Probing the evolution of molecular cloud structure
II: From chaos to confinement

J. Kainulainen1, H. Beuther1, R. Banerjee2, C. Federrath2,3, and T. Henning1

1 Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
e-mail: [jtkainul;beuther;henning]@mpia.de
2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, 69120 Heidelberg, Germany
3 Ecole Normale Supérieure de Lyon, CRAL, 69364 Lyon, France

Received ; accepted

ABSTRACT

We present an analysis of the large-scale molecular cloud structure and of the stability of clumpy structures in nearby molecular clouds. In our recent work, we identified a structural transition in molecular clouds by studying the probability distributions of gas column densities in them. In this paper, we further examine the nature of this transition. The transition takes place at the visual extinction of $A_V^{\text{th}} = 2 - 4$ mag, or equivalently, at $\Sigma^{\text{th}} = 40 - 80 \, M_\odot \, pc^{-2}$. The clumps identified above this limit have wide ranges of masses and sizes, but a remarkably constant mean volume density of $\bar{n} \approx 10^4 \, cm^{-3}$. This is $5 - 10$ times larger than the density of the medium surrounding the clumps. By examining the stability of the clumps, we show that they are gravitationally unbound entities, and that the external pressure from the parental molecular cloud is a significant source of confining pressure for them. Then, the structural transition at A_V^{th} may be linked to a transition between this population and the surrounding medium. The star formation rates in the clouds correlate strongly with the total mass in the clumps, i.e., with the mass above A_V^{th}, dropping abruptly below that threshold. These results imply that the formation of pressure confined clumps introduces a prerequisite for star formation. Furthermore, they give a physically motivated explanation for the recently reported relation between the star formation rates and the amount of dense material in molecular clouds. Likewise, they give rise to a natural threshold for star formation at A_V^{th}.

Key words. ISM: clouds – ISM: structure – Stars: formation – dust, extinction – evolution

1. Introduction

Formation of dense, self-gravitating structures inside more diffuse, large-scale molecular clouds is the ultimate prerequisite for star formation. In addition to self-gravitating dense cores, molecular clouds in which star formation is taking place show exhausive structural complexity characterized by large contrasts in both density and velocity. From the general observation that almost all known molecular clouds harbor young stars, it is known that the formation of structures capable of star formation (or alternatively, cloud dissipation) must proceed relatively rapidly compared to the life-times of molecular clouds. Likely as a result of this complexity and rapid development, molecular clouds also show wide ranges of star-forming efficiencies and -rates (e.g. Heiderman et al. 2010; Lada et al. 2010). This connection between the cloud structure and the capability of a cloud to form stars makes determining the roles of processes and parameters that control the cloud structure a fundamental open topic in the physics of star formation (reviewed, e.g., by McKee & Ostriker 2007; Mac Low & Klessen 2004).

In the current analytic models of star formation, one particularly interesting structural parameter of molecular clouds is the probability density function (PDF, hereafter) of volume densities, which describes the probability of a volume dV to have a density between $[\rho, \rho + d\rho]$. In such theories, the function has pivotal role: it is used to explain among others the initial mass function of stars, and the star formation rates and efficiencies of molecular clouds (e.g. Padoan & Nordlund 2002; Krumholz & McKee 2005; Elmegreen 2008; Hennebelle & Chabrier 2009). In particular, this distribution is expected to take a log-normal shape in isothermal, turbulent media not significantly affected by the self-gravity of gas (e.g. Vázquez-Semadeni 1994; Padoan et al. 1999; Ostriker et al. 1999; Federrath et al. 2008b). Most importantly from the observational point-of-view, the log-normality of the distribution is expected to be reflected in the probability distributions of column densities in molecular clouds (Vázquez-Semadeni & García 2001; Goodman et al. 2009; Federrath et al. 2010). Also, recently a method has been developed to attain information of the actual three-dimensional density PDF based on the observed, two-dimensional column density PDFs (Brunt et al. 2010, 2011; Brunt 2010). Even though it has been pointed out that the general log-normal-like form for the (column) density PDF can be borne out by various processes (Tassis et al. 2010), it is obvious that an accountable theory of cloud structure must meet with the observed characteristics of the distribution. This is particularly the case if the probability distribution shows any scale-dependent features and/or time evolution. Such properties have indeed been predicted, e.g. in the presence of strong self-gravity (Klessen 2000; Federrath et al. 2008a; Cho & Kim 2011; Krütsuk et al. 2010), and scale-dependent features have also been recently observed (Kainulainen et al. 2009b; Froebrich & Rowsell 2010; Pineda et al. 2010b). This makes probing column density probability distributions one measure of cloud structure that can be used to constrain analytic star formation theories.

Send offprint requests to: jtkainul@mpia.de
However, the connection between theoretical and numerical predictions with observations of the PDF has been poorly investigated. The studies in which the column density PDFs of mostly individual clouds have been examined have found a qualitative agreement with the predicted log-normal shape (e.g., Ridge et al. 2006b; Goodman et al. 2009; Butler & Tani 2009). The lack of systematic studies of column density PDFs has been mostly due to observational obstacles: all observational tracers of the cloud mass distribution suffer from shortcomings specific to the tracer in question (see, e.g., Goodman et al. 2009). Generally, the dynamical ranges probed by different molecular emission line tracers are often narrow, thereby probing only a limited range of the PDF. Dust continuum emission observations probe a wider dynamical range of column densities, but become insensitive at column densities below \(N \lesssim 10^{21} \) cm\(^{-2} \), thus missing a regime where most of the cloud mass is. This is the case also for dust extinction measurements using infrared shadowing features. In addition to these restrictions, mapping nearby cloud complexes that often span several degrees on the sky at high sensitivity requires a colossal observational effort, not generally feasible through typical observing campaigns. Dust extinction mapping in the near-infrared reaches only modest column densities of \(N \lesssim 10^{22} \) cm\(^{-2} \), thereby mostly missing dense star-forming clumps and cores. However, near-infrared extinction mapping reaches very efficiently the low column densities \(N \sim 10^{17} \) cm\(^{-2} \) (Lombardi & Alves 2001), a regime where most of the cloud mass is. Therefore, it provides a feasible tool to measure the column density PDFs at the scales of entire cloud complexes. The method has indeed been used recently for this purpose, especially by Kainulainen et al. (2009b) (see also Lombardi et al. 2006, 2008b, Froebrich & Rowles 2010, Lombardi et al. 2010, Pineda et al. 2010b).

