First metagenomic report of *Borrelia americana* and *Borrelia carolinensis* in Poland – a preliminary study

Justyna Dunaj1,A-F, Justyna Drewnowska2,C,E, Anna Moniuszko-Malinowska1,C-F, Izabela Swiecicka2,C,E, Sławomir Pancewicz2,A-C,E-F

1 Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Poland
2 Department of Microbiology, University of Białystok, Poland

INTRODUCTION

Ticks are ectoparasites that feed on the blood of vertebrates. During a meal, ticks can transmit several pathogenic microorganisms which makes them vectors of tick-borne diseases. About 90% of tick species are of veterinary or medical significance [1, 2].

Ixodes ricinus (*I. ricinus*) is a hard tick that dominates in Poland and in Europe. It is also present in north-west Africa, Middle East [3]. *I. ricinus* prefers wet environments such as broadleaf and mixed forests with a diverse spectrum of feeders, as well as bushes or grasslands with a diverse flora. *I. ricinus* appears more often in urban areas: parks, gardens, squares or wastelands [3]. It feeds on other mammals and birds, which makes them relevant to veterinary medicine [4]. Seasonal activity usually begins in April and ends in November; however, microclimate and recent climate change allow for tick activity throughout most of the year [5].

Dermacentor reticulatus (*D. reticulatus*) is the one of the most frequently detected ticks in Poland [6]. It is less well known than *I. ricinus* but its role in pathogen transmission is comparable [4]. Its behavior and adaptive capabilities facilitate its spread and subsequent transmission of tick-borne diseases [7]. In Poland, similar to the rest of Europe, expansion of *D. reticulatus*’ territory is evident in 2018 [8]. This process was linked to changes in its preferred habitats; previously, it favoured wet areas with a relatively high level of ground waters, swampy mixed forests, riverside valleys and meadows, but now it can be found with the same frequency in urban and suburban areas [5, 7]. *D. reticulatus* feeds on many different mammals, which facilitates its survival and expansion to new habitats. Humans might be incidental hosts of *D. reticulatus*, especially when other mammals are unavailable [5].

Microbiome (microbiota) is a group of diverse microorganisms present inside and outside another organism. They can be symbiotic, commensal or even pathogenic for the host [3, 9]. Tick microbiome includes different species of bacteria, viruses and protozoa; some of which are called tick-borne pathogens.

Francisella spp., *Rickettsia* spp., *Borrelia* spp., *Anaplasma* spp., *Ehrlichia* spp., *Babesia* spp., *Theileria* spp., *Bartonella* spp., *Coxiella* spp. and tick-borne encephalitis virus (TBEV) might be transmitted during tick feeding and cause single infection or co-infections [7, 9–12].
Next generation sequencing (NGS) replaces older molecular techniques, such as culture or cloning-based methods, and allows for identification of the whole microbiome present in ticks [12, 13]. Previously, there was only a limited number of microorganisms that could be identified in ticks [3]. New laboratory methods allow for simultaneous detection of multiple microorganisms in a single vector [9]. Microbiome of the tick's ecosystem is also crucial and it encompasses all microorganism in soil and water and in the vertebrates – potential feeders of ticks [3].

Endosymbionts such as Francisella spp., Rickettsia spp. and Coxiella spp. are part of tick microbiome [10, 14, 15]. Feeding increases tick microbial diversity [16] and it seems to be a self-propelling mechanism.

Tick microbiota exists in different parts of the arthropod, mainly in the entails, midgut, salivary glands and ovaries. The presence of the microorganism in salivary glands facilitates their transmission to the vertebrate organism [1, 12, 13]. Microbiota diversity also depends on the gender and stage of the tick [17–19]: the microbiome of I. scapularis appears more diverse in adult males than in the female nymph or larva.

There has been limited research into interactions between ticks and their microbiota, and connections between pathogenic and non-pathogenic microorganism coexisting in different tick species [1, 2, 13, 14]. Modern molecular techniques, e.g. NGS and other genomic resources, can therefore be the first step towards identification of the determinants affecting tick's vector competence [1, 20, 21].

