Curcumol allosterically modulates GABA(A) receptors in a manner distinct from benzodiazepines

Yan-Mei Liu1,2,3,*, Hui-Ran Fan1,2,3,*, Jing Ding4, Chen Huang1, Shining Deng2, Tailin Zhu2, Tian-Le Xu3, Wei-Hong Ge1, Wei-Guang Li2,3 & Fei Li2

Inhibitory A type γ-aminobutyric acid receptors (GABA\(_\text{A}\)Rs) play a pivotal role in orchestrating various brain functions and represent an important molecular target in neurological and psychiatric diseases, necessitating the need for the discovery and development of novel modulators. Here, we show that a natural compound curcumol, acts as an allosteric enhancer of GABA\(_\text{A}\)Rs in a manner distinct from benzodiazepines. Curcumol markedly facilitated GABA-activated currents and shifted the GABA concentration-response curve to the left in cultured hippocampal neurons. When co-applied with the classical benzodiazepine diazepam, curcumol further potentiated GABA-induced currents. In contrast, in the presence of a saturating concentration of menthol, a positive modulator for GABA\(_\text{A}\)R, curcumol failed to further enhance GABA-induced currents, suggesting shared mechanisms underlying these two agents on GABA\(_\text{A}\)Rs. Moreover, the benzodiazepine antagonist flumazenil did not alter the enhancement of GABA response by curcumol and menthol, but abolished that by DZP. Finally, mutations at the β3 or γ2 subunit predominantly eliminated modulation of recombinant GABA\(_\text{A}\)Rs by curcumol and menthol, or diazepam, respectively. Curcumol may therefore exert its actions on GABA\(_\text{A}\)Rs at sites distinct from benzodiazepine sites. These findings shed light on the future development of new therapeutics drugs targeting GABA\(_\text{A}\)Rs.

The γ-aminobutyric acid (GABA) system is essential for the orchestration of local networks and the functional interaction between different brain regions\(^1\). As major executors in the GABAergic system, A-type GABA receptors (GABA\(_\text{A}\)Rs) are pentameric protein complexes that form Cl\(^-\)-permeable ion channels that are widely distributed across the central nervous system, and primarily confer fast inhibitory control over neural activity, thus participating in almost every aspect of physiological and pathophysiological brain function\(^2\). GABA\(_\text{A}\)Rs are made up of 19 known subunits (α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3), and many contain two α subunits, two β subunits, and one γ subunit\(^3\). Despite the large repertoire resulting from various combinations of these subunits, the main subunit configuration is α1-β2-γ2, at a ratio of 2:2:1, constituting approximately 60% of all GABA\(_\text{A}\)Rs in the brain\(^4\). There are two GABA-binding sites\(^5\), formed at two interfaces between α and β subunits. By contrast, the binding site for benzodiazepines\(^7\) is formed by one of the α subunits\(^6,8,9\) and the γ subunit\(^10–12\). The benzodiazepine as a broad spectrum of positive allosteric modulators of the GABA\(_\text{A}\)R has been in clinical use for decades and is still among the most widely prescribed drugs for the treatment of insomnia and anxiety disorders.

The clinical use of classical benzodiazepines is limited by their side effects\(^13,14\) and the risk of drug dependence\(^15,14\). Identification of receptor subtype-selective compounds, and the discovery of novel modulators beyond benzodiazepines, are necessary to overcome these limitations. Indeed, GABA\(_\text{A}\)Rs are also major targets for barbiturates\(^16\), steroids\(^17\), and anaesthetics\(^18–26\), all of which are positive modulators. Moreover, given the increasing evidence that targeting GABA\(_\text{A}\)Rs improves treatment in a broad range of neuropsychiatric disorders\(^1,27,28\), continued efforts are necessary to discover or develop novel GABA\(_\text{A}\)R modulators, including agonists and antagonists\(^29\).

1Department of Chinese Materia Medica, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China. 2Department of Children and Adolescent Health Care, Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xin Hua Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. 3Collaborative Innovation Centre for Brain Science, and Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. 4Pharmacy Department, Affiliated Hospital of Taishan Medical University, Taishan 271000, China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to W.-G.L. (email: wgli@shsmu.edu.cn) or F.L. (email: feili@shsmu.edu.cn)
Natural compounds isolated from plants are a rich source of novel GABAAR ligands. Some natural flavonoids, first isolated from plants used as tranquilizers in folkloric medicine, together with their synthetic derivatives, possess selective affinity for the benzodiazepine-binding site of GABAARs with a broad spectrum of central nervous system effects\(^3\). In addition, a few natural terpenoids containing ether\(^3\) or hydroxyl groups\(^3\) have been identified as positive modulators of GABAARs (Fig. 1a), potentiating GABAergic transmission\(^3\) and thereby suppressing aberrant excitability as seen during epileptiform activity\(^3\). Two compounds isolated from the Chinese medicinal herb *Acorus gramineus*, α- and β-asarone (1-propenyl-2,4,5-methoxybenzol)\(^3\), act on endogenous and recombinant GABAARs, activating the receptor and alleviating epileptic seizures. The widely-used cooling and flavouring agent menthol (5-methyl-2-propan-2-ylcyclohexan-1-ol, Fig. 1a), the best-known monoterpene extracted from the essential oil of the genus *Mentha* of the Lamiaceae family, suppresses hippocampal neuronal excitation and epileptic activity by enhancing GABAergic inhibition\(^3\). Menthol also enhances GABAAR-mediated currents in midbrain periaqueductal grey neurons\(^3\), suggesting a broader spectrum of GABAAR-related pharmacotherapy in future, using menthol and related compounds. Interestingly, menthol has an alike general anaesthetic activity and similar sites of action on the GABAARs to the intravenous agent propofol (2,6-di-isopropylphenol), but not to benzodiazepines, steroids or barbiturates\(^3\). Curcumol\(^3\) \([(3 S,5 S,6 S,8 a S)-3-	ext{methyl}-8-	ext{methylidene}-5\text{-} (\text{propan}-2-	ext{yl})\text{octahydro}-6\text{H}-3\text{a,6-epoxyazulen}-6\text{-}\text{ol}]\) is a sesquiterpene compound and a major bioactive component of *Rhizoma Curcumae* oil. Notably, it induces minimal activation of GABAARs on its own, but facilitates the GABA-activated current in hippocampal neurons and cell lines, which express endogenous and recombinant GABAARs, respectively. As a result, curcumol suppresses basal and epileptic activity in animals\(^3\), strengthening its pharmacological efficacy as a novel allosteric GABAAR modulator. However, the molecular mechanisms underlying curcumol modulation on GABAARs remain to be established. By comparing the electrophysiological effects of curcumol with other known modulators, and performing mutagenesis analysis on recombinant

