The Flavor Symmetry

Jisuke Kubo,¹ Alfonso Mondragón,² Myriam Mondragón² and Ezequiel Rodríguez-Jáuregui²

¹Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan
²Instituto de Física, UNAM, Apdo. Postal 20-364, México 01000 D.F., México

(Received February 21, 2003)

Assuming that the lepton, quark and Higgs fields belong to the three-dimensional reducible representation of the permutation group S_3, we suggest a minimal S_3 invariant extension of the standard model. We find that in the leptonic sector, the exact $S_3 \times Z_2$ symmetry, which allows 6 real independent parameters, is consistent with experimental data and predicts the bi-maximal mixing of the left-handed neutrinos and that the third neutrino is the lightest neutrino. Z_2 is anomaly-free, but it forbids CP-violations in the leptonic, as well as in the hadronic sector. Therefore, the origin of CP-violations can be identified with the breaking of the Z_2 symmetry, which may be understood in a more fundamental theory. With the exact S_3 only, there are 10 real independent parameters and one independent phase, on which the Cabibbo-Kobayashi-Maskawa mixing matrix V_{CKM} depends. A set of values of these parameters that are consistent with experimental observations is given.

§1. Introduction

A non-abelian flavor symmetry would explain various phenomena in flavor physics that appear to be independent at present. Moreover, this would provide useful hints about physics beyond the standard model (SM). In this paper we argue that there exists such a symmetry at the Fermi scale. This symmetry is the permutation symmetry S_3,¹,² which is the smallest non-abelian symmetry. It is the symmetry of an equilateral triangle, and has a simple geometrical interpretation.

The product groups $S_3 \times S_3$ and $S_3 \times S_3 \times S_3$ have been considered by many authors in the past to explain the hierarchical structure of the fermionic matter in the SM.³,⁴ The introduction of the product groups indeed has proven to be successful.⁵ However, these symmetries are explicitly broken at the Fermi scale. If we accept S_3 as a fundamental symmetry in the matter sector of the SM, we are automatically led to extend the Higgs sector of the SM, because the SM contains only one Higgs $SU(2)_L$ doublet, which can only be an S_3 singlet: Since S_3 has two irreducible representations, singlet and doublet, there is no convincing reason why there should exist only an S_3 singlet Higgs. In fact, along this line of thought, interesting models based on S_3, S_4 and also A_4 have been considered.¹,⁶–⁹ However, the equality of the irreducible representations has not been stressed in these works. The permutation symmetry S_3 means the equality not only of three objects, but also of its irreducible representations. Nevertheless, it allows differences among the generations that are realized in the nature of elementary particles, as we will see.

¹ See, for instance, Ref. 5).
§2. A minimal S_3 invariant extension of the standard model

Consider a set of three objects, (f_1, f_2, f_3), and their six possible permutations. They are the elements of S_3, which is the discrete non-abelian group with the smallest number of elements. The three-dimensional representation is not an irreducible representation of S_3. It can be decomposed into the direct sum of two irreducible representations, a doublet f_D and a singlet f_S, where

$$f_S = \frac{1}{\sqrt{3}}(f_1 + f_2 + f_3), \quad f_D^r = \left(\frac{1}{\sqrt{2}}(f_1 - f_2), \frac{1}{\sqrt{6}}(f_1 + f_2 - 2f_3) \right).$$ \hspace{1cm} (2.1)

Two-dimensional matrix representations, D_i, of S_3 can be obtained from

$$D_+ (\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \quad \text{and} \quad D_- (\theta) = \begin{pmatrix} -\cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$ \hspace{1cm} (2.2)

with $\theta = 0, \pm 2\pi/3$, where $\det D_\pm = \pm 1$. The angles θ correspond to the symmetry of an equilateral triangle. The tensor product of two doublets, $p_D^T = (p_{D1}, p_{D2})$ and $q_D = (q_{D1}, q_{D2})$, contain two singlets, r_S and $r_{S'}$, and one doublet, $r_D = (r_{D1}, r_{D2})$, where

$$r_S = p_{D1}q_{D1} + p_{D2}q_{D2}, \quad r_{S'} = p_{D1}q_{D2} - p_{D2}q_{D1},$$

$$r_D^T = (r_{D1}, r_{D2}) = (p_{D1}q_{D2} + p_{D2}q_{D1}, p_{D1}q_{D1} - p_{D2}q_{D2}).$$ \hspace{1cm} (2.3)

Note that $r_{S'}$ is not an S_3 invariant, while r_S is.

After the short description of S_3 given above, it is straightforward to extend the SM: In addition to the SM Higgs fields H_S, we introduce an S_3-doublet Higgs H_D. The quark, lepton and Higgs fields are

$$Q^T = (u_L, d_L), \quad u_R, \quad d_R, \quad L^T = (\nu_L, e_L), \quad e_R, \quad \nu_R, \quad H$$ \hspace{1cm} (2.5)

with obvious notation. All of these fields have three species, and we assume that each forms a reducible representation $1_S + 2$. The doublets carry capital indices I and J, which run from 1 to 2, and the singlets are denoted by $Q_3, u_{3R}, d_{3R}, L_3, e_{3R}, \nu_{3R}, H_S$. Note that the subscript 3 has nothing to do with the third generation. The most general renormalizable Yukawa interactions are given by

$$\mathcal{L}_Y = \mathcal{L}_{Y_D} + \mathcal{L}_{Y_U} + \mathcal{L}_{Y_E} + \mathcal{L}_{Y_\nu},$$ \hspace{1cm} (2.6)

where

$$\mathcal{L}_{Y_D} = -Y_1^d \bar{Q}_1 H_S d_{1R} - Y_3^d \bar{Q}_3 H_S d_{3R}$$

$$-Y_2^d \left[\bar{Q}_1 \kappa_{IJ} H_1 d_{JR} + \bar{Q}_1 \eta_{IJ} H_2 d_{JR} \right]$$

