On the limit of large girth graph sequences*

Gábor Elek

November 7, 2008

Abstract

Let \(d \geq 2 \) be given and let \(\mu \) be an involution-invariant probability measure on the space of trees \(T \in T_d \) with maximum degrees at most \(d \). Then \(\mu \) arises as the local limit of some sequence \(\{G_n\}_{n=1}^\infty \) of graphs with all degrees at most \(d \). This answers Question 6.8 of Bollobás and Riordan [4].

1 Introduction

Let \(\text{Graph}_d \) denote the set of all finite simple graphs \(G \) (up to isomorphism) for which \(\text{deg}(x) \leq d \) for every \(x \in V(G) \). For a graph \(G \) and \(x, y \in V(G) \) let \(d_G(x, y) \) denote the distance of \(x \) and \(y \), that is the length of the shortest path from \(x \) to \(y \). A rooted \((r,d)\)-ball is a graph \(G \in \text{Graph}_d \) with a marked vertex \(x \in V(G) \) called the root such that \(d_G(x, y) \leq r \) for every \(y \in V(G) \). By \(U_{r,d} \) we shall denote the set of rooted \((r,d)\)-balls.

If \(G \in \text{Graph}_d \) is a graph and \(x \in V(G) \) then \(B_r(x) \in U_{r,d} \) shall denote the rooted \((r,d)\)-ball around \(x \) in \(G \). For any \(\alpha \in U_{r,d} \) and \(G \in \text{Graph}_d \) we define the set \(T(G, \alpha) \overset{\text{def}}{=} \{ x \in V(G) : B_r(x) \cong \alpha \} \) and let \(p_G(\alpha) \overset{\text{def}}{=} \frac{|T(G, \alpha)|}{|V(G)|} \).

A graph sequence \(G = \{G_n\}_{n=1}^\infty \subset \text{Graph}_d \) is weakly convergent if \(\lim_{n \to \infty} |V(G_n)| = \infty \) and for every \(r \) and every \(\alpha \in U_{r,d} \) the limit \(\lim_{n \to \infty} p_{G_n}(\alpha) \) exists (see [3]).

Let \(\text{Gr}_d \) denote the set of all countable, connected rooted graphs \(G \) for which \(\text{deg}(x) \leq d \) for every \(x \in V(G) \). If \(G, H \in \text{Gr}_d \) let \(d_g(G, H) = 2^{-r} \), where \(r \) is the maximal number such that the \(r \)-balls around the roots of \(G \) resp. \(H \) are rooted isomorphic. The distance \(d_g \) makes \(\text{Gr}_d \) a compact metric space. Given an \(\alpha \in U_{r,d} \) let \(T(\text{Gr}_d, \alpha) = \{ (G, x) \in \text{Gr}_d : B_r(x) \cong \alpha \} \). The sets \(T(\text{Gr}_d, \alpha) \) are closed-open sets. A convergent graphs sequence \(\{G_n\}_{n=1}^\infty \) define a local limit measure \(\mu_G \) on \(\text{Gr}_d \), where \(\mu_G(T(\text{Gr}_d, \alpha)) = \lim_{n \to \infty} p_{G_n}(\alpha) \). However, not all the probability measures on \(\text{Gr}_d \) arise as local limits. A necessary condition for a measure \(\mu \) being a local limit is its involution invariance (see Section 2). The goal of this paper is to answer a question of Bollobás and Riordan (Question 6.8 [4]):

*AMS Subject Classification: 05C99
Theorem 1 Any involution-invariant measure μ on Gr_d concentrated on trees arises as a local limit of some convergent graph sequence.

As it was pointed out in [4] such graph sequences are asymptotically treelike, thus μ must arise as the local limit of a convergent large girth sequence.

2 Involution invariance

Let \tilde{Gr}_d be the compact space of all connected countable rooted graphs \tilde{G} (up to isomorphism) of vertex degree bound d with a distinguished directed edge pointing out from the root. Note that \tilde{G} and \tilde{H} are considered isomorphic if there exists a rooted isomorphism between them mapping distinguished edges into each other. Let $\tilde{U}^{r,d}$ be the isomorphism classes of all rooted (r,d)-graphs $\tilde{\alpha}$ with a distinguished edge $e(\tilde{\alpha})$ pointing out from the root. Again, $T(\tilde{Gr}_d, \tilde{\alpha})$ is well-defined for any $\tilde{\alpha} \in \tilde{U}^{r,d}$ and defines a closed-open set in \tilde{Gr}_d. Clearly, the forgetting map $F : \tilde{Gr}_d \rightarrow Gr_d$ is continuous. Let μ be a probability measure on Gr_d. Then we define a measure $\tilde{\mu}$ on \tilde{Gr}_d the following way.

