SYMBOLIC POWERS OF IDEALS AND THEIR TOPOLOGY OVER A MODULE

ADELEH AZARI, SIMIN MOLLAMAHMOUDI AND REZA NAGHIPOUR∗

Abstract. Let I denote an ideal of a Noetherian ring R and N a non-zero finitely generated R-module. In the present paper, some necessary and sufficient conditions are given to determine when the I-adic topology on N is equivalent to the I-symbolic topology on N. Among other things, we shall give a complete solution to the question raised by R. Hartshorne in [Affine duality and cofiniteness, Invent. Math. 9(1970), 145-164], for a prime ideal p of dimension one in a local Noetherian ring R, by showing that the p-adic topology on N is equivalent to the p-symbolic topology on N if and only if for all z ∈ Ass_R N there exists q ∈ Supp(N*) such that z ⊆ q and q ∩ R = p. Also, it is shown that if for every p ∈ Supp(N) with dim R/p = 1, the p-adic and the p-symbolic topologies are equivalent on N, then N is unmixed and Ass_R N has only one element. Finally, we show that if Ass_R N* consists of a single prime ideal, for all p ∈ A*(I, N), then the I-adic and the I-symbolic topologies on N are equivalent.

1. Introduction

In this paper we continue the study of the equivalence between the I-adic topology and the I-symbolic topology on N. Let R denote a commutative Noetherian ring, I an ideal of R and let N be a finitely generated R-module. For a natural number n, the nth symbolic power of I with respect to N, denoted by (IN)^(n), is defined to be the intersection of those primary components of I^n N which correspond to the minimal primes of Ass_R N/IN. It is easy to see that the submodule (IN)^(n) is the set of all elements x in N for which there exists an element s in R \ ∪ p such that sx ∈ I^n N, where p runs over the set of minimal primes of Ass_R N/IN. This definition is inspired by the one given in [18, Remark, p. 233]. Symbolic powers of ideals are central objects in commutative algebra and algebraic geometry for their tight connection to primary decomposition of ideals and the order of vanishing of polynomials.

The I-adic filtration \{I^n N\}_{n≥0} and the I-symbolic filtration \{(IN)^(n)\}_{n≥0} induce topologies on N which are called the I-adic and the I-symbolic topology respectively. One readily sees from the definition that I^n N ⊆ (IN)^(n) for all natural numbers n, so that the I-adic topology on N is stronger than the I-symbolic topology on N, but there are not equivalent in general. Therefore, one would like to compare the I-adic topology and the I-symbolic topology on N and provide some criterions for equivalence. These two
topologies are said to be equivalent if for every natural number \(n \), there is a natural number \(m \) such that \(I^mN \) contains \((IN)^{(m)} \). R. Hartshorne in [11 Proposition 7.1] proved that if \(\mathfrak{p} \) is a prime ideal of dimension one of a complete local ring \(R \), then the \(\mathfrak{p} \)-adic topology on \(N \) is equivalent to the \(\mathfrak{p} \)-symbolic topology on \(N \) if and only if every associated prime ideal of \(N \) is contained in \(\mathfrak{p} \). In this paper Hartshorne writes: “A general question, whose solution is quite complicated, is to determine when the \(\mathfrak{p} \)-adic topology is equivalent to the \(\mathfrak{p} \)-symbolic topology”. With respect to this question, P. Schenzel in [15, Theorem 1] gave a solution to this problem, in the case when \(R = N \), and later S. McAdam and L.J. Ratliff in [8] gave an elegant proof of Schenzel’s theorem. Finally, L.J. Ratliff in [14] and J.K. Verma in [17] generalized Schenzel’s theorem to primary and arbitrary ideals, respectively. The purpose of this paper is to give a generalization of Hartshorne’s result by removing the completeness condition on ring. Moreover, we prove some new results concerning on the equivalence of the \(I \)-adic topology and the \(I \)-symbolic topology on \(N \).

Namely, we show that these topologies are equivalent in the following cases:

(i) The \(\mathfrak{p} \)-adic and the \(\mathfrak{p} \)-symbolic topologies on \(N \) are equivalent, for all \(\mathfrak{p} \in \text{mAss}_R N/IN \).

(ii) \(N \) is locally unmixed and \(I = \text{Rad}(J + \text{Ann}_R N) \), where \(J \) is an \(N \)-proper ideal of \(R \) generated by \(\text{height}_N J \) elements.

(iii) \(\text{Ass}_R^* N^* \) consists of a single prime ideal, for all \(\mathfrak{p} \in A^*(I, N) \).

