The Volatile Phytochemistry of Monarda Species Growing in South Alabama

Sims K. Lawson 1, Prabodh Satyal 2 and William N. Setzer 2,3,*

1 Kirkland Gardens, P.O. Box 176, Newville, AL 36353, USA; skirkland.lawson@ufl.edu
2 Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA; psatyal@aromaticplant.org
3 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
* Correspondence: wsetzer@chemistry.uah.edu; Tel.: +1-256-824-6519

Abstract: The genus Monarda (family Lamiaceae) contains 22 species of which three are native to southern Alabama, M. citriodora, M. fistulosa, and M. punctata. Several species of Monarda have been used in traditional medicines of Native Americans, and this present study is part of an ongoing project to add to our understanding of Native American pharmacopeia. Plant material from M. citriodora, M. fistulosa, and M. punctata was collected in south Alabama and the essential oils obtained by hydrodistillation. The essential oils were analyzed by gas chromatographic techniques to determine the chemical compositions as well as enantiomeric distributions. The compounds thymol, carvacrol, p-cymene, and their derivatives were the primary terpenoid components found in the essential oils. The known biological activities of these compounds are consistent with the traditional uses of Monarda species to treat wounds, skin infections, colds, and fevers.

Keywords: Monarda citriodora; Monarda fistulosa; Monarda punctata; essential oil; thymol; carvacrol; p-cymene

1. Introduction

The Plant List [1] shows 22 different Monarda L. (Lamiaceae) species, 18 of which occur in the United States [2]. There are three Monarda species native to south Alabama, namely Monarda citriodora Cerv. ex Lag., Monarda fistulosa L., and Monarda punctata L. (see Figure 1) [2].

Several Monarda species have been used by Native Americans as medicinal plants [3]. For example, M. fistulosa was used by the Blackfoot, Navajo, Lakota, and Winnebago people to treat boils, cuts and wounds; the Cherokee, Chippewa, Flathead, Ojibwa, and Tewa used the plant to treat colds, fever, and influenza; the Crow, Lakota, Menominee, and Ojibwa used the plant for coughs, catarrh, and other respiratory problems. Monarda punctata was used by the Delaware, Mohegan Nanticoke, and Navajo tribes to treat colds, fever coughs, and catarrh.

Both M. citriodora and M. fistulosa are popular ornamentals and have been introduced to temperate locations around the world [4–6]. Geographical location likely plays an important role in the phytochemistry of Monarda species. To our knowledge, however, there have been no previous examinations of M. citriodora, M. fistulosa, or M. punctata growing in their native range of south Alabama. In this work, we have examined the chemical compositions and enantiomeric distributions of essential oils of the three Monarda species from south Alabama.
2. Results

2.1. Monarda Citriodora

The *M. citriodora* essential oils were obtained as clear orange oils. The essential oil yields for *M. citriodora* aerial parts essential oil were 1.59% and 1.79% for samples #1 and #2, respectively, while the root essential oil was obtained in 0.879% yield. The chemical compositions of the essential oils from the aerial parts and the roots of *M. citriodora* cultivated in south Alabama are summarized in Table 1. The essential oils were dominated by the phenolic monoterpenoids thymol (RI\(_{db}\) = 1289) and carvacrol (RI\(_{db}\) = 1296). The other major components were \(p \)-cymene (RI\(_{db}\) = 1024) and thymol methyl ether (RI\(_{db}\) = 1239).

RI\(_{calc}\)	RI\(_{db}\)	Compound	#1, %	Aerial Parts Essential Oil	Root Essential Oil			
				ED\(_1\), (+):(-)	ED\(_2\), (+):(-)	#2, %	ED\(_2\), (+):(-)	
923	925	\(\alpha \)-Thujene	1.0	69.0:31.0	0.8	66.8:33.4	0.5	64.2:35.8
930	932	\(\alpha \)-Pinene	0.3	84.2:15.8	0.3	62.8:37.2	0.2	74.5:25.5
947	950	Camphene	tr	tr	tr	tr		
970	971	Sabinene	tr	tr	—			
975	978	\(\beta \)-Pinene	0.1	64.5:35.5	0.1	64.2:35.8	0.7	
976	974	1-Octen-3-ol	0.7	0.7	0.7			
983	984	3-Octanone	0.1	0.2	0.2			
987	989	Myrcene	0.7	0.4	0.4			
995	996	3-Octanol	0.2	0.3	0.3			
1002	1004	Octanal	tr	tr	—			
1003	1004	\(p \)-Mentha-1(7),8-diene	tr	—	—			
1005	1006	\(\alpha \)-Phellandrene	0.1	95.1:4.9	0.1	100:0	tr	
1007	1008	\(\delta \)-3-Carene	0.1	100:0	0.1	100:0	0.7	
1015	1017	\(\alpha \)-Terpinene	1.8	100:0	1.1	100:0	100:0	
1016	1022	m-Cymene	tr	tr	—			
1023	1024	\(p \)-Cymene	7.8	6.4	6.4			
1027	1030	Limonene	0.5	26.7:73.3	0.4	63.3:36.7	0.3	57.3:42.7
1028	1029	\(\beta \)-Phellandrene	0.2	0.100	0.1	0.100	0.1	
1030	1033	Benzyl alcohol	—	—	—			
1030	1030	1,8-Cineole	0.2	0.3	0.3			
1055	1057	\(\gamma \)-Terpinene	1.7	0.5	0.5			
1067	1069	\(cis \)-Sabinine hydrate	0.8	95.3:4.7	1.0	89.5:10.5	0.9	90.7:9.3

