The universal Banach space with a K-suppression unconditional basis

TARAS BANAKH

Ivan Franko University of Lviv (Ukraine) and Jan Kochanowski University (POLAND)
t.o.banakh@gmail.com

JOANNA GARBULIŃSKA–WĘGRZYN

Institute of Mathematics, Jan Kochanowski University (POLAND)
jgarbulinska@ujk.edu.pl

November 6, 2018

Abstract

Using the technique of Fraïssé theory, for every constant $K \geq 1$ we construct a universal object in the class of Banach spaces with normalized K-suppression unconditional Schauder bases.

MSC (2010) Primary: 46B04. Secondary: 46M15, 46M40.

Keywords: 1-suppression unconditional Schauder basis, rational spaces, isometry.

1 Introduction

A Banach space X is complementably universal for a given class of Banach spaces if X belongs to this class and every space from the class is isomorphic to a complemented subspace of X.

In 1969 Pełczyński [12] constructed a complementably universal Banach space for the class of Banach spaces with a Schauder basis. In 1971 Kadec [7] constructed a complementably universal Banach space for the class of spaces with the bounded approximation property (BAP). In the same year Pełczyński [10] showed that every Banach space with BAP is complemented in a space with a basis. Pełczyński and Wojtaszczyk [13] constructed in 1971 a universal Banach space for the class of spaces with a finite-dimensional decomposition. Applying Pełczyński’s decomposition argument [11], one immediately concludes that all three universal spaces are isomorphic. It is worth mentioning a negative result of Johnson and Szankowski [6] saying that no separable Banach space can be complementably universal for the class of all separable Banach spaces. In [4] the second author constructed an isometric version of the Kadec-Pełczyński-Wojtaszczyk space. The universal Banach space from [4] was constructed using the general categorical technique of Fraïssé limits [8]. This method was also applied by Kubiś and Solecki in [9] for constructing the Gurarii space [5], which possesses the property of extension of almost isometries, which implies the universality property that is stronger than the standard universality property of the Banach spaces ℓ_∞ or $C[0,1]$.

*Research of the second author was supported by NCN grant DEC-2013/11/N/ST1/02963.
In this paper we apply the categorical method of Fraïssé limits for constructing a universal space in the class of Banach spaces with a normalized K-suppression unconditional Schauder basis. The universal space constructed by this method has a nice property of extension of almost isometries, which is better than just the standard universality, established in the papers of Pelczynski [12] and Schechtman [13] (who gave a short alternative construction of universal space for class of Banach spaces with an unconditional bases).

2 Preliminaries

All Banach spaces considered in this paper are separable and over the field \mathbb{R} of real numbers.

2.1 Definitions

Let X be a Banach space with a Schauder basis $(e_n)_{n=1}^{\infty}$ and let $(e^*_n)_{n=1}^{\infty}$ be the corresponding sequence of coordinate functionals. The basis $(e_n)_{n=1}^{\infty}$ is called K-suppression for a real constant K if for every finite subset $F \subset \mathbb{N}$ the projector $pr_F : X \to X$, $pr_F : x \mapsto \sum_{n \in F} e^*_n(x) \cdot e_n$, has norm $\|pr_F\| \leq K$. It is well-known [1] 3.1.5 that each K-suppression Schauder basis $(e_n)_{n=1}^{\infty}$ is unconditional. So for any $x \in X$ and any permutation π of \mathbb{N} the series $\sum_{n=1}^{\infty} e^*_\pi(n)(x) \cdot e_{\pi(n)}$ converges to x. This means that we can forget about the ordering and think of a K-suppression basis of a Banach space as a subset $B \subset X$ such that for some bijection $e : \mathbb{N} \to B$ the sequence $(e(n))_{n=1}^{\infty}$ is a K-suppression Schauder basis for X.

