Introduction

The cerebellum is a brain structure important for the precise execution of motor sequences. It performs critical functions required for error or novelty detection by processing differences between predictions elaborated by the cortex and incoming stimuli conveyed by the senses.

Different parts of cerebellum fulfill distinct physiological functions. The vestibulo-cerebellum, constituted by the flocculonodular lobe and adjacent vermis, regulates equilibrium and vestibulo-ocular reflexes. The spinocerebellum, including the vermis and the intermediate part of hemispheres, is involved in movement execution including feedback adjustments. The cerebro-cerebellum, represented by the lateral part of the cerebellar hemispheres, plays an important role in preparation, initiation and timing of motor acts via the dentate nuclei.

Cerebellar networks can be subdivided into three layers: an input (granular) layer, an intermediate processing (molecular) layer and an output (Purkinje) layer connected to the deep cerebellar nuclei. The granular layer and the molecular layer form the cortical part of the cerebellum. The deep cerebellar nuclei complex, which is part of the precerebellar nuclei, represents the only output pathway of the cerebellar cortex. The granular layer is composed of three main classes of neurons: granule cells, Golgi cells, and Lugaro cells. In the vestibular cerebellum, a fourth neuron type is represented by the unipolar brush cell (UBC). The mossy fibers make excitation glutamatergic synapses with all these cell types. The Golgi cells make inhibitory connection to granule cells and UBCs and the UBCs inhibit Golgi cells. The granule cells send excitatory inputs to the Purkinje cells and to molecular layer interneurons. In turn, the Golgi cells provide the only inhibitory input to the granular layer, generating a complex combination of feed-forward, feedback and lateral inhibition responses.

Golgi cells are GABAergic interneurons that modulate transmission through the cerebellar glomerulus, thereby regulating the input-output relationship and the gain at the synapses between mossy fibers and granule cells [1,2]. Thus, Golgi cells do not simply inhibit granule cells. For example, an in vivo investigation in the ventral paraflocculus (VPFL) of the alert squirrel monkey has shown that Golgi cells operate as state-specific temporal filters at the mossy fiber-granule cell input during a variety of vestibular and oculomotor behaviors [3]. Furthermore, a paradoxical excitatory action has been reported at the Golgi cell – granule cell synapse mediated by presynaptic metabotropic glutamate receptors [4]. A number of in vitro studies have also characterized novel properties of Golgi cell function that challenge the classical view of their roles in regulating transmission to the cerebellar cortex. Golgi cell discharge not only evokes synaptic IPSCs but also generates

Abstract

In the cerebellar glomerulus, GABAergic synapses formed by Golgi cells regulate excitatory transmission from mossy fibers to granule cells through feed-forward and feedback mechanisms. In acute cerebellar slices, we found that stimulating Golgi cell axons with a train of 10 impulses at 100 Hz transiently inhibited both the phasic and the tonic components of inhibitory responses recorded in granule cells. This effect was blocked by the GABA_\text{B} receptor blocker CGP35348, and could be mimicked by bath-application of baclofen (30 \, \text{\textmu}M). This depression of IPSCs was prevented when granule cells were dialyzed with GDP\betaS. Furthermore, when synaptic transmission was blocked, GABA_\text{A} currents induced in granule cells by localized muscimol application were inhibited by the GABA_\text{B} receptor agonist baclofen. These findings indicate that postsynaptic GABA_\text{B} receptors are primarily responsible for the depression of IPSCs. This inhibition of inhibitory events results in an unexpected excitatory action by Golgi cells on granule cell targets. The reduction of Golgi cell-mediated inhibition in the cerebellar glomerulus may represent a regulatory mechanism to shift the balance between excitation and inhibition in the glomerulus during cerebellar information processing.

Citation: Brandalise F, Gerber U, Rossi P (2012) Golgi Cell-Mediated Activation of Postsynaptic GABA_\text{B} Receptors Induces Disinhibition of the Golgi Cell-Granule Cell Synapse in Rat Cerebellum. PLoS ONE 7(8): e43417. doi:10.1371/journal.pone.0043417

