UNIVERSAL DEFORMATION RINGS FOR COMPLEXES OVER
FINITE-DIMENSIONAL ALGEBRAS

JOSE´ A. V´ELEZ-MARULANDA

ABSTRACT. Let k be field of arbitrary characteristic and let Λ be a finite dimensional k-algebra. From results previously obtained by F. M. Bleher and the author, it follows that if V^\bullet is an object of the bounded derived category $D^b(\Lambda\text{-mod})$ of Λ, then V^\bullet has a well-defined versal deformation ring $R(\Lambda, V^\bullet)$, which is complete local commutative Noetherian k-algebra with residue field k, and which is universal provided that $\text{Hom}_{D^b(\Lambda\text{-mod})}(V^\bullet, V^\bullet) = k$. Let $D_g(\Lambda\text{-mod})$ denote the singularity category of Λ and assume that V^\bullet is a bounded complex whose terms are all finitely generated Gorenstein projective left Λ-modules. In this article we prove that if $\text{Hom}_{D_g(\Lambda\text{-mod})}(V^\bullet, V^\bullet) = k$, then the versal deformation ring $R(\Lambda, V^\bullet)$ is universal. We also prove that certain singular equivalences of Morita type (as introduced by X. W. Chen and L. G. Sun) preserve the isomorphism class of versal deformation rings of bounded complexes whose terms are finitely generated Gorenstein projective Λ-modules.

1. Introduction

Let k be field of arbitrary characteristic, let V be a Λ-module that has finite dimension over k and let R be a complete local commutative Noetherian k-algebra with residue field k. A lift of V over R is an $R \otimes_k \Lambda$-module M that is free over R together with an Λ-module isomorphism $\phi : k \otimes_R M \rightarrow V$. A deformation of V over R is defined to be an isomorphism class of lifts of V over R. In [14], F. M. Bleher and the author to study universal deformations rings and deformations of modules for arbitrary finite dimensional k-algebras. In particular, they proved that when Λ is a self-injective algebra and V is a Λ-module with finite dimension over k such that the stable endomorphism ring of V is trivial, then V has an universal deformation ring $R(\Lambda, V)$ that is stable under taking syzygies. This approach was used in [12, 14, 51], to study universal deformation rings for certain self-injective algebras which are not Morita equivalent to a block of a group algebra. In [50], the results in [14] were extended for the case when Λ is a Gorenstein k-algebra (as introduced in [2]), and for when V is a (maximal) Cohen-Macaulay Λ-module (as introduced in [17]). More recently, F. M. Bleher and the author in [13] extended some of the results in [14] to bounded complexes over finite dimensional algebras by adapting the techniques in [10, 11]. More precisely, they proved that if V^\bullet is a bounded complex of finitely generated Λ-modules, then V^\bullet has a well-defined versal deformation ring $R(\Lambda, V^\bullet)$, which is universal provided that the endomorphism ring of V^\bullet over the derived category of Λ is trivial. In [50], the results in [14] were extended for the case when Λ is a Gorenstein k-algebra (as introduced in [2]), and for when V is a (maximal) Cohen-Macaulay Λ-module (as introduced in [17]), i.e., $\text{Ext}^i_\Lambda(V, \Lambda) = 0$ for all $i > 0$. Following [27, 28], we say that a (not necessarily finitely generated) left Λ-module M is $Gorenstein\ projection$ provided that there exists an exact sequence of (not necessarily finitely generated) projective left Λ-modules

$$\cdots \rightarrow p^{-2} \rightarrow p^{-1} \rightarrow p^0 \rightarrow \cdots \rightarrow p^1 \rightarrow p^2 \rightarrow \cdots$$

such that $M = \text{coker} f^0$, and for all integers $i > 0$ and $j \in \mathbb{Z}$ we have $\text{Ext}^i_\Lambda(\text{ker} f^j, \Lambda) = 0$. Following [1] and [4], we say that a finitely generated left Λ-module M is of $Gorenstein\ dimension\ zero$ or $totally\ reflexive$ provided that the left Λ-modules M and $\text{Hom}_\Lambda(M, \Lambda)$ are isomorphic, and that $\text{Ext}^i_\Lambda(M, \Lambda) = 0 = \text{Ext}^i_\Lambda(\text{Hom}_\Lambda(M, \Lambda), \Lambda)$ for all $i > 0$. It is well-known that finitely generated Gorenstein projective left
The stable category of finitely generated Gorenstein projective left \(\Lambda \)-modules coincided with those that are totally reflexive (see e.g. [21, Lemma 2.1.4]). Moreover, if \(\Lambda \) is a Gorenstein \(k \)-algebra, then finitely generated Gorenstein projective left \(\Lambda \)-modules and (maximal) Cohen-Macaulay \(\Lambda \)-modules coincide (see [3]). However, it follows from an example given by J.I. Miyachi (see [37, Example A.3]) that in general not all (maximal) Cohen-Macaulay modules over a finite dimensional algebra are Gorenstein projective. Recall that the singularity category \(D_{\text{sg}}(\Lambda\text{-mod}) \) of \(\Lambda \) is the Verdier quotient of the bounded derived category of finitely generated left \(\Lambda \)-modules \(D^b(\Lambda\text{-mod}) \) by the full subcategory \(K^b(\Lambda\text{-proj}) \) of perfect complexes (see [52], [41] and §2 for more details). If \(\Lambda \) is self-injective, then it follows from [46, Thm. 2.1] that \(D_{\text{sg}}(\Lambda\text{-mod}) \) is equivalent as a triangulated category to \(\Lambda\text{-mod} \) the stable category of finitely generated left \(\Lambda \)-modules. If \(\Lambda \) is Gorenstein, then it follows from [17] (see also [34, §4.6] for the case when \(k \) is algebraically closed) that \(D_{\text{sg}}(\Lambda\text{-mod}) \) is equivalent as a triangulated category to the stable category of finitely generated Gorenstein projective left \(\Lambda \)-modules. In particular, if \(\Lambda \) has finite global dimension, then its singularity category is trivial. In a more general setting, D. Orlov rediscovered independently the notion of singularity category in the context of algebraic geometry and mathematical physics (see e.g. [44, 45]). This has motivated the study of the structure of singularity categories under different situations (see e.g. [19, 20, 23, 25, 39, 48] and their references).

The first goal of this article is to prove the following result.

Theorem 1.1. Let \(\Lambda \) be a finite dimensional \(k \)-algebra, and let \(V^\bullet \) be a bounded complex in \(D^b(\Lambda\text{-mod}) \) such that all of its terms are Gorenstein projective left \(\Lambda \)-modules.

(i) If \(\text{Hom}_{D_{\text{sg}}(\Lambda\text{-mod})}(V^\bullet, V^\bullet) = k \), then the versal deformation ring \(R(\Lambda, V^\bullet) \) is universal.

(ii) For all perfect complexes \(P^\bullet \) over \(\Lambda \), the versal deformation ring \(R(\Lambda, V^\bullet \oplus P^\bullet) \) is isomorphic to \(R(\Lambda, V^\bullet) \).

Examples of complexes \(V^\bullet \) as in the hypothesis of Theorem 1.1 can be found in the study of \(G \)-resolutions of modules of finite Gorenstein dimension as explained in [4], in the study of Gorenstein derived categories as introduced in [32], and in the study of Gorenstein singularity categories as introduced in [5].

It was also proved in [13] that versal deformation rings of complexes are preserved by derived equivalences induced by so-called nice two-sided tilting complexes. Moreover, it was proved in [13] that the isomorphism class of versal deformation rings of modules is preserved by stable equivalences of Morita type (as introduced by M. Broué in [15]) between self-injective \(k \)-algebras. In [6], V. Bekkert, H. Giraldo and the author proved that the isomorphism class of versal deformation rings of (maximal) Cohen-Macaulay modules over Gorenstein algebras is also preserved by so-called *singular equivalences of Morita type*, which extends the aforementioned result in [13]. These singular equivalences of Morita type were introduced by X. W. Chen and L. G. Sun in an unpublished article (see [24]) and then formally discussed by G. Zhou and A. Zimmermann in [55] as a way of generalizing the concept of stable equivalence of Morita type to singularity categories.

The second goal of this article consists in proving the following result (for more details see Definition 4.2 and Theorem 4.6).

Theorem 1.2. Let \(\Lambda \) and \(\Gamma \) be finite dimensional \(k \)-algebras, and assume that \(F X_\Lambda, \Lambda V_\Gamma \) are bimodules that induce a singular equivalence of Morita type in the sense of [24, 55] and Definition 4.2, such that \(\text{Hom}_\Gamma(X, \Gamma) \) and \(\text{Hom}_\Lambda(Y, \Lambda) \) are of finite projective dimension as a left \(\Lambda \)-module and as a left \(\Gamma \)-module, respectively. Let \(V^\bullet \) be a bounded complex in \(D^b(\Lambda\text{-mod}) \) whose terms are all finitely generated Gorenstein projective left \(\Lambda \)-modules. Then the terms of \(X \otimes_\Lambda V^\bullet \) are all finitely generated Gorenstein projective left \(\Gamma \)-modules, and the versal deformation rings \(R(\Lambda, V^\bullet) \) and \(R(\Gamma, X \otimes_\Lambda V^\bullet) \) are isomorphic in \(\mathcal{C} \).

This article is organized as follows. In §2, we fix the notation that will be used in this article, review some preliminary definitions and properties concerning perfect complexes over finite dimensional algebras, and provide some basic result that will be used in the following sections. We also review some definitions and important properties concerning deformations and (uni)versal deformation rings of complexes over finite dimensional algebras as discussed in [13]. In §3 we prove Theorem 1.1 by carefully adapting some of the ideas in the proof of [14, Thm. 2.6] to the context of derived categories. In §4, we prove Theorem 1.2 by adapting the ideas in the proofs of [13, Prop. 3.2.6] and [6, Thm. 3.4] to our context. As a consequence, we obtain that universal deformation rings of complexes whose terms are finitely generated modules of Gorenstein
dimension zero and whose endomorphism ring (as an object of the singularity category) is trivial, are invariant under certain singular equivalences of Morita type.

We refer the reader to look at [1, 3, 4, 7, 8, 9, 17, 27, 28] (and their references) for basic concepts concerning (maximal) Cohen-Macaulay, totally reflexive and Gorenstein projective modules as well as their applications in other settings, and refer to [41, 52] for getting detailed information concerning localizations of triangulated categories and Verdier quotients.

2. Notations, preliminaries and basic results

In this article, \(k \) denotes a field of arbitrary characteristic and \(\Lambda \) denotes a fixed but arbitrary finite-dimensional \(k \)-algebra. We denote by \(\hat{C} \) the category of complete local commutative Noetherian \(k \)-algebras with residue field \(k \). In particular, the morphisms in \(\hat{C} \) are continuous \(k \)-algebra homomorphisms which induce the identity on \(k \). We denote by \(C \) the full subcategory of Artinian objects in \(\hat{C} \). For every Noetherian object \(R \) in \(\hat{C} \), we denote by \(R\Lambda \) the tensor product of \(k \)-algebras \(R \otimes_k \Lambda \), and by \(R\Lambda\text{-mod} \) we denote the abelian category of all finitely generated left \(R\Lambda \)-modules. We denote by \(R\Lambda\text{-proj} \) the full subcategory of \(R\Lambda \)-modules whose objects are finitely generated projective \(R\Lambda \)-modules.

Let \(R \) be a fixed Noetherian object in \(\hat{C} \). Following [16, 30, 31], an \(R \)-module \(M \) is said to be pseudo-compact if it is the inverse limit of \(R \)-modules of finite length having the discrete topology. In particular, every finitely generated \(R\Lambda \)-module is pseudo-compact. It follows from [30, 31] that the category of pseudo-compact \(R\Lambda \)-modules is an abelian category. Let \(\mathcal{C}^-(R\Lambda) \) denote the abelian category of bounded above complexes of pseudo-compact \(R\Lambda \)-modules, let \(K^-(R\Lambda) \) be the corresponding homotopy category, and let \(D^-(R\Lambda) \) be the corresponding derived category. In particular, the bounded derived category of finitely generated left \(R\Lambda \)-modules \(D^b(R\Lambda\text{-mod}) \) is a full triangulated subcategory of \(D^-(R\Lambda) \). If \(M^\bullet \) is an object in \(\mathcal{C}^-(R\Lambda) \), then we assume that \(M^\bullet \) is of the form

\[
M^\bullet : \cdots \to M^n \xrightarrow{\delta^n_M} M^{n+1} \xrightarrow{\delta^{n+1}_M} M^{n+2} \to \cdots \to M^{n+m-1} \xrightarrow{\delta^{n+m-1}_M} M^{n+m} \to 0 \to \cdots,
\]

and that \(\delta^{i+1}_M \circ \delta^i_M = 0 \) for \(n \leq i \leq n+m-1 \). We denote by \(T \) the shifting functor on \(\mathcal{C}^-(R\Lambda), K^-(R\Lambda) \) and \(D^-(R\Lambda) \), i.e. \(T \) shifts complexes to the left and changes the sign of the differentials. If \(M \) is a pseudo-compact \(R\Lambda \)-module, then \(M \) defines an object in \(D^-(R\Lambda) \) by considering it as a stalk complex concentrated in degree zero. For all morphisms \(f : M^\bullet \to M^{\prime\bullet} \) in \(\mathcal{C}^-(R\Lambda) \), we denote by \(C_f^\bullet \) the mapping cone of \(f \) in \(K^-(R\Lambda) \) (see e.g. [35, §I. 2]), and denote also by \(f \) the corresponding chain homotopy class in \(K^-(R\Lambda) \).

We denote by \(K^b(R\Lambda\text{-proj}) \) the full triangulated subcategory of \(D^-(R\Lambda) \) consisting in those objects that are bounded complexes of finitely generated projective \(R\Lambda \)-modules. We say that an object \(F^\bullet \) of \(D^-(R\Lambda) \) is a perfect complex over \(R\Lambda \) if it is isomorphic to an object of \(K^b(R\Lambda\text{-proj}) \). By [17, Lemma 1.2.1], \(K^b(R\Lambda\text{-proj}) \) is a thick (or épaisse) subcategory of \(D^b(R\Lambda\text{-mod}) \) in the sense of [52, §I.2.1.1]. Since by [46, Prop. 1.3], \(D^b(R\Lambda\text{-mod}) \) is a thick subcategory of \(D^-(R\Lambda) \), it follows from [52, Cor. 4.3] that \(K^b(R\Lambda\text{-proj}) \) is also a thick subcategory of \(D^-(R\Lambda) \). We denote by \(D^c_{\text{perf}}(R\Lambda) \) the Verdier quotient

\[
D^c_{\text{perf}}(R\Lambda) = D^-(R\Lambda)/K^b(R\Lambda\text{-proj}).
\]

More precisely, \(D^c_{\text{perf}}(R\Lambda) \) is the localization \(D^-(R\Lambda)[\Sigma(K^b(R\Lambda\text{-proj}))^{-1}] \) of \(D^-(R\Lambda) \) by the multiplicative system \(\Sigma(K^b(R\Lambda\text{-proj})) \) consisting in those morphisms \(X^\bullet \to Y^\bullet \) in \(D^-(R\Lambda) \) that fit into an exact triangle \(X^\bullet \to Y^\bullet \to Z^\bullet \to TX^\bullet \) with \(Z^\bullet \) isomorphic to a perfect complex over \(R\Lambda \). In particular, a morphism \(u : M^\bullet \to M^{\prime\bullet} \) in \(\mathcal{C}^-(R\Lambda) \) belongs to \(\Sigma(K^b(R\Lambda\text{-proj})) \) if and only if \(C_u^\bullet \) is isomorphic to an object of \(K^b(R\Lambda\text{-proj}) \). A morphism \(f : M^\bullet \to M'^\bullet \) in \(D^c_{\text{perf}}(R\Lambda) \) can be represented by a diagram of the form

\[
\begin{array}{ccc}
M^\bullet & \xrightarrow{f} & M'^\bullet \\
\downarrow u & & \downarrow \& \\
M^{''\bullet} & & \\
\end{array}
\]
where f is a morphism in $D^-(RA)$ and u is a morphism in $\Sigma(K^b(RA\text{-proj}))$. On the other hand, a morphism $f^*: M^* \to M'^*$ in $D^-(RA)$ becomes zero in $D_{\text{perf}}^-(RA)$ if and only if there exists a morphism u in $\Sigma(K^b(RA\text{-proj}))$ such that $u \circ f = 0$ if and only if there exists a morphism v in $\Sigma(K^b(RA\text{-proj}))$ such that $f \circ v = 0$ if and only if f factors through some object isomorphic to a perfect complex over RA (see e.g. [41, §3 & §4] for more details). Following [44, 45], we denote by $D_{\text{sg}}(RA\text{-mod})$ the singularity category of RA, i.e., the Verdier quotient

$$D_{\text{sg}}(RA\text{-mod}) = D^b(RA\text{-mod})/K^b(RA\text{-proj}).$$

Note in particular that by [52, Cor. 4.3], $D_{\text{sg}}(RA\text{-mod})$ is a thick subcategory of $D_{\text{perf}}^-(RA)$.

