Non-commutative tomography: A tool for data analysis and signal processing

Rui Vilela Mendes
IPFN, EURATOM-IST Association
CMAF, FCT - Lisbon
http://label2.ist.utl.pt/vilela/
Outline

- Integral transforms: linear and bilinear
- Wavelet-type, quasi-distributions and tomograms: Examples and relations
- Tomograms and the conformal group operators
- The time-frequency tomogram: Applications:
 - 1. Denoising and component separation
 - 2. Plasma reflectometry
- Signal-adapted tomography
Tomographic data analysis. General setting

- Integral transforms

Consider signals $f(t)$ as vectors in a dense nuclear subspace \mathcal{N} of a Hilbert space \mathcal{H} with dual space \mathcal{N}^*. Let $U(\alpha)$ be a family of operators defined on \mathcal{N}. (In many cases $U(\alpha)$ generates a unitary group $U(\alpha) = e^{iB(\alpha)}$.)

Three types of transforms

1. Wavelet-type transform
 $$W(h)f(\alpha) = h U(\alpha) j f i,$$
Tomographic data analysis. General setting

- **Integral transforms**
- *Linear transforms*: Fourier, Wavelets, Hilbert, ...
Tomographic data analysis. General setting

- **Integral transforms**
- *Linear transforms*: Fourier, Wavelets, Hilbert, ...
- *Bilinear transforms*: Wigner-Ville, Bertrand, Tomograms

Consider signals \(f(t) \) as vectors \(j^* f \in \text{dense nuclear subspace} \) of a Hilbert space \(H \) with dual space \(H' \). A family of operators \(U(\alpha) \) is defined on \(H \). (In many cases \(U(\alpha) \) generates a unitary group \(U(\alpha) = e^{iB(\alpha)} \)).

Three types of transforms

Let \(h \in N \) be a reference vector such that the linear span of \(f U(\alpha) h \in N \) is dense in \(N \). In the set \(f U(\alpha) h \), a complete set of vectors can be chosen to serve as a basis.

1. Wavelet-type transform

\[
W(h) f(\alpha) = h U(\alpha) j^* f
\]
Tomographic data analysis. General setting

- **Integral transforms**
- *Linear transforms*: Fourier, Wavelets, Hilbert, ...
- *Bilinear transforms*: Wigner-Ville, Bertrand, Tomograms

General setting

Consider signals $f(t)$ as vectors $\left| f \right\rangle \in$ dense nuclear subspace \mathcal{N} of a Hilbert space \mathcal{H} with dual space \mathcal{N}^*.
Tomographic data analysis. General setting

- **Integral transforms**
- **Linear transforms**: Fourier, Wavelets, Hilbert, ...
- **Bilinear transforms**: Wigner-Ville, Bertrand, Tomograms

General setting
Consider signals $f(t)$ as vectors $| f \rangle \in$ dense nuclear subspace \mathcal{N} of a Hilbert space \mathcal{H} with dual space \mathcal{N}^*

- $\{U(\alpha) : \alpha \in I \}$ a family of operators defined on \mathcal{N}^*. (In many cases $U(\alpha)$ generates a unitary group $U(\alpha) = e^{iB(\alpha)}$)
Tomographic data analysis. General setting

- **Integral transforms**
- **Linear transforms**: Fourier, Wavelets, Hilbert, ...
- **Bilinear transforms**: Wigner-Ville, Bertrand, Tomograms

General setting
Consider signals \(f(t) \) as vectors \(|f\rangle \in \text{dense nuclear subspace } \mathcal{N} \text{ of a Hilbert space } \mathcal{H} \text{ with dual space } \mathcal{N}^* \)

\(\{ U(\alpha) : \alpha \in I \} \text{ a family of operators defined on } \mathcal{N}^* \). (In many cases \(U(\alpha) \) generates a unitary group \(U(\alpha) = e^{iB(\alpha)} \))

Three types of transforms
Let \(h \in \mathcal{N}^* \) be a reference vector such that the linear span of \(\{ U(\alpha)h \in \mathcal{N}^* : \alpha \in I \} \text{ is dense in } \mathcal{N}^* \). In the set \(\{ U(\alpha)h \} \), a complete set of vectors can be chosen to serve as a basis
Tomographic data analysis. General setting

- **Integral transforms**
- **Linear transforms**: Fourier, Wavelets, Hilbert, ...
- **Bilinear transforms**: Wigner-Ville, Bertrand, Tomograms

General setting

Consider signals $f(t)$ as vectors $| f \rangle \in$ dense nuclear subspace \mathcal{N} of a Hilbert space \mathcal{H} with dual space \mathcal{N}^*

\[\{ U(\alpha) : \alpha \in I \} \text{ a family of operators defined on } \mathcal{N}^* . \text{ (In many cases} \ U(\alpha) \text{ generates a unitary group} \ U(\alpha) = e^{iB(\alpha)} \) \]