Editor: Benjamin Arenkiel, Baylor College of Medicine, United States of America

Received: April 16, 2012; Accepted: July 20, 2012; Published: August 22, 2012

Copyright: © 2012 Brandalise et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the European Community, SENSOPAC (Sensorimotor structuring of Perception and Action (EU framework 6)) FP6-IST028056, by the CNISM (Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, which provided funding for the grant called NEUROIMAGE) grant, NEUROIMAGE, by MIUR (Ministro Istruzione Universit\’a Ricerca, which provided funding for the grants) of Italy, PRIN (Progetti di Rilevante Interesse Nazionale) and FAR (Progetto di Ricerca Finalizzata) grants. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: paola.rossi@unipv.it
pronounced tonic inhibition [5,6,7]. This tonic response reflects the activation by GABA spillover of high affinity extrasynaptic receptors containing the α6 subunit, and the accumulation of ambient GABA at submicromolar concentrations in the glomerulus [8,9,10]. In addition to the GABA_A receptors expressed by granule cells, the glomerulus also contains GABA_B receptors localized in the somatodendritic compartment of granule cells and on the terminals of Golgi cells [11]. The postsynaptic GABA_B receptors on cerebellar granule cells have been shown to mediate inhibition of a rectifier current [12]. The GABA_B receptors on Golgi cell terminals, which exhibit high affinity, are tonically activated by ambient GABA [13] resulting in a decrease in release probability at the onset of Golgi cell discharge and thus in a modulation of inhibitory signaling.

In the present study, we investigated whether phasic increases in GABA release are also capable of modulating inhibitory synaptic transmission. Following the stimulation of Golgi cell axons with a brief train of high frequency pulses (100 Hz), comparable to the frequency of in vivo activity recorded in Golgi cells [14,15,16], we observed an inhibition of both phasic and tonic GABA_A receptor-mediated responses. Interestingly, we find that this phenomenon depends primarily on the activation of postsynaptic GABA_B receptors of granule cells.

Methods

Preparation of Brain Slices and Solutions for Recordings

Patch-clamp recordings in acute cerebellar slices were obtained as previously described [12,17,18,19]. All experimental procedures were approved by the Ethics Committee of the University of Pavia. Briefly, 17–23 day-old Wistar rats were anesthetized with halothane inhalation (Aldrich, Milwaukee, WI), beheaded, and the cerebellar vermis was dissected out and placed into ice-cold Krebs solution. Vibratome sagittal sections from cerebellar vermis (220 μm thickness) were allowed to recover for at least 30 min at room temperature in Krebs solution continually bubbled with oxygen/carbon dioxide (95%/5%) before being transferred to a 1.5 ml recording chamber mounted on the stage of an upright microscope (OLYMPUS BX51WI, Japan). Slices were superfused with Krebs solution (flow rate 2 ml/min) and maintained at 30°C with a Peltier-feedback device (TC-324B, Warner Instr. Corp. Hamden, CT, USA). Krebs solution for slice cutting and recovery contained (in mM): NaCl 120, KCl 2, MgSO4 1.2, NaHCO3 26, KH2PO4 1.2, CaCl2 2, glucose 11, and was equilibrated with 95% O2 and 5% CO2 (pH 7.4). The n value referring to the number of the cells and, on average we recorded two cells per animal.

![Figure 1. Schematic of the experimental conditions. A. In the cerebellar glomerulus, Golgi cells (black) release GABA onto mossy fiber terminals as well as their targeted granule cells. In these experiments, Golgi cell axons are electrically stimulated and evoked IPSCs are recorded in a patch-clamped granule cell. Ionotropic and metabotropic glutamate receptors are blocked pharmacologically with D-APV, 7-Cl-kainate, CNQX, and AIDA to prevent excitatory transmission. B. Averaged eIPSCs recorded in cerebellar granule cells by Golgi cell axon stimulation (arrow) before (control) and after 10 μM bicuculline (bicuculline) local perfusion. The arrow indicates the time of stimulation. C. Tonic and phasic current were abolished by 1 μM TTX (TTX) leaving rare miniature spontaneous IPSCs (minis, magnified in the inset; vertical scale bar corresponds to 5 pA; horizontal scale bar corresponds to 1 s). Note also that background noise decreased during TTX perfusion. Subsequent application of 10 μM bicuculline. doi:10.1371/journal.pone.0043417.g001](www.plosone.org)
Whole-cell Patch-clamp Recordings

We recorded spontaneous inhibitory postsynaptic currents (sIPSCs) evoked by stimulating Golgi cell axons at 0.1 Hz. High frequency stimulation (HFS, 10 pulses at 100 Hz) reduced both eIPSCs and I\textsubscript{tonic}. Depicted responses are averages of 5 to 10 eIPSCs, before (c1, c2) and after HFS, at 5 min (t1), 20 min (t2), and 40 min (t3). Inset shows superimposed traces of c1 and t1 scaled to the same amplitude indicating that the kinetics of the response were not changed. B, Histograms show averaged data from 12 cells for eIPSCs (black) and 10 cells for I\textsubscript{tonic} (red). C, Time course of the changes in eIPSC amplitude following HFS for a representative cell, and D, averaged responses from 12 cells. E, Time course of the changes in I\textsubscript{tonic} for a single cell, and F, averaged values for 10 cells. doi:10.1371/journal.pone.0043417.g002

Perforated Patch-clamp Recordings

We also recorded inhibitory currents from cerebellar granule cells using the perforated patch-clamp recording technique [21].
The recordings were obtained with 5–8 MΩ electrodes filled with a solution containing nystatin (100 μg ml⁻¹) and (mM) K₂SO₄ 84, NaCl 10, glucose 30, HEPES buffer 5 (pH was adjusted to 7.2 with KOH). The series resistance averaged 23.6 ± 4 MΩ.