$$-Y_4^d \bar{Q}_3 H_1 d_{JR} - Y_5^d \bar{Q}_1 H_1 d_{3R} + \text{h.c.},$$

$$\mathcal{L}_{Y_U} = -Y_1^u \bar{Q}_1 (i\sigma_2) H_S^* u_{1R} - Y_3^u \bar{Q}_3 (i\sigma_2) H_S^* u_{3R}$$

$$-Y_2^u \left[\bar{Q}_1 \kappa_{IJ} (i\sigma_2) H_1^* u_{JR} + \eta \bar{Q}_1 \eta_{IJ} (i\sigma_2) H_2^* u_{JR} \right]$$

$$-Y_4^u \bar{Q}_3 (i\sigma_2) H_1^* u_{JR} - Y_5^u \bar{Q}_1 (i\sigma_2) H_1^* u_{3R} + \text{h.c.},$$ \hspace{1cm} (2.7)

$$\mathcal{L}_{Y_\nu} = -Y_1^v \bar{Q}_1 (i\sigma_2) H_1 \nu_{1R} - Y_3^v \bar{Q}_3 (i\sigma_2) H_3 \nu_{3R}$$

$$-Y_2^v \left[\bar{Q}_1 \kappa_{IJ} (i\sigma_2) H_1 \nu_{JR} + \eta \bar{Q}_1 \eta_{IJ} (i\sigma_2) H_1 \nu_{JR} \right]$$

$$-Y_4^v \bar{Q}_3 (i\sigma_2) H_1 \nu_{JR} - Y_5^v \bar{Q}_1 (i\sigma_2) H_1 \nu_{3R} + \text{h.c.},$$ \hspace{1cm} (2.8)
Furthermore, we introduce the Majorana mass terms for the right-handed neutrinos

\[\mathcal{L}_Y = -Y_1^c \overline{L}_1 H_S e_{1R} - Y_3^c \overline{L}_3 H_S e_{3R} - Y_2^c \left[\overline{L}_1 \kappa_{1J} H_{1J} e_{1R} + \overline{L}_1 \eta_{1J} H_{2J} e_{2R} \right] - Y_2^c \overline{L}_3 H_{1J} e_{1R} - Y_3^c \overline{L}_1 H_{1J} e_{3R} + \text{h.c.,} \]

and

\[\mathcal{L}_\nu = -Y_1^c \overline{L}_1 (i \sigma_2) H_S^* \nu_{1R} - Y_3^c \overline{L}_3 (i \sigma_2) H_S^* \nu_{3R} - Y_2^c \left[\overline{L}_1 \kappa_{1J} (i \sigma_2) H_{1J}^* \nu_{1R} + \overline{L}_1 \eta_{1J} (i \sigma_2) H_{2J}^* \nu_{2R} \right] - Y_2^c \overline{L}_3 (i \sigma_2) H_{1J}^* \nu_{3R} - Y_3^c \overline{L}_1 (i \sigma_2) H_{1J}^* \nu_{3R} + \text{h.c.,} \]

where \(\kappa = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) and \(\eta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \).

Furthermore, we introduce the Majorana mass terms for the right-handed neutrinos

\[\mathcal{L}_M = -M_1 \nu_{1R}^T C \nu_{1R} - M_3 \nu_{3R}^T C \nu_{3R}, \]

where \(C \) is the charge conjugation matrix.

Because of the presence of three Higgs fields, the Higgs potential \(V_H(H_S, H_D) \) is more complicated than that of the SM. But we may assume that all the \(V \text{EV’s} \) are real and that \(\langle H_1 \rangle = (H_2)^* \). They also satisfy the constraint \(\langle H_S \rangle^2 + \langle H_1 \rangle^2 + \langle H_2 \rangle^2 \simeq (246 \text{ GeV})^2 / 2 \). Then from the Yukawa interactions (2.7)–(2.10) and (2.12) one derives the mass matrices, which have the general form

\[M = \begin{pmatrix} m_1 + m_2 & m_2 & m_5 \\ m_2 & m_1 - m_2 & m_5 \\ m_4 & m_4 & m_3 \end{pmatrix}. \]

The Majorana masses for \(\nu_L \) can be obtained from the see-saw mechanism,\(^{10}\) and the corresponding mass matrix is given by \(M_\nu = M_{\nu_D} \tilde{M}^{-1}(M_{\nu_D})^T \), where \(\tilde{M} = \text{diag}(M_1, M_1, M_3) \). All the entries in the mass matrices can be complex; there is no restriction coming from \(S_3 \). Therefore, there are \(4 \times 5 = 20 \) complex parameters in the mass matrices, which should be compared with \(4 \times 9 = 36 \) of the SM with the Majorana masses of the left-handed neutrinos. The mass matrices are diagonalized by the unitary matrices as

\[U_{d(u,e)}^T M_{d(u,e)} U_{d(u,e)} = \text{diag}(m_{d(u,e)}, m_{s(c,\mu)}, m_{b(t,\tau)}), \]

\[U_{\nu}^T M_\nu U_\nu = \text{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}). \]

The diagonal masses \(m \)'s can be complex, and so the physical masses are \(|m| \)'s.\(^{**}\) The mixing matrices are then defined as

\[V_{\text{CKM}} = U_{uL}^\dagger U_{dL}, \quad V_{\text{MNS}} = U_{eL}^\dagger U_\nu. \]

§3. The leptonic sector and \(Z_2 \) symmetry

To achieve further reduction of the number of parameters, we introduce a \(Z_2 \) symmetry. The \(Z_2 \) assignment in the leptonic sector is given in Table I. The \(Z_2 \)

\(^{1)} \) See, for instance, Ref. 7) in which a potential with three Higgs fields of \(S_3 \) is considered.

