On N-differential graded algebras

Mauricio Angel* and Rafael Díaz†

September 12, 2018

Abstract

We introduce the concept of N-differential graded algebras (N-dga), and study the moduli space of deformations of the differential of an N-dga. We prove that it is controlled by what we call the (M,N)-Maurer-Cartan equation.

Introduction

The goal of this paper is to take the first step towards finding a generalization of Homological Mirror Symmetry (HMS) [11] to the context of N-homological algebra [5]. In [7] Fukaya introduced HMS as the equivalence of the deformation functor of the differential of a differential graded algebra associated with the holomorphic structure, with the deformation functor of an A_∞-algebra associated with the symplectic structure of a Calabi-Yau variety. This idea motivated us to define deformation functors of the differential of an N-differential graded algebra. An N-dga is a graded associative algebra A, provided with an operator $d : A \to A$ of degree 1 such that $d(ab) = d(a)b + (-1)^a ad(b)$ and $d^N = 0$. A nilpotent differential graded algebra (Nil-dga) will be an N-dga for some integer $N \geq 2$. Theorem 10 endows the category of Nil-differential graded algebras with a symmetric monoidal structure. We remark that such a monoidal structure cannot be constructed in a natural way for a fixed N (except for $N = 2$), not even using the q-deformed Leibniz rule, see [13].

In Section 2 we consider deformations of a 2-dga into an N-dga. By deforming 2-dgas one is able to construct a plethora of examples of N-dgas. Roughly speaking Theorem 16 tell us that a derivation of a 2-dga $d_A + e$ is an N-differential iff

\[(d_{End}(e) + e^2)^{\frac{N-1}{2}}(d_A + e) = 0 \quad \text{for } N \text{ odd,}\]

\[(d_{End}(e) + e^2)^{\frac{N}{2}} = 0 \quad \text{for } N \text{ even.}\]

*Work partially supported by IVIC.
†Work partially supported by IVIC.
In Section 3 we introduce a general formalism for discrete quantum mechanics. We introduce these models since they turn out, in a totally unexpected way, to be relevant in the problem of deforming an \(M \)-differential into an \(N \)-differential with \(N \geq M \). Section 4 contains our main result, Theorem 19 which provides an explicit identity called the \((M, N)\)-Maurer-Cartan equation that controls deformations of an \(M \)-complex into an \(N \)-complex. The construction of the \((M, N)\)-Maurer-Cartan equation is based on an explicit description of coefficients \(c_k \) such that

\[
(d_A + e)^N = \sum_{k=0}^{N-1} c_k d_A^k,
\]

where \(c_k \) depends on \(d_A \) and \(e \). In Section 5 we define a functional \(cs_{2,2N} \) whose critical points are naturally determined by the \((2, 2N)\)-Maurer-Cartan equation.

In conclusion in this paper we introduce the moduli space of deformations of the differential of an \(N \)-dga and prove that it is controlled by a generalized Maurer-Cartan equation. We point out that our methods and ideas can be applied in a wide variety of contexts. Examples of \(N \)-dga’s coming from differential geometry are developed in [1]. A \(q \)-analogue, for \(q \) a primitive \(N \)-th root of unity, of our main result Theorem 19 is provided in [2]. In [3] we state an \(N \)-generalized Deligne’s principle and use the constructions of this paper to study \(A_\infty \)-algebras of depth \(N \).

1 \(N \)-differential graded algebras and modules

Throughout this paper we shall work with the abelian category of \(k \)-modules over a commutative ring \(k \) with unit. We will denote by \(A^\bullet \) \(\mathbb{Z} \)-graded \(k \)-modules \(\oplus_{i \in \mathbb{Z}} A^i \). We let \(\bar{a} \in \mathbb{Z} \) denote the degree of the element \(a \in A^\bar{a} \). The following definition is taken from [9].

Definition 1 Let \(N \geq 1 \) an integer. An \(N \)-complex is a pair \((A^\bullet, d)\), where \(A^\bullet \) is a \(\mathbb{Z} \)-graded object and \(d : A^\bullet \rightarrow A^\bullet \) is a morphism of degree 1 such that \(d^N = 0 \).

Clearly an \(N \)-complex is a \(P \)-complex for all \(P \geq N \). If \(k \) is a field, then an \(N \)-complex \((A^\bullet, d)\) is referred as an \(N \)-differential graded vector space \((N\text{-dgvect})\). An \(N \)-complex \((A^\bullet, d)\) such that \(d^{N-1} \neq 0 \) is said to be a proper \(N \)-complex. Let \((A^\bullet, d_A)\) be an \(M \)-complex and \((B^\bullet, d_B)\) be an \(N \)-complex, a morphism \(f : (A^\bullet, d_A) \rightarrow (B^\bullet, d_B) \) is a morphism \(f : A^\bullet \rightarrow B^\bullet \) of \(k \)-modules such that \(d_B f = f d_A \).

Lemma 2 Let \((A^\bullet, d_A)\) be a proper \(M \)-complex, \((B^\bullet, d_B)\) be a proper \(N \)-complex and \(f : (A^\bullet, d_A) \rightarrow (B^\bullet, d_B) \) be a morphism, then (1) If \(\text{Ker}(f) = 0 \), then \(M \leq N \); (2) If \(\text{Im}(f) = B^\bullet \), then \(M \geq N \) and (3) If \(\text{Ker}(f) = 0 \) and \(\text{Im}(f) = B^\bullet \), then \(M = N \).
Proof. 1. Assume that $N < M$ and let $a \in A^i$ then $f(d_N^A(a)) = d_B^N(f(a)) = 0$. This implies that $d_N^A(a) \in \text{Ker}(f) = 0$, and therefore $d_N^A(a) = 0$ which is in contradiction with the fact that (A^*, d_A) is a proper M-complex. The proof of 2. is analogous to 1., 3. follows from 1. and 2.♦

Example 3 Consider $V = \mathbb{C}<e_1, e_2, e_3>$ the complex vector space generated by e_1, e_2, e_3. We endow V with a \mathbb{Z}-graduation declaring $\bar{e}_1 = 0$, $\bar{e}_2 = 1$ and $\bar{e}_3 = 2$. Define the linear map $d : V \to V$ on generators by

$$d(e_1) = e_2, \quad d(e_2) = e_3, \quad \text{and} \quad d(e_3) = 0.$$

(V, d) is a proper 3-complex.