More precisely, by a normalized K-suppression basis for a Banach space X we shall understand a subset $B \subset X$ for which there exists a family $\{e^*_b\}_{b \in B} \subset X$ of continuous functionals such that

- $\|b\| = 1 = e^*_b(b)$ for any $b \in B$;
- $e^*_b(b') = 0$ for every $b \in B$ and $b' \in B \setminus \{b\}$;
- $x = \sum_{b \in B} e^*_b(x) \cdot b$ for every $x \in X$;
- for any finite subset $F \subset B$ the projector $pr_F : X \to X$, $pr_F : x \mapsto \sum_{b \in F} e^*_b(x) \cdot b$, has norm $\|pr_F\| \leq K$.

The equality $x = \sum_{b \in B} e^*_b(x) \cdot b$ in the third item means that for every $\varepsilon > 0$ there exists a finite subset $F \subset B$ such that $\|x - \sum_{b \in E} e^*_b(x) \cdot b\| < \varepsilon$ for every finite subset $E \subset B$ containing F.

By a K-based Banach space we shall understand a pair (X, B_X) consisting of a Banach space X and a normalized K-suppression basis B_X for X. A K-based Banach space (X, B_X) is a subspace of a K-based Banach space (Y, B_Y) if $X \subseteq Y$ and $B_X = X \cap B_Y$.

A finite dimensional K-based Banach (X, B_X) is rational if its unit ball is a convex polyhedron spanned by finitely many vector whose coordinates in the basis B_X are rational.

2.2 Categories

Let \mathfrak{A} be a category. For two objects A, B of the category \mathfrak{A}, by $\mathfrak{A}(A, B)$ we will denote the set of all \mathfrak{A}-morphisms from A to B. A subcategory of \mathfrak{A} is a category \mathfrak{L} such that each object of \mathfrak{L} is an object of \mathfrak{A} and each arrow of \mathfrak{L} is an arrow of \mathfrak{A}.

A category \mathfrak{L} is cofinal in \mathfrak{A} if for every object A of \mathfrak{A} there exists an object B of \mathfrak{L} such that the set $\mathfrak{A}(A, B)$ is nonempty. A category \mathfrak{A} has the amalgamation property if for every objects
In this section we prove that the category property.

Let us show that the basis \(B \) of the coordinate functionals of the basis \(\mathbf{z} \) on the other hand, for every \(k \in \mathbb{R} \) and morphisms \(f' \in \mathfrak{R}(B, D) \), \(g' \in \mathfrak{R}(C, D) \) such that \(f' \circ j = g' \circ j \)

In this paper we shall work in the category \(\mathfrak{R} \), whose objects are \(K \)-based Banach spaces for some fixed real constant \(K \geq 1 \). For two \(K \)-based Banach spaces \((X, B_X), (Y, B_Y) \), a morphism of category \(\mathfrak{R} \) is a linear continuous operator \(T : X \to Y \) such that \(T(B_X) \subseteq B_Y \). A morphism \(T : X \to Y \) of the category \(\mathfrak{R} \) is called an isometry if \(\|T(x)\|_Y = \|x\|_X \) for any \(x \in X \).

2.3 Amalgamation

In this section we prove that the category \(\mathfrak{R} \) of \(K \)-based Banach spaces has the amalgamation property.

Lemma 1. (Amalgamation Lemma) Let \(X, Y, Z \) be \(K \)-based Banach spaces and \(j : Z \to X \), \(i : Z \to Y \) be isometries. Then there exist a \(K \)-based Banach space \(W \) and isometries \(j' : Y \to W \) and \(i' : X \to W \) such that the diagram

\[
\begin{array}{ccc}
Y & \overset{j'}{\longrightarrow} & W \\
\downarrow{i'} & & \downarrow{i} \\
Z & \overset{j}{\longrightarrow} & X
\end{array}
\]

is commutative.

Moreover, if the \(K \)-based Banach spaces \(X, Y, Z \) are finite-dimensional (rational), then so is the \(K \)-based Banach space \(W \).

