New Insights into Potential Prevention and Management Options for Chemotherapy-Induced Peripheral Neuropathy

Janet Schloss¹,², Maree Colosimo¹,³, Luis Vitetta⁴,⁵

¹Mater Private Breast Cancer Centre, Mater Hospital, Brisbane, Australia, ²Office of Research, Endeavour College of Natural Health, University of Technology, Brisbane, Australia, ³Medical Oncology Group of Australia, Clinical Oncology Society of Australia, Queensland Clinical Oncology Group, Brisbane, Australia, ⁴Sydney Medical School, University of Sydney, Sydney 2006, ⁵Medlab Clinical, Sydney, Australia

Corresponding author: Janet Schloss
E-mail: janet.schloss@uqconnect.edu.au
Received: September 10, 2015, Accepted: October 21, 2015

ABSTRACT

Objective: Neurological complications such as chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain are frequent side effects of neurotoxic chemotherapy agents. An increasing survival rate and frequent administration of adjuvant chemotherapy treatments involving neurotoxic agents makes it imperative that accurate diagnosis, prevention, and treatment of these neurological complications be implemented. Methods: A consideration was undertaken of the current options regarding protective and treatment interventions for patients undergoing chemotherapy with neurotoxic chemotherapy agent or experience with CIPN. Current knowledge on the mechanism of action has also been identified. The following databases PubMed, the Cochrane Library, Science Direct, Scopus, EMBASE, MEDLINE, CINAHL, CNKI, and Google Scholar were searched for relevant article retrieval. Results: A range of pharmaceutical, nutraceutical, and herbal medicine treatments were identified that either showed efficacy or had some evidence of efficacy. Duloxetine was the most effective pharmaceutical agent for the treatment of CIPN. Vitamin E demonstrated potential for the prevention of cisplatin-IPN. Intravenous glutathione for oxaliplatin, Vitamin B6 for both oxaliplatin and cisplatin, and omega 3 fatty acids for paclitaxel have shown protection for CIPN. Acetyl-L-carnitine may provide some relief as a treatment option. Acupuncture may be of benefit for some patients and Goshajinki-gan may be of benefit for protection from adverse effects of oxaliplatin induced peripheral neuropathy. Conclusions: Clinicians and researchers acknowledge that there are numerous challenges involved in understanding, preventing, and treating peripheral neuropathy caused by chemotherapeutic agents. New insights into mechanisms of action from chemotherapy agents may facilitate the development of novel preventative and treatment options, thereby enabling medical staff to better support patients by reducing this debilitating side effect.

Key words: Bortezomib, chemotherapy-induced peripheral neuropathy, cisplatin, management, neuropathic pain, prevention, taxane, treatment, vincristine

Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent, dose-limiting side effect resulting from the...
administration of commonly used neurotoxic chemotherapy agents. It is characterized by paresthesia, dysesthesia, impaired movement, and occasionally pain. The most common symptoms reported by patients include sensory symptoms of numbness and tingling, followed by burning, shooting, throbbing, and stabbing feelings. Moreover, patients may experience motor symptoms such as dropping items, splaying fingers, and inability to complete normal daily activities.[1] This side effect is difficult to prevent and control without resorting to dose reduction or cessation of chemotherapy treatment.[2]

Overall, CIPN is considered a serious and significant neurological adverse effect of chemotherapy and must be monitored from presentation as worsening symptoms can occur from the administered treatment. CIPN may be temporary but in a third of cases, it has been found to be a permanent side effect from the chemotherapy treatment employed.[3] There have been numerous studies trialing pharmaceutical agents, nutrients, herbs, and other modalities for the prevention and/or treatment of CIPN. Thus, the objective was to identify the best possible evidence-based options for clinicians that could be of beneficial assistance to patients undergoing chemotherapeutic treatments.

Methods

The aim of this inquiry was to investigate which efficacious protective and/or treatment options were available for patients undergoing chemotherapy with a neurotoxic chemotherapeutic agent or who experience CIPN. New insights into mechanisms of action from chemotherapeutic agents may highlight new preventative and treatments options that could assist medical staff provide patients with treatment options that could decrease the debilitating burden encountered with the side effects of CIPN. A mini-literature review was conducted for each section.

Selection criteria

The inclusion criteria for each sub-section included:
1. Any type of human clinical trial (e.g., randomized controlled trial [RCT]) or descriptive study, e.g., retrospective studies, case-control studies).
2. Animal studies.
3. The use of a mechanism of action study that administered a pharmaceutical, nutrient(s) or herbal medicine as the main intervention and specifically investigating its effects on reducing the primary outcome, i.e., CIPN, and
4. The journal article or abstract was in English.

Databases

The following databases were used to retrieve journal articles: PubMed, the Cochrane Library, Science Direct, Scopus, EMBASE, MEDLINE, and Google Scholar. Chinese Databases included CNKI and CINAHL.

Search terms

Electronic databases were searched using the following search terms, “CIPN” or “cisplatin” or “taxanes” or “paclitaxel” or “docetaxel” or “oxaliplatin” or “carboplatin” or “platinum compounds” or “proteasome inhibitors” and “peripheral neuropathy” or “CIPN” and “mechanism of action” or “pharmaceutical agent” or “nutrient” or “herb” or “herbal medicines” or “chinese herbal medicines” or “ayurvedic herbal medicines.”

Risk bias assessment

The risk bias of both animal and human studies was assessed using the Cochrane risk of bias assessment tool (http://handbook.cochrane.org/.part 2, Chapter 8).

Data synthesis

All human clinical trial data (excluding descriptive studies) was analyzed using RevMan version 5.2.7 (Cochrane Informatics and Knowledge Management Department) to quantify and compare the efficacy outcomes of intervention versus control.

Results

Mechanisms of action for chemotherapy-induced peripheral neuropathy

The administration of chemotherapeutic agents results in numerous cellular changes including loss of sensory terminals in the skin, alterations of membrane receptors, changes in intracellular signaling, neurotransmissions, excitability, and cellular metabolism. These effects can negatively influence neuronal and glial cell phenotypes which may contribute to the development of CIPN, thus hindering the understanding of specific mechanism underlying this side effect.[4] A recent review by Boyette-Davis et al.[4] identified a number of different mechanisms of actions for CIPN [Table 1].

