Abstract. Microtubules play extensive roles in cellular processes, including cell motility. Stathmin is an important protein which destabilizes microtubules. The essential function of stathmin is closely associated with its phosphorylation status. Stathmin is overexpressed in many human cancers and has a significant relationship with clinical characteristics such as grade, tumor size and prognosis. We demonstrated that stathmin was overexpressed in ESCC tissues using both 2-DE and immunohistochemistry analysis. In addition, overexpression of stathmin was significantly correlated with histological grade in ESCC. However, no correlation was found with age, gender and lymph node metastasis. Knockdown of stathmin with siRNA impaired cell migration in KYSE30 and KYSE410 cells. When EC0156 cells were treated with paclitaxel, stathmin was stably phosphorylated and migration was impaired. These observations suggest that stathmin may have a more important function in ESCC development and migration. The present study provides further understanding of the importance of stathmin in ESCC therapy or diagnosis.

Introduction

Esophageal cancer (EC) is the eighth most common cancer worldwide (1), while esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype in Asia, especially in China. It is characterized by high incidence and mortality rate (1,2). We found that stathmin is a differentially expressed protein between cancer and adjacent normal tissues in ESCC using proteomic technology.

Key words: stathmin, esophageal squamous cell carcinoma, migration, phosphorylation

Stathmin is an important protein which destabilizes microtubules (3,4). Microtubules are essential for many cellular processes, including mitosis, intracellular transport, supportment of cell shape and cell motility, and stathmin playes an important role in the regulation of microtubule which was involved in the construction and function of the mitotic spindle (5). Phosphorylation of stathmin led to a loss of the microtubule-destabilizing activity (6-8). Inhibition of stathmin phosphorylation produced strong mitotic phenotypes characterized by disassembly and disorganization of mitotic spindles and abnormal chromosome distributions (6). Stathmin phosphorylation gradient was necessary for correct spindle formation. Gradients of diffusible morphogens are known to be crucial for the supracellular self-organization of tissues and organisms (9).

Many studies had reported that stathmin was overexpressed across a broad range of human cancers, including acute leukemia, lymphoma, neuroblastoma and ovarian, prostate, breast and lung cancer (10-12).

The upregulation of stathmin in ESCC was reported and associated with differentiation degree, lymph node metastasis, invasive depth and TNM stage (13,14). Wang et al demonstrated that knockdown of stathmin by antisense oligonucleotide can inhibit the proliferation of ECa109 cells (15). The expression and exact biological function of stathmin in ESCC, especially motility, remained largely unclear.

Materials and methods

Cell culture. ESCC cell lines EC0156 was established by our laboratory (16). KYSE30, KYSE140, KYSE150, KYSE170, KYSE180, KYSE410 and KYSE510 were donated by Dr Y. Shimada. EC0156 was cultured in Dulbecco's modified Eagle's medium (HyClone, UT, USA) supplemented with 10% fetal calf serum, 100 U/ml penicillin and 100 µg/ml streptomycin (Gibco, NY, USA). The other cell lines were cultured in RPMI-1640 medium supplemented with 10% heat-inactivated fetal bovine serum. All the cells were incubated at 37°C in a humidified atmosphere of 5% CO2.

Tissue specimens. From January 1999 to 2002, 8 pairs of specimens for two dimensional electrophoresis were obtained.
from surgically resected ESCC tissues in Cancer Hospital of Chinese Academy of Medical Sciences (CAMS). Another 50 tissues specimens for immunohistochemistry were also obtained from surgically resected esophageal carcinoma in Cancer Hospital of CAMS from January 1999 to 2009. Tissue specimens (n=93) for immunohistochemistry were purchased as microarray (Outdo Biotech Co., Shanghai, China). All specimens were frozen immediately, stored at liquid nitrogen. The median age of the patients of the 143 ESCC tissues for immunohistochemistry was 60 years (range, 29-84 years).

Protein extraction and quantification. Approximately 1x10^7 cells were grown to 80% confluence and washed six times in 1X phosphate-buffered saline (PBS). Soluble proteins were extracted with lysis (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.1% SDS) with protease inhibitor cocktail (2.5 µM AEBSF, 0.04 µg/ml aprotinin, 0.04 µg/ml leupeptin, 1 mM EDTA) by super-sonication and followed by centrifugation at 12,000 g for 15 min. Protein concentration was measured by the Bradford method.

