Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY.
Mideopsis milankovici sp. nov. a new water mite from Montenegro based on morphological and molecular data (Acariformes, Hydrachnidia, Mideopsidae)

Vladimir Pešić\(^a\), Harry Smit\(^b\)

\(^a\)Department of Biology, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro.
\(^b\)Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands.

Original research

ABSTRACT

Water mite species of the genus *Mideopsis* Neuman, 1880 are common in running and standing waters in the Palaearctic. In the present study we used an integrative taxonomic approach by applying partial COI sequences (DNA-barcodes) and morphological characteristics to describe a new species, *Mideopsis milankovici* sp. nov. from the Mediterranean region of Montenegro. A high genetic distance (18.8-26% K2P) from three other known European congeners, *M. crassipes* Soar, 1904, *M. orbicularis* (Müller, 1776), and *M. roztoczensis* Biesiada & Kowalik, 1979, support *M. milankovici* sp. nov. as a distinct species. From *M. persicus* Pešić & Saboori, 2015, a species known from South Iran, which resembles the new species in the shape of the ejaculatory complex, *M. milankovici* sp. nov. differs by the morphology of dorsal shield.

Keywords Acari; DNA-barcoding; new species; running waters; Montenegro

Zoobank http://zoobank.org/1627D1BA-DBD7-4FFE-820A-AB390A3B5FFE

Introduction

Water mites of the genus *Mideopsis* Neuman, 1880 are known from the Holarctic and Neotropical regions (Cook 1974; Pešić et al. 2013). Recently, the genus was revised by Pešić et al. (2013). The distribution is disjunct, with one group of species with a Holarctic distribution extending with a few species into the Oriental region, and a few species extending into Costa Rica in the New World, and another group limited to South America. According to Pešić et al. (2013) it is likely that the South American taxa which are characterized by extensive setal patches in the male genital field area could represent a distinct genus.

So far, only five species of the genus *Mideopsis*, i.e., *M. crassipes* Soar, 1904, *M. orbicularis* (Müller, 1776), *M. roztoczensis* Biesiada & Kowalik, 1979, *M. rossicus* Tuzovskij, 2002 and *M. persicus* Pešić & Saboori, 2015 have been reported from the Western Palaearctic (Tuzovskij 2002; Pešić and Saboori 2015; Gerecke et al. 2016).

The present study, from a methodological point of view, is based on techniques established in the past decade (e.g., Fisher 2015, Pešić et al. 2019b and bibliography cited therein). Thus, with the exception of *Xystonotus willmanni* (K. Viets, 1920) (see Blattner et al. 2019) so far molecular methods have not been used in studies of Palaearctic mideopsid mites.

In this paper, *Mideopsis milankovici* sp. nov. is described from Montenegro. In order to gain insight into the position of the new species in relation to other *Mideopsis* species from the Palaearctic region, we combined morphological and molecular analyses to infer molecular similarities among the studied species.
Materials and methods

Sampling

Water mites were collected by hand netting, sorted live in the field, and immediately preserved in 96% ethanol. Specimens for molecular analysis were examined without dissecting under a compound microscope in ethanol, using a cavity well slide with a central depression. After DNA extraction, some specimens were dissected and slide mounted in Hoyer’s medium. DNA sequences prepared in the course of this study were deposited in Bold with voucher codes and accession numbers indicated in Table 1. The holotype and paratypes of the new species will be deposited in Naturalis Biodiversity Center in Leiden (RMNH).

All measurements are given in µm. The following abbreviations are used: Ac-1 = first acetabulum; Cx-I = first coxae; COI = cytochrome c oxidase subunit I; dL = dorsal length; H = height; I-L-4-6 = fourth-sixth segments of first leg; L = length; mL = medial length; P-1-P-5 = palp segment 1-5; RMNH = Naturalis Biodiversity Center, Leiden; W = width.

