THE OLD AND THE NEW OF PARITY-VIOLATING TWO-PION-EXCHANGE NN POTENTIAL

C. H. HYUN

Department of Physics Education, Daegu University, Gyeongsan 712-714, Korea
hch@color.skku.ac.kr

B. DESPLANQUES

LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, INPG,
F-38026 Grenoble Cedex, France

S. ANDO

Theoretical Physics Group, School of Physics and Astronomy,
The University of Manchester, Manchester, M13 9PL, UK

C.-P. LIU

Department of Physics, University of Wisconsin-Madison,
1150 University Avenue, Madison, WI 53706-1390, USA

Received (Day Month Year)
Revised (Day Month Year)

We consider the parity-violating two-pion-exchange potential obtained from the covariant formalism in the past and the state-of-the-art effective field theory approach. We discuss the behavior of the potential in coordinate space and its application to the parity-violating asymmetry in $\vec{np} \rightarrow \vec{d}\gamma$ at threshold.

Keywords: Nucleon-nucleon interaction; Applications of electroweak models to specific processes

PACS Nos.: 13.75 Cs, 12.15 Ji

1. Introduction

Effective field theory (EFT) approach, which shed new light on the methodology of nuclear physics, was used to reformulate the parity-violating (PV) nucleon-nucleon (NN) interaction recently, and the potential has been applied to a few two-nucleon problems. The PV two-pion-exchange (TPE) contribution to physical observables turned out to be non-negligible, but was not so significant as the TPE in the strong NN interaction. On the other hand, a PV NN contact term parametrized by a low-energy constant (LEC), which is presumed to subsume the heavy degrees of freedom and higher-order corrections, is comparable to the PV TPE contribution.
More importantly, the LEC term (the contact term) is highly singular at short distances and depends critically on the regularization methods and renormalization schemes. With the lack of experimental data to determine the LEC value, it is not feasible to sharpen the theoretical prediction furthermore.

As a partial resolution to the uncertainty associated with the LEC term, we consider the covariant formulation of the PV TPE potential, which was already carried out in 1970's.\cite{5} Compared to the TPE and LEC terms in EFT, the covariant formalism gives a potential which is finite and has no unknown constant. Moreover, it is less singular at short distances than that from EFT, and contains more higher-order $1/M$ contributions. In this work we focus on comparing the TPE potential from the covariant formalism with that from EFT. By calculating a PV asymmetry in $\vec{n}p \to d\gamma$ with these potentials, we estimate the correction from the higher-order terms embedded in the covariant potential. The analysis will provide an indirect estimation of the correction due to the LEC term in EFT.

2. Formalism

The PV TPE potential contains various spin and isospin components. Keeping the spin and isospin operators only relevant for the asymmetry A_γ in $\vec{n}p \to d\gamma$, we get the following expression:

$$V_{\text{TPE}}^{\vec{n}p}(\vec{r}) = i(\vec{\tau}_1 \times \vec{\tau}_2)^i (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot [\vec{p}, v_{56}(r)] + (\vec{\tau}_1^z - \vec{\tau}_2^z) (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \{\vec{p}, v_{75}(r)\}. \quad (1)$$

The radial part of the potential in the covariant approach can be written in the form

$$v_{ij}^{c\text{ov}}(r) = \frac{1}{4\pi^2} \int_{4m^2_\pi}^{\infty} dt' g_{ij}(t') \frac{e^{-r\sqrt{t'}}}{\sqrt{t'}}, \quad (2)$$

where m_π is the pion mass and $g_{ij}(t')$'s are the spectral functions for given indices i and j. We have g_{56} and g_{75} as

$$g_{56}(t') = \frac{g^3_{\pi NN} h^1_\pi}{32\sqrt{2}\pi} \left[- \frac{1}{2M} \frac{H x}{x^2 + 4M^2 q^2_x} - \frac{x}{M} \frac{1}{m^2_\pi} \arctg\left(\frac{m^2_\pi}{2Mq_x} \right) \right] + \int_{k^2_\perp}^{k^2_z} \frac{dk^2}{\sqrt{k^2 t' - (m^2_\pi + k^2)^2}} \frac{1}{2E(E + M)} \left[\frac{x}{M^2} + \frac{k^2}{M(E + M)} \right],$$

$$g_{75}(t') = \frac{g^3_{\pi NN} h^1_\pi}{32\sqrt{2}\pi} \left[\frac{4x^2}{M^2 m^2_\pi t'} \arctg\left(\frac{m^2_\pi}{2Mq_x} \right) + \frac{2G}{Mt'} \right] - \int_{k^2_\perp}^{k^2_z} \frac{dk^2}{\sqrt{k^2 t' - (m^2_\pi + k^2)^2}} \frac{2}{E(E + M)} \left[\frac{x^2 + 2EMx}{Mt'} - \frac{k^2 t' + k^4}{M(E + M)t'} \right]. \quad (3)$$

