NEW INEQUALITIES OF OSTROWSKI’S TYPE FOR s–CONVEX FUNCTIONS IN THE SECOND SENSE WITH APPLICATIONS

ERHAN SET⋆, M. EMIN ÖZDEMIR♣, AND MEHMET ZEKI SARIKAYA♦

Abstract. In this paper, we establish some new inequalities of Ostrowski’s type for functions whose derivatives in absolute value are the class of s-convex. Some applications for special means of real numbers are also provided. Finally, some error estimates for the midpoint formula are obtained.

1. Introduction

The following result is known in the literature as Ostrowski’s inequality [12]

Theorem 1. Let $f : I \subset [0, \infty) \to \mathbb{R}$ be a differentiable mapping on I°, the interior of the interval I, such that $f' \in L[a, b]$ where $a, b \in I$ with $a < b$. If $|f'(x)| \leq M$, then the following inequality holds:

\begin{equation}
|f(x) - \frac{1}{b - a} \int_a^b f(u)du| \leq M \left(\frac{b - a}{4} + \frac{(x - a + b)^2}{(b - a)^2} \right)
\end{equation}

Recently, Ostrowski’s inequality has been the subject of intensive research. In particular, many generalizations, improvements, and applications for the Ostrowski’s inequality can be found in the literature ([1]-[3],[7]-[9],[12] and [14]) and the references therein.

In [1], Alomari and Darus obtained inequalities for differentiable convex mappings which are connected with Ostrowski’s inequality, and they used the following lemma to prove them. We have corrected by writing $(a - b)$ instead of $(b - a)$ in the right side of this lemma.

Lemma 1. Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° where $a, b \in I$ with $a < b$. If $f' \in L[a, b]$, then the following equality holds:

\begin{equation}
f(x) - \frac{1}{b - a} \int_a^b f(u)du = (a - b) \int_0^1 p(t)f'(ta + (1 - t)b)dt
\end{equation}

for each $t \in [0, 1]$, where

\[p(t) = \begin{cases}
 t, & t \in \left[0, \frac{b-x}{b-a}\right] \\
 t-1, & t \in \left(\frac{b-x}{b-a}, 1\right)
\end{cases} \]

for all $x \in [a, b]$.
Definition 1. [4] A function $f : [0, \infty) \to \mathbb{R}$ is said to be s–convex in the second sense if
\[f(\alpha x + (1 - \alpha)y) \leq \alpha^s f(x) + (1 - \alpha)^s f(y) \]
for all $x, y \in [0, \infty)$, $\alpha \in [0, 1]$ and for some fixed $s \in (0, 1]$. This class of s–convex functions is usually denoted by K^s_2.

An s–convex function was introduced in Breckner’s paper [4] and a number of properties and connections with s–convexity in the first sense are discussed in paper [5]. Of course, s–convexity means just convexity when $s = 1$.

In [6], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which holds for s–convex functions in the second sense:

Theorem 2. Suppose that $f : [0, \infty) \to [0, \infty)$ is an s–convex function in the second sense, where $s \in (0, 1)$, and let $a, b \in [0, \infty)$, $a < b$. If $f \in L^1([a, b])$, then the following inequalities hold:
\[2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{s+1}. \]

The constant $k = \frac{1}{s+1}$ is the best possible in the second inequality in (1.3).

In [2], Alomari et al. proved the following inequality of Ostrowski type for functions whose derivative in absolute value are s–convex in the second sense.

Theorem 3. Let $f : I \subset [0, \infty) \to \mathbb{R}$ be a differentiable mapping on I° such that $f' \in L[a, b]$, where $a, b \in I$ with $a < b$. If $|f'|^q$ is s–convex in the second sense on $[a, b]$ for some fixed $s \in (0, 1]$, $p, q > 1$, $\frac{1}{p} + \frac{1}{q} = 1$ and $|f'(x)| \leq M$, $x \in [a, b]$, then the following inequality holds:
\[\left| f(x) - \frac{1}{b-a} \int_a^b f(u)du \right| \leq \frac{M}{(1 + p)^q} \left(\frac{2}{s+1} \right)^{\frac{1}{2}} \left\{ \frac{(x-a)^2 + (b-x)^2}{(b-a)} \right\} \]
for each $x \in [a, b]$.

