Generation of energetic electron-positron pairs using multi-petawatt (PW) lasers has recently attracted increasing interest. However, some previous laser-driven positron beams have severe limitations in terms of energy spread, beam duration, density, and collimation. Here we propose a scheme for the generation of dense ultra-short quasi-monoenergetic positron bunches by colliding a twisted laser pulse with a Gaussian laser pulse. In this scheme, abundant \(\gamma \)-photons are first generated via nonlinear Compton scattering and positrons are subsequently generated during the head-on collision of \(\gamma \)-photons with the Gaussian laser pulse. Due to the unique structure of the twisted laser pulse, the positrons are confined by the radial electric fields and experience phase-locked-acceleration by the longitudinal electric field. Three-dimensional simulations demonstrate the generation of dense sub-femtosecond quasi-monoenergetic GeV positron bunches with tens of picocoulomb (pC) charge and extremely high brilliance above \(10^{14} \) s\(^{-1}\) mm\(^{-2}\) mrad\(^{-2}\) eV\(^{-1}\), making them promising for applications in laboratory physics and high energy physics.
ever since the positron was discovered in 1930s by Anderson¹, extensive theoretical modeling, numerical simulations and experiments have been carried out to investigate the generation and application of positrons in various fields²⁻⁴, such as material science, particle physics, medical treatments as well as laboratory astrophysics. Spontaneous pair production by a single laser beam in vacuum was predicted by Schwinger⁵ when the electric field reaches $E_\text{c} = 1.32 \times 10^{18} \text{ V m}^{-1}$. This corresponds to a laser intensity of $10^{29} \text{ W cm}^{-2}$, which is far beyond the current laser technology capability. Although it has been proved theoretically that the threshold could be lowered down to $10^{20} \text{ W cm}^{-2}$ by colliding laser beams⁶, the intensity is still at least three orders of magnitude larger than the achievable magnitude in the current laboratories. Several other approaches with seeded particles have been also proposed and extensively investigated in the past decades. For example, the trident process⁷ relies on the energetic (hot) electrons direct interaction with the Coulomb field of the nuclei, while the Bethe–Heitler (BH) process⁸⁻¹⁰ refers to the positron generation by the interaction of bremsstrahlung γ-photons with heavy nuclei. In case of two γ-photons collision, the Breit-Wheeler (BW) process¹¹ dominates the electron-positron pair production, by which pure light can be transformed into matter. Although the linear BW process has weak probability, researchers have managed to observe this process on the Relativistic Heavy Ion Collider (RHIC)¹². Different from the pure linear BW process, a significant number of pairs can be generated via the nonlinear BW process, where the energetic γ-photon beams propagate through an electromagnetic field, e.g., a laser pulse. This makes it possible to generate copious positrons in a configuration of laser-laser or laser-electron collisions. The famous SLAC-E144 experiment performed twenty years ago is a typical example¹³,¹⁴ of the latter choice, where a 46.6 GeV electron beam first created high-energy γ-photons and then underwent multiple collisions with the laser pulses from a Nd:glass laser at 527 nm wavelength. Finally, a signal of 106 ± 14 positrons with a broad energy spectrum in the range of 5–20 GeV was detected. However, such positron beams are not suitable for practical applications due to the trivial positron number produced.

With the advent of multi-petawatt (PW) lasers, significant efforts have been recently dedicated to obtaining high-energy-density electron-positron pairs by use of extremely intense laser-plasma interactions in various configurations²⁰⁻³⁴, such as thin foil target²⁰⁻²², laser-electron collision in gas plasma²⁷, cone target filled with near critical density (NCD) plasma²⁹ and plasma channel³⁴, some of which have the potential to be prolific positron yield factories and may be tested on the upcoming multi-PW laser systems. Although dramatic progress has been made on the generation of copious numbers or high-energy-density positrons³⁵⁻⁴⁴, there are some other restrictions on the practical usage of positrons generated from BH or BW processes, such as the separation of positrons from the plasma background and the preservation of the positron beam quality. Besides, the control of energy spread and duration of the generated positron beam driven by lasers is still extremely challenging and remains to be solved, which is essential for further applications in particle physics, e.g., as positron injection source in electron-positron collider and defect probing in materials. To the best of our knowledge, the methods to achieve dense short monoenergetic positron beams by use of multi-PW lasers in an all-optical way are yet to be explored.

In order to achieve both high yields of positrons and follow-up manipulation on the positron beam properties, here we propose an all-optical scheme for the generation of dense ultra-short quasi-monoenergetic positron bunches by use of a twisted laser pulse. At the first stage of the scheme, a relativistic Laguerre–Gaussian (LG) laser pulse is focused onto a cylindrical NCD plasma with a parabolic transverse density gradient, which can accelerate electrons directly from the background plasma to form sub-femtosecond electron bunches with energy up to several GeV. Then these energetic electrons quiver strongly in the LG laser fields and collide head-on with a high-intensity scattering Gaussian laser field in the second stage, emitting abundant γ-photons via the nonlinear Compton scattering (NCS) process. At the final stage, the multi-photon BW process is triggered and copious numbers of positrons are generated. Due to the unique structure of LG laser fields, these positrons are compressed by the radial electric field and suffer phase-locked-acceleration (PLA) by the longitudinal electric field. As a result, dense sub-femtosecond quasi-monoenergetic GeV positron bunches are generated, which can be further accelerated in vacuum.

