Morphological characterization of sorghum lines with aluminium stress and phosphorus deficiency tolerance

Erin P. Rini, F. Rachman, D. Wirnas, Trikoesoemaningtyas, D. Sopandie

Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University (Bogor Agricultural University) Jalan Meranti, Bogor 16680, Indonesia

Email: desta.wirnas@yahoo.com

Abstract. Sorghum has a good adaptation in marginal land, such as acid soil. The development of acid soil tolerant variety was directed to combine with Al stress and P deficiency adaptation. Characterization of the qualitative and quantitative traits was necessary to obtain the line performance information. The traits were expected to have a distinct, uniform, and stable traits as a requirement for variety registration. The purpose of this research was to obtain information about the quantitative and qualitative character of F9 sorghum lines. The study was conducted from March to July 2019 at Cikahayan Bawah Experimental Field, Plant Breeding Laboratory, and Micro technical Laboratory, Department of Agronomy and Horticulture, IPB University. Randomized complete block design with genotype as a treatment factor was carried out in this experiment. Analysis of variance showed significant differences in quantitative and qualitative traits observed. Based on cluster analysis, Sorghum lines and check varieties formed three groups, group 1 (Super 2), group 2 (170-9, 151-8, dan 114-7) and group 3 (67-9, 104-7, 115-9, 286-6, 331-8, and Numbu). Three promising sorghum lines were identified for varietal release, i.e., 114-7, 115-9, and 331-8.

1. Introduction
Sorghum is one of the alternative food crops that have the potential to develop. People consume sorghum as food and drinks such as rice, cakes, and beverages. Sorghum has various nutrients to meet human nutritional needs. According to Etuk et al. [1], sorghum contains 8.9-10.48% protein, 2.5-3.7% fat, 1.4-3.01% fiber, and 61.24-76.6% sugar. FAO [2] stated that there are 4.5 mg niacin (vitamin B3), 0.13 mg riboflavin (vitamin B2), and 0.47 mg pyridoxine (vitamin B6) in every 100 grams of sorghum grains. Developing sorghum with acid soil, Aluminium (Al) stress, and Phosphor (P) deficiency tolerant is one of sorghum breeding goals.

Department of Agronomy and Horticulture IPB had produced several promising lines by crossing B69 and Numbu. B69 is a mutant strain from the Durra line that irradiated with 200 Gy gamma rays [3]; meanwhile, Numbu is a public variety. B69 line had a moderate tolerance level to acid soil based on biomass weight and grain weight per panicle. Numbu had the best performance in Al stress conditions and P deficiency [4]. The promising lines selected by the single seed descent (SSD) method (Momongan et al, 2019) [5]. This selection was able to get homozygotes in a short time [6]. We can obtain information about the performance of the lines by characterizing the qualitative and quantitative characters. The characterization information was a requirement for variety register at the Pusat Perlindungan Varietas Tanaman dan Perizinan Pertanian or Center for Plant Variety and Agricultural Licensing Protection (PPVTTPP). The new promising lines were expected to have a unique, uniform,
and stable character. The purpose of this research was to obtain information about the quantitative and qualitative character of F9 sorghum lines.

2. Methods
This research conducted in Cikabayan Bawah Experimental Field, Plant Breeding, and Micro technical Laboratory, Department Agronomy and Horticulture, IPB University, from March to July 2019. Randomized complete block design with ten genotypes and three replications carried out in this research. The material used in the research were eight F9 generations of sorghum lines (67-9, 104-7, 114-7, 115-9, 151-8, 170-9, 286-6, 331-8) and two check varieties (Numbu and Super 2). Standard sorghum cultivation (planting, thinning, fertilization, pests and diseases controlling, and harvesting) was carried out. Analysis of variance was used to analyzed quantitative data and continued with the t-Dunnett test if there were any significant differences. Qualitative data explained descriptively. The reference for qualitative observation was the form of a guide UPOV [7] number TG / 122/4 (proj.2) about guidelines for testing the performance, uniformity, and stability of sorghum plants referred as well by Elangovan et al. [8]. The observed characters included anthocyanin intensity and morphology of leaf, stem, flower, panicle, and seed.

