Classic Hodgkin lymphoma in pelvis
A case report highlights diagnosis and treatment challenges

Fan Tang, MD, PhD,b, Li Min, MD, PhD,b, Yunxia Ye, MD,c, Bo Tang, MD, PhD,d, Yong Zhou, MD, PhD,a, Wenli Zhang, MD, PhDb, Chongqi Tu, MD,a,*

Abstract
Rationale: Classic Hodgkin lymphoma with pelvic involvement is a rare entity. Diagnosis and treatment for such an uncommon disease are challenging. Here we report a special case of classic Hodgkin lymphoma in pelvis.

Patient Concerns: A 20-year-old woman was admitted to our department due to left hip symptoms. The patient reported a history of drenching night sweats, low-grade fever, pruritic rash on the body, and an almost 15% weight loss during the previous 3 months.

Diagnoses: Imaging studies revealed osteolytic destruction of the left hemi-pelvic with a huge soft-tissue mass. Open biopsy established the pathological diagnosis of classic Hodgkin lymphoma.

Interventions: Considering the B symptom, bulky disease, and high risk of pathological fracture of the patient, we performed limb-salvage surgery and 6 cycles ABVD chemotherapy with 2 cycles before surgery.

Outcomes: Up to now, at the 3-year follow-up, there is no sign of disease relapse and metastasis. Besides, her limb function recovered well.

Lessons: Based on this case and literature we reviewed, diagnoses for primary bone Hodgkin lymphoma should be cautious. For the treatment, chemotherapy was the main treatment option. Classic Hodgkin lymphoma patients seldom received tumor resection surgery, but for the special bone classic Hodgkin lymphoma individual with a huge tumor volume and high risk of pathological fracture in our study, limb-salvage surgery based on ABVD chemotherapy provided a satisfying clinical outcome.

Abbreviations: CHL = classic Hodgkin lymphoma, CT = computed tomography, HL = Hodgkin lymphoma, HRS = Hodgkin and Reed-Sternberg, IPS = International Prognostic Score, ISOLS = International Society of Limb Salvage, iv = intravenous injection, MRI = magnetic resonance imaging, NCCN = National Comprehensive Cancer Network, NHL = non-Hodgkin lymphoma, PD-1 = programmed death 1, WBC = white blood cell.

Keywords: ABVD chemotherapy, classic Hodgkin lymphoma, Hodgkin disease, limb-salvage surgery, pelvis

1. Introduction
Hodgkin lymphoma (HL) is a kind of lymphatic cancer that is characterized by the presence of Hodgkin and Reed-Sternberg (HRS) cells. Classic Hodgkin lymphoma (CHL) is one major type of HL and accounts for 95% of all HL cases. In late stage HL, bone involvement has been found in 10% to 20% of cases with <2% of cases showing skeletal lesions as the initial presentation. Primary bone lymphoma is referred to non-Hodgkin lymphoma (NHL) as WHO defined in 2013. However, primary bone HL actually exists and only very limited literatures reported no more than 30 cases of primary bone HL. Discriminating solitary bone lesion in HL patients from “primary” to “secondary” is challenging as the diagnosis of primary bone HL should be made based on strict histological and clinical manifestation. Treatment strategies of such a rare entity depend on disease stage and prognostic factors. Primary solitary bone HL is considered as an early stage disease, but secondary bone involvement indicates that the disease has developed into an advanced stage. So, it is cautious to make a primary Hodgkin disease diagnosis when HL presents as a solitary bone lesion. Here we presented a CHL case with the subtype of nodular necrosis that initially presented as pelvic involvement. After the limb-salvage surgery and 6 cycles ABVD (doxorubicin,
bleomycin, vinblastine, and dacarbazine) chemotherapy, the patient got a satisfying clinical outcome to date. Meanwhile, we briefly reviewed the recent literatures about bony HL and discussed the diagnosis and current treatment options for such a rare case.

2. Case report

The patient provided informed consent for the publication of her clinical and radiological data. This study was approved by medical ethical committee of West China Hospital, Sichuan University, Chengdu, China.

