Self-management interventions for adults with chronic kidney disease: a scoping review

Maoliosa Donald,1,2,3 Bhavneet Kaur Kahlon,3 Heather Beanlands,4 Sharon Strauss,5,6 Paul Ronksley,2,3 Gwen Herrington,7 Allison Tong,8 Allan Grill,9 Blair Waldvogel,7 Chantel A Large,7 Claire L Large,7 Lori Harwood,10 Marta Novak,11,12 Matthew T James,1,2,3 Meghan Elliott,6 Nicolas Fernandez,7 Scott Brimble,13 Susan Samuel,14 Brenda R Hemmelgarn1,2,3

ABSTRACT

Objective To systematically identify and describe self-management interventions for adult patients with chronic kidney disease (CKD).

Setting Community-based.

Participants Adults with CKD stages 1–5 (not requiring kidney replacement therapy).

Interventions Self-management strategies for adults with CKD.

Primary and secondary outcome measures Using a scoping review, electronic databases and grey literature were searched in October 2016 to identify self-management interventions for adults with CKD stages 1–5 (not requiring kidney replacement therapy). Randomised controlled trials (RCTs), non-RCTs, qualitative and mixed method studies were included and study selection and data extraction were independently performed by two reviewers. Outcomes included behaviours, cognitions, physiological measures, symptoms, health status and healthcare.

Results Fifty studies (19 RCTs, 7 quasi-experimental, 5 observational, 13 pre-post intervention, 1 mixed method and 5 qualitative) reporting 45 interventions were included. The most common intervention topic was diet/nutrition and interventions were regularly delivered face to face. Interventions were administered by a variety of providers, with nursing professionals the most common health professional group. Cognitions (ie, changes in general CKD knowledge, perceived self-management and motivation) were the most frequently reported outcome domain that showed improvement. Less than 1% of the interventions were co-developed with patients and 20% were based on a theory or framework.

Conclusions There was a wide range of self-management interventions with considerable variability in outcomes for adults with CKD. Major gaps in the literature include lack of patient engagement in the design of the interventions, with the majority of interventions not applying a behavioural change theory to inform their development. This work highlights the need to involve patients to co-developed and evaluate a self-management intervention based on sound theories and clinical evidence.

INTRODUCTION

Chronic kidney disease (CKD) is associated with adverse health outcomes, poor quality of life and high healthcare costs.1 Patients with CKD often experience a number of comorbidities including diabetes, cardiovascular disease and depression.2 They must balance the medical management of their kidney disease and other chronic conditions with demands of their daily lives, including managing the emotional and psychosocial consequences of living with chronic disease. In a recent CKD research priority setting...
study, individuals with non-dialysis CKD, their caregivers, clinicians and policy-makers identified the need to develop optimal strategies to enable patients to manage their CKD and related comorbidities to slow or prevent the progression to end-stage kidney disease (ESKD). International data in research priority setting for kidney disease also highlights self-management as a top priority to prevent progression.

Self-management interventions aim to facilitate an individual’s ability to make lifestyle changes and manage symptoms, treatment and the physical and psychosocial consequences inherent in living with CKD and associated comorbidities. Self-management of CKD involves focusing on illness needs (developing knowledge, skills and confidence to manage medical aspects), activating resources (identifying and accessing resources and supports) and living with the condition (learning to cope with the condition and its impact on their lives as well as the emotional consequences of the illness). Self-management requires patient engagement; however, the degree to which patients are able or willing to participate in self-management can vary, and individual and health system factors may serve as facilitators or barriers to self-management processes.

Despite the high prevalence of CKD and its impact on patient outcomes, there is limited evidence on the effectiveness of self-management interventions. Prior systematic reviews and three integrative reviews found that self-management interventions were variable in their effectiveness for managing and preventing progression of CKD. While these reviews add to the knowledge base, they have restricted inclusion criteria (eg, study type, patient population) and unclear reporting strategies (ie, describing complex self-management interventions in detail and providing structured accounts of the interventions and outcomes). In particular, features of self-management interventions such as person centeredness, applicability to comorbidities associated with CKD, physiological and non-physiological outcomes and application of any behavioural change theories are often lacking. Self-management interventions need to be tailored to suit diverse patient needs and preferences as well as the local healthcare context. Therefore, investigating the ‘who’, ‘what’ and the ‘how’ of self-management interventions is crucial. We used recognised literature synthesis and reporting guidelines, along with engagement of our patient partners in determining the research question and search terms as well as reviewing the results to ensure we captured and reported the data meaningfully.

To our knowledge, there is no literature synthesis that systematically and comprehensively summarises the breadth of evidence found in primary quantitative, qualitative and mixed methods research regarding self-management interventions for adult patients with CKD. We used a scoping review methodology to understand the range and types of interventions including both educational and support interventions for CKD to inform the future design of a self-management intervention. Specifically, we conducted a scoping review to identify and describe self-management interventions for adult patients with CKD (stages 1–5; non-dialysis, non-transplant).

MATERIALS AND METHODS

We used a scoping review methodology to enable us to incorporate a broad range of studies and to summarise the knowledge from a variety of sources and types of evidence. Our aim was to identify gaps in literature related to CKD self-management interventions and inform future research. A unique and important aspect was the involvement of ‘patient partners’. Through a national initiative, Canadians Seeking Solutions and Innovations to Overcome CKD (Can-SOLVE CKD), patients work side by side with researchers, clinicians and decision makers to address patient-oriented research priorities. Our research team includes Can-SOLVE CKD patient partners with CKD and caregivers. Using the Joanna Briggs Institute framework for scoping reviews, we undertook the following steps: (1) identified the research question, (2) identified relevant studies, (3) completed study selection, (4) charted, collated, summarised and reported the results (5) and consulted with our patient partners. These steps were iterative to ensure comprehensive inclusion of the literature and continued meaningful engagement with our patient partners. This work involves identifying, reviewing and categorising data from primary articles and does not involve human participants and is exempt from ethics approval.

Research aim

Our scoping review aimed to determine the available self-management interventions for adults aged 18 years and over and diagnosed with CKD stages 1–5 (not requiring dialysis or transplant).

Search and selection of studies

We worked with an information specialist (DL) to identify key words that represented the population (CKD) and the intervention (self-management). We searched a broad range of information sources including the following online databases: MEDLINE (OVID), EMBASE, PsycINFO, Cochrane Central Register of Controlled Trials, CINAHL Plus and Cochrane Database of Systematic Reviews for published studies, with no limits on date (inception to October 2016), language, age or study design. We also searched Web of Science from 2006 to October 2016 to capture recently published meeting abstracts and summaries. Using the Canadian Agency for Drugs and Technology (CADTH) Grey Matters approach, we searched Google Canada, Health Technology Assessment (HTA) agencies (Canada, Australia, Ireland, UK and USA) and Clinical Trials databases (Biomed Central—ISRCTN Registry, US National Institutes of Health, ClinicalTrials.gov) during October 2016 with no language restrictions (online supplementary table 1). Our search strategy for grey literature was guided by the specific database (ie,
Google search operators, website search filters) and was completed within a single session for each search strategy to ensure consistency due to the dynamic nature of the internet (online supplementary table 2). Two reviewers (BK and MD) also reviewed the reference lists of included studies, along with those identified in past systematic and integrative reviews of our research topic. We contacted authors of relevant protocols and conference abstracts to ascertain if their work and findings were published.

A study was included if the population involved adults with CKD (stages 1–5, non-dialysis, non-transplant). Self-management interventions included strategies, tools or resources in any delivery format (print, electronic, face to face and so on) that facilitated an individual’s ability to make lifestyle changes or to manage symptoms, treatment or the physical and psychosocial consequences inherent in living with CKD and other associated comorbidities. Interventions targeted only at selection of treatment for ESKD (ie, dialysis, kidney transplant) were excluded. Other self-management interventions or standard care were considered as a comparison. We included primary studies that used quantitative, qualitative or mixed methods. Systematic and integrative reviews were identified for the purpose of reviewing their included studies for potential relevant studies. We excluded case series, case studies, case reports, clinical practice guidelines, theses and opinion-driven reports (editorsials, non-systematic or literature/narrative reviews).

