The Role of Continental Crust in the Formation of Uraninite-Based Ore Deposits
S.R. Lewis, A. Simonetti, L. Corcoran, S.S. Simonetti, C. Dorais, and P.C. Burns

Supplementary Materials
Figure S1. Secondary Pb-Pb isochrons determined using SM- and LA-MC-ICP-MS for uraninites from this study. (A–Q) All ellipsoids represent 2σ error. Black=pristine and altered, Red=pristine, Green=altered, Orange and Purple=interpretive isochron.
Figure S2. Rb-Sr isochrons obtained by SM-MC-ICP-MS. (A–H) All ellipses are at the 2σ level for uncertainty.
Figure S3. δ^{238}U (left) and δ^{234}U (right) values. See Table A1 for uraninite values and sources.
Table S1.Compiled list of uraninites from several previous studies.

Sample	Location	Sub type	$^{238}\text{U}/^{235}\text{U}$	$\delta^{234}\text{U}$	$\delta^{234}\text{U}$	Reference	
Intrusive							
1	M26947	Ingersoll Mine, Pennington Co.	Anatectic (pegmatitic)	137.86	0.09	−10.0	[9]
2	M19033	Wood Lode, Central City, CO	Anatectic (pegmatitic)	137.82	−0.21	2.0	[9]
3	M19032	German Mine, Gilpin Co., CO	Anatectic (pegmatitic)	137.86	0.04	0.0	[9]
4	M11336	Black Hawk, Gilpin Co, CO	Anatectic (pegmatitic)	137.85	−0.01	4.0	[9]
5	M21708	Penland, NC	Anatectic (pegmatitic)	137.84	−0.10	−4.0	[9]
6	M19255	Grafton Centre, NH	Anatectic (pegmatitic)	137.85	0.02	1.0	[9]
7	344	Ruggles Mine, NH (peg)	Anatectic (pegmatitic)	137.70	−1.12	−11.7	This study
8	334	Mitchell Co., NC (peg)	Anatectic (pegmatitic)	137.61	−1.76	−10.3	This study
9	333P	Yancy County, North Carolina	Anatectic (pegmatitic)	137.78	−0.49	−3.0	[59]
10	338B	Yancy County, North Carolina	Anatectic (pegmatitic)	137.74	−0.77	−7.6	[59]
11	340.1B	Bancroft, Ontario, Canada	Anatectic (pegmatitic)	137.76	−0.64	−6.6	[59]
12	340.1P	Bancroft, Ontario, Canada	Anatectic (pegmatitic)	137.79	−0.44	−5.0	[59]
13	348.1B	Saskatchewan, Canada	Anatectic (pegmatitic)	137.83	−0.16	−42.6	[59]
14	375P	Cardiff Township, Ontario, Canada	Anatectic (pegmatitic)	137.84	−0.05	−13.2	[59]
Granite Related							
15	A33	Everest area, Southern Tibet	Endogranitic	137.78	−0.47		[61]
16	2-5	Urtuy massif, Eastern Transbaikalia, Russian Federation	Endogranitic	137.76	−0.68		[62]
17	2-5	Urtuy massif, Eastern Transbaikalia, Russian Federation	Endogranitic	137.75	−0.69		[62]
18	2-5	Urtuy massif, Eastern Transbaikalia, Russian Federation	Endogranitic	137.77	−0.60		[62]
19	2012	Khadatkanda, Transbaikalia, Russia	Endogranitic	137.78	−0.52		[62]
20	2012	Khadatkanda, Transbaikalia, Russia	Endogranitic	137.76	−0.52		[62]
21	2012	Khadatkanda, Transbaikalia, Russia	Endogranitic	137.76	−0.65		[62]
22	564P	Jachymov, Czech Republic	Endogranitic	137.78	−0.49	−41.9	[59]
