Exploration of an Interdisciplinary Scientific Landscape

Juste Raimbault1,2
1 UMR CNRS 8504 Géographie-cités
2 UMR-T IFSTTAR 9403 LVMT
juste.raimbault@polytechnique.edu

Abstract
Patterns of interdisciplinarity in science can be quantified through diverse complementary dimensions. This paper studies as a case study the scientific environment of a generalist journal in Geography, Cybergeo, in order to introduce a novel methodology combining citation network analysis and semantic analysis. We collect a large corpus of around 200,000 articles with their abstracts and the corresponding citation network that provides a first citation classification. Relevant keywords are extracted for each article through text-mining, allowing us to construct a semantic classification. We study the qualitative patterns of relations between endogenous disciplines within each classification, and finally show the complementarity of classifications and of their associated interdisciplinarity measures. The tools we develop accordingly are open and reusable for similar large scale studies of scientific environments.

Keywords: Citation Network; Semantic Network; Interdisciplinarity; Geography

Introduction
The development of interdisciplinary approaches is increasingly necessary for most of disciplines, both for further knowledge discovery but also societal impact of discoveries, as it was recently coined by the special issue of Nature (Nature, 2015). Banos (2013) suggests that the development of such approaches must occur within a subtle spiral between and inside disciplines. An other way to understand this phenomenon is to understand it as the emergence of vertically integrated fields conjointly with horizontal questions as detailed in the Complex Systems roadmap (Bourgine et al (2009)). There are naturally multiple views on what is exactly interdisciplinarity (many other terms such as transdisciplinarity, cross-disciplinarity also exist) and it actually depends on involved domains: recent hybrid disciplines (see e.g. the ones underlined by Bais (2010) such as astro-biology) are a good illustration of the case where entanglement is strong and new discoveries are vertically deep, whereas more loose fields such
as “urbanism”, which have no precise definition and where integration is by essence horizontal, are an other illustration of how transversal knowledge can be produced. Interaction between disciplines are not always smooth, as shows the misunderstandings when urban issues were recently introduced to physicists as Dupuy and Benguigui (2015) recalls.

These concerns are part of an understanding of processes of knowledge production, i.e. the Knowledge of the knowledge as Morin (1986) puts it, in which evidence-based perspectives, involving quantitative approaches, play an important role. These paradigms can be understood as a quantitative epistemology. Quantitative measures of interdisciplinarity would therefore be part of a multidimensional approach of the study of science that is in a way “beyond bibliometrics” (Cronin and Sugimoto, 2014). The focus of this paper is positioned within this stream of research. We first review existing approaches to the measure of interdisciplinarity.

The possible methods for quantitative insights into epistemology are numerous. A good illustration of the variety of approaches is given by network analysis. Using citation network features, a good predicting power for citation patterns is for example obtained by Newman (2013). Co-authorship networks can also be used for predictive models (Sarigöl et al, 2014). A multilayer network approach was proposed in Omodei et al (2017), using bipartites networks of papers and scholars, in order to produce measures of interdisciplinarity using generalized centrality measures. Disciplines can be stratified into layers to reveal communities between them and therein collaboration patterns (Battiston et al, 2015). Keyword networks are used in other fields such as economics of innovation: for example, Choi and Hwang (2014) propose a method to identify technological opportunities by detecting important keywords from the point of view of topological measures. In a similar manner, Shibata et al (2008) uses topological analysis of the citation network to detect emerging research fronts.

Definitions of interdisciplinarity itself and indicators to measure it have already been tackled by a large body of literature. Huutoniemi et al (2010) recall the difference between multidisciplinary (an aggregate of works from different disciplines) and interdisciplinary (implying a certain level of integration) approaches. They construct a qualitative framework to classify types of interdisciplinarity, and for example distinguish empirical, theoretical and methodological interdisciplinarities. The multidimensional aspect of interdisciplinarity is confirmed even within a specific field such as literature (Austin et al, 1996). A first way to quantify interdisciplinarity of a set of publications is to look at the proportion of disciplines outside a main discipline in which they are published, as Rinia et al (2002) do for the evaluation of projects in physics, complementary with judgement of experts. Porter et al (2007) designate this measure as specialization, and compares it with a measure of integration, given by the spread of citations done by a paper within the different Subject Categories (classification of the Web of Knowledge), which is also called the Rao-Stirling index. Larivière and Gingras (2010) uses it on a Web of Science corpus to show the existence of an optimal intermediate level of interdisciplinarity for the citation impact within a five year window. A similar work is done in (Larivière and Gingras, 2010).
focusing on the evolution of measures on a long time range. The influence of missing data on this index is studied by Moreno et al. (2016), providing an extended framework taking into account uncertainty. The use of networks has also been proposed: Porter and Rafols (2009) combine the integration index with a mapping technique which consists in visualisation of synthetic networks constructed by co-citations between disciplines. Leydesdorff (2007) shows that the betweenness centrality is a relevant indicator of interdisciplinarity, when considering appropriate citation neighborhood.

