N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism

Keiko Iwata1,2, Hideo Matsuzaki1,2,3, Taro Tachibana4, Koji Ohno5, Saori Yoshimura4, Hironori Takamura6,7, Kohei Yamada6,7, Shinsuke Matsuzaki6, Kazuhiko Nakamura6, Kenji J Tsuchiya3, Kaori Matsumoto3, Masatsugu Tsujii3,9, Toshirou Sugiyama10, Taiichi Katayama6* and Norio Mori3,8

Abstract

Background: Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism.

Methods: Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls.

Results: N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms.

Conclusions: These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested.

Keywords: Serotonin transporter, NSF, Interaction, Membrane trafficking, Autism, Post-mortem brain, Lymphocyte
Background

Autism is a pervasive developmental disorder characterized by severe and sustained impairment of social interaction and communication, and restricted or stereotyped patterns of behavior and interest. Many studies on the pathophysiological mechanisms of autism have focused on the serotonergic system. Prior studies have consistently found elevated serotonin levels in the whole blood cells and platelets of autism patients [1-5] and their relatives [6-8]. Short-term dietary depletion of tryptophan (the precursor of serotonin) has been shown to exacerbate repetitive behavior and to elevate anxiety and feelings of unhappiness in autistic adults [9]. Accordingly, many genetic studies have examined the associations between autism and genetic mutations of human serotonin transporter (SERT; solute carrier family 6 (neurotransmitter transporter), member 4 (SLC6A4)), especially the short allele of a polymorphism in the promoter region of the serotonin transporter gene. Although some positive relationships have been found, the results to date are inconsistent [10-15]. A single photon emission computed tomography study showed that autistic children, under light sedation, exhibit a reduction in SERT binding in the medial frontal cortex, midbrain and temporal lobe areas [16]. Importantly, our colleagues recently reported that binding of SERT and its radioligand was significantly lower throughout the brain in autistic individuals compared with controls [17]. The reduction in the anterior and posterior cingulate cortices was associated with an impairment of social cognition in autistic subjects, and a significant correlation was also found between repetitive and/or obsessive behavior and interests and a reduction in SERT binding in the thalamus [17]. These results suggested that SERT protein levels and/or its transport capacity were decreased in the brains of autistic patients. Despite this prediction, Azmitia and colleagues reported increased immunoreactivity to a SERT antibody of serotonin axons in the post-mortem cortices of autism patients [18].

SERT is an integral plasma membrane glycoprotein that regulates neurotransmission through the reuptake of 5-hydroxytryptamine (5-HT), also known as serotonin, from the synaptic cleft. SERT transport capacity is known to be regulated through mechanisms that involve subcellular redistribution of the transporter, which are regulated by various cellular mechanisms, including interactions with other proteins [19,20]. Indeed, several SERT-binding proteins have been reported. Syntaxin-1A [21-23] and secretory carrier membrane protein 2 (SCAMP2) have been reported to be associated with the N-terminal tail of SERT [24]. Macrophage myristoylated alanine-rich C kinase substrate (MacMARCKS) [25], integrin β3 [26] and nitric oxide synthase (nNOS) [27] have been reported to be associated with the C-terminal tail of SERT. SERT also forms complexes with hydrogen peroxide-inducible clone 5 protein (Hic-5) [28,29], phosphatase 2A (PP2A) [30], and α- and γ-synuclein [31,32]. By interacting with SERT, SCAMP2, MacMARCKS, nNOS, Hic-5, PP2A and α/γ-synuclein reduce the efficacy of serotonin reuptake because of a reduction in surface expression of SERT or promotion of SERT dephosphorylation [24,25,27,29-32]. Loss of integrin β3 results in decreased SERT function and surface expression in platelets [26]. Syntaxin-1A regulates the electrophysiological properties of SERT [23].

In this study, we sought to identify novel proteins interacting with the N- and C-terminal portions of SERT, and which thereby regulate SERT function. We also measured the levels of mRNAs for SERT and SERT-interacting proteins in post-mortem brains and lymphocytes from autism patients to assess their involvement in autism.

Methods

Animal experiments

Experiments using mice were approved by the Committee on Animal Research of Hamamatsu University School of Medicine and University of Fukui. These experiments were performed in accordance with the Guide for Animal Experimentation at the Hamamatsu University School of Medicine and the University of Fukui.

Glutathione S-transferase pull-down assays

Full-length rat SERT complementary DNA (cDNA) was obtained from Dr Heinrich Betz (Max Planck Institute) [25,33]. PCR fragments corresponding to the N-terminal domain of the rat SERT (N-SERT; residues 1 to 85 amino acids) and the C-terminal domain of the rat SERT (C-SERT; residues 595 to 630 amino acids) were fused to glutathione S-transferase (GST) by subcloning into the pGEX-5X-1 bacterial expression vector (Amersham Bioscience, Uppsala, Sweden), to produce vectors containing GST-N-SERT and GST-C-SERT. Plasmids were transformed into Escherichia coli (BL21 (DE3), Stratagene, La Jolla, CA, USA) and were cultured and induced with isopropyl-β-D-thiogalactopyranoside (IPTG) at 37°C for 4 h. Mouse brain tissue was homogenized on ice using a homogenizer (Iuchi, Osaka, Japan), in 5 ml of homogenization buffer (50 mM NH₄Cl, 40 mM Tris–HCl pH 8.0) supplemented with a 1× complete protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN, USA) per brain. The same amount of extraction buffer (20 mM NaCl, 20 mM Tris–HCl pH 8.0, 1% NP-40, 1% deoxycholate) was added, and homogenates were incubated at 4°C for 30 min with rotation. Insoluble cellular debris was removed by centrifugation, and the supernatants were collected. Then, the extracts were diluted up to tenfold in homogenization buffer plus extraction buffer without detergents. Extracts were incubated with glutathione agarose bound to GST, GST-N-SERT or GST-C-SERT at 4°C for 3 h. Beads were washed five times with TBS buffer (50 mM Tris–HCl...
In the construct pcDNA-hSERT. To generate stably
translated by RT-PCR. The PCR fragments were cloned into

In the Institutes of Health, USA). Quantified using ImageJ software (ImageJ 1.44, National

USA) were used. Immunoreactive bands were scanned and

produced a stable cell line (HEK293-hSERT cells)

Production of a stable cell line (HEK293-hSERT cells)
The human SERT (hSERT) protein was transcribed from

The targeted sequences of the

The duplexed oligonucleotides of siRNA used in this

siRNA-mediated gene knockdown

The duplicated oligonucleotides of siRNA used in this

siRNAs were as follows: 5′-GGATATGCAA

Page 3 of 18

http://www.molecularautism.com/content/5/1/33

Iwata et al. Molecular Autism 2014, 5:33

primary culture of serotonergic raphe neurons

Primary culturing of serotonergic raphe neurons was performed using mouse neurons as described previously [36]. Pregnant BL6 mice (E16.5) were euthanized by cervical dislocation. Embryos were removed and placed in Hank’s balanced salt solution (HBSS) without Ca²⁺.

were removed from the embryos under a dissecting microscope (SMZ645; Nikon, Tokyo, Japan), and the midbrain/brainstem was gently dissociated. The neural tube was opened ventrally and flattened in a Petri dish containing HBSS without Ca²⁺. A strip of tissue of approximately 0.5 mm in width was dissected at the midline of the rostral rhombencephalon. Raphe tissue was resuspended in 5 ml of HBSS without Ca²⁺ and triturated ten times; the homogenate was strained through a cell strainer (BD Biosciences, Mississauga, ON, Canada) to remove debris, and an equal amount of HBSS containing Ca²⁺ was added. Cells were centrifuged (500 g, 5 min), and the pellet was resuspended in 5 ml of Neurobasal media (Invitrogen) containing B27 supplement (Invitrogen), penicillin (100 U/ml), streptomycin (100 μg/ml) and 0.4% L-Glutamine (Invitrogen) and plated onto eight-well slide chambers coated with poly-D-lysine (BD Biosciences). Two days after plating, 0.3 ml of medium from each well was replaced with fresh medium. Cells were cultured for 7 days in vitro [36].
GAATCAAGAGTTACTAAT-3' (siRNA-2). Transfection was performed using Lipofectamine RNAiMAX (Invitrogen) in accordance with the manufacturer's instructions, and cells were processed 48 h after transfection.

