Toward Interpretable Machine Learning Models for Materials Discovery

Paulius Mikulskis, Morgan R. Alexander, and David Alan Winkler*

Machine learning (ML) and artificial intelligence (AI) methods for modeling useful materials properties are now important technologies for rational design and optimization of bespoke functional materials. Although these methods make good predictions of the properties of new materials, current modeling methods use efficient but rather arcane (difficult-to-interpret) mathematical features (descriptors) to characterize materials. Data-driven ML models are considerably more useful if more chemically interpretable descriptors are used to train them, as long as these models also accurately recapitulate the properties of materials in training and test sets used to generate and validate the models. Herein, how a particular type of molecular fragment descriptor, the signature descriptor, achieves these joint aims of accuracy and interpretability is described. Seven different types of materials properties are modeled, and the performance of models generated from signature descriptors is compared with those generated by widely used Dragon descriptors. The key descriptors in the model represent functionalities that make chemical sense. Mapping these fragments back on to exemplar materials provides a useful guide to chemists wishing to modify promising lead materials to improve their properties. This is one of the first applications of signature descriptors to the modeling of complex materials properties.

1. Introduction

Quantitative structure–property relationship (QSPR) methods have been highly successful in predicting useful properties of small molecules and, increasingly, more complex materials.\(^1\) Originally developed for drug and agrochemical discovery, these methods (also known as quantitative structure–activity relationships [QSARs]) were initially used to understand the underlying molecular interactions of drugs, particularly where the exact mechanisms of action were unclear or very complex. As the field evolved, QSPR modeling expanded to embrace essentially two broad aims: generating models with high property prediction power, usually at the expense of chemical interpretability, and explaining structure–property relationships where the interpretability of the model is the most important goal and generating accurate predictions for a diverse range of molecules which is secondary. After almost 60 years, these complementary goals are still not fully appreciated by practitioners. A recent article provides a detailed discussion on this topic.\(^2\) Until recently, the mathematical descriptors that were used to generate models meant that model predictive power and model interpretability remained essentially orthogonal.

QSPR models are generated using machine learning (ML) or other statistical methods, with neural networks and deep learning methods being particularly prominent currently. These very effective, data-driven methods have been enthusiastically adopted by many fields, including, recently, materials science.\(^1,3\) Rapid developments in technologies for automated synthesis and characterization of complex materials are providing rich data sets that are well matched to ML modeling. A recent comprehensive review

Dr. P. Mikulskis, Prof. M. R. Alexander, Prof. D. A. Winkler
School of Pharmacy
University of Nottingham
Nottingham NG7 2RD, UK
E-mail: d.winkler@latrobe.edu.au

Prof. D. A. Winkler
Monash Institute of Pharmaceutical Sciences
Monash University
Parkville 3052, Australia

Prof. D. A. Winkler
La Trobe Institute for Molecular Science
La Trobe University
Kingsbury Drive, Bundoora 3086, Australia

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/aisy.201900045.

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/aisy.201900045
describes how this field is evolving\cite{1} and how new deep learning methods have provided additional impetus to the field.\cite{4}

In a very similar way to modeling of small molecule drugs, QSPR can generate mathematical relationships between materials in a training data set (where their relevant molecular or physicochemical properties are represented by mathematical entities called descriptors) and some useful property of interest, such as the hydrogen uptake of a porous material,\cite{5} bacterial attachment to a polymer,\cite{4} or performance as a “green” corrosion inhibitor.\cite{7} The most important element in finding useful property models is how the microscopic/molecular and physicochemical properties of complex materials in a data set are described using mathematical descriptors. It has been shown that the quality and relevance of descriptors is the single most important factor in the success of modeling structure–property relationships in materials (and in small, organic, and bioactive molecules).\cite{8} The types of descriptors used to generate models are almost always more important than the type of the ML method used to find structure–property relationship models.

There are many kinds of descriptors: e.g., constitutional, topological, electronic, quantum chemical, and fingerprint. These have been developed over several decades for modeling the properties of pharmaceutical and agrochemical bioactive molecules and have been adopted by the materials science community more recently as the simplest way of describing complex materials. For example, the Dragon program\cite{9} can calculate \(\approx 5000\) molecular descriptors, some of which are easy to interpret, but the majority are quite arcane and almost impossible to understand in terms of chemical structure. It is becoming clear that more appropriate, specialized descriptors for diverse types of materials are urgently needed because materials are always more complex than individual small molecules, and models need to be interpretable if they are to provide guidance to chemists synthesizing new materials with improved properties. Having an easy-to-understand predictive model helps communicate findings to synthetic chemists and materials scientists and may provide insight into possible mechanisms underlying the properties of materials. Clearly, new types of descriptors must also allow models derived from them to make accurate quantitative predictions of useful materials properties, thus accelerating materials discovery and optimization.

A significant volume of research is now directed to this problem, with most effort being focused on the pharmaceutical arena. Recent reviews have described new types of descriptors for small molecules that have a higher degree of interpretability than traditional descriptors.\cite{10} In this article, we have used some of these promising descriptors to model a range of diverse materials property data sets. Our aim was to assess whether they have sufficient predictive power and interpretability to make significant impact on ML-based modeling of complex materials property data sets now appearing in increasing numbers in the literature.

