Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques

D.A. Nesterenko*, A. Kankainen*, J. Kostensalo*, C.R. Nobsb, A.M. Bruceb, O. Beliuskina*, L. Canete*, T. Eronen*, E.R. Gamba*, S. Geldhof*, R. de Groote*, A. Jokinena*, J. Kurpeta*, I.D. Moore*, L. Morrison*, Zs. Podolyák*, I. Pohjalainen*, S. Rinta-Autilia*, A. de Roubin*, M. Rudigier*, J. Suhonen*, M. Vilén*, V. Virtanen*, J. Äystö*

*University of Jyväskylä, P.O. Box 33, FI-40014 University of Jyväskylä, Finland
bSchool of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom
cDepartment of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
dFaculty of Physics, University of Warsaw, ulica Pasteura 5, PL-02-093 Warsaw, Poland

Abstract

Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been post-selected and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy experiment. A new beta-decaying high-spin isomer feeding the 15^- isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16^+ spin-trap isomer. In 130In, the lowest-lying (10^-) isomeric state at 58.6(82) keV was resolved for the first time using the phase-imaging ion cyclotron resonance technique. The energy difference between the 10^- and 1^- states in 130In, stemming from parallel/antiparallel coupling of $(\pi 0h_{11/2}) \otimes (\nu 0h_{11/2})$, has been found to be around 200 keV lower than predicted by the shell model. Precise information on the energies of the excited states determined in this work is crucial for producing new improved effective interactions for the nuclear shell model description of nuclei near 132Sn.

Keywords: Isomers, Penning trap, beta-decay spectroscopy, shell model

Neutron-rich indium isotopes provide essential data to test the nuclear shell model [1, 2] and to further develop nucleon-nucleon interactions and related potentials [3, 4]. This is important for example to obtain better predictions for the astrophysical rapid neutron capture process, the r-process [5] traversing through the $N = 82$ isobars and forming its second abundance peak at $A \approx 130$. Nuclear masses are key inputs for calculating the r-process abundances, with the nuclei in the 132Sn region being one of the most impactful in this respect [6]. Recently, many decay spectroscopy experiments have been performed in the $A \approx 130$ region [7, 8, 9, 10, 11, 12, 13], and given evidence e.g. for a reduction of the $Z = 40$ proton subshell gap when approaching $N = 82$ [7, 12]. Despite these advances, excitation energies for many long-living beta-decaying isomeric states have remained unknown although they can provide crucial information on the nucleon-nucleon interactions close to 132Sn and play a role in the r-process [14, 15]. Low-lying isomeric states can be thermally populated in astrophysical environments and change the effective half-life of a nucleus, therefore affecting the final r-process abundance pattern.

Isomers have a different spin, shape, or structure compared to the lower-lying states in the nucleus (see e.g. [16]), hindering their de-excitation and prolonging the lifetimes. High-spin isomers in odd-odd nuclei, such as 128In studied in this work, cannot be populated via the ground-state beta decay of their even-even parent nucleus. The fission yields of high-spin isomers can also be lower than for the ground states, making it possible to miss related beta decays or even the existence of such isomers. For example the isomeric yield fraction of the $(21/2^-)$ isomer in 127In has been measured to be less than 30 % in proton-induced fission on uranium [17]. In this work, we employ state-of-the-art Penning-trap techniques to study the beta-decay of isomeric states in background-free conditions giving key information on the excited states they populate in the daughter nucleus.

The pioneering work on the isomeric states of neutron-rich indium isotopes done by Fogelberg et al. [18, 19] focused on the even-A isotopes $^{120, 128}$In. These studies have recently been extended, at RIKEN, to 130In [10] and 132In [9] studied via the beta decay of $^{130, 132}$Cd using the EURICA detector setup and to 134In [13] populated in the in-flight fission of 238U. Penning-trap mass spectrometry offers a way to determine the excitation energies of long-living isomeric states as has been done for the odd-A 129In and 131In isotopes at JYFLTRAP [20]. In addition to low-spin isomers, high-spin isomers with spin parities $23/2^-$ and $21/2^-$ have been observed in the $^{129, 131}$In iso-
topes [21, 22]. Recently, several indium isotopes were measured with the TITAN Penning trap [23] but some isomeric states were not fully resolved.

For even-A nuclei the high-spin states of $^{122,124,126}\text{In}$ have been recently studied using the nuclear shell model [24]. A good agreement between the shell-model calculations and the experiment was found using the effective interaction $jj4p5n$. On the other hand, restrictions to the model space had to be used for the lighter isotopes which needed to be compensated by re-adjusting the effective charges of the nucleons. As computational power increases, calculations in the full relevant model space become possible. Information on the spins, parities, energies, and reduced transition probabilities are vital for fitting new effective interactions for these previously computationally problematic model spaces. The present paper is a step towards understanding the properties of nuclei southwest of ^{132}Sn.

