Asymptotics of the number of threshold functions on a two-dimensional rectangular grid

Pentti Haukkanen and Jorma K. Merikoski
School of Information Sciences
FI-33014 University of Tampere, Finland

pentti.haukkanen@uta.fi, jorma.merikoski@uta.fi

September 13, 2013

Abstract

Let $m, n \geq 2$, $m \leq n$. It is well-known that the number of (two-dimensional) threshold functions on an $m \times n$ rectangular grid is

$$t(m, n) = \frac{6}{\pi^2} (mn)^2 + O(m^2 n \log n) + O(mn^2 \log \log n) = \frac{6}{\pi^2} (mn)^2 + O(mn^2 \log m).$$

We improve the error term by showing that

$$t(m, n) = \frac{6}{\pi^2} (mn)^2 + O(mn^2).$$

Key words: threshold function, rectangular grid, integer lattice, asymptotic formulas

AMS subject classification: 03B50, 05A99, 11N37, 11P21

Running title: Asymptotics of number of threshold functions

1 Introduction

Consider a rectangular grid $G = G(m, n) = \{0, \ldots, m - 1\} \times \{0, \ldots, n - 1\}$, where $m, n \geq 2$. A function $\tau : G \to \{0, 1\}$ is a (two-dimensional) threshold function if there is a line separating the sets $\tau^{-1} (\{0\})$ and $\tau^{-1} (\{1\})$. In other words, there are real numbers $a$, $b$ and $c$ such that $\tau(x, y) = 0$ if and only if $ax + by + c \leq 0$. Acketa and Žunić [1, Theorem 3] proved (with somewhat different formulation) that the number of these functions is

$$t(m, n) = f(m, n) + 2,$$  (1)
where
\[ f(m, n) = \sum_{\substack{-m < i < m \\ -n < j < n \\ (i, j) = 1}} (m - |i|)(n - |j|) \]

and \((i, j)\) denotes the greatest common divisor of \(i\) and \(j\). See also [9, p. 9–10]. In particular,
\[ t(n) = t(n, n) = f(n) + 2, \tag{2} \]

where
\[ f(n) = \sum_{\substack{-n < i, j < n \\ (i, j) = 1}} (n - |i|)(n - |j|). \]

We are interested in asymptotic formulas. By Koplowitz et al. [6, Theorem 2],
\[ t(n) = \frac{6}{\pi^2} n^4 + O(n^3 \log n). \tag{3} \]
Let \(m \leq n\). By Acketa and Žunić [11 p. 168],
\[ t(m, n) = \frac{6}{\pi^2} (mn)^2 + O(m^2 n \log n) + O(mn^2 \log \log n). \tag{4} \]

By Alekseyev [2, Theorem 25],
\[ t(m, n) = \frac{6}{\pi^2} (mn)^2 + O(mn^2 \log m), \tag{5} \]

but see also Žunić [11]. The error terms of (4) and (5) are incomparable. For example, (4) is better than (5) if \(m = \sqrt{n}\), while (5) is better if \(m\) remains constant.

We will in Section 2 improve the error terms of these formulas. The improvements of (3) follow directly from well-known results, but the improvement of (4) and (5) must be proved; we will do so in Section 4. Before it, we will in Section 3 introduce the basic facts and notations needed in the proof. We will complete our paper with conclusions and remarks in Section 5.

2 Improved formulas

We can drop out the logarithm from (3):
\[ t(n) = \frac{6}{\pi^2} n^4 + O(n^3). \tag{6} \]
We have also a sharper but more complicated formula

\[
t(n) = \frac{6}{\pi^2} n^4 + O(n^3 \exp(-A(\log n)^3 (\log \log n)^{-\frac{1}{5}}))
\]  

(7)

for some \( A > 0 \). Assuming the Riemann hypothesis (RH), this still improves into

\[
t(n) = \frac{6}{\pi^2} n^4 + O(n^\frac{5}{2} \varepsilon)
\]

(8)

for all \( \varepsilon > 0 \). To prove (7) and (8), we simply note that \( t(n) \) and \( f(n) \) have by (2) the same asymptotic behavior and refer to [3, Lemma 6].

We can also drop out the logarithms from (4) and (5). Generalizing (6), we will in Section 4 prove that

\[
t(m, n) = \frac{6}{\pi^2} (mn)^2 + O(mn^2)
\]

(9)

if \( m \leq n \). We conjecture [10] that the error term can be improved by substituting \( n \mapsto \sqrt{mn} \) in (10) and (8). That is,

\[
t(m, n) = \frac{6}{\pi^2} (mn)^2 + O((mn)^{\frac{3}{2}} \exp(-A(\log mn)^3 (\log \log mn)^{-\frac{1}{5}}))
\]

(10)

for some \( A > 0 \) and, under RH,

\[
t(m, n) = \frac{6}{\pi^2} (mn)^2 + O((mn)^{\frac{5}{4} + \varepsilon})
\]

(11)

for all \( \varepsilon > 0 \).

