Finite Action Klein-Gordon Solutions on Lorentzian Manifolds

V.V. Kozlov and I.V. Volovich

Steklov Mathematical Institute
Russian Academy of Sciences
Gubkin St. 8, 119991, Moscow, Russia
e-mail: volovich@mi.ras.ru

Abstract

The eigenvalue problem for the square integrable solutions is studied usually for elliptic equations. In this note we consider such a problem for the hyperbolic Klein-Gordon equation on Lorentzian manifolds. The investigation could help to answer the question why elementary particles have a discrete mass spectrum. An infinite family of square integrable solutions for the Klein-Gordon equation on the Friedman type manifolds is constructed. These solutions have a discrete mass spectrum and a finite action. In particular the solutions on de Sitter space are investigated.

1 Introduction

Let \(M \) be an \((n+1)\)-dimensional manifold with a Lorentz metric \(g_{\mu\nu} \), \(\mu, \nu = 0, 1, \ldots, n \). Consider the Klein-Gordon equation \([1]\) on \(M \) for the real valued function \(f \)

\[
\Box f + \lambda f = 0. \tag{1}
\]

Here

\[
\Box f = \nabla_{\mu} \nabla^{\mu} f = \frac{1}{\sqrt{|g|}} \partial_{\mu} (\sqrt{|g|} g^{\mu\nu} \partial_{\nu} f),
\]

\(g \) is the determinant of \((g_{\mu\nu})\) and the real parameter \(\lambda \) corresponds to the mass square.

We are interested in deriving the values of \(\lambda \) for which there exist classical solutions \(f \in C^2(M) \), satisfying the condition

\[
\int_{M} f^2 \sqrt{|g|} dx < \infty \tag{2}
\]

The condition \([2]\) was first considered in \([2]\) for solutions of the Klein-Gordon equation on de Sitter space. Let us note that the condition \([2]\) includes the integration not only over the
spatial variables as it is done usually for the quantum Klein-Gordon field \[1\] but also over the time-like variable.

To answer the question why the consideration of the requirement \[2\] could be interesting we present the following motivations.

Understanding the mass spectrum of elementary particles is an outstanding problem for physics. Why the elementary particles have their observed pattern of masses? There is no answer to even a simpler question why the mass spectrum is discrete? We will show that solutions of Eq. \(1\) satisfy the condition \(2\) only for some discrete values of the parameter \(\lambda\), i.e. we obtain quantization of masses. This is interesting because the mass in field theory is considered as an arbitrary parameter but in nature there is only a discrete set of masses of elementary particles. A finite mass spectrum was first obtained in \[2\] for de Sitter space. The idea that the boundedness of the mass spectrum might be related with de Sitter geometry in the momentum space is considered in \[3\].

We show that there exist solutions which satisfy the condition \(2\) and moreover they have a finite action. The requirement of the finiteness of the action in the Lorentz signature is natural for example in the case when we study the wave function of the Universe in real time in the semiclassical approximation \[4\]. It is known that there are solutions of some nonlinear equations with finite action (instantons) but they exist only in the Euclidean time. A symmetry which exploits the feature that de Sitter and Anti de Sitter space are related by analytic continuation is considered in \[5\].

Some mathematical motivations are discussed in the conclusion.

The paper is composed as follows. In the next section square integrable solutions of the Friedman type manifolds are constructed. Then solutions on de Sitter space and on the Friedman space are considered.

2 Solutions on the Friedman type manifolds

Let us consider a manifold \(M = I \times N^n\) with a metric:

\[
ds^2 = g_{\mu\nu}dx^\mu dx^\nu = dt^2 - a^2(t)dl^2.
\]

Here \(I\) is an interval on the real axis, \(I \subset \mathbb{R}\), \(a(t)\) is a smooth positive function on \(I\), \(N^n\) a Riemannian manifold and

\[
dl^2 = h_{ij}(y)dy^i dy^j, \quad i, j = 1, \ldots, n
\]

is a Riemannian metric on \(N^n\). Such manifolds \((M, g_{\mu\nu})\) will be called the Friedman type manifolds.

