The FRT-Construction via Quantum Affine Algebras and Smash Products

Garrett Johnson and Chris Nowlin

Abstract. For every element \(w \) in the Weyl group of a simple Lie algebra \(\mathfrak{g} \), De Concini, Kac, and Procesi defined a subalgebra \(U_q^w \) of the quantized universal enveloping algebra \(U_q(\mathfrak{g}) \). The algebra \(U_q^w \) is a deformation of the universal enveloping algebra \(U(n_+ \cap w.n_-) \). We construct smash products of certain finite-type De Concini-Kac-Procesi algebras to obtain ones of affine type; we have analogous constructions in types \(A_n \) and \(D_n \). We show that the multiplication in the affine type De Concini-Kac-Procesi algebras arising from this smash product construction can be twisted by a cocycle to produce certain subalgebras related to the corresponding Faddeev-Reshetikhin-Takhtajan bialgebras.

1. Introduction

Let \(k \) be an infinite field and suppose an algebraic \(k \)-torus \(H \) acts rationally on a noetherian \(k \)-algebra \(A \) by \(k \)-algebra automorphisms. Goodearl and Letzter [9] showed that \(\text{spec}(A) \) is partitioned into strata indexed by the \(H \)-invariant prime ideals of \(A \). Furthermore, they showed that each stratum is homeomorphic to the prime spectrum of a Laurent polynomial ring. The Goodearl-Letzter stratification results apply to the case when \(A \) is an iterated Ore extension under some assumptions relating the action of \(H \) to the structure of \(A \). In this setting Cauchon’s deleting derivations algorithm [4] gives an iterative procedure for classifying the \(H \)-primes. After several such algebras were studied, such as the algebras of quantum matrices \(O_q(M_{\ell,p}(k)) \) [4, 8, 13], it was noticed that many of these algebras fall into the setting of De Concini-Kac-Procesi algebras [6].

The De Concini-Kac-Procesi algebras are subalgebras of quantized universal enveloping algebras \(U_q(\mathfrak{g}) \) associated to the elements of the corresponding Weyl group \(W_\mathfrak{g} \). They may be viewed as deformations of the universal enveloping algebra \(U(n_+ \cap w.n_-) \), where \(n_+ \) and \(n_- \) are the positive and negative nilpotent Lie subalgebras of \(\mathfrak{g} \), respectively. Mériaux and Cauchon [15] and Yakimov [16] recently proved that the poset of \(H \)-primes of a De Concini-Kac-Procesi algebra \(U_q^w \) ordered under inclusion is isomorphic to the poset \(W^{\leq w} \) of Weyl group elements less than or equal to \(w \) under the Bruhat ordering. In [16], Yakimov also gives explicit generating sets for the \(H \)-primes in terms of Demazure modules.

2000 Mathematics Subject Classification. 16T20; 16S40.
Key words and phrases. Quantum algebras, smash products, FRT-construction.
In this paper we introduce three type-D algebras. The first algebra is obtained from a De Concini-Kac-Procesi algebra of type \mathfrak{so}_{2n+2} and a smash product construction. We show that this algebra is isomorphic to our second algebra, a De Concini-Kac-Procesi algebra associated to the affine Weyl group of type \hat{D}_{n+1}. Finally, we show that twisting the multiplication in these algebras by a certain 2-cocycle produces algebras related to the type-D Faddeev-Reshetikhin-Takhtajan bialgebras. In the last section, we produce analogous results with type-A algebras.

In a forthcoming publication we will return to the H-spectrum of these algebras.

Section 3 introduces the first of these algebras, an algebra which resembles a smash product of a De Concini-Kac-Procesi algebra with itself. Let k be an algebraically closed field of characteristic zero and suppose $q \in k$ is not a root of unity. Fix an integer $n \geq 3$. Let $W(D_{n+1})$ be the Weyl group of type D_{n+1} with standard generating set $\{s_1, \ldots, s_{n+1}\}$ and let
\begin{equation}
wn = (s_{n+1} s_n \cdots s_2 s_1) (s_3 s_4 \cdots s_n s_{n+1}) \in W(D_{n+1}).
\end{equation}
Let $\mathcal{U}^{\geq 0}_D$ denote the quantized positive Borel algebra of type D_{n+1} and let \mathcal{U}^w_D be the De Concini-Kac-Procesi subalgebra of $\mathcal{U}^{\geq 0}_D$ corresponding to w_n. In fact, \mathcal{U}^w_D is isomorphic to $\mathcal{O}_q(\mathfrak{o}(2n))$, the algebra of even-dimensional quantum Euclidean space. We define an action λ of $\mathcal{U}^{\geq 0}_D$ on \mathcal{U}^w_D, which is a modification of the adjoint action of the Hopf algebra $\mathcal{U}^{\geq 0}_D$ on itself. This action equips \mathcal{U}^w_D with the structure of a left $\mathcal{U}^{\geq 0}_D$-module algebra. We then consider the smash product $\mathcal{U}^w_D \# \mathcal{U}^{\geq 0}_D$ with respect to λ and set $(\mathcal{U}^w_D)^\#$ to be the subalgebra of $\mathcal{U}^w_D \# \mathcal{U}^{\geq 0}_D$ generated by $\{u \# 1, 1 \# u \mid u \in \mathcal{U}^w_D\}$. This is the first of the three type-D algebras.

In Section 4 we introduce a second type-D algebra; it is a De Concini-Kac-Procesi algebra of affine type. Let $W(\hat{D}_{n+1})$ denote the affine Weyl group of type \hat{D}_{n+1} with generating set $\{s_0, s_1, \ldots, s_{n+1}\}$ and let
\begin{equation}
\hat{w}_n = (s_{n+1} \cdots s_1) (s_3 \cdots s_{n+1}) s_0 (s_n \cdots s_3) (s_1 \cdots s_n) s_0 \in W(\hat{D}_{n+1}).
\end{equation}
The main result of this section is Theorem 4.4, where we prove that the algebras $\mathcal{U}^\hat{w}_D$ and $(\mathcal{U}^w_D)^\#$ are isomorphic.

In Section 5 we introduce an algebra which we denote by $\mathcal{X}_{n,q}$. We show that $\mathcal{X}_{n,q}$ is related to the bialgebra $\mathcal{A}(R_{2n})$ arising from the type-D_n FRT construction. In particular, we label the standard generators of $\mathcal{A}(R_{2n})$ by Y_{ij}, for $1 \leq i, j \leq 2n$, and let $T_{2n} \subseteq \mathcal{A}(R_{2n})$ be the subalgebra generated by $\{Y_{ij} : 1 \leq i \leq 2, 1 \leq j \leq 2n\}$ and observe that there is a surjective algebra homomorphism $\mathcal{X}_{n,q} \to T_{2n}$ (see Proposition 5.1). We thus refer to $\mathcal{X}_{n,q}$ as a parent of T_{2n}. Finally, in Thm. 5.2 we prove that $\mathcal{X}_{n,q}$ is isomorphic to a cocycle twist (in the sense of [11]) of $\mathcal{U}^\hat{w}_D$. From this, it follows that $\mathcal{X}_{n,q}$ is an iterated Ore extension over k.

