CG0009, a Novel Glycogen Synthase Kinase 3 Inhibitor, Induces Cell Death through Cyclin D1 Depletion in Breast Cancer Cells

Hyun Mi Kim1,5, Choung-Soo Kim2,5, Je-Hwan Lee3,5, Se Jin Jang1,5, Jung Jin Hwang4,5, Seonggu Ro6, Jene Choi1,5*

1 Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, 2 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, 3 Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, 4 Asan Institute for Life Science, Asan Medical Center, Seoul, Korea, 5 Institute for Innovative Cancer Research, Asan Medical Center, Seoul, Korea, 6 CrystalGenomics Inc. Seoul, Korea

Abstract

Glycogen synthase kinase 3α/β (GSK3α/β) is a constitutively active serine/threonine kinase involved in multiple physiological processes, such as protein synthesis, stem cell maintenance and apoptosis, and acts as a key suppressor of the Wnt-β-catenin pathway. In the present study, we examined the therapeutic potential of a novel GSK3 inhibitor, CG0009, in the breast cancer cell lines, BT549, HS578T, MDA-MB-231, NCI/ADR-RES, T47D, MCF7 and MDA-MB-435, from the NCI-60 cancer cell line panel. Assessment of cytotoxicity, apoptosis and changes in estrogen-signaling proteins was performed using cell viability assays, Western blotting and quantitative real-time PCR. CG0009 enhanced the inactivating phosphorylation of GSK3α at Ser21 and GSK3β at Ser9 and simultaneously decreased activating phosphorylation of GSK3β at Tyr216, and induced caspase-dependent apoptosis independently of estrogen receptor α (ERα) expression status, which was not observed with the other GSK3 inhibitors examined, including SB216763, kenpaullone and LiCl. CG0009 treatment (1 μmol/L) completely ablated cyclin D1 expression in a time-dependent manner in all the cell lines examined, except T47D. CG0009 alone significantly activated p53, leading to relocation of p53 and Bax to the mitochondria. GSK3 inhibition by CG0009 led to slight upregulation of the β-catenin target genes, c-Jun and c-Myc, but not cyclin D1, indicating that CG0009-mediated cyclin D1 depletion overwhelms the pro-survival signal of β-catenin, resulting in cell death. Our findings suggest that the novel GSK3 inhibitor, CG0009, inhibits breast cancer cell growth through cyclin D1 depletion and p53 activation, and may thus offer an innovative therapeutic approach for breast cancers resistant to hormone-based therapy.

Citation: Kim HM, Kim C-S, Lee J-H, Jang SJ, Hwang JJ, et al. (2013) CG0009, a Novel Glycogen Synthase Kinase 3 Inhibitor, Induces Cell Death through Cyclin D1 Depletion in Breast Cancer Cells. PLoS ONE 8(4): e60383. doi:10.1371/journal.pone.0060383

Copyright: © 2013 Kim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant (A062254) from the Korea Health 21 R&D Project, Ministry of Health, Welfare and Family Affairs, Republic of Korea, the Mid-career Researcher Program through an NRF grant funded by the MEST (No. 2009-0081016), and a grant from the Asan Institute for Life Science (2003-309). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: SR is an employee of CrystalGenomics Inc. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Introduction

Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase expressed as two similar isoforms, α and β [1,2]. GSK3 was initially identified as a metabolic regulator that phosphorylates and inhibits glycogen synthase [3]. GSK3 is a constitutively active enzyme in normal cells and undergoes rapid inhibition by stimuli [2,4]. Activity of GSK3 is increased upon phosphorylation at Tyr216, whereas phosphorylation at Ser21 in GSK3α and Ser9 in GSK3β inhibits GSK3 activity [3,5].

GSK3 is a key suppressor of the canonical Wnt signaling pathway of adenomatous polyposis coli (APC), axin and β-catenin, which is involved in embryonic cell fate determination and cell renewal [6,7,8]. GSK3β phosphorylates β-catenin, which leads to its destruction, thus suppressing signals that otherwise promote cell proliferation.