MATERIALS AND METHOD

Localization. Ticks were collected in a diverse environmental – the area of Protected Landscape of the Bug and Nurzec Valley. This encompasses forests with a mosaic structure, Nurzec river, ponds, waterholes, grasslands, arable land and houses. It is an ideal habitat for many potential feeders for ticks, including humans. This area is rich in ecotones, which give rise to a wide range of microhabitats.

Ticks collection. Altogether 811 I. ricinus and D. reticulatus ticks were collected between May and October 2016, March and October 2017, and April and November 2018 (3 seasons of tick activity) using a flagging method (with a white flannel flag of 1 m²) in the afternoon on a dry day. Each tick was placed in a separate Eppendorf's tube and transported to the laboratory in cool conditions. Humidity, air temperature at 5–10 cm from ground level, height of vegetation, and day duration were measured at the site of collection. Air temperature and humidity were measured to 0.1 °C and 0.1%.

Material initial preparation and DNA extraction. Each tick was checked under a stereomicroscope (Olympus, Germany) using dichotomous keys and character matrices and identified to D. reticulatus or I. ricinus species (including its life stage and gender). To avoid environmental contaminations and cross-contaminations, pre-PCR and PCR actions were prepared with sterile equipment and rooms. Ticks were cleaned for a minute in 70% ethanol (99.8% ethanol and ultra-pure water), in ultra-pure water per 1 min and again in 70% ethanol for 30 sec to remove all environmental microorganism from the tick surface. Homogenization was achieved by grinding each tick with phosphate buffered saline PBS (without Ca²⁺ and Mg²⁺, pH=7.4)). Homogenates were centrifuged and 300 µl of supernatant was used for DNA extraction with spin columns kits (EURx, Poland), according to the manufacturer’s instructions. The quality and quantity of obtained DNA was checked with a WPA UV1101I spectrophotometer (WPA The Old Station, Linton, Cambridge, UK), to confirm the presence of a minimum of 10ng/µl of DNA. 100 µl of DNA extracts were stored at −20 °C until molecular analysis.

Molecular diagnostic – PCR for metagenomic (16S rRNA). DNA isolates were a matrix for molecular biology techniques, such as end-point PCR for 16S rRNA fragments of bacterium nucleic acid (size ca. 550 bp). Amplification was performed with Start-Warm HS-PCR Mix (A&A Biotechnology, Gdynia, Poland), ddWater (aseptic, free from nucleases water, treated with DEPC), and appropriate primer sequences (F: sens 5’ – TCG TCG GCA GGC TCA GAT GTG TAT AAG AGA CAG / CTC ACG GGN GGC WGC AG – 3’, R: antisens 5’ – GTG TCG TGG GCT CGG AGA TGT GTA TAA GAC ACA GGA CTA CHV GGG TAT CTA ATC C- 3’) selected from Kindworth et al. [22], as the most promising bacterial primer pair for NGS. PCR protocol (95 °C for 3 min, 25 x (95 °C for 30s, 55 °C for 30s, 72 °C for 30s), 72 °C for 5 min, 4 °C holding) was performed on Sensoquest LabCycler (SensoQuest, Germany). Separation of PCR products on 2% agarose gel (Sigma-Aldrich, Germany) stained with Midori Green (Nippon Genetics Europe GmbH, Germany) by electrophoresis at 90V for 45 minutes. The results of the PCR amplicons were visualized under UV light in Gel Logic System 100 (Kodak Imaging System, Inc., USA). Amplification products (550 bp size) with a strong signal, and the high quality was chosen for further metagenomic investigation by Illumina MySeq (22 samples).

