Toxoplasma gondii infection in pregnant women: a cross-sectional study in Matehuala City, Mexico

Ada-Agustina Sandoval-Carrillo,1 Angel Antonio Vértiz-Hernández,2 Jose-Manuel Salas-Pacheco,1 Olga Edith González-Lugo,2 Elizabeth-Irasema Antuna-Salcido,1 Sergio Manuel Salas-Pacheco,1 Luis Francisco Sánchez-Anguiano,1 Edna Madai Méndez-Hernández,3 Jesús Hernández-Tinoco,1 Francisco Xavier Castellanos-Juárez,4 Osmel La-Llave-León 5,1 Cosme Alvarado-Esquivel 5.

ABSTRACT
Objectives This study aimed to determine the seroprevalence of Toxoplasma gondii (T. gondii) infection in pregnant women in Matehuala City, Mexico; and the associated risk factors.

Design A cross-sectional study.

Setting Matehuala City, Mexico.

Participants 311 pregnant women.

Primary and secondary outcome measures Sera of women were analysed for anti-T. gondii IgG and IgM antibodies by commercially available immunassays. Bivariate and multivariate analyses were used to assess the association between T. gondii seroprevalence and the characteristics of the pregnant women.

Results Thirteen (4.2%) of the 311 pregnant women studied were positive for anti-T. gondii IgG antibodies. No anti-T. gondii IgM antibodies were found in anti-T. gondii IgG seropositive women. No association between seropositivity and history of blood transfusion, transplantation, caesarean sections, deliveries, miscarriages or number of pregnancies was found. Logistic regression analysis of sociodemographic, behavioural and housing variables showed that availability of potable water at street represented a risk factor for T. gondii infection (age-adjusted OR=2.18; 95% CI: 1.05 to 4.53; p=0.03), whereas being born in Mexico was a protective factor for infection (age-adjusted OR=0.01; 95% CI: 0.001 to 0.35; p=0.008).

Conclusions In this first study on the seroepidemiology of T. gondii infection in pregnant women in Matehuala, we conclude that the seroprevalence of T. gondii infection is low and similar to those reported in pregnant women in other Mexican cities. However, the seroprevalence found is lower than those reported in pregnant women in other countries in the Americas and Europe. Two risk factors associated with T. gondii infection were identified. Results of the present study may help for the optimal planning of preventive measures against toxoplasmosis in pregnant women.

INTRODUCTION
Toxoplasmosis is a disease caused by the parasite Toxoplasma gondii (T. gondii). This parasite is a coccidian of the phylum Apicomplexa and causes infections worldwide. Transmission of T. gondii occurs mainly by ingestion of parasite oocysts shed by cats or by consumption of tissue cysts in meat from infected animals. The parasite may cross the placenta of an infected woman and may infect the fetus congenitally. Congenital infection with T. gondii may have severe consequences as miscarriage, fetal death and neurological, ocular and another organ damage in the fetus. If the infection occurs in an early phase of pregnancy the transmission rate is low, but the severity is high if the fetus is infected; whereas if the infection occurs in a late phase of pregnancy the transmission rate is higher, and the severity would be low. On the other hand, infections with T. gondii that occur after birth are usually asymptomatic, but the parasite may induce severe disease in immunocompromised patients. Toxoplasmosis is...
a life-threatening disease for transplant recipients under immunosuppression.

Very little is known about the seroepidemiology of *T. gondii* infection in pregnant women in Mexico. A 34.9% seroprevalence of *T. gondii* infection was found in pregnant women with high risk pregnancies in the central Mexican city of Guadalajara. Whereas seroprevalences of 6.1% and 8.2% were found in pregnant women in the northern Mexican city of Durango, and rural Durango, respectively. Seroprevalences of 3.6% and 6.2% were found in women of reproductive age in the northwestern Mexican city of Hermosillo, and in pregnant women in the central Mexican city of Aguascalientes, respectively. A summary of epidemiological data of previous studies of *T. gondii* infection in pregnant women in Mexico is shown in table 1. The seroepidemiology of *T. gondii* infection in pregnant women in the central Mexican city of Matehuala is unknown. This study aimed to determine the seroprevalence of *T. gondii* infection and the factors associated with this infection in pregnant women in Matehuala. The original protocol for the study is shown in online supplementary file 1.

