The High Expressed Serum Soluble Neural Cell Adhesion Molecule, a High Risk Factor Indicating Hepatic Encephalopathy in Hepatocellular Carcinoma Patients

Tian-Hua Liu¹,², Kun Guo¹*, Ri-Qiang Liu³, Shu Zhang¹, Zhuo-Hui Huang¹, Yin-Kun Liu¹,²*

Abstract

Objective: To investigate whether the expression of serum soluble neural cell adhesion molecule (sNCAM) is associated with hepatic encephalopathy (HE) in hepatocellular carcinoma (HCC) patients. Materials and Methods: The Oncomine Cancer Microarray database was used to determine the clinical relevance of NCAM expression in different kinds of human cancers. Sera from 75 HCC cases enrolled in this study were assessed for expression of sNCAM by enzyme linked immunosorbent assay (ELISA). Results: Dependent on the Oncomine Cancer Microarray database analysis, NCAM was down regulated in 10 different kinds of cancer, like bladder cancer, brain and central nervous system cancer, while up-regulated in lung cancer, uterine corpus leiomyoma and sarcoma, compared to normal groups. Puzzlingly, NCAM expression demonstrated no significant difference between normal and HCC groups. However, we found by quantitative ELISA that the level of sNCAM in sera from HCC patients with HE (347.4±151.9 ng/ml) was significantly more up-regulated than that in HCC patients without HE (260.3±104.2 ng/ml), the p-value being 0.008. sNCAM may be an important risk factor of HE in HCC patients, the correlation coefficients was 0.278 (P< 0.05) on rank correlation analysis. Conclusions: This study highlights that up-regulated level of serum sNCAM is associated with HE in HCC patients and suggests that the high expression can be used as an indicator.

Keywords: Soluble neural cell adhesion molecule - hepatic encephalopathy - hepatocellular carcinoma
Tian-Hua Liu et al.

Aspartate transaminase; AFP, alpha fetoprotein; HbsAg, hepatitis B surface antigen.

Description	HCC patients with HE	HCC patients without HE
Number of individuals	46	29
Gender (male/female)	36 (78.3%)/10 (21.7%)/	36 (79.3%)/10 (20.7%)/
Age (years)	59±9	59±11
ALT (IU/L)	47.7±36.6/10 (21.7%)/	55.2±45.4/6 (20.7%)/
AST (IU/L)	70.9±71.2/10 (21.7%)/	98.3±101.9/6 (20.7%)/
AFP (IU/ml)	303.9±480.2/15.2%	439.9±548.3/17.2%
HbsAg(s/co) (1/0)	39 (84.8%)/7 (15.2%)/	24 (82.8%)/5 (17.2%)/
PT(s)	14.5±2.1/14.0±1.9	

*Mean±standard deviation ALT, Alanine aminotransferase; AST, Aspartate transaminase; AFP, alpha fetoprotein; HbsAg, hepatitis B surface antigen; PT, Prothrombin time

Oncomine analysis

Oncomine Cancer Microarray database (http://www.oncomine.org/) was used to systematically assess expression levels of NCAM in various cancers tissues versus normal tissues. (Rhodes et al., 2004; Shan et al., 2015) Threshold by $P\leq0.001$, fold change ≥2 and gene rank was top10%. The corresponding data sources used in this study were summarized in Table2.

Enzyme linked immunosorbent assay (ELISA)

sNCAM was measured quantitatively in sera from 75 patients with HCC by using the NCAM1 (Human) ELISA Kit (Abnova), according to the manufacturer’s protocol. Briefly, the diluted sera and standards were pipetted into the detective plate and incubated at 37°C for 90 min. Then biotinylated antibodies were pipetted. After incubating and washing, Avidin-Biotin-Peroxidase Complex (ABC) working solution was added, and finally, a color development step was performed. The O.D. absorbance values were read at 450 nm using the Infinite M200 (Tecan).

Statistics

The student t-test was used to compare two groups of parametric variants. The correlation of serum sNCAM expression and HE in HCC patients was evaluated with spearman rank correlation analysis. SPSS 17.0 was used to process the statistical analysis and GraphPad prism 5.0 was used to draw the graphs. $P\leq0.05$ was considered statistically significant.

Results

NCAM expression in cancer tissues

To determine the clinical relevance of NCAM in different kinds of human cancers, NCAM expression in bladder cancer, brain and central nervous system cancer, breast cancer, cervical cancer, colorectal cancer, gastric cancer, head and neck cancer, lung cancer, lymphoma, other cancer (uterine corpus leiomyoma), ovarian cancer, prostate cancer, sarcoma and so on were from Oncomine Cancer Microarray database. We compared NCAM expression levels in cancer tissues to that in normal tissues with the threshold by p-value below 0.001, fold change ≥2, gene rank was top10%. The result was listed in Figure 1 A. It indicated that 29 analyses met all of these conditions. The results demonstrated that NCAM expression was significantly changed in 13 different cancers versus normal tissues, respectively. In bladder cancer, brain and central nervous system cancer, breast cancer, cervical cancer, colorectal cancer, gastric cancer, head and neck cancer, lymphoma, ovarian cancer and prostate cancer, the expressions of NCAM were significantly decreased. While, in lung cancer, other cancer (uterine corpus leiomyoma) and sarcoma there were significantly higher expression levels of NCAM.