In Section 6 we proceed to demonstrate analogous results in the type A_m setting. We fix an integer $m > 1$ and let $W(A_m)$ be the Weyl group of type A_m with generating set $\{s_1, \ldots, s_m\}$. Let
\begin{equation}
c_m = s_1 \cdots s_m \in W(A_m)
\end{equation}
denote a Coxeter element. Notice that the De Concini-Kac-Procesi algebra \mathcal{U}^c_m is isomorphic to $\mathcal{O}_q(k^m)$, the algebra known as quantum affine space. Quantum euclidean space, seen in Section 3, can be thought of as a type-D analogue of quantum affine space. Let $\mathcal{U}^{\geq 0}_A$ denote the quantized positive Borel algebra of type A_m. We define an action $\lambda_A : \mathcal{U}^{\geq 0}_A \otimes \mathcal{U}^c_m \to \mathcal{U}^c_m$ endowing \mathcal{U}^c_m with the structure
of a left $U_q^{\geq 0}$-module algebra and define $(U_q^{\geq 0})^\#$ to be the subalgebra of $U_q^{\geq 0} \# U_A^{\geq 0}$ generated by $\{1 \# u, \ u \# 1 \mid u \in U_q^{\geq 0}\}$. Finally, we let $W(\hat{A}_m)$ denote the affine Weyl group of type \hat{A}_m with generating set $\{s_0, s_1, \ldots, s_m\}$ and let

$$c_m = (s_1 \cdots s_m)(s_0 s_1 \cdots s_{m-1}) \in W(\hat{A}_m).$$

In Thm. 6.4, we prove that the corresponding De Concini-Kac-Procesi algebra $\hat{O}_{2.3}$ is a type D analogue of \hat{a} group of type \hat{S} a subalgebra of \hat{A}. For helpful conversations, we would like to acknowledge Milen Yakimov and Ken Goodearl for helpful discussions.

2. Preliminaries

Let Q be a \mathbb{Z}-module with basis $\Pi = \{\alpha_1, \ldots, \alpha_n\}$. Suppose $(\ , \)$ is a symmetric form on Q with

$$c_{ij} := 2 \langle \alpha_i, \alpha_j \rangle / \langle \alpha_i, \alpha_i \rangle$$

non-positive integers for every $i, j \in \{1, \ldots, n\}$ with $i \neq j$, and there exist coprime positive integers d_1, \ldots, d_n so that the matrix $(d_i c_{ij})$ is symmetric. Let k be a field and let $q \in k$ be nonzero. Set $q_i = q^{d_i}$ and assume $q_i \neq \pm 1$. To the triple (Q, Π, q), we have an associated quantized enveloping algebra U. As a k-algebra, U is generated by u_1^\pm, \ldots, u_n^\pm and $\{v_\mu : \mu \in Q\}$ and has defining relations

$$\begin{align*}
(2.2) & \quad v_0 = 1, \quad v_\mu v_\rho = v_\mu + v_\rho, \quad (\mu, \rho \in Q), \\
(2.3) & \quad v_\mu u_1^\pm = q^\pm(\mu, \alpha_i) u_1^\pm v_\mu, \quad (\mu \in Q, i \in \{1, \ldots, n\}), \\
(2.4) & \quad u_i^+ u_j^- = u_j^- u_i^+ + \delta_{ij} \frac{v_{\alpha_i} - v_{-\alpha_i}}{q_i - q_i^{-1}}, \quad (i, j \in \{1, \ldots, n\}), \\
(2.5) & \quad \sum_{r=0}^{1-c_{ij}} (-1)^r \left[1 - c_{ij} \right]_{q_i} (u_i^\pm)^{1-c_{ij} - r} (u_j^\pm)^r = 0, \quad (i \neq j).
\end{align*}$$

Here,

$$[\ell]_{q_i} = \frac{q_i^\ell - q_i^{-\ell}}{q_i - q_i^{-1}}, \quad [\ell]_{q_i}! = [1]_{q_i} \cdots [\ell]_{q_i}, \quad \left[\begin{array}{c} \ell \\ m \end{array} \right]_{q_i} = \frac{[\ell]_{q_i}!}{[m]_{q_i} ![\ell - m]_{q_i}!}.$$

Furthermore, U has a Hopf algebra structure with comultiplication Δ, antipode S, and counit ϵ maps given by

$$\begin{align*}
(2.7) & \quad \Delta(u_1^+) = v_{-\alpha_i} \otimes u_i^+ + u_i^+ \otimes 1, \quad \Delta(v_\mu) = v_\mu \otimes v_\mu, \quad \Delta(u_1^-) = 1 \otimes u_1^- + u_1^- \otimes v_{\alpha_i}, \\
(2.8) & \quad S(u_1^+) = -v_{-\alpha_i} E_i, \quad S(v_\mu) = v_{-\mu}, \quad S(u_i^-) = -u_i^- v_{-\alpha_i}, \\
(2.9) & \quad \epsilon(u_1^+) = 0, \quad \epsilon(v_\mu) = 1, \quad \epsilon(u_i^-) = 0,
\end{align*}$$

for every $\mu \in Q$ and $1 \leq i \leq n$.

We see \hat{A} as a FRT-bialgebra $\hat{A}(R_{A_m-1}) \cong \hat{O}_q(M_{2,m})$. The key distinction is that $\hat{O}_q(M_{2,m}(k))$ is a subalgebra of $\hat{A}(R_{A_m-1})$, whereas $\hat{X}_{m,q}$ is a parent of the analogous subalgebra $T_{2,m} \subseteq \hat{A}(R_{D_m})$.

Acknowledgements. We would like to acknowledge Milen Yakimov and Ken Goodearl for helpful conversations.
For every $i \in \{1, \ldots, n\}$, we let $s_i : Q \to Q$ be the simple reflection
\begin{equation}
(2.10) \quad s_i : \mu \mapsto \mu - \frac{2 \langle \mu, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle} \alpha_i,
\end{equation}
and let $W = \langle s_1, \ldots, s_n \rangle$ denote the Weyl group. The standard presentation for the braid group B is the generating set $\{T_w : w \in W\}$ subject to the relations $T_w T_{w'} = T_{w w'}$ for every $w, w' \in W$ satisfying $\ell(w) + \ell(w') = \ell(ww')$, where ℓ is the length function on W. For each $i \in \{1, \ldots, n\}$, we set $T_i := T_{s_i}$. Thus, the braid group B is generated by T_1, \ldots, T_n. When q is not a root of unity, B acts via algebra automorphisms on U as follows:
\begin{equation}
(2.11) \quad T_i v_\mu = v_{s_i(\mu)}, \quad T_i u^+_i = -u^-_i, \quad T_i u^-_i = -v_{-\alpha_i} u^+_i,
\end{equation}
\begin{equation}
(2.12) \quad T_i u^+_j = \sum_{r=0}^{\delta_{ij}} \frac{(-q_i)^{-r}}{r! \langle r \rangle} (u^+_i)^{-r} u^+_i (u^+_j)^r, \quad (i \neq j),
\end{equation}
\begin{equation}
(2.13) \quad T_i u^-_j = \sum_{r=0}^{\delta_{ij}} \frac{(-q_i)^r}{r! \langle r \rangle} (u^-_i)^r u^-_i (u^-_j)^{-r}, \quad (i \neq j),
\end{equation}
for all $i, j \in \{1, \ldots, n\}, \mu \in Q [14]$.

