A Survey on Artificial Intelligence for Source Code: A Dialogue Systems Perspective

Erfan Al-Hossami and Samira Shaikh
Department of Computer Science
University of North Carolina at Charlotte
Charlotte, NC 28223
{ealhossa, sshaikh2}@uncc.edu

Abstract

In this survey paper, we overview major deep learning methods used in Natural Language Processing (NLP) and source code over the last 35 years. Next, we present a survey of the applications of Artificial Intelligence (AI) for source code, also known as Code Intelligence (CI) and Programming Language Processing (PLP). We survey over 287 publications and present a software-engineering centered taxonomy for CI placing each of the works into one category describing how it best assists the software development cycle. Then, we overview the field of conversational assistants and their applications in software engineering and education. Lastly, we highlight research opportunities at the intersection of AI for code and conversational assistants and provide future directions for researching conversational assistants with CI capabilities.

1 Introduction & Motivation

Conversational Assistants, also known as task-oriented dialogue systems, are very widely used and accessible such as Siri and Alexa. These assistants have been increasingly used to assist human users in a variety of tasks such as reserving hotels, booking flights, or forecasting the weather. In recent years, we have also seen advancements in the field of Artificial Intelligence (AI) applied to source code also known as Code Intelligence (CI) and Programming Language Processing (PLP). Github Copilot\(^1\) powered by GPT-Codex (Chen et al., 2021a) is currently in beta as an Integrated Development Environment plugin that is able to assist software developers as a pair-programmer by suggesting code snippets or writing source code on its own. Given these advancements, perhaps task-oriented bots can be equipped with more capabilities to assist humans in cognitively demanding tasks, including programming by professionals or novices. By building models and tools that can generate both language and code, we could potentially better understand the cognitive basis of programming which can have key impacts on computer science education practices (Fedorenko et al., 2019). This survey is structured as follows: Section §2 explores general deep learning techniques that have been used to model language and source code over the last 35 years. Section §3 surveys the field of CI with a systemic review (a) on datasets containing natural language and executable code (§3.8.2), and (b) of all methods used to generate source code from natural language on the CoNaLa dataset, a popular python code generation benchmark (§3.8.4). Section §4 overviews the field of conversational artificial intelligence and its applications in software engineering and education. Finally, Section §5 highlights research opportunities at the intersection of CI and conversational assistants to provide future directions for research in this new area.

2 Deep Learning Methods

This section overviews major developments over the last 35 years in deep learning neural architectures that are used to generate and understand both natural language and source code. These deep learning methods can be used to generate natural language (e.g. by chatbots (Zhang et al., 2020)). In the context of code generation, deep learning methods have been used to generate code snippets (e.g. (Liguori et al., 2021b,a; Frempong et al., 2021; Yin and Neubig, 2018)). The need for neural architectures arose as deep learning was tasked to solve specific problems such as machine translation, question-answering, and code generation. Neural architectures describe the general structure of the neural network(s), including how many layers it has and how units in these

\(^1\)https://copilot.github.com/
layers are connected to each other (Sarkar et al., 2019). Neural models can solve problems specific to the target domain through abstract modeling. For instance, in natural language, often, word order matters to the semantics of a sentence (Payne, 1992). Furthermore, word order differences between languages can be problematic when translating from one language to another (Jurafsky and Martin, 2000). How can neural architectures consider the order of the input sequence? We explore relevant neural architectures further in the following subsections.

2.1 Multilayered Perceptrons

Here we introduce the multi-layered perceptron (MLP) as well as common terms associated with neural networks, including activation functions, loss functions, and gradient descent, and backpropagation.

A multi-layered perceptron (MLP), commonly known as an artificial neural network, is a variant of the Perceptron model (Rosenblatt, 1961), composed of an input layer, multiple hidden layers fully connected with each other, and an output layer (c.f. Fig. 1). MLPs excel at learning the input representations and mapping them to the output variable. The input given to neural networks is numerical vectors. Often, categorical inputs are one-hot encoded.

![Figure 1: The Multilayer Perceptron architecture is composed of an input layer, an output layer and multiple hidden layers. Figure from (Yuen et al., 2013).](image)

Each layer is made up of several neurons. A neuron is a unit that takes in weighted inputs, a bias (an input of 1.0 with a computed weight), and computes an output using an activation function. Weights can be initialized to a constant number, a random number, or through more nuanced means such as the initialization proposed by He et al. (2015). Each neuron computes the dot product of its input vector $Z = (z_1, z_2, ..., z_n)$ and weight vector $W = (w_1, w_2, w_n)$ through $x = Z \cdot W$. Once the dot product is computed it is passed to an activation function (see table 1) before being passed on as the output of the neuron. The process of neurons passing values forward in the network using their activation functions until an output is produced is called forward passing. Lastly, another activation function called softmax is commonly used in the output layer. Given a vector z from the last hidden layer, the softmax function produces a vector $\sigma(z)$ with length K. The numbers in $\sigma(z)$ are values between 0 and 1. Furthermore, the sum of all elements in $\sigma(z)$ equal to 1, $\sum_{j=1}^{K} \sigma(z_j) = 1$. This property of softmax is often useful in classification tasks. The softmax equation is illustrated below:

$$\sigma(z_j) = \frac{e^{z_j}}{\sum_k e^{z_k}}$$

where $j = 1, 2, ..., K$.

Once the MLP network produces an output (prediction), it is compared with the target values in the dataset (ground truth). This comparison yields a measurement of how well the output matches the expected values. There are several methods, called loss functions, to measure how well the predicted output minimizes the error. Here are some examples of loss functions:

- **Binary cross-entropy**: It is also called the log-loss applied for a two class classification problem.
- **Categorical cross-entropy**: log-loss applied for a classification task of N classes
- **Mean Squared Error**: Mean of the squared sum of error, often used in regression tasks.
- **Mean Absolute Error**: Average magnitude of the errors given a set of predictions. It gives higher weights to larger errors since it squares the errors.

In the MLP, the computed error is propagated back through each of the layers. This is done so that the weights for each neuron can be updated empirically. This process is called backpropagation (Rumelhart et al., 1986). The weights
Activation Function

Activation Function	Definition
Binary Threshold	$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$
Sigmoid	$f(x) = \frac{1}{1 + e^{-x}}$
Tanh	$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
ReLU	$f(x) = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{otherwise OR max}\{0, x\} \end{cases}$

Table 1: Example activation functions used in neural networks

Figure 2: The MLP network has different and independent weights at each layer. W_{h1} and W_{h2} are different. Source: Medium post authored by Mady.

can be updated after each training example, in a process called **online learning**. This process can result in big changes in the network from example to example and is largely unstable. Alternatively, computed errors can be saved for a set of training examples and the MLP network weights are updated after training on the set. This is called **batch learning**. The learning rate α controls the size of a change made to a weight, so the weights do not change dramatically and learning can be more stable.

MLP networks are trained using a training algorithm such as stochastic gradient descent (SGD) (Bottou, 2010).

SGD is a simplified version of gradient descent that computes the gradient descent for only a small sample of training data to estimate the gradient descent given a loss function for the entire training dataset. These optimization algorithms are responsible for updating weights in a model given a training set sample and a loss function. Other algorithms are commonly used to further optimize SGD such as Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014a). Adam further optimizes SGD by computing adaptive learning rates for each parameter. MLPs excel at mapping inputs to outputs, however, these inputs are assumed to be independent of one another. What if the inputs are dependent? What if their order matters such as in word sequences forming sentences? Next, we introduce another neural network architecture designed specifically to address this problem, the Recurrent Neural Networks.

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are specialized network architectures for processing a sequence of input values that are dependent upon one another. RNNs are often applied in predicting the next word/token in a sequence of words, or in translating from one language to another. RNNs follow an architecture distinct from that of MLPs. RNNs are equipped with a **feedback loop**. This feedback loop enables the RNN to share weights v, u, w across different time steps, meanwhile, MLPs use a different set of parameters and weights each at each hidden layer. This is illustrated in Figure 2 where W_{h1} and W_{h2} are different. We can imagine that the RNN is performing the same computations in each time step, but with different inputs and updated weights. This setup greatly reduces the number of parameters required to learn a task. Figure 3 showcases the RNN architecture with a single hidden unit. When unfolding the RNN, we are left with multiple feed-forward MLP networks, a network at each time step t. The total number of time steps is equivalent to the length of the input sequence.

While MLPs compute the hidden layer values from the input values and weights exclusively, the hidden layers in RNNs are computed from the in-
Figure 3: The Recurrent Neural Network architecture is composed of an input layer x, an output layer o, a hidden layer h, and a feedback loop v for each time step t. The weights v, u, w are not different for each layer. The weights are instead shared across all the time steps. Source: Wikipedia.

put value x_t at time step t, weights, and the previous hidden layer value. This is illustrated below:

$$h_t = \sigma(u \ast x_t + v \ast h_{t-1})$$
$$o_t = \text{softmax}(w \ast h_t)$$

where v is a weight vector for the different time steps, σ as an activation function as described in Table 1, x_t is an input value at time step t, u is a weight vector for the hidden layer, w is a weight vector for the output layer, and o_t is the output value at time t. Softmax is described in Equation 1 and it is used on the product of the hidden state h_t and the weight vector w. The error is computed using a loss function E (loss functions are described in section 2.1) for output o_t and target sequence s_t. This yields an error E_t. As for the total error across the different timestamps it is computed through summing all of E_t for an input length of $n \sum_{t=0}^{n} E_t$. The weights are updated using back-propagation (Rumelhart et al., 1986) as described in section 2.1, with a small tweak, the current time step is dependent on the previous time step, so the back-propagation traverses back to the first time step. $u, v,$ and w are updated using SGD (Bottou, 2010). There is a big drawback for RNNs however, as we go back to adjust the weights during back-propagation, the signal gets close to zero this is called vanishing gradient, or it grows exponentially, this is called exploding gradient. This is an issue in particular when we expect RNNs to ‘remember’ and keep track of long-term dependencies. For that researchers have developed a special type of RNNs, the Long-Short Term Memory (LSTM).

2.3 Long-Short Term Memory

Recurrent Neural Networks (RNNs) lose historical context and dependencies over longer periods. To address the problem of memory in RNNs Hochreiter et al. (1997) proposed a novel RNN architecture called the Long-Short Term Memory (LSTM) in 1997. It excels at maintaining long-term dependencies and preventing problems such as the exploding and vanishing gradient issues. LSTMs are a variant, or a type, of RNNs. Their similarity is denoted in Figure 4.

LSTMs contain gates which enable the LSTM to add or remove information to a cell state. Each gate is like a one-layered neural network with each with its weight vector and biases. These networks then learn what information is relevant and what is not throughout training. LSTMs consist of three gates: The input, output, and forget gates. As shown in Figure 5, an LSTM cell is composed of 3 different gates. At a given time step, the input gate allows or denies incoming signals from the input layer. The output gate controls what gets passed on to other cells or layers as the cell’s final output. The forget gate administers the self-recurrent connection to forget or remember previous cell states as deemed fit.

The LSTM cell architecture is displayed in Figure 6. Let C indicate a cell state, h the hidden state for each time step t. Let I, F, and O, represent the input, forget, and output gates respectively. All gates are regulated by a sigmoid σ function, which as mentioned earlier outputs a number between 0 and 1, controlling how much of the outputs of each gate should get passed along to the cell state. The processes of LSTM computations
Figure 4: The Long-Short Term Memory (LSTM) network is similar to the Recurrent Neural Network (RNN) except the hidden state is replaced with an LSTM cell. Similarly to Figure 3, n represents a timestep, $x^{(n)}$ represents the input at time n, U represents a weight vector for the LSTM cell, W represents the weight vector in the feedback loop, C represents the LSTM cell state, V represents the weight vector for the output layer, and $o^{(n)}$ represents the output at time n. Source: CodeEmporium on Youtube.

Figure 5: The LSTM is composed of 3 different gates: 1) an input gate controlling what is updated in the cell state, 2) a forget gate controlling what is omitted from the previous cell states (memory), and 3) an output gate controls what is passed on as the final output of the cell.

can be illustrated in four steps:

1. **Deciding what to forget and what to remember**: This decision is made by the forget gate at each time step. The forget gate utilizes information from the previous hidden state h_{t-1}, the current input x_t, its own weight vector W_f, and its own bias b_f. h_{t-1} and x_t are concatenated and then are multiplied in a dot product with W_f and summed with b_f. The result of that is then squashed through the sigmoid function σ. The result is F_t a vector of numbers between 0 and 1, corresponding to each number in the previous hidden state and current input vectors, indicating how much should be remembered (if the value is greater than 0) and forgotten (if the value is 0). The process is described in mathematical notation in equation 3.

2. **Deciding what to write to memory**: This decision is handled by the input layer. The input layer utilizes information from the previous hidden state h_{t-1}, the current input x_t, its own weight vector W_i, and its own bias b_i. h_{t-1} and x_t are concatenated and then are multiplied in a dot product with W_i and summed with b_i. The result of that is then squashed through the sigmoid function σ. The result is I_t a vector of numbers between 0 and 1, corresponding to each number in the previous hidden state and current input vectors, indicating where new information should be written to the current cell state (memory). Next, another layer \tilde{C}_t, decides what new information are good candidates to be written to the current cell state using tanh as its activation function. The process is described in mathematical notation in equation 4.

3. **Updating the memory**: The current cell
Figure 6: The Long-Short Term Memory (LSTM) cell architecture. At each time step t, an LSTM cell takes in the previous cell state and the previous hidden state as inputs. It contains multiple sigmoid and tanh functions to compute on those inputs for each of the 3 gates (input, forget, and output). The LSTM cell outputs, a cell state C_t, and a hidden state h_t that is passed onto other layers to produce an output o_t, and to LSTM cell’s future self at time step $t + 1$. Source: Colah’s blog.

state is decided by utilizing the forget gate vector output F_t, erasing things that are determined to be forgettable from the previous cell state C_{t-1}, and the new information from step 2 is added after scaling by the input gate vector I_t. The process is described in mathematical notation in equation 5.

4. Output

The final output for the LSTM cell is decided by the current input x_t, and the current cell state C_t. The output gate vector O_t decides which parts of the cell state are going to be put out and is computed using the previous hidden state h_{t-1} and the current input x_t. Then, the current cell state C_t is passed through a tanh function and multiplied by the output gate vector giving us h_t which is passed on as the output of the LSTM to other cells and a copy to itself. The process is described in mathematical notation in equation 6.

LSTM hidden states (as seen in figure 6) can be connected to a softmax layer for text classification problems or it can be connected to another LSTM composing several LSTM layers. These LSTM layers would output a sequence of hidden state vectors, a vector for each input in a timestamp. This hierarchy of LSTMs layers enables a more complex representation of sequential data and it is often referred to as stacked LSTMs. In the next section, we discuss an architecture that often utilizes stacked LSTMs to generate language.

2.4 Sequence-to-Sequence

In this subsection, we describe the neural sequence-to-sequence (Seq2Seq) architecture. It
Figure 7: A Sequence to Sequence architecture is composed of an encoder and decoder LSTM networks. Source: Jalammar’s Blog.

is used to generate a sequence of tokens in a target language given a sequence of tokens from a source language. Seq2Seq learning maximizes the likelihood (or potentially other evaluation metrics (Shen et al., 2016)) of the target sequence (conversational response) given an input source sequence (user utterances).

Typically, Encoder-Decoder architectures using RNNs and applied to solve Seq2Seq tasks were first proposed by (Cho et al., 2014) and (Sutskever et al., 2014). In practice, gated RNNs such as LSTMs (Hochreiter and Schmidhuber, 1997) tend to perform better over vanilla RNNs (Gu et al., 2016a).

Notably, Bahdanau et al. (2014) propose an encoder-decoder architecture with attention, using a bi-directional LSTM as the encoder to transform an embedded source sequence \(E = |e_1, ..., e_{T_S}| \) into a vector \(c \) of hidden states with equal length. This vector is known as the context vector or the thought vector.

Each hidden state \(h_t \) corresponds to an embedded token \(e_t \). Each hidden state is computed by concatenating the hidden states of the forward and backward orders as follows:

\[
h_t = [f(e_t, h_{t-1}); f(e_t, h_{t+1})];
\]

\[
c = \phi(\{h_1, ..., h_{T_S}\})
\]

where \(\{h_i\} \) are hidden LSTM states, \(f \) is a standard LSTM update function, and \(\phi \) summarizes the hidden states. The decoder LSTM (recurrent neural network (RNN) architecture) (Luong et al., 2015a) generates the target token \(a_t \) using the conditional probability defined in Eq. 8 which takes in the context vector \(c \) and generates target token \(a_t \) at time \(t \) using the following conditional probability:

\[
s_t = f(a_{t-1}, s_{t-1}, c)
\]

\[
p(a_t|a_{<t}, E) = g(a_{t-1}, s_t, c)
\]

where \(s_t \) is the decoder LSTM state at time \(t \), \(a_t \) is the conversational response token at \(t \) using function \(g \). \(a_{<t} \) denotes previous predicted tokens \(\{a_1, ..., a_{t-1}\} \).

The context vector by itself is of a fixed length and hence it struggles with long sequences or sentences. To address this, the Seq2Seq model often comes with an attention mechanism. A notable attention mechanism is the Bahdanau-style attention mechanism described in (Bahdanau et al., 2014), in which it considers a dynamic context \(c_t \) in the decoding process. This attender attends to the entire input space (i.e. soft attention) by representing \(c_t \) as the weighted sum of the source hidden states as follows:

\[
c_t = \sum_{i=1}^{T_S} \alpha_{t,i} h_i
\]

\[
\alpha_{t,i} = \text{softmax}(\text{score}(s_{t-1}, h_i))
\]

\[
\text{score}(s_t, h_i) = v_z^\top \tanh(W_z[s_t; h_i])
\]

where \(\alpha_{t,i} \) represents how well a target token \(a_t \) and source token \(e_i \) align, \(T_S \) represents the last hidden state in \(c \), \(s_t \) is the decoder LSTM state at time \(t \), and lastly, \(v_z \) and \(W_z \) are weight matrices to be learned by the alignment model. The score \(\alpha_{t,i} \) is parametrized by a feed-forward multi-layer perceptron neural network. Since the encoder uses a bi-directional LSTM each hidden state \(h_i \) is aware of the context on both ends.

In this section, we looked at the Seq2Seq model that uses an encoder LSTM network that processes input into a context vector and a decoder LSTM.
network that produces the output one token at a time. We noted how attention mechanisms weigh tokens based on how important they are at the current time step. In the next section, we discuss a novel architecture, that still manages to perform well on very long sequences and is not as vulnerable to over-fitting as LSTMs.