\(^{**} \) We denote the physical neutrino masses by \(m_\nu \), but \(\nu_{iL} \) are not the mass eigenstates.
symmetry forbids certain couplings:

$$Y_1^e = Y_3^e = Y_1^\nu = Y_3^\nu = 0.$$ \tag{3.1}$$

[The Z_2 assignment above is not the unique assignment to achieve (3.1). The Z_2 assignment in the hadronic sector will be discussed later on.] Since $m_1^e = m_3^e = 0$ due to the Z_2 symmetry, all the phases appearing in (2.13) can be removed by a redefinition of L_I, L_3 and e_{3R}. Then, we calculate the unitary matrix U_{eL} from

$$U_{eL}^\dagger M_e M_e^\dagger U_{eL} = \text{diag}(|m_e|^2, |m_\mu|^2, |m_\tau|^2),$$ \tag{3.2}$$

where

$$M_e M_e^\dagger = \begin{pmatrix} 2(m_5^e)^2 + (m_6^e)^2 & (m_5^e)^2 & 2m_5^em_4^e \\ (m_5^e)^2 & 2(m_2^e)^2 + (m_3^e)^2 & 0 \\ 2m_5^em_4^e & 0 & 2(m_4^e)^2 \end{pmatrix}.$$ \tag{3.3}$$

All the parameters in (3.3) are real. The Majorana masses of the right-handed neutrinos M_1 and M_3 in (2.12), which may be complex, can be absorbed by a redefinition of m_2^ν, m_4^ν and m_3^ν, and therefore, we rescale them according to

$$(m_2^\nu) \rightarrow \rho_2^\nu = (m_2^\nu)M_1, \quad (m_4^\nu) \rightarrow \rho_4^\nu = (m_4^\nu)M_1, \quad (m_3^\nu) \rightarrow \rho_3^\nu = (m_3^\nu)M_3.$$ \tag{3.4}$$

Then the Majorana masses of the left-handed neutrinos take the form

$$M_\nu = M_{\nu D} \tilde{M}^{-1} (M_{\nu D})^T = \begin{pmatrix} 2(\rho_2^\nu)^2 & 0 & 2\rho_2^\nu \rho_4^\nu \\ 0 & 2(\rho_4^\nu)^2 & 0 \\ 2\rho_2^\nu \rho_4^\nu & 0 & 2(\rho_4^\nu)^2 + (\rho_3^\nu)^2 \end{pmatrix}.$$ \tag{3.5}$$

All the phases in (3.5), except for one, can be eliminated. Without loss of generality, we may assume that ρ_3^ν is complex. However, if ρ_3^ν is complex, there is no unitary matrix U_ν that can diagonalize M_ν as $U_\nu^T M_\nu U_\nu$. Therefore, ρ_3^ν can be either a real or a purely imaginary number.

Now, consider the limit $m_4^e \rightarrow 0$ in (3.3). One of the eigenvalues of (3.3) becomes 0. Therefore, we assume that $m_2^e \sim (m_4^e)^2$. In this limit, the other eigenvalues, (m_μ^2, m_τ^2), and the corresponding eigenvectors, v_μ and v_τ, are given by

$$(m_\mu^2, m_\tau^2) = (2(m_2^e)^2, 2(m_2^e)^2 + 2(m_3^e)^2),$$

$$v_\mu = (-1/\sqrt{2}, 1/\sqrt{2}), \quad v_\tau = (1/\sqrt{2}, 1/\sqrt{2}).$$ \tag{3.6}$$

Therefore, U_{eL} in this limit becomes

$$U_{eL}^0 = \begin{pmatrix} 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 1 & 0 & 0 \end{pmatrix}.$$ \tag{3.7}$$
The correction to the eigenvalues due to the nonvanishing m_5^ν can be computed, and we find

$$m_e^2 = \frac{(m_5^\nu m_3^\nu)^2}{(m_2^\nu)^2 + (m_5^\nu)^2} + O((m_4^\nu)^4),$$ \hspace{1cm} (3.9)

$$m_\mu^2 = 2(m_2^\nu)^2 + (m_4^\nu)^2 + O((m_4^\nu)^4),$$ \hspace{1cm} (3.10)

$$m_\tau^2 = 2[(m_2^\nu)^2 + (m_5^\nu)^2] + \frac{(m_5^\nu m_3^\nu)^2}{(m_2^\nu)^2 + (m_5^\nu)^2} + O((m_4^\nu)^4).$$ \hspace{1cm} (3.11)

For the mass values $m_e = 0.51 \text{ MeV}$, $m_\mu = 105.7 \text{ MeV}$ and $m_\tau = 1777 \text{ MeV}$ (which correspond to $m_5^\nu/m_2^\nu = 0.006836$ and $m_5^\nu/m_3^\nu = 16.78$), we obtain

$$U_{eL} \simeq \begin{pmatrix} 3.4 \times 10^{-3} & 1/\sqrt{2} + O(10^{-5}) & 1/\sqrt{2} + O(10^{-10}) \\ -3.4 \times 10^{-3} & -1/\sqrt{2} + O(10^{-5}) & 1/\sqrt{2} + O(10^{-10}) \\ -1 + O(10^{-5}) & 4.8 \times 10^{-3} & O(10^{-5}) \end{pmatrix}.$$ \hspace{1cm} (3.12)

In the neutrino sector, one immediately finds that one of the eigenvalues of M_ν is $2(\rho_3^\nu)^2$ with the eigenvector $(0,1,0)$. [Recall that $2\rho_3^\nu$ can be purely imaginary, while all the other parameters are purely real, where the ρ are defined in (3.4).] The other eigenvalues m_\pm are

$$m_\pm = \frac{1}{2}(A \pm [-8(\rho_2^\nu \rho_3^\nu)^2 + A^2]^{1/2}),$$ \hspace{1cm} (3.13)

where $A = 2(\rho_2^\nu)^2 + (\rho_3^\nu)^2 + 2(\rho_4^\nu)^2$. Since the maximal value of m_- is m_+, which is obtained if $2(\rho_3^\nu)^2 = (\rho_3^\nu)^2$ and $(\rho_4^\nu)^2 = 0$, we see that

$$m_- \leq 2(\rho_3^\nu)^2 < m_+ $$ \hspace{1cm} (3.14)

should be satisfied if ρ_3^ν is real. Therefore, if ρ_3^ν is real, $2(\rho_3^\nu)^2$ cannot be identified with m_{ν_3}, which comes from the experimental constraint $|\Delta m_{23}^2| << |\Delta m_{12}^2|$. Thus, we have to identify it with m_{ν_1}. Consequently, we arrive at

$$(U_\nu)_{21} = 1, \quad (U_\nu)_{11} = (U_\nu)_{31} = 0,$$ \hspace{1cm} (3.15)

which does not yield the experimentally preferred bi-maximal form of the mixing matrix $V_{\text{MNS}} = U_{eL}^\dagger U_\nu$ with U_{eL} given in (3.12). The bi-maximal form\(^4\) may be obtained if U_ν takes the form

$$U_\nu^{\text{max}} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix}.$$ \hspace{1cm} (3.16)

