Detection of *Trypanosoma cruzi* in the saliva of diverse neotropical bats

Laura M. Bergner¹,² | Daniel J. Becker³ | Carlos Tello⁴,⁵ | Jorge E. Carrera⁶,⁷ | Daniel G. Streicker¹,²

¹Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
²MRC–University of Glasgow Centre for Virus Research, Glasgow, UK
³Department of Biology, University of Oklahoma, Norman, OK, USA
⁴Association for the Conservation and Development of Natural Resources, Lima, Perú
⁵Yunkawasi, Lima, Perú
⁶Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Perú
⁷Programa de Conservación de Murciélagos de Perú, Piura, Perú

Correspondence
Laura Bergner, Graham Kerr Building, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
Email: laura.Bergner@glasgow.ac.uk

Funding information
Funding was provided by a University of Glasgow Wellcome Institutional Strategic Support Fund Early Career Researcher Catalyst Grant. Additional support was provided by the Wellcome Trust (Wellcome-Beit Prize: 102507/Z/13/A; Wellcome Senior Research Fellowship: 102507/Z/13/Z) and the Human Frontier Science Program (Grant RGP0013/2018).

Abstract
Trypanosoma cruzi is widely reported in bats, yet transmission routes remain unclear. We present evidence from metagenomic sequence data that *T. cruzi* occurs in the saliva of diverse Neotropical bats. Phylogenetic analyses demonstrated that the bat-associated *T. cruzi* sequences described here formed part of a bat-specific clade, suggesting an independent transmission cycle. Our results highlight the value in repurposing metagenomic data generated for viral discovery to reveal insights into the biology of other parasites. Evaluating whether the presence of *T. cruzi* in the saliva of two hematophagous bat species represents an ecological route for zoonotic transmission of Chagas disease is an interesting avenue for future research.

KEYWORDS
Chiroptera, *Desmodus rotundus*, protozoa, shotgun metagenomics, wildlife, zoonoses

1 | INTRODUCTION

Chagas disease, caused by the parasite *Trypanosoma cruzi*, affects over 6 million people, mostly in the Americas. Infections in humans can cause acute febrile illness in 1%-5% of individuals, while an estimated 20%-30% of infections can transition into a chronic disease associated with cardiac disorders and sudden death (Bern, 2015; Shikanai-Yasuda & Carvalho, 2012). Human infections...
predominately arise in domestic or peridomestic cycles of sertonarian transmission from triatomine vectors; however, alternative transmission routes of *T. cruzi* can include transfusion and transplantation (Bern, 2015; Perez-Molina & Molina, 2018). In light of successful vector control programs and serological screening in blood banks to prevent transfusions of infected blood, congenital transmission and orally transmitted infections originating from sylvatic cycles are of increasing epidemiological importance (Perez-Molina & Molina, 2018; Shikanai-Yasuda & Carvalho, 2012). Here, we focus on sylvatic cycles of *T. cruzi* in wildlife, which can be maintained in animal populations through vector-borne transmission, consumption of contaminated material, or predation on infected hosts or vectors (Jansen et al., 2015). Additionally, some wildlife species such as opossums experimentally and naturally maintain multiple parasite life stages (Barros et al., 2020; Deane et al., 1984) and have been hypothesized to transmit *T. cruzi* in the absence of arthropod vectors (Shikanai-Yasuda et al., 1991; Urdaneta-Morales & Nironi, 1996). The recent detection of *T. cruzi* in the salivary glands of *Diaemus youngi*, a hematophagous bat, suggests the possibility that bats could also act as both reservoirs and transmitters of the parasite (Villena et al., 2018). Bats are important trypanosome reservoirs which host both generalist and bat-restricted trypanosomes (Marcili et al., 2009; Ramírez et al., 2014) and have been suggested as the ancestral host of trypanosomes (Hamilton et al., 2012). Identifying routes of trypanosome transmission in bats may shed new light on sylvatic cycles of the parasite and inform strategies to reduce zoonotic transmission.

2 | MATERIALS AND METHODS

As part of a virus discovery project, in 2016, we captured bats across seven sites in northern Peru (Departments of Amazonas, Cajamarca and Loreto) using mist nets, harp traps and hand nets (Figure 1) (Bergner et al., 2020). Samples were collected from four bat species (*N* = 27 individuals total) representing frugivores (*Carollia perspicillata*, *N* = 10), nectarivores (*Glossophaga soricina*, *N* = 5) and two sanguivores (*Desmodus rotundus*, *N* = 10 and *Diphylla ecaudata*, *N* = 2) specializing on mammals and birds, respectively. Sampling protocols were approved by the Research Ethics Committee of the University of Glasgow School of Medical, Veterinary and Life Sciences (Ref081/15), the University of Georgia Animal Care and Use Committee (A2014 04–016-Y3-A5), and the Peruvian Government (RD-142-2015-SERFOR-DGGSPFFS, RD-054-2016-SERFOR-DGGSPFFS).