Figure 1. *Monarda* species discussed in this work (photographs by S. K. L).
| R\textsubscript{calc} | R\textsubscript{db} | Compound | RI | Aerial Parts Essential Oil | Root Essential Oil |
|-----------------|-----------------|---------|-----------------|--------------------|
| | | #1, % | #2, % | #2, % |
| 1083 | 1086 | Terpinolene | tr | tr |
| 1084 | 1086 | trans-Linalool oxide | (furanoid) | — |
| 1087 | 1093 | p-Cymene | — | — |
| 1098 | 1099 | Linalool | 0.1 71.9:28.1 | 0.1 49.7:50.3 |
| 1099 | 1099 | trans-Sabinene hydrate | tr 76.5:23.5 | 0.3 71.1:28.9 |
| 1165 | 1167 | exo-Acetoxycamphene | — | — |
| 1169 | 1170 | Borneol | 0.1 0:100 | 0.1 0:100 |
| 1178 | 1180 | Terpinen-4-ol | 0.4 60.2:39.8 | 0.4 58.5:41.5 |
| 1183 | 1186 | p-Cymen-8-ol | — | — |
| 1187 | 1190 | Methyl salicylate | tr | — |
| 1195 | 1195 | α-Terpinol | 0.1 100:0 | 0.1 100:0 |
| 1196 | 1197 | Methyl chavicol (= Estragole) | — | — |
| 1236 | 1239 | Thymol methyl ether | 4.4 5.6 | 11.3 |
| 1252 | 1252 | Thymoquinone | 0.2 0.7 | 1.3 |
| 1253 | 1246 | Carvone | tr 39.9:60.1 | — |
| 1290 | 1289 | Thymol | 38.2 37.0 | 29.0 |
| 1297 | 1296 | Carvacrol | 38.3 39.9 | 38.3 |
| 1305 | 1309 | 4-Vinylguaiacol | — | — |
| 1306 | 1306 | iso-Ascaridole | tr | tr |
| 1342 | 1345 | Thymyl acetate | 0.3 0.2 | 0.3 |
| 1347 | 1356 | Eugenol | tr | — |
| 1361 | 1365 | Carvacyl acetate | 0.8 0.5 | 1.0 |
| 1372 | 1375 | α-Copaene | tr 100:0 | tr 0.1 100:0 |
| 1380 | 1382 | β-Bourbonone | tr | tr 0.1 |
| 1389 | 1392 | (Z)-Jasmone | tr | tr |
| 1398 | 1398 | Cyperene | — | 0.2 |
| 1404 | 1408 | Decyl acetate | tr | — |
| 1415 | 1417 | (E)-β-Caryophyllene | 0.3 100:0 | 0.4 100:0 |
| 1426 | 1430 | β-Copaene | tr | tr |
| 1451 | 1453 | α-Humulene | tr | tr |
| 1457 | 1457 | Rotundene | — | 0.1 |
| 1471 | 1475 | γ-Murolene | tr 0.1 | 0.1 |
| 1473 | 1481 | (E)-β-Ionone | — | — |
| 1477 | 1480 | Germacrene D | 0.1 100:0 | 0.1 100:0 |
| 1481 | 1485 | γ-Thujaplicin | tr | — |
| 1483 | 1489 | β-Selinene | tr | — |
| 1487 | 1490 | γ-Amorphene | tr | — |
| 1491 | 1497 | α-Selinene | tr | 0.1 |
| 1494 | 1497 | α-Murolene | tr | tr |
| 1509 | 1512 | γ-Cadinene | tr | tr |
| 1514 | 1518 | δ-Cadinene | 0.1 0.1 | 0.1 0:100 |
| 1548 | 1549 | Thymohydroquinone | 0.3 0.1 | 0.1 |
| 1577 | 1577 | Caryophyllene oxide | tr 0.1 | 0.1 |
| 1649 | 1655 | α-Cadinol | — | 0.1 |
| 1689 | 1691 | Cyperotundone | — | 0.2 |
| 1835 | 1841 | Phytone | — | 0.1 |

Monoterpane hydrocarbons	14.3	10.2	9.6
Oxygenated monoterpenoids	84.0	86.3	86.0
Sesquiterpene hydrocarbons	0.5	0.7	1.4
Oxygenated sesquiterpenoids	tr	0.1	0.4
Benzenoid aromatics	tr	1.5	0.8
Others	1.0	1.2	1.2
Total identified	99.8	99.8	99.3

\(R\textsubscript{calc} = \) Retention indices determined with respect to a homologous series of \(n \)-alkanes on a ZB-5ms column. \(R\textsubscript{db} = \) Retention indices from the databases [7–10]. #1 = Plant sample #1. #2 = Plant sample #2. — = Not observed. ED = Enantiomeric distribution (dextrorotatory enantiomer: levorotatory enantiomer). tr = Trace (< 0.05%).
Chiral gas chromatography–mass spectrometry (GC-MS) analysis of the *M. citriodora* essential oils revealed the (+)-enantiomers to be the major stereoisomers for α-thujene, α-pinene, β-pinene, α-phellandrene, δ-3-carene, α-terpinene, cis-sabinene hydrate, trans-sabinene hydrate, α-terpeneol, α-copaene, (E)-β-caryophyllene, and germacrene D. On the other hand, the (−)-enantiomer was dominant for β-phellandrene, borneol, carvone, and δ-cadinene. Limonene showed variation in the enantiomeric distributions with (+)-limonene in 26.7%, 63.3%, and 57.3% for aerial parts #1, #2, and roots essential oils, respectively. Likewise, linalool also showed variation with (+)-linalool of 71.9%, 49.7%, and 50.1%. (+)-Terpinen-4-ol was the predominant enantiomer in the aerial parts essential oils (60.2% and 58.5%), but (−)-terpinen-4-ol (79.1%) was dominant in the root essential oil.

2.2. *Monarda Fistulosa*

Monarda fistulosa essential oils were obtained in 2.66–4.83% yields as bright orange oils. The chemical compositions of the essential oils from the aerial parts of *M. fistulosa* are summarized in Table 2. In samples #1 and #2, thymol (RI_{db} = 1289) dominated the compositions (54.3% and 62.2%, respectively) with lesser quantities of p-cymene (RI_{db} = 1024, 12.1% and 10.2%), limonene (RI_{db} = 1030, 6.1% and 3.7%), carvacrol (RI_{db} = 1296, 5.9% and 6.6%), and thymoquinone (RI_{db} = 1252, 8.4% and 2.3%). Curiously, sample #3, although qualitatively similar, had a very different quantitative composition with thymoquinone as the most abundant constituent (41.3%) followed by p-cymene (21.9%), but with lower concentrations of thymol (8.9%) and carvacrol (1.6%).

