Review

Molecular biology of breast cancer metastasis
Molecular expression of vascular markers by aggressive breast cancer cells
Mary JC Hendrix, Elisabeth A Seftor, Dawn A Kirschmann and Richard EB Seftor
University of Iowa, Iowa City, Iowa, USA

Abstract
During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies.

Keywords: breast cancer, interconverted phenotype, thrombin receptor, TIE2

Introduction
Vasculogenic mimicry in aggressive human melanoma tumor cells will be reviewed, and new evidence regarding the possibility of its existence in human breast cancer cells is presented and discussed.

Molecular vasculogenic mimicry by aggressive tumor cells
It is widely assumed that tumors require a blood supply to survive, grow, and metastasize [1]. However, this concept has been inextricably linked to angiogenesis, involving the process of signaling for new blood vessel growth into a growing tumor mass [2–5]. Recently, our laboratory and collaborators have challenged this dogma [6,7] with data generated from uveal and cutaneous melanoma models. These data demonstrated that the aggressive human melanoma tumors, but not nonaggressive tumors, consist of matrix-rich networks surrounding spheroids of tumor cells, in the absence of tumor necrosis and classic angiogenesis, thus questioning the requirement of these cells for a blood supply. These studies utilized a multidisciplinary approach of investigating the pathologic indices in patient tumors that are correlated with the data derived from tumor cell lines in three-dimensional in vitro cultures,
invasion assays, and microarray analysis of differential gene expression in aggressive versus nonaggressive tumor cells. Most noteworthy was the revelation that the presence of matrix-rich networks surrounding spheroids of tumor cells in primary and metastatic melanoma tumors from patients correlated with the aggressiveness of these tumors in vivo and with poor clinical outcome [8].

The cell lines derived from the aggressive and nonaggressive patient tumors were further analyzed for differences in their biologic functions in three-dimensional cultures. These assays demonstrated the remarkable recapitulation of tumor cells in primary and metastatic melanoma tumors seen in situ of hollow and closed matrix-rich networks surrounding spheroids of tumor cells, but only in the aggressive tumor cell cultures. In addition, the melanoma cells that are capable of generating these networks expressed inappropriate vascular and other molecular markers that represent a combination of phenotypes. These included endothelium (tyrosine kinase with immunoglobulin and epidermal growth factor homology domains [TIE]1, an endothelial receptor kinase, plus 12 other endothelial associated genes [6]), epithelium (keratin-8 intermediate filaments), and a mesenchymal phenotype (vimentin intermediate filaments), collectively suggesting a genetic reversion to a pluripotent embryonic-like phenotype.

The unique ability of aggressive human melanoma tumor cells to generate patterned networks, similar to the patterned networks seen during embryonic vasculogenesis, and concomitantly to express vascular markers associated with endothelial cells, their precursors and other vascular cells has been termed 'vasculogenic mimicry'. However, the physiologic significance of these networks and molecular vasculogenic mimicry is unknown, and must be rigorously tested in experimental animal models.

What do we know about the ability of nonendothelial cells to function in a vascular-related capacity? There is strong evidence suggesting that human cytотrophoblasts adopt an endothelial cell phenotype as they actively participate in the dynamics of establishing the placenta and primordial microcirculation, which has been designated 'trophoblast pseudo-vasculogenesis' [9–11]. With respect to tumor vascularization, the possibility of the formation or lining of a microcirculation by tumor cells has been suggested by several studies, on the basis of morphologic analyses and numerous pathology reports [12–25]. In a recent review by Tímár and Tóth [26], the diagnostic and clinical significance with regard to human melanoma and breast cancer tumor cell-lined sinuses and vascular channels was presented. However, there were no experimental data to support their functional significance. Additional studies by Hashizume et al [27] suggested that, in certain mouse mammary carcinoma and RIP-Tag2 models, openings between defective endothelial cells account for tumor vessel leakiness, leading to the lining of extravascular blood lakes by tumor cells. However, some pathologists have argued that tumor cells lining channels and sinuses that contain red blood cells in a rouleau formation represents a different phenomenon from vessel leakage [26,28], which requires further examination in appropriate animal models for melanoma.

