Supplementary Material

Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains

Can Kabadayi, Lucy A. Taylor, Auguste M.P. von Bayern and Mathias Osvath

Subjects

Five ravens (three females, two males), ten jackdaws (five females, five males) and ten New Caledonian crows (four females, six males) took part in the study. All birds were adults.

Material and Methods

Two types of hollow cylinders were used: one opaque and one transparent (Fig. S1). The cylinders had openings on both ends and were attached to a wooden base so that the subjects had to move to the side of them to reach through to the reward placed in the center. The diameter of the cylinders were large enough to allow the subjects to enter head first and retrieve the reward (5.5 cm for jackdaws and New Caledonian crows, 9 cm for ravens) and they were long enough so that subjects had to insert most of the head inside the cylinders to retrieve the reward (12 cm for the New Caledonian crows and ravens, 10 cm for jackdaws).

Testing trials were administered within a single day in two 5-trial sessions (one in the morning and one in the afternoon). Subjects were given maximum 3 minutes to make a choice after the cylinder was baited. For the vast majority of the trials subjects immediately approached and interacted with the cylinder once it was baited. One New Caledonian and one jackdaw trial were stopped as the birds failed to interact with the cylinder within 3 minutes. Two jackdaw and two raven trials were stopped due to environmental disturbances. In those cases the trials were stopped they continued in the next session. All jackdaws and all New Caledonian crows finished the testing trials within 24 hours. One raven had four days between the two sessions. Another raven completed the testing phase in three sessions (5, 3 and 2 trials per session respectively, with four days between session 1 and session 2 and three days in between the last session).

Statistical analysis

We performed a phylogenetic generalized least squares (PGLS) regression to predict brain size from body mass. This type of regression controls for species’ non-independence due to phylogenetic relatedness. For PGLS we specified a correlation structure derived from the phylogenetic tree for ten bird species based on http://birdtree.org/subsets. The residuals from the analysis were used as a measure of residual brain volume.

The replicated study only reported species’ average score for the cylinder task and not individual performances over the ten trials, which might be problematic given the vast differences in number of subjects tested per species. To conduct more detailed analysis within bird species allowing us to control for variance and trial effect, we gratefully obtained individual trial data for the seven bird species tested from the following authors on that paper: Ljerka Ostojic (Eurasian jay and Western scrub jay), Rindy Anderson (zebra finch, song sparrow and swamp sparrow), Thomas Zentall (white carneau pigeon), and Amanda Seed (orange-winged amazon) (Table S3).

We then combined this data with that which we obtained from the three Corvus species (Table S2) and performed regression analysis where the dependent variable was success (1) or failure (0) on a cylinder task trial. Two generalized linear mixed-effect models (GLMM) fitted for binary
data were constructed to investigate the effect of absolute and residual brain volume on cylinder-task performance. For both models, we included trial number and brain-size measures as well as their interactions as fixed-effects. We used the method of stepwise elimination of the non-significant effects using log-likelihood ratio tests to obtain the final model. For both models, the interaction of the two fixed effects was not significant and therefore excluded. The two remaining fixed effects were significant for both models. In order to decide which of the main effects better explained the cylinder task performance we used Akaike information criterion (AIC). Lower AIC values indicate an increased support for the model. For the regression analysis, absolute and residual brain volumes were log-transformed.

We investigated the trial effect on cylinder-task performance separately for all species – except ravens, as their performance did not vary over the trials (Table S1). This analysis was conducted by constructing GLMM fitted for binary data for all nine species with the cylinder task performance as the dependent variable and trial number as fixed-effect. Since the data included repeated measures for individual subjects, “individual” was added as a random effect to all models.

All statistical analysis was conducted in R (v.3.0.3, the R Foundation for Statistical Computing: http://www.R-project.org) using the packages lme4, nlme and APE. Significance level was set at 0.05.

Tables and Figures

Figure S1: Cylinder types used in the task: opaque (a) and transparent (b).
Table S1: Output of the GLMM analysis documenting the effect of the trial number on the cylinder task performance analyzed separately for 9 different bird species. Ravens were excluded from the analysis because there was no variation in their performance over trials.

Species	Number of individuals	Effect	SE	z	p
Jackdaw	10	-1.028	2.089	-0.492	0.623
New Caledonian crow	10	-0.212	0.261	-0.815	0.414
Song sparrow	20	0.167	0.068	2.465	0.014*
Swamp sparrow	23	0.024	0.088	2.660	0.008*
Eurasian jay	6	0.059	0.145	0.410	0.682
Western scrub-jay	6	0.190	0.122	1.568	0.117
Orange amazon	12	0.228	0.104	2.183	0.029*
White carneau pigeon	11	0.155	0.122	1.272	0.204
Zebra finch	47	0.068	0.033	2.089	0.037*

Table S1.

Table S2: Individual information and summary of the cylinder task performance for three *Corvus* species tested in our study.

