Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping

Jesse Dodge 1 2
Gabriel Ilharco 3
Roy Schwartz 2 3
Ali Farhadi 2 3 4
Hannaneh Hajishirzi 2 3
Noah Smith 2 3

Abstract

Fine-tuning pretrained contextual word embedding models to supervised downstream tasks has become commonplace in natural language processing. This process, however, is often brittle: even with the same hyperparameter values, distinct random seeds can lead to substantially different results. To better understand this phenomenon, we experiment with four datasets from the GLUE benchmark, fine-tuning BERT hundreds of times on each while varying only the random seeds. We find substantial performance increases compared to previously reported results, and we quantify how the performance of the best-found model varies as a function of the number of fine-tuning trials. Further, we examine two factors influenced by the choice of random seed: weight initialization and training data order. We find that both contribute comparably to the variance of out-of-sample performance, and that some weight initializations perform well across all tasks explored. On small datasets, we observe that many fine-tuning trials diverge part of the way through training, and we offer best practices for practitioners to stop training less promising runs early. We publicly release all of our experimental data, including training and validation scores for 2,100 trials, to encourage further analysis of training dynamics during fine-tuning.

1. Introduction

The advent of large-scale self-supervised pretraining has contributed greatly to progress in natural language processing (Devlin et al., 2019; Liu et al., 2019; Radford et al., 2019). In particular, BERT (Devlin et al., 2019) advanced accuracy on natural language understanding tasks in popular NLP benchmarks such as GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019), and variants of this model have since seen adoption in ever-wider applications (Schwartz et al., 2019; Lu et al., 2019). Typically, these models are first pretrained on large corpora, then fine-tuned on downstream tasks by reusing the model’s parameters as a starting point, while adding one task-specific layer trained from scratch. Despite its simplicity and ubiquity in modern NLP, this process has been shown to be brittle (Devlin et al., 2019; Phang et al., 2018; Zhu et al., 2019; Raffe et al., 2019), where fine-tuning performance can vary substantially across different training episodes, even with fixed hyperparameter values.

In this work, we investigate this variation by conducting a series of fine-tuning experiments on four tasks in the GLUE benchmark (Wang et al., 2018). Changing only training data order and the weight initialization of the fine-tuning layer—which contains only 0.0006% of the total number of parameters in the model—we find substantial variance in performance across trials.

We explore how validation performance of the best found model varies with the number of fine-tuning experiments, finding that, even after hundreds of trials, performance has not fully converged. With the best found performance across...
We present evidence that some seeds are consistently better weights. These results demonstrate how model comparisons (Liu et al., 2019) and ALBERT (Lan et al., 2019). Moreover, on RTE (Wang et al., 2018) and CoLA (Warstadt et al., 2019), we observe a 7% (absolute) improvement over previous results with the same model. It is worth highlighting that in our experiments only random seeds are changed—never the fine-tuning regime, hyperparameter values, or pretrained weights. These results demonstrate how model comparisons that only take into account reported performance in a benchmark can be misleading, and serve as a reminder of the value of more rigorous reporting practices (Dodge et al., 2019).

To better understand the high variance across fine-tuning episodes, we separate two factors that affect it: the weight initialization for the task-specific layer; and the training data order resulting from random shuffling. The contributions of each of these have previously been conflated or overlooked, even by works that recognize the importance of multiple trials or random initialization (Phang et al., 2018). By conducting experiments with multiple combinations of random seeds that control each of these factors, we quantify their contribution to the variance across runs. Moreover, we present evidence that some seeds are consistently better than others in a given dataset for both weight initializations and data orders. Surprisingly, we find that some weight initializations perform well across all studied tasks.

By frequently evaluating the models through training, we empirically observe that worse performing models can often be distinguished from better ones early in training, motivating investigations of early stopping strategies. We show that a simple early stopping algorithm (described in Section 5) is an effective strategy for reducing the computational resources needed to reach a given validation performance and include practical recommendations for a wide range of computational budgets.

