Posterior tibialis tendon rupture concomitant with a closed medial malleolar fracture: A case report and literature review

Shahin Talebi², Shirin Sheibani², Salman Ghaffari² and Abolfazl Ghadiri²

Abstract
Traumatic rupture of the posterior tibialis tendon is an extremely infrequent condition, which mostly occurred due to a traumatic mechanism of pronation and external rotation, less commonly in direct trauma on the medial side of the ankle. This lesion is overlooked preoperatively most of the time because of the limitation of physical examination owing to acute pain and swelling secondary to a medial malleolar fracture. Early diagnosis and treatment of this injury are very important to prevent the complications like acquired flatfoot deformity. Few cases have been described in the literature for the posterior tibialis tendon rupture associated with a closed ankle fracture. Here we report an acute rupture of the posterior tibialis tendon associated with a closed medial malleolar fracture after a high-energy trauma in a healthy 33-year-old man. We fixed the medial malleolar fracture with two screws and repaired the tendon with a direct end-to-end suture. We hope that our study can be helpful for other colleagues to consider this lesion in similar circumstances.

Keywords
Posterior tibialis tendon, ankle fracture, medial malleolus, flatfoot

Date received: 24 February 2021; accepted: 20 May 2021

Introduction
Posterior tibialis tendon (PTT) rupture with an ankle fracture is an infrequent condition, which is reported in only a few cases. High-energy direct trauma is the fundamental mechanism in medial malleolus isolated fractures. The main mechanism of traumatic rupture of the PTT is pronation with external rotation of the ankle, in which the medial compartment of the ankle is involved. Conditions such as direct trauma and forced dorsiflexion with inversion can also cause traumatic damage to this tendon rarely.

Due to the acute pain and edema caused by an ankle fracture, the possibility of clinical examinations is very limited, so, in most cases, the rupture of the PTT is misdiagnosed before surgery. Park has reported one case in which a partial rupture of posterior tibialis tendon was misdiagnosed for about 5 months. In his case, the patient had experienced an isolated transverse fracture of the medial malleolus with minimal displacement after a car accident. Park observed that 5 months after the surgery, the patient was referred with complaints of mild swelling and obscure pain around the posterior aspect of the medial malleolus. This time they diagnosed the partial rupture of the PTT with the help of magnetic resonance imaging (MRI).

This lesion is usually diagnosed intraoperatively. Unconsciousness about diagnosis and early treatment of PTT rupture can cause several complications for the patient.

Part of the Foot: Rupture and Disruption

© The Author(s) 2021

Article reuse guidelines:
sagepub.com/journals-permissions

DOI: 10.1177/22104917211025812

journals.sagepub.com/home/otr
patient such as long-term disability and planovalgus deformity. The PTT is responsible for supporting the medial longitudinal arch of the foot, so, the lack of support of the medial longitudinal arch is also a complication of not treating the rupture of this tendon.

Early surgical repair is necessary to prevent complications of PTT rupture and recover tendon function. Here we report a case of PTT rupture, which occurred after a car accident in a young male.

Case presentation

A 33-year-old man was admitted to the emergency department after a high-speed car accident with a painful and swollen right ankle. The patient was the driver himself and was not able to remember the exact mechanism of the injury. He did not report any significant disease and previous surgery.

On physical examination, the right ankle revealed notably swollen with echymosis and pain especially in the area of the medial malleolus. His active and passive movements were very limited and painful. There was no skin lesion at the injury area and neurologic deficit. Both posterior tibialis artery and dorsalis pedis artery were palpable.

An oblique fracture of the medial malleolus with minimal displacement was noted on the anteroposterior and internal oblique radiographs of the ankle (Figure 1).

The patient was hospitalized with a diagnosis of close medial malleolar fracture and was a candidate for internal fixation surgery.

