c-kit\(^+\) Stem Cells and Thymocyte Precursors in the Livers of Adult Mice

By Hisami Watanabe,* Chikako Miyaji,* Shuhji Seki,** and Toru Abo*

From the *Department of Immunology, Niigata University School of Medicine, Niigata 951, Japan; and the **Clinic of Shibata Base, National Defense Force, Shibata 957, Niigata, Japan

Summary

Livers of the adult mice contain c-kit\(^+\) stem cells that can reconstitute thymocytes, multiple lineage cells, and bone marrow (BM) stem cells. Transfer of 1 \(\times\) 10\(^7\) hepatic mononuclear cells (MNC) and 5 \(\times\) 10\(^4\) hepatic c-kit\(^+\) cells of BALB/c mice induced DP thymocytes within a week in four Gy-irradiated CB17/-SCID mice, but 2 wk were required for BM cells or BM c-kit\(^+\) cells to produce DP thymocytes. Moreover, B cell–depleted BM cells or liver MNC of SCID mice that had been rescued by hepatic MNC of BALB/c mice again reconstituted thymus and B cells of other irradiated SCID mice. CD3\(^-\) IL-2R\([\beta]^-\) populations of both BM cells and hepatic MNC of C57BL/6 (B6) mice could generate T cells with intermediate TCR (mostly NK1.1\(^+\)) in the liver of irradiated B6 SCID mice before thymic reconstitution (extrathympic T cells). Furthermore, transfer of liver c-kit\(^+\) cells of B6-Ly 5.1 mice into irradiated B6 SCID (Ly5.2) mice revealed that liver c-kit\(^+\) cells can reconstitute myeloid and erythroid lineage cells. These results strongly suggest that the liver contains pluripotent stem cells and serves an important hematopoietic organ even into adulthood.

BM cells contain c-kit\(^+\) stem cells (1, 2) which can give rise to multiple leukocyte lineages. Murine T cell precursor from bone marrow (BM)\(^1\) migrate to the thymus and differentiate into mature thymocytes, which are the origin of most peripheral T cells. Recently, however, it has been demonstrated that T cell can differentiate in extrathympic sites. Several groups of researchers proposed that the intestine is such a site (3–7), and we demonstrated that the liver is also a candidate (8–13). Extrathymically developed αβ T cells in the liver are NK1.1\(^+\) or NK1.1\(^-\) T cells with intermediate TCR (13). However, it was not known whether the liver contains hematopoietic precursor cells. During an investigation as to how liver mononuclear cells (MNC) of normal mice transferred into SCID mice migrate and re-populate, we found that the liver MNC from normal adult mice could transiently reconstitute thymus accompanied by the appearance of double positive (DP) thymocytes in non-irradiated SCID mice. Since SCID mice can not rearrange the TCR gene or the immunoglobulin gene (14), these mice are a proper model to examine whether or not a population of cells has a capacity to reconstruct T and B cells by radiation bone marrow chimera. In addition, B6-Ly5.1 mice (15) enabled us to determine whether or not myeloid and erythroid lineage cells are reconstituted by liver c-kit\(^+\) cells. Here, we demonstrate that hepatic MNC of adult normal mice contain c-kit\(^+\) cells which can reconstitute thymocytes, multiple lineage cells and BM stem cells of irradiated SCID mice.

Materials and Methods

Mice. Male CB17/-SCID mice (H-2\(^a\)), BALB/c mice (H-2\(^a\)), and C57BL/6 mice (H-2\(^b\)), 6–8 weeks of age, were purchased from CLEA Japan Inc. (Tokyo, Japan). C57BL/6-SCID (H-2\(^b\)) were purchased from Central Institute for Experimental Animals (Kanagawa, Japan). C57BL/6-Ly5.1 (B6-Ly5.1, H-2\(^b\)) mice were kindly provided by Dr. K. Kishihara (Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan). All mice were fed under the specific pathogen-free condition.

