Microflora of Mycotoxigenic Fungi in Rice Grains in Kyushu Region of Japan and Their Changes during Storage under non-Controlled Conditions

NAOKI KOBAYASHI¹, KEITA SAKURAI¹, RIIKA NAKARAI¹, KEISUKE SHIGAKI¹, KAZUMI HORIKAWA², MIOKO HONDA³, YOSHITSUGU SUGIURA¹, MAIKO WATANABE⁴, MASAHIKO TAKINO⁵, AND YOSHIKO SUGITA-KONISHI¹★

¹Department of Food and Life Sciences, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
²Kitakyushu Life Science Center, 1-4 Nakabarushinmachi, Tobata-ku, Kitakyushu, Fukuoka 804-0003, Japan
³Department of Animal Nursing Science, Yamazaki Gakuen University, 4-7-2 Minami Osawa, Hachioji, Tokyo 192-0364, Japan
⁴National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
⁵Agilent Technologies, Japan, Ltd., 9-1 Takakura-cho, Hachioji, Tokyo 192-8510, Japan

Received 1 November, 2019/Accepted 18 February, 2019

Contamination of agricultural crops by mycotoxins has increased because of the expansion of mycotoxin-producing fungi along with global warming. In this study, the fungal microflora of brown rice grains cultivated in Kyushu region in the southern part of Japan was investigated. A total of 75% of rice samples examined in this study showed less than 30% of fungal contamination rates with a median rate of 12.5%. Some isolates of Aspergillus flavus showed the ability to produce aflatoxins (AFs) (AFB1 production was 62.5-70.4 ng/mL). Furthermore, AF-producing Aspergillus flavus survived during storage and Aspergillus creber, which produced sterigmatocystin, was detected in a stored rice sample. Although AFs or sterigmatocystin-contamination was not detected in any rice samples, these mycotoxin-producing fungi are distributed and can survive during storage under the natural conditions in Japan. Employing suitable storage conditions is important for preventing mycotoxin contamination of brown rice grains.

Key words: Kyushu region of Japan / Microflora change / Rice / Storage.

Rice is a staple food for more than half of total world population, including Japan, and is one of the most consumed cereals worldwide. In terms of cultivation and consumption, approximately 700 million tons of rice are produced globally (FAO, 2018). Although mycotoxin contamination in rice occurs at less than half the rate observed in wheat and corn, many studies reported the contamination of rice by mycotoxins such as aflatoxins (AFs), citrinin, ochratoxin A, fumonisins, and torichothecens, as well as by mycotoxigenic fungi (Tanaka et al., 2007; Reddy et al., 2008). Among the mycotoxins contaminating rice, the most threatening are AFs, which are highly toxic and carcinogenic. One type of AFs, AFB1, is classified as a group 1 human carcinogen by the International Agency for Research on Cancer (IARC, 2002). However, AFs have not threatened Japanese domestic rice grains because AF-producing fungi such as Aspergillus flavus are distributed mainly in tropical and subtropical regions. AF-contamination of food and feed are rare in Japan. However, because of global warming, there are increased concerns that AF-producing fungi may spread to...
temperate regions. Indeed, the natural occurrence of AF contamination in rice grains was reported in Asian countries such as Korea and China (Oh et al., 2010; Lai et al., 2015; Kim et al., 2017; Sun et al., 2017). In Japan, AFB1 was also found in rice harvested from a field at the University of Miyazaki, which is the southern part of Japan, in 2011. These data suggest the expanding distribution of AF-producing fungi, but few studies have examined the microflora of recent rice grains or fields in temperate regions. In this study, we analyzed the fungal microflora of rice grains cultivated in Kyushu region, in the southern part of Japan, where concerns have been raised regarding the effects of global warming.

Twenty-eight rice commodities cultivated in Kyushu region in 2013 and 2014-year crop were used (Table 1). The fungal microflora in brown rice grains were analyzed as follows. One hundred rice grains in each sample were exposed to 70% ethanol solution for 30 s and washed twice with sterile distilled water. Five rice grains per one plate were placed onto dichloran rose bengal chloramphenicol agar or dichloran 18% glycerol agar medium and cultured at 25°C for 5 days. After incubation, developed fungi were counted and to analyze the mycoflora, the developed fungi were identified at the genus level as Aspergillus, Penicillium, Cladosporium, Eurotium, Fusarium, and others by microscopic observation.

