Cooling-capacity characteristics of Helium-4 JT cryocoolers

Y L Wang1,2, D L Liu1,2, Z H Gan1,2,3,*, Y X Guo1,2, Y W Shen1,2 and S F Chen1,2

1. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
2. Key Lab. of Ref. & Cryo. Technology of Zhejiang Province, Hangzhou 310027, China
3. National Quality Inspection Center of Refrigeration Equipment (Henan), Minquan, 476800, China

* Corresponding author. Email: gan_zhihua@zju.edu.cn

Abstract. Cooling capacity of a Helium-4 JT cryocooler may be achieved at a temperature higher than liquid helium temperature. The latent cooling capacity, which should be obtained at liquid helium temperature, is defined as a special part of cooling capacity. With the thermodynamic analysis on steady working conditions of a Helium-4 JT cryocooler, its cooling capacity and temperature characteristics are presented systematically. The effects of precooling temperature and high pressure on the cooling capacity and latent cooling capacity are illustrated. Furthermore, the JT cryocoolers using hydrogen and neon as the working fluids are also discussed. It is shown that helium JT cryocooler has a special cooling capacity characteristic which does not exist in JT cryocoolers using other pure working fluids.

1. Introduction

Precooled Joule-Thomson cryocoolers (PJTCs) working at liquid helium temperature (LHT) are widely applied in space missions\cite{1} due to their long lifetime, constant cooling temperature\cite{2}, low level of vibration and electromagnetic interferences\cite{3}. However, their efficiencies are relatively low, which is worth further research.

The low pressure, p_l being the standard atmospheric pressure and the system being ideal, the specific cooling capacity, q_s, is determined by the high pressure, p_h, and the precooling temperature, T_{pre}. For a given T_{pre}, there is an optimum p_h that maximizes the cooling capacity\cite{4}. Based on thermodynamic analysis, de Waele\cite{6} analysed the effect of p_h on the cooling capacity of a JT cryocooler working at LHT. He illustrated the relationship between cooling capacity and cooling temperature, and showed that the cooling capacity might not be acquired at LHT. Liu et al. \cite{7} explained the thermal behaviour of a PJTC working at LHT under the steady and overloaded conditions with one set of p_h and T_{pre}.

However, the thermal behaviour of a JT cryocooler working at LHT under steady working conditions has not been analysed systematically, which will be helpful to improve its cooling efficiency.

This paper discusses temperature and cooling capacity characteristics of JT cryocoolers with different T_{pre} and p_h based on thermodynamics. Each working state point in the JT cryocooler can be
clearly shown in a p-h diagram. Specific latent cooling capacity, q_L, is a special part of q, which can be obtained at LHT. The effects of T_{pre} and p_h on the q_L and q are studied with Helium-4 as the working fluid. Furthermore, JT cryocoolers using other working fluids like hydrogen and neon are analysed.

Nomenclature	Subscripts	
h	L	latent
p	pre	precooling
q	h, l	high- and low-pressure side
T	a-e	state points
\dot{Q}	opt	optimum
m		mass flow (kg/s)
Δ	difference	

Table 1. List of symbols.

2. **JT unit**

The JT unit is an essential part of a PJTC[4]. It can achieve LHT when T_a is precooled below 45 K. As shown in figure 1, a JT unit contains a recuperator (CFHX), a JT valve, and a cold heat exchanger (CHX). The precooled Helium-4 enters the high-pressure passage of the CFHX at state a and leaves it at state b. Then, helium flow passes a JT valve before it enters the CHX, where it absorbs the heat load, \dot{Q}. After that, the fluid flows into the low-pressure passage of the CFHX at state d and leaves it at state e.

