Relationship Between Institutional Sustainability and SMEs Production Sustainability (Case Study: SMEs of Fish Processing Unit, in Pinrang Regency, Indonesia)

D Salman¹, M Karim², J Genisa³ and Rahmadanîh⁴

¹ Department of Agribusiness, Faculty of Agriculture, Hasanuddin University, Makassar, Sulawesi Selatan, Indonesia
² Doctoral Program Students of Agricultural Science, Postgraduate School Hasanuddin University, Makassar, Sulawesi Selatan, Indonesia
³ Department of Fish Processing Technology Balikdiwa High School Technology Maritime of Makassar, Sulawesi Selatan, Indonesia
⁴ Department of Food Science Technology, Faculty of Agriculture, Hasanuddin University, Makassar, Sulawesi Selatan, Indonesia

E-mail: mutmut.karim.muanzir@gmail.com

Abstract. The institutional sustainability of SMEs is determined by the ability of institutions to build an input-process-output relationship and the contingency power of the environment. The purpose of this study is to analyze the relationship between institutional sustainability and the sustainability of production. Data collection was carried out by field observations, in-depth interviews and documentation and data were analyzed using a case descriptive technique. The results of the study show that SMEs of fish processing unit that can operate sustainably is only 38 percent. Institutional Sustainability of SMEs of fish processing unit can be seen from its ability to provide input systems with continuous in quality and quantity; carry out the production process in accordance with the principles of GMP and SSOP dynamically and continuously; the ability to build a product marketing system through extensive network and marketing cooperation; and maintain contingency with the mandate/task environment; both suppliers, customers and competitors. The contingency power with the political and economic environment supporting the institutional sustainability of SMEs.

1. Introduction
Indonesia has a strategic role as a producer of fisheries products and is a market for processed fisheries products. Based on statistics on the processing and marketing of fishery products in 2014, the number of UPI (Fish Processing Unit) in Indonesia reached 59,503 UPI consisting of 58,526 UPI SMEs scale and 977 of large scale UPI. While in terms of the number of products, the number of processed fishery products in 2014 was 5.37 million tons, consisting of the number of UPI SMEs scale of 3.61 million tons and the number of processed products of large scale UPI of 1.76 million tons [1], the number of UPI was 61,601 units, including 718 units (1%) of large-scale business UPI, and UPI SMEs scale of 60,426 units (99%) [2]. From this data, it can be interpreted that the Indonesian fishery product processing business activities are dominated by business activities carried out by small scale businesses. In South Sulawesi Province, which is one of the centers for the processing of fishery
products in Indonesia, there are 1,928 UPI with a total workforce of 40,010 people. The quantity of UPI processed products produced was 9,026.73 tons with a value of Rp.337.96 billion. In 2014 the number of UPI increased to 2,067 UPI with a total workforce of 44,011 people. But in 2016 the number of UPI in South Sulawesi Province decreased to 1,822 UPI, with the number of workforces increasing to 58,709 people [3].

The research focused on the prospects and strategies for developing fish processing small businesses has been carried out by [4,5]. Research on the economic aspects of fish processing small businesses has been carried out by [6]. Further research on management, production and marketing of processed fish products has been carried out by: [7-12]. Further research [13], are more technological applications in fish processing. Based on the results of these studies, no one has examined the institutional sustainability of fish processing small businesses. The sustainability of business institutions is very important for the development of the whole fish processing industry. Based on the explanation above, the main study of this research as well as being a differentiator with previous studies is that it will focus more on the relationship of production sustainability with the institutional sustainability of fishery product processing business in Pinrang Regency with a system framework in which there is an input-process-output linkage which continuously responds to environmental dynamics. In Pinrang District in 2019, 21 SME of fish processing units has been formed to process boneless milkfish. UKM 88 Marijo is one of the SMEs that processes boneless milkfish which has dynamics in managing its business so that it continues to run sustainably so that it has a production capacity of 43.55 tons in 2018. There is also a boneless fish processing business unit that has been operating earlier and is a pioneer for other SMEs but cannot sustain or develop sustainably. Other SMEs are still not running continuously. Some of them also operate only by offering milkfish bone extraction services.