2.1. General information

A 20-year-old woman was admitted to our department with a chief complaint of 2 months of left hip pain. The patient reported a history of drenching night sweats, low-grade fever, pruritic rash on the body, and an almost 15% weight loss during the previous 3 months. Also, she found an enlarging mass in her left hip during the latest month. She did not report any previous surgical history. Physical examination suggested the compression of sciatic nerve. Standard blood test after admission showed that the WBC (white blood cell) count was 21.23 × 10⁹ L⁻¹ (normal 3.5–9.5 × 10⁹ L⁻¹) with the neutrophils rate of 84.3% (normal 40–75%) and lymphocyte rate of 11.2% (normal 20–50%), Hgb was 104g/L (normal 115–150 g/L), platelet count was 491 × 10⁹ L⁻¹ (normal 125–350 × 10⁹ L⁻¹). Epstein-Barr virus test was negative. Bone marrow aspiration from other hospital revealed a hyperactive hyperplasia of karyocyte. Osteolytic erosion in the left hemipelvis (zone I-II-IV, defined by Enneking and Dunham)[10] was identified on pelvic x-ray. Three-dimensional computed tomography (CT) imaging showed a severe lytic lesion spreading from left ilium and acetabulum to sacroiliac joint and finally affecting part of the left sacrum (Fig. 1). Surprisingly, a huge soft-tissue mass almost 25.0 × 16.0 × 9.0 cm in size was found. Magnetic resonance imaging (MRI) showed the mass had a slightly higher signal on T1-weighted spin-echo images compared with neighboring muscle groups and had a relatively long signal on T2-weighted spin-echo images in the left pelvis, zone I-II-IV (Fig. 2).

To ascertain the histopathology of this lesion and give the guidance for formulating a therapeutic plan, an open biopsy was performed instead of core needle biopsy. The histopathology was consistent with a diagnosis of CHL. Enhanced CT of the neck, chest, and abdomen showed no evidence of involvement of the cervical, mediastinal, or retroperitoneal lymph nodes. Prognostic factors according to the adapted International Prognostic Score (IPS) were determined (Table 1). After discussing with hematologists and considering the patient’s general condition, relative high IPS, high risk of pathologic fracture, and sciatic nerve compression symptoms, a treatment protocol of limb-salvage surgery using en bloc resection followed by modular hemipelvic prosthesis reconstruction and 6 cycles ABVD course chemotherapy (doxorubicin, 25 mg/m², intravenous injection [iv] Day 1 and 15; bleomycin, 10,000 units/m², iv Day 1 and 15; vinblastine, 6 mg/m², iv Day 1 and 15; dacarbazine, 375 mg/m², iv Day 1 and 15) with 2 cycles before surgery was performed for this patient.

2.2. Surgical procedure

After 2 cycles ABVD chemotherapy in department of hematology, the limb-salvage surgery was performed until the patient got a relatively good condition. A standard iliofemoral approach was used, according to the classification of pelvic resections by Enneking and Dunham.[10] A lower abdominal aortic balloon occlusion was used during the resection procedure. Type I-II-IV left pelvic resection and total hip arthroplasty were performed to achieve clear margins. During the operation, a soft-tissue mass with a maximum volume of 26.0 × 16.5 × 9.0 cm was visualized. It was bounded by the rear of the sacrum, and extended down to

Figure 1. CT scans of the patient. (A) Showing left pelvic acetabular involvement with a huge soft-tissue mass. (B) Showing sacroiliac joint and left sacrum was destructed. (C) Showing the lytic lesion spreading form left ilium to sacroiliac joint. (D) Showing severe lytic destruction lead to a high risk of pathologic fracture.
the femoral head, with involvement of lumbar muscle, the gluteus medius, and part of the S1 nerve root. During the procedure, a modular hemipelvic replacement system (Chun Li Zheng Da Co. Beijing, China) was implanted to reconstruct the left hemipelvis (Fig. 3). Three enlarged lymph nodes in the left inguinal region were dissected for biopsy. Finally, the muscles and soft tissues were sutured into the femoral prosthesis stem and acetabulum with 2–0 nonabsorbable sutures (Ethibond® Excel, Polyester Suture, Green Braided, Johnson & Johnson, New Jersey) to complete the in situ restoration and functional reconstruction. The surgery lasted 4.5 hours and blood loss was approximately 1500 mL for the entire procedure.