Figure 1. Modulation of GABA response by curcumol in cultured hippocampal neurons. (a) Chemical structures of curcumol and other GABAAR ligands or modulators used in the present study. (b) Representative traces showing the currents evoked by different concentrations of GABA (black) alone, or curcumol (50 μM) plus various concentrations of GABA (red) as indicated. (c) Concentration–response curves of GABA for currents evoked in the absence (black squares) or presence (red circles) of 50 μM curcumol. Current amplitudes were normalized to the maximal response. These values were derived from previously published data\(^3\), regraphed here in a different way to assess the effect of curcumol on GABA concentration–response curve. The EC\(_{50}\) and Hill coefficient values were 2.4 ± 0.4 μM, 2.0 ± 0.6 without curcumol and 1.7 ± 0.2 μM, 1.9 ± 0.3 with curcumol, respectively. n = 6 each group.
GABA_Rs, here we identify that curcumol as an allosteric modulator of GABA_Rs in a manner distinct from benzodiazepines, but through sites shared with menthol.

Results

Characterization of curcumol on the GABA concentration-response curve in hippocampal neurons. A previous study³³ showed that curcumol (Fig. 1a), a bioactive component of *Rhizoma Curcumae* oil^{30–31} enhanced GABA response in a concentration-dependent manner. In that study³³, we established that at the agonist (i.e. GABA) concentration of 1 μM, curcumol facilitated the GABA-induced current with an EC₅₀ of 34.4 ± 2.9 μM. To make an obvious and significant effect of curcumol on GABA_Rs, we chose 50 μM as the effective concentration in the present study.

We assessed the effects of curcumol on GABA concentration-response curve in hippocampal neurons by re-examination of the effect of 50 μM curcumol on the currents induced by a wide range of GABA concentrations shown in the previous study³³. In contrast to the previous purpose to identify the operational range of GABA concentrations by curcumol³³, here we perform data re-analysis to generate the concentration-response curves of GABA in the absence and presence of curcumol. As shown in Fig. 1b,c, the concentration-response curves to GABA were shifted to the left by curcumol. The EC₅₀ (the agonist concentration that induces the half-maximal response) values in the absence and presence of curcumol were 2.4 ± 0.4 μM and 1.7 ± 0.2 μM, respectively. Mechanistically, the 1 μM GABA used in the following study falls an approximate EC₁₀ and EC₅₀ (the agonist concentrations that give rise to the 10 and 30% of maximal response, respectively) concentration of GABA, in the absence and presence of curcumol, respectively (Fig. 1c). Meanwhile, the Hill coefficients in the absence or presence of curcumol were 2.0 ± 0.6 and 1.9 ± 0.3, respectively. This increase of the apparent affinity to GABA implies a potentially allosteric regulation by curcumol of GABA-mediated GABA_R response; however, the precise mechanisms underlying the action of curcumol on GABA_Rs remain not fully understood.

Interplay of curcumol and diazepam on GABA-activated currents in hippocampal neurons. To decipher the underlying mechanisms of curcumol on GABA_Rs, we sought to determine the potential interaction between curcumol and other known GABA_R modulators, such as the classical benzodiazepine, diazepam (DZP, Fig. 1a). Cultured hippocampal neurons were exposed to GABA, DZP, and curcumol, alone or combination with each other (Fig. 2). DZP (1 μM) alone induced negligible inward currents but significantly potentiated GABA (1 μM)-evoked currents (Fig. 2a,b), consistent with its allosteric modulatory nature². Likewise, curcumol (50 μM) produced minimal currents on its own but substantially enhanced GABA (1 μM)-induced currents (Fig. 2a,b), consistent with the previous observation³³. We also compared the enhancement of GABA-activated currents by DZP or curcumol (i.e. I_{DZP-GABA} and I_{Curcumol+GABA}, respectively) with the sum of the independent currents induced by GABA (I_{GABA}) and DZP (I_{DZP}) or curcumol (I_{Curcumol}) and found that the potentiation of GABA-mediated currents by DZP or curcumol was more than additive (Fig. 2c,d). This confirmed that curcumol, like DZP, allosterically potentiates the GABA_R activation in hippocampal neurons.

