On a realistic interpretation of quantum mechanics

Arnold Neumaier

Institut für Mathematik
Universität Wien
Strudlhofgasse 4
A-1090 Wien, Austria
email: neum@cma.univie.ac.at
WWW: http://solon.cma.univie.ac.at/~neum/

Abstract. The best mathematical arguments against a realistic interpretation of quantum mechanics – that gives definite but partially unknown values to all observables – are analysed and shown to be based on reasoning that is not compelling.

This opens the door for an interpretation that, while respecting the indeterministic nature of quantum mechanics, allows to speak of definite values for all observables at any time that are, however, only partially measurable.

The analysis also suggests new ways to test the foundations of quantum theory.

Keywords: realistic interpretation, quantum inseparability, probability, projector, measurement, spin, classical model, particle paths, double slit experiment

1991 MSC Classification: primary 81P10

1990 PACS Classification: 03.65
1 Introduction

Quantum physics is a very successful theory for predicting nature. However, in spite of many attempts, a mathematically and philosophically convincing basis for the interpretation of quantum phenomena has not yet been found. As stated recently by Zeilinger [34], there are at least two levels of interpreting quantum mechanics: the statistical interpretation in the narrower sense introduced by Born [7], on which there is almost complete consensus between physicists, and the interpretation of the meaning of the quantum mechanical concepts, where no agreement has been reached and all existing interpretations have been found wanting.

The ‘orthodox’ Copenhagen interpretation in terms of state reduction by external measurement loses credit because it becomes meaningless for the universe as a whole. There have been a number of proposals to change the structure of quantum mechanics, e.g., through pilot waves (Bohm [5]), consistent histories (e.g., Omnes [23]), event enhancement (Blanchard & Jadczyk [4]), or gravitational objective reduction (Penrose [24]).

Perhaps the main reason why there is so little progress on the meaning of quantum mechanical concepts is that it is usually seen as thoroughly enmeshed with measurement problems. I believe that this is a mistake, and that more clarity can be obtained by separating the analysis of meaning from that of observability. The discussion thereby becomes more concise and clear. Here I refer to meaning as a conceptual, logically consistent mathematical framework that allows one to speak unambiguously about all the terms used in the theory, in a way intuitively related to corresponding concepts of external reality. This part is often elegant and concise.

On the other hand, I refer to observability questions (or measurement problems) as the operational explanation of how to obtain quantitative values for the observables of a system, preferably within the framework of a well-defined mathematical theory. This part is usually messy, and it is the part that I propose to avoid until the other part is satisfactory. (This also saves me from entering a discussion about the meaning of words like ‘operational’ or ‘obtain’.)

For example, in classical real analysis, infinitesimals are an ill-defined, meaningless concept, though they can be approximately realized, while random sequences are a well-defined, meaningful concept, though there is no constructive way of finding one, except approximately.

A historical case supporting the power of this view of separating the analysis
of meaning from that of observability is the uncertainty principle. It was argued by Heisenberg [14] in terms of observability, and later by Robertson [26] in mathematical terms as a simple consequence of the canonical commutation relation $[p, q] = -i\hbar$. The mathematical argument takes only a few lines and is simple and compelling; the discussion of observability is complex but shows that the results of the mathematics cannot be in conflict with what can in principle be measured by experiment.

Further support for the positive effect of the separation of meaning from observability is given by Bell’s inequality (Bell [2], Clauser et al. [10]), a purely algebraic statement whose clarity is compelling, and the subsequent verification of its violation through experiments by Aspect [1].

Finally, it seems that measurement problems can be adequately analysed by generalized observables defined as positive operator valued (POV) measures; see, e.g., Davies [11], Busch et al. [9]. The gradual and approximate state reduction can be explained thermodynamically through dissipative interaction by the coupling to a macroscopic apparatus or heat bath; see, e.g., Zurek [35], Joos & Zeh [16], Ghirardi, Rimini & Weber [13].

That obtaining information about a system and state reduction are not equivalent things is a consequence of the possibility of nondemolition measurements (Braginsky et al. [8], Kwiat et al. [19]) that produce knowledge about a system but (almost) avoid state reduction. And since the measuring apparatus necessarily involves a huge number of particles, any satisfactory solution of measurement problems should not be a part of the foundational concepts and these but be obtained as their consequence.

In an attempt to separate the discussion about the meaning of quantum mechanics from that of experimental consistency, I searched the literature for concise statements of the basic difficulties in terms unrelated to measurement, but given in a clear mathematical context that allows one to analyse the logic of the problems without losing oneself in philosophical speculations.

The outcome was somewhat surprising: The best presented mathematical arguments turned out to have subtle flaws. This becomes apparent when one reduces them to arguments residing completely within the universally accepted statistical interpretation in the narrower sense.

Probably the weaknesses in the arguments escaped previous attention since the arguments were only used for philosophical discussion and justification of foundations, and never subjected to experiment. I therefore suggest below some specific things that one should try to test with suitable experiments.

