Comprehensive comparison on optical properties of samarium oxide (micro/nano) particles doped tellurite glass for optoelectronics applications

M. N. Azlan¹*, S. S. Hajer², M. K. Halimah³, S. A. Umar⁴, M. H. M. Zaid³, R. Hisam⁵, S. M. Iskandar⁶, B. K. Kenzhaliyev⁷, G. K. Kassymova⁷, and N. N. Yusof⁸

¹Physics Department, Faculty of Science and Mathematics, University Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
²Physics Department, Faculty of Science, Elmergib University, Port Street, Al Khums 40414, Elmergib, Libya
³Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
⁴Department of Physics, Faculty of Science, Federal University Lafia, Lafia, Nasarawa State, Nigeria
⁵Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
⁶School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
⁷Institute of Metallurgy and Ore Beneficiation, Satbayev University, Almaty, Kazakhstan
⁸Physics Department, Faculty of Science, AOMRG & Laser Centre, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

Received: 16 January 2021
Accepted: 12 April 2021
Published online: 18 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

ABSTRACT

Rare-earth oxides microparticles doped tellurite-based glass have been studied extensively to improve the capability of optoelectronic devices. We report a detailed comparison between two sets of glass series containing samarium microparticles and nanoparticles denoted as ZBTSm-MPs and ZBTSm-NPs, respectively. The two sets of glass have been successfully fabricated via melt-quenching technique with chemical formula \(((\text{TeO}_2)_{0.70} (\text{B}_2\text{O}_3)_{0.30})_{0.7} (\text{ZnO})_{0.3} \cdot y (\text{Sm}_2\text{O}_3) (\text{MPs/NPs}))_{1-y} \) with \(y = 0.005, 0.01, 0.02, 0.03, 0.04\) and \(0.05\) mol fraction. The TEM analysis confirmed the existence and formation of nanoparticles in ZBTSm-NPs glasses. The density of ZBTSm-NPs glasses was found higher than ZBTSm-MPs glasses due to the distributions of nano-scale particles in tellurite glass network. There was a linear trend of increment in the refractive index in both sets of glass series along with the concentrations of dopants. The refractive index of ZBTSm-NPs glasses was found greater than ZBTSm-MPs glasses due to the shift in compactness of glass structure with nano-scale particles. In comparison, the absorption peaks of ZBTSm-MPs glasses were greater than ZBTSm-NPs glasses which were mainly due to the restriction of electrons mobility in glass network with nano-scale particles. The optical band gap energy in ZBTSm-NPs glasses was found greater than ZBTSm-MPs glasses.

Address correspondence to E-mail: azlanmn@fsmt.upsi.edu.my

https://doi.org/10.1007/s10854-021-05961-z
glasses which correspond to the widening of forbidden gap with nano-scale particles. The polarizability of ZBTSm-NPs and ZBTSm-MPs was found in nonlinear trends along with dopant concentrations. Based on these findings, the improvement of optical properties has been made by introducing samarium oxide nanoparticles in tellurite glass which is beneficial for optoelectronic devices.

1 Introduction

Tellurite oxide (TeO\textsubscript{2}) is the most stable oxide among the chalcogenide groups. The effectiveness and usefulness of tellurite oxide for optoelectronics applications have motivated researchers around the world [1–4]. A recent study by Peng et al. proposed that tellurite oxide has been shown as a future material for a visible-band conversion fiber laser [5]. Furthermore, tellurite oxide is often transferred to many other glass oxides that support multiple compositions. Fares et al. reported that tellurite oxide, TeO\textsubscript{2} consists of a lone pair electron at TeO\textsubscript{4} equatorial positions [6]. This occurrence will lead to the limitation of structural rearrangement and the formation of glass. As a result, pure tellurite oxide, TeO\textsubscript{2} glass is unstable and tends to crystallize [7]. However, to stabilize the formation of tellurite glass, it is necessary to incorporate modifiers, such as alkali, alkali earth and metal oxides in the tellurite glass network [8].

The best glass additive to be incorporated in the tellurite glass network is borate oxide, B\textsubscript{2}O\textsubscript{3}. The hygroscopic characteristic of a glass system may be reduced by combining the tellurite oxide and borate oxide [9]. Moreover, borotellurite glasses have broader infrared transmittance which is beneficial for optoelectronic devices. Meera et al. observed that the borate glasses were made up of two tetrahedral (BO\textsubscript{4}) and trigonal (BO\textsubscript{3}) units [10]. The blending of these units would establish groupings of diborate, triborate, tetraborate and pentaborate [11]. In addition, Manara et al. suggested that the inclusion of borate oxide in the tellurite glass network may contribute to a stable structural unit as applied in the borosilicate glass system [12]. Tellurite glasses with a small amount of borate oxide are composed of TeO\textsubscript{4}, BO\textsubscript{4} and BO\textsubscript{3} groups. Such groups may result in a stable structure of tellurite glass and hence, improve its optical properties.