Cell Preparations. Mice were euthanized by exsanguination from the subclavian artery and vein, and liver and spleen were removed. The spleen was isolated on a 200-gauge stainless steel mesh and washed. The liver was treated with RBC lysis solution (155 mM NH\(_4\)Cl, 10 mM KHCO\(_3\), 1 mM EDTA, 170 mM Tris, pH 7.3). Hepatic MNC were prepared as previously described (16, 17). Briefly, the liver was pressed through a stainless steel mesh and suspended in Eagle’s MEM medium supplemented with 5 mM HEPES and 2% FCS. After one washing, the cells were resuspended in 30–35% Percoll solution containing 100 U/ml heparin and centrifuged at 2,000 rpm for 15 min at room temperature. An appropriate density of Percoll solution should be determined between 30 and 35% in each laboratory. The pellet was resuspended in RBC lysis solution, then washed twice with medium. BM cells were obtained by flushing femurs with medium.

\(^1\)Abbreviations used in this paper: B6, C57BL/6; BM, bone marrow; DP, double positive; MNC, mononuclear cells.
The cell suspensions were filtrated through a 200-gauge nylon mesh to remove debris. Thymocytes were obtained by forcing thymus through a 200-gauge steel mesh. Peripheral blood cells were used after lysing red blood cells.

mAbs, Flowcytometric Analysis and Cell Sorting. Anti-CD4 (RM4-5), anti-CD8 (53-6.7), anti-CD3 (145-2C11), anti-IL-2Rα chain (TM-Β1), anti-NK1.1 (PK136), anti-B20 (RA3-6B2), anti-Mac-1 (M1/70), anti-mouse IgM (R6-60.2), anti-Gr-1 (RA3-8C5), TER119 (erythroid lineage marker), and anti-c-kit (3C1) Abs were all purchased from PharMingen (San Diego, CA). Mouse anti-Ly5.1 Ab (A20.1.7) was kindly provided by Dr. T. Kina (Chest Disease Research Institute, Kyoto University, Kyoto, Japan). All mAbs were used with FITC-, PE-, or biotin-conjugated form. Biotinylated reagents were developed with FITC or PE-conjugated streptavidin (Becton-Dickinson Co., Mountain View, CA) or TRICOLOR-conjugated streptavidin (CALTAG Lab., San Francisco, CA). To prevent nonspecific binding of mAbs, CD32/16 (24G2) was added before staining with labeled mAbs. Cell suspensions (10⁷ to 2 × 10⁷) were stained with mAbs and analyzed by FACScan (Becton-Dickinson). Dead cells were excluded by forward scatter, side scatter, and PI gating. c-kit⁺ Lin⁻ (CD3⁻, B220⁻, Mac-1⁻, Gr-1⁻, and TER119⁻) cells of hepatic MNC and BM cells were sorted by FACS® Vantage (Becton-Dickinson). In some cases, CD3⁺ or B220⁺, and/or IL-2Rβ⁺ cells were also depleted from hepatic MNC or BM cells by sorting.

Cell Transfer. After 4 Gy irradiation (18), equal number (1 × 10⁷) of BM cells, hepatic MNC and splenocytes of BALB/c mice were injected intravenously into CB17⁻/SCID mice. In some experiments, 5 × 10⁴ sorted c-kit⁺ Lin⁻ cells of hepatic MNC or of BM cells, sorted 2 × 10⁶ CD3⁺ B220⁻ cells, or 2 × 10⁶ c-kit⁺ cells were injected into different mice groups. 2 × 10⁵ sorted CD3⁻ IL-2Rβ⁺ cells of liver or BM cells of C57BL/6 mice were also transferred into C57BL/6-SCID mice in another experiment. Further, 2 × 10⁶ c-kit⁺ Lin⁻ cells of liver of B6-Ly5.1 mice were transferred into irradiated B6 SCID mice.

Results

Thymus Reconstruction in Irradiated SCID Mice. Liver MNC could transiently reconstitute thymocytes of non-irradiated SCID mice (Fig. 1). Since it was reported that low-dose irradiation of SCID mice is required for effective BM reconstitution (18), 4 Gy irradiation CB17⁻/SCID mice were transferred with liver MNC or BM cells of BALB/c mice. The results demonstrated that liver MNC as well as BM cells could fully reconstitute thymocytes (Fig. 1, Table 1). In addition, hepatic MNC could reconstruct thymus more rapidly than BM cells. After transfer of hepatic MNC from normal mice, CD3⁺ and CD8⁺ expression of thymocytes emerged in the thymus of SCID mice within 1 wk, whereas 2 wk were required for BM cells to induce DP thymocytes (Fig. 1). 4 wk after liver or BM MNC transfer, T cells (CD3⁺) and B cells (B220⁺) were detected in the spleen. In the case of liver MNC transfer, IL-2Rβ⁺ intermediate CD3⁺ cells as well as IL-2Rβ⁻ bright CD3⁺ cells appeared in the spleen, while BM cells transfer induced only a small population of IL-2Rβ⁻ intermediate CD3⁺ cells. These T and B cells may include cells expanded from T and B cells contained in transferred liver MNC or BM cells or normal mice as well as cells from their precursors. CB17⁻/SCID mice that received either BM cells or hepatic MNC of BALB/c mice were still alive 4 mo later, whereas mice that received spleenocytes died within 2 wk.