2.3. Postoperative management

The final pathological diagnosis was CHL with a subtype of nodular sclerosis (Fig. 4). The lymph nodes showed no cancer involvement but were confirmed to have reactive hyperplasia. The patient recovered well and was discharged after 10 days with no postoperative complications. The patient was restricted to bed rest for the first 2 weeks after surgery but was to exercise with quadriceps relaxation and contraction before getting out of bed. She started to stand with a lumbar-pelvic-hip brace 2 weeks after surgery. Four weeks after surgery, she could walk with 2 crutches.

The patient commenced another 4 cycles of chemotherapy with ABVD 1 month after surgery. Patient follow-up visits occurred frequently over the first year, at 1, 2, 3, 6, 9, and 12 months after discharge, and every 6 months thereafter. Imaging studies were focused on tumor recurrence and the stability of the prosthetic implant. By 6 months after surgery, the patient was capable of all activities of daily living needed for self-care. Up to now, 3 years after the treatment, there is no sign of cancer recurrence and metastasis. The patient had largely recuperated from the surgery with an ISOLS (International Society of Limb Salvage) score of 23.0. The prosthetic positioning is good, with no loosening, fracture, or dislocation (Fig. 5).

3. Discussion

HL typically involves the lymphatic systems at 1 or more sites. Bony involvement in HL occurs through hematogenous spread or direct spread from the contiguous involved lymph node. WHO 2013 classification of bone tumor defined the primary NHL of bone as a neoplasm composed of malignant lymphoid cells, producing 1 or more masses within bone, without any supra-

Table 1
IPS of this patient.
IPS

Age >45 y
Male
N stage
Albumin <4 g/dL
Hemoglobin <10.5 g/dL
Increased WBC (WBC count >15,000 mm⁻³)
Lymphopenia (lymphocyte count <8% of white blood cell count or lymphocyte count <600 mm⁻³)
Total

IPS = International Prognostic Score, WBC = white blood cells.

Figure 3. Patient’s x-rays. (A) Preoperative plain film showing left hemipelvis: zone I-II-IV involvement. (B) Postoperative plain film showing that the prosthetic positioning is good, with no loosening, fracture, or dislocation.
After concluding the clinical and pathological characters of our case, the evidence supporting the diagnosis of primary bone HL in our study are as follows: Bone involvement was the initial symptom and the CT showed lesion obviously spreading from ilium to sacral through sacroiliac joint, supporting the lesion coming from ilium. The typical necrosis nodular from the HE stain and the HRS cells in tumor demonstrated a typical immunohistochemical profile with CD30 and CD15 positive. Chest, neck, and abdomen radiological studies showed no involvement of lymph nodes in mediastinum, thoracic, and abdominal cavity. The lesion was predominant in bone with associated soft-tissue mass, without local positive adjacent lymph nodes, as the 3 enlarge lymph nodes in inguinal region were pathologically confirmed as reactive hyperplasia. No other extranodal lesions presented. But Dawson et al showed that primary extranodal HL should be diagnosed based on normal limits of the complete blood count and white cell differentiation. This was supported by Yang et al who presented a primary bone HL with a normal level of the complete blood count.

Figure 4. Biopsy images. (A) HE × 50 showing sclerosis nodules divided by fibrous bundles. (B) HE × 200 showing R-S cells presenting with huge volume body, round or oval-shaped, thick nuclear membrane, and obvious nucleoli. (C) Immunohistochemical stains showing positivity for CD30. (D) Immunohistochemical stains showing positivity for CD15.