Saliva was collected using sterile cotton-tipped swabs (Fisherbrand) which were stored in 1ml RNALater (Ambion) overnight at 4°C then transferred to −80°C. Total nucleic acid was extracted from individual swabs using a KingFisher Flex 96 (Thermo) and a BioSprint One for All Vet Kit (Qiagen) (Bergner et al., 2019). Extracts were pooled by bat species (Table 1) and depleted of host material using DNase (Bergner et al., 2019). Libraries were prepared for untargeted metagenomic sequencing using the Clontech SMARTer Stranded Total RNA-Seq Kit v2 (Takara), then sequenced on an Illumina NextSeq500 at the University of Glasgow Polymics Facility. Sequencing reads (European Nucleotide Archive project PRJEB35111) were processed using an in-house bioinformatic pipeline (Bergner et al., 2019), with slight modification to the read trimming step to accommodate the library preparation kit and read length.

The pipeline used SPAdes v.3.10.1 (Bankevich et al., 2012) for de novo assembly and Diamond v.0.8.20 blastx (Buchfink et al., 2014) for classification of contigs, which revealed *Trypanosoma*-like Cytochrome B (cytB) sequences in all pools and *Trypanosoma*-like glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) sequences in two of four pools (Table 1). Representative sets of *T. cruzi* cytB and gGAPDH sequences from different hosts and vectors (Table S1 and Table S2) were aligned with new *T. cruzi* sequences from bats using MAFFT 7.017 (Katoh et al., 2002) within Geneious (Lanfear et al., 2017) on the CIPRES Science Gateway 3.3, which was run with linked branch lengths, the greedy search algorithm, and BIC criterion. For the cytB analysis, PartitionFinder supported codon partitioning with the models Hky + G, F81 and GTR + G applied to the first, second and third codon positions, respectively. For the gGAPDH analysis, PartitionFinder indicated the models JC, HKY and F81 applied to the first, second and third codon positions, respectively. Bayesian phylogenetic analysis of cytB and gGAPDH datasets were restricted to unique sequences, with the exception of sequences from *T. cruzi* in bat saliva and other bat-associated Tcl sequences.

For each alignment, the best model of sequence evolution and support for codon partitioning were evaluated using PartitionFinder2 (Lanfear et al., 2017) on the CIPRES Science Gateway 3.3, which was run with linked branch lengths, the greedy search algorithm, and BIC criterion. For the cytB analysis, PartitionFinder supported codon partitioning with the models HKY + G, F81 and GTR + G applied to the first, second and third codon positions, respectively. For the gGAPDH analysis, PartitionFinder indicated the models JC, HKY and F81 applied to the first, second and third codon positions, respectively. Bayesian phylogenetic analysis of cytB and gGAPDH was performed using MrBayes 3.2.6 (Ronquist et al., 2012) on the CIPRES server with the substitution models and partitioning scheme indicated by PartitionFinder. Each analysis was run for 2,000,000 generations and sampled every 2,000 generations, with the first
BERGNER ET AL.

20% of trees discarded as burn-in. Maximum likelihood phylogenetic analysis of cytB and gGAPDH was conducted using RAxML 8.2.8 (Stamatakis et al., 2008). As RAxML only allows a single model of rate heterogeneity in partitioned analysis, separate PartitionFinder analyses were run for each type of rate heterogeneity. The scheme with lowest BIC score was selected for each alignment, yielding the substitution model GTR + G for cytB and GTR for gGAPDH. RAxML was then run with 1,000 bootstrap replicates using the indicated substitution model and codon partitioning. Figures were prepared in R version 3.5.3 (R Core Team, 2019) using the packages ‘ape’ (Paradis & Schliep, 2019), ‘phangorn’ (Schliep, 2010), ‘phytools’ (Revell, 2011) and ‘ggtree’ (Yu et al., 2016).
3 | RESULTS AND DISCUSSION