The improvement of mechanical strength, chemical resistance and the thermal expansion of the glass system can be made by introducing the Zinc oxide, ZnO in borotellurite glass network. Khattak and Salim stated that zinc oxide transforms TeO\textsubscript{4} (trigonal bipyramidal) to TeO\textsubscript{3}\textsubscript{1} polyhedra and TeO\textsubscript{3} (trigonal bipyramidal) coordination in tellurite glass network [13]. The lone pair in TeO\textsubscript{4} (trigonal bipyramidal) restricts the free movement of trigonal bipyramidal during the cooling and melting processes. Zinc borotellurite glasses are stable in structure and contribute to the low crystal field of rare-earth ions in the glass network [14].

Samarium oxide microparticles are frequently utilized in optical and photonic applications. A large number of studies were conducted to develop novel laser materials with the addition of samarium oxide. The establishment of zinc borotellurite glass doped with samarium oxide will therefore introduce alternative glass materials for possible uses in optoelectronic devices. As of now, several findings on samarium oxide microparticles doped tellurite glasses have been extensively investigated [15–17]. Besides that, there are limited number of researches appears to be published on samarium oxide nanoparticles doped tellurite glass. Samarium oxide micro/nanoparticles vary in particle size. Samarium oxide nanoparticles comprises nano-size particles (< 100 nm), while samarium oxide forms micron-size particles. Samarium oxide nanoparticles have special features with respect to their composition, size and shape. These special features have an impact on the optical properties.

The contribution of this research is the development of novel glass materials for the improvement of optoelectronic devices. The study aims to draw comparisons between the impact of samarium oxide microparticles (> 100 nm) and samarium oxide nanoparticles (20–30 nm) inclusions in the tellurite glass system on their optical properties. Optical properties, such as optical band gap, Urbach energy,
refractive index, molar refraction, metallization criterion, electronic polarization and optical basicity of the glass system have been analyzed.

2 Methodology

The sets of glasses named as ZBTSm-MPs and ZBTSm-NPs were fabricated via melt-quenching technique. The compositions of the sets of glasses are as follows:

ZBTSm-MPs: \([(\text{TeO}_2)_{0.70}(\text{B}_2\text{O}_3)_{0.30}]_{0.70}(\text{ZnO})_{0.30}\), \(y\) (Sm\(_2\)O\(_3\) nanoparticles) \(y\);

\(y = 0.005, 0.01, 0.02, 0.03, 0.04, 0.05\) mol%

ZBTSm-NPs: \([(\text{TeO}_2)_{0.70}(\text{B}_2\text{O}_3)_{0.30}]_{0.70}(\text{ZnO})_{0.30}\), \(y\) (Sm\(_2\)O\(_3\) nanoparticles) \(y\);

\(y = 0.005, 0.01, 0.02, 0.03, 0.04, 0.05\) mol%

The raw materials were obtained from manufactured company as follows:

The raw materials of tellurium (IV) oxide (TeO\(_2\)), (99.99%)—Alfa Aesar; Zinc oxide (ZnO), (99.99%)—Alfa Aesar; Boron oxide (B\(_2\)O\(_3\)), (98.5%)—Alfa Aesar; Samarium (III) oxide (> 100 nm), (99.9%)—Alfa Aesar; Samarium nanoparticles (III) oxide (~ 15–30 nm), (99.9%)—Alfa Aesar.

ZBTSm-MPs glasses consist of samarium oxide microparticles with particles size of > 100 nm. In the meantime, ZBTSm-NPs glasses comprise samarium oxide nanoparticles with particles size of ~ 30 nm. The mass of raw materials was weighed at 10 g and mixed thoroughly in a platinum crucible. The platinum crucible containing the raw materials was heated in the electric furnace at 400 °C for 30 min. The raw materials were melted at 900 °C for 2 h in the second furnace. The molten was quenched into stainless-steel moulds which was pre-heated at 400 °C to prevent thermal stress. The obtained glass along with the stainless-steel moulds was annealed at 400 °C for 60 min to improve the mechanical strength. The glass sample was allowed to cool down at room temperature for 24 h. The glass sample was polished with different kinds of sandpapers, 1500 grids, 1200 grids and 1000 grids to achieve the thickness of 2 mm and smooth surfaces.

Some of the glass samples were crushed into a powder form to perform XRD analysis (2\(\theta\) < 1.5%) and high-resolution transmission electron microscopy (HRTEM) JEOL JSM-IT-100 with the uncertainty of ± 0.02 nm. The glass samples with a thickness of ~ 2 mm were sent for optical absorption measurement by using a UV-1650PC UV–Vis Spectrophotometer (Shimadzu). The range of wavelengths for UV–Vis measurement is 200–900 nm with the uncertainty of ± 0.3 nm. Meanwhile, the density and molar volume of the glass samples were measured by utilizing Archimedes’ principle with distilled water as immersion liquid with the uncertainty of ± 0.001 g/cm\(^3\). The refractive index of the prepared glass samples was measured using EL X-02 C high precision Ellipsometer where the wavelength of the light source is 632.80 nm and the angle of incident 70°.