Golgi Cell Axon Stimulation

Golgi cell axons were stimulated with a glass pipette through an isolation unit. The minimal stimulation intensity was determined to be ~ 8 V by comparing evoked IPSPs with spontaneous IPSPs. Experiments were then performed with suprathreshold strength by increasing the stimulation intensity by 20%.

Drug Perfusion

R-Baclofen and CGP35348 were applied to the bath in some experiments, and by local perfusion through a multi-barreled glass pipette positioned close to (about 50 μm) the recorded cells in other experiments. The concentrations indicated for local perfusion are concentrations in the pipette. CNQX (10 μM), D-APV (100 μM), 7Cl-Kyn (50 μM), AIDA (50 μM), bicuculline (10 μM), and LY341495 (100 μM) were obtained from Tocris-Cookson, Avonmouth, UK and tetrodotoxin (TTX) from LATOXAN, Valence, France. Local perfusion with Krebs solution and glutamate antagonists was commenced before seal formation and was maintained until switching to the test solutions.
Acquisition and Analysis
IPSCs were digitally filtered at 1.5 kHz and analyzed off-line with pCLAMP8 (Axon Instruments). Peak amplitude and decay time constants were analyzed. Series resistance was monitored by measuring passive current transients induced by 10 mV hyperpolarizing voltage steps from a holding potential of 260 mV. Cerebellar granule cells have a compact structure and behave like a single electrotonic compartment [17,18,22,23]. Accordingly, the transients were reliably fitted with a mono-exponential function yielding a membrane capacitance of $C_m = 4.4 \pm 0.3 \text{ pF}$, membrane resistance $R_m = 2.8 \pm 0.4 \text{ G} \Omega$ and series resistance $R_s = 13.5 \pm 1.3 \text{ M} \Omega$ ($n = 29$). During whole-cell recordings capacitative transients were measured to monitor potential changes in series resistance. The -3 dB cell + electrode cut-off frequency was $f_{VC} = (2\pi R_s C_m)^{-1} = 3.1 \pm 0.2 \text{ kHz}$ ($n = 29$). Accepted deviations from these parameters in current transients recorded over the time-windows used for statistical analysis were less than 10%. The arrows indicate the time of stimulation, defined as time 0 on the time scale. Experimental traces are shown without baseline adjustments: dashed lines indicate the 0 pA level. Where indicated, relative amplitude was calculated by normalizing data just before HFS application.

Data are reported as means±SEM and statistical comparisons were done using Student’s paired t-test. The mean % change reported for different experimental conditions was calculated by averaging values from single cells. Traces were averaged digitally for 5 to 10 IPSCs. Averaged time courses are the means from different cells as indicated in the legends.
Results

High Frequency Stimulation of Golgi Cell Axons Induces Transient Inhibition of Phasic and Tonic GABAergic Responses in Granule Cells

To determine whether brief discharge of Golgi cells modulates inhibitory transmission at the Golgi cell–granule cell synapse, we stimulated Golgi cell axons with an electrode positioned in the granular cell layer, close (<100 μm) to a voltage-clamped granule cell. In all experiments, inhibitory responses were pharmacologically isolated by superfusing the slice with antagonists for ionotropic (CNQX, 10 μM; D-APV, 100 μM; 7Cl-Kyn, 50 μM) and metabotropic (AIDA, 50 μM) glutamate receptors (Fig. 1). Golgi cell axons were stimulated at a basal frequency of 0.1 Hz using a suprathreshold intensity, which at holding potential of −10 mV evoked eIPSCs occurring with a delay of 2.2±0.16 ms, consistent with a monosynaptic response (n = 24; Fig. 2A). All evoked activity was abolished with application of 1 μM tetrodotoxin (TTX) or 10 μM bicuculline (Fig. 1C) indicating that the responses were synaptic and mediated by GABA_A receptors. These results confirm the absence of slow GABA_B receptor-mediated responses in phasic granule cell inhibitory currents [12,13]. Beside affecting synaptic currents, bicuculline and TTX caused an inward current shift revealing the presence of a tonic GABA_A receptor-mediated leak conductance accompanied by a decrease in background noise due to reduced stochastic channel openings [9,10,24,25,26]. Local perfusion of bicuculline caused an inward current shift of 13.4 pA corresponding to a conductance change of 239.2±638.6 pS (n = 8, P<0.001 paired t-test, Fig. 1B). TTX caused an inward current shift of 10.9 pA corresponding to a conductance change of 194.6±632.2 pS (n = 20, P<0.00019 unpaired t-test, Fig. 1C). After TTX application, subsequent application of bicuculline (Fig. 1C) caused a non-statistically

