今月の巻頭言
「Web はパワースーツ」
早稲田大学 理工学術院 基幹理工学部
山名 早人
情報・システムソサイエティ誌 第27巻 第3号（通巻108号）

目次

卷頭言
Webはパワースーツ
山名 早人……………………………3

研究会インタビュー
ソサイエティ人図鑑 No.33 —山口高平さん（KBSE研究会）
……………………………………………………4

研究最前線
RECONF研究会：リコンフィギュアブシステム研究最前線
吉瀨 謙二………………………………8

おめでとう論文賞
カメラ情報を用いた公平かつ効率的なエレベータ配車制御手法の提案と
推定誤差の影響
山内 智貴、井手 理菜、菅原 俊治………………10

全方位カメラでの撮影とその後処理による視覚障害者の写真撮影支援
岩村 稔一、平林 直樹、程 征、南谷 和範、黄瀬 浩一………11

Real-Time Full-Band Voice Conversion with Sub-Band Modeling and Data-Driven
Phase Estimation of Spectral Differentials
佐伯 高明、齋藤 佑樹、高遠 慎之介、猿渡 洋……………12

ソサイエティ活動
FIT2022開催速報
山本 琢磨……………………………13

フェローからのメッセージ
教育・研究生活を振り返って
福本 聡………………………………15
研究留学のススメ
薮木 祐史…………………………17
異なるものが空間を共有すると
相野 邦夫……………………………19

コラム
Author’s Toolkit —Writing Better Technical Papers—
Ron Read……………………………21

令和4年度ISS組織図及び運営委員会構成
…………………………………………22

編集委員会名簿・編集後記
…………………………………………23

◇表紙デザインは橋本伸江さんによる

お詫び
本誌第24巻第4号（通巻97号・2020年2月発行）18ページに掲載いたしました「コラムAuthor’s Toolkit
—Writing Better Technical Papers—」におきまして、手違いにより前号（第24巻第3号（通巻96号・2019
年11月発行））の同コラムと同一の記事を掲載しておりました。関係者の皆様、読者の皆様に深くお詫び申し上げます。通巻97号に掲載を予定しておりました記事は、今後掲載することを検討いたします。

電子情報通信学会 情報・システムソサイエティ誌 編集委員会
Web はパワースーツ

山名 早人
早稲田大学

皆さんは Web を最大限に活用されているだろうか。筆者が学生の頃は、論文は図書館で読み、海外の博士論文を取り寄せようとすれば数か月の単位で時間がかかった。しかし、今や、検索エンジンで検索して瞬時に論文を入手できる。それだけではない、英語で論文を書くには、英語特有の表現や言い回しが重要で、英文校正者には大変お世話になった。しかし、英文校正者も完璧ではない。一方、今は論文専用の検索エンジンで、ワイルドカードを使ったフレーズ検索（例：“we* tackle* problem”）をうまく使うことで、試行錯誤は必要なものの、英文表現の候補を見付けることができる（一般の検索エンジンでも可能であるが、得られる結果が玉石混淆である）。このように Web は私たちの研究環境を大きく変えた。正にパワースーツである。論文の剽窃は許されないが、こうした英語での表現手法を他の論文から学ぶ方法は、Web のお陰で格段に進化したのである。

筆者の研究室は、学生数が30名を超え、幅広い分野での研究を行い、修士以上の学生にはできる限り英語論文にまとめてもらっている。20年前だと自身の専門に真に近い領域でなければ英語論文の校正は難しく、自身の分野から離れた分野で成果を上げたとしても英語論文にまとめることは難しかった。つまり、必然的に研究室に配属された学生の研究分野が狭まる。しかし、今は、Web というパワースーツのお陰で、学生が興味を持つ研究の方向に異を唱えて、広く研究を進め、論文を書くことができる。これは、研究室に配属された学生の可能性を広げるだけでなく、筆者自身の興味をも倍増させてくれている。

さて、こうした検索エンジンの使い方、すなわち確かな英文に仕上げていくための方法を事あるごとに学生に説明するものの、学生はなかなかうまく使いこなしてくれない。検索エンジンにより瞬時に検索できるようになったからといって、的確な英語表現を見付けるには時間がかかるし、慣れが必要だからだろうか。いや、学生と話をすると必ずしもそうではないのである。「論文を読むのと、論文を書くのは違う」ということらしい。つまり、論文を読むときには、英語の表現の良さ、美しさに感動していないのかもしれない。筆者が三十数年前に学生であったときのことを思うと、変わったのかと思う。当時は、「英語でこう説明すると確かに分かりやすい」「この表現はすばらしい、美しい」と思ったから、ノートに書き留めており、自身が論文を書くときの参考にしたものである。今は、検索エンジンが代替となるのだから、論文を読んだときメモをとる必要はないが、すばらしい表現に出会ったら感動してほしい。そうすれば、表現の一部を覚えているので、必要になったときに検索ができる。

ワイルドカードを使ったフレーズ検索だけでなく、特殊構文（Google であれば、inurl:、site:、intitle:、related:、filetype: など）を使えば、パワースーツの能力を更にアップできる。Web 黎明期には、検索エンジンフリーカー（筆者もその一人である）の多くが使っていた特殊構文であるが、今はそうでもなさそうである。学生と話をしてもこうした使い方をほとんど知らない。しかし、Web を使いこなすためには欠かせないテクニックであり、Web を自身のパワースーツとし、機能させてほしい。また、本誌コラムで人気の「Author's Toolkit」にも目を通してほしい。英語表現能力がアップすること間違いなしである。
山口 高平さん

所属：慶應義塾大学理工学部名誉教授
分野：オントロジー、セマンティック Web、データマイニング、知能ロボット、ビジネスシステム、知能ソフトウェア工学

インタビュー：西尾直樹（聴き取り本舗 nishio.naoki@gmail.com）、編集：亜方史春

— 現在、注力されていることをお聞かせ下さい。

大きく二つあります。社会貢献として AI を使いこなせる人材の育成、研究開発として議論ができる AI に注力しています。

一つ目の人材育成ですが、放送大学で「AI プロデューサー人と AI の連携」という 8 回番組を企画し、参考テキストを出版しました。目的は、現場と AI ベンチ」とうまく橋渡しする人材の育成なので、AI といっても技術は様々。技術によって AI の導入効果は変わります。AI から導きだされた結果がどの部門の、どんな業務改善に役立つのか、AI の仕組みを基礎レベルで理解し、業務プロセス単位できちんと技術をマッチングできる人材が今、日本企業に求められています。

というのも、AI 開発において、日本は米中に後塵を拝しています。その大きな理由は、ユーザ企業内の AI 専門家の圧倒的ななさにあるようです。アメリカにおける AI 専門家の比率は、ユーザ企業 7 に対して AI ベンチに 3、日本は逆転していて、ユーザ企業 3 に対して AI ベンチに 7。特に中小企業となりと AI 専門家の不足はかなり深刻です。AI 専門家が自社内で不足すると、AI ベンチの提案を理解できず、発展を丸投げにすることになります。丸投げをすると、当然、現場の要求が反映できませんので、結果的に使い勝手が悪いシステムが出来上がってしまう。AI プロデューサーを現場に投入することで、この構造を変えたいんです。

企業における事業の将来性を考えると、DX は避けられない道ですね。ですが、その DX を先導するはずの情報システム部門はまだまだ組織の端に追い払られています。経営の中心に情報システム部門を、AI 専門家を、とよく議論で話すんですが、企業からはあまり歓迎されません。

日本は昭和、平成にかけて、ミスをせず高い精度で業務を遂行することを良しとし、人材もそれに適応してきました。しかし、AI を投入して DX すると、現場で人間が処理してきたかなりの定型業務が自動化されます。同時に、これまでの業務内容も問い直されます。AI の導入はある意味、既存の業務を否定することになるので、現場の拒否感は理解できます。ですが、客観的に見ると、そういった会社は茹でガエル状態。AI に任せてもらう業務は AI に任せて、人間にしかできない、特に相手の気持ちを理解することやコミュニケーションを主体とする業務に経営リソ
スを振り分けていくべき、とよく伝えています。

