Determination of external impacts on the bearing unit of the geokhod

A A Dronov¹,⁵, V Yu Beglyakov¹,⁶, V V Aksenov¹,²,⁷, A B Efremenkov³,⁸ and V A Efremenkov⁴,⁸

¹Yurga Institute of Technology, TPU Affiliate, 652050, 26 Leningradskaya Str., Yurga, Russia
²Scientific and research center LLC «Siberian Research and Production Association», 650002, 1 Sosnoviy bul., Kemerovo, Russia
³Yaroslav-the-Wise Novgorod State University, ul. B. St. Peterburgskaya, 41 173003, Veliky Novgorod, Russia
⁴Peter the Great St.Petersburg Polytechnic University (SPbPU), 195251, Russia, St.Petersburg, Polytechnicheskaya, 29

E-mail: aa-dronov@mail.ru
E-mail: begljakov@rambler.ru
E-mail: 55vva42@mail.ru
E-mail: abe@novsu.ru

Abstract. The mathematical model of interaction of the bearing unit of the geokhod with geoenvironment and related systems was developed. The model takes into account the variability of the bearing unit of the geokhod and opens up the possibilities for further determining the inter-actions of the elements of the bearing unit of the geokhod with each other.

1. Introduction
Designing new mining machines is an urgent task [1–6]. When designing new mining machines it is necessary to create mathematical models [7–12]. The geokhod is a tunneling shield that implements movement in the rock mass due to interaction with the system of spiral contour channels formed by it [13]. The geokhod is a new class of mining equipment, as a result a number of difficulties arise in its design and manufacture. Creation of mathematical models of interaction of systems of the geokhod with each other is an actual problem [14–20]. To justify the design parameters of the bearing unit of the geokhod, it is necessary to determine the nature of external influences and internal interactions of the bearing unit of the geokhod.

2. Materials and methods
Considers two variants for the layout of the bearing unit. The shell of the bearing unit can be paired with the head section of the geokhod (figure 1, a) and carry out rotational and translational motion with it. Or it can be paired with a stabilizing section of the geokhod (figure 1, b) and carry with it only the translational motion.
Figure 1. Variants for the layout of the bearing unit of the geokhod: a) the shell of the bearing unit paired with the head section b) the shell of the bearing unit paired with the stabilizing section.

The calculation scheme of external forces acting on the shell of the geokhod was compiled (figure 2). The symbols used in the scheme are shown in table 1.

In the first variant, the friction force of the bearing unit of the geokhod against rock is directed along the line of location of the helical blade of the geokhod. It is named as T_{FB} (var a). In the second variant, the friction force of the bearing unit of the geokhod against rock is directed along a path of movement of geokhod. It is named as T_{FB} (var b).

Figure 2. Calculation scheme of geokhod propel efforts.
Table 1. Legend to calculation scheme (figure 2).

Symbol	Unit of measure	Name
F_{PF}	[N]	Screw propeller Pulling force
P_{PH}	[N]	Normal component of rock pressure on the head section
P_{PS}	[N]	Normal component of rock pressure on the stabilizing section
P_{PB}	[N]	Normal component of rock pressure on the bearing unit of the geokhod
R_T	[N]	Total cutting resistance projection on sections axis of rotation
R_{HB}	[N]	Reaction of contour rocks on the helical blade
R_{WBHB}	[N]	Reaction of contour rocks on the helical blade working body
R_{WBCTR}	[N]	Reaction of contour rocks on the counter-rotation elements working body
T_{HB}	[N]	Helical blade friction against rock
T_{CTR}	[N]	Total friction force of stabilizing section counter-rotation elements against rock
T_{FH}	[N]	Total force of the head section shell friction against rock
T_{FB}	[N]	Total force of the bearing unit of the geokhod shell friction against rock
T_{FS}	[N]	Total force of the stabilizing section shell friction against rock
M_{WB}	[N · m]	Moment of cutting resistance on the main working body
M_{WBHB}	[N · m]	Moment of cutting resistance on the helical blade working body
M_{WBCTR}	[N · m]	Moment of cutting resistance on the counter-rotation elements working body
M_{BR}	[N · m]	Moment of broken rocks shift up from the geokhod bottom
G_{H}	[N]	Weight of the head section with executive bodies, loading devices and other equipment
G_{BU}	[N]	Weight of the bearing unit of the geokhod with loading devices and other equipment
G_{ST}	[N]	Weight of the stabilizing section with loading devices and other equipment
G_{BR}	[N]	Weight of broken rock mass inside the unit
G_{TRM}	[N]	Weight of transported rock mass inside the unit
$r_{H} = r_{ST}$	[m]	Head and stabilizing sections radiuses
h_{HB}	[m]	Helical blade height
h_{CTR}	[m]	Counter-rotation elements height
α	[degrees]	Mine working gradient angle
β	[degrees]	Helical blade angle
ω	[sec^{-1}]	Angular rotating velocity of geokhod head section
The geokhod was considered as a solid body, which under the influence of external forces is in equilibrium. The section method was applied to the compiled calculation scheme. Cross-section of the geokhod on planes $a-a$ and $b-b$ was made. Received three parts of the calculation scheme. They were named: the head part of the calculation scheme (figure 3); the tail part of the calculation scheme (figure 4); the middle part of the calculation scheme (figure 5).