RI_{calc}	RI_{db}	Compound	#1, %	ED, (+):(-)	#2, %	ED, (+):(-)	#3, %	ED, (+):(-)
923	925	α-Thujene	1.2	72.5:27.5	0.8	72.8:27.2	0.9	71.2:28.8
930	932	α-Pinene	0.5	59.2:40.8	0.3	63.8:36.2	0.5	61.0:39.0
947	950	Camphene	0.1	100.0	0.1	100.0	0.2	100.0
971	971	Sabinene	0.2	58.4:41.6	tr	—	0.2	59.0:41.0
973	973	1-Octen-3-one		—		—	0.1	—
975	978	β-Pinene	0.2	57.3:42.7	—	—	0.2	57.9:42.1
978	978	1-Octen-3-ol	3.0	—	3.3	—		
982	984	3-Octanone	tr	0.1	0.1	0.1		
987	989	Myrcene	tr	0.3		0.3		
995	996	3-Octanol	tr	0.2		0.2		
1004	1004	p-Mentha-1(7),8-diene	tr	—	0.1			
1006	1006	α-Phellandrene	0.1	95.4:4.6	0.2	95.4:4.6	0.1	93.4:6.6
1008	1008	δ-3-Carene	0.1	100.0	0.1	100.0	0.1	100.0
1016	1016	α-Terpinene	2.1	100.0	2.3	100.0	0.8	100.0
1019	1022	m-Cymene	tr	—	0.1	0.1		
1024	1024	p-Cymene	12.1	10.2		21.9		
1025	1026	2-Acetyl-3-methylfuran	—	—	0.5			
1029	1030	Limonene	6.1	0.5:99.5	3.7	2.6:97.4	6.3	1.2:98.8
1030	1031	β-Phellandrene	0.2	0.1:00	0.2	0.1:00	0.2	0.1:00
1031	1030	1,8-Cineole	0.1	0.1	0.1	0.1		
1056	1057	γ-Terpinene	tr	0.1		tr		
1069	1069	cis-Sabinene hydrate	1.2	95.8:4.2	1.3	96.3:3.7	2.4	96.5:3.5
1078	1079	1-Nonen-3-ol	0.1	0.1	0.1	0.1		
1084	1086	Terpinolene	tr	0.1		tr		
1089	1091	p-Cymenene	tr	—	0.1	0.1		
1098	1099	Linalool	tr	37.8:62.2	tr	37.5:62.5	37.9:62.1	
1099	1099	trans-Sabinene hydrate	0.2	75.9:24.1	0.3	75.0:25.0	0.5	75.3:24.7
1103	1107	Nonanal	tr	—		tr		
1115	1112	(E)-2,4-Dimethylhepta-2,4-dienal	—	—	0.2			
1121	1121	trans-p-Mentha-2,8-dien-1-ol	tr	—	0.3			
1123	1124	cis-p-Menth-2-en-1-ol	tr	—	tr			
1130	1132	cis-Limonene oxide	tr	—	0.1			
R Lýc	R Lýb	Compound	#1, %	ED, (+):(-)	#2, %	ED, (+):(-)	#3, %	ED, (+):(-)
-------	-------	-----------	-------	-------------	-------	-------------	-------	-------------
1133	1135	2-Vinylanisole	0.1	tr				
1134	1137	*cis*-p-Mentha-2,8-dien-1-ol	—	—	—	0.3		
1135	1138	*trans*-Limonene oxide	tr	—	—			
1137	1138	*trans*-Sabinol	—	—	tr	—	—	
1138	1140	*trans*-Pinocarveol	—	—	0.1			
1139	1141	*cis*-Verbenol	—	—	tr	—	—	
1143	1145	*trans*-Verbenol	—	—	—	0.3		
1144	1145	Camphor	—	—	—	tr	—	
1160	1164	Pinocarvone	—	—	—	tr	—	
1161	1162	(Z)-iso-Citral	—	—	—	tr	—	
1167	1168	*trans*-Phellandrene epoxide	—	—	—	0.1		
1170	1170	Borneol	0.5	0:100	0.2	0:100	0.7	0:100
1179	1180	Terpinen-4-ol	0.4	63.3:36.7	0.5	63.2:36.8	0.5	
1186	1186	*p*-Cymen-8-ol	0.1	tr	—	0.6		
1195	1195	*α*-Terpineol	0.3	100:0	0.2	100:0	0.3	
1197	1198	Methylchavicol (= Estragole)	—	—	0.1	0.1		
1197	1198	*cis*-Piperitol	—	—	—	0.2		
1217	1218	*trans*-Carveol	—	—	—	0.2		
1221	1223	*cis*-Carveol	—	—	—	0.1		
1240	1242	Cuminaldehyde	—	—	—	0.1		
1241	1242	Carvone	—	—	—	0.3		
1250	1241	Pulegone	—	0.2	—	—	—	
1252	1252	Thymoquinone	8.4	2.3	41.3			
1281	1282	Bornyl acetate	—	—	—	0.1		
1284	1286	Cogeijerene	0.1	—	—	—	—	
1291	1291	*p*-Cymen-7-ol	tr	—	0.2	—		
1295	1293	Thymol	54.3	62.2	8.9			
1300	1300	Carvacrol	5.9	6.6	1.6			
1307	1306	iso-Ascaridole	tr	tr	tr	0.1		
1345	1346	*α*-Cubebene	tr	tr	tr	tr		
1351	1356	Eugenol	tr	tr	tr	—	—	
1373	1375	*α*-Copaene	0.1	100:0	0.1	100:0	0.1	100:0
1382	1382	*β*-Bourbonene	0.1	0.1	0.1	—	—	
1387	1387	*trans*-β-Elemene	tr	tr	—	0.1		
1418	1419	*β*-Ylangene	tr	—	—	0.1		
1419	1417	*(E)-β*-Caryophyllene	0.3	100:0	0.3	100:0	0.2	100:0
1427	1430	*β*-Copaene	0.1	0.1	0.1	—	—	
1452	1453	*α*-Humulene	tr	tr	tr	—	—	
1473	1475	γ-Muurolone	0.1	0.2	0.1	—	—	
1479	1479	*α*-Amorphene	—	tr	—	—	—	
1480	1483	*trans*-β-Bergamotene	0.1	—	—	0.1		
1481	1480	Germacrene D	0.7	100:0	0.6	100:0	0.6	100:0
1484	1485	γ-Thujaplicin	0.4	0.2	1.3	—	—	
1488	1490	γ-Amorphene	tr	—	—	—	—	
1491	1492	*β*-Selinene	0.1	0.1	0.1	—	—	
1493	1492	*trans*-Muurola-4(14),5-diene	—	0.1	—	—	—	
1496	1497	*epi*-Cubebol	—	tr	—	—	—	
1497	1497	*α*-Selinene	—	0.1	—	—	—	
1498	1497	*α*-Muurolone	tr	0.1	tr	—	—	
1510	1512	γ-Cadinene	0.1	0.2	0.1	—	—	
1511	1515	Cubebol	tr	—	—	—	—	
1517	1518	δ-Cadinene	0.1	0.3	0.1	—	—	
1518	1519	*trans*-Calamenene	tr	tr	—	—	—	
1520	1523	*β*-Sesquiphellandrene	tr	—	—	—	—	
1537	1538	*α*-Cadinene	tr	tr	tr	—	—	
1542	1541	*α*-Calacorene	tr	tr	tr	—	—	
1543	1546	*α*-Elemol	tr	—	—	—	—	
1548	1554	Thymohydroquinone	0.6	1.6	0.6	—	—	
As was observed in *M. citriodora* essential oils, in *M. fistulosa* essential oils, the (+)-enantiomer was the major for α-thujene, α-pinene, β-pinene, α-phellandrene, δ-3-carene, α-terpinene, cis-sabinene hydrate, trans-sabinene hydrate, α-terpinol, α-copaene, (E)-β-caryophyllene, and germacrene D, while the (−)-enantiomer was predominant for β-phellandrene and bornol. (−)-Limonene (97.4–99.5%) and (−)-linalool (62.1–62.5%) dominated in all three *M. fistulosa* samples. (+)-Camphene (100%), (+)-sabinene (58.4–59.0%), and (+)-terpinen-4-ol (63.2–63.3%) were also dominant.

