We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,400
Open access books available

132,000
International authors and editors

160M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the TOP 1% most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Air Pollution and Primordial Prevention of Chronic Non-Communicable Diseases

Parinaz Poursafa1 and Roya Kelishadi2

1Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
2Child Health Promotion Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

1. Introduction

Air pollution is a global health issue with serious public health implications particularly for children. Studying the effects of environmental factors on the early stages of atherosclerosis can serve for future studies and offer strategies for primary prevention of chronic disease. Usually respiratory effects of air pollutants are being considered, this chapter highlights the importance of non-respiratory health hazards from early life. In addition to short-term effects, exposure to criteria air pollutants from early life might be associated with low birth weight, increase in stress oxidative and endothelial dysfunction which in turn might have long-term effects on chronic non-communicable diseases.

The independent association of air pollutants with surrogate markers of endothelial dysfunction and a possible pro-coagulant state is underscored. Similar independent associations are documented for air pollutants and hematologic parameters as well as a possible pro-inflammatory state. The presence of these associations with PM10 (larger than PM2.5 usually considered as harmful) and in a moderate air quality (which is commonly considered with few or no health effect for the general population) highlights the need to re-examine environmental health policies and standards for the pediatric age group.

Atherosclerosis begins in early life, and the role of platelets is well-documented from its early stages. The concern of medical literature on atherosclerotic cardiovascular diseases is mostly about some specific inflammatory diseases, and the role of environmental factors, as air pollution is overlooked in many studies. Many studies have documented that disturbance of the inflammatory and the coagulation systems after exposure to air pollution might be a factor in endothelial dysfunction and the progression of cardiovascular diseases.

The increase in platelets number and aggregation may be a surrogate marker of early hematologic and hemostatic changes due to air pollutants. The systemic pro-inflammatory and pro-coagulant response to inhalation of fine and ultrafine particulate matters suggest a role for platelet activation in this process.

Facilities should be provided for families to become aware of the quality of the air year-round and to check daily air-quality levels and air-pollution forecasts by mass media, local weather reports and other available public information sources. This is especially important for smog levels during hot weather. Protective measures should be taken into account for children and pregnant women to reduce their exposure to air pollutants, e.g. children and pregnant women should avoid congested streets and rush hour traffic, moreover families...
should try to limit the amount of time their child spends outdoors in vigorous activity if the air quality is unhealthy.

In view of the emerging epidemic of chronic disease in low- and middle-income countries, the vicious cycle of rapid urbanization in such communities resulting in increasing levels of air pollution and its consequent effects on chronic diseases, as well as the limited financial resources of these countries for planning effective air pollution control programs, public health and regulatory policies for air quality protection should be integrated into the main priorities of primary health care system and into the educational curriculum of health professionals.

2. Health hazards of air pollution

Air pollutants have many adverse effects on various body organs with short- and long-term health consequences. A summary of the health hazards of air pollution is presented in Table 1.

3. Susceptibility of children health to air pollutants

Infants and children are among the most susceptible age groups for air pollutants, because they may have greater exposure than adults to air pollutants, this is especially important during summer time with highest smog levels; they have higher respiratory rates than adults, and consequently higher exposure to air pollutants. The mouth breathing of infants and children bypass the filtering effect of the nose, and they would inhale higher levels of pollutants than adults. Children generally spend significantly more time outdoors than adults, In addition, the children’s immune systems and developing organs are still immature (Kim, 2004).

4. Long-term effects of air pollutants on children’s health

Air pollutants have various adverse effects from early life, some of the most important harmful effects are perinatal disorders, infant mortality, respiratory disorders, allergy, malignancies, cardiovascular disorders, increase in stress oxidative, endothelial dysfunction, mental disorders and vitamin D deficiency. However, till now most focus has been on the short-term respiratory effects of air pollution on children’s health. In this chapter, we highlight the wide range of hazards of air pollution from early life, and their possible implication on chronic non-communicable diseases of adulthood.

The late-onset effects of air pollution in early life may be related to many chronic diseases later in life. Most chronic non-communicable diseases originate from early life, however studies about the relationship of environmental factors, notably air pollution, with risk factors of chronic diseases are scarce in children and adolescents.

