Methods of soil seed bank estimation: a literature review proposing further work in Africa

Elie A Padonou (1-2), Bokon A Akakpo (2-3), Bernard Tchigossou (1), Bruno Djossa (1-2)

A number of methods are used to assess the soil seed banks of a range of plant species in various habitats around the world, with approaches that differ between countries and continents. An understanding of the differing techniques emphasises the need for further research, especially in Africa. We reviewed 97 articles on soil seed bank estimation, published between 2010 and 2020, and only 13.41% of these were from Africa. Soil sample collection in Africa was based mainly on stratified random sampling, systematic sampling, random sampling or cluster sampling carried out at the end of each region’s rainy season. Random and cluster sampling were more widely used in savannas, while stratified random and systematic samplings were more common in forests. The shape of the samples was either circular or quadrilateral (square and rectangular) or they were measured by soil mass or volume. The soil sampler cores most often applied were: circular diameter of 5 cm; square sizes of 10 × 10 cm, 20 × 20 cm and 25 × 25 cm; and rectangular sizes of 20 × 25 cm and 20 × 10 cm. The most-used soil core depths were 5 cm and 10 cm. No specific sample shape was linked with either forest or savanna ecosystems, although the number of samples depended on the land use and land cover. Soil seed bank densities and species composition were mainly assessed with direct greenhouse germination over trial duration depending on the plant species’ functional traits. In analysing soil seed bank data, non-parametric statistics were more frequently used than parametric statistics because of the skews in the data. This review will contribute to future soil seed bank studies in Africa.

Keywords: Soil Seed Bank, Sampling Methods, Greenhouse Germination, Literature Review

Introduction

Seeds from a broad range of plant species occur in soil seed banks in various habitats and may be particularly important in restoration projects, where preferred species have been lost from the vegetation but survive in the seed bank (Brock et al. 1994). Large amounts of seeds can remain dormant in soil for many years, and can germinate when conditions become favourable (Warr et al. 1993). Soil seed banks are therefore important in understanding vegetation history as the vegetation composition in terms of plant species is influenced by seeds production, dispersal and longevity of seeds as well as soil depth (Sumberová & Ducháček 2017). Significant role can be attributed to seed banks as the determinant of future vegetation, especially after a disturbance (Warr et al. 1993).

In assessing soil seed banks, basic approaches (for example wet sieving and flotation, both of which are followed by identification of seeds under a stereoscopic microscope) are emphasised (Sumberová & Ducháček 2017). Other approaches include the cultivation of soil samples and subsequent identification of the emergent seedlings (Bakker et al. 1996). The advantages and disadvantages of each of these methods have been demonstrated independently by various researchers and have been subject to extensive discussion (Gonzalez & Gerhardni 2012, Mahé et al. 2021). Moreover, the flotation approach was criticised for its inaccuracy (Gross 1990), and therefore the two remaining approaches (cultivation of soil samples approach and wet sieving approach) would have been more widely used in recent soil seed bank analyses. Although soil seed bank studies have been conducted in many parts of the world, the literature shows a large range of methods from sampling stage to the estimation of species diversity and density and sometime with methodological biases along the study process (Csontos 2007). Thus, no adequacy of soil seed bank assessment methods has been reported yet. For example, in the attempts to minimize sampling method biases, many research dealt with the tedious compensable process of huge amount of soil samples without sufficient guarantee (Brock et al. 1994).

In addition, soil seed bank assessment in different ecosystems was conducted with time and labour investment because of the technicalities of the method procedures (Benoit et al. 1989). It is therefore important to document the soil seed bank assessment method in relation to the ecosystems for further research on the technical and method procedures.

