Sex differences in bladder cancer pathology and survival: analysis of a population-based cancer registry

Masayoshi Zaitsu, Satoshi Toyokawa, Akiko Tonooka, Fumiaki Nakamura, Takumi Takeuchi, Yukio Homma & Yasuki Kobayashi

1Department of Public Health, The University of Tokyo, Tokyo, Japan
2Department of Urology, Kanto Rosai Hospital, Kawasaki, Japan
3Department of Urology, The University of Tokyo, Tokyo, Japan
4Department of Pathology, Kanto Rosai Hospital, Kawasaki, Japan

Keywords
Bladder cancer, epidemiological characteristic, Japanese, pathology, population-based, sex difference, survival

Abstract
Sex differences in bladder cancer pathology and epidemiology have been the focus of recent research. We investigated the epidemiological characteristics and compared bladder cancer pathology and survival between men and women in Japan. A total of 13,184 patients with primary bladder cancer diagnosed from 1954 to 2010 were identified in a large-scale cancer registry database in Kanagawa Prefecture. Using this database, we compared the odds ratios (ORs) for nonurothelial carcinoma (non-UC) using a multiple logistic regression model adjusted for age and diagnosis periods. We also compared hazard ratios (HRs) for overall death and cancer-specific death using a Cox proportional hazards model adjusted for non-UC, age, and diagnosis period. The proportion of non-UC was significantly higher in female compared with male patients (OR = 2.14, 95% confidence interval [CI]: 1.81–2.52). Furthermore, survival was significantly poorer in female patients than in male patients after adjusting for UC or non-UC (HR for overall death = 1.15, 95% CI: 1.06–1.23; HR for cancer-specific death = 1.39, 95% CI: 1.28–1.52). Sex differences exist in the epidemiological characteristics of bladder cancer in Japan, with female patients having less favorable pathology and poorer survival compared with male patients.

Introduction
Sex differences in bladder cancer epidemiology have been a focus of recent research. Female patients appear to have more unfavorable pathology and poorer survival compared with male patients. Sex differences in bladder cancer mortality have often been reported [1–3], which may be partially explained by the higher proportion of unfavorable pathology in female patients. Nonurothelial carcinoma (non-UC) is a rare form of bladder cancer with aggressive behavior and poor prognosis [4–6]. Large, population-based studies using data from Surveillance, Epidemiology, and End Results (SEER) and the Netherlands Cancer Registry showed that survival was poorer in patients with non-UC, compared with those with UC [7, 8]. In addition, racial differences in the percentage of non-UC bladder cancer have also been reported between Caucasians and African Americans (female Caucasians 4.3% vs. female African Americans 10.5%, male Caucasians 2.3% vs. male African Americans 5.9%), while survival was poorer in females after adjusting for pathology [9]. However, to the best of our knowledge, there is currently little information regarding the existence of sex differences in bladder cancer pathology and mortality in Asians, except for one study in Japan [10]. Furthermore,
it investigated only patients who underwent radical cystectomy, and was unable to show any sex difference in mortality irrespective of pathology [10]. We therefore conducted a whole patient survey using a large, population-based, cancer registry database of over 20,000 patients with bladder cancer in Japan. We investigated sex differences in bladder cancer pathology and mortality and determined if survival remained poorer in female than in male patients, even after adjusting for non-UC.

Methods

Data source

Kanagawa Cancer Registry, which covers approximately 7% of the Japanese population, is a large, population-based, cancer registry in Kanagawa Prefecture and part of the Japanese Association of Cancer Registries [11]. Kanagawa Prefecture is a metropolitan prefecture located close to Tokyo. It has a population of over nine million, the second largest in Japan, and contains urbanized and rural areas. Data are registered from diagnosing institutions both inside and outside the prefecture if the patient is a resident of the prefecture. The registry database is updated with population registers and death certificates. There is no overlap for the same patient for the same disease in the database.

