Review

Marine fungal metabolites as a rich source of bioactive compounds

J. Swathi, K. Narendra, K. M. Sowjanya and A. Krishna Satya*

Department of Biotechnology, Acharya Nagarjuna University, Guntur, India.

Accepted 27 May, 2013

This paper reviews the recent results of bioactive compounds derived from marine fungi, which are highly diversified and are less explored. Researchers are showing keen interest in isolating novel bioactive compounds with clinical applications. Hence, here we discussed most of the bioactive compounds isolated from marine derived fungi and their possible roles in various efficient biological activities.

Key words: Marine derived fungi, bioactive compounds, biological activities.

INTRODUCTION

The main emphasis of this review is on bioactive compound producing marine fungi and their biological active compounds. Marine secondary metabolites can easily impede other microorganisms (Jeffrey et al., 2011). Among marine microorganisms, particularly fungi have gained an important role as a source of biologically active secondary metabolites (Amira et al., 2009). Marine fungi are prolific resources of natural products. But only a limited potential of marine fungi have been investigated to an extent. True marine fungi have the ability to grow and sporulate exclusively in sea water, where facultative marine fungi are able to adapt away from their natural habitat.

Unique features of marine environment and their relevance to marine fungi

The unique properties of the marine environment are considered important for marine biotechnology for several reasons: 1) A good adaptation of ecosystem will help in development of novel genes and 2) biotechnological production processes are influenced by the special adaptations of organisms to their environment.

The physical factors that influence the marine fungi are a) salinity and pH, b) low water potential, c) high concentrations of sodium ions, d) low temperature, e) oligotrophic nutrient conditions and f) high hydrostatic pressure, the last three parameters being unique to the deep-sea environment (Raghukumar, 2008).

In recent years, marine fungi have been explored more intensely to obtain novel and biologically active compounds, when compared with marine sponges, bacteria. Marine fungi are still less explored. Nevertheless, success in marine fungi research is less. Cephalosporin C was the first bioactive compound from Cephalosporium acremonium which was isolated from a sewage outlet of the Sardinian coast.

Marine fungi have been explored to a much lesser extent than their terrestrial counterparts, such as those for use in treatment of human diseases as well as several others in biotechnological applications (Aline et al., 2008). Hence, we tried to review the research carried out so far regarding marine fungi and their bioactive compounds.

Previous literature shows that marine-derived fungi have been recognized as one of the tapped sources for new biologically active secondary metabolites including anti-tumor, antibacterial, antiviral, antifungal, anti-inflammatory and anticancer activities and enzyme inhibitor compounds. Clodepsipeptide(1) isolated from the marine fungus, Clonostachys sp. is having anti cancer activity.

*Corresponding author. E-mail: akrishnasatya78@gmail.com. Tel: +91- 863-2346358.
(Samuel et al., 2011). Until 1991, only 321 species of obligate marine fungi had been described, of which 11 belong to the class Ascomycete, which are found in shallow waters. Facultative marine fungi have been explored to a lesser extent, and only 56 species have been described until 1999 (Aline et al., 2008). Between 2000 and 2005, approximately 100 marine fungal metabolites were described and between 2006 and 2010, a total of 690 natural products were reported as being isolated from fungi in marine habitats (Katia et al., 2012). Marine fungi have attracted great attention as considerable resources from only few decades. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate their tremendous potential as a source of new medicines even at low concentrations of their secondary metabolites (Table 5) (Swathi et al., 2013).

Continuous investigations demonstrated that marine microorganisms are an unlimited source of novel biologically active secondary metabolites. Marine-derived fungi, in particular, have yielded an increasing number of biologically active natural products.

Bioactive compounds from marine derived fungi

Marine-derived fungal strains majorly produce polyketide derived alkaloids, terpenes, peptides and mixed biosynthesis compounds which are representative groups of secondary metabolites produced by fungi. Miriam et al. (2012) isolated marine-derived fungal strains, they yielded several bioactive secondary metabolites among which are E)-4-methoxy-5-3-methoxybut-1- enyl)-6- methyl-2H-pyrano-2-one, a new metabolite isolated from the *Penicillium paxilli* strain MaG)K of marine sediment, also known as 1,3,6- trihydroxy-8-methyl-9H-xanthene-9-one, was isolated from the fungus *P. raistrikii* obtained from the sponge *Axinella corrugate*.

The structure and absolute stereochemistry of E)-3,5-dimethylisochroman-6-ol, isolated from *Penicillium steckii* obtained from an algae belonging to the genus *Sargassum*, could be established by analysis of spectroscopic data and also by comparison with literature data.