2.3. *Monarda Punctata*

Hydrodistillation of two samples of wild-growing *M. punctata* aerial parts gave bright orange essential oils in 0.781% and 0.658% yield. The most abundant components in the essential oils were thymol (RI_{db} = 1289, 61.8% and 47.9%), p-cymene (RI_{db} = 1024, 15.3% and 19.8%), γ-terpinene (RI_{db} = 1057, 2.7% and 9.7%), and carvacrol (RI_{db} = 1296, 4.5% and 4.1%) (see Table 3).

The enantiomeric distributions of terpenoids in *M. punctata* essential oils were analogous to those observed for *M. citriodora* and *M. fistulosa* oils with the exception of limonene, which was virtually racemic in sample #1, but 100% (−)-limonene in sample #2.

Table 3. Chemical composition of *Monarda punctata* essential oils growing wild in south Alabama.

RI_{calc}	RI_{db}	Compound	#1, % ED₁	#1, % ED₂	#2, % ED₁	#2, % ED₂	#3, % ED₃	#3, % ED₃
923	925	α-Thujene	0.1	100:0	0.7	100:0	—	68.5:31.5
930	932	α-Pinene	tr		0.2	0.2	—	83.8:16.2
945	950	Camphene	—	0.1	—	0.1	—	100:0
957	959	Benzaldehyde	—	0.1	0.1	0.1	0.1	
970	971	Sabinene	tr	0.1	0.1	0.1	0.1	
974	978	β-Pinene	tr	0.1	0.1	0.1	0.1	
975	974	1-Octen-3-ol	1.8	1.8	1.8	1.8	1.8	
980	983	3-Octanone	—	0.1	0.1	0.1	0.1	
984	989	Myrcene	0.3	1.1	1.1	1.1	1.1	
977	978	3-Octanol	0.1	0.1	0.1	0.1	0.1	
1001	1004	p-Mentha-1(7),8-diene	—	0.1	0.1	0.1	0.1	
1004	1006	α-Phellandrene	0.1	100:0	0.2	100:0	0.2	
1006	1008	δ-3-Carene	tr	0.1	0.1	0.1	0.1	
1014	1017	α-Terpinene	1.3	3.0	3.0	3.0	3.0	
1016	1012	m-Cymene	—	0.1	0.1	0.1	0.1	
1024	1024	p-Cymene	15.3	19.8	19.8	19.8	19.8	
1025	1026	2-Acetyl-3-methylfuran	—	tr	tr	tr	tr	
RI_{calc}	RI_{db}	Compound	#1, %	Aerial Parts Essential Oil ED_{_1_}(+):(-)	#2, %	ED_{_2_}(+):(-)		
--------------	--------------	---------------------------------	------	---------------------------------	------	------------------		
1026	1030	Limonene	0.4	50.2:49.8	0.5	0:100		
1027	1029	β-Phellandrene	0.2	0.2	0.2	0:100		
1028	1030	1,8-Cineole	0.4	0.1				
1039	1043	Phenylacetaldehyde						
1055	1057	γ-Terpinene	2.0	9.7				
1066	1069	cis-Sabinene hydrate	0.6	100:0	0.7	97.9:2.1		
1076	1079	1-Nonen-3-ol		tr				
1082	1086	Terpinolene	0.1	0.1				
1087	1091	p-Cymenene	0.1	0.1				
1095	1099	Linalool						
1098	1101	trans-Sabinene hydrate	0.2	100:0	0.1	83.2:16.8		
1100	1104	Nonanal						
1104	1107	1-Octen-3-yl acetate	0.2	0.4				
1145	1145	trans-Verbenol						
1161	1158	Menthone	0.3	0.1				
1168	1170	Bornol	0.1	0:100	tr	0:100		
1182	1183	m-Cymen-8-ol	0.8	58.7:41.3	0.6	66.1:33.9		
1184	1186	p-Cymen-8-ol	0.5	0.5				
1191	1197	Methyl chavicol (= Estragole)	0.8					
1193	1195	α-Terpineol		0.1		100:0		
1202	1206	Decanal						
1224	1224	Thymol methyl ether						
1235	1238	Carvacrol methyl ether	1.1	1.0				
1239	1242	Cumin aldehyde		0.1				
1247	1250	Thymoquinone	2.0	0.2				
1289	1289	Thymol	61.8	47.9				
1293	1291	p-Cymen-7-ol		0.2				
1296	1296	Carvacrol	4.5	4.1				
1306	1309	4-Vinylguaiacol						
1347	1356	Eugenol	0.7	0.3				
1370	1375	α-Copaene						
1378	1382	β-Bourbonene						
1384	1390	trans-β-Elemene						
1415	1417	(E)-β-Caryophyllene	1.6	100:0	1.2	100:0		
1424	1430	β-Copaene						
1427	1430	trans-α-Bergamotene	1.2	0.7				
1449	1453	α-Humulene						
1469	1475	γ-Muurolene		0.1				
1476	1480	Germacrene D	0.7	100:0	0.4	100:0		
1479	1483	trans-β-Bergamotene	0.2	0.1				
1480	1485	γ-Thujaplicin						
1482	1489	β-Selinene						
1489	1492	α-Selinene						
1492	1497	α-Muurolene						
1506	1512	γ-Cadinen						
1512	1518	δ-Cadinen						
1517	1523	β-Sesquiphellandrene						
1546	1549	Thymohydroquinone	0.3	2.5				
1576	1577	Caryophyllene oxide	0.2	0.2				
1633	1639	cis-Guaia-3,9-dien-11-ol	0.2	0.1				
1648	1655	α-Cadinol						
1834	1841	Phytone						

		Monoterpene hydrocarbons	19.9	35.7		
		Oxygenated monoterpeneoids	72.5	58.3		
		Sesquiterpene hydrocarbons	3.7	2.7		
		Oxygenated sesquiterpeneoids	0.4	0.4		
Table 3. Cont.

RI_{calc}	RI_{db}	Compound	Aerial Parts Essential Oil #1, %	ED₁, (+):(−)	Aerial Parts Essential Oil #2, %	ED₂, (+):(−)
		Benzenoid aromatics	1.5	0.3	2.1	2.4
		Others	2.1	2.4	100.0	99.8

RI_{calc} = Retention indices determined with respect to a homologous series of n-alkanes on a ZB-5ms column. RI_{db} = Retention indices from the databases [7–10]. #1 = Plant sample #1. #2 = Plant sample #2. — = Not observed. ED = Enantiomeric distribution (dextrorotatory enantiomer: levorotatory enantiomer). tr = Trace (<0.05%).

