Phenotypic and genotypic characterization of multi-drug-resistant *Escherichia coli* isolates harboring bla_{CTX-M} group extended-spectrum β-lactamas recovered from pediatric patients in Shenzhen, southern China

Sandip Patil1,2
Xiaowen Chen1,2
Ma Lian2
Feiqiu Wen1,2

1Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province 518038, People’s Republic of China; 2Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province 518038, People’s Republic of China

Aims and Objectives: The emergence and spread of extended-spectrum β-lactamas (ESBLs) particularly CTX-M producing multi-drug-resistant (MDR) *Escherichia coli* ($E. coli$) is one of the greatest challenges for community health globally. The study investigated the phenotypic and genotypic characteristics of ESBLs-producing $E. coli$ recovered from pediatric patients from Shenzhen Children’s Hospital, China.

Materials and methods: Present study, a total of 2,670 isolates of *E. coli* were collected from Shenzhen Children’s Hospital, China of which 950 were ESBLs producer. ESBLs production was confirmed by using the combination disc diffusion method, and antimicrobial susceptibility test was detected. In addition, β-lactamase-producing genes and co-existence of carbapenem/colistin resistance genes were determined by PCR assay and sequencing. The diversity and phylogenetic relationship were determined by multi-locus sequence typing method.

Results: Thirty-five percent ($n=950$) prevalence of ESBLs-producing *E. coli* we reported in Shenzhen, China of which 50 ESBLs producing *E. coli* were randomly selected for a further characterization. All 50 ESBLs-producing *E. coli* isolates revealed MDR phenotype and 100% were resistant to Ampicillin/sulbactam, Ampicillin, Cefazolin, and Ceftriaxone. All 50 ESBLs producers harbored at least one type of β-lactamase gene particular bla_{CTX-M}. The PCR and sequencing revealed the most common CTX-M subtype was $bla_{CTX-M-15}$ ($n=18$), followed by $bla_{CTX-M-14}$ ($n=16$), $bla_{CTX-M-50}$ ($n=9$), $bla_{CTX-M-55}$ ($n=3$), $bla_{CTX-M-27}$, $bla_{CTX-M-101}$, and $bla_{CTX-M-21}$ each ($n=1$). Co-existence of bla_{CTX-M} with bla_{TEM}, bla_{SHV}, bla_{GES}, and bla_{VEB} was detected in few isolates. Among identified sequence types, ST131 (12%) was more dominant in ESBLs-producing *E. coli*. Phylogenetic group A was the most prominent group among the ESBLs-producing *E. coli* based on multiplex PCR.

Conclusion: Our study shows the prevalence of bla_{CTX-M} gene in ESBLs-producing *E. coli* in pediatric patients in Shenzhen, China. We highlight the importance to monitor the emergence and trends of ESBLs-producing isolates in a pediatric healthcare setting.

Keywords: Antimicrobial resistance, molecular characterization, MLST, ESBLs, *Escherichia coli*

Introduction

The swift emergence of antibiotic-resistant *Enterobacteriaceae* family is the major cause of hospital admission and associated morbidity and mortality in children. 1 *Enterobacteriaceae*,

For personal use only.
predominantly Escherichia coli is a significant opportunistic pathogen causing infections in hospitals and serves as a key cause of urinary tract infections, gastrointestinal tract infections, bloodstream infection, and meningitis in humans.\(^2\,^3\) E. coli is a major reservoir of the Extended-spectrum β-lactamases (ESBLs) encoding genes.\(^4\) ESBLs are able to hydrolyze the modern β-lactam antibiotics including third-generation Cephalosporin. A total of 350 dissimilar ESBLs variant has been identified till date, which are divided into nine separate families based on the amino acid sequences such as TEM, SHV, CTX-M, PER, VEB, GES, BES, TLA, and OXA.\(^5\,^6\) Among them, TEM, SHV, CTX-M, and OXA are the major variants reported globally. Particularly \(\text{bla}_{\text{CTX-M}}\) has been increased rapidly and is now widely found in clinical isolates of \(\text{E. coli}\) across the world.\(^7\,^8\) Some studies have demonstrated that ESBLs-producing \(\text{E. coli}\) has become an epidemic in China.\(^9\)\(^-\)\(^11\) However, all these studies focused on food, environment, and adult clinical cases. So far, little is known about the epidemiology of ESBLs-producing \(\text{E. coli}\) in pediatric patients from southern China. Moreover, it is critical to provide up-to-date resistance pattern which guides the treatment decision in southern China. Therefore, this study was aimed to investigate the phenotypic and genotypic characterization of ESBLs-producing \(\text{E. coli}\) recovered from pediatric patients in Shenzhen Children’s Hospital, China.