A *Penicillium* sp. strain DG M3) 6°C, isolated from the ascidian *Didemnum granulatum*, yielded 13-deoxy-phenomenone. Roridin A was isolated from *Trichoderma* sp. obtained from the sponge *Mucule angulosa* and also identified by analysis of spectroscopic data and comparison with literature data. The fungal strain Ma G) K, obtained from the sponge *M. angulosa* and identified as *Penicillium paxilli*, gave an extract which was cytotoxic against MDA-MB-231 human mammary cancer cells and HL60 leukemia cells. Fractionation of this crude extract yielded three 2-pyrone, belonging to Pyrenocines the class of pyrenocines, of which two were known and one was a new natural product, Pyrenocine J. B and A were first isolated from *Pyrenochaeta terrestris* and identified by spectroscopic and X-ray diffraction analysis (Miriam et al., 2012). Two new indole alkaloids, 2,3, 3-dimethylprop-1-ene)-costaclavein and 2,3, 3-dimethylprop-1- ene)-epicosta-clavine, together with the known compounds costaclavein, fumaglaviine A and C, were isolated from the marine-derived fungus *Aspergillus fumigates* (Dahai et al., 2012). *Penicillium commune* SD-118, a fungus obtained from a deep-sea sediment sample, resulted in the isolation of a known antibacterial compound, xanthocillin X (Swathi et al., 2013). 14 other known compounds comprising three steroids, two ceramides, six aromatic compounds and three alkaloids (Table 1).

Xanthocillin X was isolated for the first time from a marine fungus. In the bioassay, xanthocillin X displayed significant cytotoxicity against MCF-7, HepG2, H460, Hela, Du145 and MDA-MB-231 cell lines. Meleagrin exhibited cytotoxicity against HepG2, Hela, Du145 and MDA-MB-231 cell lines. This is the first report on the cytotoxicity of xanthocillin X (Shang et al., 2012). Khould and Yousry (2012) isolated new biologically active metabolites against some virulent fish pathogens Edwardsiella tarda, Aeromonas hydrophila, Vibrio ordalii and Vibrio angularum. *Aspergillus terreus* var. Africanus was identified as the most potent isolate by Khould and Yousry (2012). Acremonin showed a novel modified base, was isolated from the culture broth of the marine fungus *Acremonium strictum*. Based on combined spectroscopic analyses, the structure of this compound was that of a methyl guanine base containing an isoprene unit. In addition, the presence of a 1H-azirine moiety is unprecedented among natural products. This compound exhibited weak cytotoxicity against an A549 cell line (Elin et al., 2012).

In investigation of new bioactive natural products from marine fungi collected from the South China Sea one terrestrial fungal metabolite, chrodrimanin B, together with five new phenolic bisabolane-type sesquiterpenoids were isolated from the fermentation broth of a marine derived fungus *Aspergillus* sp. This is the first report of the isolation of chrodrimanin B from a marine organism (Mei-Yan et al., 2011). Smetanina et al. (2011) determined that the biologically active compounds among marine isolates of microscopic fungus. *Myceliophthora lutea Costantin*, which was isolated from marine sediments of Sakhalin Bay Sea of Okhotsk), synthesizes compounds with antibacterial and cytotoxic activities. The new compounds isoacremin D and acremin were reported for the first time from the marine isolate of the fungus *Myceliophthora lutea*. It was found that acremin A in CHCl3 was converted through the action of light into spiro compounds called as spiroacremines A and B (Smetanina, 2011). A new cyclopenantopyridine alkaloid (6)-3-hydroxy-5-methyl-5,6-dihydro-7H cyclopenta(b)pyridine-7-one, together with 11 known aromatic compounds were isolated from the secondary metabolites of the halo tolerant fungal strain *Wallemia sebi* PXP-89 in 10% NaCl (Xiao-Ping et al., 2011). A new xanthone derivative, 8-hydroxy-
Table 1. Antibacterial compounds from marine derived fungi (Punyasloke et al., 2006).