Over the past few years, there have been confounding reports from distinguished scientists that dispute the relevance of vascular density and clinical outcome in melanomas [29,30], nonsmall-cell lung carcinoma [31], oral cancers [32], esophageal cancers [33], aggressive prostate cancers [34], and breast cancer [35]. Further histomorphologic evidence that some tumors may be vascularized without neo-angiogenesis, and possibly by pre-existent organ vasculature, has been reported in non-small-cell lung carcinomas [36]. Of special interest is the recent report [37••] supporting a nonangiogenic as well as an angiogenic pathway in breast cancer metastasis, which may further complicate treatment strategies. In addition, there are emerging data pointing to the expression of vascular markers, such as the thrombin receptor in breast cancer cells and tissue [38•], TIEs and angiopoietins in tumor cells of Kaposi's sarcoma [39], and vascular endothelial growth factor (VEGF) in melanoma cells and tissues [40].

Collectively, these data prompted us to conduct a preliminary molecular analysis of these vascular markers specifically expressed by aggressive versus nonaggressive breast cancer cells, in order to determine whether a pattern associated with the aggressive tumor cell phenotype might emerge. These data could provide additional markers for further diagnostic testing and therapeutic intervention strategies that might augment current anti-angiogenesis therapies.

Expression of vascular markers by breast cancer cells
Observational pathology reports and experimental data suggest that keratin (a epithelial marker) and vimentin (a mesenchymal marker) intermediate filament coexpression in both melanoma and breast cancer confers a more aggressive ‘interconverted’ phenotype, which is suggestive of a genetic reversion to an embryonic-like cell type [41,42]. This association between the interconverted phenotype expressed by both the aggressive melanoma and breast cancer cells prompted a preliminary molecular analysis of vascular-associated markers (expressed by aggressive melanoma cells) that might be similarly expressed by aggressive breast cancer cells.

Using the nonaggressive MCF-7 and aggressive MDA-MB-231 breast cancer cell lines, molecular analysis of specific vascular markers was performed using ribonuclease protection assay, differential display, and Northern
blot analyses (Fig. 1). The human umbilical vein endothelial cells (HUVECs) were used as a positive control for all of the vascular markers tested by ribonuclease protection assay. Of the vascular molecules identified, the MCF-7 cells expressed only modest amounts of VEGF, whereas MDA-MB-231 cells expressed higher levels. The highly aggressive MDA-MB-231 cells expressed thrombin receptor, TIE2, CD31, and VEGF; the expression patterns of these markers most closely resembled those in the HUVEC cells, with the exception of endoglin. Previously performed differential display analysis [43] revealed strong expression by MDA-MB-231 of an unknown gene, bc-48, which has homology in the 3′ region with endothelin-B receptor, another endothelial associated marker. This expression was confirmed by Northern blot analysis, showing an intense band in MDA-MB-231 cells and no expression in MCF-7 cells. These data are further summarized in Table 1.

The extent of vascular marker expression by the highly aggressive MDA-MB-231 cells, including thrombin receptor, TIE2, CD31, VEGF, and bc-48, has been shown to be associated with endothelial cells, as well as a few other cell types [44–49]. Of special significance is the expression by MDA-MB-231 cells of thrombin receptor, a member of the protease-activated receptor family. A previous report [44] showed that thrombin increases the invasive activity of MDA-MB-231 cells by a thrombin receptor-dependent mechanism, which may help to elucidate some of the molecular mechanisms that underlie the invasive and metastatic ability of these highly aggressive tumor cells. When thrombin receptor expression is experimentally downregulated in highly metastatic human breast cancer cells, their invasive ability is significantly diminished [38•]. Interestingly, that study also highlighted the importance of thrombin receptor expression in invading cytotrophoblasts during placentation of the human embryo [38•]. Indeed, others have shown that one of the mechanisms of thrombin-induced angiogenesis is the potentiation of VEGF activity on endothelial cells via the upregulation of VEGF receptors [47], which may help to explain the simultaneous increase in both VEGF and thrombin receptor by MDA-MB-231 cells demonstrated in this molecular survey.