(iv) For every ideal \(J \) of \(R \) with \(\text{Ass}_R N/JN = \text{mAss}_R N/JN \) and \(I \subseteq J \), the \(I \)-symbolic topology is finer than the \(J \)-symbolic topology on \(N \).

In addition, we show that if \(R \) is local and for every \(\mathfrak{p} \in \text{Supp}(N) \) with \(\dim R/\mathfrak{p} = 1 \), the \(\mathfrak{p} \)-adic and the \(\mathfrak{p} \)-symbolic topologies are equivalent, then \(N \) is unmixed and \(\text{Ass}_R N \) has only one element.

Throughout this paper all rings are commutative and Noetherian, with identity, unless otherwise specified. We shall use \(R \) to denote such a ring, \(I \) an ideal of \(R \), and \(N \) a non-zero finitely generated module over \(R \). We denote by \(\mathcal{R} \) the Rees ring \(R[u, It] := \bigoplus_{n \in \mathbb{Z}} I^n t^n \) of \(R \) with respect to \(I \), where \(t \) is an indeterminate and \(u = t^{-1} \). Also, the graded Rees module \(N[u, It] := \bigoplus_{n \in \mathbb{Z}} I^n N \) over \(\mathcal{R} \) is denoted by \(\mathcal{N} \), which is a finitely generated \(\mathcal{R} \)-module.

If \((R, \mathfrak{m})\) is local, then \(R^* \) (resp. \(N^* \)) denotes the completion of \(R \) (resp. \(N \)) w.r.t. the \(\mathfrak{m} \)-adic topology. Then \(N \) is said to be an unmixed (resp. a quasi-unmixed) module if all the prime ideals (resp. all the minimal prime ideals) of \(\text{Ass}_{R^*} N^* \) have the same dimension. More generally, if \(R \) is not necessarily local, \(N \) is locally unmixed (resp. locally quasi-unmixed) module if for any \(\mathfrak{p} \in \text{Supp}(N) \), \(N_\mathfrak{p} \) is an unmixed (a quasi-unmixed) module over \(R_\mathfrak{p} \). We shall say that an ideal \(J \) of \(R \) is \(N \)-proper if \(N/JN \neq 0 \), and, when this is the case, we define the \(N \)-height of \(J \) (written \(\text{height}_N J \)) to be \(\inf \{ \text{height}_N \mathfrak{p} : \mathfrak{p} \in \text{Supp} N \cap V(J) \} \), where \(\text{height}_N \mathfrak{p} \) is defined to be the supremum of lengths of chains of prime ideals of \(\text{Supp}(N) \) terminating with \(\mathfrak{p} \). For any ideal \(\mathfrak{a} \) of \(R \), the radical of \(\mathfrak{a} \), denoted by \(\text{Rad}(\mathfrak{a}) \), is defined to be the set \(\{ x \in \mathfrak{a} : x^n \in \mathfrak{a} \text{ for some } n \in \mathbb{N} \} \). For any \(R \)-module \(L \), we denote by \(\text{mAss}_R L \) the set of minimal prime ideals of \(\text{Ass}_R L \). For any unexplained notation and terminology we refer the reader to [3] or [9].
In the second section, we examine the equivalence between the \(I \)-adic and the \(I \)-symbolic topologies. In this section, we show that these topologies are equivalent, whenever for every \(p \in \text{mAss}_R N/IN \), the \(p \)-adic topology on \(N \) is equivalent to the \(p \)-symbolic topology on \(N \).

The main result of the third section is that if \(N \) is a non-zero finitely generated locally unmixed \(R \)-module and \(I \) an \(N \)-proper ideal of \(R \) generated by height \(N \) \(I \) elements, then the \(J \)-adic topology is equivalent to the \(J \)-symbolic topology, where \(J = \text{Rad}(I + \text{Ann}_R N) \). Also, in this section we shall extend a nice result of Hartshorne [4, Proposition 7.1].

Namely, we shall show the following result:

Theorem 1.1. If \((R, \mathfrak{m})\) is local and \(p \in \text{Supp}(N) \) with \(\dim R/p = 1 \), then the \(p \)-adic topology on \(N \) is equivalent to the \(p \)-symbolic topology on \(N \) if and only if for all \(z \in \text{Ass}_R N^* \) there exists \(q \in \text{Supp}(N^*) \) such that \(z \subseteq q \) and \(q \cap R = p \).

