Characterising the high-mass star forming filament G351.776–0.527 with Herschel* and APEX** dust continuum and gas observations

S. Leurini1, E. Schisano2,3, T. Pillai4,5, A. Giannetti3,4, J. Urquhart6,4, T. Csengeri4, S. Casu1, M. Cunningham7, D. Elia2, P. A. Jones7, C. König8, S. Molinari3, T. Stanke8, L. Testi9,10, F. Wyrowski8, and K. M. Menten4

1 INAF - Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy
e-mail: silvia.leurini@inaf.it
2 Istituto di Astrofisica e Planetologia Spaziali - INAF, Via Fosso del Cavaliere 100, I-00133 Roma, Italy
3 INAF - Istituto di Radioastronomia, and Italian ALMA Regional Centre, via P. Gobetti 101, I-40129, Bologna, Italy
4 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
5 Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave, Boston, MA, 02215, USA
6 Centre for Astrophysics and Planetary Science, University of Kent, Canterbury CT2 7NH, UK
7 School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
8 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748, Garching bei München, Germany I
9 INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy
10 Excellence Cluster Universe, Boltzmannstr. 2, 85748, Garching bei München, Germany

December 5, 2018

ABSTRACT

G351.776–0.527 is among the most massive, closest, and youngest filaments in the inner Galactic plane and therefore it is an ideal laboratory to study the kinematics of dense gas and mass replenishment on a large scale. In this paper, we present far-infrared (FIR) and submillimetre wavelength continuum observations combined with spectroscopic C18O (2–1) data of the entire region to study its temperature, mass distribution, and kinematics. The structure is composed of a main elongated region with an aspect ratio of ∼ 23, which is associated with a network of filamentary structures. The main filament has a remarkably constant width of 0.2 pc. The total mass of the network (including the main filament) is \(\sim 2600 M_\odot \), while we estimate a mass of \(\sim 2000 M_\odot \) for the main structure. Therefore, the network harbours a large reservoir of gas and dust that could still be accreted onto the main structure. From the analysis of the gas kinematics, we detect two velocity components in the northern part of the main filament. The data also reveal velocity oscillations in C18O along the spine in the main filament and in at least one of the branches. Considering the region as a single structure, we find that it is globally close to virial equilibrium indicating that the entire structure is approximately in a stable state.

Key words. ISM: kinematics and dynamics– ISM: clouds– stars: formation

1. Introduction

In recent years increasing evidence has been collected that high-mass star formation is tightly linked to the formation of massive clumps and massive clusters. Observations in molecular tracers (e.g. Schneider et al. 2010, Peretto et al. 2013, 2014, Hacar et al. 2017) have revealed global collapse in several massive clouds and have suggested that clumps build up their mass as a result of the supersonic global collapse of their surrounding cloud. For instance, Peretto et al. 2014 suggested that organised velocity gradients in the filaments of SDC13 are the result of large-scale longitudinal collapse and could generate kinematic support against fragmentation, helping the formation of super-Jeans cores. Also in the case of DR21, Schneider et al. 2010 detected signs of global collapse of the filament and suggested that its gas content is continuously replenished via sub-filaments. In the case of intermediate-mass clouds, Kirk et al. 2013 identified gas motions onto the filament along defined structures and from the filament onto the central cluster in the Serpens region. Recently, Motte et al. 2017 proposed an evolutionary scenario in which global collapse of massive clouds and hubs generates gas flow streams. In this picture, such flows would efficiently concentrate matter on small scales, helping to increase the mass of low-mass prestellar seeds present in the cloud. With time these seeds eventually become high-mass protostars. Numerical simulations also support this scenario (e.g. Vázquez-Semadeni et al. 2017). Observational evidence of gas streams infalling on small scales on protostars is reported by Csengeri et al. 2011.

Detailed studies of massive filaments and of their internal structure and dynamics are crucial to better understand the link between high-mass star formation and cloud and cluster formation. Recently, unbiased surveys of the Galactic plane at FIR and submillimetre wavelengths, namely the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) and the Herschel infrared Galactic Plane Survey (Hi-GAL) (Schuller et al. 2009, Molinari et al. 2010, respectively), have allowed for the compilation of catalogues of candidate filaments over the entire plane (e.g. Li et al. 2016, Wang et al. 2016, Schisano et al. 2018). These studies have shown that massive filaments are in general a few kiloparsec distant (e.g. Li et al. 2016, Schisano et al. 2018).
Therefore high angular resolution observations are needed to resolve linear scales below 0.1–0.2 pc to resolve the kinematics towards individual cores. These catalogues are ideal to select samples of filaments within a few kiloparsecs from the Sun that are suitable for a detailed investigation of the link between massive star formation and cluster formation.

In this paper, we investigate the internal structure of the close-by massive infrared dark cloud (IRDC) G351.776–0.527 (hereafter G351) and that of the network of filaments surrounding this cloud. The study deals with the large-scale filamentary environment of the source, while our previous works (Leurini et al. 2008, 2009, 2011a, 2013, 2014) focused on the star forming region IRAS 17233–3606 (Clump-1, see Table 1 and Fig. 1). Given the fortuitous proximity of the source (\(D = 0.7\) kpc, Leurini et al. 2011b, hereafter Paper I; Wienen et al. 2015, and discussion therein), G351 is an ideal target to study a massive filamentary network and its dynamics in detail. The paper is structured as follows. In Sect. 2, we discuss the properties of the source and explain the uniqueness of this laboratory. In Sect. 3, we describe the spectroscopic and continuum observations used in this paper to further characterise G351. In Sect. 4, we study the main properties of G351 and derive its temperature and mass distribution. Section 5 is devoted to the analysis of the gas velocity field. In this section, we demonstrate the velocity coherence of the whole filamentary network, and study the velocity structure of the diffuse/dense gas associated with the source. Finally, we discuss the dynamical state of G351 in Sect. 6.

2. G351.77–0.51: A site of massive star formation

Thanks to Galactic plane surveys at different wavelengths and tracers performed in recent years (e.g. Jackson et al. 2009, Schuller et al. 2009, Molinari et al. 2010, Burton et al. 2013, Barnes et al. 2015, Schuller et al. 2017), catalogues of interstellar filaments are now available (e.g. Ragan et al. 2014, Li et al. 2016, Wang et al. 2016, Schisano et al. 2018). These catalogues have shown that massive filaments are on average a few kpc in distance from the Sun; Schisano et al. (2018) found for example that the average mass of Hi-GAL filaments within 3 kpc varies between 200 \(M_{\odot}\) and 800 \(M_{\odot}\) with a binning of 200 pc. Candidates from ATLASGAL are in general more massive given the lower sensitivity of the survey, which is not sensitive to low-mass features, and have an average mass of 470 \(M_{\odot}\)–1700 \(M_{\odot}\) within 3 kpc (in binning of 1 kpc given the low source density, Li et al. 2016).