Proof. Without loss of generality we may assume that \(Z = X \cap Y \), \(B_Z = B_X \cap B_Y \) and the isometries \(i, j \) are identity inclusions. Here \(B_X, B_Y, B_Z \) are the normalized \(K \)-suppression bases of the \(K \)-based Banach spaces \(X, Y, Z \). It follows from \(B_Z = B_X \cap B_Y \) that the coordinate functionals of the bases \(B_X \) and \(B_Y \) agree on the intersection \(Z = X \cap Y \).

Consider the direct sum \(X \oplus Y \) of the Banach space \(X, Y \) endowed with the norm \(\|(x, y)\| = \|x\|_X + \|y\|_Y \). Let \(W = (X \oplus Y)/\Delta \) be the quotient by the subspace \(\Delta = \{(z, -z) : z \in Z\} \). We define linear operators \(i' : X \to W \) and \(j' : Y \to W \) by \(i'(x) = (x, 0) + \Delta \) and \(j'(y) = (0, y) + \Delta \).

Let us show \(i' \) and \(j' \) are isometries. Indeed, for every \(x \in X \)

\[
\|i'(x)\|_W = \text{dist}((x, 0), \Delta) \leq \|(x, 0)\| = \|x\|_X + \|0\|_Y = \|x\|_X.
\]

On the other hand, for every \(z \in Z \)

\[
\|(x, 0) - (z, -z)\| = \|(x - z, z)\| = \|x - z\|_X + \|z\|_Y = \|x - z\|_X + \|z\|_X \geq \|x - z + z\|_X = \|x\|_X
\]

and hence \(\|x\|_X \leq \inf_{z \in Z} \|(x, 0) - (z, -z)\| = \|i'(x)\|_W \). Therefore \(\|i'(x)\|_W = \|x\|_X \). Similarly, we can show that \(j' \) is an isometry.

We shall identify \(X \) and \(Y \) with their images \(i'(X) \) and \(j'(Y) \) in \(W \). In this case \(B_W = B_X \cup B_Y \) is a normalized Schauder basis for the Banach space \(W \). Let \(\{b_i\}_{i \in B_W} \subset W^* \) be the sequence of coordinate functionals of the basis \(B_W \).

Let us show that the basis \(B_W = B_X \cup B_Y \) is \(K \)-suppression. Given any finite subset \(D \) of \(B_W \) we should prove that the projector \(\text{pr}_D : W \to W \) has norm \(\|\text{pr}_D\| \leq K \).
Write \(D = D_{Z} \cup D_{X} \cup D_{Y} \), where \(D_{Z} = D \cap B_{Z} = D \cap B_{X} \cap B_{Y}, D_{X} = D \setminus B_{Y} \) and \(D_{Y} = D \setminus B_{X} \).

Taking into account that bases \(B_{X} \) and \(B_{Y} \) are \(K \)-suppression, for any \(w \in W \) we obtain:

\[
\| \operatorname{pr}_{D}(w) \|_{W} = \inf \{ \| x \|_{X} + \| y \|_{Y} : x \in X, \ y \in Y, \ x + y = \operatorname{pr}_{D}(w) \} = \\
= \inf \{ \| \operatorname{pr}_{D_{X}}(w) + z'\|_{X} + \| z'' + \operatorname{pr}_{D_{Y}}(w) \|_{Y} : z', z'' \in Z, \ z' + z'' = \operatorname{pr}_{D_{Z}}(w) \} \leq \\
\leq \inf \{ \| \operatorname{pr}_{D_{X}}(w) + z'\|_{X} + \| z'' + \operatorname{pr}_{D_{Y}}(w) \|_{Y} : z', z'' \in \operatorname{pr}_{D_{Z}}(Z), \ z' + z'' = \operatorname{pr}_{D_{Z}}(w) \} = \\
= \inf \{ \| \operatorname{pr}_{B_{X} \setminus B_{Z}}(w) + z'\|_{X} + \| z'' + \operatorname{pr}_{B_{Y} \setminus B_{X}}(w) \|_{Y} : z' + z'' = \operatorname{pr}_{B_{Z}}(w) \} = \\
= K \cdot \inf \{ \| x \|_{X} + \| y \|_{Y} : x + y = w \} = K \cdot \| w \|_{W}.
\]

