How to Utilize Coronary Computed Tomography Angiography in the Treatment of Coronary Artery Disease

Hyung-Yoon Kim, MD¹ and Jin-Ho Choi, MD, PhD¹,²
Departments of ¹Internal Medicine, ²Emergency Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Coronary computed tomography angiography (CCTA) has high negative predictive power for detecting coronary artery disease. However, CCTA is limited by moderate positive predictive power in the detection of myocardial ischemia. This is not unexpected because the diameter of a stenosis is a poor indicator of myocardial ischemia and discrepancy between the severity of stenosis and noninvasive tests is not uncommon. The value of stenosis for predicting future development of acute coronary syndrome represented by plaque rupture has been questioned. CCTA identifies the characteristics of high-risk plaque including positive remodeling, low density plaque and spotty or micro-calcification. Also, additional evaluation of myocardial ischemia using computational flow dynamics, and luminal attenuation gradient are expected to increase both diagnostic performance for hemodynamically significant stenosis and the predictive power for future cardiovascular risk. Technical advances in CCTA would enable evaluation of both coronary artery stenosis and myocardial ischemia simultaneously with high predictive performance, and would improve vastly the clinical value of CCTA.

KEY WORDS: Coronary CT angiography · Prognosis · Coronary artery disease · Atherosclerosis · Functional ischemia · Myocardial mass.

INTRODUCTION
Coronary atherosclerosis is a chronic life-long progressive disease. Most clinical presentations of the disease are as a result of a critical narrowing of arterial lumen or a sudden thrombotic occlusion caused by the rupture of atherosclerotic plaque. Unfortunately prediction of such clinically adverse events is difficult by clinical judgment or symptoms alone. Comprehensive approach of coronary atherosclerotic plaque including qualitative and quantitative analysis is necessary for the accurate lesion assessment and treatment planning as well as for the prediction of future outcome (Fig. 1).

Conventional invasive coronary angiography (CAG) has been regarded as the gold standard for coronary artery disease but has limitation for assessing the extent of mild to moderate coronary atherosclerosis. Intravascular ultrasound (IVUS) or optical coherence tomography (OCT) are needed to quantitate the burden of atherosclerosis. Coronary computed tomography angiography (CCTA) can be considered as a non-invasive method that may substitute CAG and IVUS. CCTA is still limited by spatial and temporal resolution but enables non-invasive patient-friendly assessment of the extent of coronary atherosclerosis. Therefore it is expected that CCTA will be useful in overcoming limitations of the current diagnosis and treatment of coronary heart disease as shown below.

DEMONSTRATING THE PRESENCE OF CORONARY ARTERY DISEASE
CCTA has emerged as a new noninvasive tool for screening of coronary artery disease in place of conventional stress imaging or electrocardiography. Therapeutic strategy of coronary artery disease depends on the extent and severity of coronary artery disease. CCTA can visualize the extent of severity of coronary artery disease with good sensitivity and excellent specificity. The performance of CCTA for plaque detection...
Current Use of CCTA in Clinical Practice

Hyung-Yoon Kim and Jin-Ho Choi

has been validated by IVUS and OCT. Unlike stress imaging or invasive CAG, CCTA can detect a wide range of coronary artery disease from mild to severe disease.

PREDICTION OF FUTURE CORONARY HEART DISEASE INCIDENTS

It is difficult to predict future cardiac events through symptoms or clinical risk factors. Clinical studies have shown that one-third of acute myocardial infarctions are asymptomatic prior to the event. Most chronic total occlusions have infarct scar which is evidence of prior myocardial infarction but only half of them had a history of angina symptoms.

A CCTA is suitable to identify anatomical coronary stenosis, including calcified and non-calcified plaques, measure the atherosclerotic plaque burden and its response to treatment, and differentiate stable plaques from those that tend to rupture. Positive remodeling, low density (< 30 Hounsfield units) plaque, napkin-ring sign and spotty or micro-calcification detected by CCTA has been shown to have vulnerable plaque characteristics. These non-invasive findings have been validated by invasive IVUS and OCT studies. Moreover, non-contrast coronary calcium CT scan is also useful to evaluate the risk of coronary artery disease using a coronary calcium score and it is well demonstrated to be related to long-term prognosis.