![Figure 1. Schematic diagram of a JT unit.](image)

Before the thermodynamic analysis, some assumptions are made to simplify the problem:

1). Kinetic and potential energies of the fluid are neglected.
2). Pressure drops only in the JT valve.
3). The CFHX is perfect. That is, the heat exchange efficiency is 100 percent and there is no pressure drop in CFHX.
4). Heat conduction in the flow direction is neglected and there is no heat transfer between the system and ambient.

3. **The effects of p_h**

In the steady state analysis, the pressure-enthalpy (p-h) diagrams will be used, because specific cooling capacity, q, and enthalpy differences can be indicated by the length of the horizontal line segments. All the numerical data for Helium-4 are derived from EES[9], which are the same with Refprop data.

The throttling process is isenthalpic, that is, $h_b=h_c$. When the recuperator is thermally isolated, $\Delta h_{ab}=\Delta h_{ed}$. Then q, defined as \dot{Q}/\dot{m}, can be achieved when $T_a=T_c=T_{pre}$ and

\[\text{Figure 1. Schematic diagram of a JT unit.} \]
\[q = \Delta h_L = \Delta h_{at} = \Delta h_T = h(T_{pre}, p_h) - h(T_{pre}, p_i) \]

(1)

\(\Delta h_T \) is the intrinsic limitation on the cooling capacity of a JT cryocooler. The JT cryocooler will be warmed up continuously when the heat load exceeds \(\Delta h_T \)[6-8].

However, when \(q \) is achieved by the JT cryocooler, the cooling temperature may be already higher than the LHT. So, the specific latent cooling capacity, \(q_L \), should be defined as the part of \(q \) which can be obtained at LHT. It is found that there exist a \(p_{hopt} \) and a \(q_{hopt} \) that maximize the \(q \) and the \(q_L \) respectively for a given \(T_{pre} \). Therefore, the effects of \(p_h \) on \(q \) and \(q_L \) can be discussed according to the different ranges of \(p_h \).

In the following analysis, \(T_c = T_{pre} \) is fixed at 15 K while \(p_i \) is the standard atmospheric pressure 0.101 MPa.

3.1. \(p_h < p_{hopt} \)

Consider the process when \(p_h \) is 1 MPa for example, as shown in figure 2. The \(\Delta h_T \), as indicated by the length of the line segment between state a and the vertical dashed line, is 7.66 kJ/kg. The temperature of state b, \(T_h \), turns out to be 4.2 K as the helium flow is sufficiently cooled in the recuperator. State d is in the two-phase region, which means that the cooling temperature is 4.2 K. Thus, \(T_c = T_{pre} = T_d = 4.2 \) K. In this situation, \(q_{L} = q = \Delta h_T \).

If \(p_h \) rises, state a will move along the isothermal line of 15 K. As \(h_a \) decreases, \(\Delta h_T \) increases. Meanwhile, state b will move along the isothermal line of 4.2 K and its enthalpy will rise. As \(h_c = h_d \), the enthalpy of state d will also increase, with a speed higher than that of state c.

![Figure 2. p-h diagram for JT unit when \(p_h < p_{hopt} \).](image1)

3.2. \(p_h = p_{hopt} \)

As the pressure rises to \(p_{hopt} \), \(q_{L} = q_{hopt} \) is achieved and the fluid at state d becomes saturated vapor. The cooling temperature is still 4.2 K and \(q = q_{L} = \Delta h_T \).

For \(T_{pre} = 15 \) K, the \(p_{hopt} \) is 1.82 MPa, as shown in figure 3. The \(q \) is increased to 12.32 kJ/kg. This is the situation when the \(q_L \) is maximized. If \(p_h > p_{hopt} \), \(q_L \) will decrease as \(p_h \) rises. It is also the last moment when \(q_L \) equals \(q \) in the \(p_h \) increasing process. After that, \(q_L \) will be limited by state d. Because state d is fixed at the saturation point to ensure that the cooling temperature is 4.2 K.

