Dietary Acid Load and Glomerular Filtration Rate in Chronic Kidney Disease

Behrooz ebrahimzadeh koor (✉ ebrahimzadeh1358@gmail.com)
Yasuj University of Medical Sciences

Ali Mousavizadeh
Yasuj University of Medical Sciences

Pardis PourAnsari
Yasuj University of Medical Sciences

Milad Nasiri Jounaghani
Yasuj University of Medical Sciences

Zahra Mohammadian
Yasuj University of Medical Sciences

Yasamin Khazaei
Yasuj University of Medical Sciences

Research Article

Keywords: Dietary Acid-Base Load, kidney, GFR

Posted Date: October 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-940437/v1

License: ©️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Kidney diseases are prevalencing rapidly. The nutritional transition has caused the diet of Iran community to increase the dietary acid load (DAL) and thus exacerbate metabolic disorders. Therefore, our goal was to determine the DAL of the diet in patients with Chronic Kidney Disease (CKD).

Methods: In this cross-sectional study, the study population was composed of 90 patients with renal insufficiency. DAL was included of Potential Renal Acid Load (PRAL), Net EndogeneusAcid Production (NEAP) and Net Acid Excretion (NAE) that were extracted using data of food frequency questionnaire and their correlation with anthropometric and biochemical indices such as Glomerular Filtration Rate (GFR) and creatinine were analyzed by SPSS v.26 software with a significance level of < 0.05.

Results: Mean of dietary acid load of participants were 17.15±9.85, -8.7±0.35 and 59.04±10.9 mEq/day for PRAL, NEAP and NAE respectively. Daily intake of energy (P<0.001) and protein percent of energy (P<0.01) in third tertile (T3) of PRAL were significant higher than first tertile (T1). Mean of age (P<0.05) and blood creatinine concentration (P<0.01) were significant higher in T1 than T1 of NEAP index and GFR was significant low (P<0.05). Daily energy intake (p<0.05), blood calcium concentration (p<0.05) and GFR (p<0.05) were significantly more in higher tertiles of NAE index. Based on Crude General linear model, the higher tertiles of PRAL compared to first tertile had significant lower GFR (P<0.05). In adjustment model, T3 group had more not significant GFR than T1 group. Only in model II adjustment, T2 group of NAE compared to T1, had higher GFR. Mean difference of GFR did not significant across tertiles of NEAP index. In case of Creatinine, based on model I adjustment, T3 group of NAE had more creatinine concentration than T1 group (P<0.01). T3 group of NEAP than T1 group had significant lower creatinine in crude and model I adjustment (P<0.01).

Discussion: Dietary Acid Load was associated with kidney function in CKD patients. In order to obtain logical results and to understand the cause-and-effect relationships, long-term studies with larger populations and consideration of blood factors such as blood bicarbonate are recommended.

Background

Todays, CKD is considered as international public health problem (1, 2). In addition to racial and genetic susceptibility, different risk factors such as hypertension, diabetes and lifestyle can predict CKD incidence(3). According to various studies, this disease affects between 8% and more than 16% of adults (3, 4). This no communicable disease can lead to cardiovascular morbidity, pulmonary hypertension, infection, periodontal disease, depression, dialysis, renal replacement and evently mortality (5-10). It has been shown not only in advanced stages, but in early stages of renal dysfunction, morbidity and even mortality are high (11) and taking care of this disease involves a lot of economic costs, So, preventing its modifiable risk factors such as diet can be effective in reducing costs and increasing life expectancy(12, 13). Proteins from meat, fish, eggs, cereals, and dairy products(14) are major source of nonvolatile acid and metabolized to sulfates and other organic acids while fruit and vegetables have natural potassium salts that induce alkaline condition in body(15). High DAL increases ammonium concentration and hydrogen ions excretion in kidney tubules; so these pathophysiological mechanisms, enhances activity of the renin-angiotensin system and aldosterone, causing tubular toxicity, destruction of renal nephrons and decreased renal function in long term period(11, 13). DAL
is measured by PRAL and the NEAP indexes which are based on dietary intakes of protein, calcium, magnesium, potassium and phosphorous (16). A part of the acid excreted by the kidneys can be considered equivalent to PRAL and a part as organic acid (OA), dependent on the body surface and permanently, is excreted from the kidneys (17). Considering the inappropriate diet pattern in Iranian families, such as low consumption of fruits and vegetables and high consumption of cereal and meat based foods, it is predictable that the Iranian diet will increase the acid load and thus exacerbate metabolic disorders (18). This type of diet, which is mostly the result of nutritional transition, can be associated with an increase in the acidic load of the diet and thus the aggravation of metabolic disorders; This condition is more dangerous in kidney patients, because these patients are restricted in consuming alkaline foods. In addition, because few studies have been done on the relationship between dietary acidity and kidney function (1, 19), we estimated PRAL and NEAP and evaluated their association with sociodemographic and biochemical factors in general hospital, southwest of Iran.