Interestingly, curcumol further increased the current induced by the combination of GABA and DZP (Fig. 2a,b), and the increase (I_{DZP+Curcumol+GABA}) was more than additive (I_{DZP-GABA} + I_{Curcumol}) (Fig. 2e), supporting the notion that curcumol causes an additional enhancement of the DZP-potentiated GABA_R activation. Consistent with this, DZP also led to a further increase in the current induced by the combination of GABA and curcumol (Fig. 2a,b), and the increase (I_{DZP+Curcumol+GABA}) was more than additive (I_{Curcumol+GABA} + I_{DZP}) (Fig. 2e). Thus, GABA, DZP, and curcumol act together to facilitate the GABA_R activation in hippocampal neurons. This suggests that curcumol, as a positive allosteric modulator of GABA_Rs, likely acts at a site distinct from the benzodiazepine-binding site.

Interplay between curcumol and menthol on GABA-activated currents in hippocampal neurons. To understand in more depth molecular mechanisms underlying curcumol modulation of GABA_Rs, we further investigated the interplay of curcumol and menthol^{34,37}, both belonging to terpenoid compounds carrying hydroxyl groups (Fig. 1a). Menthol at lower concentrations (up to 100 μM) did not activate a tangible inward current (I_{Men} = 0; data not shown), but significantly potentiated GABA (1 μM)-evoked currents (Fig. 3a,b), consistent with the previous observation³⁴. Similarly, in an independent set of experiments from that shown in Fig. 2, curcumol (50 μM) significantly enhanced the GABA (1 μM)-induced currents (Fig. 3a,b), and the compound current (I_{Curcumol+GABA}) was more than additive (I_{Curcumol+GABA}) (Fig. 3c). Interestingly, curcumol-mediated enhancement (I_{Curcumol+GABA}) occluded the further action of menthol (100 μM) (I_{Men+Cumol+GABA}) (Fig. 3a,b), with menthol unable to improve the current (I_{Men+Curcumol+GABA}) to more than that induced by GABA and curcumol (I_{Curcumol+GABA}). Conversely, the compound current (I_{Men+Cumol+GABA}) amplitude to the combination of GABA, curcumol, and menthol (100 μM) was much higher than that of GABA and menthol (I_{Men+GABA}) (Fig. 3a,b) and, again, more than additive (I_{Men+GABA} + I_{Curcumol}) (Fig. 3d). These observations, in contrast to the non-overlapping effects between curcumol and DZP (1 μM) (Fig. 2), raise the possibility that curcumol has a similar mechanism to menthol but not DZP, and that curcumol holds a much higher efficacy than menthol (100 μM). Curcumol would thereby occlude further action of menthol, but would have no similar effects on the modulation by DZP at GABA_Rs (Fig. 2).

To characterize the interplay between curcumol and menthol more comprehensively, we increased the concentration of menthol up to 3 mM. Menthol (3 mM) alone activated a significant inward current (Fig. 3a, referred to as I_{Men}) that was blocked by a selective GABA_R inhibitor, biccuculline methiodide (1 μM), (data not shown)³⁷, and enhanced by curcumol (Fig. 3a,b). Moreover, co-application of menthol (3 mM) and GABA enhanced GABA_R activation (Fig. 3a,b) in a more than additive manner (I_{Men+GABA} > I_{Men+GABA}) (Fig. 3e). In the simultaneous presence of curcumol and menthol (3 mM) with GABA, although the overall current (I_{Men+Curcumol+GABA}) was significantly greater than that induced by GABA and curcumol (I_{Curcumol+GABA}), there was no difference...
between $I_{\text{MEN}+\text{Curcumol}+\text{GABA}}$ and $I_{\text{MEN}+\text{GABA}}$ (Fig. 3a,b). This shows that curcumol did not further increase the current induced by GABA and menthol (3 mM) together. In addition, the overall current induced by GABA, curcumol, and menthol (3 mM) did not differ from the sum of $I_{\text{MEN}+\text{GABA}} + I_{\text{Curcumol}}$, or $I_{\text{Curcumol}+\text{GABA}} + I_{\text{MEN}}$ (Fig. 3f). Namely, menthol at higher concentrations saturates an allosteric site for GABA$_A$R modulation and more likely
precludes further action by curcumol. This suggests that curcumol and menthol share similar binding sites on GABAARs for modulation.

