First Evidence for Wollemi Pine-type Pollen (*Dilwynites: Araucariaceae*) in South America

Mike Macphail1*, Raymond J. Carpenter2, Ari Iglesias3,4, Peter Wilf5

1 Department of Archaeology and Natural History, College of Asia and the Pacific, Australian National University, Canberra, Australian Capital Territory, Australia, 2 School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia, 3 División Palaeobotánica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, La Plata, Argentina, 4 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina, 5 Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, United States of America

Abstract

We report the first fossil pollen from South America of the lineage that includes the recently discovered, extremely rare Australian Wollemi Pine, *Wollemia nobilis* (Araucariaceae). The grains are from the late Paleocene to early middle Eocene *Dilwynites* pollen that closely resembles the pollen of modern *Wollemia* and some species of its Australasian sister genus, *Agathis*. *Dilwynites* was formerly known only from Australia, New Zealand, and East Antarctica. The Patagonian *Dilwynites* occurs with several taxa of Podocarpaceae and a diverse range of cryptogams and angiosperms, but not *Nothofagus*. The fossils greatly extend the known geographic range of *Dilwynites* and provide important new evidence for the Antarctic region as an early Paleogene portal for biotic interchange between Australasia and South America.

Citation: Macphail M, Carpenter RJ, Iglesias A, Wilf P (2013) First Evidence for Wollemi Pine-type Pollen (*Dilwynites: Araucariaceae*) in South America. PLoS ONE 8(7): e69281. doi:10.1371/journal.pone.0069281

Editor: Lee A. Newsom, The Pennsylvania State University, United States of America

Received March 13, 2013; **Accepted** June 7, 2013; **Published** July 19, 2013

Copyright: © 2013 Macphail et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding provided by NSF DEB-0919071 to PW and AI. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mike.macphail@anu.edu.au

Introduction

The Southern Hemisphere monkey-puzzle tree family, Araucariaceae, was long believed to comprise two living genera: *Araucaria* Juss., with about 19 species endemic to the southwest Pacific and South America, and *Agathis* Salisb., with about 20 species distributed from Sumatra to New Zealand but absent in South America. Remarkably, a third araucarian genus was discovered in 1994 in New South Wales, Australia, whose sole species is *Wollemia nobilis* W.G. Jones, K.D. Hill & J.M. Allen, common name Wollemi Pine [1].

With fewer than 40 adult specimens known to survive in the wild, *W. nobilis* is one of the world’s rarest trees. Adding to the spectacular nature of the discovery was the location of the stands, in a remote gorge within 150 km of Sydney, Australia’s largest city; the large stature of the trees (up to 40 m tall); and the apparent similarity of the foliage to that of the Jurassic species “*Agathis*” jurassica M.E. White [2] and the Cretaceous to early Cenozoic genus *Arucaria* [3–6]. So far, none of the similar macrofossils has been convincingly demonstrated to belong to *Wollemia* [6,7], and indeed “*A.*” jurassica differs from foliage of *Wollemia* in details of venation, leaf arrangement and leaf shape [8]. However, the presumed close relationship quickly led to *W. nobilis* being given the status of a “living fossil from the age of dinosaurs” in the popular press (e.g. [9]).

In contrast, once pollen was made available, it was quickly recognized that the *Wollemia* clade had a well-established fossil history provided by the morphogenus *Dilwynites* W.K. Harris [10], comprising *D. granulatus* W.K. Harris and *D. tuberculatus* W.K. Harris [6,11,12]. For example, in southern Australia, *D. granulatus*, the morphospecies that most closely resembles modern *Wollemia* pollen, can be traced back as far as the Turonian Age (99.8 to 93.9 Ma) of the Late Cretaceous [11–13]. So far, *Dilwynites* has been identified in Paleogene to Neogene deposits of western, central, and northern Australia (references in [14]), in Cretaceous to Neogene deposits of New Zealand [15], and in late Eocene deposits of East Antarctica [16]. However, apart from a possible record from the Paleogene of Seymour Island [17], no *Dilwynites* pollen has previously been recognized from West Gondwana. Since 2000, the first author has also recognized that at least one species of *Agathis* produces pollen that is morphologically consistent with *Dilwynites*, and thus the nearest extant relatives of the plants that produced *Dilwynites* pollen are best regarded as both *Wollemia* and *Agathis* (e.g., [14]). This observation is consistent with the results of many recent molecular studies indicating that *Wollemia* and *Agathis* are sister taxa [18–23], along with several characteristics of the seed cones of the two genera that may be synapomorphic, especially the condition of the seeds being winged and nearly free from the fused bract and scale [24]. By contrast, in *Araucaria*, the seeds are embedded in the bract/scale complex.