3. Results and Discussion
3.1 Quantitative Character Performance
The analysis of variance revealed highly significant differences among genotypes on the plant height, flowering time, panicle branch length, and 1000 grains weight characters. Genotypes had a significant difference in the character of leaf length; meanwhile genotypes did not have a significant difference in the character of leaf width, stem diameter, and panicle length. The value of the coefficient of variance (CV) in the observed characters ranged from 3.917% - 13.090%. According to Gomez and Gomez [9], the coefficient variance showed the experiment diversity. The higher level of variable accuracy reflected by the lower CV value. CV value tolerance for field research was 20%.

Table 1. Analysis of variance for various quantitative characters in sorghum lines and check varieties

No.	Characters	MS Genotype	Pr>F	CV (%)
1	Leaf length	67.069*	0.0132	5.676
2	Leaf width	1.505_{tn}	0.0658	10.386
3	Stem diameter	0.042_{tn}	0.1498	11.589
4	Plant height	2620.171**	<.0001	6.050
5	Days to flowering	39.836**	0.0020	3.917
6	Panicle length	4.431^{tn}	0.0945	7.667
8	1000 grain weight	31.449**	0.0011	13.090

* = significantly different, ** = highly significant, ns = non-significant, MS: Mean Square. CV: coefficient of variation.

Table 2 showed the leaf performance variation in the observed lines. Lines 115-9 and 170-9 had broadleaf, and line 115-9 had very longleaf. Leaf width character controlled by the gene on chromosomes 1, 4, and 6; meanwhile, chromosome number 10 controlled leaf length characters [10]. Leaf width and length were related to the leaf area. The leaf area determined the ability of plants to carry out photosynthesis. An increase in leaf area can increase the interception of solar radiation for photosynthesis [11]. The observation result showed that line 115-9 had significantly higher leaf length compared to Super 2 variety. Also, lines 67-9 and 104-7 had significantly shorter leaf length compared to leaves of the Numbu variety.
Table 2. Characteristics of leaf width, leaf length, days to flowering, panicles length of sorghum lines and check varieties

Lines	Leaf width (cm)	Categories	Leaf length (cm)	Categories	Days to flowering (DAT)	Categories	Panicle length (cm)	Categories
67-9	6.550	Broad	72.41a	Long	72b	Medium	4.74	Short
104-7	7.039	Broad	73.59a	Long	68b	Medium	5.10	Medium
114-7	7.967	Broad	78.49	Long	69b	Medium	6.22ab	Medium
115-9	8.633	Very broad	81.04b	Very long	70b	Medium	6.51ab	Medium
151-8	7.794	Broad	75.78	Long	71b	Medium	6.35ab	Medium
170-9	8.800	Very broad	78.64	Long	69b	Medium	6.86ab	Medium
286-6	7.944	Broad	79.49	Long	70b	Medium	5.91ab	Medium
331-8	7.667	Broad	79.24	Long	70b	Medium	6.36ab	Medium
Numbu	7.889	Broad	85.41	Very Long	74	Medium	4.19	Short
Super 2	6.550	Broad	69.09	Long	81	Late	4.12	Short

Note: the number followed by the letter is significantly different from the comparative variety at the 5% level. a = significantly different than the Numbu variety, b = significantly different than the Super 2 variety, DAT = Days after transplant.

The result in Table 2 showed that promising lines had an average flowering age compared to the Super 2 variety. Days to flowering information can be used to breeding selection for early harvest variety and prevent long anthesis silking intervals (ASI) [12]. Days to flowering in this research was one to two weeks delayed or around 68-81 days after transplant (DAT). However, the promising lines had an early flowering age compared to check variety. The delayed flowering time in this research, presumably because of high humidity pressure because of the rainy season during the research. High humidity had a negative correlation with temperature and day length, meanwhile sorghum need a high temperature and a long day period to hit the cumulative degree unit for the growth stage [13, 14].

