Predicting Body Fat and Blood Lipids with Sugars Intake

Eric Nelson
University of Rhode Island, ericnelson@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation
Nelson, Eric, "Predicting Body Fat and Blood Lipids with Sugars Intake" (2016). Open Access Master's Theses. Paper 844.
https://digitalcommons.uri.edu/theses/844
PREDICTING BODY FAT AND BLOOD LIPIDS WITH SUGARS INTAKE

BY

ERIC NELSON

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
NUTRITION

UNIVERSITY OF RHODE ISLAND

2016
MASTER OF SCIENCE IN NUTRITION

OF

ERIC NELSON

APPROVED:

Thesis Committee:

Major Professor: Kathleen Melanson

Ingrid Lofgren

Matthew Delmonico

Nasser H. Zawia
DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2016
ABSTRACT

Objective: The primary objective of this study was to determine if caloric intake of fructose sugars (free fructose plus sucrose) predicts body fat percentage in young adults. The secondary objective was to determine if caloric intake of fructose sugars predicts total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C).

Participants and Methods: Men (n=55, body fat=16.3±14.0%) and women (n=281, body fat=26.9±7.5%), 18 to 24 years of age, were recruited for an ongoing, cross-sectional study, The Nutrition Assessment Study. Anthropometric, biochemical and dietary data were collected. Linear modeling was used to assess predictions of body fat percentage and blood lipids with sugars intake, and multiple regressions were used to control for possible covariates.

Results: In a linear model, a 1% increase in caloric intake of fructose sugars predicted a 0.56% higher body fat in men (β=0.311, R²=0.097, p=0.037). This prediction remained significant when adjusting for BMI and alcohol intake (β=0.260, R²=0.505, p=0.036). In women, no predictions were seen with caloric intake of fructose sugars and body fat. Fructose sugars did not predict TC or LDL-C in this sample.

Conclusion: In this population of healthy young adults, higher consumption of fructose sugars is associated with higher body fat in men but not in women. Longitudinal research is needed to determine if these predictions are observed over time.
ACKNOWLEDGEMENTS

I would like to thank Dr. Kathleen Melanson, my major advisor, for four years of support. Without her expertise in the field, enthusiasm and attention to detail I would not have been able to accomplish everything. Your guidance and wisdom have helped shape me into the researcher that I am now, and the future researcher that I hope to become.

I would also like to express my gratitude to my committee members Dr. Ingrid Lofgren and Dr. Matthew Delmonico who served as a team of experts and helped guide me on my journey through graduate school. I would also like to thank Dr. Furong Xu for serving as my defense chairperson and for always sending a smile along with her emails.

I would like to thank the entire Nutrition and Food Sciences Department for everything they have done for me over the last 6 years, with a special thanks to Cathy English and Valerie Jenkins for always going above and beyond to look out for me.

I would like to thank Michael MacArthur for all of his help with stats and for pushing me to be greater than myself. I am a better person for having known you, and look forward to years of friendship. I would also like to thank Mark Gauvin and Megan Fallon for our constant feuds in undergraduate which led to all of us applying and finishing graduate school together.

I would also like to thank the Community Nutrition Lab for dealing with my interruptions throughout the day, and for the countless times I have walked in on a lab meeting and made a fool of myself. I would like to thank the Lipid Lab for allowing me to use them as an example for where I needed to be in terms of graduating on time.
I would also like to thank the Greene Eating Lab for allowing me to the data for my thesis.

I would like to thank my undergraduate research assistants without whom I would not have been able to survey over 10,000 food and beverage items for the presence of added sugars. A special thanks to Alexander Borges who worked with me over the last two years and has been an extreme asset. Last but not least, I like to thank my friends and family who have supported me both physically but also mentally. Your support throughout this process has meant a lot to me.
PREFACE

This Thesis was written to comply with the University of Rhode Island graduate school Manuscript Thesis Format. This thesis contains one manuscript. *Predicting body fat and blood lipids with sugars intake.* This manuscript has been written in a form suitable for publication in The Journal of the American College of Nutrition.
# TABLE OF CONTENTS

ABSTRACT ........................................................................................................... ii  
ACKNOWLEDGMENTS ....................................................................................... iii  
PREFACE ........................................................................................................... v  
TABLE OF CONTENTS ................................................................................... vi  
LIST OF TABLES ................................................................................................ vii  
LIST OF FIGURES .............................................................................................. viii  
MANUSCRIPT ..................................................................................................... 1  
  ABSTRACT ....................................................................................................... 2  
  INTRODUCTION ............................................................................................... 3  
  METHODOLOGY .............................................................................................. 5  
  RESULTS ......................................................................................................... 9  
  DISCUSSION .................................................................................................... 12  
  CONCLUSION ................................................................................................. 15  
  REFERENCES .................................................................................................. 16  
APPENDICES ................................................................................................... 26  
  APPENDIX A: REVIEW OF THE LITERATURE ................................................ 26  
  APPENDIX B: EXTENDED RESULTS ............................................................... 59  
  APPENDIX C: CONSENT FORM ................................................................... 73  
  APPENDIX D: NUTRITION ASSESSMENT SURVEY ....................................... 75  
  APPENDIX E: TRANSLATION SHEET ............................................................ 78  
BIBLIOGRAPHY ................................................................................................ 79
# LIST OF TABLES

| TABLE | PAGE |
|-------|------|
| Table 1. Demographic and dietary data of the study population, Nutrition Assessment Study 2013 – 2015 | 22 |
| Table 2. Pearson Correlations between sugars and health outcomes | 23 |
# LIST OF FIGURES

| FIGURE | PAGE |
|--------|------|
| Figure 1. Prediction of body fat percent with sugars consumption in healthy male college students (n=47) | 24 |
| Figure 2. Predictions of HDL-C with sugars consumption in healthy male college students (n=45) | 25 |
CHAPTER 1

Predicting body fat and blood lipids with sugars intake

Prepared for submission to The Journal of the American College of Nutrition

Eric Nelson\textsuperscript{1}, Kathleen Melanson\textsuperscript{1}

\textsuperscript{1}Department of Nutrition and Food Sciences, University of Rhode Island, Fogarty Hall

Kingston, Rhode Island, 02881, United States.
Predicting body fat and blood lipids with sugars intake

Objective: The primary objective of this study was to determine if caloric intake of fructose sugars (free fructose plus sucrose) predicts body fat percentage in young adults. The secondary objective was to determine if caloric intake of fructose sugars predicts total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C).

Participants and Methods: Men (n=55, body fat=16.3±14.0%) and women (n=281, body fat=26.9±7.5%), 18 to 24 years of age, were recruited for an ongoing, cross-sectional study, The Nutrition Assessment Study. Anthropometric, biochemical and dietary data were collected. Linear modeling was used to assess predictions of body fat percentage and blood lipids with sugars intake, and multiple regressions were used to control for possible covariates.

Results: In a linear model, a 1% increase in caloric intake of fructose sugars predicted a 0.56% higher body fat in men (β=0.311, R²=0.097, p=0.037). This prediction remained significant when adjusting for BMI and alcohol intake (β=0.260, R²=0.505, p=0.036). In women, no predictions were seen with caloric intake of fructose sugars and body fat. Fructose sugars did not predict TC or LDL-C in this sample.

Conclusion: In this population of healthy young adults, higher consumption of fructose sugars is associated with higher body fat in men but not in women. Longitudinal research is needed to determine if these predictions are observed over time.
INTRODUCTION

A preventable chronic disease, obesity, affects 600 million adults aged 18 years and older worldwide. In the United States (US), obesity generates health care costs ranging from $147 billion to nearly $210 billion per year. The US has one of the highest overweight and obesity rates, with over 60% of adults defined as overweight or obese (BMI>25).

Young adults (18 to 24 years old) have experienced increases in obesity, with weight gain in early adulthood linked to increased obesity and cardiovascular disease (CVD) risk later in life. One dietary factor, consumption of fructose sugars (sucrose plus free fructose), may lead to adverse metabolic outcomes, such as dyslipidemia, cardiovascular diseases and obesity through stimulation of de novo lipogenesis. Adolescents and young adults are among the highest consumers of sugars, making them a critical group on which to focus. Research shows that the prevalence of dyslipidemia early in life is a strong predictor of the obesity later in life and that adverse lipid profiles in young adults accelerates the development of atherosclerosis.

Cross-sectional research concludes no significant associations between fructose consumption and body mass index (BMI). However, BMI does not take into account body fat percentage, which experimental research suggest may be increased with fructose sugars intake. Despite this, experimental studies utilize consumption levels exceeding the 95th percentile (14.5% daily energy) for fructose consumption. Thus, a gap exists in the literature as to whether fructose sugars have deleterious associations with body fat percentage when consumed in free-living individuals.
Therefore, this study aimed to determine if consumption of sugars, with emphasis on fructose sugars, predict body fat percentage and fasting blood lipids in young men and women. Primarily, it was hypothesized that caloric intake of fructose sugars would predict body fat percentage. Secondarily, it was hypothesized that fructose sugars intake would predict total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C). Further, predictions with consumption of non-fructose sugars (free glucose plus lactose) and total sugars were explored. Lastly, predictions of the metabolic risk factors high-density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG) were explored with consumption of sugars.
MATERIALS AND METHODOLOGY

Subjects and Research Design:

This cross-sectional study in college students used data from the Nutrition Assessment Study (NAS). The NAS is an ongoing observational study of health risk factors in college students enrolled in an introductory nutrition course and a senior level nutrition course. The NAS was approved by the University of Rhode Island Institutional Review Board (IRB) (IRB HU1112-069). Demographic survey, anthropometric measures and biochemical indices were extracted from the NAS database.

Consenting students from the fall 2013 through the spring 2015 semester were given the opportunity to complete the validated Comprehensive Nutrition Assessment Questionnaire (CNAQ) as a dietary assessment. Study staff informed students of their eligibility to participate in the study, described the study design and collected a signed consent form of those agreeing to participate.

Demographic and Anthropometric Measures

Participants completed a brief demographic survey, the Nutrition Assessment Survey, that collected information on age, gender, and ethnicity. Upon completion of the Nutrition Assessment Survey, anthropometric measures were conducted by trained researchers using standardized protocols. Measurements were performed in duplicate with additional measures collected if the variance of the two measures was outside the pre-established standards (specified below). Averages of all anthropometric measures with acceptable variances were recorded. Height was measured to the nearest 0.1 cm using a Seca 220 stadiometer (Seca Corporation, Hamburg, Germany). Weight was
measured to the nearest 0.1 kg using a calibrated digital Seca 760 Scale (Seca Corporation, Hamburg, Germany). Body mass index (BMI) was calculated as kilograms’ body weight divided by meters squared (kg/m$^2$). To measure body fat percentage, researchers utilized air displacement plethysmography via BOD POD® (COSMED, Concord, California)$^{26,27}$, with predicted thoracic volume.

**Biochemical Measures**

After an overnight fast, a full lipid profile including TC, LDL-C, HDL-C and TAG were collected. The lipid profile was measured using the validated Alere Cholestech LDX® System$^{28,29}$ (Alere Inc., Waltham MA). To calculate LDL-C the Friedewald equation was used. Researchers drew 40uL aliquots of blood, via finger stick, from participants using capillary tubes. Measured outcomes were provided immediately from this system and participants were provided with an explanation of and a copy of their results.

**Dietary Measures**

The CNAQ is a semi-quantitative 297-item online food frequency questionnaire validated in 2010 for use in adults to evaluate intake of 52 nutrients$^{25}$. The CNAQ was designed to analyze macronutrients, micronutrients, and indigestible carbohydrates. Responses to the CNAQ were processed using the food composition database, created and maintained by Monash University in Melbourne, Australia$^{25}$. This questionnaire generates immediate feedback including estimated intake of energy (kJ), total sugars (g), fructose (g), sucrose (g), glucose (g), and lactose (g)$^{25}$. Fructose sugars in this paper will refer the amount of fructose plus the amount of sucrose.
consumed. Non-fructose sugars will refer to the amount of glucose plus the amount of lactose consumed.

The CNAQ could be saved, stopped and continued over multiple intervals if necessary. Participants were prompted to evaluate their average intakes over a one-year period (responses include, but are not limited to “daily”, “weekly”, “monthly” or “never or rarely”). The CNAQ provided brief instructions on how to document food items that are consumed only in specific seasons. Prompts encourage participants to identify quantities of foods consumed, while an unanswered question prevented the participants from submitting the CNAQ. In order to navigate differences in food terminology between the US and Australian citizens, study staff developed a translation sheet. An example: what Australians refer to as “rocket”, the US refer to as “arugula”.

Statistical Analysis

All data analyses were conducted using SPSS version 22.0. For demographic variables, dependent variables, and independent variables, descriptive statistics were used to analyze means, standard deviations, and medians. Frequencies were conducted for categorical variables. All variables were normal according to Shapiro-Wilk after eliminations of outliers greater than three standard deviations from the mean for intake of fructose sugars, non-fructose sugars and total sugars, as well as for body fat percentage and lipid values of TC, LDL-C, HDL-C and TAG.

A total of 17 women and 5 men were eliminated for one or more of the categories for sugars intake. In total, 7 men and 20 women did not complete the full lipid panel, but were included for comparisons with body fat. Two men were missing
body fat analysis, and were eliminated as outliers for LDL-C and TAG. One man was eliminated as an outlier for LDL-C and TAG, and one man was eliminated as an outlier for only TAG. Five men did not complete body fat analysis, but completed the full lipid profile. Lastly, one male participant was eliminated as an outlier with a body fat percentage >65%. Among women, two were eliminated as outliers for both TC and LDL-C, and one woman was eliminated as an outlier for TC. Three women were eliminated as outliers for both HDL-C and LDL-C. One woman was eliminated as an outlier for HDL-C and did not have readable LDL-C and TAG by the Cholestech. In addition, 12 women did not have readable levels of TAG and LDL-C. One woman was an outlier for only TAG, and three women for only LDL-C. Lastly, 19 women did not complete body fat percentage and 4 were eliminated as outliers.

To determine associations between independent and dependent variables, Pearson correlations were applied. To determine if there were relationships between potential covariates, such as alcohol, saturated fat intake and BMI with outcome variables, Spearman’s Rho was applied to non-normal covariates. To address our hypotheses, linear modeling was used to determine if caloric intake of fructose sugars, non-fructose sugars and/or total sugars predict body fat percent, TC, LDL-C, HDL-C and TAG. To avoid overfitting in regression models, 5-10 participants are required per predictor when assumptions of normality are met, and 10-20 participants are required per predictor when assumptions of normality are not met.\(^{30}\).
RESULTS

Subject Characteristics and Dietary Intakes

In this cross-sectional analysis data from 414 participants were collected, but data from 336 participants, aged 18-24 years old, were included from the database of the NAS 2013 – 2015 database; 40 students did not complete the CNAQ, 27 participants were over 24 years old, 6 participants reporting daily intakes <400kcals or >7000kcals, 4 participants completing data collection twice and 1 person was pregnant. This sample was mostly female (83.6%) and Caucasian (88.1%). The means and medians of demographic and major dietary intakes are presented in Table 1. On Average, women consumed 2% more calories from fructose sugars than men (14.0 ± 3.8% vs. 12.0 ± 4.3%, p<0.05), respectively.

Prediction of Body Fat Percentage with Caloric Intake of Sugars

The correlations among fructose intake, non-fructose intake and body fat percentage are presented in Table 2. Gram intake of fructose sugars and total sugars negatively correlated with body fat percentage in women. However, they did not correlate with body fat percentage when analyzed as percentage of caloric intake, in women. Caloric intake of fructose sugars, non-fructose sugars and total sugars positively correlated with body fat percentage in men.

Caloric intake of fructose sugars, non-fructose sugars and total sugars did not predict body fat percentage in any linear models in women. In men, a 1% increase in caloric intake of fructose sugars predicted a 0.56% higher body fat percentage in men (β=0.311, R²=0.097, p=0.037), Figure 1. Increasing caloric intake of non-fructose sugars the same amount predicted a 0.83% higher body fat (β=0.370, R²=0.103,
Similarly, a 1% increase in caloric intake of total sugars predicted a 0.40% higher body fat ($\beta=0.319$, $R^2=0.102$, $p=0.033$). Among men, caloric intake of fructose sugars ($\beta=0.260$, $R^2=0.505$, $p=0.036$), non-fructose sugars ($\beta=0.349$, $R^2=0.501$, $p=0.005$), and total sugars ($\beta=0.276$, $R^2=0.516$, $p=0.023$) maintained significant prediction of body fat when adjusted for BMI and alcohol intake.

**Prediction of Blood Lipids with Caloric Intake of Sugars**

In this sample, no correlations were detected for TC and sugars did not predict TC in any linear models. Consumption of fructose sugars, non-fructose sugars and total sugars did not predict LDL-C in women. Among men, non-fructose sugars in grams correlated positively and moderately with LDL-C, Table 2. In a linear model, a 20 gram increase in non-fructose sugars predicted a 6.76 mg/dL higher LDL-C level in men ($\beta=0.317$, $R^2=0.100$, $p=0.041$). When adjusted for body fat percent and alcohol intake, non-fructose sugars no longer predicted LDL-C ($\beta=0.313$, $R^2=0.148$, $p=0.080$).

