Classical and new log log-theorems

Alexander Rashkovskii

Abstract

We present a unified approach to celebrated log log-theorems of Carleman, Wolf, Levinson, Sjöberg, Matsaev on majorants of analytic functions. Moreover, we obtain stronger results by replacing original pointwise bounds with integral ones. The main ingredient is a complete description for radial projections of harmonic measures of strictly star-shaped domains in the plane, which, in particular, explains where the log log-conditions come from.

1 Introduction. Statement of results

Our starting point is classical theorems due to Carleman, Wolf, Levinson, and Sjöberg, on majorants of analytic functions.

Definition 1 A nonnegative measurable function M on a segment $[a, b] \subset \mathbb{R}$ belongs to the class $L^{++}[a, b]$ if

$$\int_a^b \log^+ \log^+ M(t) \, dt < \infty.$$

(For any real-valued function h, we write $h^+ = \max\{h, 0\}$, $h^- = h^+ - h$.)

Carleman was the first who remarked a special role of functions of the class L^{++} in complex analysis, by proving the following variant of the Liouville theorem.

Theorem A (T. Carleman [3]) If an entire function f in the complex plane \mathbb{C} has the bound

$$|f(r e^{i\theta})| \leq M(\theta) \quad \forall \theta \in [0, 2\pi], \forall r \geq r_0,$$

with $M \in L^{++}[0, 2\pi]$, then $f \equiv \text{const}$.

This phenomenon appears also in the Phragmén–Lindelöf setting.

Theorem B (F. Wolf [22]) If a holomorphic function f in the upper half-plane $\mathbb{C}_+ = \{z \in \mathbb{C} : \text{Im} z > 0\}$ satisfies the condition

$$\limsup_{z \to x_0} |f(z)| \leq 1 \quad \forall x_0 \in \mathbb{R}$$
and for any $\epsilon > 0$ and all $r > R(\epsilon)$, $\theta \in (0, \pi)$, one has

$$|f(re^{i\theta})| \leq [M(\theta)]^r$$

with $M \in \mathcal{L}^+[0, \pi]$, then $|f(z)| \leq 1$ on \mathbb{C}_+.

The most famous statement of this type is the following local result known as the Levinson–Sjöberg theorem.

Theorem C (N. Levinson [13], N. Sjöberg [21], F. Wolf [23]) *If a holomorphic function f in the domain $Q = \{x + iy : |x| < 1, |y| < 1\}$ has the bound

$$|f(x + iy)| \leq M(y) \quad \forall x + iy \in Q,$$

with $M \in \mathcal{L}^+[-1, 1]$, then for any compact subset K of Q there is a constant C_K, independent of the function f, such that $|f(z)| \leq C_K$ in K.*

For further developments of Theorem C, including higher dimensional variants, see [4], [5], [7], [8], [9]. Theorems A and B were extended to subharmonic functions in higher dimensions in [23].

A similar feature of majorants from the class \mathcal{L}^+ was discovered by Beurling in a problem of extension of analytic functions [2]. It also appears in relation to holomorphic functions from the MacLane class in the unit disk [10], [14], and in a description of non-quasi-analytic Carleman classes [6].

The next result, due to Matsaev, does not look like a log log-theorem, however (as will be seen from our considerations) it is also about the class \mathcal{L}^+; further results in this direction can be found in [16].

Theorem D (V.I. Matsaev [15]) *If an entire function f satisfies the relation

$$\log |f(re^{i\theta})| \geq -Cr^\alpha|\sin \theta|^{-k} \quad \forall \theta \in (0, \pi), \forall r > 0,$$

with some $C > 0$, $\alpha > 1$, and $k \geq 0$, then it has at most normal type with respect to the order α, that is, $\log |f(re^{i\theta})| \leq Ar^\alpha + B$.*

All these theorems can be formulated in terms of subharmonic functions (by taking $u(z) = \log |f(z)|$ as a pattern), however our main goal is to replace the pointwise bounds like (1) with some integral conditions. A model situation is the following form of the Phragmén–Lindelöf theorem.

Theorem E (Ahlfors [1]) *If a subharmonic function u in \mathbb{C}_+ with nonpositive boundary values on \mathbb{R} satisfies

$$\lim_{r \to \infty} r^{-1} \int_0^\pi u^+(r e^{i\theta}) \sin \theta \, d\theta = 0,$$

then $u \leq 0$ in \mathbb{C}_+.*

We will show that all the above theorems are particular cases of results on the class \mathcal{A} defined below and that the log log-conditions appear as conditions for continuity of certain logarithmic potentials.
Definition 2 Let ν be a probability measure on a segment $[a, b]$; we will identify it occasionally with its distribution function $\nu(t) = \nu([a, t])$. Suppose $\nu(t)$ is strictly increasing and continuous on $[a, b]$, and denote by μ its inverse function extended to the whole real axis as $\mu(t) = a$ for $t < 0$ and $\mu(t) = b$ for $t > 1$. We will say that such a measure ν belongs to the class A \([a, b]\) if
\[
\lim_{\delta \to 0} \sup_x \int_0^\delta \frac{\mu(x + t) - \mu(x - t)}{t} dt = 0. \tag{2}
\]

Note that this class is completely different from MacLane’s class A [14] that consists of holomorphic functions in the unit disk with asymptotic values at a dense subset of the circle. MacLane’s class is however described by the condition $|f(re^{i\theta})| \leq M(r), M \in \mathcal{L}^{++}[0, 1]$.

Our results extending Theorems A–C and E are as follows.

Theorem 1 Let a subharmonic function u in the complex plane satisfy
\[
\int_0^{2\pi} u^+(te^{i\theta}) \, d\nu(\theta) \leq V(t) \quad \forall t \geq t_0, \tag{3}
\]
with $\nu \in A[0, 2\pi]$ and a nondecreasing function V on \mathbb{R}_+. Then there exist constants $c > 0$ and $A \geq 1$, independent of u, such that
\[
u(te^{i\theta}) \leq cV(At) \quad \forall t \geq t_0. \tag{4}
\]

Theorem 2 If a subharmonic function u in the upper half-plane \mathbb{C}_+ satisfies the conditions
\[
\limsup_{z \to x_0} u(z) \leq 0 \quad \forall x_0 \in \mathbb{R}
\]
and
\[
\lim_{t \to \infty} t^{-1} \int_0^{\pi} u^+(te^{i\theta}) \, d\nu(\theta) = 0
\]
with $\nu \in A[0, \pi]$, then $u(z) \leq 0 \ \forall z \in \mathbb{C}_+$.