However, any studies of the NCAM expression in HCC versus normal tissues were outside the scope mentioned above. Oncomine Cancer Microarray database collected 8 analyses of the NCAM expression in HCC tissues versus normal tissues. While only one of them had a p-value
Serum Soluble Neural Cell Adhesion Molecule Indicating Hepatic Encephalopathy in HCC Patients

We studied the expression levels of serum sNCAM by ELISA. 75 sera from HCC patients including 46 sera from HCC patients with HE and 29 sera without HE. The mean level of sNCAM in the sera of HCC patients with HE and without HE was 347.4±151.9 ng/ml and 260.3±104.2 ng/ml, respectively. The expression of serum sNCAM in HCC with HE was significantly up regulated compared to the normal controls.

Table 2. Oncomine Microarray Data Were Used to Analyze the NCAM Expression in Human Cancers

Analysis type	Study	Sample type	Samples (n)	Year of the study	References
Normal vs. Cancer	Bladder Cancer	Infiltrating Bladder Urothelial Carcinoma	81	2006	(Sanchez-Carbayo et al., 2006)
		Superficial Bladder Cancer	28		
		Bladder	48		
Brain and CNS Cancer	Brain	Glioblastoma	5	2013	The Cancer Genome Atlas
		Brain	13	2004	(Dyrskjot et al., 2004)
	Accompanied Tumor	Brain	9		
Breast Cancer	Invasive Ductal Breast Cancer	Brain	35	2004	(Zhao et al., 2004)
		Brain	3		
Cervical Cancer	Cervical Squamous Cell Cancer	Brain	3	2011	The Cancer Genome Atlas
		Brain	61		
Colorectal Cancer	Cecum Adenocarcinoma	Colon	22	2011	(Sanchez-Carbayo et al., 2011)
		Colon	13		
	Brain	Brain	25	2007	(Sabates-Bellver et al., 2007)
Gastric Cancer	Gastric Cancer	Colon	25	2007	(Cui et al., 2011)
		Colon	25		
	Gastric Mixed Adenocarcinoma	Colon	25	2007	(Cui et al., 2011)
	Gastric Intestinal Type	Colon	25		
	Adenocarcinoma	Brain	25		
Head and Neck Cancer	Tongue Squamous Cell Cancer	Tongue	26	2009	(Estilo et al., 2009)
		Thyroid Gland Pallidary Carcinoma	9		
		Thyroid Gland	9		
Lung Cancer	Lung Carcinoid Tumor	Small Cell Lung Carcinoma	6	2001	(Bhattacharjee et al., 2001)
		Lung	17		
Lymphoma	Follicular Lymphoma	Plasmacytoma	5	2008	(Brune et al., 2008)
		Plasma Cell	5		
Other Cancer	Uterine Corpus Leiomyoma	Small Cleaved Follicle Center Cell	5	2009	(Crabtree et al., 2009)
		Myometrium	50		
		Myometrium	27		
Ovarian Cancer	Ovarian Serous Adenocarcinoma	Peritoneum	10	2009	(Yoshihara et al., 2009)
		Prostate Carcinoma	25	2001	(Welsh et al., 2001)
Prostate Cancer	Prostate Gland	Prostate Gland	9		
Sarcoma	Dedifferentiated Liposarcoma	Prostate Gland	46	2009	(Barretina et al., 2010)
		Leiomyosarcoma	26		
		Adipose Tissue	9		

below 0.001 (Mas et al., 2009) and the fold change was only 1.3 (Figure 1 B). By contrast, there was no significant change of NCAM expression in HCC versus normal tissues. This result implied that NCAM may be not a good biomarker for HCC diagnosis. The quantitative analysis of serum sNCAM expression in HCC patients with or without HE.
Table 3. Spearman Rank Correlation Coefficients and Probabilities between Serum sNCAM Expression and HE in HCC Patients

	HE	sNCAM
Spearman’s rho	HE	sNCAM
correlation coefficients	1.000	0.278*
P value (2-tailed)	0.000	0.016
N	75	75

sNCAM	HE	P value (2-tailed)
correlation coefficients	0.278*	1.000
N	75	75

*N, number; *Correlation is significant at the 0.05 level (2-tailed)

Discussion

Generally, HE was divided into three types due to its etiology and pathogenesis: type A associated with acute liver failure; type B related to portal-systemic bypass and no intrinsic hepatocellular disease; type C involved in cirrhosis and portal hyper-tension/or portal-systemic shunts (Ferenci et al., 2002). In China, most HE patients were type C, type A and type B just occupied a relatively small minority. Recent advances have fostered a further understanding of the pathogenesis of HE, but the more detailed investigation about mechanism of HE is needed and it would be crucial to improve the therapeutic effect. If HE can be detected timely and prevented properly, it may be able to reduce the incidence and mortality of HE by taking active therapeutic measures.