Source	Metabolite	Class of compound
Emericella unguis	Guisinol\(^{37}\)	Depside
Curvularia lunata	Lunatin 1)	Anthraquinone
Emericella variecolor	Cytoskyrin A 2)	
E. variecolor	Varixanthone\(^{39}\)	
Trichoderma virens	Trichodermamide B	Dipeptide
Paraphaeosphaeria sp N-119	Modiolides A-B\(^{34}\)	Macrolide
Cladosporium herbarum	Sumiki’s acid, Acetyl Sumiki’s acid\(^{35}\)	Furan carboxylic acid
Aspergillus versicolor	Aspergillitine	Chromone derivative
Stilbella aciculosa	Fusidic acid	Steroid
Ascochyta salicorniae	Ascosalipyrrolidinone A	Alkaloid
Aspergillus ochraceus	CJ-17665 I)	Diketopiperazine & N-indole
Halocyphina villosa	Siccayne	
Penicillium sp.	7-deacetoxyyuanethone A	Polyoxigenated Farnesyl cyclohexenones
	8-Chloro-9-hydroxy-8, 9-deoxyasperlactone 1)	
	9-chloro-8-hydroxy-8, 9-de oxyasperlactone 2)	
Aspergillus ostianus	Ascomycin\(^{36}\)	Chlorinated compounds
	Enniatin B	
Halorosellinia oceania	Halorosellinic acid, Phenyl lactone\(^{38}\)	Sesterterpene, Lactone
Unidentified marine-derived fungus	Sera gkinone A\(^{42}\)	Anthracycline related pentacyclic compound
Fusarium sp.	Neomangicinol B	
Coniothyrium sp isolated from the sponge Ectyplasia perox	2-hydroxymethyl furan)	

