A systematic strategy for the investigation of vaccines and drugs targeting bacteria

Fangfang Yan, Feng Gao

1. Introduction 1526
2. Target discovery 1527
2.1. Comparative subtractive genome analysis 1527
2.1.1. Getting the complete sequences of bacteria 1527
2.1.2. Removing paralogous or duplicate sequences 1527
2.1.3. Eliminating host-homologous sequences 1527
2.1.4. Screening the essential proteins in bacteria . .. 1527
2.1.5. Metabolic pathway analysis 1527
2.1.6. Subcellular localization analysis 1527
2.2. Core genome analysis 1528
2.3. Chromosome replication-related proteins analysis 1529
2.4. Transcriptomics analysis 1529
2.5. Riboswitches analysis 1530
3. Target analysis 1530
3.1. Prediction of vaccine candidates 1530
3.1.1. Vaccine target prioritization 1530
3.1.2. Prediction of B- and T-cell epitopes 1530
3.1.3. Interaction network 1531
3.1.4. Homology modelling and epitope topology analysis 1531
3.1.5. Molecular docking 1531
3.2. Prediction of drug candidates 1531

Abstract

Infectious and epidemic diseases induced by bacteria have historically caused great distress to people, and have even resulted in a large number of deaths worldwide. At present, many researchers are working on the discovery of viable drug and vaccine targets for bacteria through multiple methods, including the analyses of comparative subtractive genome, core genome, replication-related proteins, transcriptomics and riboswitches, which plays a significant part in the treatment of infectious and pandemic diseases. The 3D structures of the desired target proteins, drugs and epitopes can be predicted and modeled through target analysis. Meanwhile, molecular dynamics (MD) analysis of the constructed drug/epitope-protein complexes is an important standard for testing the suitability of these screened drugs and vaccines. Currently, target discovery, target analysis and MD analysis are integrated into a systematic set of drug and vaccine analysis strategy for bacteria. We hope that this comprehensive strategy will help in the design of high-performance vaccines and drugs.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Human health is continuously threatened by various infectious diseases and large-scale epidemics caused by bacteria, medicines and vaccines are important means for the treatment of human diseases. In the past, owing to the fact that technology and resources still had not matured sufficiently, effective drugs or vaccines could not be developed promptly to cure the diseases under pressing epidemiological situations and therefore epidemics or infectious diseases always cause a panic. With developments in medicine and technology, several vaccines and drugs were gradually developed. However, a few of them failed to achieve the desired effect, or potentially interfered with other normal functions and produced certain adverse effects [1]. Even presently, the development of innovative drugs still poses great challenges, such as extreme complexities, high risk, long development cycle and huge investment [2–4]. Thus, ensuring rapid, safe and effective development of drugs and vaccines has always been an urgent problem. The development of vaccines and drugs can be roughly divided into preclinical and clinical development, in which preclinical development plays a dominant role in the whole process [5]. If a candidate vaccine/drug is not proven to be safe and effective in preclinical studies, no further clinical studies are required. In preclinical studies, drug discovery is the first step in the drug development, which aims to achieve breakthrough progress. Therefore, we pay extra attention to the discovery of new drugs and vaccines in this review.

Investigation of new drugs and vaccines has continued throughout the history of human development. Initially, researchers isolated and identified the effective components to treat various diseases mainly from natural products [6]. However, employing natural products has certain challenges in practical applications, such as their low solubility and stability. Therefore, it is necessary to structurally modify the effective natural components. In 1796, Edward Jenner was successful in preventing a smallpox virus infection using a vaccinia vaccine. This achievement was the first victory in the history of vaccine development, and the beginning of vaccinology and immunology. Unfortunately, no new vaccine has emerged in the more than 100 years since the discovery of the first. At the end of the 19th century, Louis Pasteur et al. developed the anthrax vaccine and proposed the principle of vaccinology [7], which was a big step in the study of vaccines, and led to the development of a variety of vaccines to resist the corresponding pathogens [8–10]. Until 1932, the structural modification of drug molecules was first guided by a theory proposed by Erlenmeyer, which opened the way for further development in drug theories [11]. Subsequently, a quantitative structure-activity relationship (QSAR) was developed by Hansch et al. in 1964 [12]. QSAR can improve the success rate of candidate drugs in clinical experience, and lays a theoretical and practical foundation for quantitative drug design. Simultaneously, the development of bacterial vaccines had also progressed further before the mid-20th century. Since the late 20th century, bioinformatics, molecular biology, pharmacy, immunology, microbiology, and other related disciplines have developed rapidly, which has allowed new opportunities in the development of bacterial vaccines and drugs. Techniques for proteomic and genomic analyses have been further developed, and a large number of proteins and their coding genes have been discovered. At present, the designing of proteome- or genome-based bacterial drugs and vaccines has emerged as the new direction [13].

According to the published literature [14–16], the genome/proteome-based drug and vaccine design mainly involves four steps: selection and identification of drug target, optimization of the target molecules, discovery of compounds and peptide epitopes, and optimization of the compounds and peptide epitopes. The generation and availability of a large amount of genomic data have enabled the identification of effective targets through computational genomics methods, and completely changed the threat of pathogens to humans [17]. Among these genomics methods, the comparative subtractive genome approach has laid the foundation for target discovery and become an extensive tool for mining promising therapeutic targets [18,19]. Other methods, including core genome [20], replication-related proteins [21], transcriptomics [22] and riboswitches analyses [23] have also garnered increasing attention for exploration of drug targets. Furthermore, target prioritization is an indispensable step in the design of drugs and vaccines. A three-dimensional (3D) model [24] for the target proteins, epitopes and drugs can be successfully predicted and constructed based on an in-depth analysis of the drug/vaccine targets. In addition, MD analysis of these modeled drug/epitope-protein complexes is a necessary standard for testing the effectiveness of drugs and vaccines. By MD simulation, the binding ability of inhibitors/peptides to proteins and the conformational changes of target proteins will be well reflected [25,26].

Therefore, this review focuses on a combination of three important sections (target discovery, target analysis and MD analysis) to discover the preclinical inhibitors and vaccines that target bacteria-related diseases. First, we introduce five universal methods for exploring the targets: comparative subtractive genome, core genome, replication-related proteins, transcriptomics, and riboswitches analyses. Then, we summarize the basic process of the drug and vaccine design, which mainly includes target optimization, screening of drugs and vaccines, and optimization of
2. Target discovery

Exploring the therapeutic targets in bacteria is the first and crucial step in developing efficient vaccines and drugs. Certain essential proteins and proteins involved in basic cellular processes can serve as potential targets for novel antimicrobial agents. In this section, we summarize five analytical methods for exploration of drug targets (Fig. 1).