Theorem 3 Let a subharmonic function u in $Q = \{x + iy : |x| < 1, |y| < 1\}$ satisfy
\[
\int_{-1}^1 u^+(x + iy) \, d\nu(y) \leq 1 \quad \forall x \in (-1, 1) \tag{5}
\]
with $\nu \in A[-1, 1]$. Then for each compact set $K \subset Q$ there is a constant C_K, independent of the function u, such that $u(z) \leq C_K$ on K.

Relation of these results to the log log-theorems becomes clear by means of the following statement.
Definition 3 Denote by \(L^{-}[a,b] \) the class of all nonnegative integrable functions \(g \) on the segment \([a,b]\), such that
\[
\int_a^b \log^{-} g(s) \, ds < \infty.
\] (6)

Proposition 1 If the density \(\nu' \) of an absolutely continuous increasing function \(\nu \) belongs to the class \(L^{-}[a,b] \), then \(\nu \in \mathcal{A}[a,b] \). Consequently, if a holomorphic function \(f \) has a majorant \(M \in L^{++} \), then \(\log |f| \) has the corresponding integral bound with the weight \(\nu \in \mathcal{A} \) with the density \(\nu'(t) = \min\{1, 1/M(t)\} \).

We recall that positive measures \(\nu \) on the unit circle with \(\nu' \in L^{-}[0,2\pi] \) are called Szegő measures. Proposition 1 states, in particular, that absolutely continuous Szegő measures belong to the class \(\mathcal{A}[0,2\pi] \).

An integral version of Theorem D has the following form.

Theorem 4 Let a function \(u \), subharmonic in \(\mathbb{C} \) and harmonic in \(\mathbb{C} \setminus \mathbb{R} \), satisfy the inequality
\[
\int_{-\pi}^{\pi} u^{-1}(re^{i\theta})\Phi(|\sin \theta|) \, d\theta \leq V(r) \quad \forall r \geq r_0,
\] (7)
where \(\Phi \in L_{-}[0,1] \) is nondecreasing and the function \(V \) is such that \(r^{-1-\delta}V(r) \) is increasing in \(r \) for some \(\delta > 0 \). Then there are constants \(c > 0 \) and \(A \geq 1 \), independent of \(u \), such that
\[
u(\{z \in \mathbb{C} : |z| = r\}) \leq cV(Ar) \quad \forall r \geq r_1 = r_1(u).
\]

Our proofs of Theorems 1-4 rest on a presentation of measures of the class \(\mathcal{A}[0,2\pi] \) as radial projections of harmonic measures of star-shaped domains. Let \(\Omega \) be a bounded Jordan domain containing the origin. Given a set \(E \subset \partial \Omega \), \(\omega(z, E, \Omega) \) will denote the harmonic measure of \(E \) at \(z \in \Omega \), i.e., the solution of the Dirichlet problem in \(\Omega \) with the boundary data 1 on \(E \) and 0 on \(\partial \Omega \setminus E \). The measure \(\omega(0, E, \Omega) \) generates a measure on the unit circle \(T \) by means of the radial projection \(\zeta \mapsto \zeta/|\zeta| \). It is convenient for us to consider it as a measure on the segment \([0, 2\pi]\), so we put
\[
\hat{\omega}_\Omega(F) = \omega(0, \{\zeta \in \partial \Omega : \arg \zeta \in F\}, \Omega)
\] (8)
for each Borel set \(F \subset [0, 2\pi] \).

The inverse problem is as follows. Given a probability measure on the unit circle \(T \), is it the radial projection of the harmonic measure of any domain \(\Omega \)?

For our purposes we specify \(\Omega \) to be strictly star-shaped, i.e., of the form
\[
\Omega = \{re^{i\theta} : r < r_\Omega(\theta), \ 0 \leq \theta \leq 2\pi\}
\] (9)
with \(r_\Omega \) a positive continuous function on \([0, 2\pi]\), \(r_\Omega(0) = r_\Omega(2\pi) \).
Theorem 5 A continuous probability measure ν on $[0, 2\pi]$ is the radial projection of the harmonic measure of a strictly star-shaped domain if and only if $\nu \in A[0, 2\pi]$.

Corollary 4 Every absolutely continuous measure from the Szegő class on the unit circle is the radial projection of the harmonic measure of some strictly star-shaped domain.

Theorem 5 is proved by a method originated by B.Ya. Levin in theory of majorants in classes of subharmonic functions [11].

Theorems 1–3 and 5 (some of them in a slightly weaker form) were announced in [18] and proved in [19] and [20]. The main objective of the present paper, Theorem 4, is new. Since its proof rests heavily on Theorem 5, we present a proof of the latter as well, having in mind that the papers [19] and [20] are not easily accessible. Moreover, we include the proofs of Theorems 1–3, too, motivated by the same accessibility reason as well as by the idea of showing the whole picture.

2 Radial projections of harmonic measures (Proofs of Theorem 5 and Proposition 1)

Measures from the class A have a simple characterization as follows.

Proposition 2 Let μ and ν be as in Definition 2. Then the function

$$N(x) = \int_0^1 \log |x - t| \, d\mu(t)$$

is continuous on $[0, 1]$ if and only if $\nu \in A[a, b]$.

Proof. The function $N(x)$ is continuous on $[0, 1]$ if and only if for any $\epsilon > 0$ one can choose $\delta \in (0, 1)$ such that

$$I_x(\delta) = \int_{|t - x| < \delta} \log |x - t| \, d\mu(t) > -\epsilon$$

for all $x \in [0, 1]$. Integrating I_x by parts, we get

$$|I_x(\delta)| = \int_0^\delta r_x(t) \frac{dt}{t} + r_x(\delta)|\log \delta|,$$

where $r_x(t) = \mu(x + t) - \mu(x - t)$. Therefore, continuity of $N(x)$ implies (2). On the other hand, since $r_x(t)$ increases in t, we have

$$r_x(\delta)|\log \delta| = 2r_x(\delta) \int_0^\delta \frac{dt}{t} \leq 2 \int_0^\delta \frac{\sqrt{\delta}}{t} \frac{r_x(t)}{t} \, dt,$$

which gives the reverse implication. □

In the proof of Theorem 5 we will use this property in the following form.
Proposition 3 Let μ and ν be as in Definition 2 for the class $A[0, 2\pi]$. Then the function
\[h(z) = \int_0^{2\pi} \log |e^{i\theta} - z| \, d\mu(\theta/2\pi) \]
is continuous on \mathbb{T} if and only if $\nu \in A[0, 2\pi]$.