3-methyl-9-oxo-9H-xanthene-1-carboxylic acid methyl ether, was isolated from the co-culture broth of two mangrove fungi strain No. K38 and E33 isolated from the South China Sea coast. Primary bioassays showed that compound has inhibitory activity against microorganisms, including Gloeasporium musae and Peronophthora cichoralearum, etc. (Chunyuan et al., 2011). Three metabolites, pre-aumentamine\(^{37}\), 4)-9-hydroxyhexyl-taconic acid and \(-\)-9-hydroxyhexyltaconic acid-4-methyl ester 5, together with two known compounds, paraherquamide E and secalconic acid D, were isolated from the marine-derived fungus, Aspergillus aculeatus (Bassey et al., 2011). Marine sediments were collected from different coastal locations of Kanyakumari District; South India and antimicrobial activity was confirmed by crowded plate techniques. Antimicrobial activity of marine fungi isolate was evaluated against six human pathogenic bacteria viz., Enterobacter aerogenes, Escherichia coli, Proteus mirabilis, Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae, with different solvents like n-butanol, chloroform, water and acetone. Anticancer activity of the selective fungi Aspergillus protuberus SP1 extracts were tested and they showed activity against Hep 2 cells using MTT assay (Mathan et al., 2011). Two new metabolites, 3S*,4S*,5S*,6R*\(-\)-4,5,6-trihydroxy-3-methyl-3,4,6,7-tetrahydro-1H-isochromen- 8 5H)-one\(^{36}\) and 3R*,4S*)-7-ethyl-3,4,6,8-tetrahydroxy-3,4-dihydrornaphthalen-1 2H)-one\(^{36}\), were isolated from the culture broth.
of the aquatic fungus Delitschia corticol. The antimicrobial activities of compounds were evaluated against a panel of bacteria and fungi (Rong et al., 2011). New antioxidants and antibacterial compounds were isolated and characterized from *Curvularia tuberculata* (Venkatchalam et al., 2011). Joel et al. (2010) isolated compounds from marine fungi derived from seaweeds. They include alkaloids with antitumor activity from *Penicillium citrinum*, *Fusarium* sp., *Apiospora montagnei* and polyketide ascosal pyrrolidinione-A⁴⁰ isolated from the *Ascochyta salicorniae* having potential antimalarial activity (Joel et al., 2010). The fungal genus *Aspergillus* has been reported to produce a considerable number of cytotoxic compounds as well as other bioactive compounds. (Table 2) Bioactive metabolites from the marine sponge-derived fungus, *Aspergillus versicolor*, yielded three polyketides. In continuation of this study, an aromatic polyketide derivative 2,4-Dihydroxy-6-R)-4-hydroxy-2-oxopentyl)-3-methylbenzaldehyde, two xanthones *Sterigmatocystin*, *Dihydroste</p>
23,24R)-dimethylcholesta-6,9(11),22-trien-3β-ol, have been isolated from the marine derived fungus *Rhizopus* sp., along with four known ones. The structures of the new compounds were determined on the basis of extensive spectroscopic data. All compounds were eva-luated for their cytotoxic activities against P388, A549, HL-60 and BEL-7420 cell lines by the MTT and SRB methods (Fazuo et al., 2008). Chemical investigation of the cytotoxic and anti-tuberculosis is active butanone extract obtained from the growth media of the marine-derived fungus *Beauveria felina* led to the isolation of two new destruxins, (b-Me-Pro) destruxin E chlorohydrins(26) and pseudodestruxin C(23), along with five known cyclic depsipeptides. The structures of the new destruxin derivatives were established by analysis of spectroscopic data, while the absolute configuration of the common amino acid residues was established by Marfey’s analysis (Simone et al., 2006). The potential activity of dactic acid, a neurotoxin released from marine fungi was studied against from Dipteral larvae (Nicolas et al., 2010). A new cytotoxic cyclodepsipeptide(27) was isolated from extracts of marine fungus *Clonostachys* sp.. The amino acid sequence was determined by spectrometric studies and the sequence was revealed to be a cyclic dimer formed by two chains of L-N-Me2Leu-L-Ser-L-N-MeLeu-L-N-MePhe bound by the two esters formed between the carboxylic acid of the L-N-MePhe and the hydroxyl function of the L-Ser. IB-01212 is highly cytotoxic to different tumour cell lines (Luis et al., 2006). The new metabolite cillinifurane(27) was isolated from *Penicillium chrysogenum* strain LF066. The structure of cillinifurane was elucidated based on 1D and 2D NMR analysis and turned out to be a previously postulated intermediate in sorbifuranone biosynthesis. Only minor antibiotic bioactivities of this compound were found so far (Jutta et al., 2011). Protulacones A and B(28), two new polyketide-derived fungal metabolites, have been isolated from an EtOAc extract of the marine-derived fungus *Aspergillus* sp. SF-5044 by various chromatographic methods (Jae and Hyunchol, 2010). Marine fungi belonging to the genus *Aspergillus*, *Pencillium* and *Fusarium* were isolated from mangrove forest and these fungal derived compounds were tested for antibacterial activity with *E. coli*, *K. pneumonia* and *P. aeruginosa* and antymycobacterial activity against *M. tuberculosis* H37 RV. These fungal compounds showed best antibacterial and antimycobacterial activities when extracted with n-hexane, methanol and ethyl acetate (Punyasloke et al., 2006). Two new sesquiterpenes, one new monocyclofarnesane type 3,7,10-trihydroxy-6,11 cyclofarnesane-1-ene(29) and acaron type sesquiterpene,8-hydroxymethyl)-1,2-hydroxy-methyl(29)-4-methylsproil(4,5)-dec-8-ene-7-ol(29) and three known terpenes were isolated from *Eutypella scoparia* which shows cytotoxic activities against the SF-268, MCF-7, NCL-H460 tumor cell lines (Li et al., 2012). Mohamed et al. (2007) isolated marine derived fungi that produce spiromassaritine(30) and massarphenone(31) as well as the previously reported fungal metabolites 6-epi-50- hydroxy-mycosporulone(32) and enalin A(33) from *Massarina* sp. strain CNT-016 (Mohamed et al., 2007). Marine derived fungi *Mucor racemosus* CBMAI 847 has relevant potential features producing laccase, mangnese peroxidise and lignolytic enzymes (Rafaella et al., 2010). Mi-Hee et al. (2008) isolated a novel yeast strain that produce a large amount of squalene(34) and several polyunsaturated fatty acids from *Pseudozyma* sp. JCC 207 of marine fungi (Xueqian et al., 2009) (Table 3). Oda and colleagues (2005) described the pharmacology of verrucarin A, a compound isolated from the culture broth of the Palauan marine fungus *Myrothecium roridum*. Verrucarin A significantly inhibited interleukin-8 production from human promyelocytic leukemia cells, by a mechanism that involved inhibition of the activation of the mitogen activated kinases c-JUN and p38 (Alejandro et al., 2009). Wei et al. (2011) investigated a novel polyketide shimalactone A isolated from the cultured marine-derived fungus *Emericella variecolor* GF10. Shimalactone A induced neuritogenesis in a neuroblastoma Neuro 2A cell line at 10 μg/mL by a none yet undetermined mechanism (Alejandro et al., 2009). Marine fungi strains of genera *Pencillium* and Cladosporium show strong antibacterial activity (Ya-Nan et al., 2011). A marine fungal isolate, *Penicillium* sp. isolated from seaweed, *Ulva* sp. led to the isolation of a new chormone derivatives, 2-hydroxymethyl)-8-methoxy-3-methyl-4H-chromen-4-one chromanone A(44) which act as an active tumour anti-

Fungi	Bioactivity
Ascomycetous	Antiviral activity
Fusarium sp.	Cytotoxicity
Penicillium griseofulvum Y19-07	Antibacterial activity
Penicillium Viridicatum	Anti fungal activity
Penicillium expansum	Cytotoxicity
Penicillium citrinum	Cytotoxicity
Trichoderma koningii	Anti fungal activity
Hypocrea vinos	Cytotoxicity
Penicillium citreonigrum	Neuroactivity
Phoma sp.	Neuroactivity
Phomaexigu var exigua	Neuroactivity
Scopulariopsis sp.	Neuroactivity
Chrysosporium queenslandicum	Neuroactivity
Pycnidiothopa dispersa	Neuroactivity
Penicillium citreonigrum	Neuroactivity
Phoma sp.	Neuroactivity
Scopulariopsis sp.	Cytotoxicity
Chrysosporium queenslandicum	Neuroactivity
Pycnidiothopa dispersa	Neuroactivity

Table 3. Discovery of bioactive compounds from marine fungi (Mi-Hee et al., 2008).
Table 4. Screening bioactive compounds from marine fungal strains (Mi-Hee et al., 2008).