VEGF is a critical factor in vasculogenesis and angiogenesis, and has been shown [40] to be expressed by melanoma cells in a majority of metastases. TIE2, VEGF, and CD31, collectively, have also been demonstrated in other carcinoma cells, such as human nonsmall-cell lung carcinomas, and are considered important angiogenic factors [48]. The upregulation of bc-48 (by MDA-MB-231 cells), a putative endothelin-B receptor, has heretofore been associated with vascular tube formation by endothelial cells [49], and lends further support to the concept that highly aggressive breast cancer cells are capable of expressing vascular markers previously thought to be associated only with endothelial cells, their precursors, and other vascular cells. Taken together, this preliminary molecular screen suggests for the first time that aggressive breast cancer cells express a diverse subset of vascular markers, whose clinical and pathophysiological significance requires further examination.

Significance of putative vasculogenic mimicry in cancer

During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. During tumorigenesis, it is tempting to speculate that both of these processes are recapitulated...
to provide the requisite nutritional supply to growing
tumors. Certainly, this has been proven and accepted for
angiogenesis, and there is a growing body of circumstan-
tial in vitro and molecular evidence to suggest that vascu-
genesis may play a putative role as well. There is
additional in vivo evidence in patients' tumors that sup-
ports nonangiogenic pathways with possible cooption of
the existing vasculature in both nonsmall-cell lung carci-
noma and breast cancer metastasis [36,37••].

In uveal melanoma, the evolving concept of vasculogenic
mimicry describes the 'embryonic-like' ability of aggres-
sive, but not nonaggressive tumor cells to form channels
within matrix-rich networks surrounding spheroids of tumor
cells in three-dimensional culture, which recapitulates the
patterned networks seen in patients' aggressive tumors
and correlates with poor prognosis. The molecular profile
of these aggressive tumor cells suggests that they have a
deregulated genotype that is capable of expressing multi-
ple molecular phenotypes simultaneously, particularly vas-
cular markers associated primarily with endothelial cells
and their precursors. The deregulated genotype also sug-
gests that the aggressive melanoma tumor cells have
essentially reverted to a pluripotent embryonic-like cell that
is capable of transdifferentiation.

Similarly, the interconverted, embryonic-like phenotype
expressed by the aggressive, but not by the nonaggressive,
human breast cancer cells is associated with their ability to
express a variety of vascular markers, at the molecular level.
However, further evidence regarding the biologic signifi-
cance of these markers in both breast cancer and melanoma is required before specific conclusions can be
drawn. Interestingly, Drosophila researchers have recently
referred to tumor vasculogenic mimicry channels in aggres-
sive, fast-growing tumors containing mutations in the lats
tumor suppressor gene [50], which they speculate may be
important for perfusion. The Drosophila model does not
have blood flow or endothelial cells; however, these tumors
may hold quintessential clues regarding a potential hard-
wired genetic program that has been evolutionarily con-
served, which needs to be further investigated to elucidate
alternative, nonangiogenic pathways for tumor perfusion.

Obviously, there are more questions than answers at this
time regarding the putative functional significance of vas-
cular marker expression by aggressive melanoma and
breast cancer cells. It will be important to address
whether aggressive breast cancer cells form similar pat-
terned networks in culture and in vivo, as are seen in
melanoma. If tumor vasculogenesis can be demonstrated
in experimental models, does it occur concomitantly with
angiogenesis or as a remodeling of angiogenesis in
aggressive tumors? Is pre-existing vessel cooption
involved? Is tumor cell vasculogenesis an alternative
angiogenic switch in aggressive tumors? Regardless of
the terminology that is used to describe the expression
and mimicry of vascular-like genes by aggressive tumor
cells, this area of research merits further exploration, with
potential benefits for molecular diagnosis and therapeutic
intervention strategies. Carmeliet [51], in a review of the
mechanisms that underlie angiogenesis and arteriogene-
sis, speculated that the recent controversial findings of
mosaic tumor vessels and vasculogenic tumor cells (vas-
culogenic mimicry) "may have considerable conse-
quences for antiangiogenesis tumor therapy".