GSK3β inhibitors have been identified as therapeutic targets in Alzheimer’s disease, neurodegenerative disorders and bipolar disorder [9]. Recent studies have additionally shown that GSK3β inhibitors induce growth suppression and apoptosis in human chronic lymphocytic leukemia, glioma, colon cancer and renal cell carcinoma [10,11,12,13]. Although GSK3β-promoted oncogenesis is a paradoxical issue, compelling evidence suggests that GSK3 is a target gene in malignancy. Firstly, GSK3β contributes to the promoter-specific recruitment of NF-κB [14,15]. NF-κB DNA binding activity is reduced and its target gene products, including MMP-9, survivin, IAP-1, BCL-xL, TRAF1 and FLIP, are abrogated in GSK3β-null cells [16]. GSK3β inhibitors downregulate survivin and bcl-2 via inactivation of NF-κB and effectively kill leukemic cells [17]. Secondly, GSK3 promotes MLL oncogene-induced proliferation and transformation in MLL leukemia cell lines. GSK3 inhibitors reduce the proliferation of MLL-transformed myeloid progenitors, induce p27Kip1, a cyclin-dependent kinase inhibitor, and prolong the survival of a mouse model of MLL-associated leukemia [10]. Lastly, aberrant nuclear accumulation of GSK3β in renal cell carcinomas has been reported. GSK3 inhibitors suppress proliferation of renal cancer cells and exert a synergistic cytotoxic effect with doxetaxel [13]. GSK3
Inhibitors display diverse chemotypes, and most act in an ATP-competitive manner. Moreover, most GSK3 inhibitors do not discriminate between GSK3 isoforms α and β. In the present study, we investigated the therapeutic efficacy of a novel GSK3 inhibitor, CG0009, in breast cancer cell lines of the NCI-60 panel. CG0009 induced inhibition of GSK3α/β, depletion of cyclin D1, activation of the p53-Bax pathway, and caspase-dependent apoptosis. These cytotoxic effects were not observed in kenpaullone-, SB216763- or LiCl-treated breast cancer cells. Our data support the utility of this compound as an effective therapeutic candidate for clinical development.

Materials and Methods

Cell Culture

Human breast cancer cell lines, BT549, HS578T, MDA-MB-231, NCI/ADR-RES, T47D, MCF7 and MDA-MB-435, which has been re-classified as the melanoma cell line M14 [18], and a colon cancer cell line, HCT116, were purchased from the National Cancer Institute (Bethesda, MD, USA). All cancer cell lines were cultured in RPMI-1640 (Invitrogen-Gibco, Carlsbad, CA, USA) supplemented with 10% FBS.

GSK3 Inhibitors

CG0009 was provided by Crystal Genomics Inc. (Seoul, Korea). SB216763 was purchased from Enzo Life Sciences (Farmingdale, NY, USA). Kenpaullone and Lithium Chloride (LiCl) were obtained from Sigma-Aldrich (St. Louis, MO, USA).

Cell Viability Assay and IC₅₀ Values

IC₅₀ values were determined using the CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Madison, WI, USA). Briefly, 3,000 cells per well were seeded in a 96-well plate. After 24 h, cells were treated with GSK3 inhibitors or DMSO in culture.
medium containing 5% FBS. After 48 h of treatment, cell viability was determined with the MicroLumatPlus LB96V Microplate Luminometer (Berthold Technologies GmbH & Co. KG, Bad Wildbad, Germany).

Immunoprecipitation-Western Blot Analysis

MC7F cells were seeded on 100 mm culture dishes and treated with 1 μmol/L CG0009 and lysed in 1% Chaps buffer (T&L, Bucheon, Korea). Cell lysates were incubated with Bax antibody (6A7; Santa Cruz Biotechnology) at 4°C overnight. Immunoprecipitations were captured using Protein A/G PLUS-Agarose beads (Santa Cruz Biotechnology) and separated by SDS-PAGE. Bax proteins were visualized with ECL solution (Thermo Fisher Scientific-Pierce, Rockford, IL, USA). Chemiluminescence of the membrane was detected using X-ray film (Agfa, Mortsel, Belgium).

