The Bcl-2 family member BIM has multiple glaucoma-relevant functions in DBA/2J mice

Jeffrey M. Harder1,2, Kimberly A. Fernandes1,3 & Richard T. Libby1,4,5

1Flaum Eye Institute, 2Department of Pathology and Laboratory Medicine, 3Interdepartmental Graduate Program in Neuroscience, 4Department of Biomedical Genetics, 5The Center for Visual Sciences. University of Rochester Medical Center, Rochester, NY 14642, USA.

Axonal insult induces retinal ganglion cell (RGC) death through a BAX-dependent process. The pro-apoptotic Bcl-2 family member BIM is known to induce BAX activation. BIM expression increased in RGCs after axonal injury and its induction was dependent on JUN. Partial and complete Bim deficiency delayed RGC death after mechanical optic nerve injury. However, in a mouse model of glaucoma, DBA/2J mice, Bim deficiency did not prevent RGC death in eyes with severe optic nerve degeneration. In a subset of DBA/2J mice, Bim deficiency altered disease progression resulting in less severe nerve damage. Bim deficient mice exhibited altered optic nerve head morphology and significantly lessened intraocular pressure elevation. Thus, a decrease in axonal degeneration in Bim deficient DBA/2J mice may not be caused by a direct role of Bim in RGCs. These data suggest that BIM has multiple roles in glaucoma pathophysiology, potentially affecting susceptibility to glaucoma through several mechanisms.
In RGC number (e.g. 1,18). It is unlikely that this level of increase would
several mouse mutants where there is a small, but significant increase
death, but had no effect on the final number of RGCs. There are
Bim
expression of CFP predominately in RGCs20,21, BIM was shown to be
crush (CONC) and in glaucomatous DBA/2J mice. In unmanipulated
morphology changes did not affect the number of RGCs, as judged by
consistent with a role in axonal-injury induced RGC death.

Figure 1 | Bim deficiency affects retinal development. (A) Retinal sections
deficiency did not alter the gross organization of number of retinal neurons.
(B) Bim deficiency caused dysmorphogenesis of the optic nerve. In Bim
deficient mice the retinal-optic nerve head border is abnormal, with
apparent retinal neuronal layers entering the optic nerve head (asterisk). Also
the normal arrangement of glia cell bodies does not appear to be present in
the area of the lamina cribrosa (arrowhead). (C) However, optic nerve head
morphology changes did not affect the number of RGCs, as judged by
POU4F1 (BRN3A, green) expression, which is specifically expressed in 80%
RGCs in the retina
. Note, the secondary antibody also detects retinal
vasculature (arrow). DAPI, blue; ONL, outer nuclear layer; INL inner
nuclear layer. GCL, ganglion cell layer; scale bar. A, B = 50 μm, C = 25 μm.

contrast to the retina, the optic nerve head of B6.Bim–/– mice had
significant morphological abnormalities (Fig. 1B). In 5 out of 5
B6.Bim–/– deficient retinas there were clear abnormalities in the
retinal-optic nerve head boundary. Also, the arrangement of glial
cells just behind the retina in the optic nerve, the glial lamina
cribrosa in mice, appeared less well organized than in wild-type
mice. Thus, Bim deficiency alters morphology of the retina in
several ways that could be important in retinal disease, increasing
retinal vasculature and causing optic nerve head dysmorphogenesis.

Using RGC layer thickness measurements Doonan and colleagues
reported that Bim deficiency delayed developmental RGC
death, but had no effect on the final number of RGCs. There are
several mouse mutants where there is a small, but significant increase
in RGC number (e.g. 1,19). It is unlikely that this level of increase would
be detectable by measuring RGC layer thickness, which is generally a
single layer of cells thick. Therefore to determine BIM’s impact on
the final number of RGCs in the mouse retina, POU4F1 (BRN3A)
positive cells were counted in sections from the central retina. Bim
deficiency did not alter the number of RGCs surviving in the adult
(Fig 1C; as judged by POU4F1 expression, which is specifically
expressed in 80% of RGCs in the retina
; POU4F1+ cells per mm
SEM: Bim–/– 58 ± 5, Bim+/– 61 ± 4, Bim+/+ 56 ± 3; P = 0.69; n = 4 for
each genotype).

