Full Length Article

Characterizing idiopathic intracranial hypertension socioeconomic disparities and clinical risk factors: A retrospective case-control study

Frances Tiffany Cava Morden a, Charissa Tan a, Enrique Carrazana a,b, Jason Viereck a,b, Kore Kai Liow a,b, Arash Ghaffari-Rafi a,c,d,1

a University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI, USA
b Hawaii Pacific Neuroscience, Brain Research, Innovation and Translation Lab, Honolulu, HI, USA
c University of California, Davis, School of Medicine, Department of Neurological Surgery, Sacramento, CA, USA

ARTICLE INFO

Keywords:
Idiopathic intracranial hypertension
Migraines
Socioeconomic disparities
Headaches
BMI
Epilepsy

ABSTRACT

Introduction: Against the backdrop of the diverse minority-majority state of Hawaii, this study seeks to better characterize associations between idiopathic intracranial hypertension (IIH) with sociodemographic variables and medical comorbidities.

Methods: A retrospective case-control study was conducted by utilizing 54 IIH patients and 216 age-, sex-, and race-matched controls, 216 unmatched controls, and 63 age-, sex-, and race-matched migraine patients.

Results: Relative to controls, IIH were 25 years younger (p < 0.0001) and 10.18 kg/m² heavier (p < 0.0001), as well as exhibited greater odds of the following variables (p < 0.05): female (odds ratio [OR]: 8.87), the lowest income quartile (OR: 2.33), Native Hawaiian or other Pacific Islander (NHPI; OR: 2.23), Native American or Alaskan Native (OR: 16.50), obesity class 3 (35.0–39.9 kg/m²; OR: 4.10), obesity class 3 (> 40 kg/m²; OR: 6.10), recent weight gain (OR: 11.66), current smoker (OR: 2.48), hypertensive (OR: 3.08), and peripheral vascular disease (OR: 16.42). Odds of IIH were reduced (p < 0.05) for patients who were Asian (OR: 0.27) or students (OR: 0.30). Unique from Whites, NHPI IIH patients exhibited greater odds (p < 0.05) for being from lower socioeconomic status and currently smoking, as well as potential association with seizures (p = 0.08). Compared to migraineurs, IIH headaches were at increased odds of occurring (p < 0.05) occipitally, for greater than 15 days per month, aggravated by postural changes, and comorbid with dizziness and tinnitus.

Conclusions: These results not only better characterize IIH, but also highlight socioeconomic and racial disparities in diagnosis.

1. Introduction

Without an identified etiology, idiopathic intracranial hypertension (IIH) is defined by an elevated intracranial pressure in the setting of normal ventricles [1]. While IIH presents with insidious headaches, in the absence of intervention, permanent vision loss can develop [2,3]. Hence, efficiently diagnosing IIH is paramount for averting morbidity. One avenue to improve accurate and timely IIH diagnosis is to better characterize the disorder’s associated sociodemographic and medical comorbidities, to therefore increase a clinician suspicion for conducting an IIH diagnostic work-up.

To elucidate the potential socioeconomic, demographic, medical risk factors associated with IIH, we conducted a retrospective case-control study within the minority-majority population in the state of Hawai’i [4]. By utilizing Hawai’i, such enabled the investigation of IIH in relation to Native Hawaiians and other Pacific Islanders (NHPI), a population not only at greater predisposition to obesity—a predictor of IIH—but also traditionally combined in demographic classifications with

Abbreviations: 95% CI, 95% Confidence Interval; BMI, Body Mass Index; NHPI, Native Hawaiian or Other Pacific Islander; HPN, Hawai’i Pacific Neurosciences; IIH, Idiopathic Intracranial Hypertension; IIHTT, Idiopathic Intracranial Hypertension Treatment Trial; ICD-9, International Classification of Diseases 9th Edition; ICD-10, International Classification of Diseases 10th Edition; IQR, Interquartile Range; NAAN, Native American or Alaska Native; OR, Odds Ratio; ZIP, Zone Improvement Plan.

* Correspondence to: University of California, Davis, Department of Neurological Surgery, 4860 Y Street, Suite 3740, Sacramento, CA 95817, USA.

E-mail address: arashgr@hawaii.edu (A. Ghaffari-Rafi).

ORCID ID: 0000-0002-6098-8036

https://doi.org/10.1016/j.clineuro.2021.106894
Received 16 June 2021; Received in revised form 7 August 2021; Accepted 12 August 2021
Available online 14 August 2021
0303-8467/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Asians, who themselves experience lower rates of obesity [5–7]. Furthermore, to better delineate IIH headaches, our investigation also compared headache characteristics between IIH and migraines.

2. Methods

2.1. Study design and setting

University of Hawai‘i at Mānoa, Office of Research Compliance (protocol number: 2020-01010), provided institutional review board exception prior to study initiation. Electronic medical records at Hawai‘i Pacific Neuroscience (HPN; Honolulu, Hawai‘i) were retrospectively searched from January 1, 2009 to January 5, 2021. Patients were identified via the International Classification of Diseases 9th and 10th Editions, Clinical Modification, (ICD-9-CM or ICD-10) codes: 348.2 (ICD-9) and G93 (ICD-10). To meet inclusion, patients required diagnosis of IIH with the modified Dandy diagnostic criteria from the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) [8,9].

2.2. Outcome variables

Data collected for each IIH case included sociodemographic variables, Zone Improvement Plan (ZIP) code, clinical presentation, and medical comorbidities. Patient ZIP code served as a proxy measure for several socioeconomic variables, as described in a prior investigation [10]. IIH clinical variables included presenting symptoms to clinic (i.e., headache, visual disturbances, dizziness/syncope), symptoms at the time of diagnosis, and headache characteristics (i.e., duration, location, severity, laterality).

2.3. Controls

Four controls were selected for each case (n = 54) to maximize statistical power. Two sets of 216 randomly selected controls were collected from the HPN patient population (n = 29,049). The first set of controls (n = 216) was matched by age, sex, and race. To study differences with regards to age, sex, and race, the second set of controls was unmatched. For comparing headache characteristics of migraines against IIH, matched controls of migraine (n = 63) patients were compared to IIH.

2.4. Statistical analysis

Continuous variables were assessed by the independent Wilcoxon rank sum test, while categorical variables by either the Pearson’s chi-squared test or the Fisher’s exact test of independence, with Haldane-Anscombe correction [11,12]. Univariate and multivariable logistic regression with Firth correction, were conducted to identify variables independently predictive of IIH diagnosis [13]. All tests were two-tailed and used an alpha level of < 0.05 for statistical significance.

3. Results

3.1. Overall prevalence and clinical characteristics of IIH cases

After identifying 63 IIH cases via ICD codes, nine were excluded for not meeting IIHTT modified Dandy diagnostic criteria, leaving 54 cases for analysis (Table 1). The prevalence of IIH amongst the institute’s population was 186 per 100,000 patients. The median incidence between 2010 and 2020 was 105 (Interquartile Range [IQR]: 73.6, 152) and annually static (Kendall’s τ = −0.31, p = 0.21).

