Characterization of an alkaline esterase from an enriched metagenomic library derived from an oil-spill area

Seung Cheol Baek · Jeong Min Jo · Soo-Mi Jeong · Jae Pil Lee · Hyun Woo Lee · Jungho Kim · Hoon Kim

Received: 13 December 2018 / Accepted: 15 January 2019 / Published Online: 31 March 2019
© The Korean Society for Applied Biological Chemistry 2019

Abstract A novel esterase gene (est7S) was cloned from an enriched metagenomic library derived from an oil-spill area. The gene encoded a protein of 505 amino acids, and the molecular mass of the Est7S was estimated to be 54,512 Da with no signal peptide. Est7S showed the highest identity of 40% to an esterase from a sludge metagenome compared to the characterized enzymes with their properties, although it showed 99% identity to a carboxylesterase in the genome sequence of Alcanivorax borkumensis SK2. Est7S had catalytic triad residues, Ser183, Glu312, and His420, and the GESAG motif in most family VII lipolytic enzymes. Est7S was purified from the crude extract of clone SM7 using Sephacryl S-200 HR and HiTrap Q column chromatographies. The purified Est7S was optimally active at 50 °C and pH 10.0. Est7S showed a high specific activity of 366.7 U/mg protein. It preferred short length esters, particularly p-nitrophenyl acetate, efficiently hydrolyzed R- and S-enantiomers of methyl-3-hydroxy-2-methylpropionate, and glyceryl tributyrate. These properties of Est7S may provide potential merits in biotechnological applications such as detergent and paper processing under alkaline conditions.

Keywords Alkaline family VII esterase · Enriched metagenomic library · Purification · Short length p-nitrophenyl esters

Introduction

Esterases (EC 3.1.1.1) and lipases (EC 3.1.1.3) are generally categorized based on the chain length preference of fatty acid esters to be hydrolyzed. Esterases and lipases have been used in a variety of biological applications for degradation processes, such as detergent, food, animal feed, textile, and pulping, as well as for synthesis of pharmaceuticals, agrochemicals, biopolymers, and flavor compounds [1,2]. Recently, the lipolytic enzymes have been attracted as fused forms for the improvement of their thermostability, catalytic activity, substrate specificity, and regio- or enantio-selectivity, and also for facilitation of their purification and yield [3].

Bacterial lipolytic enzymes were originally classified into eight families based their sequences and biological properties [4], and expanded to fifteen families [5]. Besides microorganisms, biocatalysts have been explored using a metagenomic approach without culturing of microorganisms, due to the limitation of culture [6]. Marine microorganisms can serve as an untapped source of industrial biocatalysts, which are different from terrestrial microorganisms. We isolated novel strains from an oil-contaminated seashore to degrade the contaminants [7,8]. We also have previously reported two novel enzymes, a family IV esterase and a family I.3 lipase, from an oil-polluted mud flat metagenome [9]. When the sample was enriched with specific substrates, microbial diversity could hugely increase.

In this study, we isolated a novel alkaline family VII esterase gene (est7S) with high specific activity from a metagenomic library derived from an enriched marine sediments contaminated with crude oil, and examined enzymatic properties of Est7S.

Materials and Methods

Materials

Substrates, such as p-nitrophenyl esters, enantiomers [(R)- and
Selection of esterase-positive clones from enriched and mixed culture

Oil-spilled fine gravels and sands were sampled, as described previously [9]. The sample was enriched by adding 0.5% crude oil into BM medium [2% sea salt, 10 mM phosphate buffer, 0.25 g MgSO₄ · 7H₂O, 0.02 g CaCl₂ · 2H₂O, 0.02 g FeSO₄ · 7H₂O, 2.38 g (NH₄)₂SO₄ per L] and grown three times at 25 °C for 10 days. Enriched metagenome was then extracted and partially digested with SmaI by the method previously described [10]. After the digested 3-8 kb fragments were inserted into pUC19 vector, transformants were grown on LB agar plates supplemented by X-gal and IPTG, and then positive clones were selected by using LB plates that contained 1% glyceryl tributyrate [11]. Recombinant plasmids of the clones were analyzed.

Sequence analysis of the gene

The nucleotide sequence of the insert DNA was determined by SolGent (Daejeon, Korea). The conserved regions were detected using BLAST at the NCBI (http://www.ncbi.nlm.nih.gov). Putative signal peptide was predicted by SignalP 4.1 in CBS (http://www.cbs.dtu.dk/services/SignalP/) [12]. The molecular mass estimation and multiple alignment were analyzed using DNA/Man (Lynnon Biosoft, version 4.11, Quebec, Canada).

