Aims and Objectives: Dentures in the oral cavity may act as a reservoir of microorganisms, which may be related to systemic infections. The aim of this study was to investigate the nonoral pathogenic bacteria in the oral cavity of patients with removable dentures in Shiraz, Southern Iran.

Materials and Methods: The bacterial flora of saliva samples from 50 men and 50 women with removable dentures and 100 age- and sex-matched controls with normal dentate were compared using culture, Gram staining, and API20E Kit methods. All data were analyzed using SPSS software.

Results: Except for Enterobacter cloacae isolate \((P = 0.03)\), there was no significant difference between both groups for the presence of Escherichia coli, Klebsiella pneumoniae, nonfermenting Gram-negative bacilli, Raoultella ornithinolytica, Raoultella planticola, Kluyvera spp., and Enterobacter aerogenes. No significant correlation was noticed between age and presence of bacteria in the oral cavity. The Gram-negative rod bacteria were more in males, but the difference was not significant. When a total of Gram-negative rods were considered, there was a significant difference between case and control groups \((P = 0.004)\).

Conclusions: Based on our findings that nonoral pathogenic bacteria are detected from the saliva of the denture wearers, general and oral health measures in patients with removable dentures should be adopted to decrease the risk of cross infection.

Keywords: Dental prosthesis, Gram-negative bacilli, nonoral pathogenic bacteria, oral cavity, saliva

INTRODUCTION

The normal microbial population included bacteria and fungi in the human oral cavity is very diverse.\(^{[1]}\) Among all microbial strains, anaerobic Gram-negative bacteria and Streptococci (as Gram-positive bacteria) are the main types of human mouth’s normal flora. Any alterations in this normal population affect the oral health because these microorganisms have pivotal roles in inhibiting of colonization of pathogen microb anonymous.\(^{[1,2]}\)

Complete or partial dentures are used by adults and elderly peoples in response to different factors that affect tooth extraction.\(^{[3,4]}\) Dentures were shown to serve as a reservoir for oral bacteria and halitosis development that can be a concern for denture wearers.\(^{[5,6]}\) Use of removable dental prosthesis induces some changes in the oral microbial population. In certain cases, this situation leads to dental prosthetic- or denture-associated stomatitis.\(^{[7]}\)

Nonoral flora can cause diseases in patients who used contaminated denture or in technicians due to occupational hazards.\(^{[8]}\) In two reports, colonization of denture materials with Candida albicans was identified as etiological cause of denture-associated stomatitis (sore mouth), which affects 24%–75% of denture wearers.\(^{[9–11]}\)

Hence, new developments related to denture materials have been undertaken to decrease bacterial and yeast...
coli, and another nonfermenting bacilli (Enterobacteriaceae and nonfermenting) were significantly more visible in case group than the control group. There was no significant difference between both groups for the presence of other bacteria. For Gram-negative rods, a significant difference was visible between case and control groups ($P = 0.004$). *E. cloacae* and Gram-negative bacilli (*Enterobacteriaceae* and nonfermenting) were significantly more visible in case group than the control group. There was no significant correlation between age and presence of bacteria in the oral cavity ($P = 0.07$).

Table 1: Presence of nonoral pathogens in saliva of removable denture wearer and nondenture wearing control groups

Presence of bacteria	Denture wearer	Control group	P
Escherichia coli	1	0	0.999
Enterobacter cloacae	8	1	0.035
Klebsiella pneumoniae	2	3	0.999
Nonfermenting Gram-negative bacilli	4	1	0.212
Raoultella ornithinolytica	2	0	0.497
Raoultella planticola	1	1	0.999
Kluyvera spp.	3	0	0.246
Enterobacter aerogenes	0	1	0.999
Gram-negative bacilli (*Enterobacteriaceae* and nonfermenting Gram-negative bacilli)	21	7	0.004

Results

The frequency of detected bacteria in relation to age in different groups is presented in Table 1. Except for *Enterobacter cloacae* isolate ($P = 0.03$), there was no significant difference between both groups for the presence of other bacteria. For Gram-negative rods, a significant difference was visible between case and control groups ($P = 0.004$). *E. cloacae* and Gram-negative bacilli (*Enterobacteriaceae* and nonfermenting) were significantly more visible in case group than the control group. There was no significant correlation between age and presence of bacteria in the oral cavity ($P = 0.07$).
The Gram-negative rods were prevalent more in men than women but with no significant correlation between gender and presence of the nonoral pathogens ($P = 0.08$).