2.1. Comparative subtractive genome analysis

For the actual target selection, the potential candidate targets should be necessary for bacterial growth and reproduction, non-homologous to the host proteins, and have a unique metabolic pathway different from the host. With the aim of finding essential and non-homologous targets with unique metabolic pathways, subtractive genome analysis is selected to analyze the bacterial proteome through layers of screening. Since Sakharkar et al. first proposed the subtractive genome approach [1], many researchers have used this method to analyze drug and vaccine targets, which has immense potential for future experimental design of novel drugs and vaccines. For example, Sharma et al. revealed the target candidates for *Lymphatic filariasis* in 2016 [18], and Sudha et al. investigated the drug targets and vaccine candidates for *Clostridium botulinum* in 2019 [19] using this method. In the following sections, we summarize the target screening process using the subtractive genome method. The detailed and complete workflow is shown in Fig. 2.

2.1.1. Getting the complete sequences of bacteria

According to published studies [19,27], the complete sequences of bacteria for subtractive genome analysis are mainly retrieved as files in FASTA format from the National Center for Biotechnology Information (NCBI) [28] and Universal Protein (UniProt) [29] databases (Fig. 2I), which are the most informative and extensive protein databases.

2.1.2. Removing paralogous or duplicate sequences

The rapid emergence of next generation sequencing (NGS) technology has led to an explosive growth in biological sequence data, and the removal of redundant or duplicate sequence data has become one of the significant challenges to subsequent bioinformatics analyses [30]. Luckily, Li et al. created a fast online program CD-HIT [31] to search representative protein sequences based on the possible correlation and homology of certain sequences (Fig. 2II), alleviating the problem of calculation and analysis to some extent. To date, CD-HIT has been widely used to discard redundant or duplicate sequences by comparing the similarities between two sequences with expected threshold values.

2.1.3. Eliminating host-homologous sequences

Eliminating sequences that are homologous to the host, is a crucial operation in this process. If the target protein is homologous to the one in the host, the designed drug may produce nonspecific interactions with the host protein, resulting in certain negative effects [32]. Therefore, selecting proteins that are non-homologous to those in the host is necessary. Basic local alignment search tool (BLAST) [33] is the best choice for this requirement. In this section, BLASTp is applied by numerous researchers to perform a similarity search by comparing non-paralogous proteins with the entire host proteome (Fig. 2III), with the expectation value (e-value) set to widely used threshold 0.0001 [14,34,35]. Finally, the sequences that are homologous to those in the host are deleted.

2.1.4. Screening the essential proteins in bacteria

Choosing the essential proteins in bacteria, is another crucial step in this process. The essential proteins in the bacterial proteome are crucial for maintaining their life activities under specific conditions and vital importance for their survival, and any blocking of their functions will lead to cell death [36]. Hence, inhibiting the activity of such essential proteins can greatly improve the therapeutic effect in bacterial diseases. To select the essential proteins in bacterial proteome, an essentiality analysis is conducted on the non-homologous proteins. In subtractive genome analysis, it is common for users to perform a BLAST search against the Database of Essential Genes (DEG) [37] to remove non-essential proteins (Fig. 2IV) [38–40]. Since the DEG database was developed by Zhang et al. in 2004 [37], the content of this database has been updated continually and a large number of essential genes in prokaryotes and eukaryotes have been included [41]. Collection of a larger amount of essential gene data and availability of flexible BLAST tools [42] would contribute even more to the prediction of essential genes or proteins.

2.1.5. Metabolic pathway analysis

A metabolic pathway analysis [43] is performed on the non-homologous essential proteins by utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) [44] Automatic Annotation Server (KAAS) [45] to identify the metabolic pathway of the targets, and similarity searches with BLASTp are conducted for all existing proteins against the latest KEGG database (Fig. 2V). Meanwhile, the metabolic pathways of the bacteria and their hosts also need to be compared. If the protein is involved in a unique metabolic pathway, it is marked for subsequent analyses; otherwise, the protein is removed from the proteome under consideration. Through this comparative pathway method, the non-homologous essential proteins following unique metabolic pathways can be mapped, and these proteins can be key targets for the treatment of diseases.

2.1.6. Subcellular localization analysis

Predicting the subcellular localization of bacterial proteins is critical to the identification of target proteins, and can quickly provide information about the protein function [46,47]. An ideal can-
Candidate protein for a vaccine should interact with the extracellular environment and trigger the immune system of the host effectively; therefore, proteins distributed on the extracellular and outer membranes are considered effective vaccine candidates [48]. Meanwhile, it has been demonstrated that cytoplasm-related proteins can be effective drug targets [49]. At this stage, the remaining therapeutic targets are subjected to subcellular localization analysis to identify potential drug and vaccine candidates by using the most accurate and user-friendly PSORTb server [50] (Fig. 2VI). Besides, some other verified methods (CELLO [51], PA-SUB [52], SignalIP [53], Phobius [54] and ngLOC [55]) can be combined with PSORTb to achieve a more precise prediction of subcellular localization for predicted targets.

After subtractive genome analysis, the putative drug and vaccine targets have been identified separately, which is the cornerstone of future drug and vaccine design.

2.2. Core genome analysis

Studies have confirmed that the bacterial core genome plays an important role in their growth, and is also related to the essence of the species [56,57]. The core genome dataset comprises the common genes in all the available strains of species, and the genes that belong to the core genome are closely related to the nature of the species [58], which makes core genome analysis a reasonable method to address the difficulty in obtaining therapeutic targets. Therefore, comparative subtractive genome analysis based on the core genome of bacteria is another method used to detect targets. In contrast to the subtractive genome method based on essential genes, the first step in core genome analysis is obtaining the complete sequences of all strains for a particular species (Fig. 2). According to recently published works [59–61], the core genome can be probed by Pan-Genome Analysis Pipeline (PGAP) [62], EDGAR tool version 2.0 [63], etc.
2.3. Chromosome replication-related proteins analysis

Chromosome replication-related proteins can also be used as potential targets for exploring novel and effective antimicrobials. It is well known that all bacterial cells undergo chromosome replication before they can be split into two identical daughter cells. Chromosome replication-related proteins are essential for maintaining cellular activity and the replication process of chromosomes, and represent a promising target class [21,64]. Unfortunately, other than nonsteroidal anti-inflammatory drugs [65] and aminocoumarin [66], there are few available antimicrobials for targeting the bacterial chromosome replication. Therefore, identifying potential proteins that can interfere with or block bacterial chromosome replication through drug inhibition can be of great help in designing efficient drugs targeting a range of diseases caused by bacteria. In almost all bacterial species, chromosomal replication is triggered by the binding of the primary initiator protein (DnaA) to chromosomal replication origin (oriC), thus, DnaA and oriC are the main forces behind the formation of multimeric complexes required for the initiation of DNA replication [67]. The control of DnaA, which has multifunctional proteins required for chromosome replication, is the most prominent goal for inhibiting chromosome replication [68]. The four domains of DnaA have already been well summarized in literature, especially the N-terminal domain [69,70]. To date, researchers have made considerable efforts to understand bacterial replication-related proteins, and the replication initiation of many bacterial species, including Escherichia coli, Bacillus subtilis, and Caulobacter crescentus, has been well studied [21,68,70,71]. Meanwhile, the replication-related proteins are always present as a cluster around oriC. We have massively updated the information about the oriCs of bacteria in the online database DoriC 10.0 [72] based on the predicted results of Ori-Finder [73,74], which can provide excellent opportunities to better explore the replication-related proteins of more bacteria.