We here present microfossil evidence that araucarians producing *Dilwynites* pollen were growing in southern Patagonia during the late Paleocene to early middle Eocene. This discovery greatly augments evidence for the past range of *Wollemia* and/or *Agathis* conifers that produce this pollen type and adds to the growing paleobotanical evidence for extensive trans-Antarctic interchange between Patagonia and Australia during the globally warm early Paleogene.
Geological Setting and Age Control

Ethics Statement

All necessary permits were obtained for the described study, which complied with all relevant regulations. Permits were issued by the Secretaría de Estado de Cultura de la Provincia de Santa Cruz, Argentina.

The *Dilwynites* specimens reported here came from an isolated, newly recognized, streamcut outcrop of the Ligorio Marquez Formation in Santa Cruz Province, Patagonia, Argentina, located along the Río Zeballos and 36 km south-southwest of the town of Los Antiguos (Fig. 1). Precise locality data are available on request from AI, PW, or Museo Padre Jesús Molina, Río Gallegos, Santa Cruz, Argentina (MPM), where material is stored. The Ligorio Marquez Formation, previously studied only on the Chilean side of the nearby border [25–27], comprises a sequence of coastal floodplain, fluvial and mire facies deposited in a foreland basin (the Ligorio Marquez Basin) that subsequently was uplifted by compressional Andean tectonic activity during and since the early Miocene [28,29]. The material studied here was derived from a ∼0.5 m thick carbonaceous shale bed containing abundant fossil leaves (under separate study), from a probable coastal swamp.

The local exposure of the Ligorio Marquez Formation lies unconformably above the Cretaceous Río Tarde Formation and is itself overlain unconformably by marine rocks of the Centinela Formation [30–32]. Stratigraphic correlation of the fossil locality is extremely difficult due to limited outcrop area and local cover. All radioisotopic ages listed below are as originally reported and would need recalibration with new constants and reanalyses with updated methods for any detailed analysis.

40K/39Ar dates derived from ash beds at the top of the Río Tarde Formation at Lago Posadas (100 km south of our study area) were 97.1 ± 3.8 and 99.1 ± 5.6 Ma [33]. Whole-rock 40Ar/39Ar analyses of an altered ash bed from the Centinela Formation...
Figure 2. Microscope images of *Dilwynites* spp. (A–K) and *Agathis* pollen (L). A–F, *Dilwynites* sp. cf. *D. tuberculatus* from the Río Zeballos locality, Ligorio Marquez Formation, Santa Cruz, Argentina. A–C, single grain, showing details including clavae/gemmae at three focal planes. D–F, other specimens (F is a scanning electron microscope image). G, H, *Dilwynites granulatus* from Australia showing granulate ornamentation. G, Ti-tree Basin, Northern Territory (early Eocene). H, Frome Embayment, South Australia (Miocene). I–K, *Dilwynites tuberculatus* from Australia, showing...
Formation south of Calafate (420 km to the south) yielded a range of ages with large scatter, from which the authors suggested a best estimate of 46.2 ± 2 Ma [34]. This suggests a middle Eocene minimum age for the Centinela transgression in western Santa Cruz and thus of the fossil flora studied here. However, it is not certain that the Centinela exposures in our study area are correlative with those dated [34]. Our attempts to date basaltic intrusions superposed above the Rio Zeballos locality did not yield informative analytical results (B. Jicha, pers. comm. 2012), although some basic intrusions in the area are associated with the Los Antiguos Teschenite and the Posadas Formation. The Los Antiguos Teschenite intrudes the Rio Tarde Formation and yielded early-middle Eocene 40K/39Ar ages of 46 ± 3 and 48 ± 4 Ma [35–38]. The basaltic sills from the Posadas Formation were dated on the Argentinean side at 43.5 ± 2 Ma [33]. At the Chilean type locality [26], the Ligorio Márquez mine (Fig. 1), the Ligorio Márquez Formation comprises a c. 55 m thick succession of alternating subhorizontal beds of mudstones, quartz-rich sandstones and thin coals, unconformably underlain by Lower Cretaceous tuffs, the Flamencos Tuffs, and overlain by basalts with a 40K/39Ar age on plagioclase of 47.6 ± 0.78 Ma above the mine [27] but which elsewhere range in age from c. 57 Ma to c. 41 Ma [26,27,38,39].

