Commentary

SHEA Pediatric Leadership Council commentary: Supporting well child care during the coronavirus disease 2019 (COVID-19) pandemic with personal protective equipment in the ambulatory setting

Joshua K. Schaffzin MD PhD1,2, Allison H. Bartlett MD, MS3, Latania K. Logan MD, MSPH4, Judith A. Guzman-Cottrill DO5, Carolyn Caughell RN, MSN, CIC6, Karen A. Ravin MD7,8, Lorry G. Rubin MD9,10, Larry K. Kociolek MD, MSCI11, Martha L. Muller MD12, Jason Lake MD, MPH13, and Lynn Ramirez-Avila MD, MSc14 for the SHEA Pediatric Leadership Council

1Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 2Section of Pediatric Infectious Diseases, The University of Chicago Medicine Comer Children’s Hospital, Chicago, Illinois, 3Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, 4Hospital Epidemiology and Infection Prevention, Department of Quality, University of California San Francisco Health, San Francisco, California, 5Division of Infectious Diseases, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, 6Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, 7Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, 8Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, 9Division of Pediatric Infectious Diseases, Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, 10Department of Pediatrics, Cohen Children’s Medical Center, Northwell Health, New Hyde Park, New York, 11Division of Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine Chicago, Illinois, 12Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico, 13Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah and 14Division of Pediatric Infectious Diseases and Global Health, University of California San Francisco, San Francisco, California

The coronavirus disease 2019 (COVID-19) pandemic, with its shutdowns and resurgences, has negatively affected pediatric well and preventive care. Children of all ages have not been seen for routine check-ups to screen for growth and development; to assess diet, screen for obesity; and perhaps most importantly, to be vaccinated to their well-being.1,2 The cause of missed care is likely multifactorial against infections that, despite COVID-19, continue to be a threat at all times, and exercise; and perhaps most importantly, to be vaccinated to their well-being.1,2 The cause of missed care is likely multifactorial against infections that, despite COVID-19, continue to be a threat to their well-being.1,2 The cause of missed care is likely multifactorial against infections that, despite COVID-19, continue to be a threat to their well-being.1,2 The cause of missed care is likely multifactorial against infections that, despite COVID-19, continue to be a threat to their well-being.1,2 The cause of missed care is likely multifactorial against infections that, despite COVID-19, continue to be a threat to their well-being.1,2 The cause of missed care is likely multifactorial against infections that, despite COVID-19, continue to be a threat to their well-being.1,2 The cause of missed care is likely multifactorial against infections that, despite COVID-19, continue to be a threat to their well-being.1,2 The cause of missed care is likely multifactorial against infections that, despite COVID-19, continue to be a threat to their well-being.1,2

Recommendations

1. Aerosol-generating procedures (AGPs) should be avoided in ambulatory clinic settings whenever possible

Author for correspondence: Joshua K. Schaffzin, E-mail: joshua.schaffzin@cchmc.org

Cite this article: Schaffzin JK, et al. (2021). SHEA Pediatric Leadership Council commentary: Supporting well child care during the coronavirus disease 2019 (COVID-19) pandemic with personal protective equipment in the ambulatory setting. Infection Control & Hospital Epidemiology, 42: 985–988, https://doi.org/10.1017/ice.2021.240

Aerosol-generating procedures

Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) is transmitted primarily through respiratory droplets that contact a mucous membrane directly or that land on a surface and are transferred by touch to mucous membranes.4 The term aerosol-generating procedures (AGPs) has become a common topic of discussion in healthcare circles during the COVID-19 pandemic. At its core, an AGP is a procedure that could generate small particle
(<0.5 µm) respiratory aerosols from patient secretions when performed. If those secretions are contaminated with a pathogen, it could present a different mode of transmission for the pathogen that may require a change in PPE and/or environmental controls to protect HCP.5 However, whether the aerosol generated is as infectious as nuclei generated in known airborne diseases like varicella, measles, or tuberculosis is unclear.7 Although it is unlikely that aerosols from patients with COVID-19 can travel long distances, factors such as persistence in air, reversion to large droplets when contacting a surface or other nuclei, and effectiveness of higher level PPE, such as N95 respirators, are not well understood. Furthermore, it is unclear whether all aerosols are created equal. Is the risk different for intubation or bronchoscopy compared to a nebulized treatment or spirometry?25