Theoretically, North defines institutions as rules that restrict humanly deviant behavior (humanly devised) to build the structure of political, economic, and social interaction. The institution plays an important role in the running of the market economy process. Institutional sustainability can be reviewed with a system approach/perspective. With a system perspective, an institution emphasizes the relationship between Input-Process-Output. Sustainability of Input-Process-Output is influenced by the performance of a business in responding to the dynamics of the work environment (mandate) and the Political-Economic environment in general. According to, Institutional sustainability is not always a feasible goal, but it is still needed. The purpose of this study is to describe the relationship between the sustainability of production with the sustainability of the institutional SMEs of fish processing units.

2. Methods
The study was conducted in December 2018 to April 2019. The research location was "UKM 88 Marijo" in Pinrang Regency. Purposive research location selection. This type of research is descriptive-analytic with a qualitative approach that aims to understand the object being studied in-depth and not to make generalizations, but rather to make an in-depth explanation of the meaning behind the object of study. This research strategy is a case study. Data collection is done through field observations, in-depth interviews, and documentation. Data analysis techniques using the model of Miles and Huberman which consists of data reduction, data presentation, and concluding. Researchers use triangulation techniques to test the validity and credibility of the data obtained. Data reduction to select data that has been collected from the field following the needs or categories that have been determined. The next step is to present the data [14].

3. Results and discussion
The concept of sustainability has the understanding that all business activities of the company not only think of stakeholders within the company but also think about the impact of the company's business on stakeholders outside the company [15]. The sustainability of production is demonstrated by the ability of SMEs to establish relationships with stakeholders related to the Input-Process-Output System.
3.1. Input systems in support of Production Sustainability
The supporting institutions for the procurement of raw materials are important because they are related to many parties. The strength of raw material input is one indicator to win the competition in the fishing industry [16-17]. In the business of processing boneless frozen milkfish, the input is all the ingredients, tools, and components used in the production process. The input system components in boneless UPI milkfish UKM include material, energy, labor, capital, machinery and methods, information, managerial, business location, business legality, and government policy.

3.1.1. Input system for Milkfish Raw Materials
The things considered by UPI BBTT UKM 88 Marijo in Pinrang Regency in the procurement of milkfish raw material inputs include: (1) Quality of milkfish raw material, both physical / organoleptic, chemical, and microbiological; (2) Quantity of availability of milkfish raw material; (3) Continuity of the availability of milkfish raw material; (4) Sources and distribution of milkfish raw materials; and (5) Price of milkfish raw materials.

The quality of the product produced depends on the input of raw materials. An important factor in fish processing is the freshness of the raw material, which along with proper handling and adequate processing produces good quality products. As the cliche says, "trash in, trash out," (low-quality raw materials = poor quality products). Parameters that are highly considered and examined by UKM UPI BBTT in the purchase of milkfish raw materials include eyes, gills, mucus, meat, stomach, odor, and consistency. Fresh milkfish quality standards as a guideline for selecting raw materials refer to the quality standards of fresh fish are bright and clear skin, intact and shiny scales, clear eyes and bright red gills. The input criteria for the raw milkfish used must also be free of the smell of mud and the smell of grass, because they are not liked by consumers, thus reducing the quality and acceptance of consumers.

UKM 88 Marijo purchases milkfish raw materials every day when it will carry out the processing. SMEs do not purchase raw materials for input stock on the following day’s processing. Unless if the available milkfish raw material stock is not finished in the processing today. Inventory is an important thing in a company because if the company cannot contribute to the smooth supply of goods, the inventory will become a buildup of goods and will result in cost overruns. The main source of raw material for Marijo milkfish 88 fish comes from community ponds in Pinrang Regency. Table 1 and table 2 illustrate the continuity of availability and sources of milkfish raw material production throughout 2016 in Pinrang District.

Sources of origin of milkfish raw material in Pinrang Regency which are favored from Serang and Pekkabata but avoid raw materials from Jampue and Langnga. Difficulties faced in obtaining raw materials occur in August to October each year, so they must be supplied from other locations outside Pinrang Regency. During the famine season, raw materials are also sourced from Wajo, Polman, Luwu and Palopo Regencies. Difficulties in feed raw materials also encourage duck farmers in Pinrang district to move locations [18]. Raw materials are supplied by collectors, wholesalers, and retailers, and do not make direct purchases from the owner of a pond. Seller or collector is an independent marketing institution involved in distribution channels with specific motives [19]. Their main motive is to get a portion of the profit from the difference between the buying and selling prices. Around 20 people acted as intermediaries, both collectors, retailers, and retailers who supply milkfish to UKM 88 Marijo. Purchasing directly to ponds is not done because information on the availability of ready-to-harvest fish is very limited and is not continuous every day. Besides, the distance from the location of the pond to the location of UKM 88 Marijo, and the level of uniformity of the size of the milkfish to be harvested is not uniform. Another consideration for Marijo 88 SME owners, is to safeguard rights and share roles with intermediary traders and retailers.
Table 1. Milkfish Production Data per District in Pinrang Regency 2016.