Immunocytochemistry and microscopy

HEK293-hSERT cells were grown on poly-D-lysine-coated glass coverslips. Raphe neurons were plated onto eight-well slide chambers coated with poly-D-lysine (BD Biosciences) and cultured for 7 days in vitro [36]. Cells were washed with PBS (−) and fixed with 2% paraformaldehyde in PBS (−), pH 7.4, for 15 min at room temperature (RT). Cells were washed with PBS (−) and incubated with ice cold 100% methanol for 10 min at −20°C to permeabilize them. Cells were washed with PBS (−) and incubated with blocking solution (5% skimmed milk in PBS (−)) at RT for 1 h followed by incubation with primary antibody against SERT (1:400; C-20, Santa Cruz Biotechnology, Inc), NSF (1:500; Cell Signaling Technology, Inc), cadherin (1:50; Abcam Inc, Cambridge, MA, USA) or serotonin (1:50; Gene Tex, Inc, Irvine, CA, USA) diluted in 1% skimmed milk in PBS (−) for 1 h at RT. Cells were washed in PBS (−) and incubated with the appropriate fluorophore-conjugated secondary antibody diluted in 1% skimmed milk in PBS (−) for 1 h at RT. After washing, the cells were mounted onto microscope slides in 50% glycerol in PBS (−). Samples were imaged on a fluorescence microscope (BX53; Olympus, Tokyo, Japan) or a laser scanning confocal microscope (Fluoview FV1000; Olympus).

Fluorescence-based uptake assay

The fluorescence-based uptake assay employed a fluorescent substrate that mimics the biogenic amine neurotransmitters and is taken up by the cell through their specific transporters, resulting in increased fluorescence intensity [38]. The corresponding fluorescence-based potencies (Fl. pIC50 values) were determined in a similar manner to the [3H]-neurotransmitter uptake protocols [39]. HEK293-hSERT cells were plated in black, 96-well optical bottom assay plates coated with poly-D-lysine (#3882, Corning Life Sciences, Lowell, MA, USA) and transfected with siRNAs as described above. Fluorescent substrate uptake assays were performed using the Neurotransmitter Transporter Uptake Assay Kit (Molecular Devices Co, Sunnyvale, CA, USA) in accordance with the manufacturer's instructions. Kinetic measurements of relative fluorescence units (integrated over 0.5 ms) were completed within 15 min. Mouse brains were homogenized on ice using a homogenizer (Iuchi, Osaka, Japan), in 5 ml of homogenization buffer (50 mM NH4Cl, 40 mM Tris–HCl, pH 8.0) supplemented with 1× complete protease inhibitor cocktail (Roche Applied Science) per brain. The same amount of extraction buffer (20 mM NaCl,
20 mM Tris–HCl, pH 8.0, 1% NP-40, 1% deoxycholate) was added, followed by incubation at 4°C for 30 min with rotation. Insoluble cellular debris was removed by centrifugation (3,000 rpm, 10 min), and the supernatants were then used as a brain extract. Brain extracts were pre-cleared with 30 μl of protein G-Sepharose (Thermo Fisher Scientific, Inc, Waltham, MA, USA) for 1 h at 4°C. Cleared lysates were first incubated with an anti-SERT antibody (made by two of the authors, TT and SY) at 4°C for 3 h, and then with 20 μl of protein G-Sepharose for 1 h at RT. The complex-bound resin was washed five times with IP buffer (25 mM Tris–HCl, 150 mM NaCl; pH 7.2). Immunoprecipitated complexes were boiled in 2× SDS-PAGE sample buffer for 5 min to elute bound proteins. Western blot analysis was carried out as described above.

Post-mortem brain tissues
The ethics committee of the Hamamatsu University School of Medicine approved this study. The Autism Tissue Program (Princeton, NJ, USA) [41], the National Institute of Child Health and Human Development’s Brain and Tissue Bank for Developmental Disorders (Baltimore, MD, USA) [42] and the Harvard Brain Tissue Resource Center (Belmont, MD, USA) [43] provided frozen post-mortem brain tissues from dorsal raphe regions (n = 11 control and n = 7 autism).

Lymphocyte samples
The participants in this study were 30 male subjects with autism spectrum disorder (ASD) and 30 healthy male controls. All participants were Japanese. They were born and lived in restricted areas of central Japan, including Aichi, Gifu and Shizuoka prefectures. Based on interviews and available information, including hospital records, diagnoses of ASD were made by an experienced child psychiatrist (TS) based on the DSM-IV-TR criteria. The Autism Diagnostic Interview-Revised (ADI-R) [44] was also conducted by two of the authors (KJT and KM), both of whom have established reliability for diagnosing autism with the Japanese version of the ADI-R. The ADI-R is a semi-structured interview conducted with a parent, usually the mother, and is used to confirm the diagnosis and also to evaluate the core symptoms of ASD. The ADI-R domain A score quantifies impairment in social interaction, the domain BV score quantifies impairment in communication, and the domain C score quantifies restricted, repetitive and stereotyped patterns of behavior and interests. The ADI-R domain D corresponds to the age of onset criterion for autistic disorder. The manual for the Wechsler Intelligence Scale for Children, Third Edition [45], was used to evaluate the intelligence quotient (IQ) of all the participants. Comorbid psychiatric illnesses were excluded by means of the Structured Clinical Interview for DSM-IV (SCID).

Participants were excluded from the study if they had any symptoms of inflammation, a diagnosis of fragile X syndrome, epileptic seizures, obsessive-compulsive disorder, affective disorders or any additional psychiatric or neurological diagnoses. None of the participants had ever received psychoactive medications before this study. Healthy control subjects were recruited locally by advertisement. All control subjects underwent a comprehensive assessment of their medical history to eliminate individuals with any neurological or other medical disorders. SCIDs were also conducted to identify any personal or family history of past or present mental illness. None of the comparison subjects initially recruited was found to fulfill any of these exclusion criteria.

This study was approved by the ethics committee of the Hamamatsu University School of Medicine. All participants as well as their guardians were given a complete description of the study, and provided written informed consent before enrollment. Whole-blood samples were collected by venipuncture from all participants. Lymphocytes were isolated from blood samples by means of the Ficoll-Paque gradient method (purity 80%) within 2 h after sampling.

Quantitative real-time reverse-transcription-polymerase chain reaction
Total RNA was isolated from the dorsal raphe regions of post-mortem brains and lymphocytes using TRIZOL reagent (Invitrogen). The RNA samples were further purified using the RNeasy Micro Kit (QIAGEN, Hilden, Germany). First-strand cDNA was synthesized from the RNA samples using the SuperScript III First-Strand Synthesis System (Invitrogen). Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) analysis was performed using the TaqMan method in the ABI StepOnePlus TM Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). TaqMan assay IDs of the genes are as follows: SLC6A4, Hs00984349_m1 and NSF, Hs00938040_m1. Actin, beta (ACTB; Hs99999903_m1) was used as the endogenous reference. Relative quantification of NSF and SERT expression levels in post-mortem brains was performed using the delta-delta C_T method [46], with the constitutively expressed gene ACTB as an internal control. Standard curves were constructed for NSF, SERT and ACTB primers to validate the application of the delta-delta C_T method. Relative quantification of NSF and SERT expression levels in lymphocytes was performed using the relative standard curve method, with the constitutively expressed gene ACTB as an internal control.

