On graphs having maximal independent sets of exactly t distinct cardinalities

1Bert L. Hartnell and 2Douglas F. Rall

1Department of Mathematics & Computing Science
Saint Mary’s University
Halifax, Nova Scotia, Canada

2Department of Mathematics
Furman University
Greenville, SC 29613 USA

Abstract

For a given positive integer t we consider graphs having maximal independent sets of precisely t distinct cardinalities and restrict our attention to those that have no vertices of degree one. In the situation when t is four or larger and the length of the shortest cycle is at least $6t - 6$, we completely characterize such graphs.

Keywords: maximal independent set, girth, cycle

AMS subject classification: 05C69, 05C38

1 Introduction

A well-covered graph (Plummer [6]) is one in which every maximal independent set of vertices is of one cardinality and is hence a maximum independent set. Finbow, Hartnell and Whitehead [5] defined the class \mathcal{M}_t to consist of those graphs which have exactly t different sizes of maximal independent sets. Finbow, Hartnell and Nowakowski [4] proved that the well-covered graphs (the \mathcal{M}_1 collection) of girth (the length of a shortest cycle) 6 or more, with the exceptions of K_1 and C_7, have the property that every vertex has degree one or has exactly one vertex of degree one in its neighborhood. Thus, C_7 is the unique graph in \mathcal{M}_1 with girth at least 6.

*Corresponding author: e-mail: doug.rall@furman.edu
†Research supported in part by the Wylie Enrichment Fund of Furman University.
that has minimum degree at least two. The graphs in \mathcal{M}_2 of girth 8 or more have also been characterized ([3]). There are precisely five graphs in \mathcal{M}_2 of girth at least 8 and minimum degree 2 or more, namely the cycles C_8, C_9, C_{10}, C_{11} and C_{13}. This implies there are no \mathcal{M}_1 graphs of girth at least 8 with minimum degree 2 or more and no \mathcal{M}_2 graphs of girth 14 or more and having minimum degree at least 2. For related work on the class \mathcal{M}_1 see [1] and [2].

In this paper we investigate the graphs in \mathcal{M}_t that have minimum degree at least 2 and higher girth and establish that the characterization of these in \mathcal{M}_1 and \mathcal{M}_2 is part of a general pattern. In particular, for $t \geq 3$ we show that among graphs with minimum degree at least 2, \mathcal{M}_t does not contain a graph of girth at least $6t+2$ and that $C_{6t-4}, C_{6t-3}, C_{6t-2}, C_{6t-1}$ and C_{6t+1} are the only exceptions for girth at least $6t-4$. Furthermore, if $t \geq 4$, then these cycles along with C_{6t-6} are the only graphs in \mathcal{M}_t that have minimum degree at least 2 and girth at least $6t-6$.

Let G be a finite simple graph. A vertex of degree 1 is called a leaf and any vertex that is adjacent to a leaf is called a support vertex. If C is a cycle in a graph G and u and v belong to C, we let uCv denote the shorter of the two u,v-paths that are part of C. For $A \subseteq V(G)$ and u a vertex in G, $d(u, A)$ will denote the length of a shortest path in G from u to a vertex of A. We will use $\mathcal{M}(G)$ to denote the collection of all maximal independent sets of G and we define the independence spectrum (spectrum for short) of G to be the set $S(G) = \{|I| : I \in \mathcal{M}(G)\}$. The class \mathcal{M}_t consists of those graphs G for which $|S(G)| = t$. The spectrum is not necessarily a set of consecutive positive integers (e.g., $S(K_{2,4,5}) = \{2, 4, 5\}$), but for paths and cycles it is. We denote the set of positive integers between p and q inclusive by $[p,q]$. The following proposition is easy to establish.

Proposition 1 For each positive integer n at least 3,

$$S(C_n) = [\lceil n/3 \rceil, \lfloor n/2 \rfloor] \quad \text{and} \quad S(P_n) = [\lceil n/3 \rceil, \lceil n/2 \rceil].$$

Hence, $C_n \in \mathcal{M}_t$ and $P_n \in \mathcal{M}_s$ where $t = \lfloor n/2 \rfloor - \lceil n/3 \rceil + 1$ and $s = \lceil n/2 \rceil - \lceil n/3 \rceil + 1$.

The following lemma from [5] will be used throughout—often without mention.

Lemma 2 [5] If the graph G belongs to \mathcal{M}_t and I is an independent set of G, then for every component C of $G - N[I]$ there exists $k \leq t$ such that $C \in \mathcal{M}_k$. In addition, $G - N[I] \in \mathcal{M}_r$ for some $r \leq t$.