The most common initial presentation of IIH patients to clinic (Table 2) was headache alone (57.40%), followed by headache and visual disturbance together (31.38%). At the time of diagnosis (Table 2), 96.20% of IIH patients had a headache, 96.20% a visual disturbance, 25.90% tinnitus, and 20.00% dizziness or syncope.

![Table 1](https://example.com/table1.png)

Table 1 Number of patients per each variable for idiopathic intracranial hypertension (IIH) and controls.

variable	IDIOPATHIC INTRACRANIAL HYPERTENSION	Controls
Age at presentation (Unmatched)	54	216
Sex (Unmatched)		
Male	4	90
Female	50	126
Race/Ethnicity (Unmatched)		
White	20	82
NIHPI	20	45
Asian	6	69
Black	3	2
Hispanic	3	18
NAAN	2	0
Median household income (Unmatched)	54	216
Income quartile		
Quartile 1	22	49
Quartile 2	11	58
Quartile 3	7	51
Quartile 4	14	58
Overall poverty level in municipality	54	216
Poverty level for ages 18–64	54	216
Poverty level for ages 65 and older	54	216
Insurance type		
Private	20	99
Military	12	33
Medicaid	20	84
Medicare	1	0
Self-Pay	1	0
Employment status		
Employed	30	108
Unemployed	19	61
Student	4	46
Retired	0	1
Marital status		
Single	23	127
Married	25	70
Divorced	5	14
Widowed	0	3
Body mass index	54	216
Weight class		
Underweight	0	13
Normal	2	94
Overweight	9	44
Obesity Class 1	10	29
Obesity Class 2	16	20
Obesity Class 3	17	15
Smoking status		
Current smoker	11	20
Former smoker	6	21
Never smoker	37	173
Hypertension		
Hypertension	13	20
No hypertension	41	195
Blood pressure at diagnosis		
Elevated (Systolic > 140 mmHg or Diastolic > 90 mmHg)	2	17
Normal	37	175
Coronary artery disease or myocardial infarction (CAD/MI)		
CAD/MI	1	1
No CAD/MI	53	214
Peripheral vascular disease (PVD)		
PVD	2	0
No PVD	52	215
Atrial fibrillation (Afib)		
Afib	1	1
No Afib	53	214

(continued on next page)
Table 1 (continued)

Associated symptoms	Headache laterality	Headache severity	Headache location	Headache duration > 6 months
No	1	1	1	1
No稽	3	10	10	10
No	51	204	204	204
No	2	18	18	18
No	52	196	196	196
No	2	2	2	2
No	52	213	213	213
Sleep disorder	24	94	94	94
No sleep disorder	30	120	120	120
Musculoskeletal disorder	24	98	98	98
No musculoskeletal disorder	30	116	116	116
Diplopia	19	10	10	10
No diplopia	35	204	204	204
Papilledema/optic disc blurring	33	0	0	0
No papilledema	21	214	214	214
Other visual disturbance	41	49	49	49
No other visual disturbance	13	165	165	165
Recent weight gain	17	8	8	8
No recent weight gain	9	15	15	15
Current exercise	24	90	90	90
No current exercise	24	90	90	90
Alcohol use screen (AUDIT-C)	19	76	76	76
Positive screen	2	18	18	18
Negative screen	52	195	195	195
Alcohol use disorder	1	1	1	1
No alcohol use disorder	53	213	213	213
Illicit drug use	1	14	14	14
Drug use	3	0	0	0
Former	50	196	196	196
HQH-9 score categories	None to minimal	42	169	169
Mild to moderate	2	12	12	12
Moderate to severe	6	18	18	18
History of psychiatric disorders	14	72	72	72
No history of psychiatric disorders	40	140	140	140

Table 2
Clinical characteristics of idiopathic intracranial hypertension (IIH) patients at first clinic presentation and time of diagnosis.

Associated symptoms	Percentage
First presenting symptom (s) of IIH patients (n = 54)	57.40%
Headache alone (n = 31)	1.85%
Visual disturbance alone (n = 1)	31.48%
Headache & visual disturbance (n = 17)	1.85%
Headache & tinnitus (n = 1)	1.85%
Visual disturbance & dizziness/syncope (n = 1)	1.85%
Headache, visual disturbance & dizziness/syncope (n = 2)	3.70%
Headache, tinnitus, & dizziness/syncope (n = 1)	1.85%
Presence of symptoms at diagnosis (n = 54)	Percentage
Headache (n = 52)	96.20%
Visual disturbance (n = 52)	96.20%
Tinnitus (n = 14)	25.90%
Dizziness or syncope (n = 12)	20.00%

3.2. Sex, race, and age

Females were found to have 8.87 (95% CI: 3.09, 35.05; p < 0.0001) fold greater odds of IIH than males (Table 4).

3.3. Socioeconomic variables

Patients with IIH had a median household income of $4610 lower (p = 0.066) than controls. Stratified by income quartiles, IIH patients were at 3.3 (95% CI: 1.18, 5.80) fold greater odds of being from the first income quartile (lowest income strata).

When examining the poverty level in patient’s municipality of origin, IIH patients were found to reside in areas with a greater percentage of residents living below the poverty level (0.0050, 95% CI: 0.000081, 0.0099; p = 0.059). Stratified by age, IIH patients were similarly found to live in areas where a greater percentage of the residents 65 years and older living below the poverty level (0.0040, 95% CI: 0.000032, 0.016; p = 0.04).

Regarding race, NHPI (2.23, 95% CI: 1.10, 4.43; p = 0.02), NAAN (16.50, 95% CI: 1.61, 816.15; p = 0.006), and Black (6.23, 95% CI: 0.70, 76.3; p = 0.056) patients experienced greatest odds of IIH diagnosis, while Asian patients were at 0.27 (95% CI: 0.089, 0.67; p = 0.004) fold reduced odds.

The median age of diagnosis for IIH patients was 32.00 years (IQR: 24.00, 40.75), 25 years younger than the institute’s general population (95% CI: 20.00, 31.00, p < 0.0001).

