A PIP$_2$ substitute mediates voltage sensor-pore coupling in KCNQ activation

Yongfeng Liu1,4, Xianjin Xu2,4, Junyuan Gao3,4, Moawiah M. Naffaa1, Hongwu Liang1, Jingyi Shi1, Hong Zhan Wang3, Nien-Du Yang1, Panpan Hou1, Wenshan Zhao1, Kelli McFarland White1, Wenjuan Kong1, Alex Dou1, Amy Cui1, Guohui Zhang1, Ira S. Cohen$^{3✉}$, Xiaoqin Zou$^{2✉}$ & Jianmin Cui1✉

KCNQ family K$^+$ channels (KCNQ1-5) in the heart, nerve, epithelium and ear require phosphatidylinositol 4,5-bisphosphate (PIP$_2$) for voltage dependent activation. While membrane lipids are known to regulate voltage sensor domain (VSD) activation and pore opening in voltage dependent gating, PIP$_2$ was found to interact with KCNQ1 and mediate VSD-pore coupling. Here, we show that a compound CP1, identified in silico based on the structures of both KCNQ1 and PIP$_2$, can substitute for PIP$_2$ to mediate VSD-pore coupling. Both PIP$_2$ and CP1 interact with residues amongst a cluster of amino acids critical for VSD-pore coupling. CP1 alters KCNQ channel function due to different interactions with KCNQ compared with PIP$_2$. We also found that CP1 returned drug-induced action potential prolongation in ventricular myocytes to normal durations. These results reveal the structural basis of PIP$_2$ regulation of KCNQ channels and indicate a potential approach for the development of anti-arrhythmic therapy.
Voltage-gated KCNQ potassium channels (KCNQ1–5, also known as Kv7.1-5) are important in regulating cardiac action potential duration\(^{3-6}\), modulating neuroexcitability\(^{6-8}\) and maintaining endolymph K\(^+\) homeostasis in the inner ear\(^{7,9}\). The KCNQ channels are activated by membrane depolarization, but they all share an important feature in that their activation also requires the membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP\(_2\))\(^{9-12}\). KCNQ1 and its regulatory subunit KCNE1 form the \(I_{KS}\) channel in cardiac myocytes that terminates action potentials and regulates heart rhythm\(^{11,13}\). Congenital mutations in KCNQ1 that alter \(I_{KS}\) channel function are associated with cardiac arrhythmias\(^{9,14,15}\). Patients with mutations associated with PIP\(_2\) regulation of KCNQ1 may exhibit a high risk for life-threatening events\(^{16-18}\). The heterotetramer \(K^+\) channel formed by KCNQ2 and KCNQ3 was identified as carrying neuronal M currents\(^8\). Homotetramer KCNQ2 and KCNQ5 channels were suggested to contribute to M currents as well\(^{9,20}\). In neurons, muscarinic stimulation of Gq protein-signaling pathways hydrolyzes PIP\(_2\). The reduction of membrane content of PIP\(_2\) results in the decrease of M currents and the enhancement of neuronal excitability\(^{16,21}\). Congenital mutations that reduce M currents are associated with epilepsy and deafness\(^{12}\).

PPIP2 has been shown to mediate voltage-dependent gating of KCNQ channels. In tetrameric KCNQ channels, each subunit contains 6 transmembrane segments S1–S6. Transmembrane segments S1–S4 form the voltage-sensor domain (VSD), and the pore is formed by S5–S6 from all four subunits. In the channel structure, four VSDs are located at the periphery of the central pore\(^{22}\). In voltage-gated K\(^+\) channels, membrane depolarization activates the VSDs by moving the S4 segment to the extracellular side. The conformational changes in the VSD are then coupled to the pore for channel opening. In KCNQ1 channels, numerous experiments detected that the VSD activates in two steps, first to an intermediate state and then to the activated state\(^{23-27}\). In both states, VSD activation opens the pore, resulting in the intermediate open (IO) and activated open (AO) states\(^{23,24,27,28}\). The VSD activation opens the pore via two distinctive sets of interactions. The first interactions are between the S4–S5 linker (S4–S5L) and the cytosolic end of S6 within the same subunits, and the second interactions are between the neighboring subunits involving S4 and S4–S5L in one subunit and S5 and S6 in the other\(^{27}\). Ion channels interact with their lipid environments during channel function. Specific lipid-channel interactions in voltage-gated K\(^+\) (K\(_V\)) channels have been reported to alter VSD activation or pore opening\(^{29-32}\). On the other hand, in KCNQ1 channels, PIP\(_2\) was found to be required for VSD-pore coupling. When PIP\(_2\) is depleted from the membrane, the pore cannot open, even though the VSD remains activated by membrane depolarization\(^{18}\). A site at the interface between the VSD and pore was identified for PIP\(_2\) to interact and mediate VSD-pore coupling\(^{9,33-36}\).

The mechanism by which PIP\(_2\) mediates VSD-pore coupling in KCNQ1 remains to be understood. The structural determinants of the channel that are involved in this mechanism are not known. Further, the structural feature of the PIP\(_2\) molecule that is important for its activity is also not clear. In this study, we identified a small molecule, CP1, by screening in silico using docking software MDock\(^{38-40}\). The ligand-based screening, compounds in the ACD subset were ranked by their similarity scores with the head group of PIP\(_2\) using both the structure-based and ligand-based methods. In the structure-based screening, compounds in the ACD subset were ranked by their binding scores calculated using an in-house docking software MDock\(^{38-40}\). In the ligand-based screening, compounds were ranked by their similarity scores with the head group of PIP\(_2\), calculated using a 3D molecular similarity program ShaeP\(^{41}\). The details are described in the “Methods” section.

