Whole genome sequencing data and analyses of the underlying SUP35 transcriptional regulation for a Saccharomyces cerevisiae nonsense suppressor mutant

Andrew G. Matveenko a,1, Polina B. Drozdova a,1,2, Svetlana E. Moskalenko a,b, Oleg V. Tarasov a, Galina A. Zhouravleva a,c,*

A R T I C L E I N F O

Article history:
Received 26 November 2018
Received in revised form 6 January 2019
Accepted 18 January 2019
Available online 19 January 2019

A B S T R A C T

Termination of translation in eukaryotes is governed by two release factors encoded by the SUP45 and SUP35 genes in Saccharomyces cerevisiae. Previously, a set of mutations in these genes had been obtained. However, the exact sequence change associated with one mutation, sup35-222, was not identified by Sanger sequencing of the SUP35 region. Presented here are whole-genome sequencing data for the sup35-222 strain, data on copy number variation in its genome along with supporting pulse-field gel electrophoresis experiment data, and the list of single-nucleotide variations that differentiate this strain and its wild-type ancestor. One substitution upstream the SUP35 gene was located in a sequence corresponding to the Abf1-binding site. Data obtained
from the introduction of this variation from sup35-222 strain into a different wild-type strain, specifically, detection of a nonsense-suppressor phenotype accompanied by a decrease in the Sup35 protein level, are also presented in this article.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Biology
More specific subject area	Genetics, genomics, molecular biology (General)
Type of data	Tables, images, graphs, figures
How data was acquired	WGS was performed with Ion Torrent PGM. Yeast strain construction and analysis was performed using standard techniques.
Data format	Raw data
Experimental factors	Saccharomyces cerevisiae strains 222-1B-D1606, U-P5-A-GT671, and U-1-A-GT671
Experimental features	Whole genome sequencing of the 222-1B-D1606 strain with Ion Torrent PGM. Pulse-field Gel Electrophoresis of the DNA extracted from the 222-1B-D1606 strain. Analysis of reference genome coverage and detection of single-nucleotide variations from the obtained reads. In silico search for transcription factor-binding sites in the SUP35 promoter. Construction and phenotypic analysis of novel S. cerevisiae strain with mutant sup35-222 promoter.
Data source location	Dpt. of Genetics and Biotechnology, Saint-Petersburg State University, St. Petersburg, Russia
Data accessibility	Raw sequencing data is available from the NCBI SRA database under the accession number https://www.ncbi.nlm.nih.gov/sra/SRX1484451. Processed data are available from a public repository https://github.com/drozdovapb/PeterhofYeastHub (single-nucleotide variations are available at https://github.com/drozdovapb/PeterhofYeastHub/blob/master/sacCer3/222.vcf.gz, while the de novo assembled contigs can be accessed at https://github.com/drozdovapb/PeterhofYeastHub/blob/master/222_contigs.2bit. Tracks with SNVs in 222-1B-D1606 relative to the reference S. cerevisiae genome are available from UCSC genome browser within the Peterhof_yeasts track hub at [http://genome.ucsc.edu/cgi-bin/hgTracks?db=sacCer3&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chrIV:806387-811017&hgsid=700542643_mB1kL5N4AXLHzv4RcMwv26jmmt]. Other data are available with this article.
Related research article	Drozdova, P.B., Tarasov, O.V., Matveenko, A.G., Radchenko, E.A., Sopova, J.V., Polev, D.E., Inge-Vechtomov, S.G., Dobrynin, P.V., 2016. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strains of the Peterhof genetic collection. PLoS One. 11, e0154722. https://doi.org/10.1371/journal.pone.0154722
Value of the data

- Data on the role of Abf1-dependent transcriptional regulation in translational readthrough is useful for uncovering new mechanisms of translational fidelity control.
- Data on the whole genome sequencing of S. cerevisiae strain with nonsense-suppressor phenotype can be useful for the studies of translation, specifically, identification of mutations that accumulate in cells with high level of translational readthrough.
- Genome coverage data, which include the duplication of the region containing SUP35, can be used in studies of chromosomal rearrangements and their adaptive role.
- The mutation in the SUP35 promoter identified here is valuable for studies of transcription of the release factor genes as well as for the mechanisms of Abf1-derived regulation of transcription.
- The data on the phenotypic analysis of strains with substitutions in the SUP35 promoter can be useful for studies of [PSI⁺] prion and its maintenance during a decrease in the Sup35 protein level. It also can be used for the studies of termination of translation.