Figure 5. Patient 3 y after surgery. (A) Postoperative plain film showing equal limb length with no loosening, fracture, or dislocation. (B, C) Showing the patient had a relatively satisfying limb function.
Case	Year	Age/gender	Symptoms	B symptom	Bone site(s)	Pathological fracture/nerve comprehension	Treatment	Status	References	
1	1927	42/M	Right flank, abdomen, and shoulders pain	–	T4-T8	–	Radiation	Alive for 10 mo, then LFU	[5]	
2	1936	39/F	Antecubital mass	–	Left humerus	–	Intralesional surgery	DOD after 12 mo	[16]	
3	1943	5/F	Left shoulder pain	–	Left scapula	–	Radiation	Disease free	[17]	
2	1958	53/M	Left shoulder pain	–	Left humerus, Left ilium	–	Radiation	DOD at 4 mo	[5]	
4	1960	73/F	Right hip pain	–	Right femur	–	Radiation	Multiple recurrences	[6]	
5	1968	34/M	Left distal arm pain	N	Left humerus	Y	Rush rod stabilization, Radiotherapy	10-y DFS, then LFU	[18]	
6	1979	25/W	Left shoulder pain	Y	Distal ulna	N	Chemotherapy, Radiotherapy	2-y PFS	[19]	
7	1982	12/M	Knee pain	Y	Distal ulna	N	Chemotherapy, Radiotherapy	Symptomatic relief and improvement of disease	[20]	
8	1982	18/M	Right wrist pain	Y	T11-L1	Y	Radiotherapy, Chemotherapy, Laparotomy, splenectomy	In treatment	Decrease disease	[20]
9	1982	20/M	Back pain	Y	T8, T10, T3	Y	MOPP	In treatment	Symptom relief	[20]
10	1989	61/M	Low back pain	–	Thoracic spine	–	Poly-chemotherapy	Complete remission	[20]	
11	1991	19/F	Left thigh pain	Y	Left femur	N	Chemotherapy, Radiotherapy	2-y PFS	[21]	
12	1995	61/F	Left thoracolumbar pain	–	T11	–	Resection	22-mo PFS	[22]	
13	1995	21/F	Microcytic hypochromic anemia left shoulder pain	N	Left clavicle, Left sacroiliac joint	N	8 Cycles MOPP/ABV	3-y PFS	[23]	
14	2001	54/F	Back pain and progressive lower-extremity weakness	Y	T4	Y	Oral dexamethasone, Radiotherapy	Symptoms release	15-mo PFS	[24]
15	2005	74/M	Subcostal and back pain	N	T9, T10, L2, L5	Y	Surgery, BEACOPP, Radiotherapy, Curettage	–	–	[25]
16	2005	21/M	Left hip and left proximal tibia pain	–	Left proximal femur, Left proximal tibia	N	–	4-y PFS	[26]	
17	2006	7/M	Painless, firm 3-cm mass overlying his sternum	N	L1, Sternum, Left 3 joint Right acetabulum	Y	Chemotherapy	In treatment	Dramatic decrease in tumor at 2 wk	[27]
18	2009	12/F	Low back pain, Progressive lower extremity weakness	N	L1-L3	Y	6 Courses ABVD, Radiotherapy, Laminectomy and	–	7-y PFS	[28]

References:
[5], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28]
and differentiation. So, there are also 3 points that revealed a systemic disease of our case: first is the B symptom that the patient showed 3 months before being admitted to our hospital; Second, the high WBC count with relatively high neutrophils rate and low Hgb; Lastly, the bone marrow aspiration revealed a hyperactive hyperplasia of karyocyte. Previous study showed stage IV included patients with multiple bone involvement without evidence of distant nodal or visceral disease. However, the adjacent multifocal lesions like ours and nonadjacent multifocal lesions suggested different disease stage, as adjacent multifocal lesions mostly come from local invasion but distant multifocal lesions revealed a hematogenous spread or direct spread from the contiguous involved lymph node. So, further work should focus on more details of this disease’s diagnosis standard. As our patient had B symptom and the sacroiliac joint destruction (revealed 2 bone sites involvement), a final diagnosis of unfavorable stage IV bone CHL (Ann Arbor staging criteria) was made.