where M is the nucleon mass and h^1_π the weak πNN coupling constant. The definitions of the functions $g_\pi, \chi^2, x, H, G, k^2_\perp$ and E, which are non-linear functions of t' and M, can be found in Ref. 7. Due to the non-linearity of these functions, when expanded in terms of $1/M$, g_{56} and g_{75} have infinite terms in the power of $1/M$.
In order to understand the relation between the covariant and EFT approaches, we take the large nucleon mass (LM) limit for the spectral functions. Keeping only the leading terms of $1/M$ in each function, we have

$$
\lim_{M \to \infty} g_{56}(t') = -\frac{g_{3}^{2}NNh_{\pi}^{1}}{32\sqrt{2}\pi q_{\pi}M^{2}}, \quad \lim_{M \to \infty} g_{75}(t') = \frac{g_{3}^{2}NNh_{\pi}^{1}}{32\sqrt{2}\pi} \frac{\pi}{4M^{4}} (g_{\pi}^{2} + 3x). \quad (4)
$$

For g_{56} the leading order is $1/M^{3}$; for g_{75}, it is $1/M^{4}$. Consequently, v_{56} becomes the leading term in LM, and v_{75} is higher-order in $1/M$. We have explicit form for v_{56} in momentum space as

$$
v_{56}^{LM}(q) = -\sqrt{2}\pi g_{3}^{2}NNh_{\pi}^{1} \left[g_{A}^{3}L(q) - g_{A}^{3} \left(3 - \frac{4m_{\pi}^{2}}{4m_{\pi}^{2} + q^{2}} \right) L(q) \right], \quad (5)
$$

where g_{A} is the axial coupling constant and the definition of $L(q)$ can be found in Ref. 2. The component v_{56}^{LM} given by Eq. (5) is almost the same as the corresponding TPE term in EFT, except for the factor g_{A}^{3} of the first term in the square bracket, which is g_{A} in EFT. 2 The discrepancy is explained in Ref. 7, and it is concluded that the leading $1/M$ term extracted from the covariant form is in principle equivalent to the TPE term obtained from EFT. In the next section, we present numerical results for the potentials and their application.

3. Numerical Results

Fig. 1 shows the v_{56} and v_{75} components of the PV TPE potential in coordinate space multiplied by r^{2}. In the short-range region (left panel), the covariant terms v_{56} and v_{75} both show non-singular behavior around $r = 0$, while the LM term diverges as $r \to 0$. We expect that when a properly renormalized LEC term is added to v_{56}^{LM}, it will make the net behavior less singular at small r. On the other hand, the covariant and LM forms show convergent behavior in the long-range region (right panel).

The PV asymmetry A_{γ} in $\bar{n}p \to d\gamma$ is defined as the photon asymmetry with respect to the neutron polarization. Treating h_{π}^{1} perturbatively and keeping only the
leading-order contribution, A_{γ} is proportional to h_1^{π}, i.e. $A_{\gamma} = a_{\gamma} h_1^{\pi}$. The factor a_{γ} depends on both strong and weak dynamics. In order to reduce the uncertainty from the strong interaction, we employ the Argonne v18 potential to obtain the parity-conserving part of the wave function. Numerical results for a_{γ} are summarized in Table 1. The covariant contributions from v^{56}_{cov} and v^{75}_{cov} are summed to cancel strongly, $0.0093 - 0.0040 = 0.0053$, which is much smaller than the one-pion-exchange (OPE) one, -0.1120. Comparing the contribution of v^{56}_{cov}, which contains infinite orders of $1/M$, with v^{LM}_{56}, which is proportional to $1/M^3$, the higher-order $1/M$ corrections are non-negligible, but less significant than the leading $1/M$ contribution.

In summary, the behavior of the potential at short distances and the PV asymmetry in $\vec{n}p \rightarrow d\gamma$ show that the uncertainty due to the corrections from the degrees of freedom integrated out of the model is still significant, and it requires further investigation. However, the TPE and higher-order contributions to A_{γ}, in either covariant or EFT form, gives a correction about 10% at most. Recent calculations of the $\Delta(1232)$ resonance contribution to the PV potential in EFT show that the present result of A_{γ} is not much affected by the Δ contribution. To the extent investigated so far, A_{γ} is dominated by the PV OPE potential with an uncertainty of about 10% at most. The precise measurement of A_{γ} will thus provide a unique opportunity to determine the value of h_1^{π}.

Acknowledgments

Work of CHH was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-313-C00178). SA is supported by STFC grant number PP/F000448/1.

References

1. S.-L. Zhu et al., Nucl. Phys. A 748, 435 (2005).
2. C.H. Hyun, S. Ando and B. Desplanques, Phys. Lett. B 651, 257 (2007); Eur. Phys. J. A 32, 513 (2007).
3. C.-P. Liu, Phys. Rev. C 75, 065501 (2007).
4. B. Desplanques, Phys. Lett. 41B, 461 (1972).
5. H. Pirner and D.O. Riska, Phys. Lett. 44B, 151 (1973).
6. M. Chemtob and B. Desplanques, Nucl. Phys. B 78, 139 (1974).
7. B. Desplanques et al., in preparation.
8. N. Kaiser, Phys. Rev. C 76, 047001 (2007).