In [10], some inequalities of Hermite-Hadamard’s type for differentiable convex mappings were presented as follows:

Theorem 4. Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I°, where $a, b \in I$ with $a < b$. If $|f'|$ is convex on $[a, b]$, then the following inequality holds,
\[\left| \frac{1}{b-a} \int_a^b f(x)dx - f\left(\frac{a+b}{2}\right) \right| \leq \frac{(b-a)}{4} \left[|f'(a)| + |f'(b)| \right]. \]

Theorem 5. Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I°, where $a, b \in I^\circ$ with $a < b$, and let $p > 1$. If the mapping $|f'|^{p/(p-1)}$ is convex on $[a, b]$, then we have
\[\left| \frac{1}{b-a} \int_a^b f(x)dx - f\left(\frac{a+b}{2}\right) \right| \leq \frac{(b-a)}{16} \left(\frac{4}{p+1} \right)^{\frac{1}{2}} \left[(|f'(a)|^{p/(p-1)} + 3|f'(b)|^{p/(p-1)})^{(p-1)/p} + (3|f'(a)|^{(p-1)/p} + |f'(b)|^{(p-1)/p})^{(p-1)/p} \right]. \]
Theorem 6. Let $f : I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I, where $a, b \in I$ with $a < b$, and let $p > 1$. If the mapping $|f'|^{p/(p-1)}$ is convex on $[a, b]$, then we have

\[
\left| \frac{1}{b-a} \int_a^b f(x)dx - f\left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)}{4} \left(\frac{4}{p+1} \right)^{\frac{p}{p-1}} (|f'(a)| + |f'(b)|).
\]

The main purpose of this paper is to establish new Ostrowski’s type inequalities for the class of functions whose derivatives in absolute value at certain powers are s-convex in the second sense. Also, using these results we note some consequent applications to special means and to estimates of the error term in the midpoint formula.

2. Main Results

The next theorem gives a new result of the Ostrowski’s inequality for s-convex functions:

Theorem 7. Let $f : I \subset [0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on I such that $f' \in L[a, b]$, where $a, b \in I$ with $a < b$. If $|f'|$ is s-convex on $[a, b]$, for some fixed $s \in (0, 1]$, then the following inequality holds:

\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u)du \right| \leq \frac{b-a}{(s+1)(s+2)} \times \left\{ 2(s+1) \left(\frac{b-x}{b-a} \right)^{s+2} - (s+2) \left(\frac{b-x}{b-a} \right)^{s+1} + 1 \right\} |f'(a)| \n+ \left\{ 2(s+1) \left(\frac{x-a}{b-a} \right)^{s+2} - (s+2) \left(\frac{x-a}{b-a} \right)^{s+1} + 1 \right\} |f'(b)|
\]

for each $x \in [a, b]$.

Proof. By Lemma IV and since $|f'|$ is s-convex on $[a, b]$, then we have

\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u)du \right| \leq (b-a) \int_0^{t_x} t |f'(ta + (1-t)b)| dt
+ (b-a) \int_{t_x}^1 |t-1||f'(ta + (1-t)b)| dt
\leq (b-a) \int_0^{t_x} t (t^s|f'(a)| + (1-t)^s|f'(b)|) dt
+ (b-a) \int_{t_x}^1 (1-t) (t^s|f'(a)| + (1-t)^s|f'(b)|) dt
\]
Corollary 1. In Theorem 7, if we choose \(x = \frac{a+b}{2} \), then we have the following midpoint inequality:

\[
(2.1) \quad \left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(u) du \right| \\
\leq \frac{b-a}{(s+1)(s+2)} \left(1 - \frac{1}{2s+1} \right) \left[|f'(a)| + |f'(b)| \right].
\]

Remark 1. In Corollary 7 if \(s = 1 \), then we have

\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(u) du \right| \leq \frac{(b-a)}{4} \left[|f'(a)| + |f'(b)| \right]
\]

which is (L5).