Sequences matching the genus *Trypanosoma* were abundant in all bat species tested (18,328–347,241 reads per pool; Table 1). Bayesian and Maximum Likelihood phylogenetic analysis of cytB and gGAPDH classified all novel bat-associated sequences within the *T. cruzi* Tcl lineage (Figure 2; Figure S1; Figure S2). Although the Peruvian bat-derived sequences did not group together in the gGAPDH phylogeny, likely due to lack of sequence variation, cytB sequences clustered with Tcl sequences from Brazilian bats (Lima et al., 2014) (posterior probability = 0.77; bootstrap support = 58%). Other Neotropical bat-derived Tcl sequences from Venezuela, Colombia and Brazil were dispersed amongst non-bat Tcl samples or formed a distinct bat-associated clade towards the base of the Tcl lineage (Figure 2; Figure S1), as observed previously (Marcili et al., 2009). Sequences from bat and non-bat hosts did not cluster together for any country where both were available (i.e., Venezuela, Colombia, Brazil), demonstrating that geographic structure alone does not explain the occurrence of bat-associated Tcl clades (Table S1). Tcl has been hypothesized to have its origins in marsupials due to high levels of strain diversity in these hosts (Brenière et al., 2016), but it also occurs in diverse bat species (Lima et al., 2014; Marcili et al., 2009; Ramirez et al., 2014). Our results support the conclusion that bats can maintain independent transmission cycles of this lineage. Although our approach focused only on Tcl, future studies could employ metabarcoding (e.g., Dario et al., 2017) to explore the diversity of other *Trypanosoma* species present in bat saliva. More generally, as our data were originally generated for virus discovery, we show how metagenomic data can simultaneously reveal insights into diverse pathogens.

The discovery of *T. cruzi* in bat saliva has several plausible ecological explanations with different implications for transmission. Since the four infected bat species have different feeding behaviours, a common source of dietary contamination is unlikely. Given the expected role of arthropods in *T. cruzi* transmission, presence in saliva might arise from inadvertent consumption of ectoparasites while grooming. This hypothesis is supported by the observation that bat-associated ectoparasites in the family Cimicidae experimentally...
replicate and transmit other Trypanosoma species (Gardner & Molyneux, 1988). Oral infection of humans by a similar route further supports the viability of this transmission mode (Shikanai-Yasuda & Carvalho, 2012). Alternatively, T. cruzi may be excreted in bat saliva, as supported by infection in the salivary glands of another hematophagous bat species, D. youngi (Villena et al., 2018). If verified, bat-to-bat transmission in the absence of arthropods would represent a novel transmission route which might occur through social contacts, biting, or—in the case of D. rotundus—blood-meal sharing.

Although T. cruzi has been documented in the salivary glands of D. youngi (Villena et al., 2018), our findings comprise the first evidence of TcI in the saliva of D. rotundus and D. ecaudata, two vampire bat species which are known to feed on humans (Ito et al., 2016). Notably, the area of northern Peru where our study was conducted is a hotspot for vampire bat blood predateion on humans which has been associated with recurrent rabies outbreaks (Gilbert et al., 2012; Stoner-Duncan et al., 2014). The hematophagous diet of D. rotundus therefore provides an ecological route for T. cruzi transmission to diverse non-bat mammals, including humans.

Ultimately, the likelihood of zoonotic transmission will be determined by the viability of infectious parasites in bat saliva. Since parasite viability cannot be evaluated using metagenomic data, isolation of the parasite and establishing the presence of metacyclic trypomastigotes are crucial next steps to evaluate zoonotic risk. In addition, parasite load is an important determinant of infection for other transmission modes (e.g., congenital; Bustos et al., 2019), but our sequencing approach of pooling DNA from multiple individuals precludes any such quantification. Efforts to accurately quantify parasite load in saliva, using methods such as quantitative PCR, would be valuable. Zoonotic transmission also depends on the susceptibility of humans to bat-associated strains. In our study, the cytB and gGAPDH phylogenies suggest that the parasites detected in bats belong to the TcI lineage of T. cruzi, which is generally assumed to be capable of infecting humans. However, we note that multi-locus sequence typing and 18S ribosomal RNA sequencing can more sensitively discriminate T. cruzi, lineage of T. cruzi, which is generally assumed to be capable of infecting humans.

CONFLICT OF INTEREST
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

DATA AVAILABILITY STATEMENT
Metagenomic sequence data are available on the European Nucleotide Archive (Project PRJEB35111 https://www.ebi.ac.uk/ena/browser/view/PRJEB35111) and Trypanosoma sequences are available on Genbank (Accessions MT572485-MT572490).