BIM is expressed in RGCs after axonal injury. RGC death after
axonal injury is an apoptotic and BAX-dependent process1,2. Unlike in BAX-dependent RGC developmental cell death1, no
specific BH3-only protein is known to be similarly required after
axonial injury. BIM is a primary candidate to activate BAX after
RGC axonal injury because the loss of BIM protects RGCs in retinal
explant cultures for up to four days1. Therefore, BIM expression was
examined following mechanical axonal injury, controlled optic nerve
 crush (CONC) and in glaucomatous DBA/2J mice. In unmanipulated
retinas BIM was not detected in the RGC layer (Fig. 2). Using mice
that express CFP predominately in RGCs22,23, BIM was shown to be
expressed in RGCs by the time RGCs begin to die after CONC. BIM
was also expressed in RGCs in glaucomatous DBA/2J mice (10
months of age; Fig. 2). Thus, the expression pattern of BIM is
consistent with a role in axonal-injury induced RGC death.

**Bim deficiency reduces CASP3 activation after mechanical optic
nerve injury.** McKeman et al.13 showed that Bim deficiency could protect RGCs in explant cultures for at least 4 days (the longest time
in culture examined). Explanting a retina likely involves numerous
retinal injuries, but an important one for RGCs is axotomy. However
only a small percentage of RGCs die 4 days after axonal injury in vivo
and the loss of RGCs can continue for several weeks22,23, so whether
BIM is critical for RGC death after optic nerve injury is unclear. If
BIM is required for BAX-dependent RGC death, then axonally
injured RGCs in Bim nulls should not undergo apoptosis and
survive for months as observed in Bax deficient mice2,3. To
determine the role of BIM in RGC death after axonal injury in vivo,
CONC was performed on Bim+/+, Bim+/– and Bim–/– mice (Fig. 3).
Counts of activated (cleaved) caspase 3 positive cells (cCASP3+)
in the RGC layer of retinal flat mounts were used to identify apoptotic RGCs. At the beginning of RGC death after
CONC, 3 days following injury, the complete absence of BIM
dramatically lessens cell death (Fig. 3, P < 0.001). By 5 days, cCASP3
was observed in Bim null retinas, although the number of cCASP3+ cells was still significantly less than in wild-type retinas (P < 0.001).
Interestingly, at 14 days after CONC, Bim–/– mice have significantly
more dying cells than Bim+/+ or Bim+/– suggesting that Bim deficiency only
 delays cell death (P = 0.01). Bim transcription is known to be involved
in its induction after cell death stimuli and heterozygosity for a Bim
null allele can reduce death in neurons after injury1,2. Consistent
with this effect, the loss of one allele of Bim also delays CASP3 activation both 3 and 5 days after CONC (Fig. 3, P < 0.001). Thus, BIM is an important early pro-apoptotic factor in RGC death after
axonial injury.

Bim deficiency delays RGC death after mechanical optic nerve injury. Nissl stained RGC layer neurons were counted at 14 and 35
days after CONC in order to assess long term RGC survival in Bim+/–.
Bim deficiency increases RGC survival after CONC. (A,B) To determine if Bim deficiency increases RGC survival after CONC, counts of Nissl stained ganglion cell layer neurons were performed. Note: only RGCs die after CONC and approximately half of RGC layer neurons are amacrine cells, so a loss of 50% of RGC layer neurons equals complete RGC loss. All genotypes had a significant cell loss compared to sham retinas at 14 days after CONC (P<0.001). Consistent with the decrease in cCASP3+ cell counts, there was a significantly increase in the number of RGC layer neurons at 14 days after injury in Bim+/+ mice (*, P<0.001, compared to Bim−/− mice). However, by 35 days after injury, Bim deficiency did not provide protection. Note, since Bim+/− and Bim+− mice had similar loss of RGC layer neurons at 14 days, Bim−/− retinas were not assessed at 35 days. (C) RGC counts, using the RGC marker TUJ1α, confirmed the increased survival of RGCs 14 days after axonal injury (*, P<0.001). N=5 for all genotypes and ages except n=3 for Bim+−; scale bar, 100 μm.