2.4. Transcriptomics analysis

According to the genetic “central dogma”, transcription plays an important role in controlling the transmission of genetic information, which is the first key step in gene expression [75]. At present, transcriptomics has emerged as the leading and exciting topic in the life science field [76]. Transcriptomics is the study of cellular gene transcription and transcriptional regulation at the RNA level, and can provide a comprehensive and rapid understanding of the molecular mechanism of diseases and drug action at the transcrip-
tome level [77]. Therefore, transcriptomics analysis has developed into a useful tool for acquiring novel antimicrobial targets [22,78]. To better assist in the discovery of drug targets and drug design in different ways, a few technologies for transcriptomics studies, such as RNA-sequencing (RNA-seq) method for gene expression [79] and gene microarray or chip technology [80] have been developed and widely used to quickly search the transcriptomics. Practical applications of NGS-based RNA-seq method and microarray analysis in predicting genetic targets have been well reviewed [22,75]. Recently, detailed target analyses of Escherichia coli, Clostridium difficile, Mycobacterium tuberculosis, Mycobacterium smegmatis and other pathogenic bacteria [81–88] have been performed using bacterial transcriptomics, relevant techniques, and transcriptomics experiments. These successful cases of transcriptomics analyses again demonstrate that transcriptomics is a promising approach for predicting bacterial drug targets.

2.5. Riboswitches analysis

Riboswitches can mediate the expression of crucial and essential genes that are critical to the survival and virulence of bacterial pathogens [89,90], and inhibiting the synthesis of bacterial ribosomal proteins can achieve antibacterial purposes [91]. Hence, bacterial riboswitches are considered as promising and capable antimicrobial targets for new drugs. In fact, riboswitches are widely found in the bacteria genomes and absent in human genome, which will reduce the probability of potentially harmful effects in humans and is one of the advantages of riboswitches as a useful tool for exploring bacterial drug targets [92]. In addition, riboswitches can bind to small molecules with high selectivity and are controlled by simple metabolism [93]. Given these advantages, the use of riboswitches as drug targets has attracted increasing attention, and some riboswitches-related work can provide valuable clues for future research [23,94,95]. It has been proven that few of the most widespread riboswitches, including lysine, cobalamin, SAM, and SAH, are useful antibacterial drug targets. In addition, certain methods for exploring potential riboswitches, such as Riboswitch Scanner [96] and drug design including high-throughput screening method have been well summarized [97]. Based on a powerful covariance model (CM), a comprehensive online database (RiboD) has recently been developed as a useful resource for predicting ribosomes in bacteria [98]. Using existing methods or developing new ones to dig deeper into riboswitches-related targets in bacteria will greatly help in the treatment of diseases associated with bacteria.

3. Target analysis

Once we have identified the vaccine and drug targets, the next important thing is to search for novel inhibitors and vaccines based on these possible targets. Notably, there are still considerable differences in the design of vaccines and drugs because of their unique properties, and the screening of vaccine targets is more complicated than that of drug targets. In this section, we present a detailed and systematic summary of the fundamental processes of target analysis, which are presented as flowcharts in Fig. 3.

3.1. Prediction of vaccine candidates

3.1.1. Vaccine target prioritization

Virulence is an important factor in the study of pathogenesis. Compared with non-virulent proteins, virulent proteins are more likely to cause serious infections and promote the survival of pathogens in the host, making it an attractive target for vaccine design [99,100]. Therefore, virulence analysis has been incorpo-rated into the flowchart as a necessary step (Fig. 3A-I). Currently, a few free databases, such as the Virulence Factor Database (VFDB) of pathogenic bacteria [101] and the Microbial Virulence Database (MvirDB) [102] are available that can be used to gain information on the virulence of proteins. In addition to these two databases, Garg et al. also performed protein virulence prediction using the VirulentPred server [103] with a threshold of ≥1. These selected virulent proteins are then subjected to antigenicity evaluation using the online Vaxijen server [104], where proteins with antigenicity scores ≥0.4 are marked as potential antigens that can effectively stimulate the human immune system.

Meanwhile, the physiochemical properties of all potential targets, including molecular weight, transmembrane helices, adhesion probability and allergenicity, are analyzed to assist in experimental validation. These factors may improve the vaccine prediction accuracy and reduce any negative effects. For ensuring purification during the experiment, the focus in a majority of studies has been concentrated on only selecting proteins with molecular weight < 110 kDa as effective drug targets [105,106], and these shortlisted proteins measured by freely available ExpASy server [107] will simplify the purification and development process. Furthermore, the number of transmembrane helices in the proteins can affect the cloning and expression of the target, and their presence in large quantities may lead to the failure of experimental validation; thus, selecting proteins with fewer transmembrane helices is more feasible [108]. For this purpose, two popular servers, TMHMM [109] and HMMS TOP [110] are widely used to evaluate the number of transmembrane helices [106,111,112]. In addition, it has been reported that the interaction between the bacterial surface proteins known as adhesions and the host receptors contributes greatly to the bacterial attachment, and the antibodies generated due to these adhesive proteins can prevent infections and diseases [113]. Therefore, the adhesion probability of the proteins should be taken into account, which can be effectively predicted using the data available on the Vaxijen [114] or SPAAN server [115]. Finally, the allergenicity analysis of all filtered protein is performed by accessing the Allertop server [116], online AlgPred [117] or SORTALLER [118] to reduce the allergic reactions, and proteins that could cause allergic behavior are removed.

In this section, virulent and antigenic proteins with prospective physiochemical characteristics are scanned for subsequent analysis.

3.1.2. Prediction of B- and T-cell epitopes

Since Barh et al. proposed the peptide vaccine design for Neisseria gonorrhoeae in 2010 [119], epitope-based vaccine design (EBVD) has emerged as the most popular and effective strategy in vaccine design [120–122]. Epitope vaccines have several advantages over traditional vaccines, such as atoxicity, safety, stability and easy production. They can also directly stimulate the host to create a specific immune response, thus confirming the suitability of EBVD for future development directions [119]. It is known that the antigen specificity and diversity are determined by B- and T-cell epitopes. Therefore, discovering the B- and T-cell epitopes capable of stimulating B- and T-cell immune responses is an imperative step in the development of such vaccines. In the following section, we summarize the prediction process of B- and T-cell epitopes in detail.