This completes the proof. \(\square \)

3 Rational universality

Definition 1

A \(K \)-based Banach space \(X \) is called \textit{rationally universal} if each finite dimensional \(K \)-based subspace of \(X \) is rational and for any finite-dimensional rational \(K \)-based Banach space \(A \) and subspace \(A' \subset A \), any isometry \(f' : A' \to X \) can be extended to an isometry \(f : A \to X \).

Denote by \(\mathcal{F} \) the subcategory of \(\mathcal{K} \) whose objects are rational finite-dimensional \(K \)-based Banach spaces and morphisms are linear isometries of such spaces. Obviously, up to isomorphism the category \(\mathcal{F} \) contains countably many objects. By Lemma 1 the category \(\mathcal{F} \) has the amalgamation property. We now use the concepts from \[8\] for constructing a “generic” sequence in \(\mathcal{F} \). A sequence \((X_{n})_{n \in \omega} \) of objects of the category \(\mathcal{F} \) is called a \textit{chain} if each space \(X_{n} \) is a subspace of the \(K \)-based Banach space \(X_{n+1} \).

Definition 2

A chain of \((U_{n})_{n \in \omega} \) of objects of the category \(\mathcal{F} \) is \textit{Fraïssé} if for any \(n \in \omega \), and any morphism \(f : U_{n} \to Y \) of \(\mathcal{F} \), there exist \(m > n \) and a morphism \(g : Y \to U_{m} \) of the category \(\mathcal{F} \) such that \(g \circ f : U_{n} \to U_{m} \) is the identity inclusion of \(U_{n} \) to \(U_{m} \).

The name “Fraïssé sequence”, as in \[8\], is motivated by the model-theoretic theory of Fraïssé limits developed by Roland Fraïssé \[3\]. One of the results in \[8\] is that every countably cofinal category with amalgamation has a Fraïssé sequence. Applying this general result to our category \(\mathcal{F} \) we get:

Theorem 1 (\[8\])

\textit{The category} \(\mathcal{F} \) \textit{has a Fraïssé sequence.}

From now on, we fix a Fraïssé sequence \((U_{n})_{n \in \omega} \) in \(\mathcal{F} \), which can be assumed to be a chain of finite-dimensional rational \(K \)-based Banach spaces. Let \(\mathbb{U} \) be the completion of the union \(\bigcup_{n \in \omega} U_{n} \) and \(B_{\mathbb{U}} = \bigcup_{n \in \omega} B_{U_{n}} \).

Lemma 2

\((\mathbb{U}, B_{\mathbb{U}}) \) \textit{is a} \(K \)-\textit{based Banach space.}

\textit{Proof}. We have to prove that \(B_{\mathbb{U}} = \bigcup_{n \in \omega} B_{U_{n}} \) is a normalized \(K \)-suppression Schauder basis for \(\mathbb{U} \). For each \(n \) the spaces \(U_{n} \) are \(K \)-based Banach spaces, so \(\| b \| = 1 \) for every \(b \in U_{n} \). This shows that \(B_{\mathbb{U}} \) is normalized. The fact that \(B_{\mathbb{U}} \) is a \(K \)-suppression unconditional Schauder basis follows from Lemma 6.2 and Fact 6.3 in \[2\]. \(\square \)

Definition 1 and the construction of the \(K \)-based Banach space \(\mathbb{U} \) implies the following theorem.
Theorem 2. The K-based Banach space U is rationally universal.

Theorem 3. Any rationally universal spaces X, Y are isometric.