NO	Sub-District	Production Volume (tons)
1	Suppa	3,009.80
2	MattiroSompe	5,211.10
3	Lanrisang	2,048.30
4	MattiroBulu	0
5	WatangSawitto	0
6	Paleteang	0
7	Tiroang	0
8	Patampanua	0
9	Cempa	2,574.90
10	Duampanua	6,287.60
11	Batulappa	0
12	Lembang	469.90
	TOTAL	19,601.60

Source: Pinrang Regency Fisheries and Maritime Statistics, 2017 [21]

Table 2. Data on milkfish production in Pinrang Regency in 2016

NO	Month	Production Volume (tons)
1	January	1,923.29
2	February	2,040.79
3	March	2,220.13
4	April	2,410.18
5	May	2,286.93
6	June	2,427.28
7	July	2,433.87
8	August	2,013.99
9	September	1,699.84
10	October	26.15
11	November	48.68
12	December	70.47
	TOTAL	19,601.60

Source: Pinrang Regency Fisheries and Maritime Statistics, 2017 [21]

How to obtain the input of raw materials, namely owners or employees that are trusted will go to the location of the availability of fish both at the collector's house, fish auction, and retail stalls in the market to directly check the quality of fish freshness. Fish raw materials sorting based on size and determine the amount of fish to be purchased as needed. This is routinely done to avoid deviations in the quality of fish raw materials which will greatly affect the quality of boneless milkfish products. It is an unwritten agreement that if the fish supplied are not suitable, they will be returned and replaced. Even UKM Marijo88 will no longer take raw materials on the same supplier if it makes a moral hazard. During the fish famine season, SMEs communicate with intermediary traders by telephone to obtain information on the availability of raw materials. UPI SMEs is waiting for fish supply from outside Pinrang Regency. Before the purchase transaction is still carried out the fish quality inspection, if it is not appropriate then the SMEs owners will reject what has been delivered directly.

3.1.2. HR input system

HR is a very central factor in an organization, so it demands that every organization get qualified and productive people to run the organization. The UPI milkfish boneless workers are teenagers and housewives who live around the UPI UKM location. The SME owner will selectively accept the workforce by considering his skills, discipline, and loyalty. UKM 88 Marijo stipulates SOP in employee recruitment through a process of selection and in-depth interviews and the existence of an employment agreement with employees, this is given a large number of interested workforce candidates. UKM 88 Marijo has established SOPs in employee recruitment and selection, to get qualified employees who have a high work commitment. The selection was carried out personally by Ms. MarianiPandin and was also open to receiving views and input from several other members of UKM 88 Marijo.

In 2018, the condition of the "88 Marijo" SME human resource, consisted of 29 people, with varying levels of education, namely 5 junior high schools, high school (22 people), scholars (2 people). This is the potential for conducting and developing a business. Besides, the "UKM 88 Marijo" workforce has participated in several pieces of training aimed at improving the skills, capacity, and quality of the workforce.
3.1.3. Financial input system. The financial input of the Marijo 88 SME is sourced from its capital, and the remaining business proceeds are used as additional capital and cash assistance from several government agencies which are immediately used to purchase physical infrastructure following business needs. There has been no attempt to make funding requests from banks or non-bank financial institutions such as cooperatives. Government assistance is also not in the form of funds but the form of physical facilities and infrastructure [23].

3.1.4. Infrastructure Inputs. UPI BBTT UKM 88 Marijo at the beginning of its operation used processing facilities in an open space under the house with a working position on the floor. Over time, according to the advice of various accompanying agencies and demands for compliance with the feasibility of the processing room facilities used, Ms. MarianiPandin is very responsive in making various improvements on an ongoing basis. At this time, the “UKM Marijo 88” processing room has fulfilled its eligibility as a fish processing unit facility. The milkfish bone extraction equipment used included freezer, hand sealer, tweezers, knife, scissors, cutting board, bowl, basin, and operating table used by UKM 88 Marijo at the beginning of operation was obtained using own capital as initial capital of poration of 10 million rupiahs. Further processing facilities have been increased thanks to assistance from various relevant agencies as well as several prizes as a result of the achievements of UKM 88 Marijo.