![Figure 1](http://rupress.org/jem/article-pdf/184/2/687/1108757/687.pdf)
Table 1. Number of Cells Obtained from Irradiated CB17-/SCID Mice Reconstituted with Liver MNC or BM Cells of BALB/c Mice

Mouse	Transferred cells	Days after transfer	Liver	Spleen	Thymus
			×10⁶ ± SD		
BALB/c	None		4.8 ± 0.8	157.9 ± 59.9	225.0 ± 61.3
SCID	None		1.1 ± 0.2	10.0 ± 3.6	5.0 ± 1.6
SCID (4Gy)	Liver MNC	7	0.8 ± 0.1	21.7 ± 5.7	0.3 ± 0.0
		14	2.1 ± 0.1	31.5 ± 4.5	33.5 ± 9.5
		21	2.7 ± 0.4	45.0 ± 5.1	220.0 ± 45.0
		82	10.4 ± 0.9	227.0 ± 55.3	121.0 ± 20.0
BM		7	0.8 ± 0.2	15.8 ± 2.7	0.1 ± 0.0
		14	1.2 ± 0.1	18.5 ± 3.9	8.8 ± 2.9
		21	9.0 ± 1.0	17.4 ± 2.3	284.0 ± 38.2

10⁷ liver MNC and BM cells of BALB/c mice were transferred into 4 Gy irradiated SCID mice, the cell numbers in livers, spleens and thymus were examined on indicated days after transfer. Data shown are mean ± SD of five individual mice.

c-kit⁺ Cells are Present Not Only in BM but Also in the Liver.
The fact that liver MNC can reconstitute thymus and extrathymic T cell development takes place in the liver (8–13) led us to search for precursors in the liver. It was found that a small proportion of c-kit⁺ cells are also present in the liver of normal mice, which were mainly detected in a large blastic population (Fig. 2). These c-kit⁺ cells in the liver are lineage marker negative (CD3⁻, B220⁻, Mac-1⁻, Gr-1⁻, and TER119⁻) (Fig. 2). The population of hepatic c-kit⁺ cells was unaffected by perfusion of the liver with PBS from portal vein, as was previously demonstrated in the case of other lymphoid cells in the liver (16) (not shown).

Induction of DP Thymocytes by Hepatic c-kit⁺ Cells and CD3⁻B220⁻ Fraction but Not c-kit⁻ Cells. Transfer of hepatic c-kit⁺ cells and CD3⁻B220⁻ cells could induce production of DP thymocytes within 1 wk, while BM c-kit⁺ cells took 2 wk to generate DP thymocytes (Fig. 3). It is noteworthy, however, that hepatic c-kit⁺ cells alone could not effectively reconstitute thymocytes; hepatic c-kit⁻ cells were also needed to efficiently reconstruct the thymus, especially at early period of reconstitution, as revealed by a greatly reduced thymus size when c-kit⁻ cells were absent (Table 2). Interestingly, splenocytes could not fulfill the supporting role played by hepatic c-kit⁻ cells (Table 2).

Increase of c-kit⁺ Cells in the Liver and BM of SCID Mice after Transfer of Liver MNC. 2 wk after transfer of hepatic MNC into irradiated SCID mice, c-kit⁺ cells markedly increased not only in the liver but also in BM, which suggest that c-kit⁺ cells were actively proliferating in both sites (Fig. 4).

Hepatic MNC Can Reconstitute BM Stem Cells. To test whether or not hepatic MNC can reconstitute BM stem cells that are committed to T and B cells, and to confirm that B cells found in the periphery of SCID mice was not merely the result of expansion of B cells contained in hepatic MNC of normal mice, BM cells as well as liver MNC from SCID mice, which had been rescued with hepatic

Figure 2. c-kit⁺ cells are present in hepatic MNC as well as in BM cells of BALB/c mice. R1 gated a large blastic population and R2 gated a population of smaller cells. These c-kit⁺ cells are Lin⁻.
MNC from normal mice 12 wk before, were further transferred into other irradiated SCID mice after depletion of B cells. The result showed that thymus was efficiently reconstituted and B cells (B220+ as well as surface Ig M+) could again emerge within 4 wk (Fig. 5).