Topological descriptors, generated from the chemical graph of a molecule or material, have attracted renewed attention as effective and informative descriptors. In their simplest form, they describe the number of atoms, atom types and hybridizations, bond types, paths, connectivities, etc. A recent and more refined class of topological descriptors, signature descriptors\cite{11} (now updated to handle stereochemistry\cite{12}), have been shown to be effective at building robust models and are more chemically interpretable than many other types of descriptors. They have been used successfully in a range of drug discovery applications due to their inherent ability to be mapped back to chemical structures to provide clear guidance to chemists as to which functionalities in molecules contribute to, or detract from, desired biological responses.\cite{13}

Here, we applied signature descriptors to modeling a range of properties of more complex functional materials. We demonstrate their ability to generate predictive and interpretable QSPR models using seven diverse materials data sets. We compare the prediction efficiency of these models to QSPR models generated by conventional descriptors reported in the literature or generated in our study. We also describe how signature descriptors can be mapped back into lead materials to guide future improvements of their properties. To our knowledge, this is one of the first signature descriptor applications in the field of complex materials property modeling.\cite{14}

2. Results

Seven data sets having diverse structures and properties were used to analyze the ability of signature descriptors to generate highly predictive models. These data sets were aqueous solubility (AQSOL)\cite{15} of low-molecular-weight organic molecules (an important pharmaceutical property), polymer water contact angle (WCA, a useful experimental measure of surface wettability), glass transition temperature \(T_g\) of polymers (a measure of polymer flexibility and processability), polymer fibrinogen adsorption (Fib) (ability of surfaces to attach proteins, measured by immunofluorescence),\cite{16} and attachment of three common hospital pathogens \(\text{Staphylococcus aureus} \) [SA], \(\text{Pseudomonas aeruginosa} \) [PA], and urapathogenic \(\text{Escherichia coli} \) [UPEC] to the surfaces of polymers (highly desirable for implantable and indwelling medical device coatings).\cite{17} Section 5 summarizes the seven data sets and the diverse chemical structures and properties that were used to analyze the ability of signature descriptors to generate robust, predictive models of these properties. Signature descriptors, also described in detail in Section 5, are generated from “signatures” of atoms in materials (polymers in this instance) or other molecules. They are representations of the connected environment of the atom up to a predefined depth \(d\). That is, signature descriptors are generated from all possible fragments in a molecule, enumerated at each atomic position, that contain atoms attached to it along paths up to length \(d\) (denoted as topological length \(d\)). This study represented polymer structures by their monomers, an approximation that has been shown to generate very good models of polymer structure–property relationships in published studies.\cite{1, 6, 18}

The statistics for linear and nonlinear models of the seven materials properties, generated from traditional molecular descriptors (the widely used Dragon package) and signature descriptors, are summarized in Table 1 and 2. The linear models used multiple linear regression (MLR) with an expectation maximization (EM) algorithm using a sparsity-inducing Laplacian prior to selecting optimal subsets of descriptors. This is referred to here as MLREM models. Details of the algorithm are listed in Section 5.

The results show that the models trained on signature descriptors are at least as accurate at predicting materials properties than
models trained on conventional, efficient, but arcane Dragon molecular descriptors. Differences between the standard errors of prediction (SEP) for properties of test set materials, calculated by signature and Dragon descriptors, were negligible for all data sets.

A major advantage of the signature descriptors is the ability to map them back onto molecules or materials in the data set to understand what molecular features increase or decrease the property under study. The identity and contributions of the most relevant signature descriptors depend on the property being modeled, whether linear regression or nonlinear models are used, and at what point an ML nonlinear response surface is considered. In the seven properties modeled in the following, we illustrate the most important descriptors by mapping back onto exemplar materials those that are most responsible for an increase or decrease in the modeled property.

2.1. Aqueous Solubility

AQSOL is a very important property for small organic drug candidates and is a very common property for benchmarking model and descriptor performance. There is a relationship between AQSOL and polar properties of molecules (usually described by the log of the octanol–water partition coefficient, logP), given by the General Solubility Equation. Contact angle is also often an important surface property for materials, such as polymers, used in biology and medicine. Contact angle is also dependent on polar properties of surfaces and is a relatively simple way to measure hydrophobicity and hydrophilicity.

Numerous models that predict AQSOL have been reported in the literature (see a previous study). Although small organic molecules are not normally thought of as complex materials, we use these data as a baseline test of the ability of signature descriptors to model this very important property for a very diverse data set with a high dynamic range of property values. The interpretability of the model is not as relevant for this property as for the others, as the chemical diversity of the training data set is high and AQSOL is not modulated by specific biological/protein target interactions, like most of the other data sets. Clearly, the AQSOL model derived from signature descriptors could predict the properties of the training and test set with good fidelity with r^2 values of 0.91 and 0.88 and standard errors of 0.62 and 0.72 logS for the training and test sets, respectively (see Figure 1). This is comparable with one of the most comprehensive and accurate AQSOL models in the recent literature trained on Dragon descriptors, where test set predictions had r^2 values of 0.90 and SEP values of 0.67 for almost 5000 small organic molecules. More recently, Raevsky et al. reported an AQSOL model for a smaller data set of 387 small organic compounds that predicted solubilities of compounds in the test set with r^2 values between 0.71 and 0.74 and SEP values of 0.72–0.77 logS. The predictions of the model trained on Dragon descriptors for this smaller data set are very similar to those of the signature descriptors models and the larger published solubility models. The small number of neurons in the hidden layer, and the relatively good performance of the MLR model (Table 1 and 2), suggests that the relationship between AQSOL and signature descriptors is relatively linear. Given the experimental uncertainties in AQSOL measurements, primarily the existence of polymorphs, and differences between kinetic and thermodynamic solubilities, the predictive power of these models is excellent.

Given the very high diversity of the small molecules in the data set, the fact that the signature descriptors chosen for the models was uniformly small, and there being nonspecific interactions involved in solubility, it was not appropriate to map the most relevant descriptors back to the constituent molecules in the

Table 1. Summary of MLREM model performance trained with signature descriptors in predicting training and test set properties. SEE for training set and SEP for the test set.