In this work, we have studied long-living beta-decaying states in ^{128}In and ^{130}In by applying state-of-the-art ion-trapping methods to measure their masses and decay properties. The neutron-rich indium isotopes were produced with a 30-MeV proton beam impinging into a uranium target at the Ion Guide Isotope Separator On-Line (IGISOL) facility [25]. The fission fragments were thermalized in helium gas, extracted from the IGISOL gas cell and guided towards the high-vacuum region of the mass separator using a sextupole ion guide [26]. Most of the fragments end up as singly-charged ions, which were accelerated to 30 keV, and mass-separated with a dipole magnet. The continuous A/q beam was cooled and bunched employing the radiofrequency quadrupole cooler and buncher (RFQ) [27] before injecting into the JYFLTRAP double Penning trap mass spectrometer [28]. A dedicated post-trap spectroscopy setup was prepared after JYFLTRAP to identify the states whose masses had been studied. The isomERICly purified ion bunches from JYFLTRAP were implanted into a movable mylar tape surrounded by a scintillator detector, two 70 % coaxial and a broad-energy range Ge detector.

At JYFLTRAP, the ions were first cooled and purified using the buffer-gas cooling technique [30] in the first trap. This method allows the cleaning of ions from isobaric contaminants. To resolve the isomeric states from each other and from the ground state an additional purification step employing a Ramsey dipolar cleaning method [31] pattern with two 5-ms excitation fringes, separated by either 40 ms ($^{128}\text{In}^{m+2}$ and ^{130}In) or 90 ms (^{128}In and $^{126}\text{In}^{m+1}$) waiting time between, was applied in the second trap. This was further followed by a cooling period in the first trap before the actual mass measurements in the second trap. The time-of-flight ion cyclotron resonance (TOF-ICR) [32, 33] technique was used to determine the ion’s cyclotron frequency $v_c = qB_{\text{RF}}/(2\pi m)$, where q and m are the charge and the mass of the ion and B is the magnetic field strength. The measurements were performed using time-separated oscillatory fields [29, 34] with 25 ms (On) - 350 ms (Off) - 25 ms (On) pattern for ^{128}In (see Fig. 1.(a)) and 25 ms (On) - 150 ms (Off) - 25 ms (On) pattern for ^{130}In. The magnetic field strength was determined using ^{126}Te (mass excess $\Delta = -88993.7(9)$ keV [35]) and ^{130}Te ($\Delta = -87352.949(11)$ keV [35]) as references for ^{128}In and ^{130}In, respectively. The use of isobaric references had the benefit that possible systematic uncertainties due to imperfections in the trap cancel out [36]. Time-dependent fluctuations in the magnetic field strength [37] were also taken into account in the analysis. Count-rate class analysis [38] was performed to account for ion-ion interactions in the trap. For the final result, a weighted mean and its
inner and outer errors [39] were calculated, and the larger of the errors was adopted. The results from the TOF-ICR measurements are summarized in Table 1 and noted with a.

For 128In, it is interesting to compare the results with clean samples of 128In$^{+}$ states obtained at JYFLTRAP, to the combined ground state and isomer measurements performed with 128In$^{6+}$ ions using the TITAN Penning trap at TRIUMF [23]. Whereas the masses for 128Inm1 agree well with the two measurements, the ground-state mass determined from the two-state fit on 128In$^{13+}$ [23] is 20(10) keV higher than the seven times more precise JYFLTRAP value. As a result, the excitation energy obtained at TITAN is 23(13) keV lower than the JYFLTRAP value (see Table 1).

For 130In, the TOF-ICR measurement was not able to resolve the 1(−) ground state from the (10−) isomeric state lying at 50(50) keV [40]. The TOF-ICR resonances collected with 400 ms and 600 ms excitation times showed a similar production ratio between the (5+) isomer and the lower-mass state. This suggests that the lower-mass state was the (10−) level which has a similar half-life to the (5+) isomer and the lower-mass state. This is consistent with the non-observation of the most prominent gamma lines from the beta decay of the 1(−) state in the collected beta-gated gamma-ray spectra for the studied lower-mass state. We conclude that the (10−) and (5+) isomers in 130In were measured with the TOF-ICR technique, however, the result for the (10−) state might still contain a small contribution from the weakly produced ground state.

To resolve all three states in 130In, a phase-imaging ion cyclotron resonance (PI-ICR) technique [42, 43, 44] was employed at JYFLTRAP. The cyclotron frequency was determined based on the phase difference after a phase accumulation time t_{acc}. With the PI-ICR technique, all three short-living, beta-decaying states were resolved with a high resolving power $R = \phi / \Delta \phi \approx 4.5 \times 10^{6}$, where ϕ_{acc} is the accumulated total cyclotron phase and $\Delta \phi$ is the angular size (FWHM) of the cyclotron spot (see Fig. 1(b)). The 130Inm2 isomer was measured using 133Cs ($\Delta = -88070.931(8) \text{ keV}$ [35]) as a reference ($t_{acc} = 250 \text{ ms}$), and the other two states were measured against 130Inm2 with $t_{acc}=320 \text{ ms}$. The data analysis followed otherwise the same procedures as described for TOF-ICR measurements. The PI-ICR frequency ratio results are highlighted with b in Table 1.