Methods

Population and study design

In this cross-sectional study, 90 CKD patients with GFR 20-65ml/min (20) were enrolled by easy and accessible sampling method in 2018. The protocol of this study was reviewed and approved by the Ethics Committee of Yasuj University of Medical Sciences (Ethical code:IR.YUMS.REC.1396.29). Exclusion criteria were acute or chronic inflammatory disease, malignancy or known hematological disorder and recent severe hemorrhagic episode. Patients were informed the study goals and written consent was obtained. Demographic information was obtained during interviews with them. The weight of participants was measured with light clothing by a standard scale (Seca786, Germany) with 0.1 kg accuracy. Patients’s height was also measured in Standing without shoes position by no elastistic gauge plate (Seca786, Germany) with 0.5 cm accuracy. Body mass index (BMI) was calculated as weight (kg) divided by squared height (m²). Four groups of BMI: lean (<18.5 kg / m²), normal (18.5-24.9 kg / m²) and overweight (25-29.9 kg / m²) and obese (≥ 30 kg / m²) (7). Food intake was obtained using a semiquantitative standard food frequency questionnaire (15,19). Cronbach's alpha coefficient for our FFQ was 0.932, so considering that it is higher than the cut of point of 0.7, it can be said that the FFQ used in this study has a very good validity and reliability. Amount and frequency of consumption of food items was as daily, weekly, monthly and seasonal. It should be noted that units of use for each item were standard units; For example, how much and how many a 240cc cup for milk? For fruits such as apples, the unit used was an average of 100 grams of apples. For different types of bread, the scale used is the palm of the hand (10 x 10 cm cut). Consumption of each food item was converted in to grams of food consumed per day using the illustrated guidebook of home scales. Since in Iran, most fats are consumed as cooking oil, a separate question was included in the questionnaire; “How many kilograms of cooking oil is bought for a household? How long is it generally enough? “ Then, by knowing the number of household members, the approximate daily consumption of oil for each person can be calculated. Macronutrients and micronutrient content of each food was extracted using the Iranian food composition table. Blood samples were taken from patients after 12-14 hours of overnight fasting by an experienced nurse and biochemical tests were performed using the enzymatic colorimetric kits (bionic kit, Iran). Blood pressure is also measured by an experienced nurse using a standard mercury sphygmomanometer (DDM, Inc, Castelculier, France) after hospitalization and 15-minutes of rest in seated position.
Definitions

Dietary acid load was estimated using the Remer and Manz equation (17, 20):

\[\text{PRAL}_{\text{mEq/day}} = 0.49 \times \text{protein} + 0.037 \times \text{phosphorus} - 0.021 \times \text{potassium} - 0.026 \times \text{magnesium} - 0.013 \times \text{calcium} \]

\[\text{NEAP}_{\text{mEq/day}} = 54.5 + (\text{Pro:K}) - 10.2 \]

\[\text{NAE}_{\text{mEq/day}} = \text{PRAL}_{\text{mEq/day}} + 41 \times \text{Body Surface Area (m}^2)/1.73 \text{m}^2. \]

The higher the estimated values of these variables, the higher the acidity of the diet.

Body surface area was calculated based on Mosteller formula (21). GFR was calculated from the Cockroft formula (22) or \(\text{GFR} = (140 - \text{age}) \times \text{Weight} / \text{Pcrea} \times 72 \)

Pcrea: Plasma concentration of creatinine.

Diabetes mellitus is defined as having fasting blood sugar (FBS) \(\geq 126 \text{ mg/dL} \) or taking blood sugar-lowering drugs. Hypertension was also defined as systolic blood pressure \(\geq 140 \text{ mmHg} \) or greater diastolic blood pressure \(\geq 90 \text{ mmHg} \) or taking the anti-hypertension medication (19). \(\text{BUN} > 40 \text{mg/dL} \) was considered as high BUN concentration. Albumin concentration < 2.5 g/dl was considered as marked hypoalbuminemia and mild hypoalbuminemia as 2.5-3 g/dl and normal range was 3.6-4.5 g/dl (23).

Statistical Analysis: All statistical analyses were performed using SPSS version 26.0 software (SPSS Inc., Chicago, IL, USA). Normality of variables was assessed using the Kolmogorov–Smirnov test. Numerical variables are expressed as the mean±standard deviation and categorical ones as number(percent). Comparison across tertiles of PRAL, NEAP and NAE indexes was done using the \(\chi^2 \) test for categorical variables and One-way ANOVA and Kruskal–Wallis tests for continuous variables. The mean differences of the main dependent variables (GFR, Creatinine concentration as indicators of kidney function) were compared across the tertiles of independent variables (PRAL, NEAP and NAE indexes) using Univariate General Linear Model test in the crude model and the adjustment model (confounding variables were included the age, gender, BMI, daily energy intake, diabetes and hypertension status). \(P \)-values less than 0.05 were considered statistically significant.

Results

Mean and standard deviation of dietary acid load of participants were 17.15±9.85, -8.7±0.35 and 59.04±10.9 mEq/day for PRAL, NEAP and NAE respectively. There was a high correlation between these indicators (PRAL, NEAP: \(r=0.746, P<0.001 \)), (PRAL, NAE: \(r=0.897, P<0.001 \)), (NEAP, NAE: \(r=0.702, P<0.001 \)). The mean age and Body Mass Index (BMI) of patients was 59.93±15.12 years and 25.55±5.17 kg/m\(^2\) respectively; 52.7% of them was female. In this study, 44 (48.9%) participants had normal weight; 29 (32.2%) of them was overweight and 17 (18.9%) patients was obese. No one of them was underweight. 3.3%, 26.7% and 70% of patients had marked hypoalbuminemia, mild hypoalbuminemia and normal albuminemia respectively. Almost, all of patient had high blood creatinine concentration (Crea > 1.2 mg/dl); only one patient had normal blood creatinine concentration. 45.5% of patients had high BUN concentration. One of patients had GFR > 60 ml/min and others had lower GFR. Value of demographic, anthropometric, biochemical and blood pressure
characteristics of patients across the Tertiles of PRAL was presented in Table-1. Daily intake of energy (P<0.001) and protein percent of energy in T₃ were significant higher than T₁ (P<0.01). Other variables were not significant difference across the tertiles of PRAL index. Mean of GFR, Albumin, DBP and fat percent of energy were higher in T₁ than T₃ group. Also, age, BUN, Creatinine, SBP and protein and carbohydrate percent of daily energy were also, lower; but not significant.