Three reviewers (BK, MD and BH) performed an initial screen of titles and abstracts using a citation screening tool. To determine inter-rater reliability, a calibration exercise was performed by the three reviewers. Pilot testing a random sample of 50 citations achieved good agreement (kappa=0.79) at which point the three reviewers screened the remaining titles and abstracts. Two reviewers (BK and MD) followed a similar procedure for identifying relevant full text studies, with good agreement between the two reviewers (kappa=0.78). Disagreements were resolved by discussion and obtaining consensus between the three reviewers.

Charting, collating and summarising the data
We developed a data extraction form based on the Template for Intervention Description and Replication (TIDieR) checklist. This checklist provides a template to structure accounts of an intervention (eg, goal of intervention, materials used, who delivered the intervention and how, where, when and how much and how well the intervention was delivered). We also used the Effective Practice and Organisation of Care (EPOC) data collection form to ensure we were comprehensive in extracting relevant study characteristics as outlined by Cochrane EPOC group. Study characteristics (eg, study design, country of origin, publication year), population characteristics (eg, CKD stage, comorbidities) and self-management intervention characteristics (eg, topics, format, target audience, providers, location, dose, duration and so on) were documented. For the study outcomes, the two reviewers (BK and MD) independently coded each outcome into categories identified by Grey et al (eg, behaviours, cognitions, physiological measures, symptoms, health status, healthcare and other). We pilot tested the form on a random sample of 10 eligible studies and once consensus between the two reviewers was reached, we independently abstracted data from the remaining eligible studies. Data were categorised and reported descriptively (ie, counts and frequencies). For qualitative studies, we identified the methodology and key concepts presented by the authors.

Consultation with patient partners
Patient partners were engaged throughout this work, specifically to provide input on the research question, search strategies (eg, grey literature sources) and reviewing the final results. The results were presented and discussed at the national Can-SOLVE CKD meeting.

RESULTS
Search results
From 12583 unique citations (figure 1), we included 50 full text studies.

Description of studies
A summary of the 50 studies included in this review is provided in table 1.

The most common study designs were randomised controlled trials (RCTs) (38%). Non-RCTs consisted of quasi-experimental (14%), observational (10%), pre-post intervention (26%), qualitative (10%) and mixed methods (2%). The studies were conducted in 14 countries, including the USA (20%), UK (14%) and Australia (12%). Most studies were published in the last 5 years (64%).

Patient population characteristics
The target population in most studies was CKD (72%) and 15 studies mentioned CKD plus one or more associated comorbidities. The average ages of participants reported across studies were 50.2 to 74.3 years.

Description of self-management interventions
Table 2 summarises the characteristics of the self-management interventions. Five studies reported the same self-management intervention; therefore, 45 interventions were summarised. The most common intervention topic was diet/nutrition (64%) and the least common topics were symptom management and lifestyle (13% and 11%, respectively). The most frequent modes of delivering the intervention were face to face (80%), multiple (ie, more than one mode) (71%) and print (64%). Electronic was the least common delivery mode (16%). Interventions were administered by a variety of providers. The most common category of providers was ‘other’ (56%), which was made up of various types of health professionals and lay people. However, the most common identifiable group of providers were nursing
professionals (49%). Patient volunteer/mentor was the least common (9%). The outpatient setting was the most common location for providing the self-management intervention (51%), and the inpatient setting was the least popular (2%). Many studies did not report the intervention language (53%), but 12 languages were represented and seven studies reported that they provided the intervention in multiple languages.

In terms of intervention development, only 20% of studies mentioned the use of evidence such as theories or frameworks. These included the transtheoretical model of behaviour change, social cognitive theory and chronic care model. Less than 1% of the studies involved patients in the design of the intervention, where patients were interviewed regarding intervention content.

Description of quantitative study outcomes and results

Characteristics of the quantitative study outcomes are presented in Table 3. Twenty-three (46%) studies measured physiological outcomes (ie, laboratory tests, body composition and so on). The least common outcomes reported by studies were health status and healthcare (each 10%) and symptoms (ie, fatigue) (4%). Table 4 summarises the details of the quantitative studies. We categorised the overall study results descriptively as improved, unchanged or worse. Many studies had more than one outcome measure (eg, one measure improved, another had no change) and they were reported as mixed results. Based on this method of categorization, 89 outcomes were reported, of which 61% improved, 20% had no change, 1% worsened and 13% had mixed results. Four of the results were reported as not applicable as the outcomes were not relevant. Of the 54 outcome categories that improved, 15 were cognition, 9 were physiological measures, 8 were behaviours, 8 were individual outcomes, 5 were health status, 4 were healthcare, 4 were intervention specific and 1 was symptom management.

Description of qualitative study outcomes and results

Table 5 summaries the findings from six qualitative studies that explored patient perspectives, one of these being a mixed methods study. All studies used semistructured interviews and one also used a questionnaire. The aims of all these studies were to examine patient perspectives’ regarding the self-management interventions they were involved in. Due to the variety of interventions (eg, intervention topics, delivery mode and providers of the intervention), it was difficult to summarise findings into meaningful categories. Overall, patients highlighted that interventions needed to be individualised and tailored to their specific situations and preferences (eg, awareness of having CKD, stage of CKD, knowledge of the disease, access to resources and so on).

DISCUSSION

To our knowledge, this is the first scoping review involving patients as research partners to identify and summarise self-management interventions for adults with CKD. The scoping review methodology enabled us to systematically summarise a broad range of self-management interventions and describe their features. We identified 50 studies that investigated self-management interventions for adults with CKD, with considerable variation in interventions, outcomes assessed and results obtained (ie, some improved and/or some worsened and/or some did not...
change). We found that self-management interventions for CKD is an emerging area with most studies published within the last 5 years which may be related to the growing recognition of the importance of incorporating patients and their families in managing their disease to improve outcomes.7

Our findings are similar to prior reviews reporting that the design of self-management interventions for CKD has not been theoretically driven and they have been predominately designed by healthcare professionals without input from patients.13 14 Person-centred care is changing how healthcare professionals deliver care to patients, but more importantly how patients and their families are actively involved in self-managing their chronic conditions.7 11 Engaging patients by having them co-design self-management interventions will ensure that patient preferences based on their values, culture and psychosocial needs will be addressed in the self-management intervention.12–14

Through our current national partnership with patients, researchers and clinicians, we have the opportunity to

Characteristic	Studies (n=50)
Study design	
Randomised controlled trial	19
Pre-post test	13
Quasi-experimental (controlled/non-random)	7
Observational	5
Qualitative	5
Mixed methods	1
Origin of study	
USA	10
UK	7
Australia	6
Canada	5
Taiwan	5
Netherlands	3
Spain	3
Italy	2
Japan	2
New Zealand	2
Sweden	2
Brazil	1
Denmark	1
Korea	1
Year of publication	
2012–2016	32
2007–2011	11
Prior	7

Variable	Intervention count (n=45)
Intervention topics	
Diet/nutrition	29
General CKD knowledge	18
Other (ie, advanced care planning, meditation)	18
Medication	17
Modalities	13
Physical activity	13
Comorbidities	11
Symptom management	6
Lifestyle	5
Mode of delivery	
Face to face (ie, group, one-on-one)	36
Multiple modes	32
Print	29
Distance (ie, telephone, email)	13
Digital (ie, DVD, PowerPoint, audio recording)	8
Electronic (ie, website, mobile application)	7
Type of providers	
Other*	25
Nurse/nurse practitioner	22
Dietitian	14
Multiple providers	13
Social worker	6
Physician/primary care physician	6
Nephrologist/nephrology fellows	5
Patient volunteer/mentor	4
Pharmacist	1
Location of intervention	
Outpatient	23
Not specified	12
Community (non-clinic)†	10
Patient home	10
Multiple locations	7
Inpatient	1
Intervention languages	
Not Specified	24
English	10
Multiple languages	7
Mandarin	4
Spanish	3
Taiwanese	3

Continued
obtain patient perspectives, along with incorporating a behaviour change theory to inform the future design of a self-management intervention for CKD.

Only 28% of studies that we identified included patients with CKD plus other comorbidities, despite the common presence of comorbidities in this patient population. Less than one-quarter of included studies provided information on how to manage comorbid conditions such as tracking lab results and symptom management. This highlights the need to consider ‘whole person care’, where the self-management intervention needs to encompass the physical, mental and emotional needs of the patient that are important to them as well as meeting the individuals desires by collaboration between relevant providers.

