Efficient generation of spin currents by the Orbital Hall effect in pure Cu and Al and their measurement by a Ferris-wheel ferromagnetic resonance technique at the wafer level

Amit Rothschild†, Nadav Am-Shalom†, Nirel Bernstein†, Ma’yan Meron†, Tal David†, Benjamin Assouline¹, Elichai Frohlich¹, Jiewen Xiao², Binghai Yan², Amir Capua¹*

¹Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
²Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

*e-mail: amir.capua@mail.huji.ac.il
†Equal contributors

Abstract:

We present a new ferromagnetic resonance (FMR) method that we term the “Ferris” FMR. It is wideband, has significantly higher sensitivity as compared to conventional FMR systems, and measures the absorption line rather than its derivative. It is based on large-amplitude modulation of the externally applied magnetic field that effectively magnifies signatures of the spin-transfer torque making its measurement possible even at the wafer-level. Using the Ferris FMR, we report on the generation of spin currents from the orbital Hall effect taking place in pure Cu and Al. To this end, we use the spin-orbit coupling of a thin Pt layer introduced at the interface that converts the orbital current to a measurable spin current. While Cu reveals a large effective spin Hall angle exceeding that of Pt, Al possesses an orbital Hall effect of opposite polarity in agreement with the theoretical predictions. Our results demonstrate additional spin- and orbit-functionality for two important metals in the semiconductor industry beyond their primary use as interconnects with all the advantages in power, scaling, and cost.
Spin currents are the primary building block of spintronics technology. Their manipulation in practical applications poses challenges in their generation and detection. The spin Hall effect (SHE) has proven to be a well-established method for generating spin currents. Heavy metals such as Pt and W have been widely used to explore the SHE due to their large spin-orbit coupling (SOC) [1-4]. The orbital counterpart of the SHE is the orbital Hall effect (OHE). In the OHE an orbital current is generated without relying on SOC [5-9], and thus is expected to overcome the penalty of the large Gilbert losses of heavy metals. Because of the short orbital lifetimes, the OHE was not observed until recently, e.g. in Cr [10] and Ti [11], while the orbital Rashba-Edelstein effect [12] was reported in CuO [13-16].

The conversion efficiency of charge current to spin current is known as the spin Hall angle, \(\theta_{SH} \). The ferromagnetic resonance (FMR) based techniques [17-24] have proven pivotal for accurately determining \(\theta_{SH} \). In these measurements the generated spin-transfer torque (STT) modifies the resonance linewidth by the anti-damping torque. Two common implementations of the FMR experiment are the cavity [17,24] and stripline FMR [25,26]. While the cavity FMR benefits from high sensitivity suitable for atomically thin samples, it is narrowband. On the other hand, the stripline FMR is broadband but typically has lower sensitivity. For these reasons the spin-torque FMR (STFMR) technique [19,27-30] gained popularity for quantifying \(\theta_{SH} \) in which dual AC Oersted- and spin- torque excitations produce a DC voltage that is probed electrically on a pre-patterned device [31,32].

In conventional FMR techniques [17,24-26] the sensitivity is achieved by applying a small signal modulation to the external magnetic field which results in a signal of a proportionally small amplitude that represents the differential absorption. In contrast, in this work we apply a large-amplitude modulation of the externally applied magnetic field resulting in an on-off modulation of the absorption leading to a greater sensitivity to the FMR signal. Additionally, it produces a signal proportional to the actual absorption spectrum. The modulation is achieved by placing permanent magnets on a spinning disk hence we term the technique the Ferris FMR. The technique is implemented in a stripline configuration making it broadband and well-suited for atomically thin films. Most importantly, the large-amplitude modulation turns out to expand the linewidth by \(\sim 2 - 5 \) times. Consequently, \(\theta_{SH} \) can be reliably resolved at lower applied currents and the measurement of \(\theta_{SH} \) becomes possible at the wafer scale without patterning devices. Using the Ferris FMR we demonstrate the ability to generate a sizeable STT in pure Cu and Al as predicted by recent theory of the OHE [33,34]. To that end, we use the SOC of a thin layer of Pt that converts the orbital current to a spin current [10,14,34,35]. A higher effective \(\theta_{SH}^{\text{eff}} \) of the Cu based system is found as compared to Pt while at the same time the Gilbert losses are lower. Interestingly, Al displays a negative \(\theta_{SH}^{\text{eff}} \) in agreement with theoretical predictions.
The Ferris FMR setup is presented in Fig. 1(a). The magnetic film is placed on a stripline waveguide at the output of which the power of the microwave signal is monitored using an RF diode and a lock-in amplifier. The externally applied magnetic field, \(H(t) \), is generated using pairs of permanent magnets of opposite polarity resulting in an in-plane field required for the measurement of \(\theta_{SH} \). A sinusoidally modulated profile of amplitude \(H_0 \) results (Fig. 1(b)) that is varied by translating the spinning disc.