Finally, the main purpose of the Section 4 is to establish a connection between the unmixedness (resp. associated primes) of \(N \) and the comparison of the \(p \)-adic topology on \(N \) and the \(p \)-symbolic topology on \(N \) (resp. \(I \)-adic topology and the \(I \)-symbolic topology on \(N \)), for certain prime ideals \(p \) of \(R \). More precisely, we show that:

Theorem 1.2. Let \(N \) be a non-zero finitely generated module over a commutative Noetherian ring \(R \).

(i) If \(\text{Ass}_{R^p} N^* \) consists of a single prime, for all \(p \in A^*(I) \), then the \(I \)-adic topology on \(N \) is equivalent to the \(I \)-symbolic topology on \(N \).

(ii) If \((R, \mathfrak{m})\) is local and for every \(p \in \text{Supp}(N) \) with \(\dim R/p = 1 \), the \(p \)-adic topology on \(N \) is equivalent to the \(p \)-symbolic topology on \(N \), then \(N \) is unmixed and \(\text{Ass}_R N \) consists of a single prime.

2. Comparison of Topologies

The purpose of this section is to examine the equivalence between the \(I \)-adic and the \(I \)-symbolic topologies. The main goal of this section is Theorem 2.5, which shows that these topologies are equivalent, whenever for every \(p \in \text{mAss}_R N/IN \), the \(p \)-adic topology is equivalent to the \(p \)-symbolic topology. Before we state the main result of this section, let us give a definition:

Definition 2.1. A prime ideal \(p \) of \(R \) is called a *quitessential prime ideal* of \(I \) w.r.t. \(N \) precisely when there exists \(q \in \text{Ass}_{R^p} N^* \) such that \(\text{Rad}(IR^*_p + q) = pR^*_p \). The set of quitessential primes of \(I \) w.r.t. \(N \) is denoted by \(Q((u\mathcal{R}, N)) \). The concepts of the quitessential and essential prime ideals of \(I \) were introduced by McAdam [7], and Ahn in [1] extended them to modules.

Proposition 2.2. Let \(N \) be a finitely generated \(R \)-module and \(I \) an \(N \)-proper ideal of \(R \). Then the following conditions are equivalent:

(i) The \(I \)-symbolic topology on \(N \) is equivalent to the \(I \)-adic topology on \(N \).
(ii) For every N-proper ideal J of R with $\text{Ass}_R N/JN = \text{mAss}_R N/JN$ and $I \subseteq J$, the I-symbolic topology on N is finer than the J-symbolic topology on N.

Proof. (i) \implies (ii): Let J be an N-proper ideal of R such that $I \subseteq J$ and that $\text{Ass}_R N/JN = \text{mAss}_R N/JN$. For every integer $l \geq 0$, we need to show that there exists an integer $m \geq 0$ such that $(IN)^{(m)} \subseteq (JN)^{(l)}$. To this end, in view of assumption (i), there is an integer $m \geq 0$ such that $(IN)^{(m)} \subseteq I^lN$, and so $(IN)^{(m)} \subseteq J^lN \subseteq (JN)^{(l)}$, as required.

(ii) \implies (i): In view of Corollary 3.7, it is enough for us to show that $Q(I, N) = \text{mAss}_R N/IN$. To achieve this, suppose the contrary is true. Then there is an element $p \in Q(I, N)$ such that $p \notin \text{mAss}_R N/IN$. (Note that $\text{mAss}_R N/IN \subseteq Q(I, N)$.) Hence, in view of Theorem 3.6, there exists an integer $k \geq 0$ such that $(IN)^{(m)} \nsubseteq (pN)^{(k)}$ for all integer $m \geq 0$. Now, because of $I \subseteq p$ and $\text{Ass}_R N/pN = \text{mAss}_R N/pN$, the assumption (ii) provides a contradiction. \hfill \Box

The following proposition and its corollary are quite useful in the proof of the main theorem.

Proposition 2.3. Let N be a non-zero finitely generated R-module and I_1, I_2 be two N-proper ideals of R such that

$$\text{mAss}_R N/(I_1I_2)N = \text{mAss}_R N/I_1N \cup \text{mAss}_R N/I_2N.$$

Suppose that the I_i-symbolic topology on N is equivalent to the I_i-adic topology on N, for $i = 1, 2$. Then the I_1I_2-symbolic topology on N is equivalent to the I_1I_2-adic topology on N and $(I_1 \cap I_2)$-symbolic topology on N is equivalent to the $(I_1 \cap I_2)$-adic topology on N.