In summary, all the geochronologic evidence, while greatly in need of revision, is most consistent with an early middle Eocene age for the Rio Zeballos material studied here, and most conservatively, its age lies within the late Paleocene to early middle Eocene interval.

Results

Systematic Paleontology

Turma: Aletes.
Subturma: Azonaletes.
Infraturma: Subhylonapititi.
Genus: Dilwynites W.K. Harris, 1965 [10].
Dilwynites sp. cf. D. tuberculatus W.K. Harris 1965 [10].

Description. Monad, apolar; inaperturate, spheroidal but usually flattened and/or folded; exine thin, less than 1 µm thick, densely ornamented with irregularly-spaced clavac c. 1–2 µm in diameter and height, areas between the sculptural elements apparently psilate; 36–49–52 µm in maximum diameter (10 specimens measured).

Illustrations. Figs. 2A–F.

Material and referred specimens. Ligorio Márquez Formation carbonaceous shale from the Rio Zeballos locality, Santa Cruz, Argentina. Mounted specimens can be found on slide MPM-PB-14715.

Age. Late Paleocene to early middle Eocene, and most probably early Eocene.

Distribution. So far known only from the Rio Zeballos locality, Santa Cruz, Patagonia, Argentina.

Affinity. Wollenia/Agathis (Araucariaceae).

Remarks. The specimens from the Ligorio Márquez Formation differ from Dilwynites granulatus (Figs. 2G, H) and D. tuberculatus (Figs. 2L–K), described from the Danian to Selandian (early to middle Paleocene) Pebble Point Formation, South Australia [10], in that the coarse ornamentation of the fossils studied here consists of clavac (which may appear as gemmae in poorly preserved specimens) rather than granula and verrucae-tuberculae, respectively. The exines of the new fossils are also thinner. Pseudo-lasurae created by folding superficially resemble the trilete apertures on baculate-ruagulate spores assigned to Baciulatisporites, e.g. B. truominis Archangelsky in Argentina (see Fig. 5A in [50]). Lauraceae pollen is similar to that of Araucariaceae in being spheroidal and inaperturate, but it typically differs from Dilwynites in having ornamentation that consists of regularly-spaced, sharply pointed echinae, spinulae or foveolae (see e.g., Plate 33, images 391–393 in [51]). Moreover, it is well known that Lauraceae pollen is generally absent from fossil assemblages, mostly because it has only very thin exine with little sporopollenin [52], and probably very low production [53].

Here, we infer that the Dilwynites specimens from the Ligorio Márquez Formation potentially indicate the past presence of Wollenia in Patagonia because the specimens closely resemble pollen of W. nobils [6,11,12]. Alternatively, the fossil pollen could be attributed to Agathis because it has recently become apparent that several extant species of Agathis produce grains ornamented with relatively coarse granules (M.K. Macphail, unpublished data) and thus would be accommodated within Dilwynites if found as fossils. Examples of Agathis species producing this type of pollen include the New Caledonian A. ovata [Vieill.] Warb. (Fig. 2L) and A. moorei (Lindl.) Mast. Other extant Araucariaceae (and in

Although more study is clearly needed, the combined geological and paleobotanical evidence suggests an early Eocene age for the Rio Zeballos fossil flora studied here, and most conservatively, its age lies within the late Paleocene to early middle Eocene interval.

Sculptural elements that are similar to those of the Rio Zeballos specimens (A–F), and which are more pronounced and more widely spaced than in D. granulatus (G, H), I, Cethana, Tasmania (early Oligocene). J, Ti-tree Basin, Northern Territory (early Eocene). K, Lowana Rd, Tasmania (early Eocene). L, Agathis ovata recent specimen from Mts. des Koghis (Queensland Herbarium specimen AQ 391532: W.G. Ziarnik 34), New Caledonia. Note strong similarity to Dilwynites spp. Scale bars: 10 µm.
doi:10.1371/journal.pone.0069281.g002

South American Dilwynites

in having ornamentation that consists of regularly spaced, sharply pointed echinae, spinulae or foveolae (see e.g., Plate 33, images 391–393 in [51]). Moreover, it is well known that Lauraceae pollen is generally absent from fossil assemblages, mostly because it has only very thin exine with little sporopollenin [52], and probably very low production [53].