![Figure 3. p-h diagram for JT unit when \(p_h = p_{hopt} \).](image2)

3.3. \(p_{hopt} < p_h < p_{hopt} \)

If \(p_h \) continues increasing, the process that obtains \(q \) and \(q_L \) will no long be the same, because in the former situation, state d will move to the right and enter the superheated region in the process that obtains \(q \), while in the latter one, state d is kept at the saturation point to keep the cooling temperature at 4.2 K.
To differentiate the two situations, we use a’-e’ to describe the process that obtains q on the $p-h$ diagram. State b’ will move immediately because of the requirement that $T_b \geq T_a'$ in the CFHX determined by the second law of thermodynamics. Then state c’ and d’ will also move to right until $T_b = T_a'$ making the system steady. So, the cooling temperature will become higher than 4.2 K. And a-e is to describe the process that obtain q_l, state d is kept at the saturation point. Thus, q_l becomes smaller than q. Meanwhile, T_c becomes lower than T_a.

Take the process when the $p_h = 3$ MPa for example, as shown in figure 4. The q is 14.85 kJ/kg, while the T_a' is 6.4 K. The $q_l = 6.27$ kJ/kg.<

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{p-h diagram for JT unit when $p_{h,\text{opt}} < p_h < p_{h,\text{opt}}$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{p-h diagram for JT unit when $p_h = p_{h,\text{opt}}$.}
\end{figure}

3.4. $p_h = p_{h,\text{opt}}$
When p_h increases to $p_{h,\text{opt}}$, q_{opt} can be achieved, as shown in figure 5. At this time, state a hits the leftmost end of the 15 K isothermal line. This is the moment when Δh_T is maximized. The q_{opt} is 14.91 kJ/kg while T_a' is 7.0 K. The q_l decreases to be 4.97 kJ/kg under this condition.

3.5. $p_h > p_{h,\text{opt}}$
If p_h rises continuously, the q will decrease as state a moves to the right. The cooling temperature also keeps rising. Take the process when $p_h = 4.2$ MPa for example. As shown in figure 6, this is the moment when q_l decreases to zero. The working condition with zero cooling capacity q happens when p_h is about 9.1 MPa.

According to the cooling capacity and temperature behaviours under steady working conditions discussed above, q and q_l vary with p_h. When p_h is lower than $p_{h,\text{opt}}$, q and q_l are the same and they are both limited by Δh_T. The cooling temperature T_a remains at 4.2 K as the fluid leaving the CHX is in the two-phase region. When p_h is increased to $p_{h,\text{opt}}$, the process is under a special condition because the fluid evaporates completely in the CHX and leaves it as saturated vapor. This is also the condition when q_l is maximized. After that, q_l will decrease until it reaches 0, which happens when p_h is 4.2 MPa. When $p_h > p_{h,\text{opt}}$, q_l is lower than q because q_l is limited by state d, which remains at saturation point. There exists a $p_{h,\text{opt}}$ at which q is maximized. When $p_h > p_{h,\text{opt}}$, q and q_l will both decrease as p_h increases. The effects of p_h on q and q_l are shown in figure 7.
As discussed above, for achieving q, cooling temperature will increase continuously as p_h increases when $p_h > p_{h,opt}$. As shown in figure 8. When p_h is higher than 6.6 MPa, T_d is 15 K and the heat exchanged in CFHX is 0. In such a situation there is no cooling effect any more when $q=\Delta h_T$ is achieved.

4. The effects of T_{pre}

For a given T_{pre}, there exist a $p_{h,opt}$ and a $p_{h,\text{Lopt}}$ that maximize the q and the q_L respectively. The effects of T_{pre} on the q_{opt}, q_{Lopt} and $p_{\text{h,opt}}$, $p_{\text{h,\text{Lopt}}}$ are presented in figure 9 and figure 10. The q_{opt} and q_{Lopt} are different when $T_{pre}<28.7$ K.

