ON SOME FRACTIONAL INTEGRO–DIFFERENTIAL INCLUSIONS
WITH NONLOCAL MULTI–POINT BOUNDARY CONDITIONS

AURELIAN CERNEA

(Communicated by S. Umarov)

Abstract. Existence of solutions for two classes of fractional integro-differential inclusions with nonlocal multi-point boundary conditions is investigated in the case when the values of the set-valued map are not convex.

1. Introduction

In the last years one may see a strong development of the theory of differential equations of fractional order ([4, 9, 12, 13, 14] etc.) and of the theory of fractional differential inclusions (e.g., [15]). The main reason is that fractional differential equations are very useful tools in order to model many physical phenomena.

In some recent papers [1, 3] etc. the attention was focused on special classes of boundary value problems associated to fractional differential equations; namely, nonlocal multi-point boundary conditions. This is the explanation for the study in the present paper of some fractional integro-differential inclusions with nonlocal multi-point boundary conditions.

We consider first the problem

\[D^q x(t) \in F(t,x(t),I^\gamma x(t)) \quad a.e. \quad ([1,T]), \]
\[x(1) = 0, \quad D^r x(T) = \sum_{i=1}^n \lambda_i D^\gamma x(\mu_i), \]

where \(D^q \) is the Hadamard fractional derivative of order \(q, q \in (1,2], r \in (0,1), I^\gamma \) is the Hadamard integral of order \(\gamma, \gamma > 0, \mu_i \in (1,T), \lambda_i \in \mathbb{R}, i = 1,n, n \geq 2 \) and \(F : [1,T] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R}) \) is a set-valued map.

If \(F \) is single-valued and does not depend on the last variable, fractional differential inclusion (1.1) reduces to the fractional differential equation

\[D^q x(t) = f(t,x(t)), \]

where \(f : [1,T] \times \mathbb{R} \rightarrow \mathbb{R}. \)

Mathematics subject classification (2010): 34A60, 34A08.

Keywords and phrases: Fractional derivative, differential inclusion, boundary conditions.
Existence results for problem (1.3)-(1.2) are obtained in [3] and are based on a nonlinear alternative of Leray-Schauder type and some suitable theorems of fixed point theory.

Our goal is to extend the study in [3] to the more general problem (1.1)-(1.2) and to show that Filippov’s ideas ([10]) can be suitably adapted in order to obtain the existence of solutions for this problem. Recall that for a differential inclusion defined by a lipschitzian set-valued map with nonconvex values, Filippov’s theorem ([10]) consists in proving the existence of a solution starting from a given ”quasi” solution. At the same time, the result provides an estimate between the ”quasi” solution and the solution obtained.

Secondly, we obtain similar results for problem
\[D^q_c x(t) \in F(t,x(t),V(x)(t)) \quad \text{a.e.} \quad ([0,T]) \]
where \(q \in (1,2], \, p \in (0,1), \, \delta, a, b, \alpha_i \in \mathbb{R}, \, \sigma, \xi_1, \xi_2, \beta_i \in (0,T), \, i = 1,m-2, \) \(D^q_c \) is the Caputo fractional derivative of order \(q \), \(F : [0,1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R}) \) is a set-valued map, \(V : C([0,1],\mathbb{R}) \rightarrow C([0,1],\mathbb{R}) \) is a nonlinear Volterra operator \(V(x)(t) = \int_0^t k(t,s,x(s))ds \) with \(k(.,.,.) : [0,1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) a given function.

In the case when \(F \) does not depend on the last variable and is single-valued, fractional differential inclusion (1.4) reduces to the fractional differential equation
\[D^q_c x(t) = f(t,x(t)), \]
where \(f : [0,T] \times \mathbb{R} \rightarrow \mathbb{R} \) is a given mapping.

In [1] fixed point techniques are employed to obtain the existence of solutions for problem (1.6)-(1.5).

