The international research progress of Ammonia(NH3) emissions and emissions reduction technology in farmland ecosystem

W Z Yang1,2 and Y Jiao2*

1Water-saving Agricultural Engineering Research Center, Inner Mongolia Normal University, Hohhot 010022, China;
2Chemistry and Environment Science College, Inner Mongolia Normal University, Hohhot 010022, China;

Abstract. NH₃ is the important factor leading to the grey haze, and one of the main causes of environmental problems of serious ecological imbalance, such as acid rain and air quality deterioration. The fertilizer excessive application of the current farmland results NH₃ emissions intensity greatly. In order to clear the farmland NH₃ emissions research status and achievements, the literature of farmland NH₃ emission related were retrieved by the SCI journals and Chinese science citation database. Some factors of NH₃ emission were analyzed such as soil factors, climate factors and farmland management measures. The research progress was inducted on farmland NH₃ emission reduction technology. The results will help to clarify farmland NH₃ emissions research progress. The theoretical guidance was provided on the future of farmland NH₃ emissions research.

1. Introduction
NH₃ emissions is the largest in the gas of containing N."[1]. NH₃ is the only source of particulate NH₄⁺ and alkaline gaseous substance in the gas. The NH₃ 90 percent was converted to NH₄⁺, which was reacted with the acid in the atmosphere. There are NH₄⁺ 84 percent photochemical reactions. NH₃ exists in aerosol particles with NH₃NO₃, (NH₃)₂SO₄ and NH₃Cl binding mode(such as PM2.5)
especially the haze formation process, they accounted for 30 percent to 70 percent of PM2.5 mass concentration.[2,3]. Simultaneously, the NH₃ accumulating in the atmosphere will be oxidized into N₂O and NO, etc. The N₂O is not only an important greenhouse gas, but also participate in the stratospheric optical process, destroy the ozone layer, enhance ultraviolet radiation to the earth's surface, causing environmental pollution and huge economic losses.[4]. The increase of NH₃ concentration in atmosphere is closely related to the change of agricultural production mode. Agricultural production is an important source of NH₃ emissions.[5].

2. NH₃ emissions research progress at home and abroad
In recent years, a lot of field data have been accumulated at home and abroad on the NH₃ emissions. Some researchers have done a lot of quantitative research on the NH₃ emission rate and influencing factors under field conditions. There are 3 main factors affecting the NH₃-N loss of nitrogenous fertilizer, such as soil properties, meteorological conditions and agricultural technical measures.[6].

2.1. Soil factors
Soil pH is one of the important factors affecting NH₃ emissions. The NH₃ emissions increase with the
increase of soil pH value10. Urea applied into the soil, the soil pH increase after a short period of time, and reach maximum on the second day after fertigation, then fell rapidly, and maintain between 7.6-8.0. Some is absorbed by crops in the hydrolysis product NH\textsubscript{4}+, part are transformed into NO\textsubscript{3}-N, part are adsorbed by soil, the rest are released into atmosphere in the form of NH\textsubscript{3} emission loss.

The soil cation exchange capacity (CEC) changes H+ concentration in soil solution, adsorb NH\textsubscript{4}+ and NH\textsubscript{3} strongly, decrease the concentration of NH\textsubscript{3}, inhibit NH\textsubscript{3} emission, reduce NH\textsubscript{3} emission10.

Xiao(2016) studied soil’s clay content was much and organic matter content was high in winter wheat field, and cumulative NH\textsubscript{3} emissions is 3.40-5.06 kg N/hm2 in different fertilization treatment. The reason is that the texture of clay soil has a strong adsorption capacity of NH\textsubscript{4}+ generally, reduce the NH\textsubscript{4}+ content in the soil liquid phase effectively, thus reduce the loss of NH\textsubscript{3} emission11,12.

CaCO\textsubscript{3} content and total salt content in soil were closely related to the NH\textsubscript{3} emission of nitrogen fertilizer. Zhu(1989) researched that urea is in calcareous soil contained more calcium carbonate, NH\textsubscript{3} emission was more than that in acid paddy soil. Dry land, especially, on calcareous soil, NH\textsubscript{3} emissions is a great loss on application of urea and ammonium bicarbonate13.