In this study, we found expression of serum sNCAM in HCC patients with HE was significantly upregulated than that in HCC patients without HE. There are 3 major isoforms of NCAM as follows: NCAM-180, NCAM-140, and NCAM-120, with molecular masses of 180, 140, and 120 kDa, respectively. The NCAM-120 with no intracellular residues is linked to the membrane via a glycosyl-phosphatidylinositol (GPI) anchor, while NCAM-140 and NCAM-180, have intracellular parts of different lengths (Cunningham et al., 1987). Since NCAM could be released to serum by shedding with or without transmembrane domains as a detectable soluble form of NCAM (Tsuchiya et al., 2011). It implied that using a blood test to assess the sNCAM in the serum may be a convenient method for diagnosis and monitor of HE.

However, the diagnostic value of serum sNCAM in HCC patients with HE needs to be further validated in a large scale investigation and that how sNCAM participates in HE progression also needs to be evaluated. What is more, NCAM is an important glycoprotein with six possible N-linked glycosylation sites. It can carry high levels of the negatively charged polysialic acid (PSA) which consists of a 2-8 linked N-acetyلهورانmic acid residues (Livingston et al., 1988). Whether the expression of PSA-NCAM is related to HE progression also requires to be further elucidated.

In conclusion, we report the expression level of NCAM in cancer tissues versus normal tissues according to Oncomine Cancer Microarray database and expression of serum sNCAM in HCC patients with HE was significantly up regulated compared to the expression in HCC patients without HE expression in HCC patients without HE and the p-value was 0.008. Rank correlation analysis demonstrated that positive rank correlation existed between sNCAM and HE in HCC patients, the correlation coefficients was 0.278 (P<0.05).

Acknowledgements

This work was supported by China National Key Projects for Infectious Diseases (2012ZX10002-002).

References

Barretina J, Taylor BS, Banerji S, et al (2010). Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet, 42, 715-21.

Bhattacharjee A, Richards WG, Staunton J, et al (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA, 98, 13790-5.
Serum Soluble Neural Cell Adhesion Molecule Indicating Hepatic Encephalopathy in HCC Patients

Pode-Shakked N, Mitsuyanin S, Rom-Gross E, et al (2009). Developmental tumourigenesis: NCAM as a putative marker for the malignant renal stem/progenitor cell population. J Cell Mol Med, 13, 1792-808.

Rhodes DR, Yu J, Shanker K, et al (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 6, 1-6.

Rutishauser U, Acheson A, Hall AK, et al (1988). The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science, 240, 53-7.

Sabates-Bellver J, Van der Flier LG, de Palo M, et al (2007). Transcriptome profile of human colorectal adenomas. Mol Cancer Res, 5, 1263-75.

Sanchez-Carbayo M, Socci ND, Lozano J, et al (2006). Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol, 24, 778-89.

Sangmala P, Chaikledkaew U, Tanwandee T, et al (2014). Economic evaluation and budget impact analysis of the surveillance program for hepatocellular carcinoma in Thai chronic hepatitis B patients. Asian Pac J Cancer Prev, 15, 8993-9004.

Shan YS, Hsu HP, Lai MD, et al (2015). Increased expression of argininosuccinate synthetase protein predicts poor prognosis in human gastric cancer. Oncol Rep, 33, 49-57.

Sun L, Hui AM, Su Q, et al (2006). Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell, 9, 287-300.

Tsuchiya A, Kamimura H, Takamura M, et al (2009). Clinicopathological analysis of CD133 and NCAM human hepatic stem/progenitor cells in damaged livers and hepatocellular carcinomas. Hepatol Res, 39, 1080-90.

Tsuchiya A, Kamimura H, Tamura Y, et al (2011). Hepatocellular carcinoma with progenitor cell features distinguishable by the hepatic stem/progenitor cell marker NCAM. Cancer Lett, 309, 95-103.

Vilstrup H, Amadio P, Bajaj J, et al (2014). Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American association for the study of liver diseases and the european association for the study of the liver. Hepatology, 60, 715-35.

Welsh JB, Sapinomo LS, Su AL, et al (2001). Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res, 61, 5974-8.

Yoneyama K, Nebushi Y, Kiuuchi Y, et al (2004). Prognostic index of cirrhotic patients with hepatic encephalopathy with and without hepatocellular carcinoma. Dig Dis Sci, 49, 1174-80.

Yoshidaira K, Tajima A, Komata D, et al (2009). Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis. Cancer Sci, 100, 1421-8.

Zhang ZM, Zhang YM, Gao S, et al (2014). Treatment efficacy and prognostic factors for huge HCC based on barcelona clinic liver cancer staging. Asian Pac J Cancer Prev, 15, 8823-8.

Zhao H, Langerod A, Ji Y, et al (2004). Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell, 15, 2523-36.

Zhu AX (2012). Molecularly targeted therapy for advanced hepatocellular carcinoma in 2012: current status and future perspectives. Semin Oncol, 39, 493-502.

DOI:http://dx.doi.org/10.7314/APJCP.2015.16.8.3131