Table1: characteristic of CKD patients based on tertiles of PRAL
tertile	Total (0.08-54.64)	T1 (0.08-12.5)	T2 (12.64-18.41)	T3 (18.41-54.64)	P-value
variable					
Demographic & blood pressure					
Age(y)	59.93 ±15.1	56.66±15.76	58.9±14.5	64.23±14.56	0.138
Sex(M/F)	43/47	18/12	11/19	14/16	0.192
BMI(kg/m2)	25.55±5.17	25.4±4.9	26±4.25	25.3±6.3	0.576
Diabetes(n(%))	27(30.3)	7(23.3)	11(36.7)	9(31)	0.529
Hypertension(n(%))	60(67.4)	19(62.3)	20(66.7)	21(72.4)	0.754
SBP(mHg)	134±17.9	133±14	133.7±20	135.3±194	0.924
DBP(mHg)	79.2±17.25	78.9±15.5	82.1±19.7	76.6±16.4	0.544
Biochemical					
Na(mg/dl)	140.7±3.6	141.5±4.1	140.3±3.6	140.3±2.9	0.323
P(mg/dl)	4.37±1.16	4.4±1.05	4.3±1.2	4.37±1.16	0.879
K(mg/dl)	4.25±0.66	4.2±0.54	4.2±0.7	4.35±0.75	0.611
Ca(mg/dl)	8.29±1.5	8±1.8	8.2±1.6	8.6±1.03	0.302
Alb(gr/dL)	3.62±0.55	3.67±0.56	3.66±0.54	3.54±0.55	0.592
BUN(mg/dl)	41.85±20	40.8±12.04	46.2±26.5	38.5±18.6	0.207
Crea(mg/dl)	4.33±2.2	4.8±2.3	4.1±1.75	4.1±2.5	0.25
GFR(ml/min)	22.27±12.46	21.6±14	21.55±9.8	23.6±13.4	0.481
Dietary intake					
Vegetable(gr/day)	68.4±14.8	69.9 ±13.1	68.5±14.4	66.8±16.7	0.725
Dairy food(gr/day)	38.9 ±12	42.2±12.6	38±12.5	36.4 ±10	0.155
Meat(gr/day)	82.6 ±17	88±12.6	79.4 ±19	80.6 ±18.2	0.150
Fruit(gr/day)	79.3 ±17.8	78.7 ±14	80±22	79.3 ±17.8	0.319
Grains(gr/day)	38 ±7.8	40 ±7	36.2±8	37.7±7.8	0.879
Others(gr/day)	463±254	4601±165	500±320	431±254	0.283
energy(kcal/day)	1990.5±577	1809±527	1844±404	2317±645	0.001
FAT. percent(%/E)	37.5 ±9.2	38 ±9	37.7±10.3	36.7 ±8.5	0.889
CHO. Percent(%/E)	52.8±12	50.5 ±9	51.5±8	56.4 ±16.7	0.265
PRO.percent(%/E)	11.4 ±2.4	10.8 ±2.4	10.6±2.2	12.6 ±2	0.003

Data are showed as mean±standard deviation. The One Way ANOVA(for age, daily intake vegetable, dairy food and meats, daily intake of fruits, grains and other group, total energy, fat percent of energy, carbohydrate
percent and protein percent, blood concentrations of Albumin, calcium and potassium) , Kruskal- Wallis H test (BMI, GFR, Systolic and Diastolic Blood Pressure, Blood concentration of Calcium, Potassium, BUN, Creatinine) and Chi-square test for Sex, diabetes and Hypertension status was used.

According the Table-2, mean of age (P<0.01) and blood creatinine concentration (P<0.01) were significant higher in T3 than T1 of NEAP index and GFR was significant low (P<0.05). Other variables had no significant difference; But, T1 participants compared to T3 ones intake lower total energy, had lower GFR and protein percent of energy but had higher BUN, Creatinine; But not significant.

