Retraction

Retraction: A Novel approach in Hybrid Median Filtering for Denoising Medical images (IOP Conf. Ser.: Mater. Sci. Eng. 1187 012028)

Published 16 December 2022

This article has been retracted by IOP Publishing following an allegation that this article may contain tortured phrases [1]. IOP Publishing has investigated and agrees the article contains a number of nonsensical phrases that feature throughout the paper, masking overlap with previously published work [2], to the extent that the article makes very little sense. This casts serious doubt over the legitimacy of the article and/or expertise of the authors in this topic.

IOP Publishing wishes to credit PubPeer for bringing the issue to our attention.

The authors neither agree/dissagree to this retraction.

[1] R. Seetharaman, M. Tharun and K. Anandan, 2021, Novel Approach in Hybrid Median Filtering for Denoising Medical Images

[2] https://pubpeer.com/publications/607D9C7A45287F0DA617AC8BC150B3

Retraction published: 16 December 2022
A Novel approach in Hybrid Median Filtering for Denoising Medical images

R. Seetharaman1*, M. Tharun1, K. Anandan2

1Department of ECE, CEG Campus, Anna University, Chennai-600025, India
2PS Division of E & E, TUV SUD South Asia Pvt Ltd, Chennai-600041, India

*Corresponding author email: rseetharamanece@gmail.com, rseetharamanece@annauniv.edu

Abstract. Image denoising is a key pre-processing step in medical image analysis. At current, deep learning-based models have shown a great promise, which outperformed many conventional methods over the past three decades. Speckle noise removal is a major issue in preserving all the delicate details and the edges in ultrasound image processing as it degrades the visual evaluation of ultrasound images. The multiplicative behavior of speckle-noise is converted into additive by using log transform as the additive noise removal is easy as compared to multiplicative noise. An innovative approach for denoising highly distorted images affected by speckle noise is proposed. This paper presents a result of significant work in image denoising and exploring several thresholding methods of denoising images such as SureShrink, VisuShrink and BayesShrink. The results of different approaches of wavelet-based image denoising methods are tabulated to find the best method. The main aim is to show the result of wavelet coefficients on a new basis, so that the noise can be minimized or removed from the data.

1. Introduction

Wavelet changes assist us to address signals with a serious level of sparsity. The rule behind a non-straight wavelet-based signal assessment technique is called wavelet denoising. In Image denoising, the most difficult is to secure the information-bearing designs, for example, edges and surfaces to get great visual quality [1]. During transmission, the picture is tainted by clamor which isn't handily dispensed within image handling. The space field is an information activity technique carried on the first picture and cycles the picture dim worth, for instance, area normal strategy, wiener channel, etc. Clamor is the most irritating issue in picture preparing. One approach to dispose of this issue is the improvement of such a hearty calculation that can play out the handling errands in presence of clamor. The alternate way is to plan a filtration interaction to kill the commotion from pictures. While protecting its components, edges and subtleties. Clamor brings arbitrary varieties into picture that vacillate the first qualities to some various qualities. Causes which might acquaint commotion with pictures remember defects for information transmission, flawed optics, sensor failing, handling methods and electronic impedance. The primary point of denoising is to eliminate clamor from the uproarious picture is accomplished by opposite wavelet change [2]. There are two fundamental kinds of wavelet change ceaseless wavelet change and discrete wave-let change. The PCs are discrete in nature, so PC programs utilize the discrete wavelet change. The discrete change is generally effective according to the computational perspective [3]. The cycle generally manages the
demonstrating of the wavelet change coefficients of unique pictures. The denoising of unique pictures undermined by Gaussian clutter is a broad issue in picture handling. The wavelet change has turned into a significant apparatus to conquer the issue and the wavelets are favorable to vide a structure for signal disintegration as a grouping of signs. The strategies dependent on wavelet portrayals yields very basic calculations that are regularly more remarkable and simpler to work with than customary techniques for work assessment. A full reference picture quality appraisal measurement is utilized for assessing denoising quality across different clutter levels in various manufactured and genuine images [4]. The computerized picture components are known as picture components or picture components or pixels. Comparable pixels are looked across a non-nearby locale, by the reality discovering intently comparative pixels is more plausible than comparative patches [5]. Pixel is the most broadly utilized term to address the components of a computerized picture. A computerized picture is a discrete two-dimensional capacity (2D capacity), work f(x, y), which has been quantized over its area and reach. Without loss of consensus, it will be viewed as that the picture is rectangular fit, comprising of Y rows & X segments.