Definition 4 Let (A^*, d) be an N-complex, we say that an element $a \in A^i$ is p-closed if $d^p(a) = 0$ and is p-exact if there exists an element $b \in A^{i-N+p}$ such that $d^{N-p}(b) = a$, for $1 \leq p < N$ fixed. The cohomology groups of are the k-modules

$$pH^i(A) = \frac{\text{Ker}\{d^p : A^i \to A^{i+p}\}}{\text{Im}\{d^{N-p} : A^{i-N+p} \to A^i\}},$$

where $i \in \mathbb{Z}$, $p = 1, 2, ..., N-1$. We set $kH^*(A) = 0$ for $k \geq N$.

Notice that a 2-complex A^* is just a complex in the usual sense and in this case p is necessarily equal to 1 and $1H^i(A)$ agrees with $H^i(A)$ for all $i \in \mathbb{Z}$.

Definition 5
(a) Let $N \geq 1$ an integer. An N-differential graded algebra or N-dga over k, is a triple (A^*, m, d) where $m : A^k \otimes A^l \to A^{k+l}$ and $d : A^k \to A^{k+1}$ are k-modules homomorphisms satisfying

1) The pair (A^*, m) is a graded associative algebra.

2) For all $a, b \in A^*$, d satisfies the graded Leibniz rule $d(ab) = d(a)b + (-1)^{\bar{a}}ad(b)$.

3) $d^N = 0$, i.e., (A^*, d) is an N-complex.

(b) A nilpotent differential graded algebra (Nil-dga) is an N-dga for some integer $N \geq 2$.

A 1-dga is a graded associative algebra. A 2-dga is a differential graded algebra.

Lemma 6 Let (A^*, m, d) be an N-dga, then if a is p-closed and b is q-closed then ab is $(p+q-1)$-closed.
Proof. The Lemma follows from the identity

\[d^n(ab) = \sum_{i=0}^{n} \binom{n}{i} d^i(a)d^{n-i}(b), \]

where \(\binom{n}{i} = (-1)^i \), and for \(j \geq 1 \), \(\binom{n+1}{j} = \binom{n}{j-1} + (-1)^{i+j} \binom{n}{j} \).

When \(n = p + q - 1 \), since \(d^i(a) = 0 \) for \(i \geq p \), we only consider the case \(i < p \), then

\[n - i = p + q - 1 - i > q - 1 \] and \(d^{n-i}(b) = 0 \), because \(d^j(b) = 0 \) for \(j \geq q \). Thus either \(d^i(a) = 0 \) or \(d^{n-i}(b) = 0 \) for all \(i \), and we have \(ab \) is \((p + q - 1)\)-closed. ♦

Definition 7 Let \((A^*, m_A, d_A)\) be an \(M \)-dga and \((B^*, m_B, d_B)\) be an \(N \)-dga. A morphism \(f : A^* \to B^* \) is a linear map such that \(f m_A = m_B(f \otimes Id) + m_B(Id \otimes f) \) and \(d_B f = f d_A \).

A morphism \(f : A^* \to B^* \) such that \(f(A^i) \subset B^{i+k} \) is said to be a morphism of degree \(k \). A pair of morphisms \(f, g : A^* \to B^* \) of \(N \)-dga are homotopic, if there exist \(h : A^* \to B^* \) of degree \(N - 1 \) such that

\[f - g = \sum_{i=0}^{N-1} d_B^{N-1-i} h d_A^i. \]

We remark that if two morphisms \(f, g : A^* \to B^* \) of \(\text{Nil-dga} \) are homotopic then they induce the same maps in cohomology.

Let \((A^*, m_A, d_A)\) and \((B^*, m_B, d_B)\) be an \(M \)-dga and an \(N \)-dga, respectively. Define \(d_{A \otimes B} = d_A \otimes Id + Id \otimes d_B \), the identity

\[d_{A \otimes B}^n(a \otimes b) = \sum_{k=0}^{n} (-1)^k a^{(n-k)} d_A^k(a) \otimes d_B^{n-k}(b) \]
implies,

Proposition 8 The triple \((A^* \otimes B^*, m_{A \otimes B}, d_{A \otimes B})\) is an \((M+N-1)\)-dga, where \(m_{A \otimes B} = m_A \otimes m_B \).

Example 9 Let \((V, d)\) be the 3-complex of in Example 3. On the space \(V \otimes V^* \) consider the base given by \(E_{ij} = e_i \otimes e_j^* \), \(i, j = 1, 2, 3 \), and define

\[D(E_{ij}) = E_{(i+1)j} + (-1)^{i+j} E_{i(j-1)}, \]

by Proposition 8 and since \(D^4(E_{13}) \neq 0 \), then \((V \otimes V^*, D)\) is a proper 5-dga.
Theorem 10 The category Nil-dgvec is a symmetric monoidal category. Nil-dga is the category of monoids in Nil-dgvec. Nil-dga inherits a symmetric monoidal structure from Nil-dgvec.

Let V^\bullet be an N-dga. By Proposition (V$^\bullet$)$^\otimes 2$ is a $(2N-1)$-dga, (V$^\bullet$)$^\otimes 3$ is a $(3N-2)$-dga and in general (V$^\bullet$)$^\otimes k$ is a $[k(N-1)+1]$-dga.

