Modification of auxinic phenoxyalkanoic acid herbicides by the acyl acid amido synthetase GH3.15 from Arabidopsis

Ashley M. Sherp1, Soon Goo Lee, Evelyn Schraft, and Joseph M. Jez2

From the Department of Biology, Washington University, St. Louis, Missouri 63130

Edited by Norma M. Allerwell

Herbicide-resistance traits are the most widely used agricultural biotechnology products. Yet, to maintain their effectiveness and to mitigate selection of herbicide-resistant weeds, the discovery of new resistance traits that use different chemical modes of action is essential. In plants, the Gretchen Hagen 3 (GH3) acyl acid amido synthetases catalyze the conjugation of amino acids to jasmonate and auxin phytohormones. This reaction chemistry has not been explored as a possible approach for herbicide modification and inactivation. Here, we examined a set of Arabidopsis GH3 proteins that use the auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) as substrates along with the corresponding auxinic phenoxyalkanoic acid herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB). The IBA-specific AtGH3.15 protein displayed high catalytic activity with 2,4-DB, which was comparable to its activity with IBA. Screening of phenoxyalkanoic and phenylalkyl acids indicated that side-chain length of alkanoic and alkyl acids is a key feature of AtGH3.15’s substrate preference. The X-ray crystal structure of the AtGH3.15-2,4-DB complex revealed how the herbicide binds in the active site. In root elongation assays, Arabidopsis AtGH3.15-knockout and -overexpression lines grown in the presence of 2,4-DB exhibited hypersensitivity and tolerance, respectively, indicating that the AtGH3.15-catalyzed modification inactivates 2,4-DB. These findings suggest a potential use for AtGH3.15, and perhaps other GH3 proteins, as herbicide-modifying enzymes that employ a mode of action different from those of currently available herbicide-resistance traits.

Herbicide-resistance traits accounted for 47% of genetically engineered soybean, maize, canola, cotton, sugar beet, and alfalfa plantings worldwide in 2017 (1). Since the introduction of the first crops with a glyphosate-resistant trait, the use of herbicides with distinct modes of action and the discovery of new resistance traits have become critical elements for increased agricultural productivity and for effective management of weed resistance (2, 3). For example, auxinic herbicides, based on phenoxyalkanoic acid, benzoic acid, pyridine carboxylic acid, and quinoline carboxylic acid chemical scaffolds mimic the plant hormone auxin (indole-3-acetic acid (IAA)) and are used extensively in agronomic and noncrop applications for broadleaf weed control (Fig. 1) (4, 5). These molecules elicit the same type of growth and developmental responses as IAA but, because of higher stability in the plant, result in longer-lasting and stronger effects such as plant overgrowth (4, 5).

The auxinic herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) (Fig. 1) was the first to be commercialized in 1945 and is the most widely used phenoxyalkanoic acid herbicide with ~46 million pounds applied in the United States per year, predominantly in the Midwest, Great Plains, and the Northwest United States (6, 7). Related to 2,4-D, 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) (Fig. 1) has also been used to control annual and perennial broadleaf weeds since 1958 (8, 9). After foliar application, 2,4-DB is taken up by the leaves and roots and converted through peroxisomal β-oxidation to the active herbicide 2,4-D (8–10). At the molecular level, 2,4-D binds to the auxin receptor F-box protein TIR1, which facilitates interaction between the receptor and corepressor Aux/IAA proteins (11, 12). This leads to ubiquitination and degradation of the Aux/IAA proteins to modulate downstream interactions with auxin response factors that control transcription of auxin responsive genes (13, 14). Although both IAA and 2,4-D target the auxin receptor, 2,4-D is metabolized more slowly than IAA, which enhances herbicidal effects through elevated expression of auxin responsive genes leading to plant death (6, 15, 16). For agricultural biotechnology applications, herbicide tolerance traits have relied on the identification of enzymes that either chemically inactivate the herbicide or prevent inhibition of a target by the herbicide (17–24). For example, isolation of a microbial aryloxyalkanoate dioxygenase that cleaves 2,4-D provides tolerance to this auxinic herbicide and is the basis for 2,4-D–resistant crops currently entering the market (23). Access to tolerance traits with distinct modes of action is critical for reducing the emergence of herbicide-resistant weeds (2–6).

In plants, the Gretchen Hagen 3 (GH3) acyl acid amido synthetases conjugate amino acids to carboxylic acid–containing hormones, such as jasmonic acid, IAA, and the endogenous auxin indole-3-butyric acid (IBA), to regulate plant growth, seed development, light signaling, and pathogen responses (25–33). GH3 proteins catalyze the adenylation of the carboxylate on these molecules to form an acyl-AMP intermediate, which

1 A National Science Foundation Graduate Research Fellow (DGE-1143954).
2 To whom correspondence should be addressed. E-mail: jjez@wustl.edu.
Herbicide modification by an acyl acid amido synthetase

![Figure 1. Structures of phenoxyalkanoic acid auxinic herbicides and endogenous auxins.](image)

undergoes nucleophilic attack by an amino acid to yield the conjugated product (28, 30). Biochemical and structural studies of GH3 proteins from *Arabidopsis thaliana* have identified jasmonate-, IAA-, and IBA-specific members of the family (25–27, 29, 32, 33).