Proof. Let X, Y be the completions of unions $\bigcup_{n \in \omega} X_n$ and $\bigcup_{n \in \omega} Y_n$ of chains of finite dimensional K-based Banach spaces such that $X_0 = \{0\}$ and $Y_0 = \{0\}$. We define inductively sequences of linear operators $\{f_k\}_{k \in \omega}$, $\{g_k\}_{k \in \omega}$ and increasing number sequences (n_k), (m_k) such that the following conditions are satisfied for every $k \in \omega$:

1. $f_k : X_{n_{k-1}} \to Y_{m_k}$ and $g_k : Y_{m_k} \to X_{n_k}$ are isometric embeddings;

2. $f_{k+1} \circ g_k = \id \upharpoonright Y_{m_k}$ and $g_{k+1} \circ f_{k+1} = \id \upharpoonright X_{n_k}.$

We start the inductive construction letting $n_0 = 0 = m_0$ and $f_0 : X_0 \to Y_0$, $g_0 : Y_0 \to X_0$ be the unique linear operators of trivial Banach spaces. To make an inductive step, assume that for some $k \in \omega$, the numbers n_k, m_k and isometries $f_k : X_{n_{k-1}} \to Y_{m_k}$, $g_k : Y_{m_k} \to X_{n_k}$ have been constructed. Definition of rational universality of the sequence $(Y_m)_{m \in \omega}$ yields a number $m_k < n_{k-1}$ and an isometry $f_{k+1} : X_{n_k} \to Y_{m_{k+1}}$ such that $f_{k+1} \circ g_k$ coincides with the identity inclusion Y_{m_k} in $Y_{m_{k+1}}$. Using the rational universality of the sequence $(X_n)_{n \in \omega}$ we can find a number $m_{k+1} > m_k$ and an isometry $g_{k+1} : Y_{m_{k+1}} \to X_{m_{k+1}}$ such that $g_{k+1} \circ f_{k+1}$ is the identity inclusion X_{n_k} in $X_{n_{k+1}}$. This complete the inductive step.

After completing the inductive construction consider the isometries $f : \bigcup_{n \in \omega} X_n \to \bigcup_{m \in \omega} Y_m$ and $g : \bigcup_{m \in \omega} Y_m \to \bigcup_{n \in \omega} X_n$ such that for every $k \in \omega$ $f \upharpoonright X_{n_k} = f_{k+1}$ and $g \upharpoonright Y_{m_k} = g_k$.

By the uniform continuity, the isometries f, g extend to isometries $\bar{f} : X \to Y$ and $\bar{g} : Y \to X$.

The condition (2) of the inductive construction implies that $\bar{f} \circ \bar{g} = \id_Y$ and $\bar{g} \circ \bar{f} = \id_X$, so f and g are isometric isomorphisms of the K-based Banach spaces X and Y. \hfill \Box

4 Almost universality

A linear operator f between Banach spaces X and Y is called an ε-isometry for a positive real number ε, if

$$(1 + \varepsilon)^{-1} \cdot \|x\|_X < \|f(x)\|_Y < (1 + \varepsilon) \cdot \|x\|_X$$

for every $x \in X \setminus \{0\}$.

Definition 3. A K-based Banach space X called almost-universal if for any $\varepsilon > 0$ and finite dimensional K-based Banach space A, any ε-isometry $f' : A' \to X$ defined on a based subspace $A' \subseteq A$ can be extended to a ε-isometry $f : A \to X$.

Theorem 4. Any rational universal K-based Banach space X is almost-universal.

Proof. We shall use the fact, that every finite dimensional Banach space can be approximated by a rational Banach space.