The promising lines produced by IPB breeding program had medium panicle lengths except for lines 67-9. Lines 114-7, 115-9, 151-8, 170-9, 286-6, and 331-8 had significantly longer panicle branch length compared to Numbu and Super 2 varieties. Numbu and Super 2 varieties had short panicle branch lengths. Rakshit et al. [15] explained that panicle branch length had a strong and positive correlation with panicle length and panicle width. Kaitaniemi [16] also found that there was a positive correlation between panicle branch length and the number of seeds per panicle.

The promising line had medium to high plant height categories. The result was due to the selection process in F4 lines conducted by Sulistyowati [17]. The selection criteria based on relatively medium plant height. Plant with high height performance usually used as a criteria selection for the sugar production and animal feed breeding, while short crop performance was a criteria selection for early harvesting age. Plant height character was a vegetative character that shows plant growth because good plant growth will provide good yields [18].

All of the promising lines and check varieties had small stem diameters. The low result of stem diameter caused by various environmental conditions, especially in block 1, which had the least optimum conditions. However, there were some sorghum lines (115-9, 170-9, and 331-8) that had relatively larger stem diameters (Table 3). Tsuchihashi and Goto [19] explained that large stem diameters could reduce the risk of falling stems, and have good ratability.
Table 3. Performance of plant height, stem diameter, panicle length, and weight of 1000 grains of sorghum lines and check varieties

Lines	Plant height (cm)	Categories	Stem diameter (cm)	Categories	Panicle length (cm)	Categories	1000 grain weight (g)	Categories
67-9	198.00b	Medium	1.158	Small	16.86	Short	21.043	Low
104-7	227.89b	Tall	1.212	Small	18.64	Short	14.358b	Very Low
114-7	209.31b	Medium	1.292	Small	20.20	Medium	14.036b	Very Low
115-9	267.46ab	Tall	1.467	Small	19.58	Short	18.723	Low
151-8	220.06b	Medium	1.324	Small	20.08	Medium	14.944b	Very Low
170-9	219.00b	Medium	1.451	Small	18.69	Short	13.871b	Very Low
286-6	231.06b	Tall	1.361	Small	20.17	Medium	20.328	Low
331-8	234.67ab	Tall	1.436	Small	18.14	Short	22.569	Low
Numbu	199.36	Medium	1.432	Small	17.12	Short	19.507	Low
Super 2	290.51	Tall	1.204	Small	20.44	Medium	21.050	Low

Note: the number followed by the letter is significantly different from the comparative variety at the 5% level. a = significantly different than the Numbu variety, b = significantly different than the Super 2 variety.

Panicles length of promising lines had a short to moderate size in the range of 16.86-20.20 cm (Table 3). Line 114-7 had longer panicle length compared to other lines. Momongan [20] selected sorghum lines based on the largest stem diameter and panicle length. The result showed that promising lines and check varieties had very low and low categories of 1000 grains weight character. Lines 104-7, 114-7, 151-8, and 170-9 were significantly lower than Super 2 variety. The low weight of 1000 grain weight in this research occurred due to the low stay green character at the time of the research. The leaves and stems of the plant began to turn brown before the harvest time and caused the photosynthesis process is less efficient in filling seeds. 1000 grain weight indicates the efficiency of photosynthate accumulation in seeds [21].