![Ferris FMR setup diagram](image)

Fig. 1. (a) Ferris FMR setup. \(H(t) \) is generated by rotating a magnetic disc. After passing through the waveguide, the RF signal is detected on an RF diode detector. Left inset: two flexible leads are placed on each side of the waveguide to pass current through the sample. (b) Measured temporal profile of \(H(t) \).

The signal recorded on the lock-in amplifier, \(V_{LI}(H_0) \), was determined by projecting \(V_{rf}(t) \) on the fundamental harmonic. Figure 2(a) presents \(V_{LI}(H_0) \) in addition to an ideal Lorentzian absorption line. \(V_{LI}(H_0) \) is asymmetric, its peak occurring at \(H_{peak} \), appears at a slightly higher field than \(H_{res} \), and it is wider as compared to the ideal Lorentzian lineshape. We define the full width at half maximum (FWHM) linewidth expansion ratio by \(A_c \). In the absence of anisotropy, we find \(A_c = 2.85 \) where in the general case it has to be calculated numerically as described above.
An example of the calculated and measured asymmetric spectra for a bilayer of 7.5 Pt/7.5 Py (numbers indicate layer thicknesses in nm) in a die of 0.75 × 0.5 cm² (W × L) are presented in Figs. 2(c) & 2(d). Typical magnet to sample distances were 22 − 13 mm while the homogeneity of $H(t)$ across the sample was verified by testing smaller ~ 0.5 × 0.5 mm² samples for which the response remained unchanged. Each magnet was 10 × 17 mm² placed on a disc of 13 cm in diameter. The minimal incremental movement of the translation stage was 0.05 μm so that H_0 was controllable to an accuracy of 0.6 μT at the closer end, well beyond any requirement of an FMR experiment. $\omega_{mod}/2\pi$ was 500 Hz. The films in this work were grown by magnetron sputtering at a base pressure of 7×10^{-10} Torr on Si/SiO₂ substrates and were capped with TaN (2.5 nm). f_{res} versus H_{peak} follows Kittel’s formula as seen in Fig. 2(e) leading to $M_s = 7.3 \cdot 10^5$ A/m which was extracted using the approximation $H_{peak} \cong H_{res}$. The results were verified using an optical STFMR (OSTFMR) experiment (open red circles) described in Ref. [36]. Figure 2(f) presents the measured FWHM linewidth, ΔH, as a function of f_{res} resulting in $\alpha = 0.0135 \pm 0.0002$ obtained OSTFMR measurements (red trace) resulted in a close value of $\alpha = 0.0124 \pm 0.0001$ where the difference may be related to the device versus film level dynamics. The detection limit of the Ferris FMR was estimated to be 1.55×10^{11} μT from a 520 × 410 μm² sample having $SNR = 160.9$, that is 1 − 2 orders of magnitude more sensitive than conventional FMR systems.