To encourage further research in analyzing training dynamics during fine-tuning, we publicly release all of our experimental data. This includes, for each of the 2,100 fine-tuning episodes, the training loss at every weight update, and validation performance on at least 30 points in training.

Our main contributions are:

- We show that running multiple trials with different random seeds can lead to substantial gains in performance on four datasets from the GLUE benchmark. Further, we present how the performance of the best-found model changes as a function of the number of trials.
- We investigate weight initialization and training data order as two sources of randomness in fine-tuning by varying random seeds that control them, finding that 1) they are comparable as sources of variance in performance; 2) in a given dataset, some data orders and weight initializations are consistently better than others; and 3) some weight initializations perform well across multiple different tasks.
- We demonstrate how a simple early stopping algorithm can effectively be used to improve expected performance using a given computational budget.
- We release all of our collected data of 2,100 fine-tuning episodes on four popular datasets from the GLUE benchmark to incentivize further analyses of fine-tuning dynamics.

2. Methodology

Our experiments consist of fine-tuning pretrained BERT to four downstream tasks from the GLUE benchmark. For a given task, we experiment multiple times with the same model using the same hyperparameter values, while modifying only the random seeds that control weight initialization (WI) of the final classification layer and training data order (DO). In this section we describe in detail the datasets and settings for our experiments.

2.1. Data

We examine four datasets from the GLUE benchmark, described below and summarized in Table 2. The data is publicly available and can be downloaded from the repository jiant.1 Three of our datasets are relatively small (MRPC, RTE, and CoLA), and one relatively large (SST). Since all datasets are framed as binary classification, the model structure for each is the same, as only a single classification layer with two output units is appended to the pretrained BERT.

Microsoft Research Paraphrase Corpus (MRPC; Dolan & Brockett, 2005) contains pairs of sentences, labeled as either nearly semantically equivalent, or not. The dataset is evaluated using the average of F_1 and accuracy.

Recognizing Textual Entailment (RTE; Wang et al., 2018) combines data from a series of datasets (Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009). Each example in RTE is a pair of sentences, and the task is to predict whether the first (the premise) entails the second (the hypothesis).

Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2019) is comprised of English sentences labeled as

1https://github.com/nyu-mll/jiant
Table 2. The datasets used in this work, which comprise four out of nine of the tasks in the GLUE benchmark (Wang et al., 2018).

evaluation metric	MRPC	RTE	CoLA	SST
majority baseline	Acc./F1	Acc.	MCC	Acc.
# training samples	3.7k	2.3k	8.6k	67k
# validation samples	409	277	1,043	873

the datasets used in this work, which comprise four out of nine of the tasks in the GLUE benchmark (Wang et al., 2018).

2.2. Fine-tuning

Following standard practice, we fine-tune BERT (BERT-large, uncased) for three epochs (Phang et al., 2018; Devlin et al., 2019). We fine-tune the entire model (340 million parameters), of which the vast majority start as pretrained weights and the final layer (2048 parameters) is randomly initialized. The weights in the final classification layer are initialized using the standard approach used when fine-tuning pretrained transformers like BERT, RoBERTa, and ALBERT (Devlin et al., 2019; Liu et al., 2019; Lan et al., 2019): sampling from a normal distribution with mean 0 and standard deviation 0.02. All experiments were run on P100 GPUs with 16 GB of RAM. We train with a batch size of 16, a learning rate of 0.00002, and dropout of 0.1; the open source implementation, pretrained weights, and full hyperparameter values and experimental details can be found in the HuggingFace transformer library (Wolf et al., 2019).

Each experiment is repeated N^2 times, with all possible combinations of N distinct random seeds for WI and N for DO. For the datasets MRPC, RTE, and CoLA, we run a total of 625 experiments each ($N = 25$). For the larger SST, we run 225 experiments ($N = 15$).

