Characterization of the Digital Identity of Chilean University Students Considering Their Personal Learning Environments

Marisol Hernández-Orellana 1,2, Adolfina Pérez-Garcías 3 and Ángel Roco-Videla 4,5,*

1 Dirección de Informática Educativa, Universidad Autónoma de Chile, Santiago 7500596, Chile; marisol.hernandez@uautonoma.cl
2 Programa de Magíster en Docencia en Educación Superior, Facultad de Humanidades, Universidad Mayor, Santiago 7500994, Chile
3 Departamento de Pedagogía Aplicada y Psicología de Educación, Universidad de las Islas Baleares, Carretera de Valldemossa, km 7.5, 07122 Palma, Spain; fina.perez@uib.es
4 Departament of Civil Engineering, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
5 Programa de Magister en Ciencias Químico-Biológicas, Facultad de Salud, Universidad Bernardo O’Higgins, Santiago 8370854, Chile
* Correspondence: aroco@ucsc.cl

Abstract: At present, our online activity is almost constant, either producing information or consuming it, both for the social and academic fields. The spaces in which people move and travel every day, innocently divided between the face-to-face and the virtual, affect the way we communicate and perceive ourselves. In this document, a characterization of the academic digital identity of Chilean university students is proposed and an invitation to teachers to redefine learning spaces is made, allowing integrating all those technological tools that the student actually uses. This study was developed within the logic of pragmatism based on mixed methodology, non-experimental design, and a descriptive-quantitative cross-sectional approach. A non-probabilistic sample was made up of 509 students, who participated voluntarily with an online questionnaire. The Stata Version-14 program was used, applying the Mann–Whitney–Wilcoxon and Kruskal–Wallis U tests. To develop characterizations, a conglomerate analysis was performed with a hierarchical dissociative method. In general, Chilean university students are highly truthful on the Internet without making significant differences between face-to-face and digital interactions, with low awareness of their ID, being easily recognizable on the Web. Regarding their educational process, they manage it with analogical-face-to-face mixing formal and informal technological tools to optimize their learning process. These students manifest a hybrid academic digital identity, without gender difference in the deployment of their PLEs, but maintaining stereotypical gender behaviors in the construction of their digital identity on the Web, which shows a human-technological development similar to that of young Asians and Europeans.

Keywords: digital identity; PLE; awareness of digital identity; academic digital identity; stereotypical behaviors

1. Introduction

Technological advancement and digitization have been impacting humans for several years now. The impact was increased with the 2019 pandemic, which suggested that universities should inevitably align their work with information and communication technologies (ICT). This process had already been affecting teaching and how students were immersed within the globalized and hyper-connected scenario of which they are or should be part [1,2].

By existing and interacting on the Internet, the person uses tools and services that leave a series of fingerprints that will accompany them permanently [3–5]. This will affect
both the configuration of the architecture of his/her learning environment, as well as the
digital identity (ID) [6,7]. Our students do not escape this reality, where their technological
behavior and their digital identity say a lot about themselves and the way they learn [7–10]. That is how “A generally held assumption of late modernity suggests that identity
matters more now because we have more choice” [8] (p. 3).

In this document, a characterization of the displayed and manifest academic digital
identity of a group of university students in Chile is proposed. This, to collect information
that allows knowing the technological behavior and digital identity that must be consid-
ered as key information when integrating ICT in the educational process.

The remainder of this document is divided into: Section 2, where papers that intro-
duce the key constructs addressed in the study are reviewed. In Section 3 the materials
and method used in the investigation are presented. In Section 4 the main results are dis-
cussed, which are compared with other investigations in Section 5. Finally, in Section 6
the conclusions are summarized.

2. Related Work

In this section, the theoretical perspectives related to DI, PLE and the way in which
both are articulated in the educational process are presented. The objective is to allow the
reader to understand the comprehensive view with which they were merged in the re-
search.

2.1. Digital Identity

Lexicologically, the Dictionary of the Spanish language defines identity as “the set of
distinctive characteristics of an individual or community that characterizes them in front
of others”. If the digital identity is extrapolated, it is not far from the identity definition.
The Ministry of Education and Vocational Training of Spain explains that “Digital identity
is the set of characteristics that identify us within the Network” [3] (p. 50).

Terminologically, digital identity (DI) can have multiple meanings according to the
sphere from which it is analyzed: computer security and login, e-Commerce, e-Marketing,
or digital competence. Regardless of these perspectives, digital identity as a construct is
promoted and gains presence with the Internet, social networks, and mobile devices that
allow its development in a socialized, collaborative, and ubiquitous way. However, this
concept was already used in the 1990s with the advent of computers [9,10].

The Organization for Economic Cooperation and Development (OECD) defines dig-
ital identity as a series of inherent properties. The first one is its social character by allow-
ing the subject to project their personality on the Internet and be recognized and charac-
terized by it. The second property is its subjectivity as it is an interpretation of what is
perceived from individual and collective action. The third points at how valuable the DI
is, since the activity and the footprints left by the person on the Web generate informa-
tional capital and, consequently, and as a fourth term, it is referential since it labels said
actor. The fifth property aims at the composite character that implies considering both the
information provided by the person, third parties, and their environment in the construc-
tion of their DI. The sixth one is the dynamism in which the flow of information that the
person, the others and the environment are generating and co-constructing regarding
their DI constantly moves; so, finally, it is contextual and produces consequences since the
entire flow of information refers to a context that may imply positive or negative effects
on the person [3].

Therefore, the construction of DI is a complex process that implies the dialectical in-
teraction between the individual and the group, but also, for the public and private and
the face-to-face versus the digital, taking the individual to a dilemma: reconciling individ-
uality with the collectivity that allows belonging to a given group [11], making it impos-
sible for them to achieve a unique and final DI in one go and forever, due to its fluidity in
permanent negotiation [9,12,13]. As it lacks an observable material form, it implies a series
of imperatives regarding what the individual can or cannot declare on the Internet, as well as what Web 2.0 requires from him/her, to publish continuously to exist [14,15].

One way to get closer to what DI involves is through Georges’ model [14], which comprises three dimensions: declared identity is the first dimension that comes into play when the individual registers their relevant personal and specific information required to give existence to the online being that will enter the scene.

The second dimension named created identity is configured from the moment in which the person enters into action in the virtual scene [16], providing information through the trace of their activity in the system, as well as the subsequent interaction and updating event, typical of the active user on the Web [17].

The third dimension is the calculated identity, which is the final expression of the previous two. In this case, it is the system itself that automatically generates the information from two categories: (a) qualitative variables that consider attributive information on the presence and current activity of the user; focusing on indicators related to connection status such as online/offline, available/not available, etc.; (b) quantitative variables referring to the number of friends, score and rank in which the person is categorized according to the site. These are significant data because they quantify the presence, visibility, and reputation of the users and compare and classify them according to the local culture. Therefore, the message of increasing friendship or followers has an immediate impact on the individual concerning hierarchy in the system [17,18].

The fingerprints that a person leaves when existing on the Internet using those Web 2.0 tools and services, which are more accessible and comfortable, will accompany them permanently [5,18]. This affects not only the dimensions that configure personal and group identities and respective reputations but also the architecture of the personal learning environment [17,18].

2.2. Personal Learning Environment

The personal learning environment, better known by its acronym PLE (Personal Learning Environments), was born in 1977 as a result of research on the use of artificial intelligence for the generation of personal learning environments. Towards the decades of the 1980s and 1990s, computer-assisted collaborative learning made progress. Finally, thanks to the dissemination and exploration of ICT and social networks in the enrichment of the traditional virtual learning environment, the modern concept was approached in 2005 [6].

In order to clarify the meaning of the PLE construct, the study will be focused on the three basic cognitive processes that it facilitates: reading, reflecting, and informing, understanding all those tools that allow people to inform themselves, process said information, and share their particular views relating to others [6,19,20]. Thus, personal learning environments are the set of Web 2.0 tools and services, through which people can access, construct, manage, and share educational content to meet their personal, social, and professional learning needs [20].

Following the above, the PLE places the user at the center of all activity, giving him/her the freedom to decide on where: (a) he will access the information, (b) he will modify the information, and (c) he will interact with others [19,20]. Therefore, a PLE should be made up of, at least, three lines of tools and strategies: (1) those linked to information sources, including blogs, wikis, YouTube, repositories, search engines of databases, etc.; (2) those for reflection that consider environments or services for information transformation such as wikis, Google Docs, applications for infographics, posters, concept maps, among others; and (3) those of relationship that point at personal learning networks (PLN) that vary according to the purpose, being those relationship established by (i) communicative interaction with other people (LinkedIn, Facebook, etc.); (ii) learning through information objects (YouTube, SlideShare, Vimeo, Pinterest, etc.); (iii) share experiences and learning resources of interest through Twitter, Instagram, among others [6,20–22].
2.3. Digital Identity and Learning

Stereotypical patterns and personal strategies online follow mostly conscious decisions, whose fingerprints are the expression of an intercultural and intergenerational model mediated by digital devices, which affects the construction of DI [9,16,18].