Three days after the accident, edema decreased and surgery was performed. Patient was positioned supine under spinal anesthesia. An anteromedial incision of distal tibia with protection of saphenous vein was performed, and an oblique fracture of the medial malleolus was observed. Incidentally, complete rupture of the PTT, 2 cm proximal to the apex of the medial malleolus, was detected intraoperatively (Figure 2). The tendon was not interposed into the fracture. The rupture end was flimsy and did not appear to be cut through the sharp edge of the bone.

We first fixed the medial malleolus with two screws (Figure 3). As there were no obvious signs of a degenerative tendinopathy, or calcification, a direct end-to-end modified Kessler tendon repair with non-absorbable monofilament sutures was performed.

The patient was discharged two days after the surgery, with instructions to be non-weight-bearing and fitted with a splint. Anticoagulant and oral antibiotic were also prescribed.

After 2 weeks, stitches were removed. After 3 weeks, the splint was removed and a removable brace was utilized for the patient. From the fourth week after surgery, partial weight bearing was allowed combined with gentle passive motion. Radiographs were obtained at 6 and 12 weeks postoperatively (Figure 4). Three months after the operation, the fracture was completely healed, the patient was asymptomatic and had a normal ankle range of motion, the function
The appearance and posture of the foot were normal and there was no deformity like a flat foot.

Discussion

The largest and anterior most tendon on the medial aspect of the ankle is the PTT, which arises from the posterior interosseous membrane, and the surface of the proximal tibia and fibula.9,10 This tendon descends between the flexor digitorum longus and the flexor hallucis longus, in the deep posterior compartment of the leg.9 It continues downward on superficial deltoid ligament and then deep to the plantar calcaneonavicular ligament in the hindfoot.2 The PTT ended with an almost 90° shift in the direction around the medial malleolus, at the level of the ankle.9 The plantar insertion of the PTT is so complicated: there are multiple insertions on navicular tuberosity on one side; on the other side, except the talus, the main tendon has insertions on all of the tarsal bones. Finally, it has insertions with fan-shaped fascicles on the second, third, and fourth metatarsals bones.2

The PTT has a role in plantarflexion of the ankle and supination of the foot.1 This tendon, along with the calcaneonavicular ligament, produces a powerful support for the medial arch of the foot.9

Spontaneous rupture of a healthy tendon is rare, whereas it may occur in the context of chronic tendinopathy, rheumatoid arthritis and non-specific tenosynovitis.2,11,12 The most common pathology that affects the PTT is chronic tendinopathy13 and the progressive “chewing gum” lesion in a setting of chronic tendinopathy,1,9 which occurs mostly in overweight women above 50 years of age who have valgus flat foot.14

Comorbidities such as aging, diabetes, corticosteroid therapy, obesity, rheumatoid arthritis, connective tissue disease and hypertension can be risk factors for rupture and long-term insufficiency.15–17.

Acute rupture of the PTT is less common than chronic and most happened in athletes who have had repeated sprains.9 Pronation and external rotation of the ankle, with direct blunt trauma to the medial area of the ankle, are most common mechanisms of the acute rupture of this tendon.18

The main artery that supplies the PTT is posterior tibial artery. Based on the work of Petersen et al.19 blood vessels enter the posterior tibial tendon paratenon through the mesotenon and vessels formed by a “web-like” network. Then they penetrate the tendon tissue and form an anastomosis with the intratendinous arterial network. In the region where the tendon changed direction to the back and distal of the medial malleolus (retro malleolar region) intratendinous vascular network was interrupted and the tendon was placed in an avascular zone. It is the most frequent area of ruptures especially the distal portion.11 Also this region is the primary zone that encounters with degeneration of chronic tendinopathy.14 The most common site of rupture is 2 cm above the fracture.20 Anyway, the rupture can occur anywhere along the tendon.2 The rupture site of our case was also 2 cm above the fracture.