Proof. As $\text{Rad}(I_1I_2) = \text{Rad}(I_1 \cap I_2)$ and $\text{mAss}_R N/(I_1I_2)N = \text{mAss}_R N/(I_1 \cap I_2)N$, it is enough, in view of Lemma 3.1 and Corollary 3.7, to show that $Q(I_1I_2, N) = \text{mAss}_R N/(I_1I_2)N$. To achieve this, suppose that $p \in Q(I_1I_2, N)$. Then there exists $z \in \text{Ass}_R N^*_p$ such that $\text{Rad}(I_1I_2 R^*_p + z) = pR^*_p$. As $I_1I_2 \subseteq p$, without loss of generality we may assume that $I_1 \subseteq p$. Then $\text{Rad}(I_1 R^*_p + z) = pR^*_p$, and so $p \in Q(I_1, N)$. Hence, in view of assumption and Corollary 3.7, $p \in \text{mAss}_R N/I_1N$. Therefore, it follows from

$$\text{mAss}_R N/(I_1I_2)N = \text{mAss}_R N/I_1N \cup \text{mAss}_R N/I_2N,$$

that $p \in \text{mAss}_R N/(I_1I_2)N$, as required. \hfill \Box

Corollary 2.4. Let N be a non-zero finitely generated R-module and let I_1, \ldots, I_n be N-proper ideals of R such that $\text{mAss}_R N/(\prod_{i=1}^n I_i)N = \bigcup_{i=1}^n \text{mAss}_R N/I_iN$, and that the I_i-symbolic topology on N is equivalent to the I_i-adic topology on N, for all $i = 1, \ldots, n$. Then the $\prod_{i=1}^n I_i$-symbolic topology on N (resp. $\bigcap_{i=1}^n I_i$-symbolic topology on N) is equivalent to the $\prod_{i=1}^n I_i$-adic (resp. $\bigcap_{i=1}^n I_i$-adic) topology on N.
Proof. The result follows from Proposition 2.3 and induction on \(n \).

We are now ready to state and prove the main theorem of this section, which gives us a criterion of the equivalence between the \(I \)-adic and the \(I \)-symbolic topologies.

Theorem 2.5. Let \(N \) be a non-zero finitely generated \(R \)-module and let \(I \) be an \(N \)-proper ideal of \(R \) such that the \(p \)-symbolic topology is equivalent to the \(p \)-adic topology on \(N \), for all \(p \in \text{mAss}_R N/IN \). Then the \(I \)-symbolic topology on \(N \) is equivalent to the \(I \)-adic topology on \(N \).

Proof. Let \(\text{mAss}_R N/IN = \{p_1, \ldots, p_n\} \). Then it is easy to see that

\[
\text{mAss}_R N/(\prod_{i=1}^n p_i)N = \bigcup_{i=1}^n \text{mAss}_R N/p_iN.
\]

Now, the assertion follows from Corollary 2.4 and [10, Lemma 3.1].

3. Locally Unmixed Modules and Comparison of Topologies

The main goal of this section is to prove the equivalence between the \(I \)-adic and the \(I \)-symbolic topologies on a finitely generated locally unmixed \(R \)-module \(N \) for certain ideals \(I \) of \(R \). Also, we explore an equivalence between the \(p \)-adic and the \(p \)-symbolic topologies and the associated primes of \(N \), for prime ideals \(p \) of dimension one. We begin with:

Definition 3.1. A prime ideal \(p \) of \(R \) is called a *quitasymptotic prime ideal of \(I \) w.r.t. \(N \)* precisely when there exists \(q \in \text{mAss}_R N/\mathfrak{p}N \) such that \(\text{Rad}(IR_p + q) = \mathfrak{p}R_p \). The set of quitasymptotic prime ideals of \(I \) w.r.t. \(N \), denoted by \(\overline{Q}^*_I(N) \), is defined to be the set \(\{q \cap R \mid q \in \overline{Q}^*(u\mathfrak{p}, N)\} \).

Lemma 3.2. Let \(N \) be a non-zero finitely generated locally unmixed \(R \)-module and let \(I \) be an ideal of \(R \). Then

\[
E(I, N) = \overline{A}^*(I, N).
\]

Proof. In view of [11, Corollary 3.7], it is enough for us to show that \(E(I, N) \subseteq \overline{A}^*(I, N) \).

To do this let \(p \in E(I, N) \). Since both \(E(I, N) \) and \(\overline{A}^*(I, N) \) behave well under localization, without loss of generality, we may assume that \((R, p)\) is local. Also, in view [11, Proposition 3.8], it is easy to see that we may assume in addition that \(R \) is complete. Now, according to [11, Proposition 3.6], there exists \(z \in \text{Ass}_R N \) such that \(z \subseteq p \) and \(p/z \in E(p + z) \). Since \(R/z \) is unmixed it follows from [5, Proposition 2.11] that \(p/z \in \overline{A}^*(I + z) \). Moreover, since by hypothesis \(z \in \text{mAss}_R N \), it follows from [11, Proposition 3.6] that \(p \in \overline{A}^*(I, N) \), as required.

