Evil defines leukemia-initiating capacity and tyrosine kinase inhibitor resistance in chronic myeloid leukemia

T Sato 1,2, S Goyama 1,5, K Kataoka 1, R Nasu 1, T Tsuruta-Kishino 1, Y Kagoya 1, A Nukina 1, K Kumagai 3, N Kubota 1, M Nakagawa 1, S Arai 1, A Yoshimi 1, H Honda 4, T Kadowaki 3 and M Kurokawa 1

Relapse of chronic myeloid leukemia (CML) is triggered by stem cells with a reconstituting capacity similar to that of hematopoietic stem cells (HSCs) and CML stem cells are a source of resistance in drug therapy with tyrosine kinase inhibitors (TKIs). Ecotropic viral integration site 1 (EVI1), a key transcription factor in HSC regulation, is known to predict poor outcomes in myeloid malignancies, however, incapability of prospective isolation of EVI1-high leukemic cells precludes the functional evaluation of intraindividual EVI1-high cells. Introduction of CML into Ev1-internal ribosomal entry site (IRES)-green fluorescent protein (GFP) knock-in mice, a versatile HSC-reporter strain, enables us to separate Ev1-high CML cells from the individual. Ev1-IRES-GFP allele models of CML in chronic phase (CML-CP), by retroviral overexpression of BCR–ABL and by crossing BCR–ABL transgenic mice, revealed that Ev1 is predominantly enriched in the stem cell fraction and associated with an enhanced proliferative as well as a leukemia-initiating capacity and that Ev1-high CML-CP cells exhibit resistance to TKIs. Overexpressing BCR–ABL and NUP98–HOXA9 in Ev1-IRES-GFP knock-in mice to model CML in blast crisis (CML-BC), in which Ev1-high cells turned to be a major population as opposed to a minor population in CML-CP models, showed that Ev1-high CML-BC cells have a greater potential to recapitulate the disease and appear resistant to TKIs. Furthermore, given that Ev1 heterozygosity ameliorates CML-CP and CML-BC development and that the combination of Ev1 and BCR–ABL causes acute myeloid leukemia resembling CML-BC, Ev1 could regulate CML development as a potent driver. In addition, in human CML-CP cases, we show that Ev1 is highly expressed in stem cell-enriched CD34+CD38–CD90+ fraction at single-cell level. This is the first report to clarify directly that Ev1-high leukemic cells themselves possess the superior potential to Ev1-low cells in oncogenic self-renewal, which highlights the role of Ev1 as a valuable and a functional marker of CML stem cells.

INTRODUCTION

As multipotent hematopoietic stem cells (HSCs) reside at the apex of hematopoietic hierarchy, leukemic progeny from leukemic stem cells (LSCs) shape the bulk of the tumor with intact capacity of LSCs to self-renew. Physiological and biological similarities of LSCs to those of HSCs are supposed to be the main causes of the difficulties in establishment of LSC-targeted therapy. 1,2

Chronic myeloid leukemia (CML) is a myeloproliferative disorder by BCR–ABL, which can transform HSCs into LSCs with a limitless capacity for self-renewal, whereas LSCs of acute myeloid leukemia (AML) are mainly composed of more differentiated progenitor cells. 3–5 The relentless march of CML from chronic phase (CP) to blast crisis (BC) phase can result in fatal survival outcomes. 6 Despite substantial prognostic improvement of CML by a specific debulking of tumor burden with a tyrosine kinase inhibitor (TKI) targeting ABL kinase, imatinib-treated CP patients can relapse and progress to BC because of the remnant CML stem cells. 7–10 Although recent findings have started to unveil the biological nature of CML stem cells, 7–10 further elucidation of the mechanisms controlling the self-renewal of these cells is still needed.

Defects in the molecular components that control hematopoiesis severely perturb normal development, one of which is ecotropic viral integration site 1 (Evi1), a predictor of poor outcomes in myeloid malignancies such as AML, myelodysplastic syndrome and CML-BC. 17–21 In normal hematopoiesis, Evi1 is restricted to embryonic and adult HSCs 22 and cumulative data have placed Evi1 as one of ‘stemness’ genes. 23–25 The recent gene expression profiling of bulk samples or selective populations have shown that Evi1 is one of LSC signature genes in AML and that stem cell-enriched CML CD34+ cells have high Evi1, underlining the relevance of Evi1 and LSCs. 26,27 As Evi1 is an oncogenic transcription factor, 28–30,34 prospective isolation of Evi1-high leukemic cells from clinical patients is unfeasible, so is the functional assessment of Evi1-high cells compared with Evi1-low cells intraindividually.

In this study, we aimed to cover in depth the regulation of CML stem cells by Evi1. Our single-cell analysis of primitive or differentiated subsets from primary CML-CP samples show that Evi1 is highly expressed in stem cell-enriched CD34+CD38–CD90+ cells. Furthermore, we have established multiple CML mice model with Evi1-Internal Ribosomal Entry Site (IRES)-green fluorescent protein (GFP) knock-in allele, in which Ev1-high CML cells can be separated directly and prospectively using a single GFP 35 to evaluate their capacity for leukemia development.
EvI1-ires-gfp allele leukemia animals provide us for the first time with a more definite hierarchical map in cml hematopoiesis and, through loss- and gain-of-function studies we could evaluate the functional role of EvI1 in cml. This study could also determine whether EvI1-high cml cells could have resistance to tk1 therapy.

