Membrane Topology of the High-affinity L-Glutamate Transporter (GLAST-1) of the Central Nervous System

Stephan Wahle and Wilhelm Stoffel
Institute of Biochemistry I, Medical Faculty, University of Cologne, D-50931 Cologne, Germany

Abstract. The membrane topology of the high affinity, Na\(^+\)-coupled L-glutamate/L-aspartate transporter (GLAST-1) of the central nervous system has been determined. Truncated GLAST-1 cDNA constructs encoding protein fragments with an increasing number of hydrophobic regions were fused to a cDNA encoding a reporter peptide with two N-glycosylation sites. The respective cRNA chimeras were translated in vitro and in vivo in Xenopus oocytes. Posttranslational N-glycosylation of the two reporter consensus sites monitors the number, size, and orientation of membrane-spanning domains. The results of our experiments suggest a novel 10-transmembrane domain topology of GLAST-1, a representative of the L-glutamate neurotransmitter transporter family, with its NH\(_2\) and COOH termini on the cytoplasmic side, six NH\(_2\)-terminal hydrophobic transmembrane \(\alpha\)-helices, and four COOH-terminal short hydrophobic domains spanning the bilayer predicted as \(\beta\)-sheets.

L-Glutamate transporters are integral membrane glycoproteins. They are concentrated in the plasma membrane of glial cells and in nerve terminals surrounding the synaptic cleft, where they regulate the concentration of the excitatory neurotransmitter L-glutamate in the cleft of excitatory synapses (Flott and Seifert, 1991).

Two different families of neurotransmitter transporters have been identified. The Na\(^+\)/Cl\(^-\)-coupled GAT-1 transporter family includes the 3,-aminobutyrate transporter (Guastella et al., 1990), the noradrenaline (Pacholczyk et al., 1991), dopamine (Shimada, et al 1991), serotonin (Blakely et al., 1991), glycine (Smith et al., 1992), and L-proline transporters (Fremeau et al., 1992). They share a 12-membrane-spanning domain topology (Uhl, 1992) with the carriers of the Na\(^+\)-dependent glucose transporter (SGLT-1) family (Hediger et al., 1987).

The recently discovered Na\(^+\)-dependent L-glutamate transporter GLAST-1\(^1\) (Storck et al., 1992), GLT-1 (Pines et al., 1992), EAAC-1 (Kanai and Hediger, 1992), and EAAT-4, a Na\(^+\)/Cl\(^-\)-dependent member isolated by homology screening (Fairman et al., 1995), form a second family of excitatory neurotransmitter transporters in the central nervous system. They catalyze an electrogenic cotransport of L-glutamate and two or three Na\(^+\) ions coupled to the counterflow of one K\(^+\) and probably one OH\(^-\) ion (Bouvier et al., 1992; Klöckner et al., 1993, 1994; Kanai et al., 1995). The members of this family show an overall amino acid identity of about 50%. The L-glutamate transporters are neither related to the GAT-1 nor to the SGLT-1 transporter family but show significant similarities (27-37\%) to the neutral amino acid transporter ASCT-1 (Arizza et al., 1993) or SAAT (Shafqat et al., 1993), to the proton-coupled L-glutamate transporter proteins GLTP of Escherichia coli (Tolner et al., 1992b) and GLTT of Bacillus stearothermophilus (Tolner et al., 1992a), and to the C4-dicarboxylate carrier DCTA of Rhizobium meliloti (Engelke et al., 1989).

Three different transmembrane topology models of GLAST-1 (Storck et al., 1992), GLT-1 (Pines et al., 1992), and EAAC-1 (Kanai and Hediger, 1992) have been proposed, although the hydropathy plots are almost identical. In the NH\(_2\)-terminal half, they have six hydrophobic membrane-spanning \(\alpha\)-helices and an extended extracellular loop (extramembrane region 4 [EMR4]) between transmembrane domain 3 (TMD3) and 4 (TMD4) with two N-glycosylation sites in common. For GLAST-1, we have shown by peptide sequencing (Schulte and Stoffel, 1995) and site-directed mutagenesis (Conradt et al., 1995) that two out of three putative N-glycosylation sites at N206 and N216 are glycosylated. The membrane topology of the highly conserved COOH-terminal domain of about 150 residues has been discussed controversially on the basis of their ambiguous hydropathy plot.

Pivotal for understanding the structure–function relationship and the regulation of the L-glutamate transporter...
is the comprehensive knowledge of the membrane topology of these important transporters of excitatory neurotransmitters in the central nervous system. In the present study, we investigated the glutamate transporter topology by the “reporter glycosylation scanning” strategy. This direct biochemical method, which has been used successfully for topological mapping of polytopic KDEL-receptor (Singh et al., 1993), analyzes the glycosylation sensitivity of a topological neutral reporter epitope placed in positions to bracket the proposed transmembrane domains. This approach was complemented by the determination of the use of N-linked glycosylation sites introduced in the wild-type transporter and by immunofluorescent studies.

Our results with the GLAST-1 glutamate transporter demonstrate six membrane-spanning domains of most likely α-helical structure (TMD 1–6) in the NH2-terminal part of the protein and four shorter transmembrane segments (TMD 7–10) in the COOH-terminal part of the protein, with both termini residing on the cytoplasmic surface of the plasma membrane. We suggest that this novel 10-TMD topology might be common to the other members of the l-glutamate transporter family.