Two dimensional electrophoresis. The soluble proteins from individual tissue specimen and the pooled tissue samples were separated by two dimensional electrophoresis (2-DE). Commercial IPG strips (pH 3-10NL, 18 cm; Amersham Biosciences, Uppsala, Sweden), were rehydrated overnight with 450 µl solution containing 8 M urea, 2% w/v CHAPS, 20 mM DTT, 0.5% v/v IPG buffer, 0.002% bromphenol blue and 1000 µg protein. Electrofocusing was carried out for 60 kVh at 20°C following the manufacturer's instruction. Prior to the second dimension, the IPG strips were equilibrated for 30 min with 50 mM Tris-HCl pH 8.8, 6 M urea, 30% v/v glycerol, 2% w/v SDS, and a trace of bromphenol blue followed by reduction with 1% of DTT and alkylation with 2.5% of iodoacetamide. The IPG strips were placed into 12% SDS-polyacrylamide gels (26x20 cm) and were further electrophoresed by an Ettan-II-DE system (Amersham Biosciences) with a programmable power control, 0.5 h at 0.5 W per gel, then at 15 W per gel until the dye front reached the gel bottom. The separated proteins were visualized by Coomassie Brilliant Blue staining.

Protein identification. Briefly, images of the stained gels were acquired with an Image Scanner (Amersham Biosciences) using transmissive light. The gel images were first analyzed by eyes and subsequently were analyzed by ImageMaster 2D Elite 4.01 (Amersham Biosciences). Protein spots with signals differential intensity reaching 2.0 in 2D gels were analyzed differientially expressed proteins using proteomic Mascot algorithm.

Immunohistochemistry. For immunohistochemical staining multiple tissue arrays (MTA) of formalin-fixed and ESCC and their matched adjacent normal tissues were incubated with stathmin mAb (3352, Cell Signaling Technology, UK) or control IgG. After washing with 1X PBS, slides were reacted with the biotin-labeled second antibody and then visualized using an ultrasensitive streptavidin-peroxidasens system (Maxim Biotech, Fuzhou, China). Semi-quantitative criteria of the stathmin immunoreaction were modified according to previous publications (17,18). Immunostaining was scored as follows: 0, negative; 1, weak; 2, moderate; and 3, strong staining. The percentage of stathmin staining area was graded as 0, no positive staining; 1, <10%; 2, 10-50%; or 3, 50-100%. The staining index was calculated as the multiples of staining intensity and staining area, as described (18,19) The staining index <1 was considered as negative, while 1-4 as weak and >4 as strong.

Western blot analysis. Western blotting was performed as previously described (20). In briefly, protein extracted from cell lines and tissues specimens were separated using 12% SDS-PAGE, then transferred to polyvinylidene fluoride (PVDF) membranes (Millipore, Bedford, MA). Membranes were blocked by 10% skim milk in 1X PBS. The membranes were incubated with the primary antibodies against stathmin (ab52630, Abcam, UK) or β-actin (Cat. No. A-5316, Sigma, MO) in suitable dilutions. Secondary antibodies were anti-rabbit IgG and anti-mouse IgG, respectively. Signals were detected by chemiluminescence using the ECL kit.

siRNA transfection. The double-strand small interfering RNAs (siRNAs) were synthesized in duplex and purified forms using Genechem Co. (Shanghai, China). siRNAs targeting stathmin [5'-GAAGGACGGAGCAGAGAAtt-3' (forward) and 5'-UUCUCCGUGUCGUUCUUUUr-3' (reverse)] and nonspecific scramble siRNA oligonucleotide sequences [5'-UUC GCGAGAGCACGAGAAAtt-3' (forward) and 5'-UUUCUCGUGUCGUUCUUUUr-3' (reverse)] were transfected separately into KYSE30 and KYSE410 cells using Lipofectamine 2000 (Invitrogen, CA, USA) according to manufacturer's protocol. After 72 h, proteins were extracted.