Materials and Methods

Study Design and Pregnant Women Studied

Through a cross-sectional study design, we studied 311 pregnant women in Matehuala City, Mexico. This city is located in the central Mexican state of San Luis Potosi (figure 1) https://www.google.es/maps/place/Matehualahttps://www.google.es/maps/place/Matehuala,+S.L.P./@23.6543156,–100.6464011,14z/data=!4m5!3m4!1s0x86694082f9:0x4016978679cc460!8m2!3d23.644802!4d-100.64279

Inclusion criteria were: (1) pregnant women attended in the General Hospital of the Health Services in Matehuala City, Mexico; and (2) aged 18 years and older. This study was performed from January to April 2018. For calculation of the sample size we used a reference seroprevalence of 6.2% as expected frequency of *T. gondii* seropositivity, 15,000 as the population size, 3.0% of confidence limits and a confidence level of 97%. The result of the calculation was 298 subjects.

Sociodemographic, Clinical, Behavioural and Housing Data of Pregnant Women

Sociodemographic, clinical, housing and behavioural characteristics of the pregnant women were obtained using a standardised questionnaire. Sociodemographic characteristics, clinical, housing and behavioural characteristics of the pregnant women. The original protocol for the study is shown in online supplementary file 1.

Table 1 A summary of epidemiological data about *Toxoplasma gondii* (*T. gondii*) infection in studies in pregnant women in Mexico

Study population	Year of the publication of the study	Place of the study	Women tested No.	Prevalence of *T. gondii* infection	Risk factors	Reference	
Women with high risk pregnancies	1995	Guadalajara City	350	122	34.9	Older age, low socioeconomic level, housewife occupation, raw or undercooked meat consumption	9
Women in urban area in northern Mexico	2006	Durango City	343	21	6.1	Soil floor at home, residing outside of Durango State, turkey meat consumption	10
Women in rural area in northern Mexico	2009	Durango State	439	36	8.2	Low socioeconomic conditions, soil floor at home	11
Women in urban area in central Mexico	2016	Aguascalientes City	338	21	6.2	White people, no washing hands before eating, use of latrine	13

Figure 1 Geographical location of Matehuala City. This City is located at the North of San Luis Potosi state, Mexico.
data included birthplace, residence, age, gender, socioeconomic status, education and occupation. Clinical data included history of transplant or blood transfusion, number of pregnancies, deliveries, caesarean sections and miscarriages. Behavioural data included consumption of untreated water or unpasteurised milk, unwashed raw vegetables or fruits, contact with animals, contact with cat faeces, type of meat consumed, degree of meat cooking, consumption of dry cured meat, frequency of eating out of home, contact with soil and travelling. Housing data included type of flooring, water supply, form of elimination of excretes, crowding at home and education of the head of the family.

Sample collection and processing

Each pregnant woman provided a blood sample. After centrifugation of blood, sera were obtained and frozen at –20°C until analysed.

Detection of anti-*T. gondii* IgM and IgG antibodies

Detection of anti-*T. gondii* IgG antibodies was performed using a commercially available enzyme immunoassay ‘Toxoplasma gondii IgG’ kit (Diagnostic Automation/Cortez Diagnostics, Inc, Woodland Hills, California, USA). Samples positive for anti-*T. gondii* IgG were additionally analysed for anti-*T. gondii* IgM antibodies by a commercially available enzyme immunoassay ‘Toxoplasma gondii IgM’ kit (Diagnostic Automation/Cortez Diagnostics, Inc). IgG and IgM tests were performed following the instructions of the manufacturer.

Statistical analysis

The statistical analysis was performed with the aid of the software Epi Info V.7, and SPSS V.20 (SPSS Inc, Chicago, Illinois, USA). We compared the frequencies of seropositivity among groups using the Fisher’s exact test. Logistic regression analysis with the Enter method was used to determine the association between the characteristics of the pregnant women and the seropositivity to *T. gondii*. To avoid bias, clinical characteristics were analysed separately from other characteristics of pregnant women. Subjects with missing values were excluded. Variables with a p value ≤0.15 obtained in the bivariate analysis were included in the regression analysis. We calculated the age-adjusted OR and 95% CI, and a p value <0.05 was considered as statistically significant.

Participation in the study was voluntary. Information about the objectives and procedures of the study was provided to participants, and a written informed consent was obtained from all of them.

