Data Article

Optimal schemes of radial network arch pedestrian bridges: An extensive dataset of solutions under different conditions

Rimantas Belevičius*, Algirdas Juozapaitis, Dainius Rusakevičius, Sigutė Žilėnaitė

Vilnius Gediminas Technical University (VGTU), Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

A R T I C L E I N F O

Article history:
Received 26 March 2021
Revised 7 May 2021
Accepted 11 May 2021
Available online 15 May 2021

Keywords:
Pedestrian radial network arch bridge
Mass minimization
Topology
Shape
Sizing parameters

A B S T R A C T

This data article provides a series of 220 optimal parameter sets of steel radial network arch pedestrian bridge schemes. Each set includes 10 design parameters for a two-dimensional bridge frame: the arch rise, the number of hangers, their (variable) spread and central angles, and the dimensions of the arch, girder, and hangers. Additionally, solutions are provided for different initial conditions such as constant hanger angles, given ratio values between the arch rise and the bridge span, given hanger diameters, and for the condition of hangers' verticality. These data are related to the research article “Parametric study on mass minimization of radial network arch pedestrian bridges” (Belevičius et al., 2021). In this paper, the bridge scheme was optimized seeking for the minimal bridge mass under different loading cases according to recommendations of Eurocode EN 1991–2. Since the optimization problem is multimodal, and the employed stochastic global optimization algorithms provide different solutions for each run of the algorithm, we render the five best parameters' sets for every problem. In many cases, close objective function values correspond to fairly distinct parameter values. This dataset could be used by bridge designers as an initial design hint by choosing the appropriate parameters set.

DOI of original article: 10.1016/j.engstruct.2021.112182
* Corresponding author.
E-mail address: rimantas.belevicius@vgtu.lt (R. Belevičius).

https://doi.org/10.1016/j.engstruct.2021.112182
Specifications Table

Subject	Engineering
Specific subject area	Civil and Structural Engineering, Computational Mechanics
Type of data	Table
How data were acquired	All the solutions obtained employing the software consisting of three independent original programs: meshing program that from 10 design parameters renders all initial data for finite element (FE) program; FE linear static analysis program, and program that analyses the FE results, evaluates the objective function value, checks the constraints and penalizes the objective function value if needed. The FE program is validated comparing with ANSYS [2] results. As an optimization algorithm, the genetic and particle swarm algorithms from MatLab [3,4] were used.
Data format	Raw Filtered
Parameters for data collection	We collected 10 main parameters that fully describe the design of the bridge from the five best solutions for each analyzed problem. The parameters include the arch rise/bridge span ratio, the number of hangers, the hanger spread and central section angles and their variations, and the dimensions of all construction elements. The bridge arch and girder are designed of S355 steel rectangular tube profiles, while the hangers are designed of solid round profiles.
Description of data collection	Since every run of the stochastic global optimization algorithm usually ends up with different values of the objective function, each problem was solved several times. The total number of solutions varied depending on the problem's initial conditions and was not less than 50. The calculations were stopped when the median value of the objective function did not change over the last runs of the optimization algorithm.
Data source location	The dataset presented in this paper was collected from Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania
Data accessibility	Data: with the article Software: Mendeley data repository, direct URL to archive: https://data.mendeley.com/datasets/ctbgc679/1
Related research article	R. Belevičius, A. Juozapaitis, D. Rusakevičius, Š. Žilenaitė, Parametric Study on Mass Minimization of Radial Network Arch Pedestrian Bridges, Eng. Struct. 2021 (237), DOI: 10.1016/j.engstruct.2021.112182 [1]

Value of the Data

• This dataset of main topological, shape, and sizing parameters of pedestrian radial network arch bridge has practical importance for the fast designing of pedestrian radial network arch bridges.
• Civil engineers and architects can use this dataset for the designing process. Researchers can use this data to analyze the most influential parameters on the mass of bridges or use the data as a basis for comparison with their findings on optimal schemes of radial network arch bridges.
• Civil engineers and architects can use this data as a hint for their design. All the parameters are provided in continuous forms, and the designer may choose appropriate profiles from the assortment tables and round the values of the angles, rise/span ratio, etc. to the ones more suitable for engineering practice. Since the optimized solution is very sensitive to the smallest parameter changes, after rounding a detailed analysis of the scheme is needed.
1. Data Description

This data article presents optimal values of topological, shape, and sizing parameters of pedestrian radial network arch bridge frame. The nomenclature of topological and shape parameters is shown in Fig. 1.

The arch and the girder are made of S355 steel rectangular tube profiles, while the hangers are designed of solid round profiles. All profiles of rectangular tubes are constant along all length of construction. All hangers have the same diameter. Thus, the sizing parameters include the widths and heights of rectangular tubes of the arch and girder and the diameter of hangers.

Fig. 2 explains how the hanger arrangement is obtained in the case of constant spread and central section angles α and β. Generally, both angles constantly vary along the bridge span. Going from hanger to hanger in Fig. 1, the spread angle is augmented by $\Delta\alpha$. In case of constantly changing central section angle, it is more convenient to postulate the ratio β_{ini} between initial central section angle and the average angle $\beta_{\text{avg}} = \gamma/n$, where $\gamma = \arcsin\left(\frac{4f^2}{L^2+4f^2}\right)$ is the

![Fig. 1](modified from [1]) Nomenclature of topological and shape parameters: α – hanger spread angle, β – central section angle, γ – total central angle, f – arch rise, L – bridge span.

![Fig. 2](Generation of the bridge scheme at the constant hanger angles: a) initial scheme of hangers, b) final scheme – obtained by the mirror image.)
total central angle, and \(n \) is the number of sections (the total number of hangers is \(2n \)). Then the central section angle increment is obtained via
\[
\Delta \beta = 2 \frac{\gamma - n}{n(n-1)} \beta_{\text{avg}} \beta_{\text{ini}}.
\]

Thus, at \(\beta_{\text{ini}} > 1 \) the hangers’ mesh is denser at the center of the scheme, and vice versa. All the design parameters along with their bound are listed in Table 1.