Fig. 2. (a) Calculation of an ideal Lorentzian absorption line (dashed black), and lineshapes obtained by rectangular (solid blue) and sinusoidal modulation profiles (solid red) at 5 GHz without shape anisotropy. b) Simulated spectra at 5, 6, and 7 GHz with $\alpha = 0.01$. (c) Measured spectra at 5, 6, and 7 GHz. (d) Measured f_{res}
vs. H_{peak} using Ferris FMR (black circles) and OSTFMR (open red circles). Solid line indicates fitted Kittel’s formula. (e) ΔH as function of f_{res} measured by the Ferris FMR (black circles) and OSTFMR (open red circles). Blue solid line indicates linear fit.

To demonstrate a measurement of θ_{SH} we pass a charge current in the well-studied Pt/Py bilayer that modulates the effective α by the anti damping torque in the usual manner [19]. A calculation of the absorption spectra for three different α values is presented in Fig. 3(a) revealing that H_{peak} shifts in addition to the broadening of ΔH. In the Pt/Py system θ_{eff}^{SH} represents the intrinsic θ_{SH} of Pt, θ_{Pt}^{eff}, normalized by the transparency of the Pt/Py interface, T_s. θ_{SH}^{Pt} accounts for the spin diffusion length, λ_{SD}, and is layer thickness specific. The measurements here and in the ones that follow were carried out in dies of 0.75 X 0.5 cm2 ($W \times L$). As compared to device level measurements, achieving sufficiently high current densities, J_c, to drive a sizeable SHE is more difficult due to joule heating. However, in the Ferris FMR technique the linewidth is expanded by A_c so that a measurable torque should already be obtained at A_c^{-1} of typical applied J_c. To reduce the joule heating we reduce the resistance of the film by measuring a 25 Pt/5 Py bilayer that has a relatively thick Pt layer, well beyond λ_{SD}. J_c was driven through two semi flexible conducting leads placed to the sides of the waveguide ~ 2 mm apart (Fig. 1(a), left inset) while the resistance was monitored to assure adequate contact. The geometrical arrangement of the experiment is illustrated in the lower inset of Fig. 1(a). The measured J_c dependent ΔH modulation is presented in Fig. 3(b) and consists of a symmetric part in J_c, ΔH_s, represented by the red solid line and an antisymmetric part, ΔH_a, presented in Fig. 3(c). ΔH_s stems from joule heating [24] while ΔH_a stems from the generated STT. A sizeable antisymmetric SHE induced linewidth broadening is seen for $|J_c|$ of up to $4 \cdot 10^9$ A/m2 which is generally lower than typical J_c applied in θ_{SH} measurements. Following Ref. [37] we extract θ_{SH}^{eff}.

$\alpha = 0.0144$ was determined from the Ferris FMR measurement. Accordingly, $\theta_{SH, Pt}^{eff} = 0.09 \pm 0.01$ results, agreeing well with measured values for Pt [19,36-38]. Figures 3(d) & 3(e) present the measured symmetric and antisymmetric parts of the J_c dependent H_{peak}^S, H_{peak}^A and H_{peak}, respectively. H_{peak}^S stems from the joule heating. However, extraction of θ_{SH} from H_{peak}^A is not straight forward. From Fig. 3(a) it is seen that the influence of α on H_{peak} is significantly smaller than its effect on ΔH. In addition, H_{peak}^A is also affected by the Oersted field contribution of the Pt layer which is antisymmetric in J_c and masks the STT contribution.
Next, we demonstrate the ability to efficiently generate STT using Cu and Al. According to OHE theory, Cu is predicted to be capable of generating significant orbital current that arises from sd hybridization resulting in sizable orbital Hall conductivity that is comparable in magnitude to the spin Hall conductivity of Pt \cite{33,34}. In contrast to spin currents, orbital currents cannot exert a torque because of the lack of exchange coupling between orbital angular momentum and the local magnetic moment.
Therefore, we introduce SOC at the Cu/Py interface by adding a thin layer of Pt that converts the orbital current into a measurable spin current \([10,11,34,39]\). We use the trilayer of \(X_{OHE}/1\) Pt/7.5 Py where \(X_{OHE} = 13\) Cu, 30 Cu, and 50 Al, as illustrated in Fig. 4(a). The high conductivity of Cu as compared to Pt enables to carry out the measurement using a thinner Cu layer. We first examine the structure of 13 Cu/1 Pt/7.5 Py. The measured \(\Delta H_A\) is summarized in Fig. 4(b) as function of an effective \(J_c\) that is the weighted current density average passing in the spin current generating. The measured STT stems from multiple spin and orbital dependent processes. The orbital current generated in the Cu layer is converted at the Cu/Pt interface into spin current that follows diffusive transport into the Py and transparency at the Pt/Py interface. It is well known that the Rashba-Edelstein effect in Cu/Pt interfaces is negligible \([40,41]\) and so is the SHE of Cu. Lastly, is the contribution of the spin current generated by the SHE of Pt. Accordingly, \(\theta_{SH,Cu_{13}}^{\text{eff}} = 0.110 \pm 0.012\) (see supplementary note for further detail).

