Telomere position effect is regulated by heterochromatin-associated proteins and NkuA in Aspergillus nidulans

Jonathan M. Palmer,1 Sandeep Mallaredy,2 Dustin W. Perry,2 James F. Sanchez,3 Jeffrey M. Theisen,4 Edyta Szewczyk,5† Berl R. Oakley,5,6 Clay C. C. Wang,3 Nancy P. Keller4,7 and Peter M. Mirabito2

1Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
2Department of Biology, University of Kentucky, Lexington, KY 40506, USA
3School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9023, USA
4Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
5Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
6Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
7Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA

Gene-silencing mechanisms are being shown to be associated with an increasing number of fungal developmental processes. Telomere position effect (TPE) is a eukaryotic phenomenon resulting in gene repression in areas immediately adjacent to telomere caps. Here, TPE is shown to regulate expression of transgenes on the left arm of chromosome III and the right arm of chromosome VI in Aspergillus nidulans. Phenotypes found to be associated with transgene repression included reduction in radial growth and the absence of sexual spores; however, these pleiotropic phenotypes were remedied when cultures were grown on media with appropriate supplementation. Simple radial growth and ascosporogenesis assays provided insights into the mechanism of TPE, including a means to determine its extent. These experiments revealed that the KU70 homologue (NkuA) and the heterochromatin-associated proteins HepA, ClrD and HdaA were partially required for transgene silencing. This study indicates that TPE extends at least 30 kb on chromosome III, suggesting that this phenomenon may be important for gene regulation in subtelomeric regions of A. nidulans.

INTRODUCTION

In recent years, research in fungal biology has provided a view that several gene-silencing strategies are important in organismal development. There are the classic studies of silent mating-type loci (HML and HMR) in budding yeast (Laurensen & Rine, 1992), RNAi-mediated heterochromatin formation in the fission yeast Schizosaccharomyces pombe (Bühler & Moazed, 2007), and telomere position effect (TPE) in several fungi including Saccharomyces cerevisiae, Candida spp. and Neurospora crassa (Castano et al., 2005; Gottschling et al., 1990; Rosas-Hernández et al., 2008; Smith et al., 2008). One of the common mechanisms underlying this form of transcriptional silencing has been shown to be chromatin-level control, a process that involves repositioning of nucleosomes and/or post-translational modifications of histone tail residues, which function to alter the availability of DNA to transcriptional machinery (reviewed by Grewal & Jia, 2007; Jenuwein & Allis, 2001). Possibly the best-understood silencing phenomenon is TPE, as it has been demonstrated in several organisms from yeast to humans despite variable chromatin structure among organisms. For example, yeast heterochromatin consists of Sir-protein complexes while in higher eukaryotes

1†Present address: Research Center for Infectious Diseases, Josef-Schneider-Strasse 2/Bau D15, 97080 Würzburg, Germany.

Abbreviations: AspGD, Aspergillus Genome Database; TPE, telomere position effect; UU, uracil and uridine.

A supplementary table of primers and three supplementary figures are available with the online version of this paper.
heterochromatin is composed of histone H3 methylated at lysine 9 and heterochromatin protein 1 (Schoeftner & Blasco, 2009). These differing systems of heterochromatic silencing utilize different proteins, yet the underlying similarity is that chromatin is compacted in areas that are transcriptionally silent. Moreover, several of the TPE-regulated genes have important functions for their respective organisms. For example, a subset of the FLO genes of S. cerevisiae involved with adhering to surfaces are located near telomeres and thus regulated under this mechanism (Barral et al., 2008). Additionally, a polygalacturonase gene (PGU1) is located ~25 kb from a yeast telomere and thus subject to epigenetic regulation (Louw et al., 2010). In Candida glabrata binding to human cells is a key factor for pathogenicity, and adhesion depends on the telomerically located adhesins, which in turn are regulated by telomeric silencing (Castano et al., 2005). TPE has also been shown to be variable at yeast telomeres, suggesting that not all telomeres have the same silencing capacity (Mondoux & Zakian, 2007).

Filamentous fungi have also been shown to have chromosomal location effects (Greenstein et al., 2006; Palmer & Keller, 2010; Robellet et al., 2010); however, telomeric silencing mechanisms have thus far only been studied in N. crassa (Smith et al., 2008). Positional effects have been studied genetically through utilization of null mutants in chromatin-associated enzymes, and several of these mutants have been shown to have various pleiotropic effects in N. crassa and Aspergillus fumigatus, indicating that primary metabolism may be regulated by this mechanism (Adhivaryu et al., 2005; Freitag et al., 2004; Palmer et al., 2008; Tamaru & Selker, 2001; Tamaru et al., 2003). Secondary-metabolite gene clusters are also partially regulated by an altered chromatin landscape; specifically a histone deacetylase (HdaA), the H3K9 methyltransferase (CtD) and heterochromatin protein 1 (HepA) are involved in regulation of the sterigmatocystin and penicillin gene clusters (Reyes-Dominguez et al., 2010). We show that transgenes located within 20 kb of the telomere of the left arm of chromosome III in A. nidulans are repressed and that silencing extends at least to the Spc1 cluster boundary (~30 kb distal from the telomere). Additionally, we describe TPE at the right arm of chromosome VI near the penicillin gene cluster. NkuA (a KU70 homologue) has a role in TPE, as a null NkuA mutant partially relieves silencing. In addition, proteins involved in heterochromatin maintenance are involved in TPE, as partial derepression was observed in null mutant backgrounds of HepA, CtD and HdaA.