![Figure 3. The head part of the calculation scheme.](image)

3. Results and discussion

On the head part of the calculation scheme (figure 3) introduced a countervailing forces R_{HX}, R_{HY}, R_{HZ} and countervailing moments of forces M_{HX}, M_{HY}, M_{HZ}.

The following assumptions and limitations were made:

– the force manifestation of the rock pressure is uniformly distributed over the shell of the geokhod;

– shell of geokhod has absolute rigidity;

– geokhod carries out absolutely rectilinear movement with an arbitrary mine working gradient angle. Therefore $R_{HZ}=0$, $M_{HY}=0$, $M_{HZ}=0$.

Was drawn up the system of equations:

\[
\begin{align*}
F_{PF} - R_T - R_{WBHB} \cdot \cos \beta - (G_H + G_{BR}) \cdot \sin \alpha - T_{HB} \cdot \sin \beta - T_{FH} \cdot \sin \beta - R_{HX} &= 0 \\
M_{WB} - M_{WBHB} \cdot \cos \beta - M_{BR} - T_{HB} \cdot \left(r_H + \frac{h_{HB}}{2} \right) \cdot \cos \beta - R_{RA} \cdot \left(r_H + \frac{h_{CTR}}{2} \right) \cdot \sin \beta - T_{FH} \cdot r_H \cdot \cos \beta + M_{HX} &= 0 \\
R_{WBHB} \cdot \sin \beta - T_{HB} \cdot \cos \beta - (G_H + G_{BR}) \cdot \cos \alpha - T_{FH} \cdot \cos \beta - R_{HB} \cdot \sin \beta - R_{HY} &= 0
\end{align*}
\]

(1)

The values T_{HB} и F_T are equal:

\[
T_{HB} = |R_{HB}| \cdot f_{FR}
\]

(2)

\[
F_{PF} = R_{HB} \cdot \cos \beta ,
\]

(3)

where f_{FR} – coefficient of friction of steel against rock.
Then the system of equations (1) took the form:

\[
\begin{align*}
R_{HB} \cdot \cos \beta \cdot (1 - f_{FR} \cdot \tan \beta) &- R_T - R_{WBHB} \cdot \cos \beta - (G_H + G_{BR}) \cdot \sin \alpha - T_{FH} \cdot \sin \beta - R_{HX} = 0 \\
M_{WB} - M_{WBHB} \cdot \cos \beta - M_{BR} - R_{HB} \cdot \left(r_H + \frac{h_{HB}}{2} \right) \cdot \cos \beta \cdot (f_{FR} + \tan \beta) &= -T_{FH} \cdot r_H \cdot \cos \beta + M_{HX} = 0 \\
R_{WBHB} \cdot \sin \beta - R_{HB} \cdot f_{FR} \cdot \cos \beta - (G_H + G_{BR}) \cdot \cos \alpha - T_{FH} \cdot \cos \beta - R_{HB} \cdot \sin \beta - R_{HY} = 0
\end{align*}
\]

(4)

Values R_{HX}, R_{HY}, M_{HX} were obtained from equations of system (4):

\[
\begin{align*}
R_{HX} &= R_{HB} \cdot \cos \beta \cdot (f_{FR} \cdot \tan \beta - 1) + R_T + R_{WBHB} \cdot \cos \beta + (G_H + G_{BR}) \cdot \sin \alpha + T_{FH} \cdot \sin \beta \\
R_{HY} &= R_{WBHB} \cdot \sin \beta - R_{HB} \cdot f_{FR} \cdot \cos \beta - (G_H + G_{BR}) \cdot \cos \alpha - T_{FH} \cdot \cos \beta - R_{HB} \cdot \sin \beta \\
M_{HX} &= -M_{WB} + M_{WBHB} \cdot \cos \beta + M_{BR} + R_{HB} \cdot \left(r_H + \frac{h_{HB}}{2} \right) \cdot \cos \beta \cdot (f_{FR} + \tan \beta) + T_{FH} \cdot r_H \cdot \cos \beta
\end{align*}
\]