Risk from AGPs became prominent during the SARS-CoV-1 outbreaks of the early 2000s and subsequent MERS-CoV outbreaks in the 2010s. Studies consistently showed that prolonged exposure, especially during intubation, extubation, and bronchoscopy, was a significant risk factor for patient-to-HCP transmission and that protection from airborne transmission reduced the risk.6,5 This evidence is the rationale for the World Health Organization (WHO) and CDC recommendations to use N95 respirators and AII rooms while performing AGPs on patients with COVID-19.4

A continued challenge during this pandemic is defining an AGP. There is no universal list, although all seem to agree that intubation and extubation, bronchoscopy, and CPR should be included.5,6,8 Controversies, in part fueled by professional societies publishing lists unique to their area, have emerged around pulmonary function tests, colonoscopy, nebulized treatments, nasogastric tube placement, and simple coughing or crying.9,10 A full discussion of why a procedure is or is not an AGP is beyond the scope of this commentary, and the question of how infectious any of these aerosols truly are has not yet been answered. However, a few observations from this pandemic may help ambulatory providers assess risk.

The first observation is that large droplets are the primary respiratory secretions produced during cough or crying. Past studies have shown that a medical face mask and eye protection are not inferior to N95 respirators when caring for patients with laboratory-confirmed viral respiratory infections including coronaviruses.13 To date, the use of surgical masks has not been identified as a risk factor for healthcare-associated occupational transmission of COVID-19, with no reported increased incidence among providers who perform procedures, such as NG tube placement, or providers who care for children who are coughing or crying. If anything, universal masking appears to reduce the risk of nosocomial transmission.12 The second observation is from other respiratory viruses, such as influenza. Influenza is known to be present in aerosols generated during specific care, and airborne transmission has been hypothesized.13 But such transmission has not been proven,14,15 and AGPs are not noted to be a particular risk needing higher level protection for influenza, respiratory syncytial virus, or other respiratory viruses.16

Despite a lack of evidence, many organizations and authorities have established that certain procedures constitute an AGP that poses significant risk. Nebulized medications are an excellent example of this inconsistency. No specific evidence has shown that nebulized therapy generates infectious aerosols sufficient to lead to transmission. However, The Joint Commission has listed nebulizer treatments as an AGP,17 as have some local public health authorities. The CDC is equivocal on the subject due to limited evidence and cites a theoretical association of proximity and the result of nebulized treatments.18 The WHO does not include nebulized treatments in its March 19, 2020, infection control guidance19 or its April 6, 2020, PPE use guidance,8 but it does list nebulized treatments in its March 19 HCP exposure risk assessment instrument.20 Many institutions have chosen to not classify nebulized treatments as an AGP due to a lack of evidence. Practitioners may be left to decide for themselves how to handle nebulized treatments. As relevant, they should first verify what is required by their umbrella organization and/or health authorities. In the absence of such mandates, they could consult facilities to which they refer patients in order to align with local practice.

One way to address the uncertainty around interventions that are possible but not confirmed to be AGPs is to not perform these procedures in the ambulatory setting. For example, due to uncertainty around nebulized treatments, practices may elect to convert to other delivery modes. Albuterol for reactive airways could be given by metered dose inhaler, which is as effective as, if not more effective than, a nebulizer.21 Oral or intramuscular dexamethasone is effective for croup of any severity and may be more effective than nebulized racemic epinephrine.22,23 Patients with tracheostomies requiring suction could have filters placed in their circuits, or suction could be made in-line to avoid possible plumes. Additionally, to optimize physical distancing and prevent potential exposure of well patients and families to patients and/or families potentially exposed to SARS-CoV-2, additional routine strategies can be employed by ambulatory settings. These include prescreening patients and household members for signs or symptoms of COVID-19, and if symptoms are present, scheduling ill patients at the end of the day. Additional screening should occur at the point of care, and if symptoms of or recent exposure to COVID-19 has been identified, families should be promptly escorted to a private examination room to reduce risk of exposure to others.