Given the chemical similarity between phenoxyalkanoic acids (i.e., 2,4-D and 2,4-DB) and auxins (IAA and IBA) (Fig. 1), we examined the potential of selected Arabidopsis GH3 proteins to modify either 2,4-D or 2,4-DB. The IBA-specific Arabidopsis GH3.15 protein (AtGH3.15) displayed high catalytic activity with 2,4-DB, which was comparable with that of IBA, and the X-ray crystal structure of the enzyme in complex with the herbicide shows how the molecule binds in the active site. When grown on 2,4-DB, *A. thaliana* T-DNA insertions in AtGH3.15 and 35S:FLAG-AtGH3.15 overexpression lines show hypersensitivity and tolerance, respectively, in root elongation assays. These findings suggest a potential use for AtGH3.15, and perhaps other GH3 proteins, as herbicide-modifying enzymes that employ a mode of action that differs from available auxinic herbicides.

Results

Screen of Arabidopsis GH3 proteins with 2,4-D and 2,4-DB and comparison to auxin substrates

The auxinic herbicides 2,4-D and 2,4-DB mimic the biological activity of the endogenous auxins IAA and IBA, respectively. Previous biochemical studies identified IAA- and IBA-specific GH3 acyl acid amido synthetases from *Arabidopsis* (26, 32, 33). Using purified recombinant protein, we examined the activity of the IAA-modifying AtGH3.1, AtGH3.2, AtGH3.5, and AtGH3.17 (32) and the IBA-modifying AtGH3.15 (33) to use either 2,4-D or 2,4-DB as substrates (Table 1; Fig. 2). None of the IAA-specific Arabidopsis GH3 proteins tested used 2,4-D as a substrate; however, AtGH3.15 exhibited a low activity with this herbicide. Except for AtGH3.1, the GH3 proteins accepted 2,4-DB as a substrate to varying degrees. The most efficient enzyme was the IBA-specific AtGH3.15 with a catalytic efficiency (k_{cat}/K_m) 3- to 5-fold higher than AtGH3.2 and AtGH3.5, respectively. AtGH3.17 had the lowest activity, roughly 50-fold that of AtGH3.15, with 2,4-DB as a substrate. For comparison, previously reported data on these GH3 proteins (32, 33) with the auxin substrates IAA and IBA are summarized (Table 1; Fig. 2). Although 2,4-D mimics the biological effect of IAA, it is not used as a substrate for the four IAA-modifying GH3 proteins examined here and is a poor substrate for the IBA-specific AtGH3.15. In contrast to the 2,4-D/IAA pairing, the catalytic efficiencies of AtGH3.2, AtGH3.5, AtGH3.15, and AtGH3.17 for the 2,4-DB/IBA pair were generally comparable with AtGH3.15 as the most robust enzyme for these molecules.

Biochemical analysis of AtGH3.15

As the most active GH3 protein tested with 2,4-DB, AtGH3.15 was further characterized for its amino acid substrate profile and with other phenoxyalkanoic and phenylalkyl acids. As noted above, biochemical analysis of AtGH3.15 yielded steady-state kinetic parameters for 2,4-DB that were comparable to those obtained for IBA with glutamine (Table 1). QTRAP MS analysis confirmed formation of the 2,4-DB–glutamine conjugate in vitro. Incubation of AtGH3.15 with 2,4-DB, ATP, and glutamine leads to formation of the conjugate (deprotonated molecular ion (M-H)$^-$ m/z 376.2) (Fig. S1). Assays in the absence of protein or any one substrate did not yield a peak corresponding to the conjugated product. To confirm that the amino acid preference of AtGH3.15 was the same with 2,4-DB as with IBA, the substrate profile was examined using 2,4-DB and each amino acid (Fig. S2). The amino acid profile was the same for AtGH3.15 with 2,4-DB as with IBA (33) with cysteine, histidine, methionine, glutamine, and tyrosine having the highest activity. Steady-state kinetics with cysteine, histidine, methionine, glutamine, and tyrosine were determined and confirmed that, as with IBA, glutamine is the preferred amino acid for AtGH3.15 with 2,4-DB (Table 2).

To determine whether AtGH3.15 was active with other auxinic herbicides (Fig. S3), the benzoic acid dicamba (3,6-dichlor-2-methoxybenzoic acid), the pyridine carboxylic acids clopyralid (3,6-dichloropyridine-2-carboxylic acid), picloram (4-amino-3,5,6-trichloro-2-pyridylcarboxylic acid), and triclopyr ((3,5,6-trichloro-2-pyridyl)oxy)acetic acid), and the phenoxyalkanoic acids dichlorprop (2-(2,4-dichlorophenoxy)propionic acid), mecoprop (2-(4-chloro-2-methylphenoxy)propionic acid), 4-chloro-2-methylphenoxy acetic acid (MCPA), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), and 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB) were tested as substrates. AtGH3.15 displayed no detectable activity with dicamba, the pyridine carboxylic acids, dichlorprop, mecoprop, and MCPA. The catalytic efficiency of AtGH3.15 with 2,4,5-T was comparable to that with 2,4-D (Table 3). Similarly, AtGH3.15 accepted MCPB as a substrate with a k_{cat}/K_m 1.8-fold lower than either 2,4-DB or IBA (Table 3). Chemically, MCPB is identical to 2,4-DB except for a methyl group substituted for a chlorine at C2 (Fig. S3). These results are consistent with a preference for longer-chain phenoxyalkanoic acids.