大学はこのあたりの時局に敏感で、データサイエンス/AI学部の新設が昨年あたりから急増しています。我が国はデータサイエンス/AI教育について、米中に差をつけられています。AIプロデューサーの育成に関わることでその差を縮められたらと思っています。

図 1. AIプロデューサー育成のための解説書

二つ目の議論できるAIについても、研究開発を進めています。長年にわたるオントロジー（概念間の意味関係）もとづく知識表現を研究してきたのですが、最近になってオントロジーをベースにしたAIに対する社会的関心が高まってきました。

チャットボットのような対話AIは、大量の対話データをディープラーニングで学習するケースが多いのですが、言葉の深い意味を捉えられず、かなり表層的です。例えば、昨日、レストランで焼肉を食べたとします。で、対話AIに「焼肉、おいしかったよ」と話しかけると、「それは良かったね、どんな味でしたか？」といった回答が返ってきます。ところが、焼肉のかわりに、「スープ、おいしかったよ」とかかったとしましょう。でも、今の対話AIだと「それは良かったですね、どんな味でしたか？」と、通り一遍倒の回答が返ってきます。オントロジーを利用すれば、概念構造を辿らせて、スープが食べ物ではないことを理解させ、「スープは食べられないですよ、からかわないで下さい」とやり返すことも可能です。ディープラーニングは、広く浅い対話、オントロジーは狭く深い対話を得意とするので、両者の連携は次世代AI研究における一つの軸になっていくと思います。

また、メタバースにも注目しています。既に学校教育で対人関係に問題を抱える子供たちが、メタバースで経験したコミュニケーションを実世界の対話に活かす試みもでてきました。今は専用ゴーグルで、普及率は10%前後ですが、ゴーグルをサングラス程度に軽量化すれば、一気にメタバースは広がるでしょう。ある試算によれば、10年後にはGDPの34%がメタバースビジネスになるとまで言われています。メタ・プラットフォームズ社（旧社名：フェイスブック）は2021年にメタバース会議室Horizon Workroomsを、2022年にメタバース向けAIプロジェクトを開始しましたよね。この10年でメタバースが急速に進化を遂げると、会議室で隣に座っているアパートの背後立っているアパートが人間にのか、AIなのか、区別できなくなってしまいます。メタバースによって、ワークスタイルだけでなくライフスタイルも大きく変わる。2015年に私が発表したAIロボット喫茶はあくまで実空間で、人間のリアルな業務を手助けするというコンセプトでした。今後はメタバースAIとの連携を視野に入れた実空間AI研究も盛んに行われることが予想されます。誰もが自分専用AIをパートナーにして、メタバースで自分のかわりに議論してもらい、その間、自分は別の作業をする。AIが人のことを考えて、人に気を配って、人と連携していく。日本の文化習慣を反映したHuman-Machine Team（人と機械が協調する仕組み）という研究が始まりましたけど、研究結果を世界に発信することを期待したいものです。
— 現に至る経緯をお聞かせ下さい。

小さい頃から、対象の背景にある原理、成り立ちに関心がありました。父が工場長を務めていた缶詰印刷工場を見学したときがあったのですが、缶詰が出来上がるまでの工程や仕組みにワクワクするような子供でしたね。数字との出会いは、近所にあった算盤塾。算盤の試験には、掛け算、割り算、見取算、暗算という5科目あって、特に、頭の中で算盤をはじめて計算していく暗算が面白くて、どんどん夢中になっていきました。中学生のときに、大阪府中学生大会があり、5科目 500点満点をとりました。優勝した！ と思ったのですが、500満点が5人もいて、優勝決定戦で3位になりました。ただ5人中でも暗算だけは最も早く、10秒で並んだ5桁の数字を目で追いかけながら、10秒以内で正解を出すことができました。高校生になって、ある雑誌で AI や計算機間通信（今のインターネット）の存在について知りました。計算機（コンピュータ）は本当に算盤より早く計算できるのだろうか。そんな計算機同士でデータを交換して処理できれば、何かすごいことができるんじゃないか。原理を知りたくて、大阪大学工学部通信工学科の門をくぐり、4年生になった1978年に手塚研究室に配属され、AI 研究を始めました。

AI 研究は1956年に誕生し、60年代に第一次 AI プラスが起こります。チェスのようなゲームを AI が行うというもので、機械翻訳という当時の社会的ニーズと合致せず、私が研究を始めた頃は第一次 AI 衰退期にあたりました。私が最初に手がけたのは推論、三段論法のコンピュータへの実装です。学部生、修士、博士と一貫して取り組み、並列推論マシンを作ったのですが、社会に必要とされている AI とは違うことに距離を感じました。そこで、1984年に現場実践を重視した大阪大学医学研究所に移り、エキスパートシステムに研究の軸を切りました。時代は第二次 AI プラス、専門家（エキスパート）の知識をコンピュータ内で表現して利用するという研究です。知識といっても幅広くて、マニュアルのような外在化された形式知だけでなく、専門家が自らの体験から得られた暗黙知もあります。重要なのは暗黙知で、既にある形式知だけでエキスパートシステムを作っても、精度は上がらず、ほとんど役に立ちません。専門家は過去の経験から暗黙知を獲得し、問題解決に役立てていました。インタビューを重ねて専門家の暗黙知を推定し、その暗黙知から作成した形式知（ルール）を実装することで、エキスパートシステムの精度を向上させました。地道な経験を積み重ねましたが、現場で有用となる AI を構築する力がついたように思います。

图 2. AI ロボット喫茶店研究チーム

静岡大学に異動した1989年頃から、機械学習の研究もスタートさせました。ひょんなことからとあるプロ・サッカーチームからデータ活用について問い合わせがありました。試合中のポール位置データセットから、機械学習を使って戦術を学習させたことがあります。コーチ陣からは大変興味をもたれたのですが、「これはうちのプレースタイルじゃない」とプレイヤからは見向きもされませんでした。機械学習の結果を利用する現場には、現場の都合があります。現場
の都合と機械学習の結果をすり合わせる大事さを肌で感じた経験でしたね。

当時は、「データマイナーの憂鬱」という言葉があるくらい、機械学習結果が実運用段階で現場から拒否されることは珍しくありませんでした。第三次 AI プロムで、今、脚光を浴びているディープラーニングも、結果がブラックボックスで、現場での受け入れやすさがほとんど考慮されていません。Explainable（説明可能な）AIが欧米で次世代 AI 研究の流れに続いてきた理由も、この結果のブラックボックスにたいする課題意識にあります。今後は分かりやすい説明以外にも、人間の一般的な倫理観や正義感、人が持っている感情とのズレをどう AI に学習させていくか、AI を監視する専用 AI のような仕組みも必要になってくるでしょう。

— 所属研究会についてお聞かせ下さい。

私が所属する知能ソフトウェア工学研究会（KBSE）は、知能ソフトウェア工学の学際的研究を推進するために設立されました。AI の様々な技術を使うことにより、ソフトウェアの信頼性向上、開発コストの削減、開発プロセスの改善にむけて、研究者同士で切磋琢磨しています。

分野によってソフトウェアの開発方法は異なりますから、KBSE では一般的な理論を議論することが多いです。特徴をあげるとすると、国際会議 JCKBSE が 2 年に 1 回開催される点がうまく、イギリスやドイツといった主要欧州国ではなく、東欧、中欧、バルト三王国、知能ソフトウェア工学技術が発展段階の国の研究者たちと連携しています。私は 2006 年のエストニア開催時にプログラム委員長として、現地の先生方と協力して会議を運営しました。2008 年からギリシャのピレウス大学が加わり、それ以降ギリシャ開催が多くなっています。4 日前後の会議日程の中、発表はもちろんです、懇親会のようなオフの場でも密に意見交換ができる非常に貴重な機会です。文化交流の側面もありますね。