Insight into the mechanisms of action of chemotherapy agents that contribute to CIPN is important when considering agents that may assist in CIPN prevention and treatment. Although research has provided an understanding of the possible mechanisms underlying CIPN, current clinical trials have not reported effective preventative or treatment options. It is also important
when studying the mechanisms of action underlying CIPN development, the validity and reliability of the reported results. From the data identified to date, further research and treatment options are warranted and a redirected focus may needed that examines the role of glial cells and inflammatory pathways in CIPN.

Current treatment and prevention options

Clinical trials investigating pharmaceutical agents and complementary and alternative therapies for the prevention and treatment CIPN were identified. Listed below are the current trials for each agent categorized under individual neurotoxic chemotherapy agent. Due to the comprehensive data acquisition in each category, studies of different levels of evidence have been included in this analysis. The studies included were evaluated using a separate tool, the Australian National Health and Medical Research Council’s (NHMRC) body of clinical evidence assessment matrix. This is an assessment tool that assigns a level/grade (Level I: Strongest evidence to

Table 1: Mechanisms of action identified for CIPN
Mechanism of action
Genetic influences
Neuronal influences
Altered activity and expression of voltage-gated ion channels
Altered glutamate signaling
Altered serotonin transporters
Altered glutamate signaling
Intracellular signaling pathways
Changes to intracellular structures
Loss of IENF and MC
Glial cell function
Cytokine and chemokine binding

CIPN: Chemotherapy-induced peripheral neuropathy, DRG: Dorsal root ganglia, TRPV1: Transient receptor potential vanilloid 1, TRPM8: Transient receptor potential melastatin 8, TRPA1: Transient receptor potential ankyrin 1, MAPK: Mitogen-activated protein kinase, NGF: Nerve growth factor, IENF: Intraepidermal nerve fibers, MC: Meissner’s corpuscle, TNF-α: Tumor necrosis factor alpha, IL-1β: Interleukin 1, beta, MCP-1: Monocyte chemotactactant protein-1, TLR: Toll-like receptors, GLAST: Glutamate-aspartate transporter, APE1: Apurinic/apyrimidinic endonuclease 1
level IV: Weakest evidence) based on the strength of the published study.1

Pharmaceutical agents

No pharmaceutical agent has yet been reported to significantly prevent CIPN. Several agents have been found to have a moderate benefit for the treatment of CIPN however, further trials are required. Possible beneficial treatment options for pain associated with CIPN include duloxetine (Cymbalta)52,53 and other anti-depressants such as venlafaxine (Effexor).54-56 Currently, pregabalin (Lyrica) has been administered with some benefit for nerve pain although only one open label trial57 has been conducted with CIPN. Table 2 presents the chemotherapeutical agents and the pharmaceutical agents trialed for each drug, the total number of participants in all the trials conducted on the drug and the outcomes reported.

Nutraceutical agents

Currently, there are no established neuroprotective nutraceuticals or treatment options for CIPN. There are several nutraceuticals which have shown promise for selective neurotoxic chemotherapeutic agents such as Vitamin E with cisplatin,84-86 intravenous glutathione for oxaliplatin administration,87,88 Vitamin B6 with hexamethylmelamine,89 and cisplatin although it was reported to interfere with treatment response rate and omega 3 fatty acids for paclitaxel.90 Acetyl-L-carnitine has also shown promise as a treatment option for CIPN120-122,128,132-135 with further research required from large RCTs. Overall, the results with the administration of various nutraceuticals remains inconsistent and further investigations are required to confirm efficacy and safety. Table 3 presents the trials conducted on nutraceuticals with specific chemotherapeutic agents.

Herbal medicines

A number of herbal medicines have shown promise as treatment and preventative agents for CIPN. However, the majority of the journal articles identified were laboratory animal studies (n = 17). Human studies consisted of one multi-center, randomized double-blind placebo-controlled trial, six randomized trials, six retrospective studies, one uncontrolled study, and three case reports [Table 4]. From the Asian herbal combinations, Gosha-jinki-gan (GJG) is the herbal medicine that has been trialed extensively in animal studies and human clinical trials.120-122,128,129,132-135 There are three retrospective studies used controls for FOLFOX (oxaliplatin, fluorouracil, and leucovorin) and paclitaxel administration,120,121,128 one RCT134 comparing Vitamin B12 administration with the herbal combination and a recent Phase II multi-center, randomized, double-blind, placebo-controlled trial conducted as an adjuvant treatment with FOLFOX.129 All studies concluded that

Table 2: Pharmaceutical agents trialed for CIPN

Chemotherapy agent	Pharmaceutical agents trialed	Level of evidence	Total number of participants from trials	Recommendations
Ciplatin limited protection for CIPN	Amifostine[58-64]	Level III	657	Possible ototoxicity protection particularly for children
Oxaliplatin	Amifostine[65]	Level IIIc	15	Possible decrease in severity of CIPN by subcutaneous application
Carbomazepine/oxcarbazepine[66-69]	Calcium channel blockers[70]	Level IIIb	103	Limited protection noted
Taxanes	Amifostine[67,72]	Level III	98	Possible protection against severe CIPN development
Vincristine	Amifostine[64]	Level IIIa	97	No protection noted
Carboplatin/taxane	Amifostine[73-77]	Level III	446	Possible protection against severe CIPN development
CIPN treatment	Gabapentin[79,80]	Level II	177	Failed to show any benefit although may decrease pain in some people
Lamotrigine[81]	Pregabalin[82-84]	Level II	131	No benefit noted
Amiatriptyline/nortriptyline[85,86]	Venlafaxine[84-86]	Level IV	4	Possible effect on reducing pain although only case studies
Duloxetine[87,88]	Level II	232	Statistical significant in reducing pain from CIPN	

CIPN: Chemotherapy-induced peripheral neuropathy, PN: Peripheral neuropathy

1National Health and Medical Research Council. NHMRC additional levels of evidence and grades for recommendations for developers of guidelines. Commonwealth of Australia: National Health and Medical Research Council 2009.
Schloss, et al.: Potential Prevention and Treatment Options for CIPN