From the primary screen, a compound, CP1, was found in the top 2% for both structure-based and ligand-based strategies, which contains two sulfates that may mimic the head group of PIP\(_2\) (Fig. 1a). Docking of PIP\(_2\) and CP1 onto the homology model of human KCNQ1 shows that the two molecules interact with KCNQ1 in the same pocket formed by the S4–S5L and the C terminus of S6 (S6C) (Fig. 1b). The interaction between the S4–S5 linker and S6C is important for the VSD activation to be coupled to pore opening in KCNQ1\(^{18,27}\) and other Kv\(__\) channels\(^{12,42}\). While CP1 and PIP\(_2\) interact with a distinct set of KCNQ1 residues (see Supplementary Fig. 1), some of these interacting residues, including K354 and K358, are shared by both molecules. For PIP\(_2\), a phosphate group (P4 in Fig. 1a) forms salt bridges with both K354 and K358. For CP1, a sulfate group (S2 in Fig. 1a) forms a salt bridge only with K354, whereas K358 interacts with the ring of CP1. However, there are several profound differences between CP1 and PIP\(_2\) in their detailed interactions with KCNQ1. First, the sulfate group S2 of CP1 forms a hydrogen bond with residue S253. Second, a phosphate group (P1) of PIP\(_2\) and a sulfate group (S1) of CP1 bind to a similar location on KCNQ1 in distinct ways. Specifically, P1 of PIP\(_2\) forms a hydrogen bond with residue T247, but S1 of CP1 forms a salt bridge with residue R249. Last, PIP\(_2\) contains a third negatively charged group (phosphate group P5) forming a salt bridge with residue R259.

In a previous study, mutation of residues in the predicted PIP\(_2\)-binding site reduced KCNQ1 currents\(^{13}\). CP1 modifies voltage-dependent activation of KCNQ1 channels by shifting the voltage dependence of channel opening, measured as the voltage dependence of the conductance (G–V) relationship, to more negative voltages (Fig. 1c) among other characteristics (see below). We made mutations to the residues around the CP1-interacting pocket as indicated by molecular docking (Fig. 1b), and examined the effects of the mutations on the CP1-induced shift of the G–V relationship. The mutations of the KCNQ1 residues that interact with CP1 in docking simulations reduced the shift of the G–V relationship (Fig. 1c, d), supporting the interaction of these residues with CP1.

CP1 rescues KCNQ1 currents after PIP\(_2\) depletion. We tested whether CP1 can mimic PIP\(_2\) in mediating VSD-pore coupling. We co-expressed KCNQ1 with the voltage-dependent lipid
phosphatase CiVSP44 in Xenopus oocytes and recorded KCNQ1 currents using two-electrode voltage clamp with consecutive depolarizing voltage pulses. The current increased upon KCNQ1 activation at the beginning of the first voltage pulse (First trace, Fig. 2a) and then declined due to CiVSP activation to deplete PIP2. A subsequent voltage pulse elicited much smaller KCNQ1 currents (Rundown trace, Fig. 2a) as a result of PIP2 depletion that had insufficient time to be replenished by endogenous enzymes between the pulses. However, after application of CP1 via injection into the oocyte, the KCNQ1 currents increased with consecutive voltage pulses, and current kinetics showed no declination during each pulse (10 µM CP1, Fig. 2a, b), indicating that CP1 permits voltage-dependent activation of KCNQ1 channels, despite the depletion of PIP2. Similarly, the I_{Ks} channel (KCNQ1 + KCNE1) currents decrease upon co-expression with CiVSP with consecutive voltage pulses (Fig. 2c, d), which is similar to our previous observations. Application of CP1 via extracellular perfusion rescued I_{Ks} currents, which could be inhibited by the KCNQ1 and I_{Ks} channel inhibitor Chromanol 293B (Fig. 2c, d), indicating that CP1 permits voltage-dependent activation of I_{Ks} channels. This result also shows that CP1 is membrane permeable. To more directly test CP1 effects, we applied CP1 to the intracellular side of the inside-out membrane patch that expressed I_{Ks} channels. After patch excision in the absence of CP1, the I_{Ks} currents ran down with consecutive voltage pulses due to PIP2 diffusion out from the patch membrane, but upon CP1 application, the current increased with consecutive voltage pulses (Fig. 2e, f). These results suggest that similar to PIP2, CP1 association with the KCNQ1 channel can mediate the VSD-pore coupling during voltage-dependent activation.

CP1 enhances VSD-pore coupling and VSD activation of KCNQ1. The above results (Fig. 2) are consistent with those from the docking studies (Fig. 1), indicating that CP1 may interact with the channel close to the binding site for PIP2 to mediate VSD-pore coupling. To further understand this mechanism, we examined the changes of KCNQ1 function in the presence of CP1. CP1 modulated the voltage dependence of the KCNQ1 currents by increasing the current at negative voltages (< −20 mV), but decreasing the current at positive voltages (Fig. 3a, b), and the voltage dependence of the conductance (G) shifted to more negative voltages (Figs. 1c and 3c). Accompanying the negative shift of the G–V relation, the deactivation time course of KCNQ1 channels became slower in CP1 (Fig. 3a, d). These results suggest that CP1 facilitates voltage-dependent activation of...
Fig. 2 CP1 rescues KCNQ1 currents after PIP2 depletion. a, b KCNQ1 currents recorded from a Xenopus oocyte co-expressed with CIVSP in response to voltage pulses to +60 mV (the voltage protocol is depicted in the inset in a). Currents of the first trace control (black), after rundown (gray), and after injection of -10 µM CP1 into oocytes (red) are shown (a). Averaged time course of normalized current amplitude of KCNQ1 with rundown (black) and after CP1 injection (red) (b) (n = 3). c, d IKS (KCNQ1 + KCNE1) co-expressed with CIVSP in response to voltage pulses to +60 mV. Currents of the first trace control (black), after rundown (gray), after bath application of 10 µM CP1 (red), and after bath application of 100 µM chromanol 293B (blue) are shown (c). Averaged time course of normalized current amplitude of IKS with rundown (black), CP1 application (red), and chromanol 293B (d) (n = 7). e, f IKS currents recorded in the inside-out patch in response to voltage pulses to +80 mV (the voltage protocol is depicted in the inset in e). Representative IKS current traces ran down after patch excision due to PIP2 depletion (e, upper), and rescued by 10 µM CP1 application (e, lower). The changing color of the current traces and arrows indicates the time sequence of rundown and rescue (e). Normalized current amplitude following patch excision and CP1 application (n = 3) (f).

KCNQ1 by favoring pore opening at various voltages. The relation between the G−V shift and CP1 concentration is shown in Fig. 3e. The concentration yielding a half-maximum effect (EC50) was 8.73 ± 0.68 µM. CP1 does not alter the ion selectivity of KCNQ1 channels (Supplementary Fig. 2).