SAR Speckle commotion evacuation is a superb issue in ultrasound picture preparation utilized for acquiring necessary analytic information for the human body. Numerous picture denoising has generally been drawn closer through the viewpoint of old-style applied science dynamic ideas [6]. The ultrasonic pictures are visually debased by Speckle commotion, to dispose of dot clutter in the ultrasonic pictures, the edges and the fine subtleties of the ultrasonic pictures should be protected. Protecting every one of the fine subtleties of the picture makes testing one. From bounteous approaches to dispose of dot commotion, there is a special strategy that changes over the multiplicativistic conduct of dot clutter into added substance commotion by utilizing log change because the added substance commotion expulsion is a lot simpler than multiplicativistic commotion. The channel is changed in accordance with the control picture denoising impact, so the first picture includes data is more safeguarded while the image is denoised [7]. The wavelet parcel decay is utilized to spot and eliminate the commotion from influenced pixels. The Wiener channel is utilized for a pre-preparing reason. The profound neural organization has been created to lessen commotion in pictures [8]. In this paper, an adjusted mean middle channel is proposed to eliminate commotion and antiquities from the ultrasound liver picture. Test results show that the proposed channel is predominant as far as eliminating spot clutter and curios and safeguarding the edges. Picture preparing has a wide scope of uses in medication, biomedicine and different areas of science and designing [9].

Ultrasound imaging of the liver is a non-intrusive instrument utilized in medication for the determination of liver infections. The nature presence of spot clutter in ultrasound pictures shames the picture quality and influences edges and fine subtleties of pictures which make demonstrative more troublesome. Hence, the picture pre-handling is important for the expulsion of spot commotion which supports the improvement of processed helped finding for programmed grouping of liver infections. In this paper, an adjusted mean middle channel is proposed to eliminate commotion and curios from the ultrasound liver picture. The denoising attributes are assessed as far as picture quality measurements alongside visual quality and the exhibition of the proposed strategy beat a few existing channels. Test results show that the proposed channel is unrivaled as far as eliminating spot commotion and curios and furthermore safeguarding the edges.

2. Novel approach to noise reduction in ultrasound images based on geodesic paths

In this paper, a substitution technique for multiplicativistic commotion decrease in ultrasound pictures is proposed. The motivation behind our undertaking is to discover exact outcomes for the biomedical pictures. We have done it for different clinical pictures. We have taken out the spot clutter from the clinical pictures. We recognized the commotion in the edges which were extremely simple to eliminate. In the event that we eliminate the clutter in the edges, we can decide the precise outcomes which were exceptionally valuable to the patients. One of the basic difficulties in the field of picture handling and PC vision is picture denoising, where the hidden objective is to assess the first picture by smothering clutter from a commotion-polluted rendition of the picture. Picture denoising assumes a significant part in a wide scope of utilizations, for
example, picture rebuilding, visual following, picture enlistment, picture division, and picture characterization, where getting the first picture content is urgent for solid execution. The issue of picture clamor concealment stays an open test, particularly in circumstances where the pictures are procured under helpless conditions where the commotion level is extremely high. The expanding number of patient information in clinical pictures forces an exploration challenge for the logical treatment for diagnosing, identifying, and foreseeing the infections. With the assistance of this venture, we can be ready to discover precise outcomes. The expanding number of patient information in clinical pictures forces an examination challenge for the logical treatment for diagnosing, recognizing, and anticipating the illnesses. The channel procedure denoises the pictures in the most proficient way. here we have utilized a half and half middle channel to demonstrate it. The sets of boisterous information and clean objective pictures are prepared by discriminative profound learning techniques is right now ruled in the field of picture handling [10]. The clever method is a change of the reciprocal denoising plan, which considers the similitude of pixels and their spatial distance [11]. The channel yield is determined as a weighted normal of the pixels which are in the local connection with the focal point of the sifting window, and the loads are elements of the negligible association costs between encompassing pixels. Customarily, the models are prepared in an extremely administered design with debased pictures as sources of info and clean pictures as targets, so the organization adjusts to eliminate the defilement [12]. Exploratory outcomes show that the proposed strategy yields essentially preferable outcomes over the contrary strategies simply in the event of ultrasound pictures sullied by medium and incredible multiplicative commotion unsettling influences [13]. Profound learning is an arising AI method from gained information for better denoising [14].

