Effects of CeO$_2$ on the Si Precipitation Mechanism of SiCp/Al-Si Composite Prepared by Powder Metallurgy

Bin Yang $^{1, *}$, Aiqin Wang $^{1, 2}$, Kunding Liu 1, Chenlu Liu 1, Jingpei Xie $^{1, 2}$, Guangxin Wang 1 and Shizhong Wei 1

1 Materials Science and Engineering School, Henan University of Science and Technology, Luoyang 471023, China; aiqin_wang@haust.edu.cn (A.W.); liukunding@haust.edu.cn (K.L.); liuchenlu@haust.edu.cn (C.L.); xiejp@haust.edu.cn (J.X.); wgx58@haust.edu.cn (G.W.); wsz@haust.edu.cn (S.W.)

2 Collaborative Innovation Center of Nonferrous Metals, Luoyang 471023, China

* Correspondence: yangbin@haust.edu.cn; Tel.: +86-0379-6990-1432

Received: 6 September 2020; Accepted: 28 September 2020; Published: 30 September 2020

Abstract: SiCp/Al-Si composites with different CeO$_2$ contents were prepared by a powder metallurgy method. The effect of CeO$_2$ content on the microstructure of the composites was studied. The mechanism of CeO$_2$ on the precipitation of Si during sintering was analyzed by theoretical calculations. The results show that the appropriate amount of CeO$_2$ can significantly refine the size of precipitated Si particles in the composite and increase the number of Si particles. With the increase of CeO$_2$ content from 0 to 0.6 wt%, the number of Si particles precipitated in the composites increases gradually, and the average particle size of Si particles decreases gradually. When the CeO$_2$ content is 0.6 wt%, the number of Si particles precipitated in the composites reaches the maximum, and the average particle size reaches the minimum. However, with the increase of CeO$_2$ content from 0.6 wt% to 1.8 wt%, the number of Si particles precipitated in the composites began to decrease, and the average size of Si particles gradually increased. CeO$_2$ can be used as heterogeneous nucleation substrate of precipitated Si, and the nucleation rate of precipitated Si on a CeO$_2$ substrate is higher than that on an aluminum substrate. The proper addition of CeO$_2$ can improve the nucleation efficiency of precipitated Si, thus increasing the amount and refining the size of precipitated Si.

Keywords: powder metallurgy; rare earth element; precipitated Si; microstructure refinement

1. Introduction

With the development of the modern manufacturing industry, research and development of high-performance materials has become one of the important topics in the development of the aerospace industry [1–3]. In spacecraft design, due to the particularities of the space flight environment, the materials used for the vessel and its auxiliary equipment are usually required to have ultra-high specific strength and toughness, good high-temperature performance and thermal stability, as well as remarkable fatigue resistance, vibration resistance, corrosion resistance, etc. [4–7].

Due to the advantages of low density, high specific strength, low thermal expansion coefficient, good thermal conductivity and high wear resistance, SiC particle reinforced Al-Si matrix composite (SiCp/Al-Si composite) has been widely used in aerospace applications, electronic instruments, military equipment, wear-resistant materials and many other fields [8–12]. SiCp/Al-Si composites prepared by powder metallurgy usually have the following advantages: the distribution of the reinforcement phase is uniform, the content is easy to adjust, the proportion of each component is accurate and there is no obvious agglomeration [13,14]. In addition, due to the low temperature used in the preparation
process, the composites are generally in solid or partial melting state, so the interfacial reaction between matrix and reinforcement is very weak, which reduces the formation of interface impurities and brittle phases [15]. However, for the SiCp/Al-Si composites with high Si content in the matrix, multi-scale precipitation of Si phase will occur during the preparation process, and coarse and irregular Si particles will be precipitated in the matrix [16–18]. These particles can easily split the matrix, reduce the mechanical properties of the materials and restrict the improvement of its physical and mechanical properties. Therefore, it is of great significance to improve the physical and mechanical properties of SiCp/Al-Si composites by reducing or preventing the multi-scale precipitation of a Si phase during the preparation process.

