Use of glucagon-like peptide-1 receptor agonists among individuals on basal insulin requiring treatment intensification

M. E. Trautmann¹ and J. Vora²,³

¹Diabetes Research, Hamburg, Germany, ²Diabetes and Endocrinology, Royal Liverpool University Hospital, Liverpool, UK and ³AstraZeneca, Cambridge, UK

Accepted 21 February 2018

Abstract

As Type 2 diabetes progresses, treatment is intensified with additional therapies in an effort to manage hyperglycaemia effectively and therefore avoid complications. When greater efficacy is required, options for injectable treatments include glucagon-like peptide-1 receptor agonists and insulin, which may be added on to oral glucose-lowering treatments. Among individuals receiving long-acting basal insulin as their first injectable treatment, ~40–60% are unable to achieve or maintain their target HbA1c goals. For these people, treatment intensification options are relatively limited and include the addition of short-acting prandial insulin or a glucagon-like peptide-1 receptor agonist. Glucagon-like peptide-1 receptor agonists vary in their effects, with short- and long-acting agents having a greater impact on postprandial and fasting hyperglycaemia, respectively. Studies comparing treatment intensification options have found both glucagon-like peptide-1 receptor agonists and prandial insulin to be effective in reducing HbA1c concentrations; however, recipients of glucagon-like peptide-1 receptor agonists lost weight and had a greater frequency of gastrointestinal adverse events, whereas those receiving prandial insulin gained weight and had a greater incidence of hypoglycaemia. In addition to the separate administration of a glucagon-like peptide-1 receptor agonist and basal insulin, fixed-ratio combinations of a glucagon-like peptide-1 receptor agonist and basal insulin offer a single administration for both treatments but have less flexibility in dose titration than treatment with their individual components. For individuals who require treatment intensification beyond basal insulin, use of these various options allows physicians to target the individual needs of their patients for the achievement of optimal long-term glycaemic control.

Introduction

For individuals with Type 2 diabetes, management of elevated blood glucose levels is critical to reduce the risk of complications, including microvascular and possibly cardiovascular diseases. Metformin monotherapy is usually recommended as first-line treatment [1], but the progressive nature of Type 2 diabetes can make long-term glycaemic control difficult to maintain without additional therapies. For example, the UK Prospective Diabetes Study [2] found that, 3 years after diagnosis, ~50% of people required more than one pharmacological agent because they were unable to achieve HbA1c goals with monotherapy. Nine years after diagnosis, ~75% of people required combination therapy.

With disease progression, worsening insulin sensitivity and progressive impairment of β-cell function make effective treatment of Type 2 diabetes more difficult; therefore, most individuals will eventually require treatment intensification to maintain glycaemic control.

Injectables such as glucagon-like peptide-1 receptor agonists (GLP-1RAs) or basal insulin are recommended by the American Diabetes Association (ADA), the European Association for the Study of Diabetes (EASD), and the American Academy of Clinical Endocrinologists as an option for treatment intensification after failure of oral monotherapy or dual therapy [1,3]. Yet, when treated with basal insulin, a common first injectable, ~40–60% of people were unable to achieve target HbA1c levels after 24 weeks of treatment [4]. Options for further treatment intensification are limited and include combination injectable therapy with either a GLP-1RA or prandial insulin added on to the basal insulin regimen. In the present review, we examine the available...
GLP-1RAs. on the mechanism of action and treatment effects of
An additional search was performed to identify publications
in Type 2 diabetes were selected for inclusion in the review.
and body weight endpoints from clinical trials of these agents
from 2010 or later. Papers reporting results for glycaemic
terms, while the other searches were limited to publications
language published articles on clinical trials; publications
nation, Type 2 diabetes. Searches were limited to English-
combination (iGlarLixi; LixiLan); and 7) fixed-dose combi-
liraglutide, basal insulin; 4) glucagon-like peptide-1, basal
intensification; 2) insulin, basal bolus, Type 2 diabetes; 3)
database for the following: 1) Type 2 diabetes, treatment
mends that Type 2 diabetes treatment be aimed at achieving
such as hypoglycaemia or weight gain. The ADA recom-
mechanisms of action can allow physicians to specifically
target the glycaemic defects of their patient.
• In this rapidly changing field, this evidence-based
review examines the available options for treatment
intensification, including new fixed-ratio combinations
of glucagon-like peptide-1 receptor agonists and basal
insulin.

options for treatment intensification and data from clinical
trials in this setting, and discuss the guideline-recommended
treatment strategies for individuals who are unable to
achieve and maintain glycaemic control with basal insulin.
A literature search was performed using the PubMed
database for the following: 1) Type 2 diabetes, treatment
intensification; 2) insulin, basal bolus, Type 2 diabetes; 3)
liraglutide, basal insulin; 4) glucagon-like peptide-1, basal
insulin; 5) insulin degludec/liraglutide fixed-ratio combina-
tion (IDegLira); 6) lixisenatide/insulin glargine fixed-ratio
combination (iGlarLixi; LixiLan); and 7) fixed-dose combi-
nation, Type 2 diabetes. Searches were limited to English-
language published articles on clinical trials; publications
from 2000 or later were identified for the first two search
terms, while the other searches were limited to publications
from 2010 or later. Papers reporting results for glycaemic
and body weight endpoints from clinical trials of these agents
in Type 2 diabetes were selected for inclusion in the review.
Relevant references listed in the bibliographies of publica-
tions identified by the literature search were also included.
An additional search was performed to identify publications
on the mechanism of action and treatment effects of
GLP-1RAs.

Intensification process
Treatment of Type 2 diabetes should be selected based on an
individual’s needs, guideline recommendations, and the
course of diabetes progression. Consideration must also be
given to treatment cost and the potential for adverse effects,
such as hypoglycaemia or weight gain. The ADA recom-
mands that Type 2 diabetes treatment be aimed at achieving
an HbA1c concentration of either <53 mmol/mol (<7.0%) or
<48 mmol/mol (<6.5%), depending on an individual’s charac-
teristics [5]. If initial lifestyle modifications are ineffect-
oral monotherapy with metformin is the recom-
recommended first-line therapy for most people [1]. If HbA1c
concentration is still above target after 3 months, a second
glucose-lowering medication may be added. Triple therapy is
recommended if HbA1c concentration remains above target
after 3 months of dual therapy.
Injectable therapy with either basal insulin or a GLP-1RA
may be initiated after metformin as second- or third-line
treatment [1,3]. In the DURATION-3 study, which com-
pared the GLP-1RA exenatide once weekly with titrated
insulin glargine (a basal insulin) over 3 years, both treat-
ments reduced HbA1c, but the reduction was significantly
greater with exenatide once weekly [–11 mmol/mol (–1.0%)]
than with insulin glargine [–8 mmol/mol (–0.8%); P = 0.03]
[6]. The proportions of individuals with HbA1c at target
decided over time, with 40% of exenatide once-weekly-
treated participants and 33% of insulin glargine-treated
participants having an HbA1c concentration <53 mmol/mol
(<7.0%) after 3 years. For those unable to maintain their
target HbA1c, combination injectable therapy with basal
insulin and either a GLP-1RA or prandial insulin is recom-