Figure 5. Pharmacological activation of GABA_B receptors depresses GABA_A receptor-mediated responses in granule cells. A, The traces of averaged eIPSCs evoked at 0.1 Hz show that local application of baclofen (30 μM, 30 min) reduces both eIPSCs and outward I_{tonic}. B, Histograms show averaged data from 8 cells for eIPSCs (black) and I_{tonic} (red). C, Representative experiment showing the time course of the effect of baclofen. D, Averaged data for 8 cells. E, Time course of the effect of baclofen on I_{tonic} for a single cell, and, F, averaged values for all 8 cells. doi:10.1371/journal.pone.0043417.g005
significant current shift (n = 5, Fig. 1C). Note the rare TTX-
insensitive spontaneous events (Fig. 1C, inset in center panel)
that were identified as inhibitory miniature synaptic currents
(minis). These effects match previous reports of bicuculline-
sensitive tonic inhibition in granule cells, which includes a
conspicuous component sustained by spontaneous Golgi cell
autorhythmic activity.

After a 10 min control period we delivered a train of high
frequency stimulation (HFS, Fig. 2) consisting of 10 impulses at
100 Hz elicited at −70 mV, close to the neuronal resting
membrane potential, to mimic physiological conditions. Follow-
ing HFS, the amplitude of eIPSCs was immediately reduced, as
was outward \(I_{\text{tonic}} \), but these values reached their peak after
15 min (Fig. 2A,C,D). During control conditions, the average
eIPSC peak amplitude was 41 ± 4.3 pA, corresponding to a peak
conductance of 732.1 ± 25.4 pS (n = 24) and \(I_{\text{tonic}} \) was
18.7 ± 3.3 pA (n = 22). The average eIPSC rise time was
1.38 ± 0.17 ms and the decay was fitted by a double exponential
function with a \(\text{Tau}_1 \) of 7.1 ± 1 ms and \(\text{Tau}_2 \) of 43.8 ± 7 ms.
Fifteen minutes after HFS, the eIPSC amplitude was 15.9 ± 1.9 pA (P < 0.001; Fig. 2C,D, n = 12), the peak conductance
of eIPSCs was 322.1 ± 18.7 pS (P < 1.8 × 10^{-5}) and

Figure 6. Inhibiting G-protein function in the postsynaptic granule cell blocks the effect of HFS or baclofen on eIPSCs. A, Inhibiting G-
protein function in the postsynaptic granule cell blocks the effect of HFS on eIPSCs. eIPSCs were recorded in GCs following intracellular dialysis of
GDP\(\beta \)S (1 mM) to block G-protein function. Averaged eIPSC traces are shown at 1 min (c1) and 5 min (c2) after establishing the whole cell
configuration and at 5 min (t1) and 20 min (t2) after HFS. B, Histograms show averaged data for the effects of HFS (n = 5) and baclofen (n = 4) on
eIPSCs. C, Time course of responses from a single cell, and D, pooled data in the presence of intracellular GDP\(\beta \)S before and after HFS. E, Inhibiting G-
protein function in the postsynaptic granule cell blocks the effect of baclofen on eIPSCs in a single cell, and F, in pooled data for 4 cells.
doi:10.1371/journal.pone.0043417.g006
outward I_{tonic} was decreased to $6.0 \pm 1.2 \text{ pA (} P = 0.00083, n = 10; \text{Fig. 2E,F).} \text{ The kinetics of the IPSCs were not significantly changed with a rise time of } 1.6 \pm 0.21 \text{ ms (} P = 0.32) \text{ and a } \tau_1 \text{ of } 7 \pm 2.3 \text{ ms and a } \tau_2 \text{ of } 43 \pm 4.5 \text{ ms. In five cells where stable recordings were maintained for over one hour, } e\text{IPSC amplitude partially recovered to } 82.8 \pm 5.1\% \text{ and the } I_{\text{tonic}} \text{ to } 80 \pm 3.1\% \text{ of control in } 40 \pm 6.5 \text{ minutes. Therefore, this form of transient inhibition of GABA A-receptor mediated responses is not a form of LTD.}

To exclude a possible role of Group II and Group III mGlu receptors on this form of disinhibition we repeated experiments using a cocktail of antagonists that included LY341495 (100 µM), a broad spectrum inhibitor of mGlu receptors at this concentration. After a 10 min control period we delivered a HFS (Fig. 3). Following HFS, the amplitude of eIPSCs was immediately reduced, as was the outward I_{tonic}, but these values reached their peak after 15 min (Fig. 3A,D). During control conditions, the average eIPSC peak amplitude was 45.2 ± 4.2 pA, and I_{tonic} was 19.7 ± 4.5 pA (n = 4). Fifteen minutes after HFS, the eIPSC amplitude was 20.1 ± 3.6 pA ($P < 0.001$; Fig. 3C,D, n = 4) and outward I_{tonic} was decreased to 7.6 ± 3.1 pA ($P < 0.0001$, n = 4; Fig. 3E,F). The differences in the percentage decrease for both phasic and tonic current in the presence of additional LY341495 are not statistically significant in comparison with the experiments without LY341495 ($P > 0.3$).

