Crossover from multiple- to single-gap superconductivity in Nb5Ir3−xPtxO alloys

Xu, Y ; Jöhr, S ; Das, L ; Kitagawa, J ; Medarde, M ; Shiroka, T ; Chang, J ; Shang, T

Abstract: By using mostly the muon-spin rotation/relaxation (SR) technique, we investigate the superconductivity (SC) of Nb5Ir3−xPtxO (x=0 and 1.6) alloys, with Tc=10.5 and 9.1 K, respectively. At a macroscopic level, their superconductivity was studied by electrical resistivity, magnetization, and specific-heat measurements. In both compounds, the electronic specific heat and the low-temperature superfluid density data suggest a nodeless SC. The superconducting gap value and the specific heat discontinuity at Tc are larger than that expected from BCS theory in the weak-coupling regime, indicating strong-coupling superconductivity in the Nb5Ir3−xPtxO family. In Nb5Ir3O, multigap SC is evidenced by the field dependence of the electronic specific heat coefficient and the superconducting Gaussian relaxation rate, as well as by the temperature dependence of the upper critical field. Pt substitution suppresses one of the gaps, and Nb5Ir1.4Pt1.6O becomes a single-gap superconductor. By combining our extensive experimental results, we provide evidence for a multiple- to single-gap SC crossover in the Nb5Ir3−xPtxO family.

DOI: https://doi.org/10.1103/physrevb.101.134513

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-187541
Journal Article
Published Version

Originally published at:
Xu, Y; Jöhr, S; Das, L; Kitagawa, J; Medarde, M; Shiroka, T; Chang, J; Shang, T (2020). Crossover from multiple- to single-gap superconductivity in Nb5Ir3−xPtxO alloys. Physical review B, 101(13):134513. DOI: https://doi.org/10.1103/physrevb.101.134513
Crossover from multiple- to single-gap superconductivity in Nb$_5$Ir$_{3-x}$Pt$_x$O alloys

Y. Xu, S. Jöhr, L. Das, J. Kitagawa, M. Medarde, T. Shiroka, J. Chang, and T. Shang

1Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
2Department of Electrical Engineering, Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
3Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, Villigen CH-5232, Switzerland
4Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
5Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

(Received 28 January 2020; revised manuscript received 2 March 2020; accepted 30 March 2020; published 21 April 2020)

By using mostly the muon-spin rotation/relaxation (μSR) technique, we investigate the superconductivity (SC) of Nb$_5$Ir$_{3-x}$Pt$_x$O ($x = 0$ and 1.6) alloys, with $T_c = 10.5$ and 9.1 K, respectively. At a macroscopic level, their superconductivity was studied by electrical resistivity, magnetization, and specific-heat measurements. In both compounds, the electronic specific heat and the low-temperature superfluid density data suggest a nodeless SC. The superconducting gap value and the specific heat discontinuity at T_c are larger than that expected from BCS theory in the weak-coupling regime, indicating strong-coupling superconductivity in the Nb$_5$Ir$_{3-x}$Pt$_x$O family. In Nb$_5$Ir$_x$O, multigap SC is evidenced by the field dependence of the electronic specific heat coefficient and the superconducting Gaussian relaxation rate, as well as by the temperature dependence of the upper critical field. Pt substitution suppresses one of the gaps, and Nb$_5$Ir$_{x}$Pt$_{1-x}$O becomes a single-gap superconductor. By combining our extensive experimental results, we provide evidence for a multiple- to single-gap SC crossover in the Nb$_5$Ir$_{3-x}$Pt$_x$O family.

DOI: 10.1103/PhysRevB.101.134513

I. INTRODUCTION

The A_2B_3 compound family, where A is a transition or rare-earth metal and B is a (post)transition metal or a metalloid element, consists of more than 500 compounds with three distinct crystal structures. They are orthorhombic Yb$_5$Sb$_5$-type ($Pnma$, No. 62), tetragonal Cr$_3$B$_3$-type ($I4/mcm$, No. 140), and hexagonal Mn$_2$Si$_3$-type ($P6_3/mcm$, No. 193) structures. The latter possesses an interstitial 2b site, allowing for the intercalation of light atoms, e.g., oxygen, boron, and carbon, to engineer the band topology. The ordered variant of the Mn$_2$Si$_3$-type structure is also known as the Ti$_5$Ga$_4$- or Hf$_5$CuSn$_3$-type structure. Nb$_5$Ir$_3$O, whose crystal structure is presented in the inset of Fig. 1, also belongs to the latter. Superconductivity (SC) has been reported to occur in several Ti$_5$Ga$_4$-type compounds, including Nb$_5$Ir$_3$O [1], (Nb,Zr)$_2$Pt$_3$O [2,3], Nb$_5$Ge$_3$C$_{0.3}$ [4], and Zr$_5$Pt$_3$C [5], with the highest superconducting transition temperature T_c reaching \sim15 K. Interestingly, specific heat and penetration depth results suggest a nodal superconducting gap in Zr$_5$Pt$_3$C and possibly unconventional SC [5].

The parent compound Nb$_5$Ir$_3$ consists of mixed tetragonal and hexagonal phases, both showing superconducting behavior below $T_c = 2.8$ and 9.4 K, respectively. The gradual intercalation of oxygen suppresses the tetragonal phase, making the hexagonal phase the dominant one. Accordingly, the T_c value increases linearly with the interstitial oxygen content, reaching 10.5 K in the purely hexagonal Nb$_5$Ir$_3$O [1]. Nb$_5$Ir$_3$ exhibits an unusual interplay of electrostatic and SC states, whereas only SC remains in Nb$_5$Ir$_x$O [1]. Density functional theory calculations indicate Nb$_5$Ir$_3$ is a multiband metal, whose density of states (DOS) at the Fermi level is dominated by the Nb 4d and Ir 5d orbitals [1]. The increase of T_c in Nb$_5$Ir$_x$O is most likely attributed to the enhanced electron-phonon coupling strength or to an increased DOS at the Fermi level (with extra Nb 4d and O 2p contributions) [1]. The other hand, by applying external pressure, T_c decreases monotonically from 10.5 K at ambient pressure to 9.5 K at 13 GPa [1,6]. Unlike the Nb$_5$Ir$_3$O case, in Zr$_5$Pt$_3$ the addition of oxygen reduces the T_c value from 6.4 to 3.2 K (in Zr$_5$Pt$_3$O$_{0.6}$) [3]. Similarly, in Zr$_5$Sb$_3$, the addition of oxygen reduces T_c, with Zr$_5$Sb$_3$O being a normal metal down to 1.8 K [7].

