Original Research Article

Effect of Intercropping Systems on Economics and Yield of Pigeonpea (Cajanus cajan L.), Pearlmillet (Pennisetum glaucum L.) and Greengram (Vigna radiata L.) under Western Haryana Condition

Niranjan Kumar Barod*, Satish Kumar and A.K. Dhaka and Mohammad Irfan

Department of Agronomy, CCS HAU Hisar, India

*Corresponding author

Abstract

The investigation entitled “Response of nitrogen application in wheat succeeding pigeonpea intercropped with pearlmillet and greengram” was carried out at the research farm of Chaudhary Charan Singh Haryana Agricultural University, Hisar during kharif and rabi season 2011-12 and 2012-13. It comprised of 12 treatments and it was replicated thrice in randomized block design. Based on aforesaid investigation it was found that intercropping systems influenced the grain, straw and biological yield were significantly highest in sole crop i.e. pigeonpea (1983 and 2059, 2059 and 5947 and 7777 and 8006 kg/ha) respectively, pearlmillet (2122 and 2218, 5999 and 6200 and 8121 and 8418 kg/ha) respectively and greengram (1319 and 1402, 3925 and 4175 and 5244 and 5576 kg/ha) respectively during 2011 and 2012 crop seasons. Among all the treatments maximum gross return, net returns and B C ratio was recorded when pigeonpea was planted at 75 cm row spacing intercropped with two rows of greengram and closely followed by pigeonpea 75 cm + greengram (1:1). Minimum net returns and B C ratio was recorded in pearlmillet sole.

Keywords
Pigeonpea, Pearlmillet, Greengram, Intercropping systems.

Accepted: 24 February 2017
Available Online: 10 March 2017

Introduction

Pigeonpea (Cajanus cajan L.) also known as arhar, tur or red gram is one of the most important kharif pulse crop cultivated in India. It is next to only chickpea in area and production among all the pulse crop grown in India. Pigeonpea grown as a sole crop is not economically viable because of its slow initial growth rate, low productivity and longer duration. Because of slow growth the crops face a lot of competition with weeds and the inter-row space was not utilized properly (Velaytham et al., 2003). In order to have better utilization of the resources, growing a short duration intercrop like greengram and pearlmillet between the pigeonpea rows helps in utilization of available resources without affecting its productivity. Short duration and short statured crops like pearlmillet and greengram and would prove to be a viable intercropping system. Intercropping with short duration pulses like greengram and cereals like pear millet in pigeonpea enhance total productivity (Sharma et al., 1995). Greengram (Vignaradiata L.) is also an important kharif pulse crop of India. It is an excellent source of high quality protein. As short duration crop it fit well in various multiple and intercropping systems (Pujari and Sheelvantar, 2002). Pearlmillet (Pennisetum glaucum L.) is one of the most
important rain fed crop of India. Its grains possess higher protein content with higher level of essential amino acids. The inclusion of pearl millet with pigeonpea will definitely ensure the fulfillment of dietary requirement and enhanced productivity of crops per unit area per unit time (Anonymous, 2004).

Intercropping is an age-old practice being followed by subsistence farmers to achieve their domestic needs. The main advantage of the intercropping is that the component crops are able to use the growth resources more efficiently (Willey, 1979). Nitrogen needs of cereals intercropped with legumes are reported to be less than for sole cropping due to transfer of some of the fixed nitrogen by legumes to the associated cereals during the growing season (Willey, 1979).

Intercropping of legumes with pearl millet has been reported to be more stable and dependable than sole cropping (Patel et al., 1998). In intercropping systems, selection of compatible crops with different growth pattern and their suitable planting geometries are very important because, it helps to minimize inter and intra specific competitions for resources. A lot of work has been done on nutrient management in pigeonpea and wheat crop alone. However, very less information is available on the effect of pearl millet, greengram intercropping in pigeonpea. Therefore, in view of the above, the present investigation was planted.