Fungi	Compound	Bioactivity
Chaetomium sp.	Chaetominedione	Enzyme inhibition
Ascomycetes 222	Balticolid	Antiviral
Fusarium sp.	3-O-methylfusarubin	Cytotoxicity
	4-Hydroxyphenethyl methyl succinate	
Penicillium griseofulvum Y19-07	4-Hydroxy-phenethyl 2-4-hydroxyphenylacetate	Cytotoxicity
Penicillium viridicatum	Fumigaclavine	Antibacterial
Penicillium expansum	Expansol A Expansol B	Cytotoxicity
	3S)-3,5-dimethyl-8-methoxy-3,4-dihydro-1H-isochromen-6-ol	Cytotoxicity
Penicillium citrinum	Trichodermaketone A	Antifungal
Trichoderma koningii	Chaetochromin A	Cytotoxicity
Hypocrea vinosa	Sterigmatocystin	Cytotoxicity
Aspergillus versicolor	Averatin	Cytotoxicity Antibacterial
	Methyl-averatin	Antibacterial
	Cinnamic acid	Cytotoxicity Antibacterial
	2-Phenylethano	Antibacterial
	Cyclo-Phe-Pro	Antibacterial
	Cyclo-Val-Pro	Antibacterial
Cladosporium sp. F14	Bismethylthio) gliotoxin	Antiparasitic
	6-methoxyspirotryprostatin B	
Nodulisporium sp. CRIF1	Nodulisporacid A	Antiplasmodial
	Vermelhotin*	
	Fusaquinon A	
Fusarium sp.	Fusaquinon B	Cytotoxicity
	Fusaquinon C	
	Circundatin A*	
	Circundatin B*	
	Circundatin E*	
	Circundatin H*	
Aspergillus ostianus	Circundatin E*	Antibacterial

*Compounds known already.

Chemical structures

1. Clodepsipeptide

initiating via modulation of carcinogen metabolizing enzymes and protection from DNA damage (Amira et al., 2009).

The marine fungi are highly diversified and their potential to produce bioactive compounds clearly demonstrates their role in clinical applications and further drug designing pharmaceuticals. New method of isolation and screening of fungi and its metabolites is essential to generate a novel compound (Table 4). The main goal of this review was to investigate the potential bioactive compounds isolated from marine fungi and their contribution towards modern medicine.

CONCLUSION

The way of screening new bioactive compounds depends
Table 4. Contd.

Isolated sp.	Activity of secondary metabolite	Low and high concentrations	Reference
Aspergillus sp.	Anti-bacterial	10-40 μg/ml	Swathi et al., 2013
Aspergillus sp.	Anti-bacterial, anti-fungal	50-200 μg/ml	Swathi et al., 2013
Curvularia sp.	Anti-bacterial	25-100 μg/ml	Swathi et al., 2013
Fusarium sp.	Anti-bacterial, anti-fungal	50-200 μg/ml	Swathi et al., 2013
Microascus sp.	Anti-bacterial, anti-fungal	20-50 μg/ml	Swathi et al., 2013

2. Aspergillus fumigates

on source of sample collection and storage, cultivation, extraction and separation of compound. The collection and extraction of compound even depends on solvent used for extraction. Hence, so far, we have reviewed the
4. Protulactones A and B4

5. Acremolin

6. 3-Hydroxy-5-methyl-5,6-dihydro-7H cyclopenta(b)pyridin-7-one

7. Pre-aurantiamine

8. 3S*,4S*,5S*,6R*(-4,5,6-trihydroxy-3-methyl-3,4,6,7-tetrahydro-1H-isochromen-8 5H)-one