We develop in this paper a case study coupling citation network exploration and analysis with text-mining, aiming at mapping the scientific landscape in the neighborhood of a particular journal. We choose to study an electronic journal in Geography, named Cybergeo\footnote{http://cybergeo.revues.org/}, that publishes articles within all subfields of Geography and is in that way multidisciplinary. The choice is initially due to data availability, but ensures several constraints making it highly relevant to the context given above. First of all, the “discipline” of Geography is very broad and by essence interdisciplinary Bracken (2016): the spectrum ranges from Human and Critical geography to physical geography and geomorphology, and interactions between these subfields are numerous. Secondly, bibliographical data is difficult to obtain, raising the concern of how the perception of a scientific landscape may be shaped by actors of the dissemination and thus far from objective, and making technical solutions as the ones we will consequently develop here crucial tools for an open and neutral science. Finally it makes a particularly interesting case study as the editorial policy is generalist and concerned with open science issues such as peer-review ethics transparency (Wicherts 2016), open data and model practices, as recalled by Pumain (2015), and this work contributes to these by fostering the opening of reflexivity.

Our approach combine semantic communities analysis with citation network to extract features such as interdisciplinarity measures. Our contribution differs from the previous works quantifying interdisciplinarity as it does not assume predefined domains nor classification of the considered papers, but reconstructs from the bottom-up the fields with the endogenous semantic information. Nichols (2014) already introduced a close approach, using Latent Dirichlet Allocation topic modeling to characterize interdisciplinarity of awards in particular sciences. Palchykov et al (2016) takes a similar approach for papers in physics based on concept extraction from full texts, and show that the endogenous classes differ from the top-down subjects classification. Semantic networks are otherwise well studied in social sciences, such as for example Gurciullo et al (2015) that analyze semantic networks of political debates.

Our contribution is original and significant on at least two aspects:

1. we combine endogenous classifications in a network multilayer fashion, using semantic information;

2. a large dataset is constructed from scratch to study a journal not referenced in main databases, tackling both data retrieval and large scale data
processing issues.

The rest of the paper is organized as follows: we describe in the next section the dataset used and the data collection procedure. We then study properties of the citation network and describe the procedure to construct the semantic classification through text-mining. We finally study complementary measures of interdisciplinarity obtained with the different classifications.

Database Construction

Our approach imposes some requirements on the dataset used, namely: (i) cover a certain neighborhood of the studied journal in the citation network in order to have a consistent view on the scientific landscape; (ii) have at least a textual description for each node. For these to be met, we need to gather and compile data from heterogeneous sources. We use therefore an application specifically designed, which general architecture is given in Fig. 1. Source code of the application and all scripts used in this paper are available on the open git repository of the project \(^2\). Raw and processed data are also openly available on Dataverse \(^3\). We recall that an important contribution of this paper is the construction of such an hybrid dataset from heterogeneous sources, and the development of associated tools that can be reused and further developed for similar purposes.

Initial Corpus

The production database of Cybergeo (snapshot taken in February 2016, provided by the editorial board), provides after pre-processing the initial database of articles, with basic information (title, abstract, publication year, authors). The processed version used is available together with the full database constructed, as a mysql dump, at the address given above. This base provide also bibliographical records of articles that give all references cited by the initial base (forward citations for the initial corpus).

Citation Data

Citation data is collected from Google Scholar, that is the only source for incoming citations \(^4\) in our case as the journal is poorly referenced in other databases \(^5\). We are aware of the possible biaises using this single source (see e.g. Bohannon \(^5\)) but these critics are more directed towards search results or possible targeted manipulations than the global structure of the citation network. The automatic collection requires the use of a crawling

\(^2\) at https://github.com/JusteRaimbault/HyperNetwork
\(^3\) at http://dx.doi.org/10.7910/DVN/VU2XKT
\(^4\) or was just added as in the case of Web of Science, indexing Cybergeo since May 2016 only
\(^5\) or http://iscpif.fr/blog/2016/02/the-strange-arithmetic-of-google-scholars
Figure 1: **Heterogeneous Bibliographical Data Collection and processing.** Architecture of the application for content (semantic data), metadata and citation data collection. The heterogeneity of tasks requires the use of multiple languages: data collection and management is done in Java, and data stored in databases (Mysql and MongoDB); data processing is done in python for Natural Language Processing and in R for statistical and network analyses; graph visualizations are done with Gephi software.
software to pipe requests, namely TorPool (Raimbault, 2016) that provides a Java API allowing an easy integration into our application of data collection. A crawler can therethrough retrieve html pages and get backward citation data, i.e. all citing articles for a given initial article. We retrieve that way two sub-corporuses: references citing papers in Cybergeo and references citing the ones cited by Cybergeo. At this stage, the full corpus contains around $4 \cdot 10^5$ references.