Definition 11 Let (A^\bullet,m_A,d_A) be an N-dga and M^\bullet a graded k-module. Let $K \geq 2$ an integer. A K-differential graded module $(K$-dgm) over (A^\bullet,m_A,d_A), is a triple (M^\bullet,m_M,d_M) with $m_M : A^k \otimes M^l \to M^{k+l}$ and $d_M : M^k \to M^{k+1}$, k-modules morphisms satisfying the following properties

1. For all $a,b \in A^\bullet$ and $m \in M^\bullet$, $m_M(a,m_M(b,m)) = m_M(m_A(a,b),m)$. If no confusion arises, we denote $m_M(a,m)$ by am.

2. For all $a \in A^\bullet$ and $m \in M^\bullet$, $d_M(am) = d_A(a)m + (-1)^a ad_M(m)$.

3. The pair (M^\bullet,d_M) is a K-complex, $d_M^K = 0$.

Let (M^\bullet,m_M,d_M) be a K-dgm and (N^\bullet,m_N,d_N) be an L-dgm both over an N-dga (A^\bullet,m_A,d_A). A morphism $f : M^\bullet \to N^\bullet$ of degree k is a linear map such that $f(m_M(a,b)) = (-1)^a f m_N(a,f(b))$ and $d_M(f(b)) = f(d_N(b))$, for all $a \in A^\bullet$ and $b \in M^\bullet$. Now let (M^\bullet,m_M,d_M) be a K-dgm over an M-dga (A^\bullet,m_A,d_A) and (N^\bullet,m_N,d_N) an L-dgm over an N-dga (B^\bullet,m_B,d_B). The triple $(M \otimes N,m_{M \otimes N},d_{M \otimes N})$ turns out to be a $(K+L-1)$-dgm over $(A \otimes B,m_{A \otimes B},d_{A \otimes B})$, where $m_{M \otimes N}$ and $d_{M \otimes N}$ are defined as before.

Definition 12 The space of endomorphisms of degree k of M^\bullet is $\text{End}^k(M) = \prod_{i \in \mathbb{Z}} \text{Hom}(M^i,M^{i+k})$, this is, $\text{End}^k(M)$ consist of maps $f : M^\bullet \to M^\bullet$ of degree k which are linear in regard to the action of A^\bullet but which does not satisfy necessarily the relation $d_M f = (-1)^f f d_M$.

There are operators $\circ_M : \text{End}(M) \otimes M^\bullet \to M^\bullet$ and $\circ_E : \text{End}(M) \otimes \text{End}(M) \to \text{End}(M)$. Similarly to Proposition (V$^\bullet$)$^\otimes 2$ Proposition (V$^\bullet$)$^\otimes 3$ below provides the natural algebraic structure on $\text{End}(M)$.

Proposition 13 Define $d_{\text{End}}(f) := d_M(f) - (-1)^f f (d_M)$, for $f \in \text{End}(M)$. The triple $(\text{End}(M),\circ_E,d_{\text{End}})$ is a $(2N-1)$-dga, and (M^\bullet,\circ_M,d_M) is an N-dgm over $(\text{End}(M),\circ_E,d_{\text{End}})$.

Proof. Associativity of \circ_E follows from the associativity morphisms composition. The Leibniz rule for d_{End} is a consequence of the Leibniz rule for d_M. From the definition of d_{End} we obtain the identity

$$d^n_{End}(f) = \sum_{k=0}^{n} (-1)^f(n-k) d^k_m \circ f \circ d^{n-k}_m$$

which can be proved by induction and holds for all $n \geq 1$. Let $n = 2N - 1$ if $k < N$ then $N - 1 < n - k$ and thus $d^{n-k}_M = 0$. Similarly if $n - k < N$ then $d^k_M = 0$. ♦

2 Deformation theory of 2-dgas into N-dgas

Let k a field and consider the category Artin of finite dimensional local k-algebras. If $R \in \text{Ob}(\text{Artin})$ with maximal ideal R_+ then $k \cong R/R_+$ ($R = k[[t]]$ and $R_+ = tk[[t]]$ are examples to keep in mind). Since $k \cong R/R_+$ then $R \cong k \oplus R_+$ as vector spaces. We study deformation theory using the formalism which considers deformations as functors from Artin algebras to Sets for later convenience.

Definition 14 Let A^\bullet be an M-dga, an N-deformation of A^\bullet over R is an N-dga A^\bullet_R over R, with $N \geq M$, such that $A^\bullet_R/R_+A^\bullet_R$ is isomorphic to A^\bullet as N-dga. Two N-deformations A^\bullet_R and B^\bullet_R are said to be isomorphic if there exists an isomorphism $\Phi : A^\bullet_R \rightarrow B^\bullet_R$ of N-dgas such that the induced isomorphism $\bar{\Phi} : A^\bullet_R/R_+A^\bullet_R \rightarrow B^\bullet_R/R_+B^\bullet_R$ satisfies $i_B \bar{\Phi} = i_A$, where i_A and i_B are the isomorphism $i_A : A^\bullet_R/R_+A^\bullet_R \rightarrow A^\bullet$ and $i_B : B^\bullet_R/R_+B^\bullet_R \rightarrow A^\bullet$.