1. Data

Raw whole-genome sequencing data for the sup35-222 Saccharomyces cerevisiae mutant strain was produced with Ion Torrent PGM. The genome was then assembled with the obtained reads (assembly statistics are present in Table 1 and Table S1). Genome coverage analysis performed by aligning short reads to the reference S288C genome showed a duplicated region of the chromosome IV that included the SUP35 ORF (Fig. 1). Pulse field gel electrophoresis (PFGE) analysis was then performed to compare chromosome lengths in the mutant strain and its ancestor and thus find if the duplication was located on the same chromosome (Fig. 2). As the ancestor strain, 1B-D1606, had been sequenced previously, single nucleotide variations (SNVs) between 1B-D1606, 222-1B-D1606 and reference strain were compared (Table S2). One single-nucleotide variation upstream the SUP35 coding sequence was identified. This substitution destroys potential Abf1-binding site in the SUP35 promoter (Fig. 3). Introducing the same variation, as well as deletion of the Abf1-binding site, in the SUP35 promoter into another strain led to detection of nonsense suppressor phenotype (Fig. 4A), accompanied by a decrease in the Sup35 protein level (Fig. 4B).

2. Experimental design, materials, and methods

2.1. Sequencing and in silico analysis

The 1B-D1606 and 222-1B-D1606 strains were obtained and described previously [1,2]. Whole-genome sequencing was conducted with Ion Torrent PGM. Next generation sequencing and data analysis were performed as described earlier [3] with minor modifications. Genomic DNA was prepared with mechanical disruption of yeast cells [4]. SPAdes [5] and Quast [6] were used for the de novo genome assemblies.

Genome statistics	222-1B-D1606	1B-D1606
Number of contigs (> 500 bp)	854	480
Reference genome fraction (%)	94.12	94.157
Duplication ratio	1.013	1.006
Number of genes found	5771 + 441 part	6010 + 203 part
Largest alignment	139,569	165,926
Total aligned length, bp	11,559,970	11,499,891
N50	32,468	72,884
Reference	This work	[3]
novel genome assembly and estimation of assembly quality, respectively. Bowtie [7], qualimap [8], and UGene [9,10] were used to generate and analyze alignment of reads with the reference genome. The ggplot2 package [11] for R [12] was also used for coverage visualization. Samtools [13], vcf tools v1.0 [14] and snpEff v4.1 [15] were used for SNV calling and annotation. Positions with low quality (q < 30) and low coverage (DP < 3), as well as heterozygous indels and variations in the repeat regions, were filtered out. The difference between the two strains by SNVs relative to the S288C genome was assessed with bedtools-intersect [16]. Complete genome sequence of 1B-D1606 and its assembly statistics have been published previously [3]. Raw data for the 222-1B-D1606 genome sequencing are available from the NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra/SRX1484451), and the SNVs corresponding to 1B-D1606 and 222-1B-D1606 are available from UCSC genome browser (http://genome.ucsc.edu/cgi-bin/hgHubConnect#publicHubs under Peterhof_yeast_hub). The data on single nucleotide variations, as well as the de novo genome assembly of the 222-1B-D1606 strain, are also available at https://github.com/drozdovapb/PeterhofYeastHub (https://github.com/drozdovapb/PeterhofYeastHub/blob/master/sacCer3/222.vcf.gz and https://github.com/drozdovapb/PeterhofYeastHub/blob/master/222_contigs.2bit for SNV data and contigs, respectively).