To confirm that the inhibition is not the result of intracellular dialysis resulting from the whole-cell recording configuration, we performed experiments using the perforated patch-clamp technique [21]. With this approach, HFS still induced a decrease in eIPSCs similar to that obtained using the conventional whole-cell recording technique, with a peak current decrease of 52.1 ± 1.4%, $P < 0.05$ and a reduction in I_{tonic} by 29.7 ± 1.1%, $P < 0.01$ (n = 5, data not shown).

Inhibition of Phasic and Tonic GABA A Responses in Granule Cells is Mediated by GABA B Receptors

Inhibitory neurotransmission has been reported to undergo negative modulation through GABA B receptors in various brain areas [27]. When slices were pre-incubated for 30 minutes and perfused with the GABA B receptor antagonist CGP35348 (50 µM), HFS (10 pulses at 100 Hz) no longer led to a significant change in eIPSCs and I_{tonic} with whole cell recording (Fig. 4A). In the presence of CGP35348, eIPSCs and I_{tonic} were no longer reduced (from 32.9 ± 7.3 to 29.9 ± 6.1 pA, $P > 0.3$, n = 12, Fig. 4C–D) and (14.4 ± 0.2 to 12.2 ± 1.2 pA, $P > 0.8$, n = 12, Fig. 4E,F), respectively. Thus, GABA B receptors mediate the reduction in GABA A responses in granule cells. These data also further confirm that run-down of eIPSCs is not confounding our data.

Application of CGP35348 (50 µM) alone had no significant effect on eIPSC amplitude (from 27.3 ± 9.3 to 34.2 ± 7.3 pA, $P > 0.7$, n = 7) and I_{tonic} (from 21.7 ± 1.5 to 23.0 ± 4.2 pA, $P > 0.5$).

Figure 7. Activation of postsynaptic GABA B receptors is sufficient to inhibit GABA A receptor-mediated responses in granule cells. A, To examine the effects of GABA B receptor activation in a granule cell in the absence of Golgi cell stimulation, synaptic transmission was blocked by superfusing slices with TTX (1 µM) and GABA A receptor-mediated responses were elicited by puff applications of muscimol. Averaged responses to muscimol are shown at 1 min (c1) and 5 min (c2) after establishing the whole cell configuration and at 10 min (p1), 20 min (p2), and 40- min (p3) after bath-application of baclofen. B, Histograms show averaged data for the effects of baclofen on muscimol-induced responses (n = 4). C, Time course of responses from a single cell, and D, pooled data for the effect of baclofen on muscimol-induced GABA A receptor-mediated currents. doi:10.1371/journal.pone.0043417.g007
Pharmacological Activation of GABAB Receptors Mimics the Effect of HFS

We next examined whether we could reproduce the GABAB receptor-dependent effects induced by HFS with pharmacological activation of GABAB receptors. Application of the GABAB receptor agonist baclofen (30 μM) for 30 minutes significantly decreased the amplitude of eIPSCs evoked at 0.1 Hz (from 28.3 ± 3.8 to 11.6 ± 1.7 pA, P < 0.001, n = 8, Fig. 5A–D) and the Iritic (from 20.2 ± 8.2 to 11.4 ± 6.8 pA, P < 0.01, n = 8, Fig. 5E,F). Preincubation followed by bath-application of CGP35348, a selective GABAB-receptor antagonist, prevented the reduction by baclofen of eIPSC amplitude (from 38.3 ± 6.6 to 39.2 ± 2.7 pA, P > 0.6, n = 5) and for Iritic (from 25.5 ± 2.9 to 21.3 ± 4.4 pA, P > 0.1, n = 5, Fig. 5B,D,F).