In our recent work (Kainulainen et al. 2009b, Paper I hereafter), we presented the first systematic study of the column density PDFs in all nearby molecular clouds closer than 200 pc. We used near-infrared dust extinction maps of 23 molecular clouds to identify a transition in the PDF shape from a log-normal-like shape at lower column densities to a power-law-like shape at higher column densities. Such transition is characteristic to all star-forming molecular clouds. However, we showed that some of the non-star-forming clouds in our sample did not have the transition, but their PDFs were well fitted by a log-normal over the entire range of column densities above the detection limit. This led us to speculate that the transition occurs at relatively low column densities \(N \lesssim 10^{17} \) cm\(^{-2} \), thereby the same as in Paper I, we have excluded the Coalsack cloud from the analysis. Our recent molecular line observations of the Coalsack have shown that the region likely includes a significant extinction component not only from Coalsack, but also from an extended cloud at a larger distance (Beuther et al., in prep.). Since the effect of that component may well disturb the statistics derived in this paper, we decided to exclude Coalsack from the sample.

As an example of our data, Figure 1 shows the extinction maps derived for the Ophiuchus cloud. The figure shows also the PDF of the cloud, with the lognormal-like low-\(A_V \) part and the power-law-like tail at high-\(A_V \) clearly separable. The transition between these parts occurs approximately at \(A_V^{\text{high}} \approx 2.8 \) mag in this cloud. Throughout this paper, we refer to such position in the PDFs with \(A_V^{\text{high}} \). In the clouds included in the study, the transition occurs at relatively low \(A_V \) values, \(A_V^{\text{low}} = [2.0, 11] \) mag, although in most cases between \(A_V^{\text{low}} = [2, 4] \) mag. The \(A_V^{\text{val}} \) values determined for each cloud are listed in Table 1.

The \(A_V^{\text{val}} \) value defines a set of spatially closed iso-contours in the column density maps (see Fig. 1). Throughout the paper, we refer to the region where \(A_V \lesssim A_V^{\text{val}} \) as the diffuse component, and similarly, to all regions where \(A_V \geq A_V^{\text{val}} \) as the dense component. The former refers then, by definition, to the log-normal part of the PDF and the latter to the power-law-like part. Morphologically, the diffuse component is a uni-body structure in all complexes, but the dense component forms separate structures. We will refer to such separate structures as clumps in this paper.

3. Results

In this section, we use the column density data introduced in 2 to examine the nature of the diffuse and dense components. We first examine the physical characteristics of the components, namely the masses and sizes, densities, and velocity structure. Then, we consider the observed characteristics from the point of view of pressure balance in molecular clouds.

3.1. Characteristics of the diffuse and dense components

3.1.1. Total mass

The gas column densities in the clouds can be inferred from the extinction maps using the measured extinction-to-gas column...
We transformed the visual extinction values in the maps to hydrogen column densities using the relation (Bohlin et al. 1978):

$$\beta = \frac{N(H)}{N(H_2)} / A_V = 9.4 \times 10^{20} \text{ cm}^{-2} \text{ mag}^{-1}.$$

We then calculated the total mass of the cloud as a sum of extinction values above $A_V = 1$ mag:

$$M_{\text{tot}} = D^2 \mu \beta \times \int_{A_V > 1 \text{ mag}} A_V \, dx \, dy,$$

where D is the distance to the cloud, $\mu = 1.37$ is the mean molecular weight (adopting the same values as Lombardi et al. (2008b), i.e., 63 % hydrogen, 36 % helium, and 1 % dust), and x and y refer to the map pixels. We adopt the same distances for clouds as listed in Paper I. We note that the chosen lower limit of $A_V = 1$ mag is arbitrary, and the total mass depends on the selected value (choosing lower threshold will yield higher masses for all clouds). However, a fixed value will make the values comparable between the clouds. We also note that the $A_V = 1$ mag contour is closed in most mapped regions, thus uniformly defining a cloud boundary. Table lists the mean extinctions, A_V, for the clouds calculated using this definition for a cloud.

The total mass of the dense component was calculated from the extinction in excess to the A_V^{tail} threshold level:

$$M_{\text{dense}} = D^2 \mu \beta \times \int_{A_V > A_V^{\text{tail}}} A_V \, dx \, dy - \int_{A_V > A_V^{\text{tail}}} A_V^{\text{tail}} \times dx \, dy,$$

The mass of the diffuse component was then defined as $M_{\text{diffuse}} = M_{\text{tot}} - M_{\text{dense}}$. We list in Table the ratios of the mass of dense component to the total mass of the cloud. Clearly in all clouds, the mass of the diffuse component dominates the cloud mass. The ratios vary from a few percents for clouds with low star-forming activity to ~ 20 % for the most active clouds. Note that the total mass of the cloud was calculated as the mass above $A_V > 1$ mag. Since the column density below this level is, of course, not zero, our total masses represent lower limits. Accordingly, the quoted $M_{\text{dense}}/M_{\text{tot}}$ ratios represent upper limits.