Many African ecosystems are degraded due to multiple factors such as fire, intensive logging, grazing and climatic change (Savadogo et al. 2008). Thus, there is a need for ecosystems restoration and conservation in Africa. The soil seed bank of these ecosystems may be of interest for...
ecological restoration due to the presence of seeds from the above vegetation in the soil (Savadogo et al. 2017). Moreover, it might be acknowledged that few studies concern this topic in Africa. Despite the few studies on soil seed bank assessment in African ecosystems (Tab. 5 in Supplementary material), there is a lack of reference method for trials experiment, data collection and analysis. The method bias is an issue for seed bank analyses and discussion of the results (Chiquoine & Abella 2018). To make soil seed bank analysis more useful and especially in Africa, it should be important to integrate data from various databases. Combined environmental data (soils, vegetation and climate) would allow modelling of plant species distribution and/or ecological characteristics of stand vegetation (Ewald et al. 2013, Stankevica et al. 2015) to aid landscape restoration. The challenge of this literature review was to find which seed bank assessment methods would be preferentially adopted in soil seed bank assessment in Africa. This paper was then based on soil seed bank literature in relation to vegetation patterns (grassland or savannas and forests) and aims both to highlight the relevant literature on recent methods used in seed bank studies and to emphasize the need for further research within this area in Africa.

Methods of literature search

The Web of Sciences® database was consulted for the papers published in the period of 2010-2020. The keywords used to search the papers included “soil seed bank”, “seed bank and methods”, “seed bank and soil sample”, “soil seed bank and Africa”, “seed bank and grassland”, “seed bank and savannas”, “seed bank and forest”, “seed bank and herbaceous”, “seed bank and tree species”. The papers that did not clearly provide the methods used in soil seed bank assessment were discarded as well as the review papers that did not focus on understanding the seed bank assessment efficiency and/or the accuracy of a method or the comparison of methods. A total of 97 papers were finally considered for this review. Data were analyzed with regard to the objectives of the study, the soil sampling methods, soil sample size, number of samples, seed bank estimation methods, above-ground vegetation analysis methods, soil analysis methods, duration of trial, type of data collected during trial, data analysis methods, plant species studied (herbaceous, trees or both), vegetation type (savanna, grassland, forest), country and continent. Frequency, tables and charts were used to present the findings.

Review of seed bank literature

The main objectives of the studies examining soil seed banks were: (1) to assess the effects and intensity of earlier disturbance on aboveground vegetation (Tessema et al. 2016, Leder et al. 2017, Palmer et al. 2018, Sanou et al. 2018b); (2) to evaluate restoration methods (Klooster et al. 2014, Helsen et al. 2015, Luo et al. 2017); and (3) to understand habitat resilience to threat (Davies et al. 2013, Zhang & Chu 2013, Fernández et al. 2018). Other studies have focused on the comparison of ecological habitats in terms of plant diversity, species variation in seed banks (Adeteyi et al. 2014, Dos Santos et al. 2016, Schwab & Kiehl 2017, Douh et al. 2018) and dynamics of soil seed banks in relation to aboveground vegetation (Cunha et al. 2016).

Studies concerning the methods of soil seed banks assessment were mostly related to the composition and structure of the above-vegetation in relation to the soil seed bank (Ambrosio et al. 2004, Gonzalez & Ghermandi 2012, Shen et al. 2014, Sandra et al. 2016, Plue et al. 2017). Other studies addressed how to reduce bias in greenhouse seed bank data by using post-disturbance gap emergence trials (Plue et al. 2017) and considered whether a large number of small-sized samples are important in forest soil seed bank characterization (Shen et al. 2014). In addition, these methodologies were widely tested in different ecosystems in North and South America, Asia and Europe. However, few studies addressed the methods of soil seed banks assessment in Africa with diverse ecosystems. Two categories of research questions were addressed in the studies conducted in Africa, such as: (i) how land use or land disturbance affect seed bank richness, density and distribution (Dreber & Esler 2011, Symes 2012, Adereti et al. 2014, Tessema et al. 2016, Galloway et al. 2017, Akande et al. 2018, Sanou et al. 2018); and (ii) the relationship between the soil seed bank and aboveground vegetation and the impact of forest management on seed bank (Dainou et al. 2011, Gomaa 2012, 2014, Savadogo et al. 2017, Strydom et al. 2017, Douh et al. 2018). This review is therefore an important step to guide future soil seed bank study in Africa.