3. The large impact of random seeds

Our large set of fine-tuning experiments evidences the sizable variance in performance across trials varying only random seeds. This effect is especially pronounced on the smaller datasets; the validation performance of the best-found model from multiple experiments is substantially higher than the expected performance of a single trial. In particular, in Table 1 we report the performance of the best model from all conducted experiments, which represents substantial gains compared to previous work that uses the same model and optimization procedure. On some datasets, we observe numbers competitive with more recent models which have improved pretraining regimes (Phang et al., 2018; Yang et al., 2019; Liu et al., 2019; Lan et al., 2019); compared to BERT, these approaches pretrain on more data, and some utilize more sophisticated modeling or optimization strategies. We leave it to future work to analyze the variance from random seeds on these other models, and note that running analogous experiments would likely also lead to performance improvements.

In light of these overall gains and the computational burden of running a large number of experiments, we explore how the number of trials influences the expected validation performance.

3.1. Expected validation performance

To quantify the improvement found from running more experiments, we turn to expected validation performance as introduced by Dodge et al. (2019). The standard machine learning experimental setup involves a practitioner training x models, evaluating each of them on validation data, then taking the model which has the best validation performance and evaluating it on test data. Intuitively, as the number of trained models x increases, the best of those x models will improve; expected validation performance calculates the expected value of the best validation performance as a function of x.

We plot expected validation curves for each dataset in Figure 1 with (plus or minus) the standard deviation shaded. The leftmost point on each of these curves ($x=1$) shows the expected performance for a budget of a single training run. For all datasets, Figure 1 shows, unsurprisingly, that expected validation performance increases as more computational resources are used. This rising trend continues even up to our largest budget, suggesting even larger budgets could lead to improvements. On the three smaller datasets (MRPC, RTE, and CoLA) there is significant variance at smaller budgets, which indicates that individual runs can have widely varying performance.

In the most common setup for fine-tuning on these datasets, models are evaluated on the validation data after each epoch, or once after training for multiple epochs (Phang et al., 2018; Devlin et al., 2019). In Figure 1 we show expected performance as we vary the number of evaluations on validation
data during training (all models trained for three epochs): once after training (green), after each of the three epochs (orange), and frequently throughout training (ten times per epoch, blue).\(^6\) Considering the benefits of more frequent evaluations as shown in Figure 1, we thus recommend this practice in similar scenarios.

4. Weight initialization and data order

To better understand the high variance in performance across trials, we analyze two sources of randomness: the weight initialization of the final classification layer and the order the training data is presented to the model. While previous work on fine-tuning pretrained contextual representation models (Devlin et al., 2019; Phang et al., 2018) has generally used a single random seed to control these two factors, we analyze them separately.

Our experiments are conducted with every combination of a set of weight initialization seeds (WI) and a set of data order (DO) seeds that control these factors. One data order can be viewed as a specific set of samples from the normal distribution from which we draw them. Similarly, one weight initialization can be viewed as one sample from the set of permutations of the training data. An overview of the collected data is presented in Figure 2, where each colored cell represents the validation performance for a single experiment. In the plots, each row represents a single weight initialization and each column represents a single data order. We sort the rows and columns by their averages; the top row contains experiments with the most frequent label (see Table 2). This partially explains the large variance found in the expected validation curves for most datasets in Figure 1.

An overview of the collected data is presented in Figure 2, where each colored cell represents the validation performance for a single experiment. In the plots, each row represents a single weight initialization and each column represents a single data order. We sort the rows and columns by their averages; the top row contains experiments with the most frequent label (see Table 2). This partially explains the large variance found in the expected validation curves for most datasets in Figure 1.

4.1. Decoupling

From Figure 2, it is clear that different random seed combinations can lead to substantially different validation performance. In this section, we investigate the sources of this variance, decoupling the distribution of performance based on each of the factors that control randomness.

