The Seedcoat Color Genotype of ‘Prim’ and the Manteca and Coscorrón Market Classes of Common Bean

Mark J. Bassett
Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0690

Abstract. Anecdotal evidence exists for nonflatulence among Chilean Manteca and Coscorrón market classes of common bean (Phaseolus vulgaris L.), and there is an hypothesis that the seedcoat color may be associated with superior digestibility. The inheritance of seedcoat color in ‘Prim’, a Manteca market-class dry bean, was investigated using a protocol employing genetic interpretation of seedcoat colors in the F1 from testcrosses of ‘Prim’ with a series of tester stocks. Most of the genetic tester stocks were constructed previously by backcrossing selected recessive alleles for seedcoat color into a recurrent parent (5-593) with seedcoat color genotype $P_C D J G B V R k A s p$. The genetic tester stocks included two varieties, ‘Masterpiece’ and ‘V0687’, and testers constructed on the 5-593 background, viz., $j B C_2$, 5-593, $d j B C_2$, 5-593, $a s p B C_2$, 5-593, $b v B C_2$, 5-593, and $c v B C_2$, 5-593. The seedcoat color genotype of ‘Prim’ was found to be $P_C D j G b v^{\text{loc}}$. The implications of this genotype for pigment chemistry are discussed.

In Chile there are two market classes of common beans, Mantecas (pale lemon-yellow seedcoats) and Coscorróns (pale lemon-yellow/white mottled or striped seedcoats), which are considered “beans for the rich man’s table” because they are reportedly non-flatulent and more expensive to grow (Leakey, 1992). Leakey (1992) hypothesized that the genes controlling seedcoat color in Mantecas and Coscorróns may concomitantly control the reduction of flatulence, but testing the validity of his hypothesis is beyond the scope of this paper. Leakey (1992) proposed that the seedcoat color genotype of Mantecas is $P_C D j g b v$ and that Coscorróns have the same genotype except for an allele at C that controls pattern (mottled or striped).

Leakey (1992) has conducted a breeding program to produce new varieties with the Manteca seedcoat color, but with determinate habit and early flowering. One variety released from this program is ‘Prim’ (Leakey, personal communication). Beninger et al. (1998) studied the seedcoat pigment chemistry of ‘Prim’ and found two flavonoid glycosides: 1) kaempferol-3-O-β-D-glucoside and 2) kaempferol-3-O-β-D-glucopyranosyl(2→1)-O-β-D-xlylopyranoside. Feenstra (1960) found the same two compounds in seedcoats with genotype $P_C D j g b v^{\text{loc}}$.

The objectives of this work were to determine the seedcoat color genotype of ‘Prim’ and to relate the results to previous findings.

Materials and Methods

In 1985, a program was initiated to develop genetic tester stocks, each with one or more recessive marker genes for seedcoat color or pattern backcrossed into the recurrent parent, Florida dry bean breeding line 5-593. Details of the backcross procedure are described elsewhere (Bassett, 1994). Line 5-593 has a determinate habit, purple flowers, and shiny, black seedcoats. The seedcoat genotype of 5-593 is $S t T Z 2 B i p P_C D J G B V R k$, which includes genes for seedcoat pattern, partly colored patterns, and color (Bassett, 1998). Line 5-593 also carries the shiny seedcoat gene $A s p$ (Bassett, 1996a). Genetic stocks that were developed by backcrossing a marker gene to the 5-593 recurrent parent are designated: gene symbol BC, 5-593. For example, $v B C_2$, 5-593 indicates that the v allele is in backcross three to 5-593.

The genetic tester stocks and varieties with established seedcoat color genotypes that were used as testcross parents with ‘Prim’ are listed and described in Table 1. The testcross parents P_2 through P_9 were crossed with ‘Prim’ (P_1) in Fall 1992 in the greenhouse. The P_i progenies of the testcrosses were grown in the greenhouse in Winter 1993, and descriptive data were taken on flower color and the pattern and color of the seedcoats of the F_1 plants.