5. Exposure to air pollutants in early life and chronic diseases in adulthood

Many studies have documented the effects of criteria air pollutants on low birth weight and or prematurity. There is a growing body of evidence about the association of intrauterine growth retardation and low birth weight with increased risk of chronic non-communicable diseases such as obesity, hypertension and cardiovascular disease later in life (Sinclair et al., 2007). Furthermore, prematurity can be associated with higher risk of chronic diseases (Evensen et al., 2008).
Reference	Location	Population studied	Aims	Findings
Mengersen et al. (2011)	Lao PDR (one of the least developed countries in Southeast Asia)	the first study that investigated indoor air quality and its impact within residential dwellings in Lao PDR	study on the association between measured air pollutants and the respiratory health of resident women and children	There was a strong and concern between NO(2) and CO for health outcomes for both women and children, with the odds of almost all health outcomes for both women and children associated with lower PEFR concentrations of NO(2) and CO were associated with lower FEFR.
Kaplan (2010)	Review	-	This review focuses on the contribution of solid fuels to indoor air pollution	The incomplete combustion byproducts with well-known adverse health outcomes for both women and children, conditions are acute respiratory disease, obstructive pulmonary disease, cancer, cataracts and blindness.
Dennekamp &Carey (2010)	USA	-	-	Health effects: lung (↓function of airways), Exacerbation of asthma, Exacerbation of cardiovascular disease.
Cao et al., (2010)	China	70,947 middle-aged men and women in the China National Hypertension Survey and its follow-up study. Baseline data were obtained in 1991 and follow-up evaluation was conducted in 1999 and 2000.	association of air pollution with mortality using proportional hazards regression model.	We found significant associations of air pollution with mortality from cardiopulmonary disease. Each 10μg/m(3) elevation in PM10 was associated with a 0.9% (95% CI: 2.3%, 4.0%), and 2.3% (95% CI: 2.3%, 2.3%) increase in cardiovascular mortality, respectively.
Nandi &Gorain (2010)	India	population of Durgapur town	detect the effect of pollution on human health. Two parameters, i.e., modes of transport and travelling time were chosen for this analysis.	There is pollution effect on human health. Two parameters, i.e., modes of transport and travelling time were chosen for this analysis.
Reference	Location	Population studied	Aims	Findings
-----------	----------	--------------------	------	----------
Nandasena et al., (2010)	Sri Lanka	PUBMED and Medline databases, local journals and conference.	PUBMED and Medline databases, local journals and conference proceedings were searched for epidemiologic studies pertaining to air pollution and health effects in Sri Lanka	Sixteen studies investigated exposure to ambient or indoor air pollution outcomes ranging from respiratory symptoms, weight and lung cancers. Observational study design. Half of the studies investigated only through questionnaire. Methodological limitations included poor quantification of risk exposure.
Yoshioka et al., (2010)		investigated cytokine production and nuclear factor-kappaB (NF-kappaB) activation after stimulation of macrophage cells by exposure of urban aerosols.		Urban aerosols induce respiratory inflammatory disease due to an adverse effect on the immune system.
Layshock et al., (2010)	China	this is the first report of dibenzopyrenes in the Beijing atmosphere and among the few studies that report these highly potent PAHs in ambient particulate matter.	Size fractionated particulate matter (PM) was collected in summer and winter from Beijing, China for the characterization of an expanded list of PAHs and evaluation of air pollution metrics.	Lifetime risk calculations in over 6 out of 10 Beijing residents is attributed to lung cancer due to PAH exposure. Lifetime risk was attributed to the sum of individual risks of lethal outcomes.
Longo et al., (2010)	on the island of Hawai’i	Kilauea Volcano population. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses.	assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community.	There were statistically significant increases in visits for high vog exposure for medically diagnosed cough, headache, and airway problems.
Reference	Location	Population studied	Aims	Findings
--------------------	----------	---	--	--