Esterase assay

Esterase activity was assayed by measuring the amount of p-nitrophenol generated from p-nitrophenyl butyrate (pNPB), as described previously [10]. Under the standard conditions, the reaction was carried out for 2 min at 25 °C in the presence of 1 mM pNPB in 50 mM Tris/HCl (pH 8.0) and continuously measured at 400 nm using a spectrophotometer (Mecasys, Model OPTIZEN, Korea). Enzyme activities were calculated using molar extinction coefficients for p-nitrophenol (16,520/M/cm at pH 8.0) [10]. One unit of esterase activity was defined as the amount of enzyme that generated 1 μmol of p-nitrophenol in 1 min under the condition.

Purification of the enzyme

Crude enzyme preparation was performed as previously described [13]. The crude enzyme was loaded onto a Sephacryl S-200 HR column (HiPrep 16/60) after dialysis against 50 mM sodium phosphate buffer (pH 7.2) containing 150 mM NaCl [14]. The protein was eluted at a flow rate of 0.5 mL/min. The enzyme was purified by HiTrap Q HP (5 mL) column chromatography. Protein concentration was determined using the Bradford method [15] and SDS-PAGE on an 11.5% polyacrylamide gel [16].

Characterization of the enzyme

Optimum temperature, thermostability, optimum pH, cation effect, and substrate specificity of the enzyme were determined, as described previously [10]. Hydrolyzing activities for p-nitrophenol derivatives were analyzed using the following p-nitrophenyl esters: p-nitrophenyl acetate (C2), p-nitrophenyl butyrate (C4), octanoate p-nitrophenyl octanoate (C8), p-nitrophenyl caprate (C10), p-nitrophenyl laurate (C12), p-nitrophenyl myristate (C14), and p-nitrophenyl palmitate (C16). Enantioselectivity was analyzed using 300 mM (R)- or (S)-methyl-3-hydroxy-2-methylpropionate [11]. The reaction mixtures (0.6 mL) containing 2.0 U/mL of Est7S were reacted for 1 h at 25 °C and the absorbance spectra were recorded at 560 nm. Hydrolysis of glyceryl esters, such as glyceryl butyrate and glyceryl trioleate, and oils, such as fish and olive oil, were analyzed using 1% substrates.

Nucleotide sequence accession number

The nucleotide sequence of the esterase gene est7S has been deposited in the GenBank under accession number MK290416.

Results and Discussion

Characterization of an esterase gene est7S and Est7S

Among 1,500 transformants, eight clones were screened as positive clones and confirmed on an LB plate containing 1% glyceryl tributyrate as a substrate (Fig. 1). After analyzing the plasmids by four restriction enzymes such as EcoRI, BamHI, HindIII, and PstI, and comparing esterase activities on the plate, clone SM7 was selected for further study. The size of the insert fragment of SM7 was about 3.0 kb, containing an open reading

![Image](https://via.placeholder.com/150)
Fig. 2 Multiple alignment of the amino acid sequences (A), putative conserved domains (B), and phylogenetic tree of Est7S (C). The GxSxG and HxG motifs are boxed in orange. Red circles represent catalytic triad residues. In (A): Est-XG2, from Thermaerobacter marianensis DSM 12885 (AGS38342); PNBCE, Bacillus subtilis (P37967); Est-B, Bacillus sp. Za (AGY14298); EstDL30, an uncultured organism of soil (AEK77432); Est50, Geobacillus stearothermophilus (AAN81910); Est-Ts, Thermaerobacter subterraneus DSM 13965 (ZP_11320927); Est-Tm, Thermaerobacter marianensis (WP_013495056); SCO6127, Streptomyces coelicolor A3(2) (CAA22794); PMPH, Arthrobacter oxydans (Q01470). In (B): Est-Hc, from Hahella chejuensis KCTC2396 (ABC27396); AES, Escherichia coli str. K-12 substr. MG1655 (AAC73578); EstA, Archaeoglobus fulgidus DSM 4304 (AAB89533); LipP, Pseudomonas sp. strain B11-1 (AAC38151); SAL, Sulfolobus acidocaldarius DSM 639 (AAC67392); Lip3, Moraxella sp. TA144 (CAA37663); Lip1, Psychrobacter immobilis B10 (CAA47949)
frame of 1,518 bp, which was expected to encode a protein of 505 amino acid residues with no signal peptide (Fig. 2A). The gene was matched to a putative α/β hydrolase superfamily and a carboxylesterase/lipase family, and was named est7S. Est7S was calculated to be 54,512 Da.