Following [38, Def. 5.2] (see also [29, §8.3.6]), we say that an object M^* in $\mathbb{K}^-(RA)$ has finite pseudocompact R-tor dimension, provided that there exists an integer N such that all pseudocompact R-modules S, and for all integers $i < N$ we have $H^i(S \otimes_R^L M^*) = 0$, where \otimes_R denotes the completed tensor product in the category of pseudocompact R-modules. Note in particular that if M is a finitely generated pseudocompact R-module, then the functors $M \otimes_R -$ and $M \otimes_R -$ are naturally isomorphic. From now on we use $\hat{\otimes}_R$ to denote both \otimes_R and \otimes_R accordingly. If $\pi: R \to R'$ is a morphism of Noetherian objects in \mathcal{C}, then π induces a morphism of derived categories $R' \otimes_{R, \pi} - : D^-(RA) \to D^-(R'\Lambda)$. In particular, for all objects M^* in $D^-(RA)$, $R' \hat{\otimes}_{R, \pi} TM^* = T(R' \hat{\otimes}_{R, \pi} M^*)$.

Remark 2.1. Let R be an Artinian object in \mathcal{C} and suppose that M^* is a complex in $\mathbb{K}^-(RA)$ that has abstractly free pseudocompact R-modules and has finite pseudocompact R-tor dimension. By the arguments in [13, Remark 2.1.6] (see also [43, pg. 263]), we can truncate M^* to obtain a bounded complex M'^* whose terms are abstractly free pseudocompact R-modules and such that M^* is quasi-isomorphic to M'^* in $\mathbb{K}^-(RA)$.

The following lemma is a direct consequence of a result due to M. Hashimoto (see [36, Thm. 1]).

Lemma 2.2. Let R be a Noetherian object in \mathcal{C} and let M^* be a complex in $\mathbb{K}^-(RA)$ whose terms are finitely generated flat R-modules. If $k \otimes_R M^*$ is acyclic, then M^* is also acyclic.

We obtain the following result, which relates surjective morphisms of Artinian objects in \mathcal{C} with perfect and acyclic complexes.

Lemma 2.3. Let $\pi: R \to R_0$ be a surjective morphism of Artinian objects in \mathcal{C}.

(i) If P_0^* is an object in $\mathbb{K}^b(R_0\Lambda\text{-proj})$, then there exists an object $f^* \in \mathbb{K}^b(RA\text{-proj})$ such that $R_0 \hat{\otimes}_{R, \pi} P^*$ is isomorphic to P_0^* in $\mathbb{K}^-(R_0\Lambda)$.

(ii) Let $f: M^* \to M'^*$ be a morphism in $\mathbb{K}^-(RA)$ where the terms of both M^* and M'^* are abstractly free finitely generated RA-modules. If the induced morphism $k \hat{\otimes}_R f : k \hat{\otimes}_R M^* \to k \hat{\otimes}_R M'^*$ is a quasi-isomorphism in $\mathbb{K}^-(\Lambda)$, then f is also a quasi-isomorphism in $\mathbb{K}^-(RA)$.

(iii) Let $u: M^* \to M''^*$, $v: M^* \to M'^*$ and $f: M'^* \to M''^*$ be morphisms in $\mathbb{K}^-(RA)$ such that $f \circ v = u$. If the mapping cones C_u and C_v of u and v, respectively, are both perfect complexes over RA, then so is C_f the mapping cone of f.

Proof. (i). We can assume without losing generality that P_0^* is of the form

$$P_0^* : 0 \to P_0^{-m} \delta_0^m \to P_0^{-m+1} \delta_0^{m+1} \to \cdots \to P_0^{-1} \delta_0^1 \to P_0^0 \to 0,$$

where for all $0 \leq j \leq m$, P_0^{-j} is a finitely generated projective $R_0\Lambda$-module. For each P_0^{-j}, there exists a finitely generated projective RA-module P^{-j} and a surjective morphism of RA-modules $p^{-j}: P^{-j} \to P_0^{-j}$ such that $R_0 \hat{\otimes}_{R, \pi} P^{-j} : R_0 \hat{\otimes}_{R, \pi} P^{-j} \to P_0^{-j}$ is an isomorphism of finitely generated projective $R_0\Lambda$-modules. Moreover, for all $0 \leq j \leq m$, there exists a morphism $\delta_{P}^{-j}: P^{-j} \to P^{-j+1}$ with $\delta_{P}^0 = 0$ such that $p^{-j+1} \circ \delta_{P}^{-j} = \delta_{P}^{-j} \circ \delta_{P}^{-j}$ as RA-module homomorphisms. Therefore

$$k \hat{\otimes}_R (\delta_{P}^{-j} \circ \delta_{P}^{-j}) = k \hat{\otimes}_R (R_0 \hat{\otimes}_{R, \pi} (\delta_{P}^{-j+1} \circ \delta_{P}^{-j})) = k \hat{\otimes}_R (\delta_{P}^{-j+1} \circ \delta_{P}^{-j}) = 0.$$
It follows by Nakayama’s Lemma that $\delta_p^{j+1} \circ \delta_P^j = 0$ for all $0 \leq j \leq m$. Thus we obtain a perfect complex over RA, namely

$$P^\bullet : 0 \to P^{-m} \xrightarrow{\delta_P^{-m}} P^{-m+1} \xrightarrow{\delta_P^{-m+1}} \cdots \xrightarrow{\delta_P^{-1}} P^0 \to 0,$$

such that $R_0 \otimes_{R,\pi} P^\bullet$ is isomorphic to P^\bullet_0 in $K^b(R_0\Lambda\text{-mod}).$

(ii). Let C_f^\bullet be the mapping cone of f in $K^-(RA).$ After tensoring the corresponding distinguished triangle $M^\bullet \xrightarrow{f} M'^\bullet \to C_f^\bullet \to TM^\bullet$ in $K^-(RA)$ with k over R and using the axiom of triangulated categories (TR2) (see e.g. [35, §1.1] together with [35, §Prop. I.1.1 (c)]), we obtain an isomorphism $h : k \otimes_{R, \pi} C_f^\bullet \to C_{k \otimes R, f}$ such that the following diagram of triangles in $K^-(\Lambda)$ is commutative:

\[
\begin{array}{ccc}
\xymatrix{ k \otimes_R M^\bullet & \ar[l] k \otimes_R f & \ar[l] k \otimes_R M'^\bullet & \ar[l] k \otimes_R C_f^\bullet & \ar[l] k \otimes_R TM^\bullet \\
\ & \ & \ar@{=} \ & \ar@{=} h \\
k \otimes_R M^\bullet & \ar[l] k \otimes_R f & \ar[l] k \otimes_R M'^\bullet & \ar[l] C_{k \otimes_R f} & \ar[l] T(k \otimes_R M^\bullet)
\end{array}
\]

Since $k \otimes_R f$ is a quasi-isomorphism in $C^-(\Lambda)$, it follows from [54, Cor. 1.5.4] that $C_{k \otimes_R f}$ is acyclic, which implies that $k \otimes_R C_f^\bullet$ is also acyclic. Note in particular that the terms of C_f^\bullet are free (so flat) as R-modules. By Lemma 2.2, it follows that C_f^\bullet is acyclic and consequently f is a quasi-isomorphism in $C^-(RA)$.

(iii). After using the Octahedral Axiom (TR4) of triangulated categories (see e.g. [35, §1.1] or [41, §4.1]), we obtain the following commutative diagram of triangles in $K^-(RA)$:

\[
\begin{array}{ccc}
\xymatrix{ M^\bullet & \ar[l] v \ar[l] M'^\bullet & \ar[l] C_f^\bullet & \ar[l] TM^\bullet \\
\ & \ & \ar@{=} \ & \ar@{=} \\
M^\bullet & \ar[l] u \ar[l] M'^\bullet & \ar[l] C_f^\bullet & \ar[l] TM^\bullet \\
\ & \ & \ar@{=} \ & \ar@{=} Tv \\
C_f^\bullet & \ar[l] \ar[l] C_f^\bullet & \ar[l] \ar[l] TC_f^\bullet \\
TM'^\bullet & \ar[l] \ar[l] TM'^\bullet & \ar[l] \ar[l]
\end{array}
\]

Since the category of perfect complexes over RA is a full triangulated subcategory of $K^-(RA)$, it follows that C_f^\bullet is also a perfect complex over RA. This finishes the proof of Lemma 2.3.

Following [27, 28], we say that a (not necessarily finitely generated) left Λ-module M is *Gorenstein projective* provided that there exists an exact sequence of (not necessarily finitely generated) projective left Λ-modules

$$\cdots \to P^{-2} \xrightarrow{f^{-2}} P^{-1} \xrightarrow{f^{-1}} P^0 \xrightarrow{f^0} P^1 \xrightarrow{f^1} P^2 \to \cdots$$

such that $M = \text{coker} f^0$, and for all integers $i > 0$ and $j \in \mathbb{Z}$ we have $\text{Ext}_\Lambda^i(\ker f^j, \Lambda) = 0$. Following [1] and [4], we say that a finitely generated left Λ-module M is of *Gorenstein dimension zero* or *totally reflexive* provided that the left Λ-modules M and $\text{Hom}_\Lambda(\text{Hom}_\Lambda(M, \Lambda), \Lambda)$ are isomorphic, and that $\text{Ext}_\Lambda^i(M, \Lambda) = 0 = \text{Ext}_\Lambda^i(\text{Hom}_\Lambda(M, \Lambda), \Lambda)$ for all $i > 0$. It is well-known that finitely generated Gorenstein projective left
Lemma 2.4. Let \(P^* \) be an arbitrary object in \(K^b(\Lambda\text{-proj}) \).

(i) If \(V \in \Lambda\text{-GProj} \), then \(\text{Ext}^i_{D^-}(\Lambda)(V, P^*) = \text{Hom}_{D^-}(\Lambda)(V, T^i P^*) = 0 \) for all \(i > 0 \).

(ii) If \(V^* \) is a bounded complex in \(\mathcal{C}^-(\Lambda) \) with all of its terms in \(\Lambda\text{-GProj} \), then for all \(i > 0 \)

\[
\text{Ext}^i_{D^-}(\Lambda)(V^*, P^*) = \text{Hom}_{D^-}(\Lambda)(V^*, T^i P^*) = 0.
\]

Proof. (i). Assume without losing generality that \(P^* \) is of the form:

\[
P^* : 0 \to P^{-m} \xrightarrow{\delta_{P^{-m}}} P^{-m+1} \xrightarrow{\delta_{P^{-m+1}}} \cdots \to P^{-1} \xrightarrow{\delta_{P^{-1}}} P^0 \to 0,
\]

where for all \(0 \leq j \leq m \), \(P^{-j} \) is a finitely generated projective \(\Lambda \)-module. Since \(V \in \Lambda\text{-GProj} \), Lemma 2.4 (i) follows for the case \(m = 0 \). Assume the statement of Lemma 2.4 (i) true for all perfect complexes \(Q^* \) over \(\Lambda \) whose length is smaller than \(m \). Let \(P^* \) be the associated truncated complex to \(P^* \) (i.e. \(P^* = 0 \) for \(j > m \), \(P^{-j} = P^{-j} \) and \(\delta_{P^{-j}} = \delta_{P^{-j}} \) for \(0 \leq j \leq m - 1 \)). Then \(\delta_{P^{-m}} \) induces a morphism from \(T^m P^{-m} \) to \(P^* \) whose mapping cone is \(P^* \). Therefore, we obtain a distinguished triangle in \(K^b(\Lambda\text{-proj}) \):

\[
T^{-m} P^{-m} \to P^* \to P^* \to T^m P^{-m}.
\]

By applying \(\text{Hom}_{D^-}(\Lambda)(V, -) \) to the triangle (2.1) and using [35, Prop. I.1.1 (b) & §I.6], we obtain a long exact sequence

\[
\cdots \to \text{Ext}^{i+m}(V, P^{-m}) \to \text{Ext}^i(V, P^*) \to \text{Ext}^{i+m}(V, P^*) \to \text{Ext}^{i+m}(V, P^{-m}) \to \cdots,
\]

where \(i > 0 \) and \(\text{Ext}^i = \text{Ext}^i_{D^-}(\Lambda) \). Note that since \(P^{-m} \) is a finitely generated projective \(\Lambda \)-module and \(P^* \) is a perfect complex over \(\Lambda \) whose length is smaller than \(m \), we obtain by induction that for all \(i > 0 \),

\[
\text{Ext}^{i+m}_{D^-}(\Lambda)(V, P^{-m}) = \text{Ext}^i_{\Lambda}(V, P^{-m}) = 0 = \text{Ext}^i_{D^-}(\Lambda)(V, P^*),
\]

which implies \(\text{Ext}^i_{D^-}(\Lambda)(V, P^*) = 0 \).