NGS (Illumina MySeq) – libraries preparation and sequencing. Following the Illumina 16S Metagenomic Sequencing Library Preparation Guide (Illumina MySeq, Inc., San Diego, California, USA), DNA paired-end libraries were constructed with an insert size of ~500 bp using the primer pair sequences for the V3 and V4 variable regions of the 16S rRNA gene. The quantity and quality of all libraries were evaluated by capillary electrophoresis on a 2200 Agilent TapeStation Instrument with Genomic DNA ScreenTape Assay (Agilent Technologies Inc., St Clara, CA, USA). Samples were pooled in equal proportions and sequenced for 600 cycles (approx. 65-hour run) using a MiSeq Platform (Macrogen, Seoul, Korea) with v3 reagents with 2 x 300 bp paired-end reads. 10% of PhiX viral DNA was added to the sample pool as an internal control for a low diversity library. End-paired reads recorded in FASTQ formats were automatically demultiplexed, and Illumina adapters were removed by an Macrogen's in-house pipeline.

Bioinformatic analysis. Obtained on Illumina MySeq 16S rRNA sequences were quality-filtered, clustered at 97% similarity of sequences, and analyzed by the Quantitative Insights into Microbial Ecology 2 (QIME2) (Swiei and Kwan, 2017) software package, version 3.5.3. Filtration of sequences was based on length (200 – 500 bp) and multiple quality metrics. No sequences with primer mismatches were accepted. Also removed were reads with poor quality of
assembly, and misaligned, non-specific (such as eukaryotic) and chimeric signals.

RESULTS

For all 22 ticks (16 females and 6 males), high quality sequences for bacterial 16S rRNA gene amplicons using an Illumina MiSeq were obtained in very high numbers from each sample (range 15,870 – 139,436; minimum read length 200 bp) and uploaded into QIIME 2 (Quantitative Insights Into Microbial Ecology 2) software. The output reads number has a crucial role for appropriate evaluation of microbiome diversity – large number of this reads is linear with metagenome (taxonome) coverage. In this study, the number of output reads were mostly higher than 100,000 – mean 113,389.36, with standard deviation 47,741.3, what indicated very high alpha diversity refraction plots.

In 22 ticks (3 I. ricinus, 19 D. reticulatus), NGS confirmed the presence of 38 identified microorganisms (including 20 genera) (Tab. 1; Fig. 1), pathogenic as well as potentially non-pathogenic to humans. The most common pathogens, present in almost every tick were Francisella hispaniensis and Francisella novicida (21 and 20 ticks, respectively). Sphingomonas oligophenolica (non-pathogenic for immunocompetent individuals) was found in 17 ticks; and Sphingomonas dokdonensis in 2 and Sphingomonas echinoides in one. Within Rickettsiia spp., Rickettsiia aeshlimanii dominated and was detected in 12 ticks; Rickettsiia tamurae was detected in 4, Rickettsiia marmorini in 2, Rickettsiia typhi in 2 and Rickettsiia monacensis in one tick. In 2, I. ricinus ticks Borrelia americana and Borrelia carolinensis DNA was identified. In one, D. reticulatus female Anaplasma phagocytophilum and Anaplasma centrale were found. Pseudomonas lutea was present in 9, and Pseudomonas moravensis in 8 ticks, although other Pseudomonas genospecies were also detected. Several genospecies from Methylobacterium, Rhodococcus and Pedobacter species were also observed in the analyzed ticks.

There exist some differences between bacterial community composition despite gender. Rickettsiia spp., Methylobacterium spp., Thermomonas spp., Calotrix spp., Rodococcus spp. and Luteibacter spp. dominated in females, while Pseudomonas spp., Chitinophaga spp. and Pedobacter spp. dominated in tick males.

Besides previously known species, NGS analysis revealed also new unclassified bacteria species: in one tick they amounted to 83.05% of species and in another – 6.64%; on average, 19% +/-22.3% of microorganism in a single tick were unclassified (median 10.45%).

DISCUSSION

Molecular analysis of Polish D. reticulatus and I. ricinus microbiome revealed the presence of various pathogenic microorganisms of proven medical significance, especially for the young, elderly and non-immunocompetent [23, 24]. Over the years, 40 pathogenic microorganisms have been isolated from D. reticulatus. Czech researchers cultured an additional 38 bacterial strains of unknown medical and veterinary significance [25]. Sui et al. [26] detected 70 different bacteria species in I. scapularis using NGS. Metagenomic analysis by the authors of the current study identified 38 microorganisms (from 20 species) D. reticulatus and I. ricinus. In contrast, metagenomic identification of 50 male and 50 female I. scapularis conducted by Zhang et al. revealed the presence of 373 microorganisms in unfed and 289 in fed ticks [12].