Despite the uncertainty in its distance, G351 is the most massive (\(\sim 1300 M_{\odot}\)) for \(D = 0.7\) kpc, Li et al. (2016) and closest filament identified in the ATLASGAL survey of the inner Galactic plane (Li et al. 2016). Compared to close-by massive filaments such as the Orion Integral Filament and NGC 6334 with masses of \(\sim 10000 – 15 000 M_{\odot}\) (Bally et al. 1987, Tigé et al. 2017) at \(\sim 0.4\) kpc and 1.7 kpc, respectively (Menten et al. 2007, Russeil et al. 2012), G351 is a younger, less complex object that has only two sites of active massive star formation (Clump-1 and -2, see Table 1 and Fig. 1 and discussion below). The structure is composed by a main elongated region with an aspect ratio of \(\sim 23\) (see Sect. 2), which appears nested in a remarkable network of filamentary structures over its whole length (see Fig. 1). In this work we adopt the term branch to refer to these sub-filaments following the naming convention of Schisano et al. (2014). The main filamentary body has been identified as coherent in velocity at \(v_{\text{LSR}} \approx -3\) km s\(^{-1}\) with a velocity of shift > 1.6 km s\(^{-1}\) between the northern and southern ends (Paper I). Before this work there was no information available on the branches that appear to be connected to the main structure. These structures are seen in extinction at 8 \(\mu\)m and 24 \(\mu\)m, and they are visible in emission at longer wavelengths in Hi-GAL images for \(\lambda > 250\) \(\mu\)m (see Fig. 2) and, as a consequence, in the Herschel derived column density map (Schisano et al. 2014).

In Paper I, we analysed the dust continuum emission at 870 \(\mu\)m associated with G351 and identified nine dust clumps (see Table 1 and Fig. 1) with masses ranging between 10 \(M_{\odot}\)–430 \(M_{\odot}\) depending on the temperature (see Table 4 in Paper I). These clumps are confirmed in the ATLASGAL Gauss clump catalogue (Csengeri et al. 2014) with the exception of Clump-4, which is probably an artefact introduced by CLUMPFIND in our previous analysis. The same clumps are also confirmed in the Hi–GAL photometric catalogue (Molinari et al. 2016); roughly another 20 sources are identified in the filamentary network in the region shown in Fig. 1 in at least the 160 \(\mu\)m, 250 \(\mu\)m, and 350 \(\mu\)m Hi-GAL catalogues. We will provide a detailed analysis of the compact sources in a forthcoming paper; in this work we only focus on the massive star formation taking place in G351.

In Paper I, we showed that the majority of the clumps in G351 (Clump-1 for a dust temperature, \(T_{\text{dust}}\), of 35 K, Clump-2 and Clump-5 for \(T_{\text{dust}} = 25\) K, Clump-6, Clump-7, Clump-8, and Clump-11 for 10 K; see Sect. 4.4 for the temperature distribution in the source and Table 4 in Paper I for the masses of the clumps) exceed the threshold for massive star formation determined by Kaufmann & Pillai (2010). At least two clumps (Clump-1 and Clump-3) host active massive star formation. Clump-1 is the brightest submillimetre condensation saturated in Hi-GAL maps (see Fig. 2); this clump corresponds to the FIR source IRAS 17233–3606, and hosts an Hu region (Hughes & MacLeod 1993), a hot molecular core (Leurini et al. 2008, 2011a), and a cluster of radio continuum sources (Zapata et al. 2008). Within 10° of Clump-3, an Hu region has been identified in data taken with the Wide-field Infrared Survey Explorer (WISE) (Anderson et al. 2014). Apart from Clump-1, there is little evidence for recently formed high-mass stars in the region. In Table 1 we classify the clumps in G351 according to their far- and mid-IR fluxes as follows: 70 \(\mu\)m weak, when not detected or with weak emission at 70 \(\mu\)m in Hi-GAL (Clump-7 and Clump-11, upper limits \(F_{70 \mu m} < 2.5\) Jy, and \(< 2.0\) Jy, respectively); mid-IR weak if detected in PACS-70 \(\mu\)m, but with a 21–24 \(\mu\)m flux below 2.6 Jy; and mid-IR bright when the 21–24 \(\mu\)m flux is larger than 2.6 Jy, following the procedure and the classification scheme adopted by König et al. (2017) and Urquhart et al. (2018) for the ATLASGAL catalogues (Contreras et al. 2013, Urquhart et al. 2014, Csengeri et al. 2014). Further evidence of star formation activity is provided by other tracers at several other positions along G351. Four clumps (Clump-1, Clump-2, Clump-3, and Clump-5) show signs of jets and outflows detected in Spitzer IRAC band 3 (see Paper I).

1 http://www.ifa.hawaii.edu/users/jpw/clumpfind.shtml
3. Observations

In this paper we present spectroscopic and continuum observations of the molecular complex G351 at (sub)millimetre wavelengths with the APEX telescope. We complement these data with the Herschel maps from the Hi-GAL survey (Molinari et al. 2010) extracting a region of approximately 0.5° × 0.5° centred on G351 from the flux calibrated maps of the data release version 1 (Molinari et al. 2016). Spitzer 8 μm and 24 μm data are also used for comparison. A summary of the datasets used in this study is presented in Table 1.

3.1. Spectroscopic observations

The region indicated by white dotted lines in Fig. 1 was mapped in the 13CO and C18O (2–1) transitions with the APEX telescope between August and November 2014. The APEX-1 facility receiver was tuned to a frequency of 218.5 GHz in lower side band (LSB) to observe simultaneously the 13CO (2–1) and C18O (2–1) transitions with a velocity resolution of 0.1 km s$^{-1}$. The region was covered with three different on-the-fly maps centred on α(J2000) = 17h26m36.47s, δ(J2000) = −36°07′43″00, α(J2000) = 17h26m20″00, δ(J2000) = −36°15′15″30, and α(J2000) = 17h27m14″84, δ(J2000) = −36°08′07″70, respectively. This re-