Three types of transforms

Let $h \in \mathcal{N}^*$ be a reference vector such that the linear span of $\{ U(\alpha)h \in \mathcal{N}^* : \alpha \in I \}$ is dense in \mathcal{N}^*. In the set $\{ U(\alpha)h \}$, a complete set of vectors can be chosen to serve as a basis

- **1 - Wavelet-type transform**

\[W_f^{(h)}(\alpha) = \langle U(\alpha)h \mid f \rangle, \]
Tomographic data analysis. General setting

2 - Quasi-distribution

\[Q_f(\alpha) = \langle U(\alpha) f \mid f \rangle. \]
2 - Quasi-distribution

\[Q_f(\alpha) = \langle U(\alpha) f | f \rangle. \]

If \(U(\alpha) \) is a unitary operator there is a self-adjoint operator \(B(\alpha) \)

\[W_f^{(h)}(\alpha) = \langle h | e^{iB(\alpha)} | f \rangle \]

\[Q_f^{(B)}(\alpha) = \langle f | e^{iB(\alpha)} | f \rangle \]
2 - Quasi-distribution

\[Q_f(\alpha) = \langle U(\alpha) f \mid f \rangle. \]

If \(U(\alpha) \) is a unitary operator there is a self-adjoint operator \(B(\alpha) \)

\[W_f^{(h)}(\alpha) = \langle h \mid e^{iB(\alpha)} \mid f \rangle \]

\[Q_f^{(B)}(\alpha) = \langle f \mid e^{iB(\alpha)} \mid f \rangle \]

3 - Tomographic transform or tomogram

\[M_f^{(B)}(X) = \langle f \mid \delta(B(\alpha) - X) \mid f \rangle \]

\(\delta(B(\alpha) - X) = |X\rangle \langle X| = \) projector on the eigenvector of \(B(\alpha) \) with eigenvalue \(X \)
Examples for wavelet-type and quasi-distributions

- **Fourier transform**: is $W_f^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_F(\vec{\alpha}) = \alpha_1 t + i\alpha_2 \frac{d}{dt}$ and h is a (generalized) eigenvector of the time-translation operator.
Examples for wavelet-type and quasi-distributions

- **Fourier transform**: is $W_f^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_F(\vec{\alpha}) = \alpha_1 t + i \alpha_2 \frac{d}{dt}$ and h is a (generalized) eigenvector of the time-translation operator.

- **Ambiguity function**: $Q_f(\alpha)$ for the same $B_F(\vec{\alpha})$.
Examples for wavelet-type and quasi-distributions

- **Fourier transform**: is $W_f^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_F(\alpha) = \alpha_1 t + i\alpha_2 \frac{d}{dt}$ and h is a (generalized) eigenvector of the time-translation operator.

- **Ambiguity function**: $Q_f(\alpha)$ for the same $B_F(\alpha)$

- **Wigner–Ville transform**: $Q_f(\alpha)$ for the same $B_F(\alpha)$ plus the parity operator

$$B^{(WV)}(\alpha_1, \alpha_2) = -i2\alpha_1 \frac{d}{dt} - 2\alpha_2 t + \pi \left(t^2 - \frac{d^2}{dt^2} - 1 \right) \frac{\pi}{2}.$$
Examples for wavelet-type and quasi-distributions

- **Fourier transform**: is $W_f^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_F(\overrightarrow{\alpha}) = \alpha_1 t + i\alpha_2 \frac{d}{dt}$ and h is a (generalized) eigenvector of the time-translation operator.

- **Ambiguity function**: $Q_f(\alpha)$ for the same $B_F(\overrightarrow{\alpha})$.

- **Wigner–Ville transform**: $Q_f(\alpha)$ for the same $B_F(\overrightarrow{\alpha})$ plus the parity operator

$$B^{(WV)}(\alpha_1, \alpha_2) = -i2\alpha_1 \frac{d}{dt} - 2\alpha_2 t + \frac{\pi \left(t^2 - \frac{d^2}{dt^2} - 1\right)}{2}.$$

- **Wavelet transform**: $W_f^{(h)}(\alpha)$ for $B_W(\overrightarrow{\alpha}) = \alpha_1 D + i\alpha_2 \frac{d}{dt}$, D being the dilation operator

$$D = -\frac{1}{2} \left(it \frac{d}{dt} + i \frac{d}{dt} t\right).$$
Examples for wavelet-type and quasi-distributions

- **Fourier transform**: is $W_{f}^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_{F}(\vec{\alpha}) = \alpha_{1} t + i \alpha_{2} \frac{d}{dt}$ and h is a (generalized) eigenvector of the time-translation operator.

- **Ambiguity function**: $Q_{f}(\alpha)$ for the same $B_{F}(\vec{\alpha})$.

- **Wigner–Ville transform**: $Q_{f}(\alpha)$ for the same $B_{F}(\vec{\alpha})$ plus the parity operator $B_{WV}(\alpha_{1}, \alpha_{2}) = -i 2 \alpha_{1} \frac{d}{dt} - 2 \alpha_{2} t + \frac{\pi \left(t^{2} - \frac{d^{2}}{dt^{2}} - 1\right)}{2}$.