Western Blot Analysis

Whole-cell lysates were prepared in Cell Lysis Buffer (Cell Signaling Technology, Beverly, MA, USA). Proteins were separated by SDS-PAGE, and transferred to PVDF membranes using an iBlot™ dry blotting system (Invitrogen). Immunoblot analysis was done with the following primary antibodies: pGSK3α/β (Ser21/9), Caspase-9, PARP, pAKT (Ser473), AKT, pPI3K (Tyr458/Tyr199), PI3K, Cyclin D1, c-Jun, Aldolase, E-actin (Sigma-Aldrich), p53, p21 (Upstate, Billerica, MA, USA), pGSK3β (Tyr216) (BD Biosciences, Franklin Lakes, NJ, USA), Bax (N-term), Bax (C-term), anti-b-actin (Sigma-Aldrich), and anti-β-actin (Sigma-Aldrich).

AKT in vitro Kinase Assay

MC7F cells were lysed with Cell Lysis Buffer (Cell Signaling Technology, Beverly, MA, USA). One milligram of total cell extract was used per reaction. The K-LISA™ AKT Activity Kit (Calbiochem, Darmstadt, Germany, CBA019) was used with purified AKT (Calbiochem, 124006) as a positive control. Each experiment was repeated at least thrice.

Quantitative Real-time Reverse Transcription-PCR (qRT-PCR)

Total cellular RNA was extracted using NucleoSpin® RNAII (Macherey-Nagel, Duren, Germany) and reverse-transcribed with SuperScript® II Reverse Transcriptase (Invitrogen). Gene expression levels were determined with the Bio-Rad iQ5 machine (Bio-Rad, Hercules, CA, USA) using SYBR Green (Invitrogen) with following primer sets: ERα, 5’-GGGA GGG CAG GGG TGA-3’ (forward) and 5’-GGG CAG GCT GTT CTT CTT AG-3’ (reverse), yielding a 100 bp product; cyclin D1, 5’-CTA CCG CCT CAC ACG GTT-3’ (forward) and 5’-GGG TTG ACT CCA GGT CT-3’ (reverse), yielding a 101 bp product; c-Jun, 5’-GTC CAC GGC CAA CAT GCT CA-3’ (forward) and 5’-TGT TTG CAA CTG CTT CGT TAG-3’ (reverse), yielding a 106 bp product; c-Myc, 5’-CAG CTC GGT AGA CCG TGG ATT-3’ (forward) and 5’-GTA GAA ATA CCG CTG CAC CGA-3’ (reverse), yielding a 131 bp product; GAPDH, 5’-GAA GGT GAA GGT CAG GGT C-3’ (forward) and 5’-GAA GAT GGT GAT GGG ATT TC-3’ (reverse), yielding a 226 bp product. The relative amount of target transcripts quantified using the standard curve method was normalized to the human GAPDH transcript level using Bio-Rad iQ5 2.0 Standard Edition Optical System Software V2.0.

Transfection and Luciferase Assays

MC7F and T47D cells were plated in 12-well plates and cotransfected with 0.5 μg of p53RE-containing reporter plasmid (p53-induced Luc; Stratagene- Agilent Technologies, Inc., Santa Clara, CA, USA) and 0.01 μg of Renilla luciferase plasmid (Promega), using Lipofectamine 2000 (Invitrogen) for MC7F or the Neon™ Transfection System (Invitrogen) for T47D. At 24 h post-transfection, cells were treated with 1 μmol/L CG0009 or exposed to UV irradiation (20 J/m²). Cells were harvested after 24 h, and firefly luciferase activity measured in three independent experiments with the Dual-Luciferase® Reporter 1000 Assay System (Promega). Data were normalized to Renilla luciferase activity.

Isolation of Mitochondria

Ten 150 mm dishes containing MC7F cells were used for each treatment group. Cells were suspended on ice in MIB [mitochondria isolation buffer; 25 mmol/L Tris (pH 7.4), 250 mmol/L Sucrose, 1 mmol/L EDTA], homogenized using a 22-gauge needle syringe, and centrifuged at 1,000 g for 10 min, followed by 10,900 g for 10 min. The resulting pellets were resuspended in 1 mL of 50% Optiprep solution (Sigma-Aldrich) and layered into the bottom of an ultracentrifuge tube (R5; Hitachi Koki, Tokyo, Japan). Subsequently, 3 mL layers of 50%, 30% and 10% Optiprep solutions were sequentially added to the suspended solution. Following centrifugation in a Hitachi Himac CP80AT-0066 swinging bucket rotor instrument at 80,000 g for 3 h, mitochondrial fractions at the 10%/30% Optiprep interface were collected from the gradient, resuspended in MIB solution, and centrifuged at 3,000 g for 30 min. Supernatant fractions were recovered and re-centrifuged at 10,900 g for 10 min. Pellets were resuspended in MIB solution and stored.