Although the superconductivity of several Mn$_2$Si$_3$ and Ti$_5$Ga$_4$ types of compounds has been studied by magnetic and transport measurements and, in many cases, electronic band structure calculations are available, the microscopic nature of their superconducting phase remains largely unexplored. In Nb$_5$Ir$_x$O, the low-T electronic specific heat data suggest a nodeless SC with multiple gaps [1,6]. However, in the Nb$_5$Pt$_x$O case, the electronic specific heat shows a single-exponential temperature dependence below T_c, more consistent with a single-gap superconductivity [2]. In Nb$_5$Ir$_{3-x}$Pt$_x$O, Pt substitution increases the a-axis lattice constant while reducing the c axis. As shown in Fig. 1, T_c is almost independent of Pt content for $x \leq 0.5$, but it starts to decrease continuously

*Corresponding author: yangxu@physik.uzh.ch
†Corresponding author: tian.shang@psi.ch
for $x > 0.5$, reaching 4.3 K in Nb$_3$Pt$_3$O [3]. As hinted by specific heat data, one expects a crossover from multiple- to single-gap SC in Nb$_5$Ir$_{3−x}$Pt$_x$O.

To provide further evidence of such a crossover, we initiated an extensive study of the superconducting properties of Nb$_5$Ir$_{3−x}$Pt$_x$O for $x = 0$ and 1.6, two representative cases in the multiple- and single-gap regions (see arrows in Fig. 1), probing them at both the macroscopic and microscopic levels. Both compounds were found to be fully gapped superconductors, with Nb$_5$Ir$_3$O showing multiple gaps and Nb$_5$Ir$_{1.4}$Pt$_{1.6}$O being a single-gap superconductor, indicating a crossover at an intermediate Pt doping.

II. EXPERIMENTAL DETAILS

Polycrystalline samples of Nb$_5$Ir$_{3−x}$Pt$_x$O were prepared by the arc-melting method (the full details are reported in Ref. [8]). The magnetic susceptibility, electrical resistivity, and specific heat measurements were performed on a 7-T Quantum Design magnetic property measurement system (MPMS-7) and a 9-T physical property measurement system (PPMS-9). The muon-spin rotation/relaxation (μSR) experiments were carried out at the general-purpose surface-muon (GPS) spectrometer at the Swiss muon source (SμS) at Paul Scherrer Institut, Villigen, Switzerland [9]. Both transverse-field (TF) and zero-field (ZF) μSR measurements were performed. The μSR data were analyzed using the MUSRFIT software package [10].

III. RESULTS AND DISCUSSION

A. Magnetization

The SC of Nb$_5$Ir$_{3−x}$Pt$_x$O ($x = 0, 1.6$) was first characterized by magnetic susceptibility measurements, carried out in a 5-mT field, using both field-cooled (FC) and zero-field-cooled (ZFC) protocols. As shown in Fig. 2(a), the ZFC susceptibility, corrected to account for the demagnetization factor, indicates bulk SC below $T_c = 10.5$ and 9.1 K for Nb$_5$Ir$_3$O and Nb$_5$Ir$_{1.4}$Pt$_{1.6}$O, respectively. The well-separated ZFC and FC susceptibilities indicate strong flux-line pinning across the Nb$_5$Ir$_{3−x}$Pt$_x$O series. To perform TF-μSR measurements on superconductors, the applied magnetic field should exceed the lower critical field $\mu_0 H_{c1}$, so that the additional field-distribution broadening due to the flux-line lattice (FLL) can be quantified from the muon-spin relaxation rate. To determine $\mu_0 H_{c1}$, the field-dependent magnetization $M(H)$ was measured at various temperatures up to T_c for Nb$_5$Ir$_{3−x}$Pt$_x$O. For each temperature, the lower critical field $\mu_0 H_{c1}$ was determined as the value where $M(H)$ starts deviating from linearity (dashed line). The magnetic susceptibilities were corrected by using the demagnetization factor obtained from the field-dependent magnetization at 2 K (base temperature).

B. Upper critical field

The upper critical field $\mu_0 H_{c2}$ of Nb$_5$Ir$_{3−x}$Pt$_x$O was determined from the measurements of electrical resistivity $\rho(T, H)$, specific heat $C(T, H)/T$, and magnetization...
and show enlarged plots of zero-field electrical resistivity.

FIG. 3. Contour plots showing the electrical resistivity vs temperature (down to 2 K) and magnetic field (up to 9 T) for (a) Nb$_3$Ir$_2$O and (b) Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O. Color hues represent the absolute value of electrical resistivity. The symbols indicate the critical temperatures (T_c), as determined from the middle of superconducting transition (see dashed lines in the insets). Insets: In both cases, the zero-field electrical resistivity shows a sharp transition. The arrow in (a) indicates a change in slope (see also inset in Fig. 11).

$M(T, H)$ under various applied magnetic fields up to 9 T. Here, in Figs. 3 and 4, we show $\rho(T, H)$ and $C(T, H)/T$ for both samples respectively. Upon applying a magnetic field, the superconducting transition, as detected from either $\rho(T)$ or $C(T)/T$ data, shifts towards lower temperatures. The insets of Fig. 3 show enlarged plots of zero-field electrical resistivity. Nb$_3$Ir$_2$O exhibits an onset of the SC at $T_{c}^{\text{onset}} = 10.9$ K, and its resistivity drops to zero at $T_{c}^{\text{zero}} = 10.5$ K. For Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O, $T_{c}^{\text{onset}} = 9.1$ K, and $T_{c}^{\text{zero}} = 8.9$ K. The sharp superconducting transitions ($\Delta T \sim 0.2-0.4$ K) in zero field, confirmed also by specific heat data (see Fig. 4), indicate the good quality of the samples.

The determined μ_0H_{c2} values as a function of the reduced temperature $T_{c}/T_{c}(0)$ are summarized in Fig. 5. Here $T_{c}(0)$ is the transition temperature in zero field. For Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O, the μ_0H_{c2} values determined using different techniques are quite consistent. Conversely, for Nb$_3$Ir$_2$O, the data sets agree well only at low fields (below 2 T) since at higher fields the transition temperatures determined from $\rho(T)$ data are systematically higher than those derived from $C(T)/T$. The surface or filamentary SC above bulk T_{c} might cause the different T_{c} values, but why it shows up only in Nb$_3$Ir$_2$O is not yet clear. The temperature dependence of $\mu_0H_{c2}(T)$ was analyzed by means of Ginzburg-Landau (GL) [11] and Werthamer-Helfand-Hohenberg (WHH) models [12]. For Nb$_3$Ir$_2$O, the better agreement of the GL model with the data is clearly seen in Fig. 5(a). At low fields, both the GL and WHH models reproduce very well the experimental data. However, at higher fields, the WHH model deviates significantly from the experimental data, giving underestimated values of $\mu_0H_{c2}^{\text{WHH}}(T) = \ldots$
FIG. 6. Normalized electronic specific heat $C_e/\gamma_n T$ of Nb$_3$IrO$_5$ and Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O as a function of the reduced temperature T/T_c. Inset: Specific heat C/T vs T^2 for Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O; the dashed line is a fit to $C/T = \gamma_n + \beta T^2 + \delta T^4$ for $T > T_c$. The solid lines in the main panel represent the electronic specific heat calculated by considering a fully gapped s-wave model.

