Generalized K-Shift Forbidden Substrings in Permutations

Enrique Navarrete

In this note we continue the analysis started in [2] and generalize propositions regarding permutations that avoid substrings $12, 23, \ldots, (n-1)n$ (and others) to permutations that for fixed k, $k < n$, avoid substrings $j(j+k)$, $1 \leq j \leq n-k$, as well as substrings $j(j+k) \pmod{n}$, $1 \leq j \leq n$, (ie. k-shifts in general, as defined in Section 2).

Keywords: k-shifts k-successions, permutations, linear arrangements, forbidden patterns substrings (mod n), fixed points, bijections.

1. Introduction and Previous Results

In this section we summarize some results obtained in [2] and we recall the following definitions.

$$d_n := \text{the number of permutations on } [n] \text{ that avoid substrings } 12, 23, \ldots, (n-1)n.$$

$$D_n := \text{the number of permutations on } [n] \text{ that avoid substrings } 12, 23, \ldots, (n-1)n, n1.$$

$$\text{Der}_n := \text{the } n\text{th derangement number, i.e.}$$

$$\text{Der}_n = n! \sum_{k=0}^{n} \frac{(-1)^n}{k!}.$$

(1.1)

In [2] we discussed the existing result

$$d_n = \sum_{j=0}^{n-1} (-1)^j \binom{n-1}{j} (n-j)!.$$

(1.2)

*Grupo ANFI, Universidad de Antioquia.

2Note: In [2], the term “linear arrangement” was used instead of “permutation”, and “pattern” instead of “substring”. Here we use the more conventional terminology. Permutations are meant to be in one-line notation.
We also proved (Equation 2.1)

\[D_n = n! \sum_{k=0}^{n-1} \frac{(-1)^k}{k!}, \]

which is equivalent to

\[D_n = \sum_{j=0}^{n-1} (-1)^j \binom{n}{j} (n-j)!. \]

Finally in Proposition 2.4, we proved that \(D_n = Der_n + (-1)^{n-1}, n \geq 1 \), which we called the “alternating derangement sequence” since these numbers alternate plus or minus one from the derangement sequence itself. This is sequence A000240 in OEIS [3].

Now we extend the results to forbidden substrings that are not one space apart but \(k \) spacings apart (what we call “\(k \)-shifts” in the following section).

We define a minimal forbidden substring as two consecutive elements \(jk \). We assign to this minimal substring a length equal to one. Hence the length of forbidden substrings will be one less than the number of elements.

2. Main Lemmas and Propositions

2.1 Results for \(\{d_n\} \) and \(\{d_n^k\} \)

For the sake of compactness, we define \(\{d_n\} \) as the set of permutations on \([n]\) that avoid substrings 12, 23, \ldots, \((n-1)n\), with \(d_n \) being the number of such permutations.

We generalize to \(\{d_n^k\}, k < n \), defined as the set of permutations on \([n]\) that for fixed \(k \), avoid substrings \(j(j+k) \), \(1 \leq j \leq n-k \). We will refer to these substrings that are \(k \) spacings apart as “\(k \)-successions”, or “\(k \)-successions”\). We let \(d_n^k \) be the number of such permutations (the reason for power notation will become apparent in the next section).

The forbidden substrings in these permutations can be pictured as a diagonal running \(k \) places to the right of the main diagonal of an \(n \times n \) chessboard (hence the term “\(k \)-shifts”) as can be seen in Figure 1 below.
Figure 1: Forbidden positions in \(\{d^6_n\} \).

Figure 1 shows the forbidden positions on a 6 × 6 chessboard that correspond to forbidden substrings of permutations in \(\{d^6_n\} \). The forbidden substrings are \{13, 24, 35, 46\}. Note that there are \(n-k \) forbidden substrings in \(\{d^6_n\} \).

The permutations that avoid these substrings are not too difficult to handle, and in fact we can count them for any \(k \), as we show in the following proposition.

Proposition 2.1. For any fixed \(k \), \(0 < k < n \), if \(d^k_n \) denotes the number of permutations that avoid substrings \(j(j+k) \), \(1 \leq j \leq n-k \), then

\[
d^k_n = \sum_{j=0}^{n-k} (-1)^j \binom{n-k}{j} (n-j)!.
\]

Proof. For any fixed \(n \) and \(k \), there are a total of

\[
\binom{n-k}{j} (n-j)!
\]

forbidden substrings of length \(j \) since the combinatorial term counts the number of ways to get such substrings while the term \((n-j)! \) counts the permutations of the substrings and the remaining elements. Using inclusion-exclusion we get the result. \(\square \)

We note that the case \(k = 1 \) is just the result we had for \(d_n \) in Equation 1.2.