For each dataset, we compute for each WI and each DO seed the standard deviation in validation performance across all trials with that seed. We then compute the expected (average) standard deviation, aggregated under all WI or all DO seeds, which are shown in Table 3; we show the distribution of standard deviations in the appendix. Although their magnitudes vary significantly between the datasets,\(^7\) each cell represents an independent sample, so the rows and columns can be reordered.

\(^6\)Compared to training, evaluation is typically cheap, since the validation set is smaller than the training set and evaluation requires only a forward pass. Moreover, evaluating on the validation data can be done in parallel to training, and thus does not necessarily slow down training.

\(^7\)Each cell represents an independent sample, so the rows and columns can be reordered.
Weight Initializations, Data Orders, and EarlyStopping

Figure 2. A visualization of validation performance for all experiments, where each colored cell represents the performance of a training run with a specific WI and DO seed. Rows and columns are sorted by their average, such that the best WI seed corresponds to the top row of each plot, and the best DO seed correspond to the right-most column. Especially on smaller datasets a large variance in performance is observed across different seed combinations, and on MRPC and RTE models frequently diverge, performing close to the majority baselines (listed in Table 2).

Figure 3. Some seeds are better then others. Plots show the kernel density estimation of the distribution of validation performance for best and worst WI and DO seeds. Curves for DO seeds are shown in dashed lines and for WI in solid lines. MRPC and RTE exhibit pronounced bimodal shapes, where one of the modes represents divergence; models trained with the worst WI and DO are more likely to diverge than learn to predict better than random guessing. Compared to the best seeds, the worst seeds are conspicuously more densely populated in the lower performing regions, for all datasets.

the expected standard deviation from the WI and DO seeds is comparable, and are slightly below the overall standard deviation inside a given task.

4.2. Some random seeds are better than others

To investigate whether some WI or DO seeds are better than their counterparts, Figure 3 plots the random seeds with the best and worst average performance. The best and worst seeds exhibit quite different behavior; compared to the best, the worst seeds have an appreciably higher density on lower performance ranges, indicating that they are generally inferior. On MRPC, RTE, and CoLA the performance of the best and worst WIs are more dissimilar than the best and worst DOs, while on SST the opposite is true. This could be related to the size of the data; MRPC, RTE, and CoLA are smaller datasets, whereas SST is larger, so SST has more data to order and more weight updates to move away from the initialization.

	MRPC	RTE	CoLA	SST
WI	2.0×10^{-6}	2.8×10^{-4}	7.0×10^{-3}	3.3×10^{-2}
DO	8.3×10^{-3}	3.2×10^{-3}	1.1×10^{-2}	1.3×10^{-5}

Table 4. p-values from ANOVA indicate that there is evidence to reject the null hypothesis that the performance of the best and worst WIs and DOs have distributions with the same means ($p < 0.05$).

Using ANOVA (Fisher, 1935) to test for statistical significance, we examine whether the performance of the best and worst DOs and WIs have distributions with different means. The results are shown in Table 4. For all datasets, we find the best and worst DOs and WIs are significantly different in their expected performance ($p < 0.05$). We include a discussion of the assumptions behind ANOVA in the appendix.
4.3. Globally good initializations

A natural question that follows is whether some random seeds are good across datasets. While the data order is dataset specific, the same weight initialization can be applied to multiple classifiers trained with different datasets: since all tasks studied are binary classification, models for all datasets share the same architecture, including the classification layer that is being randomly initialized and learned.

We compare the different weight initializations across datasets. We find that some initializations perform consistently well. For instance, WI seed 12 has the best performance on CoLA and RTE, the second best on MRPC, and third best on SST. This suggests that, perhaps surprisingly, some weight initializations perform well across tasks.

Studying the properties of good weight initializations and data orders is an important question that could lead to significant empirical gains and enhanced understanding of the fine-tuning process. We defer this question to future work, and release the results of our 2,100 fine-tuning experiments to facilitate further study of this question by the community.