Forty-five different self-management interventions were identified, with one or more topics presented in a variety of formats and by a variety of providers. Symptom management and lifestyle topics were not included in many of the interventions. Based on prior work, non-dialysis patients with CKD have indicated that these were important topics for them in managing their CKD with an aim to slow the progression of CKD and will be important to consider in the development of future interventions. Face to face was the most common delivery format while electronic (internet or mobile application) was least common, with many studies reporting multiple formats (ie, face to face and printed materials). With the expansion of electronic platforms for supporting patients and providers in the uptake of evidence-based care, there is the potential to use an electronic format to support patients in self-managing their CKD and other comorbidities.

It is worth noting that there was variability in duration and frequency of face to face encounters, from a single session to multiple sessions over weeks to months. While varied options for in-person delivery is good if it meets the needs of the patients and their families, it may not be feasible on a larger scale due to the resources required. Only five studies looked at self-management healthcare cost-effectiveness, healthcare utilisation and access, each measuring different end-points with mixed results. Future self-management interventions should include the essential principles to self-management (eg, accessing relevant health information, adhering to multiple treatment

Variable	Intervention count (n=45)
Dutch	2
Cantonese	1
French	1
Greek	1
Italian	1
Japanese	1
Swedish	1
Vietnamese	1

Intervention development
Use of framework or theory
Codesigned with patients

*Other providers: Trained research assistant, lay health worker, Bengali worker, Educators (health, cook, diabetic), online tool, physician assistant, exercise physiologist, technician, psychologist, employment expert, instructor, interpreter, physiotherapist, patient, principal investigator.
†Community: gym, grocery store, "study room".
CKD, chronic kidney disease.

Table 3 Summary of quantitative study outcomes*

Common outcomes	Description	Number of studies	Number of studies in which outcome improved
Physiological measures	Changes in laboratory tests, blood pressure, body composition, functional/performance tests and cardiovascular risk	23	9
Cognitions	Changes in general CKD knowledge, self-efficacy, self-management, motivation, perceived stress, anxiety and fear	21	15
Behaviours	Adherence to diet, medication, physical activity, sleep, blood pressure control	13	8
Individual outcomes	QOL, well-being and general satisfaction	11	8
Intervention specific	Reporting of general concepts regarding feasibility of intervention, enjoyment and interest in intervention	9	4
Healthcare	Measurements of cost effectiveness, healthcare utilisation and access	5	4
Health status	Measurements of morbidity and mortality (ie, time to dialysis, survival, all-cause mortality)	5	5
Symptoms	Changes in overall symptoms (ie, pain, fatigue)	2	1

*Based on primary and distal outcomes from Grey et al. CKD, chronic kidney disease; QOL, quality of life.
Table 4 Summary of quantitative studies

Study and year (Reference)	Design	Target population	Study size	Age (years)	Intervention topic(s)	Provider(s)	Delivery format	Description of intervention	Study outcomes	Study results		
RCT												
Brink et al (1993)	RCT	Pre-RRT CKD (Cr=350 μmol/L and rising rapidly)	204 (E=87, C=117, not part of education=25)	Age: 50.2	General CKD knowledge	Trained research assistant	Print	Face to face	PowerPoint slides	"Enhanced education":	Health status:	Duration between session and dialysis initiation—patient in E group survived 4.6 months longer w/o requiring RRT
Gillis et al (1995)	RCT	CKD 3–5	840 (unclear)	Age: NR	Diet/nutrition	Dietician	Print	Face to face		"Modification of diet in renal disease":	Cognitions:	Patient reliance on dietitian’s feedback, support and modelling strategies—decreased over time in E group
Devins et al (2003)	RCT	CKD (creatinine=300 μmol/L, and deemed to need RRT in 6–12 months)	297 (E=148, C=149)	Age: 58.6	General CKD knowledge	Social worker	Print	Face to face	Telephone	"Psychoeducation":	Health status:	Time to dialysis—E group had 3 month delay in dialysis compared with C group
Devins et al (2009)	RCT	CKD with progressive reduction in kidney function	315 (E=172, C=143)	Age: 47.4–53.9	General CKD knowledge	Health educator	Print	Face to face	PowerPoint slides	"Psychoeducation session":	Health status:	Survival predialysis and after dialysis initiation—significantly longer in the E group (2.25 years and 8 months, respectively)
Campbell et al (2008)	RCT	CKD 4–5	47 (E=24, C=23)	Age: 64.5–72.6	Diet/nutrition	Dietician	Face to face	Telephone		Individual nutritional counselling":	Individual outcomes:	QOL—many components of KDQOL SF V.1.3 improved, CKD symptoms, cognitive function, vitality
Byrne et al (2011)	RCT	CKD 1-4+HTN	81 (E=40, C=41)	Age: 62.8–65.4	Comorbidities (ie, HTN management)	Nurse	Print	Face to face	Telephone	"Structured education session":	Intervention specific:	Feasibility (recruitment, retention, patient satisfaction, patient access of additional support)—findings suggest delivering/evaluating an effective structured group educational intervention to promote better BP control would be challenging

Continued
Study and year (Reference)	Design	Target population	Study size Age (years)	Intervention topic(s)	Provider(s)	Delivery format	Description of intervention	Study outcomes	Study results
Chen et al (2011)	RCT	CKD 3–5	54 (E=27, C=27) Age: 68.2	General CKD knowledge, Diet/nutrition, Medication, Lifestyle, Modality information for stage IV	Nurse, dietician, nephrologist, peers, volunteers	Print, Face to face, Telephone	“Self-management Support”: Individual monthly health education, Weekly telephone based support, Aid of support group twice monthly (5–10 patients) Duration: 12 months Comparator: standard care	Physiological measures: eGFR change—higher in E group	
								Health status:	
								# of hospitalisations in 1 year of follow-up—less in E group	
Flesher et al (2011)	RCT	CKD 3–4+HTN	40 (E=23, C=17) Age: 63.4	Diet/nutrition, Physical activity	Nurse, exercise physiologist, dietician, cook educator	Print, Face to face	“Cooking and exercise class”: Standard care and, Group CKD nutrition class (with dietician and cook educator: 2-hour sessions over 4 weeks) plus one shopping tour led by a dietician, CKD cookbook, 12-week exercise programme (3 x 1-hour sessions/week) led by a certified exercise physiologist and nurse Duration: 12 weeks Comparator: standard care	Physiological measures: Improvement in 4/5 of the following: urinary protein, total cholesterol, eGFR decline, BP, urinary sodium—was considered a success—61% in E group vs 12% in C group Behaviours: SM score—some changes in some components in both groups	
Joboshi et al (2012)	RCT	CKD	31 (E=13, C=12) Age: 69.8	Other	Nurse	Face to face, Telephone, Email	“EASE (encourage autonomous self-enrichment) programme”: Nurses listen to what patients have difficulties and discuss how they will try to improve Face to face interview monthly Telephone or email contact every 2 weeks Duration: 12 weeks Comparator: standard care	Cognitions: Self-efficacy Behaviours: Medication adherence Adherence to BP and weight measurements Limiting salt intake Alcohol consumption Smoking	
Williams et al (2012)	RCT	CKD 2–4 (diabetic kidney disease)+DM+HTN	75 (E=39, C=36) Age: 67	Medication, Comorbidities	Nurse	Print, Face to face, Telephone, DVD	“Multifactorial intervention”: Individual medication review (draw chart) Daily self-monitoring of BP × 3 months 20-min DVD Q2 week motivational interviewing follow-up via phone × 12 weeks to support BP management and optimise medication SM Duration: 12 weeks Comparator: standard care	Physiological measures: BP—no difference between groups Behaviours: Medication adherence—no difference between groups	