Basal insulin intensification with bolus insulin
Basal insulin, a common first injectable therapy, is typically
titrated to achieve a predefined fasting glucose level. Over
time, despite increasing insulin doses to counter rising fasting
glucose levels, many people have difficulty achieving and
maintaining HbA1c goals. For example, in the Treat-to-
Target trial, ~60% of overweight participants with insuffi-
cient glycaemic control [HbA1c of 58–86 mmol/mol
(7.5–10.0%)] with one or two oral glucose-lowering agents
who received basal insulin (insulin glargine or human NPH
insulin) added on to their oral therapy achieved an HbA1c of
≤53 mmol/mol (≤7.0%) at 24 weeks [7]. This left ~40% of
participants unable to achieve their HbA1c goal and in need
of treatment intensification beyond basal insulin [8]. A
similar strategy was employed in the ‘One Pill-One Shot’
study, which compared bedtime NPH insulin and bedtime
and morning insulin glargine, all added to glimepiride [9].
Again, only ~30–40% of participants achieved an HbA1c
concentration ≤58 mmol/mol (≤7.5%). As a consequence,
additional interventions were required.
Once-daily, long-acting basal insulin improves blood
glucose levels through suppression of hepatic glucose pro-
duction and control of fasting glucose; however, it does not
accurately mimic normal diurnal endogenous insulin secre-
tion patterns, which separate basal and prandial insulin
requirements [8]. Rapid-acting insulin analogues (e.g. insulin
lispro, insulin aspart, or insulin glulisine) or premixed insulin
(e.g. 70/30 aspart mix, 75/25 or 50/50 lispro mix) [1] may be
used for treatment intensification for those unable to achieve
appropriate postprandial glycaemic control with basal
insulin [8]. In a study of participants who did not achieve
glycaemic control (HbA1c ≤53 mmol/mol (≤7.0%)) after 14
weeks with basal insulin glargine, prandial insulin glulisine was added once, twice or three times daily [10]. After 24 weeks, HbA1c decreased similarly across groups (Table 1), but more participants achieved a target HbA1c of ≤53 mmol/mol (≤7.0%) with insulin glulisine injections three times daily. In a prospective, observational study of treatment intensification in individuals with Type 2 diabetes uncontrolled on basal insulin and oral glucose-lowering therapy, participants received either basal insulin titration to target with optional addition of a rapid-acting insulin analogue at 12 or 24 weeks or addition of a rapid-acting insulin analogue at baseline [11]. After 24 weeks, HbA1c reductions were similar in the two groups (P < 0.001 vs baseline), and similar proportions of individuals achieved an HbA1c concentration of ≤53 mmol/mol (≤7.0%). The low rate of hypoglycaemic events was similar in the two groups [11]. Additional studies of insulin intensification, including AT.LANTUS, are reviewed in Abrahamson and Peters [8] and support the efficacy of this basal-bolus method; however, as with any insulin treatment, risks of weight gain, hypoglycaemia and the burden of mealtime injections, adjustments for meals, and counting carbohydrates must be considered when determining the appropriate treatment strategy.

Incretin effect and the role of glucagon

The disease course of Type 2 diabetes is characterized by progressive deterioration of β-cell function, with decreasing insulin secretion in addition to decreasing β-cell mass, as reviewed by Fonseca [12]. Increasing β-cell dysfunction over time leads to deterioration of glycaemic control over time and, hence, the need for treatment intensification. Reductions in the incretin effect and decreased α-cell function are also present in individuals with Type 2 diabetes [13,14].

The incretin effect is that in which, relative to an intravenous glucose load, an equivalent oral glucose load produces up to a 65% increase in the insulin secretory response [14]. This is attributable to the release of the gut hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In response to nutrient ingestion, GLP-1 receptor activation in the pancreas and throughout the body produces a glucose-dependent insulin secretory response, slows gastric emptying and improves satiety [15]. In individuals with Type 2 diabetes, the incretin effect may be reduced, if not absent, most likely because of lack of response to GIP [14]. This may be related in part to reduced β-cell mass decreasing the overall capacity of the insulin response, rather than a reduction in circulating incretin levels [14].

In addition to impaired insulin response, individuals with Type 2 diabetes have defects in the regulation of glucagon secretion [13]. In individuals with Type 2 diabetes, plasma glucagon concentrations are inappropriately elevated in the fasting state and do not decrease after carbohydrate ingestion as they do in those without Type 2 diabetes, thus contributing to both elevated fasting plasma glucose and postprandial glucose (PPG) excursions [13].

Because there are multiple pathophysiological defects in Type 2 diabetes, the use of treatments with different, complementary mechanisms of action is likely to be more effective in achieving glycaemic control [16]. While both basal insulin and incretin therapies effectively reduce fasting glucose levels, incretin therapies also reduce PPG [17] and glucagon [18]. Studies in patients with Type 1 diabetes have shown that GLP-1RAs can improve glycaemic control even among those with little to no β-cell function, suggesting that glucagon control may be particularly influential in those with long-term Type 2 diabetes [19]. Indeed, subgroup analyses of GLP-1RA clinical trial data indicate that GLP-1RAs are also effective in individuals with longer Type 2 diabetes duration, which is associated with greater deterioration of β-cell function [20–23]. Moreover, data from clinical trials, reviewed by Grandy et al. [24], indicate that β-cell function improves during treatment with GLP-1RAs.

Effects of GLP-1RA treatment

The GLP-1RAs are injectable glucose-lowering drugs, developed as a synthetic modification of the GLP-1-like peptide exendin-4 or GLP-1 itself [15]. In addition to binding to pancreatic GLP-1 receptors to stimulate glucose-dependent insulin release, GLP-1RAs inhibit glucagon secretion by pancreatic α cells [18] and reduce PPG excursions by slowing gastric emptying and delaying nutrient delivery to the small intestine [17]. In addition, GLP-1RAs prevent apoptosis and stimulate proliferation of β cells in animals [18]. Finally, GLP-1RAs increase satiety and reduce appetite, leading to reduced energy intake and, consequently, weight loss [15,18].

The addition of a GLP-1RA to basal insulin offers several clinical benefits over the addition of prandial insulin. By itself, the insulinotropic effects of GLP-1RAs are glucose-dependent, so the hypoglycaemia risk associated with exogenous insulin treatment is not increased [25]. In addition, whereas insulin treatment is associated with weight gain, GLP-1RA treatment is associated with weight loss [15]. A meta-analysis of 15 studies examining combination treatment of a GLP-1RA and basal insulin vs comparators such as basal insulin, bolus insulin or basal-bolus insulin found that combination GLP-1RA treatment produced a greater reduction in HbA1c, weight loss, and had no increased risk of hypoglycaemia [26]. Furthermore, relative to the addition of prandial insulin to basal insulin, the weight loss associated with adding exenatide twice daily to basal insulin leads to significant improvements in the impact of weight on quality of life [27].