3. Discussion

Monarda citriodora and *M. fistulosa* have been introduced throughout temperate regions of the world as popular herbal medicines as well as ornamentals [4–6]. The volatile phytochemistry has shown wide variation depending on geographical location (Table 4). The essential oils of *M. citriodora* in the present study were rich in both thymol and carvacrol, whereas essential oils from Europe and Asia were dominated by thymol with much lower concentrations of carvacrol. *Monarda fistulosa*, in particular, showed wide variation with at least three different chemotypes (carvacrol-rich, thymol-rich, and geraniol-rich, see Table 4). The essential oils of *M. fistulosa* (samples #1 and #2) in this study fit into the thymol-rich chemotype. Interestingly, there was a high concentration of thymoquinone in *M. fistulosa* sample #3, with concomitant lower concentrations of thymol and carvacrol. Thymol was reported as the major component of *M. punctata* in two old reports [11,12]. Consistent with these reports, a floral essential oil of *M. punctata* from China was rich in thymol (75.2%), which is in agreement with the aerial parts essential oils from Alabama.

Table 4. Major essential oil components of *Monarda* species from geographical locations around the world.

Monarda spp.	Plant Tissue	Collection Site	Composition (Major Components)	Ref.
M. citriodora	Aerial parts	Jammu, India (cultivated)	Thymol (82.3%), carvacrol (4.8%)	[13]
M. citriodora	Aerial parts	Imola (BO) Italy (cultivated)	Thymol (19.6%), p-cymene (15.6%), γ-terpinene (13.5%), carvacrol (9.3%), α-terpinene (9.2%), myrcene (5.7%)	[14]
M. citriodora var. citriodora	Leaves	Liverpool, UK (cultivated)	Thymol (50.7%), p-cymene (22.8%), carvacrol (3.6%)	[16]
M. citriodora var. citriodora	Flowers	Liverpool, UK (cultivated)	Thymol (61.8%), γ-terpinene (13.3%), p-cymene (4.2%), carvacrol (3.8%)	[16]
M. citriodora var. citriodora	Aerial parts	Liverpool, UK (cultivated)	Thymol (56.9%), p-cymene (13.0%), α-terpinene (10.0%), carvacrol (4.3%)	[17]
M. citriodora var. citriodora	Aerial parts	Commercial (unknown)	Thymol (70.6%), p-cymene (10.6%), carvacrol (6.1%)	[18]
M. fistulosa	Aerial parts	Krasnodarsk Krai, Russia (introduced, wild)	Thymol (32.5%), carvacrol (23.9%), thymol (12.6%), carvacrol methyl ether (5.5%), unidentified aliphatic aldehyde (6.3%)	[19]
M. fistulosa	Aerial parts	Casola Valsenio, Italy (cultivated)	Thymol (26.5%), β-phellandrene (17.0%), α-phellandrene (13.7%), p-cymene (13.5%), myrcene (8.1%)	[20]
M. fistulosa	Aerial parts	Saint-Jean-sur-Richelieu, QC, Canada (cultivated)	Geraniol (61.8%), geranyl formate (16.6%), geranial (10.6%), nerol (6.6%)	[21]
M. fistulosa	Aerial parts	Poplarville, MS, USA (cultivated)	Carvacrol (39.1%), p-cymene (35.4%), (−)-1-octen-3-ol	[22]
Table 4. Cont.

Monarda spp.	Plant Tissue	Collection Site	Composition (Major Components)	Ref.
M. fistulosa	Aerial parts	Imola (BO) Italy (cultivated)	Thymol (31.6%), β-phellandrene (18.1%), α-phellandrene (14.2%), p-cymene (13.1%), myrcene (8.8%)	[23]
M. fistulosa	Aerial parts	Imola (BO) Italy (cultivated)	Thymol (28.4%), β-phellandrene (16.9%), α-phellandrene (13.7%), p-cymene (13.3%), myrcene (8.7%)	[24]
M. fistulosa	Aerial parts	Imola (BO) Italy (cultivated)	Thymol (33.4%), β-phellandrene (18.0%), α-phellandrene (14.0%), p-cymene (13.2%), myrcene (8.6%)	[24]
M. fistulosa	Aerial parts	Ravenna, Italy (cultivated)	γ-Terpinene (25.2%), carvacrol (24.3%), γ-caryophyllene (24.3%)	[25]
M. fistulosa	Aerial parts	Chișinău, Republic of Moldova (cultivated)	Carvacrol (54.8%), p-cymene (23.2%), carvacrol methyl ether (10.5%)	[26]
M. fistulosa	Flowers	Gallatin Valley, MT, USA (wild)	Carvacrol (45.7%), p-cymene (25.6%), γ-terpinen (6.8%), thymol (3.1%)	[27]
M. fistulosa	Leaves	Gallatin Valley, MT, USA (wild)	Carvacrol (71.5%), p-cymene (13.1%), γ-terpinen (2.5%), thymol (3.3%)	[27]
M. fistulosa	Aerial parts	Moscow, Russia (cultivated)	α-Terpineol (37.7%), 1-octen-3-ol (10.5%), geraniol (10.4%), thymol (9.3%), p-cymene (4.9%)	[28]
M. fistulosa cv. Fortuna	Aerial parts	Kherson, Ukraine (cultivated)	Thymol (77.3%), carvacrol methyl ether (4.9%), carvacrol (3.8%)	[6]
M. fistulosa cv. Premiera	Aerial parts	Kherson, Ukraine (cultivated)	Thymol (78.3%), carvacrol methyl ether (4.8%), carvacrol (3.6%)	[6]
M. fistulosa var. menthifolia	Aerial parts	Morden, Manitoba, Canada (cultivated)	Geraniol (86.8%)	[29]
M. punctata	Flowers	Xi’an, China (cultivated?)	Thymol (75.2%), p-cymene (6.7%), limonene (5.4%), carvacrol (3.5%)	[30]

* Isomer not indicated.

The high concentrations of thymol, carvacrol, and p-cymene are consistent with the traditional uses of *Monarda* spp. to treat skin infections, wounds, fevers, and respiratory problems. Thymol [31], carvacrol [32], and p-cymene [33] have demonstrated antibacterial and antifungal activities [34,35], as well as wound-healing activity [36]. Thymol [37] and carvacrol [38], in addition to thymoquinone [39], have shown antitussive effects. Thymoquinone has also shown wound-healing properties [40]. Furthermore, both thymol [41] and carvacrol [32] have shown analgesic and anti-inflammatory activities [42].