To further probe the structure-activity relationship of AtGH3.15, assays were performed with phenoxybutanoic and phenylalkyl acids (Fig. S3; Table 3). Kinetic analysis with 4-(2-chlorophenoxy)butanoic acid and 4-(2,6-dimethylphenoxy)butanoic acid suggests that the removal of the chlorine from the
Herbicide modification by an acyl acid amido synthetase

Table 1
Kinetic comparison of Arabidopsis GH3 proteins with auxin herbicides (2,4-D and 2,4-DB) and auxins (IAA and IBA)

Steady-state kinetic parameters for the auxinic herbicides were determined using varied concentrations of either 2,4-D or 2,4-DB at fixed concentrations of amino acid (10 mM) and ATP (1 mM). The amino acid substrate used for each GH3 protein was as follows: AtGH3.1, Asn; AtGH3.2, AtGH3.5, Asp; AtGH3.15, Gln; and AtGH3.17, Glu. Kinetic parameters for IAA with AtGH3.1, AtGH3.2, AtGH3.5, and AtGH3.17 were published previously (32). Kinetic parameters for IAA and IBA with AtGH3.15 and for IBA with the other proteins were published previously (33). Average values ± S.D. (n = 3) are shown. The dashed lines indicate no activity was detected.

Substrate	Parameter	AtGH3.1	AtGH3.2	AtGH3.5	AtGH3.15	AtGH3.17
2,4-D	k_{cat} (min$^{-1}$)	—	—	1.3 ± 0.1	—	—
2,4-DB	k_{cat} (min$^{-1}$)	—	—	1.1 ± 0.7	1.9 ± 0.5	—
IAA	k_{cat} (min$^{-1}$)	5.7 ± 0.6	17 ± 1.6	770 ± 110	66 ± 6	—
IBA	K_m (µM)	530 ± 150	510 ± 105	560 ± 160	530 ± 43	160 ± 160

Three-dimensional structure of AtGH3.15 in complex with 2,4-DB

To provide insight on how 2,4-DB interacts with AtGH3.15, the protein was crystallized in the presence of the ligand. The 2.15 Å resolution structure of the AtGH3.15:2,4-DB complex was solved by molecular replacement (Table 4; Fig. 3A). The overall fold of the resulting structure was similar (1.4 Å2 root mean square deviation for 550 Cα-atoms) to that of the previously reported AtGH3.15:AMP complex (33) with the conformationally mobile C-terminal domain adopting the open active site conformation. Examination of the electron density maps in the active site revealed two large patterns of density in the acyl acid–binding site, which were subsequently modeled and refined as two molecules of 2,4-DB (Fig. 3B). Comparison with the position of AMP in the AtGH3.15:AMP complex indicates that only one 2,4-DB molecule is positioned in an orientation that points the reactive carboxylate group toward the phosphate group that undergoes the adenylation reaction (Fig. 3C). This 2,4-DB molecule stacks with Phe-166, forms a hydrogen bond contact with Ser-122 (which was modeled in two alternate side-chain conformations), and is situated in a space bordered by Met-162, Val-163, Phe-325, and Phe-332 (Fig. 3D). The second 2,4-DB molecule positions its carboxylate group away from the nucleotide-binding site and is situated deeper in the acyl acid–binding site (Fig. 3C). This ligand forms a charge–charge interaction between its carboxylate and the side-chain of Arg-214 (Fig. 3D). Ser-299 contributes a hydrogen bond interaction to the carboxylate. The substituted phenyl ring is positioned to form van der Waals contacts with Ile-143, Leu-181, and Phe-219. It is not clear if the binding of two 2,4-DB molecules in the acyl acid site of AtGH3.15 is biochemically relevant or is an artifact of crystallization. Because of the large size of the site, it is possible that binding of one ligand deeper in the pocket positions the second for efficient catalysis.

Table 2
Steady-state kinetic analysis of AtGH3.15

Steady-state kinetic parameters were determined using varied concentrations of 2,4-DB at fixed concentrations of Gln (10 mM) and ATP (1 mM) or with varied concentrations of the indicated amino acid at fixed concentrations of 2,4-DB (10 mM) and ATP (1 mM). Average values ± S.D. (n = 3) are shown. The dashed lines indicate no activity was detected.

Substrate	k_{cat} (min$^{-1}$)	K_m (µM)	k_{cat}/K_m (m$^{-1}$s$^{-1}$)
2,4-DB	11.0 ± 0.7	590 ± 100	315
Gln	52.5 ± 1.5	970 ± 100	887
Cys	52.5 ± 9.7	7240 ± 2100	119
His	43.1 ± 1.2	9290 ± 620	78
Met	27.5 ± 0.6	10,600 ± 590	42
Tyr	12.0 ± 1.8	18,400 ± 4100	11

C4 position does not reduce catalytic efficiency; however, extension of this position reduces catalytic activity, as observed with 4-(4-methoxyphenoxy)butanoic acid. Comparison of the catalytic efficiencies of 4-phenoxybutyric acid, 4-phenylbutyric acid, 5-phenylvaleric acid, and 5-(4-fluorophenyl)valeric acid also indicate that compounds longer in length from carboxylate to the substituted phenyl group are superior substrates.