Results

CG0009 Suppresses Breast Cancer Cell Proliferation in vitro

CG0009, a derivative of imidazopyridine carboxamide, was identified during extensive lead optimization of hits for inhibitors of GSK3 (Figure 1A). We initially evaluated the in vitro effect of CG0009, and compared it with those of other GSK3 inhibitors, SB216763, kenpaullone and lithium chloride (LiCl) [19]. CG0009 administered between concentrations of 0.001 and 100 μmol/L suppressed the growth of different breast cancer cell lines and the colon cancer cell line, HCT116, with a wide range of IC₅₀ values except T47D cells (Table 1). The HCT116 cell line displayed the
highest sensitivity to CG0009. In contrast, SB216763, kenpaullone and LiCl did not exert cytotoxic effects on all the cancer cell lines examined (Figure 1B–I). Based on these findings, CG0009-sensitive MCF7 and HCT116 and resistant T47D cell lines were selected for further study.

CG0009 Induces GSK3 Inactivation and Apoptosis in Breast Cancer Cells

Next, we assessed GSK3 inhibition in HCT116, MCF7 and T47D cell lines after treatment with 1 μmol/L of CG0009 for 8, 16 and 24 h. Expression levels of GSK3 phosphorylated at S21/9 (inactive form) and GSK3β phosphorylated at Y216 (active form) were analyzed using Western blotting. MCF7 cells were treated with the indicated concentrations of SB216763, kenpaullone and LiCl for 24 h, and analyzed as described for (A). (C) MCF7 and T47D cells were exposed to 1 μmol/L CG0009, and analyzed by immunoblot analysis using caspase-9 and cleaved PARP-specific antibodies.

doi:10.1371/journal.pone.0060383.g002

CG0009 activated caspase-9 and PARP in sensitive MCF7 cells after 8 h treatment, but caused delayed PARP activation at 32 h and no detectable caspase-9 activation in T47D cells (Figure 2C). These results indicate that CG0009 is a potent inhibitor of GSK3α/β that promotes apoptosis in breast cancer cells.

CG0009 Inhibits GSK3 in an AKT-independent Manner

AKT phosphorylates GSK3, leading to its inactivation [20]. To test whether CG0009 inhibits GSK3 through AKT activation, we examined AKT phosphorylation in CG0009-treated MCF7 cells. The levels of pAKT on Ser473 fluctuated slightly during treatment up to 24 h, but these changes did not affect kinase activity (Figure 3A and B), indicating that CG0009 inhibits GSK3 independent of AKT.

CG0009 Differentially Depletes ERα and Cyclin D1 in Sensitive and Resistant Breast Cancer Cells

GSK3 protects estrogen receptor α (ERα) from proteasomal degradation and phosphorylates at Ser118 for full transcriptional
Data indicate that CG0009-mediated growth suppression and apoptosis of MDA-MB-435, MDA-MB-231 and NCI/ADR-RES cells. Our findings that regulated cyclin D1 protein expression in ER-negative HS578T, a breast cancer cell line, were consistent with previous reports [11]. CG0009 for 8 to 48 h, and the cyclin D1 levels measured via Western blot analysis (Figure 3A). Immunoblotting data revealed induction of p53 and p21 in MCF7, but not T47D, in response to CG0009, indicating that the latter cell line does not contain functional p53 (Figure 6B). Next, we examined whether p53 alters the effect of CG0009 in MCF7 and T47D cell lines. Specifically, the active form of Bax was immunoprecipitated with active conformation-specific 6A7 monoclonal Bax antibodies after CG0009 treatment, and active Bax protein levels determined using Western blot analysis. CG0009 significantly induced active Bax protein while the total level of Bax remained unchanged in MCF7 cells (Figure 6C). Moreover, active Bax and p53 were efficiently translocated to mitochondria. Notably, CG0009 did not affect the active Bax protein level or localization of Bax and p53 in T47D cells (Figure 6C and D). These findings indicate that integrity of the p53-Bax pathway is attributed to increased cell death in response to CG0009 in breast cancer cells.