The shorter-living ground state of 130In was the least populated in the PI-ICR spectra and supports the conclusion that the lower-mass state in the TOF-ICR measurements was predominantly the (10−) state. The mass-excess values determined from the TOF-ICR and PI-ICR measurements of 130Inm1 and 130Inm2 agree with each other (see Table 1). The recent measurement at the TITAN Penning trap [23] reports mass-excess values of −699862(20) keV for the 1(−) ground state and −69503(28) keV for the (5+) isomer in 130In. The value reported for the 1(−) ground state from TITAN [23] is well above the value from this work and it actually fits better with the (10−) state measured in this work. The ground-state mass determined in this work, −69909.2(75) keV, agrees well with AME16 (−69880(40) keV [35]).

A new isomeric state in 128In at an excitation energy of 1797.6(20) keV was discovered in this work. The yield for this new isomer was similar to the first isomeric state in 128In, and both had trap cycles of around 0.75 s. Therefore, it is estimated that the new isomeric state 128Inm2 has to have a half-life longer than 0.3 s. Since the state was previously unknown, a pure beam of 128Inm2 was prepared with the trap, and implanted on a tape which was moved after every 1000 seconds (≈ 17 mins). For comparison, a spectrum employing only first-trap purification not sufficient to resolve the three states, was also collected. Figure 2 shows the two beta-gated gamma-ray spectra obtained with these settings.

Most of the observed beta-delayed gamma transitions from the new 128Inm2 and their intensities match with the transitions observed from the 15− isomer with $T_{1/2} = 220(30) \text{ ns}$ in 128Sn in Refs. [45, 46]. Therefore, the new isomeric state in 128In has to populate the (15−) isomer in 128Sn either directly or indirectly. We also observe two gamma transitions (1280 keV and 1779 keV) not observed in [45, 46]. Of these, the strong 1779 keV transition has an intensity similar to the 15− → 13− transition, suggesting it feeds the 15− isomer. The 1779 keV transition has been already observed in [19] where it was not assigned because it was not coincident with other gamma transitions within the used time window of 2-20 ns. Therefore, coincidences between the transitions above and below the 15− state with a half-life of 220(30) ns could not have been observed in Ref. [19]. In this work, the statistics was too low to firmly confirm coincidences between the 1779 keV and lower-lying gamma transitions. Further studies to establish the level scheme above the 15− isomeric state are needed. The resulting level scheme for 128Sn is shown on the left in Fig. 3.

To further investigate the studied states and the new high-spin isomer in 128In, shell-model calculations were performed in a valence space consisting of the proton orbitals 1p$_{3/2}$, 0f$_{5/2}$, 1p$_{1/2}$, and 0g$_{9/2}$, and the neutron orbitals 0g$_{7/2}$, 1d$_{5/2}$, 1d$_{3/2}$, 2s$_{1/2}$, and 0h$_{11/2}$ using the shell model code NuShellX@MSU [48] with the effective interaction jj45pna [49]. The interaction jj45pna is a CD-Bonn potential re-normalized with the perturbative G-matrix approach. Interestingly, the calculations predict that the first isomeric state in 128In would be 10− (see Fig. 4), similar to 130In, but in disagreement with literature suggesting it is (8−) [41]. The earlier (8−) assignment is based on the systematics of odd-odd In isotopes and on the observed beta-decay branching ratio of 14(12) % and log $ft = 5.8$ to the (7−) isomeric state in 128Sn [19, 41], supporting an allowed beta decay. The observed feeding in Ref. [19] might be explained by missed transitions from
Table 1: Isomeric states in ^{128}In and ^{130}In studied in this work together with their spins, parities J^π, and half-lives $T_{1/2}$ from literature [40, 41]. The frequency ratios $r = \nu_{c, ref}/\nu_c$ determined using the TOF-ICR (*) and PI-ICR (**) techniques in this work, corresponding mass-excess values Δ and excitation energies E_x are tabulated and compared to the literature values from [23, 40, 35]. The reference nuclides have been listed for each measurement. The TOF-ICR measurement of $^{130}\text{In}^{m1}$ (marked with *) was done as an admixture with the ground state, and hence the PI-ICR value is recommended.