Materials and methods

Bacterial isolation and identification

A total of 2,670 unique clinical \(\text{E. coli}\) isolates were collected (one isolate recovered from one child) between January 2014 and December 2015 from Shenzhen Children's Hospital, China. This hospital is a major children hospital in the southern area of China. Among the 2,670 \(\text{E. coli}\) isolates, 950 (35%) were confirmed as ESBLs-producing \(\text{E. coli}\) by VITEK2 compact system (Ref. No. 27530/275660) of which 50 were randomly selected for molecular analysis. Among the 50 ESBLs-producing \(\text{E. coli}\) isolates 32 (64%) were from male and 18 (36%) were from female, patients age ranges from 1 month to 12 years. The clinical isolation site for specimens was as follows, urine \(n=16\), sputum \(n=16\), pus \(n=12\), catheter-associated \(n=3\), blood \(n=2\) and cerebrospinal fluid \(n=1\) (S-1).

Phenotypic detection of ESBLs production

The combination disc test was done for phenotypic detection of ESBLs production. The test was performed by using the disc of both cefotaxime and ceftazidime, alone and in combination with clavulanic acid. Control strain, which was selected from the characterized strain collection of our laboratory while ATCC25922 used as a negative control strain. The ESBLs production result was analyzed according to the Clinical and Laboratory Standards Institute (CLSI) guideline.\(^12\)

Antimicrobial susceptibility test

Antimicrobial susceptibility was performed by VITEK@2 compact system (Biomerieux-Ref. No. 27530/275660) method for 18 antimicrobial agents, namely, Ampicillin/Sulbactam, Piperacillin, Ertapenem, Amikacin, Levofoxacin, Nitrofurantoin, Ampicillin, Cefazolin, Cefazidime, Ceftriaxone, Cefepime, Imipenem, Cefotetan, Tobramycin, Gentamicin, and Ciprofloxacin. The results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guideline.\(^12\)

Detection of β-lactamase and associated genes

The standard PCR was performed to detect the presence of ESBLs encoding genes: \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{SHV}}, \text{bla}_{\text{CTX-M}}\) (variant), \(\text{bla}_{\text{GES}}, \text{bla}_{\text{CARB}}, \text{bla}_{\text{PER}}, \text{bla}_{\text{VET}}, \text{and bla}_{\text{OXA}}\) using specific primers previously described.\(^15\) In addition, carbapenemase genes (\(\text{bla}_{\text{KPC}}, \text{bla}_{\text{NDM-1}}, \) and colistin resistance \(\text{mcr-1}\) were determined in ESBLs-producing \(\text{E. coli}\) by PCR assay and sequencing. The specific primers were used as described in our previous study.\(^14\) The purified PCR products were sequenced commercially (Sangon Biotech-Shanghai, China). DNA Sequences were analyzed by NCBI-BLAST program.

Multi-locus sequence typing (MLST)

The sequences types (STs) were determined for ESBLs-producing \(\text{E. coli}\) isolates by MLST. PCR assay was performed to amplify internal portions of seven housekeeping genes of \(\text{E. coli}\) (\(\text{adh}, \text{fumC}, \text{gyrB}, \text{idc}, \text{mdh}, \text{purA}, \text{and recA}\)) with specific primers.\(^15\) Amplified products were sequenced commercially (Sangon Biotech-Shanghai, China). The allelic type and sequences type for all ESBLs-producing \(\text{E. coli}\) were determined with achtman scheme available at http://mlst.warwick.ac.uk/mlst/dbs/Ecoli.

