Invasive fungal infection before and after liver transplantation

Alberto Ferrarese, Annamaria Cattelan, Umberto Cillo, Enrico Gringeri, Francesco Paolo Russo, Giacomo Germani, Martina Gambato, Patrizia Burra, Marco Senzolo

ORCID number: Alberto Ferrarese 0000-0002-3248-2038; Annamaria Cattelan 0000-0003-4678-9070; Umberto Cillo 0000-0002-2310-0245; Enrico Gringeri 0000-0002-3459-7306; Francesco Paolo Russo 0000-0003-4127-8941; Giacomo Germani 0000-0002-4332-2072; Martina Gambato 0000-0002-0101-1938; Patrizia Burra 0000-0002-8791-191X; Marco Senzolo 0000-0002-7261-6520.

Author contributions: Ferrarese A, Cattelan A and Senzolo M participated in research design, data analysis, and writing of the manuscript; Cillo U, Gringeri E, Russo FP, Germani G, Gambato M and Burra P participated in research design and preparation of the manuscript; all authors have contributed to, read, and approved the manuscript.

Conflict-of-interest statement: The Authors have nothing to disclose regarding this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the

Abstract

Invasive infections are a major complication before liver transplantation (LT) and in the early phase after surgery. There has been an increasing prevalence of invasive fungal disease (IFD), especially among the sickest patients with decompensated cirrhosis and acute-on-chronic liver failure, who suffer from a profound state of immune dysfunction and receive intensive care management. In such patients, who are listed for LT, development of an IFD often worsens hepatic and extra-hepatic organ dysfunction, requiring a careful evaluation before surgery. In the post-transplant setting, the burden of IFD has been reduced after the clinical advent of antifungal prophylaxis, even if several major issues still remain, such as duration, target population and drug type(s). Nevertheless, the development of IFD in the early phase after surgery significantly impairs graft and patient survival. This review outlines presentation, prophylactic and therapeutic strategies, and outcomes of IFD in LT candidates and recipients, providing specific considerations for clinical practice.

Key Words: Acute-on-chronic liver failure; Sepsis; Cirrhosis; Candidemia; Acute liver failure; Invasive fungal infection

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Invasive fungal infection significantly influences the outcome of patients with acute liver failure or cirrhosis awaiting liver transplantation, as well as their post-
INVASIVE FUNGAL DISEASE IN PATIENTS AWAITING LT

Epidemiology, risk factors, therapeutic options, outcomes

By definition, an invasive fungal disease (IFD) is a disease process caused by invasive fungal infection. Current diagnostic criteria rely on three different levels of probability (proven, probable and possible IFD), mixing together host factors, clinical manifestations, and mycological evidence[1].

The epidemiology of IFD in cirrhotic patients has been heterogeneously reported, mainly in retrospective, single-center series, which included patients with different disease stages, prognosis (i.e., waitlisted for a transplant) and hospital settings [i.e., intensive care unit (ICU) vs regular ward]. Moreover, heterogeneous prevalence, diagnostic criteria and treatment protocols applied throughout the literature may have further influenced the actual epidemiology of such infections.

According to multicenter studies on hospitalized patients with cirrhosis, the prevalence of IFD is nearly 4%[2-4], although only proven IFD are usually considered. Most infections are caused by Candida; according to recent evidence, albicans and non-albicans strains have roughly similar prevalence[5].

The institution of surveillance protocols appears mandatory for an early diagnosis. These protocols should focus on patients at highest risk of IFD development, such as those with ACLF. Indeed, they encompass several risk factors, such as a profound immune-dysfunction, prolonged hospitalization, hepatic and extra-hepatic failure(s), indwelling (vascular) catheters, and long-term antibiotic therapies[1,6]. According to available studies on this specific population[7,8], the prevalence of IFD ranges between 1% and 47% (depending on diagnostic criteria and surveillance policies), significantly affecting short-term survival. Nevertheless, heterogeneous selection criteria have not
allowed a refinement of risk stratification to date (Table 1). Patients with severe alcoholic hepatitis are another high-risk group for IFD, especially for invasive aspergillosis (IA). Gustot et al\cite{27} reported a high incidence of such infection in a prospective cohort of 94 patients with biopsy-proven severe alcoholic hepatitis, after a median time of 25 d from steroids introduction, and with a 100% transplant-free mortality. This report raised the question about the potential role of steroids for IA development in such a population; a meta-analysis in this field\cite{29} partly confirmed this hypothesis, suggesting that opportunistic infections, especially fungal, seemed to be more frequent in this high-risk group, and may deserve special attention. IFD is a less frequent, but highly relevant complication also in patients with acute liver failure (ALF), carrying a high mortality risk, especially in case of a delayed diagnosis or institution of inappropriate treatment\cite{30,31}.

The occurrence of IFD often represents a detrimental event in patients with cirrhosis, leading to a significant increase in short-term mortality (35% to 50%), at a similar rate to that experienced after a multidrug-resistant organism bloodstream infection, especially when an appropriate antifungal treatment is not promptly initiated\cite{32,33}.

A detailed treatment algorithm for IFD in patients with cirrhosis is beyond the scope of this manuscript. The clinical keys of a successful treatment are early diagnosis, early administration of appropriate antifungal treatment, in close cooperation with Infectious Disease specialists. Considering Candida related IFD, ophthalmologic evaluation and removal of vascular/peritoneal catheters, as well as a shift towards non-albicans strains should be considered before starting antifungal therapy. Echinocandins are now considered the drugs of choice, to be continued for 2 weeks after clearance of Candida from the bloodstream or symptoms resolution\cite{21}.

Considering IA, voriconazole represents the first therapeutic option, whereas echinocandins and liposomal amphotericin B (L-AmB) are other, albeit less effective, available drugs\cite{34}. It is worth mentioning that voriconazole has been associated with hepatic and renal dysfunction, therefore therapeutic drug monitoring is recommended\cite{35,36}.

Specific issues in the liver transplant setting

IFD are a major issue in patients waiting for LT. As discussed above, occurrence of an IFD highlights the already impaired patient’s general condition, with an unpredictable evolution of hepatic and extra-hepatic organ(s) failure. This may potentially increase the need for a transplant, especially in a urgency-based system of organ allocation\cite{19}.

Nevertheless, according to the available data, several points should be considered; first, the effectiveness and treatment length of an appropriate antifungal therapy are very different from antibiotic therapies. Second, an IFD seems to develop in sicker patients than in the case of a bacterial infection, often as a superimposed infection\cite{20}.

Therefore, an active IFD should be viewed as a temporary contraindication for LT\cite{21} (Figure 1). For the sickest patients who are waiting for a graft, surveillance protocols are mandatory, and antifungal prophylaxis has been advocated in selected cases. For instance, Gustot et al\cite{27} suggested ICU admission and a baseline MELD score > 24 as factors for considering a prophylaxis against IA in patients with acute alcoholic hepatitis\cite{30,32}, but more data are needed before considering it as a standard practice. After diagnosis of IFD, consultation by expert Infectious Disease specialists should be always considered, in order to establish the best targeted antifungal treatment and its length. Moreover, antifungal stewardship aiming to avoid both adverse events and increasing resistance should always be pursued in the transplant setting.

