Characterizations of monadic NIP

Samuel Braunfeld
(Joint with Chris Laskowski)

University of Maryland, College Park

April 8, 2021
OVERVIEW

1. Monadic stability
2. Monadic NIP (Shelah)
3. Characterizations
4. Hereditary classes
5. Questions
Definition and Examples

Definition

A theory T is *monadically stable/NIP* if any expansion of T by arbitrarily many unary predicates remains stable/NIP.

- Analysis of monadically stable theories is due to Baldwin and Shelah [1].
- Refining equivalence relations and mutually algebraic theories are monadically stable
- DLO and various tree-like theories are monadically NIP.
- Essentially anything with a non-unary function is not monadically NIP, e.g. vector spaces.
Theorem (Baldwin-Shelah [1])

The following are equivalent.

1. T is monadically stable.
2. T is stable and monadically NIP.
3. T is stable and does not admit coding.
4. Models of T admit a nice decomposition into trees of countable models.
5. T is stable and if $B \downarrow_D C$, then for any a, $aB \downarrow_D C$ or $B \downarrow_D aC$.
Tree decompositions

Definition

A tree decomposition of M is a collection of countable submodels of M, indexed by a tree, such that

1. $\bigcup M_i = M$
2. If $i < j$ then $M_i \subset M_j$.
3. The children of a model M_i are independent over M_i.

- Example: An equivalence relation with κ classes of size λ.

- The children of M_i form a congruence over M_i.

(NON-)FORKING

• Recall: T is stable and if $A \downarrow_D B$, then for any c, $cA \downarrow_D B$ or $A \downarrow_D Bc$.

• Equivalently, forking is trivial (i.e. if $A \not\fork C B$, then $a \not\fork C b$ for some $a \in A, b \in B$) and transitive on singletons.

• So forking defines an equivalence relation on singletons.

• Can use this equivalence relation to build the tree decomposition. (Or can use first characterization to iteratively extend by one point).

• Given a a, b, c failing this property, take Morley sequences in a and b and automorphic images of c to get coding, as in vector spaces. (c_{ij} behaves non-generically over $a_i b_j$.)
Shelah’s Theorem

- Soon afterward, Shelah analyzed monadic NIP [4].
- Concerned with structure theory, since non-structure was clear in his setting.

Definition

Let $A imp_{\text{fs}_M} B$ mean that $tp(A/MB)$ is finitely satisfiable in M. Let $A imp_{\text{fs}_{M\subseteq C}} B$ mean that $tp(A/CB)$ is finitely satisfiable in M. A theory T has the f.s.-dichotomy if given $A imp_{\text{fs}_M} B$, then for any c, $cA imp_{\text{fs}_M} B$ or $A imp_{\text{fs}_M} Bc$.

Theorem ([4])

If T does not have the f.s.-dichotomy, then T admits a pre-coding configuration, and so is not monadically NIP.

If T has the f.s.-dichotomy, then models of T admit a nice linear decomposition into substructures.
THE f.s.-DICHOTOMY

- Recall: given $A \upharpoonright_M^{fs} B$, then for any c, $cA \upharpoonright_M^{fs} B$ or $A \upharpoonright_M^{fs} Bc$.
- Implies dependence is trivial* and transitive on singletons.
- *: If $A \downarrow_M^{fs} B$, then $A \downarrow_M^{fs} b$ for some $b \in B$.
 If $C \supset M$ is large (i.e. realizes all types over M), and
 $A \upharpoonright_M^{fs} \downarrow C B$, then $a \upharpoonright_M^{fs} \downarrow C B$ for some $a \in A$.
- So if we work over a large $C \supset M$, dependence gives a quasi-order.
- Why do we need C? Stationarity: If $p \in S(C)$ is fin. sat. in M,
 then for any $D \supset C$ there is a unique extension p over D that
 is fin. sat. in M. (No assumption of f.s.-dichotomy.)
M-f.s. Sequences

Definition

Given a model M, $(a_i : i \in I)$ is an M-f.s. sequence if $a_i \downarrow_M^{fs} \{a < i\}$.