Materials and Methods

Construction of Undeleted and Deleted Fusion Proteins

The plasmid pSP64-GLAST (Storck et al., 1992) served as template in the creation of the fusion proteins. The Accl site in the multiple cloning site of pSP64-GLAST was eliminated by a SalI digestion, filling in reaction with Klenow enzyme and blunt-end religation with T4 ligase (Boehringer Mannheim Corp., Indianapolis, IN). The DNA fragment coding for the glycosylation reporter (D172-R228 of GLAST-1) was amplified in a PCR carrying in frame at the 5′-end a SacI and XhoI restriction site. The reporter fragment was cloned into the multiple cloning site of pSP64-GLAST-REP. Fusions of transporter fragments to the glycosylation reporter segment were achieved by replacing COOH-terminal domains of the full-length GLAST-1 cDNA in pSP64-GLAST-REP between a suitable 5′ restriction site and the XhoI site 3′ in front of the glycosylation reporter with PCR-generated DNA cassettes, coding for respective COOH-terminal parts of graded NH2-terminal stretches of the transporter. A NheI 5′ restriction site in the GLAST-1 gene was used for G-R385, G-E406, G-Q425, G-E501, G-M543. This resulted in the cDNA chimeras coding for AG-R385 (A345-354), AG-E406 (A389-397), AG-Q425 (A407-416), AG-E501 (A488-494), and AG-M543 (A488-494) (see Fig. 1 C). All constructs were characterized by restriction enzyme analysis and DNA sequencing.

Expression in Oocytes, Immunoprecipitations, and Glycosidase Treatment

Stage V–VI oocytes were defolliculated with collagenase and injected with 40 nl of cRNA of mutant GLAST-1 construct (0.5 mg/ml) (Storck et al., 1992). Oocytes were incubated in Barth’s modified saline containing [35S]methionine (2.5 mCi/ml) for 24 h. Deglycosylation with Endo F and immunoprecipitation with polyclonal GLAST-1 antibody was performed as previously described (Conradt et al., 1993). Translation products were analyzed by SDS-PAGE (Laemmli, 1970) followed by autoradiography (Laskey and Mills, 1975).
Electrophysiology

Electrogenic transport was assayed by voltage clamp using the two electrode voltage clamp amplifier (Warner Instruments Corp., Hamden, CT; hardware and software package ISO2 from MFK, Frankfurt, Germany). Briefly, oocytes were voltage clamped at ~90 mV and continuously superfused with Barth’s modified saline. Microelectrodes filled with 3 M KCl had a resistance ranging from 1–2 MΩ.

Immunofluorescence Microscopy

Preparation of oocyte frozen thin sections and immunofluorescence microscopy on the fusion proteins and mutant transporters were carried out as described previously (Conradt and Stoffel, 1995).

For immunofluorescence on HEK293 cells, permanently expressing GLAST-1 (Blau and Stoffel, 1995) cells were grown on coverslips, rinsed with PBS, fixed with 2% paraformaldehyde in PBS for 15 min at room temperature (RT), permeabilized with 0.25% Triton X-100 in PBS for 5 min at RT, blocked with 5% BSA in PBS for 1 h at RT, incubated with primary antibodies in PBS containing 2% BSA for 3 h at RT, incubated with secondary antibody in PBS containing 2% BSA, and then mounted with use of glycerol gelatine (Merck, Darmstadt, Germany).

The primary antibodies were affinity-purified rabbit anti–GLAST-1 antibody (Storck et al., 1992), monoclonal mouse anti-α-tubulin antibody (Sigma Chemical Co., St. Louis, MO), and polyclonal rabbit anti–γ24-40 antibody. Secondary antibodies were FITC-conjugated goat anti-rabbit/anti-mouse IgG and Cy3-conjugated sheep anti-rabbit IgG (Sigma Chemical Co.).

Stained cells and frozen thin sections of oocytes were visualized with a fluorescence microscope (Axioskop; Carl Zeiss, Inc., Thornwood, NY) equipped with fluorescein and Cy3 optics and photographed with a microscope camera (model MC 100; Carl Zeiss, Inc.).

Polyclonal Antipeptide Antibody

The synthetic peptide corresponding to the NH2-terminal residues 24–40 of rat GLAST-1 protein (KRTLAKKKVQNTK) was synthesized on a peptide synthesizer (model 433A; Applied Biosystems, Inc., Foster City, CA) following the manufacturer’s instructions. The peptide was characterized by reversed phase high performance liquid chromatography and sequencing. It was coupled to keyhole limpet hemocyanin (Sigma Chemical Co.) (Goodfriend et al., 1964). 400 μl protein–peptide conjugate in PBS (300 μg peptide) was emulsified with an equal volume of complete Freund’s adjuvant and injected intramuscularly in a New Zealand White rabbit. For booster immunizations (2-wk intervals), Freund’s incomplete adjuvant and half the amount of antigen were used. The rabbit was bled 2 wk after the first immunization.

The antibody was characterized against a purified preparation of GLAST-1 protein (Western blot) and chimeric protein G-E77 by immunoprecipitation. For affinity purification (Catty, 1988), the synthetic peptide was coupled to ethylaminohexyl Sepharose 4B (Pharmacia LKB Biotechnology, Piscataway, NJ). Ethylaminohexyl-Sepharose (30 μmol active amino groups) was incubated with 10 μg peptide and 90 μmol N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (Sigma Chemical Co.) in 6 ml 50% ethanol overnight at RT. The column material was rinsed three times with 50, 100, 50, and 20% ethanol, blocked with 0.2 M glycine, pH 8, for 2 h at RT and washed with PBS. 10 ml antiserum was recircled over the affinity column for 2 h. Unspecific bound proteins were disrupted by washing with 10 mM Tris-HCl, pH 7.5, 0.5 M NaCl. Specific antibodies were eluted with 0.2 M glycine-HCl, pH 2.5, neutralized with 1 M Tris-HCl, pH 8, and dialyzed against PBS for 3 d.