The database contains the following information: (1) personal identification code; (2) method of registry entry (registry system, population register, death certificate); (3) diagnosing institution; (4) sex; (5) date of birth; (6) date at diagnosis; (7) local-government code for the patient’s home address; (8) International Classification of Diseases, 10th Revision (ICD-10) code for disease name; (9) International Classification of Diseases for Oncology, Third Edition (ICD-O-3) code for pathology; (10) initial or recurrent tumor; (11) date of death; (12) cause of death; (13) date of last follow-up; and (14) TNM classification according to the UICC TNM Classification of Malignant Tumours [12] and pathological grade of ICD-O-3 among patients diagnosed after 2005. We obtained the data in an anonymous format, under a research agreement with Kanagawa Cancer Registry.

Details of the database have been described previously [11]. In brief (1) all information is gathered by well-trained tumor registrars certificated by the training program of Japanese Association of Cancer Registries, whose program is permitted by the SEER program; (2) follow-up information is automatically updated annually from population registers and death certificates; (3) pathological information is coded by ICD-O-3; and (4) previous versions of pathological codes have been transformed to the latest versions through standardized regulation consistent with changes in bladder cancer coding practice. Death Certificate Only (DCO) indicates patients who were only registered with “bladder cancer” according to the death certificate, with no pathological information. We used a proportion of patients with DCO as an indicator of the precision of the database, with a cut-off value of 20% [5]. The proportion of DCO in our study was 16.2%, indicating that the quality of our database was adequate.

Study subjects

The inclusion criterion was patients with bladder cancer (C67 in ICD-10) in the Kanagawa Cancer Registry. Exclusion criteria were as follows: (1) missing pathology (UC or non-UC), (2) vague pathology only identified as malignant tumor, carcinoma, or sarcoma, (3) benign tumor, (4) metastatic tumor from other sites, (5) recurrent tumor, (6) patients living outside Kanagawa Prefecture at diagnosis, (7) missing age, and (8) missing sex data.

Variables

Age

Age at diagnosis was calculated and patients were classified as <65, ≥65 and <75, and ≥75 years old.

Pathology

Tumor pathology was divided into seven groups based on the ICD-O-3 code, according to the World Health Organization International Histological Classification of Tumours and the International Agency for Research on Cancer, with some modifications (Table 2) [4, 5]: (1) UC, (2) squamous cell carcinoma (SCC), (3) adenocarcinoma (AC), (4) neuroendocrine tumor (NET), (5) undifferentiated carcinoma (undiff), (6) sarcoma, and (7) others. SCC, AC, NET, undiff, sarcoma, and others were all classified as non-UC.

Period, pathological stage, and pathological grade

On the basis of the definitions of the UICC TNM staging system [12] and previous studies corresponding to the American Joint Committee on Cancer staging system [13], we divided the date at diagnosis into: Period 0, 1954–1992; Period 1, 1993–2002; and Period 2, 2003–2010. We divided the pathological stages into: early (0is, 0a, I) and late (II–IV) stages. We divided the pathological grades into low grade (1, 2) and high grade (3, 4).

Observation period

The observation period was a 5-year, right-censored period. Causes of death were divided into overall death and cancer-specific death.
Statistical methods

The primary aim of the study was to analyze the pathology and survival of patients with bladder cancer, and to detect any sex differences. We used t-tests, \(\chi^2 \) tests, and Fisher’s exact tests to compare baseline characteristics between two groups. Proportions of non-UC patients were compared using \(\chi^2 \) and Cochran–Mantel–Haenszel tests stratified by each period. Adjusted odds ratios (ORs) for non-UC were estimated using a multiple logistic regression model adjusted for age and periods. We estimated the 5-year overall survival (5y-OS) and 5-year cancer-specific survival (5y-CSS) using the Kaplan–Meier method. Cox proportional hazards model adjusted for non-UC, age, and period was used to estimate adjusted hazard ratios (HRs) for overall death and cancer-specific death. We also estimated HRs adjusted for non-UC, age, pathological stage, and pathological grade among the patients in Period 2 because TNM classification information was available after 2005.