Nuclide	J^π	$T_{1/2}$ (s)	Ref.	$r = \nu_{c, ref}/\nu_c$	Δ (keV)	$\Delta_{\text{lit.}}$ (keV)	E_x (keV)	$E_{x, \text{lit.}}$ (keV)
^{128}In	(3)$^+$	0.84(6)	^{128}Te	1.000124253(9)a	-74190.0(14)	-74170.5(97)	285.1(25)	262(13)
$^{128}\text{In}^{m1}$	(8)$^-$	0.72(10)	^{128}Te	1.000126646(16)a	-73904.9(21)	-73908.8(91)	285.1(25)	262(13)
$^{128}\text{In}^{m2}$	(16)$^+$	> 0.3	^{128}Te	1.000139341(10)a	-72392.4(15)	-	1797.6(20)	-
^{130}In	1$^-$	0.29(2)	$^{130}\text{In}^{m2}$	0.999996815(50)b	-69909.2(75)	-69862(20)	0.0	-
$^{130}\text{In}^{m1}$	(10)$^-$	0.54(1)	^{130}Te	1.000147705(53)b,c	-69842.7(64)	66.5(99)	50.6(82)	50(50)
$^{130}\text{In}^{m2}$	(5)$^+$	0.54(1)	^{130}Te	1.000147325(41)b	-69525.6(49)	384(9)	-	-
^{133}Cs				0.977577292(36)b	-69522.8(45)	386.3(60)	-	-

Table 2: Observed γ transitions following the beta decay of $^{128}\text{In}^{m2}$ and their relative intensities. The conversion coefficients α from the Brice calculator [47] were used to obtain the total intensity $I_{\text{tot}} = (1 + \alpha)I_\gamma$. This mainly concerns the 119.5-keV ($\alpha = 0.848(12)$) and 207.5-keV ($\alpha = 0.126(18)$) $\frac{1}{2}$ transitions since for the others, $\alpha < 0.01$. Due to the used coincidence gate of 1.5 ps, the γ transitions following the 10^+ ($T_{1/2} = 3$ ms) and 7^- ($T_{1/2} = 6.5(5)$ s) states were strongly suppressed (marked with *). For comparison, intensities obtained within 1.5 ps after the ^{128}Sn implantation in Ref. [45] are given, renormalized to the 119.5-keV transition.

| E_γ (keV) | $I_{\text{tot}} (%)$ | I_{tot} (arb. unit) | Ref. | | $J_i^+ \to J_f^-$ | $J_i^+ \to J_f^-$ |
|------------------|----------------------|-----------------------------|------|-----------------|------------------|
| 119.5(3) | 100(8) | 100(14) | 15$^-$ | 13$^-$ | |
| 207.5(3) | 34(4) | 29(7) | 13$^-$ | 11$^-$ | |
| 321.1(4)* | 9(2) | | | | 8$^+$ | 7$^-$. |
| 426.0(3) | 74(8) | 53(9) | 13$^-$ | 12$^+$ | |
| 625.4(3) | 29(4) | 25(6) | 11$^-$. | 9$^-$. | |
| 831.3(2)* | 9(2) | | | | 4$^+$ | 2$^+$. |
| 1054.8(3) | 31(5) | 17(6) | 9$^-$. | 7$^-$. | |
| 1061.1(3) | 73(8) | 62(11) | 12$^+$. | 10$^+$. | |
| 1168.3(2)* | 13(3) | | | | 2$^+$. | 0$^+$. |
| 1279.8(5) | 5(2) | | | | (11$^-$. | 10$^+$. |
| 1779.1(3) | 85(8) | | | | (15$^+$. | 15$^-$. |

Figure 2: (Color online) Beta-gated gamma-ray spectrum obtained with the trap purification set to ^{128}In (including all three states, in black) and to the new high spin isomer $^{128}\text{In}^{m2}$ at 1.8 MeV, which was additionally purified with the Ramsey cleaning method (in red). The peaks tabulated in Table 2 are shown with an asterisk (*). The strong 1779-keV transition is shown in the inset.

higher-lying levels, such as the ones fed by the beta decay of the (16^+) isomer. In this work, the intensity of the high and the 1055-keV transition is greatly enhanced when all isomeric states are present in the beam, allowing also the (10$^-$) assignment for $^{128}\text{In}^{m1}$ in agreement with the shell model. The excitation energy determined here for this first isomeric state in ^{128}In, 285.1(25) keV, is significantly higher than recently obtained at TITAN (262(13) keV [23]) but still lower than the theoretical prediction (452 keV).

According to the shell-model calculations, the new high-spin isomer in ^{128}In is 16^+ since no other spin-trap states are located at around 2 MeV (see Fig. 4). The 16^+ state consists 92% of the configuration ($\nu 0g_{9/2}$)$^{-1} \otimes (\nu 1d_{3/2}^2)$, which is further supported by the systematics of high-spin isomers in the $N = 79$ isotones ^{128}Sn, ^{130}Sb and ^{131}Te (see Fig. 5). They all have
...high-spin isomers with similar leading neutron configurations $\nu 1d_{3/2}^{-1}0h_{11/2}^{-1}$, located at 1803 keV ((23/2$^+$) in 128Sn [51, 21]), 1545 keV ((13$^+$) in 130Sb [51]) and 1940 keV ((23/2$^+$) in 131Te [52]). In addition, similar high-spin isomers are also found in neighbouring indium isotopes, such as the (21/2$^-$) state in 128In and (23/2$^-$) in 129In [21].