Effect of AtGH3.15 knockout and overexpression in Arabidopsis on 2,4-D and 2,4-D treatment

2,4-D, like IBA, inhibits primary root elongation (34–36). To determine whether the in vitro activity of AtGH3.15 with 2,4-DB had in planta effects, previously generated and characterized knockout and overexpression lines of AtGH3.15 (33)
Herbicide modification by an acyl acid amido synthetase

Table 3
Kinetic analysis of AtGH3.15 with phenoxyalkanoic and phenylalkyl acids

Steady-state kinetic parameters were determined using varied concentrations of each substrate with fixed concentrations of Gln (10 mM) and ATP (1 mM). Average values ± S.D. (n = 3) are shown. Kinetic parameters for IBA, 2,4-D, and 2,4-DB from Table 1 are shown for comparison.

Substrate	k_{cat} (min$^{-1}$)	K_{m} (μM)	$K_{\text{cat}}/K_{\text{m}}$ (μM$^{-1}$ s$^{-1}$)
IBA	9.9 ± 0.2	530 ± 40	313
2,4-D	1.3 ± 0.1	3790 ± 420	6
2,4-DB	11.0 ± 0.7	590 ± 100	315
2,4,5-trichlorophenoxyacetic acid (2,4,5-T)	4.3 ± 0.2	23,200 ± 2300	3
4-(chloro-2-methylphenoxy)butanoic acid (MCPB)	15.6 ± 0.5	1130 ± 100	228
4-(2-chlorophenoxy)butanoic acid	24 ± 1.4	3550 ± 520	113
4-(2,6-dimethylphenoxy)butanoic acid	5.4 ± 0.3	180 ± 70	506
4-(4-methoxyphenox)butanoic acid	29.8 ± 2.9	14,800 ± 2470	28
4-phenoxobutyric acid	16.2 ± 3.8	2190 ± 260	126
4-phenylbutyric acid	15.0 ± 0.5	6000 ± 420	42
5-phenylvaleric acid	26.6 ± 0.3	960 ± 50	445
5-(4-fluorophenyl)valeric acid	24.0 ± 0.4	680 ± 50	597

Table 4
Summary of crystallographic statistics for the AtGH3.15-2,4-DB complex

Data collection	Space group	C222	a = 153.8 Å, b = 154.8 Å, c = 73.4 Å	Wavelength (Å)	0.979
	Resolution (Å) (highest shell)	38.7–2.15 (2.19–2.15)			
	Reflections (total/unique)	319,808/47,900			
	Completeness (highest shell)	99.5% (98.1%)			
	$R_{ ext{merge}}$ (highest shell)	18.5 (2.0)			
	$R_{ ext{merge}}$ (highest shell)	4.7% (55.7%)			
Reﬁnement	$R_{ ext{merge}}/R_{ ext{free}}$	0.182/0.213			
No. of protein atoms	4513				
No. of waters	290				
No. of ligand atoms	26				
r.m.s.d., bond lengths (Å)	0.009				
r.m.s.d., bond angles (°)	0.919				
Avg. B-factor (Å2)	44.9, 87.0, 48.5				
Stereochemistry: most favored, allowed, disallowed	98.4, 1.4, 0.2%				

Figure 3. X-ray crystal structure of AtGH3.15 in complex with 2,4-DB. A, overall three-dimensional structure of the AtGH3.15-2,4-DB complex. The ribbon diagram shows the N- and C-terminal domains with α-helices (rose) and β-strands (blue). The bound 2,4-DB molecules are shown as space-filling models. B, electron density for 2,4-DB molecules in the active site is shown as a 2Fo–Fc omit map (1.0 o). C, surface view of 2,4-DB binding in the AtGH3.15 active site. The position of AMP from the previously reported AtGH3.15-AMP complex (33) is also shown. D, AtGH3.15 acyl acid–binding site. The position of AMP from the previously reported AtGH3.15-AMP complex (33) is also shown.

Discussion

Multiple studies highlight the diverse roles for GH3 acyl acid amido synthetases as modulators of jasmonate and auxin phytohormones (25–33), but the potential function of these proteins as modifiers of herbicides in plants has not been fully examined. Motivated by the possibility that the phenoxyalkanoic acid auxinic herbicides 2,4-D and 2,4-DB mimic IAA and IBA (Fig. 1), respectively, in triggering auxin–linked responses, we examined if GH3 proteins that conjugate amino acids to these hormones can modify 2,4-D and 2,4-DB treatment (Fig. 4). Mock-treated seedlings were comparable between the various lines (Fig. 4A, upper panels). Seedlings treated with 1 μM 2,4-DB (Fig. 4A, lower panels) showed statistically significant differences between WT Col-0, SALK_108265, SALK_079153, 35S:FLAG-GH3.15 1–5, 35S:FLAG-GH3.15 2–7, and 35S:FLAG-GH3.15 8–2 (Fig. 4B). The T-DNA knockout lines (SALK_108265 and SALK_079153) showed hypersensitivity to treatment with 2,4-DB compared with WT Col-0 (Fig. 4). The overexpression lines (35S:FLAG-GH3.15 1–5, 35S:FLAG-GH3.15 2–7, and 35S:FLAG-GH3.15 8–2) were resistant to treatment with 2,4-DB compared with WT Col-0, as they maintained active root elongation in the presence of the herbicide (Fig. 4). As AtGH3.15 uses IBA and 2,4-DB, but does not prefer either IAA or 2,4-D as a substrate in vitro, WT Col-0, knockout, and overexpression lines were also screened on 2,4-D in the root elongation assay. There were no statistically significant differences between WT, T-DNA insertion, and overexpression lines grown on 20 nM, 40 nM, or 80 nM 2,4-D for 10 days (Fig. S4), which is consistent with AtGH3.15 either not having a role in 2,4-D metabolism or downstream herbicide effects.