We employed voltage-clamp fluorometry (VCF) to measure the effects of CP1 on voltage-sensor activation. The emission (F) of Alexa 488 C5 maleimide attached to the S3–S4 linker, at residue C219, of the pseudo wild-type KCNQ1 (with mutations C214A/G219C/C331A) reported VSD movements in response to voltage changes, while the ionic current reported pore opening (Fig. 3f, h). Similar to the WT KCNQ1, the G−V relation of the pseudo WT KCNQ1 shifted to negative voltages by −53.3 ± 3.1 mV in the presence of 10 µM CP1 (Fig. 3g). CP1 also shifted the F−V relation to negative voltages (Fig. 3i), indicating that CP1 potentiates VSD activation. However, the F−V relationship shifted only by −17.3 ± 3.6 mV. A larger shift in G−V than F−V indicates that CP1-enhanced VSD-pore coupling (Supplementary Fig. 3). Our results show that a small fraction of VSD activation at negative voltages induces a large fraction of pore opening. It is also apparent that at extreme negative voltages ≤−130 mV, where the voltage sensor seemed not activated (F ~ 0, Fig. 3i), a fraction of the channels was constitutively open (G > 0, Fig. 3b, g). These results suggest the idea that CP1 interacts with the channel, such that pore opening is enhanced even in the absence of VSD activation, and that it mediates VSD-pore coupling during voltage-dependent activation in KCNQ1 channels. A previous study showed a constitutive opening of KCNQ1, which increased when the G−V relation was shifted to more negative voltages by mutations48,49, but it is not clear if the underlying mechanism is similar to that in CP1 modulation. The above results suggest that while CP1 acts similarly to PIP2 in that it mediates VSD-pore coupling in KCNQ1 channels, its function may differ from that of PIP2, which does not affect VSD activation or opens the pore without VSD activation48,49.

Our previous studies have shown that the VSD of KCNQ1 activates to an intermediate state (I state) and an activated state (A state) upon membrane depolarization, and the pore can open when VSD is at either the intermediate (IO state) or activated (AO state)23,24. The association of the auxiliary subunit KCNE1 with KCNQ1 affects VSD-pore coupling to suppress the IO state and enhance the AO state24. Correspondingly, the association of KCNE1 also increases the PIP2 sensitivity of the channel24,37. We found that KCNE1 association also affected CP1 modulation of the channel, such that the currents obtained from co-expression of KCNQ1 with KCNE1 exhibited a stronger response to CP1 than KCNQ1 alone. The most prominent effect of CP1 is to dramatically slow the deactivation of IKS, such that at 2 µM CP1, it took a 100-s interval at −120 mV for all the channels to deactivate from their previous activation (Fig. 4a). The application of 2 µM CP1 shifted the G−V relation to more negative voltages by −13 mV (Fig. 4b). If the interval between two testing pulses was shortened to 20 s and held at a less-hyperpolarized voltage of −80 mV, after 2 µM CP1 application, we observed sustained currents, even at −130 mV (Fig. 4c), indicating that a large fraction of the channels was constitutively open at the test voltages. A fraction of the constitutively open channels might have been open during the previous test pulses and not deactivated during the shorter and less-hyperpolarized interval pulse to cause a current accumulation. Nevertheless, we were able to measure the shift of the G−V relation under these conditions, which was ~12 mV, a value comparable with that measured in the absence of current accumulation (Fig. 4b, d). In higher concentrations of CP1, we were not able to suppress the constitutive opening of KCNQ1 channels even with long and negative interval voltages, so that we used 20-s and ~80-mV interval pulses in the recordings (Fig. 4e). The G−V relation showed a large constitutively open component and shifted to even more negative voltages at 10 µM CP1 (Fig. 4f). Current amplitude increased at all voltages, which corresponded with an increase in conductance at all voltages (Fig. 4g, h), suggesting that CP1 increased the maximum open probability of the channel or, alternatively, additional IKS channels that had been silent in the absence of CP1 were activated by CP1. In comparison with KCNQ1 expressed alone, CP1 caused a larger shift of the G−V relationship when KCNE1 was co-expressed (Fig. 4i). Since the IKS currents were difficult to measure accurately at high CP1 concentrations, we were unable to determine the EC50 of the channel response to CP1.

Specificity of CP1 for KCNQ channels. KCNQ2 and KCNQ3 form a channel complex that carries M currents in neurons4. Similar to KCNQ1, these KCNQ subunits require PIP2 for voltage-dependent activation.49. KCNQ2 alone can express functional channels in Xenopus oocytes, while KCNQ3 alone cannot. However, a single mutation, A315T, allows KCNQ3 to functionally express in Xenopus oocytes50. We examined the effects of CP1 on KCNQ2, KCNQ3 with mutation A315T (denoted as KCNQ3*), KCNQ2+KCNQ3, and KCNQ2+KCNQ3* expressed in Xenopus
oocytes (Fig. 5a). Similar to the effects on KCNQ1 and I_{Ks} channels, CP1 changed the amplitude of currents (Fig. 5b), shifted the $G-V$ relation to more negative voltages (Fig. 5c), and slowed the deactivation kinetics (Fig. 5d) for all of these KCNQ channels. These CP1 effects were relatively small on KCNQ2 as compared with those on other KCNQ channels, and the effects on KCNQ2/KCNQ3* and KCNQ2/KCNQ3 complexes were closer to those on KCNQ2 alone.

Since CP1 has a similar effect to PIP$_2$ in mediating VSD-pore coupling in KCNQ channels, we tested if CP1 has effects on other ion channels that are also sensitive to PIP$_2$ or are voltage activated and share general structural features of the VSD and the pore with KCNQ. Kir1.1 does not have a voltage sensor, but is activated by PIP$_2$51, while Cav1.2, HERG, and HCN4 channels are voltage-gated channels and their function is modulated by PIP$_2$52–54. On the other hand, Nav1.5 and Kv4.2 are voltage-gated ion channels. In all, 10 µM CP1 showed little effect on the currents of Kir1.1 or $G-V$ relations of all these channels, except for the hyperpolarization-activated HCN4, for which CP1-enhanced currents but shifted the $G-V$ relation to more negative voltages (Fig. 6, Supplementary Fig. 4).