Let $\tilde{\alpha} \in \tilde{U}^{r,d}$ and let $F(\tilde{\alpha}) = \alpha \in U^{r,d}$ be the underlying rooted ball. Clearly, $F(T(\tilde{Gr}_d, \tilde{\alpha})) = T(\tilde{Gr}_d, \alpha)$. Let

$$\tilde{\mu}(T(\tilde{Gr}_d, \tilde{\alpha})) := l,$$

where l is the number of edges e pointing out from the root such that there exists a rooted automorphism of α mapping $e(\tilde{\alpha})$ to e. Observe that

$$\tilde{\mu}(F^{-1}(T(\tilde{Gr}_d, \alpha))) = \deg(\alpha)\mu(T(\tilde{Gr}_d, \alpha)).$$

We define the map $T : \tilde{Gr}_d \rightarrow \tilde{Gr}_d$ as follows. Let $T(\tilde{G}) = \tilde{H}$, where :

- the underlying graphs of \tilde{G} and \tilde{H} are the same,
- the root of \tilde{H} is the endpoint of $e(\tilde{G})$,
- the distinguished edge of \tilde{H} is pointing to the root of \tilde{G}.

Note that T is a continuous involution. Following Aldous and Steele [2], we call μ involution-invariant if $T_* (\mu) = \mu$. It is important to note [2, 1] that the limit measure of convergent graph sequences are always involution-invariant.

We need to introduce the notion of edge-balls. Let $\tilde{G} \in \tilde{Gr}_d$. The edge-ball $B_r^e(\tilde{G})$ of radius r around the root of \tilde{G} is the following spanned rooted subgraph of \tilde{G}:

- The root of $B_r^e(\tilde{G})$ is the same as the root of \tilde{G}.
- y is a vertex of $B_r^e(\tilde{G})$ if $d(x,y) \leq r$ or $d(x',y) \leq r$, where x is the root of \tilde{G} and x' is the endpoint of the directed edge $e(\tilde{G})$.
- The distinguished edge of $B_r^e(\tilde{G})$ is (x,x').

2
Let \vec{E}_r,d be the set of all edge-balls of radius r up to isomorphism. Then if $\vec{\phi} \in \vec{E}_r,d$, let $s(\vec{\phi}) \in \vec{U}_r,d$ be the rooted ball around the root of $\vec{\phi}$. Also, let $t(\vec{\phi}) \in \vec{U}_r,d$ be the r-ball around x' with distinguished edge (x',x). The involution $T^{r,d}: \vec{E}_r,d \to \vec{E}_r,d$ is defined the obvious way and $t(T^{r,d}(\vec{\phi})) = s(\vec{\phi})$, $s(T^{r,d}(\vec{\phi})) = t(\vec{\phi})$. Since $\vec{\mu}$ is a measure we have

$$\vec{\mu}(T(\vec{G}_d, \vec{\alpha})) = \sum_{\vec{\phi}, s(\vec{\phi}) = \vec{\alpha}} \vec{\mu}(T(\vec{G}_d, \vec{\phi})).$$

(1)

Also, by the involution-invariance

$$\vec{\mu}(T(\vec{G}_d, \vec{\alpha})) = \vec{\mu}(T(\vec{G}_d, T^{r,d}(\vec{\phi}))),$$

(2)

since $T(T(\vec{G}_d, \vec{\phi})) = T(\vec{G}_d, T^{r,d}(\vec{\phi})$. Therefore by (1),

$$\vec{\mu}(T(\vec{G}_d, \vec{\alpha})) = \sum_{\vec{\phi}, t(\vec{\phi}) = \vec{\alpha}} \vec{\mu}(T(\vec{G}_d, \vec{\phi}))$$

(3)

3 Labeled graphs

Let \vec{G}_d^n be the isomorphism classes of

- connected countable rooted graphs with vertex degree bound d
- with a distinguished edge pointing out from the root
- with vertex labels from the set $\{1,2,\ldots,n\}$.