Continued
Study and year (Reference)	Design	Target population	Study size Age (years)	Intervention topic(s)	Provider(s)	Delivery format	Description of intervention	Study outcomes	Study results
Williams et al (2012)	RCT	CKD 2–4 + DM + cardiovascular disease	78 (E=40, C=38) Age: 74.31	Medication ▶ Comorbidities ▶ Other (i.e., self-efficacy)	Nurse, interpreter	Print ▶ Face to face ▶ Telephone ▶ PowerPoint slides	‘Self-efficacy Medication Intervention (SEMI)’: ▶ Individual medication review—chart in English but interpreter wrote on medication boxes in patients language or used symbols ▶ Individual slide presentation (20 min) via interpreter (Greek, Italian, Vietnamese) ▶ Q2 week motivational interviewing follow-up via phone × 12 weeks	Duration: 12 weeks Comparator: standard care	Intervention specific: ▶ Attrition rate to assess feasibility of study—high attrition
de Brito-Ashurst et al (2013)	RCT	CKD 3–5 + HTN (BP>130/80) + Bengali population	56 (E=28, C=28) Age: 55.7–60.7	Diet/nutrition	Dietician and Bengali worker	Face to face	‘Diet advice’: ▶ Practical cooking and education sessions in the community facilitated by a Bengali worker ▶ Followed by Q2 week phone calls to reinforce advice and set new targets	Duration: 6 months Comparator: standard care	Physiological measures: ▶ BP—decreased by 8mm Hg in E group ▶ 24-hours urinary salt excretion—decrease in E group ▶ eGFR—no difference between groups
Paes-Barreto et al (2013)	RCT	CKD 3–5	89 (E=43, C=46) Age: 63.4	Diet/nutrition	Dietician	Print ▶ Face to face ▶ Telephone	‘Nutrition education programme’: ▶ Standard dietary counselling AND ▶ Education folder with recipes to replace salt with sodium free seasoning blends ▶ Individual 15–20min class ▶ Hands on session about protein rich food ▶ Hands on session using test tubes with the amount of salt in different foods ▶ 4 monthly follow-up visits ▶ Telephone call to address any doubts with dietary plan	Duration: 4–7 months Comparator: standard care	Behaviours: ▶ Reduction in protein intake—decreased ▶ Adherence to low protein diet—effective
Blakeman et al (2014)	RCT	CKD 3	436 (E=215, C=221) Age: 72.1	General CKD knowledge ▶ Comorbidities ▶ Other (i.e., community resources)	Lay health worker	Print ▶ Website ▶ Telephone	‘Information and telephone-guided access to community services’: ▶ Kidney Information Guidebook ▶ Patient-Led Assessment for Network Support ‘PLANS’ booklet and interactive website—tailored access to community resources ▶ Telephone guided help from a lay health worker	Duration: 6 months Comparator: standard care	Cognitions: ▶ Positive and active engagement in life (heiQ)—no difference between groups

Continued
Study and year (Reference)	Design	Target population	Study size	Intervention topic(s)	Provider(s)	Delivery format	Description of intervention	Study outcomes	Study results
McManus et al (2014)	RCT	HTN (BP>130/80) + CKD3 or DM or CHD	555 (E=277, C=278)	Age: 69.3–69.6	General practitioner, patient	Print, Face to face	“Self-monitoring of BP and self-titration of medications”: ► Self-monitoring of BP ► Self-titration of medications following a 3-step plan designed by general practitioner and patient	Duration: 12 months Comparator: standard care	Physiological measures: ► SBP at 12 months—no difference Healthcare: ► Prescription of antihypertensive medications increased in both groups but greater significance in E group Symptom mgmt.: ► Adverse effects—no significant difference between groups Individual outcomes: ► QOL—no significant difference between groups
Park et al (2014)	RCT	CKD3+HTN + African-American	15	Age: 58.7	Other (ie, meditation)	Face to face, Audio recording	‘Mindfulness meditation (MM)’ ► 14 min of pre-recorded guided MM using MP3 player and headphones	Duration: one session Comparator: BP education	Physiological measures: ► BP—decrease in SBP/DBP/HB/MAP ► Muscle sympathetic nerve activity—decreased
Howden et al (2015)	RCT	CKD 3–4 and >1 uncontrolled cardiovascular risk factor	72 (E=36, C=36)	Age: 60.2–62.0	Physical activity	Print, Face to face	‘Exercise training and lifestyle intervention’: ► Standard care AND ► Detailed medical/surgical history taken by nurse practitioner ► Education about exercising safely: maintaining hydration, signs/symptoms of abnormal response to exercise ► If diabetic—education on hypoglycaemia ► Exercise prescription individualised on patient’s comorbid conditions ► Goal=150 min/week of moderate intensity exercise plus resistance training ► 8 weeks supervised, then 10 month home based ► Patients got: exercise ball, resistance training booklet ► Patients contacted regularly to monitor adherence to training	Duration: 12 months Comparator: diet education	Physiological measures: ► METS—improved ► 6 min walk distance—improved ► BMI—improved
Leehey et al (2016)	RCT	CKD 2–4+DM2+BMI>30+ persistent proteinuria	36	Age: 66	Diet/nutrition Physical activity	Face to face, Telephone	‘Structured exercise programme’: ► Dietary counselling+baseline nutritional counselling with nine follow-up phone calls (both groups) AND ► Supervised exercise programme 3x week (60min cardio plus 25–30min resistance training) ► Followed by home exercise phase: 3x/week × 60min with weekly follow-up phone calls and patient encouraged to meet trainer Q1 month	Duration: 12 months Comparator: diet counselling only	Physiological measures: ► Urine protein to creatinine ratio—no change at 52 weeks ► Symptom limited and constant work rate treadmill time—significant increase in diet-exercise group at 12 but not 52 weeks ► Urine albumin to creatinine ratio—no change ► eGFR—no change ► Inflammation—no change ► Endothelial function—no change ► Body composition—no change
Study and year (Reference)	Design	Target population	Study size	Intervention topic(s)	Provider(s)	Delivery format	Description of intervention	Study outcomes	Study results
-----------------------------	--------	-------------------	------------	-----------------------	-------------	----------------	-----------------------------	----------------	--------------
Montoya et al (2016)	RCT	CKD 4	30 (E=16, C=14) Age: 67.9–68.3	General CKD knowledge, diet/nutrition, medication, modalities, other (ie, putting affairs in order)	Nephrologist, nurse practitioner, dietitian, social worker	Print, Face to face, PowerPoint slides	‘Nurse practitioner facilitated CKD group visit’: Binder with section on individual labs, another section for topics of groups visits Six 1.5–2-hour-long monthly group visits of 8 patients (~1/2 had family members with them) Three visits done in conjunction with nephrologist’s examinations (first half=apt, second half=education) Three visits-education only Interactive discussion at each visit Slide presentation (90–45min) Duration: 9 months Comparator: standard care	Cognitions:	CKD knowledge—improved in both groups Self-efficacy/disease SM—upward trend in E group Individual outcomes: Satisfaction—High
Robinson et al (1988)	Obs	CKD	25 Age: NR	General CKD knowledge, diet/nutrition, medication, modalities, other (ie, self-care activities)	NR	Face to face	‘Renal Bingo’: Bingo game formats/group gaming technique Provision of refreshments & prizes for motivation Refreshments made with dietician consultation, reinforced dietary regimen Duration: one session Comparator: none	Cognitions:	Information was gained or reinforced—desirable outcome Met a variety of learning needs—desirable outcome Intervention specific: Participation was enjoyed—desirable outcome Interest expressed for repeating the exercise—desirable outcome
Klang et al (1998)	QE	CKD 4–5	56 (E=28, C=28) Age: 54–58	General CKD knowledge, diet/nutrition, physical activity, modalities, other (ie, psychosocial—impact of CKD on economy, family and social life)	Nurse, physician, dietitian, social worker, dietician, physical therapist	Face to face	‘Pre-dialysis patient education’: Four 2-hour sessions of group teaching with a classroom approach Individual support follow-up by nephrology team member Duration: four sessions Comparator: standard care	Individual outcomes:	Functional and emotional well-being—better in E group
Cupisiti et al (2002)	PP	CKD 3b-5	20 Age: NR	Diet/nutrition	NR	Print	‘Vegetarian diet’: Alternate between animal based conventional low protein diet and a vegetable-based low-protein diet Booklets explaining general guidelines and features of the diet Duration: one session Comparator: conventional protein diet	Individual outcomes:	Opinions on diet—90% enjoyed Physiological measures: Creatinine—no change Albumin—no change Total protein—no change Lipids—decreased Electrolytes—no change Haemacrit—no change Urinary protein excretion—decreased Urinary urea excretion—decreased Body weight—no change