Search for transcription factors that bind SUP35 promoter variants was carried out using oPOSSUM3.0 (http://opossum.cisreg.ca/oPOSSUM3). Consensus for the Abf1-binding site was downloaded from the JASPAR2018 database ([17]; http://jaspar.genereg.net/matrix/MA0265.1).

The mutation in the SUP35 promoter in 222-1B-D1606 was confirmed by Sanger sequencing of the PCR fragment amplified from genomic DNA of the strain with primers sup35_f (5′-CCAACCTACGGTAGAAA-3′) and SUP35_R (5′-GGATTGAATTGCTGCTGATAAC-3′). Sanger sequencing was performed
with ABI Prism 3500xl. All sequencing reactions were performed at the Research Resource Center “Molecular and Cell Technologies” of the Saint Petersburg State University.

2.2. Pulse field gel electrophoresis

Genomic DNA extraction for pulse field gel electrophoresis (PFGE) was performed in low melting point agarose according to the described method [18]. PFGE was run with the CHEF Mapper XA pulse field electrophoresis system (Bio-Rad) according to the manufacturer’s recommendations.

2.3. Yeast plasmid and strain construction

Standard media and yeast cultivation techniques were used [19]. The pRSU1 and pRSU2 plasmids [20] were used for expression of the SUP35 gene under its wild-type promoter. For expression of
under control of the mutant promoter, the pRSU1-222 plasmid was constructed by cloning PstI-MluI-restricted PCR fragment, which was obtained by amplifying the SUP35 5'-UTR and a part of ORF from 222-1B-D1606 genomic DNA, into the same sites of pRSU1, thus substituting the wild-type promoter sequence with the mutant one. Correct fragment insertion was confirmed by Sanger sequencing of the plasmid.

SUP35 regulated by its promoter with deletion of Abf1-binding site was introduced on the pNR-ΔABF1 plasmid[21]. The pRSU2 plasmid was substituted with pRSU1, pRSU1-222, or pNR-ΔABF1 via plasmid shuffling on 5-FOA medium[19] in the U-PS-A-GT671, or U-1-A-GT671 strains. These strains are derivatives of the GT671 strain (MATα ade1-14 his3 lys2 ura3-2 leu3,112 trp1 sup35::HIS3 [CEN LEU2 SUP35] [psi+] [pin+]), which is a kind gift from Y.O. Chernoff. U-P5-Δ-A-GT671 and U-1-A-GT671 strains, respectively. B. Sup35 (eRF3) protein level in wild-type and mutant strains. Proteins were extracted from clones with sup35-222 or wild-type promoter variants and processed as described in Protein analysis section.

SUP35 under control of the mutant promoter, the pRSU1-222 plasmid was constructed by cloning PstI-MluI-restricted PCR fragment, which was obtained by amplifying the SUP35 5'-UTR and a part of ORF from 222-1B-D1606 genomic DNA, into the same sites of pRSU1, thus substituting the wild-type promoter sequence with the mutant one. Correct fragment insertion was confirmed by Sanger sequencing of the plasmid. SUP35 regulated by its promoter with deletion of Abf1-binding site was introduced on the pNR-ΔABF1 plasmid[21]. The pRSU2 plasmid was substituted with pRSU1, pRSU1-222, or pNR-ΔABF1 via plasmid shuffling on 5-FOA medium[19] in the U-P5-Δ-A-GT671, or U-1-A-GT671 strains. These strains are derivatives of the GT671 strain (MATα ade1-14 his3 lys2 ura3-2 leu3,112 trp1 sup35::HIS3 [CEN LEU2 SUP35] [psi+] [pin+]), which is a kind gift from Y.O. Chernoff. U-P5-Δ-A-GT671 strain was selected after substituting SUP35-bearing plasmid for pRSU2 in L-P-A-GT671, a

Fig. 3. Alignment of SUP35 promoter sequences from 222-1B-D1606, its ancestor, and the reference strain (S288C).