Note that if \vec{G}_* and \vec{H}_* are such graphs then they called isomorphic if there exists a map $\rho: V(\vec{G}_*) \to V(\vec{H}_*)$ preserving both the underlying \vec{G}_d-structure and the vertex labels. The labeled r-balls \vec{U}_r,d_n and the labeled r-edge-balls \vec{E}_r,d_n are defined accordingly. Again, \vec{G}_d^n is a compact metric space and $T(\vec{G}_d^n, \vec{\alpha}_*), T(\vec{G}_d^n, \vec{\phi}_*)$ are closed-open sets, where $\vec{\alpha}_* \in \vec{U}_r,d_n, \vec{\phi}_* \in \vec{E}_r,d_n$. Now let μ be an involution-invariant probability measure on \vec{G}_d with induced measure $\vec{\mu}$. The associated measure $\vec{\mu}_n$ on \vec{G}_d^n is defined the following way.

Let $\vec{\alpha} \in \vec{U}_r,d_n$ and κ_1, κ_2 be vertex labelings of $\vec{\alpha}$ by $\{1,2,\ldots,n\}$. We say that κ_1 and κ_2 are equivalent if there exists a rooted automorphism of $\vec{\alpha}$ preserving the distinguished edge and mapping κ_1 to κ_2. Let $C(\kappa)$ be the equivalence class of the vertex labeling κ of $\vec{\alpha}$. Then we define

$$\vec{\mu}_n(T(\vec{G}_d^n, [\kappa])) := \frac{|C(\kappa)|}{\mu(V(\vec{\alpha}))} \vec{\mu}(T(\vec{G}_d^n, \vec{\alpha})).$$

Lemma 3.1 a) $\vec{\mu}_n$ extends to a Borel-measure.

b) $\vec{\mu}(T(\vec{G}_d, \vec{\alpha})) = \sum_{\vec{\alpha}_* : \vec{\rho}(\vec{\alpha}_*) = \vec{\alpha}} \vec{\mu}_n(T(\vec{G}_d^n, \vec{\alpha}_*))$.

3
Proof. The second equation follows directly from the definition. In order to prove that $\bar{\mu}_n$ extends to a Borel-measure it is enough to prove that

$$\bar{\mu}_n(T(\hat{G}^n_d, \vec{\alpha}_s)) = \sum_{\vec{\beta}_s \in N_{r+1}(\vec{\alpha}_s)} \bar{\mu}_n(T(\hat{G}^n_d, \vec{\beta}_s)),$$

where $\vec{\alpha}_s \in \hat{U}^{r,d}_n$ and $N_{r+1}(\vec{\alpha}_s)$ is the set of elements $\vec{\beta}_s$ in $\hat{U}^{r+1,d}_n$ such that the r-ball around the root of $\vec{\beta}_s$ is isomorphic to $\vec{\alpha}_s$. Let $\vec{\alpha} = \mathcal{F}(\vec{\alpha}_s) \in \hat{U}^{r,d}_n$ and let $N_{r+1}(\vec{\alpha}) \subset \hat{U}^{r,d}_n$ be the set of elements $\vec{\beta}$ such that the r-ball around the root of $\vec{\beta}$ is isomorphic to $\vec{\alpha}$. Clearly

$$\bar{\mu}(T(\hat{G}^d_d, \vec{\alpha})) = \sum_{\vec{\beta} \in N_{r+1}(\vec{\alpha})} \bar{\mu}(T(\hat{G}^d_d, \vec{\beta})). \tag{4}$$

Let κ be a labeling of $\vec{\alpha}$ by $\{1,2,\ldots,n\}$ representing $\vec{\alpha}_s$. For $\vec{\beta} \in N_{r+1}(\vec{\alpha})$ let $L(\vec{\beta})$ be the set of labelings of $\vec{\beta}$ that extends some labeling of $\vec{\alpha}$ that is equivalent to κ.

Note that

$$\bar{\mu}_n(T(\hat{G}^d_d, \vec{\alpha}_s)) = \bar{\mu}(T(\hat{G}^d_d, \vec{\alpha})) \frac{|C(\kappa)|}{n^{|V(\vec{\beta})|}}.$$

Also,

$$\sum_{\vec{\beta}_s \in N_{r+1}(\vec{\alpha}_s)} \bar{\mu}_n(T(\hat{G}^n_d, \vec{\beta}_s)) = \sum_{\vec{\beta} \in N_{r+1}(\vec{\alpha})} \bar{\mu}(T(\hat{G}^n_d, \vec{\beta})) \frac{|L(\vec{\beta})|}{n^{|V(\vec{\beta})|}}.$$

Observe that $|L(\vec{\beta})| = |C(\kappa)|n^{|V(\vec{\beta})|-|V(\vec{\alpha})|}$. Hence

$$\sum_{\vec{\beta}_s \in N_{r+1}(\vec{\alpha}_s)} \bar{\mu}_n(T(\hat{G}^n_d, \vec{\beta}_s)) = \sum_{\vec{\beta} \in N_{r+1}(\vec{\alpha})} \bar{\mu}(T(\hat{G}^n_d, \vec{\beta})) \frac{|C(\kappa)|}{n^{|V(\vec{\beta})|}}.$$

Therefore using equation (4) our lemma follows.