Results

EvI1 is highly expressed in human cml-cp stem cells

To ask whether cml-cp stem cells have high EvI1, we performed gene expression analysis in single primary cml-cp cells prospectively isolated from bone marrow (bm) samples of two newly diagnosed cml-cp patients (Supplementary Table S1). A total of 120 single cells (21 and 16 stem (cd34+cd38−) cells, 31 and 25 progenitor (cd34+cd38+) cells, 14 and 13 differentiated (cd34−cd38+) cells in cases 1 and 2, respectively) were subjected to single-cell gene expression analysis of housekeeping genes (beta-actin and gapdh), BCR-ABL and EvI1 (Supplementary Figure S1). As cml-cp cells could be distinguished by their positive expression of BCR-ABL from normal bm cells, it was revealed that, among cml-cp cells, cd34+cd38−cd90+ cells showed lower C1 values of EvI1 than cd34+cd38+ cells or cd34−cd38+ cells intrinsically, implying the highest EvI1 in cml-cp stem cells (Figure 1a). When C1 = 30 was set as a threshold of EvI1 positivity, all cd34+cd38−cd90+ cells were EvI1 positive (C1 < 30; n = 21/21 for case 1, n = 12/12 for case 2), while one-fifth of cd34+cd38+ cells (n = 5/24 (20.8%), n = 4/25 (16%), respectively) or three to four-fifths of cd34−cd38+ cells (n = 7/11 (63.8%), n = 9/11 (81.8%), respectively) were EvI1 negative (C1 > 30) (Figure 1b). Microarray data from Radich et al.1 revealed that EvI1 in the whole bm is upregulated in advanced phase (accelerated phase (AP) and BC) of cml compared with cml-cp, possibly implying the limited proliferative potential of cml-cp cells, the extended Ge1 phase (quiescent) in cml setting, similar to the trend of subpopulations from normal EvI1−/− mice (Supplementary Figures S2a and S3c). EvI1-high cells in the bm of these mice only amounted to 0.05% with negative marker profiles of Gr-1, B220, CD4, CD8, TER-119 and intermediate Mac-1, while almost all EvI1-low cells were Gr-1+mac-1+. In lin− cells, the majority of EvI1-high cells resided in Sca-1+c-kit+ fraction, consistent with the profile of a retroviral cml-cp model bearing EvI1−/− allele (Supplementary Figure S3d). Strikingly, analysis of CD150/signaling lymphocyte activation molecule (slam) markers in cml cells of EvI1−/− BCR-ABL−/− mice clearly showed that EvI1-high cml cells had a higher percentage of CD150+cd48− cells, a well-established marker phenotype of long-term stem cells (Figures 2f and g). EvI1-high cml LSK cells were the most in G0/G1 phase (quiescent) in cml setting, similar to the trend of subpopulations from normal EvI1−/− mice (Figure 2h). Colony-forming assay showed the advantageous phenotype of EvI1-high cml LSK cells to proliferate in vitro (Supplementary Figure S3e). From these data, EvI1-high EvI1−/− BCR-ABL−/− LSK cells had the most immature immunophenotype.

To evaluate the stem cell activity of EvI1-high cml LSK cells in vivo, we next performed bm transplantation (BMT) experiments, in which 5 × 105 EvI1-high or EvI1-low LSK cells were injected intravenously into sublethally irradiated recipients (Figure 3a). FCM analyses of peripheral blood (PB) in recipients revealed the efficient engraftment of donor cells from EvI1-high LSK-transplanted cohort as contrasted with recipients of EvI1-low LSK cells (Figure 3b). The successive engraftment and multilineage reconstitution up to 16 weeks after BMT clearly indicated the higher engrafting capacity of EvI1-high LSK cells (Figure 3c). Donor-derived engraftment in EvI1-high LSK cells died of cml (4 deaths per 6 mice), while those with EvI1-low LSK cells had no incidence of cml (0 death per 6 mice), revealing high cml-initiating potential of EvI1-high cml LSK cells (Figure 3d).

Drug resistance is one of critical characteristics of LSCs, which motivated us to conduct in vivo therapeutic interventions to EvI1−/− BCR-ABL−/− mice. Oral administration of nilotinib, a potent BCR-ABL inhibitor, to EvI1−/− BCR-ABL−/− mice for 7 days resulted in amelioration of bm cellularity and splenomegaly, which underlay the efficacy of the drug (Supplementary Figure S3c). In bm fraction, although nilotinib-treated EvI1−/− BCR-ABL−/− mice showed the reduced number of EvI1-low LSK cells in BM

EvI1-high CML-LSK cells have SLAM LSK marker profile with CML-initiating potential and TK1 resistance.

Generating primary cml-cp mice by BCR-ABL retrovirus with irradiated recipients inevitably leads to damaged bm microenvironment and likely overestimation of extramedullary hematopoiesis. To clarify the precise behavior of EvI1-high CML LSK cells in vivo, we crossed EvI1+/GFP mice with p210 BCR-ABL transgenic mice (BCR-ABL+/−,36 which develop a CML-like disease (Supplementary Figure S3a), to analyze undamaged bm of cml-cp (Figure 2e). EvI1+/GFP BCR-ABL−/−/− (CML) mice showed myeloid cell expansion in bm with mild splenomegaly (Supplementary Figures S3b and c) representing a myeloproliferative disorder phenotype of this model. The median survival of EvI1+/GFP BCR-ABL−/− mice in our experiments was 287 days, consistent with the previous report,36 which revealed that EvI1-ires-gfp allele had no unforeseen effect on CML development. In addition to the expanded bulk of bm cells, EvI1+/GFP BCR-ABL−/− mice showed an increase in GFP intensity and the number of LSK cells (Supplementary Figures S2a and S3c). EvI1-high cells in the bm of these mice only amounted to 0.05% with negative marker profiles of Gr-1, B220, CD4, CD8, TER-119 and intermediate Mac-1, while almost all EvI1-low cells were Gr-1+mac-1+. In lin− cells, the majority of EvI1-high cells resided in Sca-1+c-kit+ fraction, consistent with the profile of a retroviral cml-cp model bearing EvI1−/− allele (Supplementary Figure S3d). Strikingly, analysis of CD150/signaling lymphocyte activation molecule (SLAM) markers in LSK cells of EvI1−/− BCR-ABL−/− mice clearly showed that EvI1-high LSK cells had a higher percentage of CD150+CD48− cells, a well-established marker phenotype of long-term stem cells (Figures 2f and g). EvI1-high CML LSK cells were the most in G0/G1 phase (quiescent) in CML setting, similar to the trend of subpopulations from normal EvI1−/− mice (Figure 2h). Colony-forming assay showed the advantageous phenotype of EvI1-high CML LSK cells to proliferate in vitro (Supplementary Figure S3e). From these data, EvI1-high EvI1−/− BCR-ABL−/− LSK cells had the most immature immunophenotype.

