A large mid-Holocene estuary was not present in the lower River Murray, Australia

J. Tibby\(^{1,2,6,8} \) *, B. Bourman\(^{1,3,5} \), C. Wilson\(^{5,6} \), L. M. Mosley\(^{7} \), A. P. Belperio\(^{8} \), D. D. Ryan\(^{9} \), P. A. Hesp\(^{10} \), C. V. Murray-Wallace\(^{11} \), G. Miot da Silva\(^{10} \), S. R. Dillenburg\(^{12} \) & D. Haynes\(^{2,13} \)

ARISING FROM: A. M. Helfensdorfer et al.; Scientific Reports https://doi.org/10.1038/s41598-019-39516-4 (2019).

Recent research has suggested that during the mid-Holocene (c. 8500 to 5000 cal yr BP) a large estuary occupied the lower River Murray and its terminal lakes (Lakes Alexandrina and Albert: herein the Lower Lakes) in South Australia. This research has questioned both reconstructions of past River Murray discharge and contemporary environmental water provisions aimed at maintaining the freshwater state of the Lower Lakes. We show that (1) a large mid-Holocene estuary extending into the lower River Murray was not physically possible, and (2) that the River Murray and Lower Lakes were predominantly fresh during the mid-Holocene. Sea level was well below present at the time of purported initiation of estuarine sedimentation and, therefore, could not have allowed formation of an estuary. Holocene human occupation of the lower River Murray valley, that was reliant on freshwater resources, negates the existence of a large estuary in the valley. A variety of freshwater indicators in sediments from in, and around, the Lower Lakes negate the notion of significant marine incursion. Hence, current management of the Lower Lakes as freshwater ecosystems is consistent with their Holocene history.

Inferred history of the lower River Murray. Helfensdorfer et al.\(^{1,2} \) proposed that a +2 m AHD sea level highstand 7000–6000 year BP resulted in marine incursion into the Lower Lakes, forced the estuarine limit >200 km upstream and generated a central basin, which captured a mud deposit up to 3 km wide, >60 km long and >10 m thick, dated to 8518–5067 cal year BP\(^{2} \) at the floodplain site of Monteith\(^{2} \) (Fig. 1). Furthermore, a shift to freshwater conditions was proposed as a result of sea level falling to its present position after 4 ka BP\(^{1,2} \). It was further claimed that this “sediment trap”\(^{2} \) prevented sediment delivery to the ocean, requiring a re-evaluation of south-eastern Australian climate reconstructions from marine sediments off the River Murray mouth; a series of propositions we reject.

Evidence of freshwater dominance in the lower River Murray and Lower Lakes in the mid-Holocene. There is strong evidence freshwater dominated the Lower Lakes in the mid-Holocene (Fig. 2). A sapropel unit underlying the Cooke Plains, a now-exposed former embayment of Lake Alexandrina, dated to 6930 ± 150 year BP originates from marine incursion which was deep enough to stratify\(^{4} \). This unit is associated with expansion of Lake Alexandrina during a mid-Holocene humid period\(^{3} \). Sub-fossil diatoms in the Lower Lakes also indicate the dominance of freshwater at this time (Fig. 2) as does freshwater algae-derived Coorongite deposited in Lake Albert and Lake Alexandrina (Fig. 2).

Archaeological investigations of freshwater shell midden sites (dominated by Velesunio ambiguus) between Pompoota and Woods Point (~86 km upstream of the Murray Mouth) demonstrate a continuity of human occupation and reliance on freshwater from c. 8400 year BP to the time of European occupation\(^{7} \). These sites include...
the Swanport site < 7 km upstream of Monteith which was within the hypothesised estuary extent outlined in (Fig. 1). Freshwater mussels have limited tolerance of brackish conditions. Adult freshwater mussels and their larvae tolerate saline water for only short periods of time, but populations generally do not persist in salinities above about 3.5 g L⁻¹. This renders the proposed presence of persistent brackish conditions (see Fig. 2a in) improbable.

Regional sea level history and the lower River Murray. A combination of eustatic and relative sea level evidence is used to support the notion of an estuary penetrating into the lower River Murray from 8.5 ka BP. Subsequent hypothesised freshening is argued to result predominantly from a fall in sea level rather than changing inflows. Given this, and the very low gradient environment of the study area, accurate characterisation of the sea level history is critical. Helfensdorfer et al. argued that a River Murray estuary began forming 8500 year BP following a “worldwide” pattern of estuary initiation in response to a “step wise” jump in sea level. However, relative sea levels, even in far field basins, including around Australia, varied by tens of metres at this time. Hence the notion of global estuary initiation is neither correct nor relevant. Rather, it is relative regional sea level that is pertinent to understanding the evolution of the lower River Murray. The southern Australian coast is affected by spatially variable neotectonism and glacio-hydro-isostatic adjustments. Critically, at the time of hypothesised estuary commencement, regional sea level was > 20 m lower than at present (Fig. 2). Indeed,
even the global eustatic record indicates sea level was > 15 m below present at this time with the notion of a stepwise sea level increase rejected. Importantly, the local sea level record used in is not the optimal curve from the original study (Fig. 311) since, as noted in that study, it contains indicators that overestimate sea level (i.e. seagrass facies, beach ridges and cheniers). Additionally, regional sea level data from are plotted in 14C years, while the global data are presented in calibrated years (Fig. 6 in2).