METHODS

General. Fungal strains used in this study are listed in Table 1; all primers used are listed in Supplementary Table S1, available with the online version of this paper. All strains were maintained on glucose minimal medium (GMM) (Shimizu & Keller, 2001) at 37 °C and when appropriate were supplemented with 1.2 g uracil 1⁻, 1.2 g uridine 1⁻, 0.5 μM pyridoxine.HCl, 2.5 μM riboflavin.HCl, 100 μM arginine and 1 μM p-aminobenzoate. In silico analysis was done using the Aspergillus Genome Database, AspGD (http://www.aspergillusgenomdb.org), and all locus identification numbers correspond to the current annotation of AspGD (Arnaud et al., 2010).

Creation of fungal strains. Gene replacement mutants were generated by transformation of suitable recipient strains with gene replacement cassettes constructed using fusion PCR (Szewczyk et al., 2006; Yang et al., 2004). Transformation was done essentially as in Miller et al. (1985), with the exception of embedding protoplasts in top agar (0.75%). For example, AN5091 was disrupted with a PCR product consisting of a 0.88 kb upstream flanking region, a 0.92 kb downstream flanking region, and a 1.97 kb PCR fragment of the A. fumigatus pyrR gene as a marker gene to create TMM6.9. All original mutants were created essentially in the same fashion according to the following: TDP1-1, 1-2, 2-7 and 2-12 (ΔAN5092::AfpyrG), TSM18-3 (ΔAN5092::Gyrfaa), TMM11 (ΔAN5495::AfpyrG), TSM11-3, 11-4 and 11-10 (ΔAN5092::AfpyrA) and TSM3-1 (ΔAN4432::AfpyrA) were created in a TN02A7 background, and TJMP6.9 (ΔAN5091::AfpyrG) was created in the R JMP1.49 background. Replacement of the target sequence with the selectable marker was confirmed by Southern blot analysis and by PCR using primers lying outside the gene replacement cassettes. Prototrophic strains were constructed by independently crossing TJMP6.9 and TDP1-1 to R JMP101.5 to construct R JMP115.3 and R JMP116.3. R JMP16.1 was constructed by transformation of TJMP6.9 with pJW53 harbouring the A. nidulans pyrO gene (Tsitsigiannis et al., 2004). Crossing R JMP135 with SMC73.1-105 created R J M P 121.7 and R J M P 121.4, while R J M P 122.6, R J M P 123.3, R J M P 125.20 and R J M P 127.4 were created by independently crossing R J M P 159 with S M C 72-1, S M C 73-1-5, S M C 58-7 and S M C 79-13 respectively. Finally, crosses between T J M P 50.3 and S M C 58-7 yielded R J M P 135.11, and T J M P 50.3 and S M C 79-13 yielded R J M P 131.7.

Semi-quantitative reverse transcriptase PCR. Equal numbers of conidia from all strains were inoculated in YSC medium (Lies et al., 1998) containing uracil and uridine (UU) and incubated at 30 °C overnight. Cells were harvested, frozen in liquid nitrogen, and total RNA was isolated using the procedure of Timberlake (1980). Ten micrograms of total RNA was used to make single-stranded cDNA using the Superscript III kit and the protocol recommended by the manufacturer (Invitrogen). Serial 1:10 dilutions of single-stranded cDNA were used as template in PCRs, and equal volumes of the PCRs were separated on a 1 % (w/v) agarose gel. The gel was stained with ethidium bromide and imaged using a Typhoon 8600 scanner. The intensity of the bands was quantified using ImageQuant software. The band intensity from the same dilution to give an expression ratio AfpyrG/actin for each sample. The AfpyrG/actin ratios from the 0.1 x cDNA reactions for each TDP sample were divided by the ratio from the TMM11 control to give a relative expression level for each sample.

Physiology experiments. Prototrophic strains in a wild-type veA (veA⁻) genetic background were used for radial growth measurements and quantification of ascospores. Radial growth assays were conducted at 37 °C by measuring colony diameter after 3 days on plates of solid medium (GMM and GMM with appropriate supplementation (uridine and uracil, UU; pyridoxine, P) that were centrally point-inoculated with ~2000 spores. Quantification of ascospores was done on overlay-inoculated cultures that were set up by pipetting 1 x 10⁶ conidia into 0.75 % molten agar that was subsequently poured over 1.5 % solid agar in Petri dishes. Cultures were incubated at 37 °C in the dark for 5–7 days and agar cores were taken from the plates with a 1.2 cm cork
Table 1. Strains used in this study