In the following, I shall present my analysis of some arguments related to a
realistic interpretation of quantum mechanics; *realistic* in the sense that it allows to speak of definite values for all observables at any time that are, however, only partially measurable.

The findings give rise to the hope that a consistent interpretation is possible that respects the stochastic nature of quantum mechanics, but is also realistic, with all the accompanying advantages for our intuition. In a companion paper (Neumaier [21]), a proposal for such a realistic interpretation will be presented.

2 Feynman’s argument

In his 1948 paper “Space-time approach to non-relativistic quantum mechanics” [12], Richard Feynman gives on pp.368-369 the following argument.

“When we define P_{ab} as the probability that if the measurement A gave the result a, then measurement B will give the result b. [...] denote by P_{abc} the probability $[...]$ if A gives a, then B gives b, and C gives c. $[...]$ If the events between a and b are independent of those between b and c, then

\[P_{abc} = P_{ab}P_{bc}. \] \hspace{1cm} (1)

This is true according to quantum mechanics when the statement that B is b is a complete specification of the state. In any event, we expect the relation

\[P_{ac} = \sum_b P_{abc}. \] \hspace{1cm} (2)

[...] Now, the essential difference between classical and quantum physics lies in Eq. (2). In classical mechanics it is always true. In quantum mechanics it is often false. [...] The classical law, obtained by combining (1) and (2),

\[P_{ac} = \sum_b P_{ab}P_{bc} \] \hspace{1cm} (4)

is replaced by

\[\phi_{ac} = \sum_b \phi_{ab}\phi_{bc}. \] \hspace{1cm} (5)

[for probability amplitudes ϕ_{ab} with $|\phi_{ab}|^2 = P_{ab}$] If (5) is correct, ordinarily (4) is incorrect. [...] Looking at probability from a frequency point of view (4) simply results from the statement that in each experiment giving a and c, B had some value. [...] Noting that gztie5 replaces (4) only under the circumstance that we make no attempt to measure B, we are lead to say that
the statement, ‘B had some value,’ may be meaningless whenever we make no attempt to measure B.”

Feynman’s argument sounds convincing but it has a flaw in the assumption of (1), the conditional independence of c from a, given b, for all states summed over in (2). This assumption is inconsistent with quantum mechanics.

Indeed, one of the characteristic features of quantum mechanics is its inseparability, the impossibility of splitting a quantum mechanical system into two that are independent. According to the Copenhagen interpretation (Bohr [6]), and verified abundantly by experiment, the whole space-time set-up must be specified to determine the correct outcome of an experiment. The contradiction obtained by Feynman in comparing (4) and (5) therefore need not have the consequence that B sometimes has no value, but serves more naturally as a strong argument for quantum inseparability.

The Markov property (1) does typically not even hold for consecutive events; due to the inherent noncommutativities, states ”remember” something about their whole history and ”anticipate” something about their whole future.

To see this, pick a, b, c as observations of the same observable at increasing times (for memory) and at decreasing times (for anticipation). It should be an interesting project to find the conditions under which (and the accuracy to which) the Markov property for a completely observed time series of a sufficiently isolated system, lost in the quantum domain, is recovered in a thermodynamic limit of a large number of particles.

We now show in detail that (1) is inconsistent with quantum mechanics. According to the standard interpretation of probabilities as expectations of projection operators we have $P_{ab} = \langle a|\Pi_b|a \rangle$ and $P_{bc} = \langle b|\Pi_c|b \rangle$, where $\Pi_b = |b\rangle\langle b|$ is the projector to state b (and similarly for c). In order that P_{abc} makes sense in the standard interpretation we need $P_{abc} = \langle a|\Pi_{bc}|a \rangle$ with a projector Π_{bc} expressing the proposition $\Pi_b\&\Pi_c$ that B is in state b and C is in state c.

In orthodox quantum logics (Birkhoff & von Neumann [3], Svozil [28]), one considers a projector as representing the subspace of eigenstates to the eigenvalue 1 of the projector and takes the logical operation & as subspace intersection. One finds that, whenever $\Pi_b \neq \Pi_c$, we have $\Pi_b\&\Pi_c = 0$ and thus $P_{abc} = 0$. This is different from (1), proving that (1) has nothing to do with quantum mechanics. And when $\Pi_b = \Pi_c$, we have $\Pi_b\&\Pi_c = \Pi_c$, hence $P_{abc} = \langle a|\Pi_c|a \rangle = P_{ac}$, and (2) turns out to be always true in the quantum logic calculus, in contrast to what Feynman claimed.

On the other hand, the statement $P_{abc} = 0$ if $\Pi_b \neq \Pi_c$ seems somewhat counterintuitive, since if $\Pi_b \approx \Pi_c$ one might want to have $P_{abc} \approx P_{ac}$. In view of the fact that, unless Π_b and Π_c commute, there is no simple algebraic
expression relating Π_{bc} to Π_b and Π_c, one is not compelled to adhere to the rigid assignment $\Pi_b \& \Pi_c = 0$ and might prefer to consider $\Pi_b \& \Pi_c$ to be undefined if Π_b and Π_c do not commute, interpreting this as an indication that P_{abc} cannot be predicted (in principle) by the formalism of quantum theory (and thus may have any value).