To prove that X is almost-universal we take any $\varepsilon > 0$, any finite-dimensional K-based Banach spaces $A \subseteq A'$ and an ε-isometry $f : A \to X$. Consider the new norm $\| \cdot \|_1$ on A defined by $\|a\|_1 = \|f(a)\|_X$ for $a \in A$. Since X is rational and K-based, $\| \cdot \|_1$ is a rational norm on A such that $\|pf(a)\|_1 \leq K \cdot \|a\|_1$ for every $a \in A$ and every subset $F \subseteq B_A$. Taking into account that f is an ε-isometry, we conclude that $(1 + \varepsilon)^{-1}\|x\| < \|x\|_1 < (1 + \varepsilon)\|x\|$ for every $x \in A$ with $\|x\| = 1$. By the compactness of the unite sphere in A, there exists a positive $\delta < \varepsilon$ such
that \((1 + \delta)^{-1}\|x\| < \|x\|_1 < (1 + \delta)\|x\|\) for every \(x \in A\) with \(\|x\| = 1\). This inequality implies \(\frac{1}{1 + \delta}O \subset O_1 \subset (1 + \delta)O\), where \(O = \{x \in A : \|x\| \leq 1\}\) and \(O_1 = \{x \in A : \|x\|_1 \leq 1\}\) are the unit balls of \(A\) in the norms \(\|\cdot\|\) and \(\|\cdot\|_1\). Choose \(\delta'\) such that \(\delta < \delta' < \varepsilon\). Let \(O' = \{x \in A' : \|x\| \leq 1\}\). Choose a rational polyhedron \(O_2'\) in \(A'\) such that \(O_2' = -O_2'\) and \(\frac{1}{1 + \delta'}O' \subset O_2' \subset (1 + \delta)O'\). Next consider the convex hull \(O_2 = \text{conv}(P)\) of the set \(P = O_1 \cup O_2' \cup \bigcup_{F \subset B_{A'}} \frac{1}{K}\text{pr}_F(O_2')\). Taking into account that \(A'\) is a \(K\)-based Banach space, we conclude that

\[
P \subset O_1 \cup \frac{1}{1 + \delta'}(O' \cup \bigcup_{F \subset B_{A'}} \frac{1}{K}\text{pr}_F(O')) = O_1 \cup \frac{1}{1 + \delta'}O' \subset (1 + \delta)O' \cup \frac{1}{1 + \delta'}O' = (1 + \delta)O'
\]

and hence

\[
\frac{1}{1 + \delta'}O' \subset O_2 \subset O_2 = \text{conv}(P) \subset (1 + \delta)O'.
\]

The convex symmetric set \(O_2\) determines a norm \(\|\cdot\|_2\) whose unite ball coincides with \(O_2\). Its is clear that the norm \(\|\cdot\|_2\) is rational and the base \(B_{A'}\) of the Banach space \((A', \|\cdot\|_2)\) is \(K\)-suppression. It remains to check that \(\|x\|_2 = \|x\|_1\) for each \(x \in A\), which is equivalent to equality \(O_2 \cap A = O_1\). The inclusion \(O_1 \subset O_2 \cap A\) is evident. To prove the reverse inclusion \(O_1 \supset O_2 \cap A\) observe that

\[
A \cap O_2 = A \cap \text{conv}(P) \subset A \cap \text{conv}(O_1 \cup \frac{1}{1 + \delta'}O') = A \cap \{tx_1 + (1 - t)x_2 : t \in [0, 1], \ x_1 \in O_1, x_2 \in \frac{1}{1 + \delta'}O'\} = \{tx_1 + (1 - t)x_2 : t \in [0, 1], \ x_1 \in O_1, x_2 \in \frac{1}{1 + \delta}(A \cap O')\} \subset \text{conv}(O_1 \cup O_1) = O_1.
\]