The core of Definition 14 is to require that d_{A_R} reduces to d_A, and m_{A_R} reduces to m_A under the natural projection $\pi : A^\bullet_R \rightarrow A^\bullet_R/R_+A^\bullet_R \cong A^\bullet$. Assume that $A^\bullet_R = A^\bullet \otimes R$ as graded algebras. We have the following decomposition

$$A^\bullet_R = A^\bullet \otimes R = A^\bullet \otimes (k \oplus R_+) = (A^\bullet \otimes k) \oplus (A^\bullet \otimes R_+) = A^\bullet \oplus (A^\bullet \otimes R_+).$$

Thus, since d_{A_R} reduces to d_A under the projection π, we must have

$$d_{A_R} = d_A + e$$

where $e \in \text{Der}(A^\bullet \otimes R_+)$ has degree 1. Moreover, the fact that $d^n_{A_R} = 0$ implies that e is required to satisfy an identity which we call the (M,N)-Maurer-Cartan equation. Next proposition is well known and considers the classical case, that is, the $(2,2)$-Maurer-Cartan equation.
Proposition 15 Let A^\bullet be a 2-dga and $A^\bullet_\mathcal{R} = A^\bullet \otimes \mathcal{R}$ be a 2-deformation over \mathcal{R}, $d_{A_\mathcal{R}} = d_A + e$ where $e \in \text{Der}(A^\bullet \otimes \mathcal{R}_+)$, then e satisfies the (2,2)-Maurer-Cartan equation given by

$$d_{\text{End}}(e) + e^2 = 0.$$

PROOF. We have

$$d_{A_\mathcal{R}}^2(a) = (d_A + e)(d_A + e)(a) = d_A^2(a) + d_A(e(a)) + e(d_A(a)) + e^2(a) = d_{\text{End}}(e)(a) + e^2(a), \quad \text{for all } a \in A^\bullet.$$

Suppose that $N = 2k + n$, $n \in \{0, 1\}$ and $k \in \mathbb{N}$, then

$$d_{A_\mathcal{R}}^N = d_{A_\mathcal{R}}^{2k+n} = (d_{A_\mathcal{R}}^2)^k d_{A_\mathcal{R}}^n = (d_{\text{End}}(e) + e^2)^k d_{A_\mathcal{R}}^n, \quad \text{thus}$$

Theorem 16 Let A^\bullet be a 2-dga. $A^\bullet_\mathcal{R} = A^\bullet \otimes \mathcal{R}$ is an N-deformation over \mathcal{R} with $d_{A_\mathcal{R}} = d_A + e$ where $e \in \text{End}(A^\bullet \otimes \mathcal{R}_+)$ of degree 1, iff e satisfies

$$(d_{\text{End}}(e) + e^2)^\frac{N-1}{2}(d_A + e) = 0 \quad \text{for } N \text{ odd},$$

$$(d_{\text{End}}(e) + e^2)^\frac{N}{2} = 0 \quad \text{for } N \text{ even}.$$

Theorem 16 can be easily extended to study deformations of the differential of a 2-dgm M^\bullet over a 2-dga A^\bullet as follows.

Theorem 17 Let M^\bullet be a 2-dgm over a 2-dga A^\bullet. Then $M^\bullet_\mathcal{R} = M^\bullet \otimes \mathcal{R}$ is an N-deformation over \mathcal{R} with $d_{M_\mathcal{R}} = d_A + e$ where $e \in \text{End}(M^\bullet \otimes \mathcal{R}_+)$ has degree 1, iff e satisfies

$$(d_{\text{End}}(e) + e^2)^\frac{N-1}{2}(d_M + e) = 0 \quad \text{for } N \text{ odd},$$

$$(d_{\text{End}}(e) + e^2)^\frac{N}{2} = 0 \quad \text{for } N \text{ even}.$$

Let M be a 3-dimensional smooth manifold. The space $(\Omega^\bullet(M), d)$ of differential forms on M is a differential graded algebra with d the de Rham differential. Let $\pi : E \to M$ be a vector bundle, the space $(\Omega^\bullet(M, E), d_E)$ of E-valued forms is a differential graded module over $(\Omega^\bullet(M), d)$, where d_E is the differential induced by d. Let $A \in \Omega^1(M)$ and consider the endomorphism e_A induced by A, defined by $e_A(\omega) = A \wedge \omega$ for all $\omega \in \Omega^\bullet(M, E)$. The pair $(\Omega^\bullet(M, E), d_E + e_A)$ is a 4-dgm for any A. Moreover, according to Theorem 17, $(\Omega^\bullet(M, E), d + e_A)$ is a 3-dgm if and only if for all ω

$$d_{\text{End}}(e_A)(d + e_A) \omega = 0.$$

Since $d_{\text{End}}(e_A)(d + e_A)$ is an operator of degree 3, the identity $d_{\text{End}}(e_A)(d + e_A) \omega = 0$ holds for any k-form ω, $k \geq 1$. Thus $(\Omega^\bullet(M, E), d + e_A)$ is a 3-dgm if and only if for any 0-form ω

$$d_{\text{End}}(e_A)(d + e_A) \omega = d(A) \wedge (d_E(\omega) + A \wedge \omega) = 0.$$

7
Similarly, it is easy to deduce from Theorem 17 that if M is an n-dimensional smooth manifold and $n < m$, then $(\Omega^\bullet(M, E), d + e_A)$ is an m-complex. Let now M be a $2n$-dimensional smooth manifold. Using local coordinates the 2-form $d_{\text{End}}(e_A)$ can be written as $F_{ij}dx^i \wedge dx^j$ where $F_{ij} = \partial_i A_j - \partial_j A_i$. Furthermore,

$$(F_{ij}dx^i \wedge dx^j)^n = \left(\sum_{\alpha \in P(2n)} \prod_{i=1}^n \text{sign}(\alpha)F_{a_i,b_i} \right) dx^1 \wedge \ldots \wedge dx^{2n},$$

where $P(2n)$ is the set of ordered pairings of $[2n] = \{1, \ldots, 2n\}$. Recall that a ordered pairing $\alpha \in P(2n)$ is a sequence $\{(a_i, b_i)\}_{i=1}^n$ such that $[2n] = \bigsqcup_{i=1}^n \{a_i, b_i\}$ and $a_i < b_i$.