Statistical analysis
The data were analyzed using a two-tailed unpaired t-test after it had been confirmed that there were no statistically significant differences in variance as assessed by the F test.
One-way analysis of variance (ANOVA) followed by Tukey’s correction was used for multiple comparisons. One-way repeated-measures ANOVA with Tukey’s post hoc test was used for analysis of data from the uptake assay. The Mann–Whitney U test was used to evaluate differences in age, post-mortem interval (PMI) and IQs between the autism and control groups, and gene expression levels in the post-mortem brains and lymphocytes between these groups. Fisher’s exact test was used to evaluate differences in race and gender between the autism and control groups. Evaluation of the relationships between NSF expression level and clinical variables and symptom profiles was performed using Spearman’s rank correlation coefficient. P values of less than 0.05 were considered to indicate statistical significance. All statistical analyses were performed using statistical analysis software (SPSS, version 12.0 J, IBM, Armonk, NY, USA).

Results

Identification of N-ethylmaleimide-sensitive factor as a novel serotonin transporter-binding protein

To identify novel binding proteins for SERT, we conducted pull-down experiments using GST-N-SERT or GST-C-SERT with and without (as a negative control) mouse brain lysates. After SDS-PAGE and silver staining of the gels, at least ten specific bands were observed in the lane containing proteins eluted from GST-N-SERT beads incubated with brain lysates, and at least three bands were observed in the lane containing proteins eluted from GST-C-SERT beads incubated with brain lysates (Figure 1A). The protein bands were excised from the gel and subjected to in-gel trypsin digestion. The tryptic peptide mixtures were analyzed by mass spectrometry. Excluding proteins that bound to both termini of SERT, we identified seven N-terminal-specific binding proteins, but no C-terminal-specific binding proteins (Table 1). One of the N-terminal specific bands, migrating at around 70 kDa, N-4 (Figure 1A), was identified as NSF, which regulates membrane fusion events [47,48], based on 24 independent MS spectra (Figure 1B and Table 1). We focused on the interaction between NSF and SERT in the present study for the following reasons. First, we identified NSF as having the highest reliability score (Table 1). Second, NSF interacts with neurotransmitter receptors, such as AMPA, β2 adrenergic and GABA_A receptors, and it regulates the membrane trafficking and synaptic stabilization of these receptors [49-57]. Finally, in the photoreceptor synapse, the NSF and Arrestin 1 interaction regulates expression of vesicular glutamate transporter 1 and excitatory amino acid transporter 5 in the photoreceptor synapse [58]. These findings suggest that NSF may interact with neurotransmitter transporters and regulates these functions in the central nervous system (CNS). To verify the interaction of NSF with SERT, we conducted Western blot analysis. GST, GST-N-SERT and GST-C-SERT were incubated with mouse brain extracts. As shown in Figure 1C, NSF bound the N-terminal region of SERT specifically. In support of previous studies, N-terminal-specific binding of syntaxin-1A was confirmed [21-23] (Additional file 1: Figure S1).

![Figure 1](http://www.molecularautism.com/content/5/1/33)
We used RNA interference to knock down endogenous NSF expression using HEK293 cells as described in the Methods section. It was confirmed that SERT was transported to the plasma membrane in this cell line by double staining using antibodies to SERT and cadherin, a membrane marker (see Additional file 2: Figure S2). The subcellular localization of SERT and NSF was examined using immunofluorescence confocal microscopy. NSF is expressed endogenously in HEK293 cells. We established a stable human SERT-expressing cell line, HEK293-hSERT, using HEK293 cells as described in the Methods section. It was confirmed that SERT was transported to the plasma membrane in this cell line by double staining using antibodies to SERT and cadherin, a membrane marker (see Additional file 2: Figure S2). HEK293-hSERT cells were double labeled with antibodies to NSF and SERT, and it was revealed that NSF co-localized with SERT in the plasma membrane (Figure 2A,B,C) and intracellular particles (Figure 2D,E,F).

Co-localization of serotonin transporter and N-ethylmaleimide-sensitive factor in HEK293-hSERT cells

The subcellular localization of SERT and NSF was examined using immunofluorescence confocal microscopy. NSF is expressed endogenously in HEK293 cells. We established a stable human SERT-expressing cell line, HEK293-hSERT, using HEK293 cells as described in the Methods section. It was confirmed that SERT was transported to the plasma membrane in this cell line by double staining using antibodies to SERT and cadherin, a membrane marker (see Additional file 2: Figure S2). HEK293-hSERT cells were double labeled with antibodies to NSF and SERT, and it was revealed that NSF co-localized with SERT in the plasma membrane (Figure 2A,B,C) and intracellular particles (Figure 2D,E,F).

Effect of N-ethylmaleimide-sensitive factor knockdown on serotonin transporter function and cellular localization

We used RNA interference to knock down endogenous NSF expression. We confirmed that the efficacy of siRNA transfection into HEK293-hSERT cells was >90% (see Additional file 3: Figure S3). As shown in Figure 3A,B, it was confirmed that both of the siRNAs (siRNA-1 and -2) targeting NSF suppressed endogenous NSF protein levels by approximately 60% (\(P < 0.001 \), one-way ANOVA with Tukey’s post hoc test, \(n = 3 \) each). Importantly, whole-cell SERT protein levels were not changed significantly by the siRNAs targeting NSF (\(F_{(2,14)} = 1.057; P = 0.374 \), one-way ANOVA, \(n = 5 \) to 6 each) (Figure 3C,D). To investigate the effect of NSF on SERT uptake function, we conducted a fluorescence-based uptake assay in HEK293-hSERT cells. As shown in Figure 4, both NSF siRNAs decreased fluorescence uptake (siRNA-1; \(P = 0.005 \) and siRNA-2; \(P < 0.001 \), one-way repeated measures ANOVA with Tukey’s post hoc test, \(n = 8 \) each). Fluoxetine completely inhibited uptake (Figure 4), including nonspecific uptake.

Next, we conducted biotinylation experiments in HEK293-hSERT cells using sulfo-NHS-SS-biotin. This compound, which binds to lysine and arginine residues in proteins, is cell impermeant and labels cell-surface proteins. Cells transfected with the siRNA of NSF (siRNA-2) or a negative control were incubated with sulfo-NHS-SS-biotin, followed by isolation of labeled proteins with avidin beads and analysis by Western blotting using anti-SERT antibodies. For the biotinylated membrane fraction, after Western blot analysis, the membrane was stained with CBB as a protein-loading control (Additional file 4: Figure S4). As shown in Figure 5A,B, the level of SERT protein at the cell membrane was decreased by an average of 50% (\(t = 5.399; df = 16; P < 0.001 \), two-tailed unpaired t-test, \(n = 9 \)) following NSF knockdown, despite no change in the total levels of SERT protein (\(t = −1.565; df = 10; P = 0.149 \), two-tailed unpaired t-test, \(n = 6 \)). Finally, we examined the distribution of SERT in HEK293-hSERT cells when NSF was suppressed. In support of the results of the experiment using sulfo-NHS-SS-biotin, the

Table 1 Identification of GST-N-SERT and GST-C-SERT pulled-down proteins from mouse brain extracts

Spot number	Gene name	Protein name	MW (Da)	Number	Sequence coverage	Score	Accession number	N-terminal specific	Cellular and molecular events
N-1	Synj1	Synaptotagin 1	172,509	23	14%	785	Q8CHC4		Endocytosis
N-2	Cand1	Cullin-associated NEDD8-dissociated protein 1	136,245	14	10%	526	Q6ZQ38		SCF complex assembly
N-3	Aco2	Aconitate hydratase, mitochondrial	85,410	14	19%	534	Q99K10		
N-4	Nsf	Vesicle-fusing ATPase (NSF)	82,561	24	27%	1,010	P46460		
N-5	Atp6v1a	V-type proton ATPase catalytic subunit A	68,283	13	21%	466	P50516		Hydrolysis
N-6	Cmp1	Dihydroprymidinase-related protein 1	62,129	12	20%	441	P97427		Axon guidance and cell migration
N-7	Cct2	T-complex protein 1 subunit beta	57,441	11	19%	202	P80314		Molecular chaperone
N-8	Fscn1	Fascin	54,474	14	25%	174	Q61553		Actin filament binding
N-9	Enol1	Alpha-enolase	47,111	16	24%	703	P17182		
N-10	Cnp	2,3′-cyclic-nucleotide 3′-phosphodiesterase	47,094	22	40%	341	P16330		
C-1	Aco2	Aconitate hydratase, mitochondrial	85,410	8	9%	287	Q99K10		
C-2	Enol1	Alpha-enolase	47,111	8	20%	384	P17182		
C-3	Cnp	2,3′-cyclic-nucleotide 3′-phosphodiesterase	47,094	18	32%	225	P16330		

C-SERT, C-terminal domain of the serotonin transporter; GST, glutathione S-transferase; MW, molecular weight; N-SERT, N-terminal domain of the serotonin transporter.