\textbf{2.2. Meteorological factors}

Soil temperature directly affects the \(\text{NH}_4^+ \rightarrow \text{NH}_3 + \text{H}^+\) reaction equilibrium constant and NH\textsubscript{3} diffusion rate from the soil to the atmosphere. Temperatures elevated accelerate the emission rate of NH\textsubscript{3}. On the one hand, Temperature increased the proportion of the liquid NH\textsubscript{4}-N in the total ammonia significantly and promotes NH\textsubscript{4}+ conversion to NH\textsubscript{3}. On the other hand, the soil urease activity increased with the increase of temperature15.

There is a close relationship between the NH\textsubscript{3} emission and precipitation and other environmental factors in the field of nitrogen fertilizer. Nastr(2000) studied that fertilizer was brought into the deep soil with the rain infiltration, thereby reducing the loss of NH\textsubscript{3} emissions16. The rainfall reduced NH\textsubscript{3} emissions a week after fertilization significantly. Rainfall duration affects NH\textsubscript{3} emission17. However, a small amount of rain affected NH\textsubscript{3} emissions under irrigation conditions18,19.

\textbf{2.3. Agricultural management measures}

It is difficult that the researchers realize the NH\textsubscript{3} emission reduction in agricultural production practice by changing the physical and chemical properties of soil and climate environment. How to reduce the NH\textsubscript{3} emission losses in agricultural production, it is the key for adjustment of agricultural management measures. Agricultural management practices influence NH\textsubscript{3} emissions significantly.

\textbf{2.3.1. Fertilizer amount.} NH\textsubscript{3} emissions were positively correlated with the amount of nitrogen application20. Zhang(2007) studied that NH\textsubscript{3} emissions were 8.2-28.7kg/hm2 and 21.8-62.1kg/hm2 on different fertilizer levels of rice season. NH\textsubscript{3} emissions accounted for 3.7%-8.8% and 10.0%-18.9% of urea application rate21. Wang(2006) show that increasing N application rate significantly increased soil NH\textsubscript{3} emission rate22. The peak of NH\textsubscript{3} emission rate in different nitrogen application treatments appeared at third days (N 140-165 g/hm2h) and fifth days (N 100-400g/hm2h). The effective way to reduce the loss of nitrogen fertilizer was to control nitrogen fertilizer application amount4,23.

\textbf{2.3.2. Tillage and fertilization methods.} A variety of N fertilizer deep application technology to reduce the effect of NH\textsubscript{3} emission is better by reducing the time of NH\textsubscript{4}-N fertilizer exposed to the air than surface application. NH\textsubscript{3} emission is the strongest in the case of surface application of N fertilizer, NH\textsubscript{3} emissions on a mixed mode of surface and deep application fertilization are less than that of surface application, and that is weakest on deep application.

\textbf{2.3.3. Fertilization application period.} Fertilizer application period significantly affected NH\textsubscript{3} emission losses. NH\textsubscript{3} emission rate was the highest in tillering fertilizer, and panicle fertilizer was the lowest. Wang Xiubin studied the total amount of NH\textsubscript{3} emission in different fertilization application period. The results showed that the method of reducing the amount of nitrogen application and nitrogen fertilizer application delayed backwards in time can reduce the loss of NH\textsubscript{3} emission and
increase the yield[24,25,26]. NO\textsubscript{3}--N and NH\textsubscript{4}+-N seasonal dynamic changes are different on different nitrogen treatment of soil, and mainly depends on the different nitrogen fertilizer N release characteristics, fertilizer use time and Fertilizer use by several times, etc[27].

3. Conclusions
In fact, to take effective control measures, this problem is not confined to China, but worldwide. To strengthen the following several aspects:
In recent years, the domestic scientific research workers studied more NH\textsubscript{3} emission factors, however, most of the existing research focused on paddy and corn field ecosystem. NH\textsubscript{3} emissions vary for the planting patterns and soil environment. To achieve accurate quantitative evaluation model of NH\textsubscript{3} emissions, it is necessary for NH\textsubscript{3} emissions affecting factors and mechanism research on different ecological conditions, different planting patterns and different types of farmland soil.
Previous studies have a lot of potted plants and greenhouse cultivation on NH\textsubscript{3} emissions research work. Their environmental factors control is different on field crops compared in situ observation study, such as moisture and temperature. To strengthen the wild farmland NH\textsubscript{3} emission research, measures of NH\textsubscript{3} emission reduction can help farmland the practical application.
Temperature effect on NH\textsubscript{3} emissions research results are inconsistent. Some think temperature and NH\textsubscript{3} emissions have significant positive correlation, however, some studies suggest temperature is not NH\textsubscript{3} emissions limits. the following work need study temperature to influence the NH\textsubscript{3} emission, to clear temperature influence mechanism of NH\textsubscript{3} emissions on different ecological environment.
To agricultural sustainable development, future research direction must adhere to the general principle of "high-yield, high-quality, high efficiency" and "low consumption, no pollution", actively research the effective and easy technology to reduce NH\textsubscript{3} emission loss.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (41375144, 41565009, 41675140); Youth Innovative Talents Plan in Inner Mongolia for 2016.