3 Results and discussion

3.1 X-ray diffraction and transmission electron microscopy

The X-ray diffraction spectra for ZBTSm-MPs and ZBTSm-NPs glass series are plotted in the range of 4° ≤ \(\Theta\) ≤ 80° as shown in Fig. 1a and b, respectively. The results indicate that the XRD pattern of ZBTSm-MPs and ZBTSm-NPs glass series reveals wide diffusion at lower scattering angles. This pattern proved
the existence of long-range structural disorder which corresponds to the amorphous nature of the glass system. The absence of crystalline peaks shows that the sets of glasses are completely in an amorphous arrangement. The image in Fig. 2 demonstrates the morphological structure of ZBTSm-NPs glass. The micrograph image of samarium oxide microparticles is not able to be displayed due to restriction in the TEM instrument that disallows the analysis of micro-size particles.

The shape of samarium oxide nanoparticles in raw materials is in three-dimensional shape. Meanwhile, the shape of samarium oxide nanoparticles is unchanged after the glass formation as shown in Fig. 2. The average particle size of raw materials for samarium oxide nanoparticles is 12.54 nm. After the glass formation, the size of samarium oxide nanoparticles is slightly enhanced with a diameter of approximately 23.53 nm. The growing size of nanoparticles in the glass structure is due to the Ostwald ripening effect via the dissolution of particles with a small radius and re-precipitation with a large radius [18]. In addition, the size of the particles in the glass network may be increased due to the following factors:

1. Coagulation process: small particles may disappear by collisions as the nanoparticles migrate within the glass system, resulting in larger particles [19].

2. Particle coalescence: larger particle formation owing to strong chemical or physical bonding [19].

3.2 Density and molar volume

The density of ZBTSm-MPs and ZBTSm-NPs glasses are listed in Tables 1 and 2 and shown in Fig. 3. The major difference between the two sets of glass series is that the ZBTSm-MPs glasses are denser than the ZBTSm-NPs glasses. Greenwood stated that the small size of particles has a high tendency to disperse throughout the materials with a high degree of homogeneity and solubility [20]. Moreover, Toy et al. confirmed that the small size of particles affects the distribution of the particles by reducing the density of materials [21]. Nanda et al. proposed that the size of particles affects the cohesive energy by lowering its number if the particles are in small size [22]. Hence, the reduction in cohesive energy may increase the number of density of the glass system. Moreover, the small size particles have low number of volume in unit cells which contributes to the rise of density.

The similarity between the sets of glasses can be found in the average trend of density along with the dopant concentration. It is clearly seen that the density increases with the increasing number of dopant concentrations. The formation of non-bridging oxygen in tellurite glass network is the main reason for such trend. Samarium consists of trivalent ions which produce three non-bridging oxygens by breaking the chain of bridging oxygen. The crosslinking of tellurite glass network will be degraded by the formation of non-bridging oxygen which leads to the increment of the density. Hence, the concentrations of samarium ions have major role in determining the density of the glass system.

Mol fraction	Density (kg/m³)	Molar volume (m³/mol)
0.000	3.693	31.689
0.005	3.644	32.515
0.010	3.709	32.227
0.020	3.714	32.810
0.030	3.741	33.187
0.040	3.795	33.331
0.050	4.080	31.570

Fig. 2 TEM micrograph image for ZBTSm-NPs glass series
The comparison in molar volume between the sets of glasses can be seen in Fig. 4 and tabulated in Tables 1 and 2. Figure 4 shows that the molar volume of ZBTSm-MPs glasses is higher than ZBTSm-NPs. The nanoparticles distribution in tellurite glass network leads to the decrease of molar volume as the glass network become more compact [23]. Moreover, the molar volume is the reciprocal of the density which contributes to the shift of molar volume in both sets of glasses. The two sets of glass series show similarities in the trend of molar volume along with the dopant concentrations. The increasing values of molar volume for both ZBTSm-MPs and ZBTSm-NPs glasses are mainly due to the difference in atomic radius of samarium (r = 175 pm) which is much higher than tellurium (r = 140 pm). Hence, the molar volume of tellurite glass will be expanded along with dopant concentrations. The decrease in molar volume at 0.05 mol fraction of both sets of glasses may be due to the structural rearrangement during the glass formation.