3.4. Medical comorbidities and clinical presentation

BMI was estimated to be 10.18 kg/m² greater (95% CI: 7.85, 12.61;
Table 4

Median (25% quartile, 75% quartile)	Wilcoxon Rank Sum Test (estimated difference between groups)
Patient age	
IIH	32.00 (24.00, 40.75)
Controls	58.50 (44.00, 74.25)
Patient age by sex	
IIH Males	37.00 (31.75, 44.50)
IIH Females	32.00 (23.62, 40.00)
Patient age by race	
IIH White	35.00 (28.00, 41.50)
Control White	62.50 (48.50, 77.00)
IIH Black	48.00 (35.50, 50.00)
Control Black	41.00 (29.50, 52.50)
IIH Asian	35.00 (31.25, 41.00)
Control Asian	66.00 (52.50, 81.00)
IIH NHPI	29.00 (22.00, 37.25)
Control NHPI	51.00 (33.00, 59.00)
IIH Hispanic	20.50 (20.25, 21.75)
Control Hispanic	45.00 (35.50, 55.25)
IIH NAAN	47 (40.5, 53.5)
Control NAAN	None
Median household income	
IIH	93,433 (68,617, 104,431)
Controls	102,242 (85,365, 106,693)
Overall poverty level in municipality	
IIH	0.056 (0.056, 0.11)
Controls	0.056 (0.049, 0.086)
Poverty level for ages 18-64	
IIH	0.059 (0.049, 0.097)
Controls	0.059 (0.049, 0.087)
Poverty level for ages 65 and older	
IIH	0.065 (0.043, 0.069)
Controls	0.044 (0.042, 0.068)
Odds ratio (95% confidence interval)	
Insurance type	
Medicare	8.11 (1.42, 480.38)
Medicaid	0.92 (0.47, 1.78)
Private	0.70 (0.36, 1.34)
Military	1.58 (0.68, 3.47)
Income quartiles	
Quartile 1	2.33 (1.18, 4.58)
Quartile 2	0.48 (0.17, 1.16)
Quartile 3	0.95 (0.44, 1.95)
Quartile 4	0.70 (0.20, 1.49)
Sex	
Male	0.11 (0.028, 0.32)
Female	8.87 (3.09, 35.05)
Race	
White	0.96 (0.49, 1.85)
Black	6.23 (0.70, 76.3)
Asian	0.27 (0.089, 0.67)

Table 4 (continued)

Native Hawaiian or Other Pacific Islander	
Hispanic	0.65 (0.12, 2.35)
Native American	16.50 (1.61, 161)
Alaskan Native	816.15
Employment status	
Employed	1.30 (0.68, 2.51)
Unemployed	1.38 (0.69, 2.70)
Retired	2.02 (0.034, 39.22)
Student	0.30 (0.075, 0.89)
Marital status	
Married	1.82 (0.95, 3.53)
Single	0.53 (0.27, 1.01)
Divorced/Separated	1.46 (0.39, 4.57)
Widowed	0.66 (0.014, 5.56)
Medical comorbidies	
Median (25% quartile, 75% quartile)	
Body mass index (kg/m²)	
IIH	36.73 (30.18, 41.30)
Matched controls	25.03 (21.42, 31.55)
Odds ratio (95% confidence interval)	
Weight class	
Underweight	0.15 (0.0037, 0.95)
Normal	0.050 (0.0058, 0.20)
Overweight	0.78 (0.31, 1.78)
Obesity class 1	1.31 (0.53, 3.02)
Obesity class 2	4.10 (1.81, 9.20)
Obesity class 3	6.10 (2.61, 14.42)
Smoking status	
Current smoker	2.48 (1.11, 5.56)
Former/never	0.52 (0.26, 1.02)
Hypertension	
Hypertension	3.08 (1.30, 7.12)
No hypertension	0.32 (0.14, 0.77)
Coronary artery disease or myocardial infarction	
No PVD	0.061 (0.0012, 0.62)
Peripheral vascular disease (PVD)	
Atrial fibrillation (AFLb)	
Afib	4.00 (0.050, 318)
Congestive heart failure (CHF)	
No CHF	0.49 (0.28, 0.88)
Autoimmune disease	
No autoimmune disease	0.53 (0.25, 0.98)
Thyroid disease	
No thyroid disease	2.38 (0.54, 21.8)
Seizure history	
No seizures	4.15 (0.29, 58.5)
Sleep disorder	
No sleep disorder	0.24 (0.017, 3.40)
Sleep disorder	1.00 (0.52, 1.90)

(continued on next page)
Table 4 (continued)

No sleep disorder	1.00 (0.52, 1.91)	
Musculoskeletal disorder	0.95 (0.49, 1.80)	
Musculoskeletal disorder	1.06 (0.56, 2.02)	
Diplopia	20.92 (4.41, 28.68)	
No diplopia	0.092 (0.035, 0.23)	
Papilledema/optic disc blurring	321 (50.0, 12367)	
No Papilledema/optic disc blurring	0.0031 (0.000081)	
Other visual disturbances	1.05 (5.04, 23.18)	
No other visual disturbances	0.095 (0.043, 0.20)	
Recent weight gain	11.66 (4.23, 30.82)	
No recent weight gain	0.086 (0.032, 0.21)	
Positive exercise	0.89 (0.42, 1.93)	
No exercise	1.12 (0.52, 2.36)	
Psychiatric comorbidities	Odds ratio (95% confidence interval)	
Alcohol use screen (AUDIT-C)	0.42 (0.046, 1.84)	
Positive screen	2.40 (0.54, 21.94)	
Negative screen	3.99 (0.050, 316)	
Alcohol use disorder	0.25 (0.032, 19.9)	
Illicit drug use	0.26 (0.0061, 1.82)	
No illicit drug use	3.77 (0.55, 163)	
Depression categories	None to minimal	0.93 (0.38, 2.53)
Mild to moderate	0.59 (0.062, 2.78)	
Moderate to severe	1.37 (0.42, 3.88)	
History of psychiatric disorders	Psychiatric history	0.68 (0.032, 1.8)
No psychiatric history	1.47 (0.72, 3.12)	

p < 0.0001) for IIH patients (36.73 kg/m², IQR: 30.18, 41.30) than controls (25.03 kg/m², IQR: 21.42, 31.55). By weight class, patients with IIH were at 0.15 (95% CI: 0.0037, 0.95; p = 0.04) fold reduced odds of being underweight (BMI < 18.5 kg/m²), 4.10 (95% CI: 1.81, 9.20; p = 0.0002) fold greater odds of obesity class 2 (BMI 35.0–39.9 kg/m²), and 6.10 (95% CI: 2.61, 14.42; p < 0.0001) fold greater odds of obesity class 3 (BMI > 40 kg/m²).

Patients with IIH were also at 3.08 (95% CI: 1.30, 7.12; p = 0.006) fold greater odds of having hypertension than matched controls, with odds of blood pressure being elevated at the time of diagnosis 2.02 (95% CI: 0.96, 4.11; p = 0.06) fold greater. For peripheral vascular disease, odds were 16.42 (95% CI: 1.60, 821.40; p = 0.007) fold greater than controls. Meanwhile, current smokers had a 2.48 (95% CI: 1.11, 5.56; p = 0.04) fold increased odds of IIH, relative to former and never-smokers.

Regarding clinical presentation, IIH patients exhibited greater odds of diplopia (10.92, 95% CI: 4.41, 28.68; p < 0.0001), papilledema or optic disc blurring (321, 95% CI: 50.00, 12367; p < 0.0001), and other visual disturbances (10.50, 95% CI: 5.04, 23.18; p < 0.0001). IIH patients also had a greater odds (11.66, 95% CI: 4.23, 30.82; p < 0.0001) of self-reporting recent weight gain.