At present, many scholars have studied the application of rare earths as grain refiner in casting Al-Si alloys [19–22]. Compared with other rare earth elements, Ce has been the most investigated due to its relatively low cost and good compatibility with the aluminum matrix. Li et al. [23] found that the addition of 1.0 wt% Ce significantly refined the primary Si and transferred the morphology from coarse irregular to fine blocky. Xue et al. [24] reported that CeO$_2$ additive could significantly improve the dispersion of in-situ formed TiB$_2$ in an Al matrix while refining α-Al grains. Wu et al. [25] fabricated Ti/Al$_2$O$_3$ composites with different volume content of CeO$_2$ via vacuum hot-pressing sintering and found that the addition of CeO$_2$ could significantly improve the microhardness, flexural strength and fracture toughness. However, there are few reports on the application of CeO$_2$ in Al-Si alloy and Al-Si alloy matrix composites prepared by powder metallurgy and little attention has been paid to the effects of CeO$_2$ on the microstructure of SiCp/Al-Si composites. In this paper, SiCp/Al-Si composites with different CeO$_2$ contents were prepared by a powder metallurgy method, the influence of CeO$_2$ content on the microstructure of the composites were studied and the mechanism of the influence of CeO$_2$ on the precipitation of Si phase in the composites was discussed.

2. Experimental Process

The SiCp/Al-Si composites with different CeO$_2$ contents were prepared by a powder metallurgy method. Al-19Si-1.5Cu-0.6Mg alloy powder prepared by the gas-atomization method was used as matrix, SiCp with average particle size of 10 µm was selected as reinforcement material and its mass fraction was 20 wt%, The additive used in the experiments was high purity CeO$_2$ powder, which mass fraction was respectively 0, 0.15 wt%, 0.3 wt%, 0.6 wt%, 1.2 wt%, 1.8 wt%. First, the above powders were mixed by a ball mill (the ratio of balls to powder was 2:1) for 4 h and then dried. Next the mixed powders were cold-rolled to a diameter of 78 mm, length 48 mm billet with 500 MPa pressure in a hydraulic machine; then the billets were heated in a tube furnace, the sintering temperature was 550 °C, sintering time was 3 h (the protective gas was N$_2$).

The X-ray diffraction (XRD) patterns of composites with different CeO$_2$ contents were determined using an X-pert pro X-ray diffractometer (PANalytical, Eindhoven, The Netherlands) with Cu K$_\alpha$ radiation (k = 0.15406 nm) operated at 40 kV and 100 mA. The microstructure of the samples were observed using scanning electron microscopy (SEM, JSM-5600LV, JEOL, Tokyo, Japan) with energy dispersive spectroscopy (EDS, Kevex, Texas, TX, USA) and transmission electron microscopy (TEM, JEOL JEM-2100). Samples for SEM analysis were prepared via grinding with SiC abrasive papers and polishing with an Al$_2$O$_3$ suspension solution and diamond solutions of different abrasive sizes (6, 3, 1 and 0.3 µm). After metallographic polishing, the samples were corroded by Keller reagent for 30 s. The TEM foil was mechanically polished to about 20 µm and further thinned via ion milling with a precision ion polishing system (PIPS, Model 691, Gatan, Pleasanton, CA, USA). The average grain size of Si particles precipitated from the composites with different CeO$_2$ content was measured by Image Pro Plus software v6.0. This software generates histograms of precipitated Si particles from the SEM image and quantities the diameter of precipitated Si through line profile analysis which provides the average grain size of all precipitated Si particles.

3. Results and Discussion

3.1. The XRD Analysis of SiCp/Al-Si Composites with Different CeO2 Contents

Figure 1 shows the XRD patterns of SiCp/Al-Si Composites with different CeO2 contents. It can be seen that all the samples contain the diffraction peaks of Al matrix (JCPDS card No.04–0787), SiC particles (JCPDS card No. 29–1131) and precipitated Si (JCPDS card No. 27–1402). However, due to the relatively low amount of addition and the fact the diffraction peaks of CeO2 overlap with those of precipitated Si, the diffraction peak of CeO2 (JCPDS card No. 34–0394) is only found in the composites with 1.8 wt% CeO2 content, and the diffraction peak intensity is weak. This shows that CeO2 added in the composite is relatively stable, and CeO2 does not react during the preparation process.