Conclusion
There is a growing body of evidence suggesting that vas-
culogenic mimicry occurs in melanoma, and possibly other
cancers as well; however, the significance of this finding
remains under investigation. New evidence regarding the
possible existence of vasculogenic mimicry in aggressive
human breast cancer cells has been presented. We hope
that our paper will encourage other investigators to
examine breast tumors and other cancers for the putative
biological significance of the molecular expression of vas-
cular markers in aggressive cancers cells.

Acknowledgement
The authors gratefully acknowledge the invaluable scientific contributions of
Drs Zhila Ellis (University of Iowa) and Katrina Trevor (University of Arizona).
Research supported by NIH/NCI CA59702 (MJCH) and CA83137 (REBS).

Table 1

Summary of vascular marker expression
Human breast cancer cells

HUVEC
MCF-7
MB-231

Comparison of qualitative expression assessment of vascular markers by human breast cancer cells MCF-7 (poorly aggressive), MDA-MB-231 (MB-231; highly aggressive) and HUVECs, as shown in the raw data from the ribonuclease protection assay and differential display analysis in Figure 1. Equal loading of experimental samples was achieved by ribosomal protein L32 (L32) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) control lanes. *Data not shown.
References

Articles of particular interest have been highlighted as:
- of special interest
- of outstanding interest

1. Folkman J: Clinical applications of research on angiogenesis. Seminars in Medicine of the Beth Israel Hospital, Boston. N Engl J Med 1995, 333:1757–1763.

2. Risau W: Mechanisms of angiogenesis. Nature 1997, 386:671–674.

3. Weidner N: Tumoral vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol 1998, 184:119–122.

4. Rak J, Kerbel RS: Treating cancer by inhibiting angiogenesis: new hopes and potential pitfalls. Cancer Metastas Rev 1996, 15:231–236.

5. Kumar R, Fidler U: Angiogenic molecules and cancer metastasis. In Vivo 1998, 12:27–34.

6. Maniotis AJ, Folberg R, Hess A, Settler EA, Gardner LMG, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999, 155:739–752.

7. Basell MJ: Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch: a rose by any other name? Commentary. Science 1999, 285:675–679.

8. Folberg R, Rumelt V, Vary-Pans Gindeleuren R, Hwang T, Woolson RF, Pe’er J, Gruman LM: The prognostic value of tumor blood vessels morphology in primary uveal melanoma. Ophthalmology 1993, 100:1389–1398.

9. Zhou Y, Damsky CH, Fisher SJ: Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype: one cause of defective endovascular invasion in this syndrome? J Clin Invest 1997, 99:2152–2164.

10. Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, Damsky CH: Human cytotrophoblasts adopt a vascular phenotype as they differentiate: a strategy for successful endovascular invasion? J Clin Invest 1997, 99:2139–2151.

11. Damsky CH, Fisher SJ: Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr Opin Cell Biol 1998, 10:860–866.

12. Warren BA, Shubik P: The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab Invest 1966, 15:464–470.

13. Hammersen F, Endrich B, Messmer K: The fine structure of tumor blood vessels. I. Participation of non-endothelial cells in tumor angiogenesis. Int J Micronod Clin Exp 1985, 4:31–43.

14. Nasu R, Kimura H, Akagi K, Murata T, Tanaka Y: Blood flow influences vascular growth during tumor angiogenesis. Br J Cancer 1999, 79:780–786.