Results

Motivation of the scheme. Generally, it is difficult to couple the generation, injection, and acceleration of high-energy-density positrons in an all-optical setup. In past decades, thin foils have been extensively employed for dense positron generation²⁰⁻²². However, once the ultra-intense laser pulse propagates through the foil plasma, its profile will be modified significantly, making it very difficult to control the positron beam quality without additional laser and beam facilities. Another issue is the fast dispersion of positrons by the drive pulse, whose ponderomotive force pushes the particles off the laser axis. Although ideally suited for electron acceleration, laser wakefields in plasma are not adequate for positron acceleration since positrons are easily expelled away from the bubble in the transverse direction⁴⁵. Therefore, several methods have been proposed to mitigate this problem on positron wakefield acceleration from simulations⁴⁶,⁴⁷ and experiments⁴⁸, but they generally require the pre-injection of monoenergetic positron beams, and these positrons are generally produced via the BH process. It has been shown that appropriate time and spatial waveform of laser fields could potentially manipulate the properties of charged particles. Vortex light⁴⁹ is one of the examples, which has been widely used in quantum information⁵⁰, communication⁵¹, micromanipulation⁵², etc. The LG laser is a typical vortex light characterized by a hollow intensity distribution with a spiral equiphase surface and carrying orbital-angular-momentum (OAM). It has been proved that the LG laser pulse could be used to drive particle acceleration with high OAM²⁻³⁻⁵⁵, generate γ-ray vortex⁵⁶,⁵⁷ as well as harmonics vortex⁵⁸. In our scheme, we propose a configuration composed of a relativistic circularly polarized LG laser pulse with an intensity of order of $10^{22} \text{ W cm}^{-2}$ and parabolic NCD plasma channel. This laser pulse has been shown to be achievable by a normal Gaussian pulse incident on optical devices like spiral phase plate⁵⁹,⁶⁰, by Raman amplification in plasma⁶¹, or by plasma holograms⁶². With the help of a cone structure⁶³, the intensity of LG laser can even be increased to beyond $10^{22} \text{ W cm}^{-2}$. Unlike solid targets, the drive laser can keep its profile almost intact in the NCD plasma, which plays a key role in the manipulation of positron bunches. Figure 1 schematically illustrates the three stages of our scheme, which has been simulated by full three-dimensional (3D) particle-in-cell (PIC) simulations (see Methods). It is shown that dense ultra-short quasi-monoenergetic GeV positron bunches can be generated by 10 PW-scale lasers, which may open up potential applications in particle physics.

Dense electron bunches formation. When the LG laser propagates into the NCD plasma, it picks up electrons from the background via the radial electric field, forming a dense electron bunch train as shown in Fig. 2a. This can be attributed to the
special structure of the LG laser electric fields. Here, the laser radial electric field can be written as:

$$E_r = E_y \cdot \cos \alpha + E_x \cdot \sin \alpha = \frac{E_0}{\sigma_0(x^2 + y^2)^{1/2}} e^{-\sigma^2}(x^2 + y^2) G(\phi),$$

where E_0 is the peak value of the laser electric field, α is the direction angle of electric field in the $y-z$ plane, σ_0 is the focal spot radius, σ is the spot radius related to x coordinates, $G(\phi)$ is the temporal shape of the laser which is Gaussian in our simulations, $f = \frac{\pi}{2}$ is the Rayleigh length and λ is the wavelength of the laser. The phase factor $\phi = \omega_0 t - k_0 \left(x + \frac{y^2}{2} \right) - 2 \arctan \left(\frac{y}{r_1} \right)$, ω_0 is the angular frequency, $r = \sqrt{x^2 + y^2}$ is the wave number and $r_1 = x + \frac{y^2}{2}$ is the radius of curvature of the wavefront. When $\phi = \pi/2 + 2 n \pi (n = 0, 1, 2 \cdots)$, E_r points outward and has the maximum value that pushes the electrons towards the laser axis; when $\phi = 3 \pi/2 + 2 n \pi$, E_r points inward and has the maximum value that drives electrons off the laser axis. This results in the formation of an electron bunch train with a sub-femtosecond scale duration and 7.8 nC charge per bunch (see Supplementary Note 1).

On the other hand, the longitudinal electric field of the LG laser can be written as:

$$E_x = \frac{\sqrt{2} e E y_0^{0.2} \sigma_0^{0.2} e^{-\sigma^2}}{k_0\sigma} e^{-\phi^2} G(t) \left[2 \left(\frac{r^2}{\sigma^2} - 1 \right) \cos \phi - \frac{k_0 r^2}{r_1} \sin \phi \right],$$

where $e = 2.718$ is the Euler number. It is shown that E_x reaches the maximum $E_{x,\max} = -2 \frac{2E_0\alpha_0}{k_0\sigma} \cos \phi$ on the laser axis ($r = 0$). Thus, the strong longitudinal electric field can accelerate the electrons near the axis most efficiently. This also decreases the dephasing rate $R = \gamma e - p_e/m_e c$, leading to a much longer distance of acceleration, where γ is the relativistic factor of electron, p_e and m_e represent the longitudinal momentum and rest mass of electrons, respectively. The laser radiation pressure also plays an important role in the electron bunch acceleration, which can be written as $F_{rad} = P \cdot \frac{d\alpha}{d\tau} = \frac{1}{c m_e} \sqrt{\frac{2E_0}{\gamma_0^2}} \frac{2E_0 r^2 \sigma^2}{\sigma^2} e^{-2\sigma^2}.$

Obviously, the force depends on the electron density and position. It reaches the maximum at $r = \sigma/\sqrt{2}$, and is one order of magnitude larger than $q_e E_{x,\max}$ when $n_e = 10n_c$. Here, $n_c = m_e \omega_0^2 / 4\pi q_0^2 \approx 1.1 \times 10^{13} \text{ cm}^{-3}$ is the critical density at the laser wavelength of λ, where q_0 is the charge of an electron. This interprets the fact that the off-axis electrons with lower density are able to be accelerated to much higher energy than the electrons on the laser axis. Figure 2b presents the evolution of electron energy spectrum. It shows that these electrons have a cutoff energy of more than 2 GeV at $t = 50T_0$ and reach a peak...
energy density of 10^5 MeV-nt. Afterwards, the cutoff energy decrease, which is due to the γ-photon emission via the subsequent NCS process at the stage II. The different acceleration mechanisms for the electrons around the axis and off-axis lead to the double-peak structure in the angle-energy distribution of electrons as indicated in Fig. 2c.