Lemma 2 will most often be used in the following way. We will find an independent set I in a graph G and demonstrate that $G - N[I]$ has a component that is in the class \mathcal{M}_s for some $s > t$ and conclude that $G \notin \mathcal{M}_t$. The following lemma will be used in that context with Lemma 2.

Lemma 3 If a cycle C is in \mathcal{M}_t and a new vertex is added as a leaf adjacent to a single vertex of C, then the resulting graph belongs to \mathcal{M}_{t+1}.
Proof. Assume \(S(C) = [k, k + t - 1] \). Let \(H \) be the graph formed by adding a leaf \(x \) adjacent to \(y \). Let \(u \) and \(v \) be the neighbors of \(y \) on \(C \). Note that \(\{ I \in \mathcal{M}(H) : y \in I \} = \{ J \in \mathcal{M}(C) : y \in J \} \), and because of the symmetry of the cycle, \(S(C) = \{|J| : J \in \mathcal{M}(C), y \in J \} \). Also, \(\{ I \in \mathcal{M}(H) : u \in I \} = \{ J \cup \{ x \} : J \in \mathcal{M}(C), u \in J \} \). This shows that \([k, k + t] \subseteq S(H)\). If \(H \) has a maximal independent set \(A \) of size less than \(k \), then \(x \in A \) and neither \(u \) nor \(v \) is in \(A \), for otherwise \(A \cap C \) is a maximal independent set in \(C \) of cardinality less than \(k \). But now \(A' = (A - \{ x \}) \cup \{ y \} \in \mathcal{M}(C) \) and \(|A'| < k\), a contradiction. Therefore, \(S(H) = [k, k + t] \). We conclude that \(H \in \mathcal{M}_{t+1} \).

\[\square \]

In the class of graphs with leaves there is no connection between girth and the size of the spectrum. This can be seen by the following general construction. Let \(t \geq 2 \) and \(g \geq 3 \) be integers. Let \(H \) be the graph formed by adding a single leaf adjacent to each vertex of a cycle of order \(g \). For a single vertex \(x \) on the cycle attach a path \(v_1, v_2, \ldots, v_{2t-3} \) to \(H \) by making \(x \) and \(v_1 \) adjacent. Then add two leaves adjacent to \(v_i \) if \(i \) is odd, and add one leaf adjacent to \(v_j \) if \(j \) is even. The resulting graph of order \(2g + 5t - 7 \) has girth \(g \) and belongs to the class \(\mathcal{M}_t \). (The spectrum of this graph is \([g + 2t - 3, g + 3t - 4]\).) For this reason we will henceforth consider only graphs having minimum degree at least 2. For ease of reference we denote the class of graphs that are in \(\mathcal{M}_t \) and have no leaves (i.e., minimum degree at least 2) by \(\mathcal{M}_t^2 \). Note that \(\mathcal{M}_t^2 \subseteq \mathcal{M}_t \). In the course of several of our proofs we will show that some given graph is not in \(\mathcal{M}_t^2 \) by demonstrating it does not belong to \(\mathcal{M}_t \).

The remainder of this paper is devoted to verifying the entries in the following table.

girth	6t - 6	6t - 5	6t - 4	6t - 3	6t - 2	6t - 1	6t	6t + 1	\(\geq 6t + 2 \)	
\(t = 1 \)	\(\Delta \)	\(\Delta \)	\(\Delta \)	\(\Delta \)	\(\emptyset \)	\(C_7 \)	\(\emptyset \)	\(\emptyset \)	\(\emptyset \)	
\(t = 2 \)	\(C_{12} \)	\(\Delta \)	\(C_8 \)	\(C_9 \)	\(C_{10} \)	\(C_{11} \)	\(\emptyset \)	\(C_{13} \)	\(\emptyset \)	
\(t = 3 \)	\(\emptyset \)	\(C_7 \)	\(C_8 \)	\(C_{14} \)	\(C_{15} \)	\(C_{16} \)	\(C_{17} \)	\(\emptyset \)	\(C_{19} \)	\(\emptyset \)
\(t = 4 \)	\(C_{21} \)	\(\emptyset \)	\(C_{22} \)	\(C_{23} \)	\(\emptyset \)	\(C_{24} \)	\(\emptyset \)	\(C_{25} \)	\(\emptyset \)	
\(t \geq 5 \)	\(C_{6t-6} \)	\(\emptyset \)	\(C_{6t-4} \)	\(C_{6t-3} \)	\(C_{6t-2} \)	\(C_{6t-1} \)	\(\emptyset \)	\(C_{6t+1} \)	\(\emptyset \)	