Furthermore, changes in the fungal microflora during

No.	Asp	Pen	Cla	Eur	Fus	Other	Total	Aw
7	-	-	-	-	-	1	1	0.66
8	1	-	-	-	-	-	1	0.65
9	-	1	-	-	-	2	3	0.68
1	2	-	2	-	-	-	4	0.70
5	4	-	-	-	-	-	4	0.67
6	-	-	-	-	-	4	4	0.66
11	1	2	-	-	-	-	1	0.76
10	1	4	-	-	-	-	5	0.62
2	5	1	-	-	-	-	6	0.67
4	-	-	4	-	-	-	2	0.78
25	-	5	-	-	-	-	2	0.60
27	-	4	-	-	-	-	7	0.66
28	1	4	-	-	-	-	2	0.62
12	-	-	4	4	-	-	4	0.70
14	8	-	-	3	-	-	2	13
24	-	-	4	6	1	-	2	13
26	-	-	-	10	-	-	4	14
15	4	4	1	-	-	-	10	19
16	-	-	-	-	-	-	26	26
19	2	-	-	4	-	-	22	28
21	4	-	2	-	-	-	22	28
13	6	10	-	-	-	-	13	29
3	10	2	-	-	1	-	21	34
18	-	-	-	6	-	38	44	0.66
23	-	6	-	2	1	47	56	0.74
17	8	-	-	-	-	60	68	0.90
20	4	52	-	-	-	18	74	0.69
22	14	-	-	-	-	78	92	0.69

Asp: Aspergillus, Pen: Penicillium, Cla: Cladosporium, Eur: Eurotium, Fus: Fusarium
storage were analyzed. In Japan, rice is generally stored in an air-conditioned environment at a temperature of approximately 15°C and relative humidity (RH) of approximately 70%. Thus, fungal contamination of rice grains rarely increases during storage in Japan. However, storage under natural condition is common among small farmers. In these cases, fungal contamination may increase, but few studies have examined the changes in the fungal microflora of rice grains during storage under natural conditions. The rice grains used in this study were placed in paper bags and stored in a barn from November 2014 to October 2015 (for 10 months). Changes in the fungal flora of rice grains during storage without control of temperature and humidity in the barn located in Kanagawa Prefecture, eastern part of Japan, was investigated.

Before storage, the contamination rate of approximately half of the samples (13/28 rice samples) was less than 10%, although the fungi developed on 92% of rice grains in samples showing the greatest contamination (Table 1). Additionally, 75% of samples showed fungal contamination rates of less than 30% with a median of 12.5% (Fig. 1A). At the genus level, Aspergillus species were most frequently detected (15/28), followed by Penicillium (11/28), Eurotium (7/28), Cladosporium (6/28), and Fusarium (3/28) (Table 2). To examine contamination by AF-producers such as A. flavus, Aspergillus isolates were identified at the species level. The isolates were transferred to potato dextrose agar, Czapek yeast agar, and malt extract agar media and cultured at 25°C for 7 days. Colonies were identified based on morphological characteristics. Aspergillus flavus was detected in four rice samples, indicating that these rice samples were possible to be contaminated by AFs. Previously, most A. flavus isolated from foods and soils in Japan were thought to be non-AF-producing strains (Manabe et al., 1976; Saito et al., 2008). However, recent studies showed that AF-producing A. flavus was detected near Okinawa prefecture and the Kyushu region, in the south of Japan, and sometime in the northern part of Japan (Okazaki et al., 1992; Takahashi, 1993; Takahashi et al., 2004). The isolates identified as A. flavus in this study may produce AFs. AF production by these isolates was investigated by high-performance liquid chromatography as described by Yabe et al. (1988). All isolates produced AFB1 in the range of 62.5-70.4 ng/mL (average 67.5±3.0 ng/mL). AFs were not detected in rice samples contaminated by these A. flavus isolates. This may be because of the low contamination rates of 2.8±1.5% (Table 2).

After 7 months of storage (until June 2015), the fungal contamination rates were decreased in more than half of the rice samples (15/28), and the median contamination rate decreased to 8.5% (Fig. 1A). The storage period from November to June is autumn to spring in Japan, which are relatively dry and cold seasons. RH in the barn was consistently lower than 70% although it was relatively higher in February possibly because of snow, and the temperature was lower than 15°C before
May (Fig. 1B). The contaminating fungi abundance decreased during storage even under natural conditions possibly because of the low temperature and RH. After 10 months of storage, the contamination rates had increased in most rice samples (26/28), and the median of fungal contamination rate increased to 50% (Fig. 1A). This may be because of the rising temperatures and degree of humidity in the barn. In Japan, June is the rainy season, after which summer begins. As shown in Fig. 1B, the temperature in the barn began increasing to greater than 25°C, which is an appropriate temperature for fungal growth. The humidity also began increasing and reached more than 70% after June, and the water activity (Aw) of rice grains increased with rising temperature and humidity (Fig. 2C). Although the median Aw of rice grains before storage was 0.68, this value increased to 0.82 after 7 months of storage and was maintained at a high level (0.75) until 10 months of storage.

