On the stability of the stochastic gradient Langevin algorithm with dependent data stream*

Miklós Rásonyi¹, Kinga Tikosi¹²

Abstract

We prove, under mild conditions, that the stochastic gradient Langevin dynamics converges to a limiting law as time tends to infinity, even in the case where the driving data sequence is dependent.

Keywords: stochastic gradient, Langevin dynamics, dependent data

1. Stochastic gradient Langevin dynamics

Sampling from high-dimensional, possibly not even logconcave distributions is a challenging task, with far-reaching applications in optimization, in particular, in machine learning, see Raginsky et al. [1], Chau et al. [2], Barkhagen et al. [3], Brosse et al. [4].

Let \(U : \mathbb{R}^d \rightarrow \mathbb{R}_+ \) be a given function and consider the corresponding Langevin equation

\[
d\Theta_t = -\nabla U(\Theta_t) \, dt + \sqrt{2} \, dW_t,
\]

*Both authors were supported by the “Lendület” grant 2015-6 of the Hungarian Academy of Sciences.

¹Alfréd Rényi Institute of Mathematics, Réaltandóda utca 13-15, 1053 Budapest, Hungary

²During the preparation of this paper the author attended the PhD school of Central European University, Budapest.
where W is a d-dimensional standard Brownian motion. Under suitable assumptions, the unique invariant probability μ for the diffusion process π has a density (with respect to the d-dimensional Lebesgue measure) that is proportional to $\exp(-U(x))$, $x \in \mathbb{R}^d$.

In practice, Euler approximations of π may be used for sampling from μ, i.e. a recursive scheme

$$\vartheta_{t+1}^\lambda = \vartheta_t^\lambda - \lambda \nabla U(\vartheta_t^\lambda) + \sqrt{2\lambda} \xi_{t+1}$$

(2)
is considered for some small $\lambda > 0$ and independent standard d-dimensional Gaussian sequence ξ_i, $i \geq 1$.

In some important applications, however, $U, \nabla U$ are unknown, one disposes only of unbiased estimates $H(\theta, Y_t)$, $t \in \mathbb{N}$ of $\nabla U(\theta)$, where Y_t is some stationary data sequence. From this point on we switch to rigorous mathematics.

Let us fix integers $d, m \geq 1$ and a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. $\mathcal{B}(\mathcal{X})$ denotes the σ-algebra of the Borel-sets of a Polish space \mathcal{X}. For a random variable X, $\mathcal{L}(X)$ denotes its law. The Euclidean norm on \mathbb{R}^d or \mathbb{R}^m will be denoted by $| \cdot |$, while $|| \cdot ||_{TV}$ stands for the total variation distance of probability measures on $\mathcal{B}(\mathbb{R}^d)$. Let $B_r := \{ \theta \in \mathbb{R}^k : |\theta| \leq r \}$ denote the ball of radius r, for $r \geq 0$, for both $k = d$ and $k = m$, depending on the context. The notation Leb(\cdot) refers to the d-dimensional Lebesgue-measure.

For $0 < \lambda \leq 1$, $t = 0, 1, \ldots$ and for a constant initial value $\theta_0 \in \mathbb{R}^d$ consider the recursion

$$\theta_{t+1}^\lambda = \theta_t^\lambda - \lambda H(\theta_t^\lambda, Y_t) + \sqrt{\lambda} \xi_{t+1}, \quad t \in \mathbb{N}, \quad \theta_0^\lambda := \theta_0,$$

(3)

where ξ_i, $i \geq 1$ is an i.i.d. sequence of d-dimensional random variables with
independent coordinates such that $E[\xi_i] = 0$ and $E[|\xi_i|^2] = \sigma^2$ for some σ^2. Furthermore, the density function f of ξ_i with respect to Leb is assumed strictly positive on every compact set. Assume that $(Y_t)_{t \in \mathbb{Z}}$ is a strict sense stationary process with values in \mathbb{R}^m and it is independent of the noise process $(\xi_t)_{t \geq 1}$. Finally, $H : \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d$ is a measurable function.