Phylogenetic group detection

Major phylogenetic group of all ESBLs-producing \(\text{E. coli}\) isolates was determined by multiplex PCR assays, using the combination of three DNA markers genes (\(\text{chuA}, \text{yjaA},\) and \(\text{TspE4.C2}\)) as described by Clermont et al.\(^16\)
Plasmid transferability
Conjugation experiments were performed to analyze the horizontal gene transfer of \(\text{bla}_{\text{CTX-M}} \) for ESBLs-producing \(E. \ coli \) isolates by using streptomycin-resistant \(E. \ coli \) C660 as the recipient strain. We used liquid mating assay as described earlier. Transconjugants were selected on Luria Bertani agar containing streptomycin 2,000 (µg/mL) and cefotaxime (32 µg/mL). Transconjugants were further tested for ESBLs production and the existence of \(\text{bla}_{\text{CTX-M}} \) genes by PCR.

PCR-based replicon typing
PCR-based replicon typing was performed for both plasmids from parental and transconjugant isolates. The Inc (Incompatibility) groups were determined by using specific primer introduced by Carattoli et al, in 2005.\(^{18}\)

Results
ESBLs production and antimicrobial susceptibility
A total of \(n=950 \) shown ESBLs production by VITEK2 compact system (Ref. No. 27530/275660) of which randomly selected 50 \(E. \ coli \) further confirmed as ESBLs-producing \(E. \ coli \) by combination disc test. The result was analyzed according to the CLSI guideline. Antimicrobial susceptibility tests reflected that all of the randomly selected 50 ESBLs -producing \(E. \ coli \) isolates 100% were resistant to Ampicillin/sulbactam, Ceftriaxone, Cefazolin, and Ampicillin while Aztreonam (50%), Trimethoprim (60%), Gentamycin (38%), Ciprofloxacin (32%), Cefepime (30%), Cefotaxime (28%), Tobramycin (14%), and Nitrofurantoin (3.8%). However, all of the isolates were susceptible to Pipercillin, Eratapenem, Amikacin, Imipenem, and Cefotetan. The antimicrobial phylogram was analyzed by Bio-numeric software (Figure 1). The antimicrobial results indicate that all of 50 ESBLs-producing \(E. \ coli \) are resistant to two more than two class of antibiotics so-called as multi-drug resistant \(E. \ coli \). According to the results obtained, resistance to Aztreonam and Cefepime showed a significant difference for the time period during January 2014–July 2014 and July 2014–December 2015.

Molecular analysis of drug resistance genes
All of the 50 ESBLs-producing \(E. \ coli \) isolates were carrying \(\text{bla}_{\text{CTX-M}} \) genes, with the most common being \(\text{bla}_{\text{CTX-M-15}} \) (18/50, 36%), followed by \(\text{bla}_{\text{CTX-M-14}} \) (16/50, 32%) and \(\text{bla}_{\text{CTX-M-90}} \) (9/50, 18%), \(\text{bla}_{\text{CTX-M-55}} \) (3/50, 6%) \(\text{bla}_{\text{CTX-M-101}} \). Additionally, co-existence of other β lactamase genes was detected, \(\text{bla}_{\text{TEM}} \) (10/50,20%) followed by \(\text{bla}_{\text{SHV}} \) (8/50,16%), \(\text{bla}_{\text{GES}} \) (5/50,10%), \(\text{bla}_{\text{CARB}} \) (1/50,2%) (Table 1). The \(\text{bla}_{\text{PER}}, \text{bla}_{\text{VAB}} \) and \(\text{bla}_{\text{OXA}} \) group genes were not detected in this study. It was noteworthy that all \(\text{bla}_{\text{CTX-M-14}} \) gene carrying ESBLs-producing \(E. \ coli \) isolates were resistant to Ciprofloxacin. There was no significant difference in the prevalence of \(\text{bla}_{\text{CTX-M}} \) genes among the ESBLs-producing \(E. \ coli \) isolated from the different isolation sites or even samples. Moreover, carbapenemase-producing genes were detected, including \(\text{bla}_{\text{NDM-1}} \) (14/50, 28%), \(\text{bla}_{\text{KPC}} \) (5/50, 10%), and most recently discovered colistin resistance \(mcr-1 \) (2/50,10%) (Table 1).

