Graphene has been a hot research topic recently, primarily due to its Dirac points and the new paradigm of relativistic-like electron dispersion in their vicinity. Such dispersion is predicted by almost any hopping model on the two-dimensional (2D) honeycomb lattice. However, 2D systems should not have long-range order, and indeed, free-standing graphene sheets are rippled. In epitaxial graphene, coupling to substrate phonons becomes important. Both of these can be modeled as Holstein-like coupling of electrons to out-of-plane optical phonons. Here we investigate the effect of such coupling on the electronic dispersion.

This issue is important because we know from studies of Holstein polarons on simple cubic-like lattices that even weak-to-moderate electron-phonon coupling has significant effects: while a polaron band with infinite lifetime appears at very low energies, the higher energy spectral weight broadens considerably. In other words, phonon emission and absorption leads to very short lifetimes for all higher-energy states. This raises the possibility that the Dirac points, which are at high energies and are strongly electron-phonon coupled, where most of the rest of the spectrum is highly incoherent. Thus, these most interesting features are very robust, although their energies are shifted somewhat and the slope may be renormalized substantially. These results justify why one can ignore the rippling effects and assume a 2D lattice with long-lived quasiparticles, as has been done so far. This provides a valid description near the Dirac points, but would fail if the Fermi energy was anywhere else.

We use a generalization of the Momentum Average (MA) approximation to calculate the single-electron Green's function. MA was shown to be accurate for the entire spectrum (not just low-energies) for all coupling strengths and in all dimensions, for such problems. This is so because the MA spectral weight obeys exactly a significant number of sum rules, and is accurate for all higher order ones. It can also be systematically improved. We use here the generalizations of the MA(0) and MA(1) levels. There is hardly any difference between their predictions near the Dirac points, showing that convergence is reached and we need not go to a higher level. The results shown throughout are from MA(1), whose spectral weight fulfills exactly the first 8 sum rules.

We study the effects of the rippling of the graphene sheet on the quasiparticle dispersion. This is important because we know from studies of epitaxial graphene[5], coupling to substrate phonons on the two sub-lattices. The first term is the kinetic energy, the second term describes the optical phonon mode is:

\[
\mathcal{H} = \sum_k (\phi_k c_k^d d_k + \text{h.c.}) + \Omega \sum_q \langle b_q^d b_q + B_q^d B_q \rangle + \frac{g}{\sqrt{N}} \sum_{k,q} \left[c_{k-q}^d c_k (b_q^d + b_q) + d_{k-q}^d d_k (B_q^d + B_q) \right],
\]

where \(c^d \) and \(b^d (d^d \) and \(B^d \) create electrons, respectively phonons on the two sub-lattices. The first term is the kinetic energy of the electron for nearest-neighbor hopping, with \(\phi_k = -t \sum_{i=1}^3 e^{ik\delta_i} \). Generalization to other models is straightforward. The second term describes the optical phonons of frequency \(\Omega \), for the two sub-lattices. The Holstein coupling of the electron to phonons on the same site is described by the last term, \(g \) being the coupling strength. All \(k \)-sums are over the Brillouin zone, defined by the reciprocal lattice vectors \(\mathbf{b}_{1,2} = 2\pi/3a(1,1,1) \). We set \(t = 1 \), \(\hbar = 1 \). \(N \to \infty \) is the number of unit cells.

Given the bipartite lattice, the single-electron Green's function can be defined as a \((2 \times 2) \) matrix:

\[
\hat{G}(k, \omega) = \left(\begin{array}{cc} c_k & d_k \\ d_k^d & c_k^d \end{array} \right) \hat{G}(\omega) \left(\begin{array}{cc} c_k & d_k \\ d_k^d & c_k^d \end{array} \right) |0\rangle
\]

\[
= \left(\begin{array}{cc} \langle 0|c_k^d \hat{G}(\omega) c_k |0\rangle & \langle 0|c_k^d \hat{G}(\omega) d_k^d |0\rangle \\ \langle 0|d_k^d \hat{G}(\omega) c_k^d |0\rangle & \langle 0|d_k^d \hat{G}(\omega) d_k^d |0\rangle \end{array} \right),
\]

where \(\hat{G}(\omega) = (\omega + i\delta - \mathcal{H})^{-1} \) and \(|0\rangle \) is the vacuum.

