Determination of electromagnetic parameters for improvement of efficiency of special electric drives

V Yu Karandey, B K Popov, O B Popova and V L Afanasyev
Kuban State Technological University, 2, Moskovskaya St., Krasnodar, 350072, Russia
E-mail: epp_kvy@mail.ru

Abstract. The research of electromagnetic parameters for improvement of efficiency of special electric drives is presented in article. The analysis of the received results was carried out. An object of a research were special electric drives with asynchronous motors of cylindrical construction. The studied special electric actuators possess improved mass-dimensional and power indicators due to constructional features and the used control systems. For different industries application of electric actuators with the seized characteristics is a relevant task. For modeling and design of special electric drives it is necessary to create new approaches for determination of electromagnetic parameters or to make significant correction of the existing approaches. On the basis of the offered mathematical model of the electromagnetic system presented in the form of set of electromagnets parameters of the studied electric drives were determined electromagnetic. The analysis of the conducted research shows that the received solution will allow to improve efficiency of the special electric drives used in difficult technological processes of different industries.

1. Introduction
Development of modern technologies in heavy mechanical engineering [1-2], the electric transport [3-4], oil and gas [5-6], steelmaking [7-8], mountain [9-10], pulp-and-paper, easy, textile and other industries [11-12] leads to toughening of production and technical requirements [13] to different mechanisms [14] and the equipment [15-16], their upgrade [17] and creation new [18-19]. Such requirements are imposed also by an electric drives of industrial mechanisms [20-21]. New electric drives should carry out the set technological parameters, technical and economic and mass-dimensional indicators and provide the minimum consumption of electrical energy [22-23]. Standard single-engine electric drives can not always provide everything the criteria of efficiency stated above. The applied modern control devices and automation solve only a part of problems. Application of special electric drives will allow to solve the specified technical and technological problems.

Mathematical modeling, design and creation of special types of electric drives [24] demands significant correction of the existing methods of calculation or creation of new approaches [25-26] with development of elements of an automated design engineering system [27-28].

2. Determination of electromagnetic parameters for improvement of efficiency of special electric drives
The problem of determination of electromagnetic parameters of special electric drives is solved with application of methods of electromagnetic transformation of energy, the law of Ohm for a magnetic
chain and the principle of imposing. Such approach allows to receive analytical expressions for finding of magnetic resistance of the studied special electric drives.

On the example of mathematical model of the operated cascade asynchronous electric drive with motors of low power analytical expressions of magnetic resistance of the set sites of an electromagnetic system are received. The magnetic flux is equal:

\[\Phi = \frac{Iw}{R_{\mu}} \]

where \(\Phi \) – magnetic flux of the electric motor; \(I \) – the current proceeding on the stator; \(w \) – number of rounds of the coil or winding; \(R_{\mu} \) – magnetic resistance electric motor.

Magnetic resistance is equal:

\[R_{\mu} = \frac{1}{G_{\mu}} = \frac{1}{\mu_0 \mu S}, \]

where \(G_{\mu} \) – magnetic conductance; \(l \) – length of the power line on the site; \(S \) – the area through which the magnetic flux proceeds; \(\mu \) – magnetic permeability of this site; \(\mu_0 \) – relative magnetic permeability.

The value of magnetic resistance on section of a yoke of the stator is equal:

\[R_s = \frac{\pi D_{md}s + 2D_{md}s - D - 2h_{ts}}{2 \mu_0 \mu D_s - D - 2h_{ts} l_\delta}. \]

where \(D \) – inside diameter of the stator; \(D_{md}s \) – the average length of the power magnetic line; \(D_s \) – the outer diameter of the stator; \(l_\delta \) – the computational length of a magnetic conductor; \(h_{ts} \) – stator tooth height; \(p \) – number of poles. \(R_s = 73440 \text{Ohm} \).

Magnetic resistance of section of a tooth part of the stator is equal:

\[R_{ts} = \frac{2h_{ts}}{\mu_0 \mu b_{ts} y l_\delta}. \]

where \(b_{ts} \) – stator tooth width; \(y \) – number of teeth on the coil (winding step).

Results of calculation of magnetic resistances of section of a tooth part of the stator for different angle of rotation are presented in Table 1.