2.5 Transformers & Transfer Learning

In this section, we discuss the Transformer architecture proposed by Vaswani et al. (2017). In the previous section, we’ve touched on the attention mechanisms and how they supplemented RNNs in Seq2Seq models to model longer sequences. The Transformer architecture takes attention a step further to improve state of the art. In the infamous paper Attention is All you Need, Vaswani et al. (2017) propose a new encoder-decoder architecture with a novel attention mechanism. The novel attention mechanism called the multi-head attention not only enables models to model longer sequences of text more effectively. The Transformer model also opens the door for transfer learning in natural language processing and generation.

Transfer learning is a situation where what has been learned in one setting is exploited to improve generalization in another setting. Pan et al. (2010) define transfer learning as follows, consider a domain \(D \) consisting of a feature space \(\chi \) and a marginal probability \(P(X) \) and \(X = \{x_1, ..., x_n\} \). Here, \(x_i \) is a specific vector and \(X \in \chi \). Consider task \(T \), consisting of a label space \(\gamma \) and an objective function \(P(\gamma|X) \). Transfer learning is the process aimed at improving target task \(T_T \) in the target domain \(D_T \) using knowledge from the source task \(T_S \) in the domain \(D_S \). Inductive learning is inferring mapping from a set of training data samples. The trained model then works with inductive bias, a set of assumptions related to the training data used to generalize on unseen data. Deep learning algorithms use inductive transfer techniques that utilize inductive biases of the source task to assist in the target task. To apply transfer learning, several methods are used: 1) Feature extraction, using pre-trained networks without its final layer as a feature extractor for other tasks. 2) Fine-tuning, where selected layers are re-trained from a pre-trained model, while other layers are frozen (weights are fixed). 3) Pre-trained models, are models that are trained and perform well on a source task \(T_S \), and the model weights and parameters are saved and then re-trained to perform a target task \(T_T \). There are several types of transfer learning: 1) Domain adaptation,
noted when there is a data shift between the source and target domains, usually the marginal probabilities \(P(X_S) \neq P(X_T) \). An example of domain adaptation can be training a pre-trained sentiment classifier for movie reviews to classify product review sentiments. 2) Domain confusion aims to make the domain representations as similar as possible by applying pre-processing steps on the representations. The basic idea is to add another objective to the source model to encourage similarity between the domains by confusing the domain itself (Ganin et al., 2016). 3) Multitask learning, where the model receives information about multiple tasks simultaneously. 4) One and few-shot learning, where the model infers the required output based on one or a few training examples respectively (Fei-Fei et al., 2006). 5) Zero-shot learning, where the model relies on no examples to learn a task.

The Transformer architecture is composed of 6 stacked encoders and 6 stacked decoders along with embeddings for both the inputs and outputs and positional encoders. Figure 9 overviews the proposed architecture.

We will first start by describing the encoders and decoders. The encoder receives inputs and passes them through the multi-headed attention. Multi-headed attention in each encoder is a type of self-attention. Self-attention helps the encoder map relationships between the current input token and other words in the input sequence as it encodes a specific word or a token (Cheng et al., 2016). Then the output of the attention is fed into a feedforward (MLP) neural network. The output of each encoder is fed into another encoder until it reaches the last encoder, the sixth encoder. Each decoder receives the output of the sixth encoder and the target language input. It has both a feedforward network and multi-headed attention but it also has another attention mechanism, the masked multi-headed attention. The masked multi-headed attention mechanism is also a self-attention mechanism, which takes in the output sequence as its input. It is modified to prevent attending to subsequent tokens/words so that predictions for the current timestep are only dependent on previously known output tokens. All the produced matrices are added with either the previous layer or the embedding and normalized according to (Ba et al.,)
The multi-headed attention has an overall algorithmic complexity of $O(N^2)$ and is made up of 8 heads $h = 8$ running in parallel. Each token in a sequence has an embedding vector. An embedding is a numerical form of a word that preserves its meaning by using dimensionality reduction and maintaining context. The paper uses 512 dimensions for the embedding size ($d_{model} = 512$). Each attention head takes in 3 input vectors for each input token: the query vector Q, the key vector K, and the value vector V. Each of these vectors has a dimension of 64. These vectors are computed by multiplying the embedded input token with 3 different weight matrices: W^Q, W^K, and W^V respectively. The output of the attention head is computed as a weighted sum of the values vector. d_k is the dimension of the key vectors which is 64.

\[
Attention(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V
\]

(10)

To compute the attention for each head we start by computing the dot product of the query and the transposition of the key vector. The output is then scaled by $\sqrt{d_k}$ which is 8. Next, the softmax function is applied so that all the values are between 0 and 1. Lastly, we compute the dot product of the softmax output with the values vector. The process is called the Scaled Dot-Product Attention and is described in Equation 10.

To compute the multi-head attention we take the output from each attention head, concatenate them, and multiply them with a bigger weight matrix W^O as described in Equation 11.

\[
\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \ldots, \text{head}_h)W^O
\]

(11)

The weight matrices W^Q, W^K, W^V, and W^O are all learned and updated throughout the training process which greatly assists in the process of transfer learning. Each of the 8 attention heads can focus on a different relationship between the input words (e.g., one for pronoun-noun, one for gender, etc.).

Another component is positional encoding applied to both the input and output sequences. The positional encoding has a dimension of 512 which is the same as the embeddings. Positional encodings provide a vector to be added to the input embedding. This provides fixed positioning of tokens during training which allows further extrapolation of longer sequences. The paper uses sinusoidal version of positional embeddings described in Equation 12, where pos is the position and i is the dimension. Each dimension of a positional encoding corresponds to a sinusoid which goes from 2π to 10000.

\[
P_E(pos, 2i) = \sin(pos/10000^{2i/512})
\]

\[
P_E(pos, 2i+1) = \cos(pos/10000^{2i/512})
\]

(12)

There are many applications of the Transformer model and it is not restricted to the field of NLP. We note in particular BERT (Devlin et al., 2018) which advanced state of the art for language modeling and GPT-3 (Brown et al., 2020) which advanced language generation. In the next section, we will discuss the GPT models.

2.6 GPT Models

In the section, we describe a specific transformer architecture, the Generative Pretrained Transformer family of models.

2.6.1 GPT-1

Prior to GPT-1 most NLP models required annotated corpora for natural language understanding. Annotated data for specific natural language understanding (NLU) tasks are scarce while large unlabeled corpora are abundant. GPT-1, or Generative Pre-trained Transformer 1, introduces the concept of generative pre-training on large unlabeled text and then fine-tunes for specific NLU tasks (Radford et al., a). GPT-1 demonstrates significant gains in several NLU tasks and marks a significant step towards the trend of task-agnostic NLP models. Next, we describe the semi-supervised learning process (pre-training then fine-tuning) more in detail.

The unsupervised pre-training is a language model task with maximizing the following objective for a corpus of tokens $U = u_1, \ldots, u_N$:

\[
L_1(U) = \sum_i \log P(u_i | u_{i-k}, \ldots, u_{i-1}; \Theta)
\]

(13)

where k is the size of the context window, P is a conditional probability modeled by a neural network with parameters Θ. The parameters are trained using stochastic gradient descent (SGD) described earlier in 2.1.
The fine-tuning training (supervised training) takes in a labeled dataset C with a sequence of tokens x_1, \ldots, x_m, and a label y for the token sequence and aims to maximize the objective given the pre-training objective L_1, and a weight λ set to 0.5 in the paper:

$$L_2(C) = \sum_{(x,y)} \log P(y|x_1, \ldots, x_m)$$

$$L_3(C) = L_2(C) + \lambda L_1(C)$$

Using the language modeling (pre-training) objective helps with improving the supervised model’s generalization and accelerating convergence (Radford et al., a).

The **GPT Architecture** is composed of 12 stacked transformer decoder layers (see the decoder component in Figure 9), with multi-headed masked self-attention. The decoder layer had 12 attention heads, the embedding size is 768 ($d_{\text{model}} = 768$), an Adam optimizer (Kingma and Ba, 2014b) was used with a learning rate of $\alpha = 2.5 \times 10^{-4}$, and a drop out rate of 0.1. As shown in Figure 10, the model applies its multi-headed masked self-attention on the input tokens. Following attention, are position-wise feed-forward layers generate a distribution over the target tokens. The dimension of the position-wise feed-forward layer is 3072. During pre-training, the output distribution $P(u)$ for a token u is computed through the following:

$$h_0 = UW_e + W_p$$

$$h_i = \text{decoder}(h_{i-1}) \forall i \in [1, n]$$

$$P(u) = \text{softmax}(h_nW_e^T)$$

Here, $U = u_k, \ldots, u_1$ is the context vector of tokens starting from k the size of the context window, n is the number of layers (12 layers), and W_e is the token embedding matrix, and W_p is the position embedding matrix. We observe that the first decoder layer h_0 takes in the embedding matrix and position embedding matrix. Subsequent decoder layers take in the previous layer, and softmax is applied at the last transformer layer and maximizes for Equation 13. When fine-tuning GPT-1, input tokens x^1, \ldots, x^m which come along with label y are passed through the pre-trained model to obtain the last decoder activation h_n. It is then passed to the linear layer (shown in Figure 9) with parameters W_y to predict y and maximizes for Equation 14:

$$P(y|x^1, \ldots, x^m) = \text{softmax}(h_n^TW_y)$$

The model was trained for 100 epochs with minibatches of 64 and a sequence length (context window) of 512 and used GELU (Gaussian Error Linear Unit) (Hendrycks and Gimpel, 2016) as its activation function. Byte Pair Encoding (BPE) (Sennrich et al., 2016) with a vocabulary size of 40,000 was used. GPT-1 had 117 million parameters in total. The Bookcorpus dataset (Zhu et al., 2015) was...
used for the pre-training stage. GELU is approximated by the following using \tanh described in section 2.1:

$$GELU(x) = 0.5x(1 + \tanh[\sqrt{2/\pi}(x + 0.044715x^3)])$$ \hspace{1cm} (17)

2.6.2 GPT-2

The Generative Pre-trained Transformer 2 (GPT-2) serves as the first attempt at creating a pre-trained language model that can perform downstream tasks without any fine-tuning or architectural change. This is also known as the zero-shot setting. To achieve this goal, GPT-2 updates the objective function from the pre-training objective $P(output|input)$ to include a particular task $P(output|input,task)$ (Radford et al., b). This is called task conditioning. With task conditioning GPT-2 can produce different outputs for the same input given a different task. The task is passed as a natural language description (sequence of tokens describing the task). GPT-2 is trained using a dataset called WebText which is around 40 GB in size (Radford et al., b). GPT-2 experiments highlighted that the perplexity (intrinsic evaluation) of language models on the same dataset decreases the bigger the language model in terms of parameters. The GPT-2 Architecture follows the architecture of GPT (Radford et al., a) with a few notable differences. GPT-2 is trained using a dataset called WebText which is around 40 GB in size (Radford et al., b). GPT-2 experiments highlighted that the perplexity (intrinsic evaluation) of language models on the same dataset decreases the bigger the language model in terms of parameters.

2.6.3 GPT-3

Large transformers such as BERT (Devlin et al., 2018), and GPT-2 (Radford et al., b) are task agnostic in architecture, however, they require fine-tuning on specific tasks using thousands of examples. In a new transformer-based architecture, researchers at OpenAI explore greatly scaling up transformer-based language models to explore its task-agnostic performance using few-shot and zero-shot learning. GPT-3, or Generative Pre-trained Transformer 3, is a massive auto regressive transformer-based model that underwent unsupervised pre-training on large corpora (over 300 billion tokens of text or 45 TB). The data sources include 3 years of filtered CommonCrawl (Wenzek et al., 2020), Wikipedia, and WebText. GPT-3’s pre-training objective is to predict the next word given a sequence of words. GPT-3 is massive, containing about 175 billion parameters, making it one of the world’s largest pre-trained transformer models for language generation in the world. GPT-3 is used without gradient updates nor fine-tuning but rather with few-shot demonstrative interactions with the model. Researchers have tested the model on various NLP tasks including question answering, translation, and cloze tasks competing with state-of-the-art models without fine-tuning. GPT-3 generates language one token at a time, just like previously mentioned models, given a sequence of tokens as input in many different domains. Upon its release to the public enthusiasts have used GPT-3 for many different applications. These applications include mainstream tasks such as translating into different languages, writing google ads and has been particularly used to generate code from natural language such as SQL, Bash, and Python. For a thorough list of GPT-3 applications please refer to this.

The GPT-3 Architecture is the same as that of a GPT-2 model (Radford et al., b). Similar to the GPT-2 (Radford et al., b), the GPT-3 model is composed of stacked transformer decoder layers (see the decoder component in Figure 9) and it includes the modified initialization, pre-normalization, and reversible tokenization. GPT-3 is different from GPT-2, in that it uses alternating dense and banded sparse attention patterns in the transformer layers proposed in the Sparse Transformer paper (Child et al., 2019). OpenAI researchers have experimented with different GPT-3 configurations, sizes, and parameters. An example experiment is shown in Figure 11. The
final GPT-3 model uses 96 transformer decoder layers, 96 attention heads, the dimension of the model ($d_{\text{model}} = 12888$), dimension of each attention head ($d_{\text{head}} = 128$), batch size is 3.2M, and $\alpha = 0.6 \times 10^{-4}$.

3 Code Intelligence (CI)

With the availability of big code from public sources like GitHub and StackOverflow, an opportunity to use data-driven tools and algorithms comes to light. This opens the door for machine learning, and NLP techniques, in particular, to be used for various applications on source code. Such applications tend to improve the software development process and are gaining attention from both AI and software engineering academics. Applications of machine learning and NLP techniques on source code includes applying statistical models (Oda et al., 2015a), neural networks such as LSTMs (Rabinovich et al., 2017), and more recently pre-trained transformers including CodeBERT (Feng et al., 2020), CodeGPT (Svyatkovskiy et al., 2020), Codex (Chen et al., 2021a) which are respectively variants of BERT (Devlin et al., 2018), GPT-2 (Radford et al., b), and GPT-3 (Brown et al., 2020) pre-trained on source code.

Recently, researchers at Microsoft have published an international benchmark CodeXGLUE (Lu et al., 2021a) for Code Intelligence, similar to existing NLP benchmarks such as GLUE (Wang et al., 2018) and SQuaD (Rajpurkar et al., 2018, 2016). Another benchmark worth mentioning is GLUECode (Karmakar et al., 2020). GLUECode evaluates machine learning models on local and global understanding evaluation of source code. Different from CodeXGLUE, GLUECode contains two tasks for “local reasoning” in which models are tasked with showing understanding of codes on a local level. The first task is operator prediction, in which a model is tasked with predicting a masked operator including boolean comparison operators and arithmetic operators. The second task is NPath prediction, where models are tasked with counting the number of distinct paths control flow can take in a method. We categorize works in NLP on source code fall into a set of areas. The areas include Program Synthesis, Program Analysis, Program Repair, Clone Detection, Defect Detection, Cloze Testing, Code Translation, Code Refinement, Code Completion, Code Search, Code Documentation Generation, Documentation Translation, Semantic Parsing, and Code Generation. This section will overview each of these areas and highlight notable works. We focus on Code Generation and semantic parsing more in particular for this survey.

3.1 Program Synthesis

Artificial intelligence research has long aimed at having computers synthesize their programs (Manna and Waldinger, 1971; Waldinger and Lee, 1969). Program Synthesis involves
constructing full or partial programs that complete a specified task (Allamanis et al., 2018; Gulwani et al., 2017). Program specifications are taken by the program synthesizer model as input and an executable program is synthesized by the model as the output. Program specifications are traditionally expressed with formal logic statements. Other program specifications include providing the model with example input/output pairs and more recently natural language descriptions of what the program needs to accomplish. In program synthesis, if the program specifications include natural language descriptions it is accompanied by another specification type such as input/output pairs (Austin et al., 2021; Shi et al., 2020; Ye et al., 2020b). If the program specification is in natural language only then it would be considered a semantic parsing task which is described in §3.7. Program synthesis works usually synthesis programming using restricted domain-specific languages (DSLs) (Gulwani, 2011) or languages that have more features but are still designed with program synthesis in mind (Odena and Sutton, 2020; Ellis et al., 2021). More recently, program synthesizers have started to synthesize programs in general-purpose languages such as Python (Shi et al., 2020; Austin et al., 2021).

Program synthesis approaches include applying both symbolic (Manna and Waldinger, 1975, 1980) and neuro-symbolic (Parisotto et al., 2016) techniques (Balog et al., 2016; Odena and Sutton, 2020; Devlin et al., 2017). Symbolic approaches are also known as rule-based program synthesis (Manna and Waldinger, 1980) focus on deriving a program from a well-defined specification using a set of formal grammar rules. A drawback of the symbolic approach is it often relies on using formal logic to describe the program specification, however writing the formal logic to describe the program is often more difficult than writing the program itself. To remedy this issue, modern program synthesis models often learn from input/output examples. A recent notable work utilizing input/output examples in various domains is DreamCoder (Ellis et al., 2021). DreamCoder learns to synthesize programs in a domain-specific language using input and output examples to solve inductive programming tasks such as list processing and text editing, creative tasks such as drawing pictures and building scenes and to solve classical physics problems. DreamCoder uses a wake-sleep learning algorithm. In its, sleep DreamCoder goes through to learn concepts from combinations of DSL primitive operations improving its library of operations in the process. When DreamCoder is awake it uses operations from its library to solve problems given input and output examples. There are also notable works that synthesize programs in Python, a general-purpose programming language, which has the potential to power tools to further enable programmers. Austin et al. (2021) explore the limits of using a large pretrained transformer-based language model to synthesize basic python programs to solve entry-level programmer tasks and math problems given input/output examples and a natural language description. The authors note that large language models enable program synthesis models to consider various types of program specifications such as natural language. Furthermore, the authors demonstrate that such language models can reduce the error rate of synthesized programs by up to 50% when engaging in dialogue with a human and incorporating human feedback given on the synthesized code. Shi et al. (2020) propose TF-Coder, a program synthesizer for TensorFlow, a well-known deep learning library by Google. TF-Coder uses input/output examples and natural language description as program specifications and generates Python code in the TensorFlow library to solve real-world tensor manipulation problems achieving superhuman performance.

Program synthesis models are generally evaluated based on how many compilable (executable) programs are synthesized. They are also evaluated based on how many programs are logically correct, i.e. match the specification constraints or solve the programming problem by passing pre-programmed unit tests (Austin et al., 2021). Other metrics also include how long it takes for the model to synthesize the program, and duration speedup compared to human programmers. Recent work by Schuster et al. (2021) proposes a dataset, programming puzzles (P3), to evaluate program synthesis models. Program synthesis models are tasked with predicting an input x to a short Python program f with makes f output True.

Although program synthesis generally assumes that the program compiles with some specification, some notable works utilize program synthe-
sizers to generate random but functioning programs for benchmarks and compiler fuzzing. Cummins et al. (2017a) synthesize a large number of programs used as benchmarks in OpenCL code. Fuzzing is a popular method that creates structured data samples that are used as inputs to test complex software such as compilers and web applications. Patra and Pradel (2016) synthesize programs using TreeFuzz in JavaScript using a corpus of example structured data (in this case example program outputs). These programs generate random structured data for fuzz-testing JavaScript interpreters. Program Synthesis has been applied to build usable products in fields including data science (Drosos et al., 2020), to assist data scientists in wrangling data using Python, and general software engineering to generate code edit suggestions based on repetitive changes (Miltner et al., 2019).