Examination of contamination by specific genera revealed that the detection rates of Aspergillus (19/28) and Eurotium (14/28) increased and those of Penicillium (8/28) and Cladosporium (1/28) decreased after 7 months of storage. After 10 months of storage, the contamination rates of all examined genera except for Eurotium decreased. During storage, the abundance of fungi contaminating in the field was thought to decrease; particularly, the detection of Cladosporium, which is one of the major fungi present in the field, decreased from that in six rice samples to that in only one rice sample after 7 months of storage, and not detected after 10 months of storage. Other field fungus Fusarium was detected in only one sample after 10 months of storage. On the other hand, Eurotium was detected in nearly all samples (26/28) and the contamination rate increased from 2.2±2.8% to 39.2±16.8% after 10 months of storage. Xerophilic fungus such as Eurotium increased in the fungal flora of rice grains as Aw decreased during storage (Table 2, Fig. 1C).

After 7 months of storage, nine rice samples were contaminated with A. flavus. Although A. flavus was newly detected in seven rice samples in which A. flavus was not detected before storage, two rice samples have been contaminated with A. flavus before storage, indicating that A. flavus can survive during storage in temperate regions. Furthermore, the levels of A. flavus in newly contaminated seven samples may have been below the detection limit before storage, and the fungi survived and their abundance increased during storage. These isolates produced AFB1 in the range of 55.8-70.2 ng/mL. Sugiha et al. (2016) stored rice artificially contaminated with AF-producing A. flavus under natural conditions in Japan and found that AF-contamination in rice can occur in temperate regions. Our data suggest that A. flavus can survive during storage even in natural occurrence with a low contamination rate. Although AFs

TABLE 2
Changes of contamination level during storage

Genera (species)	Before storage	7 months	10 months
Aspergillus	15	19	15
	(4.9 ± 3.7%)	(1.7 ± 3.6%)	(4.5 ± 6.1%)
(Aspergillus flavus)	4	9	0
	(2.8 ± 1.5%)	(1.3 ± 0.5%)	-
(Aspergillus versicolor)	0	1	1
	-	(1.0%)	(3.0%)
Penicillium	11	8	3
	(8.3 ± 14.7%)	(2.4 ± 2.1%)	(1.3 ± 0.6%)
Cladosporium	6	1	0
	(2.8 ± 1.3%)	(1.0%)	-
Fusarium	3	4	1
	(1.0 ± 0.0%)	(1.3 ± 0.5%)	(1.0%)
Eurotium	7	14	26
	(5 ± 2.6%)	(2.2 ± 2.8%)	(39.2 ± 16.8%)
Other	24	25	22
	(16.3 ± 20.7%)	(15.4 ± 19.2%)	(16.1 ± 16.4%)

a average ± SD
were not detected in these contaminated rice samples after storage, when the contamination rate in the filed increases and storage conditions are more suitable for fungal growth, the rice grains can become contaminated by AFs during storage, even in temperate regions. The optimum temperature for the growth of *A. flavus* was 30-35°C (Abdel-Hadi et al., 2012; Ayerst 1969) and the optimum temperature for AFB1 production on rice was reported to be 28°C (Sorenson et al., 1967).

Additionally, *A. versicolor*, which is known as a sterigmatocystin (STC)-producer (Rank et al., 2011), was isolated from one rice sample stored for 7 months and one sample stored for 10 months. STC is known as a precursor to AFB1 and is carcinogenic, categorized as a 2B carcinogen (IARC, 1987). Some studies reported the natural occurrence of STC contamination by *A. versicolor* in rice grains subjected to long-term storage in some Japanese storehouses at room temperature (Manabe et al., 1976; Sugimoto et al., 1977). Similarly, this species was detected only in stored samples in this study. This species may survive and increase in number during long-term storage. STC-production of the isolates morphologically identified as *A. versicolor* in this study was also investigated. The results showed that one of four isolates produced STC at a concentration of 330 ng/mL. Recently, the section including *A. versicolor*, Versicolores, was taxonomically revised based on molecular phylogenetic analysis, and the STC production of each species was investigated (Jurjevic et al., 2012; Jurjevic et al., 2013). The *A. versicolor* isolates in this study were identified based on a molecular phylogenetic method using the β-tubulin gene as previously described (Kobayashi et al., 2018). As a result, isolates producing STC were identified as *A. creber*, which was described as an STC-producer in a previous study (Jurjevic et al., 2013). Another isolate that did not produce STC was identified as *A. sydowii*, which has been recognized as a non-STC producer (Frisvad and Thrane, 1995). STC was not detected in rice grains contaminated with *A. sydowii* or *A. creber*. Although no STC contamination was detected because of the low contamination rate by *A. creber* (1%), *A. creber* levels may increase and cause STC contamination under unsuitable storage conditions. The optimum growth temperature for *A. versicolor* are 30°C and the optimum temperature for STC production by *A. versicolor* was 27 to 29°C (Rabie et al., 1976; Versilovskis and De Saeger, 2010).