CP1 reduces drug-induced action potential prolongation. The KCNQ1 and KCNE1 complex forms the cardiac I_{Ks} channel, which is important in terminating cardiac action potentials and regulating heart rate.1,2,13 We tested if CP1 modulates the I_{Ks} channel in cardiac myocytes. Similar to the results from KCNQ1 + KCNE1 expressed in Xenopus oocytes, in guinea pig ventricular myocyte CP1 enhanced I_{Ks} current (Chromanol 293B-sensitive current) amplitude (Fig. 7a–c), shifted the $G-V$ relation to more negative voltages (Fig. 7d, e), and slowed the kinetics of deactivation (Fig. 7a). The response of the amplitude and $G-V$ shift to CP1 doses had EC$_{50}$'s of 7.54 and 7.83 µM, respectively (Fig. 7c, e). The EC$_{50}$ of the $G-V$ shift is slightly smaller compared with that of KCNQ1 expressed in oocytes (8.73 µM, Fig. 3e), possibly because in guinea pig myocytes, KCNQ1 is associated with KCNE1.

In ventricular myocytes, the duration and the morphology of action potentials are determined by various ion channels.55 Mutations in many of these channels and drugs that modify channel functions, such as an increase in inward Na$^+$ currents or decrease in outward K$^+$ currents, may lead to a prolonged action potential duration, which results in an inherited or acquired long...
QT syndrome that predisposes afflicted patients to cardiac arrhythmia. An enhancement of the outward I_{Ks} current may be able to counter these mutations or drug effects, and restore the action potential duration to more normal values. To test this idea, we first perfused the I_{Ks} blocker chromanol 293B together with CP1 to guinea pig ventricular myocytes and found that the action potential duration (APD) was not changed. However, if we continued to apply CP1 alone, the APD was significantly shortened. This indicated that CP1 effects are mediated in large part by enhancing I_{Ks} channels (Fig. 7f). Next, we used an I_{Kr} blocker (Moxifloxacin, Moxi) to prolong action potentials and then applied various concentrations of CP1. We found that 0.2 µM CP1 was sufficient to return the action potential duration back to normal (Fig. 7g, h). Interestingly, 0.2 µM CP1 applied to control myocytes with normal action potentials did not alter action potential duration, suggesting that there is a window of CP1 concentrations that could counter the effects of mutation or drugs that produce prolonged action potentials, but would not alter action potential duration in normal cells. CP1 at concentrations of 0.6 and 6 µM also reduced Moxifloxacin-induced action potential prolongation; however, action potentials in control cells were also shortened (Fig. 7g, h).

Discussion

Voltage-dependent gating of ion channels involves three fundamental processes: VSD activation, VSD-pore coupling, and pore opening. Ion channels are membrane proteins, and channel functions are regulated by membrane lipids. Previous studies revealed that lipids as a cofactor modulate VSD activation and pore opening in KVAP56, K V2.157, BK58, and KCNQ K+ channels31, while in KCNQ1 channels, PIP2 was shown to be required for the VSD-pore coupling18. In this study, we found a compound CP1 that resembles the PIP2 head group, and can substitute for PIP2, to mediate VSD-pore coupling in KCNQ channels (Figs. 1 and 2).

Recently, we identified two sets of interactions between the VSD and the pore in KCNQ1 that are important for VSD-pore coupling during voltage-dependent activation27. One set of interactions is among residues in the S4–S5L and S6C (Fig. 8) within the same subunit. This set of interactions had been previously identified in other KV channels42,43, and was termed as the classic interactions, in which KCNQ1 channels promote channel opening upon VSD movement into the intermediate state, and are also necessary for VSD-pore coupling when VSD is in the activated state. The second set of interactions are among...
S4, S4–SSL, S5, and S6 between neighboring subunits (Fig. 8), which are engaged by the movement of the VSD to the activated state for VSD-pore coupling.27 The residues involved in these two sets of interactions for VSD-pore coupling are mapped on the human KCNQ1 structure39 (PDB entry: 6uzz) along with the residues that interact with PIP2 and CP1 (see Fig. 1), respectively (Fig. 8). The residues interacting with PIP2 or CP1 are located within the S4–SSL and S6C, which are right among the residues for VSD-pore interactions (Fig. 8). This result seems to suggest that the connection between S4–SSL and S6C mediated by PIP2 or CP1 plays an important role in engaging the interactions for VSD-pore coupling. In PIP2 depletion and the absence of CP1, the interactions for VSD-pore coupling in KCNQ1 may be weakened or disrupted, resulting in the loss of VSD-pore coupling as previously predicted from molecular dynamic simulations60. However, it is worth pointing out that PIP2 interaction with KCNQ1 channels may be dynamic, which changes with the state of the channel during voltage-dependent activation, to also involve residues in the S2–S3L18,36,60. The recently published cryo-EM structure of the hKCNQ1 showed that PIP2 could bind to S2–S3L39. In addition, residues in other structural motifs have been suggested to interact with PIP2 during KCNQ channel activation33,61,62. It is not known if CP1 makes dynamic interactions with any other sites as well. It is possible that some of the effects of CP1, such as causing a constitutive activation in the absence of VSD activation, may derive from CP1 binding to a different binding site. It has been shown that polyunsaturated fatty acids modify KCNQ1 channels by interacting with residues in both the VSD and S631.

While PIP2 is required for the activation of all KCNQ channels, the properties of each of the KCNQ channels may differ under PIP2 modulation. In response to PIP2 applied to intracellular solutions, KCNQ3 channels activate in response to increased PIP2 concentrations with an ~100-fold smaller EC50 (higher apparent affinity) than KCNQ2 or KCNQ463. Consistently, the sites for PIP2 and CP1 interaction are generally conserved but show some differences (Supplementary Fig. 5). On the other hand, KCNQ1 activation showed an EC50 more than 100-fold higher in response to PIP2, than the co-expression of KCNQ1+KCNEL157. For KCNQ1+KCNEL1 channels, PIP2 not only increases activation but also shifts the G–V relation to more negative voltages37,64. However, following muscarinic stimulation to partially deplete PIP2 or enzymatic treatment that altered PIP2 levels, KCNQ1, KCNQ2, KCNQ4, or KCNQ2/KCNQ3 channels did not show a shift in G–V relations65–67. Similar to PIP2, CP1 also modulates different KCNQ channels with differing G–V shifts; in response to 10 µM CP1, the G–V shift ranks in the order KCNQ1 > KCNQ1 ~ KCNQ3 > KCNQ2 > KCNQ2/KCNQ3 (Figs. 3–5).