3.3 Refractive index

Refractive index is an extremely important parameter to develop the optoelectronics applications such as optical waveguides, optical filters, optical adhesives and optical fiber. Figure 5 revealed the pattern of refractive index along with dopant concentrations for ZBTSm-MPs and ZBTSm-NPs glass series. Meanwhile, Tables 3 and 4 listed the specific values of the refractive index for both sets of glasses. The range of refractive index for ZBTSm-MPs glass series is found in between 1.774 and 1.924, meanwhile, ZBTSm-NPs glass series is located between 1.716 and 1.740. Figure 5 revealed that the refractive index of ZBTSm-NPs is higher than ZBTSm-MPs.

The shift in refractive index can be explained by the following factors: (a) density, (b) non-bridging oxygen, (c) polarizability and (d) coordinate number [24]. The high value of refractive index is due to the high compactness in ZBTSm-NPs glasses structure than ZBTSm-MPs glasses. The small particles reduce the interstitial spaces between the atoms and limit the

Mol fraction	Density (kg/m3)	Molar volume (m3/mol)
0.000	3.693	31.689
0.005	3.720	31.857
0.010	3.728	32.067
0.020	3.794	32.118
0.030	3.817	32.530
0.040	3.951	32.010
0.050	4.285	30.057
propagation of photon energy in the glass network [25]. Meanwhile, both ZBTSm-MPs and ZBTSm-NPs glass series are found similar in the trend of refractive index along with dopant concentrations. The rare-earth ions increase the number of non-bridging oxygen in the glass structure that affects the change in refractive index [26]. It is known that the non-bridging oxygen consists of lone pair electrons which are less tightly bound to the nuclear charge. Hence, the high polarizability of lone pair electrons enhances the number of refractive index.

Moreover, the presence of rare-earth ions may reduce the average cross-linking density that enhances the value of the refractive index [27]. Large polarizability of the glass system minimizes the velocity of light propagation in a medium which, in turn, generates a high refractive index [28]. Hence, the increase in the refractive index has also corresponded to the high value of polarizability in tellurite glass.

3.4 Optical absorption and band gap energy

The optical absorption versus wavelength spectra for ZBTSm-MPs and ZBTSm-NPs glasses are shown in Figs. 6 and 7, respectively. The non-existence of sharp

Table 3	Refractive index, molar refraction and polarizability for ZBTSm-MPs glass series			
	Mol fraction	Refractive index (n)	Molar refraction \(R_m \) (cm\(^3\))	Polarizability \(\alpha e \) \(\times 10^{-24} \) (cm\(^3\))
	0.000	1.871	14.412	5.716
	0.005	1.893	14.749	5.849
	0.010	1.974	15.752	6.248
	0.020	1.873	14.633	5.804
	0.030	1.968	15.923	6.315
	0.040	2.030	16.327	6.487
	0.050	2.005	15.080	5.981

Table 4	Refractive index, molar refraction and polarizability for ZBTSm-NPs glass series			
	Mol fraction	Refractive index (n)	Molar refraction \(R_m \) (cm\(^3\))	Polarizability \(\alpha e \) \(\times 10^{-24} \) (cm\(^3\))
	0.005	2.056	16.858	6.686
	0.010	2.011	16.239	6.018
	0.020	2.007	16.492	6.541
	0.030	2.045	17.087	6.779
	0.040	2.050	17.211	6.828
	0.050	2.051	16.313	6.472

Fig. 6 Optical absorption for ZBTSm-MPs glass series

Fig. 7 Optical absorption for ZBTSm-NPs glass series
absorption edge reveals the glassy state of the glass system. There are several sharp peaks revealed in the absorption spectra indicating the excitation of electrons from the ground state to several energy levels. The sharp peaks are located at 357, 405, 473, 955, 1084, 1229, 1381, 1480, 1533, 1590 and 1645 nm which correspond to the absorption of photon energy from the ground state $^4H_{5/2}$ to excited state; $^4D_{3/2}$, $^4M_{19/2}$, $^4I_{11/2}$, $^6F_{11/2}$, $^6F_{9/2}$, $^6F_{7/2}$, $^6F_{5/2}$, $^6H_{15/2}$, $^6F_{1/2}$ and $^6H_{13/2}$ [29].

The sharp peaks of ZBTSm-MPs glasses are found more intense than ZBTSm-NPs glasses. The reduction of absorption intensity in ZBTSm-NPs glasses may be due to the restriction of valence electrons which is closer to the nuclear charge [30]. The small particles may have a smaller distance of valence electrons to the nuclear charge which reduces the mobility of electrons. The absorption coefficient values can be calculated based on the absorption edge by the following formula:

$$\alpha(\lambda) = \frac{2.303 A}{d}$$ \hspace{1cm} (1)

where A corresponds to the absorbance and d is the thickness of the glass samples. From the above formula, it is clear that the thickness of the glass sample affects the absorption coefficient value. Hence, the thickness of the glass samples is set to 2 mm for all glass samples to prevent errors in the data. The absorbance of the glass sample influences the absorption coefficient with direct proportional behavior to the value of the absorption coefficient. It can be seen from the figure that the absorption edge shifts to a longer wavelength along with dopant concentrations. This trend may be due to the less rigidity in the glass system [31].