Fix $w \in W$. For a reduced expression $w = s_{i_1} \cdots s_{i_t}$ define the roots
\begin{equation}
(2.14) \quad \beta_1 = \alpha_{i_1}, \beta_2 = s_{i_1} \alpha_{i_2}, \ldots, \beta_t = s_{i_1} \cdots s_{i_{t-1}} \alpha_{i_t}
\end{equation}
and the root vectors
\begin{equation}
(2.15) \quad X_{\beta_1} = u^+_1, X_{\beta_2} = T_{s_{i_1}} u^+_2, \ldots, X_{\beta_t} = T_{s_{i_1}} \cdots T_{s_{i_{t-1}}} u^+_t.
\end{equation}

Following [6], let U_q^w denote the subalgebra of U generated by the root vectors $X_{\beta_1}, \ldots, X_{\beta_t}$ (depends on the reduced expression).

When k is algebraically closed of characteristic zero and q is not a root of unity, De Concini, Kac, and Procesi proved the following:

Theorem 2.1. [6 Proposition 2.2] If (c_{ij}) is a finite-type Cartan matrix, then the algebra U_q^w does not depend on the reduced expression for w. The algebra U_q^w has the PBW basis
\begin{equation}
X_{\beta_1}^{n_1} \cdots X_{\beta_t}^{n_t}, \quad n_1, \ldots, n_t \in \mathbb{Z}_{\geq 0}.
\end{equation}

Beck later proved the analogous result for the case when (c_{ij}) is an affine Cartan matrix (with q transcendental over Q) [3].

3. A smash product of type D_{n+1}

3.1. The Algebras $U_q(s_o 2n+2), U_q^{so_2n}, \text{ and } \mathcal{O}_q(\mathfrak{o}^{2n}). Fix an integer $n \geq 3$, and let $Q(D_{n+1})$ be the additive abelian subgroup of \mathbb{R}^{n+1} consisting of the vectors having integer-valued coordinates (a_1, \ldots, a_{n+1}) with the sum $\sum a_i$ being an even number. Let \langle , \rangle denote the restriction of the standard inner product on \mathbb{R}^{n+1} (i.e. $\langle e_i, e_j \rangle = \delta_{ij}$) to $Q(D_{n+1})$. The group $Q(D_{n+1})$ is generated by the positive simple roots $\alpha_i = e_i - e_{i-1}$ for $2 \leq i \leq n+1$ and $\alpha_1 = e_1 + e_2$. For a positive simple root α_i, let s_i denote the corresponding simple reflection and let $W(D_{n+1}) = \langle s_1, \ldots, s_{n+1} \rangle$ denote the associated Weyl group. The associated Cartan matrix (c_{ij}) is symmetric.
Hence $d_1 = \cdots = d_{n+1} = 1$. Therefore, the parameters q_1, \ldots, q_{n+1} are all equal to q. As usual, we put $\tilde{q} = q - q^{-1}$. Let $U_q(\mathfrak{so}_{2n+2})$ denote the corresponding quantized universal enveloping algebra. We label the generators of (3.5) E_i defined by

$$
(3.1) \quad K_0 = 1, \quad K_0 K_\lambda = K_{\mu+\lambda},
$$

$$(3.2) \quad K_\mu E_i = q^{(\mu, \alpha_i)} E_i K_\mu, \quad K_\mu F_i = q^{- (\mu, \alpha_i)} F_i K_\mu,$$

$$
(3.3) \quad E_i E_j = E_j E_i + \delta_{ij} q \left(F_j - F_i \right),
$$

$$
(3.4) \quad E_i [E_j, E_k] = q [E_i, E_j] E_k, \quad F_i [F_j, F_k] = q [F_i, F_j] F_k, \quad (\langle \alpha_i, \alpha_j \rangle = 0 \text{ or } 2),
$$

$$
(3.5) \quad E_i F_j = F_j E_i + \delta_{ij} \left(K_{\alpha_i} - K_{-\alpha_i} \right),
$$

for every $i, j \in \{1, \ldots, n+1\}$ and $\mu, \lambda \in Q(D_{n+1})$. Here we use the q^{-1}-commutators, defined by

$$
[u, v] := uv - q^{-1} vu
$$

for every $u, v \in U_q(\mathfrak{so}_{2n+2})$.

Let w_0 denote the longest element of $W(D_{n+1})$ and let w_0^2 be the longest element of the parabolic subgroup $\langle s_1, \ldots, s_n \rangle \subseteq W(D_{n+1})$. Put $w_n = w_0^2 w_0$. We have a reduced expression

$$
(3.6) \quad w_n = (s_{n+1} \cdots s_2 s_1) (s_3 \cdots s_n s_{n+1}) \in W(D_{n+1})
$$

and root vectors

$$
(3.7) \quad X_{e_{n+1} - e_n}, X_{e_{n+1} + e_{n-1}}, \ldots, X_{e_{n+1} - e_1}, X_{e_{n+1} + e_2}, \ldots, X_{e_{n+1} + e_n}.
$$

For brevity, we put $x_i = X_{e_{n+1} - e_i}$ and $y_i = X_{e_{n+1} + e_i}$ for every $i \in \{1, \ldots, n\}$. Let $U_q^{w_n}$ denote the corresponding DeConcini-Kac-Procesi algebra.

The following can be found in [10], Section 5.6.a.

Theorem 3.1. The algebra $U_q^{w_n}$ is isomorphic to the even-dimensional quantum Euclidean space $\mathcal{O}_q(\mathfrak{so}^{2n})$.

Proof. We observe that the root vectors $x_1, \ldots, x_n, y_1, \ldots, y_n$ of $U_q^{w_n}$ can be written inductively as $x_n = E_{n+1}, y_1 = [x_2, E_1]$ and

$$
(3.8) \quad x_i = [x_{i+1}, E_{i+1}],
$$

$$
(3.9) \quad y_{i+1} = [y_i, E_{i+1}],
$$

for all $1 \leq i < n$. Using these identities, one can readily check that the root vectors satisfy the defining relations of $\mathcal{O}_q(\mathfrak{so}^{2n})$ (c.f. [12] Section 9.3.2),

$$
(3.10) \quad x_i x_j = q^{-1} x_j x_i, \quad y_i y_j = q y_j y_i, \quad (1 \leq i < j \leq n),
$$

$$
(3.11) \quad x_i y_j = q^{1 - \delta_{ij} j} x_j y_i + \delta_{ij} \tilde{q} \sum_{r=1}^{i-1} (-q)^{i-r-1} x_r y_r, \quad (i, j \in \{1, \ldots, n\}).
$$

Since $U_q^{w_n}$ has a PBW basis of ordered monomials, Eqs. (3.10) and (3.11) are the defining relations. Hence, $U_q^{w_n} \cong \mathcal{O}_q(\mathfrak{so}^{2n})$. \qed
3.2. U_q^w as a left $U_D^{>0}$-module algebra. Let $U_D^{>0}$ be the sub-Hopf algebra of $U_q(\mathfrak{so}_{2n+2})$ generated by E_1, \ldots, E_{n+1}, and K_μ for all $\mu \in Q(D_{n+1})$. We let $\pi : U_D^{>0} \to U_D^{>0}$ be the unique algebra map such that

$$
(3.12) \quad \pi(E_{n+1}) = 0,
$$

$$
(3.13) \quad \pi(E_i) = E_i \quad (i \leq n),
$$

$$
(3.14) \quad \pi(K_\mu) = K_\mu \quad (\mu \in Q(D_{n+1})).
$$

We define a function $\lambda : U_{q}^{>0} \otimes U_{q}^{w} \to U_{D}^{>0}$ by the following sequence of linear maps:

$$
(3.15) \quad \lambda : U_{q}^{>0} \otimes U_{q}^{w} \xrightarrow{\text{inf}} (U_{D}^{>0})^\otimes 2 \xrightarrow{\pi \otimes \text{id}} (U_{D}^{>0})^\otimes 2 \xrightarrow{\text{adjoint}} U_{D}^{>0}
$$

and have the following:

Theorem 3.2. For the function λ above, we have $\text{Im}(\lambda) \subseteq U_{q}^{w}$. In particular, λ endows U_{q}^{w} with the structure of a left $U_{q}^{>0}$-module algebra.