Multi-locus sequences typing and phylogenetic grouping
The extensive diversity of MLST was recorded from ESBLs-producing \(E. \ coli \) isolates, with a total of 30 different STs of which, ST131 (12%) was highly prevalent in Shenzhen (Table 1). \(E. \ coli \) ST95 clonal complex (CC) was the major complex observed among all studied isolates. The ST95CC has been usually observed from urine, sputum, and pus samples. All ST131CC isolates were recovered from general surgery wards, these results indicate that ST131CC \(E. \ coli \) was protuberant in the general surgery wards and key transporter for the \(\text{bla}_{\text{CTX-M-14}} \) gene (Table 1). Our particular concern is that \(\text{bla}_{\text{CTX-M-15}} \) gene was reported in different 15 STs in Shenzhen Children’s Hospital. This observation suggested that ESBLs-producing \(E. \ coli \) isolates carrying \(\text{bla}_{\text{CTX-M-15}} \) gene spread in the Shenzhen region and are now widespread in Southern China. All ESBLs-producing \(E. \ coli \) isolates were classified into four phylogenetic groups, namely, A, B1, D, and B2. The results revealed that majority of isolates belonged to group A (54%), along with a substantial proportion for groups B1 (22%), D (8%), and B2 (6%).

Plasmid profiling
The successful transconjugants were selected from Luria Bertani agar containing streptomycin 2,000 (µg/mL) and cefotaxime (32 µg/mL). We observed that IncFIA (\(n=14 \)), IncHI2 (\(n=10 \)), IncFIB (\(n=10 \)), IncFICS (\(n=3 \)), IncFIC (\(n=2 \), and IncFH1 (\(n=2 \)) “Inc” group plasmids were responsible for the horizontal gene transformation of \(\text{bla}_{\text{CTX-M}} \) genes (S 2). Nine transconjugants isolates were not shown any “Inc” group.
Discussion

The incidence of CTX-M-type ESBLs among clinical isolates especially *E. coli* has noticeably increased in the earlier several years. To the best of our knowledge, this is the first study from southern China to precisely demonstrate the prevalence of CTXM-type ESBLs and antimicrobial susceptibility pattern of *E. coli* which were isolated from pediatric infectious cases. The prevalence of ESBLs-producing *E. coli* in our study was 35% which was lower than the across China-northwest (71.7%), southwest (61.1%), north...
Table 1 β-lactamase encoding gene analysis and STs of ESBLs-producing E. coli