Energetic γ-photon emission. The high-energy electrons quiver quickly in the LG laser field so that a large quantity of photons could be emitted in the quantum radiation dominated regime. At this stage, the intensity of photon emission process can be characterized by the quantum invariant $X_e = \left(\frac{\hbar}{\omega} \right) \sqrt{\left(\beta + B \right) \gamma - (\beta \bar{B})^2}$, where $\beta = \frac{v}{c}$ is the normalized electron velocity, $\gamma = 1/\sqrt{1 - \beta^2}$, and c is the speed of light in vacuum. Figure 3a illustrates the distribution of X_e along the x axis in the collision zone at $t = 50T_0$. It is shown that X_e is between 0.1 and 0.6, exciting the emission of sufficient γ-ray photons when the energetic electron bunches head-on collide with the scattering laser. Due to the short bunch structure, these photons have a similar distribution to the electrons with a peak density of $300n_t$. Figure 3b presents the photon energy spectrum evolution, which shows a cutoff energy of photons as high as 1 GeV before the collision and 1.5 GeV after the collision. The significant increase of photon energy and number are mainly attributed to the NCS process during the collision. By integrating the energy spectrum, we also see that the radiation power from the quivering electrons in the LG laser field is about 0.27 PW, while the peak radiation power via the NCS process is increased up to 6 PW, an order of magnitude higher than in the former process. Meanwhile, these photons also show a double-peak structure in the angle-energy space as indicated in Fig. 3b. Different from the electron bunches above, the high-energy photons are mainly resided within a smaller divergence angle about 15°. Although the off-axis electrons have larger velocity and energy, the incident scattering laser is Gaussian and has the maximum value on the axis, leading to much larger χ_e around the laser axis. Thus, the higher energy photons resulting from the NCS process are generated by the electron bunches near the axis instead of the off-axis electrons. This results in the smaller divergence angle and higher photon energy as indicated in Fig. 3b. This small divergence angle leads to the high peak-brightness of the photon bunch of $8.04 \times 10^{25} \text{photons s}^{-1} \text{mm}^{-2} \text{sr}^{-1}$ with the photon energy centered at 13.13 MeV and the bunch size of 1 mm (see Supplementary Note 2 and 3), the value is comparable to the average-brightness of X-ray free-electron lasers. By use of stronger lasers, one may achieve brighter γ-photon beams (from MeV to GeV) with much higher peak-brightness approaching EuXFEL centered at 25 keV.

Positron bunches generation. The generated γ-photons continue propagating forward and collide with the counter-propagating Gaussian laser field coming from the right side at around $t = 55T_0$, hence initiating the multi-photon BW process. At this stage, the quantum invariant determining the electron-positron pair emissivity is $X_\gamma = \frac{\hbar \omega_0}{\gamma} \left| \bar{E} + \bar{k} \times \bar{B} \right| \left(2m_{ee}c^2E_\gamma \right)^{-1}$, where \bar{E} is the electric field perpendicular to the velocity of γ-photons, and $\bar{k} = \frac{\omega_0}{c}$ is the wave vector of the emitted photon. Here, λ_{ph} is the wavelength of the photon and \bar{v} is the speed vector of the photon. Figure 4a presents the 2D distribution of X_γ in the x–y plane of the collision zone. The result shows that χ_γ reaches 0.6, implying the generation of copious electron-positron pairs. Moreover, X_γ is much larger near the laser axis due to higher energy of γ-photons and stronger transverse field of Gaussian laser fields there, leading to the creation of copious electron-positron pairs around the laser axis. Figure 4b demonstrates that most positrons are distributed within a small range in the transverse direction, which shows a similar distribution to the transverse laser electric field.

Figure 4c presents the density distribution of positrons at $t = 78T_0$. One can see that the positrons are characterized by a train of position bunches each with a duration of about 680 as and a peak density of $8n_t$ (see Supplementary Note 3). The energy spectrum of each positron bunch is presented in Fig. 4d. It is apparent that the positron bunches are quasi-monoenergetic and the cutoff energy of the first bunch is as high as 1 GeV with total charge of about 55 pC. At $t = 78T_0$, the absolute FWHM energy spread of the second positron bunch is $\Delta E \approx 60$ MeV with the center energy of $E \approx 530$ MeV. Thus, the minimum relative energy spread is $\Delta E/E \approx 11.3\%$ (see Supplementary Note 4), which is much less than those obtained in the previous work via the BH process. To the best of our knowledge, it is the first time to report such dense quasi-monoenergetic positron bunch generation via the multi-photon BW process. Compared with the BH case at a similar laser intensity, the positron number density is about five orders of magnitude higher. Furthermore, the skin depth of the pair plasma $l_s \approx 2.24 \mu m$ is smaller than the transverse plasma size of 2.51 mm, inducing weak collective effects of plasmas and making the hot dense pair plasma potential candidate as a test bed for pair plasma physics as well as nonlinear QED physics.29.
Acceleration and propagation of positron beams. As the positron bunches co-propagate along with the LG laser pulse, they experience compression and acceleration in the transverse and longitudinal direction, respectively (see Supplementary Note 5). In the transverse direction, the positron bunches are well confined by the negative radial electric field E_r forming collimated energetic positron bunches. For a more intuitive description, we show the 2D distribution of transverse electric and magnetic field force $\vec{F}_r = E_r q_r + q_e (\vec{v} \times \vec{B})$ experienced by positrons in the $y-z$ plane at $t = 65T_0$ in Fig. 5a. It is interesting to see that the positrons within the red dashed circle ($r < \sigma/\sqrt{2}$) are well confined with a very small transverse velocity, while the positrons outside of the circle are scattered off the laser axis by the laser field. This phenomenon can be attributed to the transverse ponderomotive force of the LG laser pulse:

$$F_{tr} = \left[\left(\frac{F_0}{\sigma} \right)^2 - 1 \right] \frac{F_0^2}{k_0 \sigma_0 (f^2 + x^2)} e^{-\left(\frac{x}{\sigma} \right)^2},$$

where $F_0 = \sqrt{2} q_E E_0$. It is shown that, when $r > \sigma/\sqrt{2}$, the transverse ponderomotive force $F_{tr} > 0$, so that the positrons beyond the circle are pushed outward. On the contrary, as $r < \sigma/\sqrt{2}$, $F_{tr} > 0$, positrons are confined within a small range. These are in good agreement with our simulation results as shown in Fig. 4b. Thus, the transverse compression of positrons can be achieved by the special field distribution of LG laser without applying extra magnetic fields as in previous researches. It is in sharp contrast to the case of using normal Gaussian drive laser, where the generated positrons are dispersed quickly in space and there are no obvious positron bunches formed (see Supplementary Note 6). Due to the limited transverse motion, the positrons are well directed with a small divergence angle of 12°, as presented in Fig. 5b. Additionally, the geometric emittance of the positron bunches $\epsilon_y = \sqrt{\sigma_0^2 + v_0^2 \sigma_z^2}$ in y and z direction is $\epsilon_y = 0.036 \text{ mm}\cdot\text{mrad}$ and $\epsilon_z = 0.034 \text{ mm}\cdot\text{mrad}$, respectively, which are two orders of magnitude smaller than that recently acquired in experiments. Here, s represents the direction in space (x, y, z), $<s>$ is the average particle position in the s direction, and $\theta_j> is the average angle between the particle momentum p and the s axis. Correspondingly, the peak beam brilliance is $B_v = \frac{N_{\epsilon^2} T_{tr}}{\sigma_c R_{tr}}$, where N_{ϵ^2}, T_{tr}, E_{tr} are the total number, duration, and energy of a positron bunch, respectively.

In contrast with electrons, the positrons are accelerated dominantly by the positive longitudinal electric field E_z. Here, the positron dephasing rate can be rewritten as $\dot{R} = 1 - \frac{q}{m} \int E_z dt'$. In our case, $E_z > 0$, the positrons are rapidly accelerated to near the speed of light accompanying with a much longer acceleration length due to the decreasing R, so that they are swiftly phase-locked and accelerated in the NCD plasma. Since the positrons are well confined within a small zone near the laser axis, the positron acceleration is thus dominated by the longitudinal electric field. However, the off-axis positrons are also accelerated by the laser ponderomotive force $F_z = -\partial V_{\text{pond}}/\partial x \approx \frac{2\pi^2}{\pi \sigma_0^2} (1 - \frac{1}{\beta^2}) \frac{\sqrt{2k_0 q_0 e} e^{-\left(\frac{x}{\sigma} \right)^2}}{k_0^2}$, which is positive inside the laser spot ($r < \sigma$) except on the laser axis ($F_z = 0$). Here F_z is of the same order of magnitude as the longitudinal electric field force qE_z. On the one hand, F_z equals zero on the laser axis and increases gradually along the radial direction; on the other hand, the decreased longitudinal electric field force qE_z along with the radial direction compensate the increased F_z force, as seen in Fig. 5b, so that the positrons in each bunch can be accelerated as a whole.

The unified positron acceleration results in eventually the generation of quasi-monoenergetic positron bunches as shown in Fig. 4d. Figure 5c presents the $x-p_x$ phase space distribution of positrons at $t = 70T_0$, which indicates a clear sub-femtosecond bunch structure as observed in Fig. 4c. It is shown that the phase-locked positron bunches are well confined by the negative radial electric field E_r. Especially, the E_r field shows an approximately linear roll-off for a large number of positrons, which plays a crucial role for the positron micro-bunching. Similar to the proton acceleration in the phase-stable-acceleration (PSA) regime, the phased-locked tail positrons experience larger longitudinal electric field forces and can catch up with the...
positrons in the front, leading to the micro-bunching of positrons. In order to illustrate this, we present the evolution of micro-bunching process of positrons in the $x-p_x$ space, as shown in Fig. 5d. It shows that the positron bunch is discrete in the $x-p_x$ phase space and is characterized by a typical micro-bunching structure, leading to the generation of quasi-monoenergetic positron bunches.

Moreover, the positron bunches can be accelerated further and sustain their structure for a few tens of laser periods after they propagate into vacuum at $t=88T_0$, as shown in the inset of Fig. 5d. For example, the first positron bunch can be accelerated from 1.2 GeV to 3.8 GeV and maintain its structure after traveling for 40 laser cycles in vacuum (see Supplementary Note 7). Although these bunches show somewhat spatial diffusion in the transverse direction, their energy spread and duration are well maintained. It is interesting to note that the protons from the NCD plasma dephase quickly due to their low energy and large mass, compared with the positrons. Thus, the positron bunches can be well separated from the NCD plasma background, facilitating the further manipulation for potential applications.