Figure 4(b) also presents data for a trilayer having a thicker Cu layer of 30 Cu/1 Pt/7.5 Py. An even larger modulation of \(\Delta H\) is seen leading to \(\theta_{SH,Cu_{30}}^{\text{eff}} = 0.160 \pm 0.011\). The interfaces are identical to those of the \(Cu_{13}\) based trilayer while \(J_{C,Pt}\) reduces to 0.14 \(\cdot J_{C,Cu}\) so that the contribution of the SHE within the Pt conversion layer is even further diminished. Yet \(\theta_{SH,Cu_{30}}^{\text{eff}} > \theta_{SH,Cu_{13}}^{\text{eff}}\) readily indicating that \(J_s\) stems from the bulk of the Cu by the generation of orbital current.

The results were verified by conventional device-level measurements using the OSTFMR technique. \(350 \times 450 \mu m^2\) (\(W \times L\)) devices were fabricated from the same \(Cu_{30}\) based film. The measurement was carried out applying higher \(J_c^{\text{eff}}\) of up to \(10^{10}\) \(A/m^2\) (dashed yellow line of Fig. 4(b)). \(\Delta H_A\) of the OSTFMR is narrower as expected whereas \(\theta_{SH,Cu_{30}}^{\text{eff}} = 0.12 \pm 0.01\), confirming the Ferris FMR measurements. However, this value is slightly lower than \(\theta_{SH,Cu_{30}}^{\text{eff}}\) measured by the Ferris FMR. The difference may be attributed to the joule heating and requires further investigation.

In a second test, the conversion layer was removed resulting in the bilayer of 30 Cu/7.5 Py Figure 4(b) readily shows that the modulation of \(\Delta H_A\) is diminished with \(\theta_{SH,\text{noPt}}^{\text{eff}} = -0.0006 \pm 0.005\).

When Cu is replaced by Al, \(sp\) orbital hybridization takes place. In this case an orbital current of opposite polarity was predicted \([33]\). The resistivity of Al is higher than Cu, therefore, our measurements were carried out on 50 Al/1 Pt/7.5 Py and are presented in Fig. 4(b). \(\Delta H_A\) reveals the predicted negative \(\theta_{SH}\) \([33]\) from which we find \(\theta_{SH,Al}^{\text{eff}} = -0.12 \pm 0.01\). The negative \(\theta_{SH,Al}^{\text{eff}}\) was also verified using the OSTFMR device-level measurement (Fig. 4(b)) leading to \(\theta_{SH,Al}^{\text{eff}} = -0.08 \pm 0.01\). Once more, this value is slightly lower than \(\theta_{SH}^{\text{eff}}\) obtained from the Ferris FMR. A possible role of the Al/Pt interface may exist.
\(\alpha \) critically depends on SOC. Since the OHE does not rely on SOC, it is anticipated to be capable of producing a high \(\theta_{SH} \) with low \(\alpha \). In the material systems at hand, \(\alpha \) is enhanced by spin pumping into the adjacent nonmagnetic metal. Figure 4(c) presents the \(\alpha \) measurements. Pt is well known to be an efficient sink for spin angular momentum and indeed the largest damping is found in the 25 nm Pt based bilayer with \(\alpha_{Pt_{25}} = 0.0144 \pm 0.0003 \). When the Pt layer is replaced by Cu, SOC is reduced and \(\alpha \) decreases as seen for 30 Cu/7.5 Py resulting in \(\alpha_{no\,Pt} = 0.0121 \pm 0.0002 \). In this case spin diffusion into the Cu takes place. Since \(\lambda_{SD} \approx 450 \, nm \) in Cu, the full thickness of Cu layer contributes to the losses. When the 1 nm Pt conversion layer is introduced, \(\alpha \) increases only slightly to \(\alpha_{Cu_{30}} = 0.0124 \pm 0.0002 \) indicating that the additional losses stemming from the conversion layer are marginal and that the primary contribution remains the bulk of the Cu. As compared to the \(Pt_{25} \) bilayer, the \(Cu_{30} \) based trilayer displays a higher \(\theta_{SH}^{eff} \) with lower \(\alpha \). When the thickness of the Cu film is reduced as in the \(Cu_{13} \) trilayer, \(\alpha \) reduces significantly to \(\alpha_{Cu_{13}} = 0.010 \pm 0.002 \) providing further evidence that \(\alpha \) stems from bulk of the Cu film following spin propagation through the Pt layer. Finally, Al results in \(\alpha_{Al} = 0.0133 \pm 0.003 \) illustrating once more that a higher \(\theta_{SH}^{eff} \) is achievable with lower \(\alpha \) as compared to the SHE of Pt.