Table 1: Graphs of given girth in \(\mathcal{M}_t^2 \)

The entry for a given girth (written as a function of \(t \)) and a given value of \(t \) should be interpreted as follows. If a specific graph is given, then this is the unique graph of that girth that belongs to \(\mathcal{M}_t^2 \). For example, \(C_{15} \) is the only graph of girth 15 in \(\mathcal{M}_3^2 \). If \(\emptyset \) appears, then there are no graphs of that girth in \(\mathcal{M}_t^2 \). When the
entry is Δ, then it is known that \mathcal{M}_t^2 contains at least one graph of that girth (and it is not just a cycle). Some of these type of entries have been verified in previous papers. For example, see [4] and [5] for \mathcal{M}_1^2 and \mathcal{M}_2^2, respectively.

2 Establishing Table Entries

We begin by showing that for a given positive integer t the only graphs in \mathcal{M}_t with large enough girth must have leaves. The next result was proved for well-covered graphs ($t = 1$) in [3]. Proposition 1 shows it is sharp in terms of girth.

Theorem 4 Let t be a positive integer. If $g(G) \geq 6t + 2$ and $\delta(G) \geq 2$, then $G \in \mathcal{M}_r(G)$ for some $r > t$.

Proof. Assume $t \geq 2$. Let G have girth at least $6t + 2$ and minimum degree at least two. We will show that G has maximal independent sets of at least $t + 1$ different sizes. Choose a cycle $C = v_1, v_2, \ldots, v_s$ of minimum length in G.

Assume first that $s \geq 6t + 4$ and let P denote the path $v_3, v_4, \ldots, v_{6t+1}$. Since $\delta(G) \geq 2$ and $g(G) = s$, each vertex $u \notin C$ that is adjacent to a vertex of P has another neighbor u' that does not belong to P and is not adjacent to any vertex of P. Choose one such neighbor u' for each u and let J denote the set of these neighbors. By the girth restriction it follows that the set $I = J \cup \{v_1, v_{6t+3}\}$ is independent. (If $s = 6t + 2$, then proceed as above except let $I = J \cup \{v_1\}$.) However, P is a component of $G - N[I]$ and by Proposition 1 $P \in \mathcal{M}_{t+1}$. Similar to the proof of Lemma 2 this implies that G has maximal independent sets of at least $t + 1$ different sizes.

If $s = 6t + 3$, let P be the path $v_3, v_4, \ldots, v_{6t+2}$. The set J is chosen as before, and now $G - N[J \cup \{v_1\}]$ has the path P of order $6t$ as a component. By Proposition 1 it once again follows that G has at least $t + 1$ distinct sizes of maximal independent sets.

□

For any positive integer t it follows from Proposition 1 that $C_{6t+1} \in \mathcal{M}_t$. In [4] it was shown that C_7 is the only well-covered graph of girth 7 and minimum degree 2 or more. The following theorem shows the similar result is true for larger values of t.

Theorem 5 Let $t \geq 2$ be an integer. The cycle C_{6t+1} is the only graph of girth $6t + 1$ in \mathcal{M}_t^2, and \mathcal{M}_t^2 contains no graphs of girth $6t$.

Proof. By Proposition 1 the cycle of order $6t + 1$ belongs to \mathcal{M}_t^2. Suppose G is a graph not isomorphic to C_{6t+1} such that $g(G) = 6t + 1$ and $\delta(G) \geq 2$. Then G
Theorem 5. The set Y contains a cycle since $t \geq 6$. For each integer $t \geq 6$ there is a cycle of the form $x_1, v_1, w_1, v_2, w_2, x_1$ that belongs to M_t. Let $X = \{u \in V(G) : d(u, a) = 2, d(u, w) = 3\}$. For any two vertices on C there is a path using part of C of length at most $3t$ joining them. Since $g(G) \geq 13$ it follows that Y is independent. Suppose two vertices $x_1, x_2 \in X$ are adjacent. Let x_1, v_1, w_1 and x_2, v_2, w_2 be paths in G with w_1 and w_2 on the cycle C. Then the cycle $x_1, v_1, w_1, v_2, x_2, x_1$ has length at most $3t + 5$. But then $3t + 5 \geq 6t + 1$, which implies that $t = 1$, a contradiction. Finally, if a vertex in X is adjacent to a vertex in Y, then a similar argument shows that G has a cycle of length at most $3t + 6$ which also leads to a contradiction.

Therefore, $X \cup Y$ is an independent set. One of the components of the graph $G - N[X \cup Y]$ is the cycle C with a single leaf a attached at the support vertex w. By Lemma 3 this component is in M_{t+1}. An application of Lemma 2 then shows that $G \notin M^2_t$.