![XRD pattern of SiCp/Al-Si Composites with different CeO2 Contents.](image)

3.2. Effect of CeO2 Additions on the Microstructure of SiCp/Al-Si Composites

Figure 2 shows the SEM and EDS images of SiCp/Al-Si Composites with different CeO2 contents. It can be seen that the microstructure of the composites mainly consists of three phases: a dark gray particle phase (as shown in region A in Figure 2f), a light gray particle phase (as shown in region B in Figure 2f) and a white particle phase (as shown in region C in Figure 2f). Combining the XRD analysis in Figure 1 and the EDS results in Figure 2f–i, it can be concluded that the dark gray particle phase in the composites is SiCp, the light gray particle phase is precipitated Si and the white particle phase is CeO2.
CeO₂ in the composite increases. Obviously, an appropriate amount of CeO₂ can refine the precipitated Si. When the CeO₂ content is 0.6 wt%, the number of Si particles precipitated in the composites reaches the maximum and the average particle size reaches the minimum.

Figure 2. Cont.
When the CeO$_2$ content is 0.6 wt%, the number of Si particles precipitated in the composites reaches the maximum and the average particle size reaches the minimum. If the CeO$_2$ content is less than 0.6 wt%, CeO$_2$ mainly exists in the form of particles, and when the content of CeO$_2$ is more than 0.6 wt%, the agglomeration of CeO$_2$ in the composite increases. Obviously, an appropriate amount of CeO$_2$ can refine the precipitated Si; when the CeO$_2$ content is 0.6 wt%, the number of Si particles precipitated in the composites reaches the maximum and the average particle size reaches the minimum.

The average diameter of Si particles precipitated in the composites with different CeO$_2$ contents is shown in Figure 3. It can be seen that when the content of CeO$_2$ is between 0 and 0.6 wt%, the average size of precipitated Si particles gradually decreases with the increase of CeO$_2$ content, and the number of precipitated Si particles gradually increases; when the content of CeO$_2$ is between 0.6 wt% and 1.8 wt%, the change trend of average size and number of precipitated Si particles is opposite to the above, the main reason for this phenomenon may be that the agglomeration of CeO$_2$ increases with the increase of CeO$_2$ content. When the content of CeO$_2$ is less than 0.6 wt%, CeO$_2$ mainly exists in the form of particles, and when the content of CeO$_2$ is more than 0.6 wt%, the agglomeration of CeO$_2$ in the composite increases. Obviously, an appropriate amount of CeO$_2$ can refine the precipitated Si.

![Figure 2](image_url)
Figure 2. The SEM and EDS pictures of SiCp/Al-Si Composites with different CeO$_2$ Contents: (a) 0; (b) 0.15 wt%; (c) 0.30 wt%; (d) 0.60 wt%; (e) 1.20 wt%; (f) 1.80 wt%; (g) the energy spectrum diagram of region A in Figure 2f; (h) the energy spectrum diagram of region B in Figure 2f; (i) the energy spectrum diagram of region C in Figure 2f.

![Figure 3](image_url)
Figure 3. Average size of Si particles precipitated from SiCp/Al-Si composites with different contents of CeO$_2$.
The existence of CeO$_2$ can slow down the diffusion of precipitated Si atoms in Al matrix, thus reducing the growth rate of precipitated Si and refining the particles. The calculated results about the average diameter of Si precipitated in composites are consistent with the microstructure analysis. The morphological difference of the precipitated Si particles was relatively small, which indicates that CeO$_2$ content has little effect on the morphology of precipitated Si particles.

3.3. Influence Mechanism of CeO$_2$ on the Microstructure of SiCp/Al-Si Composites

In order to study the influence mechanism of CeO$_2$ on the size and quantity of precipitated Si in the composites, the composite without CeO$_2$ and the composite with 0.6 wt% CeO$_2$ content were analyzed by TEM. Figure 4 shows the TEM microstructure and corresponding electron diffraction patterns of the SiCp/Al-Si composite without CeO$_2$. After calibration by the software MDI jade 5.0, the electron diffraction patterns should be Al and precipitated Si, respectively. This indicates that the Al matrix is the main nucleation substrate for the precipitated Si in the composites without CeO$_2$. Figure 5 shows the TEM microstructure and corresponding electron diffraction patterns of the SiCp/Al-Si composite 0.6 wt% CeO$_2$ content, and diffraction patterns calibration indicated that they should be CeO$_2$ and precipitated Si, respectively. It can be concluded that in addition to Al matrix as the nucleation substrate, CeO$_2$ can also be used as the nucleation substrate for precipitated Si in the composites containing CeO$_2$.