Additionally, some species in the genus *Penicillium* produce mycotoxins, particularly the infamous case of molded toxic yellowed rice in Japan. To date, three historical cases have been documented in imported rice grains, and three causative species were identified: *Penicillium citreonigrum* producing citreoviridin, *Penicillium islandicum* producing luteoskylin and cyclochlorotriene, and *Penicillium citrinum* producing citrinin (Udagawa and Tatsuno, 2004; Kushiro, 2015). Next, we examined whether these three species could be detected among the isolates morphologically identified as *Penicillium*. *Penicillium* species causing toxic yellowed rice have never been detected in any rice samples regardless of whether they were stored. However, these *Penicillium* species required extra attention because they are possible to be expand to Japan according to the effects of global warming.

In this study, the fungal microflora of rice grains cultivated in the southern part of Japan was investigated. We found that AF-producing *A. flavus* and STC-producing *A. creber* were distributed in this region, indicating the potential for contamination of Japanese domestic rice by AFs or STC. However, no AF or STC contamination was observed in rice grains investigated in this study because of the low contamination rate. Furthermore, these fungi can survive during storage under natural conditions in Japan. Mycotoxin contamination can occur when storage conditions are unsuitable. Storage under controlled conditions is important even in temperate regions to prevent mycotoxin contamination.

ACKNOWLEDGEMENTS

This study was financially supported in part by a grant from the Ministry of Health, Labour and Welfare, Japan (H27-shokuhin-ippan-011).

CONFLICT OF INTEREST

The authors have no conflict of interest.

ABBREVIATIONS: AF: aflatoxin, STC: sterigmatocystin

REFERENCES

Abdel-Hadi, A., Schmidt-Heydt, M., Parra, R., Geisen, R. and Magan N. (2012) A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by *Aspergillus flavus*. *J. R. Soc. Interface*, 9, 757-767.

Frisvad, J. and Thrane, U. (1995) Mycotoxin production by food-borne fungi. In *Introduction to food-borne fungi* (Somson RA, H. ES, F. JC and F. O eds.) pp. 251-260. Centraalbureau voor Schimmelcultures, Baarn, The Netherlands.

IARC. (1987) Overall evaluations of carcinogenicity: an updating of IARC Monographs Volumes 1 to 42. *IARC Monogr. Eval. Carcinog. Risk Chem. Hum.*, 1-42, 64.

IARC. (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. *IARC Monogr. Eval.*
Carcinog. Risks Hum., 82, 1-556.
Jurjevic, Ž., Peterson, S. and Horn, B. (2012) Aspergillus section Versicolor: nine new species and multilocus DNA sequence based phylogeny. *IMA Fungus*, 3, 59-79.

Jurjevic, Ž., Peterson, S.W., Solfrizzo, M. and Peraica, M. (2013) Sterigmatocystin production by nine newly described *Aspergillus* species in section Versicolor grown on two different media. *Mycotoxin Res.*, 29, 141-145.

Kim, D. H., Hong, S. Y., Kang, J. W., Cho, S. M., Lee, K. R., An, T. K., Lee, C. and Chung, S. H. (2017) Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. *Toxins (Basel)*, 9, 106.

Kobayashi, N., Kubosaki, A., Takahashi, Y., Yanai, M., Konuma, R., Uehara, S., Chiba, T., Watanabe, M., Terajima, J. and Sugita-Konishi, Y. (2018) Distribution of Sterigmatocystin-producing *Aspergillus* in Japan. *Food Saf.*, 6, 67-73.

Kushiro, M. (2015) Historical review of researches on yellow rice and mycotoxigenic fungi adherent to rice in Japan. JSM *Mycotoxins*, 65, 19-23.