To evaluate the stem cell activity of EvI1-high CML LSK cells in vivo, we next performed BM transplantation (BMT) experiments, in which 5 × 105 EvI1-high or EvI1-low LSK cells were injected intravenously into sublethally irradiated recipients (Figure 3a). FCM analyses of peripheral blood (PB) in recipients revealed the efficient engraftment of donor cells from EvI1-high LSK-transplanted cohort as contrasted with recipients of EvI1-low LSK cells (Figure 3b). The successive engraftment and multilineage reconstitution up to 16 weeks after BMT clearly indicated the higher engrafting capacity of EvI1-high LSK cells (Figure 3c). Donor-derived engraftment in EvI1-high LSK cells died of CML (4 deaths per 6 mice), while those with EvI1-low LSK cells had no incidence of CML (0 death per 6 mice), revealing high CML-initiating potential of EvI1-high CML LSK cells (Figure 3d).

Drug resistance is one of critical characteristics of LSCs, which motivated us to conduct in vivo therapeutic interventions to EvI1+/GFP BCR-ABL−/− mice. Oral administration of nilotinib, a potent BCR-ABL inhibitor, to EvI1+/GFP BCR-ABL−/− mice for 7 days resulted in amelioration of BM cellularity and splenomegaly, which underlay the efficacy of the drug (Supplementary Figure S3c). In BM fraction, although nilotinib-treated EvI1+/GFP BCR-ABL−/− mice showed the reduced number of EvI1-low LSK cells in BM
compared with vehicle-treated Evi1+/GFP BCR–ABL1−/− mice, that of Evi1-high LSK cells had no change irrespective of nilotinib treatment, which implied nilotinib resistance of Evi1-high CML cells (Figure 3e). The relatively nilotinib-resistant aspect of these cells was confirmed by in vitro colony-forming assay (Supplementary Figure S3g). FCM analysis of the residual cells in BM and spleen of nilotinib-treated Evi1+/GFP BCR–ABL1−/− mice revealed a marked increase in the percentage of CD150+CD48− fraction of Evi1-high LSK cells (Supplementary Figure S3h).

The treatment had no impact on normal Evi1+/GFP mice as to Evi1-positive rate (data not shown). These data of Evi1+/GFP BCR–ABL1−/− mice revealed CML stem cell activity and nilotinib resistance of Evi1-high cells.

Evi1 heterozygosity impairs CML development

Based on these findings, we next crossed Evi1 heterozygous knock-out (Evi1+/−) mice with BCR–ABL1−/− mice to clarify whether...
Regulation of CML stem cells by Evi1
T Sato et al

loss of Evi1 would affect CML development (Figure 3f). Surprisingly, 1-year follow-up revealed a significantly prolonged survival of Evi1+/− BCR-ABLtg/+ mice (4 deaths per 7 cases), with an obvious failure over a year25; these data suggest that Evi1 has a distinctive role in CML development.

BCR-ABL and NUP98–HOXA9 induce myeloid BC of CML with Evi1 upregulation

The BC phase of CML is characterized by high mortality and resistance to both TKI therapy and conventional chemotherapy, with HSC transplantation being the only therapy providing appreciable efficacy. Among CML-BC cases with high Evi1, there exist not only 3q-rearranged cases but also cases without 3q rearrangement, possibly suggesting unknown Evi1 regulation. To evaluate a leukemogenic function of Evi1-high cells in CML-BC, BCR-ABL and NUP98–HOXA9 were co-transduced37 into SFU-prrimed BM of Evi1+/GFP mice to establish Evi1-reporter CML-BC mice (Figure 4a). Evi1-reporter CML-BC mice had an obviously high level of Evi1-positive cells in the BM compared with Evi1-reporter CML-CP mice (Figures 4b and e). Evi1-reporter CML-BC mice died at 14 days after BMT and showed emergence of blast cells in PB as well as in BM and spleen, an AML-like phenotype, which was markedly different from that of CML-CP model.

Evi1-high CML-BC cells are enriched in the progenitor fraction

The morphological analyses of BM in Evi1-reporter CML-BC mice showed that Evi1-high cells mostly comprises leukemic blasts, while more than half of Evi1-low cells were differentiated cells (Figures 4c and d). From FCM analyses, most of Evi1-high CML-BC cells were negative for Gr-1, as opposed to Gr-1+ immunophenotype of Evi1-low cells. In Lin− cells of these mice, Evi1-high cells had a higher percentage of c-kit (Figure 4b). Totally, Evi1-high cells were rich in Lin−c-kit+ (LK) fraction of myeloid progenitor immunophenotype, the level of which was apparently higher than that of CML-CP (Figure 4e). Evi1-high LK cells had higher colony-forming capacity, indicating their proliferative advantage.
Transcripts of BCR–ABL and HOXA9 were comparable between Evi1-high and Evi1-low LK populations (Figure 4g, Supplementary Figure S4b), reflecting little relevance of BCR–ABL or NUP98–HOXA9 dosage to the enhanced proliferation of Evi1-high cells. The majority of CML-BC LK cells showed higher Evi1 than CML-CP LSK cells, whereas CML-CP LSK cells had a wide range of Evi1, suggesting Evi1 upregulation in CML-BC model (Figure 4h). Cell cycle analysis revealed that Evi1-