References
[1] Webb J H and Menzi 2005 Environ. Pollut. 135 399
[2] Su C G, Yin B, Zhu Z L and Shen Q R 2003 Chinese J. Appl. Ecol. 14 1888 (in chinese)
[3] Tsuruta H, Kanda K and Hirose T 1997 Nutr. Cycl. Agroecosystems 49 58
[4] Ye S C, Lin Z C, Dai Q G, Jia Y S, Gu H Y, Chen J D, Xu L S, Wu F G, Zhang H C, Huo Z Y, etal. 2011 Chinese J. Rice Sci. 25 78 (in chinese)
[5] Hutchings N J, Sommer S G, Andersen J M and Asman W A H 2001 Atmos. Environ. 35 1968
[6] M 1998 Nutr. Cycl. Agroecosystems 51 8
[7] Yan X Y, Hajime A and Toshimasa O 2003 Global Change Biol. 9 1080
[8] Tian G M, Cai Z C, Cao J L and Li X P 2001 Chemosphere 42 128
[9] Dancer W S, Peterson L A and Chesters G 1973 Soil Sci. Soc. Am. P. 37 68
[10] Zhang Q L, Zhang M, Ye G P and Lu J F 2002 Chinese J Soil Sci. 23 31 (in chinese)
[11] Xiao J, Fan J L, Ye G P, Liu D Y, Yan J, Luo J F, Houlibrooke D J and Ding W X 2016 J. Agro-Eviron. Sci. 35 2018 (in chinese)
[12] Duan Z H, Zhou Y L and Wu S R 1990 Chinese J. Soil Sci. 3 138 (in chinese)
[13] Zhu Z L, Simpson J R, Zhang S L, Cai G X, Chen D L, Freney J R and Jackson A V 1989 Acta Pedologica Sinica 26 338 (in chinese)
[14] Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christiea P, Zhu Z L, etal. 2009 P. Natl. Acad. Sci. US A 106 3046
[15] Freney J R and Simpson J R 1983 Gaseous loss of nitrogen from plant-soil systems (Martin Nijhoff: Dr.W.Junk Publishers)
[16] Nasiri A, Todri G and Bernati E 2000 Agrochimica 5-6 238
[17] Li Q Q, Li Y F, Gao Q, Li S Q, Chen X P, Zhang F S and Liu X J 2015 J Plant Nutr. Fert. 21 578 (in chinese)
[18] Zhai X X, Wang Z L, Dai Z M, Liu X, Wang P, Liu H T, Yin Y C, Cao L, Xu C L and Cui Z Y, etal. 2013 Plant Nutr. Fert. Sci. 19 56 (in chinese)

[19] Zhu Z L 2000 Soil Environ. Sci. 9 6 (in chinese)

[20] Wang G L, Chen X P, Cui Z L, Yue S C and Zhang F S 2014 Agr. Ecosyst. Environ. 197 298

[21] Zhang J and Wang D J 2007 Chinese J. Eco-Agric. 15 86 (in chinese)

[22] Wang D, Yu Z W, Yu W M, Shi Y and Zhou Z X 2006 Chinese J. Appl. Ecol. 17 1598. (in chinese)

[23] Xiao X, Yang L L, Deng Y P and Wang J F 2012 Chinese J. Eco-Agric. 31 2066 (in chinese)

[24] Li H, Wang E J and Yang G F 2008 Mod. Agric. Sci. Technol. 10 111 (in chinese)

[25] Sang M M, Fan H, Jiang S S and Jiang J Y 2015 Environ. Sci. 36 3358 (in chinese)

[26] Zhang H, Yang Z L and Luo L G 2011 Plant Nutr. Fert.r Sci. 17 1138

[27] Fan H, Jiang S S, Wei Y and Jiang J Y 2016 Evirion. Sci. 37 2906 (in chinese)