For the sake of simplicity, we will denote by reference any standard scientific production that can be cited by another (journal paper, book, book chapter, conference paper, communication, etc.) and contains basic records (title, abstract, authors, publication year). We work in the following on networks of references, linked by citations.

Text Data

A textual description for all references is necessary for a complete semantic analysis. We use for this an other source of data, that is the online catalog of Mendeley reference manager software Mendeley (2015). It provides a free API allowing to get various records under a structured format. Although not complete, the catalog provides a reasonable coverage in our case, around 55% of the full citation network. This yields a final corpus with full abstracts of size $2.1 \cdot 10^5$. The structure and descriptive statistics of the corresponding citation network is recalled in Fig. 2.

Methods and Results

Citation Network Properties

As detailed above, we are able by the reconstruction of the citation network at depth ± 1 from the original 927 references of the journal to retrieve around $45 \cdot 10^6$ references, on which $2.1 \cdot 10^5$ have an abstract text allowing semantic analysis. A first glance on citation network properties provides useful insights. Mean in-degree (that can be interpreted as a stationary integrated impact factor) on references for which it can be defined has a value of $\bar{d} = 121.6$, whereas for articles in Cybergeo we have $\bar{d} = 3.18$. This difference suggests a variety for status of references, from old classical works (the most cited has 1051 incoming citations) to recent less influential works.

This diversity is confirmed by the hierarchical organisation examined in Fig. 3 that unveils three superposed regimes. More precisely, we look at the rank-size plot, given by the logarithm of the number of citations received as a function of the rank of the paper. We find, as expected (Redner, 1998), localized power-law behaviors. A first set of around 150 references shows a very low hierarchy (rank-size exponent $\alpha = 0.01$) and corresponds to classical references in different disciplines. A second regime ($\alpha = 1.56$) is much more hierarchized,
Figure 2: **Structure and content of the citation network.** The original corpus of *Cybergeo* is composed by 927 articles, themselves cited by a slightly larger corpus (yielding a stationary impact factor of around 3.18), cite $\simeq 6600$ references, themselves co-cited by more than $2 \cdot 10^5$ works for which we have a textual description.
Figure 3: **Rank-size plot of citations received.** The plot unveils three superposed citations regimes, corresponding to power laws with different levels of hierarchy. The references in *Cybergeo* (inset plot) are themselves in the tail and less hierarchical.
followed by a last regime less hierarchical ($\alpha = 0.75$) containing more recent papers (average publication year mid-2005, against mid-1998 for the second and 1983 for the first).

Other topological properties reveal typical patterns of citation practices: for example, the existence of high-order cliques (complete sub-networks) implies citation practices which compatibility with the cumulative nature of knowledge may be questionable \cite{Pumain2005}, since these need always to source back the production of knowledge in the most recent works. An exemple of such a clique is shown in Fig. 4.

Citation communities

The citation network is a first opportunity to construct endogenous disciplines, by extracting citation communities. More precisely, this step aims at finding recurrent patterns in citations that would define a field by its citation practices. In order to be consistent with the particular data structure we have (missing incoming citations for sub-corporuses at maximal depth), we filter the network by removing all nodes with degree smaller than one. This ensures that kept nodes are either at least cited by an other node (and thus there are no missing edges for these nodes) or cite at least two other nodes, what can make “bridges” between sub-communities. The resulting network has a size of $|V| = 107164$ nodes and $|E| = 309778$ edges. It is visualized in Fig. 5.

We use a standard modularity optimization algorithm to identify communities \cite{Blondel2008} in this citation network. It provides 29 communities with a modularity of 0.71. In comparison, a bootstrap of 100 randomisations of links in the network gives an average modularity of $-1.0 \cdot 10^{-4} \pm 4.4 \cdot 10^{-4}$.
Figure 5: **Citation Network.** We show only the “core” of the citation network, composed by references with a degree larger than one ($|V| = 107164$ and $|E| = 309778$). The community detection algorithm provides 29 communities with a modularity of 0.71. Nodes and edges color gives the main community (for example ecology in magenta, GIS in orange, Socio-ecology in turquoise, Social geography in green, Spatial analysis in blue). Node labels give shortened titles of most cited papers, size is scaled according to their in-degree. The graph is spatialized using a Force-Atlas algorithm.
which means that communities are highly significant.