Adar et al., (2010)		participants (46 to 87 years of age) were without clinical cardiovascular disease at the baseline examination (2000-2002), Subcohort of MESA cohort study.	investigate cross-sectional associations between long- and short-term air pollution concentrations and microvascular characteristics using arteriolar vessel diameter as measured by retinal photography in MESA.	greater air pollution concentrations be associated with widened retinal vessel diameters. Among the 4,607 participants, those living in regions with increased long- and short-term air pollution were found to be narrower.
Balakrishnan et al., (2010)	Editorial, India		For Integrated Urban-Rural Frameworks for Air Pollution and Health-Related Research in India	In an effort to close existing gaps in our understanding of the health impacts of air pollution, the Indian Council of Medical Research (ICMR) has established the Advanced Research in Environmental Health (AREN) program. The program aims to examine the outcomes of air pollution on health outcomes in a rural-urban context. It also examines the role of gene-environment interactions in disease development. A modeling and selection center will engage in capacity building activities and develop training courses for different categories of professionals.
Siddique et al., (2010)	Delhi, India	cross-sectional study 969 school-going children (9-17 years) and 850 age- and sex-matched children from rural areas were assessed,	The prevalence of attention-deficit hyperactivity disorder (ADHD) was assessed in two childhood populations.	ADHD was found in 11.0% of the sample, in contrast to 2.7% of the control group (p<0.001). Male gender, lower 14 year age group, and PM10 levels were found to be significant risk factors. ADHD was more prevalent among children from rural areas. It was prevalent among boys in Delhi against 4.0% of the girls.
Reference	Location	Population studied	Aims	Findings
-----------------	----------------	---	---	---
Tung et al.	Taiwan	Total of 3741 children was enrolled in the Taiwan Children Health Study from 14 communities.	Investigate the associations of EPHX1 Tyr113His, His139Arg and GSTP1 Ile105Val polymorphisms with asthma and wheezing outcomes, and focused on the functional genetic change in different ambient NO(2) levels, GSTP1 and GSTM1 genotypes.	Children with high EPHX1 activity were associated with asthma and wheezing outcomes through airway oxidative stress.
Zhou et al.,	China	Meta-analysis method was used to polysynthetically analyze 16 quantitative studies about the associations between particulate air pollution and stroke daily attack or mortality.	Associations were observed between PM(10) and stroke daily attack or stroke mortality.	There are positive associations between PM(10) and stroke daily attack. A 1 μg/m³ increase in PM(10) was associated with a 0.70% increase in stroke daily attack and a 0.70% increase in stroke mortality.
Power et al.,	USA	In a Cohort of Older Men 680 older men (mean ± age 71±7 y) between 1996 and 2007.	To assess the association between black carbon, a marker of traffic-related air pollution, and cognition in older men.	The association between black carbon and stroke mortality was linear and black carbon exposure was associated with decreased cognition.
Novaes et al.,	São Paulo, Brazil	A panel study involving 55 volunteers was carried out in São Paulo, Brazil.	To explore the clinical relevance of chronic exposure to ambient levels of traffic-derived air pollution on the ocular surface.	Subjects exposed to higher pollution reported more ocular discomfort symptoms, which were greater in severity and used as convenient bioindicators of traffic-derived air pollution.
Reference	Location	Population studied	Aims	Findings
-----------------	------------	---	--	--
Phalen et al.,	USA	?	the doses delivered to subjects inhaling air-pollutant particles, the concept of a dose metric (also called an indicator) has emerged. An ideal dose metric has the following properties: it is measurable; it is expressible in physical and temporal scientific units; and it has a causal relationship to one or more biological responses	Recent advances include aerosol dosimetry of the inhalation dose, including various obstructive pulmonary disease and bronchitis, and the physiological characteristics of other alveolar disease. The doses delivered to subjects inhaling air-pollutant particles, the concept of a dose metric (also called an indicator) has emerged. An ideal dose metric has the following properties: it is measurable; it is expressible in physical and temporal scientific units; and it has a causal relationship to one or more biological responses.