Hepatic c-kit+ Cells Can Reconstitute Myeloid as Well as Erythroid Lineage Cells. To examine the capability of hepatic c-kit+ cells to produce multiple lineage cells, hepatic c-kit+ cells of B6-Ly5.1 mice were transferred into irradiated B6 SCID (Ly5.2) mice. Donor derived cells (except mature erythrocytes) can be discriminates by anti-Ly5.1 Ab from host Ly5.2+ cells. Within 4 wk after transfer, Ly5.1+ myeloid as well as erythroid lineage cells appeared in BM or peripheral blood (Fig. 6). Significant populations of BM Gr-1+ cells (granulocyte lineage) and TER-119+ cells (erythroid lineage) appeared in the BM and peripheral blood. Ly5.1+ Mac-1+ Gr-1+ cells (macrophage lineage) were also detected in BM by three-color flowcytometric analysis. These results strongly suggest that liver c-kit+ cells are indeed pluripotent stem cells.

Liver Intermediate TCR Cells Differentiate Extrathymically in the Liver. Next, CD3-IL-2R[β- populations of hepatic MNC or BM cells of C57BL/6 mice were transferred into irradiated B6 SCID mice. 10 d after transfer, many CD3+ IL-2R[β+ cells (mostly NK1-) appeared in the liver. Here, the intensity of TCR is intermediate level, as compared to thymus derived IL-2R[β+ bright TCR cells; intermediate

Table 2. Number of thymocytes in CB17/-SCID Mice Reconstituted with Liver c-kit+ Cells of BALB/c Mice

Transferred cells	Days after transfer	Mean no. of thymocytes
Liver c-kit+	7	1.4
	14	2.0
	21	9.7
Liver c-kit-	7	1.0
	10	1.9
Liver c-kit+ + c-kit-	7	1.8
	14	14.5
	21	140.0
Liver c-kit+ + splenocytes	7	2.0
	14	1.8
	21	5.2

5 × 10⁴ sorted hepatic c-kit+ cells, and 5 × 10⁴ c-kit+ cells with either 2 × 10⁶ hepatic c-kit- cells or 2 × 10⁶ splenocytes were transferred into irradiated SCID mice. The number of liver MNC, splenocytes and thymocytes were counted on indicated days after transfer. SCID mice reconstituted by liver c-kit+ cells died within 2 wk. Repeated experiments showed similar results.
TCR is characteristic of extrathymic T cells, as shown previously (11-13) and demonstrated here (Fig. 7). Namely, although control liver T cells consist of IL-2Rβ+ intermediate TCR cells and IL-2Rβ- bright TCR cells, virtually all liver T cells of SCID mice reconstituted with CD3- IL-2Rβ- liver or BM cells were intermediate TCR cells (mainly IL-2Rβ+) (Fig. 7). The number of these T cells in the liver reconstituted by hepatic CD3-IL-2Rβ- cells of normal mice was much greater than that induced by BM CD3-IL-2Rβ- cells (Fig. 7), while a larger population of NK cells were induced by the transfer of BM CD3-IL-2Rβ- cells than the transfer of hepatic CD3-IL-2Rβ- cells (Fig. 7). A smaller population of intermediate TCR cells (but not bright TCR cells) was also found in the spleen at an early stage of reconstruction, but after thymic reconstitution (beyond 2 wk after liver or BM MNC transfer) accompanied by the appearance of single positive T cells with bright TCR, bright TCR cells gradually increased in the spleen and periphery as well as in the liver (data not shown).

Discussion

It is well known that the fetal liver is a major hematopoietic organ (19, 20), whereas the hematopoietic function of the liver seems to be abrogated at later stage of the fetus in humans and after birth in mice. In this report, however, we demonstrate that the adult mouse liver MNC contain not only c-kit+ thymocyte precursors but also c-kit+ stem cells that can reconstitute multiple lineage cells in SCID mice.