(ii). We can assume without losing generality that \(V^* \) is of the form

\[
V^* : 0 \to V^{-n} \xrightarrow{\delta_{V^{-n}}} V^{-n+1} \xrightarrow{\delta_{V^{-n+1}}} \cdots \xrightarrow{\delta_{V^{-1}}} V^{0} \to 0.
\]

If \(n = 0 \), then \(V^* \) is a Gorenstein projective left \(\Lambda \)-module concentrated in degree zero. In this situation, (ii) follows from (i). Assume then the result true for all complexes \(W^* \) whose terms are all in \(\Lambda\text{-GProj} \) and whose length is strictly less than \(n \). As in the proof of (i), we obtain a distinguished triangle in \(\mathcal{C}^-(\Lambda) \):

\[
T^{-n} V^{-n} \to V^* \to V^* \to T^n V^{-n},
\]

where \(V^* \) is the associated truncated complex to \(V^* \). As before, by applying \(\text{Hom}_{D^-}(\Lambda)(-, P^*) \) to (2.2) and using [35, Prop. I.1.1 (b),§I.6], for all \(i > 0 \), we obtain a long exact sequence

\[
\cdots \to \text{Ext}^{i+n}(V^{-n}, P^*) \to \text{Ext}^i(V^*, P^*) \to \text{Ext}^{i+n}(V^*, P^*) \to \text{Ext}^{i+n}(V^{-n}, P^*) \to \cdots.
\]

Note that since \(V^{-n} \) and \(V^* \) are bounded objects in \(\mathcal{C}^-(\Lambda) \) whose terms are in \(\Lambda\text{-GProj} \) and whose length are both smaller than \(n \), we obtain by induction that \(\text{Ext}^{i+n}_{D^-}(\Lambda)(V^{-n}, P^*) = 0 = \text{Ext}^i_{D^-}(\Lambda)(V^*, P^*) \), which implies that \(\text{Ext}^{i}_{D^-}(\Lambda)(V^*, P^*) = 0 \) for all \(i > 0 \). This finishes the proof of Lemma 2.4.

Corollary 2.5. If \(P^* \) and \(Q^* \) are both objects in \(K^b(\Lambda\text{-proj}) \), then \(\text{Ext}^i_{D^-}(\Lambda)(P^*, Q^*) = 0 \) for all \(i > 0 \).

Lemma 2.6. Let \(R \) be an Artinian object in \(\mathcal{C} \). Let \(M^* \) and \(Q^* \) be objects in \(\mathcal{C}^-(RA) \) with \(Q^* \) in \(K^b(RA\text{-proj}) \) and \(M^* \) is a bounded complex of finitely generated \(RA \)-modules. Then \(\text{Ext}^i_{\mathcal{C}^-(RA)}(Q^*, M^*) = 0 \) for all \(i > 0 \).
2.1. Quasi-lifts, deformations and (uni)versal deformation rings of complexes.

Definition 2.7. Let V^\bullet be a complex in $\mathcal{D}^- (\Lambda)$ which has only finitely many non-zero cohomology groups, all of which have finite k-dimension and let $R \in \text{Ob}(\mathcal{C})$ be fixed but arbitrary. A quasi-lift of V^\bullet over R is a pair (M^\bullet, ϕ) consisting of a complex M^\bullet in $\mathcal{D}^- (RA)$ which has finite pseudocompact R-tor dimension together with an isomorphism $\phi : k \hat{\otimes} R M^\bullet \to V^\bullet$ in $\mathcal{D}^- (\Lambda)$. Two quasi-lifts (M^\bullet, ϕ) and (M^\bullet, ϕ') of V^\bullet over R are said to be isomorphic if there exists an isomorphism $M^\bullet \to M'^\bullet$ in $\mathcal{D}^- (RA)$ which carries ϕ to ϕ'. A deformation of V^\bullet over R is an isomorphism class of quasi-lifts of V^\bullet over R. We denote by $\text{Def}_A (V^\bullet, R)$ the set of all deformations of V^\bullet over R. The deformation functor $\hat{F}_{V^\bullet} : \mathcal{C} \to \text{Sets}$ is as follows. For all $R \in \text{Ob}(\mathcal{C})$, $\hat{F}_{V^\bullet} (R) = \text{Def}_A (V^\bullet, R)$, and for all morphisms $\alpha : R \to R'$ in \mathcal{C}, $\hat{F}_{V^\bullet} (\alpha) : \text{Def}_A (V^\bullet, R) \to \text{Def}_A (V^\bullet, R')$ is the set map induced by $(M^\bullet, \phi) \mapsto (R' \hat{\otimes}_{R, \alpha} M^\bullet, \phi_\alpha)$, where ϕ_α denotes the composition $k \hat{\otimes} R (R' \hat{\otimes}_{R, \alpha} M^\bullet) \cong k \hat{\otimes} R M^\bullet \to V^\bullet$. We denote by F_{V^\bullet} the restriction of \hat{F}_{V^\bullet} to C. It was proved in [13, Thm. 1.1] that F_{V^\bullet} has a pro-representable hull $\hat{R} (\Lambda, V^\bullet) \in \text{Ob}(\mathcal{C})$ in the sense of [47, Def. 2.7] and that \hat{F}_{V^\bullet} is continuous (see [42] and [13, Prop. 2.4.4]). Then there exists a quasi-lift $(U (\Lambda, V^\bullet), \phi)$ of V^\bullet over $R (\Lambda, V^\bullet)$ with the following property. For each $R \in \text{Ob}(\mathcal{C})$, the map $\text{Hom}_{\mathcal{C}} (R (\Lambda, V^\bullet), R) \to \hat{F}_{V^\bullet} (R)$ induced by $\alpha \mapsto (R \hat{\otimes}_{R (\Lambda, V^\bullet), \alpha} U (\Lambda, V^\bullet), \phi_\alpha)$ is surjective, and this map is bijective if R is the ring of dual numbers $k [e] / e^2 = 0$. It follows from [13, Prop. 2.5.1] that if V^\bullet has exactly one non-zero cohomology group C of finite k-dimension, then the versal deformation ring $R \in C$ coincides with the versal deformation ring $R (\Lambda, C)$ considered in [14]. In particular, the groups $\text{Hom}_{\mathcal{D}^- (\Lambda)} (V^\bullet, V^\bullet)$ and $\text{Hom}_A (C, C)$ are isomorphic. The cases for when V^\bullet is a two-term complex and for when V^\bullet is a completely split complex are also considered in [13, §2.5].

Remark 2.8. Assume that V^\bullet is a bounded object in $\mathcal{D}^- (\Lambda)$ such that all its cohomology groups have finite k-dimension, let R be an arbitrary Artinian object in \mathcal{C}, and let (M^\bullet, ϕ) be a quasi-lift of V^\bullet over R as in Definition 2.7. By [13, Remarks 2.2.2, 2.2.6, 2.3.5 & 2.3.6], we have the following.

(i) We can replace V^\bullet for a bounded above complex \bar{V}^\bullet of abstractly free finitely generated Λ-modules such that \bar{V}^\bullet is isomorphic to V^\bullet in $\mathcal{D}^- (\Lambda)$.

(ii) We can replace M^\bullet for a bounded above complex \bar{M}^\bullet of abstractly free finitely generated RA-modules such that \bar{M}^\bullet and M^\bullet are isomorphic in $\mathcal{D}^- (RA)$, and that the isomorphism $\phi : k \hat{\otimes} R M^\bullet \to V^\bullet$ can be replaced by a quasi-isomorphism $\phi' : k \hat{\otimes} R \bar{M}^\bullet \to V^\bullet$ in $\mathcal{D}^- (\Lambda)$ which is surjective on terms, and where \bar{V}^\bullet is as in (i).

(iii) Let X^\bullet be an object of $\mathcal{D}^- (RA)$ such that X^\bullet is of finite R-tor dimension having finitely many non-zero cohomology groups, all of which have finite R-tor length. Assume further that all the terms of X^\bullet have finite k-length. If $f : M^\bullet \to X^\bullet$ is an isomorphism in $\mathcal{D}^- (RA)$, then we can replace X^\bullet for a bounded above complex \bar{X}^\bullet of abstractly free finitely generated RA-modules such that \bar{X}^\bullet is isomorphic to X^\bullet in $\mathcal{D}^- (RA)$, and replace f for a quasi-isomorphism $\bar{f} : \bar{M}^\bullet \to \bar{X}^\bullet$ in $\mathcal{D}^- (RA)$ that is surjective on terms, where \bar{M}^\bullet is as in (ii).

3. Representability of the Deformation Functor, (Uni)versal Deformation Rings and Perfect Complexes

In this section, our goal is to prove Theorem 1.1 by proving Proposition 3.1 and Lemma 3.10 below.

Proposition 3.1. Let V^\bullet be a bounded complex in $\mathcal{C}^- (\Lambda)$ whose terms are all in Λ-GProj and which has only finitely many nonzero cohomology groups, all of which have finite k-dimension. If $\text{Hom}_{\mathcal{D}^- (\Lambda)} (V^\bullet, V^\bullet) = k$, then the versal deformation ring $R (\Lambda, V^\bullet)$ (as in Definition 2.7) is universal. In particular, the deformation functor $\hat{F}_{V^\bullet} (_)$ is representable.
Remark 3.2. Let V^\bullet be as in the hypothesis of Proposition 3.1. Since the functor \hat{F}_{V^\bullet} is continuous by [13, Prop. 2.2.4], most of the arguments used to prove Proposition 3.1 can be carried out for the restriction F_{V^\bullet} to the full subcategory \mathcal{C} of Artinian objects by using small extensions in \mathcal{C}, i.e., surjections $\pi : R \to R_0$ of Artinian objects in \mathcal{C} such that the kernel of π is a principal ideal tR annihilated by the maximal ideal m_R of R.

Proof. We prove Proposition 3.1 by carefully adjusting some of the arguments in the proof of [14, Thm. 2.6] to our context.

Claim 3.3. Let $\tau : R \to R_0$ be a surjection of Artinian objects in \mathcal{C}. Let M^\bullet be an object in $\mathcal{C}^-(RA)$ such that all its terms are abstractly free finitely generated RA-modules, and let Q^\bullet be an arbitrary complex in $K^b(RA)$.

Proof. Consider the short exact sequence in $\mathcal{C}^-(RA)$

$$0 \to tQ^\bullet \to Q^\bullet \overset{\tau \circ t}{\to} Q^\bullet \to 0,$$

where $\tau : Q^\bullet \to R_0 \otimes_{R,\pi} Q^\bullet$ is the natural morphism in $\mathcal{C}^-(RA)$ which is surjective on terms. After applying $\text{Hom}_{D^-(RA)}(M^\bullet, -) = \text{Hom}_{K^-(RA)}(M^\bullet, -)$ to (3.1) and using [35, Prop. I.6.1], we obtain a long exact sequence

$$\cdots \to \text{Hom}_{K^-(RA)}(M^\bullet, Q^\bullet) \to \text{Ext}^1_{D^-(RA)}(M^\bullet, tQ^\bullet) \to \cdots.$$ (3.2)

Since the terms of M^\bullet are abstractly free finitely generated RA-modules and $tQ^\bullet \cong k \otimes_R Q^\bullet$ in $\mathcal{C}^-(\Lambda)$, we obtain an isomorphism of abelian groups

$$\text{Ext}^1_{D^-(RA)}(M^\bullet, tQ^\bullet) = \text{Hom}_{K^-(RA)}(M^\bullet, T(tQ^\bullet)) \cong \text{Hom}_{K^-(\Lambda)}(k \otimes_R M^\bullet, T(k \otimes_R Q^\bullet)).$$

Note that in particular that $P^\bullet = k \otimes_R Q^\bullet$ is a perfect complex over Λ. Since by hypothesis $k \otimes_R M^\bullet$ and V^\bullet are isomorphic in $D^-(\Lambda)$, we obtain an isomorphism of abelian groups

$$\text{Hom}_{K^-(\Lambda)}(k \otimes_R M^\bullet, T(k \otimes_R Q^\bullet)) = \text{Hom}_{D^-(\Lambda)}(k \otimes_R M^\bullet, T(k \otimes_R Q^\bullet))$$

$$= \text{Hom}_{D^-(\Lambda)}(V^\bullet, TP^\bullet) = \text{Ext}^1_{D^-(\Lambda)}(V^\bullet, P^\bullet).$$

By using Lemma 2.4(ii) we obtain that $\text{Ext}^1_{D^-(\Lambda)}(V^\bullet, P^\bullet) = 0$, which implies that the map $(h \circ \tau_M)_\bullet$ in (3.2) is surjective. Let $\tau_M : M^\bullet \to R_0 \otimes_{R,\pi} M^\bullet$ be the natural morphism in $\mathcal{C}^-(RA)$ which is surjective on terms. Note that since tR is annihilated by m_R, it follows that all the terms of Q^\bullet_0 are also annihilated by t. Therefore τ_M induces an isomorphism

$$\text{Hom}_{K^-(RA)}(M^\bullet_0, Q^\bullet_0) \overset{(\text{g} \otimes t)_\bullet}{\longrightarrow} \text{Hom}_{K^-(RA)}(M^\bullet, Q^\bullet_0),$$

and thus there exists a morphism $v : M^\bullet \to Q^\bullet$ in $K^-(RA)$ such that $v_0 \circ g = h \circ (R_0 \otimes_{R,\pi} v)$. This finishes the proof of Claim 3.3. \square

Claim 3.4. Let M^\bullet (resp. M^\bullet_0) and N^\bullet (resp. N^\bullet_0) be objects in $\mathcal{C}^-(RA)$ (resp. $\mathcal{C}^-(R_0\Lambda)$) such that there are quasi-isomorphisms $g_M : R_0 \otimes_{R,\pi} M^\bullet \to M^\bullet_0$ and $g_N : R_0 \otimes_{R,\pi} N^\bullet \to N^\bullet_0$ in $\mathcal{C}^-(R_0\Lambda)$ that are surjective on terms. Suppose that all the terms of M^\bullet are abstractly free finitely generated RA-modules, that N^\bullet has finite R-tor dimension and all its terms are finitely generated RA-modules, and that $k \otimes_R M^\bullet$ and V^\bullet are isomorphic in $D^-(\Lambda)$. If $\sigma_0 \in \text{Hom}_{K^-(RA)}(M^\bullet_0, N^\bullet_0)$ factors through an object in $K^b(RA)$, then there exists a morphism $\sigma \in \text{Hom}_{K^-(RA)}(M^\bullet, N^\bullet)$ such that σ factors through an object in $K^b(RA)$ and $\sigma_0 \circ g_M = g_N \circ (R_0 \otimes_{R,\pi} \sigma)$.

\square
Proof. Assume that $\sigma_0 : M^\bullet_0 \to N^\bullet_0$ factors through a complex Q^\bullet_0 in $K^b(\mathcal{R}_0\Lambda\text{-proj})$, namely $\sigma_0 = w_0 \circ v_0$ with $v_0 : M^\bullet_0 \to Q^\bullet_0$ and $w_0 : Q^\bullet_0 \to M^\bullet_0$, where v_0 and w_0 are suitable morphisms in $K^-(\mathcal{R}_0\Lambda)$. It follows from Lemma 2.3(i) that there exists a complex Q^\bullet in $K^b(\mathcal{R}_0\Lambda\text{-proj})$ such that $R_0 \otimes_{\mathcal{R},\pi} Q^\bullet$ is isomorphic to Q_0 via some isomorphism $h : R_0 \otimes_{\mathcal{R},\pi} Q^\bullet \to Q_0$ in $C^-(\mathcal{R}_0\Lambda)$. By Claim 3.3, there exists $v \in \text{Hom}_{\mathcal{C}^-(\mathcal{R}_0\Lambda)}(M^\bullet, Q^\bullet)$ such that $v_0 \circ g_M = h \circ (R_0 \otimes_{\mathcal{R},\pi} v)$. On the other hand, since N^\bullet has finite R-tor dimension, by Remark 2.1 we can assume that N^\bullet is a bounded complex whose terms are finitely generated free R-modules. Let $\tau_N : N^\bullet \to R_0 \otimes_{\mathcal{R}} N^\bullet$ be the natural morphisms in $C^-(\mathcal{R}_0\Lambda)$ that is surjective on terms. By [35, Prop. I.6.1], the short exact sequence in $C^-(\mathcal{R}_0\Lambda)$

$$0 \to tN^\bullet \to N^\bullet \xrightarrow{\text{gr} \tau_N} N_0^\bullet \to 0,$$

induces an exact sequence of abelian groups

$$\text{Hom}_{\mathcal{C}^-(\mathcal{R}_0\Lambda)}(Q^\bullet, N^\bullet) \xrightarrow{(g \circ \tau_N)_*} \text{Hom}_{\mathcal{C}^-(\mathcal{R}_0\Lambda)}(Q^\bullet, N_0^\bullet) \to \text{Ext}_D^1(\mathcal{C}^-(\mathcal{R}_0\Lambda)(Q^\bullet, tN^\bullet)).$$

Since by Lemma 2.6 $\text{Ext}_D^1(\mathcal{C}^-(\mathcal{R}_0\Lambda)(Q^\bullet, tN^\bullet)) = 0$, it follows that $(g_N \circ \tau_N)_*$ is surjective. Then there exists $w \in \text{Hom}_{\mathcal{C}^-(\mathcal{R}_0\Lambda)}(Q^\bullet, N^\bullet)$ such that $\tau_N \circ g_N = w_0 \circ h \circ \tau_N$. Then, $\sigma_0 \circ g_M = w_0 \circ v_0 \circ g_M = w_0 \circ h \circ (R_0 \otimes_{\mathcal{R},\pi} v) = g_N \circ (R_0 \otimes_{\mathcal{R},\pi} w) \circ (R_0 \otimes_{\mathcal{R},\pi} v) = g_N \circ (R_0 \otimes_{\mathcal{R},\pi} v)$. This finishes the proof of Claim 3.4.

