SETS AVOIDING SQUARES IN \mathbb{Z}_m

Mikhail Gabdullin

Abstract

We prove that for all squarefree m and any set $A \subset \mathbb{Z}_m$ such that $A - A$ does not contain non-zero squares the bound $|A| \leq m^{1/2}(3n)^{1.5n}$ holds, where n denotes the number of odd prime divisors of m.

1 Introduction

It was a conjecture of L. Lovász that if S is any sequence of positive integers of positive asymptotic density, then $S - S$ necessarily contains a square. A. Sárközy [1] proved it, showing that for any $B \subset [N]$ such that $B - B$ avoids squares we have

$$|B| \ll N(\log N)^{-1/3+\varepsilon}.$$

Currently the best upper bound is

$$|B| \ll \frac{N}{(\log N)^{\log \log \log N/12}},$$

which was obtained by J. Pintz, W. L. Steiger, and E. Szemerédi [2]. The method of that work also gives the similar upper bound to the case of kth powers; see [3]. On the other hand, I. Ruzsa [4] constructed an example of a set $B \subset [N]$ which possess the mentioned property and has size $|B| \gg N^\gamma$, where $\gamma = \frac{1}{2}(1 + \frac{\log 7}{\log 65}) = 0.733077\ldots$.

With this connection it is natural to consider the correspondence problem in cyclic group \mathbb{Z}_m. This question is also explored by I. Ruzsa and M. Matolcsi in [5]. For sets $A \subset \mathbb{Z}_m$ with the property that $A - A$ avoids cubic residues they showed that

$$|A| = O_\varepsilon(m^{1/2+\varepsilon})$$

for all squarefree m, and

$$|A| \leq m^{1-\delta},$$

where $\delta = 0.119\ldots$, for all m. If $A - A$ avoids squares, they proved the bounds

$$|A| < m^{1/2} \quad (1)$$

1 The work is supported by the grant from Russian Science Foundation (Project 14-11-00702).
for all squarefree m which have prime divisors $1 \pmod{4}$ only, and

$$|A| \leq me^{-e\sqrt{\log m}}$$

for all squarefree m.

In this paper we investigate the squarefree modular case for sets avoiding squares. Firstly, we would like to discuss briefly known lower bounds. It was shown by S. Cohen [6] that there exists such a set of size at least $\frac{1}{2}(\log_2 m + o(1))$ for all m which have prime divisors $1 \pmod{4}$ only, while S. Graham and C. Ringrose [7] proved the lower bound $\log p \log \log \log p$ for infinitely many primes $m = p$.

We present a short proof of the bound obtained in [6]. Let us begin with the case $m = p \equiv 1 \pmod{4}$. Consider the complete graph $G = (V,E)$ with $V = \mathbb{Z}_p$ and the partition $E = E_1 \sqcup E_2$, where $E_1 = \{(x,y) : x - y \text{ is a square}\}$ and $E_2 = E \setminus E_1$. Then, by Ramsey’s theorem for two colours (see, for instance, [8], Theorem 6.9), one can find a complete monochromatic subgraph $G' = (V', E')$ of our graph G with $|V'| = n$ whenever $|V| = p \geq \left(\frac{2n-2}{n-1}\right)$. We thus see that there exists such a subgraph with $n \geq \frac{1}{2} \log_2 p$. If $E \subset E_2$, then, obviously, the set V' of all its vertices gives an example we need; if $E \subset E_1$, then for any non-residue $\xi \in \mathbb{Z}_p$ we get such an example in the form $\xi V'$. To get the bound for the mentioned more general case, observe that if $m = \prod_{i=1}^k p_i$ and $A_i \subset \mathbb{Z}_{p_i}$ possess the property that $A_i - A_i$ avoids squares, then, obviously, the set $A_1 \times \ldots \times A_k$ possess it too. The claim follows.

Our main result is the following.

Theorem. For all squarefree m and $A \subset \mathbb{Z}_m$ such that $A - A$ does not contain non-zero squares we have

$$|A| \leq m^{1/2}(3n)^{1.5n},$$

where n denotes the number of odd prime divisors of m.