Table 1. Clumps in G351

Clump Id	R.A. (J2000)	Dec. (J2000)	Classification
Clump-1	17:26:42.30	−36:09:18.23	Mid-IR bright/Hii region
Clump-2	17:26:38.79	−36:08:05.53	Mid-IR weak
Clump-3	17:26:47.33	−36:12:14.37	Mid-IR bright/Hii region
Clump-5	17:26:25.25	−36:04:57.03	Mid-IR weak
Clump-6	17:26:23.25	−36:04:32.74	Mid-IR weak
Clump-7	17:26:34.78	−36:06:34.22	70 μm-IR weak
Clump-8	17:26:28.26	−36:05:21.34	Mid-IR weak
Clump-11	17:26:31.27	−36:05:51.70	70 μm-IR weak

Fig. 1. Spitzer 8μm image of the molecular complex G351. The white contour is 5% of the C18O (2–1) peak intensity (17.6 K km s$^{-1}$) integrated in the velocity range $−3.5 \pm 0.5$ km s$^{-1}$. The green triangles denote the ATLASGAL clumps identified in Paper I (see Table I labelled as C1, C2...). The skeleton of G351 and that of the branches is shown by the white dashed line. The white dotted lines indicate the region observed in CO isotopologues with APEX. The B1–B8 labels indicate the eight branches identified in the N_{H_2} column density map (see Sect. 4.1). The white square on the south-west of G351 indicates the position of MSX IRDC G351.64–00.46 (Simon et al. 2006).
Table 2. Summary of the datasets available at different wavelengths

Angular resolution	References	
Continuum observations		
Spitzer-8 μm	1''/2	1
Spitzer-24 μm	5''/75	2
Herschel-70 μm	10''	3
Herschel-160 μm	12''	3
Herschel-250 μm	18''	3
Herschel-350 μm	25''	3
Herschel-500 μm	36''	3
SABOCA-350 μm	7''/4	4
LABOCA-870 μm	19''/2	5
Spectroscopic observations		
APEX-C18 (2–1)	30''/2	4

References. (1) Benjamin et al. [2003]; Churchwell et al. [2009]; (2) Carey et al. [2009]; (3) Molinari et al. [2010]; (4) This study; (5) Schuller et al. [2009] and Paper I

results in a non-uniform noise in the map due to different integration times for the three coverages. For all observations, the position angle = 0° (J2000) = 17°26′36″47 /12(J2000) = −38°07′43″09 was used for sky subtraction after verifying that no 13CO (2-1) emission was detected close to the ambient velocity of the G351 complex (∼ −3 km s⁻¹). Pointing and focus were regularly checked on Mars and on nearby stars (NGC6302, IRAS15194−5115) of the APEX line pointing catalog. For relative calibration, the hot core IRAS 17233−3606 (Leurini et al. [2011a]) was regularly observed in the same frequency set-up used for the maps; variations in the 13CO (2-1) line intensity were found to be less than 15%. Data were converted into T_{MB} limits assuming a forward efficiency of 0.95 and a beam efficiency of 0.75. The data cubes were constructed using the CLASS gridding routine XY_map, which convolves the data with a Gaussian kernel of one-third of the telescope beam, yielding a final angular resolution slightly coarser than the original beam size. The final spatial resolution of the maps is 30″/2. The average rms in the maps is 0.4 K per velocity channel (0.1 km s⁻¹) with a spread between 0.2 and 0.5 K owing to non-uniform integration time. The region of the map with the higher signal-to-noise ratio covers the main filament and the branches detected in absorption in the mid-IR.

3.2. SABOCA continuum observations

G351 was observed with the APEX telescope in the continuum emission at 350 μm with the Submillimeter APEX Bolometer Camera (SABOCA; Siringo et al. [2010]). The observations were performed on 2010 May 7 and 8. The total mapped area is ∼ 3.5′ × 11′ oriented along the main filament G351 and covers a smaller area than that of the C18O data. The pointing and focus were checked on SABOCA secondary calibrators sources (G45.1. IRAS16293) and planets (Uranus and Neptune, also used as primary calibrators) in the bright hot core IRAS 17233−3606 in the G351 complex was also used as pointing source close to the target. Skydips (fast scans in elevation at constant azimuthal angle) were performed to estimate the atmospheric opacity (τ_{zenith} ∼ 1.2). The weather conditions at the time of the observations were good with precipitable water vapour levels of 0.3–0.5 mm. The data were reduced with the BOA software (Schuller [2012]). We note that the SABOCA data are affected by spatial filtering of extended structures due to the standard data reduction, which relies on the process of correlated noise removal (see for example Belloche et al. [2011] for the LABOCA array). The resolution of the data is 7″4 with a noise level of 0.9 Jy beam⁻¹.

4. Dust and molecular environment of G351

In this section, we discuss the dust continuum emission of G351 (Sect. 4.1), and identify a main body filamentary structure based on the H2 column density distribution (Sect. 4.2). We also investigate the molecular environment of the cloud (Sect. 4.3), and derive the mass distribution of the entire filamentary network (Sect. 4.4) by means of the dust and molecular data.

4.1. Dust emission

In Fig. 2 we show the continuum emission of the region from 8 μm to 870 μm using complementary Spitzer and ATLASGAL data. The high resolution of mid-IR Spitzer data (Benjamin et al. [2003]; Churchwell et al. [2009]; Carey et al. [2009]) allows us to distinguish fine details of the filamentary network. In particular, we note several branches in the north giving this region the appearance of a ripped fan. This configuration is seen in several IRDCs and it is expected to appear in models of filaments in global collapse with active environmental accretion onto their structure (Heitsch [2013]). The entire filamentary system (including G351 and the network of branches surrounding it) is seen in absorption at 8 μm and 24 μm. The structure starts to become detected in emission at longer wavelengths. For example, at 70 μm the northern part of G351 is still in absorption against the Galactic background. However, the 70 μm dark region is narrower than at shorter wavelengths and it corresponds to the inner part in absorption at 8 μm and 24 μm. In the other Hi-GAL maps, G351 and the branches are detected in emission.