The inclusions \(\frac{1}{1 + \delta'}O' \subset O_2 \subset (1 + \delta)O'\) imply the strict inequality \((1 + \varepsilon)^{-1}\|x\| < \|x\|_2 < (1 + \varepsilon)\|x\|\) holding for all \(x \in A' \setminus \{0\}\). Using the rational universality of the \(K\)-based Banach space \(X\), find an isometric embedding \(f' : A' \to X\) from the rational \(K\)-based Banach space \((A', \|\cdot\|_2)\) such that \(f' : A = f\). The choice of the norm \(\|\cdot\|_2\) ensures that \(f'\) is an \(\varepsilon\)-isometry from the Banach space \(A'\), extending the \(\varepsilon\)-isometry \(f\). This completes the proof of the almost universality of \(X\).

\[\square\]

Theorem 5. Let \(\mathbb{U}\) and \(\mathbb{V}\) be almost-universal \(K\)-based Banach spaces and \(\varepsilon > 0\). Each \(\varepsilon\)-isometry \(f : X \to \mathbb{V}\) defined on a finite-dimensional based subspace \(X\) of the \(K\)-based Banach space \(\mathbb{U}\) can be extended to a bijective \(\varepsilon\)-isometry \(\tilde{f} : \mathbb{U} \to \mathbb{V}\).

Proof. Fix a positive real number \(\varepsilon\). Using the compactness of the unite sphere of the finite dimensional Banach space \(X\), we can find a positive \(\delta < \varepsilon\) such that \(f\) is a \(\delta\)-isometry. Write \(\mathbb{U}\) and \(\mathbb{V}\) as the completions of the unions \(\bigcup_{n \in \omega} X_n\) and \(\bigcup_{n \in \omega} Y_n\) of chains of finite dimensional \(K\)-based Banach spaces such that \(X_0 = X\) and \(Y_0 = f(X)\). We define inductively sequences of linear operators \(\{f_k\}_{k \in \omega}\) and increasing number sequences \((n_k), (m_k)\) such that \(m_0 = n_0 = 0\), \(f_0 = f\) and the following conditions are satisfied for every \(k \in \omega\):

1. \(f_k : X_{n_k - 1} \to Y_{m_k}\) and \(g_k : Y_{m_k} \to X_{n_k}\) are \(\delta\)-isometries;

2. \(f_{k+1} \circ g_k = \text{id} \mid Y_{m_k}\) and \(g_{k+1} \circ f_{k+1} = \text{id} \mid X_{n_k}\).

To make the inductive step assume that for some \(k \in \omega\), the numbers \(n_k, m_k\) and \(\delta\)-isometries \(f_k : X_{n_k - 1} \to Y_{m_k}\), \(g_k : Y_{m_k} \to X_{n_k}\) have been constructed. Definition of almost-universality
of the sequence \((Y_m)_{m \in \omega}\) yields a number \(n_k > n_{k-1}\) and \(\delta\)-isometry \(f_{k+1} : X_{n_k} \to Y_{m_{k+1}}\) such that \(f_{k+1} \circ g_k = \text{id} \upharpoonright Y_{m_k}\). Using the almost-universality of the sequence \((X_n)_{n \in \omega}\), we can find a number \(m_{k+1} > m_k\) and a \(\delta\)-isometry \(g_{k+1} : Y_{m_{k+1}} \to X_{n_{k+1}}\) such that \(g_{k+1} \circ f_{k+1} = \text{id} \upharpoonright X_{n_k}\). This completes the inductive step.

After completing the inductive construction consider the \(\delta\)-isometries \(\tilde{f} : \bigcup_{n \in \omega} X_n \to \bigcup_{m \in \omega} Y_m\) and \(\tilde{g} : \bigcup_{m \in \omega} Y_m \to \bigcup_{n \in \omega} X_n\) such that for every \(k \in \omega\) \(\tilde{f} \upharpoonright X_{n_k} = f_{k+1}\) and \(\tilde{g} \upharpoonright Y_{m_k} = g_k\). The condition (2) of the inductive construction implies that \(\tilde{f} \circ \tilde{g}\) and \(\tilde{g} \circ \tilde{f}\) are the identity maps of \(\bigcup_{n \in \omega} X_n\) and \(\bigcup_{m \in \omega} Y_m\), respectively.