The amino acid sequence of Est7S showed the highest identity of 40% to an esterase Est-XG2 from an activated sludge metagenome [17], followed by 36% to a p-nitrobenzyl esterase of Bacillus subtilis [18] and an esterase EstDL30 from a soil metagenome [19], and 35% to an esterase Est55 of Geobacillus stearothermophilus [20], by comparison enzymes with the reported properties. In comparison with the amino acid sequences from the genome sequences, Est7S showed 99% identity to a carboxylesterase of Alcanivorax borkumensis SK2 (CAL16699), followed by 83% identity to that of Alcanivorax sp. DG881 (EDX91080), 76% identity to that of Alcanivorax sp. MD8A (WP_102791219), and 72% identity to that of A. nanhaiticus (WP_035231190). These sequences were annotated from genome sequences and their enzymatic properties have not yet been characterized. Analysis of the amino acid sequence and multiple alignment revealed that Est7S contained a catalytic triad, such as Ser183, Glu312, and His420; a GxSxG motif as GESAG in the alignment revealed that Est7S contained a catalytic triad, such as Ser, Asp, and His, to form a catalytic triad [4]. Est7S contained Glu instead of Asp in the catalytic triad, like an acetylcholinesterase Ser, Asp, and His, to form a catalytic triad [4]. Est7S contained Glu instead of Asp in the catalytic triad, like an acetylcholinesterase.

Table 1 Purification of an esterase Est7S from the clone SM7

Procedure	Volume (mL)	Total protein (mg)	Total activity (U)	Specific activity (U/mg)	Purification (fold)	Yield (%)
Crude extract	5.0	20.1	151.8	7.6	1.0	100
Sephacryl S-200 chromatography	22.4	0.19	47.8	251.6	33.1	31.4
HiTrap Q chromatography	1.0	0.012	4.4	366.7	48.3	2.9

| Fig. 3 SDS-PAGE of the Est7S during purification. M, molecular weight markers; lane 1, crude extract of the clone; lane 2, pooled from Sephacryl S-200 chromatography; lanes 3-8, fractions 68-78 at even numbers from HiTrap Q. |
3 (family I.4, 81.3 U/mg protein) [11], EstN7 of B. cohnii strain N1 (family IV , 336.89 U/mg protein) [30], EstSP (family IV , 745.14 U/mg protein) from a soil metagenome [31], and Est7K (family VIII, 790.2 U/mg protein) from the compost metagenome [32].

Properties of Est7S

Est7S showed its maximal activity at 50 °C, and greatly decreased at 40 or 60 °C (Fig. 4A). Est7S also showed its maximal activity at pH 10.0 (Fig. 4B). At pH 9.0, the activity was decreased to 58.4%; however, it increased to 78.0% at pH 8.0. The value of Est7S was higher than that of EstDL30 (pH 8.0) [19] and that of Est-XG2 (pH 8.5) [17]. The results suggested that Est7S had a broad alkaline range. In thermostability experiments, half-life of Est7S at 30 °C was 29.7 min, but those were less than 5 min at 40 or 50 °C (Fig. 4C). The optimum temperature (50 °C) of Est7S was in the middle range compared to those of other enzymes (20-80 °C).

Cations testing showed no significant effects on the enzyme activity at 2 mM, except that Fe$^{2+}$ and Zn$^{2+}$ inhibited to 34.1 and 34.5% of the activity (Fig. 5). At 5 mM, Mg$^{2+}$ increased the activity to 126.0%, but Cu$^{2+}$ and Zn$^{2+}$ inhibited to 29.0 and 24.0%, respectively.

Purified Est7S hydrolyzed the ester bond of C2 with maximal activity, and then followed by C4 and C8 with 81.7 and 38.4%, respectively (Fig. 6). Est7S preferred to short-chain fatty acid esters but hardly hydrolyzed the long-chain fatty acids, such as C14 and C16. The activity ratio for C10 to C4 was 0.13, between Est7K (0.035) [32] and Est2K (0.4) [10]. Est7S preferred a short-chain fatty acid (C2 or C4) as the substrate, likely many esterases, such as EstSP (C2) [31], EstN7 (C2) [30], BlEst1 (C2) of B. licheniformis [33], EstSP2 (C2) of Sphingomonas glacialis [34],
and an esterase (C2) of Xanthomonas oryzae [35], but contrary to Lpc53E1 (C16) from the metagenome of the marine sponge Haliclona simulans [36] and KM12 lipase (C12) of B. licheniformis KM12 [37]. Based on the substrate preference, Est7S is a typical carboxylesterase rather than a lipase [4].

