A case of acute megakaryocytic leukemia associated with a nonseminomatous primary mediastinal germ cell tumor diagnosed through elevation of serum lactate dehydrogenase

Emi Noguchi, Yasushi Omuro, Yoshiharu Maeda, Tsuneo Sasaki

ABSTRACT

Introduction: Hematologic malignancies are seen in a small percentage of patients with primary mediastinal germ cell tumors (PMGCT).

Case Report: A 29-year-old male patient with a nonseminomatous primary mediastinal germ cell tumor was diagnosed with acute megakaryocytic leukemia. Serum lactate dehydrogenase (LDH) elevation was a diagnostic clue. We discussed our case with a review of literature.

Conclusion: Oncologists should be aware of the association of PMGCT with hematologic malignancies and consider this phenomenon as a differential diagnosis when LDH elevation is present in patients with PMGCT.
A case of acute megakaryocytic leukemia associated with a nonseminomatous primary mediastinal germ cell tumor diagnosed through elevation of serum lactate dehydrogenase

Emi Noguchi, Yasushi Omuro, Yoshiharu Maeda, Tsuneo Sasaki

ABSTRACT

Introduction: Hematologic malignancies are seen in a small percentage of patients with primary mediastinal germ cell tumors (PMGCT). Case Report: A 29-year-old male patient with a nonseminomatous primary mediastinal germ cell tumor was diagnosed with acute megakaryocytic leukemia. Serum lactate dehydrogenase (LDH) elevation was a diagnostic clue. We discussed our case with a review of literature. Conclusion: Oncologists should be aware of the association of PMGCT with hematologic malignancies and consider this phenomenon as a differential diagnosis when LDH elevation is present in patients with PMGCT.

Keywords: Primary mediastinal germ cell tumor, Acute megakaryocytic leukemia, Hematologic malignancy, Differential diagnosis

INTRODUCTION

The association of germ cell tumors (GCT) with hematologic malignancies is rare and has been described mostly in case reports and case series for more than 30 years [1–6]. It has a separate etiology from treatment-related leukemia. In most cases, it affects patients with nonseminomatous primary mediastinal GCT (PMGCT). Megakaryocytic leukemia has been described to be more common in this setting.

Herein, we report a case of acute megakaryocytic leukemia associated with a nonseminomatous primary mediastinal germ cell tumor whose diagnosis was challenging. Elevated serum lactate dehydrogenase (LDH) was a diagnostic clue.

CASE REPORT

A 29-year-old male was referred to our hospital with complaints of chest pain and exercise-induced dyspnea. The results of physical examination were unremarkable. Chest X-ray imaging revealed a mass in the hilum of the left lung. Computed tomography (CT) scan demonstrated a 9x8 cm tumor in the left anterior mediastinum (Figure 1). Serum concentration of human chorionic gonadotropin (hCG) was 1.2 mIU/mL (normal
range <0.7), the β subunit of hCG (β-hCG) was 0.4 ng/mL (<0.1), α-fetoprotein (AFP) was 111.9 ng/mL (<10.0), and serum lactate dehydrogenase (LDH) was 468 IU/l (115 to 245). Ultrasonography showed no lesions in the testes. A CT-guided biopsy was performed, and a few clusters of malignant tumor cells were obtained, with ambiguous histological features. Based on the tumor location (predominant midline distribution), relatively young age of the patient, male sex, and elevated serum β-hCG, AFP, and LDH levels, we diagnosed this condition as a primary mediastinal germ cell tumor; T1NoMoS2, Stage IIIB. The patient received four cycles of standard chemotherapy with cisplatin, etoposide, and bleomycin (BEP). The levels of tumor markers decreased as expected and normalized after two cycles of BEP chemotherapy. After the completion of four cycles of BEP chemotherapy, the tumor markers remained within the reference range, but a CT scan showed an increase in the tumor size. The patient underwent surgical resection of the tumor. Histopathological examination revealed viable nonseminomatous tumor cells in the resected specimen. The patient was then scheduled to receive two additional cycles of BEP chemotherapy.

Approximately one month post-operatively, just when one of the additional cycles of the chemotherapy was initiated, the serum LDH level suddenly rose to 420 IU/L. HCG and AFP remained within their reference ranges. A CT scan showed no evidence of recurrence of germ cell tumors. There were no aberrations in the results of blood tests except for elevated LDH. Since the serum LDH kept increasing up to 1,270 IU/L for three weeks, we surmised hematopoietic abnormalities and performed a bone marrow aspiration; the result was a dry tap. We also performed a bone marrow biopsy, which resulted in the diagnosis of acute megakaryocytic leukemia (AML) M7 according to the French–American–British (FAB) classification. Eventually, large atypical cells appeared in peripheral blood (Figure 2); this change happened approximately a month after the serum LDH level started to increase. The patient referred to hematologist to receive induction chemotherapy (idarubicin plus cytarabine) for the leukemia. Later, the chromosome 12 abnormality was detected in repeated bone marrow test.