3.2 Qualitative Character Performance

3.2.1 Anthocyanin intensity in Coleoptoptiles, Leaves, Pistils, and Husk. Anthocyanin intensity observations carried out on coleoptiles, leaves, pistils, and husks. The results showed that the sorghum promising lines did not have anthocyanin content in coleoptiles, leaves, and pistils. Anthocyanins found in Numbu flower husks with moderate anthocyanin intensity. Anthocyanins are flavonoid compounds that produce orange, orange, red, purple, and blue colors in some parts of the plant [22]. This compound was polar, so it dissolves quickly in polar compounds such as water [23]. The type of anthocyanin found in sorghum plants is 3-deoxyanthocyanidin. These compounds found in many parts of the pericarp [24]. Sukartini and Syah [25] explain that the synthesis of anthocyanin occurring during leaf growth, senescence period, and response to abiotic stress.

3.2.2 Performance of Leaves and Flowers. The observation result showed the diverse intensity of green leaves ranging from weak to strong intensities. Check varieties had medium leaf green intensity. The promising lines had a yellowish-white leaf bone color except for the 170-9 line, which has a white leaf bone color. All of the breeding lines and check varieties do not have gradations of leaf bone color to leaf strands. The green leaf intensity character is related to chlorophyll content in the leaves [26]. Chlorophyll is a green pigment in the plants. This pigment functions in the process of plant photosynthesis by absorbing and converting light energy into chemical energy. Higher chlorophyll content indicates the process of photosynthesis in plants more efficiently. Leaf bone color has a close relationship with sugar levels. Sweet sorghum has leaf bone color from white to green. The color of green leaf bones has a strong correlation with sugar content and water content [27].
The green leaf intensity character is related to chlorophyll content in the leaves [28]. Chlorophyll is a green pigment in the plants. This pigment functions in the process of plant photosynthesis by absorbing and converting light energy into chemical energy. Higher chlorophyll content indicates the process of photosynthesis in plants more efficiently. Leaf bone color has a close relationship with sugar levels. Sweet sorghum has leaf bone color from white to green. The color of green leaf bones has a strong correlation with sugar content and water content [29].

The pistil colors of the lines were bright white, yellow, and yellow. Numbu and Super 2 varieties had white pistil color. The pistil color controlled by the locus y-cs (the candystripe locus). The locus controls the yellow pigment in the pistil flower [30]. The stamens of promising lines had reddish-orange and orange colors. Numbu varieties had reddish-orange dry stamen color, and Super 2 was yellow. There were various length pistil in IPB breeding lines from very short, short, medium, and long. Lines 104-7, 114-7, and 286-6 had very short pistils. Lines 170-9 and 331-8 had short pistils. Lines 67-9 and 115-9 had medium-sized pistils. Line 151-8 had long sized pistils. Pistil length has little correlation to pollen germination and pollen tube growth [31].

3.2.3 Performance of Leaves and Flowers

Panicle length of breeding lines were broad panicles in the middle and width at the top. Lines 67-9, 115-9, and 170-9 had a broad panicle shape at the top. The panicles of Numbu and Super 2 varieties have a broad middle shape (Table 4). According to Menkir et al. [32], panicle forms have a weak correlation with grain mold attack. Rao et al. [33] also explained that the panicle form was an essential character in determining grain yield, also variety identification and classification. The density of sorghum panicles observed after the pollination phase. Promising lines had sparse to dense panicles (Table 4). Numbu variety had medium panicle density, and Super 2 variety had sparse panicle density. Brown et al. [34] explained that panicle density was affected by branching and elongation of the inflorescence. The aborted spikelet also influences panicle density.

The ability to self-pollinate observed in covered panicles before the flowers bloomed to avoid cross-pollination. The percentage of successful pollination itself assessed from the number of flowers that succeed in forming seeds. The results showed that line 104-7 could self-pollinate as a whole. Lines 67-9, 114-7, and 170-9 had low self-pollinating ability. Lines 115-9, 151-8, 286-6, and 331-8 can self-pollinate on a partial level. Check varieties had a moderate level of ability to self-pollinate. The low percentage of self-pollination thought to be due to the panicle condition, which is covered, is less than optimal for pollination. According to Major [35], temperature and relative humidity can influence the pollination process. House [36] also explains that panicle forms play a role in sorghum pollination. Self-pollinated sorghum had a closed and compact panicle, while sorghum with open panicle form had a 30-60% chance to cross-pollinate.