The optical band gap energy is determined by applying Mott–Davis equation as follows [32]:

$$\alpha(\omega) = \frac{B(h\omega - E_{opt})^r}{h\omega}$$ \hspace{1cm} (2)

B is the constant, $h\omega$ defined the photon energy, E_{opt} correspond to the energy band gap and n determines the type of transitions.

The obtained values of α belong to the high absorption region; $\alpha \geq 10^4$ (cm)$^{-1}$

$$\alpha(h\omega) = B \left(h\omega - E_{opt} \right)^r$$ \hspace{1cm} (3)

$B = 4\pi\sigma_{min}/nc\Delta E$; σ_{min} is the minimum metallic conductivity, n is the refractive index, c is the light-velocity and $\Delta E = \Delta Ec - \Delta Ev$ represents the band tailing [33].

The indirect band gap is determined by applying $r = 2$ for E_{opt}^{gd} while the direct band gap is when $r = \frac{1}{2}$ for E_{opt}^{gd}. Direct transition is a process where the electrons are transmitted to conduction band directly from the valence band. This transition is done by transition-dipole moments and surface electric fields [34]. On the other hand, the indirect transition is a process where the photo-excited electrons are excited into an intermediate state and transferred to the conduction band.

E_{opt}^{gd} can be calculated from the linear part of the relation between $(\alpha h\omega)^{1/2}$ and $(h\omega)$, i.e. $(\alpha h\omega)^{1/2} = 0$ according to equation [33]:

$$\alpha h\omega^{1/2} = B \left(h\omega - E_{opt}^{gd} \right)$$ \hspace{1cm} (4)

E_{opt}^{gd} can be calculated from the linear part of the relation between $(\alpha h\omega)^2$ and $(h\omega)$, i.e. $(\alpha h\omega)^2 = 0$ according to [32]:

$$\alpha h\omega^{2} = B \left(h\omega - E_{opt}^{gd} \right)$$

The extrapolation of the direct and indirect graph for ZBTSm-MPs and ZBTSm-NPs is shown in Figs. 8, 9, 10 and 11 respectively. The optical band gap values depend on the structural variations in the glass matrix and the type of dopants.

Figures 12 and 13 illustrate the direct and indirect optical band gap for ZBTSm-MPs and ZBTSm-NPs glasses, respectively, meanwhile, Table 5 listed the specific values of direct and indirect optical band gap. It is clearly seen from Fig. 10 that the optical
The band gap of ZBTSm-NPs is higher than ZBTSm-MPs. The small particles restrict the mobility of valence electrons and hence, widen the optical band gap. Gupta et al. proposed that the optical properties of materials are highly dependent on the particle size [35]. The previous reports proved that the optical band gap is size dependent and there is an increase in the band gap of the semiconductor with a reduction in the particle size [36, 37]. The small particles of samarium oxide reduce the number of overlapping orbitals and hence, widen the gap between valence and conduction bands.

3.5 Molar refraction and polarizability

The estimation of the non-linear optical response for glass materials can be made by computing the value of polarizability. The exposure of an intense light beam in glass materials leads to polarization of ions and optical non-linearity. Polarization of rare-earth ions in glass materials affects greatly on optical properties such as absorption, refractive index and electro-optical effect. The computation of polarizability, α_e, can be made by considering the refractive index values as follows [38]:

![Fig. 9 Plot of $(\alpha h\omega)^{1/2}$ against photon energy $h\omega$ of ZBTSm-MPs for indirect band gap measurement](image)

![Fig. 10 Plot of $(\alpha h\omega)^2$ against photon energy $h\omega$ of ZBTSm-NPs for direct band gap measurement](image)

![Fig. 11 Plot of $(\alpha h\omega)^{1/2}$ against photon energy $h\omega$ of ZBTSm-NPs for indirect band gap measurement](image)

![Fig. 12 Direct optical band gap for ZBTSm-MPs and ZBTSm-NPs glass series](image)

![Fig. 13 Indirect optical band gap for ZBTSm-MPs and ZBTSm-NPs glass series](image)
\[
\frac{n^2 - 1}{n^2 + 2} (V_m) = \frac{4}{3} \pi N \alpha_e \tag{5}
\]

Here \(V_m\) is the molar volume, \(N\) corresponds to the Avogadro number and \(\alpha_e\) denotes the polarizability. Eq. (5) can be altered by introducing the density of the glass system as follows [38]:

\[
\frac{n^2 - 1}{n^2 + 2} \left(\frac{M}{\rho}\right) R_M \tag{6}
\]

Here, \(R_M\) is the refractivity of glass materials. \(M\) is the molecular weight and \(\frac{M}{\rho}\) is the molar volume of glass materials. Based on Eqs. 6 and 7, the value of refractivity, \(R_M\) and refractive index, \(n\) depends on the polarizability of glass materials. Molar refractivity is proportional to the polarizability of the samarium ions. Molar refractivity, \(R_M\) can be obtained by the following expression:

\[
R_M = (V_m) \frac{n^2 - 1}{n^2 + 2} \tag{7}
\]

where \(V_m\) is the molar volume and \(n\) is the refractive index.