Theorem 8. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a differentiable mapping on \(I^o \) such that \(f' \in L[a,b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is \(s \)-convex on \([a,b] \), for some fixed
\[s \in (0, 1] \text{ and } p > 1, \text{ then the following inequality holds:} \]

\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u) \, du \right| \leq (b-a) \frac{1}{p+1} \frac{1}{(s+1)^\frac{1}{q}} \times \left\{ \left(\frac{b-x}{b-a} \right)^{1+\frac{1}{p}} \left(\frac{(b-x)^{s+1}}{(b-a)^{s+1}} |f'(a)|^q + \left[1 - \left(\frac{x-a}{b-a} \right)^{s+1} \right] |f'(b)|^q \right) \right\}^{\frac{1}{q}}
\]

for each \(x \in [a, b] \), where \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proof. Suppose that \(p > 1 \). From Lemma [II] and using the Hölder inequality, we have

\[
(2.2) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(u) \, du \right| \\
\leq (b-a) \int_0^\infty t |f'(ta + (1-t)b)| \, dt \\
+ (b-a) \int_{\frac{b-x}{b-a}}^1 |t-1| |f'(ta + (1-t)b)| \, dt \\
\leq (b-a) \left(\int_0^{\frac{b-x}{b-a}} t^p \, dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{b-x}{b-a}} |f'(ta + (1-t)b)|^q \, dt \right)^{\frac{1}{q}} \\
+ (b-a) \left(\int_{\frac{b-x}{b-a}}^1 (1-t)^p \, dt \right)^{\frac{1}{p}} \left(\int_{\frac{b-x}{b-a}}^1 |f'(ta + (1-t)b)|^q \, dt \right)^{\frac{1}{q}}.
\]

Using the \(s \)-convexity of \(|f'|^q|\), we obtain

\[
(2.3) \quad \int_0^{\frac{b-x}{b-a}} |f'(ta + (1-t)b)|^q \, dt \\
\leq \int_0^{\frac{b-x}{b-a}} \left[t^s |f'(a)|^q + (1-t)^s |f'(b)|^q \right] \, dt \\
= \frac{1}{s+1} \left\{ \left(\frac{b-x}{b-a} \right)^{s+1} |f'(a)|^q + \left[1 - \left(\frac{x-a}{b-a} \right)^{s+1} \right] |f'(b)|^q \right\}
\]
and

\[
\int_{\frac{b-x}{b-a}}^{1} |f'(ta + (1-t)b)|^q \, dt \\
\leq \int_{\frac{b-x}{b-a}}^{1} \left[t^s |f'(a)|^q + (1-t)^s |f'(b)|^q \right] \, dt \\
= \frac{1}{s+1} \left\{ \left[1 - \left(\frac{b-x}{b-a} \right)^{s+1} \right] |f'(a)|^q + \left(\frac{x-a}{b-a} \right)^{s+1} |f'(b)|^q \right\}.
\]

Further, we have

\[
\int_{0}^{\frac{b-x}{b-a}} t^p \, dt = \frac{1}{(p+1)} \left(\frac{b-x}{b-a} \right)^{p+1}
\]

and

\[
\int_{\frac{b-x}{b-a}}^{1} (1-t)^p \, dt = \frac{1}{(p+1)} \left(\frac{x-a}{b-a} \right)^{p+1}.
\]

A combination of (2.4)-(2.6) gives the required inequality (2.2). \qed

Remark 2. In Theorem 8, if we choose \(x = \frac{a+b}{2} \) and \(s = 1 \), then we have

\[
\left| f\left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_{a}^{b} f(u) \, du \right| \\
\leq \frac{(b-a)^3}{16} \left(\frac{4}{p+1} \right)^{\frac{1}{p}} \left[\left(|f'(a)|^q + 3 |f'(b)|^q \right)^{1/q} + (3 |f'(a)|^q + |f'(b)|^q)^{1/q} \right]
\]

which is (1.6).

Theorem 9. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a differentiable mapping on \(I \) such that \(f' \in L[a, b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is \(s \)-convex on \([a, b]\), for some fixed \(s \in (0, 1] \) and \(p > 1 \), then the following inequality holds:

\[
\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(u) \, du \right| \\
\leq \frac{1}{(b-a) (p+1)^{\frac{1}{p}}} \times \left\{ (b-x)^{2} \left(\frac{|f'(x)|^q + |f'(b)|^q}{s+1} \right)^{\frac{1}{q}} + (x-a)^{2} \left(\frac{|f'(a)|^q + |f'(x)|^q}{s+1} \right)^{\frac{1}{q}} \right\}
\]

for each \(x \in [a, b] \), where \(\frac{1}{p} + \frac{1}{q} = 1 \).
Proof. Suppose that $p > 1$. From Lemma 1 and using the Hölder inequality, we have