We note that existence results of the type provided in the present paper exists in the literature ([6, 7, 8] etc.), but their exposure in the framework of problems (1.1)-(1.2) and (1.4)-(1.5) is new.

The novelty of the present paper concerns several aspects. On one hand, the study in [1, 3] is extended to the set-valued framework. This allows to deduce certain existence results concerning fractional differential equations in [1, 3] as consequences of more general results. On the other hand, we consider problems whose right-hand side contains an integral term and we implement to these integro-differential inclusions Filippov techniques. For such kind of problems the usual fixed point techniques (e.g., [15]) are difficult to be adapted.

The paper is organized as follows: in Section 2 we recall some preliminary results that we need in the sequel and in Section 3 we prove our results.

2. Preliminaries

Let \((X,d)\) be a metric space. Recall that the Pompeiu-Hausdorff distance of the closed subsets \(A, B \subset X \) is defined by
\[d_H(A,B) = \max\{d^+(A,B),d^+(B,A)\}, \quad d^+(A,B) = \sup\{d(a,B); a \in A\}, \]
where $d(x, B) = \inf_{y \in B} d(x, y)$.

Let $I = [1, T]$, we denote by $C(I, \mathbb{R})$ the Banach space of all continuous functions from I to \mathbb{R} with the norm $||x(\cdot)||_C = \sup_{t \in I} |x(t)|$ and $L^1(I, \mathbb{R})$ is the Banach space of integrable functions $u(\cdot) : I \to \mathbb{R}$ endowed with the norm $||u(\cdot)||_1 = \int_I |u(t)| dt$.

The Hadamard fractional integral of order $q > 0$ of a Lebesgue integrable function $f : [1, \infty) \to \mathbb{R}$ is defined by

$$I^q f(t) = \frac{1}{\Gamma(q)} \int_1^t \left(\ln \frac{t}{s} \right)^{q-1} \frac{f(s)}{s} ds,$$

provided the integral exists and Γ is the (Euler’s) Gamma function defined by $\Gamma(q) = \int_0^\infty t^{q-1} e^{-t} dt$.

The Hadamard fractional derivative of order $q > 0$ of a function $f : [1, \infty) \to \mathbb{R}$ is defined by

$$D^q f(t) = \frac{1}{\Gamma(n-q)} \left(\frac{d}{dt} \right)^n \left(\ln \frac{t}{s} \right)^{n-q-1} \frac{f(s)}{s} ds,$$

where $n = [q] + 1$, $[q]$ is the integer part of q.

Details and properties of Hadamard fractional derivative may be found in [11, 12].

The fractional integral of order $q > 0$ of a Lebesgue integrable function $f : (0, \infty) \to \mathbb{R}$ is defined by

$$I^q f(t) = \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s) ds,$$

provided the right-hand side is pointwise defined on $(0, \infty)$.

The Caputo fractional derivative of order $q > 0$ of a function $f : [0, \infty) \to \mathbb{R}$ is defined by

$$D^q_C f(t) = \frac{1}{\Gamma(n-q)} \int_0^t (t-s)^{-q-n-1} f^{(n)}(s) ds,$$

where $n = [q] + 1$. It is assumed implicitly that f is n times differentiable whose n-th derivative is absolutely continuous.

The next technical result is proved in [3]. Set $\Lambda := (\ln T)^{q-r-1} - \sum_{i=1}^n \lambda_i (\ln \mu_i)^{q-r-1}$.