Claim 3.5. Let R be an Artinian object in \mathcal{C}, and let (M^\bullet, ϕ) and (M'^\bullet, ϕ') be two quasi-lifts of V^\bullet over R. If there exists an isomorphism $f : M^\bullet \to M'^\bullet$ in $\mathcal{C}^-(\mathcal{R}A)$, then there exists an isomorphism $f' : M^\bullet \to M'^\bullet$ in $\mathcal{D}^-(\mathcal{R}A)$ such that $\phi \circ (k \otimes_R f)^{-1} \circ \phi'^{-1}$ in $\mathcal{D}^-(\Lambda)$. Note that the image of f'' in $\mathcal{D}^-(\Lambda)$ can be represented by a diagram in $\mathcal{D}^-(\Lambda)$ of the form

$$\begin{array}{ccc}
V^\bullet & \xrightarrow{\phi} & V^\bullet \\
\downarrow & & \downarrow \\
V^\bullet & \xrightarrow{\phi'\circ(k \otimes_R f)^{-1}} & V^\bullet
\end{array}$$

Since $\text{Hom}_{\mathcal{D}^+(\Lambda)}(V^\bullet, V^\bullet) = k$, it follows that there exists an scalar $\bar{s}_f \in k$ such that the following diagram in $\mathcal{D}^-(\Lambda)$ is commutative (see e.g. [41, §3]):

$$\begin{array}{ccc}
V^\bullet & \xrightarrow{\phi} & V^\bullet \\
\downarrow & & \downarrow \\
V^\bullet & \xrightarrow{\phi'\circ(k \otimes_R f)^{-1}} & V^\bullet
\end{array}$$

where $v : V^\bullet \to V'^\bullet$ fits into an exact triangle $V^\bullet \xrightarrow{v} V^\bullet \to W^\bullet \to TV^\bullet$ in $\mathcal{D}^-(\Lambda)$, with W^\bullet isomorphic to a perfect complex over Λ. By Remark 2.8, we can assume that V^\bullet is a bounded above complex of abstractly free finitely generated Λ-modules, that M^\bullet and M'^\bullet are bounded above complexes of abstractly free finitely generated $\mathcal{R}A$-modules, that f is given by a quasi-isomorphism in $\mathcal{C}^-(\mathcal{R}A)$ that is surjective on terms, and that ϕ, ϕ' and f'' are given by quasi-isomorphisms in $\mathcal{C}^{-}(\Lambda)$ that are surjective on terms. Moreover, v can be assumed to be a morphism in $\mathcal{K}^-(\Lambda)$ whose mapping cone is isomorphic to an object in $\mathcal{K}^b(\Lambda\text{-proj})$. Since $v \circ (f'' - \bar{s}_f \cdot 1_{V^\bullet}) = 0$, it follows that $\bar{s}_f = f'' - \bar{s}_f \cdot 1_{V^\bullet} \in \text{Hom}_{\mathcal{C}^-(\Lambda)}(V^\bullet, V^\bullet)$ factors through an...
object in $K^b(\Lambda)$-proj). By Claim 3.4, there exists a morphism $\sigma_f \in \text{Hom}_{K^-(\Lambda)}(M^\bullet, M^\bullet)$ factoring through an object in $K^b(\Lambda)$-proj such that $\sigma_f = f \circ \phi$ with $K^\eta_\Lambda(\Lambda)$. Let $s_f \in R$ be such that $k \otimes_R s_f = \bar{s}_f$, and let $f'' = s_f \cdot 1_{M^\bullet} + \sigma_f$. Then $\phi \circ (k \otimes_R f'') = f'' \circ \phi$ is a quasi-isomorphism in $C^-(\Lambda)$, and hence so is $k \otimes_R f''$. It follows from Lemma 2.3(ii) that $f'': M^\bullet \to M^\bullet$ is a quasi-isomorphism in $C^-(\Lambda)$. If we define $f' = f \circ f'' : M^\bullet \to M^\bullet$, then f' is a quasi-isomorphism and $f' \circ (k \otimes_R f') = \phi$. This finishes the proof of Claim 3.5.

Claim 3.6. If (M^\bullet, ϕ) is a quasi-lift of V^\bullet over an Artinian object R in \mathcal{C}, then the ring homomorphism $\eta_{M^\bullet} : R \to \text{Hom}_{D^a_{\text{perf}}(\Lambda)}(M^\bullet, M^\bullet)$ is surjective, where for all $r \in R$, $\eta_{M^\bullet}(r)$ is represented by the diagram

\[
\begin{array}{ccc}
M^\bullet & \xrightarrow{r \cdot 1_{M^\bullet}} & M^\bullet \\
\downarrow & & \downarrow \\
M^\bullet & \xrightarrow{1_{M^\bullet}} & M^\bullet \\
\end{array}
\]

Proof. Let $\pi : R \to R_0$ be a small extension in \mathcal{C} as in Remark 3.2 and assume that the ring homomorphism $\eta_{M^\bullet} : R_0 \to \text{Hom}_{D^a_{\text{perf}}(\Lambda)}(M^\bullet, M^\bullet)$ is surjective whenever M^\bullet_0 defines a quasi-lift of V^\bullet over R_0. Let (M^\bullet, ϕ) be a quasi-lift of V^\bullet over R and let $\hat{f} : M^\bullet \to M^\bullet$ be a morphism in $D^a_{\text{perf}}(\Lambda)$. It follows that \hat{f} can be represented by a diagram in $D^{-}(\Lambda)$ of the form

\[
\begin{array}{ccc}
M^\bullet & \xrightarrow{f} & M^\bullet \\
\downarrow & & \downarrow \\
M^\bullet & \xrightarrow{s} & M^\bullet \\
\end{array}
\]

where f is a morphism in $D^{-}(\Lambda)$ and $s : M^\bullet \to M^\bullet$ fits into an exact triangle $M^\bullet \xrightarrow{f} M^\bullet \to N^\bullet \to TM^\bullet$ with N^\bullet isomorphic to a perfect complex over Λ. As in the proof of Claim 3.5 we use Remark 2.8 so that we can assume that V^\bullet is a bounded above complex of abstractly free finitely generated Λ-modules, that M^\bullet is a bounded above complex of abstractly free finitely generated Λ-modules, that f is a morphism in $K^-(\Lambda)$, and that ϕ is given by a quasi-isomorphism in $C^{-}(\Lambda)$ that is surjective on terms. We can also assume that C^s is isomorphic to an object in $K^b(\Lambda)$-proj). In particular, the terms of M^\bullet are finitely generated Λ-modules and C^s is isomorphic to a bounded complex whose terms are flat as Λ-modules, which implies that C^s also has finite R-tor dimension (see [38, Prop. 5.1] and [29, §8.3.6.2]). Since M^\bullet has finite R-tor dimension, it follows from [38, §5.3] that M^\bullet has also finite R-tor dimension. On the other hand, note that $R_0 \otimes_{R, \pi} C^s$ is a perfect complex over $R_0 \Lambda$ and that f and s induce morphisms $f_0, s_0 : M^\bullet_0 \to M^\bullet_0$ in $K^-(R_0 \Lambda)$, where $M^\bullet_0 = R_0 \otimes_{R, \pi} M^\bullet$ and $M^\bullet_0 = R_0 \otimes_{R, \pi} M^\bullet$. Let C^s_0 be the mapping cone of s_0 in $K^-(R_0 \Lambda)$. By the axiom (TR2) of triangulated categories (see e.g. [35, §I.1]) and by [35, Prop. I.1.1 (c)], there exists an isomorphism $h : R_0 \otimes_{R, \pi} C^s_0 \to C^s_0$ such that the following diagram of triangles in $K^-(R_0 \Lambda)$ is commutative:

\[
\begin{array}{ccc}
R_0 \otimes_{R, \pi} M^\bullet & \xrightarrow{=} & R_0 \otimes_{R, \pi} M^\bullet \\
\downarrow & & \downarrow \\
M^\bullet_0 & \xrightarrow{s_0} & M^\bullet_0 \\
\end{array}
\quad
\begin{array}{ccc}
R_0 \otimes_{R, \pi} C^s_0 & \xrightarrow{=} & R_0 \otimes_{R, \pi} TM^\bullet \\
\downarrow & & \downarrow \\
C^s_0 & \xrightarrow{h} & TM^\bullet_0 \\
\end{array}
\]

It follows that C^s_0 is also a perfect complex over $R_0 \Lambda$, and thus that the diagram

\[
\begin{array}{ccc}
M^\bullet & \xrightarrow{f_0} & M^\bullet_0 \\
\downarrow & & \downarrow \\
M^\bullet & \xrightarrow{s_0} & M^\bullet_0 \\
\end{array}
\]

is surjective on terms. This finishes the proof of Claim 3.6.
represents a morphism \(\hat{f}_0 : M_0^\bullet \to M_0^\bullet \) in \(D_{\text{perf}}(R_0 \Lambda) \). By induction, there exists \(r_0 \in R_0 \) such that
\(\eta_{M_0^\bullet}(r_0) = \hat{f}_0 \) in \(D_{\text{perf}}(R_0 \Lambda) \). Therefore, there exists \(M_0^\bullet \), and morphisms \(g_0 : M_0^\bullet \to M_0^\bullet \), \(u_0 : M_0^\bullet \to M_0^\bullet \) and \(v_0 : M_0^\bullet \to M_0^\bullet \) in \(K^- \), such that the mapping cone \(C_{v_0} \) of \(s_0 \) is a perfect complex over \(R_0 \Lambda \) and such that the following diagram in \(K^- \) is commutative:

\[
\begin{array}{ccc}
M_0 & \xrightarrow{u_0} & M_0^\bullet \\
\downarrow{f_0} & & \downarrow{g_0} \\
M_0^\bullet & \xrightarrow{v_0} & M_0^\bullet \\
\end{array}
\]

By Lemma 2.3(iii), the mapping cone \(C_{v_0} \) of \(v_0 \) is also a perfect complex over \(R_0 \Lambda \). Since \(v_0 \circ (s_0 \circ (r_0 \cdot 1_{M_0^\bullet}) - f_0) = 0 \), it follows that the morphism \(s_0 = s_0 \circ (r_0 \cdot 1_{M_0^\bullet}) - f_0 \in \text{Hom}_{K^-}(R_0 \Lambda)(M_0^\bullet, M_0^\bullet) \) factors through a perfect complex over \(R_0 \Lambda \). By Claim 3.5, there exists a morphism \(\sigma \in \text{Hom}_{K^-}(R_0 \Lambda)(M_0^\bullet, M_0^\bullet) \) which factors through a perfect complex over \(RA \) such that \(\sigma_0 = R_0 \otimes_{R, \pi} \sigma \). Let \(r \in R \) be such that \(\pi(r) = r_0 \). It follows that \(r_0 \cdot 1_{M_0^\bullet} = R_0 \otimes_{R, \pi} (r \cdot 1_{M_0^\bullet}) \). Consider the morphism \(h = s \circ (r \cdot 1_{M_0^\bullet}) - f - \sigma : M_0^\bullet \to M_0^\bullet \) in \(K^- \). It follows that \(h_0 = R_0 \otimes_{R, \pi} h \) is equal to the zero morphism in \(K^- \). Since as noted above, the terms of \(M_0^\bullet \) are all abstractly free over \(RA \), it follows by [14, Lemma 2.3.3] (see also [43, Sublemma VI.8.20]) that \(h_0 \) is equal to a morphism \(h_1 \in \text{Hom}_{K^-}(RA)(M_0^\bullet, M_0^\bullet) \), where \(tR \) is the kernel of \(\pi_1 \) as in Remark 3.2. Thus

\[
(3.4) \quad s \circ (r \cdot 1_{M_0^\bullet}) - f = \sigma + h_1.
\]