23	Midnite Mine	Midnite Mine, USA	Endogranitic	137.80	−0.27		[25]
24	M9450	St. Stephan’s, England	Perigranitic	137.89	0.29	2.0	[9]
25	M6939	St. Just Wheal Owles, England	Perigranitic	137.92	0.48	1.0	[9]
26	M16900	St. Just Wheal Owles, England	Perigranitic	137.92	0.54	2.0	[9]
27	M33227	St. Just Wheal Edward Mine, England	Perigranitic	137.87	0.14	9.0	[9]
28	M16899	St. Just, England	Perigranitic	137.93	0.59	−1.0	[9]
29	M13323	Cornwall, England	Perigranitic	137.93	0.57	0.0	[9]
30	M15328	Pribram, Czech Republic	Perigranitic	137.95	0.70	2.0	[9]
31	M19330	Jachymov, Czech Republic	Perigranitic	137.90	0.36	3.0	[9]
32	M14887	Jachymov, Czech Republic	Perigranitic	137.92	0.51	1.0	[9]
33	M9176B	Jachymov, Czech Republic	Perigranitic	137.92	0.54	2.0	[9]
34	M12106	Jachymov, Czech Republic	Perigranitic	137.90	0.38	3.0	[9]
35	M9176A	Jachymov, Czech Republic	Perigranitic	137.89	0.32	1.0	[9]
Polymetallic Iron Oxide Breccia Complex							
36	Mount Painter	Mount Painter		137.77	−0.51		[25]
37	OD1	Olympic Damn, Australia		137.82	−0.22		[20]
38	OD4	Olympic Damn, Australia		137.79	−0.46		[20]
39	OD6	Olympic Damn, Australia		137.79	−0.41		[20]
40	OD10	Olympic Damn, Australia		137.79	−0.40		[20]
41	OD11	Olympic Damn, Australia		137.81	−0.28		[20]
42	OD14	Olympic Damn, Australia		137.77	−0.57		[20]
43	OD15	Olympic Damn, Australia		137.81	−0.27		[20]
Sample	Location	Sub type	$^{238}\text{U}/^{235}\text{U}$	$\delta^{238}\text{U}$	$\delta^{234}\text{U}$	Reference	
--------	---------------------------	---------------------	-------------------------------	-----------------	-----------------	-----------	
44	OD16	Olympic Dam, Australia	137.79	−0.43		[20]	
45	OD17	Olympic Dam, Australia	137.75	−0.69		[20]	
46	OD29	Olympic Dam, Australia	137.78	−0.52		[20]	
47	OD34	Olympic Dam, Australia	137.79	−0.45		[20]	
48	OD36	Olympic Dam, Australia	137.79	−0.41		[20]	
49	OD38	Olympic Dam, Australia	137.80	−0.33		[20]	
50	OD39	Olympic Dam, Australia	137.79	−0.42		[20]	
51	OD42	Olympic Dam, Australia	137.81	−0.26		[20]	
52	M32072	Bolivia	Structure Bound	137.91	0.44	2.0	[9]
53	White King Mine	White King Mine	Structure Bound	137.74	−0.68		[25]
54	33B	Cage District, Canadian Shield, Canada	Skarn	137.76	−0.63		[62]
55	33B	Cage District, Canadian Shield, Canada	Skarn	137.75	−0.69		[62]
56	07-1A	Cage District, Canadian Shield, Canada	Skarn	137.78	−0.48		[62]
57	07-1A	Cage District, Canadian Shield, Canada	Skarn	137.77	−0.61		[62]
58	M22307	Ace Mine, Beaverlodge area, Canada	Monometallic Vein	137.92	0.50	1.0	[9]
59	5788 Fay deposit	Fay deposit, Beaverlodge area, Canada	Monometallic Vein	137.92	0.48	2.0	[9]