Isolates	ESBLs genes	Carbapenemase gene	MCR-I gene	STs	CC				
	bla_{CTX-M}	bla_{SHV}	bla_{CARB}	bla_{GES}	bla_{TEM}	bla_{KPC}	bla_{NDM-I}		
SP-ESBL-14-01	CTX-M-14	+	-	+	-	-	-	ST451	None
SP-ESBL-14-02	CTX-M-15	-	-	-	-	-	-	ST597	ST69CPLX
SP-ESBL-14-03	CTX-M-14	+	-	-	-	-	-	ST1170	None
SP-ESBL-14-04	CTX-	-	-	-	-	-	-	ST159	None
SP-ESBL-14-06	CTX-M-14	-	-	-	-	+	-	ST95	ST95CPLX
SP-ESBL-14-07	CTX-M-15	-	-	-	-	-	+	ST205	ST205CPLX
SP-ESBL-14-10	CTX-M-15	-	-	-	-	-	+	ST1177	ST38CPLX
SP-ESBL-14-11	CTX-M-14	-	-	+	-	-	-	ST531	ST95CPLX
SP-ESBL-14-13	CTX-M-15	-	-	-	-	-	-	ST648	ST648CPLX
SP-ESBL-14-15	CTM-M-15	+	-	-	+	+	-	ST159	None
SP-ESBL-14-22	CTX-M-15	-	-	+	-	-	-	ST131	ST131CPLX
SP-ESBL-14-24	CTX-M-14	-	+	+	+	-	-	ST131	ST131CPLX
SP-ESBL-14-27	CTX-M-15	-	+	+	-	-	-	ST915	None
SP-ESBL-14-58	CTX-M-14	+	-	+	-	+	-	ST701	ST131CPLX
SP-ESBL-14-59	CTX-M-15	+	-	-	+	+	-	ST1461	ST131CPLX
SP-ESBL-14-61	CTX-M-15	-	-	-	-	-	-	ST95	ST95CPLX
SP-ESBL-14-64	CTX-	-	-	-	-	-	-	N/D	N/D
SP-ESBL-14-65	CTX-M-90	-	-	-	-	+	+	ST648	ST648CPLX
SP-ESBL-14-67	CTX-	+	-	-	-	+	-	ST131	ST131CPLX
	M-109							ST106	ST69CPLX
SP-ESBL-14-68	CTX-M-14	-	-	-	+	-	-	ST106	ST69CPLX
SP-ESBL-14-70	CTX-M-14	-	+	-	+	-	-	ST131	ST131CPLX
SP-ESBL-14-71	CTX-M-14	-	-	+	+	-	-	ST38	ST38CPLX
SP-ESBL-14-74	CTX-M-15	-	-	-	+	+	-	ST106	ST69CPLX
SP-ESBL-14-75	CTX-M-15	-	+	+	-	-	-	ST117	None
SP-ESBL-14-76	CTX-M-14	-	-	-	-	-	-	ST443	ST205CPLX
SP-ESBL-14-77	CTX-M-90	-	-	-	-	-	-	ST648	ST648CPLX
SP-ESBL-14-78	CTX-M-15	-	-	-	-	-	-	ST495	None
SP-ESBL-14-79	CTX-M-14	-	+	-	-	-	-	ST131	ST131CPLX
SP-ESBL-14-80	CTX-M-55	-	-	-	-	-	-	ST595	None
SP-ESBL-14-81	CTX-M-14	-	-	+	-	-	-	ST127	None
SP-ESBL-14-82	CTX-M-90	-	-	-	-	-	-	ST12	ST12CPLX
SP-ESBL-14-83	CTX-M-15	-	-	-	-	-	-	ST95	ST95CPLX
SP-ESBL-14-85	CTX-M-14	-	-	-	-	-	-	ST12	ST12CPLX
SP-ESBL-14-86	CTX-M-15	-	-	-	-	-	+	ST95	ST95CPLX
SP-ESBL-14-90	CTX-M-14	-	-	-	-	+	-	ST131	ST131CPLX
SP-ESBL-14-94	CTX-M-90	-	-	+	-	-	-	ST444	ST446CPLX
SP-ESBL-14-95	CTX-M-27	-	-	+	-	+	-	ST416	ST14CPLX
SP-ESBL-14-96	CTX-M-90	-	-	-	-	-	-	ST439	ST446CPLX
SP-ESBL-14-97	CTX-M-90	-	-	-	-	-	-	ST140	ST95CPLX
SP-ESBL-15-100	CTX-M-90	-	+	-	-	-	-	ST3201	ST95CPLX
SP-ESBL-15-101	CTX-M-55	-	-	-	-	-	-	ST38	ST38CPLX
SP-ESBL-15-104	CTX-M-15	-	-	-	-	-	-	ST106	ST69CPLX

(Continued)
The high prevalence of ESBL-producing E. coli about 82.6% was reported from Taian, a large city in Shandong province, China. But, the prevalence of ESBLs-producing E. coli in Shenzhen, China higher than the other nations, namely, Brazil (12.8%), Chile (23.8%) and Argentina (18.1%).

We have a lower prevalence of ESBLs-producing E. coli than rest of the country may due to sturdy prevention measures, however, we should pay continual attention to tackle this problem by following informed treatment decisions from past experience.

The antimicrobial susceptibility test data clearly indicate that high resistance rate of ESBLs-producing E. coli to Ceftriaxone, Cefazolin and Ampicillin (100%), Aztreonam (50%), Trimethoprim (60%), Gentamycin (38%), and Ciprofloxacin (32%) has raised serious concern and became a challenge for clinicians. Therefore, we suggest avoiding indiscriminate use of antibiotics in medical practice which will certainly lower the opportunities for the emergence of resistance. Our antimicrobial susceptibility results were comparable with another part of China, Taiwan, and Thailand.