However, the effects of CP1 on KCNQ1 channels also show distinct differences from PIP2. PIP2 depletion does not alter VSD activation in KCNQ118, but CP1 shifts VSD activation to more negative voltages (Fig. 3). CP1 also shifts the G–V relation to more negative voltage more prominently and cause a constitutive current even when the VSD is at rest at extremely negative voltages (Figs. 3 and 4). These results suggest that the VSD-pore-coupling mechanism in KCNQ1 is distorted by an interaction with CP1, which not only allows pore opening with the VSD at rest, but also alters the voltage dependence of VSD activation. In our previous studies, we have found that single mutations of many individual amino acid23–25,27,68 and the depletion of PIP218 could abolish VSD-pore coupling completely. This study suggests that, while the interaction of CP1 could restore VSD-pore coupling in the absence of PIP2 (Fig. 2), it also distorts VSD-pore coupling to alter activation properties (Figs. 3, 4) due to the different interactions of CP1 and PIP2 with the channel protein (Figs. 1, 8). All these results suggest that the VSD and pore in KCNQ1 channels have a coupling that is prone to modulation by structural disturbances.

In all, 10 µM CP1 shows no effects on voltage-dependent activation of some ion channels other than KCNQ that are voltage dependent, PIP2 sensitive, or both (Fig. 6), supporting the idea that its effects on KCNQ channels are site specific but not due to a nonspecific electrostatic interaction with the channels (Supplementary Fig. 5). Previous studies suggested that the length of the fatty acid chains of PIP2 may not contribute to the activation of KCNQ1 channels37. However, in a systematic study, Brown and colleagues found that a minimum of one acyl chain was required for inositol phosphates to activate the KCNQ2/ KCNQ3 channel. The water-soluble inositol head group I(1,4,5)P3, I(4,5)P2, or other small phosphates had no effect on channel activity. On the other hand, any phosphate head group of a lipid could activate the channel, with PIP2 being the most effective69. Taken together with our results with CP1, it seems that a lipophilic moiety may be necessary to anchor the inositol head group for interaction with and activation of the channel, but any negatively charged groups mimicking the phosphate groups that can bind to the channel, such as CP1, will be able to activate the channel without the participation of an acyl chain. Alternatively, since externally applied CP1 could penetrate the membrane to interact with the site in the cytosolic domain of the channel (Figs. 1–4), CP1 may interact with the membrane while interacting with the channel. It is worth noting that all lipid phosphates examined in the previous study did not appear to alter channel activation, except for changing the maximal channel activity69, while CP1 interaction changes VSD activation and VSD-pore coupling (Figs. 3 and 4). It indicates that while phosphates are important, the structural differences between CP1 and lipid head groups permit CP1 to interact with other residues and cause additional functional impacts.
KCNQ1 harbors more than 300 loss-of-function mutations that reduce I_{Ks} currents and are associated with long QT syndrome (LQTS). We found that CP1 application to ventricular myocytes increased I_{Ks} currents and reduced action potential duration (Fig. 7), suggesting a potential for anti-arrhythmic therapy. CP1 at low concentration (0.2 µM) reversed drug-induced action potential prolongation, but showed no effect of its own on normal action potentials, suggesting a window between therapeutic effects and cardiac toxicity. CP1 also showed good specificity for I_{Ks} as compared with the neuronal M currents (KCNQ2 and KCNQ3, Fig. 5) and other important cardiac ion channels (Figs. 6 and 7). These results suggest that our

Fig. 6 Effects of CP1 on other ion channels expressed in Xenopus oocytes. a Currents of Kir1.1, Ca$_{v}$1.2, Na$_{v}$1.5, HERG, and Kv4.2 before and after application of 10 µM CP1, respectively. The voltages for holding, test, and returning pulses were Kir1.1, 0 mV; Ca$_{v}$1.2, −100 mV to +60 mV; Na$_{v}$1.5, −120 mV to +40 mV; HERG, −80 mV to +60 mV; Kv4.2, −100 mV to +80 mV; HCN4, −30 mV to −140 mV. b Current–voltage relations of Kir1.1 channel in the absence or presence of 10 µM CP1 (n = 7). c–g G–V relations of indicated channels with and without 10 µM CP1. The $\Delta V_{1/2}$ of G–V relations (mV) are Ca$_{v}$1.2, 3.38 ± 0.71 mV (c); Na$_{v}$1.5, −2.26 ± 0.95 mV (d); HERG, 6.85 ± 1.81 mV (e); Kv4.2, −2.26 ± 2.88 mV (f); HCN4, 17.13 ± 1.59 mV (g).
computational strategy to identify CP1 based on the structural data of Kᵥ channels, and the understanding of PIP₂ interactions with KCNQ channels, can be effective as an approach for drug discovery targeting ion channels. This strategy may have general applications with ever more readily available structural and functional data of ion channels.

Methods

Homology models of hKCNQ1 and in silico compound screening. A hybrid in silico screening strategy, combining both structure-based and ligand-based methods, was used in this study. For structure-based screening, by using an in-house molecular docking software MDock³⁹,⁷₀,⁷₁, we screened a subset of the Available Chemical Database (ACD, Molecular Design Ltd.) in which each compound has a formal charge of 2 (−10⁴ compounds), targeting the PIP₂ site (green in Fig. 1b) on hKCNQ1, our homology model of hKCNQ1 constructed by using the X-ray structure of the inactive (PDB entry: 6uzz). The residues are shown as colored sticks in the cryo-EM structure of hKCNQ1 (PDB entry: 6uzz). The colors indicate residues in the classic interactions (blue, including V254, H258, A341, P343, and G345), the interactions specifically when the VSD is in the activated state (cyan, including M238, L239, D242, R243, T247, R259, Q260, and T264), specific interactions with CP1 (magenta, R249 and S253), and interactions with both PIP₂ and CP1 (red, K354 and K358). a One KCNQ1 subunit. b Enlarged frame. c Enlarged frame from different views.