5. Early stopping

Our analysis so far indicates a high variance in the fine-tuning performance of BERT when using different random seeds, where some models fail to converge. In this section we show that better performance can be achieved with the same computational resources by using early stopping algorithms that stop the least promising trials early in training. We also include recommendations for practitioners for setting up experiments meeting a variety of computational budgets.

Early discovery of failed experiments Figure 4 shows that performance divergence can often be recognized early in training. These plots show the performance values of 20 randomly chosen models at different times across training. In many of the curves, continuing training of lower performing models all the way through can be a waste of computation. In turn, this suggests the potential of early stopping least promising trials as a viable means of saving computation without large decreases in expected performance. For instance, after training halfway through the first epoch on CoLA the models which diverged could be stopped.

We further examine the correlation of validation performances at different points throughout training, shown in Figure 5. One point in one of these plots represents the Spearman’s rank correlation between performance at iteration i and iteration j across trials. High rank correlation means that the ranking of the models is similar between the two evaluation points, and suggests we can stop the worst performing models early, as they would likely continue to underperform. On MRPC, RTE and CoLA, there exists a high correlation between the models’ performance early on (part way through the first epoch) and their final performance. On the larger SST dataset, we see high correlation between the performance after training for two epochs and the final performance.

Early stopping Considering the evidence from the training curves and correlation plots, we analyze a simple algorithm for early stopping. Our algorithm is inspired by existing approaches to making hyperparameter search more efficient by stopping some of the least promising experiments early (Jamieson & Talwalkar, 2016; Li et al., 2018).

Here we apply an early stopping algorithm to select the best performing random seed. The algorithm has three parameters: t, f, and p. We start by training t trials, and partially through training (f, a fraction of the total number of epochs) evaluate all of them and only continue to fully train the p most promising ones, while discarding the rest. This algorithm takes a total of $(tf + p(1 - f))s$ steps, where s is the number of steps to fully train a model.

Start many, stop early, continue some As shown earlier, the computational budget of running this algorithm can be computed directly from an assignment to the parameters t, f, and p. Note that there are different ways to assign these parameters that lead to the same computational budget, and those can lead to significantly distinct performance in expectation; to estimate the performance for each configuration we simulate this algorithm by sampling 50,000 times from our full set of experiments. In Figure 6 we show the best observed assignment of these parameters for budgets between 3 and 90 total epochs of training, or the equivalent of 1 to 30 complete training trials. There are some surprisingly consistent trends across datasets and budgets—the number of trials started should be significantly higher than the number trained fully, and the number of trials to train fully should be around $s/2$. On three out of four datasets, stopping least promising trials after 20–30% of training (less than one epoch) yielded the best results—and on the fourth

This was also observed by Phang et al. (2018), who showed that their proposed STILTs approach reduced the number of diverging models.

8Similar plots with Pearson correlation can be found in the appendix.

10“Early stopping” can also relate to stopping a single training run if the loss hasn’t decreased for a given number of epochs. Here we refer to the notion of stopping a subset of multiple trials.

11Our approach does not distinguish between DO and WI. While initial results suggest that this distinction could inspire more sophisticated early-stopping criteria, we defer this to future work.

12In our experiments, $s = 3$ epochs.
Figure 4. Some promising seeds can be distinguished early in training. The plots show training curves for 20 random WI and DO combinations for each dataset. Models are evaluated every 10th of an epoch (except SST, which was evaluated every 100 steps, equivalent to 42 times per epoch). For the smaller datasets, training is unstable, and a non-negligible portion of the models yields poor performance, which can be identified early on.

Figure 5. Performance early in training is highly correlated with performance late in training. Each figure shows the Spearman's rank correlation between the validation performance at different points in training; the axes represent epochs. A point at coordinates i and j in the plots indicates the correlation between the best found performances after i and after j evaluations. Note that the plots are symmetric.

6. Related work

Most work on hyperparameter optimization tunes a number of impactful hyperparameters, such as the learning rate, the width of the layers in the model, and the strength of the regularization (Li et al., 2018; Bergstra et al., 2011). For modern machine learning models such tuning has proven to have a large impact on the performance; in this work we only examine two oft-overlooked choices that can be cast as hyperparameters and still find room for optimization.