Continued
Study and year (Reference)	Design	Target population	Study size Age (years)	Intervention topic(s)	Provider(s)	Delivery format	Description of intervention	Study outcomes	Study results	
Gutiérrez-Vilaplana et al (2007)	PP CKD	24 Age: 64.5	General CKD knowledge, Diet/nutrition, Modalities, Other	Nurse, patient volunteers	Print, Face to face, PowerPoint slides	‘Education Intervention’: Eight 2-hour classes, Didactic and discussion	Duration: 6 months	Comparator: none	Cognitions: Improvement in knowledge of CKD	
Pagels et al (2008)	Obs CKD	58 Age: 65	General CKD knowledge	Nurse	Print	A diary to promote disease related knowledge, involvement and self-care ability and to promote cooperation between patient and nurse	Duration: 12 months	Comparator: none	Cognitions: Participation, self-care and disease related knowledge	
Yen et al (2008)	PP CKD 3	66 Age: 67.4	General CKD knowledge, Diet/nutrition, Physical activity, Medication	Nephrologist, nurse, dietician, social worker	Print, Face to face, Telephone	‘Educational intervention’: Handouts, One 150 min workshop, Individual consults Q6 month with nurse, Phone number provided to participants for questions, Desserts recommended by dietician given at workshop for educational purposes, lunch boxes designed by dietician given out at the end of the workshop	Duration: 12 months	Comparator: none	Cognitions: QOL (WHOQOL-BREF Taiwan version)—global increase, Knowledge of renal function protection (checklist made by investigators)—no change, Physiological measures: Creatinine—no change, BUN—no change, GFR—no change, Body weight—no change, Muscle weight—no change, % Body fat—no change, Waist-to-hip ratio—significant decrease in E group, BMI—significant decrease in E group, BP—no change	
Gutiérrez-Vilaplana et al (2009)	PP CKD 4–5	41 Age: 60.56	General CKD knowledge, Diet/nutrition, Physical activity, Modalities, Other (ie, psychosocial—impact of CKD family, finances, social life)	Nurse, physician, technician, three expert patients	Print, Face to face	‘Teaching group’: Six 2-hour monthly group education sessions, Booklet for future reference	Duration: 6 months	Comparator: none	Cognitions: Anxiety—decreased, Fear—more control of fear response, Stress—decreased	
Wu et al (2009)	QE CKD 3–5	573 (E=287, Cohort=286) Age: 63.4	General CKD knowledge, Diet/nutrition, Medication, Lifestyle	Nurse, social worker, dietician, HD/PD patient volunteers, physicians	Face to face	‘Multidisciplinary predialysis education (MPE)’: Individual lectures, content-based on CKD stage, Dietary counselling biannually	Duration: 12 months	Comparator: standard care	Health status: ESRD warranting RRT—13.9% in E group vs 43% in C group, All cause mortality—1.7% in E group vs 10.1% in C group, Healthcare: Hospitalisation—2.8% E group versus 16.4% in C group	
Study and year (Reference)	Design	Target population	Study size Age (years)	Intervention topic(s)	Provider(s)	Delivery format	Description of intervention	Study outcomes	Study results	
---------------------------	--------	-------------------	-----------------------	-----------------------	-------------	-----------------	----------------------------	----------------	--------------	
Wierdsma et al (2011)	QE	CKD	54 (E=28, C=26) Age: 55–59	Medication	Nurse practitioner	Face to face Print	‘Motivational interviewing’:			
Counselling by nurse practitioner (in addition to care by nephrologist) using motivational interviewing										
Using the ‘Long-Term Medication Behaviour Self-Efficacy Scale (LTMBSES)’—areas with score<5 were identified and then up to five areas (picked by patient) were discussed and solutions and goals were set										
Duration: 6 months										
Comparator: standard care	Cognitions:									
LTMBSES—difference in mean self-efficacy score at post-test										
Aguilera Florez et al (2012)	Obs	CKD	19 Age: 58	General CKD knowledge						
Diet/nutrition										
Symptom management										
Physical activity										
Modalities										
Other (ie, understanding and compliance with SM)	Nurse, physiotherapist, dietician, pharmacist, psychologist, coordinators, nephrologist, patient mentors	Face to face	‘Escuela ERCA’:							
7.5 hour multidisciplinary group education sessions held biweekly										
Up to 10 patients per group with family members										
Didactic plus discussion format										
Duration: not reported										
Comparator: none	Cognitions:									
Knowledge—increased										
Individual outcomes:										
Satisfaction in group therapy										
Choi et al (2012)	QE	CKD 1–5	61 (E=31, C=30) Age: 53.93–58.33	General CKD knowledge						
Diet/nutrition										
Modalities										
Other (ie, understanding and compliance with SM)	Physician, nurse, dietician	Face to face PowerPoint slides	‘Face-to-face SM programme’:							
90 min lecture with slides (3–5 people/group)										
20 min individual consult										
1 week later individual reinforcement education and consultation										
Duration: two sessions										
Comparator: general maintenance	Cognitions:									
Knowledge of CKD scale—increased in E group										
Behaviours:										
Self-care practice scale for patients with CKD—no difference between E group and C group but did increase overtime for both groups										
Physiological measures:										
BUN/Creatinine—no change										
Na/K—no change										
Ca/PO4—no change										
Haemoglobin—no change										
GFR—no change										
Kao et al (2012)	QE	CKD 1–4	94 (E=45, C=49) Age: 73.17	General CKD knowledge						
Physical activity	Instructor	Print Face to face Telephone	‘Exercise education intervention’:							
Manual										
1.5-hour exercise/health education course										
DRAFTED exercise contract and exercise programmes										
Follow up phone calls										
1x/month for patients in maintenance phase										
2x/month for patients in action/prep stages										
4x/month for patients at pre-contemplation/contemplation stages										
Goal: workout 3–5×/week × 30 min for 3 months										
Duration: 4 months										
Comparator: standard care	Behaviours:									
Exercise behaviour—improved in E group										
Cognitions:										
Depression—score decreased (ie, improved) in E group										
Symptom management:										
Fatigue—score decreased in E group										
Study and year (Reference)	Design	Target population	Study size Age (years)	Intervention topic(s)	Provider(s)	Delivery format	Description of intervention	Study outcomes	Study results	
---------------------------	--------	-------------------	-----------------------	-----------------------	-------------	----------------	-----------------------------	----------------	----------------	
Diamantidis et al (2013)10	PP	CKD 3-5	108 Age: 64	Diet/nutrition, Medication	Online tool	Website	'Disease-specific safety information': Safe kidney care website—patient/family member and provider portals; Education modules displayed in circular distribution to avoid prioritization of topics Duration: not applicable Comparator: none	Intervention specific: First entry into website, ~30% of participants entered within 365 days (total follow-up period) Average dwell time on the website ~ 7 min Modules were ranked by frequency of selection: The three most frequently visited pages were 'Renal function calculator', 'Pills to avoid' and 'Foods to avoid'		
Kazawa et al (2013)11	PP	CKD 3-4 (diabetic nephropathy)	30 Age: 67	Diet/nutrition, Medications, Physical activity, Comorbidities, Other (ie, stress management, identify supporters (family) & how they can contribute, goal setting)	Nurse	Print, Face to face, Telephone, Email	'SM skills programme': Textbook, Daily journal, Four hour face-to-face sessions Q2 weeks at outpatient clinic or in home, Two 30min phone or email sessions Q1 month, Then Q1 month phone calls Duration: 6 months Comparator: none	Individual outcomes: QOL—self-efficacy and SM behaviours improved Physiological measures: Renal function—no change Haemoglobin A1c—decreased post intervention		
Lin et al (2013)10	PP	CKD 1-3a	37 Age: 67.42	Other (ie, self-regulation/ selfmanagement topics)	Nurse	Print, Face to face, Video	'SM programme': Self-monitoring workbook, 5week SM programme, Weekly 90min face-to-face group sessions (6-8 patients), CKD SM video about self-regulation Duration: 5 weeks Comparator: none	Cognitions: CKD self-efficacy—increased Behaviours: CKD SM—no change Physiological measures: Creatinine—marginally significant decrease GFR—remained stable		
Murali et al (2013)12	PP	CKD 4	12 Age: 68	Diet/nutrition	Online tool	Website	' Dietary assessment and evaluation tool': Self-administered, Obtains 24hours food history, Then evaluates diet based on KDOQI GL, Then share general tips for success, A report is generated for the nephrologist to guide discussion with patients Duration: single exposure Comparator: none	Cognitions: Change in patients' self-efficacy to adhere to KDOQI GL after single exposure to the tool—three worsened, three improved, six no change Intervention specific: Tool acceptability—well accepted Congruence of patient and provider attitudes—incognizence in 4/10 cases where provider states used report but patient doesn’t verify		
Nauta et al (2013)13	PP	CKD	22 Age: 55.2-59.8	Diet/nutrition, Physical activity, Lifestyle	Online tool	Print, Website	'Lifestyle management tool': 33-page quick start guide provided, Patients had access to site for 4 months—patient choice to frequency of visits to website Duration: 4months Comparator: none	Cognitions: Self-efficacy—limited effectiveness Behaviours: SM—limited effectiveness		
Table 4 Continued										