Figure 3. Evi1-high CML-CP cells show CML engraftment capacity and TKI resistance in vivo. (a) Design of non-competitive repopulation assay with Evi1-high or Evi1-low LSK cells from Evi1+/GFP BCR–ABLtg/− mice. (b) Representative FCM data of PB from recipients 16 weeks after BMT were shown to distinguish donor cells (CD45.2+CD45.1−) from recipient cells (CD45.2-CD45.1+). (c) Serial assessments of PB from recipients as for donor chimerism were done every 4 weeks after BMT (n=8 mice per group). (d) Kaplan–Meier plot of the survival of recipient mice transplanted with 5000 Evi1-high or Evi1-low LSK cells from Evi1+/GFP BCR–ABLtg/− mice (n=6 mice per group, P=0.0183). (e) Vehicle or nilotinib (75 mg/kg daily) were administered orally to Evi1+/GFP BCR–ABLtg/− mice for a week just after the CML development and the number of the residual LSK cells in femur were calculated (CML: with vehicle; CML nilo: with nilotinib; n=6 mice per group). (f) Schematic abstract of Evi1 knockout CML transgenic mice. Evi1+/+ or Evi1+/− mice were crossed with BCR–ABLtg/− mice to generate Evi1+/+ BCR–ABLtg/− or Evi1+/− BCR–ABLtg/− mice. (g) Kaplan–Meier plot of the survival of Evi1+/− BCR–ABLtg/− or Evi1+/+ BCR–ABLtg/− mice (n=7 for Evi1+/− BCR–ABLtg/− mice and n=14 for Evi1+/+ BCR–ABLtg/− mice, P=0.0106). Data are mean ± s.d. *P < 0.05, **P < 0.01, ***P < 0.0001.

(Figure 4f, Supplementary Figure S4a). Transcripts of BCR–ABL and HOXA9 were comparable between Evi1-high and Evi1-low LK populations (Figure 4g, Supplementary Figure S4b), reflecting little relevance of BCR–ABL or NUP98–HOXA9 dosage to the enhanced proliferation of Evi1-high cells. The majority of CML-BC LK cells showed higher Evi1 than CML-CP LSK cells, whereas CML-CP LSK cells had a wide range of Evi1, suggesting Evi1 upregulation in CML-BC model (Figure 4h). Cell cycle analysis revealed that Evi1-
high LK cells were more in S/G2/M phase than their Evi1-low counterpart, possibly reflecting their higher proliferating potential (Figure 4i).

Evi1-high CML-BC cells have higher leukemogenic potential and TKI resistance

To assess the leukemogenic potential of Evi1-high CML-BC cells in vivo, we performed serial BMT experiments. Recipients with 5×10^4 Evi1-high CML-BC cells recapitulated the disease, while recipients with Evi1-low cells showed no leukemia incidence. When 1×10^3 LK cells were transplanted, leukemia-initiating cells were found to be enriched in the Evi1-high fraction with the frequency of 1/62 cells (1.6%), indicative of high leukemogenicity, whereas Evi1-low cells even in LK fraction had no potential for CML-BC development (Figure 5a, Supplementary Table S4). Under in vitro nilotinib treatment, Evi1-high LK cells showed a relatively higher proliferative capacity than Evi1-low cells (Supplementary Figure S4c). Seven-day in vivo nilotinib treatment resulted in the significant improvement of hepatosplenomegaly and only Evi1-low LK cells showed a significant decrease in number, indicating that Evi1-high LK cells are more resistant to TKI than the Evi1-low counterpart (Figure 5b, Supplementary Figure S4d). Even residual Evi1-high LK cells in BM after nilotinib still possessed leukemogenic potential (Supplementary Figure S4e). All of CML-BC mice treated with nilotinib relapsed with the expansion of Evi1-high cells after the drug cessation, reflecting a limited role of TKI for CML-BC (data not shown).

Figure 4. BCR-ABL with NUP98-HOXA9 augments Evi1 expression to cause CML-BC in vivo. (a) Experimental scheme of Evi1-reporter CML-BC mice. SFU-primed Evi1+/GFP BM cells with retroviral BCR-ABL and NUP98-HOXA9 were transplanted into lethally irradiated recipient mice. (b) GFP intensities of LK cells and BM cells from Evi1-reporter CML-BC mice were analyzed by FCM (upper left). The difference of Gr-1-positive rate in BCR-ABL (+) BM cells (upper right) and that of c-kit-positive rate in BCR-ABL (+) Lin–BM cells (lower) were shown. (c) The proportion of leukemic blasts in Evi1-high or Evi1-low CML-BC BM cells was shown ($n=3$). (d) Evi1-high or Evi1-low cells from CML-BC BM cells were sorted, cytopsun and subjected to Wright-Giemsa staining. (e) GFP-positive rates of stem/progenitor fractions and BM cells in Evi1-reporter CML-BC or CP mouse were shown ($n=13$ for CML-BC mice, $n=5$ for CML-CP mice). (f) BCR-ABL mRNA expression was measured for each subset from CML-BC mice ($n=3$). (h) Representative FCM plot of LK cells from CML-BC mice (red) and LSK cells from CML-CP mice (blue). GFP intensity of normal BM cells is shown in solid gray. (i) Cell cycle status of Evi1-high or Evi1-low LK cells of CML-BC mice. Hoechst 33342 was measured by FCM ($n=3$). Data are mean ± s.d. *$P<0.01$, **$P<0.001$, ***$P<0.0001$.

© 2014 Macmillan Publishers Limited
We next tested whether loss of Evi1 would affect the development of CML-BC. 5FU-primed Evi1+/+ or Evi1−/− BM cells transduced with BCR–ABL and NUP98–HOXA9 were injected into lethally irradiated recipients (Figure 5c). All of the primary recipients developed CML-BC regardless of Evi1 dosage, with a slight delayed onset in Evi1−/− cohort (Figure 5d). In the secondary recipients receiving 5 × 10^4 CML-BC BM cells, however, Evi1−/− CML-BC cells showed a significantly attenuated leukemic potential, whereas Evi1+/+ CML-BC retained the full capacity (Figure 5e). These results indicate that the development of CML-BC is dependent on Evi1 dosage.