Table 1. Magnetic resistance of a tooth part of the stator

R_{ts}	Angle of rotation °										
[Ohm]	0	2α	3α	4α	5α	6α	7α	8α	9α	10α	
1	4627	4639	4639	4631	4643	4651	4639	4615	4655	4607	4627
2	4631	4635	4635	4631	4643	4651	4639	4615	4655	4651	4631
3	4627	4696	4815	4627	4651	4655	4635	4651	4651	4651	4627
4	4631	4635	4635	4631	4643	4651	4639	4615	4655	4815	4631
5	4611	4631	4623	431	4651	4651	4802	4561	4651	4651	4611
6	4643	4631	4631	4815	4767	4651	4647	4655	4651	4651	4643
7	4734	4806	4631	4659	4655	4755	4635	4655	4651	4651	4734
8	4627	4639	4627	4639	4651	4655	4639	468	4815	4647	4627
9	4635	4639	4635	4643	4659	4815	4643	4667	4651	4659	4635

Magnetic resistance of air gap is equal:
\[R_s = \frac{2\delta}{\mu_0 h_y y l_{s}}. \]

(5)

where \(\delta \) – stator tooth width.

Results of calculation of magnetic resistances of air gap for different angle of rotation are presented in Table 2.

Table 2. Magnetic resistance of air gap

\(R_s \) [Ohm]	Angle of rotation °									
0	α	2α	3α	4α	5α	6α	7α	8α	9α	10α
1	505400	506800	505900	507200	508100	508500	508500	503300	505400	
2	505900	506300	506300	505900	526000	526000	505400	509400	508100	508100
3	505400	513000	526000	505400	508100	508500	50630	508100	508100	505400
4	505900	506300	507200	505900	508100	508100	505900	508100	508500	526000
5	503700	505900	505000	505900	508100	508100	524600	508100	508100	503700
6	507200	505900	505900	526000	520800	508100	507600	508500	508100	507200
7	517100	525000	505900	509000	508500	519400	506300	508500	508100	517100
8	505400	506800	505400	506800	508100	508500	508600	511200	526000	507600
9	506300	506800	506300	507200	509000	526000	507200	509000	508100	506300

Magnetic resistance of a tooth part of a rotor is equal:

\[R_{t} = \frac{4p h_y}{\mu_0 \mu_r n_r \beta y l_{s}}. \]

(6)

where \(n_r \) – number of teeth of a rotor; \(\beta \) – relative step of a winding; \(h_y \) – rotor tooth height; \(b_y \) – rotor tooth width.

Results of calculation of magnetic resistances of a tooth part of a rotor for different angle of rotation are presented in Table 3.

Table 3. Magnetic resistance of a tooth part of a rotor

\(R_t \) [Ohm]	Angle of rotation °									
0	α	2α	3α	4α	5α	6α	7α	8α	9α	10α
1	2432	2858	3455	4376	5949	9286	21600	1866	1866	2111
2	2611	2608	2608	2608	2595	2595	2241	1977	2423	2598
3	2611	2700	2322	2034	1866	1866	2063	2598	2598	2598
4	2094	1866	1866	2008	2275	2641	2608	2598	2598	2094
5	1955	2212	2562	2611	2598	2598	2598	2598	2598	2094
6	2618	2608	2608	2604	2595	2595	2595	2598	2598	2598
7	2611	2608	2611	2562	2207	1945	1866	2598	2598	2611
8	2655	2283	2004	1866	1866	2081	2389	2598	2598	2655
9	1866	1866	2034	2316	26900	2598	2598	2598	2598	2655
10	2245	2601	2614	2618	2598	2598	2598	2598	2598	2245
11	2611	2608	2585	2611	2628	2423	2118	2174	2506	2611
12	36200	29700	2518	2181	19200	1866	1923	10580	6434	36200

Magnetic resistance of a yoke of a rotor is equal:
\[
R_c = 2\frac{\pi D_{md} + d - 2h_c - D_{sh}}{\mu_0 \mu (d - 2h_c - d_{sh})}.
\]

where \(d_{sh}\) – diameter of a shaft; \(d\) – diameter of a rotor. \(R_c = 3556 \text{Ohm}\)

Results of calculation of a magnetic flux from one coil group for different angle of rotation are presented in Table 4.