図 3．国際会議 JCKBSE のため訪れたギリシャのコルフ島

— 最後に、趣味についてお聞かせ下さい。

高校・大学で柔道を、大学院からは研究室の先輩に誘われて社交ダンスを始めました。社交ダンスはすごく姿勢が評価されるスポーツだと分かり、競技ダンスに転向。5 年間、プロのレッスンを受けて練習に励み、地方レベルの大会で優勝することもできました。指導資格も取得したのですが、研究との両立が難しいので、教員になってからは、競技ダンスは辞めました。

最近の趣味の一つは、先述のメタバースでしょうか。メタバースということと、1999 年の「マトリックス」、2009 年のアニメ「サマーウォーズ」などの映画を観たんですが、ある意味、今のメタバースを先取りしたものです。メタバースに初めて入ったとき「あの映画の世界に自分もいるんだな」と感じました。戦闘ゲームのようなものでたまに遊びますが、「ここで AI を入れたらどうなるだろう」ということを考えながらプレイしています。趣味と研究が重なっている感じがしますね。

メタバースは可能性に満ちています。仮想世界と現実世界、どのような仕組みで人と AI が関わればいいのか、考えていきたいと思います。
リコンフィギュラブルシステム研究最前線

吉瀬 謙二
東京工業大学

1. RECONF 研のすすめ
リコンフィギュラブルシステムとは、問題の解法アルゴリズムなどをハードウェア化して、FPGA をはじめとする専用可能な（やや多いた）デバイスで実行することにより、高い性能、柔軟性、電力性能を発揮するシステムである。

今、これらの関連技術を対象とするリコンフィギュラブルシステム研究会、RECONF 研が熱い。

1) RISC-V が実用、マイクロプロセッサを設計・実装するために用いる命令セットアーキテクチャ(ISA)として RISC-V が普及してきた。サーバやノートパソコンで広く利用される ISA である x86 の互換チップを開発して販売することはライセンスの問題を乗り越える必要がある。「FPGA が推奨されているレジスタ変更が必要でなく、そのプロセッサのライセンス料を支払う必要があるだけでは」、このプロセッサのマイクロアーキテクチャの変更が難しいという欠点がある。一方、「フリーでオープンな RISC-V」を利用すれば、設計したプロセッサを自由に活用、販売できる。

このフリーでオープンな ISA を活用すること、FPGA における SoC 開発が容易になると同時に、これまでの大量生産を原則とするプロセッサのビジネスモデルから、FPGA のやわらかさを生かして状況に応じて最適化するオシライオンのプロセッサへとビジネスモデルの方向性を変更できる可能性がある。

2) AI アクセラレータが熱い。AI 関連の技術が世の中の仕組みを再構築しようとしている。従来、高い性能を達成するために、高い性能のプロセッサを開発して、それを主役にコンピュータを構築してきた。それが、GPU、FPGA、専用回路等による AI アクセラレータをもう一つの主役として搭載するシステムに移行しつつある。

AI アクセラレータの中で、DNN の推論は FPGA が相性が良い（学習は相性が悪い）。Vitis AI, FINN, hls4ml, CFU Playground といった推論のための AI アクセラレータを生成するフレームワークが利用されている。

電力性能を上げるためにには、32 bit の浮動小数点演算から、8 bit 以下の少ないビット幅で固定小数点演算に変更する量子化が有効であるが、そこでは適切なビット幅の選択が必要となる。また、不要な演算を削除する枝切りなどの多くの最適化手法がある。加えて、重みを格納するために DRAM を用いる場合と、それらをデバイス内のメモリに格納できる場合は異なるアーキテクチャを採用する必要がある。これらを含む膨大な設計空間で適切な構成を選択できる柔軟性から、DNN の推論は FPGA と相性が良く、それによって電力を改善できる。

Xilinx によると、文字認識を含むビデオパイプラインの評価から FPGA (Kria K26) の電力性能は、Jetson Nano の 2.2 倍を達成することが報告されている。「リコンフィギュラブルシステムは高い柔軟性を提供するが、電力性能が悪い」というこれまでの常識が適用しないケースが出てくる。

3) 設計ツールの充実と多言語のサポートが熱い。高位合成 (High Level Synthesis) の発展により、C/C++ 言語の記述から効率的にハードウェアを生成する環境が整っている。従来の、回路図、Verilog HDL, VHDL, SystemVerilog といった低レベルの言語に加えて C/C++、SpinalHDL, Chisel, Python といった様々な言語でハードウェアを記述できるようになっている。国内では、東大の一色剛先生を中心に、C2RTL 高位システム設計環境の開発が進められている。これを用
いると、C/C++言語で記述したハードウェアを動作検証モデルと論理合成モデルとして統一的に利用できる。

このように、ハードウェアを記述するための選択肢が増えて、研究・開発のプロジェクトやモジュールごとに適切なものを選ぶことができる。これにより、システム開発を効率化し、開発期間を短縮できる。

4) 製品化に対応する FPGA SoM が存じ、FPGA の開発では、「評価ボード」を用いて初期の設計・検証を進めることが多い。このような評価ボードは、様々な用途に対応するための多様な IO をサポートする大きいボードとして提供され、製品化する場合には別のプリント基板を設計するケースが多かった。一方、FPGA を搭載する System on Module (SoM) を活用することで、概念実証のためのプロトタイプビッグ、更に製品化までの開発期間を短縮できる。また、FPGA SoM には小型で、扱いやすく、価格性能比に優れたものが多い、これを活用することで製品化までのコストを軽減できる。

2. ACRi（アクリ）

先に述べたように、リコンフィガー可能なシステムが注目されている。そのような中、FPGA の活用方法を模索。研究する団体として、アダプティブコンピューティング研究推進体 (ACRi) を 2020 年 4 月に立ち上げた。筆者は、この代表を務めている。

東工大が定める「研究推進体」と呼ばれれる仕組みを活用した。活動のための数多のコンピュータと 100 台を超える FPGA カードは東工大に設置されている。2022 年 7 月時点で、5 大学、FPGA ベンチャの AMD、Intel を含む 20 社の協賛により、ACRi の活動を推進している。

RECONF 研が注力している「研究会の開催、国際会議との連携、英語論文の企画・編集、デザインコンテストの実施、講演・論文賞の授与」といった活動を十分に把握しながら、RECONF 研の枠組みでは迅速な実施が難しい試みを推進する場として、また、FPGA に関するマネタイズを意識した活動を推進する場として有益であると考えた。

ハードウェア開発のツールの数が多く、フリーになった現在であっても、そのための環境構築が難しい。しかし、FPGA システムを整えるコストが高い、という問題がある。これを軽減するために、FPGA の利用環境と学習機会を無償で提供する「ACRi ルーム」と呼ぶ環境を整備した。簡単な手続きで利用を開始できて、数時間で FPGA 開発を体験できる。現在、800 人を超えるユーザが登録し、その魅力を体験している。また、「ACRi HLS チャレンジ」として、高位合成の設計を学び、競い、知識を共有するサイトを運営している。

FPGA の構成を知りたい、その開発方法を知りたいといった質問に答えたり、FPGA に関する最新の研究成果を伝えたりするために、関連する専門家が記事を執筆して公開する「ACRi プログラム」を運営している。これまでに 190 通を超える記事を公開した。また、ACRi プログラムに掲載された記事をベースとする電子書籍の出版を進めている。初心者には「4 ビットカウンタとシリアル通信ははじめの FPGA 開発」、高位合成の初心者には「C/C++ と Vitis ではじめの FPGA アクセラレータ開発」が適している。

その他、「ACRi ウェビナー」を開催して動画を YouTube チャンネルで公開、「ACRi ハンズオン」として勉強会を開催、「ACRi リサーチ」として産学の共同研究の推進といった多様な活動に取り組んでいる。著しく進歩するリコンフィガー可能なシステムの分野に身を置いて、進めたい活動は多いが、時間的な制約等からできることが限られる。悩ましい、ただし、やりたいことが多すぎるときが研究者にとって幸せな状況であることは間違いない。