3.5. Multivariable analysis of IIH entire cohort

After conducting the multivariable logistic regression (Table 6) with papilledema excluded, the strongest predictors increasing odds of diagnosis included, BMI (p = 0.01), other visual disturbances

Table 5

Crude odds ratios comparing headache variables of idiopathic intracranial hypertension against migraine patients.

Headache duration > 6 months	Odds ratio (95% confidence interval)	Chi-square test or Fisher exact test
No	2.22 (0.27, 18.08)	

3.6. White IIH patients

To analyze the differences between White IIH patients and White controls, univariate logistic regression was performed (Table 6). White IIH patients were younger than controls (p < 0.0001), reduced odds of being male (0.058, 95% CI: 0.0074, 0.45; p = 0.007), but had greater odds of a higher BMI (p < 0.0001). Relative to normal weight (18.5–24.9 kg/m²), Whites were 10.00 (95% CI: 1.69, 59.31; p = 0.01), 35.00 (95% CI: 5.35, 228.86; p = 0.0002), and 40.00 (95% CI: 4.37, 365.76; p = 0.001) folds at greater odds for being from obesity classes 1, 2, and 3, respectively. White IIH patients were also at greater odds of hypertension (6.25, 95% CI: 1.50, 26.04; p = 0.01), diplopia (12.83, 95% CI: 2.27, 72.43; p = 0.004), and other visual disturbances (11.81, 95% CI: 3.73, 37.35; p < 0.0001). Excluding papilledema, after multivariable analysis, higher BMI and other visual disturbances were identified as strongest predictors of IIH amongst Whites.

3.7. Native Hawaiian and other Pacific Islander IIH patients

Univariate logistic regression analysis was also conducted to identify unique association with IIH for NHPI patients. NHPI IIH patients were younger than controls (p < 0.0001) and at reduced odds of being male (0.03, 95% CI: 0.0014, 0.84; p = 0.04). NHPI IIH patients were at increased odds of living in municipalities with higher poverty rates across all age strata (p < 0.05) and having lower median household income (p = 0.03). Relative to the fourth income quartile, odds of IIH

(p = 0.001), and poverty level for those 65 year and older (p = 0.03).
Table 6
Multivariable logistic regression of idiopathic intracranial hypertension relative to controls. Race stratified analysis also included for Whites and NHPI.

	White patients	Native Hawaiian or other Pacific Islander
Idiopathic intracranial hypertension vs. General population		
Unadjusted odds ratios (95% confidence interval)		
Best fit model: adjusted odds ratios		
Age	0.93 (0.91, 0.95), p = 1.47 × 10^{-10}	0.92 (0.88, 0.96), p = 3.20 × 10^{-5}
Sex		
Female	Referent	Referent
Male	0.11 (0.040, 0.32), p = 0.000046	0.058 (0.0074, 0.45), p = 0.0067
Race/Ethnicity		
White	1.82 (0.89, 3.74), p = 0.10	Referent
NHPI		
Hispanic/Latino	0.68 (0.18, 2.55), p = 0.57	0.03 (0.0014, 0.84), p = 0.99
Black	6.15 (0.96, 39.30), p = 0.055	
Asian	0.36 (0.14, 0.94), p = 0.037	
Poverty level ages		
First quartile	104.4 (0.35, 3098), p = 0.11	4.60 × 10^{-6}, p = 0.029
Second quartile	53.58 (0.16, 18267), p = 0.18	1.32 × 10^{-6}, p = 0.026
Third quartile	2374 (3.15, 1.79 × 10^{5}), p = 0.022	6.52 × 10^{-10}, p = 0.032
Poverty level 65 and older	9423 (3.06, 2.90 × 10^{7}), p = 0.026	2.79 × 10^{-10}, p = 0.00039
Income quartiles		
Fourth quartile	2.36 (1.04, 5.36), p = 0.039	8.00 (1.21, 52.69), p = 0.031
First quartile	7.24 (0.26, 2.01), p = 0.53	1.25 (0.19, 8.13), p = 0.82
Second quartile	1.27 (0.53, 3.04), p = 0.059	2.14 (0.36, 12.89), p = 0.40
Third quartile		
Private	1.18 (0.59, 2.34), p = 0.64	0.97 (0.36, 2.64), p = 0.95
Medicaid	1185 (2.94 × 10^{-119}, 4.77 × 10^{-244}, p = 0.099	N/A
Medicare	1.82 (0.51, 6.62), p = 0.36	N/A
Military	1.80 (0.80, 4.07), p = 0.16	0.010 (1.14 × 10^{-6}, 93.71), p = 0.99
Self-pay	1185 (2.94 × 10^{-119}, 4.77 × 10^{-244}, p = 0.099	N/A
Employment status		
Employed	11.12 (0.58, 2.16), p = 0.73	1.13 (0.35, 3.64), p = 0.84
Unemployed	0.042 (0.00014, 12.4), p = 0.99	N/A
Student	0.31 (0.10, 0.94), p = 0.038	0.31 (0.078, 1.23), p = 0.096
Marital status		
Married	1.00 (0.33, 3.06), p = 1.00	0.0055 (1.53 × 10^{-10}, 1.98 × 10^{-6}, p = 0.99
Divorced	0.51 (0.27, 0.96), p = 0.037	0.30 (0.10, 0.90), p = 0.032
Single	0.0082 (5.17 × 10^{-6}, 13.04), p = 0.99	0.0051 (1.06 × 10^{-10}, 2.46 × 10^{-7}, p = 0.99
BMI	1.12 (1.08, 1.16), p = 1.62 × 10^{-5}	1.21 (1.10, 1.32), p = 4.45 × 10^{-5}
Weight class	0.52 (0.059, 4.60), p = 0.56	1.14 (1.07, 1.21), p = 7.84 × 10^{-5}
Normal	0.93 (0.23, 3.70) - 0.99	0.86 (0.13, 5.69), p = 0.99
Underweight	9.61 (1.99, 46.37), p = 0.0048	2.35 (0.30, 18.10), p = 0.41
Overweight		