In view of the fact that the counterintuitive abundance of zero projectors has further undesirable consequences to be discussed in Section 5, this would seem a more satisfactory solution of Feynman’s argument. A new quantum logic consistent with this interpretation is discussed in Neumaier [21].

3 Wigner’s claim

Similar discussions as those given by Feynman usually suffer from the same problem that the claimed probability cannot be written as the expectation of a quantum proposition, i.e., a projector. For example, in his 1976 lecture notes on the ‘interpretation of quantum mechanics’, Wigner [32, p.288] writes,

[...] it remains essentially correct to say that the basic statement of quantum mechanics can be given in a formula as simple as (42).

In adapted notation, for a finite sequence $a, b, c, d \ldots$ of results of measurements of A, B, C, D, \ldots, it reads

$$P_{abcd\ldots} = \frac{\text{tr } \Pi_a \Pi_b \Pi_c \Pi_d \ldots}{\text{tr } \Pi_a} \Pi_a = \langle a | \Pi_b \Pi_c \Pi_d \ldots \Pi_d \Pi_c \Pi_b | a \rangle \quad \text{if } a \text{ is a pure state.} \quad (42)$$

Now there is a problem with (42). It implies that repeating the measurement of A immediately after a first measurement of A gives the result of the first measurement with certainty. This is possible only if we assume that the measurements performed are ideal.

But (cf. Wigner’s discussion in pp.283-284 of [32]; see also [16]) one cannot make an ideal measurement of an observable with a continuous spectrum; and the quantum mechanical analysis of the measurement process shows that an ideal measurement of any quantity takes, strictly speaking, an infinite time. And even allowing for that, the only measurable observables would be the functions of scattering invariants (p.298). Hence formula (42) can apply to real situations only approximately.

Therefore, unlike Schroedinger’s equation, (42) cannot be considered a ‘basic statement’ and must be banned from the foundations. It should rather be a consequence of more elementary, exact features of the theory.
Indeed, Wigner ‘derives’ (42) from first principles. The argument, given on pp.286-287, is identical to Feynman’s, assuming (without comment) the Markov property that provides the independence that allows to multiply probabilities:

If the first observation [...], This probability is $|\langle a_\kappa, b_\lambda \rangle|^2$. The probability that the next measurement [...] is then $|\langle b_\lambda, c_\mu \rangle|^2$ and the probability of both outcomes [...] is $|\langle a_\kappa, b_\lambda \rangle \langle b_\lambda, c_\mu \rangle|^2$ [...].

Thus the formula, based on invalid reasoning, is suspect.

This suspicion is confirmed by realizing that the operator whose expectation is taken is generally not a projector, hence does not correspond to a ‘proposition’ in the traditional quantum logic calculus. But what sense should it make to talk about the probability of a statement that is not even logically well-formed?

It seems to me that the only formula for probabilities verified (abundantly) by experiments is the formula (see, e.g., equation (1.8) in Chapter 3 of Davies [11])

$$P(B \in E|\rho) = \operatorname{tr} \rho B(E)$$

for the probability that, in a mixed state with the density matrix ρ, the generalized observable (POV measure) B has a value from a set E. For ordinary observables B and singleton sets $E = \{b\}$, the ‘effect’ $B(E)$ reduces to a projector Π_b. Equation (6) contains a special case of (42) only,

$$P_{ab} = \operatorname{tr} \frac{\Pi_a \Pi_b}{\operatorname{tr} \Pi_a}$$

$$= \langle a|\Pi_b|a\rangle = |\langle a|b\rangle|^2$$

if $\Pi_a = |a\rangle \langle a|$, $\langle a|a\rangle = 1$. (7)

It is interesting to note that Wigner’s formula (42) reappears as the basic formula in the theories of consistent histories (e.g., equation (4.3) in Omnès [23]). However, as mentioned on p.143 of [23], only the case of two reference times can be proved, and this is equivalent to (6) (with ρ replaced by $E_1 \rho E_1$, the mixed state obtained after the first state reduction).

However, we can give the probability (42) an alternative, correct meaning: If a is a pure state then (6) implies that P_{abcd} is the probability of measuring $\Pi_a \Pi_b \Pi_c \Pi_d \Pi_b \Pi_a$ in that state! In general, therefore, Wigner’s formula gives the probability of measuring in state a the last element in a finite sequence A, $\Pi_a B \Pi_a$, $\Pi_a \Pi_b C \Pi_b \Pi_a$, $\Pi_a \Pi_b \Pi_c D \Pi_c \Pi_b \Pi_a$, …, assuming that the measurements resulted in reductions of the intermediate states to the states represented by the projectors $\Pi_a, \Pi_b, \Pi_c, \ldots$.

