OPTIMAL CONTROL FOR THE INFINITY OBSTACLE PROBLEM

HENOK MAWI AND CHEIKH BIRAHIM NDIAYE

Abstract. In this note, we show that a natural optimal control problem for the \(\infty \)-obstacle problem admits an optimal control which is also an optimal state. Moreover, we show the convergence of the minimal value of an optimal control problem for the \(p \)-obstacle problem to the minimal value of our optimal control problem for the \(\infty \)-obstacle problem, as \(p \to \infty \).

1. Introduction

The obstacle problem corresponding to an obstacle \(f \) in
\[
W_g^{1,2}(\Omega) = \{ u \in W^{1,2}(\Omega) : u = g \text{ on } \partial \Omega \}
\]
consists of minimizing the Dirichlet energy
\[
\int_\Omega |Du(x)|^2 \, dx
\]
over the set
\[
K_{f,g}^2 = \{ u \in W^{1,2}_g(\Omega) : u(x) \geq f(x) \text{ in } \Omega \}
\]
where \(\Omega \subset \mathbb{R}^n \) is a bounded and smooth domain, \(Du \) is the gradient of \(u \), and \(g \in tr(W^{1,2}(\Omega)) \) with \(tr \) the trace operator. In [1], the equality \(u = g \) on \(\partial \Omega \) is in the sense of trace. This problem is used to model the equilibrium position of an elastic membrane whose boundary is held fixed at \(g \) and is forced to remain above a given obstacle \(f \). It is known that the obstacle problem admits a unique solution \(v \in K_{f,g}^2 \). That is, there is a unique \(v \in K_{f,g}^2 \) such that
\[
\int_\Omega |Dv(x)|^2 \, dx \leq \int_\Omega |Du(x)|^2 \, dx, \quad \forall u \in K_{f,g}^2.
\]

In [3] Adams, Lenhart and Yong introduced an optimal control problem for the obstacle problem by studying the minimizer of the functional
\[
J_2(\psi) = \frac{1}{2} \int_\Omega (|T_2(\psi)|^2 + |D\psi|^2) \, dx.
\]
In the above variational problem, following the terminology in control theory [10], \(\psi \) is called the control variable and \(T_2(\psi) \) is the corresponding state. The control \(\psi \) lies in the space \(W_0^{1,2}(\Omega) \), the state \(T_2(\psi) \) is the unique solution for the obstacle problem corresponding to the obstacle \(\psi \) and the profile \(z \) is in \(L^2(\Omega) \). The authors proved that there exists a unique minimizer \(\bar{\psi} \in W_0^{1,2}(\Omega) \) of the functional \(J_2 \). Furthermore, they showed that \(T_2(\bar{\psi}) = \psi \).

July 7, 2020.
The first author was partially supported by NSF grant HRD–1700236.
Following suit, for $1 < p < \infty$, and $z \in L^p(\Omega)$, Lou in [17] considered the variational problem of minimizing the functional

\[
(P_p) \quad \bar{J}_p(\psi) = \frac{1}{p} \int_{\Omega} |T_p(\psi) - z|^p + |D\psi|^p \, dx
\]

for $\psi \in W^{1,p}_0(\Omega) := \{ u \in W^{1,p}(\Omega) : u = 0 \text{ on } \partial\Omega \}$ and established that the problem admits a minimizer $\bar{\psi}$. Here $T_p(\psi)$ is the unique solution for the $p-$obstacle problem with obstacle $\psi \in W^{1,p}_0(\Omega)$, see [6] and references therein for discussions about the p-obstacle problem. We remind the reader that the p–obstacle problem with obstacle $f \in W^{1,p}_0(\Omega)$ refers to the problem of minimizing the p–Dirichlet energy

\[
\int_{\Omega} |Du(x)|^p \, dx
\]

among all functions in the class

\[
\mathbb{K}^p_{f,g} = \{ u \in W^{1,p}(\Omega) : u \geq f \text{ in } \Omega \text{ and } u = g \text{ on } \partial\Omega \},
\]

with $g \in tr(W^{1,p}(\Omega))$. It is further shown in [17] that, as in the case of $p = 2$, $T_p(\bar{\psi}) = \bar{\psi}$.

For the boundary data $g \in Lip(\partial\Omega)$, letting $p \to \infty$, one obtains a limiting variational problem of L^∞-type which is referred in the literature as the infinity obstacle problem or ∞-obstacle problem (see [20]). That is, given an obstacle $f \in W^{1,\infty}_g(\Omega)$ one considers the minimization problem:

(1.3) \quad Finding $u_{\infty} \in \mathbb{K}^\infty_{f,g}$: $||Du_{\infty}||_{L^\infty} = \inf_{u \in \mathbb{K}^\infty_{f,g}} ||Du||_{L^\infty},$

where

\[
\mathbb{K}^\infty_{f,g} = \{ u \in W^{1,\infty}(\Omega) : v \geq f \text{ in } \Omega \text{ and } u = g \text{ on } \partial\Omega \},
\]

and $|| \cdot ||_{L^\infty} := ess sup | \cdot |$.

It is established in [20] that the minimization problem (1.3) has a solution

(1.4) \quad u_{\infty} := u_{\infty}(f) \in \mathbb{K}^\infty_{f,g}

which verifies

(1.5) \quad - \Delta u_{\infty} \geq 0 \text{ in } \Omega \text{ in a weak sense}.