Data set	Signature	Dragon	r^2_{train}	SEE	r^2_{test}	SEP
AQSOL	258	82	0.61	0.34	0.61	0.83
PA	24	11	0.24	0.21	0.23	0.23
SA	15	13	0.19	0.17	0.17	0.17
UPEC	15	11	0.33	0.33	0.33	0.33
WCA	15	12	1.00	2.00	2.00	2.00
Fib	5	10	0.19	0.18	0.18	0.18
T_g	14	20	0.62	0.62	0.62	0.62

Table 2. Performance of BRANNGP models trained using signature descriptors on ability to recapitulate the properties of materials in the training and test sets. Pearson’s correlation coefficients for training and test sets r^2_{train} and r^2_{test}. Standard errors for training set SEE and test set SEP. N_{hidden} is the number of hidden layer neurons in the neural network, and N_{eff} is the number of effective parameters in neural network after regularization. Dragon descriptor model statistics for PA, SA, UPEC from Epa et al.[18a]

Data set	N_{hidden}	N_{eff}	r^2_{train}	r^2_{test}	SEE	SEP
AQSOL	4	2	0.95	0.88	0.48	0.39
PA	2	2	0.84	0.84	0.17	0.17
SA	3	3	0.85	0.85	0.17	0.17
UPEC	4	4	0.85	0.85	0.43	0.21
WCA	5	4	0.99	0.99	3.8	4.5
Fib	2	2	0.99	0.99	3.8	4.5
T_g	2	2	0.90	0.98	9	4
training set in this case. Table 3 lists the contributions various molecular fragments make to the MLR solubility model. Clearly, the more hydrophobic fragments reduce solubility and hydrophilic fragments increase solubility, consistent with the General Solubility Equation.

2.2. Pathogen Attachment

Materials that resist pathogen attachment are very useful for implantable and indwelling medical devices. We modeled pathogen attachment for three important hospital-acquired infection agents, SA, PA, and UPEC. Sparse feature selection methods\(^\text{[22]}\) reduced the number of descriptors from around 837 (signature) and 1645 (Dragon) to between 11 and 24, depending on the pathogen and descriptor set (Table 1 and 2). The abilities of the models derived from signature descriptors to predict pathogen attachment in training and test sets are summarized in Figure 2. Robust, predictive models with small SEP were obtained for attachment of all three pathogens to a large polymer library. As Table 2 shows, the accuracies of attachment predictions for the three pathogens are similar for models generated using signature descriptors and traditional Dragon descriptors.

The same data set was previously modeled by Epa et al.\(^\text{[18a]}\) using Dragon descriptors, and the statistics are reported in Table 1 and 2. Pathogen attachment models derived from signature descriptors required fewer neurons in the hidden layer (2–4) compared with (7–8) with the Dragon descriptors, although fewer Dragon descriptors (15–25) than signature descriptors (29–40) were required by models of PA, SA, and UPEC attachment to polymers.

The \(r^2\) values for the prediction of the training set data for the PA, SA, and UPEC pathogen attachment models derived from signature descriptors were 0.88, 0.85, and 0.89 logF, similar to or better than the standard errors of estimation (SEE) values of 0.88, 0.87, and 0.58 logF for the models reported by Epa et al. The SEE for the training set predictions for the signature descriptor-derived models are 0.17, 0.12, and 0.30 logF from the literature models using Dragon descriptors for PA, SA, and UPEC, respectively.

Crucially, the \(r^2\) values for prediction of pathogen attachment to polymers in the test sets by the signature descriptor-based models were 0.84, 0.80, and 0.70, similar to values of 0.87, 0.85, and 0.73 logF reported by Epa et al. for PA, SA, and UPEC, respectively. SEP values were 0.20, 0.15, and 0.39 logF for models trained on signature descriptors; again, similar SEP values for the literature models derived from Dragon descriptors were 0.16, 0.12, and 0.48 logF. As the UPEC attachment model is generated from the smallest data set with higher experimental error, it is more sensitive to how the test and training sets are selected.

As Table 4 shows, the specific chemical fragments with greatest influence on attachment are similar for all three pathogens. The magnitude of the contribution to attachment varies for each species, but similar types of chemistries show up consistently as favoring or disfavoring attachment and biofilm formation. This is particularly evident with PA and SA, which have more similar signature profiles than UPEC. Previous studies on these bacteria that generated a single multipathogen model showed that PA and SA behave similarly, whereas UPEC has significantly weaker attachment to polymer libraries. Mapping back these fragments onto exemplar polymers illustrates the higher chemical interpretability of the fragments.

2.3. Water Contact Angle (WCA)

WCA measured in air is an important parameter for determining the wettability of surfaces and can be used to predict a selection of performance attributes, such as protein adhesion to synthetic
and biological substrates. As Table 1 and 2 show, this property can be predicted with high fidelity by models trained with Dragon and signature descriptors. WCAs for materials in the test set can be predicted with errors (SEP) of 1–2 \(^{1/2}\) by the nonlinear Bayesian regularized artificial neural networks with a Gaussian prior (BRANNGP) models and within 2–3 \(^{1/2}\) by linear models trained on either descriptor class. For comparison, Smith et al. published an ML model of WCA using the same data but different types of descriptors.\(^{23}\) Their model predicted the WCA of polymers in the training set with an \(r^2\) value of 0.95 and of polymers in the test set with an \(r^2\) value of 0.91 (no standard errors were provided in this article). This compares with values of 0.99 and 0.95 for models calculated using signature descriptors in this work. The quality of the prediction of WCAs of polymers in the training and tests sets is shown in Figure 3.