We name the communities by inspection of the titles of most cited references in each. The 14 communities that have a size larger than 2.5% of the network are: Complex Networks, Ecology, Social Geography, Sociology, GIS, Spatial Analysis, Agent-based Modeling and Simulation (ABMS), Socioecology, Urban Networks, Urban Simulation, Urban Studies, Economic Geography, Accessibility/Land-use, Time Geography. These categories do not directly correspond to well-defined disciplines, as some correspond more to methods (ABMS), objects of study (Urban Studies), or paradigms (Complex Networks). Some are “specializations” of others: most papers in Urban Studies can also be classified as Critical and Social geography. This way, we construct endogenous disciplines that correspond to scientific practices (what is cited) more than their representation (the “official” disciplines). The relative positioning of communities in Fig. 5 obtained with a Force-Atlas algorithm tells a lot about their respective relations: for example, social geography makes a bridge between Urban Studies and Economic Geography, whereas the connection between Socioecology and Urban simulations is done by GIS (what can be expected as geomatics is an interdisciplinary field). GIS also separates and connects two subfield of Ecology, on one side more thematic studies on ecological habitats, and on the other sides statistical methods. These relations already inform qualitatively patterns of interdisciplinarity, in the sense of integration measures. We will also in the following use these communities to situate the semantic classification.

Semantic Communities Construction

We now turn to the methodological details for the construction of the semantic classification. This step adapts the methodology described by Bergeaud et al (2017), who construct a semantic classification on patent data.

Relevant Keywords Extraction

We recall that our corpus with available text consists of around $2 \cdot 10^5$ abstracts of publications at a topological distance shorter than 2 from the journal Cybergeo in the citation network. The first important step is to extract relevant keywords from abstracts. Text processing is done with the python library nltk (Bird 2006). We add a particular treatment to the method of Bergeaud et al (2017), as our corpus is multilingual: language detection is done with the technique of stop-words (Baldwin and Lui 2010). We also use a specific tagger (the function allowing the attribution of grammatical function to words), Treetagger (Schmid 1994), for languages other than English.

To summarize, the keyword extraction workflow goes through the following steps:

1. Language detection is done using stop-words
2. Pos-tagging (detection of word functions) and stemming (extraction of the stem) are done differently depending on language:
• English: nltk built-in pos-tagger, combined to a PorterStemmer
• French or other: use of TreeTagger [Schmid, 1994]

3. Selection of potential n-grams (keywords of length \(n \) with \(1 \leq n \leq 4 \)) following the given grammatical rules: for English \(\cap \{N N \cup V B G \cup J J \} \), and for French \(\cap \{N O M \cup A D J \} \). Other languages are a negligible proportion of the corpus and are discarded.

4. Estimation of the relevance n-grams, by attributing a score following the deviation of the statistical distribution of co-occurrences to a random distribution.

Semantic Network

We keep at this stage a fixed number \(K_W \) of n-grams, based on their relevance score, that will be designated as the relevant keywords. We find that for large values of \(K_W \), results are not sensitive to the total number of keywords, and take a reasonably large value for computational performance, \(K_W = 50,000 \). We construct the co-occurrence matrix of the relevant keywords. This co-occurrence matrix provides the semantic network as its adjacency matrix: nodes are keywords, and they are linked according to their co-occurrences.

Sensitivity Analysis

We observe the same phenomenon than in Bergeaud et al. (2017), that is the existence of nodes with large degree and not specific to a particular field: for example model and space are used in most of subfields of Geography. We also adapt the original filtering procedure, as we do not have here an exogenous information to calibrate parameters. We assume the highest degree terms do not carry specific information on particular classes and can be thus filtered given a maximal degree threshold \(k_{max} \). We keep the second filter on a minimal edge weight threshold \(\theta_w \). We add the supplementary constraint that keywords are also filtered on a document frequency window \([f_{min}, f_{max}]\) (number of references in which they appear), what is slightly different from network filtering.

A sensitivity analysis of resulting network topology to these four parameters is presented in Fig. 6. Given a filtered network, we detect communities using modularity optimization as before for the citation network. Various properties of the network can be optimized, and we look in particular at its size (number of keywords after filtering), the optimal modularity, the number of communities, and the balance between their sizes (defined as a concentration index \(\sum_k s_k^2 / (\sum_k s_k)^2 \)). This multi-objective optimization problem does not have a unique solution as objectives are contradictory in a complex way, and a compromise point must be chosen. We take a compromise point between modularity and network size, with a high balance and a reasonable number of communities, given by \(k_{max} = 1200, \theta_w = 100, f_{min} = 50, f_{max} = 10000 \). These values give a network of size 2868, with 18 communities and a modularity of 0.57.
Figure 6: Sensitivity analysis of network indicators to filtering parameters. We show here 4 indicators (balance between community sizes, modularity of the decomposition, number of communities, number of vertices), as a function of parameters k_{max} and θ_w, at fixed $f_{\text{min}} = 50$, $f_{\text{max}} = 10000$. Close values for these two last parameters (in a reasonable range) give similar behavior.

Note that the small proportion of keywords in French is always separated from the rest of the network as they cannot co-occur with English keywords, and that with these parameter settings no French keywords are kept. All communities described in the following therefore contain only keywords in English.

Semantic Communities

We obtain therein communities in the semantic network with the optimized filtering parameters. At the exception of a small proportion apparently resulting from noise (representing less than 10 keywords in 3 communities that we remove, i.e. 0.33% of keywords), communities correspond to well-defined scientific fields, domains, or approaches. Naming is also done by inspection of the
Table 1: Semantic communities reconstructed from community detection in the semantic network.