Iwata et al. Molecular Autism 2014, 5:33
http://www.molecularautism.com/content/5/1/33
membrane expression of SERT was decreased by NSF knockdown in HEK293-hSERT cells (Figure 5C).

Association between serotonin transporter and N-ethylmaleimide-sensitive factor in vivo

To determine the physiological significance of our findings in vivo, we examined: (a) the interaction between SERT and NSF in the mouse brain by immunoprecipitation and Western blotting and (b) the cellular distributions of NSF and SERT in cultured mouse raphe neurons by immunocytochemistry and microscopy.

Schmitt-Ulms and colleagues have established a method that covalently conserves protein interactions through tcTPC [40]. This method enables the preservation of protein–protein interactions that occur under physiological conditions. We investigated the interaction of SERT with NSF in the mouse brain using this tcTPC method. First, we examined the accuracy of the method. Total protein from non-tcTPC- or tcTPC-treated mouse brains was analyzed by immunoblotting, and we confirmed that SERT-containing cross-linked complexes were retained by this method (see Additional file 5: Figure S5A). Second, we checked whether the complexes were precipitated by anti-SERT antibodies and confirmed that SERT-containing cross-linked complexes were precipitated in a dose-dependent manner using this antibody (see Additional file 5: Figure S5B). Then, finally, we investigated the binding of SERT to NSF. As shown in Figure 6A, NSF co-immunoprecipitated with SERT from tcTPC-treated brain cells indicating that NSF interacts with SERT in the mouse brain under physiological conditions. Next, the cellular distributions of NSF and SERT in cultured mouse raphe neurons were examined. About 10% of all cultured cells were 5-HT-positive neurons in support of a previous report (data not shown) [36]. NSF was ubiquitously expressed in all cultured cells (data not shown). As shown in Figure 6B, triple immunocytochemical staining for SERT, NSF and 5-HT revealed that NSF co-localizes with SERT in the cell body and fibers of cultured serotonergic neurons.

SLC6A4 and N-ethylmaleimide-sensitive factor expression in the raphe region of post-mortem brains from autism patients

The demographic characteristics of subjects (seven with autism and eleven control subjects) are described in Tables 2 and 3. There were no significant differences in age ($P = 1.000$, Mann–Whitney U test), race ($P = 0.305$, Fisher’s exact test), gender ($P = 0.596$, Fisher’s exact test) and PMI ($P = 0.513$, Mann–Whitney U test) between the autism and control groups (Table 3). Although changes in SERT function and expression have been implicated in autism, mRNA expression of the **SLC6A4** gene that encodes SERT in the brains of autistic individuals has never been reported. Therefore, first, we measured **SLC6A4** expression in the raphe region of post-mortem brains from autistic individuals and controls using qRT-PCR. **SLC6A4** expression was normalized to the expression levels of an internal control (**ACTB**). As shown in Figure 7A, there are wide individual differences in the
expression level of SLC6A4 among the subjects, and the level did not differ significantly between subjects with autism and controls \((P = 0.928, \text{Mann–Whitney } U \text{ test})\). Then, we measured NSF expression in the same way. NSF expression was normalized to the expression of ACTB. We found that the NSF expression level in autism patients tended to be lower than that in controls; however, this trend was not statistically significant \((P = 0.069, \text{Mann–Whitney } U \text{ test})\) (Figure 7B).

SLC6A4 and N-ethylmaleimide-sensitive factor expression in lymphocytes from patients with autism spectrum disorders

NSF is expressed ubiquitously in all normal human tissues including lymphocytes [59]. Lymphocytes also carry SERT [60]. Thus, we measured expressions of these genes in lymphocytes from individuals with ASD and age- and sex-matched controls by qRT-PCR. The demographic characteristics of the subjects (30 with ASD and 30 control subjects) are described in Table 4. There were no significant differences in age \((P = 0.928, \text{Mann–Whitney } U \text{ test})\) or IQs (verbal IQ, \(P = 0.098, \text{Mann–Whitney } U \text{ test}\); performance IQ, \(P = 0.076, \text{Mann–Whitney } U \text{ test}\); full-scale IQ, \(P = 0.554, \text{Mann–Whitney } U \text{ test}\)) between the ASD and control groups (Table 4). As shown in Figure 8A, the expression level of SLC6A4 did not differ significantly between subjects with ASD and controls \((P = 0.518, \text{Mann–Whitney } U \text{ test})\). On the other hand, we found that the NSF expression level in ASD...
patients were significantly lower than that in controls ($P = 0.0011$, Mann–Whitney U test) (Figure 8B). Moreover, there was a significantly negative correlation between NSF expression and ADI-R Domain A score, which quantified impairment in social interaction, in individuals with ASD ($r_s = 0.131$, $P = 0.0498$, Spearman’s rank correlation coefficient test) (Figure 8C). There were no significant correlations between NSF expression levels and levels of $SLC6A4$ and any other symptom profile or clinical variables (data not shown).

Discussion

In this study, NSF was identified as a novel SERT-binding protein interacting with the N-terminal region of SERT. NSF knockdown resulted in decreased membrane expression of SERT and decreased uptake of substrate. These results clearly show that NSF modulates SERT membrane trafficking, which is consistent with its uptake function. An immunoprecipitation assay using mouse brain and immunocytochemistry of cultured mouse raphe neurons clearly indicated that SERT–NSF complexes were formed under physiological conditions in vivo. In addition, a study of post-mortem brains revealed that the $SLC6A4$ expression level was not affected in subjects with autism, but the NSF expression level in the raphe region tended to be decreased; however, this potential trend is not statistically significant. In lymphocytes, the $SLC6A4$ expression level was also unchanged, but the NSF expression level was significantly decreased in subjects with ASD and correlated with the severity of clinical symptoms.

N-ethylmaleimide-sensitive factor functions and protein binding

NSF is a homohexameric ATPase [61,62], which is an essential component of the protein machinery responsible for various membrane fusion events, including intercisternal Golgi protein transport and the exocytosis of synaptic vesicles [63]. NSF binds to soluble NSF attachment protein–receptor (SNARE) complexes and mediates the recycling of spent SNARE complexes for subsequent rounds of membrane fusion [63,64]. While this is a major function of NSF, it also interacts with receptor proteins, such as AMPA, β2 adrenergic and $GABA_A$ receptors, and is thought to affect their trafficking patterns or recycling [49-57]. Additionally, an interaction between NSF and arrestin 1 regulates the expression of vesicular glutamate transporter 1 and excitatory amino acid transporter 5 in the photoreceptor synapse [58]. In the present study, we found, for the first time, that NSF binds the neurotransmitter transporter SERT and regulates its function in the CNS.