Est7S hydrolyzed an R-enantiomer, (R)-methyl-3-hydroxy-2-methylpropionate, and its S-enantiomer. The half-lives of R and S isomer were 24.4 and 21.0 min, respectively, under the experimental condition by measuring A_{560} (Fig. 7A). Est7S showed a lower enantioselectivity level for (S)-methyl-3-hydroxy-2-methylpropionate than Est7K, which showed S-enantiomer preference [32]. Est7S efficiently hydrolyzed glyceryl tributyrat with a half-life of 15.0 min, but hardly hydrolyzed glyceryl trioleate, fish oil, and olive oil (Fig. 7B). The results suggested that Est7S was specific to short glyceryl esters.

In this study, we cloned a new alkaline esterase Est7S from an enriched metagenomic library. Est7S showed a high specific activity and a specificity for short-chain fatty acid esters and activity including glyceryl tributyr at and the enantiomers. These properties of Est7S may provide potentials in biotechnological applications under alkaline condition and for short glyceryl esters.

Acknowledgments This paper was supported by the Sunchon National University Research Fund in 2018.

References

1. Ramnath L, Sithole B, Govinden R (2017) Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 63: 179–192
2. Sandoval G, Herrera-López EJ (2018) Lipase, phospholipase, and esterase biosensors. Methods Mol Biol 1835: 391–425
3. Gudziukaitė R, Griejeva A (2017) Microbial lipolytic fusion enzymes: current state and future perspectives. World J Microbiol Biotechnol 33: 216
4. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343: 177–183
5. Charbonneau DM, Beareagard M (2013) Role of key salt bridges in thermostability of G. thermodenitrificans EstGtA2: distinctive patterns within the new bacterial lipolytic enzyme family XV. PLoS One 8: e76675
6. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-cultural microbes. Appl Microbiol Biotechnol 75: 955–962
7. Lee DH, Moon SR, Park YH, Kim JH, Kim H, Parales RE, Kahng HY (2010) Pseudomonas taenarisps sp. nov., isolated from a crude oil-contaminated seashore. Int J Syst Evol Microbiol 60: 2719–2723
8. Lee DH, Moon SR, Park YH, Lee YS, Jung JS, Kim JH, Kim H, Kahng HY (2011) Ganggiania marincola gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae. Int J Syst Evol Microbiol 61: 325–329
9. Kim HJ, Jeong YS, Jung WK, Kim SK, Lee HW, Kahng HY, Kim J, Kim H (2015) Characterization of novel family IV esterase and family I3 lipase from an oil-polluted mud flat metagenome. Mol Biotechnol 57: 781–792
10. Kim YH, Kwon EJ, Kim SK, Jeong YS, Kim J, Yun HD, Kim H (2010) Molecular cloning and characterization of a novel family VIII alkaline esterase from a compost metagenomic library. Biochem Biophys Res Commun 393: 45–49
11. Kim HJ, Jung WK, Lee HW, Yoo W, Kim TD, Kim H (2015) Characterization of an alkaline family L4 lipase from Bacillus sp. W130-35 isolated from a tidal mud flat with broad substrate specificity. J Microbiol Biotechnol 25: 2024–2033
12. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–786
13. Shin ES, Yang MJ, Jung KH, Kwon EJ, Jung JS, Park SK, Kim J, Yun HD, Kim H (2002) Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl Environ Microbiol 68: 3406–3410
14. Oh JM, Lee JP, Baek SC, Kim SG, Jo YD, Kim J, Kim H (2018) Characterization of two extracellular β-glucosidases produced from the cellulolytic fungus Aspergillus sp. YD216 and their potential applications for the hydrolysis of flavone glycosides. Int J Biol Macromol 111: 595–603
15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254
16. Læmmløkken UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685
17. Shao H, Xu L, Yan Y (2013) Isolation and characterization of a thermostable esterase from a metagenomic library. J Ind Microbiol Biotechnol 40: 1211–1222
18. Zock J, Cantwell C, Swartling J, Hodges R, Pohl T, Sutton K, Rosteek P Jr, McGilvray D, Queener S (1994) The \textit{Bacillus subtilis} pnbA gene encoding p-nitrobenzyl esterase: cloning, sequence and high-level expression in \textit{Escherichia coli}. Gene 151: 37–43