Table 3: Nutraceuticals agents trialled for CIPN

Chemotherapy agent	Nutraceutical trialled	Level of evidence	Total number of participants from trials	Recommendations
Cisplatin	Vitamin E[84,86,83]	Level II	190	Recommended as an adjunct during treatment to prevent CIPN. Dose: 400 mg/day
	Glutamine[22]	Level III	26	Possible recommendation as it may reduce severity of CIPN. Dose: 2 days consequently with cisplatin
	Alpha-Lipoic acid[93]	Level II, Level IIIa	243	Not recommended as no protection noted
	Glutathione[84,84]	Level II	244	Trend toward protection. Dose: 1.5-2.5 g daily
	Vitamin B6[95]	Level IIIb	248	Prevented CIPN but adversely affected response duration. Dose: 300 mg daily
OXaliplatin	Magnesium/calcium infusion[84,80-84]	Level II	418	Conflicting results but is not recommended to use in conjunction with treatment
	Vitamin E[104]	Level II	34	Not recommended as no differences noted. Dose: 400 mg/day
	Alpha-lipoic acid[95,186]	Level III	15	Reduced severity of CIPN. Dose: 800 mg daily
	N-acetyl cysteine[127]	Level Illa	14	Not recommended as no differences noted. Dose: 1200 mg daily
	Glutathione[87,84]	Level II, Level IIIb	79	Possible protection as one trial had a significant protective effect. Dose: 1500 mg
	Glutamine[148]	Level Illa	88	Possible recommendation as it may reduce severity of CIPN. Dose: 15 g twice a day, or IV 20 g for 2 days consequently with oxaliplatin
	Vitamin B6[105]	Level II	23	Not recommended as it was not statistically significant Dose: 10 g t.i.d for 4 days after chemotherapy
	Glutamine[110,110]	Level IIa	47	Not recommended as worsened CIPN in patients taking ALC. Dose: 3000 mg daily
	Acetyl-L-carnitine[112]	Level Illa	409	Not recommended as worsened CIPN in patients taking ALC. Dose: 3000 mg daily
	Omega 3 fatty acids[81]	Level Illa	69	Recommended as it showed statistical significance. Dose: 640 mg t.i.d for 4 days after chemotherapy
	Vitamin B12[111]	Level Illb	1	Recommended as possible protection. A case study from a trial of 71 people. Dose: 100 mg daily
Taxanes	Glutamine[118,110]	Level IIa	47	Not recommended as it was not statistically significant Dose: 10 g t.i.d for 4 days after chemotherapy
	Acetyl-L-carnitine[112]	Level Illa	409	Not recommended as worsened CIPN in patients taking ALC. Dose: 3000 mg daily
	Omega 3 fatty acids[81]	Level Illa	69	Recommended as it showed statistical significance. Dose: 640 mg t.i.d for 4 days after chemotherapy
	Vitamin B12[111]	Level Illb	1	Recommended as possible protection. A case study from a trial of 71 people. Dose: 100 mg daily
Cisplatin/taxol	Vitamin E[89,114]	Level II	247	Not recommended but may have possible protection in some patients. Dose: 400 mg/day
Bortezomib	Acetyl-L-carnitine[115]	Level II	19	Not recommended to be given prophylactically
CIPN treatment	Acetyl-L-carnitine[82,83]	Level IV	51	May provide improvement of symptoms if administered after chemotherapy cessation. Dose: 1 g t.i.d
	Alpha-lipoic acid[116]	Level III	14	Improved neurological symptoms. Dose 600 mg IV weekly over 3-5 weeks

CIPN: Chemotherapy-induced peripheral neuropathy. IV: Intravenous

this herbal combination may provide neuroprotection. Other herbal medicines which showed promise as protective agents include Kieshikajutsubuto[124] and Shakuyaku-Kanzo-to[126] while sweet bee venom may be useful in treating CIPN once it has developed.[130,131]

Other therapies

Acupuncture has shown promise as a treatment option for CIPN. A systemic review was conducted in 2013 examining the effects of acupuncture on the management of CIPN,[126] which identified seven clinical trials and one experimental (rat) study. The limitations identified for these studies included small sample size, poor controls or no controls, poor randomization, and lack of blinding. From this, it can be concluded that while further studies are required, patients with CIPN may benefit from acupuncture.

Another option for clinicians, practitioners, and nurses includes topical application of analgesic agents. A combination of baclofen 10 mg, amitriptyline HCL 40 mg (3%), and ketamine 20 mg (1.5%) in a base of pluronic lecithin organogel and was found to be beneficial for sensory neuropathy over placebo ($P = 0.053$) and decreased motor neuropathy symptoms ($P = 0.021$).[137] However, a Phase III RCT trial on 462 patients with CIPN found no difference in 6 weeks of treatment with 2% ketamine and 4% amitriptyline cream ($P = 0.363$).[138] Recent case studies examining the topical application of menthol (1%) have found it beneficial as a novel analgesic therapy for cancer neuropathic pain.[139] In addition, high dose topical capsaicin cream may show benefit although no studies for CIPN have been conducted.[140]

Discussion

Despite the incidence of CIPN and the significant impact it has on the effectiveness of chemotherapy due to its dose-limiting effects, there are no current treatment or preventive options.
options with conclusive efficacy and safety data. However, there are a number of possible avenues that would be advantageous to trial in a clinical setting or via clinical research. First, the increased ability for genetic testing may provide a new avenue for clinicians to identify individuals at high risk of developing CIPN outside the known risk factors such as diabetes, alcoholism, HIV, and Vitamin B12 deficiencies.[3] Considering this side effect can directly affect certain patient’s professional ability, general physicality, and quality of life, having the ability to offer this service to patients allows the individual to know their changes of developing this side effect. Hence, certain decisions can then be implemented to assist in possible protection or change chemotherapeutic agents if applicable.

The neuronal influences offer the greatest opportunities for protective and treatment options. First, voltage-gated potassium channel openers such as retigabine[9] shows great potential for researchers to conduct a randomized clinical trial to ascertain if this agent does have benefit in preventing CIPN. In addition, the administration of voltage-gated calcium drugs such as gabapentin and ethosuximide may decrease reflex hypersensitivity.[10,11] This has the potential as a treatment option for those patients who are experiencing reflex hypersensitivity postchemotherapy.

Alterations of neurotransmitters involving the down regulation of glutamate transporters may have potential protective benefits. Possible agents that could be considered include phenyl pyrimidine compounds such as the acetylcholinesterase inhibitors used in the treatment of Alzheimer’s disease e.g., donepezil, galanathamine, and tacrine.[141] These drugs have been shown to protect neuronal cells and decrease glutamate neurotoxicity. This provides a new avenue for researchers to consider for the protection of CIPN.