Table 4. Performance of morphological characters of leaves and flowers of sorghum lines and check varieties

Lines	Green leaves intensity	Leaf bone color	Pistil color	Pistil length	Dry stamen color
67-9	Weak	Yellowish white	Bright yellow	Medium	Reddish orange
104-7	Medium	Yellowish white	White	Very short	Orange
114-7	Weak	Yellowish white	White	Very short	Orange
115-9	Medium	Yellowish white	Yellow	Medium	Reddish orange
151-8	Strong	Yellowish white	Bright yellow	Long	Reddish orange
170-9	Strong	White	Yellow	Short	Reddish orange
286-6	Medium	Yellowish white	White	Very short	Reddish orange
331-8	Strong	Yellowish white	Bright yellow	Short	Orange
Numbu	Medium	Yellowish white	White	Medium	Reddish orange
Super 2	Medium	White	White	Short	Yellow

The ability to self-pollinate observed in covered panicles before the flowers bloomed to avoid cross-pollination. The percentage of successful pollination itself assessed from the number of flowers that succeed in forming seeds. The results showed that line 104-7 could self-pollinate as a whole. Lines 67-9, 114-7, and 170-9 had low self-pollinating ability. Lines 115-9, 151-8, 286-6, and 331-8 can self-pollinate on a partial level. Check varieties had a moderate level of ability to self-pollinate. The low percentage of self-pollination thought to be due to the panicle condition, which is covered, is less than optimal for pollination. According to Major [35], temperature and relative humidity can influence the pollination process. House [36] also explains that panicle forms play a role in sorghum pollination. Self-pollinated sorghum had a closed and compact panicle, while sorghum with open panicle form had a 30-60% chance to cross-pollinate.
Husk color observed after the harvesting process. The promising lines had yellow and brown husks. Lines 67-9, 104-7, 115-9, and 331-8 had yellow husks. Lines 114-7, 151-8, 170-9, and 286-6 had brown husk color. The difference color suspected from lignin content in the husk. Sorghum husk had high lignin and cellulose content [37]. The husk will turn dark when entering the ripening phase. The husk color controlled by the same two loci (P and Q). Dominant gene action will make the black and red color appear, while the brownish-red color appears by the recessive gene [38]. Sorghum husk lines had short to long size. The comparative variety has a short husk size. The short husk gene (Sg) controls the size of the husk. The gene has an epistatic gene action [39, 40].

The promising lines had various seed colors. Lines 114-7 and 151-8 had white grain color, and lines 104-7 and 115-9 had a yellowish-white grain color. Grain color of lines 286-6 and 331-8 were yellow, lines 67-9, and 170-9 had brown grain color. Numbu variety had yellow grain color, and Super 2 had dark brown grain color. The vary grain color caused by pericarp color differences. The pericarp color influenced by the combination of anthocyanin and anthocyanidin pigments and the presence of flavonoid compounds [41]. Grain color played an important role in determining the choice of sorghum as food. Sorghum with white grain color commonly used as food because of containing little tannin compounds [42].

Table 5. Performance of panicles of sorghum lines

Lines	Panicle shape	Panicle density	Self-pollinated rated
67-9	Broad at the top	Medium	(0-10%) not self-pollinated
104-7	Broad at the middle	Medium	(71-100%) self-pollinated
114-7	Broad at the middle	Sparse	(0-10%) not self-pollinated
115-9	Broad at the top	Dense	(11-70%) partial self-pollinated
151-8	Broad at the middle	Dense	(11-70%) partial self-pollinated
170-9	Broad at the top	Medium	(0-10%) not self-pollinated
286-6	Broad at the middle	Sparse	(11-70%) partial self-pollinated
331-8	Broad at the middle	Medium	(11-70%) partial self-pollinated
Numbu	Broad at the middle	Medium	(11-70%) partial self-pollinated
Super 2	Broad at the middle	Very sparse	(11-70%) partial self-pollinated

The promising lines had oval and circular grain shape. Check varieties had an oval seed shape (Table 5). The locus that controls seed shape found on chromosome 7. Seed shape controlled by major genes along with other characters such as grain size and grain weight [43]. Audilakshmi and Aruna [44] also explained that dominant genes controlled the grain shape. The dominant gene action was advantageous for the formation and development of sorghum, which has the desired seed shape by using one of the elders who possesses these characteristics.