The AtGH3.15 acyl acid–binding site. The position of AMP from the previously reported AtGH3.15-AMP complex (33) is also shown.
Herbicide modification by an acyl acid amido synthetase

(Table 1; Fig. 2). This suggests that although 2,4-D is a potent IAA analog targeting the TIR1 auxin receptor, it does not serve as an IAA mimic for the GH3 proteins. This difference may contribute to potentiation of the herbicidal effect of 2,4-D.

In contrast, AtGH3.15 is highly active with both IBA and its auxinic herbicide counterpart 2,4-DB (Table 1; Fig. 2). Additional biochemical analysis with a range of substrates (Fig. S3) shows that AtGH3.15 does not accept benzoic acid (dicamba), pyridine carboxylic acid (clopyralid, picloram, and triclopyr), and short side-chain phenoxyalkanoic acid (dichlorprop, mepcosprop, MCPA) auxin herbicides as substrates. AtGH3.15 did use 2,4-DB and 2,4,5-T, which differs from 2,4-D by one additional chlorine, but with catalytic efficiencies 50- to 100-fold lower than that observed with either IBA or 2,4-DB (Tables 1 and 3; Fig. 2). The kinetic analysis with MCPB, an analog of 2,4-DB, and other longer side-chain phenoxyalkanoic acid and phenylalkyl acid substrates indicates that substitutions of the phenyl group are not as important as side-chain length for activity; however, changes to phenyl group substituents that lengthen the moieties, such as the methoxy group of 4-(4-methoxyphenoxy)butanoic acid, reduce catalytic efficiency (Table 3).

The X-ray crystal structure of AtGH3.15 in complex with 2,4-DB (Fig. 3) provides insight on how this molecule is recognized largely through apolar surface contacts, although some hydrogen bond interactions contribute. The orientation of one 2,4-DB molecule in the active site with its reactive carboxylate toward the location of the ATP/AMP-binding site suggests how a productive first-half reaction leading to the adenylated reaction intermediate occurs. As noted in the results, the binding of two 2,4-DB molecules in the acyl acid site of AtGH3.15 may be biochemically relevant or an artifact of crystallization, but is not unprecedented. For example, a set of stacked alrestatin molecules in aldose reductase was proposed to contribute to ligand specificity (34). It is possible that the large size of the AtGH3.15 acyl acid–binding site and binding of two substrates in different orientations contributes to efficient catalysis. This detail requires additional detailed biochemical analyses. Overall, the AtGH3.15:2,4-DB complex is the first of a GH3 protein with a herbicide bound and shows how binding in the site is largely dictated by surface contacts.

The in planta effect of AtGH3.15 knockout or overexpression indicates that changes in expression alter sensitivity to 2,4-DB (Fig. 4). Previous work characterized these plant lines (33). In the root elongation assays with Arabidopsis seedlings (Fig. 4), knockout lines of AtGH3.15 showed hypersensitivity to treatment with 2,4-DB, whereas overexpression lines of AtGH3.15 displayed clear tolerance to 2,4-DB. As with other plants, metabolism of 2,4-DB to 2,4-D by β-oxidation in the peroxisome, a process similar to conversion of IBA to IAA, leads to auxinic herbicide effects in Arabidopsis (35–37). Interestingly, this experiment with AtGH3.15 and 2,4-DB, along with other reported studies of various GH3 proteins and their responses to different phytohormones such as IAA, IBA, and jasmonates (25, 26, 30, 32, 33), highlights differences between in vitro steady-state kinetics and in planta responses. The K_m values reported for various GH3 proteins with their cognate plant hormone substrates are typically in the 300–800 μM range; however, overexpression and knockout plant lines of the different GH3-encoding genes exhibit growth phenotypes with phytohormone treatments in the range of 1 to 10 μM that correspond to GH3 protein expression changes (25, 26, 30, 32, 33). These differences highlight the need for further investigations into the metabolism of these molecules, which may alter local concentrations within different tissues and cell types of the plant and the fluxes that control plant growth and development.

Overall, the biochemical and in planta analysis of AtGH3.15 suggests a possible model for how altered expression affects plant growth (Fig. 5). Loss of AtGH3.15 in the T-DNA insertion lines would remove background conjugation to 2,4-DB, allowing more of the herbicide to be metabolized in the peroxisome (35–37). This results in the shortened root phenotype compared with WT Arabidopsis seedlings. In contrast, overexpression of AtGH3.15 would increase 2,4-DB conjugate formation, which results in the observed tolerance to herbicide treatment and the longer root phenotype. This parallels the effect of treating Arabidopsis AtGH3.15 knockout and overexpression lines with the auxin IBA (33). Overall, the biochemical, structure, and in planta experiments suggest the use of AtGH3.15 as a possible resistance trait for 2,4-DB.