3. RECONF 研のすすめ（再び）

今、RECONF 研が存じ、ソフトウェア、ハードウェア、ゲートウェア（FPGA の回路構成）に興味ある皆様は、RECONF 研に是非御参加下さい。
カメラ情報を用いた公平かつ効率的なエレベータ配車制御手法の提案と推定誤差の影響

山内 智貴 井手 理菜
早稲田大学 早稲田大学
菅原 俊治
早稲田大学

このたびは私どもの論文 [1] に対して、電子情報通信学会論文賞という栄誉ある賞を賜り、大歓光栄に存じます。本研究を進めるにあたり、御指導、御支援頂いた皆様、査読にて貴重な御意見を頂いた先生方、そして本論文を高く評価して頂いた選定委員や学会関係者の皆様に、この場をお借りして心より御礼申し上げます。

本研究は乗客のエレベータ待ち時間の公平性と効率性に着手して、カメラ情報を用いた配車制御について論じたものです。近年の高層ビルの増加に伴い、エレベータは垂直輸送の手段として必要不可欠になりました。しかし、建物のエレベータ台数は限られているため、効率的な配車制御が必要です。また、エレベータ容量の限度から、多くの占有者が必要な特別乗客（ベビーカー等の車椅子大の荷物を持つ乗客）は十分な空きのあるエレベータが到着するまで、一般乗客より長時間待たされやすく、待ち時間の不公平が生じるという課題があります。もちろん一般乗客が特別乗客のためにスペースを空けることもありますが、ほかの階で待機している特別乗客の数は不確実であり、この課題を効果的な行動のみに限るのには限界があります。一方、近年では環境を観測するカメラや各種センサの普及と画像認識技術の向上により、エレベータホールでの待機人数や荷物の大きさを精度良く推定可能になりました。また、カメラの設置と維持にかかるコストは低下しているため、カメラ情報を用いた配車制御は現実的と言えます。

そこで本研究では、一般乗客と特別乗客両方のエレベータ待ち時間の効率化と公平性の向上を目指して、特定のカゴやホールを監視する複数のエージェントがカメラを用いて推定した、人数や占有率の情報を活用するマルチエージェント制御手法を提案しています。既存手法との比較実験において、提案手法は待ち時間の短縮と公平化を実現し、全乗客の輸送効率を改善できました。また、提案手法がカメラの推定誤差による影響にロバストであることも分析しました。

エレベータ待ち時間の不公平は多くの方々が経験のある社会課題の一つであり、その解決は筆者らのみならず、世間一般にとっても共通の切なる願いであると考えています。本研究がそうした社会課題を解決し、ストレスフリーなエレベータシステム実現の一助となれば幸いです。

参考文献
[1] 山内智貴, 井手理菜, 菅原俊治, “カメラ情報を用いた公平かつ効率的なエレベータ配車制御手法の提案と推定誤差の影響,” 信学論 (D), vol.J103-D, no.11, pp.776–787, Nov. 2020.
全方位カメラでの撮影とその後処理による
視覚障害者の写真撮影支援

岩村 雅一 平林 直樹
大阪府立大学 大阪府立大学

程 征 南谷 和範
大阪府立大学 大学入試センター

黄瀬 浩一
大阪府立大学

このたびは論文賞の栄誉に預かり大変光栄である。査読委員、編集委員をはじめとする関係者の皆様に大変感謝申し上げる。

本論文では、全盲の視覚障害者でも簡単に写真撮影できるシステムを開発した。全方位カメラと物体検出技術を用いるところが特徴である。目が見えない人が被写体をカメラで撮影する作業は難しい。このプロジェクトでは、被写体をまず間違えずに撮影できる。提案手法では、被写体を撮影した全方位の写真を物体検出装置を用いて、利用者が望む物体を含んだ「写真」を作成する。

提案手法は、著者の南谷と岩村の出会いから生まれた。全盲の視覚障害者である南谷は、一人で出張に行ったときなどに全方位カメラで写真を撮っており、後日宿舎にお願いして「写真」として残したい部分を切り取ってもらっていた。これに着想を得て提案手法のコンピュータビジョン等を専門とする岩村は、全盲及びがいない障害者支援の研究で発表したのをきっかけに視覚障害者の知り合いが、人づてに南谷につながった。二人が最初に話したときには、南谷が温めていた提案手法のアイデアを意気投合して、この研究が始まった。今にして思えば、この研究は偶然の積み重ねの結果であった。

本論文の執筆は、日本情報アップ学会の学会誌に寄稿した解説記事がきっかけであった。那一口書いた解説記事を拡充したのが本論文である。実は、この解説記事の依頼も、岩村に南谷を紹介したのも富山県立大学の高木昇教授である。本論文が目を見たのは高木教授のお陰である。この場を借りて感謝申し上げる。

著者らの研究グループでは、本研究のほかにも認識技術を視覚障害者の支援に活用する研究を進めている。今後の発信に注目頂きたいです。

参考文献

[1] 岩村雅一，平林直樹，程 征，南谷和範，黄瀬浩一，“全方位カメラを用いた視覚障害者の写真撮影支援，” 日本情報アップ学会誌，vol.32, no.3, pp.80–86, June 2020.
Real-Time Full-Band Voice Conversion with Sub-Band Modeling and Data-Driven Phase Estimation of Spectral Differentials

佐伯 高明 齊藤 佑樹
東京大学 東京大学

高橋 慎之介 猿渡 洋
東京大学 東京大学

このたびは、私どもの論文 [1] に対して、電子情報通信学会論文賞という栄誉ある賞を賜り、大変光栄に存じます。研究を進めるにあたり御支援・御指導頂いた皆様にはこの場をお借りして深く御礼申し上げます。また、査読にて貴重な御意見を賜りました査読者の皆様、本論文を評価して頂いた選考委員の方々にも御礼申し上げます。

音声変換は、計算機によって人の声を別の人の声に変換する技術です。近年は深層学習に基づく音声変換手法が飛躍的に発展しており、目標話者の声に近い高品質な音声を出力可能になっています。ただ、音声変換は、メタパースやエンタメへの応用が期待されるように、人間のコミュニケーションの拡張技術であるため、リアルタイム・ストリーミングな処理の実現が求められます。既存の多くの深層学習に基づく音声変換では、入力長を大きく取る必要があるためストリーミング処理が困難であるという問題があります。また、変換にかかる計算量が大きいため、広帯域音声への適用や小さな計算リソースでの処理が難しく、実用面でスケールしづらいという課題もあります。

本論文では、深層学習による音響モデルと、信号処理に基づく波形領域での変換処理を組み合わせたアプローチにより、軽量な音声変換システムを構築しています。本研究では、フィルタの打ち切り操作を微分可能な形で深層学習モデルの学習に組み込むことにより、より軽量な変換フィルタを推定する手法を提案し、大幅な計算量削減を実現しています。また、変換時にサブバンド処理を導入することで、計算量を抑えながら広帯域音声を高品質に変換することを可能にしています。これらの手法を複数の変換者対に対して評価し、変換音声の音質を向上させつつ、変換にかかる計算量を10%程度に削減できることを示しました。また、ストリーミング音声変換システムを実装し、1CPUで広帯域音声のリアルタイムな変換ができることを理論値・実測値の両面から示しました。

本論文では、上記の手法の提案に加え、音声変換システムの改良のための実用的な手法を複数導入し、その有効性を丁寧に検証しています。本論文の結果が、多くの方々の研究開発の一助となれば幸いです。

参考文献
[1] T. Saeki, et al., “Real-time full-band voice conversion with sub-band modeling and data-driven phase estimation of spectral differentials,” IEICE Trans. Info. & Syst., vol.E104-D, no.7, pp.1002–1016, July 2021.
FIT2022 開催速報

山本 琢磨
富士通

1. はじめに
第 21 回情報科学技術フォーラム (FIT2022) が、2022年9月13日（火）～15日（木）に慶應義塾大学矢上キャンパスで開催された。本年は、オンラインミーティングツール Zoom を併用しながら現地でイベント企画・各発表セッションを行うハイブリッド開催となった。開催内容及びイベントについて、筆者の感想を添えて報告する。