Therefore, to realize the bi-maximal form, $2(\rho_3^\nu)^2$ has to be the smallest eigenvalue of the mass matrix (3.5). This, however, is impossible if $(\rho_3^\nu)^2 \geq 0$, implying that ρ_3^ν has to be purely imaginary. Therefore we write ρ_3^ν as

$$(\rho_3^\nu)^2 = -|\rho_3^\nu|^2.$$ \hspace{1cm} (3.17)
As a consequence, the mass relation \(2(\rho_2^\nu)^2 < |m_-|, |m_+|\) is realized, so that the third neutrino becomes the lightest neutrino with the mass

\[
m_{\nu_3} = 2(\rho_2^\nu)^2. \tag{3.18}
\]

This is one of the important predictions of the \(S_3 \times Z_2\) symmetry.

Now consider the limit \(\rho_2^\nu \to 0\) with the constraint \((M_\nu)^{33} = 0\), that is \(2(\rho_4^\nu)^2 - |\rho_3^\nu|^2 = 0\). Then the eigenvalues are given by

\[
\begin{align*}
(m_+ &= 2|\rho_4^\nu \rho_2^\nu| + (\rho_2^\nu)^2, \\
m_- &= -2|\rho_4^\nu \rho_2^\nu| + (\rho_2^\nu)^2, \\
m_{\nu_3} &= 2(\rho_2^\nu)^2)
\end{align*} \tag{3.19}
\]

and

\[
U_\nu \to U_\nu^\text{max},
\]

where \(U_\nu^\text{max}\) is given in (3.16), and \(m_{\nu_1} = |m_-|\) and \(m_{\nu_2} = |m_+|\). So, the limiting form is exactly the bi-maximal form.

The closed form for \(U_\nu\) is found to be

\[
U_\nu = \begin{pmatrix}
\sin \hat{\theta} & \cos \hat{\theta} & 0 \\
0 & 0 & 1 \\
-\cos \hat{\theta} & \sin \hat{\theta} & 0
\end{pmatrix}, \tag{3.20}
\]

with

\[
\tan \hat{\theta} = \left(\frac{m_{\nu_1} - m_{\nu_3}}{m_{\nu_3} - m_{\nu_2}}\right)^{1/2} \text{ for } |m_+| > (\prec) |m_-|, \tag{3.21}
\]

where \(m_\pm\) is given in (3.13) with the replacement \((\rho_3^\nu)^2 \to -|\rho_3^\nu|^2\), and \(m_{\nu_2} = |m_{\nu_2}|\) and \(m_{\nu_1} = |m_{\nu_2}|\) for \(|m_+| > (\prec) |m_-|\). Then, together with (3.12), we obtain

\[
V_{\text{MNS}} = U_{eL}^\dag U_\nu \approx \begin{pmatrix}
\cos \theta_{\text{sol}} & -\sin \theta_{\text{sol}} & U_{e3} \\
\sin \theta_{\text{sol}}/\sqrt{2} - 4.8 \times 10^{-3} \cos \hat{\theta} & \cos \theta_{\text{sol}}/\sqrt{2} + 4.8 \times 10^{-3} \sin \hat{\theta} & 0 \\
\sin \hat{\theta}/\sqrt{2} & \cos \hat{\theta}/\sqrt{2} & \cos \theta_{\text{atm}}
\end{pmatrix}, \tag{3.22}
\]

where

\[
\begin{align*}
\tan \theta_{\text{atm}} &= 1, \\
\tan \theta_{\text{sol}} &= \frac{\tan \hat{\theta} - \Delta}{1 + \Delta \tan \hat{\theta}} \text{ with } \Delta \simeq 3.4 \times 10^{-3}, \\
U_{e3} &\simeq -3.4 \times 10^{-3}. \tag{3.25}
\end{align*}
\]

[Similar, but different predictions have been made in Ref. 11.)] In Fig. 1, we plot \(\tan \theta_{\text{sol}}\) as a function of \(x = |\Delta m_{23}^2|/m_{\nu_2}^2\) for \(r = |\Delta m_{12}^2|/|\Delta m_{23}^2| = 0.05\) (dashed), 0.0264 (solid), 0.2 (dot-dashed), where \(|\Delta m_{23}^2| = m_{\nu_2}^2 - m_{\nu_3}^2\) and \(|\Delta m_{12}^2| = m_{\nu_2}^2 - m_{\nu_1}^2\).
Note that in the present model $m_{\nu_3} < m_{\nu_2}, m_{\nu_1}$. In Ref. 13) (see the references therein and also Ref. 14)), the experimental data recently obtained in different neutrino experiments, including solar, atmospheric, accelerator neutrino and reactor experiments are reviewed. It is concluded that

$$\tan \theta_{\text{atm}} = 0.65 - 1.5, \quad \tan \theta_{\text{sol}} = 0.53 - 0.93,$$

$$|\Delta m_{12}^2|/eV^2 = 5.1 \times 10^{-5} - 9.7 \times 10^{-5} \text{ or } 1.2 \times 10^{-4} - 1.9 \times 10^{-4},$$

$$|\Delta m_{23}^2|/eV^2 = 1.2 \times 10^{-3} - 4.8 \times 10^{-3},$$

$$|U_{e3}| < 0.2.$$

Comparing Fig. 1, (3.23) and (3.25) with the experimental values above, we see that our prediction based on the exact $S_3 \times Z_2$ symmetry in the leptonic sector is consistent with the most recent experimental data on neutrino oscillations and neutrino masses and mixings.

