SCALING OF THE MAGNETORESISTANCE OF UBE13 UNDER PRESSURE

Permalink
https://escholarship.org/uc/item/202082gt

Journal
JOURNAL OF APPLIED PHYSICS, 64(10)

ISSN
0021-8979

Authors
WILLIS, JO
MCELFRESH, MW
THOMPSON, JD
et al.

Publication Date
1988-11-15

DOI
10.1063/1.342298

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Scaling of the magnetoresistance of UBe\textsubscript{13} under pressure

J. O. Willis, M. W. McElfresh,a J. D. Thompson, J. L. Smith,b and Z. Fisk

Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

We report magnetoresistance measurements of the heavy electron compound UBe\textsubscript{13} above the superconducting transition temperature \(T_c \) and below 4 K for pressures \(P \) up to 19 kbar and for magnetic fields \(H \) up to 9 T. We observe strong negative magnetoresistance at all pressures and temperatures. The resistivity \(\rho \) is quadratic in temperature \(T \) from \(T_c \) up to a maximum temperature of 1 K at 1 bar increasing to 2 K at 19 kbar. The slope of the \(T^2 \) term decreases with both \(H \) and with \(P \). We find that \(\delta(\rho) = -[(\rho(H) - \rho(0))/\rho(0)] \) for a given pressure scales as a function of \(H/T \) and exhibits power-law behavior over one decade with an exponent of 1.7. In addition, \(\delta(\rho) \) at high pressure shows this same power law over a more limited \(H/T \) range.

INTRODUCTION

The compound UBe\textsubscript{13} (Ref. 1) is one of a class of materials known as heavy fermion or heavy electron compounds.2 These systems are characterized by Curie-Weiss (local moment) susceptibility \(\chi \) at high temperatures and Pauli (itinerant) magnetic behavior at low temperature. Accompanying this change in magnetic properties is an enormous enhancement of the electronic specific heat coefficient \(\gamma(T) \) \(\equiv C(T)/T \), which is proportional to the effective electron mass, as the temperature approaches zero. Heavy electron compounds at low temperatures have been proposed to be Kondo lattice systems.3 At high temperatures, each local moment is independent and becomes partially screened by antiferromagnetically oriented conduction electrons as the temperature is decreased; this moment compensation is complete at temperatures well below the Kondo temperature \(T_K \). A Kondo lattice is not just the sum of the independent Kondo sites described above, but it includes correlations among the sites. This results in a decrease in the resistivity \(\rho \) below \(T_K \) in contrast to the constant, saturated \(\rho \) for the isolated Kondo impurity in the same temperature regime. The resistivity of UBe\textsubscript{13} shows the classic Kondo resistivity at high temperatures that increases to a shoulder near 20 K and a peak near 2.5 K, below which \(\rho \) falls rapidly with decreasing \(T \) until at about 0.9 K, the material becomes superconducting.

The magnetoresistivity of UBe\textsubscript{13} is large and negative with a strong temperature dependence. Below 1 K and for \(\rho \) greater than about 1 T, the data can be described by \(\rho = \rho_0 + AT^2 \), composed of a residual scattering term \(\rho_0 \) and a \(T^2 \) contribution that suggests a Fermi liquid ground state for UBe\textsubscript{13}. At zero field, the \(\rho_0 \) value is about 100 \(\mu \Omega \) cm, much larger than might be expected for nonmagnetic impurity scattering. Indeed, \(\rho_0 \) decreases almost an order of magnitude in high fields, strongly supporting its source as Kondo (magnetic) scattering. The \(T^2 \) term also shows an overall decrease with field.

Pressure \(P \) has an effect similar to field on the resistivity of UBe\textsubscript{13}.4,5 The 2.5-K peak in \(\rho \) shifts to higher temperatures, and the low-temperature resistivity is depressed in magnitude, as are \(\rho_0 \) and \(A \). The superconducting transition temperature \(T_c \) was found to decrease at a rate of 16 mK/kbar. Specific heat measurements6 demonstrate a 30% reduction in \(\gamma \) between 0 and 9.3 kbar, indicating a substantial decrease in the electronic mass, or equivalently, in the renormalized electronic density of states at the Fermi level. In contrast, recent dc susceptibility \(\chi \) measurements7 in this same pressure range show less than a 10% decrease from \(\chi(P = 0) \), suggesting much smaller changes in the electronic mass. Magnetoresistance data at high pressures can provide additional insight into the possible energy scales and into the properties of the Kondo impurity and Kondo lattice models of UBe\textsubscript{13}. We report here on measurements of \(\rho \) as a function of temperature (0.15-4 K), magnetic field (0-9 T), and pressure (0-19 kbar).