Strain	Genotype	Source
TN02A7	pyrG89 pyroA4 riboB2 Δnkua::argB veA1	Nayak et al. (2006)
TDP1-1	pyrG89 pyroA4 riboB2 ΔAN5092::AfpyrG Δnkua::argB veA1	This study
TDP1-2	pyrG89 pyroA4 riboB2 ΔAN5092::AfpyrG Δnkua::argB veA1	This study
TDP2-7	pyrG89 pyroA4 riboB2 ΔAN5092::AfpyrG Δnkua::argB veA1	This study
TDP2-12	pyrG89 pyroA4 riboB2 ΔAN5092::AfpyrG Δnkua::argB veA1	This study
TM11	pyrG89 pyroA4 riboB2 ΔAN5495::AfpyrG Δnkua::argB veA1	This study
TSM18-3	pyrG89 pyroA4 riboB2 ΔAN5092::GrypA Δnkua::argB veA1	This study
TSM11-3	pyrG89 pyroA4 riboB2 ΔAN5092::AfpyrA Δnkua::argB veA1	This study
TSM11-4	pyrG89 pyroA4 riboB2 ΔAN5092::AfpyrA Δnkua::argB veA1	This study
TSM11-10	pyrG89 pyroA4 riboB2 ΔAN5092::AfpyrA Δnkua::argB veA1	This study
TSM3-1	pyrG89 pyroA4 riboB2 ΔAN4432::AfpyrA Δnkua::argB veA1	This study
RJMP1.49	pyrG89 pyroA4 Δnkua::argB	Shaaban et al. (2010)
TJMP6.9	pyrG89 pyroA4 ΔAN5091::AfpyrG Δnkua::argB	This study
RJMP10.5	pyrG89 wa3	This study
RJMP115.3	pyrG89 ΔAN5091::AfpyrG	This study
RJMP116.3	pyrG89 ΔAN5092::AfpyrG	This study
TJMP45.2	Δnkua::argB	Shaaaban et al. (2010)
TJMP16.1	pyrG89 ΔAN5091::AfpyrG Δnkua::argB	This study
RJMP1.19	pyrA4 Δnkua::argB	Shaaaban et al. (2010)
TMSII.4	pyrA4 pyrG89 ΔpblII::AfpyrG Δnkua::argB	Shaaaban et al. (2010)
TMS8.2	pyrA4 pyrG89 Ap pyrG Δnkua::argB	M. Shaaban & N. P. Keller, unpublished
SMCS8.7	ΔAN5092::AfpyrA pyroA ΔclrD::AfpyrG pyrG89 argB2 ya2 veA1	This study
SMCS7.1-5	riboB2 ΔAN5092::AfpyrA pyroA ΔhdaA::AfpyrG pyrG89 veA1	This study
SMCS7.1-1	ΔpyrG89 ΔhepA::AfpyrG ΔAN5092::Afpyr pyrA4 riboB2 wa2 ya2 veA1	This study
SMCS7.1-105	ΔAN5092::AfpyrA pyroA4 pyrG89 argB2 riboB2 wa2 veA1	This study
SMCS7.9-13	ΔpyrG89 ΔhstA::argB ΔAN5092::Afpyro pyroA4 riboB2 pabaA1 ya2 veA1	This study
RJMP5.59	pyrG89 pyroA4	This study
RJMP5.34	pyrG89	This study
RJMP5.35	pyrA4 trpC801	This study
RDIT9.32	Wild-type	Tsitsigiannis et al. (2004)
RJMP121.7	pyrA4 ΔAN5092::AfpyrA	This study
RJMP121.4	pyrA4 ΔAN5092::AfpyrA veA1	This study
RJMP122.6	pyrA4 ΔAN5092::AfpyrA ΔhepA::AfpyrG	This study
RJW110.4	ΔhepA::AfpyrG	Reyes-Dominguez et al. (2010)
RJMP123.3	pyrA4 ΔAN5092::AfpyrA ΔhdaA::AfpyrG	This study
RMS1.22	ΔhdaA::AfpyrG	Shaaaban et al. (2010)
RJMP125.20	pyrA4 ΔAN5092::AfpyrA ΔclrD::AfpyrG	This study
RJMP135.11	ΔclrD::AfpyrG	This study
RJMP127.4	pyrA4 ΔAN5092::AfpyrA ΔhstA::argB	This study
RJMP131.7	ΔhstA::argB	This study

borer. This method of inoculation allows cleistothecia to develop evenly across the Petri dish. Ascospores were quantified using a haemocytometer and represented as ascospores per square millimetre. All experiments were completed at least in triplicate and statistical analysis was done using Prism 5 software.

RESULTS

Discovery of TPE at the left arm of chromosome III

We were originally interested in AN5092 because of its putative function assigned by the genome annotation. AN5092 is predicted to encode a full-length RecQ protein, which is an orthologue of the telomere-linked helicase (TLH) gene family described in Magnaporthe oryzae (Rehmeyer et al., 2009). TLH genes are found in close proximity to telomeres of some species of filamentous fungi and are similar in sequence to telomernically located Y’ elements in S. cerevisiae (Rehmeyer et al., 2006). Analysis of TLH-related DNA sequences in A. nidulans revealed that they were present near the ends of six chromosomes (Clutterbuck & Farman, 2008); however, only AN5092 appears to be full-length according to the criteria of Rehmeyer et al. (2009).

To investigate the role of AN5092, we replaced the ORF with the A. fumigatus pyrG gene (AfpyrG), which complements the uracil/uridine auxotrophy conferred by pyrG89. A Δnkua genetic background (TN02A7) was used to increase the likelihood of obtaining the desired mutant (Nayak et al.,
Four of thirteen transformants screened by Southern blot and PCR analyses had simple gene replacements (AN5092::AfpyrG). All four strains (TDP1-1, 1-2, 2-7 and 2-12) produced smaller colonies on minimal medium (GMM) than control transformants, where AfpyrG was used to replace the nonessential, non-telomerically located gene AN5495 (Fig. 1a). We hypothesized that partial repression of the AfpyrG gene could be responsible for this phenotype. Consistent with this idea, the colony size defect of all four AN5092::AfpyrG strains was completely relieved by supplementing the media with uracil and uridine (UU) (Fig. 1a). Moreover, we have used AfpyrG for gene replacements at several other locations in the genome without observing a growth defect (data not shown). We therefore attributed the growth defect of the TDP strains to partial uracil auxotrophy, not the loss of the ORF corresponding to AN5092.