$$\left| f(x) - \frac{1}{b - a} \int_{a}^{b} f(u)du \right|$$

$$\leq (b - a) \int_{0}^{\frac{x-a}{b-a}} t |f'(ta + (1-t)b)| dt$$

$$+ (b - a) \int_{\frac{x-a}{b-a}}^{1} |t - 1||f'(ta + (1-t)b)| dt$$

$$\leq (b - a) \left(\int_{0}^{\frac{x-a}{b-a}} t^p dt \right)^{\frac{1}{p}} \left(\int_{0}^{\frac{x-a}{b-a}} |f'(ta + (1-t)b)|^q dt \right)^{\frac{1}{q}}$$

$$+ (b - a) \left(\int_{\frac{x-a}{b-a}}^{1} (1-t)^p dt \right)^{\frac{1}{p}} \left(\int_{\frac{x-a}{b-a}}^{1} |f'(ta + (1-t)b)|^q dt \right)^{\frac{1}{q}}.$$

Since $|f'|^q$ is s–convex, by (1.3) we have

$$\int_{0}^{\frac{x-a}{b-a}} |f'(ta + (1-t)b)|^q dt \leq \frac{b-x}{b-a} \left(\frac{|f'(x)|^q + |f'(b)|^q}{s+1} \right)$$

and

$$\int_{\frac{x-a}{b-a}}^{1} |f'(ta + (1-t)b)|^q dt \leq \frac{x-a}{b-a} \left(\frac{|f'(a)|^q + |f'(x)|^q}{s+1} \right).$$

Therefore,

$$\left| f(x) - \frac{1}{b - a} \int_{a}^{b} f(u)du \right|$$

$$\leq \frac{1}{(b - a) (p + 1)}$$

$$\times \left\{ (b - x)^2 \left(\frac{|f'(x)|^q + |f'(b)|^q}{s+1} \right)^{\frac{1}{q}} + (x - a)^2 \left(\frac{|f'(a)|^q + |f'(x)|^q}{s+1} \right)^{\frac{1}{q}} \right\}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. Also, we note that

$$\int_{0}^{\frac{x-a}{b-a}} t^p dt = \frac{1}{p + 1} \left(\frac{b-x}{b-a} \right)^{p+1}$$

and

$$\int_{\frac{x-a}{b-a}}^{1} (1-t)^p dt = \frac{1}{p + 1} \left(\frac{x-a}{b-a} \right)^{p+1}.$$

This completes the proof. \(\square\)

Remark 3. We choose $|f'(x)| \leq M$, $M > 0$ in Theorem 4, then we recapture the inequality (1.3).
Corollary 2. In Theorem 10 if we choose \(x = \frac{a+b}{2} \), then

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(u)\,du \right|
\leq \frac{b-a}{4} \left\{ \left(\frac{|f'(\frac{a+b}{2})|^q + |f'(b)|^q}{s+1} \right)^\frac{1}{q} + \left(\frac{|f'(a)|^q + |f'(\frac{a+b}{2})|^q}{s+1} \right)^\frac{1}{q} \right\}.
\]

Corollary 3. In Corollary 2 if we choose \(f'(a) = f'(\frac{a+b}{2}) = f'(b) \) and \(s = 1 \), then

\[
(2.9) \quad \left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(u)\,du \right| \leq \frac{b-a}{(p+1)^\frac{1}{q}} \left(\frac{|f'(b)| + |f'(a)|}{4} \right).
\]

Remark 4. We note that the obtained midpoint inequality (2.9) is better than the inequality (1.7).

Theorem 10. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a differentiable mapping on \(I^0 \) such that \(f' \in L[a,b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is \(s \)-convex on \([a,b] \), for some fixed \(s \in (0,1) \) and \(p > 1 \), then the following inequality holds:

\[
|f(x) - \frac{1}{b-a} \int_a^b f(u)\,du|
\leq \frac{(b-a)}{(p+1)^\frac{1}{q}} \left[\left(\frac{b-x}{b-a} \right)^{p+1} + \left(\frac{x-a}{b-a} \right)^{p+1} \right]^{\frac{1}{p}} \left(\frac{|f'(a)|^q + |f'(b)|^q}{s+1} \right)^\frac{1}{q}
\]

for each \(x \in [a,b] \), where \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proof. Suppose that \(p > 1 \). From Lemma 11 and using the Hölder inequality, we have

\[
(2.11) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(u)\,du \right|
\leq (b-a) \left(\int_0^1 |p(t)|^p \,dt \right)^\frac{1}{p} \left(\int_0^1 |f'(ta + (1-t)b)|^q \,dt \right)^\frac{1}{q}.
\]