The contributions of the most important signature descriptors to the contact angle models are shown in Table 5. Again, and broadly, molecular fragments containing more polar fragments (e.g., ester, polyethylene glycol (PEG), and carboxylic acid) reduce the contact angle, and those that are more hydrophobic

Figure 2. Measured vs predicted pathogen attachment (logF) training (left panels) and test set (right panels) polymers by the neural network model using signature descriptors. Pathogen attachment predictions for a) PA, b) SA, and c) UPEC.
Table 4. Signature descriptors with the greatest impact on pathogen attachment to polymer surfaces, negative MLR coefficients reduce attachment, and positive MLR coefficients increase attachment. The blue boxes show where the significant fragment is located in an example monomer.

Descriptor	PA weight	SA weight	UPEC weight	Exemplar
C(HHCC)	–	–	0.26	![Example Exemplar](image)
HC(HC(HH(C(HH(COH))O(C(C'O))))	-0.37	-0.14	-0.20	![Example Exemplar](image)
C=O	–	–	0.18	![Example Exemplar](image)
O(HC(HHC(CCC)))	-0.31	-0.18	–	![Example Exemplar](image)
C(HHC)C(HHC)	-0.30	-0.19	-0.10	![Example Exemplar](image)
HC(COO)	-0.24	-0.10	-0.14	![Example Exemplar](image)
C(HHHO)	-0.22	-0.14	–	![Example Exemplar](image)
O(C(C=C(C=C=O))	-0.16	-0.30	0.12	![Example Exemplar](image)
C(H=C(HC))C(H=C(CC))	-0.15	-0.35	–	![Example Exemplar](image)
Table 4. Continued.

Descriptor	PA weight	SA weight	UPEC weight	Exemplar
C(C≡C)C(O=O)	-0.12	-0.07	-0.30	![Exemplar Image]
HO	0.04	0.29	-	![Exemplar Image]
C(HHO(C(HHC))C(HHO(C(HHC)))	0.00	-	0.16	![Exemplar Image]
HC(HC(C(HHC)C(HHO)C(HHO))O(C(C≡O)))	0.22	0.42	-	![Exemplar Image]
N	0.29	0.14	0.65	![Exemplar Image]
C(H=CH=CH(C=O))	-	0.48	-	![Exemplar Image]
HC(H(HHO)O(H))	0.25	-	0.15	![Exemplar Image]

Figure 3. Prediction of WCAs of polymers (‘’) in training set (left) and test set (right) by the neural network model using signature descriptors.
Table 5. Signature descriptors with the greatest impact on WCA, negative MLR coefficients reduce WCA, and positive MLR coefficients increase WCA. The blue boxes show where the significant fragment is located in an example monomer.

Descriptor	Weights	Exemplar/Description
C(C)C(O)	-0.18	![Image](image1.png)
C(O)C(O)	-0.13	![Image](image2.png)
C(C(C(C)))C(C(C(O═O)))	-0.13	![Image](image3.png)
C(CCC)	-0.11	![Image](image4.png)
C(C(C))C(C(C(O)))	0.26	![Image](image5.png)
C	0.95	Aliphatic carbon count
(long-chain alkyl or alkyl ether) increase it, in accordance with chemical intuition. The very significant contribution of the C signature (the number of aliphatic carbon atoms) also correlates with the role hydrophobicity plays in WCA.

2.4. Fibrinogen Attachment

Surface chemistry, topography, and wettability are important materials properties controlling attachment of proteins to synthetic surfaces, such as nanoparticles or synthetic polymers, thereby modulating their interactions with biology. Fibrinogen is a prototype protein used to indicate the degree of affinity of synthetic materials for proteins. As Table 1 and 2 show, the signature descriptors generated robust models with very high prediction accuracy for materials in the training and test sets, comparable in prediction accuracy for the test set to models trained using traditional Dragon descriptors. Like WCA, fibrinogen attachment appears to be relatively easy to predict, as the neural network model was quite sparse, using only five signature descriptors and two nodes in the hidden layer. The statistics for the prediction of the training and test sets were very good with \(r^2 \) values of 0.98 and 0.96, respectively, and SEE values of 4.5\% for the training set and 6.5\% for the test set. This is very similar to test set SEP values of 3.8\% (training set) and 5.8\% (test set) SEP values for models trained using Dragon descriptors. For comparison, Smith et al. reported a QSAR model of fibrinogen attachment using the same data and different descriptors that predicted the % attachment to polymers in the training set with an \(r^2 \) value of 0.86 and to polymers in the test set with an \(r^2 \) of 0.76. No SEP were reported. The performance of the BRANNGP model, trained using signature descriptors, in predicting the properties of polymers in the training and test set, is shown in Figure 4.

The signature descriptors that contribute most to the fibrinogen attachment model reveal a more subtle structure–activity story than the WCA and AQSOL models (Table 6). Long-chain fatty-acid moieties (signature C(C(C))O) have the greatest impact on reducing the attachment (after the relatively uninformative signature counting the number of aliphatic carbon atoms, again a surrogate for lipophilicity). There are only two key signatures that make the largest contribution to the increase in protein attachment, short ether or ester fragments, and their slightly longer branched versions.