Proof. For brevity, we set $u.v = \lambda(u \otimes v)$ for every $u \in U_{q}^{>0}$ and $v \in U_{q}^{w}$. One can verify that

$$
(3.16) \quad E_j.x_r = \begin{cases} -q(\delta_{1r} y_2 + \delta_{2r} y_1), & (j = 1), \\ -q\delta_{jr} x_{r-1}, & (j \neq 1), \end{cases}
$$

$$
(3.17) \quad E_j.y_r = \begin{cases} 0, & (j = n + 1), \\ -q\delta_{j,r+1} y_{r+1}, & (j \neq n + 1), \end{cases}
$$

for all $r \in \{1, ..., n\}, j \in \{1, ..., n+1\}$. Since $U_{q}^{>0}$ is a left $U_{q}^{>0}$-module algebra (with respect to the adjoint action), the equations 3.16 and 3.17 above, together with the fact that the K_μ's act diagonally on U_{q}^{w}, prove the desired result.

Using the action map λ, we form the smash product algebra $U_{q}^{w} \# U_{D}^{>0}$ and define the following subalgebra

$$
(3.18) \quad (U_{q}^{w})^\#: = \langle 1 \# u, u \# 1 \mid u \in U_{q}^{w} \rangle \subseteq U_{q}^{w} \# U_{D}^{>0}.
$$

Loosely speaking, we can think of $(U_{q}^{w})^\#$ as being a smash product of U_{q}^{w} with itself. Observe for example that $(U_{q}^{w})^\#$ is isomorphic as a vector space to $U_{q}^{w} \otimes U_{q}^{w}$.

3.3. A Presentation of $(U_{q}^{w})^\#$. We will spend the rest of this section giving an explicit presentation for the algebra $(U_{q}^{w})^\#$ because this will be necessary for proving the main result of Section 4.1 (Thm. 1.3).

The algebra $(U_{q}^{w})^\#$ is generated by $1 \# x_i, 1 \# y_i, x_i \# 1, y_i \# 1$ for $i \in \{1, ..., n\}$. To compute the relations among these generators, we need comultiplication formulas for the root vectors $x_1, \ldots, x_n, y_1, \ldots, y_n \in U_{q}^{w}$. First, we must introduce the elements $\epsilon_{ij}, E_{r}s_{i}, E_{s}t_{r} \in U_{D}^{>0}$ for every $i, j \in \{1, ..., n\}$ and $r, s \in \{1, ..., n+1\}$ with
For every $i \in \{1, ..., n\}$,

\begin{align*}
\Delta(x_i) &= K_{-\deg(x_i)} \otimes x_i + x_i \otimes 1 + \hat{q} \sum_{j=i+1}^{n} E_{j,i+1} K_{-\deg(x_j)} \otimes x_j, \\
\Delta(y_i) &= K_{-\deg(y_i)} \otimes y_i + y_i \otimes 1 + \hat{q} \sum_{j=1}^{i-1} \epsilon_{ij} K_{-\deg(x_j)} \otimes x_j + \sum_{j=1}^{n} E_{j+1,i} K_{-\deg(y_j)} \otimes y_j).
\end{align*}

Proof. Use the induction formulas from Eqs. 3.8 and 3.9 together with the comultiplication formula given in Equation 2.7 \hfill \square

From Eqs. 3.16 and 3.17 it follows that for all $i, j, r \in \{1, ..., n\}$,

\begin{align*}
E_{j,i+1}.x_r &= -q \delta_{jr} x_i, & E_{j,i+1}.y_r &= (-q)^{j-i} \delta_{ir} y_j, \\
E_{j+1,i}.x_r &= (-q)^{l-j} \delta_{ir} x_j, & E_{j+1,i}.y_r &= -q \delta_{jr} y_i, \\
\epsilon_{ij}.x_r &= (-q)^{i+j-2} \delta_{ir} y_j - q \delta_{jr} y_i, & \epsilon_{ij}.y_r &= 0.
\end{align*}

Using the identities 3.25, 3.27 together with the comultiplication formulas 3.26, 3.24 we compute the following “cross-relations” in $\mathcal{U}_q^{\omega_n}$.\hfill \#
Theorem 3.5. The algebra \((3.35)\) its defining relations are Eqns. 3.28-3.31 together with the relations

\[
\begin{align*}
(3.33) & \quad q^{-1}y_j y_i - q^{-1}y_i y_j, \quad i > j, \\
(3.29) & \quad q^{-2}y_j y_i, \quad i = j, \\
(3.30) & \quad q^{-1}y_j y_i, \quad i < j.
\end{align*}
\]

\[
U \hat{g}(3.36) \text{ extend the bilinear form } \langle 3.28-3.31 \text{ together with the above relations are a presentation of } (PBW \text{ basis of De Concini-Kac-Procesi algebras imply that the cross relations of }) \text{ to be isotropic. As before, let } s_i \text{ denote the corresponding simple reflection } s_i : Q(\hat{D}_{n+1}) \to Q(\hat{D}_{n+1}), \text{ for } 0 \leq i \leq n+1, \text{ and } W(\hat{D}_{n+1}) = \langle s_0, ..., s_{n+1} \rangle \text{ is the Weyl}
\]

We have the following presentation for \((U_q^{\mathfrak{u}_n})^\#\):

Theorem 3.5. The algebra \((U_q^{\mathfrak{u}_n})^\#\) is generated by \(1\#x_i, x_i\#1\) for \(1 \leq i \leq n\), and its defining relations are Eqns. 3.28, 3.37 together with the relations

\[
\begin{align*}
(3.32) & \quad (1\#x_i)(1\#x_j) = q^{-1}(1\#x_j)(1\#x_i), \quad (1 \leq i < j \leq n), \\
(3.33) & \quad (1\#y_i)(1\#y_j) = q(1\#y_j)(1\#y_i), \quad (1 \leq i < j \leq n), \\
(3.34) & \quad (1\#x_i)(1\#y_j) = q^{1-\delta_{ij}}(1\#y_j)(1\#x_i) \\
& \quad + \delta_{ij}q \sum_{r=1}^{i-1} (-q)^{i-r-1}(1\#x_r)(1\#y_r), \quad (i, j \in \{1, ..., n\}), \\
(3.35) & \quad (x_i\#1)(x_j\#1) = q^{-1}(x_j\#1)(x_i\#1), \quad (1 \leq i < j \leq n), \\
(3.36) & \quad (y_i\#1)(y_j\#1) = q(y_j\#1)(y_i\#1), \quad (1 \leq i < j \leq n), \\
(3.37) & \quad (x_i\#1)(y_j\#1) = q^{1-\delta_{ij}}(y_j\#1)(x_i\#1) \\
& \quad + \delta_{ij}q \sum_{r=1}^{i-1} (-q)^{i-r-1}(x_r\#1)(y_r\#1), \quad (i, j \in \{1, ..., n\}).
\end{align*}
\]