The 160 μm to 500 μm Hi-GAL data were used to derive a map of the dust temperature and H2 column density, N_{H2}. We smoothed all data to the beam size of the 500 μm map following a standard approach in the analysis of Herschel data (e.g. Elia et al. [2013]; Schneider et al. [2012]; Elia et al. [2017]). The derived maps have a final resolution of 36″, which matches very closely that of the spectroscopic data analysed in this paper. To determine the column density and dust temperature, we used a two emission component model (Schisano et al. [2018]), in which the fluxes in each pixel at each Herschel band are split between a filament and background component as discussed by Petro et al. [2010]. The background emission is estimated through a linear interpolation over the area of G351 of the fluxes measured around its perimeter. The interpolation direction is aligned perpendicularly to the branches (see Sect. 3). The fluxes are then fit with a modified black-body model, deriving an independent temperature and column density for each component. In both cases, the dust temperature is constrained to be in the range 5 K − 50 K, while no constraint was adopted for the column density estimate. The fluxes were fitted using a modified black-body function as in Elia et al. [2013] and the best fit is found with a χ² analysis. We assumed a dust opacity law κ_{dust}(νν) with β = 2, ν_0 = 1250 GHz, a dust-to-mass ratio of 100, and κ_{dust} = 0.1 cm² g⁻¹ (Hildebrand [1983]) to preserve compatibility with previous works based on other Hi-GAL studies (e.g.
linearly interpolated the skeleton in the 30" region. To avoid possible non-linear effects, we masked out a region of radius ~ 30" in all Herschel bands before computing T_{dust} and N_{H}. Nevertheless, the region surrounding Clump-1 peak's position is affected by larger uncertainties in both quantities. The resulting T_{dust} and N_{H} distributions of the network are shown in Fig. A.2 while the corresponding maps for the background are presented in Appendix A (Fig. A1).

The main filamentary body of G351 is the denser region of the cloud, which has values exceeding 3×10^{22} cm$^{-2}$; the branches, on the other hand, have lower column densities with a maximum value of $\sim 1.5 \times 10^{22}$ cm$^{-2}$ showing a main difference between the main body and the lower surface brightness shallow surrounding filamentary network. The average column density along the skeleton (see discussion below) is $\sim 8.2 \times 10^{22}$ cm$^{-2}$ in G351. The dust temperature is distributed differently along the main filament as it is influenced by local star formation. Indeed, the more active southern part (see also Paper I) is warmer with typical temperatures of 27 K–40 K, reaching the highest values in the surroundings of Clump-1, while the more quiescent northern part has typical temperatures of 11 K–13 K. The branches in the network have temperatures similar to the northern part of G351.

We derived the spine of G351 and of the network of branches using a twofold approach. For the filamentary network, we made use of the column density map in which the branches have the largest contrast with the surrounding background. However, the resolution of the column density map is 36" and with this approach we lose details on the main filament. Therefore, we also computed the skeleton of the main body from the isocontours of the 250 μm continuum emission, which has high signal-to-noise ratio and 18" beam size. We adopted the method described by Schisano et al. (2014) and optimised it for the region. The adopted algorithm identifies extended two-dimensional cylindrical-like features based on the analysis of the Hessian matrix of the column density map or the intensity map at 250 μm. We refer to Schisano et al. (2014) and Schisano et al. (2018) for a detailed discussion of the method. To over come issues related to the saturation in the Hi-GAL bands, we linearly interpolated the skeleton in the 30" radius masked region. Moreover, we improved the position of the spine by comparing the emission in each of its pixel with that of the direct neighbours. The resulting spine for the entire network is shown in Fig. 1 and 2 while that of the main filament derived from the 250 μm data is shown in Figs. 3 and A.2. In the following analysis, we make use of the spine derived from the column density map only in Sect. 4.1 when we analyse the velocity field along one of the branches.

We identified the main skeleton and additional eight branches in the network. The most prominent are on the south-west of the main IRDC pointing towards the brightest FIR clumps in the filament, i.e. Clump-1, -2, and -3 (see Table 1). Clump-1 and -3 are also the most evolved in the region. All three branches have a dark counterpart at 8 μm. In the following we label these three sub-filaments as Branch-3, Branch-5, and Branch-6 (Fig. 1). In the south-east of G351 there are two other branches (Branch-2 and -4), which also seem to point to Clump-3 and -1, respectively. Branch-4 is also seen in extinction in the mid-IR. Branch-1 is aligned along the main axis of the central region. Finally, two branches (Branch-7 and -8) are detected in the most northern extension of G351 associated with the fan-like structure seen in the mid-IR.

In the following discussion, we focus on the large-scale dust distribution. The analysis of the dust condensations detected in Hi-GAL and the protostellar content in the filamentary network will be presented in a forthcoming paper (Schisano et al. in prep.).

4.2. Filament main body: G351

By combining the Hi-GAL data (resolution between ~ 10" at 70 μm and ~ 36" at 500 μm, 0.05 pc–0.17 pc, respectively), which sample the larger scale distribution of the dust, with the SABOCA data (angular resolution ~ 7"; corresponding to 0.04 pc), which trace the innermost high-density region of the filament, we can construct a detailed view of the dust distribution in G351.

We define as the main body of the region the central structure with $N_{\text{H}} > 3 \times 10^{22}$ cm$^{-2}$ (corresponding to A_v ~ 30; Bohlin et al. 1978; Kauffmann et al. 2017). We also include in the definition two branches, Branch-1 and Branch-8, since they are aligned along the main axis of the central region. All other branches are considered part of the filamentary network.

Based on the column density skeleton, we estimate the length of G351 to be ~4.6 pc, assuming an inclination of 0 deg against the plane of the sky. This estimate is also confirmed by the Spitzer 8 μm data. Clump-1, the most evolved in G351, is found roughly in the middle of the filament (~2.5 pc starting from the northern end) and divides G351 into two parts: the northern part, which is cold and dense, and is clearly detected in emission at FIR wavelengths and absorption in the mid-IR, and the southern part, which is clearly detected in the dust emission in the FIR and hosts more evolved sources.

To estimate the width of G351 and determine how it changes along its length, we used the photometric maps at 350 μm from SABOCA, which have the highest angular resolution among our submillimetre data but filter out the large-scale emission, and at 160 μm and 250 μm from Hi-GAL, which are sensitive also to the diffuse emission. We selected these two Hi-GAL bands because they have the closest angular resolution (see Table 2) and are close in wavelengths to the SABOCA data. We made the simple hypothesis that the structure is isothermal when evaluating the physical width from the photometric maps. Later we discuss how our results change when dropping this assumption. We divided the maps in several regions (see Fig. 2 for the analysis on the SABOCA data and on the 250 μm map) and studied the radial profiles as a function of the distance from the dust skeleton along the length of G351, in particular to investigate variations of its width. The regions have similar lengths of ~ 0.3 – 0.4 pc along the spine and they are selected to cover the entire length of the main filamentary structure. Results are shown in Fig. 4 and Fig. A.2 and in Table 3. The profile of G351 is spatially resolved in all wavelengths adopted for this analysis. The profiles obtained from Hi-GAL are consistently broader than those derived from the SABOCA data, likely because of filtering effects. In the SABOCA data, the width, w, of the filament is well resolved everywhere along the skeleton (see right panel of Fig. 4) with a median value of ~ 0.11 pc and a standard deviation of 0.07 pc. The Hi-GAL profiles are typically 0.2 pc broad ($w_{160} = 0.19$ pc ± 0.05 pc, $w_{250} = 0.21$ pc ± 0.06 pc). The radial profiles for all analysed regions are shown in Fig. A.2 at three wavelengths (350 μm from SABOCA, 250 μm and 160 μm from HI-GAL). Interestingly, the width of the filament is essentially constant along its 4.6 pc length for all of the data and all regions.
and we do not see any significant deviation from Gaussian shape. Moreover, the widths derived using different Hi-GAL bands are consistent with each other. We also derived the width of the filament using the C\(^{18}\)O (2–1) emission integrated in the velocity range \(-3.5 \pm 0.5\) km s\(^{-1}\) (see Sect. 4.3) and found that the width of the diffuse medium associated with G351 is slightly broader (\(\sigma_{\text{C}^{18}\text{O}} = 0.37 \pm 0.06\) pc) but also constant along its full extent.

