Unraveling the bacterial diversity of Cangar Hot Spring, Indonesia by Next Generation Sequencing of 16S rRNA gene

ALMANDO GERALDI1,2,* CHIA CHAY TAY3, NI'MATUZAHROH1,2, FATIMAH1,2, WAN NURHAYATI WAN HANAFI1

1Department of Biology, Faculty of Science and Technology, Universitas Airlangga. Jl. Mulyosari, Surabaya 60115, East Java, Indonesia. Tel. +62-31-5936501, Fax: +62-31-5926804, *email: almando.gerald@fst.unair.ac.id
2University-Center of Excellence-Research Center for Bio-Molecule Engineering, Universitas Airlangga Jl. Mulyosari, Surabaya 60115, East Java, Indonesia
3Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM). Shah Alam, Selangor 40450, Malaysia

Abstract. Geraldi A, Tay CC, Ni’matuzahroh, Fatimah, Hanaﬁ NW. 2021. Unraveling the bacterial diversity of Cangar Hot Spring, Indonesia by Next Generation Sequencing of 16S rRNA gene. Biodiversitas 22: 4060-4066. This study is the first attempt at using the Next Generation Sequencing (NGS) method with 16S rRNA to understand the bacterial community structure in an Indonesian hot spring. This study aims to unravel the bacterial diversity of the Cangar Hot Spring as one of the most explored natural hot springs in East Java, Indonesia. We found Proteobacteria and Bacteroidetes as the two most abundant phyla. We discovered the first occurrence of genera Cloacibacterium and Methylobacillus in the hot spring ecosystem, which was the most dominant genera at Cangar Hot Spring. We also found several potential bacteria for bioindustry and bioremediation, such as Acinetobacter junii and Pseudomonas alcaligenes. Besides that, we also observed opportunistic pathogens from genera Comamonas and Vogesella. This study result will provide valuable information for further bioprospecting of bacteria with commercial potential and the development of health and safety measures in the Cangar Hot Spring, among others. Hopefully, this report would encourage the use of NGS technology for studying other hot springs in Indonesia.

Keywords: Aquatic ecosystems, hot spring, bacteriome, next-generation sequencing, 16S rRNA

INTRODUCTION

Hot springs are one of the extreme ecosystem characterized by outflowing water with a temperature above 36.7°C (Jiang et al. 2018, Pentecost et al. 2003). In the hot spring ecosystem, thermophilic microorganisms such as Archaea and bacteria can thrive well (Li et al. 2020) because of their ability to survive in high-temperature conditions. These thermophilic microorganisms are of great interest since they are able to produce thermostable enzymes and biomolecules such as biosurfactants, polysaccharides, and antibiotics, which are industrially important (Atalah et al. 2019, Di Lorenzo et al. 2014, Geraldi et al. 2019a, Kambourova 2018, Mahajan and Balachandran 2017, Sahoo et al. 2020, Teta et al. 2017). These microorganisms can also be utilized in bioremediation processes such as the biodegradation of hydrocarbons and removal of heavy metals, and also biofuel production (Castro et al. 2019, Di Donato et al. 2019, Ebaid et al. 2019, Geraldi et al. 2019b, Jardine et al. 2018, Orellana et al. 2018).

Located in the Pacific Ring of Fire, Indonesia is a country rich in geothermal sites, with 256 hot springs identified across the archipelago (Darma et al. 2010, Yohandini et al. 2015). Since 1991, the exploration and bioprospecting of thermophilic microorganisms from hot springs have been done in Indonesia, mostly using culture-based approaches (Huber et al. 1991). These explorations have successfully isolated various thermostable enzymes (cellulase, amylase, chitinase, protease)-producing bacteria, mostly from the order Bacillales (Geraldi et al. 2019c, Lischer et al. 2020, Wang et al. 2012). Among the studied hot springs in Indonesia, Cangar Hot Spring in East Java is one of the most microbiologically explored. From the Cangar Hot Spring, bacteria strains (i.e., Bacillus subtilis subsp. inaquosorum strain and two Bacillus licheniformis strains) with the potential to produce thermostable biosurfactants and enzymes were isolated (Chrisnasari et al. 2018, Geraldi et al. 2019b, 2019c, Ibrahim et al. 2013, Rashid et al. 2013).