3.1.2. Clumps in the dense component

In the following, we characterize the individual structures, i.e. clumps, in the dense component. We used a simple thresholding approach to identify the clumps from the extinction maps, namely the "clumpfind2d" routine (Williams et al. 1994). All pixels in the map that are connected with each other and above A_V^{tail} are considered as one clump. We emphasize that we do not make an effort to identify single-peaked structures nested inside the contour defined by A_V^{tail}, because we particularly want to examine the mean physical parameters inside regions defined by the A_V^{tail} threshold. Therefore, there can be numerous distinct column density peaks (of any column density higher than A_V^{tail}) nested inside the clumps. In terms of the clumpfind2d algorithm, this approach equals to using A_V^{tail} as a threshold level for structure detection, but not defining any additional column density
of 4.1 g cm$^{-3}$, steeper than expected for the resolution limit of our data (Kainulainen et al. 2009a; Pineda et al. 2009). The mass-to-size and thereby a detection efficiency of clumps a function of the clump mass, e.g. Williams et al. 1995; Kramer et al. 1998; Blitz et al. 2007). The e-folding of clumps with each other. Such blending can make it is, however, possible that the derived slope is a component compares to the common molecular line tracer observations. We use as an example the Ophiuchus and Perseus clouds for which large-scale 12CO and 13CO data are publicly available through the COMPLETE survey (Ridge et al. 2006a). Figure 3 shows the 12CO total antenna temperature map of the Ophiuchus cloud with a contour of $A_{\text{v}} = 2.8$ mag overlaid. In Ophiuchus, thresholding at A_{v} separates two larger clumps: the main cluster region, and the streamers leading east from the cluster (there are additional clumps identified outside the coverage of the CO emission). In general, the A_{v} contour coincides quite well with the extent of the 13CO line emission data (1-σ rms error of CO data is 0.98 K), while 13CO is spatially less extended. Figure 3 also shows a similar comparison on a smaller spatial scale for the B5 globule in the Perseus cloud.

We identified 10 clumps in the Ophiuchus and Perseus clouds that are fully within the region covered by the COMPLETE survey. We estimated the virial parameters of these clumps, defined as the ratio of kinetic-to-gravitational energies in the clump (Bertoldi & McKee 1992):

$$\alpha = \frac{5\sigma^2 R}{GM}$$

where $G = 1/232$ M$_{\odot}$ pc (km s$^{-1}$)2 is the gravitational constant and σ the velocity dispersion. The linewidths were estimated from both the 12CO and 13CO data by calculating the mean spectrum over the clump and making a simple gaussian fit to the peak of it. The mass was calculated from the extinction data following Eq. 3. This calculation yielded virial parameters $\alpha = 3 - 100$ for the clumps. The virial parameters correlate with the mass of the clumps approximately in a power-law fashion (Fig. 4). A simple linear least-squares fit to the data points yields the slope of -0.69 ± 0.12 and -0.64 ± 0.13 for 12CO and 13CO, respectively. This relation is consistent with the prediction
J. Kainulainen et al.: From chaos to confinement

Fig. 2. Characteristics of the structures (clumps) defined by a thresholding at A_V (see §3.1.1 in text). a) The size distribution. Error bars show the \sqrt{n} uncertainty. The dotted line shows the least-squares fit to the distribution, with the slope -0.9 ± 0.2. b) The same for the mass distribution. The linear fit results in the slope -0.4 ± 0.2. c) The mass-radius relation. Overplotted are slopes indicating $M \propto R^3$ and $M \propto R^2$ (dotted lines), the linear fit to the data points which has a slope 2.7 ± 0.2 (dashed line), and the resolution limit $R = 0.1$ pc of the data (solid line). d) The distribution of mean volume densities.

3.2. Pressure confinement of molecular clumps

As demonstrated in §3.1.1, the mass in the clumps above A_V i.e. in the dense component, accounts only for the minor fraction of the total gaseous mass of a cloud. In other words, the clumps are surrounded by a medium whose total mass (and spatial extent) greatly exceeds that of their own. As an example, the most massive clump in our cloud sample has the mass of about 10% of the mass of the whole cloud (for other clumps, the fraction is much smaller). Likewise, as shown in §3.1.1, the mean density of the clumps is close to an order of magnitude higher than the mean density of the medium surrounding them. Thus, it seems reasonable to consider the gravitational force of the surrounding medium as a source of external pressure supporting the clumps. In the following, we follow the formulation of Bertoldi & McKee (1992) and examine the scale of external support provided to the clumps by the diffuse medium surrounding them.

The basic condition for the virial balance of a clump is:

$$0 = W + 2(T - T_{ext}) + M.$$

In this equation, W is the potential energy:

$$W = -\frac{3}{5} \frac{GM^2}{R},$$

and T and T_{ext} are the kinetic energy of the clump and its surface term:

$$T = 3/2 \times P_{kin}V.$$

for clumps confined by ambient pressure from the medium surrounding them (Bertoldi & McKee 1992) and such relation has been previously observed for clumps identified from CO emission data (e.g., Bertoldi & McKee 1992; Williams et al. 1995; Lada et al. 2008). It is, however, clear that the determination of the virial parameters suffers from likely non-gaussian errors, arising most pressingly from the uncertainty in determining the linewidth that would well trace most of the gaseous material in the cloud. Therefore, we consider this observed correlation indicative, although clearly not well constrained. It is, however, evident that having $\alpha >> 1$, these clumps are not gravitationally bound entities (although they can be significantly supported by other forces, as will be discussed later). This is unsurprising, as CO clumps in molecular clouds are generally observed to have high virial parameters (e.g., Carr 1987; Bertoldi & McKee 1992; Falgarone et al. 1992).
Fig. 3. Comparison of the dense component, i.e. structures above $A_V > A_V^{\text{tail}}$, with the CO molecular line emission. **Top:** 12CO line emission from the COMPLETE survey for Ophiuchus, with a contour of $A_V^{\text{tail}} = 2.8$ mag overplotted. **Bottom row:** Similar comparison for the B5 globule in Perseus. The left panel shows the extinction map, with black contours at $A_V = [1, 3]$ mag. The white contour shows the extent of the coherent core in which the linewidth of the NH$_3$ molecule emission drops abruptly, identified by Pineda et al. (2010a). The center and right panels show the same for the 12CO and 13CO line emission, respectively.