It is important to understand identity is confirmed through the social acknowledgment process where the experience of our self in interaction with others is gradually nurturing and acquiring awareness in this interrelation.

The personal identity is built when people (users on the network) reveal themselves, but also, depending on the degree of availability with and among their contacts (presence), by the level of interaction and exchange of content with others (sharing), by the richness and interactivity with which it relates to others (relationships), by the intensity and complexity of the network of users communicated with each other (conversations), by the type of opinions about the social situation and of the contents that are published (reputation) and, finally, by the degree to which users are tagged or are part of communities (Groups) [9,23].

The multiple tools of Web and social networks encourage students to extend their PLE to PLN, so that socialization and collaboration are not only social but also academic as a result of interaction with their classmates and teachers, generating a symbiosis between DI and PLE [2,6]. To the extent that we know how young people create their DI, we advance jointly in the understanding of how they generate their social–cultural experiences and vice-versa [5,7,9,12].

From the selection of the set of tools and strategies that will constitute the PLE, a series of definitions will emerge that will cement the technological, social, pedagogical, ideological, thematic, professional, and personal path of the individual [24]. In such path, the self-regulation of individual learning supported with digital tools can account for: a more or less reflective user [22], an individual with or without a digital ecological consciousness (whether or not they are connected with the group and perceive said recognizable presence in the virtual environment), a consumer or producer of content (consumer), or individuals who participate as lurkers or posters on the Web [24]. There are multiple variants of users, but they all are connected to a way to learn and configure their PLE and DI [19].

So, the expression of DI points to transformations in the public and private, formal and informal space, as well as the face-to-face and digital space, which could affect the group interaction of students [25]. There is a dynamic interrelation between identity and learning [26], which has become an important component in 3D simulation environments (VLE3D) for skills training [27,28]. Consequently, the future professional who graduates will be inserted in a dynamic environment with a strong digital and technological influence, which will require them to be digitally autonomous to update their knowledge and skills in the face of the versatile current and future needs [2,29]. It must be recognized that the technological and social component that configures the PLE of each student allows them to control and self-manage their learning, and to contribute to their socialization process, necessarily influencing the construction of their digital identity and professional reputation [20].

Faced with this scenario, as teachers and designers of virtual classrooms and educational platforms, we seem to ignore this valuable information to create good pedagogical practices, educate in digital self-care and adequately integrate ICT into the on-site and virtual classroom.

Indeed, there are researches related to the understanding of professional identity linked to social networks [17], to the representation of social networks and digital privacy in European and Asian students [18], to the significant impact on exchanges produced within a professional digital network [30], digital skills of the student through their avatar in 3D simulation environments [27], management and positioning of the researcher in academic networks [31], visibility in spaces public and private in which the identity of young people is expressed and constructed [32], social networks and their influence on
the construction of youth identity [25], technological identity related to digital and academic gaps [33] or the identity linked to learning as an interdependent sociocultural process [26]. However, none of these investigations considers ID and PLE as a single and comprehensive whole, applied to a Latin American context.

3. Materials and Methods

The study will be developed within the logic of pragmatism, an alternative way to post-positivism and constructivism. It will reinforce pluralism and synergy aiming at a flexible research model. The research followed a mixed research paradigm (quantitative–qualitative). Therefore, this research will present a mixed methodological approach, by enhancing the understanding of the phenomenon under study that addresses a subject related to complex characterizations that involve human beings and our diversity. In this way, it should be noted to the approaches that, from the quantitative point of view, it is possible to access statistical procedures, descriptions, and logical–quantitative arguments.

Meanwhile, from a qualitative point of view, although it does not resort to variables, it admits collecting information whose analysis establishes categories that become complementary and flexible throughout the investigation itself. It allows obtaining results from an interpretive synthetic methodology [34].

Also, non-experimental, cross-sectional, and descriptive design investigations provide a good perception of the functioning of a phenomenon [35], as well as the general characteristics of the distribution of the problem and how the variables and elements that compose it behave. It allows in the future to generate hypotheses serving planning, that is, decision-making [36]. The purpose is to describe the sample in the most complete and detailed way possible and thus identify the elements that characterize it, therefore, a hypothesis was not raised and a general objective was taken to work around. It would allow the inclusion of the greatest amount of information for effective description and characterization.

3.1. Participants

This research considered a non-probabilistic or directed sample made up of 509 students (185 men and 324 women) who participated voluntarily.

To determine the size of the sample to be studied, the population of infinite or unknown size was considered and the formula for a proportion was used [37], obtaining 384 subjects. It was the minimum number allowed for a representative sample of the population. The students were contacted directly by the coordinators of their careers, their teachers, or respective student centers. They received an invitation letter via email.

In addition, the inclusion criteria for this research were: 1. To be 18 years old or older (legal age in Chile), and 2. To pursue a degree in face-to-face mode and during the day shift. The students who participated in the research were distributed within 21 of the 55 existing universities in the country. The geographical distribution of the participating institutions included the northern, central and southern areas of the country.

3.2. Instruments

This is a research study with a mixed methodological approach and the scientific method is made up of three basic characteristics: in the first place, its goal is a generalization and, in the second instance, it is based on a theoretical corpus. It finally wants to seek objectivity [38], and it is why the procedure design was followed to collect nomothetic data from quantitative studies through a questionnaire.

To properly collect the information, the logical sequence for the process of design was followed, writing and validation of the instruments proposed by Soriano-Rodríguez [39].

Instruments from previous research were evaluated through the use of the Ebsco Host database and Dialnet Plus. The documentary review and analysis methodology
(RAD) were followed, produced by the search, selection, organization, and analysis of primary sources [40]. After a review of the theoretical corpus and determining that they presented a different twist to the study in question, it was defined that the questionnaire would be the result of the fusion of two instruments.

An instrument made up of two parts was applied; the first one corresponded to a questionnaire developed by the research team, which allowed describing the digital identity of the students. The second corresponded to the CAPPLE questionnaire [41], which identified and described the PLE displayed by the students.

The “Digital Identity” questionnaire was made up of four dimensions. The first dimension, named “personal data”, addresses a series of contextualizing sociodemographic data.

The second dimension called “knowledge and attitudes towards digital identity” encompasses a set of indicators that give account from the theoretical handling of the basic constructs, linked to digital identity and reputation, as well as their perceptions and preferences regarding these. Meanwhile, the third dimension, “connectivity and use of devices”, is aimed at specifying the technological and technical scenario from which students access the Web.

Finally, the fourth dimension relative to the “definition of digital identity” expressed and manifested by students was taken as the theoretical substrate of the model proposed by Dr. Fanny Georges [16] on the construction of digital identity, considering the so-called declared identity, created and calculated.

The validation of the semantic and structural construction of the applied instrument was through expert judgment, using the nominal group technique [42]. This group was made up of 12 doctors belonging to European and Latin American universities, divided into two groups: (a) with publications on digital identity, and (b) with publications on educational technology in general.

All the experts spoke about the clarity, coherence, and relevance of the questions that made up the instrument, rating it from 1 to 4, with 1 means non-compliance with the criterion and 4, the highest level of compliance. Likewise, in front of each question a box was arranged in case, they required issuing a qualitative evaluation.

Based on the individual judgment reports, issued by each expert, a table of recommendations was prepared with the qualitative observations and the frequencies of the scores obtained. As a criterion to discard a question, two requirements should be met jointly:

- That the frequency obtained was less than 0.75
- That at least 0.75 of the observations of the panel experts indicate that it should be omitted.

According to the observations of the panel of experts and the elimination criteria, the questionnaire was affected by the reformulation of the wording of the headings and some questions, while others were merged.

For the psychometric validation of the instrument, the classical Test Theory establishes that Cronbach’s Alpha is an indicator of the internal consistency of the elaborated instruments that include items with a Likert scale and are validated by experts [43,44].

For the pilot test, the sample was defined according to the approach of Villarroel del Pino [45] and it was applied to 384 subjects, a number calculated considering an infinite study population size. The sample was taken at random using an online program to ensure the randomness of the data and the representativeness of the population.

As a result of its application, a Cronbach’s alpha of 0.872 was obtained for the questions associated with the declared digital identity, 0.913 for those associated with the created digital identity, and 0.916 for those associated with the calculated digital identity.

For the second part of the questionnaire, related to PLE, although the instrument on work and learning habits for future professionals—CAPPLE [41]—was used, it was also subjected to statistical validity; understanding that it was created for a population other
than the Chilean context. Semantically, the term “colleague” had to be adjusted, being replaced by “companion” since the population under study does not correspond to a working force. As a result of its application, a Cronbach’s alpha of 0.768 fulfilling what is expected for a descriptive instrument.

3.3. Procedure

The application process of both instruments lasted 3 months (November 2018 to January 2019) and was carried out using the Survey Monkey interview platform in its paid version. Before the participants received the survey, they were sent an informed consent letter. The data were coded and organized in a Microsoft Excel (2016) spreadsheet which was reviewed by independent groups to avoid errors [46,47]. Subsequently, the statistical analysis of the data was carried out.

3.4. Data Analysis

The interpretation of the results was through the analysis of the percentage distribution of the response frequencies in each statement. Significant differences were sought, considering groupings by gender, type of funding received by the school where they completed secondary education, and the area of training in which the student is currently studying.