Name	Size	Keywords
Political sciences/critical geography	535	decision-mak, polit ideolog, democraci, stakehold, neoliber
Biogeography	394	plant densiti, wood, wetland, riparian veget
Economic geography	343	popul growth, transact cost, socio-econom, household incom
Environment/climate	309	ice sheet, stratospher, air pollut, climat model
Complex systems	283	scale-fre, multifract, agent-bas model, self-organ
Physical geography	203	sedimentari, digit elev model, geolog, river delta
Spatial analysis	175	spatial analysi, princip compon analysi, heteroscedast, factor
Microbiology	118	chromosom, phylogenet, borrelia
Statistical methods	88	logist regress, classifi, kalman filter, sampl size
Cognitive sciences	81	semant memori, retrospect, neuroimag
GIS	75	geograph inform scienc, softwar design, volunt geograph inform,
Traffic modeling	63	simul model, lane chang, traffic flow, crowd behavior
Health	52	epidem, vaccin strategi, acut respiratori syndrom, hospit
Remote sensing	48	land-cov, landsat imag, lulc
Crime	17	crimin justic system, social disorgan, crime

most relevant keywords in each community, in order to stick here to a certain level of supervision.

Table 1 summarizes the communities, giving their names, sizes, and corresponding keywords. The most important community is related to issues in political science and critical geography, what could have been expected as several previously obtained citations communities (Social geography, Urban studies) deal with these issues. We then obtain a large cluster of terms related to biogeography, that must correspond to publications in Ecology and Socio-ecology identified before, together with a community in Environment and Climate.

In a way similar to the citation communities, but more pronounced here, we obtain endogenous “disciplines” that can correspond to real disciplines, to methodologies, to object of studies. This classification thus also unveil effective scientific practices, here in terms of semantic content. A class here related to complex systems can be associated to a paradigm and various approaches that were separated in the citation communities: agent-based models and complex networks for example. On the contrary, some studies that were gathered in a large domain before can be precisely differentiated in the semantic network, such as microbiology and health here that are used by studies related to socio-ecology or ecology in the citation network. Some very specific domains appear here as they have very few connections in their actual semantic content: for example, Geography of crime is very precise and disconnected from other communities.

We show in Fig. 7 a visualisation of the semantic network, in which the positioning of communities, induced by a Fruchterman-Reingold algorithm (that we use here to have a more precise layout in the relative positioning compared
Figure 7: **Visualization of the semantic network.** Network is constructed by co-occurrences of most relevant keywords. Filtering parameters are here taken according to the multi-objective optimization done in Fig. 6, i.e. \((k_{max} = 1200, \theta_w = 100, f_{min} = 50, f_{max} = 10000)\). The graph spatialization algorithm (Fruchterman-Reingold), despite its stochastic and path-dependent character, unveils information on the relative positioning of communities.
Figure 8: **Synthesis of semantic communities and their links.** Weights of links are computed as probabilities of co-occurrences of corresponding keywords within references.
Figure 9: **Composition of citation communities in terms of semantic content.** For each citation class (horizontally), the bar is decomposed as the proportions of each semantic class (given by color).

to Force Atlas ([Jacomy et al. 2014](#)). The bridging between distant disciplines is done quite differently compared to the citation network, and reveals thus qualitatively an other dimension of interdisciplinarity, i.e. the semantics shared by disciplines. Here, the communities corresponding to Economic Geography (blue) and to Critical Geography (red) are close as in the citation network, but are linked to ecology and geomorphology (green and brown) by Complex Systems (magenta), although these were not present as a community in the citation network. Complexity methodologies such as Fractals, Scaling ([West 2017](#)) or Networks ([Newman 2003](#)) are indeed widely used both in social sciences and in physics or biology. The semantic analysis reveals thus that very distant disciplines, that are distant in their citation patterns, are finally close in terms of actual content.

In terms of overlaps between communities, in the sense of co-occurrences of corresponding keywords within texts of references, we show a synthesis of links between semantic communities in Fig. [S](#). We see that communities such as Critical Geography and Biogeography are not totally disconnected and share still a certain number of co-occurrences. More isolated communities can be spotted such as Health and Crime Geographies. Surprisingly, Statistical Methods does not share strong links with other communities, what could mean that articles dealing with methodological issues in this field are rather disconnected from the field of application, or at least do not describe it extensively. On the contrary, methods in Complex Systems are organically integrated with the thematic issues they tackle.
Semantic composition of citation communities

We can now turn to the study of the relation between classifications. First, a simple way to link them is to look at the semantic content of citation communities. Each reference has a given proportion of keywords within each semantic class, and an average composition in terms of semantic classes for each citation class can thus be computed. We show these composition in Fig. 9. Some expected results are obtained, such as Complex Networks (citation) having the largest part in Complex Systems (semantic), or GIS (citation) the largest in GIS (semantic), and similarly for Economic Geography.