19. Tao W, Lee MH, Wu J, Kim NH, Lee SW (2011) Isolation and characterization of a family VII esterase derived from alluvial soil metagenomic library. J Microbiol 49: 178–185

20. Ewis HE, Abdelal AT, Lu CD (2004) Molecular cloning and characterization of two thermostable carboxy esterases from \textit{Geobacillus stearothermophilus}. Gene 329: 187–195

21. Kadri T, Rouissi T, Magdouli S, Brar SK, Khiari Z, Daghrir R, Lauzon JM (2018) Production and characterization of novel hydrocarbon degrading enzymes from \textit{Alcanivorax borkumensis}. Int J Biol Macromol 112: 230–240

22. Zhang S, Wu G, Liu Z, Shao Z, Liu Z (2014) Characterization of EstB, a novel cold-active and organic solvent-tolerant esterase from marine microorganism \textit{Alcanivorax dieselolei} B-5(T). Extremophiles 18: 251–259

23. Sussman JL, Harel M, Frolov F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from \textit{Torpedo californica}: a prototypic acetylcholine-binding protein. Science 253: 872–879

24. Spiller B, Gershenson A, Arnold FH, Stevens RC (1999) A structural view of evolutionary divergence. Proc Natl Acad Sci USA 96: 12305–12310

25. Huo YY, Jian SL, Cheng H, Rong Z, Cui HL, Xu XW (2018) Two novel deep-sea sediment metagenome-derived esterases: residue 199 is the determinant of substrate specificity and preference. Microb Cell Fact 17:16

26. Bornscheuer UT (2002) \textit{Microbial carboxylesterase: classification, properties and application in biocatalysis}. FEMS Microbiol Rev 26: 73–81

27. Pérez D, Kovacic F, Wilhelm S, Jaeger KE, Garcia MT, Ventosa A, Mellado E (2012) Identification of amino acids involved in the hydrolytic activity of lipase LipBL from \textit{Marinobacter lipolyticus}. Microbiology 158: 2192–2203

28. Rashamuse K, Magomani V, Ronneburg T, Brady D (2009) A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous \(\beta\)-lactamase activity on nitrocefin. Appl Microbiol Biotechnol 83: 491–500

29. Adesioye FA, Makhalanyane TP, Vikram S, Sewell BT, Schubert WD, Cowan DA (2018) Structural characterization and directed evolution of a novel acetyl xylan esterase reveals thermostability determinants of the carbohydrate esterase 7 family. Appl Environ Microbiol 84: e02695-17

30. Noby N, Saeed H, Embaby AM, Pavlidis IV, Hussein A (2018) Cloning, expression and characterization of cold active esterase (EstN7) from \textit{Bacillus cobriti} strain N1: A novel member of family IV. Int J Biol Macromol 120: 1247–1255

31. Jayanath G, Mohandas SP, Kachiprath B, Solomon S, Sajeewan TP, Bright Singh IS, Philip R (2018) A novel solvent tolerant esterase of GDSGG motif subfamily from solar saltern through metagenomic approach: Recombinant expression and characterization. Int J Biol Macromol 119: 393–401

32. Lee HW, Jung WK, Kim YH, Ryu BH, Kim TD, Kim J, Kim H (2016) Characterization of a novel alkaline family VIII esterase with S-enantiomer preference from a compost metagenomic library. J Microbiol Biotechnol 26: 315–325

33. Nakamura AM, Kadowaki MAS, Godoy A, Nascimento AS, Polikarpov I (2018) Low-resolution envelope, biophysical analysis and biochemical characterization of a short-chain specific and halotolerant carboxylesterase from \textit{Bacillus licheniformis}. Int J Biol Macromol 120: 1893–1905

34. Dachuri VK, Lee C, Jung SH (2018) Organic solvent-tolerant esterase from \textit{Sphingomonas glacialis} based on amino acid composition analysis: cloning and characterization of EstSP2. J Microbiol Biotechnol 28: 1502–1510

35. Kang HC, Kim JB, Lee HS, Cho KJ (2008) Cloning and characterization of an esterase from \textit{Xanthomonas oryzae} pv. Oryzae. J Appl Biol Chem 51: 95–101

36. Selvin J, Kennedy J, Lejon DP, Kiran GS, Dobson AD (2012) Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge \textit{Haliclona simulans}. Microb Cell Fact 11: 72

37. Malekabadi S, Badoei-Dalfard A, Karami Z (2018) Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from \textit{B. licheniformis} KM12 with potential application for biodiesel production. Int J Biol Macromol 109: 389–398