![Fig. 4. OHE measurement in Cu and Al. (a) Schematic of the trilayer system. (b) Measured \(\Delta H_A \) as a function of \(J_c^{eff} \) in the \(Cu_{13} \) (red), \(Cu_{30} \) (yellow), \(Cu_{30} \) without \(Pt_1 \) conversion layer (light green), and \(Al_{50} \) (dark green) based systems at 5 GHz. Solid line represents fit to measurement. Dashed lines represent the fitted data of](image-url)
the OSTFMR measurements. (c) ΔH vs. f_{res}. Color code same as in (b). Pt_{25} data indicated in purple. Traces are shifted to cross the origin for clarity. (d) Summary of θ_{SH} and α.

Al and Cu are key metals in the semiconductor industry that offer superior current-carrying capacity due to their high conductivity and excellent heat dissipation. Having overcome the fabrication challenges such as electromigration and Si contamination, they are currently considered the metals of choice for interconnects in high-volume applications which benefit from improved speed and power performance at attractively low-cost. Our results demonstrate additional spin- and orbit- functionality for Cu and Al beyond their use as interconnects. In agreement with OHE theory, they displayed efficient spin current generation and low α, as compared to the SHE of Pt, while at the same time offering complementary spin logic. These observations were obtained in die-level measurements and are expected to facilitate the exploration of light metals for spin- and orbit- based technologies.