For example, consider permutations in \(\{d^3_5\} \). The \(n-k \) forbidden substrings are \{14, 25\}. For \(j = 0 \) we get the 5! permutations in \(S_5 \). For \(j = 1 \) there are \(\binom{3}{1} \) ways to choose one forbidden substring, and we can permute it with the remaining elements in 4! ways (for example, select the forbidden substring 14 and permute the 4 blocks 14, 2, 3, 5). For \(j = 2 \) there are \(\binom{3}{2} \) ways to choose two forbidden substrings and we can permute them with the remaining elements in 3! ways (that is, permute the 3 blocks 14, 25, 3). Hence \(d^3_5 = 78 \), so there are 78 permutations in \(S_5 \) that avoid substrings \{14, 25\}.

Corollary 2.2. The following relation holds for \(d^k_n \):

\[
d^{k+1}_n = d^k_n + d^k_{n-1}.
\]

\[3\]
Proof. By Equation 2.1 and elementary methods. □

Now we define \(d_0^n := \text{Der}_n \), which makes sense since in a chessboard of forbidden positions, a derangement is represented by an \(X \) in the position \((j, j)\), i.e., a 0-shift.

Note that Equation 2.2 generalizes the relation in Lemma 2.3 in [2], and we have the following equations starting at \(n = 1 \):

\[
\begin{align*}
d_n &= d_1^n = \text{Der}_n + \text{Der}_{n-1} \\
d_2^n &= d_n + d_{n-1} \\
d_3^n &= d_2^n + d_{n-1} \\
&\quad \vdots
\end{align*}
\]

Using the initial condition \(d_1^n = \text{Der}_2 \), Equation 2.2 defines a binomial-type relation, which, upon iteration, gives us the triangle in Table 1 in the Appendix. Note in particular that for \(k = n - 1 \), \(d_k^n = n! - k! \).

Note from the triangle that we may get \(d_k^n \) starting only from derangement numbers. For example, to get \(d_5^8 \), i.e., the number of permutations of length 8 with forbidden substrings \(\{16, 27, 38\} \), we can start from the upper-left corner of the table and by successive addition along the triangle we can reach cell \(d_5^8 = 27,240 \) (or we can obviously use Equation 2.1). Hence there are 27,240 permutations in \(S_8 \) that avoid substrings \(\{16, 27, 38\} \).

For further references, the sequence \(\langle d_k^n \rangle \) is available in OEIS. For example, for \(k = 3 \), the sequence is now A277609 [4].

2.2 Results for \(\{D_n\} \) and \(\{D^k_n\} \)

Now we define \(\{D_n\} \) as the set of permutations on \([n]\) that avoid substrings 12, 23, \ldots, \((n-1)n, n1\), with \(D_n \) being the number of such permutations.

We generalize to define permutations without \(k \)-shifts (or \(k \)-successions) (mod \(n \)), \(\{D^k_n\} \), as the set of permutations on \([n]\) that for fixed \(k \), \(k < n \), avoid substrings \(j(j+k) \) for \(1 \leq j \leq n-k \), and avoid substrings \(j(j+k) \) (mod \(n \)) for \(n-k < j \leq n \). Note that we can summarize in the single definition “avoid substrings \(j(j+k) \) (mod \(n \)) for all \(j, 1 \leq j \leq n \)” if we agree to write \(n \) instead of 0 when doing addition (mod \(n \)).

We let \(D^k_n \) be the number of such permutations. These forbidden substrings are easily seen along an \(n \times n \) chessboard, where for \(j > n-k \), the forbidden

\[\text{This triangle follows the same recurrence as the so-called Euler’s Difference Table, which originally had no combinatorial interpretation. Euler’s Table also has a } k! \text{ term in each column, terms that don’t apply in our context of } k\text{-shifts.}\]
positions start again from the first column along a diagonal \((n-k)\) places below the main diagonal as in Figure 2 below.

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & & & & \times & \\
3 & & & \times & &
\end{array}
\]

Figure 2: Forbidden positions in \(\{D^2_n\}\).

Figure 2 shows the forbidden positions on a \(6 \times 6\) chessboard that correspond to forbidden substrings of permutations in \(\{D^2_n\}\). These forbidden substrings are \{13, 24, 35, 46; 51, 62\}. The forbidden substrings below the diagonal are separated by a semicolon; these are the forbidden substrings \(j(j+k)\) \((\text{mod } n)\) for \(n-k < j \leq n\). Note that while there are only \(n-k\) forbidden substrings in \(\{d^k_n\}\), there are \(n\) forbidden substrings in \(\{D^k_n\}\).