The thymus of irradiated SCID mice could be fully reconstructed by the transfer of hepatic MNC or BM cells. In addition, hepatic MNC or c-kit+ cells could reconstruct thymus more rapidly than BM cells or BM c-kit+ cells. BM cells as well as liver MNC from SCID mice which had been rescued with hepatic MNC from normal mice could further reconstitute thymus and B cells of other irradiated SCID mice, suggesting that liver MNC can reconstitute BM stem cells. Moreover, when liver c-kit+ cells of B6-Ly5.1 mice were transferred into irradiated B6 SCID mice, Ly5.1+ myeloid and erythroid lineage cells were detected in peripheral blood or BM. Further, transfer of CD3- IL-2Rβ-
populations of hepatic MNC or BM cells of C57BL/6 mice into irradiated B6 SCID mice resulted in the appearance of many CD3+IL-2Rα cells with intermediate TCR in the liver before thymic reconstitution, confirming that liver is the site where extrathymic T cell differentiation occurs.

The proto-oncogene, c-kit, encodes a transmembrane receptor of the tyrosine kinase gene family (21) and is reported to be an essential molecule for constitutive hematopoiesis in BM (22, 23), and pluripotent stem cells in BM are surface c-kit+ (1, 2). This study strongly suggests that these c-kit+ pluripotent stem cells are also present in the liver of adult mice. In addition, the fact that the hepatic c-kit+ cells can generate DP thymocytes faster than BM c-kit+ cells and that hepatic CD3+IL-2Rα MNC could more efficiently produce hepatic CD3+ cells with intermediate TCR than BM CD3+IL-2Rα- MNC indicates that the hepatic c-kit+ cells contain more differentiated T cell progenitors of both intrathymic and extrathymic T cell lineages. Further, hepatic MNC transfer could increase c-kit+ cells in BM. These findings suggest that hepatic MNC contain stem cell populations at heterogeneous stages of differentiation. It was reported that c-kit+ cells in the thymus also can reconstitute thymocytes faster than BM c-kit+ cells, although they were not already pluripotential (24-26). It is possible that a population of liver c-kit+ cells preferentially migrate into thymus, while another population mainly migrates into BM to reconstitute BM c-kit+ cells. A detailed comparison of surface markers of c-kit+ cells in the liver, BM and thymus is now underway.

Another interesting point is that hepatic c-kit+ cells are needed to efficiently reconstruct thymus, because hepatic c-kit+ cells alone could only reconstruct a thymus of much smaller size. However, the fact that this supporting effect of c-kit+ cells of the liver could not be assumed by splenocytes indicates that effective thymic reconstruction, especially in early period of reconstitution, depends upon the interaction of thymic epithelial cells with certain cells in the liver different from splenocytes. It is also suggested that donor liver derived c-kit+ cells in host BM do not need liver c-kit+ cells any more, because whole BM cells of SCID mice rescued by liver MNC could effectively reconstitute thymus of other irradiated SCID mice.

The present results raise the possibility that these stem cells may originate in bone marrow and migrate to the liver after birth. Another possibility is that a small number of stem cells may exist in fetal liver as well. At present, it can not be decided which is the case. According to a recent report (27) some hepatic MNC which firmly interact with hepatocytes have been detected in Disse’s space and hepatocyte damage markedly decreased liver T cells. Considering the fact that the perfusion of the liver do not change the population of c-kit+ cells in the liver, the possibility is raised that the maturation and differentiation of stem cells or precursor cells in the liver could occur in such parenchymal spaces rather than in the liver sinusoids.

Finally, the present results may offer a new insight into the host tolerance after liver transplantation (28-31). Stem cells in the liver of the donor may provide leukocytes to the host and create a donor host chimera that may contribute for decreasing the rate of rejection of other organ transplantations in the host.

Address correspondence to H. Watanabe, Department of Immunology, Niigata University School of Medicine, Niigata 951 Japan.

Received for publication 15 January 1996 and in revised form 20 May 1996.

References
1. Ogawa, M., Y. Matsuzaki, S. Nishikawa, S. Hayashi, T. Kunisada, T. Sudo, T. Kina, H. Nakauchi, and S.-I. Nishikawa. 1991. Expression and function of c-kit in hematopoietic progenitor cells. J. Exp. Med. 174:63-71.
2. Okada, S., H. Nakauchi, K. Nagayoshi, S. Nishikawa, S.-I. Nishikawa, Y. Miura, and T. Suda. 1991. Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood. 78:1706-1712.
3. Ferguson, A., and D.M. Parrott. 1972. The effect of antigen deprivation on thymus-dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clin. Exp. Immunol. 12:477-488.
4. Mosley, R.L., D. Styre, and J.R. Klein. 1990. Differentiation and functional maturation of bone marrow-derived intestinal

692 Stem Cells in Adult Mouse Liver
epithelial T cells expressing membrane T cell receptor in athymic radiation chimeras. J. Immunol. 145:1369–1375.