The proteins retained in the prioritization process are ideal vaccine candidates for the preparation of epitope-based vaccines, and these proteins are used to conduct an epitope analysis to predict the B-cell epitopes by employing the software BCPreds [123] or recent BepiPred-2.0 [124]. The selected B-cell epitopes with a BCPreds threshold score > 0.8 are then subjected to membrane topology analysis to determine their exposed topology by TMHMM (Fig. 3A-II).
The T-cell epitopes are then screened from B-cell epitopes with exposed surface based on the principlesput forward by Barh et al. [119]. It has been affirmed that the binding affinity of reactive peptides to both classes of major histocompatibility complex I and II (MHC-I and II) molecules plays a vital role in immune response [125]. For the selection of an efficient T-cell epitope (Fig. 3A-III), the first step is to identify the binding epitope alleles to MHC-I and MHC-II by using the Propred1 [126] and Propred [127] servers, respectively. T-cell epitopes that can bind to more than fifteen MHC molecules simultaneously, especially to HLA-DRB*0101, are cataloged. It is worth noting that DRB*0101 is the most frequent MHC-II allele, and an antigen can produce a more effective immune recognition and immune response when bound to DRB*0101 instead of other alleles. Next, calculation of the half-immune recognition and immune response when bound to the next MHC-II allele, and an antigen can produce a more effective and specific recognition. T-cell epitopes that can bind to more than fifteen MHC alleles or Toll-like receptor 4 (TLR4) (Fig. 3A-VII) [105,112,148]. The precise epitope-protein docking can be achieved by ClusPro 2.0 [149], or a combination of PatchDock [150] and FireDock [151], or a combination of Autodock Vina [152] and GalaxyPepDock [153]. The detailed binding information of the peptide-protein complex can be viewed through UCSF Chimera [154] and LigPlot [155].

3.1.5. Molecular docking

A promising molecular docking method is subsequently performed to view the binding affinity and binding modes of epitopes to the MHC alleles [119] or Toll-like receptor 4 (TLR4) (Fig. 3A-VII) [105,112,148]. The precise epitope-protein docking can be achieved by ClusPro 2.0 [149], or a combination of PatchDock [150] and FireDock [151], or a combination of Autodock Vina [152] and GalaxyPepDock [153]. The detailed binding information of the peptide-protein complex can be viewed through UCSF Chimera [154] and LigPlot [155].

3.2. Prediction of drug candidates

3.2.1. Drug target prioritization

As depicted in Fig. 3B-I, the overall prioritization of predicted drug target is mainly considered from three factors: druggability, virulence factor (VF) and broad spectrum. The ideal drug target should integrate closely with drug-like molecules to make the drug more effective, and the binding affinity of the target proteins to the drug-like molecules can be reflected by druggability [156]. To find the proteins that can develop into potential drug targets, all putative proteins undergo the BLASTp similarity analysis against the bacterial drug targets in the DrugBank database [157] to assess the druggability of each protein, and predicted proteins with a high similarity to the bacterial drug targets are regarded as druggable targets for subsequent analysis.

Virulent proteins can regulate the infection pathway and play a decisive role in the survival of the pathogens in the host [99]. Thus, VF analysis has been proven as a promising approach for identifying therapeutic drug targets. To probe the virulence-related proteins, VFDB is applied for similarity comparison using the BLAST tool with a bit score > 100, and the output data will contain multiple types of virulence factor, such as adherence and protease.

Bacterial pathogens can generate different simultaneous infections in the host, thus, screening for broad-spectrum targets is now considered preferable. In this step, a broad-spectrum search of predicted proteins is conducted to investigate the potential broad-spectrum targets by BLASTp against bacterial pathogen proteomes with an e-value of 0.005 [14,16].

After this progressive evaluation, the non-homologous and essential proteins that pass successfully through these filtration conditions and demonstrate unique metabolic pathways to the host are listed as prospective drug targets.

3.2.2. Interaction network, homology modelling and 3D structure assessment

The PPI network analyses, homology modeling and 3D structural assessment of the drug candidates are similar to the corresponding analyses used for the prediction of vaccine targets (Fig. 3B-II and III).

3.2.3. Predicting the binding site of target proteins

Once the final model of the predicted proteins is established, the next step is to predict the binding site of the proteins, which is essential for understanding the protein function (Fig. 3B-IV). Proteins contain a large number of residues, whereas the binding
site is composed of those residues that can bind specifically to the drug. Therefore, understanding the interactions between the inhibitors and the proteins is crucial in drug design. Candidate interaction-based binding sites can be forecasted with the following programs: COACH [158], Computed Atlas of Surface Topography of proteins (CASTp) [159], Active Site Finder tool, DoGSiteScorer [160], fpocket [161], MetaPocket [162], and GHECOM [163].

3.2.4. Virtual screening of ligands, evaluating the properties of ligands and molecular docking

Virtual screening (VS), also known as computer screening, is one of the latest advances in drug discovery (Fig. 3B-V). Generally speaking, VS involves screening candidate ligands through ligand databases and investigating the possibility of these molecules binding or docking with the target proteins. ZINC is a broad platform for drug screening, and can accomplish a multi-method molecular search according to structure, properties, targets, etc. Initially, small molecules in the MOL2 format are downloaded from the ZINC database [145]. Then, the selected ligands are converted into the PDBQT format and undergo VS using the AutoDock Vina or AutoDock software tools [164], and these two software tools can realize the batch docking of molecules. The docking results are sorted in ascending order based on the binding free energy (ΔG_{bind}) between the inhibitor and the receptor, and the first ten candidates are generally selected as the ideal inhibitors.

Molecular properties of the ligands are important for every step of the design, synthesis and clinical application of an effective drug. For the purpose of minimizing the negative effects of the selected ligands, the absorption, distribution, metabolism, excretion and toxicity (ADMET) characteristics that can influence the pharmacokinetics of the designed drugs are further evaluated by employing the SwissADME program [165] or the PreADMET server. The DrugBank database can also be used to assess the pharmaco-chemical properties of the drugs. Ultimately, the best predicted ligands with better pharmacokinetics and pharmaco-chemical features are acquired.

The docking between an inhibitor and a target protein is more complicated than the binding between two proteins, and their docking relationship is similar to that of a lock and key (Fig. 3B-VI). The inhibitor and the target protein should be paired complementarily, and the attachment of the inhibitor to the binding pocket should be as close as possible. Once the receptor proteins and inhibitors are ready, flexible molecular docking can be done through AutoDock, AutoDock Vina, GOLD [166] software, etc. Structures with the lowest binding free energy during molecular docking are considered the best and most stable initial structures for MD studies.

4. MD analysis

MD analysis is a computer-based simulation method used widely in several fields, such as physics, chemistry, and biology. With the development of computer simulation technology, MD simulation [167–170] has become a common tool for studying the binding mechanism of the inhibitors/peptides to the proteins.
and conformational changes of target proteins based on equilibrium MD trajectories. MD simulation can respond well to the dynamic characteristics of biomolecules, which helps provide a better theoretical basis for efficient vaccine and drug design. At present, existing mature software packages such as AMBER [171] and GROMACS [172] can provide strong technical support for MD simulations. To understand MD simulation better, we now summarize the basic MD simulation process and the advanced methods used for analyzing the conformation of target proteins and the binding affinity between the protein and the drug/vaccine (Fig. 4).