The promising lines had medium embryo size and white endosperm. The Super 2 variety has a relatively smaller embryo size than other lines. All promising lines and comparative varieties had white endosperms. Embryo size had a positive correlation with seed quality. The greater the embryo,
the higher the seed quality [45]. Endosperm color influenced by the content of compounds contained in the endosperm. Yellow color in endosperm correlates to the presence of carotenoids, β-carotene, and zeaxanthin [46].

The endosperm of promising lines had various textures. Lines that had a starchy endosperm texture were 67-9, 104-7, 114-7, 115-9, 151-8, and 170-9, while lines 286-6 and 331-8 had a relatively harder endosperm texture. The Numbu and Super 2 varieties have relatively harder endosperm texture. The texture of the endosperm determines the quality of the seeds. Seeds that have a hard endosperm texture have relatively smooth seeds, which make it easier to thresh. Endosperm texture also has a relationship to seed weight. Seeds that have harder endosperms have higher seed weights, while seeds with starchy texture have relatively lower yield potential [47].

4. Conclusion
The promising lines produced by IPB breeding had varied quantitative and qualitative characters. The characters that had significantly different in quantitative characters were leaf length, leaf width, panicle length, plant height, and 1000 grain weight. Leaf green intensity, leaf bone color, pistil color, pistil length, dry stamens color, panicle shape, panicle density after pollination, self-pollination, husk color, husk length, seed color, seed shape, and endosperm texture had various qualitative characters. All sorghum lines showed no diversity in the characteristics of anthocyanin intensity, gradation of leaf bone color, embryo size, and endosperm color.

References
[1] Etuk EB, Ifeduba AV, Okata UE, Chiaka I, Okoli, Ifeanyi C, Okeudo NJ, Esonu BO, Udedibie ABI and Moreki JC. 2012. Nutrient composition and feeding value of sorghum for livestock and poultry. a review. J. Anim. Sci. Adv 2 (6):510-524.
[2] [FAO] Food and Agriculture Organization of The United Nations. 1995. Sorghum and Millet in Human Nutrition. FAO, Roma, ITA.
[3] Human S, Andreani S, Sihono and Indriatama WM. 2011. Stability test for sorghum mutant lines derived form induced mutations with gamma-ray irradiation. Atom Indonesia 37 (3):102-106.
[4] Agustina K. 2011. Fisiologi adaptasi sorgum (Sorghum bicolor L. Moench) terhadap toksisitas aluminium dan defisiensi fosfor di tanah masam. Disertasi. Sekolah Pascasarjana. Institut Pertanian Bogor. Bogor.
[5] Momongan JM, Trikoesoemaningtyas, Wirnas D and Sopandie D. 2019. Potensi hasil dan toleransi galur-galur inbrida sorgum pada tanah dengan hara fosfor rendah. J. Agron. Indonesia 47 (1): 39-46.
[6] Chahal GS and Gosal SS. 2003. Principle and Procedures of Plant Breeding. Narosa Publishing House, Kolkata, IN.
[7] [UPOV] International Union for the Protection of New Varieties of Plants. 2014. Sorghum guidelines for the conduct of tests for distinctness, uniformity and stability. Diakses pada: https://www.upov.int/edocs/mdocs/upov/en/tc_51/tg_122_4_proj_4.pdf. [26 Juli 2019].
[8] Elangovan M, Reddy GC, Babu PK and Rani MJ. 2014. Preliminary evaluation of mini-core collections of sorghum for utilization. researchgate.net /publication/259893199_ Preliminary_Evaluation_of_Minicore_collections_for_Utilization. [26 July 2019].
[9] Gomez KA and Gomez A. 1995. Prosesur Statistik untuk Penelitian Pertanian. E. Sjamsuddin, J.S. Baharsjah, penerjemah. UI Press, Jakarta, ID. Translated from: Statistical Procedures for Agricultural Research.
[10] Lu X, Yun J, Gao C and Acharya S. 2011. Quantitative trait loci analysis of economically important traits in Sorghum bicolor x S. sudanense hybrid. Can. J. Plant Sci 91:81-90.
[11] Suwarto. 2013. Perubahan klorofil, luas daun spesifik, dan efisiensi penggunaan cahaya ubi kayu pada sistem tumpang sari dengan jagung. Bul. Agrohorti 1:135-139.
[12] Pabendon MB, Mas’ud S, Sarungallo RS and Nur A. 2012. Penampilan fenotipik dan stabilitas sorgum manis untuk bahan baku bioetanol. Penelitian Pertanian Tanaman Pangan 31(1):60-69.