G Protein-dependent Mechanism of GABA_A Receptor Modulation in Granule Cells

CGP35348 is an antagonist with preferential selectivity for postsynaptic GABA_B receptors [29,30,31]. We therefore performed experiments to confirm that the GABAB receptors responsible for the inhibition of GABA_A receptor-mediated responses are localized postsynaptically. GABAB receptor function was blocked specifically in the postsynaptic granule cell by disrupting G-protein-dependent signaling with GDBPS (1 mM), a non-hydrolyzable analog of GDP [32], introduced into cells by passive diffusion from the intracellular patch pipette. Because of the relatively fast dialysis of granule cells with patch pipettes [12,33] it was possible to assess the effect of GDPβS in the first minutes after establishing the whole cell configuration. Furthermore, when a HFS was applied after 10 minutes of dialysis, the inhibition of eIPSCs was no longer observed. The Iitalic rapidly decreased in the first minute after establishing the whole cell configuration (from 22.9 ± 4.8 to 7.9 ± 2.6 pA, P < 0.01, n = 5); therefore it was not possible to evaluate the effect of HFS (Fig. 6A). The tonic current decrease during intracellular dialysis by GDPβS before HFS is likely to reflect the blockade of G protein-sensitive ion channels that contribute to the generation of the resting potential, as described previously [34]. Introduction of GDPβS into granule cells also reduced the effects of GABAB receptor activation in response to baclofen application (from 43.8 ± 7.2 to 36.8 ± 3.7 pA, P > 0.2, n = 4, Fig. 6E,F). Therefore, the transduction mechanism linking GABAB receptor activation to GABAB phasic current involves G-protein-dependent activation in the postsynaptic membrane.

Activation of Postsynaptic GABA_B Receptors is Sufficient to Inhibit GABA_A Receptor-mediated Responses in Granule Cells

To verify that selective activation of postsynaptic GABA_B receptors is sufficient to inhibit granule cell eIPSCs, we blocked synaptic transmission by superfusing slices with TTX (1 μM) and activated postsynaptic GABA_A receptors on a granule cells by puff application of muscimol (pipette concentration: 100 μM). Again, application of baclofen (30 μM) for 5 min significantly reduced the amplitude of the chloride currents induced in granule cells (from 30.5 ± 6.3 to 15.1 ± 4.7 pA, P < 0.008, n = 4, Fig. 7). This effect recovered after washout of baclofen (89.2 ± 7.9%, n = 4).

Discussion

Our main finding is that high frequency activation of Golgi cells leads to transient inhibition of phasic and tonic GABA_A receptor currents recorded in granule cells. This effect is mediated by GABA_B receptors, as it is blocked by the selective antagonist CGP35348, and is mimicked by bath-application of baclofen. CGP35348 had no effect on its own, indicating that ambient GABA concentration in cerebellar slices is insufficient to contribute to the depression of inhibition. Our data indicate that the inhibition of GABA_A responses is mediated primarily by postsynaptic GABA_B receptors, because 1) inactivation of G-proteins in the postsynaptic granule cell significantly reduced the effect, and 2) GABA_A receptor-mediated responses selectively induced in granule cells were depressed following the activation of GABA_B receptors.

GABA_B Receptor-mediated Long-term Modulation of Inhibitory Responses

Although synaptic plasticity was originally characterized at excitatory synapses, it has long been known that GABergic synapses can also undergo activity-dependent modification [35,36]. Subsequent investigations identified LTP and LTD at inhibitory synapses throughout the brain, in some cases involving a presynaptic, in others, a postsynaptic mechanism of action [27]. In most of these studies it was shown that activation of pre or postsynaptic NMDA receptors initiates a complex signaling cascade culminating in the modulation of GABA_A receptor function. However, at inhibitory synapses in visual cortex [37], auditory brainstem [38,39], and hippocampus [40], GABA_B receptors were identified as the triggers of plasticity. In general, GABA_B receptors are expressed both at presynaptic terminals as well as in the somatodendritic compartment of neurons, where they regulate myriad functions through numerous G-protein coupled signal transduction pathways [41]. Interestingly, in a previous study we observed a further example of modulation by postsynaptic GABA_B receptors of cerebellar properties in which GABA_B receptor action reduced a constitutive inwardly rectifying conductance in cerebellar granule cells [12].

In the cerebellar glomerulus, GABA_B receptors are expressed in both presynaptic Golgi cells [11] as well as in postsynaptic granule cells [42,43]. We have previously shown that presynaptic GABA_B receptors on Golgi cell terminals are tonically activated by ambient GABA resulting in a negative modulation of neurotransmitter release [13]. In contrast, in the present study we found no evidence for tonic activation of the postsynaptic GABA_B receptors in granule cells. At present, the only evidence we have with regard to the transduction pathway is that the first step requires activation of a G-protein (Fig. 5). However, in a previous paper we showed that the modulation by GABA_B receptors of inwardly rectifying potassium channels depends on protein phosphatase 2A [12]. Furthermore, several studies in other brain regions have shown that phosphatases [44] and kinases [45,46] regulate the function of postsynaptic GABA_A receptors.

