Losartan protects against osteoarthritis by repressing the TGF-β1 signaling pathway via upregulation of PPARγ

Zhenhan Deng, MD, Ph.D, a,b,c,d, Fei Chen, Ph.D d, Yuwei Liu, MD, Ph.D a,d, Jinping Wang, Ph.D d, Wei Lu, MD, Ph.D a,b,c,d, Wei Jiang, MD, Ph.D e,**, Weimin Zhu, MD, Ph.D a,b,c,d,*

Objective: Losartan and activation of the peroxisome proliferator-activated receptor-γ (PPARγ) have been previously reported to alleviate the progression of osteoarthritis (OA). However, the nature of the interaction between losartan and PPARγ in OA remains elusive. Therefore, we aimed to investigate the mechanism of the regulation of PPARγ by losartan in the context of OA.

Methods: Clinical samples of OA patients were collected and the chondrocytes were further isolated, and used to construct OA chondrocyte model via induction with IL-1β. An OA mouse model was developed by the surgical destabilization of the medial meniscus (DMM). OA chondrocytes were treated with losartan, PPARγ siRNA and the PPAR-γ agonist GW1929 alone or in combination. Furthermore, the OA mice were treated with varying doses of losartan to determine the best mode of administration and treatment dose. Subsequently, the DMM mice were treated with losartan and GW9662. Expression of PPARγ, key proteins of the transforming growth factor-beta1 (TGF-β1) signaling pathway and the markers of OA degeneration were evaluated by the Western blot analysis, while effects on OA inflammatory factors were determined by ELISA.

Results: The downregulation of PPARγ and the upregulation of TGF-β1 signaling pathway were detected in the OA cartilage tissues and chondrocytes. Losartan treatment or PPARγ activation contributes to reduced levels of IL-6, IL-1β, TNF-α, and COX-2, expression of TGF-β1, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, and iNOS, along with reduced Smad2 and Smad3 phosphorylation, but elevated PPARγ and Collagen II expression in vivo and in vitro. Additionally, the intraarticular injection of losartan into the knee joint proved to be the best mode of administration, and 10 mg/mL being the optimal treatment concentration.

Conclusion: Our results show that losartan could arrest the progression of OA by upregulating PPARγ expression and inactivating the TGF-β1 signaling pathway.

The translational potential of this article: Our results provide a biological rationale for the use of losartan as a potential candidate for OA treatment.
1. Introduction

Osteoarthritis (OA), the most common chronic joint disease, is charac-
terized by the failure in repairing damaged cartilage due to the
biochemical and biomechanical changes in the joint, and which has an
increasing incidence closely associated with the aging population and the
obsesity epidemic [1-3]. The pathologic changes in OA joints typically
include the formation of osteophytes, the degeneration of ligaments, knee
and menisci, the degradation of the articular cartilage, hypertrophy of the
joint capsule, and synovial inflammation and thickening of the sub-
chondral bone [4]. Moreover, there are various well-established risk
factors of OA, including being overweight, obesity, knee injury, repetitive
use of joints, joint laxity, female gender, muscle weakness, old age, and
bone density [5,6]. Additionally, inflammation also contributes to the
progression of OA, presenting as clinical features such as effusion or
synovitis due to thickening of the synovium [7,8]. Furthermore, it has been
proven that interleukin (IL-1β) induces inflammation in chondrocytes and
thus promotes OA progression in a murine model [9]. Moreover, the
angiotensin II receptor antagonist losartan has been revealed to attenuate
inflammation in renal injury [12]. Therefore, we speculated that losartan
may help to alleviate OA

from 10 OA patients at our hospital who had previously received joint
replacement surgery and 10 patients (normal control) who had previ-
ously undergone amputation due to trauma. Any specimens with infec-
ction or other diseases were excluded according to the medical history,
preoperative X-ray film, and postoperative visual observation. All the OA
patients were diagnosed according to the OA knee joint standards of the
Orthopaedic Branch of the Chinese Medical Association (2007).

2.2. Detection of PPARγ, TGF-β1 signaling pathway-related proteins, OA-
related inflammatory factors, and degeneration markers in cartilage tissues

The OA cartilage samples were obtained from severe abrasion sites in
the load-bearing area of the tibial plateau of the knee joint of the included
OA patients, and normal cartilage was obtained from corresponding re-
gions in the normal samples. Subsequently, the OA cartilage and normal
cartilage tissues were digested with type II collagenase, followed by
measuring expression of PPARγ, TGF-β1 signaling pathway-related pro-
teins (TGF-β1, Smad2, and Smad3), OA-related inflammatory factors
(interleukin [IL]-6, IL-1β), tumor necrosis factor-α (TNF-α), and COX-2),
and degeneration markers (matrix metalloproteinase [MMP]-13, a
disintegrin and metalloproteinase (reprolysin-type) with thrombo-
spondin type 1 motif [ADAMTS]-4, ADAMTS-5, HtrA1, inducible nitric oxide synthase [iNOS], and Collagen II) in the samples.

