Assessing The Quality of Lapors! Using E-Govqual Theory in User’s Perspective

E. M. Safitri¹, T. L. M. Suryanto², A. Faroqi³, I. R. Mukhlis⁴
¹,²Department of Information System, Universitas Pembangunan Veteran Jawa Timur, Indonesia
³Department of Informatics STIE Perbanas Surabaya, Indonesia
E-mail: maya.si@upnjatim.ac.id

Abstract. LAPOR! Is an e-government project that is used to manage the aspirations and complaints of the Indonesian people with online system. This information system is expected to minimize the gap between citizens and the government in carrying out various aspects of government. According to the results of a survey conducted by the Indonesian Internet Service Providers Association (APJII) in 2017 LAPOR!’s users still around 0.2% of the total population of Indonesia, 143.26 million. Applications that were booming in 2013-2014 are now neglected in 2019. In addition to the policy changes that underpin the implementation of the information system, LAPOR! declared not as effective and efficient as before. Complaints about public services in LAPOR! now many are neglected and the follow-up is not as intensive as it once was under the supervision of UKP4. The application of a service-based information system requires continuous measurement of an information system evaluation. The measurement results are needed to overhaul the better implementation steps. This study uses an e-govqual approach with quantitative methods that are supported by qualitative data. Quantitative methods were carried out using SPSS 24 and Smart PLS 3. Qualitative data used were interviews with several key informants. The results of this study found that the biggest key to success in implementing LAPOR! is the content and appearance of Information factor.

Keywords— E-Government, Performance Measurement, LAPOR!, E-govQual

1. Introduction

LAPOR! is one of the E-Government projects in Indonesia. LAPOR! is an integrated social media-based online aspirations and complaints service with 81 ministries, 5 regional governments and 44 Indonesian state-owned Enterprises (BUMN) [1]. This information system was developed with the aim of increasing public participation in providing aspirations and supervision over the implementation of development and public services as a government work program [2].

LAPOR! began booming in the community in 2013-2014 [3]. However, statistics on usage of LAPOR! decline in the following years. It was recorded in a survey conducted by the Association of Indonesian Internet Service Providers (APJII) that only 0.2% of 143.26 million of all Indonesians were LAPOR!’s Users [4]. Apart from changes in policies that underpin the implementation of the information system, aspirations and complaints raised by the public about public services in LAPOR!
Now many are neglected and the follow-up is not as intensive as before when supervised by UKP4.

The ineffectiveness and inefficiency of the implementation of this information system encourages the need to measure LAPOR! performance as a service-based information system [5]. The right approach for measuring web-based information systems is to use E-GovQual theory [6]. E-GovQual Theory is used to assess the quality of website-based services [7]. The instrument used in this theory uses the user's perspective, in this case the people who access and use LAPOR!. The method used is a quantitative method with qualitative data support [8]. The results of this study are the quality measurement of LAPOR! as a service-based information system using E-GovQual theory approach [9]. From the results of this study it is expected that the LAPOR! developer can consider and adopt success factors that need to be included in the continued use of the LAPOR! Information system.

2. Our Method and Theoretical Framework

This research uses quantitative methods that are supported by qualitative data [10]. In a population of 290,000 users, a sample of 400 LAPOR! app users was obtained in 2019 [11]. The sampling technique used was cluster sampling, which is used in the case of a very large population that is the population scattered throughout the province [12]. Whereas qualitative data was taken by conducting interviews with important informants who understood the use of LAPOR! such as people who are actively using and following the development of the LAPOR! application [13].

![Figure 1: Conceptual Model of E-Govqual](image)

While the conceptual model in this study is to use the WebQual theory approach. E-Govqual theory explains that the quality of an e-government service is formed by six important factors, namely reliability, trust, easy of use, content and appearance of information, functionality of the interaction environment and citizen support [14]. Reliability is the accessibility, availability and accuracy of information needed by the user. Trust is the level of user trust in the application both in terms of security and system services [15]. Easy of use is defined as how easily understood when users interact with the application. Content and appearance of information is how the application presents quality information along with the available content on each system interface [16]. Functionality of the interaction environment can be interpreted as managing the availability of the system in serving users. Citizen support can be interpreted regarding the features of the system provided to help users find the information they need [17].
3. Finding and Discussion

This section is part of the discussion of research results. Research results that will be reviewed are the results of quantitative data processing that has been processed using the SPSS and SmartPLS applications [18]. Quantitative data processing shows the value of the suitability of the model in explaining a condition to be sought [19]. The suitability of the right model for the object of research will provide a proper explanation and support in analyzing the success factors of the LAPOR! Implementation [20].

