Supplement of Atmos. Chem. Phys., 20, 5425–5436, 2020
https://doi.org/10.5194/acp-20-5425-2020-supplement
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China

Yonggang Xue et al.

Correspondence to: Yu Huang (huangyu@ieecas.cn) and Junji Cao (cao@loess.llqg.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
S1 Sampling procedures

Volatile organic compound (VOC) samples were collected using ¼” o.d. stainless steel multi-bed adsorbent tubes filled with Tenax-TA, Carbograph I TD and Carboxen 1003 (C3-DXXX-5266, ~380 mg in adsorbent weight per tube, Markes International Ltd., Llantrisant, U.K.). A low-flow module pump (ACTI-VOC, Markes International Ltd.) was used for these collections, and it operated at a flow rate of 50 mL min⁻¹. Ambient VOC samples were collected every hour for 60 min (i.e., total sampling volume = 3 L).

Insignificant breakthrough (<5%) was observed in the field and in laboratory tests for these flow and volume conditions (Ho et al., 2017). The sampling inlet was 1.5 m above ground level. Prior to the sampling, all sorbent tubes were cleaned in a thermal conditioner (TC20, Markes International Ltd.) at 330°C for 20 min. All pre-conditioned and sampled tubes were sealed with Difflok caps (Markes International Ltd.) and stored in desiccators at 0°C for a maximum of two weeks. The desiccators were filled with silica gel and activated carbon to avoid passive adsorption of water vapor and VOCs. The pump was calibrated with a mass flow calibrator (Defender 510, Bios, Torrance, CA, USA) before each sampling event. A Teflon™ filter assembly (47mm, Whatman, Clifton, NJ, USA) and a custom-made ozone scrubber, made of a 1 m long and ¼” o.d. copper tube coated on the inside with saturated potassium iodide, was installed upstream of the sample tube to remove any influences from particulate matter (PM) and O₃, respectively. The O₃ removal efficiency was > 99% at a concentration of 100 ppbv for 60 min as determined in a laboratory test. One field blank was collected on each sampling day. The sorbent samples were promptly transported to the laboratory for chemical analysis.

Real-time concentrations of trace gases were monitored continuously during the study. NO₂/NOₓ was measured with a chemiluminescence detector (Model 42i, Thermo Electron, Waltham, MA, USA). The time resolution for these instruments was 5 min, and the minimum detection limits (MDL) for NO₂/NOₓ 0.5 ppbv.

S2 Chemical Analysis

A total of 72 valid adsorbent tube samples were collected. The samples were analyzed using a thermal desorption (TD) unit (Series 2 UNITY-xr system, Markes International Ltd.) coupled to a gas chromatograph/mass spectrometric detector (GC/MSD, Models 7890A/5977B, Agilent, Santa Clara, CA, USA) within one week of collection. A description of the chemical analysis procedures may be found in a previous paper. Briefly, a sample tube was connected to the TD unit at room temperature (~25°C) and purged with ultra-high purity (UHP) helium (He) gas at a flow rate of 40 mL min⁻¹ for 60 s to eliminate air and prevent oxygen intrusion. For the first desorption step, the analytes were desorbed at 330°C for 5 min and refocused onto a cryogenic-trap (U-T1703P-2S, Markes International Ltd.) at -15°C to capture high-volatility target compounds. For the second desorption step, the trap was dry-purged for 6 s and
rapidly heated from -15°C to 320°C and maintained at that temperature for 5 min. The analytes were passed through a heated transfer line at 160°C and re-refocused onto a cold GC capillary column head (Rtx®-1, 105 m × 0.25 mm with 1 μm film thickness, Restek Corporation, Bellefonte, PA, USA) at -45°C with an aid of liquid nitrogen (N$_2$) in the GC oven. Once the second desorption step was completed, the oven temperature program started at an initial temperature of -45°C for 4 min, ramped to 230°C at a rate of 6°C min$^{-1}$, and maintained at 230°C for 5 min. The He carrier gas was delivered at constant flow rate of 1.0 mL min$^{-1}$ throughout the GC analysis. The MSD was operated in selective ion monitoring mode at 230°C and 70 eV for electron ionization.