All P-values were two-sided, and \(P < 0.05 \) was considered statistically significant. Data were analyzed using STATA/MP13.0 (Stata-Corp LP, College Station, TX).

Ethical considerations

The study was approved by the Institutional Review Boards of The University of Tokyo and Kanto Rosai Hospital.

Results

We initially included 22,388 patients diagnosed from June 15, 1954 to November 22, 2010. We then excluded: (1) 8723 patients based on lack of precise pathology, (2) 475 patients with recurrent tumors, (3) two patients who lived outside Kanagawa Prefecture at diagnosis, and (4) four patients with missing age data. A total of 13,184 patients with primary bladder cancer diagnosed from June 15, 1954 to November 22, 2010 thus comprised the study subjects. The baseline characteristics of the 13,184 patients are shown in Table 1. The proportion of female patients was 21.7% (2857 of 13,184). The mean ages (SD) of the female and male patients were 70 (±12.9) years and 68 (±11.8) years, respectively (\(P < 0.001 \)).

Sample size

The sample size for the analysis of pathology was large enough to show a 4% difference in the proportion of non-UC (female patients, 8%, male patients, 4%, \(\alpha = 0.05, \beta = 0.2 \)). The sample size for the analysis of survival was large enough to show a 5% difference in survival rate (female patients, 50%, male patients, 55%, \(\alpha = 0.05, \beta = 0.2 \)). The proportion of DCO was 16.2%.

Pathology

The pathological distribution of the 13,184 patients is shown in Table 2. The proportion of female patients with non-UC was significantly higher than the proportion of male patients. The overall proportions of non-UC female and male patients were 8.2% (234/2857) and 4.0% (414/10,327) (\(P < 0.001 \)), respectively. Regardless
of pathological types, the 5y-OS and 5y-CSS were poorer in female than in male patients.

According to multivariate analysis, the proportional hazards assumption checked with the log–log plot of survival indicated a good model fit (data not shown). Interestingly, both overall survival and cancer-specific survival were significantly poorer in female compared with male patients (HR for overall death $= 1.15$ [1.06–1.23]; HR for cancer-specific death $= 1.39$ [1.28–1.52]). Female adjusted HRs by age were similar (Table 5).

Survival in patients with pathological stage and pathological grade in Period 2

Of the patients in Period 2 (4764/13,184), we excluded 3706 patients with missing pathological stage, 323 patients with missing pathological grade, and 36 patients with missing survival-period data, because these data were available for most of this most-recent cohort [14]. The remaining 699 patients were the subjects for analysis.

HR adjusted for non-UC and age, and HR adjusted for non-UC, age, pathological stage, and pathological grade in female compared with male patients were as follows: HR for overall death $= 1.52$ (1.09–2.12) and 1.52 (1.09–2.13), and HR for cancer-specific death $= 1.69$ (1.13–2.52) and 1.71 (1.14–2.56), respectively.
Discussion

The results of this study demonstrated the existence of a sex difference in the epidemiology of bladder cancer in Japanese patients. Compared with male patients, the proportion of non-UC was twice as high in female patients (OR = 2.14, 1.81–2.52), while survival was poorer in females after adjusting for pathology, age, and period (HRs for overall and cancer-specific deaths = 1.15 [1.06–1.23] and 1.39 [1.28–1.52], respectively). It was still