3 Basic facts and notations

The ”delta function” \( \delta \), defined by

\[
\delta(k) = \begin{cases} 
1 & \text{if } k = 1, \\
0 & \text{if } k \geq 2,
\end{cases}
\]

and the Möbius function \( \mu \), defined by

\[
\mu(k) = \begin{cases} 
1 & \text{if } k = 1, \\
0 & \text{if } k \text{ has one or more repeated prime factors,} \\
(-1)^r & \text{if } k \text{ is a product of } r \text{ distinct primes,}
\end{cases}
\]

satisfy

\[
\delta(k) = \sum_{d \mid k} \mu(d).
\]

(12)
We give some asymptotic formulas involving \( \mu(k) \). Let \( 0 \leq c_1, \ldots, c_m \leq 1 \). Since
\[
c_k |\mu(k)| \leq 1 \quad (k = 1, \ldots, m),
\]
we have
\[
\sum_{k=1}^{m} c_k \mu(k) = O(m).
\]
We also have
\[
\sum_{k=1}^{m} \frac{\mu(k)}{k} = O(1),
\]
which in fact can be sharpened by replacing \( O \) with \( o \) [7, p. 194]. Furthermore, \((13)\) implies easily that
\[
\sum_{k=1}^{m} c_k \frac{\mu(k)}{k} = O(\log m).
\]
Finally, we give
\[
\sum_{k=1}^{m} \frac{\mu(k)}{k^2} = \frac{6}{\pi^2} + O\left(\frac{1}{m}\right),
\]
which in fact can be sharpened by substituting on the right-hand side \( m \mapsto m(\log m)^a \) for any \( a > 0 \) [7, p. 194].

Let us define
\[
\{x\} = x - \lfloor x \rfloor, \quad \alpha(m, n) = \sum_{d=1}^{m} \frac{\mu(d)}{d} \{\frac{n}{d}\}, \quad \alpha(m) = \alpha(m, m).
\]
Because \( 0 \leq \{x\} < 1 \), we see by \((16)\) that
\[
\alpha(m, n) = O(\log m).
\]

4 Proof of (9)

By \((1)\), an equivalent task is to prove that
\[
f(m, n) = \frac{6}{\pi^2} (mn)^2 + O(mn^2)
\]
if \( m \leq n \). We divide the proof into six parts.
1. Evaluating $f(m + 1, n + 1)$. We have

$$f(m + 1, n + 1) = \sum_{-m \leq i \leq m} \sum_{-n \leq j \leq n} (m + 1 - |i|)(n + 1 - |j|) =$$

$$4 \sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n} (m + 1 - i)(n + 1 - j) + 2(m + 1)n + 2m(n + 1) =$$

$$4 \sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n} [(m + 1)(n + 1) - (n + 1)i - (m + 1)j + ij] + 4mn + 2m + 2n$$

$$= 4 \left[ (m + 1)(n + 1) \sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n} 1 - (n + 1) \sum_{1 \leq i \leq m} i - (m + 1) \sum_{1 \leq j \leq n} j + \sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n} ij \right] + O(mn) = 4 \left[ (m + 1)(n + 1)s_1(m, n) - (n + 1)s_2(m, n) - (m + 1)s_3(m, n) + s_4(m, n) \right] + O(mn), \quad (20)$$

where

$$s_1(m, n) = \sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n} 1, \quad s_2(m, n) = \sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n} i,$$

$$s_3(m, n) = \sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n} j, \quad s_4(m, n) = \sum_{1 \leq i \leq m} \sum_{1 \leq j \leq n} ij.$$