Accordingly, CCTA can detect the presence of a coronary atherosclerosis most accurately and is one of the best non-invasive imaging modality to predict the clinical outcome of coronary artery disease as well.

Fig. 1. Anatomical versus physiological evaluation of coronary atherosclerosis. TCFA: thin-cap fibroatheroma.

Roles of CCTA on Determining the Treatment Policy of Coronary Artery Disease

The treatment goal of coronary artery disease is the improvement of survival as well as relief of symptom. Revascularization by percutaneous coronary intervention or bypass surgery has relieved symptom but has been questioned for improved long-term outcome. Refinement of the need of revascularization strategy would be required to achieve improved clinical outcome after revascularization procedure including percutaneous coronary intervention or bypass surgery. The followings are proposed treatment strategy of coronary artery disease based on the CCTA.

First is to detect coronary atherosclerosis using CCTA. CCTA has the highest diagnostic power to find coronary atherosclerosis among non-invasive imaging modalities and hence very high negative predictive value.

Second is to assess myocardial ischemia non-invasively with CCTA. The presence of myocardial ischemia is the most important factor for making a prognosis and for the decision to perform a revascularization. However less than half of coronary arteries with a diameter stenosis ≥ 50% cause myocardial ischemia in most clinical studies. It would be greatly preferable to find the functional significance of a stenosis as well as the presence of a stenosis by single CCTA test. Myocardial computed tomography perfusion imaging could be utilized in clinical practice. Computational fractional flow reserve based on computed fluid dynamics analysis and contrast gradient...
analysis are being investigated.

Third, it would be important to evaluate the amount of ischemic myocardial mass. Several studies have investigated the relationship between the angiographic severity of stenosis and the amount of perfused myocardial tissue. Duke jeopardy score, myocardial jeopardy index, and Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) lesion score have been used to evaluate the burden of myocardium-at-risk based on angiographic extent of stenosis. However these scoring systems are limited by semi-quantitative grading of the severity of coronary artery disease and myocardium-at-risk. Detailed anatomical variations of individual vessels, myocardial mass, and location of stenosis is not taken account in these semi-quantitative scores. Nuclear perfusion studies have shown that the clinical benefit of revascularization became evident when the ischemic burden ex-

Fig. 2. Characteristics of coronary atherosclerotic plaque detected on CCTA. A: Severe stenosis. B: Positive remodeling. C: Partially calcified or “spotty” calcification. D: Low attenuated plaque (< 30 HU). CCTA: coronary computed tomography angiography, HU: Hounsfield unit.

Fig. 3. Risk assessment of coronary artery disease in the future. APPROACH: Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease, FFR: fractional flow reserve, PCI: percutaneous coronary intervention, SYNTAX: Synergy between PCI with Taxus and Cardiac Surgery.
ceeds 12% to 15% of total myocardial mass.46-50 CCTA enables exact quantitative assessment of the burden of myocardium-at-risk and the extent of coronary artery disease (Fig. 3).

Conclusions

CCTA can find coronary artery disease, determine the significance of coronary artery disease, and guide treatment strategy including revascularization. Now it is time to validate and investigate the role of CCTA in clinical practice and the impact of CCTA on the clinical outcome. Further research on this area is warranted in the future.

References

1. Sandford V, Lima JA, Bluemke DA. Noninvasive imaging of atherosclerotic plaque progression: status of coronary computed tomography angiography. Circ Cardiovasc Imaging 2013;6:603-16.

2. Laslett LJ, Alagona P Jr, Clark BA 3rd, Drozda JP Jr, Saldivar F, Wilson SR, Poe C, Hart M. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol 2012;60(25 Suppl):S1-49.

3. Fokkema ML, James SK, Albertsson P, Akerblom A, Galas F, Eriksson P, Jensen J, Nilsson T, de Smet BJ, Siglgen I, Thorvinger B, Lagerqvist B. Population trends in percutaneous coronary intervention: 20-year results from the SCAAR (Swedish Coronary Angiography and Angioplasty Registry). J Am Coll Cardiol 2013;62:1222-30.

4. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Coteea E, Mintz GS, Melman R, McPherson J, Farhat N, Marso SP, Parsee H, Ternplin B, White R, Zhang Z, Serruys PW, PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364:226-35.

5. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoulkfeh M, O’Neill WW. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 2000;343:915-22.

6. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HF, Brindis RG, Douglas PS. Low diagnostic yield of elective coronary angiography. N Engl J Med 2010;362:896-95.

7. Vorsa S, Rinehart S, Vasquez-Figueroa JG, Kalynych A, Karmalitsos D, Qian Z, Joshi PH, Anderson H, Murrieta L, Wilmer C, Carlsson H, Ballard W, Brown C. Propective, head-to-head comparison of quantitative coronary angiography, quantitative computed tomography angiography, and intravascular ultrasound for the prediction of hemodynamic significance in intermediate and wide lesions, using fractional flow reserve as reference standard (from the ATLANTA I and II Study). Am J Cardiol 2014;113:23-9.

8. Doh JH, Koo BK, Nam CW, Kim JH, Min JK, Nakazato R, Slalom L, Prawira H, Choi H, Lee SY, Namgung J, Kwon SU, Kwak JJ, Lee WB. Diagnostic value of coronary CT angiography in comparison with invasive coronary angiography and intravascular ultrasound in patients with intermediate coronary artery stenosis: results from the prospective multicentre FIGURE-OUT (Functional Imaging criteria for Gust: the use of invasive coronary angiography, intravascular Ultrasound, and coronary computed Tomographic angiography) study. Eur Heart J Cardiovasc Imaging 2014;15:870-7.

9. Min JK, Shaw LJ, Berman DS. The present state of coronary computed tomography angiography a process in evolution. J Am Coll Cardiol 2010;55:957-65.

10. Cho I, Shim J, Chang HJ, Sung JM, Hong Y, Shim H, Kim YJ, Choi BW, Min JK, Kim JY, Shim CY, Hong GR, Chang N. Prognostic value of multidetector coronary computed tomography angiography in relation to exercise electrocardiogram in patients with suspected coronary artery disease. J Am Coll Cardiol 2012;60:2205-15.

11. Yerramazu A, Lahir A, Venanju S, Dumo A, Lipkin D, Underwood SR, Rakhit RD, Patel DJ. Diagnostic role of coronary calcium scoring in the rapid access chest pain clinic: prospective evaluation of NICE guidance. Eur Heart J Cardiovasc Imaging 2014;15:886-92.

12. Heydari B, Leipsic J, Mancini GB, Min JK, Labounty T, Taylor C, Frew GV, Heilbronn B. Diagnostic performance of high-definition coronary computed tomography angiography performed with multiple radiation dose reduction strategies. Can J Cardiol 2011;27:506-12.

13. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamer E, Scherer M, Bellinger R, Martin A, Rentor D, Delago A, Min JK. Diagnostic performance of 64-multidetector row coronary computed tomography angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008;52:1724-32.

14. Nakazato R, Hori R, Leipsic J, Min JK. CFR and FFR assessment with PET and CTA: strengths and limitations. Cardiovasc Rept 2014;6:16-48.

15. Meiboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugglese F, Mollet NR, Boersma E, Regar E, van Geuns RJ, de Jaegere PJ, Serruys PW, Krestin GP, de Feyter PJ. Comprehensive assessment of coronary artery stenosis: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 2008;52:636-43.

16. Hoffmann U, Bamberg F, Cae CU, Nichols JH, Rogers IS, Seneviratne SK, Tsoung QA, Cury RC, Albasa S, Shapiro MD, Moloo J, Burfi T, Jerencik M, Lee H, Jang IK, Parry BA, Brown DF, Udelson JE, Achenbach S, Brady TJ, Nagurney JT. Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol 2009;53:1642-50.

17. Jang JJ, Krishnaswami A, Hung Y. Prognostic values of Framingham risk and coronary artery calcium score in the detection of obstructive CAD in patients with normal SPECT. Angiology 2012;63:275-81.