![Figure 4](image1.png)

Figure 4. TEM observation of SiCp/Al-Si composites without CeO$_2$: (a) Al-Si interface; (b) Diffraction patterns of the Al matrix; (c) Diffraction patterns of the precipitated Si.

![Figure 5](image2.png)

Figure 5. TEM observation of SiCp/Al-Si composites with 0.6 wt% CeO$_2$ content: (a) CeO$_2$-Si interface; (b) Diffraction patterns of the CeO$_2$; (c) Diffraction patterns of the precipitated Si.

According to the analysis of TEM images and the corresponding electron diffraction patterns of the composites, it can be determined that CeO$_2$ could be used as the nucleation substrate of precipitated Si, so as to improve the nucleation rate and refine the size of precipitated Si particles. Table 1 shows the basic physical parameters of precipitated Si, CeO$_2$ and Al. It can be seen that the precipitated Si, CeO$_2$ and Al matrix belong to the face-centered cubic crystal system. However, the difference of lattice constant values between precipitated Si and Al is larger than that of precipitated Si and CeO$_2$.
Turnbull and Vonnegut first proposed that the heterogeneous nucleation efficiency of nucleation substrate depends on the lattice mismatch between the nucleation substrate and the nucleation phase [26]. The theory holds that the smaller the mismatch degree between nucleation substrate and nucleation phase is, the more lattice matching between nucleation substrate and nucleation phase is, and the energy caused by lattice mismatch between nucleation substrate and nucleation phase is smaller, too. That is, the smaller the interface energy between nucleation substrate and nucleation phase is, the higher nucleation rate of nucleation phase is. Because the precipitated Si, CeO$_2$ and Al are face centered cubic structure, the mismatch degree of precipitated Si and two nucleation substrates can be expressed by one-dimensional mismatch degree:

$$\delta = \frac{|a_s - a_n|}{a_n}$$ \hspace{1cm} (1)

In Equation (1), a_s is the lattice constant of nucleation substrate, Å; and a_n is the lattice constant of nucleation phase, Å. Substituting the values in Table 1 into Equation (1), the calculation shows that the mismatch degree of precipitated Si and CeO$_2$ is 0.22, and that of precipitated Si and Al is 0.64. According to the lattice mismatch theory, it can be concluded that the nucleation rate of the precipitated Si with CeO$_2$ as the nucleation substrate is greater than that with Al as the nucleation substrate because the mismatch degree of the precipitated Si and CeO$_2$ is less than that of the precipitated Si and Al.

In addition, according to the crystal growth theory of solid phase transformation [27], the growth mechanism of precipitated Si is mainly diffusion-controlled growth. Although the content of CeO$_2$ in the composites is relatively low, the existence of CeO$_2$ can still slow down the diffusion of precipitated Si atoms in Al matrix, thus reducing the growth rate of precipitated Si and refining the particles.

3.4. Calculation of Nucleation Rate of Precipitated Si in Composites

The Al-Si alloy powder used in this study is supersaturated solid solution prepared by rapid solidification method, the precipitation process of solid solution Si during sintering is a solid phase transformation process, and the nucleation process of precipitated Si in composite materials belongs to heterogeneous nucleation. Compared with homogeneous nucleation, heterogeneous nucleation requires less energy, the formula of free energy difference in heterogeneous nucleation system is as follows:

$$\Delta G_i = V\Delta G_V + A\gamma_i + V\Delta G_{si} - \Delta G_{di}$$ \hspace{1cm} (2)

In Equation (2), ΔG_i is the system free energy, J; ΔG_V is the unit volume free energy of precipitated Si, J/cm3; γ_i is the unit area interface energy between the precipitated Si and the nucleation substrate, J/cm2; A is the interface area, cm2; ΔG_{si} is the unit volume elastic strain energy, J/cm3; and ΔG_{di} is the surface energy at defects, J.

It is generally believed that $V\Delta G_V$ is nucleation driving force, $A\gamma_i + V\Delta G_{si}$ is resistance to nucleation, and ΔG_{di} is the surface energy at non-equilibrium defects, which contributes to nucleation work and promotes nucleation. For the convenience of calculation, it is assumed that the interface area between nucleation and nucleation substrate is equal to the surface area of nucleation, therefore, ΔG_{di} can be expressed as:

$$\Delta G_{di} = A\sigma_i$$ \hspace{1cm} (3)

Table 1. Basic physical parameter of Si, CeO$_2$ and Al.