In the grouping by gender, the classic binary concept was considered: man and woman. The grouping according to the type of funding received by the school included three groups: private school (financing by the families or tutors of the students), subsidized school (financing shared between the State and families or tutors of students), and public school (financing provided entirely by the State). Finally, three training areas were established: Health Sciences, Humanities, and Engineering Sciences.

Since the data are ordinal, non-parametric tests were used. In this case, these were the Mann–Whitney–Wilcoxon U test (95%; 0.05) to look for differences by gender, and the Kruskal–Wallis test (95%; 0.05) to look for differences by type of school financing and by training area. Non-parametric tests have the advantage that they should not fit any distribution. Therefore, they can be applied even if the parametric validity conditions are not met; that is, the data do not need a normal distribution. Additionally, non-parametric tests are more robust than parametric ones. In other words, they are valid in a broader range of situations since they require fewer conditions of validity, so it adjusts to the needs of this research based on the large amount and diversity of data collected [45,48].

In all cases, it was considered that there were significant differences between groups when the calculated p-value was less than or equal to 0.05. All calculations were performed using the Stata Version-14 program in Spanish.

3.5. Ethical Considerations

Before answering the instruments, all participants received an informed consent letter indicating the details of the research and their participation. In this research, the information confidentiality criteria established in the Helsinki declaration and the recommendations made by the ethics committee of the University of the Balearic Islands for its investigations were considered.

4. Results

To carry out the characterization of the displayed and manifest digital identity, the first step was to determine the data grouping criterion that will present the greatest number of significant differences according to the variables studied. Thus in the analysis according to the area of training, significant differences were found in 21 of the 104 statements that constitute the instrument applied. Next, according to the school funding source, significant differences were found in five of the statements. In the case of the analysis by gender, significant differences were found in 53 of the statements.
Given these results, the gender grouping was considered the axis for the data analysis and the elaboration of the characterization of the manifest and displayed identity.

Next, the analysis of the data grouped by gender corresponding to the most relevant questions focused on the description of the sample and the characterization of the digital identity is presented.

4.1. Sample Description

The sample consisted of 185 men (36.35%) and 324 women (63.65%). Regarding the ages at which the sample participating in the study fluctuates, although it ranges from 18 years to those over 27, the participants are mostly concentrated between the ages of 19 and 23, which accumulates 69.35% of the total of the surveyed subjects.

The study participants presented the following behaviors and habits associated with their relationship with digital environments.

As shown in Table 1, face-to-face is the environment where students state that they feel greater freedom of expression of their identity, followed by a mixed environment, and virtuality is far below. From a behavioral perspective, the above shows a state of balance between the digital and face-to-face environment that the subjects live.

Table 1. Dimension or environment where you feel freer to express your identity.

	In-Person	Virtual	Both of Them	p-Value
Female	52.47%	8.64%	38.89%	0.5847
Male	52.97%	12.97%	34.06%	

Table 2 shows that the distribution in the responses of both men and women shows a marked inclination towards a high similarity between their “self” inside and outside social networks. In both cases, more than 50% of the answers accumulate between options 8 and 10. This similarity reinforces what was found in the results of Table 1 where, once again, a balance is evidenced without the presence of a personality dichotomy. The individual’s digital and face-to-face world are reconciled.

Table 2. Degree of similarity between their “I” inside and outside social networks.

	1	2	3	4	5	6	7	8	9	10	p-value
Female	1.54%	0.62%	1.54%	1.23%	7.72%	7.10%	9.26%	24.07%	18.83%	28.09%	0.9378
Male	2.16%	0.54%	3.79%	2.70%	4.87%	3.78%	11.89%	27.03%	11.35%	31.89%	

Increasing scale, where 1 is the least similarity and 10 is the greatest similarity.

The smartphone is the device with the highest preference for men and women in the sample studied. Both the tablet and the desktop PC are displaced by the laptop and the smartphone (Table 3). Thanks to its portability and versatility, the smartphone encompasses the most relevant characteristics of the other devices mentioned. Its high use shows that ubiquity is a predominant characteristic in the subjects studied.

Table 3. Preferred technological device for interaction on the Internet.

Technological Device	0	1	2	3	p-Value
Laptop					
F	4.63%	19.44%	56.48%	19.45%	0.5598
M	9.19%	16.21%	48.65%	25.95%	
Smartphone					
F	8.95%	4.94%	8.33%	77.78%	0.4758
M	7.57%	4.86%	13.52%	74.05%	
Tablet					
F	57.40%	23.77%	11.73%	7.10%	0.2211
M	62.16%	24.86%	4.86%	8.12%	
Desktop PC					
F	47.52%	28.40%	12.35%	11.73%	0.1310
M	39.46%	34.05%	12.97%	13.52%	
Increasing scale, where 0 implies non-use and 3 the most used. F = female; M = male.

When analyzing Table 4, it can be established that the conversation method declared as preferred is face-to-face. However, this option has a distribution in the responses that shows a dichotomy in the study group. The responses were mainly distributed between options 5 (highest use) and 1 (least use), the same distribution, but with a lower intensity, in the cases of email and videoconferencing. Regarding the use of text messages and telephone, the result of the responses was close to a Gaussian bell distribution. Only in the case of the use of text messages were significant differences by gender, being women who presented a distribution in their responses with a tendency to greater use than men (p-value = 0.0137).

Table 4. Preferred method for conducting a conversation on a topic that is considered important.

Method	Sex	1	2	3	4	5	p-Value
In-person	F	42.28%	2.78%	3.71%	5.86%	45.37%	0.9278
	M	43.78%	4.32%	1.62%	2.16%	48.12%	
Text message	F	7.41%	19.44%	32.41%	26.54%	14.20%	0.0137 (*)
	M	14.05%	23.25%	28.65%	23.78%	10.27%	
Telephone	F	7.10%	28.40%	33.33%	22.84%	8.33%	0.4969
	M	3.78%	30.82%	31.89%	23.78%	9.73%	
Videoconference	F	24.07%	23.77%	13.58%	22.22%	16.36%	0.1387
	M	20.54%	17.84%	20.00%	21.62%	20.00%	
Email	F	26.54%	15.74%	10.19%	17.28%	30.25%	0.7894
	M	23.24%	17.31%	14.59%	14.05%	30.81%	

(*) Significance when the p-value < 0.05. Increasing scale, where 1 is the least used and 5 is the most used. F = female; M = male.

Table 5 highlights the fact that the greatest interaction on the Internet occurs when they are alone and far below when they are with friends. However, women in all cases reported greater activity, with significant differences by sex when it is in classes or with the family, where women reported having a greater interaction on the Internet than men.

Table 5. Situations you are usually in when you interact on the Internet.

with Friends	with Your Couple	with Your Family	In Class	Alone						
	Yes	No								
Female	50.93%	49.07%	20.99%	79.01%	26.85%	73.15%	43.21%	56.79%	90.74%	9.26%
Male	47.03%	52.97%	18.92%	81.08%	18.92%	81.08%	33.51%	66.49%	84.32%	15.68%
p-value	0.3979	0.5767	0.0439 (*)	0.0317 (*)	0.0464 (*)					

(*) Significance when the p-value < 0.05.

4.2. Characterization of Digital Identity

The digital identity that Chilean university students express and manifest was characterized by considering the theoretical model of Dr. Fanny Georges [14], which considers three dimensions: declared, created, and calculated.

Considering the above, the study participants presented the following characteristics associated with their relationship with the information delivered or generated on the platforms or websites.

In Table 6, it is possible to establish some relevant observations concerning the delivery of information requested on the Internet. When analyzing the data, in general terms, a distribution of the responses aims at values that imply a high frequency of action regarding each of the statements indicated there, except in the case of the declaration of geolocation and the use of avatars. Women are generally the ones with the highest values for the frequency of performing the actions consulted, but regarding the fact of declaring...
geolocation and the use of avatars, men show the greatest use. However, these two are less frequently performed by both men and women according to their statements.

Table 6. Frequency with which they usually deliver information when requested on a platform.