Polarizability and molar refraction values for ZBTSm-MPs and ZBTSm-NPs glass series are illustrated in Figs. 14 and 15 and tabulated in Tables 4 and 5, respectively. It can be seen from Figs. 14 and 15 that there seem to be a sudden decrease in the molar refractivity and polarizability at 0.02 mol% and 0.05 mol% for ZBTSm-MPs glass series. Meanwhile, it is found that the molar refractivity and polarizability for ZBTSm-NPs glass series decrease at 0.01 mol%. The sudden decrease in molar refractivity and polarizability for both glass series can be due to the structural rearrangement in the glass network at a
certain amount of dopant. The increasing trend of molar refractivity and polarizability in both series is related to the formation of non-bridging oxygen in glass network. The high number of non-bridging oxygen increases the ionicity of glass materials and reduces the bond energy. The non-bridging oxygen is more likely to polarize compare to bridging oxygen. Besides that, the dual nature of zinc oxide may lead to the shifts of molar refraction and polarizability at 0.02 mol% and 0.05 mol% of samarium oxide.

The high coordination number in samarium ions may result in the structural shifts from symmetric (TeO$_4$)$^{4-}$ to asymmetric (TeO$_3$)$^{2-}$ which gives a significant effect on the optical properties [39]. Furthermore, the Sm$^{2+}$ ions are changed to Sm$^{3+}$ ions after the glass formation by getting one electron from the oxygen via redox reaction [40]. This trend will subsequently increase the number of outer electrons and creation of new bonds with oxygen atoms. Based on these variations, it can be justified that the overall data are in non-linear trend but slightly increases. The variations of molar refractivity and polarizability are related to the role of zinc oxide which breaks the Te–O–Te bridging oxygen and thus, form the Te–O–Zn$^2+$ non-bridging oxygen [41].

4 Conclusions

The two sets of glass series denoted as ZBTSm-MPs and ZBTSm-NPs were fabricated by using conventional melt-quenching method. The significant outcomes on structural, physical and optical properties between ZBTSm-MPs and ZBTSm-NPs glasses are as follows:

- The average size of nanoparticles in ZBTSm-NPs was found in the range ~ 23.53 nm.
- The density of ZBTSm-NPs glasses is found less than ZBTSm-MPs glasses due to the increasing compactness in glass structure with the existence of nano-scale particles.
- The refractive index of ZBTSm-NPs glasses is found higher than ZBTSm-MPs glasses which is caused by the shift in density.
- The absorption peaks of a ZBTSm-MPs glasses are two times intense than ZBTSm-NPs glasses which correspond to the restriction of electrons in nano-scale particles.
- The optical band gap of ZBTSm-NPs glasses is found greater than ZBTSm-MPs glasses which is mainly due to widening of forbidden gap with nano-scale particles.
- The non-linear trend of polarizability is found in both set of glasses due to the role of zinc oxide in tellurite glass system.

Hence, based from refractive index, optical band gap and polarizability results, the proposed glasses might be useful to develop the optoelectronic devices.

Acknowledgements

This research was financially supported by Skim Geran Penyelidikan Fundamental (FRGS) Fasa 1/2018 (Grant Code: 2019–0006–102–02). The authors would like to thank the following institutions for equipment support: Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris and Faculty of Science and Universiti Putra Malaysia.