More importantly, the authors in [20] characterize u_{∞} as the smallest infinity superharmonic function on Ω that is larger than the obstacle f and equals g on the boundary. Thus for a fixed $F \in Lip(\partial\Omega)$, this generates an obstacle to solution operator

\[
T_{\infty} : W^{1,\infty}_F(\Omega) \longrightarrow W^{1,\infty}_F(\Omega)
\]

defined by

(1.6) \quad T_{\infty}(f) := u_{\infty}(f) \in W^{1,\infty}_F(\Omega), \quad f \in W^{1,\infty}_F(\Omega),

where

\[
W^{1,\infty}_F(\Omega) := \{ u \in W^{1,\infty}(\Omega) : u = F \text{ on } \partial\Omega \}.
\]

In this note, we consider a natural optimal control problem for the infinity obstacle problem. More precisely, for $F \in Lip(\partial\Omega)$ and for $z \in L^\infty(\Omega)$ fixed, we introduce the functional

\[
J_{\infty}(\psi) = \max \{ ||T_{\infty}(\psi) - z||_{L^\infty}, ||D\psi||_{L^\infty} \}, \quad \psi \in W^{1,\infty}_F(\Omega)
\]
and study the problem of existence of $\psi_\infty \in W^{1,\infty}_F(\Omega)$ such that:

$$(P_\infty) \quad J_\infty(\psi_\infty) \leq J_\infty(\psi), \quad \forall \ \psi \in W^{1,\infty}_F(\Omega).$$

In deference to optimal control theory, a function ψ_∞ satisfying (P_∞) is called an optimal control and the state $T_\infty(\psi_\infty)$ is called an optimal state.

Several variants of control problems where the control variable is the obstacle have been studied by different authors since the first of such works appeared in [3]. The literature is vast, but to mention a few, in [2] the authors studied a generalization of [3] by adding a source term. In [1] a similar problem is studied when the state is a solution to a parabolic variational inequality. In [18] the author studied regularity of the optimal state obtained in [3]. When the state is governed by a bilateral variational inequality, results are obtained in [9], [10], [11] and [12]. Optimal control for higher order obstacle problems appears in [5] and [14]. Related works where the control variable is the obstacle are also studied in [13, 21] and the references therein.

In this note, we prove that the optimal control problem (P_∞) associated to J_∞ is solvable. Precisely we show the following result:

Theorem 1.1. Assuming that $\Omega \subset \mathbb{R}^n$ is a bounded and smooth domain, $F \in \text{Lip}(\partial \Omega)$, and $z \in L^\infty(\Omega)$, J_∞ admits an optimal control $u_\infty \in W^{1,\infty}_F(\Omega)$ which is also an optimal state, i.e

$$u_\infty = T_\infty(u_\infty).$$

Using also arguments similar to the ones used in the proof of Theorem 1.1, we show the convergence of the minimal value of an optimal control problem associated to \bar{J}_p to the minimal value of the optimal control problem corresponding to J_∞ as p tends to infinity. Indeed we prove the following result:

Theorem 1.2. Let $\Omega \subset \mathbb{R}^n$ be a bounded and smooth domain, $F \in \text{Lip}(\partial \Omega)$, and $z \in L^\infty(\Omega)$. Then setting

$$J_p = (p \bar{J}_p)^{\frac{1}{p}}, \quad C_p = \min_{\psi \in W^{1,p}_F(\Omega)} J_p(\psi) \text{ for } 1 < p < \infty, \quad \text{and} \quad C_\infty = \min_{\psi \in W^{1,\infty}_F(\Omega)} J_\infty(\psi),$$

where \bar{J}_p is as in (P_p), we have

$$\lim_{p \to \infty} C_p = C_\infty.$$

In the proofs of the above results, we use the p-approximation technique as in the study of the ∞-obstacle problem combined with the classical methods of weak convergence in Calculus of Variations. As in the study of the ∞-obstacle problem, here also the key analytical ingredients are the L^q-characterization of L^∞ and Hölder’s inequality. The difficulty arises from the fact that the unicity question for the ∞-obstacle problem is still an open problem to the best of our knowledge. To overcome the latter issue, we make use of the characterization of the solution of the ∞-obstacle problem by Rossi-Teixeira-Urbano [20].
2. Preliminaries

One of the most popular ways of approaching problems related to minimizing a functional of L^∞-type is to follow the idea first introduced by Aronsson in [7] and which involves interpreting an L^∞-type minimization problem as a limit when $p \to \infty$ of an L^p-type minimization problem. In this note, this p-approximation technique will be used to show existence of an optimal control for J_∞. In order to prepare for our use of the p-approximation technique, we are going to start this section by discussing some related L^p-type variational problems.