Now let G be a graph of girth $6t$, and as above find an induced cycle C of length $6t$. This time let $X = \{u \in V(G) : d(u, C) = 2\}$. This set is independent unless there is a cycle of the form $x_1, v_1, w_1, v_2, w_2, x_1$ that has length at most $3t + 5$. But this means $3t + 5 \geq 6t$ contradicting our assumption that $t \geq 2$. Hence X is independent. The cycle C is one of the components of $G - N[X]$. Since $C_{6t} \in M_{t+1}$, Lemma 2 implies that $G \notin M^2_t$.

By following a line of reasoning similar to the first part of the proof of Theorem 5 one can prove the following result. The proof is omitted. As noted earlier, Theorem 6 also holds for $t = 2$. See [5].

Theorem 6 Let $t \geq 3$ be a positive integer. For each integer n such that $6t - 4 \leq n \leq 6t - 1$, the cycle C_n is the unique graph of girth n that belongs to M^2_t.

We now establish the uniqueness (for $t \geq 3$) of the table entry corresponding to those graphs with no leaves whose shortest cycle has length $6t - 6$ and which have maximal independent sets of exactly t distinct cardinalities.

Theorem 7 For each integer $t \geq 3$, the cycle C_{6t-6} is the only graph of girth $6t - 6$ that belongs to M^2_t.

Proof. The cycle of order $6t - 6$ is in M^2_t by Proposition 1. Suppose that G is a graph of girth $6t - 6$ with no leaves. If G is not C_{6t-6}, then we can find an induced cycle C of length $6t - 6$ in G with w, a, b, c, X and Y defined as in the proof of Theorem 5. The set Y is independent because $g(G) \geq 12$, and X is independent since $t \geq 3$. If some vertex of X is adjacent to a vertex of Y, then G contains a cycle...
of length at most $3t - 3 + 6$. It follows that $3t + 3 \geq g(G) = 6t - 6$, or equivalently $t \leq 3$.

If the set $X \cup Y$ is independent, then $G - N[X \cup Y]$ has a component isomorphic to a cycle of length $6t - 6$ with a single leaf attached at w. By Lemma 3 this component is in \mathcal{M}_{t+1} and so it follows from Lemma 2 that $G \notin \mathcal{M}_t$.

Thus we may assume that $t = 3$ and that $X \cup Y$ is not independent. Without loss of generality we may assume that c from Y is adjacent to x_1 such that $x_1 \in X$ and x_1, v_1, w_1 is a path where w_1 is on the cycle C. See Figure 1. By using the fact that C has length 12 and $g(G) = 12$ we infer that the length of wCw_1 is 6. Let $X' = X - N(v_1)$ and let $Z = \{u : d(u, v_1) = 2, d(u, w_1) = 3, ux \notin E(G)\}$. It is clear that Z is independent.

As above, if a vertex of Z is adjacent to a vertex h of X', then if $d(h, w) > 2$ a cycle of length at most 11 is present and if $d(h, w) = 2$ then G contains a cycle of length 10, contradicting $g(G) = 12$. Suppose $z_1 \in Y \cap Z$, say $z_1 = y$ as in Figure 1. Then $z_1 \neq c$, and $a, b, c, x_1, v_1, x_2, z_1, u, a$ is a cycle, contradicting the girth assumption. Similarly, since G has no cycles of length 9, it follows that $Z \cup Y$ is independent.

The set $X' \cup Y \cup Z$ is independent, and one of the components of the graph $G - N[X' \cup Y \cup Z]$ is the cycle C with a single leaf attached at vertices w and w_1. But this component has spectrum $\{4, 5, 6, 7, 8\}$ from which it follows that $G \notin \mathcal{M}_3$.

We now show that when $t \geq 4$ there is a “gap” at girth $6t - 5$ among the leafless graphs. That is, if G has minimum degree at least 2 and the shortest cycle of G has order $6t - 5$, then G does not belong to \mathcal{M}_t.

![Figure 1: Part of G](image)
Theorem 8 For each integer \(t \) at least 4, the class \(M_t^2 \) contains no graphs of girth \(6t - 5 \).

Proof. First observe that \(C_{6t-5} \in M_{t-1} \). Our approach will be similar as that pursued in earlier proofs, except that we will be attempting to isolate a cycle of length \(6t - 5 \) with a path of order 5 attached as in Figure 2. It is easy to check, using either \(\{a, c, e\} \) or \(\{a, d\} \) together with all possible maximal independent sets of a path of order \(6t - 6 \), that this component has spectrum \([2t, 3t]\) and hence belongs to \(M_{t+1} \). This in turn implies via Lemma 2 that \(G \notin M_t^2 \).