In two nationwide audits, the Association of British Clinical Diabetologists found that the GLP-1RAs exenatide and liraglutide were used in combination with insulin therapy among 39.6% and 36.5% of patients, respectively [28].
Citation	Background therapy	Treatment groups; randomized participants	Change in HbA1c, mmol/mol (%)	Change in weight, kg	Reported hypoglycaemia	Frequency of GI AEs, % of participants
Davidson et al. 2011 [10]	Insulin glargine, two or three oral glucose-lowering medications (sulfonylureas, metformin, thiazolidinediones)	Prandial insulin glulisine (once daily); N = 115	-5 (-0.4)	+3.8	Participants with severe hypoglycaemia: 9	
		Prandial insulin glulisine (twice daily); N = 113	-4 (-0.4)	+4.1	Participants with severe hypoglycaemia: 8	
		Prandial insulin glulisine (three times daily); N = 115	-5 (-0.4)	+3.9	Participants with severe hypoglycaemia: 18*	
Siegmund et al. 2017 [11]	Oral glucose-lowering medications, basal insulin glargine	Insulin glargine ± rapid-acting insulin analogue; N = 168	-8 (-0.8)	-0.9*	Severe hypoglycaemia (1–12 weeks): 0.12% (13–24 weeks): 0.18%	
		Rapid-acting insulin analogue (once daily); N = 518	-10 (-0.9)	-0.5	Severe hypoglycaemia (12 weeks): 0.0% (13–24 weeks): 0.19%	
Base et al. 2011 [35]	Insulin glargine, metformin, and/or pioglitazone	Exenatide twice daily; N = 138	-19 (-1.7)†	-1.8†	Hypoglycaemic events per participant per year: 1.4	41† 18‡ 18‡ 10‡
		Placebo; N = 123	-11 (-1.0)	+1.0	Hypoglycaemic events per participant per year: 1.2	8 4 8 2
Diamant et al. 2014 [27]	Insulin glargine, metformin	Exenatide twice daily; N = 315	-12 (-1.1)	-2.5*	Major events: 3; minor events: 332; nocturnal confirmed: 232; non-nocturnal confirmed: 103	32.4 12.4 10.8 NR
		Prandial insulin lispro (three times daily); N = 312	-12 (-1.1)	+2.1	Major events: 1; minor events: 870; nocturnal confirmed: 297; non-nocturnal confirmed: 584	1.6 1.0 5.1 NR
de Lapertosa et al. 2016 [36]	Insulin glargine, metformin	Exenatide twice daily; N = 48	-10 (-0.9)	-0.1*	Major + minor events: 40; major events: 0; nocturnal: 26; daytime: 14	32.1 14.3 19.6 NR
	subgroup analysis of Latin American patients	Prandial insulin lispro (three times daily); N = 43	-13 (-1.2)	+3.4	Major + minor events: 253; major events: 6; nocturnal: 98; daytime: 155	1.7 1.7 8.6 NR
Riddle et al. 2013 [37]	Insulin glargine, prior metformin ± thiazolidinediones maintained	Lixisenatide (once daily); N = 223	-8 (-0.7)†	+0.3†	Confirmed hypoglycaemia: 20.2*	27.4 9.4 6.7 NR
		Placebo (once daily); N = 223	-5 (-0.4)	+1.2	Confirmed hypoglycaemia: 11.7%	4.9 1.3 3.1 NR
Citation	Background therapy	Treatment groups; randomized participants	Change in HbA1c, mmol/mol (%)	Change in weight, kg	Reported hypoglycaemia	Frequency of GI AEs, % of participants
--------------------------	---	--	-----------------------------	---------------------	---	--
Seino et al. 2012 (GetGoal-L-Asia) [38]	Stable basal insulin (insulin glargine, insulin detemir, or NPH) ± sulfonylureas	Lixisenatide (once daily); N = 154 Placebo (once daily); N = 157	–8 (–0.8)‡	–0.4	Symptomatic hypoglycaemia: 42.9%	39.6 18.2 6.5 5.2
Riddle et al. 2013 (GetGoal-L) [39]	Basal insulin ± metformin	Lixisenatide (once daily); N = 328 Placebo (once daily); N = 167	–8 (–0.7)‡	–1.8	Symptomatic hypoglycaemia: 26.5%	26.2 8.2 7.3 NR
Famgen et al. 2016 [40]	Basal insulin, metformin	Lixisenatide (once daily); N = 18 Placebo (once daily); N = 18	–5 (–0.4)	–0.5	Symptomatic hypoglycaemia: 21.0%	8.4 0.6 5.4 NR
Mathieu et al. 2014 (BEGIN; VICTOZA ADD-ON) [41]	Insulin degludec, metformin	Liraglutide (once daily); N = 88 Insulin aspart (once daily); N = 89	–8 (–0.7)*	–2.8	Episodes per PYE: 1.00*	20.7 5.7 10.3 NR
Ahmann et al. 2015 [42]	Insulin glargine or insulin detemir ± metformin	Liraglutide (once daily); N = 226 Placebo (once daily); N = 225	–14.2 (–1.3)‡	–3.5	Confirmed hypoglycaemic episodes: 127 (126 events/100 PYE)‡	22.2 8.9 10.7 NR
de Wit et al. 2014 (ELEGANT) [43]	Insulin (basal only, basal bolus, biphasic, pump) ± metformin ± sulfonylureas	Liraglutide (once daily); N = 26 Background insulin therapy; N = 24	–8 (–0.8)*	–4.5	Confirmed hypoglycaemic episodes: 82 (83 events/100 PYE)	3.1 0.9 0.9 NR
de Wit et al. 2016 (ELEGANT 52-week results) [44]	Insulin (basal only, basal bolus, biphasic, pump) ± metformin ± sulfonylureas	Liraglutide (once daily); N = 25 Background insulin → liraglutide (once daily); N = 21	–7 (–0.6)	+1.1	Minor hypoglycaemic events/ PYE: 2.9 (grade 1) and 0.9 (grade 2)	48.9 25.5 51.1 51.1
Seino et al. 2016 [45]	Insulin (basal, premixed, or basal bolus)	Liraglutide (once daily); N = 122 Placebo (once daily); N = 130	–19 (–1.7)‡	–0.3	Confirmed hypoglycaemia: 33.1%	11.0 NR 11.8 11.8
Vanderheiden et al. 2016 [47]	Insulin (basal, premixed, or basal bolus)	Liraglutide (once daily); N = 35 Placebo (once daily); N = 36	–10 (–0.9)‡	–2.0	Confirmed hypoglycaemia: 27.7%	5.4 NR 3.1 1.5
		Placebo (once daily); N = 36	0 (0.0)	+0.4	Any hypoglycaemic events/ person-month of exposure: 1.44	NR
		Placebo (once daily); N = 36	0 (0.0)	+0.4	Any hypoglycaemic events/ person-month of exposure: 0.93	NR
Citation	Background therapy	Treatment groups; randomized participants	Change in HbA1c, mmol/mol (%)	Change in weight, kg	Reported hypoglycaemia	Frequency of GI AEs, % of participants
----------	---------------------	---	-----------------------------	---------------------	-------------------------	-------------------------------
Li et al. 2012 [46]	Insulin (glargine, NPG, premixed) ± oral medications (including sulfonylureas, thiazolidinediones, α-glucosidase inhibitors, glinides, metformin)	Liraglutide (once daily); N = 42	−21 (−1.9)	−5.6	Severe: 0 participants Minor: 11.9%†	NR
		Insulin dose increase; N = 42	−19 (−1.8)	+2.0	Severe: 2 participants Minor: 31.0%	NR
Rosenstock et al. 2014 (Harmony 6 Study Group) [48]	Insulin glargine, prandial insulin lispro (three times daily); N = 281	Albglutide (once weekly); N = 285	−9 (−0.8)	−0.7*	Number of hypoglycaemic events (any kind): 70 (24.6%)	11.2 6.7 13.0 13.0 NR
Gough et al. 2014 (DUAL-I) [56]	Metformin ± pioglitazone	IDeglLira (once daily); N = 834	−20 (−1.8)*†	−0.4*†	Confirmed hypoglycaemia: 32%*†	9 4 8 NR
Gough et al. 2015 (DUAL-I extension) [57]	Metformin ± pioglitazone	IDeglLira (once daily); N = 414	−15 (−1.4)	+1.6	Confirmed hypoglycaemia: 39%	4 1 5 NR
Buse et al. 2014 (DUAL-II) [58]	Metformin	IDeglLira (once daily); N = 199	−10 (−0.9)	0.0	Confirmed hypoglycaemia: 24%	6.5 NR 6.5 NR
Lingvay et al. 2016 (DUAL-V) [59]	Metformin	IDeglLira (once daily); N = 278	−20 (−1.8)*	−1.4*	Confirmed hypoglycaemic events/PYE: 2.23*	9.4 NR
Billings et al. 2017 (DUAL VII) [60]	Metformin	IDeglLira (once daily); N = 252	−16 (−1.5)	+0.9	Hypoglycaemic events/PYE: 6.05	NR NR NR NR
Rosenstock et al. 2016 (LixiLan PoC study) [51]	Metformin	LixiLan (once daily); N = 161	−20 (−1.8)*	−1.0*	Confirmed hypoglycaemic events: 35 (21.7%)	7.5 2.5 3.1 1.9
		Insulin glargine (once daily); N = 162	−18 (−1.6)	+0.5	Confirmed hypoglycaemic events: 37 (22.8%)	0.0 0.6 3.7 0.0
Citation	Background therapy	Treatment groups; randomized participants	Change in HbA1c, mmol/mol (%)	Change in weight, kg	Reported hypoglycaemia	Frequency of GI AEs, % of participants
------------------------------	--------------------	---	-------------------------------	----------------------	------------------------	-------------------------------------
Aroda et al. 2016 (LixiLan-L study) [53]	Metformin	LixiLan (once daily); N = 367	-14 (-1.1)*	-0.7*	Documented symptomatic hypoglycaemia: 40% (3.03 events/PYE)	10.4 3.6 4.4 NR
		Insulin glargine (once daily); N = 369	-7 (-0.6)	+0.7	Documented symptomatic hypoglycaemia: 42.5% (4.22 events/PYE)	0.5 0.5 2.7 NR
		LixiLan (once daily); N = 469	-18 (-1.6)*δ	-0.3*	Documented symptomatic hypoglycaemia: 25.6% (1.4 events/PYE)	9.6 3.2 9.0 NR
		Insulin glargine (once daily); N = 467	-14 (-1.3)	+1.1	Documented symptomatic hypoglycaemia: 23.6% (1.2 events/PYE)	3.6 1.5 4.3 NR
		Lixisenatide (once daily); N = 234	-10 (-0.9)	-2.3	Documented symptomatic hypoglycaemia: 6.4% (0.3 events/PYE)	24.0 6.4 9.0 NR