Results and Discussion

The phenotypes of the seedcoats of the testcross F_1 plants are described in Table 2. Using the phenotypes of F_1 progeny from testcrosses with special genetic test stocks was first proposed by Bassett (1992). The genetic stocks have only specified recessive alleles substituted into a genetic background having all dominant alleles at the other seedcoat color loci. The presence of the dominant alleles suppresses the complex interactions that unwanted recessive alleles would otherwise have on the expression of the selected recessive alleles for seedcoat color. In theory, the testcross should lead to only one of two results: 1) an allelic response where seed of the F_1 plants have the same phenotype as the genetic tester or 2) a nonallelic response.

The testcross of ‘Prim’ with P_2 gave an allelic response, except for the motting (Table 2). The result indicates that ‘Prim’ carries the ‘test allele’ j. However, the motting may be due to ‘Prim’ carrying an allele at C that has some of the attributes of the dominant unpatterned C allele and some attributes of the standard recessive allele c as described by Prakken (1970). The subtle motting is produced by the heterozygote $C c$, but the allele at C carried by ‘Prim’ does not have all the attributes of standard C. The contrary evidence

Table 1. The seedcoat phenotypes and genotypes of ‘Prim’ and the stocks used in testcrosses to determine the seedcoat genotype of ‘Prim’.

Parent no.	Stock name	Seedcoat color	Genotype	Reference
P_1	Prim	Yellowish white with pale purple corona	$P_C D j G b v^{\text{loc}} A s p$	Bassett, 1996a
P_2	$j B C_2$, 5-593	Dull dark purple with margo pattern	$P_C D j G B V A s p$	Bassett, 1996a
P_3	$d j B C_2$, 5-593	Dull dark purple with white hilum ring	$P_C D j G B V A s p$	Bassett, 1996a
P_4	$a s p B C_2$, 5-593	Dull black	$P_C D J G B V A s p$	Bassett, 1996a
P_5	$b v B C_2$, 5-593	Yellow brown	$P_C D J G b v A s p$	Bassett, 1995a
P_6	Masterpiece	Pale beige to greenshadow with yellow with purple corona	$P_C J G b v^{\text{loc}} A s p$	Nakayama, 1961
P_7	V0687	Light red kidney	$P_C J G b v^{\text{loc}} A s p$	Lamprecht, 1961b
P_8	$v B C_2$, 5-593	Mineral brown	$P_C D J G B v A s p$	Bassett, 1995b
P_9	$c v B C_2$, 5-593	Cartridge buff	$P_C D J G B V A s p$	Bassett, 1996a

aThe references cited for the supporting evidence for the seedcoat color genotype listed for each parental stock. "b The work of Lamprecht (1961) only gives c and v, but Bassett (unpublished data) has determined that V0687 carries c by means of an allelism test with P_1 and v by means of an allelism test with P_2.

HortSci, Vol. 34(2), Apr. 1999
is presented below from the results of other testcrosses. The testcross of 'Prim' with P_2 gave an allelic response with no complications (Table 2), and indicates that 'Prim' carries the genotype d_j.

The *asper* gene (*asp*) is the common and widely distributed gene for dull seedcoats and, unlike j, has no effect on seedcoat color. 'Prim' has a dull seedcoat due to j, and only a testcross with the *asp* tester can determine whether *asp* may be carried cryptically by 'Prim'. The testcross of 'Prim' with P_6 gave a nonallelic response (Table 2), which indicates that 'Prim' carries *Asp*.

The testcross of 'Prim' with P_9, the yellow-brown tester, gave an allelic response, except that the F_1 had purple corona due to genotype $v^{\mu v}/v$ (Table 2) (Bassett, 1995b). 'Prim' has the pink flower color and purple corona that are pleiotropic effects of the $v^{\mu v}$ allele at V (Bassett, 1995b). That result is interpreted to mean that 'Prim' carries $b^{\mu v}$. Also, the failure of the F_1 with P_9 to express either an unpatterned or mottled dominant red color indicates that 'Prim' must carry the r allele for dominant red color in the complex C locus.