EXPERIMENT

Polycrystalline UBe\textsubscript{13} was prepared by arc melting together stoichiometric amounts of U and premelted Be. Measurements were performed in a self-clamped Cu-Be cell8 using a conventional four-lead, phase-sensitive ac resistance technique. The current, which was 0.07 A cm-2 or smaller to avoid Joule heating, was roughly parallel to the applied magnetic field. The pressures were determined from the \(T_c \) of a Sn manometer.9 Temperatures were determined with a Speer carbon radio resistor that was calibrated against a germanium resistor at zero field and was corrected10 for magnetoresistance at finite fields.

RESULTS AND DISCUSSION

Resistivity \(\rho \) vs temperature \(T \) data at 9.9 kbar are presented in Fig. 1. A large negative magnetoresistance is apparent in this temperature range, similar to previously reported zero pressure measurements on UBe\textsubscript{13} (Refs. 11-13). It is clear that the magnetoresistance is a complicated function of \(T \) and \(H \), and furthermore, it is not possible to determine \(\rho(H) - \rho(0) \) explicitly below \(T_c(H = 0) \) as \(\rho(0) \) is shorted by the superconducting electrons. If the data of Fig. 1 are plotted versus \(T^2 \), there are extensive regions below 1 K for which \(\rho \) can be modeled as \(\rho_0 + A T^2 \), as can be seen in

a Also in Materials Science and Technology Division, Los Alamos National Laboratory. Present address: IBM Research Center, Yorktown Heights, NY 10598.

b Center for Materials Science, Los Alamos National Laboratory.
Phys. 64, No. 10, 15 November 1988

FIG. 1. Resistivity ρ vs temperature T for UBe$_{13}$ at 9.9 kbar.

Fig. 2. The extent of the T^2 region increases with field and also with pressure. At 9 T it extends up to \approx 1 K at $P = 0$ and up to \approx 2 K at $P = 19$ kbar. For H less than about 3 T, the smaller range for which ρ has a T^2 temperature dependence leads to less accurate values of ρ_0 and A than at higher fields.

In a Fermi liquid picture, the low-temperature resistivity is proportional to $(T/T^*)^2$, where T^* is a characteristic temperature of the system. We then make the identification that A is proportional to $(1/T^*)^2$, and therefore $A^{-1/2}$ is proportional to T^*. Values of $A^{-1/2}$ have been extracted from fitting the data in Fig. 2 and from the data at other pressures. The behavior of $A^{-1/2}$ as a function of H and P is shown in Fig. 3. The initial decrease in $A^{-1/2}$ (A $\propto T^*$) for H less than 2–3 T is not understood. At higher fields, $A^{-1/2}$ increases approximately linearly with H. This rate of change $(d\ln A^{-1/2}/dH)$ varies from 6.6%/T at 1 bar to 14%/T at 19 kbar. Remenyi et al. were unable to fit their data below 5 T to a $\rho_0 + A T^2$ form. In addition, they observed a distinct break in the ρ vs T^2 data near T_c ($H = 0$). Their $A^{-1/2}$ values increase monotonically with field but are a factor of 1.4 smaller (A is a factor of 2 larger) than seen here. This may be related to their high-field ρ value of 40 $\mu\Omega$ cm, twice as large as in the present work.

In both the data of Fig. 2 and in the corresponding data at other pressures (not shown), there appears to be a limiting, high-field, pressure-independent residual resistivity ρ_0. By extrapolating the resistivity to $T = 0$ K with a T^2 temperature dependence, ρ_0 values have been obtained and are shown in Fig. 4. The accuracy of these values improves with both H and P, i.e., with the length of the T^2 region and the decrease in the length of the extrapolation; a typical error bar is about 2%. A limiting high-field, residual resistivity ρ_0 value of $18 \pm 1 \mu\Omega$ cm, which is independent of pressure, is obtained from the data in Fig. 4. This value is in good agreement with the zero pressure ρ_0 of $\approx 17 \mu\Omega$ cm reported by Rauchschwalbe, Steglich, and Rietschel, but is a factor of 2 smaller than that observed by Remenyi et al., indicating the possible better quality of the first two samples. We believe that this ρ_0 is representative of intrinsic (nonmagnetic) scattering in the UBe$_{13}$ host lattice, such as substitutional, vacancy, or grain-boundary scattering.