N95 fit testing

In general, ambulatory and primary care clinic staff typically do not need routine respirator fit testing prior to, during, or likely after the COVID-19 pandemic. The use of an appropriately fitted N95 respirator for airborne isolation is not sufficient on its own. The use of fitted respirators is meant to be bundled in a comprehensive, Occupational Safety and Health Administration (OSHA)–mandated respiratory protection program,24 which few practices are likely to be able to support. Such a program, typically implemented for tuberculosis prevention, includes an annual risk assessment and documented systems for administrative, engineering, and practice controls. Fit testing, education, practicing donning and doffing, and availability of N95 respirators and PAPRs are significant practice controls, and they involve considerable time and financial investment.25 Anecdotally, some providers choose to wear an unfiltered N95 respirator due to a belief of greater efficacy. However, this is not recommended because no clear evidence has shown that using an N95 offers more protection than a standard, well-fitting surgical or procedure mask.26,27

A key engineering control is AII rooms. Many refer to these rooms as “negative pressure,” but all rooms involve more than air-pressure gradient. Regulations require all rooms to be balanced negative to the adjacent area, to have a dedicated exhaust system to the outside, and to have a minimum of 12 air changes per hour (ACH).28 The ACH is important to consider because it is a measure of how often air in the room is replaced, or ‘scrubbed,’ and there are requirements for all areas of a healthcare facility. The
minimum ACH in an operating room is 20; it is 15 in a procedure room or trauma bay; 10 in a bathroom; and 6 in an exam room or patient room. The difference can be measured in the time required to replace 99% of the air: in an AII (12 ACH), it takes about 23 minutes, while in an exam room (6 ACH) it takes twice as long.17 In contrast, no standard ACH has been established for outpatient areas. Many ambulatory clinics may not measure air-pressure balance, and air may be recirculated without filtration.

PPE conservation

Not only is PPE to be prioritized for critically ill patients; it is in short supply because of COVID-19–related worldwide demands. Availability is lower, cost is higher, and supply chains are less reliable. This places ambulatory clinics, especially those independent of large health systems, at a disadvantage to procure PPE for regular use. It therefore pragmatic for clinics to consider ways to conserve and extend the life of the PPE they are able to procure.

Eye protection is perhaps the most straightforward PPE to conserve. The 2007 HICPAC Guidance for Isolation Precautions does not routinely require eye protection for droplet precautions.16 Some institutions have added an eye protection requirement during the COVID-19 pandemic. Others have maintained standard precautions, where eye protection is recommended for situations where risk of exposure is increased, particularly if caring for patients who cannot tolerate a mask (due to developmental or age issues). Most goggles and face shields are approved for multiple uses and can be cleaned and disinfected regularly without compromising function. Some clinics may institute a requirement to don eye protection throughout a clinical shift, both to ensure that healthcare personnel (HCP) are protected and to avoid waste. Healthcare workers may reuse masks for multiple different patient encounters provided the mask is not soiled or damaged. Care needs to be taken to ensure no HCP self-contamination during donning or doffing the mask. For example, a mask worn during a well child check could likely be used for the next patient encounter, while one worn during an ill visit for cough should generally not. Crying alone need not be a reason for changing a mask. Alternatively, donning a reusable face shield over a regular mask could prevent soiling and could preclude the need to change. Cloth masks have not been proven effective in a healthcare setting and should not be used for providers.29 However, cloth masks will likely provide adequate protection for families and patients, and they may be received more readily than a medical mask.30 By encouraging families to bring their own, or by providing clean, reusable cloth masks for them, clinics can reserve medical-grade face masks for providers.

