Relationship between the cAMP levels in leukocytes and the cytokine balance in patients surviving gram negative bacterial pneumonia

Tomio Matsumoto,1 Keisuke Hayamizu,2,* Seiji Marubayashi,3 Kiyoshi Shimizu,2 Aki Hamamoto,2 Tsuyoshi Yamaguchi,1 Junji Hashizume,1 Takashi Onabe,4 Toshimasa Asahara3 and Hideki Ohdan1

1Department of Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
2Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, 555-36 Kurose-gakuenndai, Higashi-Hiroshima, Hiroshima 739-2695, Japan
3Department of Surgery, Ajina Tsuchiya Hospital, 4-51-5 Ajina, Hatsukaichi, Hiroshima 738-0054, Japan
4Department of Surgery, Onabe Surgical Hospital, 1-9-12 Kokutaiji-cho, Naka-ku, Hiroshima, Hiroshima 730-0042, Japan

(Rceived 28 June, 2010; Accepted 4 September, 2010; Published online 26 February, 2011)

Lipopolysaccharide-stimulated leukocytes secrete proinflammatory cytokines including tumor necrosis factor-α and interleukin-12. Over-activation of host defense systems may result in severe tissue damage and requires regulation. Granulocyte colony-stimulating factor and interleukin-10 are candidate cytokines for inducing tolerance to lipopolysaccharide re-stimulation. We compared cytokines secreted by lipopolysaccharide-stimulated blood cells from patients who had survived gram negative bacterial pneumonia (Pseudomonas aeruginosa, Escherichia coli or Proteus mirabilis, n = 26) and age-matched healthy volunteers (n = 18). Interleukin-12p70 and tumor necrosis factor-α expression was significantly lower in patients (p = 0.0039 and p<0.001) compared to healthy controls, while granulocyte colony-stimulating factor production was markedly higher in patients (p<0.001). Levels of interleukin-10 were comparable. Granulocyte colony-stimulating factor expression was inversely correlated with interleukin-12p70 (R = −0.71, p<0.001) and tumor necrosis factor-α (R = −0.64, p<0.001) expression; interleukin-10 showed no significant correlation. In unstimulated leukocytes from patients, cAMP levels were significantly raised (p = 0.020) and were correlated inversely with interleukin-12p70 levels (R = −0.81, p<0.001) and directly with granulocyte colony-stimulating factor (R = 0.72, p = 0.0020), matrix metalloproteinase-9 (R = 0.67, p = 0.0067) and interleukin-10 (R = 0.54, p = 0.039) levels. Our results demonstrate that granulocyte colony-stimulating factor production by lipopolysaccharide-stimulated leukocytes is a useful indicator of tolerance induction in surviving pneumonia patients and that measuring cAMP in freshly isolated leukocytes may also be clinically significant.

Key Words: cAMP, granulocyte colony-stimulating factor, tolerance, lipopolysaccharide, interleukin-12

lipopolysaccharides (LPS) in the outer membrane of gram negative bacteria are endotoxins that elicit strong immune responses and act as well-recognized alarm signals in human hosts.1) Stimulating leukocytes with LPS in vitro induces the secretion of proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-12 which kill the bacteria but may also cause severe tissue damage in the host. The regulation of over-activation of this defense system is therefore very important to protect the host, especially when exposed to prolonged or recurrent alarm signals such as LPS.

Critical roles for IL-12 have been identified not only in the T helper type 1 immune response and host defenses against intracellular microorganisms2,3 but also in combating extracellular microorganisms. Yamamoto et al. showed that IL-12 plays a critical role in the early phase of bacterial pneumonia by promoting the recruitment of neutrophils to infected lung tissues, where TNF-α production is dependent on IL-12, using IL-12p40-knockout mice.4) IL-12 is a chemoattractant factor for both neutrophils and NK cells and induces their adherence to vascular endothelial cells.5) Preoperative levels of IL-12 secretion by monocytes stimulated in vitro with LPS were significantly lower in patients who developed lethal postoperative sepsis, compared with the survivors.6) However, IL-12 has been closely associated with lung tissue injury, as the development of bleomycin-induced pneumopathy is prevented by treating normal mice7 and IL-12p40-knockout mice with anti-IL-12 antibody.8) IL-12 also reduces the expression of matrix metalloproteinase (MMP)-9, which is associated with angiogenesis.9)