$$T_{\text{ext}} = 3/2 \times P_{\text{ext}} V.$$ \hspace{1cm} (8)

M is the magnetic energy which we neglect for simplicity. The virial balance equation expressed in terms of pressure is then:

$$P_{\text{kin}} = P_{\text{gr}} + P_{\text{ext}}.$$ \hspace{1cm} (9)

In this, the total kinetic pressure of the clump, P_{kin}, is the sum of both thermal and non-thermal components:

$$P_{\text{kin}} = \rho(\sigma_T^2 + \sigma_{\text{NT}}^2),$$ \hspace{1cm} (10)

and P_{gr} is the gravitational pressure of the clump supporting it against expansion:

$$P_{\text{gr}} = -1/3 \times W/V = (4\pi/15)G\Sigma R^2.$$ \hspace{1cm} (11)

P_{ext} is the pressure external to the clump. Under the assumption that molecular cloud complexes are close to gravitational virial equipartition (e.g., Larson 1981, Heyer et al. 2001), a supporting external pressure is directed to a clump. This pressure arises from the turbulent pressure that balances the cloud against its own gravity. Since the cloud, as a whole, is close to virial equipartition, the turbulent pressure amounts to the gravitational pressure of the cloud (analogously to Eq. 11), but we adopt a slightly modified expression that takes into account that the cloud is not spherical (Bertoldi & McKee 1992). With the definition of the mean mass surface density, $\Sigma = M/(\pi R^2)$, the external pressure supporting clumps against dispersal is:

$$P_{\text{ext}} = P_{\text{cloud}}^{\text{gr}} = (3\pi a_1/20)G\Sigma^2 \phi_G.$$ \hspace{1cm} (12)

where a_1 and ϕ_G are numerical constants related to cloud morphology whose value can be evaluated as prescribed in Bertoldi & McKee (1992). As an example of the order-of-magnitude of these pressures, using the typical 13CO linewidth
of \(\sigma = 0.75 \text{ km s}^{-1} \) for a \(R = 1 \text{ pc} \) sized clump, \(\overline{n}_{\text{diff}} = 150 \text{ cm}^{-3} \), \(\overline{n}_{\text{clump}} = 800 \text{ cm}^{-3} \), and the mean mass surface density \(\overline{\Sigma}_V = 2 \text{ mag} \) yields the pressure ratios \(P_{\text{kin}} \approx 10 \times P_{\text{gr}} \approx 4 \times P_{\text{ext}} \). In other words, the pressures supporting the clumps against dispersal amount in total to about one third of the pressure driving their dispersal.

In the following, we examine these pressures for a population of clumps whose properties equal to those derived for the clumps identified in this paper. In \(\S 3.1.3 \) we showed that the observed virial parameters of the clumps scale with their masses (which is predicted for clumps confined by external pressure, Bertoldi & McKee 1992):

\[
\alpha = 2T/|W| = \frac{P_{\text{clump}}^{\text{kin}}}{P_{\text{gr}}^{\text{clump}}} = c_1 \times M^{-2/3},
\]

(13)

where \(c_1 \) is a proportionality constant. It directly follows from this that the internal kinetic pressure of the clumps is only a function of their density (Eqs. 13 and 11), and thereby the kinetic pressure is constant for a population of constant density clumps. The ratio of outwards to inwards pressures for a clump is then:

\[
P_{\text{clump}}^{\text{out}}/P_{\text{clump}}^{\text{in}} = \frac{P_{\text{kin}}}{P_{\text{ext}} + P_{\text{gr}}} = \frac{c_1 (4\pi)}{16} \times \frac{\overline{\Sigma}^3}{\rho_{\text{clump}}^9} R^2.
\]

(14)

Figure 4 illustrates the ratio (Eq. 14) as a function of the mean mass surface density \(\overline{\Sigma} \) (in units of \(\Sigma_V \)) for clumps of different sizes (\(R = 0.1 - 2.1 \text{ pc} \)). As the mean density, we used the value \(\overline{n} = 800 \text{ cm}^{-3} \) shown earlier to be the peak of the mean densities in the clumps (§3.1.2). Figure 5 shows that the transition from a regime where structures are unbound to a regime where they are bound occurs around \(\overline{\Sigma}_{V} \approx 4 \text{ mag} \) (\(\overline{\Sigma} \approx 80 \text{ M}_\odot \text{ pc}^{-2} \)) for clumps over a wide range of sizes (\(R = 0.1 - 2.1 \text{ pc} \)). This value is larger than the observed mean mass surface densities by a factor of about \(\approx 2 \) (see Table 1), and therefore, the external pressure is lower than the internal kinetic energy of the clump by a factor of \(\approx 4 \).