The bridge scheme was optimized at different initial conditions of parameters.

Tables 2 to 5 present solutions at arbitrary values of all 10 design parameters, constant central section angle \(\beta \), constant spread angle \(\alpha \), and both constant angles \(\beta \) and \(\alpha \). Besides, the total mass of the whole frame \(M \), and the frame elements’ masses \(M_a, M_g, \) and \(M_h \) – masses of an arch, girder, and hangers, all in kg, are provided. The standard deviation and average of solution parameter values through 100 (50) independent numerical experiments also are presented.

Tables 6 to 9 present solutions at four variants of hangers’ angles (arbitrary values of both angles \(\beta \) and \(\alpha \), constant central section angle \(\beta \), constant spread angle \(\alpha \), and both constant angles \(\beta \) and \(\alpha \)) and six constant values of the ratio \(f/L \) (1/2, 1/3, 1/4, 1/5, 1/6, and 1/7 (the arch rise \(f \) is 30, 20, 15, 12, 10, and 8.57, correspondingly)).

Tables 10 to 13 present solutions at four variants of hangers’ angles (arbitrary values of both angles \(\beta \) and \(\alpha \), constant central section angle \(\beta \), constant spread angle \(\alpha \), and both constant angles \(\beta \) and \(\alpha \)), plus four restricted values of hangers’ radius \(r_h \): \(\geq 5, \geq 10, \geq 14, \) and \(\geq 20 \) mm.
Table 3

Five best solutions at $\beta = \text{const.} \ (\beta_{\text{in}} = 1)$.

Parameters	Five best solutions	Mean	σ
f	16.75	16.683	0.883
n	33	34	6.20
α	7.87	9.01	6.33
$\Delta \alpha$	1.204	1.020	2.28
h_a	0.306	0.429	0.318
w_a	0.1156	0.0940	0.0932
h_b	0.264	0.237	0.248
w_b	0.0871	0.0884	0.0880
r_h	0.00542	0.00559	0.00116
M	2911	2951	17.99
M_g	1499	1525	16.68
M_h	788	740	97.7
M_{in}	624	686	51.7

Table 4

Five best solutions at $\alpha = \text{const.} \ (\Delta \alpha = 0)$.

Parameters	Five best solutions	Mean	σ
f	13.88	13.73	0.533
n	33	21.7	4.79
α	30.1	31.3	1.02
β_{in}	1.289	1.334	1.037
h_a	0.275	0.383	0.076
w_a	0.1294	0.1145	0.0168
h_b	0.294	0.285	0.0969
w_b	0.0942	0.1005	0.0153
r_h	0.00538	0.00116	0.000794
M	3012	3159	80.9
M_g	1528	1632	51.1
M_h	942	979	42.1
M_{in}	541	547	16.6

2. Experimental Design, Materials and Methods

To obtain the dataset presented in this paper, numerical experiments were performed employing original software and stochastic global optimization algorithms from MATLAB.

Original software in FORTRAN consists of three independent parts: the first code, meshing program, prepares the whole data set for the FE analysis program from a set of design parameters. The bridge is idealized as a plane frame system. The meshing program evaluates the coordinates of all finite element nodes that are placed at the intersections of structural elements: arch, girder, and hangers. The parts of all structural elements between nodes are idealized as 2-node beam finite elements with 12 degrees of freedom. The hangers that receive only tensile forces and are slender are also idealized as beam finite elements. All connections between finite elements are considered ideal contacts, that is, all connections are perfectly rigid. The program calculates also the stiffness characteristics of all finite elements, evaluates the nodal loads from four loading cases according to the Eurocode EN 1991–2 (Eurocode 1 – Actions on structures – Part 2: Traffic loads on bridges), provides the finite element connectivity information, and imposes the boundary conditions on the degrees of freedom to be excluded. It is assumed that the bridge frame is supported by a hinge at one side and simply supported at the other. Due to
Generally, the tolerance. Following, we consider the structural parameters. For the sake of brevity, we only discuss the algorithm where the parameters are kept constant. Considering the following constraints, one can derive that the thickness of the tube wall is chosen to ensure the local stability of the cross-section. The material of all structural elements is steel S355.

The second original program performs linear static analysis via FE method. The results of the program are validated by comparison with ANSYS. We cannot directly use the ANSYS [2] or more precise analysis types since the bottleneck of the computational procedure is the computation time, and the fast problem-oriented program is an evident necessity.

The third program evaluates the objective function value, i.e. the total mass of the bridge scheme and checks the structural equilibrium constraints, the strength constraints on all structural elements, the stability constraints on the arch elements, and the possible relaxation of any hanger. The relaxation of any hanger conditions a dead penalty. In case of any other constraint violation, the program penalizes the objective function value. For any trespass of the allowable value of \(c_i \), the following penalty on the objective function \(F \) is assigned:

\[
F := F \left(\frac{|c_i - c_{\text{allowable}}|}{c_i} \right) p,
\]

where the penalty factor \(p = 2 \).

The starting module of all software system is MATLAB’s stochastic evolutionary optimization algorithm (EA) requiring no sensitivity information. Two algorithms were employed: the genetic algorithm [3] and particle swarm algorithm [4]. Both EA algorithms provided close results. Initially, the optimization algorithm randomly generates a given number of initial sets of design parameters. Now all three FORTRAN programs, connected to the optimization algorithm as a “black-box”, calculate the objective function value. Based on these results, EA generates the new improved design parameters’ guess. The whole optimization cycle continues until one of the following criteria is reached: the maximum given number of the populations is achieved, or the objective function value does not change over the given number of the last populations or the weighted average of the objective function per given number of generations is less than a given tolerance.

Usually, each run of the program set ends up with different results. Therefore, the optimization is repeated several times until the median value of the objective function does not change. Generally, each problem was run 50–100 times.

Table 5

Five best solutions at \(\beta, \alpha = \text{const.} \). \(\beta_{\text{ini}} = 1, \Delta \alpha = 0 \).