Table2: characteristic of CKD patients based on tertiles of NEAP
tertile	T1	T2	T3	P-value
variable				
Age(y)	55±13	59.06±17.1	65.7±13.5*	0.006
BMI(kg/m²)	24.7±4.4	27.2±5.7	24.7±5	0.091
Sex(M/F)	17(13)	11(19)	15(15)	0.287
Diabetes(n%)	6(20)	11(37.9)	10(33.3)	0.296
Hypertension(n%)	18(60)	22(73.3)	20(69)	0.532
SBP(mHg)	133.2±15.2	132.6±20.6	136.1±17.5	0.761
DBP(mHg)	78.8±16	79.1±23.8	79.7±9.3	0.932
biochemical				
Na(mg/dl)	140.3±4.7	140.8±9.6	140.9±2.6	0.95
P(mg/dl)	4.5±1	4.5±1.1	4.4±1.3	0.308
K(mg/dl)	4.2±0.5	4.2±0.7	4.4±0.8	0.523
Ca(mg/dl)	8.3±1.6	7.8±1.6**	8.7±1.3	0.082
Alb(gr/dL)	3.7±0.5	3.6±0.5	3.5±0.65	0.489
BUN(mg/dl)	44.3±13.3	44.4±28.3	36.9±14.6	0.094
Crea(mg/dl)	5.2±2.2	4.1±2.3	3.6±1.8	0.008
GFR(ml/min)	18.4±10.6	23.8±12.2	24.7±13.8	0.038
Dietary intake				
Vegetable(gr/day)	68 ±12.8	70.4 ±13	66.5 ±18	0.602
Dairy food(gr/day)	41 ±13	39 ±9.4	36.5 ±12.8	0.338
Meat(gr/day)	84.7±16	86.3 ±13	77 ±20.2	0.169
Fruit(gr/day)	77.6±15	83 ±16.8	77.2 ±21	0.123
Grains(gr/day)	39.5±7.8	38 ±5.4	36.3 ±9.7	0.308
Others(gr/day)	426±142	501 ±314	466 ±279.2	0.654
energy(kcal/day)	1864±587.3	1904 ±402	2203 ±668	0.067
Fat percent(%/E)	38.4±9	38.3 ±8.4	35.6 ±10	0.387
CHO.percent(%/E)	53.5±9	50.2 ±8	54.7 ±17	0.26
PRO.percent(%/E)	10.9±2.5	11 ±2	12 ±2.4	0.235

Data are showed as mean±standard deviation. The One Way ANOVA(for age, daily intake vegetable, dairy food and meats, daily intake of fruits, grains and other group, total energy, fat percent of energy, carbohydrate.
percent and protein percent, blood concentrations of Albumin, calcium and potassium) Kruskal-Wallis H test(BMI, GFR, Systolic and Diastolic Blood Pressure, Blood concentration of Calcium, Potassium, BUN, Creatinine) and Chi-square test for Sex, diabetes and Hypertension status was used.

Table 3 shows that mean of daily energy, calcium blood concentration and GFR increased significantly (P<0.05) across the tertiles of NAE index. Intake of dairy foods and vegetables, Protein and carbohydrate percent, age, BMI, SBP and GFR increased across the tertiles, although not significantly; but intake of fruit and meats, fat percent, DBP, BUN and Creatinine decreased.

Table 3: Characteristic of CKD patients based on tertiles of NAE

Data are showed as mean±standard deviation. The One Way ANOVA (for age, daily intake vegetable, dairy food and meats, daily intake of fruits, grains and other group, total energy, fat percent of energy, carbohydrate percent and protein percent, blood concentrations of Albumin, calcium and potassium) Kruskal-Wallis H test(BMI, GFR, Systolic and Diastolic Blood Pressure, Blood concentration of Calcium, Potassium, BUN, Creatinine) and Chi-square test for Sex, diabetes and Hypertension status was used.

According to table 4, based on crude model, mean difference of GFR in T2 and T3 of PRAL index was significant lower (P<0.01) compared to T1 group. In model II adjustment, T2 group of NAE compared to T1, had significant higher GFR (P<0.05). Mean difference of GFR did not significant across Tertiles of NEAP index (crude or adjustment models).

Table 4: Mean Difference (M.D) of GFR across of tertiles of PRAL, NEAP and NAE in CKD patients

variable	tertile	T2	T3						
	Adjust model	M.D	P	95%CI	M.D	P	95%CI		
GFR NAE	crude®	4.8	0.237	-3.25	-12.9	7.64	0.092	-1.27	16.5
	Model I	1.1	0.837	-9.2	-11.3	-16.33	0.431	-57	24.8
	Model II	17.9	0.031	1.65	-34	-43.7	0.304	-128.3	40.8
PRAL	crude	-12.72	0.003	-20.95	-4.49	-14.04	0.002	-22.56	-5.5
	Model I	-24.13	0.132	-55.7	-7.5	-4.3	0.596	-20.4	11.8
	Model II	-11.04	0.337	-33.8	-11.8	30.87	0.394	-41	102.8
NEAP	crude	1.09	0.783	-6.79	-8.9	-0.46	0.917	-9.23	8.34
	Model I	4.8	0.597	-12.4	-21.4	10.6	0.351	-12	23.2
	Model II	-6.8	0.619	-30.5	-18.3	30.7	0.136	-9.9	71.2
tertile	T1	T2	T3	P-value					
-----------------	-------------	-------------	-------------	---------					
variable	(38.58-54.51)	(54.83-60.22)	(38.58-94.75)						
Demographic & blood pressure									
Age(y)	56.7±19	58.7±11.2	64.4±13.5*	0.124					
BMI(kg/m^2)	24±4.7	25.2±4.2	27.5±6	0.058					
Sex(M/F)	12(18)	17(13)	14(16)	0.429					
Diabetes=yes/no	6(24)	8(21)	13(17)	0.124					
Hypertension=yes/no	18(12)	22(8)	20(10)	0.532					
SBP(mHg)	133.4±17.3	132.3±16.4	136.3±20	0.65					
DBP(mHg)	79.4±17.2	81.5±18.2	76.7±16.5	0.443					
Biochemical									
Na(mg/dl)	140.3±3.6	141.6±4	140.2±3	0.109					
P(mg/dl)	4.2±1	4.6±1.3	4.3±1.2	0.282					
K(mg/dl)	4.2±0.6	4.1±0.6**	4.5±0.7*	0.052					
Ca(mg/dl)	7.7±1.8	8.6±1.4*	8.3±1.5*	0.016					
Alb(gr/dL)	3.7±0.5	3.5±0.7	3.6±0.4	0.257					
BUN(mg/dl)	43.1±25.8	44±18	38.4±14.9	0.375					
Crea(mg/dl)	4.5±2.1	4.7±2.7	3.7±1.7	0.279					
GFR(ml/min)	18.7±9.3	21.9±13	26.3±13.8	0.034					
Dietary intake									
Vegetable(gr/day)	71.7±13.5	66.3±13	67.2±17	0.312					
Dairy food(gr/day)	43 ±9.7	37 ±11.4	39 ±12	0.065					
Meat(gr/day)	87±11.6	81.3±18	80±20	0.238					
Fruit(gr/day)	81.5±14	81 ±8.7	75.8±20	0.390					
Grains(gr/day)	38.7±8	36.7±8.5	38.3±7	0.706					
Others(gr/day)	510±330	476±258	405.6±128	0.508					
energy(kcal/day)	1866±563.5	1838±233	2267±730	0.032					
Fat percent(%/E)	36.7±9	38.7±9	37±9.5	0.465					
CHO.percent(%/E)	50.3±10.3	51±6.6	57±16	0.171					
PRO.percent(%/E)	10.7±2.3	11.2±2	12.2±2.6	0.069					
Analysis was based on univariate general linear model (ANCOVA). First tertile was considered as reference tertile. M.D: Mean Difference, CI: Confidence Interval, Model I: adjusted for age and daily intake of energy, Model II: additional adjustment for gender, body mass index, diabetes and hypertension status.