DISCUSSION

In the present study, the difference for microbial population in saliva samples between participants with removable dentures and the control group was compared revealing a variety of pathogens in removable dentures including *Escherichia coli*, *Klebsiella pneumoniae*, and *Enterobacter aerogenes*. *E. cloacae* and Gram-negative bacilli (*Enterobacteriaceae* and nonfermenting) were significantly more in case group than the control group. Potentially pathogenic bacteria, including Gram-negative bacilli of *Acinetobacter*, *Pseudomonas*, *Moraxella Micrococcus*, and *Alcaligenes* species were reported as sources of contamination in commercial dental laboratories.$^{[17,18]}$

The number of studies on denture plaque is lower than those performed on dental plaque with controversies on similarity of microbial flora. It was shown that Bifidobacteria were seen in denture plaque at the same level to those of carious lesions and *Bifidobacterium dentium* cannot be sustained in an edentulous mouth.$^{[19]}$

The presence of *Treponema denticola* and *Fusobacterium nucleatum* in edentulous area and the oral hygiene status of the mucosal or denture surfaces were demonstrated to affect the colonization by the bacteria.$^{[20]}$

A typical biofilm with morphology of columnar microcolonies surrounded by maxillary epithelial cells was previously reported during imaging.$^{[21]}$ Changes in the mouth condition in response to a denture can lead to lack of saliva accessibility and tongue-related mechanical cleaning.$^{[22,23]}$ In addition, dentures were shown to harbor a mixed species of bacterial biofilm.$^{[24,25]}$

Dentures can play significant roles in harboring of pathogens that cause inflammation pneumonia.$^{[26]}$ Some unusual microorganisms such as *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Haemophilus parainfluenzae*, *E. coli*, *K. pneumoniae*, *Proteus mirabilis*, *E. cloacae*, and *Pseudomonas aeruginosa* were shown to be isolated from dentures.$^{[27]}$

An increase in pneumonia was reported in individuals working in dental laboratories and exposed to latex aerosol.$^{[17]}$ Manipulation of *Mycoplasma pneumoniae* contaminated prostheses caused infection in 10 subjects working in dental prosthetic laboratories,$^{[28]}$ while all of these studies denote to the public importance of removable dentures.

The microbial strains which detected in implants and adjacent teeth at 10 years after implantation were periodontitis-related strains in 6.2%–78.4% of the implants. A significantly higher count was noted for *Tannerella forsythia*, *Parvimonas micra*, *F. nucleatum/necrophorum*, and *Campylobacter rectus* in implants than the other teeth. In comparison to whom with removable maxillary prosthesis, it was demonstrated that *C. albicans* was the most frequently isolated yeast species in both groups.$^{[29]}$

K. pneumoniae was found as the dominant bacterial species in cases wearing removable maxillary prosthesis with and without denture stomatitis lesions.$^{[30]}$ It was shown that the normal microbial population of oral cavity changed with increase in age due to immune system alteration and further colonization with nonoral bacterial species such as *Staphylococci* and *Enterobacteriaceae*.$^{[31,32]}$

In our study, *E. coli* was isolated just from one patient, and other Gram-negative rods were visible in remained denture wearing patients. Unusual oral cavity microorganisms have been previously isolated from dentures and were reported by other researchers.$^{[33-37]}$

Umeda et al. reported *Helicobacter pylori* in the oral cavity of a patient with periodontal pockets that existed even after extirpation of the bacterium from the stomach.$^{[38]}$

The tongue surface was also evaluated by some researchers. It was shown that 43% of the individuals had the microorganisms on the tongue dorsum, which was more prevalent in the age range of 40–50 years and who had not consumed cigarette. However, they could not find any correlations between detected species and the presence of dentures, indicating that tongue can act as an initial reservoir of the microorganisms. In the present study, different nonoral pathogens were noted in 21 cases and 7 controls. It seems that finding the source of these species in other parts of the body and indication of those site as a reservoir for denture infection must be addressed in future studies.$^{[11,35,39]}$

In the present study, there was no statistically significant difference for age and gender between patients and the control group. Similar results have been reported before by Agwu et al. in HIV-positive patients.$^{[3]}$ Our findings are in line with the above-mentioned study and indicated that wearing of removable dentures can be considered as a risk factor for colonization of different species of microbiota and with public health importance.

CONCLUSIONS

Based on the findings in the present study that nonoral pathogenic bacteria are detected from the saliva of the denture wearers, considering the possibility that the oral cavity may act as a potential origin of pathogenic species
that may cause infection in other body sites, general and oral health measures in patients with removable dentures should be adopted to decrease the risk of cross-infection.