Since \(|f'|^q \) is \(s \)-convex, we have

\[
\int_0^1 |f'(ta + (1-t)b)|^q \,dt \leq \int_0^1 (t^s |f'(a)|^q + (1-t)^s |f'(b)|^q) \,dt
\]

\[
= \frac{|f'(a)|^q + |f'(b)|^q}{s+1}
\]

(2.12)
and
\[
\int_0^1 |p(t)|^p \, dt = \int_0^t t^p \, dt + \int_{t}^{1} (1-t)^p \, dt
\]
(2.13)
\[
= \frac{1}{p+1} \left[\left(\frac{b-x}{b-a} \right)^{p+1} + \left(\frac{x-a}{b-a} \right)^{p+1} \right].
\]

Using (2.12) and (2.13) in (2.11), we obtain (2.10). \(
\square
\)

Corollary 4. Under assumption in Theorem 11 with \(p = q = 2 \), we have
\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u) \, du \right| \leq \frac{(b-a)}{\sqrt{3}} \left[\frac{1}{4} + \frac{(x-a+b)^2}{(b-a)^2} \right]^{\frac{1}{2}} \left(\frac{|f'(a)|^2 + |f'(b)|^2}{2} \right)^{\frac{1}{2}}.
\]

Corollary 5. In Corollary 4 if we choose \(x = \frac{a+b}{2} \) and \(s = 1 \), then we have the following midpoint inequality:
\[
\left| f\left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(u) \, du \right| \leq \frac{(b-a)}{2} \left(\frac{|f'(a)|^2 + |f'(b)|^2}{6} \right)^{\frac{1}{2}}.
\]

Remark 5. We choose \(|f'(x)| \leq M, M > 0 \) and \(s = 1 \) in Corollary 4 then we recapture the following Ostrowski’s type inequality
\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u) \, du \right| \leq \frac{M(b-a)}{\sqrt{3}} \left[\frac{1}{4} + \frac{(x-a+b)^2}{(b-a)^2} \right]^{\frac{1}{2}}.
\]

Theorem 11. Let \(f : I \subseteq [0, \infty) \rightarrow \mathbb{R} \) be a differentiable mapping on \(I^\circ \) such that \(f' \in L[a,b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is \(s \)-convex on \([a,b]\), for some fixed \(s \in (0,1] \) and \(q \geq 1 \), then the following inequality holds:
\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u) \, du \right| \leq (b-a) \left(\frac{1}{2} \right)^{1-q} \left\{ \left(\frac{b-x}{b-a} \right)^{2(1-1/q)} \left[\frac{1}{s+2} \left(\frac{b-x}{b-a} \right)^{s+2} |f'(a)|^q \right] + \left(\frac{1}{s+2} \left(\frac{x-a}{b-a} \right)^{s+2} |f'(b)|^q \right) \right\}
\]
\[
+ (b-a) \left(\frac{1}{2} \right)^{1-q} \left\{ \left(\frac{x-a}{b-a} \right)^{2(1-1/q)} \left[\frac{1}{s+2} \left(\frac{x-a}{b-a} \right)^{s+2} |f'(b)|^q \right] + \left(\frac{1}{s+2} \left(\frac{b-x}{b-a} \right)^{s+2} |f'(a)|^q \right) \right\}
\]
for each \(x \in [a,b] \).
Proof. Suppose that \(q \geq 1 \). From Lemma 1 and using the well known power mean inequality, we have

\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u)du \right| \\
\leq (b-a) \int_0^1 t |f'(ta + (1-t)b)| \, dt \\
+ (b-a) \int_{\frac{b-x}{b-a}}^1 |t-1| |f'(ta + (1-t)b)| \, dt \\
\leq (b-a) \left(\int_0^{\frac{b-x}{b-a}} t \, dt \right)^{1-\frac{1}{q}} \left(\int_0^{\frac{b-x}{b-a}} t |f'(ta + (1-t)b)|^q \, dt \right)^{\frac{1}{q}} \\
+ (b-a) \left(\int_{\frac{b-x}{b-a}}^1 (1-t) \, dt \right)^{1-\frac{1}{q}} \left(\int_{\frac{b-x}{b-a}}^1 (1-t) |f'(ta + (1-t)b)|^q \, dt \right)^{\frac{1}{q}}.
\]