Information	1	2	3	4	5	6	p-Value
Submit only real name	F 7.10%	6.17%	2.16%	12.96%	16.67%	54.94%	0.0207 (*)
	M 4.86%	5.41%	8.65%	17.30%	21.62%	42.16%	0.0001 (*)
Submit only true last name	F 10.19%	8.64%	4.32%	12.65%	13.89%	50.31%	0.0001 (*)
	M 10.81%	9.19%	11.89%	20.54%	19.46%	28.11%	0.0001 (*)
Provide real name and surname	F 3.70%	4.63%	5.25%	9.88%	14.50%	62.04%	0.0001 (*)
	M 5.40%	5.95%	10.27%	16.76%	20.00%	41.62%	0.0001 (*)
Use a nickname	F 18.83%	15.12%	9.88%	21.30%	17.59%	17.28%	0.0415 (*)
	M 17.30%	10.27%	8.65%	17.84%	20.54%	22.70%	0.0357 (*)
Declare gender (sex)	F 2.78%	0.93%	2.16%	6.17%	7.40%	80.56%	0.0357 (*)
	M 2.71%	1.08%	3.78%	7.57%	12.97%	71.89%	0.0031 (*)
Declare date of birth	F 1.53%	3.09%	3.40%	9.26%	13.58%	69.14%	0.6905
	M 3.24%	1.62%	4.33%	13.52%	22.70%	54.59%	0.0016 (*)
Declare sexual orientation	F 14.51%	11.42%	6.48%	9.26%	8.64%	49.69%	0.0446 (*)
	M 10.27%	7.02%	6.49%	15.14%	15.68%	45.401%	0.0167 (*)
Include a recent and recognizable Face photograph	F 4.94%	5.86%	9.57%	12.04%	18.83%	48.77%	0.0079 (*)
in the profile	M 5.95%	10.27%	7.57%	16.76%	19.45%	40.00%	0.0001 (*)
Include a photograph where they meet other people	F 6.48%	8.02%	12.04%	18.52%	19.14%	35.80%	0.0001 (*)
	M 6.49%	13.51%	12.44%	23.24%	21.08%	23.24%	0.0001 (*)
Include a photograph of an avatar or character	F 39.20%	28.09%	6.17%	11.42%	6.79%	49.69%	0.0446 (*)
that represents me in the profile	M 25.95%	22.70%	11.89%	14.59%	13.52%	11.35%	0.0167 (*)
Declare geolocation/geolocation	F 34.88%	23.46%	14.50%	14.20%	5.56%	7.41%	0.0016 (*)
	M 25.41%	25.41%	12.43%	17.84%	10.81%	8.11%	0.0167 (*)

(*) Significance when the p-value < 0.05. Increasing scale, where 1 implies a very low frequency and 6 the highest degree of frequency. F = female; M = male.

The distribution of the responses that are observed in Table 6, points to a monotypic behavior, which in this case implies high transparency with sharing personal information on the network when it is requested. While both genders are highly transparent when it comes to their personal information, women are still much more transparent than men.

According to Table 7, women show a greater tendency to update their profile image, accumulating 56.17% of preferences between levels 4, 5, and 6, while men at those same levels only reach 44.32%. Men, on the other hand, have a greater tendency to accept friend requests from strangers and friends of friends, accumulating between levels 4, 5, and 6, 40.00% and 57.29% respectively. Women, accumulate 25.62% and 47.85% in the same items. Finally, it stands out that women have greater clarity of who sees their publications with a cumulative between levels 5 and 6 of 58.95%, while men reach 48.10%.
metrics of their publications, which are not shown as a motivating factor for women. Impact of their activity, compared to men, in almost all the situations raised, except to the table also shows the most motivating elements for the students surveyed. Men, in general terms, have a greater knowledge of the metrics associated with their activities on the Internet. This would imply that towards a low knowledge value, women have a greater tendency than men to know the number of published pictures (fotografías are the activities in which the students declare the highest degree of knowledge. F(*) Significance when the p-value < 0.05. Increasing scale, where 1 implies a very low frequency and 6 the highest degree of frequency. F = female; M = male.

Regarding the actions carried out on the net and in social networks, it is clear that the gender factor is decisive, given the distribution of responses. When analyzing said distribution, behavioral trends are evidenced rather than monotypic behaviors, that is, they tend towards high or low activity, with no marked behaviors.

Table 8 established that the number of followers and the number of published photographs are the activities in which the students declare they have the most knowledge. Women have a greater tendency than men to know the number of published pictures (p-value = 0.0003). Regarding the knowledge of the metrics, the distribution of women points to a low knowledge, and men present a distribution that is close to that of a Gaussian bell curve with a slight inclination towards the lowest values. This would imply that men, in general terms, have a greater knowledge of the metrics associated with their activities on the Internet.

Activity	1	2	3	4	5	6	p-Value
Number of followers/friends/subscribers	F 5.86%	11.42%	14.81%	15.12%	20.68%	32.11%	0.1605
M 5.95%	14.05%	11.89%	21.62%	22.71%	23.78%		
Amount of retweets/likes/shares	F 36.39%	22.78%	11.40%	8.23%	10.76%	10.44%	0.7993
M 37.28%	21.89%	11.24%	11.84%	8.28%	9.47%		
Number of groups in which you participate	F 17.90%	16.36%	20.98%	13.89%	14.20%	16.67%	0.8597
M 12.97%	22.16%	18.92%	16.22%	16.76%	12.97%		
Number of published photos	F 5.86%	11.11%	16.67%	17.28%	18.52%	30.56%	0.0003(*)
M 9.19%	16.76%	22.16%	17.84%	14.59%	19.46%		

(*) Significance when the p-value < 0.05. Increasing scale, where 1 implies a very low knowledge and 6 the highest degree of knowledge. F = female; M = male.

Knowing the impact of the published pictures and the number of followers is two of the most motivating elements for the students surveyed according to Table 9. The same table also shows that women show greater motivation to the extent that they know the impact of their activity, compared to men, in almost all the situations raised, except to the metrics of their publications, which are not shown as a motivating factor for women.

Activity	1	2	3	4	5	6	p-Value
Number of followers/friends/subscribers	F 11.73%	18.83%	17.59%	15.74%	15.12%	20.99%	0.8607
M 12.43%	16.21%	17.30%	20.54%	16.22%	17.30%		
Amount of retweets/likes/shares	F 24.38%	14.20%	13.89%	14.51%	15.12%	17.90%	0.1863
M 24.32%	17.30%	15.68%	18.92%	11.89%	11.89%		
In almost all the cases, women declare a high use of social networks and consulting tools, higher than the use declared by men. In the case of Instagram, women present a response distribution with a greater inclination towards what would be understood as high use (p-value = 0.0004), compared to men. In the case of YouTube, although it is men who tend to use it more than women (p-value = 0.0403), the tendency is not as significant as the one observed in the case of Instagram, where the difference between men and women is higher.

The information that shows the distribution of responses in Table 10 shows us that the degree of use and the frequency of use are associated. When an application or tool has a high degree of use, the frequency of access to it is high, that is, if there is evidence of utility, access is increased.

Table 10. Degree and frequency of use of social networks and tools available on the Internet.

Social Networks/Tools	Degree of Use	0	1	2	3	4	p-Value
Facebook							
F	7.73%	8.02%	24.38%	26.23%	33.64%	0.1742	
M	8.65%	11.89%	25.41%	24.32%	29.73%		
Instagram							
F	6.79%	2.16%	5.56%	12.03%	73.46%	0.0004 (*)	
M	9.19%	4.86%	9.73%	18.38%	57.84%		
WhatsApp							
F	0.93%	0.93%	3.09%	6.79%	88.26%	0.0002 (*)	
M	3.24%	3.24%	4.87%	12.97%	75.68%		
Spotify							
F	20.99%	4.63%	8.33%	13.89%	52.16%	0.0368 (*)	
M	24.32%	7.03%	10.81%	16.22%	41.62%		
YouTube							
F	2.78%	6.48%	18.52%	21.60%	50.62%	0.0403 (*)	
M	2.16%	5.41%	13.51%	18.92%	60.00%		

Social Networks/Tools	Frequency of Use	Never	Monthly	Fortnightly	Weekly	Daily	p-Value
Facebook		11.42%	11.73%	4.94%	19.44%	52.47%	0.9546
M	15.68%	8.65%	8.65%	22.70%	44.32%		
Instagram		11.73%	8.64%	6.17%	12.35%	61.11%	0.9094
M	14.59%	8.65%	6.49%	14.05%	56.22%		
WhatsApp		3.09%	4.62%	2.16%	2.78%	87.35%	0.7674
M	8.65%	4.86%	1.08%	8.11%	77.30%		
Spotify		34.88%	4.32%	2.78%	8.33%	49.69%	0.4154
M	31.89%	5.95%	5.41%	12.43%	44.32%		
YouTube		19.75%	4.94%	4.02%	26.85%	44.44%	0.1270
M	21.08%	4.33%	3.24%	19.46%	51.89%		

(*) Significance when p-value < 0.05. Increasing scale, where 0 implies non-use and 4 the highest degree of use. F = female; M = male.

The distribution of the responses according to Table 11 points towards a low frequency, both in men and women, in all cases. However, about the political and religious tendencies, men declare that they share this information more frequently than women (despite a trend towards a low frequency). The same happens when sharing the list of who is part of your custom groups within your networks.
Table 11. Frequency with which you usually define as “public” personal information on websites and/or social networks.

Information	F	1	2	3	4	5	6	p-Value
Who are my friends/followers/subscribers	M	8.12%	14.05%	11.89%	19.46%	21.62%	24.86%	0.1153
Who are part of a group on my social networks	M	11.89%	19.46%	14.59%	17.30%	21.08%	15.68%	0.0107 (*)
My political tendency	M	30.27%	25.95%	14.59%	17.30%	21.08%	15.68%	0.0102 (*)
My religious beliefs	M	30.27%	22.71%	14.05%	13.51%	7.57%	11.89%	0.0343 (*)

(*) Significance when the p-value < 0.05. Increasing scale, where 1 implies a very low frequency and 6 the highest degree of frequency. F = female; M = male.