Let $\Omega \subset \mathbb{R}^n$ be a bounded and smooth domain and $g \in \text{Lip}(\partial \Omega)$. Moreover let $\psi \in W^{1,\infty}_g(\Omega)$ be fixed and $1 < p < \infty$. Then as described earlier the p-obstacle problem with obstacle ψ corresponds to finding a minimizer of the functional

\[
I_p(v) = \int_{\Omega} |Dv(x)|^p \, dx
\]

over the space $K^p_{\psi,g} = \{v \in W^{1,p}(\Omega) : v \geq \psi, \text{ and } v = g \text{ on } \partial \Omega\}$. The energy integral (2.1) admits a unique minimizer $u_p \in K^p_{\psi,g}$. The minimizer u_p is not only p-superharmonic, i.e $\Delta_p u_p \leq 0$, but is also a weak solution to the following system

\[
\begin{cases}
-\Delta_p u \geq 0 & \text{in } \Omega \\
-\Delta_p u (u - \psi) = 0 & \text{in } \Omega \\
u \geq \psi & \text{in } \Omega
\end{cases}
\]

(2.2)

where Δ_p is the p-Laplace operator given by

\[
\Delta_p u := \text{div}(|Du|^{p-2}Du).
\]

Moreover, it is known that the p-obstacle problem is equivalent to the system (2.2) (see [16] or [19]) and hence we will refer to (2.2) as the p-obstacle problem as well. On the other hand, by the equivalence of weak and viscosity solutions established in [19] (and [15]) u_p is also a viscosity solution of (2.2) according to the following definition.

Definition 2.1. A function $u \in C(\Omega)$ is said to be a viscosity subsolution (supersolution) to

\[
F(x,u,Du,D^2u) = 0 \quad \text{in } \Omega
\]

\[
u = 0 \quad \text{in } \partial \Omega
\]

(2.3)

if for every $\phi \in C^2(\Omega)$ and $x_0 \in \Omega$ whenever $\phi - u$ has a minimum (resp. maximum) in a neighborhood of x_0 in Ω we have:

\[
F(x,u,D\phi,D^2\phi) \leq 0 \quad (\text{resp. } \geq 0).
\]

The function u is called a viscosity solution of (2.3) in Ω if u is both viscosity subsolution and viscosity supersolution of (2.3) in Ω.

The asymptotic behavior of the sequence of minimizers $(u_p)_{p>1}$ as p tends to infinity has been investigated in [20]. In fact, in [20], it is established that for a fixed $\psi \in W^{1,\infty}_g(\Omega)$, there exists $u_\infty = u_\infty(\psi) \in K^\infty_{\psi,g} = \{v \in W^{1,\infty}_g(\Omega) : v \geq \psi\}$ such that $u_p \to u_\infty$ locally uniformly...
in Ω, and that for every $q \geq 1$, u_p converges to u_∞ weakly in $W^{1,q}(\Omega)$. Furthermore, u_∞ is a solution to the ∞-obstacle problem
\begin{equation}
\min_{v \in K_{\infty,\psi,g}} \|Dv\|_\infty \tag{2.4}
\end{equation}

For Ω convex (see [8]), the variational problem (2.4) is equivalent to the minimization problem
\[\min_{v \in K_{\infty,\psi,g}} \mathcal{L}(v), \]
where
\[\mathcal{L}(v) = \inf_{(x,y) \in \Omega^2, x \neq y} \frac{|v(x) - v(y)|}{|x - y|}. \]
Moreover, in [20], it is show that u_∞ is a viscosity solution to the following system.
\[\begin{cases}
-\Delta_\infty u \geq 0 & \text{in } \Omega \\
-\Delta_\infty u (u - \psi) = 0 & \text{in } \Omega \\
u \geq \psi & \text{in } \Omega
\end{cases} \]
where Δ_∞ is the ∞-Laplacian and is defined by
\[\Delta_\infty u = \langle D^2 u D u, Du \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} u_{x_i} u_{x_j} u_{x_i x_j}. \]

Recalling that u is said to be infinity superharmonic or ∞-superharmonic, if $-\Delta_\infty u \geq 0$ in the viscosity sense, we have the following characterization of u_∞ in terms of infinity superharmonic functions and it is proven in [20]. We would like to emphasize that this will play an important role in our arguments.

Lemma 2.2. Setting
\[\mathcal{F}^+ = \{ v \in C(\Omega), -\Delta_\infty v \geq 0 \text{ in } \Omega \text{ in the viscosity sense} \} \]
and
\[\mathcal{F}^+_\psi = \{ v \in \mathcal{F}^+, v \geq \psi \text{ in } \Omega, and v = \psi \text{ on } \partial \Omega \}, \]
we have
\begin{equation}
T_\infty(\psi) = u_\infty = \inf_{v \in \mathcal{F}_\psi^+} v, \tag{2.5}
\end{equation}
with T_∞ as defined earlier in (1.6).

Lemma 2.2 implies the following characterization of infinity superharmonic functions as fixed points of T_∞. This characterization plays a key role in our p-approximation scheme for existence.

Lemma 2.3. Assuming that $u \in W^{1,\infty}_g(\Omega)$, u being infinity superharmonic is equivalent to u being a fixed point of T_∞, i.e.
\[T_\infty(u) = u. \]
Proof. Let \(u \in W^{1,\infty}(\Omega) \) be an infinity superharmonic function and \(v \) be defined by \(v = T_\infty(u) \). Then clearly the definition of \(v \) and lemma 2.2 imply \(v \geq u \). On the other hand, since \(u \in W^{1,\infty}(\Omega) \) and is an infinity superharmonic function, we deduce from lemma 2.2 that \(u \geq T_\infty(u) = v \). Thus, we get \(T_\infty(u) = u \). Now if \(u = T_\infty(u) \), then using again lemma 2.2 or (1.4)-(1.6), we obtain \(u \) is an infinity superharmonic function. Hence the proof of the lemma is complete.

To run our \(p \)-approximation scheme for existence, another crucial ingredient that we will need is an appropriate characterization of the limit of sequence of solution \(w_p \) of the \(p \)-obstacle problem (2.2) with obstacle \(\psi_p \) under uniform convergence of both \(w_p \) and \(\psi_p \). Precisely, we will need the following lemma.