Combination of BCR–ABL and Evi1 induces AML

Having established that Evi1 was upregulated in vivo by BCR–ABL and NUP98–HOXA9, we analyzed a role for Evi1 as a direct driver in CML-BC. Co-transduction of BCR–ABL and Evi1 caused lethality in transplanted mice (median survival: 24 days after BMT, Figures 6a and f). These recipients showed marked predominance of leukemic blasts in BM, spleen and PB, with a neutrophilic component, hypercellular BM and hepatosplenomegaly (Figures 6b–d). Splenomegaly was more obvious in the recipients of BCR–ABL plus Evi1 than those of either BCR–ABL alone or BCR–ABL plus NUP98–HOXA9, whereas liver sizes were comparable (Figure 6e). The disease was transplanted with the shorter latency and BM cells of the recipients with BCR–ABL and Evi1 were skewed to the myeloid lineage (Gr-1+) and Lin-c-kit+ cells were dominant in the lineage (Gr-1+) and Lin-c-kit+ cells were dominant in the primitive fractions (Figures 6f and g). Based on the criteria of Bethesda proposals, the disease was finally diagnosed as ‘Myeloid leukemia with maturation’. Thus, even without NUP98–HOXA9, activation of Evi1 can induce AML, resembling myeloid BC in CML, in collaboration with BCR–ABL in mice. Given that the duration of CML-CP development by BCR–ABL retrovirus is about 3–4 weeks, and Evi1 alone could induce myelodysplastic syndrome/AML in mice after 6 months or more, these results indicate that Evi1 can have a causative role in blastic transformation of CML.

DISCUSSION

Discovery strategies aimed to identify novel driver oncogenic lesions have succeeded in enrichment of the catalog of therapeutic targets, the most striking of which is BCR–ABL where TKI therapy has conferred tremendous benefits to CML patients with a sustained debulking of tumor burden. Even in the era of TKI treatment in CML, blast transformation can occur with the translocation involving Evi1 locus, which is crucial because the clinical outcomes of CML plummet from CP (80%) to BC (20%). Allogeneic HSC transplantation is so far the only potential remedy
for high EVI1 cases of CML-BC as well as AML, emphasizing the need for new therapy targeting EVI1.18,21,45,46

Our hypothesis stems from the fact that EVI1 is a valuable prognostic factor of myeloid malignancies as well as a critical regulator of HSCs. To overcome the incapability of prospective separation of intraindividual EVI1-high cells in human leukemias, we used our original EVI1+GFP mice, developing two types of CML-CP model to show that EVI1 is a valuable marker for CML stem cells. Both in retrovirally developed CML-CP mice and BCR-ABL+/-GFP mice, EVI1 is restricted to a small population with primitive immunophenotypic markers, especially in the latter, the most primitive profile like SLAM-LSK represents EVI1-high cells. When seen against previous studies,47-49 the novelty of this study lies in that high EVI1 could distinguish CML-CP stem cells even from SLAM-LSK cells or non-SLAM-LSK cells. This point can be translated to human CML cases like that high EVI1 means the increasing number of CML stem cells. EVI1-high CML LSK cells have a superior proliferative potential in vitro, a superior leukaemia-initiating capacity in vivo and nilotinib resistance. The resistant aspect of EVI1-high cells to nilotinib would fit into clinical data that high EVI1 is related to TKI resistance.17 The in vivo quiescent status of EVI1-high CML-CP cells, which could proliferate aggressively in vitro, may be controlled by hypoxic BM niche microenvironment.50,51 In line with less dependence of CML-BC on BCR-ABL,2,52,53 EVI1-high CML-CP LSK cells showed a proliferative advantage over BCR-ABL+/-GFP mice.13, BCR-ABL and EVI1 overexpressing mice (Figure 2d).

Figure 6. BCR-ABL cooperates with EVI1 to induce AML (CML-BC-like disease) in vivo. (a) Experimental scheme of BMT mice with BCR-ABL and EVI1 overexpression. 5FU-primed C57BL/6 BM cells with retroviral BCR-ABL and EVI1 were transplanted into lethally irradiated recipient mice. (b) Wright–Giemsa staining of PB, BM and spleen from BCR-ABL and EVI1 overexpressing mice. (c) HE staining of BM (upper) and spleen (lower) from BCR-ABL and EVI1 overexpressing mice with low (left) and high (right) magnitude. (d) The proportion of blasts in PB, BM and spleen from BCR-ABL and EVI1 overexpressing mice (n = 3). (e) The weight of spleen and liver from normal (n = 13), BCR-ABL (n = 27), BCR-ABL+NUP98–HOXA9 (n = 29) or BCR-ABL+EVI1 mice (n = 3). (f) Kaplan–Meier plot of the survival of primary or secondary recipient mice transplanted with BCR–ABL and EVI1 overexpressing cells (n = 7 for primary transplants and n = 4 for secondary transplants) and primary recipient mice transplanted with BCR–ABL overexpressing cells (n = 24). (g) Representative FCM data of BM cells from BCR-ABL and EVI1 overexpressing mice. In BCR-ABL+(+)/EVI1+(+), nearly 100% of Lin− cells had c-kit expression (upper right). Mostly BCR-ABL+(+)/EVI1+(+) BM cells were Gr-1+, B220− and CD4/CD8− (lower). Data are mean ± s.d. *P < 0.01, **P < 0.001.
cell-enriched CD34+CD38−CD90+ cells, reflecting CML-CP as a stem cell disease (Figure 1a). Using BCR-ABL-specific primers, we could effectively distinguish CML-CP cells (BCR−ABL+) from remnant normal cells (BCR−ABL−). These human data could reinforce the value of murine CML data.

We also examined retroviral Evi1-reporter CML-BL mice and showed that a sizable fraction of LK cells have distinct Evi1 expression in sharp contrast to the CML-CP model. CML-BL stem cells are exclusively enriched in Evi1-high LK cells with resistance to nilotinib. The impact of combining the CML-BC with Evi1 upregulation is in strong contrast to that of the simple BCR-ABL BMT model, which only leads to CML-CP in mice 3–4 weeks after inoculation (Figure 4h). Taken together, this is the first report that visualizes Evi1 upregulation in vivo leukemia models. The finding is consistent with the previous report that showed the transcriptional regulation of Evi1 by NUP98–HOXA9 in vitro.

In our CML-BL model, HOXA9 showed no difference between Evi1-high and Evi1-low LK cells, eliminating the possible dependence of Evi1-high cells on NUP98–HOXA9 (Supplementary Figure S4b).