Seed bank sampling methods

The choice of soil sampling technique in seed bank assessment is as important as the number and dimensions of the sample (Benoit et al. 1989, Nickelson & Stougaard 2003). A total of 75% of the papers considered used stratified random sampling techniques for sample collection, while 14% used systematic sampling, 10% used random sampling and 1% used cluster sampling. The chosen sampling method did not depend on the study location and the objectives of the study, but rather on the homogeneity of the aboveground vegetation of the study area (Hopfensperger 2007, Sumberová & Ducháček 2017), the slopes of the vegetation site surveyed (Shen et al. 2014, Plue et al. 2017) or the intensity of land use and disturbance (Dreber & Esler 2011, Sprengelmeyer & Rebertus 2015, Maia et al. 2016, Deiss et al. 2018, Sharma et al. 2018). Thus, all the sampling methods can be used in Africa ecosystems. Up to now, two sampling methods (systematic and stratified random samplings) were used in the studies carried out in Africa. The systematic sampling concerned three studies in forest ecosystems (Dainou et al. 2011, Douh et al. 2018), savanna and grassland ecosystems (Sanou et al. 2018). The stratified random concerned 10 studies in woodland and savanna ecosystems (Dreber & Esler 2011, Tessema et al. 2016, Savadogo et al. 2017, Akande et al. 2018), desert ecosystems (Gomaa 2011, Do nti et al. 2014) and tree plantations (Symes 2012, Strydom et al. 2017, Galloway et al. 2017).

With the systematic sampling method, a complete description of the units (or individuals) and their arrangement in the population is required. The first unit is drawn at random from the population, and every kth unit is selected until the desired sample size has been obtained. With stratified random sampling, a population is first divided into subpopulations or strata, which may or may not be of equal size. Within each stratum, a sample is selected randomly and independently. With cluster sampling, groups of units are selected randomly from the population. These groups can also be called clusters or primary units and are composed of secondary units. With cluster sampling, all secondary units are sampled. Simple random sampling is a method where each possible sampling unit has an equal (or known) probability of being selected, and the random selection of such units ensures unbiased estimates of population means and sampling variance.

The systematic and stratified random methods were used for trees and herbaceous plants in forest, savanna and grass vegetation patterns. The cluster and random methods were used with herbaceous plants in savannas and grasslands. The stratified random sampling technique was mostly applied in the forest and savanna vegetation (Fig. 1). The choice of method can be due to the heterogeneity in land cover within these ecosystems, to reduce bias (Deiss et al. 2018, Sharma et al. 2018). In Africa, stratified random design method was mostly used due to the spatial heterogeneity within each ecosystem (physical, biological, or environmental characteristics) – Mahé et al. 2021. Thus, this method can be the most appropriate within Africa ecosystems when heterogeneity has to be taken into consideration.

Soil sample shape and dimension

The samples taken in soil seed bank studies were circular, square or rectangular. The most common sample shape was the circular method with 47% of studies, followed by quadrilateral at 37%, of which squares made up 58.74% and rectangles 41.26%. There was no specific sample shape linked with either forest or savanna ecosystems. This is due to the land cover hetero-
genesity within each ecosystem of forest or savanna (Warr et al. 1993). Thus, all the sample shapes can be used in Africa ecosystems. The shapes used in Africa included circular plots in savanna, grassland and tree plantations ecosystems (Dreber & Esler 2011, Akande et al. 2018), square plots in savanna and woodland ecosystems (Sanou et al. 2018, Savadogo et al. 2017) and rectangular plots in desert ecosystems (Gomaa 2012, 2014). More evidences are needed on the relevant shape to consider within each ecosystem in Africa, as the shape used to assess vegetation pattern varied according to the ecosystem (Salako et al. 2013).