Granulocyte colony-stimulating factor (G-CSF)10 and IL-10 play a critical role in the early phase of bacterial pneumonia by promoting the recruitment of neutrophils to infected lung tissues, where TNF-α production is dependent on IL-12, using IL-12p40-knockout mice.4) IL-12 is a chemoattractant factor for both neutrophils and NK cells and induces their adherence to vascular endothelial cells.5) Preoperative levels of IL-12 secretion by monocytes stimulated in vitro with LPS were significantly lower in patients who developed lethal postoperative sepsis, compared with the survivors.6) However, IL-12 has been closely associated with lung tissue injury, as the development of bleomycin-induced pneumopathy is prevented by treating normal mice7 and IL-12p40-knockout mice with anti-IL-12 antibody.8) IL-12 also reduces the expression of matrix metalloproteinase (MMP)-9, which is associated with angiogenesis.9)

Granulocyte colony-stimulating factor (G-CSF)10 and IL-10 play a critical role in the early phase of bacterial pneumonia by promoting the recruitment of neutrophils to infected lung tissues, where TNF-α production is dependent on IL-12, using IL-12p40-knockout mice.4) IL-12 is a chemoattractant factor for both neutrophils and NK cells and induces their adherence to vascular endothelial cells.5) Preoperative levels of IL-12 secretion by monocytes stimulated in vitro with LPS were significantly lower in patients who developed lethal postoperative sepsis, compared with the survivors.6) However, IL-12 has been closely associated with lung tissue injury, as the development of bleomycin-induced pneumopathy is prevented by treating normal mice7 and IL-12p40-knockout mice with anti-IL-12 antibody.8) IL-12 also reduces the expression of matrix metalloproteinase (MMP)-9, which is associated with angiogenesis.9)

Granulocyte colony-stimulating factor (G-CSF)10 and IL-10 play a critical role in the early phase of bacterial pneumonia by promoting the recruitment of neutrophils to infected lung tissues, where TNF-α production is dependent on IL-12, using IL-12p40-knockout mice.4) IL-12 is a chemoattractant factor for both neutrophils and NK cells and induces their adherence to vascular endothelial cells.5) Preoperative levels of IL-12 secretion by monocytes stimulated in vitro with LPS were significantly lower in patients who developed lethal postoperative sepsis, compared with the survivors.6) However, IL-12 has been closely associated with lung tissue injury, as the development of bleomycin-induced pneumopathy is prevented by treating normal mice7 and IL-12p40-knockout mice with anti-IL-12 antibody.8) IL-12 also reduces the expression of matrix metalloproteinase (MMP)-9, which is associated with angiogenesis.9)

Granulocyte colony-stimulating factor (G-CSF)10 and IL-10 play a critical role in the early phase of bacterial pneumonia by promoting the recruitment of neutrophils to infected lung tissues, where TNF-α production is dependent on IL-12, using IL-12p40-knockout mice.4) IL-12 is a chemoattractant factor for both neutrophils and NK cells and induces their adherence to vascular endothelial cells.5) Preoperative levels of IL-12 secretion by monocytes stimulated in vitro with LPS were significantly lower in patients who developed lethal postoperative sepsis, compared with the survivors.6) However, IL-12 has been closely associated with lung tissue injury, as the development of bleomycin-induced pneumopathy is prevented by treating normal mice7 and IL-12p40-knockout mice with anti-IL-12 antibody.8) IL-12 also reduces the expression of matrix metalloproteinase (MMP)-9, which is associated with angiogenesis.9)