Locality (country, name)	Lat/Long	Voucher code	BOLD Acc. nos.
Mideopsis crassipes			
Soar, 1904			
The Netherlands, Middelsgraaf at crossing with Doorderweg	51°5.190 N, 5°51.468 E	RMNH.ACA.812	NLACA125-15
The Netherlands, Middelsgraaf at crossing with Doorderweg	51°5.190 N, 5°51.468 E	RMNH.ACA.356	NLACA126-15
The Netherlands, Middelsgraaf at crossing with Doorderweg	51°5.190 N, 5°51.468 E	RMNH.ACA.357	NLACA127-15
The Netherlands, stream Verloren Beek	52°19.845 N, 5°59.396 E	RMNH.ACA.812	NLACA396-15
The Netherlands, stream Verloren Beek	52°19.845 N, 5°59.396 E	RMNH.ACA.813	NLACA397-15
The Netherlands, stream Verloren Beek	52°19.845 N, 5°59.396 E	RMNH.ACA.814	NLACA398-15
The Netherlands, stream Verloren Beek	52°20.484 N, 5°59.250 E	RMNH.ACA.517	NLACA249-15
Mideopsis milankovici sp. nov.			
Montenegro, Međurječka river	42°01.353 N, 19°13.198 E	22. M19_24_2_E12	DNAEC059-20
Mideopsis roztoczensis Biesiadka & Kowalik, 1979			
The Netherlands, stream Ruenbergerbeek E of Overdinkel	52°14.657 N, 7°2.287 E	RMNH.ACA.1102	NLACA073-15
The Netherlands, stream Ruenbergerbeek E of Overdinkel	52°14.657 N, 7°2.287 E	RMNH.ACA.1103	NLACA074-15
The Netherlands, Lake Maarseveen	52°8.643 N, 5°5.084 E	RMNH.ACA.374	NLACA139-15
The Netherlands, stream Roggelsche Beek	51°15.224 N, 5°56.213 E	RMNH.ACA.876	NLACA450-15
The Netherlands, stream Roggelsche Beek	51°15.224 N, 5°56.213 E	RMNH.ACA.877	NLACA451-15
Mideopsis orbicularis (Müller, 1776)			
The Netherlands, Lake Maarseveen	52°8.643 N, 5°5.084 E	RMNH.ACA.1248	NLACA116-15
The Netherlands, Ditch along E-side Hoge Weg	52°48.450 N, 5°57.569 E	RMNH.ACA.373	NLACA138-15
The Netherlands, Lake Maarseveen	52°8.643 N, 5°5.084 E	RMNH.ACA.537	NLACA262-15
The Netherlands, Dompekolk, Kamperveen	52°30.367 N, 5°55.828 E	RMNH.ACA.546	NLACA269-15
Xystonotus willmanni (K. Viets, 1920)			
The Netherlands, Spring Mosbeek Maatmansweg	52°26.754 N, 6°51.854 E	RMNH.ACA.889	NLACA457-15
The Netherlands, Spring Mosbeek Maatmansweg	52°26.754 N, 6°51.854 E	RMNH.ACA.892	NLACA459-15
Molecular analysis

For the methods used for COI gene amplification and sequencing see Pešić et al. (2017, 2019a). For this study, DNA was extracted from 16 specimens of the genus *Mideopsis* from Montenegro and The Netherlands (Table 1). *Xystonotus willmanni* (K. Viets, 1920) from The Netherlands was used as an outgroup.

Phylogenetic analysis

Sequences were aligned by MUSCLE 3.8.425 algorithm as implemented in Geneious Prime 2020.1.1 (Biomatters Ltd.). The neighbor-joining (NJ) and maximum-likelihood (ML) were constructed using the MEGA X software (Kumar et al. 2018). Pairwise distance calculations between nucleotide sequences were computed using Kimura’s 2-parameter (K2P) distance model (Kimura 1980) for all codon positions and transition/transversion ratio was calculated using MEGA X (Kumar et al. 2018). The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei 1993). We used ML analyses with 500 bootstrap replicates using GTR+I as the most appropriate model of sequence evolution for our data set based on the Bayesian (BIC) and corrected Akaike Information Criterion (AICc) in the ML model selection feature of MEGA X. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site.

Results and discussion

COI sequences analysis

The analysis involved 18 nucleotide sequences. The nucleotide sequences could be translated into amino acid sequences without any stop codons. The final alignment for the species delimitation using COI sequence data comprised 668 nucleotide positions (nps) for five species including *Xystonotus willmanni* to root the tree. In the analysis of our COI data, the neighbor-joining (NJ) and maximum-likelihood (ML) result trees gave similar results. Other than minor differences in bootstrap support values, no notable differences were found. The ML result tree is presented in Figure 1.

The COI sequence found in the *Mideopsis* specimen collected in Montenegro was recovered as a sister clade of the clade formed by *Mideopsis orbicularis* and *M. roztoczensis* (Figure 1). The genetic distance between the COI sequence of the specimen from Montenegro here assigned to *M. milankovici* sp. nov. and *M. orbicularis* was 18.8%. Only one specimen of the new species could be acquired for use in molecular analysis, so intraspecific differences in COI sequence could not be investigated.