A GABAergic Paradox at the Golgi-cell-granule Cell Synapse: from Inhibition to Excitation

Some unusual features are emerging from in vivo studies on cerebellar circuits during sensory information processing. High-frequency “bursty” firing, a common feature in granule cells [47] leads to a decrease in Golgi cell firing through activation of mGlu2 receptors [4]. This contradicts the classical view that granule cells serve only to excite Golgi cells. The activation of metabotropic glutamatergic and metabotropic GABA_B receptors with high
frequency discharge thus leads to paradoxical effects at the granule cell to Golgi cell synapse [4] and at the Golgi cell to-granule cell synapse (our data), indicating more complex interactions in the cerebellar glomerulus than previously assumed.

Golgi cells reside in the granular layer and are spontaneously active. Thus, processing of the sole source of inhibition for granule cells. At low frequency background firing rates (∼4 Hz), Golgi cells function like typical inhibitory interneurons to induce both phasic and tonic outward currents, whereas during high frequency firing, as occurs during sensory stimulation, spillover in the cerebellar glomerulus and activation of GABA_B receptors can inhibit phasic and tonic responses mediated by GABA_A receptors. This GABA_B receptor-mediated inhibition of GABAergic transmission that we have characterized is likely to be of physiological significance in regulating cerebellar circuit function. We observed the effect with a train of 10 impulses at 100 Hz, which is in keeping with in vivo responses measured in Golgi cells [3, 16]. Synaptic inhibition at the mossy fiber input stage to the cerebellum is generated by short, fast and precise responses that then slowly decrease over about 100 ms [48, 49].

The switch from an inhibitory to an excitatory action occurs when a Golgi cell discharges with a high frequency burst. With low frequency discharge, a Golgi cell inhibits granule cells through both phasic and tonic inhibition leading to strong lateral inhibition. In contrast, high frequency Golgi cell discharge has two distinct effects: 1) the system acts as a high-pass filter, allowing both phasic and tonic inhibition leading to strong lateral observations of protracted granule cell firing in response to transmitted through the granular layer are not reduced by 100 ms [48, 49].

of inhibition through the Golgi cell loop. Consequently, granular layer responses are spatially organized so that inhibition is strongest in areas of the granular layer surrounding (or adjacent to) granule cells activated by mossy fiber stimulation. With high frequency stimulation, Golgi cell inhibition as well as lateral inhibition is decreased, suggesting a change in the spatial properties of incoming information.

Previous studies on GABA_B receptor function in the cerebellar glomerulus have shown that their activation enhances excitatory transmission from mossy fibers to granule cells by inhibiting an inward rectifier in granule cells [12] and by decreasing release probability at GABAergic Golgi cell terminals [13]. Our present finding of GABA_B receptor-mediated disinhibition constitutes a third mechanism to promote glomerular excitatory transmission in the cerebellum.

Acknowledgments
We thank Dr. Lisa Mapelli for her help with the initial experiments, and Pietro Morciano, Stefan Giger and Hansjörg Kasper for excellent technical support.

Author Contributions
Conceived and designed the experiments: FB UG PR. Performed the experiments: FB. Analyzed the data: FB PR. Wrote the paper: FB UG PR.

References
1. Brickley SG, Cull-Candy SG, Farrant M (1999) Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J Neurosci 19: 2960–2973.
2. Farratt M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA_A receptors. Nat Rev Neurosci 6: 215–229.
3. Heine SA, Hightstein SM, Blazquez PM (2010) Golgi cells operate as state-specific temporal filters at the input stage of the cerebellar cortex. J Neurosci 30: 17004–17014.
4. Holzmann T, Swam V, Zhao T, Fyer O, van der Wal PD, et al. (2011) Multiple extrasynaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell-granule cell loops. J Physiol 589: 3837–3854.
5. Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABA_A receptors. J Physiol 497: 753–759.
6. Wall MJ, Usowicz MM (1997) Development of action potential-dependent and independent spontaneous GABA_A receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur J Neurosci 3: 335–348.
7. Capogna M, Pearce RA (2011) GABA_A A,slow: causes and consequences. Trends Neurosci 34: 101–112.
8. Rossi DJ, Hamann M (1998) Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA_A receptors and glomerular geometry. Neuron 20: 783–793.
9. Hamann M, Rossi DJ, Attwell D (2002) Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33: 625–633.
10. Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABA_Aergic inhibition of rat cerebellar granule cells. J Physiol 540: 97–110.
11. Kulik A, Nakadate K, Nyiri G, Notomi K, Malitschek B, et al. (2009) Distinct localization of GABAB receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur J Neurosci 15: 2639–2651.
12. Rossi P, Mapelli I, Roggeri L, Gall D, de Kerchove d'Exaerde A, et al. (2006) Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABAB receptors. J Neurophysiol 24: 419–432.
13. Mapelli I, Rossi P, Nerus T, D'Angelo E (2009) Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J Neurophysiol 101: 3089–3099.
27. Castillo PE, Chiu CQ, Carroll RC (2011) Long-term plasticity at inhibitory synapses. Curr Opin Neurobiol 2: 328–338.

