Personalized Neural Embeddings for Collaborative Filtering with Text

Guangneng Hu

Tuesday, 4 June 2019
NAACL-19, Minneapolis
Outline

• Collaborative filtering
 • Matrix factorization & Neural approaches
• Collaborative filtering with text
 • Topic modelling & Word embeddings
• Personalized neural embeddings
• Conclusion
Recommendations: Products, Media, Entertainment, & Partners

- **Amazon**
 - 300 million customers
 - 564 million products

- **Netflix**
 - 480,189 users
 - 17,770 movies

- **Spotify**
 - 40 million songs

- **OkCupid**
 - 10 million members
A Typical CF Approach: Matrix Factorization (MF)
(Koren KDD’08, KDD 2018 TEST OF TIME)

✔	❓	✔	❓	✔	❓	
✔	❓	✔	❓	❓	✔	
❓	❓	✔	❓	✔	❓	
❓	✔	❓	✔	❓	❓	
❓	✔	❓	✔	❓	✔	
❓	✔	❓	✔	❓	✔	✔

MF, SVD/PMF

\[\hat{r}_{ui} = P^T_u Q_i \]
A Limitation of MF: As a Single-Layer Linear Neural Network

• **Input**: one-hot encodings of the user and item indices \((u, i)\)
• **Embedding**: embedding matrices \((P, Q)\)
• **Output**: Hadamard product between embeddings with a fixed all-one weight vector \(h\) and an identity activation function

\[
\hat{r}_{u,i} = \sigma(h^T(P_u \odot Q_i))
\]
CF Faces Challenges: Data Sparsity, Long Tail & Unbalanced

• Data sparsity issue
 • Netflix
 • 1.225%
 • Amazon
 • 0.017%

• Long tail & Unbalanced
 • Pareto principle (80/20 rule):
 • A small proportion (e.g., 20%) of products generate a large proportion (e.g., 80%) of sales
A Solution: Collaborative filtering with text

- Item reviews justify user ratings
- Item content reveals topic semantics
Topic Modelling: Hidden Factors & Topics (HFT)

• Using a transform that aligns latent item factors and item topics

\[
\theta_{i,k} = \frac{\exp(\kappa \gamma_{i,k})}{\sum_{k'} \exp(\kappa \gamma_{i,k'})}
\]

\[\gamma_i \in \mathbb{R}^K, \quad \theta_i \in \Delta^K \text{ (i.e., } \sum_k \theta_{i,k} = 1)\]

McAuley & Leskovec, Hidden factors and hidden topics, RecSys'13
Pre-extracted Word-embedding as Features (TBPR)

- Basic MF factorizes ratings into user/item *latent* factors
- Another MF factorizes reviews into user/item *text* factors

\[f_i \equiv \frac{1}{|d_i|} \sum_{w \in d_i} e_w \]

\[P_u^T Q_i + \theta_u^T (H f_i) \]

Hu & Dai, Integrating Reviews into Personalized Ranking for Cold Start Recommendation, PAKDD’17
Personalized Neural Embeddings (PNE)

• Inspired by neural CF and entity embeddings
 • PNE jointly learns embeddings of users, items, and words

• PNE estimates the probability that a user will like an item by two terms
 • behavior factors and semantic factors
Behavior Factors: Learning Neural Embeddings of Users & Items

- Recap: MF as a linear NN

\[\hat{r}_{u,i} = \sigma(h^T(P_u \odot Q_i)) \]

- Learning weights \(h \) instead of fixing it
- Using non-linear activation instead of identity

\[z_{ui}^{\text{behavior}} = \text{ReLU}(W x_{ui} + b) \]
Semantic Factors: Learning Personalized Word Embeddings

• Personalized word embedding encodes the importance of a word to the given user-item interaction

\[a_{j}^{u,i} = x_{ui}^T m_{j}^{u,i} \]

\[z_{ui}^{\text{semantic}} = \sum_{j: w_j \in d_{ui}} \text{Softmax}(a_{j}^{u,i}) c_{j} \]

\[\sum_{j: w_j \in d_{ui}} \text{Softmax}(a_{j}^{u,i}) c_{j} \]
Jointly Learning Embeddings of Users, Items, & Words

- Sharing user and item embeddings
- Binary cross-entropy loss
Dataset and Baselines

• Datasets
 • Amazon: Product reviews by users
 • Cheetah Mobile: News reading by users

Dataset	#user	#item	#rating	#word	#density	avg. words
Amazon	8,514	28,262	56,050	1,845,387	0.023%	65.3
Cheetah	15,890	84,802	477,685	612,839	0.035%	7.2