3.2 Program Analysis

Computers can execute programs but they do not necessarily understand what the programs do or mean. When analyzing program source code, we can computationally estimate a program’s behavior, functionality, complexity, meaning, etc. Program analysis focuses on extracting semantic properties from programs. In a sense, it is similar to natural language understanding (NLU) in natural language processing where both fields focus on comprehending a snippet of. Probabilistic models of source code compose a notable family of models to analyze programs and extracting properties. Sometimes codebases contain uninformative variable names such as e and which makes it difficult for humans to comprehend code. This can be remedied by refactoring codebases to include descriptive comments and variable names. Raychev et al. (2015) propose a system JSNice that models the statistical patterns of source code through an AST-based dependency network to predict variable names and types in JavaScript programs. A notable issue in program analysis has been scalable but imprecise models. Models that tended to scale on large datasets tended to have higher numbers of false positives. To remedy this, Oh et al. (2015) propose using Bayesian Optimization to optimize models for static program analysis and report achieving high precision while lowering false positives. Mangal et al. (2015) take a more user-centered approach and utilize online learning to tune their model. The user would provide feedback to the program analysis system as to whether the user likes or dislike the program analysis output. Mapping comments onto code tokens can be a useful feature in helping programmers debug and understand code. In an attempt to model this, Panthapackel et al. (2020) work on associating entities mentioned in Javadoc comments with source code tokens using a feedforward neural network trained as a classifier trained on noisy data from Github. Managing large software repositories can be gruesome. Source code classification and tagging are crucial in helping to organize, search, and reuse codebases. In an attempt to automate source code tagging and classification, Mou et al. (2016a) propose a novel architecture of Tree-based convolutional neural networks (TBCNNs). TBCNNs combine structured information from Abstract-Syntax Trees (ASTs), which are tree-based meaning representations of code snippets, with Convolutional Neural Networks (CNNs). CNN’s are a deep learning model derived from MLPs. Their work is then applied to classify code bases by functionality with over 104 unique functionalities. TBCNNs were reported to outperform other classification machine learning models including SVM and RNNs for this task. Program analysis has been also useful in software reverse engineering, in particular, recovering variable names when decompiling C code (Lacomis et al., 2019).

3.3 Clone Detection

Code Clone Detection is another area of research that focuses on detecting portions of code that mean or do the same thing. Program analysis (see §3.2) focuses on analyzing semantic properties of programs. Clone detection is closely related to program analysis and can be considered a sub-field of program analysis that is particularly focused on estimating semantic similarity between two codes. Early work on code clone detection by Chilowicz and Duris (2009) focused on indexing and retrieving abstract syntax trees. Clone detection has been approached as a machine learning problem of binary classification of two codebases (e.g. labeling a code pair with 1 to indicate that the pair is a clone and labeling with 0 to indicate otherwise) (Svajlenko et al., 2014; Wei and Li, 2017; Wang et al., 2020b, 2021a). Code clone detection has also been approached as an information re-
retrieval problem, where the model is tasked with retrieving semantically similar codes to a given code input (Ganguly et al., 2018; Mou et al., 2016b; Lu et al., 2021a). Code clone detection is included as a task on the CodeXGLUE benchmark (Lu et al., 2021a). The task evaluates models using the F1-score for the binary classification subtask and Mean Average Precision (MAP) (Beitzel et al., 2009; Lu et al., 2021a) for the code retrieval task. Mean Average Precision (MAP) is the arithmetic mean of the average precision values (AP) for a system over a set of n documents. MAP is described in equation 18.

$$ MAP = \frac{1}{n} \sum_{n} AP_{n} \quad (18) $$

Notable datasets for clone detection include the POJ-104 dataset (Mou et al., 2016b) for clone code retrieval. The POJ-104 dataset is collected from a programming open judge (OJ) system where students submit their source code for 104 problems. The dataset contains about 500 student submissions in the C/C++ programming language for each problem. The task is to retrieve other codes that solve the same problem as the input example. Another notable dataset is the BigCloneBench dataset (Svajlenko et al., 2014) which focuses on the binary classification of clone codes. After filtering the dataset contains about 1,731,860 Java code pairs.

Currently, to the best of our knowledge, CodeBERT (Feng et al., 2020) outperforms prior models on both the POJ-104 and the BigCloneBench datasets. Prior works in clone detection include Clone Detection with Learning to Hash (CDLH) (Wei and Li, 2017) which learns hash functions and representations of code snippets via an AST-based LSTM. Another approach is Flow-augmented abstract syntax tree (FA-AST), which augments the original AST representation of source code with data flow edges and uses graph neural networks (Wang et al., 2020b). MulCode (Wang et al., 2021a) integrates a pre-trained transformer model BERT and an AST-based LSTM to encode a code sequence and structure and is evaluated on three classification tasks including clone detection.

Code clone detection has become of increasing importance since the rise of machine learning on “big code”. Lopes et al. (2017) discovered that most of the code on Github is near-duplicate. A study followed by Allamanis (2019) explores the effects of code duplication on machine learning models for source code. Allamanis observes big inflation in machine learning metrics when testing on duplicated code corpora. Code clone detection is crucial in creating higher quality code datasets for machine learning and can also have other uses such as detecting code plagiarism in academic contexts (Ganguly et al., 2018).

3.4 Code Search

Searching for code snippets online is a common activity for programmers and software engineers. Semantic code search is the task of retrieving semantically equivalent code to a natural language query (Husain et al., 2019). Husain et al. (2019) release a corpus specific for the task of code search called CodeSearchNet. The corpus is collected from public, licensed, and non-forked GitHub repositories. Functions and methods are parsing using TreeSitter and corresponding documentation is parsing using regular expressions. The training set of the CodeSearchNet corpus includes only code functions that have an associated documentation string with them. Other inclusion and exclusion criterion include: the documentation is shortened to only the first paragraph, samples that include 3 tokens or less of documentation or 3 lines or less in its function body are removed. Additionally, methods with the string `test` in its function name, constructors and standard extension methods such as `__str__` are removed, and lastly duplicate functions are removed from the dataset using clone detection methods described in (Lopes et al., 2017; Allamanis, 2019). It contains around 6 million functions in six programming languages: Java, Go, JavaScript, Python, Ruby, and PHP along with corresponding 2 million natural language queries in English. While the dataset is relatively big, it suffers from being quite noisy. Scraped function documentation is far from a query, hence the authors reported difficulty in identifying how accurately a documentation sample describes its corresponding code function. The code search task is evaluated using Mean Re-
Neural Bag of Words (BoW) Encodes the codebases and English queries by encoding them into a standard token embedding with masking. The model optimizes to minimize the cosine distance between the code and the query.

Self-Attention Transformer masked multi-headed attention (Vaswani et al., 2017) is used to compute the token embeddings.

One Dimensional Convolutional Network (CNN) CNN is used over query and code embeddings.

Bidirectional RNN Employing gated recurrent network (GRU) to summarize the query.

Table 2: Overview of top scoring CodeSearchNet models sorted by the best score for the particular model across all leaderboard submissions. The score is the average Normalized Discounted Cumulative Gain (NDCG) score across all six programming languages.

3.5 Code Documentation Generation & Summarization

The goal of code documentation generation is to generate a comment in natural language that accurately describes a given code snippet. This research area intersects heavily in terms of datasets and models with Code Generation (§3.8) since both areas heavily utilize corpora of source code and natural language and utilize machine translation approaches. Notable work by Oda et al. (2015b) propose two novel dataset of Python and natural language comments called the Django and Euler datasets. The authors then statistical machine translation to generate comments in natural language given a Python source code snippet. The system was evaluated using BLEU (Papineni et al., 2002) and human evaluation of the generated comments. Fudaba et al. (2015) build a tool called Pseudogen that also generates pseudocode in both Japanese and English from Python code using statistical machine translation. Iyer et al. (2016a) propose a dataset and an LSTM-encoder decoder model to produce sentences in natural language that describe C# code snippets. Gros et al. (2020) examine the task of generating comments in 4 code-natural language datasets using a sample information-retrieval (IR) model using the BM25 scoring function (Robertson and Walker, 1994; Amati, 2009), LSTM-based sequence-to-sequence, and a transformer-based sequence-to-sequence model. The authors find that the simple IR model provides competitive performance on these datasets. Notable work
by Gao et al. (2020b) propose generating Stack Overflow questions given source code which is similar to generating comments. Code Documentation Generation is also included as a task in the CodeXGLUE (Feng et al., 2020) which utilizes the CodeSearchNet corpus (Husain et al., 2019) for training and testing machine learning models. More recent approaches to code documentation utilize pretrained transformers. Currently, CoTexT (Phan et al., 2021) outperforms CodeBERT (Feng et al., 2020), PLBART (Ahmad et al., 2021), and ProphetNET-X (Qi et al., 2021) in this task. The CodeSearchNet corpus is further described in §3.4 and the models are described later on in the code generation subsection §3.8. Code summarization focuses on generating method names in natural language given a method’s body of code snippets. A notable work on representing codes as vectors is code2vec (Alon et al., 2019) which focuses on embedding abstract syntax tree paths into a fixed-length vector. Code2seq (Alon et al., 2018) is an LSTM-based sequence to sequence model that encodes the raw source code tokens along with the AST paths in its encoder and attends to the relevant paths while decoding. Code2seq outperforms code2vec on code summarization and outperformed prior state of the art in code documentation generation CodeNN (Iyer et al., 2016a) by 2% BLEU.

3.6 Documentation Translation

Code Documentation Translation focuses on translating web-pages containing code-related documentation such as library docs from a source language into a target language. CodeXGLUE proposes this task and curates a dataset by crawling the Microsoft Documentation website\(^6\) and it includes software and code description documents in various languages (Lu et al., 2021a). The task focuses on translation between English and other languages such as Danish, Latvian, Norwegian, and Chinese. The multi-lingual zero-shot transformer model proposed by Johnson et al. (2017) and a variant of the model with the encoder initialized with XLM-R (Conneau et al., 2020) pretrained weights were used as models for this task. The pretrained transformer was reported to outperform the baseline on all translation tasks (Lu et al., 2021a) using the token overlap metric BLEU (Papineni et al., 2002). The pretrained transformer scored 66.16 while the transformer baseline score 52.67 BLEU.

3.7 Semantic Parsing

When interfacing with machines via natural language, a key component is the machine’s understanding of the natural language intent. The intersection between natural language processing, information retrieval, and interaction with humans is called natural language understanding (NLU). Semantic parsing converts natural language utterances to executable meaning representations, such as lambda calculus or database queries, that can be executed on a knowledge base (Kamath and Das, 2019). Semantic parsing can also be known as auto-formalization, which is defined as the task of turning informal descriptions to formal and automatically verifiable formats (Szegedy, 2020). Semantic parsing has become increasingly prominent in applications focused on interfacing via natural language with computer systems (Yin, 2020). Semantic Parsing enables machines to identify roles and objects in a sentence (Fernández-González and Gómez-Rodríguez, 2020), converting natural language to database queries (Zhong et al., 2017) that can then be plugged into conversational assistants like Alexa, interfacing with robots using natural language commands (Matuszek et al., 2012; Artzi and Zettlemoyer, 2013), generating mathematical statements (Wang et al., 2020a; Sun et al., 2019a), and interacting with time series medical data (Chen Jr and Bunescu, 2019).

Semantic parsing works typically generate or map a natural language utterance into an unambiguous meaning representation (also referred to as logical forms or semantic representations). The representations need to be executable in an environment or a specific context. The representations typically follow a specified grammar (also referred to as a logical formalism). Grammar is used to identify valid meaning representations. Grammar can interact with a model which produces a distribution over meaning representations, to ensure that all meaning representations in the distribution are valid.

Meaning Representations of natural language utterances for semantic parsing tend to often fall into one of three categories: first order logic (FOL), graphs, and code snippets. First order logic often expresses unambiguous logical expressions.

\(^6\)https://docs.microsoft.com/en-us/
It consists of variables and functions that only take objects as arguments. First order logic can be augmented with lambda calculus to increase its expressiveness (Carpenter, 1997). An illustrative example from Singh et al. (2020), “a man eating” can be represented as $\exists A(\exists B(\text{man}(A) \land \text{eat}(B) \land \text{agent}(B, A)))$ in first order logic. First order logic has been used in various semantic parsing works to query databases (Zettlemoyer and Collins, 2005), knowledge bases (Berant et al., 2013), Wikipedia tables (Pasupat and Liang, 2015), parsing conversations and implementing conversational agents (Artzi and Zettlemoyer, 2011), and mapping linguistic instructions onto robotic actions (Artzi and Zettlemoyer, 2013). Graph-based meaning representations often denote a labeled graph where nodes represent entities or events and edges represent semantic relationships between the nodes. Graphs tend to be easy to understand compared to other meaning representations like code snippets and first order logic. Graph-based meaning representations also have the advantage in that they also provide abstraction and can pivot away from any general syntax. Notable examples of graph-based meaning representations include Semantic Dependency Parsing (Oepen et al., 2015; Fernández-González and Gómez-Rodríguez, 2020), Abstract Meaning Representation (AMR) (Banarescu et al., 2013), and Universal Conceptual Cognitive Annotation (Abend and Rappoport, 2013). Code snippets in general purpose programming languages provide a good medium for representing meaning since they are domain specific and easily executable. More recently there have been various works that focused on converting natural language into equivalent executable code snippet representations in languages such as SQL (Zhong et al., 2017), Python (Yin and Neubig, 2017a), and Bash (Lin et al., 2018). These works will be discussed later on in §3.8. Figure 12 showcases example semantic parsing tasks with an AMR, a logical form, and SQL, a database specific programming language.

Grammar of meaning representations defines rules to determine whether a representation is valid or not. Grammar also plays a role in determining how a semantic parser expresses its meaning representations and how computationally complex building the meaning representation is. A no-
table example of strict grammar for meaning repre-
representations is Combinatory Categorical Gram-
mmer (CCG)\(^2\) (Steedman, 2000; Artzi et al., 2014).
It is efficiently parsable, but still expressive. CCG
has a lot of rules and hence it makes it easier to
parse since it lessens the amount of possible mean-
ing representations for a given input (Zettlemoyer
and Collins, 2007). Kwiatkowski et al. (2011)
consider learning a probabilistic model of CCG
grammar for semantic parsing. Recent works on
code generation from natural language leverage
the programming language grammar itself by using
an abstract syntax tree associated with the pro-
gramming language.

Context of semantic parsing tasks form the
bases of mapping natural language to its mean-
ing representation. Often these contexts or en-
vvironments are executable. Example semantic
parsing contexts include knowledge bases (Be-
rant et al., 2013), Wikipedia tables (Pasupat
and Liang, 2015), geography queries (Zelle
and Mooney, 1996), SQL databases (Zhong et al.,
2017), spreadsheets (Gulwani et al., 2012), and
programming languages (Yin and Neubig, 2018,
2017b).

Models for semantic parsing relied on rule-
based techniques (e.g. (Johnson, 1984; Woods,
1973; Hendrix et al., 1978)), symbolic artificial in-
telligence (e.g. (Zelle and Mooney, 1996, 1993)),
statistical-based techniques (e.g. (Zettlemoyer
and Collins, 2005; Tang and Mooney, 2001)),
RNN-based sequence-to-sequence (e.g. (Chen Jr
and Bunescu, 2019; Jia and Liang, 2016; Singh
et al., 2020; Yin and Neubig, 2017a; Rabinovich
et al., 2017; Ling et al., 2016; Sun et al., 2019a)),
and transformer-based architectures (e.g. (Kacu-
paj et al., 2021; Ferraro and Suominen, 2020;
Shen et al., 2019; Sun et al., 2019b; Gemmell
et al., 2020; Syvatkovskiy et al., 2020; Kusupati
and Ailavarapu)). In the late 1970’s, Hendrix
et al. (1978) pioneer the task of interfacing with
databases using natural language. The rule-based
system proposed called LADDER which takes in a
restricted set of natural language questions. LAD-
DER accepts questions if they match a preset tem-
plate, extract field and file names, and then pro-
duces a query or a sequence of queries in a lan-
guage Data Language by inserting the relevant file
and field names into preset templates. In 1993,
Zelle et al. (1993) introduce a first-order induc-
tion algorithm that utilizes symbolic artificial in-
telligence to learn word classes an semantic re-
relationships between the words to support pars-
ing of sentences and conduct semantic analyses.
The algorithm takes in a set of training samples
containing sentences paired with ‘case representa-
tions’ (e.g. parts of speech tags). The algo-
ron utilizes shift-reduce parsing where in each
time step either a new word from the sentence is
added (shifted) onto a stack or the top two ele-
ments on the stack are popped from the stack then
merged to form a new element and pushed back
into the stack. After the training is complete the
shift-reduce parser is introduced to search control
heuristics to help the parser become more special-
ized. In 2005, Zettlemoyer and Collins (2005) pro-
pose a statistical probabilistic model that learns
given a training set to induce grammar for map-
ping natural language sentences to lambda cal-
culus. The probabilistic model learns given a sen-
tence in lambda calculus \(L \) and a parse tree \(T \). The
parse tree \(T \) is defined as the sequence of transfor-
mations needed to derive \(L \) from the given natural
language sentence \(S \) within the constrains of the
grammar CCG. The conditional distribution would
be \(P(L,T|S) \). In 2020, Singh et al. (2020) pro-
pose using an LSTM-based sequence-to-sequence
with Bahdanau attention (Bahdanau et al., 2014)
to convert natural language utterances into first or-
der logic. The authors report on improving upon
the sequence-to-sequence by introducing a mech-
anism that aligns variables across predicted predi-
cates in first order logic. This mechanism utilizes a
classifier at each decoding step of a variable token
to predict whether the variable is aligned with any
previously decoded tokens or whether it’s a new
variable. Following the classifier is self-attention-
like mechanism where the decoder hidden states
are used to estimate alignment between the vari-
able and other previous decoded tokens. Chen and
Bunescu (2019) design an LSTM-based encoder
decoder model to parse natural language or GUI
interactions into a database-executable lambda-
calculus logical form. The database contains time
series data from sensors monitoring type I dia-
etes patients along with patient-reported informa-
tion about discrete life events (e.g. stress, sleep,
eats, etc. The data is temporal and user interac-
tions are sequential, where the current interaction
may dependent on a prior interaction with the sys-

\(^2\)https://yoavartzi.com/tutorial/
Hence, it is crucial for the model to understand coreferential time expressions such as “then” and temporal relations between entities such as “after”. To enhance the model with such understanding capabilities, the encoder decoder architecture works with a copying mechanism to model context dependency and utilizes 3 attention mechanisms: the first attention mechanism attends over the previous input, the second attends over the previous logical form, and the third attends over the current input. The proposed approach scores 66.9 in exact match accuracy significantly outperforms the baseline of a standard LSTM-based seq2seq model (Bahdanau et al., 2017; Cho et al., 2014) which scored 22.2 accuracy on a real-world dataset. Kacupaj et al. (2021) employ a transformer architecture to generate logical forms in a question-answering conversational assistant capable of answering complex questions by utilizing a pre-filled knowledge graph. Ferraro et al. (2020) compare the transformer architecture with other statistical and neural semantic parsing systems on the ATIS (Dahl et al., 1994) and Geo (Cai and Yates, 2013) semantic parsing datasets and find that the transformer architecture outperforms prior strong models in certain settings and achieve competitive results across all experimental settings.

