EDITORIAL

Controversies in CO₂ Insufflation and COVID-19

Mark Soliman¹

Concern over CO₂ insufflation in the era of COVID-19 in endoscopy, laparoscopy, and robotics has been at the forefront of many debates and societal publications. Data at best is murky and confusing, but most importantly is based on speculation and extrapolation from a mixture of older and newer studies [1, 2].

With specific reference to this ongoing pandemic, Coronavirus are a family of ribonucleic acid (RNA) viruses that are implicated in a host of respiratory illnesses spanning from the common cold, Severe acute respiratory syndrome coronavirus (SARS-CoV), to Middle East respiratory syndrome coronavirus (MERS-CoV) [3]. Of most pressing concern is the novel SARS-CoV-2, which was dubbed coronavirus disease 2019 (COVID-19) by the World Health Organization in late 2019 [4].

This RNA virus has a size range of 0.06–0.14 microns [5] and has been isolated within the epithelium of both the respiratory and gastrointestinal (GI) tract. Authors have demonstrated that viral RNA is shed in the stool of infected pediatric patients well after viral respiratory shedding has resolved, thus raising concern of any GI instrumentation as high risk [6]. Unfortunately, at the time of this publication, it is unknown if COVID-19 can be isolated from the peritoneal surface or ascitic fluid, but studies are currently underway.

Of most imminent concern is the viral aerosolization. Historically, studies have shown that many viruses may be aerosolized by cauterizing tissue of an infected host, including human papilloma virus (HPV), human immunodeficiency virus (HIV), and hepatitis N virus/HBV) [7]. To date, COVID-19 has not been specifically studied for aerosolization propensity but the concept and concern are sound nonetheless.

Within this framework lies the dilemma and controversy: are we to assume this unproven fear of COVID-19 aerosolization during surgery and instrumentation? If not, do we approach patients as “business as usual” and continue care without regard for this until studies catch up to either prove or disprove this theory? Or, if we do choose to succumb to this theory, how then do we react to mitigate this risk until further virologic studies aid in clarifying this contentious point?

For the latter, the forthcoming is an overview of what data we do know and the mitigating factors many are employing.

Likely the best way to avoid aerosolization altogether is to avoid cautery or fulguration entirely. For this reason, nearly all surgical societies have advocated simply not operating unless absolutely mandatory [8–10]. Other recommendations include eliminating use of energy devices altogether—or use at their absolute lowest settings, maintaining pneumoperitoneum at its lowest possible setting if performing laparoscopy, and evacuating all insufflated air prior to specimen extraction [9].

In regard to minimizing transmission of possibly aerosolized COVID-19 that is created during an operation, the topic of smoke evacuation and filtration is of paramount importance.

Whether an operation is performed in an open manner, laparoscopically, or robotically-assisted, smoke plumes are inevitably created while employing energy devices. In minimally invasive operations that require CO₂ insufflation, depending on the insufflator used, filtration may or may not occur during the entirety of the case. Knowing the viral particle size of COVID-19 ranges from 0.06 to 0.14 microns, the primary concern arises if improperly sized filters are utilized to evacuate smoke plumes. This means that during the progress of a laparoscopic or robotic operation, CO₂ enters in via an inflow cannula and either the CO₂ remains trapped intraabdominally (along with aerosolized virus), or it is recirculated through the insufflator, filtered, then exhausted through the back of the insufflator as room air. If a CO₂ insufflation filter (or a handheld suction device in an open operation) is too large to capture the smaller RNA viral particles, aerosolized viral particles are essentially being concentrated within the exhaust and then expelled out of the rear of the insufflator.

*Mark Soliman
mark@marksoliman.com

¹ Colon and Rectal Clinic of Orlando, Orlando, FL, USA
Proper CO₂ filtration in laparoscopy is critical. Only two insufflators are commercially available that filter viral particles in the range of COVID-19. Those are CON-MED Airseal (which filters down to 0.01 micron) [11] (Figs. 1 and 2) and Stryker’s PneumoClear (Fig. 3) (which filters down to 0.05 microns) [12]. As of this writing, there are no other insufflators available that will adequately filter down to the size of the COVID-19 virions to mitigate this potential threat.

It is also important to note that there are two different devices that are available from CON-MED which both utilize a 0.01 micron filter: the ASM-EVAC and SEM-EVAC systems.

The CON-MED Airseal, model ASM-EVAC utilizes a trifurcated tubing system and a proprietary valveless trocar (Fig. 1). This valveless trocar is known to allow pneumoperitoneum to escape during operations with an increase in intraabdominal pressure or during instrument exchange (see “Insufflation Recommendations. CONMED Corporation”). This open-circuit should be avoided to circumvent a jet-like stream of aerosolized virions within the pneumoperitoneum. CON-MED has published mitigation strategies by using constant negative pressure smoke evacuators on other valved ports, but this does not stop valveless trocar leak, it only tries to minimize it. For this reason, a closed circuit such as the SEM-EVAC should be used, which does not employ valveless trocars, but, in fact, uses standard, valved ports.