Before we state the next lemma, let us recall the important notion *analytic spread of \(I \) with respect to \(N \)*, over a local ring \((R, \mathfrak{m})\), introduced by Brodmann in [3]:

\[
l(I, N) := \dim \mathcal{N}(I, N)/(\mathfrak{m}, u)\mathcal{N}(I, N),
\]
in the case \(N = R \), \(l(I,N) \) is the classical analytic spread \(l(I) \) of \(I \), introduced by Northcott and Rees (see [13]).

Lemma 3.3. Let \(N \) be a non-zero finitely generated locally quasi-unmixed \(R \)-module and let \(I \) be an \(N \)-proper ideal of \(R \) generated by \(\text{height}_N I \) elements. Then \(\bar{A}^*(I,N) = \text{mAss}_R N/IN \).

Proof. As \(\text{mAss}_R N/IN \subseteq \bar{A}^*(I,N) \), it will suffice for us to show that \(\bar{A}^*(I,N) \subseteq \text{mAss}_R N/IN \). To this end, let \(\mathfrak{p} \in \bar{A}^*(I,N) \). Since \(N_{\mathfrak{p}} \) is a quasi-unmixed \(\mathcal{R}_{\mathfrak{p}} \)-module, it follows from [12, Proposition 2.3] that \(\text{height}_N \mathfrak{p} = \ell(IR_{\mathfrak{p}}, N_{\mathfrak{p}}) \). Since at least \(\ell(\mathfrak{a}) \) elements are needed to generate \(\mathfrak{a} \), for any ideal \(\mathfrak{a} \) in a commutative Noetherian ring \(A \), it follows from [12, Lemma 2.2] that \(\ell(IR_{\mathfrak{p}}, N_{\mathfrak{p}}) \leq \text{height}_N I \), and so \(\text{height}_N \mathfrak{p} = \text{height}_N I \). Therefore \(\mathfrak{p} \in \text{mAss}_R N/IN \), as required. \(\square \)

The following theorem, which is one of our main results of this section, shows that for certain ideals \(I \), the \(I \)-symbolic topology on \(N \) is equivalent to the \(I \)-adic topology on \(N \), whenever \(N \) is a finitely generated locally unmixed \(R \)-module.

Theorem 3.4. Let \(N \) be a non-zero finitely generated locally unmixed \(R \)-module and let \(J \) be an \(N \)-proper ideal of \(R \) generated by \(\text{height}_N J \) elements. Then the \(I \)-symbolic topology on \(N \) is equivalent to the \(I \)-adic topology on \(N \), where \(I = \text{Rad}(J + \text{Ann}_R N) \).

Proof. In view of [11, Corollary 3.7 and Lemma 3.1], it will suffice to show that \(Q(I,N) \subseteq \text{mAss}_R N/IN \). For this let \(\mathfrak{p} \in Q(I,N) \). Then, it follows from [11, Lemma 3.1] that \(\mathfrak{p} \in Q(J,N) \). Thus, by [11 Corollary 3.7], \(\mathfrak{p} \in E(J,N) \), and so by virtue of Lemma [5.2] \(\mathfrak{p} \in \bar{A}^*(J,N) \). Therefore, in view of Lemma [3.3], \(\mathfrak{p} \in \text{mAss}_R N/JN \). Now, as \(\text{mAss}_R N/JN = \text{mAss}_R N/JN \), the desired result follows. \(\square \)

The next theorem, which is the final main result of this section, extends a nice result of Hartshorne [1] Proposition 7.1).

Theorem 3.5. Let \((R, \mathfrak{m}) \) be a local ring and \(N \) a non-zero finitely generated \(R \)-module. Let \(\mathfrak{p} \in \text{Supp}(N) \) with \(\dim R/\mathfrak{p} = 1 \). Then the following conditions are equivalent:

(i) The \(\mathfrak{p} \)-symbolic topology on \(N \) is equivalent to the \(\mathfrak{p} \)-adic topology on \(N \).

(ii) For all \(z \in \text{Ass}_{R^*} N^* \) there exists \(\mathfrak{q} \in \text{Supp}(N^*) \) such that \(z \subseteq \mathfrak{q} \) and \(\mathfrak{q} \cap R = \mathfrak{p} \).