The assessment of short-term outcome for each waitlisted patient should be individually discussed by the LT team, in order to consider the best timing for a waiting-list readmission (and a possible prioritization after infection recovery\cite{37}). Conversely, other therapeutic options should be taken into account, to avoid futile transplantation\cite{38,39}.

Fungal Infections Early After LT

Epidemiology, risk factors, and outcome

Although better outcomes have been reported after the introduction of novel antifungal agents and significant progress has been obtained after antifungal prophylaxis, IFD remains an important cause of early morbidity and mortality after solid organ transplantation (SOT). Recent large cohort studies on SOT recipients showed a 1-year post-transplant IFD rate of 4%-8%\cite{30,32}, with a changing epidemiology...
Table 1: Studies assessing the prevalence of invasive fungal disease in patients with acute-on-chronic liver failure

Ref.	Study design	Diagnostic criteria for IFD	Prevalence of IFD	Outcome	Risk factors for IFD
Verma et al[11], 2019	Single-center, retrospective study on ICU patients from India	EORTC/MSG diagnostic criteria	39/264 (14.7%). 11 (28%) proven. 25 (64%) IC and 14 (36%) IA	In-hospital mortality 77%	Hemodialysis. Prior antibiotic use
Fernández et al[12], 2018	Multi-center, prospective study on non-ICU ACLF patients across Europe	EORTC/MSG diagnostic criteria	8/407 (1.9%). 7 (87%) IC. 1 (13%) IA	28-d and 90-d mortality 57% and 71%, respectively	NR
Theocharidou et al[13], 2016	Analysis from prospectively collected database on ICU patients across the United Kingdom	EORTC/MSG diagnostic criteria (only proven IFD considered for the analysis)	8/782 (1%)	In-ICU and in-hospital mortality 0%	NR
Chen et al[14], 2013	Retrospective single center study from China on IA	EORTC/MSG diagnostic criteria	39/787 (4.9%)	Cumulative mortality 61%	Age. Hepatic encephalopathy. Steroid use
Lin et al[15], 2013	Single center retrospective study from non-ICU hepatitis B cirrhotic patients from China	EORTC/MSG diagnostic criteria	60/126 (47.6%). Proven IFD: 14 (23%). 9 (64%) C. Albicans 2 (14%) C. tropicalis; 1 (7%) C. Glabrata; 1 (7%) IA	Cumulative mortality 40%	Hepatitis B viral load
Levesque et al[16], 2019	Single center retrospective study on ICU patients with cirrhosis and IA in France	EORTC/MSG diagnostic criteria	60/362 (16.6%). 43/60 (71.7%) fulfilled ACLF criteria. 17/60 (28%) had IA	IA associated cumulative in-hospital mortality 71%	NR

1The manuscript did not extensively classify patients according to acute-on-chronic liver failure (ACLF) criteria.
2This study used the APASL criteria for ACLF diagnosis. Colonizations are not reported. ACLF: Acute-on-chronic liver failure; IA: Invasive aspergillosis; IC: Invasive candidiasis; IFD: Invasive fungal disease; NR: Not reported; ICU: Intensive care unit; EORTC: European Organization for Research and Treatment of Cancer; MSG: Mycoses Study Group.

over time. Indeed, if Candida spp. and Aspergillus spp. are still the most common molds, there has been a rise of non-albicans Candida species, carrying a higher mortality[33].

Broad-spectrum antibiotic therapy, parenteral nutrition, prolonged neutropenia, ICU stay, diabetes, pre-LT colonization, renal replacement therapy, cytomegalovirus (CMV) infection, re-interventions and choledochojejunostomy are established risk factors for post-LT IC[34,35], whereas pre-LT steroid administration, ALF, and renal replacement therapy seem to be more frequently associated with IA[36-38]. Recently, pre-LT Aspergillus colonization has been considered not a contraindication to LT in a single-center cohort of 27 patients; although they received appropriate post-operative prophylaxis (voriconazole +/- echinocandin), post-LT IA occurrence was 11%[39]. Most of the abovementioned risk factors are associated with patient’s severity at time of transplantation. This concept has been well demonstrated in ACLF patients, who experienced a significantly increasing post-LT IFD incidence, according to disease stage (ACLF grade 3 vs -2 vs -1: 15% vs 6.2% vs 3.4%)[40].

Although active IFD in the donor is a contraindication to donation, several cases of donor-derived IFD have been reported in the literature, mostly due to a undiagnosed infection at time of surgery[41]. Contamination of the organ during procurement
appears as another important issue. For instance, a large retrospective multicenter study from France showed a 1.33% *Candida* spp. prevalence in preservation fluid, being associated with a high rate of post-operative IFD and impaired survival[42].

Despite the adoption of preventive measures and antifungal stewardship, IFD still significantly affect the overall graft and patient survival. For instance, the TRANSNET study[43] reported 90 d cumulative mortality of 26% after IC occurrence, and 1-year survival of 59% after development of IA.

Post-LT antifungal prophylaxis

Antifungal prophylaxis is now being considered a cornerstone after LT, due to its safety and effectiveness[44,45]. A systematic review and metaanalysis by Evans et al[46] showed a significant reduction in the odds for proven IFD and for IFD-related mortality among LT patients who received prophylaxis, even if overall mortality did not change significantly. Notably, this study provided robust data about fluconazole and L-AmB, whereas echinocandins were not investigated. That said, several issues in the field of antifungal prophylaxis, such as the type (universal vs targeted approach), length, and preferred molecule(s) to use, are currently debated.

The rationale of a targeted prophylaxis is to capture only high-risk patients (based on pre- and early post-LT characteristics), in order to avoid antifungal over-use, and to administer highly effective molecules. Indeed, several studies have clearly demonstrated the cost-ineffectiveness of antifungal prophylaxis in low-risk patients.

Considering the optimal prophylaxis duration, current guidelines suggest that targeted prophylaxis against IC and IA should be administered for 14-21 d[34,36], but heterogeneous lengths have been adopted in the post-transplant setting, also in view of the dynamic, poorly predictable post-operative course. Further, many attempts at regimen simplification or stratification according to patients’ risk factors have been proposed. Table 2 summarizes the current evidence on antifungal prophylaxis after LT[35,37,47-60]. Notably, heterogeneous inclusion criteria, treatment algorithms, and endpoints adopted, do not allow a robust comparison between studies, but it is worth mentioning that a large amount of data has been available in the last years.