To see how we can possibly interpret this in terms of the uncontroversial part of quantum mechanics, we consider a quantized relative of Laplace’s demon.
Suppose there were a quantum demon with the unusual capacity to ‘see’ every
detail of a closed system, without interacting with the system. (The demon
doesn’t need to be physically realizable; this is just a fictional argument to
make a vivid point.) The demon leaves the whole system (consisting of the
measured system together with the measuring device) undisturbed and only
interprets our claims on measurements and compares it with the dynamics
it sees.

The demon notes the time intervals t, u, v, \ldots between the successive mea-
urements A, B, C, D, \ldots. What does it see us measure? In the Heisen-
berg picture, with unlabelled operators at the time of the first mea-
urement, the state of the complete system remains unchanged, and the measure-
ments are those of $A, B(t), C(t+u), D(t+u+v), \ldots$. If we use the Heisen-
berg dynamics and introduce the commuting operators $\Phi_a = \exp(itH/h)$,
$\Phi_b = \exp(iuH/h)$, $\Phi_c = \exp(ivH/h)$, we see that the demon sees us measure
$A, \Phi_a^*B\Phi_a, \Phi_a^*\Phi_b^*C\Phi_b\Phi_a, \Phi_a^*\Phi_b^*\Phi_c^*D\Phi_c\Phi_b\Phi_a, \ldots$. (This is quite different from
what Wigner asserts in his equation (43), where he assumes an additional
Heisenberg dynamics of the operators between the state-reduc-
ing measurements.)

Comparing with the above interpretation of (42), and noting that projectors
are Hermitian, we see that the difference between the unproved formula (42)
and the demon’s objective description of our sequence of measurements is
the replacement of the commuting unitary Φ’s in the complete system by the
noncommuting idempotent Hermitian Π’s in the measured system alone.

Thus (42) is valid precisely to the extent that the time-dependent operators
(in the Heisenberg picture), as calculated by the Heisenberg equation for the
complete experimental setup at the time the next measurement is taken, can
be approximated in the assumed (time-independent) state of the investigated
subsystem by a two-sided multiplication with these projectors.

This shows clearly the aim of a correct measurement theory: It must exhibit
broad sufficient conditions for a system that guarantee, for all observables
to be measured, the validity of this approximation, and hence a complete
reduction of the wave packet.

I’d like to challenge the adherents of (42) to devise and perform experiments
testing validity, accuracy and limits of (42) when more than two (noncom-
muting) projectors are involved and the measurements are not ideal. The
findings should coincide with the interpretation in the Heisenberg picture
just given. (For the realization of arbitrary discrete projectors, note that
these can always be brought into the form UDU^* with diagonal projectors
D and unitary U; hence RECK et al. [25] applies.)

On the basis of such experiments it might also be possible to decide whether
it is at all possible to perform experiments for measurements of probabilities that cannot be expressed as the expectation of a projector.

4 Schrödinger’s argument

In his 1936 paper “Die gegenwärtige Situation in der Quantenmechanik” [27] (where the famous cat paradox appears), Erwin Schrödinger gives the following argument (pp. 156-157 of the English translation):

At first thought one might well attempt likewise to refer back the always uncertain statements of Q.M. to an ideal ensemble of states, of which a quite specific one applies in any concrete instance – but one does not know which one. That this won’t work is shown by the one example of angular momentum, as one of many.

Imagine [...] the point M to be situated at various positions relative to O and fitted with various momentum vectors, and all these possibilities combined into an ideal ensemble. Then one can indeed choose these positions and vectors that in every case the product of vector length by length of normal OF [where F is the point closest to O on the line through M along the momentum vector] yields one or the other of the acceptable values – relative to the particular point O. But for an arbitrary different point O', of course, unacceptable values occur. [...]

One could go on indefinitely with more examples. [...] Already for the single instant things go wrong. At no moment does there exist an ensemble of classical states of the model that squares with the totality of quantum mechanical statements of this moment. [...] we saw that it is not possible smoothly to take over models and to ascribe, to the momentarily unknown or not exactly known variables, nonetheless determinate values, that we simply don’t know.

The problem is indeed unsolvable if one insists on the existence of a single vector J of values determining all linear combinations $u \cdot J$ of the angular momentum. For example, in measuring the inner product $u \cdot J$ of the angular momentum J with four or more triplewise linearly independent unit vectors u, one obtains in each case values from the discrete spectrum of $u \cdot J$, and these spectra are inconsistent with a precise value of J. This is explained by Schrödinger in detail on p. 164 in the context of a simpler one-parameter example involving the observables $p^2 + a^2 q^2$ where a is a parameter. Commenting on it, Schrödinger writes on p. 165:

Should one now think that because we are so ignorant about the relations among the variable-values held ready in one system, that none exists, that
far-ranging arbitrary combination can occur? That would mean that such a system of "one degree of freedom" would need not merely two numbers for adequately describing it, as in classical mechanics, but rather many more, perhaps infinitely many.