Proof. \((i) \implies (ii) \): Let \(z \in \text{Ass}_{R^*} N^* \). In view of [11, Corollary 3.7] and the assumption (i), we have

\[
Q(\mathfrak{p}, N) = \text{mAss}_R N/\mathfrak{p}N = \{\mathfrak{p}\}.
\]

Therefore \(\mathfrak{m} \notin Q(\mathfrak{p}, N) \), and so \(\mathfrak{m}R^* \) is not minimal over \(\mathfrak{p}R^* + z \). Let \(\mathfrak{q} \) be a minimal prime over \(\mathfrak{p}R^* + z \). Then \(\mathfrak{q} \in \text{Supp}(N^*) \) and \(\mathfrak{p} \subseteq \mathfrak{q} \cap R \). Now, as \(\dim R/\mathfrak{p} = 1 \), one easily sees that \(\mathfrak{q} \cap R = \mathfrak{p} \) and \(z \subseteq \mathfrak{q} \), as required.

In order to prove \((ii) \implies (i) \), in view of [11 Corollary 3.7], it is enough for us to show that \(Q(\mathfrak{p}, N) = \{\mathfrak{p}\} \). To do this, let \(\mathfrak{q} \in Q(\mathfrak{p}, N) \). Then \(\mathfrak{p} \subseteq \mathfrak{q} \subseteq \mathfrak{m} \). Since \(\dim R/\mathfrak{p} = 1 \), we see that \(\mathfrak{q} = \mathfrak{p} \) or \(\mathfrak{q} = \mathfrak{m} \). If \(\mathfrak{q} = \mathfrak{m} \), then \(\mathfrak{m} \in Q(\mathfrak{p}, N) \), and so there exists \(z \in \text{Ass}_{R^*} N^* \) such that \(\text{Rad}(\mathfrak{p}R^* + z) = \mathfrak{m}R^* \). Hence, by the assumption (ii), there exists \(\mathfrak{q}' \in \text{Supp}(N^*) \) such that...
such that $z \subseteq q'$ and $q' \cap R = p$. Therefore, $q' \subseteq pR^*$, and so $\text{Rad}(pR^*) = mR^*$. Consequently, $\dim R^*/pR^* = 0$ which is a contradiction, because $\dim R^*/pR^* = \dim R/p = 1$. Whence $q = p$ and this completes the proof. \hfill \square

4. ASSOCIATED PRIMES AND UNMIXEDNESS

The main aim of this section shows that if $\text{Ass}_{R_p} N_p^*$ consists of a single prime, for all $p \in A^*(I, N)$, then the I-adic topology is equivalent to the I-symbolic topology on N. Furthermore, we show that, if (R, \mathfrak{m}) is local and for every $p \in \text{Supp}(N)$ with $\dim R/p = 1$, the p-adic topology is equivalent to the p-symbolic topology on N, then N is unmixed and $\text{Ass}_R N$ has only one element. Following [2], we shall use $A^*(I, N)$ to denote the ultimately constant values of $\text{Ass}_R N/I^n N$ for all large n. The following theorem is the first main result of this section.

Theorem 4.1. Let N be a non-zero finitely generated R-module and I an N-proper ideal of R such that $\text{Ass}_{R_p} N_p^*$ consists of a single prime ideal z, for all $p \in A^*(I, N)$. Then the I-symbolic topology on N is equivalent to the I-adic topology on N.

Proof. In view of [11 Corollary 3.7], it will suffice to show that $Q(I, N) = \text{mAss}_R N/I N$. To do this, suppose the contrary is true. That is there exists $p \in Q(I, N)$ such that $p \notin \text{mAss}_R N/I N$. Since $p \in \text{Supp}(N/I N)$, it follows that there exists $q \in \text{mAss}_R N/I N$ such that $q \subseteq p$. Moreover, by virtue of [11 Theorem 3.17], $Q(I, N) \subseteq A^*(I, N)$, hence $\text{Ass}_{R_p} N_p^* = \{z\}$. Therefore, $\text{Rad}(IR_p^* + z) = pR_p^*$. Now, let q^* be a minimal prime over qR_p^*. Then $IR_p^* \subseteq qR_p^* \subseteq q^*$. Furthermore, as $q \in \text{Supp}(N)$, it easily follows from [9 Theorem 18.1] that $q^* \in \text{Supp}(N_p^*)$, and so $z \subseteq q^*$. Consequently $pR_p^* \subseteq q^*$. On the other hand, since q^* is a minimal prime over qR_p^*, we can therefore deduce from the Going-down Theorem (see [6 Theorem 9.5]) that $q^* \cap R_p = qR_p$. Hence $qR_p = pR_p$, and so $q = p$, which is a contradiction. \hfill \square

The following proposition is needed in the proof of the second main theorem.