In vitro wound-healing assay. KYSE30, KYSE410 or EC0156 cells were incubated overnight yielding confluent monolayer for wounding. Wounds were scratched using a pipette tip, photographs were taken immediately (time 0 h) and 24 h after wounding. The distance migrated by the cell monolayer to close the wounded area during this time period was measured. Photos were taken by Leica DMCI microscope (Leica, German) at x100 magnification.

Statistical analysis. Data were analyzed by SPSS 16.0 (SPSS Inc., Chicago, IL, USA). χ² test was used to analyze the relationship between stathmin expression with clinicopathologic characteristics. P-values <0.05 were considered as statistically significant.

Results

The identification of stathmin in ESCC tissues. Firstly, we analyzed differentially expressed proteins using proteomic method between tumor and corresponding normal tissues in ESCC. Results showed stathmin was detected in all 2-DE gels
of the 8 pairs of ESCC tissues (Fig. 1), as an obvious differentially expressed spot.

Stathmin is overexpressed in ESCC tissues. Subsequently, we employed immunohistochemistry to analyze the expression of stathmin in 143 ESCC tissue microarray using the anti-stathmin antibody. Strong staining was seen in ESCC tissues, however, the normal tissues were weaker or negatively stained (Fig. 2). The strong staining of stathmin in cancer was 70.63% (101/143), while normal in 27.97% (40/143). In addition, the weak staining of stathmin in cancer was 20.28% (29/143), while normal in 15.38% (22/143). There was a significantly different staining mode between cancer and normal (P<0.05). Statistical analysis showed that overexpression of stathmin was significantly correlated with histological grade (P<0.05) (Table I). However, no correlation was found between stathmin expression and age, gender and lymph node metastasis (P>0.05) (Table I).

siRNA-mediated reduction in stathmin expression resulted in impaired cell migration. We chose two ESCC cell lines (KYSE30 and KYSE410) as a model. SiRNA was employed to knockdown stathmin, and western blotting to detect the effect of siRNA. The results showed that the expression of stathmin was reduced after transfection of siRNA oligonucleotide for 72 h in KYSE30 and KYSE410 (Fig. 3A). Subsequently, wound-healing assay showed that the speed of wound recovery of siRNA stathmin was much slower than the scramble in both KYSE30 and KYSE410 (Fig. 3B). The results revealed that cell migration was impaired when deficient of stathmin.

The phosphorylation of stathmin reduced the motility of EC0156. Considering phosphorylation had been closely associated with the function of stathmin, we wondered whether stathmin phosphorylation has influence on ESCC cell lines. We selected EC0156 for the next study.

EC0156 was treated with paclitaxel, a compound extracted from taxus plants, at gradient dosage from 0 to 1.6 µg/ml. The results revealed that the 19 kDa band of stathmin was decreased after paclitaxel treatment, whereas a new band at about 21 kDa gradiently increased in a dose-dependent manner. We confirmed the new band was phosphorylated stathmin at Ser-16. The tendency increased dramatically between 0.1 and 1.6 µg/ml, reaching a peak at a dosage of 0.8 µg/ml. Conversely, KYSE30 and EC0156 without treatment had no

Table I. The correlation between stathmin expression and clinicopathological characteristics in ESCC specimens.

Characteristics	All cases (n) (%)	Negative (%)	Weak (%)	Strong (%)	P-value
Age					
≥60	80 (55.94)	7 (8.75)	14 (17.50)	59 (73.75)	>0.05
<60	63 (44.06)	6 (9.52)	15 (23.81)	42 (66.67)	
Gender					>0.05
Male	108 (75.52)	11 (10.19)	24 (22.22)	73 (67.59)	
Female	35 (24.48)	2 (5.71)	5 (14.29)	28 (80.00)	
Tumor grade					0.019
Well differentiated	36 (25.17)	8 (22.22)	8 (22.22)	20 (55.56)	
Moderately differentiated	80 (55.94)	5 (6.25)	16 (20.00)	59 (73.75)	
Poor differentiated	27 (18.89)	0 (0.00)	5 (18.52)	22 (81.48)	
Lymph node metastasis*					>0.05
Present	38 (40.43)	3 (7.90)	3 (7.90)	32 (84.20)	
Not present	56 (59.57)	2 (3.57)	7 (12.50)	47 (83.93)	