It turns out that the numbers \(D^k_n\) are more difficult to get. They depend on whether \(n\) is prime, and more generally, on whether \(n\) and \(k\) are relatively prime.

Proposition 2.3. In the set of permutations \(\{D^k_n\}\) with \(0 < k < n\), \(k\) relative prime to \(n\), \(n \geq 2\), we can form a forbidden substring of length \(j = n-1\).

Proof. Start with forbidden substrings \(12, 23, \ldots, (n-1)n\) in \(\{D_n\}\) and form the permutation \((12 \ldots n)\) in cycle notation. Since \(k\)-powers of the permutation produce forbidden \(k\)-shifts (or \(k\)-successions), we see that the longest cycle of forbidden substrings will have length \(n/(n,k)\), where \((n,k)\) stands for the greatest common divisor. Hence the longest cycle length of forbidden substrings will be achieved for \((n,k) = 1\), and in this case we will have a cycle of length \(n\), which represents a forbidden substring of length \(n-1\). \(\square\)

Note that the proof of the proposition justifies the power notation in \(\{D^k_n\}\) (and in \(k\)-shifts in general). Note also that for \(n \geq 2\), Proposition 2.3 implies that we will always have the longest forbidden substrings of length \(n-1\) in \(\{D_n\}\), \((i.e. k = 1)\), as well as in some other \(\{D^k_n\}\) whenever \((n,k) = 1\). Moreover, Proposition 2.3 will show that the number of permutations in these sets are equal.

As an example, Figure 3 shows the maximum cycle lengths achieved for the case \(n = 6\) and all its possible \(k\)-shifts (or \(k\)-successions), \(k = 1, \ldots, 5\). In this case there exist maximum length substrings in \(\{D_6\}\) and \(\{D^5_6\}\).

Note that Proposition 2.3 is not true if \(k\) is not relative prime to \(n\), for example in \(\{D^2_6\}\). In this case, the forbidden substrings are \{13, 24, 35, 46; 51, 62\}, and the maximum cycle length is 3, which means we can have forbidden substrings
Forbidden Substrings

k	Forbidden Substrings	Permutation	kth-power	max cycle length
k = 1	12, 23, 34, 45, 56; 61	(123456)	(123456)	6
k = 2	13, 24, 35, 46; 51, 62	(123456)	(135)(246)	3
k = 3	14, 25, 36; 41, 52, 63	(123456)	(14)(25)(36)	2
k = 4	15, 26; 31, 42, 53, 64	(123456)	(153)(264)	3
k = 5	16; 21, 32, 43, 54, 65	(123456)	(165432)	6

Figure 3: k-shifts and maximum cycle lengths for $n = 6$.

of length at most 2 (such as 135 or 246). (Recall that our minimal forbidden substring consists of two elements jk, with length equal to one).

Corollary 2.4. In the set of permutations $\{D_n^k\}$ with k relative prime to n, $n \geq 2$, there exist forbidden substrings of any length j, $j = 1, 2, \ldots, n - 1$.

Proof. By the previous proposition, for $(n, k) = 1$ we can get the longest forbidden substring of length $j = n - 1$. Note that it can be considered either a single substring of length $n - 1$ or $n - 1$ substrings of length 1. Hence once this substring is obtained, we can split it to get forbidden substrings of any length j, $j = 1, \ldots, n - 1$. □

Proposition 2.5. The number of permutations in $\{D_n^k\}$ with $0 < k < n$, k relative prime to n, $n \geq 2$, is the same as the number of permutations in $\{D_n\}$.

Proof. By the previous Corollary and Proposition, since for k’s such that $(n, k) = 1$, we can have forbidden substrings of any length, $j = 1, \ldots, n - 1$. It is easy to count that there are exactly $\binom{n}{j}$ ways to get j forbidden substrings (either disjoint or overlapping), and $(n - j)!$ permutations of these substrings and the remaining elements. Then by inclusion-exclusion we have that

$$D_n^k = \sum_{j=0}^{n-1} (-1)^j \binom{n}{j} (n - j)!.$$ \hfill (2.3)

But this is the same as Equation 1.4 which counts the number of permutations in $\{D_n\}$. □

As an example of the previous proposition, consider again $n = 8$, $k = 5$. In this case, forbidden substrings in $\{D_8^5\}$ are $\{16, 27, 38; 41, 52, 63, 74, 85\}$. It is easy to count, for instance, that there are $\binom{8}{4}$ forbidden substrings of length $j = 4$ and $(8 - 4)!$ permutations of these substrings and the remaining elements. For example, a disjoint substring of length 4 (alternatively, four substrings of length 1) is given by 1638, 74 and we count $(8 - 4)! = 4!$ permutations of the four blocks 1638, 74, 2, 5. Another substring of length 4 is given by 16385 and we count 4! permutations of the blocks 16385, 2, 4, 7. Note that since $(8, 5) = 1$, there are $\binom{8}{7}$ substrings of maximum length $j = n - 1 = 7$ (for example, 16385274),
and we can permute these single blocks in \((8 - 7)! = 1\) way since there are no remaining elements to permute them with. Then, by Equation 2.3, we see that \(D_8^5 = 14,832\) so there are this number of permutations in \(S_8\) that avoid substrings \(\{16, 27, 38; 41, 52, 63, 74, 85\}\). Note that \(D_8^5 < d_8^5\) since there are more forbidden substrings in \(D_8^5\) than in \(d_8^5\).