3.1.5. Management Input. The management aspects studied include planning, organizing, managing staff, providing motivation and controlling. (1) Planning that is arranged and written, both for short-term and medium-term planning can support the success of the business. (2) Organizing, basically in carrying out a business activity must have fields that are focused on handling the business. The division of labor in the processing business groups that are well organized will facilitate production activities. (3) Management of employees, involving the community around the business location can reduce the unemployment rate and motivate them to think ahead.

3.1.6. Business Location Input. The business location of UKM 88 Marijo is very strategic because it is located on Jalan Poros Pinrang-Parepare which is very easy to reach by customers and prospective buyers, and is very easy to be recognized by the community because of the advertisement boards installed on the roadside. A clean and beautiful environment and free from pest, disease, and pollution.

3.1.7. Input Legality of Business
Adaptation to regulation is one of the lowest performance outcomes in the fisheries products industry [16]. In the dynamics of its development, UKM 88 Marijo has obtained Business Legality Completions issued by / obtained from the Integrated Service and Licensing and Investment Board of Pinrang Regency.

3.2. Process of processing milkfish without bones
The product processing process at the UKM 88 Marijo that applies GMP and SSOP so that they can get SNI of milkfish without bones. UKM 88 Marijo has also received a ’Halal Certificate from LP-POM MUI by Law of the Republic of Indonesia Number 33 of 2014. Figure 1 The production process and stages of milkfish processing carried out by UKM 88 Marijo as UPI in Pinrang Regency are as follows:
3.2.1. Reception of fresh milkfish. UKM 88 Marijo applies the SOP for Receiving Raw Materials which is placed in the receiving room for raw materials which reads: (1) Raw materials are received from suppliers; (2) Raw materials are examined one by one freshness including eyes, gills and textures; (3) Weighing of raw materials; Weighing to find out the total weight of milkfish that entered for processing on that day. Data on the weighing of raw materials are recorded in the diary for receipt.
of raw materials and then recapitulated into data on the use of milkfish raw materials. Furthermore, fresh fish is put into the production room through the entrance of raw materials.

3.2.2. Stage I cold chain. The milkfish fish freshness selection process takes place on an ongoing basis, if it is found that does not meet the requirements of raw materials, then at any time the fish can be declared rejected (rejected and returned to the supplier based on an unwritten agreement). Then the fish are rinsed with clean water to remove impurities. (4) Raw materials are handled as quickly as carefully as possible and put in cool boxes or styrofoam boxes with ice in temperatures less than 5° C.

3.2.3. Weeding / Disposing of Scales. The FIFO (first in first out) system is applied at this stage. The weeding step is to first remove the pectoral, dorsal and caudal fins using scissors. Furthermore, the removal of fish scales by scraping from the base of the tail towards the head following the methods of the Indonesian National Standard Agency 2009. The process of removing the scales is done carefully, thoroughly and quickly so as not to cause damage and contamination to the fish (the removal of scales is adjusted to customer orders).

3.2.4. Cleavage and Disposal of Stomach Content. The cleavage of fish is done by slicing the back starting from the tail to the middle of the back to reach the head (using a clean and sharp knife) until the fish split into a butterfly. This cleavage method is following the standards set by the National Standards Agency (2009). The division must be done with the right hand, to maintain uniformity of form. Furthermore, the gills and bowels removed. The purpose of cleaning the entrails of fish according to the Japan International Cooperation Agency (2008) is to eliminate the main causes of fish damage/spoilage such as enzymes and bacteria. Care is needed to clean the contents of the milkfish to avoid the rupture of bile. If the bile breaks, it will make the dish taste bitter. Then the backbone / skeletal bone is removed by starting from the base of the tail ± 2 cm, the bone is carefully cut so that the tail is not cut off then the meat is sliced slowly by slightly lifting the knife upward so that only a little meat is wasted. Cut to separate the meat and backbone/frame to the head. The inner tail fin bone was also removed using scissors. As well as the dorsal fin, the remaining part is removed.