Parameters	Five best solutions	100 solutions					
	1	2	3	4	5	Mean	σ
\(f \)	13.91	13.52	13.58	13.52	14.02	13.36	0.453
\(n \)	36	34	32	32	36	25	5.97
\(\alpha \)	32.7	32.7	32.1	32.4	29.4	32.5	1.90
\(h\alpha \)	0.563	0.463	0.436	0.420	0.362	0.381	0.0865
\(w\alpha \)	0.0822	0.0984	0.1033	0.1058	0.1153	0.1200	0.0158
\(h_k \alpha \)	0.338	0.281	0.314	0.333	0.300	0.321	0.0721
\(w_k \alpha \)	0.0857	0.0978	0.0908	0.0876	0.0917	0.0969	0.0124
\(r_h \)	0.00565	0.00582	0.00602	0.00605	0.00583	0.00697	0.00102
\(M \)	3231	3269	3280	3282	3282	3427	138.9
	1566	1616	1632	1626	1618	1717	88.4
	938	954	949	952	927	1029	74.2
	726	698	699	704	737	681	43.5
Table 6

Five best solutions at both arbitrary angles β and α, and given values of the ratio f/L.

Parameters	1	2	3	4	5	Mean	σ
f	30	30	30	30	30	30	30
	20	20	20	20	20	20	20
	15	15	15	15	15	15	15
	12	12	12	12	12	12	12
	10	10	10	10	10	10	10
n	28	28	28	28	28	28	28
	27	27	27	27	27	27	27
	22	22	22	22	22	22	22
	20	20	20	20	20	20	20
	19	19	19	19	19	19	19
α	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	7.3	7.3	7.3	7.3	7.3	7.3	7.3
	8.6	8.6	8.6	8.6	8.6	8.6	8.6
$\Delta \alpha$	1.34	1.34	1.34	1.34	1.34	1.34	1.34
β_{m}	1.47	1.47	1.47	1.47	1.47	1.47	1.47
h_s	0.472	0.472	0.472	0.472	0.472	0.472	0.472
w_s	0.1136	0.1136	0.1136	0.1136	0.1136	0.1136	0.1136
h_g	0.815	0.815	0.815	0.815	0.815	0.815	0.815
w_g	0.1102	0.1102	0.1102	0.1102	0.1102	0.1102	0.1102

(continued on next page)
Table 6 (continued)

Parameters	1	2	3	4	5	Mean	σ
r_h	0.00641	0.00637	0.00627	0.00642	0.00618	0.00767	0.001246
	0.00585	0.00537	0.00589	0.00582	0.00544	0.00601	0.000485
	0.00578	0.00611	0.00617	0.00593	0.00597	0.00694	0.000734
	0.00561	0.00615	0.00659	0.00768	0.00781	0.00802	0.000871
	0.00793	0.00768	0.00883	0.00871	0.00862	0.00927	0.000916
	0.00929	0.00958	0.00926	0.00996	0.00997	0.01085	0.000943
M	6704	6780	6940	6955	6970	7891	830
	2825	2833	2847	2849	2851	2955	103.1
	2946	2950	2956	2956	2960	3046	82.3
	3244	3331	3385	3387	3387	3470	90.5
	3894	3903	3949	3973	3994	4125	118.2
	4696	4717	4721	4724	4727	4860	126.1
M_b	2701	2567	2792	2778	2697	3243	605
	1489	1470	1492	1515	1499	1547	66.8
	1512	1520	1546	1512	1547	1571	40.4
	1702	1724	1815	1767	1773	1806	41.2
	2053	2096	2085	2157	2059	2131	70.7
	2395	2363	2422	2458	2360	2476	124.6
M_s	2649	2848	3007	2968	2998	3326	287
	682	705	691	684	703	735	46.0
	867	853	853	890	849	906	35.2
	1047	1116	1067	1118	1099	1146	58.1
	1369	1321	1380	1323	1465	1509	118.5
	1814	1836	1839	1808	1908	1918	106.2
M_b	1354	1365	1140	1208	1275	1321	193.8
	654	659	665	649	649	673	26.0
	567	578	557	554	564	569	41.5
	495	492	503	501	515	517	23.3
	472	486	484	493	470	486	21.7
	488	518	460	458	459	466	26.1

Table 7

Five best solutions at $\beta = \text{const.} (\beta_m = 1)$ and given values of the ratio f/L.

Parameters	1	2	3	4	5	Mean	σ
f	30	30	30	30	30	30	30
	20	20	20	20	20	20	20
	15	15	15	15	15	15	15
	12	12	12	12	12	12	12
	10	10	10	10	10	10	10
	8.57	8.57	8.57	8.57	8.57	8.57	8.57
n	31	35	28	27	26	22.3	5.76
	36	35	29	31	36	30.6	4.08
	31	30	33	30	33	26.5	3.54
	23	23	26	26	23	17.04	4.19
	16	16	15	15	15	11.82	1.837
	12	12	10	10	10	8.24	1.117
α	8.66	7.38	9.46	10.34	10.24	12.08	3.27
	5.16	5.65	5.94	8.18	6.15	7.61	1.774
	17.69	17.39	18.93	18.07	20.0	21.2	2.57
	32.4	32.3	31.7	28.7	30.9	34.1	3.66
	32.2	32.6	32.5	32.3	32.5	32.5	0.802
	34.9	34.7	35.0	35.0	35.0	35.0	0.0537

(continued on next page)
Table 7 (continued)