Discussion
In order to demonstrate the robustness of the scheme, we perform additional simulations to investigate the laser energy and angular momentum conversion efficiency into γ-ray photons and positrons. Firstly, we vary the drive laser intensity from $a_{d}=180$ to 265 while keeping $a_{i}=150$. Since the on-axis electrons are accelerated mainly by the longitudinal electric field E_x, the energy of electrons depends on a_d and the acceleration length. As mentioned before, with such strong drive laser intensity ($a_d \gtrsim 180$), electrons could be accelerated to near the speed of light within one laser cycle and are phase-locked in the acceleration phase, so that the acceleration length approximates the same. Thus, the energy convergence efficiency from the lasers to electrons scales as $\epsilon_e = E_e / E_{\text{laser}} \propto a_d / (a_d^2 + a_i^2) \sim a_d^{-1}$. In the near QED regime, the radiation power of energetic electrons can be estimated by $P_\gamma \approx \frac{2}{3} N_e q E_c q_e \Gamma_{\chi}(\chi)$, where N_e is the electron
Fig. 6 Proposal of an experiment set-up to acquire high-quality positron beams. The LG laser pulse can be obtained by irradiating a phase plate with a usual Gaussian laser pulse (see Methods), for example, a 16/32 stair phase plate with the stair-height of tens nanometers employed in previous experiments\(^60\) can be used here. Then, the LG laser pulse interacts with the nanotube foam target and collide with the scattering laser, generating abundant \(\gamma\)-ray and electron-positron pairs. Finally, the collimated electron and positron beams can be separated from the laser pulses and \(\gamma\)-ray beams by use of magnetic fields.

Fig. 7 Laser energy conversion efficiency to electrons, \(\gamma\)-photons and positrons. Energy conversion efficiency (a) with different \(a_d\) and a fixed \(a_s\); (b) with different \(a_s\) and a fixed \(a_d\).

number, \(a_f\) is the fine structure constant, \(\chi_e \propto \chi_e [E_\parallel] \sim (a_d^2 + a_s^2) a_d \sim a_d^2 \chi_e g(x_e)\) is the average radiation power factor, and \(g(x_e) \approx (1 + 2x_e + 31x_e^2 + 3.7x_e^3)^{-4/9}\) is the quantum weaken factor. The energy of emitted \(\gamma\)-photons is estimated as \(E_\gamma \propto E_\gamma \chi g(x_e)\), thus we can get the simple approximation of the laser energy conversion efficiency to the \(\gamma\)-photons as \(\varepsilon_\gamma = E_\gamma / E_{\text{laser}} \sim a_d^{1/3}\), in accordance with the simulation results in Fig. 7a. The approximate form of the function determining the rate of electron-positron pair production is\(^28\)

\[
T_+ (x_e) \approx 0.16 a_d^{2/3} \frac{K_0^2}{x_e},
\]

where \(K\) is the modified Bessel function of the second kind. When \(x_e < 8\), \(T_+ (x_e) \propto \exp \left(-2/(3x_e)\right)\), and \(x_e \propto y^2 [E_\parallel] \sim a_d^2\). Since the positron acceleration is dominated by the laser longitudinal electric field, the laser energy conversion efficiency to the positrons is thus \(\varepsilon_{e^+} \propto \varepsilon_{T_+} a_d \sim a_d^2 \exp \left(-2/(3a_d^2)\right)\), agreeing well with the simulation results shown in Fig. 7a. Especially, when we decrease \(a_d\), e.g., to \(a_d = 180\), the generated positron bunches are still quasi-monoenergetic. The laser pulse with this intensity will be soon attainable on several laser facilities\(^74\) e.g., ELI-NP, SULF and CoReLS.

Secondly, we keep \(a_d = 265\), but vary \(a_s\) from \(a_s = 100\) to \(a_s = 200\). The energy conversion efficiency from the laser pulses to the electrons and positrons shows a similar scaling except for photons, as shown in Fig. 7b. Different from the charged particles, the laser energy conversion efficiency to the \(\gamma\)-photons keeps almost unchanged with the increase of \(a_s\). Here, the radiated \(\gamma\)-photons originate from two parts, the quivering electrons in the laser field and the NCS process. Although the NCS process depends on the intensity of both laser pulses, the first part of \(\gamma\)-photons is determined only by the drive laser, resulting in different scaling of energy conversion efficiency with \(a_d\) and \(a_s\). Our simulations show that the final laser energy conversion efficiency to photons grows at the same rate as the total laser energy.

It is interesting to see that the OAM of LG laser pulse is also transferred to electrons and positrons efficiently. Here, the angular momentum of laser field is \(L_{\text{laser}} = |\vec{r} \times (\vec{E} \times \vec{B})|\), while the angular momentum of particles can be calculated by \(L_{\text{part}} = |\vec{r}_{\text{part}} \times \vec{p}_{\text{part}}|\), where \(\vec{r}_{\text{part}}\) and \(\vec{p}_{\text{part}}\) are the transverse position and the momentum of particles, respectively. In the case of \(a_d = 265\) and \(a_s = 150\), the OAM conversion efficiency from laser pulses to positrons can reach \(2\%\) which is an order of magnitude higher than previous studies\(^30\). When we increase the scattering laser intensity, the laser angular momentum conversion efficiency to the positrons is also increased efficiently (see Supplementary Note 8). Here, the angular momentum provides the GeV positron bunches an extra degree of freedom so that they may have many potential applications in high energy physics, such as discovering new particles, solving the underlying physics in the collision of \(e^- e^+\) and investigating fundamental QED
processes. Meanwhile, the attosecond-scale positron bunches are not only separated in space, but also in energy, enabling ultra-short time resolution in detecting and accurate injection into accelerators.