Since 99% of microbial species are unculturable (Amin et al. 2017, Bodor et al. 2020), culture-independent approaches are needed to explore and utilize thermophilic microorganism biodiversity from hot springs. Previous studies in hot springs at Tanjung Sakti, Gedongsongo, and Kamojang area, Indonesia (Aditiawati et al. 2009, Aminin et al. 2008, Yohandini et al. 2015), showed that Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene sequencing was successful in revealing the unculturable microorganisms. However, up to our knowledge, there is no report on the utilization of Next Generation Sequencing (NGS) technology as a cutting-edge and powerful tool for analyzing microbial communities. NGS approach on 16S rDNA amplicons obtained from Cangar Hot Spring metagenomic DNA enables the comprehensive analysis of microbial populations in the hot spring. This study is
among the first to reveal bacterial community structure in an Indonesian hot spring using NGS, including the most dominant taxa and microbe species with potential application. Results from this study would provide insight into the microbiology of Cangar Hot Springs, including useful and harmful microorganisms. Furthermore, this work would be the first step in building a database of microorganisms of hot springs in Indonesia, as well as would provide a basis for comparison with other hot springs around the world.

MATERIALS AND METHODS

Sampling Site and Sample Collection

The Cangar Hot Spring is a recreational hot spring in the Raden Soerjo Forest Park, Batu, East Java, Indonesia, at 112° 32’ 0” E longitude and 7° 44’ 31” S latitude. Samples of water and sediment mix were collected from several locations of the hot spring and mixed in sterile insulated water bottles. Collected samples were immediately transported to the laboratory for further analyses. The measurements of temperature and pH of the samples were done onsite and averaged at 50.1° ± 1.2°C and 6.3 ± 0.2, respectively.

16S rRNA gene high-throughput amplicon sequencing

Samples were extracted for their total metagenomic DNA using Cetyltrimethylammonium Bromide (CTAB)-based method (Jiang et al. 2013). Extracted DNA from the samples was diluted with sterile deionized water to 1ng/μL. The extracted DNA sample was sent to Novogene AIT Genomics, Singapore, for high-throughput amplicon sequencing targeting the V3-V4 conserved regions in the prokaryotic 16S rRNA gene. Polymerase Chain Reaction (PCR) was conducted to amplify the V3-V4 region of 16S rRNA gene using primer 341F (5’- CCTAYGGGRBGASCAG-3’) and 806R (5’- GGACTACNNGGGTACCTAAT-3’) with PlusPhusion® High-Fidelity PCR Master Mix (New England Biolabs). Sequencing libraries were generated using Ion Plus Fragment Library Kit (Thermo Fisher Scientific) according to manufacturer instructions. The library quality was assessed using Qubit® 2.0 Fluorometer (Thermo Fisher Scientific). Finally, the library was sequenced on an IonS5™ XL system platform (Thermo Fisher Scientific).

Sequencing data processing

Based on the samples’ unique barcode, paired-end reads were assigned, and then the samples were truncated by cutting off the barcode and primer sequences and were merged using FLASH v1.2.7 (Magoc and Salzberg 2011). Next, the filtration of resulting raw tags was done for assuring quality control using QIIME v1.7.0 (Caporaso et al. 2010). Chimera sequence was removed based on the comparison with Gold reference database using UCHIME algorithm (Edgar et al. 2011, Haas et al. 2011). The UPARSE software was used to analyze the obtained effective tags (Edgar 2013). The Operational Taxonomic Units (OTU) was assigned to effective tags sequences with similarity level ≥97%. Representative sequences for each OTU were then annotated using MOTHUR software against the small ribosomal subunit rRNA SILVA database using a threshold of 0.8-1 (Schloss et al. 2009, Quast et al. 2012). The phylogenetic relationship of different OTUs was analyzed using MUSCLE software v.3.8.31 (Edgar 2004). Finally, the six indices (i.e., observed species, Chao1 estimator, ACE estimator, Shannon Index, Simpson Index, and the Good's coverage) related to alpha diversity were calculated using QIIME v1.7.0 and displayed using R software.

RESULTS AND DISCUSSION

Bacterial community structure based on next-generation sequencing analysis

The NGS analysis results revealed Cangar Hot Spring harbors a wealth of different microbial species. There were 539 species observed, with Shannon-Wiener diversity index of 5.642, and species richness estimators Chao1 and ACE of 540.615 and 540.629, respectively (Table 1). Good’s coverage of the results was 100%, implying that the sequencing provided adequate classification diversity coverage. The whole Prokaryotic microorganism community structure of Cangar Hot Spring is presented in the Krona graph (Figure 1).