Fig. 4. The data on the effects of the Psup35-222 and Psup35ΔAbf1 promoter variants on nonsense suppression and eRF3 abundance. A. SUP35 regulated by the wild-type promoter, in the initial strain (WT*) was replaced with SUP35 under control of either wild-type (WT, as a control) or mutant (222 or ΔAbf1) promoter. Shown are tenfold serial dilutions of representative clones spotted onto full (YEPD, 1/4YEPD) or selective (SC-Ade) media after 4 or 10 days of incubation, respectively. [PSI+] and [psi−] are U-P5-Δ-A-GT671 and U-1-A-GT671 strains, respectively. B. Sup35 (eRF3) protein level in wild-type and mutant strains. Proteins were extracted from clones with sup35-222 or wild-type promoter variants and processed as described in Protein analysis section.
MATα segregant which was obtained after mating GT671 with GT81-1C strain [22]. U-1-A-GT671 was selected in U-P-A-GT671 progeny as a clone that had spontaneously lost the [PSI+] prion.

2.4. Protein analysis

Protein extraction was performed using the modified alkaline lysis method [23]. SDS-PAGE, semi-dry transfer onto PVDF membrane and western blot were carried out using standard techniques [24]. Antibodies SE4291 [2], SE-45-2 [25] and ADH1A (LsBio, #LS-C68862) were used to detect Sup35, Sup45, and Adh1, respectively. ECL Select Western Blotting Detection Reagent (Amersham) was used for antibody detection, and images were acquired with GeneGnome (Syngene) hardware and software.

Acknowledgments

The authors are grateful to Prof. Thomas Petes and his group for their help in CHEF experiments and useful discussion, to Prof. Yuri O. Chernoff for the GT671 strain, and to Dr. Dmitrii Polev for Ion Torrent sequencing. Sequencing was performed at the Research Resource center “Molecular and Cell Technologies” of the Research Park of the Saint Petersburg State University. This work was supported by the State Research Program Grant 0112-2016-0015 (phenotypic characterization of sup35-222 mutant), and the Russian Science Foundation Grant 18-14-00050 (all other parts of the work).

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.01.042.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.01.042.

References

[1] S. Moskalenko, S. Chabelskaya, S. Inge-Vechtomov, M. Philippe, G. Zhouravleva, Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae, BMC Mol. Biol. 4 (2003) 1–15. https://doi.org/10.1186/1471-2199-4-2.

[2] S. Chabelskaya, D. Kiktev, S. Inge-Vechtomov, M. Philippe, G. Zhouravleva, Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal, Mol. Genet. Genom. 272 (2004) 297–307. https://doi.org/10.1007/s00438-004-1053-1.

[3] P.B. Drozdova, O.V. Tarasov, A.G. Matveenko, E.A. Radchenko, J.V. Sopova, D.E. Polev, S.G. Inge-Vechtomov, P.V. Dobrynin, Genome sequencing and comparative analysis of Saccharomyces cerevisiae strains of the Peterhof genetic collection, PLoS One 11 (2016) e0154722. https://doi.org/10.1371/journal.pone.0154722.

[4] A.G. Lada, E.I. Stepchenkova, I.S. Waisertreiger, V.N. Noskov, A. Dhar, J.D. Eudy, R.J. Boissy, M. Hirano, I.B. Rogozin, Y. I. Pavlov, Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase, PLoS Genet. 9 (2013) e1003736. https://doi.org/10.1371/journal.pgen.1003736.

[5] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A. D. Pyribelski, A.V. Pyshkin, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol. 19 (2012) 455–477. https://doi.org/10.1089/cmb.2012.0021.

[6] A. Gurevich, V. Saveliev, N. Vyahhi, G. Tesler, QUAST: quality assessment tool for genome assemblies, Bioinformatics 2 (2013) 1072–1075. https://doi.org/10.1093/bioinformatics/btt086.

[7] B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods 9 (2012) 357. https://doi.org/10.1038/nmeth.1923.