Serotonin transporter forms complexes with N-ethylmaleimide-sensitive factor in vivo

Several putative SERT-binding proteins have been reported [21-32]. However, almost all of these were identified using the yeast two-hybrid system and little is known regarding whether any of these proteins bind to SERT and regulate its function in the mammalian brain. Also, little is known about the involvement of these proteins in autism [65,66]. Therefore, in this study, we used a pull-down system together with mouse brain tissue to identify novel SERT-binding proteins. Moreover, we used the tcTPC method, which is an innovative tool for studying proteins in living tissues [40]. This method enabled us to preserve protein–protein interactions occurring under physiological conditions. This cross-linking also preserves membrane protein assemblies, which are degraded by solubilizing detergents. For instance, whereas most detergents cause rapid disintegration of the γ-secretase complex, three of four known components of the complex were purified and identified from harsh detergents and a high salt concentration by tcTPC [40]. Because NSF was not co-immunoprecipitated with SERT from non-tcTPC-treated brains (Figure 6A), it is likely that SERT–NSF complexes are sensitive to solubilizing detergents. The discovery of complexes including NSF and SERT, which form in the mammalian brain under physiological conditions, in the present study, is important from the viewpoint of their potential involvement in the pathophysiology of disorders such as autism. It is not yet
Figure 5 (See legend on next page.)
clear whether NSF binds SERT directly or indirectly. In addition, the band for the SERT–NSF complex was smeared, suggesting that multiple types of SERT–NSF complexes exist. It is possible that SERT interacts with NSF through other proteins. Indeed, it is possible that GABA_A receptors interact with NSF via GABA_A receptor-associated protein, and regulate its intracellular distribution and recycling [56,67]. Detailed analyses of these SERT–NSF complexes are needed.

Serotonin transporter and N-ethylmaleimide-sensitive factor expressions in autism

Recently, Nakamura and colleagues reported that the levels of SERT based on its radioligand binding were significantly lower throughout the brain in autistic individuals compared with controls [17]. On the other hand, Azmitia and colleagues reported increased immunoreactivity to a SERT antibody of serotonin axons in the post-mortem cortex of autism patients [18]. Our results show

Figure 5 NSF knockdown results in decreased SERT expression at the plasma membrane in HEK293-hSERT cells. (A) Biotinylation experiments in HEK293-hSERT cells transfected with siRNA-2 targeting a specific NSF sequence or negative control. Transfected cells were incubated with sulfo-NHS-SS-biotin, and labeled proteins were analyzed by immunoblotting using anti-SERT antibodies. (B) Quantitation of relative band densities for SERT was performed by scanning densitometry. Data are expressed as the means ± standard deviation, n = 6 to 9. ***P < 0.001 vs negative control (two-tailed unpaired t-test). (C) Double immunocytochemical staining for SERT (green) and NSF (red) in HEK293-hSERT cells transfected with control siRNA (upper panels) and siRNA for NSF (siRNA-2, lower panels). Scale bar: 10 μm. Results are representative of three independent experiments. NSF, N-ethylmaleimide-sensitive factor; SERT, serotonin transporter; siRNA, small interfering RNA.

Figure 6 NSF interacts with SERT in vivo. (A) Interaction of SERT with NSF in mouse brain. Immunoblot of total proteins from non-tcTPC- and tcTPC-treated mouse brains (as input, lanes 1 and 2, respectively). Proteins from non-tcTPC- or tcTPC-treated mouse brains were immunoprecipitated with SERT antibodies (lane 3 and 4), and the resulting immunoblot was probed for NSF. In immunoprecipitated samples using tcTPC-treated mouse brains, SERT–NSF complexes and free NSF were identified (lane 4). Results are representative of three independent experiments. (B) NSF co-localizes with SERT in primary cultures of mouse raphe nuclei neurons. Triple immunocytochemical staining for SERT (green), NSF (red) and 5-HT (blue) in primary cultures of mouse raphe nuclei neurons. The third panel (merged) shows that NSF co-localizes with SERT primary cultures of mouse raphe nuclei neurons. These neurons are 5-HT-positive serotonergic neurons (as shown in the fourth panel). Scale bars: 10 μm. Results are representative of three independent experiments. 5-HT, 5-hydroxytryptamine; IB, immunoblotting; IP, immunoprecipitation; MW, molecular weight; NSF, N-ethylmaleimide-sensitive factor; SERT, serotonin transporter; tcTPC, time-controlled transcardiac perfusion cross-linking.
that, at least, SLC6A4 mRNA expression is normal in the raphe region of post-mortem brains from subjects with autism. Our findings and previous results lead us to two suggestions. First, although the transcription of SLC6A4 is normal in subjects with autism, the level of SERT protein at the pre-synaptic membrane is decreased because of an impairment of the trafficking system. Second, SERT protein that is not delivered to the pre-synaptic membrane accumulates in axon fibers in the brains of subjects with autism. In lymphocytes, we found that SLC6A4 expression was not changed in subjects with ASD. In contrast with our finding, Hu et al. previously reported that there was a significant decrease in the expression in the more severely affected twin for autistic twin pairs studied using lymphoblastoid cell lines [68]. This study used lymphoblastoid cell lines, not lymphocytes, from only three sets of discordant twins, and SLC6A4 expression was not compared with normal controls [68]. These differences may be the cause of the discrepancies between the present study and that report.

We found that the NSF expression levels tended to decrease in the raphe region of post-mortem brains from subjects with autism; however, this trend was not statistically significant ($n = 11$ control and $n = 7$ autism). Further studies with larger numbers of post-mortem brains are needed to clarify NSF expression status in the brain of autism patients. In lymphocytes, we found, for the first time, that NSF expression was significantly lower in subjects with ASD and lower NSF expression correlated with the severity of impairments in social interaction. Our findings suggest that peripheral NSF mRNA levels may serve as a reliable peripheral biological marker of ASD.

Sullivan et al. reported that the expression levels of a number of biologically relevant genes are statistically similar between lymphocytes and CNS tissues including the brain, and suggested that the cautious and thoughtful

Sample ID	Diagnosis	Age (years)	Gender	Post-mortem interval (hours)	Race	Cause of death
1065	Control	15	M	12	Caucasian	Multiple injuries
1297	Control	15	M	16	African-American	Multiple injuries
1407	Control	9	F	20	African-American	Asthma
1541	Control	20	F	19	Caucasian	Head injuries
1708	Control	8	F	20	African-American	Asphyxia, multiple injuries
1790	Control	14	M	18	Caucasian	Multiple injuries
1793	Control	12	M	19	African-American	Drowning
1860	Control	8	M	5	Caucasian	Cardiac arrhythmia
4543	Control	29	M	13	Caucasian	Multiple injuries
4638	Control	15	F	5	Caucasian	Chest injuries
4722	Control	14	M	16	Caucasian	Multiple injuries
797	Autism	9	M	13	Caucasian	Drowning
1638	Autism	20	F	50	Caucasian	Seizure
4231	Autism	8	M	12	African-American	Drowning
4721	Autism	8	M	16	African-American	Drowning
4899	Autism	14	M	9	Caucasian	Drowning
5000	Autism	27	M	8.3	NA	NA
6294	Autism	16	M	NA	NA	NA

Table 3 Demographic data associated with raphe brain-tissue samples

	Control ($n = 11$)	Autism ($n = 7$)	P value
Age (years) (range)	14.45 (8–29)	14.57 (8–27)	NS a
Race, n (%)	Caucasian 7 (63.6), African-American 4 (36.4)	Caucasian 3 (42.9), African-American 2 (28.6), NA 2 (28.6)	NS b
Gender, n (%)	Male 7 (63.6), Female 4 (36.4)	Male 6 (85.7), Female 1 (14.3)	NS b
Post-mortem interval (hours) (range)	14.82 (5–20)	18.05 (8.3–50)	NS a

aDerived from Mann–Whitney U test, bDerived from Fisher’s exact test.
NA, not available; NS, not significant.
use of lymphocytic gene expression may be a useful surrogate for gene expression in the CNS when it has been determined that the gene is expressed in both [69]. In support of previous findings [59,60], the expressions of SLC6A4 and NSF were detected in both tissues, and it is likely that levels of SLC6A4 and NSF in the peripheral lymphocytes may reflect the levels in post-mortem brains, although further study is needed.