Melis et al. (2018) heavily tuned the hyperparameters of an LSTM language model, for some experiments running 1,500 rounds of Bayesian optimization (thus, training 1,500 models). They showed that an LSTM, when given such a large budget for hyperparameter tuning, can outperform more complicated neural models. While such work informs the community about the best performance found after expending very large budgets, it is difficult for future researchers to build on this without some measure of how the performance changes as a function of computational budget. Our work similarly presents the best-found performance using a large budget (Table 1), but also includes estimates of how performance changes as a function of budget (Figure 1).
Weight Initializations, Data Orders, and Early Stopping

Figure 6. Best observed early stopping parameters on each dataset. For a given budget large enough to fully train \(x \) models (each trained for 3 epochs), this plot shows the optimal parameters for early stopping. For instance, in MRPC with a budget large enough for 20 trials, the best observed performance came by starting 41 trials (blue), then continuing only the 11 most promising trials (orange) after 30% of training (green).

Figure 7. Relative error reduction from the early stopping approach in Figure 6, compared to the baseline of training \(x \) models on the full training budget. Performance on RTE and SST is measured using accuracy, on MRPC it is the average of accuracy and F1, and on CoLA it is MCC. “Error” here refers to one-minus-performance for each of these datasets. As the budget increases, the absolute performance on all four datasets increases, and the absolute improvement from early stopping is fairly consistent.

Orthogonal initializations (Saxe et al., 2014) aim to prevent exploding or vanishing gradients. In our work, we instead examine how different samples from an initialization distribution behave, and we hope future work which introduces new initialization schemes will provide a similar analysis.

Active learning techniques, which choose a data order using a criterion such as the model’s uncertainty (Lewis & Gale, 1994), have a rich history. Recently, it has even been shown that training on mini-batches which are diverse in terms of data or labels (Zhang et al., 2017) can be more sample efficient. The tools we present here can be used to evaluate different seeds for a stochastic active learning algorithm, or to compare different active learning algorithms.

7. Conclusion

In this work we study the impact of random seeds on fine-tuning contextual embedding models, the currently dominant paradigm in NLP. We conduct a large set of experiments on four datasets from the GLUE benchmark and observe significant variance across these trials. Overall, these experiments lead to substantial performance gains on all tasks. By observing how the expected performance changes as we allocate more computational resources, we expect that further gains would come from an even larger set of trials. Moreover, we examine the two sources of variance across trials, weight initialization and training data order, finding that in expectation, they contribute comparably to the variance in performance. Perhaps surprisingly, we find that some data orders and initializations are better than others, and the latter can even be observed even across tasks. A simple early
stopping strategy along with practical recommendations is included to alleviate the computational costs of running multiple trials. All of our experimental data containing thousands of fine-tuning episodes is publicly released.

References

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., and Szpektor, I. The second pascal recognising textual entailment challenge. In Proc. of the II PASCAL challenge, 2006.

Bentivogli, L., Clark, P., Dagan, I., and Giampiccolo, D. The fifth pascal recognizing textual entailment challenge. In TAC, 2009.

Bergstra, J., Bardenet, R., Bengio, Y., and Kegl, B. Algorithms for hyper-parameter optimization. In Proc. of NeurIPS, 2011.

Dagan, I., Glickman, O., and Magnini, B. The pascal recognising textual entailment challenge. In Machine Learning Challenges Workshop, 2005.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proc. of the ACL, 2019.

Dodge, J., Gururangan, S., Card, D., Schwartz, R., and Smith, N. A. Show your work: Improved reporting of experimental results. In Proc. of EMNLP, 2019.

Dolan, B. and Brockett, C. Automatically constructing a corpus of sentential paraphrases. In Proc. of IWP, 2005.