§4. The hadronic sector

Now we come to the hadronic sector. At the level of the S_3 extension of the SM, the Z_2 assignment in the hadronic sector is independent of that of the leptonic sector. (The Z_2 assignment in the leptonic sector is given in Table I.) Since the Z_2 symmetry in the leptonic sector seems to be a good symmetry, we assume that it is a good symmetry at a more fundamental level, too. Therefore, we require that the Z_2 symmetry is free from any quantum anomaly. Further-

more, we assume that the quarks and leptons are unified at the fundamental level, which is possible if they have the same Z_2 assignment, implying that all the quarks should have even parity. One can easily convince oneself that under this Z_2 assignment the non-abelian gauge anomalies

$$Z_2[SU(2)_L]^2, \quad Z_2[SU(3)]^2$$

cancel. Although the anomalies $Z_2[U(1)_Y]^2$ and $[Z_2]^3$ may not necessarily give useful information, it is amusing to observe that they also cancel with the standard normalization of the hypercharge. As in the case of the leptonic sector, the Z_2

*Anomalies of discrete symmetries are discussed in Ref. 12).
symmetry forbids the Yukawa couplings $Y_{1}^{u,d}$ and $Y_{3}^{u,d}$ [see (3.1)]. Consequently, all the phases can be absorbed into a redefinition of the fields, implying that there is no CP-violation in the Z_{2} limit. We, therefore, may identify the origin of CP-violations with the violation of the Z_{2} symmetry. Of course, the S_{3}-extended SM does not give an explanation of why the Z_{2} symmetry is broken, but this identification might play an important rôle in constructing a more fundamental theory.

With these remarks in mind, we proceed to consider the generation structure in the hadronic sector under the assumption that Z_{2} is explicitly broken in this sector. Since all the S_{3} invariant Yukawa couplings are now allowed, the mass matrices for the quarks take the general form (2.13), in which all the entries can be complex. One can easily see that all the phases, except for those of $m_{1}^{u,d}$ and $m_{3}^{u,d}$, can be removed through an appropriate redefinition of the quark fields. Of course, only one of the four phases of $m_{1}^{u,d}$ and $m_{3}^{u,d}$ is observable in V_{CKM}. So, we assume that only m_{3}^{d} is a complex number. The unitary matrices U_{uL} and U_{dL} can be obtained from

$$U_{u(d)L}^{\dagger}M_{u(d)}U_{u(d)L} = \text{diag}(|m_{u(d)}|^2, |m_{c(s)}|^2, |m_{t(b)}|^2),$$

(4.2)

where

$$M_{u(d)} = \begin{pmatrix} m_{1}^{u(d)} + m_{2}^{u(d)} & m_{1}^{u(d)} & m_{5}^{u(d)} \\ m_{2}^{u(d)} & m_{2}^{u(d)} - m_{3}^{u(d)} & m_{5}^{u(d)} \\ m_{4}^{u(d)} & m_{4}^{u(d)} & m_{3}^{u(d)} \end{pmatrix}.$$

(4.3)

To diagonalize the mass matrices, we start by observing that realistic mass hierarchies can be achieved in the following way. In the limit $m_{4,5} \to 0$, they become block-diagonal, and m_{3} becomes an eigenvalue whose eigenvector is $(0, 0, 1)$. The 2×2 blocks, which are of a semi-democratic type, can be simply diagonalized. One finds easily that one of the eigenvalues can become 0 if $m_{1}^{2} - 2m_{2}^{2} = 0$ is satisfied. So, the gross structure of realistic mass matrices can be obtained if $m_{3}^{u,d} \sim O(m_{t,b})$ and $m_{1,2}^{u,d} \sim O(m_{c,s})$ (to realize realistic mass hierarchies), and the non-diagonal elements $m_{4,5}^{u,d}$ and $m_{5}^{u,d}$, along with $m_{1,2}^{u,d}$, can produce a realistic mixing among the quarks. There are 10 real parameters and one phase in order to produce six quark masses, three mixing angles and one CP-violating phase. It is certainly desirable to investigate the complete parameter space of the model to understand its phenomenology and to make predictions, if any can be obtained. However, this is a quite complex problem, and will go beyond the scope of the present paper. Here we would like to give one set of parameters that are consistent with the experimental values given by the Particle Data Group.\footnote{We find that the set of dimensionless parameter values

$$m_{1}^{u}/m_{0}^{u} = -0.00293, \ m_{2}^{u}/m_{0}^{u} = -0.00028, \ m_{3}^{u}/m_{0}^{u} = 1,$$

$$m_{4}^{u}/m_{0}^{u} = 0.031, \ m_{5}^{u}/m_{0}^{u} = 0.0386,$$

$$m_{1}^{d}/m_{0}^{d} = 0.0004, \ m_{2}^{d}/m_{0}^{d} = 0.00275, \ m_{3}^{d}/m_{0}^{d} = 1 + 1.2I,$$

$$m_{4}^{d}/m_{0}^{d} = 0.283, \ m_{5}^{d}/m_{0}^{d} = 0.058$$

(4.4)

yields the mass hierarchies

$$m_{u}/m_{t} = 1.33 \times 10^{-5}, \ m_{c}/m_{t} = 2.99 \times 10^{-3},$$
The Flavor Symmetry

\[m_d/m_b = 1.31 \times 10^{-3}, \quad m_s/m_b = 1.17 \times 10^{-2}, \]
\[(4.5) \]

where \(m_0^u = m_3^u \) and \(m_0^d = \text{Re}(m_3^d) \), and the mixing matrix becomes

\[V_{\text{CKM}} = U_{uL}^\dagger U_{dL} \]
\[= \begin{pmatrix}
0.968 + 0.117I & 0.198 + 0.0974I & -0.00253 - 0.00354I \\
-0.198 + 0.0969I & 0.968 - 0.115I & -0.0222 - 0.0376I \\
0.00211 + 0.00648I & 0.0179 - 0.0395I & 0.999 - 0.00206I
\end{pmatrix}. \]
\[(4.6) \]