Another neuronal influence which shows potential for treatment options includes the alterations of transient receptor potential channels. To date, menthol cream has shown promise as a topical treatment for CIPN particularly for carboplatin,[25] which works via these channels. This may be an easy option for patients to apply topically to alleviate symptoms of CIPN without further ingestive medicine.

Intracellular signaling activity that involves increasing nerve growth factor (NGF) is another option. Although direct administration of NGF has not shown benefit to date in clinical trials on humans due to unwarranted side effects,[142] there are agents that have been found to increase NGF such as Vitamin B12,[143] acetyl-L-carnitine,[144] rosemary,[145] Polygala tenuifolia (Ninjin-Yoei-To, Kamp Japanese Herbal),[146] Codonopsis pilosula,[147] and Dioscorea nipponica.[148] Dioscorea in particular has been trialed for diabetic neuropathy and was found to increase neurite

Table 4: Herbal medicines trialled for CIPN

Chemotherapy agent	Herbal medicine trialed	Level of evidence	Total number of participants from trials	Recommendations
Oxaliplatin	Ginkgo biloba[117]	Level IIIb	17	Possible neuroprotection, do not use with patients who are on blood thinning medication including aspirin or on avastin/eribituxin
	Buysang huanwu[118]	Level II	84	Decreased CIPN but information not given. This is a tea that could be drunk through chemotherapy
Gerani herba plus Aconiti radix[119]	Level II	58	Was found to decrease neuropathic pain but information not given	
	GJG[120,121,122,123]	Level II	238	Recommended as it had a positive response. Found to have neuroprotective values. However, only available in Japan and certain Asian countries
	Kieshikajutsubuto[124]	Level III	11	Patients had 76.6% improvement. Recommended
	Ogikeishigomotou[125]	Level IIIb	1	Decreased neuropathic pain but only a case study. Further research needed
	Shakuyaku-kanzo-to[126]	Level IV	44	50% responded to this while 65% responded to GJG. Both can be recommended in Asian countries
Paclitaxel	Modified Chai Hu Long Gu Mu Li Wan[127]	Level IIIa	48	Possible neuroprotection. Worth considering
	GJG[128]	Level IIIa	82	Possible neuroprotection and better when administered early. Recommended
	Shakuyaku-kanzo-to[129]	Level III	23	Reduced neuropathic pain. Worth trying as a treatment option
Taxol/carboplatin	Sweet bee venom[130,131]	Level IV	16	This is a treatment for CIPN and involves injecting into the acupuncture point. Was found to decrease pain and neuropathy. Requires a qualified and skilled practitioner to administer for treatment

CIPN: Chemotherapy-induced peripheral neuropathy, GJG: Goshajinkigan
outgrowth, enhance nerve conduction, and exhibit improvement on damaged axons. The fact that it has been found to reverse functional and structural changes and induce neural regeneration may make this herb an excellent candidate for a trial on CIPN.\[148\]

Changes to intracellular structures are another mechanism of action by which there is an opportunity. APE1 may have a potential protective effect by decreasing axonal transport but still needs further research.\[30\] Loss of intraepidermal nerve fibers (IENF) and Meissner’s corpuscle also gives rise to opportunities. Currently, tetracycline derivatives have not been clinically trialed on humans for CIPN, but derivatives, such as minocycline, has been found to prevent IENF loss by reducing neuro-inflammation. In animal models, it has shown to be protective for oxaliplatin and paclitaxel CIPN.\[38,39\] This may be an agent that researchers and clinicians could trial considering the positive results found in animal models.

Glial cell function is another mechanism which could be targeted. Again treatment with tetracycline derivatives such as minocycline or carbinoxolone has been found to decrease hyperalgesia response in rodents.\[14\] This may provide another treatment option for clinicians and researchers. Finally, decreasing inflammation could provide protection against CIPN. Nonsteroidal anti-inflammatory agents have not provided a treatment option for people experiencing CIPN as they are not peripherally acting;\[149\] however that opens the field for other agents that could play a protective role.

A number of nutrients and herbal medicines that have shown potential for protective benefits for CIPN possess anti-inflammatory activity. These include omega 3 fatty acids, Vitamin E, curcumin, chamomile, sweet bee venom, and the combination of Asian herbal medicines. Further investigations in the anti-inflammatory activity and prevention of CIPN are required.

Currently, no pharmaceutical, nutraceutical, or complementary agent has been found beneficial in preventing or treating CIPN. Based on the data collected, various agents may be suggested although the level of evidence of the studies needs to be recognized. Certain pharmaceutical agents have shown potential for the treatment of CIPN pain as with duloxetine (Cymbalta) and other anti-depressants such as venlafaxine (Effexor) although Effexor was case study based. Pregabalin is the pharmaceutical drug of choice for clinicians at present based on an open label trial. This has been chosen due to lower dose and less side effects compared to gabapentin.

For nutraceuticals, Vitamin E shows potential for prevention of cisplatin-induced ototoxicity, intravenous glutathione for oxaliplatin administration, Vitamin B6 for both oxaliplatin and cisplatin and omega 3 fatty acids for paclitaxel administration. Acetyl-L-carnitine may provide some relief as a treatment option for CIPN after chemotherapy cessation but should not be used as a preventative agent during chemotherapy. Acupuncture may be of benefit for some patients and GJG may be of benefit for protection of oxaliplatin-IPN for patients in Japan. A number of Asian herbs have been found to have possible benefits for treatment and may provide some relief for patients experiencing neuropathic pain from chemotherapy. The new insights into the mechanism of actions of CIPN may highlight new drugs, nutrients, or herbs that could assist in prevention of this disabling side effect. However currently, there is no gold standard prevention or treatment of CIPN. It is suggested for clinicians, nurses, and other health professionals treating people with CIPN to use composite measurement outcomes including the full complexity of both positive symptoms (pain, paresthesia, and dysethesia) and negative ones (numbness).\[158\] Trialing potential treatment options such as acetyl-l-carnitine on patients with numbness and dysethesia might be worthwhile. Discussing, identifying, and suggesting interventions with possible protective benefits for patients such as Vitamin E, B12, and omega 3 fatty acids displays best care.