Proof of Theorem 5 1) First we prove the sufficiency: every $\nu \in A[0, 2\pi]$ has the form $\nu = \hat{\omega}_\Omega$ for some strictly star-shaped domain Ω. In particular, for any compact set $K \subset \Omega$ there is a constant $C(K)$ such that
\[\omega(z, E, \Omega) \leq C(K) \nu(\arg E) \quad \forall z \in E \quad (10) \]
for every Borel set $E \subset \partial \Omega$, where $\arg E = \{ \arg \zeta : \zeta \in E \}$.

Let $u(z) = \frac{1}{\pi} \int_0^{2\pi} \log |e^{i\theta} - z| \, d\mu(\theta/2\pi)$ with μ the inverse function to $\nu \in A[0, 2\pi]$. The function u is subharmonic in \mathbb{C} and harmonic outside the unit circle \mathbb{T}. By Proposition 3 it is continuous on \mathbb{T} and thus, by Evans’ theorem, in the whole plane. Let v be a harmonic conjugate to u in the unit disk \mathbb{D}, which is determined uniquely up to a constant. Since $u \in C(\overline{\mathbb{D}})$, radial limits $v^*(e^{i\psi})$ of v exist a.e. on \mathbb{T}. Let us fix such a point $e^{i\psi_0}$ and choose the constant in the definition of v in such a way that $v^*(e^{i\psi_0}) = \psi_0$.

Consider then the function $w(z) = z \exp\{-u(z) - iv(z)\}$, $z \in \mathbb{D}$. By the Cauchy-Riemann condition, $\partial v/\partial \phi = r \partial u/\partial r$, which implies
\[
\text{arg } w(re^{i\psi}) = \psi - v(re^{i\psi_0}) - \int_{\psi_0}^{\psi} \frac{\partial v(re^{i\phi})}{\partial \phi} \, d\phi = \psi_0 - v(re^{i\psi_0})
\]
\[+ \frac{1}{2\pi} \int_{\psi_0}^{\psi} \int_0^{2\pi} \left[1 - \frac{2r^2 - 2r \cos(\theta - \phi)}{|r - e^{i(\theta - \phi)}|^2} \right] \, d\mu(\theta/2\pi) \, d\phi \]
\[= \psi_0 - v(re^{i\psi_0}) + \frac{1}{2\pi} \int_{\psi_0}^{\psi} \int_0^{2\pi} \frac{1 - r^2}{|r - e^{i(\theta - \phi)}|^2} \, d\mu(\theta/2\pi) \, d\phi. \]

By changing the integration order and passing to the limit as $r \to 1$, we derive that for each $\psi \in [0, 2\pi]$ there exists the limit
\[\lim_{r \to 1} \text{arg } w(re^{i\psi}) = \mu(\psi/2\pi) - \mu(\psi_0/2\pi). \]

Therefore the function $\text{arg } w$ is continuous up to the boundary of the disk; in particular, we can take $\psi_0 = 0$. Since $|w|$ is continuous in $\overline{\mathbb{D}}$ as well, so is w.

By the boundary correspondence principle, w gives a conformal map of \mathbb{D} onto the domain
\[\Omega = \{ re^{i\theta} : r < \exp\{-u(\exp\{2\pi i\nu(\theta)\})\}, \quad 0 \leq \theta \leq 2\pi \}. \quad (11) \]
It is easy to see that the domain Ω is what we sought. Let f be the conformal map of Ω to \mathbb{D}, inverse to w. For $z \in \Omega$ and $E \subset \partial \Omega$, we have

$$\omega(z, E, \Omega) = \omega(f(z), f(E), U) = \frac{1}{2\pi} \int_{\Gamma} \frac{1 - |f(z)|^2}{|f(z) - e^{it}|^2} dt$$

$$= (1 - |f(z)|^2) \int_{\partial E} \frac{d\nu(s)}{|f(z) - e^{2\pi i \nu(s)}|^2},$$

which proves the claim.

2) Now we prove the necessity: if ω is of the form (9), then $\hat{\omega}_\Omega \in A[0, 2\pi]$.

We use an idea from the proof of [11, Theorem 2.4]. Let w be a conformal map of \mathbb{D} to Ω, $w(0) = 0$. Since Ω is a Jordan domain, w extends to a continuous map from $\overline{\mathbb{D}}$ to $\overline{\Omega}$, and we can specify it to have $\arg w(1) = 0$. Define

$$f(z) = u(z) + iv(z) = \log \frac{w(z)}{z} \text{ for } |z| \leq 1, \quad f(z) = f(|z|^{-2}z) \text{ for } |z| > 1.$$

It is analytic in \mathbb{D} and continuous in \mathbb{C}. Define then the function

$$\lambda(z) = u(z) + \frac{1}{\pi} \int_0^{2\pi} \log |e^{i\psi} - z| \, dv(e^{i\psi}), \quad (12)$$

δ-subharmonic in \mathbb{C} and harmonic in $\mathbb{C} \setminus \mathbb{T}$. Let us show that it as actually harmonic (and, hence, continuous) everywhere. To this end, take any function $\alpha \in C(\mathbb{T})$ and a number $r < 1$, and apply Green’s formula for $u(z)$ and $A(z) = |z| \alpha(z/|z|)$ in the domain $D_r = \{r < |z| < r^{-1}\}$:

$$\int_{D_r} (A \Delta u - u \Delta A) = \left[\frac{\rho}{2\pi} \int_0^{2\pi} \left(\rho \alpha(e^{i\psi}) \frac{\partial u(\rho e^{i\psi})}{\partial \rho} - u(\rho e^{i\psi}) \alpha(e^{i\psi}) \right) d\psi \right]_{\rho=r}^{\rho=R}. \quad (13)$$