Taxonomic composition of bacterial communities in Cangar Hot Spring

There were 28 bacterial phyla detected in the sequencing results (Figure 2). The Cangar Hot Spring bacterial community structure at phylum level was dominated by the Gram-negative phyla Proteobacteria (58.05% of total OTUs in the sample), Bacteroidetes (29.58%), and photosynthetic thermophiles Chloroflexi (2.24%). Gram-positive phyla represented mostly by Firmicutes (10.51%) and Actinobacteria (0.75%). Other phyla such as nitrifying Nitrospirae (0.54%), photosynthetic Cyanobacteria (0.24%), Chlorobi (0.07%), iron-reducing Deferribacteres (0.16%), extremophiles Deinococcus (0.006%) were found less abundant.

The ten most abundant families found in the samples collected were dominated by Gram-negative groups such as Flavobacteriaceae (19.11%), Methylophilaceae (17.97%), and Pseudomonadaceae (13.86%), while Gram-positive only represented by Clostridiaceae (0.19%) (Figure 3).

Table 1. Number of observed species diversity index (Shannon-Wiener) and species richness (Chao1, Abundance based coverage estimator (ACE)) estimators in Cangar Hot Spring, Batu, East Java, Indonesia

Species	Shannon-Wiener index	Chao1	ACE	Good's coverage estimator
539	5.642	540.615540.629	100	
Figure 1. The whole bacterial community distribution in the Cangar Hot Spring, Batu, East Java, Indonesia is represented by the Krona graph. The relative abundance at the level of phylum, class, order, and genus was shown in the graph.

At the genus level, Gram-negative Cloacibacterium (18.64%), Methylobacillus (17.69%), and Pseudomonas (13.64%) were the most dominant genera in Cangar Hot Spring with Blautia as the only Gram-positive genus in the top ten most abundant genera (Figure 4). Some identified species were Gram-negative Comamonas testosteroni (3.70%), Comamonas aquatica (3.54%), Acinetobacter junii (2.37%), Terrimonas sp. 16-45A (1.79%), Acinetobacter johnsonii (0.93%), Vogesella perlucida (0.59%), and Pseudomonas alcaligenes (0.33%), and Gram-positive Ruminococcus sp. 5 1 39BFAA (2.86%).

Discussion
Java, the world's most populous island, is also one area with the most active volcanoes in Indonesia (Daryono et al. 2019, Purnomo and Pichler 2014). Consequently, there are many geothermal areas on the island, including Arjuno-Welirang Volcanic Complex in East Java, where Cangar Hot Spring is located (Putra et al. 2019). Previous studies (Daud et al. 2019, Martadiastuti et al. 2017) mentioned Cangar Hot Spring has a temperature range between 39.5-53°C, and a pH ranged between 5.2-6.5 (consistent with our measurement results) with bicarbonate rich water.

There were already several explorations on useful microorganisms collected from Cangar Hot Spring. However, there was no study on the hot spring’s microbial community structure analysis using a more novel method, such as the NGS yet. In this study, NGS was employed to perform 16S rRNA metagenomic analysis for unraveling bacterial diversity in Cangar Hot Spring, especially pathogenic bacteria and bacteria with potential commercial applications.
In this study, the dominant components of the bacterial community structure of Cangar Hot Spring were Gram-negative bacteria, i.e., members of Proteobacteria, Bacteroidetes, and Chloroflexi phyla (>89% OTU). The dominance of Proteobacteria phylum was also reported from similar studies using 16S rRNA analysis in hot springs from a geographically distant area with moderate to high temperatures (37-95°C), such as Ayer Hangat hot spring, Malaysia (45°C, pH 7.1); Coamo hot spring, Puerto Rico (47°C, pH 8.2); Burgas hot spring, Spain (66.3°C, pH 7.6); Hammam Essalihine hot spring, Algeria (70°C, pH 7.3); and Soldhar hot spring, India (95°C) (Adjeroud et al. 2020, Chan et al. 2017, DeCastro et al. 2021, Padilla-Del Valle et al. 2017, Sharma et al. 2017). Meanwhile, the high abundance of Bacteroidetes phylum was observed in Badi Anhoni hot spring, India (55°C, pH 7.8) and Phusang hot spring, Thailand (38°C, pH 7.3) (Bumrunthai et al. 2020, Saxena et al. 2017). Bacteroidetes were less prevalent in hot springs with a temperature above 70°C (i.e., Burgas hot spring, Spain; Soldhar hot spring, India; and Sungai Klah, Malaysia (80°C) (Chan et al. 2015, DeCastro et al. 2021, Sharma et al. 2017).