HRS cells of HL are almost 100% positive for CD30 and 85% positive for CD15 on immunohistochemical staining. The differential diagnosis of CD30 positive neoplasms that show the similar clinical and pathologic features with CHL were primary mediastinal large B-cell lymphoma (PMBCL) and gray zone lymphoma. Hoeller et al found that BOB.1, CD79a, and cyclin E were applicable immunohistochemical markers that can help distinguishing CHL from PMBCL. B-cell lymphoma, unclassified, with features intermediate between diffuse large B-cell lymphoma (DLBCL) and CHL, was initially proposed in the 2008 WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, which was afterward named gray zone lymphoma. There are mainly 2 type of gray zone lymphoma. One is similar to CHL in shape, but the immunophenotype of tumor cells was closer to DLBCL. Another was tumor morphology was similar to that of DLBCL, but immunophenotype of tumor cells was closer to CHL; CD30 and CD15 were diffuse positive whereas CD20 and PAX5 expression levels are down.

It seems that primary bone HL most likely appears on spine or long bone, seldom occurs in pelvic (Table 2), nodular sclerosis CHL represents 70% of CHL in Europe and USA, and this figure in China is 32.6%.[34] Almost 54% of nodular sclerosis CHL cases present with a huge soft mass.[35] Fibrosis was another prominent feature in nodular sclerosis CHL cases.[36] So, primary bone HL may be one differential diagnosis of osseous tumor which is with a fibrous stromal component. For example, the initial diagnosis of Hodgkin disease was malignant fibrous histiocytoma in a recent study (Table 3). Although the image features are sometimes similar, clinicopathologic characteristics and treatment options have obvious difference between CHL and other pelvic primary sarcomas.[37–41] The clinical manifestations and imaging are nonspecific with limitations to distinguish primary bone nodular sclerosis HL of pelvic involvement from other common primary pelvic sarcomas such as chordosarcoma, Ewing sarcoma, osteosarcoma sarcoma, and malignant fibrous histiocytoma.[37–41] (Table 3). Although the image features are sometimes similar, clinicopathologic characteristics and treatment options have obvious difference between CHL and other pelvic primary sarcomas.[37–41] The patient in our study...
Tumor	Age, y	Gender	Rate of pelvic malignances	X-ray or CT	MRI	Treatment	Efficient (5-y survival)	References	
Our case	20	F	--	X-ray: Osteolytic erosion	CT: Osteolytic erosion, no obvious periosteal reaction	Spread from ilium to sacrum	Chemotherapy + limb-salvage surgery	3-y DFS	–
Chondrosarcoma	40–60	–	24–32%	An aggressive moth-eaten or permeative pattern of destruction with ill-defined margins, cortical destruction, pathologic fracture, aggressive periosteal reaction, and soft-tissue mass	T1: Slightly higher signal compared with neighboring muscle groups T2: Relative long signal that were associated with destructive changes in the left pelvis	1. Surgery resection + radiotherapy 2. Low response to chemotherapy	59–72%	[23] [40]	
Ewing sarcoma	10–20	Mainly M	16–22%	1. Reactive sclerotic matrix periosteal reaction might have a multilamellated or onion-peel appearance with difficult to see Codman triangle 2. Large soft-tissue mass	T1: Hypointense or isointense T2: Variable signal. Cellular areas low to intermediate signal, and hemorrhage and necrosis display high signal Extension across the sacroiliac joint might be seen, but extension across the hip joint is rare	Chemotherapy Surgery resection	37.1–46%	[36] [40]	
Osteosarcoma	Med: 20	M:F (3:2)	9–20%	1. Large aggressive lesion with a permeative or moth-eaten pattern of destruction and with mixed lytic/sclerotic appearance 2. Aggressive periosteal reaction and soft-tissue mass	T1: Low to intermediate T2: High signal Osteoid matrix displays a low signal on all sequences	Chemotherapy Surgery resection	19–67%	[8] [23] [36]	
MFH	Peak at 20–30 or 60–70	M:F (3:2)	Almost 7%	1. Aggressive lytic lesion with a permeative pattern of destruction and ill-defined margins. 2. Sometimes well-defined margins, sclerotic rim, dystrophic mineralization 3. Periosteal reaction and cortical expansion are variable.	T1: Isointense to hypointense T2: Isointense to slightly hypointense signal. A lower signal of fibrous tissue matrix and variable cellularity in these lesions	1. Low response to chemotherapy 2. Surgery + radiotherapy + small molecular target drugs	34–53%	[40]	