ORCID
Laura M. Bergner https://orcid.org/0000-0003-4169-7169
Daniel J. Becker https://orcid.org/0000-0003-4315-8628
Daniel G. Streicker https://orcid.org/0000-0001-7475-2705

REFERENCES
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prijibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021
Bergner, L. M., Orton, R. J., Benavides, J. A., Becker, D. J., Tello, C., Biek, R., & Streicker, D. G. (2020). Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Molecular Ecology, 29(1), 26–39. https://doi.org/10.1111/mec.15250
Bergner, L. M., Orton, R. J., da Silva Filipe, A., Shaw, A. E., Becker, D. J., Tello, C., Biek, R., & Streicker, D. G. (2019). Using noninvasive metagenomics to characterize viral communities from wildlife. Molecular Ecology Resources, 19(1), 128–143. https://doi.org/10.1111/1755-0998.12946
Bern, C. (2015). Chagas’ disease. New England Journal of Medicine, 373(5), 456–466. https://doi.org/10.1056/NEJMra1410150
Brenière, S. F., Waleckx, E., & Barnabé, C. (2016). Over six thousand Trypanosoma cruzi strains classified into Discrete Typing Units (DTUs): Attempt at an inventory. PLoS Neglected Tropical Diseases, 10(6), e0004792–e4819. https://doi.org/10.1371/journal.pntd.0004792
Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59–60. https://doi.org/10.1038/nmeth.3176
Bustos, L. P., Milduberger, N., Volta, B. J., Perrone, A. E., Laucella, S. A., & Bua, J. (2019). Trypanosoma cruzi infection at the maternal-fetal interface: Implications of parasite load in the congenital transmission and challenges in the diagnosis of infected newborns. Frontiers in Microbiology, 10, 221-229. https://doi.org/10.3389/fmicb.2019.01250
Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
Dario, M. A., Moratelli, R., Schwabl, P., Jansen, A. M., & Llewellyn, M. S. (2017). Small subunit ribosomal metabarcoding reveals extraordinary trypanosomatid diversity in Brazilian bats. PLoS Neglected Tropical Diseases, 11(7), e0005790–e5815. https://doi.org/10.1371/journal.pntd.0005790
Barros, F. N. L.,ampa Júnior, F. D., Costa, S. M., Farias, D. M., Moura, M. A. O., Bezerra Júnior, P. S., Góes-Cavalcante, G., & Scofield, A. (2020). First report of natural infection by Trypanosoma cruzi in secretions of the scent glands and myocardium of Philander opossum (Marsupialia: Didelphidae): Parasitological and clinicopathological findings. Veterinary Parasitology: Regional Studies and Reports, 22, 100463–100465.

ACKNOWLEDGEMENTS
We thank Philipp Schwabl, Diana Meza and Nicole Gottdenker for helpful discussions.
Deane, M. P., Lenzi, H. L., & Jansen, A. (1984). Trypanosoma cruzi: Vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphys marsupialis. Memorias do Instituto Oswaldo Cruz, 79(4), 513–515. https://doi.org/10.1590/S0074-02761984000400021

Gardner, R. A., & Molyneux, D. H. (1988). Trypanosoma (Megatrypanum) incertum from Pipistrellus pipistrellus: Development and transmission by cimicid bugs. Parasitology, 96, 433–447.

Gilbert, A. T., Petersen, B. W., Recuenco, S., Niezgoda, M., Gomez, J., Laguna-Torres, V. A., & Rupprecht, C. (2012). Evidence of rabies virus exposure among humans in the Peruvian Amazon. American Journal of Tropical Medicine and Hygiene, 87(2), 206–215. https://doi.org/10.4269/ajtmh.2012.11-0689

Hamilton, P. B., Teixeira, M. M. G., & Stevens, J. R. (2012). The evolution of Trypanosoma cruzi: The "seed-betting" hypothesis. Trends in Parasitology, 28(4), 136–141. https://doi.org/10.1016/j.pt.2012.01.006

Ito, F., Bernard, E., & Torres, R. A. (2016). What is for dinner? First re-

Jansen, A. M., Xavier, S. C. C., & Roque, A. L. R. (2018). Trypanosoma cruzi transmission in the wild and its most important reservoir hosts in Brazil. Parasites & Vectors, 11(1), 1–25. https://doi.org/10.1186/s13071-018-3067-2

Jansen, A. M., Xavier, S. C. C., & Roque, A. L. R. (2015). The multiple and complex and changable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment. Acta Tropica, 151, 1–15. https://doi.org/10.1016/j.actatropica.2015.07.018

Katoh, K., Misawa, K., Kuma, K.-I., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066. https://doi.org/10.1093/nar/gkf436

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thiérier, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773.