Patients and public involvement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient-relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

RESULTS

Pregnant women were 18 to 44 (mean: 26.14±5.97) years old and were studied during their 1 to 9 (median: 7) month of pregnancy. Thirteen (4.2%) of the 311 pregnant women studied were positive for anti-*T. gondii* IgG antibodies. None of these anti-*T. gondii* seropositive women were positive for anti-*T. gondii* IgM antibodies. Table 2 shows the association between the sociodemographic characteristics of the pregnant women and the seroprevalence of *T. gondii* infection.

As to clinical characteristics, no association (p>0.05) between seropositivity to *T. gondii* and history of blood transfusion, transplantation, caesarean sections, deliveries, miscarriages or number of pregnancies was found.
With respect to behavioural and housing characteristics, only the variables availability of potable water and education of the head of the family showed p values lower than 0.15 by bivariate analysis. Table 3 shows results of the bivariate analysis of a selection of behavioural and housing characteristics and seroreactivity to *T. gondii*. Logistic regression analysis of sociodemographic, behavioural and housing characteristics with p<0.15 obtained by bivariate analysis showed that *T. gondii* infection was positively associated with availability of potable water at street (age-adjusted OR=2.18; 95% CI: 1.05 to 4.53; p=0.03), and negatively associated with being born in Mexico (age-adjusted OR=0.01; 95% CI: 0.001 to 0.35; p=0.008). Results of the regression analysis are shown in table 4.

DISCUSSION

Very little is known about the seroepidemiology of *T. gondii* infection in pregnant women in Mexico. This study aimed to determine the magnitude of the infection with *T. gondii* in a sample of pregnant women in the northern Mexican city of Matehuala. The seroprevalence found in the present study is similar to *T. gondii* seroprevalences reported in pregnant women in other northern Mexican cities including Durango (6.1%), and Aguascalientes (6.2%) and women at reproductive age in the northwestern Mexican city of Hermosillo, Sonora (3.6%). On the other hand, the seroprevalence of *T. gondii* infection found in the present study is lower than the 8.2% seroprevalence of this infection found in pregnant women in rural Durango State. These studies used the same immunoassay to detect anti-*T. gondii* IgG antibodies. In the Americas context, the seroprevalence found in this study is lower than the 39.8% to 51% seroprevalence of *T. gondii* infection reported in pregnant women in Cali City, Colombia; Bahia State, Brazil; and 10 English-speaking Caribbean countries. In addition, the seroprevalence found in pregnant women in Matehuala City is lower than the 11.1% to 21.9% seroprevalences of *T. gondii* infection reported in European countries including Spain, Portugal, Turkey and Sweden. It is not clear why the seroprevalence found in the current study is lower than those reported in pregnant women in other countries. Differences in the characteristics of the pregnant women and type of environment among the compared countries might explain the differences in the *T. gondii* seroprevalences. In general, it is likely that the parasite circulates in a low rate in Mexico. In fact, a study performed in the northern Mexican state of Durango showed a low rate of *T. gondii* infection in cats and other animals. However, there are specific population groups in Mexico with a high seroprevalence of *T. gondii* infection; for instance, miners in Durango State who had a seroprevalence of 60%. We looked for sociodemographic, behavioural and housing characteristics associated with *T. gondii* seropositivity. Logistic regression analysis showed that *T. gondii* infection was positively associated with availability of potable water.
of potable water at street, and negatively associated with being born in Mexico. The association of *T. gondii* exposure and availability of potable water at the street suggests poor sanitary environment and socioeconomic status. It is possible that water can be contaminated with *T. gondii* when transported from the street sources to the houses. The use of unclean containers or contamination of water with soil during transport might contribute for *T. gondii* infection. There is poor knowledge about toxoplasmosis in Mexico. A recent study in housewives showed that this population group had a low knowledge about preventive measures against *T. gondii* infection. For its part, the negative association between *T. gondii* seropositivity and being born in Mexico suggests that *T. gondii* infection might have been acquired abroad.

The present study has some limitations, pregnant women were from a low or medium socioeconomic status, and participants were obtained from only one hospital. Therefore, further studies including also pregnant women of high socioeconomic status and obtained in several hospitals for a better understanding of the epidemiology of *T. gondii* infection should be conducted. Results of this study cannot be generalised to other pregnant women in Mexico. Anti-*T. gondii* IgM antibodies were determined only in sera of women with anti-*T. gondii* IgG antibodies. Anti-*T. gondii* IgM appears early during primary infection; however, detection of this marker alone without anti-*T. gondii* IgG cannot provide a reliable diagnosis of infection since a considerable number of false-positive results has been reported in anti-*T. gondii* IgM immunoassays.