Granulocyte colony-stimulating factor (G-CSF)10 and IL-10 play a critical role in the early phase of bacterial pneumonia by promoting the recruitment of neutrophils to infected lung tissues, where TNF-α production is dependent on IL-12, using IL-12p40-knockout mice.4) IL-12 is a chemoattractant factor for both neutrophils and NK cells and induces their adherence to vascular endothelial cells.5) Preoperative levels of IL-12 secretion by monocytes stimulated in vitro with LPS were significantly lower in patients who developed lethal postoperative sepsis, compared with the survivors.6) However, IL-12 has been closely associated with lung tissue injury, as the development of bleomycin-induced pneumopathy is prevented by treating normal mice7 and IL-12p40-knockout mice with anti-IL-12 antibody.8) IL-12 also reduces the expression of matrix metalloproteinase (MMP)-9, which is associated with angiogenesis.9)
TNF-α and the anti-inflammatory cytokines G-CSF and IL-10. However, human neutrophils have also been reported to produce physiologically relevant levels of IL-12\(^{24}\) and IL-10\(^{25}\).

In this study, we investigated the production of TNF-α, IL-12, CSF and IL-10 in LPS-tolerant patients who had survived gram negative bacterial pneumonia with no severe inflammatory symptoms. We also measured cyclic adenosine monophosphate (cAMP) in unstimulated leukocytes from these patients to elucidate the relationship between cAMP levels and the profile of cytokines secreted in response to LPS, because recent in vitro studies have shown that intracellular cAMP concentrations in monocytes can determine the secretion of these cytokines\(^{26-28}\) although LPS itself does not affect cAMP levels.\(^{29}\)

Materials and Methods

Patients. We enrolled patients over 50 years of age who had survived aspiration pneumonia due to gram negative rods as *Pseudomonas aeruginosa* (*P. aeruginosa*), *Escherichia coli* (*E. coli*) or *Proteus mirabilis* (*P. mirabilis*). All patients had been diagnosed with gram negative bacterial pneumonia from chest X-rays, computed tomography and sputum cultures. Their informed consent was obtained and blood samples were collected at least one week after withdrawal of antibiotics and/or anti-inflammatory drugs. Control blood samples were collected from healthy volunteers who had experienced no episodes of pneumonia within the last 20 years or any infectious diseases within the last 3 months.

Quantifying cAMP levels in leukocytes. Blood (10 ml).
was collected using a syringe containing 0.5 ml of heparin (Mochida Pharmaceutical, Tokyo, Japan), mixed with 5 ml 6% dextran and incubated for 30 min at room temperature. The enriched leukocyte fraction was collected and centrifuged at 400 g for 5 min and any residual erythrocytes were then lysed by adding 3 ml ACK lysing buffer (BioWhittaker, Walkersville, MD) for 7 min at room temperature. After washing three times with PBS, the leukocytes were adjusted to 1 x 10^6 cells/ml. 200 μl aliquots of heparinized whole blood, which were mixed with ACK lysing buffer according to the manufacturer’s instructions and used to measure cAMP concentrations with an enzyme-linked immunosorbent assay (ELISA) kit (RPN225, GE Healthcare, Buckinghamshire, UK).

Cell culture. LPS-stimulated supernatants were obtained from 40 μl aliquots of heparinized whole blood, which were mixed with 160 μl DMEM (Life Technologies, Rockville, MD) in the presence of 10 μg/ml LPS (Sigma, St. Louis, MO), in triplicate in flat bottomed 96-well microplates (Becton Dickinson Labware, NJ). After incubation for 24 h at 37°C in humidified air containing 5% CO₂, the cells were centrifuged at 400 g for 5 min and the supernatants were collected and stored at −80°C until their use in assays.

Quantifying cytokines secreted by LPS-stimulated leukocytes. The concentrations of IL-12p70 (the active heterodimer of IL-12p40 and p35), TNF-α, G-CSF, IL-10 and MMP-9 in the culture supernatants were quantified using commercial ELISA kits (Biosource International, CA).