- **Wavelet transform**: $W_{f}^{(h)}(\alpha)$ for $B_{W}(\vec{\alpha}) = \alpha_{1} D + i \alpha_{2} \frac{d}{dt}$, D being the dilation operator $D = -\frac{1}{2} \left(it \frac{d}{dt} + i \frac{d}{dt} t\right)$.

- **Bertrand transform**: $Q_{f}(\alpha)$ for B_{W}.
The tomographic transform (tomogram)

\[M_f^{(B)}(X) = \langle f \mid \delta (B(\alpha) - X) \mid f \rangle \]
The tomographic transform (tomogram)

\[M_f^{(B)}(X) = \langle f \mid \delta(B(\alpha) - X) \mid f \rangle \]

- \(M_f^{(B)}(\alpha) \) is positive and may be interpreted as a probability distribution. Benefits from the properties of the bilinear transforms, without interpretation ambiguities.
The tomographic transform (tomogram)

- \(M^{(B)}_f (X) = \langle f \mid \delta (B(\alpha) - X) \mid f \rangle \)

- \(M^{(B)}_f (\alpha) \) is positive and may be interpreted as a probability distribution. Benefits from the properties of the bilinear transforms, without interpretation ambiguities.

- For normalized \(|f \rangle \),
 \[\langle f \mid f \rangle = 1 \]
 the tomogram is normalized

 \[\int M^{(B)}_f (X) \, dX = 1 \]

 It is a probability distribution for the random variable \(X \) corresponding to the observable defined by the operator \(B(\alpha) \).
The tomographic transform (tomogram)

\[M_f^{(B)}(X) = \langle f \mid \delta(B(\alpha) - X) \mid f \rangle \]

- \(M_f^{(B)}(\alpha) \) is positive and may be interpreted as a probability distribution. Benefits from the properties of the bilinear transforms, without interpretation ambiguities
- For normalized \(\langle f \rangle \),
 \[\langle f \mid f \rangle = 1 \]
 the tomogram is normalized
 \[\int M_f^{(B)}(X) \, dX = 1 \]
 It is a probability distribution for the random variable \(X \) corresponding to the observable defined by the operator \(B(\alpha) \)
- The tomogram is a homogeneous function
 \[M_f^{(B/p)}(X) = |p| M_f^{(B)}(pX) \]
Relations between the three types of transforms

\[M_f^{(B)}(X) = \frac{1}{2\pi} \int Q_f^{(kB)}(\alpha) e^{-ikX} dk \]
Relations between the three types of transforms

\[M_f^{(B)}(X) = \frac{1}{2\pi} \int Q_f^{(kB)}(\alpha) e^{-ikX} \, dk \]

\[Q_f^{(B)}(\alpha) = \int M_f^{(B/p)}(X) e^{ipX} \, dX. \]
Relations between the three types of transforms

\[M_f^{(B)}(X) = \frac{1}{2\pi} \int Q_f^{(kB)}(\alpha) e^{-ikX} \, dk \]

\[Q_f^{(B)}(\alpha) = \int M_f^{(B/p)}(X) e^{ipX} \, dX. \]

\[Q_f^{(B)}(\alpha) = W_f^{(f)}(\alpha), \]
Relations between the three types of transforms

\[M_f^{(B)}(X) = \frac{1}{2\pi} \int Q_f^{(kB)}(\alpha) e^{-ikX} \, dk \]

\[Q_f^{(B)}(\alpha) = \int M_f^{(B/p)}(X) e^{ipX} \, dX. \]

\[Q_f^{(B)}(\alpha) = W_f^{(f)}(\alpha), \]

\[W_f^{(h)}(\alpha) = \frac{1}{4} \int e^{iX} \left[M_f^{(B)}(X) - iM_f^{(B)}(X) \
- M_f^{(B)}(X) + iM_f^{(B)}(X) \right] dX, \]

with

\[| f_1 \rangle = | h \rangle + | f \rangle; \quad | f_3 \rangle = | h \rangle - | f \rangle; \]
\[| f_2 \rangle = | h \rangle + i | f \rangle; \quad | f_4 \rangle = | h \rangle - i | f \rangle. \]
The conformal group

- The generators of the conformal group

\[\omega_k = i \frac{\partial}{\partial t_k} \]
\[D = i \left(t \cdot \nabla + \frac{d}{2} \right) \]
\[R_{j,k} = i \left(t_j \frac{\partial}{\partial t_k} - t_k \frac{\partial}{\partial t_j} \right) \]
\[K_j = i \left(t_j^2 \frac{\partial}{\partial t_j} + t_j \right) \]
The conformal group