Puett et al.,	Using two prospective cohorts, the Nurses' Health Study (NHS) and the Health Professionals Follow-Up Study (HPFS),	investigated the relationship of incident type 2 DM with PM2.5, PM10, and PM10-2.5 exposures in the prior 12 months and distance to roadways.	results did not provide strong evidence of an association between exposure to PM in the air and incident type 2 DM, however an association was found with distance to roadways.	results did not provide strong evidence of an association between exposure to PM in the air and incident type 2 DM, however an association was found with distance to roadways.
Zhuang et al.,	Beijing, China	The monitoring data of daily air pollution, along with the daily numbers of outpatients visits at the Allergy Department of Beijing Shijitan Hospital from April to September in 2004 were collected.	assess the effects of ambient air pollutants on hospital outpatient visits for allergic disease and pollinosis.	significant positive association between ambient air pollution and doctor visits, with a 2.44% (95% CI: 0.75% - 4.13%) increase in pollen, and a 3.82% (95% CI: 3.82% - 9.34%) increase in PM2.5 exposure, for every 10 mm increase in pollen, and significant positive association between ambient air pollution and doctor visits. Results suggest that level of airborne pollen and doctor visits is stronger effect than ambient air pollution and pollinosis.
Reference	Location	Population studied	Aims	Findings
--------------------	----------------	---	--	--
Dadvand et al., (2010)	northeast of England	used registry-based data on congenital heart disease for the population of the northeast of England in 1985-1996.	Investigate the association between maternal exposure to ambient air pollution and congenital heart disease	The authors found a weak association between exposure to black smoke and cardiac chambers and congenital heart disease as a continuous variable. When exposure was divided into quartiles, odds ratios did not show a significant trend for consecutive quartiles. Findings were not indicative of any association.
Poursafa, & Kelishadi, (2010)			The effect of air pollution on inflammatory and pro-thrombotic factors implicated in the progression of cardiovascular diseases.	The systemic pro-inflammatory effect of air pollution to the inhalation of fine and ultrafine particulates may have a clinical significance in cardiometabolic risk factors. Furthermore, an increased pro-thrombotic effect may have a clinical significance for anti-platelet treatment.
Szyszkowicz et al. (2010)	Canada	Emergency visit data were collected in a hospital in Vancouver, Canada	Therefore the effects of ambient air pollution on emergency department (ED) visits for suicide attempts were investigated.	The results indicate a potential association between air pollution and emergency department visits for suicide attempts. Suicide attempts and visits may be linked to other health conditions.
Brunekreef et al., (2009)	Netherlands	a randomly selected subcohort of 5000 older adults participating in the ongoing Netherlands Cohort Study (NLCS) on diet and cancer.	The effects of traffic-related air pollution by analyzing associations with cause-specific mortality, as well as lung cancer incidence and mortality.	The effects of traffic-related air pollution, such as fine and ultrafine particulate matter, may be linked to cardiopulmonary conditions.
Carmichael et al., (2009)	Asia	Asia calculated over a 4-year period	Aerosol distributions in Asia calculated over a 4-year period and constrained by satellite observations of aerosol optical depth (AOD) are presented.	Black carbon (BC) concentrations in Asia represent 5-10% of the total aerosol optical depth (AOD). However, black carbon is approximately 55% of the total BC.
Reference	Location	Population studied	Aims	Findings
-------------------	----------	--	---	--
Nurkiewicz et al., (2008)			closer examination by toxicologists of vascular responses following PM exposure to PM2.5	impairment of endothelium-dependent dilation and increased systemic inflammation and oxidative stress
Simpson R et al., (2005)	Austria	Brisbane, Melbourne, Perth and Sydney population	investigating the health effects of air pollution on daily mortality	strongest associations with NO2 and ozone. For example, a 1% increase in PM2.5 concentration was associated with a 8% increase in daily mortality and a 1% increase in lung cancer mortality.
Pope et al., (2002)	USA	approximately 300 000 adults linked with air pollution data for metropolitan areas	To assess the relationship between air pollution and all-cause, lung cancer, and cardiopulmonary mortality	each 10 mg/m³ elevation in PM2.5 concentration was associated with an approximately 1% increase in all-cause mortality and a 8% increase in lung cancer mortality.
Lewis PR et al., (1998)	La Trobe Valley	Respiratory morbidity with outdoor air pollution	increased respiratory morbidity with increased outdoor air pollution	increased respiratory morbidity with increased outdoor air pollution