9.3(1) T and 12.4(1) T for $C(T, H)/T$ and $\rho(T, H)$, respectively. In contrast, the GL model fits the data over the entire field range, providing $\mu_0H_{c2}(0) = 11.2(1)$ T ($C(T)/T$) and 15.5(1) T (ρ) in the case of Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O. The GL model fits the data very well by the WHH model, which yields $\mu_0H_{c2}(0) = 12.7(1)$ T.

The superconducting coherence length ξ can be calculated from $\xi = \sqrt{\Phi_0/(2\pi H_{c2})}$, where $\Phi_0 = 2.07 \times 10^{-15}$ T μm2 is the magnetic flux quantum. With a bulk $\mu_0H_{c2}(0) = 11.2(1)$ T and 12.7(1) T, the calculated ξ is 5.4(1) and 5.1(1) nm for Nb$_3$IrO$_5$ and Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O, respectively. The lower critical field μ_0H_{c1} is related to the magnetic penetration depth ξ and the coherence length ξ via $\mu_0H_{c1} = (\Phi_0/4\pi \xi^2)\ln(\kappa) + 0.5$, where $\kappa = \lambda/\xi$ is the GL parameter [13]. By using $\mu_0H_{c2}(0) = 11.5(2)$ mT [8.0(1) mT] and $\mu_0H_{c2}(T) = 12.1(T)$ T [12.7(1) T], the resulting magnetic penetration depth $\lambda_{GL} = 249(3)$ nm [308(3) nm] for Nb$_3$IrO$_5$ (Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O) is comparable to 230(2) nm [314(2) nm], the experimental value evaluated from TF-μSR data (see Sec. III D). A large GL parameter κ \sim 50–60 clearly indicates that Nb$_3$Ir$_{3-x}$Pt$_x$O compounds are type-II superconductors.

C. Zero-field specific heat

The zero-field specific heat data in the low-T region (Fig. 6) show a sharp jump at T_c, again indicating a bulk superconducting transition and a good sample quality. As shown in the inset, the normal-state specific heat data of Nb$_3$Ir$_{3-x}$Pt$_x$O were fitted to $C/T = \gamma_n + \beta T^2 + \delta T^4$, where γ_n is the normal-state electronic specific heat coefficient, while the two other terms account for the phonon contribution to the specific heat. The derived values are $\gamma_n = 37(5)$ mJ/molK2, $\beta = 0.32(9)$ mJ/molK4, and $\delta = 1.7(3)$ mJ/molK6 for Nb$_3$IrO$_5$ and $\gamma_n = 42(6)$ mJ/molK2, $\beta = 0.36(13)$ mJ/molK4, and $\delta = 2.6(5)$ mJ/molK6 for Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O. Such large γ_n values suggest a relatively large effective electron mass (see Table I) and also strong electronic correlations in Nb$_5$Ir$_{3-x}$Pt$_x$O. The Debye temperature can be estimated using $\Theta_D = (12\pi^4 R n/5\beta)^{1/3}$, where $R = 8.314$ J/molK is the molar gas constant and $n = 9$ is the number of atoms per formula unit, giving $\Theta_D = 380(7)$ and 365(8) K for Nb$_3$IrO$_5$ and Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O. The density of states at the Fermi level $N(\epsilon_F)$ is evaluated to be $N(\epsilon_F) = 3\gamma_n/(\pi^2 k_B^2) = 16(2)$ states/eV f.u. (Nb$_3$IrO$_5$) and 18(2) states/eV f.u. (Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O) [14], where k_B is the Boltzmann constant. Both values are comparable to those from the electronic band structure calculations [1].

The electron-phonon coupling constant λ_{ep}, a measure of the attractive interaction between electrons due to phonons, was estimated using the semiempirical McMillan formula [15]:

$$\lambda_{ep} = \frac{1.04 + \mu^* \ln(\Theta_D/1.45 T_c)}{(1 - 0.62 \mu^*) \ln(\Theta_D/1.45 T_c) - 1.04}. \quad (1)$$

The Coulomb pseudopotential μ^* is material specific, typically lying in the 0.1 \leq μ^* \leq 0.15 range. Here μ^* was fixed to 0.13, a typical value for metallic samples [15]. From Eq. (1) we obtain $\lambda_{ep} = 0.8(2)$ (Nb$_3$IrO$_5$) and 0.7(3) (Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O), which classifies both of them as relatively strongly coupled superconductors. This is consistent with previous results [1,6] and compatible with other strongly coupled superconductors, e.g., Ba$_{1-x}$K$_x$BiO$_3$ (λ_{ep} \sim 1) and W$_2$Al$_2$C (λ_{ep} \sim 0.78) [16–18].

The electronic specific heat is obtained by subtracting the phonon contribution from the total specific heat. The main panel in Fig. 6 shows the temperature dependence of $C_e/\gamma_n T$, from which one can evaluate the discontinuity at T_c to be $\Delta C/\gamma_n T_c = 2.24(7)$ for Nb$_3$IrO$_5$ and 1.50(5) for Nb$_3$Ir$_{1.4}$Pt$_{1.6}$O, both larger than the weak-coupling BCS value of 1.43. The temperature evolution of the SC-related contribution to the entropy can be calculated from the BCS expression [19]:

$$S(T) = -\frac{6\gamma_n}{\pi^2 k_B} \int_0^\infty f[\ln f + (1-f)\ln(1-f)] \, df, \quad (2)$$

where $f = (1 + e^{E/\beta T})^{-1}$ is the Fermi distribution and $E(\epsilon) = \sqrt{\epsilon^2 + \Delta^2(T)}$ is the excitation energy of quasiparticles, with ϵ being the electron energy measured relative to the chemical potential (Fermi energy) [19,20]. Here $\Delta(T) = \Delta_0 \tan(1.82[1.018(T_c/T - 1)]^{0.51})$ [21], where Δ_0 is evaluated from λ_{ep} values. In previous studies, two superconducting gaps were required to describe the zero-field electronic specific heat at $T < 1/3 T_c$ [1,6]. Note, however, that the extra gap value (~ 0.02 meV) was significantly smaller than the large gap and that it accounts for less than 10% of the total weight [1,6]. As such, it can easily be influenced by disorder or oxygen content. In the case of our samples, a single gap could reproduce the electronic specific heat data very well over the whole temperature range. However, the field-dependent electronic specific heat coefficient, the TF-μSR...
CROSSOVER FROM MULTIPLE- TO SINGLE-GAP … PHYSICAL REVIEW B 101, 134513 (2020)