The following proposition shall be crucial in our construction.

Proposition 3.1 For any $\vec{\alpha}_s \in \hat{U}^{r,d}_n$ and $\vec{\psi}_s \in \hat{E}^{r,d}_n$

\begin{itemize}
 \item $\bar{\mu}_n(T(\hat{G}_d^n, \vec{\alpha}_s)) = \sum_{\vec{\phi}_s \in \hat{E}^{r,d}_n, s(\vec{\phi}_s) = \vec{\alpha}_s} \bar{\mu}_n(T(\hat{G}_d^n, \vec{\phi}_s))$
 \item $\bar{\mu}_n(T(\hat{G}_d^n, \vec{\alpha}_s)) = \sum_{\vec{\phi}_s \in \hat{E}^{r,d}_n, t(\vec{\phi}_s) = \vec{\alpha}_s} \bar{\mu}_n(T(\hat{G}_d^n, \vec{\phi}_s))$
 \item $\bar{\mu}_n(T(\hat{G}_d^n, \vec{\psi}_s)) = \bar{\mu}_n(T(\hat{G}_d^n, T^{r,d}_n(\vec{\psi}_s))).$
\end{itemize}

Proof. The first equation follows from the fact that $\bar{\mu}_n$ is a Borel-measure. Thus the second equation will be an immediate corollary of the third one. So, let us
turn to the third equation. Let $F(\vec{\psi}_s) = \vec{\psi} \in \vec{E}^{r,d}$ and let κ be a vertex-labeling of $\vec{\psi}$ representing $\vec{\psi}_s$. It is enough to prove that

$$\bar{\mu}_n(T(\vec{G}_d^n, \vec{\psi}_s)) = \frac{|C(\kappa)|}{n^{|V(\vec{\psi})|}} \bar{\mu}(T(\vec{G}_d^n, \vec{\psi})), $$

where $C(\kappa)$ is the set of labelings of $\vec{\psi}$ equivalent to κ. Let $\mathcal{N}_{r+1}(\vec{\psi}) \subseteq \vec{U}^{r,d}_n$ be the set of elements $\vec{\beta}$ such that the edge-ball of radius r around the root of $\vec{\beta}$ is isomorphic to $\vec{\psi}$. Then

$$\bar{\mu}(T(\vec{G}_d^n, \vec{\psi})) = \sum_{\vec{\beta} \in \mathcal{N}_{r+1}(\vec{\psi})} \bar{\mu}(T(\vec{G}_d^n, \vec{\beta})). \quad (5)$$

Observe that

$$\bar{\mu}_n(T(\vec{G}_d^n, \vec{\psi}_s)) = \sum_{\vec{\beta} \in \mathcal{N}_{r+1}(\vec{\psi})} \bar{\mu}(T(\vec{G}_d^n, \vec{\beta})) \frac{k(\vec{\beta}, \vec{\psi}_s)}{n^{|V(\vec{\beta})|}},$$

where $k(\vec{\beta}, \vec{\psi}_s)$ is the number of labelings of $\vec{\beta}$ extending an element that is equivalent to κ. Notice that $k(\vec{\beta}, \vec{\psi}_s) = |C(\kappa)|n^{|V(\vec{\beta})|}$. Hence by (5)

$$\bar{\mu}_n(T(\vec{G}_d^n, \vec{\psi}_s)) = \frac{|C(\kappa)|}{n^{|V(\vec{\psi})|}} \bar{\mu}(T(\vec{G}_d^n, \vec{\psi})), $$

thus our proposition follows.

4 Label-separated balls

Let \vec{G}_d^n be the isomorphism classes of

- connected countable rooted graphs with vertex degree bound d
- with vertex labels from the set $\{1, 2, \ldots, n\}$.