Lima, V. S., Jansen, A. M., Messenger, L. A., Miles, M. A., & Llewellyn, M. S. (2014). Wild Trypanosoma cruzi i genetic diversity in Brazil sug-

Marcili, A., Lima, L., Cavazzana, M. Jr, Junqueira, A. C. V., Veludo, H. H., Maia Da Silva, F., Campaner, M., Paiva, F., Nunes, V. L. B., & Teixeira, M. M. G. (2009). A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology, 136(6), 641–655.

Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526–528.

Perez-Molina, J. A., & Molina, I. (2018). Chagas disease. The Lancet, 391(10115), 82–94. https://doi.org/10.1016/S0140-6736(17)31612-4

R Core Team. (2019). R: A language and environment for statistical computing: R Foundation for Statistical Computing, http://www.R-projec-

cnt.org/

Ramirez, J. D., Tapia-Calle, G., Muñoz-Cruz, G., Poveda, C., Rendón, L. M., Hincapeí, E., & Guhl, F. (2014). Trypanosome species in neo-tropical bats: Biological, evolutionary and epidemiological implications. Infection, Genetics and Evolution, 22, 250–256. https://doi.org/10.1016/j.meegid.2013.06.022

Revell, L. J. (2011). phytools: An R package for phylogenetic compara-
tive biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00116.x

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.

Sanchez, R., Serra, F., Terraza, J., Medina, I., Carbonell, J., Pulido, L., de María, A., Capella-Gutierrez, S., Huerta-Cepas, J., Gabaldón, T., Dopazo, J., & Dopazo, H. (2011). Phylemon 2.0: A suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypothe-
ses testing. Nucleic Acids Research, 39, W470–W474.

Schipke, K. P. (2010). phangorn: Phylogenetic analysis in R. Bioinformatics, 27(4), 592–593. https://doi.org/10.1093/bioinformatics/btq706

Shikanai-Yasuda, M. A., & Carvalho, N. B. (2012). Oral transmission of Chagas disease. Clinical Infectious Diseases, 54(6), 845–852. https://doi.org/10.1093/cid/cir956

Shikanai-Yasuda, M. A., Marcondes, C. B., Guedes, L. A., Siqueira, G. S., Barone, A. A., Dias, J. C., Amato Neto, V., Tolezano, J. E., Peres, B. A., Arruda, E., Lopes, M. H., Shiroma, M., & Chapadeiro, E. (1991). Possible oral transmission of acute Chagas’ disease in Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo, 33(5), 351–357. https://doi.org/10.1590/S0036-46651991000500003

Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758–771. https://doi.org/10.1080/10635150802429642

Stoner-Duncan, B., Streicker, D. G., & Tedesch, C. M. (2014). Vampire Bats and Rabies: Toward an Ecological Solution to a Public Health Problem. PLoS Neglected Tropical Diseases, 8(6), e2867. https://doi.org/10.1371/journal.pntd.0002867.s001

Urdaneta-Morales, S., & Nironi, I. (1996). Trypanosoma cruzi in the anal glands of urban opossums. I-Isolation and experimental infections. Memorias do Instituto Oswaldo Cruz, 91(4), 399–403. https://doi.org/10.1590/S0074-02761996000400002

Villena, F. E., Gomez-Puerta, L. A., Jonston, E. J., Del Alcazar, O. M., Maguña, J. L., Albugar, C., Laguna-Torres, V. A., Recuenco, S. E., Ballard, S. B., & Ampuero, J. S. (2018). First report of Trypanosoma cruzi infection in salivary gland of bats from the Peruvian Amazon. American Journal of Tropical Medicine and Hygiene, 99(3), 723–728. https://doi.org/10.4269/ajtmh.17-0816

Yeo, M., Mauricio, I. L., Messenger, L. A., Lewis, M. D., Llewellyn, M. S., Acosta, N., Bhattacharyya, T., Diosque, P., Carrasco, H. J., & Miles, M. A. (2011). Multilocus Sequence Typing (MLST) for lineage assignement and high resolution diversity studies in Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 5(6), e1049–e1113. https://doi.org/10.1371/journal.pntd.0001049

Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T. Y. (2016). ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.