A particular case of (3) is the stochastic gradient Langevin dynamics (SGLD), introduced in Welling and Teh [5], designed to learn from large datasets. See more about different versions of SGLD and their connections in Brosse et al. [4]. Note that in the present setting, unlike in SGLD, we do not assume that H is the gradient of a function and we do not assume ξ_i to be Gaussian.

A setting similar to ours was considered in Lovas and Rásonyi [6] under different assumptions. We will compare our results to those of Lovas and Rásonyi [6] at the end of Section 2 below.

The sampling error of θ^{λ}_t has been thoroughly analysed in the literature: $d(\theta^{\lambda}_t, \mu)$ has been estimated for various probability metrics d, see Chau et al. [2], Barkhagen et al. [3], Raginsky et al. [1], Brosse et al. [4]. The ergodic behaviour of θ^{λ}_t, however, has eluded attention so far. If Y_t are i.i.d. then θ^{λ}_t is a homogeneous Markov chain and standard results of Markov chain theory apply. In the more general, stationary case (considered in Barkhagen et al. [3], Chau et al. [2]), however, that machinery is not available. In the present note we study scheme (3) with stationary Y_t and establish that its law converges to a limit in total variation.
2. Main results

Assumption 1. There is a constant $\Delta > 0$ and a measurable function $b : \mathbb{R}^m \to \mathbb{R}_+$ such that, for all $\theta \in \mathbb{R}^d$ and $y \in \mathbb{R}^m$

$$\langle H(\theta, y), \theta \rangle \geq \Delta |\theta|^2 - b(y). \quad (4)$$

Assumption 2. There exist constants $K_1, K_2, K_3 > 0$ and $\beta \geq 1$ such that

$$|H(\theta, y)| \leq K_1|\theta| + K_2|y|^{\beta} + K_3. \quad (5)$$

Assumption 3. There exist (finite) constants $M_y, M_b > 0$ such that $\mathbb{E}[|Y_0|^{2\beta}] \leq M_y$ and $\mathbb{E}[b(Y_0)] \leq M_b$.

Theorem 2.1. Let Assumptions 1, 2 and 3 hold. Then, for λ small enough, the law $\mathcal{L}(\theta^\lambda_0)$ of the iteration defined by (3) converges in total variation as $t \to \infty$ and the limit does not depend on the initialization X_0.

In Lovas and Rásonyi [6], Δ in (4) was allowed to depend on y but b in (4) had to be constant, the process Y was assumed bounded and the process ξ Gaussian. Furthermore, in Assumption 2, β had to be 1. Under these conditions the conclusion of Theorem 2.1 was obtained, together with a rate estimate.

Theorem 2.1 above complements the results of Lovas and Rásonyi [6]: Δ must be constant in our setting but the restrictive boundedness hypothesis on Y could be removed, ξ need not be Gaussian, β in (4) can be arbitrary and b in (4) may depend on y. The examples in Section 5 demonstrate that our present results cover a wide range of relevant applications where the obtained generalizations are crucial.
3. Markov chains in random environment

The rather abstract Theorem 3.1 below, taken from Gerencsér and Rásonyi [7], is the key result we use in this paper. Let us first recall the related terminology and the assumptions.

Let X and Y be Polish spaces and let $(X_n)_{n \in \mathbb{N}}$ (resp. $(Y_n)_{n \in \mathbb{N}}$) be a non-decreasing sequence of (non-empty) Borel-sets in X (resp. Y). Consider a parametric family of transition kernels, i.e. a map $Q : Y \times X \times \mathcal{B}(X) \to [0,1]$ such that for all $B \in \mathcal{B}(X)$ the function $(x,y) \mapsto Q(x,y,B)$ is measurable and for every $(x,y) \in X \times Y$ $Q(x,y,\cdot)$ is a probability.