AE, adverse event; C, constipation; D, diarrhoea; GI, gastrointestinal; GLP-1RA, glucagon-like peptide-1 receptor agonist; N, nausea; NR, not reported; PoC, proof of concept; PYE, person-years of exposure; V, vomiting.

*P < 0.05 vs insulin comparator. †P < 0.05 vs GLP-1RA comparator. ‡P < 0.05 vs placebo.
At the time of the exenatide audit (2007–2009), exenatide had not yet received regulatory approval for use with basal insulin. Since its approval, the ADA and EASD have included the addition of a GLP-1RA to basal insulin among their recommendations in the 2015 update to their Position Statement, noting that the lower risk of hypoglycaemia, need for fewer injections, and associated weight loss may make GLP-1RAs more appropriate than prandial insulin for some individuals [1]. This recommendation includes agents approved in both the USA and Europe: exenatide twice daily, exenatide once weekly, liraglutide, albiglutide, dulaglutide and lixisenatide.

The different GLP-1RAs can be further subcategorized by their duration of exposure. Exenatide twice daily and lixisenatide (once daily), two short-acting GLP-1RAs, are typically dosed before breakfast with the second exenatide twice-daily dose given before dinner [29]. The resulting short-term increase in plasma peptide levels reduces PPG excursions via delayed gastric emptying, which reduces the necessary insulin response [17]. Postprandial glucagon release is reduced and postprandial insulin release is enhanced [30]; however, these GLP-1RAs are less available during fasting states and are therefore less effective for reducing fasting measures. In contrast, for the long-acting GLP-1RAs exenatide once weekly, liraglutide, albiglutide and dulaglutide, effects on gastric emptying are not as strong as their short-acting counterparts [31] or decline over time [32], probably as a result of the continuous GLP-1RA exposure causing tachyphylaxis [33], leading to less pronounced PPG reductions [34]. Instead, these agents appear to reduce HbA1c concentration through sustained increase in fasting insulin [34], suppression of fasting glucagon [31], and subsequently lower fasting glucose levels. Several studies have compared the effects of long- vs short-acting GLP-1RAs. For example, in the LEAD-6 study, when compared with recipients of exenatide twice daily, liraglutide recipients had a greater reduction in HbA1c and fasting glucose levels, similar weight loss, and a lesser reduction in PPG increment after breakfast and dinner [34]. Similarly, the DURATION-1 study found that exenatide once weekly was associated with a significantly greater reduction in HbA1c and fasting glucose than exenatide twice daily, with similar reductions in body weight [31]; the reduction in 2-h PPG was significantly greater with exenatide twice daily. As such, the specific fasting or postprandial effects of long- vs short-acting GLP-1RAs may be exploited for targeted treatment according to a person’s individual characteristics.

Treatment intensification of basal insulin with GLP-1RAs

Several studies have examined the safety and efficacy of GLP-1RAs in combination with insulin (Table 1); as a class, these agents are effective in reducing HbA1c and body weight, with a low risk of hypoglycaemia but increased rates of gastrointestinal adverse events (AEs) vs comparators. A randomized, placebo-controlled trial compared the effects of short-acting exenatide twice daily with placebo, both added to optimized insulin glargine, in participants with Type 2 diabetes unable to achieve glycaemic control [HbA1c of 54–91 mmol/mol (7.1–10.5%)] with insulin glargine [35]. After 30 weeks, exenatide twice daily reduced HbA1c significantly (P < 0.001) more than placebo. In addition, 60% of participants treated with exenatide twice daily achieved an HbA1c of ≤53 mmol/mol (≤7.0%), compared with 35% of placebo-treated participants. Body weight decreased with exenatide twice-daily treatment, whereas it increased with placebo (P < 0.001 for difference). There was no between-group difference in the number of hypoglycaemic events per participant per year. Nausea, diarrhea, vomiting, headache and constipation occurred more frequently with exenatide twice daily than with placebo. The 4B study directly compared the effects of exenatide twice daily with those of prandial insulin among participants who did not achieve sufficient glycaemic control [HbA1c ≤53 mmol/mol (≤7.0%)] after a 12-week basal insulin optimization phase [27]. Participants were randomized to receive either exenatide twice daily or prandial insulin lispro, both added to titrated insulin glargine and metformin, for 30 weeks. At endpoint, HbA1c was reduced in both groups and exenatide twice daily was found to be non-inferior to insulin lispro. Participants receiving exenatide twice daily lost weight, whereas those receiving insulin lispro gained weight (P < 0.001 from baseline). Fasting glucose concentration was significantly reduced with exenatide twice daily but not with insulin lispro, and PPG values were similar except after lunch. Minor and confirmed non-nocturnal hypoglycaemia occurred less frequently with exenatide twice daily than with insulin lispro, with two exenatide twice-daily-treated participants and seven insulin lispro-treated participants experiencing at least one major hypoglycaemic episode. Nocturnal hypoglycaemia was similar for exenatide twice daily and insulin lispro. Gastrointestinal AEs, including nausea, vomiting and diarrhoea, occurred more frequently with exenatide twice-daily treatment. A subanalysis of 4B study participants from Argentina and Mexico showed similar results to the main study (Table 1) [36].