A randomized, double-blind clinical trial including 200 high-risk LT recipients, compared prophylaxis with fluconazole 400 mg/d with anidulafungin 100 mg/d to be continued for 3 wk or until hospital discharge. The study showed a similar IFD occurrence between cohorts (5.1% vs 8%, *P* = 0.4), with no post-LT IFD related deaths in either. Furthermore, only one patient had to stop anidulafungin prophylaxis due to adverse drug-related events, strengthening the safety of this molecule in the post-LT setting. Another multicenter, randomized, controlled trial including 347 LT recipients recruited across 37 European Centers[61] demonstrated that micafungin prophylaxis (100 mg/d for 21 d or until hospital discharge) was equally effective and safe as standard of care (i.e., fluconazole, caspofungin, or L-AmB), according to composite primary and secondary endpoints. The effectiveness of caspofungin (50 mg/d) has been also demonstrated in a large retrospective study from Spain, after comparison with standard fluconazole prophylaxis[62].

Specific treatment issues in the liver transplant setting

A detailed therapeutic algorithm for the treatment of each IFD is beyond the scope of this manuscript. Nevertheless, some treatment principles could be of help for clinical
Table 2: Studies published in the last 10 years on fungal prophylaxis in the liver transplantation setting

Ref.	Study design	Prophylaxis regimen	Patient selection criteria	Outcomes	
Saliba et al[53], 2013	Single-center study. LTs between 1999-2005. Effectiveness of targeted prophylaxis	Group 1: L-AmB (1 mg/kg/d for 1 wk, then 2.5 mg/kg/ twice a week for 3 wk) OR fluconazole (200-400 mg/d for 3 wk for those with pre-LT Candida colonization). Group 2: No prophylaxis	High risk group (≥ 1 RF): ALF; ICU prior to LT; re-LT; re-operation	Group 1: 198 LT recipients (n.146 L-AmB, n. 50 fluconazole, n. 2 amphotericinB). Group 2: 467 LT recipients. Lower 1 yr IFD occurrence in Group 1 (17.7% vs 32.4%, P < 0.001). IA occurrence not significantly different between groups. 1 yr graft and patient survival impaired after IFD occurrence	
Sun et al[52], 2013	Single-center study. LTs between 1999-2005. Comparative study for targeted prophylaxis in at-risk patients	Group 1: Amphotericin B lipid complex (5 mg/kg/d for 21 d). Group 2: Micafungin (100 mg/d for 21 d)	High risk group (≥ 2 RF): Post-LT RRT; re-LT; re-operation	Group 1 vs 2: 24 vs 18 LT recipients. Similar 90d IFD occurrence (11% vs 8.3%) and 90d mortality (29.2% and 22.2%) between groups	
Trudeau et al[51], 2013	Single-center study. LTs between 2005-2008. Effectiveness of universal prophylaxis	Fluconazole (200 mg i.v./p.o. once weekly for 3 mo)	High risk group (≥ 2 RF): Re-LT; sCr > 2 mg/dL or RRT within 48 h prior to LT; choledochojunostomy; transusion of > 40 BP; operative time > 11 h; peri-operative fungal colonization	221 LTs (18 fulfilled high risk criteria). 6 mo overall IFD occurrence equal to 4.9%. Higher IFD occurrence in high-risk patients (16.7% vs 3.4%, P = 0.03)	
Antunes et al[54], 2014	Single-center study. LTs between 2008-2011. Effectiveness of targeted prophylaxis	Group 1 (high risk): L-AmB 100 mg/d for 2 wk OR nystatin alone. Group 2 (low-risk): Nystatin	High risk group (≥ 1 RF): Urgent LT; sCr > 2 mg/dL; AKI after LT; re-LT; re-operation; transusion of > 40 BP	Group 1 vs Group 2: 104 vs 357 LT recipients. 66 (63%) patients belonging to group 1 received L-AmB prophylaxis. Cumulative 3-mo IFD occurrence 2.5%. Higher IFD occurrence in high-risk patients who didn’t receive L-AmB prophylaxis (4.5% vs 13%, P = 0.01)	
Winston et al[50], 2014	Randomized, double-blind trial. LTs between 2010-2011. Comparative trial for targeted prophylaxis	Group 1: Anidulafungin (200 mg/d loading dose, then 100 mg/d) for 3 wk or until discharge. Group 2: fluconazole (400 mg/d, adjusted according renal function) for 3 wk or until discharge	High risk group (≥ 2 RF): Re-LT; ALF; Steroids for at least 2 wk before LT; ICU stay > 48 h. Colonization with Candida (> 2 sites) within 4 wk before LT; transusion of ≥ 15 BP; operative time > 6 h; RRT at the time or within 7 d of LT; re-operation	200 patients 1:1 randomized. Similar cumulative IFD occurrence between cohorts (5.1% vs 8%, P = 0.4). Equal 3 mo post-LT mortality (12% each arm). 0% IFD related deaths	
Saliba et al[51], 2015	Randomized, open-label study. LTs between 2009-2012. Comparative trial for target prophylaxis	Group 1: Micafungin (100 mg/d for 21 d or until discharge) in high risk patients. Group 2: Center-specific standard care (fluconazole 200-400 mg/d OR L-AmB 1-3 mg/kg/d OR caspofungin 70 mg loading dose followed by 50 mg/d) in high risk patients	High risk patients (≥ 1 RF): Re-LT; ALF; Pre- or post-operative sCr clearance ≥ 40 mL/min or RRT; ICU 48 h prior to LT; re-operation within 5d of LT; choledochojunostomy; peri-operative Candida colonization (≥ 2 positive cultures); prolonged mechanical ventilation > 48 h after LT; transusion of ≥ 20 BP	Group 1 vs Group 2: 174 vs 173 LT recipients (140 and 137 LT completed the study in each arm). Micafungin was not inferior to standard of care (composite primary and secondary efficacy endpoints)	
Giannella et al[55], 2015	Prospective non-randomized trial. LTs between 2009-2013. Safety of high dose L-AmB for targeted prophylaxis	L-AmB 10 mg/Kg once a week until hospital discharge for a minimum of 2 wk	High risk for IC (≥ 2 RF): ICU in 90d prior LT; perioperative Candida colonization; Choledochojunostomy; transfusion of > 40 BP; AKI; rejection within 2 wk after LT; CMV DNA > 100.000 copies/mL; prolonged or repeated operation. High risk for IA (≥ 1 RF): ALF; steroid treatment before LT; multivisceral transplant; RRT; re-LT; re-operation	76 patients enrolled (39 having ≥ 2 RF for IC; 37 having ≥ 1 RF for IA). 10 patients discontinued therapy (6 for L-AmB related adverse events; 4 for IFD). 2 episodes of proven IC occurred	
Eschenbauer et al[56], 2015	Single-center study. LTs between 2008-2012. Effectiveness of targeted prophylaxis	Universal prophylaxis (LTs between 2008-2010): Voriconazole 200 mg BID. Targeted prophylaxis (LTs between 2010-2012): Group 1: Voriconazole 200 mg BID for 30 d. Group 2: Fluconazole 400 mg/d during post-LT ICU stay. Group 3: No prophylaxis	Inclusion criteria for Group 1 (≥ 1 RF): re-LT; ALF; RRT; re-operation within 30 d after LT. Inclusion criteria for Group 2 (≥ 1 RF): Choledochojunostomy; transfusion of > 40 BP and operation time ≥ 11 h; candida colonization or infection within 3 mo before LT	Universal prophylaxis: 236 LTs. Targeted prophylaxis: 145 LTs (group 1 vs 2: 3.78 vs 11 vs 55). Cumulative IFD occurrence 5.2% (targeted vs universal group: 6.9% vs 4.2%; P = 0.34). 40% breakthrough IFD. Similar 100-d mortality between targeted and universal prophylaxis group	