Materials and Methods

The experiment was conducted at the Agronomy Research Farm, CCS Haryana Agricultural University, Hisar during 2011 and 2012. It is situated at 29°10' N latitude, 75°46' E longitude and at an altitude of 215.2 meters above mean sea level, the experiment was laid out in randomized block design in Kharif. The kharif crops pigeon was as sole and in combination with pearl millet and greengram at different spacing and rows in the kharif season during 2011 and 2012 resulting in 12 treatments. In the pigeonpea (Manak), pearl millet (HHB-67 Improved) and greengram (Basanti) was sown on 17th June during the year 2011 and 18th June during the year 2012.

The soil of the experimental unit was sandy loam and the soil pH was 7.8 and 7.9, while the EC was 0.39 and 0.40 dSm$^{-1}$ during 2011 and 2012, respectively. The organic carbon of the soil was 0.41 and 0.40 per cent during both the years of study. The soils of the experimental field was sandy loam in texture, poor organic matter (0.41) and low in available nitrogen (162 kg/ha), medium in available phosphorus (25 kg/ha) and high in available potassium (305 kg/ha) and slightly alkaline in reaction.

Results and Discussion

Yield of pigeonpea

The effect of intercropping systems under different spacing influenced the pigeonpea grain yield (Table 1). The widening of row spacing reduced the grain yield of the pigeonpea. The higher yield at lesser spacing of 45 cm was the result of more number of plants per unit area. Grain yield per hectare is function of number of plants, pods per plant, and number of grains per pod and grain yield per plant. Under different intercropping systems the higher grain yield of pigeonpea was recorded from pigeonpea (75 cm) + greengram (1:2) systems however; it was at par with the intercropping systems pigeonpea (75 cm) + greengram (1:1).

It might be due to synergistic effect of component crop. Similar result was obtained by Kumar et al., 2005; Rathod et al., 2004 and Kumar et al., 2012.
Table 1. Effect of intercropping systems on yield of pigeonpea

Treatment	Grain yield	Straw yield	Biological yield						
	2011	2012	Pooled	2011	2012	Pooled	2011	2012	Pooled
Pigeonpea sole (45 cm)	1832	1911	1871	5373	5488	5430	7105	7399	7252
Pigeonpea – Paired row (30: 60 cm)	1983	2059	2021	5794	5947	5870	7777	8006	7891
Pigeonpea (75 cm) + Pearlmillet (1:1)	1415	1593	1504	4496	4711	4603	5911	6304	6107
Pigeonpea (75 cm) + Pearlmillet (1:2)	1384	1563	1473	4449	4550	4499	5833	6113	5973
Pigeonpea (75 cm) + Greengram (1:1)	1530	1600	1565	4416	4571	4493	5946	6171	6058
Pigeonpea (75 cm) + Greengram (1:2)	1611	1684	1647	4625	4826	4725	6236	6510	6373
Pigeonpea (90 cm) + Pearlmillet (1:1)	1329	1473	1401	4131	4280	4205	5460	5753	5606
Pigeonpea (90 cm) + Pearlmillet (1:2)	1296	1406	1351	3959	4095	4027	5255	5501	5378
Pigeonpea (90 cm) + Greengram (1:1)	1332	1503	1417	4236	4335	4285	5568	5838	5703
Pigeonpea (90 cm) + Greengram (1:2)	1369	1540	1454	4523	4458	4490	5892	5998	5945

SEM± | **73** | **66** | **69** | **92** | **102** | **97** | **107** | **126** | **116** |

CD at 5% | **222** | **197** | **209** | **268** | **293** | **280** | **312** | **364** | **338** |
Table 2: Effect of intercropping systems on yield of pearl millet

Treatment	Grain yield	Stover yield	Biological yield
	2011 2012 Pooled	2011 2012 Pooled	2011 2012 Pooled
Pearl millet sole (45 cm)	2122 2218 2170	5999 6200 6099	8121 8418 8269.5
Pigeonpea (75 cm) + Pearl millet (1:1)	1526 1618 1572	4319 4560 4439	5846 6178 6012
Pigeonpea (75 cm) + Pearl millet (1:2)	1680 1776 1728	4709 4903 4806	6389 6679 6534
Pigeonpea (90 cm) + Pearl millet (1:1)	1413 1506 1459	3933 4178 4055.5	5346 5684 5515
Pigeonpea (90 cm) + Pearl millet (1:2)	1575 1667 1621	4407 4662 4534.5	5983 6329 6156
SEm±	83 71 77	295 301 298	408 414 411
CD at 5%	277 237 257	979 999 989	1352 1373 1362