Using the definition of the function f outside \mathbb{D} and the Cauchy-Riemann equations $\partial v/\partial \phi = \rho \partial u/\partial \rho$ if $\rho < 1$ and $\partial v/\partial \phi = -\rho \partial u/\partial \rho$ if $\rho > 1$ (which follows from the definition of f), we can write the right hand side of (13) as

$$\frac{r + r^{-1}}{2\pi} \int_0^{2\pi} \alpha(e^{i\psi}) d\phi v(re^{i\psi}) + \frac{r - r^{-1}}{2\pi} \int_0^{2\pi} u(re^{i\psi}) \alpha(e^{i\psi}) d\psi.$$

When $r \to 1$, (13) takes the form

$$\int_{\mathbb{T}} \alpha \Delta u = -\frac{1}{\pi} \int_{\mathbb{D}} \alpha(e^{i\psi}) \, dv(e^{i\psi}),$$

which implies the harmonicity of the function $\lambda(z)$ (12) in the whole plane.
Now we recall that \(v(e^{i\psi}) = \arg w(e^{i\psi}) - \psi \). Since the harmonic measure of the \(w \)-image of the arc \(\{ e^{i\theta} : 0 < \theta < \psi \} \) equals \(\psi/2\pi \), we have
\[
\hat{\omega}_\Omega(\arg w(e^{i\psi})) = \psi/2\pi
\]
and thus \(\arg w(e^{i\psi}) = \mu(\psi/2\pi) \) with \(\mu \) the inverse function to \(\hat{\omega}_\Omega(\psi) \). Therefore, \(v(e^{i\psi}) = \mu(\psi/2\pi) - \psi \).

Consider, finally, the function
\[
\gamma(z) = \frac{1}{\pi} \int_0^{2\pi} \log |e^{i\psi} - z| \, d\mu(\psi/2\pi) = \lambda(z) - u(z) + \frac{1}{\pi} \int_0^{2\pi} \log |e^{i\psi} - z| \, d\psi.
\]
Since it is continuous on \(\mathbb{T} \), Proposition 3 implies \(\hat{\omega}_\Omega \in \mathcal{A}[0, 2\pi] \), and the theorem is proved. \(\square \)

Note that all the dilations \(t\Omega \) of \(\Omega \) \((t > 0)\) represent the same measure from \(\mathcal{A}[0, 2\pi] \), and \(\Omega \) with a given projection \(\hat{\omega}_\Omega \) is unique up to the dilations.

Now we prove Proposition 1 that presents a wide subclass of \(\mathcal{A} \) with a more explicit description.

Proof of Proposition 1. Let \(\nu : [0, 1] \to [0, 1] \) be an absolutely continuous, strictly increasing function, \(\nu' \in L^{-}[0, 1] \). Since mes \(\{ t : \nu'(t) = 0 \} = 0 \), its inverse function \(\mu \) is absolutely continuous (\[17\], p. 297), so
\[
\mu(t) = \int_0^t g(s) \, ds
\]
with \(g \) a nonnegative function on \([0, 1]\). We have
\[
\infty > \int_0^1 \log^{-} \nu'(t) \, dt = \int_0^1 \log^{-} \frac{1}{\nu'(t)} \, d\mu(t) = \int_0^1 g(t) \log^{+} g(t) \, dt,
\]
so \(g \) belongs to the Zygmund class \(L \log L \).

Let \(\Delta(t) \) denote the modulus of continuity of the function \(\mu \). Note that it can be expressed in the form
\[
\Delta(t) = \int_0^t h(s) \, ds
\]
where \(h \) is the nonincreasing equimeasurable rearrangement of \(g \). Then
\[
\int_0^1 \frac{\Delta(t)}{t} \, dt = \int_0^1 t^{-1} \int_0^1 h(s) \, ds \, dt = \int_0^1 h(s) \log s^{-1} \, ds
\]
\[
= \int_{E_1 \cup E_2} h(s) \log s^{-1} \, ds,
\]
where \(E_1 = \{ s \in (0, 1) : h(s) > s^{-1/2} \} \), \(E_2 = (0, 1) \setminus E_1 \). Since \(h \in L \log L [0, 1] \),
\[
\int_{E_1} h(s) \log s^{-1} \, ds \leq 2 \int_{E_1} h(s) \log h(s) \, ds < \infty.
\]
Besides,
\[\int_{E_2} h(s) \log s^{-1} \, ds \leq \int_{E_2} s^{-1/2} \log s^{-1} \, ds < \infty. \]

Therefore,
\[\int_{0}^{1} \frac{\Delta(t)}{t} \, dt < \infty \]
and thus
\[\lim_{\delta \to 0} \int_{0}^{\delta} \frac{\Delta(t)}{t} \, dt = 0, \]
which gives (2). \qed

Corollary 4 follows directly from the definition of the Szegö class, Theorem 5 and Proposition 1.

3 Proofs of Theorems 1 and 2

Here we show how the integral variants of Carleman’s and Wolf’s theorems can be derived from Theorem 5.

We will need an elementary

Lemma 5 Let \(r(\theta) \in C[0, 2\pi], 1 < r_1 \leq r(\theta) \leq r_2, \) let \(\nu \) be a positive measure on \([0, 2\pi]\) and \(V(t) \) be a nonnegative function on \([0, \infty]\). If a nonnegative function \(v(te^{i\theta}) \) satisfies
\[\int_{0}^{2\pi} v(te^{i\theta}) \, d\nu(\theta) \leq V(t) \quad \forall t \geq t_0, \]
then for any \(R_2 > R_1 \geq t_0, \)
\[\int_{R_1}^{R_2} \int_{0}^{2\pi} v(t r(\theta)e^{i\theta}) \, d\nu(\theta) \, dt \leq r_1^{-1} \int_{r_1 R_1}^{r_2 R_2} V(t) \, dt. \]