Statistical analysis. Data were imported into Statview 5.0 (SAS Institute, Cary, NC) and plotted using log-log, semi-log or linear coordinates. Regression analyses were performed to assess the correlation coefficients (R) and Fisher’s protected least significant difference was used to evaluate the degree of fit of the data to power-law distributions. The Mann-Whitney U test was used to determine the statistical significance of differences between two experimental groups.

Results

Effect of aging on the production of pro-inflammatory and anti-inflammatory cytokines. Blood from 47 healthy volunteers between 20 and 96 years of age were stimulated in vitro with LPS and the cytokines secreted were measured. Fig. 1A shows the relationship between the age of the volunteers and the concentration of the pro-inflammatory and anti-inflammatory cytokines secreted. TNF-α production was inversely correlated with age (R = −0.51, p<0.001). IL-10 secretion also dropped with age, but with a lower correlation (R = −0.38, p = 0.0060). In contrast, production of IL-12p70 and G-CSF was not significantly correlated with age, although amongst individuals aged over 50 there were no outliers showing high production of these cytokines. The plots shown in Fig. 1B compare cytokine production in volunteers over 50 (open squares) with those 50 years or younger (closed squares). Interestingly, no older volunteers showed extraordinarily high levels of production of any cytokine, compared to younger volunteers, and there were no individuals who showed exceptionally high levels of both IL-12p70 and G-CSF production in response to LPS.

Cytokine production in patients surviving gram negative bacterial pneumonia. Table 1 shows the clinical data for the patients enrolled in this study. The 26 patients were aged between 54 and 95 years with a median age of 78 years. Sputum cultures identified P. aeruginosa in 17 patients, E. coli in 5 patients, and P. mirabilis in 4 patients. Methicillin-resistant Staphylococcus aureus (MRSA) was also detected in 3 patients. The mean CRP level was 2.6 ± 1.5 mg/dl and the mean leukocyte count in freshly drawn blood was 6,885 ± 2,109 cells/μl. The proportion of neutrophils and monocytes was more than 50% of total leukocytes in all patients. Percutaneous endoscopic gastrostomy tube (PEG) were placed into 19 patient’s stomach and the mean level of total protein (TP) of all the patients was 6.8 ± 0.5 g/dl.

Fig. 2A shows a comparison of the cytokines secreted by LPS-
stimulated blood from patients \((n = 26)\), age-matched healthy volunteers over 50 years old \((n = 18)\) and healthy volunteers who were 50 y old or younger \((n = 29)\). In the patient group, production of IL-12p70 was significantly lower \((p = 0.0039)\) than in age-matched healthy volunteers. TNF-α production was also lower in the older, compared to younger, volunteer groups and lower still in the patient group \((p < 0.001)\). G-CSF production was markedly higher in patients compared to both healthy volunteer groups \((p < 0.001)\), while IL-10 production was similar in all three groups. Amongst the patient group, 13 people suffered from diabetes mellitus (DM) and 22 people suffered from cerebrovascular disease (CVD). However, these possible confounding factors did not significantly affect the cytokine production in these patients, as shown in Fig. 2B.

Correlation between production of pro-inflammatory and anti-inflammatory cytokines. When we analyzed the production of cytokines, we found that the correlation coefficients between any pair of cytokines we measured were higher in log-log (power-law) distributions than in semi-log or linear distributions. Fig. 3 shows curves modeled for the production of cytokine X and cytokine Y using a power-law distribution in which Y is proportional to \(X^a\), where \(a\) is the exponent of the power law. The production of IL-12p70 and TNF-α showed a strong direct correlation \((R = 0.57, p < 0.001, \ a = 0.39)\). The production of G-CSF was inversely correlated with the production of both IL-12p70 \((R = -0.71, p < 0.001, \ a = -0.74)\) and also TNF-α \((R = -0.64, p < 0.001, \ a = -0.45)\). These results cannot be fully explained by secondary effects of secreted G-CSF, by an autocrine or paracrine mechanism, because we found that the addition of even a high concentration of recombinant G-CSF to the cultures reduced the secretion of IL-12 by at most 34% and TNF-α by at most 28%. The degree of correlation between G-CSF and IL-10 production was lower \((R = 0.35, p = 0.020, \ a = 0.38)\) and IL-10 production showed no significant correlation with either IL-12p70 or TNF-α production.