Again, we define the space of labeled r-balls $\vec{U}^{r,d}_n$. Then \vec{G}_d^n is a compact space with closed-open sets $T(\vec{G}_d^n, M), M \in \vec{U}^{r,d}_n$. Similarly to the previous section we define an associated probability measure μ_n, where μ is an involution-invariant probability measure on \vec{G}_d.

Let $M \in \vec{U}^{r,d}_n$ and let $R(M)$ be the set of elements of $\vec{U}^{r,d}_n$ with underlying graph M. If $A \in R(M)$, then the multiplicity of A, l_A is the number of edges e pointing out from the root of A such that there is a label-preserving rooted automorphism of A moving the distinguished edge to e. Now let

$$\mu_n(M) := \frac{1}{\deg(M)} \sum_{A \in R(M)} l_A \bar{\mu}_n(A).$$

The following lemma is the immediate consequence of Lemma 3.1.

Lemma 4.1 μ_n is a Borel-measure on \vec{G}_d^n and $\sum_{M \in \mathcal{M}(\alpha)} \mu_n(M) = \mu(A)$ if $\alpha \in \vec{U}^{r,d}$ and $\mathcal{M}(\alpha)$ is the set of labelings of α by $\{1, 2, \ldots, n\}$.
Definition 4.1 $M \in U_{r,d}^n$ is called label-separated if all the labels of M are different.

Lemma 4.2 For any $\alpha \in U_{r,d}$ and $\delta > 0$ there exists an $n > 0$ such that

$$|\sum_{M \in \mathcal{M}(\alpha), M \text{ is label-separated}} \mu_n(T(\mathcal{G}_d, M)) - \mu(T(\mathcal{G}_d, \alpha))| < \delta.$$

Proof. Observe that

$$\sum_{M \in \mathcal{M}(\alpha), M \text{ is label-separated}} \mu_n(T(\mathcal{G}_d, M)) = \frac{T(n, \alpha)}{n^{|V(\alpha)|}} \mu(T(\mathcal{G}_d, \alpha)),$$

where $T(n, \alpha)$ is the number of $\{1, 2, \ldots, n\}$-labelings of α with different labels. Clearly, $\frac{T(n, \alpha)}{n^{|V(\alpha)|}} \to 1$ as $n \to \infty$.

5 The proof of Theorem [1]

Let μ be an involution-invariant probability measure on \mathcal{G}_d supported on trees. It is enough to prove that for any $r \geq 1$ and $\epsilon > 0$ there exists a finite graph G such that for any $\alpha \in U_{r,d}$

$$|p_G(\alpha) - \mu(T(\mathcal{G}_d, \alpha))| < \epsilon.$$

The idea we follow is close to the one used by Bowen in [5]. First, let $n > 0$ be a natural number such that

$$|\sum_{M \in \mathcal{M}(\alpha), M \text{ is label-separated}} \mu_n(T(\mathcal{G}_d, M)) - \mu(T(\mathcal{G}_d, \alpha))| < \frac{\epsilon}{10}. \quad (6)$$

Then we define a directed labeled finite graph H to encode some information on $\bar{\mu}_n$. If $A \in \bar{U}_{r+1,d}^n$ then let L_A be the unique element of $\bar{E}_{r+1,d}^n$ contained in A. The set of vertices of H: $V(H) := \bar{U}_{r+1,d}^n$. If $A, B \in \bar{U}_{r+1,d}^n$ and $L_A = L_B^{-1}$ (we use the inverse notation instead of writing out the involution operator) then there is a directed edge (A, L_A, B) from A to B labeled by L_A and a directed edge (B, L_B, A) from B to A labeled by $L_B = L_A^{-1}$. Note that we might have loops. We define the weight function w on H by

- $w(A) = \bar{\mu}_n(T(\mathcal{G}_d^n, A)).$
- $w(A, L_A, B) = \mu(T(\mathcal{G}_d^n, L_A, B))$, where $L_A, B \in \bar{E}_{r+1,d}^n$ the unique element such that $s(L_A, B) = A, t(L_A, B) = B.$

By Proposition [3] we have the following equation for all A, B that are connected in H:

$$w(A, L_A, B) = w(B, L_A^{-1}, A). \quad (7)$$
Also,
\[w(A) = \sum_{w(A,L_A,B) \in E(H)} w(A,L_A,B) \] \hspace{1cm} (8)

\[w(A) = \sum_{w(B,L_A^{-1},A) \in E(H)} w(B,L_A^{-1},A) \] \hspace{1cm} (9)

Also if \(M \in U_{n}^{r+1,d} \) then
\[\mu_n(M) = \frac{1}{\deg(M)} \sum_{A \in R(M)} l_A w(A), \] \hspace{1cm} (10)

where \(l_A \) is the multiplicity of \(w(A) \).