References

1. R. Hisam, A.K. Yahya, Elastic moduli, optical and electrical properties of mixed electronic-ionic 30Li$_2$O-4MoO$_3$-(66–x)TeO$_2$-xV$_2$O$_5$ tellurite glass system. Results Phys. 13, 102219 (2019)
2. A.M.A. Mostafa, S.A. Issa, H.M. Zakaly, M.H.M. Zaid, H.O. Tekin, K.A. Mator, H.A.A. Sidek, R. Elsaman, The influence of heavy elements on the ionizing radiation shielding efficiency and elastic properties of some tellurite glasses: theoretical investigation. Results Phys. 19, 103496 (2020)
3. S.N. Nazrin, M.K. Halimah, F.D. Muhammad, A.A. Latif, S.M. Iskandar, A.S. Asyikin, Experimental and theoretical models of elastic properties of erbium-doped zinc tellurite glass system for potential fiber optic application. Mater. Chem. Phys. 259, 123992 (2020)
4. R.A. Tafida, M.K. Halimah, F.D. Muhammad, K.T. Chan, M.Y. Onimisi, A. Usman, A.M. Hamza, S.A. Umar, Structural, optical and elastic properties of silver oxide incorporated zinc tellurite glass system doped with Sm$^{3+}$ ions. Mater. Chem. Phys. 246, 122801 (2020)
5. S. Peng, L. Wu, B. Wang, F. Yang, Y. Qi, Y. Zhou, Intense visible upconversion and energy transfer in Ho$^{3+}$/Yb$^{3+}$ codoped tellurite glasses for potential fiber laser. Opt. Fiber Technol. 22, 95–101 (2015)
6. H. Fares, I. Jlassi, H. Elhouichet, M. Férid, Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. J. Non. Cryst. Solids 396–397, 1–7 (2014)
7. N. Ding, J. Diao, D. Zhang, T. Zheng, J. Lv, Spectroscopic properties of Yb\(^{3+}\) and Nd\(^{3+}\) co-doped tellurite glass for 1.0 µm laser application. Ceram. Int. Part A 46(16), 25633–25637 (2020)
8. A. Mohammed Aliyu, N.E. Ahmed, Structure and physical properties of 30MgSO\(_4\)(70–x) P\(_2\)O\(_5\)-xSm\(_2\)O\(_3\) glasses. EDUCA TUM J. Sci. Math. Technol. 6(2), 22–34 (2019)
9. S.A. Umar, G.G. Ibrahim, Theoretical elastic moduli of TeO\(_2\)-B\(_2\)O\(_3\)-SiO\(_2\) glasses. EDUCA TUM J. Sci. Math. Technol. 7(2), 18–30 (2020)
10. N. Meera, A.K. Sood, N. Chandrabhas, J. Ramakrishna, Raman study of lead borate glasses. J. Non. Cryst. Solids 126, 224–230 (1990)
11. M.F. Faznny, M.K. Halimah, C. Eevon, A.A. Latif, F.D. Muhammad, A.S. Asyikin, N. Chandrabhas, J. Ramakrishna, Raman study of lead borate glasses. J. Non. Cryst. Solids 126, 224–230 (1990)
12. G.A. Manara, D.R. Neuville, Structure of borosilicate glasses and melts: a revision of the Yun, Bray and Dell model. J. Non. Cryst. Solids 355, 2528–2531 (2009)
13. D. Khattak, M.A. Salim, X-ray photoelectron spectroscopic studies of zinc–tellurite glasses. Opt. Mater. 123, 47–55 (2022)
14. Y.S. Rammah, Ö.F. Özpolut, B. Alum, E. Şakar, R. El-Mallawany, F.I. El-Agawany, Assessment of gamma-ray attenuation features for La\(^{3+}\) co-doped zinc borotellurite glasses. Radiat. Phys. Chem. 176, 109069 (2020)
15. V. Thomas, R.G.S. Soffin, M. Allen, H. Thomas, P.R. Biju, G. Jose, N.V. Unnikrishnan, Optical analysis of samarium doped sodium bismuth silicate glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 171, 144–148 (2017)
16. J.A. Jiménez, S. Lysenko, H. Liu, M. Sendova, Luminescence of trivalent samarium ions in silver and tin co-doped aluminophosphate glass. Opt. Mater. 33(8), 1215–1220 (2011)
17. F. Ahmad, R. Hussein, S.K. Ghoshal, Judd-ofelt intensity parameters of samarium-doped magnesium zinc sulfophosphate glass. J. Non-Cryst. Solids 448, 43–51 (2016)
18. N.N. Yusof, S.K. Ghoshal, S.A. Jupri, M.N. Azlan, Synergistic effects of Nd\(^{3+}\) and Ag nanoparticles doping on spectroscopic properties of phosphate glass. Opt. Mater. (2020). https://doi.org/10.1016/j.optmat.2020.110403
19. H. Kamiya, K. Gotoh, M. Shimada, T. Uchikoshi, Y. Otani, M. Fuji, S. Matsusaka, T. Matsuyama, J. Tatami, K. Higashitani, K. Kurihara, N. Ishida, M. Suzuki, H. Abe, Y. Otsubo, M. Miyahara, CHAPTER 3 - CHARACTERISTICS AND BEHAVIOR OF NANOPARTICLES AND ITS DISPER SION SYSTEMS, in Nanoparticle Technology Handbook. ed. by M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama (Elsevier, Amsterdam, 2008), pp. 113–176
20. G.W. Greenwood, The growth of dispersed precipitates in solutions. Acta Metall. 4, 56–70 (1956)