Actions of GABA-activated currents by curcumol and menthol, but not DZP, are resistant to benzodiazepine antagonist in hippocampal neurons. To underline the differential interplay between curcumol and menthol or DZP, we then examined whether actions of the above compounds were differentially affected by flumazenil (1 μM), a benzodiazepine antagonist. When flumazenil (1 μM) was coapplied with curcumol and GABA (Fig. 4a), curcumol still enhanced the GABA-induced current to a comparable extent
(210.6 ± 25.7% vs. 204.9 ± 17.4% of GABA-induced currents by curcumol in the absence and presence of flumazenil, respectively, n = 5–6 per group, P > 0.05, Fig. 4b). Likewise, the effect of menthol was also not altered by flumazenil (196.3 ± 16.5% vs. 180.8 ± 11.7% of GABA-induced currents by menthol in the absence and presence of flumazenil, respectively, n = 10–13 per group, P > 0.05, Fig. 4c,d), which was consistent the previous study performed on Xenopus oocytes expressing the α1-β2-γ2 subtype of GABAAR34. By contrast, in the presence of flumazenil, DZP failed to enhance the GABA-induced current in hippocampal neurons (199.8 ± 27.6% vs. 103.4 ± 2.5% of GABA-induced currents by DZP in the absence and presence of flumazenil, respectively, n = 10 per group, P < 0.01, Fig. 4c,f), verifying flumazenil as a benzodiazepine antagonist. Together, these results strengthen the notion that curcumol and menthol do not share sites of action with benzodiazepines on GABAARs.
Curcumol shares site of action with menthol, but not DZP, on the α1-β2-γ2 subtype of GABA\(_A\)R. To investigate binding sites for the modulatory action of curcumol over other known modulators on the GABA\(_A\)Rs (Fig. 1a), we turned to confirm the effects of curcumol, menthol, and DZP on recombinant GABA\(_A\)Rs expressed in HEK-293T cells that expressed α1, β2, β2-M286W, or β2-Y444W, and γ2 GABA\(_A\)R subunits. (b, d, f) Pooled data from (a), (c) and (e), respectively. Data represent peak current amplitude normalized to that induced by GABA (1 μM) alone (dashed line). n = 3–8 each group. N.S., not significant, *P < 0.05, **P < 0.01, compared with the current induced by GABA alone (dashed line), paired Student's t-test.
Variation mechanisms underlying actions of curcumin over menthol or DZP on the α5:β2:γ2 subtype of GABA$_A$R. Next, we extended the mechanistic study of curcumin over menthol or DZP to another GABA$_A$R subtypes. While the α1-containing GABA$_A$Rs primarily govern the phasic GABAergic inhibition\(^{42}\), the α5-containing are the major isoforms underlying tonic inhibition\(^{34–45}\) in hippocampal neurons. Accordingly, the effects of curcumin over menthol or DZP were examined on the HEK-293T cells expressing either WT or mutant α5:β2:γ2 GABA$_A$Rs. As expected, curcumin (50μM), or menthol (300μM), or DZP (1μM) each significantly potentiated the currents induced by GABA (1μM) on HEK-293T cells expressing WT α5:β2:γ2 GABA$_A$Rs (Fig. 6a,b), all of which are similar with the α1:β2:γ2 subtype (Fig. 5a,b).

Then, we exposed curcumin, menthol, and DZP, respectively, to HEK-293T cells expressing the mutant [α5:β2(M286W)-γ2 or α5:β2(Y444W)-γ2] GABA$_A$Rs. In line with the α1:β2:γ2 subtype of GABA$_A$R (Fig. 5c–f), the modulation by curcumin was also abolished by inclusion of either the M286W (Fig. 6c,d) or Y444W (Fig. 6e,f) mutations in the β2 subunit of the α5:β2:γ2 subtype of GABA$_A$R. Interestingly, the enhancement of the α5:β2:γ2 GABA$_A$R response by menthol was eliminated in the β2-M286W (Fig. 6c,d), but not β2-Y444W (Fig. 6e,f)-containing receptors. As expected, the enhancement of GABA-induced currents in α5:β2-M286W or β2-Y444W mutants by DZP (Fig. 5c–f) was not significantly different from the WT α5:β2:γ2GABA$_A$Rs (152.1 ± 13.9%, 187.8 ± 11.5%, and 176.0 ± 16.3% of GABA-induced currents by DZP on the WT, β2-M286W, and β2-Y444W GABA$_A$Rs, respectively, n = 4–6 per group, P > 0.05 vs. WT). These results were comparable with the previous report studied in Xenopus oocytes\(^{34}\), which showed that flunitrazepam, another type of benzodiazepine, also reserved its allosterically modulatory effect. The lack of mutation effects on these sites to benzodiazepines\(^{34}\) (Fig. 5c–f) agrees with a previous study showing that the β2 subunit adjacent to the γ2 subunit determines the sensitivity to benzodiazepines in the recombinant receptors\(^{34}\). Together, these results collectively point to a notion that curcumin is an allosteric modulator for GABA$_A$Rs in a manner distinct from benzodiazepines.

A mutation in γ2 subunit of GABA$_A$R resistant to benzodiazepine preserves the actions of curcumin and menthol. Finally, to underpin the differential mechanisms conferring the modulatory actions of curcumin and menthol on the α5:β2:γ2 GABA$_A$R mutants bring up variant mechanisms underlying the actions of these modulators.

Therefore lay a foundation on which to examine the specific site(s) responsible for the modulation of GABA$_A$Rs by curcumin and other modulators.