Schrödinger dismisses this as not viable, but as I’ll show now, there is a serious possibility that precisely this is the case, thus invalidating Schrödinger’s conclusion that it is not possible to ascribe to the momentarily unknown or not exactly known variables determinate values. His conclusion is only valid if one ascribes to each observable vector K a determinate value that is to be used in the calculations for all $u \cdot K$.

However, as was observed already by von Neumann [22, IV.1.E], one cannot, in general, combine the measuring recipes for two noncommuting observables to one for their sum, so that the sum of two observables is only implicitly characterized through the axioms. This should forbid the naive use of values for the components of K, say, to calculate the values of $u \cdot K$.

As I shall show now, one may consider each $u \cdot K$ as a (not necessarily classical) random variable in its own right, and determine their relationship for different u not by ordinary algebra but by the statistics derived from the standard quantum mechanical recipes.

For simplicity, I’ll take for K in place of the angular momentum J the Pauli spin vector σ which shows precisely the same problems as J. For each unit vector $u \in \mathbb{R}^3$, the operator $u \cdot \sigma$ has the simple eigenvalues 1 and -1; thus these are the possible values of $u \cdot \sigma$. The projector to an eigenstate of $u \cdot \sigma$ corresponding to the eigenvalue 1 is $\Pi_u := \frac{1}{2}(1 + u \cdot \sigma)$, with $\text{tr} \ \Pi_u = 1$, and the corresponding projector for the eigenvalue -1 is simply Π_{-u}. For any unit vector $v \in \mathbb{R}^3$, the probability for $v \cdot \sigma$ having the value 1 when $u \cdot \sigma$ has the value 1 is then, according to (7),

\[
P_{uv} = \text{tr} \ \Pi_u \Pi_v = \text{tr} \ (1 + u \cdot \sigma)(1 + v \cdot \sigma)/4
= \text{tr} \ (1 + (u + v) \cdot \sigma + u \cdot v + i(u \times v) \cdot \sigma)/4
= \frac{1}{2}(1 + u \cdot v),
\]

and the probability for $v \cdot \sigma$ having the value -1 when $u \cdot \sigma$ has the value 1 is therefore $P_{u,-v} = \frac{1}{2}(1 - u \cdot v)$, adding up to 1, as it should be. Moreover, $P_{u,-u} = 0$, as it should be. The probabilities depend continuously on u and v, in a very natural way.

One would get precisely the same probabilities if one had extremely fragile, classical spheres, painted white on one hemisphere and black on the other one, and each sphere would be destroyed after observing the color at a single point. One could still calculate probabilities for the colors of the other points,
and any rotationally symmetric classical probability model produces precisely the same probabilities as we just calculated for the spin.

More details on such a classical model for electron spin can be found in Kochen & Specker [18]. They show that, under natural assumptions, such a classical model is restricted to two-state systems. (In a companion paper [21], I’ll show how one can reinterpret quantum mechanics in such a way that the assumptions of Kochen and Specker become irrelevant, thus removing this very restrictive conclusion.) In any case, one such model is enough to invalidate the cogency of Schrödinger’s conclusion.

To summarize, Schrödinger’s argument demonstrates that, in quantum mechanics, one cannot calculate the values for linear combinations of noncommuting observables from the values of the observables themselves; but this is already obvious from the properties of the spectrum of operators. Only the values of functions of commuting observables (and, in particular, of functions of a single observable) can be predicted with certainty from the values of the observables themselves.

However, as was shown for the case of linear combinations of the Pauli spin matrices, his argument does not demonstrate that one cannot assign natural values to all observables that lead to natural and consistent classical probabilities.

The nature of quantum observations may put severe limits on what is observable through experiment and how these are combined to estimate the values of other observables, but it does not seem to put restrictive limits on the joint values of noncommuting observables. Indeed, von Neumann [22] shows in the same section mentioned above how to get estimates of joint probabilities of noncommuting quantities if sufficiently large ensembles are available.

\section{Particle paths}

It is widely believed that it is impossible to ascribe definite paths to moving quantum particles, except at special points where the position has been measured. The particle paths seen in a cloud chamber, say, can still be explained as an illusion created by correlation patterns among the atoms ionized by the particles; see Mott [20]. No such analysis seems to be available, however, that would explain why we see macroscopic bound states (such as you or me) move along fairly definite paths.

The traditional context for discussing the inconsistency of definite particle paths is the double slit experiment (Bohr [6]), where it is claimed that
electrons (or photons) passing a diaphragm containing the two slits cannot be said to have passed through one or the other slit, or – even worse – are said to have passed through both, in a way (superposition) that defies intuition. Unfortunately, the discussion seems always to be connected to measurement questions, so that it is difficult to discern the mathematical content of the arguments that claim nonexistence of the path (in contrast to its limited measurability only, Wootters & Zurek [33]). However, I gathered some indirect evidence about particle paths by reading between the lines of some papers.