Parameters	1	2	3	4	5	Mean
Δα	0.845	0.810	0.906	0.878	0.945	1.039
	1.187	1.251	1.495	1.324	1.096	1.257
	0.872	0.972	0.654	0.889	0.725	0.853
	0.426	0.469	0.418	0.561	0.653	0.628
	0.645	0.584	0.971	0.847	0.891	0.999
	1.311	1.483	1.483	1.470	1.486	1.484
h₀	0.495	0.465	0.557	0.510	0.519	0.555
	0.388	0.438	0.401	0.441	0.408	0.341
	0.402	0.355	0.423	0.284	0.453	0.363
	0.381	0.356	0.405	0.213	0.274	0.425
	0.515	0.303	0.371	0.601	0.490	0.488
	0.261	0.483	0.368	0.393	0.359	0.507
w₀	0.1136	0.1147	0.1067	0.1146	0.1130	0.1202
	0.0934	0.0837	0.0918	0.0845	0.0914	0.1064
	0.1025	0.1117	0.1001	0.1268	0.0936	0.1144
	0.1207	0.1274	0.1182	0.1651	0.1458	0.1202
	0.1238	0.1620	0.1492	0.1112	0.1278	0.1298
	0.1999	0.1468	0.1712	0.1638	0.1734	0.1478
h₀	0.949	0.904	0.952	0.962	0.964	0.900
	0.179	0.268	0.228	0.263	0.201	0.234
	0.321	0.237	0.254	0.299	0.262	0.274
	0.410	0.284	0.179	0.211	0.253	0.314
	0.242	0.298	0.209	0.291	0.230	0.384
	0.252	0.218	0.302	0.333	0.298	0.399
w₉	0.1189	0.1254	0.1197	0.1202	0.1206	0.1341
	0.0969	0.0806	0.0875	0.0800	0.0897	0.0883
	0.0815	0.0990	0.0936	0.0869	0.0947	0.0946
	0.0880	0.1107	0.1378	0.1307	0.1203	0.1114
	0.1451	0.1390	0.1607	0.1341	0.1524	0.1244
	0.1745	0.1828	0.1608	0.155	0.1624	0.1475
rₙ	0.00705	0.00681	0.00744	0.00746	0.00765	0.00832
	0.00561	0.00570	0.00626	0.00609	0.00572	0.00623
	0.00570	0.00578	0.00564	0.00587	0.00560	0.00634
	0.00667	0.00669	0.00632	0.00633	0.00675	0.00800
	0.00834	0.00835	0.00863	0.00861	0.00861	0.00981
	0.01009	0.01007	0.01102	0.01101	0.01103	0.01204
M	8053	8140	8143	8161	8167	8662
	3051	3061	3093	3095	3098	3224
	3007	3025	3045	3047	3048	3138
	3404	3425	3427	3437	3446	3595
	4106	4110	4145	4147	4159	4269
	4842	4847	4862	4871	4872	5247
Mₐ	2811	2701	2884	2907	2902	3267
	1480	1441	1491	1464	1505	1542
	1548	1559	1570	1552	1536	1591
	1725	1751	1762	1758	1732	1828
	2194	2073	2141	2202	2189	2194
	2474	2514	2495	2472	2498	2579
M₉	3298	3352	3334	3381	3399	3578
	685	725	711	708	671	725
	847	854	837	865	870	888
	1133	1123	1112	1142	1154	1199
	1438	1561	1518	1466	1489	1601
	1904	1865	1910	1942	1915	2044

(continued on next page)
Table 7 (continued)

Parameters	1	2	3	4	5	Mean	σ
M_b	1943	2087	1925	1873	1866	1816	173.6
	886	895	891	923	923	956	48.1
	611	612	638	630	642	658	34.3
	546	551	553	538	560	568	30.1
	474	476	486	478	481	475	7.10
	465	467	457	456	458	434	14.0

Table 8

Five best solutions at $\alpha = \text{const.} \ (\Delta \alpha = 0)$ and given values of the ratio f/L.

Parameters	1	2	3	4	5	Mean	σ
f	30	30	30	30	30	31.4	3.63
	20	20	20	20	20	30.3	1.922
	15	15	15	15	15	30.8	1.071
	12	12	12	12	12	34.4	1.995
	10	10	10	10	10	39.0	2.18
	8.57	8.57	8.57	8.57	8.57	41.4	1.566
n	39	43	39	33	43	31.4	3.63
	10	11	13	9	8	14.76	5.82
	33	33	28	26	27	21.9	4.64
	29	28	26	28	24	20.8	4.88
	23	22	22	19	19	15.3	3.30
	16	15	15	15	15	10.9	2.39
α	19.83	19.96	19.93	20.1	19.33	20.8	0.590
	31.5	30.9	30.1	32.2	32.9	30.3	1.922
	28.7	30.6	29.1	29.6	30.4	30.8	1.071
	34.6	32.5	34.9	33.6	35.0	34.4	1.995
	36.2	35.2	36.8	38.0	39.0	39.0	2.18
	39.4	39.7	40.4	40.4	40.1	41.4	1.566
β_{ei}	0.994	0.759	0.880	1.101	0.808	0.817	0.1907
	1.5	1.451	1.484	1.5	1.5	1.423	0.0963
	1.374	1.377	1.360	1.357	1.353	1.345	0.0342
	1.282	1.217	1.165	1.214	1.242	1.221	0.0830
	1.195	1.266	1.258	1.277	1.109	1.185	0.1075
	0.980	1.138	1.139	1.138	0.895	1.101	0.1014
h_a	0.235	0.234	0.237	0.287	0.229	0.309	0.0713
	0.655	0.645	0.569	0.657	0.709	0.495	0.1233
	0.1919	0.510	0.282	0.380	0.319	0.393	0.0910
	0.368	0.486	0.387	0.581	0.325	0.389	0.0927
	0.331	0.295	0.399	0.422	0.423	0.474	0.1280
	0.320	0.403	0.306	0.421	0.483	0.478	0.1060
w_a	0.1855	0.1797	0.1855	0.1798	0.1775	0.1817	0.0103
	0.0821	0.0813	0.0877	0.0903	0.0919	0.1070	0.0184
	0.1501	0.0831	0.1268	0.1072	0.1171	0.1080	0.0170
	0.1203	0.1031	0.1187	0.0894	0.1316	0.1225	0.0168
	0.1512	0.1613	0.1361	0.1333	0.1324	0.1281	0.0205
	0.1753	0.1572	0.1785	0.1548	0.1499	0.1465	0.0207
h_g	1.017	1.019	1.013	1.015	1.013	1.012	0.0389
	0.662	0.680	0.698	0.589	0.527	0.705	0.0987
	0.366	0.359	0.352	0.351	0.349	0.324	0.0392
	0.308	0.226	0.289	0.214	0.269	0.306	0.0744
	0.232	0.179	0.248	0.227	0.264	0.329	0.0923
	0.290	0.279	0.273	0.256	0.237	0.403	0.1146