Proof. The generators \(1\#x_1, ..., 1\#x_n\) generate a subalgebra isomorphic to \(U_q^{\mathfrak{u}_n}\), as do the generators \(x_1\#1, ..., x_n\#1\), giving us the relations 3.32, 3.37. The universal property of smash products (for example, see [11, Section 1.8]) and the PBW basis of De Concini-Kac-Procesi algebras imply that the cross relations of 3.32, 3.37 together with the above relations are a presentation of \((U_q^{\mathfrak{u}_n})^\#\). \(\square\)

4. The quantum affine algebra \(U_q^{\hat{\mathfrak{g}}_n}\)

Let \(Q(\hat{D}_{n+1}) = Q(\hat{D}_{n+1}) \oplus \mathbb{Z}\) denote the root lattice of type \(\hat{D}_{n+1}\). As an abelian group, \(Q(\hat{D}_{n+1})\) is generated additively by the positive simple roots \(\alpha_0 := -e_{n+1} - e_{n+1}, \alpha_1 := e_1 + e_2,\) and \(\alpha_i := e_i - e_{i-1}\) for \(2 \leq i \leq n + 1\). We extend the bilinear form \(\langle , \rangle\) on \(Q(\hat{D}_{n+1})\) to \(Q(\hat{D}_{n+1})\) by setting \(1 \in Q(\hat{D}_{n+1})\) to be isotropic. As before, let \(s_i\) denote the corresponding simple reflection \(s_i : Q(\hat{D}_{n+1}) \to Q(\hat{D}_{n+1})\), for \(0 \leq i \leq n + 1\), and \(W(\hat{D}_{n+1}) = \langle s_0, ..., s_{n+1} \rangle\) is the Weyl
group. The corresponding quantized enveloping algebra $U_q(\hat{\mathfrak{so}}_{2n+2})$ is generated by $E_0, \ldots, E_n+1, F_0, \ldots, F_n+1$ and $\{K_\mu : \mu \in Q(\hat{D}_{n+1})\}$ and has defining relations

\begin{align*}
(4.1) & \quad K_0 = 1, \quad K_\mu K_\lambda = K_{\mu+\lambda}, \\
(4.2) & \quad K_\mu E_i = q^{(\mu, \alpha_i)} E_i K_\mu, \quad K_\mu F_i = q^{-(\mu, \alpha_i)} F_i K_\mu, \\
(4.3) & \quad E_i E_j = E_j E_i, \quad F_i F_j = F_j F_i, \quad ((\alpha_i, \alpha_j) = 0 \text{ or } 2), \\
(4.4) & \quad E_i[E_i, E_j] = q[E_i, E_j] E_i, \quad F_i[F_i, F_j] = q[F_i, F_j] F_i, \quad ((\alpha_i, \alpha_j) = -1), \\
(4.5) & \quad E_i F_j = F_j E_i + \frac{\delta_{ij}}{q} (K_{\alpha_i} - K_{-\alpha_i}),
\end{align*}

for every $i, j \in \{0, \ldots, n+1\}$ and $\mu, \lambda \in Q(\hat{D}_{n+1})$ (c.f. Eqns. 3.1-3.5).

Let $\hat{w}_n \in W(\hat{D}_{n+1})$ be the Weyl group element given by

\begin{align*}
(4.6) & \quad \hat{w}_n : v + r \mapsto v + r + 2a_{n+1}
\end{align*}

for every $v = \sum_{i=1}^{n+1} a_i e_i \in Q(D_{n+1})$ and $r \in \mathbb{Z}$. We have the reduced expression

\begin{align*}
(4.7) & \quad \hat{w}_n := (s_{n+1} \cdots s_1)(s_3 \cdots s_{n+1})s_0(s_n \cdots s_3)(s_1 \cdots s_n)s_0 \in W(\hat{D}_{n+1}).
\end{align*}

We let $\hat{B}_{\hat{\mathfrak{so}}_{2n+2}} = \langle T_0, \ldots, T_{n+1} \rangle$ denote the corresponding braid group of $\hat{\mathfrak{so}}_{2n+2}$ and label the corresponding ordered root vectors for $U_q^{\hat{w}_n}$ by

\begin{align*}
(4.8) & \quad X_0, \ldots, X_n, Y_1, \ldots, Y_n, \overline{X}_0, \ldots, \overline{X}_1, \overline{Y}_1, \ldots, \overline{Y}_n.
\end{align*}

One can readily verify the following lemmas.

Lemma 4.1. We have the following recursion formulas in the algebra $U_q^{\hat{w}_n}$:

\begin{align*}
(4.9) & \quad X_n = E_{n+1}, \quad X_i = [X_{i+1}, E_{i+1}], \quad (i \neq n), \\
(4.10) & \quad Y_1 = [X_2, E_1], \quad Y_i = [Y_{i-1}, E_i], \quad (i \neq 1), \\
(4.11) & \quad \overline{X}_n = [Y_{n-1}, T_{n+1} T_n E_0], \quad \overline{X}_i = [\overline{X}_{i+1}, E_{i+1}], \quad (i \neq n), \\
(4.12) & \quad \overline{Y}_1 = [X_2, E_1], \quad \overline{Y}_i = [\overline{Y}_{i-1}, E_i], \quad (i \neq 1), \\
(4.13) & \quad Y_2 = [X_1, E_1], \quad \overline{Y}_2 = [\overline{X}_1, E_1].
\end{align*}
Lemma 4.2. For all $i, j \in \{1, \ldots, n\}$, we have the following:

\begin{align}
T_iX_j &= \begin{cases}
[E_i, X_j], & (i = j \text{ or } (i, j) = (1, 2)), \\
X_{j+1}, & (i = j + 1), \\
X_j, & \text{otherwise},
\end{cases} \\
T_iY_j &= \begin{cases}
[Y_{j-1}, & (i = j \text{ and } i \neq 1), \\
X_{3-j}, & (i = 1, j \in \{1, 2\}), \\
[E_{j+1}, Y_j], & (i = j + 1), \\
Y_j, & \text{otherwise},
\end{cases} \\
T_i\overline{X}_j &= \begin{cases}
[E_i, \overline{X}_j], & (i = j \text{ or } (i, j) = (1, 2)), \\
\overline{X}_{j+1}, & (i = j + 1), \\
\overline{X}_j, & \text{otherwise},
\end{cases} \\
T_i\overline{Y}_j &= \begin{cases}
[Y_{j-1}, & (i = j \text{ and } i \neq 1), \\
\overline{X}_{3-j}, & (i = 1, j \in \{1, 2\}), \\
[E_{j+1}, \overline{Y}_j], & (i = j + 1), \\
\overline{Y}_j, & \text{otherwise}.
\end{cases}
\end{align}

With the help of Lemmas 4.1 and 4.2, we prove the following.