The mean genetic distance between congeneric COI sequence groups recovered in the molecular analysis ranged from 18% between *M. orbicularis* and *M. roztoczensis*, to 29% between *M. orbicularis* and *M. crassipes* (Table 2). The intraspecific distance of *M. orbicularis* was 1% whereas the other two species, i.e., *M. crassipes* and *M. roztoczensis* showed no intraspecific variation.

Systematics

Family Mideopsidae Koenike, 1910

Genus *Mideopsis* Neuman, 1880

Mideopsis milankovici sp. nov.

Zoobank: B619AD87-81F8-4156-B86E-3360053AF3F8

Figures 2–3, 4a–b, e–g

Material examined — Holotype ♂ (RMNH), sequenced [22. M19_24_2_E12], dissected and slide mounted, Montenegro, Bar, Međurječka rijeka stream, downstream, between villages
Figure 1 Maximum Likelihood tree based on the barcode region of the COI marker. The numbers near the branches represent the bootstrap probabilities.

Diagnosis — Dorsal shield flattened, in the centre slightly elevated, V-shaped area formed by anteriorly diverging lines of fine porosity little evident. Ejaculatory complex with well sclerotized anterior keel, anterior ramus wedge-shaped. Postgenital area short (males 116–125 µm, 18% dorsal shield L; females 85 µm, 12% dorsal shield L), excretory pore closer to posterior idiosoma margin (distance 25–35 µm).

Description — Idiosoma rounded; colour dark yellowish to brown. Dorsal shield in the
Figure 2 Mideopsis milankovici sp. nov., ♂ (a–c, e, holotype; d, paratype), Međurječka rijeka stream, Montenegro. a – dorsal shield; b – ventral shield; c–d, ejaculatory complex; e – palp. Scale bars = 100 μm.
Figure 3 a–b Mideopsis milankovichii sp. nov. ♀ paratype, Međurječka rjeka stream, Montenegro. a – ventral shield; b – palp; c–e, ejaculatory complex (c–d, from Biesiadka and Kowalik 1979; e – from Pešić and Saboori 2015): c – *M. orbicularis* (Müller, 1776); d – *M. roztoczensis* Biesiadka & Kowalik, 1979; e – *M. persicus* Pešić & Saboori, 2015. Scale bar = 100 μm.
centre slightly elevated, with anteriorly diverging lines of particularly fine porosity forming a V-shaped area slightly evident (Figures 4a–c). Postgenital area short (about 12–18% dorsal shield L), excretory pore close to posterior idiosoma margin (distance 25–35 µm). Ejaculatory complex with a strongly sclerotized anterior keel, anterior ramus wedge-shaped (Figures 2c–d). Palp: P-1 with a seta in it’s proximal part; P-2 ventral margin almost straight; P-3 ventral margin concave, distal margin convex; P-4 ventral projection directed ventrally, with two tips, both flanked by a fine subterminal seta; distal part of P-4 slightly narrower than basal part, with 3 subapical setae, one ventrally, slightly thicker and stiff, and two fine, located dorsally and laterally (Figures 2e and 3b).

Measurements

Male (Holotype; in parentheses paratype, n = 1) – Dorsal shield L 684 (641), W 606 (575), L/W ratio 1.13 (1.12). Ventral shield L 800 (772), W 800 (747); gnathosomal bay L 149 (141), Cx-III W 416 (378), distance between IV-L insertions 466 (419). Genital field: gonopore L/W 153/50 (156/50), ratio 3.1 (3.1), L Ac-1-3: 44 (41), 44 (45), 44 (41). Distance genital field-excretory pore 77 (75), excretory pore-caudal idiosoma margin 34 (30). Ejaculatory complex L 244 (275). Capitulum vL 130; chelicera: total L (163), claw L (92). Palp: total L 240 (227), dL/H, dL/H ratio: P-1, 28/31, 0.92 (30/30, 1.0); P-2, 67/45, 1.48 (59/42, 1.41); P-3, 31/37, 0.84 (31/34, 0.93); P-4, 73/29, 2.5 (69/28, 2.46); P-5, 41/16, 2.65 (38/16, 2.4); L ratio P-2/P-4 0.93 (0.86). dl of I-L-1-6: 61 (61), 63 (68), 65 (62), 77 (67), 103 (98), 127 (128); I-L-6 H 36 (36); dl/H I-L-6 ratio 3.5 (3.6). dl of IV-L-1-6: 84 (77), 106 (91), 84 (78), 113 (116), 138 (132), 131 (134).