To investigate the impact on our analysis of the assumption that the dust emission is isothermal, we combined our temperature map with the 250 \(\mu\)m thermal continuum emission and derived a column density distribution at 18′′ resolution directly from the 250 \(\mu\)m data (see for example André et al. 2016). We then estimated the width of the filament in the 12 regions described above using the same methodology applied to the photometric maps. Results from both methods are in agreement within the reported errors (Fig. A.3), demonstrating that our assumption of isothermal emission does not influence the results even though the temperature along the filament is not constant. To summarise, the main filamentary body G351 is a structure with an average column density of \(8 \times 10^{22}\) cm\(^{-2}\), an aspect ratio of \(\frac{h}{l} \approx 23\), and an almost constant width of \(\sim 0.2\) pc.

4.3. CO isotopologue emission

Figure 5 shows the \(^{13}\)CO (2–1) and C\(^{18}\)O (2–1) spectra averaged over the full region mapped with APEX. Figure A.4 shows the distribution of the \(^{13}\)CO emission separately integrated over the velocity intervals of the five different velocity components clearly visible in the integrated \(^{13}\)CO spectrum (peaked around \(-24\) km s\(^{-1}\), \(-18\) km s\(^{-1}\), \(-3.5\) km s\(^{-1}\), +6 km s\(^{-1}\), and +11 km s\(^{-1}\)). The weak component at \(\sim +11\) km s\(^{-1}\) is seen mostly in the channel maps since the emission is strongly confined to a small region in the north-west of G351 (see Fig. A.4). Clearly G351 and the majority of the dark patches seen in extinction in the mid-IR and in emission in the Hi-GAL data belong to the same molecular complex with a typical velocity of \(\sim -3\) km s\(^{-1}\) (see also Fig. 1). Branch-3, -4, -5, -6, and -8 are detected in both \(^{13}\)CO and C\(^{18}\)O, while Branch-2 can be seen only in the \(^{13}\)CO integrated emission map (see Fig. A.4). The other components are not associated with the molecular environment of G351. The emission at \(\sim -24\) km s\(^{-1}\) is associated with Midcourse Space Experiment (MSX) IRDC G351.64–00.46 (Simon et al. 2006) on the south-west of the main filament (see Fig. A.4). Likely, the 8 \(\mu\)m bright emission on the south of MSX IRDC G351.64–00.46 is associated with the same molecular environment since in Paper I we found CO isotopologue emission...
centred at \(\sim -22 \text{ km s}^{-1} \) at their positions 9, 10, and 12 (see their Figure 3).

In the following sections we derive the mass of G351 and of the full network of branches using the dust maps and the \(^{13}\text{CO} (2-1)\) data (Sect. 4.4), and analyse the velocity field in the structure (Sect. 5) and its dynamical state (Sect. 6). We focus only on the optically thin \(^{13}\text{CO} (2-1)\) data, avoiding high opacity effects probably affecting the \(^{12}\text{CO}\) spectra. Indeed we verified that \(^{13}\text{CO}\) has low optical depths on the dust condensations in G351 comparing with \(^{12}\text{CO} (2-1)\) data from Paper I. The observed ratio of the integrated intensities of \(^{13}\text{CO}\) to \(^{12}\text{CO}\) ranges between 2.4 and 5 under the assumption of optically thin \(^{13}\text{CO}\) emission, implying moderate opacities for \(^{13}\text{CO}\) of 0.2–0.5 even towards the most massive clumps in G351 and suggesting lower optical depths in the rest of the region.

4.4. Mass distribution of the filamentary system

We computed the mass of the filament and the network from the Hi-GAL data and from the \(^{13}\text{CO}\) map assuming thermal equilibrium between dust and gas and using the dust temperature map from Herschel as input to estimate the \(^{13}\text{CO}\) column density. Around the saturated region we measure a maximum temperature of \(\sim 30\text{ K} \). We adopted this value as a lower limit for the
effective temperature on Clump-1 given the presence of an H\textsc{ii} region and a hot core. This assumption translates into an lower limit to the real mass for the estimate based on C18O. Assuming a CO abundance of 10^{-4} (Giannetti et al. 2017), a 16O/18O ratio of 58.8$D_{gc} + 37.1$, (Wilson & Rood 1994), and a Galactocentric distance, D_{gc}, equal to 7.4 kpc (Giannetti et al. 2014 revised for $d = 1$ kpc), the total mass of the system including the network of filaments derived from C18O is $\sim 2100 M_\odot$. For
the main body \((N_{\text{H}_2} \geq 3 \times 10^{22} \text{ cm}^{-2})\), we estimated a mass of \(~1200 M_\odot\). We do however expect higher temperatures close to protostellar sources in particular in the proximity of Clump-1 (see Leurini et al. 2011a). Adopting \(T = 50\) K for the saturated region (see Giannetti et al. 2017; Urquhart et al. 2018) for typical temperatures of similar sources at comparable resolutions), the mass estimates based on \(^{18}\)O becomes \(~2200 M_\odot\) for the whole region and \(~1300 M_\odot\) for the main filament.

We also derived the mass of G351 \((~1870 M_\odot)\) and that of the whole region including the network \((~2300 M_\odot)\) using the Hi-GAL column density map. These estimates do not include the saturated region close to Clump-1. Therefore we also attempted to estimate the mass hosted in the saturated region using the ATLASGAL data assuming a temperature of 30 K as for \(^{18}\)O and the same dust opacity law used for the Hi-GAL data. This assumption leads to a mass of \(~190 M_\odot\). We note that the values reported in Paper I for the same clump were given for temperatures of 10 K, 25 K, and 35 K and for a different opacity law. We finally note that the mass estimate for the network derived from the dust is likely a lower limit due to the difficulty to disentangle the low-contrast branches from the background. Without any background subtraction the total mass of the network including G351 increases to \(~4560 M_\odot\).