Feynman [12], in laying groundwork for his (nonrelativistic) path integral formalism, discusses on p. 371 the probability of particle paths as his first postulate:

If an ideal measurement is performed to determine whether a particle has a path lying in a region of space-time, then the probability that the result will be affirmative is the absolute square of a sum of complex contributions, one from each path in the region.

This postulate is used to show (among other things) that the most likely paths are those close to the path determined by the least action principle.

No comment is given on the precise mathematical meaning of the terms involved (except for the term “each”); thus we need to see whether we can interpret this in an orthodox way. In the spirit of the standard interpretation of quantum mechanics, we need to assign to each (let us say open and bounded) region \(\Omega \) of space-time a projector \(\Pi_\Omega \) to the subspace \(\mathbb{H}_\Omega \) of all wave functions belonging to states where the particle is with certainty in \(\Omega \).

Unfortunately, particle positions at different times are represented by operators \(x(t) = \exp(iHt)x(0)\exp(-iHt) \) that generally do not commute with each other, with the consequence that it is unlikely that they have common eigenvectors, which would be the elements of \(\mathbb{H}_\Omega \). Thus, it is very likely that, for most \(\Omega \), this subspace consists of zero only; and \(\Pi_\Omega \) would vanish. This casts serious doubt on the applicability of the quantum logic recipe to defining the projector \(\Pi_\Omega \).

Perhaps it is even impossible to make consistent assignments of all projectors \(\Pi_\Omega \), in view of the fact that alternative attempts in consistent histories interpretations run into contradictions (Kent [17]). (But possibly these contradictions are due to the non-projector nature of these histories; cf. Isham [15].)

However, we can be more modest and only look at special sets of paths for which we may define proper projectors. For example, we may define the
distance of two paths $\xi^k : [\alpha, \omega] \to \mathbb{R}^3 \ (k = 1, 2)$ by

$$d(\xi^1, \xi^2) = \sqrt{\int_\alpha^\omega (\xi^1(t) - \xi^2(t))^2 \, dt}.$$ \hfill (9)

Then, for each specific path ξ, we can use the position operators $x(t) = \exp(iHt)x(0)\exp(-iHt)$ to define the observable $\Delta_\xi := d(x, \xi)$ that measures the distance of the particle path from ξ. Suitable projectors are now the projectors $\Pi_{\xi, \varepsilon}$ projecting to the subspace spanned by the wave functions corresponding to states in which Δ_ξ has with certainty a value not exceeding ε. Then, for a system in an arbitrary pure state a,

$$P(d(x, \xi) \leq \varepsilon) = \langle a | \Pi_{\xi, \varepsilon} | a \rangle$$ \hfill (10)

is, according to the most orthodox interpretation of quantum mechanics, a well-defined quantum mechanical probability for the event that the particle path is, in the root mean square sense, within ε of the path ξ. Note that, in principle, this formula can be tested experimentally; and by varying ε, the complete distribution of $d(x, \xi)$ can be found. The natural path to be used for ξ is the expectation

$$\xi(t) = \langle a | x(t) | a \rangle$$ \hfill (11)

or a computable approximation to it (such as the classical path of the particle).

With formulas such as (9)–(11) available, it would be completely unreasonable to assume that a particle has no definite path. If it hadn’t, what should be the meaning of its expectation (11) and of the probability (10) of it being close to a given path!?

It remains to discuss how this finding can be reconciled with the double slit experiment. In an implementation of von Neumann’s method mentioned in Section 4 to measure probabilities for two noncommuting observables, Wootters & Zurek [33] measure in a modified double-slit experiment both position and momentum of particles passing a slit:

If the measured momentum is positive, then we will guess that the photon passed through slit A; if it is negative, then we will guess that the photon passed through slit B. Clearly some of our guesses will be wrong – there are photons that have positive values of measured momentum even though their actual momentum was negative and they went through slit B.

[...] these two measurements cannot both be performed for the same photons, and so [the figures] cannot refer to the same experiment. Hence, in accord
with the Copenhagen interpretation of quantum mechanics, there is no paradox. The complementarity principle does not prevent photons from behaving once as waves and once as particles. It only states that the same photon should not reveal this "split personality" in the same experiment. [...] Despite the fact that we know with 99% certainty the paths of the photons, they still have strong wavelike properties. [...] we have presented a result which, although not paradoxical, was nevertheless surprising (that is, that one can make a fairly precise determination of the slit through which each photon comes with only a slight disturbance of the interference pattern).

The finding loses its surprise in the light of the above considerations that suggest existence of the path but with intrinsic limitations on its observability.

For the original double-slit experiment, the arguments generally agree on the observation that there is no way to predict through which slit a particle will pass. However, it is possible to compute with high confidence through which a particle has passed when it has been observed at the photographic plate. To do so, one only needs to compute the probabilities (10) for two typical paths ξ connecting each slit with the position where the particle was absorbed by the photographic plate. By comparing the likelihood ratios at a given significance level one will find an exceedingly high likelihood for most particles having passed through the slit closer to their recorded position on the photographic plate.