4.1. System preparation

Prior to the MD simulation, the selected systems should be properly prepared by applying the following four steps: adding missing hydrogen atoms to their respective heavy atoms; setting force fields for the proteins, inhibitors, or peptide epitopes; adding a certain amount of Na and Cl ions to neutralize the system; and immersing all the systems into a water box (Fig. 4II).

After the systems are well prepared, three critical operations (energy optimization, heating, equilibrium) are executed stepwise to ensure that the MD simulations are performed in an ideal experimental environment (Fig. 4III). First, the energy of all the studied models is optimized to eliminate any possible adverse effect on the structural deformation and simulation stability by combining the steepest descent and conjugate gradient methods. Subsequently, the system is gradually heated until the expected temperature of 300 K is reached. In the next step, the simulation is continued at the same temperature and characteristics including pressure, energy, and structure are evaluated. The simulation continues until these characteristics stop showing any changes over time. Finally, long-time MD simulation is performed at room temperature (300 K) and atmospheric pressure (1 atm). To better understand the universality of MD simulations and the various analytical methods based on the MD trajectories, we arbitrarily selected an example (PDB ID: 3P6F) to simulate the MD of 150 ns and the calculated results are presented in Fig. 4.

4.2. Root-mean-square deviation

The root mean square deviation (RMSD) value represents the deviation of backbone atoms in the proteins relative to their respective initial optimized structures, and is a commonly used method to evaluate the stability of the system. Smaller the RMSD value, the more stable the system is during the simulation. Generally, the equilibrium MD trajectories are selected for later analysis (Fig. 4IV).

4.3. Conformation analysis of proteins, and assessment of binding affinity and binding mechanism between inhibitors/peptides and proteins

To be effective, a drug must reach the binding site of the target protein and generate a strong interaction with the residues at the active site to form a stable complex. Meanwhile, proteins binding with the inhibitors/peptides will cause changes in their conformation. Therefore, a deeper understanding of the binding affinity and binding mechanism of inhibitors/peptides to the proteins and the conformation changes in the proteins induced by the binding will be of great help in the design of effective drugs and vaccines.

4.3.1. Conformation analysis

The most popular tool for performing conformation analysis is the principal component analysis (PCA) [173]. Fundamentally, this method constructs a covariance matrix based on the coordinates of Cα atoms using a dimensional reduction method, which can then reflect the deviations of the Cα atoms from their respective average positions. Thus, cross-correlation matrices (Fig. 4V-1) corresponding to the correlated motion between residues can be constructed. In a diagonalized covariance matrix, the eigenvalues and the eigenvector plot (Fig. 4V-2) representing the motion intensity and direction of the residues, respectively, can be obtained, and then a porcupine plot (Fig. 4V-3) can be established to characterize the movement of the residues. By projecting MD trajectories onto the first and second principal components (PC1 and PC2), the binding free energy landscapes (Fig. 4V-4) of the proteins can also be constructed to better reflect their conformational distribution. Existing work has shown that a combination of RMSD and gyration radiuses (GR) can also be used to construct the free energy landscapes [174].

In addition to PCA, a few other methods are also used to analyze the protein structure based on the equilibrium MD trajectories. For example, the root mean square fluctuation (RMSF) of Cα atoms can be used to indicate the flexibility of the protein during the MD simulation (Fig. 4V-5). The stability, continuity, correlation and volume of the binding pocket for each protein can also be separately evaluated by employing the D3Pockets server [175] and the POVM procedure [176] to characterize the structural changes in the proteins.

4.3.2. Binding affinity analysis

The binding ability of inhibitors/peptides to proteins can be confirmed by calculating the ΔGbind between the inhibitors/peptides and the proteins (Fig. 4VI). Numerous methods have been developed to predict the ΔGbind, including molecular mechanics Poisson Boltzmann/generalized Born surface area (MM-PB/GBSA) [177], thermodynamics integration (TI) [178], and free energy perturbation (FEP) [179]. Considering the computational resources and time, MM-PBSA and MM-GBSA have been the most widely used methods in recent years. In this method, the ΔGbind between inhibitor and protein can be determined by the following formula.

$$\Delta G_{\text{bind}} = \Delta G_{\text{pol}} + \Delta G_{\text{nonpol}} - T\Delta S$$

(1)

The items on the right side of the equation represent the contributions of the electrostatic interaction (ΔG_{ele}), van der Waals interaction (ΔG_{vdw}), polar interaction (ΔG_{pol}), nonpolar interaction (ΔG_{nonpol}), and entropy change (ΔS) to ΔG_{bind}, respectively. Notably, the calculation of entropy is time-consuming; therefore, only 50–100 conformations are generally calculated by normal mode method [180]. In addition, the new interaction entropy (IE) method proposed by Duan et al. can also help in the calculation of entropy [181].

To further understand the influence of key residues on binding affinity, a computational alanine scanning method [182] based on MM-PBSA and MM-GBSA methods can also be applied to estimate the change in ΔGbind and binding mechanism caused by the mutation of residues. Alanine mutant structures are generated by altering the coordinates of the wild-type (WT) residues, and the alanine residue parameters then replace all the parameters of the WT residue in the topology file. Subsequently, computational alanine scanning is performed based on the same snapshots as implemented in the MM-PBSA method. The difference in ΔGbind can be determined by the following equation.

$$\Delta G_{\text{ala}} = \Delta G_{\text{wt}}^{\text{ala}} - \Delta G_{\text{mut}}^{\text{ala}}$$

(2)

where the first two terms ($\Delta G_{\text{wt}}^{\text{ala}}, \Delta G_{\text{mut}}^{\text{ala}}$) are the binding free energies of WT and mutant complexes. The measurement unit for terms $\Delta G_{\text{wt}}, \Delta G_{\text{mut}}, \Delta G_{\text{pol}}, \Delta G_{\text{nonpol}}, \Delta G_{\text{ala}}, \Delta G_{\text{bind}}^{\text{wt}}, \Delta G_{\text{bind}}^{\text{mut}}$ and ΔGbind is kcal/mol.
4.3.3. Binding mechanism analysis

Through continuous efforts of a large number of researchers, the binding mechanism between drugs/peptides and proteins has been extensively studied (Fig. 4VII). With the calculation of \(\Delta G_{\text{bind}} \), analyses of \(\Delta E_{\text{ele}} \), \(\Delta E_{\text{vdw}} \), \(\Delta G_{\text{pol}} \) and \(\Delta G_{\text{nonpol}} \) interactions between inhibitors/peptides and proteins have been performed [168,169,183]. In these analyses, as the electrostatic and van der Waals interactions play a major role in the binding of drugs/pep-