It has been established that a methionine residue at amino acid position 286 [transmembrane domain (TM) 3] and a tyrosine residue at position 444 (TM4) at the β2 subunit are important for the anaesthetic actions\(^{35–26}\), including menthol\(^{45}\), but not benzodiazepines, on the α1:β2:γ2 subtype of GABA$_A$R. Mutations at either one of these residues to a tryptophan (i.e. M286W or Y444W) both selectively abolished menthol-mediated enhancement of GABA$_A$R function. Given the structural similarity between curcumin and menthol (both are terpenoid compounds carrying hydroxyl groups; Fig. 1a), in addition to previous identification of the interplay between curcumin and menthol over DZP (Figs 2 and 3), we expected that these sites important for menthol would also be essential for the curcumin action. To investigate this, we exposed these modulators (Fig. 1a) to HEK-293T cells expressing mutant [α1:β2(M286W)-γ2 or α1:β2(Y444W)-γ2] GABA$_A$Rs. Previous studies suggested that the GABA concentration–response relationships (i.e. the agonist concentration that induces the half-maximal current) over menthol or DZP (1μM) was also used to screen for modulation by curcumin (50μM), menthol (300μM), and DZP (1μM). We found no enhancement of either type of mutant receptor current by menthol (Fig. 5c–f), consistent with the previous study in Xenopus oocytes expressing these mutant receptors\(^{34}\). Notably, the modulation by curcumin was also abolished by inclusion of the mutations in the β2 subunits (Fig. 5c–f). By contrast, the enhancement of mutant α2-M286W or β2-Y444W currents by DZP (Fig. 5c–f) was not significantly different from the WT α1:β2:γ2 GABA$_A$Rs (173.7 ± 13.6%, 143.8 ± 9.2%, and 162.0 ± 15.3% of GABA-induced currents by DZP on the WT, β2-M286W, and β2-Y444W GABA$_A$Rs, respectively, n = 4–6 per group, P > 0.05 vs. WT). These results were comparable with the previous report studied in Xenopus oocytes\(^{34}\), which showed that flunitrazepam, another type of benzodiazepine, also reserved its allosterically modulatory effect. The lack of mutation effects on these sites to benzodiazepines\(^{34}\) (Fig. 5c–f) agrees with a previous study showing that the β2 subunit adjacent to the γ2 subunit determines the sensitivity to benzodiazepines in the recombinant receptors\(^{34}\). Together, these results collectively point to a notion that curcumin is an allosteric modulator for GABA$_A$Rs in a manner distinct from benzodiazepines.
Discussion
In the present study, we have shown that curcumol (Fig. 1a), a natural compound and major bioactive component of *Rhizoma Curcumae* oil, acts as an allosteric modulator of GABA$_\text{A}$R (Fig. 1b,c) in a manner different from that of the classical benzodiazepines. Curcumol significantly potentiated the GABA$_\text{A}$R activation in neurons in a way that did not overlap with modulation by DZP, a well-characterized benzodiazepine, but acted together with DZP to enhance receptor function (Fig. 2). By contrast, curcumol occluded the effects of menthol, another type of GABA$_\text{A}$R modulator, at the concentration of 100 μM, and was occluded by this compound at the concentration up to 3 mM, indicative of a shared binding site between curcumol and menthol (Fig. 3). Moreover, the benzodiazepine antagonist flumazenil had no impact on the enhancements of GABA response by curcumol and menthol, but abolished that by DZP (Fig. 4). Finally, while single mutations (M286W or Y444W) in the β2 subunit abolished the effects of curcumol and menthol, but not DZP (Figs 5 and 6), single mutation (F77Y) in the GABA$_\text{A}$R γ2

Figure 6. Effects of point mutations in β2 subunit of GABA$_\text{A}$R on the modulation of α5-β2-γ2 GABA$_\text{A}$R subtype by curcumol, menthol, or DZP: (a, c, e) Representative current traces induced by GABA (1 μM) in the absence or presence of curcumol (50 μM), menthol (300 μM), or DZP (1 μM) in HEK-293T cells that expressed α5, β2, β2-M286W, or β2-Y444W, and γ2 GABA$_\text{A}$R subunits. (b, d, f) Pooled data from (a), (c) and (e), respectively. Data represent peak current amplitude normalized to that induced by GABA (1 μM) alone (dashed line). n = 6–8 each group. N.S., not significant, *P < 0.05, **P < 0.01, ***P < 0.001, compared with the current induced by GABA alone (dashed line), paired Student's t-test.
subunit abolished the effects of DZP, but not curcumol nor menthol (Fig. 7). Curcumol therefore exerts its actions on GABA ARs at sites distinct from those of benzodiazepines (Fig. 8). These findings shed more light on the modulation of GABA ARs and could guide the development of new drugs targeting this receptor.

In line with the multifaceted physiological and pathophysiological roles of GABA ARs in the central nervous system, the pharmacology and the drug development on these receptors have also advanced considerably in recent decades. In addition to the natural agonist GABA, positive GABA AR modulators include benzodiazepines, barbiturates, steroids, and anaesthetics, each of which has specific binding sites on GABA ARs. Several lines of evidence from the present study support that curcumol shares mechanisms with anaesthetics in the allosteric modulation of GABA ARs.

First, although curcumol and DZP enhanced each other’s allosteric modulation (Fig. 2), curcumol and menthol reciprocally and concentration-dependently occluded each other’s effects (Fig. 3), suggesting that curcumol acts on GABA ARs via a mechanism different from that of benzodiazepines, but similar to that of menthol. Second, menthol and curcumol are both terpenoid compounds (monoterpene and sesquiterpene, respectively) with a functional hydroxyl group (Fig. 1a), a characteristic stereochemical configuration that differs from that of DZP, providing the structural basis of ligands for curcumol action independent of benzodiazepine binding sites. It is noteworthy that the structure–effect relationship of menthol indicates the importance of the hydroxyl group in these ligands. Likewise, curdione [(3S,6E,10S)-6,10-dimethyl-3-propan-2-ylcyclocdec-6-ene-1,4-dione], an analogue of curcumol, predominantly lacks the hydroxyl group and exhibits greatly reduced potency at the GABA AR. Third, mutagenesis analysis of the GABA AR demonstrated that the TM3 and TM4 regions in the β2 subunits are important for the potentiating effects of curcumol and menthol, but not DZP. Together with a previous study showing that menthol shares general anaesthetic activity and GABA AR site of action with the intravenous agent propofol, but not with benzodiazepines, steroids or barbiturates, we determined that curcumol likely represents a new member of the anaesthetic family for allosteric modulation of GABA ARs.