Lemma 2.4. If \(w_p \) is a solution to the \(p \)-obstacle problem (2.2) with obstacle \(\psi_p \) that is, \(w_p \) satisfies

\[
\begin{align*}
-\Delta_p w_p & \geq 0 & \text{in } & \Omega \\
-\Delta_p w_p (w_p - \psi_p) & = 0 & \text{in } & \Omega \\
w_p & \geq \psi_p & \text{in } & \Omega
\end{align*}
\]

in the viscosity sense and if also that \(w_p \rightarrow u_\infty \) and \(\psi_p \rightarrow \psi_\infty \) locally uniformly in \(\overline{\Omega} \), then \(u_\infty \) is a solution in the viscosity sense of the following system

\[
\begin{align*}
-\Delta_\infty u_\infty & \geq 0 & \text{in } & \Omega \\
-\Delta_\infty u_\infty (u_\infty - \psi_\infty) & = 0 & \text{in } & \Omega \\
u_\infty & \geq \psi_\infty & \text{in } & \Omega.
\end{align*}
\]

Proof. First of all, note that since \(w_p \geq \psi_p \), \(-\Delta_p w_p \geq 0 \) in the viscosity sense in \(\Omega \) for every \(p \), \(w_p \rightarrow u_\infty \), and \(\psi_p \rightarrow \psi_\infty \) both locally uniformly in \(\overline{\Omega} \), and \(\overline{\Omega} \) is compact, we have \(w_\infty \geq \psi_\infty \) and \(-\Delta_\infty w_\infty \geq 0 \) in the viscosity sense in \(\Omega \). It thus remains to prove that \(-\Delta_\infty u_\infty (u_\infty - \psi_\infty) = 0 \) in \(\Omega \) which (because of \(w_\infty \geq \psi_\infty \) in \(\Omega \)) is equivalent to \(-\Delta_\infty u_\infty = 0 \) in \(\{ w_\infty > \psi_\infty \} \). Thus to conclude the proof, we are going to show \(-\Delta_\infty w_\infty = 0 \) in \(\{ w_\infty > \psi_\infty \} \). To that end, fix \(y \in \{ w_\infty > \psi_\infty \} \). Then, by continuity there exists an open neighborhood \(V \) of \(y \) in \(\Omega \) such that \(V \) is a compact subset of \(\Omega \), and a small real number \(\delta > 0 \) such that \(w_\infty > \delta > \phi_\infty \) in \(V \). Thus, from \(w_p \rightarrow w_\infty \), \(\psi_p \rightarrow \psi_\infty \) locally uniformly in \(\overline{\Omega} \), and \(V \) compact subset of \(\Omega \), we infer that for sufficiently large \(p \)

\[
w_p > \delta > \psi_p \quad \text{in } \quad V.
\]

On the other hand, since \(w_p \) is a solution to the \(p \) obstacle problem (2.2) with obstacle \(\psi_p \), then clearly \(-\Delta_p w_p = 0 \) in \(\{ w_p > \psi_p \} := \{ x \in \Omega : \ w_p(x) > \psi_p(x) \} \). Thus, (2.8) imply \(-\Delta_p w_p = 0 \) in the sense of viscosity in \(V \). Hence, recalling that \(w_p \rightarrow w_\infty \) locally uniformly in \(\overline{\Omega} \) and letting \(p \rightarrow \infty \), we obtain

\[
-\Delta_\infty w_\infty = 0 \quad \text{in the sense of viscosity in } \quad V.
\]

Thus, since \(y \in V \) is arbitrary in \(\{ w_\infty > \psi_\infty \} \), then we arrive to

\[
-\Delta_\infty w_\infty = 0 \quad \text{in the sense of viscosity in } \quad \{ w_\infty > \psi_\infty \}.
\]
thereby ending the proof of the lemma.

On the other hand, to show the convergence of the minimal values of J_p to that of J_∞, we will make use of the following elementary results.

Lemma 2.5. Suppose $\{a_p\}$ and $\{b_p\}$ are nonnegative sequences with

$$\liminf_{p \to \infty} a_p = a \quad \text{and} \quad \liminf_{p \to \infty} b_p = b.$$

Then

$$\liminf_{p \to \infty} \max\{a_p, b_p\} = \max\{a, b\}.$$

Proof. Let $\{b_{p_k}\}$ be a subsequence converging to $b = \liminf_{p \to \infty} b_p$. Then

$$\lim_{k \to \infty} \max\{a_{p_k}, b_{p_k}\} = \max\{a, b\}.$$

Since the lim inf is the smallest limit point we have

$$\liminf_{p \to \infty} \max\{a_p, b_p\} \leq \max\{a, b\}. \quad (2.9)$$

On the other hand

$$a_p, b_p \leq \max\{a_p, b_p\}, \quad \text{for all} \quad p.$$

Thus

$$b = \liminf_{p \to \infty} b_p \leq \liminf_{p \to \infty} \max\{a_p, b_p\},$$

and likewise

$$a \leq \liminf_{p \to \infty} \max\{a_p, b_p\}.$$

Consequently

$$\liminf_{p \to \infty} \max\{a_p, b_p\} \geq \max\{a, b\}. \quad (2.10)$$

Finally (2.9) and (2.10) conclude the proof of the lemma.