Identification was achieved by comparing the mass spectra and retention times of the chromatographic peaks with those authentic standards. Certified PAMS (57 non-methane hydrocarbon) standard mixtures (Restek Corp.) were used in calibrations. A multi-point calibration curve with linearity > 0.999 was established to quantify each of the target compounds. The minimum detection limits (MDLs) were in the range of 0.003–0.808 ppbv for a sampling volume of 3 L. The measurement precisions determined from the analyses of eight replicates of standard samples at 2 ppbv were ≤ 5%(Ho et al., 2017; Ho et al., 2018; Li et al., 2017).

S3 Source characterization

Source assessment by Positive Matrix Factorization (PMF)

PMF was used to identify the major pollution sources: the data input to the model were the mixing ratios and uncertainties in the VOCs mixing ratios for all valid samples collected during the study. Calibrations were run for 3-7 factors with random seeds. The five factor solution produced object function Q values (both robust and true) close to the theoretical Q value (Figure S2), and because these factors are reasonably explained, we chose these results for the following discussion.

Factor 1 had high loadings of ethylene, ethane, toluene, ethylbenzene, chloromethane. The first two of these compounds contributed more than 30% of the total measured loadings of VOCs. Liu et al. (2008) found that ethylene and ethane are among the most important markers in biomass burning emissions (Abeleira and Farmer, 2017). Together with high contributions of benzene, toluene, ethylbenzene, xylene (BTEX), and 1,3-butadiene, factor 1 can be ascribed to biomass burning emissions. Factor 2 had high loadings of iso-pentane, n-butane, n-pentane, 2-methylpentane, 3-methylpentane, toluene, xylene, ethylbenzene, chloromethane and 1,3-butadiene (in descending order). In addition, the contributions of propylene, 1-butene, trans/cis-butene were relatively high compared with those in other factors. C$_4$-C$_5$ alkanes often originate from the incomplete combustion of gasoline while propylene, 1-butene and trans/cis-butene are key markers of gasoline combustion. As a result, the source type for factor 2 is identified as emissions from gasoline and exhaust from gasoline powered vehicles (Huang et al., 2015; Li et al., 2017; Liu et al., 2008). Factor 3 is in highly loaded with ethylene, propylene, ethane, 2-methylpentane,
n-hexane, C_{10}-C_{12} alkanes, benzene, toluene, chloromethane (descending order). Propylene is a typical marker of engine combustion emission, and heavy alkanes and BTEX are connected with diesel exhaust. The levels of 1,3-butadiene, 1-butene, cis/trans-2-butene were lower in compared with gasoline exhaust (factor 2). Thus, we conclude that the source type for factor 3 is diesel exhaust (Liu et al., 2008). Factor 4 had high loadings of propane, n-butane, iso-pentane, n-pentane, benzene and toluene. Propane is a major component in liquefied petroleum gas (LPG), and the C_{2}-C_{5} n-alkanes, benzene and toluene are often detected in incomplete combustion products of natural gas (Hesterberg et al., 2008; Turrio-Baldassarri et al., 2006). Considering that a large numbers of vehicles (i.e., public buses and taxis) are fueled by concentrated natural gas (CNG) in Xi’an, factor 4 is identified as emissions from combustions of LPG and CNG. Factor 5 had high loadings of ethylene, ethane, n-heptane and BTEX, which is similar to a profile of coal combustion10, and this factor is thus concluded to be a product of coal combustion.

![Figure S1: Correlations between selected volatile organic compounds. All correlations are significant at p < 0.05.](image-url)
Figure S2: Source profiles of volatile organic compounds calculated with the positive matrix factorization model.
Figure S3: Source apportionment of volatile organic compounds in ambient air from Xi’an in winter (LPG, Liquefied Petroleum Gas; CNG, Concentrated Natural Gas).
Figure S4: Map of the sampling site (39.90°N, 116.40°E) and 24-h air mass back-trajectories determined by the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 2015; Rolph et al., 2017). The trajectories represent the synoptic flow patterns during the observation period, and they are used to illustrate the air masses that influenced the measurements at Xi’an. The upper figure (a) represents back-trajectories for the dust event while the lower figure (b) represents back-trajectories in fine-particle pollution period.
Figure S5: Temporal variations in 1,3-butadiene and ethane from November 9 to 13.
Table S1. Levels and minimum detection limits (MDLs) of volatile organic compounds.