Allowed beta decay from the new (16$^+$) isomer would populate 15$^+$ and 16$^+$ states in 128Sn. The four neutron holes in 128Sn can maximally couple to spin 16$^+$ as $\nu 0h_{11/2}^{-1}$, and hence there are no 17$^+$ states within the used model space. According to the shell-model calculations, the first 15$^+$ and 16$^+$ states in 128Sn would lie 1200 keV and 1020 keV above the 15$^-$ state, which the shell model places at 4017 keV. The shell model predicts that the first 15$^+$ state in 128Sn consists 97.1 % of the $\nu 0g_{9/2}^{-1}1d_{5/2}^{-1}0h_{11/2}^{-2}$ configuration. Therefore, the beta decay from the 16$^+$ isomer to the 15$^+$ state would convert the $0g_{9/2}$ proton hole into $0g_{7/2}$ neutron hole, in agreement with an allowed beta decay. The calculated 16$^+$ state in 128Sn is 99.5 % ($\nu 0h_{11/2}^{-1}$) and so not likely to be fed in this beta decay. Although the observed 1280 keV transition would match in energy with the shell-model prediction for the 15$^+$ \rightarrow 15$^-$ transition, the intensity is rather low to explain the observed intensities below the 15$^-$ state. We therefore assume that the 1779 keV transition feeds the 15$^-$ isomer (based on its intensity and non-coincidence with other gamma transitions as reported in [19]) and originates from a (15$^+$) level directly fed in the beta decay of 128Snm2. This would place the new (15$^+$) state at 5878 keV. The right of Fig. 3 shows that the shell model predicts the 15$^+$ and 16$^+$ states at somewhat lower energies. However, the next 15$^+$ and 16$^+$ states are calculated at energies greater than 7.2 MeV.

For 130In (see Fig. 6), the shell model predicts a low-lying isomeric 10$^-$ state but at 264 keV. This is around 200 keV higher than the experimental value of 58.6(82) keV. The 10$^-$ isomeric state has the $\nu(\pi 0h_{9/2}^{-1})\otimes(\nu 0h_{11/2}^{-1})$ configuration which is also the largest component for the 1$^-$ ground state with $\approx 80\%$ contribution. The other two significant contributions to the ground state come from the configurations $\nu 1p_{3/2}^{-1}\otimes(\nu 1d_{5/2}^{-1})$, $\approx 8\%$, and $\nu 1p_{1/2}^{-1}\otimes(\nu 2s_{1/2}^{-1})$, $\approx 6\%$. The shell-model calculations predict 3$^+$ and 5$^+$ states at 457 keV and 550 keV. The excitation energy for the (5$^+$) isomer, 385.5(50) keV, falls below the observed (3$^+$) state at 388.3(2) keV [53, 54]. Although the (5$^+$) state is around 200 keV lower than predicted, the experimental and theoretical spectra are in a relatively good agreement indicating that the current theoretical understanding of this mass region is reasonable. Therefore, one can expect that the theoretical predictions, such as the spin-parity of the new 124In isomer, are reliable.

In this work isomeric states in 128In and 130In were stud-
Figure 5: Systematics of the isomeric states in the investigated region. Data are taken from ENSDF and XUNDL (marked with (*)) [50] and include the excitation energies of the isomeric states in 128In and 130In from this work.

ied with the JYFLTRAP Penning trap at the IGISOL facility. Furthermore, more accurate ground-state mass values, important for the astrophysical rapid neutron capture process and mass models, were obtained. Employing novel ion manipulation techniques, different states were resolved and masses of six beta-decaying states were measured. JYFLTRAP was also used to select the ions of interest for post-trap decay spectroscopy enabling background-free studies of the states in question. A new isomeric state in 128In feeding indirectly the 15− isomer in 128Sn was discovered. Large-scale shell-model calculations suggest that this new isomeric state has a spin-parity of 16+ following well the systematics in the region. The shell-model calculations predict that the first isomeric state in 128In would be 10−, similar to 130In, but in disagreement with experiments suggesting it is (8^-). The excitation energy determined here for the (8^-) isomer in 128In (285.1(25) keV) is somewhat lower than the theoretical prediction (452 keV). In 130In, the energy difference for the (8^-) and $^{1(−)}$ states, stemming from parallel/antiparallel coupling of $(π|0_\downarrow^{1/2}) \otimes (v|0_{\uparrow 11/2})$ has been found to be 58.6(82) keV, which is around 200 keV lower than predicted by the shell model. Precise information on the energies of excited states determined in this work is crucial for producing new improved effective interactions for the nuclear shell model description of nuclei near 132Sn. Here we have demonstrated that such previously challenging isomeric states can be studied, or even new isomers discovered, using a novel combination of ion-trapping techniques and decay spectroscopy. This provides new possibilities for future studies of isomeric states.