The associations between HDL-C, TAG and sugars are presented in Table 2. There were significant inverse associations between fructose and total sugars with HDL-C, in men. In linear models, a 1% increase in caloric intake of fructose sugars predicted a 1.10 mg/dL lower HDL-C level in men ($\beta=-0.407$, $R^2=0.165$, $p=0.005$), Figure 2. A 1% increase in caloric intake of total sugars predicted a 0.71 mg/dL lower HDL-C level in men ($\beta=-0.400$, $R^2=0.160$, $p=0.006$). When adjusted for intake of saturated fat, BMI, and TAG, a 1% increase in caloric intake of fructose sugars predicted a 0.77 mg/dL lower HDL-C in men ($\beta=-0.326$, $R^2=0.442$, $p=0.034$). Similarly, a 1% increase in total sugars predicted a 0.53 mg/dL lower HDL-C in men.
when adjusted for saturated fat, BMI and TAG ($\beta=-0.315$, $R^2=0.432$, $p=0.046$).

Caloric intake of non-fructose sugars did not predict HDL-C in men.

Among men, a 20gram increase in non-fructose sugars predicted a 9.74mg/dL higher TAG level ($\beta=-0.398$, $R^2=0.158$, $p=0.010$). When adjusted for body fat percentage and alcohol intake a 20gram increase in non-fructose sugars predicted a 7.38mg/dL higher TAG ($\beta=0.332$, $R^2=0.270$, $p=0.046$). There were no significant associations with respect to HDL-C and TAG in women.
DISCUSSION

A recent cross-sectional study using NHANES 1999-2006 data observed relationships with fructose and non-fructose sugars intake with respect to BMI. They concluded no significant associations with BMI in 25,506 participants\textsuperscript{22}. Our study filled a research gap by exploring predictions with fructose sugars and body fat percentage, a more accurate way to assess weight status. We found predictions of body fat percentage with fructose and total sugars intake in men. However, we did not see these predictions in women. A possible explanation could be increases in visceral fat, which may be specific to fructose\textsuperscript{23}. Visceral fat is stored to a greater extent in men when compared to women\textsuperscript{32}. However, this was not assessed in the present study, and is an area for future research.

In line with previous cross-sectional research\textsuperscript{17,22}, no significant predictions of TC and LDL-C with consumption of fructose sugars were observed, when consumed in free-living young adults. Despite this, in men non-fructose sugars predicted LDL-C. Previous research has shown a relationship between added sugars and LDL-C in women, but not men\textsuperscript{34}. Glucose has a high glycemic index, which when consumed elicits an insulin response to help deliver glucose to the muscles and surrounding tissues\textsuperscript{35}. Insulin is believed to have an indirect stimulation of HMG-CoA reductase in favor of cholesterol biosynthesis\textsuperscript{35}. However, this was no longer significant when adjusting for significant covariates, such as body fat and alcohol intake.

Increased consumption of sugars may also lead to elevations in TAG through stimulation of de novo lipogenesis\textsuperscript{6}, leading to increased production of VLDL\textsuperscript{6,36,37}. Previous research cross-sectional research has concluded associations with added
sugars and TAG. In the present study, non-fructose sugars, but not fructose sugars predicted TAG. This could be due to the overestimation of nutrients by the CNAQ, which is a limitation of this study, as the CNAQ overestimated all nutrients on average about 140%\textsuperscript{25}. A recent paper by Morell et al.\textsuperscript{38} found that in the same age group (18 to 24-year-olds), caloric intake for men was 2694.6 kcals and for women 1862.8 kcals using 3-day recalls. This demonstrates a potential overestimation of calories, specifically in women as in our sample men reported 2690.4 kcals and women reported 2451.5 kcals. These results demonstrate that there may be greater misreporting by women in our sample. As with most means of self-reported dietary assessment, misreporting is common\textsuperscript{33} and if it differed by gender in our sample, then it is an additional possible explanation for our differing results in females versus males. Despite this, the CNAQ was validated for measuring fructose intake\textsuperscript{25}. Further, both men and women, in this study, consumed on average about 32.5 teaspoons of total sugars per day, which is consistent with data from NHANES III\textsuperscript{17}. Among women, about 62\% of total sugars were fructose sugars (fructose plus sucrose) and among men, about 60\% were fructose sugars. Our research builds upon previous research reporting that fructose sugars contributed to about 60\% of total sugars intake and non-fructose sugars contributed to about 40\% of total sugars intake\textsuperscript{39}.

Secondly, this study is limited because physical activity data were not collected. Physical activity has been shown to have beneficial effects on body fat as well as on blood lipids\textsuperscript{38}. Despite our inability to adjust for physical activity, we were able to adjust for saturated fat, cholesterol intake and TAG which have been shown to
related to HDL-C. We were also able to adjust for intake of alcohol, body fat percentage and BMI.
CONCLUSIONS

In conclusion, this study helps to fill a gap in the fructose research by exploring predictions with body fat percentage rather than BMI in free-living young adults. Daily energy intake from fructose sugars predicted body fat percentage and HDL-C in men, not in women. When consumed in free-living young adults, consumption of fructose sugars did not appear to be predictors of TC, LDL-C, or TAG. Future research needs to focus on collecting data on the different storage depots for fat to see if there are differences in the distribution and localization of body fat when consuming different dietary sugars. Future research also should focus on creating a tool to accurately measure fructose consumption in the US population.
REFERENCES:

1. Organization WOFaWH. Global Graphs and Maps. (World Obesity Day).

2. Cawley J, Meyerhoefer C. The medical care costs of obesity: An instrumental variables approach. *J Health Econ.* 2012;31(1):219-230.

3. Winkleby MA, Cubbin C. Changing patterns in health behaviors and risk factors related to chronic diseases, 1990-2000. *Am J Health Promot.* 2004;19(1):19-27.

4. McTigue KM, Garrett JM, Popkin BM. The natural history of the development of obesity in a cohort of young US adults between 1981 and 1998. *Ann Intern Med.* 2002;136(12):857-864.

5. Norman JE, Bild D, Lewis CE, Liu K, West DS. The impact of weight change on cardiovascular disease risk factors in young black and white adults: the CARDIA study. *Int J Obesity.* 2003;27(3):369-376.

6. Bantle JP, Raatz SK, Thomas W, Georgopoulos A. Effects of dietary fructose on plasma lipids in healthy subjects. *Am J Clin Nutr.* 2000;72(5):1128-1134.

7. Stanhope KL, Bremer AA, Medici V, et al. Consumption of Fructose and High Fructose Corn Syrup Increase Postprandial Triglycerides, LDL-Cholesterol, and Apolipoprotein-B in Young Men and Women. *J Clin Endocr Metab.* 2011;96(10):E1596-E1605.

8. Te Morenga LA, Howatson AJ, Jones RM, Mann J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. *Am J Clin Nutr.* 2014;100(1):65-79.
9. Johnson RK, Appel LJ, Brands M, et al. Dietary Sugars Intake and Cardiovascular Health A Scientific Statement From the American Heart Association. *Circulation.* 2009;120(11):1011-1020.

10. Ross SM. Cardiovascular Disease Mortality The Deleterious Effects of Excess Dietary Sugar Intake. *Holist Nurs Pract.* 2015;29(1):53-57.

11. Stanhope KL, Schwarz JM, Havel PJ. Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies. *Curr Opin Lipidol.* 2013;24(3):198-206.

12. Lowndes J, Sinnett S, Yu ZP, Rippe J. The Effects of Fructose-Containing Sugars on Weight, Body Composition and Cardiometabolic Risk Factors When Consumed at up to the 90th Percentile Population Consumption Level for Fructose. *Nutrients.* 2014;6(8):3153-3168.

13. Maersk M, Belza A, Stodkilde-Jorgensen H, et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. *Am J Clin Nutr.* 2012;95(2):283-289.

14. Siervo M, Montagnese C, Mathers JC, Soroka KR, Stephan BCM, Wells JCK. Sugar consumption and global prevalence of obesity and hypertension: an ecological analysis. *Public Health Nutr.* 2014;17(3):587-596.

15. Faeh D, Minehira K, Schwarz JM, Periasami R, Seongsu P, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy males. *Int J Obesity.* 2006;30:S67-S67.

16. Tappy L, Le KA, Tran C, Paquot N. Fructose and metabolic diseases: New findings, new questions. *Nutrition.* 2010;26(11-12):1044-1049.
17. Zhang ZF, Gillespie C, Welsh JA, Hu FB, Yang QH. Usual Intake of Added Sugars and Lipid Profiles Among the US Adolescents: National Health and Nutrition Examination Survey, 2005-2010. *J Adolescent Health*. 2015;56(3):352-359.

18. Lauer RM, Clarke WR. Use of Cholesterol Measurements in Childhood for the Prediction of Adult Hypercholesterolemia - the Muscatine Study. *Jama-J Am Med Assoc.* 1990;264(23):3034-3038.

19. Morrison JA, Glueck CJ, Horn PS, Yeramaneni S, Wang P. Pediatric triglycerides predict cardiovascular disease events in the fourth to fifth decade of life. *Metabolism*. 2009;58(9):1277-1284.

20. Webber LS, Srinivasan SR, Wattigney WA, Berenson GS. Tracking of Serum-Lipids and Lipoproteins from Childhood to Adulthood - the Bogalusa Heart-Study. *Am J Epidemiol.* 1991;133(9):884-899.

21. McGill HC. Relationship of Atherosclerosis in Young Men to Serum-Lipoprotein Cholesterol Concentrations and Smoking - a Preliminary-Report from the Pathobiological-Determinants-of-Atherosclerosis-in-Youth-(Pday)-Research-Group. *Jama-J Am Med Assoc.* 1990;264(23):3018-3024.

22. Sun SZ, Anderson GH, Flickinger BD, Williamson-Hughes PS, Empie MW. Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome. *Food Chem Toxicol.* 2011;49(11):2875-2882.

23. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and
decreases insulin sensitivity in overweight/obese humans. *J Clin Invest.* 2009;119(5):1322-1334.

24. Marriott BP, Cole N, Lee E. National Estimates of Dietary Fructose Intake Increased from 1977 to 2004 in the United States. *J Nutr.* 2009;139(6):S1228-S1235.

25. Barrett JS, Gibson PR. Development and Validation of a Comprehensive Semi-Quantitative Food Frequency Questionnaire that Includes FODMAP Intake and Glycemic Index. *J Am Diet Assoc.* 2010;110(10):1469-1476.

26. Ginde SR, Geliebter A, Rubiano F, et al. Air displacement plethysmography: Validation in overweight and obese subjects. *Obes Res.* 2005;13(7):1232-1237.

27. McCrory MA, Gomez TD, Bernauer EM, Mole PA. Evaluation of a new air displacement plethysmograph for measuring human body composition. *Med Sci Sports Exerc.* 1995;27(12):1686-1691.

28. Carey M, Markham C, Gaffney P, Boran G, Maher V. Validation of a point of care lipid analyser using a hospital based reference laboratory. *Irish J Med Sci.* 2006;175(4):30-35.

29. Dale RA, Jensen LH, Krantz MJ. Comparison of two point-of-care lipid analyzers for use in global cardiovascular risk assessments. *Ann Pharmacother.* 2008;42(5):633-639.

30. Harlow LL. *The essence of multivariate thinking : basic themes and methods.* Second edition. ed. New York: Routledge/ Taylor & Francis Group; 2014.
31. Vadiveloo M, Dixon LB, Mijanovich T, Elbel B, Parekh N. Dietary Variety Is Inversely Associated with Body Adiposity among US Adults Using a Novel Food Diversity Index. *J Nutr.* 2015;145(3):555-563.

32. Blaak E. Gender differences in fat metabolism. *Curr Opin Clin Nutr Metab Care.* 2001;4(6):499-502.

33. Subar AF, Kipnis V, Troiano RP, et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN Study. *Am J Epidemiol.* 2003;158(1):1-13.

34. Welsh JA, Sharma A, Abramson JL, Vaccarino V, Gillespie C, Vos MB. Caloric Sweetener Consumption and Dyslipidemia Among US Adults. *Jama-J Am Med Assoc.* 2010;303(15):1490-1497.

35. Harvey RA. Biochemistry. *Lippincott's Illustrated Reviews.* 2011;5:309-310.

36. Klop B, Elte JWF, Cabezas MC. Dyslipidemia in Obesity: Mechanisms and Potential Targets. *Nutrients.* 2013;5(4):1218-1240.

37. Rashid S, Watanabe T, Sakaue T, Lewis GF. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. *Clin Biochem.* 2003;36(6):421-429.

38. Morrell JS, Lofgren IE, Burke JD, Reilly RA. Metabolic Syndrome, Obesity, and Related Risk Factors Among College Men and Women. *J Am Coll Health.* 2012;60(1):82-89.
39. Chun OK, Chung CE, Wang Y, Padgitt A, Song WO. Changes in Intakes of Total and Added Sugar and their Contribution to Energy Intake in the US. *Nutrients*. 2010;2(8):834-854.
**Table 1:** Demographic and dietary data of the study population, Nutrition Assessment Study 2013 – 2015.

|                | Women n = 281 |         |         | Men n = 55        |         |         |
|----------------|---------------|---------|---------|-------------------|---------|---------|
|                | Mean | Median | SD     | Mean | Median | SD     |
| Age, years     | 19.4 | 19.0   | 1.4    | 19.7 | 19.0   | 1.7    |
| Body Fat %‡     | 26.9 | 26.7   | 7.5    | 16.3 | 14.0   | 8.0    |
| TC (mg/dL)     | 164.6 | 162.5  | 26.3   | 153.5 | 150.5  | 24.4   |
| LDL-C (mg/dL)  | 83.0 | 81.0   | 24.2   | 86.8 | 82.0   | 24.4   |
| HDL-C (mg/dL)  | 61.2 | 60.0   | 15.0   | 50.5 | 50.0   | 11.4   |
| TAG (mg/dL)    | 111.5 | 99.0   | 57.4   | 83.7 | 73.0   | 31.4   |

**Dietary Intakes**

|                        | Women n = 281 |         |         | Men n = 55        |         |         |
|------------------------|---------------|---------|---------|-------------------|---------|---------|
|                        | Mean | Median | SD     | Mean | Median | SD     |
| Energy, kcal/day       | 2451.5 | 2141.9 | 1179.9 | 2690.4 | 2334.0 | 1301.2 |
| Total Fat g/day (%)    | 89.8  | 77.5   | 52.8   | 98.7  | 91.1   | 51.5   |
| (kcal/day)             | (32.9) | (33.4) | (8.3)  | (33.3) | (33.5) | (7.7)  |
| Protein, g/day (%)     | 108.8 | 94.1   | 56.1   | 136.7 | 115.6  | 71.7   |
| (kcal/day)             | (18.0) | (17.6) | (3.8)  | (20.3) | (20.4) | (3.7)  |
| Carbohydrate, g/day (%)| 271.8 | 226.0  | 145.9  | 283.3 | 228.9  | 158.1  |
| (kcal/day)             | (44.2) | (44.3) | (8.8)  | (41.6) | (41.4) | (8.3)  |
| Alcohol, g/day (%)     | 5.7   | 1.7    | 18.4   | 6.0   | 2.3    | 8.4    |
| (kcal/day)             | (1.8)  | (0.7)  | (6.2)  | (1.8)  | (1.1)  | (2.4)  |
| Total Sugars, g/day (%)| 131.3 | 116.1  | 64.0   | 129.2 | 125.1  | 67.3   |
| (kcal/day)             | (22.7) | (22.0) | (5.9)  | (20.1) | (19.4) | (6.4)  |
| Fructose Sugars, g/day | 80.4  | 72.4   | 39.3   | 76.7  | 70.6   | 40.3   |
| (kcal/day)             | (14.0) | (13.8) | (3.8)  | (12.0) | (12.1) | (4.3)  |
| Non-fructose Sugars, g/day | 48.6 | 44.0   | 24.2   | 48.1  | 45.6   | 23.6   |
| (kcal/day)             | (8.6)  | (8.2)  | (2.7)  | (8.0) | (7.9)  | (3.0)  |

Means, medians and standard deviations are reported using descriptive statistics.
SD= standard deviation
TC= total cholesterol; LDL-C= low density lipoprotein cholesterol; HDL-C= high density lipoprotein cholesterol; TAG= triacylglycerol
‡ females=258 men=47
Table 2: Pearson correlations between sugars and health outcomes.

|   | Body Fat % | TC † | LDL-C † | HDL-C † | TAG † |
|---|------------|------|---------|---------|-------|
| **Women** Fructose sugars (g) | -0.132* | 0.003 | 0.038 | -0.025 | 0.149* |
| %kcal | -0.039 | -0.103 | -0.047 | -0.099 | 0.050 |
| Non-fructose sugars (g) | -0.119 | 0.031 | -0.022 | 0.039 | 0.111 |
| %kcal | -0.071 | -0.058 | -0.003 | -0.078 | 0.015 |
| Total sugars (g) | -0.145* | -0.003 | -0.036 | -0.020 | 0.109 |
| %kcal | -0.071 | -0.081 | -0.012 | -0.073 | -0.007 |
| **Men** Fructose sugars (g) | 0.188 | -0.004 | 0.105 | -0.358* | 0.178 |
| %kcal | 0.311* | -0.129 | -0.008 | -0.407** | 0.090 |
| Non-fructose sugars (g) | 0.233 | 0.261 | 0.317* | -0.410** | 0.398** |
| %kcal | 0.321* | 0.136 | 0.078 | 0.012 | 0.010 |
| Total sugars (g) | 0.147 | 0.033 | 0.130 | -0.322* | 0.224 |
| %kcal | 0.319* | -0.069 | 0.035 | -0.400** | 0.126 |

Fructose sugars=free fructose plus sucrose; Non-fructose sugars=free glucose plus lactose; Total sugars=fructose sugars plus non-fructose sugars; TC=total cholesterol; LDL-C=low density lipoprotein cholesterol; HDL-C=high density lipoprotein cholesterol; TAG=triacylglycerol
† measured in mg/dL
*p<.05; **p<.01
**Figure 1:** Prediction of body fat percent with sugars consumption in healthy male college students. (n=47)

**Figure 1a:** A one percent increase in caloric intake of fructose sugars predicts a 0.56% higher body fat in men (p=0.037)

**Figure 1b:** A one percent increase in caloric intake of non-fructose sugars predicts a 0.83% higher body fat in men (p=0.030)

**Figure 1c:** A one percent increase in caloric intake of total sugars predicts a 0.40% higher body fat in men (p=0.037)

Fructose sugars= free fructose plus sucrose ; Non-fructose sugars=free glucose plus lactose ; Total sugars= fructose sugars plus non-fructose sugars

Body fat percentage measured via air displacement plethysmography
**Figure 2:** Predictions of HDL-C with sugars consumption in healthy male college students. (n=45)

**Figure 2a:** A one percent increase in caloric intake of fructose sugars predicts a 1.10mg/dL lower HDL-C in men (p=0.005).