[8] K. Okonechnikov, A. Conesa, F. García-Alcalde, Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data, Bioinformatics 32 (2015) 292–294. https://doi.org/10.1093/bioinformatics/btv566.
[9] K. Okonechnikov, O. Golosova, M. Fursov, UGENE team. Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics 28 (2012) 1166–1167. https://doi.org/10.1093/bioinformatics/bts091.

[10] O. Golosova, R. Henderson, Y. Vaskin, A. Gabrielian, G. Grekhov, V. Nagarajan, A.J. Oler, M. Quiñones, D. Hurt, M. Fursov, Y. Huyen, Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses, PeerJ. 2 (2014) e644. https://doi.org/10.7717/peerj.644.

[11] H. Wickham, ggplot2: Elegant Graphics for Data Analysis, Springer Science & Business Media, 2009.

[12] R Core Team, R: A Language and Environment for Statistical Computing, 2017.

[13] H. Li, B. Handsaker, A. Wysoker, T. Ruan, N. Homer, et al., The sequence alignment/map format and SAMtools, Bioinformatics 25 (2009) 2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

[14] P. Danecek, A. Auton, G. Abecasis, C.A. Albers, E. Banks, M.A. DePristo, et al., The variant call format and VCFtools, Bioinformatics 27 (2011) 2156–2158. https://doi.org/10.1093/bioinformatics/btr330.

[15] P. Cingolani, A. Platts, L.L. Wang, M. Coon, T. Nguyen, L. Wang, S.J. Land, X. Lu, D.M. Ruden, A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: snps in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3, Fly 6 (2012) 80–92. https://doi.org/10.4161/fly.19695.

[16] A.R. Quinlan, I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics 26 (2010) 841–842. https://doi.org/10.1093/bioinformatics/btq033.

[17] A. Mathelier, O. Fornes, D.J. Arenillas, C.Y. Chen, G. Denay, J. Lee, et al., JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles, Nucleic Acids Res. 44 (2015) D110–D115. https://doi.org/10.1093/nar/gkv1176.

[18] H. Zhang, A.F. Zeidler, W. Song, C.M. Puccia, E. Malc, P.W. Greenwell, et al., Gene copy-number variation in haploid and diploid strains of the yeast Saccharomyces cerevisiae, Genetics 193 (2013) 785–801. https://doi.org/10.1534/genetics.112.146522.

[19] C. Kaiser, S. Michaels, A. Mitchell, Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, New York, 1994.

[20] K.V. Volkov, A.Y. Aksenova, M.J. Soom, K.V. Osipov, A.V. Svitin, C. Kurischko, et al., Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae, Genetics 160 (2002) 25–36.

[21] N.A. Ryabinkova, A.S. Borchsenius, S.G. Inge-Vechtomov, The influence of mutations at ATG triplets of the open reading frame SUP35 on viability of the yeast Saccharomyces cerevisiae, Russ. J. Genet. 45 (2009) 155–160. https://doi.org/10.1134/S1022795409020045.

[22] Y.O. Chernoff, G.P. Newnam, J. Kumar, K. Allen, A.D. Zink, Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion, Mol. Cell. Biol. 19 (1999) 8103–8112. https://doi.org/10.1128/MCB.19.12.8103.

[23] T. Zhang, J. Lei, H. Yang, K. Xu, R. Wang, Z. Zhang, An improved method for whole protein extraction from yeast Saccharomyces cerevisiae, Yeast 28 (2011) 795–798. https://doi.org/10.1002/yea.1905.

[24] J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, New York, 1989.

[25] D. Kiktev, S. Moskalenko, O. Murina, A. Baudin-Baillieu, J.P. Rousseau, G. Zhouravleva, The paradox of viable sup45 STOP mutations: a necessary equilibrium between translational readthrough, activity and stability of the protein, Mol. Genet. Genom. 282 (2009) 83–96. https://doi.org/10.1007/s00438-009-0447-5.