- Similar to Morley sequences. If also indiscernible, then a special case of Morley sequences.

Theorem (No assumption of f.s.-dichotomy)

Given an indiscernible sequence $I \subset \mathcal{C}$, we can find some model M so that I is an M-f.s. sequence.

Furthermore, we can find large $C \supset M$ so that I remains indiscernible and M-f.s. over C.

- Finite satisfiability and M-f.s. sequences seem like useful notions in arbitrary theories.
If the f.s.-dichotomy fails, we want a failure of monadic NIP.

Given \bar{a}, \bar{b}, c, M failing the f.s.-dichotomy, extend $\bar{a}b$ to an M-f.s. sequence over a large $C \supset M$.

By automorphisms, for $i < j$ find c_{ij} so $\text{tp}(\bar{a}bc) = \text{tp}(\bar{a}_i \bar{b}_jc_{ij})$ (so c_{ij} is non-generic over $\bar{a}_i \bar{b}_j$) but is reasonably generic over the rest of the sequence.

This gives a pre-coding configuration as below.

Definition

A pre-coding configuration is an indiscernible sequence $(\bar{d}_i : i \in I)$ and formula $\phi(\bar{x}, \bar{y}, z)$ such that for every $s < t$, there is c_{st} satisfying the following.

1. $\models \phi(\bar{d}_s, \bar{d}_t, c_{st})$
2. $\not\models \phi(\bar{d}_u, \bar{d}_t, c_{st})$ for $u < s$
3. $\not\models \phi(\bar{d}_s, \bar{d}_v, c_{st})$ for $t < v$
Non-structure contd.

- After Ramsey’s theorem, combinatorial arguments give coding in a unary expansion.
- The unary expansion is used to “recover the rows” \bar{d}_i from the first element, so the tuples can be replaced by singletons.
- Shelah’s unary expansion is non-explicit.
LINEAR DECOMPOSITIONS

Definition

A linear decomposition of M is a partition $M = \bigsqcup_i A_i$ and a model N (not necessarily in M) such that $(A_i : i \in I)$ is an N-f.s. sequence.

- From the f.s.-dichotomy, we can extend partial linear decompositions one point at a time.
- Example: DLO

- Somewhat like one step of the tree decomposition, although the parts are ordered.
- Linear decompositions give an order-congruence over any large $C \supset N.$
Main theorem

Theorem (B, Laskowski)

The following are equivalent.

1. T is monadically NIP.
2. T does not admit coding in a unary expansion.
3. T does not admit a pre-coding configuration.
4. T has the f.s.-dichotomy.
5. Partial linear decompositions of models of T extend to full linear decompositions.
6. T is dp-minimal and indiscernible trivial.

- From Shelah’s results, we still need $(5) \Rightarrow (1)$, and to show the equivalence with (6).
- We also redo the non-structure part of Shelah’s proof more carefully to get our result about finite structures.
FROM DECOMPOSITIONS TO MONADIC NIP

- Given an indiscernible sequence $\mathcal{I} = (a_i : i \in I)$, we consider a partition of \mathfrak{C} with each a_i in a different part.
- We choose a finite subset of that partition, and count the number of types realized over it.
- If T has IP, then by taking \mathcal{I} sufficiently long and shattered, we must realize unboundedly many types.
- If T can extend \mathcal{I} to a linear decomposition over M, then doing so will realize few types ($\beth_2(\aleph_0)$).
- This uses that each part is finitely satisfiable in M, so few types in each part, and the parts form an order-congruence.
- So few quantifier-free types realized in any monadic expansion of T.
- But we can bound the number of types realized in terms of the number of q.f.-types realized (by applying $\beth_{\omega+1}$).
- This type-counting seems similar to linear clique width (cf [2]).
INDISCERNIBLES

Definition

T is *dp-minimal* if whenever \mathcal{I} is dense indiscernible, then \mathcal{I} splits into at most three parts indiscernible over a parameter c, with one part initial, one a singleton, and one terminal.

