Investigating Profiled Side-Channel Attacks Against the DES Key Schedule

Johann Heyszl¹, Katja Miller¹, Florian Unterstein¹, Marc Schink¹, Alexander Wagner¹, Horst Gieser², Sven Freud³, Tobias Damm³, Dominik Klein³, Dennis Kügler³

¹ Fraunhofer Institute for Applied and Integrated Security (AISEC)
² Fraunhofer Research Institution for Microsystems and Solid State Technologies (EMFT)
³ Federal Office for Information Security (BSI)

CHES, Sept. 2020
Motivation and Main Research Questions

- Several ePrint publications [WH17, WHG17, WH18] describe:
 - Successful profiled attack against DES key schedule of a commercial security controller
 - ‘Single trace attack’, ‘weak keys’, ‘remaining rest entropies as low as 19 bits’

- Important questions open/unanswered:
 - Wide distributions and SCA-weak keys reproducible using state of the art tooling?
 - Device-specific or more general - other devices?
 - Precise impact on 3-key triple-DES?
 - Predictable through simulation?
Empirical Study: Commercial Security Controller

- Security controller, Java-Card, programmable for investigation
- Target: DES key schedule
- High-precision EM setup. Decapped security controller. Backside.
- Alignement
- t-Test on preliminary leakage assumption: Leakage detected and measurement position selected
- Correlation-based leakage test CPOI [DS16]: POI selection
DES Key Schedule - Round Keys and Bit Transitions

Round key	Indices refer to the input key excluding parity bits
0	8 44 29 52 42 14 28 49 1 7 16 36 2 30 22 21 38 50 51 0 31 23 15 35
1	1 37 22 45 35 7 21 42 51 0 9 29 52 23 15 14 31 43 44 50 49 16 8 28
2	44 23 8 31 21 50 7 28 43 38 9 1 0 42 29 30 36 35 2 51 14
3	30 9 51 42 7 36 50 14 23 29 38 1 49 52 44 43 28 15 16 22 21 45 37 0
4	16 52 37 28 50 22 36 0 9 15 49 44 35 38 30 29 14 1 2 8 7 31 23 43
5	2 38 23 14 36 8 22 43 52 1 35 30 21 49 16 15 0 44 45 51 50 42 9 29
6	45 49 9 0 22 51 8 29 38 44 21 16 7 35 2 1 43 30 31 37 36 28 52 15
7	31 35 52 43 8 37 51 15 49 30 7 2 50 21 45 44 29 16 42 23 22 14 38 1
8	49 28 45 36 1 30 44 8 42 23 0 52 43 14 38 37 22 9 35 16 15 7 31 51
9	35 14 31 22 44 16 30 51 28 9 43 38 29 0 49 23 8 52 21 2 1 50 42 37
10	21 0 42 8 30 2 16 37 14 52 29 49 15 43 35 9 51 38 7 45 44 36 28 23
11	7 43 28 51 16 45 2 23 0 38 15 35 1 29 21 52 37 49 50 31 30 22 14 9
12	50 29 14 37 2 31 45 9 43 49 1 21 44 15 7 38 23 35 36 42 16 8 0 52
13	36 15 0 23 45 42 31 52 29 35 44 7 30 1 50 49 9 21 22 28 2 51 43 38
14	22 1 43 9 31 28 42 38 15 21 30 50 16 44 36 35 52 7 8 14 45 37 29 49
15	15 51 36 2 49 21 35 31 8 14 23 43 9 37 29 28 45 0 1 7 38 30 22 42

- Key schedule, 56 bit keys, 16 rounds, half of round keys depicted (‘register C’)
- Round keys only permutations of initial key bits
- Bits re-occur, even subsequent bit-pairs re-occur
Leakage Model and Template Attack

- Key bits from register C. Transitions as dashes between bits. Coloring depicts occurrence rate (e.g. red 3 times, blue 10 times)

- Leakage model investigated precisely through SNR calculations: Exclusive XOR-leakage
 - XORs grouped and profiled in templates (instead of bits)
 - Dashed boxes mark grouped XORs for templates (4 in register C, 8 in total)

- Template attack: 7 bit templates, 2.5 mio profiling, 300 POIs, 1k attacked keys, 1/3/900 traces per key for attacker

- State of the art key rank estimation because independent XORs → security level in bits
Single DES Results Show Wide Distribution

- Security level [bits] of 1k keys as histogram

- Reduction on average and widely distributed results with apparent weak keys (unlike usual DPA results)
- The limit is low (i.e. 2 bit for the all-zeros/all-ones keys). The more keys are tested, the more weak ones!
Single DES Results Show Wide Distribution

- Increasing the attack traces per key (to 3 and 900)
- Improvement for attacker
- Widely distributed even with high number of traces (while some noise factors are removed)
Key Weakness Asymptotically Independent of Noise but Value-Dependent

- Security levels over increasing traces per attacked key (left: 10 randomly selected, right: 10 low security level keys)
- Convergence to different levels - Key weaknesses inherent!
- Conclude that leakage model and switching noise determine key weakness
Overview and Comparison

This work	Wagner et al.		
1k keys, 300 POIs	297k keys, 352 POIs		
1 trace	3 traces	900 traces	1 trace
1.5×DES per trace\(^1\)	4×DES per trace		

| Mean [bit] | 49.4 | 48.2 | 45.7 | 46.16 [WHG17, Fig. 11] |

- Results similar, hence, reproducible
- What does this mean for actual applications - implications on triple-DES?