2. Evaluating $s_1(m, n)$. Remember that $m \leq n$. Denote $i = ad, j = bd$ and apply $[12]$. Then, by $[14], [15], [17]$ and $[18]$,

$$s_1(m, n) = \sum_{i=1}^{m} \sum_{j=1}^{n} \delta((i, j)) = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{d|(i,j)} \mu(d) = \sum_{d=1}^{m} \mu(d) \sum_{a=1}^{\lfloor \frac{m}{d} \rfloor} \sum_{b=1}^{\lfloor \frac{n}{d} \rfloor} 1 =$$

$$\sum_{d=1}^{m} \mu(d) \lfloor \frac{m}{d} \rfloor \lfloor \frac{n}{d} \rfloor = \sum_{d=1}^{m} \mu(d) \left( \frac{m}{d} - \left\{ \frac{m}{d} \right\} \right) \left( \frac{n}{d} - \left\{ \frac{n}{d} \right\} \right) =$$
and so

\[
mn \sum_{d=1}^{m} \frac{\mu(d)}{d^2} - m \sum_{d=1}^{m} \frac{\mu(d)}{d} \left\{ \frac{n}{d} \right\} - n \sum_{d=1}^{m} \frac{\mu(d)}{d} \left\{ \frac{m}{d} \right\} + \sum_{d=1}^{m} \mu(d) \left\{ \frac{m}{d} \right\} \left\{ \frac{n}{d} \right\} =
\]

\[
mn \left( \frac{6}{\pi^2} + O\left( \frac{1}{m} \right) \right) - m\alpha(m, n) - n\alpha(m) + O(m) =
\]

\[
\frac{6}{\pi^2} mn - m\alpha(m, n) - n\alpha(m) + O(n). \quad (21)
\]

3. Evaluating \( s_2(m, n) \). Similarly,

\[
2s_2(m, n) = 2 \sum_{i=1}^{m} \sum_{j=1}^{n} i\delta((i, j)) = 2 \sum_{i=1}^{m} \sum_{j=1}^{n} i \sum_d \mu(d) =
\]

\[
2 \sum_{d=1}^{m} \mu(d) d \sum_{a=1}^{\lfloor \frac{m}{d} \rfloor} \sum_{b=1}^{\lfloor \frac{n}{d} \rfloor} a = 2 \sum_{d=1}^{m} \mu(d) d \left( \frac{m}{d} \right) \left( \lfloor \frac{m}{d} \rfloor + 1 \right) \left( \frac{n}{d} \right) =
\]

\[
\sum_{d=1}^{m} \mu(d) d \left( \frac{m}{d} - \left\{ \frac{m}{d} \right\} \right) \left( \frac{n}{d} - \left\{ \frac{m}{d} \right\} \right) + \left( \frac{n}{d} - \left\{ \frac{n}{d} \right\} \right) =
\]

\[
m^2 n \sum_{d=1}^{m} \frac{\mu(d)}{d^2} + mn \sum_{d=1}^{m} \frac{\mu(d)}{d} - m^2 \sum_{d=1}^{m} \frac{\mu(d)}{d} \left\{ \frac{n}{d} \right\} - 2mn \sum_{d=1}^{m} \frac{\mu(d)}{d} \left\{ \frac{m}{d} \right\} - m \sum_{d=1}^{m} \mu(d) \left\{ \frac{n}{d} \right\} - n \sum_{d=1}^{m} \mu(d) \left\{ \frac{m}{d} \right\} + n \sum_{d=1}^{m} \mu(d) \left\{ \frac{m}{d} \right\}^2 +
\]

\[
2m \sum_{d=1}^{m} \mu(d) \left\{ \frac{m}{d} \right\} \left\{ \frac{n}{d} \right\} + \sum_{d=1}^{m} \mu(d) \left\{ \frac{m}{d} \right\} \left\{ \frac{n}{d} \right\} - \sum_{d=1}^{m} \mu(d) \left\{ \frac{m}{d} \right\}^2 \left\{ \frac{n}{d} \right\} =
\]

\[
m^2 n \left( \frac{6}{\pi^2} + O\left( \frac{1}{m} \right) \right) + mn O(1) - m^2 \alpha(m, n) - 2m n \alpha(m) +
\]

\[
omO(m) + nO(m) + nO(m) + mO(m) + O(m^2) + O(m^2) =
\]

\[
\frac{6}{\pi^2} m^2 n - m^2 \alpha(m, n) - 2mn \alpha(m) + O(mn),
\]

and so

\[
s_2(m, n) = \frac{3}{\pi^2} m^2 n - \frac{1}{2} m^2 \alpha(m, n) - mn \alpha(m) + O(mn). \quad (22)
\]