Activity of GSK3β

CG0009 treatment causes slight activation of the Wnt-β-catenin pathway. Inhibition of GSK3β may result in reduced phosphorylation of β-catenin, leading to its stabilization and accumulation in the nucleus, with subsequent activation of target genes [6]. In view of this theory, we analyzed whether CG0009 upregulates the expression of β-catenin target genes, such as c-Myc, c-Jun and cyclin D1, using qRT-PCR assay. As shown in Figure 7A, incubation of MCF7 cells with 1 μmol/L CG0009 for 6 h resulted in increased β-catenin in the cytoplasm and nucleus. Furthermore, exposure to CG0009 induced transcription and protein expression of β-catenin target genes, such as c-Myc and c-Jun, in MCF7 and HCT116 cells. Interestingly, CG0009 significantly suppressed the mRNA level of cyclin D1, another well-known β-catenin target gene (Figure 7B and C). E-cadherin/β-catenin complexes play a major role in the epithelial-to-mesenchymal transition (EMT). An increase in CG0009-mediated β-catenin may facilitate EMT in MCF7 cells. We examined whether CG0009 changes the expression levels of mesenchymal proteins, vimentin and N-cadherin, or the epithelial protein E-cadherin. As shown in Figure 7D, CG0009 treatment did not induce EMT, as vimentin and N-cadherin did not increase, and E-cadherin did not decrease, after treatment. These data suggest that CG0009 activates the β-catenin pathway to a certain degree, but does not protect cells from apoptosis.

Discussion

GSK3 inhibitors were initially identified as anti-diabetic targets, but more recent studies have highlighted these compounds as an emerging class of molecular therapeutic agents for human cancers. In this study, we have demonstrated for the first time that a novel imidazopyridine carboxamide-based GSK3 inhibitor, CG0009,
inhibits proliferation, induces apoptosis cell death, and activates the p53-Bax pathway in breast cancer cells, predominantly via cyclin D1 depletion.

Our results showed that CG0009 induces significant growth inhibition and cell death in breast cancer cell lines, with a wide range of IC_{50} values (between 0.49 (MCF7) and 11 μmol/L (NCI/ADR-RES and BT549)), whereas other GSK3 inhibitors have little effect on cell growth at concentrations up to 100 μmol/L, which is much higher than that normally used for in vitro experiments, except LiCl (used at 10 ~ 20 mmol/L, as shown in Figure 2B). Previous studies have reported that 10 μmol/L SB216763, 5 μmol/L kenpaullone, and 20 mmol/L LiCl markedly suppress growth in ALL leukemia cells, glioma cells and medullary thyroid cancer cells, respectively [10,12,23]. Rivest and colleagues additionally demonstrated that kenpaullone enhances prostate cancer cell proliferation at concentrations between 0.03

![Figure 4. CG0009 suppresses ERα and cyclin D1 mRNA and protein expression.](image)

(A) MCF7 and T47D cells were treated with 1 μmol/L of CG0009 for up to 48 h, and the relative expression levels of ERα and cyclin D1 transcripts measured using qRT-PCR. Expression values were normalized to that of GAPDH. The mean value obtained from three independent experiments is shown in each column; bar denotes SD (*P<0.05 determined by t test). (B) Experiments were performed as described above, and total cell extracts analyzed by Western blotting using antibodies against ERα, cyclin D1, and β-actin as the loading control.

doi:10.1371/journal.pone.0060383.g004

![Figure 5. CG0009 downregulates cyclin D1 in ERα-negative cell lines.](image)

ERα-negative NCI/ADR-RES, MDA-MB-231, MDA-MB-435, HS578T and BT549 cells were treated with 1 μmol/L of CG0009 for up to 48 h. Subsequently, cells were harvested and 50 μg of total cellular proteins analyzed by immunoblotting with cyclin D1 antibodies. The β-actin level served as a loading control.

