Predicting the resolution of referring expressions from user behavior

Ivan Titov

Nikos Engonopoulos

University of Potsdam, Germany

Ivan Titov², and Alexander Koller¹

¹University of Amsterdam, Netherlands

Introduction

Natural communication between humans is a highly interactive process
• Speakers choose an utterance which they believe has high chance of achieving their communicative goal
• They will then monitor the listener’s behavior to see whether this goal is actually being achieved and give feedback when necessary

Goal: improve interactive NLP systems by adding monitoring and feedback capability in real time

The GIVE domain

• Users have to solve a puzzle in a 3D environment
• They can interact with objects in the world (e.g. click on buttons) and move freely in space
• NLG systems guide users by generating instructions, including referring expressions (REs) for objects in the environment
• Grounding problem: Systems have to predict (mis)understanding of a referent and prevent mistakes by providing corrective feedback

Feedback decision

Given r, s, and a until some t > t0, decide to give feedback if p(a') - p(a) > θ for some object a' ≠ a (here θ = 0.1).

Feedback should be provided if the user was going to make a mistake, i.e. a ≠ a'.

Our research question

Given a referring expression, how do we predict what the user has understood as its referent?

Model of RE resolution

When receiving an instruction containing a referring expression r at a given world state s, the user resolves r to an object a. The user then moves towards a, exhibiting behavior σ. A probabilistic model over possible referents

\[
p(a|r, s, σ) \propto p_{\text{sem}}(a|r, s) \cdot p_{\text{obs}}(a|σ)
\]

• \(p_{\text{sem}}\) and \(p_{\text{obs}}\) are separately trained, log-linear models
• Both can generalize to unseen worlds
• Features:
 - \(p_{\text{sem}}\): semantic properties, potential sources of confusion, and visual salience
 - \(p_{\text{obs}}\): distance, angle, visual salience and their evolution in time

Data

• Interaction corpora from the GIVE challenges, consisting of
 - automatically generated instructions
 - recorded user movements and actions
• Test data: 5028 episodes from the GIVE-2 challenge
• Training data: 3414 episodes for \(p_{\text{sem}}\), 6478 episodes for \(p_{\text{obs}}\)

Different virtual worlds, users & NLG systems between training/test data

Episode

An episode consists of the events between an instruction and the user’s action.

Results

Prediction accuracy

Given r, s, and a until some t > t0, predict the referent understood by the user: \(\arg \ max_{a} p(a|r, s, σ)\)

Conclusions and Future Work

• Our model predicts how a user is resolving the REs generated by an interactive system
• The model updates initial estimate continuously based on observations
• Next steps:
 - more time-aware model for \(p_{\text{obs}}\)
 - evaluate model in an end-to-end situated NLG system
 - explore use in other domains, e.g. navigation systems or less situated environments