According to the data of Table-5, in model I of adjustment, mean difference of creatinine in T₃ group compared to T₁ group of NEAP and NAE indexes was significant (P<0.01). That means by adjusting the confounders, the mean creatinine concentration in T₃ of NAE was significantly higher than the T₁. In the case of NAP, it was just the opposite; As the creatinine concentration decreased significantly across tertiles of NEAP (negative correlation). In crude model, mean difference of creatinine in T₃ group compared to T₁ group based on NEAP index was negatively significant (P<0.01). There was no significant difference in the model II adjustment of confounders.

Table 5: Mean Difference (M.D) of Creatinine across tertiles of PRAL, NEAP and NAE in CKD patients

variable	tertile	Adjust model	M.D	P	95% CI	M.D	P	95% CI
GFR NAE	T2	crude	0.834	0.035	0.105 - 2.87	-0.65	0.41	-2.2 - 0.91
		Model I	2.25	0.014	0.47 - 4.02	10.6	0.004	3.5 - 17.7
		Model II	0.037	0.971	-1.97 - 2.05	3.15	0.265	-2.45 - 8.7
PRAL	T2	crude	0.039	0.955	-1.33 - 1.4	1.32	0.146	-0.47 - 3.1
		Model I	7.44	0.009	1.97 - 12.9	-1.7	0.229	-4.5 - 1.1
		Model II	0.141	0.958	-5.26 - 5.5	-1.3	0.607	-6.4 - 3.8
NEAP	T2	crude	-1.5	0.028	-2.86 - 0.17	-2.3	0.003	-3.8 - 0.82
		Model I	-2.46	0.097	-5.4 - 0.46	-5.44	0.007	-9.35 - 1.52
		Model II	0.284	0.919	-5.3 - 5.85	-2.3	0.082	-4.9 - 0.31

Analysis was based on univariate general linear model (ANCOVA). First tertile was considered as reference tertile. M.D: Mean Difference, CI: Confidence Interval, Model I: adjusted for age and daily intake of energy, Model II: additional adjustment for gender, body mass index, diabetes and hypertension status.

Discussion

The Iranian diet is thought to be relatively acidic due to its high consumption of refined grains such as white rice and non-alcoholic beverages (18). This type of conception was partially confirmed in our study because the values of the PRAL and NAE indices were inclined towards completely positive and acidic values. Of course, the average NAP values indicate the alkalinity of the diet of our patients. It should be noted that the PRAL index, despite its significant limitations, unlike the NEAP index, takes into account the amounts of potassium, magnesium and calcium in the diet. These ions play role in preventing acidification of the blood (24-26); Therefore, it seems that PRAL is more accurate. In Tehran Lipid and Glucose Study (16), mean of PRAL in
subgroup CKD patients was -19.46±1.5mEq/day; Indicates that the diet of Tehranian CKD patients was alkaline. In other study (27), mean value of NEAP of CKD patients was 50.1±13.1mEq/day. In Brazilian study (28), the median value of PRAL was 6.8 mEq/day and of NEAP was 53.1 mEq/day for CKD patients. In African American CKD patient (15), Median estimated NEAP was estimated 71 mEq/d. Another study (29) showed that median value of estimated DAL, is 47.24 mEq/d. The study among Venezuelan CKD children (30) indicated that mean of PRAL is 16 ± 10.7 mEq/day. In study of American CKD patients (31) mean NEAP, PRAL, and NAE were 58.2 ± 24.3, 9.7 ± 18.4, and 32.1 ± 19.8 mEq/day, respectively. Despite all studies were on CKD patients, differences in the results of these studies can be attributed to differences in population food patterns, age groups, designs and number of participants, measuring methods and food intake estimating method and variation in confounder variables.