FIG. 7. (a) TF-μSR time spectra collected at temperatures below (1.6 K) and above (14 K) T_c in an applied field of 50 mT for Nb$_5$Ir$_3$O. (b) The fast Fourier transform of the TF-μSR time spectra. Note that Nb$_5$Ir$_3$Pt$_{1.6}$O exhibits similar spectra. Solid lines in (a) and (b) are fits to Eq. (3) using two Gaussian relaxations. The dashed vertical line indicates the applied magnetic field, showing a clear diamagnetic shift. (c) Diamagnetic shift ($\Delta B = \langle B \rangle - B_{\text{appl.}}$) vs temperature for Nb$_5Ir_3$O and Nb$_5Ir_{1.4}Pt_{1.6}$O.

relaxation rates, and the temperature-dependent upper critical fields all suggest multigap features in Nb$_5$Ir$_3$O, while Nb$_5$Ir$_{1.4}$Pt$_{1.6}$O is a single-gap superconductor (see details in Sec. III E).

D. Transverse-field μSR

To investigate the superconducting properties of Nb$_5$Ir$_{3-x}$Pt$_x$O at a microscopic level, TF-μSR measurements were systematically carried out, covering both the normal and superconducting states. To track the additional field-distribution broadening due to the FLL in the mixed state, a magnetic field of 50 mT was applied in the normal state, before cooling the sample below T_c. The TF-μSR time spectra were collected at various temperatures upon warming after the FC protocol. Figure 7(a) shows two representative TF-μSR spectra of Nb$_5$Ir$_3$O collected at 1.6 K (i.e., below T_c) and 14 K (above T_c). In the normal state, the spectra show a relatively weak damping, reflecting a uniform field distribution. The enhanced depolarization rate in the superconducting state is attributed to the inhomogeneous field distribution due to the FLL, causing an additional field broadening in the mixed state. Such broadening is clearly visible in Fig. 7(b), where the fast-Fourier-transform (FFT) spectra of the corresponding TF-μSR data in Fig. 7(a) are shown. To account for the asymmetric field distribution in the superconducting state, the μSR spectra were modeled by the following expression:

$$ A_{\text{TF}}(t) = \sum_{i=1}^{n} A_i \cos((\gamma_\mu B_i t + \phi)e^{-\sigma_i t^2/2} + A_{\text{bg}} \cos((\gamma_\mu B_{\text{bg}}, + \phi). \tag{3} $$

Here A_i (98%) and A_{bg} (2%) represent the initial muon-spin asymmetries for muons implanted in the sample and sample holder, respectively, with the latter not undergoing any depolarization. B_i and B_{bg} are the local fields sensed by implanted muons in the sample and sample holder; $\gamma_\mu = 2\pi \times 135.53$ MHz/T is the muon gyromagnetic ratio, ϕ is the
shared initial phase, and \(\sigma_t \) is the Gaussian relaxation rate of the \(i \)th component. More than one oscillation is required to describe the TF-\(\mu \)SR spectra of Nb\(_3\)Ir\(_{3-x}\)Pt\(_x\)O samples. As illustrated in Fig. 7(b), at 1.6 K, two broad peaks can clearly be seen, below and above the applied magnetic field (50 mT). The solid lines in Figs. 7(a) and 7(b) represent fits to Eq. (3) with \(n = 2 \). Below \(T_c \), a diamagnetic field shift appears in both samples [see Fig. 7(c)]. The relaxation rate is temperature independent and small above \(T_c \), but below \(T_c \) it starts to increase due to the onset of the FLL and the increased superfluid density (see insets in Fig. 8).

In the case of multicomponent oscillations, the first term in Eq. (3) describes the field distribution as a sum of \(n \) Gaussian relaxations (here \(n = 2 \)) [22]:

\[
P(B) = \frac{1}{\sqrt{2\pi \sigma_i^2}} \exp \left(-\frac{(B - B_i)^2}{2\sigma_i^2} \right).
\]

The first and second moments of the field distribution can be calculated by

\[
\langle B \rangle = \sum_i \frac{A_i B_i}{A_{\text{tot}}},
\]

\[
\langle B^2 \rangle = \sum_i \frac{A_i}{A_{\text{tot}}} \left[\frac{\sigma_i^2}{\gamma_i^2} + (B_i - \langle B \rangle)^2 \right],
\]

where \(A_{\text{tot}} = A_1 + A_2 \). The superconducting Gaussian relaxation rate \(\sigma_{sc} \) can be extracted by subtracting the nuclear contribution according to \(\sigma_{sc} = \sqrt{\sigma_{\text{eff}}^2 - \sigma_n^2} \), where \(\sigma_n \) is the nuclear relaxation rate, assumed to be temperature independent in such a narrow temperature range (see also ZF-\(\mu \)SR below).

Since the upper critical fields of Nb\(_3\)Ir\(_{3-x}\)Pt\(_x\)O (see Fig. 5) are significantly higher than the transverse field used in the \(\mu \)SR measurements (here 50 mT), the magnetic penetration depth \(\lambda(T) \) and the superfluid density \(\rho_{sc}(T) \) \(\propto \lambda^{-2}(T) \) can be obtained from \(\sigma_{sc}(T) \) according to [13,23]

\[
\frac{\sigma_{sc}^2(T)}{\gamma_i^2} = 0.00371 \frac{\Phi_0}{\lambda^4(T)}.
\]

The derived superfluid density normalized to the zero-temperature values is shown in the main panels of Fig. 8. The superfluid density is almost constant at temperatures below \(T_c/3 \), indicating fully gapped SC in Nb\(_3\)Ir\(_{3-x}\)Pt\(_x\)O, in good agreement with the specific heat results (see Fig. 6).