Correlation between cytokine and MMP-9 production. Secretion of MMP-9 by blood cells stimulated with LPS \(in vitro\) was significantly higher in the patient group compared to healthy volunteers \((p = 0.011);\) Fig. 4A. As shown in Fig. 4B, MMP-9 production was very closely correlated with G-CSF \((R = 0.64, p < 0.001, \ a = 0.36)\) and IL-10 \((R = 0.35, p = 0.020, \ a = 0.26)\) production. Conversely, MMP-9 levels were inversely correlated with TNF-α levels \((R = -0.41, p = 0.0047, \ a = -0.34)\), but there was no significant correlation between MMP-9 and IL-12p70 production.

Correlation between cAMP levels in leukocytes and cytokine production. We next quantified and analyzed the cAMP content of freshly isolated leukocytes. As shown in
Fig. 5A. cAMP levels were significantly higher in patients ($p = 0.020$) compared to healthy volunteers. Fig. 5B shows the relationship between cAMP (X) and cytokine production (Y), fitted to exponential curves in which Y is proportional to e^{bX}, where e is the base of the natural logarithm and b is a constant. The levels of cAMP were inversely correlated with IL-12p70 production ($R = -0.81$, $p = 0.001$, $b = -0.13$) and directly correlated with G-CSF ($R = 0.72$, $p = 0.0020$, $b = 0.089$), MMP-9 ($R = 0.67$, $p = 0.0067$, $b = 0.041$) and IL-10 ($R = 0.54$, $p = 0.039$, $b = 0.049$) production. These results helped to explain why the relationship between cytokine production follows a power-law relationship.

Discussion

LPS-stimulated monocytes from elderly humans have been reported to produce low amounts of cytokines, including TNF-α and G-CSF. A significant association with age has also been reported for IL-12, but not IL-10, expression in feline monocytes. In this study, using whole blood cells from 47 healthy human volunteers, we have demonstrated that the LPS-induced
secretion of TNF-α and IL-10 is reduced with age, although we did not detect any statistically significant changes in IL-12 or G-CSF expression. Furthermore, we found that most leukocytes from people showing high IL-12 production secreted very small amounts of G-CSF and vice versa.

Chen et al. reported that patients with acute bacterial infections who had low serum G-CSF concentrations on hospital admission were more likely to die. Indeed maintaining high levels of G-CSF is known to be important for sustaining hematopoiesis in emergencies and for neutrophil differentiation, although it should be emphasized that G-CSF also has a regulatory role in controlling over-activation of host defense systems. TNF-α has an essential role in the pathogenesis associated with septic shock and in disseminated intravascular coagulation (DIC). However, Weiss et al. reported that in vitro, the LPS-inducible secretion of TNF-α is downregulated and the secretion of G-CSF is upregulated in patients with septic shock. Since G-CSF upregulation occurs earlier in the survivors than in the non-survivors, a rapidly elevated and sustained G-CSF response might contribute to the regulation of inflammation and so facilitate survival in endotoxin shock. It is well known that G-CSF administration improves survival in animal models of sepsis and also endotoxin shock even when administered therapeutically after the onset of sepsis.

In terms of anti-inflammatory effects, IL-10, as well as G-CSF, is a candidate cytokine for inducing tolerance to alarm signals such as LPS. In vitro the inhibitory effects of IL-10 on the production of IL-12 and TNF-α are much greater than the effects of G-CSF, on a molar basis. Nevertheless, our study of gram negative bacterial pneumonia has clearly demonstrated that the production of IL-12 and TNF-α by the patients’ leukocytes was inversely related to G-CSF production and not significantly related to IL-10 production. These results showed the significance of G-CSF in protecting hosts from tissue injury resulting from prolonged or repetitive alarm signals. G-CSF has been widely accepted to enhance the healing process in skin wounds as well as in cardiac infarction, but there has been no evidence for a direct role for IL-10 in tissue repair. MMP-9 has been shown to have an active role in tissue repair in the liver. In the lung, Choi et al. have reported a role for MMP-9 in tissue repair in cryptogenic organizing pneumonia. In the more common interstitial pneumonia, pulmonary structure is extensively remodeled, whereas in cryptogenic organizing pneumonia architectural changes are minimal; levels of MMP-9 in broncho-alveolar lavage fluid are also higher in these patients. MMP-9 production was high in the patients recovering from pneumonia in our study and was more closely correlated with G-CSF production than IL-10 production.