15. Willis RA: Pathology of Tumours. London: Butterworth and Co, Ltd, 1948.

16. François J: Malignant melanoma of the choroid. Montgomery Memorial Lecture 1961. Br J Ophthalmol 1963, 47:736–743.

17. François J, Neetens A: Physico-anatomical studies of spontaneous and experimental intraocular newgrowths: vascular supply. Bilal Anat 1967, 9:403–411.

18. Jensen AO: Malignant melanoma of the choroid of a peculiar cavernous type. Arch Ophthalmol 1964, 72:337–340.

19. Jensen AO: The 'Knapp-Renne' type of malignant melanoma of the choroid. A haemangioma-like melanoma with a typical clinical picture. So-called 'preretinal malignant choroidal melanoma'. Acta Ophthalmol (Copenh) 1978, 54:41–54.

20. Warren BA: The vascular morphology of tumors. In: Tumor Blood Circulation. Edited by Peterson H-I. Boca Raton: CRC Press, Inc, 1979:1–48.

21. Prazni JU, Jensen OA: Scanning electron microscopy of frozen-cracked, dry-cracked and enzyme-digested tissue of human malignant choroidal melanomas. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1980, 212:217–225.

22. Konering MA, Steinberg F, Strefler C: The vasculature of xenotransplanted human melanomas and sarcomas on nude mice. II. Scanning and transmission electron microscopic studies. Acta Ophthalmol (Basel) 1989, 136:27–33.

23. Jain RK: Determinants of tumor blood flow: a review. Cancer Res 1988, 48:2641–2658.

24. Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989, 49:6449–6465.

25. Goodall CM, Feldman, R, Sanders AG, Shubik P: Vascular patterns for four transplantable tumors in the hamster (Mesocricetus auratus). Angiology 1965, 16:622–628.

26. Timár J, Tóth J: Tumor sinuses: vascular channels. Pathol Oncol Res 2000, 6:83–86.

27. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM: Openings between defective endothelial cells explain tumor vessel leakage. Am J Pathol 2000, 156:1363–1380.

28. Folberg R, Hendrix MJ, Maniotis AJ: Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000, 156:361–381.

29. Graham CH, Rivers J, Kerbel RS, Stankiewicz KS, White WL: Extent of vascularization as a prognostic indicator in thin (<0.76 mm) malignant melanomas. Am J Pathol 1994, 145:510–514.

30. Lane AM, Egan KM, Gradoudas ES, Yang J, Saarnil M, Alroy J, Albert D: An evaluation of tumour vascularity as a prognostic indicator in uveal melanoma. Melanoma Res 1997, 7:237–242.

31. Chandradhul LM, Pendleton N, Chisholm DM, Horan MA, Schor AM: Relationship between vascularity, age and survival in non small-cell lung cancer. Br J Cancer 1997, 76:1387–1375.

32. Gleich LI, Biddinger PW, Duperier FD, Gluckman JL: Tumor angiogenesis as a prognostic indicator in T2-T4 oral cavity squamous cell carcinoma: a clinical-pathologic correlation. Head Neck 1997, 19:276–280.

33. Sarbia M, Biringer F, Porschen R, Dutkowski P, Willers R, Gabbert HE: Tumor vascularization and prognosis in squamous cell carcinomas of the esophagus. Anticancer Res 1996, 16:2117–2121.

34. Rubin MA, Buuyounouski M, Bagiella E, Sharir S, Neugut A, Benson M, de la Taille A, Katz AE, Olsson CA, Ennis RD: Microvessel density in prostate cancer: lack of correlation with tumor grade, pathologic stage, and clinical outcome. Urology 1999, 53:542–547.

35. Pendleton N, Pazouki S, Keerkens E, Chisholm DM, Moore JV, Howell A, Horan MA, Schor AM: Relationships between different measurements of vascularity and clinico-pathological parameters in breast cancer. Anticancer Res 1998, 18:4565–4568.

36. Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, Menard S, Gatter KC, Harris, AL, Fox S, Buyse M, Pilotti S, Pierotti M, Rizk R: Non-small-lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 1997, 151:1417–1423.

37. Pezzella F, Manzotti M, Di Bacco A, Viale G, Nicholson AG, Price R, Ratcliffe C, Pastorino U, Gatter KC, Harris AL, Altman DG, Pilotti S, Veronesi U: Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Lancet 2000, 355:1787–1788.

This paper provides the first evidence for a non-angiogenic pathway in breast cancer metastasis.
38. Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, • Ginzburg Y, Reich R, Vlodavsky I, Bar-Shavit R:
Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Med 1998, 4:909–914.
This paper compares angiogenesis with vasculogenesis.

39. Brown LF, Dezube BJ, Tognazzi K, Dvorak HF, Yancopoulos GD:
Expression of tie1, tie2, and angiopoietins 1, 2, and 4 in Kaposi’s sarcoma and cutaneous angiosarcoma. Am J Pathol 2000, 156:
2179–2193.

40. Birck A, Kirkin AF, Zeuthen J, Hou-Jensen K:
Expression of basic fibroblast growth factor and vascular endothelial growth factor in primary and metastatic melanoma from the same patient.
Melanoma Res 1999, 9:375–381.

41. Hendrix MJ, Seftor EA, Seftor REB, Trevor KT:
Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion
and increased invasive behavior. Am J Pathol 1997, 150:483–495.

42. Thomas PA, Kirschmann DA, Cerhan JR, Folberg R, Seftor EA, Sellers TA, Hendrix MJ:
Association between keratin and vimentin expression, malignant phenotype, and survival in postmenopausal breast cancer patients. Clin Cancer Res 1999, 5:2698–2703.

43. Kirschmann DA, Seftor EA, Nieva DRC, Mariano EA, Hendrix MJ:
Differentially expressed genes associated with the metastatic phenotype in breast cancer. Br Cancer Res Treat 1999, 55:
127–136.

44. Henrikson KP, Salazar SL, Fenton JW II, Pentecost BT:
Role of thrombin receptor in breast cancer invasiveness. Br J Cancer 1999, 79:401–406.

45. Cramer EM, Berger G, Berndt MC:
Platelet alpha-granule and plasma membrane share two new components: CD9 and
PECAM-1. Blood 1994, 84:1722–1730.

46. Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R,
Altal K, Dumont DJ:
Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival
and migration. J Biol Chem 1999, 274:30896–30905.

47. Tsopanoglou NE, Maragoudakis ME:
On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its
receptors. J Biol Chem 1999, 274:23969–23976.

48. Takahama M, Tsutsumi M, Tsujiuchi T, Nezu K, Kushibe K, Taniguchi S,
Kotake Y, Konishi Y:
Enhanced expression of Tie2, its ligand angiopoietin-1, vascular endothelial growth factor, and CD31 in human non-small cell lung carcinomas. Clin Cancer Res 1999,
5:2506–2510.

49. Smith PJ, Teichert-Kuliszew ska K, Monge JC, Steward DJ:
Regulation of endothelin-B receptor mRNA expression in human endothelial
cells by cytokines and growth factors. J Cardiovasc Pharmacol 1998, 31(Suppl 1):S158–S160.

50. Potter CJ, Rurenchall GS, Xu T:
Drosophila in cancer research: an expanding role. Trends Genet 2000, 16:33–39.

51. Carmeliet P:
Mechanisms of angiogenesis and arteriogenesis. Nature Med 2000, 6:389–395.

Authors’ affiliations: Department of Anatomy and Cell Biology and The University of Iowa Cancer Center, Iowa City, Iowa, USA

Correspondence: Mary JC Hendrix, PhD, Kate Daum Professor and Head, Department of Anatomy and Cell Biology, The University of Iowa College of Medicine, 51 Newton Road, 1-100 BSB, Iowa City, IA 52242-1108, USA. E-mail: mary-hendrix@uiowa.edu