Proof of Lemma 5 is straightforward:
\[\int_{R_1}^{R_2} \int_{0}^{2\pi} v(t r(\theta)e^{i\theta}) \, d\nu(\theta) \, dt = \int_{0}^{2\pi} \int_{R_1 r(\theta)}^{R_2 r(\theta)} v(te^{i\theta}) \, dt \, \frac{d\nu(\theta)}{r(\theta)} \]
\[\leq r_1^{-1} \int_{0}^{2\pi} \int_{R_1 r_1}^{R_2 r_2} v(te^{i\theta}) \, dt \, d\nu(\theta) \leq r_1^{-1} \int_{R_1 r_1}^{R_2 r_2} V(t) \, dt. \] \qed

Proof of Theorem 2. By Theorem 5 there exists a domain \(\Omega \) of the form (10) that contains \(\mathbb{D} \) such that
\[\omega(z, E, \Omega) \leq c_1 \nu(\text{arg} \, E), \quad \forall z \in \mathbb{D}, \; E \subset \partial \Omega, \quad (14) \]
with a constant $c_1 > 0$, see (10). Let $r_1 = \min r(\theta)$. By the Poisson–
Jensen formula applied to the function $v_t(z) = u^+(tz)$ ($t > 0$) in the domain $s\Omega$
($s > 1$) we have, due to (14),
\[
v_t(z) \leq \int_{\partial s\Omega} v_t(\zeta) \omega(z, d\zeta, s\Omega) = \int_{\partial\Omega} v_t(s\zeta) \omega(s^{-1}z, d\zeta, \Omega)
\leq c_1 \int_0^{2\pi} v_t(s \rho(\theta)e^{i\theta}) \, d\nu(\theta), \quad z \in \overline{D}.
\]
The integration of this relation over $s \in [1, R]$ ($R > 1$) gives, by Lemma 5,
\[
(R - 1)v_t(z) \leq c_1 \int_1^R \int_0^{2\pi} v_t(s \rho(\theta)e^{i\theta}) \, d\nu(\theta) \, ds \leq c_2 t^{-1} r_1^{-1} \int_{tr_1}^{tr_2 R} V(s) \, ds
\]
for each $t \geq t_0$. So,
\[
u(t)e^{i\theta}) \leq c(R)V(tr_2R), \quad t \geq t_0,
\]
which proves the theorem. □

Remarks. 1. It is easy to see that the constant A in (11) can be chosen arbitrarily
close to $r_2/r_1 \geq 1$.

2. Note that we have used inequality (3) in the integrated form only, so the
following statement is actually true: If a subharmonic function u on \mathbb{C} satisfies
\[
\int_{t_0}^t \int_0^{2\pi} u^+(se^{i\theta}) \, d\nu(\theta) \, ds \leq W(t) \quad \forall t \geq t_0
\]
with $\nu \in \mathcal{A}[0, 2\pi]$ and a nondecreasing function W, then there are constants $c > 0$
and $A \geq 1$, independent of u, such that $u(te^{i\theta}) \leq ct^{-1}W(At)$ for all $t \geq t_0$.

Now we prove Theorem 2 as a consequence of Theorem 1.

Proof of Theorem 2. The function v equal to u^+ in \mathbb{C}_+ and 0 in $\mathbb{C} \setminus \mathbb{C}_+$ is a
subharmonic function in \mathbb{C} satisfying the condition
\[
\int_0^{2\pi} v^+(te^{i\theta}) \, d\nu(\theta) \leq V_1(t)
\]
with $\nu \in \mathcal{A}[0, 2\pi]$ and $V_1(t) = o(t)$, $t \to \infty$. Therefore, it satisfies the conditions of
Theorem 1 with the majorant $V(t) = \sup\{V_1(s) : s \leq t\}$. So, $\sup \rho u^+(te^{i\theta}) = o(t)$ as
$t \to \infty$, and the conclusion holds by the standard Phragmén–Lindelöf theorem. □

4 Proof of Theorem 3

The integral version of the Levinson–Sjöberg theorem will be proved along the same
lines as Theorem 1 however the local situation needs a more refined adaptation.

We start with two elementary statements close to Lemma 5.
Lemma 6 Let a nonnegative integrable function v in the square $Q = \{|x|, |y| < 1\}$ satisfy (5) with a continuous strictly increasing function ν. Then for any $d \in (0, 1)$ there exists a constant $M_1(d)$, independent of u, such that for each $y_0 \in (-1, 1)$ one can find a point $y_1 \in (-1, 1) \cap (y_0 - d, y_0 + d)$ with

$$\int_{-1}^{1} v(x + iy_1) \, dx < M_1(d).$$

Proof. Assume $y_0 \geq 0$, then

$$\int_{y_0-d}^{y_0} \int_{-1}^{1} v(x + iy) \, dx \, d\nu(y) = \int_{-1}^{1} \int_{y_0-d}^{y_0} v(x + iy) \, d\nu(y) \, dx \leq 2.$$

Therefore for some $y_1 \in (y_0 - d, y_0)$,

$$\int_{-1}^{1} v(x + iy_1) \, dx \leq 2[\nu(y_0) - \nu(y_0 - d)]^{-1} \leq 2[\Delta_*(\nu, d)]^{-1}$$

with $\Delta_*(\nu, d) = \inf\{\nu(t) - \nu(t - d) : t \in (0, 1)\} > 0$. □

Lemma 7 Let a function v satisfy the conditions of Lemma 6, a function r be continuous on a segment $[a, b] \subset [-1, 1]$, $0 < r_1 = \min r(y) \leq \max r(y) = r_2 < 1$, and $\delta \in (0, 1 - r_2)$. Then there exists $t \in (0, \delta)$ such that

$$\int_{a}^{b} v(t + r(y) + iy) \, d\nu(y) < M_2(\delta)$$

with $M_2(\delta)$ independent of v.

