Roadmap for rare-earth quantum computing

Kinos et al, [arXiv:2103.15743](https://arxiv.org/abs/2103.15743) (2021)

Collaboration (SQUARE):
Lund, Karlsruhe, Paris, Aarhus, Barcelona, Stuttgart, Thales, Attocube

Background

Many combinations of rare-earth ions + hosts:

- Eu for long coherence times
- Er for telecom wavelength
- Pr for gates (simplicity)
- Yb, Nd, Ce, Er for single ion detection

For QC, one single system is needed

... but can still make use of multiple spieces for different roles!

Purpose

- Describe *one* complete REQC
- Analyze strength/weaknesses
- Identify path(s) forward

Goals

- Give numbers for current estimates
- Act as reference work for future upgrades
- May allow more focused progress
Roadmap for REQC – Overview

Single qubit operations
- Two-color optical pulses drive spin qubits
- Including crosstalk, realistic fidelity errors of $\sim 10^{-4}$

Readout
- Cavity enhanced readout ion (e.g. Nd or Er)
- Expected detection of $\sim 10^7$ photons/s for a cavity Q of $\sim 10^7$.

Two-qubit gates
- Entanglement via dipole interaction
- Including crosstalk, realistic fidelity error of $\sim 10^{-3}$

NISQ processor node
- Frequency selection of ions with $\sim 1\text{GHz}$ bandwidth per ion (Eu).
- ~ 100 qubit processor with ~ 10 connections per qubit

Scaling with multi-node architecture
- Connecting many NISQ’s together
- Scalable materials with e.g. high T_2 thin films or milled cavities

Optical interface
Roadmap for REQC – Readout

Potential species:
- Nd – Strong signal
- Er – Strong signal, telecom wavelength
- Pr – Moderate signal, no electron spin

Purcell enhancement by micro-cavity

(Fixed nano-beams/WGM disc/scanning open)

Advantages:
- Can use different spatial locations
- Material/wavelength versatility

Main challenge:
- More sensitive to vibrations

Readout duration and fidelity
- cavity Q of $\sim 10^6 - 10^7$ (Nd and Er)
- Mode volume $\sim 1 - 10 \lambda^3$

- Najer et al, Nature 575, 622 (2019)
 $\rightarrow \sim 10^7$ photons/s, $T_{1,enh} \sim 100$ ns

- Bayesian method uses each detector click
 - Debnath et al, PRA 103, 043705 (2021)
 \rightarrow Fid $\sim 95\%$ after 10 μs

 Limited by excited state decay (2 ms)

- Use one qubit as buffer stage, 3 times
 - Walther et al, PRA 92, 022319 (2015)
 \rightarrow Fid $\sim 99.9\%$ after 40 μs
Roadmap for REQC – Single qubit operations

Challenges

- Short pulse to avoid decay
 - High bandwidth
- Avoiding overlap with other levels (internal crosstalk)
- Avoid exciting other frequencies (external crosstalk)
- Built in robustness?
 - Not needed if carefully calibrated

Simulations results

- Eu:YSO
- Including all crosstalk channels
- Adam Kinos (manuscript in preparation)

High fidelity required for quantum error correction

Cut Gaussian:

\[|e\rangle \]
\[|g_1\rangle = |0\rangle \]
\[|g_2\rangle = |1\rangle \]
Roadmap for REQC – Two qubit operations

Dipole ion-ion interactions:

Control	Target		
$	e\rangle$	$	e\rangle$ + $\delta\nu$
$	0\rangle$	$	0\rangle$
$	1\rangle$	$	1\rangle$

- Blockade gate
- Interaction gate
 - simultaneous excitation + wait time
 - = conditional phase shift on ee

Simulations results

- Eu:YSO
- Including all crosstalk channels
- Adam Kinos (manuscript in preparation)
- Bandwidth usage per qubit \sim 1 GHz (Eu)

Shift scales as $\frac{1}{r^3}$ $\rightarrow r \sim 2 - 10$ nm
Roadmap for REQC – NISQ processor node

- Use dipole interaction to map out controlling ions
- Search qubit channels to switch off fluorescence
- Remove overlapping channels (optical pumping)
- Two search paths (Kinos, manuscript in prep):
 - Always switch off the previous qubit
 - Exhaust switch-off on the first qubit

Early results – Interaction gates should increase this!

100 GHz Laser limited
Roadmap for REQC – Connecting multiple nodes

Main idea:
- Best protocol still under investigation
- Share ideas with many other platforms for QC
- Closest ions in each NISQ node entangled
 - Debnath et al, PRA 103, 043705 (2021)
- Distillation ensures high fidelity
- Entanglement within nodes by gates

Optical integration a strength of the RE platform
- Many wavelengths, including telecom
- Nano-structures allow efficient coupling
- Nano-structures may allow integrated photonics
 → polished down bulk crystals ensures long T_2
 - Merkel et al, PRX 10, 041025 (2020)

Dynamic switching est ~ few μs:
- Casabone et al, arXiv:2001.08532 (2020)

Still many ideas to improve all components
- Now the improvements have a context
Thank you for your attention!

Lund Quantum Information group:
Seniors/PIs: Stefan Kröll, Andreas Walther, Lars Rippe
Postdocs: Adam Kinos, Kevin Shortiss
PhD/project students: Mohammed Alqedra, Alexander Bengtsson, Hafsa Syed, David Hill, Safi Rafie-Zinedine, David Gustafsson, Abdullah Abdelatief, Marcus Lindén, Jannek Hansen