The diameter of the circular-shaped plot varied from 1.8 cm to 40 cm, although 5 cm was most commonly applied (55.3%), followed by 1.8 cm (13.03%), 2 cm (10.31%), 2.5 cm (7.18%), 9 cm (6.38%), 12.5 cm (4.51%), 20 cm (2.94%) and 40 cm (0.34%). No specific diameter was attributed to a study area, or to a country or continent. Thus, the different diameters can be used in Africa ecosystems. The diameters used in Africa included 5 and 8.5 cm in savanna and grassland ecosystems, respectively (Dreber & Esler 2011, Akande et al. 2018), 5 cm in pine plantations and 6 cm in Acacia plantations (Galloway et al. 2017, Strydom et al. 2017). More research is needed to provide evidence on the specific size to consider within each ecosystem in Africa.

With the quadrilateral shape, the square was more widely used than the rectangle. The most common sizes were 10 × 10 cm (48.25%), 20 × 20 cm (25.75%) and 25 × 25 cm (22.59%), with others (15 × 15 cm, 30 × 30 cm, etc.) rarely considered (3.4%). The most-used rectangular shapes were 20 × 25 cm (62.36%) and 20 × 10 cm (23.01%), followed by 25 × 25 cm (7.19%), 9 cm (6.38%), 12.5 cm (4.51%), 20 cm (2.94%) and 40 cm (0.34%). No specific diameter was attributed to a study area, or to a country or continent. Thus, the different diameters can be used in Africa ecosystems.

The diameters used in Africa included 5 and 8.5 cm in savanna and grassland ecosystems, respectively (Dreber & Esler 2011, Akande et al. 2018), 5 cm in pine plantations and 6 cm in Acacia plantations (Galloway et al. 2017, Strydom et al. 2017). More research is needed to provide evidence on the specific size to consider within each ecosystem in Africa.

Fig. 1 - Methods of soil sampling applied in forests and savannas.
sient seeds can also justify the choice of the end of the rainy season. Moreover, the end of the rainy season can allow collecting information on total soil seed bank, because seed dispersal ended in this period and most transient seeds may already emerge (mahé et al. 2021).

Other studies generally matched sampling to the period between earlier seed bank germination and when the new seeds had matured and spread (tessema et al. 2016), which may correspond to the rainy season when there is abundant seed availability in the soil (sousa et al. 2017, 2018). Moreover, the particular research goal can often lead the timing of soil sampling for vegetation evaluation (csontos 2007). In these cases, phenological processes of the stand vegetation or of the given species would be important in seed bank composition. Evidently, the life duration of seeds would also be important in setting the time period of sampling (saatkamp et al. 2017). More literature focusing on the study object would therefore be helpful in further establishing the timing of soil sampling in seed bank characterisation.

Seed bank estimation methods

Many methods have been used in the literature to estimate seed numbers in soil samples. Warr et al. (1993) highlighted the separation of seeds from soil by using water (washing or flotation); this method was not appropriate in several cases because of the non-distinction between viable and unviable seeds and the underestimation of species numbers due to the similarity of different seeds. Also, the risk of washing out of very small seeds makes the method very uncertain. Thus, alternative methods of seed numbering using germination were developed to improve the accuracy in soil seed bank estimation.