Characteristic	5y-OS (95% CI)	P-value	5y-CSS (95% CI)	P-value			
	Female	Male		Female	Male		
Overall							
Total	0.49 (0.47–0.51)	0.56 (0.54–0.57)	<0.001	0.59 (0.57–0.61)	0.71 (0.70–0.72)	<0.001	
UC	0.52 (0.50–0.54)	0.57 (0.56–0.58)	<0.001	0.62 (0.60–0.65)	0.72 (0.71–0.73)	<0.001	
Non-UC	0.21 (0.15–0.27)	0.31 (0.26–0.36)	0.002	0.26 (0.20–0.33)	0.43 (0.37–0.48)	<0.001	
Period 0							
Total	0.49 (0.45–0.53)	0.56 (0.54–0.58)	<0.001	0.56 (0.52–0.59)	0.66 (0.64–0.68)	<0.001	
UC	0.53 (0.49–0.57)	0.57 (0.55–0.59)	0.047	0.60 (0.56–0.64)	0.67 (0.65–0.70)	0.001	
Non-UC	0.16 (0.09–0.25)	0.32 (0.23–0.40)	0.01	0.20 (0.12–0.30)	0.36 (0.27–0.45)	0.02	
Period 1							
Total	0.48 (0.44–0.51)	0.56 (0.54–0.58)	<0.001	0.58 (0.54–0.62)	0.72 (0.70–0.74)	<0.001	
UC	0.50 (0.46–0.53)	0.57 (0.55–0.59)	<0.001	0.61 (0.57–0.64)	0.73 (0.71–0.75)	<0.001	
Non-UC	0.24 (0.14–0.35)	0.27 (0.19–0.37)	0.40	0.31 (0.19–0.43)	0.40 (0.29–0.50)	0.15	
Period 2							
Total	0.51 (0.46–0.55)	0.54 (0.52–0.56)	0.003	0.64 (0.59–0.68)	0.73 (0.71–0.75)	<0.001	
UC	0.54 (0.49–0.58)	0.56 (0.53–0.58)	0.07	0.67 (0.62–0.71)	0.75 (0.73–0.77)	<0.001	
Non-UC	0.24 (0.14–0.35)	0.32 (0.23–0.40)	0.04	0.31 (0.19–0.44)	0.52 (0.42–0.61)	0.007	

NA, not available; UC, urothelial carcinoma; SCC, squamous cell carcinoma; AC, adenocarcinoma; NET, neuroendocrine tumor; Undiff, undifferentiated carcinoma; non-UC, nonurothelial carcinoma; Sy-OS, 5-year overall survival estimate; Sy-CSS, 5-year cancer-specific survival estimate. Non-UC includes SCC, AC, NET, Undiff, Sarcoma, and Others.

1Data analyzed by Kaplan–Meier method in 10,712 patients with complete information on sex, pathology, age, period, and observation period.

2P-values for log-rank tests in each period and stratified log-rank tests over all periods, comparing female and male patients with each pathology.

3Period: Total, 1954–2010; Period 0, 1954–1992; Period 1, 1993–2002; Period 2, 2003–2010.
Sex Differences in Bladder Cancer

Table 4. Hazard ratios for overall death and cancer-specific death adjusted for available confounders.

Characteristic	Overall death	Cancer-specific death
Sex		
Male	1.00 (reference)	1.00 (reference)
Female	1.15 (1.06–1.23)	1.39 (1.28–1.52)
Pathology		
UC	1.00 (reference)	1.00 (reference)
Non-UC	2.68 (2.41–2.97)	3.13 (2.78–3.52)
Age (y)		
<65	1.00 (reference)	1.00 (reference)
≥65 and <75	1.41 (1.29–1.54)	1.21 (1.09–1.34)
≥75	2.50 (2.31–2.72)	1.93 (1.75–2.12)
Period		
Period 0	1.07 (0.99–1.15)	1.26 (1.16–1.38)
Period 1	1.00 (reference)	1.00 (reference)
Period 2	0.97 (0.91–1.05)	0.87 (0.79–0.96)

UC, urothelial carcinoma; SCC, squamous cell carcinoma; AC, adenocarcinoma; NET, neuroendocrine tumor; Undiff, undifferentiated carcinoma; non-UC, nonurothelial carcinoma. Non-UC includes SCC, AC, NET, Undiff, Sarcoma, and Others.

Data analyzed by Cox proportional hazards model between the sexes adjusted for non-UC, age and Period in 10,712 patients with complete information on sex, pathology, age, period, and observation period.