Proof. We have

$$\int_{0}^{\delta} \int_{a}^{b} v(t + r(y) + iy) \, d\nu(y) = \int_{a}^{b} \int_{r(y)}^{\delta + r(y)} v(s + iy) \, ds \, d\nu(y) \leq \int_{r_1}^{\delta + r_2} \int_{a}^{b} v(s + iy) \, d\nu(y) \, ds \leq \delta + r_2 - r_1.$$

Thus one can find some $t \in (0, \delta)$ such that

$$\int_{a}^{b} v(t + r(y) + iy) \, d\nu(y) < \delta^{-1}(\delta + r_2 - r_1).$$

□

Proof of Theorem 3 Consider the measure ν_1 on $[-i, i]$ defined as

$$\nu_1(E) = \nu(-iE), \quad E \subset [-i, i].$$
The conformal map \(f(z) = \exp\{z\pi/2\} \) of the strip \(\{|\text{Im} \, z| < 1\} \) to the right half-plane \(\mathbb{C}_r \) pushes the measure \(\nu_1 \) forward to the measure \(f^* \nu \) on the semicircle \(\{e^{i\theta} : -\pi/2 \leq \theta \leq \pi/2\} \), producing a measure of the class \(\mathcal{A}[-\pi/2, \pi/2] \); we extend it to some measure \(\nu_2 \in \mathcal{A}[-\pi, \pi] \). By Theorem 5, there is a strictly star-shaped domain \(\Omega \supset \mathbb{D} \) such that the radial projection of its harmonic measure at 0 is the normalization \(\nu_2/\nu_2([-\pi, \pi]) \) of \(\nu_2 \).

Let \(\Omega_1 = \Omega \cap \mathbb{C}_r \), then for every Borel set \(E \subset \Gamma = \partial \Omega_1 \cap \mathbb{C}_r \) and any compact set \(K \subset \Omega_1 \),

\[
\omega(w, E, \Omega_1) \leq C_1(K) \nu_2(\arg E) \quad \forall w \in K.
\]

The pre-image \(\Omega_2 = f^{-1}(\Omega_1) \) of \(\Omega_1 \) has the form

\[
\Omega_2 = \{z = x + iy : x < \varphi(y), \; y \in (0, 1)\}
\]

with some function \(\varphi \in C[-1, 1] \). Let

\[
\Gamma_2 = \{x + iy : x = \varphi(y), \; y \in (0, 1)\},
\]

then for every Borel \(E \subset \Gamma_2 \) and any compact subset \(K \) of \(\Omega_2 \),

\[
\omega(z, E, \Omega_2) \leq C_2(K) \nu(\text{Im} \, E) \quad \forall z \in K. \tag{16}
\]

For the domain

\[
\Omega_3 = \{z = x + iy : x > -\varphi(y), \; y \in (0, 1)\}
\]

we have, similarly, the relation

\[
\omega(z, E, \Omega_3) \leq C_3(K) \nu(\text{Im} \, E) \quad \forall z \in K \tag{17}
\]

for each \(E \subset \Gamma_3 = \{x + iy : x = -\varphi(y), \; y \in (0, 1)\} \) and compact set \(K \subset \Omega_3 \).

Let now \(K \) be an arbitrary compact subset of the square \(Q \). We would be almost done if we were able to find some reals \(h_2(K) \) and \(h_3(K) \) such that

\[
K \subset \{\Omega_2 + h_2(K)\} \cap \{\Omega_3 + h_3(K)\} \subset \{\Omega_2 + h_2(K)\} \cap \{\Omega_3 + h_3(K)\} \subset Q.
\]

However this is not the case for any \(K \) unless \(\varphi \equiv \text{const} \). That is why we need partition.

Given \(K \) compactly supported in \(Q \), choose a positive \(\lambda \sim (4 \text{ dist}(K, \partial Q))^{-1} \) and then \(\tau \in (0, \lambda) \) such that the modulus of continuity of \(\varphi \) at \(4\tau \) is less than \(\lambda \). Take a finite covering of \(K \) by disks \(B_j = \{z : |z - z_j| < \tau\} \), \(z_j \in K \), \(1 \leq j \leq n \). To prove the theorem, it suffices to estimate the function \(u \) on each \(B_j \).

Let \(Q_j = \{z \in Q : |\text{Im} \, (z - z_j)| < 2\tau\} \), then \(B_j \subset Q_j \) and \(\text{dist}(B_j, \partial Q_j) = \tau \). Take also

\[
\Omega^{(j)}_2 = \Omega_2 \cap Q_j, \quad \Gamma^{(j)}_2 = \Gamma_2 \cap \overline{\Omega^{(j)}_2} = \{x + iy : x = \varphi(y), \; a_j \leq y \leq b_j\}.
\]
Now we can find reals \(h_2^{(j)} \) and \(h_3^{(j)} \) such that
\[
\Gamma_2^{(j)} + h_2^{(j)} = \{ x + iy : x = r_2^{(j)}(y) \} \subset Q_j \cap \{ x + iy : 1 - 4\lambda < x < 1 < 2\lambda \}
\]
and
\[
\Gamma_3^{(j)} + h_3^{(j)} = \{ x + iy : x = r_3^{(j)}(y) \} \subset Q_j \cap \{ x + iy : -1 + 2\lambda < x < -1 + 4\lambda \}.
\]
Furthermore, by Lemma 7, there exist \(t_2^{(j)} \in (0, \lambda) \) and \(t_3^{(j)} \in (-\lambda, 0) \) such that
\[
\int_{a_j}^{b_j} u^+(t_k^{(j)} + r_k^{(j)}(y) + iy) \, d\nu(y) < M_2(\lambda), \quad k = 2, 3. \tag{18}
\]
Finally we can find, due to Lemma 6, \(y_1^{(j)} \in (a_j, a_j + \tau) \) and \(y_2^{(j)} \in (b_j - \tau, b_j) \) such that
\[
\int_{-1}^{1} u^+(x + iy_m) \, dx < M_1(\tau), \quad m = 1, 2. \tag{19}
\]
Denote
\[
\Omega^{(j)} = \{ x + iy : r_3^{(j)}(y) + t_3^{(j)} < x < r_2^{(j)}(y) + t_2^{(j)}, \ y_1^{(j)} \leq y \leq y_2^{(j)} \}.
\]
Since \(B_j \subset \Omega^{(j)} \), relations (16) and (17) imply
\[
\omega(z, E, \Omega^{(j)}) \leq C(B_j) (\nu(\text{Im} E)) \quad \forall z \in B_j \tag{20}
\]
for all \(E \) in the vertical parts of \(\partial \Omega^{(j)} \). For \(E \) in the horizontal parts of \(\partial \Omega^{(j)} \), we have, evidently,
\[
\omega(z, E, \Omega^{(j)}) \leq C(B_j) \text{mes} \, E \quad \forall z \in B_j. \tag{21}
\]
Now we can estimate \(u(z) \) for \(z \in B_j \). By (18)–(21),
\[
u(z) \leq \int_{\partial \Omega^{(j)}} u^+(\zeta) \omega(z, d\zeta, \Omega^{(j)}) \leq C(B_j) \sum_{k=2}^{3} \int_{a_j}^{b_j} u^+(t_k^{(j)} + r_k^{(j)}(y) + iy) \, d\nu(y)
+ C(B_j) \sum_{m=1}^{2} \int_{-1}^{1} u^+(x + iy_m) \, dx \leq 2C(B_j)(M_1(\tau) + M_2(\lambda)),
\]
which completes the proof. \(\square \)
5 Proof of Theorem 4