Figure 4. AtGH3.15 knockout and overexpression results in hypersensitivity and resistance to 2,4-DB in root elongation assays. A, seedlings were grown under continuous white light for 10 days at 22°C on medium supplemented with ethanol (mock) or 1 μM 2,4-DB. Scale bar = 1 cm. B, percent root length versus mock-treated was calculated via the equation (root length of treated seedlings)/(average root length of mock-treated seedlings)*100. Error bars represent mean ± S.E. (n = 20). *, p < 0.05; **, p < 0.001; ***, p < 0.0001 versus WT. WT Col-0 (Col); overexpression lines (335: FLAG-GH3.15) are indicated as GH3.15 1–5, 2–7, and 8–2.
Although monocots and leguminous plants are inherently tolerant to 2,4-DB application, they are not completely resistant and dicots remain susceptible (4–9). Overexpression of AtGH3.15 in planta could potentially enhance the tolerance of plants to 2,4-DB application. There are several possible advantages to exploring AtGH3.15 as a possible 2,4-DB resistance trait. Compared with overexpression of IAA-specific GH3 proteins, which results in severe growth phenotypes, such as dwarfing (29), overexpression of AtGH3.15 in Arabidopsis yielded no detrimental growth changes (33). Moreover, the distinct amino acid substrate profile of AtGH3.15 versus the IAA-specific proteins (Table 2; Fig. S2), which primarily use aspartate and glutamate, may help maintain inactive forms of 2,4-DB and contribute to tolerance (25–33). Amino acid conjugated forms of IAA have varied roles with the IAA-aspartate and IAA-glutamate conjugates leading to hormone degradation and IAA-alanine and IAA-leucine conjugates providing storage forms of the auxin (31, 38, 39). The best-studied IAA and 2,4-D conjugates are those of aspartate and glutamate, which suggests that these molecules can be hydrolyzed back into free acid forms (39). With 2,4-D conjugates this contributes to maintaining the effect of the herbicide (39). Currently, there is a lack of information on the metabolic fates of IBA and auxinic herbicides conjugated to other amino acids. Potential glutamine, cysteine, histidine, methionine, and tyrosine conjugates of IBA and 2,4-DB formed by AtGH3.15 need to be more fully explored with regard to biological fate and herbicide action.

In addition to the activity of AtGH3.15 with 2,4-DB, the structure of this enzyme in complex with the herbicide serves as a starting point to engineer variants that modify 2,4-D with amino acids that are neither aspartate nor glutamate as a means of exploiting potential differences in herbicide metabolism. As 2,4-D is a widely used herbicide, the ability to engineer activity of AtGH3.15 with 2,4-D would result in a greater agricultural impact than with 2,4-DB. Before the discovery and commercialization of auxin herbicides, like 2,4-D, perennial weeds were particularly difficult to control (40); however, to reduce the development of weeds with herbicide resistance multiple different modes of action for tolerance traits are needed. For example, extensive reliance on glyphosate in early agricultural biotech crops led to selection of weed populations with inherent tolerance to the herbicide and spurred the development of new herbicide-resistance traits.

To date, the molecular basis for enzyme-based herbicide protection strategies rely on a limited number of mechanisms: the use of modified enolpyruvylshikimate-3-phosphate synthase to prevent inhibition by glyphosate and glufosinate (21), acetylation of herbicide (18, 19), degradation of 2,4-D by arylsulfinylacetate dioxygenases (23), conversion of dicamba by monoxygenases (22), modification of acetolactate synthase to prevent inhibition by sulfonyleurea herbicides, degradation of Oxynil herbicide by a nitrilase (24), and use of p-hydroxyphenylpyruvate dioxygenases for mesotrione and isoxaflutole tolerance (20). Amino acid conjugation of herbicides may provide an additional resistance mechanism.

The benefits of herbicide-tolerant crops and the selection of resistant weeds, highlights the importance of discovery and development of new modes of action for herbicide tolerance. Stacked traits, the ability to tolerate different herbicidal applications, are also important for the future of herbicide tolerance in genetically modified crops to help combat the selection of herbicide-resistant weeds in the future (41). The development of 2,4-DB–tolerant crops via expression of AtGH3.15, or the use of an engineered variant that efficiently conjugates 2,4-D, would help to broaden the tool kit of herbicidal tolerance modes of action.
plemented with 15% (v/v) glycerol as a cryoprotectant. Diffraction data were collected at the SBC 19-ID beamline of the Argonne National Laboratory Advanced Photon Source with indexing and scaling performed using HKL-3000 (42). Molecu- lar replacement was performed using PHENIX (43) with the three-dimensional structure of AtGH3.15 (PDB ID: 6AVH) (33) as a search model. Model building and refinement were per- formed with COOT (44) and PHENIX, respectively. Data collection and refinement statistics are summarized in Table 4. Coordinates and structure factors were deposited in the Protein Data Bank (PDB ID: 6E1Q).

Arabidopsis knockout and overexpression lines and root elongation assays

Confirmation and characterization of the two homozygous T-DNA insertion lines (SALK_108265C and SALK_071953) in the At5g13370 gene that codes for AtGH3.15 were described previously (33). Generation and characterization of the three independent A. thaliana Col-0 lines overexpressing N-terminally FLAG-tagged AtGH3.15 under control of the cauliflower mosaic virus 35S promoter were also previously reported (33).