Let \(\tau_1 : tM_0^\bullet \to V^\bullet \) and \(\tau_2 : tM_0^\bullet \to k \otimes_R M_0^\bullet \) be isomorphisms in \(C^- \) induced by the isomorphism \(tR \cong k \in C \), and let \(\tau_0 : M_0^\bullet \to k \otimes_R M_0^\bullet \) and \(\tau_{M_0^\bullet} : M_0^\bullet \to k \otimes_R M_0^\bullet \) be the natural morphisms in \(C^- \) that are surjective on terms. We obtain an isomorphism of abelian groups

\[
(3.5) \quad \text{Hom}_{K^-}(RA)(M_0^\bullet, tM_0^\bullet) \to \text{Hom}_{K^-}(RA)(k \otimes_R M_0^\bullet, k \otimes_R M_0^\bullet).
\]

which sends the homotopy class of a morphism \(g : M_0^\bullet \to tM_0^\bullet \) to the homotopy class of \(g_1 \) when \(g_1 \circ \tau_{M_0^\bullet} = \tau_2 \circ g \). Assume that \(h_1 \) is sent to \(\beta_1 \) by the isomorphism (3.5). Let \(s : M_0^\bullet \to M_0^\bullet \) be as in (3.3). Note that \(s \) induces a morphism \(tM_0^\bullet \to tM_0^\bullet \) which we denote by \(s_1 \) such that \((k \otimes_R s) \circ 1_{tM_0^\bullet} = 1_{tM_0^\bullet} \). Thus \(C_{s_0} \) is also a perfect complex over \(RA \). It follows that \(C_{k \otimes_R s} \) is also a perfect complex over \(\Lambda \). It follows that both \(\beta_1 \) and \(k \otimes_R s \) define a morphism in \(D_{\text{perf}}(A) \).
Since $\text{Hom}_{D_{prr}(\Lambda)}(k \otimes_R M^\bullet, k \otimes M^\bullet) = \text{Hom}_{D_{prr}(\Lambda)}(V^\bullet, V^\bullet) = k$, there exists $\bar{a} \in k$ such that the following diagram is commutative in $\mathcal{K}^-(\Lambda)$:

\[
\begin{array}{c}
\kappa \otimes_R M^\bullet \\
\downarrow\quad \downarrow y_0 \\
\kappa \otimes_R M^\bullet \\
\downarrow \beta_1 \\
\kappa \otimes_R M^\bullet
\end{array}
\]

where the mapping cone of y_0 is a perfect complex over Λ. By Lemma 2.4(iii), the mapping cone of x_0 is also a perfect complex over Λ. Since $x_0 \circ ((k \otimes_R s) \circ (\bar{a} \cdot 1_{k \otimes_R M^\bullet}) - \beta_1) = 0$, it follows that the morphism $(k \otimes_R s) \circ \bar{a} \cdot 1_{k \otimes_R M^\bullet} - \beta_1 \in \text{Hom}_{\mathcal{K}^-(\Lambda)}(k \otimes_R M^\bullet, k \otimes_R M^\bullet)$ factors through a perfect complex over Λ. By Claim 3.4, there exists $\sigma_1 \in \text{Hom}_{\mathcal{K}^-(\Lambda)}(M^\bullet, M^\bullet)$ that factors through a perfect complex over $\mathcal{K}^-(\Lambda)$ such that $(k \otimes_R s) \circ \bar{a} \cdot 1_{k \otimes_R M^\bullet} - \beta_1 = k \otimes_R \sigma_1$ and $(k \otimes_R \sigma_1) \circ \tau_{M^\bullet} = \tau_{M^\bullet} \circ \sigma_1$. Let $\sigma_2 : M^\bullet \to tM^\bullet$ be the pre-image of $k \otimes_R \sigma_1$ under the isomorphism (3.5). Let $a \in R$ such that a is sent to \bar{a} by the isomorphism $tR \cong k$. Note that $(\bar{a} \cdot 1_{k \otimes_R M^\bullet}) \circ \tau_{M^\bullet} = \tau_2 \circ (ta \cdot 1_{M^\bullet})$. Therefore, $\tau_2 \circ (s_1 \circ (ta \cdot 1_{M^\bullet}) - h_1) = \tau_2 \circ s_1 \circ (ta \cdot 1_{M^\bullet}) - \tau_2 \circ h_1 = (k \otimes_R s) \circ \bar{a} \cdot 1_{k \otimes_R M^\bullet} - \beta_1 \circ \tau_{M^\bullet} = (k \otimes_R s) \circ (\bar{a} \cdot 1_{k \otimes_R M^\bullet}) \circ \tau_{M^\bullet} - \beta_1 \circ \tau_{M^\bullet} = (k \otimes_R \sigma_1) \circ \tau_{M^\bullet} = \tau_2 \circ \sigma_2$, and consequently $s_1 \circ (ta \cdot 1_{M^\bullet}) - h_1 = \sigma_2$.

Since σ_1 factors through a perfect complex over $\mathcal{K}^-(\Lambda)$, there exists a suitable non-trivial morphism u in $\mathcal{K}^-(\Lambda)$ whose mapping cone is isomorphic to a perfect complex over $\mathcal{K}^+(\Lambda)$ such that $\sigma_1 \circ u = 0$. This implies that $0 = \tau_{M^\bullet} \circ \sigma_1 \circ u = (k \otimes_R \sigma_1) \circ \tau_{M^\bullet} \circ u = \tau_2 \circ \sigma_2 \circ u$. Since τ_2 is an isomorphism, it follows that $\sigma_2 \circ u = 0$, which implies that σ_2 factors through a perfect complex over $\mathcal{K}^-(\Lambda)$. By using (3.4) and that s_1 is the restriction of $s : M^\bullet \to M^\bullet$ to tM^\bullet, we obtain that $s \circ (r \cdot 1_{M^\bullet}) - f = \sigma + s \circ (ta \cdot 1_{M^\bullet}) - \sigma_2$, which is equivalent to

\[
s \circ ((r - ta) \cdot 1_{M^\bullet}) - f = \sigma - \sigma_2.
\]

Since both σ and σ_2 factor through a perfect complex over $\mathcal{K}^-(\Lambda)$, it follows that there exists a morphism $v : M^\bullet \to M^\bullet$ in $\mathcal{K}^-(\Lambda)$ whose mapping cone is a perfect complex over $\mathcal{K}^-(\Lambda)$ such that $v \circ (s \circ ((r - ta) \cdot 1_{M^\bullet}) - f) = 0$, and thus we obtain a commutative diagram in $\mathcal{K}^-(\Lambda)$:

\[
\begin{array}{c}
M^\bullet \\
\downarrow v \circ s \\
M^\bullet \\
\downarrow f \\
M^\bullet
\end{array}
\]

Since the mapping cone of $v \circ s$ is also a perfect complex over $\mathcal{K}^-(\Lambda)$, it follows from e.g. [41, §3.1] that $\eta_{M^\bullet}(r - ta) = f$ in $\text{Hom}_{D_{prr}(\Lambda)}(M^\bullet, M^\bullet)$, which proves that η_{M^\bullet} is surjective. This finishes the proof of Claim 3.6.

The following claim, verifies Schlessinger’s criterion (H4) in [47, Thm. 2.11] for F_{V^\bullet}.

Claim 3.7. Let $\pi : R' \to R$ be an small extension of Artinian objects in \mathcal{C} as in Remark 3.2. The natural map $F_{V^\bullet}(R' \times_R R') \to F_{V^\bullet}(R') \times_{F_{V^\bullet}(R)} F_{V^\bullet}(R')$ is injective.

Proof. Let $\alpha_1 : R' \times_R R' \to R'$ (resp. $\alpha_2 : R' \times_R R' \to R'$) be the natural surjection onto the first (resp. second) component of $R' \times_R R'$ such that $\pi \circ \alpha_1 = \pi \circ \alpha_2$. Let (M^\bullet_1, ϕ_1) and (M^\bullet_2, ϕ_2) be quasi-lifts of V^\bullet.
over $R' \times_R R'$. Suppose there are isomorphisms $f_i : R' \otimes^L_{R' \times_R R', \alpha_i} \mathcal{M}^i_1 \to R' \otimes^L_{R' \times_R R', \alpha_i} \mathcal{M}^i_2$ in $\mathcal{D}^-(R'A)$ for $i = 1, 2$. Then $g_R = (R' \otimes^L_{R', \pi} f_2)^{-1} \circ (R' \otimes^L_{R', \pi} f_1)$ is an automorphism of $M^i_R = R' \otimes^L_{R' \times_R R', \pi \circ \alpha_2} \mathcal{M}^i_1$ in $\mathcal{D}^-(RA)$. Then g_R defines a morphism in $\mathcal{D}^{-}_{\text{perf}}(RA)$ that can be described by the diagram

\[
\begin{array}{ccc}
\mathcal{M}^i_R & \xrightarrow{g_R} & \mathcal{M}^i_R \\
\downarrow & & \downarrow \\
\mathcal{M}^i_R & \xrightarrow{1_{\mathcal{M}^i_R}} & \mathcal{M}^i_R
\end{array}
\]

Since M^i_R defines a quasi-lift of V^\bullet over R, it follows from Claim 3.6 that there exists $r \in R$ such that the following diagram in $\mathcal{D}^-(RA)$ is commutative:

\[
\begin{array}{ccc}
\mathcal{M}^i_R & \xrightarrow{\mathcal{M}^i_R} & \mathcal{M}^i_R \\
\downarrow & & \downarrow \\
\mathcal{M}^i_R & \xrightarrow{v_R} & \mathcal{M}^i_R \\
\downarrow & & \downarrow \\
\mathcal{M}^i_R & \xrightarrow{\mathcal{M}^i_R} & \mathcal{M}^i_R
\end{array}
\]

where the mapping cone of v_R is a perfect complex over R. Since $v_R \circ (r \cdot 1_{\mathcal{M}^i_R} - g_R) = 0$, it follows that $r \cdot 1_{\mathcal{M}^i_R} - g_R$ factors through a perfect complex over RA. Let $M^i_{RA} = R' \otimes^L_{R' \times R', \pi} \mathcal{M}^i_1$. Note that $M^i_{RA} = R' \otimes^L_{R', \pi} M^i_{RA}$. By Remark 2.8 we can assume that V^\bullet is a bounded above complex of abstractly free finitely generated Λ-modules, and that g_R is given by a quasi-isomorphism in $\mathcal{D}^-(RA)$ that is surjective on terms. By Claim 3.4, there exists a morphism $\sigma_{RA} \in \text{Hom}_{\mathcal{D}^-(RA)}(M^i_{RA}, M^i_{RA})$ that factors through a perfect complex over $R'A$ such that $r \cdot 1_{\mathcal{M}^i_{RA}} - g_R = R' \otimes_{R', \pi} \sigma_{RA}$. Let $r' \in R'$ such that $\pi(r') = r$, and let $g_{RA} = r' \cdot 1_{\mathcal{M}^i_{RA}} - \sigma_{RA}$. Note that $R' \otimes_{R', \pi}(r' \cdot 1_{\mathcal{M}^i_{RA}}) = r \cdot 1_{\mathcal{M}^i_{RA}}$. Therefore

$k \otimes_R g_{RA} = k \otimes_R (R' \otimes_{R', \pi} g_{RA}) = k \otimes_R (R' \otimes_{R', \pi}(r' \cdot 1_{\mathcal{M}^i_{RA}} - \sigma_{RA})) = k \otimes_R (r \cdot 1_{\mathcal{M}^i_{RA}} - r \cdot 1_{\mathcal{M}^i_{RA}} + g_{RA}) = k \otimes_R g_R,$

which implies that $k \otimes_R g_{RA}$ is a quasi-isomorphism in $\mathcal{D}^-(\Lambda)$. By Lemma 2.3(ii), it follows that g_{RA} defines an automorphism of M^i_{RA} in $\mathcal{D}^-(R'A)$. By replacing f_2 with $f_2 \circ g_{RA}$, we have $R' \otimes_{R', \pi} f_1 = R' \otimes_{R', \pi} f_2$. Therefore the pair (f_1, f_2) defines an isomorphism $j : M^i_1 \to M^i_2$ in $\mathcal{D}^-(R' \times_R R') \Lambda$. By Claim 3.5, we have that $[M^i_1, \phi_1] = [M^i_2, \phi_2]$ in $\mathcal{F}_{V^\bullet}(R' \times_R R')$, which proves Claim 3.7.

Since the deformation functor \mathcal{F}_{V^\bullet} is continuous by [13, Prop. 2.4.4], Proposition 3.1 follows from [47, §2] together with [13, Prop. 2.4.1 & 2.4.3] and Claim 3.7. This finishes the proof of Proposition 3.1.

\section*{Remark 3.8.} Let P^\bullet be an object in $K^b(\Lambda\text{-proj})$. Let R be an Artinian object in \mathcal{C}, let $\iota_R : k \to R$ be the unique morphism in \mathcal{C} that endows R with a k-algebra structure, and let $\pi_R : R \to k$ be the natural projection in \mathcal{C}. Then $\pi_R \circ \iota_R = 1_k$ and $P^\bullet_R = R \otimes_k P^\bullet$ is an object in $K^b(\Lambda\text{-proj})$. In particular, $(P^\bullet_R, \pi_R, P^\bullet)$ is a quasi-lift of P^\bullet over R, where $\pi_{R, P^\bullet} : k \otimes_k \pi_R(R \otimes_k P^\bullet) \to P^\bullet$ is the natural isomorphism in $K^-(\Lambda\text{-proj})$.

We obtain the following result, which is a version of Claim 6 within the proof of [14, Thm. 2.6] (resp. Claim 2.3.6 within the proof of [50, Thm. 2.2]) for derived categories.
Lemma 3.9. Let R be an Artinian object in \mathcal{C} and let P^*_{R} be a perfect complex over Λ. Suppose there is a commutative diagram of triangles in $\mathcal{K}^-(\Lambda)$

\[
\begin{array}{ccc}
P^*_R & \xrightarrow{g} & A^* \\
\downarrow & & \downarrow h \\
P^* & \xrightarrow{\tilde{g}} & \k\otimes_R A^* \\
\end{array}
\quad
\begin{array}{ccc}
& C^* & \xrightarrow{\tilde{h}} & TP^*_R \\
\end{array}
\]

(3.6)

where the terms of A^* and C^* are abstractly free finitely generated Λ-modules, the complexes $\k\otimes_R A^*$ and $\k\otimes_R C^*$ are isomorphic in $\mathcal{D}^-(\Lambda)$ to bounded complexes with terms in $\Lambda\text{-GProj}$, and that the bottom row arises by tensoring the top row with \k over R and by using the isomorphism $\pi_{R,P^*} : \k\otimes_{R,\pi_R} P^*_R \rightarrow P^*$ in $\mathcal{K}^-(\Lambda R)$. Then the morphism g in the top row of (3.6) is a section in $\mathcal{K}^-(\Lambda R)$.

Proof. Without losing generality, assume that P^*_R is an object in $\mathcal{K}^b(\Lambda\text{-proj})$. Note that $P^* = \k\otimes_R P^*_{R}$ is then an object in $\mathcal{K}^b(\Lambda\text{-proj})$. Assume that $\k\otimes_R A^*$ and $\k\otimes_R C^*$ are respectively isomorphic to W and W' in $\mathcal{D}^-(\Lambda)$, where W and W' are bounded complexes in $\mathcal{C}^-(\Lambda)$ whose terms are in $\Lambda\text{-GProj}$. It follows from Lemma 2.2(ii) that

$$\text{Hom}_{\mathcal{K}^-(\Lambda)}(\k\otimes_R C^*, TP^*) = \text{Hom}_{\mathcal{D}^-(\Lambda)}(\k\otimes_R C^*, TP^*) = \text{Ext}_{\mathcal{D}^-(\Lambda)}^1(W, P^*) = 0.$$

In particular, it follows from [35, Prop. I.6.1] that there exists a morphism $\bar{w} : \k\otimes A^* \rightarrow P^*$ in $\mathcal{K}^-(\Lambda)$ such that $\bar{w} \circ \tilde{g} = 1_{P^*}$. By Claim 3.3, there exists a morphism $w : A^* \rightarrow P^*_R$ in $\mathcal{K}^-(\Lambda R)$ such that $\k\otimes_R w = \bar{w}$. Hence $\k\otimes_R (w \circ g) = \bar{w} \circ \tilde{g} = 1_{P^*}$. By Lemma 2.3, we obtain that $w \circ g$ is a quasi-isomorphism, which implies that g induces a section in $\mathcal{D}^-(\Lambda R)$. Since the terms of P^*_R and A^* are finitely generated projective Λ-modules, we can assume that g is a section in $\mathcal{K}^-(\Lambda R)$. This finishes the proof of Lemma 3.9.

We next use Lemma 3.9 to prove the following result, which is a version of [13, Lemma 3.2.2] and [6, Lemma 2.2] for derived categories. Although its proof can be obtained from that of [13, Lemma 3.2.2] by easily adjusting the arguments to the language of derived categories, we decided to include it for the convenience of the reader.

Lemma 3.10. Suppose that V^* is a bounded complex in $\mathcal{C}^-(\Lambda)$ such that all its terms are in $\Lambda\text{-GProj}$, and let P^* be a perfect complex over Λ. Then P^* has a universal deformation ring $R(\Lambda, P^*)$ isomorphic to \k, and the versus deformation ring $R(\Lambda, V^* \oplus P^*)$ is isomorphic to the versus deformation ring $R(\Lambda, V^*)$. Moreover, $R(\Lambda, V^* \oplus P^*)$ is universal if and only if $R(\Lambda, V^*)$ is universal.