The generators of the conformal group

\[\omega_k = i \frac{\partial}{\partial t_k} \]
\[D = i \left(t \bullet \nabla + \frac{d}{2} \right) \]
\[R_{j,k} = i \left(t_j \frac{\partial}{\partial t_k} - t_k \frac{\partial}{\partial t_j} \right) \]
\[K_j = i \left(t_j^2 \frac{\partial}{\partial t_j} + t_j \right) \]

For \(d = 1 \)

in \(\mathbb{R} \)

\[\omega = i \frac{d}{dt} \]
\[D = i \left(t \frac{d}{dt} + \frac{1}{2} \right) \]
\[K = i \left(t^2 \frac{d}{dt} + t \right) \]
Tomograms associated to the conformal group

- Time-frequency tomogram

\[B_1 = \mu t + iv \frac{d}{dt} \]
Tomograms associated to the conformal group

- **Time-frequency tomogram**
 \[B_1 = \mu t + iv \frac{d}{dt} \]

- **Time-scale**
 \[B_2 = \mu t + iv \left(t \frac{d}{dt} + \frac{1}{2} \right) \]
Tomograms associated to the conformal group

- **Time-frequency tomogram**

\[B_1 = \mu t + i\nu \frac{d}{dt} \]

- **Time-scale**

\[B_2 = \mu t + i\nu \left(t \frac{d}{dt} + \frac{1}{2} \right) \]

- **Frequency-scale**

\[B_3 = i\mu \frac{d}{dt} + i\nu \left(t \frac{d}{dt} + \frac{1}{2} \right) \]
Tomograms associated to the conformal group

- **Time-frequency tomogram**

 \[B_1 = \mu t + iv \frac{d}{dt} \]

- **Time-scale**

 \[B_2 = \mu t + iv \left(t \frac{d}{dt} + \frac{1}{2} \right) \]

- **Frequency-scale**

 \[B_3 = i\mu \frac{d}{dt} + iv \left(t \frac{d}{dt} + \frac{1}{2} \right) \]

- **Time-conformal**

 \[B_4 = \mu t + iv \left(t^2 \frac{d}{dt} + t \right) \]
Tomograms associated to the conformal group

- General construction of the tomograms: Let

\[\int dY \left| Y \right\rangle \left\langle Y \right| = 1 \]

be a decomposition of the unit, with generalized eigenvectors of the operator \(B \). Then

\[M(\alpha, X) = \int dY \left\langle f \left| \delta \left(B(\alpha) - X \right) \right| Y \right\rangle \left\langle Y \right| \left| f \right\rangle = \left| \left\langle X \left| f \right\rangle \right| ^2 \]
Tomograms associated to the conformal group

- General construction of the tomograms: Let
 \[\int dY \left| Y \right\rangle \langle Y \right| = 1 \]
 be a decomposition of the unit, with generalized eigenvectors of the operator \(B \). Then
 \[M(\alpha, X) = \int dY \langle f | \delta (B(\alpha) - X) | Y \rangle \langle Y | f \rangle = |\langle X | f \rangle|^2 \]

- Therefore the construction of the tomograms reduces to the calculation of the generalized eigenvectors of each \(B \) operator
Tomograms associated to the conformal group

- General construction of the tomograms: Let

\[\int dY \left| Y \right\rangle \left\langle Y \right| = 1 \]

be a decomposition of the unit, with generalized eigenvectors of the operator \(B \). Then

\[M(\alpha, X) = \int dY \left\langle f \left| \delta (B(\alpha) - X) \right| Y \right\rangle \left\langle Y \right| f \rangle = \left| \left\langle X \right| f \right\rangle \right|^2 \]

- Therefore the construction of the tomograms reduces to the calculation of the generalized eigenvectors of each \(B \) operator

\[B_1 \psi_1 (\mu, \nu, t, X) = X \psi_1 (\mu, \nu, t, X) \]

\[\psi_1 (\mu, \nu, t, X) = \exp i \left(\frac{\mu t^2}{2\nu} - \frac{tX}{\nu} \right) \]

\[\int dt \psi_1^*(\mu, \nu, t, X) \psi_1 (\mu, \nu, t, X') = 2\pi \nu \delta (X - X') \]
Tomograms associated to the conformal group

- $B_2 \psi_2 (\mu, \nu, t, X) = X \psi_2 (\mu, \nu, t, X)$

\[
\psi_2 (\mu, \nu, t, X) = \frac{1}{\sqrt{|t|}} \exp \left(i \left(\frac{\mu t}{\nu} - \frac{X}{\nu} \log |t| \right) \right)
\]

\[
\int dt \psi_2^* (\mu, \nu, t, X) \psi_2 (\mu, \nu, t, X') = 4\pi \nu \delta (X - X')
\]
Tomograms associated to the conformal group

- \(B_2 \psi_2 (\mu, \nu, t, X) = X \psi_2 (\mu, \nu, t, X) \)

\[
\psi_2 (\mu, \nu, t, X) = \frac{1}{\sqrt{|t|}} \exp \left(i \left(\frac{\mu t}{v} - \frac{X}{v} \log |t| \right) \right)
\]

\[
\int dt \psi_2^* (\mu, \nu, t, X) \psi_2 (\mu, \nu, t, X') = 4\pi \nu \delta (X - X')
\]