The testcross of 'Prim' with P_6 (with $g b v^{\mu v}$) permits a test for the genotype of 'Prim' at G. The testcross result was yellow-brown with purple corona (Table 2), which is a nonallelic response at G. That result indicates that 'Prim' carries G. The testcross of 'Prim' with P_6 (with $g b v$) gave yellow-brown/cartridge buff marbling with a patterned purple corona (Table 2). The purple in the corona was also marbled with cartridge buff. The yellow-brown color is produced by allelism at b and $v^{\mu v}$ in 'Prim', but the marbling is an interaction of the c^+ allele with $v^{\mu v}$ at $V_6/687$ with the allele at C in 'Prim'. The latter interpretation was tested directly in the testcross with P_6, discussed below. The yellow-brown color also is a nonallelic interaction with the G in 'Prim'.

The above results are consistent with the hypothesis that 'Prim' has the genotype $G b v^{\mu v}$, and are not consistent with the hypothesis of Leakey (1992) that 'Prim' carries g.

The testcross of 'Prim' with P_4 gave F_1 plants having seedcoats with subtle mottling of mineral brown/pale brown (Table 2). The allelism at v already is established and needs no further comment, but the appearance of mottling is usually interpreted as an expression of the heterozygous genotype $C c$. (Prakken, 1970). Extensive observation of F_2 progeny from the testcross grown in the field and greenhouse failed to produce the expected true breeding $c c$ genotype with pale brown seedcoats (data not shown). In a previous paper, Bassett (1996b) described 'Prim' as carrying $[c r]$ to account for the apparent heterozygous $C c$ mottling described above, but, as will be shown below, the allele at the C locus in 'Prim' does not adequately meet other criteria for being defined as a recessive c.

The testcross of 'Prim' with P_2 gave a nonallelic response, viz., black/cartridge buff marbling (Table 2). In unpublished work by the author, the original source ("Wachs Digoin") of the standard recessive c allele (Prakken, 1970) was testcrossed with P_2 and the F_1 produced seed that were brown tinged with grayish-indigo. Thus, the allele at the C locus in 'Prim' cannot be the same allele as that in "Wachs Digoin", and neither is it the c^+ allele. 'Prim' must carry a dominant allele at C that is not the same as the dominant allele in 5-593. Therefore, the chromosome region of the C locus of 'Prim' must carry $[c r]$, where the brackets indicate the virtually unbreakable linkage between the C and R genes in what Prakken (1970) calls the "complex C locus."

Combining all the above testcross results, I conclude that the seedcoat color genotype of 'Prim' is $P[C r] d j G b v^{\mu v}$ with *Asp* carried cryptically, which Beningter et al. (1998) found to produce two flavonol glycosides: 1) kaempferol-3-0-β-D-glucoside and 2) kaempferol-3-0-β-D-glucopyranosyl(2--1)-O-β-D-xylpyranoside. Feenstra (1960) found the same two flavonol glycosides produced by the genotype $P C d j g b v^{\mu v}$, which differs from the genotype of 'Prim' only by the substitution of g for the G of 'Prim'. In the presence of j (and especially with $d j$) the yellow pigment produced by $G b v$ (or $g b v^{\mu v}$) is greatly reduced.

When the same laboratory procedures (as with 'Prim'; Beninger et al., 1998) were used to analyze flavonoid compounds in seedcoats of three genetic tester stocks—$P C J G b v\text{ BC}$, 5-593, $P C J G b v\text{ BC}$, 5-593, and $P C J G b v\text{ BC}$, 5-593—the only kaempferol compound detected in any appreciable quantity was kaempferol-3-O-β-D-glucoside (astragalin) (Beninger et al., unpublished data). Unexpectedly, the quantity of astragalin (a yellow pigment) was about twice as great in $P C J G b v\text{ BC}$, 5-593 as in $P C J G b v\text{ BC}$, 5-593, where the former genetic tester stock is a pale greenish-yellow and the latter stock a much stronger yellow-brown. The current hypothesis under investigation by Beninger et al. is that tannins may play a much more important role than flavonoids in producing the visible colors in genetic stocks with genotype $P C J G b v$ (includes all gene combinations at G and B).