Future directions

This document is targeted primarily toward ambulatory, primary, well child visits. Similar questions exist for ambulatory subspecialty and surgical settings. Future guidance will be needed to address issues such as the use of air-cleaning machines (ie, portable high-efficiency particulate air filters) to reduce the risk of aerosols in certain contexts; air flow in clinics with an open-bay design; and the care of ill and post–hospital-discharge patients who may or may not be suspected of COVID-19. For all settings, resolution of controversies like AGPs and the utility of universal PPE would enable providers to feel reassured they are protected adequately so they can focus on patient care.

In conclusion, basic preventive care can be safely delivered in ambulatory settings without higher-level respiratory protection. Medical-grade face masks and eye protection are adequate protection. To be safe, clinics can avoid performing procedures that may generate aerosols such as nebulized therapy. N95 respirator fit testing and managing a respiratory protection program is impractical and likely not indicated in most settings. Ambulatory sites should implement PPE conservation and reuse when possible.

Acknowledgments.

Financial support. No financial support was provided relevant to this article.

Conflicts of interest. Dr Kociolek has received a grant from Merck & Co unrelated to this work. All the remaining authors have no conflicts of interest to disclose.

References

1. Bramer CA, Kimmins LM, Swanson R, et al. Decline in child vaccination coverage during the COVID-19 pandemic—Michigan Care Improvement Registry, May 2016–May 2020. Am J Transplant 2020;20:1930–1931.

2. Santoli JM, Lindley MC, DeSilva MB, et al. Effects of the COVID-19 pandemic on routine pediatric vaccine ordering and administration—United States, 2020. Morb Mortal Wkly Rep 2020;69:591–593.

3. Don’t skip your child’s well check: delays in vaccines could add up to big problems. April 29, 2020. National Public Radio website. https://www.npr.org/sections/health-shots/2020/04/29/840347518/dont-skip-your-childs-well-check-delays-in-vaccines-could-add-up-to-big-problems. Accessed December 27, 2020.

4. Interim infection prevention and control recommendations for healthcare personnel during the coronavirus disease 2019 (COVID-19) pandemic. Centers for Disease Control and Prevention website. 2020; https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html. Accessed December 27, 2020.

5. Judson SD, Munster VJ. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures. Viruses 2019;11:940.

6. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol-generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One 2012;7(4):e35797.

7. Gamage B, Moore D, Copes R, Yassi A, Bryce E, Group BCRIPS. Protecting healthcare workers from SARS and other respiratory pathogens: a review of the infection control literature. Am J Infect Control 2006;34:114–121.

8. Rational use of personal protective equipment for coronavirus disease (COVID-19) and considerations during severe shortages. World Health Organization website. https://apps.who.int/iris/rest/bitstreams/1274340/retrieve. Published April 6, 2020. Accessed December 27, 202.

9. ASPO Statement on PPE for AGPs. American Society of Pediatric Otolaryngology website. https://static1.squarespace.com/static/53409934e4b05289c3dc1db9a75ebc15f7/4d4d6b500666b56f71589384696201/ASPO+COVID-19+%2B+PPE+%2B+Statement+%2B+FINAL.pdf. Published May 11, 2020. Accessed December 27, 2020.

10. Aerosol-generating procedures performed by interventional radiology clinic- nal notification from the Society of Interventional Radiology. Society of Interventional Radiology website. 2020; https://www.sirweb.org/practice-resources/covid-19-resources/covid-19-clinical-notification-3-26-20/. Published April 27, 2020. Accessed December 27, 2020.

11. Bartoszko JJ, Farooqi MAM, Alhazzani W, Loeb M. Medical masks vs N95 respirators for preventing COVID-19 in healthcare workers: a systematic review and meta-analysis of randomized trials. Influenza Other Respir Viruses 2020;14:365–373.