2. 参加者数・審査状況
今年の参加者数は2,123名（速報値のため若干の差異を含む可能性あり）となり、昨年度の2,159名とほぼ同程度であった。今年はハイブリッド開催のため、参加者総数2,123名のうち現地参加者数は685名であった。また、オンライン参加のなかったFIT2019の参加者数1,336名と比較すると大変な盛況であり、オンライン開催による参加のしやすさが参加者数の増加を後押ししていると考えられる。

FIT2017より査読付き論文が廃止され、選奨論文制度が導入された。選奨論文の中から最も優秀な論文3件が船井ベストペーパー賞に、優秀な論文7件程度がFIT論文賞に選定される。また、一般発表も含めた全ての発表のうち一定の年齢制限、会員資格を満たすものからFITヤングリサーチャー賞が選定される[1]（執筆時に現在、受賞論文については選定中）。申し込み件数は、選奨論文が100件、一般発表が458件、合わせて558件であり、昨年度の500件と比べて若干増加した。また、一般発表を対象に座長の裁量で優秀な発表1件をその場で選定するFIT奨励賞が実施され、76名が受賞された。受賞の方々にはお慶び申し上げるとともに、多忙の中、論文審査に御協力を頂いた方々に深く感謝する。

3. 船井業績賞受賞記念講演
船井業績賞は情報技術分野に関する学術または関連事業に対し特別の功労がある方に贈られる賞である。今年は、機械学習の分野で世界的に顕著な研究成果を数多く挙げられ、基礎理論の創出に中心的な役割を果たされている、理化学研究所革新知能統合研究センター長/東京大学教授の杉山将氏に贈られた。大会2日目に「限られた情報から精度良く：機械学習研究の更なる挑戦」と題して記念講演が行われた（図1）。

講演では、まず、杉山氏の最近の研究成果として、限られた情報から精度良く学習できる機械学習技術について紹介された。近年の深層学習に代表される機械学習手法は大量の教師データを必要とするため、医療診断や自然災害など教師データの収集が困難な場合や、プライバシー保護のため正確な教師情報を取得できない場面への普及が遅れている。そこで、杉山氏は理論保証ができる弱教師付き学習に着目し、正例とラベルなしデータから最適に学習する手法を確

図1. 杉山氏の記念講演の様子
立した。また、この独自手法を半教師付き分類に応用した分解法を提案し、この分野に革新を与えた。更に、同じ構組を拡張することで、正信頼度学習や類似非類似ラベルなし分類など様々な手法を提案した。加えて、転移学習、ラベル雑音ロバスト学習についてもその最新成果が紹介された。

後半では、機械学習研究コミュニティの国際的な動向について触れつつ、今後、日本の情報処理研究が目指すべき方向性について杉山氏の思いが語られた。まず、機械学習分野では、トップカンファレンスでの論文探査が重要視されており、アメリカや中国勢が独自研究で日本が厳しい状況にあることが示された。このような状況において、天然資源が乏しく且つ子供化が進む日本では、情報技術の更なる発展が不可欠であり、情報系コミュニティの拡大と国際化が急務であることが述べられた。さらに、産学官交流を通して組織的に情報技術の重要性を社会に訴える場としてのFITの存在意義が語られた。機械学習研究に対する熱い思いを、講演を通じて伝えて頂いた杉山氏に感謝を申し上げる。

4. イベント企画

大会中は一般講演の他、28件のイベントが企画され、社会課題を見据えた企画、将来に目を向けて企画、若手にフォーカスする企画などが多数開催された。

「IoTが拓く未来：～IoT技術が起こす近未来の社会変革とは～」と題された企画では、Society5.0に代表される超スマート社会において、IoT(Internet of Things)から生まれる膨大なデータをAIなどの高度な情報技術により処理・分析して、社会に活かすための要素技術から応用に至る最新研究動向が紹介された。更に、我々にとって望ましい未来を実現するために必要な研究開発課題や社会的課題などについて議論された。

「教育DXの取り組み」と題された企画では、データ駆動型教育からDXへのアプローチを主

題に、各大学での教育DXへの取り組みについて紹介された。具体的には、教育データの収集・管理に関して注意すべきポイント、収集した教育データの分析・活用、データ駆動型教育に基づくDXについて、教育・学習データの利活用ポリシーの海外を含めた動向や、学習管理システムなどから収集される教育データの分析を通じた教育・学習支援を行っている事例などが幅広く紹介された。

また、昨年度に引き続き、各研究分野におけるトップレベルの国際会議や学術雑誌に最近数年以内に採録された論文の著者にその内容を紹介して頂くトップコンファレンスセッションが開催された。3日間の会期を通じて11セッション58件の発表があった。筆者が聴講した行動認識・支援のセッションでは以下の5件が発表された。ウェアラブルの加速度センサデータを用いた箱包作業などの物流ドメインにおける行動認識手法（阪大・吉村氏）メアングコイルを用いた衣類型のバッテリレスセンサ（東大・高橋氏）電気刺激で筋肉を動かす技術を用いたビアノ初心者の演奏支援システム（NTT・新島氏）クラウドソーシングにおける行動認識データセット提供者の動機付けや不正の検出法（九大・井上氏）複数人でのダンスにおける姿勢の一致度を可視化する練習支援システム（東大・Zhongyi氏）。

5. おわりに

次回のFIT2023は、2023年9月6日（水）～8日（金）に大阪公立大学中百舌鳥キャンパスでの開催が予定されている。詳細はホームページ[2]で随時公開されるので確認して頂きたい。FITは情報科学生技の幅広い分野の最新動向をワンストップで把握できる貴重な機会となっている。来年も是非多くの方々に御参加頂きたくお願い申し上げます。

参考文献
[1] https://www.ipsj.or.jp/event/fit2022/award.html
[2] https://www.ipsj.or.jp/event/fit2023/
教育・研究生活を振り返って

フェロー 福本 聡
東京都立大学

1. はじめに
このたび、光栄なことに本会フェローの称号を頂きました。この機会に何かメッセージをということですので、これまでの教育・研究生活を振り返って、心に残っている言葉を幾つか御紹介させて頂きたいと思います。

2. 「ちょっとしたアイデアを大切にせよ！」
学生時代の恩師 O 先生のお言葉です。今の時代にそうそう新しいアイデアや画期的な発想は生まれるものではないけれど、私のような凡人でも、小さなアイデアを積み上げていけば何らかの成果につなげることができるかもしれないというアドバイスだったと思います。

私自身、学部は電気電子工学系の出身ですが、縁あって卒業研究では確率過程や確率モデルを研究する理論系の研究室に配属されました。中学生の頃からオーディオアンプやスピーカーの設計製作が大好きだった私は、物づくりに対する尊敬の念を持っており、アイデアを中心とした理論の世界に、初めは少し違和感を覚えたことを記憶しています。しかし、後に、そのアイデアで勝負する分野で、何十年も教育・研究に携わることになるとは不思議なものです。

3. 「守備範囲を広く持って下さい」
初めて職に就いた私学で、年配の先生から頂いたアドバイスです。学生時代を過ごした国立大学と比べて、私学では教員一人当たりの学生数が数倍も多いことに最初は戸惑いました。卒業研究などで提供すべきテーマもそれなりに数多く必要になります。確かに、教育・研究組織として、ある程度多様な研究テーマがなければ、学生にとっては魅力ある大学とはいえないとしょう。多少の無理があっても、学生が興味を持つテーマに積極的にかかわることで、結果的に自分の守備範囲や芸の幅が広がると考えることにしております。