Traumatic mechanisms of pronation and external rotation, redundant edema on the medial side of the ankle, the irreducibility of the dislocation or fracture, and the appearance of “bone flakes” separated from the distal medial metaphysis of the tibia are suspicious clinical signs that should be considered for PTT lesions.1,2,9,11,18,21,22

Due to the limitations of clinical examinations, the use of MRI and preoperative ultrasound can be helpful in diagnosing this lesion.23 Because these techniques are not always available, careful examination of the tendon rupture should be performed during surgery.23

Misdiagnosed complete or partial rupture of the PTT has many painful consequences, such as lack of supporting medial longitudinal arch of foot and planovalgus deformity.1 Acquired flatfoot deformity secondary to untreated PTT rupture was described by Mueller24 and Kupcha and shah.25 Direct suture or tenodesis on the flexor digitorum longus tendon are the treatment of choice.18

In the literature, we found only limited articles that reported complete posterior tibialis rupture associated with a closed ankle fracture.1–3,5,7,8,11,12,16,18,20–23,26–35 Giblin et al.31 first described the PTT rupture associated with a closed medial malleolar fracture in 1980. Most of the articles reported complete rupture of the PTT with medial malleolus involvement. Monto et al.33 reported a

Figure 4. Twelve weeks postoperatively radiography.

Talebi et al.
Table 1. Summary of published observations.

Author	Age/Sex	Mechanism	PTT interposition	Level of tendon injury	Fracture type	Type of PTT repair	Result
Giblin	31/20M	Falling down	Yes	At the fracture level	Closed bimalleolar	Primary repair	Good after 6 months
Kelbel and Jardon	28/28M	Motor vehicle accident	Yes	2 cm proximal	Medial malleolar	Primary repair	Good after 12 months
De Zwart and Davidson	34/37F	Falling down (both)	Not mentioned (both)	At the fracture level	Closed bimalleolar	Primary repair	Good after 3 months
Stein	50/32F	Falling down	Not mentioned (both)	1 cm proximal	Medial malleolar fracture with lateral dislocation	Primary repair (both)	Good after 23 months
Schaffer et al.	22/38F	Motor vehicle accident	Not mentioned (both)	2 cm proximal	Closed bimalleolar with lateral dislocation	Primary repair	Good after 12 months
Soballe and Kjaersgaard-Andersen	21/25 M	Falling down	Yes	3 cm proximal	Closed bimalleolar with lateral dislocation	Primary repair	Good after 12 months
Monto et al.	25/49M	Ankle sprains in football	Yes	Distal of the medial malleolus	Hansen stage IV PER without involved medial malleolar fracture	Primary repair	Not mentioned
Burton and Page	41/45F	Accident	Not mentioned	Neck of the talus with a trimalleolar fracture	Primary repair	Good after 40 months	
Ebraheim and Wong	42/45F	Motor vehicle accident	Not available	Neck of the talus with a medial malleolar fracture	Primary repair	Good after 12 months	
Bos and Lusskin	27/25F	Falling down	No	2 cm proximal	Bimalleolar fracture with lateral displacement of talus and avulsed fragment of the medial malleolus	Primary repair	Good after 3 months
Penney et al.	49/61M	Car accident	No	At the musculotendinous junction	Side-to-side PTT to FDL tenodesis	Good after 14 months	At 12 months, partial collapse of the medial arch
Mallick and Faleme	29/25M	Motor vehicle accident	No (both)	At the fracture level	Bimalleolar fracture	Primary repair (both)	Good after 7 months
Sharma and Meredith	61/61M	Falling down	No	4 cm proximal	Fracture dislocation of the ankle, supra-syndesmotic comminuted fracture of the distal fibula, comminuted fracture of the distal malleolus and an avulsed distal lateral tibia fragment	Primary repair	Good after 14 months
Author	Age/Sex	Mechanism	PTT interposition	Level of tendon injury	Fracture type	Type of PTT repair	Result
--------	---------	-----------	-------------------	-----------------------	---------------	-------------------	--------
Uzel et al.	25/M	Scooter accident	No (all case)	2 cm proximal	Medial malleolar fracture, undisplaced fracture of the tuberosity of the navicular bone	Primary repair (all cases)	Not mentioned
	29/M	Motor vehicle accident	No (all case)	2 cm proximal	Medial malleolar	Primary repair	Not mentioned
	60/M	Motor vehicle accident	No (all case)	1 cm proximal	Lateral dislocation of the ankle, medial malleolar fracture, comminuted fracture of the fibula, fracture of the anterior tibial tubercle with tibio-fibular diastasis	Died 11 days after the operation	
Ceccarelli et al.	36/M	Motor vehicle accident	No	2 cm proximal	Non-displacement medial malleolar fracture	Primary repair	Good after 12 months
Martinelli et al.	45/F	Ankle sprain	No	3 cm proximal	Without fracture	Primary repair	Good after 2 years
Karabila et al.	36/M	Eversion of the foot in handball	No	1 cm proximal	Bimalleolar	Primary repair	Good after 3 months
Bernstein et al.	29/M	Motor vehicle accident	No (all cases)	5 cm proximal	Close lauge-hansen pronation and abduction bimalleolar	Primary repair (all cases)	Good after 10 months
	65/M	Falling down	No (all cases)	At the fracture level	Open lauge-hansen pronation and abduction ankle fracture with tibiotalar dislocation	Primary repair	Good after 6 months
	15/M	Ankle sprain in football	No (all cases)	At the fracture level	Close lauge-hansen pronation and external rotation bimalleolar	Primary repair	Good after 8 months
Formica et al.	34/M	Motor vehicle accident	Yes	1.5 cm proximal	Multifragment fracture of medial malleolar	Primary repair	Good after 6 months
Jasqui-Remba and Rodriguez-Corlay	30/M	Motor vehicle accident	Not mentioned	At the musculotendinous junction	Bimalleolar fracture and a subluxation of the talus	Primary repair	Good after 6 months
Wardell et al.	34/M	Motor vehicle accident	Not mentioned	Medial side of the ankle	An isolated, closed, subluxated, right bimalleolar-equivalent ankle fracture	Primary repair	Good after 18 months
Cataldi et al.	43/M	Motor vehicle accident	No	2.5 cm proximal	Multifragmentary fracture of the right distal tibia and a transverse fracture of the medial malleolus	Primary repair	Good after 11 months
Talebi et al.	33/M	Car accident	No	2 cm proximal	Close medial malleolar	Primary repair	Good after 3 months