JUN regulates BIM expression in RGCs after axonal injury. JUN has been shown to be a major regulator of RGC death after axonal injury and is known to regulate Bim27. Prior to cell death, RGCs expressing JUN display perinuclear BIM expression (Fig 5A). To determine if JUN controls BIM expression in RGCs, BIM expression was assessed in Jun deficient retinas (Jun−/−; Six3-cre−) after CONC. In the absence of Jun, Bim could not be detected in RGCs (Fig. 5B) at 3 days or 7 days after injury, suggesting that in RGCs, Bim is a downstream target of activated JUN.

Bim deficiency alters glaucoma relevant morphology and ocular hypertension in DBA/2J mice. DBA/2J mice develop an iris disease that leads to ocular hypertension and RGC death in most mice by one year of age29-31. To test the importance of BIM in glaucomatous neurodegeneration, a null allele of Bim was backcrossed for 10 generations into the DBA/2J genetic background (D2.Bim−/−; all mice used for the glaucoma studies, including D2.Bim+− and D2.Bim−/− mice, were from this segregating line). Since the optic nerve head is thought to be a key initial site of injury31, alteration in its morphology could have an effect on glaucoma progression. As with B6.Bim−/− mice (Fig 1B), ocular nerve head morphology was abnormal in young D2.Bim−/− eyes (3-5 months of age; prior to pigment disease and IOP elevation). Similar to B6.Bim−/− optic nerve heads, in all 5 D2.Bim−/− mice examined there was a disruption of the border between the retina and the optic nerve (Fig 6A). Also, the cellular arrangement of the glial lamina region appeared disrupted. Thus, the loss of BIM during development may alter optic nerve head dynamics during a glaucomatous insult.

DBA/2J mice develop an iris pigment dispersion syndrome with age that eventually causes ocular hypertension. Consistent with other studies using DBA/2J mice, prior to the iris disease D2.Bim−/− mice had an average IOP of 13.0±0.3 mmHg (4 months of age; Fig 6B). The IOP of D2.Bim−/− mice were not significantly different than for wild-type DBA/2J mice at any time point examined, and D2.Bim+−/− mice and D2.Bim+− mice were used as controls (referred to as D2.Bim+/− mice). The IOP of D2.Bim+− mice increased with age, similar to previous reports. IOP was significantly elevated at 9, 10.5 and 12 months of age (Fig 6B; 9 months, 18.9±0.7 mmHg; 10.5 months, 20.4±0.7 mmHg; 12 months, 20.9±0.9 mmHg; P<0.001 for all genotypes). Prior to the onset of iris disease, D2.Bim−/− mice had normal IOPs (13.3±0.6 mmHg, P=0.68), suggesting BIM does not have a role in the regulation of IOP under normal physiological conditions. In contrast to D2.Bim+−, IOP was not significantly elevated in D2.Bim−/− at either 9 or 10.5 months of age (Fig. 6B; 9 months, 14.3±1.3 mmHg, P=0.49; 10.5 months,
Bim deficiency appears to delay, but not prevent IOP elevation in DBA/2J mice. N = 24 for all ages and genotypes. Scale bar, 50 μm.