Lemma 2.6. Suppose $\{a_p\}$ and $\{b_p\}$ are nonnegative sequences with

$$\liminf_{p \to \infty} a_p = a \quad \text{and} \quad \liminf_{p \to \infty} b_p = b.$$

Then

$$\liminf_{p \to \infty} (a_p^p + b_p^p)^{1/p} = \max\{a, b\}.$$

Proof. It follows directly from the trivial inequality

$$2^{1/p} \max\{a_p, b_p\} \geq (a_p^p + b_p^p)^{1/p} \geq \max\{a_p, b_p\}, \quad \forall p \geq 1,$$

lemma 2.5 and the fact that $\liminf (a_n b_n) = (\lim_n a_n)(\liminf_n b_n)$ if $\lim_n a_n > 0$.

3. **Existence of Optimal Control for J_∞ and Limit of C_p**

In this section, we show the existence of an optimal control for J_∞ and show that C_p converges to C_∞ as $p \to \infty$. We divide it in two subsections. In the first one we show existence of an optimal control for J_∞ via the p-approximation technique, and in the second one we show that C_p converges to C_∞ as p tends to infinity.
3.1. Existence of optimal control. In this subsection, we show the existence of a minimizer of J_∞ via the p-approximation technique using solutions of the optimal control for J_p. For this end, we start by recalling some optimality facts about J_p inherited from \bar{J}_p (see (P) for its definition) and mentioned in the introduction. For $\Omega \subset \mathbb{R}^n$ a bounded and smooth domain, $z \in L^\infty(\Omega)$, $F \in Lip(\partial\Omega)$, and $1 < p < \infty$, we recall that the functional J_p is defined by the formula

$$J_p(\psi) = \left[\int_\Omega |T_p(\psi) - z|^p + |D\psi|^p dx \right]^{1/p}, \quad \psi \in W^{1,p}_F(\Omega)$$

and that the optimal control problem for J_p is the variational problem of minimizing J_p, namely

$$\inf_{\psi \in W^{1,p}_F(\Omega)} J_p(\psi)$$

over $W^{1,p}_F(\Omega)$, where

$$W^{1,p}_F(\Omega) = \{ \psi \in W^{1,p}(\Omega) : \psi = F \text{ on } \partial\Omega \},$$

and $T_p(\psi)$ is the solution to the p-obstacle problem with obstacle ψ. Moreover, as for the functional \bar{J}_p, J_p also admits a minimizer $\psi_p \in W^{1,p}_F(\Omega)$ verifying

$$T_p(\psi_p) = \psi_p.$$

As mentioned in the introduction, for more details about the latter results, see [3] for $p = 2$ and see [17] for $p > 2$.

To continue, let us pick $\eta \in W^{1,\infty}_F(\Omega)$. Since η competes in the minimization problem (3.2), we have

$$\int_\Omega |D\eta|^p dx \leq J_p(\eta) = \int_\Omega |T_p(\eta) - z|^p + |D\eta|^p dx.$$

Since $\overline{\Omega}$ is compact and $T_p(\eta) \to T_\infty(\eta)$ as $p \to \infty$ locally uniformly on $\overline{\Omega}$ (which follows from the definition of $T_\infty(\eta)$), we deduce that for p very large

$$\int_\Omega |D\eta|^p dx \leq M\Omega$$

for some M which depends only on $||\eta||_{W^{1,\infty}}$, $||T_\infty(\eta)||_{C^0}$ and $||z||_\infty$. Furthermore, let us fix $1 < q < p$. Then by using Holder’s inequality, we can write

$$\int_\Omega |D\eta|^q dx \leq \left\{ \int_\Omega (|D\eta|^q)^{p/q} dx \right\}^{q/p} \Omega^{\frac{p-q}{p}}$$

and we obtain by using (3.4) that for p very large

$$\int_\Omega |D\eta|^q dx \leq M^q \Omega^{\frac{q}{p}} \Omega^{\frac{p-q}{p}}$$

and raising both sides to $1/q$, we derive that for p very large, there holds

$$||D\eta||_{L^q} \leq M^{1/q} \Omega^{1/q},$$

with $|| \cdot ||_{L^q}$ denoting the classical $L^q(\Omega)$-norm. This shows, that the sequence $\{\psi_p\}$ is bounded in $W^{1,q}_F(\Omega)$ in the gradient norm for every q with a bound independent of q, ...
and by Poincaré’s inequality, that for every \(1 < q < \infty \), the sequence \(\{ \psi_p \} \) is bounded in \(W_{1,q}^1(\Omega) \) in the standard \(W_{1,q}^1(\Omega) \)-norm. Therefore, by classical weak compactness arguments, we have that, up to a subsequence,

\[
\psi_p \rightarrow \psi_\infty, \quad \text{as } p \rightarrow \infty \quad \text{locally uniformly in } \overline{\Omega} \quad \text{and weakly in } W_{1,q}^1(\Omega) \quad \forall \ 1 < q < \infty.
\]

Notice that consequently \(||D\psi_\infty||_{L^q} \leq M|\Omega|^{1/q} \) for all \(1 < q < \infty \). Thus, we deduce once again by Poincaré’s inequality that

\[
(3.6)
\psi_\infty \in W_{1,\infty}^1(\Omega).
\]

We want now to show that \(\psi_\infty \) is a minimizer of \(J_\infty \). To that end, we make the following observation which is a consequence of lemma 2.4.