References:
1. Donald M, et al. BMJ Open 2018;8:e019814. doi:10.1136/bmjopen-2017-019814
2. Diamantidis et al (2013)
3. Kazawa et al (2013)
4. Lin et al (2013)
5. Murali et al (2013)
6. Nauta et al (2013)
| Study and year (Reference) | Design | Target population | Study size | Age (years) | Intervention topic(s) | Provider(s) | Delivery format | Description of intervention | Study outcomes | Study results |
|---------------------------|--------|-------------------|------------|-------------|--------------------|-------------|----------------|----------------------------|----------------|--------------|
| Thomas and Bryar (2013) | MM | Diabetic nephropathy (DM+microalbuminuria) | 176 (E=116, C=60) | Age: NR | General CKD knowledge, Comorbidities, Lifestyle | NR | Print, DVD | "SM package": Written materials, 20min DVD, Self-monitoring diary, Fridge magnet with key messages, BP monitor if needed | Duration: one session | Comparator: standard care |
| Walker et al (2013) | PP | CKD with high risk of Progression+DM2+HTN + albuminuria | 52 | Age: 57.5 | Diet, nutrition, Medication, Symptom management, Physical activity, Lifestyle, Comorbidities, Other (ie, compliance) | Nurse, nurse practitioner | Print, Face to face | "Nurse practitioner intervention in primary care setting": SM booklet, Initial assessment of lifestyle behaviours, SM practice, health/medication knowledge, Individual education, Individualised patient management plan given at end of 12 weeks, Q2 week 30 min long assessments and review x 12 weeks | Duration: 12 weeks | Comparator: none |
| Wright Nurses et al (2013) | QE | CKD 1–5 | 566 (E=155, Cohort=401) | Age: 57 | General CKD knowledge, Diet, nutrition, Medication, Physical activity, Lifestyle, Comorbidities, Other (ie, compliance) | Nephrology fellows | Print, Face to face | "Physician-delivered education tool": 1-page intervention worksheet delivered during clinic visits—take 1–2min to administer | Duration: one session | Comparator: "historical group"—who developed sheet |
| Enworom et al (2015) | QE | CKD 1–4 | 49 (E=25, C=24) | Age: 73 | General CKD knowledge, Symptoms management, Modalities, Comorbidities, Other (ie, advanced care planning) | Nurse practitioner, physician assistants, clinical nurse specialist | Face to face | "Kidney Disease Education (KDE)" six education classes on one or one group basis | Duration: unclear | Comparator: no KDE |
| Walker et al (2014) | PP | CKD with high risk of Progression+DM2+HTN + albuminuria | 52 | Age: 57.5 | See Walker et al | Nurse, nurse practitioner | See Walker et al | See Walker et al | | |
| Walker et al (2018) | PP | CKD with high risk of Progression+DM2+HTN + albuminuria | 52 | Age: 57.5 | See Walker et al | Nurse, nurse practitioner | See Walker et al | See Walker et al | | |
| Enworom et al (2015) | QE | CKD 1–4 | 49 (E=25, C=24) | Age: 73 | General CKD knowledge, Symptoms management, Modalities, Comorbidities, Other (ie, advanced care planning) | Nurse practitioner, physician assistants, clinical nurse specialist | Face to face | "Kidney Disease Education (KDE)" six education classes on one or one group basis | Duration: unclear | Comparator: no KDE |

Physiological measures:
- BP—no statistically significant difference
- Haemoglobin A1c—no change
- BMI—no change

Behaviours:
- SM (Partners in Health (PH) instrument)—had change in certain domains

Cognitions:
- Kidney specific knowledge—associated with increase in knowledge
- Feasibility of intervention—physicians found it useful and efficient but had concern regarding some of the talking points

Physiological measures:
- Albuminuria—improved
- GFR—no change
- 5y absolute cardiovascular risk—improved
- BP—improved
- Total cholesterol—improved
- Haemoglobin A1c—improved

Cognitions:
- Knowledge of medications/conditions improved

Behaviours:
- Medication adherence, adherence to healthy lifestyle improved

Physiological measures:
- GFR decline—slower in E group
- Haemoglobin—E group maintained more stable level compared with non-KDE group who lost 1 g/L from baseline

Cognitions:
- Kidney disease knowledge (KiKS survey)—no change
Table 4

Study and year (Reference)	Design	Target population	Study size	Age (years)	Intervention topic(s)	Provider(s)	Delivery format	Description of intervention	Study outcomes	Study results	
Vann et al (2015)	PP	CKD 3b-4	9	Age: mean NR	General CKD knowledge, Diet/nutrition, Symptom management, Modalities, Comorbidities, Other (ie, self-care management strategies and behaviours)	Nurse practitioner	Print, Website, Face to face, White board	'CKD Education Programme'	Cognitions: CHD-related knowledge—improved		
Cupisiti et al (2016)	Obs	CKD 3b-5	823	Age: 69–74	Diet/nutrition	Dietician	Face to face	Nutritional Treatment	Physiological measures: Phosphaturia—lower in E group	Healthcare:	
Ong et al (2016)	PP	CKD 4-5	45	Age: 59.4	Medications	Mobile application	Smartphone application	'Smartphone based SM system'	Physiological measures: BP—change in home BP readings	Intervention specific: Medications—127 medication discrepancies identified	
Penalosa-Ramos et al (2016)	Obs	HTN (BP>130/80)+CKD stage three or CVA/TIA or DM or MI or angina or CAGB	NR Age: NA	See McManus et al	General practitioner, patient	See McManus et al	See McManus et al	Healthcare: Cost effective—yes			

BMI, body mass index; BP, blood pressure; C, control; CALD, culturally and linguistically diverse; CHD, coronary heart disease; CHEERS, Controlling Hypertension: Education and Empowerment Renal Study; CKD, chronic kidney disease; CVA, cerebrovascular accident; DBP, diastolic blood pressure; DM, diabetes mellitus; E, experimental; eGFR, estimated glomerular filtration rate; ESA, erythropoiesis stimulating agents; ESRD, end stage renal disease; HTN, hypertension; MM, mixed methods; NR, not reported; Obs, observational; PP, pre-post intervention; QE, quasi-experimental; QOL, quality of life; RCT, randomised controlled trial; RRT, renal replacement therapy; SBP, systolic blood pressure; SM, self-management; TIA, transient ischaemic attack.
Table 5 Summary of qualitative studies

Study (Reference)	Target population	Number of participants	Aim/Intervention	Methods	Summary of findings
Blickem et al.²¹	CKD stage 3	20	‘To explore the experience of patient-led assessment for network support (PLANS) from the perspectives of participants and telephone support workers.’ (p. 1)	Interviews and focus groups: no analytic methodology discussed	► Mixed reception from participants
► Formulation of ‘health’ in everyday life (ie, participants unaware of having CKD or its significance—confused about relevance of PLANS)					
► Trajectories and tipping points (ie, engagement in PLANS depended on participants’ stage of life—either could influence trying new things or disrupt routines)					
► Trust in networks (ie, unwillingness to seek support, intrusive, others saw improved awareness/access to local resources; tailored support)					
Heiden et al.⁶⁹	CKD predialysis, dialysis, transplant	5	To identify participant's perspective regarding a ‘web application prototype to help make decisions regarding diet restrictions and phosphate binder dosage.’ (p. 544)	Interviews: no analytic methodology discussed	► Benefits:
– Education tool increased insight and understanding					
– Assisted in tracking and choosing best food alternative					
– Decision support for binder dosage					
► Limitations:					
– Targeted users familiar with using computers					
– Users had different information needs					
– One-way communication					
– Need self-care resources in place to carry out recommendations					
Jansen et al.⁷⁰	CKD stages 4–5	7	Feasibility of ‘a psychosocial intervention to assist ESRD patients and their partners in integrating renal disease and treatment into daily activities, primary work and thereby increasing autonomy.’ (p. 280)	Interviews: no analytic methodology discussed	► Benefits:
– Group included predialysis and dialysis patients
– Leaders addressed individual needs, situations and questions
► Limitations:
– Patient preferences for information differed by stages of CKD
– Patient schedules need to be considered when intervention offered
– Consider offering intervention shortly after diagnosis of CKD |