Studies of lixisenatide (also short-acting) have found a similar pattern of results (Table 1). In the GetGoal Duo-1 study, a 24-week study of lixisenatide, participants unable to achieve glycaemic control after 12 weeks with titrated insulin glargine were randomized to receive either lixisenatide or placebo, both added to insulin glargine [37]. HbA1c decreased significantly (P < 0.0001) more with lixisenatide than with placebo. Body weight increased in both groups, but the increase was significantly (P = 0.0012) less with lixisenatide. Both hyperglycaemia and gastrointestinal AEs occurred more frequently with lixisenatide than with placebo. In the GetGoal-L-Asia study, which had a similar design [38], HbA1c was reduced with lixisenatide but...
increased with placebo (P < 0.0001). There was a numerical decrease in body weight with lixisenatide compared with an increase in body weight with placebo. Lixisenatide recipients had an overall higher incidence of gastrointestinal AEs and hypoglycaemic events. The GetGoal-L study examined the addition of lixisenatide to an established, stable basal insulin regimen [39]. Reductions in HbA1c and body weight were significantly greater with lixisenatide (P = 0.0002 and P < 0.0001, respectively). The frequency of hypoglycaemia was similar in the two groups and, as in the other two studies, participants receiving lixisenatide experienced more gastrointestinal AEs. In a single-centre, randomized, double-blind, placebo-controlled crossover study of lixisenatide that investigated treatment intensification in individuals with an HbA1c of 61 mmol/mol (7.7%) despite basal insulin and metformin treatment, 6 weeks of lixisenatide treatment resulted in reductions in HbA1c and body weight vs placebo (P = 0.043) [40].

Across the studies of short-acting GLP-1RAs added to basal insulin, improvements in measures of PPG control were consistently observed, either via self-monitored blood glucose measures [27,35] or a standardized meal test [37–39]. Given that short-acting GLP-1RAs tend to exhibit greater postprandial control than long-acting GLP-1RAs [31], short-acting GLP-1RAs may be an appropriate choice for individuals on basal insulin exhibiting a postprandial glycaemic deficit. In contrast, long-acting GLP-1RAs may offer greater benefit to individuals requiring improvements in fasting glycaemic control.

Long-acting GLP-1RAs have also been found to improve glycaemic control and body weight, without increasing hypoglycaemia risk (Table 1). The BEGIN: VICTOZA ADD-ON study compared the effects of once-daily insulin aspart with once-daily liraglutide, added to basal insulin degludec and metformin, among participants with HbA1c ≥53 mmol/mol (≥7.0%) despite treatment with basal insulin [41]. At endpoint (26 weeks), a significantly (P = 0.0024) greater reduction in HbA1c was seen with liraglutide than with insulin aspart. Significantly (P < 0.0001) greater weight loss was observed among participants treated with liraglutide compared with those receiving insulin aspart. The rate of confirmed hypoglycaemia was significantly (P < 0.0001) lower with liraglutide than with insulin aspart, while gastrointestinal AEs occurred more frequently with liraglutide. Another 26-week study that compared liraglutide with placebo, both added to basal insulin with or without metformin, found that both HbA1c and body weight decreased significantly (P < 0.0001) more with liraglutide than with placebo [42]. Gastrointestinal AEs were more common with liraglutide relative to placebo, as was confirmed hypoglycaemia (P = 0.04). The ELEGANT study found that adding liraglutide to a standard insulin regimen (basal only, basal bolus, biphasic, or pump therapy) for 26 weeks significantly (P < 0.001) reduced HbA1c concentration relative to continuing standard insulin treatment [43]. Furthermore, body weight decreased rather than increased with liraglutide compared with standard therapy (P < 0.001 for difference). The frequency of hypoglycaemia was similar for both treatments, but gastrointestinal AEs were more common with liraglutide. A 52-week extension study of ELEGANT showed that the improvements in HbA1c and body weight seen in the core study were sustained in the long term (Table 1) [44]. In a separate study of Japanese participants with Type 2 diabetes, 36 weeks of treatment with liraglutide added to an insulin regimen resulted in a significantly (P < 0.0001) greater reduction in HbA1c than placebo and weight loss rather than weight gain [45]. Gastrointestinal AEs were more common with liraglutide, and there was no difference in the frequency of confirmed hypoglycaemia. In a study of Chinese participants who either added liraglutide to an existing insulin regimen or increased their current insulin dose to achieve glycaemic targets, both groups had a significant (P < 0.01) reduction in HbA1c relative to placebo; however, the liraglutide-added group lost weight (P < 0.01) while the insulin-increasing group gained weight (P < 0.01) [46]. Minor hypoglycaemia occurred significantly (P = 0.033) more often among the insulin-increasing group, whereas AEs were more common in the liraglutide-added group (P = 0.028; most commonly gastrointestinal). In another study, 71 individuals with uncontrolled Type 2 diabetes despite the use of insulin 1.5 U/kg/day were randomized to receive liraglutide or placebo for 6 months [47]. After 6 months, liraglutide-treated participants had a significant (P < 0.001) reduction in HbA1c from baseline, while HbA1c remained unchanged among placebo recipients. Body weight decreased from baseline in the liraglutide group and increased in the placebo group, leading to a significant (P = 0.02) between-group difference favouring liraglutide. While hypoglycaemia rates were higher with liraglutide than with placebo in the first month of treatment (P < 0.01), they were similar between groups over the entire follow-up period (Table 1) [47].

A 26-week study (HARMONY 6) of the long-acting GLP-1RA albiglutide had similar results (Table 1) [48]. Participants with Type 2 diabetes inadequately controlled with basal insulin were randomized to receive albiglutide or prandial insulin lispro. After 26 weeks, the change in HbA1c was similar in the two groups, confirming non-inferiority of either treatment. As with other GLP-1RAs, albiglutide was associated with weight loss, whereas insulin lispro was associated with weight gain, and there was a significant (P < 0.0001) difference in the change in body weight between the two groups. The incidence of documented pre-rescue hypoglycaemia was almost twice as high for insulin lispro as for albiglutide, while gastrointestinal AEs occurred more frequently with albiglutide than with insulin lispro.