The results of this study cannot in our view be adequately explained by a mild regulatory effect of secreted G-CSF in vivo. There is increasing evidence that intracellular cAMP levels determine cell functions such as patterns of cytokine production. For example, cAMP-elevating agents have been shown to enhanced G-CSF promoter activity and attenuation of TNF-α production in a human monocytic cell line, and upregulate IL-10 mRNA expression in human peripheral blood mononuclear cells and down-regulate IL-12p40 mRNA levels in murine peritoneal macrophages. Taken together, the upregulation of intracellular cAMP levels results in increased G-CSF and IL-10 expression and reduced IL-12 and TNF-α expression. Notably, recombinant G-CSF has been shown to increase intracellular cAMP levels in human PBMC in a dose-dependent fashion. These reports provide a molecular basis, supporting our in vivo results, for the production of G-CSF and proinflammatory cytokines (IL-12,

Fig. 4. Relationship between MMP-9 and cytokines secreted by LPS-stimulated leukocytes. (A) Blood from age-matched healthy volunteers (n = 18) and patients with gram negative bacterial pneumonia (n = 26) was incubated in the presence of 10 μg/ml LPS for 24 h and cytokine concentrations in the supernatants were compared statistically. (B) Concentrations of cytokines and of MMP-9 secreted by LPS-stimulated blood cells from patients (n = 26, closed triangle) or age-matched healthy volunteers (n = 18, open square) were plotted as X and Y. Correlation coefficients (R) were calculated by fitting the data to a power-law distribution in which Y is proportional to X^a.
TNF-α) being inversely related in leukocytes, while also suggesting the importance of a positive feedback circuit in which secreted G-CSF enhances intracellular cAMP levels.

Chemical mediators synthesized during host inflammatory response, such as prostaglandin E2, histamine and the catecholamines, have been reported to increase intracellular cAMP levels and suppress IL-12 production in monocytes and monocyte-derived dendritic cells. In addition, catecholamines potentiate the LPS-induced expression of MMP-9 in human monocytes. Thus the host response to repeated alarm signals such as LPS involves elevating cAMP levels and promoting both anti-inflammatory and tissue repair systems. This mechanism could be a reasonable host adaptation for surviving severe acute inflammatory episodes, even though prolonged suppression of normal host responses might be expected to cause susceptibility to infection and carcinogenesis.

We have shown in this study that both G-CSF production by leukocytes stimulated with LPS in vitro and also the cAMP levels in freshly isolated leukocytes are useful indices of tolerance induction in patients who have survived gram negative bacterial pneumonia. From a clinical viewpoint, it is much more significant that we can predict the tolerant status of patients by simply measuring cAMP levels in leukocytes, as culturing cells with LPS is more time-consuming and costly.

References

1 Glauser MP, Zanetti G, Baumgartner JD, Cohen J. Septic shock: pathogenesis. Lancet 1991; 338: 732–736.
2 Decken K, Köhler G, Palmer-Lehmann K, and et al. Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun 1998; 66: 4994–5000.
3 Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 1997; 186: 39–45.
4 Yamamoto N, Kawakami K, Kinjo Y, and et al. Essential role for the p40 subunit of interleukin-12 in neutrophil-mediated early host defense against pulmonary infection with Streptococcus pneumoniae: involvement of interferon-gamma. Microbes Infect 2004; 6: 1241–1249.
5 Allavena P, Paganin C, Zhou D, Bianchi G, Sozzani S, Mantovani A. Interleukin-12 is chemotactic for natural killer cells and stimulates their
interaction with vascular endothelium. *Blood* 1994; 84: 2261–2268.