Table 12 allows us to find that the frequency with which information is usually shared does not differ by gender. Its distribution presents a varied trend according to the type of information and context. Thus, sharing videos with and without a subject line created by others presents similar frequency distributions. When the creator is the same as the one sharing, there are also no differences in the distribution of frequencies whether the created material follows a thematic line or not.

Table 12. Frequency with which you usually share information on websites and/or social networks.

Information	F	1	2	3	4	5	6	p-Value
Videos/files/photos/links from others without a specific subject line	M	8.11%	11.35%	10.27%	22.16%	22.70%	25.41%	0.9032
Videos/files/photos/links of others with a specific thematic line	M	10.81%	15.14%	13.51%	23.78%	18.38%	18.38%	0.1219
Videos/files/photos created by you without a specific subject line	M	12.43%	18.92%	13.51%	20.54%	17.84%	16.76%	0.7128
Videos/files/photos created by you on a thematic line	M	14.59%	23.78%	10.27%	19.47%	20.54%	11.35%	0.7250
The files/videos/photos that you have created with your friends/colleagues	M	9.73%	15.68%	12.97%	29.73%	20.00%	11.89%	0.9114

Increasing scale, where 1 implies a very low frequency and 6 the highest degree of frequency. F = female; M = male.

In general terms, it is more frequent that they share information created by others than their own or from friends or colleagues, either with or without a defined thematic line.

4.3. Analysis of the PLE Dimensions

The results of the analysis of the CAPPLE instrument (PLE) are shown below. An interesting aspect to highlight is that in none of the dimensions analyzed were differences by gender found.
Regarding information management (Table 13), the distribution of the response shows us a clear trend towards behaviors that can be considered monotypic, where over 50% of the responses are concentrated in one or two levels of the Likert scale used in the instrument. This trend implies that, regardless of gender, the subject’s behavior in terms of information management is almost always the same both at the level of organization, decoding, and creation. In this case, the use of printed media for reading, and iconography (photographs and images) are the preferred and characteristic means of transmitting information for university students.

Table 13. Information management.

Organization of Information	Preference to organize and manage information	Actions	1	2	3	4	5	6	p-Value
I organize my information in folders (hierarchical)	F	1.23%	2.78%	8.03%	15.43%	17.90%	54.63%	0.6732	
M	3.24%	4.32%	5.95%	15.68%	18.38%	52.43%			

Decoding

Frequency of actions before documents of interest	Actions	1	2	3	4	5	6	p-Value
I read it on paper, and take notes on the same paper, I save the notes in my computer	F	3.09%	6.17%	7.40%	13.58%	20.54%	52.43%	0.6098
M	1.08%	3.78%	3.24%	20.54%	25.95%	45.41%		

Frequency of actions before videos and audios of interest

Actions	Preference to read and take notes on paper	Actions	1	2	3	4	5	6	p-Value
I listen/watch it online and take notes on paper	F	5.86%	5.56%	14.82%	17.90%	22.22%	33.64%	0.4345	
M	4.32%	8.12%	14.59%	17.30%	21.08%	34.59%			

Creation of Information

Frequency of actions taken to generate information	Actions	1	2	3	4	5	6	p-Value
I do not know how to do it	F	23.77%	17.59%	11.42%	12.65%	15.74%	18.83%	0.4818
M	21.08%	15.68%	11.35%	19.46%	14.59%	17.84%		

Increasing scale, where 1 implies a very low frequency and 6 the highest degree of frequency. F = female; M = male.

In this case (Table 14), we find ourselves towards monotypic behaviors again. The distribution of the responses indicates that, regardless of gender, peers and experts’ participation plays a fundamental role as a means of validating information about what the subject himself can confirm through the web.
Table 14. Managing the learning process.

Critical Thinking	Factors that add credibility to the information received	Information Validation						
	Source	1	2	3	4	5	6	p-Value
That my colleagues, friends and family recommend it to me	F: 3.40% 4.94% 13.58% 28.70% 25.31% 24.07% 0.9512	M: 2.16% 7.57% 12.43% 28.12% 24.86% 24.86%						
That it appears in a network recommendation system	F: 12.04% 16.05% 22.53% 22.84% 22.53% 28.70% 0.8533	M: 12.43% 17.84% 20.00% 21.62% 15.14% 12.97%						
That it appears in various resources (articles, books, videos) on the net	F: 1.85% 4.01% 7.72% 10.80% 10.80% 13.58% 0.8533	M: 2.16% 1.62% 2.70% 18.92% 28.11% 24.86%						
That it is recommended by an expert	F: 1.23% 1.54% 4.01% 10.81% 28.70% 45.99% 0.8155	M: 1.62% 1.08% 2.70% 13.51% 22.16% 58.93%						

Problem solving	Frequency of resorting to certain means of consultation in case of technical problems.							
	Consultation media	1	2	3	4	5	6	p-Value
	Networked media	F: 6.17% 10.80% 10.80% 26.54% 25.01% 20.68% 0.6194	M: 11.89% 6.49% 10.81% 23.24% 22.16% 25.41%					
	Network video tutorials or slides	F: 4.94% 3.70% 7.41% 21.60% 25.62% 36.73% 0.4437	M: 3.78% 3.78% 8.11% 15.68% 28.63% 40.00%					
	Colleagues and friends contacting by mail or private messages	F: 4.94% 4.63% 9.26% 16.98% 26.54% 37.65% 0.9763	M: 4.86% 7.03% 7.57% 18.38% 25.40% 36.76%					

Frequency of resorting to certain means of consultation in case of doubts during the process of developing a task.

Consultation media	1	2	3	4	5	6	p-Value
Colleagues and friends in-person	F: 0.00% 0.93% 1.85% 12.65% 28.40% 56.17% 0.8527	M: 0.00% 1.63% 4.86% 9.19% 32.97% 51.35%					
Tutorials in network video or in slide shows	F: 4.63% 6.17% 10.81% 19.44% 26.23% 32.72% 0.4965	M: 2.70% 7.02% 10.27% 16.22% 25.95% 37.84%					
Colleagues and friends contacting by mail or private messages	F: 4.63% 7.41% 8.02% 14.82% 22.53% 42.59% 0.7545	M: 4.32% 7.03% 7.03% 14.05% 24.86% 42.71%					

Increasing scale, where 1 implies a very low frequency and 6 the highest degree of frequency. F = female; M = male.

5. Discussion

In this section, the main aspects that could be observed in the data presented and their implications within digital identity characterization will be discussed. A division into sections was made to facilitate the process of discussion and critical analysis.

The first aspect to discuss is related to the planes of expression of identity. Table 1 shows that students feel as free to be in presence as in virtuality, reinforcing the conception that for them the duality of the self is not necessary, since the fundamental thing for individuals is to inhabit a space, coinciding with what is stated by Belli et al. [49]. This aspect is consistent with the results of Table 2 on the fact that they do not make a difference between themselves in digital media and presence, being able to infer that the expression of their personality and their life from the available information on the Internet reflects their reality. This idea is consistent with the results obtained in Spanish university students, who state that they do believe that they are themselves on social networks, showing a correspondence between their real self and that of the Web [12].

So, those who are trained with the presence of the Internet in their lives, would not see the need to create a digital self that differs from their presence, that is, the subjects
studied show in digital media what they are actually living. This coincides with the approaches of Çötelı [50].

Regarding attitudes towards digital identity concerning interactions, it is interesting to see in Tables 3 and 4 that, despite declaring a high use of mobile phones, the preferred method for discussing relevant issues, according to the subject’s criteria is face-to-face communication.

At the communicative level, despite feeling comfortable in both the virtual space and in the presence, and the great development of digital communication media, videoconferences and emails are not a priority choice; although with the multiplicity of functions of cell phones, videoconferences and emails are gaining space and generating dependence [51,52].

Regarding the moment in which they intensify their interaction on the Internet, considering that the most used device is the cell phone, whose omnipresence urges to affect the quality of the communication process, Table 5 shows that Chilean university students selectively choose when to increase their actions.

Phubbing is understood as looking at and using a device to connect to the Internet while interacting with others. Although it is a behavior declared by the students of the sample, the data show that it is an action associated with the degree of intimacy, closeness, or importance assigned to the individual(s) with whom they are interacting. This action explains that when they are with their partners or family, they avoid interacting from their cell phone, unlike when alone, with friends and, even participating in classes. The greater the closeness or intimidation with whom is having a conversation, the less the phubbing intensity.

In the study by Vander-Abeele et al. [53] it was established that people perceive less intimacy in the conversation when the couple used the cell phone and that in 30% of the conversations where people did use the telephone, they included their interlocutor in the interaction through the action of sharing the screen.

This perception leads to thinking that this new generation has begun to see the non-use of telephones as a way of expressing to others the importance that they represent for them and, in the case of using their devices, using them as a means of interaction more than a form of isolation. That is to say, it could be considered in this new generation that belittlement is a form of violence by considering the rest of individuals not important or that they deserve full attention, rather than the result of an addiction.