If these interventions do not prevent this side effect, and as there is still no proven prophylactic or therapeutic intervention, patient presentation of CIPN during chemotherapy requires modification or cessation of treatment. This is still the preferred strategy to date for patients. Ultimately, collaboration of health professionals and implementing strategies to prevent side effects such as CIPN give rise to best care benefits for patients which should be the aim for all healthcare practitioners.

Conclusion

Clinicians and researchers acknowledge that there are numerous challenges involved in understanding, preventing, and treating peripheral neuropathy caused by chemotherapy agents. New insights into mechanisms of action from these chemotherapeutic agents may facilitate the development of novel preventative and treatment options, thereby enabling medical staff to better support patients by reducing this debilitating side effect.
Acknowledgments

Endeavor office of research, Dr. Amie Steel for assistance with editing.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML, Cassidy J, et al. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J Clin 2013;63:419-37.

2. Smith JA, Benbow SJ. Meeting Report: Inaugural Chemotherapy-Induced Peripheral Neuropathy Symposium — Santa Barbara, CA, February 2015. Cancer Res 2015. pii: Canres. 1145.2015.

3. Armstrong T, Almadrones L, Gilbert MR. Chemotherapy-induced peripheral neuropathy. Oncol Nurs Forum 2005;32:305-11.

4. Boyette-Davis JA, Walters ET, Dougherty PM. Mechanisms involved in the development of chemotherapy-induced neuropathy. Pain Manag 2015;5:285-96.

5. Cavaletti G, Alberti P, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity in the era of pharmacogenomics. Lancet Oncol 2011;12:1151-61.

6. Grolleau F, Gamelin L, Boisdron-Celle M, Lapied B, Pelhate M, Gamelin E. A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J Neurophysiol 2001;85:2293-7.

7. Webster RG, Brain KL, Wilson RH, Grem JL, Vincent A. Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels. Br J Pharmacol 2005;146:1027-39.

8. Descoeùr J, Pereira V, Pizzoccaro A, Francois A, Ling B, Mafire V, et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol Med 2013;5:266-78.

9. Nodera H, Spieker A, Sung M, Rutkove S. Neuroprotective effects of Kv7 channel agonist, retigabine, for cisplatin-induced peripheral neuropathy. Neurosci Lett 2011;505:223-7.

10. Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel-induced peripheral neuropathy. Neurosci Lett 2016;596:90-107.

11. Robinson CR, Dougherty PM. Spinal astrocyte gap junction and glutamate transporter expression contributes to a rat model of bortezomib-induced peripheral neuropathy. Neuroscience 2015;285:41-10.

12. Cavaletti G, et al. Serotonin transporter deficiency protects mice from mechanical allodynia and heat hyperalgesia in vincristine neuropathy. Neurosci Lett 2011;495:93-7.

13. Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci Lett 2015;596:90-107.
30. Kelley MR, Jiang Y, Guo C, Reed A, Meng H, Vasko MR. Role of the DNA base excision repair protein, APE1 in cisplatin, oxaliplatin, or carboplatin induced sensory neuropathy. PLoS One 2014;9:e106485.
31. Shin YK, Jang SY, Lee HK, Jung J, Suh DJ, Seo SY, et al. Pathological adaptive responses of Schwann cells to endoplasmic reticulum stress in bortezomib-induced peripheral neuropathy. Glia 2016;58:1961-76.
32. Lee JJ, Swain SM. Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol 2006;24:1633-42.
33. LaPointe NE, Morfini G, Brady ST, Feinstein SC, Wilson L, Jordan MA. Effects of erubin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: Implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology 2013;37:231-9.
34. Staff NP, Podratz JL, Grassner L, Bader M, Paz J, Knight AM, et al. Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons. Neurotoxicology 2013;39:124-31.
35. Schellingerhout D, LeRoux LG, Hobbs BP, Bredow S. Impairment of retrograde neuronal transport in oxaliplatin-induced neuropathy demonstrated by molecular imaging. PLoS One 2012;7:e45776.
36. Boyette-Davis JA, Cata JP, Zhang H, Driver LC, Wendelschafer-Grabb G, Kennedy WR, et al. Follow-up psychophysical studies in bortezomib-related chemoneuropathy patients. J Pain 2011;12:1017-24.
37. Zhang H, Boyette-Davis JA, Kosturakis AK, Li Y, Yoon SY, Walters ET, et al. Induction of monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 in primary sensory neurons contributes to paclitaxel-induced peripheral neuropathy. J Pain 2013;14:1031-44.
38. Boyette-Davis J, Xin W, Zhang H, Dougherty PM. Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 2011;152:308-13.
39. Boyette-Davis J, Dougherty PM. Protection against oxaliplatin-induced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline. Exp Neurol 2011;229:353-7.
40. Cata JP, Weng HR, Lee BN, Reuben JM, Dougherty PM. Clinical and experimental findings in humans and animals with chemotherapeutic-induced peripheral neuropathy. Minerva Anestesiol 2006;72:151-69.
41. Cavaletti G, Cavaletti E, Oggioni N, Sottani C, Minoia C, et al. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology 2000;21:389-93.
42. Oztürk G, Erdogan E, Amlar O, Kösem M, Taspinar M. Effect of leukemia inhibitory factor in experimental cisplatin neuropathy in mice. Cytokine 2005;29:31-41.
43. Cliffer KD, Stiuciak JA, Carson SR, Radley HE, Park JS, Lewis DR, et al. Physiological characterization of Taxol-induced large-fiber sensory neuropathy in the rat. Ann Neurol 1998;43:46-55.
44. Takeda M, Tanimoto T, Kadoi J, Nasu M, Takahashi M, Kitagawa J, et al. Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 2007;129:155-66.
45. Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 2009;29:4096-108.
46. Warwick RA, Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur J Pain 2013;17:571-80.
47. Ledeboer A, Jekich BM, Sloane EM, Mahoney JH, Langer SJ, Milligan ED, et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun 2007;21:686-98.
48. Byrd-Leifer CA, Block EF, Takeda K, Akira S, Ding A. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol 2001;31:2448-57.
49. Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM. Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. J Pain 2014;15:712-25.
50. Park HJ, Stokes JA, Corr M, Yoksh TL. Toll-like receptor signaling regulates cisplatin-induced mechanical allodynia in mice. Cancer Chemother Pharmacol 2014;73:25-34.
51. Abbadie C, Lindia JA, Cumsiskey AM, Peterson LB, Mudgett JS, Bayne EK, et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A 2003;100:7947-52.
52. Smith EM, Pang H, Cirrincione C, Fleishman S, Paskett ED, Aihes E, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotheraphy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA 2013;309:1359-67.
53. Takenaka M, Iida H, Matsumoto S, Yamaguchi S, Yoshimura N, Miyamoto M. Successful treatment by adding duloxetine to pregabalin for peripheral neuropathy induced by paclitaxel. Am J Hosp Palliat Care 2013;30:734-6.
54. Durand JP, Goldwasser F. Dramatic recovery of paclitaxel-disabling neurosensory toxicity following treatment with venlafaxine. Anticancer Drugs 2002;13:777-80.
55. Durand JP, Alexandre J, Guillemin L, Goldwasser F. Clinical activity of venlafaxine and topiramate against oxaliplatin-induced disabling permanent neuropathy. Anticancer Drugs 2005;16:587-91.
56. Mollman JE, Glover DJ, Hogan WM, Furman RE. Cisplatin neuropathy. Risk factors, prognosis, and protection by WR-2721. Cancer 1988;61:2192-5.
57. Kemp G, Rose P, Hurain J, Berman M, Manetta A, Roullet B, et al. Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: Results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 1996;14:2101-12.
58. Planting AS, Catimel G, de Mulder PH, de Graeff A, Höppener F, Verweij J, et al. Randomized study of a short course of weekly cisplatin with or without amifostine in advanced head and neck cancer. EORTC Head and Neck Cooperative Group. Ann Oncol 1999;10:693-700.
investigating the effect of WR 2721, high-dose cisplatin and radiation therapy in patients with locally advanced cervical carcinoma. J Laryngol Otol 1995;109:744-7.