The partial uracil auxotrophy of the TDP strains suggested that expression of AfpyrG is reduced in these strains compared to controls. To test this, we analysed AfpyrG mRNA levels in our strains by semiquantitative RT-PCR. Fig. 1(b) shows that expression of the AfpyrG transgene is reduced by approximately one-half in TDP strains compared to a control strain. These results indicated that the reduced colony growth rate of TDP strains is likely due to reduced levels of AfpyrG expression.

Repression is independent of transgene or transgene orientation

To determine whether the orientation of the transgene at AN5092 is required for the reduced expression described above, we repeated the deletion of AN5092 using a construct in which the direction of AfpyrG transcription was opposite to that in the AN5092::AfpyrG strains (schematically drawn in Fig. 2a). A transformant (TSM18-3) was obtained and confirmed by PCR and Southern analysis (Fig. 2b). Like TDP1-1, the AN5092::GrypA strain produced small colonies on minimal medium and normal-sized colonies on medium containing UU (data not shown). Thus, a specific orientation of the transgene inserted near the telomere of chromosome III was not required for silencing.

Additionally, we reasoned that the growth defect could be specific to uracil metabolism; thus, we repeated the deletion of AN5092 using an alternative selectable marker, A. fumigatus pyroA (AfpyroA). Three strains (TSM11-3, 11-4 and 11-10) were isolated and confirmed by PCR and Southern analysis (Fig. 2b). The nonessential gene AN4432 (centrally located in chromosome III) was disrupted with AfpyroA and served as a control strain (data not shown). All three strains (TSM11-3, 11-4 and 11-10) produced small colonies on medium lacking pyridoxine and the growth defect was remedied by addition of pyridoxine to the medium, whereas the control strain produced normal-sized colonies on both media (Supplementary Fig. S1).

In silico analysis of the telomere-proximal left arm of chromosome III

To gain potential insight into the silencing of the transgene located at AN5092, we employed an in silico approach to determine the chromosomal context of AN5092. Using the AspGD (http://www.aspergillusgenome.org), we determined...
that AN5092 is located ~2 kb from the end of chromosome III. According to Clutterbuck & Farman (2008), there is a sequence gap of 18.4 kb between the telomere cap and the genome annotation. Taken together, these analyses place AN5092 approximately 20 kb from the telomere of chromosome III (Fig. 3). Further analysis revealed the presence of the SpoC1 cluster telomere distal to AN5092. The SpoC1 cluster, described by Gwynne et al. (1984), is a 38 kb cluster of developmentally regulated transcripts, which are flanked by two 1.1 kb repetitive sequences (RPT3). While two of the SpoC1 cluster genes are annotated in the AspGD genome sequence, the remaining genes are absent. Our in silico analysis indicates that the RPT3 flanking sequences of the SpoC1 cluster are located near the current annotation of AN5091 and AN5081. Expanding on these data, analysis of the orientation of genes presented by Gwynne et al. (1984) matches perfectly with the annotation found in the AspGD. Therefore we conclude that the SpoC1 cluster corresponds to a 38 kb stretch located on chromosome III and the boundary is located 30 kb from the telomere (Fig. 3). In addition to AN5092 there are two putative ORFS located between the SpoC1 cluster and the end of chromosome III. AN5093 is likely not a functional gene as it is composed of repetitive DNA sequence, and AN5091 encodes a putative methyltransferase with some similarity to LaeA, a protein involved in regulation of secondary metabolite gene clusters (Bok & Keller, 2004).

Repression extends at least to the boundary of the SpoC1 cluster

Via Northern analysis, we were unable to detect expression during a developmental time-course in a wild-type strain (RDIT9.32) of the putative telomere-distal gene AN5091, which is more than 30 kb from the telomere (Fig. 3, Supplementary Fig. S2). This indicated that silencing might extend beyond the AN5092 locus. In a similar fashion to disruption of AN5092, the AN5091 locus was replaced with the AfpyrG gene and the replacement confirmed by Southern analysis (Fig. 4). The resulting phenotype was nearly identical to that of the AN5092::AfpyrG mutant, with transformants requiring UU supplementation for normal growth and ascosporogenesis (Fig. 5a, b). Taken together, our data suggest that TPE functions regardless of the transgene or orientation, and extends at least to the SpoC1 cluster boundary.

TPE can be assayed via radial growth and ascospore production

In order to study TPE in prototrophic strains and a wild-type background, we attempted to outcross TDP1-1 (AN5092::AfpyrG). Heterokaryons were formed and selected on minimal medium, and cleistothecia were allowed to form. All cleistothecia examined from the attempted outcross were devoid of ascospores. Outcrosses of the other three AN5092::AfpyrG mutants gave the same
result. Since TDP1-1 required UU for normal vegetative growth and the transgene located at AN5092 was the only functional pyrG gene in the cross, we hypothesized that repression of AfpyrG was responsible for the ascosporogenesis defect. Indeed, supplementing the medium with UU remedied the ascosporogenesis defect. Analogous results were obtained with crosses involving TSM11 strains, in which AfpyroA at AN5092 was the only functional pyroA gene. These crosses produced ascospores only when pyridoxine was included in the medium. Thus, the limited expression of the transgene remedying a nutritional deficiency prevents ascosporogenesis.