Table 1. Summary of harmful health effects of air pollutants
The relationship of long-term traffic exposure (NO2 level by residence) and diabetes mellitus is documented (Brook et al., 2008). The first biological support for this finding comes from our study that demonstrated an independent association of exposure to air pollutants, notably PM$_{10}$, with markers of insulin resistance among children and adolescents (Kelishadi et al., 2009), as cited in the statement of the American Heart Association (Brook et al., 2010).

These findings suggest that the systemic responses to long-term exposure to air pollutants could potentially increase the risk for development of the metabolic syndrome, hypertension and diabetes mellitus.

Some study findings on the association of air pollution with surrogate markers of atherosclerotic cardiovascular diseases in children and adolescents is presented in Table 2.

Reference	Location	Population studied	Aims	Findings
Poursafa & Kelishadi	Review	Review on the effects of air pollution on platelets	The increase of platelet count and platelet hyper-reactivity towards agonists are emerging as markers of hematologic and hemostatic changes in response to the exposure to air pollutants. The systemic pro-inflammatory and pro-thrombotic response to the inhalation of fine and ultrafine particulate matters is seemingly associated with platelet activation.	It is of particular relevance to further study the significance of platelet activation and anti-platelet therapies in primordial/primary preventive measures in children and adolescents at risk of accelerated atherosclerosis.
Kelishadi et al. (2009)	Isfahan, Iran	A population-based sample of children aged 10-18 years (n=374)	To determine the association of air pollution as well as dietary and physical activity habits with markers of inflammation, oxidative stress and insulin resistance	The Pollutant Standard Index (PSI) and the level of fine particulate matter had significant independent association with all biomarkers studied.
Reference	Location	Population studied	Aims	Findings
----------------------	---------------	--	--	--
Yang et al., (2008)	Review	Review of studies on air pollution and chronic obstructive pulmonary diseases, cardiovascular diseases, asthma, and cancer	To provide some insight about the health problems associated with various air pollutants and their relationship in promoting chronic diseases through changes in oxidative stress and modulation of gene expression	Byproducts of oxidative stress found in air pollutants are common initiators or promoters of the damage produced in chronic diseases.
Chuang et al., (2007)	Taipei, Taiwan	Young healthy university students (n=76)	To investigate whether biological mechanisms linking air pollution to cardiovascular events occurred concurrently in human subjects exposed to urban air pollutants	Air pollution is associated with inflammation, oxidative stress and blood coagulation in healthy young humans.

Endothelial dysfunction

Reference	Location	Population studied	Aims	Findings
Poursafa et al., (2011)	Iran	Healthy children	To assess the relationship of air pollution and plasma surrogate markers of endothelial dysfunction in the pediatric age group	The independent relationship of air pollutants with endothelial dysfunction and a pro-coagulant state can be an important factor in atherosclerosis development from early life.
Reference	Location	Population studied	Aims	Findings
----------------------------	----------	--------------------	--	---
Brook (2008)	Review	Review of studies on air pollution and cardiovascular diseases	To address the cardiovascular effects of air pollution and related mechanisms	Air particle exposure may both trigger acute events as well as prompt the chronic development of cardiovascular diseases, one of the mechanisms is by triggering acute endothelial dysfunction.
Nadadur et al., (2007)	USA	Differential gene expression and transcription factor activation profiles in human vascular endothelial cells exposed to a non-cytotoxic dose of fly ash or V following semi-global gene expression profiling of approximately 8000 genes.	To explore potential biomarkers for PM-induced endothelial dysfunction	Cardiovascular effects associated with exposure to PM may be mediated by perturbations in endothelial cell permeability, Membrane integrity; and ultimately endothelial dysfunction.

Table 2. Summary of studies assessing the effects of criteria air pollutants on inflammation, coagulation, oxidative stress and endothelial dysfunction among children and young adults

6. Environmental factors, lifestyle behaviors and chronic diseases

Usually improper lifestyle habits and low educational levels have been considered as the underlying process of the role of low socio-economic position in early life as a predisposing factor for future chronic diseases (Power, et al., 2007) and mortality (Strand & Kunst, 2007), the exposure to air pollutants and its effects on low birth weight and premature birth might have an additional role in this regard. Lifestyle modifications and strengthening primary care in health system are suggested as the main strategies to prevent and control chronic diseases in low- and middle-income countries (Miranda et al., 2008).