2.4. Chondrocyte culture

The normal cartilage tissues were rinsed with phosphate buffer saline
(PBS) and the clean cartilage surface was harvested and cut into pieces,
which were then placed into 15 mL centrifuge tubes. Each tube was
added with 2-3 volumes of type II collagenase, mixed well, and further
incubated at 37 °C with 5% CO2 for 12 h. Subsequently, the obtained
ablated cartilage tissue mixture was filtered through a 60-mesh filter.
The resultant filtrate was transferred into 15 mL centrifuge tubes and added
with PBS to a final volume of 12 mL. This sample was centrifuged for 6
min at 800 r/min, and the lower layer of resultant filtrate containing
chondrocytes was collected. Subsequently, 6-8 mL of 15% fetal bovine
serum (FBS) and Dulbecco’s modified Eagle’s medium (DMEM)/F12
complete medium (containing 1% streptomycin and penicillin) were
added to obtain the chondrocyte solution adjusted to a concentration of
approximately 1 × 10^5 cells/mL. The chondrocyte solution was aliquoted
into 25 mm² culture bottles and placed in an incubator under standard
conditions. The culture medium was changed every 3 days and the cells
were subcultured when the cells reached approximately 80% confluency.
The final chondrocyte preparation was identified by immunohisto-
chemical staining with anti-type II collagen antibody.

2.5. IL-1β-treated chondrocyte culture, transfection and grouping

In order to elucidate the effect of losartan on OA, we first used IL-1β to
treat chondrocytes to construct an OA cell model. The separated normal
chondrocytes were cultured with 10 ng/mL IL-1β for 24 h. Then, the IL-
1β-treated chondrocytes were assigned to the following 13 groups: blank
treatment with normal saline), losartan (treatment with 5 μM losartan),
negative control small interfering RNA (NC siRNA) (transfection with NC
siRNA sequence), PPARγ siRNA (transfection with PPARγ siRNA
sequence), losartan + NC siRNA (treatment with 5 μM losartan and
transfection with NC siRNA sequence), losartan + PPARγ siRNA (treatment
with 5 μM losartan and transfection with PPARγ siRNA sequence),
dimethyl sulfoxide (DMSO) (treatment with 1 μM DMSO), GW1929
treatment with 1 μM GW1929, a PPARγ agonist), GW1929 + PBS (co-
treatment with 1 μM GW1929 and 10 ng/mL PBS), GW1929 + TGF-β1 (co-
treatment with 1 μM GW1929 and 10 ng/mL TGF-β1), losartan + PBS
(co-treatment with 5 μM losartan and 10 ng/mL PBS), losartan + TGF-β1
(co-treatment with 5 μM losartan and 10 ng/mL TGF-β1), losartan +
PPARγ siRNA + PBS (transfection with PPARγ siRNA sequence and
treatment with 5 μM losartan and 10 ng/mL PBS), and losartan + PPARγ
silencing of PPARγ siRNA sequences and 10 ng/mL TGFβ1. Transfection was conducted in accordance to the manufacturer’s instructions of Lipofectamine 2000 reagents (Invitrogen, Carlsbad, CA, USA). The PPARγ siRNA sequences were as follows: 5′-GACAUUCCAUUCAACAGAA-3′ (sense) and 5′-UUCUUUGGAUUGGAUGUCC-3′ (antisense).

2.6. Western blot analysis

Radio-immunoprecipitation assay cell lysis buffer (P0013C, Beyotime Institute of Biotechnology, Shanghai, China) containing phenylmethylsulfonyl fluoride was added into cells and tissues for total protein extraction. The culture was then placed on ice for 30 min, centrifuged at 8000 g for 10 min, and the resultant supernatant was collected. Additionally, a bicinchoninic acid kit was employed to estimate the protein concentration in the supernatant. Subsequently, 50 μg of protein was dissolved in 2× sodium dodecyl sulfate (SDS) sample buffer and boiled for 5 min. The protein sample was then subjected to SDS-polyacrylamide gel electrophoresis. Furthermore, the separated protein was electroblotted onto a polyvinylidene fluoride membrane using the wet transfer method, which was then followed by 1-h blocking with 5% skimmed milk powder at room temperature. The membrane was subsequently probed overnight at the temperature of 4°C with diluted primary rabbit antibodies against PPARγ (1:500, ab59256), TGFβ1 (1:1000, #3709, Cell Signaling Technologies, Beverly, MA, USA), Smad2 (1:2000, ab40855), Smad3 (1:1500, ab40854), phosphorylated (p)-Smad2 (1:500, ab53100), p-Smad3 (1:1000, ab193297), MMP-13 (1:3000, ab39012), ADAMTS-4 (1:2000, ab185722), ADAMTS-5 (1:250, ab41037), Collagen II (1:5000, ab34712), INOS (1:500, ab3523), high-temperature requirement A serine peptidase 1 (Htra1; 1:1000, ab38611), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; ab9485, 1:2500, internal reference). All the antibodies except TGFβ1 were purchased from Abcam Inc (Cambridge, UK). Subsequently, the membrane was re-probed with goat anti-rabbit immunoglobulin G H&L secondary antibody (1:2000, ab97051, Abcam Inc.) which was labeled by horseradish peroxidase for the duration of 1 h. Following this, the membrane was placed on a clean glass plate and developed using the enhanced chemiluminescence reagents (BB-3501, Abersham, Little Chalfont, UK). The image analysis system (Bio-Rad, Hercules, CA, USA) was employed to take photographs and the results were analyzed using the Quantity One v4.6.2 software. The protein levels were expressed as the ratio of the gray value of each protein to that of internal reference.