The resolvent for the free electron is \(\hat{G}_0(\omega) = (\omega + i\delta - \mathcal{H}_0)^{-1} \), where \(\mathcal{H}_0 = \mathcal{H}|_{g=0} \). The free electron propagator...
can be calculated straightforwardly:
\[
\tilde{G}_0(k, \omega) = \begin{pmatrix}
G_{0S}(k, \omega) & e^{i\xi(k)}G_{0A}(k, \omega) \\
e^{-i\xi(k)}G_{0A}(k, \omega) & G_{0S}(k, \omega)
\end{pmatrix},
\]
where the symmetric and anti-symmetric parts are:
\[
G_{0S,A}(k, \omega) = \frac{1}{2} \left(\frac{1}{\omega + i\delta} \mp \frac{1}{\omega + i\delta} \right),
\]
while the phase factor is \(e^{i\xi(k)} = \phi_k/|\phi_k|\). As expected in a bipartite lattice, two symmetric bands arise with energy dispersions given by \(E_{k\pm} = \pm|\phi_k|\) where \(|\phi_k| = \left[1 + 4 \cos^2 \left(\frac{\sqrt{2} k_y a}{2} \right) + 4 \cos \left(\frac{\sqrt{2} k_x a}{2} \right) \cos \left(\frac{\sqrt{2} k_y a}{2} \right) \right]^{1/2}\). In the first Brillouin zone, the dispersion vanishes at the two Dirac points \(K, K'\) located at \(2\pi/3a(1, \pm 1/\sqrt{3})\).

We now describe briefly the MA\(^{(1)}\) approximation for calculating \(\tilde{G}(k, \omega)\), emphasizing the differences from the derivation of Ref. \[10\], due to the two-site basis. Like there, first we generate the equations of motion for this Green’s function, and all the higher order ones it is linked to. This is achieved by using repeated Dyson’s equation \(\tilde{G}(\omega) = \tilde{G}_0(\omega) + \tilde{G}(\omega)\tilde{V}\tilde{G}_0(\omega)\), where \(\tilde{V} = \tilde{H} - \tilde{H}_0\) is the electron-phonon interaction. The first equation is:
\[
\tilde{G}(k, \omega) = \left[1 + \frac{g}{\sqrt{N}} \sum_{q_1} \tilde{F}_1(k, q_1, \omega) \right] \tilde{G}_0(k, \omega),
\]
where \(\tilde{F}_1(k, q_1, \omega)\) is the one-phonon Green’s function:
\[
\tilde{F}_1(k, q_1, \omega) = \langle 0 | \left(c_k \right) \tilde{G}(\omega) \left(c_{k-q_1}^\dagger b_{q_1}^\dagger \right) | 0 \rangle.
\]
The equation of motion for \(\tilde{F}_1\) links it back to \(\tilde{G}\), but also to two-phonon Green’s functions. The two phonons are both on the same sub-lattice as the electron, or one may be on the other sub-lattice. The equations for these link them back to \(\tilde{F}_1\), but also to a new one-phonon Green’s function \(\tilde{F}_1^\dagger\), which has the phonon on the different sub-lattice than the electron. And, of course, to a multitude of three-phonon Green’s functions. And so on and so forth. All these higher-order Green’s functions must be proportional to the \(2 \times 2\) matrix \(\tilde{G}(k, \omega)\) \[10\], so it is convenient to rescale them accordingly, e.g., \(\tilde{f}_1(k, q_1, \omega) = g\sqrt{N}\tilde{G}^{-1}(k, \omega)\tilde{F}_1(k, q_1, \omega)\), and similarly for all the other ones (see below). Combining this with Eq. \[3\], we find the standard solution \(\tilde{G}(k, \omega) = \left[\tilde{G}_0^{-1}(k, \omega) - \tilde{\Sigma}(k, \omega) \right]^{-1}\), where the self-energy is:
\[
\tilde{\Sigma}(k, \omega) = \frac{1}{N} \sum_{q_1} \tilde{f}_1(k, q_1, \omega).
\]
Our task is thus to calculate the momentum average over the first Brillouin zone of the generalized Green’s function \(\tilde{f}_1(k, q_1, \omega)\). As just discussed, this is the solution of an infinite system of coupled equations of motion. We cannot solve it exactly, so we proceed to make simplifications. At the MA\(^{(0)}\) level, we replace all free propagators that appear in all these equations by their momentum averages over the first Brillouin zone. Within MA\(^{(1)}\), we keep the equations for \(\tilde{f}_1\) and \(\tilde{f}_1^\dagger\) unchanged, and make the MA approximation only from the second level on, i.e. for free propagators of energy \(ω - nΩ\) where \(n \geq 2\). Either of these approximations allows us to solve the resulting equations of motion exactly. We proceed to discuss the MA\(^{(1)}\) solution in more detail.

