On y-closed Rickart Modules

Bahar hamad Al-Bahrani, Mohammed Qader Rahman*
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 21/1/2020 Accepted: 29/4/2020

Abstract
In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules. We prove that, Let M and N be two R-modules such that N is singular. Then M is N-y-closed Rickart module if and only if Hom(M, N) = 0. Also, we study the direct sum of y-closed Rickart modules.

Keywords: y-closed submodule, y-closed simple, y-closed Rickart modules.

1. INTRODUCTION
A module M is called closed Rickart if for any \(f \in \text{End}(M) \), \(\text{ann}_M(f) = \text{Ker}f \) is closed submodule of M [1]. Recall that a submodule A of an R-module M is called a y-closed submodule of M if \(\frac{M}{A} \) is nonsingular [2]. It is known that every y-closed submodule is closed.

In this paper, we give some results on the y-closed Rickart modules.

In §2, we give the definition of the y-closed Rickart modules with some examples and basic properties. For example, we prove that for two R-modules M and N such that N is nonsingular module, then M is N-y-closed Rickart module, see proposition (2.3).

In section 3, we study the direct sum of y-closed Rickart module. For example, we prove that for two R-modules M and N such that \(M = A \oplus B \), where A and B are submodules of M. If M is N-y-closed Rickart module, then A is N-y-closed Rickart module, see Theorem (3.1).

Throughout this article, R is a ring with identity and M is a unitary left R-module. \(S = \text{End}_R(M) \) will denote the endomorphism ring of M.

*Email: Mohammed_qader_0@yahoo.com
§2: Y-Closed Rickart Modules

In this section, we introduce the definition of y-closed Rickart module. Also we give some basic properties of this concept.

Definition 2.1: Let M and N be two R-modules. We say that M is N-y-closed Rickart module if for each \(f \in \text{End}(M, N) \), \(\text{ann}_M(f) = \text{Ker}f \) is a y-closed submodule of M.

For a module M, if M is M-y-closed Rickart module, then we say that M is y-closed Rickart module.

Examples 2.2:
1- Consider the modules Z and Q as Z-modules. Then Z is Q-y-closed Rickart module. To show that, let \(f: Z \to Q \) be an R-homomorphism, by the first isomorphism theorem \(\frac{Z}{\text{Ker}f} \cong \text{Im}f \). Since Q is nonsingular, then \(\text{Im}f \) is nonsingular. Therefore \(\text{Ker}f \) is a y-closed submodule of Z. Thus Z is Q-y-closed Rickart module.

2- Consider the modules \(Z_4 \) and \(Z_2 \) as Z-modules and let \(f: Z_4 \to Z_2 \) be a map defined by \(f(x) = 3x, \forall x \in Z_4 \). Hence Kerf = \(\{ x \in Z_4, f(x) = 0 \} = \{0, 2\} \). But \(\frac{Z_4}{\{0, 2\}} \cong Z_2 \) and \(Z_2 \) singular as Z-module. Thus \(Z_4 \) is not \(Z_2 \)-y-closed Rickart module.

Note: A Rickart (closed Rickart) module needs not to be a y-closed Rickart module. For example, the module \(Z_6 \) as Z-module is a Rickart (closed Rickart) module, where \(Z_6 \) is semisimple. We claim that \(Z_6 \) is not y-closed Rickart module. To verify this, let \(f: Z_6 \to Z_6 \) be a map defined by \(f(x) = 3x, \forall x \in Z_6 \). Clearly, f is an R-homomorphism and Kerf = \(\{ x \in Z_4, f(x) = 0 \} = \{0, 2, 4\} \). By the first isomorphism theorem, \(\frac{Z_6}{\{0, 2, 4\}} \cong Z_2 \) and \(Z_2 \) singular as Z-module. Thus \(Z_6 \) is not y-closed Rickart module.

Proposition 2.3: Let M and N be two R-modules such that N is nonsingular module. Then M is N-y-closed Rickart module.

Proof: Let \(f: M \to N \) be an R-homomorphism. Since N is nonsingular and \(\text{Im}f \) is a submodule of N, then \(\text{Im}f \) is nonsingular module. By the first isomorphism theorem, \(\frac{M}{\text{Ker}f} \cong \text{Im}f \). Therefore \(\frac{M}{\text{Ker}f} \) is nonsingular. Hence Kerf is a y-closed of M. Thus M is N a y-closed Rickart module.