Figure 6 | Bim deficiency alters glaucomatous insult in DBA/2J mice. (A) D2.Bim+/− and D2.Bim−/− mice were examined optic nerve head morphology in D2.Bim−/− mice. In 5 out of 5 D2.Bim−/− optic nerve heads examined there were clear abnormalities similar to those seen in B6.Bim−/−. Most notably there were abnormal retinal optic nerve head borders (asterisk) and the gross arrangement of the glial cells in the area of the glial lamina (arrow) was poorly organized. Thus, it is possible that in D2.Bim−/− mice the changes in optic nerve head morphology alter the susceptibility of D2.Bim−/− to ocular hypertension induced neuronal injury. (B) The IOP profile of D2.Bim−/− mice was similar to previous reports4,5. At 9, 10.5 and 12 months of age IOP was significantly elevated compared to younger mice (P<0.001) with only 6 out of 41 (15%) D2.Bim−/− nerves graded as severe. There was a corresponding increase in moderate nerves in D2.Bim−/−, suggesting that axonal injury in D2.Bim−/− mice is reduced, corresponding to the delay in IOP elevation.

In DBA/2J mice it appears that axonal degeneration precedes somal apoptosis8,11. RGC somal degeneration but not axonal degeneration is dependent on BAX in DBA/2J glaucoma. Since some D2.Bim−/− mice did develop severe optic nerve degeneration, it was possible to determine if BIM is required to induce somal degeneration in DBA/2J glaucoma. Total RGC layer neurons were counted in 12 month D2.Bim−/− and D2.Bim+/− eyes either with severe optic nerve damage or no obvious glaucomatous damage (no or early nerves). There was significant loss of RGC layer neurons in D2.Bim−/− retinas when the optic nerves had severe degeneration (Fig. 7A). Bim deficiency did significantly lessen the amount of optic nerve damage at 12 months of age (P<0.001) compared to young mice of the same genotype (20.3±1.3 mmHg, P<0.001).

The IOP profile of D2.Bim−/− mice was similar to that observed in D2.Bax−/− mice. Clinical examination of the anterior segment suggested the iris disease was not altered in D2.Bax−/− mice. Gross examination of the anterior segment of D2.Bim−/− mice suggested there was no alteration of the iris pigment dispersion disease, though the anterior segment phenotype was not assessed in detail. Thus, there may be a loss of cells involved in IOP regulation in pigmentary glaucoma that occurs through an apoptotic process regulated by BIM and BAX.

BIM is not required for a glaucomatous neurodegeneration. Lower IOP delays but does not prevent optic nerve degeneration in D2.Bax−/− mice. In order to determine the extent of glaucoma in D2.Bim−/− mice, optic nerve degeneration was assessed using a validated optic nerve damage grading scale14,29. Optic nerve damage was categorized as no or early, moderate, or severe depending on the amount of axon loss and gliosis. Not all DBA/2J eyes develop glaucoma; however, by 12 months of age a majority of DBA/2J eyes will have severely degenerated optic nerves. As expected, in D2.Bim−/− 17 out of 28 (61%) nerves had severe degeneration (Fig. 7A). Bim deficiency significantly lessened the amount of optic nerve damage at 12 months of age (P<0.001) with only 6 out of 41 (15%) D2.Bim−/− nerves graded as severe. There was a corresponding increase in moderate nerves in D2.Bim−/−, suggesting that axonal injury in D2.Bim−/− mice is reduced, corresponding to the delay in IOP elevation.

Discussion

Glaucoma is a complex disease with the ultimate cause of blindness being the death of RGCs. Axonal injury in the lamina cribrosa, a specialized structure that RGC axons pass through as they exit the eye, is thought to be the critical insult for RGCs8,11. Axonal insult induced RGC somal degeneration is BAX dependent2,3,7, but the molecules that control BAX activation are undefined. BH3-only proteins are pro-death Bcl-2 family members that help control BAX activation22. A likely candidate for activating BAX after axonal injury is the BH3-only protein BIM. Using Bim knockout mice we sought to determine if BIM was critical for BAX activation (RGC death) after axonal injury, including in a mouse glaucoma model.