Table 4. Magnetic flux from one coil group

\(\Phi_{cg} \) [Weber]	Angle of rotation °	0	2°	3°	4°	5°	
	\(6\alpha\)	1.046 \times 10^{-4}	1.041 \times 10^{-4}	1.043 \times 10^{-4}	1.042 \times 10^{-4}	1.035 \times 10^{-4}	1.027 \times 10^{-4}
	\(7\alpha\)	1.014 \times 10^{-4}	1.029 \times 10^{-4}	1.036 \times 10^{-4}	1.037 \times 10^{-4}	1.045 \times 10^{-4}	

Calculations on formulas (1-7) can be made for any angle of rotation of a rotor concerning the stator and for any timepoint of turn of a three-phase system of tension. It allows to define values of instant effort on a shaft of the drive and the corresponding instant moment operating on a shaft for a whole turn of a rotor concerning the stator of special electric drives. For more exact determination of these parameters it is necessary to know a picture of real value of a magnetic flux for determination of value of the maximum magnetic flux density. In Figures 1 – 4 pictures of real distribution of the magnetic flux received as a result of work of own software products are presented.

Figure 1. Distribution of an electromagnetic field at turn of a three-phase system on angle \(\alpha = 0^\circ\).
Figure 2. Distribution of an electromagnetic field at turn of a three-phase system on angle $\alpha = 1.8^\circ$.

Figure 3. Distribution of an electromagnetic field at turn of a three-phase system on angle $\alpha = 9^\circ$.

Figure 4. Distribution of an electromagnetic field at turn of a three-phase system on angle $\alpha = 23.4^\circ$.
3. Conclusion
The carried-out analysis showed that to carry out determination of electromagnetic parameters of special electric drives with asynchronous motors of cylindrical construction by the most reasonable using methods of electromagnetic conversion of energy, the law of Ohm for the magnetic circuit and the principle of imposing giving good coincidence of calculation to experimental data. The conducted research allows to determine quite precisely parameters of an electromagnetic system, both in a statics, and in dynamics. The developed software allows to define a picture of real value of a magnetic flux and value of the maximum magnetic flux density, necessary for calculation of force, the moment, electromechanical and mechanical characteristics. The received solution will allow to increase efficiency of special electric drives and to design electric drives with optimum mass-dimensional and power parameters for different industries.

4. Acknowledgments
The research was conducted within the contract and the specification on execution of research work on the subject “Development of Energy Efficient Special Electric Drives by means of the System of Acceptance of Optimal Solutions”, No. 2.41.02.01-19.

References
[1] Kozyaruk A E 2016 Energy efficient electromechanical systems of mining and transport machines. Notes of mining institute 218 261-269
[2] Osipov O I 2015 Problems of implementation and adjustment of the modern electric drives Russian Electrical Eng. 86(1) 5-8
[3] Vlasyevsky S V, Malysheva O A, Melnichenko O V 2018 Comparison of calculation traction forces on the adhesion of ac electric locomotives with an asynchronous and collector drives. Electronics and Electric Equipment of Transport 5 30-36
[4] Gulyaev A V, Fokin D S, Ten E E, Malysheva O A 2018 Definition of influence of ways of pulse width modulation on power losses in the asynchronous motor. Electrotechnika 9 74-76
[5] Akhmetgarayev R T, Andreev N K 2011 Direct torque control in the alternated current induction motors of sucker rod pumps in oil production. News of higher educational institutions. Series: Power problems 9-10 100-104
[6] Petrochenkov A B 2015 Performance functions for basic electrical equipment of the mineral resources industry. Russian Electrical Eng. 11 634-639
[7] Karandaev A S, Gasiyarov V R, Loginov B M, Khramshin V R 2017 Force limiting at roll axial shifting of plate mill. Procedia Eng. Int. Conf. on Industr. Eng. (ICIE 2017) 206 1780-1786
[8] Isaev D M, Borovik A A, Osipov O I 2013 Technological Requirements For Electric Drive Pulling Device Of Horizontal Continuous Casting Machine. Drives and Components of Machine 9(5-6) 2-5
[9] Kozyaruk A E, Vasiliev B Yu 2015 Methods and tools increasing energy efficiency of machines and technologies with asynchronous drives. Bulletin of the Southern Ural State University. Series: Power 15(1) 47-53
[10] Lot N S, Osipov O I, Zhidkov A M 2016 Future prospects of winder electric drives. Drives and Components of Machines 6(22) 9-12
[11] Egorov A V, Komkova A N, Malinovskaya G N 2016 On the issue of interaction of electric drives as a part of the electrical system. Territory Neftegaz 2 106-112
[12] Khriansanov V I, Dmitriev B F 2016 The marine electrical power industry with the use of renewable energy carriers. Part 2. Axial multipole synchronous generators with permanent magnets for wind and wave offshore power plants. Russian Electrical Eng. 87(10) 554-559
[13] Blagodarov D A, Safonov Y M, Grigorian D D, Khramshin V R 2018 Limiting dynamic loads of electric drive with flexible couplings and variable inertia moment. Proc. of the 2018 IEEE Conf. of Russian Young Res. in Electrical and Electronic Eng. (ElConRus 2018) 582-584
[14] Molokanov O, Dergachev P, Osipkin S, Kurbatov P 2016 Study on cogging torque in coaxial planetary magnetic gear. IEEE 2nd Annual Southern Power Electronics Conf. (SPEC 2016) 7846094
[15] Akhmetgarayev R T, Andreev N K 2011 Direct torque control in the alternated current induction motors of sucker rod pumps in oil production. *News of Higher Educational Institutions. Power problems* (9-10) 100-104