もちろん、一つのことに打ち込んでその道を極めることは美しいと思います。ただ、もしそうしたら、それができるのは一部の恵まれた人なのでしょう。多くの人は、置かれた環境の中で、組織の内外からの様々な要求に悩みながら教育研究の在り方を模索しているでしょうか。私の場合は、現在の職場に移った後も、上司だった I 先生の御支援の下、ディベンダルコンピューティングという分野の広い分野で様々なテーマを研究してきました。信頼性理論、ネットワーク、分散システム、半導体テストなどです。我ながら節操がないと思うこともありますのでですが、これらのテーマの多くは確率過程や確率モデルが共通の基礎としてあり、結局、学生時代に身につけたことに今日まで助けられてきたんだなあと思っています。

4. 「論文誌はボランティアで成り立っている」
まだ私が 30 代の頃、本会の論文誌編集委員のある方がおっしゃったことです。当時は、編集委員や査読委員の方々の御労働などに思いを馳せることもなく、学会費を払っているのだから論文投稿は当然の権利（それはそうなのですが）などと思っておりました。しかし、後に和文論文誌編集委員を仰せつかって、しみじみと、この言葉の意味を実感することになりました。

編集委員を経験してからは、学会や論文誌の
存在に感謝するようになりました。それと同時に、何となく論文を投稿するのをためらう感じを持つようになりました。実際に、善意の査読委員が無償の添削者となっている状況などを目当たりにして、よほどきちんと推敲してからでなければ、投稿するのは申し訳ないと思うようになったからです。もちろん、研究者としては、委縮することなく積極的な発表を心掛けたいとは思いますが、常にボランティアへの感謝の気持ちを忘れずにいたいものです。

5. 「誰のための再編なのか？」

私は、現在所属する大学へ移ってから20年余りの間に、二度の組織再編を経験しました（正確には、今、三度目を経験しております）。そのたびに繰り返し耳にしたのがこの問い掛けです。教育研究組織を再編しようとするとき、新しい組織を設計する上で最も重要なポイントの一つとなるのが教育プログラムです。当然のことですから、教育組織は社会・産業から必要とされる人材を育成するためのプログラムの提供に努力すべきでしょう。

図1は、1985～2015年の7回の国勢調査に基づくデータから、技術者の種類別の人口の推移をグラフにしたもので、30年の間に、情報系技術者の数は3倍以上に増加し、全技術者に占める割合は40%を超えるまでになっています。電気や機械などの技術者数はあまり変わっていないのとは対照的です。我々が学生だった頃と比べて、情報系技術者の学ぶべきことも、質・量ともに確実に変わったはずです。しかし、多くの大学では、そのような時代の要求に必ずしも対応できていないようにと思われます。

図1. 国勢調査に見る技術者の種類別の人口推移（1985～2015年）

年代のままに電気電子工学の基礎科目を必修配置している情報系カリキュラムを見ると、大学組織の構造的な問題を考えざるを得ません。最近の報道によれば、2011～2021年の10年間で、国公立大学の情報系学部・学科の志望倍率は34%も増加しているのに対して、受け入れ定員数は横ばいで推移しており、入学希望者と入学者定数の需給の不均衡が生じていることが指摘されています。私学でも同様の傾向にあることです。我が国では、米国のようにスピード感を持って大学組織の拡大・縮小に対応できない事情があるのは確かでしょう。ただ、一方で、旧組織の既得権益や保身のために新組織の設計が進められている場合があることを否定できません。本当の意味で、「学生のための再編」が進むことを願ってやみません。

6. おわりに（謝辞）

本来、初めに申し上げるべきことでしたのが、今回の受信は、ディペンダブルコンピューティング研究会、研究室の学生諸氏、共同研究者、他関係各位の皆様からの御支援の賜物です。心から感謝申し上げる次第です。
研究留学のススメ

フェロー 鶴木 祐史
北陸先端科学技術大学院大学

このたび、「聴覚知覚モデルとそのマルチメディア応用に関する国際教育」に関する貢献が認められ、2021年度のフェロー表彰を頂いた。ISS の関係者、特に EMM 研究会の関係者、フェローに御推薦・御評価頂いた先生方に深謝したい。また、これまでお世話になった先生方、先輩・後輩、研究室の学生ら・修了生らにも感謝したい。

今回、ISS 誌からフェローとしての執筆依頼を頂いたが何を書いたら良いのか、良いアイデアがなかなか浮かばず、大変困った（恐らく自分自身でまだまだそういう場に立たないと思ってい るからかもしれませんが）、迷いに迷った結果、結局のところ「自分と学会の関わり」と「自分の研究留学の経験」について思うことを簡潔に述べることにした。お茶を飲みながらでも、さらっと読み流して頂ければ幸いである。

筆者が電子情報通信学会に入会したのはちょうど 30 年前のことである。当時は学部 3 年で、少し不純な動機（大学等で教鞭をとる職に就くためには博士号取得が必須という理由）から博士課程まで進学を考えていた時期である。当時はディープではないニューラルネットワーク全盛期で、筆者も網に重ねていなかった一人であった。雑音除去を可能とし、所望の音声を自ら強調するようなニューラルネットワーク（ニューラルフィルタ）の研究をしてみたいと現在の動機であるのには北陸先端大（92 年開学・3期生として入学）の門をくぐった。ここは、その当時でできたホヤホヤの我が国最初の大学院大学である。

当時、筆者の恩師の恩師から、「鶴木くん、木の枝葉のような研究（重箱の隅をつつくような研究）ではなく、幹になるような研究をしなさい」という温かい言葉を頂いたことを契機に、考え方を切り替えることになった。当時、A. Bregman の聴覚情景分析 (Auditory Scene Analysis) の話題が盛り上がっていたことや、D. Marr の視覚の計算理論のような聴覚の計算理論の研究に強く影響を受けたこともあり、聴覚（の計算）モデルの研究に取り組むことになった。

筆者の主戦場（学会活動）は、電子情報通信学会と日本音響学会であった。幾つかの学会をまたいで活動する方は多いのではないかと予想するが、筆者の場合、ジャーナル論文の投稿は電子情報通信学会、全国大会等の研究発表活動は日本音響学会という感じであった。幸い、研究会活動は両学会傘下の研究会が年に数回開催されるため、両学会にお世話になったと感じる。それでも、やはり論文投稿は電子情報通信学会で、研究発表は日本音響学会で、というスタンスであったかもしれない。

博士前期・後期課程を経て無事博士号を取得できた頃には、学部時代の不純な動機もなくなり、研究職に就いて頑張りたいと背伸びするようになっていった。幸運なことに、日本学術振興会特別研究員に DC2 と PD に続けて採用されたこともあり、自立して自身の研究活動を行える環境を持つことができた。博士後期課程在学中には、2か月ほど ATR 人間情報通信研究所で学外研究（いわゆるインターン生）の経験を積むことができた。学位取得後は、学振 PD の身分で同じく ATR 人間情報通信研究所で客員研究員として 1年間勤務することとなった。

その後、そこで得た人とのつながりや恩師の強い奨励もあり、同じく学振 PD の身分で、1年間英国の大学に研究留学することになった。滞在した先はケンブリッジ大学生理学部 Centre for the Neural Basis of Hearing (CNBH) であった。大学では Visiting Associate という身分であったため、大学の Accommodation サービスが提供す
る住まい物件を借り受けることができた。御存
知の方も多いと思うのがケンブリッジもロンドン
に負けて、物価高で当時の収入の約半分近くが
住居費で飛んだ。税金も高く、食材そのものは
それでも高くないが、手が加えられたもの（料
理など）になるとゲっと値が上がった。

CNBH での研究は聴覚フィルタバンクの構築・
実装であった。CNBH のメンバは、筆者のこと
を温かく受け入れてくれ、非常に有意義な時間
を過ごすことができた。彼らとは今でも懸念に
している。ここで学んだことは、筆者の現在の研
究の礎になっていることは言うまでもない。研
究課題そのもののというよりは、研究に取り組む
姿勢であったり、考え方ったり、とにかくこ
で経験したこと全部である。

例えば、日本では朝 9 時から夜遅くまで働く
のが普通であるが、ここでは筆者を除けば、メ
ンバのほとんどが 11 時頃に出勤して 16 時頃に
は帰っていいく、働き方に関しては、日本とまるっ
きり異なり、研究は仕事と捉え、毎日の生活を
楽しむ、そんな感じだった。いったいいつ研究
しているんだろうと思った。それでも皆、しっかりとジャーナル論文を書いて業績をあげている。