But the study of patterns that could have not been expected is very informative, and unveils practices of interdisciplinarity. For example, Time Geography (citation) uses as much GIS (semantic) as GIS (citation), what means that they should be using the corresponding methods and tools to study the thematic question of spatio-temporal trajectories of geographical agents. The most important in terms of political science (semantic) are Urban Studies, what suggest a convergence of the City as an object of study and of the disciplines of Political Science and Critical Geography. Also interestingly, the citation communities using most biogeography are Ecology (what could have been expected) and ABMS, confirming again the role of the thematic application in complex systems methodologies.

Measuring interdisciplinarity

We had up to now a qualitative view on interdisciplinarity patterns, by looking at the relative localisation of communities within the citation and semantic classifications, and the relation between the classifications. We propose now to look at quantitative measures of interdisciplinarity, for each classification.

More precisely, for a given classification $C \in \{Citation, Semantic\}$ a reference i can be viewed as a probability vector $(p_{ij}^{(C)})_j$ on classes j that give for each class the probability to belong to it. Given this setting, we measure interdisciplinarity of one reference using Herfindhal concentration index (Porter and Rafols, 2009), that can also be called an originality index. We define originality as

$$o_i^{(C)} = 1 - \sum_j p_{ij}^{(C)}^2$$

For the semantic classification, probabilities are defined as the proportion of keywords of the abstract within each semantic class. With the deterministic citation classification, each reference has only one class and the originality index is always 0. Therefore in order to be able to compare the two classification, we associate a probability to each citation class for each article as the proportion of citations received from this class. The induced index is original, and measures interdisciplinarity as how a reference is used by different disciplines in its lifetime.

We show in Fig. 10 the statistical distribution for both indexes $o^{(Semantic)}$ and $o^{(Citation)}$, stratified by citation class. This allow a direct comparison be-
Figure 10: **Statistical distribution of originalities.** We show the smoothed probability densities of originality indexes, by citation class (given by color), for the Semantic originality ϕ^{Semantic} (top plot) and for the Citation originality ϕ^{Citation} (bottom plot). Dashed lines give the mean for each distribution, with the corresponding color.
etween the two and also an indirect comparison by the variation of semantic
distribution between citation classes. For the distribution of semantic original-
ities, all citation classes exhibit a similar pattern, that is a peak around large
values and a smaller peak at zero. It means that either references are highly spe-
cialized and have keywords in one class only, or they use keywords from different
classes in a quite even manner (for comparison, an abstract with half keywords
in a class and half in an other gives an originality of 0.5). The most original,
 i.e. the most mixed, citation class, is Complex Networks, with a distribution
clearly detached from others, what would confirm their use as a method with
a lot of different problems. Social Geography is from far the less original, with
a large number of single class references, and an average far lower than other
classes, what would mean an increased presence of compartmentalization within
the associated disciplines.

In terms of citation originality index, the global picture is fundamentally
different, as average originality indexes are all lower than 0.4 and most of dis-
tributions show their mode in 0, meaning that most references are only cited
by their own citation class. Again, Social Geography is the less original, con-
firming a similar behavior in terms of citation practice than in terms of research
content. The most original classes in average, with a peak in large values, are
Spatial Analysis and Urban Simulation: this corresponds to the fact that these
class feature quite generic methods that can be applied in several fields and are
cited accordingly. Complex Networks do not reach the same level, but however
exhibit a peak around 0.2 and no peak in 0, together with Ecology, suggesting
disciplines having still significant impact in other disciplines.

To summarize, we show (i) different patterns of interdisciplinarity, depending
on disciplines, in terms of scientific content (semantic) and of scientific impact
(citation); and (ii) a strong qualitative difference in behavior of originalities
between the two classifications, what suggests their complementarity.

Correlation between classifications

In order to strengthen the idea of a complementarity of classifications, that
would each capture different dimensions of processes of knowledge production,
we finally look at the correlation matrix between classifications. We use this
time effective class probabilities for the citation classification, i.e. a vector of
zeros expect with a one at the index of the class of the reference. We com-
pute a Pearson correlation coefficient between classes \(k\) (in semantic) and \(k'\) (in
citation) as

\[
\rho_{k,k'} = \frac{\text{Cov} \left[(p_{ik}^{(Sem)})_i, (p_{ik'}^{(Cit)})_i \right]}{\sqrt{\sigma \left[(p_{ik}^{(Sem)})_i \right] \sigma \left[(p_{ik}^{(Sem)})_i \right]}}
\]

where the covariance is estimated with the unbiased estimator.