Continued
Table 5: Continued

Study (Reference)	Target population	Number of participants	Aim/Intervention	Methods	Summary of findings
Thomas et al³³	Type 1 or 2 DM with microalbuminuria	5 (3 face-to-face interviews)	To evaluate ‘whether patients understood the content of the pack and whether they could make any recommendations.’ (p. 275) Intervention: see table 4 Thomas et al³⁰	Questionnaire and interview: no analytic methodology discussed	► Mixed responses ► DVD—content distressing and took effort to use ► Written material useful, but need to elaborate on seriousness of disease ► Package helped change behaviour—stop smoking, monitoring DM
Williams et al²²	CKD stages 2–4 with diabetes and cardiovascular disease	26	‘Examine the perceptions of a group of CALD participants with comorbid diabetes, chronic kidney disease and cardiovascular disease … using an intervention to influence their medication self-efficacy.’ (p. 1271) Intervention: see table 4 Williams et al⁴³	Interviews: Ritchie and Spencer thematic approach	► Attitudes towards taking medications (ie, appreciate importance of taking; medication burden; concern with the number of medications, effectiveness and side effects of medications) ► Having to take medications (ie, behaviours and family support to assist taking medications; forgetting and non-adherent; motivation to take to prevent becoming worse) ► Impediments to chronic illness medication self-efficacy (ie, lack of knowledge regarding medication; strong faith in physician’s advice; multiple medications too overwhelming; cost)
Williams et al²²	CKD stages 2–4, with coexisting diabetes and hypertension	39	Individual perceptions of a ‘telephone call using a motivational interviewing approach to improve medication adherence in participants with coexisting diabetes, CKD and hypertension.’ (p. 472) Intervention: see table 4 Williams et al⁴²	Interviews: Ritchie and Spencer thematic approach	► Importance of health (ie, determined the degree of health behaviour; altered medications or use of complementary medicine to control health) ► Perceived seriousness of disease (ie, thinking about mortality; comorbidities complicate care; acute illness with chronic conditions) ► Perceived threat of disease (ie, want to learn about disease control earlier; symptom management; looking for reasons to explain why ill)

CKD, chronic kidney disease; DM, diabetes mellitus.
protocols, changing health behaviours, shared decision making with healthcare providers), along with evaluation of the cost-effectiveness and resource utilisation.

The majority of studies did not identify a single primary outcome but rather multiple outcomes. We found that physiological outcomes (ie, blood pressure) were the most commonly reported and symptoms were the least mentioned. These findings demonstrate the lack of patient-driven outcomes that may be important to them, for example, a patient’s individual health goals across a variety of dimensions (ie, symptoms, mobility, social and role function in the family or community) that could possibly maximise their quality of life. Work by Tong et al (2015) highlights this concept, where patients with CKD are more interested in treatment choices that influence non-traditional clinical outcomes such as impact on family and lifestyle. A holistic approach should be considered where mental and psychosocial outcomes are investigated, rather than just physiological endpoints.

Our findings from the qualitative studies looking at patient perspectives are inconclusive because of the limited number of studies and the heterogeneity of the interventions. Havas et al similarly reported a lack of research related to patient perspectives on self-management in CKD. There is also a lack of qualitative studies overall, which could provide valuable information regarding attitudes and challenges of self-management interventions from the perspective of both providers and patients.

Strengths of our study include the comprehensive nature of our search, inclusion of all study designs and consideration of self-management features that have not been investigated previously. We also engaged patient partners in determining the research question, advising us on search terms, grey literature sources and reviewing the results to ensure we captured and reported the data meaningfully. One of the main limitations was the challenge in synthesising the data given its heterogeneous nature. To address this challenge, the two reviewers used two standardised tools TIDieR and the EPOC tool to independently extract data and independently coded the outcomes into categories using the revised Self-and Family Management Framework. Also, we were unable to assess the self-management outcomes in terms of sustained changes in behaviour, physiological and health status. A final limitation was our inability to draw conclusions regarding the most effective self-management intervention for adult patients with CKD, keeping in mind that our aim was to review the breadth of the current literature and present the gaps that exist.

Overall, we found considerable variation in self-management interventions for adults with CKD with respect to their content and delivery as well as the outcomes assessed and results obtained. Major gaps in the literature include the lack of patient engagement in the design of the self-management intervention, along with the lack of a behavioural change theory to inform their design. Our future research will incorporate intervention frameworks to codevelop and evaluate a self-management intervention based on a sound behavioural theory involving our national patient partners, specialists, primary care providers and decision makers.

Author affiliations

1Department of Medicine, University of Calgary, Calgary, Canada
2Interdisciplinary Chronic Disease Collaboration, Calgary, Canada
3Department of Community Health Sciences, University of Calgary, Calgary, Canada
4Daphne Cockwell School of Nursing, Ryerson University, Toronto, Canada
5Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
6Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada
7Can-SOLVE CKD Network, Patient Partner, Pouce Coupe, Canada
8Sydney School of Public Health, The University of Sydney, Sydney, New South Wales
9Department of Family and Community Medicine, University of Toronto, Toronto, Canada
10Lawson Health Research Institute, London, UK
11Centre for Mental Health, University Health Network, Toronto, Canada
12Department of Psychiatry, University of Toronto, Toronto, Canada
13Department of Medicine, McMaster University, Ontario, Canada
14Department of Pediatrics, University of Calgary, Calgary, Canada

Acknowledgements Diane Lorenzetti for providing support and direction regarding search strategies. We would also like to thank Sarah Gil in assisting us with acquiring full text studies.

Contributors All authors contributed to the research idea and study design. MD and BKK acquired the data. MD, BKK and BRH completed data analysis and interpretation. All authors contributed important intellectual content during manuscript drafting and revisions. They also read and approved the final manuscript. BRH and PR provided mentorship.

Funding MD is a recipient of the 2016 Alberta SPOR Graduate Studentships in Patient-Oriented Research. Alberta SPOR Graduate Studentships in Patient-Oriented Research are jointly funded by Alberta Innovates and the Canadian Institute of Health Research. BRH is supported by the Roy and Vi Baay Chair in Kidney Research, Canadian Institutes of Health Research’s Strategy for Patient-Oriented Research (SPOR).

Disclaimer The funding organisations had no role in the design and conduct of the study; data collection, analysis and interpretation or preparation, review or approval of the manuscript.

Competing interests None declared.

Patient consent Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement The following data will be available, study protocol and analysis plan, to anyone who wishes to access them and will be available immediately following publication from the corresponding author.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

1. Arora P, Vasa P, Brenner D, et al. Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey. CMAJ 2013;185:e417–23.
29. Vann JC, Hawley J, Wegner S, et al. Nursing intervention aimed at improving self-management for persons with chronic kidney disease in North Carolina Medicaid: A pilot project. *Nephrol Nurs J* 2015;42:239–55.

30. Mondya V, Liu MF, Norris AE. Improving the care of patients with chronic kidney disease using group visits: a pilot study to reflect an emphasis on the patients rather than the disease. *Nephrol Nurs J* 2016;43:207–22.

31. Kazu K, Moriyama M. Effects of a self-management skills-acquisition program on pre-dialysis patients with diabetic nephropathy. *Nephrol Nurs J* 2013;40:141–8.

32. Nauta J, van der Boog J, Slegten J, 2013. Web-based lifestyle management for chronic kidney disease. eTELEMED 2013, The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, Nice, France 14.

33. Thomas N, Brier R. An evaluation of a self-management package for people with diabetes at risk of chronic kidney disease. *Prim Health Care Res Dev* 2013;14:270–80.

34. Binik YM, Devins GM, Barre PE, et al. Live and learn: patient education delays the need to initiate renal replacement therapy in end-stage renal disease. *J Nerv Ment Dis* 1993;181:371–6.

35. Gillis BP, Caggiaia AW, Chiacciati AT, et al. Nutrition intervention program of the Modification of Diet in Renal Disease Study: a self-management approach. *J Am Diet Assoc* 1995;95:1288–94.

36. Devins GM, Mendelsohn DC, Barre PE, Binik YM, et al. Predialysis psychoeducational intervention and coping styles influence time to dialysis in chronic kidney disease. *Am J Kidney Dis* 2003;42:693–703.