Phase	Melting Point (K)	Crystal Structure	Lattice Constant (Å)
Si	1673	FCC	0.6636
CeO$_2$	2873	FCC	0.5411
Al	933	FCC	0.4050
where \(\sigma_i \) is the unit area surface energy of different nucleation substrates, J/cm\(^2\). Hence, Equation (2) can be rewritten as:

\[
\Delta G_i = V \Delta G_V + A \gamma_i + V \Delta G_{al} - A \sigma_i
\]

(4)

Therefore, the critical nucleation size \(r_{ki} \) and the critical nucleation Energy \(\Delta G_{ki} \) of precipitated Si could be identified as Equations (5) and (6):

\[
r_{ki} = -2(\gamma_i - \sigma_i)/(\Delta G_V - \Delta G_{al})
\]

(5)

\[
\Delta G_{ki} = -16\pi(\gamma_i - \sigma_i)^3/3(\Delta G_V - \Delta G_{si})^2
\]

(6)

The nucleation rate for heterogeneous nucleation could be identified as Equation (7):

\[
N_i = N_0 \exp\left(-\frac{\Delta G_{ki}}{kT}\right) \exp\left(-\frac{\Delta G_A}{kT}\right)
\]

(7)

In Equation (7), \(N_i \) is the nucleation rate of different nucleation substrates, 1/(s·cm\(^3\)); \(k \) is Boltzmann’s constant, T is absolute temperature, \(K \); \(\Delta G_A \) is the diffusion activation energy, J; and \(N_0 \) is the atomic number of precipitated Si per unit volume, 1/(s·cm\(^3\)). Substituting Equation (6) into Equation (7), then the Equation (8) can be rewritten as:

\[
N_i = N_0 kT \exp\left(-\frac{16\pi(\gamma_i - \sigma_i)^3}{kT}\right) \exp\left(-\frac{\Delta G_A}{kT}\right)
\]

(8)

where \(h \) is Planck constant.

Table 2 shows the parameter values for the nucleation of precipitated Si. According to the data in Table 2, it can be calculated that \(N_{CeO_2} = 4.66 \times 10^{12} \text{ (s·cm}^{-3})^{-1} \), \(N_{Al} = 3.33 \times 10^{12} \text{ (s·cm}^{-3})^{-1} \), \(N_{CeO_2} > N_{Al} \). Therefore, it can be concluded by calculation that the nucleation rate of precipitated Si on CeO\(_2\) substrate is higher than that on Al substrate. However, it should be noted that the nucleation rate of precipitated Si on CeO\(_2\) substrate is not much higher than that on Al substrate. Because of the value of areal surface energy \(\sigma_i \) for Al matrix \((1 \times 10^{-4})\) is higher than that of CeO\(_2\) \((1 \times 10^{-5})\), it can be concluded by Equation (5) that the critical radius of Si with CeO\(_2\) as nucleation substrate is smaller than that with Al matrix as nucleation substrate. The decrease of the critical nucleation radius of precipitated Si will lead to the decrease of critical nucleation energy and the increase of nucleation rate. This is consistent with our calculation. The addition of CeO\(_2\) can not only provide more nucleation substrates for precipitated Si to improve the nucleation rate, so as to refine the size and increase the number of precipitated Si particles. Combined with the previous analysis, it can be concluded that when the content of CeO\(_2\) is less than 0.6 wt\%, the refining effect is gradually enhanced with the increase of CeO\(_2\) content, which happens because there are more and more CeO\(_2\) as the nucleation substrate of precipitated Si, and the existence of CeO\(_2\) can slow down the diffusion of precipitated Si atoms in Al matrix, thus reducing the growth rate of precipitated Si and refining the particles. However, when the content of CeO\(_2\) is higher than 0.6 wt\%, the refining effect is gradually weakened, which is due to the relatively serious agglomeration phenomenon caused by excessive CeO\(_2\) content, weakens the ability of hindering the growth of precipitated Si, and reduces the refining effect.
Table 2. The parameter value for the nucleation of precipitated Si on different nucleation substrates.