*Only 94 cases have lymph node information.
changes (Fig. 4A). Besides, rounded cells were observed in most of the EC0156 through microscopic analysis (Fig. 4B). The number of cells appeared slightly reduced. Wound-healing assay showed that the speed of wound recovery of EC0156 cells treated with paclitaxel was much slower than the control, suggesting that cell migration was impaired after stabilized phosphorylation of stathmin (Fig. 4C).
Discussion

Previously, we analyzed differentially expressed proteins using proteomic methods between tumor and normal tissues in ESCC. We found an obviously overexpressed spot in all tumor 2-DE gels, which was identified as stathmin. Stathmin is ubiquitous, highly conserved 19 kDa cytosolic phosphoprotein that regulates microtubule dynamics (21).

We employed immunohistochemistry to detect the expression of stathmin in ESCC tissue microarray. Here we demonstrated strong expression in 77.14% (108/140) of ESCC tissues. In addition, overexpression of stathmin was significantly correlated with histological grade (P<0.05). However, no correlation was found with age, gender and lymph node metastasis (P>0.05). Wang et al revealed that the positive rate of stathmin in 75 ESCC samples was 81.3% and the relative contents of stathmin were significantly correlated with the differentiation degree, lymph node metastasis, invasive depth and TNM stage of ESCC (13). In addition, the basic tendency of stronger stathmin staining in ESCC was consistent with our previous study, which only used 13 ESCC samples (22). So far, many studies have demonstrated stathmin to be overexpressed in many human cancers, including mesothelioma tumor (11), malignant phaeochromocytoma (23,24), cervical carcinoma (25), primary nasopharyngeal carcinoma (26), gastric cancer (27), hepatocellular carcinoma (28,29), medulloblastoma (30), endometrial cancer (18) and uterine cervical carcinoma (31). Above all, overexpression of stathmin was significantly correlated with clinical stage, tumor grade and lymph node metastasis in cancers, including cervical carcinoma, nasopharyngeal carcinoma, gastric cancer, hepatocellular carcinoma and endometrial cancer (18,25-30). Moreover, stathmin may be regarded as a survival prognosis factor in ovarian cancer (32), endometrial cancer (18) and uterine cervical carcinoma (31). Our previous work, although the ESCC cases were only 13 for immunohistochemistry to analyze the expression of stathmin, we still found the expression of stathmin was overexpressed in ESCC tissue, but there was no correlation with tumor grades (22). In the present study, we expanded the ESCC case numbers for immunohistochemistry. Finally, we found overexpression of stathmin was significantly correlated with histological grade. However, the relationship between stathmin expression and lymph node metastasis did not replicate. There may be two reasons. The limited cases with lymph node metastasis in tissue microarray may lead to information being lost in our study. Another factor worth considered is the tiny difference of the pathologic criteria. In addition, the case number of the present study was much greater than the previous reports in ESCC.

We demonstrated that the speed of wound recovery in stathmin knockdown cells was much slower than the scramble in both KYSE30 and KYSE410 cells, suggesting cell migration was impaired when deficient of stathmin. Similar report exists in gastric cancer, in which cell invasion was significantly reduced by stathmin siRNA in the Matrigel invasion assay (27). Stathmin depletion with siRNA caused significant inhibition of lamellipodia formation, which directed by Pak1-WAVE2-kinase complex (33). The lamellipodia formation may promote cell migration and invasion. Thus, stathmin depletion might inactivate lamellipodia formation leading to reduction of cell migration.