References

[1] J. E. Hirsch, "Spin Hall Effect", Physical Review Letters 83, 1834 (1999).
[2] S. Murakami, N. Nagaosa, and S.-C. Zhang, "Dissipationless Quantum Spin Current at Room Temperature", Science 301, 1348 (2003).
[3] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, "Observation of the Spin Hall Effect in Semiconductors", Science 306, 1910 (2004).
[4] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, "Universal Intrinsic Spin Hall Effect", Physical Review Letters 92, 126603 (2004).
[5] S. Zhang and Z. Yang, "Intrinsic Spin and Orbital Angular Momentum Hall Effect", Physical Review Letters 94, 066602 (2005).
[6] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, "Orbitronics: The Intrinsic Orbital Current in p-Doped Silicon", Physical Review Letters 95, 066601 (2005).
[7] H. Kontani, T. Tanaka, D. S. Hirashima, K. Yamada, and J. Inoue, "Giant Intrinsic Spin and Orbital Hall Effects in Sr2MO4 (M=Ru, Rh, Mo)", Physical Review Letters 100, 096601 (2008).
[8] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue, "Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals", Physical Review B 77, 165117 (2008).
[9] H. Kontani, T. Tanaka, D. S. Hirashima, K. Yamada, and J. Inoue, "Giant Orbital Hall Effect in Transition Metals: Origin of Large Spin and Anomalous Hall Effects", Physical Review Letters 102, 016601 (2009).
[10] S. Lee, M.-G. Kang, D. Go, D. Kim, J.-H. Kang, T. Lee, G.-H. Lee, J. Kang, N. J. Lee, Y. Mokrousov, S. Kim, K.-J. Kim, K.-J. Lee, and B.-G. Park, "Efficient conversion of orbital Hall
current to spin current for spin-orbit torque switching”, Communications Physics 4, 234 (2021).
[11] Y.-G. Choi, D. Jo, K.-H. Ko, D. Go, K.-H. Kim, H. Gyum Park, C. Kim, B.-C. Min, G.-M. Choi, and H.-W. Lee, 2021), p. arXiv:2109.14847.
[12] D. Go, D. Jo, T. Gao, K. Ando, S. Blügel, H.-W. Lee, and Y. Mokrousov, “Orbital Rashba effect in a surface-oxidized Cu film”, Physical Review B 103, L121113 (2021).
[13] H. An, Y. Kageyama, Y. Kanno, N. Enishi, and K. Ando, “Spin–torque generator engineered by natural oxidation of Cu”, Nature Communications 7, 13069 (2016).
[14] S. Ding, A. Ross, D. Go, L. Baldrati, Z. Ren, F. Freimuth, S. Becker, F. Kammerbauer, J. Yang, G. Jakob, Y. Mokrousov, and M. Kläui, “Harnessing Orbital-to-Spin Conversion of Interfacial Orbital Currents for Efficient Spin-Orbit Torques”, Physical Review Letters 125, 177201 (2020).
[15] Y. Tazaki, Y. Kageyama, H. Hayashi, T. Harumoto, T. Gao, J. Shi, and K. Ando, “Current-induced torque originating from orbital current”, arXiv:2004.09165 (2020).
[16] S. Ding, Z. Liang, D. Go, C. Yun, M. Xue, Z. Liu, S. Becker, W. Yang, H. Du, C. Wang, Y. Yang, G. Jakob, M. Kläui, Y. Mokrousov, and J. Yang, “Observation of the Orbital Rashba-Edelstein Magnetoresistance”, Physical Review Letters 128, 067201 (2022).
[17] K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, and E. Saitoh, “Electric Manipulation of Spin Relaxation Using the Spin Hall Effect”, Physical Review Letters 101, 036601 (2008).
[18] O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, “Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers”, Physical Review B 82, 214403 (2010).
[19] L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, “Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect”, Physical Review Letters 106, 036601 (2011).
[20] F. D. Czeschka, L. Dreher, M. S. Brandt, M. Weiler, M. Althammer, I. M. Imort, G. Reiss, A. Thomas, W. Schoch, W. Limmer, H. Huebl, R. Gross, and S. T. B. Goennenwein, “Scaling Behavior of the Spin Pumping Effect in Ferromagnet-Platinum Bilayers”, Physical Review Letters 107, 046601 (2011).
[21] V. Vlaminck, J. E. Pearson, S. D. Bader, and A. Hoffmann, “Dependence of spin-pumping spin Hall effect measurements on layer thicknesses and stacking order”, Physical Review B 88, 064414 (2013).
[22] L. Bai, P. Hyde, Y. S. Gui, C. M. Hu, V. Vlaminck, J. E. Pearson, S. D. Bader, and A. Hoffmann, “Universal Method for Separating Spin Pumping from Spin Rectification Voltage of Ferromagnetic Resonance”, Physical Review Letters 111, 217602 (2013).
[23] D. Wei, M. Obstbaum, M. Ribow, C. H. Back, and G. Woltersdorf, “Spin Hall voltages from a.c. and d.c. spin currents”, Nature Communications 5, 3768 (2014).
[24] S. Emori, T. Nan, T. M. Oxholm, C. T. Boone, J. G. Jones, B. M. Howe, G. J. Brown, D. E. Budil, and N. X. Sun, “Quantification of the spin-Hall anti-damping torque with a resonance spectrometer”, Applied Physics Letters 106, 022406 (2015).
[25] S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, “Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods”, Journal of Applied Physics 99, 093909 (2006).
[26] I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G. Gubbiotti, and C. H. Back, “Comparison of frequency, field, and time domain ferromagnetic resonance methods”, Journal of Magnetism and Magnetic Materials 307, 148 (2006).
[27] A. Azevedo, L. H. Vieira-Leão, R. L. Rodríguez-Suárez, A. F. Lacerda Santos, and S. M. Rezende, "Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: Theory and experiment", Physical Review B 83, 144402 (2011).
K. Kondou, H. Sukegawa, S. Mitani, K. Tsukagoshi, and S. Kasai, "Evaluation of Spin Hall Angle and Spin Diffusion Length by Using Spin Current-Induced Ferromagnetic Resonance", Applied Physics Express 5, 073002 (2012).