An X valued stochastic process $(X_t)_{t \in \mathbb{N}}$ is called a Markov chain in a random environment with transition kernel Q if $X_0 \in X$ is deterministic (for simplicity) and

$$\mathbb{P}(X_{t+1} \in A | \mathcal{F}_t) = Q(X_t, Y_t, A), \text{ for } t \in \mathbb{N},$$

where we use the filtration $\mathcal{F}_t = \sigma(Y_k, k \in \mathbb{Z}; X_j, 0 \leq j \leq t)$.

For a parametric family of transition kernels Q and a bounded (or non-negative) function $V : X \to \mathbb{R}$ define

$$[Q(y)V](x) = \int_X V(z)Q(x,y,dz), \text{ for } x \in X. \quad (7)$$

Assumption 4. Let the process $(X_t)_{t \in \mathbb{N}}$ started from X_0 with be such that

$$\sup_{t \in \mathbb{N}} \mathbb{P}(X_t \notin X_n) \to 0, n \to \infty. \quad (8)$$

Assumption 5. (Minorization condition) Let $\mathbb{P}(Y_0 \notin Y_n), n \to \infty$. Assume that there exists a sequence of probability measures $(\nu_n)_{n \in \mathbb{N}}$ and a non-decreasing sequence $(\alpha_n)_{n \in \mathbb{N}}$ with $\alpha_n \in (0,1]$ such that for all $n \in \mathbb{N}, x \in$
Theorem 3.1. (Theorem 2.11. of Gerencsér and Rásonyi [7]) Let Assumptions \(4 \) and \(5 \) hold. Then there exists a probability \(\mu^* \) on \(\mathcal{B}(\mathcal{X} \times \mathcal{Y}) \) such that

\[
||\mathcal{L}(X_t, (Y_{t+k})_{k \in \mathbb{Z}}) - \mu^*||_{TV} \to 0, \quad \text{as } t \to \infty.
\]

If \((X'_t)_{t \in \mathbb{N}}\) is another such Markov chain started from a different \(X'_0 \) satisfying Assumption \(4 \) then

\[
||\mathcal{L}(X_t, (Y_{t+k})_{k \in \mathbb{Z}}) - \mathcal{L}(X'_t, (Y_{t+k})_{k \in \mathbb{Z}})||_{TV} \to 0, \quad \text{as } t \to \infty. \qquad \Box
\]

4. Proofs

Define the Markov chain associated to the recursive scheme (3) as

\[
Q(\theta, y, A) = \mathbb{P}(\theta - \lambda H(\theta, y) + \sqrt{\lambda} \xi_{n+1} \in A),
\]

for all \(y \in \mathcal{Y} := \mathbb{R}^m, \theta \in \mathcal{X} := \mathbb{R}^d \) and \(A \in \mathcal{B}(\mathbb{R}^d) \).

Lemma 4.1. For small enough \(\lambda \), under Assumptions \(1 \) and \(2 \), the process \((\theta^k_t)_{t \in \mathbb{N}}\) given by recursion (3) satisfies Assumption \(4 \) with \(\mathcal{X}_n := B_n \) (the ball of radius \(n \)).
PROOF. Choose $V(\theta) = |\theta|^2$. Then, since $E\xi_1 = 0$,

$$[Q(y)V](\theta) = \mathbb{E}[V(\theta - \lambda H(\theta, y) + \sqrt{\lambda}\xi_1)]$$

$$= |\theta|^2 + \lambda^2|H(\theta, y)|^2 + \lambda\mathbb{E}|\xi_1|^2 - 2\lambda\langle \theta, H(\theta, y) \rangle$$

$$\leq (1 - 2\lambda\Delta)|\theta|^2 + \lambda(\sigma^2 + 2b(y)) + 3\lambda^2(K_1^2|\theta|^2 + K_2^2|y|^{2\beta} + K_3^2)$$

$$= (1 - 2\lambda\Delta + 3\lambda^2K_1^2)V(\theta) + \lambda(\sigma^2 + 2b(y)) + 3\lambda^2(K_2^2|y|^{2\beta} + K_3^2)$$

$$= \gamma V(\theta) + K(y),$$

with $K(y) = \lambda(\sigma^2 + 2b(y)) + 3\lambda^2[K_2^2|y|^{2\beta} + K_3^2]$ and $\gamma = (1 - 2\lambda\Delta + 3\lambda^2K_1^2)$.