The term wavelet was initially utilized in the area of seismology to depict the aggravations that radiate and continue outward from a sharp seismic motivation [15]. A wave is an oscillating capacity of time or space and is occasional. Interestingly, wavelets are limited waves. In wavelet investigation, the sign to be broke down is duplicated with a wavelet capacity and afterward the change is figured for each fragment created. The Wavelet Transform, at high frequencies, gives a happy time goal and helpless recurrence goal, while at low frequencies the Wavelet Transform gives great frequencies the helpless time goal. A discretionary sign can be examined as far as scaling and interpretation of a single parent wavelet work (premise). Wavelets permit both time and recurrence analysis of signs at the same time, thus, wavelet portrayal gives an adaptable mathematical instrument to break down transient, time variation (non-fixed) signals that are not genuinely predictable particularly districts of discontinuities include that is common in pictures having discontinuities at the edges. Picture denoising is a significant examination region in the picture handling field that has its wide reach, for example, clinical picture denoising, satellite picture denoising and pressure commotion denoising [16].

3. Mathematical representation of wavelet
The idea of wavelet was stowed away underway of mathematicians significantly over a century prior. In 1873, Karl Weirstrass numerically depicted how a group of capacities can be built by superimposing scaled forms of a given premise work. The term wavelet was initially utilized in the area of seismology to depict the unsettling influences that radiate and continue outward from a sharp seismic motivation. Wavelet implies a "little wave". The diminutiveness alludes to the condition that the window work is of limited length minimal upheld. A wave is a wavering capacity of time or space and is occasional. Interestingly, wavelets are limited waves. They have their energy amassed on schedule and are fit for the investigation of transient signs. In wavelet investigation, the sign to be dissected is duplicated with a wavelet capacity and afterward the change is processed for each section created. The Wavelet Transform, at high frequencies, gives fun time goal and helpless recurrence goal, while at low frequencies the Wavelet Transform gives great frequencies the helpless time goal. Wavelets are capacities produced from one single capacity (premise work) called the Proto-type or mother wavelet by enlargements (scaling) and interpretations (changes) on schedule (Frequency) space. The mother wave condition \(f_{a,0}(t) \) is time scaled by an and abundance scaled by \(\sqrt{|a|} \). The boundary „a”
called enlargement or scaling boundary causes withdrawal of (t) in the time pivot. When a < 1 and extension or extending a > 1. For a < 0, the capacity $f_{a,b}(t)$ brings about time inversion with the widening. Numerically substitute t as (t-b) for an interpretation or change in the time hub as in eqn 1. Wavelet's ability to give spatial recurrence data is the primary justification for this examination. This property guarantees opportunities for better separation between the commotion and the information. There are two sorts of wavelets that change in particular Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). DWT of picture signals creates a nonredundant picture portrayal, which gives better spatial and otherworldly limitation of picture development contrasted and another multi-scale portrayal, for example, Gaussian and Laplacian pyramid [17]. This is called disintegration or examination. The parts can be related once more to the first sign without loss of information. This interaction is called reproduction or amalgamation. The numerical control, which im-employs investigation and amalgamation, is called Discrete Wavelet Transform and Inverse DWT.

HAAR. Utilized for picture pressure. HAAR has been utilized for picture preparation and design recognition.