- \(B_3 \psi_3 (\mu, \nu, \omega, X) = X \psi_3 (\mu, \nu, \omega, X) \)

\[
\psi_3 (\mu, \nu, t, X) = \exp (-i) \left(\frac{\mu \omega}{v} - \frac{X}{v} \log |\omega| \right)
\]

\[
\int d\omega \psi_3^* (\mu, \nu, \omega, X) \psi_3 (\mu, \nu, \omega, X') = 2\pi \nu \delta (X - X')
\]
Tomograms associated to the conformal group

- $B_2 \psi_2 (\mu, \nu, t, X) = X \psi_2 (\mu, \nu, t, X)$

 \[
 \psi_2 (\mu, \nu, t, X) = \frac{1}{\sqrt{|t|}} \exp \left(i \left(\frac{\mu t}{\nu} - \frac{X}{\nu} \log |t| \right) \right)
 \]

 \[
 \int dt \psi_2^* (\mu, \nu, t, X) \psi_2 (\mu, \nu, t, X') = 4\pi \nu \delta (X - X')
 \]

- $B_3 \psi_3 (\mu, \nu, \omega, X) = X \psi_3 (\mu, \nu, \omega, X)$

 \[
 \psi_3 (\mu, \nu, t, X) = \exp (-i) \left(\frac{\mu}{\nu} \omega - \frac{X}{\nu} \log |\omega| \right)
 \]

 \[
 \int d\omega \psi_3^* (\mu, \nu, \omega, X) \psi_3 (\mu, \nu, \omega, X') = 2\pi \nu \delta (X - X')
 \]

- $B_4 \psi_4 (\mu, \nu, t, X) = X \psi_4 (\mu, \nu, t, X)$

 \[
 \psi_4 (\mu, \nu, t, X) = \frac{1}{|t|} \exp \left(i \left(\frac{X}{\nu t} + \frac{\mu}{\nu} \log |t| \right) \right)
 \]

 \[
 \int dt \psi_4^* (\mu, \nu, t, s) \psi_4 (\mu, \nu, t, s') = 2\pi \nu \delta (s - s')
 \]
Tomograms associated to the conformal group

\(\mu = 0 \)
Tomograms associated to the conformal group

- Time-frequency tomogram

\[M_1 (\mu, \nu, X) = \frac{1}{2 \pi |\nu|} \left| \int \exp \left[i \frac{\mu t^2}{2 \nu} - \frac{i t X}{\nu} \right] f(t) \, dt \right|^2 \]
Tomograms associated to the conformal group

- Time-frequency tomogram

 \[M_1(\mu, \nu, X) = \frac{1}{2\pi|\nu|} \left| \int \exp \left[\frac{i\mu t^2}{2\nu} - \frac{itX}{\nu} \right] f(t) \, dt \right|^2 \]

- Time-scale tomogram

 \[M_2(\mu, \nu, X) = \frac{1}{2\pi|\nu|} \left| \int dt \, \frac{f(t)}{\sqrt{|t|}} e^{i(\frac{\mu}{\nu} t - \frac{X}{\nu} \log |t|)} \right|^2 \]
Tomograms associated to the conformal group

- **Time-frequency tomogram**
 \[
 M_1(\mu, \nu, X) = \frac{1}{2\pi|\nu|} \left| \int \exp \left[\frac{i\mu t^2}{2\nu} - \frac{itX}{\nu} \right] f(t) \, dt \right|^2
 \]

- **Time-scale tomogram**
 \[
 M_2(\mu, \nu, X) = \frac{1}{2\pi|\nu|} \left| \int dt \frac{f(t)}{\sqrt{|t|}} e^{i \left(\frac{\mu}{\nu} t - \frac{X}{\nu} \log |t| \right)} \right|^2
 \]

- **Frequency-scale tomogram**
 \[
 M_3(\mu, \nu, X) = \frac{1}{2\pi|\nu|} \left| \int d\omega \frac{f(\omega)}{\sqrt{|\omega|}} e^{-i \left(\frac{\mu}{\nu} \omega - \frac{X}{\nu} \log |\omega| \right)} \right|^2
 \]

- \[f(\omega) = \text{Fourier transform of } f(t)\]
Tomograms associated to the conformal group

- Time-frequency tomogram

\[M_1(\mu, \nu, X) = \frac{1}{2\pi|\nu|} \left| \int \exp \left[\frac{i\mu t^2}{2\nu} - \frac{itX}{\nu} \right] f(t) \, dt \right|^2 \]

- Time-scale tomogram

\[M_2(\mu, \nu, X) = \frac{1}{2\pi|\nu|} \left| \int dt \frac{f(t)}{\sqrt{|t|}} e^{i\left(\frac{\mu}{\nu} t - \frac{X}{\nu} \log |t|\right)} \right|^2 \]