Eocene strata [48], although these taxa are indicative of regional microtherm to
Figure 3. Microscope images of cryptogam spores (A–C), other gymnosperm pollen (D–I) and monocot pollen (J–L) from the Rio Zeballos locality. Suggested extant affinities, if known, are shown in parentheses. A, Cyathidites sp. (Cyatheaceae). B, Ischyosporites areapunctata (Stuchlik) Barreda (Dicksoniaceae). C, Reboulisporites fuegiensis Zamaloa & E.J. Romero (Aytoniaceae). D, Phyllocladidites mawsonii Cookson ex Couper (Lagarostrobos). E, Podocarpidites marwickii Couper (Podocarpaceae). F, Podosporites microsaccatus (Couper) M.E. Dettmann (Microcachrys). G, Dacrycarpites australiensis Cookson & K.M. Pike (Dacrycarpus). H, Dacrydiumites florinii Cookson & K.M. Pike var. (Dacrydium). I, Microcachryidites antarcticus Cookson (Microcachrys). J, Liliacidites cf. L. regularis Archangelsky (Liliaceae). K, Luminidites sp. (Agavaceae). L, Proxapertites sp. (Arecales/Arecaceae). Scale bars: A–K, 10 μm; L, 20 μm.

doi:10.1371/journal.pone.0069281.g003
particular *Araucaria* pollen most obviously differ in having much less prominent surface ornamentation [12]. Further refinement of relationships between *Dilwynites* and extant taxa may be possible following more detailed comparisons.

Discussion

The Ligorio Márquez Formation specimens of *Dilwynites* are the first known record of *Wollemia*-type pollen in South America. It is uncertain whether the newly recognized Patagonian clavate morphotype of *Dilwynites* represents a new species, given the wide range of variation observed in the granulate sculptural elements characterizing *D. granulatus* and the baculate to tuberculate sculptural elements characterizing *D. tuberculatus* populations in Australia (see Figs. 2G–K). The same is true from preliminary observations of other gymnosperm pollen taxa in the Ligorio Márquez Formation sample, which differ from the ranges of morphologies observed in Australian populations and those recorded from the Falkland (Malvinas) Islands (compare Figs. 3D–I with, e.g., Fig. 21 in [54]). A not unreasonable conclusion is that degrees of geographic differentiation occurred over the very long distances of these plants’ ancient ranges.

Both *Araucaria* and *Agathis* have substantial macrofossil records in the Southern Hemisphere, but there is no strong macrofossil evidence for *Wollemia* (reviews [55–59]). *Araucaria* occurs extensively in Patagonia from the Early Jurassic to present, in West Antarctica from the Jurassic or Early Cretaceous to Eocene, and in Australia and New Zealand from the Early Cretaceous. The much more fragmentary *Agathis* record formerly came only from Cenozoic Australia and New Zealand, but abundant macrofossil *Agathis* specimens from the early and middle Eocene of northwestern Patagonia are now being described [60]; these include pollen cones, but pollen grains are not preserved within them. Reliable macrofossil evidence for *Agathis* is so far unknown from the Mesozoic [7,55,57].

At present, the macrofossils most likely to have close affinity to *Wollemia* are leaves of *Araucarioides* from Australia and New Zealand [6], and it is especially interesting that at the early
Eocene Lowana Road site in Tasmania, these leaves co-occur with relatively abundant *Dicyotites tuberculatus* pollen [61]. As stated previously, recent molecular and reproductive data resolve *Wollenia* and *Agathis* as likely sister taxa [18–24]. This evidence, combined with the fact that *Dicyotites* first appears in the fossil record much later (Turonian; Late Cretaceous) than *Araucaria* suggests that at least some Mesozoic fossils that cannot be assigned to *Araucaria* can now be regarded as belonging to the stem lineage of the *Araucaria*-*Wollenia* clade [24]. These fossils include winged seeds and cone scales with seed detachment scars from the Early to mid-Cretaceous in southeastern Australia [6,62], New Zealand [63] and Alexander Island, West Antarctica [64]. It should also be noted that at least some of the pollen included in the generalized, widespread form *Araucariaeites australis* Cookson, which extends to the Triassic in the Southern Hemisphere, and which broadly accommodates pollen of modern *Araucaria* and many *Agathis* (e.g., [15]), could have been produced by extinct close relatives of *Agathis* and *Wollenia*.