This possible paradigm shift should make us rethink the level of trust regarding the information that was found from young people on the digital plane by manifesting this online–offline hybridization. In fact, Soomro et al. [54] in their study address the need that individuals present to be always connected, as a constant in university students, coinciding with the research of Hernández-Orellana et al. [55] whose sample does not make differences between their face-to-face self and their digital self. Neither is influence on the choice of type or connection time, and preferred device according to the training area. However, there is evidence in their concept of digital reputation and its management. Additionally, Oviedo-Trespalacios et al. [56] point out that such constant communication in digital media is given thanks to the omnipresence that mobile phones deliver.

The second aspect to discuss leads to the characterization of digital identity (Tables 6–12). Regarding the first dimension that is activated when entering the digital sphere, giving life to an individual on the Web with their statement, high veracity of the information provided by Chilean university students is displayed, being easily identifiable on the Web (Table 6), which is consistent for the high correspondence which they make explicit between their self in networks and the real person (Table 2).

Although the identity authentication data delivery was considered personal or private information, the study reveals a substantial change and invites us to a more careful reflection regarding the public and private sphere. In this matter, the work carried out by Holicza et al. [57] concluded that people who have grown up with the Internet are more likely to share personal and confidential information online. This fact is consistent with
the findings of this study where both men and women declared to authenticate with their real name, gender (male, female), sexual orientation, marital status, and date of birth regularly in digital media.

A possible explanation for this high preference to present and register on the Internet with real data is related to the argument that, just as online and offline lose meaning, the same would happen with public and private, generating a hybridization of the public/private [58], in which the social is privatized and the private is socialized [59]. This argument leads to the fact that Web 2.0, together with all the variants that it can take, allow breaking the border between the private and the public, giving life to the Spanish concept “éxtimo”. This term combines the words intimate and exposed, showing the paradox of exposing people’s privacy in the global showcases of the Internet [60].

Another possible explanation would be the technological advance, which allows geolocation and mobility in the network (mobile phones). University students have been compelled or, better said, invited to an omnipresence [13,16]. Now, to achieve this omnipresence, being truthful becomes very important since it facilitates their participation in multiple spaces.

Regarding the delivery of first-level classified information (Table 6), it is appreciated that women prefer using their full real name and share photos where they are identifiable, unlike men, so our research agrees with the study by Huang et al. [61] and Shepherd [62]. In short, men and women build their digital identity differently, pointing out that women, although they share more information and are more inclined to show themselves on social networks, are mostly concerned with configuring the privacy of their sites, by thinking that it may affect them, personally and professionally in the future.

The identity construction differentiated by gender, which is visualized in this research, is consistent with the study carried out by Qotb [30].

This also identifies the new social movements such as #Viajosola in 2015 and #NiUnaMenos in 2017. Women saw that being identifiable and traceable can be a useful tool for protection and support in a world that is often dangerous for them, enhancing their identity and ideological position of equality before society. In this scenario, the Network has become a safety zone and positive reinforcement for women [63–66].

According to what is stated regarding the identity construction differentiated by gender, it can be inferred that certain stereotypical this study indicates that in the construction of professional digital identity, the deployment of linguistic techno-discursive processes linked to a conversation is as important in networks as personal visual linguistic processes. Both processes favor the social identity of the professional, which is reinforced by what is stated in the responses of the women participating in the sample gender behaviors are maintained in digital media that reproduce or extend the social dynamics of the presential space [67]. Thus, in the case of men in the study, the use of nicknames or aliases and avatars is a common behavior among them, so if in the face-to-face world they are recognized with a certain nickname (alias), they usually lead that alias to digital media, especially, if they participate in online video games where their use is a requirement. Our study coincides with the trend manifested by Malaysian youth [68], who used an avatar and aliases to represent themselves; typical behavior of the world of online videogames [69].

It is interesting to note that stereotyped behaviors impact the social connection in such a way that they become so toxic for female gamers that they are forced, out of fear, to mask their gender [70]. The fact that women express a greater preference for being accompanied could be another stereotype associated with female profiles, which would be interesting to study, to determine if it is only associated with wanting to be sociable and popular or doing so for safety due to male harassment [71].

The use of animal photographs as a representation of the personal profile was the least used option, where no differences were found by gender, although men presented a slightly higher use. This probably has the same origins as that of an avatar, since certain networks or groups, such as environmental groups or animal lovers, showing photos of pets is a valid form of identification.
Regarding the created and calculated digital identities, it will be analyzed as a whole, since they are directly related and random, it is not necessary to divide digital identities because the identity is one and is not dissociated and is in these dimensions where it is highly perceived. Given that in this sphere there is a significant difference between how women and men express themselves, it is again suggested that stereotyped behaviors in the face-to-face environment are extensive to the digital level (Tables 7–12).

It is seen that women have a greater tendency to update their profile image. They only accept friendships from well-known people, so they tend to tag their friends in their publications and to like, without commenting mostly, everything that calls their attention without a specific thematic line (Tables 7 and 12). However, they take care of the visibility of what they publish so that they have greater clarity of who sees their publications. They also show a greater motivation to participate to the extent that they know the impact of their activity, expressed with special attention by the number of photographs published by them (Tables 7–9). Self-care and visibility protection behaviors coincide with the non-declaration of their geolocated location (Table 6), their political tendency, opinions about politics, or their religious beliefs (Table 11). Moreover, women state that they have a high use of social networks and Web tools, WhatsApp and Instagram being the greater inclination media for daily use (Table 10).

Women’s preferences and behaviors are explained because the use of social networks is associated with the fact that these sites allow finding social support and reconnection with real friends and face-to-face social networks [72], valuing the correspondence between the published images and their veracity [73]. Therefore, this research coincides with the studies carried out and shows that it is chosen to publish in a protected medium and where personal purposes are not freely exposed to public opinion [74]. This conception is also extended to the fact that they inform their marital status, gender (male, female), and age more explicitly, in contrast to their sexual orientation.

For their part, men are less likely to update their profile image but tend to accept friend requests from strangers and friends of friends. In contrast, they rarely tag friends or acquaintances on the Web or social networks (Table 7). They declare a high frequency of giving “likes” by sharing and commenting—without a specific thematic line—everything that is of interest to them, unlike women who only “like” and share without commenting. Men also show less interest in knowing the impact of the publication of their photographs, as well as the number of their followers.

However, men do pay more attention to the knowledge of the metrics of their publications, this is a factor that motivates their participation (Tables 7–9 and 12); although this means declaring its geolocated location (Table 6) and disseminating its information, status and images publicly [12]. These results are consistent with the Israeli study on attitudes towards online privacy and anonymity, visualizing a digital separation between men and women regarding the protection of their digital identity, evidencing a lower level of self-efficacy in this sphere in men, despite the higher level of technological literacy they have compared to women [75].

Regarding the belief system, men, although they tend to declare their political tendency and religious conviction, are not as likely, to make their age, gender, and marital status explicit on websites and networks, as women (Table 11). These results are explained because men see participation in social networks as an instance that allows them to enhance their social capital, so they tend to have more friends, show achievements, and not worry so much about publishing photos with a recognizable face or managing their privacy [76], which makes their digital identity much more susceptible to being affected.

Regarding the use of social networks and Web tools, men, although they use WhatsApp and Instagram daily, just as women, show a lower degree of activity frequency. There is just a difference regarding Youtube since it is indicated to be men’s preferred participation channel.

Finally, from the perspective of the PLE configuration (last aspect to be discussed), it can be deduced from the data collected in Table 13 that to manage the information Chilean
university students prefer to organize it hierarchically in folders, following an analog logic. This organization implies that to decode it, they download it, print it on paper, underline and take notes on paper, which are then transferred to a text document and saved on their PCs.

If the information comes from a video or audio of their interest, students frequently state that questions or doubts will arise and they will try to relate this information to what they already know, keeping the option of taking notes on paper [19].

To create information, the university students make explicit that they publish the information on the social network that they frequently use (Table 13), which would be focused on Instagram, Facebook, YouTube, WhatsApp, or Spotify (Table 10). It is interesting to note that 33.79% of the student’s state that they do not know how to share information and more than 50% state that they do not use tools or a specific tool according to the type of information, so the procedure will always be the same to create it.

Despite how they organize and decode the information (Table 13), it is most likely that their creations are mainly iconic productions linked to photographs or images for social networks and, to a lesser extent, videos for YouTube, which is the most visited website by young people according to what they declare (Table 10). Texts, although they are a product that requires less complex digital skills, are relegated to third place.

Regarding the management of the learning process linked to critical thinking (Table 14), the sample declares that the factors that add credibility to the information they receive are: (1) expert recommendations, (2) articles, books, or videos appearing in various resources on the Internet, and (3) colleagues, friends and family as a reliable source to consider valid information. The bibliographic managers who recommend information lack the attention of Chilean university students.

The most used medium to solve technical problems related to the learning process will be YouTube since they will see tutorials on the Internet (Tables 10 and 14). Secondly, they will contact colleagues or friends by mail or private messages and, thirdly, they will consult the media on the network (Table 14).

To clarify doubts while developing a job, they will turn to their colleagues and friends with high frequency, first in-person and, secondly, by contacting them by email or private messages through WhatsApp or social networks such as Instagram or Facebook. Again, the third option to consult doubts will be YouTube to see tutorials (Tables 10 and 14).