The magnitudes of the elements are given by

\[|V_{\text{CKM}}| = \begin{pmatrix}
0.975 & 0.221 & 0.00435 \\
0.221 & 0.974 & 0.0437 \\
0.00682 & 0.0434 & 0.999
\end{pmatrix}, \]
\[(4.7) \]

which should be compared with the experimental values\(^{15}\)

\[|V_{\text{exp, CKM}}| = \begin{pmatrix}
0.9741 \text{ to } 0.9756 & 0.219 \text{ to } 0.226 & 0.0025 \text{ to } 0.0048 \\
0.219 \text{ to } 0.226 & 0.9732 \text{ to } 0.9748 & 0.038 \text{ to } 0.044 \\
0.004 \text{ to } 0.014 & 0.037 \text{ to } 0.044 & 0.9990 \text{ to } 0.9993
\end{pmatrix}. \]
\[(4.8) \]

Note that the mixing matrix (4.6) is not in the standard parametrization. So, we give the invariant measure of \(CP \)-violations\(^{16}\)

\[J = \text{Im} \left[(V_{\text{CKM}})_{11}(V_{\text{CKM}})_{22}(V_{\text{CKM}}^*)_{12}(V_{\text{CKM}}^*)_{21} \right] = 2.5 \times 10^{-5} \]
\[(4.9) \]

for the choice (4.4), which is slightly larger than the experimental value \((3.0 \pm 0.3) \times 10^{-5} \) (see Ref. 15) and also Ref. 21)). The angles of the unitarity triangle for \(V_{\text{CKM}} \) (4.6) are given by

\[\phi_1 \simeq 22^\circ, \quad \phi_3 \simeq 38^\circ, \]
\[(4.10) \]

where the experimental values are \(\phi_1 = 24^\circ \pm 4^\circ \) and \(\phi_3 = 59^\circ \pm 13^\circ. \)

The normalization masses \(m_0^u \) and \(m_0^d \) are fixed at

\[m_0^u = 174 \text{ GeV}, \quad m_0^d = 1.8 \text{ GeV} \]
\[(4.11) \]

for \(m_t = 174 \text{ GeV} \) and \(m_b = 3 \text{ GeV} \), yielding \(m_u \simeq 2.3 \text{ MeV} \), \(m_c \simeq 0.52 \text{ GeV} \), \(m_d \simeq 3.9 \text{ MeV} \) and \(m_s = 0.035 \text{ GeV} \). Although these values cannot be directly compared with the running masses, because our calculation is at the tree level, it is nevertheless worthwhile to observe how close they are to

\[m_u(M_Z) = 0.9 - 2.9 \text{ MeV}, \quad m_d(M_Z) = 1.8 - 5.3 \text{ MeV}, \]
\[m_c(M_Z) = 0.53 - 0.68 \text{ GeV}, \quad m_s(M_Z) = 0.035 - 0.100 \text{ GeV}, \]
\[m_t(M_Z) = 168 - 180 \text{ GeV}, \quad m_b(M_Z) = 2.8 - 3.0 \text{ GeV}. \]
\[(4.12) \]
§5. Flavor changing neutral currents (FCNCs)

In models with more than one Higgs $SU(2)_L$ doublet, as in the case of the present model, tree-level FCNCs exist in the Higgs sector. We therefore calculate the flavor changing Yukawa couplings to the neutral Higgs fields, H^0_S and H^0_I ($I = 1, 2$), where H^0_S and H^0_I stand for the neutral Higgs fields of the S_3-singlet H_S and the S_3-doublet H_I, respectively. The actual values of these couplings depend on the VEV’s of the Higgs fields, and hence on the Higgs potential, which we do not consider in the present paper. Since we only would like to estimate the size of the tree-level FCNCs here, we simply assume that

$$\langle H^0_S \rangle = \langle H^0_I \rangle = \langle H^0_2 \rangle \simeq 246/\sqrt{6} \text{ GeV} \simeq 142/\sqrt{2} \text{ GeV}. \quad (5.1)$$

Then, the flavor changing Yukawa couplings can explicitly be calculated, because we know the explicit values of the unitary matrices U’s defined in (2.14):

$$\mathcal{L}_{\text{FCNC}} = (E_a E_s E_b \bar{E} b_R + \mathcal{U}_{aL} Y^{US} U_{bR} + \mathcal{D}_{aL} Y^{DS} D_{bR}) H^0_S + \text{h.c.}$$
$$+ (E_a E_s E_b \bar{E} b_R + \mathcal{U}_{aL} Y^{U1} U_{bR} + \mathcal{D}_{aL} Y^{D1} D_{bR}) H^0_I + \text{h.c.}$$
$$+ (E_a E_s E_b \bar{E} b_R + \mathcal{U}_{aL} Y^{U2} U_{bR} + \mathcal{D}_{aL} Y^{D2} D_{bR}) H^0_2 + \text{h.c.} \quad (5.2)$$

Here the matrices E’s, U’s and D’s stand for the mass eigenstates, and

$$Y^{E1} \simeq \begin{pmatrix} -10^{-5} & 2.6 \times 10^{-6} & -4.2 \times 10^{-5} \\ -1.1 \times 10^{-3} & 5.3 \times 10^{-4} & -8.8 \times 10^{-3} \\ -1.2 \times 10^{-8} & 5.3 \times 10^{-4} & -8.8 \times 10^{-3} \end{pmatrix}, \quad (5.3)$$

$$Y^{E2} \simeq \begin{pmatrix} -4.7 \times 10^{-4} & 3.8 \times 10^{-4} & -7.1 \times 10^{-3} \\ -3.8 \times 10^{-4} & 3.8 \times 10^{-4} & 7.5 \times 10^{-2} \\ -8.8 \times 10^{-3} & 9.4 \times 10^{-2} & -1.7 \end{pmatrix}, \quad (5.4)$$

$$Y^{US} \simeq \begin{pmatrix} 8.3 \times 10^{-4} & 1.6 \times 10^{-3} & -3.4 \times 10^{-2} \\ -1.6 \times 10^{-3} & 4.9 \times 10^{-3} & -4.1 \times 10^{-2} \\ 4.3 \times 10^{-2} & -5.1 \times 10^{-2} & -4.2 \times 10^{-3} \end{pmatrix}, \quad (5.5)$$