By Theorem 17 $(\Omega^\bullet(M, E), d + e_A)$ is a $2n$-complex if and only if the 2-form $F_{ij}dx^i \wedge dx^j$ satisfies

$$\sum_{\alpha \in P(2n)} \text{sign}(\alpha) \prod_{i=1}^n F_{a_i,b_i} = 0.$$

Let M be a complex manifold and consider the differential graded algebra $(\Omega(M), \wedge, \bar{\partial})$, where $\bar{\partial}$ is the Dolbault differential. Let $\pi : E \to M$ be a complex vector bundle, we consider $\Omega(M, E)$ the forms with values in E. Recall that a holomorphic structure on E is given by a left differential graded module structure $(\Omega(M, E), \wedge_E, \bar{\partial}_E)$ over the 2-dga $(\Omega(M), \wedge, \bar{\partial})$. Suppose that on $(\Omega(M, E), \wedge_E, \bar{\partial}_E)$ there is a left N-differential graded module structure over the 2-dga $(\Omega(M), \wedge, \bar{\partial})$, then in this case we say that E carries an N-holomorphic structure.

3 Discrete quantum theory

Generally speaking the following data constitute the basic set up for a (non-relativistic) quantum mechanical system: A finite dimensional Riemannian manifold M which is thought as the configuration space of the quantum system; A Lagrangian function $L : TM \to \mathbb{R}$ which assigns weights to points in phase space.

Associated to this data is the Hilbert space \mathcal{H} of quantum states which is usually taken to be $L^2(M)$, the space of square integrable functions on M. The dynamics of the quantum system is determined by operators $U_t : \mathcal{H} \to \mathcal{H}$, where $t \in \mathbb{R}$ represents time. The kernel ω_t of U_t is such that

$$(U_t f)(y) = \int_M \omega_t(y, x) f(x) dx.$$

The key insight of Feynman is that $\omega_t(y, x)$ admits an integral representation

$$\omega_t(y, x) = \int e^{i \int_0^t L(\gamma, \dot{\gamma}) dt} D(\gamma).$$
The integral above runs over all paths $\gamma : [0, t] \to M$ such that $\gamma(0) = x$ and $\gamma(t) = y$. Making rigorous sense of this integral is the main obstacle in turning quantum mechanics a fully rigorous mathematical theory. Recall that a directed graph Γ is given by: i) A set V_Γ called the set of vertices, ii) A set E_Γ called the set of edges and iii) A map $(s, t) : E_\Gamma \to V_\Gamma \times V_\Gamma$. Following the pattern above, one may define a discrete quantum mechanical system as being given by the following data

1. A directed graph Γ (finite or infinite) which plays the role of configuration space.

2. A map $L : E_\Gamma \to \mathbb{R}$ called the Lagrangian map of the system.

The associated Hilbert space is $\mathcal{H} = \mathbb{C}^{V_\Gamma}$. The operators $U_n : \mathcal{H} \to \mathcal{H}$, where $n \in \mathbb{Z}$ represents discretized time are given by

$$(U_nf)(y) = \sum_{x \in V_\Gamma} \omega_n(y, x)f(x),$$

where the discretized kernel $\omega_n(y, x)$ admits the following representation

$$\omega_n(y, x) = \sum_{\gamma \in P_n(\Gamma, x, y)} \prod_{e \in \gamma} e^{iL(e)}.$$

Here $P_n(\Gamma, x, y)$ denotes the set of length n paths in Γ from x to y, i.e., sequences (e_1, \ldots, e_n) of edges in Γ such that $s(e_i) = x$, $t(e_i) = s(e_{i+1})$, $i = 1, \ldots, n - 1$ and $t(e_n) = y$.

In Section 4 we show that the generalized Maurer-Cartan equation controlling deformations of N-dgas is determined by the kernel of a discrete quantum mechanical system L which we proceed to introduce. Let us first explain our notation and conventions which generalize those introduced in [4].

For $s = (s_1, \ldots, s_n) \in \mathbb{N}^n$ we set $l(s) = n$, the length of the vector s, and $|s| = \sum_i s_i$. For $1 \leq i < n$, $s_{>i}$ denotes the vector given by $s_{>i} = (s_{i+1}, \ldots, s_n)$, for $1 \leq i \leq n$, $s_{<i}$ stands for $s_{<i} = (s_1, \ldots, s_{i-1})$, we also set $s_{>n} = s_{<1} = \emptyset$. $\mathbb{N}^{(\infty)}$ denotes the set $\bigcup_{n=0}^{(\infty)} \mathbb{N}^n$, where by convention $\mathbb{N}^{(0)} = \{\emptyset\}$.

We define maps $\delta_i, \eta_i : \mathbb{N}^n \to \{0, 1\}$, for $1 \leq i \leq n$, as follows

$$\delta_i(s) = \begin{cases} 1 & \text{if } s_i = 0, \\ 0 & \text{otherwise}. \end{cases} \quad \eta_i(s) = \begin{cases} 1 & \text{if } s_i \geq 1, \\ 0 & \text{otherwise}. \end{cases}$$

For an M-dga A^\bullet and $e \in \text{End}(A^\bullet)$ and $s \in \mathbb{N}^n$ we define $e^{(s)} = e^{(s_1)} \cdots e^{(s_n)}$, where $e^{(l)} = d^l_{\text{End}}(e)$ if $l \geq 1$, $e^{(0)} = e$ and $e^{0} = 1$. In the case that $e_a \in \text{End}(A^\bullet)$ is given by

$$e_a(\phi) = a\phi, \quad \text{for } a \in A^1 \text{ fixed and all } \phi \in A^\bullet,$$
then \(e_a^{(l)} = d_{End}(e_a) \) reduces to \(e_a^{(l)} = e_{d^l(a)} \), thus

\[
e_a^{(s)} = e_a^{(s_1)} \cdots e_a^{(s_n)} = e_{d^{s_1}(a)} \cdots e_{d^{s_n}(a)}.
\]

Where \([k]\) denotes the set \(\{1, 2, \ldots, k\} \). For \(N \in \mathbb{N} \) we define \(E_N = \{s \in \mathbb{N}^{(\infty)} : |s| + l(s) \leq i\} \) and for \(s \in E_N \) we define \(N(s) \in \mathbb{Z} \) by \(N(s) = N - |s| - l(s) \).