- Frequency-scale tomogram

\[M_3(\mu, \nu, X) = \frac{1}{2\pi|\nu|} \left| \int d\omega \frac{f(\omega)}{\sqrt{|\omega|}} e^{-i\left(\frac{\mu}{\nu} \omega - \frac{X}{\nu} \log |\omega|\right)} \right|^2 \]

\[f(\omega) = \text{Fourier transform of } f(t) \]

- Time-conformal tomogram

\[M_4(\mu, \nu, X) = \frac{1}{2\pi|\nu|} \left| \int dt \frac{f(t)}{|t|} e^{i\left(\frac{X}{\nu t} + \frac{\mu}{\nu} \log |t|\right)} \right|^2 \]
Basis functions of the tomograms in the time-frequency plane

Time-frequency

![Graph showing basis functions of tomograms in the time-frequency plane]

- Time (samples): 0, 500, 1000, 1500
- Frequency (samples): -1000, -500, 0, 500, 1000, -30, -20, -10, 0, 10

Colors range from -30 to 10 on the color scale.
Basis functions of the tomograms in the time-frequency plane

Time-scale

![Graph showing basis functions in the time-frequency plane with time in samples ranging from 0 to 1500 and frequency in samples ranging from -1000 to 1000. The color scale indicates intensity with values ranging from -40 to 0.](image-url)
Basis functions of the tomograms in the time-frequency plane

Time-scale
Basis functions of the tomograms in the time-frequency plane

Time-conformal
Applications: Component decomposition

- Most natural and man-made signals are nonstationary and have a multicomponent structure.
 Examples: Bat echolocation, whale sounds, radar, sonar, etc.

\[M(\theta, X) = \int f(t) \psi_{\theta, X}(t) \, dt = \langle f, \psi \rangle_j^2 \]

\[\psi_{\theta, X}(t) = \frac{1}{pT} \exp(i \cos \theta_2 \sin \theta t + iX \sin \theta t) \]

\(\mu = \cos \theta, \nu = \sin \theta \).
Applications: Component decomposition

- Most natural and man-made signals are nonstationary and have a multicomponent structure.
 Examples: Bat echolocation, whale sounds, radar, sonar, etc.
- The concept of signal component is not uniquely defined. The notion of *component* depends as much on the observer as on the observed object. When we speak about a component of a signal we are in fact referring to a particular feature of the signal that we want to emphasize.

\[
M(\theta, X) = \int f(t) \psi_{\theta, X}(t) \, dt = \langle f, \psi_{\theta, X} \rangle
\]

with \(\psi_{\theta, X}(t) = \frac{1}{\sqrt{T}} \exp \left(\frac{i}{2} \cos \theta t \sin \theta t + iX \sin \theta t \right) \mu = \cos \theta, \nu = \sin \theta \).
Applications: Component decomposition

- Most natural and man-made signals are nonstationary and have a multicomponent structure.
 Examples: Bat echolocation, whale sounds, radar, sonar, etc.
- The concept of signal component is not uniquely defined. The notion of *component* depends as much on the observer as on the observed object. When we speak about a component of a signal we are in fact referring to a particular feature of the signal that we want to emphasize.
- One possibility: Separation of components using its behavior in the time-frequency plane. Consider the finite-time tomogram

\[
M(\theta, X) = \left| \int f(t) \psi_{\theta,X}(t) \, dt \right|^2 = |< f, \psi >|^2
\]

with

\[
\psi_{\theta,X}(t) = \frac{1}{\sqrt{T}} \exp \left(-\frac{i \cos \theta}{2 \sin \theta} t^2 + \frac{i X}{\sin \theta} t \right)
\]

\[
\mu = \cos \theta, \quad \nu = \sin \theta.
\]
Component decomposition

- θ is a parameter that interpolates between the time and the frequency operators, running from 0 to $\pi/2$ whereas X is allowed to be any real number.
Component decomposition

- θ is a parameter that interpolates between the time and the frequency operators, running from 0 to $\pi/2$ whereas X is allowed to be any real number.

- For all different θ’s the $U(\theta)$ are unitarily equivalent operators, hence all the tomograms share the same information. The component separation technique is based on the search for an intermediate value of θ where a good compromise might be found between time localization and frequency information.
Component decomposition

- \(\theta \) is a parameter that interpolates between the time and the frequency operators, running from 0 to \(\pi / 2 \) whereas \(X \) is allowed to be any real number.

- For all different \(\theta \)’s the \(U(\theta) \) are unitarily equivalent operators, hence all the tomograms share the same information. The component separation technique is based on the search for an intermediate value of \(\theta \) where a good compromise might be found between time localization and frequency information.