Results

Chimeras with a Glycosylation Reporter Probe the Sidedness of Membrane Integration of GLAST-1

Our goal was to identify which of the hydrophobic protein segments actually span the membrane (TMDs) and to determine the cellular orientation of the membrane-flanking EMRs. We mapped the luminal or cytoplasmic orientation of the intervening hydrophilic loops with an endogenous reporter of translocation. It was fused in frame to NH2-terminal parts of GLAST-1, truncating the transporter at various positions in the extramembrane regions (Fig. 1 B). This 57-residue N-glycosylation reporter was derived from the large extracellular hydrophilic loop of GLAST-1 (D172-R228), which contained the two genuine transporter N-glycosylation sites at N206 and N216 (Conradt et al., 1995; Schulte and Stoffel, 1995). This reporter sequence is considered to be devoid of any targeting information, which might interfere with its translocation across the membrane. The cRNAs of the chimera were expressed in the presence of [35S]methionine in vitro in reticulocyte lysates with rough microsomes and upon microinjection in Xenopus oocytes. The glycosylated

Figure 1. (A) Hydropathy plot of GLAST-1. The Kyte-Doolittle method with a window of 10 amino acids was applied. Six extended hydrophobic regions are located in the NH2-terminal part of GLAST-1 (M1-P345) corresponding to the predicted transmembrane domains TMD1–TMD6. At least seven short, moderately hydrophobic segments are indicated in the COOH-terminal part. (B) Schematic model of the GLAST-1 transporter. Endogenous N-glycosylation sites are indicated by “trees.” Boxes labeled with TMD denote topogenic hydrophobic regions as indicated by the present study. Identified hydrophilic EMRs are marked as EMR1–EMR11. The vertical lines below the solid heavy line indicate the COOH termini of NH2-terminal GLAST-1 fragments, to which the glycosylation reporter was fused. The vertical lines above indicate the positions of substituted amino acids introduced either to generate additional N-glycosylation sites in the primary sequence (T382V, N435A) or to insert the VSV extension peptide of 11 amino acids into GLAST-1 (EL389FV). (C) Schematic presentation of GLAST-1 deletion chimeras. Membrane-spanning regions are numbered and marked by empty squares. A 57-amino acid N-glycosylation reporter derived from ER4 of GLAST-1 was fused in frame to truncated GLAST-1 sequences. The deletion chimeras each lack the ultimate COOH-terminal transmembrane domain of the corresponding undeleted chimeras with identical fusion points.
translation products were immunoprecipitated and analyzed by SDS-PAGE and fluorography. The orientation of the polypeptides integrated into the ER membrane is inverted from that in the plasma membrane. Bi-antennary N-glycosylation of the reporter sequence proved by the mobility shift in SDS-PAGE after digestion with Endo F characterized chimeras with the reporter protruding into the lumen of the ER. This corresponds to an extracellular orientation of the attached hydrophilic region in the plasma membrane; the absence of reporter glycosylation is indicative of its intracellular orientation.

Topology of the Six Hydrophobic Segments of the NH2-Terminal Domain

The hydropathy plot of GLAST-1 (Fig. 1A) clearly subdivides the protein into two large domains. In contrast to the extended moderately hydrophobic stretch (amino acids 345-500) near the COOH terminus of the transporter, the NH2-terminal domain of nearly 345 amino acids has six distinct hydrophobic domains 20 to 23 residues in length (TMD1-TMD6 in Fig. 1B), bordered by charged residues. They have been previously predicted to form transmembrane α-helices. They are connected by six hydrophilic extramembrane regions (EMR2-EMR7), to each of which the N-glycosylation reporter was fused at positions indicated in Fig. 1B. Corresponding results were obtained in both expression systems. N-glycosylation was detected only of the reporters linked to residues E77, P233, and Q313. Chimera G-E77, truncating the transporter sequence at E77 in EMR2, yielded a bi-antennary glycosylated polypeptide as evidenced by the 6-kD mobility shift after Endo F treatment (Fig. 2A, lane 1-4). Fusion proteins G-P233 and G-Q313 tagging EMR4 and EMR6 (Fig. 2A, lane 9-12; Fig. 2B, lane 5-8) were fourfold glycosylated, twice at the reporter and at both genuine GLAST-1 glycosylation sites (N206 and N216). When digested with Endo F, protein size decreased for ~12 kD. On the other hand, N-glycosylation was not observed for reporters fused to EMR3, EMR5, or EMR7. The apparent molecular mass of chimera G-R122 (Fig. 2A, lane 5-8) remained unchanged after enzymatic deglycosylation. The predominant translation product of chimeras G-S273 (Fig. 2B, lane 1-4) and G-N344 (Fig. 2B, lane 9-12) exhibited only a 6-kD mobility shift and were thus only twofold glycosylated at genuine GLAST-1 consensus sites. In the case of in vitro-expressed G-S273, an insignificant amount of three- and fourfold glycosylated polypeptides is visible (both upper bands in Fig. 2B, lane 1). A phenomenon we observed for most of the in vitro translations performed in this study was the appearance of a signal representing unglycosylated and thus unprocessed protein. This is almost absent in the oocyte experiments. Furthermore, all six fusion proteins were found to be integrated into the lipid bilayer of microsomal membranes by the criterion of nonextractability with sodium carbonate at alkaline pH (Fujiki et al., 1982; Russe1 and Model, 1982) (data not shown).