ACKNOWLEDGMENT
We thank the Vice Chancellor of Shiraz University of Medical Sciences for the financial support of this research (Grant no. 98-01-21-8819-1).

FINANCIAL SUPPORT AND SPONSORSHIP
We thank the Vice Chancellor of Shiraz University of Medical Sciences for the financial support of this research (Grant no. 98-01-21-8819-1).

CONFLICTS OF INTEREST
There are no conflicts of interest.

REFERENCES
1. Samaranayake L, Matsubara VH. Normal oral flora and the oral ecosystem. Dent Clin North Am 2017;61:199-215.
2. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721-32.
3. Agwu E, Ihongbe JC, Ezeonwumelu JO, Lodhi MM. Baseline burden and antimicrobial susceptibility of pathogenic bacteria recovered from oral lesions of patients with HIV/AIDS in South-Western Uganda. Oral Sci Int 2015;12:59-66.
4. Khorshidi H, Moaddeli MR, Golkari A, Heidari H, Raooofi S. The prevalence of pathologic tooth migration with respect to the severity of periodontitis. J Int Soc Prev Community Dent 2016;6 Suppl 2:S122-5.
5. Wu T, He X, Lu H, Bradshaw DJ, Axe A, Loewy Z, et al. Development of in vitro denture biofilm models for halitosis related bacteria and their application in testing the efficacy of antimicrobial agents. Open Dent J 2015;9:125-31.
6. De Geest S, Laleman I, Teughels W, Dekeyser C, Quirynen M. The prevalence of pathologic tooth migration with respect to the severity of periodontitis. J Int Soc Prev Community Dent 2016;6 Suppl 2:S122-5.
7. Pinke KH, Freitas P, Viera NA, Honório HM, Porto VC, Lara VS. Decreased production of proinflammatory cytokines by monocytes from individuals presenting Candida-associated denture stomatitis. Cytokine 2016;77:145-51.
8. Agostinho AM, Miyoshi PR, Gnaotto N, Paranhos Hde F, Figueiredo LC, Salvador SL. Cross-contamination in the dental laboratory through the polishing procedure of complete dentures. Braz Dent J 2004;15:138-43.
9. Webb BC, Thomas CJ, Willcox MD, Harty DW, Knox KW. Candida-associated denture stomatitis. Aetiology and management: A review. Part 2. Oral diseases caused by Candida species. Aust Dent J 1998;43:160-6.
10. Barbeau J, Séguin J, Goulet JP, de Koninck L, Avon SL, Lelone B, et al. Reassessing the presence of Candida albicans in denture-related stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:51-9.
11. Moosazadeh M, Akbari M, Tabrizi R, Ghorbani A, Golkari A, Banakar M. Denture stomatitis and Candida albicans in Iranian population: A systematic review and meta-analysis. J Dent (Shiraz) 2016;17:3 Suppl:283-92.
12. Gendreau L, Loewy ZG. Epidemiology and etiology of denture stomatitis. J Prosthodont 2011;20:251-60.
13. Yarborough A, Cooper L, Duqum I, Mendoçia G, McGraw K, Stoner L. Evidence regarding the treatment of denture stomatitis. J Prosthodont 2016;25:288-301.
14. Sobolewska E, Frazczak B, Czarnomysy-Furówicz D, Eychmielewska H, Karakańska J. Bacteria adherence to the surface of various prosthetics materials. Ann Acad Med Stud 2007;53:68-71.
15. Le Bars P, Kouadio AA, N’goran JK, Badran Z, Souiedan A. Relationship between removable prosthesis and some systemic disorders. J Indian Prosthodont Soc 2015;15:292-9.
16. Przybylowska D, Mierzwinska-Nastalska E, Swoboda-Kopec E, Rubinitszajn R, Chazan R. Potential respiratory pathogens colonisation of the denture plaque of patients with chronic obstructive pulmonary disease. Gerodontology 2016;33:322-7.
17. Williams HN, Falkler WA Jr., Hasler JF, Libonati JP. The recovery and significance of nonoral opportunistic pathogenic bacteria in dental laboratory pumice. J Prosthet Dent 1985;54:725-30.
18. Nair VV, Karibasappa GN, Dodamani A, Prashanth VK. Microbial contamination of removable dental prosthesis at different interval of usage: An in vitro study. J Indian Prosthodont Soc 2016;16:346-51.