• Baselines

Baselines	Shallow method	Deep method
CF	BPR	MLP
CF w/ text	HFT, TBPR	LCMR, PNE (ours)
Evaluation Metrics

• Top-N item recommendation

• Metrics to measure the accuracy of rankings
 • Hit Ratio (HR)
 • Mean Reciprocal Rank (MRR)
 • Normalized Discounted Cumulative Gain (NDCG)

\[
HR = \frac{1}{|U|} \sum_{u \in U} \delta(p_u \leq \text{top} N),
\]

\[
MRR = \frac{1}{|U|} \sum_{u \in U} \frac{1}{p_u}
\]

\[
NDCG = \frac{1}{|U|} \sum_{u \in U} \frac{\log 2}{\log(p_u + 1)},
\]
Comparing Different Approaches: PNE vs Multilayer Perceptron

• Since CFNet of PNE is a neural CF (with one hidden layer), results show the benefit of exploiting unstructured text to alleviate the data sparsity issue faced by pure CF methods

TopK	Metric	Method	BPR	HFT	TBPR	MLP	LCMR	PNE
5	HR		8.10	10.77	15.17	21.00*	20.24	23.52
	NDCG	5.83	8.15	12.08	14.86*	14.51	16.46	
	MRR	5.09	7.29	11.04	12.83*	12.63	14.13	
10	HR		12.04	13.60	17.77	28.36*	28.36*	31.86
	NDCG	7.10	9.07	12.91	16.97*	16.78	19.15	
	MRR	5.61	7.67	11.38	13.71*	13.56	15.24	
20	HR		18.21	27.82	22.68	38.20	39.51*	42.21
	NDCG	8.64	12.52	14.14	18.99	19.18*	21.75	
	MRR	6.02	8.54	11.71	14.26*	14.20	15.95	
Comparing Different Approaches: PNE vs HFT & TBPR

• Results show the benefit of integrating content text through MemNet (and also exploiting interactions through neural CF)

TopK	Metric	Method					
		BPR	HFT	TBPR	MLP	LCMR	PNE
5	HR	8.10	10.77	15.17	21.00*	20.24	23.52
	NDCG	5.83	8.15	12.08	14.86*	14.51	16.46
	MRR	5.09	7.29	11.04	12.83*	12.63	14.13
10	HR	12.04	13.60	17.77	28.36*	28.36*	31.86
	NDCG	7.10	9.07	12.91	16.97*	16.78	19.15
	MRR	5.61	7.67	11.38	13.71*	13.56	15.24
20	HR	18.21	27.82	22.68	38.20	39.51*	42.21
	NDCG	8.64	12.52	14.14	18.99	19.18*	21.75
	MRR	6.02	8.54	11.71	14.26*	14.20	15.95
Comparing Different Approaches: PNE vs LCMR

• Since MemNet of PNE is the same with Local MemNet of LCMR (with one-hop), results show the design of CFNet of PNE is more reasonable than that of Centralized MemNet of LCMR

• This also points out the challenge of effectively fusing ratings & text

TopK	Metric	Method	BPR	HFT	TBPR	MLP	LCMR	PNE
5	HR		8.10	10.77	15.17	21.00*	20.24	23.52
	NDCG		5.83	8.15	12.08	14.86*	14.51	16.46
	MRR		5.09	7.29	11.04	12.83*	12.63	14.13
10	HR		12.04	13.60	17.77	28.36*	28.36*	31.86
	NDCG		7.10	9.07	12.91	16.97*	16.78	19.15
	MRR		5.61	7.67	11.38	13.71*	13.56	15.24
20	HR		18.21	27.82	22.68	38.20	39.51*	42.21
	NDCG		8.64	12.52	14.14	18.99	19.18*	21.75
	MRR		6.02	8.54	11.71	14.26*	14.20	15.95
PNE Learns Meaningful Word Embeddings

- Nearest neighbors of drug: shot, shoots, gang, murder, killing, rape, stabbed, truck, school, police, teenage
- Google word2vec: drugs, heroin, addiction, abuse, fda, alcoholism, cocaine, lsd, alcohol, schedule, substances

Pre-trained word embeddings http://home.cse.ust.hk/~ghuac/
Conclusion and Future Works

• Conclusion
 • Behavior interactions can be effectively integrated with unstructured text via jointly learning neural embeddings of users, items, and words

• Future works
 • User privacy
 • A user does not want to share the raw data with others
 • General data privacy regulatory (GDPR) and Federated learning
Thanks!

Q & A

Acknowledge: NAACL travel grant