We introduce the discrete quantum mechanical system \(L \) by

1. \(V_L = \mathbb{N}^{(\infty)} \).
2. There is a unique directed edge in \(L \) from vertex \(s \) to \(t \) if and only if \(t \in \{(0, s), (s + e_i)\} \) where \(e_i = (0, \ldots, 1_{i-th}, \ldots, 0) \in \mathbb{N}^{(s)} \), in this case we set \(\text{source}(e) = s \) and \(\text{target}(e) = t \).
3. Edges in \(L \) are weighted according to the following table

source(e)	target(e)	weight(e)		
s	(0, s)	1		
s	s	\((-1)^{	s	+l(s)}\)
s	(s + e_i)	\((-1)^{	s	+l(s)}\)

The set \(P_N(\emptyset, s) \) consists of all paths \(\gamma = (e_1, \ldots, e_N) \), such that \(\text{source}(e_1) = \emptyset \), \(\text{target}(e_N) = s \) and \(\text{source}(e_{i+1}) = \text{target}(e_i) \). For \(\gamma \in P_N(\emptyset, s) \) we define the weight \(\omega(\gamma) \) of \(\gamma \) as

\[
\omega(\gamma) = \prod_{i=1}^{N} \omega(e_i).
\]

4 The \((M, N)\)-Maurer-Cartan equation

Lemma 18 Let \(A^\ast \) be an \(M \)-dga and \(R \in Ob(\text{Artin}) \). We define \(d_{A_R} = d_A + e \) where \(e \in \text{Der}(A^\ast \otimes R_+) \) has degree 1, then

\[
(d_{A_R})^N = \sum_{s \in E_N} c(s, N)e^{(s)}d_A^{N(s)},
\]

where the coefficient \(c(s, N + 1) \) is equal to

\[
\delta_1(s)c(s_{>1}, N) + (-1)^{|s|+l(s)}c(s, N) + \sum_{i=1}^{l(s)} \eta_i(s)(-1)^{|s|+i-1}c(s - e_i, N),
\]

and \(c(0, 1) = c(0, 1) = 1 \).
Proof. We use an induction on N. For $N = 1$, since $E_1 = \{s = \emptyset, s = 0\}$

$$d_{AR} = \sum_{s \in E_1} c(s, 1)e^{s}d_{A}^{N(s)} = c(\emptyset, 1)e^{(0)}d_{A}^{1-|\emptyset|-l(\emptyset)} + c(0, 1)e^{(0)}d_{A}^{1-|0|-l(0)}$$

$$= c(\emptyset, 1)d_{A} + c(0, 1)e.$$

Suppose our formula holds for N and let us check it for $N + 1$

$$(d_{AR})^{N+1} = (d_{A} + e)(d_{AR})^{N}$$

$$= (d_{A} + e)\left(\sum_{s \in EN} c(s, N)e^{s}d_{A}^{N(s)}\right)$$

$$= d_{A}\left(\sum_{s \in EN} c(s, N)e^{s}d_{A}^{N(s)}\right) + e\left(\sum_{s \in EN} c(s, N)e^{s}d_{A}^{N(s)}\right)$$

$$= \sum_{s \in EN} c(s, N)d_{A}(e^{s}d_{A}^{N(s)}) + \sum_{s \in EN} c(s, N)e^{s}d_{A}^{N(s)}.$$ \hspace{1cm} (2)

Consider the second term of the right hand side of (2)

$$\sum_{s \in EN} c(s, N)e^{s}d_{A}^{N(s)} = \sum_{s \in EN} c(s, N)e^{(0)}e^{s}d_{A}^{(s)}$$

$$= \sum_{t \in EN_{+1}} c(t_{>1}, N)e^{(t)}d_{A}^{N-|t_{>1}|-l(t_{>1})}$$ \hspace{1cm} (3)

$$= \sum_{s \in EN_{+1}} \delta_{1}(s)c(s_{>1}, N)e^{s}d_{A}^{N(s)+1}.$$ \hspace{1cm} (4)

In (3) we put $t = (0, s)$ thus $|t| = |s|$ and $l(t) = l(s) + 1$ and (4) is obtained by rewriting and changing t by s.

11
Now consider the first term of the right hand side of (2)

\[\sum_{s \in E_N} c(s, N)d_A(e^{(s)})d_A^{N(s)} = \sum_{\substack{s \in E_N \\ 1 \leq i \leq l(s)}} (-1)^{|s|+i-1}c(s, N)e^{(s+e_i)}d_A^{N(s)} \]

\[+ \sum_{s \in E_N} (-1)^{|s|+l(s)}c(s, N)e^{(s)}d_A^{N(s)+1} \quad (5) \]

\[= \sum_{t \in E_{N+1}} \sum_{i=1}^{l(t)}(\sum_{s \in E_N} (-1)^{|s|+i-1}c(t-e_i, N)e^{(t)}d_A^{N-|t-e_i|-l(t)} \]

\[+ \sum_{s \in E_N} (-1)^{|s|+l(s)}c(s, N)e^{(s)}d_A^{N(s)+1} \quad (6) \]

\[= \sum_{s \in E_{N+1}} \sum_{i=1}^{l(s)} \eta_i(s)(\sum_{s \in E_N} (-1)^{|s|+i-1}c(s-e_i, N)e^{(s)}d_A^{N(s)+1} \]

\[+ \sum_{s \in E_N} (-1)^{|s|+l(s)}c(s, N)e^{(s)}d_A^{N(s)+1}. \quad (7) \]

Putting \(t = s + e_i \) in the first term of (5) we obtain (6) and rewriting and changing \(t \) by \(s \) we obtain (7). Finally collecting similar terms in (4) and (7), and using the recurrence formula we get

\[(d_A + e)^{N+1} = \sum_{s \in E_{N+1}} c(s, N+1)e^{(s)}d_A^{N(s)+1}, \]

thus the proof is completed. ♦

The following result generalizes Theorem 16. It provides an explicit formulae for the coefficients of the generalized Maurer-Cartan equation introduced below.