Eq. \(1\) for the metric \(3\) takes the form

\[
\ddot{f} + \frac{n}{a} \dot{a} \dot{f} - \frac{1}{a^2} \Delta_h f + \lambda f = 0
\]

where \(\Delta_h\) is the Laplace-Beltrami operator for the metric \(h_{ij}\),

\[
\Delta_h f = \frac{1}{\sqrt{h}} \partial_i (\sqrt{h} h^{ij} \partial_j f)
\]
and the condition (2) reads
\[\int_M f^2 \sqrt{|g|} dx = \int_{I \times N^n} f^2 a^n \sqrt{h} dy < \infty \] (7)

Let \(q \geq 0 \) be the eigenvalue of the operator \(-\Delta_h\) on \(N^n \) and \(\Phi = \Phi(y) \) is the corresponding eigenfunction:
\[-\Delta_h \Phi = q \Phi, \] (8)
\[\int_{N^n} \Phi^2 \sqrt{h} dy < \infty \] (9)

We set
\[f = B(t) a(t)^{-\frac{n}{2}} \Phi(y). \] (10)

Then from (3), (8) we obtain the Sturm-Liouville (Schrodinger) equation
\[\ddot{B} + [\lambda - v(t)] B = 0 \] (11)
where
\[v(t) = \frac{n \ddot{a}}{2a} + \frac{n}{2}(\frac{n}{2} - 1) \frac{\dot{a}^2}{a^2} - \frac{q}{a^2} \] (12)

We look for solutions \(B(t) \) of Eq. (11) in \(L^2(I) \) since for functions of the form (10) the condition (7) takes the form
\[\int_I B^2 dt < \infty. \]

Consider the case \(I = \mathbb{R} \).

Theorem 1. Let \(M = \mathbb{R} \times N^n \) be the Friedman type manifold with the metric of the form (3), (4) such that there exists a solution \(\Phi \) of Eq. (8) on \(N^n \) which is not identically vanishing with an eigenvalue \(q \geq 0 \). Let the smooth positive function \(a(t) \) on \(\mathbb{R} \) is such that \(v(t) \) (12) satisfies the condition
\[v(t) \to \infty \text{ if } |t| \to \infty. \] (13)

Then for given \(q, \Phi \) (8), (9), the problem (1), (2) has an infinite family of solutions \(f_j = B_j(t) a(t)^{-\frac{n}{2}} \Phi(y) \) with eigenvalues \(\lambda_j, \ j = 1, 2, \ldots \) and moreover \(\lambda_j \to \infty \) when \(j \to \infty \).

Proof. It is a well known result by Weyl and Titchmarsh (see for example \[9\], Sect.5.12-5.13) that under condition (13) the Sturm-Liouville problem (11) has a discrete spectrum in \(L^2(\mathbb{R}) \). Then Theorem 1 follows.

Example 1. Let us take
\[a(t) = C \exp(\alpha t^2), \ C > 0, \ \alpha > 0, \ k > 1. \] (14)

Then
\[v(t) = \frac{n}{2} [\alpha 2k (2k - 1) t^{2k-2} + \frac{n}{2} (\alpha 2k)^2 t^{4k-2} - q C^{-2} \exp(-\alpha t^{2k}) \]

In this case the condition (13) is satisfied. One has a discrete spectrum \(\lambda_1, \lambda_2, \ldots \) and \(\lambda_j \to \infty \) when \(j \to \infty \).
3 Solutions on de Sitter space

For de Sitter space one has: $M = \mathbb{R} \times S^3$,

$$ds^2 = dt^2 - \cosh^2 t \cdot h_{ij}(y)dy^i dy^j,$$ (15)

where h_{ij} is the standard metric on the 3-dimensional sphere S^3. The eigenvalues of the operator $-\Delta_h$ on the 3-sphere are equal to $q = j(j + 2)$, $j = 0, 1, 2, ...$ and

$$v(t) = \frac{9}{4} - \left[\frac{3}{4} + j(j + 2)\right] \frac{1}{\cosh^2 t}$$ (16)

We set

$$\alpha = \frac{3}{4} + j(j + 2), \quad \nu^2 = \frac{9}{4} - \lambda$$ (17)

Then Eq. (11) takes the form

$$\ddot{B} + \left[\frac{\alpha}{\cosh^2 t} - \nu^2\right] B = 0$$ (18)

Theory of Eq. (18) is well known [6, 8] and it was used in [2] to construct square integrable solution of the Klein-Gordon equation on de Sitter space. Spectrum for positive values of ν^2 is discrete and for negative is continuous. We consider the first case, $\nu^2 > 0$.