For more quantitative insight into the SC of Nb\(_3\)Ir\(_{3-x}\)Pt\(_x\)O, the derived superfluid density \(\rho_{sc}(T) \) was further analyzed by using a fully gapped s-wave model:

\[
\frac{\lambda^{-2}(T)}{\lambda_{0}^{-2}} = \frac{\rho_{sc}(T)}{\rho_{sc}(0)} = 1 + 2 \int_{\Delta(T)}^{\infty} \frac{E}{\sqrt{E^2 - \Delta^2(T)}} \frac{\partial f}{\partial E} dE.
\]

Here \(f \) and \(\Delta(T) \) are the Fermi and superconducting gap functions (see details in Sec. III C). The solid black lines in Fig. 8 are fits to the above model with a single gap, which yield zero-temperature gap values \(\Delta_0 = 1.79(3) \) and 1.67(2) meV and magnetic penetration depths \(\lambda_0 = 230(2) \) and 314(2) nm for Nb\(_3\)Ir\(_3\)O and Nb\(_3\)Ir\(_{1.4}\)Pt\(_{1.6}\)O, respectively. The estimated BCS coherence length \(\xi_0 \) is larger than the electronic mean free path \(l_c \) (see Table 1), implying the samples are in the dirty limit. Therefore, the temperature-dependent superfluid density was also analyzed using a dirty-limit model. In this case, in the BCS approximation, the temperature dependence of the superfluid density is given by \(\rho_{sc}(T) = \frac{\Delta_0^2}{\Delta(T)} \tanh \left(\frac{\Delta(T)}{2k_B T} \right) \) [19], which yields gap values of 1.61(3) and 1.51(3) meV, slightly smaller than the clean-limit value, but still larger than the weak-coupling BCS value. In the Nb\(_3\)Ir\(_3\)O case, to compare the zero-field electronic specific heat results [1,6] with those from \(\mu \)SR, the superfluid density was also analyzed using a two-gap model [21,24,25]. As shown by the blue dash-dotted line in Fig. 8 (a), the two-gap model shows slightly better agreement with the \(\rho_{sc}(T) \) data, as confirmed by the smaller \(\chi^2 \) value. The derived gap values are \(\Delta_0^2 = 1.34(3) \) meV (small) and \(\Delta_1^2 = 1.97(3) \) meV (large), with a weight \(w \) = 0.2 for the small gap. Such a small weight makes the multigap features barely visible in the \(\rho_{sc}(T) \) or \(C/T \) data. Although the \(\rho_{sc}(T) \) data can be well described by an s-wave model with either one or two gaps, the latter is more consistent with the field-dependent electronic specific heat coefficient (Fig. 9).

Table 1. Normal and superconducting state properties of Nb\(_3\)Ir\(_3\)O and Nb\(_3\)Ir\(_{1.4}\)Pt\(_{1.6}\)O, as determined from electrical resistivity, magnetic susceptibility, specific heat, and \(\mu \)SR measurements. The London penetration depth \(\lambda_{0} \), the effective mass \(m^* \), carrier density \(n_c \), BCS coherence length \(\xi_0 \), electronic mean free path \(l_c \), Fermi velocity \(v_F \), and effective Fermi temperature \(T_F \) were estimated following equations in Ref. [41].

Property	Units	Nb\(_3\)Ir\(_3\)O	Nb\(_3\)Ir\(_{1.4}\)Pt\(_{1.6}\)O
\(T_c \)	K	10.5(1)	9.1(1)
\(\mu \)	mT	11.5(2)	8.0(1)
\(\mu \)	mT	13.3(1)	7.7(1)
\(\mu \)	mT	15.5(1)	12.7(1)
\(\mu \)	mT	11.2(1)	12.7(1)
\(\gamma_n \)	mJ/mol K\(^2\)	37(5)	42(6)
\(\Theta_0 \)	K	379(30)	368 (30)
\(\lambda_{0} \)	nm	8.2(2)	0.73(25)
\(N(\varepsilon_F) \)	states/eV f.u.	16(2)	18(2)
\(\Delta_0^{\text{SR}} \) (clean)	meV	1.79(3)	1.67(2)
\(\Delta_0^{\text{SR}} \) (dirty)	meV	1.61(3)	1.51(3)
\(\Delta_0^{\text{SC}} \)	meV	1.89(2)	1.53(1)
\(\Delta C/\gamma_n T_c \)	meV	2.24(7)	1.50(5)
\(\lambda_{0}^{\text{SR}} \)	nm	230(2)	314(2)
\(\lambda_{L} \)	nm	249(3)	308(3)
\(\lambda_{L} \)	nm	73(5)	81(9)
\(\xi_0 \)	nm	5.4(1)	5.1(1)
\(\kappa \)		50(3)	60(3)
\(m^* \)	meV	8.0(8)	9.2(4)
\(n_c \)	\(10^2 \) m\(^{-3}\)	4.2(5)	3.9(7)
\(\xi_0 \)		18(1)	16(2)
\(l_c \)		2.1(1)	1.2(1)
\(\xi_0/l_c \)		9(1)	14(2)
\(v_F \)	\(10^5 \) m/s\(^{-1}\)	1.5(1)	1.3(1)
\(T_F \)	K	1.27(5)	1.1(1)

\(^{a}\)Similar values were determined via electrical resistivity, magnetic susceptibility, and specific heat measurements.

\(^{b}\)The two-gap model provides an averaged gap value of 1.84(3) meV.
FIG. 9. The normalized specific heat coefficient γ_1/γ_{0} vs the reduced magnetic field $H/H_{c2}(0)$ for Nb$_5$Ir$_3$O, γ_1 is obtained as the linear extrapolation of C/T vs T^2 (in the superconducting phase) to zero temperature. The solid line indicates a linear dependence, as predicted for a single-gap s-wave gap structure; the dash-dotted line represents the dependence expected for an anisotropic gap or a gap with nodes, e.g., the d wave. The data for the reference samples are adopted from Refs. [26–29].

the superconducting Gaussian relaxation rate (Fig. 10), the upper critical field (Fig. 11), and the electronic band structure calculations [1].

E. Evidence of multigap superconductivity in Nb$_5$Ir$_3$O

The multigap nature of Nb$_5$Ir$_3$O superconductivity can be further inferred from the field-dependent electronic specific heat coefficient $\gamma_1(H)$. The normalized values γ_1/γ_{0} vs the reduced magnetic field $H/H_{c2}(0)$ are shown in Fig. 9 (here γ_{0} is the zero-field normal-state value). For Nb$_5$Ir$_3$O, due to its multigap nature, it is difficult to describe the field dependence with a simple formula. $\gamma_1(H)$ clearly deviates from the linear field dependence (solid line) expected for single-gap fully gapped superconductors [30] or from the square-root dependence \sqrt{H} (dash-dotted line) expected for nodal superconductors [31,32]. Different from the case of Nb$_5$Ir$_3$O but similar to Re$_2$Nb$_5$ [29], $\gamma_1(H)$ of Nb$_5$Ir$_3$Pt$_{1.6}$O is practically linear in field, more consistent with a single gap SC. Nb$_5$Ir$_3$O instead exhibits features similar to other well-studied multigap superconductors, e.g., LaNiC$_2$ [26], FeSe [27], and MgB$_2$ [28], although the slopes of $\gamma_1(H)$ close to zero field are different, reflecting the different magnitudes and weights of the smaller gap.