2.7. Enzyme-linked immunosorbent assay (ELISA)

Cell culture supernatant was harvested from 24-well plates following lipopolysaccharide (LPS) administration, after which the concentration of inflammatory cytokines was measured by ELISA according to the manufacturer's protocols (R&D Systems, Abingdon, UK) and normalized to cell protein concentration. The serum and cell solutions to be tested were harvested for the further evaluation of the levels of TNFα (RAB0477), IL-6 (RAB0308), cyclooxygenase-2 (COX-2; RAB1034) and IL-1β (RAB0274) in accordance to the manufacturer’s protocols of ELISA Kits (Sigma–Aldrich Chemical Company, St Louis, MO, USA).

2.8. Destabilization of medial meniscus (DMM)-induced OA mouse model establishment

A total of 160C57BL/6 mice (weighing 18–22 g, aged 8–10 weeks, Hunan SJA Laboratory Animal Co., Ltd., Hunan, China) were obtained for the current study. In brief, one knee joint of each mouse was randomly selected, and the OA mouse model was established as previously reported [20]. Subsequently to the operation, the mice were returned to their home cages and were free to move about, and were treated with intraperitoneal injection of penicillin to prevent post-operative infection. Ten sham-operated mice were used as controls. In these mice, the medial meniscus ligament of the contralateral knee was not cut off, but the exposure and suturing methods were otherwise similar to those for OA modeling. HE staining and safranin-O-fast green staining were performed post hoc to verify the successful establishment of the OA model. The OA mouse model mice with were divided into control (treatment with normal saline) and IL-1β (intraarticular injection of 10 ng/mL IL-1β) groups. After 12 weeks post-surgery, the mice were euthanized, and expression of related genes in cartilage tissues was detected by Western blot analysis and ELISA.

2.9. Exploring of the best intervention method

Our initial aim was to determine the best mode of administration and concentration of losartan for treating OA mice. For these purposes, we assigned the successfully induced OA mice into oral treatment and knee joint intracavitary injection treatment groups. In the oral treatment OA mouse groups, treatments were placebo (controls), or oral losartan administered in drinking water at 0.1 mg/kg/day (low dose), 1 mg/kg/day (medium dose), 10 mg/kg/day (high dose), or 100 mg/kg/day (extremely high dose) beginning on the day after surgery and continuing until the day of euthanasia. The knee joint intracavitary injection treatment groups were treated with 10 μL volumes of saline control or containing losartan at concentrations of 0.1 mg/mL (low dose), 1 mg/mL (medium dose), 10 mg/mL (high dose), or 100 mg/mL (extremely high dose) subsequent to the operation, with treatment on weeks 2, 4, 6, 8, and 10 post-operation (n = 10 in each group). The losartan was purchased from the LKT Laboratories (St Paul, MN, USA). The mice were euthanized at the 12th week subsequent to the operation and the knees of the surgery sides were collected for histological analysis. Expression of relevant genes in articular cartilage of the tibial plateau was detected using Western blot analysis.

2.10. In vitro study of attenuation of OA by losartan

Base on initial studies in of the optimal losartan treatment doses in OA mice indicated, we administered intracuticular losartan at a dose of 10 mg/mL losartan +5 mg/kg DMSO, or 10 mg/mL losartan +5 mg/kg GW9662. The mice were then euthanized 12 weeks after the operation for further histological analysis. The expression of relevant genes in cartilage was detected by Western blot analysis.

The knee joints were dissected and fixed with 10% neutral buffered formalin (NBF) for 72 h. The fixed knee joint tissues were then decalciﬁed in 10% ethylenediaminetetraacetic acid (EDTA) disodium (E9884-1 KG, Sigma–Aldrich, St. Louis, MO, USA) for 4 weeks, dehydrated in an ethanol series, cleared with xylene, and embedded in paraffin. Then, 5-μm sagittal sections were prepared on a microtome and collected on Superfrost glass slides (Thermo Fisher Scientific, Waltham, MA, USA) at levels where the medial tibial plateau and anterior and posterior horns of the meniscus were visible. These sections were subsequently deparafﬁnized using xylene and hydrated using an ethanol gradient and water for further histological analysis.

2.11. Histology

HE staining was performed to reveal the general morphology of the knee joint. Additionally, Safranin-O-fast green staining (IHC World; https://www.ihcworld.com/protocols/special_stains/safranin_o.htm) was modiﬁed by extending the Safranin O step to30 min to detect the proteoglycan and glycosaminoglycan matrices [20].