Fig. 7 Effects of CP1 on Iₖₛ and action potentials in cardiomyocytes. a Iₖₛ currents in guinea pig ventricular myocytes in the absence and presence of 30 µM CP1 in the whole-cell patch-clamp configuration. Holding potential: −40 mV; testing potentials: −20 to +60 mV with 10-mV increment; returning potential: −20 mV. The Iₖₛ and its tail currents at the returning potential in control were obtained by subtracting the currents in the presence of chromanol 293B (10 µM) from those in the control only, and the Iₖₛ and its tail currents in the presence of CP1 were obtained by subtracting the currents in the presence of CP1 (30 µM) plus 293B (10 µM) from those in the CPI only. b Averaged Iₖₛ currents in control and different CP1 concentrations [CP1] at 60 mV. c Dose response of Iₖₛ channels at +60 mV for CP1, EC₅₀ = 7.54 µM. d Averaged Iₖₛ tail currents in control and different [CP1] at −20 mV. e Dose response for V₁/₂ of activation induced by CP1 for Iₖₛ channels, EC₅₀ = 7.86 µM (n = 6). f Effects of CP1 on normal action potential duration (APD). Guinea pig ventricular myocytes were first perfused with 10 µM CP1 and 10 µM chromanol. After APD reached steady state, 10 µM CP1 was constitutively perfused alone. Last, CP1 was washed out for near-full reversal of APD shortening. g Effects of 0.2 µM CP1 on LQT action potentials. To mimic the LQT, 100 µM moxifloxacin was applied 2 h before the treatment of CP1. h Change of action potential duration after application of different [CP1]s (n = 5–7). Tukey-Kramer ANOVA test was used to compare control cells in different CP1 concentration, # is significant at P < 0.05. Unpaired two-tailed Student t tests were used to compare control and moxifloxacin cells at different CP1 concentration: * is significant at P < 0.05.
human KCNQ1 (hKCNQ1). The hKCNQ1 structure was determined based on the crystal structure of rat Kv1.2–Kv2.1 chimera (PDB entry: 2r9g)22 using the program X-PLOR4.1.3.2. The homology model was used to study the detailed binding mode of PIP2 and PIP3 in KCNQ1. PIP2 and PIP3 were docked using the homology model of hKCNQ1 built upon 5vms. The predicted binding modes of PIP2 and PIP3 on hKCNQ1 are shown in Fig. 1b, plotted with Chimera14. Very recently, a human KCNQ1 structure was released using cryo-EM (PDB code: 6zzu; resolution: 3.1 Å)39. Our modeled hKCNQ1 structure based on hKCNQ1 (PDB code: 5vms) was very close to this cryo-EM hKCNQ1 structure, with the backbone root-mean-square deviation (RMSD) of 1.5 Å. Hence, the use of the newly released cryo-EM human KCNQ1 structure for modeling does not change our docking results.

Channel subunit and mutation cRNA preparation. Complementary DNA (cDNA) encoding human KCNQ1 (UniProtKB/Swiss-Prot accession no. P51787), KCNQ2 (O43536), KCNQ3 (O43535), KCNQ1 (P51382), Kir1.1 (P48864), Kir2.1 (Q28089), Kir2.2 (Q06254), NaV1.2 (Q14524), NaV1.3, NaV1.5, NaV1.6, CaV1.2 (Q13936), CaV1.3, CaV2, Caβ1a (Q2641), Caβ2a (P54289), and HCN4 (Q9Y3Q4) were subcloned into oocyte expression vectors, respectively. Site-directed mutations of the KCNQ1 channel were all produced by overlap expression polymerase chain reaction (PCR) with high-fidelity Phu polymerase (Stratagene, CA). The presence of the desired mutants was verified by sequencing and alignment.

Voltage-clamp experiments. Solutions were prepared fresh daily by dissolving appropriate amounts of salts in deionized water. All experiments were performed at room temperature (20 °C) in ND96 solution containing (in mM) 96 KCl, 4 NaCl, 1 CaCl2, 2 MgCl2, and 10 HEPES, pH 7.4. The cells were held at −40 mV and stepped to −20 mV, then to +60 mV with an increment of 10 mV, to measure the membrane current in the absence and presence of chromanol 293B (10 μM). The chromanol 293B sensitive current was defined as the Ic, current normalized to its cell capacitance. These experiments were performed on different oocytes and conditions to obtain the membrane currents, such as Ic, Isol, Ic, and Isol/IC, except Ic, so that we could obtain better experiment resolution.

Importance of KCNQ1 channels. One of the major functions of KCNQ1 channels is to control the repolarization potential of the myocardium during atrioventricular conduction. The KCNQ1 channel is an atypical potassium channel that is voltage-dependent, with a delayed rectification pattern. It is expressed in the atrioventricular junction, where it plays a crucial role in the generation of the atrial pacing rate. The KCNQ1 channel is also expressed in the sinoatrial node, where it contributes to the pacemaker activity.

Electrophysiological recording of action potentials. Action potentials were recorded with whole-cell patch-clamp recording techniques. Current clamp configuration was used with whole-cell patch-clamp recording techniques. Current clamp configuration was used with whole-cell patch-clamp recording techniques. Current clamp configuration was used with whole-cell patch-clamp recording techniques. Current clamp configuration was used with whole-cell patch-clamp recording techniques. Current clamp configuration was used with whole-cell patch-clamp recording techniques. Current clamp configuration was used with whole-cell patch-clamp recording techniques. Current clamp configuration was used with whole-cell patch-clamp recording techniques. Current clamp configuration was used with whole-cell patch-clamp recording techniques.
Statistics and reproducibility. Electrophysiology data were processed with IGOR (Wavemetrics, Lake Oswego, OR), Clampfit (Molecular Devices, Sunnyvale, CA), and SigmaPlot (SPSS, Inc., San Jose, CA). Normalized tail currents were plotted versus prepulse voltage and fitted with the Boltzmann function G = G0 + 1/(1 + exp[V – V1/2])/S, where G is the minimum conductance, V1/2 is the half-maximal voltage of activation, and S is the slope factor. Dose–response curves in Fig. 3 were fitted with the Hill equation. E = Emax/(1 – EC50/C50), where EC50 is the drug concentration producing the half-maximum response and P is the Hill coefficient. In Fig. 7c, e, the EC50 values were obtained by fitting the data to Ic = Icmax + (Icmax – Icmin) ([(CPI/1) + (CPI]/(1 + (CPI/1) + (CPI2/1)] + Ic2/1) × [(CPI/1) + (CPI2/1)]). The deactivation time course was fitted with single-exponential functions. All data are expressed as mean ± SEM (n = 2 or otherwise indicated). Electrophysiology experiments were performed on at least two separate batches of oocytes or myocytes to confirm reproducibility. The significance was estimated either using unpaired two-tailed Student’s t tests (Fig. 7g) or one-way Tukey–Kramer ANOVA test (Fig. 1d and Fig. 7g). Statistical significance: P ≤ 0.05.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. Raw data used to generate the charts present in this paper can be found in Supplementary Data 1. Additional data and research materials related to this paper are available from the corresponding author on reasonable request.