Proof. By Remark 2.8, we can assume V^* to be a bounded above complex of abstractly free finitely generated Λ-modules, and that P^* is an object in $\mathcal{K}^b(\Lambda\text{-proj})$. It follows from Corollary 2.5 that $\text{Ext}^1_{\mathcal{D}^-(\Lambda)}(P^*, P^*) = 0$, which implies by [13, Thm. 2.1.12] that the versal deformation ring $R(\Lambda, P^*)$ is isomorphic to \k. For each object R in \mathcal{C}, let $\iota_R : \k \rightarrow R$ be the unique morphism in \mathcal{C} that endows R with a \k-algebra structure, and let $\pi_R : R \rightarrow \k$ be the morphism of R to its residue field \k in \mathcal{C}. In particular, $\pi_R \circ \iota_R = 1_{\k}$. This means that \k is the universal deformation ring of P^*.

Let R be a Noetherian object in \mathcal{C}. Define a map

$$\text{Def}_\Lambda(V^*, R) \rightarrow \text{Def}_\Lambda(V^* \oplus P^*, R)$$

$$[M^*, \phi] \mapsto [M^* \oplus \phi + \pi_{R,P^*}]$$

where $P^*_R = R\otimes_{\k,\iota_R} P^*$ and $\pi_{R,P^*} : \k\otimes_{R,\pi_R} P^*_R \rightarrow P^*$ are as in Remark 3.8. Since for all $\alpha : R \rightarrow R'$ in \mathcal{C}, $\alpha \circ \iota_R$ and $\pi_{R'} \circ \alpha = \pi_R$, it follows that the map (3.7) is natural with respect to morphisms in \mathcal{C}. Due to the continuity of \hat{F}_{V^*} and $\hat{F}_{V^* \oplus P^*}$, in order to prove Lemma 3.10, it suffices to show that the map (3.7) is bijective for all Artinian objects R in \mathcal{C}.
Let R be an Artinian object in \mathcal{C} be fixed but arbitrary. Suppose that (M^\bullet, ϕ) and (M'^\bullet, ϕ') are two quasi-lifts of V over R such that there exists an isomorphism in $\mathcal{D}^-(RA)$

$$f = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} : M^\bullet \oplus P_R^\bullet \to M'^\bullet \oplus P_R^\bullet$$

with $(\phi' \oplus \pi_{R,P^\bullet}) \circ (k \otimes_R f) = \phi \oplus \pi_{R,P'^\bullet}$. In particular, ϕ' is given by a quasi-isomorphism in \mathcal{M}_{Λ}, and f is given by a quasi-isomorphism in $\mathcal{D}^-(RA)$ is that surjective on terms, and that both ϕ and ϕ' are given by quasi-isomorphisms in $\mathcal{C}^-(\Lambda)$ that are also surjective on terms. By Lemma 2.3 (ii), it follows that both f_{11} and f_{22} are both quasi-isomorphisms in $\mathcal{C}^-(RA)$, which induce isomorphisms in $\mathcal{D}^-(RA)$. Therefore, $[M^\bullet, \phi] = [M'^\bullet, \phi']$ and the map (3.7) is injective.

We next show that the map (3.7) is surjective. For (A^\bullet, φ) be a lift of $V^\bullet \oplus P^\bullet$ over R. As before, we can assume that A^\bullet is a bounded above complex of abstractly free finitely generated Λ-modules, and that φ is given by a quasi-isomorphism in $\mathcal{C}^-(\Lambda)$, which is surjective on terms. Consider $\tau_{A^\bullet} : A^\bullet \to k \hat{\otimes}_R A^\bullet$ be the natural morphism in $\mathcal{C}^-(RA)$ that is surjective on terms. Note that $k \hat{\otimes}_R A^\bullet$ is isomorphic in $\mathcal{D}^-(\Lambda)$ to a bounded complex in $\mathcal{C}^-(\Lambda)$ whose terms are all in Λ-GProj. Thus consider the short exact sequence of complexes in $\mathcal{C}^-(RA)$

$$0 \to m_R A^\bullet \to A^\bullet \to \tau_{A^\bullet} : A^\bullet \to k \hat{\otimes}_R A^\bullet \to 0,$$

where m_R denotes the unique maximal ideal of R. Since A^\bullet has finite R-tor dimension, following Remark 2.1, we can assume that A^\bullet is a bounded complex of finitely generated RA-modules which are free over R. Hence, we can assume that $m_R A^\bullet$ is a bounded complex in $\mathcal{C}^-(RA)$. By [35, Prop. I.6.1], we obtain a long exact sequence of abelian groups

$$\text{Hom}_{\mathcal{C}^-(RA)}(P^\bullet, m_R A^\bullet) \to \text{Hom}_{\mathcal{C}^-(RA)}(P^\bullet, A^\bullet) \xrightarrow{(\tau_{A^\bullet})_\ast} \text{Hom}_{\mathcal{C}^-(RA)}(P^\bullet, k \hat{\otimes}_R A^\bullet) \to \text{Ext}_{\mathcal{D}^-(RA)}^1(P^\bullet, m_R A^\bullet),$$

By Lemma 2.6, we get $\text{Ext}_{\mathcal{C}^-(RA)}^1(P^\bullet, m_R A^\bullet) = 0$, and thus there exists a morphism $g : P_R^\bullet \to A^\bullet$ in $\mathcal{C}^-(RA)$ such that $\tau_{A^\bullet} \circ g = (\tau_{A^\bullet}, \varphi^+) \circ (0_{PR^\bullet})$, where pr_R is the composition of the natural morphism $\tau_{P_R} : P_R^\bullet \to k \hat{\otimes}_R P_R^\bullet$ in $\mathcal{C}^-(RA)$ with the isomorphism π_{R,P^\bullet}. Consider the distinguished triangle in $\mathcal{C}^-(RA)$

$$P_R^\bullet \xrightarrow{\phi} A^\bullet \xrightarrow{h} C^\bullet \to TP_R^\bullet,$$

where $C^\bullet = C_g$ is the mapping cone of g. Note in particular that all the terms of C^\bullet are all abstractly free finitely generated RA-modules. Tensoring (3.8) with k over R yields a commutative diagram of triangles in $\mathcal{C}^-(RA)$ as in (3.6). Note in particular that by the definition of mapping cones, $k \otimes R C^\bullet$ is isomorphic to a bounded complex in $\mathcal{C}^-(\Lambda)$ whose terms are all in Λ-GProj. By Lemma 3.9, we obtain that g is a section in $\mathcal{C}^-(RA)$. Following [33, Lemma 1.4], we obtain that $h : A^\bullet \to C^\bullet$ is a retraction in $\mathcal{C}^-(RA)$, i.e., there exists a morphism $k : C^\bullet \to A^\bullet$ in $\mathcal{C}^-(RA)$ such that $h \circ k = 1_{C^\bullet}$. By tensoring with k over R, we obtain a retraction $k = k \otimes_R k : k \otimes_R C^\bullet \to k \otimes_R A^\bullet$ of h in $\mathcal{C}^-(\Lambda)$. Consider the morphism $k, g : C^\bullet \oplus P_R^\bullet \to T^\bullet$ in $\mathcal{C}^-(RA)$. Let $\iota_{P^\bullet} : P^\bullet \to V^\bullet \oplus P^\bullet$ (resp. $p_{V^\bullet} : V^\bullet \oplus P^\bullet \to V^\bullet$) the natural morphism in $\mathcal{C}^-(\Lambda)$ which is injective (resp. surjective) on terms. Since $\varphi \circ (k \otimes_R g) = \pi_{R,P^\bullet} = \iota_{P^\bullet}$, it follows from the axiom of triangulated categories (TR3) (see e.g. [35, §1.1]) that there exists a morphism $\xi : k \otimes_R C^\bullet \to V^\bullet$ such that the following diagram of exact triangles in $\mathcal{C}^-(\Lambda)$ is commutative:

$$\begin{array}{c}
\xymatrix{ P^\bullet \ar[r]^g & k \otimes_R A^\bullet \ar[r]^h & k \otimes_R C^\bullet \ar[r] & TP_R^\bullet \\
| \ar[d] & | \ar[d] & | \ar[d] & | \ar[d] \\
P^\bullet \ar[r]^{\iota_{P^\bullet}} & V^\bullet \oplus P^\bullet \ar[r]^{p_{V^\bullet}} & V^\bullet \ar[r] & TP^\bullet }
\end{array}$$
Since \(\varphi \) is assumed to be an isomorphism in \(\mathcal{K}^{-}(\Lambda) \), it follows from \([35, \text{Prop. I.1.1 (c)}]\) that \(\xi \) is also an isomorphism in \(\mathcal{K}^{-}(\Lambda) \). By letting \(p_{1}\varphi : V^{\bullet} \oplus P^{\bullet} \to P^{\bullet} \) be the natural morphism in \(\mathcal{C}^{-}(\Lambda) \) that is surjective on terms, we obtain

\[
\begin{align*}
\tag{3.9} p_{1}\varphi \circ \eta (k \otimes_{R} g) &= p_{1}\varphi \circ \iota_{P^{\bullet}} \circ \pi_{R, P^{\bullet}} = \pi_{R, P^{\bullet}}, \\
p_{1}\varphi \circ \eta (k \otimes_{R} g) &= p_{1}\varphi \circ \iota_{P^{\bullet}} \circ \pi_{R, P^{\bullet}} = 0, \\
p_{1}\varphi \circ \eta (k \otimes_{R} k) &= \xi \circ \hat{h} \circ \hat{k} = \xi, \quad \text{and} \\
p_{1}\varphi \circ \eta (k \otimes_{R} k) &= p_{1}\varphi \circ \eta (k \otimes_{R} k)
\end{align*}
\]

By Claim 3.3, there exists a morphism \(\lambda : C^{\bullet} \to P_{R}^{\bullet} \) such that \(k \otimes_{R} \lambda = \pi_{R, P^{\bullet}}^{-1} \circ \pi_{P^{\bullet}} \circ \varphi \circ \lambda \). If \(k_{1} = k - g \circ \lambda \), then \(h \circ k_{1} = 1_{C^{\bullet}} \) and \(\hat{h} \circ (k \otimes_{R} k_{1}) = 1_{k \otimes_{R} C^{\bullet}} \). Hence, by replacing \(k \) for \(k_{1} \) in the identities (3.9), we see that \(p_{1}\varphi \circ \eta (k \otimes_{R} k_{1}) = \xi \) and that \(p_{1}\varphi \circ \eta (k \otimes_{R} k_{1}) = p_{1}\varphi \circ \eta (k \otimes_{R} G) \circ (k \otimes_{R} \lambda) = 0 \). It follows that \((k_{1}, g) : C^{\bullet} \oplus P_{R}^{\bullet} \to A^{\bullet} \) provides an isomorphism in \(\mathcal{K}^{-}(\mathcal{R}) \) between the quasi-lifts \((C^{\bullet} \oplus P_{R}^{\bullet}, \xi \oplus \pi_{R, P^{\bullet}}) \) and \((A^{\bullet}, \varphi) \) of \(V^{\bullet} \oplus P^{\bullet} \) over \(\mathcal{R} \). Therefore, the map (3.7) is bijective for all Artinian objects \(\mathcal{R} \) in \(\mathcal{C} \). This finishes the proof of Lemma 3.10.

\[\square\]

4. Finitely Generated Gorenstein Projective Modules, Singular Equivalences of Morita Type, and Versal Deformation Rings

Recall that finitely generated Gorenstein projective left \(\Lambda \)-modules coincide with the left \(\Lambda \)-modules of Gorenstein dimension zero or the ones that are totally reflexive as discussed in \([1, 4]\), respectively (see e.g. \([21, \text{Lemma 2.1.4}]\)).

We need the following result that summarizes some properties of finitely generated Gorenstein projective left \(\Lambda \)-modules (see \([3, 4]\) and \([4]\)).

Lemma 4.1. Let \(V \) be a finitely generated left \(\Lambda \)-module.

(i) \(V \) is Gorenstein projective with finite projective dimension if and only if \(V \) is projective.

(ii) If \(V \) is an object in \(\Lambda\text{-Gproj} \), then for all \(j \geq 1 \), there exists a finitely generated left \(\Lambda \)-module \(W \) such that \(V = \Omega^{j} W \), where \(\Omega \) denotes the syzygy operator.

The following definition was introduced by X. W. Chen and L. G. Sun in \([24]\), which was further studied by G. Zhou and A. Zimmermann in \([55]\), as a way of generalizing the concept of stable equivalence of Morita type introduced by M. Broué in \([15]\).

Definition 4.2. Let \(\Lambda \) and \(\Gamma \) be finite-dimensional \(k \)-algebras, and let \(X \) be a \(\Gamma\text{-}\Lambda \)-bimodule and \(Y \) a \(\Lambda\text{-}\Gamma \)-bimodule. We say that \(X \) and \(Y \) induce a singular equivalence of Morita type between \(\Lambda \) and \(\Gamma \) (and that \(\Lambda \) and \(\Gamma \) are singularly equivalent of Morita type) if the following conditions are satisfied:

(i) \(X \) is finitely generated and projective as a left \(\Gamma \)-module and as a right \(\Lambda \)-module.

(ii) \(Y \) is finitely generated and projective as a left \(\Lambda \)-module and as a right \(\Gamma \)-module.

(iii) There is a finitely generated \(\Gamma\text{-}\Gamma \)-bimodule \(Q \) with finite projective dimension such that \(X \otimes_{\Lambda} Y \cong \Gamma \oplus Q \) as \(\Gamma\text{-}\Gamma \)-bimodules.

(iv) There is a finitely generated \(\Lambda\text{-}\Lambda \)-bimodule \(P \) with finite projective dimension such that \(Y \otimes_{\Gamma} X \cong \Lambda \oplus P \) as \(\Lambda\text{-}\Lambda \)-bimodules.

It follows from \([55, \text{Prop. 2.3}]\) that singular equivalences of Morita type induce equivalences of singularity categories.

Remark 4.3. The concept of singular equivalence of Morita type was further generalized by Z. Wang in \([53]\), where the concept of singular equivalence of Morita type with level is introduced. Moreover, in \([49, \text{Prop. 2.6}]\), Ø. Skartsøeterhagen proved that if two algebras are singularly equivalent of Morita type, then they are also singularly equivalent of Morita type with level. Therefore, it follows from the steps 1-3 within the proof of \([53, \text{Prop. 4.5}]\) that if \(\Gamma X_{\Lambda} \) and \(\Lambda Y_{\Gamma} \) are bimodules which induce a singular equivalence of Morita type between two finite-dimensional \(k \)-algebras \(\Lambda \) and \(\Gamma \) as in Definition 4.2, and such that \(\text{Hom}_{\Gamma}(X, \Gamma) \) and...
Hom$_\Lambda(Y,\Lambda)$ are of finite projective dimension as a left Λ-module and as a left Γ-module, respectively, then the functors
\[
(4.1) \quad X \hat{\otimes}_\Lambda - : \text{mod-} \Lambda \to \text{mod-} \Gamma \quad \text{and} \quad Y \hat{\otimes}_\Gamma - : \text{mod-} \Gamma \to \text{mod-} \Lambda
\]
send finitely generated Gorenstein projective modules to finitely generated Gorenstein projective modules.