2.12. Immunohistochemistry

OA and normal cartilage tissues were deparafﬁnized with xylene and rehydrated with gradient ethanol, followed by microwave antigen retrieval. The tissues were then immersed in 0.3% H2O2 to block the endogenous peroxidase and then immunostained with primary antibody
Table 1. Relative protein expression of PPARγ, MMP-13, ADAMTS-4, ADAMTS-5, HIF1α, INOS, Collagen II, and GAPDH in normal and OA tissues.

Protein	Normal-tissue	OA-tissue
PPARγ	57 kDa	54 kDa
MMP-13	54 kDa	90 kDa
ADAMTS-4	90 kDa	102 kDa
ADAMTS-5	102 kDa	51 kDa
HIF1α	131 kDa	141 kDa
INOS	141 kDa	37 kDa
Collagen II	37 kDa	37 kDa
GAPDH	37 kDa	37 kDa

Figure 1. Relative protein expression of PPARγ, MMP-13, ADAMTS-4, ADAMTS-5, HIF1α, INOS, Collagen II, and GAPDH in normal and OA cells.

Figure 2. IL-6, TNF-α, IL-1β, and COX-2 levels in normal and OA tissues.

Figure 3. IL-6, TNF-α, IL-1β, and COX-2 levels in normal and OA cells.

Figure 4. Relative protein expression of TGF-β1, p-Smad2, Smad2, p-Smad3, Smad3, and GAPDH in normal and OA tissues.

Figure 5. Relative protein expression of TGF-β1, p-Smad2, Smad2, p-Smad3, Smad3, and GAPDH in normal and OA cells.

Figure 6. Immunohistochemical score of TGF-β1, p-Smad2, p-Smad3, and PPARγ in normal and OA tissues.
against CCNO (1:1000, ab47682, Abcam) overnight. The following day, tissues were added with secondary antibody for 30 min of reaction. Finally, tissues were developed with 3,3-diaminobenzidine and counterstained with hematoxylin. Semiquantitative evaluation on the immunohistochemistry of CCNO was carried out using an immunoscore according to the percentage of stained cells and their staining intensity, as previously described. The intensity score was defined as follows: 0 = no evident staining; 1 = weak intensity; 2 = moderate intensity; 3 =

Fig. 1. Downregulation of PPARγ and activation of the TGF-β1 signaling pathway in OA model cartilage tissues and chondrocytes. A, Expression of PPARγ, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, iNOS, and Collagen II in cartilage tissues examined by Western blot analysis normalized to GAPDH (n = 10). B, Expression of PPARγ, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, iNOS, and Collagen II in chondrocytes examined by Western blot analysis normalized to GAPDH (n = 3). C, IL-6, IL-1β, TNF-α, and COX-2 levels in serum of clinical samples measured by ELISA (n = 10). D, IL-6, IL-1β, TNF-α, and COX-2 levels in chondrocytes measured by ELISA (n = 3). E, Expression of TGF-β1, Smad2, and Smad3, along with the extent of Smad2 and Smad3 phosphorylation in cartilage tissues examined by Western blot analysis normalized to GAPDH, and immunohistochemistry (n = 10). F, Expression of TGF-β1, Smad2, and Smad3, along with the extent of Smad2 and Smad3 phosphorylation in chondrocytes examined by Western blot analysis normalized to GAPDH, and immunohistochemistry (n = 3). *p < 0.05 vs. normal cartilage tissues and normal chondrocytes.

Fig. 2. Losartan downregulates expression of OA-related genes in OA chondrocytes. A, The levels of IL-6, IL-1β, TNF-α, and COX-2 in OA chondrocytes evaluated by ELISA. B, Expression of MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, iNOS, and Collagen II in OA chondrocytes assessed by Western blot analysis normalized to GAPDH. C, Expression of MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, iNOS, and Collagen II in OA chondrocytes after treatment with 1, 2.5, 5 or 10 μM losartan evaluated by Western blot analysis normalized to GAPDH. D, Expression of PPARγ, TGF-β1, Smad2, and Smad3, along with the extent of Smad2 and Smad3 phosphorylation in OA chondrocytes after treatment with 5 μM losartan evaluated by Western blot analysis normalized to GAPDH. E, Expression of MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, iNOS, and Collagen II in OA chondrocytes after treatment with 5 μM losartan evaluated by Western blot analysis normalized to GAPDH. F, The levels of IL-6, IL-1β, TNF-α, and COX-2 in OA chondrocytes after treatment with 5 μM losartan evaluated by ELISA. The experiment was repeated three times. *p < 0.05 vs. control chondrocytes; #p < 0.05 vs. OA chondrocytes.
strong intensity; 4 = very strong intensity. The fraction score was determined based on the proportion of positively stained cells (0–100%). The mean value of the immunoscores was recorded following observation under a microscope in ten randomly selected high-power fields. The histologic classification of the specimens was determined by two pathologists in an independent manner.

2.13. Histological analysis

Safranin-O-fast green staining was conducted to detect the OA cartilage damage and subchondral bone plate (SBP) thickness, whereas Safranin-O/hematoxylin was conducted for the purpose of synovitis scoring. Representative microscopic images were taken, which captured the entire articular cartilage of the tibial plateau in each section. Subsequently, the Osteoarthritis Research Society International (OARSI) scoring system (grade 0–6) was adopted to measure OA severity/cartilage damage [20].