Eq. (18) for $\alpha > 0$ has a solution in $L^2(\mathbb{R})$ iff

$$0 < \nu = \frac{3}{2}(\sqrt{1 + 4\alpha} - 1) - n, \quad n = 0, 1, 2, ...$$ (19)

In our case, due to (17),

$$0 < \nu = j + \frac{1}{2} - n, \quad j, n = 0, 1, 2, ...$$

There is a family of square integrable solutions of Eq. (11) with eigenvalues λ of the form

$$\lambda_{jn} = \frac{9}{4} - (j + \frac{1}{2} - n)^2, \quad (j, n = 0, 1, 2, ..., j + \frac{1}{2} - n > 0)$$ (20)

If $\lambda_{jn} \geq 0$ then we should have

$$0 < j + \frac{1}{2} - n \leq \frac{3}{2}, \quad j, n = 0, 1, 2, ...$$

and therefore either $j = n$ and $\lambda_{jn} = 2$, or $j = n + 1$ and $\lambda_{jn} = 0$.

In the case $j = n$, $\nu = 1/2$ for any $j = 0, 1, 2, ...$ Eq. (18) has a solution in $L^2(\mathbb{R})$ of the form

$$B_j(t) = \frac{1}{(\cosh t)^{1/2}} \sum_{s=0}^{j} \frac{(-j)_s(j + 2)_s}{(3/2)_s s!} \frac{1}{(e^{2t} + 1)^s},$$ (21)

where $(k)_s = k(k + 1) ... (k + s - 1)$.
In the case \(j = n + 1, \nu = 3/2 \) for any \(j = 1, 2, \ldots \) Eq. \((18)\) has a solution in \(L^2(\mathbb{R}) \) of the form

\[
B_j(t) = \frac{1}{(\cosh t)^{3/2}} \sum_{s=0}^{j-1} \frac{(1-j)_s(j+3)_s}{(5/2)_s s!} \frac{1}{(e^{2t} + 1)^s} \tag{22}
\]

Let us denote \(H_\lambda \) the subspace in \(L^2(M) \) formed by the square integrable solutions of Eq. \((1)\). We have proved the following

Theorem 2 (see [2]). Let \(M = \mathbb{R} \times S^3 \) be de Sitter space with the metric

\[
ds^2 = dt^2 - \cosh^2 t \cdot h_{ij}(y)dy^i dy^j.
\]

Then \(\dim H_\lambda = \infty \) for all \(\lambda = \lambda_{jn} \) \((20)\). Moreover, if \(\lambda = \lambda_{jn} \geq 0 \) then either \(\lambda = 0 \), or \(\lambda = 2 \).

4 Solutions on the Friedman space

1. In the inflation cosmology the following form of the Friedman-de Sitter metric is often used:

\[
ds^2 = dt^2 - e^{2Ht} \cdot h_{ij}(y)dy^i dy^j, \tag{23}
\]

\(h_{ij} \) is a Riemannian metric on a compact 3-dimensional manifold, \(0 < t < \infty \) and \(0 < H \) is Hubble’s constant. In this case the function \(v(t) \) \((12)\) is

\[
v(t) = \frac{9}{4} H^2 - q e^{-2Ht} \tag{24}
\]

Eq. \((11)\) on the semi-axis with boundary conditions \(B(0) = B(\infty) = 0 \) has an eigenvalue in this case. If the parameter \(t \) is interpreted as the radius in spherical coordinates then we get the known model of deuteron (see, for example [3]). The solution has the form

\[
B(t) = J_\nu(ce^{-Ht}),
\]

where

\[
c = \sqrt{q} > 0, \quad \nu = \frac{\sqrt{9H^2 - 4\lambda}}{2H} > 0,
\]

and \(J_\nu \) is the Bessel function. The eigenvalue \(\lambda \) is derived from the relation \(J_\nu(c) = 0 \).