Proposition 4.4. Let Λ and Γ be finite dimensional k-algebras, and assume that ΓX_Λ and ΛY_Γ are bimodules that induce a singular equivalence of Morita type between Λ and Γ as in Definition 4.2, and such that Hom$_\Gamma(X,\Gamma)$ and Hom$_\Lambda(Y,\Lambda)$ are of finite projective dimension as a left Λ-module and as a left Γ-module, respectively. If V is a finitely generated Gorenstein projective left Λ-module, then $X \hat{\otimes}_\Lambda V$ is a finitely generated Gorenstein projective left Γ-module. Moreover, if P is a finitely generated Λ-Λ-bimodule with finite projective dimension satisfying Definition 2.7 (iv), then $P \hat{\otimes}_\Lambda V$ is a finitely generated projective left Λ-module.

Proof. Assume that V is a finitely generated Gorenstein projective left Λ-module. It follows from Remark 4.3 that $X \hat{\otimes}_\Lambda V$ is a finitely generated Gorenstein projective left Γ-module. Assume next that P is a finitely generated Λ-Λ-bimodule with finite projective dimension and which satisfies Definition 4.2 (iv). Then there exists a finite projective resolution of the Λ-Λ-bimodule P:
\[
(4.2) \quad 0 \to P^s \overset{\delta^s}{\to} P^{s-1} \to \cdots \to P^1 \overset{\delta^1}{\to} P^0 \to 0,
\]
where $s \geq 0$ is the projective dimension of P as a Λ-Λ-bimodule. Since for every $0 \leq j \leq s$, P^j is a projective Λ-Λ-bimodule, it follows that P^j is also a left and a right projective Λ-module. In particular, the complex (4.2) is a projective resolution of P as a right Λ-module, which implies that P has finite projective dimension as a right Λ-module. In particular, the right Λ-module $\Omega^s_P = P^s$ is a projective right Λ-module. Since V is a Gorenstein projective, it follows from Lemma 4.1 (ii) that there exists a finitely generated left Λ-module W_1 such that $V = \Omega^s_P W_1$. Using dimension shifting together with the above observations, we get that for all $k \geq 1$,
\[
\text{Tor}^2_\Lambda(P,V) \cong \text{Tor}^2_\Lambda(P,\Omega^s_P W_1) \cong \text{Tor}^2_\Lambda(\Omega^s_P P, W_1) = 0.
\]
Thus, we get a long exact sequence of left Λ-modules
\[
(4.3) \quad 0 \to P^s \hat{\otimes}_\Lambda V \overset{\delta^s \hat{\otimes}_\Lambda 1_V}{\to} P^{s-1} \hat{\otimes}_\Lambda V \to \cdots \to P^1 \hat{\otimes}_\Lambda V \overset{\delta^1 \hat{\otimes}_\Lambda 1_V}{\to} P^0 \hat{\otimes}_\Lambda V \to 0.
\]
Since for all $0 \leq j \leq s$, the Λ-Λ-bimodule P^j in (4.2) is finitely generated and projective, it follows that $P^j \hat{\otimes}_\Lambda V$ is a finitely generated projective left Λ-module, which implies that (4.3) is a projective resolution of $P \hat{\otimes}_\Lambda V$. Therefore $P \hat{\otimes}_\Lambda V$ has finite projective dimension as a left Λ-module.

On the other hand, since P satisfies Definition 2.7 (iv), it follows that $Y \hat{\otimes}_\Gamma (X \hat{\otimes}_\Lambda V) \cong V \oplus (P \hat{\otimes}_\Lambda V)$ as left Λ-modules.

By hypothesis and by Remark 4.3, we have that both V and $Y \hat{\otimes}_\Gamma (X \hat{\otimes}_\Lambda V)$ are both finitely generated Gorenstein projective left Λ-modules, and therefore so is $P \hat{\otimes}_\Lambda V$. It follows from Lemma 4.1 (i) that $P \hat{\otimes}_\Lambda V$ is a finitely generated projective left Λ-module. This finishes the proof of Proposition 4.4.

We obtain the following immediate consequence of Proposition 4.4 involving complexes.

Corollary 4.5. Let Λ and Γ be finite dimensional k-algebras, and assume that ΓX_Λ, ΛY_Γ and P are as in Proposition 4.4. If V^\bullet is a bounded complex in $\text{C}\text{-}\text{proj}(\Lambda)$ whose terms are all finitely generated Gorenstein projective left Λ-modules, then $P \hat{\otimes}_\Lambda V^\bullet$ is an object in $\text{C}\text{-}\text{proj}(\Lambda)$.

Before we state the second important result of this article, we should note that by [13, Thm. 3.1.4], versal deformation rings of bounded complexes of finitely generated modules over finite-dimensional algebras are preserved by derived equivalences induced by nice two-sided tilting complexes (as introduced in [13, Def. 3.1.1]). However, by e.g. [26] and its references, not every stable equivalence of Morita type between self-injective algebras is induced by a derived equivalence. Moreover, it is shown in [6, §4] that equivalences of singularity categories not necessarily induce singular equivalences of Morita type.
Theorem 4.6. Let Λ and Γ be finite dimensional k-algebras, and assume that $\tau X\Lambda, \Lambda Y\Gamma$ and P are as in Proposition 4.4. Let V^\bullet be a bounded complex in $C^-(\Lambda)$ whose terms are all finitely generated Gorenstein projective left Λ-modules. Then the terms of $X\otimes_\Lambda V^\bullet$ are all finitely generated Gorenstein projective left Γ-modules, and the versal deformation rings $R(\Lambda, V^\bullet)$ and $R(\Gamma, X\otimes_\Lambda V^\bullet)$ are isomorphic in \hat{C}. Moreover, $R(\Lambda, V^\bullet)$ is universal if and only if $R(\Gamma, X\otimes_\Lambda V^\bullet)$ is universal.

Although the proof of Theorem 4.6 is easily obtained by adjusting the arguments in the proof of [13, Prop. 3.2.6] to our context, we decided to include it for the convenience of the reader.

Proof of Theorem 4.6. Let R be an Artinian object in C. Note that $X_R = R\hat{\otimes}_k X$ (resp. $Y_R = R\hat{\otimes}_k Y$) is projective as left RT-module (resp. RA-module) and as right RA-module (resp. RG-module). Since $X_R\hat{\otimes}_R Y_R \cong R\hat{\otimes}_k (X\hat{\otimes}_\Lambda Y)$, following Definition 4.2 we obtain

$$Y_R\hat{\otimes}_R X_R \cong RA \oplus P_R$$
$$X_R\hat{\otimes}_R Y_R \cong RG \oplus Q_R$$

as RA-RA-bimodules, and RG-RG-bimodules, where $P_R = R\hat{\otimes}_k P$ (resp. $Q_R = R\hat{\otimes}_k Q$) is a RA-RA-bimodule (resp. RG-RG-bimodule) of finite projective dimension. By Corollary 4.5 we have that $P\hat{\otimes}_\Lambda V^\bullet$ is an object in $K^b(A\text{-proj})$, and thus by Lemma 3.10, we have that $P\hat{\otimes}_\Lambda V^\bullet$ has a universal deformation ring $R(\Lambda, P\hat{\otimes}_\Lambda V^\bullet)$ isomorphic to k. In particular, every quasi-lift of $P\hat{\otimes}_\Lambda V^\bullet$ over R is isomorphic to the trivial quasi-lift $(R\hat{\otimes}_k (P\hat{\otimes}_\Lambda V^\bullet), \pi_{R(P\hat{\otimes}_\Lambda V^\bullet)})$ of $P\hat{\otimes}_\Lambda V^\bullet$ over R, where $\pi_{R(P\hat{\otimes}_\Lambda V^\bullet)} : k\hat{\otimes}_R (R\hat{\otimes}_k (P\hat{\otimes}_\Lambda V^\bullet)) \rightarrow P\hat{\otimes}_\Lambda V^\bullet$ is the natural isomorphism in $K^-(\Lambda)$. Let now (M^\bullet, ϕ) be a quasi-lift of V^\bullet over R. Since R is Artinian, by Remark 2.8 we can assume as before that V^\bullet (resp. M^\bullet) is bounded above complex of abstractly free finitely generated Λ-modules (resp. RA-modules), and that ϕ is given by a quasi-isomorphism in $C^-(\Lambda)$ that is surjective on terms. Let $M^\bullet = X_R \hat{\otimes}_R M^\bullet$. Note that all the terms of M^\bullet are finitely generated left RT-modules. Since X_R is a finitely generated projective right RA-module and since M^\bullet has terms that are all free over RA, it follows that all the terms of M^\bullet are abstractly free finitely generated RG-modules. We next observe that we can view Λ-mod as the full subcategory of RA-mod that consists in all those objects in RA-mod on which the action of the maximal ideal m_R of R is trivial. Moreover, on Λ-mod the functor $X_R \hat{\otimes}_R -$ coincides with the functor $X\hat{\otimes}_\Lambda -$. Define $\phi' = X_R \hat{\otimes}_R \phi$. Since ϕ is assumed to be a quasi-isomorphism in $C^-(\Lambda)$ and X_R is projective as a right RA-module, it follows that ϕ' is also a quasi-isomorphism in $C^-(\Gamma)$. Moreover,

$$(4.4) \quad M^\bullet \hat{\otimes}_R k = (X_R \hat{\otimes}_R M^\bullet) \hat{\otimes}_R k = X_R \hat{\otimes}_R (M^\bullet \hat{\otimes}_R k) \xrightarrow{\phi'} X_R \hat{\otimes}_R V^\bullet = V^\bullet,$$

which means (M^\bullet, ϕ') is a quasi-lift of V^\bullet over R. We therefore obtain for all Artinian objects R in C, a well-defined map

$$\Xi_R : \text{Def}_\Lambda(V^\bullet, R) \rightarrow \text{Def}_\Lambda(V^\bullet, R)$$

$$[M^\bullet, \phi] \mapsto [M^\bullet, \phi] = [X_R \hat{\otimes}_R M^\bullet, X_R \hat{\otimes}_R \phi].$$

We need to show that Ξ_R is bijective. Arguing as in (4.4), we see that $(Y_R \hat{\otimes}_R M^\bullet, Y_R \hat{\otimes}_R \phi')$ is a quasi-lift of $Y^\bullet \hat{\otimes}_R V^\bullet \cong V^\bullet \oplus (P\hat{\otimes}_\Lambda V^\bullet)$ over R. Moreover,

$$(4.5) \quad (Y_R \hat{\otimes}_R M^\bullet, Y_R \hat{\otimes}_R \phi') \cong (\Lambda \oplus P_R) \hat{\otimes}_R M^\bullet, (\Lambda \oplus P_R) \hat{\otimes}_R \phi) \cong (M^\bullet + (P_R \hat{\otimes}_R M^\bullet), P_R \hat{\otimes}_R \phi).$$

Since $(P_R \hat{\otimes}_R M^\bullet, P_R \hat{\otimes}_R \phi)$ is a quasi-lift of $P\hat{\otimes}_\Lambda V^\bullet$ over R, which is a perfect complex over Λ, it follows from Lemma 3.10 that Ξ_R is injective.

Now let (L^\bullet, ψ) be a quasi-lift of $V^\bullet = X\hat{\otimes}_\Lambda V^\bullet$ over R. As before, since R is Artinian, we can assume that L^\bullet is a bounded above complex on abstractly free finitely generated RT-modules, and that ψ is given by a quasi-isomorphism in $C^-(\Gamma)$ that is surjective on terms. Then $(L^\bullet, \psi) = (Y_R \hat{\otimes}_R L^\bullet, Y_R \hat{\otimes}_R \psi)$ is a quasi-lift of $V^\bullet \hat{\otimes}_k V^\bullet \cong V^\bullet \oplus (P\hat{\otimes}_\Lambda V^\bullet)$ over R. By Lemma 3.10, there exists a quasi-lift (M^\bullet, ϕ) of V^\bullet over R such that (L^\bullet, ψ) is isomorphic to the quasi-lift $(M^\bullet \oplus (R\hat{\otimes}_k (P\hat{\otimes}_\Lambda V^\bullet)), \phi \oplus \pi_{R(P\hat{\otimes}_\Lambda V^\bullet)})$ of $P\hat{\otimes}_R V^\bullet$ over R. In particular, we can assume that the terms of M^\bullet are abstractly free finitely generated RA-modules, and ϕ is given by a quasi-isomorphism in $C^-(\Lambda)$ that is surjective on terms. Arguing similarly as
in (4.5), we then have that \((L^\bullet, \psi')\) is isomorphic to \((M'^\bullet, \phi'') = (Y_R \hat{\otimes}_R M^\bullet, Y_R \hat{\otimes}_R \phi')\) where \((M^\bullet, \phi') = (X_R \hat{\otimes}_R M^\bullet, X_R \hat{\otimes}_R \phi)\). Therefore, \((X_R \hat{\otimes}_R L'^\bullet, X_R \hat{\otimes}_R \psi') \cong (X_R \hat{\otimes}_R M'^\bullet, X_R \hat{\otimes}_R \phi'')\). Arguing again similarly as in (4.5) and using Lemma 3.10, we have

\[
(X_R \hat{\otimes}_R L'^\bullet, X_R \hat{\otimes}_R \psi') \cong (L^\bullet \oplus (R \hat{\otimes}_k (Q \hat{\otimes}_R V^\bullet)), \psi \oplus \pi_{R, Q \hat{\otimes}_R V^\bullet}), \quad \text{and}
\]

\[
(X_R \hat{\otimes}_R M'^\bullet, X_R \hat{\otimes}_R \phi'') \cong (M^\bullet \oplus (R \hat{\otimes}_k (Q \hat{\otimes}_R V^\bullet)), \phi' \oplus \pi_{R, Q \hat{\otimes}_R V^\bullet}).
\]

Thus by Lemma 3.10, it follows that \((L^\bullet, \psi) \cong (M'^\bullet, \phi'')\), i.e. \(\Xi_R\) is surjective.

To show that the maps \(\Xi_R\) are natural with respect to morphisms \(\alpha : R \rightarrow R'\) in \(\mathcal{C}\), consider \((M^\bullet, \phi)\) and \((M'^\bullet, \phi')\) as above. Since \(X_R\) is a projective right \(RA\)-module and the terms of \(M^\bullet\) can be assumed to be abstractly free finitely generated \(R\)-modules, there exists a natural isomorphism in \(K^{-}(RA)\):

\[
f : \ R' \hat{\otimes}_{R, \alpha} M^\bullet = R' \hat{\otimes}_{R, \alpha} (X_R \hat{\otimes}_R M^\bullet) \rightarrow X_R' \hat{\otimes}_{R', \alpha} (R' \hat{\otimes}_{R, \alpha} M^\bullet).
\]

It is straightforward to see that \(f\) provides an isomorphism between the quasi-lifts \((R' \hat{\otimes}_{R, \alpha} M^\bullet, (\phi')_\alpha)\) and \((X_{R'} \hat{\otimes}_{R', \alpha} (R' \hat{\otimes}_{R, \alpha} M^\bullet), X_{R'} \hat{\otimes}_{R', \alpha} (\phi_\alpha))\) of \(V^\bullet\) over \(R'\), where \(\phi_\alpha\) (resp. \((\phi')_\alpha\)) is the composition of quasi-isomorphisms \(R' \hat{\otimes}_{R, \alpha} (X_R \hat{\otimes}_R M^\bullet) \hat{\otimes}_R k \cong M^\bullet \hat{\otimes}_R k \sim V^\bullet\) (resp. \(X_{R'} \hat{\otimes}_{R', \alpha} (R' \hat{\otimes}_{R, \alpha} M^\bullet) \hat{\otimes}_R k \cong (X_{R'} \hat{\otimes}_{R', \alpha} M^\bullet) \hat{\otimes}_R k \sim V^\bullet\)). Since the deformation functors \(\hat{F}_V\) and \(\hat{F}_V^\bullet\) are continuous, this implies that they are naturally isomorphic. Hence the versal deformation rings \(R(\Lambda, V^\bullet)\) and \(R(\Gamma, V^\bullet)\) are isomorphic in \(\hat{\mathcal{C}}\).