Proposition 4.2. Let (R, \mathfrak{m}) be a local ring and N a non-zero finitely generated R-module such that $\dim N > 0$ and that $\text{Ass}_R N$ has at least two elements. Then there exists an N-proper ideal I of R such that

$$m \in Q(I, N) \setminus \text{mAss}_R N/I N.$$

Proof. In view of assumption, there exist $z_1, z_2 \in \text{Ass}_R N$ such that $z_1 \neq z_2$. Without loss of generality, we may assume that $z_1 \in \text{mAss}_R N$. Let $n := \dim R/z_1 + z_2$. If $n = \dim N$, then there exists a minimal prime p over $z_1 + z_2$ such that

$$\dim R/z_1 + z_2 = \dim R/p = n = \dim N.$$

Hence $p \in \text{mAss}_R N$ and $z_1 + z_2 \subseteq p$. Consequently, $z_1 = p = z_2$, which is a contradiction. Therefore, $n < \dim N$. Suppose $n = 0$. Then $z_1 + z_2$ is m-primary, and so in view of [11 Lemma 3.5], $m \in Q(z_1, N) \setminus \text{mAss}_R N/z_1 N$, as required.
Now, suppose \(n > 0 \). Then there exist elements \(a_1, \ldots, a_n \) of \(\mathfrak{m} \) such that their images in \(R/z_1 + z_2 \) form a system of parameters. Let \(J = (a_1, \ldots, a_n) \). Then \(\text{Rad}(J + z_1 + z_2) = \mathfrak{m} \), and so \(J + z_1 + z_2 \) is \(\mathfrak{m} \)-primary. Now, if \(\text{Rad}(J + z_1) = \mathfrak{m} \), then as \(z_1 \in \text{Ass}_R N \), it follows from [1, Lemma 3.5] that \(\mathfrak{m} \in Q(I, N) \). Moreover, \(\mathfrak{m} \not\in \text{mAss}_R N/JN \). Because, if \(\mathfrak{m} \in \text{mAss}_R N/JN \), then \(\mathfrak{m} = \text{Rad}(J + \text{Ann}_R N) \). Hence,

\[
\text{height}(\mathfrak{m}/ \text{Ann} N) = \text{height}(J + \text{Ann}_R N/ \text{Ann}_R N),
\]

and so \(\text{dim} N = \text{height}_N J \leq n \), which is a contradiction. Also, if \(\text{Rad}(J + z_1) \neq \mathfrak{m} \), then \(\mathfrak{m} \not\in \text{mAss}_R N/(J + z_1)N \). Hence, using [1, Lemma 3.5] and \(\text{Rad}(J + z_1 + z_2) = \mathfrak{m} \), we obtain that \(\mathfrak{m} \in Q(J + z_1, N) \). This completes the proof. \(\square \)

Now, we can state and prove the second main theorem of this section.

Theorem 4.3. Let \((R, \mathfrak{m})\) be a local ring and let \(N \) a non-zero finitely generated \(R \)-module of positive dimension. Suppose that for every \(\mathfrak{p} \in \text{Supp}(N) \) with \(\text{dim} R/\mathfrak{p} = 1 \), the \(\mathfrak{p} \)-symbolic topology on \(N \) is equivalent to the \(\mathfrak{p} \)-adic topology on \(N \). Then \(N \) is unmixed and \(\text{Ass}_R N \) has exactly one element.

Proof. If \(\mathfrak{m}R^* \in \text{Ass}_{R^*} N^* \), then it follows easily from [6, Theorem 23.2] that \(\mathfrak{m} \in \text{Ass}_R N \), and so \(\mathfrak{m} \in Q(I, N) \) for every ideal \(I \) of \(R \). Now, as \(\text{dim} N > 0 \) there exists \(\mathfrak{p} \in \text{Supp}(N) \) such that \(\mathfrak{p} \not\subseteq \mathfrak{m} \) and \(\text{dim} R/\mathfrak{p} = 1 \). Hence

\[
\mathfrak{m} \in Q(\mathfrak{p}, N) = \text{mAss}_R N/\mathfrak{p}N = \{\mathfrak{p}\},
\]

which is a contradiction. Therefore \(\mathfrak{m}R^* \not\in \text{Ass}_{R^*} N^* \). Now, we show that \(N \) is unmixed. To do this, suppose the contrary, i.e., \(N \) is not unmixed. Then there exists \(z \in \text{Ass}_R N^* \) such that \(\text{dim} R^*/z < \text{dim} N \). Since \(\mathfrak{m}R^* \not\in \text{Ass}_{R^*} N^* \), we have \(\text{dim} R^*/z > 0 \). Therefore, in view of [10, Proposition 3.5] there exists an \(N \)-proper ideal \(I \) of \(R \) generated by \(\text{height}_N I \) elements, such that

\[
\text{Rad}(IR^* + z) = \mathfrak{m}R^* \quad \text{and} \quad \text{height}_N I = \text{dim} R^*/z.
\]