Fig. 3. Scale schematic representation of the left telomere of chromosome III of *A. nidulans*. AN5092 is located ~20 kb from the telomere of the left arm of chromosome III. Clutterbuck & Farman (2008) describe that 18.4 kb of DNA is missing between the telomere of chromosome III and the genome assembly. Bioinformatic analysis places the SpoC1 cluster approximately 30 kb from the telomere of chromosome III, spanning the current annotation from AN5091 to AN5081. Three putative open reading frames exist between the SpoC1 cluster and the end of the current annotation in the AspGD: AN5093 is unlikely to be a functional gene as it contains repetitive sequences, AN5092 is a putative TLH-like gene, and AN5091 encodes a methyltransferase with sequence homology to LaeA.

Fig. 4. The AN5091 locus was replaced with the *A. fumigatus* pyrG gene as drawn schematically. Strains were confirmed by Southern analysis. Strains used were WT (RDIT9.32) and ΔAN5091::AfpyrG (RJMP115.3). A SacI digestion predicted bands of WT 4.5 kb and ΔAN5091::AfpyrG 2.2 kb; a SpI digestion predicted WT 3.4 kb and ΔAN5091::AfpyrG 4.0 kb; while an EcoRV digestion predicted WT 3.4 kb + 2.1 kb and ΔAN5091::AfpyrG 4.0 kb + 2.1 kb.
Most laboratory strains of A. nidulans harbour the veA1 allele, which makes them essentially blind to light so they produce asexual conidia regardless of whether grown in the light or dark, with limited sexual development. Therefore, to further examine TPE in the context of sexual development we used wild-type (veA1−) strains. TPE repression of AtpyrG at the AN5092 locus (RJMP116.3) reduced production of ascospores by approximately three orders of magnitude on minimal medium compared to medium supplemented with UU (GMM + 618 ± 405 ascospores mm−2; GMM + UU = 68 083 ± 8527 ascospores mm−2) (Fig. 5b). In order to confirm that silencing of transgenes was solely responsible for the observed pleiotropic phenotypes, we grew a pyroA4 mutant (RJMP1.59) on medium with decreasing concentrations of pyridoxine and were able to replicate the reduction in radial growth and loss of ascospore production observed in the AN5092::AtpyroA strain (Supplementary Fig. S3).

TPE exists at the right arm of chromosome VI

A recent study aimed at assessing the role of repetitive sequences flanking the penicillin gene cluster resulted in creation of a mutant with a transgene integrated in close proximity to the telomere of chromosome VI (Shaaban et al., 2010). In this mutant (ΔPbII, TMSII2.4), a 30 kb piece of DNA ~8.5 kb from the telomere was replaced with the A. parasiticus pyrG gene (Shaaban et al., 2010). Thus this strain allowed us to assay putative TPE silencing effects at chromosome VI. Similar to results from analysis of transgene repression on chromosome III, a reduction in radial growth and ascospore production was quantifiable and was partially remedied by appropriate supplementation of the medium (Fig. 6a, b). A growth defect remains in this strain with UU supplementation, hypothesized to be due to loss of uncharacterized ORFs (Shaaban et al., 2010).

Heterochromatin-associated proteins and NkuA are involved in TPE

Several proteins have been shown to be required for TPE in other organisms, including KU70/80 (NkuA/B) proteins (Boulton & Jackson, 1998; Mishra & Shore, 1999; Rosas-Hernández et al., 2008), as well as heterochromatin protein 1, the lysine 9 histone 3 methyltransferase, and histone deacetylases (Ottaviani et al., 2008). By utilizing radial growth and ascosporogenesis assays we were able to elucidate the involvement of several heterochromatin-associated proteins (HepA, ClrD, HdaA and HstA) in TPE at chromosome III by creating double mutants of AN5092::AtpyroA and null mutants of HepA, ClrD, HdaA or HstA. Fig. 7 shows that both radial growth and ascosporogenesis were identical to wild-type in the single chromatin mutants but were partially derepressed in HepA, ClrD and HdaA AN5092::AtpyroA double mutants, thus implicating all three of these proteins as players in TPE regulation. HdaA, a histone deacetylase, had the strongest derepressive effect. However the ΔhstA AN5092::AtpyroA double mutant did not show increased radial growth or ascospore production compared to the control strain (Fig. 7a, b, c).

Using a similar approach to test the involvement of NkuA we created a double AN5091::AtpyrG ΔnkuA mutant. Consistently, this mutant produced more ascospores than the single AN5091::AtpyrG mutant by one order of magnitude (Fig. 7d). Together, these data suggest that NkuA, HepA, ClrD, HstA and HdaA are not involved in radial growth or ascospore production under the conditions tested; however, in ΔnkuA, ΔhepA, ΔclrD and ΔhdaA genetic backgrounds there is partial derepression of the telomERICally located transgenes. None of the double mutants were able to restore growth or ascospore production.
to wild-type levels, thus indicating that TPE is polygenic in *A. nidulans*.

DISCUSSION

TPE is a widespread phenomenon amongst diverse organisms and this work supports the conservation of this silencing mechanism in *A. nidulans*. Our experiments indicate that transgenes are silenced when placed at the telomere of chromosome III and that this silencing extends at least 30 kb from the telomere cap to the SpoC1 cluster. We have also identified TPE at the telomere of the right arm of chromosome VI. Additionally, we have shown that HepA, ClrD, HdaA and NkuA are involved in regulation of TPE at chromosome III.