Today's, due to the industrialization of the food production process and easier access to food and changing the people's tastes, consumption of refined carbohydrate-based foods, high sodium and protein foods, especially animal proteins has increased, while our ancestors ate plant-based foods and high fiber and potassium (32). This transition has changed very rapidly over the past decades. In patients with chronic renal failure due to the inability of the renal tubules to excrete toxic acidic metabolic products (15), the metabolic disorders resulting from this nutritional transition are exacerbated.

In our study, daily intake of energy and protein percent of energy in T₃ group of PRAL index were significant more than T₁; Also, the mean of daily energy intake increased significantly across the tertiles of NAE index. Other studies reported similar results (32). Eating protein-rich foods can increase the body's pool of amino acids and ultimately lead to an increase the free hydrogen ions in the body, which can lower the pH of the blood to an acidic state. It is also important to pay attention to the type of consumed protein. Protein from animal sources has high biological availability and is also high in phosphorus. The exception in animal sources is milk and dairy products, that the effect of high phosphorus, is neutralized by its high calcium content. In plant foods, phosphorus is mostly in the phytate form, which has low biological availability, so the acidifying effect of phosphorus in plant sources is greatly reduced (24-26). In addition, animal proteins are high in sulfur-containing amino acids, methionine and cysteine, which are converted to sulfuric acid in the body, so animal foods can increase the acidic load of body fluids through this physiological mechanism. Conversely, plant-based protein contains glutamine, Which is mostly known in the body as a consumer and recipient of hydrogen ions, so this is another mechanism for the positive effects of plant foods in improving acid–base balance in the body (24, 33). Vegetables are also high in potassium, which binds to organic anions and converts them to bicarbonate, thus slowing down the production of endogenous acid compared to animal foods (34). In the countries with nutritional transition, including Iran, is estimated that the share of animal protein is more than vegetable protein in diet and even this ratio is twice (35); From this point of view, a good outlook is not predictable.

In our study, mean of GFR increased significantly across the tertiles of NAE and NEAP indexes; This relationship seems irrational; But this significance was lost in general linear model test, and it is interesting that based on Crude General linear model, the higher tertiles of PRAL compared to first tertile had significant lower GFR. This difference was not significant in adjustment models; But, the third tertile of PRAL had less GFR than the first tertile. correlation of creatinine concentration with DAL was not seen after in crude model; After adjusting, the mean creatinine concentration in T₃ group of NAE was significantly higher than the T₁; In the
case of NAP, it was just the opposite; As the creatinine concentration decreased significantly across tertiles of NEAP (negative correlation). Other studies have shown that increasing the acid load of the diet is associated with low GFR and more reduction of it over the time and high Creatinine concentration (15, 27 and 36). A systematic review and meta-analysis of observational studies found that higher DAL could significantly increase the risk of CKD (37). Some cohort studies with follow-up periods of more than 10 years have shown the correlation of a high DAL with increased risk of progressing CKD (11, 20). Of course, some other cohort studies (38, 39) found no association between DAL and CKD disease. In one interventional study (40), effect of fruits and vegetables or bicarbonate in attenuation of kidney injury was concluded. The mechanisms of the effect of dietary acid load on the development of renal dysfunction can include: First, acidosis caused by high dietary acid load can increase amount of ammonium ions in kidney tissue without reducing bicarbonate levels, but can lead to toxic effects and damage to the tissue of the renal tubules, which in the long term reduces the function of the nephrons. This type of metabolic acidosis can also lead to increased production of endothelin, which reduces GFR and exacerbates renal tubular tissue damage. The second possible mechanism is increased production of oxygen free radicals and oxidative stress, which can lead to nephrotoxicity (41-44).

This is one of the limitations of studies such as our study that PRAL and NEAP estimating formulas is used to calculate the acidity, because these formulas do not account the biological availability of nutrients and sulfur content of different protein foods (46).

Conclusion

Finally, it can be said that indexes of dietary acid load include the PRAL, NEAP and NAE are related to renal function indices, but to understand the cause-and-effect relationships;

Because, while the validity of dietary acid load values calculated by PRAL formula versus it’s measured vale from urine has been confirmed (47, 48), due to the limited interpretation of the results obtained from the formulas for estimating the dietary acid load in different situations of urinary pH and blood bicarbonate concentration (28), long-term study with more and more population and taking into account blood bicarbonate concentration and urinary pH is proposed.

Declarations

Authors’ contributions

Research idea and study design: BE KOOR; data acquisition: MNJ, AM, YKH and PPA; data exploration: BE KOOR, MNJ, AM, YKH and PPA; statistical analysis and interpretation: Ali M and BE KOOR; Draft of manuscript: BE KOOR and Ali M. All authors read and approved the final manuscript.

Ethics approval and consent to participate:

The protocol of this study was reviewed and approved by the Ethics Committee of Yasuj University of Medical Sciences (Ethical code: IR.YUMS.REC.1396.29)). Written informed consent was obtained from participants. The study adhered to the tenets of the Declaration of Helsinki.

Funding
This research was funded by Yasuj University of Medical Sciences, Yasuj, IRAN.

Competing interests

There are no competing interests

Consent for publication

Not applicable

Availability of data and materials

The analysis dataset for the current study is available from the corresponding author on reasonable request.

Acknowledgements

We acknowledge Yasuj university of medical science for support and special thanks from CKD patients referred to Shahid Beheshi Hospital, Yasuj, Iran.