Family Flavobacteriaceae and its member, genus Cloacibacterium, were the most dominant family and genus in Cangar Hot Spring. The high abundance of Flavobacteriaceae family members was also reported in Brandvlei hot spring, South Africa (55°C, pH 6.2), and three hot springs in India, i.e., Yunthang (39°C, pH 8.0), Chhoti Anhoni (52.1°C, pH 7.8), and Polok (76.3°C, pH 7.5) (India) (Najar et al. 2018, Panda et al. 2016, Saxena et al. 2017, Selvarajan et al. 2018). The presence of Flavobacteriaceae family members was also reported from other hot springs in Indonesia, i.e., Domas hot spring (90°C, pH 2) (Baker et al. 2001). Although the presence of Cloacibacterium in hot springs was reported elsewhere (Kashkak et al. 2016, Selim et al. 2017), to our knowledge, our result is the first observation of its abundance in the hot spring environment. Members of this genus were isolated from wastewater and human skin (Allen et al. 2006, Nouha et al. 2016). Indeed, the main human activities around Cangar Hot Spring were tourism and agriculture, and it might explain the sources of Cloacibacterium in Cangar Hot Spring.

The second most dominant family and genus found were Methylophilaceae and Methylobacillus. Family Methylophilaceae is a member of Betaproteobacteria phylum, which includes obligate and facultative methylotrophs Gram-negative rod-shaped bacteria. These bacteria were capable to metabolize C1 compounds (i.e., compounds containing no carbon-carbon bonds), mainly methanol or methylamine as a sole source of carbon and energy (Yang et al. 2020, Zhang et al. 2020). Methylophilaceae plays a crucial role in the global carbon cycle in aquatic ecosystems, including hot springs. Methylobacillus was observed in two hot springs in India, i.e., Sholder (1.88% of total OTUs) and “Pilgrim Terrace” (1.09%) (Beck et al. 2014, Chistoserdova et al. 2007, Ghosh et al. 2015, Sharma et al. 2017). Our finding is also the first observation of Methylobacillus abundance in the hot spring ecosystem.
In previous studies, several species of the genus Bacillus with industrial potential were isolated from Cangar Hot Spring (Chrisnasari et al. 2018, Geraldih et al. 2019b, Ibrahim et al. 2013, Rashid et al. 2013). However, this study suggests that the genus Bacillus was only representing a minor fraction of the total bacteria collected from the Cangar Hot Spring. Compared to Bacillus, there were other potentially useful microorganisms found more abundant in this study. For instance, the second most dominant genus, Methylobacillus, is known as a potential platform used in producing recombinant proteins, amino acids, and other value-added compounds due to their high efficiency in carbon conversion and ability to grow in a relatively cheap and abundant carbon source (methanol) (Agafonova et al. 2018, Beck et al. 2014, Sí et al. 2016, Yadava and Maitra 2017). Genus Chitinophaga (1.79% of total OTUs) is a potential source for chitinase and enzymes related to lignocellulosic material degradation (Kishi et al. 2017, Larsbrink et al. 2017, Sharma et al. 2020). Another potential genus is Hydrogenophaga (1.53%), with some species members known for their potential in heavy metal oxidation, polycyclic aromatic hydrocarbons, biodegradation, and bioplastic production activities (Fan et al. 2019, Koller et al. 2019, Reddy et al. 2016). The NGS analysis results also identified other useful species, such as biosurfactants-producer Acinetobacter junii and value-added chemicals-producer Pseudomonas alcaligenes (Dong et al. 2016, Ohadi et al. 2017, Oliveira et al. 2009, Wang et al. 2020). These useful microorganisms present in Cangar Hot Spring are most likely thermostolerant, which is a beneficial characteristic for their application in bioprocess and bioremediation (Nigam 2013).

Besides beneficial microorganisms, NGS analysis results also revealed pathogenic bacteria in the Cangar Hot Spring. Recreational hot springs are known to harbor pathogens associated with human diseases such as Clostridium and Legionella strains (Chan et al. 2015, Ghalimael et al. 2018). Our results suggested the occurrence of opportunistic pathogens causing bacteremia or the presence of bacteria in the human blood, such as Comamonas testosteroni (3.70%), Comamonas aquatica (3.54%), and Vogesella perlucida (0.59%) (Farooq et al. 2017, Frashad et al. 2012, Kaeuffer et al. 2018, Tartar and Tartar 2020, Tiwari and Nanda 2019, Yu et al. 2020). Furthermore, genus Blautia (3.21%) and Ruminococcus (2.86%), which are related to fecal contamination, were also observed (Devane et al. 2020, Koskey et al. 2014, Staley et al. 2016). The information related to pathogens can develop better health and safety monitoring and risk assessment methods in Cangar Hot Spring.