The mechanism of Dermacentor and Ixodes feeding has a significant impact on pathogen transfer. These ticks’ feeding is long-lasting and results in a large intake of vertebrate’s blood [18, 26, 27]. Endosymbionts are also transmitted during tick meal [14]. At times, these endosymbionts can emerge as vertebrate pathogens [16].

Borrelia burgdorferi sensu lato is the most common tick-borne pathogen. Its several genospecies cause Lyme borreliosis (Lyme Disease – LD). In Poland, as in the whole of Europe, B. garinii, B. afzelii and B. burgdorferi sensu stricto dominate in ticks. It is surprising that B. afzelii, B. garinii and B. burgdorferi s.s., species commonly present in Polish ticks, were not detected in the current study. However, it should be emphasized that in Poland the prevalence of B. burgdorferi sensu lato in ticks fluctuates from a few to several dozen percent, depending on the region of the country. It is supposed that the reason why no B. afzelii, B. garinii and B. burgdorferi s.s. were detected was the sample size. Moreover, the aim of the current study was to analyze microbiome of ticks in Poland, which was achieved. In 2 of 3 I. ricinus analysed, Borrelia americana and Borrelia carolinensis were identified. This is a novel finding that confirms the presence of these species in Polish ticks. Recently, Michalik et al., found B. carolinensis in Ixodes ticks (Acari: Ixodidae) associated with cave-dwelling bats from Poland and Romania [28], which adds new information on the presence of Borrelia spp. in Poland as a new species, previously not seen, but which are being detected more often. Borrelia americana, which is very closely related to B. carolinensis, was detected for the first time by Rudenko et al. in southern USA [29]. It is well known that D. reticulatus is a vector of B. burgdorferi s.l. However, it is not a dominant pathogen, what can be explained by the observation that this tick inhibits Borrelia spirochetes; growth in vitro inactivates this bacterium via activation of its own immune system [25, 30]. This may explain the absence of Borrelia in D. reticulatus ticks analyzed in the current study. According to Mierzejewska et al. [30], B. afzelii was detectable in only 0.09% of ticks. In the current study, Borrelia DNA was observed in 9.1% of ticks. Gofon et al. [20] performed a metagenomic analysis of I. ricinus and detected B. burgdorferi ss, B. afzelii with 100% homology, and B. miyamotoi and B. lonestari with 99.3% and 97.7% homology, respectively. In Australia, Panetta et al. [21] found new Borrelia genospecies Candidatus Borrelia tachyglossi in 12% of studied ticks and other types of Borrelia from sensu lato complex.

There might be a close relationship between A. phagocytophilum and other microbiota present in ticks [21]. Enterococcus spp. and Rickettsia spp. decreases A. phagocytophilum infection rate, while Pseudomonas spp. seemed to increase it. In the presented study, one of the D. reticulatus in which A. phagocytophilum and A. centrale were detected, Pseudomonas and Rickettsia were also detected.

In the current study, comparable Rickettsiia spp. prevalence to other Polish studies was observed. In the Area ofProtected Landscape of the Bug and Nurzec Valley, 5 different Rickettsia genospecies (Rickettsia aeshlimanii, Rickettsia...
Table 1. Microbiome of Polish ticks stated with metagenomic study