The serotonin transporter–N-ethylmaleimide-sensitive factor binding and implications for pathophysiology in autism

Sanyal and Krishnan reported a lethal mutation in the Drosophila homolog of NSF [70]. Intriguingly, mutant adult survivors show abnormal seizure-like paralytic behavior [70]. Additionally, Matveeva and colleagues reported that decreased production of NSF is associated with epilepsy in rats [71]. Importantly, a high rate of co-occurrence of autism and epilepsy has been described [72-76]. Approximately 30% of children with autism have epilepsy and 30% of children with epilepsy have autism [77]. Interestingly, an abnormal status for SERT has been reported in epileptic patients as follows. Autoradiography experiments have revealed that the temporal neocortex surrounding the epileptic focus of patients with mesial temporal lobe epilepsy presents diminished SERT binding in all cortical layers [78]. A significant decrease was found in the SERT density in the platelet membranes from epileptic patients having undergone an epileptic seizure [79,80]. Additionally, it has been shown that epileptic patients who had been treated with inhibitors of serotonin reuptake, such as fluoxetine and citalopram, in addition to their ongoing antiepileptic therapy displayed remarkable clinical improvements [81,82]. This indirect evidence implies the relationship between SERT and NSF in neurological disorders, such

Table 4 Demographic data associated with lymphocyte samples

	Control (N = 30)	Autism (N = 30)	P value
Age (years)	11.1 ± 2.3 (6–16)	11.6 ± 2.7 (7–16)	NS*
ADI-R			
Domain A score		20.0 ± 5.3 (10–30)	
Domain BV score		14.3 ± 4.0 (8–23)	
Domain C score		8.5 ± 3.4 (3–9)	
Domain D score		3.1 ± 1.1 (1–5)	
WISC-III			
Verbal IQ	99.1 ± 10.3 (77–120)	90.4 ± 28.7 (44–153)	NS*
Performance IQ	97.0 ± 10.2 (76–114)	89.8 ± 22.9 (47–131)	NS*
Full-scale IQ	97.8 ± 9.5 (82–115)	89.0 ± 26.9 (42–140)	NS*

*Derived from Mann–Whitney U test; *values are expressed as mean ± standard deviation (range).

ADI-R, Autism Diagnostic Interview-Revised; IQ, intelligence quotient; NS, not significant; WISC-III, the third edition of the Wechsler Intelligence Scale for Children.
as autism. Further investigations of the status of SERT–NSF binding in the brain of autism patients would be useful for understanding the mechanisms that underlie autism. In addition, an animal model, such as an NSF conditional knockout mouse, would be a useful tool for understanding the mechanisms that underlie ASD.

As mentioned above, NSF interacts with neurotransmitter receptors such as AMPA, β2 adrenergic and GABAA receptors, and regulates the membrane trafficking and recycling of these receptors [49-57]. An abnormal status of many of these receptors has been reported in autism. Binding of GABAA α5 and its radioligand was significantly lower throughout the brains of participants with ASDs compared with controls [83]. The mRNA levels of AMPA receptor were significantly increased in the post-mortem cerebellum of autistic individuals, while the receptor density was slightly decreased in people with autism [84]. It is possible that NSF may contribute to the pathophysiology of autism through these known interactions with relevant molecules.

Conclusions

This study showed that dysfunctional trafficking of SERT mediated by NSF may be linked with the pathophysiology of autism. The identification of SERT-binding proteins provides new opportunities not only to dissect the accessory components involved in SERT function and regulation, but also to elucidate the pathophysiology of psychiatric disorders or developmental disorders, such as autism. Future studies should examine the pathophysiological implications of SERT–NSF interactions for autism.

Additional files

Additional file 1: Figure S1. N-tail-specific binding of syntaxin-1A to SERT was confirmed by Western blot analysis.

Additional file 2: Figure S2. SERT is transported to the plasma membrane in HEK299-hSERT cells. (A, B) Double immunocytochemical staining for SERT (green) and the membrane marker cadherin (red) in HEK299-hSERT cells. (C) SERT was mainly co-localized with the membrane.
maker (cadherin) (merged). Scale bar: 10 μm. Results are representative of three independent experiments.

Additional file 3: Figure S3. Transfection efficiency of siRNA in HEK293–hSERT cells. We determined the proportion of siRNA-transfected HEK293–hSERT cells using a commercially available fluoro-oil kit (T YE 563 DS, Integrated DNA Technologies). The proportion of siRNA-transfected cells was 90%. Upper panels show untreated cells and lower panels show red fluorescent oil-transfected cells. Left panels show phase-contrast images and right panels show the images obtained by fluorescence microscopy (excitation: 546 nm, emission: 590 nm). Scale bar: 50 μm. Results are representative of three independent experiments.

Additional file 4: Figure S4. CBB staining of membranes from biotinylated fractions. Biotinylation experiments in HEK293–hSERT cells transfected with siRNA-2 targeting a specific NSF sequence or negative transfected cells were incubated with sulfo-NHS-SS-biotin. After Western blot analysis, the membrane was stained with CBB as a protein-loading control.

Additional file 5: Figure S5. Confirmation of tcTPC efficacy. (A) Western blotting of total proteins from non-tcTPC- or tcTPC-treated mouse brains (lanes 1 and 2, respectively) using anti-SERT antibodies. Results are representative of three independent experiments. It was confirmed that SERT-containing cross-linked complexes were retained by the tcTPC method (lane 2). (B) Proteins from non-tcTPC- or tcTPC-treated mouse brains were immunoprecipitated with rat immunoglobulin G (IgG) as a negative control (lanes 1 and 5) and SERT antibodies (lanes 2 to 4 and 6 to 8), and the resulting Western blot was probed for SERT. In immunoprecipitated samples using tcTPC-treated mouse brains, SERT-containing cross-linked complexes were identified (lanes 6 to 8) in a dose-dependent manner. Results are representative of three independent experiments.

Acknowledgements
We thank Dr Jane Pickert, Director of Brain Resources and Data, Autism Tissue Program, for facilitating brain tissue collection. Human tissue was obtained from the National Institute of Child Health and Development Brain and Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore, MD. Tissue samples were also provided by the Harvard Brain Tissue Resource Center. Written informed consent was obtained from the participants or their families for publication of this manuscript and accompanying figures. We would like to thank all the participants and families for their time and effort. We thank Heinrich Betz for the generous supply of full-length rat SERT cDNA. We also thank Masako Suzuki (Research Equipment Center, Hamamatsu University School of Medicine) for the technical support of the mass spectrometry analysis. This study was supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan to KI and a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan to HM. A part of this study is the result of integrated research on neuropsychiatric disorders carried out under the Strategic Research Program for Brain Sciences by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author details
1Research Center for Child Mental Development, University of Fukui, Fukui, Japan. 2Department of Developmental Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan. 3Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan. 4Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan. 5Department of Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan. 6Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan. 7Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan. 8Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan. 9Faculty of Contemporary Sociology, Chukyo University, Toyota, Japan. 10Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Received: 5 March 2014 Accepted: 24 April 2014
Published: 10 May 2014

References
1. Anderson GM, Freedman DX, Cohen DJ, Volkmar FR, Hoder EL, McPhedran P, Minderas RB, Hansen CR, Young JC: Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 1987, 28:885–900.
2. Ciaranollo RD: Hyperserotonemia and early infantile autism. N Engl J Med 1982, 307:181–183.
3. Cook EH Jr, Levantshl BL, Freedman DX: Serotonin and measured intelligence. J Autism Dev Disord 1988, 18:553–559.
4. Hanley HG, Stahl SM, Freedman DX: Hyperserotonemia and amine metabolites in autistic and retarded children. Arch Gen Psychiatry 1977, 34:521–531.
5. Schain RJ, Freedman DX: Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr 1961, 58:315–320.
6. Abramson RK, Wright HH, Carpenter R, Brennan W, Lumphay C, Cole E, Young SJ: Elevated blood serotonin in autistic probands and their first-degree relatives. J Autism Dev Disord 1989, 19:397–407.
7. Cook EH Jr, Levantshl BL, Heller W, Metz J, Wainwright M, Freedman DX: Autistic children and their first-degree relatives: relationships between serotonin and norepinephrine levels and intelligence. J Neuropsychiatry Clin Neurosci 1990, 2:268–274.
8. Cross S, Kim SJ, Weiss LA, Delahanty RJ, Sutcliffe JS, Levantshl BL, Cook EH Jr, Veenstra-Vanderweele J: Molecular genetics of the platelet serotonin system in first-degree relatives of patients with autism. Neuropsychopharmacology 2008, 33:353–360.
9. McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH: Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 1996, 53:993–1000.