5. Mosley, R.L., D. Styre, and J.R. Klein. 1990. CD4+CD8+ murine intestinal intraepithelial lymphocytes. Int. Immunol. 2: 361–365.

6. Bandeira, A., S. Itohara, M. Bonnveille, O. Burlen-Defraune, T. Mota-Santos, A. Coutinho, and S. Tonegawa. 1991. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta. Proc. Natl. Acad. Sci. USA. 88:43–47.

7. Rocha, B., P. Vassalli, and D. Guy-Grand. 1991. The Vβ repertoire of mouse gut homodimeric CD8+ intralithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med. 173: 483–486.

8. Ohteki, T., S. Seki, T. Abo, and K. Kumagai. 1990. Liver is a possible site for proliferation of abnormal CD5+CD8− double-negative lymphocytes in autoimmune MRL-lpr/lpr mice. J. Exp. Med. 172:7–12.

9. Seki, S., T. Abo, T. Masuda, T. Ohteki, K. Takenaka, K. Takada, H. Kikuchi, H. Nagura, and K. Kumagai. 1990. Identification of activated T cell receptor γδ lymphocytes in the liver of tumor-bearing hosts. J. Clin. Invest. 86:409–411.

10. Ohteki, T., T. Abo, S. Seki, T. Kobata, H. Yagita, K. Okamura, and K. Kumagai. 1991. Predominant appearance of γδ T lymphocytes of mice after birth. Eur. J. Immunol. 21:1733–1740.

11. Seki, S., T. Abo, T. Ohteki, K. Sugiura, and K. Kumagai. 1991. Unusual αβ T cells expanded in autoimmune lpr mice are probably a counterpart of normal T cells in the liver. J. Immunol. 147:1214–1221.

12. Abo, T., H. Watanabe, T. Iiai, M. Kimura, K. Ohtsuka, K. Sato, M. Ogawa, H. Hirahara, S. Hashimoto, H. Sekikawa, and S. Seki. 1994. Extrathymic pathways of T-cell differentiation in the liver and other organs. Rev. Rev. Immunol. 11: 61–102.

13. Sato, K., K. Ohtsuka, H. Hasegawa, S. Yamagiwa, H. Watanabe, H. Asakura, and T. Abo. 1995. Evidence for extrathymic generation of intermediate T cell receptor cells in the liver revealed in thymectomized, irradiated mice subjected to bone marrow transplantation. J. Exp. Med. 182: 759–767.

14. Bosma, G.C., R.P. Custer, and M.J. Bosma. 1983. A severe combined immunodeficiency mutation in the mouse. Nature (Lond.) 301:527–530.

15. Scheid, M.P., and D. Triglia. 1979. Further description of the Ly-5 system. Immunogenetics. 9:423–433.

16. Fulop, G.M., and R.A. Phillips. 1986. Full reconstitution of the immune deficiency in scid mice with normal stem cells requires low-dose irradiation of the recipients. J. Immunol. 136:4438–4443.

17. Watanabe, H., K. Ohtsuka, M. Kimura, Y. Ikarashi, K. Ohmori, A. Kusumi, T. Ohteki, S. Seki, and T. Abo. 1992. Details of an isolation method for hepatic lymphocytes in mice. J. Immunol. Methods. 146:145–154.

18. Goossens, P.L., H. Jouin, G. Marchal, and G. Milon. 1990. Isolation and flow cytometric analysis of the free lympho-myeloid cells present in murine liver. J. Immunol. Methods. 132:137–144.

19. Abramson, S., R.G. Miller, and R.A. Phillips. 1977. The identification in adult bone marrow of pluripotent and restricted stem cells of myeloid and lymphoid systems. J. Exp. Med. 154:1567–1579.

20. Owen, J.J., and M.A. Ritter. 1969. Tissue interaction in the development of thymus lymphocytes. J. Exp. Med. 129: 431–442.