Lemma 1. ([3]) Assume that $\Lambda \neq 0$. For a given $f(\cdot) \in C(I, \mathbb{R})$, the unique solution $x(\cdot)$ of problem $D^q x(t) = f(t)$ a.e. $([1, T])$ with boundary conditions (1.2) is given by

$$x(t) = \frac{(\ln t)^{q-1}}{\Gamma(q) \Lambda} \left(\sum_{i=1}^n \lambda_i \int_1^t \left(\ln \frac{\mu_i}{s} \right)^{q-r-1} \frac{h(s)}{s} ds + \int_1^T \left(\ln \frac{T}{s} \right)^{q-r-1} \frac{h(s)}{s} ds \right)$$

$$+ \frac{1}{\Gamma(q)} \int_1^t \left(\ln \frac{t}{s} \right)^{q-1} \frac{h(s)}{s} ds.$$ \hspace{1cm} (2.1)
REMARK 1. If we denote

\[G_1(t, s) = \frac{(\ln t)^{q-1}}{\Gamma(q)\Lambda} \left(\sum_{i=1}^{n} \lambda_i (\ln \frac{\mu_i}{s})^{q-r-1} \frac{1}{s} \chi_{[1, \mu_i]}(s) - (\ln \frac{T}{s})^{q-r-1} \frac{1}{s} \right) + \frac{1}{\Gamma(q)} (\ln t)^{q-1} \chi_{[1, t]}(s), \]

where \(\chi_{S}(\cdot) \) is the characteristic function of the set \(S \), then the solution \(x(\cdot) \) in Lemma 1 may be written as \(x(t) = \int_{1}^{T} G_1(t, s) f(s) ds \).

Using the fact that, for fixed \(t \), the function \(g(s) = (\ln \frac{s}{T})^{\alpha} \frac{1}{s} \) with \(\alpha > 0 \) is decreasing we deduce that, if \(q - r - 1 > 0 \), for any \(t, s \in I \),

\[|G_1(t, s)| \leq \frac{(\ln T)^{q-1}}{\Gamma(q)\Lambda} \left(\sum_{i=1}^{n} |\lambda_i| (\ln \mu_i)^{q-r-1} + (\ln T)^{q-r-1} \right) + \frac{1}{\Gamma(q)} (\ln T)^{q-1} =: M_1. \]

DEFINITION 1. A function \(x(\cdot) \in C(I, \mathbb{R}) \) with its Hadamard derivative of order \(q \) existing on \([1, T]\) is called a solution of problem (1.1)-(1.2) if there exists a function \(f(\cdot) \in L^1(I, \mathbb{R}) \) that satisfies

\[f(t) \in F(t, x(t), I^\gamma x(t)) \quad a.e. \quad (I) \]

and \(x(\cdot) \) is given by (2.1).

Next \(I = [0, T] \). The proof of the following lemma may be found in [1]. Define

\[A := (1 - \delta)\left(\frac{a_1^{1-p} + b_2^{1-p}}{\Gamma(2 - p)} - \sum_{i=1}^{m-2} \alpha_i \xi_i - \delta \sigma \sum_{i=1}^{m-2} \alpha_i. \right) \]

LEMMA 2. ([1]) Assume that \(A \neq 0 \). For a given \(f(\cdot) \in C(I, \mathbb{R}) \), the unique solution \(x(\cdot) \) of problem \(D_0^\gamma x(t) = f(t) \quad a.e. \quad ([0, T]) \) with boundary conditions (1.5) is given by

\[
x(t) = \int_{0}^{t} \frac{(t-s)^{q-1}}{\Gamma(q)} f(s) ds + \frac{\delta}{1 - \delta} \int_{0}^{\sigma} \frac{(\sigma-s)^{q-1}}{\Gamma(q)} f(s) ds + \frac{\delta \sigma}{A(1 - \delta)} + \frac{t}{A} \right) [(1 - \delta) \
\cdot \left(\sum_{i=1}^{m-2} \alpha_i \int_{0}^{\beta_i} \frac{(\beta_i - s)^{q-1}}{\Gamma(q)} f(s) ds \right. - a \int_{0}^{\xi_1} \frac{(\xi_1 - s)^{q-p-1}}{\Gamma(q-p)} f(s) ds \
- b \int_{0}^{\xi_2} \frac{(\xi_2 - s)^{q-p-1}}{\Gamma(q-p)} f(s) ds + \left. \sum_{i=1}^{m-2} \alpha_i \int_{0}^{\sigma} \frac{(\sigma-s)^{q-1}}{\Gamma(q)} f(s) ds \right.]
\]