Semantic parsing is a unique area with the aim of improving natural language understanding (NLU). It is distinguished from natural language generation and machine translation. Both natural language generation and some semantic parsing works use similar deep learning models and techniques such as an LSTM based sequence-to-sequence architecture in the works of Yin and Neubig (Yin and Neubig, 2017a). The objective of semantic parsing involves the prediction or generation of inherently structured representations (not only utterances). These representations need to be executable against a context or an environment. Semantic parsing is related to Code Generation from Natural Language, since both predict structured representations of natural language, in this case these structure representations would be code snippets which are executable in an environment and can also be represented as abstract syntax trees. However, semantic parsing also includes other executable representations that are not limited to code such as first order logic and graphs. For other survey papers on semantic parsing c.f. (Kamath and Das, 2019; Lee et al., 2021).

3.8 Code Generation

This section overviews generating a snippet of code given a natural language description.

3.8.1 Overview

Code generation is the task of generating an executable snippet given a description in natural language. The executable snippet can be in a particular programming language or domain specific language (DSL) that can be trans-compiled into a programming language. To illustrate consider the following example generating a Python snippet from an English intent: `check if all elements in list ‘mylist’ are the same → len(set(mylist)) == 1`. Code generation from natural language focuses on linking natural language with source code which is something it has in common with other aforementioned code intelligence tasks code search and semantic parsing. Code generation is distinct from code search. Code search focuses on ranking code snippets and codebases given a natural language query, whilst code generation attempts to generate a meaning representation, an executable code snippet that aligns with a natural language description. With that being said, code generation is closely related to the area of semantic parsing. It can be considered a subfield of semantic parsing that specializes in generating executable code snippets in programming languages an excludes any other meaning representation of natural language. Code generation has been inspired by Natural Language Generation methods including statistical machine translation, RNN-based sequence-to-sequence, and generative transformer models. Linking codebases to natural language intents or other forms of unstructured input compose face a series of difficult challenges. Firstly, the compositional and abstract nature of code can make pairing text with code difficult. Secondly, natural language is ambiguous in nature while source code is not ambiguous. Code generation can enable users to interface with machines using natural language. For instance, Kuhlmann et al. (2004) enable interfacing with robots using natural language. Furthermore, code generation enables users to build code more effectively and efficiently and enhance the overall software engineering process. Code software engineering (Miltner et al., 2019; Xu et al., 2021), robotics (Kuhlmann et al., 2004), and cyber-security (You et al., 2017; Liguori et al., 2021a; Frempong et al., 2021;
An assembly code generation task. The task is to generate the assembly code that is then compiled into shell-code (small pieces of code used as a payload to exploit software vulnerabilities) using the natural language descriptions on the right. The dataset contains multi-line snippets mapping onto one intent. Lines 4-5, 6-7-8, 9-10, 11-12 are multi-line snippets (Liguori et al., 2021a).

A Python code generation task where models are tasked with generating the blue code cell given the natural language utterance

Create and train the model

along with the previous natural language and code cells in the Jupyter notebook (Agashe et al., 2019).

Figure 13: Example code generation parsing tasks with various programming languages.

Liguori et al., 2021b, 2022). Figure 13 showcases two examples of code generation tasks.

Recent works in code generation have been used to assist data scientists to perform data visualization and file manipulation (Xu et al., 2021), generating bash commands (Lin et al., 2018), generate exploits (Liguori et al., 2021b,a; Frempong et al., 2021; Liguori et al., 2022), solve interview-level programming questions (Hendrycks et al., 2021), manipulate data (Zhong et al., 2018), and generate code snippets from natural language descriptions in many programming languages. These programming languages include but are not limited to Python (Xu et al., 2020a; Ling et al., 2016; Liguori et al., 2021b), Java (Ling et al., 2016), SQL (Zhong et al., 2017), Excel macro commands (Gulwani and Marron, 2014), Assembly (Liguori et al., 2021a,b, 2022), and JavaScript (Frempong et al., 2021).

3.8.2 Datasets

This section introduces a comprehensive collection of supervised datasets containing natural language (NL) mapped onto programming language snippets (PL). The snippets can be in general purpose programming languages (e.g. Python, Java) or in a Domain Specific Language (DSL). In Table 3, we curate a systematic list (to the best of our knowledge) of English NL-PL datasets.

Survey Method. The survey process started by searching through publications on GoogleScholar8 with keywords such as “Code generation”, “Program synthesis from natural language”, “natural language to code”, and “Conversational Semantic Parsing”. We collected highly cited papers and carefully reviewed all of the works that cite them for potentially proposed datasets. For each paper we reviewed, we carefully checked the references for any papers proposing datasets as well. We also searched through PapersWithCode9 and Huggingface Datasets10 for datasets with the tags “Code Generation”, “Code Search”, and “Code”. Datasets that map other forms of input like images of Graphical User Interfaces (Beltramelli, 2018), input-output examples (without natural language descriptions) (Drosos et al., 2020), questions in natural language not descriptions of non-query code (e.g. the neural code search dataset (Li et al., 2019)), and compiled code (Lacomis et al., 2019) to source code are excluded from the table. We’ve also excluded large mined datasets that are not processed into NL-PL pairs like the Code-Clippy dataset (Cooper et al., 2021), CodeNet (Puri et al.,

8https://scholar.google.com/
9https://paperswithcode.com/datasets
10https://huggingface.co/datasets
Automatic Exploit Generation. Automatic exploit generation is defined as an offensive security technique in which software exploits are automatically generated to explore and test critical vulnerabilities before malicious attackers discover such vulnerabilities (Averinos et al., 2011). With the goal of offensive security in mind, Liguori et al. (Liguori et al., 2021a) share a dataset, Shellcode_IA32, for shellcode generation from natural language descriptions. Shellcodes are compiled from assembly programs for the 32-bit version of the x86 Intel Architecture and contain a payload that is used in exploiting software vulnerabilities. The Shellcode_IA32 dataset is later extended in the EVIL-Decoder (Liguori et al., 2021b) dataset. Shellcodes are often encoded using Python software to evade detection by antivirus programs and then decoded using an assembly program to the victim machine. In an attempt to automate the whole pipeline Liguori et al. (2021b) propose the EVIL dataset composed of two different languages. EVIL-Decoder dataset contains full assembly programs along with their NL descriptions that decode a shellcode on a host machine. The EVIL-Encoder dataset extends the general purpose Python Django dataset (Oda et al., 2015a) with 1,114 original exploit-oriented snippets. Frempong et al. (2021) curate a synthesized dataset of JavaScript snippets used in cross-site scripting (XSS) which are a common web-based attack that target websites.

Bash. In an effort to make bash terminal (a Linux operating system command line interface) interactions more accessible, Lin et al. (2018) curate a dataset of bash commands along with their corresponding natural language descriptions. This work helps lay down a foundational dataset and a baseline model in building natural language interfaces to terminals.

General Purpose Programming. There has been extensive work in curating datasets for general purpose programming languages such as Java, JavaScript, and Python, since general purpose programming languages are abundant in open source code -bases (Husain et al., 2019). While some datasets were expert curated (Oda et al., 2015a; Chen et al., 2021a), and crowd sourced (Long et al., 2016; Zavershynskyi et al., 2018; Kulal et al., 2019; Austin et al., 2021; Huang et al., 2021), extensive datasets with NL-PL pairs were mined from open source code sources such as Github (Allamanis et al., 2016; Barone and Senrich, 2017; Iyer et al., 2018; Alon et al., 2018; Hu et al., 2018; Husain et al., 2019; Agashe et al., 2019; Clement et al., 2020; Hu et al., 2020; Bahrami et al., 2021), coding competition websites (Caballero et al., 2016; Li et al., 2022), Sourcerer (Lopes et al., 2010; LeClair et al., 2019), IFTTT (Quirk et al., 2015) (a website that allows users to create simple programs using triggers and actions), and StackOverflow (Iyer et al., 2016b; Yin et al., 2018; Yao et al., 2018; Orlanski and Gittens, 2021). CoDesc (Hasan et al., 2021b) combines multiple mined Java datasets into one bigger dataset after removing data-related noise. Hendrycks et al. (2021) propose the Automated Programming Progress Standard, a dataset curated from specifically mining websites where programmers share programming problems with each other such as CodeForces, Codewars, AtCoder, and Kattis. APPS contains Python programming problems in various difficulties (Introductory, Interview, and Competition levels), a natural language description, and unit tests for each problem. Some datasets contain synthetically generated NL descriptions such as the Hearthstone and Magic The Gathering trading card game datasets, were the NL-descriptions were automatically populated fields describing the card (Ling et al., 2016). Akinbou et al. (2021) propose using back-translation on Python code collected from Aizu Online Judge (AOJ)11 using a trans-compiler. The trans-compiler outputs natural language descriptions, in Japanese, from a Python code input. The Python snippet is converted into an abstract syntax tree and then using pre-defined transformation rules, the abstract syntax tree is transformed into a natural language description. Hasan et al. (2021a) propose text2app, a dataset containing descriptions of Android app specifications along with a Simplified App Representation (SAR) codebase. SAR is a domain specific language that is then compiled into a Java Android app. Text2App used data BERT-masking for data augmentation to curate NL descriptions of apps from a small amount of crowd-sourced app descriptions.

Turducken-style Code Generation. Turducken-style code snippets include one language embedded in another. Often-times a general purpose

11https://judge.u-aizu.ac.jp/onlinejudge/
programming language like Python being embedded with another server-related programming language like SQL. In an effort to benchmark code generation systems on Turducken-style code, Liang et al. (2021) propose the Lyra dataset which contains natural language intents in both English and Chinese languages mapped onto Python code with embedded SQL snippets.

Conversational Semantic Parsing. Semantic parsing is a task in which an utterance is converted into an executable form (§3.7). Semantic Parsing works often focus on isolated utterances. Conversational Semantic Parsing takes that a step further, where the context is a conversation. A crucial part of a dialogue system is being able to track the user’s goal through out the conversation, this task is called Dialogue State Tracking (DST). In conversational semantic parsing, researchers have formulated the user’s goal into an SQL query (Yu et al., 2019a), a tree-like representation using a domain specific language (Gupta et al., 2018; Cheng et al., 2020; Aghajanyan et al., 2020), and a program in a domain specific language that extends a dataflow graph (Andreas et al., 2020). These representations are executable by a dialogue system to interface with a data source. People tend to explore databases by asking multiple related questions (Iyyer et al., 2017), which require systems to be able to process conversational data requests, clarify ambiguous questions, and process user utterances that cannot be mapped onto queries (Yu et al., 2019a). To address this, Yu et al. (2019a) release the Conversational Text-to-SQL (CoSQL) corpus, to build database querying dialogue systems. Human utterances in dialogue sometimes contain nested requests. An example from (Gupta et al., 2018) illustrates this well: “Get me driving directions to the Eagles game” it is composed of two requests GET_DIRECTIONS and GET_EVENT. Linear representations do not allow for such compositionality. To tackle this phenomenon, both the TreeDST (Cheng et al., 2020) and the TOP datasets (Gupta et al., 2018), use a compositional (tree-like) forms. SB-TOP builds on the TOP dataset to include a decoupled representation that can represent co-reference and context carry over (Aghajanyan et al., 2020).

Database Querying. Creating natural language interfaces to interacting with data sources such as databases has been a long-standing research (Price, 1990; Dahl et al., 1994). To this end, various hand-curated datasets containing NL-descriptions and data-related questions mapping onto a domain specific language (such as a logical form) trans-compilable into a query in various domains such as Airline Travel in English (Price, 1990; Dahl et al., 1994) and other various languages (Upadhay et al., 2018; Xu et al., 2020b), Job posts (Tang and Mooney, 2001), open-domain question answering (Cai and Yates, 2013; Berant et al., 2013; Wang et al., 2015; Yih et al., 2016). We also observe an array of that focus on generating SQL queries from natural language. Some of these datasets are synthetic (Zhong et al., 2017), mined from StackOverflow (Yao et al., 2018; Hazoom et al., 2021) and Github (Yao et al., 2018), and human-curated (Tang and Mooney, 2000; Popescu et al., 2003; Giordani and Moschitti, 2012; Li and Jagadish, 2014; Iyyer et al., 2017; Yu et al., 2018; Yaghmazadeh et al., 2017; Finegan-Dollak et al., 2018; Yu et al., 2019b).

Map Question-Answering. Maps (e.g. Google Maps) contain data on entities restaurants, landmarks, geographic landmarks like rivers and mountains. This data is often stored in a database. A specific-type of text-to-query task deals with querying map databases. In an effort to mainstream interfacing through natural language with geographic data in map-related databases, Zelle and Mooney (1996) formulated the dataset GeoQuery contain questions about the United States geography in natural language and corresponding them to Prolog programs to answer them. GeoQuery was later adapted to SQL (Iyyer et al., 2017; Finegan-Dollak et al., 2018). Another notable dataset that contains more complex natural language questions and entities such as restaurants, museums, and hotels is NLMaps (Haas and Riezler, 2016; Lawrence and Riezler, 2016). NLMaps contain manually curated human questions that can be run against a worldwide map data from OpenStreetMap. Natural language intents were later on expanded using synthetic methods in NLMaps-V2 (Lawrence and Riezler, 2018).

Data Manipulation. Datasets were curated to with the aim of automatically generated codes that manipulate data. Gulwani et al (2014) curated a dataset that maps English utterances onto Excel macro-commands. Other datasets focus on generating a regular expression (Regex) (Kushman and Barzilay, 2013; Locascio et al., 2016; Zhong et al., 2018) given a natural language description.
Dataset Name	Programming Language (PL)	#NL-PL pairs	#NL tokens	#PL tokens	#Avg tokens per NL intent	#Avg tokens per code snippet	Data Collection (NL)	Public	Reference
Shellcode_IA32	Assembly	3,202.00	1,490.00	1,238.00	9.24	4.40	EC	✓	(Liguori et al., 2021a)
EVIL-Encoder	Python	15,540	10,605	9,511	14.90	11.90	EC	✓	(Liguori et al., 2021b)
EVIL-Decoder	Assembly	3,715	1,924	1,657	9.53	4.75	EC	✓	(Liguori et al., 2021b)
HIJAX	JavaScript	100,000	-	-	-	-	Synth	×	(Frempong et al., 2021)
NL2Bash	Bash	9,305	7,790	6,234	11.70	7.70	EC	✓	(Lin et al., 2018)
IFITTT	DSL	86,960	593,123	1,881,451	6.82	21.64	Mined	×	(Quirk et al., 2015)
Code-Docstring Corpus	Python	150,370	5,789,741	12,601,929	38.50	83.81	Mined	✓	(Barone and Sennrich, 2017)
C#2NL	C#	66,015	24,857	91,156	12.00	38.00	Mined	✓	(Iyer et al., 2016b)
Django	Python	18,805	-	-	14.30	-	EC	✓	(Oda et al., 2015a)
CoNaLa	Python	**2,879**	-	-	-	-	EC	✓	(Yin et al., 2018)
CoNaLa Mined	Python	593,837	-	-	11.41	28.70	Mined	✓	(Yin et al., 2018)
CoNaLa-Ext	Python	596,711	-	-	11.41	28.70	Mined	✓	(Orlanski and Gittens, 2021)
Magic The Gathering	Java	13,297	-	-	21.00	1,080.00	Synth	✓	(Ling et al., 2016)
CONCODE	Java	104,000	-	-	13.73	26.30	Mined	✓	(Iyer et al., 2018)
HearthStone	Python	665	-	-	7.00	352.00	Synth	✓	(Ling et al., 2016)
JuICe	Python (Jupyter)	1,521,774	862,269	1,006,402	39.78	38.75	Mined	✓	(Agashe et al., 2019)
Text2App	SAR (DSL)*	50,000	-	-	-	-	Synth	✓	(Hasan et al., 2021a)
DeepCom	Java	588,108	-	794,711	8.86	99.94	Mined	✓	(Hu et al., 2018, 2020)
FunCom	Java	2,100,000	-	-	-	-	Mined	✓	(Lopes et al., 2010; LeClair et al., 2019)
PyMT5	Python	7,700,000	-	-	-	-	Mined	×	(Clement et al., 2020)
CodeSearchNet	JavaScript, Ruby, and PHP	2,326,976	-	-	-	-	Mined	✓	(Husain et al., 2019)
Java-small	Java	665,115	-	-	3.00	60.00	Mined	✓	(Allamanis et al., 2016; Alon et al., 2018)
Java-med	Java	3,004,536	-	-	3.00	63.00	Mined	✓	(Alon et al., 2018)
Java-large	Java	15,344,512	-	-	3.00	65.00	Mined	✓	(Alon et al., 2018)
Dataset Name	Programming Language (PL)	#NL-PL pairs	#NL tokens	#PL tokens	#Avg tokens per NL intent	#Avg tokens per code snippet	Data Collection (NL)	Public	Reference
-------------------	----------------------------	--------------	------------	------------	---------------------------	----------------------------	-------------------------	--------	---------------------------
StaQC-Python	Python	147,546	17,635	137,123	9.00	86.00	Mined	✓	(Yao et al., 2018)
Euler	Python	589	-	-	-	-	EC	✓	(Oda et al., 2015a)
AOJ	Python	89,862	-	-	-	-	Synth-BT	X	(Akinobu et al., 2021)
NAPS	DSL	2,716	-	-	-	-	CC	✓	(Zavershynskyi et al., 2018)
APPS	Python	10,000	-	-	-	-	Mined+revision	✓	(Hendrycks et al., 2021)
CodeContests	Python, C++, Java	13,610	-	-	-	-	Mined	✓	(Li et al., 2022)
Description2Code	Python, C++	7,764	-	-	-	-	Mined	✓	(Caballero et al., 2016)
SCONE-Scene	DSL	4,402	-	-	56.20	-	CC	✓	(Long et al., 2016)
SCONE-Alchemy	DSL	4,560	-	-	39.90	-	CC	✓	(Long et al., 2016)
SCONE-Tangrams	DSL	4,989	-	-	27.20	-	CC	✓	(Long et al., 2016)
CoDesc	Java	4,200,000	813,078	1,128,909	21.04	77.97	Mined	✓	(Hasan et al., 2021b)
HumanEval	Python	164	-	-	-	-	EC	✓	(Chen et al., 2021a)
MBPPS	Python	974	-	-	-	-	CC	✓	(Austin et al., 2021)
Math-QA	Python	23,914	-	-	-	-	CC	✓	(Amini et al., 2019; Austin et al., 2021)
PyTorrent	Python	13,825,647	-	-	-	-	Mined	✓	(Bahrami et al., 2021)
SPoC	C++	18,356	-	-	-	-	CC	✓	(Kulal et al., 2019)
CoSQA	Python	20,604	6,784	28,254	6.60	71.51	CC	✓	(Huang et al., 2021)