Table 3: Effect of intercropping systems on yield of greengram

Treatment	Grain yield (kg ha⁻¹)	Stover yield (kg ha⁻¹)	Biological yield (kg ha⁻¹)
	2011 2012 Pooled	2011 2012 Pooled	2011 2012 Pooled
Greengram sole (30 cm)	1319 1402 1361	3925 4175 4050	5244 5576 5410
Pigeonpea (75 cm) + Greengram (1:1)	692 789 741	2192 2502 2347	2884 3291 3088
Pigeonpea (75 cm) + Greengram (1:2)	853 946 900	2668 2957 2813	3520 3903 3712
Pigeonpea (90 cm) + Greengram (1:1)	622 714 668	1973 2264 2119	2594 2977 2786
Pigeonpea (90 cm) + Greengram (1:2)	774 867 821	2281 2560 2421	3055 3427 3241
SEm±	51 47 49	68 64 66	56 121 89
CD at 5%	147 139 143	201 189 195	166 357 262
Table 4: Effect of intercropping systems on economics

Treatment	Total Cost (Rs. ha⁻¹)	Gross returns (Rs. ha⁻¹)	Net returns (Rs. ha⁻¹)	B C Ratio						
	2011	2012	Pooled	2011	2012	Pooled	2011	2012	Pooled	
Pigeon pea sole (45 cm)	93285	136920	137972	137446	43635	44687	44161	1.47	1.48	1.47
Pearlmillet sole (45 cm)	92843	96126	95710	93936	681	868	775	0.99	1.03	1.01
Greengram sole (30 cm)	93840	146517	126508	136513	52677	32668	42673	1.56	1.35	1.45
Pigeon pea – Paired row (30:60 cm)	93285	141039	142349	141694	47754	49064	48409	1.51	1.53	1.52
Pigeon pea (75 cm) + Pearlmillet (1:1)	94887	135130	142729	138930	40243	47842	44043	1.42	1.50	1.46
Pigeon pea (75 cm) + Pearlmillet (1:2)	96078	135281	143093	139187	39203	47015	43109	1.41	1.49	1.45
Pigeon pea (75 cm) + Greengram (1:1)	93918	152018	158065	155042	58100	64147	61124	1.62	1.68	1.65
Pigeon pea (75 cm) + Greengram (1:2)	94140	161672	167004	164338	67532	72864	70198	1.72	1.77	1.74
Pigeon pea (90 cm) + Pearlmillet (1:1)	94572	131690	137935	134813	37118	43363	40241	1.39	1.46	1.42
Pigeon pea (90 cm) + Pearlmillet (1:2)	95565	131827	137208	134518	36262	41643	38953	1.38	1.44	1.41
Pigeon pea (90 cm) + Greengram (1:1)	93672	141071	151476	146274	47309	57714	52512	1.50	1.62	1.56
Pigeon pea (90 cm) + Greengram (1:2)	93945	148468	158704	153586	54523	64759	59641	1.58	1.69	1.63
Irrespective of row spacing and row ratio the grain yield of pigeonpea was recorded higher in greengram intercrop, whereas, it was lesser when pearlmillet was taken as intercrop which might be due to the fact that in pigeonpea + greengram inter crop being both the crop as legume, these may not be competition for nitrogen which might be when pearlmillet was taken as intercrop and which reduced the yield attributes and ultimately lower pigeonpea yield when pearlmillet was intercrop.