As far as we are aware, this work presents the first chiral analysis of terpenoid constituents of *Monarda* species. Several investigations on the enantiomeric distributions in other members of the Lamiaceae have been reported in the literature, however. There seems to be much variation in the enantiomeric distribution of monoterpenoids across the family. Consistent with what was observed in *Monarda* essential oils, (+)-α-pinene was the major enantiomer found in *Coridothymus capitatus* [43], *Rosmarinus officinalis* [44], *Lepechinia heteromorpha* [45], *Ocimum canum,* and *Ocimum kilimandscharicum* [46]. Likewise, (+)-β-pinene predominates over (−)-β-pinene in *C. capitatus* [43] as well as the *Monarda* essential oils. On the other hand, (−)-β-pinene dominates in *R. officinalis* [44] and *Lepechinia mutica* [47]. The essential oils of peppermint (*Mentha × piperita*) and spearmint (*Mentha spicata*) have shown nearly racemic mixtures of α- and β-pinenes [48]. (+)-α-Phellandrene and (−)-β-phellandrene were the dominant enantiomers in the *Monarda* essential oils. In marked contrast, however, (−)-α-phellandrene and (+)-β-phellandrene predominated in *L. mutica* essential oil [47]. (−)-Limonene predominates in *M. fistulosa* essential oil, peppermint (*M. piperita*) and spearmint (*M. spicata*) essential oils [48] whereas (+)-limonene is the major enantiomer in *C. capitatus* [43], *O. canum,* and *O. kilimandscharicum* [46], and a nearly
racemic mixture was found in rosemary (*R. officinalis*) essential oil [44]. (+)-Linalool was the predominant enantiomer in *C. capitatus* [43], *Salvia schimperi* [49], *Pycnanthemum incanum* [50], *O. canum*, and *O. kilimandscharicum* [46], whereas (−)-linalool was the major stereoisomer in *Lavandula angustifolia* [51] and *R. officinalis* [44].

4. Materials and Methods

4.1. Plant Material

Monarda citriodora was cultivated in Kirkland Gardens, Newville, AL, USA (31°26’27” N, 85°21’31” W) from seeds (Outsidepride Seed Source, Independence, OR, USA). The cultivated *Monarda* spp. were grown in loamy clayey-sand and fertilized with chicken manure, kelp meal, and bone meal at planting in full sun. The aerial parts of *M. citriodora* were collected from separate plants on separate occasions (plant #1, collected on 20 June 2020; plant #2 collected on 1 August 2020). The roots of *M. citriodora* were obtained from plant #2.

Monarda fistulosa was cultivated in Kirkland Gardens, Newville, AL, USA (31°26’27” N, 85°21’31” W) from seedlings (Home Depot, Dothan, AL, USA) as above. The aerial parts of three different plant samples were collected on 25 June 2020.

Monarda punctata was collected from wild-growing plants near Newville, AL, USA (31°27’23” N, 85°22’17” W); the edge of a planted pine forest, disturbed grassland, full/partial sun, sandy-clay soil that had been intentionally burned (prescribed burn) 1.5 years before collection. The aerial parts of two different plants were collected on 1 June 2020.

Plants were identified by S.K. Lawson and a voucher specimen of each plant was deposited in the University of Alabama in Huntsville Herbarium (HALA); voucher numbers for *M. citriodora* (SKL61820), *M. fistulosa* (SKL72020), and *M. punctata* (SKL9620). The *Monarda* plant materials were allowed to dry in the shade for several days, the air-dried plant materials were pulverized and subjected to hydrodistillation using a Likens-Nickerson apparatus with continuous extraction with dichloromethane (Table 5).

Table 5. Hydrodistillation details of *Monarda* species collected or cultivated in south Alabama.

Monarda spp.	Mass Plant Material	Yield Essential Oil (EO)
Monarda citriodora #1	25.57 g dried aerial parts	406.2 mg orange EO
Monarda citriodora #2	37.81 g dried aerial parts	675.6 mg orange EO
Monarda citriodora #2	17.47 g dried roots	153.6 mg yellow EO
Monarda fistulosa #1	9.60 g dried aerial parts	364.0 mg bright orange EO
Monarda fistulosa #2	7.58 g dried aerial parts	366.2 mg bright orange EO
Monarda fistulosa #3	8.98 g dried aerial parts	238.9 mg bright orange EO
Monarda punctata #1	39.09 g dried aerial parts	305.6 mg bright orange EO
Monarda punctata #2	62.62 g dried aerial parts	411.9 mg bright orange EO

4.2. Gas Chromatographic Analysis

The essential oils were analyzed by gas chromatography–mass spectrometry (GC-MS), gas chromatography with flame ionization detection (GC-FID), and chiral GC-MS as previously reported [52].

4.2.1. Gas Chromatography–Mass Spectrometry

Shimadzu GCMS-QP2010 Ultra, ZB-5ms GC column, GC oven temperature 50 °C–260 °C (2 °C/min), 1-µL injection of 5% solution of EO in dichloromethane (split mode, 30:1). Retention indices (RI) were determined with reference to a homologous series of *n*-alkanes. Compounds identified by comparison of the MS fragmentation and retention indices with those in the databases [7–10].

4.2.2. Gas Chromatography–Flame Ionization Detection

Shimadzu GC 2010, FID detector, ZB-5 GC column, GC oven temperature 50 °C–260 °C (2.0 °C/min). The percent compositions were determined from raw peak areas without standardization.
4.2.3. Chiral Gas Chromatography–Mass Spectrometry

Shimadzu GCMS-QP2010S, Restek B-Dex 325 column, GC oven temperature 50 °C–120 °C (1.5 °C/min) then 120 °C–200 °C (2.0 °C/min), 0.1 µL injection of 5% solution of EO in dichloromethane (split mode, 45:1). The enantiomeric distributions were determined by comparison of retention times with authentic samples obtained from Sigma-Aldrich (Milwaukee, WI, USA). Relative enantiomer percentages were calculated from peak areas.

5. Conclusions

This study presents, for the first time, analyses of the essential oils of three species of Monarda growing in south Alabama. In addition, the enantiomeric distribution of terpenoids was also carried out. This work illustrates the wide variation in essential oil compositions based on geographical location as well as variations in enantiomeric distribution. It would be interesting to compare enantiomeric distributions for Monarda essential oils from other geographical locations and for other Monarda species. Nevertheless, the phenolic monoterpenoids thymol and/or carvacrol were found to dominate the compositions of M. citriodora, M. fistulosa, and M. punctata and support the traditional medicinal uses of these plants.

Author Contributions: Conceptualization, S.K.L. and W.N.S.; methodology, S.K.L., P.S., and W.N.S.; software, P.S.; validation, W.N.S.; formal analysis, P.S. and W.N.S.; investigation, S.K.L., P.S., and W.N.S.; data curation, W.N.S.; writing—original draft preparation, W.N.S.; writing—review and editing, S.K.L., P.S., and W.N.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are contained within the article.