By the uniform continuity, the \(\delta\)-isometries \(\tilde{f}\), \(\tilde{g}\) extend to \(\varepsilon\)-isometries \(\bar{f} : U \to V\) and \(\bar{g} : V \to U\) such that \(\bar{f} \circ \bar{g} = \text{id}_V\) and \(\bar{g} \circ \bar{f} = \text{id}_U\).

\[\square\]

Theorem 6. For any \(\varepsilon > 0\), every \(K\)-based Banach space \(X\) can be \(\varepsilon\)-isometrically embedded into the almost-universal based Banach space \(U\).

Proof. Let \(X\) be a completion of the union \(\bigcup_{n \in \omega} X_n\) of a chain of finite dimensional \(K\)-based Banach spaces \(X_n\) such that \(X_0 = \{0\}\). Fix a positive real number \(\varepsilon\) and choose any \(\delta < \varepsilon\). We define inductively a sequence of \(\delta\)-isometries \((f_k : X_k \to U)_{k=0}^\infty\) such that \(f_k \upharpoonright X_{k-1} = f_{k-1}\) for every \(k > 0\).

We set \(f_0 = 0\). Suppose that for some \(k \in \omega\) a \(\delta\)-isometry \(f_k : X_k \to U\) has already been constructed. Using the definition of the almost-universality of the space \(U\), we can find a \(\delta\)-isometry \(f_{k+1} : X_{k+1} \to U\) such that \(f_{k+1} \upharpoonright X_k = f_k\). This completes the inductive step.

After completing the inductive construction consider the \(\delta\)-isometry \(f : \bigcup_{n=0}^\infty X_n \to U\) such that \(f \upharpoonright X_n = f_n\) for every \(n \in \omega\).

By the uniform continuity, the \(\delta\)-isometry \(f\) extends to an \(\varepsilon\)-isometry \(\bar{f} : X \to U\). \[\square\]
References

[1] F. Albiac, N. Kalton, *Topics in Banach space theory*, Graduate Texts in Mathematics, 233. Springer, 2016.

[2] M. Fabian, P. Halaba, P. Hájek, V. Montesinos Santalucia, J. Pelant, V. Zizler, *Functional Analysis and Infinite-Dimensional Geometry*, Springer, 2001.

[3] R. Fraïssé, *Sur quelques classifications des systèmes de relations*, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35–182.

[4] J. Garbulińska, *Isometric uniqueness of a complementably universal Banach space for Schauder decompositions*, Banach J. Math. Anal. 8:1 (2014) 211–220.

[5] V.I. Gurariǐ, *Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces*, Sibirsk. Mat. Zh. 7 (1966) 1002–1013 (in Russian).

[6] W.B. Johnson, A. Szankowski, *Complementably universal Banach spaces*, Studia Math. 58 (1976) 91–97.

[7] M.I. Kadec, *On complementably universal Banach spaces*, Studia Math. 40 (1971) 85–89.

[8] W. Kubiś, *Fraïssé sequences: category-theoretic approach to universal homogeneous structures*, Ann. Pure Appl. Logic 165 (2014) 1755–1811.

[9] W. Kubiś, S. Solecki, *A proof of uniqueness of the Gurariĭ space*, Israel J. Math. 195 (2013), 449–456.

[10] A. Pełczyński, *Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis*, Studia Math. 40 (1971) 239–243.

[11] A. Pełczyński, *Projections in certain Banach spaces*, Studia Math. 19 (1960) 209–228.

[12] A. Pełczyński, *Universal bases*, Studia Math. 32 (1969) 247–268.

[13] A. Pełczyński, P. Wojtaszczyk, *Banach spaces with finite-dimensional expansions of identity and universal bases of finite-dimensional subspaces*, Studia Math. 40 (1971) 91–108.

[14] G. Schechtman, *On Pełczyński paper ”Universal bases”,* Israel J. Math. 20 (1975) 181–184.