\[(2.2)\]
If we denote
\[G_2(t,s) = \frac{(t-s)^{q-1}}{\Gamma(q)} \chi_{[0,i]}(s) + \frac{\delta}{1-\delta} \frac{(\sigma-s)^{q-1}}{\Gamma(q)} \chi_{[0,\sigma]}(s) + \left[\frac{\delta \sigma}{A(1-\delta)} + \frac{t}{A} \right] (1-\delta) \]
\[\cdot \left(\sum_{i=1}^{m-2} \alpha_i \frac{(\beta_i-s)^{q-1}}{\Gamma(q)} \chi_{[0,\beta_i]}(s) - a \frac{(\xi_1-s)^{q-p-1}}{\Gamma(q-p)} \chi_{[0,\xi_1]}(s) \right)
\[- b \frac{(\xi_2-s)^{q-p-1}}{\Gamma(q-p)} \chi_{[0,\xi_2]}(s)) + \delta \sum_{i=1}^{m-2} \alpha_i \frac{(\sigma-s)^{q-1}}{\Gamma(q)} \chi_{[0,\sigma]}(s), \]
then solution \(x(\cdot) \) in Lemma 2 may be written as \(x(t) = \int_0^T G_2(t,s) f(s) ds \).
Moreover, if \(q - p - 1 > 0 \) for any \(t, s \in I \) we have
\[|G_2(t,s)| \leq \frac{T^{q-1}}{\Gamma(q)} + \frac{\delta}{1-\delta} \frac{|T+T|^{q-1}}{\Gamma(q)} + \frac{\sigma^{q-1}}{A} (\sum_{i=1}^{m-2} |\alpha_i| \frac{\beta_i^{q-1}}{\Gamma(q)} + |a| \frac{\xi_1^{q-p-1}}{\Gamma(q-p)} + |b| \frac{\xi_2^{q-p-1}}{\Gamma(q-p)} + |\delta| \sum_{i=1}^{m-2} |\alpha_i| \frac{\sigma^{q-1}}{\Gamma(q)}) =: M_2. \]

Definition 2. A function \(x(.) \in C(I, \mathbb{R}) \) with its Caputo derivative of order \(q \) existing on \([0,T]\) is called a solution of problem (1.4)-(1.5) if there exists a function \(f(.) \in L^1(I, \mathbb{R}) \) that satisfies
\[f(t) \in F(t,x(t),V(x)(t)) \quad \text{a.e. } (I) \]
and \(x(.) \) is given by (2.2).

Finally, we recall a selection result ([2]) which is a version of the celebrated Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3. ([2]) Consider \(X \) a separable Banach space, \(B \) is the closed unit ball in \(X \), \(G : I \to \mathcal{P}(X) \) is a set-valued map with nonempty closed values and \(c : I \to X, r : I \to \mathbb{R}_+ \) are measurable functions. If
\[G(t) \cap (c(t) + r(t)B) \neq \emptyset \quad \text{a.e.}(I), \]
then the set-valued map \(t \to G(t) \cap (c(t) + r(t)B) \) has a measurable selection.

3. The main results

In order to prove our results we need the following hypotheses.