We conclude from these results that the hydrophilic sequences EMR2, EMR4, and EMR6 are exposed to the extracellular, EMR3, EMR5, and EMR7 to the cytosolic surface of the plasma membrane. Each of the hydrophobic segments in the NH2-terminal part of GLAST-1 is sandwiched between an extracellular and intracellular region indicating six TMDs. TMD1, TMD3, and TMD5 span the plasma membrane from the intracellular to the extracellular surface, and TMD2, TMD4, and TMD6 span with reverse orientation.

Membrane Topology of the Conserved COOH-Terminal Domain of GLAST-1

Previous models of three L-glutamate transporters have proposed two (GLT-1), four (EAAC-1), or six (GLAST-1) hydrophobic domains spanning the plasma membrane in the highly conserved COOH-terminal domain, albeit the hydropathy blot is too ambiguous for a reliable structure prediction. 12 additional reporter chimeras step-wise extended the NH2-terminal domain of GLAST-1 by 10–29...
amino acids, starting at amino acid Q354 near the COOH terminus of TMD6 up to M543 (see Fig. 1 B). When translated in both expression systems, chimeras G-E406 (Fig. 3 B, lanes 1–4), G-E501, G-I514, and G-M543 (Fig. 3 D, lanes 1–12) exhibited only a 6-kD mobility shift after Endo F treatment monitoring nonmodified reporter sites. We conclude that the short hydrophilic region around residue E406 (EMR9 in Fig. 1 B) as well as the highly charged COOH terminus of GLAST-1 (residues E501–M543; EMR11 in Fig. 1 B) are exposed on the cytoplasmic side of the ER or plasma membrane.

Unexpectedly, in vitro and in vivo translation of chimeras G-Q354, G-T368, G-R385, (Fig. 3 A, lanes 1–12), G-Q425, G-T434 (Fig. 3 B, lanes 5–12), G-Q445, G-D464, and G-D487 (Fig. 3 C, lanes 1–12) generated two differently glycosylated polypeptides of approximately equal intensity in autoradiography. Endo F reduced their apparent molecular mass by roughly 12 and 6 kD and resulted in a single band of deglycosylation product. The weak signals in the in vitro translations of G-T368 and G-R385 (Fig. 3 A, lanes 5 and 9) represent trace amounts of one- and three-fold glycosylated polypeptides. However, these results indicated that the reporter of nearly one half (40–55%) of each expressed chimeric protein was fully glycosylated, yielding a tetra-antennary glycoprotein with the COOH-terminal reporter protruding into the lumen of the ER (upper band in Fig. 3, A and C, lanes 1, 3, 5, 7, 9, and 11; Fig. 3 B, lanes 5, 7, 9, and 11). The reporter of the rest of the integrated polypeptides remained unglycosylated on the cytoplasmic side of the membrane represented by bi-antennary glycoprotein. Reflecting the random orientation of the reporter, this glycosylation pattern seemed to be devoid of any topological information. Nevertheless, we obtained evidence to indicate the luminal localization of the tagged EMRs from the following experiment.

A third N-glycosylation signal at N380 (G-T382V) and N435 (G-N435A) was introduced in wild-type GLAST-1 using site-directed mutagenesis (see Fig. 1 B). Tri-antennary glycosylation would probe the luminal/extracellular orientation of the new consensus sites in membrane-integrated GLAST-1. However, polypeptides synthesized in *Xenopus* oocytes from G-T382V and G-N435A cRNAs had the same size as the wild-type transporter. Enzymatic deglycosylation reduced the molecular mass from 60–63 to 54–57 kD (Fig. 4, lanes 1–6). N-glycosylation of the engineered consensus sites should fail if they are located in the cytosolic compartment or if their close proximity to the luminal membrane surface prevents access for the N-glycosylation machinery. We favored the second possibility and extended the short distance between residue N380 and the

![Figure 3](image-url)

Figure 3. Analysis of the topology of the COOH-terminal part of GLAST-1. N-glycosylation and membrane integration of in vitro– and in vivo–translated chimeras with the reporter fused at sites located within the COOH-terminal domain of GLAST-1: (A–D) Protein expression, deglycosylation, and sample analysis was performed as described in Fig. 2. The chimeras G-E406, G-E501, G-I514, and G-M543 were twofold glycosylated as indicated by their reduced apparent molecular mass of ~6 kD after treatment with Endo F. Note that chimeras G-Q354, G-T368, G-R385, G-Q425, G-T434, G-Q445, G-D464, and G-D487 showed a random distribution of bi- and tetra-antennary glycosylated translation products, indicated by their apparent SDS-PAGE mobility shifts relative to the deglycosylated proteins of ~6 and 12 kD, respectively.
membrane surface by a short peptide consisting of the 11 COOH-terminal amino acids of the VSV glycoprotein (Kreis et al., 1986). The two-step cDNA synthesis (see Materials and Methods) yielded two different transporter mutants. The intermediate construct G-T382V/EL389FV carried the amino acid substitutions E389F and L390V, G-T382V/VSV in addition to the VSV extension peptide (see also Fig. 1 B). Xenopus oocytes microinjected with the respective cRNAs generated threefold glycosylated polypeptides (Fig. 4, lanes 7–10). The apparent molecular mass of ~63–66 kD exceeded by ~3 kD that of the mutant G-EL389FV, which lacked the engineered N-glycosylation site at N380 (Fig. 4, lanes 11–12), and was reduced to 54–56 kD by Endo F treatment. These findings provide strong evidence for the lumenal orientation of the hydrophilic region around residue N380 (EMR8 in Fig. 1 B). Because the fusion point of the chimera G-R385 was also located in this domain, we interpret its random bi- and tetra-antennary glycosylation in strong support of the extracellular orientation of respective reporter-attached residues located in the COOH-terminal domain of GLAST-1 (residues 345–543). We had observed the same glycosylation pattern for chimeras with the reporter linked to residues Q354, T368, and R385, as well as to Q425, T434, Q445, D464, and D487, and therefore suggest two additional extramembrane regions, EMR8 and EMR10, on the extracellular surface of the plasma membrane (Fig. 1 B). Keeping in mind the cytosolic placement of EMR7, EMR9, and EMR11, the alternating cytosolic and extracellular orientation of the five identified extramembrane regions EMR7–EMR11 demands four hydrophobic transmembrane domains (TMD7–TMD10) spanning the plasma membrane in the COOH-terminal part of GLAST-1.