21. R. Toy, E. Hayden, C. Shoup, The effect of particle size density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22, 43–54 (2011)
22. K. Nanda, R.S. Kundu, S. Sharma, D. Mohan, Study of vibrational spectroscopy, linear and non-linear optical properties of Sm\(^{3+}\) ions doped BaO-ZnO-B\(_2\)O\(_3\) glasses. Solid State Sci. 45, 15–22 (2015)
23. Y. Azlina, M.N. Azlan, M.K. Halimah, S.A. Umar, R. El-Mallawany, G. Najmi, Optical performance of neodymium nanoparticles doped tellurite glasses. Phys. B 577, 411784 (2020)
24. H. Elkholy, H. Othman, I. Hager, M. Ibrahim, D. de Ligny, Thermal and optical properties of binary magnesium tellurite glasses and their link to the glass structure. J. Alloy. Compd. 823, 153781 (2020)
25. S.H. Elazoumi, H.A.A. Sidek, Y.S. Rammah, R. El-Mallawany, M.K. Halimah, K.A. Matori, M.H.M. Zaid, Effect of PbO on optical properties of tellurite glass. Results Phys. 8, 16–25 (2018)
26. C. Devaraja, G.V. Jagadeesha Gowda, B. Eraiah, Optical properties of bismuth tellurite glasses doped with holmium oxide. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.11.099
27. M.N. Azlan, M.K. Halimah, A.B. Suriani, Y. Azlina, S.A. Umar, R. El-Mallawany, Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Opt. Commun. 448, 82–88 (2019)
28. M.N. Azlan, M.K. Halimah, A.B. Suriani, Y. Azlina, R. El-Mallawany, Electronic polarizability and third-order nonlinearity of Nd\(^{3+}\) doped borotellurite glass for potential optical fiber. Mater. Chem. Phys. 236, 121812 (2019)
29. N. Jaidass, C. Krishna Moorthy, M. Mohan Babu, M. Reddi Babu, Spectroscopic properties of Sm\(^{3+}\) doped lithium zinc borosilicate glasses. Mech. Mater. Sci. Eng. J. (2017). http://doi.org/10.2412/mmse.4.50.890
30. M.S.A. Mohd Säid, S.K. Ghoshal, H. Hamzah, R. Arifin, M.F. Omar, M.K. Roslan, E.S. Szalai, Visible light emission from Dy\(^{3+}\) doped tellurite glass: role of silver and titania nanoparticles co-embedding. J. Non-Cryst. Solids 502, 198–209 (2018)
31. C. Eevon, M.K. Halimah, M.N. Azlan, R. El-Mallawany, S.L. Hii, Optical and thermal properties of TeO\(_2\)-B\(_2\)O\(_3\)-Gd\(_2\)O\(_3\) glass systems. Mater. Sci.-Pol. 37(4), 517–525 (2019)
32. N. Ahlawat, S. Sanghi, A. Agarwal, S. Rani, Effect of Li$_2$O on structure and optical properties of lithium bismosilicate glasses. J. Alloy. Compd. 480, 516–520 (2009)
33. A. El-Denglawey, Illumination effect on the structural and optical properties of nano meso nickel (II) tetraphenyl-21H, 23H-porphyrin films induces new two hours photo bleached optical sensor. J. Lumin. 194, 381–386 (2018)
34. M. Abdel-Baki, F. El-Diasty, Optical properties of oxide glasses containing transition metals. Curr. Opin. Solid State Mater. Sci. 34, 217–229 (2006)
35. P. Gupta, M. Ramrakhiani, Influence of the particle size on the optical properties of CdSe nanoparticles. Open Nanosci. J. 3, 15–19 (2009)
36. R.P. Kassab, M.E. Camilo, C.T. Amâncio, D.M. Da Silva, J.R. Martinelli, Effects of gold nanoparticles in the green and red emissions of TeO$_2$–PbO–GeO$_2$ glasses doped with Er$^{3+}$–Yb$^{3+}$. Opt. Mater. 33, 1948–1951 (2011)
37. Y. Qi, Y. Zhou, L. Wu, F. Yang, S. Peng, S. Zheng, D. Yin, Silver nanoparticles enhanced 1.53 μm band fluorescence of Er$^{3+}$/Yb$^{3+}$ codoped tellurite glasses. J. Lumin. 153, 401–407 (2014)
38. V. Dimitrov, T. Komatsu, Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J. Non-Cryst. Solids 249, 169–179 (1999)
39. M.K. Halimah, M.F. Faznnay, M.N. Azlan, H.A.A. Sidek, Optical basicity and electronic polarizability of zinc borotelurite glass doped La$^{3+}$ ions. Results Phys. 7, 581–589 (2017)
40. H.H. Somaily, H. Algarni, S. Alraddadi, Y.S. Rammah, T. Nutaro, M.S. Al-Buriahi, Mechanical, optical, and beta/gamma shielding properties of alkali tellurite glasses: role of ZnO. Ceram. Int. Part A 46(16), 28594–28602 (2020)
41. I. Boukhris, I. Kebaili, M.I. Sayyed, A. Askin, Y.S. Rammah, Linear, nonlinear optical and photon attenuation properties of La$^{3+}$ doped tellurite glasses. Opt. Mater. 108, 110196 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.