Table 5. Hazard ratios for overall death and cancer-specific death in female patients compared with male patients by age.1,2

Characteristic	Overall death	Cancer-specific death
Age (y)		
<65	1.15 (0.96–1.36)	1.22 (1.01–1.48)
≥65 and <75	1.06 (0.92–1.22)	1.23 (1.05–1.45)
≥75	1.18 (1.07–1.30)	1.56 (1.38–1.76)

Data analyzed by Cox proportional hazards model between the sexes adjusted for non-UC and Period in 10,712 patients with complete information on sex, pathology, age, period, and observation period.

Sex differences in bladder cancer epidemiology may be explained by biological, past-historical, and lifestyle standpoints. First, sex differences in the dominant hormones and in vascularity around the bladder may be a relevant factor. From a hormonal perspective, the incidence of bladder cancer was shown to be higher in postmenopausal than in premenopausal women [15], and aggressive bladder cancers expressed high levels of estrogen receptor-β and few androgen receptors [16–18]. From a vascular perspective, bladder cancers with high vascularity have been associated with poorer survival than those with low vascularity [19, 20]; similarly, high expression of vascular endothelial growth factor (VEGF) was associated with poorer survival than low expression of VEGF [21]. Second, a difference in the incidence of cystitis between the sexes may also help to explain the difference in bladder cancer epidemiology. Compared with patients who had never experienced cystitis, patients who had experienced at least three episodes of cystitis had increased risks of whole and SCC bladder cancers [22]. Finally, sex differences in lifestyle-related risk factors for bladder cancer, such as smoking [23–25], occupational exposure to particular aromatic amines [26, 27], nuclear pollution [28, 29], economic status [3], and potential delay in diagnosis in female patients [30] could also explain the sex difference.

Our study had several limitations, including some selection biases, and the fact that the pathological coding practices for bladder cancer changed over the study period. Furthermore, we had no information on individual patient attributes, such as history of cystitis, smoking, occupational exposure, environmental pollution, economic status, and treatment. (1) Selection bias might
have affected the external validity of this observational study; however, the quality of the prefecture-wide survey, with a DCO percentage of 16.2%, suggested that the precision of the estimates was high and selection bias could be ignored. (2) The proportion of CIS was around 10% in the last decade, which was much higher than in preceding decades; however, this trend is probably associated with changes in coding practices. Coding changes would influence the conclusions in the same direction in both sexes, suggesting that any impact of coding changes could be ignored after adjusting for periods. (3) Smoking is related to poor survival in bladder cancer [23]. The Vital Statistics of Japan (www.e-stat.go.jp) show that the percentage of female smokers is about one-third that of male smokers, suggesting that male patients should have poorer survival than female patients. We are currently collecting data on the smoking status of patients in Kanagawa Cancer Registry, and these results will be incorporated in a future study. (4) Lack of socioeconomic information may represent a weakness of our study because of the impact of socioeconomic status on mortality; however, the effect on sex differences would likely be negligible. Japan has a universal public healthcare system that extensively covers standardized and recommended examinations and treatments within cancer guidelines, regardless of the patient’s socioeconomic status. Female and male patients would thus have equal chances to receive examinations and treatment, regardless of their socioeconomic status. The lack of socioeconomic information should therefore not weaken the conclusions. However, further studies are needed to address these limitations.

The strength of this study was the fact that it is the first population-based study to demonstrate sex differences in both pathology and mortality of bladder cancer in Japan. Furthermore, survival was significantly poorer in female patients than male patients after adjusting for either UC or non-UC. The results thus represent an important step in reconsidering the treatment strategy for this disease. Although guideline-based strategies for bladder cancer treatment have been recommended for many years, they have not addressed the survival difference between the sexes. The novel Osaka Medical College regimen [31], which is based on a new concept outside the guidelines, suggests that the combination of radiotherapy, extensive high-dose chemotherapy with balloon-occluded arterial infusion, and hemodialysis may have a curative effect on advanced bladder cancer in both female and male patients. Our results suggest that the main strategy for treating bladder cancer might take into account the sex of the patient. In summary, there are sex differences in the epidemiological characteristics of bladder cancer, and female patients have unfavorable pathology and poorer survival compared with male patients. Further studies are needed to confirm female sex as an independent risk factor for these unfavorable characteristics.