Corollary 2.4: Let R be an integral domain and let M be torsion free R-module. Then M is a y-closed Rickart module.

No, we give the following characterization.

Propositions 2.5: Let M and N be two R-modules. Then M is N-y-closed Rickart module if and only if, for every R-homomorphism \(f: M \to N \), \(\text{Im}f \) is a nonsingular module.

Proof: Let \(f: M \to N \) be an R-homomorphism. Since \(\text{Im}f \) is nonsingular module and \(\frac{M}{\text{Ker}f} \cong \text{Im}f \). Therefore \(\frac{M}{\text{Ker}f} \) is nonsingular. Hence Kerf is a y-closed submodule of M. Thus M is N-y-closed Rickart module.

Conversely, let \(f: M \to N \) be an R-homomorphism. Since \(\text{Im}f \) is nonsingular and \(\frac{M}{\text{Ker}f} \cong \text{Im}f \), then \(\frac{M}{\text{Ker}f} \) is nonsingular. Therefore Kerf is a y-closed submodule of M. Thus M is N-y-closed Rickart module.

Recall that a module M is said to be K-nonsingular if for every homomorphism \(f: M \to M \) such that kerf is essential in M, implies \(f = 0 \) [1].

Proposition 2.6: Every y-closed Rickart module is K-nonsingular.

Proof: Suppose that M is a y-closed Rickart module and let \(f: M \to M \) be an R-homomorphism such that kerf is essential in M. Then \(\frac{M}{\text{Ker}f} \) is singular, by [2]. But M is a y-closed Rickart module, therefore kerf is a y-closed submodule of M, which implies that kerf = M and so \(f = 0 \). Thus M is K-nonsingular.

Propositions 2.7: Let M and N be two R-modules such that N is singular. Then M is N-y-closed Rickart module if and only if \(\text{Hom}(M, N) = 0 \).
Proof: Assume that M is N-y-closed Rickart module and let f: M → N be an R-homomorphism. Then Kerf is a y-closed submodule of M and hence \(\frac{M}{Kerf} \) is nonsingular. So Imf is nonsingular. But N is singular, therefore Imf = 0. Thus Hom(M, N) = 0.

The converse is clear.

Corollary 2.8: Let A be a proper essential submodule of a module M. Then M is not \(\frac{M}{A} \) -y-closed Rickart module.

Proof. Since A is an essential submodule of M, then by [2], \(\frac{M}{A} \) is a singular module. Let \(\pi: M \rightarrow \frac{M}{A} \) be the natural epimorphism. It is clear that 0 ≠ π \(\in \) Hom(\(\frac{M}{A} \)). Thus by Proposition (2.7) M is not \(\frac{M}{A} \) -y-closed Rickart module.

§3 DIRECT SUM OF Y-CLOSED RICKART MODULES

In this section, we study the direct sum of the y-closed Rickart modules. We begin with the following theorem.

Theorem 3.1: Let M and N be two R-modules such that M = A\(\oplus \)B, where A and B are submodules of M. If M is N-y-closed Rickart module, then A is N-y-closed Rickart module.

Proof. Let \(\psi: A \rightarrow N \) be an R-homomorphism and let p: M \rightarrow A be the projection map. Consider the map \(\psi \circ p: M \rightarrow N \). Since M is N-y-closed Rickart module, then Ker(\(\psi \circ p \)) is a y-closed submodule of M. But

\[
\text{ker}(\psi \circ p) = \{x \in M, \ \psi \circ p(x) = 0\} = \{a + b \in A \oplus B, \ \psi(p(a + b)) = 0, \ a \in A, b \in B\} = \{a + b \in A \oplus B, \ \psi(a) = 0, \ a \in A, b \in B\} = \text{ker}\psi \circ \text{B}
\]

Therefore \(\frac{M}{\text{ker}\psi \circ \text{B}} = \frac{A \oplus \text{B}}{\text{ker}\psi \circ \text{B}} \cong \frac{A}{\text{ker}\psi} \) is nonsingular. So Ker\psi is a y-closed submodule of A. Thus A is N-y-closed Rickart module.

Propositions 3.2: Let M = \(\bigoplus_{i \in I} M_i \) and N = \(\bigoplus_{i \in I} N_i \) be two R-modules, such that for every f \(\in \) Hom(M, N), f(M_i) \(\subseteq \) N, \(\forall i \in I \). If M_i is N_i -y-closed Rickart module, \(\forall i \in I \), then M is N-y-closed Rickart module.