We have so far assumed that the kinetic energies of the clumps scale with mass as shown by Eq. 13. In principle, this scaling is supported by the linewidth data of clumps showing rather constant linewidths (Fig. 4). This observation is, however, hampered by the poor statistics we could achieve with the available data. Therefore, we consider also a case where the kinetic energies of the clumps scale according to a Larson-like size-linewidth relation (Solomon et al. 1987):

\[
\alpha_{\text{clump}} = \frac{2T}{|W|} = \frac{P_{\text{clump}}^{\text{kin}}}{P_{\text{gr}}^{\text{kin}}} = \frac{5 \times 0.72 (\overline{\Sigma}/\rho_{\text{clump}})^{1/3} R}{GM}.
\]

(15)

Again, Fig. 5 shows the ratio of outwards to inwards pressures for clumps (Eq. 14) as a function of the mean mass surface density of the cloud. Using this scaling of kinetic energies, the balance occurs approximately at the level of the observed mean mass surface density \(\overline{\Sigma}_V \approx 2 \text{ mag} \). While our observations seem to favor kinetic energy scaling with mass (see also discussion in \(\S 3.1.2 \)), this example illustrates the behavior of the pressure balance in another plausible scaling scheme, suggesting that the external pressure indeed can be close to the internal kinetic energy of the clumps.

Finally, we illustrate the net effect of the pressures to the individual observed clumps by calculating modified virial parameters for the clumps for which we have CO data. In this modified virial parameter, we take into account the pressure external to the clumps:

\[
\overline{\alpha}_{\text{clump}} = \frac{P_{\text{kin}}}{P_{\text{gr}} + P_{\text{ext}}}.
\]

(16)

The modified virial parameters are shown in Fig. 4 together with the traditional virial parameters that include only the gravitational and kinetic energies of the clumps. In agreement with the earlier results, the modified virial parameters are clearly smaller compared to the ones resulting from Eq. 4 but still somewhat larger than unity.
4. Discussion

4.1. Pressure confinement of the clumps

We described in the previous section a new approach to characterize structures observed in molecular clouds. In particular, we used the observed gas column density PDFs of molecular clouds to define a population of clumpy structures (dense component) embedded in the extended, intercloud medium (diffuse component). The transition between these components occurs at the extinction threshold \(A_V^{\text{ext}} = 2 - 4 \) mag, or equivalently, at \(\Sigma^{\text{ext}} = 40 - 80 \, M_\odot \, pc^{-2} = 0.008 - 0.017 \, g \, cm^{-2} \). This level is relatively constant, being in the quoted range in every cloud except one (Serpens, cf. Table 1) for which it could be reliably determined. The dense component becomes dominant at \(A_V = 3 - 8 \) mag. The mass of the dense component is between 1 - 20% of the total mass of the cloud which we defined as the total mass above \(A_V > 1 \) mag. The clumps of the dense component show roughly power-law-like distributions of sizes and masses, covering wide dynamical ranges (see Fig. 2). However, the components are characterized by remarkably constant mean volume densities of \(\bar{\rho} \approx 10^3 \, cm^{-3} \) and \(\bar{\rho} \approx 1.5 \times 10^2 \, cm^{-3} \) for the dense and diffuse components, respectively.

The clumps identified using the column density PDFs of the clouds in this study are very similar to the gravitationally unbound \(^{13}\)CO clumps identified in several studies in the past (e.g., Carr 1987, Bertoldi & McKee 1992, Williams et al. 1995, Lada et al. 2008). In particular, the mean densities, and mass-radius and virtual parameter-mass relations derived in Section 3.1.2 are in agreement to what has been derived for such \(^{13}\)CO clumps. Similarly, those studies have concluded that the external pressure may be a significant confining source for such clumps. A simple qualitative comparison between the extent of the regions selected with \(A_V^{\text{ext}} \) and \(^{13}\)CO emission indeed suggests these methods may trace quite similar components in the clouds (see Fig. 3). It has been earlier suggested (Goodman et al. 1998, Caselli et al. 2002), and more recently directly observed (Pineda et al. 2010), that there appears to be a sharp transition to dynamically coherent objects, or cores, at the scale where non-thermal motions cascade from the supersonic to subsonic regime (the sonic scale, e.g., Vázquez-Semadeni et al. 2003, Federrath et al. 2010). In particular, Pineda et al. (2010) detected such transition in the B5 globule in the Perseus cloud, at the length scale on the order of \(R \approx 0.1 \, pc \), in agreement with the sonic scale (and Larson’s size-linewidth relation). The spatial extent of this coherent core is illustrated in Fig. 3 together with the extent of the clump defined by \(A_V^{\text{ext}} \). The transition to coherence occurs clearly in a different column density regime than the break in the column density PDF defined by \(A_V^{\text{ext}} \). Importantly, while the structural transition from supersonic- to subsonic-velocities in cloud structure seems to be linked to a particular size-scale, the structural transition described by the \(A_V^{\text{ext}} \) threshold is not size-dependent. As shown in Fig. 2, structures above \(A_V^{\text{ext}} \) cover a large size- and mass range.

We showed in Section 3.2 that a significant external pressure from the surrounding cloud is imposed to the clumps we identified using the \(A_V^{\text{ext}} \) threshold. This is especially the case if, instead of a constant kinetic pressure, clumps follow a Larson-like size-linewidth scaling relation. This indicates that the clumps may even be close to a pressure balance with their surroundings. The CO linewidths and virtual parameters we derived for a small sample of clumps partially support this picture: virtual parameters (as defined by Eq. 4) correlate with clump masses as predicted for pressure confined clumps, and the linewidths do not show clear correlation with clump sizes (we observe a nearly constant linewidth for the clumps). On the other hand, the modified virtual parameters taking the external pressure into account (Fig. 3 and Eq. 16) were somewhat in excess to unity for those clumps, implying that they may be overpressurized and thus either an additional pressure component may be significantly affecting them, or they may be expanding. This result is, again, similar to what has been derived for \(^{13}\)CO clumps (e.g., Carr 1987).