Deletion of Transmembrane Segments in the COOH-terminal Domain of GLAST-1

The hydropathy plot (Fig. 1 A) of the four COOH-terminal TMDs identified by the experiments described above suggests short hydrophobic segments of 7–10 residues. To confirm their topogenic activity, we deleted each of these segments and examined the effect of this manipulation on the glycosylation reporter fused COOH-terminal to the respective TMD (Fig. 1 C). It is expected that an extracellular location of the fusion site of chimeras with the reporter linked to TMD7 and TMD9, being randomly two- and fourfold glycosylated, will switch to the intracellular surface in the deletion mutant, thus preventing reporter glycosylation. We synthesized the deletion chimeras ΔG-R385 (Δ P345–Q354) and ΔG-Q425 (Δ A407–V416) in the in vitro and in vivo system. The size of the single glycosylated translation product was reduced by 6 kD after Endo F treatment (Fig. 5 A, lanes 1–8). This indicated that the reporter remained unglycosylated on the cytosolic side of the membrane. To show that deletion of TMD8 and TMD10 also changes the glycosylation pattern of the reporter fused COOH-terminal to these TMDs, we excised residues F389–I397 in chimera G-E406 and residues S488–V494 in G-E501 and G-M543 (Fig. 1 C). Unlike the unde-
lected fusion proteins, which are only twofold glycosylated, the deletion chimera ΔG-E406 translated in the reticulocyte lysate and ΔG-E501 regardless of the expression system used showed the expected random bi- and tetra-antenary glycosylation (Fig. 5 B, lanes 1 and 2 and 5–8; compare Fig. 3 B, lanes 1 and 2, and 3 D, lanes 1–4). This glycosylation pattern indicates the extracellular orientation of the fusion points, which had switched from the intracellular to extracellular side. ΔG-E406 synthesized in the oocyte carried only two carbohydrate chains at endogenous N206 and N216, like the undeleted fusion protein (Fig. 5 B, lanes 3 and 4; compare Fig. 3 B, lanes 3 and 4). The upper band in lane 4 of Fig. 5 B reflects incomplete enzymatic deglycosylation. Unexpectedly, the deletion of TMD10 in the chimera G-M543 did not invert the cytosolic orientation of the fusion point (Fig. 5 B, lanes 9–12; compare Fig. 3 D, lanes 9–12). These results prove that the deleted hydrophobic segments P345–Q354, A407–V416, and S488–V494 are core sequences of the membrane-spanning domains TMD7, TMD9, and TMD10. The topogenic activity of TMD8 (F389–I397) could not be concluded with certainty from these experiments.

GLAST-1 Fusion Proteins Are Correctly Targeted to the Plasma Membrane but Inactive Transporters

The impact of the truncation and COOH-terminal tagging by a reporter sequence of GLAST-1 on the electrogenic, Na+-dependent l-glutamate transport function was analyzed with the whole cell voltage clamp technique in *Xenopus* oocytes expressing the respective transporter cRNAs. The inward current of oocytes synthesizing the different chimeras was measured at 100 μM l-glutamate and 90 mM sodium [Na+] extracellular concentrations as previously described (Klöckner et al., 1993). Neither wild-type GLAST-1 linked to the N-glycosylation reporter (G-M543) nor any of the other fusion proteins showed any neurotransmitter transport activity (data not shown). The loss of function could either be due to a reduced expression level, or to a reduced stability of the mutant transporters, or to an impaired targeting to the plasma membrane, or to the COOH-terminal truncation of GLAST-1 and tagging by the reporter sequence. Comparable intensities of the [35S]methionine-labeled and immunoprecipitated translation products of GLAST-1 (Fig. 4, lanes 1 and 2) and chimeric transporters (Figs. 2 and 3) expressed in *Xenopus* oocytes ruled out the first possibility. The correct targeting to the plasma membrane of *Xenopus* oocytes was traced by immunofluorescence microscopy. Oocytes expressing wild-type GLAST-1 and the chimeras G-M543 and G-N344 were strongly labeled along their perimeter by GLAST-1 antibodies and fluorescent second antibodies (Fig. 6 A, 2, 3, and 4), consistent with the localization of the hybrid transporters at or close to the cell surface. Identical results were observed for all of the other chimeras with the fusion point between residue N344 and M543 (data not shown). In the case of water-injected control oocytes, no fluorescence was observed (Fig. 6 A, 1). We conclude that the deletion of individual COOH-terminal sequences and/or the fusion of the reporter to the COOH terminus of full-length wild-type GLAST-1 (M543) or truncated GLAST-1 polypeptides abolish the glutamate transport properties of the expressed membrane-integrated glycoproteins. It should be noted that the point mutations in the transporter G-T382V/EL389FV, which was fully glycosylated at residue N380 and in G-EL389FV, which lacks the engineered N-glycosylation consensus site, also lead to a complete loss of the glutamate transport activity (data not shown). Both mutants are normally expressed (Fig. 4, lanes 9–12) and correctly targeted to the plasma membrane (Fig. 6 A, 5 and 6). In contrast, the functional properties of the mutated transporter G-T382V are comparable to wild-type GLAST-1 (data not shown) (Klöckner et al., 1993). This underlines the substantial influence of the amino acid substitution E389F combined with the exchange L389V on the activity of GLAST-1.