The second commercially available insufflator is the Stryker PneumoClear (Fig. 3). The PneumoClear Tube Set consists of a series of filters: one absorbent layer, one ULPA filter, one PVDF filter, and two charcoal layers. These tube sets filter particles as small as 0.051 microns with up to 99.999993% efficiency for outflow and are secured using non-proprietary and valved trocars [13].

Furthermore, it is reasonable to be concerned of the imminent risk of insufflated intraabdominal CO₂ to leak into the room air of the operating room (for instance from port site air leaks, valves inadvertently being stuck in the open position, ports sliding out, during instrument exchanges, during specimen extraction). For this reason, societies have published strategies to prevent/minimize this (Table 1, SAGES [14]).

To deal with the problem infiltration of potential aerosolized virus that escapes the operative field, another
In conclusion, although there is much speculation and a paucity of research in the area of aerosolization of COVID-19, it is prudent to err on the side of safety in this controversy and use proper precautionary measures during open, laparoscopic, and robotic procedures.

References

1. Zheng MH, Boni L, Fingerhut A (2020) Minimally invasive surgery and the novel coronavirus outbreak: lessons learned in China and Italy [published online ahead of print, 2020 Mar 26]. Ann Surg. https://doi.org/10.1097/sla.0000000000003924
2. Liu Y, Song Y, Hu X, Yan L, Zhi X (2019) Awareness of surgical smoke hazards and enhancement of surgical smoke prevention among the gynecologists. J Cancer. 10(12):2788–2799. https://doi.org/10.7150/jca.31464 (Published 2019 Jun 2)
3. Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17(3):181–192. https://doi.org/10.1038/s41579-018-0118-9
4. Naming the Coronavirus Disease (COVID-19) and the Virus That Causes It. World Health Organization, World Health Organization, www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed 12 Apr 2020
5. Zhu N, Zhang D, Wang W et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733. https://doi.org/10.1056/NEJMoa2001017
6. Xing YH, Ni W, Wu Q et al (2020) Prolonged viral shedding in feaces of pediatric patients with coronavirus disease 2019 [published online ahead of print, 2020 Mar 28]. J Microbiol Immunol Infect. https://doi.org/10.1016/j.jmii.2020.03.021
7. Alp E, Bijl D, Bleichrodt RP, Hansson B, Voss A (2006) Surgical smoke and infection control. J Hosp Infect 62(1):1–5. https://doi.org/10.1016/j.jhin.2005.01.014
8. COVID-19 and Surgery. American College of Surgeons, www.facs.org/covid-19. Accessed 12 Apr 2020
9. SAGES COVID-19/Coronavirus Announcement Archives. Society of American Gastrointestinal and Endoscopic Surgeons, https://www.sages.org/category/covid-19. Accessed 12 Apr 2020
10. COVID-19 Statements. European Association for Endoscopic Surgery, https://eacs.eu/category/covid-19-statements/. Accessed 12 Apr 2020
11. Air-Seal IFS. CON-MED, https://www.conmed.com/en/medical-specialties/laparoscopic-robotic-and-open-surgery/general-and-bariatric-surgery/access/airsel-systeem/airsel-products/airsel-al-ifs-intelligent-flow-system. Accessed 12 Apr 2020
12. PneumoClear Insufflation. Stryker, https://www.stryker.com/us/en/endoscopy/products/pneumoclear.html. Accessed 12 Apr 2020
13. Endoscopy. Society of American Gastrointestinal and Endoscopic Surgeons, https://www.sages.org/wp-content/uploads/2020/03/PneumoClear-Memo.pdf. Accessed 12 Apr 2020
14. Resources For Smoke & Gas Evacuation During Open, Laparoscopic, And Endoscopic Procedures. Society of American Gastrointestinal and Endoscopic Surgeons, https://www.sages.org/resources-smoke-gas-evacuation-during-open-laparoscopic-endoscopic-procedures/. Accessed 12 Apr 2020
15. Qian Y, Willeke K, Grinshpun SA, Donnelly J, Coffey CC (1998) Performance of N95 respirators: filtration efficiency for airborne microbial and inert particles. Am Ind Hyg Assoc J 59(2):128–132. https://doi.org/10.1080/15428119891010389
16. N95 Respirators and Surgical Masks (Face Masks). (2020) Retrieved from https://www.fda.gov/medical-devices/personal-protective-equipment-infection-control/n95-respirators-and-surgical-masks-face-masks. Accessed 12 Apr 2020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.