2.5. Glass Transition Temperature (\(T_g \))

The glass transition temperature is a fundamental property of polymers that relates to their processability. Previous studies have shown that molecular flexibility is an important factor controlling the \(T_g \). While signature descriptors do not encode molecular flexibility explicitly, the bonding in some fragments may implicitly code for a degree of flexibility (e.g., as the number of single bonds in the fragment). It might be expected, in this specific case, that including a more direct measure of molecular flexibility (e.g., number of rotatable bonds, \(N_{rot} \)) in the descriptors used in the model may improve the performance on the test set. Using signature descriptors alone generates models that predict the training set with an \(r^2 \) value of 0.81 and SEE of 8\% for the training set predictions and \(r^2 \) value of 0.68 and SEP value of 11\% for the test set predictions. When a descriptor encoding molecular flexibility, \(N_{rot} \), is added to the models, their prediction accuracy improves markedly. The training and test set \(r^2 \) values increase to 0.98 and 0.96, and standard errors fall to 3\% and 4\%, respectively. As with fibrinogen attachment and WCA, Smith et al. published an ML model of \(T_g \) using the same data but different types of descriptors. Their model predicted the \(T_g \) of polymers in the training set with an \(r^2 \) value of 0.96 and of polymers in the test set with an \(r^2 \) value of 0.95 (no standard errors were provided). The measured versus predicted values of \(T_g \) for both sets from the BRANNGP model are summarized in Figure 5.

The signature descriptors making the largest positive or negative contributions to \(T_g \) are listed in Table 7. It is clear that fragments with larger numbers of rotatable bonds (PEGs and longer-chain alkyl ethers) reduce the \(T_g \) value, whereas branched fragments and those able to undergo inter- or intramolecular interactions by hydrogen bonding, ionic interactions, etc. (short dicarboxylic acids and short branched ethers or esters) will tend to increase the \(T_g \).
Table 6. Signature descriptors with the greatest impact on fibrinogen attachment, negative MLR coefficients reduce attachment, and positive MLR coefficients increase attachment. The blue boxes show where the significant fragment is located in an example monomer.

Descriptor	Weights	Exemplar
C	−0.81	
C(C(C))C(O=O)	−0.25	
C(CO)	0.12	
C(CC)C(O)	0.27	
3. Discussion

We wished to determine how effective signature descriptors were in modeling the important properties of biomaterials. Improved descriptors for this task should not only be effective in making robust quantitative predictions of important biomaterials properties, but also be more chemically intuitive and interpretable than those commonly used to build ML models. We evaluated the potential of signature descriptors to solve this important issue in materials science using seven data sets with different measured properties. Six data sets were taken from biomaterials studies, and the seventh, the AQSOL data set, was used as a well-studied benchmark.

The AQSOL data set is composed of small molecules with a wide range of chemotypes. Even a small neural network, having just two hidden layer neurons, trained using signature descriptors had better r^2 and slightly smaller standard errors than those previously reported.\(^\text{15,21}\) Comparing the neural network (BRANNGP) results derived using both types of descriptors, we see that use of Dragon descriptors required a more complicated neural network with four neurons in the hidden layer. Both models have excellent r^2 values for both training and test sets and similar standard errors. The Dragon model SEE of 0.48 logS and SEP of 0.73 logS and signature descriptor model SEE of 0.39 logS and SEP of 0.65 logS indicate that both models accurately predict the solubilities of molecules in the data set.

The pathogen attachment data set was collected from copolymer microarrays generated from 22 acrylates and methacrylate monomers combinatorially copolymerized to generate 576 unique materials. Models trained on both types of descriptors require the same number of neurons in the hidden layer, but the signature descriptor models required a larger number of effective parameters than those trained using Dragon descriptors. The training and test set r^2 were similar except in the UPEC case where the model derived from signatures has a training set r^2 of 0.89 compared with 0.58 for the Dragon model, although the test set standard errors are similar. As UPEC has 86 data points, this could be due to chance based on which data points ended up in training and test sets. The standard errors are similar across all three pathogen models for models trained with both types of descriptors. This demonstrates that the signature descriptors are predictive as Dragon descriptors but, by their nature, should be more interpretable.

The T_g, WCA, and fibrinogen attachment data sets were generated for 112 copolymers synthesized from acid and diphenol moieties. The WCA model derived using signature descriptors had very similar metrics to that generated using Dragon descriptors except the latter required five neurons in the hidden layer compared with four for the signature descriptor-based model. The model trained on signature descriptors required a larger number of effective parameters (41) in the model than the model trained using Dragon descriptors (15). The fibrinogen adsorption model’s predictive performance was comparable for both descriptor sets, but the model trained on signature descriptors again required more effective parameters. The biggest difference between models generated from the two type of descriptors was with glass transition temperature models. The signature-based model had similar r^2 values for the training and test sets to those for models trained on Dragon descriptors. The standard errors were significantly lower for models trained on signature descriptors than for those trained on Dragon descriptors, with 6° and 9.0°, respectively, for the model generated using Dragon descriptors. Overall, signature-based models have very similar predictive performance compared with models obtained using Dragon descriptors.

Nonlinear neural network (BRANNGP) models had higher predictive power than the linear (MLREM) models. The importance of descriptors to the models was evaluated from the MLR coefficients in each model and, for the neural network models, by calculating partial derivatives of the modeled property with respect to the descriptors, as described in the Experimental Section. We found that the MLR coefficients and the partial derivatives of each descriptor with respect to the modeled properties were highly correlated (r^2 values between 0.85 and 0.99), so here we use the MLR coefficients for the model interpretations (partial derivatives are in Table S1, Supporting Information).

We describe the influence of the signature descriptors that contribute most, positively or negatively, to the models.
Table 7. Signature descriptors with the greatest impact on T_g, negative MLR coefficients reduce T_g, and positive MLR coefficients increase T_g. The blue boxes show where the significant fragment is located in an example monomer.