M: male; F: female; PTT: posterior tibialis tendon; FDL: flexor digitorum longus.
complete rupture of PTT without medial malleolar fracture. Most papers report a trauma in pronation, and external rotation of the ankle, overcoming the strength of the tibialis posterior tendon fibers. All studies that have been published so far have reported acceptable results in an average 6-month examination and in the long-term return of patients to previous activity after primary repair. Based on the work of Formica et al., some studies have reported successful results with tenodesis on flexor digitorum longus tendon.

In our case, the patient had no history of previous surgery, comorbidities, or corticosteroid therapy, thus, the only possible mechanism that we could consider was pronation and external rotation with direct trauma by pedal. Diagnosis of the PTT rupture was intraoperative. The rupture was 2 cm above the fracture and we did not find any interposition of the PTT into the fracture. An end-to-end tendon repair was performed. He had a good outcome at the 3-month follow-up examination.

We have briefly described some of the previous reports in Table 1. In conclusion, PTT rupture associated with an ankle fracture is a rare condition, which is not routinely explored in ankle fracture surgery. Unfortunately, this lesion is often misdiagnosed and has painful consequences as flatfoot deformity that involves pain and disability for the patient. We recommend that in cases of ankle fractures that occur following a direct high-energy trauma or traumatic mechanism of pronation and external rotation that are accompanied by excessive displacement, swelling of the medial region of the foot, we consider the PTT rupture. In such cases, it is better to explore this tendon during surgery so that if the tendon is damaged, we can repair it at the appropriate time and prevent severe and painful consequences. Intraoperatively, we should examine the tendon carefully and pay attention to its tension. Loss of tension can refer to the PTT rupture.