9. 3R*,4S*(-7-ethyl-3,4,6,8-tetrahydroxy-3,4-dihydronaphthalen-1 2H)-one

10. 2,4-Dihydroxy-6-R)-4-hydroxy-2-oxopentyl)-3-methylbenzaldehyde

11. Sterigmatocystin

12. Dihydrosterigmatocystin
13. Averantin
14. Methyl-averantin
15. Averufin
16. Nidurufin
17. Versiconol

18. Aspergiolide A

19. 3β-Hydroxy-22E, 24R\text{-}ergosta-5,8,22-trien-7,15-dione

20. 3β-Hydroxy-22E, 24R\text{-}ergosta-5,8,14,22-tetraen-7-one

21. 3β,15α-Dihydroxy-22E, 24R\text{-}ergosta-5,8,14,22-trien-7-one

22. 3β,15α-Dihydroxy-22E, 24R\text{-}ergosta-5,8,14,22-trien-7-one

23. 3β-Hydroxy-22E, 24R\text{-}ergosta-5,8,14,22-trien-7,15-dione

24. (b-Me-Pro) destruxin E chlorohydrins
25. Pseudodestruxin C

26. Cyclodepsipeptide

27. Cillifuranone

28. 3,7,10-Trihydroxy-6,11-cyclofarnesane-1-ene

29. 8-hydroxymethyl)-1-2-hydroxy-methylethyl)-4-methylspirol(4.5)-dec-8-en-7-ol

30. Spiromassaritone

31. Massariphenone

32. 6-Epi-50- hydroxymycosporulone

33. Enalin A
34. Modiolides A-B

35. Acetyl Sumiki's acid

36. Ascochital

37. Guisinol

38. Phenyl lactone

39. Varixanthone

40. Polyketide ascosali pyrrolidinone-A

41. Microsphaeropsin

42. Seragikinone A
results related to research on bioactive compounds isolated from marine derived fungi showing activities like antibacterial, antifungal, cytotoxic, anticancer, antioxidant, antimalarial, nematicidal, antitumor, antineoplastic, antifouling, larrvicidal, neurotoxic, antimycobacterial, anti-HIV, antiprotozoal, antiviral, antilucre, antiparasitic, pulmonary diseases, anti-inflammatory, and also act as immuno-suppressant. This review provides scope for further research on isolation and production of efficient bioactive compounds from marine fungi.

However, once the novelty of a compound is established, the extracts must be processed by the traditional approaches for subsequent purification and synthesis of the bioactive compounds.

REFERENCES

Alejandro MSM, Abimael DR, Roberto GSB, Mark TH (2009). Marine pharmacology in 2005-6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, ant-inflammatory, antimarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim. Biophys. Acta.1795(5): 283-308.

Aline MVM, Simone PL, Roberto GSB (2008). A multi-screening approach for marine derived fungal metabolites and the isolation of cyclodepsipeptides from Beauveria feline. Quim. Nova. 31(5):1099-1103.

Amira MG, Ahmed AL, Tatsufumi O (2009). Modulation of carcinogen metabolizing enzymes by chromalone A; a new chromone derivative from algalicious marine fungus Penicillium sp. Environ. Toxicol. Pharmacol. 28:317-322.

Bassey SA, Thammarat A, Chairut K, Suthep W, Okon DE, Udofot JE, Chulabhorn M, Somsak R, Prasat K (2011). Itaconic acid derivatives and diketopiperazine from the marine-derived fungus Aspergillus aculeatus CR122-03. Phytochem. 72:816-820.

Chunyan L, Jie Z, Changlin S, Weijiang D, Zhigang S, Yongchong L (2011). A new xanthone derived from the co-culture broth of two marine fungi STRAIN No. E33 AND K38). Chem. Nat. Compounds 47:3.

Dahai Z, Masayuki S, Seketsu F, Kohtar S, Ai N, Tomohiro S, Kazuo T (2012). Two new indole alkaloids, 2-3,3-dimethylprop-1-ene-coctaclavine and 2-3,3-dimethylprop-1-ene-epicoctaclavine, from the marine-derived fungus Aspergillus fumigatus. J. Nat. Med. 66:222-226.

Elin J, Hana O, Hyi-Seung L, Dong-Chan OA, Ki-Bong O, Jongheon SA (2012). A new 1H-azirine metabolite from the marine-derived fungus Acromonium strictum. Tetrahedron Letter. 53:2885-2886.

Fazuw W, Yuchun F, Min Z, Aiqun L, Tianjiao Z, Qianjun G, Weiming Z (2008). Six new ergosterols from the marine-derived fungus Rhizopus sp. Steroids 73(3):19-26.

Hairong X, Shuhua Q, Ying X, Li M, Pei-Yuan Q (2009). Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. J. Hydro-Environ. Res. 2:264-270.

Jae HS, Hyuncheol O (2010). Protulactones A and B: Two New Polyketides from the Marine-Derived Fungus Aspergillus sp. SF-5044 Bull. Korean Chem. Soc. 31:6.