CT = computed tomography, DFS = disease-free survival, F = female, M = male, MFH = malignant fibrous histiocytoma, MRI = magnetic resonance imaging.
received a total of 6 cycles ABVD chemotherapy. The NCCN (2016) guidance for stage III-IV CHL patients revealed that ABVD or Stanford V for selected patients with IPS <3, or escalated-dose BEACOPP in selected patients <60 years with an IPS ≥4 are included as options for primary treatment for patients with stage III-IV disease. In addition, Patients with 1 or multiple bone lesions usually respond well to combined-modality treatment, including chemotherapy and local radiotherapy. Up to now, 2 largest series patients with primary bone lymphoma studies demonstrated that patients with primary bone lymphoma treated with combined-modality versus single-modality therapy were found to have a superior outcome, with a significantly better survival. Ding et al evaluated the antitumor activity of bortezomib in combination with IGEV (ifosfamide, gemcitabine, vinorelbine, and prednisone) chemotherapy in a young male with primary bone HL who achieved low response after ABVD and ECHOP chemotherapy. Complete response was achieved after 2 cycles. This event suggested that bortezomib in the therapy of young patient suffering from primary bone HL maybe effective and safe. For many HL patients who relapse following a response to initial chemotherapy, high-dose chemotherapy followed by an autologous stem cell transplantation is the standard care. In addition, small target drugs therapy showed promising outcome for relapsed HL cases in recent years. CD30 is expressed on the HRS cell and antibodies like brentuximab vedotin targeting this molecule have shown activity in vitro. Recently reported clinical trials have shown that blocking interactions between the cell surface receptor programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2 results in very high clinical response rates. Other agents with promising activity for this patients group include histone deacetylase inhibitors, PI3K inhibitors, and immunomodulatory agents. Surgery resection and limb-salvage reconstruction are seldom performed for such a hematologic malignancy. In most contexts, surgery was strictly used for biopsy, especially when needle biopsy was limited to get a significant outcome for some special sites such as pulmonary. For bony HL, surgery was necessary for the treatment of actual or possible pathological fractures or spine cord and nerve comprehension. Limb-salvage surgery in some special individuals got a satisfying clinical outcome. In a large series study, Khodamorad and colleagues suggested that combined-modality therapy for stage IE primary bone lymphoma resulted in good survival rate. In case of local recurrence, wide excision and limb-salvage reconstruction improved the clinical outcomes. Alper et al reported in a young male diagnosed with primary bone lymphoma located in distal femur, distal femoral resection prosthesis was performed to prevent the risk of fracture and the patient was in remission and continued to attend school. From the CT scan of our patient, we can see that the ilium, acetabular, and sacroiliac joint are severe destructed making the patient meet high risk of pathologic fracture. Furthermore, the patient showed a sciatic nerve comprehension symptom which was confirmed during surgery procedure. To sum up, as pelvic-ring is the central part of weight-bearing of our body and no other organs showing diseases involvement, tumor resection following limb-salvage reconstruction can get good local tumor control as well as preserve limb function to the greatest extent for our special individual. The limb function of the patient recovered well so that she can take care of herself, study, and do some special works at 3-year follow-up. There are some key tips for such an extensive surgery to improve surgery success rate and limb function. First, the application of lower abdominal aortic balloon occlusion technique can effectively reduce an average blood loss of 1500 mL for pelvic sarcoma surgery, which typically shortens operative time to only 4 hours. Second, “no touch” resection of the tumor, with a surgical margin of normal tissue at least 1.0 cm wide from the tumor pseudocapsule are recommended to reduce risks of seeding of cancer cells into the circulation. Third, muscle and soft tissue in situ reconstruction was mainly designed to achieve sufficient soft tissue coverage and functional recuperation after the hemipelvic prosthetic reconstruction. Moreover, we adopted LARS (ligament advanced reinforcement system, R06 × 400/s, France) to reconstruct the hip capsule and supply the point of attachment for muscles and soft tissues during reconstruction in recent years. Fourth, functional exercise and the time to early ambulatory activity should be based on the extent of resection, the hip stability after reconstruction with the hemipelvic prostheses, and the reconstruction of the periacetabular muscles. The application of limb brace can reduce dislocation risk and help the patient for function exercise after surgery.