When relating the information in Tables 13 and 14 with the information in Tables 7–12, it is evident that the types of PLE displayed and manifested by Chilean university students, as well as the construction of their DI, reflect basic digital skills with a reduced repertoire of technological tools.

Young university students interact, given their precarious digital skills, in an unfavorable scenario in terms of producing valuable or complex content that implies a more elaborate digital treatment through web applications, which limits their participation in the network.

In this way, we find ourselves in front of lurkers, participants in the network who read and observe without making their own retribution, and posters, subjects that share information online beyond the “like” and a minimum comment but do not reach the level of a prosumer who produces and distributes, providing new information [24] and building a favorable digital identity and reputation.

This research coincides with the findings of the study carried out with Turkish students, where their PLEs were useful environments in easy access to content and interaction with other users, allowing learning. However, these students were not focused on managing or building more learning, becoming passive actors [20], and adjusting the study population to observers rather than to publishers and prosumers.

Therefore, it can be corroborated that production is closely related to the degree of awareness of the activity displayed and manifested by the user [5]. That is, Chilean university students show low awareness of social activity where the metrics, the number of people who will attend events or accept invitations to groups created by them is low, their
production is likewise low and linked to basic digital skills, focusing on iconic productions (photographs and videos) and, to a lesser extent, text. Hence, some digital contents of the multimedia and hypermedia type are more frequent in those individuals who are highly aware of their activity and do not exceed 20% of the population under study. This result is linked to the fact that this type of information production requires both the management of digital tools and the deployment of higher-order thinking tasks. It implies that students process the information learned and can design, formulate, and create new information [77].

According to the findings in this research, it is possible to rethink the users and future professionals who are graduating and who will soon be inserted into the professional world, whose media literacy skills necessary to produce digital artifacts are precarious [17]. However, it also urges that we understand the phenomena of digital technologies from the individual and society since the opportunities and/or inequalities will be given by the capacity that people have as users to adapt to a society of accelerated changes, in which the media and digital culture are diversified and acquire a predominant role. So, each selfie, like, live broadcast, post, or other shared production on the Web will contribute to the construction of the global identity of cyberspace and, therefore, to the digital identity of each user [5, 49, 77].

The implications of this research from an academic point of view have allowed: (1) to carry out the integration of the literature regarding DI and PLE; (2) contrast the results with the Latin American, European and Asian realities; (3) to provide, from a theoretical and empirical point of view, a comprehensive look at the construction of DI and PLE and how they are interdependent, affecting each other.

The novelty of this research aims to show, from a comprehensive perspective, how web 2.0 tools affect not only the university students’ social and academic field but also in the construction of their DI. When only the construction of the DI is analyzed, differences by gender are evident, but when the analysis is extended to academics, these differences disappear, which marks a change concerning the studies published so far, where a gap in skills is declared between men and women, a situation that did not occur in this case. The crossing of information carried out in this research marks a new vision of the study in digital competencies and, especially, in managing the DI of individuals and its incidence in their professional training process from a new perspective where there is no gap between men and women.

6. Conclusions

The displayed and manifest digital identity of Chilean university students is characterized by being highly transparent in terms of the delivery of personal information without making differences between face-to-face and virtual identity with a unique “I”.

These Chilean university students manifest a low awareness of their digital identity linked to their “fingerprints” like other young people in Latin America and Europe. Although, they are characterized by being aware of the frequency of publication in the five networks/tools that they commonly use in their daily lives, showing a high awareness of activity relative to their calculated DI, they do not manage their created DI, neglecting visibility of their activities and availability of their personal data, making them easily identifiable and vulnerable on the Internet. From the educational aspect, they manage the information and the learning process according to an analog/face-to-face logic that, together with their low awareness of activity and digital competencies, implies a lower production of content, placing them rather as observers.

Finally, Chilean university students show a hybrid academic digital identity that combines the face-to-face-digital, public–private, formal–informal spheres, blurring the planes of action between them, but maintaining the stereotypical behaviors of gender. This could lead us to think that generation Z, to which young Chilean university students belong, is in an educational context where technologies 3.0 and 4.0 are the constant, allowing the existence of e-Learning and m-Learning training processes. However, the pandemic that began in 2019 showed that Chilean and Latin American teachers, in general,
do not have the necessary digital skills and competencies to carry out teaching and learning processes in digital environments [78–80].

Chile, like other Latin American countries, is just laying the necessary foundations to move from e-learning 2.0 to d-Learning or digital learning. Due to this, during the pandemic, instead of talking about an e-Learning training process, the academic community preferred to talk about remote education or emergency remote education supported with technology. At this point, it could be affirmed that there is a digital divide that distances Latin American countries from the educational process with technology experienced by young North American, Asian, and European university students, whom this new generation of Latin American professionals will compete against at some point, within the globalized labor market.

To achieve an effective transition in digital skills, it is necessary to consider both the characteristics of digital identity and the shortcomings in the use of digital tools, to help students develop a digital identity more in line with the labor market global to which they must face. Likewise, as teachers, it is necessary that we re-signify the learning spaces, taking a look at what the student actually uses in their day-to-day life. Without limiting ourselves to one-dimensional areas: face-to-face vs. digital; public vs. private and formal vs. informal and re-considering the way we how digital tools are integrated and thought; opening ourselves to create new learning opportunities.

Also, some limitations of this research must be mentioned such as the fact that it was a cross-sectional study and the sample was intentional per volunteer subject and not at random, which implies that the results obtained are limited to the sample studied and describe their behavior in a given moment. Furthermore, it was impossible to achieve gender parity, so the number of women was greater than the number of men. Despite these limitations, the sample used can be considered as large, which improves its ability to represent reality [37,81], allowing these results to be considered as an approximation to those that could be obtained in a random sample study with gender parity coverage.

From a practical point of view, the conclusions of this research provide Higher Education Institutions with evidence that allows progress towards a comprehensive, solid, and coherent training with the digital skills required by a university professional who graduates in a highly digitized world, demystifying the idea that our university students, being digital natives, are skilled and handle a wide range of technological tools.

Given the above, it would be advisable to advance in future studies that consider knowing the protection measures that university students know and apply to protect their data and manage their digital identity or whether the PLEs and the way of constructing the digital identity Post-pandemic varied.

Author Contributions: Conceptualization, M.H.-O. and Á.R.-V.; methodology, M.H.-O. and Á.R.-V.; software, Á.R.-V.; validation, M.H.-O., A.P.-G. and Á.R.-V.; formal analysis, M.H.-O. and Á.R.-V.; investigation, M.H.-O.; resources, M.H.-O.; data curation, M.H.-O.; writing—original draft preparation, M.H.-O.; writing—review and editing, M.H.-O. and Á.R.-V.; visualization, M.H.-O. and Á.R.-V.; supervision, A.P.-G.; project administration. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
References

1. Castro, P.; González-Palta, I. Percepción de Estudiantes de Psicología sobre el Uso de Facebook para Desarrollar Pensamiento Crítico. Form. Univ. 2016, 9, 45–56, doi:10.4067/S0718-50062016000100006.

2. Basantes, A.; Naranjo, M.; Gallegos, M.; Benítez, N. Los Dispositivos Móviles en el Proceso de Aprendizaje de la Facultad de Educación Ciencia y Tecnología de la Universidad Técnica del Norte de Ecuador. Form. Univ. 2017, 10, 79–88, doi:10.4067/S0718-50062017000200009.

3. Magro, C. Educación Conectada en Tiempos de Redes, 1st ed.; Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 2016; p. 289.

4. Sevilla-García, M.; Quicues-García, M.; González-García, J. Posibilidades Ubicuas del Ordenador portátil: Percepción de Estudiantes Universitarios Españoles. Comunicar 2016, 46, 87–95, doi:10.3916/C46-2016-09.

5. Abdallah, S. Digital Identity and Reputation in a Virtual Practice Network-Insights Using Linguistic Features. Int. J. Collab. 2018, 14, 1–23, doi:10.4018/ijieC.2018100101.

6. Dabbagh, N.; Castaneda, L. The PLE As a Framework for Developing Agency in Lifelong Learning. Educ. Technol. Res. Dev. 2020, 68, 3041–3055, doi:10.1007/s11423-020-09831-z.

7. Núñez, J. Disponibilidad de los recursos tecnológicos e internet con fines educativos en tiempos de crisis: Caso asignatura “Histotecnotología I”. Educweb 2020, 14, 220–235.

8. Livingstone, S. On the Mediation of Everything: Ica Presidential Address 2008. J. Commun. 2009, 59, 1–18, doi:10.1111/j.1460-2466.2008.01401.x.

9. Mendez, M.C. La construcción de la identidad lingüística de Santiago Abascal en Twitter. Rev. Estud. Discurso Digit. (REDD) 2020, 3, 52–79, doi:10.24197/redd.3.2020.50-77.

10. Pérez, M. Introducción. Identidad Digital. Telos Cuad. Comun. Innov. 2012, 91, 55–58;

11. García, A. Identidades y Representaciones Sociales: La Construcción de las Minorías. Nómadas Crít. J. Soc. Jurid. Sci. 2008, 18, 1–12.