Helfensdorfer et al. 1,2 provide no direct evidence for a mid-Holocene + 2 m AHD sea level in the vicinity of the Murray Mouth. Instead a large sandflat at ~ 2 m AHD on the southern half of Hindmarsh Island near the Murray Mouth is mentioned. Sand flats are not reliable sea-level indicators; they aggrade above mean sea level as king tides and storm surges flatten sand drift trapped by salt-marsh vegetation. The sand flat actually varies in elevation between 1 and 2 m and is sporadically underlain by mid-Holocene shells (including Tellinota albinella, Macomana deltoidalis and Hiatula biradiata) 0.6 m to 1.0 m below the surface. A radiocarbon age of 5980 + 80 years BP (WK 4784) was obtained on shell from beneath the sand flat demonstrating a mid-Holocene sea level of ~ 1 m, one half of that proposed by Helfensdorfer et al.1,2.

On Hindmarsh Island, last interglacial (LIG; c. 125 ka BP) and Holocene shoreline successions (c. 6000 year BP) broadly coincide. LIG sea level in southern Australia was slightly higher than + 2 m AHD. However, within the Murray Estuary, the combination of local basin subsidence, hydro-isostasy, ocean siphoning and a minor contribution from near-field glacio-isostasy have affected the elevations of the LIG and Holocene shorelines, explaining their local coincidence. Given the more proximal location of the Murray Mouth to the edge of the Lacepede Shelf, a value of + 1 m AHD is more realistic for relative sea level for the mid-Holocene highstand, as originally noted in4 and is consistent with other proximal sites, such as Port Lincoln8 and The Granites at the SE end of the Younghusband Peninsula15. The river valleys of nearby Fleurieu Peninsula have mid-Holocene alluvium grading to a sea level at ~ + 1 m AHD. This is the most reliable proximate estimate for mid-Holocene relative sea level at the Murray Mouth16, with similar estimates for sea level at The Granites once the effect of subsequent tectonism is removed15.

Assessment of Helfensdorfer et al. (2019, 2020). Modelling is used to infer marine conditions in the lower River Murray2. This modelling is unrealistic as (1) it uses a combination of unjustifiable sea level highstand (+ 2 m AHD) and width of the Murray Mouth in several scenarios in the model setup (orders of magnitude greater than current mouth width of a few hundred metres5,12); (2) Millennium Drought salinity levels (the driest period in the > 100 year record) are used as the initial condition for the model. These are likely to be elevated relative to the mid-Holocene river and Lower Lakes salinity due to additional factors including river regulation and...
land salinisation\(^1\); and (3) a model which ran for only 20 days and assumed it had reached steady state. Given the long distances from inflow to the Murray Mouth, the low velocities modeled\(^1\) and storage volumes in the model domain, the simulation period is far too short for salinity to reach steady state. In reality, it took several months (Lake Alexandrina) to several years (Lake Albert) for salinities to recover from the Millennium Drought\(^2\).

To summarise, the multiple lines of physical evidence for freshwater in the lower River Murray and Lower Lakes are diametrically opposed to the inferred significant marine inundation modelled by Helfensdorfer et al.\(^1,2\). Furthermore, no definitive evidence exists for estuarine deposition of Holocene clays in the Murray Gorge. It was argued that the fine-grained sediments are not ‘normal’ riverine deposits\(^1\). However, it is ‘normal’ for slow flowing, extremely low gradient, lowland rivers to transport clays and silts as suspended load\(^3\). Moreover, sediments to depths of 3 m on floodplains upstream and downstream of Monteith are indicative of fluvial deposition, because they are composed of quartz, kaolin, illite and smectite, with traces of feldspars\(^19\). No marine or estuarine biota (e.g. molluscs, dinoflagellates or diatoms) is reported from the clays at Monteith\(^1,2\). While it was suggested\(^1,2\) that higher salinities could have aided clay flocculation and deposition\(^1\), this process can happen in slow moving freshwater, while dense reeds beds may have aided sediment trapping. Indeed, the deposition of clays before, and after the inferred mid-Holocene estuary\(^2\) demonstrates that this can occur in the absence of elevated salinity. Rather, and in conclusion, we posit that the “estuary” clays were deposited by rapid fluvial aggradation of fine-grained sediments between 10,000 and 7000 year BP. The multiple lines of evidence show that the Lower Lakes and lower River Murray were predominantly freshwater and claims that they were marine and estuarine, respectively, in the mid-Holocene are unfounded.