Proposition 4.3. The defining relations for the algebra $\mathcal{U}_{q^{\hat{w}_n}}$ are

\begin{align}
X_iX_j &= q^{-1}X_jX_i, & Y_iY_j &= q^{-1}Y_jY_i, & (i < j), \\
\overline{X}_i\overline{X}_j &= q^{-1}\overline{X}_j\overline{X}_i, & \overline{Y}_i\overline{Y}_j &= q^{-1}\overline{Y}_j\overline{Y}_i, & (i < j), \\
Y_jX_i &= q^{\delta_{ij}^{-1}}X_jY_i - \delta_{ij}\hat{q}\sum_{r=1}^{i-1}(-q)^{i-r-1}X_rY_r, \\
\overline{Y}_j\overline{X}_i &= q^{\delta_{ij}^{-1}}\overline{X}_j\overline{Y}_i - \delta_{ij}\hat{q}\sum_{r=1}^{i-1}(-q)^{i-r-1}\overline{X}_r\overline{Y}_r, \\
\overline{X}_iX_j &= q^{-2}X_j\overline{X}_i, & \overline{Y}_iY_j &= q^{-2}Y_j\overline{Y}_i, \\
\overline{X}_jX_i &= q^{-1}X_j\overline{X}_i, & \overline{Y}_jY_i &= q^{-1}Y_j\overline{Y}_i, & (i < j), \\
\overline{X}_iX_j &= q^{-1}X_j\overline{X}_i - q^{-1}\hat{q}X_i\overline{X}_j, & \overline{Y}_jY_i &= q^{-1}Y_i\overline{Y}_j - q^{-1}\hat{q}Y_j\overline{Y}_i, & (i < j), \\
\overline{X}_iY_j &= q^{-1+\delta_{ij}}Y_j\overline{X}_i + \hat{q}q^{-1}\delta_{ij}\sum_{m=i+1}^{n}(-q)^{m-i}Y_m\overline{X}_m, \\
\overline{Y}_iX_j &= q^{-1+\delta_{ij}}X_j\overline{Y}_i - \hat{q}q^{-1}Y_i\overline{X}_j \\
&\quad+ \hat{q}q^{-1}\delta_{ij}\sum_{m=1}^{i-1}(-q)^{i+m-2}X_m\overline{X}_m + \sum_{m=1}^{i-1}(-q)^{i-m}X_m\overline{Y}_m
\end{align}

for $i, j \in \{1, \ldots, n\}$.

Proof. The first $2n$ letters in the reduced expression for \hat{w}_n coincide with w_n, as do the last $2n$ letters. This gives us the relations 4.18-4.21. Using Lemmas 4.1 and 4.2 one can prove inductively that the remaining relations hold. To illustrate how to obtain the identities in Eqn. 4.22, for example, one can first verify the base cases, $\overline{X}_1X_1 = q^{-2}X_1\overline{X}_1$ and $\overline{Y}_nY_n = q^{-2}Y_n\overline{Y}_n$, and then apply appropriate
braid group automorphisms (refer to Lemma 4.2) to both sides of the equations. Since $U^\hat{w}_n$ has a PBW basis of ordered monomials, Eqns. 4.18-4.26 are the defining relations.

By comparing Eqns. 3.28-3.37 with Eqns. 4.18-4.26, we observe the following theorem.

Theorem 4.4. As k-algebras, $U^\hat{w}_n \cong (U^w_n)\#$ via the isomorphism

$$X_i \mapsto (x_i \#1), \quad Y_i \mapsto (y_i \#1), \quad \Sigma_i \mapsto (1 \# x_i), \quad \Pi_i \mapsto (1 \# y_i), \quad \text{for } i = 1, \ldots, n.$$

5. The FRT-Construction and the algebra $\mathcal{X}_{n,q}$

We will briefly review the Faddeev-Reshetikhin-Takhtajan (FRT) construction of [7] (see [5] Section 7.2 for more details). We let V be a k-module with basis $\{v_1, \ldots, v_N\}$. For a linear map $R \in \text{End}_k(V \otimes V)$, we write

$$(5.1) \quad R(v_i \otimes v_j) = \sum_{s,t} R_{ij}^{st} v_s \otimes v_t \text{ for all } 1 \leq i, j < N,$$

with all $R_{ij}^{st} \in k$. The **FRT algebra** $A(R)$ associated to R is the k-algebra presented by generators X_{ij} for $1 \leq i, j \leq N$ and has the defining relations

$$(5.2) \quad \sum_{s,t} R_{s}^{ij} X_{sl} X_{tm} = \sum_{s,t} R_{i}^{st} X_{is} X_{jt}$$

for every $i, j, l, m \in \{1, \ldots, N\}$. Up to algebra isomorphism, $A(R)$ is independent of the chosen basis of V.

Let us specialize now to the case when $N = 2n$. Following [12] Section 8.4.2, for each $i, j \in \{1, \ldots, 2n\}$, let E_{ij} denote the linear map on V defined by $E_{ij}.v_l = \delta_{jl}v_i$. Let $i' := 2n + 1 - i$, and let

$$(5.3) \quad R_{D_n} = q \sum_{i:i \neq i'} (E_{ii} \otimes E_{ii}) + \sum_{i,j:i \neq j,j'} (E_{ii} \otimes E_{jj}) + q^{-1} \sum_{i:i \neq i'} (E_{i'i'} \otimes E_{ii})$$

$$+ \hat{q} \left(\sum_{i,j:i > j} (E_{ij} \otimes E_{jj}) - \sum_{i,j:i > j} q^{\rho_{i'j} - \rho_{ij}} (E_{ij} \otimes E_{i'j'}) \right),$$

where $(\rho_1, \rho_2, \ldots, \rho_{2n})$ is the $2n$-tuple $(n-1, n-2, \ldots, 1, 0, 0, -1, \ldots, -n+1)$.

We define an algebra $\mathcal{X}_{n,q}$ presented by generators X_{ij} with $i \in \{1, 2\}, j \in \{1, \ldots, 2n\}$, and having the defining relations
\begin{align*}
(5.4) & \quad X_{rl}X_{rs} = q^{-1}X_{rs}X_{rt} & (r \in \{1, 2\}, s < t, t \neq s'), \\
(5.5) & \quad X_{rs'}X_{rs} = X_{rs}X_{rs'} + \hat{q} \sum_{l=s+1}^{n} q^{l'-s-1}X_{rl}X_{rl'} & (r \in \{1, 2\}, s < s'), \\
(5.6) & \quad X_{2s}X_{1s} = q^{-1}X_{1s}X_{2s}, \\
(5.7) & \quad X_{2s}X_{1l} = X_{1l}X_{2s} & (s < t, t \neq s'), \\
(5.8) & \quad X_{2s}X_{1s} = X_{1s}X_{2s} - \hat{q}X_{1s}X_{2s} & (s < t, t \neq s'), \\
(5.9) & \quad X_{2s}X_{1s'} = qX_{1s'}X_{2s} + \hat{q} \sum_{l=1}^{s-1} q^{s-l}X_{1l}X_{2l} & (s < s'), \\
(5.10) & \quad X_{2s'}X_{1s} = qX_{1s}X_{2s'} + \hat{q} \sum_{l=s+1}^{n} q^{l-s}X_{1l}X_{2l'}, \\
& \quad + \hat{q}q^{-1} \sum_{l=1}^{n} q^{l'-s}X_{1l'}X_{2l} - \hat{q}X_{1s}X_{2s} & (s < s').
\end{align*}

We label the canonical generators of $A(R_{D_n})$ by Y_{ij} for $i, j = 1, \ldots, 2n$, and let $T_{2,n}$ be the subalgebra of $A(R_{D_n})$ generated by $\{Y_{ij} : 1 \leq i \leq 2, 1 \leq j \leq 2n\}$.