The structure of the correlation matrix recalls the conclusions obtained when
studying the semantic composition of citation communities, such as GIS being
strongly correlated with GIS (\(\rho = 0.26\)), or Sociology with Political Science
(\rho = 0.16). More importantly for our question are summary statistics of the overall matrix. It has a minimum of \(-0.16\) (Ecology (citation) against Political Sciences (semantic)), an average of \(-0.002\) and a maximum of \(0.33\) (Social geography (citation) and Spatial Analysis (semantic)). The “high” values are highly skewed, as the first decile is at \(-0.06\) and the last at \(0.09\), what means that 80% of coefficient lie within that interval, corresponding to low correlations. In a nutshell, classifications are consistent as highest correlations are observed where one can expect them, but most of classes are uncorrelated, meaning that the classifications are quite orthogonal and therefore complementary.

Discussion

We have this way shown the complementarity of classifications in the qualitative patterns they unveil, but also quantitatively in terms of interdisciplinarity measures and quantitatively in terms of correlations. Our work can be extended regarding several aspects, of which we give some suggestions below.

Further Developments

A first development consists in the comparison of journals. The starting point for construction of the scientific environment, the journal *Cybergeo*, was the entry point but not the subject of our study. A development more focused on journals, trying for example to answer comparative issues, or to classify journals according to their effective level of interdisciplinarity regarding different dimensions, would be potentially interesting. The collection of precise data on the origin of references is however a first step that need to be solved first.

The performance of the semantic classification was also not quantified here. A further validation of the relevance of using complementary information contained in both classifications could be done by the analysis of modularities within the citation network, as done in [Bergeaud et al. (2017)](#). This would however require a baseline classification to compare with, which is not available in the type of data we use. Open repository such as arXiv (for physics mainly) or Repec (for Economics) provide API to access metadata including abstracts, and could be starting points for such targeted case studies.

Applications

A first potential application of our methodology relies on the facts that both classifications unveils thematic domains (objects of study), classical disciplines, methodological communities. These different types of communities can indeed be understood as different Knowledge Domains. Raimbault (2017) postulates co-evolving Knowledge Domains in every process of scientific knowledge production, that are Theoretical, Empirical, Modeling, Methodology, Tools and Data domains. Most of them are necessary for any process, and investigations
within one conditions the advances in others. A refinement of classifications, associated with supervised classification to associate knowledge domains to some communities (potentially using full texts to have more precise information on the proportion of each knowledge domains involved in each), would allow to quantify relations between domains. Furthermore, using temporal data with the date of publications, would yield an effective quantification of the co-evolution of domains in the sense of patterns of temporal correlations (e.g. Granger causality).

An other interesting direction is the application of our classifications to the quantification of spatial diffusion of knowledge, as [Maisonobe (2013)] does for the diffusion of a specific question in genetics. It is not clear if different dimensions of knowledge diffuse the same way: for example citation practices can be correlated to social networks and thus exhibit different patterns than effective research contents. Therefore, our work would allow to study such questions from complementary point of views.

Finally, we believe the tool we developed can contribute to an increased empowerment of authors and to the development of open science practices. Among the various visions of Open Science ([Fecher and Friesike 2014](#)), the opening of data is always an important aspect, together with a development of reflexivity in all disciplines, beyond the sole Social Sciences to which it is classically associated. The first point is dealt with by our open tools for dataset construction, whereas the second is implied by the new knowledge of the different dimensions of the scientific environment we studied.

Conclusion

We have introduced a multi-dimensional approach to the understanding of interdisciplinarity, based on citation network and semantic network analysis. Starting from a generalist journal in Geography, we construct a large corpus of the citation neighborhood, from which we extract relevant keywords to elaborate a semantic classification. We then show qualitatively and quantitatively the complementarity of classifications. The methodology and associated tools are open and can be reused in similar studies for which data is difficult to access or poorly referenced in classical databases.

Acknowledgements

The author would like to thank the editorial board of Cybergeo, and more particularly Denise Pumain and Christine Kosmopoulos, for having offered the opportunity to work on that subject and provided the production database of the journal.

References

Austin TR, Rauch A, Blau H, Yudice G, van Den Berg S, Robinson LS, Henkel J, Murray T, Schoenfield M, Traub V, et al (1996) Defining interdisciplinarity.
Publications of the Modern Language Association of America pp 271–282

Bais S (2010) In Praise of Science: Curiosity, Understanding, and Progress. MIT Press

Baldwin T, Lui M (2010) Language identification: The long and the short of the matter. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp 229–237

Banos A (2013) Pour des pratiques de modélisation et de simulation libérées en géographies et shs. HDR Université Paris 1

Battiston F, Iacovacci J, Nicosia V, Bianconi G, Latora V (2015) Emergence of multiplex communities in collaboration networks. ArXiv e-prints [1506.01280]

Bergeaud A, Potiron Y, Raimbault J (2017) Classifying patents based on their semantic content. PloS one 12(4):e0176,310

Bird S (2006) Nltk: the natural language toolkit. In: Proceedings of the COLING/ACL on Interactive presentation sessions, Association for Computational Linguistics, pp 69–72