3.2.5. Washing and Draining Phase I. After weeding, washing the fish using running water and ice water to remove impurities, mucus, blood and fat that are still sticking clean. Water used for washing after weeding is given a little vinegar (to taste), which aims to (1) eliminate fishy odor, (2) kill bacteria and germs and (3) avoid the consequences if the raw material of fish is formalin. The fish is drained by placing the fish in a basket with the position of the meat facing down. After draining, the fish are put into a basin and given sufficient ice cubes/ice crystals and taken to the bone extraction room. Every fish that has been scaled/competed is recorded in 1 notebook before being put into Room II.

3.2.6. Bone removal / extraction. Equipment used includes cutting boards/trays, tweezers, slicing knives, serrated knives/rulers, and scissors. The bone extraction process takes place in Room II.

- First, a pair of abdominal fins is pulled out until the inside bones are also pulled out.
- Next, pull the rough bone from the surface of the abdominal wall. In the abdomen, there are 16 pairs of large bones, but there are still smooth bones in the abdomen until the anus is also removed.
- Make longitudinal slices on the middle back and stomach abrasions using a blunt knife (serrated knife) or one side of the tweezers. Furthermore, bone extraction is done by inserting the tip of the tweezers in the section of the slice, then pulling the bones one by one. On the back, 42 pairs of branched bones are in the flesh near the outer skin. Along the lateral line, there are 12 pairs of branched bones while in the abdomen there are also 12 pairs of fine bones. Bone removal in the tail is done by slicing/tearing the tail meat then the bone found under the skin of the tail is removed.
- In the process of removing thorns, the cold chain is maintained.
3.2.7. *Inspection by Quality Control.* Furthermore, a thorough inspection is carried out by the Quality Control department, by examining each side of the fish and checking and guaranteeing that all bones have been removed. If there is still the remaining bone removed, it will even react if there are fish that do not meet the specified quality standards. Then the bone found under the skin of the tail is removed.

3.2.8. *Washing and Draining Phase II.* The Quality Control employees then washed the boneless milkfish by using ice water (clean, boiled water) which was given a little vinegar to remove the remaining mucus, fat and blood until it was completely clean. Next, the boneless milkfish drained by placing it along the side of the basket with the meat face down.

3.2.9. *Shape tilting.* Boneless milkfish that have been drained are then tidied up by employees assigned to tidy up the meat of the fish using a sponge (the sponge has been sterilized by boiling/soaking it in boiling water and then dried). Sponges are used to absorb water that enters the pores of fish meat. After that, the meat is tidied up again.

3.2.10. *Grading and Weighing.* Weighing is done to classify fish according to grade/size (size S, X, XL, and XXL) before being packaged. However, this weighing process is not always done, experienced employees have been able to group fish according to size. The yield of fish after bone extraction is 70% to 80%.

3.2.11. *Packaging.* Boneless milkfish are put into plastic packages that have been labeled, namely production code/order, production date, expiration date (with a shelf life of 6 months), and S, X, XL or XXL size codes. The contents of the packaging as much as 1, 2, 3 or four fish are adjusted to their respective sizes and also adjusted to customer orders. Next, the packaging is closed using a hand sealer. The number of boneless milkfish that has been produced and packaged is calculated using the tally method. So that later can be cross-checked the number of fish that enter, the number of fish that rejected and the number of boneless milkfish produced. This note will be a guideline for reporting production quantities and also determining employee wages.

3.2.12. *Freezing and Storage.* To preserve the boneless milkfish that has been packaged, it needs a cooler before it is marketed. The cooler can be a cool box or freezer. Likewise, when marketing it, milk-pulled banding products should be placed in a cooler. During storage, rotating the position of milkfish products is needed to get an even freezing, as well as applying the principle of FIFO (First In First Out) Freezing provides several benefits in storing food products, especially for the food industry, for example, to inhibit the decline in nutrient levels, inhibit the growth of food-destroying microorganisms and even in some food products provide organoleptic benefits (better food taste). The need for freezing is also felt strongly in the delivery and transportation of food products from producers to consumers. To preserve the packaged boneless milkfish, a refrigerator is needed to store and freeze fish before being marketed.