$$Y^{U1} \simeq \begin{pmatrix} -3.3 \times 10^{-4} & -1.9 \times 10^{-3} & 4.1 \times 10^{-2} \\ -1.9 \times 10^{-3} & 3.8 \times 10^{-3} & -3.4 \times 10^{-2} \\ -5.1 \times 10^{-2} & -4.2 \times 10^{-2} & -4.2 \times 10^{-3} \end{pmatrix}, \quad (5.6)$$

$$Y^{DS} \simeq \begin{pmatrix} (1.4 + 0.44 I) \times 10^{-5} & (5.6 + 0.38 I) \times 10^{-5} & -(1.6 + 1.6 I) \times 10^{-4} \\ (5.5 + 0.38 I) \times 10^{-5} & (2.8 + 2.1 I) \times 10^{-4} & -(1.4 + 0.16 I) \times 10^{-3} \\ -(7.8 + 8.0 I) \times 10^{-4} & -(7.0 + 0.82 I) \times 10^{-3} & (1.8 + 2.1 I) \times 10^{-2} \end{pmatrix}, \quad (5.7)$$

$$Y^{D1} \simeq \begin{pmatrix} -(1.1 - 0.17 I) \times 10^{-4} & -(1.6 - 1.3 I) \times 10^{-4} & (8.0 - 0.033 I) \times 10^{-4} \\ -(1.6 - 1.3 I) \times 10^{-4} & -(2.4 - 1.7 I) \times 10^{-4} & (6.1 + 1.6 I) \times 10^{-4} \\ 4.0 \times 10^{-3} & (3.1 + 0.82 I) \times 10^{-3} & (6.1 + 7.3 I) \times 10^{-4} \end{pmatrix}, \quad (5.8)$$

$$Y^{D2} \simeq \begin{pmatrix} (1.4 + 0.44 I) \times 10^{-5} & (5.6 + 0.38 I) \times 10^{-5} & -(1.6 + 1.6 I) \times 10^{-4} \\ (5.5 + 0.38 I) \times 10^{-5} & (2.8 + 2.1 I) \times 10^{-4} & -(1.4 + 0.16 I) \times 10^{-3} \\ -(7.8 + 8.0 I) \times 10^{-4} & -(7.0 + 0.82 I) \times 10^{-3} & (1.8 + 2.1 I) \times 10^{-2} \end{pmatrix}, \quad (5.9)$$
All the non-diagonal elements are responsible for tree-level FCNC processes. The amplitude of the flavor violating process $\mu^- \to e^+e^-e^-$, for instance, is proportional to $(Y^E_1)_{11}(Y^E_1)_{21} \simeq 10^{-8}$. Then, we find that its branching ratio is estimated to be

$$B(\mu \to 3e) \sim 10^{-15}(M_W/M_H)^4 < 10^{-12},$$

(5.11)

where M_W and M_H are the W boson mass and Higgs mass, respectively, and the value 10^{-12} is the experimental upper bound. Similarly, we obtain

$$B(\tau \to 3\mu) \sim 10^{-10}(M_W/M_H)^4 < 10^{-6},$$

(5.12)

$$B(K^0_L \to 2e) \sim 10^{-16}(M_W/M_H)^4 < 10^{-12},$$

(5.13)

$$B(B^0_S \to 2\mu) \sim 10^{-7}(M_W/M_H)^4 < 10^{-6}. $$

(5.14)

Note that because of the three Higgs fields, the imaginary parts of the Y contribute to CP-violating amplitudes, which are not taken into account by the phase of the mixing matrix V_{CKM}. Therefore, the four phases that can be introduced into $m_{1,3}$ in the mass matrices (2.13) can be, in principle, measured. A complete analysis of this problem will go beyond the scope of the present paper, and we would like to leave this problem to a future work.

§6. Conclusion

S_3 is a non-abelian permutation group with the smallest number of elements. The symmetry $S_{3L} \times S_{3R}$ has been considered by many authors$^{3, 5}$ in the past to explain the hierarchical structure of the generations in the SM. $S_{3L} \times S_{3R}$ is, however, explicitly broken at the Fermi scale. In the present paper we considered its diagonal subgroup, while extending the concept of flavor and generation to the Higgs sector. Once this is done, there is no reason that there should exist only an S_3 singlet Higgs, and so we introduced three $SU(2)_L$ Higgs doublet fields. The minimal S_3 extension of the SM allows a definite structure of the Yukawa couplings, and we studied its consequences, in particular the mass of the quarks and leptons, and their mixings. Although similar ideas have been proposed previously,$^1, 6\text{-}9$ none of the existing treatments is identical to ours: The main differences are the inclusion of $(S_3\text{-doublet})^3$ couplings and the arrangement of the S_3 representations. We found that in the leptonic sector, an additional discrete symmetry Z_2 can be consistently introduced. Z_2 forbids CP-violations, and it allows in the leptonic sector only six real independent parameters, with which one can compute the three charged lepton masses, three Majorana masses of the left-handed neutrinos and three mixing angles. The theoretical values so obtained are consistent with the experimental observations made to this time. Since Z_2 forbids CP-violations in the hadronic sector, too, we identified the origin of CP-violations with the breaking of Z_2. In a more fundamental theory, there might exist a dynamical mechanism that breaks Z_2, and creates
Here, we simply assumed that Z_2 is explicitly broken in the hadronic sector and analyzed the quark mass matrices that result only from S_3. We found that they are consistent with experiments. From these studies we hypothesize that the flavor symmetry, which is exact at the Fermi scale, is the permutation symmetry S_3. This flavor symmetry, together with the electroweak gauge symmetry, is only spontaneously broken. The analysis of the mass matrices in the hadronic sector that we performed in the present paper, is by no means complete, because we gave only one set of consistent parameter values. Also, the analysis of the FCNCs in the Higgs sector is not complete. A more complete study will be published elsewhere.