In conclusion, we propose an all-optical scheme for the generation, acceleration, and compression of positrons to form dense GeV sub-femtosecond positron bunches with 10 PW-scale lasers. In this scheme, high-energy incoherent γ-photons are efficiently generated via the NCS process. Once the γ-photons collide head-on with the scattering laser pulse, abundant positrons are generated via the multi-photon BW process. Owing to the PLA, sub-femtosecond quasi-monoenergetic positron bunches are produced. The high-quality positron bunches are sustainable for tens of laser periods when propagating into vacuum along with the drive laser. Besides the short-time duration and narrow energy bandwidth, OAM is also transferred efficiently from the LG laser pulse to the y-photons and positrons with the efficiency of about 30 and 2%, respectively. In the near future, several laser facilities75,76 under construction will be capable of delivering ultra-high-intensity laser pulses of 10^{22}–10^{24} W cm^{-2} with the peak power at 10 PW and above, which is high enough to test our scheme. The bright quasi-monoenergetic sub-femtosecond positron bunches with tunable energy and OAM may find wide applications in science and engineering, such as ultra-fast dynamics, laboratory astrophysics and particle collision experiments.

Methods
Numerical modeling. 3D PIC simulations are carried out using the open-source PIC code EPOCH, with both QED and collective plasma effects included21,28. In the simulations, a left-handed circularly polarized LG laser pulse and a linearly polarized Gaussian laser pulse are incident from the left and right boundaries of the simulation box with a time delay of 23τ0. Except for the parameter scanning, the main results of this manuscript are based on the following laser parameters. The bright quasi-monoenergetic sub-femtosecond positron bunches with tunable energy and OAM may find wide applications in science and engineering, such as ultra-fast dynamics, laboratory astrophysics and particle collision experiments.

In conclusion, we propose an all-optical scheme for the generation, acceleration, and compression of positrons to form dense GeV sub-femtosecond positron bunches with 10 PW-scale lasers. In this scheme, high-energy incoherent γ-photons are efficiently generated via the NCS process. Once the γ-photons collide head-on with the scattering laser pulse, abundant positrons are generated via the multi-photon BW process. Owing to the PLA, sub-femtosecond quasi-monoenergetic positron bunches are produced. The high-quality positron bunches are sustainable for tens of laser periods when propagating into vacuum along with the drive laser. Besides the short-time duration and narrow energy bandwidth, OAM is also transferred efficiently from the LG laser pulse to the y-photons and positrons with the efficiency of about 30 and 2%, respectively. In the near future, several laser facilities75,76 under construction will be capable of delivering ultra-high-intensity laser pulses of 10^{22}–10^{24} W cm^{-2} with the peak power at 10 PW and above, which is high enough to test our scheme. The bright quasi-monoenergetic sub-femtosecond positron bunches with tunable energy and OAM may find wide applications in science and engineering, such as ultra-fast dynamics, laboratory astrophysics and particle collision experiments.

Intense twisted laser pulse generation. It has been already proved that intense twisted laser plasma can be generated through irradiating a spiral-shaped phase plate (light fan) by an intense Gaussian laser pulse39. Recently, femtosecond twisted laser pulse with an intensity of 6.3 × 10^{19} W cm^{-2} has been successfully generated in experiments where a 32-stair plate with the step-height of 17.5 nm was used60. Here, we investigate numerically the generation of such an ultra-intense twisted laser pulse via the light fan by using the 3D-PIC code EPOCH, as shown in Fig. 8a.

The parameters of incoming Gaussian laser (LG00) are: a0 = 265, τ0 = 33 fs, λ0 = 1270 nm (with Gaussian profile), and λo = 1 μm. The phase plate is a plastic foil with eight stairs whose height is h = λ0/16 = 6.25 nm to produce a total phase shift of λ/2, and the minimum thickness of the foil is 2 μm. After the Gaussian pulse is completely reflected by the phase plate, an ultra-intense twisted LG01 pulse with a0 = 200 is acquired, as indicated in Fig. 8b. In theory, the laser mode of the reflected pulse can be expanded by a series of LG modes and the expansion coefficients can be defined as81,82:

\[a_\alpha = \frac{(LG_\alpha \exp(-\Delta \phi)|LG_{00}\rangle)}{2R_\alpha \Delta \phi} \]

\[\Delta \phi = \sum_{\alpha, \beta} H(\phi - \pi/4n)H(\pi/4n + \theta/4 - \phi)2\pi/8n, C_\alpha \text{is a normalization constant,} \]

\[R_\alpha = (\beta + 2\sigma^2)/(\alpha + 2\sigma^2), H(x) \text{is the Heaviside function. Thus, the reflected pulse is composed of several laser modes and the percentage of each mode is given by} \]

\[I_\alpha = |a_\alpha|^2. \]

Because of \(\Delta \phi = \phi \) in our simulations, the laser modes with the azimuthal mode index \(l = s = t = 1 \) contribute the most in the \(\phi \) integral. In our case, the resulting \(I_{\phi_0} = 78.5\% \) means that the LG01 mode dominates the reflected pulse, which agrees well with the PIC simulation results as shown in Fig. 8b.

Data availability
The data that support the findings of this study are available from the corresponding authors on reasonable request.