12. Castañeda, L.; Camacho, M. Desvelando Nuestra Identidad Digital. Prof. Inf. 2012, 21, 354–360, doi:10.3145/epi.2012.jul.04.

13. Sixto, J.; Payo, M. El Millennial Cyborg: La dicotomía de la Identidad. Telos: Cuadernos de Comunicación e Innovación, 2018, Available online: https://telos.fundaciontelefonica.com/milenial-ciborg-la-dicotomia-la-identidad/ (accessed on 1 March 2021).

14. Georges, F. Who Are You Doing? Declarative Acting, and Calculated Identity in Web 2.0. In Proceedings of the Actes de la Conférence Internationale 2009, Laval, France, 22–26 Avril 2009; pp. 22–26.

15. Georges, F. “A l’image de l’Homme”: Cyborgs, Avatars, Identités Numériques. Temps Média 2012, 18, 136–47.

16. Georges, F. Identités Virtuelles: Les Profils Utilisateur du Web 2.0; Questions Théoriques: Paris, Francia, 2010.

17. Brandtzæg, P.B.; Chaparro-Dominguez, M.-Á. From Youthful Experimentation to Professional Identity: Understanding Identity Transitions in Social Media. Young 2020, 28, 157–174, doi:10.1177/110308819834836.

18. Feher, K. Digital Identity and the Online Self: Footprint Strategies–An Exploratory and Comparative Research Study. J. Inf. Sci. 2019, 47, 1–14, doi:10.1177/0165551519879702.

19. Torres, R.; Edirisingha, P.; Canaleta, X.; Alsina, M.; Monguet, J.M. Personal Learning Environments Based on Web 2.0 Services in Higher Education. Telemat. Inform. 2019, 38, 194–206, doi:10.1016/j.tele.2018.10.003.

20. Şahin, S.; Uluyol, Ç. Preserve Teachers’ Perception and Use of Personal Learning Environments (PLEs). Int. Rev. Res. Open Distance Learn. 2016, 17, 141–161, doi:10.19173/irrodl.v17i2.2284.

21. Turgut, Y.E.; Aslan, A. Factors affecting ICT integration in TURKISH education: A systematic review. Educ. Inf. Technol. 2021, 1, 1–24, doi:10.1007/s10639-021-10441-2.

22. Guodong, W.; Xinghua, S. Building a Personal Learning Environment with IFTTT Service. J. Softw. Eng. 2016, 10, 431–436, doi:10.3923/jse.2016.431.436.

23. Kietzmann, J.; Hermkens, K.; McCarthy, I.; Silvestre, B. Social media? Get serious! Understanding the functional building blocks of social media. Bus. Horiz. 2011, 54, 241–251, doi:10.1016/j.bushor.2011.01.005.

24. Nguyen, T.M. Four-Dimensional Model: A Literature Review on Reasons Behind Lurking Behavior. Available online: https://www.emerald.com/insight/content/doi/10.1108/VJKMS-10-2019-0168/full/html (accessed on 1 March 2021).

25. Georgalou, M. I Make the Rules on My Wall: Privacy and Identity Management Practices on Facebook. Discourse Commun. 2016, 10, 40–64, doi:10.1177/175048131660304.

26. Zurlinden, P.A. La Identidad y el Aprendizaje: Una Perspectiva Social. Multidisciplin 2010, 6, 5–13.

27. Esteve-González, V.; González, J.; Gisbert, M.; Cela-Ranilla, J. La Presencia Social en Entornos Virtuales 3D: Reflexiones a Partir de una Experiencia en la Universidad. Pixel-Bit 2017, 50, 137–146, doi:10.12795/pixelbit.2017.i50.09.
86. Huang, J.; Kumar, S.; Hu, C. Gender Differences in Motivations for Identity Reconstruction on Social Network Sites. *Int. J. Hum. Comput. Interact.* 2018, 34, 591–602, doi:10.1080/10447318.2017.1383061.

87. Shepherd, R.P. Men, Women, and Web 2.0 Writing: Gender difference in Facebook Composing. *Comput. Compos.* 2016, 39, 14–26, doi:10.1016/j.compcom.2015.11.002.

88. Piñeiro-Otero, T.; Martínez-Rolán, X. Los Memes en el Activismo Feminista en la Red. #ViajoSola como Ejemplo de Movilización Transnacional. *Cuad. Inf.* 2016, 39, 17–37, doi:10.7764/cdi.39.1040.

89. Trott, V. Networked Feminism: Counterpublics and the Intersectional Issues of #MeToo. *Fem. Media Stud.* 2020, 1–18, doi:10.1080/14680777.2020.1718176.

90. Rosales, M.B. Ciberactivismo: Praxis Feminista y Visibilidad Política en #NiUnaMenos. *Pléyade* 2018, 22, 63–85, doi:10.4067/s0719-36962018000200063.

91. Sádaba, I.; Barranquero, A. Las redes Sociales del Ciberfeminismo en España: Identidad y Repertorios de Acción. *Athenaea Digit.* 2019, 19, 2058, doi:10.5565/rev/athenea.2058.

92. Buffardi, A.; Calzone, S.; Mazza, C.; Taddeo, G. What Do Italian Students and Teachers Ask About Digital? Data and Reflections From Schools Participating in National Operational Programs. *Ital. J. Sociol. Educ.* 2021, 13, 95–133, doi:10.14658/pupj-ijse-2021-1-5.

93. Tng, S.T.; Pau, K. Identification of Avatar Mediates the Associations Between Motivations of Gaming and Internet Gaming Disorder Among the Malaysian Youth. *Int. J. Menthal Health Addict.* 2020, 18, 1–16, doi:10.1007/s11469-020-00229-9.

94. Beranuy, M.; Fernández-Montalvo, J.; Carbonell, X.; Cova, F. Caracteristicas del Uso de Internet en los Cibercafés. *Ter. Psicol.* 2016, 34, 5–14.

95. Vella, K.; Klarkowski, M.; Turkay, S.; Johnson, D. Making Friends in Online Games: Gender Differences and Designing for Greater Social Connectedness. *Behavior Inf. Technol.* 2020, 39, 917–934.

96. Wiens, B.I.; MacDonald, S. Feminist Futures: #MeToo’s Possibilities as Poiesis, Techné, and Pharmakon. *Fem. Media Stud.* 2020, 21 (2), 1–17, doi:10.1080/14680777.2020.1770312.

97. Clark, J.L.; Algoe, S.B.; Green, M.C. Social Network Sites and Well-Being: The Role of Social Connection. *Curr. Dir. Psychol. Sci.* 2017, 27, 32–37, doi:10.1177/0963721417730833.

98. Ahadzadeh, A.S.; Pahlevan Sharif, S.; Ong, F.S. Self-Schema and Self-Discrepancy Mediate the Influence of Instagram Usage on Body Image Satisfaction Among Youth. *Comput. Hum. Behav.* 2017, 68, 8–16, doi:10.1016/j.chb.2016.11.011.

99. Burrow, A.L.; Rainone, N.A. How Many Likes did I Get?: Purpose Moderates Links between Positive Social Media Feedback and Self-Esteem. *J. Exp. Psychol. Soci.* 2017, 69, 232–236, doi:10.1016/j.jspsoc.2016.09.005.

100. Weinberger, M.; Zhitomirsky-Geffet, M.; Bouhnik, D. Sex Differences in Attitudes towards Online Privacy and Anonymity among Israeli Students with Different Technical Backgrounds. *Inf. Res. Int. Electron. J.* 2017, 22, n4.

101. Huang, W.L.; Liang, J.C.; Tsai, C.C. Exploring the Relationship between University Students’ Conceptions of and Approaches to Learning Mass Communication in Taiwan. *Asia Pac. Educ. Res.* 2018, 27, 43–54, doi:10.1007/s40299-017-0364-z.

102. Reyna, J.; Hanham, J.; Meier, P. A Taxonomy of Digital Media Types for Learner-Generated Digital Media Assignments. *E-Learn. Digit. Media* 2017, 14, 309–322, doi:10.1007/s40299-017-7752973.

103. Giannini, S. Covid-19 y Educación Superior: De Los Efectos Inmediatos al Día Después. *Rev. Latinoam. Educ. Comp.* 2020, 11, 1–57.

104. Kumar Basak, S.; Wotto, M.; Bélanger, P. E-learning, M-learning and D-learning: Conceptual definition and comparative analysis. *E-Learn. Digit. Media* 2018, 15, 191–216, doi:10.1777/2042753018785180.

105. Ruiz-Fuenzalida, C. Educación virtual y enseñanza remota de emergencia en el contexto de la educación superior técnico-profesional: Posibilidades y barreras. *Rev. Saberes Educ.* 2021, 6, 128–143, doi:10.5354/2452-5014.2021.60713.

106. Alvarado-Martínez, H.; Retamal-Pérez, L. Dificultades de Comprensión del Teorema Central del Límite en Estudiantes Universitarios. *Educ. Mat.* 2012, 24, 151–171.