60	6126 Nesbine Labine	Nesbine Labine, Beaverlodge area, Canada	Monometallic Vein	137.90	0.36	−15.0	[9]
61	6120 Ace deposit	Ace deposit, Beaverlodge area, Canada	Monometallic Vein	137.89	0.33	0.0	[9]
62	VR Fay mine	Fay mine, 24 level, Beaverlodge area, Canada	Monometallic Vein	137.88	0.19	−9.0	[9]
63	Eagle Ace Pitch 8208	Eagle Ace deposit, Beaverlodge area, Canada	Monometallic Vein	137.90	0.38	−6.0	[9]
64	522	Biliken Lode, Jefferson Co., CO (metasedimentary)	Monometallic Vein	137.89	0.28	−39.1	This study
65	637	Jefferson Co. CO (metasedimentary)	Monometallic Vein	137.85	−0.03	−8.6	This study
66	348.1P	Saskatchewan, Canada	Monometallic Vein	137.78	−0.51	−7.6	[59]
67	M19342	Great Bear, Canada	Polymetallic Vein	137.90	0.40	1.0	[9]
68	M20949	Great Bear, Canada	Polymetallic Vein	137.95	0.75	3.0	[9]
69	Bear Mine S121F	Great Bear, Canada	Polymetallic Vein	137.89	0.30	2.0	[9]
70	626	Great Bear, Canada	Polymetallic Vein	137.56	−2.08	−26.6	This study
71	423P	Great Bear Lake, Canada	Polymetallic Vein	137.89	0.32	−6.5	[59]
72	M16456	Echo Bay, Canada	Polymetallic Vein	137.91	0.46	−2.0	[9]
73	M16988	Echo Bay, Canada	Polymetallic Vein	137.95	0.75	4.0	[9]
74	M21080	Eldorado Mine, Canada	Polymetallic Vein	137.91	0.42	3.0	[9]
75	Nk-1	Nkana deposit, Zambia	Polymetallic Vein	137.77	−0.57		[62]
76	Nk-2	Nkana deposit, Zambia	Polymetallic Vein	137.81	−0.32		[62]
77	2236	Shinkolobwe	Polymetallic Vein	137.76	−0.67		[62]
78	2236	Shinkolobwe	Polymetallic Vein	137.75	−0.73		[62]
79	2633	Shinkolobwe	Polymetallic Vein	137.76	−0.65		[62]
80	2633	Shinkolobwe	Polymetallic Vein	137.76	−0.65		[62]
Sample	Location	Sub type	$^{238}\text{U}/^{235}\text{U}$	$\delta^{238}\text{U}$	$\delta^{234}\text{U}$	Reference	
--------	-------------------------	---------------------------	---------------------------------	-------------------------	-------------------------	-----------	
81	2633	Shinkolobwe	Polymetallic Vein	137.75	−0.73	[62]	
82	2633	Shinkolobwe	Polymetallic Vein	137.75	−0.69	[62]	
83	M13075	Shinkolobwe	Polymetallic Vein	137.84	−0.05	0.0	[9]
84	662P	Shinkolobwe, DR Congo	Polymetallic Vein	137.71	−1.03	−11.1	[59]
85	437	Shinkolobwe	Polymetallic Vein	137.82	−0.22	1.7	This study
86	809BP	Marshall Pass, CO	Polymetallic Vein	137.81	−0.31	−27.2	[59]
87	530	Marshall Pass, CO	Polymetallic Vein	137.85	0.00	−46.6	This study
88	531	Marshall Pass, CO	Polymetallic Vein	137.79	−0.43	−43.0	This study
89	623	Marshall Pass, CO	Polymetallic Vein	137.69	−1.19	−64.7	This study
90	624	Near Sargents, CO	Polymetallic Vein	137.70	−1.11	−49.5	This study
91	516P	Northern Territory, Australia	Polymetallic Vein	137.82	−0.22	−7.1	[59]