Our unexpected observation of impaired ascospore development and a reduction in radial growth due to partial repression of *AfpyrG* and *AfpyrA* transgenes led us to exploit these phenotypes to assess TPE at two different telomeres as well as establish a role for NkuA, HepA, ClrD and HdaA in regulating TPE. These simple phenotypic assays are advantageous because they potentially provide a quantitative measure of transgene repression. Sexual development is a complex process in *A. nidulans*, requiring proper formation of several differentiated cell types that make up a cleistothecium (reviewed by Braus *et al.*, 2002).

Fig. 7. In order to address the mechanism of TPE in *A. nidulans*, radial growth and ascosporogenesis assays were conducted on double mutants. (a) Radial growth assays illustrate the reduction in growth on GMM versus GMM + pyridoxine (P) of strains harbouring ∆AN5092::*AfpyrA*. (b) Quantification of the radial growth assay indicates that HepA, ClrD and HdaA derepress the *AfpyrA* transgene, while VeA1 and HstA have no effect on *AfpyrA* repression. The single mutants (veA1, ∆hepA, ∆clrD, ∆hstA and ∆hdaA) show no effects on radial growth in this assay. (c) Ascosporogenesis assays match the radial growth assays, providing further evidence for the involvement of HepA, ClrD and HdaA in TPE. The single mutants (veA1, ∆hepA, ∆clrD, ∆hstA and ∆hdaA) show no effect on ascospore production in this assay. (d) Ascospore production is partially rescued in a double mutant (AN5091 ∆nkuA) compared to the single AN5091 mutant; however, ascospore production does not reach wild-type levels. WT (veA1+), RDT9.32; AN5092::*AfpyrA*, RJMP121.7; AN5092::*AfpyrA* veA1, RJMP121.4; AN5092::*AfpyrA* ∆hepA, RJMP122.6; AN5092::*AfpyrA* ∆clrD, RJMP125.20; AN5092::*AfpyrA* ∆hstA, RJMP127.4; AN5092::*AfpyrA* ∆hdaA, RJMP123.3; veA1, RDT23.3; ∆hepA, RJW110.4; ∆clrD, RJMP135.11; ∆hstA, RJMP131.7; ∆hdaA, RMS1.22; ∆nkuA, TJMP45.2; AN5091, RJMP115.3; and AN5091ΔnkuA, TJMP16.1. Note that the y-axis scale is logarithmic in panels (c) and (d). Means ± SD are plotted in panels (b–d); asterisks indicate statistically significant differences between wild-type and other strains at *P*<0.001 using Student's *t*-test.

http://mic.sgmjournals.org 3529
Normal development of the sexual cycle requires adequate nutrient supply, as illustrated by amino acid starvation repression of sexual development (Eckert et al., 1999; Hoffmann et al., 2000), and Bruggeman et al. (2004) reported that many auxotrophic strains are unable to complete the sexual cycle. Extending this observation, the repressed sexual development observed in this study was likely a consequence of inadequate pyridoxine metabolism (pyroA transgene) or pyrimidine metabolism (pyrG transgene); this was substantiated by the finding that growing a pyroA4 mutant on a limited amount of pyridoxine results in loss of ascospore production and eventually a reduction in radial growth (Supplementary Fig. S3 and data not shown).

The KU70/KU80 heterodimer has been shown to be required for non-homologous end joining recombination and normal maintenance of telomeres (Boulton & Jackson, 1998). The KU heterodimer binds telomeres and is thought to facilitate telomererase activity (reviewed by Dubrana et al., 2001). In the absence of either of the KU proteins, normal telomere function is altered, resulting in lack of heterochromatin complexes and subsequently increased transcription of genes located near telomeres. Similarly to what has been demonstrated in other organisms (Boulton & Jackson, 1998; Mishra & Shore, 1999; Rosas-Hernández et al., 2008), we report here that the A. nidulans KU70 homologue (NkuA) partially suppresses TPE as evidenced by increased ascosporogenesis, while at the same time showing that NkuA has no effect on normal ascosporogenesis.

Based on TPE models proposed in other eukaryotic systems, we characterized the involvement of several heterochromatin proteins in TPE of A. nidulans. In fission yeast and N. crassa, methylation of lysine 9 of histone 3, heterochromatin protein 1 and histone deacetylase enzymes are involved in regulation of TPE (Ottaviani et al., 2008; Smith et al., 2008). Our results in A. nidulans indicate that there is considerable mechanistic conservation of TPE between fungal species, including TPE regulation by core heterochromatin-activating/maintenance proteins (HepA, ClrD and HdaA). However, there are some differences as well. For example, here we see that NkuA plays a role in A. nidulans TPE, unlike fission yeast, where the KU70 homologue is not involved in TPE. Additionally, Smith et al. (2008) reported that multiple sirtuins (class III histone deacetylases) were involved in regulation of TPE in N. crassa, yet we were unable to establish that the A. nidulans SIR2 orthologue (HstA) is involved in TPE at chromosome III. Our data suggest involvement of several trans-acting factors in A. nidulans TPE including a Nku complex and histone-remodelling associates.