The only extant Araucariaceae in South America are *Araucaria angustifolia* (Bertol.) Kuntze, native to southern Brazil and northeastern Argentina, where it is a dominant in temperate to subtropical rainforest, and *A. araucana* (Molina) K. Koch, native to Andean central and southern Chile and western Argentina between latitudes c. 37 to 40°S, where it associates with *Nothofagus* spp. to form mixed forests above c. 600–900 m elevation. The two species are apparently the survivors of the considerably more diverse Mesozoic araucarian flora of South America, represented by wood, foliage, cone, and pollen material (e.g., [58,65–68]). This flora reached its maximum diversity and dominance in Patagonia, where araucarians were often co-dominant with cheirolepidaceous conifers [69,70] during the Jurassic to Early Cretaceous. By the early and early middle Eocene, *Araucaria* and *Agathis* were abundant, but not diverse in Patagonia, occurring in association with crown group Podocarpaceae and Cupressaceae conifers with Australasian affinities and very diverse angiosperms [48,60,71,72]. However, so far as is known, none of the previously reported South American fossil species is comparable to *Wollenia*.

Our evidence extends the geographic range of the araucarian lineage(s) that produced *Wollenia*/*Agathis* (coarsely granulate)-type pollen to South America. This is a significant contribution to the emerging biogeographic pattern for Paleogene Gondwana, where araucarians were often co-dominant with cheirolepidaceous conifers [69,70] during the Jurassic to Early Cretaceous. By the early and early middle Eocene, *Araucaria* and *Agathis* were abundant, but not diverse in Patagonia, occurring in association with crown group Podocarpaceae and Cupressaceae conifers with Australasian affinities and very diverse angiosperms [48,60,71,72]. However, so far as is known, none of the previously reported South American fossil species is comparable to *Wollenia*.

Materials and Methods

Blocks of wet sediment containing abundant mummified leaves (under separate study) were collected 3–4 May, 2011 at the Argentine Ligorio Marquez Formation outcrop (Fig. 1), wrapped in plastic to minimize water loss, and temporarily stored in a large refrigerator. Sediment samples selected for palynological processing were then oven-dried. Microfossils were extracted and replicate slides prepared by M. Rueda, Paleoflora Ltd, Bucaramanga, Colombia, using standard protocols. Microfossils were examined and photographed at ANU, Canberra, Australia using a Leica Axiophot transmitted light microscope fitted with AxioVision image capturing software. Residues were also examined and microfossils photographed at La Plata University, La Plata, Argentina using a JEOL JSM-6360LV scanning electron microscope operated at 10 kV. Adobe Photoshop Elements 6.0 software was used to optimise brightness and contrast of images, and to compose figures.

Acknowledgments

We thank C. Jaramillo, P. Narvaez and M. Quattrochio for preliminary pollen identifications; A. Partridge for confirming placement of specimens in *Dicyotites*; R. Jicha and B. Singer for laboratory analyses of basalts; M. Krause, P. Puerta, E. Comer, C. Knight, M. Carvalho, E. Ruigoz, C. Koeoof, and D. Ravetta for field and lab assistance; M. Rueda for preparing the pollen slides; and the Queensland Herbarium and Royal Botanic Gardens, Sydney for access to material of extant Araucariaceae. We are also grateful to the landowners, B. Pereira and I. Méndez, for site access, and Secretaria de Estado de Cultura de la Provincia de Santa Cruz for excavation permits.

Author Contributions

Analyzed the data: MM RJC. Contributed reagents/materials/analysis tools: AI PW. Wrote the paper: MM RJC AI PW. Performed field work: AI PW.