37. Devins GM, Mendelsohn DC, Barre PE, et al. Predialysis psychoeducational intervention extends survival in CKD: a 20-year follow-up. *Am J Kidney Dis* 2005;45:1088–98.

38. Campbell KL, Ash S, Bauer JD. The impact of nutrition intervention on quality of life in pre-dialysis chronic kidney disease patients. *Clin Nutr* 2008;27:537–44.

39. Chen SH, Tsai YF, Sun CY, et al. The impact of self-management support on the progression of chronic kidney disease: a prospective randomized controlled trial. *Nephrol, Dialysis. Transplantation* 2011;26:3560–6.

40. Flesher M, Woo P, Chiu A, et al. Self-management and biomedical outcomes of a cooking, and exercise program for patients with chronic kidney disease. *J Ren Nutr* 2011;21:188–95.

41. Joboshi H, Oka M, Takahashi S, et al. Effects of the EASE program in chronic kidney disease education: A randomized controlled trial to evaluate self-management. *J Jpn Acad Nurs Sci* 2012;22:21–9.

42. Williams A, Manias E, Walker R, et al. A multifactorial intervention to improve blood pressure control in co-existing diabetes and kidney disease: a feasibility randomized controlled trial. *J Adv Nurs* 2012;68:2515–25.

43. Williams AM, Liew D, Gock H, et al. Working with CALD groups: testing the feasibility of an intervention to improve medication self-management in people with kidney disease, diabetes, and cardiovascular disease. *Renal Society of Australasia Journal* 2012;8:62–9.

44. de Brito-Ashurst I, Perry L, Sanders TA, et al. The role of salt intake and salt sensitivity in the management of hypertension in South Asian people with chronic kidney disease: a randomised controlled trial. *Heart* 2013;99:1256–60.

45. Paes-Barreto JG, Silva MI, Qureshi AR, et al. Can renal nutrition education improve adherence to a low-protein diet in patients with stages 3 to 5 chronic kidney disease? *J Ren Nutr* 2013;23:164–71.

46. Blakeman T, Blickman C, Kennedy G, et al. A multifactorial intervention on quality of life in pre-dialysis chronic kidney disease patients. *J Clin Nurs* 2013;14:1269–79.

47. Williams A, Manias E. Exploring motivation and confidence in taking prescribed medication in coexisting diseases: a qualitative study. *J Clin Nurs* 2014;23:471–81.

48. Walker RC, Marshall MR, Polaschek NR. A prospective clinical trial of specialist renal nursing in the primary care setting to prevent progression of chronic kidney: a quality improvement report. *BMC Fam Pract* 2014;15:155.

49. Penaloza-Ramos MC, Jowett S, Mant J, et al. Cost-effectiveness of self-management of blood pressure in hypertensive patients over 70 years with suboptimal control and established cardiovascular disease or additional cardiovascular risk diseases (TASMIN-SR). *Eur J Prev Cardiol* 2016;23:902–12.

50. Byrne J, Khunti K, Stone M, et al. Feasibility of a structured group education session to improve self-management of blood pressure in people with chronic kidney disease: an open randomised pilot trial. *BMJ Open* 2011;1:e000381.

51. Kao Yu-Hsiu, Huang Yi-Ching, Chen Pei-Ying, Kao Y, Huang Y, Chen P, et al. The effects of exercise education intervention on the exercise behaviour, depression, and fatigue status of chronic kidney disease patients. *Health Educ* 2012;11:472–84.

52. Murali S, Abraham R. Internet-based tools to assess diet and provide feedback in chronic kidney disease stage IV: a pilot study. *J Ren Nutr* 2013;23:e33–42.
52. Klang B, Björvell H, Berglund J, et al. Predialysis patient education: effects on functioning and well-being in uraemic patients. J Adv Nurs 1998;28:36–44.

53. Cupisti A, Morelli E, Meola M, et al. Vegetarian diet alternated with conventional low-protein diet for patients with renal failure. J Ren Nutr 2002;12:32–7.

54. Gutiérrez Vilaplana JM, Zampieron A, Craver L, et al. Evaluation of psychological outcomes following the intervention ‘teaching group’: study on predialysis patients. J Ren Care 2009;35:159–64.

55. Pagels A, Wang M, Magnusson A, et al. Using patient diary in chronic illness care: Evaluation of a tool promoting self-care. Vard I Norden 2008;28:49–52.

56. Yen M, Huang JJ, Teng HL. Education for patients with chronic kidney disease in Taiwan: a prospective repeated measures study. J Clin Nurs 2008;17:2927–34.

57. Gutiérrez Vilaplana Josep M*, Samsó Piñol E, Cosí Ponsa J, et al. Evaluación de la intervención enseñanza: grupo en la consulta de enfermedad renal crónica avanzada. Revista de la Sociedad Española de Enfermería Nefrológica 2007;10:280–5.

58. Wu IW, Wang SY, Hsu KH, et al. Multidisciplinary predialysis education decreases the incidence of dialysis and reduces mortality: a controlled cohort study based on the NKF/DOQI guidelines. Nephrol Dial Transplant 2009;24:3426–33.

59. Wiersma J, van Zulien A, van der Bijl J. Self-efficacy and long-term medication use in patients with chronic kidney disease. J Ren Care 2011;37:158–66.

60. Aguilera Flor M, Masa J, Ponsa J, et al. Multidisciplinary education of patients and their relatives. Enfer Nefrol 2012;15:14–21.

61. Choi ES, Lee J. Effects of a face-to-face self-management program on knowledge, self-care practice and kidney function in patients with chronic kidney disease before the renal replacement therapy. J Korean Adv Nurs 2012;42:1070–8.

62. Diamantidis CJ, Fink W, Yang S, et al. Directed use of the internet for health information by patients with chronic kidney disease: prospective cohort study. J Med Internet Res 2013;15:e251.

63. Lin CC, Tsai FM, Lin HS, et al. Effects of a self-management program on patients with early-stage chronic kidney disease: a pilot study. Appl Nurs Res 2013;26:151–6.

64. Walker R, Marshall MR, Polaschek NR. Improving self-management in chronic kidney disease: a pilot study. Renal Society of Australasia Journal 2013;9:116–25.

65. Wright Nunes J, Greene JH, Wallston K, et al. Pilot study of a physician-delivered education tool to increase patient knowledge about CKD. Am J Kidney Dis 2013;62:23–32.

66. Enworom CD, Tabi M. Evaluation of kidney disease education on clinical outcomes and knowledge of self-management behaviors of patients with chronic kidney disease. Nephrol Nurs J 2015;42:363–72.

67. Cupisti A, D’Alessandro C, Di Iorio B, et al. Nutritional support in the tertiary care of patients affected by chronic renal insufficiency: report of a step-wise, personalized, pragmatic approach. BMC Nephrol 2016;17:124.

68. Ong SW, Jassal SV, Miller JA, et al. Integrating a Smartphone-Based Self-Management System into usual care of advanced CKD. Clin J Am Soc Nephrol 2016;11:1054–62.

69. Heiden S, Buus AA, Jensen MH, et al. A diet management information and communication system to help chronic kidney patients cope with diet restrictions. Stud Health Technol Inform 2013;192:543–7.

70. Jansen DL, Heijmans M, Rijken M, et al. The development of and first experiences with a behavioural self-regulation intervention for end-stage renal disease patients and their partners. J Health Psychol 2011;16:274–83.

71. Brummel-Smith K, Butler D, Frieder M, et al. The American Geriatrics Society Expert Panel on Person-Centered, C. (2016). Person-centered care: a definition and essential elements. J Am Geriatr Soc 2016;64:15–18.

72. Tong A, Sainsbury P, Chadban S, et al. Patients’ experiences and perspectives of living with CKD. Am J Kidney Dis 2009;53:689–700.

73. Hutchinson TA, Hutchinson N, Arnaert A. Whole person care: encompassing the two faces of medicine. CMAJ 2009;180:845–6.

74. Trisolini M, Roussel A, Zerhusen E, et al. Activating chronic kidney disease patients and family members through the Internet to promote integration of care. Int J Integr Care 2004;4:e17.

75. Ong SW, Jassal SV, Porter E, et al. Using an electronic self-management tool to support patients with chronic kidney disease (CKD): a CKD clinic self-care model. Semin Dial 2013;26:195–202.