Corollary 1. Let m and A obey the conditions of the Theorem. If $n = o(\frac{\log m}{\log \log m})$, then

$$|A| \leq m^{1/2 + o(1)};$$

if $n \leq \left(\frac{1}{3} - \varepsilon\right)\frac{\log m}{\log \log m}$, then

$$|A| \leq m^{1 - 1.5\varepsilon + o(1)}.$$
Corollary 2. We have

$$|A| \leq m^{-c \log m / \log \log m}$$

for all m and A obeying the conditions of the Theorem.

The Theorem will be proven in Section 2. Corollary 1 follows immediately from the Theorem; Corollary 2 will be proven in Section 3.

2 Proof of the Theorem

Without loss of generality we may assume that m is odd. We induct on n. For the case $n = 1$, i.e., $m = p$ is prime, we have the bound $|A| \leq m^{1/2}$. If $p \equiv 3 \pmod{4}$, then $|A| \leq 1$; suppose $p \equiv 1 \pmod{4}$. We give an elegant and folklore proof: let us assume that $|A| > m^{1/2}$ and fix a non-residue $\xi \in \mathbb{Z}_m$. Consider the map $\varphi: A^2 \to \mathbb{Z}_p$, $\varphi(a, b) = a + \xi b$. By the pigeonhole principle, there are two distinct pairs (a_1, b_1) and (a_2, b_2) such that $\varphi(a_1, b_1) = \varphi(a_2, b_2)$, i.e., $\xi = (a_1 - a_2)(b_2 - b_1)^{-1}$, which means that at least one of the differences $a_1 - a_2$ and $b_1 - b_2$ is non-residue modulo m, and the claim follows.

Now assume that $n \geq 2$ and the claim is true for all $l < n$. Let $p_1 < p_2 < \ldots < p_n$ be all prime divisors of m. Denote by χ_j quadratic character of \mathbb{Z}_{p_j}. Since each difference $a_1 - a_2$ of distinct elements of A is non-residue by at least one modulo p_i, we have

$$|A| = \sum_{a_1, a_2 \in A} \prod_{j=1}^n (1 + \chi_j(a_1 - a_2)) = |A|^2 + \sum_D \sum_{a_1, a_2 \in A} \chi_D(a_1 - a_2),$$

where D runs over all non-empty subsets of $[n] = \{1, \ldots, n\}$ and $\chi_D(x) = \prod_{j \in D} \chi_j(x)$. Denote $\sigma = 1 - |A|^{-1}$. Then we may rewrite the last equality as follows:

$$|A|^2 \sigma = -\sum_D \sum_{a_1, a_2 \in A} \chi_D(a_1 - a_2).$$

Using Cauchi-Schwarz, we see that

$$|A|^2 \sigma \leq \sum_D |A|^{1/2} S_D^{1/2},$$

where

$$S_D = \sum_{a \in A} \left| \sum_{b \in A} \chi_D(a - b) \right|^2.$$
Thus
\[|A|^{3/2} \sigma \leq \sum_D S_D^{1/2}. \] (2)

Now we have to estimate the sums \(S_D \). Fix a set \(D \) of size \(d \). Denote for the brevity \(p_D = \prod_{j \in D} p_j \) and
\[G_d = (3n)^{1.5(n-d)}. \] (3)

For all residues \(x \) modulo \(p_D \) we set
\[A_x = \{ a \in A : a \equiv x \pmod{p_D} \}. \]

One can think of elements of \(A_x \) as residues modulo \(mp_D^{-1} \), and the difference of distinct elements of \(A_x \) is non-residue modulo \(mp_D^{-1} \). Then by the induction hypothesis we have
\[|A_x| \leq m^{1/2} p_D^{-1/2} G_d. \]

Obviously \(A = \bigsqcup_{x \in \mathbb{Z}_{p_D}} A_x \) and all elements of \(A_x \) give the same contribution to \(S_D \). We thus see that
\[
S_D = \sum_{x \in \mathbb{Z}_{p_D}} \sum_{a \in A_x} \left| \sum_{b \in A} \chi_D(x - b) \right|^2 = \sum_{x \in \mathbb{Z}_{p_D}} |A_x| \left| \sum_{b \in A} \chi_D(x - b) \right|^2 \leq m^{1/2} p_D^{-1/2} G_d \sum_{b_1, b_2 \in A} \sum_{a \in \mathbb{Z}_{p_D}} \prod_{j \in D} \chi_j(a - b_1) \chi_j(a - b_2) = \]
\[
m^{1/2} p_D^{-1/2} G_d \sum_{b_1, b_2 \in A} \prod_{j \in D} \sum_{a_j \in \mathbb{Z}_{p_j}} \chi_j(a_j - b_1) \chi_j(a_j - b_2). \]