Fisher, R. A. Statistical methods for research workers. Oliver & Boyd (Edinburgh), 1935.

Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. The third pascal recognizing textual entailment challenge. In Proc. of the ACL-PASCAL workshop on textual entailment and paraphrasing, 2007.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proc. of AISTATS, 2010.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proc. of ICCV, 2015.

Jamieson, K. and Talwalkar, A. Non-stochastic best arm identification and hyperparameter optimization. In Proc. of AISTATS, 2016.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. Albert: A lite bert for self-supervised learning of language representations. arXiv:1909.11942, 2019.

Lewis, D. D. and Gale, W. A. A sequential algorithm for training text classifiers. In Proc. of SIGIR, 1994.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 2018.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv:1907.11692, 2019.

Lu, J., Batra, D., Parikh, D., and Lee, S. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In Proc. of NeurIPS, 2019.

Matthews, B. W. Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1975.

Melis, G., Dyer, C., and Blunsom, P. On the state of the art of evaluation in neural language models. In Proc. of ICLR, 2018.

Phang, J., Févry, T., and Bowman, S. R. Sentence encoders on stilts: Supplementary training on intermediate labeled-data tasks. arXiv:1811.01088, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog, 2019.

Raffe, C., Shazeer, N., Roberts, A., Lee, K. L., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv:1910.10683, 2019.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In Proc. of ICLR, 2014.

Schwartz, D., Toneva, M., and Wehbe, L. Inducing brain-relevant bias in natural language processing models. In Proc. of NeurIPS, 2019.
Warstadt, A., Singh, A., and Bowman, S. R. Neural network acceptability judgments. *TACL*, 7:625–641, 2019.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., and Brew, J. Huggingface’s transformers: State-of-the-art natural language processing. *ArXiv*, abs/1910.03771, 2019.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., and Le, Q. V. Xlnet: Generalized autoregressive pretraining for language understanding. In *Proc. of NeuRIPS*, 2019.

Zhang, C., Kjellström, H., and Mandt, S. Determinantal point processes for mini-batch diversification. In *Proc. of UAI*, 2017.

Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T., and Liu, J. Freelb: Enhanced adversarial training for language understanding. *arXiv:1909.11764*, 2019.
A. Appendix

We plot the distribution of standard deviations in final validation performance across multiple runs, aggregated under a fixed random seed, either for weight initialization or data order. The results are shown in Figure 8, indicating that the inter-seed aggregated variances are comparable in magnitude, considering aggregation over both WI and DO.

![Figure 8. Kernel density estimation of the distribution of standard deviation in validation performance aggregated under fixed random seeds, either for weight initialization (blue) or data order (orange). The red dashed line shows the overall standard deviation for each dataset. The DO and WI curves have expected standard deviation values of similar magnitude, which are also comparable with the overall standard deviation.](image)

B. ANOVA assumptions

ANOVA makes three assumptions: 1) independence of the samples, 2) homoscedasticity (roughly equal variance across groups), and 3) normally distributed data.

ANOVA is not robust to violations of independence, but each DO and WI is an I.I.D. sample, and thus independent. ANOVA is generally robust to groups with somewhat differing variance if the groups are the same size, which is true in our experiments. ANOVA is more robust to non-normally distributed data for larger sample sizes; our SST experiments are quite close to normally distributed, and the distribution of performance on the smaller datasets is less like a normal distribution but we have larger sample sizes.

C. Pearson Correlation

In Figure 9 we include the Pearson correlation between different points in training, whereas Figure 5 showed the rank correlation of the same data. One point in one of these plots represents the Pearson’s correlation between performance at iteration i and iteration j across trials. High correlation means that the performance of the models is similar between the two evaluation points.

![Figure 9. Performance early in training is highly correlated with performance late in training. Each figure shows the Spearman’s rank correlation between the validation performance at different points in training; the axes represent epochs. A point at coordinates i and j in the plots indicates the correlation between the best found performances after i and after j evaluations. Note that the plots are symmetric.](image)