毎日ラボで皆と一緒にランチをとり、お茶を
して、研究とは関係ない話（経済だったり社会
情勢についてだったり）をして談笑する。そん
な些細なコミュニケーションも、懐の深さとい
うか、研究だけにあくせくしない心持ちがとて
も大事だった。

英語が得意ではない筆者にとって毎日の生活は
本当に大変だった。研究に関してならまだしも、
日本の食材をどうやって入手しようとか、当時は
英国で BSE（牛海縁状脳症）がはやっていて牛
肉を口にするのが心配だったり、口蹄疫もはやっ
ていて豚肉を口にするのも心配だったり。それ
以外にも、持参したノート PC (IBM ThinkPad)
のハードディスクが壊れ、IBM UK に修理して
もらうために戦苦闘したり、週末の小旅行で
宿を取るために電話での予約がとても大変だっ
たりなど（今は Web で簡単に予約できるが）。

さて、そんな海外研究留学の経験を経て、母
校に教員として戻り、現在に至っているわけで
あるが、やはり働き方はすぐに日本のスタイル
に戻った。毎日あくせくするような日を送り、任
期制に縛られながら次の職位に上がることを考え
え、研究業績を積み上げ、教授になった途端に
大学運営に携わり激務になった。一方、学会活
動も、発表する側から運営する側に年を取ると
共にシフトしてきた。EMM 研究会の幹事・副
委員長を経験し、和文誌 A 編集委員や ISS 誌編
集委員を歴任するなどして、裏方の仕事を経験
した。

大学の先生とは何と忙しい仕事なのか、とは
いえ、やっぱりケンブリッジで経験した海外研
究留学は本当に良い経験であったし、決して忘
れないようなものではない。国際会議参加の
ため頻繁に海外出張したり、たまにケンブリッ
ジ大を訪問したり、サバティカルを使ってドレ
スタン工科大学に滞在したりもした。協働研究
で北京に 1 か月滞在したことも楽しかった。

現在まで筆者の研究室から多くの学生が湧き
っていった。博士号取得者は 15 名いるが、そのう
ち 12 名は留学生である。中国、ベトナム、タイ、
インドネシアとアジアが主である。冒頭の話題
に戻るが、「国際教育」に直接関わった学生は 10
名 [1] である。言葉や文化の違いも考慮して、留
学生の希望に沿って学位取得に導くのは本当に
大変だと感じた。同時にやりがいも感じた。筆
者も研究留学したときと同じようなことを留学
生に体験させることができたんだろうか。彼ら
が母国に戻ったとき、この分野のエキスパート
として活躍してくれるんだろうか、など悩みは
尽きない。

本稿を読んでくれている学生や若手研究者に
は、国内外問わず研究留学を強く勧めたい。そ
の理由はきっと君たちが立派になったときに分
かってくれると思う。私同じ世代の方も同じ
思いではないだろうか。

参考文献
[1] https://www.ingentaconnect.com/content/sil/impact/2020/00002020/00000002/art00008
異なるものが空間を共有すると

フェロー 柏野 邦夫
日本電信電話

1. 異質のデータをどう扱うか

メディア情報処理の分野において、長い間、音と画像と言語はそれぞれ相容れない異質のデータであった。それが現在、これらは同じ状態の上で比較されるデータとなった。このことは、筆者が32年余りの間メディア情報処理の研究に携わってきた中でも、特に革新的なことだったと考えている。本稿では、ジュニア会員や学生も含めた広い方に向け、そのことについて述べてみたい。

音同士、あるいは画像同士を比べ、それらがどのくらい似ているかを測ることは、パターン認識の基本として昔から研究されていた。音響スペクトルを伸縮させて比較するとか、画像から特徴を抽出してその特徴の出力等を比較するなど、様々な工夫が編み出されてきた。しかし、ある音とある画像がどのくらい近いかを測る汎用的な方法はなかった。異質の情報を取り扱うことは、情報統合というマルチメディア処理などと呼ばれると早から試みられてきたが、そのほとんどは、まずデータを種類ごとに処理してラベルとかスコアとか確率などといった単純な情報に変換し、その後でそれを組み合わせるものであった。逆に言えば、異質のデータを扱う共通の土俵は、確率のような単純な情報とするのが定番であって、筆者自身もかつての研究においてそれ以外の方法を思いつかなかった。

2. 共通の空間

この事情に変化をもたらす契機になったのは自己符号化器 (autoencoder) [1] である。自己符号化器は、入力されたもの（例えば画像）と同

じデータを出力するようにトレーニングされたニューラルネットワークである。表面的な機能、つまりネットワークの入出力の観点では、入力と同じものが出てくるだけである。しかし自己符号化器は次元の入出力データの間に次元の層を挟むという砂時計型の構造をもち、砂時計のくびれに相当する部分で次元の表現が得られる点に著しい特徴がある。といっても、出力が例えば画像である場合には、所説は画像データの次元圧縮であるからあまり著しいという感じはしないかもしれない。

ところが、この砂時計型の構造は入出力のデータの種類が異なっていても機能する（この場合は自己符号化ではなく、教師データを用いてトレーニングする）。例えば、物音とそれに対応する説明文のベクトルを用いてこのタイプのニューラルネットワークをトレーニングすれば、物音に対してその説明文を出力する装置を構成できる [2]。

この場合、砂時計のくびれの部分で獲得される表現の空間は、音の世界と言語の世界をとりもつ、つまり音からも言語からも符号化できる共有の空間になっていて、かつ、その表現から音も言語も生成できるだけの情報を持ち得ている。この性質を活用し、音と言葉のように異質のデータを共にこの共有の空間に対して符号化、つまりマッピングすることで、それらの距離を直接測ることが可能になったのである。

3. 概念の獲得

異質のデータを共有の空間に対してマッピングするという手法には、更なる著しい特徴がある。それは、必ずしも「物音とその説明文」の
ようやくペアとなる明示的な教師データがなくても動作させられるという点である。例えば、入力する異なるデータ同士が、互いに「関係のあるものかそうでないか」の情報だけを用いて符号化器をトレーニングすることができる。

この点を説明するため、生まれて初めて相撲を見る人が NHK の大相撲中継を見ている状況を考えよう。初めは決まり手についての予備知識はゼロである。しかし数多くの取組みをしているうちに、やがては画面を見ただけで「押し出し」「上手に投げ」といった決まり手を判別できるようにになる。大相撲中継では、勝負がつくと、アナウンサーや場内アナウンスが決まり手を話すのが通例であり、これを手掛かりに、画面上の技の動作のひとまとめと決まり手の音声のひとまとめとの対応を徐々に覚えるからである。

これと同じようなことが再現できる。大相撲中継の動画に対して、音と画像をそれぞれ一定の長さの時間区間として次々に取り出し、それらが時間的に近い場合には関係があり、そうでない場合には無関係と機械的にみなすことにする。その上で、音と画像のそれぞれの符号化器に対して、入力する音と画像に関係があれば互いに近接させ、そうでなければ互いに離れた場所にマッピングさせるように、符号化器をトレーニングしていく。このような操作で、実際に放送の動画から決まり手を学習していけることが確かめられている [3]。

このことは、「この動画は上手投げである」といった内容に関わる具体的な教師データを一切用意しなくても、時間的に近いかどうか、いった外形的な情報だけで、コンピュータが決まり手それぞれの言葉を「概念」を獲得できる可能性を示している。これはコンピュータがデータから自ら学べるような向上で重要な手掛かりになると考えられる。

4. ダイバーシティの真価

以上、異なる種類のデータが空間を共有できるようになったことで、未知の概念をデータ駆動的に獲得するという重要機能の実現に道が開かれたことを述べた。ダイバーシティやインクルージョンが社会生活のキーワードになって久しいが、これからは情報処理においてもその真価が発揮されるのではないか。