4. Conclusion

CHL initially presenting as pelvic involvement with such a huge tumor volume is indeed rare. The diagnosis of primary bone HL should be made by strict histological and clinical manifestation. Chemotherapy is still the main treatment option for bony HL patient. Limb-salvage surgical resection is required only when bony HL patient meets a high risk of pathological fracture like our case. Overall, limb-salvage surgery combining 6 cycles ABVD chemotherapy got a promising 3-year clinical outcome in our study for such a late stage unfavorable patient. Mastering the surgery indication and fully assessing different therapy options risk is necessary for such a challenging case.

References

[1] Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed. vol. 22013. World Health Organization; 2008.
[2] Guermazi A, Bruce P, de Kerviler EE, et al. Extranodal Hodgkin disease: spectrum of disease. RadioGraphics 2001;21:161–79.
[3] Zucca E. Extranodal lymphoma: a reappraisal. Ann Oncol 2008;19 (suppl 4):v77–80.
[4] Ma J, Wang Y, Zhao H, et al. Clinical characteristics of 26 patients with primary extranodal Hodgkin lymphoma. Int J Clin Exp Pathol 2014;7:5045–50.
[5] Bines F, Mirjali MR, Akhayvan A, et al. Primary bony Hodgkin’s lymphoma. BMJ Case Rep 2012;2012.
[6] Ostrowski ML, Inwards CY, Strickler JG, et al. Osseous Hodgkin disease. Cancer 1999;85:1166–78.
[7] Gandhi JS, Mehta A, Sharma A, et al. Primary Hodgkin lymphoma of the ileum. J Cancer Res Ther 2010;6:342–3.
[8] Ha-ou-nou FZ, Benjilali L, Essaadouni L. Sacral pain as the initial symptom in primary Hodgkin’s lymphoma of bone. J Cancer Res Ther 2013;9:511–3.
[9] Biwaa A, Purri T, Goyal S, et al. Osseous Hodgkin’s lymphoma-review of literature and report of an unusual case presenting as a large ulcerofungating sternal mass. Bone 2008;43:636–40.
[10] Ennecking WF, Dunham WK. Resection and reconstruction for primary neoplasms involving the innominate bone. J Bone Joint Surg 1978;60:731–46.
[11] Fletcher CD, Bridge JA, Hogendoorn P, et al. WHO/ARC Classification of Tumours of Soft Tissue and Bone, 4th ed. vol. 52013. World Health Organization; 2013.
[12] Dawson IM, Cornes JS, Morson BC. Primary malignant lymphoid tumours of the intestinal tract. Report of 37 cases with a study of factors influencing prognosis. Br J Surg 1961;49:80–9.
[13] Li Y, Wang XB, Tian XY, et al. Unusual primary osseous Hodgkin lymphoma in rib with associated soft tissue mass: a case report and review of literature. Diag Pathol 2012;7:64.
[15] Matikas A, Brissoullis A, Tzannou I, et al. Primary bone lymphoma: a retrospective analysis of 22 patients treated in a single tertiary center. Acta Haematom 2013;130:291–6.

[19] Spencer J, Dresser R. Lymphoblastoma (Hodgkin disease).

[21] Gold RH, Mirra JM. Case report 101. Primary Hodgkin disease of the bone. N Engl J Med 1936;214:877–9.

[23] Nikolica G, Badnjar Z, Cadjenovic T, et al. Primary extra nodal Hodgkin lymphoma: a clinicopathological study of 46 cases. Pathol Oncol 1999;7:53–9.

[25] Fried G, Ben Arieh Y, Haim N, et al. Primary Hodgkin disease: bone presentation. Pol J Radiol 2014;79:91.

[27] Nguyen BD, Roarke MC. Multicentric primary spinal Hodgkin’s lymphoma: PET/CT and MR imaging. Clin Nucl Med 2005;30:702–3.

[29] Langley CR, Garrett SJ, Urand J, et al. Primary multifocal osseous Hodgkin disease: a case report and review of the literature. J Cancer Res Clin Oncol 2003;131:163–8.