Supersymmetrization of the model is straightforward. It will simplify the Higgs sector drastically, and, moreover, the squared soft scalar masses will enjoy a certain degree of degeneracy, thanks to S_3, thereby softening the supersymmetric flavor problem.

Acknowledgements

One of us (JK) would like to acknowledge the kind hospitality of the theory group at the Institute for Physics, UNAM, Mexico. This work is supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (No. 13135210), and by the UNAM grant PAPIIT-IN116202. This work was partially conducted by way of a grant awarded by the Government of Mexico in the Secretariat of Foreign Affairs.

References

1) S. Pakvasa and H. Sugawara, Phys. Lett. B 73 (1978), 61.
2) H. Harari, H. Haut and T. Weyers, Phys. Lett. B 78 (1978), 459.
3) Y. Koide, Lett. Nuovo Cim. 34 (1982), 201; Phys. Lett. B 120 (1983), 161; Phys. Rev. D 28 (1983), 252; Phys. Rev. D 39 (1989), 1391; Z. Phys. C 45 (1989), 39.
M. Tanimoto, Phys. Rev. D 41 (1990), 1586.
H. Fritzsch and J. P. Plankl, Phys. Lett. B 237 (1990), 451.
P. Kaus and S. Meshekov, Phys. Rev. D 42 (1990), 1863.
G. C. Branco, J. I. Silva-Marcos and M. N. Rebelo, Phys. Lett. B 237 (1990), 446.
L. J. Hall and H. Murayama, Phys. Rev. Lett. 75 (1995), 3985.
C. D. Carone, L. J. Hall and H. Murayama, Phys. Rev. D 53 (1996), 6282.
H. Fritzsch and Z. Z. Xing, Phys. Lett. B 372 (1996), 265.
M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Rev. D 59 (1999), 113016.
A. Mondragón and E. Rodríguez-Jáuregui, Phys. Rev. D 59 (1999), 093009; Phys. Rev. D 61 (2000), 113002.
4) M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Rev. D 57 (1998), 4429.
5) H. Fritzsch and Z. Z. Xing, Prog. Part. Nucl. Phys. 45 (2000), 1.
6) S. Pakvasa and H. Sugawara, Phys. Lett. B 82 (1979), 105.
Y. Yamanaka, S. Pakvasa and H. Sugawara, Phys. Rev. D 25 (1982), 1895.
7) Y. Koide, Phys. Rev. D 60 (1999), 077301.
8) E. Ma and G. Rajasekaran, Phys. Rev. D 64 (2001), 113012.
E. Ma, Mod. Phys. Lett. A 17 (2002), 2361; ibid. 17 (2002), 627.
K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552 (2003), 207.
9) K. S. Babu, T. Kobayashi and J. Kubo, hep-ph/0212350.
10) T. Yanagida, in Proc. of the Workshop on the unified Theory and Baryon Number in the universe, ed. O. Sawada and A. Sugamoto (KEK report 79-18, 1979).
M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, ed. P. van Nieuwenhuizen and d. Z. Freedman (North Holland, Amsterdam, 1979).
R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980), 912.
11) T. Fukuyama and H. Nishiura, in Proc. of the Int. Workshop on Masses and Mixings of Quarks and Leptons, ed. Y. Koide (World Scientific, Singapore, 1998).
E. Ma and M. Raidal, Phys. Rev. Lett. 87 (2001), 011802.
C. S. Lam, Phys. Lett. B 507 (2001), 214.
K. R. S. Balaji, W. Grimus and T. Schwetz, Phys. Lett. B 508 (2001), 301.
Y. Koide, H. Nishiura, K. Matsuda, T. Kikuchi and T. Fukuyama, Phys. Rev. D 66 (2002), 093006.
P. F. Harrison and W. G. Scott, Phys. Lett. 557 (2003), 76.
12) T. Banks and M. Dine, Phys. Rev. D 45 (1992), 1424.
L. E. Ibáñez and G. G. Ross, Phys. Lett. B 260 (1991), 291.
L. E. Ibáñez and G. G. Ross, Nucl. Phys. B 368 (1992), 3.
L. E. Ibáñez, Nucl. Phys. B 398 (1993), 301.
13) S. Pakvasa and J. W. F. Valle, hep-ph/0301061.
14) M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, hep-ph/0207227.
15) Particle Data Group (F. J. Gilman, K. Kleinknecht and B. Renk), Phys. Rev. D 66 (2002), 010001-1.
16) C. Jarlskog, Phys. Rev. Lett. 55 (1985), 1039.
17) B. T. Clevenland et al., Astrophys. J. 496 (1998), 505.
W. Hampel et al., Phys. Lett. B 447 (1999), 127.
J. N. Abdurashitov et al., Phys. Rev. Lett. 83 (1999), 4686; JETP 95 (2002), 181.
M. Altmann et al., Phys. Lett. B 490 (2000), 16.
S. Fukuda et al., Phys. Rev. Lett. 86 (2001), 5651; ibid. 86 (2001), 5656; Phys. Lett. B 539 (2002), 179.
Q. R. Ahmad et al., Phys. Rev. Lett. 87 (2001), 071301; ibid. 89 (2002), 011301; ibid. 89 (2002), 011302.
18) Y. Fukuda et al., Phys. Rev. Lett. 81 (1998), 1562; ibid. 82 (1999), 2644; ibid. 82 (1999), 5194.
W. W. Allison et al., Phys. Lett. B 449 (1999), 137.
M. Ambrosio et al., Phys. Lett. B 478 (2000), 5; ibid. 517 (2001), 59.
19) B. Armbruster et al., Phys. Rev. D 65 (2002), 112001.
M. H. Ahn et al., hep-ex/0212007.
20) M. Apollonio et al., Phys. Lett. B 466 (1999), 415.
F. Boehm et al., Phys. Rev. D 64 (2001), 112001.
K. Eguchi et al., hep-ex/0212021.
21) B. Aubert et al., Phys. Rev. Lett. 89 (2002), 201802.
K. Abe et al., Phys. Rev. D 66 (2002), 071102.