(continued on next page)
Table 6 (continued)	Idiopathic intracranial hypertension vs. General population	White patients	Native Hawaiian or other Pacific Islander	
	Unadjusted odds ratios (95% confidence interval)	Best fit model: adjusted odds ratios	Unadjusted odds ratios (95% confidence interval)	Best fit model: adjusted odds ratios
Obesity class 1	16.21 (3.36, 78.23), p = 0.00052	10.00 (1.69, 59.31), p = 0.011	0.65 (0.090, 4.67), p = 0.39	
Obesity class 2	37.60 (8.00, 176.65), p = 0.0000043	35.00 (5.35, 228.86), p = 0.00021	5.07 (0.19, 134.99), p = 0.13	
Obesity class 3	53.33 (11.16, 254.30), p = 0.00000062	40.00 (4.37, 365.76), p = 0.0011	72.46 (0.00045, 1.16 × 10^7), p = 0.065	
Smoking status	Current 2.48 (1.11, 5.56), p = 0.027	0.85 (0.25, 2.86), p = 0.79	5.28 (1.49, 18.78), p = 0.01	
	No smoking Smokers Referent	Referent	5.77 (1.15, 28.84), p = 0.033	
Hypertension	No hypertension Referent	Referent	Referent	
Type 2 diabetes mellitus	Hyperlipidemia	Referent	Referent	
Blood pressure at diagnosis	No hypertension	Referent	Referent	
	Hypertension 3.09 (1.42, 6.71), p = 0.0043	6.25 (1.50, 26.04), p = 0.012	3.08 (0.78, 12.20), p = 0.11	
History of atrial fibrillation or flutter (Afb)	No Afb	Referent	Referent	
	Afb 4.04 (0.25, 65.61), p = 0.33	0.01 (9.66 × 10^-6, 12.06), p = 0.99	Referent	
Congestive heart failure (CHF)	No CHF	Referent	Referent	
History of atrial fibrillation or flutter (Afb)	No Afb	Referent	Referent	
	Afb 4.04 (0.25, 65.61), p = 0.33	0.01 (9.66 × 10^-6, 12.06), p = 0.99	Referent	
Coronary artery disease or prior myocardial infarction (CAD/MI)	No CAD/MI	Referent	Referent	
	CAD/MI 4.04 (0.25, 65.61), p = 0.33	0.01 (9.66 × 10^-6, 12.06), p = 0.99	Referent	
Peripheral vascular disease (PVD)	No PVD	Referent	Referent	
	PVD 1065 (1.53 × 10^{-83}, 7.41 × 10^-9), p = 0.99	Referent	1077 (1.76 × 10^{-119}, 6.60 × 10^{-124}), p = 0.99	
Autoimmune disease	No autoimmune disease Referent	Referent	Referent	
	Autoimmune disease 1.20 (0.32, 4.52), p = 0.79	2.08 (0.35, 12.28), p = 0.42	0.010 (9.41 × 10^-6, 11.67), p = 0.99	
Thyroid disease	No thyroid disease Referent	Referent	Referent	
	Thyroid disease 0.42 (0.094, 1.86), p = 0.25	0.86 (0.17, 4.36), p = 0.86	Referent	
Seizure history	No seizure history Referent	Referent	Referent	
	Seizure history 4.10 (0.56, 29.76), p = 0.16	0.010 (8.96 × 10^-6, 12.06), p = 0.99	Referent	
Sleep Disorder	No sleep disorder Referent	Referent	Referent	
	Sleep disorder 1.02 (0.56, 1.86), p = 0.94	1.03 (0.38, 2.81), p = 0.95	0.73 (0.26, 2.02), p = 0.54	
Musculoskeletal disturbance	No musculoskeletal disturbance	Referent	Referent	
	Musculoskeletal disturbance 0.95 (0.52, 1.73), p = 0.86	0.64 (0.23, 1.78), p = 0.40	1.05 (0.39, 2.82), p = 0.92	
Diplopia	No diplopia Referent	Referent	Referent	
	Diplopia 11.07 (4.75, 25.79), p = 2.49 × 10^3	12.83 (2.27, 72.43), p = 0.0038	12.75 (3.94, 41.22), p = 2.13 × 10^-5, 44.19, p = 0.0011	
Papilledema/ optic disc blurring	No papilledema	Referent	Referent	

(continued on next page)
Table 6 (continued)

	Idiopathic intracranial hypertension vs. General population	White patients	Native Hawaiian or other Pacific Islander	
	Unadjusted odds ratios (95% confidence interval)	Best fit model: adjusted odds ratios	Unadjusted odds ratios (95% confidence interval)	Best fit model: adjusted odds ratios
Papilledema	105.70 (0.28, 39.926), p = 0.99	106.55 (0.0084, 1.36 × 10^1), p = 0.99	106.65 (0.0084, 1.35 × 10^1), p = 0.99	
Other visual disturbances				
No other visual	Referent	Referent	Referent	Referent
disturbance				
Other visual	10.62 (5.27, 21.40), p = 3.85 × 10^11	7.05 (5.55, 896), p = 0.0010	11.81 (3.73, 37.25), p = 2.63 × 10^5	7.43 (1.98, 27.88), p = 0.0030
disturbance				
Recent weight gain	Referent	Referent	Referent	Referent
Weight gain	3.54 (1.09, 11.51), p = 0.036	6.52 (0.79, 53.70), p = 0.081	2.00 (0.31, 12.84), p = 0.46	Referent
Current exercise	Referent	Referent	Referent	Referent
No current exercise	Referent	Referent	Referent	Referent
Current exercise	0.90 (0.42, 1.89), p = 0.77	1.73 (0.43, 7.03), p = 0.44	0.71 (0.21, 2.38), p = 0.58	Referent
Alcohol use screen (AUDIT-C)	Referent	Referent	Referent	Referent
Negative screen	Referent	Referent	Referent	Referent
Positive screen	0.42 (0.094, 1.85), p = 0.25	0.40 (0.048, 3.39), p = 0.40	0.65 (0.074, 5.72), p = 0.70	Referent
Alcohol use disorder	Referent	Referent	Referent	Referent
No alcohol use disorder	Referent	Referent	Referent	Referent
Alcohol use disorder	4.02 (0.25, 65.31), p = 0.33	4.10 (0.24, 68.65), p = 0.33	Referent	Referent
I illicit drug use	Referent	Referent	Referent	Referent
Drug use	Referent	Referent	Referent	Referent
Drug use	6.59 (1.18 × 10^5, 3.69 × 10^1), p = 0.98	2.03 (0.34, 11.95), p = 0.44	2.06 (0.35, 12.11), p = 0.43	Referent
PHQ-9 score categories				
None to minimal	Referent	Referent	Referent	Referent
Mild to moderate	0.67 (0.14, 3.11), p = 0.61	9.59 (4.60 × 10^17), p = 0.99	1.29 (0.12, 13.26), p = 0.83	Referent
Moderate to severe	1.34 (0.50, 3.59), p = 0.56	1.24 (0.23, 6.68), p = 0.81	0.97 (0.19, 5.01), p = 0.97	Referent
History of psychiatric disorders	Referent	Referent	Referent	Referent
No history of psychiatric disorders	Referent	Referent	Referent	Referent
History of psychiatric disorders	0.68 (0.35, 1.33), p = 0.26	0.40 (0.13, 1.21), p = 0.10	0.80 (0.24, 2.69), p = 0.72	Referent

were 8.00 (95% CI: 1.21, 52.69; p = 0.03) fold greater for patients from the first quartile. NHPI IIH patients were also at greater odds of having a higher BMI (p < 0.0001), being an active smoker (5.28, 95% CI: 1.49, 18.78; p = 0.01), and having a history of seizures (8.78, 95% CI: 0.75, 102; p = 0.08). NHPI IIH patients were at a 0.30 (95% CI: 0.10, 0.90; p = 0.032) fold reduced odds of being single. Regarding symptoms, IIH patients were also increased with diplopia (12.75, 95% CI: 3.94, 41.22; p < 0.0001) and other visual disturbances (6.15; 95% CI: 2.10, 18.92; p = 0.001). Excluding papilledema, multivariable analysis identified higher BMI, being a current smoker, and diplopia as the strongest predictors of IIH diagnosis amongst NHPI.