2.14. Statistical analysis

All measurement data were shown as mean ± standard deviation and was analyzed using the SPSS 19.0 software (IBM Corp., Armonk, NY, USA), with a level of significance set as p < 0.05. The data between two groups were compared employing the unpaired t-test and comparisons amongst multiple groups were performed using the one-way analysis of variance (ANOVA), followed by the Tukey’s post-hoc test.

3. Results

3.1. PPARγ was poorly expressed and TGF-β1 signaling pathway was activated in cartilage tissues and chondrocytes with OA

In comparison to the normal cartilage tissues and chondrocytes, expression of PPARγ and Collagen II was significantly reduced, while levels of MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, iNOS, and Collagen II were increased in OA cartilage tissues and chondrocytes (p < 0.05; Fig. 1A and B). Additionally, IL-6, IL-1β, TNF-α, and COX-2 levels were observed to be abundant in OA cartilage tissues and IL-1β-treated chondrocytes (Fig. 1C and D). Western blot analysis and immunohistochemistry revealed high expression of TGF-β1, and increased extents of Smad2 and Smad3 phosphorylation in OA cartilage tissues and IL-1β-treated chondrocytes (Fig. 1E and F). These results suggested the occurrence of downregulated PPARγ expression, activated TGF-β1 signaling pathway, and increased expression of OA related inflammatory factors, as well as increased degeneration markers in OA cartilage tissues and IL-1β-treated chondrocytes.

3.2. Losartan reduced expression of OA-related genes in IL-1β-treated chondrocytes by increasing PPARγ

ELISA and Western blot analysis revealed that expression of IL-6, IL-1β, TNF-α, COX-2, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, and iNOS was strikingly elevated, while that of Collagen II was remarkably lower in OA chondrocytes in comparison to the normal chondrocytes (Fig. 2A and B). Treatment with 1 μM, 2.5 μM or 5 μM losartan resulted in reduced
expression of MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, and iNOS, but enhanced the expression of Collagen II in OA chondrocytes. However, treatment with 10 μM losartan resulted in opposite results in OA chondrocytes (Fig. 2C). Therefore, we chose a treatment concentration of 5 μM losartan for subsequent experiments. Then, expression of TGF-β1, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, and iNOS along with the extent of Smad2 and Smad3 phosphorylation was found to be significantly diminished, whereas expression of Collagen II and PPARγ was remarkably enhanced in OA chondrocytes (Fig. 2D and E). ELISA displayed that the levels of IL-6, IL-1β, TNF-α, and COX-2 were diminished in OA chondrocytes when treated with 5 μM losartan (Fig. 2F). Cumulatively, the aforementioned findings established that losartan resulted in increased PPARγ expression and inactivation of the TGF-β1 signaling pathway in chondrocytes.

Western blot analysis (Fig. 3A) demonstrated that expression of PPARγ was significantly reduced subsequent to the PPARγ silencing. The PPARγ siRNA-1 showed the best silencing efficacy and was therefore selected for subsequent experiments. Furthermore, results of Western blot analysis established that PPARγ siRNA treatment led to a significant decrease of PPARγ and Collagen II expression, as well as the increased expression of TGF-β1, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1 and iNOS, along with enhanced extent of Smad2 and Smad3 phosphorylation, all of which was reversed by losartan treatment (Fig. 3B and C). Additionally, the ELISA detection revealed elevated levels of IL-6, IL-1β, TNF-α, and COX-2 in OA chondrocytes subsequent to the silencing of PPARγ, and that these effects were reversed by treatment with losartan (Fig. 3D).

The abovementioned results suggest that losartan could downregulate expression of OA-related genes in IL-1β-treated chondrocytes by upregulating PPARγ expression.

3.3. PPARγ downregulated expression of OA-related genes in IL-1β-treated chondrocytes by inactivating the TGF-β1/Smad2/3 signaling pathway

The results of the Western blot analysis showed that expression of TGF-β1, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, and iNOS along with the extent of Smad2 and Smad3 phosphorylation was significantly decreased, whereas expression of Collagen II was markedly increased in the OA chondrocytes in the presence of the PPARγ agonist GW1929,
which was subsequently abrogated by TGF-β1 treatment (Fig. 4A and B). Furthermore, the ELISA results established that the levels of IL-6, IL-1β, TNF-α, and COX-2 were significantly reduced in OA chondrocytes treated with GW1929, which was also found to be reversed by TGF-β1 treatment (Fig. 4C). Based on these findings, we conclude PPARγ could repress expression of OA-related genes in chondrocytes via the inactivation of the TGF-β1/Smad2/3 signaling pathway.