Received: 21 April 2021; Accepted: 22 December 2021;
Published online: 11 January 2022

References
1. Anderson, C. D. The positive electron. Phys. Rev. 43, 491 (1933).
2. Di Piazza, A., Müller, C., Hatsagortsyan, K. Z. & Keitel, C. H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1288 (2012).
3. Danielsen, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Rev. Mod. Phys. 87, 247–306 (2015).
4. Schwinger, J. On Goange invariance and vacuum polarization. Phys. Rev. 82, 664 (1951).

5. Bulanov, S. S., Mur, V. D., Narozhny, N. B., Nees, J. & Popov, V. S. Multiple colliding electromagnetic pulses: a way to lower the threshold of e⁻ e⁺ pair production from vacuum. Phys. Rev. Lett. 104, 220404 (2010).

6. Shearer, J. W. et al. Pair production by relativistic electrons from an intense laser focus. Phys. Rev. A 8, 1582–1588 (1973).

7. Nakata, K. & Takabe, H. Numerical study of pair creation by ultraintense lasers. Phys. Plasmas 9, 1505–1512 (2002).

8. Bethe, H. & Heitler, W. On the stopping of fast particles and on the creation of positive electrons. Proc. R. Soc. Lond. A 146, 83–112 (1934).

9. Liang, E. P., Wilks, S. C. & Tabak, M. Pair production by ultraintense lasers. Phys. Rev. A 307, 4867–4890 (1989).

10. Møller, J. et al. Optimizing electron-proton pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 066409 (2009).

11. Cowan, T. E. et al. High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773–783 (1999).

12. Chen, H. et al. Relativistic positron creation using ultrashort pulse lasers. Phys. Rev. Lett. 102, 105001 (2009).

13. Loetstedt, E., Jentschura, U. D. & Keitel, C. H. Laser channeling of Bethe-Heitler positrons. Phys. Rev. Lett. 101, 203001 (2008).

14. Nakamura, T. & Hayakawa, T. Quasi-monoenergetic positron beam generation from ultra-intense laser-matter interactions. Phys. Plasmas 23, 45103 (2016).

15. Xu, Z. et al. Driving positron beam acceleration with coherent transition radiation. Commun. Phys. 3, 191 (2020).

16. Breit, G. & Wheeler, J. A. Collision of two light quanta. Phys. Rev. 46, 1087–1091 (1934).

17. Adam, J. et al. Measurement of e⁻ e⁺ momentum and angular distributions from single laser-produced photon collisions. Phys. Rev. Lett. 127, 053203 (2021).

18. Bula, C. et al. Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116–3119 (1996).

19. Burke, D. L. et al. Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 1626 (1997).

20. Li, H.-Z. et al. Ultra-bright γ-rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006 (2012).

21. Yu, J. et al. QED effects induced harmonics generation in extreme intense laser foil interaction. Plasma Phys. Control. Fusion 60, 044011 (2018).

22. Kirk, J. G., Bell, A. R. & Arka, J. Pair production in counter-propagating laser beams. Plasma Phys. Control. Fusion 51, 085008 (2009).

23. Nerush, E. N. et al. Laser Field Absorption in Self-Generated Electron-Positron Pair Plasma. Phys. Rev. Lett. 106, 035001 (2011).

24. Gu, Y., Klimo, O., Weber, S. & Korn, G. High density ultrashort relativistic positron beam generation by laser plasma interaction. N. J. Phys. 18, 113023 (2016).

25. Grishtaymer, T., Vranic, M., Martins, J. L., Fonseca, R. A. & Silva, L. O. Bright γ-rays source and nonlinear Breit-Wheeler pairs in the collision of high density laser-particle beams. Phys. Rev. Accel. Beams 22, 023402 (2019).

26. Meuren, S., Hartsagorty, K. Z., Keitel, C. H. & Di Piazza, A. High-energy recoil processes of laser-generated electron-positron pairs. Phys. Rev. Lett. 114, 143201 (2015).

27. Sarri, G. et al. Generation of neutral and high-energy electron-positron pair plasmas in the laboratory. Nat. Commun. 6, 6747 (2015).

28. Gong, C., Li, Z. L., Xiao, H. & Niu, H. Optimization of electron pair production in frequency modulated laser fields. Phys. Rev. D. 101, 065008 (2020).

29. Sarri, G. et al. Table-based source of femtosecond, collimated, ultrarelativistic positron beams. Phys. Rev. Lett. 110, 255002 (2013).

30. Sahai, A. Quasimonoenergetic laser plasma positron accelerator using particle-shower plasma-wave interactions. Phys. Rev. Accel. Beams 21, 081301 (2018).

31. Esirkepov, T., Bulanov, S. V., Yamagawa, M. & Tajima, T. Electron, positron, and photon wakefield acceleration: trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev. Lett. 96, 014803 (2006).

32. Vieira, J. & Mendonca, J. T. Nonlinear laser driven donut wakefields for positron and electron acceleration. Phys. Rev. Lett. 112, 215001 (2014).

33. Zhou, S., Hua, J., Lu, W., Mori, W. B. & Joshi, C. High efficiency uniform wakefield acceleration of a positron beam using stable asymmetric mode in a hollow channel plasma. https://arxiv.org/abs/2012.06995v1 (2020).

34. Corde, S. et al. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield. Nature 524, 442–445 (2015).

35. Yao, A. M. & Podgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011).

36. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of orbital angular momentum states of photons. Nature 412, 313–316 (2001).

37. Zhang, J. et al. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100-km single-span orbital angular momentum fiber. Photonics Res. 8, 070126 (2020).

38. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–813 (2003).