The various intercropping systems and sole cropping systems had significantly effect on straw yield of pigeonpea crop. Straw yield was found higher in sole crop as compared to intercropping systems. In pigeonpea intercropping, it decreased which was due to lower plant population as compared to sole crop. Straw yield of pigeonpea in 1: 1 systems irrespective of spacing was found higher as compared to 1: 2 systems, except 75 cm spacing, which might be due to less competition among plant of main crop. Significantly, higher biological yield of pigeonpea was recorded with pigeonpea sole (45 cm) this is due to more grain and straw yield obtained from pigeonpea sole (45 cm). Kumar et al., 2005 and Rathod et al., (2004) also reported similar result.

Yield of pearlmillet

Pearlmillet sole crop produced significantly higher grain, straw and biological yield as compared to different intercropping systems. It was 26.31 and 34.73 per cent higher as compared to pigeonpea (75 cm) + pearlmillet (1:2) and pigeonpea (90 cm) + pearlmillet (1:2). Irrespective of pigeonpea row spacing, two rows of intercrop produced higher grain, straw and biological yield as compared to single row though the difference were no significant among them during both crop year (Table 2). The grain and straw yield was recorded to be significantly higher in sole system over intercropping systems, which might be due to higher plant population of pearlmillet in sole crop as compared to intercropping systems. Lower yield of pearlmillet was recorded from other intercropping treatments because of less number of plants per hectare these results are accordance with Choudhary and Gautam, (2006) and Kuri et al., (2012).

Yield of greengram

The intercropping systems influenced the greengram grain; straw and biological yield (Table 3). In case of greengram the grain, straw and biological yield was recorded maximum in sole crop, which was due to more number of plants and better yield attributes of the crop in one side and better interception of sunlight and more photosynthesis resulting into more production of photosynthates and translocation to the economic part on the other side Kumar et al., (2005), and Sharma et al., (2010) also reported similar result. The higher yield of greengram in pigeonpea (75 cm) + greengram (1:2) systems was because of more number of rows of greengram and reduced competition between and within crop plants due to more availability of space (Bishnoi et al., 1987). In intercropping treatments, there was decrease in intercrop yield as compared to sole crop, which might be due to less number of plants per unit area and the reduction in photosynthetic activity of plant because of shading effect of main crop resulting in less accumulation of photosynthates and its diversion to reproductive parts, similar result was recorded by Kumar et al., (2005).

Economics

Maximum cost was increased when two rows of pearlmillet was intercropped with pigeonpea at 75 cm, whereas, minimum was
increased in sole pearlmillet. Although sole cropping of greengram was expensive as compared to pigeonpea either as normal sowing or in paired row but still less cost was incurred in treatments involving intercropping of greengram with pigeonpea as compared to intercropping of pearlmillet with pigeonpea. Maximum gross returns of Rs. 1,61,672 and Rs. 1,67,004 were recorded in year 2011 and 2012, respectively, in pigeonpea (75 cm) + greengram (1:2) treatment, whereas minimum gross returns was recorded in sole pearlmillet (Table 4.). Minimum net return (Rs. 681 and 868) were recorded in sole pearlmillet, whereas, greengram intercropping with pigeonpea in 1:2 ratio at 75 cm row spacing resulted in maximum net return (Rs. 67,532 and Rs. 72,864) during 2011 and 2012, respectively. Sole cropping of greengram was superior in terms of net returns (Rs. 52,677) as compare to normal sowing (Rs. 43,635) or paired row sowing (Rs. 47,754) of pigeonpea during first year (2011) of study but this trend was reversed during second year i.e.2012. Maximum (1.72 and 1.77) and minimum (0.97 and 1.03) returns per rupee invested, was estimated in two row intercropping of greengram with pigeonpea at 75 cm and sole pearlmillet, respectively, during 2011 and 2012 (Kantwa et al., 2005). This might be due to marginal difference in yield of pigeonpea and additional yield of green gram, which resulted in higher net return in pigeonpea + greengram cropping system than in sole pigeonpea. Kumar et al., 2003 and Sharma et al., 2012 also reported similar results.