Jeffrey JC, Suman G, Ikechukwu O, Eleftherios M (2011). Antifungal Activity of Microbial Secondary Metabolites. PLoS ONE. 6:9.

Joel Q, Jean-Paul C, Michael JA, Jonas C (2010). Marine Biotechnology. Adv. Marine Genomics. pp. 287-313.

Jutta W, Birgit O, Martina B, Rolf S, Johannes FI (2011). Phylogenetic Identification of Fungi Isolated from the Marine Sponge Tethya aurantium and Identification of Their Secondary Metabolites. Mar. Drugs 9:561-585.

Katia D, Teresa APRS, Ana CF, Armando CD (2012). Analytical techniques for discovery of bioactive compounds from marine fungi, Trends Anal. Chem. p.34.

Khould MB, Yousry MG (2012). Antimicrobial Agents Produced by Marine Aspergillus terreus var. africanus Against Some Virulent Fish Pathogens. Indian J. Microbiol. 52(3):363-372.

Li S, Dong-Li L, Mei-Hua T, Fei-Jun D, Wei-Min Z (2012). Two New Sesquiterpenes from the Marine Fungus Euphylla scoparia FS26 from the South China Sea. Helvetica Chimica Acta p.95.

Luis JC, Marta MI, Julia PB, Martha T, Ricard ARM, Eliandre O, Ernest G, Fernando A, Librdia MC (2006). IB-01212, a New Cytotoxic Cyclodepsipeptide Isolated from the Marine Fungus Clonostachys sp. ESNA-A009. J. Org. Chem. 71(9):3335-3338.

Mathian S, Anton SA, Kumaran J, Prakash S (2011). Anticancer and Antimicrobial Activity of Aspergillus protuberus SP1 Isolated from Marine Sediments of South Indian Coast. Chin. J. Nat. Med. 9:0286-0292.

Mei-Yan W, Guang-Ying C, Yu W, Xiu-Li Z, Chang-Yun W, Chang-Lun S (2011). Isolation, 1H, 13C NMR Assignments, and crystal structure of Chrodrimin B from a marine fungus Aspergillus sp.. Chem. Nat. Compound 47:4.

Miriam H, Kosuga, Stelamar Romminger, Camila Xavier,Marilia C. Milanetto Milene Z. do Valle, Eli F. Pimenta, Raquel P. Morais, Erica de Carvalho, Carolina M. MizunoLuiz Fernando C. Coradello, Vinicius de M. Barroso, Bruna Vacondo Dari C. D. Javaroji, Mirna H. R. Seleglim, Bruno C. Cavalcanti, Claudia Pessoa, Manoel O. Moraes, Bruna A. Lima,Reginaldo Goncalves, Rafaela C. Bonugli Santos, Lara D. Sette, Roberto G. S. Berlnic (2012). Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites. Revista Brasileira da Farmacognosia Brazilian J. Pharmacognosy p.222.

Mi-Hee C, Hyeon-Jin KK, Yeop J, Seong CH (2008). The isolation and characterisation of Pseudozyma sp. JCC207 a novel producer of squalene. Appl. Microbiol. Biotechnol. 78:963-972.

Mohamed AAW, Ratnakar NA, Patrik I, William F (2007). Secondary metabolite chemistry of the marine-derived fungus Massarina sp. Marine Drugs 05:163-179.

Nicolas R, Karina P, Marieke V, Isabelle K, Joseph B, Zouher A, Jean-François B, Olivier G, Yves FP (2010). Enhancement of domoic acid neurotoxicity on Diptera larvae bioassay by marine fungal metabolites. Toxicon. 55(4):805-810.

Oda T, Namikoshi M, Akano K, Kobayashi H, Homma Y, Kasahara T. Vernucarin a inhibition of map kinase activation in a pma-stimulated promyelocytic leukemia cell line. Marine Drugs 5:64-73.

Punyasloke B, Balsam TM, Phillip C (2006). The current status of natural products from marine fungi and their potential as anti-infective agents . J. Ind. Microbiol. Biotechnol. 33:325-337.
Rafaela CBS, Lucia RD, Manuela S, Lara DS (2010). Production of laccase, manganese peroxidise and lignin peroxidise by Brazilian marine-derived fungi. Enzyme Microbial Technol. 46:32-37.

Raghukumar C (2009). Marine fungal biotechnology: an ecological perspective. Fungal Divers. 31:19-35.

Rong S, Yan XF, Kai ZS, Yao-Bo X, Chun-Ren W, Hai-Yang L, Jin-Yan D (2011). Antimicrobial metabolites from the aquatic fungus Delitschia corticola. Phytochem. Letters 4:101-105.