19. Mantzourani M, Gilbert SC, Fenlon M, Beighton D. Non-oral bifidobacteria and the acidicuric microbiota of the denture plaque biofilm. Mol Oral Microbiol 2010;25:190-9.
20. Yasui M, Ryu M, Sakurai K, Ishihara K. Colonisation of the oral cavity by periodontopathic bacteria in complete denture wearers. Gerodontology 2012;29:e494-502.
21. Verran J. Malodour in denture wearers: An ill-defined problem. Oral Dis 2005;11 Suppl 1:24-8.
22. Kobayashi K, Ryu M, Izumi S, Ueda T, Sakurai K. Effect of oral cleaning using mouthwash and a mouth moisturizing gel on bacterial number and moisture level of the tongue surface of older adults requiring nursing care. Geriatr Gerontol Int 2017;17:116-21.
23. Ghananjchi J, Kamali F, Moattari A, Poorsahidian S, Shahin E, Rezaadzeh F, et al. In vitro comparison of cytotoxic and antibacterial effects of 16 commercial toothpastes. J Int Oral Health 2015;7:39-43.
24. Koopmans AS, Kippu N, de Graaff J. Bacterial involvement in denture-induced stomatitis. J Dent Res 1988;67:1246-50.
25. Shi B, Wu T, McLean J, Edlund A, Young Y, He X, et al. The denture-associated oral microbiome in health and stomatitis. mSphere 2016;1. pii: e00215-16.
26. Daniluk T, Fiedoruk K, Sciepuk M, Zaremba ML, Rozkiewicz D, Cylwik-Rokicka D, et al. Aerobic bacteria in the oral cavity of patients with removable dentures. Adv Med Sci 2006;51 Suppl 1:86-90.
27. Goldberg S, Cardash H, Browning H 3rd, Sahly H, Rosenberg M. Isolation of Enterobacteriaceae from the mouth and potential association with malodor. J Dent Res 1997;76:1770-5.
28. Sande MA, Gadot F, Wenzel RP. Point source epidemic of Mycoplasma pneumoniae infection in a prosthodontics laboratory. Am Rev Respir Dis 1975;112:213-7.
29. Eick S, Ramseier CA, Rothenberger K, Brügger U, Buser D, Salvi GE. Microbiota at teeth and implants in partially edentulous patients. A 10-year retrospective study. Clin Oral Implants Res 2016;27:218-25.
30. Pereira CA, Toledo BC, Santos CT, Pereira Costa AC, Back-Brito GN, Kaminaegakura E, et al. Opportunistic microorganisms in individuals with lesions of denture stomatitis. Diagn Microbiol Infect Dis 2013;76:419-24.
31. Percival RS, Challacombe SJ, Marsh PD. Age-related microbiological changes in the salivary and plaque microflora of healthy adults. J Med Microbiol 1991;35:5-11.
32. Fure S. Five-year incidence of caries, salivary and microbial conditions in 60-, 70- and 80-year-old Swedish individuals. Caries Res 1998;32:166-74.
33. Sumi Y, Miura H, Michiwaki Y, Nagaoa S, Nagaya M. Colonization of dental plaque by respiratory pathogens in dependent elderly. Arch Gerontol Geriatr 2007;44:119-24.
34. Lamfon H, Al-Karaawi Z, McCullough M, Porter SR, Pratten J. Composition of in vitro denture plaque biofilms and susceptibility to antifungals. FEMS Microbiol Lett 2005;242:345-51.
35. O’Donnell LE, Smith K, Williams C, Nile CJ, Lappin DF, Bradshaw D, et al. Dentures are a reservoir for respiratory pathogens.
36. Sedghizadeh PP, Mahabady S, Allen CM. Opportunistic oral infections. Dent Clin North Am 2017;61:389-400.
37. Silva SS, Ribeiro MO, Gomes FI, Chaves HV, Silva AA, Zanin IC, et al. Occurrence and antimicrobial susceptibility of enteric rods and pseudomonads isolated from the dental prostheses biofilm. J Appl Oral Sci 2016;24:462-71.
38. Umeda M, Komatsubara H, Minamikawa T, Furudoi S, Shibuya Y, Yokoo S, et al. A questionnaire on requests for disclosure of diagnosis, self-choice of treatment, and second opinion of patients with oral cancer in Japan. J Palliat Care 2003;19:206-8.
39. Conti S, dos Santos SS, Koga-Ito CY, Jorge AO. Enterobacteriaceae and pseudomonadaceae on the dorsum of the human tongue. J Appl Oral Sci 2009;17:375-80.