This study provided insight into the bacterial community structure of the Cangar Hot Spring. The bacterial community composition in the hot spring was dominated by Proteobacteria and Bacteroidetes phyla as other hot springs with moderate temperatures elsewhere. Among others, this study is the first that reported the abundance of genera Cloacibacterium and Methylobacillus. The presence of useful bacteria with the potential to produce enzymes and value-added chemicals, and to involve in the bioremediation process, was also observed. Likewise, the occurrence of opportunistic pathogens, which is important for the development of health and safety measures in the hot spring, was also reported. As the first effort on using next-generation sequencing in unraveling the microbial diversity in Indonesian hot springs, we expect this study to encourage further exploration in other hot springs in Indonesia.

ACKNOWLEDGEMENTS

This research and the APC for this publication were funded by Riset Kolaborasi Mitra Luar Negeri Universitas Airlangga Talun 2020, grant scheme with contract number: 427 /UN3.14/PT/2020.

REFERENCES

Aditawati P, Yohandini H, Madayanti F, Akhmaloka. 2009. Microbial diversity of acidic hot spring (kawah hujan B) in geothermal field of Kamojang area, West Java-Indonesia. Open Microbiol J 3: 58-66. DOI: 10.2174/1874285800903010058.

Adjeroud M, Escuder-Rodriguez J-I, González-Siso M-I, Kecha M. 2020. Metagenomic investigation of bacterial and archaeal diversity of hamam esshalli Hot Spring from Khenchela, Algeria. Geomicrobiol J 37: 804-817. DOI: 10.1080/01490451.2020.1783035.

Agafonova N V, Kaparullina EN, Doronina N V, Trotsenko YA. 2018. Obligate methylotroph Methylobacillus arboreus IvAT synthesizes a plant hormone, gibberellic acid GA3. Microbiology 87: 47-50. DOI: 10.1134/S00264272181001022.

Allen TD, Lawson PA, Collins MD, Felsen E, Tanner RS. 2006. Cloacibacterium normunense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater. Int J Syst Evol 56: 1311-1316. DOI: 10.1099/ijs.0.64218-0.

Amin A, Ahmed I, Salam N, Kim B-Y, Singh D, Zhi X-Y, Xiao M, Li W-J. 2017. Diversity and distribution of thermophilic bacteria in hot springs of Pakistan. Microb Ecol 74: 116-127. DOI: 10.1007/s00248-017-0930-1.

Aminin ALN, Warganegara FM, Aditawati P, Akhmaloka. 2008. Culture-independent and culture-dependent approaches on microbial community analysis at Gedongsongo (GS-2) hot spring. Int J Integr Biol 2: 145-152.

Atalah J, Cáceres-Moreno P, Espina G, Blamey JM. 2019. Thermophiles and the applications of their enzymes as new biocatalysts. Bioresour Technol 280: 478-488. DOI: 10.1016/j.biortech.2019.02.008.

Baker GC, Giffar S, Cowan DA, Suharto AR. 2001. Bacterial community analysis of Indonesian hot springs. FEBS Microbiol Lett 200: 103-109. DOI: 10.1111/j.1574-6968.2001.tb0700.x.

Beck DAC, McGarrell TL, Sethoonsang U, Vorobev A, Kalyuzhnaya MG, Ivanova N, Goodwin L, Woyke T, Lidstrom ME, Chistoserdova L. 2014. The expanded diversity of Methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ectotypes. PLOS ONE 9: e102458. DOI: 10.1371/journal.pone.0102458.

Bodor A, Boudjemain O, Vincze GE, Erdeének Kis Á, Lacci K, Bende G, Szilágyi Á, Kovács T, Perei K, Rákelyh G. 2020. Challenges of unculturable bacteria: environmental perspectives. Rev Environ Sci Biotechnol 19: 1-22. DOI: 10.1007/s11157-020-09522-4.

Bunnunghai S, Duangjit S, Somsuwan B, Inpeng S. 2020. The chemical characteristic and microbial diversity of the Hot Spring at Phusang National Park. Environ Nat Resour J. 18: 33-43.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JL. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336.

Castro C, Uribeta MS, Plaza Cañón J, Donati ER. 2019. Metal biorecovery and bioremediation: Whether or not thermophilic are better than mesophilic microorganisms. Bioreasor Technol 279: 317-326. DOI: 10.1016/j.biortech.2019.02.028.
Chen CS, Chan K-G, Tay Y-L, Chu Y-H, Goh KM. 2015. Diversity of Thermophiles in a Malaysian Hot Spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6: 177. DOI: 10.3389/fmicb.2015.00177.