63. Gradishar WJ, Stephenson P, Glover DJ, Neuberg DS, Moore MR, Windschill HE, et al. A Phase II trial of cisplatin plus WR-2721 (amifostine) for metastatic breast carcinoma: An Eastern Cooperative Oncology Group Study (E1888). Cancer 2001;92:2517-22.

64. Foula MI, Chintagumpala M, Ashley D, Kellie S, Gradishar WJ, Stephenson P, Glover DJ, Neuberg DS, Argyriou AA, Chroni E, Polychronopoulos P, Iconomou G, Wilson RH, Lehky T, Thomas RR, Quinn MG, Floeter MK, Eckel F, Schmelz R, Adelsberger H, Erdmann J, Quasthoff S, Penz M, Kornek GV, Raderer M, Ulrich-Pur H, Fiebiger W, von Delius S, Eckel F, Wagenpfeil S, Mayr M, Stock K, Tatsushima Y, Egashira N, Narishige Y, Fukui S, Kawashiri T, van der Zee AG, de Vos FY, Bos AM, Schaapveld M, de Swart CA, de Graaf H, Hilpert F, Stähle A, Tomé O, Burges A, Rossner D, Späthe K, Gelmon K, Eisenhauer E, Bryce C, Tolcher A, Mayer L, Efficacy of oxcarbazepine for prophylaxis against cumulative oxaliplatin-induced neuropathy. Neurology 2006;67:2253-5.

65. Schloss, et al. Randomized phase II study of paclitaxel with carboplatin +/- amifostine as first line treatment in advanced ovarian carcinoma. Gynecol Oncol 2005;97:60-7.

66. Kanot O, Evrensel T, Baran I, Coskun H, Zarifoglu M, Turan OF, et al. Protective effect of amifostine against toxicity of paclitaxel and carboplatin in non-small cell lung cancer: A single center randomized study. Mod Oncol 2003;20:237-45.

67. Davis ID, Kiers L, MacGregor L, Quinn M, Arezzo J, Green M, et al. A randomized, double-blind, placebo-controlled phase II trial of recombinant human leukemia inhibitory factor (ruLIF, emfilermin, AM424) to prevent chemotherapy-induced peripheral neuropathy. Clin Cancer Res 2005;11:1890-8.

68. Argyriou AA, Chroni E, Koutras A, Ellul J, Papapetropoulos S, Nikcevich DA, et al. Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: A phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer 2007;110:2110-8.

69. Ross JR, Goller K, Hardy J, Riley J, Broadley K, Alheri R, et al. Gabapentin is effective in the treatment of cancer-related neuropathic pain: A prospective, open-label study. J Palliat Med 2005;8:1118-26.

70. Kauto AL, Haanpää M, Saarto T, Kalso E. Amitriptyline in the treatment of chemotherapy-induced neuropathic symptoms. J Pain Symptom Manage 2008;35:31-9.

71. Hammad JE, Michalak JC, Sloan JA, Loprinzi CL, Soori GS, Nikcevich DA, et al. Phase III evaluation of nortriptyline for alleviation of symptoms of cis-platinum-induced peripheral neuropathy. Pain 2002;98:195-203.

72. Pace A, Savarese A, Picardo M, Maresca V, Pacetti U, Del Monte G, et al. Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol 2003;21:927-31.

73. Pace A, Giannarelli D, Galiè E, Savarese A, Carpano S, Della Giulia M, et al. Vitamin E neuroprotection for cisplatin-induced neuropathy: A randomized, placebo-controlled trial. Neurology 2010;74:762-6.

74. Argyriou AA, Chroni E, Koutras A, Ellul J, Papapetropoulos S, Katsoulas G, et al. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: A randomized controlled trial. Neurology 2005;64:26-31.

75. Cascinu S, Catalano V, Cordella L, Labianca R, Giordani P, Baldelli AM, et al. Neuprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: A randomized, double-blind, placebo-controlled trial. J Clin Oncol 2002;20:3478-83.

76. Milla P, Airoldi M, Weber G, Drescher A, Jaehde U, Cattel L. Administration of reduced glutathione in FOLFOX4 adjuvant treatment for colorectal cancer: Effect on oxaliplatin pharmacokinetics, Pt-DNA adduct formation, and neurotoxicity. Anticancer Drugs 2009;20:396-402.

77. Wiernik PH, Yeap B, Vogl SE, Kaplan BH, Comis RL, Falkson G, et al. Hexamethylmelamine and low or moderate dose cisplatin with or without pyridoxine for treatment of advanced ovarian carcinoma: A study of the Eastern Cooperative Oncology Group. Cancer Invest 1992;10:1-9.