Root elongation assays to examine the effect of AtGH3.15 expression changes on resistance to 2,4-D and 2,4-DB used seeds that were surface sterilized with 70% (v/v) ethanol for 5 min, 90% (v/v) ethanol for 1 min, and resuspended in 0.1% (w/v) sterile agar. Sterilized seeds were stratified at 4 °C for 2–4 days and plated on Murashige and Skoog plates with 0.6% (w/v) agar and supplemented with 0.5% (v/v) sucrose. Treatments were performed at 1 μM 2,4-DB and 20, 40, and 80 μM 2,4-D with mock-treated plates receiving equivalent amounts of 70% (v/v) ethanol (2,4-DB and 2,4-D were dissolved in 70% ethanol). Plates were sealed with 3 M Micropore tape and incubated at 22 °C under continuous white light for 10 days.

Seedlings were excised from media and measured using a ruler. Percent root length versus mock-treated was calculated as (root length of treated seedlings)/(average root length of mock-treated seedlings)*100.

Author contributions—A. M. S. and J. M. J. conceptualization; A. M. S., S. G. L., and E. S. data curation; A. M. S., S. G. L., and E. S. formal analysis; A. M. S. and J. M. J. writing—original draft; A. M. S., S. G. L., E. S., and J. M. J. writing—review and editing.

Acknowledgments—The MS measurement was performed at the Proteomics & Mass Spectrometry Facility at the Donald Danforth Plant Science Center under work supported by grants from the National Science Foundation (DBI-1427621) for acquisition of the QTRAP 6500 LC-MS/MS. Portions of this research were carried out at the Argonne National Laboratory Structural Biology Center of the Advanced Photon Source, a national user facility operated by the University of Chicago for the Department of Energy Office of Biological and Environmental Research under Grant DE-AC02-06CH11357.

References

1. ISAAA. (2017) Global Status of Commercialized Biotech/GM Crops in 2017: Biotech Crop Adoption Surges as Economic Benefits Accumulate in 22 Years. ISAAA Brief No. 53. ISAAA, Ithaca, NY

2. Shaner, D. L. (2000) The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag. Sci. 56, 320–326 CrossRef

3. Service, R. F. (2007) Agbiotech: A growing threat down on the farm. Science 316, 1114–1117 CrossRef Medline

4. Grossmann, K. (2010) Auxin herbicides: Current status of mechanism and mode of action. Pest. Manag. Sci. 66, 113–120 CrossRef Medline

5. Song, Y. (2014) Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J. Int. Plant Biol. 56, 106–113 CrossRef

6. Peterson, M. A., McMaster, S. A., Riechers, D. E., Skelton, J., and Stahlman, P. W. (2016) 2,4-D past, present, and future: A review. Weed Tech. 30, 303–345 CrossRef

7. United States Environmental Protection Agency. (2005) Registration Eligibility Decision (RED) 2,4-D, EPA-738-F-05-002, U.S. Environmental Protection Agency, Washington, DC

8. Charles, J. M., Cifone, M. A., Lawlor, T., Muri, H., Young, R. R., and Leeming, N. M. (2000) Evaluation of the in vitro genetic toxicity of 4-(2,4-dichlorophenoxy)butyric acid. Mutat. Res. 472, 75–83 CrossRef Medline

9. United States Environmental Protection Agency. (2005) Registration Eligibility Decision (RED) 2,4-DB, EPA-738-F-05-001, U.S. Environmental Protection Agency, Washington, DC

10. Rao, V. S. (1940) Herbicide transformations in plants. Principles of Weed Science, pp. 199–231, Science Publishers, Enfield, NH

11. Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 CrossRef Medline

12. Kepinski, S., and Leyser, O. (2005) The Arabidopsis TIR1 protein is an auxin receptor. Nature 435, 446–451 CrossRef Medline

13. Salehin, M., Bagchi, R., and Estelle, M. (2015) SCFTIR1/AFB-based auxin perception: Mechanism and role in plant growth and development. Plant Cell 27, 9–19 CrossRef Medline

14. Korasick, D. L., Jez, J. M., and Strader, L. C. (2015) Auxin activity: Past, present, and future. Am. J. Bot. 102, 180–196 CrossRef Medline

15. Sterling, T. M., and Hall, J. C. (1997) Mechanism of action of natural auxins and the auxin analogous. in Toxicology, Biochemistry and Molecular Biology of Herbicide Activity (Roe, R. M., Burton, J. D., Kuh, R. J., eds) pp. 111–141, IOS Press, Amsterdam, The Netherlands

16. Chaleff, R. S., and Mauvais, C. J. (1984) Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224, 1443–1445 CrossRef Medline

17. D’Halluin, K., De Block, M., Denecke, J., Janssens, J., Leemans, J., Reynaerts, A., and Bottermann, J. (1992) The bar gene as selectable and screen- able marker in plant engineering. Methods Enzymol. 216, 415–426 CrossRef Medline

18. Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H., Bertain, S., Cho, H. J., Duck, N., Wong, J., Liu, D., and Lassner, M. W. (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304, 1151–1154 CrossRef Medline

19. Ritter, P., Scimemi, C., Dubal, M., and Matringe, M. (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol. 134, 92–100 CrossRef Medline

20. Tan, S., Evans, R., and Singh, B. (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30, 195–204 CrossRef Medline

21. Behrens, M. R., Mutlu, N., Chakraborty, S., Dumitru, R., Zhang, W., Lavallee, B. J., Herman, P. L., Clemente, T. E., and Weeks, D. P. (2007) Dicamba resistance: Enlarging and preserving biotechnology-based weed management strategies. Pest. Manag. Sci. 63, 1136–1144 CrossRef Medline