3.1 Outer Model Analysis

Outer model analysis is used to find out the correlation between variables and the correlation between variables and indicators. The suitability of the outer model used is indicated by the value of composite reliability, convergent validity and discriminant validity. If the composite reliability value is ≥ 0.50, it can be stated that the model has been tested for variable reliability along with its indicator block. If the convergent validity value is ≥ 0.6, it can be stated that each variable has the right indicator in forming the variable. Discriminant validity is shown by the best value of the correlation variable with the variable itself. Table 1 summarizes the results of an outer model assessment using SmartPLS. From the results of the outer model assessment it can be concluded that the model has been well tested in accordance with composite reliability, convergent validity and discriminant validity.

Measurement point	Instrument of E-Govqual Conceptual Model					
	Easy of use	Trust	Reliability	Citizen Support	Content & appearance of information	Functionality of the interaction environment
Composite Reliability	0,874	0,928	0,917	0,865	0,928	0,874
Convergent validity	0,698	0,860	0,846	0,616	0,592	0,776
Discriminant validity	0,848	0,927	0,920	0,785	0,848	0,881

3.2 Inner Model Analysis

Inner model analysis is used to determine the fit of models. The suitability of the inner model can be shown by the values generated in R-Square, Q-Square and model fit. R-Square structural model value of 1000. This can be interpreted that the model can be interpreted well by 100%. While the structural model Q-Square value is 1. This can be interpreted that the observed value generated by the model and its parameter estimation can be described properly. For structural fit-model values of 0.113. This value <0.10 means that the model fits the criteria of compatibility and is acceptable in describing an event. From the results of the inner assessment, it can be concluded that the model has been well tested in accordance with the values of R-Square, Q-Square and model fit.

Measurement Point	Estimated Model
R-Square	1000
Q-Square	1
Fit Model	0,113
3.3 Path Coefficient Analysis

The results of data processing using SmartPLS shows the relationship between factors that use the E-Govqual conceptual model approach related to measurement evaluation of the LAPOR! Information system. In table 3 it can be seen that all interrelationships between variables get original sample values that are positive. Positive values in the original sample indicate that a variable has a positive relationship in influencing other variables. While the P-Value value indicates the significance of the correlation between variables. If the P-value of P < 0.05, it is stated that the relationship between variables is significant.

Correlation Between Variables	Original Sample	P Values	Information
Trust → Service Quality	0.132	0.000	Significant
Reliability → Service Quality	0.140	0.000	Significant
Functionality → Service Quality	0.136	0.000	Significant
Ease of Use → Service Quality	0.185	0.000	Significant
Citizen Support → Service Quality	0.244	0.000	Significant
Content & Information → Service Quality	0.360	0.000	Significant

Table 3 shows that all factors, namely trust, reliability, functionality, easy of use, citizen support, and content & information have a positive and significant relationship in improving the quality of LAPOR's information system services. With a diverse portion contribution. Content and appearance of information are the highest influencing factors in improving LAPOR! services which is 36%. The factor that has the second highest contribution is the citizen support factor, which is 24%. While the factor that has the third highest contribution is the ease of use factor, which is 18%.

Content and appearance of information factors are the factors most needed in improving services using the LAPOR! Information system. The quality of the information presented makes it easy for users to understand and carry out instructions (giving complaints or aspirations) that are carried out easily. The updated information is also an important aspect for users to interact with the website. Users want to know whether complaints or aspirations have been processed properly by the government. This will create a sense of trust from users indirectly to the government.

The citizen support factor is no less important in improving services using the LAPOR information system. LAPOR! Must be able to provide a sense of convenience, trust and efficiency for the entire community. In addition to the user guide and contact person interaction is also needed from the computer for all actions taken by the user. This makes users feel more supported in using LAPOR!. Examples that can be applied are giving attention alerts to certain activities that have been carried out by users, giving email replies to users regarding the status of complaints or aspirations that have been submitted and other things that make users feel supported in using the mentioned LAPOR! system.

The ease of use factor is a factor needed to improve services using the LAPOR! Information system. The very ease of use can be done by presenting a user guide or contact person on the website. This can be used by the user at any time if the user needs other information that is not conveyed directly on the website. This is directly proportional to the research data that the user feels happy with the search feature that can facilitate the user. Besides that the appropriate symbol features also contribute to ease of use. Good computer interaction with users will provide a sense of comfort and familiar with the symbols that have been used.
4. Conclusion, Limitations, and Suggested Future Research

Based on the results of the study it can be concluded that all the factors used in the E-Govqual theory have a connection in increasing the quality of LAPOR! Services. Content and appearance of information is a factor that has the highest connection in improving LAPOR! Services, contributing 36%. Whereas the factor with the second highest contribution in improving LAPOR! Services, Citizen Support is a factor of 24%. Therefore these two factors need to be improved in improvising LAPOR! information system services.

The limitation in this study is that the sample taken is small namely the scope of the city of Surabaya. More extensive research samples are needed, such as in Java or throughout Indonesia to obtain more objective research results. Besides this research is dominated by the interpretation of the analysis using quantitative data. For further research, this research can be developed using qualitative methods. Qualitative methods make it possible to explore the success factors of LAPOR! deeper and discover other new factors.