	ixodes ricinus	Demacentor reticulatus																				
T654	T649	T610	T595	T594	T544	T543	T542	T468	T405	T400	T390	T389	T297	T292	T244	T177	T116	T115	T114	T19		
Sphingomonas oligophenolica	1	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	17		
Sphingomonas doddonensis	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2
Sphingomonas echinoides	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Francisella novicida	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	20	
Francisella hispaniensis	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	21	
Thermomonos doddonensis	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	
Methylobacterium goessengensis	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	
Methylobacterium mesophilicum	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Methylobacterium orginophilum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Roseomonas massiliensis	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Calothrix parietina	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	
Rickettsia aesthliani	0	1	0	0	0	1	1	0	1	1	0	0	0	1	1	0	1	0	1	1	12	
Rickettsia monacensis	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Rickettsia marmoni	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	
Rickettsia tamurae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	4
Rickettsia typhi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	
Borrelia americana	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
Borrelia carolinensis	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
Rhodococcus joshi	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Rhodococcus yunnanensis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	
Peudomonas oryzihabits	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Peudomonas marovasini	0	0	0	1	1	0	0	0	1	0	0	0	1	1	1	0	0	1	0	1	0	8
Peudomonas lutea	0	0	0	1	1	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	9	
Peudomonas lundensis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	
Peudomonas azotofermans	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	
Luteibacter rhizovicinus	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	
Nocardioles islandes	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
Chitinophaga solis	0	0	0	0	0	0	1	1	1	0	1	0	0	0	0	1	0	0	0	0	6	
Segetibacter aerophilus	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
Pedobacter panaciterrae	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2	
Pedobacter keyangangensis	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0	15	
Pedobacter dajeonensis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	
Acidisoma tudrae	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Williamsia marinens	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	
Mycobacterium isoniacini	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
Anaplasma phagocytophilum	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	
Anaplasma centrals	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	
Chryseobacterium solis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Justyna Dunaj, Justyna Drewnowska, Anna Moniuszko-Malinowska, Izabela Świeciecka, Sławomir Pancewicz. First metagenomic report of Borrelia americana…

tamura, Rickettsia typhi, Rickettsia marmionii and Rickettsia monacensis) were found in 54.55% of examined ticks. Similar results were obtained in the Lublin Province in eastern Poland by Wójcik-Fatla et al. [31], who detected Rickettsia spp. DNA in 53% of ticks and in north-eastern Poland by Stańczak [32] where 41% of D. reticulatus were carriers of Rickettsia species. This data was confirmed by Chmielewski et al. [32] in the Białowieża Primeval Forest National Park, where 57% of ticks were infected with Rickettsia raoulti, and by Mierzejewska et al. [30] where 44.1% of D. reticulatus were infected with Rickettsia raoulti.

Rickettsia spp. is present in other European countries. In Germany, it varies depending on the region from 30% – 67%; in Slovakia – 26% and in Belarus – 22% ticks were infected with this pathogen. The lowest prevalence was in an isolated area of the UK where only 5% of ticks carried Rickettsia spp. DNA [30, 34]. TIBOLA (tick-borne lymphadenopathy) syndrome in people bitten by Dermacentor reticulatus (1 male, 5 females) infected with R. raoulti is well known. Thapa et al. [27] confirmed Rickettsia spp. dominance in the metagenomic analysis of I. scapularis: the majority were the endosymbiotic Rickettsia buchneri which was absent in the current research.

Ponnusamy et al. [35] confirmed the domination (35% of the bacterial population) and diversity of Rickettsiases in Amblyomma americanum. The presented study shows a great diversity of Rickettsia species (5 different genospecies). In the USA, new genospecies have been discovered in the Rickettsiaceae family: Candidatus Rickettsia amblyomnii and Candidatus Midichloria mitochondrii.

The very high alpha diversity plots obtained by the authors of the current study in their research (mean ca. 113,000 reads) indicates a very high quality of microbiome diversity coverage. In comparison to other studies on ticks microbiome, this indicates the good recognition of genospecies presented in ticks in north-eastern Poland [36].

Almost all ticks in this study contained a high number of F. hispaniensis sequences reads, which is of medical relevance. Other authors have emphasized that Dermacentor spp. is associated mainly with Francisella-like endosymbionts,
but their pathogenic potential needs to be taken into consideration. Vayssier-Taussat et al. coined the term ‘pathobiome’ for all pathogenic and possible pathogenic microorganism in ticks [2].