3.4. Losartan downregulated expression of OA-related genes via PPARγ-mediated TGF-β1/Smad2/3 signaling pathway inactivation in IL-1β-treated chondrocytes

Concomitant treatment with losartan and TGF-β1 did not affect PPARγ expression, but resulted in much higher expression of TGF-β1, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, iNOS, greater extent of Smad2 phosphorylation, and increased levels of IL-6, IL-1β, TNF-α, and COX-2 in chondrocytes evaluated by Western blot analysis normalized to GAPDH. A, Expression of PPARγ, TGF-β1, Smad2, and Smad3, along with the extent of Smad2 and Smad3 phosphorylation in chondrocytes evaluated by Western blot analysis normalized to GAPDH. B, Expression of MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, iNOS, and Collagen II in chondrocytes evaluated by Western blot analysis normalized to GAPDH. C, The levels of IL-6, IL-1β, TNF-α, and COX-2 in chondrocytes evaluated by ELISA. D, Expression of PPARγ, TGF-β1, Smad2, and Smad3, along with the extent of Smad2 and Smad3 phosphorylation in chondrocytes evaluated by Western blot analysis normalized to GAPDH. E, Expression of MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, iNOS, and Collagen II in chondrocytes evaluated by Western blot analysis normalized to GAPDH. F, The levels of IL-6, IL-1β, TNF-α, and COX-2 in chondrocytes evaluated by ELISA. The experiment was repeated three times. *p < 0.05 vs. control chondrocytes or OA chondrocytes treated with losartan + PPARγ siRNA + PBS; #p < 0.05 vs. OA chondrocytes treated with losartan + PBS.

Fig. 5. Losartan diminishes expression of OA-related genes through PPARγ-mediated TGF-β1/Smad2/3 signaling pathway inactivation in chondrocytes. Normal chondrocytes were used as controls, and OA chondrocytes were treated with or without losartan + PBS or losartan + TGF-β1.
and Smad3 phosphorylation, as well as lower expression of Collagen II in OA chondrocytes in comparison to losartan treatment alone (Fig. 5A and B). Additionally, the ELISA results demonstrated that the TGF-β1 treatment resulted in elevated levels of IL-6, IL-1β, TNF-α, and COX-2 in OA chondrocytes in the presence of losartan (Fig. 5C).

Furthermore, the results of the Western blot analysis demonstrated no significant difference in expression of PPARγ, but an increase was established in expression of TGF-β1, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, and iNOS, along with greater extent of Smad2 and Smad3 phosphorylation as well as a decrease in the expression of Collagen II in OA chondrocytes after treatment with losartan + PPARγ siRNA + TGF-β1 as compared to the treatment with losartan + PPARγ siRNA + PBS (Fig. 5D and E). Additionally, the ELISA results suggested that treatment with losartan + PPARγ siRNA significantly increased the levels of IL-6, IL-1β, TNF-α, and COX-2 in OA chondrocytes after TGF-β1 treatment (Fig. 5F).

Taken together, these results suggest that suggested that losartan could potentially elicit the PPARγ-mediated inactivation of the TGF-β1/Smad2/3 signaling pathway and thus decrease expression of OA-related genes in IL-1β-treated chondrocytes.

3.5. The best intervention method and concentration of losartan in the treatment of OA mice

Analysis with HE staining of knee joint synovial tissues depicted normal synovium and an orderly arrangement of cells in the synovium and subintima in sham-operated mice. In contrast, DMM mice showed massive inflammatory cells infiltration into synovial tissues, fibrous tissue proliferation and synovium cell proliferation and derangement (Fig. 6A). Additionally, the Safranin-O-fast green staining revealed that the Safranin-O-fast green staining after OA model establishment (400×) was notably elevated in response to losartan treatment in DMM mice. This effect was reversed by additional treatment with GW9662, while the

![Fig. 6. Morphological characteristics of cartilage tissues of DMM-induced OA mice. A, Histopathological changes on the synovium of mouse knee joint observed by HE staining after OA model establishment (400×). B, Degree of cartilage damage of mouse knee joint assessed by safranin-O-fast green staining after OA model establishment. C, Synovitis scores of mice after OA model establishment. D, OARSI scores of mice after OA model establishment. OA mice were orally administered with normal saline, 0.1, 1, 10, or 100 mg/kg losartan, or intraarticularly injected with normal saline, 0.1, 1, 10 or 100 mg/mL losartan. *p < 0.05 vs. sham-operated mice.](image-url)
PPARγ expression remained unchanged (Fig. 7C and D).

Furthermore, based on the results of ELISA, the levels of IL-6, IL-1β, TNF-α, and COX-2 were found to be significantly reduced in the cartilage tissues of DMM mice subsequent to the treatment with losartan, which was counteracted by the additional treatment with GW9662 (Fig. 7E). Conclusively, losartan could upregulate the PPARγ expression to suppress the TGF-β1/Smad2/3 signaling pathway, therefore attenuating OA in DMM mice.