Proterozoic Unconformity

Sample	Location	Sub type	$^{238}\text{U}/^{235}\text{U}$	$\delta^{238}\text{U}$	$\delta^{234}\text{U}$	Reference	
92	604B	Northern Territory, Australia	Basement-Hosted	137.89	0.27	3.8	[59]
93	MRD101-72.6	King River, Australia	Basement-Hosted	137.91	0.43	1.0	[9]
94	NA4-40.5	Nabarlek, Australia	Basement-Hosted	137.88	0.19	−5.0	[9]
95	NA88-29.0	Nabarlek, Australia	Basement-Hosted	137.92	0.52	−15.0	[9]
96	NA1-40.5	Nabarlek, Australia	Basement-Hosted	137.90	0.34	1.0	[9]
97	NA-39-13.8	Nabarlek, Australia	Basement-Hosted	137.90	0.36	−91.0	[9]
98	JU-26-34	Jabiluka, Australia	Basement-Hosted	137.89	0.26	−1.0	[9]
99	0186V-475.0	Jabiluka, Australia	Basement-Hosted	137.88	0.22	2.0	[9]
100	99J7	Jabiluka, Australia	Basement-Hosted	137.89	0.31	3.0	[9]
Sample	Location	Sub type	$^{238}\text{U}/^{235}\text{U}$	$\delta^{238}\text{U}$	$\delta^{235}\text{U}$	Reference	
----------	-------------------------------	------------------------	----------------------------------	--------------------------	--------------------------	-----------	
101	R129V-207.9	Jabiluka, Australia	Basement-Hosted	137.88	0.20	3.0	[9]
102	N147V-404.5	Jabiluka, Australia	Basement-Hosted	137.90	0.33	3.0	[9]
103	JU-38-41.3	Jabiluka, Australia	Basement-Hosted	137.89	0.32	3.0	[9]
104	JU-37-59	Jabiluka, Australia	Basement-Hosted	137.89	0.32	3.0	[9]
105	S3-115-916	Jabiluka, Australia	Basement-Hosted	137.90	0.38	5.0	[9]
106	V39-226.6m	Jabiluka, Australia	Basement-Hosted	137.92	0.54	-27.0	[9]
107	S186V-224.3	Jabiluka, Australia	Basement-Hosted	137.88	0.20	-2.0	[9]
108	QUNK-32.3m	Jabiluka, Australia	Basement-Hosted	137.84	-0.04	-4.0	[9]
109	QUNK-34.1m	Jabiluka, Australia	Basement-Hosted	137.87	0.18	-1.0	[9]
110	U135V-179.3	Jabiluka, Australia	Basement-Hosted	137.86	0.07	2.0	[9]
111	V39-235.6	Jabiluka, Australia	Basement-Hosted	137.91	0.46	-39.0	[9]
112	CX56-3-680.5	Millenium, Athabascan Basin	Basement-Hosted	137.87	0.12	8.0	[9]
113	CX56-3-712	Millenium, Athabascan Basin	Basement-Hosted	137.85	0.01	34.0	[9]
114	CX48-1-689	Millenium, Athabascan Basin	Basement-Hosted	137.89	0.27	2.0	[9]
115	CX48-1-695	Millenium, Athabascan Basin	Basement-Hosted	137.87	0.13	13.0	[9]
116	CX48-791	Millenium, Athabascan Basin	Basement-Hosted	137.91	0.42	-51.0	[9]
117	SW10-366.5	Southwest, Athabascan Basin	Basement-Hosted	137.90	0.36	-193.0	[9]
118	DF22-902	Dawn Lake, Athabascan Basin	Basement-Hosted	137.90	0.36	-31.0	[9]
120	7-191-71ft	Rabbit Lake, Athabascan Basin	Basement-Hosted	137.86	0.11	-203.0	[9]
121	511B	Rabbit Lake, Saskatchewan, Canada	Basement-Hosted	137.79	-0.46	-11.6	[59]
122	Sue-C-551-96.5	SUE, Athabascan Basin	Basement-Hosted	137.89	0.32	2.0	[9]
123	Sue-C-528-95.5	SUE, Athabascan Basin	Basement-Hosted	137.88	0.22	0.0	[9]
124	Sue-C-528-129.5	SUE, Athabascan Basin	Basement-Hosted	137.88	0.20	1.0	[9]
125	Sue-C-528130	SUE, Athabascan Basin	Basement-Hosted	137.90	0.34	1.0	[9]
126	Sue-E-417113.3	SUE-E, Athabascan Basin	Basement-Hosted	137.91	0.47	3.0	[9]
127	EPE63-076.6	Eagle Point Extension, Athabascan Basin	Basement-Hosted	137.92	0.48	2.0	[9]
128	EPE80-319.5	Eagle Point Extension, Athabascan Basin	Basement-Hosted	137.95	0.75	-217.0	[9]
129	EPE44-236	Eagle Point Extension, Athabascan Basin	Basement-Hosted	137.91	0.47	-19.0	[9]
130	EPE44-251	Eagle Point Extension, Athabascan Basin	Basement-Hosted	137.92	0.51	41.0	[9]
131	EPE44-317	Eagle Point Extension, Athabascan Basin	Basement-Hosted	137.92	0.54	19.0	[9]
132	EPE59-137.4	Eagle Point Extension, Athabascan Basin	Basement-Hosted	137.96	0.81	281.0	[9]
133	H-799-57	Eagle Point, Athabascan Basin	Basement-Hosted	137.89	0.28	0.0	[9]
134	EP-2	Eagle Point, Athabascan Basin	Basement-Hosted	137.95	0.70	1.0	[9]
135	EP222-215.5	Eagle Point, Athabascan Basin	Basement-Hosted	137.91	0.41	3.0	[9]
136	VR29-W2-806 U1	Centennial (massive), Athabascan Basin	Basement-Hosted	137.91	0.42	-1.0	[9]
137	VR29-W2-806 U2	Centennial (colloform), Athabascan Basin	Basement-Hosted	138.05	1.43	14.0	[9]
138	8658/8	Shea Creek, Athabasca, Canada	Unconformity-Contact	137.80	-0.37	[62]	
139	8658/8	Shea Creek, Athabasca, Canada	Unconformity-Contact	137.79	-0.41	[62]	
140	9081/9	Shea Creek, Athabasca, Canada	Unconformity-Contact	137.80	-0.35	[62]	
141	9081/9	Shea Creek, Athabasca, Canada	Unconformity-Contact	137.79	-0.46	[62]	
Table S1. Cont.