As for the simpler case presented at length in Ref. \[10\], the simplified MA\(^{(1)}\) equations of motion can be solved in terms of total (and partial) momentum averages of these higher Green’s functions, over all (all minus one) of their phonons’ momenta. After such total (partial) averages, only contributions from Green’s function which have all (except one) of their phonons on the same sub-lattice as the electron are non-vanishing. This is because one can easily check, using Fourier transforms, that:
\[
\sum_{q_1,\ldots,q_n} c_{k-q_1}^\dagger \cdots c_{k-q_n}^\dagger (b_q^\dagger)^n = N^{n-2} \sum_i e^{i k_i R} c_i^\dagger (b_i^\dagger)^n.
\]
If any phonon is on the other sub-lattice, the sum over its momentum vanishes, since it cannot be at the same site as the electron. This shows the variational meaning of these approximations \[10\,11\]; in MA\(^{(0)}\), a phonon cloud can appear at any one site. In MA\(^{(1)}\) there can also be an additional phonon anywhere else in the system. MA\(^{(1)}\) thus describes correctly the polaron+one-phonon continuum \[10\], but this is a very low-energy feature compared to the Dirac points. Diagrammatically, both sum all the self-energy diagrams, but each diagram is simplified \[10\].

To summarize, the only Green’s functions whose total/partial averages remain finite are (after rescaling):
\[
\tilde{f}_n(q_1, \ldots, q_n) = g^n N^{\frac{n}{2}} \tilde{G}^{-1}(k, \omega) | 0 \rangle \langle 0 | \left(c_k \right) \tilde{G} \left(c_{k-q_1}^\dagger b_{q_1}^\dagger \cdots b_{q_n}^\dagger d_{k-q_2}^\dagger B_{q_2}^\dagger \cdots B_{q_n}^\dagger \right) | 0 \rangle
\]
\[
\tilde{f}_n^\dagger(q_1, \ldots, q_n) = g^n N^{\frac{n}{2}} \tilde{G}^{-1}(k, \omega) | 0 \rangle \langle 0 | \left(c_k \right) \tilde{G} \left(e^{-i\xi_{k-q_1}} d_{k-q_2}^\dagger B_{q_2}^\dagger \cdots B_{q_n}^\dagger e^{i\xi_{k-q_1}} c_{k-q_2}^\dagger B_{q_2}^\dagger b_{q_1}^\dagger \cdots b_{q_n}^\dagger \right) | 0 \rangle.
\]
Here, \(q_T = \sum_{i=1}^n q_i\), and for simplicity of notation we do not write explicitly the \(k, \omega\) dependence from now on.
We define the total momentum averages \(\bar{F}_n = 1/N^n \sum_{\mathbf{q}_1, \ldots, \mathbf{q}_n} \bar{f}_n(\mathbf{q}_1, \ldots, \mathbf{q}_n) \), and the partial momentum averages \(\delta f_n(\mathbf{q}_1) = 1/N^{n-1} \sum_{\mathbf{q}_2, \ldots, \mathbf{q}_n} \bar{f}_n(\mathbf{q}_1, \ldots, \mathbf{q}_n) - \bar{F}_n \), \(\delta f_n^*(\mathbf{q}_1) = 1/N^{n-1} \sum_{\mathbf{q}_2, \ldots, \mathbf{q}_n} \bar{f}_n^*(\mathbf{q}_1, \ldots, \mathbf{q}_n) - \bar{F}_n \). In terms of these, the equations of motion are, for any \(n \geq 2 \):

\[
\bar{F}_n = g_{0S,n} \left(n \bar{F}_{n-1} + \bar{F}_{n+1} \right),
\]

\[
\delta f_n(\mathbf{q}_1) = g_{0S,n} \left[(n-1)g^2 \delta f_{n-1}(\mathbf{q}_1) + \delta f_{n+1}(\mathbf{q}_1) \right],
\]

\[
\delta f_n^*(\mathbf{q}_1) = g_{0S,n} \left[(n-1)g^2 \delta f_{n-1}^*(\mathbf{q}_1) + \delta f_{n+1}^*(\mathbf{q}_1) \right],
\]

where we use the short-hand notation

\[
g_{0S,n} = g_{0S}(\omega - n\Omega) = \frac{1}{N} \sum_k G_{0S}(k, \omega - n\Omega)
\]

where the free propagator is given in Eq. (2). For \(N \rightarrow \infty \), this is a simple 2D integral over the Brillouin zone.