By Theorem 1 and Proposition 1 it suffices to prove

Proposition 4 If a function \(u \) satisfies the conditions of Theorem 4, then there exists a function \(f \in L[-\pi, \pi] \) and a constant \(c_1 > 0 \), the both independent of \(u \), such that
\[
\int_{-\pi}^{\pi} u^{+}(re^{i\theta})f(\theta)\,d\theta \leq c_1 V(r) \quad \forall r > r_0.
\] (22)

Proof. What we will do is a refinement of the arguments from the proof of the original Matsaev’s theorem (see [15], [12]). Let
\[
D_{r,R,a} = \{ z \in \mathbb{C} : r < |z| < R, \, |\arg z - \pi/2| < \pi(1/2 - a) \}, \quad 0 < a < 1/4,
\]
b = \((1 - 2a)^{-1} \), \(S(\theta, a) = \sin b(\theta - a\pi) \). Carleman’s formula for the function \(u \) harmonic in \(D_{r,R,a} \) has the form
\[
2bR^{-b} \int_{\pi a}^{\pi - \pi a} u(Re^{i\theta})S(\theta, a)\,d\theta - b(r^{-b} + r^b R^{-2b}) \int_{\pi a}^{\pi - \pi a} u(Re^{i\theta})S(\theta, a)\,d\theta
\]
\[\quad -(r^{-b+1} - r^{b+1} R^{-2b}) \int_{-\pi a}^{\pi a} u'_i(Re^{i\theta})S(\theta, a)\,d\theta
\]
\[\quad + b \int_{r}^{R} \left[u(xe^{i\pi a}) + u(xe^{i\pi(1-a)}) \right] (x^{-b-1} - x^{b-1} R^{-2b}) \,dx = 0.
\]

It implies the inequality
\[
\int_{\pi a}^{\pi - \pi a} u^+(Re^{i\theta})S(\theta, a)\,d\theta \leq c(r, u)R^{b} + \int_{\pi a}^{\pi - \pi a} u^-(Re^{i\theta})S(\theta, a)\,d\theta
\]
\[\quad + R^{b} \int_{r}^{R} \left[u^-(xe^{i\pi a}) + u^-(xe^{i\pi(1-a)}) \right] (x^{-b-1} - x^{b-1} R^{-2b}) \,dx.
\] (23)

Fix some \(\tau \in (0, 1/4) \) such that
\[
\beta := (1 - 2\tau)^{-1} < 1 + \delta
\] (24)

with \(\delta \) as in the statement of Theorem 1. Inequality (23) gives us the relation
\[
I_0 := \int_{0}^{\tau} \Phi(\sin \pi a) \int_{\pi a}^{\pi - \pi a} u^+(Re^{i\theta})S(\theta, a)\,d\theta\,da
\]
\[\leq c(r, u) \int_{0}^{\tau} R^{b}\Phi(\sin \pi a)\,da + \int_{\pi a}^{\pi - \pi a} \Phi(\sin \pi a) \int_{\pi a}^{\pi - \pi a} u^-(Re^{i\theta})S(\theta, a)\,d\theta\,da
\]
\[+ \int_{0}^{\tau} \Phi(\sin \pi a) \int_{r}^{R} \left[u^-(xe^{i\pi a}) + u^-(xe^{i\pi(1-a)}) \right] R^{b}x^{-b-1}\,dx\,da
\]
\[= I_1 + I_2 + I_3.
\] (25)
We can represent I_0 as

$$I_0 = \int_0^{\pi} u^+ (Re^{i\theta}) \Psi(\theta) \, d\theta$$

with

$$\Psi(\theta) = \int_{\lambda(\theta)/2}^{\lambda(\theta)} S(\theta, a) \Phi(\sin \pi a) \, da$$ \hspace{1cm} (26)$$

and

$$\lambda(\theta) = \min\{\theta/\pi, 1 - \theta/\pi, \tau\}.$$ \hspace{1cm} (27)$$

Note that $S(\theta, a) \geq 0$ when $a \leq \lambda(\theta)$, and $S'_a(\theta, a) \leq 0$ for all $a < 1/4$. Since $\Phi(t)$ is nondecreasing, this implies the bound

$$\Psi(\theta) \geq \int_{\lambda(\theta)/2}^{\lambda(\theta)} S(\theta, a) \Phi(\sin \pi a) \, da \geq f(\theta) = \lambda^2(\theta) \Phi\left(\sin \frac{\pi \lambda(\theta)}{2}\right)$$

and thus,

$$I_0 \geq \int_0^{\pi} u^+ (Re^{i\theta}) f(\theta) \, d\theta$$ \hspace{1cm} (28)$$

with $f \in \mathcal{L}^-[0, \pi]$.

Let us now estimate the right hand side of (25). We have

$$I_1 \leq c(r, u) R^3 \int_0^\tau \Phi(\sin \pi a) \, da \leq c_1(r, \tau, u) R^3;$$ \hspace{1cm} (29)$$

$$I_2 = \int_0^{\pi} u^-(Re^{i\theta}) \Psi(\theta) \, d\theta \leq \int_0^{\pi} u^- (Re^{i\theta}) \Phi(\sin \theta) \, d\theta;$$ \hspace{1cm} (30)$$

$$I_3 \leq \int_0^\tau \int_r^R \Phi(\sin \pi a) \left[u^-(xe^{i\pi\alpha}) + u^-(xe^{i\pi(1+a)})\right] \left(\frac{R}{x}\right)^\beta x^{-1} \, dx \, da
\leq R^\beta \int_r^R x^{-\beta-1} \left[\int_0^{\pi} + \int_{\pi(1-\tau)}^{\pi}\right] u^-(xe^{i\theta}) \Phi(\sin \theta) \, d\theta \, dx
\leq R^\beta \int_r^R x^{-\beta-1} \int_0^{\pi} u^- (xe^{i\theta}) \Phi(\sin \theta) \, d\theta \, dx.$$ \hspace{1cm} (31)$$