The association between air pollution and chronic diseases may be mediated through systemic inflammatory responses (Brook et al., 2004; Holgate et al. 2003). Generating
reactive oxygen species is considered to be linked to a variety of environmental factors. The association of air pollution and inflammation/oxidative stress has been demonstrated (Huang et al., 2003; Ruckerl et al. 2006; Chuang et al., 2007), even among healthy children (Kelishadi et al., 2009) who might have the early stages of atherosclerosis. Such association is also confirmed for air pollutants, notably particulate matters and surrogate markers of endothelial dysfunction and markers of vascular injury (Poursafa et al., 2011). The effects of air pollution on inflammation, coagulation, oxidative stress and endothelial dysfunction from early life confirm the necessity of implications of these findings in relation to public health and regulatory policies for primordial/primary prevention and control of adult chronic diseases from childhood.

The prevalence of malignancies are rapidly accelerating worldwide. Although lifestyle behaviors as smoking (Dominguez et al., 2006), as well as unhealthy dietary and physical activity habits leading to obesity and diabetes are known as a major contributing factor in this regard (Hjartåker et al.,2008), air pollution should be considered as another potential risk factor for developing countries (Nejjadi et al.,2003) especially Asian countries, where cancer has become an emerging health threat (Park et al.,2008). This issue is particularly important for children who are susceptible to short-term and long-term effects of air pollutants.

7. Conclusion

Air pollution is a global health issue with serious public health implications particularly for children. Usually respiratory effects of air pollutants are being considered, the importance of other health hazards should be highlighted. In addition to short-term effects, exposure to criteria air pollutants from early life might have long-term hazards principally on chronic non-communicable diseases as cardiovascular diseases and cancers. In view of the emerging epidemic of chronic disease in low- and middle-income countries, the vicious cycle of rapid urbanization in such communities resulting in increasing levels of air pollution and its consequent effects on chronic diseases, as well as the limited financial resources of these countries for planning effective air pollution control programs, public health and regulatory policies for air quality protection should be integrated into the main priorities of primary health care system and into the educational curriculum of health professionals.

We suggest that environmental protection activities, particularly for reducing the emission of criteria air pollutants, should be considered for public health measures taken into account for primordial/primary prevention of chronic diseases especially in developing countries.

8. References

Adar SD, Klein R, Klein BE, Szpiro AA, Cotch MF, Wong TY, O'Neill MS, Shrager S, Barr RG, Siscovick DS, Davilgus ML, Sampson PD, Kaufman JD. (2010). Air Pollution and the microvasculature: a cross-sectional assessment of in vivo retinal images in the population-based multi-ethnic study of atherosclerosis (MESA). PLoS Med. 7(11):e1000372.

Balakrishnan K, Dhaliwal BS, Shah B. (2010). Integrated urban-rural frameworks for air pollution and health-related research in India: the way forward. Environ Health Perspect, 119(1), a12-14
The relationship between diabetes mellitus and traffic-related air pollution. *J Occup Environ Med.* 50:32-38.

Brook RD, Franklin B, Cascio W. (2004). Expert Panel on Population and Prevention Science of the American Heart Association. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. *Circulation.* 109:2655-2671.

Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsett L, Kaufman JD; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. *Circulation.* 121(21):2331-2378.

Brunekreef B, Beelen R, Hoek G, Schouten L, Bausch-Goldbohm S, Fischer P. (2009). Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. *Res Rep Health Eff Inst.* (139):5-71.

Cao J, Yang C, Li J, Chen R, Chen B, Gu D, Kan H. (2010). Association between long-term exposure to outdoor air pollution and mortality in China: A cohort study. *J Hazard Mater.* [Epub, ahead of print]

Carmichael GR, Adhikary B, Kulka R, D’Allura A, Tang Y, Streets D, Zhang Q, Bond TC, Ramanathan V, Jamroensan A, Marrapu P. (2009). Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change. *Environ Sci Technol.* 43(15):5811-5817.

Chuang KJ, Chan CC, Su TC. (2007). The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. *Am J Respir Crit Care Med.* 176, 370-376.

Dennekamp M, Carey M. (2010). Air quality and chronic disease: why action on climate change is also good for health. *N S W Public Health Bull.* 21(5-6):115-121.

Dominguez LJ, Galioto A, Ferlisi A, Pineo A, Putignano E, Belvedere M, Costanza G, Barbagallo M. (2006). Ageing, lifestyle modifications, and cardiovascular disease in developing countries. *J Nutr Health Aging.* 10, 143-149.