Hypothesis H1. i) \(F(.,.,.) : I \times \mathbb{R} \times \mathbb{R} \to \mathcal{P}(\mathbb{R}) \) has nonempty closed values and is \(\mathcal{L}(I) \otimes \mathcal{B}(\mathbb{R} \times \mathbb{R}) \) measurable.
ii) There exists \(l(.) \in L^1(I, (0,\infty)) \) such that, for almost all \(t \in I, F(t,.,.) \) is \(l(t) \)-Lipschitz in the sense that
\[d_H(F(t,x_1,y_1), F(t,x_2,y_2)) \leq l(t)(|x_1 - x_2| + |y_1 - y_2|) \forall x_1, x_2, y_1, y_2 \in \mathbb{R}. \]
We use next the following notations

\[
L(t) := l(t)(1 + \frac{1}{\Gamma(\gamma)} \int_1^t \left(\frac{\ln t}{s} \right)^{\gamma-1} \frac{1}{s} ds) = l(t)(1 + \frac{(\ln t)^{\gamma}}{\Gamma(\gamma+1)}),
\]

(3.1)

\[
L_0 = \int_1^T L(t) dt.
\]

(3.2)

Theorem 1. Assume that Hypothesis H1 is satisfied, \(q - r - 1 > 0, \Lambda \neq 0 \) and \(M_1 L_0 < 1 \). Consider \(y(.) \in C(I, \mathbb{R}) \) with its Hadamard derivative of order \(q \) existing on \([1, T]\) such that \(y(1) = 0, D^r y(T) = \sum_{i=1}^n \lambda_i D^r y(\mu_i) \) and there exists \(p(.) \in L^1(I, \mathbb{R}) \) verifying \(d(D^q y(t), F(t, y(t), I^q y(t))) \leq p(t) \text{ a.e. } (I) \).

Then there exists \(x(.) \) a solution of problem (1.1)-(1.2) satisfying for all \(t \in I \)

\[
|x(t) - y(t)| \leq \frac{M_1}{1 - M_1 L_0} \int_1^T p(t) dt.
\]

(3.3)

Proof. The multifunction \(t \rightarrow F(t, y(t), I^q y(t)) \) has closed values, is measurable and from hypothesis of theorem one has

\[
F(t, y(t), I^q y(t)) \cap \{D^q y(t) + p(t)[-1, 1]\} \neq \emptyset \text{ a.e. } (I).
\]

We apply Lemma 3 to find a measurable function \(f_1(t) \in F(t, y(t), I^q y(t)) \text{ a.e. } (I) \) such that

\[
|f_1(t) - D^q y(t)| \leq p(t) \text{ a.e. } (I)
\]

(3.4)

Define \(x_1(t) = \int_1^T G(t, s) f_1(s) ds \) and one has \(|x_1(t) - y(t)| \leq M_1 \int_1^T p(t) dt \).

We point out that it is enough to construct the sequences \(x_n(.) \in C(I, \mathbb{R}) \), \(f_n(.) \in L^1(I, \mathbb{R}) \), \(n \geq 1 \), with the following properties

\[
x_n(t) = \int_1^T G(t, s) f_n(s) ds, \quad t \in I, \tag{3.5}
\]

\[
f_n(t) \in F(t, x_{n-1}(t), I^q x_{n-1}(t)) \text{ a.e. } (I), \tag{3.6}
\]

\[
|f_{n+1}(t) - f_n(t)| \leq L(t)(|x_n(t) - x_{n-1}(t)| + \frac{1}{\Gamma(\gamma)} \int_1^t \left(\frac{\ln t}{s} \right)^{\gamma-1} \frac{1}{s} |x_n(s) - x_{n-1}(s)| ds)
\]

(3.7)

for almost all \(t \in I \).