References

1. Jones WD, Hill KD, Allen JM (1995) *Wollenia nobilis*, a new living Australian genus and species in the Araucariaceae. Telopea 6: 173–176.
2. White ME (1981) Revision of the Talbragar Fish Bed flora (Jurassic) of New South Wales. Rec Aust Mus 33: 695–721.
3. Bigwood AJ, Hill RS (1985) Tertiary araucarian macrofossils from Tasmania. Aust J Bot 33: 645–656.
4. Hill RS, Bigwood AJ (1987) Tertiary gymnosperms from Tasmania: Araucar- iaceae. Alcheringa 11: 325–335.
5. Pole M (1995) Late Cretaceous macrofossils from New Zealand: Gymnosperms. Aust J Bot 33: 645–656.
6. Chambers TC, Drinnan AN, McLoughlin S (1998) Some morphological features of Wollemi Pine (*Wollemia nobilis*). Telopea 6: 173–176.
7. Harris WK (1965) Basal Tertiary microfloras from the Princeton area, Victoria, Australia. Palaeontogrographica B 115: 73–106.
8. Turney S, Bean LB, Dettmann M, McKeall J, McLaughlin S, et al. (2009) Australian Jurassic sedimentary and fossil successions: current work and future prospects for marine and non-marine correlation. GFF 131: 49–70.
9. Woodford J (2005) The Wollemi Pine: the incredible discovery of a living fossil from the age of the dinosaurs (Revised Edition). Melbourne: Text Publishing.
10. Dettmann ME, Jarzen DM (2000) Pollen of extant *Wollemia* (*Wollemia* Pine) and comparisons with pollen of other extant and fossil Araucariaceae. In: Harley MM, Morton CM, Blackmore S, editors. Pollen and spores: morphology and biology. Kew: Royal Botanic Gardens. 187–203.
11. Macphail MI, Hill K, Partridge AD, Truwell EM (1995) ‘Wollemi Pine’ – old pollen records for a newly discovered genus of gymnosperms. Geol Today 11: 48–50.
12. Dettmann ME, Jarzen DM (2000) Pollen of extant *Wollemia* (*Wollemia* Pine) and comparisons with pollen of other extant and fossil Araucariaceae. In: Harley MM, Morton CM, Blackmore S, editors. Pollen and spores: morphology and biology. Kew: Royal Botanic Gardens. 187–203.
13. Gradstein FM, Ogg JG, Schmitz MD, Ogg GM, Agterberg FP, et al. (2012) The geologic time scale 2012. Boston, USA: Elsevier. 1145 pp.
14. Macphail M (2007) Australian palaeoclimates: Cretaceous to Tertiary – a review of palaeobotanical and related evidence to the year 2000. CRC LEME Spec Vol Open File Rep 151. 266 p.
15. Raine J, Mildenhall DC, Kennedy EM (2011) New Zealand pollen and spores: an illustrated catalogue. GNS Sci Misc Ser 4. http://data.gns.cri.nz/sporepollen/index.htm. Accessed 25 August 2012.
16. Truwell EM, Macphail MK (2008) Polar forests on the edge of extinction: what does the fossil pollen and spore evidence say? Aust J Bot 22: 57–106.
17. Askin RA (1990) Campanian to Paleocene spore and pollen assemblages of Seymour Island, Antarctica. Rev Palaeobot Palynol 65: 105–113.
18. Gilmore S, Hill KD (1997) Relationships of the Wollemi pine (*Wollenia nobilis*) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275–291.
19. Stefanovic S, Jager M, Deutsch J, Boutin J, Masselet M (1998) Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. Am J Bot 85: 688–697.
31. Escosteguy L, Franchi M, Dal Molin C (2001) Formación Ligorio Marquez
29. Blisniuk PM, Stern LB, Chamberlian CP, Idleman B, Zeitler PK (2005) Climatic
34. Casadío S, Feldmann RM, Foland KA (2000) 40Ar/39Ar age and oxygen isotope
33. Ramos V, Drake R (1987) Edad y significado tectónico de la Formación Río
28. Saura M, de la Cruz R (2000) Tectonics in the eastern central Patagonian
45. Troncoso A, Romero EJ (1998) Evolución de las comunidades florísticas en el
44. Melendi DL, Scafati LH, Volkheimer W (2003) Palynostratigraphy of the
43. Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the
41. Okuda M, Nishida H, Uemura K, Yabe A (2006) Paleocene/Eocene pollen
46. Wilf P, Singer BS, Zamalloa MC, Ruelland AJ, Auyangdan T, et al. (2012) Hemispheric-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci USA 109: 16217–16221.