Received: 2 January 2020; Accepted: 22 June 2020; Published online: 16 July 2020

References.

1. Sanguinetti, M. C. et al. Coassembly of Kv(V)LQT1 and minK (Iks) proteins to form cardiac I(Ks) potassium channel. Nature 384, 80–83 (1996).
2. Barhanin, J. et al. K(V)LQT1 and IσK (minK) proteins associate to form cardiac I(Ks) potassium channel. Nature 384, 78–80 (1996).
3. Wang, Q. et al. Positional cloning of a novel potassium channel gene: KvLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12, 17–23 (1996).
4. Wang, H. S. et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282, 1890–1893 (1998).
5. Lerche, C. et al. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J. Biol. Chem. 275, 22395–22400 (2000).
6. Brown, D. A. & Adams, P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283, 673–676 (1980).
7. Neyroud, N. et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardiovascular syndrome. Nat. Genet. 15, 186–189 (1997).
8. Kubisch, C. et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96, 437–446 (1999).
9. Zhang, H. et al. PIP2 activates KCNQ channels, and its hydrolysis underlies K+ channel sensitivity to pore opening. Proc. Natl Acad. Sci. USA 110, 20993–20998 (2013).
10. Li, Y., Gamper, N., Hilgemann, D. W. & Shapiro, M. S. Regulation of Kv7 potassium channel subtype KCN1 potassium channel. J. Biol. Chem. 275, 1940–1949 (2000).
11. Zaydman, M. A. et al. Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the Kv7 channel. eLife 3, e03606 (2014).
12. Wu, D. et al. State-dependent electrostatic interactions of S4 arginines with E1 + in s2 during Kv7.1 activation. J. Gen. Physiol. 135, 593–606 (2010).
13. Jost, N. et al. Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation 119, 1042–1050 (2009).
14. Roche, J. P. et al. Antibodies and a cysteine-modifying reagent show correspondence of M current in neurons to KCNQ2 and KCNQ3 K+ channels. Br. J. Pharmacol. 137, 1173–1186 (2002).
15. Bozoki, M. et al. A gain-of-function mutation in KCNQ1 channel, which links heart disease and seizure susceptibility. Cell 169, 1786–1875 (2017).
16. Li, Y., Gamper, N., Hilgemann, D. W. & Shapiro, M. S. Regulation of Kv7 potassium channel subtype KCN1 potassium channel. J. Biol. Chem. 275, 1940–1949 (2000).
17. Sanguinetti, M. C. et al. Coassembly of K(V)LQT1 and minK (Iks) proteins to form cardiac I(Ks) potassium channel. Nature 384, 80–83 (1996).
18. Brown, D. A. & Adams, P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283, 673–676 (1980).
19. Neyroud, N. et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardiovascular syndrome. Nat. Genet. 15, 186–189 (1997).
20. Kubisch, C. et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96, 437–446 (1999).
21. Zhang, H. et al. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37, 963–975 (2003).
22. Selyanko, A. A. et al. Inhibition of KCNQ1-4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors. J. Physiol. 522(Pt 3), 349–355 (2000).
23. Li, Y., Gamper, N., Hilgemann, D. W. & Shapiro, M. S. Regulation of Kv7 (KCNQ) K+ channel open probability by phosphorylidyinositol 4,5-bisphosphate. J. Neurosci. 25, 9825–9835 (2005).
24. Delmas, P. & Brown, D. A. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6, 850–862 (2005).
25. Jost, N. et al. Restricting excessive cardiac action potential and QT prolongation: a vital role for Iks in human ventricular muscle. Circulation 112, 1392–1399 (2005).
26. Hedley, P. L. et al. The genetic basis of long QT and short QT syndromes: a mutation update. Hum. Mutat. 30, 1486–1511 (2009).
27. Zhang, H. et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299, 251–254 (2003).
28. Matavel, A., Medei, E. & Lopes, C. M. B. PKA and PKC partially rescue Long QT phenotype 1 type by restoring channel-PiP2 interactions. Channels 4, 3–11 (2010).
29. Baudin, A. et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type 1 long QT syndrome. Circulation 125, 1988–1996 (2012).
30. Zaydman, M. A. et al. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc. Natl Acad. Sci. USA 110, 13180–13185 (2013).
31. Li, Y., Gamper, N., Hilgemann, D. W. & Shapiro, M. S. Regulation of Kv7 potassium channel subtype KCN1 potassium channel. J. Biol. Chem. 275, 1940–1949 (2000).
32. Jost, N. et al. Restricting excessive cardiac action potential and QT prolongation: a vital role for Iks in human ventricular muscle. Circulation 112, 1392–1399 (2005).
33. Hedley, P. L. et al. The genetic basis of long QT and short QT syndromes: a mutation update. Hum. Mutat. 30, 1486–1511 (2009).
34. Zhang, H. et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299, 251–254 (2003).
35. Matavel, A., Medei, E. & Lopes, C. M. B. PKA and PKC partially rescue Long QT phenotype 1 type by restoring channel-PiP2 interactions. Channels 4, 3–11 (2010).
36. Baudin, A. et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta-blocker therapy in type 1 long QT syndrome. Circulation 125, 1988–1996 (2012).
37. Zaydman, M. A. et al. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc. Natl Acad. Sci. USA 110, 13180–13185 (2013).
47. Chowdhury, S. & Chanda, B. Thermodynamics of electromechanical coupling in voltage-gated ion channels. *J. Gen. Physiol.* 140, 613–623 (2012).

48. Ma, L., Ohnert, I. & Vardanyan, V. Allosteric features of KCNQ1 gating revealed by alanine scanning mutagenesis. *Biophys. J.* 100, 885–894 (2011).