Acknowledgments

This work has been supported by the EU Horizon 2020 research and innovation program under grant No. 771036 (ERC CoG MAIDEN). The support from the Academy of Finland under the Finnish Centre of Ex-
References

[1] M. G. Mayer, On closed shells in nuclei, ii, Phys. Rev. 75 (1949) 1969–1970. doi:10.1103/PhysRev.75.1969.
URL https://link.aps.org/doi/10.1103/PhysRev.75.1969

[2] O. Haxel, J. H. D. Jensen, H. E. Suess, On the ”magic numbers” in nuclear structure, Phys. Rev. 75 (1949) 1766–1766. doi:10.1103/PhysRev.75.1766.2.
URL https://link.aps.org/doi/10.1103/PhysRev.75.1766.2

[3] E. Couair, G. Martínez-Pinedo, F. Nowacki, A. Poves, A. P. Zuker, The shell model as a unified view of nuclear structure, Rev. Mod. Phys. 77 (2005) 427–488. doi:10.1103/RevModPhys.77.427.
URL https://link.aps.org/doi/10.1103/RevModPhys.77.427

[4] L. Coraggio, A. Covello, A. Gargano, N. Itaco, T. Kuo, Shell-model calculations and realistic effective interactions, Progr. Part. Nucl. Phys. 62 (1) (2009) 135 – 182. doi:https://doi.org/10.1016/j.ppnp.2008.06.001.
URL http://www.sciencedirect.com/science/article/pii/S0146641008000410

[5] C. J. Horowitz, et al., r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos, J. Phys. G: Nucl. Part. Phys. 46 (8) (2019) 083001. doi:10.1088/1361-6471/ab0849.
URL https://doi.org/10.1088/2058-6451/ab0849

[6] M. Mumpower, R. Surman, G. McLaughlin, A. Aprahamian, The impact of individual nuclear properties on r-process nucleosynthesis, Progr. Part. Nucl. Phys. 86 (2016) 86 – 126. doi:10.1016/j.ppnp.2015.09.001.
URL http://www.sciencedirect.com/science/article/pii/S0146641015000897

[7] J. Taprogge, et al., Ip/2 proton-hole state in 132Sn and the shell structure along N=82, Phys. Rev. Lett. 112 (2014) 132501. doi:10.1103/PhysRevLett.112.132501.
URL https://link.aps.org/doi/10.1103/PhysRevLett.112.132501

[8] J. Taprogge, et al., β decay of 129Cd and excited states in 129In, Phys. Rev. C 91 (2015) 054324. doi:10.1103/PhysRevC.91.054324.
URL https://link.aps.org/doi/10.1103/PhysRevC.91.054324

[9] A. Jungclaus, et al., First observation of γ rays emitted from excited states south-east of 132Sn: The 3γ/2 0+γ/2 multiplet of 132In, Phys. Rev. C 93 (2016) 041301. doi:10.1103/PhysRevC.93.041301.
URL https://link.aps.org/doi/10.1103/PhysRevC.93.041301

[10] A. Jungclaus, et al., β decay of semi-magic 130Cd: Revision and extension of the level scheme of 130In, Phys. Rev. C 99 (2019) 044303. doi:10.1103/PhysRevC.99.044303.
URL https://link.aps.org/doi/10.1103/PhysRevC.99.044303

[11] C. Lorenz, et al., β decay of 127Cd and excited states in 127In, Phys. Rev. C 99 (2019) 044310. doi:10.1103/PhysRevC.99.044310.
URL https://link.aps.org/doi/10.1103/PhysRevC.99.044310

[12] Z. Q. Chen, et al., Proton shell evolution below 132Sn, Phys. Rev. C 323 (2) (1974) 214 – 220. doi:10.1103/PhysRevC.323.214.
URL https://link.aps.org/doi/10.1103/PhysRevC.323.214

[13] V. R. Tsyganov, M. Lanza, S. Pompl, N. Jokinen, A. Mattera, A. Kankainen, A. Rosenfeld, A. Solders, A. Al-Adili, A. de Roubin, M. Vilen, M. Osterlund, H. Penttilä, Isomeric fission yield ratios for odd-mass Cd and In isotopes using the double Penning trap JYFLTRAP, Phys. Rev. C 97 (2018) 014617. doi:10.1103/PhysRevC.97.014617.
URL https://link.aps.org/doi/10.1103/PhysRevC.97.014617

[14] M. Arndt, S. Goriely, K. Takahashi, The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries, Physics Reports 450 (4) (2007) 97 – 213. doi:10.1016/j.physrep.2006.05.002.
URL http://www.sciencedirect.com/science/article/pii/S0370157307002438

[15] H. V. Phong, et al., Observation of a μs isomer in 134In, Phys. Rev. C 100 (2019) 011302. doi:10.1103/PhysRevC.100.011302.
URL https://link.aps.org/doi/10.1103/PhysRevC.100.011302