References

1. Banerjee T, Tucker K, Griswold M, Wyatt SB, Harman J, Young B, et al. Dietary Potential Renal Acid Load and Risk of Albuminuria and Reduced Kidney Function in the Jackson Heart Study. Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation. 2018;28(4):251-8.

2. Bello AK, Ronksley PE, Tangri N, Kurzawa J, Osman MA, Singer A, et al. Prevalence and Demographics of CKD in Canadian Primary Care Practices: A Cross-sectional Study. Kidney international reports. 2019;4(4):561-70.

3. Wang F, He K, Wang J, Zhao MH, Li Y, Zhang L, et al. Prevalence and Risk Factors for CKD: A Comparison Between the Adult Populations in China and the United States. Kidney international reports. 2018;3(5):1135-43.

4. Tatapudi RR, Rentala S, Gullipalli P, Komaraju AL, Singh AK, Tatapudi VS, et al. High Prevalence of CKD of Unknown Etiology in Uddanam, India. Kidney international reports. 2019;4(3):380-9.

5. Ayodele OE, Alebiosu CO. Burden of chronic kidney disease: an international perspective. Advances in chronic kidney disease. 2010;17(3):215-24.

6. Tsai YC, Chiu YW, Tsai JC, Kuo HT, Hung CC, Hwang SJ, et al. Association of fluid overload with cardiovascular morbidity and all-cause mortality in stages 4 and 5 CKD. Clinical journal of the American Society of Nephrology : CJASN. 2015;10(1):39-46.

7. Erickson KF, Lea J, McClellan WM. Interaction between GFR and risk factors for morbidity and mortality in African Americans with CKD. Clinical journal of the American Society of Nephrology : CJASN. 2013;8(1):75-81.
8. Tuot DS, Lin F, Norris K, Gassman J, Smogorzewski M, Ku E. Depressive Symptoms Associate With Race and All-Cause Mortality in Patients With CKD. Kidney international reports. 2019;4(2):222-30.

9. Kshirsagar AV, Grubbs V. Periodontal Disease and CKD-Associated Morbidity: Is There Now Enough Evidence to Move From Observation to Intervention? American journal of kidney diseases : the official journal of the National Kidney Foundation. 2015;66(2):181-3.

10. Staff PO. Correction: Pulmonary hypertension: epidemiology in different CKD stages and its association with cardiovascular morbidity. PloS one. 2015;10(3):e0119787.

11. Banerjee T, Crews DC, Wesson DE, Tilea AM, Saran R, Rios-Burrows N, et al. High Dietary Acid Load Predicts ESRD among Adults with CKD. Journal of the American Society of Nephrology : JASN. 2015;26(7):1693-700.

12. Hoefield RA, Kalra PA, Baker P, Lane B, New JP, O'Donoghue DJ, et al. Factors associated with kidney disease progression and mortality in a referred CKD population. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2010;56(6):1072-81.

13. Crews DC, Banerjee T, Wesson DE, Morgenstern H, Saran R, Burrows NR, et al. Race/Ethnicity, Dietary Acid Load, and Risk of End-Stage Renal Disease among US Adults with Chronic Kidney Disease. American journal of nephrology. 2018;47(3):174-81.

14. Bahadoran Z, Mirmiran P, Khosravi H, Azizi F. Associations between Dietary Acid-Base Load and Cardiometabolic Risk Factors in Adults: The Tehran Lipid and Glucose Study. Endocrinology and metabolism. 2015;30(2):201-7.

15. Scialla JJ, Appel LJ, Astor BC, Miller ER, 3rd, Beddhu S, Woodward M, et al. Estimated net endogenous acid production and serum bicarbonate in African Americans with chronic kidney disease. Clinical journal of the American Society of Nephrology : CJASN. 2011;6(7):1526-32.

16. Moghadam SK, Bahadoran Z, Mirmiran P, Tohidi M, Azizi F. Association between Dietary Acid Load and Insulin Resistance: Tehran Lipid and Glucose Study. Preventive nutrition and food science. 2016;21(2):104-9.

17. Remer T, Dimitriou T, Manz F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am J Clin Nutr. 2003;77(5):1255-1260. doi:10.1093/ajcn/77.5.1255

18. Azadbakht L, Mirmiran P, Hosseini F, Azizi F. Diet quality status of most Tehranian adults needs improvement. Asia Pacific journal of clinical nutrition. 2005;14(2):163-8.

19. Mirmiran P, Yuzbashian E, Bahadoran Z, Asghari G, Azizi F. Dietary Acid-Base Load and Risk of Chronic Kidney Disease in Adults: Tehran Lipid and Glucose Study. Iran J kidney Dis. 2016;10(3):119-25.

20. Rebholz CM, Coresh J, Grams ME, Steffen LM, Anderson CA, Appel LJ, et al. Dietary Acid Load and Incident Chronic Kidney Disease: Results from the ARIC Study. Am J Nephrol. 2015;42(6):427-35.

21. Mosteller R. Simplified calculation of body-surface area. N. Eng J .Med1987;317:1098.
22. Cemin R, Foco L, Zoccali C, De Caterina R. Should We Continue Assessing Glomerular Filtration Rate with the Cockroft-Gault Formula in NOAC-Treated Patients? The Magnitude of the Problem. J Clin Med. 2020;9(6).

23. AKIROV, Amit, et al. Low albumin levels are associated with mortality risk in hospitalized patients. The American journal of medicine, 2017, 130.12: 1465. e11-1465. e19.