![Figure 2: The cycle C with attachments](image)

Suppose that \(G \) has girth \(6t - 5 \) and has minimum degree at least 2. Let \(C \) be an induced cycle of length \(6t - 5 \) in \(G \). There must exist a vertex \(w \) on \(C \) having degree at least 3. For any two vertices on \(C \) there is a path on \(C \) joining them whose length is at most \(3t - 3 \). Because of the girth and minimum degree assumptions on \(G \) we can find a path \(w, a, b, c, d, e \) as in Figure 2. Let \(A = \{a, b, c, d, e\} \). Let \(X = \{u : d(u, C) = 2\} - N(a) \) and let \(Y = \{u : u \notin C, d(u, A) = 2, d(u, w) \geq 2\} \).

As in previous proofs it is straightforward to show that \(X \) is independent. Since \(g(G) = 6t - 5 \geq 19 \) no pair of vertices in \(Y \) can be adjacent. Suppose first that \(X \cup Y \) is independent. The graph in Figure 2 is a component of \(G - N[X \cup Y] \). As remarked at the outset, this shows that \(G \notin M_t^2 \). We note that for \(t \geq 5 \), the girth restriction ensures that \(X \cup Y \) is independent.

Now consider \(t = 4 \). Thus \(C \) is of length 19. Let \(s_1 \) and \(s_2 \) be the adjacent vertices on \(C \) that are at distance 9 from \(w \). If both \(s_1 \) and \(s_2 \) are of degree two, then \(X \cup Y \) is independent or else a cycle of length 18 would exist in \(G \). Assume then without loss of generality that \(s_1 \) has a neighbor \(r \) that is not on \(C \). Let \(U = N(r) - \{s_1\} \). For each \(u_i \in U \) choose a vertex \(v_i \in N(u_i) - \{r\} \), and set \(V = \{v_i : u_i \in U\} \). Similarly, let \(B = N(a) - \{w\} \). For each \(b_i \in B \) choose a vertex \(c_i \in N(b_i) - \{a\} \), and set \(D = \{c_i : b_i \in B\} \). Since \(g(G) = 19 \) the set \(V \cup D \cup (X - U) \) is independent, and one of the components of \(G - N[V \cup D \cup (X - U)] \) is a cycle of order 19 with a single leaf \(a \) adjacent to \(w \) and a single leaf \(r \) adjacent to \(s_1 \). This component
belongs to \mathcal{M}_5 which proves that $G \not\in \mathcal{M}_4^2$ and establishes the theorem.

\[\square \]

3 Concluding Remarks

We have shown that for a positive integer $t \geq 4$ and for each possible value of girth at least $6t - 6$, the class \mathcal{M}_t^2 either contains exactly one graph of that girth (the cycle) or contains no graphs of that girth. It is interesting to note that as t grows there is an ever increasing gap—in terms of girth—between the unique graph of girth $6t - 6$ in \mathcal{M}_t^2 and ones of smaller girth. For instance, we can show that \mathcal{M}_{31}^2 contains no graphs of girth r for $131 \leq r \leq 179$. Hence the cycles $C_{180}, C_{182}, C_{183}, C_{184}, C_{185}$ and C_{187} are the only leafless members of \mathcal{M}_{31} that have girth at least 131. Thus the six cycles are quite special in \mathcal{M}_t^2.

References

[1] R. Barbosa and B. L. Hartnell: Some problems based on the relative sizes of the maximal independent sets in a graph. *Congr. Numer.* **131**, 115–121 (1998)

[2] R. Barbosa and B. L. Hartnell: The effect of vertex and edge deletion on the number of sizes of maximal independent sets. *J. Combin. Math. Combin. Comput.* **70**, 111–116 (2009)

[3] A. S. Finbow and B.L. Hartnell: A game related to covering by stars. *Ars Combin.* **16**, 189–198 (1983)

[4] A. Finbow, B. Hartnell and R. J. Nowakowski: A characterization of well-covered graphs of girth 5 or greater. *J. Combin. Theory Ser. B* **57**, 44–68 (1993)

[5] A. Finbow, B. Hartnell and C. Whitehead: A characterization of graphs of girth eight or more with exactly two sizes of maximal independent sets. *Discrete Math.* **125**, 153–167 (1994)

[6] M.D. Plummer: Well-covered graphs. *J. Combin. Theory* **8**, 91–98 (1970)