[13] [36] [38] House LR. 1985. A Guide to Sorghum Breeding. ICRISAT, India, IND.

[14] Vanderlip RL. 1993. How A Sorghum Plant Develops. Kansas State University, New York, US.

[15] Rakshit S, Gomashe SS, Ganapathy KN, Elangoan M, Ratnavathi CV, Seetharama N and Patil JV. 2012. Morphological and molecular diversity reveal wide variability among sorghum Malandani landraces from India. J. Plant Biochem. Biotechnol 21 (2):145-156.

[16] Kaitaniemi P, Room PM and Hanan JS. 1999. Architecture and morphogenesis of grain sorghum, Sorghum bicolor (L.) Moench. Field Crops Research. 61:51-60.

[17] [18] Sulistyowati Y. 2018. Analisis genetik dan seleksi galur F5 sorgum (Sorghum bicolor (L.) Moench) hasil penggaluran menggunakan single seed descent pada kondisi P rendah di tanah masam. Tesis. Sekolah Pascasarjana. Institut Pertanian Bogor. Bogor.

[19] Tsuchihashi N and Goto Y. 2008. Year-round cultivation of sweet sorghum [Sorghum bicolor (L.) Moench] through a combination of seed and ratoon cropping in indonesian savanna.

[20] Momongan JD. 2018. Seleksi galur-galur inbrida sorgum [Sorghum bicolor (L.) Moench] untuk daya hasil dan toleransi terhadap defisiensi P. Tesis. Sekolah Pascasarjana. Institut Pertanian Bogor. Bogor.

[21] Putri NE, Chaniago I and Suliansyah I. 2013. Seleksi beberapa genotipe gandum berdasarkan komponen hasil di daerah curah hujan tinggi. Jurnal Agroteknologi. 4 (1):1-6.

[22] Gross J. 1987. Pigments in Fruits. Academic Press, London, US.

[23] Pazmino-Duran EA, Giusti MM, Wrolstad RE and Gloria MBA. 2001. Anthocyanins from Ocalis triangularis as potentioal food colorants. J. Food Chem. 75:211-216.

[24] Xiaoyu S, Rhodes D, Jingwen X, Xi C, Davis H, Donghai W, Herald TJ and Weiquan W. 2017. Phenotypic diversity of anthocyanins in sorghum accessions with various pericarp pigments. J. Nutr. Food. Sci. 7 (4):1-4.

[25] Sukartini and Syah MJA. 2009. Potensi kandungan antosianin pada daun muda tanaman zuriat mangga. Hort. 19 (1):23-27.

[26] [28] Raden I, Purwoko BS, Hariyadi, Ghulamahdi M, Santosa E. 2008. Karakteristik daun jarak pagar (Jatropha curcas L.) dan hubungannya dengan fotosintesis. Bul Agron. 36 (2):168-175.