The NH$_2$ Terminus of GLAST-1 Is Exposed to the Cytosol

The orientation of the NH$_2$ terminus (EMR1 in Fig. 1 B) of GLAST-1 was examined by indirect immunofluorescence epitope mapping in a HEK cell line, permanently expressing wild-type GLAST-1 (HEK-GLAST) (Blau and Stoffel, 1995). If the first extramembrane region EMR1 is located in the cytoplasm, this domain should be accessible for a specific antibody only after permeabilization of the plasma membrane.

Affinity-purified antibodies raised against a synthetic peptide comprising residues 24–40 (P24–40) of GLAST-1 were generated. Only permeabilized HEK-GLAST cells were strongly labeled by immunofluorescence by these immunoglobulines (Fig. 6 B, 3 and 6). Therefore the NH$_2$ terminus (EMR1) of GLAST-1 must be exposed to the cytosolic surface of the plasma membrane.

Fig. 6 B also visualizes the results of the control experiments. Intact HEK-GLAST cells were labeled with polyclonal rabbit anti-GLAST-1 antibodies (Storck et al., 1992), which also recognized extracellular transporter epitopes, and were impermeable for mAbs raised against α-tubulin. Permeabilization of cells with Triton X-100 was required to allow labeling with specific antisera against both α-tubulin and GLAST-1. Untransfected wild-type HEK cells showed no reaction with GLAST-1 antibodies (data not shown).

Discussion

We applied "reporter glycosylation scanning" to establish the complete topology of GLAST-1 in the plasma membrane. The localization of hydrophilic extramembrane regions was mapped to determine the number and orientation of membrane-spanning domains. We provide here experimental evidence for six presumably α-helical transmembrane domains in the NH$_2$-terminal part of GLAST-1, flanked by seven hydrophilic extramembrane regions. Fourfold glycosylated chimeras with a luminal reporter indicated the inside-out orientation (cytosolic to extracellular) of TMD1, TMD3, and TMD5, and the twofold glycosylation of fusion proteins probed the reverse orientation of TMD2, TMD4, and TMD6. The specific fourfold glycosylation of chimeras G-P233 and G-Q313 proved that the reporter sequence placed at the COOH terminus of truncated GLAST-1 polypeptides is readily translocated across the ER membrane. The efficient N-glycosylation makes the...
Wild-type, chimeric, and mutant GLAST-1 are located in the plasma membrane, and the NH₂ terminus of GLAST-1 resides in the cytoplasm. (A) Cryosections (15–20 μm) of Xenopus oocytes were incubated with anti-GLAST-1 antibody and stained with fluorescein isothiocyanate-conjugated second antibody. Wild-type GLAST-1 (2), G-M543 (3), G-N344 (4), G-EL389FV (5), and G-T382V/EL389FV (6) were expressed and targeted to the surface of oocytes with similar intensity. In the case of water-injected control oocytes (1), no fluorescence labeling was observed. (B) HEK 293 cells, permanently expressing wild-type GLAST-1, were immunostained with (4–6) and without (1–3) permeabilization of the plasma membrane (Triton X-100) as described under Materials and Methods. Cells were either doubly labeled with mouse monoclonal antitubulin and rabbit polyclonal anti-GLAST-1 antibodies (1 and 2, 4 and 5) or labeled with rabbit polyclonal P24-40 antibodies (3 and 6). Second antibodies were fluorescein-anti-mouse IgG (1 and 4), fluorescein-anti-rabbit IgG (3 and 6) and cy3-anti-rabbit IgG (2 and 5). Staining of the cytosolic tubulin was only observed after disruption of membrane structures with Triton X-100 (4). Labeling of GLAST-1 at the cell surface was observed regardless of the integrity of the plasma membrane (2 and 5). The NH₂ terminus of GLAST-1 was labeled with P24-40 antibodies only after permeabilization of the plasma membrane (6), indicating its cytosolic orientation. Bar, 10 μm.