3.8. Migraine headaches compared to IIH

Seven variables defining headaches were compared between migraines and IIH (Tables 3 and 5). IIH patients were at increased odds of experiencing headaches greater than 15 days per month (5.31, 95% CI: 1.58, 23.32; p = 0.002) and in the occipital region (5.46, 95% CI: 1.00, 56.14; p = 0.04). Relative to migraines, IIH patients were at reduced odds of defining the headaches as severe (0.33, 95% CI: 0.085, 1.17; p = 0.096) or characterizing them as throbbing (0.32, 95% CI: 0.086, 1.08; p = 0.07) and dull (6.76, 95% CI: 0.69, 338; p = 0.09). Regarding associated symptoms, IIH patients were at greater odds of also noting headaches aggravated by postural changes (38.99, 95% CI: 5.55, 1699; p < 0.0001), as well as headaches present with tinnitus (84.66, 95% CI: 13.89, 3405; p < 0.0001), dizziness (3.40, 95% CI: 1.06, 12.16; p = 0.04), loss of functionality (4.59, 95% CI: 0.77, 48.80; p = 0.07), and numbness (3.61, 95% CI: 0.77, 23.00; p = 0.09). Meanwhile, IIH patients were at reduced odds of having headaches comorbid with nausea or vomiting (0.28, 95% CI: 0.11, 0.68; p = 0.004), photophobia (0.058, 95% CI: 0.010, 0.22; p < 0.0001), and phonophobia (0.28, 95% CI: 0.11, 0.68; p < 0.004), relative to patients with migraine headaches.

4. Discussion

4.1. Clinical characteristics of idiopathic intracranial hypertension

Within our institution, over a 12-year period (2009–2021) the prevalence of IIH was determined to be 186 per 100,000 patients with neurological disorders. Since 2009, the annual number of IIH diagnoses has remained stable (r = −0.31, p = 0.21). However, nationally diagnoses of IIH have been increasing between 1997 and 2017 [14]. Consistent with literature, our study identified headache as the most common initial presentation [15–19]. By the time of diagnosis, 96.20% of our IIH cohort were experiencing headaches, in relation previous studies have found headache rates in the range of 75–90% [15,16,18,20].
4.2. Age at diagnosis

Patients with IIH had a median age of diagnosis at 32.00 years (IQR: 24.00, 40.75), which corroborated reports of individuals 18–44 years old most likely to have IIH [6,14,20,24]. While differences in age of diagnosis by sex are yet to be reported, upon stratification by sex, median age of diagnosis was older amongst male IIH patients (37 years) than females (32 years); albeit, a low male number (n = 4) precluded identification of statistical significance (p = 0.28) [25].

When stratifying age of IIH diagnosis by race/ethnicity, Hispanic patients were found to have the youngest median age of diagnosis at 20.50 years (IQR: 20.25, 21.75), followed by NHPI at 29.00 years (IQR: 22.00, 37.25), Asians at 35.00 years (IQR: 31.25, 41.00), Whites at 35.00 years (IQR: 28.00, 41.50), NAAN at 47 years (IQR: 40.50, 53.50), and Blacks at 48 years (IQR: 35.50, 50.00); yet, insufficient sample sizes prevented meaningful statistical analysis. Notwithstanding, the absence of comparable studies examining age of diagnosis by race, our observed trends may be explained by the strong association between IIH and obesity [26]. The earlier age of diagnosis amongst Hispanics and NHPI, may arise secondary to higher rates of youth (2–19 years old) obesity amongst Hispanics and NHPI [27–29]. However, given Blacks and NAAN have greater prevalence of childhood obesity than Whites, yet older age of IIH diagnosis, there are potentially other environmental factors at play (i.e., disparities in healthcare access for timely diagnosis) contributing to the different ages of diagnosis per each racial strata [29].

4.3. Sex

The observation that females are at 8.87 greater odds of IIH diagnosis, with a female-to-male ratio of 12.5:1, corresponds with earlier studies, including one United States nationwide report finding females to have an incidence 5.47 times greater than males [14–20,24,30]. Given the female predisposition for IIH does not occur until puberty, some hypothesize sex hormones may contribute to the pathogenesis and female predilection for IIH [14,31].

4.4. Race

Hawai’i’s diverse minority-majority population enabled our investigation to examine disparities in IIH amongst NHPI, NAAN, Asians, and Blacks—historically marginalized populations which are often understudied [32,33]. The racial groups experiencing the greatest odds of IIH included NAAN (odds ratio [OR]: 16.50; p = 0.006), Blacks (OR: 6.23; p = 0.004), and NHPI (OR: 2.23; p = 0.02); while Asians (OR: 0.27; p = 0.004) experienced the lowest odds. Observed trends for Blacks and Asians corresponded with US nationwide data on IIH, yet for NAAN and NHPI comparable data was not available [14,21]. The greater odds of IIH amongst NAAN, Blacks, and NHPI, may be explained by the higher rates of obesity these populations experience relative to Whites [5–7]. Similarly, lower rates of IIH amongst Asians, could be attributed to Asians having one of the lowest rates of obesity in the US and internationally [5,6,14,30,34,35].

4.5. Socioeconomic variables

Upon examining several markers of socioeconomic status, patients in our IIH cohort were found to be at greater odds of having a lower median household income (in particular having greater odds of being from the lowest income quartile) and to reside in areas with a greater proportion of the residents living below the poverty line. The association with lower socioeconomic status is not confined to Hawai’i, as nationwide an increased incidence of IIH in the lowest income quartile was also identified [14]. Internationally, in England and Wales, areas with higher deprivation have also been noted to have greater rates of IIH, with the trend subsisting in females even after controlling for obesity—parallel our finding of poverty level amongst those 65 years and older remaining an independent predictor of IIH diagnosis after multivariable analysis [36,37]. Hence, the link between lower socioeconomic status and increased rates of obesity may only explain part of the association between IIH and higher deprivation, with other variables tied to lower socioeconomic status playing a greater role (i.e., diet, employment, education, social support, and environmental hazards) [14,36–38].

When examining marital and occupational status, despite matching to age, higher odds of IIH diagnosis were noted for patients who were married (OR: 1.82; p = 0.07), while lower odds for those single (OR: 0.53; p = 0.05) or students (OR: 0.30; p = 0.02). With marriage, women have been noted to gain weight, while with increasing education level obesity prevalence decreases, hence potentially accounting for the IIH diagnosis trends [5,39].