Recurrence equations of the type (5)-(7) have solutions in terms of the continued fractions \(A_n(\omega) \) [10]:

\[
A_n(\omega) = \frac{n g_{0S,n}}{1 - g^2 g_{0S,n} A_{n+1}(\omega)}.
\]

In particular:

\[
\bar{F}_2 = g^2 A_2(\omega) \bar{F}_1,
\]

\[
\delta f_2(\mathbf{q}_1) = g^2 A_1(\omega - \Omega) \delta f_1(\mathbf{q}_1),
\]

\[
\delta f_2^*(\mathbf{q}_1) = g^2 A_1(\omega - \Omega) \delta f_1^*(\mathbf{q}_1).
\]

These can be combined with the exact equations of motion for the original (rescaled) \(f_1(\mathbf{q}_1) \) and \(f_1^*(\mathbf{q}_1) \) one-phonon Green’s functions, which read:

\[
f_1(\mathbf{q}_1) = G_{0S}(k - \mathbf{q}_1, \omega - \Omega) \left[g^2 + \frac{1}{N} \sum_{\mathbf{q}_2} f_2(\mathbf{q}_1, \mathbf{q}_2) \right] + G_{0A}(k - \mathbf{q}_1, \omega - \Omega) \frac{1}{N} \sum_{\mathbf{q}_2} f_2^*(\mathbf{q}_1, \mathbf{q}_2)
\]

\[
f_1^*(\mathbf{q}_1) = G_{0A}(k - \mathbf{q}_1, \omega - \Omega) \left[g^2 + \frac{1}{N} \sum_{\mathbf{q}_2} f_2(\mathbf{q}_1, \mathbf{q}_2) \right] + G_{0S}(k - \mathbf{q}_1, \omega - \Omega) \frac{1}{N} \sum_{\mathbf{q}_2} f_2^*(\mathbf{q}_1, \mathbf{q}_2).
\]

From these we can easily derive equations for \(\bar{F}_1, \delta f_1(\mathbf{q}_1), \delta f_1^*(\mathbf{q}_1) \) which combined with Eqs. (10)-(12) allow us to calculate all these quantities. In particular, we find \(\Sigma_{MA(1)}(\omega) = \bar{F}_1 = 1 \cdot \Sigma_{MA(1)}(\omega) \), i.e. it is diagonal and momentum independent [12], where

\[
\Sigma_{MA(1)}(\omega) = \frac{g^2 g_{0S}(\omega)}{1 - g^2 g_{0S}(\omega)[A_2(\omega) - A_1(\omega - \Omega)]}
\]

with \(\bar{\omega} = \omega - \Omega - g^2 A_1(\omega - \Omega) \). As a result, we obtain \(G(k, \omega) = G_0(k, \omega - \Sigma_{MA(1)}(\omega)) \). This can now easily be extended to lattices with even more complex unit cells.

First, we plot in Fig. 1 the spectral weight \(A(k, \omega) = -\frac{1}{\pi} \text{Im} \text{Tr} G(k, \omega) \) along high-symmetry cuts in the BZ. This corresponds to fairly weak electron-phonon interactions, with an effective coupling \(\lambda = g^2/(3t\Omega) = 0.5 \). The effective coupling is defined such that the crossover from large to small polarons is observed for \(\lambda \sim 1 \), as usual [1]. As expected, the lowest-energy feature is the sharp polaron band, whose dispersion flattens out just below the polaron+one-phonon continuum. Because its quasiparticle \((g\mathbf{p}) \) weight decreases away from \(k = 0 \), it is hard to see it in this region. We have verified that all expected behavior of the ground-state energy, \(g\mathbf{p} \) weight, effective mass, average number of phonons in the cloud, etc, are indeed similar to those expected for Holstein polarons.

Above the polaron band, we see the polaron+one-phonon continuum, plus all higher energy features which remain centered around the corresponding energies of the free electron. Already there is significant broadening at all higher energies, except near the Dirac points, which continue to be very sharp, indicating long lifetimes.