- First select a subset \(X_n \) in such a way that the corresponding family \(\{ \psi_{\theta,X_n}(t) \} \) is orthogonal and normalized,

\[
\langle \psi_{\theta,X_n} \psi_{\theta,X_m} \rangle = \delta_{m,n}
\]

This is possible by taking the sequence

\[
X_n = X_0 + \frac{2n\pi}{T} \sin \theta
\]

where \(X_0 \) is freely chosen (in general we take \(X_0 = 0 \)).
We then consider the projections of the signal $f(t)$

$$c^\theta_{X_n}(f) = \langle f, \psi_{\theta,X_n} \rangle$$

which are used for the signal processing.
We then consider the projections of the signal $f(t)$

$$
c^{\theta}_{X_n}(f) = \langle f, \psi_{\theta,X_n} \rangle
$$

which are used for the signal processing.

Denoising consists in eliminating the $c^{\theta}_{X_n}(f)$ such that

$$
|c^{\theta}_{X_n}(f)|^2 \leq \epsilon
$$

for some threshold ϵ
Component decomposition and denoising

- We then consider the projections of the signal $f(t)$

$$c_{X_n}^\theta(f) = \langle f, \psi_{\theta,X_n} \rangle$$

which are used for the signal processing.

- Denoising consists in eliminating the $c_{X_n}^\theta(f)$ such that

$$\left| c_{X_n}^\theta(f) \right|^2 \leq \epsilon$$

for some threshold ϵ.

- Multi-component analysis is done by selecting subsets \mathcal{F}_k of the X_n and reconstructing partial signals (k-components) by restricting the sum to

$$f_k(t) = \sum_{n \in \mathcal{F}_k} c_{X_n}^\theta(f) \psi_{\theta,X_n}(t)$$

for each k.
Component decomposition. Examples

\[y(t) = y_1(t) + y_2(t) + y_3(t) + b(t) \]

\[y_1(t) = \exp(i25t), \quad t \in [0, 20] \]

\[y_2(t) = \exp(i75t), \quad t \in [0, 5] \]

\[y_3(t) = \exp(i75t), \quad t \in [10, 20] \]
Component decomposition. Examples

\[y(t) = y_1(t) + y_2(t) + y_3(t) + b(t) \]

\[y_1(t) = \exp(i25t), \quad t \in [0, 20] \]
\[y_2(t) = \exp(i75t), \quad t \in [0, 5] \]
\[y_3(t) = \exp(i75t), \quad t \in [10, 20] \]

Real part of the time signal
Component decomposition

The tomogram
Component decomposition. Examples

- Separation at $\theta = \frac{\pi}{5}$
Component decomposition. Examples

- Separation at $\theta = \frac{\pi}{5}$
Component decomposition. Examples

- Reconstruction of the $y_2(t)$
Component decomposition. Examples

- Reconstruction of the $y_2(t)$

- and $y_3(t)$ components
Component decomposition. Examples

- Sum \(y(t) = y_0(t) + y_R(t) + b(t) \) of an “incident” \(y_0(t) \) and a “deformed reflected” chirp \(y_R(t) \) delayed by 3s with white noise added.

\[
y_0(t) = e^{i\Phi_0(t)} \quad y_R(t) = e^{i\Phi_R(t)}
\]

\(\Phi_0(t) = a_0 t^2 + b_0 t \) and

\(\Phi_R(t) = a_R (t - t_R)^2 + b_R (t - t_R) + 10(t - t_R)^{3/2} \).
Component decomposition. Examples

- Sum $y(t) = y_0(t) + y_R(t) + b(t)$ of an “incident” $y_0(t)$ and a “deformed reflected” chirp $y_R(t)$ delayed by 3s with white noise added.

\[
y_0(t) = e^{i\Phi_0(t)} \quad y_R(t) = e^{i\Phi_R(t)}
\]

$\Phi_0(t) = a_0 t^2 + b_0 t$ and

$\Phi_R(t) = a_R(t - t_R)^2 + b_R(t - t_R) + 10(t - t_R)^{3/2}$.

![Graph of real(y) vs. time]
Component decomposition. Examples

- Comparison of the phase derivatives $\frac{d}{dt} \Phi_0(t)$ and $\frac{d}{dt} \Phi_R(t)$. Except for the three first seconds, the spectrum of the signals $y_0(t)$ and $y_R(t)$ is almost the same.
Component decomposition. Examples

- Comparison of the phase derivatives $\frac{d}{dt} \Phi_0(t)$ and $\frac{d}{dt} \Phi_R(t)$. Except for the three first seconds, the spectrum of the signals $y_0(t)$ and $y_R(t)$ is almost the same.
Component decomposition. Examples

- Frequency representation

![Frequency representation graph](image-url)
Component decomposition. Examples

- Tomogram of the chirps signal
Component decomposition. Examples

Separable spectrum at $\theta = \frac{\pi}{5}$
The phase derivative
Component decomposition. Reflectometry
Component decomposition. Reflectometry

- Reflectometry signal
Component decomposition. Examples
Component decomposition. Examples

Spectrogram
Component decomposition. Examples

Oversampled spectrogram

![Oversampled spectrogram image with labels for First wall, Plasma, and Porthole.]
Component decomposition. Examples

- Tomogram of the reflectometry signal
Component decomposition. Examples

- "Spectrum" at $\theta = \pi - \frac{\pi}{5}$
Component decomposition. Examples

choc 42824 (prof 1003/2086) tps : 9.9996 s

Amplitude (real part)

First wall

Plasma

Porthole

Frequency (GHz)
Component decomposition. Examples

Spectrogram of the plasma component
In $B(\mu, \nu) = \mu t + \nu S$, choose an operator S, specially tuned to the features of the signal that one wants to extract.