Chen CS, Chan K-G, EE, Re, Hong K-W, Urbita MS, Donatini ER, Shamsir MS, Goh KM. 2017. Effects of physical and chemical factors on prokaryote biodiversity in Malaysia circular neutral Hot Springs. Front Microbiol 8: 1252. DOI: 10.3389/fmicb.2017.01252.

Chistoserdova L, Lapidus A, Han C, Goodwin L, Saunders L, Brettin T, Tapia R, Gilna P, Lucas S, Richardson PM, Ladstom ME. 2007. Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J. Bacteriol 189: 4020 LP - 4027. DOI: 10.1128/JB.00455-07.

Chrisnaris R, Verina D, Tapatfeto AC, Pranata S, Patjajani T, Wahjudi M, Purwanto MGM. 2018. Isolating and characterising chitinolytic thermophilic bacteria from Cangar Hot Spring, East Java. Pertanika J Trop Agric Sci 41: 1437-1448.

Darma S, Harsoprayitno S, Setiawan B, Hadyanto, Sukhyr R, Soedjibyo AW, Ganeefanto N, Stmuc J. 2010. Geothermal energy update: geothermal energy development and utilization in Indonesia. In: World Geothermal Congress. Bali, 25-30 April 2010.

Daryono MT, Natawidjaja DH, Sapie B, Cummins P. 2019. Earthquake Geology of the Lembang Fault, West Java, Indonesia. Tectonophysics 751: 180-191. DOI: 10.1016/j.tecto.2018.12.014.

Daud Y, Nugramadhi WA, Fahmi F, Sesgesa RS, Fitrianita, Pratama SA, Munandar A. 2019. Resistivity characterization of the Arjun-Wel Burahan geothermal system (Indonesia) through 3-D Magnetotelluric inverse modeling. J Asian Earth Sci 174: 352-363. DOI: 10.1016/j.jseaes.2019.01.033.

DeCastro M-E, Doane MP, Dinsdale EA, Rodriguez-Belmonte E, González-Siso M-I. 2021. Exploring the taxonomical and functional profile of high-yielders hot spring focusing on thermostable ß-galactosidases. Sci Rep 11: 10.1038/s41598-020-80489-9.

Devane M, Robson B, Lin S, Scholes P, Wood D, Weaver L, Webster-Brown J, Gilpin B. 2020. Bacterial community shifts in decomposing cowpats and the subsequent impacts on fecal source indicators for water quality monitoring. Ecol Indic 113: 106239. DOI: 10.1016/j.ecolind.2020.106239.

Di Donato P, Finore I, Poli A, Nicolaus B, Lama L. 2019. The production of second-generation bioethanol: The biotechnology potential of thermostable bacteria. J Clean Prod 233: 1410-1417. DOI: 10.1016/j.jclepro.2019.09.152.

Dong H, Xia W, Dong H, She Y, Zhu P, Liang K, Zhang Z, Liang C, DeCastro M, Munandar A. 2019. Resistivity characterization of the Arjun-Wel Burahan geothermal system in Indonesia through 3-D Magnetotelluric inverse modeling. J Asian Earth Sci 174: 352-363. DOI: 10.1016/j.jseaes.2019.01.033.

DeCastro M-E, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso M-I. 2021. Exploring the taxonomical and functional profile of high-yielders hot spring focusing on thermostable ß-galactosidases. Sci Rep 11: 10.1038/s41598-020-80489-9.

Daud Y, Nugramadhi WA, Fahmi F, Sesgesa RS, Fitrianita, Pratama SA, Munandar A. 2019. Resistivity characterization of the Arjun-Wel Burahan geothermal system (Indonesia) through 3-D Magnetotelluric inverse modeling. J Asian Earth Sci 174: 352-363. DOI: 10.1016/j.jseaes.2019.01.033.

DeCastro M-E, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso M-I. 2021. Exploring the taxonomical and functional profile of high-yielders hot spring focusing on thermostable ß-galactosidases. Sci Rep 11: 10.1038/s41598-020-80489-9.

Daud Y, Nugramadhi WA, Fahmi F, Sesgesa RS, Fitrianita, Pratama SA, Munandar A. 2019. Resistivity characterization of the Arjun-Wel Burahan geothermal system (Indonesia) through 3-D Magnetotelluric inverse modeling. J Asian Earth Sci 174: 352-363. DOI: 10.1016/j.jseaes.2019.01.033.