Turducken-style Code Generation

Dataset Name	Programming Language (PL)	#NL-PL pairs	#NL tokens	#PL tokens	#Avg tokens per NL intent	#Avg tokens per code snippet	Data Collection (NL)	Public	Reference
Lyra-English	Python + SQL	2,000	-	-	57.71	44.24	EC	✓	(Liang et al., 2021)
Lyra-Chinese	Python + SQL	2,000	-	-	70.46	44.24	EC	✓	(Liang et al., 2021)

Conversational Semantic Parsing

Dataset Name	Programming Language (PL)	#NL-PL pairs	#NL tokens	#PL tokens	#Avg tokens per NL intent	#Avg tokens per code snippet	Data Collection (NL)	Public	Reference
CoSQL	SQL	11,039	9,585	-	11.21	28.10	CC	✓	(Yu et al., 2019a)
TOP	DSL	44,000	-	-	8.93	-	CC	✓	(Gupta et al., 2018)
SB-TOP	DSL	60,000	-	-	-	-	CC	✓	(Aghajanyan et al., 2020)
TreeDST	DSL	167,507	-	-	7.59	-	CC	✓	(Cheng et al., 2020)
SMCalFlow	DSL	155,923	17,397	338	8	40	CC	✓	(Andreas et al., 2020)

Database Querying

Dataset Name	Programming Language (PL)	#NL-PL pairs	#NL tokens	#PL tokens	#Avg tokens per NL intent	#Avg tokens per code snippet	Data Collection (NL)	Public	Reference
ATIS	DSL	5,410	936	176	11.10	28.10	CC	✓	(Price, 1990; Dahl et al., 1994)
Multi-ATIS	DSL	3,846	-	-	-	-	CC	✓	(Upadhyay et al., 2018)
Multi-ATIS++	DSL	44,943	-	-	-	CC	CC	✓	(Xu et al., 2020a)
Dataset Name	Programming Language (PL)	#NL-PL pairs	#NL tokens	#PL tokens	#Avg tokens per NL intent	#Avg tokens per code snippet	Data Collection (NL)	Public	Reference
--------------	---------------------------	--------------	------------	------------	--------------------------	-----------------------------	----------------------	--------	-----------
Freebase917	DSL	917	-	-	-	-	EC		(Cai and Yates, 2013; Berant et al., 2013)
Jobs640	DSL	640	391	58	9.80	22.90	EC		(Tang and Mooney, 2001)
WebQSP	DSL	4,737	-	-	-	-	EC		(Yih et al., 2016)
WikiSQL	SQL	80,654	-	-	-	-	Synth		(Zhong et al., 2017)
StaQ-C SQL	SQL	119,519	9,920	21,413	9.00	60.00	Med		(Yao et al., 2018)
SQL2NL	SQL	32,337	10,086	1,287	9.00	46.00	Med		(Iyer et al., 2016b)
SParC	SQL	12,726	3,794	3,794	8.10	-	EC		(Yu et al., 2019b)
SPIDER	SQL	10,181	-	-	13.00	21	EC		(Yu et al., 2018)
Restaurants	SQL	378	-	-	-	-	EC		(Tang and Mooney, 2000; Popescu et al., 2003; Giordani and Moschitti, 2012)
Scholar	SQL	817	-	-	-	-	EC		(Iyer et al., 2017)
Yelp	SQL	128	-	-	-	-	EC		(Yaghmazadeh et al., 2017)
IMDB	SQL	131	-	-	-	-	EC		(Yaghmazadeh et al., 2017)
Advising	SQL	4,570	-	-	-	-	EC		(Finegan-Dollak et al., 2018)
Academic	SQL	196	-	-	-	-	EC		(Li and Jagadish, 2014)
Overnight	DSL	12,602	-	-	-	-	CC		(Wang et al., 2015)
SEDE	SQL	12,023	-	-	-	-	Mined		(Hazoom et al., 2021)

Map Question-Answering

Dataset Name	Programming Language (PL)	#NL-PL pairs	#NL tokens	#PL tokens	#Avg tokens per NL intent	#Avg tokens per code snippet	Data Collection (NL)	Public	Reference
NLMAPS-V1	DSL	2,380	1,014	-	10.90	16.00	EC		(Haas and Riezler, 2016; Lawrence and Riezler, 2016)
NLMAPS-V2	DSL	202,088	8,710	-	7.06	-	Synth		(Lawrence and Riezler, 2018)
GeoQuery	Prolog, SQL	880	284	60	7.60	19.10	EC		(Zelle and Mooney, 1996; Iyer et al., 2017; Finegan-Dollak et al., 2018)

Data Manipulation
Dataset Name	Programming Language (PL)	#NL-PL pairs	#NL tokens	#PL tokens	#Avg tokens per NL intent	#Avg tokens per code snippet	Data Collection (NL)	Public	Reference
NLyze-Data	DSL (Excel)	3,570	-	-	-	-	CC	×	(Gulwani and Marron, 2014)
RegexLib	Regex	3,619	13,491	179	36.40	58.80	Mined	×	(Zhong et al., 2018)
NL2RX	Regex	10,000	560	45	10.60	26.00	Synth	✓	(Locascio et al., 2016)
NL2RX-KB13	Regex	824	715	85	7.10	19.00	CC	✓	(Kushman and Barzilay, 2013)

Table 3: Survey of datasets containing natural-language-programming language (NL-PL) pairs that are usable for the tasks of code generation and semantic parsing. We also include domain specific languages (DSL) if they can be trans-compiled into a programming language. EC stands for expert curated, CC, stands for crowdsourced, Synth stands for synthesized, Synth-BT stands for synthesized with back-translation. The authors will add footnote to table for datasets reporting on total number of tokens vs total number of unique tokens.
3.8.3 Evaluation

Code Generation systems are generally evaluated using exact match accuracy. Exact match accuracy refers to the ratio of model-generates snippets that exactly match the ground-truth snippets. Another common metric used for evaluating code generation systems is token level BLEU (Papineni et al., 2002). It is commonly used to evaluate machine translation systems. BLEU is used to evaluate code generation systems since many prior works in code generation formulated the problem as a machine translation problem of translating English to code snippets (e.g. (Liguori et al., 2021a)). Both exact match and averaged token level BLEU scores have been extensively used in evaluating code generation models (Liguori et al., 2021a,b; Oda et al., 2015b; Gemmell et al., 2020). It is becoming increasingly important to note the drawback of using BLEU to evaluate code generation systems. Recent studies have shown low correlation between BLEU score and program correctness (Austin et al., 2021; Chen et al., 2021a; Hendrycks et al., 2021), i.e. where the generated program logically matches the natural language description and passes all the unit tests. BLEU score increases when there is significant token overlap between the generated code and the ground-truth. The low correlation can be attributed to the abundance of variable and method identifiers in programming languages, which if the model predicts the identifier tokens correctly, it would result in a higher BLEU score. However, even though there may be significant token overlap the generated code may not compile (be syntactically incorrect), token differences between the ground truth and generated code may cause the generated code to follow a distinct logic. Furthermore, there may be more than one correct code snippet that accomplishes the task described in natural language. Both token-level BLEU and exact match accuracy penalize models for generating working code snippets that are different from the ground truth, even if they are correct. To remedy this, recent works in code generation such as APPS (Hendrycks et al., 2021), HumanEval (Chen et al., 2021a), and EVIL (Liguori et al., 2021b) focus on evaluating code generation systems by formulating metrics focused on evaluating the semantics of the generated snippets. Liguori et al. (2021b) define two new metrics of syntactic and semantic correctness. Syntactic correctness is the ratio of snippets that are compilable. This is achieved by compiling the generated snippets with a compiler and recording the ratio of generated snippets that do compile. For semantic correctness, domain experts were asked to evaluate whether generated code snippets semantically express the natural language description. The APPS dataset evaluates generated snippets based on the percentage of unit tests the generated snippets pass, this metric is called the Test Case Average (Hendrycks et al., 2021). Additionally, APPS evaluate generated codes on their ability to pass all unit tests for a particular problem, this metric is called Strict Accuracy. Similarly in the HumanEval dataset, the authors introduce a pass@k metric, in which k code snippets are sampled from the model. pass@k would be the ratio of problems in which any of the k samples pass the problem’s corresponding unit tests. Another notable metric proposed for evaluating code generation systems is CodeBLEU (Ren et al., 2020). CodeBLEU12 combines the n-gram match inspired from the BLEU score, along with weighed N-gram match, abstract syntax tree match, and semantic data-flow match into one metric. The drawback of CodeBLEU is it needs to have language specific AST-parsers implemented which may not be available to low-resource programming languages like Haskell and Assembly yet. Current CodeBLEU supports 6 programming languages: Java, JavaScript, C#, PHP, GO, Python, and Ruby.

3.8.4 Methods

Here we introduce different deep learning architectures used for the task of code generation. We categorize the approaches into LSTM-based sequence to sequence, LSTM-based sequence to sequence with abstract syntax trees, transformers, pretrained transformers, and transformers with abstract syntax trees. We survey works in each of these approaches and describe them in detail. We focus on the CoNaLa dataset (Yin et al., 2018) as a case study in Figure 14 and overview all the works that have benchmarked their systems on this dataset.

LSTM-based Seq2Seq. Ling et al. (2016) LSTM based sequence-to-sequence model called the Latent Predictor Network (LPN) has been proposed for general-purpose programming languages (Python and Java) it includes a copying

12https://github.com/microsoft/CodeXGLUE/tree/main/CodeCode/code-to-code-trans/evaluator/CodeBLEU
mechanism similar to (Gu et al., 2016b) to copy over identifier names. A weakness in that approach is that it does not consider code syntax in its processing and output. Dong et al. (2018) developed Coarse-to-Fine Decoding, a methodology for semantic parsing and code generation simultaneously. Coarse-to-Fine Decoding essentially uses two neural networks. The first neural network is used to parse the input into a rough sketch. The rough sketch preserves the original meaning of the input while removing lower-level details. This sketch and the original input is fed into the second neural network which then produces the output. This method is better than simply parsing the input through a single neural network. The results show that this method increases performance when compared to using one neural network to parse the input to code. Additionally, the Coarse-to-Fine Decoding can be used for a variety of parsing tasks making it a fairly flexible method. Lin et al. (2018) use an LSTM-based Seq2Seq and CopyNet (Gu et al., 2016b) to generate Linux bash commands from natural language descriptions. Zhong et al. (2017) develop an LSTM-based sequence to sequence model adapted from Dong and Lapta (2016) with a pointer network (Vinyals et al., 2015) containing augmented inputs specific to the SQL language. Chen et al. (2021b) propose PlotCoder, an LSTM-based Seq2Seq with a copying mechanism trained on a portion on the JuICe dataset (Agashe et al., 2019) trained to generate plot code snippets in Python. Liguori et al. (2021a) use a standard LSTM-based sequence to sequence model (Bahdanau et al., 2014) to generate assembly snippets from natural language intents that are then compiled into shellcodes used in exploiting vulnerabilities. Frempong et al. (2021) generate JavaScript XSS exploits from natural language intents. Weaknesses of LSTM-based models include generating syntactically incorrect code, however given enough training samples or on syntactically simple languages like Assembly, LSTM-based models tend to generate syntactically correct code with good accuracy (Liguori et al., 2021b).

LSTM-based Seq2Seq with Abstract Syntax Trees. To remedy generated syntactically incorrect codes, Yin and Neubig (2017a) propose a
novel LSTM-based architecture that generates an Abstract Syntax Tree (AST) given a natural language description and a grammar model. Their system includes a set of production rules for python’s abstract grammar, a probabilistic grammar model, and finally a Recurrent Neural Network with the dimensions of 256 by 50 with a beam size of 15 for the decoder. The results in the model mentioned above scored 16.2 exact match accuracy and a 75.8 BLEU-4 on the Hearthstone dataset (Ling et al., 2016), scoring 11.7 accuracy above the state-of-the-art at the time the Latent Predictor Network model. The proposed system’s weaknesses include mismatching parameter names when defining a function, omitting or adding default values of parameters when defining a function, failing to copy a variable name into the correct position, and lastly the generated code partially implemented the required functionality.

Rabinovich et al. (2017) leveraged the Abstract Syntax Description Language (ASDL) framework for semantic parsing and a Long Short-term Memory network (LSTM) for code generation. These trees include two types of modules–composite types (function and class definitions, return statements, etc) and primitive types (integers, identifiers). Composite modules use LSTM to determine the appropriate constructor module which details how the node should expand. These constructor modules use LSTM to determine what constructor field modules are needed. TranX (Yin and Neubig, 2018) uses Abstract Syntax Trees as an intermediary representation (interlingua) to generate a programming language snippet from a natural language statement. TranX achieved state of the art on the CoNaLa dataset (Yin et al., 2018) at the time scoring 24.3 BLEU-4 (Yin and Neubig, 2019). Yin and Neubig (2019) then incorporate a hypothesis reranker to rerank the outputs of TranX and see a 5.7% increase in BLEU on the CoNaLa dataset setting state of the art at 30.11 BLEU-4. Xu et al. (2020a) then explore incorporating external knowledge from API documentation and mined NL-PL pairs from StackOverflow to the TranX model (Yin and Neubig, 2018) with the hypothesis reranking proposed in (Yin and Neubig, 2019). This approach improves upon the reranker model by 2.2% scoring 32.26 BLEU. We note that LSTM methods with ASTs significantly outperform the standard LSTM sequence to sequence scoring around 14.72 BLEU on the CoNaLa dataset. Another notable work, although not used in code generation to our knowledge, is Code2Seq (Alon et al., 2018). Code2seq encodes the source code tokens along with the AST paths simultaneously and has seen good success in the area of Code Documentation Generation & Summarization (c.f.§3.5).

Incorporating structural knowledge from ASTs into a neural deep learning model ensures correct syntax of generated code all the time, it also improves model generalizability to NL intents (Yin and Neubig, 2017a). The drawback is incorporating ASTs will take time since grammar rules normally need to be specified.

Transformer Models. Bonthu et al. (2021) use a standard transformer architecture (Vaswani et al., 2017) to generate Python source code from natural language intents and report BLEU score of 32.4 and Rouge-L of 82.1 on a custom curated dataset. Liang et al. (2021) set a baseline for a turducken-style code generation task where SQL is embedded with Python. The baseline used is a transformer model and it achieves 48-49 BLEU and 18%-21% executable codes when generating codes from the English and Chinese natural language intents respectively. Akinbou et al. (2021) use a standard transformer architecture and achieve 8.97 BLEU on the CoNaLa dataset with a 42% syntax error rate. Gemmell et al. (2020) utilize a transformer architecture to translate natural language intents to executable snippet representations in Python. The authors further improve upon the baseline transformer model by introducing pseudo-relevance feedback during the decoding process. During decoding process top k documents relevant to the input are retrieved and a set of common tokens from the documents are emphasized. The authors additionally use copying mechanisms inspired by prior work in pointer networks (See et al., 2017) to assist with tokens common between intents and snippets like method names and identifiers. This method achieves 22.3 BLEU on the CoNaLa dataset. We observe that it is outperformed by a standard LSTM seq2seq which scores around 24.34 BLEU when using variable standardization using an intent parser as proposed in (Liguori et al., 2021b, 2022). A higher BLEU score using the standardization method is likely due to higher likelihood of generalization and more token overlap when standardizing tokens referring to variable
names and values.

Pretrained Transformer Models. Mastropaolo et al. (2021) propose pretraining and fine-tuning a T5 model (Raffel et al., 2019a) on a corpora of English text and source code and then fine-tune on several software engineering tasks including to generate assert statements (test methods) in Java. CodeBERT (Feng et al., 2020) is a pretrained transformer language model based on RoBERTa (Liu et al., 2019) (a variant of the BERT model (Devlin et al., 2018)) pretrained on the CodeSearchNet corpus (Husain et al., 2019). CodeBERT has been used to generate exploit code snippets from natural language intents (Liguori et al., 2021b). Orlanski and Gittens (2021) fine-tune the pretrained transformer BART (Lewis et al., 2020) on the CoNaLa dataset and achieve a performance of 26.24 BLEU which is comparable to that of CodeBERT scoring around 22.51 BLEU. Furthermore, BART when finetuned with both the CoNaLa annotated and mined datasets it achieved a BLEU score of 30.55. The authors also explore adding the question body along with the natural language intent as input to BART and find an increase in performance. BART achieves 34.35 when finetuned with question bodies and 35.32 when finetuned with questioned bodies on the both the annotated CoNaLa dataset and the mined CoNaLa datasets. Norouzi et al. (2021) find that a BERT-based encoder (Devlin et al., 2018) and decoder model with a copying mechanism (Gu et al., 2016b) can achieve better performance by utilizing mine-able monolingual code data. The encoder is frozen on the monolingual code data and the decoder gets an additional objective during training of autoencoding the monolingual source code that corresponds to the intent that is fed into the encoder. This process is named Target Auto Encoding (TAE). Using the approach the decoder gets to also learn the source code meaning representation along with the encoder representation on the natural language intent. This approach achieves 32.57 BLEU on the CoNaLa dataset compared to the same set up without TAE which scores 30.98 BLEU. Scholak et al. (2021) propose PICARD a simple and effective decoder-constraint algorithm that works with pretrained encoder-decoder models. Using PICARD with a T5-3B model (Raffel et al., 2019b) achieves state of the art on two SQL generation tasks from NL Spider (Yu et al., 2018) and CoSQL (Yu et al., 2019a). GraphCodeBERT (Guo et al., 2020) is a pretrained model for programming language that is pretrained using dataflow which encompasses the semantic structure of the code. The pretraining objectives used include masked language modeling, code structure edges, and representation alignment between source code and code structure. Other pretrained transformers used on source code include CodeT5 (Wang et al., 2021b). CodeTrans (Elnaggar et al., 2021), PyMT5 (Clement et al., 2020), CuBERT (Kanade et al., 2020), PLBART (Ahmad et al., 2021), ProphetNet-X (Qi et al., 2021), CoText (Phan et al., 2021), T5-Code (Mastropaolo et al., 2021), GraphCodeBERT (Guo et al., 2020), and AlphaCode (Li et al., 2022).