Usually, the precooling temperature is below 20 K. In this region, as T_{pre} goes lower, q_{opt} and q_{Lopt} increase and $p_{\text{h,opt}}$ and $p_{\text{h,\text{Lopt}}}$ decrease. It means that lower T_{pre} not only improves the cooling capacity but also reduces the pressure ratio requirement on the compressor. It shows the importance of improving the efficiency of the precooler.
5. JT cryocoolers using other pure working fluids

So far, the steady working conditions for Helium-4 JT cryocoolers have been illustrated systematically. It shows the difference between q and q_L. A similar difference also exists in JT cryocoolers using hydrogen as working fluid.

As shown in figure 11, taking $T_{pre}=60$ K for example, the intersection of q and q_L is $p_h=20.7$ MPa. When p_h is lower than 20.7 MPa, q and q_L are the same. When it is higher than 20.7 MPa, q_L will be lower than q because of the limitation of the saturated vapor point. Thus, it can be deduced that the cooling temperature for achieving q is higher than the boiling temperature when p_h is higher than 20.7 MPa.

Besides, it is worth mentioning that the optimum points for both q and q_L are the same, which is 265.3 kJ/kg when p_h is 13 MPa. That is, $p_{hop}=p_{hLop}=13$ MPa.

However, for a neon JT cryocooler, there is no difference between q and q_L at all, as shown in figure 12. The q and q_L are always the same and the $q_{opt}=q_{Lopt}=49.19$ kJ/kg when $p_h=20.5$ MPa. It indicates that the difference between q_{Lopt} and q_{opt} is a special characteristic for helium JT cryocoolers.
6. Conclusions
This paper discusses the steady working conditions of the Helium-4 JT cryocooler systematically and explains the cooling capacity and temperature behaviours of the Helium-4 JT cryocooler. For a given T_{pre}, there exists a p_{hopt} and a $p_{L, opt}$ that maximize the q and q_L respectively. The q_{opt} and $q_{L, opt}$ are different when $T_{pre} < 28.7$ K for a Helium-4 JT cryocooler. Furthermore, JT cryocoolers using other working fluids such as hydrogen and neon are also analysed. It is found that the helium JT cryocooler is unique which has the characteristic that $q_{opt} \neq q_{L, opt}$. This characteristic does not exist when other pure working fluids are applied.

References
[1] Wang B and Gan Z H 2013 A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications Progress in Aerospace Sciences, 61 pp 43-70.
[2] Barron R F 1985 Cryogenic systems ed Scurlock R G (New York: Oxford University Press)
[3] Wu Y Z, Zalewski D R, Vermeer C H, and ter Brake HJM 2013 Optimization of the working fluid for a sorption-based Joule-Thomson cooler Cryogenics 58 pp 5-13.
[4] Liu D L, Tao X, Sun X, and Gan Z H 2015 Performance Study on ST/JT Hybrid Cryocoolers Working at Liquid Helium Temperature Physics Procedia 67 pp 468-73.
[5] Maytal B Z and Pfotenhauer J M 2013 Miniature Joule-Thomson cryocooling (New York: Springer Science+Business Media).
[6] de Waele ATAM 2017 Basics of Joule-Thomson Liquefaction and JT Cooling Journal of Low Temperature Physics 186 pp 385-403.
[7] Liu D L, Gan Z H, Tao X, Yao Y F, and Pan W K 2016 Preliminary Experimental Study on a Precooled JT Cryocooler Working at 4 K-Open Cycle ed S D Miller and R G Ross Jr (San Diego) p 377
[8] Liu D L, Gan Z H, de Waele ATAM, Tao X and Yao Y F 2017 Temperature and mass-flow behavior of a He-4 Joule-Thomson cryocooler International Journal of Heat and Mass Transfer 109 pp 1094-99.
[9] Klein S A 2016 Engineering Equation Solver Academic Professional V10.104-3D ed

Acknowledgements
This work is financially supported by the National Natural Science Foundation of China (No. 51176165).