Theorem 19 We have,

\[(d_{A_R})^N = \sum_{k=0}^{N-1} c_k d_A^k, \]

where

\[c_k = \sum_{\substack{s \in E_N \\ N(s) = k \\ s_i < M}} c(s, N)e^{(s)} \quad \text{and} \quad c(s, N) = \sum_{\gamma \in P_N(\emptyset, s)} \omega(\gamma). \]

Proof. One checks that the coefficients \(c(s, N) = \sum_{\gamma \in P_N(\emptyset, s)} \omega(\gamma) \) satisfy the recurrence formula of Lemma 18. For this one checks that \(P_{N+1}(\emptyset, s) \) is naturally partitioned in three blocks. The first block contains paths that are the composition of a path \(\gamma : \emptyset \to s \) in \(P_N(\emptyset, s_{>1}) \) with an edge \(s_{>1} \to (0, s_{>1}) \) and corresponds with the first term in (1). The second block consists of paths that are the composition of a path \(\gamma : \emptyset \to s \) in \(P_N(\emptyset, s) \)
with an edge $s \to s$ and corresponds with the second term in (1), finally the last block consists of paths that are the composition of a path $\gamma : \emptyset \to s - e_i$ in $P_N(\emptyset, s - e_i)$ with an edge $s - e_i \to s$ and corresponds with the last term of (1).

Let A^\bullet be an M-dga and $A^\bullet_\mathcal{R}$ an N-deformation over \mathcal{R} with $A^\bullet_\mathcal{R} = A^\bullet \otimes \mathcal{R}$. For $a \in A^1 \otimes \mathcal{R}_+$ we define $e_a : A^\bullet_\mathcal{R} \to A^\bullet_\mathcal{R}$ by

$$e_a(b) = ab - (-1)^{|b|}ba.$$

We are assuming that the product is not graded commutative. It is easy to see that e_a is a derivation of degree 1 on $A^\bullet \otimes \mathcal{R}_+$. Then $d_{A_\mathcal{R}} = d_A + e_a$ is an N-deformation of d_A iff e_a satisfies the equation

$$\sum_{s \in E_N, s_i < M} c(s, N)e_a(s)d_A^{N-|s|-l(s)} = 0. \quad (8)$$

Equation (8) will be called the (M, N)-Maurer-Cartan equation. We closed this section by formally introducing the (M, N)-Maurer-Cartan functor $MC^N_M(A)$ which controls deformations of the differential d_A of an N-dga A^\bullet.

Definition 20 For $N \geq M$, $a \in A^1 \otimes \mathcal{R}_+$ is said to be an (M, N)-Maurer-Cartan element of $A^\bullet \otimes \mathcal{R}$ if e_a satisfies the (M, N)-Maurer-Cartan equation (8). We say that a is homotopic to a', if e_a is homotopic to $e_{a'}$ as morphisms of N-dgas.

Definition 21 We define the (M, N)-Maurer-Cartan functor $MC^N_M(A) : \text{Artin} \to \text{Set}$ for each M-dga A^\bullet over k. Functor $MC^N_M(A)$ is given by

1. Let \mathcal{R} be an object of Artin. $MC^N_M(A)(\mathcal{R})$ is the set of homotopy classes of all (M, N)-Maurer-Cartan elements of $A^\bullet \otimes \mathcal{R}$.

2. If $\varphi : \mathcal{R} \to \mathcal{R}'$ be a morphism of the category Artin and a is an (M, N)-Maurer-Cartan element of $A^\bullet \otimes \mathcal{R}$, then $(1 \otimes \varphi)(a)$ is an (M, N)-Maurer-Cartan elements of $A^\bullet \otimes \mathcal{R}'$. Thus we obtain a map $\varphi_* : MC^N_M(A)(\mathcal{R}) \to MC^N_M(A)(\mathcal{R}')$.

Deformation theory of K-dgms over an M-dga can be defined similarly.

5 **Chern-Simons actions**

Let (A^\bullet, m_A, d_A) be a 2-dga over k and let (M^\bullet, m_M, d_M) be a 2-dgm over (A^\bullet, m_A, d_A), consider its $2K$-Maurer-Cartan equation, that is the equation that arises when we deform the 2-dgm (M^\bullet, m_M, d_M) into a $2K$-dgm, $MC_{2K}(a) = (d_{End}(a) + a^2)^K = 0$, where $a \in End(M^\bullet)$ has degree 1. Let us assume that there exists a linear functional $\int : End(M^\bullet) \to k$ of degree $2K+1$, (i.e., $\int b = 0$ if $\bar{b} \neq 2K + 1$) satisfying the following conditions:
1. \int is non degenerate, that is, $\int ab = 0$ for all a, then $b = 0$.

2. $\int d(a) = 0$ for all a, where $d = d_{\text{End}(M^*)}$.

3. \int is cyclic, this is $\int a_1a_2 \cdots a_n = (-1)^{\delta_1+\delta_2+\cdots+\delta_n} \int a_2 \cdots a_na_1$.

We define the **Chern-Simons** functional $cs_{2,2K} : \text{End}(M^*) \to k$ by

$$cs_{2,2K}(a) = 2K \int \pi(#^{-1}(a(d_{\text{End}}(a) + a^2)^K)),$$

where

1. $k<a, d(a)>$ denotes the free k-algebra generated by symbols a and $d(a)$.

2. $\#: k<a, d(a)> \to k<a, d(a)>$ is the linear map defined by

$$\#(a^{i_1}d(a)^{j_1} \cdots a^{i_k}d(a)^{j_k}) = (i_1 + \cdots + i_k + j_1 + \cdots + j_k)a^{i_1}d(a)^{j_1} \cdots a^{i_k}d(a)^{j_k}.$$

3. $\pi : k<a, d(a)> \to \text{End}(M^*)$ is the canonical projection.