Proof. Assume that M_i is N_i -y-closed Rickart module, \(\forall i \in I \), and let f: M \rightarrow N be an R-homomorphism. We want to show that Kerf is a y-closed submodule of M. By our assumption,

\(f \big|_{M_i}: M_i \rightarrow N_i, \ \forall i \in I \). It is clear that kerf \(\big|_{M_i} = \text{kerf} \cap M_i \), for each i \(\in I \). We claim that kerf = \(\bigoplus_{i \in I} \text{ker}(f \big|_{M_i}) \). To show that, let x \(\in \) Kerf. Then x = \(\sum_{i \in I} x_i \), where x_i \(\in \) Mi, for each i \(\in I \) and x_i ≠ 0 for at most a finite number of i \(\in I \) and f(x) = 0. Then f(x) = f(\(\sum_{i \in I} x_i \)) = \(\sum_{i \in I} f(x_i) = 0 \), where f(x_i) \(\in \) N_i. But N = \(\bigoplus_{i \in I} N_i \). Therefore f(x_i) = 0, \(\forall i \in I \). So x_i \(\in \) Kerf \(\cap M_i \), \(\forall i \in I \) and hence x = \(\sum_{i \in I} x_i \in \bigoplus_{i \in I} \text{Ker}(f \big|_{M_i}) \). Thus Kerf = \(\bigoplus_{i \in I} \text{Ker}(f \big|_{M_i}) \). Since M_i is N_i-y-closed Rickart module for each i \(\in I \), then Ker(\(f \big|_{M_i} \)) is a y-closed submodule of M_i. Therefore Kerf = \(\bigoplus_{i \in I} \text{Ker}(f \big|_{M_i}) \) is a y-closed submodule of M, by [3]. Thus M is N-y-closed Rickart module.

Let M be an R-module, then M is called a y-closed simple if M and 0 are the only y-closed submodules of M.

Example 3.3:
1- The module Z as Z-module is a y-closed simple module, where \(\frac{Z}{nZ} \cong Z_n, \ \forall n \geq 2 \) and Z_n is singular as Z-module. Thus nZ is not y-closed submodule of Z, \(\forall n \geq 2 \).
2- The module Z_6 as Z-module is not y-closed simple module, where \(\frac{Z}{(6)} \cong Z_6 \) and Z_6 as Z-module is singular. Hence the submodule \(\{0\} \) of Z_6 is not y-closed submodule.
Propositions 3.4: Let M be a y-closed simple R-module and let N be an R-module. If M is N-y-closed Rickart, then either
(1) \(\text{Hom}(M,N)=0 \)
or
(2) Every nonzero R-homomorphism from M to N is a monomorphism.
Proof. Assume that \(\text{Hom}(M,N) \neq 0 \) and let \(f:M \rightarrow N \) be a non-zero R-homomorphism. Since M is N-y-closed Rickart, then kerf is y-closed submodule of M. But M is y-closed simple, therefore kerf = \(\{0\} \) and f is a monomorphism.
Recall that an R-module M is called a Quasi-Dedekind R-module if every nonzero endomorphism of M is a monomorphism [4, Th(1.5), CH2].

Corollary 3.5: Let M be a y-closed simple R-module and let N be any R-module such that \(\text{Hom}(M,N) \neq 0 \). If M is N-y-closed Rickart module, then M is Quasi-Dedekind. In particular, if M is y-closed Rickart, then M is Quasi-Dedekind.

Proof. By Proposition (3.4), there is a monomorphism \(f:M \rightarrow N \). Assume that M is not Quasi-Dedekind R-module. So there exists a homomorphism \(g:M \rightarrow M \) such that \(\text{Ker}(g) \neq 0 \). Since f is a monomorphism, then \(\text{Ker}(f \circ g) = \text{Ker}(g) \neq 0 \). But M is N-y-closed Rickart module, therefore \(\text{Ker}(f \circ g) = \text{Ker}(f) \) is a y-closed submodule of M. So \(\text{Ker}(f) \), where \(\text{Ker}(f) \) is a y-closed simple. Thus \(g = 0 \), which is a contradiction. Thus M is a Quasi-Dedekind R-module.