The use of GLP-1RAs for treatment intensification in individuals with Type 2 diabetes receiving basal insulin has also been evaluated in ‘real-world’ studies. An analysis of health insurance claims data found that the reduction in
HbA1c after adding a GLP-1RA was similar to that for adding prandial insulin and greater than that with an increased basal insulin dose [49]. Hypoglycaemia rates were lower for GLP-1RA treatment than for either added prandial insulin or increased basal insulin dose. Another analysis of claims data also found comparable reductions in HbA1c, for a GLP-1RA or prandial insulin added to basal insulin [50]. While overall hypoglycaemia rates were similar, hospitalization for hypoglycaemia was more frequent among the prandial insulin cohort.

Fixed-ratio formulations

More recently, two additional fixed-ratio, single-injection products containing both a GLP-1RA and a basal insulin have been studied (Table 1). iGlarLixi (previously called LixiLan), which combines the short-acting GLP-1RA lixisenatide with insulin glargine, is approved in the USA and Europe [51]. Participants randomized to treatment with either iGlarLixi or insulin glargine for 24 weeks in a proof-of-concept trial both had HbA1c reductions; however, the reduction with iGlarLixi was superior to that with insulin glargine (P = 0.013). Furthermore, body weight decreased with iGlarLixi but increased with insulin glargine alone (P < 0.0001 for difference). The frequency of hypoglycaemic events was similar for each treatment. A subsequent trial, the randomized, open-label LixiLan-O study, investigated the efficacy and safety of iGlarLixi vs insulin glargine and lixisenatide administered separately among participants (n = 1170) with Type 2 diabetes who were uncontrolled on metformin with or without a second oral glucose-lowering agent (Table 1) [52]. After 30 weeks, individuals receiving iGlarLixi had significantly (P < 0.0001) greater reductions in HbA1c than those receiving insulin glargine or lixisenatide, and significantly (P < 0.0001) more participants achieved an HbA1c of <53 mmol/mol (<7.0%). iGlarLixi was statistically superior to lixisenatide and non-inferior to insulin glargine for HbA1c reduction. Body weight decreased among iGlarLixi and lixisenatide recipients but increased with insulin glargine, with a significant (P < 0.0001) between-group difference for iGlarLixi vs insulin glargine. The number of hypoglycaemic events was similar with iGlarLixi and insulin glargine; recipients of lixisenatide had the lowest number of hypoglycaemic events [52]. The LixiLan-L study investigated the use of iGlarLixi among individuals who were inadequately controlled on basal insulin with ≥2 oral glucose-lowering drugs (Table 1) [53]. After 30 weeks of open-label treatment, reductions in HbA1c with iGlarLixi were significantly (P < 0.0001) greater than those with insulin glargine alone, and more individuals receiving iGlarLixi than insulin glargine achieved HbA1c <53 mmol/mol (<7.0%; P < 0.0001). iGlarLixi was superior to insulin glargine for the change in HbA1c. Mean body weight decreased in iGlarLixi recipients but increased in insulin glargine recipients (between-group difference, 1.4 kg; P < 0.0001), and the number of hypoglycaemic events was similar in the two groups [53]. In both studies, the improvement in glycaemic control with iGlarLixi vs the individual therapies was consistent regardless of baseline HbA1c, BMI or diabetes duration [54,55].

IDegLira, which combines insulin degludec and the long-acting GLP-1RA liraglutide, was recently approved for use in Europe and the USA. The DUAL-I trial compared IDegLira (insulin degludec 100 U/ml plus liraglutide 3.6 mg/ml) with its components, insulin degludec (100 U/ml) and liraglutide (6 mg/ml), plus metformin and pioglitazone at pre-trial doses in participants with Type 2 diabetes (Table 1) [56]. Compared with liraglutide, IDegLira resulted in a greater HbA1c reduction (superiority, P < 0.0001), a higher rate of hypoglycaemia (P < 0.0001) and less weight loss (P < 0.0001). Compared with insulin degludec, IDegLira had a similar reduction in HbA1c (non-inferiority, P < 0.0001), lower rates of hypoglycaemia (P = 0.0023), and weight loss rather than weight gain (P < 0.0001). A 26-week extension confirmed that improvements in glycaemic control and body weight, and low hypoglycaemia rates, were maintained in the long term (Table 1) [57]. In a second trial (DUAL-II), IDegLira was compared with insulin degludec in participants who had not achieved adequate glycaemic control on basal insulin alone [58]. For this study, IDegLira recipients had a significantly (P < 0.0001) greater reduction in HbA1c compared with those receiving insulin degludec. Body weight decreased with IDegLira but was unchanged with insulin degludec, and rates of confirmed hypoglycaemia were similar. In the DUAL-V study that investigated the non-inferiority of IDegLira vs continued insulin glargine titration among individuals with Type 2 diabetes uncontrolled on insulin glargine plus metformin, 26 weeks of treatment with IDegLira was non-inferior to insulin glargine titration regarding effects on HbA1c levels; IDegLira recipients had greater HbA1c reductions than individuals receiving insulin glargine titration (P < 0.001; Table 1) [59], as well as weight loss vs weight gain in the titration group (P < 0.001). IDegLira recipients also had fewer hypoglycaemia events per person-year of exposure vs individuals receiving insulin glargine uptitration (Table 1) [59]. Results from the DUAL VII study showed that IDegLira was non-inferior to basal-bolus insulin treatment (insulin glargine plus insulin aspart) in reducing HbA1c (P < 0.0001 for non-inferiority) among individuals with inadequate glycaemic control on insulin glargine plus metformin (Table 1) [60]. Similar proportions of participants achieved HbA1c goals of <53 mmol/mol (<7.0%) and ≤48 mmol/mol (≤6.5%) with both treatments. However, IDegLira recipients lost weight whereas the basal-bolus insulin group gained weight (P < 0.0001 for difference), and hypoglycaemic episodes were less frequent with IDegLira than with basal-bolus insulin (P < 0.0001).

Although the fixed-ratio approach of iGlarLixi and IDegLira offers some potential benefits, the treatment simplification may be limited for individuals who are already
taking multiple medications for comorbid conditions [61]. In addition, people begin treatment with IDegLira on a lower dose and uptitrade, and individuals may require higher doses than available in combination or otherwise risk receiving a suboptimal dose of GLP-1RA treatment [62]. Further, in the 2014 assessment report, the European Medicines Agency provided a divergent position of some member country agencies for IDegLira, citing the lack of dosing flexibility and the potential unnecessary exposure to combination therapy among individuals who do not achieve glycaemic control with oral therapy as compared to using basal insulin and a GLP-1RA separately [63]. Patients may achieve greater benefits by utilizing the optimal dose of a GLP-1RA and the addition of insulin, titrated as needed. With the availability of weekly dosing for some GLP-1RAs, this regimen requires only one additional injection per week. Furthermore, the fixed-dose approach provides less flexibility for dose titration because only the available dose combinations can be used, and physicians may be unable to identify which component treatment is responsible for any AEs that occur.

Discussion

Achieving and maintaining glycaemic control are important in reducing the risk of complications associated with Type 2 diabetes; however, over time, treatment intensification is often necessary to counteract the progressive nature of Type 2 diabetes and maintain glycaemic targets. For individuals unable to achieve glycaemic control with a single injectable, use of a combination injectable treatment can target specific glycaemic defects. When used with basal insulin, both GLP-1RAs and prandial insulin reduce HbA1c and increase the proportion of individuals achieving HbA1c targets. Prandial insulin, however, is generally associated with weight gain and a higher risk of hypoglycaemia. By contrast, adding a GLP-1RA to basal insulin rapidly improves glycaemic control with less titration than insulin or a fixed-ratio combination of basal insulin and a GLP-1RA [56], requires fewer injections, and is associated with weight loss and a low risk of hypoglycaemia. For some, these properties may make the addition of a GLP-1RA to basal insulin preferable to prandial insulin. Furthermore, the earlier that GLP-1RAs are used, the sooner the individual can obtain the advantages of GLP-1RA-induced weight loss.