Let us compute the inner sum. For the sake of brevity we introduce the following definition: a pair \((b_1, b_2)\) is said to be special modulo \(p \) if \(b_1 \equiv b_2 \pmod{p} \). We have \(\sum_{a \in \mathbb{Z}_{p_j}} \chi_j(a - b_1) \chi_j(a - b_2) = p_j - 1 \) if \((b_1, b_2)\) is a special pair modulo \(p_j \) and
\[
\sum_{a \in \mathbb{Z}_{p_j}} \chi_j(a - b_1) \chi_j(a - b_2) = \sum_{a \neq b_2} \chi_j \left(1 + \frac{b_2 - b_1}{a - b_2} \right) = \sum_{a \neq 1} \chi_j(a) = -1 \]
otherwise.
Denote by B_r the contribution of pairs which are special exactly for r modulos, $0 \leq r \leq d$, to the outer sum of the bound for S_D. We thus have

$$S_D \leq m^{1/2} p_D^{-1/2} G_d \sum_{r=0}^{d} B_r. \quad (4)$$

Obviously,

$$B_0 \leq |A|^2. \quad (5)$$

To obtain an estimate for the sum S_D it remains to handle with B_r for $r \geq 1$. Fix a set $D' \subset D$, $D' = \{i_1, \ldots, i_r\}$, of numbers of special modulus. The contribution of pairs which are special exactly these modulus to B_r is at most $p_{D'} = \prod_{j \in D'} p_j$. The amount of such pairs does not exceed the number of solution of the congruence $x \equiv y \pmod{p_{D'}}$, $x, y \in A$, which is at most $|A|m^{1/2} p_{D'}^{-1/2} G_r$ by the induction hypothesis. Thus, the contribution of pairs which are special modulus p_j, $j \in D'$, to B_r is at most $|A|m^{1/2} p_{D'}^{1/2} G_r$. Therefore for all $r \geq 1$ we have

$$B_r \leq |A|m^{1/2} G_r \sum_{D' \subset D, |D'| = r} p_{D'}^{1/2}. \quad (6)$$

Substituting (5) and (6) into (4), we see that for all $|D| = d$

$$S_D \leq m^{1/2} p_D^{-1/2} G_d |A|^2 + m|A|G_d \sum_{r=1}^{d} G_r \sum_{D' \subset D, |D'| = r} (p_{D'}/p_D)^{1/2},$$

or

$$S_D \leq m^{1/2} p_D^{-1/2} G_d |A|^2 + m|A|G_d \sum_{r=1}^{d} G_r \sum_{D' \subset D, |D'| = d-r} p_{D'}^{-1/2}.$$

This implies

$$S_D^{1/2} \leq m^{1/4} p_D^{-1/4} G_d^{1/2} |A| + |A|^{1/2} m^{1/2} G_d^{1/2} \sum_{r=1}^{d} G_r^{1/2} \sum_{D' \subset D, |D'| = d-r} p_{D'}^{-1/4}.$$

Substituting this estimate into (2), we obtain

$$|A| \sigma \leq |A|^{1/2} m^{1/4} T_1 + m^{1/2} T_2, \quad (7)$$

where

$$T_1 = \sum_{d=1}^{n} G_d^{1/2} \sum_{|D|=d} p_D^{-1/4},$$
\[T_2 = \sum_{D \subseteq [n]} G_{|D|}^{1/2} \sum_{D' \subset D} G_{|D'|}^{1/2} |D'|^{-1/4}. \]

It remains to estimate the sums \(T_1 \) and \(T_2 \). We firstly handle with \(T_1 \). Since \(p_1 \geq 3 \) and the function \(u^{-1/4} \) is concave, we have

\[
\sum_{j=1}^{n} p_j^{-1/4} \leq \sum_{j=1}^{n} (2j + 1)^{-1/4} \leq 0.5 \sum_{j=1}^{n} \int_{2j}^{2j+2} u^{-1/4} du = \\
\frac{2}{3}((2n + 2)^{3/4} - 2^{3/4}) < \frac{2}{3}(2n)^{3/4} < 1.13n^{3/4}. \quad (8)
\]