doi:10.1371/journal.pone.0060383.g005
and 1 μmol/L, and causes apoptosis at >1 μmol/L [24]. However, in our study, kenpaullone induced a slight increase in cell proliferation (Figure 1). Based on the findings, we conclude that breast cancer cells are generally less sensitive to GSK3 inhibitors, compared to other cancer cell types, and CG0009 may be a potent therapeutic agent specific for breast cancer. GSK3β inactivation through AKT hyperactivation was shown to increase anti-apoptotic Mcl-1 protein levels in breast cancer [25,26]. Our results showed that CG0009 inhibits GSK3 independent of AKT (Figure 3).

CG0009 induced complete depletion of cyclin D1 in sensitive breast cancer cells (Figure 4 and 5). Note that the sensitivity to CG0009 and the time required for complete depletion of cyclin D1 is correlated. Most CG0009-hypersensitive MCF7 cells showed cyclin D1 depletion at 16 h, while the CG0009-moderately sensitive cell lines, Hs578T, MAD-MB-435, and MDA-MB-231, exhibited depletion at 40 h following CG0009 treatment. Cyclin D1 depletion occurs earlier than actual cell growth inhibition and cell death in CG0009-moderately sensitive cell lines. This was evidenced by the fact that cell viability did not change at the same time and treatment dose that caused complete disappearance of cyclin D1.

These findings are inconsistent with previous data showing that phosphorylation of cyclin D1 at Thr286 by GSK3β enhances nuclear export and degradation [27]. Although cyclin D1 depletion by CG0009 may occur partly as a result of the decrease in ERα protein in MCF7 cells, we propose that this cyclin D1 decrease is a major cause of CG0009-induced breast cancer cell death. Additionally, T47D cells expressed about 10-fold higher cyclin D1 transcripts, compared with the MCF7 cell line (Figure 4A). The CCND1 gene encoding cyclin D1 at 11q13 is amplified in 30–40% of breast tumors, and its product is the rate-limiting factor for cell cycle progression [28,29]. The 11q13.1–14.1 region is also amplified in T47D cells. Accordingly, we conclude that CG0009 is an effective therapeutic agent for breast cancer, regardless of functional ER status, and cyclin D1 overexpression is an unfavorable response marker for the agent.

In our experiments, p53 wild-type cells were more sensitive to CG0009, compared with p53 mutant cells. CG0009 activated p53, leading to a subsequent increase in p21, indicating that the drug...

Figure 6. CG0009 activates the p53-Bax pathway and facilitates apoptosis in cells with wild-type p53. (A) MCF and T47D cells were transfected with a p53RE-containing reporter plasmid (p53-induced Luc), together with a Renilla luciferase vector for 24 h. Cells were exposed to UV (20 J/m²) or CG0009 (1 μmol/L) for 24 h. Luciferase activity was measured and normalized to control Renilla luciferase units. (B) MCF7 and T47D cells were treated with 1 μmol/L of CG0009 for the indicated times, and analyzed via Western blotting using p21 antibodies. (C) MCF7 and T47D cells were treated with CG0009 for the indicated times and extracted with buffer containing 1% CHAPS. Bax proteins were immunoprecipitated with anti-Bax (6A7) or mouse IgG antibodies, and analyzed by immunoblotting with anti-Bax antibodies. (D) After exposure to 1 μmol/L CG0009 for 24 h, MCF7 and T47D cells were fractionated into mitochondria, and analyzed with p53 and Bax-specific antibodies. Prohibitin is a mitochondrial marker and aldolase is a cytosolic marker.

doi:10.1371/journal.pone.0060383.g006
activates stress-response pathways. GSK3β directly binds to p53, but its role is controversial at present. Watcharasit et al [30] reported that GSK3β binds and promotes the transcriptional and apoptotic activities of p53 following camptothecin treatment, inconsistent with the finding that GSK3β suppresses p53-mediated apoptotic function after adriamycin, etoposide and 5-FU treatment in HCT 116 cells, and the GSK3 inhibitor, LY2119301, alone does not active stress responses [11]. In the current study, CG0009 alone activated p53-mediated transcription and facilitated the efficient translocation of Bax and p53 proteins to the mitochondria. Our results suggest that CG0009 is an efficient cytotoxic agent, which is sufficient for low-dose monotherapy, and p53 activation after GSK3 inhibition plays an important role in CG0009-induced breast cancer cell death.