Parameter Value	Nucleation Substrates	
	Al Matrix	CeO₂
ΔGv (J/cm³)	10⁴	10⁴
ΔGₐ (J)	2.19 × 10⁻¹⁹	2.19 × 10⁻¹⁹
ΔGₛₐ (J/cm³)	0	15
N₀ ((s·cm³)⁻¹)	3.94 × 10²¹	3.94 × 10²¹
γ₁ (J/cm²)	4 × 10⁻⁶	6 × 10⁻⁶
σ₁ (J/cm²)	1 × 10⁻⁴	5 × 10⁻⁵
k (J/k)	1.38 × 10⁻²³	1.38 × 10⁻²³
h (J·s)	6.62 × 10⁻³⁴	6.62 × 10⁻³⁴
T (K)	823	823

4. Conclusions

(1) SiCp/Al-Si composites with different CeO₂ contents were successfully prepared by a powder metallurgy method. When the content of CeO₂ is less than 0.6 wt%, CeO₂ mainly exists in the form of discrete particles and when the content of CeO₂ is more than 0.6 wt%, the agglomeration of CeO₂ increases.

(2) An appropriate amount of CeO₂ can obviously refine the size of precipitated Si particles and increase the amount of Si particles. With the increase of CeO₂ content from 0 to 1.8 wt%, the number of precipitated Si particles first increases and then decreases, and the average size of precipitated Si particles first increases and then decreases, too. When the CeO₂ content is 0.6 wt%, the number of Si particles precipitated in the composites is the largest and the average size is the smallest.

(3) For the composite without CeO₂, the nucleation of precipitated Si is mainly based on Al matrix. The addition of CeO₂ can be used as the heterogeneous nucleation substrate for precipitated Si, which improves the nucleation rate of precipitated Si. Moreover, the nucleation rate of precipitated Si on CeO₂ substrate is higher than that on Al substrate, which further improves the nucleation rate of precipitated Si, thus increasing the number of precipitated Si particles and refining the size of precipitated Si particles.

Author Contributions: Methodology, software, investigation, and data curation, B.Y. and A.W.; supervision, J.X., and S.W.; formal analysis, K.L. and C.L.; validation and resources, B.Y. and G.W. All the authors discussed the data and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (51801055, 51771070), National Science and Technology Major Project of China (2017ZX02408003), Henan Provincial Department of Science and Technology Research Project (182102210288), Key Scientific Research Projects of Higher Education Institutions of Henan Province (16A430017), Postdoctoral Research Grant in Henan Province (001703039).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ezugwu, R.A.; Bonney, V.; Yamane, Y. An overview of the machinability of aeroengine alloys. Mater. Chem. Phys. 2008, 108, 283–289. [CrossRef]
2. Guo, X.; Wang, L.; Wang, M.; Qin, J.; Zhang, D.; Lu, W. Effects of degree of deformation on the microstructure, mechanical properties & texture of hybrid-reinforced titanium matrix composites. Acta Mater. 2012, 60, 2656–2667. [CrossRef]
3. Luedtke, A. Thermal management materials for high-performance applications. Adv. Eng. Mater. 2004, 6, 142–144. [CrossRef]
4. Crouch, I.G. Body armour—New materials, new systems. Def. Technol. 2019, 15, 241–253. [CrossRef]
10. Yang, Y.; Lan, J.; Li, X. Study on bulk aluminium matrix nano-composite fabricated by ultrasonic dispersion

27. Liu, F.; Song, S.J.; Xu, J.F.; Wang, J. Determination of nucleation and growth modes from evaluation of

24. Xue, J.; Wang, J.; Han, Y.F.; Li, P.; Sun, B.D. E

22. Li, H.; Gao, Z.; Yin, H.; Jiang, H.; Su, X.; Bin, J. E

21. Tsai, Y.; Lee, S.; Lin, C.K. E

18. Selvam, D.R.; Robinson, J.; Dinaharan, D.S. Syntheses and characterization of Al6061-fly ash-SiC composites

15. Mckimpson, M.G.; Scott, T.E. Processing and properties of metal matrix composites containing discontinuous

5. Tjong, S.C. Recent progress in the development and properties of novel metal matrix nanocomposites

26. Turnbull, D.; Vonnegut, B. Nucleation Catalysis. Ind. Eng. Chem. 2015, 54, 609–616. [CrossRef]

25. Wu, C.; Wang, Z.; Li, Q.G.; Shi, G.P.; Liu, M.J.; Li, Y.Y. Mechanical properties and microstructure evolution of

24. Xue, J.; Wang, J.; Han, Y.F.; Li, P.; Sun, B.D. Effects of CeO2 additive on the microstructure and mechanical properties of in situ TiB2/Al composite. J. Alloys Compd. 2011, 509, 1573–1578. [CrossRef]