Proposition 5.1. There is a surjective algebra homomorphism $\mathcal{X}_{n,q} \rightarrow T_{2,n}$ with kernel $(\Omega_1, \Omega_2, \Upsilon)$, where
\begin{equation}
(5.11) \quad \Omega_1 := \sum_{r=1}^{n} q^{\rho_{r'}} X_{1,r}X_{1,r'}, \quad \Omega_2 := \sum_{r=1}^{n} q^{\rho_{r'}} X_{2,r}X_{2,r'}, \quad \Upsilon := \sum_{r=1}^{2n} q^{\rho_{r}} X_{1,r'}X_{2,r}.
\end{equation}

Proof. Using the FRT construction (see Equation 5.2 and 5.3), one can readily compute the defining relations for the algebra $A(R_{D_n})$ and see that they line up appropriately with Equation 5.4–5.10 together with $\Omega_1 = \Omega_2 = \Upsilon = 0$. \hfill \square

Notice that the definition of $\mathcal{X}_{n,q}$ makes sense when $n = 2$, and Proposition 5.1 holds in this case as well. However, the rest of the results of this paper require $n \geq 3$.

Following [1], we recall the details on twisting algebras by cocycles. Let M be an additive abelian group and $c : M \times M \rightarrow k^\times$ a 2-cocycle of M. If Λ is a k-algebra graded by M, we can twist Λ by c to obtain a new M-graded k-algebra Λ' that is canonically isomorphic to Λ as a k-module via $x \leftrightarrow x'$. Multiplication of homogeneous elements in Λ' is given by
\[x'y' = c(\deg(x), \deg(y))(xy)'. \]

For our purposes, we will let $\beta : Q(\hat{D}_{n+1}) \times Q(\hat{D}_{n+1}) \rightarrow k^\times$ be the bicharacter (hence, also a 2-cocycle) defined by
\begin{equation}
(5.12) \quad \beta(\alpha_i, \alpha_j) = \begin{cases} q & (i, j) = (0, n + 1), \\
1 & (i, j) \neq (0, n + 1), \end{cases}
\end{equation}

and have the following:
Theorem 5.2. The β-twisted algebra $\left(\mathcal{U}_q^{\tilde{\alpha}}\right)'$ is isomorphic to $\mathcal{X}_{n,q}$.

Proof. We label the corresponding generators of $\left(\mathcal{U}_q^{\tilde{\alpha}}\right)'$ by

$$X'_n, \ldots, X'_1, Y'_1, \ldots, X'_n, \tilde{X}_n, \ldots, \tilde{X}_1, \tilde{Y}_1, \ldots, \tilde{Y}_n.$$ \hfill (5.13)

By comparing Eqs. (4.18-4.26) and (5.4-5.10) we observe that the algebra map $\left(\mathcal{U}_q^{\tilde{\alpha}}\right)' \to \mathcal{X}_{n,q}$ defined by

$$X'_i \mapsto (-1)^{n+1-i}X_{1,n+1-i}, \quad \tilde{X}_i \mapsto (-1)^{n+1-i}X_{2,n+1-i},$$

(5.14)

$$Y'_i \mapsto X_{1,n+i}, \quad \tilde{Y}'_i \mapsto X_{2,n+i},$$

(5.15)

for every $i \in \{1, \ldots, n\}$, is an isomorphism. \hfill \square

From this, we deduce the following:

Theorem 5.3. The algebra $\mathcal{X}_{n,q}$ is an iterated Ore extension over k,

$$\mathcal{X}_{n,q} = k[X_{11}][X_{12}; \tau_1, \delta_1] \cdots [X_{1n}; \tau_n, \delta_n][X_{21}; \tau_2, \delta_2] \cdots [X_{2n}; \tau_{2n}, \delta_{2n}].$$

Proof. It suffices to check that ordered monomials are linearly independent. From Theorem 5.2 we have a canonical vector space isomorphism $\mathcal{U}_q^{\tilde{\alpha}} \to \mathcal{X}_{n,q}$ that preserves the ordered generating sets. Since $\mathcal{U}_q^{\tilde{\alpha}}$ has a basis of ordered monomials, $\mathcal{X}_{n,q}$ does as well. \hfill \square

6. A type A_m analogue

6.1. The algebras $\mathcal{U}_q(\mathfrak{sl}_{m+1})$, $\mathcal{U}_q^{c_{m}}$, and $\mathcal{O}_q(k^m)$. Fix an integer $m > 1$. Let $Q(A_m)$ denote the abelian subgroup of \mathbb{R}_{m+1} consisting of integral $(m+1)$-tuples (a_1, \ldots, a_m+1) with the sum $\sum a_i$ equalling 0. As a group, $Q(A_m)$ is generated by $\alpha_i := e_i - e_{i+1}$ for $i \in \{1, \ldots, m\}$. Let $W(A_m)$ and $B_{\mathfrak{sl}_{m+1}}$ denote the corresponding Weyl group and braid group, respectively. Let $\mathcal{U}_q(\mathfrak{sl}_{m+1})$ denote the corresponding quantum enveloping algebra, and let $\mathcal{U}_q^{c_{m}} \supseteq 0$ be the positive Borel subalgebra of $\mathcal{U}_q(\mathfrak{sl}_{m+1})$. We consider the Coxeter element

$$c_m = s_1 \cdots s_m \in W(A_m)$$

and the associated De Concini-Kac-Procesi algebra $\mathcal{U}_q^{c_m}$. We label the root vectors in $\mathcal{U}_q^{c_m}$ by

$$z_1 := X_{e_1 - e_2}, \quad z_2 := X_{e_1 - e_3}, \ldots, \quad z_m := X_{e_1 - e_{m+1}}$$

and have the following

Proposition 6.1. The root vectors z_1, \ldots, z_m satisfy the relations

$$z_iz_j = qz_jz_i$$

for all $i, j \in \{1, \ldots, m\}$ with $i < j$.