4. Discussion

OA is well recognized to be closely associated with inflammatory factors produced by the synovium and chondrocytes [21,22]. Joint replacement is an effective treatment of symptomatic end-stage OA although the long-term postoperative results of this surgery have been correlated with poor functional outcomes and limited lifespan of prostheses [23]. Therefore, it is urgent to explore more effective and safer alternative treatment approaches for OA. A prior study has reported that
the type II angiotensin receptor antagonist losartan has protective properties against articular cartilage degeneration caused by OA in mice [19]. However, the molecular mechanism of losartan’s effects on the progression of OA remains elusive. Therefore, the current study aimed to identify the specific molecular mechanism of losartan underlying the delay in OA progression via PPARγ mediation. Consequently, this dissertation clarified that the upregulation of PPARγ was involved in the alleviative effects of OA by inactivating the TGF-β1 signaling pathway.

The results from the present study demonstrated that expression of IL-6, IL-1β, TNF-α, COX-2, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, and iNOS was strikingly reduced, while expression of Collagen II was remarkably increased in OA chondrocytes after losartan treatment. Losartan, as an antagonist of the Angiotensin II receptor, has been widely used in the treatment of hypertension [24]. Additionally, inflammatory cytokines like IL-1β and TNF-α have also been recognized to promote inflammatory mediator production and MMP expression to modulate the pathogenesis of OA [25]. Meanwhile, COX2 is also a regulator of inflammation [26]. Furthermore, MMPs and the ADAMTS family of proteins have been documented to be closely correlated with cartilage degeneration in OA [27]. Moreover, a prior study has revealed a reduction of Collagen II expression in conjunction with cellular aging-induced OA [28]. A study conducted by Chen et al. showed that articular cartilage degeneration in OA mice was repressed by losartan treatment [19]. Additionally, another study has unraveled the ability of losartan to repress inflammation and expression of TNF-α and IL-6 in arthritically injured forepaws [29]. More importantly, losartan has also been found to alleviate OA progression in the temporomandibular synovial joint by suppressing the degeneration of articular cartilage of condylar [10], which suggested the potential protective effects of losartan against osteoarthritic-related injury. Therefore, in the current study we tested that prediction that treatment with losartan could alleviate OA progression.

In the subsequent experiments, we found PPARγ upregulation and TGF-β1 signaling pathway inactivation in cartilage tissues, chondrocytes and OA mice with losartan treatment. Meanwhile, losartan treatment resulted in repressed expression of inflammation- and degeneration-related genes in OA mice and chondrocytes by inactivating the TGF-β1 signaling pathway via PPARγ upregulation. These results are in agreement with a prior study where losartan protected against liver ischemia/reperfusion injury by activating PPARγ [30]. Besides, Yamamoto et al. also found that losartan could repress inflammation in renal injury by activating PPARγ [12]. PPARγ is an essential component of normal endochondral osteogenesis, as well as cartilage growth and development [31]. Accumulating evidence has uncovered that activation of PPARγ could impair IL-1β-induced inflammation in human OA chondrocytes [32,33]. Furthermore, a prior study exhibited that losartan inactivated the TGF-β1 signaling pathway to impair OA progression in the synovial temporomandibular and knee joints of a chondrodysplasia mouse model [10]. The PPARγ agonist, 15-deoxy-A-12, 14-prostaglandin J2, has also been reported to inhibit TGF-β1 expression, thereby decreasing synovial fibrosis in OA fibroblasts [34]. Moreover, another previous study has elucidated that TGF-β1 contributes to the activation of the Smad2/3 signaling pathway in OA [35]. More importantly, the inactivation of the TGF-β1/Smad signaling pathway has been shown to attenuate cartilage injury and OA in rats [18].

5. Conclusion

Taken together, results of the current study illustrate that PPARγ and the TGF-β1 signaling pathway were critically involved in response to OA after treatment with losartan. Specifically, losartan contributed to the repression of TGF-β1 signaling pathway by upregulating PPARγ, thus alleviating OA by decreasing the expression IL-6, IL-1β, TNF-α, COX-2, MMP-13, ADAMTS-4, ADAMTS-5, HtrA1, and iNOS, as well as increasing Collagen II expression. This discovery broadens our understanding of the complex mechanism underlying losartan/PPARγ/TGF-β1 signaling in the progression of OA and provides a potential new therapeutic target for the treatment of OA, which may eventually be translatable into the clinical setting.

Contributions

(I) Conception and design: Zhenhan Deng, Weimin Zhu (II) Administrative support: Wei Lu (III) Provision of study materials: Wei Jiang, Weimin Zhu (IV); Collection and assembly of data: Zhenhan Deng, Fei Chen (V) Data analysis and interpretation: Zhenhan Deng, Yuwei Liu, Jinping Wang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Funding

This study was supported by the National Natural Science Foundation of China (81902303, 81902233, 81902558, 81672234), Guangdong Basic and Applied Basic Research Foundation (2020A151501048), China Postdoctoral Science Foundation (2019M653080), Shenzhen Double Chain Project for Innovation and Development Industry supported by Bureau of Industry and Information Technology of Shenzhen (201806081524201510), Shenzhen Science and Technology Project (RCBS20020714114856299, JCJ2019080614216661, GJHZ20180416146481042, JCJ20180305124912336) and the Clinical Research Project of Shenzhen Second People’s Hospital (20203357028, 20203357007, 20173357201814).