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10):P10,008

Bohannon J (2014) Scientific publishing, google scholar wins raves–but can it be trusted? Science (New York, NY) 343(6166):14

Bourgine P, Chavalarias D, al (2009) French Roadmap for complex Systems 2008-2009. ArXiv e-prints [0907.2221]

Bracken LJ (2016) Interdisciplinarity and Geography. Wiley Online Library

Choi J, Hwang YS (2014) Patent keyword network analysis for improving technology development efficiency. Technological Forecasting and Social Change 83:170–182

Cronin B, Sugimoto CR (2014) Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact. MIT Press

Dupuy G, Benguigni LG (2015) Sciences urbaines: interdisciplinarités passive, naïve, transitive, offensive. Métropoles (16)

Fecher B, Friesike S (2014) Open science: one term, five schools of thought. In: Opening science, Springer, pp 17–47

Gurciullo S, Smallegan M, Pereda M, Battiston F, Patania A, Poledna S, Hedblom D, Tolga Oztan B, Herzog A, John P, Mikhaylov S (2015) Complex Politics: A Quantitative Semantic and Topological Analysis of UK House of Commons Debates. ArXiv e-prints [1510.03797]
Huu Toniemi K, Klein JT, Bruun H, Hukkinen J (2010) Analyzing interdisciplinarity: Typology and indicators. Research Policy 39(1):79–88

Jacomy M, Venturini T, Heymann S, Bastian M (2014) Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PloS one 9(6):e98,679

Larivi`ere V, Gingras Y (2010) On the relationship between interdisciplinarity and scientific impact. Journal of the Association for Information Science and Technology 61(1):126–131

Larivi`ere V, Gingras Y (2014) 10 measuring interdisciplinarity. Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact p 187

Leydesdorff L (2007) Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the Association for Information Science and Technology 58(9):1303–1319

Maisonobe M (2013) Diffusion et structuration spatiale d’une question de recherche en biologie moléculaire. Mappe Monde 110(2):13,202

Mendeley (2015) Mendeley reference manager. http://www.mendeley.com/

Moreno MdCC, Auzinger T, Werthner H (2016) On the uncertainty of interdisciplinarity measurements due to incomplete bibliographic data. Scientometrics 107(1):213–232

Morin E (1986) La méthode 3. la connaissance de la connaissance. Essais, Seuil

Nature (2015) Interdisciplinarity, nature special issue. Nature 525(7569):289–418

Newman ME (2003) The structure and function of complex networks. SIAM review 45(2):167–256

Newman MEJ (2013) Prediction of highly cited papers. ArXiv e-prints 1310.8220

Nichols LG (2014) A topic model approach to measuring interdisciplinarity at the national science foundation. Scientometrics 100(3):741–754

Noruzi A (2005) Google scholar: The new generation of citation indexes. Libri 55(4):170–180

Omodei E, De Domenico M, Arenas A (2017) Evaluating the impact of interdisciplinary research: A multilayer network approach. Network Science 5(2):235–246

Palchykov V, Gemmetto V, Boyarsky A, Garlaschelli D (2016) Ground truth? concept-based communities versus the external classification of physics manuscripts. EPJ Data Science 5(1):28
Porter A, Rafols I (2009) Is science becoming more interdisciplinary? measuring and mapping six research fields over time. Scientometrics 81(3):719–745

Porter AL, Cohen AS, Roessner JD, Perreault M (2007) Measuring researcher interdisciplinarity. Scientometrics 72(1):117–147

Pumain D (2005) Cumulativit´ e des connaissances. Revue européenne des sciences sociales European Journal of Social Sciences (XLIII-131):5–12

Pumain D (2015) Adapting the model of scientific publishing. Cybergeo: European Journal of Geography

Raimbault J (2016) Torpool v1.0, doi : 10.5281/zenodo.53739

Raimbault J (2017) An applied knowledge framework to study complex systems. arXiv preprint arXiv:170609244

Redner S (1998) How popular is your paper? an empirical study of the citation distribution. The European Physical Journal B-Condensed Matter and Complex Systems 4(2):131–134

Rinia E, van Leeuwen T, van Raan A (2002) Impact measures of interdisciplinary research in physics. Scientometrics 53(2):241–248

Sarigöl E, Pfitzner R, Scholtes I, Garas A, Schweitzer F (2014) Predicting Scientific Success Based on Coauthorship Networks. ArXiv e-prints [1402.7268]

Schmid H (1994) Probabilistic part-of-speech tagging using decision trees. In: Proceedings of the international conference on new methods in language processing, Citeseer, vol 12, pp 44–49

Shibata N, Kajikawa Y, Takeda Y, Matsushima K (2008) Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation 28(11):758–775

West G (2017) Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies. Penguin

Wicherts JM (2016) Peer review quality and transparency of the peer-review process in open access and subscription journals. PLoS ONE 11(1):e0147,913, DOI 10.1371/journal.pone.0147913