In expressions (5–7) unknown is R_{HB}. We introduce constants independent of the unknown R_{HB}

\[
\begin{align*}
R_1 &= R_T + R_{WBHB} \cdot \cos \beta + (G_H + G_{BR}) \cdot \sin \alpha + T_{FH} \cdot \sin \beta \\
M_1 &= -M_{WB} + M_{WBHB} \cdot \cos \beta + M_{BR} + T_{FH} \cdot r_H \cdot \cos \beta \\
R_2 &= R_{WBHB} \cdot \sin \beta - (G_H + G_{BR}) \cdot \cos \alpha - T_{FH} \cdot \cos \beta
\end{align*}
\]

Then the expression (5–7) took the form:

\[
R_{HX} = R_{HB} \cdot \cos \beta \cdot (f_{FR} \cdot \tan \beta - 1) + R_1
\]

(11)

Figure 4. The tail part of the calculation scheme.
On the tail part of the calculation scheme (figure 4) introduced a countervailing forces R_{TX}, R_{TY}, R_{TZ} and countervailing moments of forces M_{TX}, M_{TY}, M_{TZ}.

Was drawn up the system of equations:

\[
\begin{align*}
R_{TX} - T_{FS} - (G_{ST} + G_{TRM}) \cdot \sin \alpha - T_{CTR} - R_{WBCTR} &= 0 \\
M_{WBCTR} + R_{CTR} \cdot \left(r_h + \frac{h_{CTR}}{2}\right) - M_{TX} &= 0 \\
R_{TY} - (G_{H} + G_{TRM}) \cdot \cos \alpha &= 0
\end{align*}
\]

The value T_{CTR} is equal:

\[
T_{CTR} = \frac{M_{ROT}}{r_h + \frac{h_{CTR}}{2}} \cdot f_{FR},
\]

where M_{ROT} – desired torque of the geokhod transmission, [N\cdot m].

Then the system of equations (14) took the form:

\[
\begin{align*}
R_{TX} - T_{FS} - (G_{ST} + G_{TRM}) \cdot \sin \alpha - M_{ROT} \cdot \left(r_h + \frac{h_{CTR}}{2}\right) \cdot f_{FR} - R_{WBCTR} &= 0 \\
M_{WBCTR} + R_{CTR} \cdot \left(r_h + \frac{h_{CTR}}{2}\right) - M_{TX} &= 0 \\
R_{TY} - (G_{H} + G_{TRM}) \cdot \cos \alpha &= 0
\end{align*}
\]

Values R_{TX}, R_{TY}, M_{TX} were obtained from equations of system (16):

\[
\begin{align*}
R_{TX} &= T_{FS} + (G_{ST} + G_{TRM}) \cdot \sin \alpha + \frac{M_{ROT}}{r_h + \frac{h_{CTR}}{2}} \cdot f_{FR} + R_{WBCTR} \\
R_{TY} &= (G_{H} + G_{TRM}) \cdot \cos \alpha \\
M_{TX} &= M_{WBCTR} + R_{CTR} \cdot \left(r_h + \frac{h_{CTR}}{2}\right)
\end{align*}
\]

In expressions (17–19) unknown are R_{CTR} and M_{ROT}. We introduce constants independent of the unknown R_{CTR} and M_{ROT}.

\[
M_{hX} = R_{HB} \cdot \left(r_h + \frac{h_{HB}}{2}\right) \cdot \cos \beta \cdot (f_{FR} + tg\beta) + M_i
\]

\[
R_{HV} = R_2 - R_{HB} \cdot \cos \beta \cdot (f_{FR} - tg\beta)
\]
\[R_3 = T_{FS} + (G_{ST} + G_{TRM}) \cdot \sin \alpha + R_{WBCTR} \]
\[R_4 = r_H + \frac{h_{CTR}}{2} \]

Then the expression (17, 19) took the form:

\[R_{TX} = R_3 + \frac{f_{FR}}{R_4} \cdot M_{ROT} \]
\[M_{TX} = M_{WBCTR} + R_4 \cdot R_{CTR} \]

Consider the middle part of the calculation scheme (figure 5).