**Figure 2b:** A one percent increase in caloric intake of non-fructose sugars did not predict HDL-C in men (p=0.382).

**Figure 2c:** A one percent increase in caloric intake of total sugars predicts a 0.71mg/dL lower HDL-C in men (p=0.006).

Fructose sugars= free fructose plus sucrose ; Non-fructose sugars=free glucose plus lactose ; Total sugars= fructose sugars plus non-fructose sugars

HDL-C = high density lipoprotein cholesterol ; measured via cholestech LDX
APPENDIX A

REVIEW OF THE LITERATURE

Overview:

This literature review will discuss the consumption of sugars, specifically fructose sugars (fructose and sucrose), as well as non-fructose sugars (glucose plus lactose) and sugar sweetened beverages and their potential relationships with markers of weight status and blood lipids. First we will discuss definitions, sources and tools for measuring sugars. Then we will discuss the relationships between sugars and body composition, specifically analyzing the relationships with body mass index (BMI) and body fat percentage. Lastly, the relationships between consumption of sugars and blood lipids will be analyzed, with emphasis on total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triglycerides (TAG).

Defining Sugars:

The American Heart Association (AHA) and Academy of Nutrition and Dietetics (AND) defined sugars in various contexts. First, the AHA and AND defined sugars as monosaccharides and disaccharides including glucose, galactose and fructose. Similarly, they defined sugars as both naturally occurring (intrinsic) in fruits, vegetables and dairy foods, or as added (extrinsic) to foods during processing, or in preparation for consumption. In contrast the term sugar refers to sucrose, which is derived from sugar cane or beets.

Fructose is the most common naturally occurring monosaccharide found in fruits and vegetables. In nature fructose is linked as the disaccharide sucrose
(glucose plus fructose), but is also used as a caloric sweetener\textsuperscript{2}. Other disaccharides include lactose (glucose plus galactose), which is found in milk products and maltose (glucose plus glucose), which is found in malt and molasses\textsuperscript{1,2}.

Lastly, the AHA and AND define total sugars and high-fructose corn syrup (HFCS)\textsuperscript{1,2}. Total sugars are all sugars (naturally occurring and added) in foods and beverages\textsuperscript{1}. An alternative to the conventional table sugar (sucrose), HFCS is produced from corn syrup that undergoes enzymatic processing to increase the fructose content and is then mixed with glucose\textsuperscript{1,2}.

Sucrose contains equal parts glucose and fructose bound as a disaccharide bound by an O-glycosidic bond\textsuperscript{3}. In contrast to sucrose, HFCS is composed of free glucose and fructose moieties\textsuperscript{3}. The most common forms of HFCS contain fructose at 42\% and 55\%\textsuperscript{3}. The most common form of HFCS-55\textsuperscript{4}, where the number represents the percentage of fructose in the mixture.

The two most prevalent added sugars in America, HFCS and sucrose, made up 86\% of total added sugars used in 2004\textsuperscript{5}. Sucrose and HFCS are similar in sweetness, with HFCS-55 being about 95-99\% as sweet as sucrose\textsuperscript{6}. Pure fructose on the other hand, is 117\% as sweet as sucrose\textsuperscript{6}, making it a desirable additive in many food and beverage products. In addition to increasing sweetness, sugars have the following functions in food: (1) Inhibit microbial growth by binding with water; (2) add texture, flavor and color to baked goods; (3) Support the growth of yeast for leavening or fermentation; (4) contribute to the volume of ice cream and baked goods; (5) Enhance the crystallization of confectionary products; and (6) they balance the acidity in salad dressings, sauces and condiments\textsuperscript{2}. 

27
Several studies have investigated the content of fructose in popular beverages\textsuperscript{7,8}. Ventura et al.\textsuperscript{7} used high performance liquid chromatography to acquire information on free fructose, free glucose as well as sucrose intake in 23 popular sugar-sweetened beverages. Total sugar content of popular beverages ranged from 85\%-128\% of what was listed on the label\textsuperscript{7}. Average fructose content in beverages made with HFCS was 59\% (47 – 65\%)\textsuperscript{7}. The three most popular beverages (Coke, Pepsi and Sprite) contained between 64-65\% fructose\textsuperscript{7}. These beverages that are consumed in large quantities in America, contain fructose in greater amounts than the most common forms of HFCS.

Using gas chromatography Walker et al.\textsuperscript{8} concluded that mean fructose concentration of beverages with HFCS and without HFCS were 59.4±8.9 g/L and 30.8±19.5 g/L, respectively. The authors also concluded that the five most popular beverages (Coke, Pepsi, Sprite, Mountain Dew and Dr. Pepper) had fructose:glucose ratios exceeding 60:40\textsuperscript{8}. Lastly, they concluded that despite sucrose being listed on Pepsi’s ingredients list, no sucrose was detected\textsuperscript{8}. With results similar to those of previous research, products may actually be misrepresenting the proportion of and type (bound or free) of fructose consumed. It would appear that the actual percentage of fructose varies in popular beverage items despite being labelled as sucrose or HFCS\textsuperscript{7,8}. This may have an effect on tools used for measuring fructose, when the actual amount of fructose consumed is not easily quantifiable.

\textit{Tools for measuring nutrient intake levels}

There are multiple ways to determine a person’s nutrient intake. These include 24-hour dietary recalls, food frequency questionnaires, and food records. Large data
sets such as those seen in the National Health and Nutrition Examination Survey (NHANES) utilize 24-hour recalls as a way to collect information on nutrient intakes. Some studies have gone further and have analyzed differences between tools for measuring nutrient intakes.

The Observing Protein and Energy Nutrition (OPEN) study involving 484 participants assessed intake using a food frequency questionnaire, two 24 hour recalls, urinary sucrose and fructose as a predictive biomarker of total sugars and doubly labelled water to adjust for grams per 1000kcals. Compared to the predictive biomarkers, self-reported intake of total sugars by food frequency questionnaire was 13.5% lower in men and women and 24-hour recall were biased high in men and nearly identical with women. Table 1 and Table 2 summarizes the differences between the food frequency questionnaire used (DHQ), 24 hour recalls and total energy expenditure. Compared with the total energy expenditure, men underreported energy intake by 12-14% on 24hour recalls and 31-34% on food frequency questionnaires. In contrast, women underreported 16-20% on 24 hour recalls and 34-38% on food frequency questionnaires. This suggests that women might be greater under reporters of energy intake when compared to men.

Despite previous research suggesting underreporting by food frequency questionnaires, a food frequency questionnaire was recently developed to quantify intake of fermentable oligosaccharides, disaccharides, monosaccharides and polyols. Barrett et al. conducted a validation paper comparing a food frequency questionnaire to four sets of seven day recalls taken three months apart.
Table 1: Nutrient Intakes based on biomarkers and self-reported dietary assessment instruments (women), the OPEN Study\textsuperscript{11}.

| Nutrient | No. | Geometric mean | 95% CI* | 25th percentile | Median | 75th percentile |
|----------|-----|----------------|--------|-----------------|--------|----------------|
| Energy (kcal) |     |                |        |                 |        |                |
| TEE*     | 205 | 2,277          | 2,226,2,329 | 2,031           | 2,263  | 2,526          |
| 24HR* 1  | 223 | 1,919          | 1,833,2,009 | 1,565           | 1,937  | 2,438          |
| 24HR 2   | 222 | 1,814          | 1,732,1,899 | 1,497           | 1,608  | 2,275          |
| DHQ* 1   | 222 | 1,514          | 1,438,1,594 | 1,173           | 1,516  | 1,991          |
| DHQ 2    | 221 | 1,405          | 1,333,1,481 | 1,088           | 1,364  | 1,838          |
| Protein (g) |     |                |        |                 |        |                |
| PBM* 1†  | 174 | 77.5           | 74.4,80.8 | 63.9            | 77.1   | 93.5           |
| PBM 2    | 150 | 77.3           | 73.9,80.8 | 63.0            | 74.7   | 91.8           |
| 24HR 1   | 223 | 69.2           | 65.3,73.2 | 54.2            | 72.2   | 90.3           |
| 24HR 2   | 222 | 65.6           | 61.8,68.6 | 50.1            | 67.7   | 89.6           |
| DHQ 1    | 222 | 56.6           | 53.5,59.8 | 43.9            | 56.4   | 76.4           |
| DHQ 2    | 221 | 52.7           | 49.9,55.7 | 39.8            | 51.8   | 70.1           |

* OPEN, Observing Protein and Energy Nutrition; CI, confidence interval; TEE, total energy expenditure; 24HR, 24-hour dietary recall; DHQ, Diet History Questionnaire; PBM, protein biomarker.
† Protein biomarker = urinary nitrogen/0.81 (converts urinary nitrogen to dietary nitrogen) × 6.25 (converts dietary nitrogen to dietary protein).
‡ Biomarker for protein density = PBM × 4 kcal (kcal per g of protein)/TEE × 100%.

Table 2: Nutrient Intakes based on biomarkers and self-reported dietary assessment instruments (men), the OPEN Study\textsuperscript{11}.

| Nutrient | No. | Geometric mean | 95% CI* | 25th percentile | Median | 75th percentile |
|----------|-----|----------------|--------|-----------------|--------|----------------|
| Energy (kcal) |     |                |        |                 |        |                |
| TEE*     | 245 | 2,849          | 2,798,2,912 | 2,553           | 2,813  | 3,146          |
| 24HR* 1  | 281 | 2,512          | 2,416,2,610 | 2,085           | 2,577  | 3,108          |
| 24HR 2   | 280 | 2,436          | 2,338,2,537 | 1,899           | 2,466  | 3,032          |
| DHQ* 1   | 280 | 1,959          | 1,863,2,061 | 1,537           | 1,955  | 2,550          |
| DHQ 2    | 259 | 1,818          | 1,727,1,914 | 1,409           | 1,870  | 2,347          |
| Protein (g) |     |                |        |                 |        |                |
| PBM* 1†  | 192 | 104.2          | 100.3,108.2 | 88.7            | 102.8  | 124.3          |
| PBM 2    | 202 | 103.8          | 99.9,107.9 | 89.1            | 106.0  | 125.8          |
| 24HR 1   | 281 | 91.7           | 87.6,96.1 | 71.9            | 94.1   | 113.9          |
| 24HR 2   | 260 | 92.9           | 88.2,97.9 | 71.5            | 95.0   | 124.9          |
| DHQ 1    | 260 | 73.0           | 69.1,77.1 | 59.5            | 73.9   | 98.0           |
| DHQ 2    | 259 | 69.0           | 65.3,73.0 | 51.4            | 74.7   | 93.1           |

* OPEN, Observing Protein and Energy Nutrition; CI, confidence interval; TEE, total energy expenditure; 24HR, 24-hour dietary recall; DHQ, Diet History Questionnaire; PBM, protein biomarker.
† Protein biomarker = urinary nitrogen/0.81 (converts urinary nitrogen to dietary nitrogen) × 6.25 (converts dietary nitrogen to dietary protein).
‡ Biomarker for protein density = PBM × 4 kcal (kcal per g of protein)/TEE × 100%.
The Comprehensive Nutrition Assessment Questionnaire (CNAQ), a food frequency questionnaire, overestimated intake of almost every nutrient, with the exception of fat, saturated fat and alcohol intake\textsuperscript{12}. On average, the CNAQ overestimated nutrients 140\%\textsuperscript{12}. Despite this, the CNAQ was validated for measuring total sugars, fructose and lactose intake\textsuperscript{12}. Energy, starch and carbohydrate intake was moderately validated using this food frequency questionnaire\textsuperscript{12}.

*Fructose consumption levels*

Data suggest that added sugars intake has decreased recently\textsuperscript{13,14}. However, the amount of fructose consumed actually increased from 1977 to 2004 in all genders and age groups\textsuperscript{5}. Despite this, it is hard to accurately measure fructose consumption, yet data suggests that adolescents and young adults are the highest consumers of fructose\textsuperscript{15}. In 1993, Park et al.\textsuperscript{15} investigated fructose intake in women (n=922) and men (n=738) aged 19-22 years old. The mean and 90\textsuperscript{th} percentile intake for fructose consumption in females is 35g and 62g, and for men is 47g and 80g respectively\textsuperscript{15}. More recently, Marriott et al\textsuperscript{5} observed national estimates of dietary fructose intake from 1977 to 2004 and concluded that the mean, 90\textsuperscript{th} percentile and 95\textsuperscript{th} percentile for fructose consumption in 2004 was 61g, 100g and 116g per day in 19-22 year old women and 75g, 117g and 134g per day for 19-22 year old men\textsuperscript{5}. Furthermore, in 2004 fructose accounted for roughly 42\% of the sweeteners used in this country, up from 16\% in 1978\textsuperscript{5}. Over this same time period, sucrose has decreased from 75\% to 44\% of the sweeteners\textsuperscript{5}. Three years later, in 2007, sucrose was 45\% of sweeteners used, HFCS was 41\% and all others sweeteners made up about 14\% of total sweeteners used\textsuperscript{16}. 

31
Data from NHANES 1999-2006 suggest that fructose containing sugars intake was 58.85g (10.33% energy) in ≤18 year olds and 48.07 grams (8.53%) in ≥19 year olds\(^{17}\). Using the same data, total sugars intake was 158.64g (27.83% energy) and 129.65g (23.16%) for ≤18 year olds and in ≥19 year olds, respectively\(^{17}\).

One of the main dietary sources of fructose, HFCS, is consumed largely in the US\(^4\). In fact, a recent review by Goran et al.\(^4\), explored the prevalence of global HFCS using availability data from 43 countries. **Figure 1\(^4\)** displays the countries that were defined as countries with HFCS (>0.5kg/capita/year). Of the 43 countries, 22 were defined as users of HFCS, with US having HFCS much more highly available\(^4\).

**Figure 1**: Countries defined as users of high-fructose corn syrup (>0.5kg/capita/year) using global availability data from 43 countries\(^4\).
Total and added sugar consumption levels

According to the United States Department of Agriculture, in 1970 roughly 2,109 kcals/day were consumed on average per person\textsuperscript{13}. By 2010, that number increased to 2,568 kcals/day per person\textsuperscript{13}. This is the equivalent to an increase of about 22\%, or an additional 459 kcals daily\textsuperscript{13}. Of this increase, about 4\% (20 kcals) comes from an increase in added sugars with the rest coming from an increase in flour, cereal products and added fats\textsuperscript{13}. While this is only a small increase in added sugars over 40 years, some data suggest that sugars consumption actually decreased in recent years\textsuperscript{14}. In 1999, annual sugars intake was on average 89.3 lbs/person/year, in America\textsuperscript{14}. However, in 2013 annual sugars intake was at 75.4 lbs/person/year\textsuperscript{14}. This is equivalent to a 16\% decrease in annual sugars intake\textsuperscript{14}.