To get further insight into the multigap SC of Nb$_5$Ir$_3$O, TF-μSR measurements were performed in different magnetic fields up to 780 mT at base temperature (1.6 K) in both samples. Figure 10(a) shows the TF-μSR spectra of Nb$_5$Ir$_3$O, collected at 20 and 200 mT, with the spectra in other applied fields and in Nb$_5$Ir$_3$Pt$_{1.6}$O showing similar features. The spectra were analyzed using the same model as described in Eq. (3), and the resulting superconducting Gaussian relaxation rates σ_{sc} versus the applied magnetic field are summarized in Fig. 10(b) (Nb$_5$Ir$_3$O) and Fig. 10(c) (Nb$_5$Ir$_3$Pt$_{1.6}$O). $\sigma_{sc}(H)$ was analyzed using both a single- and a two-band model. In the latter case, each band is characterized by its own superconducting coherence length [i.e., $\xi_1(0)$ and $\xi_2(0)$] and a weight w accounting for the contribution of the second band [$\xi_2(0)$] to the total superfluid density, similar to the two-gap model in Fig. 8(a). The details of the single- and two-band models can be found in Refs. [33,34]. By fixing $w = 0.2$ and $\xi_1(0) = 5.4$ nm, as estimated from the analysis of $\rho_{sc}(T)$ (Fig. 8) and of the upper critical field (Fig. 5), we obtain the dash-dotted line fit in Fig. 10(b), which provides $\lambda_0 = 222(3)$ nm and $\xi_2(0) = 14(1)$ nm. The derived λ_0 is consistent with the value (230 nm) estimated from the analysis of $\rho_{sc}(T)$ in Fig. 8(a). The upper critical field of 1.72(1) T calculated from the coherence length of the second band $\xi_2(0)$ is also in good agreement with the field values where $\gamma_1(H)$ and $\mu_0H_c2(T)$ change their slope, as shown by the arrows in Fig. 3(a) and the inset in Fig. 11. While the single-band model...
Indeed, in Nb_{3}O, the small superconducting gap with increasing magnetic field.

\(\mu \) values for Nb_{3}IrO (the same as in Fig. 5(a)), the solid lines are fits using a two-band model. Inset: Temperature derivative of the upper critical field, as determined from the electrical resistivity.

A positive curvature of the upper critical field near \(T_c \) is considered a typical feature of multiband superconductors, e.g., MgB_{2} [35,36]. It reflects the gradual suppression of the small superconducting gap with increasing magnetic field. Indeed, in Nb_{3}IrO, \(\mu_0H_{c2}(T) \) exhibits a clear kink close to 1.5 T [see the arrow in Fig. 3(a)], which coincides with the field value which suppresses the small superconducting gap. This is reflected also in the derivative of \(\mu_0H_{c2}(T) \) with respect to temperature (see the arrow in the inset of Fig. 11). Also \(\gamma(T) \) changes its slope near this critical field (close to \(T_c \) in Fig. 9). Since, in Nb_{3}Ir_{1.4}Pt_{1.6}O, the small gap is already suppressed by Pt substitution, it exhibits a linear field dependence of \(\gamma(T) \) (Fig. 9), consistent with a fully gapped SC with a single gap. As shown in Fig. 11, the upper critical field of Nb_{3}IrO was also analyzed by a two-band model [37], from which we estimate the upper critical field values \(\mu_0H_{c2}(0) = 13.1(1) \) [from \(C(T, H) \) or \(M(T, H) \)] and 18.5(1) T [from \(\rho(T, H) \)], both consistent with the GL model in Fig. 5(a).

F. Uemura plot

According to the ratio of \(T_c \) to the effective Fermi temperature \(T_F \), the different classes of superconductors can be classified following the so-called Uemura plot [39]. As seen in Fig. 12, conventional BCS superconductors exhibit \(T_c/T_F < 10^{-3} \), here exemplified by the elemental Sn, Al, and Zn superconductors. In contrast, as indicated by the shaded region, several types of unconventional superconductors, including heavy fermions, organic superconductors, iron pnictides, and cuprates, all lie within a \(10^{-2} < T_c/T_F < 10^{-1} \) band. Between these two categories are located several multigap superconductors, e.g., LaNiC_{2}, NbSe_{2}, and MgB_{2}. By using the superconducting parameters obtained from the measurements presented here (see details in Table 1), the calculated \(T_c/T_F \) values for Nb_{3}IrO and Nb_{3}Ir_{1.4}Pt_{1.6}O are \(\sim 8.2-8.4 \times 10^{-4} \) (see star symbols in Fig. 12). Although there is no evidence for them to be classified as unconventional superconductors, the Nb_{3}Ir_{1.4}Pt_{1.6}O family is clearly far off the conventional superconductors, and it shows ratios similar to other multigap superconductors, such as LaNiC_{2} and ReBe_{22} (both located near the dash-dotted line).

![FIG. 11. Upper critical field \(\mu_0H_{c2} \) vs reduced transition temperature \(T_c/T_c(0) \) for Nb_{3}IrO (the same as in Fig. 5(a)]. The solid lines are fits using a two-band model. Inset: Temperature derivative of the upper critical field, as determined from the electrical resistivity.](image1)

![FIG. 12. Uemura plot showing \(T_c \) against the effective Fermi temperature \(T_F \) for various superconductors. The shaded region, with \(1/100 < T_c/T_F < 1/10 \), indicates the band of unconventional superconductors, such as heavy fermions, organic superconductors, iron pnictides, and cuprates. The dotted line corresponds to \(T_c = T_F \), while the dash-dotted line indicates \(T_c/T_F = 8.2 \times 10^{-4} \) for Nb_{3}IrO. The data for the reference samples were adopted from Refs. [25,29,38-40].](image2)

![FIG. 13. ZF-\(\mu \)SR spectra for (a) Nb_{3}IrO and (b) Nb_{3}Ir_{1.4}Pt_{1.6}O in the superconducting state (1.6 K) and the normal state (15 K). Solid lines are fits to the equation described in the text. None of the data sets shows clear changes with temperature.](image3)
G. Zero-field μSR