Alkanes	MDL	Mean	SD²	Alkenes & Aromatics	MDL	Mean	SD²
Ethane	0.033	2.478	1.164	Ethylene	0.039	7.012	2.838
Propane	0.019	1.904	1.302	Propylene	0.042	1.081	0.562
Isobutane	0.024	1.468	1.392	1-Butene	0.008	0.251	0.177
n-Butane	0.017	1.726	1.730	trans-2-Butene	0.010	0.137	0.186
iso-Pentane	0.002	2.427	2.420	cis-2-Butene	0.006	0.143	0.156
n-Pentane	0.019	1.068	0.906	1-Pentene	0.013	0.133	0.087
2,2-Dimethylbutane	0.004	0.036	0.040	trans-2-Pentene	0.012	0.103	0.144
2,3-Dimethylbutane	0.004	0.155	0.156	cis-2-Pentene	0.006	0.068	0.087
2-Methylpentane	0.024	1.047	0.636	1-Hexene	0.003	0.186	0.082
3-Methylpentane	0.006	0.561	0.353	Isoprene	0.005	0.106	0.105
n-Hexane	0.018	1.320	0.800	1,3-Butadiene	0.029	0.110	0.056
Methylcyclopentane	0.008	0.399	0.233	Benzene	0.015	0.981	0.664
2,4-Dimethylpentane	0.004	0.055	0.052	Toluene	0.026	2.008	1.334
Cyclohexane	0.005	0.152	0.113	Ethylbenzene	0.004	0.704	0.436

² SD = Standard Deviation
Compound	SD	Mean	SD
2-Methylhexane	0.007	0.249	0.172
m-Xylene	0.008	0.698	0.446
2,3-Dimethylpentane	0.007	0.055	0.053
Styrene	0.006	0.248	0.208
3-Methylhexane	0.006	0.227	0.150
o-Xylene	0.003	0.435	0.265
2,2,4-Trimethylpentane	0.010	0.067	0.060
Isopropylbenzene	0.004	0.014	0.008
n-Heptane	0.007	0.402	0.304
n-Propylbenzene	0.003	0.032	0.018
Methylcyclohexane	0.005	0.128	0.084
m-Ethyltoluene	0.002	0.082	0.049
2,3,4-Trimethylpentane	0.007	0.037	0.050
p-Ethyltoluene	0.003	0.041	0.024
2-Methylheptane	0.005	0.061	0.057
1,3,5-Trimethylbenzene	0.001	0.036	0.028
3-Methylheptane	0.006	0.043	0.052
o-Ethyltoluene	0.003	0.032	0.022
n-Octane	0.005	0.140	0.099
1,2,4-Trimethylbenzene	0.002	0.126	0.079
n-Nonane	0.004	0.110	0.101
1,2,3-Trimethylbenzene	0.002	0.029	0.021
n-Decane	0.003	0.100	0.059
m-Diethylbenzene	0.002	0.008	0.014
Undecane	0.004	0.080	0.053
p-Diethylbenzene	0.002	0.022	0.018
Dodecane	0.004	0.087	0.085

1SD standard deviation
Table S2: Mixing ratios (ppbv) and composition (%) of volatile organic compounds in Xi’an and other Chinese megacities in winter.

City	Statistic	Concentration (ppbv)	Composition (%)	Reference					
		Total	Alkanes	Alkenes	Aromatics	Alkanes	Alkenes	Aromatics	
Xi’an	arithmetic mean	35.965	16.331	9.181	10.324	45.6	25.6	28.8	This study
	SD¹	15.677	9.551	3.389	6.258	26.7	9.5	17.5	
Guangzhou	arithmetic mean	47.840	32.870	8.215	6.755	69.0	17.0	14.0	(Zou et al., 2015)
Beijing	arithmetic mean	51.040	32.100	9.390	9.550	63.0	18.0	19.0	(Li et al., 2015)

¹SD standard deviation
Data Set S1. Dataset for observed ambient VOCs, NOx and PM$_{2.5}$ reported in the accessory file (.xlsx).

References:

Abeleira, A. A., and Farmer, D. K.: Summer ozone in the Northern Front Range Metropolitan Area: Weekend-weekday effects, temperature dependences and the impact of drought, Atmos. Chem. Phys. Discuss., 2017, 1-21, https://doi.org/10.5194/acp-2017-160, 2017.

Cao, J., Wu, F., Chow, J., Lee, S., Li, Y., Chen, S., An, Z., Fung, K., Watson, J., and Zhu, C.: Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China, Atmos. Chem. Phys., 5, 3127-3137, https://doi.org/10.5194/acp-5-3127-2005, 2005.