DISCUSSION

It is well known that somatic teratomatous component of GCT leads to aggressive non-germ cell malignancies, such as rhabdomyosarcoma, acute myeloid leukemia, carcinoma, and primitive neuroectodermal tumors [7]. WHO classification also defines GCT accompanied by leukemia or lymphoma as “germ cell tumors with somatic-type malignancy” [7]. The leukemic transformation has been exclusively observed in patients with nonseminomatous PMGCT except for a few cases [5]. In a large, international, database-based study, the incidence rate of hematologic malignancies was found to be 2.0% among patients with nonseminomatous PMGCT [6]. Those researchers also reported that these hematologic malignancies mostly affect the megakaryocyte lineage as AML M7, whereas it is a rare type of de novo AML. In patients with AML M7, a bone marrow aspiration frequently yields a dry tap, which is consistent with our case. Some cases showed elevated serum GCT markers (AFP and/or β-hCG), and others did not [8]. The presence of an isochromosome 12p (i(12p)), which is found in more than 80% of GCT, may suggest the clonal relationship between PMGCT and hematologic malignancies [3–8]. In our case, it was challenging to...
detect AML M7 because the patient initially showed high levels of LDH only.

The differential diagnosis is treatment-induced leukemia. A time to leukemia development from GCT diagnosis differs between leukemia associated with GCT and treatment-induced leukemia. Treatment-induced leukemia usually develops approximately 2–3 years after treatment with topoisomerase II inhibitors and approximately five years after treatment with alkylating agents, whereas leukemia associated GCT develops shorter from or simultaneously with diagnosis of GCT [6]. Chromosomal translocations involving 11q are also characteristic of etoposide-related acute leukemia [9].

The prognosis of hematologic malignancies associated with PMGCT is very poor, while some cases would survive after intensive treatment with allogenic hematopoietic stem-cell transplantation [10].

CONCLUSION

Oncologists should be aware of the association of primary mediastinal germ cell tumors (PMGCT) with hematologic malignancies and consider this phenomenon as a differential diagnosis when serum lactate dehydrogenase (LDH) elevation is present in patients with PMGCT. Periodic monitoring blood tests will help diagnosing this phenomenon as well as potential treatment-induced leukemia.

Author Contributions

Emi Noguchi – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Yasushi Omuro – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Yoshiharu Maeda – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Tsuneo Sasaki – Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2015 Emi Noguchi et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. DeMent SH, Eggleston JC, Spivak JL. Association between mediastinal germ cell tumors and hematologic malignancies. Report of two cases and review of the literature. Am J Surg Pathol. 1985 Jan;9(1):23–30.

2. Nichols CR, Hoffman R, Einhorn LH, Williams SD, Wheeler LA, Garnick MB. Hematologic malignancies associated with primary mediastinal germ-cell tumors. Ann Intern Med 1985 May;102(5):603–9.

3. Nichols CR, Roth BJ, Heerema N, Griepp J, Tricot G. Hematologic neoplasia associated with primary mediastinal germ-cell tumors. N Engl J Med 1990 May 17;322(20):1425–9.

4. Orazi A, Neiman RS, Ulbright TM, Heerema NA, John K, Nichols CR. Hematopoietic precursor cells within the yolk sac tumor component are the source of secondary hematopoietic malignancies in patients with mediastinal germ cell tumors. Cancer 1993 Jun 15;71(12):3873–81.

5. Menon R, Twardowski P, Forman SJ, Huang Q, Slovak ML, Krishnan A. Primary gonadal germ cell tumor associated with acute leukemia with common cytogenetics. J Clin Oncol 2010 Feb 20;28(6):e96–8.

6. Hartmann JT, Nichols CR, Droz JP, et al. Hematologic disorders associated with primary mediastinal nonseminomatous germ cell tumors. J Natl Cancer Inst 2000 Jan 5;92(1):54–61.

7. Bosl GJ, Motzer RJ. Testicular germ-cell cancer. N Engl J Med 1997 Jul 24;337(4):242–53.

8. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC. Pathology & Genetics of Tumours of Lung, Pleura, Thymus & Heart, World Health Organization Classification of Tumours. 3ed. Lyon, France: IARC Press; 2004, p. 216–8.

9. Kollmannsberger C, Beyer J, Droz JP, et al. Secondary leukemia following high cumulative doses of etoposide in patients treated for advanced germ cell tumors. J Clin Oncol 1998 Oct;16(10):3386–91.

10. Hiramatsu H, Morishima T, Nakanishi H, et al. Successful treatment of a patient with Klinefelter's syndrome complicated by mediastinal germ cell tumor and AML(M7). Bone Marrow Transplant 2008 May;41(10):907–8.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.