We insert (28)–(31) into (25):

$$\int_0^{\pi} u^+ (Re^{i\theta}) f(\theta) \, d\theta \leq c_1(r, \tau, u) R^3 + \int_0^{\pi} u^- (Re^{i\theta}) \Phi(\sin \theta) \, d\theta$$

$$+ R^\beta \int_r^R x^{-\beta-1} \int_0^{\pi} u^- (xe^{i\theta}) \Phi(\sin \theta) \, d\theta \, dx
= J_1(R) + J_2(R) + J_3(R).$$ \hspace{1cm} (32)$$
By the choice of β (24), $J_1(R) = o(V(R))$ as $R \to \infty$. Condition (7) implies $J_2(R) \leq V(R)$, $R > r_0$. As to the term J_3, take any $\epsilon \in (0, 1 + \delta - \beta)$, then

$$J_3(R) \leq R^\beta \int_r^R x^{-\beta - 1} V(x) \, dx = R^\beta \int_r^R x^{-\beta - \epsilon} V(x) x^{\epsilon - 1} \, dx \leq R^\beta R^{-\beta - \epsilon} V(R) \int_r^R x^{\epsilon - 1} \, dx \leq \epsilon^{-1} V(R).$$

These bounds give us

$$\int_0^\pi u^+(Re^{i\theta}) f(\theta) \, d\theta \leq c_2 V(R) \quad \forall R > r_1(u).$$

Absolutely the same way, we get a similar inequality in the lower half-plane and, as a result, relation (22).

Remark. We do not know if condition (7) can be replaced by a more general one in terms of the class \mathcal{A}.

Acknowledgement. The author is grateful to Alexandre Eremenko and Misha Sodin for valuable discussions, and to the referee for suggestions that have simplified considerably the proof of Theorem 5.

References

[1] L. Ahlfors, On Phragmén-Lindelöf’s principle, Trans. Amer. Math. Soc. 41 (1937), no. 1, 1–8.

[2] A. Beurling, Analytic continuation across a linear boundary, Acta Math. 128 (1971), 153–182.

[3] T. Carleman, Extension d’un théorème de Liouville, Acta Math. 48 (1926), 363–366.

[4] Y. Domar, On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3 (1958), no. 5, 429–440.

[5] Y. Domar, Uniform boundness in families related to subharmonic functions, J. London Math. Soc. (2) 38 (1988), 485–491.

[6] E.M. Dyn’kin, Growth of an analytic function near its set of singular points, Zap. Nauch. Semin. LOMI 30 (1972), 158–160. (Russian)

[7] E.M. Dyn’kin, The pseudoanalytic extension, J. Anal. Math. 60 (1993), 45–70.

[8] E.M. Dyn’kin, An asymptotic Cauchy problem for the Laplace equation, Ark. Mat. 34 (1996), 245–264.
[9] V.P. Gurarii, *On N. Levinson’s theorem on normal families of subharmonic functions*, Zap. Nauch. Semin. LOMI **19** (1970), 215–220. (Russian)

[10] R.J.M. Hornblower, *A growth condition for the MacLane class*, Proc. London Math. Soc. **23** (1971), 371–384.

[11] B.Ya. Levin, *Relation of the majorant to a conformal map. II*, Teorija Funktsii, Funktsional. Analiz i ih Prilozh. **52** (1989), 3–21 (Russian); translation in J. Soviet Math. **52** (1990), no. 5, 3351–3364.

[12] B.Ya. Levin, *Lectures on Entire Functions*. Transl. Math. Monographs, vol. 150. AMS, Providence, RI, 1996.

[13] N. Levinson, *Gap and Density Theorems*. Amer. Math. Colloq. Publ. **26**. New York, 1940.

[14] G.R. MacLane, *A growth condition for class A*, Michigan Math. J. **25** (1978), 263–287.

[15] V.I. Matsaev, *On the growth of entire functions that admit a certain estimate from below*, Dokl. AN SSSR **132** (1960), no. 2, 283–286 (Russian); translation in Sov. Math., Dokl. **1** (1960), 548–552.

[16] V.I. Matsaev and E.Z. Mogulskii, *A division theorem for analytic functions with a given majorant, and some of its applications*, Zap. Nauch. Semin. LOMI **56** (1976), 73–89. (Russian)

[17] I.P. Natanson, *Theory of Functions of a Real Variable*. GITTL, Moscow, 1957. (Russian)

[18] A.Yu. Rashkovskii, *Theorems on compactness of families of subharmonic functions, and majorants of harmonic measures*, Dokl. Akad. Nauk SSSR **312** (1990), no. 3, 536–538; translation in Soviet Math. Dokl. **41**(1990), no. 3, 460–462.

[19] A.Yu. Rashkovskii, *Majorants of harmonic measures and uniform boundness of families of subharmonic functions*. In: Analytical Methods in Probability Theory and Operator Theory. V.A. Marchenko (ed.). Kiev, Naukova Dumka, 1990, 115–127. (Russian)

[20] A.Yu. Rashkovskii, *On radial projection of harmonic measure*. In: Operator theory and Subharmonic Functions. V.A. Marchenko (ed.). Kiev, Naukova Dumka, 1991, 95–102. (Russian)

[21] N. Sjöberg, *Sur les minorantes sousharmoniques d’une fonction donnée*, Neuvieme Congr. Math. Scand. 1938. Helsinki, 1939, 309–319.
[22] F. Wolf, *An extension of the Phragmén-Lindelöf theorem*, J. London Math. Soc. **14** (1939), 208–216.

[23] F. Wolf, *On majorants of subharmonic and analytic functions*, Bull. Amer. Math. Soc. **49** (1942), 952.

[24] H. Yoshida, *A boundedness criterion for subharmonic functions*, J. London Math. Soc. (2) **24** (1981), 148–160.

Tek/Nat, University of Stavanger, 4036 Stavanger, Norway
E-MAIL: alexander.rashkovskii@uis.no