22. Wright, T. R., Shan, G., Walsh, T. A., Lira, J. M., Cui, C., Song, P., Zhuang, M., Arnold, N. L., Lin, G., Yao, K., Russell, S. M., Cicchillo, R. M., Peterson, M. A., Simpson, D. M., Zhou, N., Ponsamuel, J., and Zhang, Z. (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc. Natl. Acad. Sci. U.S.A. 107, 20240–20245 CrossRef Medline

23. Detzel, C., Maas, R., Tubeleviciute, A., and Jose, J. (2013) Autodisplay of nitrilase from Klebsiella pneumoniae and whole-cell degradation of oxynil

J. Biol. Chem. (2018) 293(46) 17731–17738 17737
Herbicide modification by an acyl acid amido synthetase

herbicides and related compounds. Appl. Micro. Biotech. 97, 4887–4896 CrossRef Medline

25. Staswick, P. E., Tiryaki, I., and Rowe, M. L. (2002) Jasmonate response locuse JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acyclic acids in an assay for adenylation. Plant Cell 14, 1405–1415 CrossRef Medline

26. Staswick, P. E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M. T., Maldonado, M. C., and Suza, W. (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acyclic acid. Plant Cell 17, 616–627 CrossRef Medline

27. Terol, J., Domingo, C., and Talón, M. (2006) The GH3 family in plants: Genome wide analysis in rice and evolutionary history based on EST analysis. Gene 371, 279–290 CrossRef Medline

28. Chen, Q., Westfall, C. S., Hicks, L. M., Wang, S., and Jez, J. M. (2010) Genetic basis for the conjugation of auxin by a GH3 family indole-acyclic amido synthetase. J. Biol. Chem. 285, 29780–29786 CrossRef Medline

29. Westfall, C. S., Herrmann, J., Chen, Q., Wang, S., and Jez, J. M. (2010) Modulating plant hormone levels by enzyme action: the GH3 family of acyl amido synthetases. Plant Signal. Behav. 5, 1607–1612 CrossRef Medline

30. Westfall, C. S., Zubieta, C., Herrmann, J., Kapp, U., Nanao, M. H., and Jez, J. M. (2012) Structural basis for pre-receptor modulation of plant hormones by GH3 family proteins. Science 336, 1708–1711 CrossRef Medline

31. Westfall, C. S., Muehler, A. M., and Jez, J. M. (2013) Enzyme action in the regulation of plant hormone responses. J. Biol. Chem. 288, 19304–19311 CrossRef Medline

32. Westfall, C. S., Sherp, A. M., Zubieta, C., Alvarez, S., Schraft, E., Marcellin, R., Ramirez, L., and Jez, J. M. (2016) Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proc. Natl. Acad. Sci. U.S.A. 113, 13917–13922 CrossRef Medline

33. Sherp, A. M., Westfall, C. S., Alvarez, S., and Jez, J. M. (2018) Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. J. Biol. Chem. 293, 4277–4288 CrossRef Medline

34. Harrison, D. H., Bohren, K. M., Petsko, G. A., Ringe, D., and Gabbay, K. H. (1997) The alrestatin double-decker: Binding of two inhibitor molecules to human aldose reductase reveals a new specificity determinant. Biochemistry 36, 16134–16140 CrossRef Medline

35. Zolman, B. K., Yoder, A., and Bartel, B. (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156, 1323–1337 Medline

36. Strader, L. C., Culler, A. H., Cohen, J. D., and Bartel, B. (2010) Conversion of endogenous indole-3-butyric acid to indole-3-acyclic acid drives cell expansion in Arabidopsis seedlings. Plant Physiol. 153, 1577–1586 CrossRef Medline

37. Korasick, D. A., Enders, T. A., and Strader, L. C. (2013) Auxin biosynthesis and storage forms. J. Exp. Bot. 64, 2541–2555 CrossRef Medline

38. LeClere, S., Tellez, R., Rampay, R. A., Matsuda, S. P. T., and Bartel, B. (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J. Biol. Chem. 277, 20446–20452 CrossRef Medline

39. Eyer, L., Vain, T., Pařízková, B., Okleštкова, J., Barbez, E., Kozubíková, H., Pospíšil, T., Wierzbicka, R., Kleine-Vehn, J., Fránek, M., Štrnad, M., Robert, S., and Novak, O. (2016) 2,4-D and IAA amino acid conjugates show distinct metabolism in Arabidopsis. PLoS One 11, e0159269 CrossRef Medline

40. McErlich, A. F., and Boydston, R. A. (2014) Current state of weed management in organic and conventional cropping systems. in Automation: The Future of Weed Control in Cropping Systems (Young S., and Pierce F., eds), pp. 11–32, Springer, Dordrecht, The Netherlands CrossRef

41. Steiner, H. Y., Halpin, C., Jez, J. M., Kough, J., Parrott, W., Underhill, L., Weber, N., and Hannah, L. C. (2013) Evaluating the potential for adverse interactions within genetically engineered breeding stacks. Plant Physiol. 161, 1587–1594 CrossRef Medline

42. Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006) HKL-3000: The integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 CrossRef Medline

43. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 CrossRef Medline

44. Emsley, P., and Cowtan, K. (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 CrossRef Medline

J. Biol. Chem. (2018) 293(46) 17731–17738