18. Wasy MM, Brady TJ, Albasa S, Nasir K, Ghoshhajria BB, Tsoung QA, Hoffmann U, Di Carli MF, Blankstein R. Comparison of the Di-Asdon-Fortmer method and Duke Clinical Score to predict obstructive coronary artery disease by computed tomographic angiography. Am J Cardiol 2012:109:998-1004.

19. Bhattachy LC, Naik RH. Clinical profile of acute myocardial infarction in elderly patients. J Cardiologia Diage 2013;4:107-11.

20. Sheifer SE, Gersh BJ, Yanez ND 3rd, Ades PA, Burke GL, Manolio TA. Prevalence, predisposing factors, and prognosis of clinically unrecognized myocardial infarction in the elderly. J Am Coll Cardiol 2000;35:119-26.

21. Grimm RH Jr, Tillinghast S, Daniels K, Neaton JD, Macciodi, Crow R, Pritzker M, Primeas RJ. Unrecognized myocardial infarction: experiences in the Multiple Risk Factor Intervention Trial (MRFIT). Circulation 1987;75(3 Pt 2):116-8.

22. Heyne JP, Goor rug M, Feger J, Kurtt C, Werner GS, Figulla HR, Kaiser WA. Impact on adenosine stress cardiac magnetic resonance for reevaluation and follow up of chronic total coronary occlusions. Eur J Radiol 2007;63:384-90.

23. Choi JH, Chang SA, Choi JO, Song YB, Hahn JY, Choi SH, Lee SC, Lee SH, Oh JK, Choe Y, Gwon HC. Frequency of myocardial infarction and its relationship to angiographic collateral flow in territories supplied by chronically occluded coronary arteries. Circulation 2013;127:703-9.

24. Nakazato R, Otake H, Konishi A, Iwasaki M, Koo BK, Fukuya H, Shinkle T, Hirata K, Leipsic J, Berman DS, Min JK. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography. Eur
28. Thomas DM, Divakaran S, Villines TC, Nasir K, Shah NR, Sim AM, Blankstein R, Charezm MK. Management of coronary artery calcium and coronary cta findings. Curr Cardiologic Rep. 2013;15:8:18.

29. Oguledski MP, Kepek C, Achenbach S, Pregowski J, Kruk M, Staruch AD, Kadiela J, Ryzullo W, Wirtkowskia A. Advanced coronary tomographic anatomical and morphometric plaque analysis for prediction of fractional flow reserve in intermediate coronary lesions. Eur J Radiol 2014:8:135-41.

30. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabisco JA, Friedman J, Diamond GA. Incremental prognostic value of myocardial perfusion single photon emission computed tomographic for the prediction of cardiac death and myocardial infarction. Circulation 1998:97:535-43.

31. Pijls NH, van Schaardenburg P, Manoharan G, Boersma E, Bech JW, van’t Veer M, Bär F, Hoorntje J, Koonen J, Wijns W, de Bruyne B. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 2007;49:2105-11.

32. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, Cole J, Dolor RJ, Fordyce CB, Huang M, Khan MA, Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, Cole J, Dolor RJ, Fordyce CB, Huang M, Khan MA, Velazquez EJ, Yow E, Cooper LS, Lee KL; PROMISE Investigators. Incremental prognostic value of myocardial perfusion single photon emission computed tomography angiography myocardial perfusion imaging. Circulation 2013;128:1634-43.

33. Cremer P, Hachamovitch R. Assessing the prognostic implications of myocardial perfusion studies: identification of patients at risk vs patients who may benefit from intervention. Curr Cardiologic Rep 2014;16:472.

34. Lancellotti AE, Hage FG, Shaw LJ, Malaisrie SS, Berman DS. Serial myocardial perfusion imaging; defining a significant change and targeting management decisions. JACC Cardiovascular Imaging 2014;7:799-96.

35. Dukakis R, Hayes K, Fugger N, Balakrishnan G, Dorsanich NA, Rangel MO, Gollzar Y, Garcia-Sayan E, Hernandez R. Impact of appropriate use on the prognostic value of single photon emission computed tomographic myocardial perfusion imaging. Circulation 2013;128:1634-43.