ZF-μSR measurements were also performed in the normal and superconducting states to search for possible magnetism or time-reversal symmetry breaking in the superconducting state of Nb$_5$Ir$_{3-x}$Pt$_x$O$_5$. Representative ZF-μSR spectra collected above (15 K) and below (1.6 K) for Nb$_5$Ir$_{3-x}$Pt$_x$O$_5$ are shown in Fig. 13. Neither coherent oscillations nor fast damping could be identified at either temperature, implying the lack of any magnetic order or fluctuations in Nb$_5$Ir$_{3-x}$Pt$_x$O$_5$. Therefore, in the absence of an applied magnetic field, the weak muon-spin relaxation is mainly determined by the randomly oriented nuclear moments, which can be modeled by a Gaussian Kubo-Toyabe relaxation function \[G_{KT} = \frac{1}{1 + \frac{2}{3}(1 - \frac{\sigma_{Ze}^2}{12}) e^{-\frac{2\sigma_{Ze}^2}{3}}] \] [42,43]. The solid lines in Fig. 13 represent fits to the data by considering an additional zero-field Lorentzian relaxation \(A_z \), i.e., \[A_{ZF} = A_z G_{KT} e^{-\lambda t} + A_{bg} \]. Here \(A_z \) and \(A_{bg} \) are the same as in the TF-μSR case [see Eq. (3)]. The strong Gaussian relaxation rates reflect the large nuclear moments in Nb$_5$Ir$_{3-x}$Pt$_x$O$_5$, mostly determined by the Nb nuclear moments. In both the normal and the superconducting states, the relaxations are almost identical, as demonstrated by the practically overlapping ZF-μSR spectra above and below \(T_c \). This lack of evidence for an additional \(\mu $SR relaxation below \(T_c \) excludes a possible time-reversal symmetry breaking in the superconducting state of Nb$_5$Ir$_{3-x}$Pt$_x$O$_5$.

IV. CONCLUSION

To summarize, we investigated the superconducting properties of Nb$_5$Ir$_{1.4}$Pt$_{1.6}$O$_5$ (for \(x = 0 \) and 1.6) by means of electrical resistivity, magnetization, specific heat, and \(\mu $SR measurements. Nb$_5Ir_{1.4}Pt_{1.6}O_5$ exhibits bulk SC with \(T_c \) of 10.5 and 9.1 K, respectively. The temperature dependence of the zero-field electronic specific heat and superfluid density reveal a nodeless SC in Nb$_5$Ir$_{3-x}$Pt$_x$O$_5$, well described by an isotropic \(s\)-wave model. Nb$_5$Ir$_3$O$_5$, instead, turns out to be a multigap superconductor, as demonstrated by the field dependence of the electronic specific heat coefficient, the superconducting Gaussian relaxation, and the temperature dependence of its upper critical field. Upon Pt substitution, the small superconducting gap is suppressed, and Nb$_5$Ir$_{1.4}$Pt$_{1.6}$O$_5$ shows typical features of single-gap SC, hence indicating a crossover from multiple- to single-gap SC in the Nb$_5$Ir$_{3-x}$Pt$_x$O$_5$ family. Finally, the lack of spontaneous magnetic fields below \(T_c \) indicates that the time-reversal symmetry is preserved in Nb$_5$Ir$_{3-x}$Pt$_x$O$_5$ superconductors.

ACKNOWLEDGMENTS

The authors thank R. Khasanov for fruitful discussions and acknowledge the assistance from the SpS beamline scientists. This work was supported by the Schweizerische Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF; Grants No. 200021_169455 and No. 206021_139082).

[1] Y. Zhang, B. Wang, Z. Xiao, Y. Lu, T. Kamiya, Y. Uwatoko, H. Kageyama, and H. Hosono, Electride and superconductivity behaviors in Mn$_3$Si$_3$-type intermetallics, npj Quantum Mater. 2, 45 (2017).
[2] B. Cort, A. L. Giorgi, and G. R. Stewart, Low temperature specific heats of H(NbIrO) and R(NbPtO), J. Low. Temp. Phys. 47, 179 (1982).
[3] S. Hamamoto and J. Kitagawa, Superconductivity in oxygen-added Zr$_3$Pt$_x$, Mater. Res. Express 5, 106001 (2018).
[4] A. D. Bortolozo, C. A. M. dos Santos, R. F. Jardim, C. Ritter, A. Devisshvili, M. Rotter, F. G. Gandra, and A. J. S. Machado, Intersitial doping induced superconductivity at 15.3 K in Nb$_5$Ge$_3$ compound, J. Appl. Phys. 111, 123912 (2012).
[5] S. T. Renosto, R. Lang, A. L. R. Maneco, D. Rodrigues, Jr., F. B. Santos, A. J. S. Machado, M. R. Baldan, and E. Diez, Strong Electronic Interaction and Signatures of Nodal Superconductivity in Zr$_3$Pt$_x$, arXiv:1809.05008 (2013).
[6] B. Wang, Y. Zhang, S. Xu, K. Ishigaki, K. Matsubayashi, J.-G. Cheng, H. Hosono, and Y. Uwatoko, Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb$_5$Ir$_3$O superconductors, Chin. Phys. B 28, 107401 (2019).
[7] B. Lv, X. Y. Zhu, B. Lorenz, F. Y. Wei, Y. Xue, Z. P. Yin, G. Kotliar, and C. W. Chu, Superconductivity in the Mn$_3$Si$_3$-type Zr$_5$Sb$_5$ system, Phys. Rev. B 88, 134520 (2013).
[8] J. Kitagawa and S. Hamamoto, Superconductivity in Nb$_5$Ir$_{3-x}$Pt$_x$O, JPS Conf. Proc. 30, 011055 (2020).
[9] A. Amato, H. Luetkens, K. Sedlak, A. Stoykov, R. Scheuermann, M. Elender, A. Raselli, and D. Graf, The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam, Rev. Sci. Instrum. 88, 093301 (2017).
[10] A. Suter and B. M. Wójcik, Musrfit: A free platform-independent framework for μSR data analysis, Phys. Procedia 30, 69 (2012).
[11] X. Zhu, H. Yang, L. Fang, G. Mu, and H.-H. Wen, Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor LaFeAsO$_{0.8}$F$_{0.1-0.4}$, Supercond. Sci. Technol. 21, 105001 (2008).
[12] N. R. Wertheram, E. Helfand, and P. C. Hohenberg, Temperature and purity dependence of the superconducting critical field, H$_c2$, III. Electron spin and spin-orbit effects, Phys. Rev. 147, 295 (1966).
[13] E. H. Brandt, Properties of the ideal Ginzburg-Landau vortex lattice, Phys. Rev. B 68, 054506 (2003).
[14] C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, NJ, 2005).
[15] W. L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167, 331 (1968).
[16] C. H. P. Wen, H. C. Xu, Q. Yao, R. Peng, X. H. Niu, Q. Y. Lu, T. Kamiya, Y. Uwatoko, Z. Xiao, Y. Lu, and Y. Uwatoko, Robust two-gap superconductivity at 15.3 K in Nb$_5$Ir$_{3-x}$Pt$_x$O$_5$, JPS Conf. Proc. 30, 011055 (2020).
bismuthates: Revisiting the phase diagram via μSR, Phys. Rev. B 101, 014508 (2020).

[18] T. P. Ying, Y. P. Qi, and H. Hosono, Superconductivity with strong electron-phonon coupling in noncentrosymmetric W$_3$Al$_2$C, Phys. Rev. B 100, 094522 (2019).