Acknowledgments: P.S. and W.N.S. participated in this work as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/, accessed on 9 February 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Royal Botanic Gardens, K. The Plant List. Available online: http://www.thepointlist.org/tpl1.1/search?q=Monarda (accessed on 1 February 2021).
2. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Monarda (accessed on 1 February 2021).
3. Moerman, D.E. Native American Ethnobotany; Timber Press, Inc.: Portland, OR, USA, 1998.
4. Davidson, C.G. Monarda, Bee-balm. In Flower Breeding and Genetics; Anderson, N.O., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 756–779. ISBN 978-1-4020-4427-4.
5. Ciurușniuc, A.-M.; Robu, T. Study of the behaviour of cultivated species of the genus Monarda L. in Vaslui County, to introduce them in cultivation as medicinal, aromatic and decorative plants. Lucr. stiintifice Ser. Agron. 2012, 55, 309–312.
6. Dudchenko, V.V.; Svydenko, L.V.; Markovska, O.Y.; Sydiakina, O.V. Morphobiological and biochemical characteristics of Monarda L. varieties under conditions of the southern steppe of Ukraine. J. Ecol. Eng. 2020, 21, 99–107.
7. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4.
8. Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016.
9. NIST. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
10. Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, AL, USA, 2015.
11. Schroeter, H.J. Analysis of the volatile oil of Monarda punctata, Linne. Am. J. Pharm. 1888, 1888, 113.
12. Schumann, W.R.; Kremers, E. On the chemical composition of the oil from Monarda punctata, L. Am. J. Pharm. 1896, 1896, 469.
13. Pathania, A.S.; Guru, S.K.; Verma, M.K.; Sharma, C.; Abdullah, S.T.; Malik, F.; Chandra, S.; Katoh, M.; Bhushan, S. Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora. *Food Chem. Toxicol.* 2013, 62, 246–254. [CrossRef]

14. Di Vito, M.; Bellardi, M.G.; Mondello, F.; Modesto, M.; Michelozzi, M.; Bugli, F.; Sanguinetti, M.; Sclocchi, M.C.; Sebastiani, M.L.; Biffi, S.; et al. *Monarda citriodora* hydrolate vs. essential oil comparison in several anti-microbial applications. *Ind. Crops Prod.* 2019, 128, 206–212. [CrossRef]

15. Deepika; Singh, A.; Chaudhari, A.K.; Das, S.; Dubey, N.K. Nanoencapsulated *Monarda citriodora* Cerv. ex Lag. essential oil as potential antimicrobial and anti-oxidative agent against deterioration of stored functional foods. *J. Food Sci. Technol.* 2020, 57, 2863–2876. [CrossRef] [PubMed]

16. Collins, J.E.; Bishop, C.D.; Deans, S.G.; Svoboda, K.P. Composition of the essential oil from the leaves and flowers of *Monarda fistulosa* var. citriodora grown in the United Kingdom. *J. Essent. Oil Res.* 1994, 6, 27–29. [CrossRef]

17. Bishop, C.D.; Thornton, I.B. Evaluation of the antifungal activity of the essential oils of *Monarda citriodora* var. citriodora and *Melaleuca alternifolia* on post-harvest pathogens. *J. Essent. Oil Res.* 1997, 9, 77–82. [CrossRef]

18. Dorman, H.J.D.; Deans, S.G. Chemical composition, antimicrobial and in vitro antioxidant properties of *Monarda citriodora* var. citriodora, *Myrrista fragrans*, *Origanum vulgare* ssp. hirtum, *Pelargonium* sp. and *Thymus zygis* oils. *J. Essent. Oil Res.* 2004, 16, 145–150. [CrossRef]

19. Zambleenok, V.A.; Klyuev, N.A.; Bocharov, B.V.; Kabanov, V.S.; Zacharov, A.M. An investigation of the component of essential oil of *Myristica fragrans* Houtt. *Chem. Nat. Compd.* 1989, 25, 549–551. [CrossRef]

20. Contaldo, N.; Bellardi, M.G.; Cavicchi, L.; Epifano, F.; Genovese, S.; Curini, M.; Bertaccini, A. Phytochemical effects of phytoplasma infections on essential oil of *Monarda fistulosa* L. *Bull. Insectology* 2011, 64, S177–S178.

21. Adebayo, O.; Belanger, A.; Khazhadeh, S. Variable inhibitory activities of essential oils of three *Monarda* species on the growth of *Botrytis cinerea*. *Can. J. Plant Sci.* 2013, 93, 987–995. [CrossRef]

22. Tabanca, N.; Bernier, U.R.; Ali, A.; Wang, M.; Demirci, B.; Blythe, E.K.; Khan, S.I.; Baser, K.H.C.; Khan, I.A. Bioassay-guided investigation of two *Monarda* essential oils as repellents of yellow fever mosquito *Aedes aegypti*. *J. Agric. Food Chem.* 2013, 61, 8573–8580. [CrossRef]

23. Francati, S.; Gualandi, G. Side effects of essential oils of *Monarda fistulosa* L. and *M. didyma* L. on the tachinid parasitoid *Exorista larvarum* (L.): A preliminary study. *Tachinid Times* 2017, 30, 4–8.

24. Mattarelli, P.; Epifano, F.; Minardi, P.; Di Vito, M.; Modesto, M.; Barbanti, L.; Bellardi, M.G. Chemical composition and antimicrobial activity of essential oils from *Monarda fistulosa* and *Monarda citriodora* cultivated in Italy. *J. Essent. Oil-Bear. Plants* 2017, 20, 76–86. [CrossRef]

25. Laquale, S.; Avato, P.; Argentieri, M.P.; Bellardi, M.G.; D’Addabbo, T. Nematotoxic activity of essential oils from *Monarda* species. *J. Pest Sci.* 2018, 91, 1115–1125. [CrossRef]

26. Coltun, M.B.; Bogdan, A.A. Aspects of the biology and the cultivation of *Monarda fistulosa* L. as aromatic species in the Republic Of Moldova. Основні, малопознані і нетрадиційні види рослин—від вивчення до освоєння (сільськогосподарські і біологічні науки) 2020, 2020, 103–109.

27. Ghosh, M.; Schepetkin, I.A.; Özek, G.; Özek, T.; Khlebnikov, A.I.; Damron, D.S.; Quinn, M.T. Essential oils from *Monarda fistulosa*: Chemical composition and activation of transient receptor potential stem (TRPA1) channels. *Molecules* 2020, 25, 4873. [CrossRef] [PubMed]

28. Malankina, E.L.; Kuzmenko, A.N.; Zaitchik, B.T.; Ruzhitskiy, A.O.; Evgrafov, A.A.; Kozlovskaya, L.N. Content and composition of wild bergamot (*Monarda fistulosa* L.) essential oil at different phenological phases. *Moscow Univ. Chem. Bull.* 2020, 75, 391–394. [CrossRef]

29. Mazzia, G.; Chubey, B.B.; Kiehn, F. Essential oil of *Monarda fistulosa* L. var. menthaefolia, a potential source of geraniol. *Flavour Fragr. J.* 1997, 2, 129–132. [CrossRef]

30. Li, H.; Yang, T.; Li, F.Y.; Yao, Y.; Sun, Z.-M. Antibacterial activity and mechanism of action of *Monarda punctata* essential oil and its main components against common bacterial pathogens in respiratory tract. *Int. J. Clin. Exp. Pathol.* 2014, 7, 7389–7398.

31. Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. *Food Chem.* 2016, 210, 402–414. [CrossRef] [PubMed]

32. Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tjahbksh, M.; et al. Carvacrol and thymol: A comprehensive review. *Phytother. Res.* 2018, 32, 1675–1687. [CrossRef] [PubMed]

33. Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Sokeng, A.J.T.; Izadi, M.; Jafari, N.J.; Suntar, I.; Dalgà, M.; et al. Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. *Materials* 2017, 10, 947. [CrossRef] [PubMed]

34. Memar, M.Y.; Raei, P.; Alizadeh, N.; Aghdam, M.A.; Kaifl, H.S. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. *Rev. Med. Microbiol.* 2017, 28, 63–68. [CrossRef] [PubMed]

35. Aljaafari, M.N.; AlAli, A.O.; Baqias, L.; Alqubaisy, M.; AlAli, M.; Aidin, M.; Ong-Abullah, J.; Abushelaibi, A.; Lai, K.-S.; Lim, S.-H.E. An overview of the potential therapeutic applications of essential oils. *Molecules* 2021, 26, 628. [CrossRef] [PubMed]

36. Costa, M.F.; Durço, A.O.; Rabelo, T.K.; Barreto, R.d.S.S.; Guimarães, A.G. Effects of carvacrol, thymol and essential oils containing such monoterpenes on wound healing: *A systematic review*. *J. Pharm. Pharmacol.* 2019, 71, 141–155. [CrossRef] [PubMed]
37. Gavliakova, S.; Biringerova, Z.; Buday, T.; Brozmanova, M.; Calkovsky, V.; Poliacek, I.; Plevkova, J. Antitussive effects of nasal thymol challenges in healthy volunteers. *Respir. Physiol. Neurobiol.* 2015, 187, 104–107. [CrossRef]

38. Boskabady, M.H.; Jandaghi, P.; Kiani, S.; Hasanzadeh, L. Antitussive effect of *Carum copticum* in guinea pigs. *J. Ethnopharmacol.* 2005, 97, 79–82. [CrossRef]

39. Hosseinzadeh, H.; Eskandari, M.; Ziaee, T. Antitussive effect of thymoquinone, a constituent of *Nigella sativa* seeds, in Guinea pigs. *Pharmacologyonline* 2008, 2, 480–484.

40. Selçuk, C.T.; Durgun, M.; Tekin, R.; Yolbas, L.; Bozkurt, M.; Akçay, C.; Alabalk, U.; Basarali, M.K. Evaluation of the effect of thymoquinone treatment on wound healing in a rat burn model. *J. Burn Care Res.* 2013, 34, 274–281. [CrossRef] [PubMed]

41. Jyoti, D.D.; Singh, D.; Kumar, G.; Karnatak, M.; Chandra, S.; Verma, V.P.; Shankar, R. Thymol chemistry: A medicinal toolbox. *Curr. Bioact. Compd.* 2018, 15, 454–474. [CrossRef]

42. Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of thymol and carvacrol, constituents of *Thymus vulgaris* L. essential oil, on the inflammatory response. *Evid. Based Complement. Altern. Med.* 2012, 2012, 657026. [CrossRef]

43. Tateo, F.; Mariotti, M.; Bononi, M. Essential oil composition and enantiomeric distribution of some monoterpenoid components of *Coridothymus capitatus* (L.) Rchb. grown on the island of Kos (Greece). *J. Essent. Oil Res.* 1998, 10, 241–244. [CrossRef]

44. Satyal, P.; Jones, T.H.; Lopez, E.M.; McFeeters, R.L.; Ali, N.A.A.; Mansi, I.; Al-Kaf, A.G.; Setzer, W.N. Chemotypic characterization and biological activity of *Rosmarinus officinalis*. *Foods* 2017, 10, 241–244. [CrossRef]

45. Gilardoni, G.; Ramirez, J.; Montalvan, M.; Quinche, W.; Leon, J.; Benitez, L.; Morocho, V.; Cumbicus, N.; Bicchi, C. Phytochemistry of three Ecuadorian Lamiaceae: *Lepechinia heteromorpha* (Briq.) Epling, *Lepechinia radula* (Benth.) Epling and *Lepechinia paniculata* (Kunth) Epling. *Plants* 2019, 8, 1. [CrossRef] [PubMed]

46. Pragadheesh, V.S.; Saroj, A.; Yadav, A.; Samad, A.; Chanotiya, C.S. Compositions, enantiomer characterization and antifungal activity of two *Ocimum* essential oils. *Ind. Crops Prod.* 2013, 50, 333–337. [CrossRef]

47. Ramirez, J.; Gilardoni, G.; Ramon, E.; Tosi, S.; Picco, A.M.; Bicchi, C.; Vidari, G. Phytochemical study of the Ecuadorian species *Lepechinia mutica* (Benth.) Epling and high antifungal activity of carnosol against *Pyricularia oryzae*. *Pharmaceuticals* 2018, 11, 33. [CrossRef]

48. Coleman, W.M.; Lawrence, B.M. Examination of the enantiomeric distribution of certain monoterpenoid hydrocarbons in selected essential oils by automated solid-phase microextraction-chiral gas chromatography-mass selective detection. *J. Chromatogr. Sci.* 2000, 38, 95–99. [CrossRef]

49. Endeshaw, M.M.; Gautun, O.R.; Asfaw, N.; Aasen, A.J. Volatile oil constituents of the Ethiopian plant *Salvia schimperi* Benth. *Flavour Fragr. J.* 2000, 15, 27–30. [CrossRef]

50. Dein, M.; Munao, J.P. Characterization of key odorants in hoary mountain mint, *Pycnanthemum incanum*. *J. Agric. Food Chem.* 2019, 67, 2589–2597. [CrossRef] [PubMed]

51. Satyal, P.; Pappas, R.S. Antique lavender essential oil from 1945, its chemical composition and enantiomeric distribution. *Nat. Volatiles Essent. Oils* 2016, 3, 20–25.

52. DeCarlo, A.; Johnson, S.; Okeke-Agulu, K.I.; Dosoky, N.S.; Wax, S.J.; Owolabi, M.S.; Setzer, W.N. Compositional analysis of the essential oil of *Boswellia dalzielii* frankincense from West Africa reveals two major chemotypes. *Phytochemistry* 2019, 164, 24–32. [CrossRef] [PubMed]