Table 1

Software/database	Website
NCBI	https://www.ncbi.nlm.nih.gov
UniProt	https://www.uniprot.org
CD-HIT	http://cd-hit.org
BLAST	https://blast.ncbi.nlm.nih.gov/Blast.cgi
DEG	http://tubic.tju.edu.cn
KAAS	http://www.genome.jp/kaas
PSORTb	http://psort.org/psortb
PGAP	http://pgapx.yzhao.com
EDGAR	http://edgar.computational.bio
DoriC	http://tubic.tju.edu.cn/doric
Ori-Finder	http://tubic.tju.edu.cn/Ori-Finder
RibotD	http://ribot.iserkol.ac.in
VFDB	http://www.mgc.ac.cn/VFs/main.htm
MvirDB	http://mvirdb.finnl.gov
Virulentpred	https://www.labonomy.org
VaxJen	http://www.jenner.ac.uk/VaxJen
ExpASY	http://www.expasy.org
TMHMM	http://www.cbs.dtu.dk/services/TMHMM
HMMTOP	http://www.enzim.hu/hmmtop
Vaxgn	http://www.violnet.org/vaxgn
SPAAN	ftp://203.195.151.45
Allertop	http://www.pharmfac.net/allertop
AlgPred	http://www.imtech.res.in/raghava/algpred
SORTLANDER	http://sortaller.gwmu.edu.cn
BCPEd	http://aialab.ist.psu.edu/bcpepred/predict.html
BepiPred	http://www.cbs.dtu.dk/services/BepiPred
Propred1	http://www.imtech.res.in/raghava/propred1
Propred	http://www.imtech.res.in/raghava/propred
MHCpred	http://www.jenner.ac.uk/MHCpred
ProtParam	http://web.expasy.org/protparam
CARD	https://card.mcmaster.ca
CLC	https://www.clibio.com
STRING	http://string-db.org
PDB	http://www.rcsb.org
I-TASSER	http://zhang.bioinformatics.ku.edu/i-TASSER
Phyre2	http://www.sbg.bio.ic.ac.uk/phyre2
Modweb	http://salab.org/modweb
RaptorX	http://raptorx.uchicago.edu
Modeller	https://salab.org/modeller
M4T	http://www.fserlab.org/servers/m4t
Swiss-Model	http://swissmodel.expasy.org
RAMPAGE	http://mordred.bioc.cam.ac.uk/-rapper/rampage.php
ProSA	https://prosa.services.came.sbg.ac.at
Verify 3D	http://nihserver.mbi.ucla.edu/Verify_3D
ERRAT	http://nihserver.mbi.ucla.edu/ERRAT
WHAT_CHECK	https://swift.cmbi.umcn.nl/gv/whatcheck
Pepitope	http://pepitope.tau.ac.il
PEPFOLD	http://bioserv.rpbs.univ-paris-diderot.fr/PEP-FOLD
ClusPro	https://cluspro.org
PatchDock	http://bioinfold.cs.tau.ac.il
FireDock	http://bioinfold.cs.tau.ac.il/FireDock
Autodock Vina	http://vina.scripps.edu
GalaxyPepDock	http://galaxy.seoklab.org/pepdock
UCSF Chimera	http://www.cgl.ucsf.edu/chimera
LigPlot	https://www.ebi.ac.uk/thornton-srv/software/LigPlus
DrugBank	http://www.drugbank.ca
COACH	http://zhanglab.ccb.med.umich.edu/COACH
CASTp	http://cts.bioe.uic.edu/castp
ActiveSite Finder	http://www.scbio-ittd.res.in/dock/ActiveSite.jsp
DoGSiteScorer	http://dogsite.zbh.uni-hamburg.de
pocket	http://pocket.sourceforge.net
MetaPocket	http://projects.biotec.tudresden.de/metapocket
GHECOM	http://strcomp.protein.osaka-u.ac.jp/ghecom
ZINC	http://zinc docking.org
AutoDock	http://autodock.scripps.edu
SwissADME	http://www.swissadme.ch
PreADMET	https://preadmet.bmdrc.org
D3Pockets	http://www.d3pharma.com/D3Pocket/index.php

4.3.3. Binding mechanism analysis

Through continuous efforts of a large number of researchers, the binding mechanism between drugs/peptides and proteins has been extensively studied (Fig. 4VII). With the calculation of \(\Delta G_{\text{bind}} \), analyses of \(\Delta E_{\text{ele}} \), \(\Delta E_{\text{vdw}} \), \(\Delta G_{\text{pol}} \) and \(\Delta G_{\text{nonpol}} \) interactions between inhibitors/peptides and proteins have been performed [168,169,183]. In these analyses, as the electrostatic and van der Waals interactions play a major role in the binding of drugs/pep-
tides with proteins, further research on these two interactions has also been performed. Presently, the energy contributions of individual residues in proteins and individual atoms on residues to electrostatic and van der Waals interactions have also been calculated [184]. Simultaneously, detailed analyses of the hydrogen bonding (Fig. 4VII-1) and hydrophobic interactions (Fig. 4VII-2) between residues and inhibitors/peptides have also been performed to reveal the source of these two interactions. Furthermore, the radial distribution function (RDF) [Fig. 4VII-3] can partially contribute to the analysis and identification of hydrogen bonds [185]. Recently, a comprehensive method of axial frequency distribution (AFD) has also been proposed. This method can not only reflect the conformational characteristics, such as structural stability and flexibility, but also be used to analyze bi-molecular interactions including hydrogen bonds, van der Waals, and polar or ionic interactions [186]. We believe that due to long-term efforts, the prediction of binding affinity and binding mechanisms between inhibitors/peptides and proteins is no longer a puzzle.

After an in-depth analysis of the interaction mechanism, the optimal pharmacophore model [169,187] is generated, as shown in Fig. 4VII-4. Generally speaking, the red-labeled region indicates that this region is easy to produce hydrogen bonding interactions with drug, while the green-labeled region make hydrophobic interactions with drug. Once the theoretical pharmacophore models of the relevant drugs are identified, pharmacophore-based VS can be performed to explore additional drugs, as proved by the great success of this method [188,189].

5. Summary and outlook

Developing drugs or vaccines for highly contagious bacterial diseases in a short period of time can be challenging, and some drugs/vaccines can also show adverse effects during clinical treatment, which poses a great challenge to the clinical treatment, and necessitates a strict and careful monitoring of each step of the drug/vaccine design.

In this review, the methods for target discovery, target analysis, and MD analysis are summarized to present a complete and systematic scheme for the design of effective drugs and vaccines. In the first step, five common analytical methods, including comparative subtractive genome, core genome, replication-related proteins, transcriptomics, and riboswitches analyses are used to obtain promising drug and vaccine targets. Then, an in-depth analysis of selected targets is performed to minimize the negative effects of drugs and vaccines. Finally, each model is analyzed and verified by MD simulations to facilitate a deeper understanding of the binding mechanism of inhibitors/peptides to proteins and the structural changes in the proteins caused by the binding of inhibitors/peptides. We have also summarized the online software/database and corresponding websites used in each step to facilitate the readers to use and consult them, and the results are listed in Table 1.