26. Saura M, de la Cruz R, Troncoso A (2000) Tropical/subtropical Upper Paleocene-Lower Eocene fluvial deposits in eastern central Patagonia, Chile. J Geol Soc Lond 157: 995–1001.
22. Biffin E, Hill RS, Lowe AJ (2010) Did Kauri (Agathis) from South America resemble Araucaria? J S Am Earth Sci 13: 527–536.
20. Rai HS, Reeves PA, Peakall R, Olmstead RG, Graham SW (2008) Inference of higher-order conifer relationships from a multi-locus plastid data set. Botany 86: 630–669.
19. Liu N, Zhu Y, Wei XZ, Chen J, Wang QB, et al. (2009) Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chin Sci Bull 54: 2648–2655.
18. Biffin E, Hill RS, Lowe AJ (2010) Did Kauri (Agathis) Archaeocarpaceae really survive the Oligocene drowning of New Zealand? Syst Biol 59: 594–602.
17. Lucas AR, Beatrice JM, Rai HS, Crane PK, Donoghue MJ. (2012) Hemispheric-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci USA 109: 16217–16221.
16. Dettmann ME, Cliftford HT, Peters M (2012) Escalada muscipula gen. et sp. nov., a new anatomically preserved araucarian seed cone from the Winton Formation (late Albain), western Queensland, Australia. Alcheringa 36: 217–237.
15. Saura M, de la Cruz R (1996) Estratigrafía y tectónica de la zona sureste del Lago General Carrera (46°30'–47° Lat.S.), Cordillera Patagónica, Chile. Actas XIII Congr Geol Argent y III Congr Explor Hidrocarb: I: 425–432.
14. Saura M, de la Cruz R, Troncoso A (2000) Tropical/subtropical Upper Paleocene-Lower Eocene fluvial deposits in eastern central Patagonia, Chile. J Geol Soc Lond 157: 995–1001.
13. Yabe A, Umemura K, Nishida H (2006) Geological notes on plant localities of the Ligorio Márquez Formation, central Patagonia, Chile. In: Nishida H, editor. Post-Cretaceous floristic changes in southern Patagonia, Chile. Tokyo: Chuo University. 29–35.
12. Saura M, de la Cruz R (2000) Tectonics in the eastern central Patagonian Cordillera (45°30'–47°30'S). J Geol Soc Lond 157: 995–1001.
11. Blusniuk PM, Stern LB, Ildeman B, Zeiler PK (2005) Climatic and ecologic changes during Mioceen seafloor uplift in the Southern Patagonian Andes. Earth Planet Sci Lett 230: 125–142.
10. Ugarte FRE (1956) El Grupo de Río Zeballos en el flanco occidental de la Meseta de Buenos Aires (Provincia de Santa Cruz). Rev Asoc Geol Argent 11: 109–122.
9. Escosteguy L, Franchi M, Dal Molin C (2001) Formación Ligorio Márquez (Paleocósmico–Eocene inferior) en el Río Zeballos, Provincia de Santa Cruz, Argentina. 11 Congr Latinoam Geol y 3 Congr Geol Urug: 327–336.
8. Escosteguy L, Dal Molin C, Franchi M, Gruna S, Lapido O (2003) Hoja geológica 4722-B, Lago Buenos Aires. Surv Geol Min Argen Bol 339.
7. Ramos V, Drake R (1987) Edad y significado tectónico de la Formación Río Tardie (Cretácico). Lago Posadas, provincia de Santa Cruz. Actas 10th Congr Geol Argent, I: 143–147.
6. Casado S, Feldmann RM, Rolando KA (2000) 40Ar/39Ar age and oxygen isotope temperature of the Centinela Formation, southwestern Argentina: an Eocene age for crustacean-rich “Patagonian” beds. J Am Earth Sci 13: 123–132.
5. Busteros AG, Lapido OR (1983) Rocas básicas en la vertiente noroccidental de la meseta del Lago Buenos Aires, provincia de Santa Cruz. Rev Asoc Geol Argent 38: 427–436.
4. Linares E, González R (1996) Catálogo de edades radimétricas de la República Argentina, años 1957–1996. Pahl Epac Geol Geol Argent B 19: 1–628.
3. Ramos VA, Mahlburg Kay S, Sacomani L (1994) La dactla Puesto Nuevo y otras rocas magnéticas (Cordillera Patagónica Austral): colisión de una dorsal y un arco en la Cordillera Costera (Cretácico). Lago Posadas, provincia de Santa Cruz, Argentina. Rev Palaeontol Mem 3: 1–77.
2. Charrier R, Linares E, Niemeyer H, Skarksa J (1979) K/Ar ages of basalt flows of the Meseta Buenos Aires in southern Chile and their relation to the southeast Pacific triple junction. Geology 7: 436–439.
1. Peroff N, Cheylan J, Barrieiro B (1996) Age and origin of southern Patagonian flood basalts, Chile Chico region (46°45’S). ISAG 86: Simp Int Geol Andin, St. Malo, France, 629–632.