[31] Colby TV, Hoppe RT, Warnke RA. Hodgkin disease: a clinicopathologic study of 619 cases. Cancer 1982;49:1848–58.

[33] Guder WK, Harries J, Ahrens H, et al. Primary multifocal osseous Hodgkin’s lymphoma: a case report and review of the literature. J Cancer Res Clin Oncol 2005;131:163–8.

[35] Bielack SS, Kempf-Bielack B, Dellig G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002;20:776–90.

[37] Jawad MU, Haleem AA, Scully SP. Malignant sarcoma of the pelvic bones: treatment outcomes and prognostic factors vary by histopathology. Cancer 2011;117:1529–41.

[41] Nam-Cha SH, Montes-Moreno S, Salcedo MT, et al. Lymphocyte-rich classical Hodgkin lymphoma: distinctive tumor and microenvironment markers. Mod Pathol 2009;22:1006–15.

[43] Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet 2012;379:1791–9.

[45] Duggan DB, Petroni GR, Johnson JL, et al. Randomized comparison of ABVD versus Stanford V with or without radiation therapy in locally extensive and advanced-stage Hodgkin lymphoma: an intergroup study coordinated by the Eastern Cooperative Oncology Group (E2496). J Clin Oncol 2013;31:684–91.

[47] Yusnes A, Sureda A, Ben-Yehuda D, et al. Panobinostat in patients with relapsed or refractory Hodgkin’s disease: a phase 2 multicenter study. Leuk Lymphoma 2013;54:1692–5.

[49] Gordon LI, Hing F, Fisher RI, et al. Randomized phase III trial of ABVD versus Stanford V and MOPP/ABV hybrid for the treatment of advanced Hodgkin’s disease. J Clin Oncol 2003;21:607–14.

[51] Tao R, Allen PK, Rodriguez A, et al. Benefit of consolidative radiation therapy for primary bone diffuse large B-cell lymphoma. Int J Radiat Oncol Biol Phys 2015;92:122–9.

[53] Dugan DR, Petroni GR, Johnson JL, et al. Randomized comparison of ABVD and MOPP/ABV hybrid for the treatment of advanced Hodgkin’s disease: report of a phase III trial. J Clin Oncol 2003;21:607–14.

[55] Beal K, Allen L, Yahalom J. Primary bone lymphoma: treatment results and prognostic factors with long-term follow-up of 82 patients. Cancer 2006;106:2632–6.

[57] Fried G, Ben Arieh Y, Haim N, et al. Primary Hodgkin’s disease of the bone. Pediatr Blood Cancer 2000;34:268–72.

[59] Dornic J, Srber SD, Gospodarowicz M, et al. Ewing sarcoma: a clinical and histological study of 65 cases. Cancer 1992;69:48–55.

[61] Gregory LR, Huxley HJ, Geller NL, et al. Ewing sarcoma: a clinicopathological study of 48 patients. Cancer 1966;19:2564–8.

[63] Gaurd MN, Parry D, Alietto J, et al. Outcome of pelvic bone sarcomas. J Pediatr Orthop 2016.

[65] Guder WK, Harries J, Gscher J, et al. Osteosarcoma and chondrosarcoma of the pelvis and lower extremities. Der Orthop 2000;21:19–24.

[67] Gaurd MN, Parry D, Alietto J, et al. Outcome of pelvic bone sarcomas. J Pediatr Orthop 2016.

[69] Gaurd MN, Parry D, Alietto J, et al. Outcome of pelvic bone sarcomas. J Pediatr Orthop 2016.

[71] Gaurd MN, Parry D, Alietto J, et al. Outcome of pelvic bone sarcomas. J Pediatr Orthop 2016.

[73] Gaurd MN, Parry D, Alietto J, et al. Outcome of pelvic bone sarcomas. J Pediatr Orthop 2016.

[75] Gaurd MN, Parry D, Alietto J, et al. Outcome of pelvic bone sarcomas. J Pediatr Orthop 2016.

[77] Gaurd MN, Parry D, Alietto J, et al. Outcome of pelvic bone sarcomas. J Pediatr Orthop 2016.