Using data from 1971 and 1994 (NHANES I and III), Chun et al.\textsuperscript{18} estimated total and added sugars intake in participants <18 years old, participants >19 years old and among all participants\textsuperscript{18}. Total and added sugars intake was higher among participants <18 years old\textsuperscript{18}. On average participants <18 years old consumed 138 g total sugar with 88 g added according to NHANES I and 139 g total sugars with 92 grams added according to NHANES III\textsuperscript{18}. This translates to an increase in one gram of total sugars, but a 3 g decrease in natural sugars and a 4 g increase in added sugars, corresponding with the rise in refined carbohydrates\textsuperscript{18}. Among participants 19 and older, total sugars intake was 110 g with 71 g added sugars in NHANES I and was 126 g and 84 g in NHANES III, respectively\textsuperscript{18}. This age group experienced a 14 gram increase in total sugars with an increase seen in both natural and added sugars. According to NHANES III data, free fructose accounted for 21\% of sugars intake.
among both age categories and sucrose accounted for 39% and 43% of total sugars intake in <18 year olds and >19 year olds, respectively\textsuperscript{18}. All fructose sugars (free fructose plus sucrose) contributed about 60% of total sugars intake. All other sugars, non-fructose sugars (glucose, galactose, lactose and maltose), contributed about 40% of total sugars in <18 year olds and 35% in >19 year olds\textsuperscript{18}.

Data from NHANES 1999-2006 estimates that intake of added sugars accounts for 15.8% of caloric intake in participants ≥18 years old\textsuperscript{19}. More recent data from NHANES 2005-2010 suggests that in adolescents, aged 12-19 years old, intake of added sugars was 16% of caloric intake\textsuperscript{9}. This suggests that added sugars intake has remained relatively constant over the last decade. Of these adolescents, 88% consumed ≥10% energy from added sugars and 5.5% had a usual intake above 25% total caloric intake\textsuperscript{9}. This suggests that of the adolescents surveyed, only a small percent of them are meeting current guidelines for consumption of sugars set by the AHA.

**Table 3:** Usual intake of Added sugars (in teaspoons), 2001-2004\textsuperscript{1}

| Age, y | n  | Mean | SE  |
|-------|----|------|-----|
| 1–3   | 1515 | 12.2 | 0.33 |
| 4–8   | 1701 | 21.0 | 0.54 |
| Males 9–13 | 1061 | 29.2 | 0.92 |
| Males 14–18 | 1424 | 34.3 | 1.03 |
| Males ≥19 | 4650 | 25.4 | 0.48 |
| Females 9–13 | 1112 | 23.2 | 0.82 |
| Females 14–18 | 1362 | 25.2 | 0.71 |
| Females ≥19 | 5063 | 18.3 | 0.37 |

All persons ≥1 | 17 888 | 22.2 | 0.20 |

n Indicates number of persons in sample; SE, standard error of the mean (degrees of freedom = 30).

*Includes white, brown, and raw sugar; syrup; honey; and molasses, eaten separately or used as ingredients in processed or prepared foods such as breads, cakes, soft drinks, jams, and ice cream.

One teaspoon of added sugars has the same amount of total sugars as 1 teaspoon (4 g) of table sugar (sucrose).

Adapted from National Cancer Institute.\textsuperscript{9}
Guidelines for Sugars Consumption

In an AHA scientific statement, Johnson et al.\textsuperscript{1} reviewed the guidelines for added sugars intake. Using the National Cancer Institute’s report on estimates of added sugars from NHANES 2001 – 2004 and adapted the data to reflect teaspoons of added sugars, \textbf{Table 3}\textsuperscript{1}. The AHA has determined that no more than half of your discretionary calories come from added sugars, equating to about 100 calories, or 6 teaspoons, for most women and 150 calories, or 9 teaspoons, for men\textsuperscript{1,20}. Despite these recommendations from the AHA, data from 17,888 participants suggest that Americans were consuming 22.2 teaspoons of added sugars daily, equivalent to about 88.8g or 355kcals/day\textsuperscript{1}. This consumption amount is over two fold higher than the recommendations for men, and over three fold higher than the recommendation for women.

Despite the AHA guidelines, current guidelines set by the Institute of Medicine for added sugars consumption are set at $<25\%$ of total caloric intake\textsuperscript{21}. However, the recommendations set by the Institute of Medicine were developed in 2002, and since then many researchers have demonstrated evidence of the harmful effects of added sugars, specifically SSB\textsuperscript{20}.

More recent recommendations come from the World Health Organizations, stating that no more than 10\% of your caloric intake come from free sugars, with further recommendations to limit to 5\% if possible\textsuperscript{20}. For a 2000 calorie diet, this would mean reducing added sugars intake to 12.5 teaspoons at 10\% of caloric intake and 6.25 teaspoons at 5\% of caloric intake, similar to the recommendations of the AHA\textsuperscript{20}.
Prevalence of overweight and obesity

Using reliable data with large sample sizes, researchers are able to estimate the prevalence of obesity in America. Data from NHANES 2007-2012 reveal prevalence of underweight, normal weight, overweight, and the three obese classes by gender, race and age in participants 25 years and older\textsuperscript{22}. According to the weighted sample sizes, 39.96\% (weighted n= 36,325,297) of men and 29.74\% (weighted n=28,894,030) of women were overweight and 35.04\% (weighted n=35,792,733) of men and 36.84\% (weighted n=35,792,733) of women were defined as obese according to their BMI classification\textsuperscript{22}. Men were just as likely to be obese at 25-54 years (34.9\%) and ≥55 years (35.3\%), while women were more likely to be obese in their later years (38.7\%) when compared to 24-54 year olds (35.7\%)\textsuperscript{22}. According to race/ethnicity by gender totals, Non-Hispanic black women (56.8\%), Mexican American women (43.3\%) and Non-Hispanic black men (39.2\%) had the three highest rates of obesity, respectively\textsuperscript{22}.

According to a 2005 World Health Organization Report, approximately 1.6 billion adults are overweight and at least 400 million are obese worldwide\textsuperscript{23}. These number were projected to hit 2.3 billion overweight adults and 700 million, respectively, by 2015\textsuperscript{23}. However, despite projections, a joint report in 2015 from the World Health Organization and World Obesity Federation found that approximately, 2 billion adults worldwide are overweight or obese with projections reaching 2.8 billion people by 2025\textsuperscript{24}. On average 98 million adults were severely obese (BMI > 35kg/m\textsuperscript{2}) in 2014\textsuperscript{24}. Currently obesity rates in America generate healthcare costs ranging from $147 billion to nearly $210 billion per year\textsuperscript{25}. These costs stem largely from metabolic consequences of excess adiposity\textsuperscript{25}.  

36
Metabolic Risk Factors

Metabolic Syndrome is a cluster of interrelated risk factors of metabolic origin that directly promote the development of cardiovascular diseases and other metabolic diseases\textsuperscript{26}. These risk factors include elevated waist circumference, elevated TAG, reduced HDL-C, elevated blood pressure and elevated fasting glucose, which are defined in Table 4\textsuperscript{26}.

The transition from adolescence to young adulthood is shown to be a time of increased risk of developing obesity\textsuperscript{27}, yet many young people do not see themselves as being at risk for chronic diseases\textsuperscript{28-30}. Large survey data demonstrate that young adults, aged 18 to 24 years of age, have risk factors associated with chronic diseases\textsuperscript{31,32}. Recent research conducted from large universities show the prevalence of risk factors in young adults\textsuperscript{28,33}. First, a large sample of participant data was collected as a part of the Young Adult Health Risk Screening Initiative\textsuperscript{28}. The investigators found that about 77\% of men and about 54\% of women had at least one criterion for metabolic syndrome, and about 10\% of men...
and about 3% of women had metabolic syndrome\textsuperscript{28}. They further analyzed the number of risk factors by BMI categories (18.5-24.9, 25-29.9, and $\geq$30kg/m$^2$) and stated that both men and women with a BMI $\geq$30kg/m$^2$ had significantly more metabolic criteria than those in the other BMI categories\textsuperscript{28}. Although the focus of this paper was to look at risk factors, they did include that women had a greater intake of total sugars in relation to calories as compared to men (21.9% vs 20.0%, p<0.001)\textsuperscript{28}. Despite this, they concluded that overweight/obese college aged men present with a greater prevalence of risk when compared to college aged women\textsuperscript{28}.

A similar study observed metabolic risk factor criterion across large (>10,000 students) diverse universities to examine the relationship with weight status and adiposity\textsuperscript{33}. Overall, more than half of the sample had at least one metabolic syndrome criterion, with men twice as likely to have metabolic syndrome when compared to women (12% vs 6%, respectively)\textsuperscript{33}. Metabolic syndrome was five times more prevalent among overweight and obese participants when compared to normal weight (16% vs 3%, p<0.001 respectively)\textsuperscript{33}. Lastly, overfat ($\geq$20% body fat for men and $\geq$33% for females)\textsuperscript{33,34} participants had significantly more metabolic syndrome criteria than participants with normal levels of body fat (1.7 vs 0.7; p<0.001)\textsuperscript{33}.

**Metabolism of sugars**

The Academy of Nutrition and Dietetics stated that HFCS and sucrose are similar in composition\textsuperscript{2}. Similarly, the metabolic effects of HFCS and sucrose do not differ making it essential to observe fructose sugars (sucrose and free fructose) to assess metabolic impacts\textsuperscript{16}. However, there are differences in the metabolism of the two monosaccharides that make up sucrose and HFCS, glucose and fructose\textsuperscript{35}.
Glucose metabolism occurs in all tissues of the body with about 30-40% of metabolism occurring in the liver. Glucose is a high glycemic index non-fructose containing sugar. The glycemic index is a physiological classification of the available carbohydrate content in foods, which was first proposed in 1981. It reflects the capacity of a carbohydrate containing food to raise blood glucose. The glycemic index is determined by comparing the postprandial glycemic response of a food with the post prandial glycemic response to the same amount of available carbohydrate from a standard food, usually bread or glucose. The actual glycemic index value is the area under the blood glucose curve for the test food, expressed as a percentage of the standard control. The glycemic index therefore depends on the food rather than the characteristics of the individual. Generally speaking a low glycemic index food would be one that scores less than 70, and a high glycemic index food would score over 100. Factors that can effect glycemic index include the nature of the starch, amount of fiber, fat and protein in addition to cooking method and time.

Glucose, the standard control for glycemic index, elicits a high insulin response upon consumption. Insulin has an indirect role in stimulation of HMG-CoA reductase, the rate limiting enzyme in cholesterol biosynthesis. This indirect relationship stimulates an overproduction of mevalonate in favor of conversion to cholesterol, with increased consumption. Thus, some experts have cautioned against chronic consumption of a high glycemic index diet. Indeed, a number of trials have demonstrated that a low glycemic index and low glycemic load diet may be protective against obesity related chronic diseases.
Fructose has a very different metabolism when compared with the metabolism of glucose. When consumed alone fructose is poorly absorbed, but absorption is enhanced in the gut when consumed with glucose. Thus, there is a rapid and almost complete absorption of fructose and glucose when consumed as sucrose and HFCS. While HFCS is composed of free fructose and glucose moieties, the O-glycosidic bond in sucrose needs to be hydrolyzed by the α-glucosidase sucrose in the sucrase-isomaltase complex of the enterocytes in the small intestines to produce glucose and fructose. Once sugars are in monosaccharide units they can be absorbed into the enterocyte. There are differences in the absorption of fructose versus glucose.

Transporters are required for all monosaccharides to enter and exit the enterocyte of the small intestines. When there is a low concentration of sugars in the lumen, sugars enter the enterocyte via SGLT1 and GLUT5, exiting via GLUT2 to enter bloodstream. The consumption of a sugar-rich meal saturates SGLT1 and GLUT5 can result in recruitment of GLUT2 to transport sugars across apical membrane. This can triple the sugar uptake by enterocytes.

**Figure 2:** When sugar concentrations in the lumen are low, sugars enter the enterocyte via SGLT1 and GLUT5, exiting via GLUT2 to enter bloodstream. The consumption of a sugar-rich meal saturates SGLT1 and GLUT5 can result in recruitment of GLUT2 to transport sugars across apical membrane. This can triple the sugar uptake by enterocytes.
monosaccharides within the lumen, glucose and galactose are transported into the enterocyte by the sodium/glucose cotransporter 1 (SGLT1)\(^2,36\). The SGLT1 is located on the apical membrane of the enterocyte, and has a high affinity for glucose and galactose\(^2,36\). The lumen of the intestines has a higher concentration of sodium when compared to the enterocyte, which allows for an inward gradient into the enterocyte\(^36\). This drives glucose and galactose absorption against their own concentration gradients with help from two sodium ions\(^36\).

Once inside the enterocyte the glucose and galactose part from the sodium ion\(^36\). Fructose, on the other hand, is not transported into the enterocyte via SGLT1, but is instead transported by the facilitated fructose transporter 5 (GLUT5)\(^36\). This transporter is also located on the apical membrane, but this transporter has a low affinity but high capacity for transporting fructose\(^36\). However, when sugars are consumed in large quantities, SGLT1 and GLUT5 become saturated resulting in recruitment of glucose transporter (GLUT2), which can triple the amount of sugar taken up by the enterocyte\(^36\).

Despite the differences of these monosaccharides in their entry in to the epithelial absorptive cells, most monosaccharides cross the basolateral membrane of the enterocyte via the facilitated GLUT2\(^36\). It should be noted that GLUT5 transporters are also located on the basolateral membrane, however GLUT5 transporters compliment GLUT2-mediated exit of fructose from the enterocyte\(^36\). The transporters located on the basolateral membrane help deliver the newly absorbed monosaccharides into the capillaries and portal blood\(^36\).
Once absorbed, fructose metabolism occurs preferentially and primarily in the liver and does not elicit the same insulin response as glucose, identifying fructose as a lower glycemic index sugar\textsuperscript{23,42}. The liver has a high level of glucokinase, the enzyme responsible for phosphorylation of glucose in the liver.\textsuperscript{36} Once glucose becomes phosphorylated, glucose 6-phosphate can continue through glycolysis.\textsuperscript{36} However, this enzyme does not phosphorylate fructose.\textsuperscript{36} Thus, the liver utilizes fructokinase, an enzyme that catalyzes the reaction of fructose to fructose 1-phosphate, instead of the glycolytic intermediate glucose 6-phosphate.\textsuperscript{36} Fructose 1-phosphate can then enter fructolysis, bypassing the regulated phosphofructokinase enzymatic reaction in glycolysis.\textsuperscript{36} This inadvertently provides fructose with a less regulated metabolism\textsuperscript{36,42}. Thus, high fructose consumption can result in unchecked carbon flow towards acetyl CoA.\textsuperscript{36} If this exceeds the demands of the Krebs cycle, then the carbon will be directed to fatty acid biosynthesis via acetyl CoA carboxylase.\textsuperscript{36}

Chronic over consumption of fructose sugars increases de novo lipogenesis, resulting in elevated serum triglyceride (TAG) concentrations in adults of 80-200\%	extsuperscript{43-46}. Excessive fructose consumption may lead to adverse metabolic effects, such as increased visceral adiposity or dyslipidemia.\textsuperscript{47}

**Fructose in relation to body composition**

When compared to glucose, consumption of fructose does not attenuate circulating levels of ghrelin, an appetite stimulating hormone.\textsuperscript{48,49} Thus, fructose intake may lead to increased food intake.\textsuperscript{50} In fact, several studies examining fructose consumption have reported increased caloric intake with higher energy consumption of fructose, which may be responsible for changes in body composition.\textsuperscript{51-53} Many of these studies have focused on fructose in beverages, although a cross-sectional study
in college students found elevated fasting hunger with higher total dietary fructose intake\(^5^4\).

To observe the effects of fructose consumption on body composition, Lowndes et al.\(^5^1\) conducted a randomized, prospective, parallel group, blinded study in which participants consumed 3 different levels (8%, 18% and 30% kcals/day) of HFCS or sucrose. There were no significant differences when looking at sucrose intake vs HFCS intake, therefore the participants were pooled for analyses\(^5^1\). In the entire cohort, weight, BMI, body fat percentage, fat mass and waist circumference were increased.\(^5^1,5^5\) Participants who consumed fructose at 30% of caloric intake displayed greater increases in body weight and BMI when compared to participants consuming fructose at 8% and 18% of caloric intake\(^5^1\). One limitation to this study is that participants consuming 30% of their caloric intake from fructose experienced greater increases in energy intake when compared to those consuming 8% or 18% of their caloric intake\(^5^1\). Whether this is due to the fructose-induced hunger is a topic for future research.