\(^1\) 1 DES includes 9 backwards rounds, hence, \(\approx 1.5\) DES
Impact on 3-key triple-DES

- Estimate 3-key triple-DES security (allowing meet-in-the-middle advantage while using SCA results)
- Empirical density of security levels
- Based on previously shown independent single DES results (3 different keys):
 1 trace (blue), 3 traces (orange), 900 traces (green), noise-free simulation (black, dashed)
Impact on 3-key triple-DES

	1 trace	3 traces	900 traces	sim.
Mean sec. level 1-key 1-DES [bit]	49.4	48.2	45.7	42.3
Mean sec. level 3-key 3-DES [bit]	96.1	93.8	88.7	82.1
Fraction of 3-key 3-DES cases < 80 bit	0.24 %	0.43 %	6.3 %	37.4 %
Fraction of 3-key 3-DES cases < 70 bit	0.0015 %	n.a.	0.32 %	4.0 %

- Security level for 3-key triple-DES high on average
- But small percentage of weak key-triples: E.g. 0.24 % < 80 bit after single trace attack - every 400th device
Generalisation through Simplified Simulation

- Simplified simulation: XOR leakage with equally weighted XOR-transitions
- No additional noise - only algorithm-dependent switching noise from key bits

- Wide distribution of security levels and weak keys even then! Issue must be more general
Simulation vs. Reality

- Security level attack results
- From simulated attack (x) and from actual measurements (y)
- Two classes: (blue) randomly selected, (red) random but $\approx 90\%$ zeros/ones
- Simulation prediction very precise for uneven zeros/ones, less for general keys
- Lack of precision likely due to simplified model w/o weighted XOR-transitions
- Key weakness not device-specific for big part
Empirical Study: Second Security Controller

- Similar results with mean security level of **48.7** bit (≈ 3 bit more)
- (460 POIs, 900 traces per key, 1000 keys)
Empirical Study: DES Engine in General Purpose µC

- STM32 HW DES engine
- Different leakage model: Exclusive value-based leakage
- Similar results! (100 traces per key, 10k attacked keys)
- Underlines generality of issue: Two different leakage models / implementations lead to widely distributed results!
Conclusion

- Wide distribution of security levels and weak keys exist
- Proven on different implementations/leakage models and in simulation
- More devices are affected if leakage from key schedule is existent (e.g. no effective masking)
- DES key schedule prone due to re-occurrence of transitions
- Impact on commercial security controller (3-DES) less dramatic than alleged (e.g. \(0.24 \% < 80 \))

Open

- How to assess security when results are widely distributed and weak keys exist?
- Maybe similar with profiled attacks against other algorithms’ key schedules if leakage is exploitable
Dr. Johann Heyszl

Hardware Security Department

Fraunhofer-Institute for Applied and Integrated Security (AISEC)

Address: Parkring 4
85748 Garching (near Munich)
Germany

Internet: http://www.aisec.fraunhofer.de

Phone: +49 89 3229986-121
E-Mail: johann.heyszl@aisec.fraunhofer.de
References

[DS16] François Durvaux and François-Xavier Standaert. From improved leakage detection to the detection of points of interests in leakage traces. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 240–262. Springer, 2016.

[HMU+20] Johann Heyszl, Katja Miller, Florian Unterstein, Marc Schink, Alexander Wagner, Horst Gieser, Sven Freud, Tobias Damm, Dominik Klein, and Dennis Kügler. Investigating profiled side-channel attacks against the des key schedule. *IACR Transactions on Cryptographic Hardware and Embedded Systems*, 2020(3):22–72, Jun. 2020.

[WH17] Mathias Wagner and Stefan Heyse. Single-trace template attack on the DES round keys of a recent smart card. *IACR Cryptology ePrint Archive*, 2017:57, 2017.

[WH18] Mathias Wagner and Stefan Heyse. Improved brute-force search strategies for single-trace and few-traces template attacks on the DES round keys. *Cryptology ePrint Archive, Report 2018/937*, 2018.

[WHG17] Mathias Wagner, Stefan Heyse, and Charles Guillemet. Brute-force search strategies for single-trace and few - traces template attacks on the DES round keys of a recent smart card. *IACR Cryptology ePrint Archive*, 2017:614, 2017.
Impact of Noise Significant on Individual Traces

- When attacking the 900 traces as single trace attacks (same keys, left: 10 randomly selected, right: 10 low security level keys)
- Noise influence high on single traces - Even weak keys are often ‘strong’
- (Previously shown distribution for single trace already include this noise of course.)