Acknowledgments
The authors thank all the staff members of the Kanagawa Cancer Registry for collecting and providing us with the data. The authors also thank our colleagues in The University of Tokyo and Kanto Rosai Hospital.

Conflict of Interest
None.

References
1. Micheli, A., A. Mariotto, A. Giorgi Rossi, G. Gatta, and P. Muti. 1998. The prognostic role of gender in survival of adult cancer patients. EUROCARE working group. Eur. J. Cancer 34:2271–2278.
2. Madeb, R., and E. M. Messing. 2004. Gender, racial and age differences in bladder cancer incidence and mortality. Urol. Oncol. 22:86–92.
3. Kirkali, Z., T. Chan, M. Manoharan, Alboga, F., C. Busch, L. Cheng, et al. 2005. Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 66:4–34.
4. Elbe, J. N., G. Sauter, J. I. Epstein, and I. A. Sestierhe, eds. 2004. World Health Organization classification of tumours. Pathology and genetics of tumours of the urinary system and male genital organs. IARC Press, Lyon, France.
5. Curado, M. P., B. Edwards, H. R. Shin, Storm, H., J. Ferlay, M. Heanue, et al. 2007. Cancer incidence in five continents. Vol. IX. IARC Scientific Publications, Lyon, France.
6. Black, P. C., G. A. Brown, and C. P. N. Dinney. 2009. The impact of variant histology on the outcome of bladder cancer treated with curative intent. Urol. Oncol. 27:3–7.
7. Wright, J. L., P. C. Black, G. A. Brown, Porter, M. P., A. M. Kamat, C. P. Dinney, et al. 2007. Differences in survival among patients with sarcomatoid carcinoma, carcinosarcoma and urothelial carcinoma of the bladder. J. Urol. 178:2302–2307.
8. Ploeg, M., K. K. Aben, C. A. Huilsbergen-van de Kaa, M. P. Schoenberg, J. A. Witjes, and L. A. Kiemene. 2010. Clinical epidemiology of nonurothelial bladder cancer: analysis of The Netherlands Cancer Registry. J. Urol. 183:915–920.
9. Scosyrev, E., K. Noyes, C. Feng, and E. Messing. 2009. Sex and racial differences in bladder cancer presentation and mortality in the US. Cancer 115:68–74.
10. Nishiyama, H., T. Habuchi, J. Watanabe, Teramukai, S., H. Tada, Y. Ono, et al. 2004. Clinical outcome of a large-scale multi-institutional retrospective study for locally
advanced bladder cancer: a survey including 1131 patients treated during 1990–2000 in Japan. Eur. Urol. 45:176–181.
11. Okamoto, N. 2008. A history of the cancer registration system in Japan. Int. J. Clin. Oncol. 13:90–96.
12. Sobin, L. H., and Ch Wittekind, eds. 2002. UICC (International Union Against Cancer) TNM classification of malignant tumours, 6th ed. Wiley, New York.
13. David, K. A., K. Mallin, M. I. Milowsky, J. Ritchey, P. R. Carroll, and D. M. Nanus. 2009. Surveillance of urothelial carcinoma: stage and grade migration, 1993–2005 and survival trends, 1993–2000. Cancer 115:1435–1447.
14. Higashi, T., F. Nakamura, A. Shibata, Y. Emori, and H. Nishimoto. 2014. The national database of hospital-based cancer registries: a nationwide infrastructure to support evidence-based cancer care and cancer control policy in Japan. Jpn. J. Clin. Oncol. 44:2–8.
15. McGrath, M., D. S. Michaud, and I. De Vivo. 2006. Hormonal and reproductive factors and the risk of bladder cancer in women. Am. J. Epidemiol. 163:236–244.
16. Shen, S. S., C. L. Smith, J. Hsieh, Yu, J., I. Y. Kim, W. Jian, et al. 2006. Expression of estrogen receptors-α and -β in bladder cancer cell lines and human bladder tumor tissue. Cancer 106:2610–2616.