Author et al. (Year)	Study Design	Population	Prophylaxis Protocol	Risk Factors	Outcomes
----------------------	--------------	------------	----------------------	-------------	----------
Ferrarese et al. (2020)	Multicenter, randomized, open-label trial. Living donor LTs 2012-2015. Comparative study for universal prophylaxis	Group 1: Micafungin (100 mg/d for 3 wk or until hospital discharge). Group 2: Fluconazole (100-200 mg/d for 3 wk or until hospital discharge)	Universal prophylaxis	Group 1 compared to group 2 for survival and fungal infection incidence.	Group 1 vs Group 2: 69 vs 75 LT recipients. Fungal infection in liver transplant recipients. P = 0.001. Higher incidence of fungal infections in group 1 compared to group 2.
Jorgenson et al. (2019)	Single-center study. LTs between 2009-2016. Effectiveness of fixed dose prophylaxis	Group 1: Fluconazole fixed dose (400 mg/d for 14d) in at-risk patients. Group 2: Unsupervised antifungal protocols	High risk group: MELD score > 25. OR ≥ 2 RF: Pre-LT ICU stay > 24h; inotropic support; RRT; re-LT; Combined transplant; pre-LT mechanical ventilation; ALF	High-risk patients (≥ 1 RF): Pre-LT Candida colonization; Pre-LT mechanical ventilation; Pre-LT hospitalization > 7d; Operation time ≥ 9h; Warm ischemia ≥ 45 min.	Group 1 vs Group 2: 50 vs 139. High risk group: Group 1 vs Group 2. Reduction of 1-yr IFD among high-risk cohorts (12.5% vs 26.6%). Similar 1 yr patient and graft survival.
Lavezzo et al. (2018)	Single-center study. LTs between 2011-2015. Effectiveness of targeted antifungal prophylaxis	Group 1 (high risk): Amphotericin B lipid complex (3 mg/kg/d) OR L-AmB (2 mg/kg/d), for 5 to 10 d after LT. Group 2 (low risk): No prophylaxis	High-risk group (≥ 1 RF): Operation time > 10 h; re-operation within 30 d; LT for ALF. OR ≥ 2 of the following RF: Transfusion of ≥ 20 BP; Choledochojejunostomy; Transfusion of ≥ 14 BP.	Overall IFD prevalence 2.8% (all in the targeted prophylaxis group). 1 yr mortality higher in prophylaxis group (12.5% vs 18.8%, P = 0.001). 1-yr mortality higher in IFD patients (33.3% vs 6.4%; P < 0.001).	Overall IFD prevalence 6.3%. Fluconazole prophylaxis independently associated with IFD development.
Giannella et al. (2016)	Retrospective, single-center study. LTs between 2010-2014. Evaluation of risk factors for a targeted antifungal prophylaxis	Group 1 (no RF): No prophylaxis. Group 2: 1 (1 RF IC): Fluconazole. Group 3 (high risk patients): Antifungal agent	High-risk patients for IC (≥ 2 RF): Prolonged operation; Choledochojejunostomy; Pre-LT Candida colonization; re-LT; AKI. High-risk patients for IA (≥ 1 RF): ALF; RRT after LT; re-operation; re-LT	303 patients evaluated (Groups 1 vs 2 vs 3: 91 vs 61 vs 151). Antifungal prophylaxis administered to 45.9% patients (80 L-AmB; 41 fluconazole; 41 micafungin). Fluconazole prophylaxis independently associated with IFD development.	Group 1 vs 2: 201 vs 201 LT recipients (propensity score matching). Similar IFD occurrence (11.2% vs 18.9%, P = 0.052). Lower cumulative mortality in Group 1 (23.4% vs 40.8%, P = 0.001).
Chen et al. (2016)	Single-center study. LTs between 2005-2014. Effectiveness of targeted prophylaxis	Group 1: Anidulafungin (100 mg/d) OR micafungin (100 mg/d). Group 2: No prophylaxis	High risk patients: MELD ≥ 20.	Group 1 vs Group 2: 97 vs 98 LT recipients. Median prophylaxis duration: 22 and 24 d, respectively. Similar 6-mo IFD occurrence (5.2% vs 12.2%). Reduced risk of IA in LT recipients receiving caspofungin. Similar overall mortality and IFD-related mortality between groups.	Group 1 vs 2: 201 vs 201 LT recipients (propensity score matching). Similar IFD occurrence (11.2% vs 18.9%, P = 0.052). Lower cumulative mortality in Group 1 (23.4% vs 40.8%, P = 0.001).
Fortún et al. (2016)	Multicenter study. LTs between 2005-2012. Comparative observational study for targeted prophylaxis	Group 1: Caspofungin (50 mg/d). Group 2: Fluconazole 100-400 mg/d (median 200 mg/d)	High risk group (≥ 1 RF): Re-LT within 30 d; LT for ALF. OR ≥ 2 of the following RF: Transfusion of ≥ 20 BP; Choledochojejunostomy; Peri-operative Candida colonization (≥ 2 sites); re-operation within 7 d.	Group 1 vs Group 2: 21 vs 22 LT recipients. Some episodes of IFD occurred; no difference in graft and patient survival curves between cohorts.	Group 1 vs Group 2: 28 vs 26 LTs. No episodes of IFD occurred in both groups.
Perrella et al. (2016)	Single-center study. LTs between 2006-2012. Comparative observational study for targeted prophylaxis	Group 1: L-AmB (3 mg/kg/d). Group 2: Caspofungin (70 mg/d loading dose, then 50 mg/d)	High risk patients (≥ 3 RF): sCr clearance < 30 mL/min and/or sCr > 4 mg/mL. Pre-LT Candida colonization. Pre-LT antibiotic use > 10 d. Pre-LT hospitalization > 7 d. Operation time ≥ 9h; Warm ischemia ≥ 45 min.	Group 1 vs Group 2: 174 vs 140 LT recipients; no episodes of IA occurred; no difference in graft and patient survival curves between cohorts.	Group 1 vs Group 2: 28 vs 26 LTs. No episodes of IFD occurred in both groups.
Balogh et al. (2016)	Single-center study. LTs between 2008-2014. Targeted prophylaxis against IA	Group 1: Voriconazole 200 mg BID for 90 d. Group 2: Oral mexitatin OR Fluconazole	High risk group: MELD score > 25. OR ≥ 2 RF: Pre-LT ICU stay > 24h; inotropic support; RRT; re-LT; Combined transplant; pre-LT mechanical ventilation; ALF	Group 1 vs Group 2: 174 vs 140 LT recipients; no episodes of IA occurred; no difference in graft and patient survival curves between cohorts.	Group 1 vs Group 2: 28 vs 26 LTs. No episodes of IFD occurred in both groups.
operative colonization(s) represent crucial information before starting a therapeutic regimen. Source control, obtained by removal of indwelling vascular/abdominal catheters, is another important option to be considered. Regarding echinocandins, both micafungin and anidulafungin have been demonstrated to be safe and effective at therapeutic dose[6][7]. Notably, micafungin does influence through levels of m-TOR inhibitors, but not of tacrolimus and cyclosporine[8].