Daubechies. The Daubechies wavelets are a group of symmetrical wavelets described by a maximal number of evaporating minutes for some given support. There is a scaling capacity that creates an orthogonal multi-rearrangement examination. The principle contrast with the traditional development of Daubechies is that the multiresolution spaces are gotten from scale-subordinate creating capacities [18].

Symlets. The Symlet are almost symmetrical, even, biorthogonal wavelets proposed by Daubechies as adjustments to db family. The properties of the two wavelet families are comparable. sym 6 was utilized in the hard thresholding strategy. The balanced wavelet (symlet) is proposed as a premise work in a multi-goal investigation (MRA) utilizing the discrete wavelet change (DWT) to break down power load utilization signals, notwithstanding, are commonly defiled by non-fixed and non-Gaussian clamor cycles of which no models exist [19].

Coiflets. Coiflets wavelets are discrete wavelets planned by Ingrid Daubechies in line with Donald coifman to have scaling capacities. Properties are balanced, symmetrical, biorthogonal. Sorts of coiflets are 1, 2, 3, 4, 5.

CWT is an execution of the wavelet change utilizing self-assertive scales and practically discretionary wavelets. Nonorthogonal wavelets are utilized for its advancement in the information got by this change for profoundly corresponded. CWT works by registering a convolution of the sign with the scaled wavelet and it is carried out in the CWT module that can be gotten to with Data Process> Integral Trans-forms>CWT.

4. Hybrid Median Filter

Drive commotion decrease or expulsion is a profoundly dynamic examination space of picture preparing. A median filter having great denoising power has been the most famous channel. Its varieties have been proposed in the multistate median channel, middle channel dependent on homogeneity data choice based managed middle channels to work on its presentation. As of late the expansions of numerical morphology to shading pictures have been proposed. The proposed crossover channel consolidates the solid preparing capacities of numerical morphology and a choice-based managed middle channel for commotion concealment or undoing. By utilizing the idea of ASF, an arrangement of disintegration and widening joined with the managed middle channel is made out of line organizing components. It accomplishes extraordinary outcomes as well as produces outwardly palatable remade pictures even in exceptionally high commotion densities. A nonlinear mixture channel for eliminating fixed drive commotion from shading pictures depends on numerical morphology and the middle channel has been proposed. The mixture middle channel, the windowed channel are utilized to eliminate im-beat clamor and to safeguards the edges of the ultrasonic pictures. The fundamental thought behind the channel is for any component of the sign (picture) to apply the middle procedure a few times changing window
shape and afterward take the middle of the got middle qualities. The underlying advance is the decaying of 2D wavelets of single-level processes with Dwt2. The deterioration is finished as for either a specific wavelet (see w-channels for more data) or specific wavelet disintegration channels. The subsequent stage figures the single level 2D discrete wavelet change (DWT) of the information X utilizing the wname wavelet where dwt2 returns the estimate coefficients network and detail coefficients frameworks. Then, at that point, idwt2 order plays out a solitary level two-dimensional wavelet remaking concerning either a standard particular wavelet or specific wavelet recreation channels either low pass channel and high pass channel. The idwt2 utilizes the wavelet to process the single level recreated estimate coefficients mama trix X, in light of guess grid and subtleties frameworks. At long last, BMF performs half breed middle separating of the lattice utilizing aNxN box. Stage 6: The mistake execution of these filters is determined utilizing Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) of the out-put picture as for the information uproarious picture. The proportion is utilized as a quality estimation of the original and packed picture. The distances between the focuses and the relapse line are estimated and afterward determined by figuring out them. For this situation, just DWT is applied as a denoising technique to acquire subgroups (Approximation band, A, and detail groups H, V, and D). This is utilized to estimate the clamor in the sub-band D, condition 6 is utilized to decide standard deviation for the detail subgroups, then, at that point used to discover the limit and incentive for each sub-band. Pixel upsides of each sub-band are recorded and afterward contrasted with the band limit esteem, on the off chance that the pixel esteem is more noteworthy than the edge esteem, it is set to nothing. Something else, the next pixel is prepared (This interaction is rehashed until every one of the pixels is taken care of. Presently, IDWT is applied to denoised subgroups. MSE and PSNR esteem are registered to utilize on the denoised and the first pictures. For this situation, just the median filter is utilized to handle denoising method on the noisy picture, thus getting the denoised picture then, calculating MSE and PSNR values.
Figure 3. Noise removal by db2
Figure 4. Noise removal by db8
Figure 5. Noise removal by db10
Figure 6. Noise removal by HMF
Figure 7. Noise removal by symlets
Figure 8. Noise removal by coiflets
We have applied six different methodologies such as db2, db8, db10, Hybrid Median filter, Symlets, Coiflets to remove noise in the noisy images. Figure 1 and Figure 2 are the input image and noisy image, we will perform various methodologies to noisy image and comparing the results of six methods to conclude the best method. The Daubechies wavelets are a family of orthogonal wavelets characterized by a maximal number of vanishing moments where we applied Daubechies 2, Daubechies 8, and Daubechies 10 in Figure 3, Figure 4, and Figure 5. The db2, db8, and db10 results are similar to each other where these methodologies have removed noise slighter and are less effective. The symlets are nearly orthogonal, symmetrical quite similar to bi-orthogonal properties proposed by Daubechies and this method is applied in Figure 7. The coiflets are discrete wavelets and share the same properties of symlets which is applied in Figure 8. The results of symlets and coiflets are similar to each other and slight variations in the images. The results are better than Daubechies but not effective. In the Figure 6, the noise removed by Hybrid Median Filter and compared with other methodologies. We can able to see the clear image and the result by the Hybrid Median Filter are the effective one.