At particular values of (μ, ν) noise effects may cancel out. Separates the information of very small signals from large noise and obtain reliable information on the temporal structure of the signal. A signal-adapted filtering technique.

To construct S consider a set of N–dimensional time sequences $\{\vec{x}_1, \cdots, \vec{x}_k\}$, typical of the signal one wants to detect. (May be considered as the code words that later one wishes to detect in a noisy signal).

Form the $k \times N$ matrix $U \in \mathcal{M}_{k \times N}$.

$$
U = \begin{pmatrix}
x_1(1\Delta t) & x_1(2\Delta t) & \cdots & x_1(N\Delta t) \\
\vdots & \vdots & \ddots & \vdots \\
x_k(1\Delta t) & x_k(2\Delta t) & \cdots & x_k(N\Delta t)
\end{pmatrix}
$$

with $k < N$ typically.
Construct the square matrices $A = U^T U \in \mathcal{M}_{N \times N}$ and $B = U U^T \in \mathcal{M}_{k \times k}$.

Diagonalization of A provides k non-zero eigenvalues $(\alpha_1, \cdots, \alpha_j)$ and its corresponding orthogonal N-dimensional eigenvectors (Φ_1, \cdots, Φ_k), $\Phi_j \in \mathbb{R}^N$. Correspondingly, the diagonalization of B would provide the same k eigenvalues and eigenvectors (Ψ_1, \cdots, Ψ_k) with $\Psi_j \in \mathbb{R}^k$. If needed one may obtain, by the Gram-Schmidt method, the remaining $N - k$ eigenvectors to span \mathbb{R}^N, which in this context are associated to the eigenvalue zero.

The linear operator S constructed from the set of typical signals is

$$S = \sum_{i=1}^{k} \alpha_i \Phi_i \Phi_i^T$$

where $S \in \mathcal{M}_{N \times N}$.
Signal-adapted tomography

- For the tomogram consider an operator $B(\mu, \nu)$ of the form

$$B(\mu, \nu) = \mu t + \nu S = \mu \begin{pmatrix} 1\Delta t \\ 2\Delta t \\ \vdots \\ N\Delta t \end{pmatrix} + \nu \sum_{i=1}^{k} \alpha_i \Phi_i \Phi_i^t$$

where $B \in \mathcal{M}_{N \times N}$.

- The eigenvectors of each $B(\mu, \nu)$ are the columns of the matrix that diagonalizes it. From the projections of the signal on these eigenvectors one constructs a tomogram adapted to the operator pair (t, S).
Tomography with an adapted operator pair: An example

Typical data: a set of 40 random signals with pulses of duration $\Delta t = 10$ and intensities $+1$ or -1. The total length of the signal is 200 time units.
Tomography with an adapted operator pair: An example

Eigenbasis of \(B(\theta) = t \cos \theta + S \sin \theta \) is used to project the signal. Tomogram for 20 different values of \(\theta \) at intervals \(\Delta \theta = \pi/40 \)

Right lower plot is projection on eigenvectors 185 to 200 at \(\theta_{19} = 19\pi/40 \).
"Noncommutative time–frequency tomography" (V. I. Man’ko and RVM), Phys. Lett. A 263 (1999) 53–59

"Tomograms and other transforms: a unified view" (M. A. Man’ko, V. I. Man’ko and RVM), J. Phys. A: Math. Gen. 34 (2001) 8321-8332

"A tomographic analysis of reflectometry data I: Component factorization" (F. Briolle, R. Lima, V. I. Man’ko and RVM), Meas. Sci. Technol. 20 (2009) 105501.

"A tomographic analysis of reflectometry data II: The phase derivative, (F. Briolle, R. Lima and RVM), Meas. Sci. Technol. 20 (2009) 105502.

"Analysis and separation of time-frequency components in signals with chaotic behavior" (B. Ricaud, F. Briolle and F. Clairet), arXiv: 1003.0734

"Non-commutative tomography: A tool for data analysis and signal processing" (F. Briolle, V. I. Man’ko, B. Ricaud and RVM), Jour. Russ. Laser Research 33 (2012) 103-121.
C. Aguirre, P. Pascual, D. Campos and E. Serrano; *Single neuron transient activity detection by means of tomography*, BMC Neuroscience 2011, 12(Suppl 1):P297

C. Aguirre and R. Vilela Mendes; *Signal recognition and adapted filtering by non-commutative tomography*, forthcoming