\[\begin{align*}
0 & = -F_{BBUTY} \times H_{HY} - G_{BU} \cdot \sin \alpha - T_{FB} \cdot \sin \beta \\
0 & = -M_{BBUTX} \times H_{HX} - M_{HY} \cdot r_H \cdot \cos \beta \\
0 & = R_{HY} - R_{TX} - G_{BL} \cdot \cos \alpha - T_{FB} \cdot \cos \beta \end{align*} \]

\[\text{Taking into account the expressions (11–13, 18, 22, 23), the system of equations (24) took the form:} \]
\[
\begin{align*}
R_{HB} \cdot \cos \beta \cdot (f_{FR} \cdot \tan \beta - 1) + R_i - R_3 - \frac{f_{FR}}{R_4} \cdot M_{ROT} - G_{BU} \cdot \sin \alpha - T_{FB} \cdot \sin \beta &= 0 \\
M_{WCTR} + R_4 \cdot R_{CTR} - R_{HB} \cdot \left(r_H + \frac{h_{HB}}{2} \right) \cdot \cos \beta \cdot (f_{FR} + \tan \beta) - M_1 - T_{FB} \cdot r_H \cdot \cos \beta &= 0 \\
R_2 - R_{HB} \cdot \cos \beta \cdot (f_{FR} - \tan \beta) - \left(G_{HH} + G_{TRM} \right) \cdot \cos \alpha - G_{BU} \cdot \cos \alpha - T_{FB} \cdot \cos \beta &= 0
\end{align*}
\]

We introduce constants independent of the unknown \(R_{HB}, R_{CTR}\) and \(M_{ROT}\):

\[
\begin{align*}
R_i &= R_i - R_3 - G_{BU} \cdot \sin \alpha - T_{FB} \cdot \sin \beta \\
R_6 &= R_2 - \left(G_{HH} + G_{TRM} \right) \cdot \cos \alpha - G_{BU} \cdot \cos \alpha - T_{FB} \cdot \cos \beta \\
M_2 &= M_{WCTR} - M_1 - T_{FB} \cdot r_H \cdot \cos \beta
\end{align*}
\]

Find the unknown \(R_{HB}, R_{CTR}\) and \(M_{ROT}\):

\[
\begin{align*}
R_{HB} &= \frac{R_6}{\cos \beta \cdot (f_{FR} - \tan \beta)} \\
R_{CTR} &= \frac{R_6 \cdot \left(r_H + \frac{h_{HB}}{2} \right) \cdot \left(f_{FR} + \tan \beta \right)}{f_{FR} - \tan \beta} - M_2 \cdot \frac{1}{R_4} \\
M_{ROT} &= \frac{R_6 \cdot \left(f_{FR} \cdot \tan \beta - 1 \right) + R_5}{f_{FR}} \cdot \frac{R_4}{\cos \beta \cdot (f_{FR} - \tan \beta)}
\end{align*}
\]

Consider the second variant of the configuration of the bearing unit of the geokhod. Was drawn up the system of equations:

\[
\begin{align*}
R_{HX} - R_{TX} - G_{BU} \cdot \sin \alpha - T_{FB} &= 0 \\
M_{TX} - M_{HX} &= 0 \\
R_{HY} - R_{TY} - G_{BU} \cdot \cos \alpha &= 0
\end{align*}
\]

The system of equations (32) was solved similarly to the solution of the system (24). Unknown were named \(R'_{HB}, R'_{CTR}\) and \(M'_{ROT}\):

\[
\begin{align*}
R'_{HB} &= \frac{R_6 + T_{FB} \cdot \cos \beta}{\cos \beta \cdot (f_{FR} - \tan \beta)}
\end{align*}
\]
\[
R'_{CTR} = \left[\frac{(R_c + T_{FB} \cdot \cos \beta) \left(r_H + \frac{h_{HFB}}{2} \right) \cdot (f_{FB} + \tan \beta)}{f_{FB} - \tan \beta} - M_z - T_{FB} \cdot r_H \cdot \cos \beta \right] \cdot \frac{1}{R_z} \tag{34}
\]

\[
M'_{ROT} = \left[\frac{(R_c + T_{FB} \cdot \cos \beta) \cdot (f_{FB} \cdot \tan \beta - 1)}{f_{FB} - \tan \beta} + R_z + T_{FB} \cdot (\sin \beta - 1) \right] \cdot \frac{R_z}{f_{FR}} \tag{35}
\]

4. Conclusion

The expressions obtained are the mathematical model of the interaction of the bearing unit with the rock mass and another systems of geokhod.