[16] G. Martínez-Pinedo, K. Langante, Shell-model half-lives for N = 82 nuclei and their implications for the r process, Phys. Rev. Lett. 83 (1999) 4502–4505. doi:10.1103/PhysRevLett.83.4502.
URL https://link.aps.org/doi/10.1103/PhysRevLett.83.4502

[17] A. Kankainen, et al., Isomeric states close to doubly magic 132Sn studied with the double Penning trap JYFLTRAP, Phys. Rev. C 94 (2016) 024303. doi:10.1103/PhysRevC.94.024303.
URL https://link.aps.org/doi/10.1103/PhysRevC.94.024303

[18] B. Fogelberg, P. Carl, Levels and transition probabilities in 131In based on this work, together with the 3+ state from [50], compared with the shell-model calculations using the effective interaction jij5pna [49]. The calculated level scheme contains only the lowest excited states for each spin-parity. There are also many other states with the same spin-parities but they are too numerous to be presented in this figure.

[19] J. Taprogge, et al., β decay of 129Cd and excited states in 129In, Phys. Rev. C 91 (2015) 054324. doi:10.1103/PhysRevC.91.054324.
URL https://link.aps.org/doi/10.1103/PhysRevC.91.054324

[20] A. Jungclaus, et al., First observation of γ rays emitted from excited states south-east of 132Sn: The 3γ/2 0+γ/2 multiplet of 132In, Phys. Rev. C 93 (2016) 041301. doi:10.1103/PhysRevC.93.041301.
URL https://link.aps.org/doi/10.1103/PhysRevC.93.041301

Figure 6: The experimental level scheme of 130In based on this work, together with the 3+ state from [50], compared with the shell-model calculations using the effective interaction jij5pna [49]. The calculated level scheme contains only the lowest excited states for each spin-parity. There are also many other states with the same spin-parities but they are too numerous to be presented in this figure.
M. Kretzschmar, The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results, Int. J. Mass Spectrom. 264 (23) (2007) 110 – 121. doi:http://dx.doi.org/10.1016/j.ijms.2007.04.003. URL http://www.sciencedirect.com/science/article/pii/S1387380607001662.

M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, X. Xu, The AME2016 atomic mass evaluation (II). Tables, graphs and references, Chin. Phys. C 41 (3) (2017) 030003. URL http://stacks.iop.org/1674-1137/41/i=3/a=030003.

C. Roux, et al., Data analysis of Q-value measurements for double-electron capture with SHIPTRAP, Eur. Phys. J. D 67 (7) (2013) 1–9. doi:http://dx.doi.org/10.1140/epjd/e2013-40110-x. URL http://dx.doi.org/10.1140/epjd/e2013-40110-x.

L. Canete, et al., High-precision mass measurements of 25Al and 26Al at JYFLTRAP, Eur. Phys. J. A 52 (5) (2016) 1–8. doi:http://dx.doi.org/10.1140/epja/i2016-16124-0. URL http://dx.doi.org/10.1140/epja/i2016-16124-0.

A. Kellerbauer, B. Blaun, G. Bollen, F. Herfurth, H.-J. Kluge, M. Kuckein, E. Sauvan, C. Schneiderberger, L. Schweikhard, From direct to absolute mass measurements: A study of the accuracy of ISOLTRAP, Eur. Phys. J. D 52 (1) (2008) 53–64. doi:http://dx.doi.org/10.1140/epjd/e2008-00222-0. URL http://dx.doi.org/10.1140/epjd/e2008-00222-0.

R. T. Birge, The calculation of errors by the method of least squares, Phys. Rev. 40 (1932) 207–227. doi:10.1103/PhysRev.40.207. URL http://dx.doi.org/10.1103/PhysRev.40.207.

B. Singh, Nuclear Data Sheets for A = 130, Nucl. Data Sheets 93 (1) (2001) 33–242. doi:http://dx.doi.org/10.1006/ndsh.2001.0012. URL http://dx.doi.org/10.1006/ndsh.2001.0012.

Z. Elekes, J. Timar, Nuclear Data Sheets for A = 128, Nucl. Data Sheets 129 (2015) 191 – 436. doi:http://dx.doi.org/10.1016/j.nds.2015.09.002. URL http://dx.doi.org/10.1016/j.nds.2015.09.002.

S. Eliseev, K. Blaun, M. Block, C. Droese, M. Goncharov, E. Minaya Ramirez, D. A. Nesterenko, Y. N. Novikov, L. Schweikhard, Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclei, Phys. Rev. Lett. 110 (2013) 082501. doi:http://dx.doi.org/10.1103/PhysRevLett.110.082501. URL http://dx.doi.org/10.1103/PhysRevLett.110.082501.

S. Eliseev, et al., A phase-imaging technique for cyclotron-frequency measurements, Appl. Phys. B 114 (1) (2014) 107–128. doi:10.1007/s00340-013-5621-0. URL http://dx.doi.org/10.1007/s00340-013-5621-0.