Proposition 3.6: Let M be an R-module. If R is M-y-closed Rickart module, then every cyclic submodule of M is projective. In particular, if R is y-closed Rickart ring, then every principal ideal is projective, i.e., R is a principal projective ring.

Proof. Let M be an R-module such that R is M-y-closed Rickart module and let \(m \in M \). Now consider the following short exact sequence

\[
0 \rightarrow \text{ker}f \rightarrow R \rightarrow M \rightarrow 0
\]

where \(i \) is the inclusion homomorphism and g is a map defined by \(f(r) = rm, \forall r \in R \). It is clear that \(g \) is an epimorphism. Let \(i_2:R \rightarrow M \) be the inclusion map. Since R is M-y-closed Rickart module and \(i_2 \circ f:R \rightarrow M \), then \(\text{Ker}(i_2 \circ f) \) is a y-closed ideal of R. But \(i_2 \) is a monomorphism, therefore \(\text{Ker}(i_2 \circ f) = \text{ker}f \) is a y-closed ideal of R. Hence \(\frac{R}{\text{ker}f} \) is nonsingular. By the first isomorphism theorem, \(\frac{R}{\text{ker}f} \cong \text{Rm} \). So \(\text{Rm} \) is nonsingular, by [2,corollary(1.25),p35]. Thus \(\text{Rm} \) is projective.

Recall that an R-module M is called dualizable if \(\text{Hom}(M,R) \neq 0 \) [5].

Corollary 3.7: Let M be a y-closed simple dualizable R-module. If M is R-y-closed Rickart module, then M is isomorphic to an ideal of R. Hence, if R has nonzero nilpotent elements, then \(\text{End}(M) \) is commutative.

Proof. Since \(\text{Hom}(M,R) \neq 0 \), then by Proposition (3.4), M is isomorphic to an ideal I of R and hence \(\text{End}(M) \cong \text{End}(I) \). For the second part, since R has no nonzero elements and I is an ideal in R, then \(\text{End}(I) \) is commutative [6, proposition(2.1),CH1]. Thus \(\text{End}(M) \) is commutative.

Recall that an R-module M is called a multiplication module if for each submodule N of M there exists an ideal I of R such that \(N = IM \) [6].

Corollary 3.8: Let M be a y-closed simple projective R-module and R has no nonzero nilpotent element. If M is R-y-closed Rickart module and \(\text{Hom}(M,R) \neq 0 \), then M is a multiplication module.

Proof. By the same argument of the proof of Corollary (3.7), \(\text{End}(M) \) is a commutative and hence M is a multiplication [7].

Proposition 3.9: Let M be an R-module with the property that the intersection of any two y-closed submodules of M is a y-closed submodule of M. Then the following statements are equivalent:
(a) M is a y-closed Rickart module,
(b) The left annihilator in M of every left finitely generated ideal I = \(\langle f_1, \ldots, f_n \rangle \) of \(\text{End}_R(M) \) is a y-closed submodule of M.

Proof. (a) \(\Rightarrow \) (b) Let I = \(\langle f_1, \ldots, f_n \rangle \) be a left finitely generated ideal of the \(\text{End}_R(M) \). Since M is a y-closed Rickart module, then \(\text{ann}_M(f_i) \) is a y-closed submodule of M, \(\forall 1 \leq i \leq n \). Hence
\(\bigcap_{i=1}^{n} \mathrm{ann}_M(f_i) \) is a \(y \)-closed submodule of \(M \), by [3]. But \(\mathrm{ann}_M(1) = \mathrm{ann}_M(S_f + \cdots + S_{f_n}) = \bigcap_{i=1}^{n} \mathrm{ann}_M(S_f) \). Therefore \(\mathrm{ann}_M(1) \) is a \(y \)-closed submodule of \(M \).

(b) \(\Rightarrow \) (a) Clear.

Now, we give the following characterization.

Theorem 3.10. Let \(M_1 \) and \(M_2 \) be two \(R \)-modules. Then the following statements are equivalent.

1. \(M_1 \) is \(M_2 \)-\(y \)-closed Rickart module;
2. For every submodule \(N \) of \(M_2 \), every direct summand \(K \) of \(M_1 \) is \(N \)-\(y \)-closed Rickart;
3. For every direct summand \(K \) of \(M_1 \), every \(y \)-closed submodule \(L \) of \(M_2 \) and every \(f \in \mathrm{Hom}_R(M, L) \). The kernel of the restricted map \(f|_K \) is a \(y \)-closed submodule of \(K \).