Belonging to the non-classical anaesthetic subclass of GABA AR modulators, curcumol not only shares an obvious chemical scaffold with menthol and propofol, but also contains new information about the structure–activity relationship for this particular form of GABA AR pharmacology. As discussed earlier, the hydroxyl group in these compounds is essential for the positive modulation of GABA ARs. The ortho positioning of an
A hypothetical scheme for the modulation of GABA(A) receptors by curcumol, menthol, or DZP through different mechanisms. (a) For the α1-β2-γ2 GABA,A,R, while curcumol and menthol but not DZP act the receptor through the sites of Met-286 (M286) and Tyr-444 (Y444) in the β2 subunit, DZP but not curcumol nor menthol acts the receptor through Phe-77 (F77) in the γ2 subunit. (b) For the α5-β2-γ2 GABA,A,R, while curcumol acts the receptor through the sites of M286 and Y444, menthol acts the receptor through the site of M286 but not that of M444 in the β2 subunit, DZP but not curcumol nor menthol acts the receptor through Phe-77 (F77) in the γ2 subunit. Please see the text for more details.
For instance, although the anxiolytic actions of benzodiazepines are observed at lower doses than their sedative actions, sedation is still a problem if benzodiazepines are used as daytime anxiolytics. Benzodiazepines also have addictive properties and are liable to be abused12,13,14, which limits their long-term use, and physical dependence and tolerance are areas of concern2. Considering this, curcumol holds a potential promise for the future development of novel GABA\textsubscript{A}R drugs. Importantly, curcumol not only potentiates GABA\textsubscript{A}R activation, but also amplifies the modulation of GABA\textsubscript{A}Rs in the presence of benzodiazepines (i.e. DZP) (Fig. 2). Therefore, as a non-classical anaesthetic modulator, curcumol and its derivatives might represent an alternative or supplementary strategy to alleviate or remove the side-effects that limit long-term and high-dose administration of benzodiazepines. However, the assumption remains under-developed yet, which needs to be carefully investigated in the future.

Curcumol is a natural compound isolated from \textit{Rhizoma Curcumae} oil. Used alone or mixed in a specific type of traditional Chinese medicine, knowledge of its pharmacological effects on the central nervous system is increasing. \textit{Rhizoma Curcumae} (rhizome of \textit{Curcuma; Ezhu}) has been used as a condiment and home remedy in China for thousands of years, illustrating its lack of prominent toxicity in human. \textit{Rhizoma Curcumae} oil has been suggested to possess pharmacological efficacy in a number of domains, including neuroprotection39, cognitive enhancement40, and anti-seizure efficacy41. Of the three main ingredients in \textit{Rhizoma Curcumae} oil (curcumin, curcumin, and curdione), curcumol is the most potent GABA\textsubscript{A}R modulator, and probably confers, at least in part, the pharmacological effects reported above. Moreover, like most naturally derived substances, curcumol is lipophilic and readily crosses the blood–brain barrier62, with the maximal concentration of curcumol after intravenous injection of \textit{Rhizoma curcum} oil up to 108.85 ± 65.91, 92.38 ± 17.63 μg/g in the liver and brain, equivalent to 458.43 ± 7.87 and 390.86 ± 74.59 μM (both the densities of liver and brain tissue were assumed to be 1.0 g/ml), respectively. Using the radioactive \([\text{H}]\)-curcumol, a previous study53 demonstrated that curcumol can be rapidly and completely absorbed orally in rats; it emerged in the blood at 5 min and peaked at 15 min, respectively, after the oral administration. In addition, tissue distribution (including the penetration into the brain), drug stability and metabolism, expressing as the area under concentration time curve of curcumol, under oral administration all were comparable with that by intravenous injection53, supporting a more easily administration way for using this drug. Based on the pharmacokinetics of curcumol, together with the pharmacological effects on GABA\textsubscript{A}Rs, it is not surprising that curcumol is capable of targeting against the central nervous system to treat neurological diseases. Indeed, curcumol alone decreased basal locomotor activity and chemically induced seizure activity in mice53, confirming its effectiveness as a GABA\textsubscript{A}R modulator to target the central function. However, despite curcumol belonging to the anaesthetics class of GABA\textsubscript{A}R modulators, its anaesthetic effects remain unexplored. Of note, whether the long-term use of curcumol would produce dependence or tolerance, as with benzodiazepines, remains to be determined in the future studies. Nevertheless, the present study has contained new information about the pharmacological nature of curcumol on the central nervous system, and provides a primary basis for further in-depth studies regarding the pharmacological development of curcumol and its related drugs.

In summary, we have identified the natural compound curcumol as an allosteric modulator of GABA\textsubscript{A}Rs. Curcumol possesses an intriguing self-limiting efficacy at GABA\textsubscript{A}Rs, in addition to its mechanisms being similar to anaesthetics but independent on benzodiazepine binding sites. This work therefore suggests a novel approach to the development of drugs targeting GABA\textsubscript{A}Rs.