4.6. Cardiovascular risk factors

Overall, several cardiovascular comorbidities were found associated with IIH, including BMI, smoking status, hypertension, hyperlipidemia, and peripheral vascular disease. Regarding the established association of obesity, our IIH patients were 10.18 kg/m² heavier than controls, and at greater odds of being in obesity class 2 (35.0–39.9 kg/m²; OR: 4.10; p = 0.0002) and class 3 (> 40 kg/m²; OR: 6.10; p < 0.0001), as well as at greater odds of reporting recent weight gain (p < 0.0001) [15,16,20,24,36]. The association with obesity likely also accounts for the greater odds of hypertension (OR: 3.08; p = 0.006) in IIH patients, notwithstanding prior investigations having found that even after matching for age and BMI, IIH patients continue to have a 55% greater risk of hypertension [38,40–42]. Other variables, including hyperlipidemia (OR: 2.09; p = 0.12), peripheral vascular disease (OR: 16.42; p = 0.007), and being a current smoker (OR: 2.48; p = 0.04) associated with IIH diagnosis; previous studies have also reported increased rates of smoking in patients with IIH [42,43]. Provided the association with cardiovascular variables in addition to BMI, IIH patients may benefit from not only weight management, but also hypertensive control, lipid management, and smoking cessation [42,44].

4.7. White and NHPI IIH patients

Subgroup analysis for White and NHPI patients was also conducted. For White patients, IIH was not associated with a lower socioeconomic status, but did retain correlations with greater BMI and hypertension. However, NHPI patients did present an association between lower socioeconomic status and IIH diagnosis. Moreover, for NHPI IIH patients, the strongest predictors of diagnosis included being a current smoker, in addition to higher BMI. NHPI IIH patients also exhibited increased odds of seizure history (OR: 8.78; p = 0.08), an association only rarely reported [45]. While seizure may be secondary to severe IIH disproportionally impacting NHPIs, seizures arising due to elevated intracranial pressure is uncommon and a controversial [46].

4.8. Comparison of migraines against IIH

Given the similarities between migraine and IIH headaches, as well as potential for permanent vision loss secondary to untreated IIH, there is impetus to efficiently distinguish IIH headaches to expedite correct treatment [1,17,37]. Our investigation identified that IIH, relative to migraine patients, were at greater odds of experiencing headaches in the occipital region (OR: 5.47; p = 0.04) and at a frequency of more than 15 days per month (OR: 5.31; p = 0.002). Similarly, IIH patients in the IIHTT reported constant/daily headache or intermittent headaches occurring for 12 days per month [6]. IIH headaches were also at greater odds of association with dizziness, tinnitus, loss of functionality, and to be exacerbated by postural changes, while migraine headaches were associated with nausea/vomiting, photophobia, and phonophobia. Prior investigations have also found these symptoms associated with IIH headaches, with increased intracranial pressure the suspected culprit.
Loss of functionality in particular has been noted to decrease quality of life for IIH patients [48]. Overall, by eliciting specific questions to better characterize headaches, a correct diagnosis of IIH may be expedited.

4.9. Limitations

The results should be considered in the context of several limitations. As a retrospective investigation there remains uncertainty in how consistently clinical history was elicited from patients. The relatively low sample size—including for the stratified race analysis of NPHI patients—significantly limits statistical power and the ability to appreciate many of the other associations which may exist within the IIH populations. Additionally, while this study utilized the modified Dandy criteria for IIH diagnosis, there is no international consensus for a gold-standard diagnostic protocol. Moreover, the accuracy of certain variables may be influenced by recall bias, such as recent weight gain, regular exercise, headache characterization, smoking history, drug use, and alcohol consumption. Finally, ICD codes themselves are susceptible to administrative errors in data input, which could yield in omitted patients.

5. Conclusion

The investigation identified several unique associations amongst IIH patients (Tables 7 and 8). Racial disparities were recognized, in that NHPI, NAAN, and Blacks were all disproportionately affected by IIH, with Asians at reduced odds. Additionally, the consistent correlation with lower socioeconomic status and cardiovascular risk factors (i.e., obesity, active smoking, hypertension, peripheral vascular disease) emphasize IIH patients are a vulnerable population, who may not have the means to follow-up with resource-intensive treatments. In particular, NHPI patients were found to have a much stronger association with lower socioeconomic status and smoking, relative to Whites, as well as exhibit a possible association with seizures. Meanwhile, when examining the clinical presentation, IIH headaches were found to be distinguished from migraines by occurring predominantly in the occipital region, greater than 15 days per month, exacerbated by postural changes, and linked with tinnitus, dizziness, and loss of functionality. In summary, by better characterizing IIH and recognizing the disparities within the disorder, these results not only may help expedite diagnosis, but also improve the quality of life for subsets of the IIH population.

Declarations

Funding

None.

CRediT authorship contribution statement

Frances Tiffany Cava Morden: Conceptualization, Methodology, Software, Validation, Data curation, Writing – original draft, Writing – reviewing & editing. Charissa Tan: Conceptualization, Methodology, Software, Validation, Data curation. Jason Viereck: Validation, Resources, Writing – reviewing & editing. Korei Kai Liow: Validation, Resources, Writing – reviewing & editing. Enrique Carrazana: Validation, Resources, Writing – reviewing & editing. Arash Ghaffari-Rafi: Conceptualization, Methodology, Software, Validation, Investigation, Writing – original draft, Writing – reviewing & editing.

Conflicts of interest/Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Table 7
Summary of variables associated with idiopathic intracranial hypertension compared to general controls and ischemic stroke. *Variables determined to be statistically significant after multivariable analysis. Variables with marginal significance (p < 0.1) also presented, as low sample size likely limited attainment of significance.

Table 8
Summary of headache variables associated with idiopathic intracranial hypertension relative to migraines.
Code availability
Software application or custom code: Not applicable.

Authors’ contributions
AGR, FTCM, CT, EC, JV, KKL: Manuscript approval/editing.

Ethics approval
Institutional review board exemption; University of Hawai’i at Mānoa, Office of Research Compliance (protocol number: 2020-01010).

Consent to participate
Not applicable.

Consent for publication
All authors approved the submitted manuscript version.

Availability of data and material (data transparency)
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Acknowledgments
We would like to thank Catherine Mitchell and Ena Zhu as well as other staff at Hawai’i Pacific Neuroscience for their time in providing valuable administrative support.