22. Li, H.; Gao, Z.; Yin, H.; Jiang, H.; Su, X.; Bin, J. Effects of Er and Zr additions on precipitation and recrystallization of pure aluminium. Scr. Mater. 2013, 68, 59–62. [CrossRef]

21. Tsai, Y.; Lee, S.; Lin, C.K. Effect of trace Ce addition on the microstructures and mechanical properties of Al6061 alloy. J. Alloys Compd. 2011, 509, 1573–1578. [CrossRef]

20. Selvam, D.R.; Robinson, J.; Dinaharan, D.S. Syntheses and characterization of Al6061-fly ash-SiC composites

19. Shi, C.; Zhang, L.; Wu, G.; Zhang, X.; Cheng, A.; Tao, J. Effects of Sc addition on the microstructure and mechanical properties of cast Al-3Li-1.5Cu-0.15Zr alloy. Mater. Sci. Eng. A 2017, 680, 232–238. [CrossRef]

18. Selvam, D.R.; Robinson, J.; Dinaharan, D.S. Syntheses and characterization of Al6061-fly ash-SiC composites

17. Molina, J.M.; Narciso, J.; Weber, L.; Mortensen, A.; Louis, E. Thermal conductivity of Al-SiC composites

16. Bai, M.; Xue, Q. Investigation of wear mechanism of SiC particulate-reinforced Al-20Si-3Cu-1Mg aluminium

15. Mckimpson, M.G.; Scott, T.E. Processing and properties of metal matrix composites containing discontinuous

14. Zare, R.; Sharifi, H.; Reza Saer, M.; Tayebi, M. Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite. J. Alloys Compd. 2019, 801, 520–528. [CrossRef]

13. Shin, S.; Cho, S.; Lee, D.; Kim, Y.; Lee, S.-B.; Lee, S.-K.; Jo, I. Microstructural Evolution and Strengthening

12. Urena, A.; Martinez, E.E.; Rodrigo, P.; Gil, L. Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites. Scr. Mater. 2004, 64, 1843–1854. [CrossRef]

11. Singh, S.; Pal, K. Effects of texture evolution on mechanical and damping properties of SiC/ZnAl2O4 composite through friction stir processing. J. Mater. Res. Technol. 2018, 338–350. [CrossRef]

10. Yang, Y.; Lan, J.; Li, X. Study on bulk aluminium matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminium alloy. Mater. Sci. Eng. A 2004, 380, 378–383. [CrossRef]

9. Veillère, A.; Kurita, H.; Kawasaki, A.; Lu, Y.; Heintz, J.-M.; Silvain, J.-F. Aluminum/Carbon Composites

8. Ghasali, E.; Yazdani-Rad, R.; Asadian, K.; Ebazdadeh, T. Production of Al-SiC hybrid composites using pure and 1056 aluminium powders prepared through microwave and conventional heating methods. J. Alloys Compd. 2017, 690, 512–518. [CrossRef]

7. Vasantha, K.P.; Sekar, K.; Venkatesh, K. Recent developments in powder metallurgy based aluminium alloy

6. Hooker, J.A.; Doorbar, P.J. Metal matrix composites for aeroengines. Mater. Sci. Technol. 2000, 16, 725–731. [CrossRef]

5. Tjong, S.C. Recent progress in the development and properties of novel metal matrix nanocomposites

4. Molina, J.M.; Narciso, J.; Weber, L.; Mortensen, A.; Louis, E. Thermal conductivity of Al-SiC composites

3. Shi, C.; Zhang, L.; Wu, G.; Zhang, X.; Cheng, A.; Tao, J. Effects of Er and Zr additions on precipitation and recrystallization of pure aluminium. Scr. Mater. 2013, 68, 59–62. [CrossRef]

2. Li, Q.; Xia, T.; Lan, Y.; Zhao, W.; Fan, L.; Li, P. Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al-20Si alloy. J. Alloys Compd. 2013, 562, 25–32. [CrossRef]

1. Xue, J.; Wang, J.; Han, Y.F.; Li, P.; Sun, B.D. Effects of CeO2 additive on the microstructure and mechanical properties of in situ TiB2/Al composite. J. Alloys Compd. 2011, 509, 1573–1578. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).