Descriptor	Weights	Exemplar
C	−0.56	Total carbon count
C(O)C(O)	−0.29	
C(C)O(C(C))	−0.18	
C(C)C(C(O)))	−0.14	
C(C(O=O))C(C(O=O))	0.18	
C(CC)C(O)	0.19	
pathogen data set results showed that there are often a number of signatures or molecular features that are important for attachment or antiattachment across the range of pathogens. This is particularly true for PA and SA, which have ≈70% of the most important molecular signatures in common, whereas only ≈30% of the most important signatures are common to all three pathogens. The top five molecular fragments contributing to the nonattachment of PA are short-chain n-alkyl chains C(HHC)(HHC), hydroxyalkyl groups, methoxy groups, HC(COO). These fragments are associated with monomers having saturated and unsaturated rings and longer and more sterically crowded aliphatic chains. The top three fragments promoting attachment of PA (pro-attachment) are the number of nitrogen atoms, the hydroxy-PEG fragment, and a specific molecular fragment . These signatures represent measures of the hydrogen bond donor and acceptor properties of the polymer and also contribute to its hydrophilicity.

The top three SA antiattachment signatures are phenyl, short-chain alkyl, and fragment of the phenyl ester moiety O(C(C(C=C) C(C==O)). The remaining signatures have smaller derivatives and MLR coefficients. The top three fragments promoting attachment of SA monomers are the number of nitrogen atoms, number of phenoxy groups, and number of hydroxyl groups, similar to the PA attachment model signatures. This suggests that hydrogen bonding and hydrophilicity play important roles in bacterial attachment of SA, such as with PA.

The three molecular signatures that contribute most strongly to antiattachment of UPEC are fragments of the phenyl ester moiety O(C(C=C) C(C==O)), short-chain alkyl, and as with the other two pathogens. Here, as with PA antiattachment fragments, those with sterically crowded oxygen atoms seem to decrease attachment to the polymer. The five fragments promoting UPEC attachment (pro-attachment) are the number of nitrogen atoms, short ethylene glycol chains, and the hydroxy-substituted short glycol chain . Here, as in the other two models, the N fragment indicates increased pathogen attachment to polymers. The other fragments have hydrogen bond donors and acceptors. This is consistent with findings of the previous two models discussed earlier.

The signature descriptors that most strongly influenced WCA were the total number of carbon atoms, long-chain alkyl esters, and short-chain and branched alkyl esters. As the polarity of the polymer surface is known to strongly affect the contact angle and wetting, it is unsurprising that the total carbon atom count and long-chain alkyl esters promoted increased contact angles. Conversely, more polar signatures associated with short-chain esters reduced the contact angle.

The fibrinogen adsorption model is particularly simple, with only four signatures contributing to most of the increase or decrease in protein loading on the surfaces. The total number of carbon atoms (correlates roughly with lipophilicity) was the most significant contributor to the reduction in protein binding. Long-chain carboxylic acid signatures (esters in the polymer) were also associated with lower protein attachment, whereas short-chain alkyl esters favored binding of fibrinogen.

The analysis of the signatures for shows that those with high flexibility contribute strongly to the reduction in polymer . This is also seen in the dramatic improvement on the model when a descriptor counting the number of rotatable bonds in the monomers, a simple surrogate for molecular flexibility, was added to the model.

4. Conclusions

We have shown that signature descriptors generate robust and predictive models for a relatively diverse range of polymer properties relevant to their biological applications. ML-based models trained using traditional but hard-to-interpret molecular descriptors and molecular signature descriptors exhibited similar prediction accuracies for the structure–property relationships models studied. The signature descriptors have the advantage of more direct molecular interpretability as the most important signatures can be easily mapped back onto exemplar materials. This provides valuable guidance for materials scientists planning synthesis of materials with improved properties. Signature descriptors provide a useful way to break the accuracy/interpretability nexus that has held back wider use of ML methods for design of materials for biological applications. We anticipate that signature descriptors or methods for generating descriptors by fragmenting materials, such as those reported by Isayev et al. for crystalline materials, will be more broadly applicable than just to polymers and will make elucidation of useful QSPRs across broader classes of materials achievable.

5. Experimental Section

Data Sets: Seven data sets were modeled in this study: AQSOL,[15] WCA, glass transition temperature (Tg), fibrinogen adsorption (Fib),[16] and attachment of three common hospital pathogens (SA, PA, and UPEC).[17] The structures of the 112 polyarylates screened for fibrinogen attachment, air–water contact angle, and glass transition temperature are shown in Figure 6.[18] The polymer library pathogen attachment data set contained data for 496 copolymers and homopolymers from Hook et al.[17,19] The copolymers were formed by combining monomers 1–16 (Figure 7) with monomers A–F in volume ratios from 10% to 30% in 5% steps. The data set sizes, partitioning of data into training sets used to generate the models and test sets used to quantify model predictivities of the
properties in each data set, are shown in Table 8. Model training sets contained 80% of the data and test sets 20% of the data, selected using k-means clustering. Some data sets are available in the cited publications, and the remainder is available at http://cheminformatics.org/datasets/index.shtml.

The bacterial attachment of SA, PA, and UPEC was measured using the fluorescence of bacteria transformed with green fluorescent protein. The number of bacteria on the spot was proportional to the brightness of the green fluorescence. As the fluorescence spanned several orders of magnitude, we modeled the logarithm of the fluorescence, logF. Some spots were below the level of detection, so were omitted, especially for the UPEC data set, that exhibited markedly lower attachment than the other pathogens, and the fibrinogen attachment.