The role of the internal gravitational pressure of the clumps is further illustrated in Fig. 6, which shows the mean density for all identified clumps as a function of the clump size (plus signs in the figure). A constant ratio of gravitational-to-external pressures defines a linear relationship in this plot with a slope of \(-1 \) (cf. Eq. 11 and 12). The relation corresponding to \(P_G = P_{ext} \) is overplotted in Fig. 6. All clumps identified from the dense component have densities lower than this relation, implying that the gravitational energy is indeed small compared to the external pressure. The typical mean density \(n = 150 \, cm^{-3} \) of the diffuse...
component is also shown, which obviously is clearly below the mean densities of the clumps.

Despite the limits imposed by the spatial resolution and dynamical range of the extinction maps, we can still examine the role of gravity in the structures nested inside the clumps (i.e., in smaller-scale structures inside what we have defined as a clump). We show in Fig. 6 with red diamonds a population of structures identified by an experiment in which we defined clumps using a threshold level \(A_V = 3 \times 10^{-6} \). While this threshold is typically \(A_V = 6 - 12 \) mag, such selection likely represents a population connected to star-forming regions, or at least, pre-stellar objects. The structures identified with this experiment are above the \(P_{fr} = P_{esc} \) limit. This demonstrates how gravitation becomes an increasingly important confining force for density enhancements nested inside the clumps. To illustrate one case where gravitation is known to eventually become the dominant force, we have marked into the diagram the star-forming clump B5 in Perseus (see Fig. 2). The clump defined by thresholding at \(A_V \) is marked with black filled circle, and the structure identified inside it with the threshold at \(3 \times 10^{-6} \) is marked with red filled circle.

Given these results, we suggest that the observed organization of structures, identified with a new approach using the column density PDF, can be understood as a population of clumps significantly supported by the external pressure. This external pressure originates from the turbulent pressure outside the clumps, and in this framework, it is a consequence from the assumption that clouds as a whole are close to virial equipartition. Then, the break observed in the column density PDFs at \(A_V^{\text{th}} \) represents a transition from a diffuse inter-clump medium to clumps significantly supported by external pressure. This interpretation has some profound implications. Most pressingly, it implies that the external pressure from the large-scale cloud has an important role in providing support for the clumps. This interpretation connected to star-forming regions, or at least, pre-stellar objects, represents a transition from a di-virial equilibrium, molecular clouds are also embedded as a whole, in order to relate their gravitational pressure to the pressure confined clumps are observed in some clouds that do not show.

4.2. Pressure confinement and star formation

When coupled with the main result of Paper I, i.e., that non-star-forming clouds do not exhibit similarly strong tails (if any) in their PDFs as all star-forming clouds do, the interpretation discussed in this paper leads to a picture in which the formation of pressure confined clumps occurs in clouds prior to (or at clearly higher rate than) the formation of gravitationally dominated cores. Indeed, in our sample of molecular clouds, pressure confined clumps are observed in some clouds that do now active star formation (Musca, Cha III), or even high column density cores (Musca, Hacar et al. in prep.). This picture is further supported by the recent analysis of the stability of dense cores in the nearby, mostly quiescent Pipe Nebula (Lada et al. 2008). In this cloud, Lada et al. examined a sample of \(\sim 150 \) cores of masses between \(0.2 - 20 M_\odot \) (\(R \approx 0.04 - 0.2 \) pc). They concluded the core population in the Pipe to be pressure confined, gravitationally unbound entities. The cores in Lada et al. study were defined to be single-peaked (or at most a few-peaked) entities, and thereby they may well represent the smallest scale of the hierarchy whose largest scale is represented by the structures identified in our study are. A similar result highlighting the role of external pressure in a star-forming cloud was recently published by Maruta et al. (2010). They investigated the stability of dense cores in the Ophiuchus cluster, in the regime of \(R \leq 0.1 \), and concluded that the external pressure has a significant role in the dynamics of the cores. These results clearly indicate that the hierarchy of structures nested inside clumps is affected by the external pressure all the way to the regime of dense star-forming cores.

In the interpretation discussed above the formation of pressure bound clumps can be seen as a prerequisite for the formation of gravitationally bound cores. Given this, there evidently should be a relation between the occurrence of such clumps

\[P_{fr} = P_{esc} \]

Also note that this relation is not in any dependence to the pressure balance or virial status of the clumps (see Eq. \[13 \] and \[12 \]). In order to estimate the kinetic pressure of the clumps identified in this experiment, a tracer probing densities of these objects would have to be used instead of \(^{12}\)CO or \(^{13}\)CO.
and star formation, even beyond the general observation that not all quiescent clouds show such clumps, while all star-forming clouds do. Therefore, it is interesting to consider the observed star-forming efficiencies and rates in the clouds of our sample.

Recently, Heiderman et al. (2010) studied the star-forming activities of nearby molecular clouds as a function of the gas surface density (i.e., the Kennicutt-Schmidt law). In their work, Heiderman et al. used near-infrared extinction maps similar to those employed in this paper to derive gas surface densities. They examined the number of young stellar objects (YSOs) in the clouds identified using the Spitzer satellite data in different column density intervals and constructed the Kennicutt-Schmidt law for their cloud sample. In particular, they observed an abrupt drop in the star formation rate at $\Sigma = 50 - 100 M_\odot$ pc$^{-2}$ (see Figs. 3 and 8 in Heiderman et al. [2010]), leading them to suggest a threshold for star formation at $\Sigma_{th} = 129 \pm 14 M_\odot$ pc$^{-2}$ ($A_V = 8.6$ mag). A very similar result was reached recently by Lada et al. (2010), who examined the relation between the number of YSOs in nearby clouds and the amount of high column density material in them. They showed that the correlation between the mass of the gas and the number of YSOs identified in the clouds is strongest (i.e., the dispersion in the relation is smallest) at $A_V \approx 0.8$ mag ($A_V \geq 7.3$ mag, or $\Sigma \approx 116 M_\odot$ pc$^{-2}$). We note that the dispersion of the SFR-surface density relation derived by Lada et al. (2010) starts to decrease already at surface densities lower than $\Sigma \approx 116 M_\odot$ pc$^{-2}$, reaching its minimum at that point.