Since $\mathcal{U}_q^{c_m}$ has a PBW basis of ordered monomials, the relations of Eqn. 6.3 are the defining relations for $\mathcal{U}_q^{c_m}$. In particular, we have the following well-known result (c.f. for example [15]):

Corollary 6.2. The algebra $\mathcal{U}_q^{c_m}$ is isomorphic to the algebra of quantum affine space $\mathcal{O}_q(k^m)$.
Denote by $\pi_A : U_A^{\geq 0} \rightarrow U_A^{\geq 0}$ the unique algebra map such that
\begin{align}
\pi(E_1) &= 0, \\
\pi(E_i) &= E_i & (1 < i \leq m), \\
\pi(K_\mu) &= K_\mu & (\mu \in Q(\hat{A}_m)).
\end{align}

Let $\lambda_A : U_A^{\geq 0} \otimes U_q^{c,m} \rightarrow U_A^{\geq 0}$ be defined by the following sequence of linear maps:
\begin{equation}
\lambda_A : U_A^{\geq 0} \otimes U_q^{c,m} \xrightarrow{\text{incl.}} (U_A^{\geq 0}) \otimes^2 \pi_A \otimes \text{id} (U_A^{\geq 0}) \otimes^2 \text{adjoint} U_A^{\geq 0}.
\end{equation}

The identities in Equation 3.10 imply the following

Corollary 6.3. The linear map λ_A satisfies $\text{Im}(\lambda_A) \subseteq U_q^{c,m}$. In particular, λ_A endows the algebra $U_q^{c,m}$ with the structure of a left $U_A^{\geq 0}$-module algebra.

As before (see 3.18), we use the action map λ_A to construct the smash product $U_q^{c,m} \# U_A^{\geq 0}$ and let $(U_q^{c,m})^#$ denote the subalgebra
\begin{equation}
(U_q^{c,m})^# := \{1\# u, u\# 1 \mid u \in U_q^{c,m}\} \subseteq U_q^{c,m} \# U_A^{\geq 0}.
\end{equation}

6.2. The quantum affine algebra $U_q^{\hat{c,m}}$. Let $Q(\hat{A}_m) = Q(A_m) \oplus \mathbb{Z}$ denote the root lattice of type \hat{A}_m. As an abelian group, $Q(\hat{A}_m)$ is generated additively by the positive simple roots $\alpha_0 := e_m - e_1$, and $\alpha_i := e_i - e_{i+1}$ for $i \in \{1, \ldots, m\}$. We extend the inner product \langle , \rangle on $Q(A_m)$ to an inner product on $Q(\hat{A}_m)$ by setting $1 \in Q(\hat{A}_m)$ to be isotropic. We let s_i denote the corresponding simple reflection $s_i : Q(\hat{A}_m) \rightarrow Q(\hat{A}_m)$, for $0 \leq i \leq m$, and let $W(\hat{A}_m) = \{s_0, \ldots, s_m\}$ denote the corresponding affine Weyl group. We let $U_q(\mathfrak{sl}_{m+1})$ denote the corresponding quantized enveloping algebra.

We set
\begin{equation}
\hat{c}_m := (s_1 \cdots s_m)(s_0 s_1 \cdots s_{m-1}) \in W(\hat{A}_m)
\end{equation}
and note the following analogue of Theorem 1.4

Theorem 6.4. As k-algebras, $U_q^{\hat{c,m}} \cong (U_q^{c,m})^#$.

Proof. Compute. One can use an analogous isomorphism of Thm. 1.4. \qed

Now let V be a k-module with basis $\{v_1, \ldots, v_m\}$, and for all $i, j, \ell \in \{1, \ldots, m\}$, define linear maps e_{ij} by the rule $e_{ij} v_\ell = \delta_{\ell j} v_i$.

Set
\begin{equation}
R_{A_{m-1}} = q \sum_{i=1}^{m} (e_{ii} \otimes e_{ii}) + \sum_{i \neq j} (e_{ii} \otimes e_{jj}) + \hat{q} \sum_{i > j} (e_{ij} \otimes e_{ji}).
\end{equation}

This is the standard R-matrix of type A_{m-1} (see [12], Section 8.4.2).

The algebra of $m \times m$ quantum matrices, denoted $O_q(M_m(k))$, is the algebra $A(R_{A_{m-1}})$ and was defined in [7]. More generally, one considers $\ell \times p$ quantum matrices, denoted $O_q(M_{\ell,p}(k))$, by looking at appropriate subalgebras of square quantum matrices.

We let $\gamma : Q(\hat{A}_m) \times Q(\hat{A}_m) \rightarrow k^\times$ be the bicharacter defined by
\begin{equation}
\gamma(\alpha_i, \alpha_j) = \begin{cases}
q, & (i, j) = (0, 1), \\
1, & (i, j) \neq (0, 1).
\end{cases}
\end{equation}
and have the following analogue of Thm. \[5.2\]

Theorem 6.5. Twisting $U_q^\mathbb{C}^{m}$ by γ yields an algebra isomorphic to $O_q(M_{2,m})$.

Proof. Compute (c.f. Thm. \[5.2\]).

Theorem 6.5 together with Proposition \[5.1\] allows us to view $X_{n,q}$ as an orthogonal analogue of $2 \times n$ quantum matrices. The key distinction is that $O_q(M_{2,n}(k))$ is a subalgebra of $A(R_{A_n-1})$, whereas $X_{n,q}$ is a parent of the analogous subalgebra $T_{2,n} \subseteq A(R_{D_n})$.

References

[1] M. Artin, W.F. Schelter, J. Tate, Quantum deformations of GL_n, Commun. Pure Appl. Math., 44 (1991), 879-895.

[2] J. Beck, Braid group action and quantum affine algebras, Comm. Math. Phys., 165, (1994), 555-568.

[3] J. Beck, Convex bases of PBW type for quantum affine algebras, Comm. Math. Phys., 165, (1994), 193-199.

[4] G. Cauchon, Effacement des dérivations et spectres premiers d’algèbres quantiques, J. Algebra, 260, (2003), 476-518.

[5] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, New York, 1994.

[6] C. De Concini, V. Kac, and C. Procesi, Some quantum analogues of solvable Lie groups, In: Geometry and analysis (Bombay, 1992), pp. 41-65, Tata Inst. Fund. Res., Bombay, 1995.

[7] L.D. Faddeev, N. Yu Reshetikhin, and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebraic Analysis, Vol. I, Academic Press, Boston, MA (1988), 129-139.

[8] K.R. Goodearl and T.H. Lenagan, Winding-invariant prime ideals in quantum 3×4 matrices, J. Algebra, 260, (2003), 657-687.

[9] K.R. Goodearl and E.S. Letzter. The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras, Trans. Amer. Math. Soc., 362, (2000), no. 3, 1381-1403.

[10] K.R. Goodearl and M. Yakimov, Poisson structures on affine spaces and flag varieties. II., Trans. Amer. Math. Soc., 361, (2009), 5753-5780.

[11] R.G. Heyneman and M.E. Sweedler, Affine Hopf Algebras, I, J. Algebra, 13, (1969), 192-241.

[12] A. Klimyk and K. Schm"{o}dgen, Quantum Groups and their Representations, Springer-Verlag, Berlin, 1997.

[13] S. Launois, Combinatorics of H-primes in quantum matrices, J. Algebra, 309, (2007), 139-167.

[14] G. Lusztig, Introduction to quantum groups, Progr. Math. 220, Birkhäuser, 1993.

[15] A. Mériaux and G. Cauchon, Admissible diagrams in quantum nilpotent algebras and combinatoric properties of Weyl groups, Represent. Theory 14 (2010), 645-687.

[16] M. Yakimov, Invariant prime ideals in quantizations of nilpotent Lie algebras, Proc. London Math. Soc. (3) 101 (2010), no. 2, 454-476.

Department of Mathematics, University of California, Santa Barbara, CA, 93106
E-mail address: johnson@math.ucsb.edu, cnowlin@math.ucsb.edu