2. The Friedman metric has the form

\[
ds^2 = dt^2 - a^2(t)h_{ij}(y)dy^i dy^j \tag{25}
\]

where \(h_{ij} \) is a Riemannian metric on the manifold of positive, negative or flat curvature. The function \(a(t) \) is derived from the Einstein-Friedman equations

\[
3\dot{a}^2/a^2 = 8\pi \rho - 3k/a^2, \quad 3\ddot{a}/a = -4\pi (\rho + 3p), \tag{26}
\]

where \(k = 1, -1, 0 \) for the manifolds of manifolds of the positive, negative of flat curvature respectively. The pressure \(p \) and the mass density \(\rho \) are related by an equation of state
\(p = p(\rho) \). In particular, for massless thermal radiation \((p = \rho/3)\) in a 3-dimensional torus \((k = 0)\) one has

\[a(t) = c\sqrt{t}, \quad c > 0, \quad 0 < t < \infty. \tag{27} \]

In this case

\[v(t) = -\frac{3}{16t^2} - \frac{q}{c^2t}, \quad q > 0 \tag{28} \]

and the Sturm-Liouville equation (11) has a discrete spectrum for negative \(\lambda \):

\[\lambda_n = -\frac{4q^2}{c^2(4n + 1)^2}, \quad n = 1, 2, ... \tag{29} \]

Indeed, if we denote \(\lambda = -\nu^2, \quad \nu > 0 \) and define a new function \(\varphi(x) \) by

\[B(t) = e^{-\nu t^{1/4}}\varphi(2\nu t) \]

then from the Sturm-Liouville equation

\[\ddot{B}(t) + [\lambda + \frac{3}{16t^2} + \frac{q}{c^2t}]B(t) = 0 \]

we obtain that the function \(\varphi(x) \) satisfies the equation for the degenerate hypergeometric function

\[x\varphi''(x) + \left(\frac{1}{2} - x \right)\varphi'(x) - \frac{1}{4} - \frac{q}{2\nu c^2}\varphi(x) = 0. \]

It is known that the last equation has solutions with the required behavior at infinity only if

\[\frac{1}{4} - \frac{q}{2\nu c^2} = -n, \quad n = 1, 2, ... \]

which leads to (28).

For a compact 3-dimensional manifold of negative curvature \((k = -1)\) the function \(a(t) \) has the form

\[a(t) = \sqrt{t^2 - c^2}, \quad 0 < c < t < \infty \tag{30} \]

and the corresponding Sturm-Liouville problem also has a discrete spectrum for negative \(\lambda \).

5 Discussion and Conclusions

1. An action for the Klein-Gordon equation (1) has the form

\[S = \frac{1}{2} \int_M [(\nabla f, \nabla f) - \lambda f^2]\sqrt{|g|}dx \tag{31} \]

where

\[(\nabla f, \nabla f) = g^{\mu\nu}\partial_\mu f\partial_\nu f. \]

On solutions of the form (10) on the Friedman type manifolds the action takes the form

\[S = \frac{1}{2} \int_{I\times N^0} [(\dot{B} - \frac{n}{a}\dot{B})^2 \Phi^2 - a^{-2}B^2h^{ij}\partial_i\Phi\partial_j\Phi - \lambda B^2\Phi^2]dt\sqrt{h}dy \tag{32} \]
On the solutions on de Sitter space of the form (21), (22) the integral (32) is convergent, i.e. the action is finite.