Lemma 3.1. The function \(\psi_\infty \) is a fixed point of \(T_\infty \), namely

\[
T_\infty(\psi_\infty) = \psi_\infty,
\]

and the solutions \(T_p(\psi_p) \) of the \(p \)-obstacle problem with obstacle \(\psi_p \) verify: as \(p \rightarrow \infty \),

\[
T_p(\psi_p) \rightarrow T_\infty(\psi_\infty) \quad \text{locally uniformly in } \overline{\Omega} \quad \text{and weakly in } W_{1,q}^1(\Omega) \quad \forall \ 1 < q < \infty.
\]

Proof. We know that \(T_p(\psi_p) = \psi_p \) (see (3.3)) Thus using (3.6) and Lemma 2.4 with \(\phi_p = \psi_p \) and \(w_p = T_p(\psi_p) = \psi_p \), we have \(T_p(\psi_p) \rightarrow \psi_\infty \) locally uniformly in \(\overline{\Omega} \), weakly in \(W_{1,q}^1(\Omega) \) for every \(1 < q < \infty \), and \(\psi_\infty \) is an infinity superharmonic. Thus, recalling (3.7), we have lemma 2.3 implies \(T_\infty(\psi_\infty) = \psi_\infty \). Hence the proof of the lemma is complete. \(\square \)

Now, with all the ingredients at hand, we are ready to show that \(\psi_\infty \) is a minimizer of \(J_\infty \). Indeed, we are going to show the following proposition:

Proposition 3.2. Let \(\Omega \subseteq \mathbb{R}^n \) be a bounded and smooth domain, \(F \in \text{Lip}(\partial \Omega) \) and \(z \in L^\infty(\Omega) \). Then \(\psi_\infty \) is a minimizer of \(J_\infty \) on \(W_{1,\infty}^1(\Omega) \). That is:

\[
J_\infty(\psi_\infty) = \min_{\eta \in W_{1,\infty}^1(\Omega)} J_\infty(\eta)
\]

Proof. We first introduce for \(n < p < \infty \) and \(\psi \in W_{1,p}^1(\Omega) \)

\[
H_p(\psi) = \max\{||T_p(\psi) - z||_{\infty}, ||D\psi||_{\infty}\}
\]

which is well defined by Sobolev Embedding Theorem. Then for any \(\eta \in W_{1,\infty}^1(\Omega) \)

\[
\int_{\Omega} |D\psi_p|^p dx \leq J_p^p(\eta) = \int_{\Omega} ((|T_p(\eta) - z|^p + |D\eta|^p) dx.
\]

Therefore, using the trivial identity \((|a|^p + |b|^p)^{\frac{1}{p}} \leq 2^{\frac{1}{p}} \max\{|a|, |b|\} \), we get

\[
\left(\int_{\Omega} |D\psi_p|^p dx \right)^{1/p} \leq 2^{1/p}|\Omega|^{1/p} H_p(\eta).
\]

If we now set

\[
(3.8) \quad I_p = \inf_{\eta \in W_{1,\infty}^1(\Omega)} H_p(\eta),
\]

...
we deduce that
\[
\left(\int_{\Omega} |D\psi_p|^p \, dx \right)^{1/p} \leq 2^{1/p} |\Omega|^{1/p} I_p.
\]
Let us fix \(q \) such that \(n < q < \infty \). Then for \(q < p < \infty \), by proceeding as in \(3.5\), we obtain
\[
||D\psi_p||_{L^q} \leq 2^{1/p} I_p |\Omega|^{1/q}.
\]
Similarly,
\[
||T_p(\psi_p) - z||_{L^q} \leq 2^{1/p} I_p |\Omega|^{1/q}.
\]
Thus
\[
(3.9) \quad \max\{||T_p(\psi_p) - z||_{L^q}, ||D\psi_p||_{L^q}\} \leq 2^{1/p} I_p |\Omega|^{1/q}.
\]
For any \(\eta \in W^{1,\infty}_F(\Omega) \) we also have \(I_p \leq H_p(\eta) \) and \(\lim_{p \to \infty} I_p \leq \liminf_{p \to \infty} H_p(\eta) \). Thus, since \(\psi_p \) converges weakly in \(W^{1,q}(\Omega) \) to \(\psi_\infty \) as \(p \to \infty \) and \((3.9) \) holds, then by weak lower semicontinuity, we conclude that
\[
||D\psi_\infty||_{L^q} \leq \liminf_{p \to \infty} ||D\psi_p||_{L^q} \leq |\Omega|^{1/q} \liminf_{p \to \infty} H_p(\eta).
\]
Moreover, since \(T_p(\eta) \) converges locally uniformly on \(\overline{\Omega} \) to \(T_\infty(\eta) \) as \(p \to \infty \) and \(\overline{\Omega} \) is compact, then clearly
\[
\lim_{p \to \infty} H_p(\eta) = J_\infty(\eta),
\]
and hence
\[
||D\psi_\infty||_{L^q} \leq \inf_{\eta \in W^{1,\infty}_F(\Omega)} J_\infty(\eta) \leq J_\infty(\psi_\infty).
\]
(3.10)
Since this holds for any element \(\eta \) of \(W^{1,\infty}_F(\Omega) \), we conclude that by taking the infimum over \(W^{1,\infty}_F(\Omega) \) and letting \(q \to \infty \)
\[
||D\psi_\infty||_{L^q} \leq J_\infty(\psi_\infty).
\]
Using lemma \(3.1\) and equation \(3.9\) combined with Rellich compactness Theorem or the continuous embedding of \(L^\infty \) into \(L^q \), we conclude that
\[
||T_\infty(\psi_\infty) - z||_{L^q} = \lim_{p \to \infty} ||T_p(\psi_p) - z||_{L^q} \leq |\Omega|^{1/q} \liminf_{p \to \infty} H_p(\eta).
\]
Thus, as above letting \(q \) goes to infinity and taking infimum in \(\eta \) over \(W^{1,\infty}_F(\Omega) \), we also have
\[
(3.11) \quad ||T_\infty(\psi_\infty) - z||_{L^q} \leq \inf_{\eta \in W^{1,\infty}_F(\Omega)} J_\infty(\eta) \leq J_\infty(\psi_\infty).
\]
Finally, from \(3.7\), \(3.10\) and \(3.11\) we deduce
\[
J_\infty(\psi_\infty) = \min_{\eta \in W^{1,\infty}_F(\Omega)} J_\infty(\eta),
\]
as desired.
3.2. Convergence of Minimum Values. In this subsection, we show the convergence of the minimal value of the optimal control problem of J_p to the one of J_∞ as $p \to \infty$, namely Theorem 1.2 via the following proposition:

Proposition 3.3. Let $\Omega \subset \mathbb{R}^n$ be a bounded and smooth domain, $F \in \text{Lip}(\partial \Omega)$ and $1 < p < \infty$. Then recalling that $C_p = \min_{\psi \in W^{1,p}_F(\Omega)} J_p(\psi)$ and $C_\infty = \min_{\psi \in W^{1,\infty}_F(\Omega)} J_\infty(\psi)$, we have

$$\lim_{p \to \infty} C_p = C_\infty.$$

Proof. Let $\psi_p \in W^{1,p}_F(\Omega)$ and $\psi_\infty \in W^{1,\infty}_F(\Omega)$ be as in subsection 3.1. Then they satisfy $J_p(\psi_p) = C_p$ and $J_\infty(\psi_\infty) = C_\infty$. Moreover, up to a subsequence, we have ψ_p and ψ_∞ verify (3.6) and the conclusions of lemma 3.1. On the other hand, by minimality and Hölder’s inequality, we have

$$J_p(\psi_p) \leq J_\infty(\psi_\infty) \leq 2^{1/p} |\Omega|^{1/p} \max\{||T_p(\psi_\infty) - z||_{\infty}, ||D\psi_\infty||_{\infty}\}.$$

Thus

$$\limsup_{p \to \infty} J_p(\psi_p) \leq J_\infty(\psi_\infty). \tag{3.12}$$

Now we are going to show the following

$$J_\infty(\psi_\infty) \leq \liminf_{p \to \infty} J_p(\psi_p). \tag{3.13}$$

To that end observe that by definition of J_∞, we have

$$J_\infty(\psi_\infty) = \max\{||T_\infty(\psi_\infty) - z||_{\infty}, ||D\psi_\infty||_{\infty}\}. \tag{3.14}$$

Thus, using the L^q-characterization of L^∞, we have that (3.14) imply

$$J_\infty(\psi_\infty) = \max\{\lim_{q \to \infty} ||T_\infty(\psi_\infty) - z||_{L^q}, \lim_{q \to \infty} ||D\psi_\infty||_{L^q}\}, \tag{3.15}$$

and by using lemma 2.5, we get

$$J_\infty(\psi_\infty) = \lim_{q \to \infty} \max\{||T_\infty(\psi_\infty) - z||_{L^q}, ||D\psi_\infty||_{L^q}\}. \tag{3.16}$$

On the other hand, by weak lower semicontinuity, and corollary 3.1, we have

$$||D\psi_\infty||_{L^q} \leq \liminf_{p \to \infty} ||D\psi_p||_{L^q}. \tag{3.17}$$

Now, combining (3.16) and (3.17), we obtain

$$J_\infty(\psi_\infty) \leq \liminf_{q \to \infty} \max\{||T_\infty(\psi_\infty) - z||_{L^q}, \liminf_{p \to \infty} ||D\psi_p||_{L^q}\}. \tag{3.18}$$

Next, using lemma 2.6, corollary 3.1 and (3.18), we get

$$J_\infty(\psi_\infty) \leq \liminf_{q \to \infty} \liminf_{p \to \infty} \left\{||T_p(\psi_p) - z||_{L^q} + ||D\psi_p||_{L^q}\right\}^{1/p}. \tag{3.19}$$
To continue, we are going to estimate the right hand side of (3.19). Indeed, using Hölder’s inequality, we have

\[
(\|T_p(\psi_p) - z\|_{L^q})^p = \left\{ \int_{\Omega} |T_p(\psi_p) - z|^q \, dx \right\}^{p/q} \\
\leq \left\{ \int_{\Omega} |T_p(\psi_p) - z|^p \, dx \right\} |\Omega|^{(1-q/p)p/q} \\
= \left\{ \int_{\Omega} |T_p(\psi_p) - z|^p \, dx \right\} |\Omega|^{(1-q/p)p/q}.
\]

Similarly, we obtain

\[
(\|D\psi_p\|_{L^q})^p \leq \left\{ \int_{\Omega} |D\psi_p|^p \, dx \right\} |\Omega|^{(1-q/p)p/q}.
\]