Complete deficiency or heterozygosity for a null allele of Bax prevents RGC death even after extensive time after optic nerve crush injury and in glaucoma32,33. These data suggest that the levels of BAX, and subsequently activated BAX, are critical in determining RGC somal death. BAX activation is dependent on the level of BH3-only proteins, particularly those, like BIM, BID and BBC3, that can directly activate BAX26,37. A single member, BBC3, is required for the normal developmental death of RGCs, however, Bbc3 deficiency only provided a minor delay in RGC death after axonal injury14. BIM has been shown to be involved in neuronal death during development and after injury14,24,28,36. In fact in a retinal explant model, where
RGCs are injured by axotomy and likely other insults, Bim deficiency completely prevented RGC death for up to 4 days in culture\(^4\). This result implicates BIM as an important factor controlling RGC death after injury. Due to limitations of the explant model it can only assess the earliest time points of cell loss after axonal injury, which is just beginning in vivo at 3 days and occurs over at least 3 weeks\(^5,22\). In vivo, Bim deficiency significantly decreased RGC death after axonal injury at 3 days. However, by 5 days after injury there was substantial RGC death, though this death was also significantly reduced compared to Bim\(^{-/-}\) mice. The loss of BIM did have a corresponding minor effect on RGC survival at later time points, but did not provide significant and complete protection as observed in Bax deficient mice after extensive time. Thus, it appears that the absence of BIM mainly affects the rate of death after axonal injury, but not the ultimate survival of RGCs.

The fact that single deficiency in Bim and to a far lesser extent Bbc3\(^1\) only delay death suggests that other factors contribute to RGC death after axonal injury. The expression of BID, the other BH3-only protein that is capable of directly activating BAX, is consistent with a role in RGC death after axonal injury\(^6\). However, we have found that Bid deficiency does not delay or prevent RGC death after axonal injury (unpublished observation). It is unclear if these molecules work in combination or if indirect or non-canonical BAX activation can occur after axonal injury. Interestingly, we recently showed that the transcription factor JUN was a key mediator of RGC death after axonal injury\(^7\). JUN activation appears to be upstream of BIM (Fig. 5). Jun deficiency provided a far more extensive protection of RGCs than Bim deficiency\(^8\), suggesting that other downstream targets of JUN activation are important mediators of BAX activation after axonal injury. Identifying additional targets of JUN will help to determine if BAX activation is completely dependent on pro-death Bcl-2 family members or whether alternative pathways are involved.

DBA/2j mice develop elevated IOP subsequent to an iris disease that is similar to pigment dispersion syndrome in humans\(^9,40,41\). It is possible that cell death may play a role in the iris disease or in the viability of trabecular meshwork cells (the cells primarily responsible for regulating IOP in the iridocorneal angle) in response to an insult. The significant lessening of IOP elevation (glaucomatous insult) in D2.Bim\(^{-/-}\) mice was similar to that observed in D2.Bax\(^{-/-}\) mice. Lessening IOP elevation is not seen in many of the other genetic or therapeutic manipulations that effect RGC neurodegeneration in DBA/2j mice (e.g.\(^42-45\)). In D2.Bax\(^{-/-}\) mice there were no changes in the clinical presentation of the iris disease, suggesting that Bax deficiency was affecting IOP regulation and not the iris disease. Loss of trabecular meshwork cells has been linked to IOP elevation in humans\(^46-54\) and mice\(^54\). In humans, pigment dispersion syndrome only leads to pathological ocular hypertension (pigmentary glaucoma) and RGC loss in a subset of patients\(^54\). Why some patients are susceptible to IOP elevation is unknown. It is possible that this susceptibility results from the variability of the pigmentary insult causing death of trabecular meshwork cells. Our data suggests that a component of IOP elevation in pigment dispersion patients involves a BIM-BAX dependent cell death process. It will be important to test the role of BIM directly in trabecular meshwork cells and determine if a BIM dependent pathway can induce trabecular meshwork cell death. Manipulating this pathway may be a method of preventing IOP elevation in pigment dispersion syndrome and other ocular hypertensive diseases.