Figure 6. Wild-type, chimeric, and mutant GLAST-1 are located in the plasma membrane, and the NH₂ terminus of GLAST-1 resides in the cytoplasm. (A) Cryosections (15–20 μm) of Xenopus oocytes were incubated with anti-GLAST-1 antibody and stained with fluorescein isothiocyanate-conjugated second antibody. Wild-type GLAST-1 (2), G-M543 (3), G-N344 (4), G-EL389FV (5), and G-T382V/EL389FV (6) were expressed and targeted to the surface of oocytes with similar intensity. In the case of water-injected control oocytes (1), no fluorescence labeling was observed. (B) HEK 293 cells, permanently expressing wild-type GLAST-1, were immunostained with (4–6) and without (1–3) permeabilization of the plasma membrane (Triton X-100) as described under Materials and Methods. Cells were either doubly labeled with mouse monoclonal antitubulin and rabbit polyclonal anti-GLAST-1 antibodies (1 and 2, 4 and 5) or labeled with rabbit polyclonal P24-40 antibodies (3 and 6). Second antibodies were fluorescein-anti-mouse IgG (1 and 4), fluorescein-anti-rabbit IgG (3 and 6) and cy3-anti-rabbit IgG (2 and 5). Staining of the cytosolic tubulin was only observed after disruption of membrane structures with Triton X-100 (4). Labeling of GLAST-1 at the cell surface was observed regardless of the integrity of the plasma membrane (2 and 5). The NH₂ terminus of GLAST-1 was labeled with P24-40 antibodies only after permeabilization of the plasma membrane (6), indicating its cytosolic orientation. Bar, 10 μm.
mechanism proposed for type IV membrane proteins like GLAST-1 (Blobel, 1980; Wessels and Spieß, 1988). In analogy to the translocation of secretory proteins and insertion of type II membrane proteins (Shaw et al., 1988), we suggest that during the last insertion cycle of chimeric GLAST-1 protein, the ultimate transmembrane domain acting as a signal anchor sequence and the translocating COOH-terminal portion of the growing polypeptide chain form a loop like structure in the proteinaceous (Görlich et al., 1992a, b; Mothes et al., 1994) and aqueous (Crowley et al., 1993, 1994) translocation channel (ER translocase) across the ER-membrane, with the attached reporter remaining in the cytoplasm. The interactions of the traversing signal anchor sequence with the proteins of the ER translocase and the degree of the lateral opening of the channel to the lipid core vary presumably with its length and hydrophobic properties (von Heijne, 1985, 1986; Nilsson et al., 1994; Martoglio et al., 1995). The efficient reporter glycosylation of chimeras G-E77, G-P233, and G-Q313 demonstrates that TMD1, TMD3, and TMD5, 20–23-hydrophobic residues-long, are firmly anchored in the lipid bilayer. After chain termination, the channel opening apparently remains wide enough to allow the reporter to translocate into the ER lumen. If the reporter is linked to TMD7 or TMD9, its random orientation toward the cytoplasmic or the luminal surface of the ER membrane might be caused by two reasons. Membrane integration of the TMD partially fails because of a moderate hydrophobicity and therefore reduced interaction with the lipids, or membrane integration takes place but the narrow gated channel imposes a steric hindrance to the translocation of the COOH-terminal reporter into the lumen of the ER.

Since our experimental results combined with these considerations suggest shorter extensions of membrane spanning TMD7–TMD10 other than α-helical structures must be considered. β-Sheets require 7–10–amino acid residues to span the hydrophobic core of a membrane bilayer (Schirmer and Cowan, 1993). Intrabilayer β-sheet structures have been unequivocally demonstrated by x-ray analysis in porins (Cowan et al., 1992) and have also been proposed to occur in the acetylcholine receptor (Akabas et al., 1992), in the VDAC ion channel (Blachly-Dyson et al., 1990), and in lac permease (Radding, 1991). We propose β-sheet structures of the four COOH-terminal membrane-spanning regions of GLAST-1 but cannot rule out other conformations. Our experimental results and their interpretation fit best the membrane integration of GLAST-1 depicted in Fig. 7.

The topology profile proposed here facilitates the analysis of specific GLAST-1 domains or single–amino acid residues essential for neurotransmitter binding and translocation. Aromatic residues border the ends of transmem-
brane TMD7 (W346; F348), TMD8 (F389), and TMD9 (Y405; F412), similar to porins composed solely of a nonpolar surface of β-sheets buried in the lipid bilayer. Phenyllalanine residues are oriented toward the lipid core whereas tyrosine hydroxy groups and tryptophan side chains point toward the lipid polar headgroups (Weiss et al., 1991; Cowan et al., 1992). The hydrophobic side chain of F389 of GLAST-1 is thought to be involved in the membrane anchorage of TMD8. Substitution of F389 by E389 combined with the conservative substitution L390V led to the GLAST-1 mutant transporters G-T382V and G-EL389FV, which have lost glutamate transport activity. The negative charge of E389 might shift the transmembrane segment TMD8 partially into an extracellular location. The distance between the membrane surface and the highly charged hydrophilic region surrounding residue N380 will thereby be enlarged and give access for the N-glycosylation machinery. This interpretation is consistent with the observation that N380 is only glycosylated in the triple mutant G-T382V/EL389FV, but not in the active single substitution mutant G-T382V carrying the intact transmembrane domain TMD8.

F389 is located in the most strongly conserved domain of the four cloned L-glutamate transporters, GLAST-1, GLT-1, EAAC-1, and EAAT-4. 29 out of 33 residues (amino acids 383–415) are identical. This sequence contains the transmembrane domains TMD8 and TMD9, which are joined by the short cytosolic loop EM9. The adjacent side chains of Y405 and E406 in this EMH have recently been recognized to be essential for L-glutamate transport. In GLAST-1, the hydroxy group of Y405 is thought to interact with the γ-carboxylate group of the neurotransmitter glutamate passing through the channel (Conradt and Stoffel, 1995). For GLT-1, the corresponding E404 has been suggested to line the glutamate/aspartate permeation pathway (Pines et al., 1995). The deduced cytosolic localization of both residues (Fig. 7) excludes their direct participation in substrate binding but suggests an essential contribution to substrate translocation or dissociation on the inside of the plasma membrane. Furthermore, the close neighborhood of residues Y405 and E406 to TMD8 and TMD9 implies that both transmembrane segments might directly contribute to the formation of the translocation pore.

The topology model of GLAST-1 consisting of six membrane spanning α-helices and four shorter transmembrane domains presumably forming a β-sheet cluster is unique and defines a new class of transporter proteins. The assumption that clusters of transmembrane β-sheet structures are involved in the transport of neurotransmitter substrate will provide new dimensions for understanding the transport mechanism of the Na"+-coupled high affinity L-glutamate transporters. The highly conserved domain structure of all L-glutamate transporters isolated so far suggests that the 10-TMD model of GLAST-1, deciphered by these studies experimentally, might represent a novel membrane topology of transporter molecules common to the other L-glutamate transporters GLT-1, EAAC-1, and EAAT-4, and the neutral amino acid transporter ASCT-1.