Sample	Location	Sub type	238U/235U	δ238U	δ234U	Reference	
142	9081/9	Shea Creek, Athabasca, Canada	Unconformity-Contact	137.79	−0.43	[62]	
143	McRiv387715	McArthur, Athabasca Basin	Unconformity-Contact	137.87	0.17	−6.0	[9]
144	McRiv353-50.2	McArthur, Athabasca Basin	Unconformity-Contact	137.90	0.36	0.0	[9]
145	McRiv236-515	McArthur, Athabasca Basin	Unconformity-Contact	137.87	0.12	0.0	[9]
146	McRiv208-533	McArthur, Athabasca Basin	Unconformity-Contact	137.88	0.24	−7.0	[9]
147	9079/22	McArthur, Athabasca, Canada	Unconformity-Contact	137.79	−0.44	[62]	
148	9079/22	McArthur, Athabasca, Canada	Unconformity-Contact	137.81	−0.32	[62]	
149	9079/22	McArthur, Athabasca, Canada	Unconformity-Contact	137.79	−0.41	[62]	
150	9079/22	McArthur, Athabasca, Canada	Unconformity-Contact	137.80	−0.36	[62]	
151	9079/22	McArthur, Athabasca, Canada	Unconformity-Contact	137.79	−0.41	[62]	

Quartz Pebble Conglomerate

Sample	Location	Sub type	238U/235U	δ238U	δ234U	Reference	
152	M9996	Lanark County, Canada	Tabular	137.88	0.20	−4.0	[9]

Collapsed Breccia Pipe

Sample	Location	Sub type	238U/235U	δ238U	δ234U	Reference	
153	Faith Mountain	Rollfront	137.80	−0.30	[25]	[9]	
154	1304B	Orphan Lode, AZ	Tabular	137.74	−0.81	−23.8	This study

Sandstone

Sample	Location	Sub type	238U/235U	δ238U	δ234U	Reference	
155	Jackpile Mine	Tabular	137.89	0.39	[25]	[9]	
156	Mi Vida Mine	Tabular	137.90	0.42	[25]	[9]	
157	353B	Happy Jack, Utah	Tabular	137.90	0.36	4.0	[59]
158	353P	Happy Jack, Utah	Tabular	137.89	0.31	6.0	[59]
159	625	SE Utah, Monument Valley	Tabular	137.98	0.95	−53.8	This study
160	815B	Moonlight Mine	Rollfront	137.85	−0.03	−15.2	This study
161	1856-Continental	Rollfront	137.89	0.28	−12.1	[64]	
162	M28469	Ike Mine, Utah	Rollfront	137.92	0.51	1.0	[9]
163	M21404	Saxung, Schmiedelberg, Germany	Tabular	137.90	0.35	4.0	[9]
164	Finland 324-42.5	Rollfront	137.81	−0.31	1.0	[9]	
165	Finland AE762.5-63	Rollfront	137.88	0.25	−15.0	[9]	
166	1237B	Cane Spring Canyon, Utah	Rollfront	137.74	−0.81	−42.3	[9]
167	1237BP	Cane Spring Canyon, Utah	Rollfront	137.67	−1.30	−20.8	[9]
168	1262B	Adair Mine, Utah	Rollfront	137.83	−0.15	−4.8	[9]
169	1303B	Big Indian Wash, Utah	Rollfront	137.82	0.09	−8.7	[9]
170	1303P	Big Indian Wash, Utah	Rollfront	137.87	0.18	−7.8	[9]
171	1232B	Big Indian Wash, Utah	Rollfront	137.66	−1.20	1.8	[9]
172	OTS 07-04-174.5	Mafic Dykes/ Sills in Proterozoic Sandstone	137.89	0.28	−2.0	[9]	
173	76-Palette	Palette, S. Alligator River Valley, Australia	Mafic Dykes/ Sills in Proterozoic Sandstone	137.88	0.19	−5.0	[9]
174	MT-6-10-313.6	Mafic Dykes/ Sills in Proterozoic Sandstone	137.88	0.22	1.0	[9]	
175	MT-06-010-313.1 a	Mafic Dykes/ Sills in Proterozoic Sandstone	137.90	0.33	1.0	[9]	
176	MT-06-010-313.1 b	Mafic Dykes/ Sills in Proterozoic Sandstone	137.88	0.20	−7.0	[9]	
177	MT-06-010-314.1	Mafic Dykes/ Sills in Proterozoic Sandstone	137.86	0.07	−4.0	[9]	

Unknown

Sample	Location	Sub type	238U/235U	δ238U	δ234U	Reference
HU-1	Harwell Uraninite	Mafic Dykes/ Sills in Proterozoic Sandstone	137.77	−0.60	[50]	[9]

1 First column (1–177) corresponds to X-axis position for Figure S3.