The lessening of IOP elevation in D2.Bim\(^{-/-}\) mice may not completely explain the large protection from optic nerve degeneration conferred by Bim deficiency. The IOP profile of D2.Bim\(^{-/-}\) mice was similar to that observed in D2.Bax\(^{-/-}\) but the protection from glaucomatous optic nerve degeneration was far greater in D2.Bim\(^{-/-}\) mice. Bim deficiency caused several abnormalities with retinal development that could contribute to the protection. Normal developmental retinal vasculature remodeling is disrupted in Bim deficient mice\(^5,7\) leading to a significant increase in the amount of vasculature. Recently, work has implicated the vasculature as important unit in neurodegenerative disease, including glaucoma\(^5,52\). It is possible that extra retinal vasculature directly or indirectly alters the way the retina responds to IOP elevation. Finally, optic nerve morphology was disrupted in Bim deficient mice. There was a clear lack of arrangement of glia in the area of the lamina cribrosa and abnormalities in the retina-optic nerve border and D2.Bim\(^{-/-}\) mice. Interestingly, optic nerve morphology has been suggested to be an endophenotype for glaucoma\(^5,53\). This is perhaps not surprising since the lamina cribrosa is thought to be a key structure in many aspects of glaucoma and it is certainly plausible that alterations in its morphology change RGC susceptibility to IOP elevation. Thus, there are several roles for BIM in ocular development that may alter susceptibility to ocular hypertension.

Bim deficiency significantly reduced the number of eyes that had severe glaucoma, as judged by optic nerve degeneration. However, 15% of D2.Bim\(^{-/-}\) eyes developed severe optic nerve degeneration. These degenerated nerves allowed us to test whether BIM was required for RGC death in glaucoma. Unlike in Bax deficient
mutants, RGCs were lost in D2.Bim-/- eyes with severe glaucomatous optic nerve degeneration. Even though BIM is expressed in glaucomatous RGCs and plays a role in axonal injury induced neuronal death, BIM is not required for BAX activation and RGC death in glaucoma.

It appears that BIM plays several roles in ocular development and disease that could directly affect glaucoma pathophysiology. During retinal development BIM is critical for normal retinal vasculature development and optic nerve head morphogenesis, both of which have been implicated as endophenotypes in glaucoma. Bim deficiency also lessened/delayed IOP elevation in DBA/2J mice, suggesting BIM might regulate trabecular meshwork cell death after insult. Finally, Bim deficiency delayed RGC death after axonal injury, but did not prevent RGC death after a glaucomatous insult. In the future it will be important to uniquely manipulate BIM expression in each of the tissues where BIM has a role in ocular physiology and pathophysiology to gain a better understanding of its role in ocular hyper tension and glaucomatous neurodegeneration.

Methods

Animals. Mice were maintained in a 12-hour light dark cycle and fed chow and water ad libitum. All experiments were conducted in accordance with the Association for Research in Vision and Ophthalmology’s statement on the use of animals in research and approved by the University of Rochester’s University Committee on Animal Resources. A Bim null allele B6.129S1-Bcl2fl/++; mice that had been backcrossed into C57BL/6 was obtained from Jackson Laboratory (B6.Bim). The B6.Bim colony was maintained by intercrossing. For glaucoma experiments, the null Bim allele was backcrossed into DBA/2J for 10 generations and then intercrossed (D2.Bim). Note, a null allele of Hrk56, another BH3-only protein that is known to facilitate, but not add to, BIM function57 was segregating in the D2 cross. Of the 22 D2.Bim-/- mice, 41 eyes were assessed for optic nerve damage by PPD staining (described below; 5 either were not assessed or the histology was not of high enough quality to determine the level of glaucomatous damage). D2.Bim-/- eyes used in this study included the following Hrk genotypes: 3 Hrk+, 26 Hrk- and 12 Hrk+/-. Hrk deficiency did not appear to alter either the IOP profile or optic nerve damage in Bim-/- mice (not shown). In fact, one of the three double null mice had severe optic nerve degeneration and massive loss of RGC layer neurons. D2.Gpnmb mice were aged 10 months and used as a control for DBA/2J. In the D2.Gpnmb experiment intercrossed DBA/2J/2J genetic background, male and female ratios were approximately equal between control and experimental eyes. The Jun and Six3 cre mice were crossed as previously described12.