We demonstrated that the band at 19 kDa of stathmin was decreased when EC0156 was treated by paclitaxel. Meantime, a new band at about 21 kDa appeared in a dose-dependent manner. Subsequently, the new band was confirmed as phosphorylated stathmin at Ser-16. The basic function of stathmin was closely associated with its phosphorylated state. The stathmin-tubulin interaction was dependent on phosphorylation of stathmin (34). Rapidly switching phosphorylation of stathmin regulated microtubule assembly (21). Phosphorylation at Ser-16 and Ser-63 strongly reduced stathmin-tubulin complex formation (35). The effects of stathmin on dynamic instability were strongly attenuated by phosphorylation at Ser-16-and Ser-63 (6). Many protein kinases, including CDC2 (36), MAP (37), Auro B (38) and BGLF4 (39), can phosphorylate stathmin. Stathmin is known to undergo phosphorylation at Ser16 upon cell stimulation, such as paclitaxel at low concentration (40). Paclitaxel is an anticancer drug which interferes with microtubules (41). In the present study, we found paclitaxel may induce stathmin phosphorylation at Ser-16 and influenced the function of stathmin.

Through microscopic analysis, rounded cells were observed in most of EC0156 after the treatment with paclitaxel. The total number EC0156 appeared slightly reduced. Besides, the wound recovery speed of EC0156 treated with paclitaxel was diminished compared to the control, suggesting that cell migration may be impaired after stathmin phosphorylation. It is possible that stabilized phosphorylation of stathmin may disrupt microtubule dynamics and finally impaired the motility of EC0156, which were supported by other reports. Migration can be viewed as a repeated sequences of events that include formation of pseudopodia protrusions, attachment and translocation of the cell body in the direction of the new adhesion sites. The microtubule dynamics instability is important to generate an asymmetrical microtubules array (42). Stronger or long time stabilized phosphorylation of stathmin may impair the microtubule dynamics. Cernuda-Morollon et al found that T-cell receptor (TCR)-induced stathmin phosphorylation prevented T cell polarization on ICAM-1 by increasing Rac activity and reduced the migration of T cell and changed microtubule dynamics leading to loss of migratory polarity (43). Di Paolo et al revealed that phosphorylation at three sites (Ser-16, Ser-25, Ser-63) completely inhibited the tubulin binding capacity of stathmin (35). This phenomenon was also observed in cancer cells. Belletti et al revealed that Ser-16 phosphorylation of stathmin enhanced sarcoma cell adhesion and inhibited sarcoma cell motility by mutant methods (44). The present study revealed that paclitaxel may act as a stimulus factor to induce the phosphorylation of stathmin leading to impairment of microtubule dynamics. Our observations provide new evidence for understanding the interaction between stathmin phosphorylation and microtubules.

Our observation at cell level was not in accordance with immunohistochemistry analysis. Except for information lost or cancer diversity, different microenvironment between cultured cells and tissues may also contribute. In summary, stathmin was overexpressed in ESCC tissues and overexpression of stathmin was significantly correlated with histological grade. In addition, deficiency or stabilized phosphorylation of stathmin both impaired the migration of ESCC cells. The
present study might highlight the potential of stathmin in the therapy and diagnosis of ESCC.

Acknowledgements

We thank Dr Rong Wang in Mount Sinai School of Medicine and Dr Si-qi Liu in Beijing Genomics Institute for critical suggestion. This study was supported by National High-Tech R&D Program (No. 2012AA020206, 2012AA02A503), SKPBR (No. 2011CB910703) and NSFC (No. 91029725, 81017889, 81017811) of China.