In our Evi1 knock-out studies of CML-CP and BC mice, Evi1 heterozygosity alleviated the disease (Figures 3g and 5e), highlighting a functional role of Evi1 in CML pathogenesis. Although complete loss of Evi1 causes embryonic lethality in mice, 25,55 Evi1 has been reported to be relevant to BCR-ABL tyrosine kinase activity.

Collectively, it is supposed that Evi1 reduction may prevent the reversal of CML at the partial expense of HSCs.

We extended this study to establish a new model of AML by BCR-ABL and Evi1. It is meaningful that overexpression of Evi1 itself is the driver in blastic transformation of CML not only by Evi1-related fusions. Cuenco et al. 56 have previously reported that Evi1 with BCR-ABL induces not leukemias but a fatal myeloproliferative disorder in mice. In contrast to the usage of human Evi1 complementary DNA (in MSCP retroviral vector) in murine BMT model of Cuenco’s study, we utilized murine Evi1 for Evi1 overexpression. Murine Evi1 especially in pMYS vector is suitable for establishing myeloid leukemia in mouse BMT model (Jones et al. 42 and unpublished), which resulted in a new AML model by Evi1 plus BCR-ABL. These findings can remind us of the importance of controlling Evi1 to impair CML-BC development by BCR-ABL and NUP98–HOXA9. As authentic Evi1 targets, 22,33,34 such as Gata2, Pten and Pbx1, showed no difference in expression levels between Evi1-high and Evi1-low CML cells (data not shown), the further exploration of CML-specific Evi1 targets would be warranted.

As opposed to Evi1-reporter CML models, in AML model by MLL-ENL retrovirus, Evi1-high MLL-ENL leukemic cells showed no advantage in leukemia initiation compared with Evi1-low cells (Supplementary Figure S5). Other Evi1-reporter AML models by MOZ-TIF2 and TP+AE never generated Evi1-high fraction, suggesting the high affinity of Evi1 for stem cell disease such as CML. Although Evi1 could not enrich MLL-ENL AML LSCs in our model, it is possible that Evi1 reduction in the bulk leukemia cells would be a new approach for identification of MLL-related leukemia as previously investigated.

Exact introduction of these oncogenes to HSCs by different approaches such as via a transgene or a knocking-in technology could unravel the relation between AML stem cells and Evi1.

In conclusion, high Evi1 can define the population of CML stem cells that are resistant to nilotinib. This is the first report that uncovers the importance of leukemia cells with high Evi1 intracellularly. Combinatorial analyses of Evi1-IRE-GRF allele CML animals and single cells from primary CML-CP patients covered in depth the critical regulation of CML stem cells by Evi1. To elucidate the complex cellular circuits involving Evi1, a further genetic and epigenetic investigation of Evi1-high cells would unveil precise mechanisms of the phenotype in leukemias.

MATERIALS AND METHODS

Single-cell gene expression analysis

Primary BM samples of CML-CP patients were stained with anti-CD34, anti-CD38, anti-CD33 and anti-CD90 (Supplementary Table S2), and single-cell sorted by FACSAria (BD Biosciences, San Jose, CA, USA) gating on each population excluding cell duplets directly into individual wells of 96-well plates filled with 5 μl RT/ Specific Target Amplification master mix solution (Fluidigm, San Francisco, CA, USA) immediately followed by reverse transcription and gene-specific pre-amplification with CellsDirect One-Step qRT-PCR kit Life Technologies, Carlsbad, CA, USA) in the same plates. Each complementary DNA was subjected to quantitative real-time PCR by LightCycler 480 (Roche, Basel, Switzerland) using SYBR Green (TAKARA, Otsu, Japan) with the primers inside of the pre-amplified complementary DNA. Gene-specific primers were listed in Supplementary Table S3. Only samples with a specific product peak in the melting curve analysis of housekeeping genes were taken for further analysis. This study was approved by ethical committee of the University of Tokyo.

Population quantitative real-time–PCR

Target gene expression for bulk samples or sorted populations was evaluated by LightCycler 480 as described previously.

All assays were performed in triplicate and expression levels relative to 18s ribosomal RNA were determined. Primer sequences are listed in Supplementary Table S3.

Flow cytometry

FACSAria was used for cell sorting of stained cells and LSRII (BD Biosciences) was used for other analyses. Data were analyzed with FlowJo (TreeStar, Ashland, OR, USA). In experiments with the Evi1-IRE-GRF knock-in mouse, a ‘fluorescence minus one’ lissitz Tây control was analyzed in parallel to set GFP gates. Antibodies are listed in Supplementary Table S2.

Retrovirally developed leukemia model mice

 Plat-E packaging cells 57 were transiently transfected with retroviral constructs by FuGENE6 (Roche). SFU-pri-D mice were incubated in RPMI1640 medium (Wako, Osaka, Japan) with cytokines (50 ng/ml stem cell factor, 50 ng/ml thrombopoietin, 10 ng/ml interleukin-6) for 24 h as previously described,

and cultured cells were infected with retrovirus on RetoNectin (TAKARA)-coated plate. The combination of donor cells and retroviruses is as follows; Evi1−/− BM with pGCDNsam/BCR-ABL/IRES-KuOr for Evi1−/− CML-CP, Evi1−/GRF BM with pGCDNsam/BCR-ABL/IRES-KuOr and pMSCV/vero/NUP98–HOXA9 for Evi1−/− CML-BC. Evi1−/− BM with pGCDNsam/MLL-ENL/IRES-KuOr or pGCDNsam/MOZ-TIF2/IRES-KuOr or pMSCV/Tel-PDGFR/IRES/AML1-ETO for Evi1−/− AML and C57BL/6 (Ly5.2) BM with pGCDNsam/BCR-ABL/IRES-GFP and pGCDNsam/IRES-KuOr for a new AML model. The infected cells were harvested 48 h after retrovirus infection, and injected into lethally (9.5 Gy) irradiated recipients in competition with 2 × 106 unfractionated BM cells from congenic mice. BCR-ABL-positive CML cells were distinguished by each fluorescent protein.