Hence, recalling the definition (3) of \(G_d \),

\[
T_1 \leq \sum_{d=1}^{n} G_d^{1/2} \frac{1}{d!} \left(\sum_{j=1}^{n} p_j^{-1/4} \right)^d \leq \sum_{d=1}^{n} \frac{1.13^d}{d!} (3n)^{0.75(n-d)} n^{0.75d} \\
= (3n)^{0.75n} \sum_{d=1}^{n} 3^{-0.75d} \frac{1.13^d}{d!} \leq 0.65(3n)^{0.75n}. \quad (9)
\]

Now we are going to estimate \(T_2 \). We may rewrite

\[
T_2 = \sum_{D' \subseteq [n]} p_{|D'|}^{-1/4} \sum_{D \supseteq D'} G_{|D|}^{1/2} G_{|D'|}^{1/2} |D'|^{-1/4}.
\]

We begin with an estimate for the inner sum. By (3), we see that

\[
\sum_{D \supseteq D'} G_{|D|}^{1/2} G_{|D'|}^{1/2} |D'| = (3n)^{1.5n} \sum_{D \supseteq D'} (3n)^{-1.5(|D|-|D'|)/2} \leq \\
(3n)^{1.5n} \sum_{r=|D'|+1}^{n} n^{-|D'|} (3n)^{-1.5(r-|D'|)/2} = \\
(3n)^{1.5n+0.75|D'|} n^{-|D'|} \sum_{r=|D'|+1}^{n} 3^{-1.5r} n^{-r/2} \leq \\
(3n)^{1.5n+0.75|D'|} n^{-|D'|} 3^{-1.5(|D'|+1)} (1 - 3^{-1.5n^{-1/2}})^{-1} \leq \\
0.16(3n)^{1.5n-0.75|D'|}.
\]
Then, thanks to (8), we obtain

\[T_2 \leq 0.16(3n)^{1.5n} \sum_{l=0}^{n-1} (3n)^{-0.75l} \sum_{|D'|=l} p_{D'}^{-1/4} \leq 0.16(3n)^{1.5n} \sum_{l=0}^{n-1} 3^{-0.75l} \frac{1.13^l}{l!} \leq 0.27(3n)^{1.5n}. \]

In light of this and (9), we see from (7) that

\[L := |A|^{1/2} \left(|A|^{1/2} \sigma - 0.65 m^{1/4} (3n)^{0.75n} \right) \leq 0.27 m^{1/2} (3n)^{1.5n} =: R. \]

Assume that

\[|A| > m^{1/2} (3n)^{1.5n}. \]

But \(n \geq 2; \) hence, \(m \geq 15, \) \(|A| \geq 6^3 \sqrt{15} > 100 \) and \(\sigma = 1 - |A|^{-1} \geq 0.99. \) Therefore

\[L > (0.99 - 0.65)m^{1/2} (3n)^{1.5n} > R, \]

a contradiction. This completes the proof.

3 Proof of Corollary 2

The idea of the proof is to combine the Theorem with another upper bound on \(|A| \) which is decreasing on \(n. \)

Denote \(m' = \prod_{p|m, p=3 \text{ (mod 4)}} p. \) We may assume that \(m' \geq m^{1/2} \) (say), since otherwise we have \(|A| \leq m'(m/m')^{1/2} \leq m^{3/4} \) by (1). For similar reasons we see that it suffices to prove the claim for the case \(m' = m. \)

We will use the graph theoretic approach suggested by M. Matolcsi and I. Ruzsa [5]. Recall that product \((V, E) \) of directed graphs \(D_i = (V_i, E_i), 1 \leq i \leq k, \) is defined as follows: we set \(V = V_1 \times \ldots \times V_k \) and say that an ordered pair of distinct vertices \(((x_1, \ldots, x_k), (y_1, \ldots, y_k)) \in V^2 \) belongs to \(E \) if and only if we have either \(x_i = y_i \) or \((x_i, y_i) \in E_i \) for all \(i. \) A directed graph is called a tournament if exactly one of \((x, y) \in E \) and \((y, x) \in E \) is true for all \(x \neq y. \)

We need the following result of N. Alon.