CONCLUSIONS

In this first study on the seroepidemiology of *T. gondii* infection in pregnant women in the northern Mexican city of Matehuala, we conclude that the seroprevalence of *T. gondii* infection is low and similar to those reported in pregnant women in other Mexican cities. However, the seroprevalence found is lower than those reported in pregnant women in other countries in the Americas and Europe. Risk factors associated with *T. gondii* infection identified in the present study should be considered for the optimal planning of measures to avoid *T. gondii* infection during pregnancy.

Author affiliations

1Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
2Coordinación Académica Regional Altiplano, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
3Subdirección de Auxiliares de Diagnóstico y Tratamiento, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Mexico
4IC, Universidad Juárez del Estado de Durango, Durango, Mexico
5Laboratorio de Investigación Biomédica, Juárez University of Durango State Faculty of Medicine and Nutrition, Durango, Mexico

Contribution

CA-E, AAV-H, JH-T and J-MS-P designed the study protocol, performed the data analysis. CA-E wrote the manuscript. AAV-H, OLLL, LFSA and OEG-L obtained blood samples, submitted the questionnaires and performed the data analysis. A-AS-C, SMS-P, FXC-J, EMH-M and E-IA-S performed the laboratory tests. All authors read and approved the final version of the manuscript.

Funding

This work was supported by Juarez University of Durango State, Mexico.

Map disclaimer

The depiction of boundaries on this map does not imply the expression of any opinion whatsoever on the part of BMJ (or any member of its group) concerning the legal status of any country, territory, jurisdiction or area or of its authorities. This map is provided without any warranty of any kind, either express or implied.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval The Institutional Ethical Committee of the General Hospital of the Health Services in Matehuala City, Mexico, approved this study.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information. The data set analysed is available from the corresponding author on reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Osmel La-Llave-León http://orcid.org/0000-0003-2788-3344
Cosme Alvarado-Esquível http://orcid.org/0000-0002-0367-6052

Table 3 Continued

Characteristic	Subjects tested No.	Prevalence of *T. gondii* infection			
	No.	%	P value		
In the street	22	3	13.6		
Crowding at home	160	10	6.2	0.16	
Semi-crowded	118	2	1.7		
Overcrowded	33	1	3.0		
Education of the head of family	7 years or more	189	7	3.7	0.11
	4 to 6 years	109	4	3.7	
	2 years or less	13	2	15.4	

Table 4 Multivariate analysis of selected characteristics of pregnant women and their association with *Toxoplasma gondii* infection

Characteristic	Age-adjusted OR	95% CI	P value
Birthplace (Mexico)	0.01	0.001 to 0.35	0.008
Availability of potable water	2.18	1.05 to 4.53	0.03
Education of the head of family	1.67	0.65 to 4.33	0.28

Sandoval-Carrillo A-A, et al. BMJ Open 2020;10:e033995. doi:10.1136/bmjopen-2019-033995
REFERENCES