Methods

Animals. Animal procedures reported in the present study were approved by the Animal Ethics Committee of Shanghai Jiao Tong University School of Medicine, Shanghai, China. All efforts were made to minimize animal suffering and to reduce the number of animals used. Mice were housed under standard laboratory conditions (12/12 h light/dark, temperature 22–26 °C, air humidity 55–60%) with food and water ad libitum. Animal procedures were carried out in accordance with the guidelines for the Care and Use of Laboratory Animals of Shanghai Jiao Tong University School of Medicine, and approved by the Institutional Animal Care and Use Committee (Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine) (Policy Number DLAS-MP-ANIM. 01–05).

Cell culture. Primary cultures of mouse hippocampal neurons were prepared according to previously described techniques33. In brief, 15-day-old embryonic C57BL/6 J mice were anesthetized with halothane. Brains were removed rapidly and placed in ice-cold Ca2+- and Mg2+-free phosphate buffered solution. Tissues were dissected and incubated with 0.05% trypsin-EDTA for 10 min at 37 °C, followed by trituration with fire-polished glass pipettes, and plated on poly-D-lysine-coated 35 mm culture dishes at a density of 1 × 105 cells per dish. Neurons were cultured with Neurobasal medium (Invitrogen) supplemented with B27 (Invitrogen) and maintained at 37 °C in humidified 5% CO\textsubscript{2} atmosphere incubator. Cultures were fed twice a week and used for electrophysiological recording 10–20 days after plating. For neuron cultures, gial growth was suppressed by addition of 5-fluoro-2-deoxyuridine (20 μg/ml; Sigma-Aldrich) and uridine (20 μg/ml; Sigma-Aldrich).

Human embryonic kidney (HEK)-293T cells were cultured at 37 °C in humidified atmosphere of 5% CO\textsubscript{2} and 95% air. The cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 1 mM L-glutamine, 10% foetal bovine serum, 50 units/ml penicillin, and 50 μg/ml streptomycin (all from Invitrogen).

Site-directed mutagenesis. Mutations of receptor cDNA were generated with the QuikChange® mutagenesis kit (Stratagene, La Jolla, CA) in accordance with the manufacturer’s protocol using high-pressure-liquid-chromatography-purified or PAGE-purified oligonucleotide primers (Sigma-Genosys, The Woodlands, TX). All mutants were verified by DNA sequence analysis.
Functional expression of the recombinant GABA_RRs. The rat α1, β2, and γ2 subunit cDNA of GABA_R were obtained from Dr. Yu Tian Wang (University of British Columbia, Vancouver, BC, Canada). The rat α3 subunit cDNA was kindly provided by Dr. David H. Farb (Boston University School of Medicine, Boston, Massachusetts, USA). Transient transfection of HEK-293T cells was carried out using HilyMax liposome transfection reagent (Dojindo Laboratories). Cotransfection with a green fluorescent protein expression vector, pEGFP-C3, was used to enable identification of transfected cells for patch clamp recording by monitoring the fluorescence of green fluorescent protein. Electrophysiological measurements were performed 24–48 h after transfection.

Electrophysiology. Whole-cell recordings were made using an Axon 700A patch-clamp amplifier (Axon Instruments, Foster City, CA, USA). Membrane currents were sampled and analysed using a Digidata 1440 interface and a personal computer running Clampex and Clampfit software (Version 10, Axon Instruments). In voltage clamp mode, the membrane potential was held at −60 mV for whole-cell current recording. All electrophysiological experiments were carried out at room temperature (23 ± 2°C).

The standard external solution contained (in mM): 150 NaCl, 5 KCl, 1 MgCl₂, 2 CaCl₂, 10 N-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES), and 10 glucose (pH 7.4 with Tris-base, 325–330 mOsm/L). The pipette solution was composed of (in mM): 120 KCl, 30 NaCl, 1 MgCl₂, 0.5 CaCl₂, 5 ethylene glycol tetraacetic acid (EGTA), 2 Mg-ATP, 10 HEPES, pH 7.2 adjusted with Tris-base.

Chemicals and drugs. The chemicals used in the present study curcumin [(3S,5S,8S,6,8aS)-3-methyl-8-methylidene-5-(propan-2-yl)octahydro-3a,6-epoxyazulen-6-ol], menthol [5-methyl-2-propan-2-ylcyclohexan-1-ol], and diazepam (DZP) [7-chloro-1-methyl-5-phenyl-3H-1,4-benzodiazepin-2-one] were purchased from Sigma-Aldrich (St. Louis, MO). Curcumin, menthol, and DZP were initially dissolved as concentrated stock solutions in dimethyl sulfoxide and subsequently diluted to the desired concentration in the standard external solution. The final concentration of dimethyl sulfoxide was lower than 0.1% and was confirmed to be ineffective alone at the same concentration in control experiments (data not shown). Other drugs were either first dissolved in deionized water and then diluted to a final concentration in standard external solution just before use or dissolved directly in the standard external solution. Drugs were applied using a rapid application technique termed the “Y-tube” method as described previously. The tip of the drug tube was positioned 50–100 μM away from the patched cells. This system allows a complete exchange of external solution surrounding a cell within 20 ms. Throughout the experiment, the bath was superfused continuously with the standard external solution.