In vivo transplantation assay

For secondary BMT assay of BCR-ABL and NUP98–HOXA9 overexpressing mice, BCR-ABL and Evi1 overexpressing mice, sublethally irradiated (7.5 Gy) mice (Ly5.2) were injected with the indicated subsets from these mice (Ly5.2), Reconstitution of donor-derived cells was monitored by GFP or KuOr. For BMT assay of BCR-ABL SAM/GFP mice, sublethally irradiated mice (Ly5.1) were injected with the indicated subsets from Evi1−/− GRF BCR–ABL−/− mice (Ly5.2). Reconstitution was monitored by Ly5.1, CD4, CD8, B220, TER-119, Mac-1 and Gr-1.
Nilotinib treatment
For in vivo treatment, nilotinib (AMN107- AA) was diluted at 10 mg/ml in 10% 1-methyl-2-pyrrolidone (Sigma-Aldrich, St Louis, MO, USA), 90% polyethylene glycol 300 (Sigma-Aldrich) and administered by oral gavage at 75 mg/kg once a day for a week. A mixture without nilotinib was used as vehicle. For in vitro treatment, nilotinib diluted in dimethylsulfoxide (Sigma-Aldrich) was used at the final concentration of 1 or 5 μM/l.

Colony-forming assay
Cells (1 x 10⁷) were plated into MethoCult GF M3434 (StemCell Technologies, Vancouver, BC, Canada) as described previously.59 The number of colonies was counted at day 7. Images were taken with a Nikon Eclipse TE2000-U (Nikon, Tokyo, Japan).

Hoechst 33342 staining
Cells were incubated with 5 ng/ml Hoechst 33342 (Invitrogen/Life Technologies) and 25 μg/ml verapamil at 37 °C for 45 min.

OP-9 co-culture
OP-9 cells were pre-seeded on 24-well plates at day -1.59,60 One hundred LSK cells from Evl-reporter CML-CP mice were cultured from day 0 in alpha-minimum essential medium with 20% fetal calf serum, 1% penicillin-streptomycin, 2 μM/l 1-glutamine (Gibco/Invitrogen/Life Technologies), 1 μM/l sodium pyruvate and 50 μM/l 2-mercaptoethanol (Sigma-Aldrich). Culture medium was replaced every 4 days and images were taken at day 10.

Statistical analysis
Statistical significance of differences between parameters was assessed by a two-tailed unpaired t-test. The overall survival of mice was analyzed with a Mantel–Cox test according to the Kaplan–Meier method.

CONFLICT OF INTEREST
MK is a member of the advisory committees of Bristol-Myers and Novartis, and has also received research funding and honoraria from the two companies. The remaining authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank Takuro Nakamura for NUP98- HOXA9; Issay Kitabayashi for MOZ-TIF2; Michael Tomasson for TEL-PDGF/ IRES/AML1-EHO; Novartis for nilotinib. We appreciate expert technical supports by Yoshi Shimamura, Yuko Sawamoto and Rumi Takizawa-Toyama. We express our heartfelt sorrow over Yuko Sawamoto’s sudden passing away. This work was carried out at the Joint Usage/Research Center of the Japan Society for the Promotion of Science and by Health.

REFERENCES
1 Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.
2 Hu Y, Swedlow S, Duffy TM, Weimann R, Lee FY, Li S. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci USA 2006; 103: 16870–16875.
3 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.
4 Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.
5 Maguer-Satta V, Petzer AL, Eaves AC, Eaves CJ. BCR-ABL expression in different subpopulations of functionally characterized Ph+ CD34+ cells from patients with chronic myeloid leukemia. Blood 1996; 88: 1796–1804.
6 Radich JP. The Biology of CML blast crisis. Hematology 2007, 384–391.
7 Chomel JC, Bonnet ML, Sorel N, Bertrand A, Meunier MC, Fichelson S et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 2011; 118: 3657–3660.
8 Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS et al. Persistence of leukemia stem cells in chronic myelogenious leukemia patients in prolonged remission with imatinib treatment. Blood 2011; 118: 5565–5572.
9 Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond I et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.
10 Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 826–835.
11 Naka K, Hoshi T, Muraguchi T, Tadokoro Y, Oosho T, Kondo Y et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676–680.
12 Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of beta-catennin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.
13 Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukemia. Nature 2009; 458: 776–779.
14 Zhang H, Peng C, Hu Y, Li H, Sheng Z, Chen Y et al. The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nat Genet 2012; 44: 861–871.
15 Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet 2009; 41: 783–792.
16 Neviani P, Santhanam R, Troutta R, Notari M, Blaser BW, Liu S et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005; 8: 352–364.
17 Daghistani M, Marin D, Khorashad JS, Wang L, May PC, Palompe C et al. Evi-1 oncogene expression predicts survival in chronic-phase CML patients resistant to imatinib treated with second-generation tyrosine kinase inhibitors. Blood 2010; 116: 6014–6017.
18 Groschel S, Luethgath S, Schlenk RF, Valk PJ, Eiwen K, Goudswaard C et al. High Evi-1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol 2010; 28: 2101–2107.
19 Ogawa S, Kurokawa M, Tanaka T, Tanaka K, Hangaiashi A, Mitani K et al. Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia 1996; 10: 788–794.
20 Russell M, Thompson F, Spier C, Taetle R. Expression of the Evi1 gene in chronic myelogenous leukemia in blast crisis. Leukemia 1993; 7: 1654–1657.
21 Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovski S, Boer JM et al. prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.
22 Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, Perkins A et al. Oncogenic transcription factor Evl regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J 2005; 24: 1976–1987.
23 Forsberg EC, Passegue E, Prohaska SS, Wangers AJ, Koeva M, Stuart JM et al. Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS ONE 2010; 5: e8785.
24 Chittelli BR, Liu Y, Srou F, Genomic and proteomic analysis of the impact of mitotic quiescence on the engraftment of human CD34+ cells. PLoS ONE 2011; 6: e19647.
25 Goyauma S, Yamamoto G, Shimabe M, Sato T, Ichikawa M, Ogawa S et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 2008; 3: 207–220.
26 Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.
27 Roy S, Jorgensen HG, Roy P, Abed El Baky M, Melo JV, Stroehdee G et al. BCR-ABL1 tyrosine kinase sustained MECOM expression in chronic myeloid leukemia. Br J Haematol 2012; 157: 446–456.
28 Arai S, Yoshimi A, Shimabe M, Ichikawa M, Nakagawa M, Imai Y et al. Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood 2011; 117: 6304–6314.
29 Goyauma S, Nitta E, Yoshino T, Kako S, Watanabe-Okoichi N, Shimabe M et al. Evi-1 interacts with histone methyltransferases SUV39H1 and G9a for transcriptional repression and bone marrow immortalization. Leukemia 2010; 24: 81–88.
30 Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H. the coexpressor CIIBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 2001; 97: 2815–2822.
31 Kurokawa M, Mitani K, Yamagata T, Takahashi T, Izutsu K, Ogawa S et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J 2000; 19: 2988–2986.
32 Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S et al. The oncprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 1998; 394: 92–96.
Regulation of CML stem cells by Evi1
T Sato et al