Weighardt H, Heidecke CD, Westerholt A, and *et al.* Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. *Ann Surg* 2002; 235: 560–567.

Maeyama T, Kuvano K, Kawasaki M, Kunitake R, Hagimoto N, Hara N. Attenuation of bleomycin-induced pneumopathy in mice by monoclonal antibody to interleukin-12. *Am J Physiol Lung Cell Mol Physiol* 2001; 280: L1128–L1137.

Sakamoto H, Zhao LH, Jain F, Kradin R. IL-12p40(-/-) mice treated with intraarterial bleomycin exhibit decreased pulmonary inflammation and increased fibrosis. *Exp Mol Pathol* 2002; 72: 1–9.

Mitoa S, Straza M, Prato M, Ghia P, Bussolino F. IL-12 regulates an endothelial cell-lymphocyte network: effect on metalloproteinase-9 production. *J Immunol* 2003; 171: 3725–3733.

Hartung T, Döcke WD, Gantner F, and *et al.* Effect of granulocyte colony-stimulating factor treatment on *ex vivo* blood cytokine response in human volunteers. *Blood* 1995; 85: 2482–2489.

D’Andrea A, Aste-Amezaga M, Valiente NM, Ma X, Kubin M, Trinchieri G. Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. *J Exp Med* 1993; 170: 1041–1048.

Fiorentino DF, Zlotnik A, Mosmann TR, and *et al.* IL-10 inhibits cytokine production by activated macrophages. *J Immunol* 1991; 147: 3815–3822.

Bensinger WI, Martin PJ, Storer B, and *et al.* Cyclic AMP mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObeta/CXCL2delta4. *Blood* 2003; 101: 110–119.

Pan L, Delmonte J Jr, Jalonen CK, Ferrara JL. Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. *Blood* 1995; 86: 4422–4429.

Saito M, Kiyokawa N, Taguchi T, and *et al.* Granulocyte colony-stimulating factor directly affects human monocytes and modulates cytokine secretion. *Exp Hematol* 2002; 30: 1115–1123.

Fuji K, Ishimaru F, Kozuka T, and *et al.* Elevation of serum hepatocyte growth factor during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. *Br J Haematol* 2004; 124: 190–194.

Pelus LM, Bian H, King AG, Fukuda S. Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic progenitor and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObeta/CXCL2delta4. *Blood* 2004; 103: 110–119.

Hareng L, Hartung T. Induction and regulation of endogenous granulocyte colony-stimulating factor formation. *Biochim Biophys Acta* 2002; 1583: 1501–1517.

Ward C, Murray J, Clagston A, Dransfield I, Haslett C, Rossi AG. Interleukin-10 inhibits lipopolysaccharide-induced survival and extra-cellular signal-regulated kinase activation in human neutrophils. *Eur J Immunol* 2005; 35: 2728–2737.

Sabroe I, Jones EC, Usher LR, Whyte MK, Dower SK. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. *J Immunol* 2002; 168: 4701–4710.

Dasari P, Nicholson IC, Hodge G, Dandie GW, Zola H. Expression of toll-like receptors on B lymphocytes. *Cell Immunol* 2005; 236: 140–145.

Cassatella MA, Medina L, Gasperini S, D’Andrea A, Ma X, Trinchieri G. Interleukin-12 production by human polymorphonuclear leukocytes. *Eur J Immunol* 1995; 25: 1–5.

Köller M, Claasen F, Kollig E, Hahn MP, Muhr G. Major injury induces increased production of interleukin-10 in human granulocyte fractions. *Langenbecks Arch Surg* 1996; 383: 460–465.

Hareng L, Meergans T, von Aulock S, Volck HD, Hartung T. Cyclic AMP increases endogenous granulocyte colony-stimulating factor formation in monocytes and THP-1 macrophages despite attenuated TNF-alpha formation. *Eur J Immunol* 2003; 33: 2287–2296.