Assume that this construction is done; then from (3.4)-(3.7) we have for almost all \(t \in I \)

\[
|x_{n+1}(t) - x_n(t)| \leq M_1 (M_1 L_0)^n \int_1^T p(t) dt \quad \forall n \in \mathbb{N}.
\]
Indeed, assume that the last inequality is true for $n - 1$ and we prove it for n. One has

$$|x_{n+1}(t) - x_n(t)| \leq \int_1^T |G_1(t, t_1)| |f_{n+1}(t_1) - f_n(t_1)| dt_1$$

$$\leq M_1 \int_1^T l(t_1)(|x_n(t_1) - x_{n-1}(t_1)| + \frac{1}{\Gamma(\gamma)} \int_1^{t_1} \left(\frac{t_1}{s} \right)^{\gamma - 1} \frac{1}{s} |x_n(s) - x_{n-1}(s)| ds)dt_1$$

$$\leq M_1 \int_1^T l(t_1)(1 + \frac{1}{\Gamma(\gamma)} \int_1^{t_1} \left(\frac{t_1}{s} \right)^{\gamma - 1} \frac{1}{s} ds)dt_1 M_1^n L_0^{n-1} \int_1^T p(t) dt$$

$$= M_1 (M_1 L_0)^n \int_1^T p(t) dt.$$

Thus, $\{x_n(\cdot)\}$ is Cauchy in the Banach space $C(I, \mathbb{R})$, therefore, converging uniformly to some $x(\cdot) \in C(I, \mathbb{R})$. Hence, by (3.7), for almost all $t \in I$, the sequence $\{f_n(t)\}$ is Cauchy in \mathbb{R}. Denote $f(\cdot)$ the pointwise limit of $f_n(\cdot)$.

At the same time, one has

$$|x_n(t) - y(t)| \leq |x_1(t) - y(t)| + \sum_{i=1}^{n-1} |x_{i+1}(t) - x_i(t)|$$

$$\leq M_1 \int_1^T p(t) dt + \sum_{i=1}^{n-1} (M_1 \int_1^T p(t) dt)(M_1 L_0)^i = \frac{M_1 \int_1^T p(t) dt}{1 - M_1 L_0}. \quad (3.8)$$

Moreover, from (3.4), (3.7) and (3.8) we obtain for almost all $t \in I$

$$|f_n(t) - D^q y(t)| \leq \sum_{i=1}^{n-1} |f_{i+1}(t) - f_i(t)| + |f_1(t) - D^q y(t)| \leq L(t) \frac{M_1 \int_1^T p(t) dt}{1 - M_1 L_0} + p(t).$$

In particular, the sequence $f_n(\cdot)$ is integrably bounded and thus $f(\cdot) \in L^1(I, \mathbb{R})$.

From Lebesgue’s dominated convergence theorem and passing the limit in (3.5), (3.6) we obtain that $x(\cdot)$ is a solution of (1.1). Finally, passing to the limit in (3.8) we obtained the desired estimate on $x(\cdot)$.

In order to finish the proof it remains to realize the construction of the sequences $x_n(\cdot), f_n(\cdot)$ with the properties in (3.5)-(3.7). This will be done by induction.

Since the first step is already realized, assume that for some $N \geq 1$ we already constructed $x_n(\cdot) \in C(I, \mathbb{R})$ and $f_n(\cdot) \in L^1(I, \mathbb{R}), n = 1, 2, \ldots N$ satisfying (3.5), (3.7) for $n = 1, 2, \ldots N$ and (3.6) for $n = 1, 2, \ldots N - 1$. The set-valued map $t \rightarrow F(t, x_N(t), I^\gamma x_N(t))$ is measurable; as well as the map $t \rightarrow L(t)(|x_N(t) - x_{N-1}(t)| + \frac{1}{\Gamma(\gamma)} \int_1^t \left(\frac{t}{s} \right)^{\gamma - 1} \frac{1}{s} |x_N(s) - x_{N-1}(s)| ds)$ is measurable. Since $F(t, \cdot, \cdot)$ is Lipschitz we have that for almost all $t \in I$

$$F(t, x_N(t), I^\gamma x_N(t)) \cap \{f_N(t) + L(t)(|x_N(t) - x_{N-1}(t)| + \frac{1}{\Gamma(\gamma)} \int_1^t \left(\frac{t}{s} \right)^{\gamma - 1} \frac{1}{s} |x_N(s) - x_{N-1}(s)| ds)[-1, 1]\} \neq \emptyset.$$
Lemma 3 allows to find a measurable selection \(f_{N+1}(.) \) of \(F(.,x_N(.),I'x_N(.)) \) such that for almost all \(t \in I \)

\[
|f_{N+1}(t) - f_N(t)| \leq L(t)(|x_N(t) - x_{N-1}(t)| + \frac{1}{\Gamma(\gamma)} \int_1^t \left(\frac{t}{s} \right)^{\gamma-1} \frac{1}{s} |x_N(s) - x_{N-1}(s)| ds).
\]