Thus, after the event, enough information is available to decide reasonably reliably on the particle path. One could also calculate the values of the actions of the paths through the two slits ending at the observed position, and use the stationary phase approximation of the Feynman path integral to get (approximations to) the required probabilities. In any case, the statistical analysis is essentially similar to that used for all experiments where an event must be reconstructed from indirect measurable information and from the way the experiment was prepared.

6 Conclusion

The strongest arguments against realism available in the literature dissolved under a scrutinized analysis, using only that part of quantum mechanics for which there is almost universal agreement about its validity.

This opens the door for an interpretation that, while respecting the indeterministic nature of quantum mechanics, allows to speak of definite but only
partially measurable values for all observables at any time. This kind of realism is consistent with the intrinsic indeterminism required by Heisenberg’s uncertainty relation if we distinguish carefully between what is and what is measurable.

Though not proved by the present investigations, it appears that, independent of the detailed description, a cautious realistic interpretation of quantum mechanics is in full accord with the generally accepted quantum mechanical formalism.

Here realistic means that in a completely specified state (not to be confused with the ‘pure states’ of quantum mechanics) all observables have definite values at all times that are, however, only partially measurable, according to the stochastic predictions of quantum mechanics.

And cautious means, that one has to take into account the following four restrictions:

1. Only probabilities defined by orthogonal projectors (for sharp observables) or POV measures (for smeared observables) via equation (6) are measurable and predictable.

2. For noncommuting projectors, the logical operation ‘and’ is not defined; the corresponding questions may be asked (and may have definite, i.e., logically consistent answers) but a precise answer cannot be found by experiments.

3. From the values of commuting observables one can deduce values of functions of these observables, but from the values of noncommuting observables one cannot even deduce values of their linear combinations. Instead, functions of noncommuting observables must be considered as random variables on their own whose expectation values (and probability distributions) must be calculated from the general quantum mechanical formalism and not from a classical inference of measured linear combinations.

4. Due to quantum inseparability, the Markov property for a completely observed time series is lost.

A constructive proposal for such an interpretation will be given in a companion paper [21].

Appendix: Some final speculations

In this section I want to be more speculative, at the risk of being less precise, less cogent, and more vulnerable about some issues discussed. I shall mention
some ideas and ‘conclusions’ that are related to the preceding analysis though far from being consequences of the rigorous observations of the preceding sections.

A realistic interpretation of quantum mechanics is independent of the measurement problem and in better accord with classical (say, 19th century) intuition. As we have seen, there seem to be no longer strong arguments against a cautious realistic interpretation of quantum mechanics.

A problem remaining, and one that obscured for a long time the underlying simplicity, is the lack of observable information on the quantum level. As Schrödinger [27] puts it (p.159 of the English translation), referring to the complementarity between position and momentum,

\[\psi \text{-function is far from complete; it comprises only about 50 percent of a complete description.} \]

However, unlike Schrödinger, I conclude that, while the remaining 50 percent will probably always remain unobservable, they may have a reality just as objective as the (ideally) observable 50 percent. The fact that in many cases we can choose which 50 percent of a complete description we want to observe underlines this conclusion.

The fact that both past and future boundary conditions are needed (and sufficient) to locate a particle path is consistent with the observation in Section 2 that states anticipate something about their whole future. It is also reminiscent of the action-at-a-distance formulation of classical electrodynamics by Wheeler & Feynman [29, 30], where electromagnetic radiation is explained through interaction with particles in the future.

By observing the right 50%, namely past and future position boundary conditions about one of a pair of conjugate variables at both boundaries, we might be able, in principle, to reconstruct the complete intermediate picture as reliably as in the classical case, where one has the same option. But in the classical case one has the additional and, for us as subjects acting based on past information only, more useful option to predict the particle path from initial conditions only (position and momentum in the past).

This state of affairs can be summarized in the statement:

\[\text{Physics essentially describes nature as if everything had already happened, and then expresses its laws as information about observed correlations. Since some of the correlations involve time, it is possible to partially predict the future from the past, or the past from the future, or an intermediate situation from past and future observations.} \]

This summary also explains neatly why questions such as the flow of time or free will cannot be discussed within the framework of physics. Whether or
not time flows, whether or not our will is free, the four-dimensional picture resulting from the course of nature, whether or not influenced by us, can (in a gedankenexperiment) be replayed, after everything has happened, like a movie. In the replay, everything is determined, and there is only the illusion of free will, just as we are used from the cinema. But the physics, expressed in the correlations between the parts of the movie, is identical to that in the original version.

The principle of physics, that it restricts attention to that which remains the same after everything happened, makes physics very powerful in that it allows us to investigate a past of billions of years and to anticipate a future of billions of years. But the same principle also generates its intrinsic limitations, that physics must be silent about everything that cannot be captured by this static, four-dimensional view of nature. This includes both questions such as “how does reality happen?”, and many of the subjects of most interest to people: freedom, purpose, and consciousness.