When choosing which GLP-1RA to add to basal insulin, specific properties of long- vs short-acting GLP-1RAs allow further treatment individualization. Short-acting GLP-1RAs are generally more effective at targeting postprandial hyperglycaemia and may be better suited for individuals with a primary postprandial deficit, whereas long-acting GLP-1RAs are generally more effective for reducing fasting hyperglycaemia and may be a better option for those with poor fasting control. For those with an overall high HbA1c despite basal insulin treatment, the addition of a short-acting GLP-1RA could be an initial option for treatment intensification.

Fixed-ratio combinations allow individuals to administer a GLP-1RA and insulin with a single injection, which may be preferable for some people, but they also allow less dosing flexibility. As Type 2 diabetes progresses and treatment is intensified, physicians should consider the individual needs and preferences of their patients, balancing the risks and benefits of the available treatment options to develop a management plan that provides their patients with the greatest clinical benefit.

Funding sources

The development of this review was supported by AstraZeneca.

Competing interests

M.E.T. is a consultant to several companies including Hanmi Pharmaceuticals, Intarcia Therapeutics, Inc., Kinetum, ProSciento Inc. and Servier. He is a retired employee and shareholder of Eli Lilly. J.V. is a contractor for AstraZeneca and has received research funding and honoraria from Abbott, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, GlaxoSmithKline, Merck Sharp & Dohme, Novartis, Novo Nordisk, Roche, Sanofi and Takeda.

Acknowledgements

Mollie Marko, PhD, of inScience Communications, Springer Healthcare (Philadelphia, PA, USA), provided medical writing support funded by AstraZeneca.

References

1 Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. *Diabetes Care* 2015; 38: 140–149.

2 Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). *UK Prospective Diabetes Study (UKPDS) Group. JAMA* 1999; 281: 2005–2012.

3 Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA et al. AACE/AACE comprehensive diabetes management algorithm 2015. *Endocr Pract* 2015; 21: 438–447.

4 Rosenstock J. Basal insulin supplementation in type 2 diabetes; refining the tactics. *Am J Med* 2004; 116: 105–16S.

5 American Diabetes Association. Standard of medical care in diabetes—2016. (5) Glycemic targets. *Diabetes Care* 2016; 39: S39–S46.

6 Diamant M, Van Gaal L, Guerci B, Stranks S, Han J, Mallory J et al. Exenatide once weekly versus insulin glargine for type 2 diabetes (DURATION-3): 3-year results of an open-label randomised trial. *Lancet Diabetes Endocrinol* 2014; 2: 464–473.

7 Riddle MC, Rosenstock J, Gerich J; Insulin Glargine Study Investigators. The treat-to-target trial: randomized addition of...
glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care 2003; 26: 3080–3086.

Abrahamson MJ, Peters A. Intensification of insulin therapy in patients with type 2 diabetes mellitus: an algorithm for basal-bolus therapy. Ann Med 2012; 44: 836–846.

Fritsche A, Schweitzer MA, Häring HU; 4001 Study Group. Glimepiride combined with morning insulin glargine, bedtime neutral protamine hagedorn insulin, or bedtime insulin glargine in patients with type 2 diabetes. A randomized, controlled trial. Ann Intern Med 2003; 138: 952–959.

Davidson MB, Raskin P, Tanenberg RJ, Vlajnic A, Hollandier P. A stepwise approach to insulin therapy in patients with type 2 diabetes mellitus and basal insulin treatment failure. Endocr Pract 2011; 17: 395–403.

Siegmund T, Pfohl M, Forst T, Pscherer S, Bramlage P, Försch J. Titration of basal insulin or immediate addition of rapid acting insulin in patients not at target using basal insulin supported oral antidiabetic treatment—a prospective observational study in 2202 patients. Diabetes Metab Syndr 2017; 11: 51–57.

Fonsca VA. Defining and characterizing the progression of type 2 diabetes. Diabetes Care 2009; 32: S151–S156.

Lund A, Bagger JI, Christensen M, Knop FK, Vilbøll T. Glucagon and type 2 diabetes: the return of the alpha cell. Curr Diab Rep 2014; 14: 555.

Nauk MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016; 4: 525–536.

Shafer CF, Jr, Kushner P, Aguilar R. User’s guide to mechanism of action and clinical use of GLP-1 receptor agonists. Postgrad Med 2015; 127: 818–826.

DeFronzo RA, Burant CF, Fleck P, Wilson C, Mekki Q, Pratley RE. Efficacy and tolerability of the DPP-4 inhibitor alogliptin combined with pioglitazone, in metformin-treated patients with type 2 diabetes. Diabetes Obes Metab 2012; 14: 531–538.

de Boer SA, Lefrandt JD, Petersen JF, Boersma HH, Mulder DJ, Hoogenk M. The effects of GLP-1 analogues in obese, insulin-using type 2 diabetes in relation to eating behaviour. Int J Clin Pharmac 2016; 38: 144–151.

Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E, Brett JH et al. Liraglutide once daily versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008; 372: 1240–1250.

Jelsning J, Vrang N, Hansen G, Raun K, Tang-Christensen M, Handresen LB. Liraglutide: short-lived effect on gastric emptying—long lasting effects on body weight. Diabetes Obes Metab 2012; 14: 531–538.

Riddle MC, Forst T, Aronson R, Souhami E, Miossec P et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled with newly initiated and continuously titrated basal insulin glargine: a 24-week, randomized, placebo-controlled study (GetGoal-Duo 1). Diabetes Care 2013; 36: 2497–2503.

Seino Y, Min KW, Niemoeller E, Takami A; EFC10887 GetGoal-L Asia Study Investigators. Randomized, double-blind, placebo-controlled trial of the once-daily GLP-1 receptor agonist lixisenatide in Asian patients with type 2 diabetes insufficiently controlled on basal insulin with or without a sulfonylurea (GetGoal-L-Asia). Diabetes Obes Metab 2012; 14: 910–917.

Riddle MC, Aronson R, Home P, Marre M, Niemoeller E, Moiess P et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled by established basal insulin: a 24-week, randomized, placebo-controlled comparison (GetGoal-L). Diabetes Care 2013; 36: 2489–2496.

Farrgren J, Persson M, Ahren B. Effect of the GLP-1 receptor agonist lixisenatide on counterregulatory responses to hypoglycemia in subjects with insulin-treated type 2 diabetes. Diabetes Care 2016; 39: 242–249.

Mathieu C, Rodbard HW, Cariou B, Handelsman Y, Philis-Tsimikas A, Ocampo Francisco AM et al. A comparison of adding...
liraglutide versus a single daily dose of insulin aspart to insulin degludec in subjects with type 2 diabetes (BEGIN: VICTOZA ADD-ON). *Diabetes Obes Metab* 2014; 16: 636–644.