Signature Descriptors: We used signature descriptors to model the small molecule (AQSOL) and materials physical and biological properties. A brief description of how signature descriptors are generated is provided as follows; more detailed descriptions are provided in the key signature descriptor publications.[11,12,26] The signature of an atom in a polymer (in this instance) is a representation of the atom’s connected environment up to a predefined depth d. Essentially, signature descriptors are all possible fragments in a molecule, enumerated at each atomic position, that contain atoms attached to it along paths up to length d (a topological length d). This process for generating molecular signature descriptors is shown in Figure 8. As can be readily appreciated, if these types of descriptor are effective at generating strong predictive models of properties, then the most and least beneficial molecular features can be mapped back onto prototype molecules in the data set to provide guidance for synthesis of materials with improved properties. The signature descriptor approach bears some similarity to the earlier molecular hologram.
Table 8. Summary of data sets.

Data set	Final data set size	Number of signature descriptors	Number of Dragon descriptors	Training set size	Test set size	Modeled property
AQSOL	1144	19 714	1505	913	229	LogS
P. aeruginosa attach (PA)	476	837	1645	381	95	Log fluorescence
S. aureus attach (SA)	478	837	1645	382	96	Log fluorescence
UPEC attachment	86	837	1645	69	17	Log fluorescence
WCA	112	372	254	90	22	% attachment
Fibronectin attach (Fib)	45	372	254	36	9	% attachment
Glass transition temperature \((T_g) \)	112	372	254	90	22	°C

*Relative to polypropylene control.

Copolymer descriptors were calculated from the ratio of two monomers, using a linear combination rule shown to be useful in prior studies.\(^{19a,b}\) For the pathogen attachment data set, a pool of 837 signature descriptors was calculated. AQSOL used an initial pool of 19 714 signature descriptors, and WCA, \(T_g \), and fibrinogen data sets used an initial pool of 372 signature descriptors. Models were also generated using Dragon descriptors used in published models (where available). The initial pool of Dragon descriptors was 1505 (AQSOL), 254 (T_g, Fib, and WCA), and 1645 (PA, SA, and UPEC). The most relevant subsets of these descriptors, chosen using sparse feature selection methods (see in the following), were used to construct the final models for each property. As \(T_g \) is known to correlate strongly with molecular flexibility, we included the number of rotatable bonds as a descriptor for the \(T_g \) model.

Feature Selection: The most relevant descriptors were identified using an efficient sparse linear feature selection method, MLREM.\(^{22}\) This is a Bayesian method that uses a sparse (Laplacian) prior to eliminate uninformative or low-relevance descriptors by compressing them to zero. It is an L1 feature selection method similar to the popular least absolute shrinkage and selection operator (LASSO) method.\(^{26}\) The sparsity of model was varied by altering the \(\beta \) parameter, and linear regression with the lowest SEP for the test was selected as the model with optimum sparsity. Feature significance was encoded by sizes and magnitudes of the regression coefficients for each descriptor. Descriptors identified using the MLREM feature selection procedure were used to train nonlinear neural network regression models.

Bayesian Regularized Artificial Neural Networks with a Gaussian Prior (BRANNGP): BRANNGP, which minimizes overfitting and generates optimal predictions, were also used to model the data sets. Regularization generates models with high degrees of robustness (but consistent with the data quality) and prunes the number of effective weights in the neural network. This generates ML models that are relatively insensitive network architectures (the number of hidden layer modes). The neural networks comprised three layers: an input layer with a neuron for each feature used, a single hidden layer containing between two and eight neurons (generally two and three), and output layer with a single node representing the property being modeled. The input and output nodes used linear transfer functions and the hidden layers a sigmoidal transfer function. The Bayesian regularization prunes the weights to an effective number of parameters \((N_{eff}) \) for the models, which asymptote to a constant number as the number of hidden layer nodes is increased above the minimum required.

Feature significance (parametric sensitivity) for ML models was evaluated by generating the partial derivative of the response variable \(a \) with respect to the descriptor at a position on the response surface close to the response variable maximum. This was achieved by inducing a small change of 0.01 to each normalized descriptor value \(d \) in turn, with the remaining descriptors kept fixed. The difference between original predicted and perturbed predicted property value obtained from neural network (NN) allowed the partial derivative \(\delta = \frac{\Delta a}{\Delta d} = \frac{a_1 - a_0}{d_1 - d_0} \) to be calculated.
Supporting Information

Supporting Information is available from the Wiley Online Library or from the author. Data for this manuscript can be accessed at the University of Nottingham Research Data Management Repository.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (grant number EP/N006615/1) and the Wellcome Trust (grant number 085245).

Conflict of Interest

The authors declare no conflict of interest.

Keywords

interpretability, machine learning, materials designs, molecular descriptors, structure–property relationships

Received: June 12, 2019
Revised: September 18, 2019
Published online: October 14, 2019