K.-U. Demasius, T. Phung, W. Zhang, B. P. Hughes, S.-H. Yang, A. Kelloch, W. Han, A. Pushp, and S. S. P. Parkin, "Enhanced spin–orbit torques by oxygen incorporation in tungsten films", Nature Communications 7, 10644 (2016).

K. Kondou, H. Sukegawa, S. Kasai, S. Mitani, Y. Niimi, and Y. Otani, "Influence of inverse spin Hall effect in spin-torque ferromagnetic resonance measurements", Applied Physics Express 9, 023002 (2016).

Y. Zhang, Q. Liu, B. Miao, H. Ding, and X. Wang, "Anatomy of electrical signals and dc-voltage line shape in spin-torque ferromagnetic resonance", Physical Review B 99, 064424 (2019).

R. Ben-Shalom, N. Bernstein, S. S. P. Parkin, S.-H. Yang, and A. Capua, "Determination of the spin Hall angle by the inverse spin Hall effect, device level ferromagnetic resonances, and spin-torque ferromagnetic resonances: A comparison of methods", Applied Physics Letters 119, 042401 (2021).

D. Jo, D. Go, and H.-W. Lee, "Gigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metals", Physical Review B 98, 214405 (2018).

J. Xiao, Y. Liu, and B. Yan, in Memorial Volume for Shoucheng Zhang (WORLD SCIENTIFIC, 2020), pp. 353.

Y. Liu, J. Xiao, J. Koo, and B. Yan, "Chirality-driven topological electronic structure of DNA-like materials", Nature Materials 20, 638 (2021).

B. Grover, B. K. Hazra, T. Ma, B. Pal, N. Bernstein, A. Rothschild, A. K. Srivastava, S. Choudhury, G. Woltersdorf, A. Capua, and S. S. P. Parkin, "Crystallographic dependence of the spin Hall angle in epitaxial Pt films: Comparison of optical and electrical detection of spin-torque ferromagnetic resonance techniques", Applied Physics Letters 120, 172406 (2022).

A. Capua, T. Wang, S.-H. Yang, C. Rettner, T. Phung, and S. S. P. Parkin, "Phase-resolved detection of the spin Hall angle by optical ferromagnetic resonance in perpendicularly magnetized thin films", Physical Review B 95, 064401 (2017).

W. Zhang, W. Han, X. Jiang, S.-H. Yang, and S. S. P. Parkin, "Role of transparency of platinum-ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect", Nature Physics 11, 496 (2015).

D. Go and H.-W. Lee, "Orbital torque: Torque generation by orbital current injection", Physical Review Research 2, 013177 (2020).

T. Nan, S. Emori, C. T. Boone, X. Wang, T. M. Oxholm, J. G. Jones, B. M. Howe, G. J. Brown, and N. X. Sun, "Comparison of spin-orbit torques and spin pumping across NiFe/Pt and NiFe/Cu/Pt interfaces", Physical Review B 91, 214416 (2015).

W. Zhang, W. Han, X. Jiang, S.-H. Yang, and S. S. P. Parkin, "Role of transparency of platinum-ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect", Nat Phys 11, 496 (2015).