Table 1. PSNR & MSE values of denoised image

Methodology	MSE	PSNR	FOM	MSSIM	NK
DB2	5.5107e-22	26.0753	0.5345	0.5654	0.8023
DB8	1.0978e-20	24.7760	0.5675	0.5543	0.8123
DB10	1.7007e-20	24.5858	0.5467	0.5232	0.8223
Symlets	1.8964e-20	24.7897	0.5176	0.5012	0.7412
Coiflets	1.9873e-20	24.9878	0.5433	0.5113	0.7623
Hybrid	5.2959	40.9254	0.6243	0.5213	0.8501
Median Filter					

The mean squared error tells how close a relapse line is to a bunch of focuses. It does this by taking the good ways from the focuses to the relapse line (these distances are the "blunders") and figuring out them. The PSNR block registers the peak signal-to-noise ratio, in decibels, between two pictures. This proportion is utilized as a quality estimation between the first and a compacted picture. The Structural Similarity Index measure is a technique for foreseeing the apparent nature of realistic pictures, just as different sorts of advanced pictures and recordings. MSSIM is utilized for estimating the comparability between two pictures. The Normalized cross-correlation (NCC), typically its 2D adaptation, is regularly experienced in format coordinating with calculations, for example, in facial acknowledgment, movement following, enrollment in clinical imaging, and so forth. Its quick calculation becomes basic in time-delicate applications. The MSE and PSNR values are calculated for all the six methodologies and tabulated in Table 1. From the tabulation, we can clearly assert that the values of five parameters results are better for Hybrid Median Filter.

5. Conclusion
In this paper, denoising has been done with various ultrasound images. The image has been resized and denoising has been performed using various wavelet transform techniques such as Haar, Daubechies, symlets, coiflets and hybrid median filter. Its efficiency has been calculated using MSE and PSNR values and it is found that hybrid median filter has been proved to be efficient for eliminating speckle noise in the medical images and it also enhances the visual worth of the medical images. It helps to select the finest wavelet transform for denoising the medical image and it will help in diagnosis.
5.1 Discussion

We have also done with the different wavelet transformation techniques such as db 2, db 8, db 10, haar wavelets. We have added another method called the hybrid median filter. One of the filters is the Hybrid median filter which is an improved version of the median filter, which removes the noise better than the median filter. Image filters produce a new image by finding edges and locate features from an original by operating on the pixel values. There are various filtering techniques in image processing to enhance the quality of the image by removing noise and preserving the image details. To find edges and locate features filters are used, even they help to increase the contrast in the image. On analyzing the various parameters, we have come to know that the hybrid median filter was best compared to the wavelet transformation techniques. The hybrid median filter shows the best result for PSNR and MSE values. In the base paper, they have compared only two parameters. Here we have done for five parameters. Hence compared with all the five parameters we can able to see hybrid median filter was best for the image denoising technique.