Transformer Models with Abstract Syntax Trees. Dahal et al. (2021) explore using tree representations of natural language utterances in code generation. Tree representations of natural language utterances are derived using constituency trees, which aim to describe the syntactic (grammatical) structure of an uttered sentence by dividing the sentence into sub-phrases. The authors run a series of experiments generating the AST representation of code using text-to-AST as a baseline, linearized tree-to-tree which uses the constituency tree of NL as input encoded using a standard transformer encoder, and structured tree-to-tree model. For the structured tree-to-tree model the authors utilize a structure aware Tree Transformer architecture (Nguyen et al., 2020) with a pointer network (Vinyals et al., 2015) to copy tree leaves from the input to the output AST. The authors report improvements when using structure aware encodings of NL in their structured tree-to-tree model and achieve 30.30 BLEU on the CoNaLa dataset. Sun et al. (2019b) propose TreeGen a neural architecture based on the Transformer model that incorporates AST grammar rules into the network. Incorporating ASTs into Transformers is observed to alleviate long-range dependencies between source code tokens (Sun et al., 2019b; Dahal et al., 2021) and better models input with multiple variables (Dahal et al., 2021).

Multi-task Learning for Code Generation. Multi-task learning in machine learning is training the model to perform multiple tasks simultaneously. Wei et al. (2020a) propose using multi-task learning of code genera-
Area	Description	Evaluation	References
Program Synthesis	The task of synthesizing complete or partial programs given a specification, often structured input.	% compilable programs, % logically correct programs, synthesis duration, problems solved (Schuster et al., 2021) & other application specific metrics	(Shi et al., 2020; Patra and Pradel, 2016; Gulwani et al., 2017; Cumnins et al., 2017a; Ellis et al., 2021; Austin et al., 2021)
Program Analysis	Focuses on extracting semantic properties from programs and often classifying codebases using extracted properties.	Accuracy, Precision, Recall, & F1	(Raychev et al., 2015; Mangal et al., 2015; Oh et al., 2015; Panthaplackel et al., 2020; Mou et al., 2016a)
Program Repair	Focuses on building models to repair codebases given a compiler error message and a corresponding codebase.	full repair, partial repair, resolved error messages (Hajipour et al., 2019).	(Gupta et al., 2017; Hajipour et al., 2019; Yasunaga and Liang, 2020; Chirkova and Troschin, 2020; Lutellier et al., 2020; Lu et al., 2021b; Jiang et al., 2021)
Clone Detection*	Focuses on measuring the semantic similarity between two codes. There are variations of this task binary classification and retrieving code of semantic equivalence.	Precision, Recall, F1, MAP (Beitzel et al., 2009; Lu et al., 2021a)	(Svajlenko et al., 2014; Wang et al., 2008b; Buech and Andrzejak, 2019; Wei and Li, 2017; Chilowicz et al., 2009)
Defect Detection*	Focuses on detecting insecure code that can be exploited in attacks such as DoS. The task is a binary classification problem.	Accuracy, F1, Precision, Recall	(Zhou et al., 2019; Li et al., 2018)
Cloze Test*	Focuses on predicting the correct token in a code function given a natural language description and a code function with a masked token.	Accuracy	(Husain et al., 2019; Lu et al., 2021a; Feng et al., 2020)
Code Translation*	Focuses on using machine learning to translate source code from a particular language (e.g. Python) to another language (e.g. JavaScript). Also known as Code Transpiling.	Exactness, BLEU (Papineni et al., 2002), & CodeBLEU (Ren et al., 2020)	(Lachaux et al., 2020; Feng et al., 2020)
Code Refinement*	Focuses on automatically rewriting a codebase which is either buggy or convoluted.	Exactness, BLEU (Papineni et al., 2002), & CodeBLEU (Ren et al., 2020)	(Hata et al., 2018; Tufano et al., 2019)
Code Completion*	Focuses on generating a code snippet that best completes a given program.	ROUGE (Lin, 2004), exactness, edit similarity	(Svyatkovskiy et al., 2019, 2020; Chirkova, 2020)
Code Search and Retrieval*	(Information Retrieval) Retrieve a code snippet given a natural language query.	Mean Reciprocal Rank (MRR) & NDCG (Vechtomova, 2009; Husain et al., 2019)	(Feng et al., 2020; Husain et al., 2019; Gu et al., 2018)
Code Documentation Generation*	Generating natural language descriptions of code snippets. Includes generating a function name for a function in code. Also known as Code summarization.	BLEU (Papineni et al., 2002) and human evaluation	(Oda et al., 2015a; Feng et al., 2020)
Documentation Translation*	Focuses on translating online code doc pages from one human language to another.	BLEU (Papineni et al., 2002)	(Lu et al., 2021a)
Code Generation*	Generating code snippets given natural language intents.	Exactness, BLEU (Papineni et al., 2002), semantic correctness (Liguori et al., 2021b), pass@k (Chen et al., 2021a), CodeBLEU (Ren et al., 2020)	(Yin and Neubig, 2018; Xu et al., 2020a; Lin et al., 2018)
Semantic Parsing	Converting natural language to unambiguous executable logical forms.	Exactness	(Chen Jr and Buescu, 2019; Carpenter, 1997; Berant and Liang, 2014)

* In CodeXGLUE.

Table 4: Overview of the areas in Code Intelligence (CI), typical evaluation methods, and notable works in each area.
tion and summarization and report improvements in code summarization and retrieval benchmarks. Wei et al. (2019) report improvements when dual training a model to generate code and to summarize code simultaneously. Parvez et al. (2021) propose REDCODER, a code-search augmented model that retrieves code relevant to the inputted natural language description from an open source database to supplement the code generator model.

3.9 Other Code Intelligence Areas

Other areas of Code Intelligence (CI) include program repair, which focuses on building systems that automatically fix bugs in codebases using a compiler error message and a codebase as input. Notable program repair works include DeepFix (Gupta et al., 2017) and DrRepair (Yasunaga and Liang, 2020). Defect detection is another area of CI focused on detecting insecure code primarily through binary classification of codebases e.g. (Li et al., 2018; Zhou et al., 2019)). Cloze Test is coding multiple choice problem where a model is tasked with predicting a masked code token. Code translation focuses on translating a codebase from one language (e.g. Java) to another programming language (e.g Python). There are various works in code translation (Lachaux et al., 2020; Feng et al., 2020). Code refinement focuses on rewriting a codebase with the aim of simplification of removing bugs e.g. (Hata et al., 2018; Tufano et al., 2019). Lastly, code completion focuses on generating a code snippet that best completes a given codebase e.g. (Svyatkovskiy et al., 2019, 2020; Chirkova, 2020). See Table 4 for an overview of all the CI fields, metrics used in each field, and example works.

3.10 Summary

Application areas of NLP on source code such as program synthesis and program repair focus on automating redundant processes of software development. Program repair tends to focus on repairing programs given a compiler error message and is evaluated by percent of compilable programs, completely repaired (no logical errors) and partially repaired programs (some logical errors). Program synthesis tends to focus on generating full or partial programs often given structured input such as program examples, program description and output (Shi et al., 2020). Synthesized programs are often evaluated using percentages (%) of semantic and compilable programs. However, not all programming synthesis evaluate their programs, some works such as Cummins et al. (2017b), just focus on their application domain (program run-time speed-up) and discard generated programs that do not work. On the other hand, Program analysis is analogous to understanding language as opposed to generating it. It tends to focus on extracting features from developed code and using classification methods. CodeXGLUE lists several tasks of code intelligence and understanding. Those tasks are further listed along with all other known applications of NLP on source code in Table 4. The table also lists a description of the task, how the task is evaluated, and works that have participated in the task domain.

For an extensive survey on machine learning for big code c.f. Allamanis et al. (2018), code generation and semantic parsing (Lee et al., 2021), and a short survey specifically on code generation from natural language (Shin and Nam, 2021).

Code generation has promise in being integrated into conversational interfaces to enhance language understanding (e.g. (Artzi and Zettlemoyer, 2011)). If code generation is integrated with conversational assistants we can see a rise of programming assistants which could be very helpful for programmers. Code generation may also be helpful for novice programmers and can have applications in fields such as computer science education. In the next section we will overview Conversational Artificial Intelligence (A.I.) and application of conversational artificial intelligence in education and software engineering.

4 Conversational Artificial Intelligence

In this section, we will focus on overviewing deep-learning-based automated conversational agents, also known as, dialogue systems. Conversational agents are popular and are widely accessible, from virtual sales agents to personal assistants like Google, Alex, or Siri, and have been applied in big domains such as general healthcare (Montenegro et al., 2019) and mental healthcare (Weizenbaum et al., 1966; D’Alfonso et al., 2017). There are generally two types of deep learning dialogue systems: Open-domain dialogue systems (also known as chit-chat chatbots) and task-oriented dialogue systems (also known as close-domain dialogue systems) (Santhanam and Shaikh, 2019; Ni et al., 2021). Task-oriented systems tend to be
oriented towards a specific goal or a task such as booking a hotel, reserving a restaurant table, etc. Task-Oriented dialogue systems such as SimpleTOD (Hosseini-Asl et al., 2020) are often entirely data-driven and are proficient in a certain set of domains given enough training examples within that domain. Task-oriented systems are often made up of 4 modules: Natural Language Understanding (NLU), Dialogue State Tracking (DST), Dialogue Policy Learning, and Natural Language Generation (NLG). NLU focuses on classifying what the user’s goal is within a domain and parses out task-relevant words from the user utterance into slots c.f. Figure 15. DST focuses on calibrating the dialogue state based on the current user utterance and the conversational history, it includes the user’s goal and slot-value pairs. Dialogue Policy Learning is a module that decides the next action the system should take based on the dialogue state. NLG focuses on generating natural language from the selected dialogue action. Open-domain dialogue systems such as MILABOT (Serban et al., 2017) focus on chatting with a user without any domain restrictions and can cover a wide variety of topics (Ram et al., 2018). For a survey on dialogue systems c.f. (Santhanam and Shaikh, 2019; Ni et al., 2021). Next, we will overview works that apply task-oriented dialogue systems in software engineering and computer science education.

4.1 Conversational Assistants for Software Engineering

This section focuses on overviewing some of the uses of conversational systems in the field of software engineering. We observe conversational assistants assisting programming in performing general programming tasks and assisting with specific software engineering workflows (e.g. Github version control actions).

General Programming Assistants. Chaurisa and Mooney (2017) propose a system that can engage a human user in dialogue for IFTTT code generation (Quirk et al., 2015). However, the dialogue system mainly engages with the user to clarify their intent until the correct code is produced. Austin et al. (2021) run controlled experiments with a simple dialogue system that generates Python code. The system mainly focuses on collaborating with a human to solve a particular programming task primarily through asking for clarifications and modifying the generated code as illustrated in Figure 16. These dialogue systems are simple and are mainly focused on solving one particular program, they neither include modules for dialogue state tracking nor code understanding. The dialogue systems also do not seek to collaborate with the human as much as get the human to help the system solve a particular programming task. The CoSQL dataset (Yu et al., 2019a) does include some Task-Oriented dialogue components such as Dialogue State Tracking and user-system actions for dialogue policy learning, however, interfacing with a database via conversation does not assist with engineering new software. It is also worthy to mention IDE plugins and tools that utilize CI functionalities such as code search and code generation to assist software engineers and data scientists by generating or retrieving code using natural language specifications written by the user (Xu et al., 2021; Heyman et al., 2021). Xu et al. (2021) conduct a user study and find largely positive qualitative results however, the plugin’s

Figure 15: Example output from a Natural Language Understanding (NLU) module by (Ni et al., 2021). The utterance “Recommend a movie at Golden Village tonight” is within the “movie” domain and the user’s goal is to “find_movie” at the destination “Golden Village” with the time “tonight”. Here desti and time are slots and are accompanied by their corresponding slot-values “Golden Village” and “tonight” respectively.
relationship with increased productivity, program quality, and correctness were inconclusive.

Conversational Assistants for Software Engineering Workflows. Bradly et al. (2018) build Devy, a conversational assistant with an NLU module that recognizes high-level Github-related intents and can execute a set of pre-defined low-level Github tasks. Paikari et al. (2019) develop a task-oriented bot to inform software engineers of code conflicts using Github and to assist developers in locking/unlocking a source file for edits.

4.2 Conversational Assistants for Computer Science Education

Hobert (2019) proposes a coding tutoring system that is able to respond to open-ended knowledge questions, assess submitted source code, and guide students in natural language through a chat interface. The coding tutor’s interface has a coding area and a chat area where the user is able to converse with the automated coding tutor. The task-oriented dialogue tutor contains intent and entity recognition modules and a natural language generation module. It also has a set of predefined “learning paths” based on a Finite State Machine stored in a database. Responses to student questions and guidance given by the system are all derived from the predefined finite state machine specific to a programming problem. To evaluate the coding tutor, a questionnaire was handed out to students asking them to rate the system on usefulness, ease of use, practice, and whether students would use the system again.

5 Future Directions

This section explores possible future directions of research at the intersection between conversational systems and CI. We focus on the two areas of computer science education and software engineering.

5.1 Programming-Oriented Dialogue Systems

Task-oriented dialogues currently focus on assisting the human user in completing API-centered redundant tasks such as booking a hotel. Current advances in Code Intelligence research such as the availability of big data containing pairs in both code and natural language, code search, program repair, code generation, and recently program execution tracing (Nye et al., 2021), enable us to create more intelligence tools to enable professional and novice programmers. There is room to create dialogue systems that can assist humans in specific programming tasks such as code-refactoring, generating methods from NL descriptions, retrieving code examples, bug fixing, and explaining portions of the code in natural language through conversation. Some of these tasks are currently automated through various IDE plugins e.g. (Xu et al., 2021) however there is a back-and-forth process between a system and a programmer that can be captured well in dialogue. To support such capabilities, task-oriented dialogue systems can be adapted. The natural language understanding module in task-oriented dialogue systems can be enhanced with a code-understanding module, and likewise, with the natural language generation component, it can be coupled with a code generation module. To the best of our knowledge, there exist no programming-oriented dialogue datasets which are crucial to driving this research area forward.

5.2 Computer Science Education

Self-Regulated Learning (SRL). SRL is a framework for understanding how students control their behavior during learning and it includes: 1) Cognitive processes related to content knowledge, reasoning, and problem-solving; 2) Metacognitive processes where the learner plans their learning endeavors, and in identifying gaps in knowledge or seeking help; 3) Affective processes that include a student’s goals and emotional states. (Pintrich, 2000). There is potential in adapting dialogue systems to deliver personalized learning interventions through a dialogue system. Example cognitive interventions that can be delivered through a conversational assistant with CI include: Generating code-related hints to students in the form of Socratic questions, also known as guided-inquiry i.e., smaller subquestions that can guide to a final answer. Cobbe et al. (2021) utilize GPT-3 (Brown et al., 2020) and finetune on 800 examples to generate mathematical Socratic subquestions by conditioning each subquestion on a ground-truth mathematical step in the solution. Other interventions can include generating example code as hints, code repair assistance, and recommending course content. Metacognitive interventions by code-aware dialogue systems can...

13 See an example here: https://github.com/openai/gradeschool-math
include identifying knowledge gaps from coding patterns and mistakes and suggesting that the student asks the human Teaching Assistant (TA) for help.

IDE-based Learning Analytics. IDE-based learning analytics utilizes Integrated Development Environments (IDEs) to collect data about learners’ programming patterns and deliver learning interventions (Hundhausen et al., 2017). Programming data collected from IDEs can include: (1) editing data (e.g., code snapshots), (2) compilation data (e.g., compilation errors), (3) execution data (e.g., run-time exceptions), and (4) debugging data (e.g., breakpoints, steps, and inspecting variables). Hundhausen et al. (2017) proposed a four-phase process model for IDE-based data analytics consisting of: (1) data collection, (2) data analysis, (3) intervention design, and (4) intervention delivery. There is extensive work in data collection and data analysis in IDE-based learning analytics (Watson et al., 2013; Diana et al., 2018; Ahadi et al., 2016; Carter et al., 2015) however to the best of our knowledge, there is little work on delivering automated interventions. Interventions are primarily focused on fixing syntax errors (Bhatia and Singh, 2016), enhanced error messages (Becker et al., 2016), and generating hints to programmers (Chow et al., 2017; Rivers and Koedinger, 2017). Carter et al (2015) proposes the Programming State Model (PSM), which “categorizes students’ programming within a two-dimensional space that captures both a student’s current activity (e.g., editing, debugging) and the correctness of the student’s most recently compiled programming solution”. A dialogue system with PLP capabilities can automate the process of intervention design and delivery when integrated with IDE-analytics. Furthermore, it can work with an IDE-based learning analytics code understanding module. A programming-oriented dialogue system in which the user intents are derived from learning analytics-inspired IDE-activity similar to the proposed Programming State Model. The dialogue policy learner would decide what intervention to perform given a set of pre-defined educational interventions. Dorodchi et al. (2020) propose a custom IDE prototype that can be integrated with a dialogue system to deliver personalized learning interventions.
5.3 Human Computer Interaction

Another area of research can focus on designing programmer-centered IDE interfaces around conversational programming, where both a human and a conversational agent with CI can collaborate on programming. A glimpse of conversational programming can be seen in Figure 16 from Austin et al. (2021).

6 Conclusion

In this paper, we overviewed the field of code intelligence (CI), which focuses on applying artificial intelligence (AI) to source code. We identified 14 key areas of research in CI summarized in Table 4. Through analyzing existing works in code generation using the CoNaLa dataset we observe a trend of Transformer-based models being more heavily used in recent years and pushing state-of-the-art boundaries on this task see Figure 14. We summarize our findings from systematically reviewing works that propose and curate datasets containing natural language and source code (Table 3). Conversational AI is generally divided into two areas of research: Open-domain dialogue systems which can chat about a wide variety of topics, and task-oriented dialogue systems which focus on assisting the user with completing a specific goal or a task. We identify existing works in task-oriented dialogue systems with CI capabilities, mainly falling into assisting professional programmers with the software engineering process or assisting novice programmers in educational contexts. We identify future directions for research at the intersection of dialogue systems and code intelligence. The first major direction is Programming-Oriented Dialogue Systems (PODS), which are task-oriented dialogue systems with CI capabilities.

We identify a dire need for dialogue datasets for this area. Dialogue datasets can then be utilized to create PODS to assist professional developers by having a dialogue system encompass many existing code intelligence plugins. We also identify a research opportunity for POD systems to assist computer science learners by facilitating the self-regulated learning process. Enhancing POD systems with learning analytics would enable PODS to learn more about the student user and intervene more appropriately. Finally, we identify research opportunities in human computer interaction to create custom interfaces where a PODS and a user can collaborate on solving programming problems effectively.

References

Omri Abend and Ari Rappoport. 2013. Universal conceptual cognitive annotation (ucca). In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 228–238.

Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. 2019. Juice: A large scale distantly supervised dataset for open domain context-based code generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5439–5449.