Species	Individual	Sex	Age (years)	Performance out of 10	Trial no of the error
Raven	Siden	male	3	10	
Raven	None	female	3	10	
Raven	Rikard	male	3	10	
Raven	Juno	female	3	10	
Raven	Tosta	female	2	10	
Jackdaw	Chapa	female	3	8	7,10
Jackdaw	Mohawk	male	3	9	10
Jackdaw	Chocktaw	female	3	10	
Jackdaw	Collins	male	7	10	
Jackdaw	Jackomo	female	11	10	
Jackdaw	Apache	female	3	10	
Jackdaw	Pronto	female	7	10	
Jackdaw	Blackfoot	male	3	10	
Jackdaw	Chock	male	10	10	
Jackdaw	Cherokee	male	3	10	
New Caledonian crow	Admiral	male	wild-caught adult	8	5,10
New Caledonian crow	Agaios	male	wild-caught adult	9	9
New Caledonian crow	Tabou	female	5	10	
New Caledonian crow	Tumulte	female	5	10	
New Caledonian crow	Jungle	male	5	10	
New Caledonian crow	Mangroove	male	wild-caught adult	7	4,6,8
New Caledonian crow	Papaye	male	wild-caught adult	9	1
New Caledonian crow	Liane	female	5	10	
New Caledonian crow	Tortue	female	wild-caught adult	9	10
New Caledonian crow	Mango	male	wild-caught adult	10	10
Table S3: Summary of the cylinder task performance for seven bird species provided by the authors mentioned above.