Abbreviations
5-HT: 5-hydroxytryptamine; ADI-R: autism diagnostic interview-revised; ANOVA: analysis of variance; ASD: autism spectrum disorder; cDNA: complementary DNA; CNS: central nervous system; C-SERT: C-terminal domain of SERT; DMEM: Dulbecco’s modified Eagle’s medium; GST: glutathione S-transferase; HBSS: Hank’s balanced salt solution; Hic-5: hydrogen peroxide-inducible clone 5 protein; hSERT: human serotonin transporter; IQ: intelligence quotient; LC-MS/MS: liquid chromatography–tandem mass spectrometry; MacMARCKS: macrophage myristoylated alanine-rich C kinase substrate; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; MW: molecular weight; nNOS: nitric oxide synthase; NSF: N-ethylmaleimide-sensitive factor; N-SERT: N-terminal domain of SERT; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PMI: post-mortem interval; PP2A: phosphatase 2A; qRT-PCR: quantitative real-time reverse-transcription polymerase chain reaction; RT-PCR: reverse-transcription-polymerase chain reaction; SCAMP2: secretory carrier membrane protein 2; SCID: structural clinical interview for DSM-IV; SERT: serotonin transporter; siRNA: small interfering RNA; SLC6A4: member 4 of the solute carrier family 6 (neurotransmitter transporter); SNARE: soluble NSF attachment protein–receptor; tcTPC: time-controlled transcardiac perfusion cross-linking.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HM and TK co-designed the study. KI and HM collected blood samples; collected, analyzed and interpreted the data and prepared the manuscript. TT and SY produced the SERT antibody. KO, HT, KY and SM collected, analyzed and interpreted the data. KN recruited participants, collected blood samples and obtained post-mortem brain samples. KI and KM collected blood samples and undertook clinical evaluations. MT recruited participants. TS recruited participants and diagnosed ASD. TK collected, analyzed and interpreted the data and prepared the manuscript. NM analyzed and interpreted the data, and prepared the manuscript. All authors read and approved the final manuscript.

Published: 10 May 2014

http://www.molecularautism.com/content/5/1/33

Page 16 of 18
Iwata et al. Molecular Autism 2014, 5:33

http://www.molecularautism.com/content/5/1/33
10. Cook EH, Courchesne R, Lord C, Cox NJ, Yan S, Lincoln A, Haas R, Courchesne E, Leventhal BL: Evidence of linkage between the serotonin transporter and autistic disorder. Mol Psychiatry 1997, 2:247–250.

11. Convey J, Meally E, Learney G, Fitzgerald M, Gill M, Gallagher L: Serotonin transporter gene and autism: a haplotype analysis in an Irish autistic population. Mol Psychiatry 2004, 9:537–539.

12. Kim SJ, Cox N, Courchesne R, Lord C, Corsello C, Akshoomoff N, Guter S, Leventhal BL, Courchesne E, Cook EH Jr: Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder. Mol Psychiatry 2002, 7:278–288.

13. Maetreti E, Lai C, Marlow A, Matthews N, Wallace S, Bailey A, Cook EH, Weeks DE, Monaco AP, International Molecular Genetic Study of Autism Consortium: Serotonin transporter (5-HTT) and y-amino butyric acid receptor subunit β3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. Am J Med Genet 1999, 88:492–496.

14. Ramoz N, Reichert JG, Corwin TE, Smith CJ, Silverman JM, Hollander E, Buxbaum JD: Lack of evidence for association of the serotonin transporter gene SLC6A4 with autism. Biol Psychiatry 2006, 60:186–191.

15. Sutcliffe JS, Delahanty RJ, Prasad HC, McCauley JL, Han Q, Jorg L, Li C, Folstein SE, Blakely RD: Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compliant behaviors. Am J Hum Genet 2005, 77:265–279.

16. Nakamura K, Sekine Y, Ouchi Y, Tsuji M, Yashiki E, Futatsubashi M, Tsuchiya KJ, Sugihara G, Iwata Y, Suzuki K, Matsuishi H, Suda S, Sugiyama T, Takei N, Mori N: Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry 2010, 67:59–68.

17. Azmitia EC, Singh JS, Whitaker-Azmitia PM: Serotonin and norepinephrine transporters. Neuroscience 2003, 118:347–1354.

18. Blakely RD, Bauman AL: Biogenic amine transporters: regulation in flux. Curt Opin Neurol 2000, 10:328–336.

19. Robinson MB: Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 2002, 80:1–11.

20. Ciccone MA, Timmons M, Phillips A, Quick MW: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.

21. Quick MW: Role of syntaxin 1A on serotonin transporter expression in developing thalamocortical neurons. Int J Dev Neurosci 2002, 20:219–224.

22. Quick MW: Regulating the conducting states of a mammalian serotonin transporter. Neuron 2003, 40:537–549.

23. Muller HK, Wiborg O, Haase J: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.

24. Muller HK, Wiborg O, Haase J: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.

25. Jess U, El Far O, Kirsch J, Betz H: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.

26. Jess U, El Far O, Kirsch J, Betz H: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.

27. Jess U, El Far O, Kirsch J, Betz H: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.

28. Jess U, El Far O, Kirsch J, Betz H: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.

29. Jess U, El Far O, Kirsch J, Betz H: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.

30. Blakely RD, Bauman AL: Biogenic amine transporters: regulation in flux. Curt Opin Neurol 2000, 10:328–336.

31. Robinson MB: Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 2002, 80:1–11.

32. Wessinger C, Runnak M, Sidhu A: Modulation of the trafficking of the human serotonin transporter by human alpha-synuclein. Eur J Neurosci 2006, 24:55–64.

33. Convey J, Meally E, Learney G, Fitzgerald M, Gill M, Gallagher L: Serotonin transporter gene and autism: a haplotype analysis in an Irish autistic population. Mol Psychiatry 2004, 9:537–539.

34. Iwata K, Izumo N, Matsuishi H, Manabe T, Ihibaishi Y, Ichitani Y, Yamada K, Tsucheya I, Anitha A, Vasu WM, Shimura C, Wakuoka T, Kameyo N, Takahashi T, Iwata Y, Suzuki K, Nakamura K, Mori N: Vildir overexpression causes hyperactivity in rats. Mol Autism 2012, 3:111.

35. Symatrix Science. www.symatrixscience.com.

36. Cesnak M, Burns AM, Lenovic PR, Albert PR: Characterization of rat rostral raphe primary cultures: multiplex quantification of serotonergic markers. J Neurosci Methods 2007, 164:59–67.

37. Lautenschlager M, Holte M, von Jagow B, Veh RW, Harms C, Bergk A, Dimagli U, Ahnert-Hilger G, Hortegi H: Serotonin uptake and release mechanisms in developing cultures of rat embryonic raphe neurons: age- and region-specific differences. Neuroscience 2000, 99:519–527.