The development and application of effective drugs still need to undergo long-term and numerous clinical trials, and researchers have performed numerous clinical investigations on vaccines and drugs [190–192]. We expect that this review will provide useful ideas and guidance for the clinical development of effective drugs or vaccines to cure potential infectious diseases or epidemics caused by bacteria.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant no 2018YFA0903700) and the National Natural Science Foundation of China (grant nos. 31571358, 21621004 and 9174611). The authors would like to thank Prof. Chun-Ting Zhang for the invaluable assistance and inspiring discussions.

References

[1] Sakharkar KR, Sakharkar MK, Chow VT. A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. Silico Bio 2004:4:355–60.
[2] Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 2011;10:428–38.
[3] Dimasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 2016;47:20–33.
[4] Moffat JG, Vincent F, Lee JA, Eder JR, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 2017;16:531–43.
[5] Plotkin S, André F, Poolman J, Robbins J, Salisbury D, Wood D. Preclinical and clinical development of new vaccines. Biologics 1998;26:247–51.
[6] Macht D. The history of opium and some of its preparations and alkaloids. J Am Med Assoc 1915;LVIII:477–81.
[7] Burke DS. Joseph-alexandre auzias-turenne, louis pasteur, and early concepts of immunity and vaccines. J Am Med Assoc 1969;207:2259–62.
[8] Erlenmeyer H, Leo M. über Pseudoatome und isostere Verbindungen. Angew Chem 1890;3:171–86.
[9] Hansch R, Fujita T. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 1964;86:1616–26.
[10] Domínguez Á, Muñoz E, López MC, Cordero M, Martínez JP, Viñas M. Antibacterial drug discovery. Nat Rev Drug Discov 2003;4:442–56.
[11] Sharma OP, Kumar MS. Essential proteins and possible therapeutic targets of Clostridium botulinum using subtractive genomics approach. Bioinformation 2019;15:18–25.
[12] Hilleman MR, Warfield MS, Anderson SA, Werner JH. Adenovirus (RI-APC-ARD) vaccine for prevention of acute respiratory Illness. 1. Vaccine development. J Am Chem Soc 1957;163:4–9.
[13] Buynak EB, Weibel RE, Whitman JE, Stokes J, Hilleman MR. Combined live measles, mumps, and rubella virus vaccines. J Am Med Assoc 1969;207:2259–62.
[14] Arakawa K. The history of opium and some of its preparations and alkaloids. J Am Med Assoc 1969;207:2259–62.
[15] Erlenmeyer H. über Pseudoatome und isostere Verbindungen. Angew Chem 1890;3:171–86.
[16] Hansch C, Fujita T. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 1964;86:1616–26.
[17] Domínguez Á, Muñoz E, López MC, Cordero M, Martínez JP, Viñas M. Antibacterial drug discovery. Nat Rev Drug Discov 2003;4:442–56.
[18] Plotkin S, André F, Poolman J, Robbins J, Salisbury D, Wood D. Preclinical and clinical development of new vaccines. Biologics 1998;26:247–51.
[19] Macht D. The history of opium and some of its preparations and alkaloids. J Am Med Assoc 1915;LVIII:477–81.
[20] Burke DS. Joseph-alexandre auzias-turenne, louis pasteur, and early concepts of immunity and vaccines. J Am Med Assoc 1969;207:2259–62.
[21] Erlenmeyer H, Leo M. über Pseudoatome und isostere Verbindungen. Angew Chem 1890;3:171–86.
[22] Hansch C, Fujita T. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 1964;86:1616–26.
[23] Domínguez Á, Muñoz E, López MC, Cordero M, Martínez JP, Viñas M. Antibacterial drug discovery. Nat Rev Drug Discov 2003;4:442–56.
[24] Kauzmann W. The three dimensional structures of protein.s. Biophys J 1964;4:43–54.
Yan FF, Liu XG, Zhang SL, Su J, Zhang QG, Chen JZ. Effect of double mutations in hGAT1: A mechanistic investigation of the GABA transport process. Comput Struct Biotechnol J 2019;17:61–8.

Yu SC, Xia XG, Zhu SL, Li J, Zhang QG, Chen JZ. Effect of double mutations in T970M/L1858R on conformation and drug-resistant mechanism of epidermal growth factor receptor explored by molecular dynamics simulations. RSC Adv 2015;5:39797–9.

Khalid Z, Ahmad S, Raza S, Azam SS. Subtractive proteomics in identifying polyclonal biosynthesis protein as novel drug target against Eubacterium nodatum. Asian J Pharm Pharmacol 2019;5:382–92.

Johnson M, Zaretskyia I, Raytselis Y, Merezhuk Y, McCinnis S, Madden TL. NCBI BLAST: a better web interface. Nucl Acids Res 2008;36:W5–9.

Suzuki-Hamaguchi T, Obrajjan H, Versteegh M, Ramanujam G, Therese KL, Najafi Hrah M. In silico analysis and prioritization of drug targets in Fusarium solani. Med Hypotheses 2015;84:81–4.

Habib AM, Islam MS, Sohel M, Mazumder MHH, Sikder MOF, Shahik SM. Identification of the hypersensitive Bacillus subtilis nuclease subsp. nuclease ATCC 25586 for potential therapeutic discoveries: an in silico approach. Genomics Inform 2016;14:255–64.

Ramath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003;421:231–7.

Zhang R, Ou HY, Zhang CT. DEG: a database of essential genes. Nucl Acids Res 2004;32:D271–2.

Uddin R, Siddiqui QN, Azam SS, Baima W, Adayi H. Identification of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) using subcellular proteomics approaches. J Pharm Sci 2018;114:13–23.

Uk Ain Q, Ahmad S, Azam SS. Subtractive proteomics and immunoinformatics revealed novel B-cell derived T-cell epitopes against Yersinia enterocolitica: an etiological agent of Yersiniosis. Microb Pathogenesis 2018;125:336–48.

Peng C, Lin Y, Luo H, Gao F. A comprehensive overview of online resources to identify and predict bacterial essential genes. Front Microbiol 2017;8:2331.

Zhang R, Lin Y, DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucl Acids Res 2008;37:D455–8.

Lin Y, Lin Y, Lu Q, Zhang CT, Zhang R, DEG 10.0, an update of the database of essential genes that includes both protein-encoding genes and noncoding genomic elements. Nucl Acids Res 2013;42:D574–80.

Schilling CH, Schuster S, Palsson BO, Heinrich R. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Progr 1999;15:296–303.

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucl Acids Res 2000;28:27–30.

Morisawa Y, Itoh M, Osada S, Yoshizawa AC, Kanehisa M. KAAS: an automatic annotation and pathway reconstruction server. Nucl Acids Res 2007;35:W182–5.