Lemma ([9], Theorem 1.2) Let \((V_1, E_1), \ldots, (V_k, E_k) \) be directed graphs with maximum outdegrees \(d_1, \ldots, d_k \) respectively and \((V, E) \) be its product. Suppose that \(S \) is a subset of \(V \) with the property that for every ordered
pair \((u_1, \ldots, u_k)\) and \((v_1, \ldots, v_k)\) of members of \(S\) we have \((u_i, v_i) \in E_i\) for some \(i\). Then

\[|S| \leq \prod_{i=1}^{k} (d_i + 1). \]

Note that in [8] only the case \((V_1, E_1) = \cdots = (V_k, E_k)\) is considered but the proof immediately extends to different directed graphs. For completeness, we reproduce the proof given there.

Proof of the lemma. We may think of each set \(V_i\) as a set of integers.

Associate each member \(v = (v_1, \ldots, v_k)\) of \(S\) with a polynomial \(P_v \in \mathbb{Q}[x_1, \ldots, x_k]\) defined by

\[P_v(x_1, \ldots, x_k) = \prod_{i=1}^{k} \prod_{j \in N(v_i)} (x_i - j), \]

where \(N(v_i) = \{u \in V_i : (v_i, u) \in E_i\}\) is the set of all out-neighbors of \(v_i\).

Since \(v_i \notin N(v_i)\), we see that \(P_v(v_1, \ldots, v_k) \neq 0\) for all \(v = (v_1, \ldots, v_k) \in S\). On the other hand, by the definition of \(S\), we have \(P_v(u) = 0\) whenever \(u \in S\) and \(u \neq v\). It follows that the set of polynomial \(\{P_v : v \in S\}\) is linearly independent (since if \(\sum_{v \in S} c_v P_v(x_1, \ldots, x_k) = 0\) then, by substituting \((x_1, \ldots, x_k) = (v_1, \ldots, v_k)\) we conclude that \(c_v = 0\)). But each \(P_v\) is a polynomial of degree at most \(d_i\) in variable \(x_i\); hence, the number of these polynomials does not exceed the dimension of the space of polynomials in \(k\) variables with this property, which is \(\prod_{i=1}^{k} (d_i + 1)\). This concludes the proof.

Now assume that \(A \subset \mathbb{Z}_m\) is such that \(A - A\) does not contain non-zero squares. We consider the product \((\mathbb{Z}_m, E)\) of the tournaments \((\mathbb{Z}_p, E_p)\), \(p|m\), where \((x, y) \in E_p\) iff \(x - y\) is a square in \(\mathbb{Z}_p\) (recall that we assume all \(p\) to be 3 (mod 4)). Then for any \(a, b\) we can find \(p|m\) with \((a - b) \pmod{p} \in E_p\) (since \((b, a) \notin E\)). We thus see from the lemma that \(|A| \leq \prod_{i=1}^{n} (p_i + 1)/2 = m2^{-n} \prod_{i=1}^{n} (1 + 1/p_i) \leq m2^{-cn}\) for some \(c > 0\). Combining this with the Theorem, we get \(|A| \leq m \cdot \min(2^{-cn}, m^{-1/2}(3n)^{1.5n})\), and the claim follows.

References

[1] A. Sárközy, On difference sets of integers, I, Acta Math. Acad. Sci. Hungar. 31 (1978), 125-149.
[2] J. Pintz, W. L. Steiger, E. Szemerédi, On sets of natural numbers whose difference set contains no squares, J. London Math. Soc. 1988, s2-37 (2), 219-231.

[3] A. Balog, J. Pelikan, J. Pintz, E. Szemerédi, Difference sets without kth powers, Acta Math. Hungar. 65 (2), 1994, 165-187.

[4] I. Ruzsa, Difference sets without squares, Periodica Mathematica Hungarica, Vol. 15 (3), 1984, 205-209.

[5] M. Matolcsi, I. Ruzsa, Difference sets and positive exponential sums II: Quadratic and cubic residues in cyclic groups: preprint.

[6] S.D. Cohen, Clique numbers of Paley graphs, Quaestiones Math., 11 (2), 1998, 225-231.

[7] S. Graham, C. Ringrose, Lower bounds for least quadratic non-residues, Analytic number theory (Allerton Park, IL, 1989), 269-309.

[8] T. Tao and V. Vu, Additive combinatorics, in Cambridge Stud. Adv. Math (Cambridge Univ. Press, Cambridge 2006), Vol. 105.

[9] N. Alon, On the capacity of Digraphs, Europ. J. Combinatorics, 1998, 19, 1-5.