Current guidelines recommend voriconazole as the drug of choice for IA, whereas isavuconazole and L-AmB can be considered as alternatives[9][10]. Isavuconazole seems to have similar effectiveness to voriconazole, but with fewer side effects—also liver-related—being a promising option especially in the early post-operative phase[9]. During the course of therapy (usually 12 wk regimen), a careful assessment of IS, liver and renal function are mandatory, as well as therapeutic drug monitoring. Moreover, daily dose of calcineurin inhibitors should be carefully reduced (about by 50%), whereas co-administration of voriconazole and mTORs should be avoided due to a high increase of serum concentration[11][12]. Other molecules could be of help for the treatment of rarer species, or as rescue therapies[13][14].

CONCLUSION

The occurrence of an invasive fungal disease significantly affects the natural history of LT candidates and recipients. In the peri-operative setting, it usually develops in the sickest patients, impairing hepatic and extra-hepatic organ function and being associated with high short-term mortality. An active IFD is still considered a contraindication to LT. Therefore, response to appropriate antifungal therapy and patient’s global outcome should be strictly evaluated by the LT team in accordance with Infectious Disease Specialists, in order to re-consider transplantation as a cost-effective therapeutic option. In the post-operative setting, IFD occurrence has been significantly reduced since the institution of prophylaxis, but it is still a serious complication, affecting graft and patient survival. Prophylactic regimens in patients deemed at high-risk may take into account the local epidemiology, risk of resistance, and potential adverse drug-related effects or interactions.

REFERENCES

1. Toniutto P, Zanetto A, Ferrarese A, Burra P. Current challenges and future directions for liver transplantation. *Liver Int* 2017; 37: 317-327 [PMID: 27634369 DOI: 10.1111/liv.13255]
2. Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. *J Hepatol* 2014; 61: 1385-1396 [PMID: 25135860 DOI: 10.1016/j.jhep.2014.08.010]
3. Ferrarese A, Zanetto A, Becchetti C, Sciarroone SS, Shalaby S, Germani G, Gambato M, Russo FP, Burra P, Senzolo M. Management of bacterial infection in the liver transplant candidate. *World J Hepatol* 2018; 10: 222-230 [PMID: 29527258 DOI: 10.4254/wjh.v10.i2.222]
4. Ferrarese A, Vitale A, Sgarabotto D, Russo FP, Germani G, Gambato M, Cattelan AM, Angeloni P, Cillo U, Burra P, Senzolo M. Outcome of a First Episode of Bacterial Infection in Candidates for Liver Transplantation. *Liver Transpl* 2019; 25: 1187-1197 [PMID: 31021050 DOI: 10.1002/lt.25479]
5. Dionigi E, Gavoglio M, Borzio M, Leandro G, Majumdar A, Tsami A, Arvaniti V, Roccarina D, Pinzani M, Burroughs AK, O’Beirne J, Tsochatzis EA. Bacterial Infections Change Natural History of Cirrhosis Irrespective of Liver Disease Severity. *Am J Gastroenterol* 2017; 112: 588-596 [PMID: 28220780 DOI: 10.1038/ajg.2017.19]
6. De Paauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Muñoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR, Zaoutis T, Bennett JE; European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group; National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. *Clin Infect Dis* 2008; 46: 1813-1821 [PMID: 18462102 DOI: 10.1086/588660]
7. Bajaj JS, Reddy RK, Tandon P, Wong F, Kamath PS, Biggs SW, Garcia-Tsao G, Fallon M, Miliakkal B, Lai J, Vargas HE, Subramanian RM, Thuluvath P, Thacker LR, O’Leary JG. Prediction of Fungal Infection Development and Their Impact on Survival Using the NACSELD Cohort. *Am J Gastroenterol* 2018; 113: 556-563 [PMID: 29257141 DOI: 10.1038/ajg.2017.47]
8. Piano S, Singh V, Caraceni P, Maiwall R, Alessandria C, Fernandez J, Soares EC, Kim DJ, Kim SE,
Marino M, Vorobioff J, Barea RCR, Merli M, Elkrief L, Vargas V, Krág A, Singh SP, Lesmana LA, Toledo C, Marchiano S, Verhelst X, Wong F, Intagliata N, Rabinovitch L, Colombato L, Kim SG, Gerbes A, Durand F, Roblero JP, Bhamidimarri KR, Boyer TD, Maeva skaia M, Fassio E, Kim HS, Hwang JS, Gines P, Gadano A, Sarin SK, Angeli P, International Club of Ascites Global Study Group. Epidemiology and Effects of Bacterial Infections in Patients With Cirrhosis Worldwide. Gastroenterology 2019; 156: 1368-1380. e10 [PMID: 30552895 DOI: 10.1016/gastro.2018.12.005]

9 Bassetti M, Peghin M, Carmelluti A, Righi E, Merelli M, Ansaldi C, Alcino C, Sarar A, Toniotto P, Wauters J, Laleman W, Tascini C, Menichetti F, Luzzati R, Brugnaro P, Mesini A, Raviolo S, De Rosa FG, Lagunes L, Rello J, Dinopoulos G, Colombo AL,ucci N, Vena A, Bouza E, Mañoz P, Tumbarello M, Losito R, Martin-Loeches I, Viscoli C. Clinical characteristics and predictors of mortality in cirrhotic patients with candidemia and intra-abdominal candidiasis: a multicenter study. Intensive Care Med 2017; 43: 509-518 [PMID: 28271321 DOI: 10.1007/s00134-017-4717-0]

Clária J, Stauber RE, Coenraad MJ, Moreau R, Jalan R, Pavesi M, Amorós A, Titos E, Alcaraz-Quiles J, Oetel K, Morales-Ruíz M, Angeli P, Domenicali M, Alessandra C, Gerbes A, Wondin J, Neves F, Trebicka J, Laleman W, Saliba F, Welzel TM, Alibollos A, Gustot T, Benten D, Durand F, Ginés P, Bernardi M, Arroyo V; CANONIC Study Investigators of the EASL-CLIF Consortium and the European Foundation for the Study of Chronic Liver Failure (EF-CLIF). Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure. Hepatology 2016; 64: 1249-1264 [PMID: 27433394 DOI: 10.1002/hep.28740]

11 Verma N, Singh S, Taneja S, Duseja A, Singh V, Dhiman RK, Chakrabarti A, Chawla YK. Invasive fungal infections amongst patients with acute-on-chronic liver failure: a multicentre study. Liver Int 2019; 39: 503-513 [PMID: 30276951 DOI: 10.1111/liv.13981]