Note that for small enough λ, $\gamma \in (0, 1)$, independent of y.

Now using Lemma 4.2 below and setting $\theta = \theta_0$ and $y_k = Y_k$ for $k \geq 1$ we get, for each $t \geq 1$,

$$\mathbb{E}|\theta_1^\lambda|^2 = \mathbb{E}[Q(Y_t)Q(Y_{t-1}) \ldots Q(Y_1)V](\theta_0) \leq \gamma^t V(\theta_0) + \sum_{i=1}^{t} \gamma^i \mathbb{E}K(Y_i)$$

$$= \gamma^t|\theta_0|^2 + \sum_{i=1}^{t} \gamma^i[\lambda(\sigma^2 + 2\mathbb{E}[b(Y_i)]) + 3\lambda^2(K_2^2\mathbb{E}|Y_i|^{2\beta} + K_3^2)]$$

$$\leq |\theta_0|^2 + \frac{\gamma}{1 - \gamma}[(\sigma^2 + 2M_b) + 3(K_2^2M_y + K_3^2)] < \infty,$$

by Assumption 3. Then, using Markov’s inequality, we arrive at

$$\mathbb{P}(\theta_1^\lambda \notin \mathcal{X}_n) = \mathbb{P}(|\theta_1^\lambda| > n) \leq \frac{\sup_1 \mathbb{E}|\theta_1^\lambda|^2}{n^2} \to 0, \text{ as } n \to \infty. \quad (11)$$

Lemma 4.2. Assume $[Q(y)V](\theta) \leq \gamma V(\theta) + K(y)$. Then

$$[Q(y_k)Q(y_{k-1}) \ldots Q(y_1)V](\theta) \leq \gamma^k V(\theta) + \sum_{i=1}^{k} \gamma^{i-1} K(y_i). \quad (12)$$

Proof. We prove the statement by induction. For $k = 1$, it is true by assumption. Using that

$$[Q(y_2)Q(y_1)V](x) = \int_{\mathcal{X}} Q(x, y_2, dr) \int_{\mathcal{X}} V(z)Q(r, y_1, dz), \text{ for } r \in \mathcal{X}, \quad (13)$$
for \(k > 1 \) we get

\[
[Q(y_k)Q(y_{k-1}) \cdots Q(y_1)V](\theta) = \int_{\mathcal{X}} Q(\theta, y_k, dx) \left[Q(y_{k-1})Q(y_{k-2}) \cdots Q(y_1)V \right](x)
\]

\[
\leq \int_{\mathcal{X}} \left(\gamma^{k-1}V(x) + \sum_{i=1}^{k-1} \gamma^{i-1} K(y_i) \right) Q(\theta, y_k, dx)
\]

\[
= \gamma^{k-1} \int_{\mathcal{X}} V(x)Q(\theta, y_k, dx) + \sum_{i=1}^{k-1} \gamma^{i-1} K(y_i)
\]

\[
\leq \gamma^k V(\theta) + \sum_{i=1}^{k} \gamma^{i-1} K(y_i). \quad \square
\]

Lemma 4.3. Define \(\mathcal{X}_n = B_n, \mathcal{Y}_n := B_n, n \in \mathbb{N} \) and let Assumptions 7 and 2 hold. Then Assumption 5 is satisfied, for all \(\lambda \).