Species	Individual	Performance out of 10	Trial no of the error	
Eurasian jay	Quito	6	1,3,4,7	
Eurasian jay	Ohorougu	4	3,5,6,8,9,10	
Eurasian jay	Wilson	2	1,2,4,5,6,7,9,10	
Eurasian jay	Hoy	10		
Eurasian jay	Hunter	6	4,5,6,10	
Eurasian jay	Romero	7	1,3,6	
Western scrub-jay	223	7	1,2,8	
Western scrub-jay	224	8	6,8	
Western scrub-jay	222	10		
Western scrub-jay	201	6	2,3,4,8	
Western scrub-jay	203	6	1,2,7,8	
Western scrub-jay	229	9	1	
Orange winged amazon	Benny	4	1,2,3,4,6,10	
Orange winged amazon	Stumpy	5	1,5,7,9,10	
Orange winged amazon	Pete	5	1,5,7,9,10	
Orange winged amazon	Bo	4	1,2,6,7,8,9	
Orange winged amazon	Tulip	4	1,2,3,6,7,8	
Orange winged amazon	Ricky	5	1,2,3,5,6	
Orange winged amazon	Simon	4	1,2,3,4,5,10	
Orange winged amazon	Piglet	7	2,6,7	
Orange winged amazon	Penny	7	2,7,10	
Orange winged amazon	Belle	5	1,2,3,6,8	
Orange winged amazon	Rocky	4	1,2,3,4,5,6	
Orange winged amazon	Freckles	7	1,5,6	
White carneau pigeon	10742	0	1,2,3,4,5,6,7,8,9,10	
White carneau pigeon	22642	2	1,2,3,4,5,6,7,8,10	
White carneau pigeon	17878	2	1,2,3,4,5,6,7,9,10	
White carneau pigeon	19306	2	1,2,3,4,5,6,7,8,10	
White carneau pigeon	11746	7	6,7,9	
White carneau pigeon	19227	6	1,3,7,8	
White carneau pigeon	19845	6	1,2,3,4	
White carneau pigeon	19824	7	1,2,3	
White carneau pigeon	19276	0	1,2,3,4,5,6,7,8,9,10	
White carneau pigeon	19849	4	1,2,4,5,7,9	
White carneau pigeon	19338	2	1,2,3,4,5,6,8,9,10	
Swamp sparrow	Sw644	0	1,2,3,4,5,6,7,8,9,10	
Swamp sparrow	Sw665	1	1,2,3,4,5,6,7,8,9,10	
Swamp sparrow	Sw661	3	1,2,3,4,5,6,9	
Swamp sparrow	Sw662	1	1,2,3,4,5,6,7,8,9	
Swamp sparrow	Sw654	3	1,3,5,6,7,8,10	
Swamp sparrow	Sw656	6	1,2,6,7	
Swamp sparrow	Sw640	0	1,2,3,4,5,6,7,8,9,10	
Swamp sparrow	Sw645	4	1,2,6,7,9,10	
Song category	Code	Item	Location 1	Location 2
---------------	------	------	------------	------------
Swamp sparrow	Sw641	2	1,2,3,4,5,6,7,10	
Swamp sparrow	Sw652	1	1,2,3,4,5,7,8,9,10	
Swamp sparrow	Sw643	0	1,2,3,4,5,6,7,8,9,10	
Swamp sparrow	Sw642	4	1,2,4,6,7,9	
Swamp sparrow	Sw655	6	1,3,4,9	
Swamp sparrow	Sw650	3	1,4,5,6,8,9,10	
Swamp sparrow	Sw646	2	2,3,4,5,6,8,9,10	
Swamp sparrow	Sw657	0	1,2,3,4,5,6,7,8,9,10	
Swamp sparrow	Sw663	3	1,2,3,4,5,7,8	
Swamp sparrow	Sw658	3	1,3,4,5,7,8,9	
Swamp sparrow	Sw666	2	1,2,3,4,5,6,7,8	
Swamp sparrow	Sw667	2	1,2,3,4,5,6,7,8	
Swamp sparrow	Sw669	7	1,5,6	
Swamp sparrow	Sw668	1	1,2,3,4,5,6,7,8,9	
Swamp sparrow	Sw659	4	1,2,5,6,7,10	
Song sparrow	Bk-OR	1	1,2,3,4,5,6,7,8,9	
Song sparrow	FY-WW	1	1,2,4,5,6,7,8,9,10	
Song sparrow	G-BkBk	2	1,2,4,5,6,7,8,9	
Song sparrow	G-OO	2	1,2,3,4,6,8,9,10	
Song sparrow	G-PkPk	2	2,3,4,5,6,7,8,10	
Song sparrow	G-WG	5	1,2,3,4,7	
Song sparrow	O-BkBk	7	2,4,9	
Song sparrow	O-IBIIBI	5	6,7,8,9,10	
Song sparrow	O-PuPu	0	1,2,3,4,5,6,7,8,9,10	
Song sparrow	Pu-BkBk	2	2,3,4,5,6,7,8,10	
Song sparrow	Pu-RR	3	1,2,3,4,5,7,9	
Song sparrow	R-WdB	4	1,2,6,7,8,9	
Song sparrow	W-OW	0	1,2,3,4,5,6,7,8,9,10	
Song sparrow	W-PkPk	1	1,2,3,4,5,6,7,9,10	
Song sparrow	W-PuW	2	1,2,4,5,6,7,9,10	
Song sparrow	W-RW	2	1,2,3,4,5,6,8,9	
Song sparrow	Y-BkBk	6	1,2,8,9	
Song sparrow	Y-dBldBI	4	2,3,4,5,6,10	
Song sparrow	Y-OO	3	1,3,4,5,8,9,10	
Song sparrow	Y-Ry	1	1,2,3,4,5,6,7,8,10	
Zebra finch	zf105	5	1,3,7,8,9	
Zebra finch	zf104	4	2,3,4,8,9,10	
Zebra finch	zf103	7	1,2,8	
Zebra finch	zf102	4	3,4,5,7,8,10	
Zebra finch	zf100	7	4,7,9	
Zebra finch	zf99	7	4,5,6	
Zebra finch	zf98	4	1,4,5,6,8,9	
Zebra finch	zf97	7	2,3,7	
Zebra finch	zf96	7	2,5,8	
Zebra finch	zf94	3	1,2,4,6,7,9,10	
Zebra finch	zf91	6	1,3,4,7	
Zebra finch	zf89	7	2,7,10	
Zebra finch	zf88	8	4,6	
Zebra finch	zf 87	6	3,4,6,9	
------------	-------	---	---------	
Zebra finch	zf 85	7	2,6,7	
Zebra finch	zf 83	5	1,2,4,5,9	
Zebra finch	zf 82	4	1,3,4,6,9,10	
Zebra finch	zf 81	3	1,2,5,7,8,9,10	
Zebra finch	zf 80	5	1,2,4,5,9	
Zebra finch	zf 79	6	2,3,6,10	
Zebra finch	zf 75	5	1,3,5,6,10	
Zebra finch	zf 73	6	1,2,4,7	
Zebra finch	zf 71	6	2,5,8,10	
Zebra finch	zf 70	5	3,4,5,8,9	
Zebra finch	zf 68	5	1,2,4,8,10	
Zebra finch	zf 67	6	3,4,6,8	
Zebra finch	zf 66	5	2,3,4,8,10	
Zebra finch	zf 63	3	2,3,4,5,6,7,10	
Zebra finch	zf 62	5	3,4,5,6,8	
Zebra finch	zf 61	4	1,2,3,4,7,8	
Zebra finch	zf 58	4	1,3,4,5,7,10	
Zebra finch	zf 56	5	2,3,4,6,9	
Zebra finch	zf 55	4	3,4,6,7,8,10	
Zebra finch	zf 54	7	1,2,8	
Zebra finch	zf 53	6	3,5,7,9	
Zebra finch	zf 52	5	2,3,5,6,7	
Zebra finch	zf 51	8	1,7	
Zebra finch	zf 50	6	1,2,3,9	
Zebra finch	zf 49	5	1,2,4,6,8	
Zebra finch	zf 47	7	4,5,7	
Zebra finch	zf 45	4	1,3,4,5,7,9	
Zebra finch	zf 44	6	2,3,4,10	
Zebra finch	zf 43	5	3,4,5,6,8	
Zebra finch	zf 42	5	3,6,7,8,9	
Zebra finch	zf 40	6	2,3,7,8	
Zebra finch	zf 38	5	2,3,6,8,9	
Zebra finch	zf 35	5	1,5,6,8,10	