3.3. *Boneless milkfish output/marketing system* Output activities include storage, distribution, and marketing of processed products of boneless milkfish SMEs. In the activity of storing boneless milkfish products is very dependent on the availability of freezer and electrical energy (to guarantee the cold chain of the product). UKM 88 Marijo has a freezer that can accommodate and maintain the quality of boneless milkfish products that are ready to be marketed to customers. The production volume of UKM 88 Marijo has experienced a significant increase since succeeding in obtaining an SNI Certificate. An increased production volume of UKM 88 Marijo can be seen in figure 2.
The production volume of 88 Marijo SMEs was 15,074.5 kg, a significant increase to 46,300.00 kg in 2017. The production volume of 88 Marijo SMEs experienced a slight decrease to 43,550.0 kg in 2018 this was partly due to the earthquake which centered in Palu, Central Sulawesi, which affected the Pinrang District people who were displaced due to the potential impact of the tsunami. Marijo’s UKM 88 production routine was stopped for about 10 days because the displaced employees and fish supply were interrupted because the milkfish pond farmers also did not harvest for some time.

![Figure 2](image-url)

Figure 2. Graph of increase in production volume of 88 MarijoPinrang Regency in 2012 -2018.

Marketing system in boneless milkfish fish processing business in Pinrang Regency. conducted with two channels, namely: directly to the end consumer (end-user) and through distributors or resellers including hypermarkets, supermarkets, hotels, restaurants/restaurants, cafes, catering, and hospitals to be sold and processed to be marketed again. Marketing activities are carried out in industrial locations, namely Munarang Village, Mattiro Bulu District, Pinrang Regency. Sales services to customers, namely restaurants, catering and hospitals in the Regency of Pinrang, are carried out by direct delivery. Marketing to consumers outside the region such as Makassar City, Tana Toraja, Mamuju City, West Sulawesi, is done by shipping via inter-regional passenger cars. Service to inter-island customers such as Balikpapan, Samarinda (Kalimantan) and Jayapura is carried out by shipping by sea and air cargo. The cost of delivering products to customers outside the area is borne by the customer. SME product/output marketing system has created its satisfaction for customers/consumers. Indicators that support increased production are consumer satisfaction with SME products in terms of price, quality, and services [22]. Consumer satisfaction according to Kotler (2005) is a function of the closeness between the expectations/expectations of consumers with product performance perceived by consumers (perceived performance). The level of satisfaction can be used as a benchmark of success and can then be used in business development.

3.3.1. Product price and size

 Determination of prices carried out by producers, namely by considering factors, including: (1) Fresh milkfish prices; and shrinkage of around 25%; (2) Production costs, such as wages, electricity, ice cubes and water; (3) packaging costs; and (4) transportation costs for procuring raw materials. Determination of the price of boneless milkfish products for UKM 88 Marijo, adjusted to the size or weight, namely:

- Rp. 20,000 for size S contents 2 (weight of 350 grams);
- Rp. 25,000 for size X contents 3 and size X contents 2 (weight 380 - 400 grams)
- IDR 30,000 for size XL with contents of 3 and size XL with contents of 2 (weight 480-500 grams);
- IDR 35,000 for XXL size 2 (weight 600 - 650 gram)
3.3.2. Product quality
The quality of UKM 88 Marijo products is guaranteed by the presence of SNI certificates with other labels such as; Production Eligibility Certificate, KAN, Halal Label, P-IRT, production code, expiration date. To guarantee the quality of boneless milkfish products, UKM 88 Marijo has provided satisfaction for consumers, with the following parameters and indicators; (1) Weight of each product size, i.e. weighing using a digital scale, so that the size or size is more secure; (2) Bone free; that is, boneless milkfish products must be free of bones, with a range of not less than 95% of the bone removed; (3) The product has a characteristic taste of milkfish, does not smell soil; (4) Hygienic, ie not rotten, not sour or rancid, and not moldy or slimy; (5) Fine; i.e. fish intact and not broken, smooth, no cuts or blisters, but clean of scales, clean, no foreign matter, and no deposits of fat or dirt.

3.3.3. Product packaging
The packaging is a container or wrapper that can help prevent or reduce damage to the material being packed or wrapped. Packaging functions to place the product in a form that makes it easy for storage, transportation, and distribution. The primary packaging used by the "88 Marijo" UKM is made of polyethylene plastic bags and closed using a sealer with the aim to protect the product, not to leak/tear easily, and to provide an attractive appearance. On the primary packaging used there are labels that provide information to consumers about; product name, brand, production code, expiration date, P-IRT permit, SNI registered mark, halal label, net weight, and producer name. The information contained in the packaging provides confidence and trust for consumers in consuming products and will function as a means of sales promotion. Some customers just don't want labeled packaging, especially customers who want to make a resale. Likewise, several customers include pesantren, restaurants, and hotels that will process BBTT products for consumption. Products with and without labels on the packaging are the same. Labeled packaging is usually preferred by consumers for souvenirs.