38. Konsta R, Nielsen SE, Peters DS, Dyhre P: Validation of a fluorescence-based high-throughput assay for the measurement of neurotransmitter transporter uptake activity. J Neurosci Methods 2008, 169:168–176.

39. Takei N, Mori N, Iwata Y, Suzuki K, Matsuishi H, Suda S, Sugiyama T, Takei N, Mori N: Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry 2010, 67:59–68.

40. Schmitt-Ulms G, Hansen K, Liu J, Cowdry C, Yang J, DeAndr9n SJ, Cohen FE, Prusiner SB, Baldwin MA: Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 2004, 22:724–731.

41. Autism Tissue Program. http://www.autismtissueprogram.org.

42. National Institute of Child Health and Development Brain and Tissue Bank for Developmental Disorders. http://medschool.umaryland.edu/ibtbrain/.

43. Harvard Brain Tissue Resource Center, http://www.brainbank.mclaren.org/.

44. Lord C, Rutter M, Le Couteur A: Autism Diagnostic Interview – Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994, 24:653–685.

45. Wechsler D: Wechsler Intelligence Scale for Children Third Edition manual. New York, NY: The Psychological Corporation; 1991.

46. Buxbaum JD, Conroy J, Meally E, Kearney G, Fitzgerald M, Gill M, Gallagher L: Mapping at the serotonin transporter gene (SLC6A4) region in autistic population. Mol Psychiatry 2004, 9:763–770.

47. Zhao CX, Slevin JT, Whiteheart SW: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.

48. Osten P, Srivastava S, Inman GJ, Vilim FS, Khatri L, Lee LM, States BA, Makkonen I, Riikonen R, Kokki H, Airaksinen MM, Kuikka JT: Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compliant behaviors. Am J Hum Genet 2005, 77:265–279.

49. Blakely RD, Bauman AL: Biogenic amine transporters: regulation in flux. Curt Opin Neurol 2000, 10:328–336.

50. Robinson MB: Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 2002, 80:1–11.

51. Ciccone MA, Timmons M, Phillips A, Quick MW: Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008, 55:763–770.
et al. Molecular Autism 2014, 5:33
http://www.molecularautism.com/content/5/1/33

56. Kittler JT, Rostaiing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ. The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA receptors. Mol Cell Neurosci 2001, 18:13–25.

57. Leif TA, Chen ZW, Chiang CS, Olsen RW. GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci 2004, 24:1429–1438.

58. Huang SP, Brown BM, Craft CM: Visual Arrestin 1 acts as a modulator for N-ethylmaleimide-sensitive factor to the photoreceptor synapse. J Neurosci 2010, 30:9391–9397.

59. Jahn R, Scheller RH: SNAREs – engines for membrane fusion. Nat Rev Mol Cell Biol 2006, 7:531–643.

60. Faraj BA, Olkowski ZL, Jackson RT: Expression of a high-affinity serotonin transporter in human lymphocytes. Int J Immunopharmacol 1994, 16:561–567.

61. Fleming KG, Höhl TM, Yu RC, Muller SA, Wolpersinger B, Engel A, Engelhardt H, Brunger AT, Sollier TH, Hansen PI: A revised model for the oligomeric state of the N-ethylmaleimide-sensitive fusion protein, NSF. J Biol Chem 1998, 273:15675–15681.

62. Hansen PI, Rohr H, Morikaki H, Jahn R, Heuser JE: Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 1997, 90:523–535.

63. Rothman JE: Mechanisms of intracellular protein transport. Nature 1994, 372:5–63.

64. Hay JC, Scheller RH: SNAREs and NSF in targeted membrane fusion. Curr Opin Cell Biol 1997, 9:505–512.

65. Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, Hattori E, Toyota T, Suda S, Takei N, Iwata Y, Suzuki K, Matsuzaki H, Kawai M, Sekine Y, Tsuchiya KJ, Sugihara O, Ouchi Y, Sugiyama T, Yoshikawa T, Mori N: Genetic and expression analyses reveal elevated expression of syntaxin 1A (STX1A) in high functioning autism. Int J Neuropsychopharmacol 2008, 11:1073–1084.

66. Nakamura K, Iwata Y, Anitha A, Miyachi T, Toyota T, Yamada S, Tsujii M, Tsuchiya KJ, Iwayama Y, Yamada K, Hattori E, Matsuzaki H, Matsumoto K, Suzuki K, Suda S, Takebayashi K, Takei N, Ichikawa H, Sugiyama T, Yoshikawa T, Mori N: Replication study of Japanese cohorts supports the role of STX1A in autism susceptibility. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35:454–458.

67. Kneussel M: Dynamic regulation of GABAA receptors at synaptic sites. Brain Res Rev 2002, 39:74–83.

68. Hu WW, Frank BC, Heine S, Lee NH, Quackenbush J: Gene expression profiling of lymphoblastoid cell lines from monzygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics 2006, 7:18.

69. Sullivan PF, Fan C, Porcu CM: Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 2006, 141B:261–268.

70. Sanyal S, Krishnan KS: Lethal comatose mutation in Drosophila reveals possible role for NSF in neurogenesis. Neuroreport 2001, 12:1363–1366.

71. Matveeva EA, Vanaman TC, Whiteheart SW, Slavin JT: Asymmetric accumulation of hippocampal 7S SNARE complexes occurs regardless of kindling paradigm. Epilepsy Res 2007, 73:266–274.

72. Brooks-Kayal A: Epilepsy and autism spectrum disorders: are there common developmental mechanisms? Brain Dev 2010, 32:731–738.

73. Levisohn PM: The autism-epilepsy connection. Epilepsia 2007, 48(Suppl 9):33–35.

74. Spence SJ, Schneider MT: The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr Res 2009, 65:599–608.

75. Tuchman R, Alessandrini M, Cuccaro M: Autism spectrum disorders and epilepsy: moving towards a comprehensice approach to treatment. Brain Dev 2010, 32:719–730.

76. Deonna T, Roulet E: Autistic spectrum disorder: evaluating a possible contributing or causal role of epilepsy. Epilepsia 2006, 47(Suppl 2):79–82.

77. Tuchman R, Moshe S, Rapin I: Convulsing toward the pathophysiology of autism. Brain Dev 2009, 31:95–103.

78. Rocha L, Lorijadas-Pérez L, Orozco-Suarez S, Morales-Chacon L, Alonso-Vanegas M, Garcia-Maeso I, Villeda-Hernandez J, Osorio-Rico L, Estupinan B, Quintana C: Autoradiography reveals selective changes in serotonin binding in neocortex of patients with temporal lobe epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2007, 31:1208–1218.

79. Cupello A, Audenino D, Scarrone S, Forano M, Gatta E, Forano P, Albano C: Epileptic seizures but not pseudoseizures are associated with decreased density of the serotonin transporter in blood platelet membranes. Neurochem Res 2008, 33:263–266.

80. Cupello A, Favale E, Audenino D, Scarrone S, Castaldi S, Albano C: Decrease of serotonin transporters in blood platelets after epileptic seizures. Neurochem Res 2005, 30:425–428.

81. Favale E, Audenino D, Coiclo L, Albano C: The anticonvulsant effect of citalopram as an indirect evidence of serotonergic impairment in human epileptogenesis. Seizure 2003, 12:316–318.

82. Favale E, Rubino V, Mainardi P, Lunardi G, Albano C: Anticonvulsant effect of fluoxetine in humans. Neurology 1995, 45:1926–1927.

83. Mendez MA, Horder J, Myers J, Coghlan S, Stokes P, Entzine D, Hovers O, Lingles-Hughes A, Murphy D, Nutt D: The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: A pilot (11C)Ro15–4513 positron emission tomography study. Neuropharmacology 2012, 68:195–201.

84. Purcell AE, Leon OH, Zimmerman AW, Blue ME, Pevsner J: Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001, 57:1618–1628.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

www.biomedcentral.com/submit