Although the masses based on the dust and on \(^{18}\)O are in good agreement, the \(^{18}\)O estimate for the main structure is lower than that derived from the dust. This is could be due to opacity effects and self-absorption in the southern region of G351, where the most massive clumps reside, and to depletion in the youngest and coldest northern part (see Hernandez et al. 2011) for depletion in IRDCs, and Sabatini et al. (in prep.) for a study of depletion in G351). Also deviation from the local thermal equilibrium assumption can play a role in this discrepancy.

To summarise, we estimate that the total mass of the network including G351 is between 2600 M_\odot and 4600 M_\odot including the mass of the saturated region; there is a large uncertainty due to the difficulty to disentangle the low-contrast branches from the background. The main filamentary body has a total mass of 1600–2100 M_\odot. Our analysis confirms that the network of branches surrounding G351 harbours a large reservoir of gas and dust which could still be accreted onto the clumps detected along the main filament. This reservoir accounts for about 20% of the total mass if we adopt the estimate of 2600 M_\odot for the network based on the dust and subtracting a background, but increases up to ~60% if no background subtraction is done. Using the \(^{18}\)O data, the mass of the network is ~40% of that of the main substructure.

5. Velocity structure

In this section, we explore the gas kinematics along and across the filament G351 and in the network of branches using the centroid velocity \((V_{\text{c}})\) derived from the \(^{18}\)O emission. In Fig. A.5 we show the \(^{18}\)O channel map emission associated with the region. One can notice that the emission in the southern region is confined within the velocity range \([-4.5, -3.4]\) km s\(^{-1}\), while the northern part emits between \(-3.9\) km s\(^{-1}\) and \(-2\) km s\(^{-1}\). This is due to a gradual shift of the \(^{18}\)O emission for the lines of sight from the southern to the northern portion of G351 as can be seen in Fig. 8 where we show the \(^{18}\)O first moment map (see also discussion in Sects. 5.1 and 5.2). This difference in velocity between the northern and southern part was also reported in Paper I based on \(^{2}H\) data. We note that along the spine of G351, \(^{18}\)O is reasonably fit with a single line component except towards IRAS 17233–3606, where optical depth and outflow contamination is evident (Fig. 6). On the other hand, two velocity components are clearly detected in the low-density gas in a large portion of the mapped region (Fig. 7). These two components are also clearly detected in the northern part of G351 in the region from Clump-6 to Clump-7 (see Fig. 9) where a ve-
5.1. Large-scale velocity structure

In Fig. 8 we show the distribution of the first three moments obtained from the 18O (2–1) line in the velocity range $[-6, -1]$ km s$^{-1}$. The overall velocity distribution of the 18O (2–1) transition is in good agreement with that of N$_2$H$^+$ presented in Paper I. We confirm the velocity gradient detected in the northern part of G351 and also the gradients detected towards Clump-1 and associated with multiple molecular outflows (e.g. Leurini et al. 2009). Typically, 18O traces lower velocities than N$_2$H$^+$, but this is expected if N$_2$H$^+$ is associated with the inner part of the filament and the clumps. We do not detect any clear velocity gradient from the branches towards the dust clumps in the filament although the emission in several branches is systematically red-shifted with respect to the clumps in the main filament (Fig. 8 mid panel). The second moment map (Fig. 8 right panel) shows that the velocity dispersion, σ, is relatively constant along G351 on scales of $\sim 30''$ (~ 0.2 pc) with a typical value of ~ 1 km s$^{-1}$ against the thermal velocity dispersion of ~ 0.2–0.3 km s$^{-1}$ at a typical (at least in the mid-IR dark part of G351; see Fig. 8) temperature of 10 K–20 K. This velocity dispersion is also confirmed by the N$_2$H$^+$ (1–0) data analysed in Paper I (see their Fig. 8). However, the multiple velocity components detected in several 18O spectra (see Sect.5) could influence the estimate of the velocity moments.

To probe the large-scale velocity distribution, we extracted 18O (2–1) spectra along the main axis of the filament, in the perpendicular direction, and along Branch-6 (one of the branches in the network; see Fig. 1) using the skeletons obtained from the 250 μm data and from the H$_2$ column density map after reprojecting them on the 18O data. We then extracted spectra at each position along the three structures (see Figs. 9, A.7). The individual spectra are analysed in CLASS using the GAUSS fit routine. As noted in the previous section, the 18O data along the spine are well fit with a single velocity component in the majority of the positions. The median dispersion velocity along this direction is $\sim 1.1 \pm 0.5$ km s$^{-1}$, and this value is not biased by broad profiles associated with active clumps, since it decreases to $\sim 1.0 \pm 0.1$ km s$^{-1}$ if we exclude the region around Clump-1 and -2. In Fig. 10 we present the velocity field (plotted as velocity centroid against linear distance in arcsec along the spine). In the top panel of Fig. 10 we compare the velocity centroid to the Herschel 500 μm dust brightness, the closest in angular resolution to the APEX observations among the Hi-GAL data. On top of an overall velocity gradient, 18O exhibits a remarkable oscillatory pattern. This pattern is discussed in more detail in Sect.5.2.

We also investigated the 18O spectra across the width of the main filament. We first selected the most quiescent northern part of G351 and collapsed the data along the direction parallel to the skeleton to increase the signal-to-noise ratio at each position across the spine (Fig. 9). It can be clearly seen that the 18O profiles get narrower at increasing distance from the spine. Moreover, at the outermost positions on the east side of G351 a double-peak profile is detected in the 18O (2–1) line that cannot be resolved in the denser part of G351. We stress that this analysis is performed in the region in which a velocity gradient across the width of G351 is seen in in 18O and N$_2$H$^+$ (see Fig. 9 and Paper I). It is unlikely that optical depth effects may alter the 18O line profile at the outer positions, since the double peaks are detected in relatively low column density gas (see Fig. 9). Moreover, low opacities are inferred towards the dust clumps by comparison with the C18O spectra of Paper I (see Sect. 4.3). The spectra shown in Fig. 9 are highly reminiscent of those detected.
Fig. 8. Zeroth (integrated intensity, left panel), first (velocity, middle panel), and second (velocity dispersion, right panel) velocity moments of \(^{13}\text{C} \text{O}(2–1) \) in the velocity range \([-6, -1]\) km s\(^{-1}\). The black squares in the left panel indicate the spine of G351. The white contour in the right panel represents a velocity dispersion of 1 km s\(^{-1}\).

by [Peretto et al.] (2006) in the intermediate-mass NGC 2264-C clump and interpreted as the results of colliding flows.