(continued on next page)
Table 8 (continued)

Parameters	1	2	3	4	5	Mean	σ
W_g	0.1271	0.1275	0.1273	0.1269	0.1268	0.1297	0.00764
	0.0836	0.0865	0.0872	0.0898	0.0869	0.0982	0.01271
	0.0800	0.0817	0.0816	0.0806	0.0838	0.0898	0.00911
	0.1026	0.1196	0.1060	0.1243	0.1108	0.1068	0.01404
	0.1392	0.1549	0.1357	0.1416	0.1345	0.1251	0.01656
	0.1592	0.1597	0.1641	0.1637	0.1624	0.1403	0.01964
r_h	0.00605	0.00628	0.00633	0.00652	0.00659	0.00724	0.00505
	0.01003	0.00952	0.00886	0.01042	0.01115	0.00876	0.001534
	0.00535	0.00542	0.00580	0.00605	0.00595	0.00677	0.000754
	0.00598	0.00602	0.00621	0.00604	0.00653	0.00720	0.000891
	0.00698	0.00719	0.00719	0.00781	0.00761	0.00875	0.000980
	0.00883	0.00941	0.00959	0.00959	0.00899	0.01071	0.001056
M	8490	8601	8615	8721	8729	9159	346
	4454	4529	4553	4614	4621	5012	366
	3010	3015	3030	3042	3051	3135	69.2
	3281	3300	3312	3312	3313	3386	70.3
	3804	3807	3829	3879	3903	4006	93.6
	4659	4683	4696	4699	4709	4825	112.1
M_a	3126	2976	3138	3372	2892	3570	332
	2001	1953	1903	2229	2432	2082	376
	1518	1482	1545	1564	1525	1583	60.0
	1670	1736	1710	1718	1705	1747	38.3
	2008	2023	2013	2050	2034	2079	59.4
	2348	2389	2333	2418	2579	2443	92.7
M_g	3778	3798	3773	3769	3759	3843	116.7
	1620	1723	1780	1583	1383	2045	349
	923	933	915	901	937	954	34.2
	1085	1059	1080	1079	1084	1114	38.4
	1322	1317	1336	1337	1375	1431	80.8
	1834	1794	1839	1757	1657	1918	111.9
M_h	1586	1825	1704	1580	2078	1747	158.3
	833	853	871	802	805	885	81.3
	568	600	569	577	589	598	16.4
	525	505	522	516	524	525	37.6
	474	467	480	493	494	495	28.2
	477	499	524	524	473	464	21.8

Table 9
Five best solutions at β, $\alpha = \text{const.}$ ($\beta_m = 1$, $\Delta \alpha = 0$) and given values of the ratio f/L.

Parameters	1	2	3	4	5	Mean	σ
f	30	30	30	30	30	30	30
	20	20	20	20	20	20	20
	15	15	15	15	15	15	15
	12	12	12	12	12	12	12
	10	10	10	10	10	10	10
	8.57	8.57	8.57	8.57	8.57	8.57	8.57
n	35	35	30	30	30	22.2	4.37
	30	11	11	11	13	18.20	7.34
	34	37	34	34	37	23.3	8.28
	38	36	37	37	33	24.0	6.08
	23	22	22	22	22	17.80	3.00
	15	14	14	14	14	12.38	2.25

(continued on next page)
Parameters	1	2	3	4	5	Mean	σ
α	19.53	19.53	20.7	20.6	20.6	21.9	3
	32.9	32.3	32.4	32.4	32.0	31.1	3
	31.0	30.6	31.1	31.3	31.1	32.8	3
	34.7	33.7	32.4	30.6	36.6	36.3	3
	37.4	38.8	38.4	39.5	38.7	40.0	2
	39.7	40.0	39.6	39.6	40.1	40.7	2
h_a	0.249	0.267	0.284	0.286	0.295	0.500	0
	0.665	0.567	0.559	0.546	0.602	0.456	0
	0.380	0.518	0.429	0.491	0.378	0.399	0
	0.365	0.325	0.330	0.287	0.460	0.384	0
	0.270	0.287	0.392	0.397	0.427	0.423	0
	0.514	0.414	0.347	0.342	0.512	0.471	0
w_a	0.1977	0.1826	0.1930	0.1912	0.1865	0.1649	0
	0.0848	0.0962	0.0979	0.1006	0.0856	0.1097	0
	0.1043	0.0858	0.0966	0.0886	0.1049	0.1106	0
	0.1207	0.1296	0.1305	0.1405	0.1025	0.1251	0
	0.1643	0.1578	0.1383	0.1341	0.1322	0.1361	0
	0.1380	0.1534	0.1710	0.1715	0.1378	0.1489	0
h_g	1.013	1.004	1.018	1.018	1.016	1.006	0
	0.786	0.782	0.758	0.755	0.826	0.835	0
	0.381	0.362	0.365	0.374	0.384	0.375	0
	0.230	0.205	0.201	0.233	0.437	0.324	0
	0.248	0.306	0.225	0.320	0.210	0.331	0
	0.326	0.331	0.277	0.286	0.337	0.354	0
w_g	0.1266	0.1280	0.1273	0.1273	0.1279	0.1297	0
	0.0985	0.0977	0.1033	0.1040	0.1032	0.1104	0
	0.0804	0.0815	0.0831	0.0810	0.0807	0.0863	0
	0.1188	0.1266	0.1279	0.1196	0.0818	0.1051	0
	0.1430	0.1294	0.1452	0.1229	0.1477	0.1279	0
	0.1471	0.1497	0.1634	0.1625	0.1452	0.1481	0
r_b	0.00616	0.00683	0.00667	0.00677	0.00692	0.00812	0
	0.01088	0.01075	0.01076	0.01076	0.01007	0.00907	0
	0.00582	0.00612	0.00589	0.00611	0.00590	0.00778	0
	0.00544	0.00535	0.00552	0.00551	0.00574	0.00683	0
	0.00675	0.00693	0.00702	0.00716	0.00709	0.00797	0
	0.00916	0.00910	0.00925	0.00916	0.00921	0.00997	0
M	8764	8883	8985	8989	9025	9757	3
	5417	5488	5585	5621	5689	5985	2
	3352	3354	3361	3363	3367	3545	1
	3319	3323	3350	3352	3352	3485	1
	3879	3882	3893	3893	3901	4030	1
	4687	4690	4694	4694	4696	4801	1
M_g	3534	3296	3697	3660	3608	4322	4
	2101	2105	2121	2145	1943	2004	3
	1513	1558	1522	1542	1517	1639	3
	1668	1673	1706	1703	1647	1765	3
	1959	1929	2026	1970	2047	2044	3
	2451	2362	2396	2379	2438	2456	3
M_s	3748	3766	3789	3787	3804	3820	4
	2264	2233	2309	2320	2493	2713	4
	960	936	964	954	970	1022	3
	1063	1075	1078	1084	1100	1135	3
	1433	1449	1375	1403	1350	1472	3
	1786	1849	1841	1866	1801	1880	3