T is *indiscernible trivial* if whenever \mathcal{I} is indiscernible over each $a \in A$, then \mathcal{I} is indiscernible over A.

- Thanks to Pierre Simon for suggesting this characterization.
- Example: DLO

- Fairly easy that if have these properties, then can’t have a pre-coding configuration.
- If T is monadically NIP, linear decompositions show its models “look like DLO”.
A DIVIDING LINE

- Monadic NIP should be a dividing line for several properties of hereditary classes.
- Should provide a general setting for decompositions as in structural graph theory.
- For example, see recent work on twin-width and ordered graph classes, where it coincides with monadic NIP [5].
- Also see work on sparse graph classes, started by Nešetřil and Ossona de Mendez.
“Structurally P” closes P under definability in unary expansions.
HOMOGENEOUS STRUCTURES

Definition

Given a structure M, the growth rate of M is a function $\varphi_M(n)$ counting the (unlabeled) isomorphism types of n-substructures.

We add monadic NIP to a question of Macpherson.

Conjecture

Let M be a homogeneous ω-categorical structure. The following are equivalent.

1. M is monadically NIP.
2. The growth rate of M is at most exponential.
3. Age(M) is well-quasi-ordered by embeddability, i.e. there is no infinite antichain.

We prove non-structure results: (2) \implies (1) and a weak form of (3) \implies (1), just assuming QE.
Theorem (B, Laskowski)

Suppose M has QE and is not monadically NIP. Then

1. the growth rate of M is at least $(n/k)!$ for some $k \in \mathbb{N}$
2. there is some expansion M^* of M by ℓ unary predicates with $\text{Age}(M^*)$ not well-quasi-ordered

- No uniform bounds on k, ℓ.
CODING FINITE GRAPHS

- We want to encode bipartite graphs with n edges and n vertices in each part in $O(n)$-substructures of a unary expansion of M.
- By our characterization, if M is not monadically NIP, it admits a pre-coding configuration.
- Shelah showed how to then code bipartite graphs in an unspecified unary expansion.
- You only need to name the “columns” of the pre-coding configuration, which lets you recover the “rows” from any element [2].
- If $\psi(x, y, z)$ witnesses coding, we want to ensure ψ behaves the same in our finite structures as in \mathcal{C}.
- We keep track of which elements are needed to witness (the failure of) quantifiers in ψ so we can include them in our finite structures.
Questions

Question

Can we give uniform bounds on k and ℓ in the last theorem? In particular, can we get rid of ℓ?
Can the linear decomposition be refined to a tree decomposition? [1]

Question

Can the quantifier-elimination for mutually algebraic theories be generalized to monadic stability?

Question

Is there a tree-decomposition for monadically stable structures more suited to finite combinatorics?
Does monadic stability imply low VC-density, i.e. $vc(\phi(\bar{x}; \bar{y})) = |\bar{x}|$?
Is a hereditary graph class monadically stable iff it is definable in a unary expansion of a nowhere-dense class? [3]
REFERENCES

[1] John T Baldwin and Saharon Shelah, *Second-order quantifiers and the complexity of theories.*, Notre Dame Journal of Formal Logic 26 (1985), no. 3, 229–303.

[2] Achim Blumensath, *Simple monadic theories*, Habilitation, 2008.

[3] Jaroslav Nešetřil, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian Siebertz, *Classes of graphs with low complexity: the case of classes with bounded linear rankwidth*, European Journal of Combinatorics 91 (2021), 103223.

[4] Saharon Shelah, *Monadic logic: Hanf numbers*, Around classification theory of models, 1986, pp. 203–223.

[5] Pierre Simon and Szymon Toruńczyk, *Ordered graphs of bounded twin-width*, arXiv preprint arXiv:2102.06881 (2021).