We define \(x_{N+1}(.) \) as in (3.5) with \(n = N + 1 \). Thus \(f_{N+1}(.) \) satisfies (3.6) and (3.7) and the proof is complete. \(\square \)

The assumptions in Theorem 1 are satisfied, in particular, for \(y(.) = 0 \) and therefore with \(p(.) = l(.) \). We obtain the following consequence of Theorem 1.

COROLLARY 1. Assume that Hypothesis H1 is satisfied, \(d(0,F(t,0,0) \leq L(t) \text{ a.e. (I)} \), \(q - r - 1 > 0 \), \(\Lambda \neq 0 \) and \(M_1L_0 < 1 \). Then there exists \(x(.) \) a solution of problem (1.1)-(1.2) satisfying for all \(t \in I \)

\[
|x(t)| \leq \frac{M_1}{1 - M_1L_0} \int_1^T l(t) dt.
\]

If \(F \) does not depend on the last variable, Hypothesis H1 becomes

HYPOTHESIS H2. i) \(F(.,.) : I \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R}) \) has nonempty closed values and is \(\mathcal{L}(I) \otimes \mathcal{B}(\mathbb{R}) \) measurable.

ii) There exists \(l(.) \in L^1(I,(0,\infty)) \) such that, for almost all \(t \in I \), \(F(.,.) \) is \(L(t) \)-Lipschitz in the sense that

\[
d_H(F(t,x_1),F(t,x_2)) \leq l(t)|x_1 - x_2| \quad \forall x_1, x_2 \in \mathbb{R}.
\]

Denote \(M_0 = \int_1^T l(t) dt \) and consider the fractional differential inclusion

\[
D^q x(t) \in F(t,x(t)) \quad \text{a.e. ([1, T])}, \quad (3.9)
\]

COROLLARY 2. Assume that Hypothesis H2 is satisfied, \(d(0,F(t,0,0) \leq L(t) \text{ a.e. (I)} \), \(q - r - 1 > 0 \), \(\Lambda \neq 0 \) and \(M_1M_0 < 1 \). Then there exists \(x(.) \) a solution of problem (3.9)-(1.2) satisfying for all \(t \in I \)

\[
|x(t)| \leq \frac{M_1M_0}{1 - M_1M_0}.
\]

REMARK 2. If in (3.9) \(F \) is single-valued, then a similar result to the one in Corollary 2 may be found in [3]; namely, Theorem 3.3.

We are concern next with problem (1.4)-(1.5). In what follows \(I = [0,T] \) and we make the following notations

\[
N(t) := l(t)(1 + \int_0^t l(u) du), \quad t \in I, \quad N_0 = \int_0^T N(t) dt.
\]
THEOREM 2. Assume that Hypothesis H1 is satisfied, \(q - p - 1 > 0 \), \(A \neq 0 \) and \(M_2N_0 < 1 \). Consider \(y(.) \in C(I, \mathbb{R}) \) with its Caputo derivative of order \(q \) existing on \([0,T]\) such that \(y(0) = \delta y(\sigma) \), \(aD_q^p y(\xi_1) + bD_q^p y(\xi_2) = \sum_{i=1}^{m-2} \alpha_i q(y(\beta_i)) \) and there exists \(q(.) \in L^1(I, \mathbb{R}_+) \) verifying \(d(D_q^p y(t), F(t,y(t), V(y)(t))) \leq q(t) \) a.e. (I).