To compare the effects of a caloric and non-caloric sweetener on body weight, 30 males and females were recruited for a 3-week intervention in which participants consumed either HFCS, aspartame or no soda.\(^5^2\) When compared to aspartame and the no soda group, the HFCS group significantly increased weight in both males (+0.97±0.25 kg) and females (+0.52±0.23 kg).\(^5^2\) However it should be noted that there was only about a 37% compensation in calories of the extra 530 kcals provided by the HFCS beverage\(^5^2\). This means that on average participants were consuming an extra 335 calories/day.\(^5^2\)
Some results even suggest that higher fructose may have less impact on body fat percentage than glucose. In a double blind, randomized cross-over trial, with four 3-week interventions, compared to a high glucose diet (80g/day), a high fructose diet (80g/day) resulted in lower body fat % (16.8±2.8% vs. 15.8±2.2%, p<.05)\(^5\)\(^6\). In a very high fructose feeding study where 20 participants received either 150g fructose (600kcals) or 150g glucose (600kcals) in a hyper energetic diet for 4-weeks, no changes in liver fat or visceral fat were observed\(^5\)\(^6\). Similarly, no changes in body fat percentage were observed in either diet\(^5\)\(^6\). These studies, however, were limited by the length of their interventions.

Using the NHANES data from 1999-2006, Sun et al.\(^1\)\(^7\) concluded that there was no significant relationship between percent energy from fructose containing and non-fructose containing sugars with relation to BMI and WC\(^1\)\(^7\). While these measures are used for estimates of obesity worldwide\(^2\)\(^4\) and as a criterion for metabolic syndrome\(^2\)\(^6\), these are not the best measures of determining one’s obesity status and are limited in their ability to determine body fatness.

To test the effects of a low fructose diet (<20g/day) and a moderate fructose diet (50-70g/day) with natural fruit supplements on weight loss, Madero et al.\(^5\)\(^7\) conducted a randomized control trial in 131 overweight and obese participants. Percent of total energy for carbohydrates remained the same.\(^5\)\(^7\) Each intervention group showed significant weight loss when compared to baseline, with the moderate fructose group experiencing greater decreases in weight.\(^5\)\(^7\) Body fat percent was significantly decreased in both the low fructose diet (-2.09±6.32, p<.05) and in the moderate fructose diet (-0.89±6.33, p<0.01).\(^5\)\(^7\) Similarly, BMI was decreased in both
the low fructose (-1.18±0.82, p<0.001) and moderate fructose (-1.57±1.08, p<0.001)\textsuperscript{57}. This suggests that the moderate fructose group, although losing significantly less body fat, lost more lean body mass when compared with the low fructose group.

Similarly, Lowndes et al.\textsuperscript{58} conducted a randomized, prospective, double blind weight loss trial with four hypocaloric diets containing either HFCS or sucrose at 10% or 20% of their caloric intake. The average energy deficit was 309 calories\textsuperscript{58}. A total of 162 participants completed the 12-week intervention, which supplied all sweeteners in a low-fat (1%) milk\textsuperscript{58}. All four hypocaloric diets reduced body mass, BMI, body fat percentage, WC and fat mass in these overweight and obese adults.\textsuperscript{58} Similar to the findings of Madero et al.\textsuperscript{57} larger losses in body fat percentage were observed in those consuming HFCS and sucrose at 10% of caloric intake when compared to 20% of caloric intake\textsuperscript{58}. Although this difference was not significant, it suggests that there may be a benefit to decreasing the amount of fructose one takes in if they are trying to lose more weight, specifically through loss of body fat.

\textit{Total and added sugars in relation to body composition}

Research from Rikkers et al.\textsuperscript{59} attempted to estimate Australian refined sucrose consumption over decades and concluded that it was not possible to produce reliable data. In response to this Barclay and Brand-Miller released a report in which they demonstrate the “Australian paradox”, where sugars consumption declined over the same period that obesity rates increased\textsuperscript{60}. This is true in Americans as well, where from 1977 to 2012 obesity rates have increased and sugars intake increased through 1998, but has since dropped to similar consumption levels seen in 1991\textsuperscript{13,14}. Figure
shows the rise in obesity over the last 50 years, the increase of 450 kcals total over 40 years, and the decrease in pounds of sugar consumed over 15 years.

Several reviews have explored the relationship of total and/or added sugars and body composition. In 2003, Saris et al. concluded that there is little evidence that sugars have direct negative effects on body weight control. However, the combination of frequent consumption of sugar sweetened beverages (SSB) with an inactive lifestyle, reduces the metabolic need for fat as fuel, potentially leading to considerable increases in weight.

In contrast, 10-years later Te Morenga et al. conducted a systematic review and meta-analysis of randomized control trials and cohort studies and concluded among free living people, intake of free sugars or SSB was a determinant of body weight. They reviewed 30 randomized control trials and concluded that by reducing...
intake of free sugars in ad libitum diets, there was an average of 0.8kg reduction in weight\textsuperscript{63}. When increasing free sugar intake there was an association with a comparable 0.75kg increase in weight\textsuperscript{63}. Increases in SSB at a one year follow up in prospective studies, concluded a higher odds ratio of being overweight or obese with higher consumption of SSB when compared to lower consumption\textsuperscript{63}.

In 2009 van Baak et al.\textsuperscript{67} concluded that there are inverse associations between content of sugars and body adiposity and weight using randomized control trials that replaced fat in the diet to increase carbohydrate intake\textsuperscript{65,67}. In another review, Ruxton et al.\textsuperscript{66} examined whether sugar consumption is detrimental to health. They concluded similar findings that sugars intake in place of fat intake increases body weight\textsuperscript{65,66}.

Cross-sectional studies suggest there may not be a relationship between BMI and sugars intake. To investigate if the uptrend of obesity prevalence in the USA was associated with dietary sugar intake, Song et al.\textsuperscript{68} used NHANES I and III data to compare intakes. They concluded that the primary contributor to BMI in all age groups was energy intake\textsuperscript{68}. Total sugars intake was a non-predictor for BMI in all age groups\textsuperscript{68}. A similar cross-sectional study examining data from NHANES 1999-2006 categorized sugars intake of participants ≥18 years old into five categories: <5%, 5%-<10%, 10%-<17.5%, 17.5%-<25%, ≥25% of total calories\textsuperscript{69}. There were no significant differences in BMI or WC among the groups\textsuperscript{69}. Similarly, a cross-sectional study used NHANES data from 1999-2004 to categorize sugars intake of 12-18 year olds\textsuperscript{19} using the same five categories above\textsuperscript{69}. There were no significant differences in BMI z-score among the categories\textsuperscript{19}.

\textit{Sugar Sweetened Beverages and Body Composition:}
Sugar-sweetened beverages include soft drinks, fruit drinks, energy and vitamin waters and are composed of naturally derived caloric sweeteners such as sucrose, HFCS and fruit juice concentrates. Collectively, these are the largest contributors to added sugars intake in the US. From 1970 to 2006, per capita consumption of SSBs increased twofold from 64.4kcal/day to 141.7kcal/day, with adolescents and young adults consuming over 200kcals/day.

To assess disparities in calorie intake between SSB consumers and non-consumers and determine associations with obesity and overweight-obesity, a New York City population study was conducted in 488 adults. Consumers of SSBs consumed on average 193kcals/day from SSB, equating to roughly 10% of total caloric intake. When compared to non-consumers, adults who consumed SSBs consumed on average 572 kcals more, possibly due to greater SSB consumption. However not all of these calories can be attributed to SSB consumption, so it is believed that higher intake of fructose may disrupt regulating hormones, as previously discussed. Lastly, this study concluded that each 10oz serving of SSBs increased obesity likelihood and increased overweight-obesity likelihood. A cross-sectional study using NHANES data suggests that there is also an increased likelihood of being overweight or obese, defined by BMI, with consumption of SSBs.

To compare consumption of SSB with consumption of an isocaloric milk and with consumption of a non-caloric SSB on changes in total fat mass, Maersk et al. conducted a 6-month randomized intervention with four groups (control was given water). On average, SSB consumption had significantly higher liver fat (132%-143%
change) and visceral fat (24-31% change), when compared to the non-caloric SSB and isocaloric milk. However, total fat mass was not different across the four groups.

To explain the possible associations between SSB and increase overweight and obesity, Bachman et al. reviewed four possible mechanisms: (1) excess calories, (2) glycemic index and glycemic load, (3) lack of effect of liquid calories on satiety, and (4) displacement of milk. The evidence on whether liquid and solid foods differ in the effects on caloric compensation is conflicting, and research needs to more carefully consider the many factors that influence satiety. However, evidence is inconsistent about whether this displacement has implications on obesity. This review concluded that the evidence regarding SSB consumption and obesity remains inconclusive.

A positive relation between added sugars consumption and total energy intake is observed in many cross-sectional studies. Despite this, some cross-sectional studies have shown inverse associations between added sugars consumption and body weight or BMI. Next, a review of 31 short term studies (<1 day) found that only 15 studies show an association between low glycemic index meals and greater satiety and reduced hunger; while 16 studies reported reduced satiety or no differences with low glycemic index foods. During the same time that SSB consumption increased, milk consumption in children decreased. Similarly, other reviews have also deemed SSB consumption and obesity as inconclusive based on current evidence.

Despite the previous review, research conducted in children shows a relationship between the consumption of SSB and BMI. A prospective observational study has shown that for each additional serving of SSB, there is an average increase in BMI of 0.24 kg/m² in children. There was also an increased frequency of obesity.
observed in this sample of 548 ethnically diverse school children\textsuperscript{75}. Another review observed the relation between SSB and body weight in children and adults\textsuperscript{87}. Cohort studies and randomized control trials were included, 20 in children 12 in adults\textsuperscript{87}. In cohort studies, 1 serving increment of SSB was associated with a 0.06 and 0.05-unit increase in BMI in children and a .22kg and .12kg increase in weight in adults over one year in random and fixed effects models, respectively\textsuperscript{87}. Meanwhile, randomized control trials in children show reductions in BMI gain when SSBs are reduced and increases in body weight in adults when SSBs were added\textsuperscript{87}.

A Systemic review of SSB and weight gain concluded that large cross-section studies, in conjunction with well-powered prospective cohort studies with long periods of follow-up, show a positive association between greater intakes of SSB and weight gain and obesity in both children and adults\textsuperscript{88}. They finish by adding, short-term feeding trials in adults also support an induction of positive energy balance with weight gain by intake of SSB\textsuperscript{88}.

Despite all previous research on SSB, added sugars and fructose consumption, a review by Dolan et al.\textsuperscript{89} concluded that there is no convincing evidence from long term studies that fructose ingestion up to 100 g/day instead of glucose or sucrose is associated with an increase in body weight. Similarly, they did not find any associations with blood lipids when consuming fructose up to 100g/day\textsuperscript{89}.
**Fructose and blood lipids**

As discussed earlier, higher intake of fructose may be associated with increased hepatic de novo lipogenesis\(^4\)\(^3\),\(^4\)\(^5\),\(^4\)\(^6\),\(^9\)\(^0\) however, more evidence is needed.\(^9\)\(^1\) The metabolic fate of fructose is described in Figure 3\(^9\)\(^2\).

Several studies have concluded that fructose ingestion increases TC and LDL-C,\(^9\)\(^3\)-\(^9\)\(^7\) while other studies have not seen these results.\(^5\)\(^1\),\(^5\)\(^6\),\(^5\)\(^7\),\(^8\)\(^9\),\(^9\)\(^8\)-\(^1\)\(^0\)

Sugars research from the 1980’s and 1990’s set the groundwork for the research that is being conducted today. In 1983, Hallfrisch et al.\(^9\)\(^7\) conducted a cross-over study where 12 hyperinsulinemic men consumed three diets in 5-weeks intervals. The three diets consumed in this trial included: (1) a diet containing 0% energy from fructose and 15% energy from starch, (2) a diet containing 7.5% energy from fructose and 7.5% energy from starch, and (3) a diet containing 15% energy from fructose and 0% energy from starch\(^9\)\(^7\). When comparing the 0% energy fructose, 7.5% energy fructose and 15% energy fructose, significant increases in TC (191.3, 202.8, 200.9mg/dL) and LDL-C (136.0, 145.5, 142.9mg/dL) were observed.
respectively. Both the 7.5% fructose diet and the 15% energy fructose diet produced statistically higher TC and LDL-C then when participants consumed 0% energy from fructose.\textsuperscript{97}

However one year later, in 1984, Crapo et al.\textsuperscript{100} did not have these same findings when observing fructose consumption in healthy individuals. The diet consisted of between 63 to 99 grams of fructose or roughly 24% of total carbohydrates consumed (with carbohydrates consumed at 55% of total caloric intake)\textsuperscript{100}. When consumed for 2-weeks, TC decreased from baseline to 14 days (188 mg/dL to 173 mg/dL, \(p<.05\))\textsuperscript{100}. According to the sample diet, roughly 13% of calories were consumed as fructose, similar to the upper level used in a study one year prior\textsuperscript{97,100}. One main difference was that the participants used in the studies were different in terms of health status, one study observing changes in hyperinsulinemic participants\textsuperscript{97} and the other in healthy individuals\textsuperscript{100}. The other is that one study, which found significance, was 5-weeks in length\textsuperscript{97}, while the other, which did not find significance, was only 2-weeks\textsuperscript{100}.

In 1985, Crapo et al.\textsuperscript{98} repeated this 2-week trial in diabetic subjects with the diet consisting of between 63 to 99 grams of fructose or roughly 24% of total carbohydrates consumed (with carbohydrates consumed at 55% of total caloric intake).\textsuperscript{98} He concluded that there was no significant difference in TC after 14-days of consuming a fructose in diabetic subjects.\textsuperscript{98} However, the length of the study was rather short, limiting the potential for changes to occur.

Bantle et al.\textsuperscript{99} conducted a cross-over study in which participants consumed, in random order, a fructose diet at 17% energy needs and an isoenergetic diet with
glucose at 14% and with fructose at less than 3% energy needs. Despite consuming fructose at higher levels and for a longer duration than previous studies, no long-term changes were observed in TC or LDL-C. However, TAG were higher in men consuming fructose at 17% of energy (p<.05).

Jameel et al. conducted a randomized, single blind, cross-over study in 14 men and women. Three different isocaloric beverages (50 grams fructose, 50 grams glucose and 50 grams sucrose dissolved in water) were served on three different occasions. Consumption of fructose led to an initial significant increase in TC at 30min and 60min, when compared to glucose and sucrose. However, at 120min the increase was no longer significantly different from glucose and sucrose. Similarly, LDL-C was significantly increased with consumption of fructose at 30 min and 60 min, but not at 120 minutes. Overall, plasma TC area under the curve (AUC) and LDL-C AUC were higher when consuming fructose.

Next, Aeberli et al. conducted a randomized, double blind, cross-over study in which nine males consumed a medium fructose diet (40g/day), a high fructose diet (80g/day), a high glucose diet (80g/day) and a high sucrose diet (80g/day) for three weeks each with a four-week wash-over between diets. Compared with the high glucose group, the all fructose containing diets had higher TC and LDL-C at 3-weeks.

To compare the effects of fructose, glucose and HFCS on risk factors for CVD, 48 adults enrolled in a three tiered study. First, participants completed a 3.5day inpatient baseline testing, while consuming an energy balanced diet. Next, participants completed 12 outpatient days consuming 25% of their energy
requirements via a glucose, fructose or HFCS sweetened-beverage (n=16 per group) with an ad libitum diet. Lastly, participants completed a final 3.5day inpatient testing, in which they consumed an energy-balanced diet containing 25% energy from sugar-sweetened beverages. Fasting LDL-C was significantly increased during fructose consumption (+0.29 ±0.082 mmol/L) and HFCS (+0.42±0.11mmol/L) but not in the glucose sweetened beverages group. Participants consuming fructose and HFCS also had higher postprandial concentrations of LDL-C.

To determine if fructose had adverse effects on metabolic outcomes, 14 healthy participants consumed an isoenergetic diet consisting of either 20% energy from fructose or < 3% of energy from fructose with the remaining carbohydrate source from starch for 28 days each. The high starch low fructose diet resulted in decreases in TC and LDL-C after 28 days. The higher fructose diet, from baseline to post treatment, resulted in increases in fasting TC (4.43±0.20mmol/L to 4.47±0.16mmol/L, p<.01) and LDL-C (2.62± 0.17mmol/L to 2.73±0.13 mmol/L, p <.01). There was a significant difference between consuming a higher fructose diet and consuming a higher starch lower fructose diet with respect to TC and LDL-C post treatment.

A randomized control trial by Lowndes et al. examined the effects of fructose-containing sugars (HFCS and sucrose) on cardiometabolic risk factors. For 10 weeks, 355 overweight and obese participants were placed on a eucaloric diet, which incorporated sucrose and HFCS at either 8%, 18% or 30% of caloric intake. The study observed mixed changes in the participants’ lipid profile, specifically observing an increase in TAG when pooled as fructose containing sugars. This study administered fructose up to the 90th percentile of consumption, equating to levels five
times the recommended amount for consumption of sugars by the American Heart Association and three times the level of the World Health Organization, furthering research with higher consumption levels than what is consumed on average in Americans\textsuperscript{51}. Despite this, they did not observe any changes in blood pressure, TC, or LDL-C\textsuperscript{51}. This could be due to the method used for delivering the added sugars. In this study, added sugars were added through a low-fat milk, which increased consumption of vitamin D\textsuperscript{51}. Vitamin D may contribute to lower LDL-C\textsuperscript{51}.