Gall et al. [18] emphasized the importance of tick microbiome fingerprints (similar to human microbiome) and confirmed comparable microbiome profiles in ticks collected from the environment (IN THE WILD), and those from the laboratory generation in the same population and from the same area. Information on tick microbiome from specific localities might have an important epidemiological meaning, and could be used for the veterinary and medical prevention of tick-borne diseases.

REFERENCES

1. De la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017; 7: 114.

2. Vayssier-Taussat M, Kazimirova M, Hubalek Z, Hornok S, Farkas R, Cosson JP, et al. Emerging horizon for tick-borne pathogens: from the “one pathogen-one disease” vision to the pathobiom paradigm. Future Microbiol. 2015; 10(12): 2033–2043.

3. Karbowiak G. The occurrence of the Dermacentor reticulatus tick – its expansion to new areas and possible causes. Ann Parasitol. 2014; 60(1): 37–47.

4. Gerhart JG, Dutcher HA, Brenner AE, Moses AS, Grubhoffer L, Rickettsia raoultii by male Dermacentor marginatus and Dermacentor reticulatus ticks to humans. Diagn Microbiol Infect Dis. 2013; 76: 387–389.

5. Zhang XC, Yang ZN, Lu B, Ma XF, Zhang CX, Xu HJ. The composition of tick microbiome gained through next-generation sequencing. Parasit Vectors. 2018; 11: 12.

6. Buczek A, Bartosik K, Zajać Z, Stanko M. Host-feeding behavior of Dermacentor reticulatus and Dermacentor marginatus in mono-specific and inter-specific infestations. Parasit Vectors. 2015; 8:470–478.

7. Karbowiak G. The occurrence of the Dermacentor reticulatus tick – its expansion to new areas and possible causes. Ann Parasitol. 2014; 60(1): 37–47.

Table 2. Characteristic of environmental conditions of ticks collection

Tick Lab No.	Data of collection	Tick species	Tick Study/Gender	Area	Tick activity	T [°C]	H [%]	Day length [min]	Flora type
T654	31.05.2018	IR	F	III/V/VI	alive	22.9	70	989	
T649	31.05.2018	IR	F	III/V/VI	alive	22.5	62.1	989	
T610	01.05.2018	IR	F	III/V/VI	alive	20	56.1	898	
T595	29.04.2018	DR	F	VII/VII/IIX	alive	20.7	71.1	891	
T594	29.04.2018	DR	M	VII/VII/IIX	alive	20.7	71.1	891	
T544	22.08.2018	DR	F	III/VII	alive	17.6	49	864	
T543	22.08.2018	DR	M	III/VII	alive	17.6	49	864	
T542	22.04.2018	DR	M	III/VII	alive	18.5	35.3	864	
T468	01.10.2017	DR	F	III/VII	alive	14.3	96	696	
T400	25.08.2017	DR	F	III/VII	alive	26	51.6	846	
T404	25.08.2017	DR	F	III/VII	alive	25.7	52.2	846	
T400	14.08.2017	DR	F	III/VII	alive	19.8	68	888	
T390	17.07.2017	DR	M	II/III	alive	21.3	95	977	
T389	21.06.2017	DR	F	II/III	alive	20.1	61.1	1012	
T297	04.04.2017	DR	M	III/VII	alive	33.6	41.5	792	
T292	04.04.2017	DR	F	III/VII	alive	33.6	41.5	792	
T244	31.03.2017	DR	F	II/III	alive	15.2	73.1	776	
T117	02.09.2016	DR	F	II/III	alive	19.4	78.6	813	
T116	02.09.2016	DR	F	II/III	alive	20.6	71.3	813	
T115	02.09.2016	DR	M	III/V/VI	alive	21.2	73.1	813	
T114	02.09.2016	DR	F	III/VII	alive	20.1	70	813	
T19	09.06.2016	DR	F	III/VII	alive	15.7	70.6	1005	
ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Pathog. 2015; 11:e1004892.