[27] [29] Burks PS, Kaiser CM, Hawkins EM and Brown PJ. 2015. Genomewide association for sugar yield in sweet sorghum. Crop Science. 55:2138-2148.

[30] Zanta CA, Yang X, Axtell JD and Bennetzen JL. 1994. The candystripe locus, y-cs, determines mutable pigmentation of the sorghum leaf, flower, and pericarp. The Journal of Heredity. 85 (1):23-29.

[31] Cizneros-Lopez ME, Mendoza-Onofre LE, Zavaleta-Mancera HA, Gonzalez-Hernandez VA, Mora-Aguilera G, Cordova-Tellez L and Hernandez-Martinez M. 2010. Pollen-pistil interaction, pistil histology and seed production in A x B grain sroghum crosses under chilling field temperatures. Journal of Agricultural Science. 148:73-82.

[32] Menkir A, Ejeta G, Butler L and Melakeberhan A. 1996. Physical and chemical kernel properties associated with resistance to grain mold in sorghum. Cereal Chem. 73 (5):613-617.

[33] [34] Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL and Kresovcich S. 2006. Inheritance of inflorescence architecture in sorghum. Theor. Appl. Genet. 113:931-942.

[35] Major JD. 1993. Environmental effects on flowering. In: R. Walter, H. Henry (Eds.). Hybridization of Crop Plants. American Society of Agronomy and Crop Science Society of America, Wincosin, US.
[37] Wizi J, Wang L, Hou X, Tao Y, Ma B and Yang Y. 2018. Ultrasound-microwave assisted extraction of natural colorants from sorghum husk with different solvents. *Industrial Crops and Products*. **120**:203-213.

[39] Graham RJ D. 1916. Pollination and cross-fertilization in the jowari plant (*Andropogon sorghum*, Brot.). *Mem. Dept. Agric. Indian Bot. Ser.* **8**:201-216.

[40] Jowett D. 1968. Inheritance of glume size and awn length in sorghum. *Crop Sci.* **8**:342-345.

[41] Hahn DH and Rooney LW. 1986. Effect of genotype on tannins and phenols of sorghum. *Cereal Chemistry*. **63**:4-8.

[42] Waniska RD. 2000. Structure, phenolic compounds, and antifungal proteins of sorghum caryopses. p. 72-106. *In: A. Chandrashekar, R. Bandyopadhyay, A.J. Hall (Eds.). Technical and Institutional Options for Sorghum Grain Mold Management: Proceedings of an International Consultation, India, 18-19 May 2000*.

[43] Guindo D, Teme N, Vaksmann M, Doumbia M, Vilmus I, Guitton B, Sissoko A, Mestres C, Davrieux F, Fliedel G, Kouressy M, Courtois B and Jean-Francois R. 2019. Quantitative trait loci for sorghum grain morphology and quality traits: toward breeding for a traditional food preparation of West Africa. *Journal of Cereal Science*. **85**:256-272.

[44] Audilakshmi S, Aruna C. 2005. Genetic analysis of physical grain quality character in sorghum. *Journal of Agricultural Science* **143**:267-273.

[45] Sanoto A, Rasyad A, Zuhry E. 2017. Pola perkembangan biji dan perubahan mutu benih berbagai kultivar sorgum (*Shorgum bicolor* L.). *Jom Faperta*. **1**(4):1-11.

[46] Fernandez MGS, Hamblin MT, Li L, Rooney WL, Tuinstra MR and Kresovich S. 2008. Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. *Crop Science*. **48**:1732-1743.

[47] Ganapathy KN, Rao BD, Rakshit S, Gnanesh BN and Patil JV. 2015. Sorghum for health and business. p. 173-196. *In E. Lichtfouse, A. Goyal (Eds.). Sustainable Agriculture Reviews. Springer International Publishing, London, US.*