For $K = 1$ we have that $cs_{2,2}(a)$ is equal to

$$2 \int \pi(#^{-1}(a(d(a) + a^2))) = 2 \int \pi(#^{-1}(a(d(a) + a^3))) = \int ad(a) + \frac{2}{3}a^3,$$

which is the Chern-Simons functional. In general we have the following result

Theorem 22 Let $K \geq 1$ be an integer. The Chern-Simons functional $cs_{2,2K}$ is a Lagrangian for the $2K$-Maurer-Cartan equation, i.e., $a \in \text{End}^1(M^*)$ is a critical point of $cs_{2,2K}$ if and only if $(d(a) + a^2)^K = 0$.

Proof. We check that $\frac{\partial}{\partial \varepsilon}cs_{2,2K+2}(a + b\varepsilon) |_{\varepsilon=0} = (2K + 2) \int bMC_{2K+2}(a)$.

\[
\frac{\partial}{\partial \varepsilon}cs_{2,2K+2}(a + b\varepsilon) \bigg|_{\varepsilon=0} = \frac{\partial}{\partial \varepsilon}(2K + 2) \pi \int (#^{-1}((a + b\varepsilon)MC_{2K+2}(a + b\varepsilon)) |_{\varepsilon=0})
\]

\[
= (2K + 2) \int \pi(#^{-1}(\frac{\partial}{\partial \varepsilon}(a + b\varepsilon)MC_{2K}(a + b\varepsilon))MC_2(a + b\varepsilon)) |_{\varepsilon=0}
\]

\[
= (2K + 2) \int \pi(#^{-1}(\frac{\partial}{\partial \varepsilon}(a + b\varepsilon)MC_{2K}(a + b\varepsilon)) |_{\varepsilon=0} MC_2(a)
\]

\[+ (2K + 2) \int \pi(#^{-1}(aMC_{2K}(a) \frac{\partial}{\partial \varepsilon}MC_2(a + b\varepsilon))) |_{\varepsilon=0}. \]
By degree reasons the second term of (9) vanishes, the inductive hypothesis yields
\[
\frac{\partial}{\partial \varepsilon} cs_{2,2c+2}(a + b\varepsilon) \bigg|_{\varepsilon = 0} = (2K + 2) \int bMC_{2K}(a)MC_{2}(a)
\]
\[
= (2K + 2) \int bMC_{2K+2}(a).\leftarrow
\]

For \(K = 2, 3\) the Chern-Simons functional \(cs_{2,2K}(a)\) is given by
\[
\begin{align*}
cs_{2,4}(a) &= \int \frac{4}{3}a(d(a))^2 + 2a^3d(a) + \frac{4}{5}a^5. \\
\cs_{2,6}(a) &= \int \frac{3}{2}a(d(a))^3 + \frac{12}{5}a^3(d(a))^2 + \frac{6}{5}ad(a)a^2d(a) + 3a^5d(a) + \frac{6}{7}a^7.
\end{align*}
\]

Acknowledgement

We thank Nicolás Andruskiewitsch, Edmundo Castillo, Eddy Pariguan, Sylvie Paycha and Jim Stasheff for helpful suggestions. Thanks also to an anonymous referee for precise corrections.

References

[1] M. Angel, R. Díaz, *N-flat connections.*-To appear in Proceedings of the Conference on Geometric and Topological Methods for Quantum Field Theory, Edited by: Sylvie Paycha, Hernan Ocampo, and Bernardo Uribe (Villa de Leyva 2005), Contemp. Math. book series, A.M.S. Preprint [math.DG/0511242].

[2] M. Angel, R. Díaz, *On the q-analogue of the Maurer-Cartan equation.*-Advan. Studies in Contemporary Mathematics Vol 12 no. 2(2006), 315-322. Preprint [math.QA/0601698].

[3] M. Angel, R. Díaz, *A_{\infty}^N-algebras.*-In preparation.

[4] R. Díaz, E. Pariguan, *Symmetric Quantum Weyl algebras.*-Annales Mathematiques Blaise Pascal 11, 187-203, 2004.

[5] M. Dubois-Violette, *Lectures on differentials, generalized differentials and some examples related to theoretical physics.*-Quantum symmetries in theoretical physics and mathematics (Bariloche 2000), pages 59-94, Contemp. Math. 294, A.M.S. 2002.
[6] P. Freyd, *Abelian Categories.*-Harper International Edition, 1964.

[7] K. Fukaya, *Deformation theory, homological algebra, and mirror symmetry.*-Preprint January 2002.

[8] P. Griffiths and J. Harris, *Principles of Algebraic Geometry.*-Wiley Interscience, 1978. Pure and Applied Mathematics.

[9] M.M. Kapranov, *On the q-analog of homological algebra.*-Preprint q-alg/9611005

[10] C. Kassel et M. Wambst, *Algèbre homologique des N-complexes et homologie de Hochschild aux racines de l’unité.*-Publ. Res. Inst. Math. Sci. Kyoto University 34 (1998), n 2, 91-114.

[11] M. Kontsevich, *Homological Algebra of mirror symmetry.*-Proceedings of the International Congress of Mathematicians (Zürich, 1994), Birkhäuser, 1995, pp. 120-139.

[12] M. Kontsevich and Y. Soibelman, *Homological mirror symmetry and torus fibrations.*-Symplectic geometry and mirror symmetry, World Scientific, 2001, pp. 203-263.

[13] A. Sitarz, *On the tensor product construction for q-differential algebras.*-Lett. Math. Phys. 44 1998.

Mauricio Angel. Universidad Central de Venezuela (UCV). mangel@euler.ciens.ucv.ve
Rafael Díaz. Universidad Central de Venezuela (UCV). rdiaz@euler.ciens.ucv.ve