Female (paratype, n = 1) – Dorsal shield L 708, W 625, L/W ratio 1.13. Ventral shield L 750, W 775; gnathosomal bay L 153, Cx-III W 391, distance between IV-L insertions 447. Genital field: gonopore L/W 141/86, ratio 1.6; L Ac-1-3: 47, 47, 38. Distance genital field-excretory pore 44, excretory pore-caudal idiosoma margin 25. Chelicera total L 164, claw L 84. Palp: total L 242, dL/H, dL/H ratio: P-1, 34/30, 1.16; P-2, 59/44, 1.36; P-3, 31/36, 0.88; P-4, 77/28, 2.73; P-5, 41/15, 2.65; L ratio P-2/P-4 0.78. dl of I-L-1-6: 52, 61, 63, 70, 97, 122; dl of IV-L-1-6: 77, 82, 125, 141, 138.

Etymology — Named after Prof Milutin Milanković (1879–1958), the eminent Serbian astrophysicist best known for developing one of the most significant theories relating to earth movements and long-term climate change.

Discussion — The phylogenetic analysis based on COI data reveals that *M. milankovici* sp. nov. is most similar to *M. orbicularis*. The high distance between these two species (18.8% K2P) suggests a long independent history of these two species. The relatively high K2P distance seems to be typical for water mites (Blattner et al. 2019) and the obtained data of our study are comparable with the genetic distance between cryptic species of other water mite clades (see Stålstedt et al. 2013, Martin et al. 2010, Pešić et al. 2017, 2019a). *Mideopsis orbicularis* is widely distributed in the Palaearctic, inhabiting various types of standing waters such as lakes and canals, occasionally also lowland streams (Gerecke et al. 2016), but never recorded from sites with a seasonal flow. From a morphological point of view, *M. orbicularis* can be separated from the new species only in the male sex, based on the shape of the ejaculatory complex (anterior ramus regularly rounded, anterior keel narrow and weakly sclerotized – see Figure 3c). *Mideopsis roztocezensis*, a species widely distributed in running waters in Europe, is characterized by a more elevated dorsal shield, a larger postgenital area (140–190 µm), the excretory pore more distanced from the posterior margin of the idiosoma (distance in general 40–90 µm), and the anterior ramus of the male ejaculatory complex (wedge-shaped as in *M. milankovici* sp. nov.) being wider, with a characteristic arrow-shaped delimited area – see Figure 3d).

Due to similarity in shape of ejaculatory complexes (see Figure 3e), *M. milankovici* sp. nov. resembles *M. persicus* Pešić & Saboori, 2015. The latter species is known from a single male collected in a stream in Fars Province of South Iran (Pešić and Saboori 2015). *Mideopsis persicus* can be separated by the shape of the dorsal shield with distinct, anteriorly diverging lines of fine porosity forming a well visible V-shaped area. In the new species from
Figure 4 Photographs of dorsal shield (a–d; photographed immediately after dissection) and ejaculatory complex (e–g). a–c, e–g, *Mideopsis milankovici* **sp. nov.**, Međurječka Rijeka stream, Montenegro: a, e, f – holotype ♂; b, g – paratype ♂; c – paratype ♀. d – *M. persicus* Pešić & Saboori, 2015, holotype ♂, Firooz Abad, Iran. Scale bar = 100 μm.
Montenegro this V-shaped area is almost indistinguishable (compare Figures 4a–c with Figure 4d).

Mideopsis crassipes, a species widely distributed in the Holarctic (Gerecke et al. 2016) and *M. rossicus*, a species known from Russia (Tuzovskij 2002), can be separated from all above-mentioned species including *M. milankovici* sp. nov. in having an egg-shaped idiosoma and a ventral extension of P-4 strongly curved with anteriorly directed tips.

Habitat — Characteristics of sampling sites indicate a preference for intermittent habitats. Both streams in which *M. milankovici* sp. nov. was collected are located in the narrow coastal region of Montenegro, their middle and lower courses regularly dry up in summer (for an overview of the species and communities that inhabit intermittent rivers in the southern part of Montenegro see Pešić et al. 2020). The upper part of the Međurječka rijeka stream is perennial (Figure 5) but runs dry in its lower reach.

Distribution — Montenegro.