12 Fernández J, Acevedo J, Wiest R, Gustot T, Amorós A, Deoloufo C, Reverter E, Martínez J, Saliba F, Jalan R, Welzel T, Pavesi M, Hernández-Tejero M, Ginés P, Arroyo V; European Foundation for the Study of Chronic Liver Failure. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut 2018; 67: 1870-1880 [PMID: 28847867 DOI: 10.1136/gutjnl-2017-314240]

13 Theoharidou E, Agarwal B, Jeffrey G, Jalan R, Harrison D, Burroughs AK, Kibbler CC. Early invasive fungal infections and colonization in patients with cirrhosis admitted to the intensive care unit. Clin Microbiol Infect 2016; 22: 189.e1-189. e7 [PMID: 26551838 DOI: 10.1016/j.cmi.2015.10.020]

14 Chen J, Yang Q, Huang J, Li L. Risk Factors for Invasive Pulmonary Aspergillosis and Hospital Mortality in Acute-On-Chronic Liver Failure Patients: A Retrospective-Cohort Study. Int J Med Sci 2013; 10: 1625-1631 [PMID: 24151434 DOI: 10.7150/ijms.6824]

15 Lin LN, Zhu Y, Che FB, Gu JL, Chen JH. Invasive fungal infections secondary to acute-on-chronic liver failure: a retrospective study. Mycoses 2013; 56: 429-433 [PMID: 23368963 DOI: 10.1111/myc.12044]

16 Levesque E, Ait-Ammar N, Duduad D, Claviera N, Feray C, Folet F, Bottle P. Invasive pulmonary aspergillosis in cirrhotic patients: analysis of a 10-year clinical experience. Ann Intensive Care 2019; 9: 31 [PMID: 30778690 DOI: 10.1186/s13631-019-0502-2]

17 Gustot T, Maillart E, Bocci M, Surin R, Trépo E, Degré D, Lucidi V, Taccone FS, Delforge ML, Vincent JL, Doncicier S, Jacobs F, Moreno C. Invasive aspergillosis in patients with severe alcoholic hepatitis. J Hepatol 2014; 60: 267-274 [PMID: 24055548 DOI: 10.1016/j.jhep.2013.09.011]

18 Hmoud BS. Invasive fungal infections amongst patients at high risk for fungal aspergillosis in cirrhotic patients: analysis of a 10-year clinical experience. Clin Microbiol Infect 2018; 24: 546.e1-546. e8 [PMID: 28818628 DOI: 10.1016/j.cmi.2017.08.001]

19 Bartolotti M, Giannella M, Lewis R, Caraceni P, Tesedici S, Paul M, Schramm C, Bruns T, Merli M, Cobos-Trigueros N, Seminari E, Retamar P, Muñoz P, Tumbarello M, Burra P, Terrani Cereñia M, Brosse B, Calbo E, Mataro AE, Petrosillo N, Galan-Ladero M, D'Offizi G, Bar Sinai N, Rodriguez-Baño J, Verucci G, Bernardi M, Viale P, ESGBIS/CHROME Study Group. A prospective multicentre study of the epidemiology and outcomes of bloodstream infection in cirrhotic patients. Clin Microbiol Infect 2018; 24: 546.e1-546. e8 [PMID: 28818628 DOI: 10.1016/j.cmi.2017.08.001]

20 Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC. Schuster MG, Vazquez JA, Walsh TJ, Zanouts TE, Sobel JD. Executive Summary: Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62: 409-417 [PMID: 26810419 DOI: 10.1093/cid/ciw1194]

21 Patterson TF, Thompson GR 3rd, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JA, Bennett JE. Executive Summary: Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 63: 433-442 [PMID: 27481947 DOI: 10.1093/cid/ciw444]

22 Wang T, Yan M, Tang D, Xue L, Zhang T, Dong Y, Zhu L, Wang X, Dong Y. Therapeutic drug monitoring and safety of voriconazole therapy in patients with Child-Pugh class B and C cirrhosis: A
multicenter study. Int J Infect Dis 2018; 72: 49-54 [PMID: 2979308 DOI: 10.1016/j.ijid.2018.05.009]

25 Tschuor C, Ferrarese A, Kuemmerli C, Dutkowski P, Barra P, Clavien PA; Liver Allocation Study Group. Allocation of liver grafts worldwide - Is there a best system? J Hepatol 2019; 71: 707-718 [PMID: 31199941 DOI: 10.1016/j.jhep.2019.05.025]

26 Trebicka J, Sundaram V, Moreau R, Jalan R, Arroyo V. Liver Transplantation for Acute-on-Chronic Liver Failure: Science or Fiction? Liver Transpl 2020; 26: 906-915 [PMID: 32365422 DOI: 10.1002/lt.25785]

27 Gustof T, Fernandez J, Szabo G, Albillos A, Louvet A, Jalan R, Moreau R, Moreno C. Sepsis in alcohol-related liver disease. J Hepatol 2017; 67: 1031-1050 [PMID: 28647569 DOI: 10.1016/j.jhep.2017.06.013]

28 Linecker M, Krones T, Berg T, Niemann CU, Steadman RH, Dutkowski P, Clavien PA, Busuttil RW, Truong RD, Petrowsky H. Potentially inappropriate liver transplantation in the era of the "sickest first" policy - A search for the upper limits. J Hepatol 2018; 68: 798-813 [PMID: 29133246 DOI: 10.1016/j.jhep.2017.11.008]

29 Karvellas CJ, Garcia-Lopez E, Fernandez J, Saliba F, Sy E, Jalan R, Pavesi M, Gustot T, Ronco JJ, Arroyo V; Chronic Liver Failure Consortium and European Foundation for the Study of Chronic Liver Failure. Dynamic Prognostication in Critically Ill Cirrhotic Patients With Multiorgan Failure in ICUs in Europe and North America: A Multicenter Analysis. Crit Care Med 2018; 46: 1783-1791 [PMID: 31066759 DOI: 10.1097/CCM.0000000000033660]

30 Hosseini-Moghaddam SM, Ouédraogo A, Nayrol KL, Bota SE, Husain S, Nash DM, Paterson JM. Incidence and outcomes of invasive fungal infection among solid organ transplant recipients: A population-based cohort study. Transpl Infect Dis 2020; 22: e13250 [PMID: 31981389 DOI: 10.1111/tid.13250]

31 van Delden C, Stampf S, Hirsch HH, Manuel O, Meylan P, Cusini A, Hirzel C, Khanna N, Weiss M, Garzoni C, Boggian K, Berger C, Nadal D, Koller M, Saccilotto R, Mueller NJ; Swiss Transplant Cohort Study. Burden and Timeline of Infectious Diseases in the First Year After Solid Organ Transplantation in the Swiss Transplant Cohort Study. Clin Infect Dis 2020; 71: e159-e169 [PMID: 31915816 DOI: 10.1093/cid/ciz1113]

32 Andes DR, Safdar N, Baddley JW, Alexander B, Brumble L, Freifeld AC, Hadley S, Herwaldt L, Kaufman C, Lyon GM, Morrison V, Patterson T, Perl T, Walker R, Hess T, Chiller T, Pappas PG; TRANSNET Investigators. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Transpl Infect Dis 2016; 18: 921-931 [PMID: 27643955 DOI: 10.1111/tid.12613]