References
[1] D.I. Friedman, G.T. Liu, K.B. Digre, Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children, Neurology 81 (13) (2013) 1159–1165.
[2] J.J. Corbett, P.J. Savino, H.S. Thompson, T. Kansu, N.J. Schatz, L.S. Orr, Obesity and associated health education—United States, 2011–2014, MMWR Morb. Mortal. Wkly. Rep. 66 (50) (2017) 1369–1373.
[3] A.M. Subica, N. Agarwal, J.G. Sullivan, B.G. Link, Cardiovascular risk factors in Chiari malformation: a retrospective case-control study, J. Neurol. 252 (12) (2015) 2136–2142.
[4] S. Subramaniam, W.A. Fletcher, Obesity and weight loss in idiopathic intracranial hypertension, JAMA Neurol. 71 (6) (2014) 693–701.
[5] K. Rajagopalan, S. Kataria, J. Thomsen, J.G. Sullivan, J.A. Miller, G.N. Faden, E. Capiluppi, I. Kawachi, T.K. Richmond, P.M. McDermott, G. NORDIC Idiopathic Intracranial Hypertension Study, The idiopathic intracranial hypertension treatment trial, JAMA Neurol. 71 (6) (2014) 693–701.
[6] R.J. Blanch, C. Vassenex, A. Liczkowski, H. Buseti, J. Yabe, F. Moriwaka, A. Notoya, M. Ohtaki, K. Tashiro, Incidence of idiopathic intracranial hypertension in Korea: a prospective and population-based incidence study, JAMA Neurol. 71 (6) (2014) 693–701.
[7] C. Lovati, C. Mariotti, L. Giani, D. A. Amico, A. Sinelli, F. De Angelis, G. Bussone, G. Marzetti, Headache prevalence and clinical features in patients with idiopathic intracranial hypertension (III), Neurol. Sci. 34 (5S) (2013) 147–149.
[8] A. Ghaffari-Rafi, R. Mehdizadeh, S. Ghaffari-Rafi, J. Leon-ROjas, Idiopathic intracranial hypertension in the United States: demographic and socioeconomic disparities, Front. Neurol. 11 (2020) 869.
[9] J.J. Corbett, P.J. Savino, H.S. Thompson, T. Kansu, N.J. Schatz, L.S. Orr, Obesity and associated health education—United States, 2011–2014, MMWR Morb. Mortal. Wkly. Rep. 66 (50) (2017) 1369–1373.
[10] A.M. Subica, N. Agarwal, J.G. Sullivan, B.G. Link, Cardiovascular risk factors in Chiari malformation: a retrospective case-control study, J. Neurol. 252 (12) (2015) 2136–2142.
[11] A.I. Osong, S.R. Rao, M.A. Bindi, M. Avendano, I. Kawachi, T.K. Richmond, Obesity and ethnic disparities in early childhood obesity, Pediatrics 141 (2018) 1–8.
[12] P.M. McDermott, G. NORDIC Idiopathic Intracranial Hypertension Study, The idiopathic intracranial hypertension treatment trial, JAMA Neurol. 71 (6) (2014) 693–701.
[13] J.J. Corbett, G.T. Liu, L. Li, D.S. Freedman, Prevalence of obesity among adults, by household income and education—United States, 2011–2014, MMWR Morb. Mortal. Wkly. Rep. 66 (50) (2017) 1369–1373.
[14] R.J. Blanch, C. Vassenex, A. Liczkowski, H. Buseti, J. Yabe, F. Moriwaka, A. Notoya, M. Ohtaki, K. Tashiro, Incidence of idiopathic intracranial hypertension in Korea: a prospective and population-based incidence study, JAMA Neurol. 71 (6) (2014) 693–701.
[15] A. Ghaffari-Rafi, R. Mehdizadeh, S. Ghaffari-Rafi, J. Leon-ROjas, Idiopathic intracranial hypertension in the United States: demographic and socioeconomic disparities, Front. Neurol. 11 (2020) 869.
[16] A. Radojicic, V. Kukovc-Cvetkovic, T. Pekmezovic, G. Trajkovic, J. Zidvercash-Rajkovic, R.H. Jensen, Predictive role of presenting symptoms and clinical findings in idiopathic intracranial hypertension, J. Neurol. Sci. 399 (2019) 89–93.
[17] A. Vukanovic-Cvetkovic, T. Pekmezovic, G. Trajkovic, J. Zidverc–Rajkovic, R.H. Jensen, Predictive role of presenting symptoms and clinical findings in idiopathic intracranial hypertension, J. Neurol. Sci. 399 (2019) 89–93.
[18] L. Sandsberg, J.L. Aronne, J.L. Beilin, V. Burke, L.I. Igles, D. Lloyd-Jones, J. Sowers, Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment, J. Clin. Hypertens. 15 (1) (2013) 13–23.
[19] A. Ghaffari-Rafi, R. Mehdizadeh, S. Ghaffari-Rafi, J. Leon-ROjas, Idiopathic intracranial hypertension in the United States: demographic and socioeconomic disparities, Front. Neurol. 11 (2020) 869.
[20] B.J.B.S. Haldane, The estimation and significance of the logarithm of a ratio of frequencies, Ann. Hum. Genet. 20 (4) (1956) 309–311.
[21] B.J.B.S. Haldane, The estimation and significance of the logarithm of a ratio of frequencies, Ann. Hum. Genet. 20 (4) (1956) 309–311.
[22] B.J.B.S. Haldane, The estimation and significance of the logarithm of a ratio of frequencies, Ann. Hum. Genet. 20 (4) (1956) 309–311.
[23] B.J.B.S. Haldane, The estimation and significance of the logarithm of a ratio of frequencies, Ann. Hum. Genet. 20 (4) (1956) 309–311.
[24] B.J.B.S. Haldane, The estimation and significance of the logarithm of a ratio of frequencies, Ann. Hum. Genet. 20 (4) (1956) 309–311.
[43] F.J. Rodríguez de Rivera, P. Martínez-Sanchez, J. Ojeda-Ruiz de Luna, F.J. Arpa-Gutiérrez, P. Barreiro-Tella, Benign intracranial hypertension. History, clinical features and treatment in a series of 41 patients, Rev. Neurol. 37 (9) (2003) 801–805.

[44] B. Newborg, Pseudotumor cerebri treated by rice reduction diet, Arch. Intern. Med. 133 (5) (1974) 802–807.

[45] G.Y. Shaw, S.K. Millson, Benign intracranial hypertension: a diagnostic dilemma, Case Rep. Otolaryngol. 2012 (2012), 814696.

[46] B. McNamara, J. Ray, D. Menon, S. Boniface, Raised intracranial pressure and seizures in the neurological intensive care unit, Br J Anaesth. 90 (1) (2003) 39–42.

[47] D.I. Friedman, P.A. Quiros, P.S. Subramanian, L.J. Mejico, S. Gao, M. McDermott, M. Wall, the NORDIC IIHTT Study G, Headache in idiopathic intracranial hypertension: findings from the idiopathic intracranial hypertension treatment trial, Headache 57 (8) (2017) 1195–1205.

[48] S.P. Mollan, J. Hoffmann, A.J. Sinclair, Advances in the understanding of headache in idiopathic intracranial hypertension, Curr. Opin. Neurol. 32 (1) (2019) 92–98.