5.2 Future work

Our future work is to work with other denoising techniques such as spatial filtering, wavelet thresholding method. On working with this we can find any better way for the fulfilled image denoising. We have also planned to work with many other denoising technique for the betterment of the patients and doctors.

References

[1] Elhoseny M, Shankar K. Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements. Measurement. 2019 Sep 1;143:125-35.
[2] Abdelhamed A, Afifi M, Timofte R, Brown MS. Ntire 2020 challenge on real image denoising: Dataset, methods and results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 2020 (pp. 496-497).
[3] Honzátko D, Kruliš M. Accelerating block-matching and 3D filtering method for image denoising on GPUs. Journal of Real-Time Image Processing. 2019 Dec;16(6):2273-87.
[4] Thanh DN, Hien NN, Prasath S. Adaptive total variation L1 regularization for salt and pepper image denoising. Optik. 2020 Apr 1;208:163677.
[5] Hou Y, Xu J, Liu M, Liu G, Liu L, Zhu F, Shao L. NLH: A blind pixel-level non-local method for real-world image denoising. IEEE Transactions on Image Processing. 2020 Mar 19;29:5121-35.
[6] Mildenhall B, Barron JT, Chen J, Sharlet D, Ng R, Carroll R. Burst denoising with kernel prediction networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018 (pp. 2502-2510).
[7] Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh CH, Connelly A. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019 Nov 15;202:116137.
[8] Yuan N, Zhou J, Qi J. Low-dose CT image denoising without high-dose reference images. In 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine 2019 May 28 (Vol. 11072, p. 110721C). International Society for Optics and Photonics.
[9] Thanh DN, Hien NN, Prasath VS, Hai NH. Automatic initial boundary generation methods based on edge-detectors for the level set function of the chan-vese segmentation model and applications in biomedical image processing. In Frontiers in Intelligent Computing: Theory and Applications 2020 (pp. 171-181). Springer, Singapore.
[10] Krull A, Buchholz TO, Jug F. Noise2void-learning denoising from single noisy images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019 (pp. 2129-2137).
[11] Malik K, Smolka B. Modified bilateral filter for the restoration of noisy color images. In International Conference on Advanced Concepts for Intelligent Vision Systems 2012 Sep 4 (pp. 72-83). Springer, Berlin, Heidelberg.

[12] Laine S, Karras T, Lehtinen J, Aila T. High-quality self-supervised deep image denoising. Advances in Neural Information Processing Systems. 2019;32:6970-80.

[13] Rosa R, Monteiro FC. Performance analysis of speckle ultrasound image filtering. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2016 Jul 3;4(3-4):193-201.

[14] Xie D, Li Y, Yang H, Bai L, Wang T, Zhou F, Zhang L, Wang Z. Denoising arterial spin labeling perfusion MRI with deep machine learning. Magnetic resonance imaging. 2020 May 1;68:95-105.

[15] Kaur J, Kaur M, Kaur P, Kaur M. Comparative analysis of image denoising techniques. International Journal of Emerging Technology and Advanced Engineering. 2012 Jun;2(6):296-8.

[16] Park B, Yu S, Jeong J. Densely connected hierarchical network for image denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 2019 (pp. 0-0).

[17] Bnou K, Raghay S, Hakim A. A wavelet denoising approach based on unsupervised learning model. EURASIP Journal on Advances in Signal Processing. 2020 Dec;2020(1):1-26.

[18] Vonesch C, Blu T, Unser M. Generalized Daubechies wavelet families. IEEE Transactions on Signal Processing. 2007 Aug 20;55(9):4415-29.

[19] Swee EG, Elangovan S. Applications of symlets for denoising and load forecasting. In Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS’99 1999 Jun 16 (pp. 165-169). IEEE.