4. Evaluating \( s_3(m, n) \). A simple modification of Part 3 gives

\[
s_3(m, n) = \frac{3}{\pi^2} mn^2 - mn \alpha(m, n) - \frac{1}{2} n^2 \alpha(m) + O(mn). \quad (23)
\]
5. Evaluating \( s_4(m,n) \). Now we need quite heavy calculation. We obtain

\[
4 s_4(m,n) = 4 \sum_{i=1}^{m} \sum_{j=1}^{n} ij \delta((i,j)) = 4 \sum_{i=1}^{m} \sum_{j=1}^{n} ij \sum_{d|(i,j)} \mu(d) =
\]

\[
4 \sum_{d=1}^{m} \mu(d) d^2 \sum_{a=1}^{\lfloor \frac{m}{d} \rfloor} \sum_{b=1}^{\lfloor \frac{n}{d} \rfloor} ab = 4 \sum_{d=1}^{m} \mu(d) d^2 \frac{1}{2} \left\lfloor \frac{m}{d} \right\rfloor \left( \left\lfloor \frac{m}{d} \right\rfloor + 1 \right) \frac{1}{2} \left\lfloor \frac{n}{d} \right\rfloor \left( \left\lfloor \frac{n}{d} \right\rfloor + 1 \right) =
\]

\[
m^2 n^2 \sum_{d=1}^{m} \frac{\mu(d)}{d^2} + 2m n \sum_{d=1}^{m} \frac{\mu(d)}{d} + m n \sum_{d=1}^{m} \frac{\mu(d)}{d} - 2m^2 n \sum_{d=1}^{m} \frac{\mu(d)}{d} \frac{n}{d} - 2m n \sum_{d=1}^{m} \frac{\mu(d)}{d} \frac{n}{d} +
\]

\[
2 m n \sum_{d=1}^{m} \frac{\mu(d)}{d} \frac{n}{d} - m^2 \sum_{d=1}^{m} \mu(d) \frac{n}{d}^2 - 2 m n \sum_{d=1}^{m} \mu(d) \frac{n}{d} -
\]

\[
n \sum_{d=1}^{m} \mu(d) d \frac{n}{d} + 2 m \sum_{d=1}^{m} \mu(d) d \frac{n}{d} - 2 m n \sum_{d=1}^{m} \mu(d) d \frac{n}{d} +
\]

\[
m \sum_{d=1}^{m} \mu(d) d \frac{n}{d}^2 + n \sum_{d=1}^{m} \mu(d) d \frac{n}{d}^2 - 2 m \sum_{d=1}^{m} \mu(d) d \frac{n}{d}^2 -
\]

\[
2 n \sum_{d=1}^{m} \mu(d) d \frac{n}{d}^2 \frac{n}{d} + n \sum_{d=1}^{m} \mu(d) d^2 \frac{n}{d}^2 \frac{n}{d} -
\]

\[
\sum_{d=1}^{m} \mu(d) d^2 \frac{n}{d}^2 \frac{n}{d} + \sum_{d=1}^{m} \mu(d) d^2 \frac{n}{d}^2 \frac{n}{d}^2 =
\]

\[
m^2 n^2 \left( \frac{6}{\pi} + O \left( \frac{1}{m} \right) \right) + m^2 n O(1) + m n^2 O(1) - 2 m^2 n \alpha(m,n) - 2 m n^2 \alpha(m) +
\]

\[
m^2 O(m) + n^2 O(m) + m n O(m) + m^2 O(m) + n^2 O(m) + m n O(m) +
\]

\[
m n O(m) + m n O(m) + m O(m^2) + n O(m^2) + m O(m^2) + n O(m^2) +
\]

\[
m O(m^3) + n O(m^3) + m O(m^3) + n O(m^3) + O(m^3) + O(m^3) +
\]

\[
O(m^3) = \frac{6}{\pi} m^2 n^2 - 2 m^2 n \alpha(m,n) - 2 m n^2 \alpha(m) + O(mn^2).
\]

Hence

\[
s_4(m,n) = \frac{3}{2 \pi^2} (mn)^2 - \frac{1}{2} m^2 n \alpha(m,n) - \frac{1}{2} m n^2 \alpha(m) + O(mn^2).
\]
6. Final computation. By (20), (21), (22), (23), (24) and (18),

\[ a = (m + 1)(n + 1)s_1(m, n) = \]

\[ (m + 1)(n + 1)\left( \frac{6}{\pi^2} mn - m\alpha(m, n) - n\alpha(m) + O(n) \right) = \]

\[ \frac{6}{\pi^2} (mn)^2 + \frac{6}{\pi^2} m^2 n + \frac{6}{\pi^2} mn - m^2\alpha(m, n) - mn^2\alpha(m) - \]

\[ m^2\alpha(m, n) - n^2\alpha(m) - mn\alpha(m, n) - m\alpha(m, n) - \]

\[ n\alpha(m) + O(mn^2) = \]

\[ \frac{6}{\pi^2} (mn)^2 - m^2\alpha(m, n) - mn^2\alpha(m) + O(mn^2), \]