Armen Aghajanyan, Jean Maillard, Akshat Shrivastava, Keith Diedrick, Michael Haeger, Hooran Li, Yashar Mehdad, Veselin Stoyanov, Anuj Kumar, Mike Lewis, and Sonal Gupta. 2020. Conversational semantic parsing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5026–5035, Online. Association for Computational Linguistics.

A. Ahadi, V. Behbood, A Vihavainen, J. Prior, and R. Lister. 2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL Queries and its Application to Predicting Students’ Success. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education, SIGCSE ’16, pages 401–406.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified pre-training for program understanding and generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2655–2668, Online. Association for Computational Linguistics.

Yuka Akinobu, Momoka Obara, Teruno Kajura, Shiho Takano, Miyu Tamura, Mayu Tomioka, and Kimito Kuramitsu. 2021. Is neural machine translation approach accurate enough for coding assistance? In Proceedings of the 1st
Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine learning models of code. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, Onward! 2019, page 143–153, New York, NY, USA. Association for Computing Machinery.

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv., 51(4):81:1–81:37.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional attention network for extreme summarization of source code. In International conference on machine learning, pages 2091–2100. PMLR.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Generating sequences from structured representations of code. In International Conference on Learning Representations.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning distributed representations of code. Proceedings of the ACM on Programming Languages, 3(POPL):1–29.

Giambattista Amati. 2009. *BM25*. Springer US, Boston, MA.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. 2019. MathQA: Towards interpretable math word problem solving with operation-based formalisms. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2357–2367, Minneapolis, Minnesota. Association for Computational Linguistics.

Jacob Andreas, John Bufe, David Burkett, Charles Chen, Josh Clausner, Jean Crawford, Kate Crim, Jordan DeLoach, Leah Dorner, Jason Eisner, Hao Fang, Alan Guo, David Hall, Kristin Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan Klein, Jayant Krishnamurthy, Theo Lanman, Percy Liang, Christopher H. Lin, Ilya Lintsbakh, Andy McGovern, Aleksandr Nisnevich, Adam Pauls, Dmitrij Petters, Brent Read, Dan Roth, Subhro Roy, Jesse Rusak, Beth Short, Div Slomkin, Ben Snyder, Stephon Striplin, Yu Su, Zachary Tellman, Sam Thomson, Andrei Vorobev, Izabela Witoszko, Jason Wolfe, Abby Wray, Yuchen Zhang, and Alexander Zotov. 2020. Task-Oriented Dialogue as Dataflow Synthesis. Transactions of the Association for Computational Linguistics, 8:556–571.

Yoav Artzi, Nicholas Fitzgerald, and Luke Zettlemoyer. 2014. Semantic parsing with Combinatory Categorial Grammars. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts, Doha, Qatar. Association for Computational Linguistics.

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrapping semantic parsers from conversations. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 421–432.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly supervised learning of semantic parsers for mapping instructions to actions. Transactions of the Association for Computational Linguistics, 1:49–62.

Lakshmanan Arumugam. 2020. Semantic code search using code2vec: A bag-of-paths model. Master’s thesis, University of Waterloo.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. Program synthesis with large language models. arXiv preprint arXiv:2108.07732.

Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. 2011. AEG: Automatic Exploit Generation. Publisher: Carnegie Mellon University.
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. *arXiv preprint arXiv:1607.06450*.

Dzmitry Bahdanau, Philémon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C. Courville, and Yoshua Bengio. 2017. An actor-critic algorithm for sequence prediction. *ArXiv*, abs/1607.07086.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. *arXiv preprint arXiv:1409.0473*.

Mehdi Bahrami, NC Shrikanth, Shade Ruangwan, Lei Liu, Yuji Mizobuchi, Masahiro Fukuyori, Wei-Peng Chen, Kazuki Munakata, and Tim Menzies. 2021. Pytorrent: A python library corpus for large-scale language models. *arXiv preprint arXiv:2110.01710*.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2016. Deepcoder: Learning to write programs. *arXiv preprint arXiv:1611.01989*.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract meaning representation for sembanking. In *Proceedings of the 7th linguistic annotation workshop and interoperability with discourse*, pages 178–186.

Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A parallel corpus of python functions and documentation strings for automated code documentation and code generation. *arXiv preprint arXiv:1707.02275*.

B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin, and C. Mooney. 2016. Effective compiler error message enhancement for novice programming students. *Computer Science Education*, 26(2-3):148–175.

Steven M. Beitzel, Eric C. Jensen, and Ophir Frieder. 2009. *MAP*. Springer US, Boston, MA.

Tony Beltramelli. 2018. Pix2code: Generating code from a graphical user interface screenshot. In *Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems*, EICS ’18, New York, NY, USA. Association for Computing Machinery.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-answer pairs. In *Proceedings of the 2013 conference on empirical methods in natural language processing*, pages 1533–1544.

Jonathan Berant and Percy Liang. 2014. Semantic parsing via paraphrasing. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1415–1425.

S. Bhatia and R. Singh. 2016. Automated correction for syntax errors in programming assignments using recurrent neural networks. *arXiv preprint arXiv:1603.06129*.

Sridevi Bonthu, S. Rama Sree, and M. H. M. Krishna Prasad. 2021. Text2pycode: Machine translation of natural language intent to python source code. In *Machine Learning and Knowledge Extraction*, pages 51–60, Cham. Springer International Publishing.

Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent. In *Proceedings of COMPSTAT’2010*, pages 177–186. Springer.

Nick C. Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-aware conversational developer assistants. In *Proceedings of the 40th International Conference on Software Engineering*, ICSE ’18, page 993–1003, New York, NY, USA. Association for Computing Machinery.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*.

Lutz Büch and Artur Andriejak. 2019. Learning-based recursive aggregation of abstract syntax trees for code clone detection. In 2019 *IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER)*, pages 95–104.
Ethan Caballero, OpenAI, and Ilya Sutskever. 2016. Description2Code Dataset.

Qingqing Cai and Alexander Yates. 2013. Semantic parsing Freebase: Towards open-domain semantic parsing. In Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity, pages 328–338, Atlanta, Georgia, USA. Association for Computational Linguistics.

Bob Carpenter. 1997. Type-logical semantics. MIT press.

A. S. Carter, C. D. Hundhausen, and O. Adesope. 2015. The normalized programming state model: Predicting student performance in computing courses based on programming behavior. In Proceedings of the eleventh annual International Conference on International Computing Education Research, pages 141–150.

Shobhit Chaurasia and Raymond J Mooney. 2017. Dialog for language to code. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 175–180.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. 2021a. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

Xinyun Chen, Linyuan Gong, Alvin Cheung, and Dawn Song. 2021b. Plotcoder: Hierarchical decoding for synthesizing visualization code in programmatic context. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers).

Charles Chen Jr and Razvan Bunescu. 2019. Context dependent semantic parsing over temporally structured data. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3576–3585.

Jianpeng Cheng, Devang Agrawal, Héctor Martínez Alonso, Shruti Bhargava, Joris Driesen, Federico Flego, Dain Kaplan, Dimitri Kartsaklis, Lin Li, Dhivya Piraviperumal, Jason D. Williams, Hong Yu, Diarmuid Ó Séaghdha, and Anders Johannsen. 2020. Conversational semantic parsing for dialog state tracking. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8107–8117, Online. Association for Computational Linguistics.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short-term memory networks for machine reading. arXiv preprint arXiv:1601.06733.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509.

Michel Chilowicz, Etienne Duris, and Gilles Roussel. 2009. Syntax tree fingerprinting for source code similarity detection. In 2009 IEEE 17th international conference on program comprehension, pages 243–247. IEEE.

Nadezhda Chirkova. 2020. Neural code completion with anonymized variable names. arXiv preprint arXiv:2010.12693.

Nadezhda Chirkova and Sergey Troshin. 2020. Empirical study of transformers for source code. arXiv preprint arXiv:2010.07987.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder–decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734.

S. Chow, K. Yacef, I. Koprinska, and J. Curran. 2017. Automated data-driven hints for computer programming students. In Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, pages 5–10.

Colin Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel Sundaresan.
2020. Pymt5: Multi-mode translation of natural language and python code with transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9052–9065.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440–8451, Online. Association for Computational Linguistics.

Simon D’Alfonso, Olga Santesteban-Echarri, Simon Rice, Greg Wadley, Reeva Lederman, Christopher Miles, John Gleseson, and Mario Alvarez-Jimenez. 2017. Artificial intelligence-assisted online social therapy for youth mental health. Frontiers in psychology, 8:796.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet Kohli. 2017. Robustfill: Neural program learning under noisy i/o. In International conference on machine learning, pages 990–998. PMLR.
wake-sleep library learning. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2021, page 835–850, New York, NY, USA. Association for Computing Machinery.

Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Silvia Severini, Florian Matthes, and Burkhard Rost. 2021. Codetran: Towards cracking the language of silicone’s code through self-supervised deep learning and high performance computing.

Evelina Fedorenko, Anna Ivanova, Riva Dhamala, and Marina Umaschi Bers. 2019. The language of programming: a cognitive perspective. Trends in cognitive sciences, 23(7):525–528.

Li Fei-Fei, Rob Fergus, and Pietro Perona. 2006. One-shot learning of object categories. IEEE transactions on pattern analysis and machine intelligence, 28(4):594–611.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. arXiv:2002.08155 [cs]. ArXiv: 2002.08155.

Daniel Fernández-González and Carlos Gómez-Rodríguez. 2020. Transition-based semantic dependency parsing with pointer networks. arXiv preprint arXiv:2005.13344.

Gabriela Ferraro and Hanna Suominen. 2020. Transformer semantic parsing. In Proceedings of the The 18th Annual Workshop of the Australasian Language Technology Association, pages 121–126.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. 2018. Improving text-to-SQL evaluation methodology. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 351–360, Melbourne, Australia. Association for Computational Linguistics.

Yaw Frempong, Yates Snyder, Erfan Al-Hossami, Meera Sridhar, and Samira Shaikh. 2021. Hijax: Human intent javascript xss generator. In Proceedings of the 18th International Conference on Security and Cryptography - SECRYPT, pages 798–805. INSTICC, SciTePress.

Hiroyuki Fudaba, Yusuke Oda, Koichi Akabe, Graham Neubig, Hideaki Hata, Sakrani Sakti, Tomoki Toda, and Satoshi Nakamura. 2015. Pseudogen: A tool to automatically generate pseudo-code from source code. In 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 824–829. IEEE.

Debasis Ganguly, Gareth JF Jones, Aarón Ramírez-De-La-Cruz, Gabriela Ramírez-De-La-Rosa, and Essaí Villatoro-Tello. 2018. Retrieving and classifying instances of source code plagiarism. Information Retrieval Journal, 21(1):1–23.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016. Domain-adversarial training of neural networks. The Journal of Machine Learning Research, 17(1):2096–2030.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. 2020a. The pile: An 800gb dataset of diverse text for language modeling.

Zhipeng Gao, Xin Xia, John Grundy, David Lo, and Yuan-Fang Li. 2020b. Generating question titles for stack overflow from mined code snippets. ACM Trans. Softw. Eng. Methodol., 29(4).

Carlos Gemmell, Federico Rossetto, and Jeffrey Dalton. 2020. Relevance Transformer: Generating Concise Code Snippets with Relevance Feedback. arXiv:2007.02609 [cs]. ArXiv: 2007.02609.

Alessandra Giordani and Alessandro Moschitti. 2012. Automatic generation and reranking of sql-derived answers to nl questions. In Proceedings of the Second International Conference on Trustworthy Eternal Systems via Evolving Software, Data and Knowledge, pages 59–76.
David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020. Code to comment “translation”: Data, metrics, baselining & evaluation. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 746–757. IEEE.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. 2016a. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. arXiv:1603.06393 [cs]. ArXiv: 1603.06393.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016b. Incorporating copying mechanism in sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1631–1640.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, page 933–944, New York, NY, USA. Association for Computing Machinery.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. ACM Sigplan Notices, 46(1):317–330.

Sumit Gulwani, William R Harris, and Rishabh Singh. 2012. Spreadsheet data manipulation using examples. Communications of the ACM, 55(8):97–105.

Sumit Gulwani and Mark Marron. 2014. NLyze: Interactive Programming by Natural Language for Spreadsheet Data Analysis and Manipulation. In SIGMOD’14, June 22-27, 2014, Snowbird, UT, USA. Edition: SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis. Foundations and Trends® in Programming Languages, 4(1-2):1–119.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, L. Zhou, N. Duan, Jian Yin, Daxin Jiang, and M. Zhou. 2020. Graphcodebert: Pre-training code representations with data flow. ArXiv, abs/2009.08366.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix: Fixing common c language errors by deep learning. In Proceedings of the aaai conference on artificial intelligence, volume 31.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and Mike Lewis. 2018. Semantic parsing for task oriented dialog using hierarchical representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2787–2792, Brussels, Belgium. Association for Computational Linguistics.

Carolin Haas and Stefan Riezler. 2016. A corpus and semantic parser for multilingual natural language querying of OpenStreetMap. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 740–750, San Diego, California. Association for Computational Linguistics.

Hossein Hajipour, Apratim Bhattacharya, and Mario Fritz. 2019. Samplefix: Learning to correct programs by sampling diverse fixes. arXiv preprint arXiv:1906.10502.

Masum Hasan, Kazi Sajeed Mehrab, Wasi Uddin Ahmad, and Rifat Shahriyar. 2021a. Text2app: A framework for creating android apps from text descriptions. arXiv preprint arXiv:2104.08301.

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab, Md Haque, Mahim Anjum, Tahmid Hasan, Wasi Uddin Ahmad, Anindya Iqbal, and Rifat Shahriyar. 2021b. Codesc: A large code-description parallel dataset. arXiv preprint arXiv:2105.14220.

Hideaki Hata, Emad Shihab, and Graham Neubig. 2018. Learning to generate corrective patches using neural machine translation. arXiv preprint arXiv:1812.07170.

Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021. Text-to-sql in the wild: A naturally-occurring dataset based on stack exchange data. arXiv preprint arXiv:2106.05006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification. *arXiv preprint arXiv:1502.01852.*

Gary G Hendrix, Earl D Sacerdoti, Daniel Saglowicz, and Jonathan Slocum. 1978. Developing a natural language interface to complex data. *ACM Transactions on Database Systems (TODS),* 3(2):105–147.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. 2021. Measuring coding challenge competence with apps.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus). *arXiv preprint arXiv:1606.08415.*

Geert Heyman, Rafael Huysregems, Pascal Justen, and Tom Van Cutsem. 2021. Natural language-guided programming. In *Proceedings of the 2021 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software,* pages 39–55.

Sebastian Hobert. 2019. Say Hello to ‘Coding Tutor’! Design and Evaluation of a Chatbot-based Learning System Supporting Students to Learn to Program. *ICIS 2019 Proceedings.*

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. *Neural computation,* 9(8):1735–1780. Publisher: MIT Press.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher. 2020. A simple language model for task-oriented dialogue. *arXiv preprint arXiv:2005.00796.*

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In *2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC),* pages 200–20010. IEEE.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment generation with hybrid lexical and syntactical information. *Empirical Software Engineering,* 25(3):2179–2217.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan. 2021. *CoSQA: 20,000+ web queries for code search and question answering.* In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),* pages 5690–5700, Online. Association for Computational Linguistics.

C. D. Hundhausen, D. M. Olivares, and A. S. Carter. 2017. IDE-Based Learning Analytics for Computing Education: A Process Model, Critical Review, and Research Agenda. *ACM Transactions on Computing Education,* 17(3):1–26.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic Code Search. *arXiv:1909.09436 [cs, stat].*

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer. 2017. Learning a neural semantic parser from user feedback. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),* pages 963–973.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016a. Summarizing source code using a neural attention model. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),* pages 2073–2083.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016b. *Summarizing Source Code using a Neural Attention Model.* In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),* pages 2073–2083, Berlin, Germany. Association for Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018. Mapping language to code in programmatic context. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,* pages 1643–1652.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017. Search-based neural structured learning
for sequential question answering. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1821–1831.

Robin Jia and Percy Liang. 2016. *Data Recombination for Neural Semantic Parsing*. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 12–22, Berlin, Germany. Association for Computational Linguistics.

Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural Machine Translation for Automatic Program Repair. In *2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)*, pages 1161–1173. ISSN: 1558-1225.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. 2017. Google’s multilingual neural machine translation system: Enabling zero-shot translation. *Transactions of the Association for Computational Linguistics*, 5:339–351.

Tim Johnson. 1984. The commercial application of expert systems technology. *The Knowledge Engineering Review*, 1(1):15–25.

Dan Jurafsky and James H. Martin. 2000. Speech and language processing - an introduction to natural language processing, computational linguistics, and speech recognition. In *Prentice Hall series in artificial intelligence*.

Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh Thakkar, Jens Lehmann, and Maria Maleshkova. 2021. Conversational question answering over knowledge graphs with transformer and graph attention networks. In *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume*, pages 850–862, Online. Association for Computational Linguistics.

Aishwarya Kamath and Rajarshi Das. 2019. *A Survey on Semantic Parsing*. arXiv:1812.00978 [cs].

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020. Learning and evaluating contextual embedding of source code. In *International Conference on Machine Learning*, pages 5110–5121. PMLR.

Anjan Karmakar, Julian Aron Prenner, Miltiadis Allamanis, and Romain Robbes. 2020. Glue-code: A benchmark for source code machine learning models.

Diederik P Kingma and Jimmy Ba. 2014a. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*.

Diederik P Kingma and Jimmy Ba. 2014b. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*.

Gregory Kuhlmann, Peter Stone, Raymond Mooney, and Jude Shavlik. 2004. Guiding a reinforcement learner with natural language advice: Initial results in robocup soccer. In *The AAAI-2004 workshop on supervisory control of learning and adaptive systems*. San Jose, CA.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S Liang. 2019. Spoc: Search-based pseudocode to code. *Advances in Neural Information Processing Systems*, 32:11906–11917.

Nate Kushman and Regina Barzilay. 2013. Using semantic unification to generate regular expressions from natural language. In *Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 826–836, Atlanta, Georgia. Association for Computational Linguistics.

Uday Kusupati and Venkata Ravi Teja Ailavarapu. Natural Language to Code Using Transformers. page 7.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. 2011. Lexical generalization in ccg grammar induction for semantic parsing. In *Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing*, pages 1512–1523.

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lampl. 2020. Unsupervised translation of programming languages. *arXiv preprint arXiv:2006.03511*.
J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues, G. Neubig, and B. Vasilescu. 2019. Dire: A neural approach to decompiled identifier naming. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 628–639.

Carolin Lawrence and S. Riezler. 2016. Nlmaps: A natural language interface to query openstreetmap. In COLING.

Carolin Lawrence and Stefan Riezler. 2018. Improving a neural semantic parser by counterfactual learning from human bandit feedback.

Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for generating natural language summaries of program subroutines. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 795–806. IEEE.

Celine Lee, Justin Gottschlich, and Dan Roth. 2021. Toward code generation: A survey and lessons from semantic parsing. arXiv preprint arXiv:2105.03317.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.