78. Gholreishi Z, Esfahani A, Djazayeri A, Djalali M, Golestan B, Ayromlou H, et al. Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: A randomized
double-blind placebo controlled trial. BMC Cancer 2012;12:355.

91. Bianchi G, Vitali G, Caraceni A, Ravaglia S, Capri G, Cundari S, et al. Symptomatic and neurophysiological responses of paclitaxel- or cisplatin-induced neuropathy to oral acetyl-L-carnitine. Eur J Cancer 2005;41:1746-50.

92. Maestri A, De Pasquale Ceratti A, Cundari S, Zanna C, Cortesi E, Grin L. A pilot study on the effect of acetyl-L-carnitine in paclitaxel- and cisplatin-induced peripheral neuropathy. Tumori 2005;91:135-8.

93. Argyriou AA, Chroni E, Koutras A, Ellul J, Papapetropoulos S, Katsoulas G, et al. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: A randomized controlled trial. Neurology 2005;64:26-31.

94. Huang JS, Wu CL, Fan CW, Chen WH, Yoh KY, Chang PH. Intravenous glutathione appears to reduce the severity of symptomatic platinum-induced neuropathy: A prospective randomized study. J Chemother 2015;27:235-40.

95. Guo Y, Jones D, Palmer JL, Forman A, Dakhil SR, Velasco MR, et al. Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy: A randomized, double-blind, placebo-controlled trial. Support Care Cancer 2014;22:1223-31.

96. Cascinu S, Cordella L, Del Ferro E, Fronzoni M, Catalano G. Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: A randomized double-blind placebo-controlled trial. J Clin Oncol 1995;13:26-32.

97. Colombo N, Bini S, Miceli D, Bogliun G, Marzorati L, Cavaletti G, et al. Weekly cisplatin +/- glutathione in relapsed ovarian carcinoma. Int J Gynecol Cancer 1995;5:81-86.

98. Smyth JF, Bowman A, Perren T, Wilkinson P, Prescott RJ, Quinn KJ, et al. Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: Results of a double-blind, randomised trial. Ann Oncol 1997;8:569-73.

99. Gamelin L, Boisdron-Celle M, Delva R, Guérin-Meyer V, et al. Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy in patients with relapsed refractory multiple myeloma treated with bortezomib, doxorubicin and low-dose dexamethasone: A study from the Wisconsin Oncology Network. Cancer Chemother Pharmacol 2015;74:875-82.

100. Schloss JM, Colosimo M, Aitrey C, Vitetta L. Chemotherapy-induced peripheral neuropathy (CIPN) and vitamin B12 deficiency. Support Care Cancer 2015;23:1843-50.

101. Muto O, Ando H, Ono T, Itagaki H, Kobayashi Y, Onuki M, et al. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: A prospective study of 161 patients receiving oxaliplatin. Jpn J Cancer Res 2004;95:1223-31.

102. LoPrinzi CL, Qin R, Dakhil SR, Fehrenbacher L, Flynn KA, Atherton P, et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (NC08CB/Alliance). J Clin Oncol 2016;34:997-1005.

103. Grothey A, Nikcevich DA, Sloan JA, Kugler JW, Silberstein PT, Densch H, et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCCTG N04C7. J Clin Oncol 2011;29:421-7.
120. Kono T, Mamiya N, Chisato N, Ebisawa Y, Yamazaki H, Watari J, et al. Efficacy of goshajinkigan for peripheral neurotoxicity of oxaliplatin in patients with advanced or recurrent colorectal cancer. Evid Based Complement Alternat Med 2011;2011:418481.

121. Nishioka M, Shinada M, Kurita N, Iwata T, Morimoto S, Yoshikawa k, et al. The Kampo medicine, Goshajinkigan, prevents neuropathy in patients treated by FOLFOX regimen. Int J Clin Oncol 2011;16:322-7.

122. Shindo Y, Tenma K, Imano H, Hibino M, Yoshino K, Nakamura M. Reduction of oxaliplatin-related neurotoxicity by Gosh-jinko-gan. Gan To Kagaku Ryoho 2008;35:863-5.

123. Kono T, Hata T, Morita S, Munemoto Y, Matsui T, Kojima H, et al. Goshajinkigan oxaliplatin neurotoxicity evaluation (GONE): A phase 2, multicenter, randomized, double-blind, placebo-controlled trial of goshajinkigan to prevent oxaliplatin-induced neuropathy. Cancer Chemother Pharmacol 2013;72:1283-90.

124. Yamada T, Kan H, Matsumoto S, Koizumi M, Sasaki J, Tani A, et al. Reduction in oxaliplatin-related neurotoxicity by the administration of Keishikajutsusubuto(TJ-18)and powdered processed aconite root. Gan To Kagaku Ryoho 2012;39: 1687-91.

125. Tatsumi T, Kishi D, Kogure T. The efficacy of ogikeishigomotsuto on chronic cumulative sensory neuropathy induced by oxaliplatin — Case report and literature view. J Tradit Med 2009;26:136-40.

126. Hosokawa A, Ogawa K, Ando T, Suzuki N, Ueda A, Kajiri S, et al. Preventive effect of traditional Japanese medicine on neurotoxicity of FOLFOX for metastatic colorectal cancer: A multicenter retrospective study. Anticancer Res 2012;32:2545-50.

127. Pan L, Gao H, Xing XR. Combined application of traditional Chinese medicine prevention of taxol chemotherapy-induced peripheral neuropathy; A clinical observation. Inner Mongol J Traditional Chin Med 2012;3:28.

128. Yamamoto T, Murai T, Ueda M, Katsuura M, Oishi M, Miwa Y, et al. Clinical features of paclitaxel-induced peripheral neuropathy and role of Gosya-jinko-gan. Gan To Kagaku Ryoho 2009;36:89-92.

129. Fuji K, Okamoto S, Saitoh K, Sasaki N, Takano M, Tanaka S, et al. The efficacy of Shakuyaku-Kanju-to for peripheral nerve dysfunction in paclitaxel combination chemotherapy for epithelial ovarian carcinoma. Gan To Kagaku Ryoho 2004;31:1537-40.

130. Park JW, Jeon JH, Yoon J, Jung TY, Kwon KR, Cho CK, et al. Effects of sweet bee venom pharmacopuncture treatment for chemotherapy-induced peripheral neuropathy: A case series. Integr Cancer Ther 2012;11:166-71.