The results obtained will allow:

- to carry out a comparative analysis of different layouts of the bearing unit of the geokhod;
- define internal interactions of the bearing unit of the geokhod.

References

[1] Maidl B, Schmid L, Ritz W, Herrenknecht M, Wehrmeyer G and Derbort M 2008 Hardrock Tunnel Boring Machines (Berlin: Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH und Co.KG)

[2] Maidl B, Thewes M and Maidl U 2013 Handbook of Tunnel Engineering Wilhelm Ernst & Sohn (Berlin, Germany: Verlag für Architektur und technische Wissenschaften GmbH & Co KG)

[3] Maidl B, Thewes M and Maidl U 2014 Handbook of Tunnel Engineering II Basics and Additional Services for Design and Construction Wilhelm Ernst & Sohn (Berlin Germany: Verlag für Architektur und technische Wissenschaften GmbH & Co KG)

[4] Maidl B, Herrenknecht M, Maidl U and Wehrmeyer G 2012 Mechanised Shield Tunnelling Second Edition Ernst & Sohn (Berlin Germany: Verlag für Architektur und technische Wissenschaften GmbH & Co KG)

[5] Robbins R 1987 Machine tunnelling in the twenty-first century Tunnelling and Underground Space Technology incorporating Trenchless Technology 2 (2) 147–154

[6] Nishi J and Seiki T 1997 Planning and design of underground space use Memoirs of the School of Engineering Nagoya University 49 (1) 48–93

[7] Zhang Q, Kang Y, Qu C, Wang Y, Huang T and Cai Z 2010 Mechanical model for operational loads prediction on shield cutter head during excavation IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIME 5695778 1252–1256

[8] Deng K, Huang J and Wang H 2009 Layout optimization of non-equidistant arrangement for thrust systems in shield machines Automation in Construction 49 PA 135–141

[9] Shen J, Jin X, Li Y and Wang J 2009 Numerical simulation of cutterhead and soil interaction in slurry shield tunneling Engineering Computations (Swansea, Wales) 26 (8) 985–1005

[10] Shi H, Yang H, Gong G and Wang L 2011 Determination of the cutterhead torque for EPB shield tunneling machine Automation in Construction 20 (8) 1087–1095

[11] Beloglazov I I and Ikonnikov D A 2016 Computer Simulation Methods for Crushing Process in an Jaw Crusher IOP Conf. Ser.: Mater. Sci. Eng. 142 012074

[12] Bazhin V Y, Beloglazov I I and Feshchenko R Y 2016 Deep conversion and metal content of Russian coals Eurasian Mining 2 28–32

[13] Aksenov V V, Walter A V, Gordeyev A A and KosovetsA V 2015 Classification of geokhod units and systems based on product cost analysis and estimation for a prototype model production IOP Conf. Ser.: Mater. Sci. Eng. 91 012088

[14] Aksenov V V, Beglyakov V Y, Kazantsev A A and Doroshenko I V 2016 Development of Requirements for a Basic Standardized Mathematical Model of Geokhod IOP Conf. Ser.:
[15] Blaschuk M, Dronov A, Koperchuk A, Chernukhin R and Litvinenko V 2017 Kinematic Parameters of Rotary Transmission with Hydraulic Cylinders E3S Web of Conferences 15 03003

[16] Blaschuk M, Dronov A and Ganovichev S 2016 Calculation of Free Interior Dimensions in Geokhod Transmission with Hydraulic Cylindres IOP Conf. Ser.: Mater. Sci. Eng. 127 012033

[17] Aksenov V, Chicherin I, Kostinez I, Kazantsev A and Efremenkov A 2017 Substantiation of the Necessity for Design of Geokhod Control System E3S Web of Conferences 21 03001

[18] Beglyakov V, Aksenov V, Kostinets I, Efremenkov A and Khoreshok A 2018 Influence of the Supporting Surface Inclination Angle of the External Geokhod Propulsor on the Deflected mode of Boundary Rock Massif IOP Conf. Ser.: Mater. Sci. Eng. 441 012008

[19] Aksenov V, Efremenkov A, Sadovets V and Pashkov D 2018 Substantiation of Characteristic Bending Points of the Blade Operating Body of the Geokhod IOP Conf. Ser.: Mater. Sci. Eng. 441 012005

[20] Sadovets V, Beglyakov V and Aksenov V 2015 Development of Math Model of Geokhod Bladed Working Body Interaction With Geo-environment IOP Conf. Ser.: Mater. Sci. Eng. 91 012085