2. Let us make the substitution into Eq. (31)

\[f = u(y, t)a(t)^{-\frac{\dot{a}}{a}} \]

Then we obtain the following equation

\[\ddot{u} - a(t)^{-2}\Delta_h u + [\lambda - w(t)]u = 0 \quad (33) \]

where

\[w(t) = \frac{n\ddot{a}}{2a} + \frac{n}{2}\left(\frac{n}{2} - 1\right)\frac{\dot{a}^2}{a^2} \]

We look for solutions satisfying the condition

\[\int_{\mathbb{R} \times N^n} u(y, t)^2 dt\sqrt{h}dy < \infty \]

There exists a well developed spectral theory for elliptic differential operators (see, for example [6, 7]). There is a spectral theory of the Liouville operator in ergodic theory of dynamical systems [9]. It would be interesting to develop a spectral theory for hyperbolic equations.

Consider for example on the Schwartz space \(S(\mathbb{R}^2) \) of the functions \(u = u(x, t) \) on the plane the hyperbolic differential operator of the form

\[Au = \frac{\partial^2}{\partial t^2} u - \frac{\partial^2}{\partial x^2} u + \phi(x, t)u \quad (34) \]

where the smooth real valued function \(\phi(x, t) \) admits a power bound on the variables \(x, t \) at infinity. The operator \(A \) admits a self-adjoint extension in \(L^2(\mathbb{R}^2) \). In the particular simple case when the function \(\phi \) has the form \(\phi = x^2 - t^2 \), the operator is the difference of the Schrodinger operators for two harmonic oscillators. Hence it has in \(L^2(\mathbb{R}^2) \) a complete system of eigenfunctions

\[u_{jn} = H_j(t)H_n(x) \exp\left\{-\frac{1}{2}(t^2 + x^2)\right\}, \quad (35) \]

with the corresponding eigenvalues \(\lambda_{jn} = 2(n - j) \). Here \(H_j \) are the Hermite polynomials.

The action

\[S = \frac{1}{2} \int_{\mathbb{R}^2} (u^2 - u_x^2 - \phi u^2 + \lambda u^2) dtdx \]

is finite on solutions (35).

3. Note that together with (1) the so called equation with conformal coupling is considered:

\[\Box f + \xi Rf + \lambda f = 0. \quad (36) \]
Here R is the scalar curvature of the manifold M and $\xi = (n - 1)/4n$. For de Sitter space $R = 12$, $\xi = 1/6$. In this case Eq. \[\Box f + (2 + \lambda)f = 0 \] has square integrable solutions if $2 + \lambda = \lambda_{jn}$ and in particular if $\lambda = 0$.

In this note the square integrable solutions of the Klein-Gordon equation for scalar field on manifolds have been considered. It would be interesting to study square integrable solutions on more general manifolds and also equations for fields with higher spins.

Acknowledgements

V.K. is supported in part by RFBR grant 05-01-01058 and I.V. by RFBR grant 05-01-00884.

References

[1] N.D. Birrell and P.C.W. Davies. Quantum Fields in Curved Space, Cambridge University Press, 1982.

[2] V.V. Kozlov. Square Integrable Solutions of the Klein-Gordon Equation on de Sitter Space, Russian Mathematical Surveys, 1987, v. 42, N. 4, p. 171.

[3] V.G. Kadyshevsky. Nucl. Phys. 1978, B141, p. 477;
 V.G. Kadyshevsky, M.D. Mateev, V.N. Rodionov, A.S. Sorin. [hep-ph/0512332]

[4] A. Vilenkin. Phys. Rev. 1989, D39, 1116.

[5] G. ’t Hooft, S. Nobbenhuis. [gr-qc/0602076]

[6] E.C. Titchmarsh. Eigenfunction Expansions Associated with Second-Order Differential Equations, Oxford, At the Clarendon Press, 1946.

[7] N. Dunford and J.T. Schwartz. Linear Operators Part II: Spectral Theory, Self Adjoint Operators in Hilbert Space. John Wiley & Sons, New York, 1963.

[8] S. Flugge. Practical Quantum Mechanics, Springer, 1971.

[9] V.I. Arnold, V.V. Kozlov, and A.I. Neishtadt. Mathematical Aspects of Classical and Celestial Mechanics. Springer-Verlag. 1993.