Received: 7 July 2020; Accepted: 30 April 2021
Published online: 08 June 2021

References

1. Helfensdorfer, A. M., Power, H. E. & Hubble, T. C. T. Modelling Holocene analogues of coastal plain estuaries reveals the magnitude of sea-level threat. *Sci. Rep.* 9, 2667 (2019).

2. Helfensdorfer, A. M., Power, H. E. & Hubble, T. C. T. Atypical responses of a large catchment river to the Holocene sea-level highstand: The Murray River, Australia. *Sci. Rep.* 10, 7503 (2020).

3. Gingele, F., De Deckker, P. & Norman, M. Late Pleistocene and Holocene climate of SE Australia reconstructed from dust and river loads deposited offshore the River Murray Mouth. *Earth Planet. Sci. Lett.* 255, 257–272 (2007).

4. von der Borch, C. & Altmann, M. Holocene stratigraphy and evolution of the Cooke Plains Embayment, a former extension of Lake Alexandrina, South Australia. *Trans. R. Soc. South Aust.* 103, 69–78 (1979).

5. Tibby, J., Haynes, D. & Muller, K. The predominantly fresh history of Lake Alexandrina, South Australia, and its implications for the Murray-Darling Basin Plan: A comment on Gell (2020). *Pac. Conserv. Biol.* 26, 142–149 (2020).

6. Fitzpatrick, R. W., Shand, P. & Mosley, L. M. In *Natural History of the Coorong, Lower Lakes and Murray Mouth Region (Yarluwar-Rawe)* (eds L. Mosley et al.) 227–252 (University of Adelaide Press, 2018).

7. Wilson, C., Fallon, S. & Trevorrow, T. New radiocarbon ages for the Lower Murray River, South Australia. *Arch Oceania* 47, 157–160 (2012).

8. Walker, K. F. Reproductive phenology of river and lake populations of freshwater mussels (*Unionoida: Hyridae*) in the River Murray. *Molluscan Res.* 37, 31–44 (2017).

9. Mann, T. et al. Holocene sea levels in Southeast Asia, Maldives, India and Sri Lanka: The SEAMIS database. *Quat. Sci. Rev.* 219, 112–125 (2019).

10. Lewis, S. E., Sloss, C. R., Murray-Wallace, C. V., Woodroffe, C. D. & Smithers, S. G. Post-glacial sea-level changes around the Australian margin: A review. *Quat. Sci. Rev.* 74, 115–138 (2013).

11. Belperio, A. P., Harvey, N. & Bourman, R. P. Spatial and temporal variability in the Holocene sea-level record of the South Australian coastline. *Sed. Geol.* 150, 153–169 (2002).

12. Lambek, K., Rouby, H., Purcell, A., Sun, Y. & Sambridget, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. *PNAS* 111, 15296–15304 (2014).

13. Bourman, R. P., Murray-Wallace, C. V., Belperio, A. P. & Harvey, N. Rapid coastal geomorphic change in the River Murray Estuary of Australia. *Mar. Geol.* 170, 141–168 (2000).

14. Murray-Wallace, C. V. et al. Last interglacial (MIS 5e) sea-level determined from a tectonically stable, far-field location, Eyre Peninsula, southern Australia. *Aust. J. Earth Sci.* 63, 611–630 (2016).

15. Dillenburg, S. R. et al. Geochronology and evolution of a complex barrier, Youghusband Peninsula, South Australia. *Geomorphology* 354, 107044 (2020).

16. Bourman, R. P. River terraces of the Fleurieu Peninsula. *South Aust. Geogr.* 105, 1–24 (2006).

17. Mosley, L. M. et al. The impact of extreme low flows on the water quality of the Lower Murray River and Lakes (South Australia). *Water Res. Manag.* 26, 3923–3946 (2012).

18. Aldridge, K., Mosley, L. M. & Oliver, R. In *Natural History of the Coorong, Lower Lakes and Murray Mouth Region (Yarluwar-Rawe)* (eds L. Mosley et al.) 253–270 (University of Adelaide Press, 2018).

19. Fitzpatrick, R. W., Shand, P. & Mosley, L. M. Acid sulfate soil evolution models and pedogenic pathways during drought and reflowing cycles in irrigated areas and adjacent natural wetlands. *Geoderma* 270–290 (2017).

20. Fluin, J., Gell, P., Haynes, D., Tibby, J. & Hancock, G. Palaeolimnological evidence for the independent evolution of neighbouring terminal lakes, the Murray Darling Basin, Australia. *Hydrobiologia* 591, 117–134 (2007).

Acknowledgements

This research was funded by Australian Research Council Linkage Project LP100100215 and Discovery Project DP190102782 and the Australian Research Council’s Centre of Excellence for Australian Biodiversity and Heritage (project number CE170100015). We thank Matt Gibbs, Patrick De Deckker and Jennie Fluin for discussions. We thank the reviewers and the original authors for their comments which have greatly helped to improve the manuscript.

Author contributions

J.T. and B.B. conceived the study and drafted the text in consultation with the other authors. C.W. and A.B. provided primary data. All other authors provided additional text and edited the document.
Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021