1. Rajapakse S, Weeratunga P, Rodrigo C, et al. Prophylaxis of human toxoplasmosis: a systematic review. Pathog Glob Health 2017;111:333–42.
2. Rahimi MT, Daryani A, Sarvi S, et al. Cats and Toxoplasma gondii: a systematic review and meta-analysis in Iran. Onderstepoort J Vet Res 2015;82:e1–10.
3. Alavi SM, Alavi L. Toxoplasmosis in Iran: a guide for general physicians working in the Iranian health network setting: a systematic review. Caspian J Intern Med 2016;7:233–41.
4. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004;363:1965–76.
5. Khan K, Khan W. Congenital toxoplasmosis: an overview of the neurological and ocular manifestations. Parasitol Int 2018;67:715–21.
6. Piao LX, Cheng JH, Aosai F, et al. Cellular immunopathogenesis in primary Toxoplasma gondii infection during pregnancy. Parasite Immunol 2018;40:e12570.
7. Schlüter D, Däubener W, Schares G, et al. Animals are key to human toxoplasmosis. Int J Med Microbiol 2014;304:917–29.
8. Dard C, Marty P, Brenier-Pinchart M-P, et al. Management of toxoplasmosis in transplant recipients: an update. Expert Rev Anti Infect Ther 2018;16:447–60.
9. Galván Ramirez ML, Soto Mancilla JL, Velasco Castrejón O, et al. Incidence of anti-Toxoplasma antibodies in women with high-risk pregnancy and habitual abortions. Rev Soc Bras Med Trop 1995;28:333–7.
10. Alvarado-Esquível C, Sifuentes-Alvarez A, Narro-Duarte SG, et al. Seroepidemiology of Toxoplasma gondii infection in pregnant women in a public hospital in northern Mexico. BMC Infect Dis 2006;6:113.
11. Alvarado-Esquível C, Torres-Castorena A, Liesenfeld O, et al. Seroepidemiology of Toxoplasma gondii infection in pregnant women in rural Durango, Mexico. J Parasitol 2009;95:271–4.
12. Alvarado-Esquível C, Corella-Madueno MAG, Hernandez-Tinoco J, et al. Seroepidemiology of Toxoplasma gondii Infection in Women of Reproductive Age: A Cross-Sectional Study in a Northwestern Mexican City. J Clin Med Res 2018;10:210–6.
13. Alvarado-Esquível C, Terrones-Saldivar MDC, Hernández-Tinoco J, et al. Seroepidemiology of Toxoplasma gondii in pregnant women in Aguascalientes City, Mexico: a cross-sectional study. BMJ Open 2016;6:e012405.
14. Rosso F, Les JT, Aguделo A, et al. Prevalence of infection with Toxoplasma gondii among pregnant women in Cali, Colombia, South America. Am J Trop Med Hyg 2008;78:504–8.
15. Avelar MV, Martínez VO, Moura DLoe, et al. Association between seroprevalence of IgG anti-Toxoplasma gondii and risk factors for infection among pregnant women in Clímerío de Oliveira Maternity, Salvador, Bahia, Brazil. Rev Inst Med Trop Sao Paulo 2017;59:e90.
16. Dubey JP, Verma SK, Villena I, et al. Toxoplasmosis in the Caribbean islands: literature review, seroprevalence in pregnant women in ten countries, isolation of viable Toxoplasma gondii from dogs from St. Kitts, West Indies with report of new T. gondii genetic types. Parasitol Res 2016;115:1627–34.
17. Ramos JM, Milia A, Rodríguez JC, et al. Seroprevalence of Toxoplasma gondii infection among immigrant and native pregnant women in Eastern Spain. Parasitol Res 2011;109:1447–52.
18. Lobo ML, Patrocínio G, Seviñas T, et al. Portugal and Angola: similarities and differences in Toxoplasma gondii seroprevalence and risk factors in pregnant women. Epidemiol Infect 2017;145:30–40.
19. Çınar Tannverdi E, Göküş Kadioğlu B, Alay H, et al. Retrospective Evaluation of Anti-Toxoplasma gondii antibody among first trimester pregnant women admitted to Nenehatun maternity hospital between 2013-2017 in Erzurum. Türkiye Parazitol Derg 2018;42:101–5.
20. Petersson K, Stray-Pedersen B, Malm G, et al. Seroprevalence of Toxoplasma gondii among pregnant women in Sweden. Acta Obstet Gynecol Scand 2000;79:824–9.
21. Dubey JP, Velmuruwan GV, Alvarado-Esquível C, et al. Isolation of Toxoplasma gondii from animals in Durango, Mexico. J Parasitol 2009;95:219–22.
22. Alvarado-Esquível C, Pacheco-Vega SJ, Hernandez-Tinoco J, et al. High Prevalence of Toxoplasma gondii Infection in Miners: A Case-Control Study in Rural Durango, Mexico. J Clin Med Res 2016;8:870–7.
23. Velázquez-Hernández N, Avilés Ávila AY, Rivas-González MA, et al. Knowledge and practices regarding toxoplasmosis in housewives: a cross sectional study in a northern Mexican City. PLoS One 2019;14:e022094.
24. Liesenfeld O, Press C, Montoya JG, et al. False-Positive results in immunoglobulin M (IgM) Toxoplasma antibodies test and importance of confirmatory testing: the Platelia Toxo IgM test. J Clin Microbiol 1997;35:174–8.