Evensen KA, Steinshamn S, Tjønna AE, Stelen T, Høydal MA, Wisloff U, Brubakk AM, Vik T. (2008). Effects of preterm birth and fetal growth retardation on cardiovascular risk factors in young adulthood. *Early Hum Dev.* 85, 239-245.

Hjartåker A, Langseth H, Weiderpass E. (2008). Obesity and diabetes epidemics: cancer repercussions. *Adv Exp Med Biol.* 630, 72-93.

Holgate ST, Devlin RB, Wilson SJ, Frew A J. (2003). Health effects of acute exposure to air pollution. Part II: Healthy subjects exposed to concentrated ambient particles. *Res Rep Health Eff Inst.* 112:31-50.

Huang SL, Hsu MK, Chan CC. (2003). Effects of submicrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells. *Environ Health Perspect.* 111:478-482.

Kaplan C. (2010). Indoor air pollution from unprocessed solid fuels in developing countries. *Rev Environ Health.* 25(3), 221-242.
Kelishadi R, Mirghaffari N, Poursafa P, Gidding SS. (2009). Lifestyle and environmental factors associated with inflammation, oxidative stress and insulin resistance in children. *Atherosclerosis*. 203:311-319.

Kim JJ; American Academy of Pediatrics Committee on Environmental Health. Ambient air pollution: health hazards to children. (2004). *Pediatrics*. 114:1699-1704.

Layshock J, Simonich SM, Anderson KA. (2010). Effect of dibenzopyrene measurement on assessing air quality in Beijing air and possible implications for human health. *J Environ Monit*. 12(12):2290-2298.

Lewis PR, Hensley MJ, Wlodarczyk J, Toneguzzi RC, Westley-Wise VJ, Dunn T. (1998). Outdoor air pollution and children’s respiratory symptoms in the steel cities of New South Wales. *Med J Aust.* 169:459-463.

Mendez LB, Oldham MJ. (2010). New developments in aerosol dosimetry. *Inhal Toxicol.* 22 Suppl 2:6-14.

Miranda JJ, Kinra S, Casas JP, Davey Smith G, Ebrahim S. (2008). Non-communicable diseases in low- and middle-income countries: context, determinants and health policy. *Trop Med Int Health*. 13,1225-1234.

Nandasena YL, Wickremasinghe AR, Sathiakumar N. (2010). Air pollution and health in Sri Lanka: a review of epidemiologic studies. *BMC Public Health.* 33,780-783.

Nandi PK, Gorain GC. (2010). Effect of traffic pollution on health of the people at Durgapur (India). *J Environ Sci Eng.* 52,167-172.

Nejjari C, Filleul L, Zidouni N, Laid Y, Atek M, El Meziane A, Tessier JF. (2003). Air pollution: a new respiratory risk for cities in low-income countries. *Int J Tuberc Lung Dis.* 7,223-231.

Novaes P, Saldiva PH, Matsuda M, Macchione M, Rangel MP, Kara-José N, Berra A. (2010). The effects of chronic exposure to traffic derived air pollution on the ocular surface. *Environ Res.* 110:372-374.

Nurkiewicz T, PorterD, Hubbs A, Cumpston J, Chen B, Frazer D, Castranova A. (2008). Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. *Part Fibre Toxicol.* 9,1

Park S, Bae J, Nam BH, Yoo KY. (2008). Aetiology of cancer in Asia. *Asian Pac J Cancer Prev.* 9,371-380.

Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. *JAMA.* 287,1132-1141.

Poursafa P, Kelishadi R. (2010). Air pollution, platelet activation and atherosclerosis. *Inflamm Allergy Drug Targets.* 9,387-92.