Acknowledgments

The author would like to thank as much as possible to those who have supported the completion of this research to the publication process. We extend our special thanks to the field supervisor, from the management of the LAPOR! information system who have accompanied and provided guidance in the process of data collection in the field. We would also like to thank members of the research team who have provided full support from the beginning of the research process to the completion of the publication process. Hopefully the research that has been carried out gets research results that can be used for various parties in the process of improving the performance of the LAPOR! information system.

References

[1] U. N. K. Base, "Country Information Indonesia data," 2019. [Online]. Available: https://publicadministration.un.org/egovkb/en-us/Data/Country-Information/id/78-Indonesia.

[2] I. P. R. INDONESIA, "Instruksi Presiden Republik Indonesia Nomor 3 Tahun 2003," INDONESIA, 2019.

[3] LAPOR!, "STATISTIK LAPORAN. Retrieved from LAYANAN ASPRASI DAN PENGADUAN ONLINE RAKYAT," Tuesday March 2013. [Online]. Available: https://www.lapor.go.id/statistik/statistiklight.

[4] APJII, "Retrieved from ASSOSIASI PENYELENGGARA JASA INTERNET INDONESIA," APJII, 2017. [Online]. Available: https://apjii.or.id/survei2017.

[5] P. Haryani, "Evaluasi Kualitas Layanan E-Government Pemerintah," pp. 1412-9612, 2017.

[6] M. H. D. A. A. Y. E. &. N. D. Albar, "E-Government Service Quality Based on E-GovQual Approach. Advance Science Engineering Information Technology," Information System, vol. 7, no. 6, p. 4, 2019.

[7] N. &. C. A. Garla, "Developing Electronic Government Success Models fo," Information system, vol. 1, no. 16, p. 18, 2017.

[8] W. M. B. L. &. N. P. R. Chin, "A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study.," Information Systems, vol. 1, no. 3, p. 2, 2005.

[9] X. &. M. Papadomichelak, "e-GovQual: A multiple-item scale for assessing e-government service
quality. Government Information Quarterly, "Information System, vol. 29, no. 109, pp. 98-100, 2020.

[10] P. I. Djiwandono, "Meneliti Itu Tidak Sulit," in Metodologi Penelitian Sosial dan Pendidikan, Yogyakarta, CV BUDI UTAMA, 2018, p. 5.

[11] P. & L. M. Ghozali, "PARTIAL LEAST SQUARE konsep, teknik dan aplikasi menggunakan program SmartPLS 3.0 untuk penelitian empiris," in PARTIAL LEAST SQUARE, Semarang, Badan penerbit UNDIP semarang, 2016, p. 15.

[12] J. Noor, "Metodologi Penelitian : Skripsi," in Metodologi Penelitian : Skripsi, Tesis, Disertasi, dan Karya Ilmiah, Jakarta, Kencana., 2011, p. 21.

[13] J. (. 2. Sarwono, "PENGERTIAN DASAR STRUCTURAL EQUATION MODEL (SEM)," Jurnal Ilmiah Management Bisnis, vol. 10, no. 03, pp. 173-182, 2018.

[14] F. R. Á. &. C. M. P. Sá, " From the quality of traditional services to the quality of local e-Government online services: A literature review," Government Information Quarterly, vol. 4C, p. 12, 2018.

[15] S. H. &. N. I. A. Supangkat, "FRAMEWORK STRATEGI IMPLEMENTASI E-GOVERNMENT . Prosiding Konferensi Nasional Teknologi Informasi & Komunikasi untuk Indonesia," in SANTIIKA, Surabaya, 2007.

[16] E. &. O. A. (. s. V. 5. N. 2. 2. I. 2.-0. Sayin, "Assessing E- Government Service Quality Model And An Application: An Example Of Municipality Of Nazilli," International Journal Of Ebusiness And Egovernment Studies, vol. 5, no. 2, p. 2146, 2017.

[17] N. &. A. R. Yunita, "Kondisi Terkini Perkembangan Pelaksanaan E-Government Di Indonesia. Seminar Nasional Teknologi Informasi dan Komunikasi," in SANTIIKA, Surabaya, 2018.

[18] S. H. M. I. D. D. F. &. S. F. Situmorang, "Analisis Data untuk Riset Manajemen Bisnis," in Riset Manajemen Bisnis, Medan, USU Press, 2015, pp. 5-21.

[19] S. Santoso, "AMOS 22 untuk Structural Equation Modelling," in AMOS, Jakarta, PT Elex Media Komputindo., 2015, pp. 23-40.

[20] P. W. (. Rachmadani, "Analisis Faktor - Faktor Penerimaan E-Voting," Sistem Informasi, vol. 1, no. 13, pp. 34-37, 2015.