39. Pae, K. H., Song, H., Ryu, C.-M., Nam, C. H. & Kim, C. M. Low-divergence relativistic proton jet from a thin solid target driven by an ultra-intense circularly polarized Lauerge-Gaussian laser pulse. Plasma Phys. Control. Fusion 62, 055009 (2020).

40. Baumann, C. & Pukhov, A. Electron dynamics in twisted light modes of relativistic intensity. Phys. Plasmas 25, 083114 (2018).

41. Hu, L.-X. et al. Attosecond electron bunches from a nanofiber driven by Lagueur-Gaussian laser pulses. Sci. Rep. 8, 7282 (2018).

42. Chen, Y.-Y., Li, J.-X., Hartsagorty, K. Z. & Keitel, C. H. γ-ray beams with large orbital angular momentum via nonlinear compton scattering with radiation reaction. Phys. Rev. Lett. 121, 074801 (2018).

43. Hu, Y.-T. et al. Attosecond γ-ray vortex generation in near-critical-density plasma driven by twisted laser pulses. Appl. Phys. Lett. 118, 054101 (2021).

44. Zhang, X. et al. Generation of intense high-order vortex harmonics. Phys. Rev. Lett. 119, 173901 (2015).

45. Shi, Y. et al. Light fan driven by a relativistic laser pulse. Phys. Rev. Lett. 112, 235001 (2014).

46. Wang, W. et al. Hollow plasma acceleration driven by a relativistic reflected hollow laser. Phys. Rev. Lett. 125, 053401 (2020).

47. Vieira, J. et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun. 7, 10371 (2016).

48. Leblanc, A. et al. Plasma holograms for ultra-high-intensity optics. Nat. Phys. 13, 440–443 (2017).

49. Zhu, X.-L. et al. Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser illuminated compound targets. Appl. Phys. Lett. 112, 174102 (2018).

50. Goldsmith, P. F. Quasisto Systems: Gamma Beam Quasisto Propagation and Applications. (Wiley-IEEE Press, 1998), p. 26.

51. Robinson, A. P. L., Are, K. & Chifor, A. V. Generating "superponderomotive" electrons due to a non-wake-field interaction between a laser pulse and a longitudinal electric field. Phys. Rev. Lett. 111, 065002 (2013).

52. Facts and Figures. https://www.xfel.eu/facility/overview/facts_amp_figures/index_eng.html (2021).

53. Alejo, A. et al. Non-invasive characterisation of a laser-driven positron beam. Plasma Phys. Control. Fusion 62, 055013 (2020).
69. Yan, X. Q. et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003 (2008).
70. Macchi, A., Cattani, F., Li, S. J., and Cornolti, F. Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003 (2005).
71. Yu, T. P., Pukhov, A., Shvets, G. & Chen, M. Stable laser-driven beam acceleration from a two-ion-species ultrathin foil. Phys. Rev. Lett. 105, 065002 (2010).
72. Ferri, J., Horný, V. & Fulop, T. Generation of attosecond electron bunches and X-ray pulses from few-cycle femtosecond laser pulses. https://arxiv.org/abs/2012.06408v1 (2020).
73. Wang, J. Relativistic slingshot: A source for single circularly polarized attosecond X-ray pulses. Phys. Rev. E 102, 061201 (2020).
74. Danson, C. N. et al. Petawatt and exawatt class lasers worldwide. High. Power Laser Sci. Eng. 7, e54 (2019).
75. Bromage, J. et al. Technology development for ultrain tense all-OPOCPA systems. High. Power Laser Sci. Eng. 7, e4 (2019).
76. Cartlidge, E. The light fantastic. Science 359, 382–385 (2018).
77. Tanaka, K. A. et al. Current status and highlights of the ELI-NP research program. Matter Radiat. Extrem. 5, 024402 (2020).
78. Fukuda, Y. et al. Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 103, 165002 (2009).
79. Chen, S. N. et al. Density and temperature characterization of ion-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam. Sci. Rep. 6, 21495 (2016).
80. Pukhov, A. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61, 425–433 (1999).
81. Beijersbergen, M. W., Coerwinkel, R. P. C., Kristensen, M. & Woerdman, J. P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994).
82. Zhang, H. et al. Efficient bright γ-ray vortex emission from a laser-illuminated light-fan-in-channel target. High. Power Laser Sci. Eng. 9, e43 (2021).

Acknowledgements
This work was supported by the National Key R&D Program of China (Grant No. 2018YFA0404802), National Natural Science Foundation of China (Grant Nos. 12135009, 11875319, 11675264 and 11991074), Science Challenge Project (Grant No. TT2018005), Fok Ying-Tong Education Foundation (Grant No. 161007), the Science and Technology Innovation Program of Hunan Province (Grant No. 2020RC4020), and the Research Project of NUDT (Grant Nos. ZK18-02-02 and ZK19-22). A.P. acknowledges support by DFG (Grant No. PU-213/9-1). Y.L. and H.Z. acknowledge the Hunan Provincial Research and Innovation Foundation for Graduate Students (CX20200002, CX20200038). We also acknowledge the access to the EPOCH code developed by University of Warwick.

Author contributions
J.Z. and T.P.Y. conceived the scheme and J.Z. carried out all simulations. T.P.Y. and J.Z. performed the data analysis, carried out the theoretical calculations, and wrote the manuscript. Z.M.S., E.T., A.P., and X.L.Z. clarified the underlying physics and revised the manuscript. Y.T.H, Y.L., H.Z., L.X.H., and F.Q.S. discussed the results, commented on the manuscript, and agreed on the contents.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1038/s42005-021-00797-9.

Correspondence and requests for materials should be addressed to Tong-Pu Yu.

Peer review information
Communications Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permission information
Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022