References

Anonymous. 2004. Sustaining nutritional security. In: Survey of Indian Agriculture, pp. 37-38.
Bishnoi, K.C., Singh, B. and Singh, A. 1987. Studies on compatibility of greengram and blackgram cultivars in pigeonpea based intercropping systems. Indian J. Agron., 32: 127-129.
Choudhary, R.S. and Gautam, R.C. 2006. Influence of cropping systems and nutrient management on nutrient uptake, protein content, yield, productivity and net returns of pearlmillet (Pennisetum glaucum). Annals of Agric. Res. New Series, 27(4): 302-305.
Kantwa, S.R., Ahlawat, I.P.S. and Gangaiah, B. 2005. Effect of land configuration, post-monsoon irrigation and phosphorus on performance of sole and intercropped pigeonpea (Cajanus cajan L.). Indian J. Agron., 50(4): 278-280.
Kumar, P., Rana, K.S. and Rana, D.S. 2012. Effect of planting systems and phosphorus with bio-fertilizers on the performance of sole and intercropped pigeonpea (Cajanuscajan L.) under rainfed conditions. Indian J. Agron. 57(2): 127-132.
Kumar, S., Singh, R.C. and Kadian, V.S. 2005. Compatibility of pigeonpea and greengram intercropping systems in relation to row ratio and row spacing. Legume Res., 28(3): 213-215.
Kumar, S., Singh, R.C. and Kadian, V.S. 2003. Production potential of pigeonpea (Cajanus cajan L.) and greengram (Vignaradiata) intercropping patterns in semi-arid tract of Haryana. Indian J. Agron., 48(4): 259-262.
Kuri, B.R., Yadav, R.S. and Kumawat, A. 2012. Evaluation of pearlmillet (Pennisetum glaucum) and mothbean (Vigna acconitifolia) intercropping systems in hyper-arid partially irrigated north-western plain zones. Indian J. Agric. Sci., 82(11): 993-996.
Patel, M.R., Kalyanasundaram, N.K., Patel, I.S., Patel, J.M., Patel, S.I., Patel, B.M. andPatil, R.G. 1998. Effect of additive and replacement series in intercropping system with pearlmillet. Annals of Arid Zone., 37: 69-74.
Pujari, B.T. and sheelvantar, M.N. 2002. Dry matter accumulation in plant parts of greengram (Vignaradiata) as influenced by cropping system, row proportion and greengram population levels. *Indian J. Agric. Res.*, 36: 156-161.

Rathod, P.S., Halikatti, S.I., Hiremath S.M. and Kajjidoni, S.T. 2004. Influence of different intercrops and row proportions on yield and yield parameters of pigeonpea in vertisols of Dharwad. *Karnataka J. Agric. Sci.*, 17(4): 652-657

Sharma, A., Pandit. S.R., Dharma raj, P.S. and Chavan, M.2012. Response of Pigeonpea to bio-fertilizers in pigeonpea based intercropping systems under rainfed conditions. *Karnataka J. Agric. Sci.*, 25(3): 322-325.

Sharma, A., Rathod, P.S. and. Basavaraj, K. 2010. Agronomic management of pigeonpea (Cajanus cajana) based intercropping systems for improving productivity under rainfed conditions. *Karnataka J. Agric. Sci.*, 23(4): 570-574.

Sharma, N.N., Sharma, D. and Paul, S.R. 1995. Intercropping of greengram (Vignaradiata), blackgram (Vignamungo) and sesame (Sesamumindicum) and pigeonpea (Cajanuscajan L.) under different seeding methods. *Indian J. Agron.*, 40: 386-387.

Willey, R.W. 1979. Intercropping, importance and research need competition and yield advantages. *Field Crops*, 32(1): 1-10.

How to cite this article:

Niranjan Kumar Barod, Satish Kumar and A.K. Dhakaand Mohammad Irfan. 2017. Effect of Intercropping Systems on Economics and Yield of Pigeonpea (Cajanus cajan L.), Pearlmiilet (Pennisetum glaucum L.) and Greengram (Vigna radiata L.) under Western Haryana Condition. *Int.J.Curr.Microbiol.App.Sci.* 6(3): 2240-2247.

doi: http://doi.org/10.20546/ijcemas.2017.603.256