This is further analyzed in Fig. 2 where we present the imaginary part of the self-energy for two different phonon energies, and for different coupling strengths, in the vicinity of the Dirac points. Since at the MA(1) level the self-energy is still momentum independent, the characteristic lifetime is just \(\tau \sim -1/\text{Im} \Sigma \). The results in Fig. 2 show that as the coupling, and thus the electron-phonon scattering, is increased, lifetimes become shorter and shorter. However, in a relatively narrow energy interval, the lifetimes remain very long even at extremely

FIG. 1: (color online) Spectral weight along high-symmetry cuts in the Brillouin zone, for \(\Omega = 0.25t \) and \(\lambda = 0.5 \).
strong couplings which are well into the small polaron regime. In other words, well defined Dirac points still exist, although their energy shifts monotonically from \(\omega_K = 0 \) at weak coupling to \(\omega_K \sim 2\Omega \) at strong coupling. Note that for very strong couplings one can also observe the appearance of resonances spaced by \(\Omega \), which signal the Lang-Firsov states, expected when \(\lambda = 0 \) at weak coupling to \(\lambda = 4t \).

Besides the shift in the energy of the Dirac points, we also find significant renormalization (decrease) of the effective “speed of light” with increased coupling. Also, the

are illustrated in Fig. 3 where we plot the spectral weight for \(\mathbf{k} \) near the K Dirac point at various couplings, together with the free electron dispersion (red lines). They also agree with the weak-coupling results of Ref. [4].

One may wonder if these results are an artifact due to the \(\mathbf{k} \)-independent self-energy produced by MA\(^{(1)}\) [12]. This cannot be the case, since MA\(^{(1)}\) obeys exactly 8 spectral weight sum-rules for each value of \(\mathbf{k} \), so significant spectral weight shifts necessary for the disappearance of the Dirac points are simply impossible. The explanation for this comes from rewriting Eq. [8] as

\[
g_{0S}(\omega) = \frac{1}{\pi} \int \frac{\text{d} \epsilon g(\epsilon)}{[\omega - \epsilon + i\eta] + [\omega + \epsilon + i\eta]},
\]

where \(g(\epsilon) \) is the free-electron density of states (DOS). The largest contributions come from \(\epsilon \sim \pm \omega \), however near the Dirac points \(\omega \sim 0 \) and the DOS vanishes. As a result, the self-energy of Eq. [13] remains small near (just above) the Dirac points, because \(g_{0S}(\tilde{\omega}) \to 0 \).

We conclude that well-defined Dirac points are a very robust feature of the graphene, i.e. rather insensitive to rippling effects or, for epitaxial graphene, to the nature of the substrate and the buckling due to mismatching. This is very fortunate, since it guarantees that the interesting physics expected because of the Dirac points is not affected by such effects. It also explains why they can be neglected when studying these quasiparticles, e.g. in their interactions with in-plane phonons [13].

Acknowledgments: This work was supported by the A. P. Sloan Foundation, CIFAR Nanoelectronics, and NSERC. Discussions with R. Capaz, A. Castro-Neto and G. A. Sawatzky are gratefully acknowledged.

References:

[1] K. S. Novoselov et al., Science 306, 666 (2004).
[2] A. H. Castro Neto et al., cont-mat/0709.1163.
[3] N. D. Mermin, Phys. Rev. 176, 250 (1968).
[4] J. C. Meyer et al., Nature 446, 60 (2007).
[5] C. Berger et al., J. Phys. Chem. B 108, 19912 (2004).
[6] T. Stauber and N. M. R. Peres, J. Phys.: Condens. Matter 20, 055002 (2008).
[7] For a review, see H. Fehske and S. A. Trugman, in Polarons in Advanced Materials, edited by A. S. Alexandrov (Canopus, Bath/Springer-Verlag, Bath, 2007).
[8] M. Berciu, Phys. Rev. Lett. 97, 036402 (2006).
[9] G. L. Goodvin, M. Berciu and G. A. Sawatzky, Phys. Rev. B 74, 245104 (2006).
[10] M. Berciu and G. L. Goodvin, Phys. Rev. B 76, 165109 (2007); M. Berciu, Phys. Rev. Lett. 98, 209702 (2007).
[11] O. S. Barisic, Phys. Rev. Lett. 98, 209701 (2007).
[12] For Holstein-like coupling, \(\mathbf{k} \)-dependent self-energy appears from level MA\(^{(2)}\) onwards (see Ref. [13]), however this has little effect at the high-energies of interest here.
[13] I. G. Lang and Y. A. Firsov, Sov. Phys. JETP 16, 1301 (1963).
[14] Marco Zoli, J. Phys.: Condens. Matter 13 10845 (2001).
[15] Wang-Kong Tse and S. Das Sarma, Phys. Rev. Lett. 99, 236802 (2007).