3.3.4. Commitment to Producing Halal Products
UKM 88 Marijo makes a commitment to producing halal products using only materials that have been approved by LPPOM MUI and are manufactured using equipment that is free from unclean. The use of halal certificates on products has increased consumer confidence in Marijo 88 UKM, although in this case, the owner of SMEs is Non-Muslim/Christian. Since its operation, UKM 88 Marijo has obtained a Halal Certificate and has extended it 3 times. UKM 88 Marijo practices the implementation of a halal guarantee system, by: (1) Keeping all production facilities and equipment clean before and after use; (2) Maintaining personal hygiene before and during work so as not to pollute the product produced; (3) Not carrying non-halal products in the production area; (4) may not use production equipment for other purposes; (5) Storing materials and products in a clean place and keeping them from being unclean; (6) Ensuring that vehicles used to transport halal products are in good condition and are not used to transport other products of doubtful halal status.

3.3.5. Waste utilization and development of product diversification
The sustainability of the production of UKM Marijo 88 is supported by the development of products other than boneless milkfish, such as milkfish shredded, milkfish crackers, milkfish sticks, and milkfish meatballs [20]. Product diversification with solid and liquid livestock waste treatment is an adaptation strategy for breeders in Pinrang district for the sustainability of their businesses. The purpose of developing and diversifying milkfish processed products are; (1) to get added value, (2) to utilize milkfish processed waste towards the application of the concept of zero waste production. Waste that can not be treated in the form of gills and entrails of fish used as animal feed are catfish, ducks, and chickens. Waste that has not been utilized to date is milkfish scales and thrown into landfills.
3.4. Sustainability of UPI SME Institutions

Institutional sustainability can be achieved based on the ability of UKM 88 Marijo in building an input-process-output system for more than 10 years. This is a capital in the form of trust, norms, and networks that can improve business efficiency. Mutual trust is a cultural dimension of life that is crucial in the success of a business. An adhesive (affective dimension) that connects institutions and norms (ideational dimensions) with participation (the behavioral dimension). Behavioral dynamics are shown by the actors in SME socioeconomic interactions with all relevant stakeholders. The output process input system that supports the institutional sustainability of the SME fish processing unit can be seen in figure 3.

![Figure 3. SME 88 Marijo Input-Process-Output System](image)

4. Conclusions

The sustainability of the UKM Marijo 88 production is demonstrated by the dynamics of its Input-Process-Output System which has been running for more than 10 years. The sustainability of UPI SMEs in Pinrang Regency is also influenced by contingency on the dynamics of the task environment as well as the strategies adopted in dealing with these environmental dynamics. The task environment includes conditions that affect the course of the organization, including customers, competitors, and markets. The operation of the input process output system has formed trusts, norms, and networks that can increase efficiency in society through facilities for coordinated actions. Mutual trust is a cultural dimension of life that is crucial in the success of UPI SMEs. Mutual trust is an adhesive (affective dimension) that connects institutions and norms (ideational dimensions) with participation (behavioral dimension). Behavioral dynamics are shown by the actors in SME socioeconomic interactions with all relevant stakeholders.