(continued on next page)
Table 9 (continued)

Parameters	1	2	3	4	5	Mean	σ
M_h	1482	1822	1498	1542	1613	1614	161.0
	1052	1150	1155	1157	1253	1268	131.1
	879	860	875	866	880	884	38.2
	588	575	567	566	605	586	21.9
	488	504	491	520	504	514	26.0
	449	478	457	448	457	465	24.4

Table 10

Five best solutions at both arbitrary angles β and α, and given values of r_s.

Parameters	1	2	3	4	5	Mean
f	17.49	16.80	17.03	16.27	16.39	14.70
	13.85	13.75	13.70	13.62	14.74	14.17
	13.92	14.61	13.24	13.68	13.74	13.21
	12.29	13.20	12.36	12.38	12.46	12.41
n	35	37	22	25	31	18.79
	11	12	12	12	11	12
	9	10	9	10	10	10.36
	7	8	7	7	8	8.02
α	10.96	13.44	13.69	17.43	12.78	22.7
	28.0	25.4	27.4	25.9	24.6	27.9
	32.2	28.7	34.3	29.4	31.2	29.3
	33.2	30.9	33.4	33.1	31.2	30.9
$\Delta\alpha$	0.947	0.752	1.280	0.833	0.957	0.931
	1.096	1.109	0.935	1.085	1.398	1.058
	1.370	1.032	1.435	1.128	0.946	1.226
	1.447	1.394	1.201	1.431	0.891	1.270
β_{ini}	1.309	1.342	1.272	1.286	1.258	1.272
	1.354	1.354	1.325	1.348	1.377	1.305
	1.278	1.382	1.260	1.395	1.367	1.250
	1.309	1.304	1.313	1.310	1.389	1.252
h_g	0.286	0.327	0.470	0.348	0.245	0.386
	0.582	0.500	0.572	0.476	0.539	0.496
	0.641	0.562	0.622	0.522	0.568	0.494
	0.634	0.639	0.675	0.676	0.694	0.576
w_s	0.1155	0.1083	0.0866	0.1076	0.1318	0.1119
	0.0844	0.0961	0.0865	0.1007	0.0894	0.0988
	0.0826	0.0889	0.0854	0.0969	0.0881	0.1094
	0.0982	0.0893	0.0934	0.0930	0.0873	0.1093
h_g	0.225	0.1536	0.280	0.292	0.1909	0.288
	0.438	0.410	0.429	0.418	0.369	0.334
	0.463	0.442	0.401	0.483	0.353	0.386
	0.554	0.561	0.493	0.446	0.546	0.474
w_s	0.0926	0.1113	0.0836	0.0834	0.1053	0.0965
	0.0800	0.0828	0.0801	0.0814	0.0911	0.0991
	0.0800	0.0821	0.0937	0.0800	0.1032	0.1003
	0.0850	0.0801	0.0959	0.1049	0.0890	0.1044
$r_s \geq 5$	0.00515	0.00511	0.00649	0.00609	0.00550	0.00738
≥ 10	0.01	0.01	0.01	0.01	0.01	0.01003
≥ 14	0.014	0.014	0.014	0.014	0.014	0.01401
≥ 20	0.02	0.02	0.02	0.02	0.02	0.02

(continued on next page)
Table 10 (continued)

Parameters	1	2	3	4	5	Mean	σ
\(M \)	2801	2806	2874	2878	2884	3123	133.4
	3319	3359	3365	3371	3371	3477	104.2
	3899	3935	3947	3951	3972	4192	186.7
	4832	4885	4890	4918	4937	5218	228
\(M_a \)	1446	1455	1502	1499	1512	1621	67.2
	1658	1684	1675	1701	1683	1716	76.4
	1766	1726	1762	1759	1700	1890	131.7
	2064	1898	2066	2060	1969	2120	183.3
\(M_g \)	757	753	785	810	800	943	80.5
	1075	1056	1057	1053	1085	1090	72.5
	1127	1114	1200	1169	1216	1234	115.3
	1410	1334	1463	1494	1466	1534	181.8
\(M_s \)	598	598	587	569	573	559	22.4
	585	619	634	617	604	671	88.1
	1005	1095	985	1022	1056	1068	124.5
	1357	1652	1360	1365	1502	1565	250

Table 11

Five best solutions at \(\beta = \text{const.} (\beta_{\text{ini}} = 1) \) and given values of \(r_h \).