33 Fernández-Ruíz M, Cardozo C, Salavert M, Aguilar-Guisado M, Escolá-Vergé L, Muñoz P, Gioia F, Montejo M, Merino P, Cuervo G, García-Vidal C, Aguado JM; CANDIPOP Project; the CANDI-Bundle Group; GEIRAS-GEMICOMED (SEIMC)REIPI. Candidemia in solid organ transplant recipients in Spain: Epidemiological trends and determinants of outcome. Transpl Infect Dis 2019; 21: e13195 [PMID: 31610077 DOI: 10.1111/tid.13195]

34 Aslam S, Rotstein C; AST Infectious Disease Community of Practice. Candida infections in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Infect Dis 2019; 33: e13623 [PMID: 31155770 DOI: 10.10111/cid.13623]

35 Giannella M, Bartoletti M, Morelli M, Cristini F, Tedeschi S, Campoli C, Tumietto F, Bertuzzo V, Ercolani G, Faenza S, Pinna AD, Lewis RE, Viale P; Antifungal prophylaxis in liver transplant recipients: one size does not fit all. Transpl Infect Dis 2016; 18: 538-544 [PMID: 27237076 DOI: 10.1111/tid.12560]

36 Husain S, Camargo JF. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Infect Dis 2019; 33: e13544 [PMID: 30900296 DOI: 10.1111/tid.13544]

37 Saliba F, Delvart V, Ichai P, Kassis N, Botterel F, Mihaila L, Azoulay D, Adam R, Castaing D, Bretagne S, Samuel D. Fungal infections after liver transplantation: outcomes and risk factors revisited in the MELD era. Clin Transplant 2013; 27: E454-E461 [PMID: 23656358 DOI: 10.1111/citr.12129]

38 Neofytos D, Chatzis O, Nasioudis D, Boey Janke E, Doco Lecompte T, Garzoni C, Berger C, Cussini A, Boggian K, Khanna N, Manuel O, Mueller NJ, van Delden C; Swiss Transplant Cohort Study. Epidemiology, risk factors and outcomes of invasive aspergillosis in solid organ transplant recipients in the Swiss Transplant Cohort Study. Transpl Infect Dis 2018; 20: e12898 [PMID: 29668068 DOI: 10.1111/tid.12898]

39 Amin A, Molina A, Quach L, Ito T, McMillan R, DiNorcia J, Agopian VG, Kaldas FM, Farmer DG, Busuttil RW, Winston DJ. Liver Transplantation in Patients with Pretransplant Aspergillus Colonization: Is It Safe To Proceed? Transplantation 2020 [PMID: 32301905 DOI: 10.1097/TP.0000000000003276]

40 Artru F, Louvet A, Ruiz A, Levesque E, Labreuche J, Ursié-Bedoya J, Lassailly G, Dhariany S, Boleslawski E, Lebuffe G, Kipnis E, Ichai P, Coilly A, De Martin E, Antonini TM, Vibert E, Jaber S, Herrera R, Samuel D, Huh J, Pageaux GP, Mathurin P, Saliba F. Liver transplantation in the most severely ill cirrhotic patients: A multicenter study in acute-on-chronic liver failure grade 3. J Hepatol 2017; 67: 708-715 [PMID: 28645736 DOI: 10.1016/j.jhep.2017.06.009]

41 Echenique IA, Ison MG. Update on donor-derived infections in liver transplantation. Liver Transpl
42 Levesque E, Paugam-Burtz C, Saliba F, Khoy-Ear L, Merle JC, Jung B, Steeken L, Ferrandiere M, Mihaila L, Botterel F. Fungal complications after Candida preservation fluid contamination in liver transplant recipients. Transpl Int 2016; 28: 1308-1316 [PMID: 26147662 DOI: 10.1111/tri.12633]

43 Pappas PG, Alexander BD, Andes DR, Hadley S, Kaufman CA, Freiha F, Anaisse EJ, Bromble LM, Herwaldt L, Ito J, Kontoyiannis DP, Lyon GM, Matt KA, Morrison VA, Park BJ, Patterson TF, Perl TM, Oster RA, Schuster MG, Walker R, Walsh TJ, Wasmuhte KA, Chiller TM. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis 2010; 50: 1101-1111 [PMID: 20128876 DOI: 10.1086/651262]

44 European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Liver transplantation. J Hepatol 2016; 64: 433-485 [PMID: 26597456 DOI: 10.1016/j.jhep.2015.10.006]

45 Lacey MR, Terrault N, Ojo L, Hay JE, Neuberger J, Blumberg E, Teperman LW. Long-term management of the successful adult liver transplant: 2012 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Liver Transpl 2013; 19: 3-26 [PMID: 23281277 DOI: 10.1002/lt.23566]

46 Evans JD, Morris PJ, Knight SR. Antifungal prophylaxis in liver transplantation: a systematic review and network meta-analysis. Am J Transplant 2014; 14: 2765-2776 [PMID: 25395336 DOI: 10.1111/ajt.12925]

47 Sun HY, Cacciarelli TV, Singh N. Micafungin versus amphotericin B lipid complex for the prevention of invasive fungal infections in high-risk liver transplant recipients. Transplantation 2013; 96: 573-578 [PMID: 23642191 DOI: 10.1097/TP.0b013e3182e47f4]

48 Trudeau RE, Bowman LJ, Wills AR, Crippin JS, Chapman WC, Anderson C. Once-weekly liposomal amphotericin B for antifungal prophylaxis post-liver transplantation. HPB (Oxford) 2013; 15: 541-547 [PMID: 23458063 DOI: 10.1111/hpb.12006]

49 Antunes AM, Teixeira C, Corvo ML, Perdigoto R, Barroso E, Marcelino P. Prophylactic use of liposomal amphotericin B in preventing fungal infections early after liver transplantation: a retrospective, single-center study. Transplant Proc 2014; 46: 3554-3559 [PMID: 25498088 DOI: 10.1016/transproceed.2014.06.065]

50 Winston DJ, Limaye AP, Pelletier S, Saffar N, Morris MI, Meneses K, Busuttil RW, Singh N. Randomized, double-blind trial of amBifungin versus fluconazole for prophylaxis of invasive fungal infections in high-risk liver transplant recipients. Am J Transplant 2014; 14: 2758-2764 [PMID: 25376267 DOI: 10.1111/ajt.12963]

51 Saliba F, Pascher A, Coutant O, Laterre PF, Cervera C, De Waele JJ, Cillo U, Langer RM, Lugano M, Góran-Ericzon B, Phillips S, Tweddle L, Karas A, Brown M, Fischer L; TENPIN (Liver Transplant European Study Into the Prevention of Fungal Infection) Investigators; TENPIN Liver Transplant European Study Into the Prevention of Fungal Infection Investigators. Randomized trial of micafungin for the prevention of invasive fungal infection in high-risk liver transplant recipients. Clin Infect Dis 2015; 60: 997-1006 [PMID: 25250332 DOI: 10.1093/cid/ciu128]