Chromatin structure has been shown to play a role in transcriptional regulation of genes based on their chromosomal location in several organisms, including A. nidulans (Palmer & Keller, 2010). Here we demonstrate that TPE exists in A. nidulans and show that radial growth and ascosporogenesis can be used as sensitive, quantitative assays to determine the extent of silencing or to identify suppressors of silencing. Future efforts will focus on elucidating any impact of TPE on secondary metabolite gene clusters, which have a tendency to be located in subtelomeric regions (Hoffmeister & Keller, 2007) and are regulated by some of the same proteins involved in A. nidulans TPE (e.g. HdaA, ClrD, HepA) (Reyes-Dominguez et al., 2010; Shwab et al., 2007). Similarly to what has been described in other organisms, we have shown that TPE exists at two telomeres in A. nidulans and predict that TPE likely exists at most telomeres; however, the extent of silencing at an individual telomere may be variable (Mondoux & Zakian, 2007).

ACKNOWLEDGEMENTS

This work was funded in part by Gertrude F. Ribble Scholarship to S.M. and D.W.P., and NIH 1 R01 AI065728-01 to N.P.K., PO1GM084077 to B.R.O., C.C.C.W. and N.P.K. and R01GM031837 to B.R.O. The authors thank Marlena Mattingly for construction of TMM11 and Mark Farman for providing information on chromosome III-L telomere structure prior to publication.

REFERENCES

Adhvaryu, K. K., Morris, S. A., Strahl, B. D. & Selker, E. U. (2005). Methylation of histone H3 lysine 36 is required for normal development in Neospora crassa. Eukaryot Cell 4, 1455–1464.

Arnaud, M. B., Chibucos, M. C., Costanzo, M. C., Crabtree, J., Inglis, D. O., Lotia, A., Orvis, J., Shah, P., Skrzypek, M. S. & other authors (2010). The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res 38, D420–D427.

Barrales, R. R., Jimenez, J. & Ibeas, J. I. (2008). Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178, 145–156.

Bok, J. W. & Keller, N. P. (2004). LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3, 527–535.

Bok, J. W., Chiang, Y.-M., Szewczyk, Y., Reyes-Dominguez, Y., Davidson, A. D., Sanchez, J. F., Lo, H. C., Watanabe, K., Strauss, J. & other authors (2009). Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5, 462–464.

Boulton, S. J. & Jackson, S. P. (1998). Components of the KU-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17, 1819–1828.

Braus, G. H., Krappmann, S. & Eckert, S. E. (2002). Sexual development in ascomycetes fruit body formation of Aspergillus nidulans. In Molecular Biology of Fungal Development, pp. 215–244. Edited by H. Osiewacz. New York: Marcel Dekker, Inc.

Bruggeman, J., Debeets, A. J. M. & Hoeckstra, R. F. (2004). Selection arena in Aspergillus nidulans. Fungal Genet Biol 41, 181–188.

Bühler, M. & Moazed, D. (2007). Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14, 1041–1048.

Castaño, I., Pan, S.-J., Zupancic, M., Henequín, C., Dujon, B. & Cormack, B. P. (2005). Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55, 1246–1258.
Clutterbuck, A. J. & Farman, M. L. (2008). *Aspergillus nidulans* linkage map and genome sequence: closing gaps and adding telomeres. In *The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods*, pp. 57–73. Edited by G. H. Goldman & S. A. Osmani. Boca Raton, FL: CRC Press.

Dubrana, K., Perron, S. & Gasser, S. M. (2001). Turning telomeres off and on. *Curr Opin Cell Biol* 13, 281–289.

Eckert, S. E., Hoffmann, B., Wanke, C. & Braus, G. H. (1999). Sexual development of *Aspergillus nidulans* in tryptophan auxotrophic strains. *Arch Microbiol* 172, 157–166.

Freitag, M., Hickey, P. C., Khalfalah, T. K., Read, N. D. & Selker, E. U. (2004). HP1 is essential for DNA methylation in *Neurospora*. *Mol Cell* 13, 427–434.

Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. (1989). Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. *Cell* 63, 751–762.

Greenstein, S., Shadkhan, Y., Jadoun, J., Sharon, C., Markovich, S. & Osherov, N. (2006). Analysis of the *Aspergillus nidulans* thiamatin-like ctcA gene and evidence for transcriptional repression of pyr4 expression in the ctcA-disrupted strain. *Fungal Genet Biol* 43, 42–53.

Grewal, S. I. & Jia, S. (2007). Heterochromatin revisited. *Nat Rev Genet* 8, 35–46.

Gwynne, C., Young, P. R., van Rensburg, P. & Divol, B. (2010). *Saccharomyces* subtelomeric elements. *Eukaryot Cell* 9, 543–560.

Hoffmann, B., Wanke, C., Lapaglia, S. K. & Braus, G. H. (2000). c-Jun and RACK1 homologues regulate a control point for sexual development in *Aspergillus nidulans*. *Mol Microbiol* 37, 28–41.

Hoffmeister, D. & Keller, N. P. (2007). Natural products of *Aspergillus nidulans* and efficient gene targeting in *Aspergillus nidulans*. *Mol Microbiol* 63, 157–166.

Jenuwein, T. & Allis, C. D. (2001). Translating the histone code. *Science* 293, 1074–1080.

Laurenson, P. & Rine, J. (1992). Silencers, silencing, and heritable transcriptional states. *Microbiol Rev* 56, 543–560.

Lies, C. M., Cheng, J., James, S. W., Morris, N. R., O’Connell, M. J. & Mirabito, P. M. (1998). BIMAAPC3, a component of the *Aspergillus* anaphase promoting complex/cyclosome, is required for a G2 checkpoint blocking entry into mitosis in the absence of NIMA function. *J Cell Sci* 111, 1453–1465.

Louw, C., Young, P. R., van Rensburg, P. & Divol, B. (2010). Epigenetic regulation of *PGU1* transcription in *Saccharomyces cerevisiae*. *FEBS Yeast Res* 10, 158–167.