[16] Morozov Anton, Dobroskok Nikita, Lavrinovskiy Victor, Mokhova Olga 2017 Stability analysis of mechanical coupled two-motor asynchronous electric drive. *IEEE Conf. of Russian Young Researchers in Electrical and Electronic Eng. (EIConRus)*

[17] Odnokopylov Ivan G, Dementev Yuri N, Usachev Ivan V, Lyapunov Danil Yu, Petrulev Alexandr S 2015 Load balancing of two-motor asynchronous electric drive. *IEEE International Siberian Conference on Control and Communications (SIBCON)*

[18] Tleugaliuli Tergemes Kazhybek, Sarvarov Anvar S, Berdibekov Abdissattar O 2018 Development and optimization of multi-motor asynchronous electric drives for carding machines. *IEEE 17th International Ural Conference on AC Electric Drives (ACED)*

[19] Dementyev Yu N, Umurzakova A D 2016 The indirect methods of control the output coordinates for the three-phase asynchronous electric motor. *IEEE 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)*

[20] Gizatullin F A, Khakimyanov M I, Khusainov F F 2018 Features of electric drive sucker rod pumps for oil production. *IOP Conf. Series: Journal of Physics: Conf. Series* 944 012039.

[21] Mamunts D G, Morozov S A, Gaskarov V D, Saushev A V, Tsvetkov Y N 2018 Development of an automated system for managing and optimizing management decisions in the design, organization and production of dredging. *Proc. of the 2018 IEEE Conf. of Russian Young Res. in Electrical and Electronic Eng. (ElConRus 2018)* 73-76

[22] Bayramkulov K N, Astakhov V I 2010 Calculation of magnetic field in the environment with non-uniform and anisotropic properties on the basis of the electric chain of kirchhoff. *News of Higher Educational Institutions. Electromecanics* 1 3-11

[23] Kornilov V U, Tsvetkov A N, Muchametshin A I 2017 Investigation of the process of electromagnetic energy conversion in an asynchronous motor with a combined two-layer winding. *Nonlinear world.* 6 33-39

[24] Anuchin A S, Hanova Yu M, Gulyaev I V 2016 Development of the method of fast and exact modelling of electric drives. *Industrial power* 4 28-33

[25] Andreev A N, Andreev M A, Shatkov A P, Kolesnichenko N M 2017 Asynchronous motor direct torque control system based on measuring of electric machine magnetic field. *Modern Informatization Problems in Simulation and Social Technologies Proc. of the XXII-th Int. Open Science Conf.* 124-129

[26] Andreev A N, Andreev M A, Kolesnichenko D A, Shatkov A P 2017 direct torque control of the asynchronous electric drive based on magnetic induction measurement in the air gap. *Control Systems and Information Technologies* 68(2) 78-81

[27] Karandey V Yu, Popov B K, Afanasev V L 2018 Research of change of parameters of a magnetic flux of the stator and rotor of special electric drives. *IEEE Int. Multi-Conf. on Industrial Eng. and Modern Technologies (FarEastCon-2018)* 8602911

[28] Karandey V Yu, Popov B K, Popova O B, Afanasev V L 2018 Research of electrical power processes for optimum modeling and design of special electric drives. *Adv. in Eng. Res.* 157 242-247