D. A. Nesterenko, T. Eronen, A. Kankainen, L. Canete, A. Jokinen, I. D. Moore, H. Penttila, S. Rinta-Antila, A. de Roubin, M. Kuckein, E. Sauvan, C. Schneiderberger, L. Schweikhard, From direct to absolute mass measurements: A study of the accuracy of ISOLTRAP, Eur. Phys. J. D 52 (1) (2008) 53–64. doi:http://dx.doi.org/10.1140/epjd/e2008-00222-0. URL http://dx.doi.org/10.1140/epjd/e2008-00222-0.

S. Eliseev, K. Blaun, M. Block, C. Droese, M. Goncharov, E. Minaya Ramirez, D. A. Nesterenko, Y. N. Novikov, L. Schweikhard, Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclei, Phys. Rev. Lett. 110 (2013) 082501. doi:http://dx.doi.org/10.1103/PhysRevLett.110.082501. URL http://dx.doi.org/10.1103/PhysRevLett.110.082501.

S. Eliseev, et al., A phase-imaging technique for cyclotron-frequency measurements, Appl. Phys. B 114 (1) (2014) 107–128. doi:10.1007/s00340-013-5621-0. URL http://dx.doi.org/10.1007/s00340-013-5621-0.

D. A. Nesterenko, T. Eronen, A. Kankainen, L. Canete, A. Jokinen, I. D. Moore, H. Penttila, S. Rinta-Antila, A. de Roubin, M. Vilen, Phase-Imaging Ion-Cyclotron-Resonance technique at JYFLTRAP double Penning trap mass spectrometer, Eur. Phys. J. A 54 (9) (2018) 154. doi:http://dx.doi.org/10.1140/epja/i2018-12589-y. URL http://dx.doi.org/10.1140/epja/i2018-12589-y.

S. Pietri, et al., First observation of the decay of a 15+ seniority v = 4 isomer in 125Sn, Phys. Rev. C 83 (2011) 044328. doi:10.1103/PhysRevC.83.044328. URL http://dx.doi.org/10.1103/PhysRevC.83.044328.

L. W. Iskra, et al., Higher-seniority excitations in even neutron-rich Sn isotopes, Phys. Rev. C 89 (2014) 044324. doi:10.1103/PhysRevC.89.044324. URL http://dx.doi.org/10.1103/PhysRevC.89.
[47] T. Kibédi, T. Burrows, M. Trzhaskovskaya, P. Davidson, C. Nestor, Evaluation of theoretical conversion coefficients using BrIcc, Nucl. Instr. Meth. Phys. Res. Sect. A 589 (2) (2008) 202 – 229. doi:https://doi.org/10.1016/j.nima.2008.02.051.
URL http://www.sciencedirect.com/science/article/pii/0168900208002520

[48] B. Brown, W. Rae, The shell-model code nushellx@msu, Nuclear Data Sheets 120 (2014) 115 – 118. doi:https://doi.org/10.1016/j.nds.2014.07.022.
URL http://www.sciencedirect.com/science/article/pii/S0090375214004748

[49] R. Machleidt, High-precision, charge-dependent Bonn nucleon-nucleon potential, Phys. Rev. C 63 (2001) 024001. doi:10.1103/PhysRevC.63.024001.
URL https://link.aps.org/doi/10.1103/PhysRevC.63.024001

[50] National Nuclear Data Center, Brookhaven National Laboratory. [link].
URL www.nndc.bnl.gov

[51] J. Genevey, J. A. Pinston, C. Foin, M. Rejmund, H. Faust, B. Weiss, High spin isomers in 129Sn and 130Sb, Phys. Rev. C 65 (2002) 034322. doi:10.1103/PhysRevC.65.034322.
URL https://link.aps.org/doi/10.1103/PhysRevC.65.034322

[52] C. Zhang et al., Yrast excitations in $\Lambda=126$-131 Te nuclei from deep inelastic 130Te+64Ni reactions, Nucl. Phys. A 628 (3) (1998) 386 – 402. doi:https://doi.org/10.1016/S0375-9474(97)00617-9.
URL http://www.sciencedirect.com/science/article/pii/S0375947497006179

[53] I. Dillmann, et al., $N = 82$ Shell Quenching of the Classical r-Process “Waiting-Point” Nucleus 130Cd, Phys. Rev. Lett. 91 (2003) 162503. doi:10.1103/PhysRevLett.91.162503.
URL https://link.aps.org/doi/10.1103/PhysRevLett.91.162503

[54] A. Scherillo, J. Genevey, J. A. Pinston, A. Covello, H. Faust, A. Gargano, R. Orlandi, G. S. Simpson, I. Tsekhanovich, N. Warr, Neutron-rich In and Cd isotopes close to the doubly magic 132Sn, Phys. Rev. C 70 (2004) 054318. doi:10.1103/PhysRevC.70.054318.
URL https://link.aps.org/doi/10.1103/PhysRevC.70.054318