Proof. (1) \(\Rightarrow \) (2) Let \(N \) be submodule of \(M_2 \). Let \(K \) be a direct summand of \(M_1 \) and let \(f : K \rightarrow N \) be an \(R \)-homomorphism. Then \(M_1 = K \oplus K_1 \), for some submodule \(K_1 \) of \(M_1 \). Let \(g : M_1 \rightarrow M_2 \) be a map defined by \(g(x) = \begin{cases} f(x), & \text{if } x \in K \\ 0, & \text{if } x \in K_1 \end{cases} \).

It is clear that \(g \) is an \(R \)-homomorphism. Since \(M_1 \) is \(M_2 \)-\(y \)-closed Rickart module, then \(\ker g \) is a \(y \)-closed submodule of \(M_1 \). But \(\ker g = \{ a + b \in M_1, \ g(a + b) = 0 , \ a \in K, b \in K_1 \} = \{ a + b \in M_1, \ f(a) = 0 , \ a \in K, b \in K_1 \} = \ker f \oplus K_1 \)

Therefore \(\ker f \oplus K_1 \) is a \(y \)-closed submodule of \(M_1 \) and hence \(\frac{M_1}{\ker f \oplus K_1} \) is nonsingular. But \(\frac{M_1}{\ker f \oplus K_1} \cong \frac{M}{K} \), so \(\ker f \) is a \(y \)-closed submodule of \(K \). Thus \(K \) is \(N \)-\(y \)-closed Rickart module.

(2) \(\Rightarrow \) (3) Let \(K \) be a direct summand of \(M_1 \) and \(L \) be a submodule of \(M_2 \). Let \(f : M_1 \rightarrow L \) be an \(R \)-homomorphism. Consider the map \(f|_K : K \rightarrow L \). Since \(K \) is \(L \)-\(y \)-closed Rickart module, then \(\ker f|_K \) is a \(y \)-closed submodule of \(K \).

(3) \(\Rightarrow \) (1) Let \(f : M_1 \rightarrow M_2 \) be an \(R \)-homomorphism. Take \(L = M_2 \) and \(K = M_1 \). Since \(f|_K : K \rightarrow L \) and \(K \) is \(L \)-\(y \)-closed Rickart module, therefore \(\ker f \) is a \(y \)-closed submodule of \(M_2 \). Thus \(M_1 \) is \(M_2 \)-\(y \)-closed Rickart module.

Remark 3.11. Let \(M \) and \(N \) be two \(R \)-modules and \(f : M \rightarrow N \) be an \(R \)-homomorphism. Let \(A_M = M \oplus 0 \), \(A_N = N \oplus 0 \), \(f : A_M \rightarrow A_N \) be a map defined by \(f(m,0) = (0,f(m)) \), for every \(m \in M \) and

\[T_f = \{ x + f(x), x \in A_M \}. \]

1. \(M \oplus N = A_M \oplus A_N \)
2. \(T_f \) is a \(y \)-closed submodule
3. \(\ker f = \ker f \oplus 0 \)
4. \(T_f \) is a submodule of \(M \oplus N \)
5. \(A_M + T_f = A_M \oplus \text{Im} f \)

In the following theorem by \(A_M, B_M, T_f, T_f \), we mean the same concepts in the previous above Remark.

Now, we give another characterization for the relative \(y \)-closed Rickart module.

Theorem 3.12. Let \(M \) and \(N \) be two \(R \)-modules. Then \(M \) is \(N \)-\(y \)-closed Rickart module if and only if for every homomorphism \(f : M \rightarrow N \), \(A_M \cap T_f \) is \(y \)-closed submodule of \(A_M \).

Proof. Let \(f : M \rightarrow N \) be an \(R \)-homomorphism. Since \(M \) is \(N \)-\(y \)-closed Rickart module, then \(\ker f \) is a \(y \)-closed submodule of \(M \) and hence \(\frac{M}{\ker f} \) is nonsingular. Then \(\frac{A_M}{\ker f} = \frac{M \oplus 0}{\ker f \oplus 0} \cong \frac{M}{\ker f} \) is nonsingular. So \(\ker f \) is a \(y \)-closed submodule of \(A_M \).

By the same argument of the proof of the [8,Theorem(2.2)], \(\ker f = A_M \cap T_f \).