Histology and cell counting. For immunohistochemistry and retinal flat mounting, eyes were fixed in 4% paraformaldehyde in PBS at room temperature. The anterior segment was removed and eyes were processed for cryosectioning or whole mount staining as previously described1. POU4F1 (BRN3A, Santa-Cruz Biotechnology, sc-15655) was used in the retinal ganglion cell layer in eight 20x fields around the peripheral retina (specifically two fields from 500 m of the optic nerve head. In whole mounts, cleaved caspase-3 (activated caspase-3, Cell Signaling Technology, 9661S) positive cells were counted in the retinal ganglion cell layer in eight 20x fields around the peripheral retina (specifically two fields from each quadrant approximately 220 m from the peripheral edge). Also in the retinal ganglion cell layer, TU1 (Covance, 1:1000) positive cells were counted in eight 40x fields around the peripheral retina. For identifying RGCs in some experiments, B6.Cg-Tg(Thy1-CFP)22Sri/I (Iax Stock Number 003710; referred to as B6.Thy1-CFP) mice were used (the allele was backcrossed into B6 >20 times). CFP was detected using a chicken anti-GFP antibody (Abcam, 1:5000). BIM expression was detected using a rat anti-BIM antibody (A.G. Scientific, 1:3000). BIM expression was checked in at least three areas of the retina from three retinas at each condition/time point examined. To assess axotomy and enhanced Bim/EL expression level in neuronal cells. J. Neurochem. 95, 526-536 (2005).

Mechanical injury of RGCs and Glaucoma. Controlled optic nerve crush (CONC) was performed as previously described13. Mice were anesthetized with a mix of ketamine hydrochloride (100 mg/kg) and xylazine hydrochloride (10 mg/kg) and the optic nerve was crushed just behind the eye for approximately 4 seconds using self-closing forceps (Roboz RS-5027). Unmanipulated contralateral eyes or contralateral eyes that had a sham surgery performed (no crush of the optic nerve) were used as control eyes. All CONC experiments were performed on B6.Bim mice. DBA/2J mice were used as a glaucoma model. The null allele of Bim was backcrossed into DBA/2J mice for 10 generations and then intercrossed. The TonoLab (Colonial Medical Supply, Franconia, NH) was used to record IOP in D2.Bim mice. Mice were anesthetized with a ketamine xylazine mix and IOP was recorded per manufacturers instructions between two and five minutes after administration of anesthetic. For determining the level of glaucomatous optic nerve damage, nerves were processed and stained with paraphenylenediamine (PPD) as previously described14,15 except that nerves were embedded in Technovit 7100 and 2 m sections were cut and stained. Nerves were graded using a validated grading scale as previously described16,17. The grading scale places eyes into three categories: no or early, less than 5% of the axons are thought to be damaged or lost, a number that is consistent with age-related damage; moderate, many damaged axons throughout the nerve averaging about 30% of the axons (judged to be damaged or lost, often there is localized signs of gliosis; severe, greater than 50% of the axons are judged to be damaged or lost and often signs of large areas of glial scarring. For plastic sections of retinas, eyes were processed and cut as previously described1.