52 Giannella M, Ercolani G, Cristini F, Morelli M, Bartolletti M, Bertuzzo V, Tedeschi S, Faenza S, Puggioli C, Pinna AD, Viale P. High-dose weekly liposomal amphotericin B for antifungal prophylaxis in patients undergoing liver transplantation: a prospective phase II trial. Transplantation 2015; 99: 848-854 [PMID: 25531982 DOI: 10.1097/TP.0000000000000339]

53 Eschenauer GA, Kwik EJ, Humar A, Potoski BA, Clarke LG, Shields RK, Abdel-Massih R, Silveira FP, Vergidis P, Clancy CJ, Nguyen MH. Targeted versus universal antifungal prophylaxis among liver transplant recipients. Am J Transplant 2015; 15: 180-189 [PMID: 25359555 DOI: 10.1111/ajt.12993]

54 Balogh J, Gordon Burroughs S, Boktour M, Patel J, Saharia A, Ochoa RA, McFadden R, Victor DW, Ankoma-Sev V, Galati J, Monsour HP Jr, Fainstein V, Li XC, Grimes KA, Gaber AO, Aloia T, Ghobrial RM. Efficacy and cost-effectiveness of voriconazole prophylaxis for prevention of invasive aspergillosis in high-risk liver transplant recipients. Liver Transpl 2016; 22: 163-170 [PMID: 26515643 DOI: 10.1002/lt.24365]

55 Perrellia A, Esposito C, Amato G, Perrellia O, Migliaccio C, Pisanelli D, Calise F, Cuomo O, Santaniello W. Antifungal prophylaxis with liposomal amphotericin B and caspofungin in high-risk patients after liver transplantation: impact on fungal infections and immune system. Infect Dis (Lond) 2016; 48: 161-166 [PMID: 26051391 DOI: 10.1093/infdis/jiw130]

56 Fortín J, Muriel A, Martín-Dávila P, Montejo M, Len O, Torre-Cisneros J, Carratalá J, Muñoz P, Farías C, Moreno A, Fresco G, Goikoetxea J, Gavaldá J, Pozo JC, Bodo M, Vena A, Casafont F, Cervera C, Silva JT, Agramón JM; Grupo de Estudio de Infección en Pacientes Transplantados-Grupo de Estrategia de Micología Médica (Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica) and Red Española de Investigación en Patología Infecciosa. Caspofungin versus fluconazole as prophylaxis of invasive fungal infection in high-risk liver transplant recipients: a propensity score analysis. Liver Transpl 2016; 22: 427-435 [PMID: 26709146 DOI: 10.1002/lt.24391]

57 Chen YC, Huang TS, Wang YC, Cheng CH, Lee CF, Wu TJ, Chou HS, Chan KM, Lee WC, Soong RS. Effect of Prophylactic Antifungal Protocols on the Prognosis of Liver Transplantation: A Propensity Score Matching and Multistate Model Approach. Biomed Res Int 2016; 2016: 6212503 [PMID: 27747235 DOI: 10.1155/2016/6212503]

58 Lavezzi B, Patrono D, Tandoi F, Martini S, Fop F, Ballerini V, Stratta C, Skurzak S, Lupo F, Stirignano P, Dodatto PP, Salizzoni M, Romagnoli R, De Rosa FG. A simplified regimen of targeted
antifungal prophylaxis in liver transplant recipients: A single-center experience. *Transpl Infect Dis* 2018; 20: e12859 [PMID: 29427394 DOI: 10.1111/tid.12859]

59 **Jorgenson MR**, Descourouez JL, Marka NA, Leversion GE, Smith JA, Andes DR, Fernandez LA, Foley DP. A targeted fungal prophylaxis protocol with static dosed fluconazole significantly reduces invasive fungal infection after liver transplantation. *Transpl Infect Dis* 2019; 21: e13156 [PMID: 31390109 DOI: 10.1111/tid.13156]

60 **Kang WH**, Song GW, Lee SG, Suh KS, Lee KW, Yi NJ, Joh JW, Kwon CHD, Kim JM, Choi DL, Kim JD, Kim MS. A Multicenter, Randomized, Open-Label Study to Compare Micafungin with Fluconazole in the Prophylaxis of Invasive Fungal Infections in Living-Donor Liver Transplant Recipients. *J Gastrointest Surg* 2020; 24: 832-840 [PMID: 31066013 DOI: 10.1007/s11605-019-04241-w]

61 **Aguado JM**, Varo E, Usetti P, Pozo JC, Moreno A, Catalán M, Len O, Blanes M, Solé A, Muñoz P, Montejo M; TOSCAPA Study Group. Safety of anidulafungin in solid organ transplant recipients. *Liver Transpl* 2012; 18: 680-685 [PMID: 22328277 DOI: 10.1002/lt.23410]

62 **Muilwijk EW**, Lempers VJ, Burger DM, Warris A, Pickkers P, Aarnoutse RE, Brüggemann RJ. Impact of special patient populations on the pharmacokinetics of echinocandins. *Expert Rev Anti Infect Ther* 2015; 13: 799-815 [PMID: 25947367 DOI: 10.1586/14787210.2015.1028366]

63 **Maertens JA**, Raad II, Marr KA, Patterson TF, Kontoyiannis DP, Cornely OA, Bow EJ, Rahav G, Neofoytos D, Aoun M, Baddley JW, Giladi M, Heinz WJ, Herbrecht R, Hope W, Karthaus M, Lee DG, Lortholary O, Morrison VA, Oren I, Selleslag D, Shoham S, Thompson GR 3rd, Lee M, Maher RM, Schmitt-Hoffman AH, Zeher B, Ullmann AJ. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. *Lancet* 2016; 387: 760-769 [PMID: 26684607 DOI: 10.1016/S0140-6736(15)01159-9]

64 **Groll AH**, Townsend R, Desai A, Azie N, Jones M, Engelhardt M, Schmitt-Hoffman AH, Brüggemann RJM. Drug-drug interactions between triazole antifungal agents used to treat invasive aspergillosis and immunosuppressants metabolized by cytochrome P450 3A4. *Transpl Infect Dis* 2017; 19 [PMID: 28722255 DOI: 10.1111/tid.12751]

65 **Becchetti C**, Ferrarese A, Cartelan A, Barbieri S, Feltracco P, Saluzzo F, Cillo U, Senzolo M, Germani G, Burra P. Geotrichum capitatum Invasive Infection Early After Liver Transplant. *Exp Clin Transplant* 2020; 18: 737-740 [PMID: 31801488 DOI: 10.6002/ecct.2019.0170]

66 **Shoham S**, Dominguez EA; AST Infectious Diseases Community of Practice. Emerging fungal infections in solid organ transplant recipients: Guidelines of the American Society of Transplantation Infectious Diseases Community of Practice. *Clin Transplant* 2019; 33: e13525 [PMID: 30859651 DOI: 10.1111/ctr.13525]