DeCastro M-E, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso M-I. 2021. Exploring the taxonomical and functional profile of high-yielders hot spring focusing on thermostable ß-galactosidases. Sci Rep 11: 10.1038/s41598-020-80489-9.

Daud Y, Nugramadhi WA, Fahmi F, Sesgesa RS, Fitrianita, Pratama SA, Munandar A. 2019. Resistivity characterization of the Arjun-Wel Burahan geothermal system (Indonesia) through 3-D Magnetotelluric inverse modeling. J Asian Earth Sci 174: 352-363. DOI: 10.1016/j.jseaes.2019.01.033.

DeCastro M-E, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso M-I. 2021. Exploring the taxonomical and functional profile of high-yielders hot spring focusing on thermostable ß-galactosidases. Sci Rep 11: 10.1038/s41598-020-80489-9.

Daud Y, Nugramadhi WA, Fahmi F, Sesgesa RS, Fitrianita, Pratama SA, Munandar A. 2019. Resistivity characterization of the Arjun-Wel Burahan geothermal system (Indonesia) through 3-D Magnetotelluric inverse modeling. J Asian Earth Sci 174: 352-363. DOI: 10.1016/j.jseaes.2019.01.033.

DeCastro M-E, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso M-I. 2021. Exploring the taxonomical and functional profile of high-yielders hot spring focusing on thermostable ß-galactosidases. Sci Rep 11: 10.1038/s41598-020-80489-9.

Daud Y, Nugramadhi WA, Fahmi F, Sesgesa RS, Fitrianita, Pratama SA, Munandar A. 2019. Resistivity characterization of the Arjun-Wel Burahan geothermal system (Indonesia) through 3-D Magnetotelluric inverse modeling. J Asian Earth Sci 174: 352-363. DOI: 10.1016/j.jseaes.2019.01.033.

DeCastro M-E, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso M-I. 2021. Exploring the taxonomical and functional profile of high-yielders hot spring focusing on thermostable ß-galactosidases. Sci Rep 11: 10.1038/s41598-020-80489-9.

Daud Y, Nugramadhi WA, Fahmi F, Sesgesa RS, Fitrianita, Pratama SA, Munandar A. 2019. Resistivity characterization of the Arjun-Wel Burahan geothermal system (Indonesia) through 3-D Magnetotelluric inverse modeling. J Asian Earth Sci 174: 352-363. DOI: 10.1016/j.jseaes.2019.01.033.

DeCastro M-E, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso M-I. 2021. Exploring the taxonomical and functional profile of high-yielders hot spring focusing on thermostable ß-galactosidases. Sci Rep 11: 10.1038/s41598-020-80489-9.

Daud Y, Nugramadhi WA, Fahmi F, Sesgesa RS, Fitrianita, Pratama SA, Munandar A. 2019. Resistivity characterization of the Arjun-Wel Burahan geothermal system (Indonesia) through 3-D Magnetotelluric inverse modeling. J Asian Earth Sci 174: 352-363. DOI: 10.1016/j.jseaes.2019.01.033.

DeCastro M-E, Doane MP, Dinsdale EA, Rodríguez-Belmonte E, González-Siso M-I. 2021. Exploring the taxonomical and functional profile of high-yielders hot spring focusing on thermostable ß-galactosidases. Sci Rep 11: 10.1038/s41598-020-80489-9.
Di Lorenzo F, Paciolo I, Fazio LL, Albquerque L, Sturielo L, da Costa MS, Lanzetta R, Parrilli M, Garozzo D, Bernardino ML. 2014. Thermophiles as potential source of novel endotxin antagonists: the full structure and bioactivity of the lipo-oligosaccharide from Thermomonas hydrothermals. ChemBioChem 15: 2146-2155.

Mori T, Suerger SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963.

Mahajan GB, Balachandran L. 2017. Sources of antibiotics: Hot springs. Biochem Pharmacol 134: 35-41. DOI: 10.1016/j.bcp.2016.11.021

Martadiastuti V, Harijoko A, Warmada IW, Yonezu K. 2017. Microbial ecology of the Frontiers of Life genomic J. 809.