The star formation thresholds derived in the studies above are slightly larger than the typical A_{till} values. However, we defined the A_{till} value as the point where the dense component, on average, becomes a significant excess over the diffuse component. Obviously, at such surface density the largest contribution to the PDF still comes from the underlying diffuse component, not from the excessive dense component. Typical surface density values at which the contribution of the tail to the PDF becomes dominant ($> 90\%$) are around $A_{\text{till}}(90\%) \approx 3 - 8$ mag (listed in Table 1). Such values would be very much in agreement with the threshold values derived by Lada et al. (2010) and Heiderman et al. (2010), given the very different approaches used in these papers. Therefore, it seems plausible to interpret increase in star-forming activity to be related to the regime where the column density PDF is becoming completely dominated by the dense component.

In the context of clumps bound by external pressure, a natural threshold for star formation is introduced by the surface density at which pressure bound clumps form, which is around A_{till}. Furthermore as discussed above, the mass above this threshold is in a direct connection to the SFR of the cloud, with the SFR increasing in a power-law manner with increasing gas surface density. This interpretation gives a physically motivated explanation for the star formation threshold occurring at relatively low surface densities and links it to an observed structural feature in the clouds. Thus, we suggest a picture in which the formation of pressure bound clumps, and thereby the structural transition at A_{till}, introduces a prerequisite for star formation, with the amount of mass in clouds above that limit directly proportional to the capability of the cloud to form stars.

5. Conclusions

In this paper, we presented an analysis of the large-scale, clumpy structures in nearby molecular clouds and of their stability. In particular, we described a new approach to identify structure in clouds using the observed column density PDFs. With this approach, we identified two distinctive components in them, referred to as the dense and diffuse components, and described their basic physical characteristics. We then examined the stability of the clumps in the dense component, especially by considering the scale of external pressure imposed to them by the medium surrounding them. The main conclusions of our work are as follows:

1. The transition between the diffuse and dense components occurs at a narrow range of column densities, $A_{\text{till}} = 2 - 4$ mag, or $\Sigma_{\text{till}} = 40 - 80 M_\odot$ pc$^{-2}$. The dense component dominates the observed column density PDFs above $A_V > 3 - 8$ mag. The total mass of the dense component is 1-20 % of the total mass of the cloud, and thus always clearly smaller than the mass of the diffuse component. Clumps identified in the dense component show wide dynamical ranges of sizes (0.1 - 3 pc) and masses ($10^{3} - 10^{4} M_\odot$). However, the mean volume density of the clumps is remarkably constant, $\Sigma \approx 10^3$ cm$^{-3}$. This is $\sim 5 \times 10^3$ times larger than the mean volume density of the diffuse component, $\Sigma \approx 1 - 2 \times 10^2$ cm$^{-3}$.

2. The clumps identified using the column density PDFs are gravitationally unbound and the external pressure, caused by the turbulent pressure from the diffuse, large-scale cloud surrounding them, can provide significant support for them against dispersal. However, examination of the stability of a small sub-sample of clumps indicates that they may be overpressurized and either expanding or additionally supported by a component not included in our analysis (e.g., magnetic field support). Then, the physical properties of the clumps resemble those of the clumps often identified from 13CO emission observations as structures of the lowest hierarchical level.
3. In Kainulainen et al. (2009b), we showed that some non-star-forming clouds do not show the PDF break, while some of them show a weak break but no gravitationally dominated dense cores. Coupling those results with the physical characteristics of the clumps derived in this paper suggests a picture in which pressure confined clumps form prior to, or at higher rate compared to, the formation of gravitationally dominated dense cores in the clouds. This suggests that the formation of pressure confined clumps is a prerequisite for star formation, and introduces a natural threshold for star formation at A_V^{clump}.

4. The star formation rate in the cloud complexes of our sample correlates strongly with the mass in the structures defined by the A_V^{clump} threshold, as pointed out recently by Lada et al. (2010), and furthermore, drops abruptly below that surface density (Heiderman et al. 2010). This supports the interpretation laid out in Item 3 above. Most importantly, the interpretation then provides a physically motivated explanation for the relation between star formation rate and the amount of dense material in the clouds reported by Heiderman et al. (2010) and Lada et al. (2010).

Acknowledgements. The authors would like to thank Mordecai-Mark Mac Low, Cornelis Delmoud, and Ralf Klessen for enlightening discussions regarding the topic. We would like to thank the anonymous referee for helping us to significantly improve the manuscript. We would also like to thank Jaime Pineda for providing electronic material for Fig. 1. C.F. has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 247060) for the research presented in this work.