Here, we have presented evidence that CG0009 implements cell death more efficiently than SB216763, kenpaullone and LiCl, through cyclin D1 ablation. While further studies are required to define the levels of normal physiologic and pathologic GSK3 activities, our preliminary data support the utility of CG0009 as an effective agent for the treatment of breast cancer, regardless of ERα expression status.

Author Contributions
Conceived and designed the experiments: CSK, JHL, SR, JC. Performed the experiments: HMK, JJH. Analyzed the data: SJJ. Contributed reagents/materials/analysis tools: SR. Wrote the paper: JC.

References
1. Woodgett JR. (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9: 2431–2438.
2. Jope RS, Johnson GV. (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29: 95–102.
3. Doble BW, Woodgett JR. (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116: 1175–1186.
4. Eldar-Finkelman H. (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 8: 126–132.
17. Ougolkov AV, Bone ND, Fernandez-Zapico ME, Kay NE, Billadeau DD. (2007) Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood 110: 735–742.

18. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson. (2007) MDA-MB-435 cells are derived from M14 melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104: 15–19.

19. Holmes T, O’Brien TA, Knight R, Lindeman R, Symonds G, et al. (2008) The role of glycogen synthase kinase-3beta in normal haematopoiesis, angiogenesis and leukemia. Curr Med Chem 15: 1493–1499.

20. Vivanco I, Sawyers CL. (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2: 409–501.

21. Grussaud J, Medenjuan S, Hermann A, Shukla A, Mayr D. (2007) Glycogen synthase kinase-3 protects estrogen receptor alpha from proteasomal degradation and is required for full transcriptional activity of the receptor. Mol Endocrinol 21: 2427–2439.

22. Watcharatt C, Bijur GN, Song L, Zhu J, Chen X, et al. (2003) Glycogen synthase kinase-3beta binds to and promotes the actions of p35. J Biol Chem 278: 48747–48179.

23. Kunnimalaiyaan M, Vaccaro AM, Noliave MA, Chen H. (2007) Inactivation of glycogen synthase kinase-3beta, a downstream target of the raf-1 pathway, is associated with growth suppression in medullary thyroid cancer cells. Mol Cancer Ther 6: 1151–1158.

24. Rivest P, Renaud M, Sanderson JT. (2011) Proliferative and androgenic effects of indirubin derivatives in LNCaP human prostate cancer cells at sub-apoptotic concentrations. Chem Biol Interact 189: 177–185.

25. Armanious H, Deschenes J, Gehrart P, Ghosh S, Mackey J, et al. (2010) Clinical and biological significance of GSK-3 inhibitors in breast cancer—an immunohistochemical study. Hum Pathol 41: 1637–1663.

26. Ding Q, He X, Xia W, Hsu JM, Chen CT, et al. (2007) Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3beta activity, and associates with poor prognosis in human breast cancer. Cancer Res 67: 4564–4571.

27. Diehl JA, Cheng M, Rousel MF, Sherr CJ. (1990) Glycogen synthase kinase-3beta regulates cyclin D1 protooncogene and subcellular localization. Genes Dev 12: 3499–3511.

28. Johnson N, Speirs V, Curtin NJ, Hadgell AG. (2008) A comparative study of genome-wide SNP, CGH microarray and protein expression analysis to explore genotypic and phenotypic mechanisms of acquired antiestrogen resistance in breast cancer. Breast Cancer Res Treat 111: 53–63.

29. Kwek SS, Roy R, Zhou H, Climent J, Martinez-Climent JA, et al. (2009) Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate with two major pathways in oncogenesis. Oncogene 28: 1892–1903.

30. Watcharatt P, Bijur GN, Zmijewski JW, Song L, Zmijewski A, et al. (2002) Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci USA 99: 7951–7955.