Three methods of seed numbering by germination have been used to assess seed banks in soil samples. Direct greenhouse germination was most frequently used to assess soil seed bank densities and species composition (60.22% of the examined studies). This method of quantifying seeds in soil samples was most practised in south America, oceania, north America, Asia and Africa (fig. 2). The second method most favoured worldwide was the use of sieving before seed germination (23.86%). Soil seed bank estimation in Europe used this method more than the others. The third approach was the seed separation method (15.92%), which was less used in all the regions (fig. 2). Combinations of methods including the seed concentration method (ter heerdt et al. 1996) or sieving (roberts 1981) before seed germination were used in the estimation of soil seed bank (40% of papers). Therefore, the germination of soil seed (greenhouse trial) can be applied after sieving seeds, for example (seed concentration). The combination of methods can often be used to test when seed already identified is also viable or to confirm the plant species. Each method has its advantages and disadvantages (warr et al. 1993). Many authors highlighted that methods in combination could increase precision in seed density estimation (van etten et al. 2014). However, the methods can also be used separately, not only to determine seed densities in soil layers, but also to test seed viability via germination (strydom et al. 2017) or to compare the efficacy of different methods (gonzalez & ghermandi 2012). Of the entire above, no specificity was found for the methods used and habitat type (mahé et al. 2021). The same method singular or in combination that is applied in soil seed assessment for forest ecosystem can also be used for savanna ecosystems. Thus, all the methods can be used in Africa ecosystems. Direct greenhouse germination was mostly used in Africa (62%) with samples from savannas ecosystems (adereti et al. 2014, tessema et al. 2016, savadogo et al. 2017), savanna and grassland ecosystems (akande et al. 2018, sanou et al. 2018) and tree plantation (symes 2012, galloway et al. 2017, strydorn et al. 2017). The combination of the direct greenhouse germination method with either the seed concentration method of ter heerdt et al. (1996) or sieving of roberts (1981) was also used (38%) in seed bank assessment in Africa ecosystems, including forest (dainou et al. 2011, douh et al. 2018), savanna and grassland ecosystems (dreber & esler 2011) and desert ecosystems (gomaa 2012, 2014). More research is needed to provide evidence on the appropriate methods for each ecosystem in Africa.

Data collection and seed bank analysis methods

In the greenhouse, the frequency of data collection on seed germination, seedling growth and radicle elongation was daily, weekly or monthly, depending on plant species biology. More than 85% of the examined papers showed that data on the emerged seedlings were collected during the growth trial in the greenhouse. Many authors noted that the trays needed to be checked at regular intervals for new emergent seedlings (o’donnell et al. 2014, dos santos et al. 2016, savadogo et al. 2017, sanou et al. 2018). Each germinated seed was counted, recorded and removed. When seedling identification was not easy, it was transplanted elsewhere and grown until species identification was possible. Therefore, the trial duration depended on the plant species under study and could vary from two weeks to two years. The study area or habitat had no link with the duration of the trial for species identification. This variation can also be applied in Africa ecosystems where the actual duration of trial germination varied from 3 weeks (adereti et al. 2014, akande et al. 2018) to 9 months (tessema et al. 2016, galloway et al. 2017) for samples collected from savanna ecosystems (adereti et al. 2014, tessema et al. 2016, savadogo et al. 2017) or grassland ecosystems (akande et al. 2018, sanou et al. 2018).

Seed density or diversity indices (stand vegetation and seedling) were mostly calculated in the published papers regarding soil seed bank assessment. Thereby, in order to compare diversity between areas of seed banks, the coefficients of similarity were often used (warr et al. 1993). Therefore, the sørensen’s similarity index between seed bank and aboveground vegetation was calculated using presence-abundance data (shang et al. 2016, fragoso et al. 2018, sharma et al. 2018). Other statistical methods were also used to compare the seed bank density with aboveground vegetation. In this case, non-parametric statistics were found to be more relevant than parametric statistics because of the skews in seed bank data (even after data transformation) in order to meet the statistical requirements (warr et al. 1993). Several studies used the kruskal-wallis test or the mann-whitney u test to compare den-
Methods for soil seed bank estimation in Africa

Conclusion
This study reviewed the existing literature on soil seed bank assessment and the methodologies used from sampling to data analysis. Of the 97 scientific papers reviewed, only 13.40% were from Africa. The stratified random sampling method was the highest applied for soil sampling due to heterogeneity in the land cover within the ecosystems. The circular sample with 5 cm diameter and 5 cm depth was most widely used to sample the soil. For soil seed bank estimation, the greenhouse germination method was the most adopted. Data on seed germinated, seedling growth and radicle elongation were collected at daily, weekly or monthly intervals based on species behaviour. For data analysis, floristic data were generally analysed with the Sørensen distance. Seed size was used to show the relationship between seed density and species composition (Havráňová et al. 2015, Strydom et al. 2017, Fernández et al. 2018, Palmer et al. 2018, Vanstockem et al. 2018).