28. Lei S, McCaín CJ (2003) GABA receptors: modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons. J Physiol 546: 439–453.

29. Deisz RA, Billard JM, Zieglschmid W (1997) Presynaptic and postsynaptic GABAB receptors of neocortical neurons of the rat in vitro: differences in pharmacology and tonic mechanisms. Synapse 25: 62–72.

30. Morishita W, Sastri BR (1995) Pharmacological characterization of pre- and postsynaptic GABAB receptors in the deep nuclei of rat cerebellar slices. Neuroscience 68: 1127–1137.

31. Yamada K, Yu B, Gallagher JP (1999) Different subtypes of GABAB receptors are present at pre- and postsynaptic sites within the rat dorsolateral septal nucleus. J Neurophysiol 81: 2875–83.

32. Erkstein F, Cassel D, Levkovitz H, Lowe M, Selinger Z (1979) Guanosine 5'-O-(2-thiodiphosphate). An inhibitor of adenylyl cyclase stimulation by guanine nucleotides and fluoride ions. J Biol Chem 19: 9829–9834.

33. Gall D, Prestori F, Solà E, D’Errico A, Roussel C, et al. (2005) Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J Neurosci 25: 4015–4022.

34. Lüscher C, Steininger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci. 11: 301–15.

35. Stelzer A, Slater NT, ten Bruggencate G (1987) Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature 326: 698–701.

36. Komatsu Y, Iwakiri M (1993) Long-term modification of inhibitory synaptic transmission in developing visual cortex. Neuroreport 7: 907–910.

37. Komatsu Y (1996) GABAB receptors, monoamine receptors, and postsynaptic calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J Neurosci 25: 4015–4022.

38. Chang EH, Kotak VC, Sanes DH (2003) Long-term depression of synaptic inhibition is expressed postsynaptically in the developing auditory system. J Neurophysiol 80: 1479–1488.

39. Kotak VC, DiMatina C, Sanes DH (2001) GABAB and Trk signaling mediates long-lasting inhibitory synaptic depression. J Neurophysiol 86: 536–540.

40. Patenaude C, Chapman CA, Bertrand S, Congar P, Lacalle JC (2003) GABAB receptor-and metabolite glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. J Physiol 553: 155–167.

41. Misgeld U, Bija M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46: 423–462.

42. Ige AO, Balam JP, Billinton A, White JH, Marshall FH, et al. (2000) Cellular and sub-cellular localization of GABA(B1) and GABA(B2) receptor proteins in the rat cerebellum. Brain Res Mol Brain Res 83: 72–80.

43. Liang F, Hatanaka Y, Saiito H, Yamamori T, Hashikawa T (2000) Differential expression of gamma-aminobutyric acid type B receptor-1a and -1b mRNA variants in GABA and non-GABAergic neurons of the rat brain. J Comp Neurol 416: 475–495.

44. Chen QX, Wong RK (1995) Suppression of GABAB receptor responses by NMDA application in hippocampal neurones acutely isolated from the adult guinea-pig. J Physiol 492: 553–62.

45. Abramian AM, Comenencia-Ortiz E, Vithiani M, Trettet EV, Sierhart W, et al. (2010) Protein kinase C phosphorylation regulates membrane insertion of GABAB receptor subtypes that mediate tonic inhibition. J Biol Chem. 285: 41795–41805.

46. Kia A, Ribeiro F, Nelson R, Gavrálová C, Ferguson SS, et al. (2011) Kindling alters neurosteroid-induced modulation of phasic and tonic GABAA receptor-mediated currents: role of phosphorylation. J Neurochem. 116: 1045–56.

47. Bengtsson F, Jörntell H (2009) Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. Proc Natl Acad Sci U S A 106: 2309–2314.

48. Eccles JC, Ito M, Szentagotai J (1967) The Cerebellum as a Neuronal Machine. Berlin: Springer.

49. Malčić A, Prestori F, Rossi P, Taglietti V, D’Angelò E (2002) Presynaptic current channels at the mossy fiber-granule cell synapse of cerebellum during LTP. J Neurophysiol 88: 627–638.

50. Mapelli J, Gandolfi D, D’Angelo E (2010) Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. J Neurophysiol 103: 230–61.

51. Chadderton P, Margrie TW, Häuser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428: 856–60.

52. Jörntell H, Ekerot CF (2002) Reciprocal bidirectional plasticity of parallel fiber receptor-mediated currents in cerebellar Purkinje cells and their afferent interneurons. Neuron 34: 797–80.

53. Rancz EA, Ishikawa T, Duguid I, Chadderton P,Mahon S, et al. (2007) High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450: 1243–8.

54. Mapelli J, D’Angelò E (2007) The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J Neurosci 27: 1285–96.