A review by Zhang et al.\textsuperscript{47} concluded that higher consumption of fructose (>100 grams) in place of other carbohydrate sources caused higher levels of TC and LDL-C (13.0 mg/dL and 11.6 mg/dL respectively). These results did not emerge when participants were consuming less than 100 grams of fructose daily\textsuperscript{47}. Contradictory to this, Silbernagel et al.\textsuperscript{56} conducted a study using very high fructose (150g) and very high glucose (150g) and did not observe any significant changes in TC or LDL-C. This could be due to increased absorption of sugars seen when consumed in a sugar rich meal\textsuperscript{36}.

Using a within subjects cross-over design, healthy participants consumed three meals a day with 30\% of caloric intake from either glucose or fructose on two separate visits\textsuperscript{101}. They concluded that plasma TAG concentrations were elevated after ingestion of fructose-sweetened beverages with meals when compared with glucose-sweetened beverages\textsuperscript{101}.

In a longer 4-week long randomized single blind intervention trial the effects of a very high fructose and a very high glucose hyperenergetic diet on plasma lipids and body fat were explored\textsuperscript{56}. Despite no changes in body fat, plasma TAG levels
increased in fructose group by 350mg/L. No significant changes were observed in plasma TAG with consumption of a very high glucose diet. Overall, no changes in HDL-C were observed.

The previous studies provided doses of fructose exceeding levels consumed in national populations. A recent cross-sectional analysis in 25,506 participants aged 12-18 years and in participants aged 19-80 years old suggests the median, 95th and 99th percentile for fructose consumption to be 8.65%, 17.78% and 22.8% of caloric intake. When consumed in this sample, Sun et al. did not find a significant correlation with TAG. However, a 6 week cross-over study comparing fructose at 17% of diet, about the 95th percentile for fructose consumption versus 14% glucose and 3% fructose TAG concentrations were higher in men consuming fructose.

Several studies have investigated the relationships between TAG concentration and HDL-C. A review of HDL mechanisms concluded that the majority of low HDL-C occurs with other clinical features, such as insulin resistance and hypertriglyceridemia. It is hypothesized that TAG enrichment of HDL particles with enhanced cholesterol ester transfer protein (CETP)-mediated exchange of TAG and cholesterol esters between HDL and TAG rich lipoproteins, combined with the lipolytic actions of hepatic lipase, are the driving forces for low plasma HDL-C.

Despite this, there have been instances where HDL-C has been lowered without effects of TAG and vice versa.

In a randomized single blind cross-over study, participants were tested on three different occasions where they consumed either 50 grams of fructose, glucose or sucrose with blood collection at 0, 30, 60, and 120 minutes no differences in TAG.
were observed after consumption of all three sugars. Despite no differences observed in TAG, postprandial HDL-C significantly increased, suggesting that HDL-C can change regardless of a lack of change in TAG.

*Total and added sugars in relation to cholesterol levels*

To conduct a systemic review and meta analyses of dietary free sugars and lipids, Te Morenga et al. analyzed 39 randomized control trials. When comparing high and low intakes of sugars, higher intake raised TC (mean difference 0.16mmol/L) and LDL-C (mean difference 0.12mmol/L). Cross-sectional studies on NHANES data suggest that added sugars may be detrimental to health. NHANES data from 1999-2006 in adults aged 18 and older show a linear trend between added sugars intake and LDL-C in women, but not men. NHANES data from 1999-2004 in children ages 12-18 years old show a positive correlation between LDL-C and added sugars intake. Among the lowest and highest consumers of added sugars, LDL-C was 9% higher in participants with higher intake of added sugars after controlling for several covariates. Using more recent NHANES data, 2005-2010, no association with TC or LDL-C were observed.

*SSB in relation to cholesterol levels*

Data from the Coronary Artery Risk Development in Young Adults (CARDIA) study were used to assess the relations of low- and whole-fat milk, fruit juice and SSB consumption with cardio metabolic risk factors. Higher SSB consumption was associated with higher risk of elevated LDL-C and TAG, while intake of whole-fat milk was associated with lower risk of elevated TAG.
To observe the effects of SSB on LDL particle size, researchers conducted a prospective, randomized control trial in twenty-nine subjects\textsuperscript{108}. Subjects participated in six three week interventions where they consumed 600mL SSB of 40 and 80 grams of glucose, fructose or sucrose\textsuperscript{108}. LDL particle size was reduced after high fructose and high sucrose and a more atherogenic LDL subclass distribution was seen when consuming any of the fructose-containing SSB, when compared to glucose\textsuperscript{108}. Similar shifts in LDL particle size and subclass were seen in a 10-week long investigation where participants consumed 25\% energy from with fructose sweetened or glucose sweetened beverages, with only the fructose sweetened beverages altering LDL particle size\textsuperscript{109}.

**Summary**

In conclusion, higher consumption of fructose sugars may alter both body fat and blood lipids in healthy participants, although more research is needed. Current consumption levels of sugars are higher than recommendations among all age groups. With high consumption levels, and high rates of obesity and dyslipidemia, more research is needed to determine if there is a relationship between consumption of sugars, specifically fructose, and markers of obesity and dyslipidemia.
## APPENDIX B

### EXTENDED RESULTS

**LIST OF TABLES**

| TABLE | PAGE |
|-------|------|
| Table 1a – Table 1c. Random Sample of Women, Sample 1. | 61 |
| Table 2a – Table 2c. Random Sample of Women, Sample 2 | 62 |
| Table 3a – Table 3b. Risk Factors in Men. | 63 |
| Table 4a – Table 4b. Risk Factors in Women | 64 |
| Table 5. Correlations with Sugars as a Percent Carbohydrate. | 66 |
| Table 6. Correlations with Glycemic Index | 67 |
| Table 7. Average times responded from CNAQ for Top 10 Male and Female Consumers of Fructose Sugars | 70 |
| Table 8. Minimum and Maximum Reported Daily Times of Consumption for Top 10 Male Consumers of Fructose Sugars | 71 |
| Table 9. Minimum and Maximum Reported Daily Times of Consumption for Top 10 Female Consumers of Fructose Sugars | 72 |
# LIST OF FIGURES

| FIGURE | PAGE |
|--------|------|
| Figure 1. Comparison of Nutrition and Non-Nutrition Participants | 65 |
| Figure 2. Comparison of Sugars Intake by Presence of Metabolic Risk | 68 |
| Figure 3. Comparison of BMI and Body Fat Percentage by Presence of Metabolic Risk Factors | 69 |
### Table 1a: Random sampling of women and the associated differences by gender, Sample 1.

|                  | Women | Men          | P-value   |
|------------------|-------|--------------|-----------|
|                  | n = 55 | n = 55       |           |
|                  | Mean   | Median       | SD        | Mean   | Median       | SD        |           |
| Body Fat % †     | 25.9   | 25.8         | 6.7       | 16.3   | 14.0         | 8.0       | <0.001*** |
| TC (mg/dL)       | 165.4  | 165.0        | 23.3      | 153.5  | 150.5        | 24.4      | 0.016**   |
| LDL-C (mg/dL)    | 84.2   | 82.0         | 22.1      | 86.8   | 82.0         | 24.4      | 0.592     |
| HDL-C (mg/dL)    | 60.2   | 61.0         | 13.9      | 50.5   | 50.0         | 11.4      | <0.001*** |
| TAG (mg/dL)      | 107.8  | 103.5        | 35.7      | 83.7   | 73.0         | 31.4      | 0.001***  |

### Table 1b: Random sampling of women and the associated differences by gender, Sample 2.

|                  | Women | Men          | P-value   |
|------------------|-------|--------------|-----------|
|                  | n = 55 | n = 55       |           |
|                  | Mean   | Median       | SD        | Mean   | Median       | SD        |           |
| Body Fat % †     | 25.9   | 25.8         | 6.7       | 16.3   | 14.0         | 8.0       | <0.001*** |
| TC (mg/dL)       | 165.4  | 165.0        | 23.3      | 153.5  | 150.5        | 24.4      | 0.016**   |
| LDL-C (mg/dL)    | 84.2   | 82.0         | 22.1      | 86.8   | 82.0         | 24.4      | 0.592     |
| HDL-C (mg/dL)    | 60.2   | 61.0         | 13.9      | 50.5   | 50.0         | 11.4      | <0.001*** |
| TAG (mg/dL)      | 107.8  | 103.5        | 35.7      | 83.7   | 73.0         | 31.4      | 0.001***  |

### Table 1c: Comparison of the two random samples of women

|                  | Women | Women         | P-value   |
|------------------|-------|---------------|-----------|
|                  | n = 55 | n = 55        |           |
|                  | Mean   | Median        | SD        | Mean   | Median        | SD        |           |
| Body Fat %       | 25.9   | 25.8          | 6.7       | 28.0   | 27.7          | 6.3       | 0.286     |
| TC (mg/dL)       | 165.4  | 165.0         | 23.3      | 170.3  | 169.0         | 30.5      | 0.970     |
| LDL-C (mg/dL)    | 84.2   | 82.0          | 22.1      | 84.4   | 79.0          | 28.5      | 0.620     |
| HDL-C (mg/dL)    | 60.2   | 61.0          | 13.9      | 61.3   | 62.0          | 15.1      | 0.362     |
| TAG (mg/dL)      | 107.8  | 103.5         | 35.7      | 112.3  | 99.0          | 44.1      | 0.194     |

SD= standard deviation ; TC= total cholesterol ; LDL-C= low density lipoprotein cholesterol ; HDL-C= high density lipoprotein cholesterol ; TAG= triacylglycerol ; *p<0.05 ; **p<0.01 ; ***p<0.001
### Table 2a: Random Sample of Women for comparison of sugars intake by gender, Sample 1.

|                      | Women | Men   | P-value |
|----------------------|-------|-------|---------|
|                      | n = 55| n = 55|         |
| Mean                 |       |       |         |
| Median               |       |       |         |
| SD                   |       |       |         |
| Total Sugars, g/day  | 132.9 | 129.2 | 0.772   |
| (%kcal/day)          | (21.8)| (20.1)|         |
| Fructose Sugars, g/day| 82.1  | 76.7  | 0.489   |
| (%kcal/day)          | (13.5)| (12.0)|         |
| Non-fructose Sugars, g/day| 49.0  | 48.1  | 0.030*  |
| (%kcal/day)          | (8.3)| (8.0)|         |

### Table 2b: Random sample of women for comparison of sugars intake by gender, Sample 2.

|                      | Women | Men   | P-value |
|----------------------|-------|-------|---------|
|                      | n = 55| n = 55|         |
| Mean                 |       |       |         |
| Median               |       |       |         |
| SD                   |       |       |         |
| Total Sugars, g/day  | 127.4 | 129.2 | 0.884   |
| (%kcal/day)          | (21.3)| (20.1)|         |
| Fructose Sugars, g/day| 79.6  | 76.7  | 0.692   |
| (%kcal/day)          | (13.4)| (12.0)|         |
| Non-fructose Sugars, g/day| 47.7  | 48.1  | 0.046*  |
| (%kcal/day)          | (7.9)| (8.0)|         |

### Table 2c: Comparison of random samples of women on intakes of sugars.

|                      | Women 1 | Women 2 | P-value |
|----------------------|---------|---------|---------|
|                      | n = 55  | n = 55  |         |
| Mean                 |         |         |         |
| Median               |         |         |         |
| SD                   |         |         |         |
| Total Sugars, g/day  | 132.9   | 127.4   | 0.684   |
| (%kcal/day)          | (21.8)  | (21.3)  |         |
| Fructose Sugars, g/day| 82.1   | 79.6   | 0.738   |
| (%kcal/day)          | (13.5)  | (13.4)  |         |
| Non-fructose Sugars, g/day| 49.0   | 47.7   | 0.316   |
| (%kcal/day)          | (8.3)   | (7.9)   |         |

SD= standard deviation ; *p<0.05 ; **p<0.01 ; ***p<0.001
### Table 3a: Risk factors in men.

| Risk Factor              | Number of Students |
|--------------------------|--------------------|
| Waist Circumference      | 2                  |
| High Triglycerides       | 3                  |
| Low HDL-C                | 6                  |
| High Blood Pressure      | 28                 |
| High Fasting Blood Glucose | 0                 |

### Table 3b: Number of risk factors in men. (n=55)

| Number of Risk Factors | Number of Students (%) |
|------------------------|------------------------|
| 0                      | 23 (41.8)              |
| 1                      | 27 (49.1)              |
| 2                      | 3 (5.5)                |
| 3                      | 2 (3.6)                |
| 4                      | 0 (0)                  |
Table 4a: Risk factors in women (n=281).

| Risk Factor             | Number of Students |
|-------------------------|--------------------|
| Waist Circumference     | 27                 |
| High Triglycerides      | 40                 |
| Low HDL-C               | 57                 |
| High Blood Pressure     | 34                 |
| High Fasting Blood Glucose | 0                  |

Table 4b: Number of risk factors in women (n=281).

| Number of Risk Factors | Number of Students (%) |
|------------------------|------------------------|
| 0                      | 166 (59.1)             |
| 1                      | 83 (29.5)              |
| 2                      | 22 (7.8)               |
| 3                      | 9 (3.2)                |
| 4                      | 1 (0.4)                |
**Figure 1**: Comparison of nutrition and non-nutrition majors (n=281).

**p<0.01**
Nutrition: n = 147
Non-nutrition: n = 135
Table 5: Pearson correlations between sugars intake as a percentage of carbohydrate intake with body fat and blood lipids.

|                      | n   | Total Sugars † | n   | Fructose Sugars † | n   | Non-fructose Sugars † |
|----------------------|-----|---------------|-----|-------------------|-----|-----------------------|
| Body Fat (%)         | 293 | 0.081         | 293 | 0.129*            | 292 | 0.008                 |
| Total Cholesterol (mg/dL) | 293 | 0.023         | 293 | 0.008             | 291 | 0.076                 |
| LDL-C (mg/dL)        | 272 | 0.051         | 272 | 0.014             | 271 | 0.112                 |
| HDL-C (mg/dL)        | 292 | 0.015         | 292 | 0.024             | 290 | 0.014                 |
| Triglycerides (mg/dL)| 268 | -0.042        | 268 | -0.029            | 267 | -0.042                |

† Percentage of carbohydrate intake.
*p<0.05
Table 6: Pearson correlation of glycemic index with body fat percent and fasting blood lipids.

| Glycemic Index          | n   | Women | n   | Men   |
|-------------------------|-----|-------|-----|-------|
| Body Fat (%)            | 258 | 0.052 | 47  | 0.182 |
| Total Cholesterol (mg/dL) | 258 | 0.049 | 48  | -0.118|
| LDL-C (mg/dL)           | 240 | 0.020 | 45  | -0.194|
| HDL-C (mg/dL)           | 257 | 0.106 | 48  | 0.106 |
| Triglycerides (mg/dL)   | 236 | 0.112 | 44  | 0.098 |

No significant results.
**Figure 2:** Comparison of sugars intake and the presence of having or not having a metabolic syndrome risk factor (n=334).

![Bar chart showing sugars intake compared to metabolic syndrome risk factors](image)

* p<0.05
Figure 3: Relationships between having or not having a metabolic syndrome risk factor with respect to BMI and body fat percent.