[1] T. Le, V. C. Epà, F. R. Burden, D. A. Winkler, Chem. Rev. 2012, 112, 2889.
[2] T. Fujita, D. A. Winkler, J. Chem. Inf. Model. 2016, 56, 269.
[3] a) J. E. Gubernatis, T. Lookman, Phys. Rev. Mater. 2018, 2, 120301; b) Y. Liu, T. Zhao, W. Ju, S. Shi, J. Mater. 2017, 3, 159; c) J. Schmidt, M. R. G. Marques, S. Botti, M. A. L. Marques, Comput. Mater. 2019, 5, 83.
[4] J. S. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, V. Svetnik, J. Chem. Inf. Model. 2015, 55, 263.
[5] A. W. Thornton, C. M. Simon, J. Kim, O. Kwon, K. S. Deeg, K. Konstas, S. J. Pas, M. R. Hill, D. A. Winkler, M. Haranczyk, B. Smit, Chem. Mater. 2017, 29, 2844.
[6] P. Mikulski, A. L. Hook, M. H. Alexander, D. A. Winkler, ACS Appl. Mater. Interfaces 2018, 10, 139.
[7] D. A. Winkler, M. Breedon, P. White, A. E. Hughes, E. D. Sapper, I. Cole, Corros. Sci. 2016, 106, 229.
[8] a) C. Y. Shao, S. Z. Chen, B. H. Su, Y. J. Tseng, E. X. Esposito, A. J. Hopfinger, J. Chem. Inf. Model. 2013, 53, 142; b) D. A. Winkler, T. C. Le, Mol. Inf. 2017, 36, c) A. Cherkasov, E. N. Muratov, D. Fourches, A. Varnek, I. I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y. C. Martin, R. Todeschini, V. Consonni, V. E. Kuz'min, R. Cramer, R. Benigni, C. Yang, J. Rasmussen, L. Terfloth, J. Gasteiger, A. Richard, A. Tropscha, J. Med. Chem. 2014, 57, 4977.
[9] A. Mauri, V. Consonni, M. Pavan, R. Todeschini, Match 2006, 56, 237.
[10] P. Polishchuk, J. Chem. Inf. Model. 2017, 57, 2618.
[11] a) C. J. Churchwell, M. D. Rintoul, S. Martin, D. P. Visco, A. Kotu, R. S. Larson, L. O. Sillerud, D. C. Brown, J. L. Faulon, J. Mol. Graphics Modell. 2004, 22, 263; b) J. L. Faulon, C. J. Churchwell, D. P. Visco, J. Chem. Inf. Comp. Sci. 2003, 43, 721; c) J. L. Faulon, D. P. Visco, R. S. Pophale, J. Chem. Inf. Comp. Sci. 2003, 43, 707.
[12] P. Carbonell, L. Carlsson, J. L. Faulon, J. Chem. Inf. Model. 2013, 53, 887.
[13] a) D. S. Chekmarev, V. Kholodovych, K. V. Balakin, Y. Ivanenkov, S. Ekins, W. J. Welsh, Chem. Res. Toxicol. 2008, 21, 1304; b) J. J. F. Chen, D. P. Visco, Chem. Eng. Sci. 2017, 159, 31; c) J. D. Jackson, D. C. Weis, D. P. Visco, Chem. Biol. Drug Des. 2008, 72, 540; d) D. C. Weis, D. P. Visco, Comput. Chem. Eng. 2010, 34, 1018; e) D. C. Weis, D. P. Visco, J. L. Faulon, J. Mol. Graphics Modell. 2008, 27, 466.
[14] W. M. Brown, S. Martin, M. D. Rintoul, J. L. Faulon, J. Chem. Inf. Model. 2006, 46, 826.
[15] J. S. Delaney, J. Chem. Inf. Comp. Sci. 2004, 44, 1000.
[16] N. Weber, D. Bolikal, S. L. Bourke, J. Kohn, J. Biomed. Mater. Res. A 2004, 68a, 496.
[17] A. L. Hook, C. Y. Chang, J. Yang, J. Luckett, A. Cockayne, S. Atkinson, Y. Mei, R. Bayston, D. J. Irvine, R. Langer, D. G. Anderson, P. Williams, M. C. Davies, M. R. Alexander, Nat. Biotechnol. 2012, 30, 868.
[18] a) V. C. Epà, A. L. Hook, C. Chang, J. Yang, R. Langer, D. G. Anderson, P. Williams, M. C. Davies, M. R. Alexander, D. A. Winkler, Adv. Funct. Mater. 2014, 24, 2085; b) V. C. Epà, J. Yang, Y. Mei, A. L. Hook, R. Langer, D. G. Anderson, M. C. Davies, M. R. Alexander, D. A. Winkler, J. Mater. Chem. 2012, 22, 20902; c) P. M. Khan, K. Roy, SAR QSAR Environ. Res. 2018, 29, 935; d) A. Afantitis, G. Melagraki, H. Sarimveis, P. A. Koutentis, J. Markopoulous, O. Iglesissi-Markopoulou, Polymer 2006, 47, 3240.
[19] N. Jain, S. H. Yalkowsky, J. Pharm. Sci. 2001, 90, 234.
[20] A. J. Urquhart, M. Taylor, D. G. Anderson, R. Langer, M. C. Davies, M. R. Alexander, Anal. Chem. 2008, 80, 135.
[21] M. Salahinejad, T. C. Le, D. A. Winkler, Mol. Pharm. 2013, 10, 2757.
[22] F. R. Burden, D. A. Winkler, QSAR Comb. Sci. 2009, 28, 645.
[23] R. Smith, V. Khodolovych, D. Knight, J. Kohn, W. J. Welsh, Polymer 2005, 46 4296.
[24] O. Isayev, C. Osse, C. Toher, E. Gossett, S. Curtarolo, A. Tropsa, Nat. Commun. 2017, 8, 15679.
[25] A. L. Hook, C. Y. Chang, J. Yang, S. Atkinson, R. Langer, D. G. Anderson, M. C. Davies, P. Williams, M. R. Alexander, Adv. Mater. 2013, 25, 2542.
[26] J. L. Faulon, M. J. Collins, R. D. Carr, J. Chem. Inf. Comp. Sci. 2004, 44, 427.
[27] a) D. A. Winkler, F. R. Burden, Quant. Struct.-Act. Relat. 1998, 17, 224; b) T. Hurst, T. Heritage, presented at 213th ACS Natl. Meeting, San Francisco, CA, American Chemical Society, Washington DC 1997.
[28] G. Landrum, in RDKit: Open-Source Cheminformatics, 2010, http://www.rdkit.org.
[29] R. Tibshirani, J. R. Stat. Soc., Ser. B 1996, 58, 267.