Acknowledgements
This work was supported by the ARES development cooperation. The authors thank Dr. Kasso Dainou, Dr. Félícien Tosso and Prof. Jean Louis Doucet from the tropical and subtropical forestry laboratory, University Faculty of Agricultural Sciences, Gembloux (FUSAGx), Belgium.

References
Aderei RT, Takim FO, Abayomi YA (2014). Effect of period of sugarcane cultivation on the abundance and distribution of weed seeds in the soil profile. Planta Daninha 32 (3): 507-513. - doi: 10.1590/S0100-83582014000300006
Akeani F, Ogunkunle C, Ajayi S (2018). Contamination from petroleum products: Impact on soil seed banks around an oil storage facility in Ibadan, South-West Nigeria. Pollution 4 (3): 515-525. - doi: 10.22059/poll.2018.42915.375
Ambrosio I, Ieglasia L, Marin C, Del Monte JP (2004). Evaluation of sampling methods and assessment of the sample size to estimate the weed seedbank in soil, taking into account spatial variability. Weed Research 44 (3): 224-236. - doi: 10.1111/j.1365-3180.2004.00394.x
Bakker J, Bakker E, Rosén B, Verweij G, Bekker R (1996). Soil seed bank composition along a gradient from dry alvar to juniperus shrubland. Journal of Vegetation Science 7 (3): 165-177. - doi: 10.2307/3333616
Benoit DL, Kenkel NC, Cavers PB (1989). Factors influencing the precision of soil seed bank estimates. Canadian Journal of Botany 67 (10): 2833-2840. - doi: 10.1139/b89-364
Bigwood DW, Inouye DW (1988). Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69 (3): 497-507. - doi: 10.2307/1940448
Bourgeois B, Boutin C, Vanasse A, Poulin M (2017). Divergence between riparian seed banks and standing vegetation increases along successional trajectories. Journal of Vegetation Science 28 (4): 727-737. - doi: 10.1111/jvs.121536
Braga AJT, Borges EE, Martins SV (2016). Seed bank in two sites of semideciduous seasonal forest in Vícosa, Minas Gerais. Revista Árvore 40 (3): 415-425. - doi: 10.1590/0100-674X20160060300005
Brock MA, Theodore K, D’onnell L (1994). Seed-bank methods for Australian wetlands. Marine and Freshwater Research 45 (4): 483-493.- doi: 10.1071/MF9944839
Chiquoine LP, Abella SR (2018). Soil seed bank assay methods influence interpretation of non-native plant management. Applied Vegetation Science 21: 626-635. - doi: 10.1111/avsc.12393
Consens P (2007). Seed banks: ecological definitions and sampling considerations. Community Ecology 8 (1): 75-85. - doi: 10.1556/ComEc.8.2007.1.10
Cubiña A, Mitchell Aide T (2001). The effect of forest edge on seed rain and soil seed bank characteristics in a tropical pasture. Biotropica 33 (4): 398-406. - doi: 10.1111/j.1523-1739.2001.tb01304.x
De Andrade LAZ, Miranda HS (2014). The dynamics of the soil seed bank after a fire event in a Mediterranean shrubland. Journal of Vegetation Science 7 (2): 174-184. - doi: 10.1111/jvs.12536
Dos Santos DM, Dos Santos JMFF, Da Silva KA, De Araújo V Jr, Araújo EL (2016). Composition, species richness, and density of the germinable seed bank over 4 years in young and mature forests in Brazilian semi-arid regions. Journal of Arid Environments 125: 93-101. - doi: 10.1016/j.jaridenv.2016.02.012