Since \(|f'|^q\) is \(s\)-convex, we have

\[
\int_0^{\frac{b-x}{b-a}} t |f'(ta + (1-t)b)|^q \, dt \\
\leq \int_0^{\frac{b-x}{b-a}} t \left[t^s |f'(a)|^q + (1-t)^s |f'(b)|^q \right] \, dt \\
= \frac{1}{s+2} \left(\frac{b-x}{b-a} \right)^{s+2} |f'(a)|^q \\
+ \frac{1}{s+2} \left(\frac{x-a}{b-a} \right)^{s+1} + \frac{1}{s+2} \left(\frac{x-a}{b-a} \right)^{s+2} |f'(b)|^q
\]

and

\[
\int_{\frac{b-x}{b-a}}^1 (1-t) |f'(ta + (1-t)b)|^q \, dt \\
\leq \int_{\frac{b-x}{b-a}}^1 (1-t) \left[t^s |f'(a)|^q + (1-t)^s |f'(b)|^q \right] \, dt \\
= \left(\frac{1}{s+1} \left(\frac{b-x}{b-a} \right)^{s+2} + \frac{1}{s+2} \left(\frac{b-x}{b-a} \right)^{s+2} \right) |f'(a)|^q \\
+ \frac{1}{s+2} \left(\frac{x-a}{b-a} \right)^{s+2} |f'(b)|^q.
\]
Therefore we have
\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u)du \right|
\leq (b-a) \left(\frac{1}{2} \right)^{1-\frac{1}{q}} \left\{ \left(\frac{x-a}{b-a} \right)^{s+2} \left(\frac{b-x}{b-a} \right)^{s+1} \left[\frac{1}{s+2} \left(\frac{b-x}{b-a} \right)^{s+2} |f'(a)|^q \right. \\
+ \frac{1}{s+1} \left(\frac{x-a}{b-a} \right)^{s+1} \left[\frac{1}{s+2} \left(\frac{x-a}{b-a} \right)^{s+2} |f'(b)|^q \right] \\
+ (b-a) \left(\frac{1}{2} \right)^{1-\frac{1}{q}} \left(\frac{b-x}{b-a} \right)^{s+2} \left[\frac{1}{s+1} \left(\frac{b-x}{b-a} \right)^{s+1} \left(\frac{b-x}{b-a} \right)^{s+2} |f'(b)|^q \right] \right\}^{\frac{1}{q}}
\]
which is required. □

Corollary 6. In Theorem 11 if we choose \(x = \frac{a+b}{2} \) and \(s = 1 \), then we have
\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(u)du \right|
\leq \frac{b-a}{8} \left(\frac{1}{3} \right)^{\frac{1}{q}} \left[\left(|f'(a)|^q + 3 |f'(b)|^q \right)^{\frac{1}{q}} + \left(3 |f'(a)|^q + |f'(b)|^q \right)^{\frac{1}{q}} \right].
\]

3. Applications To Special Means

Let \(0 < s < 1 \) and \(u, v, w \in \mathbb{R} \). We define a function \(f: [0, \infty) \to \mathbb{R} \)
\[
f(t) = \begin{cases}
 u & \text{if } t = 0 \\
 vt^s + w & \text{if } t > 0.
\end{cases}
\]

If \(v \geq 0 \) and \(0 \leq w \leq u \), then \(f \in K_s^2 \) (see [5]). Hence, for \(u = w = 0, v = 1 \), we have \(f: [0, 1] \to [0, 1], \ f(t) = t^s, \ f \in K_s^2 \).

As in [15], we shall consider the means for arbitrary positive real numbers \(a, b \), \(a \neq b \). We take
(1) The arithmetic mean:
\[
A = A(a, b) := \frac{a+b}{2},
\]
(2) The logarithmic mean:
\[
L = L(a, b) := \begin{cases}
 a & \text{if } a = b \\
 \frac{b-a}{\ln b - \ln a} & \text{if } a \neq b.
\end{cases}
\]

(3) The \(p \)-logarithmic mean:
\[L_p = L_p(a, b) := \begin{cases} \left(\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \right)^{\frac{1}{p}} & \text{if } a \neq b, \\ a & \text{if } a = b \end{cases}, \quad p \in \mathbb{R} \setminus \{-1, 0\}. \]

It is well known that \(L_p \) is monotonic nondecreasing over \(p \in \mathbb{R} \) with \(L_{-1} := L \) and \(L_0 := I \). In particular, we have the following inequality

\[L \leq A. \]

Now, using the results of Section 2, we give some applications to special means of positive real numbers.