Parameters	1	2	3	4	5	Mean	σ
\(f \)	16.75	16.81	16.43	15.62	16.75	14.68	0.883
	14.89	15.22	14.79	14.29	15.85	14.32	0.848
	14.57	14.99	14.96	15.30	14.41	13.48	0.946
	12.89	12.15	12.86	12.56	12.73	12.13	0.758
\(n \)	33	34	37	34	30	20.4	6.20
	10	11	11	10	11	12.37	1.851
	9	10	10	10	9	10.01	1.267
	6.133	7	7	6	7	7.35	0.682
\(\alpha \)	7.87	9.01	13.19	12.04	7.03	22.8	6.33
	32.3	30.6	32.0	34.1	28.9	28.1	4.29
	34.1	31.6	32.1	30.7	32.1	29.9	3.42
	34.6	43.2	36.8	35.6	36.3	37.2	2.97
\(\Delta \alpha \)	1.204	1.020	0.790	0.951	1.272	1.144	0.211
	1.193	1.193	1.087	1.088	1.251	1.233	0.180
	0.922	1.390	1.199	1.409	1.407	1.214	0.201
	0.847	0.749	1.003	0.538	1.465	1.016	0.300
\(h_a \)	0.306	0.429	0.420	0.257	0.332	0.410	0.0922
	0.594	0.558	0.559	0.565	0.534	0.448	0.0825
	0.598	0.570	0.563	0.556	0.632	0.486	0.0793
	0.720	0.658	0.675	0.719	0.666	0.594	0.0710
\(w_a \)	0.1156	0.0940	0.0944	0.1316	0.1132	0.1098	0.0147
	0.0814	0.0877	0.0882	0.0881	0.0916	0.1121	0.0183
	0.0855	0.0853	0.0861	0.0866	0.0846	0.1140	0.0170
	0.0905	0.0913	0.0905	0.0913	0.0919	0.1061	0.0138
\(h_g \)	0.264	0.237	0.290	0.252	0.248	0.305	0.0650
	0.299	0.394	0.413	0.363	0.383	0.337	0.0673
	0.370	0.319	0.302	0.286	0.418	0.384	0.0881
	0.645	0.435	0.593	0.541	0.535	0.475	0.0863

(continued on next page)
Table 11 (continued)

Parameters	Five best solutions	100 solutions				
	Mean	σ				
w_h						
0.0871	0.0884	0.0815	0.0924	0.0880	0.0940	
0.1071	0.0822	0.0805	0.0946	0.0816	0.0995	
0.0900	0.0976	0.1029	0.1060	0.0894	0.1036	
0.0806	0.0952	0.0800	0.0972	0.0880	0.1030	
r_h ≥ 5						
≥ 10	0.00542	0.00559	0.00531	0.00544	0.00586	0.00728
≥ 14	0.01005	0.01	0.01	0.01	0.01002	6.3E-05
≥ 20	0.014	0.014	0.014	0.014	0.01401	4.3E-05
M						
2911	2951	2954	2965	2968	3246	
3452	3473	3477	3486	3500	3691	
3983	4055	4081	4094	4108	4365	
4962	4979	5025	5033	5035	5226	
M_a						
1499	1525	1495	1536	1555	1668	
1651	1709	1708	1708	1748	1825	
1743	1677	1680	1681	1805	1965	
2127	1963	2009	2134	2013	2105	
M_g						
788	740	782	818	761	955	
1120	1014	1031	1118	982	1104	
1071	1050	1074	1071	1174	1277	
1519	1307	1398	1609	1421	1515	
M_h						
624	686	676	611	652	623	
682	751	738	660	770	762	
1170	1327	1327	1342	1129	1122	
1316	1709	1617	1291	1602	1607	

Table 12

Five best solutions at α = const. (Δα = 0) and given values of r_h.

Parameters	Five best solutions	100 solutions				
	Mean	σ				
f						
13.88	14.39	14.49	14.46	14.28	13.73	0.533
15.08	14.70	14.93	14.09	14.63	13.39	0.742
14.24	14.34	12.34	14.09	13.10	12.73	0.877
11.82	12.34	13.31	12.91	12.37	12.22	0.864
n						
33	30	30	24	26	21.7	4.79
11	12	12	11	13	13.52	1.568
10	10	10	10	10	10.58	1.012
8	8	8	8	8	8.57	1.153
α						
30.07	28.99	30.16	30.28	29.88	31.26	1.102
30.91	32.45	33.21	33.67	33.92	32.31	1.415
33.58	33.69	34.64	34.39	33.13	32.83	1.342
33.54	32.41	30.29	31.10	34.72	33.13	1.244
β_in						
1.289	1.334	1.328	1.285	1.312	1.297	0.0372
1.500	1.451	1.365	1.387	1.462	1.359	0.0580
1.447	1.431	1.341	1.412	1.401	1.353	0.0839
1.425	1.421	1.432	1.428	1.327	1.296	0.1236
h^n						
0.275	0.280	0.357	0.379	0.249	0.383	0.0876
0.566	0.512	0.583	0.573	0.479	0.429	0.0827
0.608	0.601	0.559	0.550	0.596	0.499	0.0879
0.644	0.597	0.637	0.584	0.619	0.539	0.0825

(continued on next page)
Table 12 (continued)