Dough C, Dainou K, Joël Loumeto J, Moutsambote JM, Fayolle A, Tosso F, Forni E, Courlet-Fleury A, Doucet JL (2018). Soil seed bank characteristics in two central African forest types and implications for forest restoration. Forest Ecology and Management 409: 766-776. - doi: 10.1016/j.foreco.2017.12.012
Dreber N, Esler KJ (2011). Spatio-temporal variation in soil seed banks under contrasting grazing regimes following low and high seasonal rainfall in arid Namibia. Journal of Arid Environments 75 (2): 174-184. - doi: 10.1016/j.jaridenv.2010.09.007
Ewald J, Hennekens S, Conrad S, Wohlgemuth T, Jansen F, Jensen M, Cornelis J, Michiels HG, Kayser J, Chytry M, Gégoct J, Breuer M, Abs C, Waltenowski H, Starlinger F, Godfroid S (2013). Spatial and temporal patterns of Ellenberg nutrient values in forests of Germany and adjacent regions-a survey based on phytosociological databases. Tusexia 33 (1): 93-109. [online] URL: http://www.cabdirect.org/cabdirect/abstract/20133335418
Fernández C, Vega JA, Funtérbel T (2018). Contribution of the soil seed bank to the recovery of a Cytisus oromediterraneus shrubland after fuel reduction treatments. Ecological Engineering 120: 109-115. - doi: 10.1016/j.ecoleng.2018.05.040
Forte CT, Galon L, Beutler AN, Basso FJM, Nonemacher F, Júnior FWR, Perin GF, Tironi SP (2018). Soil management systems and their effect on the weed seed bank. Pesquisa Agropecuária Brasileira 53 (4): 435-442. - doi: 10.1590/0100-204X2018000400005
Francesz J, Chermandi L, Gonzalez SL (2016). Historical land use by domestic grazing re-vealed by the soil seed bank: a case study from a natural semi-arid grassland of NW Patagonia. Grass and Forage Science 71: 315-327. - doi: 10.1111/gfs.12187
Galloway AD, Holmes PM, Gaertner M, Esler KJ (2017). The impact of pine plantations on fynbos above-ground vegetation and soil seed bank composition. South African Journal of Botany 113: 300-307. - doi: 10.1016/j.sajb.2017.09.002
Gomaa NH (2012). Soil seed bank in different habitats of the Eastern Desert of Egypt. Saudi Journal of Biological Sciences 19 (2): 211-220. - doi: 10.1016/j.sjbs.2012.01.002
Gomaa NH (2014). Microhabitat variations and seed bank-vegetation relationships in a desert wadi ecosystem. Flora 209 (12): 725-732. - doi: 10.1016/j.flora.2014.09.004
Gonzalez SL, Chermandi L (2012). Comparison of sity of emerged seedlings, floristic composition, richness and diversity of species (Cu-
Methods for soil seed bank estimation in Africa

Töpper J (2016). Seed banks are biodiversity reservoirs: species-area relationships above versus below ground. Oikos 125 (2): 218-228. - doi: 10.1111/oik.02022

Vanstockem J, Ceusters C, Van Dyck K, Somers B, Hermy M (2018). Is there more than meets the eye? Seed bank analysis of a typical novel ecosystem, the extensive green roof. Applied Vegetation Science 21 (3): 419-430. - doi: 10.1111/avsc.12383

Warr SJ, Thompson K, Kent M (1993). Seed banks as a literature and sampling techniques. Progress in Physical Geography 17 (3): 329-347. - doi: 10.1177/030913339301700303

Zhang H, Chu LM (2013). Changes in soil seed bank composition during early succession of rehabilitated quarries. Ecological Engineering 55: 43-50. - doi: 10.1016/j.ecoleng.2013.02.002

Supplementary Material

Tab. S1 - Published articles on soil seed banks worldwide in 2010-2020.

Appendix 1 - References of papers cited in Tab. S1.

Link: Padonou_3850@suppl001.pdf