42. Ahmann A, Rodbard HW, Rosenstock J, Lahtela J, de Loredo L, Tornoe K E et al. Efficacy and safety of liraglutide versus placebo added to basal insulin analogues (with or without metformin) in patients with type 2 diabetes: a randomized, placebo-controlled trial. *Diabetes Obes Metab* 2015; 17: 1056–1064.

43. de Wit HM, Vervoort GM, Jansen HJ, de Grauw WJ, de Galan BE, Tack CJ. Liraglutide reverses pronounced insulin-associated weight gain, improves glycaemic control and decreases insulin dose in patients with type 2 diabetes: a 26 week, randomised clinical trial (ELEGANT). *Diabetologia* 2014; 57: 1812–1819.

44. de Wit HM, Vervoort GM, Jansen HJ, de Galan BE, Tack CJ. Durable efficacy of liraglutide in patients with type 2 diabetes and pronounced insulin-associated weight gain: 52-week results from the Effect of Liraglutide on insulin-associated wEight GAin in patients with Type 2 diabetes’ (ELEGANT) randomized controlled trial. *J Intern Med* 2016; 279: 283–292.

45. Seino Y, Kaneko S, Osono T, Shiraiwa T, Nishijima K et al. Combination therapy with liraglutide and insulin in Japanese patients with type 2 diabetes: a 36-week, randomized, double-blind, parallel-group trial. *J Diabetes Investig* 2016; 7: 565–573.

46. Li CJ, Li J, Zhang QM, Lv L, Chen R, Lv CF et al. Efficacy and safety comparison between liraglutide and insulin: an add-on therapy to insulin and insulin dose-increase in Chinese subjects with poorly controlled type 2 diabetes and abdominal obesity. *Cardiovasc Diabetol* 2012; 11: 142.

47. Vanderheiden A, Harrison L, Warshauer J, Li X, Adams-Huet B, Rosenstock J, Fonseca VA, Gross JL, Ratner RE, Ahren B, Chow Levin P, Fan T, Song X, Nero D, Davis B, Chu BC. Comparing dalal MR, Xie L, Baser O, DiGenio A. Adding rapid-acting insulin or increasing basal insulin dose. *Endocr Pract* 2017; 23: 1316–1324.

48. Rosenstock J, Fonseca VA, Gross JL, Ratner RE, Ahren B, Chow FC et al. Advancing basal insulin replacement in type 2 diabetes inadequately controlled with insulin glargine plus oral agents: a comparison of adding albiglutide, a weekly GLP-1 receptor agonist, versus thrice-daily prandial insulin lispro. *Diabetes Care* 2014; 37: 2317–2325.

49. Levin P, Fan T, Song X, Nero D, Davis B, Chu BC. Comparing clinical outcomes and costs for different treatment intensification approaches in patients with type 2 diabetes uncontrolled on basal insulin: adding glucagon-like peptide 1 receptor agonists versus adding rapid-acting insulin or increasing basal insulin dose. *Endocr Pract* 2017; 23: 1316–1324.

50. Dalal MR, Xie L, Baser O, DiGenio A. Adding rapid-acting insulin or GLP-1 receptor agonist to basal insulin: outcomes in a community setting. *Endocr Pract* 2015; 21: 68–76.

51. Rosenstock J, Diamant M, Aroda VR, Silvestre L, Souhani E, Zhou T et al. Efficacy and safety of LixiLan, a titratable fixed-ratio combination of lixisenatide and insulin glargine, versus insulin glargine in type 2 diabetes inadequately controlled on metformin monotherapy: the LixiLan proof-of-concept randomized trial. *Diabetes Care* 2016; 39: 1579–1586.

52. Rosenstock J, Aronson R, Grunberger G, Hanefeld M, Piatti P, Serusclat P et al. Benefits of LixiLan, a titratable fixed-ratio combination of insulin glargine plus lixisenatide, versus insulin glargine and lixisenatide monocomponents in type 2 diabetes inadequately controlled on oral agents: the LixiLan-O randomized trial. *Diabetes Care* 2016; 39: 2026–2035.

53. Aroda VR, Rosenstock J, Wyschang C, Unger J, Bellido D, Gonzalez-Galvez G et al. Efficacy and safety of LixiLan, a titratable fixed-ratio combination of insulin glargine plus lixisenatide in type 2 diabetes inadequately controlled on basal insulin and metformin: the LixiLan-L randomized trial. *Diabetes Care* 2016; 39: 1972–1980.

54. Davies MJ, Leiter LA, Guerci B, Grunberger G, Ampudia-Blasco FJ, Yu C et al. Impact of baseline glycated haemoglobin, diabetes duration and body mass index on clinical outcomes in the LixiLan-O trial testing a titratable fixed-ratio combination of insulin glargine/lixisenatide (iGlarLixi) vs insulin glargine and lixisenatide monocomponents. *Diabetes Obes Metab* 2017; 19: 1798–1804.

55. Wyschang C, Bonadonna RC, Aroda VR, Puig Domingo M, Kapitza C, Stager W et al. Consistent findings in glycaemic control, body weight and hypoglycaemia with iGlarLixi (insulin glargine/lixisenatide titratable fixed-ratio combination) vs insulin glargine across baseline HbA1c, BMI and diabetes duration categories in the LixiLan-L trial. *Diabetes Obes Metab* 2017; 19: 1408–1415.

56. Gough SC, Bode B, Woo V, Rodbard HW, Linjawi S, Poulsen P et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes. *Lancet Diabetes Endocrinol* 2014; 2: 885–893.

57. Gough SC, Bode BW, Woo VC, Rodbard HW, Linjawi S, Zacho M et al. One-year efficacy and safety of a fixed combination of insulin degludec and liraglutide in patients with type 2 diabetes: results of a 26-week extension to a 26-week main trial. *Diabetes Obes Metab* 2015; 17: 965–973.

58. Buse JB, Vilsboll T, Thurman J, Blevins TC, Langbakke IH, Bottcher SG et al. Contribution of lixisenatide in the fixed-ratio combination of insulin degludec and liraglutide (IDegLira). *Diabetes Care* 2014; 37: 2926–2933.

59. Lingvay I, Perez Manghi F, Garcia-Hernandez P, Norwood P, Lehmann L, Tarp-Johansen MJ et al. Effect of insulin glargine up-titration vs insulin degludec/lixisenatide on glycated hemoglobin levels in patients with uncontrolled type 2 diabetes: the DUAL V randomized clinical trial. *JAMA* 2016; 315: 898–907.

60. Billings LK, Doshi A, Gouet D, Oviedo A, Rodbard HW, Tentolouris N et al. Efficacy and safety of insulin degludec/lixisenatide (IDegLira) vs basal-bolus (BB) insulin therapy in patients with type 2 diabetes (T2D): DUAL VII trial (OR-136). Presented at: American Diabetes Association (ADA) 2017 Scientific Sessions; June 9–13, 2017; San Diego, CA.

61. Blonde L, San Juan ZT. Fixed-dose combinations for treatment of type 2 diabetes mellitus. *Adv Ther* 2012; 29: 1–13.

62. European Medicines Agency. Xultophy Assessment Report. 2015. Available at http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/002647/WC501892080.pdf. Last accessed 13 July 2017.

63. European Medicines Agency. Xultophy Assessment Report. 2014. Available at http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002647/WC5030177659.pdf. Last accessed 13 July 2017.