Data analysis. Values are expressed as the mean ± S.E.M. Groups are compared using Student’s t test. P < 0.05 was considered to be statistically significant. P and n represent the value of significance and the number of neurons or cells, respectively. Clampfit 10.5 (Molecular Devices) was used for data analysis. The smooth concentration-response curves of curcumin on facilitation of the GABA response in hippocampal neurons were drawn according to a modified Michaelis-Menten equation by the method of least squares (the Newton-Raphson method) after normalizing to the maximal GABA response: I = I_{max} × Cⁿ/(Cⁿ + EC₅₀), where I is the normalized value of the current, I_{max} is the maximal response, C is the drug concentration, EC₅₀ is the concentration which induces the half-maximal response and n is the apparent Hill coefficient.

References
1. Rudolph, U. & Mohler, H. GABA_A receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. *Annu Rev Pharmacol Toxicol* 54, 483–507 (2014).

2. Olsen, R. W. & Sieghart, W. GABA_A receptors: subtypes provide diversity of function and pharmacology. *Neuropharmacology* 56, 141–148 (2009).

3. Olsen, R. W. & Sieghart, W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. *Pharmacol Rev* 60, 243–260 (2008).

4. McKernan, R. M. & Whiting, P. J. Which GAB_A-receptor subtypes really occur in the brain? *Trends Neurosci* 31, 358–364 (2008).

5. Rudolph, U. & Knoflach, F. Beyond classical benzodiazepines: novel therapeutic potential of GABA_A receptor subtypes. *Nat Rev Drug Discov* 10, 685–697 (2011).

6. Minier, F. & Sigel, E. The benzodiazepine binding site of GABA_A receptors. *Trends Pharmacol Sci* 18, 425–429 (1997).

7. Rudolph, U. & Knoflach, F. Benzodiazepine receptors: novel therapeutic potential of GABA_A receptor subtypes. *Nat Rev Neurosci* 7, 444–455 (2006).

8. Minier, F. & Sigel, E. Positioning of the alpha-subunit isoforms confers a functional signature to gamma-aminobutyric acid type A receptors. *Biochem Soc Trans* 37, 1343–1346, doi:10.1042/BST0371343 (2009).

9. Sigel, E. & Buhle, A. The benzodiazepine binding site of GABA_A receptors. *Trends Pharmacol Sci* 18, 425–429 (1997).

10. Pritchett, D. B. et al. Importance of a novel GABA_A receptor subunit for benzodiazepine pharmacology. *Nature* 338, 582–585 (1989).

11. Sigel, E., Baur, R., Trube, G., Mohler, H. & Malherbe, P. The effect of subunit composition of rat brain GABA_A receptors on channel function. *Neuron* 5, 703–711 (1990).

12. Gunther, U. et al. Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors. *Proc Natl Acad Sci USA* 92, 7749–7753 (1995).

13. Tan, K. R. et al. Neural basis for addictive properties of benzodiazepines. *Nature* 463, 769–774 (2010).

14. Calixto, E. GABA withdrawal syndrome: GAB_A receptor, synapse, neurobiological implications and analogies with other abstinences. *Neuroscience* 313, 57–72 (2016).

15. Puthenkalam, R. et al. Structural studies of GABA_A receptor binding sites: which experimental structure tells us what? *Front Mol Neurosci* 9, 44 (2016).

16. Macdonald, R. L. & Olsen, R. W. GABA_A receptor channels. *Annu Rev Neurosci* 17, 569–602 (1994).

17. Hossie, A. M., Wilkins, M. E., da Silva, H. M. & Smart, T. G. Endogenous neurosteroids regulate GABA_A receptors through two discrete transmembrane sites. *Nature* 444, 486–489 (2006).

18. Mihic, S. J. et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. *Nature* 389, 385–389 (1997).
We thank Dr. James J. Celentano for critical reading of the manuscript. We thank all groups that provided us with GABA_AR cDNAs. We also thank Ms. Ying Li, Mr. Jin Wang, and Mr. Xing-Lei Song for their technical assistance. This study was supported by grants from the National Basic Research Program of China (2013CB835100 and 2014CB910300), the National Natural Science Foundation of China (81400870, 81500941, 81571031, and 91632304), the Shanghai Committee of Science and Technology (14DJZ227200 and 17XD1403200), the Shanghai Municipal Education Commission (Research Physician Project: 20152234).

Acknowledgements

We thank Dr. James J. Celentano for critical reading of the manuscript. We thank all groups that provided us with GABA_AR cDNAs. We also thank Ms. Ying Li, Mr. Jin Wang, and Mr. Xing-Lei Song for their technical assistance. This study was supported by grants from the National Basic Research Program of China (2013CB835100 and 2014CB910300), the National Natural Science Foundation of China (81400870, 81500941, 81571031, and 91632304), the Shanghai Committee of Science and Technology (14DJZ227200 and 17XD140320), the Shanghai Municipal Education Commission (Research Physician Project: 20152234).
Author Contributions
T.L.X., W.H.G., W.G.L., and F.L. designed the project. Y.M.L., H.R.F., J.D., C.H., S.D., and T.Z. performed cell culture. Y.M.L., J.D., and C.H. carried out electrophysiological recordings. Y.M.L., J.D., and W.G.L. performed data analysis. Y.M.L., W.G.L., and F.L. wrote the manuscript. All authors read and approved the final manuscript.

Additional Information
Competing Interests: The authors declare no competing financial interests.

How to cite this article: Liu, Y.-M. et al. Curcumin allosterically modulates GABA(A) receptors in a manner distinct from benzodiazepines. Sci. Rep. 7, 46654; doi: 10.1038/srep46654 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017