Sahoo K, Rashid FAA, Rahim RA, Ibrahim D, Balan A, Bakar NMA. 2013. Putra RP, Padilla Del Valle R, Morales-Ely RE, Sutopo, Pratama HB. 2019. Improved natural state simulation of hot springs from Indo-Burma region. North-east India. AMB Express 6: 111. DOI: 10.1186/s13568-016-01204-y

Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Najar IN, Sherpa MT, Das S, Das S, Thakur N. 2018. Microbial ecology of Extracellular polymeric substances of Cloacibacterium normanense in white biotechnology. J Ocean Sci Techol 86: 6357-6366. DOI: 10.1016/j.jvolgeores.2014.08.004

Yu Z, Zhu F, Tao X, Zhang L, Wu S, Yuan J, Chen G, Zhou X, Dong C, Dong Y, Chen G, Zhou X, Yu Z, Zhu F, Tao X, Zhang L, Wu S, Yuan J, Chen G, Zhou X. 2020. Exopolysaccharide of Bacillus sp. collected from Indonesia's hot springs. J Pure Appl Microbiol 134: 533-539. DOI: 10.1016/j.biortech.2016.03.025

Putra RPM, Sutopo, Pratama HB. 2019. Improved natural state simulation of Arjuno-Weirjang Geothermal field, East Java, Indonesia. IOP Conf Ser Earth Environ Sci 254: 12022. DOI: 10.1088/1755-1315/254/1/012022.

Osella R, Sezgin DB, Mintal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK. 2017. Metagenomic analysis of hot springs in Central India reveals hydrocarbon-degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol 7: 2123. DOI: 10.3389/fmicb.2016.02123.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski OA, Oakley BK, Parks DH, Robinson CJ, Salit JY, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537 LT - 7541. DOI: 10.1128/AEM.01541-09

Selim S, Hassan S, Hagagy N, Kraklová K, Grivalský T, Pangallo D. 2017. Halotolerant and culture-independent methylophilic strains isolated from geothermal springs in India. Front Microbiol 8: 908. DOI: 10.3389/fmicb.2018.02309

Nigam PS. 2013. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3: 597-611.

Nouha K, Kumar RS, Tyagi RD. 2016. Heavy metals removal from wastewater using extracellular polymeric substances produced by Claoebacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresour Technol 212: 120-129. DOI: 10.1016/j.biotech.2016.04.021

Mohamed M, Foroostanfar H, Rahimi HR, Jafari E, Shabkaie M, Eslamejad T, Dehghannoudeh G. 2017. Antioxidant potential and wound healing activity of biocatalyst produced by Armobacter junii B6. Cure Pharm Biotechnol 18: 900-903. DOI: 10.2174/138920101866617122121350

Olivera L, de Campos NP, de França FP. 2009. Production of rhomolipids by a Pseudomonas alcaligenes strain. Process Biochem 44: 333-339. DOI: 10.1016/j.procbio.2008.11.014.

Orellana R, Macaya C, Bravo G, Doroche F, Cumnaille A, Valencia R, Rojas C, Seeger M. 2018. Living at the Frontiers of Life: Extremophiles in Chile and their potential for bioremediation. Front Microbiol 9: 2309. DOI: 10.3389/fmicb.2018.02.309.

Padilla Del Valle R, Morales-Vale LR, Ríos-Velázquez C. 2017. Unraveling the macrobial and functional diversity of Cooamo thermal spring in Puerto Rico using metagenomic library generation and shotgun sequencing. Genom Data 11: 98-101. DOI: 10.1016/j.gdata.2016.12.010.

Panda AK, Bisht SS, De Mandal S, Kumar NS. 2016. Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India. AMB Express 6: 111. DOI: 10.1186/s13568-016-01284-y

Pentecost A, Jones B, Renaut RW. 2003, What is a hot spring? Can J Earth Sci 40: 1443-1446. DOI: 10.1139/e03-083.

Ponnamma RB, Pechiar E. 2014. Geothermal systems on the island of Java, Indonesia. J Volcanol Geotherm Res 287: 45-59. DOI: 10.1016/j.jvolgeores.2014.08.004.

Putra RPM, Sutopo, Pratama HB. 2019. Improved natural state simulation of Arjuno-Weirjang Geothermal field, East Java, Indonesia. IOP Conf Ser Earth Environ Sci 254: 12022. DOI: 10.1088/1755-1315/254/1/012022.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590-D596.

Rashid FAA, Rahim RA, Ibrahim D, Balan A, Bakar NMA. 2013. Purification and properties of thermostable lipoase from a thermophilic bacterium, Bacillus licheniformis IBRL-CHS2. J Pure Appl Microbiol 7: 1635-1645.

Sahoo K, Sahoo RK, Gaur M, Subudhi E. 2020. Cellulolytic thermophilic microorganisms in white biotechnology: a review. Folia Microbiol 65: 25-43. DOI: 10.1007/s12223-019-00710-6

Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK. 2017. Metagenomic analysis of hot springs in Central India reveals hydrocarbon-degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol 7: 2123. DOI: 10.3389/fmicb.2016.02123.