Regarding Branch-6 (Fig. 10, a second velocity component is detected at some positions along its skeleton. The fit results are therefore grouped together using the DBSCAN clustering algorithm\(^5\). A crucial input parameter for the algorithm is the number of samples in a neighbourhood for a point to be considered as a core point. We adopt a value of 2 for this parameter, which is equivalent to adopting a "friends of friends" approach such that components that closely follow each other both in position and velocity are grouped together. The clustering results are also sensitive to the maximum distance between two samples for them to be considered as in the same neighbourhood.

After testing a range in input parameters, we adopt a parameter set that agrees best with our visual verification. This result in two clusters along the spine of Branch-6: one cluster associated with its full length and a second detected only within a distance of 200′′ from G351 (Fig. 11). As in the case of the spine of G351, the first component, associated with the whole branch, shows an oscillatory pattern on top of an overall velocity gradient of about 1.5 km s\(^{-1}\) over 600′′.

5.2. Velocity structure along the spines

Figure 10 shows the flux density of the 500 µm Hi-GAL data, the centroid line-of-sight velocity of the \(^{13}\text{C} \text{O}(2–1) \) line, and the absolute value of its gradient along the spine of G351 as a function of distance along the spine. The absolute velocity gradient is evaluated over a bin of 0.07 pc. As already noted in Sect. 5.1 velocity fluctuations are detected along the spine of G351 and at least of Branch-6 in \(^{13}\text{C} \text{O} \) (Fig. 11). We also note that on top of a large-scale velocity gradient of about ~ 1 km s\(^{-1}\) pc\(^{-1}\), local velocity gradients close are developed close to dust clumps, similar to the findings of [Williams et al.] (2018) in the massive filamentary hub SDC13.

While we note a general association between the fluctuations and peaks of the velocity gradient and location of dense cores, we do not find a one-to-one correlation. However, all peaks of the velocity gradient are found in within ~ 0.2 pc from dust peaks. Given the typical size of the clumps in G351 (~ 0.1 – 0.2 pc, see Table 3 in Paper1), local motions could influence the velocity field in the vicinity of the clumps. [Williams et al.] (2018) interpreted the correlation between the pattern of the velocity field and the dust peaks as a signature of accretion from the parent filament. However, these velocity variations can have a different interpretation than the steady accretion. For example [Smith et al.] (2016) found similar velocity shifts in their simulations and determined that they are ascribed to transient motions.

In one of the very few cases where a good agreement between velocity and density peaks has been found (low-mass filament L1571, [Hacar & Tafalla] 2011), it has been argued that this is a consequence of filament fragmentation via accretion along filaments. These authors modelled such velocity oscillations as sinusoidal perturbations caused by mass inflow along filaments forming cores. Such motions are expected to create a 4/1 shift between core density and velocity field. As discussed in [Henshaw et al.] (2014), this applies to an idealistic case. Projection effects can obscure the actual inclination angle of the filament, and thus lead to different velocity signatures. Recent simulations [Heigl et al.] (2016) [Gritschneder et al.] (2017) have started to model the observed velocity oscillations as a natural consequence of filaments that start out in hydrostatic equilibrium and undergo subsonic gravitational fragmentation. Additional effects such as inclination and geometric bents would produce different velocity oscillatory patterns.

Unlike the low-mass filament L1571 in which velocity oscillations have been observed, fluctuations in G351 are highly

\(^5\) http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
supersonic. The peak to valley variations in the velocity profile are < 2 km s\(^{-1}\) in either of the two tracers. The free-fall velocity implied for the most massive core in the filament, a 400 M\(_{\odot}\) hot core of radius \(\sim 0.1\) pc (see Tables 3 and 4 of [Leurini et al. 2011b]) is \(\sim 6\) km s\(^{-1}\). The rotational velocity implied by the velocity gradient (see Fig. 10) is negligible compared to the kinetic energy. Therefore, there have to be other factors that significantly influence the gas dynamics. For example, only a fraction of total velocity variation would be identified for a filament inclined at an angle with respect to the observer ([Henshaw et al. 2014]). Moreover, strong magnetic fields can also significantly slow down accretion ([Pillai et al. in prep]).

6. Dynamical state of G351

In the previous section, we reported that the velocity dispersion in G351 is relatively constant (\(\sim 1\) km s\(^{-1}\), see Fig. 8 right panel, and Sect. 5.1) at the resolution of our C\(^{18}\)O and N\(_2\)H\(^+\) observations. However, a double velocity profile is detected in the majority of positions in the low column density gas (Figs. 7 and 9) and we have indications that these double component is also seen along the spine of G351 in the isolated hyperfine of N\(_2\)H\(^+\) (2–1) (see Fig. A.6). Unfortunately, our data do not allow us to analyse these components in further detail. The median value of the velocity dispersion derived on the spine of G351 from C\(^{18}\)O is 1.0 km s\(^{-1}\) (excluding the positions close to Clump-1 and -2). This value is higher than that found in nearby filaments by [Arzoumanian et al. 2013], however our estimate is close to measurements in more massive objects (e.g. [Schneider et al. 2010; Mattern et al. 2018]). Moreover, we point out that our measurement can be biased by high opacity and dilution effects, which decrease the estimate of \(N_{\text{H}_2}\), or by the presence of multiple components.

Using a velocity dispersion of 1 km s\(^{-1}\), we derive a virial mass per unit length \(M_{\text{line, vir}} = 2\sigma_{\text{tot}}^2/G \sim 470\) M\(_{\odot}\) pc\(^{-1}\) where \(\sigma_{\text{tot}}\) is the total velocity dispersion (thermal plus non-thermal) and \(G\) the gravitational constant. Considering a total mass of 1600 – 2100 M\(_{\odot}\) for the main filament G351 and a length of 4.6 pc (see Sects. 4.1 and 4.4), the mass per unit length, \(M_{\text{line}}\), is 350 – 450 M\(_{\odot}\) pc\(^{-1}\).
The critical mass ratio, $M_{\text{line}}/M_{\text{line,vir}}$, of G351 is 0.7–0.9. Given the large uncertainties in the mass estimate, we suggest that G351 is globally in a quasi-stable equilibrium supported by a combination of thermal and turbulent motions. Locally, the cloud may be unstable and collapse. Indeed, we checked the MALT90 (Foster et al. 2011, 2013; Jackson et al. 2013) HCO$^+$ cloud may be unstable and collapse. We suggest that G351 is globally in a quasi-stable situation supported by a combination of thermal and turbulent motions close to virial equilibrium, but that locally the filament has become unstable and star formation has started. Finally, we detect velocity fluctuations along the spine of G351 C18O in at least one of the branches of the network in C18O. We also find local velocity gradients close to the dust peaks on top of a large-scale velocity gradient.