We hope that our report, be a helpful guide for physicians who face these conditions.

Declaration of conflicting interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs
Shahin Talebi https://orcid.org/0000-0002-2290-4575
Shirin Sheibani https://orcid.org/0000-0002-7684-9890
Salman Ghaffari https://orcid.org/0000-0001-8641-5052
Abolfazl Ghadiri https://orcid.org/0000-0001-5409-3861

References
1. Cataldi C, Bacci N, Colasanti GB, et al. Posterior tibial tendon rupture associated with anterolateral distal tibial and medial malleolar fracture and a novel pattern of tibiofibular syndesmotic injury: a case report and review of the literature. J Foot Ankle Surg Off Publ Am Coll Foot Ankle Surg 2020; 59: 1066–1071.
2. Formica M, Santolini F, Alessio-Mazzola M, et al. Closed medial malleolar multifragment fracture with a posterior tibialis tendon rupture: a case report and review of the literature. J Foot Ankle Surg Off Publ Am Coll Foot Ankle Surg 2016; 55: 832–837.
3. Ceccarelli F, Faldini C, Pagkrati S, et al. Rupture of the tibialis posterior tendon in a closed ankle fracture: a case report. Chir Organi Mov 2008; 91: 167.
4. Park J. Partial rupture of the tibialis posterior tendon associated with a closed medial malleolar fracture (A case report). J Am Podiatr Med Assoc 2016; 106: 449–452.
5. Kelbel M and Jardon OM. Rupture of tibialis posterior tendon in a closed ankle fracture. J Trauma 1982; 22: 1026–1027.
6. Kettelkamp DB and Alexander HH. Spontaneous rupture of the posterior tibial tendon. J Bone Joint Surg Am 1969; 51: 759–764.
7. Schaffer JJ, Lock TR, and Salciccioli GG. Posterior tibial tendon rupture in pronation-external rotation ankle fractures. J Trauma 1987; 27: 795–796.
8. Soballe K and Kjaersgaard-Andersen P. Ruptured tibialis posterior tendon in a closed ankle fracture. Clin Orthop Relat Res 1988; 231: 140–143.
9. Lhoste-Trouillard A. The tibialis posterior tendon. J Ultrasound 2012; 15: 2–6.
10. Willegger M, Seyidova N, Schuh R, et al. The tibialis posterior tendon footprint: an anatomical dissection study. J Foot Ankle Res 2020; 13: 25.
11. Jasqui-Remba S and Rodriguez-Corlay RE. Muscular tendinous junction rupture of the posterior tibial tendon after closed bimalleolar ankle fracture. Case Rep 2016; 2016: bcr2015214028.
12. Martinelli N, Bonifacini C, Bianchi A, et al. Acute rupture of the tibialis posterior tendon without fracture: a case report. J Am Podiatr Med Assoc 2014; 104: 298–301.
13. Nallamshetty L, Nazarian LN, Schweitzer ME, et al. Evaluation of posterior tibial pathology: comparison of sonography and MR imaging. Skeletal Radiol 2005; 34: 375–380.
14. Gluck GS, Heckman DS, and Parekh SG. Tendon disorders of the foot and ankle, part 3: the posterior tibial tendon. Am J Sports Med 2010; 38: 2133–2144.
15. Akra GA and Limaye RV. An unusual etiology for adult-acquired flatfoot. J Foot Ankle Surg 2010; 49: e11–e14.
16. West MA, Sangani C, and Toh E. Tibialis posterior tendon rupture associated with a closed medial malleolar fracture: a case report and review of the literature. J Foot Ankle Surg 2010; 49: e9–e12.
17. Funk DA, Cass J, and Johnson K. Acquired adult flat foot secondary to posterior tibial-tendon pathology. J Bone Joint Surg Am 1986; 68: 95–102.