Statistical Analysis. For RGC counts and cell death assessed by immunostaining, Bim+/-, Bim-/- and Bim+/+ were considered independent groups and comparisons were made using ANOVA. Upon finding statistically significant differences between groups, the Tukey-Kramer method was used post-hoc to perform multiple comparison tests. P<0.05 was considered significant. These analyses included counts of cells labeled by Nissl stain, POU4F1, TUJ1, and CASP3 performed by an experimenter blind to genotype and/or experimental group. Standard error of the mean (SEM) is used to define the error bars for all cell counts. The Student’s t-test was performed to compare intraocular pressures grouped by age and genotype and counts of surviving GCL neurons grouped by optic nerve grade (n≥5) and genotype. D2.Bim-/- significantly diminishes optic nerve damage compared to Bim+/- and Bim-/- littermates based on the chi-squared test.
21. Wang, X., Archibald, M. L., Stevens, K., Baldridge, W. H. & Chauhan, R. C. Cyan fluorescent protein (CFP) expressing cells in the retina of Thy1-CFP transgenic mice before and after optic nerve injury. Neurosci. Lett. 468, 110–114 (2010).

22. Wohl, S. G., Schmeir, C. W., Witte, O. W. & Isemann, S. Proliferative response of microglia and macrophages in the adult mouse eye after optic nerve lesion. Invest. Ophthalmo. Vis. Sci. 51, 2686–2696 (2010).

23. Galindo-Romero, C. et al. Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp. Eye Res. 92, 377–387 (2011).

24. Putcha, G. V. et al. Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron 29, 615–628 (2001).

25. Neus, J. M. et al. Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia. Brain Res. 1099, 150–159 (2006).

26. Robinson, G. A. & Madison, R. D. Axotomized mouse retinal ganglion cells containing melanosin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vision Res. 44, 2667–2674 (2004).

27. Fernandes, K. A. et al. JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death. Neurobiol. Dis. 46, 393–401 (2012).

28. Whitfield, J., Neame, S. J., Paquet, L., Bernard, O. & Ham, J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 29, 629–643 (2001).

29. Libby, R. T. Inherited glaucoma in DBA/2J mice: pertinent disease features detailed in Figure 5. RTL and JMH designed experiments and analyzed data. JMH wrote the manuscript. This work was supported by EY018606, the Prevent Blindness unrestricted grant to the Department of Ophthalmology at the University of Rochester.

Acknowledgements

The authors would like to thank Thurma McDaniel and Donna Shannon for technical help; the members of Kiernan, Freeman and Gan laboratories for helpful comments and discussion about the work; and Dr. Roth (Hkr), Drs. Wagner, Behrens and Stroller (Jun), and Dr. Furuta (Six3 Cre) for providing mice. This work was supported by EY018606 (RTL), T32 EY007125 (JMH), David Bryant Trust (RTL), The Glaucoma Foundation and Dr. Furuta (Six3 Cre) for providing mice. This work was supported by EY018606 (RTL), T32 EY007125 (JMH), David Bryant Trust (RTL), The Glaucoma Foundation (RTL), Research to Prevent Blindness Career Development Award (RTL), and Research to Prevent Blindness unrestricted grant to the Department of Ophthalmology at the University of Rochester.

Author contributions: JMH conducted the majority of experiments and KAF contributed to the experiments detailed in Figure 5. RTL and JMH designed experiments and analyzed data. JMH wrote the manuscript with assistance from RTL. All authors read and approved the manuscript.

Additional information

Competing financial interests: The authors declare no competing financial interests. License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

How to cite this article: Harder, J. M., Fernandes, K. A. & Libby, R. T. The Bcl-2 family member BIM has multiple glaucoma-relevant functions in DBA/2J mice. Sci. Rep. 2, 530; DOI:10.1038/srep00530 (2012).

Science | 2:530 | DOI: 10.1038/srep00530

7