We reported, blaCTX-M-15 as the most prevalent genotype of ESBLs-producing E. coli in Shenzhen followed by blaCTX-M-14, blaCTX-M-90, blaCTX-M-55, blaCTX-M-101, blaCTX-M-211, blaCTX-M-27. This result indicates the diversity of CTX-M genotype of ESBLs-producing E. coli in Shenzhen, China. Similar results were reported from across China. Jiranun Bubpamala reported that CTX-M group genes continually increasing from 2007 to 2018 but other β-lactamase genes were declined. In addition, co-existence of ESBLs with either carbapenem-resistant genes blaNDM-1 (28%), blaKPC (10%), or most recently discovered colistin-resistant mcr-1 (10%) raises a concern about the spread of such superbugs in the Shenzhen area. Several reports showed the co-existence of carbapenem resistance genes and mcr-1 in E. coli in China. The 41 ESBLs-producing E. coli isolates shown six different Inc plasmid groups which include IncFIA, IncHI2, IncFIB, InFIIS, IncFIC, and InFH1 similar types of plasmid group with associated with blaCTX-M was reported in China. Though our study was limited by the isolate numbers and geographic

Isolates	ESBLs genes	Carbapenemase gene	MCR-1 gene	STs	CC
SP-ESBL-15-105	blaCTX-M	-	-	-	ST140
SP-ESBL-15-108	blaCTX-M	-	-	-	ST398
SP-ESBL-15-109	blaCTX-M	-	-	-	ST648
SP-ESBL-15-110	blaCTX-M	-	-	-	ST140
SP-ESBL-15-114	blaCTX-M	-	-	-	ST320
SP-ESBL-15-115	blaCTX-M	-	-	-	ST421
SP-ESBL-15-117	blaCTX-M	-	-	-	ST10
SP-ESBL-15-120	blaCTX-M	+	+	+	ST2144

Abbreviations: E.coli, Escherichia coli; ESBL, extended-spectrum β-lactamases; STs, sequences type; CC, clonal complex; N/D, not detected.
area however the results sufficiently implicate the need of close monitoring of such superbugs in a clinical setting for this region.

MLST results reflect that ST131 (12%) was the most common ST among the 50 ESBLs-producing *E. coli* isolates. Similarly, some current countrywide studies from tertiary and county hospitals have also shown that ST131 was found in 9.6%, 12.7%, and 13.4% of ESBL-producing *E. coli*, respectively. In contrast, the percentage of ST131 ESBLs-producing *E. coli* is notably lower in China as compared to European and American regions, according to a community infection study in the US (53%), UK (64%), and Belgium (64%).

Conclusion

The study demonstrated that *bla*_{CTX-M} gene was dominant in ESBLs-producing *E. coli* at Shenzhen Children’s Hospital and was composed of a variety of subtypes. We described the ESBLs-producing *E. coli* developed an increasing level of resistance to antibiotics. Our study stresses on the necessity of long-term monitoring on ESBLs-producing *E. coli* in hospital environments, especially in Shenzhen Children’s Hospital. National programs devoted to the health of children in China need to consider the emerging threat of ESBLs-producing bacteria, and research efforts should be devoted to focus on the molecular characterization of ESBL types as well as additional controlled studies assessing risk factors and possible outcomes for children.

Ethics statement

The present study received approval from the Shenzhen Children’s Hospital (Research) ethical committee 2018 (013).

The clinical isolates used in this research were part of routine hospital laboratory procedures. Verbal consent was given by the patient’s parent/s or legal guardian/s.

Acknowledgments

This study was part of the Sciences and Technology Project from Sciences Technology and Innovation Committee of Shenzhen municipality (Grant No. JCYJ20170817170110940).

Disclosure

The authors report no conflicts of interest in this work.