* $p<0.05$  ** $p<0.01$  *** $p<0.001$

BMI measures in kg/m$^2$
Body fat percent measured using air displacement plethysmography
|       | Fruit | Dried Fruit | Dairy | Cereal | Bread | Sugars and Spreads | Beverages | Snacks and Commercial meals | Condiments |
|-------|-------|-------------|-------|--------|-------|--------------------|-----------|-------------------------------|------------|
| **Men** |       |             |       |        |       |                    |           |                               |            |
| Min   | 7.58  | 1.8         | 2.39  | 0.99   | 1.7   | 1.37               | 3.79      | 1.45                         | 1.37       |
| Max   | 10.9  | 2.5         | 3.17  | 1.36   | 2.31  | 1.87               | 5.5       | 2.32                         | 2.09       |
| **Women** |       |             |       |        |       |                    |           |                               |            |
| Min   | 11.48 | 2.03        | 3.03  | 1.57   | 1.62  | 2.76               | 1.52      | 3.74                         | 1.89       |
| Max   | 15.63 | 2.88        | 3.78  | 2      | 2.44  | 3.42               | 2.16      | 4.64                         | 2.45       |
Table 8: Reported times per day recorded by the top 10 male consumers of fructose sugars from the CNAQ of categories of foods that may contain sugars.

|   | Dried Fruit | Fruit Spread | Dairy | Cereal | Bread | Sugars and Spreads | Beverages | Snacks and Commercial Meals | Condiments |
|---|-------------|--------------|-------|--------|-------|--------------------|-----------|-----------------------------|------------|
| 1 | Min         | Max          |       |        |       |                    |           |                             |            |
|   | 22.6        | 31.3         | 6.9   | 0.6    | 3     | 2.9                | 2         | 0.8                         | 0.5        | 0.2                      |
| 2 | Min         | Max          |       |        |       |                    |           |                             |            |
|   | 19          | 24.7         | 4.1   | 0.4    | 1.2   | 0.4                | 0.4       | 1.2                         | 0.9        | 1.2                      |
| 3 | Min         | Max          |       |        |       |                    |           |                             |            |
|   | 6.7         | 10.1         | 4.5   | 0.8    | 0.2   | 0.6                | 0.9       | 1.7                         | 2.1        | 2.3                      |
| 4 | Min         | Max          |       |        |       |                    |           |                             |            |
|   | 2.6         | 4.4          | 0.2   | 10     | 0     | 1.7                | 4.1       | 6.1                         | 0.9        | 0.1                      |
| 5 | Min         | Max          |       |        |       |                    |           |                             |            |
|   | 5.7         | 9.7          | 0     | 2.3    | 0.1   | 0.3                | 0.3       | 10.3                        | 0.8        | 0.5                      |
| 6 | Min         | Max          |       |        |       |                    |           |                             |            |
|   | 3.1         | 5.4          | 0.5   | 0      | 0.3   | 2.1                | 2.5       | 0.5                         | 5          | 5.4                      |
| 7 | Min         | Max          |       |        |       |                    |           |                             |            |
|   | 3.4         | 4.9          | 0.2   | 2      | 0.7   | 1.8                | 0         | 4.8                         | 2.4        | 2.6                      |
| 8 | Min         | Max          |       |        |       |                    |           |                             |            |
|   | 8           | 12.1         | 1.5   | 0      | 4.3   | 4.8                | 0.2       | 0.6                         | 0.9        | 0.6                      |
| 9 | Min         | Max          |       |        |       |                    |           |                             |            |
|   | 0.4         | 1            | 0.1   | 2.1    | 1.7   | 0.3                | 0.6       | 4.7                         | 1.7        | 0.2                      |
| 10| Min         | Max          |       |        |       |                    |           |                             |            |
|   | 4.3         | 5.4          | 4.5   | 0      | 1.4   | 3.4                | 6.3       | 0.7                         | 0.7        | 1.5                      |
Table 9: Reported times per day recorded by the top 10 female consumers of fructose sugars from the CNAQ of categories of foods that may contain sugars.

|   | Fruit Dried | Fruit Cereal | Dairy | Sugars and Spreads | Beverages | Condiments |
|---|-------------|--------------|-------|------------------|-----------|------------|
| 1 | Min         | 3.5          | 0.6   | 2.6              | 0.4       | 3.4        | 7.2         | 3.5         | 2.9         |
|   | Max         | 5.8          | 1.2   | 4.2              | 0.6       | 0.9        | 4.7         | 9.6         | 4.9         | 3.7         |
| 2 | Min         | 23           | 0     | 4.4              | 0.5       | 1          | 0.4         | 0.1         | 0.5         | 0.8         |
|   | Max         | 31           | 0     | 5.8              | 1         | 1.5        | 0.4         | 0.2         | 0.9         | 1.3         |
| 3 | Min         | 13.4         | 4.6   | 0                | 0.1       | 0.1        | 0.2         | 0.2         | 0.1         | 0.2         |
|   | Max         | 20.2         | 6.8   | 0                | 0.2       | 0.2        | 0.2         | 0.4         | 0.4         | 0.2         |
| 4 | Min         | 4.7          | 0.5   | 8.8              | 6         | 1.1        | 8.1         | 1.5         | 3.6         | 7           |
|   | Max         | 5.8          | 0.6   | 9                | 6.1       | 1.2        | 9.3         | 1.7         | 4.8         | 9.1         |
| 5 | Min         | 9.4          | 4.9   | 0                | 0.3       | 0.4        | 0.1         | 0.3         | 0.3         | 0.3         |
|   | Max         | 12.2         | 7.3   | 0                | 0.7       | 0.7        | 0.2         | 0.5         | 0.5         | 0.5         |
| 6 | Min         | 12.1         | 0.9   | 3.9              | 1.2       | 1.6        | 3.3         | 0.9         | 2.6         | 1           |
|   | Max         | 17.7         | 1.1   | 5.7              | 1.4       | 3.3        | 5           | 2.1         | 4           | 1.8         |
| 7 | Min         | 8.7          | 4     | 0                | 0         | 0.3        | 0.2         | 0.7         | 0.1         | 0.1         |
|   | Max         | 12.5         | 5.4   | 0                | 0.1       | 0.7        | 0.2         | 1.3         | 0.3         | 0.3         |
| 8 | Min         | 5.5          | 2.6   | 5.1              | 3.3       | 3.3        | 1.7         | 1.7         | 1.9         | 2.2         |
|   | Max         | 7.2          | 3.3   | 6                | 5.6       | 4.7        | 2.2         | 2.2         | 2.6         | 1.8         |
| 9 | Min         | 26           | 0.3   | 45               | 2.7       | 3.3        | 8.2         | 1           | 21.9        | 1.7         |
|   | Max         | 30.9         | 0.4   | 5.8              | 3         | 3.3        | 9.2         | 1.4         | 23.6        | 2.1         |
| 10| Min         | 8.5          | 1.9   | 1                | 1.2       | 5          | 1.8         | 1.8         | 2.9         | 2.7         |
|   | Max         | 13           | 2.7   | 1.3              | 1.3       | 8.5        | 2.4         | 2.7         | 4.4         | 3.7         |
APPENDIX C

CONSENT FORM

Title of Project: Nutrition Assessment Secondary Data Analysis

INFORMED CONSENT TO PARTICIPATE IN RESEARCH

You are invited to take part in a research project described below. Students enrolled in NFS 210 and NFS 443 currently have anthropometric and biochemical assessments and complete dietary assessment as part of their coursework. These assessments are used for classroom assignments. We are asking you to give us permission to use these data for research. In addition, we are asking you to complete a few additional demographic and dietary questions. The purposes of the research is to validate assessment methodologies and to investigate the relationship between anthropometric, biochemical, and dietary variables that are related to chronic disease risk. If you have questions you may contact the Geoffrey Greene, the person mainly responsible for this study at 874-4028 or email him at gwg@uri.edu.

Description of the Project:
The purpose of the study is to use nutrition assessment data for research to help us understand the relationship between diet and disease risk in college students.

My Participation
You must sign this informed consent form for the data collected as part of this class to be used for research, and must complete the additional brief questionnaire.

What will be done:
If you take part in this study, your information entered into a password protected computer. Your data will be identified by code number only. Once all data have been entered and verified, the link between code number and identifying data will be destroyed. All data analysis will be conducted by code number only. Assessments that we will be using are listed below (these are collected as part of your class and the additional brief demographic questionnaire):

| Assessment                                | Code Number |
|-------------------------------------------|-------------|
| Demographics                              | ✓           |
| Dietary Assessment                        | ✓           |
| Height, Weight                            | ✓           |
| Waist and Hip Circumference               | ✓           |
| Air Displacement Plethysmography (BodPod) | ✓           |
| Sonographic Measurement of the Heel (bone density) | ✓ |
| Standard Blood Tests (TG, HDL, LDL, Total Cholesterol, Glucose) | ✓ |

The University of Rhode Island is an equal opportunity employer committed to the principles of affirmative action.
Risks or discomfort:
The risks are minimal. The only risks would be loss of confidentiality and that will be minimized as described below.

Benefits of this study:
You will not receive any direct benefit. Allowing us to use your data and filling out the brief questionnaire will help us with research to better understand the relationship between diet and chronic disease in college students.

Confidentiality:
Your part in this study is confidential. None of the information will identify you name. We will keep all consent forms in a locked cabinet in Room 307 Ranger for five years. All information collected for the class will be identified by code numbers and will not include any link to your name. This information will be confidential.

Decision to quit at any time:
Your have been given the opportunity to decide whether or not to participate in this study. Your decision to participate will not affect your grade in the class or your relationship with your class instructor. Your instructor will not know who is participating in this study. You have the right to stop participating at any time, but once data have been entered and verified and the link between participant and code has been destroyed, we will not be able to remove your data.

Rights and Complaints:
If you are not satisfied with the way this study is performed, you may discuss your complaints with Geoffrey Greene (401-874-4028) anonymously if you choose. In addition, if you have questions about your rights as a research participant, you may contact the Office of Research Integrity, 70 Lower College Road, Suite 2, University of Rhode Island, Kingston, RI, telephone: (401) 874-4328.

You have read this Consent Form. Your questions have been answered. Your signature on this form means that you understand the information and you agree to participate in the study. Please note that you must be at least 18 years of age in order to participate.

Print Your Name: ______________________________________

Signature of Participant Date Signature of Researcher

Please sign both consent forms, keeping one for yourself
APPENDIX D

NUTRITION ASSESSMENT SURVEY

Name: _____________________________ Date: ____________
Please Print

Nutrition Assessment Study Survey

1. What is your age (in years)?
   <10, 10, 19, 20, 21, 22, 23, 24, 24+

2. What is your gender?
   Male, female, choose not to answer

3. Which one of the following best applies to you?
   - White
   - Black or African American
   - Hispanic/Latino
   - Asian
   - Native Hawaiian or other Pacific Islander
   - American Indian or Alaskan Native
   - Mixed
   - Other (please specify):
   - Choose not to answer

4. What is your year in school?
   Freshman, Sophomore, Junior, Senior, Graduate

5. What is your current major?
   - Agricultural Sciences
   - Biological Sciences
   - Business/Communication
   - Education
   - Exercise Science/Kinesiology
   - Fine Arts/Humanities
   - Health/Nursing
   - Nutrition
   - Social Sciences
   - Undeclared
   - Graduate Student
   - Other (please specify):
6. Place of residence during the academic year?
- On campus
- Off campus

7. Green Eating is: Eating locally grown foods, limited amounts of processed/fast foods, eating meatless meals at least one day per week, choosing organic foods as much as possible, and only taking what you plan on eating.

Are you a green eater?
- No, and I do not intend to start within the next 6 months
- No, but I am thinking about becoming a green eater within the next 6 months
- No, but I am planning on becoming a green eater within the next 30 days
- Yes, I am a green eater and have been for less than 6 months
- Yes, I am a green eater and have been doing so for 6 months or more
- I choose not to answer

8. Which of the following best describes the MAJORITY of your meals during the academic year?
- I eat meals prepared at home.
- I purchase frozen or ready-to-eat meals
- I eat at dining halls/restaurants
- I get fast food/take-out

9. Do you have a campus meal plan?  
- Yes
- No

10. What is your usual rate of eating?

| Very slow | Slow | Medium | Fast | Very fast |
|-----------|------|--------|------|-----------|
| 1         | 2    | 3      | 4    | 5         |

11. Do you experience abdominal discomfort such as cramping, bloating, or excess gas? (this refers to gastrointestinal discomfort, NOT menstrual discomfort)

- Never or very seldom
- Seldom, less than once per month
- Occasionally, a few times per month
- Fairly often, once or twice per week
- Very often, several times per week or daily
12. If you experience abdominal discomfort, how severe is it?

- I do not experience abdominal discomfort
- Very mild – not very noticeable
- Moderate – noticeable but not too bad
- Somewhat uncomfortable – it’s kind of bad, but manageable
- Very uncomfortable – I cannot carry out my normal activities

13. Please select the answer that BEST describes your usual behavior.

|                                                                                     | Barely ever to never | Rarely (25%) | Sometimes (50%) | Often (75%) | Almost always |
|-------------------------------------------------------------------------------------|----------------------|--------------|-----------------|-------------|--------------|
| - Locally grown foods are grown within 100 miles of your location. Based on this, how often do you eat locally grown foods? | 0                    | 0            | 0               | 0           | 0            |
| - When in season, how often do you shop at farmer’s markets?                        | 0                    | 0            | 0               | 0           | 0            |
| - How often do you choose foods that are labeled certified organic?                 | 0                    | 0            | 0               | 0           | 0            |
| - How often do you select meats, poultry, and dairy products that are raised without antibiotics or hormones? | 0                    | 0            | 0               | 0           | 0            |
| - How often do you select food or beverages that are labeled fair trade certified?  | 0                    | 0            | 0               | 0           | 0            |
| - How often do you buy meat or poultry products labeled "free range" or "cage free"? | 0                    | 0            | 0               | 0           | 0            |
APPENDIX E

TRANSLATION SHEET

CNAQ Food Frequency Questionnaire Translation Sheet
Department of Nutrition & Food Sciences, University of Rhode Island, USA

Translation of Australian food terms to American food terms:
1. whole meal = whole grain
2. 250 milliliters (ml) = ~1 cup
3. Fibre = Fiber
4. Spirit = Alcoholic beverage (e.g. whiskey, vodka, rum)
5. Cordial/Squash = Non Alcoholic mixer (usually fruit based, containing sugar and water).
6. Muesli Bar = Granola bar made primarily of rolled oats, fruits, nuts and seeds.
7. Takeaway meal = Fast Food
8. *Chocolate Biscuits = Chocolate cookies and other chocolate confectionaries (e.g. kitkats)
9. *Fruit Biscuits = Cookies made with fruit
10. Beetroot = Beet
11. Silver beet = Chard
12. Capsicum = Red Bell Pepper
13. Rocket = Arugula
14. Swede = Turnip or Rutabaga
15. Broad Bean = Fava or Fava bean
16. *Butter bean = Lima Bean
17. Mince meat = ground meat
18. Yoghurt = Yogurt

Places to include American foods not listed:
1. Greek yogurt - include under ‘yogurt’
2. Edamame - include under ‘soy products’
3. Almond milk - include under ‘almonds’
4. Oatmeal - include under cooked cereal, eg porridge

Other foods you do not recognize at all:
Answer ‘never’ because if you do not know what it is, it is likely that you have not eaten it.
BIBLIOGRAPHY

1. Johnson RK, Appel LJ, Brands M, et al. Dietary Sugars Intake and Cardiovascular Health A Scientific Statement From the American Heart Association. *Circulation*. 2009;120(11):1011-1020.

2. Fitch C, Keim KS. Position of the Academy of Nutrition and Dietetics: Use of Nutritive and Nonnutritive Sweeteners. *J Acad Nutr Diet*. 2012;112(5):739-758.

3. White JS. Straight talk about high-fructose corn syrup: what it is and what it ain't. *Am J Clin Nutr*. 2008;88(6):1716S-1721S.

4. Goran MI, Ulijaszek SJ, Ventura EE. High fructose corn syrup and diabetes prevalence: A global perspective. *Glob Public Health*. 2013;8(1):55-64.

5. Marriott BP, Cole N, Lee E. National Estimates of Dietary Fructose Intake Increased from 1977 to 2004 in the United States. *J Nutr*. 2009;139(6):S1228-S1235.

6. Hanover LM, White JS. Manufacturing, Composition, and Applications of Fructose. *Am J Clin Nutr*. 1993;58(5):724-732.

7. Ventura EE, Davis JN, Goran MI. Sugar Content of Popular Sweetened Beverages Based on Objective Laboratory Analysis: Focus on Fructose Content. *Obesity*. 2011;19(4):868-874.

8. Walker RW, Dumke KA, Goran MI. Fructose content in popular beverages made with and without high-fructose corn syrup. *Nutrition*. 2014;30(7-8):928-935.
9. Zhang ZF, Gillespie C, Welsh JA, Hu FB, Yang QH. Usual Intake of Added Sugars and Lipid Profiles Among the US Adolescents: National Health and Nutrition Examination Survey, 2005-2010. *J Adolescent Health.* 2015;56(3):352-359.

10. Tasevska N, Park Y, Jiao L, Hollenbeck A, Subar AF, Potischman N. Sugars and risk of mortality in the NIH-AARP Diet and Health Study. *Am J Clin Nutr.* 2014;99(5):1077-1088.

11. Subar AF, Kipnis V, Troiano RP, et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN Study. *Am J Epidemiol.* 2003;158(1):1-13.

12. Barrett JS, Gibson PR. Development and Validation of a Comprehensive Semi-Quantitative Food Frequency Questionnaire that Includes FODMAP Intake and Glycemic Index. *J Am Diet Assoc.* 2010;110(10):1469-1476.

13. U.S. Department of Agriculture ERS. Calories: average daily per capita calories from the U.S. food supply, adjusted for spoilage and other waste. 2014.

14. U.S. Department of Agriculture ERS. Table 51- refined cane and beet sugar: estimated number per capita calories consumed daily, by calendar year. Table 52- High fructose corn syrup: estimated number of per capita calories consumed daily, by calendar year. Table 53- other sweeteners: estimated number of per capita calories consumed daily, by calendar year. 2014.