49. Suh, B. C. & Hille, B. Regulation of KCNQ channels by manipulation of phosphoinositides. *J. Physiol.* 582, 911–916 (2007).

50. Gomez-Pozada, J. C. et al. A pore residue of the KCNQ5 potassium M-channel sustains controls. *Neuroreport* 20, 9316–9323 (2010).

51. Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PI(2)P and its stabilization by Gbetagamma. *Nature* 391, 803–806 (1998).

52. Suh, B. C., Leal, K. & Hille, B. Modulation of high-voltage-activated Ca(2+) channels by membrane phosphatidylinositol 4,5-bisphosphate. *Neuron* 67, 224–238 (2010).

53. Buan, J., Cui, J. & McDonald, T. V. HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. *Circ. Res.* 89, 1168–1176 (2001).

54. Pian, P., Bucchi, A., Robinson, R. B. & Siegelbaum, S. A. Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PI(2)P. *J. Gen. Physiol.* 128, 593–604 (2006).

55. Nerbonne, J. M. & Kass, R. S. Molecular physiology of cardiac repolarization. *Physiol. Rev.* 85, 1205–1253 (2005).

56. Schmidt, D., Jiang, Q. X. & MacKinnon, R. Phospholipids and the origin of M-type potassium channel in a lipid membrane-like environment. *Nature Struct. Mol. Biol.* 12, 314–317 (2005).

57. Liu, S. M., Cheng, Y. L., Wang, W. & Zhu, W. Y. Novel of phospho-head groups of membrane lipids immobiizes voltage sensors of K+ channels. *Nature* 451, 826–829 (2008).

58. Tian, Y. et al. Atomic determinants of BK channel activation by polyunsaturated fatty acids. *Proc. Natl Acad. Sci. USA* 113, 13905–13910 (2016).

59. Sun, J. & MacKinnon, R. Structural basis of human KCNQ1 modulation and gating. *Cell* 180, 340–347 e349 (2020).

60. Kasprian, M. A., Cui, J. & Tarek, M. PI(2)P-dependent coupling is prominent in Kv7.1 due to weakened interactions between S4-S5 and S6. *Sci. Rep.* 5, 7474 (2015).

61. Kim, R. Y., Pless, S. A. & Kurata, H. T. PI(2)P mediates functional coupling and pharmacology of neuronal KCNQ channels. *Proc. Natl Acad. Sci. USA* 114, E9702–E9711 (2017).

62. Tschakiris, W. S. et al. Ca(2+)–calmodulin and PI(2)P interactions at the proximal C-terminus of Kv7 channels. *Channels* 11, 686–695 (2017).

63. Tzetea, V., Brown, D. A. & Gibb, A. J. Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2. *J. Gen. Physiol.* 140, 41–53 (2012).

64. Loussouarn, G. et al. Phosphatidylinositol-4,5-bisphosphate, PI(2)P, controls KCNQ1/KCNQ1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. *EMBO J.* 22, 5412–5421 (2003).

65. Shapiro, M. S. et al. Reconstitution of muncarmin modulation of the KCNQ2/ KCNQ3 K(+) channels that underlie the neuronal M current. *J. Neurosci.* 20, 1710–1721 (2000).

66. Nakaoka, K. & Kubo, Y. Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes. *J. Physiol.* 569, 59–74 (2005).

67. Suh, B.-C., Inoue, T., Meyer, T. & Hille, B. Rapid chemically induced changes of PI(4,5)P2 gate KCNQ ion channels. *Science* 314, 1454–1457 (2006).

68. Wu, D., Pan, H., Delaloye, K. & Cui, J. KCNQ1 remodels the voltage sensor of Kv7.1 to modulate channel function. *Biophys. J.* 99, 3599–3608 (2010).

69. Telezhkin, V., Reilly, J. M., Thomas, A. M., Tinker, A. & Brown, D. A. Structural requirements of membrane phospholipids for M-type potassium channel activation and binding. *J. Biol. Chem.* 287, 10001–10012 (2012).

70. Yan, C., Grinker, S. Z., Merideth, B. R., Ma, Z. & Zhou, X. Iterative knowledge-based scoring functions derived from rigid and flexible decoy structures: evaluation with the 2013 and 2014 CASAR Benchmarks. *J. Chem. Inf. Model.* 56, 1013–1021 (2016).

71. Xu, X., Ma, Z., Duan, R. & Zou, X. Predicting protein–ligand binding modes for CELPP and GC3: workflows and insight. *J. Comput. Aided Mol. Des.* 33, 367–374 (2019).

72. Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane–like environment. *Nature* 450, 376–382 (2007).

73. Webb, B. & Sali, A. *Current Protocols in Protein Science*. (John Wiley & Sons, Inc., 2016).

74. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. *J. Comput. Chem.* 25, 1605–1612 (2004).

75. Gao, J., Mathias, R. T., Cohen, I. S. & Baldo, G. J. Isoprenaline, Ca(2+) and the Na(+)-K+ pump in guinea-pig ventricular myocytes. *J. Physiol.* 449, 689–704 (1992).

Acknowledgements
This work was supported by R01 HL126774 to J.C., by R01 GM109980, and R35 GM136409 to X.Z., and by AHA 18POST34030203 to P.H.

Author contributions
J.C., X.Z., and I.C. conceived the study. X.X. and X.Z. performed the in silico screening and docking studies. Y.L., M.M.N., H.L., W.Z., and P.H. performed the voltage-clamp recording. Y.L. and N.D.Y. performed the VCF recording. H.L. and W.Z. performed the inside-out patch-clamp recording. J.G. and H.Z.W. performed the electrophysiology work with isolated guinea pig myocytes. J.S., K.M.W., Y.L., W.K., A.D., and A.C. performed the molecular biology. P.H. performed the kinetic modeling. All authors contributed to data analysis. Y.L., J.C., X.Z., I.C., X.X., and G.Z. wrote the paper with input from all authors.

Competing interests
J.S. and J.C. are cofounders of a startup company VivoCor LLC, which is targeting IKs for the treatment of cardiac arrhythmia. Other authors declare they have no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42003-020-1104-0.

Correspondence and requests for materials should be addressed to I.S.C., X.Z. or J.C.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020