References

[1] A. Aspect, Proposed experiment to test the nonseparability of quantum mechanics, Phys. Rev. D 14 (1976), 1944-1951. (Reprinted in [31].)

[2] J.S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1 (1964), 195-200. (Reprinted in [31].)

[3] G. Birkhoff and J. von Neumann, The logics of quantum mechanics, Ann. Math. 37 (1936), 823-843.

[4] Ph. Blanchard and A. Jadczyk, Time of events in quantum theory, Helv. Phys. Acta 69 (1996), 613-635.

[5] D. Bohm, A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, I and II, Phys. Rev. 85 (1952), 166-179. (Reprinted in [31].)

[6] N. Bohr, Discussion with Einstein on epistemological problems in atomic physics, pp. 200-241 in: P.A. Schilpp (ed.), Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, Evanston 1949. (Reprinted in [31].)

[7] M. Born, Zur Quantenmechanik der Stoßvorgänge, Zeitschrift f. Physik 37 (1926), 863-867. (Engl. translation: Section I.2 in [31].)
[8] V.B. Braginsky, Yu. I. Vorontsov and K.S. Thorne, Quantum nondestruction measurements, Science 209 (1980), 547-557. (Reprinted in [31].)

[9] P. Busch, M. Grabowski and P.J. Lahti, Operational Quantum Physics, Springer, Berlin 1995.

[10] J.F. Clauser and M.A. Horne, A. Shimony and R.A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23 (1969), 880-884. (Reprinted in [31].)

[11] E.B. Davies, Quantum Theory of Open Systems, Academic Press, London 1976.

[12] R.P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20 (1948), 367-387. (Reprinted in J. Schwinger, ed., Quantum Electrodynamics, Dover, New York 1958.)

[13] G.C. Ghirardi, A. Rimini and T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34 (1986), 470-491.

[14] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift f. Physik 43 (1927), 172-198. (Engl. translation: Section I.3 in [31].)

[15] C.J. Isham, Quantum logic and the histories approach to quantum theory, J. Math. Phys. 35 (1994), 2157-2185. gr-qc/9308006

[16] E. Joos and H.D. Zeh, The emergence of classical properties through interaction with the environment, Z. Phys. B 59 (1985), 223-243.

[17] A. Kent, Consistent sets contradict, Phys. Rev. Lett. 78 (1997), 2874-2877. gr-qc/9604012

[18] S. Kochen and E.P. Specker, The problem of hidden variables in quantum mechanics, J. Math. Mech. 17 (1967), 59-67. (Reprinted in C.A. Hooker, ed., The Logico-Algebraic Approach to Quantum mechanics, Vol. I: Historical Evolution, Reidel, Dordrecht 1975.)

[19] P.G. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, Interaction-free measurements, Phys. Rev. Lett. 74 (1995), 4763-4766.

[20] N.F. Mott, The wave mechanics of α-ray tracks, Proc. Roy. Soc. London A 126 (1929), 79-84. (Reprinted in [31].)
[21] A. Neumaier, Noncommutative analysis and quantum physics I. Algebra and logic. In preparation.

[22] J. von Neumann, Mathematische Grundlagen der Quantenmechanik. Springer, Berlin 1932.

[23] R. Omnès, The Interpretation of Quantum Mechanics. Princeton Univ. Press, Princeton 1994.

[24] R. Penrose, Shadows of the mind. Oxford Univ. Press, Oxford 1994.

[25] M. Reck, A. Zeilinger, H.J. Bernstein and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73 (1994), 58-61.

[26] H.P. Robertson, The uncertainty principle, Phys. Rev. 34 (1929), 163-164. (Reprinted in [31].)

[27] E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23 (1935), 807-812; 823-828; 844-849. (Engl. translation: Section I.11 in [31].)

[28] K. Svozil, Quantum Logic. Springer, Berlin 1998.

[29] J.A. Wheeler and R.P. Feynman, Interaction with the absorber as the mechanism of radiation, Rev. Mod. Phys. 17 (1945), 157-181.

[30] J.A. Wheeler and R.P. Feynman, Classical electrodynamics in terms of direct interparticle action, Rev. Mod. Phys. 21 (1949), 425-433.

[31] J.A. Wheeler and W. H. Zurek, Quantum theory and measurement. Princeton Univ. Press, Princeton 1983.

[32] E.P. Wigner, Interpretation of quantum mechanics, Section II.2 in [31].

[33] W.K. Wootters and W.H. Zurek, Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr’s principle, Phys. Rev. D 19 (1979), 473-484. (Reprinted in [31].)

[34] A. Zeilinger, On the interpretation and philosophical foundation of quantum mechanics, in: ”Vastakohtien todellisuus”, Festschrift for K.V. Laurikainen, U. Ketvel et al. (Eds.), Helsinki University Press, 1996. (http://info.uibk.ac.at/c/c7/c704/qo/philosop.html)

[35] W.H. Zurek, Decoherence and the transition from quantum to classical, Physics Today 44 (1991), 36-44.