15. Park YK, Yetley EA. Intakes and food sources of fructose in the United States. *Am J Clin Nutr.* 1993;58(5 Suppl):737S-747S.
16. Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. *Physiol Rev.* 2010;90(1):23-46.

17. Sun SZ, Anderson GH, Flickinger BD, Williamson-Hughes PS, Empie MW. Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome. *Food Chem Toxicol.* 2011;49(11):2875-2882.

18. Chun OK, Chung CE, Wang Y, Padgitt A, Song WO. Changes in Intakes of Total and Added Sugar and their Contribution to Energy Intake in the US. *Nutrients.* 2010;2(8):834-854.

19. Welsh JA, Sharma A, Cunningham SA, Vos MB. Consumption of Added Sugars and Indicators of Cardiovascular Disease Risk Among US Adolescents. *Circulation.* 2011;123(3):249-257.

20. Association AH. American Heart Association Comments on the World Health Organization's "Guideline: Sugars Intake for Adults and Children". 2014.

21. Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. *J Am Diet Assoc.* 2002;102(11):1621-1630.

22. Yang L, Colditz GA. Prevalence of Overweight and Obesity in the United States, 2007-2012. *Jama Intern Med.* 2015;175(8):1412-1413.

23. Malik VS, Hu FB. Sweeteners and Risk of Obesity and Type 2 Diabetes: The Role of Sugar-Sweetened Beverages. *Curr Diabetes Rep.* 2012;12(2):195-203.

24. Organization WOFaWH. Global Graphs and Maps. (World Obesity Day).
25. Cawley J, Meyerhoefer C. The medical care costs of obesity: An instrumental variables approach. *J Health Econ.* 2012;31(1):219-230.

26. Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C, Participants ftcC. Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition. *Circulation.* 2004;109(3):433-438.

27. Gordon-Larsen P, Adair LS, Nelson MC, Popkin BM. Five-year obesity incidence in the transition period between adolescence and adulthood: the National Longitudinal Study of Adolescent Health. *Am J Clin Nutr.* 2004;80(3):569-575.

28. Morrell JS, Lofgren IE, Burke JD, Reilly RA. Metabolic Syndrome, Obesity, and Related Risk Factors Among College Men and Women. *J Am Coll Health.* 2012;60(1):82-89.

29. Collins KA, Dantico M, Shearer NBC, Mossman KL. Heart disease awareness among college students. *J Commun Health.* 2004;29(5):405-420.

30. Spencer L. Results of a heart disease risk-factor screening among traditional college students. *J Am Coll Health.* 2002;50(6):291-296.

31. Association ACH. American College Health Association National College Health Assessment Spring 2006 Reference Group Data Report (Abridged). *J Am Coll Health.* 2007;55(4):195-206.

32. McCracken M, Jiles R, Blanck HM. Health behaviors of the young adult U.S. population: behavioral risk factor surveillance system, 2003. *Prev Chronic Dis.* 2007;4(2):A25.
33. Morrell JS, Byrd-Bredbenner C, Quick V, Olfert M, Dent A, Carey GB. Metabolic Syndrome: Comparison of Prevalence in Young Adults at 3 Land-Grant Universities. *J Am Coll Health.* 2014;62(1):1-9.

34. Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. *Am J Clin Nutr.* 2000;72(3):694-701.

35. Harvey RA. Biochemistry. *Lippincott's Illustrated Reviews.* 2011;5:309-310.

36. Stipanuk MH, Caudill MA. *Biochemical, Physiological, and Molecular Aspects of Human Nutrition.* Elsevier Health Sciences; 2013.

37. Jenkins DJ, Wolever TM, Taylor RH, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. *Am J Clin Nutr.* 1981;34(3):362-366.

38. Esfahani A, Wong JMW, Mirrahimi A, Srichaikul K, Jenkins DJA, Kendall CWC. Glycemic Index: Physiological Significance. *J Am Coll Nutr.* 2009;28(4):439s-445s.

39. Thorne MJ, Thompson LU, Jenkins DJA. Factors Affecting Starch Digestibility and the Glycemic Response with Special Reference to Legumes. *Am J Clin Nutr.* 1983;38(3):481-488.

40. Atkinson FS, Foster-Powell K, Brand-Miller JC. International Tables of Glycemic Index and Glycemic Load Values: 2008. *Diabetes Care.* 2008;31(12):2281-2283.

41. Jenkins DJ, Kendall CW, Augustin LS, et al. Glycemic index: overview of implications in health and disease. *Am J Clin Nutr.* 2002;76(1):266S-273S.
42. Tappy L, Le KA, Tran C, Paquot N. Fructose and metabolic diseases: New findings, new questions. *Nutrition*. 2010;26(11-12):1044-1049.

43. Faeh D, Minehira K, Schwarz JM, Periasami R, Seongsu P, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy males. *Int J Obesity*. 2006;30:S67-S67.

44. Lammert O, Grunnet N, Faber P, et al. Effects of isoenergetic overfeeding of either carbohydrate or fat in young men. *Brit J Nutr*. 2000;84(2):233-245.

45. McDevitt RM, Bott SJ, Harding M, Coward WA, Bluck LJ, Prentice AM. De novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese women. *Am J Clin Nutr*. 2001;74(6):737-746.

46. Parks EJ, Skokan LE, Timlin MT, Dingfelder CS. Dietary sugars stimulate fatty acid synthesis in adults. *J Nutr*. 2008;138(6):1039-1046.

47. Zhang YH, An T, Zhang RC, Zhou Q, Huang Y, Zhang J. Very High Fructose Intake Increases Serum LDL-Cholesterol and Total Cholesterol: A Meta-Analysis of Controlled Feeding Trials. *J Nutr*. 2013;143(9):1391-1398.

48. Teff KL, Elliott SS, Tschop M, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. *J Clin Endocr Metab*. 2004;89(6):2963-2972.

49. Lindqvist A, Baelemans A, Erlanson-Albertsson C. Effects of sucrose, glucose and fructose on peripheral and central appetite signals. *Regul Peptides*. 2008;150(1-3):26-32.
50. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. *Am J Clin Nutr.* 2004;79(4):537-543.

51. Lowndes J, Sinnett S, Yu ZP, Rippe J. The Effects of Fructose-Containing Sugars on Weight, Body Composition and Cardiometabolic Risk Factors When Consumed at up to the 90th Percentile Population Consumption Level for Fructose. *Nutrients.* 2014;6(8):3153-3168.

52. Tordoff MG, Alleva AM. Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight. *Am J Clin Nutr.* 1990;51(6):963-969.

53. Ruff RR, Akhund A, Adjoian T, Kansagra SM. Calorie Intake, Sugar-Sweetened Beverage Consumption, and Obesity Among New York City Adults: Findings from a 2013 Population Study Using Dietary Recalls. *J Commun Health.* 2014;39(6):1117-1123.

54. Hirshberg SF, J.; Melanson, KJ.; Dwiggins, JL.; Dimond, ES.; Lofgren, IE. Dietary Sugars Predict Chronic Disease Risk Factors in College Students. *Topics in Clinical Nutrition.* 2011;26(4):324-334.

55. Yu ZP, Lowndes J, Rippe J. High-fructose corn syrup and sucrose have equivalent effects on energy-regulating hormones at normal human consumption levels. *Nutr Res.* 2013;33(12):1043-1052.

56. Silbernagel G, Machann J, Unmuth S, et al. Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: an exploratory trial. *Brit J Nutr.* 2011;106(1):79-86.
57. Madero M, Arriaga JC, Jalal D, et al. The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose diet, on weight loss and metabolic syndrome parameters: a randomized controlled trial. *Metabolism*. 2011;60(11):1551-1559.

58. Lowndes J, Kawiecki D, Pardo S, et al. The effects of four hypocaloric diets containing different levels of sucrose or high fructose corn syrup on weight loss and related parameters. *Nutr J.* 2012;11.

59. Rikkers W, Lawrence D, Hafekost K, Mitrou F, Zubrick SR. Trends in sugar supply and consumption in Australia: is there an Australian Paradox? *Bmc Public Health.* 2013;13.

60. Barclay AW, Brand-Miller JC. Trends in added sugar supply and consumption in Australia: there is an Australian Paradox. *Bmc Public Health.* 2013;13.

61. Control CfD. Prevalence of overweight, obesity and extreme obesity among adults: Unites States, trends 1960-62 through 2005-2006. 2010.

62. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of Childhood and Adult Obesity in the United States, 2011-2012. *Jama-J Am Med Assoc.* 2014;311(8):806-814.

63. Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. *BMJ.* 2013;346:e7492.

64. Saris WH. Sugars, energy metabolism, and body weight control. *Am J Clin Nutr.* 2003;78(4):850s-857s.
65. Aller EEJG, Abete I, Astrup A, Martinez JA, van Baak MA. Starches, Sugars and Obesity. *Nutrients*. 2011;3(3):341-369.

66. Ruxton CHS, Gardner EJ, McNulty HM. Is Sugar Consumption Detrimental to Health? A Review of the Evidence 1995-2006. *Crit Rev Food Sci.* 2010;50(1):1-19.

67. van Baak MA, Astrup A. Consumption of sugars and body weight. *Obes Rev.* 2009;10 Suppl 1:9-23.

68. Song WO, Wang Y, Chung CE, Song B, Lee W, Chun OK. Is obesity development associated with dietary sugar intake in the US? *Nutrition.* 2012;28(11-12):1137-1141.

69. Welsh JA, Sharma A, Abramson JL, Vaccarino V, Gillespie C, Vos MB. Caloric Sweetener Consumption and Dyslipidemia Among US Adults. *Jama-J Am Med Assoc.* 2010;303(15):1490-1497.

70. Popkin BM. Patterns of beverage use across the lifecycle. *Physiol Behav.* 2010;100(1):4-9.

71. Liebman M, Pelican S, Moore SA, et al. Dietary intake, eating behavior, and physical activity-related determinants of high body mass index in rural communities in Wyoming, Montana, and Idaho. *Int J Obesity*. 2003;27(6):684-692.

72. Maersk M, Belza A, Stodkilde-Jorgensen H, et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. *Am J Clin Nutr.* 2012;95(2):283-289.
73. Bachman CM, Baranowski T, Nicklas TA. Is there an association between sweetened beverages and adiposity? *Nutr Rev.* 2006;64(4):153-174.

74. Harnack L, Stang J, Story M. Soft drink consumption among US children and adolescents: Nutritional consequences. *J Am Diet Assoc.* 1999;99(4):436-441.

75. Ludwig DS, Peterson KE, Gortmaker SL. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. *Lancet.* 2001;357(9255):505-508.

76. Mrdjenovic G, Levitsky DA. Nutritional and energetic consequences of sweetened drink consumption in 6-to 13-year-old children. *J Pediatrics.* 2003;142(6):604-610.

77. Nielsen AJ, Popkin BM. Patterns and trends in food portion sizes, 1977-1998. *Jama-J Am Med Assoc.* 2003;289(4):450-453.

78. Raben A, Vasilaras TH, Moller AC, Astrup A. Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. *Am J Clin Nutr.* 2002;76(4):721-729.

79. Troiano RP, Flegal KM. Overweight children and adolescents: Description, epidemiology, and demographics. *Pediatrics.* 1998;101(3):497-504.

80. Boltonsmith C, Woodward M. Dietary-Composition and Fat to Sugar Ratios in Relation to Obesity. *Int J Obesity.* 1994;18(12):820-828.

81. Gibson SA. Consumption and Sources of Sugars in the Diets of British Schoolchildren - Are High-Sugar Diets Nutritionally Inferior. *J Hum Nutr Diet.* 1993;6(4):355-371.
82. Lewis CJ, Park YK, Dexter PB, Yetley EA. Nutrient intakes and body weights of persons consuming high and moderate levels of added sugars. *J Am Diet Assoc.* 1992;92(6):708-713.

83. Raben A. Should obese patients be counselled to follow a low-glycaemic index diet? No. *Obes Rev.* 2002;3(4):245-256.

84. Rajeshwari R, Nicklas TA, Yang SJ, Berenson GS. Longitudinal changes in intake and food sources of calcium from childhood to young adulthood: the bogalusa heart study. *J Am Coll Nutr.* 2004;23(4):341-350.

85. Gibson S. Sugar-sweetened soft drinks and obesity: a systematic review of the evidence from observational studies and interventions. *Nutr Res Rev.* 2008;21(2):134-147.

86. Forshee RA, Anderson PA, Storey ML. Sugar-sweetened beverages and body mass index in children and adolescents: a meta-analysis. *Am J Clin Nutr.* 2008;87(6):1662-1671.

87. Malik VS, Pan A, Willett WC, Hu FB. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. *Am J Clin Nutr.* 2013;98(4):1084-1102.

88. Malik VS, Schulze MB, Hu FB. Intake of sugar-sweetened beverages and weight gain: a systematic review. *Am J Clin Nutr.* 2006;84(2):274-288.

89. Dolan LC, Potter SM, Burdock GA. Evidence-based review on the effect of normal dietary consumption of fructose on development of hyperlipidemia and obesity in healthy, normal weight individuals. *Crit Rev Food Sci Nutr.* 2010;50(1):53-84.
90. Vedala A, Wang W, Neese RA, Christiansen MP, Hellerstein MK. Delayed secretory pathway contributions to VLDL-triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans. *J Lipid Res.* 2006;47(11):2562-2574.

91. Moore JB, Gunn PJ, Fielding BA. The Role of Dietary Sugars and De novo Lipogenesis in Non-Alcoholic Fatty Liver Disease. *Nutrients.* 2014;6(12):5679-5703.

92. Tappy L, Mittendorfer B. Fructose toxicity: is the science ready for public health actions? *Curr Opin Clin Nutr.* 2012;15(4):357-361.

93. Jameel F, Phang M, Wood LG, Garg ML. Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation. *Lipids Health Dis.* 2014;13.

94. Aeberli I, Hochuli M, Gerber PA, et al. Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men A randomized controlled trial. *Diabetes Care.* 2013;36(1):150-156.

95. Stanhope KL, Bremer AA, Medici V, et al. Consumption of Fructose and High Fructose Corn Syrup Increase Postprandial Triglycerides, LDL-Cholesterol, and Apolipoprotein-B in Young Men and Women. *J Clin Endocr Metab.* 2011;96(10):E1596-E1605.

96. Swanson JE, Laine DC, Thomas W, Bantle JP. Metabolic effects of dietary fructose in healthy subjects. *Am J Clin Nutr.* 1992;55(4):851-856.

97. Hallfrisch J, Reiser S, Prather ES. Blood Lipid Distribution of Hyperinsulinemic Men Consuming 3 Levels of Fructose. *Am J Clin Nutr.* 1983;37(5):740-748.
98. Crapo P, Henry RR. The Metabolic Consequences of 2-Week Fructose Feeding in Diabetic Subjects. *J Am Coll Nutr.* 1985;4(3):357-357.

99. Bantle JP, Raatz SK, Thomas W, Georgopoulos A. Effects of dietary fructose on plasma lipids in healthy subjects. *Am J Clin Nutr.* 2000;72(5):1128-1134.

100. Crapo PA, Kolterman OG. The metabolic effects of 2-week fructose feeding in normal subjects. *Am J Clin Nutr.* 1984;39(4):525-534.

101. Teff KL, Grudziak J, Townsend RR, et al. Endocrine and Metabolic Effects of Consuming Fructose- and Glucose-Sweetened Beverages with Meals in Obese Men and Women: Influence of Insulin Resistance on Plasma Triglyceride Responses. *J Clin Endocr Metab.* 2009;94(5):1562-1569.

102. Uusitupa M, Siitonen O, Voutilainen E, et al. Serum lipids and lipoproteins in newly diagnosed non-insulin-dependent (type II) diabetic patients, with special reference to factors influencing HDL-cholesterol and triglyceride levels. *Diabetes Care.* 1986;9(1):17-22.

103. Siri PW, Krauss RM. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. *Curr Atheroscler Rep.* 2005;7(6):455-459.

104. Rashid S, Watanabe T, Sakaue T, Lewis GF. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. *Clin Biochem.* 2003;36(6):421-429.

105. Biesbroeck RC, Albers JJ, Wahl PW, Weinberg CR, Bassett ML, Bierman EL. Abnormal Composition of High-Density Lipoproteins in Non-Insulin-Dependent Diabetics. *Diabetes.* 1982;31(2):126-131.
106. Te Morenga LA, Howatson AJ, Jones RM, Mann J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. *Am J Clin Nutr.* 2014;100(1):65-79.

107. Duffey KJ, Gordon-Larsen P, Steffen LM, Jacobs DR, Jr., Popkin BM. Drinking caloric beverages increases the risk of adverse cardiometabolic outcomes in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. *Am J Clin Nutr.* 2010;92(4):954-959.

108. Aeberli I, Gerber PA, Hochuli M, et al. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. *Am J Clin Nutr.* 2011;94(2):479-485.

109. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. *J Clin Invest.* 2009;119(5):1322-1334.