異種データの活用は、更なるインパクトをもたらす可能性もある。昨今 AI の活用が盛んな医学の分野を例にとると、検査データ（画像など）と臨床情報（病名など）、ゲノム情報と臨床情報、オルガノイド情報と臨床情報、などといった異なる種類のペアデータがトレーニングに用いられ、それぞれ目覚ましい成果を上げている。これら異種のデータを共通の空間でうまく取り扱う技術がもし実現できれば、疾病の機序をより詳細に解明したり、薬品や治療法のシミュレーションを行ったりといった、更なる臨床的なメリットが期待できる。また、臨床だけでなく、検査や生体情報のセンシング技術、オルガノイド研究など、それぞれの分野の研究の進展に対しても貢献できるかもしれない。

ISS やそれに属する研究（研究会）自体が、様々なバックグラウンドや強みや課題をもつ人々が集う場でもある。そのような場で活用しながら、筆者自身、是非若い方々と一緒に挑戦できればと思っている。

参考文献

[1] G.E. Hinton and R.R. Salakhutdinov: “Reducing the dimensionality of data with neural networks,” Science, vol.313, pp.504–507, July 2006.
[2] S. Ikawa and K. Kashino: “Neural audio captioning based on sequence-to-sequence model,” DCASE Workshop, pp.99–103, Oct. 2019.
[3] Y. Ohishi, Y. Tanaka, and K. Kashino: “Unsupervised co-segmentation for athlete movements and live commentaries using crossmodal temporal proximity,” ICPR 2020, pp.9137–9142, Jan. 2021.
Every sentence conveys at least one idea. Sometimes it includes different aspects of an idea or even multiple ideas. In such cases, consider the order of these parts.

Order of Ideas inside Sentences

The sequence of presenting ideas is an important factor in improving the readability of any text, whether it’s a story, a business report, or an academic paper.

Here, the best guide is to use the order that requires the least thinking—don’t make your readers think about your words, let them think about your ideas.

Normally, we expect the first noun we encounter to be the subject of the sentence, the doer or receiver of the action:

- **✗** In a carefully prepared Pb-lined vacuum chamber, the target was irradiated by X-rays.
- **○** The target was irradiated by X-rays in a carefully prepared Pb-lined vacuum chamber.

In the first sentence, we must read through a description of secondary information on the environment to get to the main idea; in the second sentence, this main idea is immediate.

On the other hand, if such secondary info completes a transition from the previous sentence, then there is a natural flow of thought:

- **○** A Pb-lined vacuum chamber was carefully prepared for the experiment. In this chamber, X-rays were irradiated to the target.

Another common type of sentence where the main action may be best positioned later is a conditional *if/then* statement:

- **✗** A longer cooling time is recommended if the temperature peak exceeds 180°C.
- **○** If the temperature peak exceeds 180°C, a longer cooling time is recommended.

Although both sentences are easy to understand, the second has better readability because the critical condition comes first.

In compound sentences with two clauses, the choice of which to put first is often obvious:

- **✗** The user knows that input is permitted, and first a haptic signal is given by the system.
- **○** A haptic signal is given by the system, and then the user knows that input is permitted.

But in other cases, this choice depends on the writer’s intention and the immediate context:

- **○** The robot must be robust to blunt force, but a flexible robot body is also advantageous.
- **○** A flexible robot body is advantageous, but the robot must also be robust to blunt force.

The first sentence introduces a discussion on making more flexible robots, while the second emphasizes the constraint of robustness.

‘See-Cue’ – Four Abstract Criteria

Recently, I’ve been giving online seminars on abstract writing to researchers and university students.

Largely through responding to questions, I’ve developed a simple four-point guideline, or criteria, for writing a good abstract: CCUE, or as I call it, ‘see-cue.’ This stands for *clear, comprehensive, useful, and engaging.*

The abstract must first be clear so that readers have no problem understanding the message. A comprehensive abstract has all of the essentials: what was done, how it was done, what was found, and what those findings mean. A useful abstract tells the reader what the paper covers, and even whether it concerns his or her interests.

At a more sophisticated level, an engaging abstract motivates the reader to keep reading the paper. This quality is what we strive to give our clients in their documents.

Want an online seminar on abstract writing?

Please contact read@athuman.com

Mini Quiz: What’s Wrong?

1) The lens is focused during measuring the...
2) The lens is focused while measuring the...
3) The lens is focused during measurement of...
(Answers: 1) NG; 2) OK; 3) OK)
ISS運営委員会
（設置：拡大運営委員会）

会長
佐藤 真一
次期会長
藤井 俊彰
副会長（財務担当）
守屋 俊夫
副会長（企画広報担当）
松本 泰一
副会長（編集会議担当）
岩野 公司
庶務幹事
牛久 祥孝
亀田 裕介
財務幹事
比嘉 恭太
明堂 絵美
企画広報幹事
山本 琢磨
阿部 直人
国際担当幹事
内海 ゆづ子
武 小萌

技術会議幹事
松富 卓哉
新田 直子
福森 隆寛
川上 玲

ソサイエティ誌編集委員長
金子 晴彦
ソサイエティ誌編集幹事
浦 正広
大沼 亮
和文論文誌編集長
横川 智敏
和文論文誌編集副委員長
佐藤 信夫
英文論文誌編集長
北岡 敦英
英文論文誌編集副委員長
光来 健一
出版委員会連絡委員
阿部 直人

ITJ及び学会
HAPINESSプラネット
HAPIBON
TENQO
NTT

情報・システムソサイエティ誌 第27巻第3号（通巻108号）

令和4年度 情報・システムソサイエティ組織図および運営委員会構成（敬称略）
Your paper is the face of your research: Make it look good!

Human Global Communications Co., Ltd.
(formerly Kurdyla and Associates Co., Ltd.)

1969年以来、トレーニングされたネイティブ英文添削スタッフによる最高品質の英文添削を、ご希望納期にお応えできる迅速な仕上げとリーソナルな価格で企業・日本全国の大学、最先端の研究機関へご提供しております。秘密厳守。

自K&A株式会社1969年成立以来，我们一直为日本顶级企业、所有主要大学，以及多所著名研究机构提供英文校阅服务。我们的经验丰富的欧美籍翻译/校阅专家们，以合理的价格为您提供迅速优质的服务。我们尊重，并保护您的知识产权。

“You’ve invested great amounts of time, effort and money in your research—your paper deserves the best possible writing!”

– Ron Read
Vice President, Osaka Manager

Contact Person: Atsuko Watanabe 担当：渡辺敦子
〒542-0081大阪市中央区南船場4-3-2 ヒューリック心斎橋ビル9階
HGC Kansai: www.hgc kansai.com Tel: 06-7223-8990 e-mail: kansaikujira@athuman.com
Tokyo Headquarters: www.human-gc.jp A member of the Human Group: www.athuman.com
巻頭言 　Webはパワースツツ 　山名早人

研究会インタビュー 　ソサイエティ人図鑑 No.33——山口高平さん（KBSE研究会）

研究最前線 　RECONF 研究会：リコンフィギュラブルシステム研究最前線 　吉瀬諦二

おめでとう論文賞
カメラ情報を利用した公平かつ効率的なエレベータ配車制御手法の提案と推定誤差の影響
山内智貴，井手理菜，菅原俊治

全方位カメラでの撮影とその後処理による視覚障害者の写真撮影支援
岩村雅一，平林直樹，程征，南谷和範，黄瀬浩一
Real-Time Full-Band Voice Conversion with Sub-Band Modeling and Data-Driven Phase Estimation of Spectral Differentials
佐伯高明，齋藤佑樹，高橋恵之介，猿渡洋

ソサイエティ活動
FIT2022 開催速報 　山本琢磨

フェローからのメッセージ
教育・研究生活を振り返って 　福本聡
研究留学のススメ 　鵜木祐史
異なるものが空間を共有すると 　柏野邦夫

コラム 　Author’s Toolkit——Writing Better Technical Papers—— Ron Read