Parameters	1	2	3	4	5	Mean	σ
w_a	0.1294	0.1295	0.1110	0.1086	0.1379	0.1145	0.0168
	0.0877	0.0954	0.0831	0.0878	0.0947	0.1143	0.0175
	0.0853	0.0852	0.0949	0.0928	0.0909	0.1097	0.0182
	0.0924	0.0978	0.0918	0.1006	0.0980	0.1166	0.0173
h_g	0.294	0.301	0.275	0.331	0.347	0.285	0.0696
	0.380	0.401	0.236	0.350	0.232	0.336	0.0794
	0.437	0.349	0.476	0.355	0.449	0.414	0.0801
	0.568	0.537	0.552	0.575	0.587	0.441	0.1035
w_g	0.0942	0.0905	0.0982	0.0856	0.0848	0.1005	0.0153
	0.0876	0.0800	0.1158	0.0970	0.1207	0.0993	0.0166
	0.0826	0.1000	0.0800	0.0983	0.0869	0.0959	0.0150
	0.0901	0.0926	0.0871	0.0846	0.0801	0.1095	0.0212
$r_n \geq 5$	0.00538	0.00563	0.00565	0.00629	0.00605	0.00683	0.000794
≥ 10	0.01	0.01	0.01	0.01	0.01	0.01	3.4E-06
≥ 14	0.014	0.014	0.014	0.014	0.014	0.01402	0.000112
≥ 20	0.02	0.02	0.02	0.02	0.02	0.0200	9.7E-05
M	3012	3027	3051	3053	3061	3159	80.9
	3409	3420	3440	3458	3474	3586	96.5
	3954	4000	4004	4014	4018	4168	142.8
	4901	4941	4964	4968	4971	5314	213
M_h	1528	1564	1540	1568	1564	1632	51.1
	1725	1733	1663	1719	1621	1778	63.1
	1756	1740	1784	1765	1818	1893	100.3
	1942	1954	1955	1997	2021	2164	191.1
M_g	942	915	944	921	946	979	42.1
	1060	997	1046	1120	1093	1091	53.6
	1112	1158	1154	1152	1205	1244	95.6
	1538	1513	1446	1447	1387	1518	140.3
M_b	541	548	567	563	550	547	16.6
	624	690	731	619	761	717	82.2
	1086	1103	1066	1097	994	1031	97.2
	1422	1474	1563	1524	1562	1633	208

Table 13
Five best solutions at β, $\alpha = \text{const.}$ ($\beta_{\text{ini}} = 1$, $\Delta \alpha = 0$) and given values of r_n.

Parameters	1	2	3	4	5	Mean	σ
f	13.91	13.52	13.58	13.52	14.02	13.36	0.453
	15.14	15.49	14.74	15.00	14.67	13.99	1.008
	15.02	14.98	14.90	14.30	13.71	13.03	0.772
	13.75	13.28	12.73	12.86	12.60	12.36	0.927
n	36	34	32	32	36	25	5.97
	12	11	12	11	11	12.84	1.633
	9	9	8	8	8	9.78	1.314
	6	7	7	7	8	7.87	0.892
α	32.7	32.7	32.1	32.4	29.4	32.5	1.190
	34.8	34.5	34.9	34.5	35.0	33.2	1.508
	34.3	34.4	34.6	34.7	31.0	32.2	1.254
	33.7	33.4	34.7	34.1	33.5	32.9	1.072

(continued on next page)
Table 13 (continued)

Parameters	Five best solutions	100 solutions					
	1	2	3	4	5	Mean	σ
h_a	0.563	0.463	0.436	0.420	0.362	0.381	0.0865
	0.516	0.512	0.569	0.618	0.545	0.439	0.0907
	0.611	0.555	0.549	0.636	0.678	0.508	0.0896
	0.699	0.682	0.639	0.604	0.590	0.547	0.0808
w_a	0.0822	0.0984	0.1033	0.1058	0.1153	0.1200	0.0158
	0.0934	0.0948	0.0896	0.0835	0.0944	0.1179	0.0210
	0.0887	0.0980	0.0988	0.0903	0.0890	0.1151	0.0172
	0.0933	0.0918	0.0993	0.1050	0.1037	0.1159	0.0165
h_g	0.338	0.281	0.314	0.333	0.300	0.321	0.0721
	0.360	0.337	0.362	0.427	0.400	0.342	0.0741
	0.431	0.444	0.412	0.541	0.580	0.407	0.1015
	0.568	0.579	0.590	0.574	0.554	0.524	0.0950
w_g	0.0857	0.0978	0.0908	0.0876	0.0917	0.0969	0.0124
	0.0897	0.0941	0.0906	0.0826	0.0855	0.1030	0.0174
	0.0819	0.0804	0.0856	0.0800	0.0812	0.1081	0.0218
	0.0854	0.0832	0.0855	0.0863	0.0894	0.1047	0.0173
r_h	0.00565	0.00582	0.00602	0.00605	0.00583	0.00697	0.00102
≥ 5	0.01	0.01022	0.01	0.01023	0.0102	0.01008	0.00018
≥ 10	0.014	0.014	0.014	0.014	0.014	0.014	1.1E-05
≥ 14	0.02	0.02	0.02	0.02	0.02	0.02001	3.7E-05
M	3231	3269	3280	3282	3282	3427	138.9
	3609	3619	3643	3646	3649	3853	145.8
	4144	4202	4204	4226	4289	4489	134.6
	5010	5062	5126	5155	5260	5472	190.1
M_a	1566	1616	1632	1626	1618	1717	88.4
	1713	1740	1764	1763	1800	1890	97.3
	1865	1920	1916	1947	2009	2045	63.1
	2173	2072	2117	2155	2074	2176	109.1
M_g	938	954	949	952	927	1029	74.2
	1044	1047	1061	1090	1076	1160	89.7
	1088	1093	1103	1290	1393	1400	126.5
	1449	1430	1499	1480	1494	1683	235
M_h	726	698	699	704	737	681	43.5
	852	831	818	793	773	803	79.1
	1192	1189	1185	989	887	1044	123.7
	1387	1560	1510	1519	1692	1613	219
CRediT Author Statement

Rimantas Belevičius: Conceptualization, Methodology, Software, Supervision; Algirdas Juozapaitis: Formal analysis, Writing – Original draft preparation; Dainius Rusakevičius: Investigations, Validation, Visualization; Sigutė Žilėnaitė: Investigations, Visualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

References

[1] R. Belevičius, A. Juozapaitis, D. Rusakevičius, S. Žilėnaitė, Parametric study on mass minimization of radial network arch pedestrian bridges, Eng. Struct. (237) (2021), doi:10.1016/j.engstruct.2021.112182.

[2] ANSYS. https://ansys.com 2021 (accessed 16 March 2021).

[3] K. Deep, K.P. Singh, M.L. Kansal, C. Mohan, A real coded genetic algorithm for solving integer and mixed integer optimization problems, Appl. Math. Comput. 212 (2009) 505–518, doi:10.1016/j.amc.2009.02.044.

[4] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired numerical optimization: past, present and future, Swarm Evolut. Comput. 1 (2011) 173–194, doi:10.1016/j.swevo.2011.10.001.