Proposition 1. Let \(0 < a < b \) and \(s \in (0, 1) \). Then we have

\[|A^s(a, b) - L^s(a, b)| \leq \frac{b-a}{s+1} \left(1 - \frac{1}{2^s+1} \right) \left[a^{s-1} + b^{s-1} \right]. \]

Proof. The inequality follows from \(\text{(2.1)} \) applied to the \(s \)-convex function in the second sense \(f : [0, 1] \rightarrow [0, 1], f(x) = x^s \). The details are omitted. \(\square \)

Proposition 2. Let \(0 < a < b \) and \(s \in (0, 1) \). Then we have

\[|A^s(a, b) - L^s(a, b)| \leq \frac{b-a}{4} \left(\frac{1}{p+1} \right)^{1/p} \left[\left(\frac{A^q(s-1) + b^q(s-1)}{s+1} \right)^{1/q} + \left(\frac{a^q(s-1) + A^q(s-1)}{s+1} \right)^{1/q} \right]. \]

Proof. The proof is similar to that of Proposition 1 using Corollary 2. \(\square \)

Proposition 3. Let \(0 < a < b \) and \(s \in (0, 1) \). Then we have

\[|A^s(a, b) - L^s(a, b)| \leq \frac{s(b-a)}{8} \left(\frac{2}{3} \right)^{\frac{1}{q}} \left\{ A \left[a^q(s-1), b^q(s-1) \right]^{1/q} + A \left[3a^q(s-1), b^q(s-1) \right]^{1/q} \right\}. \]

Proof. The proof is similar to that of Proposition 1 using Corollary 6. \(\square \)

4. **The Midpoint Formula**

As in \([11]\) and \([13]\), let \(d \) be a division \(a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b \) of the interval \([a, b]\) and consider the quadrature formula

\[\int_a^b f(x)dx = T(f, d) + E(f, d) \]

(4.1)

where

\[T(f, d) = \sum_{i=0}^{n-1} f \left(\frac{x_i + x_{i+1}}{2} \right) \left(x_{i+1} - x_i \right) \]

is the midpoint version and \(E(f, d) \) denotes the associated approximation error.

In the following, we propose some new estimates for midpoint formula.
Proposition 4. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a differentiable mapping on \(I^0 \) such that \(f' \in L[a, b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^p \) is convex on \([a, b]\) and \(p > 1 \), then in (4.1), for every division \(d \) of \([a, b]\), the midpoint error satisfy

\[
|E(f, d)| \leq \frac{1}{4(p + 1)^{\frac{1}{p}}} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 \left[|f'(x_{i+1})| + |f'(x_i)| \right].
\]

Proof. On applying Corollary 3 on the subinterval \([x_i, x_{i+1}] \) \(i = 0, 1, ..., n - 1 \) of the division, we get

\[
\left| (x_{i+1} - x_i) f \left(\frac{x_i + x_{i+1}}{2} \right) - \int_{x_i}^{x_{i+1}} f(x)dx \right| \leq \frac{(x_{i+1} - x_i)^2}{(p+1)^{1/p}} \left[|f'(x_{i+1})| + |f'(x_i)| \right].
\]

Summing over \(i \) from 0 to \(n - 1 \) and taking into account that \(|f'| \) is convex, we obtain, by the triangle inequality, that

\[
\left| \int_a^b f(x)dx - T(f, d) \right| = \left| \sum_{i=0}^{n-1} \left\{ \int_{x_i}^{x_{i+1}} f(x)dx - f \left(\frac{x_i + x_{i+1}}{2} \right) (x_{i+1} - x_i) \right\} \right| \leq \left| \sum_{i=0}^{n-1} \left\{ \int_{x_i}^{x_{i+1}} f(x)dx - f \left(\frac{x_i + x_{i+1}}{2} \right) (x_{i+1} - x_i) \right\} \right| \leq \frac{1}{4(p + 1)^{1/p}} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 \left[|f'(x_{i+1})| + |f'(x_i)| \right],
\]

which is completed the proof. \(\square \)