Miller, B. L., Miller, K. Y. & Timberlake, W. E. (1985). Direct and indirect gene replacements in *Aspergillus nidulans*. *Mol Cell Biol* 5, 1714–1721.

Mishra, K. & Shore, D. (1999). Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. *Curr Biol* 9, 1123–1126.

Mondoux, M. A. & Zakian, V. A. (2007). Subtelomeric elements influence but do not determine silencing levels at *Saccharomyces cerevisiae* telomeres. *Genetics* 177, 2541–2546.

Nayak, T., Szewczyk, E., Oakley, C. E., Osmani, A., Ukil, L., Murray, S. L., Hynes, M. J., Osmani, S. A. & Oakley, B. R. (2006). A versatile and efficient gene-targeting system for *Aspergillus nidulans*. *Genetics* 172, 1557–1566.

Ottaviani, A., Gilson, E. & Magdinier, F. (2008). Telomeric position effect: from the yeast paradigm to human pathologies? *Biochimie* 90, 93–107.

Palmer, J. M. & Keller, N. P. (2010). Secondary metabolism in fungi: does chromosomal location matter? *Curr Opin Microbiol* 13, 431–436.

Palmer, J. M., Perrin, R. M., Dagenais, T. R. & Keller, N. P. (2008). H3K9 methylation regulates growth and development in *Aspergillus fumigatus*. *Eukaryot Cell* 7, 2052–2060.

Rehmyer, C., Li, W., Kusaba, M., Kim, Y.-S., Brown, D., Staben, C., Dean, R. & Farman, M. (2006). Organization of chromosome ends in the rice blast fungus, *Magnaporthe oryzae*. *Nucleic Acids Res* 34, 4685–4701.

Rehmyer, C. J., Li, W., Kusaba, M. & Farman, M. L. (2009). The telomere-linked helicase (TLH) gene family in *Magnaporthe oryzae*: revised gene structure reveals a novel TLH-specific protein motif. *Curr Genet* 55, 253–262.

Reyes-Dominguez, Y., Bok, J. W., Berger, H., Shwab, E. K., Basheer, A., Gallmetzer, A., Scazzocchio, C., Keller, N. & Strauss, J. (2010). Heterochromatic marks are associated with the repression of secondary metabolism clusters in *Aspergillus nidulans*. *Mol Microbiol* 76, 1376–1386.

Roebel, X., Oestreichner, N., Guillon, A. & Vélot, C. (2010). Gene silencing of transgenes inserted in the *Aspergillus nidulans* alcM and/or alcS loci. *Curr Genet* 56, 341–348.

Rosas-Hernández, L. L., Juárez-Reyes, A., Arroyo-Helguera, O. E., De Las Peñas, A., Pan, S.-J., Cormack, B. P. & Castrano, I. (2006). yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in *Candida glabrata*. *Eukaryot Cell* 7, 2168–2178.

Schoefner, S. & Blasco, M. A. (2009). A ‘higher order’ of telomere regulation: telomere heterochromatin and telomeric RNAs. *EMBO J* 28, 2323–2336.

Shaaban, M., Palmer, J., El-Naggar, W. A., El-Sokkary, M. A., Habib, E.-S. E. & Keller, N. P. (2010). Involvement of transposon-like elements in penicillin gene cluster regulation. *Fungal Genet Biol* 47, 432–432.

Shimizu, K. & Keller, N. P. (2001). Genetic involvement of a CAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in *Aspergillus nidulans*. *Genetics* 157, 591–600.

Shwab, E. K., Bok, J. W., Tribus, M., Galehr, J., Graessle, S. & Keller, N. P. (2007). Histone deacetylase activity regulates chemical diversity in *Aspergillus*. *Eukaryot Cell* 6, 1656–1664.

Smith, K. M., Kothe, G. O., Matsu, C. B., Khalfallah, T. K., Adhvaryu, N. K., Hemphill, M., Freitag, M., Motamed, M. R. & Selker, E. U. (2008). The fungus *Neurospora crassa* displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. *Epigenetics Chromatin* 1, 5.

Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., Osmani, S. A. & Oakley, B. R. (2006). Fusion PCR and gene targeting in *Aspergillus nidulans*. *Nat Protoc* 1, 3111–3120.

Tamaru, H. & Selker, E. U. (2001). A histone H3 methyltransferase controls DNA methylation in *Neurospora crassa*. *Nature* 414, 277–283.

Tamaru, H., Zhang, X., McMillen, D., Singh, P. B., Nakayama, J., Freitag, M., Hickey, P. C., Khlafallah, T. K., Read, N. D. & Selker, E. U. (2003). Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in *Neurospora crassa*. *Nat Genet* 34, 75–79.

Timberlake, W. E. (1980). Developmental gene regulation in *Aspergillus nidulans*. *Dev Biol* 78, 497–510.

Tsitsigiannis, D. I., Zarnowski, R. & Keller, N. P. (2004). The lipid body protein, PpoA, coordinates sexual and asexual sporulation in *Aspergillus nidulans*. *J Biol Chem* 279, 11344–11353.

Yang, L., Ukil, L., Osmani, A., Namh, F., Davies, J., De Souza, C. P., Dou, X., Perez-Balaguer, A. & Osmani, S. A. (2004). Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in *Aspergillus nidulans*. *Eukaryot Cell* 3, 1339–1362.

Edited by: S. D. Harris