Acknowledgements

Molecular analysis was conducted in the Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Poland. Special thanks to MSc Milica Jovanović and Ana Manović (Department of Biology, Podgorica) for their excellent laboratory work. This study is part of the “DNA-Eco” scientific project, supported by a grant of the Montenegrin Ministry of Science.
References

Biesiadka E., Kowalik, W. 1979. A new species of *Mideopsis* Neuman (Hydrachnellae, Acari) from Poland. Bull. Acad. Pol. Sci., Sér. Sci. Biol., Cl. II, 26: 695-702.

Blattner L., Gerecke R., von Fumetti S. 2019. Hidden biodiversity revealed by integrated morphology and genetic species delimitation of spring dwelling water mite species (Acari, Parasitengona: Hydrachnidia). Parasites Vectors, 12: 492. doi:10.1186/s13071-019-3750-y

Cook, D. R. 1974. Water mite genera and subgenera. Mem. Amer. Ent. Inst., 21: 1-860.

Fisher JR., Fisher DM., Nelson WA., O’Neill JC., Skvarla MJ., Radwell AJ., Ochoa R., Bauchan G., Dowling APG. 2015. An integrative description of *Torrenticola trimaculata* sp. n. (Parasitengona: Torrenticolidae), a three-spotted, rifle- dwelling mite from eastern North America: morphology, phylogenetics, and taxonomic history of the genus. Acarologia, 55: 71-116. doi:10.1051/acarologia/20152155

Gerecke R., Gledhill T., Pešić V., Smit H. 2016. Chelicerata: Acari III. In: Gerecke R., ed. Süßwasserfauna von Mitteleuropa, Bd. 7/2-3. Springer-Verlag Berlin, Heidelberg, pp. 1-429. doi:10.1007/978-3-8274-2689-5

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120. doi:10.1007/BF01731581

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol., 35: 1547-1549. doi:10.1093/molbev/msy096

Martin P., Dabert M., Dabert J. 2010. Molecular evidence for species separation in the water mite *Hygrobates nigromaculatus* Lebert, 1879 (Acari, Hydrachnidia): evolutionary consequences of the loss of larval parasitism. Aquat. Sci., 72: 347-360. doi:10.1007/s00027-010-0135-x

Pešić, V., Saboori A. 2015. A new species of the water mite genus *Mideopsis* Neuman, 1880 from South Iran (Acari, Hydrachnidia). Ecol Monten., 2 (2): 112-116.

Pešić V., Cook D., Gerecke R., Smit H. 2013. The water mite family Mideopsidae (Acari: Hydrachnidia): a contribution to the diversity in the Afrotropical region and taxonomic changes above species level. Zootaxa, 3720: 1-75. doi:10.11646/zootaxa.3720.1.1

Pešić V., Asadi M., Cimpean M., Dabert M., Eisen Y., Gerecke R., Martin P., Savić A., Smit H., Stur E. 2017. Six species in one: Evidence of cryptic speciation in the *Hydrobates fluviatilis* complex (Acariformes, Hydrachnidia, Hydrobatidae). Syst. Appl. Acarol., 22: 1327-1377. doi:10.11158/saa.22.12.23

Pešić V., Broda Ł., Dabert M., Gerecke R., Martin P., Smit H. 2019a. Re-established after hundred years: Definition of *Hydrobates presiliens* Koenike, 1915, based on molecular and morphological evidence, and redescription of *H. longipalpis* (Hermann, 1804) (Acariformes, Hydrachnidia, Hydrobatidae). Syst. Appl. Acarol., 24: 1490-1511. doi:10.11158/saa.24.8.10

Pešić V., Saboori A., Zawal A., Dabert M. 2019b. Hidden but not enough: DNA barcodes reveal two new species in *Hydrobates fluviatilis* complex from Iran (Acariformes, Hydrachnidia, Hydrobatidae). Syst. Appl. Acarol., 24: 2439-2459. doi:10.11158/saa.24.12.11

Pešić V., Pavičević A., Savić A., Hadziablahović S. 2020. The intermittent rivers of South Montenegro: ecology and biomonitoring. In: Pešić V., Paunović M., Kostianoy A. eds., The rivers of Montenegro. The handbook of environmental chemistry. Springer, Cham. doi:10.1007/698_2019_415

Stålstedt J., Bergsten J., Ronquist, F. 2013. “Forms” of water mites (Acari: Hydrachnidia): intraspecific variation or valid species? Ecol. Evol., 3: 3415-3435. doi:10.1002/ece3.704

Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 10: 512-526.

Tuzovskij P. V. 2002. A new species of water mites of the genus *Mideopsis* Neuman (Acariformes, Mideopsidae) from Russia. Acarina, 10: 161-165.