Acknowledgements

We thank the anonymous referee for her/his accurate review, which significantly contributed to improving the quality of this paper. We thank Axel Weiss for help with the SABOCA data reduction. E.S. acknowledges financial support from the VIALACTEA Project, a Collaborative Project under Framework Programme 7 of the European Union, funded under Contract #607380. This work was partly supported by the Italian Ministero dell’Istruzione, Università e Ricerca through the grant Progetti Premiali 2012 – IALMA (CUP C521I3000140001), and by the DFG cluster of excellence Origin and Structure of the Universe (www.universe-cluster.de). This work was partially carried out within the Collaborative Research Council 956, subproject A6, funded by the Deutsche Forschungsgemeinschaft (DFG). This research made use of APLpy, an open-source plotting package for Python (Robitaille & Bressert 2012), of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013; Price-Whelan et al. 2018), and of Matplotlib (Hunter 2007).

References

Anderson, L. D., Bania, T. M., Balser, D. S., et al. 2014, ApJS, 212, 1
André, P., Revéret, V., Könyves, V., et al. 2016, A&A, 592, A54
Arzoumanian, D., André, P., Peretto, N., & Könyves, V. 2013, A&A, 553, A119
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33
Bally, J., Langer, W. D., Stark, A. A., & Wilson, R. W. 1987, ApJ, 312, L45
Barnes, P. J., Muller, E., Indermuehle, B., et al. 2015, ApJ, 812, 6
Belloche, A., Schuller, F., Parise, B., et al. 2011, A&A, 527, A145
Benjamin, R. A., Churchwell, E., Babler, B. L., et al. 2003, PASP, 115, 953
Bolton, R. C., Savage, B. D., & Drake, J. F. 1978, ApJ, 224, 132
Burton, M. G., Babler, B. L., Meade, M. R., et al. 2009, PASP, 121, 213
Churchwell, E., Babler, B. L., Meade, M. R., et al. 2009, PASP, 121, 213
Contreras, Y., Schuller, F., Urquhart, J. S., et al. 2013, A&A, 549, A45
Csengeri, T., Bontemps, S., Schneider, N., et al. 2011, ApJ, 740, L15
Csengeri, T., Urquhart, J. S., Schuller, F., et al. 2014, A&A, 565, A75
Elia, D., Molinari, S., Schisano, E., et al. 2017, MNRAS, 471, 100
Foster, J. B., Jackson, J. M., Barnes, P. J., et al. 2011, ApJS, 197, 25
Foster, J. B., Rathborne, J. M., Sanhueza, P., et al. 2013, PASA, 30, e038
Giannetti, A., Leurini, S., Wyrowski, F., et al. 2017, A&A, 603, A33
Giannetti, A., Wyrowski, F., Brand, J., et al. 2014, A&A, 570, A65
Gritschneder, M., Heigl, S., & Burkert, A. 2017, ApJ, 834, 202
Hacar, A., Alves, J., Tafalla, M., & Goicoechea, J. R. 2017, A&A, 602, L2
Hacar, A. & Tafalla, M. 2011, A&A, 533, A34
Heigl, S., Burkert, A., & Hacar, A. 2016, MNRAS, 463, 4301
Heitsch, F. 2013, ApJ, 769, 115
Henshaw, J. D., Caselli, P., Fontani, F., Jiménez-Serra, I., & Tan, J. C. 2014, MNRAS, 440, 2860
Hernandez, A. K., Tan, J. C., Kainulainen, J., et al. 2012, ApJ, 756, L13
Hildebrand, R. H. 1983, QJRAS, 24, 267

6 http://www.astropy.org
Appendix A: Additional material

In this section, we provide additional material. Figure A.1 shows the distribution of the column density and dust temperature for the background component used in the two emission component fit of the Herschel fluxes. Figure A.2 presents the average radial profile of the G351 filament extracted from the photometric images at 350 \(\mu\text{m}\) from SABOCA, and at 250 \(\mu\text{m}\) and 160 \(\mu\text{m}\) from Hi-GAL to illustrate how the width of G351 varies along its length. An estimate of the uncertainties introduced in our analysis by our choice of estimating the width of G351 using the photometric images is given in Fig. A.3. Additional information on the velocity field of the region is given in Figs. A.4–A.7.
Fig. A.1. Distribution of the N_{H_2} column density (left panel) and dust temperature (right panel) for the background component. The solid black contour indicates the region in which the filamentary network component is defined.

Fig. A.2. Average radial profile of G351 estimated from the SABOCA emission at 350 μm emission (solid black line), Hi-GAL-250 μm (red), and Hi-GAL-160 μm data (blue). The panels show the 12 regions of Fig. ordered from top left to bottom right.
Fig. A.3. Comparison between the widths of the 12 regions described in Sect. 4.2 computed on the 250 µm photometric map (y-axis) with those derived on the column density map obtained from the 250 µm Hi-GAL data (x-axis). The widths are not convolved for the beam of the data. In the two panels, the averaged radial profiles for the second (bottom right) of Fig 4 and seventh regions (top left) from the bottom are shown derived with both methods.
Fig. A.4. Integrated emission of the 13CO (2–1) line over five different velocity ranges (see Fig.5) is shown in colour scale. The point-like emission seen towards Clump-1 in the $[+5.6, +6.7]$ km s$^{-1}$ and $[+9.2, +13.2]$ km s$^{-1}$ velocity ranges is due to high-velocity emission associated with molecular outflows (see Leurini et al. 2009). Black contours show the corresponding integrated C18O (2–1) emission from 30% of its peak emission in steps of 30%. The white contours in the bottom right panel show the integrated C18O (2–1) emission in the range -3.5 ± 0.5 km s$^{-1}$ from 5% to 45% of the corresponding peak emission in steps of 10%. The B1–B8 labels are as in Fig.4.
Fig. A.5. Channel maps of C18O (2–1). Black contours represent from 10% of the peak intensity of each channel in steps of 10%. The data were smoothed to a spectral resolution of ~ 0.5 km s$^{-1}$.
Fig. A.6. Map of the N_2H^+ (1–0) transition overlaid on the integrated emission of the same line in the velocity range $[-6, -1]$ km s$^{-1}$.
Fig. A.7. 13CO spectra along Branch-6. The dashed line indicates a reference velocity of -3.5 km s$^{-1}$ (see Fig. 5). The numbers in each panel indicate the angular distance from the spine of G351 along the branch.