131. Yoon J, Jeon JH, Lee YW, Cho CK, Kwon KR, Shin JE, et al. Sweet bee venom pharmacopuncture for chemotherapy-induced peripheral neuropathy. J Acupunct Meridian Stud 2012;5:156-65.

132. Hashimoto K, Sakumay Y, Kotani J. Histological study of a paclitaxel-induced peripheral neuropathy model treated with goshajinkigan. J Osaka Dent Univ 2004;38:109-12.

133. Hashimoto K, Sakumay Y, Kotani J. Goshajinkigan improves paclitaxel-induced peripheral neuropathy without affecting anti-tumour efficacy in rodents. J Osaka Dent Univ 2006;40:47-52.

134. Kaku H, Kumagai S, Onoue H, Takada A, Shoji T, Miura F, et al. Objective evaluation of the alleviating effects of goshajinkigan on peripheral neuropathy induced by paclitaxel/carboplatin therapy: A multicentre collaborative study. Exp Ther Med 2012;3:60-5.

135. Ushio S, Egashira N, Sada H, Kawashiri T, Shirahama M, Masuguchi K, et al. Goshajinkigan reduces oxaliplatin-induced peripheral neuropathy without affecting anti-tumour efficacy in rodents. Eur J Cancer 2012;48: 1407-13.

136. Franconi G, Manni L, Schröder S, Marchetti P, Robinson N. A systematic review of experimental and clinical acupuncture in chemotherapy-induced peripheral neuropathy. Evid Based Complement Alternat Med 2013;2013:516916.

137. Barton DL, Wos EJ, Qin R, Mattar BI, Green NB, Lanier KS, et al. A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support Care Cancer 2011;19:833-41.

138. Gewandter JS, Mohile SG, Heckler CE, Ryan JL, Kirshner JJ, Flynn PJ, et al. A phase III randomized, placebo-controlled study of topical amitriptyline and ketamine for chemotherapy-induced peripheral neuropathy (CIPN): A University of Rochester CCOP study of 462 cancer survivors. Support Care Cancer 2014;22:1807-14.

139. Fallon MT, Storey DJ, Krishan A, Weir CJ, Mitchell R, Fleetwood-Walker SM, et al. Cancer treatment-related neuropathic pain: Proof of concept study with menthol — A TRPM8 agonist. Support Care Cancer 2015;23:2769-77.

140. Evangelista S. Novel therapeutics in the field of capsacin and pain. Expert Rev Clin Pharmacol 2015;8:373-5.

141. Takada-Takatori Y, Kume T, Sugimoto M, Katsuki H, Sugimoto H, Akaita A. Acetylcholinesterase inhibitors useful in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology 2006;51:474-86.

142. Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Expert Opin Drug Saf 2004;3:535-46.

143. Scalabrino G, Peracchi M. New insights into the pathophysiology of cobalamin deficiency. Trends Mol Med 2006;12:247-54.

144. Tagialaleta G, Angelucci L, Ramacci MT, Werrbach-Perez K, Jackson GR, Perez-Polo JR. Acetyl-L-carnitine enhances the response of PC12 cells to nerve growth factor. Brain Res Dev Brain Res 1991;59:221-30.

145. Kosaka K, Yokoi T. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells. Biol Pharm Bull 2003;26:1620-2.

146. Yabe T, Tuchida H, Kyohara H, Takeda T, Yamada H. Induction of NGF synthesis in astrocytes by onjisaponins of Polygala tenuifolia, constituents of kampo (Japanese herbal medicine, Ninjin-yoei-to). Phytomedicine 2003;10:106-14.

147. Liu H, Bao YM, Song JJ, An LJ. Codonopsis pilosula (Franch) Nannf total alkaloids potentiate neurite outgrowth induced by nerve growth factor in PC12 cells. Acta Pharmacol Sin 2003;24:913-7.

148. Kang TH, Moon E, Hong BN, Choi SZ, Son M, Park JH, et al. Diosgenin from Dioscorea nipponica ameliorates diabetic neuropathy by inducing nerve growth factor. Biol Pharm Bull 2011;34:1493-8.

149. Lynch JJ rd, Wade CL, Zhong CM, Mikusa JP, Honore P. Attenuation of mechanical allodynia by clinically utilized drugs in a rat chemotherapy-induced neuropathic pain model. Pain 2004;110:56-63.

150. Al Moundhiri MS, Al-Salam S, Al Mahrouque A, Beegam S, Ali BH. The effect of curcumin on oxaliplatin and cisplatin...
neurotoxicity in rats: Some behavioral, biochemical, and histopathological studies. J Med Toxicol 2013;9:25-33.
151. Berry M. The chamomiles. Pharm J 1995;254:191-3.
152. Kwon KR, Choi S, Cha BC. Component analysis of sweet BV and clinical trial on antibody titer and allergic reactions. J Korean Pharmacopuncture Inst 2006;9:79-86.
153. Lee JS, Lee JY, Kwon KR, Lee HC. A study on allergic response between bee venom and sweet bee venom pharmacopuncture. J Korean Pharmacopuncture Inst 2006;9:61-77.
154. Howes MJ, Perry NS, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer's disease and other cognitive disorders. Phytother Res 2003;17:1-18.
155. Muthuraman A, Singh N, Jaggi AS. Protective effect of Acorus calamus L in rat model of vincristine induced painful neuropathy: An evidence of anti-inflammatory and anti-oxidative activity. Food Chem Toxicol 2011;49:2557-63.
156. Bahar AM, Andoh T, Ogura K, Hayakawa Y, Saiki I, Kuraishi Y. Herbal medicine goshajinkigan prevents paclitaxel-induced mechanical allodynia without impairing antitumor activity of paclitaxel. Evid Based Complementary Alternat Med 2013;2013:849754. doi: 10.1155/2013/849754. Epub 2013 Oct 2.
157. Schröder S, Beckmann K, Franconi G, Meyer-Hamme G, Friedemann T, Greten HJ, et al. Can medical herbs stimulate regeneration or neuroprotection and treat neuropathic pain in chemotherapy-induced peripheral neuropathy? Evid Based Complement Alternat Med 2013;2013:423713.
158. Poupon L, Kerckhove N, Vein J, Lamoine S, Authier N, Busserolles J, et al. Minimizing chemotherapy-induced peripheral neuropathy: Preclinical and clinical development of new perspectives. Expert Opin Drug Saf 2015;14:1269-82.