18. Wardell RM, Hanselman AE, Daffner SD, et al. Posterior tibialis tendon rupture in a closed bimalleolar-equivalent
ankle fracture: case report. *Foot Ankle Spec* 2017; 10: 572–577.
19. Petersen W, Hohmann G, Stein V, et al. The blood supply of the posterior tibial tendon. *J Bone Joint Surg Br Vol* 2002; 84:141–144.
20. Bos M and Lusskin R. Acute disruption of the posterior tibial tendon associated with open-fracture dislocation of the ankle. *Foot Ankle Int* 1997; 18: 823–826.
21. Stein R. Rupture of the posterior tibial tendon in closed ankle fractures. Possible prognostic value of a medial bone flake: report of two cases. *J Bone Joint Surg Am* 1985; 67: 493–494.
22. Bernstein DT, Harris JD, Cosculluela PE, et al. Acute tibialis posterior tendon rupture with pronation-type ankle fractures. *Orthopedics* 2016; 39: e970–e9e5.
23. Mallick S and Faleme A. Traumatic rupture of the tibialis posterior tendon after closed ankle fractures: a report of two cases. *Eur J Orthop Surg Traumatol* 2001; 11: 137–139.
24. Mueller T. Ruptures and lacerations of the tibialis posterior tendon. *J Am Podiatr Med Assoc* 1984; 74: 109–119.
25. Kupcha P and Shah S. Posterior tibial tendon dysfunction as a cause of acquired flatfoot in adults. *Del Med J* 1997; 69: 255–257.
26. Uzel A, Massicot R, Delattre O, et al. Traumatic rupture of the tibialis posterior tendon after ankle fracture: three cases and a review of the literature. *Revue de Chirurgie Orthopedique Et Reparatrice De L’appareil Moteur* 2006; 92: 283–289.
27. Penney KE, Wiener BD, and Magill RM. Traumatic rupture of the tibialis posterior tendon after ankle fracture: a case report. *Am J Orthopedics (Belle Mead, NJ)* 2000; 29: 41–43.
28. Karabila MA, Azouz M, Mhamdi Y, et al. Traumatic rupture of the posterior tibial tendon occurring during a closed fracture of the ankle: report of a case. *Pan Afr Med J* 2015; 22: 371.
29. Madhusudhan T and Rangan A. Tibialis posterior tendon injury associated with a closed medial malleolar fracture—a case report. *Injury Extra* 2006; 5: 193–195.
30. Ebraheim NA and Wong FY. Simultaneous fracture of the ankle and talus associated with ruptured tibialis posterior tendon. *Am J Orthopedics (Belle Mead, NJ)* 1995; Suppl: 22–24.
31. Giblin MM. Ruptured tibialis posterior tendon associated with a closed medial malleolar fracture. *Aust N Z J Surg* 1980; 50: 59–60.
32. De Zwart DF and Davidson JS. Rupture of the posterior tibial tendon associated with fractures of the ankle. A report of two cases. *J Bone Joint Surg Am Vol* 1983; 65: 260–262.
33. Monto RR, Moorman CT 3rd, Mallon WJ 3rd, et al. Rupture of the posterior tibial tendon associated with closed ankle fracture. *Foot Ankle* 1991; 11: 400–403.
34. Burton PD and Page BJ 2nd. Fracture of the neck of the talus associated with a trimalleolar ankle fracture and ruptured tibialis posterior tendon. *J Orthop Trauma* 1992; 6: 248–251.
35. Sharma H and Meredith A. Concomitant traumatic rupture of the tibialis posterior tendon with a closed complex ankle fracture: an uncommon injury, which can easily be overlooked. *The Foot* 2004; 14: 35–37.