References

Alves, J., Lombardi, M., & Lada, C. J. 2007, A&A, 462, L17
Andr´e, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102
Banerjee, R., Vázquez-Semadeni, E., Hennebelle, P., & Klessen, R. S. 2009, MNRAS, 398, 1082
Ballesteros-Paredes, J., 2006, MNRAS, 372, 443
Ballesteros-Paredes, J., & Mac Low, M.-M. 2002, ApJ, 572, 238
Bally, J. S. 1987, ApJ, 323, 170
Carr, J. S. 1999, A&A, 377, 1023
Cho, W., & Kim, J. 2011, MNRAS, 410, L8
Crutcher, R. M., Mandel, B., Heiles, C., et al. 2010, ApJ, 725, 466
Elmegreen, B. G. 2008, ApJ, 672, 1006
Elmegreen, B. G., & Falgarone, E. 1996, ApJ, 471, 816
Falgarone, E., Puget, J.-L., & Peudart, M. 1992, A&A, 257, 715
Federrath, C., Roman-Duval, J., Klessen, R. S., et al. 2010, A&A, 512, A81
Forderath, C., Klessen, R. S., & Schmidt, W 2009, ApJ, 692, 364
Federrath, C., Glover, S. C. O., Klessen, R. S., & Schmidt, W 2008a, Physica Scripta Volume T, 132, 014025
Federrath, C., Klessen, R. S., & Schmidt, W 2008b, ApJ, 688, L79
Froebrich, D., & Rowles, J. 2010, MNRAS, 406, 1350
Goodman, A. A., Pineda, J. E., & Schnell, S. L. 2009, ApJ, 692, 91
Goodman, A. A., Barranco, J. A., Wilner, D. J., & Hayer, M. H. 1998, ApJ, 504, 223
Heiderman, A., Evans, N. J., II, Allen, L. E., et al. 2010, ApJ, 723, 1019
Hennebelle, P., & Chabrier, G. 2009, ApJ, 702, 1428
Hoger, M. H., Carpenter, J. M., & Snell, R. L. 2001, ApJ, 551, 852
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009b, A&A, 508, L35
Kainulainen, J., Lada, C. J., Rathborne, J. M., & Alves, J. F. 2009a, A&A, 497, 399
Kainulainen, J., Lehtinen, K., & Harju, J. 2006, A&A, 447, 597
Klessen, R. S. 2000, ApJ, 535, 869
Kramer, C., Stutzki, J., Rohring, R., & Cornelissen, U. 1998, A&A, 329, 249
Kritsuk, A. G., Norman, M. L., & Wagner, R. 2010, arXiv:1007.2950
Krumholz, M. R., & McKee, C. F. 2005, ApJ, 630, 250
Krumholz, M. R., McKee, C. F., & Thompson, J. 2009, ApJ, 699, 850
Lada, C. J., Lombardi, M., & Alves, J. F. 2010, arXiv:1009.2985
Lada, C. J., Lombardi, M., & Alves, J. F. 2009, ApJ, 703, 52
Lada, C. J., Menuch, A. A., Rathborne, et al. 2010, ApJ, 672, 410
Larson, R. B. 1981, MNRAS, 194, 809
Lombardi, M. 2009, A&A, 493, 735
Lombardi, M. 2005, A&A, 438, 169
Lombardi, M., & Alves, J. 2001, A&A, 377, 1023
Lombardi, M., Alves, J., & Lada, C. J. 2010, A&A, 519, L7
Lombardi, M., Alves, J., & Lada, C. J. 2006, A&A, 454, 781
Lombardi, M., Lada, C. J., & Alves, J. 2010, A&A, 512, A67
Lombardi, M., Lada, C. J., & Alves, J. 2008a, A&A, 480, 785
Lombardi, M., Lada, C. J., & Alves, J. 2008b, A&A, 489, 143
Mac Low, M.-M., & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125
Maruta, H., Nakamura, F., Nishi, et al. 2010, ApJ, 714, 680
McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565
Motte, F., Andre, P., & Neri, R. 1998, A&A, 336, 150
Ostriker, E. C., Grann and, J. M. 1999, ApJ, 513, 259
Ostriker, E. C., Stone, J. M., & Mamie, C. F. 2001, ApJ, 546, 980
Padoan, P., Nordlund, A, & Jones, B. T. 1997, MNRAS, 288, 145
Padoan, P., & Nordlund, Å. 2002, ApJ, 576, 870
Pineda, J. E., Rosolowsky, E. W., & Goodman, A. A. 2009, ApJ, 699, L134
Pineda, J. L., Goldsmith, P. F., Chapman, N., et al. 2010b, ApJ, 712, 686
Pineda, J. E., Goodman, A. A., Arce, H. G., et al. 2010a, ApJ, 712, L116
Ridgway, N. A., Di Francesco, J., Kirk, H., et al. 2006, AJ, 131, 2921
Ridge, N. A., Schneps, S. L., Goodman, A. A., & Foster, J. B. 2006b, ApJ, 643, 932
Sánchez, N., Allard, E. J., & Pérez, E. 2005, ApJ, 625, 849
Scalo, J., Vazquez-Semadeni, E., Chappell, D., & Passot, T. 1998, ApJ, 504, 835
Schneider, N., Cenker, T., Bontemps, S., et al. 2010, A&A, 520, A49
Skutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Solomon, P. M., Rivolo, A. R., Barrett, J., & Yáñez, A. 1987, ApJ, 319, 730
Tassis, K., Christie, D. A., Urban, et al. 2010, MNRAS, 1217
Vázquez-Semadeni, E. 1994, ApJ, 423, 681
Vázquez-Semadeni, E., & García, N. 2001, ApJ, 557, 727
Vázquez-Semadeni, E., Ballesteros-Paredes, J., & Klessen, R. S. 2003, ApJ, 585, L131
Ward-Thompson, D., Kirk, J. M., André, P., et al. 2010, A&A, 518, L92
Williams, J. P., Blitz, L., & Stark, J. 1991, ApJ, 451, 252
Williams, J. P., de Geus, E. J., & Blitz, L. 1994, ApJ, 428, 693