Samuel P, Prince L, Prabakaran (2011). Antibacterial Activity of Marine derived Fungi Collected from South East Coast of Tamilnadu. India PJ. Microbiol. Biotech. Res. 1(4):86-94.

Simone PL, Aline MVM, Mírna HRS, Tim SB, Daniel VLB, Lara DS, Sandra RPS, Chris MI, Roberto GSB (2006). New Destruxins from the Marine-derived Fungus Beauveria feline. J. Antimicrob. Chem. Nat. Compounds. 47:3.

Shang Z, Li X, Meng L, Li C, Gao S, Huang C, Wang B (2012). Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118. Chin. J. Oceanol. Limnol. 30(2):305-314.

Smetanin OF, Yurchenko AN, Kalinovskii AI, Berdyshev DV, Gerasimenko AV, Rivkin MV, Slinkina NN, Dmitrenok PS, Menzorova NI, Kuznetsova TA, Afiyatullov SH (2011). Biologically active metabolites from the marine isolate of the fungus Myceliophthora lutea. Chem. Nat. Compounds. 47:3.

Swathi Jangala, Katta Meera Sowjanya, Kumara Narendra, Rathnaker Reddy KVN, Alapati Krishna Satya (2013). Isolation, identification and production of bioactive metabolites from marine fungi collected from coastal area of Andhra Pradesh. India. J. Pharmacy Res 6:663-666.

Swathi J, Narendra K, Sowjanya KM, Krishna Satya A (2013). Evaluation of biologically active molecules isolated from obligate marine fungi. Mintage J. Pharmaceut Med. Sci. 2(3):45-47.

Swathi J, Sowjanya KM, Narendra K, Krishna Satya A (2013). Bioactivity assay of an isolated marine Fusarium sps. Int. J. Biosci. Biotechnol. 5(5):179-185.

Swathi J, Narendra K, Sowjanya KM, Krishna Satya A (2013). Biological Characterisation of Secondary Metabolites from Marine Fungi Microascus sps. Int. J. Res. Pharm. Biomed. Sci. 4(3):754-759.

Venkatchalam G, Ambayeram V, Trichur SS, Mukesh D (2011). Isolation and Characterization of New Antioxidant and Antibacterial Compounds from Algicolous Marine Fungus Curvularia Tuberculata. Int. Conference Biosci. Biochem. Bioinform. IPCBEE. p. 5.

Xiang Z, Xiang X, Dehai L, Qianqun G, Fengping W (2010). Isolation, identification and screening of microorganisms for cytotoxic activities from deep sea sediments at different Pacific stations. World J. Microbiol. Biotechnol. 26:2141-2150.

Xiao-Ping P, Yi W, Pei-Pei L, Kui H, Hao C, Xia Y, Wei-Ming Z (2011). Aromatic Compounds from the Halotolerant Fugal Strain of W allemia sebi PXP-89 in a Hyper saline Medium. Arch. Pharm. Res. 34(6):907-912.

Xueqian S, Xiangshan Z, Menghao C, Jiushun Z, Yuanxing Z (2010). Significant stimulation of o-phthalic acid in biosynthesis of aspergiolide A by a marine fungus Aspergillus glaucus, Biore. Technol. 101:3609-3616.

Xueqian S, Xiangshan Z, Menghao C, Kejing T, Yuanxing Z (2009). Statistical optimization of medium composition for aspergiolide A production by marine-derived fungus Aspergillus glaucus. J. Ind. Microbiol. Biotechnol. 36:381-389.

Xueqian S, Xiangshan Z, Menghao C, Kejing T, Yuanxing Z (2009). Identified biosynthetic pathway of aspergiolide A and a novel strategy to increase its production in a marine-derived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. Biore. Technol. 100:4244-4251.

Ya-Nan W, Chang-Lun S, Cai-Juan Z, Yi-Yan C, Chang-Yun W (2011). Diversity and Antibacterial Activities of Fungi Derived from the Gorgonian Echinogorgia rebekka from the South China Sea. Mar. Drugs pp.1379-1390.

Yoon ML, Huyue L, Jongki H, Hee YC, Kyung SB, Mi AK, Dong-Kyoo K, Jew HJ (2010). Bioactive Metabolites from the Sponge-Derived Fungus Aspergillus Versicolor. Arch. Pharm. Res. 33(2):231-235.

Zhong-Shan Y, Guo-Hong L, Pei-Ji Z, Xi Z, Shao-Liu L, Lei L, Xue-Mei N, Ke-Qin Z (2010). Nematicidal activity of Trichoderma sp. and isolation of an active compound. World J. Microbiol. Biotechnol. 26:2297-2302.