In silico analysis of autoimmune diseases and genetic relationships to vaccination against infectious diseases

Peter McGarvey, Baris E. Suzek, Shruti Rao, Subha Madhavan.

Innovation Center for Biomedical Informatics, Georgetown University Medical Center 2115 Wisconsin Ave NW, Suite 110 Washington, DC 20007

pbm9@georgetown.edu

ABSTRACT

Vaccines are profoundly important to global health in preventing infectious diseases. Reported adverse events following vaccination are diverse, rare and require thorough investigation and evaluation [1]. Autoimmune diseases (AD) have been reported after some vaccinations. Because autoimmune diseases are rare and have variable and prolonged onset times, it makes it difficult to fully assess the association between the autoimmune diseases and vaccination. One of the components of pharmacovigilance and vaccine safety evaluation is consideration of biologic plausibility. Knowledge of biologic plausibility may be enhanced by an understanding of molecular immune mechanisms responsible for the adverse events, natural infections and the pathogenesis of the associated, reported AD. The situation is complicated by the complex matrix of innate and adaptive immune responses to vaccine antigens, adjuvants, preservatives and stabilizers. A bioinformatics, systems biology approach was used to collect data from the literature and curated databases to understand post-vaccination Guillain-Barré Syndrome (GBS), Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Idiopathic (or Immune) Thrombocytopenic Purpura (ITP).

By mining multiple curated databases and using automated text mining of PubMed literature, followed by manual review to remove errors, 667 genes associated with RA, 448 with SLE, 49 with ITP and 73 with GBS were collected. While all data sources provided valuable and unique gene associations, text mining using natural language processing (NLP) algorithms provide the most by far but required additional curation to remove incorrect associations. Sixty-four direct interactions between six vaccine ingredients and forty-six genes were also collected. Though only six genes were associated with all four ADs, thirty-seven genes were associated with three ADs. Pathway analysis found thirty-three pathways in common between the four ADs. Classification of genes into twelve immune system related categories identified more “Chemokine plus Receptors” genes were associated with RA than SLE. RA also had more genes associated with the “Th17 T-cell” subtype than other ADs. Gene networks were created, visualized and analyzed by cluster analysis of interconnected modules.

Analysis showed several clusters uniquely associated with RA including one with ten C-X-C motif chemokines, which are powerful neutrophil chemotactic factors. Other clusters contained genes common to other ADs. Figure 1 shows a sub-network of ten genes associated with GBS, Influenza A infection and genes activated in response to influenza vaccination [2]. The nodes highlighted in green and shaded in the data panel represent genes associated with GBS only and not the other three ADs. Red triangles are vaccine ingredients that interact with genes in the network. Additional pathway analysis suggests a key role for the MAPK signaling pathway in GBS.

Figure 1. Sub-network of genes associated with GBS, Influenza A infection and response to influenza vaccination.

Systems and methods to collect, organize and integrate large data sets are essential to enable researchers and public health agencies to utilize published data and develop hypotheses related to vaccine safety and efficacy.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Decision support

H.2.8 [Database Applications]: Scientific databases

General Terms

Experimentation

Keywords

ACM proceedings, Gene Networks, Immunology, Vaccines

ACKNOWLEDGMENTS

This work was partly funded by the FDA (Food and Drug Administration) though the CERSI (Centers in Excellence in Regulatory Sciences) program 1U01FD004319-01. No official support or endorsement by the Food and Drug Administration of this presentation is intended or should be inferred.

1 The described work has been conducted during Dr. Andrea Sutherland employment at FDA. She currently works at Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 2120.
REFERENCES

[1] Koenig HC, Sutherland A, Izurieta HS, McGonagle D: Application of the immunological disease continuum to study autoimmune and other inflammatory events after vaccination. Vaccine 2011, 29(5):913-919.

[2] Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, Means AR, Kasturi SP, Khan N, Li GM et al: Systems biology of vaccination for seasonal influenza in humans. Nature immunology 2011, 12(8):786-795.