[19] M. Tinkham, Introduction to Superconductivity, 2nd ed. (Dover, Mineola, NY, 1996).

[20] H. Padamsee, J. E. Neighbor, and C. A. Shiffman, Quasiparticle phenomenology for thermodynamics of strong-coupling superconductor, J. Low Temp. Phys. 12, 387 (1973).

[21] A. Carrington and F. Manzano, Magnetic penetration depth of MgB$_2$, Phys. C (Amsterdam, Neth.) 385, 205 (2003).

[22] A. Maisuradze, R. Khasanov, A. Shengelaya, and H. Keller, Comparison of different methods for analyzing μSR line shapes in the vortex state of type-II superconductors, J. Phys.: Condens. Matter 21, 075701 (2009), and references therein.

[23] W. Barford and J. M. F. Gunn, The theory of the measurement of the London penetration depth in uniaxial type II superconductors by muon spin rotation, Phys. C (Amsterdam, Neth.) 156, 515 (1988).

[24] Ch. Niedermayer, C. Bernhard, T. Holden, R. K. Kremer, and K. Ahn, Muon spin rotation study of the magnetic penetration depth in MgB$_2$, Phys. Rev. B 65, 094512 (2002).

[25] T. Shang, A. Amon, D. Kasinathan, W. Xie, M. Bobnar, Y. Chen, A. Wang, M. Shi, M. Medarde, H. Q. Yuan, and T. Shiroka, Enhanced T_c and multiband superconductivity in the fully-gapped ReBe$_{22}$ superconductor, New J. Phys. 21, 073034 (2019).

[26] J. Chen, L. Jiao, J. L. Zhang, Y. Chen, L. Yang, M. Nicklas, F. Steglich, and H. Q. Yuan, Evidence for two-gap superconductivity in the non-centrosymmetric compound LaNiC$_2$, New J. Phys. 15, 053005 (2013).

[27] J. T. Chen, Y. Sun, T. Yamada, S. Pyon, and T. Tamegai, Two-gap features revealed by specific heat measurements in FeSe, J. Phys.: Conf. Ser. 871, 012016 (2017).

[28] F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D. Jorgensen, Specific Heat of Mg$_3$B$_2$: Evidence for a Second Energy Gap, Phys. Rev. Lett. 87, 047001 (2001).

[29] T. Shang, M. Smidman, S. K. Ghosh, C. Baines, L. J. Chang, D. J. Gawryluk, J. A. T. Barker, R. P. Singh, D. McK. Paul, G. Balakrishnan, E. Pajmakukshina, M. Shi, M. Medarde, A. D. Hillier, H. Q. Yuan, J. Quintanilla, J. Mesot, and T. Shiroka, Time-Reversal Symmetry Breaking in Re-Based Superconductors, Phys. Rev. Lett. 121, 257002 (2018).

[30] C. Caroli, P. G. De Gennes, and J. Matricon, Bound Fermion states on a vortex line in a type II superconductor, Phys. Lett. 9, 307 (1964).

[31] G. E. Volovik, Superconductivity with lines of gap nodes: Density of states in the vortex, JETP Lett. 58, 469 (1993).

[32] H.-H. Wen, Z.-Y. Liu, F. Zhou, J. Xiong, W. Ti, T. Xiang, S. Komiya, X. Sun, and Y. Ando, Electronic specific heat and low-energy quasiparticle excitations in the superconducting state of La$_{2-x}$Sr$_x$CuO$_4$ single crystals, Phys. Rev. B 70, 214505 (2004).

[33] S. Serventi, G. Allodi, R. De Renzi, G. Guidi, L. Romanò, P. Manfrinetti, A. Palenzona, Ch. Niedermayer, A. Amato, and Ch. Baines, Effect of Two Gaps on the Flux- lattice Internal Field Distribution: Evidence of Two Length Scales in Mg$_{1-x}$Al$_x$B$_2$ from μSR, Phys. Rev. Lett. 93, 217003 (2004).

[34] R. Khasanov, A. Amato, P. K. Biswas, H. Luetkens, N. D. Zhigadlo, and B. Batlogg, SrPt$_3$P: A two-band single-gap superconductor, Phys. Rev. B 90, 140507(R) (2014).

[35] K.-H. Müller, G. Fuchs, A. Handstein, K. Nenkov, V. N. Narozhnyi, and D. Eckert, The upper critical field in superconducting MgB$_2$, J. Alloys Compd. 322, L10 (2001).

[36] A. Gurevich, S. Patnaik, V. Braccini, K. H. Kim, C. Mielke, X. Song, L. D. Cooley, S. D. Bu, D. M. Kim, J. H. Choi, L. J. Belenky, J. Giencke, M. K. Lee, W. Tian, X. Q. Pan, A. Siri, E. E. Hellstrom, C. B. Eom, and D. C. Larbalestier, Very high upper critical fields in MgB$_2$, produced by selective tuning of impurity scattering, Supercond. Sci. Technol. 17, 278 (2004).

[37] A. Gurevich, Iron-based superconductors at high magnetic fields, Rep. Prog. Phys. 74, 124501 (2011), and references therein.

[38] T. Shiroka, T. Shang, C. Wang, G.-H. Cao, I. Eremin, H.-R. Ott, and J. Mesot, High-T_c superconductivity in undoped ThFeAs,N, Nat. Commun. 8, 156 (2017).

[39] Y. J. Uemura, L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. Wu, J. H. Brewer, T. M. Riseman, C. L. Seaman, M. B. Maple, M. Ishikawa, D. G. Hinks, J. D. Jorgensen, G. Saito, and H. Yamochi, Basic Similarities among Cuprate, Bismuthate, Organic, Chevrel-Phase, and Heavy-Fermion Superconductors Shown by Penetration-Depth Measurements, Phys. Rev. Lett. 66, 2665 (1991).

[40] Y. J. Uemura, Twin spin/charge roton mode and superfluid density: Primary determining factors of T_c in high-T_c superconductors observed by neutron, AR Pes, and μSR, Phys. B (Amsterdam, Neth.) 374, 1 (2006).

[41] J. A. T. Barker, B. D. Breen, R. Hanson, A. D. Hillier, M. R. Lees, G. Balakrishnan, D. McK. Paul, and R. P. Singh, Superconducting and normal-state properties of the noncentrosymmetric superconductor Re$_2$Ta, Phys. Rev. B 98, 104506 (2018), and references therein.

[42] R. Kubo and T. Toyabe, A stochastic model for low field resonance and relaxation, in Magnetic Resonance and Relaxation, edited by R. Blinc (North-Holland, Amsterdam, 1967), p. 810.

[43] A. Youdanc and P. D. de Réotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter (Oxford University Press, Oxford, 2011).