Proof. For all \(A \in \mathcal{B}(\mathcal{X}) \),

\[
Q(\theta, y, A) = \mathbb{P}(\theta - \lambda H(\theta, y) + \sqrt{\lambda} \xi_1 \in A)
\]

\[
\geq \int_{\mathbb{R}^d} 1_{\{\theta - \lambda H(\theta, y) + \sqrt{\lambda} \xi_1 \in A \cap B_n\}} f(w) \, dw
\]

\[
= \frac{1}{\lambda^{d/2}} \int_{A \cap B_n} f \left(\frac{z - \theta + \lambda H(\theta, y)}{\sqrt{\lambda}} \right) \, dz
\]

\[
\geq \frac{\text{Leb}(A \cap B_n)}{\lambda^{d/2}} C(n) = \frac{\text{Leb}(A \cap B_n)}{\lambda^{d/2}} \frac{C(n) \text{Leb}(B_n)}{\text{Leb}(B_n)},
\]

where we use that for \(\theta, z \in B_n \) and \(y \in B_n \) we have

\[
\left| z - \theta + \lambda H(\theta, y) \right| \leq n + \lambda (K_1 n + K_2 n^\beta + K_3) =: R(n).
\]

Therefore the integrand can be bounded from below by

\[
C(n) := \inf_{x \in B_R(n)} f(x) > 0.
\]

Then define \(\nu_n(A) := \frac{\text{Leb}(A \cap B_n)}{\text{Leb}(B_n)} \) and \(\alpha_n := \frac{C(n) \text{Leb}(B_n)}{\lambda^{d/2}} \), which proves that Assumption 5 holds. \(\square \)

Proof (of Theorem 2.1). Follows from Lemmas 4.1, 4.3 and Theorem 3.1 \(\square \)
5. Examples

5.1. Nonlinear regression

Let us consider a nonlinear regression problem which can also be seen as a one layer neural network in a supervised learning setting, where only one trainable layer connects the input and the output vectors. The training set consists of entries \(Y_t = (Z_t, L_t) \) with the features \(Z_t \in \mathbb{R}^{d_0} \) and the corresponding labels \(L_t \in \mathbb{R}^{d_1} \) for \(t \in 1, \ldots, N \). We assume that \(Y_t \) is a stationary process. Set \(m := d_0 + d_1 \), the dimension of \(Y_t \).

The trainable parameters will be a matrix \(W \in \mathbb{R}^{d_0 \times d_1} \) and a vector \(g \in \mathbb{R}^{d_1} \), therefore the dimension of \(\theta := (W, g) \) will be \(d = d_0 d_1 + d_1 \). The prediction function \(h : \mathbb{R}^{d_0} \times \mathbb{R}^d \rightarrow \mathbb{R}^{d_1} \) is defined by \(h(z, \theta) := s(W z + g) \), where \(s = (s_1, \ldots, s_{d_1}) \) is a collection of nonlinear activation functions \(s_i : \mathbb{R} \rightarrow \mathbb{R} \) for \(i = 1, \ldots, d_1 \). We will assume that each \(s_i \) and their derivatives \(s_i' \) are all bounded by some constant \(M_s \) for \(i = 1, \ldots, d_1 \).

Choosing the loss function to be mean-square error, one aims to minimize the empirical risk, that is

\[
\min \{ \mathbb{E}[|h(Z_t, \theta) - L_t|^2] + \kappa |\theta|^2 \},
\]

with some \(\kappa > 0 \), where the second term is added for regularization.

It is standard to solve this optimization step using gradient-based methods. For \(y = (z, l) \in \mathbb{R}^{d_0} \times \mathbb{R}^{d_1} \) denote \(U(\theta, y) = |h(z, \theta) - l|^2 + \kappa |\theta|^2 \) and the updating function to be used in the algorithm will be

\[
H(\theta, y) = \nabla U(\theta, y) = \frac{\partial}{\partial \theta} |h(z, \theta) - l|^2 + 2\kappa \theta. \tag{15}
\]

Lemma 5.1. The function \(H(\theta, y) \) defined as above satisfies Assumptions \(\square \) and \(\square \)
Proof. Using the chain rule, a short calculation gives
\[
\left| \frac{\partial}{\partial \theta} h(z; \theta) - l \right|^2 = \sum_{i=1}^{d_0+1} \sum_{j=1}^{d_1} (2(h(z; \theta))_j - l_j) s_j'(\langle W_j, z \rangle + g_j) z_i^2,
\]
where we define \(z_{d_0+1} = 1 \) and \(W_j \) stands for the \(j \)th row of \(W \). Notice that by the boundedness of \(s' \) and \(s \) this is bounded in \(\theta \) and at most quadratic in \(y \). Then Assumption \(2 \) is satisfied with \(\beta = 2 \).