Corollary 2.6. In the set of permutations \(\{D_k^p\}\) with \(p\) prime, we can form a substring of length \(j = p - 1\) for any \(k\)-shift, \(k = 1, 2, \ldots, p - 1\).

\[\text{Proof. } (p, k) = 1, k = 1, 2, \ldots, p - 1. \]

For example, for \(p = 5\), we can get longest forbidden substrings of length 4 for all \(k\)-shifts, \(k = 1, 2, 3, 4\) by taking powers of the permutation \((12345)\), as done in Figure 3 above. For \(k = 3\), for instance, a longest forbidden substring is given by \((12345)^3 = (14253)\) \(\rightarrow\) 14253. This substring in \(\{D_5^5\}\) corresponds to forbidden positions along a 5 \(\times\) 5 chessboard for the \(k\)-shift \(k = 3\), as can be seen in Figure 4.

![Figure 4: Forbidden positions in \(\{D_5^5\}\).](image)

Proposition 2.5 and Corollary 2.6 in turn imply:

Corollary 2.7. The number of permutations in \(\{D_k^p\}\) for any \(k\)-shift, \(k = 1, 2, \ldots, p - 1\), is the same as the number of permutations in \(\{D_p\}\), \(p\) prime.

One can see from Table 2 in the Appendix, for instance, that for \(p = 5\) there are 45 permutations in \(\{D_5^5\}\) for any \(k\)-shift \(k = 1, 2, \ldots, 4\).

The maximum cycle length achieved for a particular \(n\) and \(k\) is a very important statistic. In fact, for any fixed \(n\), \(k\)-shifts that have the same maximum cycle length will produce the same number of permutations, as can be seen in Table 2 in the Appendix. This table shows that there will be the same number of permutations in \(\{D_n^{k_1}\}\) and \(\{D_n^{k_2}\}\) whenever \((n, k_1) = (n, k_2)\), since then the maximum cycle lengths will be equal.

\[\text{No similar table appears in other references to our knowledge.}\]
References

[1] R.A. Brualdi, Introductory Combinatorics (1992), 2nd edition.

[2] E. Navarrete, Forbidden Patterns and the Alternating Derangement Sequence, 2016. [arXiv:1610.01987] [math.CO], 2016.

[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org sequence A000240.

[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org sequence A277609.

[5] R.P. Stanley, Enumerative Combinatorics, Vol. 1 (2011), 2nd edition.

APPENDIX

\[
\begin{array}{ccccccc}
 n & D_{\text{er}} & d_1 & d_2 & d_3 & d_4 & d_5 \\
 1 & 0 & & & & & \\
 2 & 1 & 1 & & & & \\
 3 & 2 & 3 & 4 & & & \\
 4 & 9 & 11 & 14 & 18 & & \\
 5 & 44 & 53 & 64 & 78 & 96 & \\
 6 & 265 & 309 & 362 & 426 & 504 & 600 \\
 7 & 1,854 & 2,119 & 2,428 & 2,790 & 3,216 & 3,720 \\
 8 & 14,833 & 16,687 & 18,806 & 21,234 & 24,024 & 27,240 \\
\end{array}
\]

Table 1: Some values for \(d_n^k\).

\[
\begin{array}{cccccccc}
 n & k = 1 & k = 2 & k = 3 & k = 4 & k = 5 & k = 6 \\
 2 & 0 & & & & & \\
 3 & & & & & & \\
 4 & 3 & 3 & 8 & & & \\
 5 & 8 & 8 & 8 & & & \\
 6 & 45 & 45 & 45 & 45 & & \\
 7 & 264 & 270 & 240 & 270 & 264 & \\
 8 & 1,855 & 1,855 & 1,855 & 1,855 & 1,855 & 1,855 \\
 9 & 14,832 & 14,816 & 14,832 & 13,824 & 14,832 & 14,816 \\
 10 & 133,497 & 133,497 & 134,298 & 133,497 & 133,497 & 134,298 \\
\end{array}
\]

Table 2: Some values for \(D_n^k\).