16. Narasimhan S, Filzig T. Tick microbiome: the force within. Trends in Parasitology.2015; 31(7):313–323.

17. Swei A, Kwan JY. Tick microbiome and pathogen acquisition altered by host blood meal. ISME J. 2017; 11: 813–816.

18. Gall CA, Scoles GA, Magori K, Mason KL, Brayton KA. Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks. Microbiome. 2017; 5: 133.

19. Van Treuren W, Ponnusamy L, Brinkerhoff RJ, Gonzalez A, Parobek CM, Juliano JJ, et al. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl Environ Microbiol. 2015; 81(18): 6200–6209.

20. Gofton AW, Oskam CL, Lo N, Beninati T, Wei H, McCari V, et al. Inhibition of the endosymbiont "Candidatus Midchloria mitochondrii" 16S rRNA gene profiling reveals potential pathogens in Ixodes ticks from Australia. Parasite Vectors. 2015; 8:345.

21. Panetta JL, Sima R, Calvani NE, Hajdušek O, Chandra S, Panuccio J, Šlapeta J. Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia. Parasite Vectors. 2017; 10:616.

22. Kindworth A, PruesseE, Schweer T, Peplies J, Quast C, Horn M, Glöcker O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation-sequencing- based diversity studies. Nucleic Acid Res. 2013; 41(1): p11.

23. Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci U.S.A. 2017; 114: E781–E790.

24. Földvári G, Široký P, Szekeres S, Nojdan M, Gao L, Grubhoffer L. Borrelia americana sp. nov. Delineation of a new species of Borrelia burgdorferi sensu lato complex. J Clin Microbiol. 2009; 47:3875–3880.

25. Rudenko N, Lindsell A, Linsley P, Béjar C, Svec P, Svec A, et al. Diversity of Rickettsiales in the microbiome of the louse tick, Haemaphysalis concinna ticks, vectors of vertebrate pathogens. Folia Microbiologica (Praga). 2009; 54: 419–428.

26. Sui S, Yang Y, Sun Y, Wang X, Wang G, Shan G, et al. On the core bacterial flora of Ixodes persulcatus (Taiga tick). PLOS One. 2017; 12(7): e0180150.

27. Thapa S, Zhang Y, Allen MS. Effects of temperature on bacterial microbiome composition in Ixodes scapularis ticks. Microbiology Open. 2018; e719.

28. Michalik J, Wodecka B, Liberska J, Dabert M, Postawa T, Piksa K, Stańczak J. Diversity of Borrelia burgdorferi sensu lato species in Ixodes ticks (Acari: Ixodidae) associated with cave-dwelling bats from Poland and Romania. Ticks Tick Borne Dis. 2020; 11(1):101300.

29. Wójcik-Fatla A, Cisak E, Zając V, Sroka J, Sawczyn A, Dutkiewicz J. Study on tick-borne rickettsiae in eastern Poland and prevalence in Dermacentor reticulatus (Acari: Amblyomminidae). Ann Agric Environ Med. 2013; 20: 276–279.

30. Stańczak J. Detection of spotted fever group (SFG) rickettsiae in Dermacentor reticulatus (Acari: Ixodidae) in Poland. Int J Med Microbiol. 2006; 296 Suppl. 40: 144–148.

31. Chmielewski T, Podsiadły E, Karbowiak G, Tylewska-Wierzbanowska S. Rickettsia spp. in ticks, Poland. Emerg Infect Dis. 2009; 15: 486–488.

32. Tijsse-Klasen E, Hansford KM, Jahfari S, Hedges S, Phipps P, Sroka J, Medlock JM. Spotted fever group rickettsiae in Dermacentor reticulatus and Haemaphysalis punctata ticks in the UK. Parasit Vectors. 2013;19(6): 212.

33. Ponnusamy L, Gonzalez A, Van Treuren W, Weiss S, Parobek CM, Juliano JJ, et al. Diversity of Rickettsiales in the microbiome of the louse tick, Haemaphysalis leporispalustris ticks. J Med Microbiol. 2013; 62: 249–258.