Consequently, \(\mathfrak{m} \in Q(I, N) \), and as \(\text{height}_N I < \text{dim} N \), there exists \(\mathfrak{p} \in \text{Supp}(N) \) such that \(I \subseteq \mathfrak{p} \) and \(\text{dim} R/\mathfrak{p} = 1 \). Hence \(\mathfrak{p} \not\subseteq \mathfrak{m} \) and \(\mathfrak{m} \in Q(\mathfrak{p}, N) \). Now, since

\[
Q(\mathfrak{p}, N) = \text{mAss}_R N/\mathfrak{p}N = \{\mathfrak{p}\},
\]

it follows that \(\mathfrak{m} = \mathfrak{p} \), which is a contradiction, so \(N \) is unmixed. Now in order to complete the proof, we must show that \(\text{Ass}_R N \) consists of a single prime. To this end, suppose that the contrary is true. Then, by Proposition [4,2] there exists an ideal \(I \) of \(R \) such that

\[
\mathfrak{m} \in Q(I, N) \setminus \text{mAss}_R N/IN.
\]

Since \(\mathfrak{m} \not\in \text{mAss}_R N/IN \), there exists \(\mathfrak{p} \in \text{Ass}_R N/IN \) such that \(\text{dim} R/\mathfrak{p} = 1 \). Hence, \(\mathfrak{m} \in Q(\mathfrak{p}, N) \). Now, because of

\[
Q(\mathfrak{p}, N) = \text{mAss}_R N/\mathfrak{p}N = \{\mathfrak{p}\},
\]

we see that \(\mathfrak{m} = \mathfrak{p} \). Therefore, we have arrived at a contradiction, and so \(\text{Ass}_R N \) has only one element, as required. \(\square \)
Acknowledgments

The authors would like to thank Professor Monireh Sedghi for reading of the first draft and valuable discussions. Finally, the authors would like to thank from the Institute for Research in Fundamental Sciences (IPM), for the financial support.

References

[1] S. H. Ahn, Asymptotic primes and asymptotic grades on modules, J. Algebra 174 (1995), 980-998.
[2] M. Brodmann, Asymptotic stability of $\text{Ass}(M/I^nM)$, Proc. Amer. Math. Soc. 74 (1979), 16-18.
[3] M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979), 35-39.
[4] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145-164.
[5] D. Katz and L. J. Ratliff, Jr., U-essential prime divisors and sequences over an ideal, Nagoya Math. J. 103 (1986), 39-66.
[6] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1986.
[7] S. McAdam, Quintasymptotic primes and four results of Schenzel, J. Pure and Appl. Algebra 47 (1987), 283-298.
[8] S. McAdam and L. J. Ratliff, Jr., Note on symbolic powers and going down, Proc. Amer. Math. Soc. 98 (1986), 199-204.
[9] M. Nagata, Local Rings, Interscience, New York, 1961.
[10] R. Naghipour, Locally unmixed modules and ideal topologies, J. Algebra 236 (2001), 768-777.
[11] R. Naghipour, Quintessential primes and ideal topologies over a module, Comm. Algebra 29 (2001), 3495-3506.
[12] R. Naghipour and M. Sedghi, A characterization of Cohen-Macaulay modules and local cohomology, Arch. Math. 87 (2006), 303-308.
[13] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145-158.
[14] L. J. Ratliff, Jr., The topology determined by the symbolic powers of primary ideals, Comm. Algebra 13 (1985), 2073-2104.
[15] P. Schenzel, Symbolic powers of prime ideals and their topology, Proc. Amer. Math. Soc. 93 (1985), 15-20.
[16] P. Schenzel, Finiteness of relative Rees rings and asymptotic prime divisors, Math. Nachr. 129 (1986), 123-148.
[17] J. K. Verma, On the symbolic topology of an ideal, J. Algebra 112 (1988), 416-429.
[18] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, Princeton, NJ, 1958.