By using the latter two estimates in (3.19), we get

\[
J_\infty(\psi_\infty) \leq \liminf_{q \to \infty} \liminf_{p \to \infty} \left[\int_{\Omega} \left(|T_p(\psi_p) - z|^p + |D\psi_p|^p \right) \, dx \right]^{1/p} |\Omega|^{(1-q/p)q(1/p)} \\
= \liminf_{q \to \infty} \liminf_{p \to \infty} \left[\int_{\Omega} \left(|T_p(\psi_p) - z|^p + |D\psi_p|^p \right) \, dx \right]^{1/p} |\Omega|^{1 - \frac{1}{p}} \\
= \lim_{q \to \infty} \left[|\Omega|^{\frac{q}{1}} \liminf_{p \to \infty} J_p(\psi_p) \right] = \liminf_{p \to \infty} J_p(\psi_p) \\
\leq J_\infty(u_\infty),
\]

proving claim (3.13). Combining (3.12) with (3.20) we obtain

\[
\lim_{p \to \infty} J_p(\psi_p) = J_\infty(u_\infty),
\]

and recalling that we were working with a possible subsequence, then we have that up to a subsequence

\[
\lim_{p \to \infty} C_p = C_\infty.
\]

Hence, since the limit is independent of the subsequence, we have

\[
\lim_{p \to \infty} C_p = C_\infty
\]

as required. \(\square\)

References

[1] David R. Adams and Suzanne Lenhart, *Optimal control of the obstacle for a parabolic variational inequality*, J. Math. Anal. Appl. **268** (2002), no. 2, 602–614.

[2] __________, *An obstacle control problem with a source term*, Appl. Math. Optim. **47** (2003), no. 1, 79–95.

[3] D. R. Adams, S. M. Lenhart, and J. Yong, *Optimal control of the obstacle for an elliptic variational inequality*, Appl. Math. Optim. **38** (1998), no. 2, 121–140.

[4] David R. Adams and Suzanne Lenhart, *An obstacle control problem with a source term*, Appl. Math. Optim. **47** (2003), no. 1, 79–95.

[5] David R. Adams, Volodymyr Hrynkiv, and Suzanne Lenhart, *Optimal control of a biharmonic obstacle problem*, Around the research of Vladimir Maz’ya. III, Int. Math. Ser. (N. Y.), vol. 13, Springer, New York, 2010, pp. 1–24.
[6] John Andersson, Erik Lindgren, and Henrik Shahgholian, *Optimal regularity for the obstacle problem for the p-Laplacian*, J. Differential Equations **259** (2015), no. 6, 2167–2179.

[7] Gunnar Aronsson, *Minimization problems for the functional sup_x F(x, f(x), f'(x))*, Ark. Mat. **6** (1965), 33–53 (1965).

[8] Gunnar Aronsson, Michael G. Crandall, and Petri Juutinen, *A tour of the theory of absolutely minimizing functions*, Bull. Amer. Math. Soc. (N.S.) **41** (2004), no. 4, 439–505.

[9] Maïtine Bergounioux and Suzanne Lenhart, *Optimal control of bilateral obstacle problems*, SIAM J. Control Optim. **43** (2004), no. 1, 240–255.

[10] Qihong Chen, *Optimal control of semilinear elliptic variational bilateral problem*, Acta Math. Sin. (Engl. Ser.) **16** (2000), no. 1, 123–140.

[11] Qihong Chen and Yuquan Ye, *Bilateral obstacle optimal control for a quasilinear elliptic variational inequality*, Numer. Funct. Anal. Optim. **26** (2005), no. 3, 303–320.

[12] Qihong Chen, Delin Chu, and Roger C. E. Tan, *Optimal control of obstacle for quasi-linear elliptic variational bilateral problems*, SIAM J. Control Optim. **44** (2005), no. 3, 1067–1080.

[13] Daniela Di Donato and Dimitri Mugnai, *On a highly nonlinear self-obstacle optimal control problem*, Appl. Math. Optim. **72** (2015), no. 2, 261–290.

[14] Radouen Ghanem and Ibtissam Nouri, *Optimal control of high-order elliptic obstacle problem*, Appl. Math. Optim. **76** (2017), no. 3, 465–500.

[15] Vesa Julin and Petri Juutinen, *A new proof for the equivalence of weak and viscosity solutions for the p-Laplace equation*, Comm. Partial Differential Equations **37** (2012), no. 5, 934–946.

[16] J. L. Lions, *Optimal Control of Systems Governed by Partial Differential Equations*, 1st ed., Vol. 170, 1971.

[17] Hongwei Lou, *An optimal control problem governed by quasi-linear variational inequalities*, SIAM J. Control Optim. **41** (2002), no. 4, 1229–1233.

[18] ______, *On the regularity of an obstacle control problem*, J. Math. Anal. Appl. **258** (2001), no. 1, 32–51.

[19] P. Lindqvist, *Notes on the Infinity Laplace Equation*, **17** (2015).

[20] J. D. Rossi, E. V. Teixeira, and J. M. Urbano, *Optimal regularity at the free boundary for the infinity obstacle problem*, Interfaces Free Bound. **17** (2015), no. 3, 381–398.

[21] Martin H. Strömquist, *Optimal control of the obstacle problem in a perforated domain*, Appl. Math. Optim. **66** (2012), no. 2, 239–255.

Department of Mathematics, Howard University, Washington, D.C. 20059
E-mail address: henok.mawi@howard.edu, cheikh.ndiaye@howard.edu