24. Passey, Caroline. Reducing the Dietary Acid Load: How a More Alkaline Diet Benefits Patients With Chronic Kidney Disease. J Ren Nutr. 2017;27(3):151 - 160

25. Sharon M. Moe, Miriam P. Zidehsarai, Mary A. Chambers and et al. Vegetarian Compared with Meat Dietary Protein Source and Phosphorus Homeostasis in Chronic Kidney Disease. Clin J Am Soc Nephrol. 2011;6(2):257-264; DOI:10.2215/CJN.05040610

26. Noori N, Sims JJ, Kopple JD, et al. Organic and inorganic dietary phosphorus and its management in chronic kidney disease. Iran J Kidney Dis. 2010;4(2):89-100.

27. Toba, K., Hosojima, M., Kabasawa, H., Kuwahara, S., Murayama, T., Yamamoto-Kabasawa, K., Kaseda, R., Wada, E., Watanabe, R., Tanabe, N., Suzuki, Y., Narita, I., & Saito, A. Higher estimated net endogenous acid production with lower intake of fruits and vegetables based on a dietary survey is associated with the progression of chronic kidney disease. BMC Nephrology. 2019: 20.

28. Angeloco LRN, Arces de Souza GC, Romão EA, Frassetto L, Chiarello PG. Association of dietary acid load with serum bicarbonate in chronic kidney disease (CKD) patients. Eur J Clin Nutr. 2020;74(Suppl 1):69-75. doi:10.1038/s41430-020-0689-1

29. Tanushree Banerjee, Deidra C. Crews, Donald E. Wesson, Anca M. Tilea, Rajiv Saran, Nilka Rios-Burrows, Desmond E. Williams, Neil R. Powe. High Dietary Acid Load Predicts ESRD among Adults with CKD. JASN Jul 2015, 26(7)1693-1700; DOI:10.1681/ASN.2014040332

30. López, M., Moreno, G., Lugo, G. et al. Dietary acid load in children with chronic kidney disease. Eur J Clin Nutr. 2020;74: 57–62. https://doi.org/10.1038/s41430-020-0687-3

31. Halil O. Ikizler, Leila Zelnick, John Ruzinski and et al. Dietary Acid Load is Associated With Serum Bicarbonate but not Insulin Sensitivity in Chronic Kidney Disease, Journal of Renal Nutrition. 2016, 26(2):93-102

32. Seba stian A, Frassetto LA, Sellmeyer DE, Merriam RL, Morris RC Jr. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am J Clin Nutr. 2002;76:1308–16.

33. Adeva, María M. et al. Diet-induced metabolic acidosis. Cl Nutri. 2011;30(4): 416 - 421

34. Phisitkul S, Khanna A, Simoni J, et al. Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int. 2010;77:617-23.

35. Yuzbashian E, Asghari G, Mirmiran P, Hosseini FS, Azizi F. Associations of dietary macronutrients with glomerular filtration rate and kidney dysfunction: Tehran lipid and glucose study. J Nephrol. 2015;28:173-80.
36. Haghighatdoost F, Najafabadi MM, Bellissimo N, Azadbakht L. Association of dietary acid load with cardiovascular disease risk factors in patients with diabetic nephropathy. *Nutrition*. 2015;31(5):697-702. doi:10.1016/j.nut.2014.11.012

37. Mofrad MD, Daneshzad E, Azadbakht L. Dietary acid load, kidney function and risk of chronic kidney disease: A systematic review and meta-analysis of observational studies. *Int J Vitam Nutr Res*. 2021;91(3-4):343-355. doi:10.1024/0300-9831/a000584

38. Banerjee, T., Crews, D.C., Wesson, D.E., et al. Dietary acid load and chronic kidney disease among adults in the United States. *BMC Nephrol*. 2014; 15(1): 137

39. Scialla, J.J., Asplin, J., Dobre, M., et al. Higher net acid excretion is associated with a lower risk of kidney disease progression in patients with diabetes. *Kidney Int*. 2017;91(1): 204–15.

40. Goraya, N., Simoni, J., Jo, C., & Wesson, D.E. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. *Kidney Int*. 2012;81(1): 86–93.

41. Banerjee, T., Crews, D.C., Wesson, D.E., et al. High dietary acid load predicts ESRD among adults with CKD. *J Am Soc Nephrol*. 2015;26(7):1693–700.

42. Nath KA, Hostetter MK, Hostetter TH. Increased ammoniagenesis as a determinant of progressive renal injury. *Am J Kidney Dis*. 1991;17:654-7.

43. Nath KA, Hostetter MK, Hostetter TH. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. *J Clin Invest*. 1985;76:667-75.

44. Atkins JL. Effect of sodium bicarbonate preloading on ischemic renal failure. *Nephron*. 1986;44:70-4.

45. Katholi RE, Woods WT, Jr., Taylor GJ, et al. Oxygen free radicals and contrast nephropathy. *Am J Kidney Dis*. 1998;32:64-71.

46. Scialla JJ, Anderson CA. Dietary acid load: a novel nutritional target in chronic kidney disease? *Adv Chronic Kidney Dis*. 2013;20:141–9. https://doi.org/10.1053/j.ackd.2012.11.001.

47. Remer T & Manz F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. *Am J Clin Nutr*. 1994;59: 1356–1361.

48. Remer T, Dimitriou T & Manz F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. *Am J Clin Nutr*. 2003. 77; 1255–1260