Nevo-Dinur K, Govindarajan S, Amster-Choder O. Subcellular localization of protein families. PLoS Biol 2007;5:432–66.

Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, et al. Activities at the universal protein resource (UniProt). Nucl Acids Res 2010;38:D160–8.

Luo H, Quan CL, Peng C, Gao F. Toward a high-quality pan-genome landscape of Bacillus subtilis by removal of confounding strains. Brief Bioinform 2020. https://doi.org/10.1093/bib/bbaa1013.

Zhao YB, Sun C, Zhao DY, Zhang YD, You Y, Yu Y, et al. PGAP-X: extension on pan-genome analysis pipeline. BMC Genomics 2018;19:115–24.

Blom J, Kresse J, Späni S, Juhrer T, Bertelli C, Ernst C, et al. 2.0: an enhanced approach in identifying bacterial vaccine candidates. Expert Rev Vaccines 2003;2:417–36.

Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The subcellular proteomes of eukaryotes. Genome Biol 2007;8:R68.

Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467–70.

Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003;421:231–7.

Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, et al. Activities at the universal protein resource (UniProt). Nucl Acids Res 2010;38:D160–8.

Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011;8:785–6.

Katayama T, Ozaki S, Keyamura K, Fujimitsu K. Regulation of the replication cycle of Brucella melitensis from species core genome data. Genomics 2011;92:1734–45.

Wu H, Wang D, Gao F. Toward a high-quality pan-genome landscape of Bacillus subtilis by removal of confounding strains. Brief Bioinform 2020. https://doi.org/10.1093/bib/bbaa1013.

Martienssen R, Charrier M, Fiers W. Augmenting the pathogen’s metabolic model with transcriptomic and codon usage data for improved drug target identification. Curr Opin Microbiol 2014;23:148–54.

Nevo-Dinur K, Govindarajan S, Amster-Choder O. Subcellular localization of protein families. PLoS Biol 2007;5:432–66.

Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, et al. Activities at the universal protein resource (UniProt). Nucl Acids Res 2010;38:D160–8.

Shigemoto C, Shinohara M, Iida Y, Takeoka R, Furuta K, et al. Predicting protein targets for drug-like compounds using transcriptomics. PLoS Comput Biol 2018;14:e1006651.

Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008;320:1344–9.

Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467–70.

Chan JP, Wright JR, Wong HT, Ardasheva A, Brumbaugh J, McLimans C, et al. Using bacterial transcriptomics to investigate targets of host-bacterial interactions in caenorhabditis elegans. Sci Rep 2019;9:5545.

Klitgaard RN, Jana B, Guardabassi L, Nielsen KL, Lehner-Olesen A. DNA damage repair and drug efflux as potential targets for reversing low or intermediate ciprofloxacin resistance in E. coli K-12. Front Microbiol 2019;9:1438.

Beydokhti SS, Stork C, Dobrindt U, Hensel A. Orthosporus stamineus extract exerts inhibition of bacterial adhesion and chaperon-usher system of uropathogenic Escherichia coli—a transcriptomic study. Appl Microbiol Bio 2019;103:8571–84.

Kashaf SS, Angione C, Li P. Making life difficult for Clostridium difficile: augmenting the pathogen’s metabolic model with transcriptomic and codon usage data for better therapeutic target characterization. BMC Syst Biol 2017;11:25.

Plociński P, Maciós M, Houghton J, Niemiec E, Plocińska R, Brzostek A, et al. Proteomic and transcriptomic experiments reveal an essential role of RNA degradosome complexes in shaping the transcriptome of Mycobacterium tuberculosis. Nucl Acids Res 2015;43:5892–905.
Maarsingh JD, Yang S, Park JG, Haydel SE. Comparative transcriptomics reveals PrPAb-mediated control of metabolic, respiration, energy-generating, and dormancy pathways in Mycobacterium smegmatis. BMC Genomics 2019;20:1042.

Chung M, Teigen LE, Libro S, Bromley RE, Olley D, Kumar N, et al. Drug repurposing of bromodomain inhibitors as potential novel therapeutic leads for a multi-drug resistance pathway guided by multispecies transcriptomics. mSystems 2019;4:e00596–19.

Somani D, Adhav R, Prashant R, Kadoo NY. Transcriptomics analysis of propionocazole-treated Clostridobius sartus reveals new putative azole targets in the plant pathogen. Funct Integr Genomic 2019;19:453–65.

Cheah MT, Wachter A, Sudarsan N, Breacker RK. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 2007;447:497–500.

La FB, Mukherjee S, Gripenland JV, Viatkicus K, Tieniuw T, Mandin P, et al. A trans-acting riboswitch controls expression of the virulence regulatory PrfA in Listeria monocytogenes. Cell 2009;139:770–9.

Poelingsgaard J, Douthwaite S. The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 2003;3:870–81.

Pavlović N, Kaloudas P, Penchovsky R. Riboswitch distribution, structure, and function in bacteria. Gene 2019;708:38–48.

Blount KF, Breacker RK. Riboswitches as antibiotic drug targets. Nat Biotechnol 2006;24:1558–64.

Yan LH, Le Roux A, Boyapelli K, Lamontagne AM, Archambault MA, Frédéric PJ, et al. Purine analogs targeting the guanine riboswitch as potential antibacterials against Clostridoides difficile. Eur J Med Chem 2018;143:755–68.

Pavlova N, Pavel D, Venclovas C. Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, tyrosine, purine, cobalamin, and SAH riboswitches for their applications as allosteric bacterial drug targets in human pathogenic bacteria. Expert Opin Ther Tar 2019;23:631–43.

Mukherjee S, Sengupta S. Riboswitches as an efficient pHMM-based web-server to detect riboswitches in genomic sequences. Bioinformatics 2016;32:776–8.

Aghdam EM, Heijazi MS, Barzegar A. Riboswitches: from living biosensors to novel targets of antibiotics. Gene 2016;592:244–59.

Mukherjee S, Das Mandal S, Gupta N, Droy-Retwitzier M, Barash D, Sengupta S, Ribô: a comprehensive database for prokaryotic riboswitches. Bioinformatics 2019;35:3541–3.

Eisenreich W, Heesemann J, Rüdel T, Goebel W. Metabolic host responses to virus-associated malignancy. J Cell Physiol 2019;234:6437–48.

Källberg M, Wang H, Wang S, Peng J, Wang ZY, Lu H, et al. Template-based approach. Infect Genet Evol 2015;32:280–91.

Mukherjee S, Sengupta S. Riboswitch Scanner: an efficient pHMM-based web-server to detect riboswitches in genomic sequences. Bioinformatics 2016;32:776–8.

Doherty D, Voss J, Dvy S, Fasel J. Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 2014;30:275–6.

Kohler MG, Simonowics AE, Machatkova P, Cerny R, Kollar D. BepiPred-2.0: improving prediction of adhesins and adhesin-like proteins using neural networks. J Mol Graph Model 2020;94:107477.