Proposition 5. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a differentiable mapping on \(I^0 \) such that \(f' \in L[a, b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is convex on \([a, b]\), then in (4.1), for every division \(d \) of \([a, b]\), the midpoint error satisfy

\[
|E(f, d)| \leq \frac{1}{2\sqrt{6}} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 \left[|f'(x_{i+1})|^2 + |f'(x_i)|^2 \right]^{1/2}.
\]

Proof. The proof uses Corollary 3 and is similar to that of Proposition 4. \(\square \)

Proposition 6. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a differentiable mapping on \(I^0 \) such that \(f' \in L[a, b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is convex on \([a, b]\) and \(q \geq 1 \), then in (4.1), for every division \(d \) of \([a, b]\), the midpoint error satisfy

\[
|E(f, d)| \leq \frac{1}{8} \left(\frac{1}{3} \right)^{\frac{1}{q}} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 \left[\left(|f'(x_i)|^q + 3 |f'(x_{i+1})|^q \right)^{\frac{1}{q}} + \left(3 |f'(x_i)|^q + |f'(x_{i+1})|^q \right)^{\frac{1}{q}} \right].
\]

Proof. The proof uses Corollary 3 and is similar to that of Proposition 4. \(\square \)
References

[1] M. Alomari and M. Darus, Some Ostrowski’s type inequalities for convex functions with applications, *RGmia*, 13(1) (2010), Article 3.[ONLINE: http://ajmaa.org/RGmia/v13n1.php]

[2] M. Alomari, M. Darus, S. S. Dragomir and P. Cerone, Ostrowski’s inequalities for functions whose derivatives are s-convex in the second sense, *RGmia*, 12 (2009), Supp., No., 15.

[3] N.S. Barnett, P. Cerone, S.S. Dragomir, M.R. Pinheiro and A. Sofo, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, *RGmia Res. Rep. Coll.*, 5(2) (2002), Article 1.[ONLINE: http://rgmia.vu.edu.au/v5n2.html]

[4] W. W. Breckner, *Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen*, Pupl. Inst. Math. 23(1978), 13-20.

[5] H. Hudzik and L. Maligranda, Some remarks on s−convex functions, *Aequationes Math.* 48 (1994), 100-111.

[6] S. S. Dragomir and S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, *Demonstratio Math.* 32(4), (1999), 687-696.

[7] S.S. Dragomir and A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proceedings of the 4th International Conference on Modelling and Simulation, November 11-13, 2002. Victoria University, Melbourne, Australia. *RGmia Res. Rep. Coll.*, 5 (2002), Supplement, Article 30. [ONLINE: http://rgmia.vu.edu.au/v5(5).html]

[8] S. S. Dragomir, S. Wang, A new inequality of Ostrowski’s type in L_1-norm and applications to some special means and to some numerical quadrature rules. *Tunis J. of Math.*, 28 (1997), 239-244.

[9] S. S. Dragomir, S. Wang, A new inequality of Ostrowski’s type in L_p-norm and applications to some special means and to some numerical quadrature rules. *Indian J. of Math.*, 40 (3) (1998), 245-304.

[10] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, *Appl. Math. Comp.*, 147 (2004), 137-146.

[11] U.S. Kirmaci, M.E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. *Appl. Math. Comp.*, 153 (2004), 361-368.

[12] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktionen von ihren Integralmittelwert. *Comment. Math. Hel*, 10 (1938), 226–227.

[13] C.E.M. Pearce, J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formula. *Appl. Math. Lett.*, 13 (2000) 51-55.

[14] M.Z. Sarıkaya, On the Ostrowski type integral inequality, *Acta Math. Univ. Comenianae*, Vol. LXXIX, 1 (2010), 129-134.

[15] M.Z. Sarıkaya, E. Set and M.E. Özdemir, On New Inequalities of Simpson’s Type for s-Convex Functions, *RGmia, Res. Rep. Coll.*, 13 (2) (2010), Article 2.

★ATATÜRK UNIVERSITY, K.K. EDUCATION FACULTY, DEPARTMENT OF MATHEMATICS, 25240, CAMPUS, ERZURUM, TURKEY

E-mail address: erhanset@yahoo.com

◆GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES, AĞRI İBRAHİM ÇEÇEN UNIVERSITY, AĞRI, TURKEY

E-mail address: emos@atauni.edu.tr

♦DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, DÜZCE UNIVERSITY, DÜZCE, TURKEY

E-mail address: sarikayamz@gmail.com