References

1. Evelina T, Maria D. Public health burden of antimicrobial resistance in Europe. *Lancet Infect Dis*. 2019;19(1):4–6.
2. Wu G, Day M, Mafura T, et al. Comparative analysis of ESBL-positive *Escherichia coli* isolates from animals and humans from the UK, The Netherlands and Germany. *PLoS One*. 2013;8(9):e75392. doi:10.1371/journal.pone.0075392
3. Musicha P, Feasey A, Cain K, et al. Genomic landscape of extended spectrum β-lactamase resistance in *Escherichia coli* from an urban African setting. *J Antimicrob Chemother*. 2017;72(6):1602–1609. doi:10.1093/jac/dkx066
4. Hordijk J, Wagenaar A, Van de GA, et al. Increasing prevalence and diversity of ESBL/AmpC-type β-lactamase genes in *Escherichia coli* isolated from veal calves from 1997 to 2010. *J Antimicrob Chemother*. 2013;68(1):1970–1973. doi:10.1093/jac/dkt132
5. Paterson L, Bonomo A. Extended-spectrum beta-lactamases: a clinical update. *Clin Microbiol Rev*. 2005;18(4):657–686. doi:10.1128/CMR.18.4.657-686.2005
6. Sharma J, Sharma M, Ray P. Detection of TEM & SHV genes in *Escherichia coli* & *Klebsiella pneumoniae* isolates in a tertiary care hospital from India. *Indian J Med Res*. 2010;132(9):332–336.
7. Miao Z, Li S, Wang L, Song W, Zhou Y. Antimicrobial resistance and molecular epidemiology of ESBL-producing *Escherichia Coli* isolated from outpatients in town hospitals of Shandong province, China. *Front Microbiol*. 2017;8:63. doi:10.3389/fmicb.2017.00063
8. Zheng H, Zeng Z, Chen S, et al. Prevalence and characterisation of CTX-M beta-lactamases amongst *Escherichia coli* isolate from healthy food animals in China. *Int J Antimicrob Agents*. 2012;39(4):305–310. doi:10.1016/j.ijantimicag.2012.11.001
9. Xiao H, Giske G, Wei Q, Shen P, Hedlini A, Li J. Epidemiology and characteristics of antimicrobial resistance in China. *Drug Resist Update*. 2011;14(4–5):236–250. doi:10.1016/j.drup.2011.07.001
10. Xiao Y, Shen P, Wei Z, et al. National surveillance of antimicrobial resistance of *Mohnarin*, China. *J Nosocomiol*. 2012;22:4946–4952.
11. Liu H, Wang Y, Wang G, et al. The prevalence of *Escherichia coli* strains with extended-spectrum beta-lactamases isolated in China. *Front Microbiol*. 2015;6:335. doi:10.3389/fmicb.2015.00315
12. Clinical and Laboratory Standards Institute. *Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement*. 2010. Available from: https://clsi.org/. Accessed May 06, 2019.
13. Tian B, Huang M, Fang L, Qin Y, Zhang F, Huang X. *CTX-M-137*, a hybrid of *CTX-M-14*-like and *CTX-M-15*-like beta-lactamases identified in an *Escherichia coli* clinical isolate. *J Antimicrob Chemother*. 2014;69(8):2081–2085. doi:10.1093/jac/dku126
14. Zhong L-L, Zhang Y-F, Doi Y, et al. Coproduction of MCR-1 and NDM-1 by colistin-resistant *Escherichia coli* isolated from a healthy individual. *Antimicrob Agents Chemother*. 2017;61(1):e01962–16. doi:10.1128/AAC.01962–16
15. Adiri RS, Gophna U, Ron Z. Multi-locus sequence typing (MLST) of *Escherichia coli* O78 strains. *FEMS Microbiol Lett*. 2003;222(2):199–203. doi:10.1016/S0378-1097(03)00295-7
16. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the *Escherichia coli* phylogenetic group. *Appl Environ Microbiol*. 2000;66(10):4555–4558. doi:10.1128/AEM.66.10.4555-4558.2000
17. Tian GB, Yi-Qi J, Ying-Min H, et al. Characterization of *CTX-M-140*, a variant of *CTX-M-14* extended-spectrum β-lactamase with decreased cephalosporin hydrolytic activity, from cephalosporin-resistant proteus mirabilis a. *Antimicrob Agents Chemother*. 2016;60(10):6121–6126. doi:10.1128/AAC.00822-16
18. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. *J Microbiol Methods*. 2005;63(3):219–228. doi:10.1016/j.mimet.2005.03.018
19. Elisabet G, Milene GQ, Laura M, et al. Emergence of resistance to quinolones and β-lactam antibiotics in enterobacterial and enterotoxigenic Escherichia coli Causing traveller’s diarrhoea. *Antimicrob Agents Chemother*. 2019;63(2):e01745–18. doi:10.1128/AAC.01745-18