For the converse, let \(f : M \rightarrow N \) be an \(R \)-homomorphism. Then by our assumption, \(A_M \cap T_f \) is a \(y \)-closed submodule of \(A_M \) since \(A_M \cap T_f = A_M \cap T_f \), \(\ker f \) is a \(y \)-closed submodule of \(A_M \) and hence \(\frac{A_M}{\ker f} \) is nonsingular. Therefore \(\frac{M \oplus 0}{\ker f \oplus 0} \cong \frac{M}{\ker f} \) is nonsingular. So \(\ker f \) is a \(y \)-closed submodule of \(M \). Thus \(M \) is \(N \)-\(y \)-closed Rickart module.
But, we have the following.

Theorem 3.13: Let M and N be two R-modules and let $f : M \to N$ be an R-homomorphism. Then M is N-y-closed Rickart module if and only if T_f is y-closed submodule of $A_M + T_f$.

Proof. Let $f : M \to N$ be an R-homomorphism. Now consider the following short exact sequences:

$$
\begin{align*}
0 & \longrightarrow A_M \cap T_f & i_1 & \longrightarrow A_M & \pi_1 & \longrightarrow A_M & \longrightarrow 0 \\
0 & \longrightarrow T_f & i_2 & \longrightarrow A_M + T_f & \pi_2 & \longrightarrow T_f & \longrightarrow 0
\end{align*}
$$

where i_1, i_2 are the inclusion homomorphisms and π_1, π_2 are the natural epimorphisms. Since M is N-y-closed Rickart, then $\ker f$ is y-closed submodule of M and hence $M/\ker f$ is nonsingular. So $A_M/\ker f = M \oplus 0 \cong M/\ker f$ is nonsingular. Thus $\ker f = A_M \cap T_f$ is a y-closed submodule of A_M. Hence $A_M/\ker f = A_M \cap T_f$ is nonsingular. By the second isomorphism theorem, $A_M/\ker f \cong A_M + T_f/\ker f$. Since T_f is y-closed submodule of $A_M + T_f$, then T_f is a y-closed submodule of $A_M + T_f$.

For the converse, let $f : M \to N$ be an R-homomorphism. Consider the following short exact sequences:

$$
\begin{align*}
0 & \longrightarrow A_M \cap T_f & i_1 & \longrightarrow A_M & \pi_1 & \longrightarrow A_M/\ker f & \longrightarrow 0 \\
0 & \longrightarrow T_f & i_2 & \longrightarrow A_M + T_f & \pi_2 & \longrightarrow T_f & \longrightarrow 0
\end{align*}
$$

where i_1, i_2 are the inclusion homomorphisms and π_1, π_2 are the natural epimorphisms. By the second isomorphism theorem, $A_M/\ker f \cong A_M + T_f/\ker f$. Since T_f is y-closed submodule of $A_M + T_f$, then $A_M/\ker f \cong A_M + T_f/\ker f$ is nonsingular, therefore $A_M/\ker f$ is nonsingular. Hence $A_M \cap T_f$ is a y-closed submodule of A_M. So $\ker f = \ker f \oplus 0$ is a y-closed submodule of $A_M = M \oplus 0$. Thus $\ker f$ is y-closed submodule of M.

References

1. Ali, M. and Th. Y. Ghawi. 2016. On Closed Rickart Modules. *Iraqi Journal of science*, 57(4B): 2746-2753.
2. Goodearl, K.R. 1976. *Ring Theory: Nonsingular Ring and Module*. Marcel Dekker, New York.
3. Sahib, L.H. 2012. Extending, Injectivity and Chain Condition On y-closed submodules, M.Sc. Thesis, University of Baghdad.
4. Th. Y.Ghawi. 2010. Some Generalizations of Quasi-Dedekind Modules, M.Sc. Thesis , Collage of Education Ibn AL-Haitham, University of Baghdad.
5. Zelmanowitz, J. 1971. Commutative Endomorphism Rings, *Can. J. Math*, XX111(1): 69-76.
6. AL-Aubaidy, W.K. 1993. The ring of endomorphism of multiplications modules, M.Sc. Thesis, University of Baghdad.
7. Naoum, A.G. 1991. A note on projective module and multiplications modules, *Beitrage Zur Algebra and Geometry*, 32: 27-32.
8. Rahman, M.Q. and Al-Bahrani, B.H. 2019. On Rickart modules, *Iraqi Journal of science*, 60(11): 2473-2477.