Fei Li and H. V. Jagadish. 2014. Constructing an interactive natural language interface for relational databases. volume 8, pages 73–84.

Hongyu Li, Seohyun Kim, and Satish Chandra. 2019. Neural code search evaluation dataset. arXiv preprint arXiv:1908.09804.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustín Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level code generation with alphacode.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong. 2018. Vuldeepecker: A deep learning-based system for vulnerability detection. arXiv preprint arXiv:1801.01681.

Qingyuan Liang, Zeyu Sun, Qihao Zhu, Wenchie Zhang, Lian Yu, Yingfei Xiong, and Lu Zhang. 2021. Lyra: A benchmark for turducken-style code generation. arXiv preprint arXiv:2108.12144.

Pietro Liguori, Erfan Al-Hossami, Domenico Cotroneo, Roberto Natella, Bojan Cukic, and Samira Shaikh. 2021a. Shellcode_IA32: A dataset for automatic shellcode generation. In Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021), pages 58–64, Online. Association for Computational Linguistics.

Pietro Liguori, Erfan Al-Hossami, Domenico Cotroneo, Roberto Natella, Bojan Cukic, and Samira Shaikh. 2022. Can we generate shellcodes via natural language? an empirical study. arXiv preprint arXiv:2202.03755.

Pietro Liguori, Erfan Al-Hossami, Vittorio Orbinato, Roberto Natella, Samira Shaikh, Domenico Cotroneo, and Bojan Cukic. 2021b. Evil: Exploiting software via natural language. arXiv preprint arXiv:2109.00279.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, pages 74–81.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. 2018. Nl2bash: A corpus and semantic parser for natural language interface to the linux operating system. arXiv preprint arXiv:1802.08979.

Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kocišký, Andrew W. Senior, Fumin Wang, and Phil Blunsom. 2016. Latent predictor networks for code generation. CoRR, abs/1603.06744.
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*.

Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon, Nate Kushman, and Regina Barzilay. 2016. Neural generation of regular expressions from natural language with minimal domain knowledge. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 1918–1923, Austin, Texas. Association for Computational Linguistics.

Reginald Long, Panupong Pasupat, and Percy Liang. 2016. Simpler context-dependent logical forms via model projections. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1456–1465.

C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. 2010. UCI source code data sets.

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan Vitek. 2017. Déjàvu: A map of code duplicates on github. *Proc. ACM Program. Lang.*, 1(OOPSLA).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021a. Codexglue: A machine learning benchmark dataset for code understanding and generation.

Yunlong Lu, Na Meng, and Wenxin Li. 2021b. Fapr: Fast and accurate program repair for introductory programming courses. *arXiv preprint arXiv:2107.06550*.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015a. Effective approaches to attention-based neural machine translation. *arXiv preprint arXiv:1508.04025*.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015b. Effective approaches to attention-based neural machine translation. *arXiv preprint arXiv:1508.04025*.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models using ensemble for program repair. In *Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis*, ISSTA 2020, pages 101–114, New York, NY, USA. Association for Computing Machinery.

Ravi Mangal, Xin Zhang, Aditya V Nori, and Mayur Naik. 2015. A user-guided approach to program analysis. In *Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering*, pages 462–473.

Zohar Manna and Richard Waldinger. 1975. Knowledge and reasoning in program synthesis. *Artificial intelligence*, 6(2):175–208.

Zohar Manna and Richard Waldinger. 1980. A deductive approach to program synthesis. *ACM Transactions on Programming Languages and Systems (TOPLAS)*, 2(1):90–121.

Zohar Manna and Richard J Waldinger. 1971. Toward automatic program synthesis. *Communications of the ACM*, 14(3):151–165.

Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio, Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the usage of text-to-text transfer transformer to support code-related tasks. In *2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)*, pages 336–347. IEEE.

Cynthia Matuszek, E. Herbst, Luke Zettlemoyer, and D. Fox. 2012. Learning to parse natural language commands to a robot control system. In *ISER*.

Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the fly synthesis of edit suggestions. In *Object-Oriented Programming, Systems, Languages & Applications (OOPSLA)*. ACM.
Joao Luis Zeni Montenegro, Cristiano André da Costa, and Rodrigo da Rosa Righi. 2019. Survey of conversational agents in health. Expert Systems with Applications, 129:56–67.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016a. Convolutional Neural Networks over Tree Structures for Programming Language Processing. In Thirtieth AAAI Conference on Artificial Intelligence.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016b. Convolutional neural networks over tree structures for programming language processing. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pages 1287–1293.

Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard Socher. 2020. Tree-structured attention with hierarchical accumulation. In International Conference on Learning Representations.

Jinjie Ni, Tom Young, Vlad Pandelea, Fuzhao Xue, Vinay Adiga, and Erik Cambria. 2021. Recent advances in deep learning based dialogue systems: A systematic survey. arXiv preprint arXiv:2105.04387.

Sajad Norouzi, Keyi Tang, and Yanshuai Cao. 2021. Code generation from natural language with less prior knowledge and more monolingual data. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 776–785. Online. Association for Computational Linguistics.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. 2021. Show your work: Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. 2015a. Learning to Generate Pseudo-Code from Source Code Using Statistical Machine Translation (T). In 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 574–584.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. 2015b. Learning to generate pseudo-code from source code using statistical machine translation (t). In 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 574–584. IEEE.

Augustus Odena and Charles Sutton. 2020. Learning to represent programs with property signatures. arXiv preprint arXiv:2002.09030.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan Hajic, and Zdenka Uresova. 2015. Semeval 2015 task 18: Broad-coverage semantic dependency parsing. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 915–926.

Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2015. Learning a strategy for adapting a program analysis via bayesian optimisation. ACM SIGPLAN Notices, 50(10):572–588.

Gabriel Orlanski and Alex Gittens. 2021. Reading stackoverflow encourages cheating: Adding question text improves extractive code generation. arXiv preprint arXiv:2106.04447.

Elahi Paikari, JaeEun Choi, SeonKyu Kim, Sooyoung Baek, MyeongSoo Kim, SeungEon Lee, ChaeYeon Han, YoungJae Kim, KaHyen Ahn, Chan Cheong, et al. 2019. A chatbot for conflict detection and resolution. In 2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE), pages 29–33. IEEE.

Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359.

Sheena Panthaplackel, Milos Gligoric, Raymond J. Mooney, and Junyi Jessy Li. 2020. Associating natural language comment and source code entities. In AAAI, pages 8592–8599.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In
Proceedings of the 40th annual meeting on association for computational linguistics, pages 311–318. Association for Computational Linguistics.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli. 2016. Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855.

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval augmented code generation and summarization. arXiv preprint arXiv:2108.11601.

Panupong Pasupat and Percy Liang. 2015. Compositional semantic parsing on semi-structured tables. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1470–1480.

Jibesh Patra and Michael Pradel. 2016. Learning to fuzz: Application-independent fuzz testing with probabilistic, generative models of input data.

Doris L. Payne. 1992. Pragmatics of word order flexibility, volume 22. John Benjamins Publishing.

Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Anibal, Alec Peletkian, and Yanfang Ye. 2021. Cotext: Multi-task learning with code-text transformer. arXiv preprint arXiv:2105.08645.

Paul R. Pintrich. 2000. Chapter 14 - the role of goal orientation in self-regulated learning. In Monique Boekaerts, Paul R. Pintrich, and Moshe Zeidner, editors, Handbook of Self-Regulation, pages 451–502. Academic Press, San Diego.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a theory of natural language interfaces to databases. In Proceedings of the 8th International Conference on Intelligent User Interfaces, pages 149–157.

P. J. Price. 1990. Evaluation of spoken language systems: the ATIS domain. In Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylvania, June 24-27,1990.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. 2021. Project codenet: A large-scale ai for code dataset for learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655.

Weizhen Qi, Yeyun Gong, Yu Yan, Can Xu, Bolun Yao, Bartuer Zhou, Biao Cheng, Daxin Jiang, Jiusheng Chen, Ruofei Zhang, et al. 2021. Prophetnet-x: Large-scale pre-training models for english, chinese, multi-lingual, dialog, and code generation. arXiv preprint arXiv:2104.08006.

Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language to Code: Learning Semantic Parsers for If-This-Then-That Recipes. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 878–888, Beijing, China. Association for Computational Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract Syntax Networks for Code Generation and Semantic Parsing. arXiv:1704.07535 [cs, stat]. ArXiv: 1704.07535.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. a. Improving language understanding by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. b. Language models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019a. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019b. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat].

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you don’t know: Unanswerable questions for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefar Gabriel, Qing Liu, Jeff Nunn, Behnam Hedayatnia, Ming Cheng, Ashish Nagar, and others. 2018. Conversational ai: The science behind the alexa prize. arXiv preprint arXiv:1801.03604.

Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program properties from” big code”. ACM SIGPLAN Notices, 50(1):111–124.

Brittany Reid, Christoph Treude, and Markus Wagner. 2020. Optimising the fit of stack overflow code snippets into existing code. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pages 1945–1953.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. Codebleu: a method for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297.

K. Rivers and K. R. Koedinger. 2017. Data-driven hint generation in vast solution spaces: a self-improving python programming tutor. International Journal of Artificial Intelligence in Education, 27(1):37–64.

Stephen E Robertson and Steve Walker. 1994. Some simple effective approximations to the 2-poission model for probabilistic weighted retrieval. In SIGIR’94, pages 232–241. Springer.

Frank Rosenblatt. 1961. Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Technical report, Cornell Aeronautical Lab Inc Buffalo NY.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning representations by back-propagating errors. nature, 323(6088):533–536. Publisher: Nature Publishing Group.

Sashank Santhanam and Samira Shaikh. 2019. A survey of natural language generation techniques with a focus on dialogue systems-past, present and future directions. arXiv preprint arXiv:1906.00500.

Dipanjan Sarkar, Raghav Bali, and Tamoghna Ghosh. 2019. Hands-on transfer learning with Python: implement advanced deep learning and neural network models using TensorFlow and Keras. OCLC: 1148204369.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. Picard - parsing incrementally for constrained auto-regressive decoding from language models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.

Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, and Adam Tauman Kalai. 2021. Programming puzzles. arXiv preprint arXiv:2106.05784.

Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point: Summarization with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1073–1083.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Iulian V Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouran Lin, Sandee Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, and
others. 2017. A deep reinforcement learning chatbot. arXiv preprint arXiv:1709.02349.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. 2016. Minimum Risk Training for Neural Machine Translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1683–1692.

Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu Tang, Nan Duan, Guodong Long, and Daxin Jiang. 2019. Multi-task learning for conversational question answering over a large-scale knowledge base. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2442–2451, Hong Kong, China. Association for Computational Linguistics.

Kensen Shi, David Bieber, and Rishabh Singh. 2020. Tf-coder: Program synthesis for tensor manipulations. arXiv preprint arXiv:2003.09040.

Jiho Shin and Jaechang Nam. 2021. A survey of automatic code generation from natural language. Journal of Information Processing Systems, 17(3):537–555.

Hrituraj Singh, Milan Aggrawal, and Balaji Krishnamurthy. 2020. Exploring neural models for parsing natural language into first-order logic. arXiv preprint arXiv:2002.06544.

Mark Steedman. 2000. The syntactic process, volume 24. MIT press Cambridge, MA.

Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei. 2019a. A neural semantic parser for math problems incorporating multi-sentence information. ACM Trans. Asian Low-Resour. Lang. Inf. Process., 18(4).

Zeya Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2019b. TreeGen: A Tree-Based Transformer Architecture for Code Generation. arXiv:1911.09983 [cs]. ArXiv: 1911.09983.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence Learning with Neural Networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 3104–3112. Curran Associates, Inc.

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Mohammad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project code clones. In 2014 IEEE International Conference on Software Maintenance and Evolution, pages 476–480. IEEE.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. Intellicode compose: Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 1433–1443.

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia: Ai-assisted code completion system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2727–2735.

Christian Szegedy. 2020. A promising path towards autoformalization and general artificial intelligence. In Intelligent Computer Mathematics, pages 3–20, Cham. Springer International Publishing.

Lappoon R. Tang and Raymond J. Mooney. 2000. Automated construction of database interfaces: Intergrating statistical and relational learning for semantic parsing. In 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pages 133–141.

Lappoon R Tang and Raymond J Mooney. 2001. Using multiple clause constructors in inductive logic programming for semantic parsing. In European Conference on Machine Learning, pages 466–477. Springer.

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2019. An empirical study on learning bug-fixing patches in the wild via neural machine translation. ACM Transactions on Software Engineering and Methodology (TOSEM), 28(4):1–29.
Shyam Upadhyay, Manaal Faruqui, Gokhan Tür, Hakkani-Tür Dilek, and Larry Heck. 2018. (almost) zero-shot cross-lingual spoken language understanding. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6034–6038. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008.

Olga Vechtomova. 2009. Introduction to information retrieval christopher d. manning, prabhakar raghavan, and hinrich schütze (stanford university, yahoo! research, and university of stuttgart) cambridge: Cambridge university press, 2008, xxi+ 482 pp; hardbound, isbn 978-0-521-86571-5, $60.00.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.

Richard J Waldinger and Richard CT Lee. 1969. Prow: A step toward automatic program writing. In Proceedings of the 1st international joint conference on Artificial intelligence, pages 241–252.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. Glue: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355.

Deze Wang, Yue Yu, Shanshan Li, Wei Dong, Ji Wang, and Liao Qing. 2021a. Mulcode: A multi-task learning approach for source code understanding. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 48–59. IEEE.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. 2020a. Exploration of neural machine translation in autoformalization of mathematics in mizar. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, page 85–98, New York, NY, USA. Association for Computing Machinery.

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020b. Detecting code clones with graph neural network and flow-augmented abstract syntax tree. In 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 261–271. IEEE.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021b. Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a semantic parser overnight. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1332–1342.

C. Watson, F. W.B. Li, and J. L. Godwin. 2013. Predicting Performance in an Introductory Programming Course by Logging and Analyzing Student Programming Behavior. In 2013 IEEE 13th International Conference on Advanced Learning Technologies, pages 319–323. ISSN: 2161-377X.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code generation as a dual task of code summarization. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, pages 6563–6573.

Huihui Wei and Ming Li. 2017. Supervised deep features for software functional clone detection by exploiting lexical and syntactical information in source code. In IJCAI, pages 3034–3040.

Joseph Weizenbaum et al. 1966. Eliza—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1):36–45.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishvraj Chaudhary, Francisco
Guzmán, Armand Joulin, and Édouard Grave. 2020. Ccnet: Extracting high quality monolingual datasets from web crawl data. In Proceedings of The 12th Language Resources and Evaluation Conference, pages 4003–4012.

William A Woods. 1973. Progress in natural language understanding: an application to lunar geology. In Proceedings of the June 4-8, 1973, national computer conference and exposition, pages 441–450.

Chen Wu. 2020. Semantic code search. https://github.com/overwindows/SemanticCodeSearch.

Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham Neubig. 2020a. Incorporating external knowledge through pre-training for natural language to code generation. ArXiv, abs/2004.09015.

Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2021. In-IDE Code Generation from Natural Language: Promise and Challenges. arXiv:2101.11149 [cs]. ArXiv: 2101.11149.

Weijia Xu, Batool Haider, and Saab Mansour. 2020b. End-to-end slot alignment and recognition for cross-lingual nlu. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5052–5063.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. Sqlizer: Query synthesis from natural language. In International Conference on Object-Oriented Programming, Systems, Languages, and Applications, ACM, pages 63:1–63:26.

Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. 2018. Staqc: A systematically mined question-code dataset from stack overflow. In Proceedings of the 2018 World Wide Web Conference, pages 1693–1703.

Michihiro Yasunaga and Percy Liang. 2020. Graph-based, self-supervised program repair from diagnostic feedback. In International Conference on Machine Learning (ICML).

Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun Zhang. 2020a. Leveraging code generation to improve code retrieval and summarization via dual learning. In Proceedings of The Web Conference 2020, WWW ’20, page 2309–2319, New York, NY, USA. Association for Computing Machinery.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durret. 2020b. Optimal neural program synthesis from multimodal specifications. arXiv preprint arXiv:2010.01678.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh. 2016. The value of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 201–206, Berlin, Germany. Association for Computational Linguistics.

Pengcheng Yin. 2020. Towards Generalized Neural Semantic Parsing. page 121.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. 2018. Learning to mine aligned code and natural language pairs from stack overflow. In International Conference on Mining Software Repositories, MSR, pages 476–486. ACM.

Pengcheng Yin and Graham Neubig. 2017a. A syntactic neural model for general-purpose code generation. arXiv preprint arXiv:1704.01696.

Pengcheng Yin and Graham Neubig. 2017b. A Syntactic Neural Model for General-Purpose Code Generation. arXiv:1704.01696 [cs]. ArXiv: 1704.01696.

Pengcheng Yin and Graham Neubig. 2018. TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing and Code Generation. In EMNLP.

Pengcheng Yin and Graham Neubig. 2019. Reranking for neural semantic parsing. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4553–4559.

Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian, and Bin Liang. 2017. Semfuzz: Semantics-based automatic generation of proof-of-concept exploits. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 2139–2154.
Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze Shi, Zihan Li, et al. 2019a. Cosql: A conversational text-to-sql challenge towards cross-domain natural language interfaces to databases. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1962–1979.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2018. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3911–3921, Brussels, Belgium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene Li, Bo Pang, Tao Chen, et al. 2019b. Sparc: Cross-domain semantic parsing in context. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4511–4523.

J.K.K. Yuen, E.W.M. Lee, Stanley Lo, and RKK Yuen. 2013. An intelligence-based optimization model of passenger flow in a transportation station. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 14:1290–1300.

Maksym Zavershynskyi, Alex Skidanov, and Illia Polosukhin. 2018. Naps: Natural program synthesis dataset. arXiv preprint arXiv:1807.03168.

John M Zelle and Raymond J Mooney. 1993. Learning semantic grammars with constructive inductive logic programming. In AAAI, pages 817–822. Citeseer.

John M Zelle and Raymond J Mooney. 1996. Learning to parse database queries using inductive logic programming. In Proceedings of the national conference on artificial intelligence, pages 1050–1055.

Luke Zettlemoyer and M. Collins. 2005. Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. In UAI.

Luke Zettlemoyer and Michael Collins. 2007. Online learning of relaxed ccg grammars for parsing to logical form. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 678–687.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, and Bill Dolan. 2020. Dialogpt: Large-scale generative pre-training for conversational response generation. In ACL, system demonstration.

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. arXiv:1709.00103 [cs]. ArXiv: 1709.00103.

Zexuan Zhong, Jiaqi Guo, Wei Yang, Tao Xie, Jian-Guang Lou, Ting Liu, and Dongmei Zhang. 2018. Generating regular expressions from natural language specifications: Are we there yet? In AAAI Workshops.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks. In Advances in Neural Information Processing Systems, pages 10197–10207.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In Proceedings of the IEEE international conference on computer vision, pages 19–27.