Using the same argument about the boundedness of \(s \) and \(s' \)
\[
\left| \langle \frac{\partial}{\partial \theta} h(z; \theta) - l \rangle^2, \theta \rangle \right| = \left| \sum_{i=1}^{d_0+1} \sum_{j=1}^{d_1} 2(h(z; \theta))_j - l_j \right| s_j'(W_j z + g_j) z_i \theta_{i,j} \right| \leq C_0 d M_s \left(|y|^2 + 1 \right) |\theta|,
\]
for some \(C_0 > 0 \). Using that \(\langle \frac{\partial}{\partial \theta} \kappa|\theta|^2, \theta \rangle = 2 \kappa |\theta|^2 \), we get that \(\langle \nabla U(\theta), \theta \rangle \geq c |\theta|^2 - C (|y|^4 + 1) \) with some \(c, C \) therefore Assumption \(1 \) is satisfied with \(b(y) \) being of degree 4 in \(y \).

5.2. A tamed algorithm for neural networks

It has been observed that in multi-layer neural networks quadratic regularization is not sufficient to guarantee dissipativity, while adding a higher order term would violate Lipschitz continuity. So the standard SGLD algorithm diverges anyway. To remedy this, certain “tamed” schemes have been suggested in Lovas et al. \[8\].

In contrast to the previous case now we will hidden layers between the input and output: layer 0 is the input, layer \(n \) is the output and 1, \ldots, \(n-1 \) are the hidden layers of the neural network for some \(n > 1 \). The prediction function \(h \) will be defined as the composition of a sequence of \(n+1 \) linear transformations and activation functions, i.e. \(h(z, \theta) = s_n(W_n s_{n-1}(W_{n-1} \ldots s_0(W_0 z))) \)
where θ is the collection of all parameters $W_i \in \mathbb{R}^{d_{i-1} \times d_i}$, $i = 1, \ldots, n$ and $s_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d_i}$ is a componentwise non-linear activation function, assumed bounded together with its derivatives by some constant M_s. Therefore $h : \mathbb{R}^{d_0} \times \mathbb{R}^{d} \to \mathbb{R}^{d_n}$, where $d = \sum_{i=1}^{n} d_{i-1}d_i$ is the dimension of θ. For the case of simplicity in this case we assumed that there is no bias term g. The training set consists of entries $Y_t = (Z_t, L_t)$ with the features $Z_t \in \mathbb{R}^{d_0}$ and the corresponding labels $L_t \in \mathbb{R}^{d_n}$, the dimension of each Y_t is $m = d_0 + d_n$.

We assume that Y_t is a stationary process.

As in the previous subsection, the regularized empirical risk has the form

$$U(\theta, y) = |h(z, \theta) - l|^2 + \frac{\eta}{2(r+1)}|\theta|^{2(r+1)}$$

with some $r \geq 0$, $\eta > 0$. Denoting $G(\theta, y) = \nabla U(\theta, y)$, the “tamed” updating function we use will be defined as $H(\theta, y) := \frac{G(\theta, y)}{1 + \sqrt{\lambda} |\theta|^{2r}}$, for every $\theta \in \mathbb{R}^d$, $y \in \mathbb{R}^m$. Note that this function depends on λ.

We will use the following.

Lemma 5.2. (Proposition 4 of Lovas et al. [8])

$$\left| \frac{\partial}{\partial \theta} h(z, \theta) - l \right|^2 \leq C (1 + |y|)^2 (1 + |\theta|^{n+1}),$$

(17)

where $C > 0$ depends on $D = \max_{j=1, \ldots, n} d_j$, n and M_s. \qed

Lemma 5.3. For λ small enough, the conclusions of Theorem [2.7] hold for the scheme [3] with $H(\theta, y)$ defined as above, provided that $r \geq \frac{n+2}{2}$ and Assumption [2] holds.