Lai, X., Zhang, H., Liu, R. and Liu, C. (2015) Potential for aflatoxin B1 and B2 production by *Aspergillus flavus* strains isolated from rice samples. *Saudi J. Biol. Sci.*, 22, 176-180.

Manabe, M., Tsuruta, O., Tanaka, K. and Matsuura, S. (1976) Distribution of mycotoxin-producing *Aspergillus* in Japan. *Proc. Jap. Assoc. Mycotoxicol.*, 3, 31-35.

Oh, J. Y., Sang, M. K., Oh, J. E., Lee, H., Ryoo, M. I. and Kim, K. D. (2010) Microbial population, aflatoxin contamination and predominant *Aspergillus* species in Korean stored rice. *Plant Pathol. J.*, 26, 121-129.

Okazaki, H., Saito, M. and Tsuruta, O. (1992) Population Levels of *Aspergillus flavus* and *A. parasiticus* in Field Soils in Two Areas of Kyushu District. *Japanese J. Phytopathol.*, 58, 208-213.

Rabie, C. J., Lubben, A. and Steyn, M. (1976) Production of sterigmatocystin by *Aspergillus versicolor* and Bipolaris sorokiniana on semisynthetic liquid and solid media. *Appl. Environ. Microbiol.*, 32, 206-208.

Rank, C., Nielsen, K. F., Larsen, T. O., Varga, J., Samson, R. A. and Frisvad, C. J. (2011) Distribution of sterigmatocystin in filamentous fungi. *Fungal Biol.*, 115, 406-420.

Reddy, K. R. N., Reddy, C. S., Abbas, H. K., Abel, C. A. and Muralidharan, K. (2008) Mycotoxigenic fungi, mycotoxins, and management of rice grains. *Toxin Rev.*, 27, 287-317.

Saito, M., Okazaki, H., Tanaka, K. and Kushiro, M. (2008) Distribution of *Aspergillus flavus* and *A. parasiticus* in field soils from Ibaraki and Chiba Prefectures. *Rep. Natl. Food Res. Inst.*, 77-81.

Sorensen, W. G., Hesseltine, C. W. and Shotwell, O. L. (1967) Effect of temperature on production of aflatoxin on rice by *Aspergillus flavus*. *Mycopathol. Mycol. Appl.*, 33, 49-55.

Sugihara, S., Doi, H., Kato, M., Mitoh, Y., Tsuda, T. and Ikeda, S. (2016) Aflatoxins in rice artificially contaminated with aflatoxin-producing *Aspergillus flavus* under natural storage in Japan. *Acta Med. Okayama*, 70, 167-174.

Sugimoto, T., Minamisawa, M., Takano, K., Sasamura, Y. and Tsuruta, O. (1977) Detection of Ochratoxin A, Citrinin and Sterigmatocystin from Storaged Rice by Natural Occurrence of *Penicillium viridicatum* and *Aspergillus versicolor*. *Shokuhin Eiseigaku Zasshi*, 18, 176-181.

Sun, X. D., Su, P. and Shan, H. (2017) Mycotoxin Contamination of Rice in China. *J. Food Sci.*, 82, 573-584.

Takahashi, T. (1993) Distribution and characteristics of aflatoxin-producing *Aspergillus flavus* in the soil in Kanagawa Prefecture, Central Japan. *Mycopathologia*, 121, 169-173.

Takahashi, H., Kamimura, H. and Ichinoe, M. (2004) Distribution of aflatoxin-producing *Aspergillus flavus* and *A. parasiticus* in sugarcane fields in the southern-most islands of Japan. *J. Food Prot.*, 67, 90-95.

Tanaka, K., Sago, Y., Zheng, Y., Nakagawa, H. and Kushiro, M. (2007) Mycotoxins in rice. *Int. J. Food Microbiol.*, 119, 59-66.

Udagawa, S. and Tatsuno, T. (2004) Safety of rice grains and mycotoxins - a historical review of yellow rice mycotoxocoses. *Yakushigaku Zasshi*, 39, 321-342.

Versilovskis, A. and De Saeger, S. (2010) Sterigmatocystin: occurrence in foodstuffs and analytical methods— an overview. *Mol. Nutr. Food Res.*, 54, 136-147.

Yabe, K., Nakamura, H., Ando, Y., Terakado, N., Nakajima, H. and Hamasaki, T. (1988) Isolation and characterization of *Aspergillus parasiticus* mutants with impaired aflatoxin production by a novel tip culture method. *Appl. Environ. Microbiol.*, 54, 2006-2100.