Since singular equivalences of Morita type induce equivalences of singularity categories as noted before, we obtain the following consequence of Theorem 4.6.

Corollary 4.7. Let \(\Lambda\) and \(\Gamma\) be finite dimensional \(k\)-algebras, and assume that \(\pi X_\Lambda, \Lambda Y_\Gamma\) and \(P\) are as in Proposition 4.4. Let \(V^\bullet\) be a bounded complex in \(C^{-}(\Lambda)\) whose terms are all finitely generated Gorenstein projective \(\Lambda\)-modules, and such that \(\text{Hom}_{D_{\text{perf}}(\Lambda\text{-mod})}(V^\bullet, V^\bullet) = k\). Then the terms of \(X \hat{\otimes}_\Lambda V^\bullet\) are all finitely generated Gorenstein projective \(\Gamma\text{-modules}\), and

\[
\text{Hom}_{D_{\text{perf}}(\Gamma\text{-mod})}(X \hat{\otimes}_\Lambda V^\bullet, X \hat{\otimes}_\Lambda V^\bullet) = k.
\]

Moreover, the universal deformation rings \(R(\Lambda, V^\bullet)\) and \(R(\Gamma, X \hat{\otimes}_\Lambda V^\bullet)\) are isomorphic in \(\hat{\mathcal{C}}\).

APPENDIX A. A Remark Concerning Universal Deformation Rings of Finitely Generated Gorenstein Projective \(\Lambda\)-modules over Finite Dimensional Algebras

As before, we assume that \(k\) is a field of arbitrary characteristic and that \(\Lambda\) is an arbitrary but fixed finite dimensional \(k\)-algebra.

By using the same arguments as those in the proofs of [50, Thm. 1.2] and [6, Thm. 3.4] together with Lemma 4.1, Proposition 4.4, the observations in the paragraph after the proof of [22, Lemma 2.1], and [22, Lemma 2.2], we can drop the conditions of \(\Lambda\) being a Gorenstein algebra and \(V\) being a (maximal) Cohen-Macaulay left \(\Lambda\)-module to obtain the proof of the following version of [50, Thm. 1.2] and [6, Thm. 3.4].

Theorem A.1. Let \(V\) be a finitely generated Gorenstein projective left \(\Lambda\)-module.

(i) If the stable endomorphism ring of \(V\) is isomorphic to \(k\), then the versal deformation ring \(R(\Lambda, V)\) is universal. Moreover, \(\Omega V\) also has stable endomorphism ring isomorphic to \(k\) and the universal deformation rings \(R(\Lambda, V)\) and \(R(\Lambda, \Omega V)\) are isomorphic.

(ii) Assume that \(\Gamma\) is another finite dimensional \(k\)-algebra such that there exist bimodules \(\pi X_\Lambda, \Lambda Y_\Gamma\) inducing a singular equivalence of Morita type between \(\Lambda\) and \(\Gamma\) as in Definition 4.2 and which satisfy the hypothesis of Proposition 4.4. Then \(X \hat{\otimes}_\Lambda V\) is a finitely generated Gorenstein projective left \(\Gamma\)-module, and the versal deformation rings \(R(\Lambda, V)\) and \(R(\Gamma, X \hat{\otimes}_\Lambda V)\) are isomorphic. In particular, \(R(\Lambda, V)\) is universal if and only if \(R(\Gamma, X \hat{\otimes}_\Lambda V)\) is universal.

We now apply the results in Theorem A.1 (i) to a particular non-Gorenstein finite dimensional \(k\)-algebra.
Example A.2. Let Λ_0 be the basic 3-cycle Nakayama k-algebra with quiver Z_3 as in Figure 1 with normalized admissible sequence $c(\Lambda_0) = (8, 9, 9)$ as explained in [25, §3.1].

$$Z_3 = \begin{tikzpicture}
\node (1) at (0,0) {γ_1};
\node (2) at (-1,-2) {2};
\node (3) at (1,-2) {3};
\node (4) at (2,0) {γ_3};
\node (5) at (-2,-2) {γ_2};
\draw[->] (1) to (2);
\draw[->] (1) to (3);
\draw[->] (2) to (5);
\draw[->] (3) to (4);
\end{tikzpicture}$$

Figure 1. The quiver of the basic 3-cycle Nakayama k-algebra Λ_0.

It follows from [25, Prop. 3.14 (3)] for the case $k = 2$ that Λ_0 is a non-Gorenstein Nakayama algebra which is not CM-free in the sense of [22]. Moreover, the isomorphism classes of finitely generated indecomposable Gorenstein projective Λ_0-modules are represented by the string Λ_0-modules (in the sense of [18]) $V_1 = M[\gamma_3\gamma_2]$ and $V_2 = M[\gamma_3\gamma_1\gamma_3\gamma_2]$. Since Λ_0 is in particular special biserial, we can use the description of morphisms between string Λ_0-modules as discussed in [40]. It is straightforward to show that $\text{End}_{\Lambda_0}(V_1) = k$ and $\text{End}_{\Lambda_0}(V_2) = k$. Moreover, using the composition series of the indecomposable projective Λ_0-modules, we obtain that $\Omega V_2 = V_1$. We also obtain that $\text{Ext}^1_{\Lambda_0}(V_2, V_2) = k$, which implies that the universal deformation ring $R(\Lambda, V_2)$ of V_2 is isomorphic to a quotient of $k[[t]]$. In view of Theorem A.1(i), we calculate $R(\Lambda_0, V_2)$ by calculating $R(\Lambda, V_1)$. Note that by e.g. [21, Lemma 2.1.8], we have $\text{Ext}^1_{\Lambda_0}(V_1, V_1) = \text{Hom}_{\Lambda_0}(\Omega V_1, V_1) = k$.

Let $M_1 = M[\gamma_3\gamma_1\gamma_3\gamma_2]$ and consider the following short exact sequences of Λ_0-modules:

\begin{align}
(\text{A.1}) & \quad 0 \to V_1 \xrightarrow{\iota_1} M_1 \xrightarrow{\pi_1} V_1 \to 0, \\
(\text{A.2}) & \quad 0 \to M_1 \xrightarrow{\iota_2} P_2 \xrightarrow{\pi_2} M_1 \to 0,
\end{align}

where P_2 is the projective cover of the simple Λ_0-module S_2 corresponding to the vertex 2. We obtain then by using (A.1) and (A.2) that M_1 and P_2 define lifts in the sense of [14] of V_1 over $k[[t]]/(t^2)$ and $k[[t]]/(t^3)$, respectively. In particular, M_1 defines a non-trivial lift of V_1 over the ring of dual numbers $k[[t]]/(t^2)$, where the action of t is given by $\iota_1 \circ \pi_1$. This implies that there exists a unique surjective k-algebra morphism $\psi : R(\Lambda_0, V_1) \to k[[t]]/(t^2)$ in \hat{C} corresponding to the deformation defined by M_1. By using similar arguments to those in the proof of [51, Claim 4.1.1], it is straightforward to show that $R(\Lambda, V_2) \cong R(\Lambda, V_1) \cong k[[t]]/(t^3)$.

References

1. M. Auslander and M. Briger, Stable Module Theory, Memoirs of the American Mathematical Society, no. 94, American Mathematical Society, 1969.
2. M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. in Math. 86 (1991), 111–152.
3. ____. Cohen-Macaulay and Gorenstein Artin algebras, Representation Theory of Finite Groups and Finite-Dimensional Algebras (G. O. Michler and C. M. Ringel, eds.), Progress in Mathematics, no. 95, Birkhäuser Verlag Basel, 1991, pp. 221–245.
4. L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85 (2002), no. 3, 393–440.
5. Y. Bao, X. Du, and Z. Zhao, Gorenstein singularity categories, J. Algebra 428 (2015), 122–137.
6. V. Bekkert, H Giraldo, and J. A. Vélez-Marulanda, On singular equivalences of Morita type and universal deformation rings for Gorenstein algebras, Submitted. Available in https://arxiv.org/abs/1608.05690.
7. A. Beligiannis, Cohen-Macaulay modules, (co) torsion pairs and virtually Gorenstein algebras, J. Algebra 288 (2005), 137–211.
8. ____. On algebras of finite Cohen-Macaulay type, Adv. Math. 226 (2011), 1973–2019.
9. A. Beligiannis and I. Reiten, Homological and Homotopical Aspects of Torsion Theories, Memoirs of the American Mathematical Society, no. 883, American Mathematical Society, 2007.
10. F. M. Bleher and T. Chinburg, Deformations and derived categories, C. R. Acad. Sci. Paris Ser. I Math. 334 (2002), 97–100.
11. ____. Deformations and derived categories, Ann. Inst. Fourier (Grenoble) 55 (2005), 613–654.
12. F. M. Bleher and S. N. Talbott, Universal deformation rings of modules for algebras of díedral type of polynomial growth, Algebr. Represent. Theory 17 (2014), 289–303.
13. F. M. Bleher and J. A. Vélez-Marulanda, Deformations of complexes for finite dimensional algebras, Submitted. Available in http://arxiv.org/abs/1511.08081.
14. , Universal deformation rings of modules over Frobenius algebras, J. Algebra 367 (2012), 176–202.
15. M. Broué, Equivalences of blocks of group algebras, Finite Dimensional Algebras and Related Topics (V. Dlab and L. L. Scott, eds.), NATO ASI Series, no. 424, Springer Netherlands, 1994, pp. 1–26.
16. A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442–470.
17. R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-Cohomology over Gorenstein rings, Preprint. Available in http://hdl.handle.net/1807/16682, 1987.
18. M. C. R. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145–179.
19. X. Chen and M. Lu, Singularity categories of skewed-gentle algebras, Colloq. Math. 141 (2015), 183–198.
20. X. W. Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr. Represent. Theor. 12 (2009), 181–191.
21. , Gorenstein Homological Algebra of Artin Algebras, Preprint. Available in http://home.ustc.edu.cn/~xwchen, 2010.
22. , Algebras with radical square zero are either self-injective or CM-free, Proc. Amer. Math. Soc. 140 (2012), no. 1, 93–98.
23. , Singular equivalences induced by homological epimorphisms, Proc. Amer. Math. Soc. 142 (2014), 2633–2640.
24. X. W. Chen and L. G. Sun, Singular equivalences of Morita type, Preprint, 2012.
25. X. W. Chen and Y. Ye, Retractions and Gorenstein homological properties, Algebr. Represent. Theor. 17 (2014), 713–733.
26. A. Dugas, Stable auto-equivalences for local symmetric algebras, J. Algebra 449 (2016), 22–49.
27. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), 611–633.
28. , Relative Homological Algebra, de Gruyter Expositions in Mathematics, no. 30, Walter de Gruyter, 2000.
29. B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitou, and A. Vistoli, Fundamental Algebraic Geometry: Grothendieck’s FGA Explained, Mathematical Surveys and Monographs, no. 123, American Mathematical Society, 2005.
30. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.
31. , Étude Infinitésimale des Schémas en Groupes, Schémas en Groupes: Séminaire de Géométrie Algébrique du Bois-Marie SGA 3 (M. Demazure and A. Grothendieck, eds.), Lecture Notes in Mathematics, vol. 151, Springer-Verlag, 1970, pp. 476–552.
32. N. Gao and P. Zhang, Gorenstein derived categories, J. Algebra 323 (2010), 2041–2057.
33. D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Mathematical Society Lecture Notes Series, no. 119, Cambridge University Press, 1988.
34. D. Happel, On Gorenstein algebras, Representation Theory of Finite Groups and Finite-Dimensional Algebras (G. O. Michler and C. M. Ringel, eds.), Progress in Mathematics, no. 95, Birkhäuser Verlag Basel, 1991, pp. 389–404.
35. R. Hartshorne, Residues and Duality, Lecture Notes in Mathematics, no. 20, Springer-Verlag, 1966.
36. M. Hashimoto, Acyclicity of complexes of flat modules, Nagoya Math. J. 192 (2008), 111–118.
37. M. Hoshino and H. Koga, Zaks’ lemma for coherent rings, Algebr. Represent. Theor. 16 (2013), 1647–1660.
38. L. Illusie, Généralités sur les conditions de finitude dans les catégories dérivées, Théorie des Intersections et Théorème de Riemann-Roch, Séminaire de Géométrie Algébrique du Bois-Marie SGA 6 (P. Berthelot, A. Grothendieck, and L. Illusie, eds.), Lecture Notes in Mathematics, no. 225, Springer-Verlag, 1971, pp. 78–159.
39. M. Kalck, Singularity categories of gentle algebras, Bull. London Math. Soc. 47 (2015), 65–74.
40. H. Krause, Maps between tree and band modules, J. Algebra 137 (1991), 186–194.
41. , Localization theory for triangulated categories, Triangulated Categories (T. Holm, P. Jørgensen, and R. Rouquier, eds.), London Mathematical Society Lecture Notes Series, vol. 375, Cambridge University Press, 2010, pp. 476–552.
42. B. Mazur, An introduction to the deformation theory of Galois representations, Modular Forms and Fermat’s Last Theorem (G. Cornell, J. H. Silverman, and G. Stevens, eds.), Springer-Verlag, Boston, MA, 1997, pp. 243–311.
43. J. S. Milne, Étale Cohomology, Princeton Univ. Press, 1980.
44. D. Orlov, Triangulated categories and D-branes in Landau-Ginzburg models, Tr. St. Math. Sb. 204 (2004), 240–262.
45. , Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, Arithmetic, and Geometry (Y. Tschinkel and Y. Zarhin, eds.), vol. 2, Progress in Mathematics, no. 270, Birkhäuser Basel, 2009, pp. 503–531.
46. J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303–317.
47. M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222.
48. D. Shen, The singularity category of a Nakayama algebra, J. Algebra 429 (2015), 1–18.
49. O. Skarstuen, Singular equivalence and the (Fg) condition, J. Algebra 452 (2016), 66–93.
50. J. A. Vélez-Marulanda, On universal deformation rings for Gorenstein algebras, Submitted. Available in https://arxiv.org/abs/1604.00429.
51. , Universal deformation rings of strings modules over a certain symmetric special biserial algebra, Beitr. Algebra Geom. 56 (2015), no. 1, 129–146.
52. J. Verdier, Catégories dérivées, état 0, Cohomologie Étale: Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2 (P. Deligne, ed.), Lecture Notes in Mathematics, no. 569, Springer-Verlag, 1977, pp. 262–311.
53. Z. Wang, Singular equivalence of Morita type with level, J. Algebra 439 (2015), 245–269.
54. C.A. Weibel, *An Introduction to Homological Algebra*, Cambridge Studies in Advanced Mathematics, no. 38, Cambridge University Press, 1994.

55. G. Zhou and A. Zimmermann, *On singular equivalences of Morita type*, J. Algebra **385** (2013), 64–79.

Department of Mathematics, Valdosta State University, 2072 Nevins Hall, 1500 N. Patterson St, Valdosta, GA, 31698-0040

E-mail address: javelezmarulanda AT valdosta DOT edu