20. Jingjing Q, Dongdong Z, Lilin L, et al. High prevalence of ESBL-producing *Escherichia coli* and *Klebsiella pneumoniae* in community-onset bloodstream infections in China. *J Antimicrob Chemother*. 2017;72(1):273–280. doi:10.1093/jac/dlx066

21. Gales AC, Castanheira M, Jones RN, Sader HS. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY antimicrobial surveillance program (Latin America, 2008–2010). *Diag Microbiol Infect Dis*. 2012;73(4):354–360. doi:10.1016/j.diagmicrobio.2012.04.007

22. Fei H, Wei-Yang L, Jiun-Ling W, et al. Faecal carriage of multidrug-resistant *Escherichia coli* by community children in southern Taiwan. *BMC Gastroenterol*. 2018;18(86):1–8. doi:10.1186/s12876-017-0727-1

23. Bubpamala J, Khuntayaporn P, Thirapanmethee K, Montakantikul P, Santanirand P, Chomnawang T. Phenotypic and genotypic characterizations of extended-spectrum-beta-lactamase-producing *Escherichia coli* in Thailand. *Infect Drug Resist*. 2018;11:2151–2157. doi:10.2147/IDR.S147740

24. Zhang J, Zhen B, Zhao L, et al. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in *Escherichia coli* isolated from patients with community-onset infections in Chinese county hospitals. *BMC Infect Dis*. 2014;14:659. doi:10.1186/s12879-014-0659-0

25. Wang S, Zhao Y, Xia Z, et al. Antimicrobial resistance and molecular epidemiology of *Escherichia coli* causing bloodstream infections in three hospitals in Shanghai, China. *PLoS One*. 2016;11(1):e0147740. doi:10.1371/journal.pone.0147740

26. Li S, Zhao M, Liu J, Zhou Y, Miao Z. Prevalence and Antibiotic Resistance profiles of extended-spectrum β-lactamase-producing isolated from healthy broilers in Shandong province, China. *J Food Prot*. 2016;79(7):1169–1173. doi:10.4315/0362-028X.JFP-16-025

27. Beiwen Z, Huihui H, Xu J, et al. Co-existence of MCR-1 and NDM-1 in clinical *Escherichia coli* isolates. *Clin Infect Dis*. 2016;63(10):1393–1395. doi:10.1093/cid/ciw553

28. Ma J, Liu J-H, Lv L, et al. Characterization of extended-spectrum β-lactamase genes found among *Escherichia coli* isolates from duck and environmental samples obtained on a duck farm. *Appl Environ Microbiol*. 2012;78(10):3668–3673. doi:10.1128/AEM.07507-11

29. Cao X, Cavaco M, Lv Y, et al. Molecular characterization and antimicrobial susceptibility testing of *Escherichia coli* isolates from patients with urinary tract infections in 20 Chinese hospitals. *J Clin Microbiol*. 2011;49(7):2496–2501. doi:10.1128/JCM.02503-10

30. Zengmin M, Song L, Lei W, Wengang S, Yufa Z. Antimicrobial resistance and molecular epidemiology of ESBL-producing *Escherichia coli* isolated from outpatients in town hospitals of Shandong Province, China. *Front Microbiol*. 2015;6(3):1–8. doi:10.3389/fmicb.2015.00001

31. Pitout D, Gregson B, Church L, Ehsayed S, Luaplund B. Community-wide outbreaks of clonally related CTX-M-14 beta-lactamase-producing *Escherichia coli* strains in the Calgary health region. *J Clin Microbiol*. 2015;43(6):2844–2849. doi:10.1128/JCM.02530-14

32. Smet A, Martel A, Persoons D, et al. Characterization of extended-spectrum β-lactamases produced by *Escherichia coli* isolated from hospitalized and non-hospitalized patients: the emergence of CTX-M-15-producing strains causing urinary tract infections. *Microb Drug Resist*. 2010;16(2):129–134. doi:10.1089/mdr.2009.0132