Declaration of competing interest

The authors have no conflicts of interest to declare.

Acknowledgments

We would like to acknowledge Pro. Shanshan Gao from University of Colorado Anschutz Medical Campus for helping in study design. We would like to give our sincere appreciation to the reviewers for their helpful comments on this article.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jot.2021.03.005.

References

[1] Li Y, Xiao W, Wu P, Deng Z, Zeng C, Li H, et al. The expression of SIRT1 in articular cartilage of patients with knee osteoarthritis and its correlation with disease severity. J Orthop Surg Res 2016;11:144.
[2] Tu M, Li Y, Zeng C, Deng Z, Gao S, Xiao W, et al. MicroRNA-127-5p regulates osteopontin expression and osteopontin-mediated proliferation of human chondrocytes. Sci Rep 2016;6:25022.
[3] Blijham JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet 2011;377:2115–26.
[4] Looser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012;64:1697–707.
[5] Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med 2010;26:355–69.
[6] Li Y, Xiao W, Luo W, Zeng C, Deng Z, Ren W, et al. Alterations of amino acid metabolism in osteoarthrosis: its implications for nutrition and health. Amino Acids 2016;48:907–14.
[7] Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 2015;21:16–21.
[8] Li YS, Luo W, Zhu SA, Lei GH. T cells in osteoarthritis: alterations and beyond. Front Immunol 2017;8:356.
[9] Yin W, Lei Y. Leunorine inhibits IL-1beta induced inflammation in murine chondrocytes and ameliorates murine osteoarthritis. Int Immunopharm 2018;65: 50–9.
[10] Thomas M, Frank Z, Gross A, Willmore D, Arango A, Higham C, et al. Losartan attenuates progression of osteoarthritis in the synovial temporomandibular and knee joints of a chondrodysplasia mouse model through inhibition of TGF-beta1 signaling pathway. Osteoarthritis Cartilage 2019;27:676–86.
[11] Utsunomiya H, Gao X, Deng Z, Cheng H, Nakama G, Scibetta AC, et al. Biologically regulated marrow stimulation by blocking TGF-beta1 with liraisian oral administration results in hyaline-like cartilage repair: a rabbit osteochondral defect model. Am J Sports Med. 2020. https://doi.org/10.1177/0363546519898681.

[12] Yamamoto S, Zhong J, Yancey PG, Yao Y, Linton MF, Fazio S, et al. Atherosclerosis following renal injury is ameliorated by pioglitazone and liraisian via macrophage phenotype. Atherosclerosis 2015;242:56–64.

[13] Nobs SP, Kopf M. PPAR-gamma in innate and adaptive lung immunity. J Leukoc Biol. 2018;104:737–41.

[14] Aboonabi A, Meyer RR, Singh I, Aboonabi A. Temporary removal: anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappap activation and increasing PPAR-gamma gene expression in metabolic syndrome subjects. Free Radic Biol Med 2020;150:30–9.

[15] Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Immunohistochemical expression of proinflammatory cytokines IL-1beta, IL-6, TNF-alpha and involvement of COX-2, quantitatively confirmed by Western blot analysis, in Wernicke’s encephalopathy. Pathol Res Pract 2011;207:652–8.

[16] Li YS, Xiao WF, Luo W. Cellular aging towards osteoarthritis. Mech Ageing Dev 2015;162:80–4.

[17] Li C, Bo L, Li P, Lu X, Li W, Pan L, et al. Losartan, a selective antagonist of AT1 receptor, attenuates seawater inhalation induced lung injury via modulating JAK2/STATs and apoptosis in rat. Pulm Pharmacol Therapeut 2017;45:69–79.

[18] Chen X, Zhang C, Wang X, Hsu S. Juglanin inhibits IL-1beta-induced inflammation in human chondrocytes. Artif Cells Nanomed Biotechnol 2019;47:3614–20.

[19] Neri M, Cantatore S, Pomarac C, Rizzio I, Bello S, Turillazzi E, et al. Anti-inflammatory effects of pioglitazone in a rat model of chronic lung inflammation. Inflammation 2017;40:1143–54.

[20] Chen R, Mian M, Fu M, Zhao JY, Yang L, Li Y, et al. Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-beta1 signaling in a mouse model. Arthritis Rheum 2012;64:1551–61.

[21] Koh EJ, Yoon SJ, Lee SM. Losartan protects liver against ischaemia/reperfusion injury through PPAR-gamma activation and receptor for advanced glycation end-products down-regulation. Br J Pharmacol 2013;169:1404–16.

[22] Nystrom A, Thriene K, Mittapalli V, Kern JS, Kiritsi D, Dengjel J, et al. Losartan ameliorates dystrophic epidermolysis bulloua and uncovers new disease mechanisms. EMBO Mol Med 2015;7:1211–28.

[23] Li C, Bo L, Li P, Lu X, Li W, Pan L, et al. Losartan, a selective antagonist of AT1 receptor, attenuates seawater inhalation induced lung injury via modulating JAK2/STATs and apoptosis in rat. Pulm Pharmacol Therapeut 2017;45:69–79.