Sl. No.	Gene symbol	NCBI GENE ID	Sl. No.	Gene symbol	NCBI GENE ID
1	ABCD3	5825	19	DAZAP2	9802
2	AHCYL2	23382	20	EIF3E	3646
3	ARHGAP12	94134	21	FAM32A	26017
4	ARFIP2	23647	22	FAR1	84188
5	ANGEL2	90806	23	FNIP1	96459
6	ASB13	79754	24	GHITM	27069
7	ATP5B	506	25	GLUL	2752
8	AUTS2	26053	26	GNL3L	54552
9	BSDC1	55108	27	HAX1	10456
10	CCDC49	54883	28	HIGD2A	192286
11	CCDC109B	55013	29	HSPA2	3306
12	CCDC186	55088	30	ITM2A	9452
13	CPLX1	10815	31	ITPR2	3709
14	COPG1	22820	32	KCNAB2	8514
15	COX6C	1345	33	LDOC1L	84247
16	CNTN1	1272	34	LMO4	8543
17	CYP2E1	1571	35	LZTS1	11178
18	DAZAP2	9802	36	MAP1B	4131
19	DLGAP1	9229	37	MAPKB1	23005
20	EIF3E	3646	38	MKRN1	23608
21	DAZAP2	9802	39	MRPL33	5825
22	FAR1	84188	40	MRPL48	23382
23	FNIP1	96459	41	MRPL49	55088
24	FAM32A	26017	42	NDN	1272
25	GHITM	27069	43	OMG	10815
26	GLUL	2752	44	PTGER2	53017
27	GNL3L	54552	45	PTGER4	22820
28	HAX1	10456	46	RAG2	1345
29	HIGD2A	192286	47	RAG2	9229
30	HSPA2	3306	48	RAG2	9229
31	ITPR2	3709	49	RAG2	9229
32	KCNAB2	8514	50	RAG2	9229
33	LDOC1L	84247	51	RAG2	9229
34	LMO4	8543	52	RAG2	9229
35	LZTS1	11178	53	RAG2	9229
36	MAP1B	4131	54	RAG2	9229
37	MAPKB1	23005	55	RAG2	9229
38	MKRN1	23608	56	RAG2	9229

Table S1. List of JEV NS4A interactors
Figure Legends

Fig. S1: Cloning of JEV-NS4A for the Y2H screening. (A) The JEV-NS4A cDNA was RT-PCR amplified and cloned in the pGem-T vector. The Colony-PCR using the JEV-NS4A primers identified the putative clones. (B) Restriction digestion of plasmid DNA from colony #10 with Sfi I confirming an insert release of JEV-NS4A of 447 bp. (C) The JEV-NS4A cDNA released from the colony #10 DNA was cloned in plasmid pBT3-N (bait). The Colony-PCR using the JEV-NS4A primers identified the putative clone. (D) Restriction digestion with Sfi I of the plasmid DNA from colony #3 and #9 from the pBT3-N cloning confirmed the desired clones. (E) The bait plasmid was transferred to the competent NMY51 strain of yeast (deficient in leucine, tryptophan, histidine, and adenine pathways). The prey plasmid was then transferred to the bait-containing yeast (SD-LW) and checked for expression of the markers by selecting on histidine and adenine deficient plates. (F) Pilot screen to confirm that the bait clone was not self-activating. (G) Library screen showing up the interactors on selective plates and the positive X-Gal assay. The plasmid DNA from the interaction positive clones was transferred to E. coli strain DH5a to amplify and used for DNA sequencing.

Fig. S2. Mock- and JEV-infected (MOI 1) Huh7 cells at 30 h pi were treated with bafilomycin for an additional 8 h. The cell lysates were subjected to Western blot analysis for the mitochondrial proteins PINK1 (left panel) and PARKIN (right panel). GAPDH was used as the loading control and JEV prM and NS3 were used as the infection marker. The respective band intensities relative to GAPDH are shown below each blot.

Fig. S3. Three weeks old C57BL/6 mice (n=4) were JEV or mock-infected by the 10^7 PFU of JEV injected intraperitoneal. The brain tissues were harvested 5 days later and prepared as lysates. The left panels show the Western blot analysis of indicated proteins in JEV-infected mouse brain lysate. The JEV capsid was used as the infection marker and GAPDH was used as the internal loading control. The right panel shows quantification of protein band intensities of mouse tissue from the Western blots.