References

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J and Thun MJ: Cancer statistics, 2009. CA Cancer J Clin 59: 225-249, 2009.
2. Lin DC, Du XL and Wang MR: Protein alterations in ESCC and clinical implications: a review. Dis Esophagus 22: 9-20, 2009.
3. Steinmetz MO: Structure and thermodynamics of the tubulin-stathmin interaction. J Struct Biol 158: 137-147, 2007.
4. Belmont LD and Mitchison TJ: Identification of a protein that defines a subgroup of aggressive endometrial carcinomas with potential. Mol Biol Cell 14: 18-24, 2002.
5. Bessis R: Overexpression of stathmin in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br J Cancer 102: 710-718, 2010.
6. Liu F, Liu F, Sun YL and Zhao XH: Significance of STMN1 expression in esophageal squamous cell carcinoma. World J Gastrointest Oncol 13: 1306-1312, 2010.
7. Rana S, Maples PB, Senzer N and Nemunaitis J: Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther 8: 1467-1470, 2008.
8. Liu F, Liu F, Sun YL and Zhao XH: Significance of STMN1 expression in esophageal squamous cell carcinoma. World J Gastrointest Oncol 13: 1306-1312, 2010.
9. Wang X, Fan QX, Zhao PR and Wang F: Expression and significance of stathmin inhibition and taxol exposure. Mol Cancer 5: 773-782, 2006.
10. Chen PW, Lin SJ, Tsai SC, et al: Regulation of microtubule dynamics through phosphorylation of stathmin by Epstein-Barr virus kinase BGLF4. J Biol Chem 285: 10053-10063, 2010.
11. Sandri M, Moro E, Cappellini E, et al: Stathmin as a marker for malignancy in pheochromocytomas. Exp Clin Endocrinol Diabetes 118: 27-30, 2010.
12. Kouzu Y, Uzawa K, Koike H, et al: Identification of novel nosopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res 14: 435-445, 2008.
13. Leon TY, Han ME, Lee YW, et al: Overexpression of stathmin in ESCC. J Cancer Res Clin Oncol 135: 837-846, 2009.
14. Zheng L, Huang WC, Chen ZC, et al: Identification of novel nosopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res 14: 435-445, 2008.
15. Liu F, Liu F, Sun YL and Zhao XH: Significance of STMN1 expression in esophageal squamous cell carcinoma. World J Gastrointest Oncol 13: 1306-1312, 2010.
16. Wang X, Fan QX, Zhao PR and Wang F: Expression and significance of stathmin inhibition and taxol exposure. Mol Cancer 5: 773-782, 2006.
17. Chen PW, Lin SJ, Tsai SC, et al: Regulation of microtubule dynamics through phosphorylation of stathmin by Epstein-Barr virus kinase BGLF4. J Biol Chem 285: 10053-10063, 2010.
18. Sandri M, Moro E, Cappellini E, et al: Stathmin as a marker for malignancy in pheochromocytomas. Exp Clin Endocrinol Diabetes 118: 27-30, 2010.
19. Kouzu Y, Uzawa K, Koike H, et al: Identification of novel nosopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res 14: 435-445, 2008.
20. Jeon TY, Han ME, Lee YW, et al: Overexpression of stathmin in ESCC. J Cancer Res Clin Oncol 135: 837-846, 2009.
21. Wang X, Fan QX, Zhao PR and Wang F: Expression and significance of stathmin inhibition and taxol exposure. Mol Cancer 5: 773-782, 2006.
22. Chen PW, Lin SJ, Tsai SC, et al: Regulation of microtubule dynamics through phosphorylation of stathmin by Epstein-Barr virus kinase BGLF4. J Biol Chem 285: 10053-10063, 2010.
23. Sandri M, Moro E, Cappellini E, et al: Stathmin as a marker for malignancy in pheochromocytomas. Exp Clin Endocrinol Diabetes 118: 27-30, 2010.
24. Xi W, Rui W, Fang L, Ke D, Ping G and Hui-Zhong Z: Expression of stathmin/op18 as a significant prognostic factor for cervical carcinoma patients. J Cancer Res Clin Oncol 135: 837-846, 2009.
25. Cheng AL, Huang WC, Chen ZC, et al: Identification of novel nosopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res 14: 435-445, 2008.
26. Liu F, Liu F, Sun YL and Zhao XH: Significance of STMN1 expression in esophageal squamous cell carcinoma. World J Gastrointest Oncol 13: 1306-1312, 2010.
27. Sadow PM, Rumilla KM, Erickson LA and Lloyd RV: Stathmin expression in pheochromocytomas, paragangliomas, and in other endocrine tumors. Endocr Pathol 19: 97-103, 2008.
28. Bjorklund P, Cupisti K, Frykman M, et al: Stathmin as a marker for malignancy in pheochromocytomas. Exp Clin Endocrinol Diabetes 118: 27-30, 2010.
29. Xi W, Rui W, Fang L, Ke D, Ping G and Hui-Zhong Z: Expression of stathmin/op18 as a significant prognostic factor for cervical carcinoma patients. J Cancer Res Clin Oncol 135: 837-846, 2009.
30. Cheng AL, Huang WC, Chen ZC, et al: Identification of novel nosopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin Cancer Res 14: 435-445, 2008.