This work was supported by the Deutsche Forschungsgemeinschaft, "Glutamattransporter, excitatorische Synapse," SFB 243, and the Fritz-Thyssen-Stiftung.

References

Abakas, M.H., D.A. Stauffer, M. Xu, and A. Karlin. 1992. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science (Wash. DC). 258:307–310.

Arriza, J.L., M.P. Kavanaugh, W.A. Fairman, Y.N. Wu, G.H. Murdock, R.A. North, and S.G. Amara. 1993. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 268:15239–15332.

Blaich-Dyson, E., S. Peng, M. Colombini, and M. Forte. 1990. Selectivity changes in site-directed mutants of the VDAC ion channel: structural implications. Science (Wash. DC). 247:1223–1236.

Blakely, R.D., R.E. Berson, R. Fremeau, Jr., M.G. Caron, M.M. Peak, H.K. Prince, and C.C. Bradley. 1991. Cloning and expression of a functional serotonin transporter from rat brain. Nature. (Lond.). 354:66–70.

Blau, R., and W. Stoffel. 1995. Rat and human glutamate transporter GLAST-1: stable heterologous expression, biochemical and functional characterization. Biol. Chem. Hoppe-Seyler. 376:S11–S14.

Blobel, G. 1980. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA. 77:1496–1500.

Bouvier, M., M. Szatkowski, A. Amato, and D. Artwell. 1992. The glial cell glutamate uptake carrier countertransporters pH-changing anions. Nature. (Lond.). 360:471–474.

Boyd, D., and J. Beckwith. 1989. Positively charged amino acid residues can act as topogenic determinants in membrane proteins. Proc. Natl. Acad. Sci. USA. 86:9446–9450.

Cassadó, M., A. Bendahanna, F. Zafra, N.C. Danbolt, C. Aragon, C. Gimenez, and B.I. Kann. 1993. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J. Biol. Chem. 268:27313–27317.

Catty, D. 1988. Antibodies: A Practical Approach. IRL Press, Oxford. 121–137.

Colman, A. 1984. Translation of eukaryotic messenger RNA in Xenopus oocytes. In Transcription and Translation: A Practical Approach. B.D. Hames and S.J. Higgins, editors. IRL Press, Oxford. 271–302.

Conradt, M., and W. Stoffel. 1995. Functional analysis of the high affinity, Na+-dependent glutamate transporter GLAST-1 by site-directed mutagenesis. J. Biol. Chem. 270:25207–25212.

Conradt, M., T. Stork, and W. Stoffel. 1995. Localization of N-glycosylation sites and functional role of the carbohydrate units of GLAST-1, a cloned rat brain L-glutamate/aspartate transporter. Eur. J. Biochem. 229:682–687.

Cowan, S.W., T. Schirmer, G. Rummel, M. Steiert, R. Ghosh, R.A. Pauptit, J.N. Jansenius, and J.P. Rosenbusch. 1992. Crystal structures explain functional properties of two E. coli porins. Nature. (Lond.). 358:727–733.

Crowley, K.S., G.D. Reinhart, and A.E. Johnson. 1993. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell. 73:1101–1115.

Crowley, K.S., S. Liao, V.E. Shallop, R. Reinhart, and A.E. Johnson. 1994. Serine proteases move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell. 78:461–471.

Engelke, T., D. Jording, D. Kapp, and A. Puhler. 1989. Identification and sequence analysis of the Rhizobium melliloti dctA gene encoding the C4-dicarboxylate carrier. J. Bacteriol. 171:5551–5560.

Fairman, W.A., R.J. Vandenberg, J.L. Arriza, M.P. Kavanaugh, and S.G. Amara. 1995. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature (Lond.). 375:599–602.

Flott, B., and W. Seifert. 1991. Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia. 4:293–304.

Fremeau, R., M.G. Caron, and R.D. Blakely. 1992. Molecular cloning and expression of a high affinity L-proline transporter expressed in putative putaminal target brain regions. Neuron. 8:915–926.

Fujiki, Y., A.L. Hubbard, S. Fowler, and P. Lazarow. 1982. Isolation of intracellular membranes by means of sodium carbonate treatment application to endoplasmic reticulum. J. Cell Biol. 93:97–102.

Goodfriend, T.L., L. Levine, and G. Fasman. 1964. Antibodies to bradykinin and angiotensin: a use of carbodiimide in immunology. Science (Wash. DC). 146:144–146.

Görlich, D., E. Hartmann, S. Prehn, and T.A. Rapoport. 1992a. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature. (Lond.). 357:47–52.

Görlich, D., S. Prehn, E. Hartmann, K.U. Kälcs, and T.A. Rapoport. 1992b. A mammalian homolog of SEC61p and SEC61p is associated with ribosomes and nascent polypeptides during translocation. Cell. 71:489–503.

Gustavella, J., N. Nelson, H. Nelson, L. Czyzyn, S. Keynan, M.C. Miedel, N. Davidson, H.A. Lester, and B.I. Kann. 1990. Cloning and expression of a rat brain GABA transporter. Science (Wash. DC). 249:1303–1306.

Hart, G.W., K. Brew, G.A. Grani, R.A. Bradshaw, and W.J. Lennarz. 1978. Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. J. Biol. Chem. 254:9747–9753.

Hediger, M.A., M.J. Coady, T.S. Ikeda, and E.M. Wright. 1987. Expression

Received for publication 16 May 1996 and in revised form 12 October 1996.

The Journal of Cell Biology, Volume 135, 1996

1876