Then there exists \(x(.) \) a solution of problem (1.4)-(1.5) satisfying for all \(t \in I \)

\[
|x(t) - y(t)| \leq \frac{M_2}{1 - M_2N_0} \int_0^T q(t) dt.
\]

Proof. The proof is similar to the proof of Theorem 1. \(\square \)

If in Theorem 2, \(y(.) = 0 \) and \(q(.) = l(.) \) we get the following consequence of Theorem 2.

COROLLARY 3. Assume that Hypothesis H1 is satisfied, \(d(0,F(t,0,0) \leq L(t) \) a.e. (I), \(q - p - 1 > 0 \), \(A \neq 0 \) and \(M_2N_0 < 1 \). Then there exists \(x(.) \) a solution of problem (1.4)-(1.5) satisfying for all \(t \in I \)

\[
|x(t)| \leq \frac{M_2}{1 - M_2N_0} \int_0^T l(t) dt.
\]

Next \(F \) does not depend on the last variable. Set \(K_0 = \int_0^T l(t) dt \) and consider the fractional differential inclusion

\[
D_q^p x(t) \in F(t,x(t)) \quad a.e. \; ([0,T]),
\]

(3.10)

COROLLARY 4. Assume that Hypothesis H2 is satisfied, \(d(0,F(t,0) \leq L(t) \) a.e. (I), \(q - p - 1 > 0 \), \(A \neq 0 \) and \(M_2K_0 < 1 \). Then there exists \(x(.) \) a solution of problem (3.10)-(1.2) satisfying for all \(t \in I \)

\[
|x(t)| \leq \frac{M_2K_0}{1 - M_2K_0}.
\]

REMARK 3. If in (3.10), \(F \) is single-valued, then a similar result to the one in Corollary 4 is Theorem 1 in [1].

REFERENCES

[1] R. P. AGARWAL, A. A. SAEDI, A. A. SHARIF AND B. AHMAD, On nonlinear fractional-order boundary value problems with nonlocal multi-point conditions involving Liouville-Caputo derivative, Diff. Eqs. Appl. 9, (2017), 147–160.

[2] J. P. AUBIN AND H. FRANKOWSKA, Set-valued Analysis, Birkhauser, Basel, 1990.

[3] W. BENHAMIDA, J. R. GRAEF AND S. HAMANI, Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions, Frac. Diff. Calculus 8, (2018), 165–176.

[4] D. BĂLEANU, K. DIETHELM, E. SCALAS AND J. J. TRUJILLO, Fractional Calculus Models and Numerical Methods, World Scientific, Singapore, 2012.

[5] M. CAPUTO, Elasticità e Dissipazione, Zanichelli, Bologna, 1969.
[6] A. Cernea, Filippov lemma for a class of Hadamard-type fractional differential inclusions, Fract. Calc. Appl. Anal. 18, (2015), 163–171.

[7] A. Cernea, On the existence of solutions for a Hadamard-type fractional integro-differential inclusion, J. Nonlin. Anal. Optim. 6, (2015), 67–72.

[8] A. Cernea, On some boundary value problems for a fractional integro-differential inclusion, Nonlin. Funct. Anal. Appl. 21, (2016), 215–223.

[9] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.

[10] A. F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5, (1967), 609–621.

[11] J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8, (1892), 101–186.

[12] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[13] K. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.

[14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[15] Y. Zhou, Fractional Evolution Equations and Inclusions. Analysis and Control, Academic Press, London, 2017.

(Received January 15, 2019)

Aurelian Cernea
Faculty of Mathematics and Computer Science
University of Bucharest
Academiei 14, 010014 Bucharest, Romania
Academy of Romanian Scientists
Splaiul Independenței 54, 050094 Bucharest, Romania
e-mail: acerneafmi.unibuc.ro