Acknowledgments

The author would like to thank all those who were instrumental in helping to realize this article. This research was jointly funded by the Ministry of Research and Technology Directorate General of Education in collaboration with the Graduate School of Hasanuddin University Makassar through the Doctoral Dissertation Grant in 2019.
References:
[1] Kementerian Maritim dan Perikanan 2015 Marine Fisheries Statistics in Figures in 2014. Accessed http://statistik.kkp.go.id/sidatik-dev/Publikasi/src/ kpda2015.pdf
[2] Kementerian Maritim dan Perikanan 2016 Accessed http://statistik.kkp.go.id/ sidatik-dev/Publikasi/src/kpda2015.pdf
[3] Department of Maritim and Perikan Provinsi Sulawesi Selatan 2017 Processing and Marketing Statistics of Fisheries Products. 2016. Accessed http://statistik.kkp.go.id/sidatik-dev/Publikasi/src/kpda2015.pdf
[4] Candra A N and Setiawan A H 2013 Analisis Propsek dan Perembangan USAha Industri Bandeng Presto di Kota Semarang Diponegoro J. Econ. 2 216–26
[5] Howara D 2013 Strategi pengembangan pengolahan hasil perikanan di kabupaten donggala J. Agrol. 17 75–81
[6] Nasarudin I Y 2013 Analisis kelayakan ekonomi dan keuangan Usaha ikan lele asap di Pekanbaru Etikonomi 12
[7] Ujiyanti R M D 2017 Produksi Bersih Pada Industri Pangan Berbasis Perikanan J. Ilmu Pangan dan Has. Pertan. 1 28–36
[8] Sutanto H A and Imaningati S 2014 Tingkat efisiensi produksi dan pendapatan pada usaha pengolahan ikan asin kecil JEJAK J. Ekon. dan Kebijak. 7 73–84
[9] Ma’ruf M, Sukarti K, Purnamasari E and Sulistianto E 2013 Penerapan proses produksi bersih pada industri pengolahan terasi skala rumah tangga di Dusun Selangan Laut Pesisir Bontang J. Ilmu Perikan. Trop. 18 64–93
[10] Haryati S and Munandar A 2012 Penerapan konsep zero waste pada pengolahan abon ikan bandeng (Chanos chanos) J. Perikan. dan Kelaut. 2 127–130
[11] Jayathilakan K, Sultana K, Radhakrishna K and Bawa A S 2012 Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review J. Food Sci. Technol. 49 278–293
[12] Eong Y S and Hui D T B 2010 Good Manufacturing Practice (GMP) for Small and Medium-sized Traditional Fish Products Processing Establishments in ASEAN Mar. Fish. Res. Dep. Southeast Asian Fish. Dev. Center, Singapore
[13] Nusantari E, Abdul A and Harmain R M 2017 Ikan Bandeng Tanpa Duri (Chanos chanos) sebagai Peluang Bisnis Masyarakat Desa Mootinelo, Kabupaten Gorontalo Utara, Provinsi Gorontalo Agrokreatif J. Ilm. Pengabd. Kpd. Masy. 3 78–87
[14] Kurniawan P S 2017 Pemodelan Proses Penyusunan Laporan Keberlanjutan pada Usaha Kecil dan Menengah (UKM) AKUNTABEL 14 29–37
[15] Anderson J L, Anderson C M, Chu J, Meredith J, Asche F, Sylvia G, Smith M D, Anggraeni D, Arthur R and Gutormsen A 2015 The fishery performance indicators: A management tool for triple bottom line outcomes PLoS One 10 e0122809
[16] Yusuf M, Legowo A M, Albaari A N, Darmanto Y S, Agustini T W and Setyastuti A I 2018 Mapping performance of the fishery industries innovation: A survey in the North Coast of Java IOP Conference Series: Earth and Environmental Science vol 102 (IOP Publishing) p 12083
[17] Yap W G, Villaluz A C, Soriano M G G and Santos M N 2007 Milkfish production and processing technologies in the Philippines Milksfish Proj. Publ. Ser. 2
[18] Silalahi R L R, Mustaniroh S A, Ikasari D M and Sriulina R P 2018 Institutional analysis of milkfish supply chain using interpretive structural modelling (ISM)(case study of UD. Bunda Foods, Sidoarjo District) IOP Conference Series: Earth and Environmental Science vol 131 (IOP Publishing) p 12031
[19] Kalangi R 2015 Pengembangan sumber daya manusia dan kinerja aparatur sipil negara di Kabupaten Kepulauan Sangihe Provinsi Sulawesi Utara J. LPPM Bid. EkoSosBudKum 2 1–18
[20] Syam J, Salman D, Hasan S and Sirajuddin S N 2019 Adaptive strategies of livestock waste processing technology to vulnerability availability of animal feed IOP Conference Series: Earth and Environmental Science vol 235 (IOP Publishing) p 12094
[21] Kasim K, Salman D, Siregar A R, Nadja R A and Ahmad A 2019 Vulnerability and adaptive strategies on duck breeder in Pinrang District, Indonesia IOP Conference Series: Earth and Environmental Science vol 235 (IOP Publishing) p 12046S

[22] Handriana T 2016 The role of relationship marketing in Small and Medium Enterprises (SMEs) J. Pengur. (UKM J. Manag. 48

[23] Gde A A, Utama S, Millati I, Kurniawansyah D, Puji P, Astuti D and Setyowati Y 2019 Increasing The Existence Of Smes In Banyuwangi Digital Commerce Through Designing Decision Support System (Dss) For Banyuwangi Mall Site Int. J. Civ. Eng. Technol. 10 1472–81