\[ b = (n + 1)s_2(m, n) = (n + 1)\left( \frac{3}{\pi^2} m^2 n - \frac{1}{2} m^2\alpha(m, n) - \right. \]

\[ \left. m\alpha(m) + O(mn) \right) = \]

\[ \frac{3}{\pi^2} (mn)^2 + \frac{3}{\pi^2} m^2 n - \frac{1}{2} m^2\alpha(m, n) - mn^2\alpha(m) + O(mn^2), \]

\[ c = (m + 1)s_3(m, n) = (m + 1)\left( \frac{3}{\pi^2} mn^2 - mn\alpha(m, n) - \right. \]

\[ \left. \frac{1}{2} m^2\alpha(m) + O(mn) \right) = \]

\[ \frac{3}{\pi^2} (mn)^2 + \frac{3}{\pi^2} mn^2 - m^2\alpha(m, n) - \frac{1}{2} mn^2\alpha(m) + O(m^2 n), \]

\[ d = s_4(m, n) = \frac{3}{2\pi^2} (mn)^2 - \frac{1}{2} m^2\alpha(m, n) - \frac{1}{2} mn^2\alpha(m) + O(mn^2), \]

\[ f(m + 1, n + 1) = 4(a - b - c + d) + O(mn) = \frac{6}{\pi^2} (mn)^2 + O(mn^2), \]

which implies also (19).

5 Conclusions and remarks

We improved (3) into (6) and further into (7). Assuming RH, we still improved (7) into (8). An interesting converse problem arises (cf. [3, p. 168]): Does (8) imply RH?

We also improved (4) and (5) into (9). Because of (7) and (8), we conjectured that (9) can be further improved into (10) and, assuming RH, still into (11).
More generally, given $q \geq 1$, define

$$f_q(m, n) = \sum_{-m \leq i < m \atop -n \leq j < n} (m - |i|)(n - |j|).$$

The proof of (19) can be extended to show that

$$f_q(m, n) = \frac{6}{\pi^2 q^2} (mn)^2 + O(mn^2)$$

if $m \leq n$. Also the formulas (6), (7) and (8) for $f(n)$ generalize. We have [5]

$$f_q(n) = \frac{6}{\pi^2 q^2} n^4 + r(n),$$

where $r(n)$ has the $O$-estimates given in the original formulas.

Besides the number of threshold functions, there are several other quantities whose asymptotics can be studied in a similar way. For example, asymptotic formulas for the number of gridlines [3] and $q$-gridlines [5] are well-known in $G(n)$. A simple modification of our above procedure gives such formulas in $G(m, n)$.

In practical computation of all these quantities, recursive formulas [8, 9, 3, 4] are useful. They have also been applied in computer experiments to find asymptotic formulas.

Acknowledgment

We thank the referees. One’s suggestions improved the presentation. The other alerted to us references we were not aware of.

References

[1] D. M. Acketa and J. D. Žunić, On the number of linear partitions on the $(m, n)$-grid. Inform. Process. Lett. 38 (1991), 163–168.

[2] M. A. Alekseyev, On the number of two-dimensional threshold functions. SIAM J. Discrete Math. 24 (2010), 1617–1631.

[3] A. M. Ernvall-Hytonen, K. Matomäki, P. Haukkanen and J. K. Merikoski, Formulas for the number of gridlines. Monatsh. Math. 164 (2011), 157–170.

[4] P. Haukkanen and J. K. Merikoski, Some formulas for numbers of line segments and lines in a rectangular grid. Ars Combin. 104 (2012), 353–361.
[5] P. Haukkanen and J. K. Merikoski, Asymptotics for numbers of line segments and lines in a square grid. *Internat. J. Number Theory* 8 (2012), 1145–1152.

[6] J. Koplowitz, M. Lindenbaum and A. Bruckstein, The number of digital straight lines on an $N \times N$ grid. *IEEE Trans. Informat. Theory* 36 (1990), 192–197.

[7] D. S. Mitrinović, J. Sándor and B. Crstici, *Handbook of Number Theory*. Kluwer, 1996.

[8] S. Mustonen, On lines and their intersection points in a rectangular grid of points, 2009,
http://www.survo.fi/papers/PointsInGrid.pdf

[9] S. Mustonen, On lines through a given number of points in a rectangular grid of points, 2010,
http://www.survo.fi/papers/LinesInGrid2.pdf

[10] S. Mustonen, Private communication.

[11] J. Žunić, Note on the number of two-dimensional threshold functions. *SIAM J. Discrete Math.* 25 (2011), 1266–1268.