Proof. Using Lemma 5.2, Assumption 2 can be checked as follows:

$$|H(\theta, y)| = \frac{\left| \frac{\partial}{\partial \theta} h(z, \theta) - l \right|^2 + \eta |\theta|^{2r}}{1 + \sqrt{\lambda} |\theta|^{2r}} \leq \left| \frac{C (1 + |y|)^2 (1 + |\theta|^{n+1})}{1 + \sqrt{\lambda} |\theta|^{2r}} \right| + \frac{\eta |\theta|^{2r}}{1 + \sqrt{\lambda} |\theta|^{2r}} \leq K_1 |\theta| + K_2 |y|^\beta + K_3.$$

11
where $K_1 = \frac{\eta}{\sqrt{\lambda}}$, $\beta = 2$ and the constants K_2 and K_3 depend on λ, η, n and C.

Let us check Assumption 1. For the regularization term we have

$$\langle \eta\theta|\theta|^{2r} \rangle = \frac{\eta|\theta|^{2r+2}}{1 + \sqrt{\lambda}|\theta|^{2r}} \geq \min \left\{ \frac{\eta^2}{2\sqrt{\lambda}}, \frac{\eta}{2} \right\} |\theta|^2 \geq \frac{\eta}{2} |\theta|^2$$

(18)

for λ small enough.

The Cauchy inequality, Lemma 5.2 and the choice of r ensures that

$$\left| \left\langle \frac{\partial}{\partial \theta} (|h(z; \theta) - l|^2) \right\rangle \right| \leq C(1 + |\theta|^{n+2})(1 + |y|^2) \leq K'(1 + |y|^2),$$

(19)

for some $K' > 0$. Now combining these estimates, we get

$$\langle H(\theta, y), \theta \rangle \geq \frac{\eta}{2} |\theta|^2 - K'(1 + |y|^2),$$

(20)

therefore Assumption 1 is satisfied with $\Delta = \frac{\eta}{2}$ and $b(y)$ is quadratic in y.

We can check that $\gamma = (1 - \eta\sqrt{\lambda} + \lambda\eta^2) < 1$ in Lemma 4.1 for λ small enough so the proof of Theorem 2.1 goes through for this choice of H.

Allowing b to be of degree 4, $\frac{n+2}{2}$ in Lemma 5.3 could be decreased to $\frac{n+1}{2}$, as easily seen.

References

[1] M. Raginsky, A. Rakhlin, M. Telgarsky, Non-convex learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis, Proceedings of Machine Learning Research 65 (2017) 1674–1703.

[2] N. H. Chau, Éric Moulines, M. Rásonyi, S. Sabanis, Y. Zhang, On stochastic gradient Langevin dynamics with dependent data streams: the fully non-convex case, Preprint, arXiv:1905.13142 (2021).
[3] M. Barkhagen, N. H. Chau, Éric. Moulines, M. Rásonyi, S. Sabanis, Y. Zhang, On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case, Bernoulli 27 (2021) 1–33.

[4] N. Brosse, A. Durmus, E. Moulines, The promises and pitfalls of stochastic gradient Langevin dynamics, in: Advances in Neural Information Processing Systems, 2018, pp. 8268–8278.

[5] M. Welling, Y. W. Teh, Bayesian learning via stochastic gradient Langevin dynamics, in: Proceedings of the 28th international conference on machine learning (ICML-11), 2011, pp. 681–688.

[6] A. Lovas, M. Rásonyi, Markov chains in random environment with applications in queueing theory and machine learning, To appear in Stochastic Processes and their Applications, arXiv:1911.04377 (2021).

[7] B. Gerencsér, M. Rásonyi, Invariant measures for fractional stochastic volatility models, Preprint, arXiv:2002.04832v1 (2020).

[8] A. Lovas, I. Lytras, M. Rásonyi, S. Sabanis, Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms, Preprint, arXiv:2006.14514 (2021).