17. Boorjian, S., S. Ugras, N. P. Mongan, Gudas, L. J., X. You, S. K. Tickoo, et al. 2004. Androgen receptor expression is inversely correlated with pathologic tumor stage in bladder cancer. Urology 64:383–388.
18. Tuygun, C., D. Kankaya, A. Imamoglu, Sertcelik, A., K. Zengin, M. Oktay, et al. 2011. Sex-specific hormone receptors in urothelial carcinomas of the human urinary bladder: a comparative analysis of clinicopathological features and survival outcomes according to receptor expression. Urol. Oncol. 29:43–51.
19. Bochner, B. H., R. J. Cote, N. Weidner, Groshen, S., S. Chen, D. G. Skinner, et al. 1995. Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis. J. Natl. Cancer Inst. 87:1603–1612.
20. Dickinson, A. J., S. B. Fox, R. A. Persad, J. Hollyer, G. N. Sibley, and A. L. Harris. 1994. Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. Br. J. Urol. 74:762–766.
21. Crew, J. P., T. O’Brien, M. Bradburn, Fuggle, S., R. Bicknell, D. Cranston, et al. 1997. Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer. Cancer Res. 57:5281–5285.
22. Kantor, A. F., P. Hartge, R. N. Hoover, A. S. Narayana, J. W. Sullivan, and J. F. Fraumeni, Jr.. 1984. Urinary tract infection and risk of bladder cancer. Am. J. Epidemiol. 119:510–515.
23. Akiba, S., and T. Hirayama. 1990. Cigarette smoking and cancer mortality risk in Japanese men and women—results from reanalysis of the six-prefecture cohort study data. Environ. Health Perspect. 87:19–26.
24. Brennan, P., O. Bogillot, S. Cordier, Greiser, E., W. Schill, P. Vineis, et al. 2000. Cigarette smoking and bladder cancer in men: a pooled analysis of 11 case-control studies. Int. J. Cancer 86:289–294.
25. Zeegers, M. G., Swaen, I. Kant, R. Goldbohm, and P. Van den Brandt. 2001. Occupational risk factors for male bladder cancer: results from a population based case cohort study in the Netherlands. Occup. Environ. Med. 58:590–596.
26. Malker, H. S., J. K. McLaughlin, D. T. Silverman, Ericsson, J. L., B. Stone, J. A. Weiner, et al. 1987. Occupational risks for bladder cancer among men in Sweden. Cancer Res. 47:6763–6766.
27. Naito, S., K. Tanaka, H. Koga, S. Kotoh, T. Hirohata, and J. Kumazawa. 1995. Cancer occurrence among dyestuff workers exposed to aromatic amines. A long term follow-up study. Cancer 76:1445–1452.
28. Romanenko, A., K. Morimura, H. Wanibuchi, Wei, M., W. Zaparin, W. Vinnichenko, et al. 2003. Urinary bladder lesions induced by persistent chronic low-dose ionizing radiation. Cancer Sci. 94:328–333.
29. Ozasa, K., Y. Shimizu, A. Suyama, Kasagi, F., M. Soda, E. J. Grant, et al. 2011. Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat. Res. 177:229–243.
30. Garg, T., L. C. Pinheiro, C. L. Atoria, Donat, S. M., J. S. Weissman, H. W. Herr, et al. 2014. Gender disparities in hematuria evaluation and bladder cancer diagnosis: a population based analysis. J. Urol. 192:1072–1077.
31. Azuma, H., T. Inamoto, N. Ibuki, Ubai, T., Y. Kotake, K. Takahara, et al. 2010. Novel bladder preservation therapy for locally invasive bladder cancer: combined therapy using balloon-occluded arterial infusion of anticancer agent and hemodialysis with concurrent radiation. Int. J. Oncol. 37:773–785.