The large, negative magnetoresistance attaining a maximum at $T = 0$ is a general property of dilute (independent) Kondo impurities, such as Ce in LaB$_6$. This behavior can be described quantitatively by the Bethe–Ansatz solution of the $S = 1/2$ Coqblin–Schrieffer model for independent Kondo impurities. This model has been successfully applied to CeAl$_3$ and CeCu$_2$Si$_2$ (Ref. 16) as well as to UBe$_{13}$ (Refs. 12 and 16) at ambient pressure. In the Ce-based comp-
pounds, there is clear evidence of a change in sign of the magnetoresistance at a temperature in coincidence with a maximum in $\gamma(T)$ and a sign change in the thermopower. Below this temperature T_0, it is believed that a coherent ground state (the Kondo lattice) has fully developed. Such direct observations have not yet been made for UBe$_{13}$, although the application of the above-mentioned $S = 1/2$ Cobble-Schriffer model suggests a T_0 of 0.1–0.2 K. This temperature is about 10% of T_{max} (2.5 K), the position of the maximum in ρ, below which UBe$_{13}$ is beginning to enter the Kondo lattice regime. T_{max} increases with pressure linearly up to 6.9 K at 19 kbar. The linear region in the log-log plot shown in Fig. 5 implies a power-law dependence observed over part of the range for all the pressures studied.

\[\rho(0) \propto \log P \]

resistivity $\delta(H)$ scales as a function of H/T with the same (H/T)$^{1/2}$ power-law dependence observed over part of the range for all the pressures studied.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences.

1. H. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 58, 1595 (1987).
2. R. E. Smoluchowski, Adv. Phys. 33, 373 (1984).
3. D. Thompson, M. W. McElfresh, J. O. Willis, Z. Fisk, J. L. Smith, and M. B. Maple, Phys. Rev. B 38, 35 (1987).
4. J. O. Willis, J. D. Thompson, J. L. Smith, and Z. Fisk, J. Magn. Magn. Mater. 63 & 64, 461 (1987).
5. J. A. Olsen, R. A. Fisher N. E. Phillips, G. R. Stewart, and A. L. Giorgi, Bull. Am. Phys. Soc. 31, 648 (1986); N. E. Phillips, R. A. Fisher, C. J. Flouquet, A. L. Giorgi, J. A. Olsen, and G. R. Stewart, J. Magn. Magn. Mater. 63 & 64, 332 (1987).
6. M. W. McElfresh, J. O. Willis, J. D. Thompson, Z. Fisk, J. L. Smith, and M. B. Maple, Bull. Am. Phys. Soc. 32, 594 (1987).
7. J. D. Thompson, Rev. Sci. Instrum. 55, 231 (1984).
8. T. F. Smith, C. W. Chu, and M. B. Maple, Cryogenics 9, 53 (1969).
9. M. J. Naughton, S. Dickenson, B. R. Samwer, J. S. Brooks, and K. P. Martin, Rev. Sci. Instrum. 54, 1529 (1983).
10. G. Remenyi, D. Jaccard, J. Flouquet, A. Briggs, Z. Fisk, J. L. Smith, and H. R. Ott, J. Phys. (Paris) Colloq. 47, 367 (1986).
11. B. Fisk, J. D. Bishop, E. Bucher, B. Golding, Jr., A. P. Ramirez, Z. Fisk, and J. L. Smith, J. Magn. Magn. Mater. 63 & 64, 441 (1987).
12. U. Rauchschwalbe, F. Englisch, and H. K. Miller, Europhys. Lett. 1, 71 (1986).
13. M. W. McElfresh, J. O. Willis, and J. D. Thompson, J. L. Smith, and M. B. Maple, Phys. Rev. B 38, 48 (1987).
14. M. W. McElfresh, J. O. Willis, J. D. Thompson, Z. Fisk, J. L. Smith, and M. B. Maple, Bull. Am. Phys. Soc. 32, 594 (1987).
15. J. D. Thompson, Rev. Sci. Instrum. 55, 231 (1984).
16. T. F. Smith, C. W. Chu, and M. B. Maple, Cryogenics 9, 53 (1969).
17. M. J. Naughton, S. Dickenson, B. R. Samwer, J. S. Brooks, and K. P. Martin, Rev. Sci. Instrum. 54, 1529 (1983).
18. G. Remenyi, D. Jaccard, J. Flouquet, A. Briggs, Z. Fisk, J. L. Smith, and H. R. Ott, J. Phys. (Paris) Colloq. 47, 367 (1986).
19. B. Fisk, J. D. Bishop, E. Bucher, B. Golding, Jr., A. P. Ramirez, Z. Fisk, and J. L. Smith, J. Magn. Magn. Mater. 63 & 64, 441 (1987).
20. U. Rauchschwalbe, F. Englisch, and H. K. Miller, Europhys. Lett. 1, 71 (1986).