Hesterberg, T. W., Lapin, C. A., and Bunn, W. B.: A Comparison of Emissions from Vehicles Fueled with Diesel or Compressed Natural Gas, Environ. Sci. Technol., 42, 6437-6445, https://doi.org/10.1021/es07178i, 2008.

Ho, K. F., Lee, S. C., Ho, W. K., Blake, D. R., Cheng, Y., Li, Y. S., Ho, S. S. H., Fung, K., Louie, P. K. K., and Park, D.: Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong, Atmos. Chem. Phys., 9, 7491-7504, http://doi.org/10.5194/acp-9-7491-2009, 2009.

Ho, S. S. H., Chow, J. C., Watson, J. G., Wang, L., Qu, L., Dai, W., Huang, Y., and Cao, J.: Influences of relative humidities and temperatures on the collection of C2-C5 aliphatic hydrocarbons with multi-bed (Tenax TA, Carbograph 1TD, Carboxen 1003) sorbent tube method, Atmos. Environ., 151, 45-51, http://dx.doi.org/10.1016/j.atmosenv.2016.12.007, 2017.

Ho, S. S. H., Wang, L., Chow, J. C., Watson, J. G., Xue, Y., Huang, Y., Qu, L., Li, B., Dai, W., Li, L., and Cao, J.: Optimization and evaluation of multi-bed adsorbent tube method in collection of volatile organic compounds, Atmos. Res., 202, 187-195, https://doi.org/10.1016/j.atmosres.2017.11.026, 2018.

Huang, Y., Ling, Z. H., Lee, S. C., Ho, S. S. H., Cao, J. J., Blake, D. R., Cheng, Y., Lai, S. C., Ho, K. F., Gao, Y., Cui, L., and Louie, P. K. K.: Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies, Atmos. Environ., 122, 809-818, http://dx.doi.org/10.1016/j.atmosenv.2015.09.036, 2015.

Li, B., Ho, S. S. H., Xue, Y., Huang, Y., Wang, L., Cheng, Y., Dai, W., Zhong, H., Cao, J., and Lee, S.: Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China, Atmos. Environ., 161, 1-12, https://doi.org/10.1016/j.atmosenv.2017.04.029, 2017.

Li, L., Xie, S., Zeng, L., Wu, R., and Li, J.: Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China, Atmos. Environ., 113, 247-254, https://doi.org/10.1016/j.atmosenv.2015.05.021, 2015.

Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., and Tang, D.: Source profiles of volatile organic compounds (VOCs) measured in China: Part I, Atmos. Environ., 42, 6247-6260, https://doi.org/10.1016/j.atmosenv.2008.01.070, 2008.

Schnell, R. C., Oltmans, S. J., Neely, R. R., Endres, M. S., Molenar, J. V., and White, A. B.: Rapid photochemical production of ozone at high concentrations in a rural site during winter, Nature Geosci, 2, 120-122, https://doi.org/10.1038/NGEO415, 2009.

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor. Soc., 96, 2059-2077, http://dx.doi.org/10.1175/BAMS-D-14-00110.1, 2015

Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications and Display sYstem: READY: Environmental Modelling & Software, 95, 210-228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017

Turrio-Baldassarri, L., Battistelli, C. L., Conti, L., Crebella, R., De Berardis, B., Iamiceli, A. L., Gambino, M., and Iannaccone, S.: Evaluation of emission toxicity of urban bus engines: Compressed natural gas and comparison with liquid fuels, Sci. Total Environ., 355, 64-77,
http://dx.doi.org/10.1016/j.scitotenv.2005.02.037, 2006.

Xue, Y., Ho, S. S. H., Huang, Y., Li, B., Wang, L., Dai, W., Cao, J., and Lee, S.: Source apportionment of VOCs and their impacts on surface ozone in an industry city of Baoji, Northwestern China, Sci. Rep.-UK., 7, 9979, https://doi.org/10.1038/s41598-017-10631-4, 2017.

Zhang, Z., Wang, X., Zhang, Y., Lü, S., Huang, Z., Huang, X., and Wang, Y.: Ambient air benzene at background sites in China's most developed coastal regions: Exposure levels, source implications and health risks, Sci. Total Environ., 511, 792-800, http://dx.doi.org/10.1016/j.scitotenv.2015.01.003, 2015.