Since the equations (7), (8), (9) have rational coefficients we also have weight functions \(w_\delta \) on \(H \)

- taking only rational values
- satisfying equations (7), (8), (9)
- such that \(|w_\delta(A) - w(A)| < \delta \) for any \(A \in V(H) \), where the exact value of \(\delta \) will be given later.

Now let \(N \) be a natural number such that

- \(\frac{Nw_\delta(A)}{l_A} \in \mathbb{N} \) if \(A \in V(H) \).
- \(Nw_\delta(A,L_A,B) \in \mathbb{N} \) if \((A,L_A,B) \in E(H) \).

Step 1. We construct an edge-less graph \(Q \) such that:

- \(V(Q) = \bigcup_{A \in V(H)} Q(A) \) (disjoint union)
- \(|Q(A)| = Nw_\delta(A) \)
- each \(Q(A) \) is partitioned into \(\bigcup_{(A,L_A,B) \in E(H)} Q(A,L_A,B) \) such that
 \[|Q(A,L_A,B)| = Nw_\delta(A,L_A,B). \]

Since \(w_\delta \) satisfy our equations such \(Q \) can be constructed.

Step 2. We add edges to \(Q \) in order to obtain the graph \(R \). For each pair \(A,B \) that are connected in the graph \(H \) form a bijection \(Z_{A,B} : Q(A,L_A,B) \rightarrow Q(B,L_B,A) \). If there is a loop in \(H \) consider a bijection \(Z_{A,A} \). Then draw an edge between \(x \in Q(A,L_A,B) \) and \(y \in Q(B,L_B,A) \) if \(Z_{A,B}(x) = y \).

Step 3. Now we construct our graph \(G \). If \(M \in U_{n}^{r+1,d} \) is a rooted labeled tree such that \(\mu_n(M) \neq 0 \) let \(Q(M) = \bigcup_{A \in R(M)} Q(A) \). We partition \(Q(M) \) into
∪_{i=1}^M Q_i(M) such a way that each Q_i(M) contains exactly l_A elements from the set Q(A). By the definition of N, we can make such partition. The elements of V(G) will be the sets {Q_i(M)}_{M \in U^{r+1,d}, 1 \leq i \leq s_M}. We draw one edge between Q_i(M) and Q_j(M') if there exists x \in Q_i(M), y \in Q_j(M') such that x and y are connected in R. We label the vertex Q_i(M) by the label of the root of M. Let Q_i(M) be a vertex of G such that M is a label-separated tree. Note that if M is not a rooted tree then \mu_n(M) = 0. It is easy to see that the r + 1-ball around Q_i(M) in the graph G is isomorphic to M as rooted labeled balls. Also if M is not label-separated then the r + 1-ball around Q_i(M) can not be a label-separated tree. Therefore

\sum_{L \in U_{n,d}^r, L \text{ is not a label-separated tree}} p_G(L) = (11)

= \sum_{L \in U_{n,d}^r, L \text{ is not a label-separated tree}} \sum_{A \in R(L)} w_\delta(L) \leq \frac{\epsilon}{10} + \delta d |U_{n,d}^r|. (12)

Also, if M is a label-separated tree then

|p_G(M) - \mu_n(T(\text{Gr}_d, M))| \leq |R(M)| \delta \leq d\delta. (13)

Thus by (6), (11), (13) if \delta is choosen small enough then for any \alpha \in U^{r+1,d}

|p_G(\alpha) - \mu(T(\text{Gr}_d, \alpha))| < \epsilon.

Thus our Theorem follows.

\[\blacksquare\]

References

[1] D. Aldous and R. Lyons, Processes on Unimodular Random Networks, Electron. J. Probab. 12 (2007), no. 54, 1454-1508.

[2] D. Aldous and M. J. Steele, The objective method: probabilistic combinatorial optimization and local weak convergence. Probability on discrete structures, 1–72, Encyclopaedia Math. Sci., 110, Springer, Berlin, 2004.

[3] I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 (2001), no. 23, 13 pp. (electronic).

[4] B. Bollobás and O. Riordan, Sparse graphs: metrics and random models (preprint) http://arxiv.org/abs/0708.1919

[5] L. Bowen, Periodicity and circle packings of the hyperbolic plane Geom. Dedicata 102 (2003) 213-236.