Literature Cited

Bassett, M.J. 1992. Development of a protocol for determining the genotype of seedcoat color and pattern in common bean. Annu. Rpt. Bean Improv. Coop. 35:191–192.

Bassett, M.J. 1994. The *griseolus* (gray-white) seedcoat color is controlled by an allele (p^{gr}) at the P locus in common bean. HortScience 29:1178–1179.

Bassett, M.J. 1995a. A new recessive allele at the C locus for seedcoat color in common bean. J. Amer. Soc. Hort. Sci. 120:896–899.

Bassett, M.J. 1998b. The dark corona character in seedcoats of common bean cosegregates with the pink flower allele $v^{\mu v}$. J. Amer. Soc. Hort. Sci. 120:520–522.

Bassett, M.J. 1996a. The margo (mar) seedcoat color gene is a synonym for the Joker (j) locus in common bean. J. Amer. Soc. Hort. Sci. 121:1028–1031.

Bassett, M.J. 1996b. A complex C region genotype [7' R] that with $G B v^{\mu v}$ produces dark seal-brown seedcoat color in common bean. J. Amer. Soc. Hort. Sci. 121:594–598.

Bassett, M.J. 1998. The genotype for seedcoat color and pattern of breeding line 5-593, 1998. Annu. Rpt. Bean Improv. Coop. 35:191–192.

Beninger, C.W., G.L. Hosfield, and M.G. Nair. 1998. Flavonol glycosides from the seedcoat of a new Manteca-type dry bean (*Phaseolus vulgaris* L.). J. Agr. Food Chem. 46:2906–2910.

Feenstra, W.J. 1960. Biochemical aspects of seedcoat colour inheritance in *Phaseolus vulgaris* L. Meded. Landbouwhogeschool Wageningen 60:2:1–53.

Lamprecht, H. 1961. Die Vererbung der rezessiven roten Testabarbe von *Phaseolus*, sowie Bemerkungen zur Manifestation und Symbolik von Testarfarben. Agr. Hort. Genet. 19:344–359.

Leakey, C.L.A. 1992. Breeding on the *Phaseolus* vulgaris L. J. Hort. Sci. 29:1178–1179.

Nakayama, R. 1961. Genetical studies on kidney beans (*Phaseolus vulgaris* L.). VI. Genetical behavior of plant color, with special reference to seed-coat color in the hybrids between White Kidney and other varieties. Bul. Fac. Agr. Hiroshiki Univ. 7:37–65.

Prakken, R. 1970. Inheritance of colour in *Phaseolus vulgaris* L. II. Critical review. Meded. Landbouwhogeschool Wageningen 70:23:1–38.

Table 2. Results of testcrosses between 'Prim' and a series of genetic stocks and varieties with known seedcoat genotypes.

Testcross	Phenotype of seedcoats of seeds on F_1 plants from the testcross
$P_1 \times P_1$	Typical margo pattern produced by j, pale corona and black hilum ring, but mottling in dark greenish purple/gray buff.
$P_2 \times P_1$	Margo pattern with colorless hilum ring and corona; color highly variable from brown to purple
$P_3 \times P_4$	Shiny unpatterned black
$P_5 \times P_6$	Yellow-brown with purple corona
$P_7 \times P_6$	Yellow-brown with purple corona
$P_8 \times P_6$	Yellow-brown/cartridge buff marbling with patterned purple corona
$P_9 \times P_6$	Subtle mottling with mineral brown/pale brown; highly variable from seed to seed.
$P_1 \times P_6$	Black/cartridge buff marbling

HortScience, Vol. 34(2), April 1999