33 Shimabe M, Goyama S, Watanabe-Okoichi N, Yoshimi A, Ichikawa M, Imai Y et al. Pbx1 is a downstream target of Evi-1 in hematopoietic stem/progenitors and leukemic cells. Oncogene 2009; 28: 4364–4374.

34 Yoshimi A, Goyama S, Watanabe-Okoichi N, Yoshiki Y, Nannya Y, Nitta E et al. Ev1 represses PTER expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 2011; 117: 3671–3678.

35 Kataoka K, Sato T, Yoshimi A, Goyama S, Tsuruta T, Kobayashi H et al. Ev1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med 2011; 208: 2403–2416.

36 Honda H, Oda H, Suzuki T, Takahashi T, Witte ON, Ozawa K et al. Development of acute lymphoblastic leukemia and myeloproliferative disorder in transgenic mice expressing p210(bcr/abl): a novel transgenic model for human Ph1-positive leukemias. Blood 1998; 91: 2067–2075.

37 Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA. Proc Natl Acad Sci USA 2002; 99: 7622–7627.

38 Morse HC 3rd, Anver MR, Fredrickson TN, Haines DC, Harris AW, Harris NL et al. Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 2002; 100: 246–258.

39 Buonamici S, Li D, Chi Y, Zhao R, Wang X, Brace L et al. Ev1 induces myelodysplastic syndrome in mice. J Clin Invest 2004; 114: 713–719.

40 Watanabe-Okochi N, Yoshimi A, Sato T, Ikeda T, Kumano K, Taoka K et al. The shortest isoform of C/EBPbeta, liver inhibitory protein (LIP), collaborates with Ev1 to induce AML in a mouse BMT model. Blood 2013; 121: 4142–4155.

41 Paquette RL, Nicoll J, Chalukya M, Elashoff D, Shah NP, Sawyers C et al. Frequent Ev1 translocations in myeloid blast crisis CML that evolves through tyrosine kinase inhibitors. Cancer Genet 2011; 204: 392–397.

42 Jones D, Luthra R, Cortes J, Thomas D, O'Brien S, Buenaventura B et al. BCR-ABL fusion transcript types and levels and their interaction with secondary genetic changes in determining the phenotype of Philadelphia chromosome-positive leukemias. Blood 2008; 112: 5190–5192.

43 O'Brien SG, Guilhot F, Larson RA, Gathmann I, Cortes J, Deininger MW et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

44 Druker BJ, Sawyers CL, Kantarjian H, Rosti G, Olsson KM, McCulloch EA et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

45 Balgobind BV, Lughart S, Holtink IH, Arentsen-Peters ST, van Wering ER, de Graaf SS et al. Ev1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia 2010; 24: 942–949.

46 Lughart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, Valk PJ et al. High Ev1 levels predict adverse outcome in acute myeloid leukemia: prevalence of Ev1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008; 111: 4329–4337.

47 Zhang B, Ho YW, Huang Q, Maeda T, Lin A, Lee SU et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 2012; 21: 577–592.

48 Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 2011; 20: 661–673.

49 Schemionek M, Elling C, Steidl U, Baumer N, Hamilton A, Spieker T et al. BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood 2010; 115: 3185–3195.

50 Piacentini F, Baccarani M, Cervantes F et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 2012; 119: 1501–1510.

51 Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104: 5431–5436.

52 Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 2012; 119: 1501–1510.

53 Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011; 121: 396–409.

54 Eguchi-Ishimae M, Eguchi M, Ohayashi K, Yamagata T, Mitani K. Enhanced expression of the Ev1 gene in NUP98/HOXA-expressing leukemia cells. Int J Hematol 2009; 89: 253–256.

55 Hoyt PR, Bartholomew C, Davis AJ, Yutzey K, Gamer LW, Potter SS et al. The Ev1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech Dev 1997; 65: 55–70.

56 Cuenco GM, Ren R. Both AML1 and Ev1 oncogenic components are required for the cooperation of AML1/MDS1/EVI1 with BCR/ABL in the induction of acute myelogenous leukemia in mice. Oncogene 2004; 23: 569–579.

57 Honda H, Ushijima T, Wakazono K, Oda H, Tanaka Y, Iizawa S et al. Acquired loss of p53 induces blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: a transgenic study for blast crisis of human CML. Blood 2000; 95: 1144–1150.

58 Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 2003; 31: 1007–1014.

59 Sato T, Goyama S, Nitta E, Takeshita M, Yoshimi M, Nakagawa M et al. Ev1 promotes para-aortic splanchnopleural hematopoiesis through up-regulation of GATA-2 and repression of TGFB signaling. Cancer Sci 2008; 99: 1407–1413.

60 Goyama S, Yamaguchi Y, Imai Y, Kawai M, Nakagawa M, Asai T et al. The transcriptionally active form of AML1 is required for hematopoietic rescue of the AML1-deficient embryonic para-aortic splanchnopleural (P-Sp) region. Blood 2004; 104: 3558–3564.

Supplementary Information accompanies this paper on the Oncogene website (http://www.nature.com/onc)