12. Richterman A, Meyrowitz EA, Cevik M. Hospital-acquired SARS-CoV-2 infection: lessons for public health. JAMA 2020;324:2155–2156.

13. Carlson AL, Budd AP, Perl TM. Control of influenza in healthcare settings: early lessons from the 2009 pandemic. Curr Opin Infect Dis 2010;23:293–299.

14. Loeb M, Dafoe N, Mahony J, et al. Surgical mask vs N95 respirator for preventing influenza among healthcare workers: a randomized trial. JAMA 2009;302:1865–1871.
15. Radonovich LJ, Simberkoff MS, Bessesen MT, et al. N95 respirators vs medical masks for preventing influenza among healthcare personnel: a randomized clinical trial. JAMA 2019;322:824–833.

16. Siegel JD, Rhinehart E, Jackson M, Chiarello L, and the Healthcare Infection Control Practices Advisory Committee. 2007 Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. Centers for Disease Control and Prevention website. https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html. Accessed December 27, 2020.

17. Aerosol-generating procedures. The Joint Commission website. https://www.jointcommission.org/-/media/tjc/documents/covid19/aerosol-generating-procedures-infographic.pdf. Published April 30, 2020. Accessed December 27, 2020.

18. Healthcare infection prevention and control FAQs for COVID-19. Centers for Disease Control and Prevention website. https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-faq.html. Published 2020. Accessed December 27, 2020.

19. Infection prevention and control during health care when COVID-19 is suspected. World Health Organization website. https://apps.who.int/iris/rest/bitstreams/1272420/retrieve. Published March 19, 2020. Accessed December 27, 2020.

20. Risk assessment and management of exposure of healthcare workers in the context of COVID-19. World Health Organization website. https://apps.who.int/iris/rest/bitstreams/1272424/retrieve. Published March 19, 2020. Accessed December 27, 2020.

21. Castro-Rodriguez JA, Rodrigo GJ. Beta agonists through metered-dose inhaler with valved holding chamber versus nebulizer for acute exacerbation of wheezing or asthma in children under 5 years of age: a systematic review with meta-analysis. J Pediatr 2004;145:172–177.

22. Gates A, Gates M, Vandermeer B, et al. Glucocorticoids for croup in children. Cochrane Database Syst Rev 2018;8:CD001955.

23. Kuusela AL, Vesikari T. A randomized double-blind, placebo-controlled trial of dexamethasone and racemic epinephrine in the treatment of croup. Acta Paediatr Scand 1988;77:99–104.

24. Occupational Safety and Health Administration. Respiratory Protection. 29 CFR 1910.134. Washington, DC: OSHA; 2011.

25. National Institute for Occupational Safety and Health. TB respiratory protection program in health care facilities—administrator’s guide. Centers for Disease Control and Prevention website. https://www.cdc.gov/niosh/docs/99-143/default.html. Accessed December 27, 2020.

26. Lynch JB, Davitkov P, Anderson DJ, et al. Infectious Diseases Society of America guidelines on infection prevention in patients with suspected or known COVID-19. Infectious Diseases Society of America website. https://www.idsociety.org/practice-guideline/covid-19-guideline-infection-prevention/. Published 2020. Accessed April 30, 2021.

27. Clapp PW, Sickbert-Bennett EE, Samet JM, et al. Evaluation of cloth masks and modified procedure masks as personal protective equipment for the public during the COVID-19 pandemic. JAMA Intern Med 2021;181:463–469.

28. American Society of Heating Refrigerating and Air-Conditioning Engineers. ANSI/ASHRAE/ASHE Standard 170-2017—Ventilation of Health Care Facilities. Atlanta: ASHRAE; 2017.

29. MacIntyre CR, Seale H, Dung TC, et al. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open 2015;5:e006577.

30. Howard J, Huang A, Li Z, et al. An evidence review of face masks against COVID-19. Proc Natl Acad Sci U S A 2021;118(4):e2014564118.