Poursafa P, Kelishadi R, Lahijanzadeh A, Modaresi M, Javanmard SH, Assari R, Amin MM, Moattar F, Amini A, Sadeghian B. (2011). The relationship of air pollution and surrogate markers of endothelial dysfunction in a population-based sample of children. *BMC Public Health.* 11(1):115. [Epub ahead of print]

Power C, Atherton K, Strachan DP, Shepherd P, Fuller E, Davis A, Gibb I, Kumari M, Lowe G, Macfarlane GJ, Rahi J, Rodgers B, Stansfeld S. (2007). Life-course influences on health in British adults: effects of socio-economic position in childhood and adulthood. *Int J Epidemiol.*, 36,532-9.
Power MC, Weisskopf MG, Alexeeff SE, Coull BA, Spiro Iii A, Schwartz J. (2010). Traffic-related air pollution and cognitive function in a cohort of older men. Environ Health Perspect. [Epub ahead of print]

Puett RC, Hart JE, Schwartz J, Hu FB, Liese AD, Laden F. (2010). Are Particulate Matter Exposures Associated with Risk of Type 2 Diabetes? Environ Health Perspect. [Epub ahead of print]

Rankin J, Rushton S, Pless-Mulloli T, Dadvand P. (2011). Association between maternal exposure to ambient air pollution and congenital heart disease: A register-based spatiotemporal analysis. Am J Epidemiol. 173,171-182.

Ruckerl R, Ibald-Mulli A, Koenig W. (2006). Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med. 173,432-441.

Siddique S, Banerjee M, Ray MR, Lahiri T. (2010). Attention-deficit hyperactivity disorder in children chronically exposed to high level of vehicular pollution. Eur J Pediatr. [Epub ahead of print]

Simpson R, Williams G, Petroeschovsky A, Best T, Morgan G, Denison L. (2005). The short-term effects of air pollution on daily mortality in four Australian cities. Aust N Z J Public Health. 29,205-212.

Sinclair KD, Lea RG, Rees WD, Young LE. (2007). The developmental origins of health and disease: current theories and epigenetic mechanisms. Soc Reprod Fertil Suppl. 64,425-443.

Strand BH, Kunst A. (2007). Childhood socioeconomic position and cause-specific mortality in early adulthood. Am J Epidemiol. 165,85-93.

Szyszkowicz M, Willey JB, Grafstein E, Rowe BH, Colman I. (2010). Air pollution and emergency department visits for suicide attempts in Vancouver, Canada. Environ Health Insights. 4,79-86.

Tung KY, Tsai CH, Lee YL. (2010). Microsomal Epoxide Hydroxylase Genotypes/Diplotypes, Traffic Air Pollution and Childhood Asthma. Chest. [Epub ahead of print]

Yoshida T, Yoshioka Y, Fujimura M, Kayamuro H, Yamashita K, Higashisaka K. (2010). Urban aerosols induce pro-inflammatory cytokine production in macrophages and cause airway inflammation in vivo. Biol Pharm Bull. 33, 780-783.

Zhou Y, Li XY, Chen K, Ye XJ, Shen Y. (2010). Association between air particulate matter and stroke attack or mortality: a Meta-analysis. Zhonghua Liu Xing Bing Xue Za Zhi. 31,1300-1305.

Zhuang Y, Sun XM, Wang XY, Shi HY, Zhang ZG, Wang Q. (2010). [The influence of ambient air pollutants on outpatient visits for allergic disease and pollinosis.]. Zhonghua Yu Fang Yi Xue Za Zhi. 44,1121-1127.
Today, an important issue is environmental pollution, especially air pollution. Due to pollutants present in air, human health as well as animal health and vegetation may suffer. The book can be divided in two parts. The first half presents how the environmental modifications induced by air pollution can have an impact on human health by inducing modifications in different organs and systems and leading to human pathology. This part also presents how environmental modifications induced by air pollution can influence human health during pregnancy. The second half of the book presents the influence of environmental pollution on animal health and vegetation and how this impact can be assessed (the use of the micronucleus tests on TRADESCANTIA to evaluate the genotoxic effects of air pollution, the use of transplanted lichen PSEUDEVERNIA FURFURACEA for biomonitoring the presence of heavy metals, the monitoring of epiphytic lichen biodiversity to detect environmental quality and air pollution, etc). The book is recommended to professionals interested in health and environmental issues.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Parinaz Poursafa and Roya Kelishadi (2011). Air Pollution and Primordial Prevention of Chronic Non-Communicable Diseases, Air Pollution - New Developments, Prof. Anca Moldoveanu (Ed.), ISBN: 978-953-307-527-3, InTech, Available from: http://www.intechopen.com/books/air-pollution-new-developments/air-pollution-and-primordial-prevention-of-chronic-non-communicable-diseases
