Potassium Affects Sodium Content in Tomato Plants Grown in Hydroponic Cultivation under Saline-sodic Stress

L. Botrini, M. Lipucci di Paola, and A. Graifenberg
Dipartimento Biologia Piante Agrarie, Università di Pisa, Italy Viale delle Piagge 23, I-56124 Pisa, Italy

Additional index words. Lycopersicon esculentum, salt response, ion distribution

Abstract. The tomato cultivars Edkawi and UC 82B (Lycopersicon esculentum Mill.) were grown hydroponically in a solution [electrical conductivity (EC) 2.4 dS·m⁻¹] containing 150 mM Na (EC 11.4 dS·m⁻¹), 37 mM of K (EC 14.1 dS·m⁻¹), or 75 mM of K (EC 19.7 dS·m⁻¹). The leaf Na content of ‘Edkawi’ and ‘UC 82B’ reached values of 1717 and 2022 mmol·kg⁻¹ dry weight at EC 19.7 dS·m⁻¹, respectively. The high levels of K in the hydroponic solution reduced the Na concentration in the roots, petioles, and stems, but not in the leaves. Potassium concentrations in the petioles of ‘Edkawi’ and ‘UC 82B’ reached values of 2655 and 2966 mmol·kg⁻¹ dry weight, respectively. At these elevated ECs, the Ca concentrations in the leaves of ‘Edkawi’ and ‘UC 82B’ were 30% and 40% lower than in the control, respectively. The elevated rates of K improved the fruit : flower ratio of ‘UC 82B’, but the high salinity of the solution reduced yields significantly. Plant fresh weight and root dry weight of ‘UC 82B’ were most affected by high EC levels. The elevated levels of K used in this study did not increase yield, but K ions can adjust to Na uptake.

Salt stress of hydroponically grown plants is caused by high ion concentrations in the fertilizer solution, and can significantly reduce yields of hydroponically grown vegetables (Flowers and Yeo, 1989). Salinity can alter the uptake mechanisms of nutrient elements, resulting in variations in relationships between ions (Lauchli and Epstein, 1990). Plant symptoms occurred when Na and Cl were substituted for K, NO₃, and Ca. An important aspect of salinity stress is the interaction between Na and K ions (Greenway and Munns, 1980).

Sodium, provided in low amounts, stimulates growth and development of plants and can improve the organoleptic characteristics of the edible parts (Satti et al., 1996). However, high concentrations of Na in the soil inhibit plant growth and reduce commercial yield (Graifenberg et al., 1993, 1996).

Potassium is an essential cation for plants. The optimum concentration of K ranges from 2% to 5% of the dry weight of the vegetative parts. Its absorption is selective and is closely affected by metabolic activity of the plant (Marschner, 1986). Potassium regulates the osmotic potential of glycophyte tissues, and therefore plays a role in water relations (Lauchli and Pfluger, 1978).

In some horticultural crops grown under salt-sodic conditions, high Na concentrations in the soil reduce K content and increase Na content in the tissues (Graifenberg et al., 1995, 1996). Schachtman and Schroeder (1994) and Rubio et al. (1995) assumed that a common mechanism of absorption for K and Na ions in higher plants could exist and was regulated by the concentration of the two ions present in the substrate. Therefore, elevated levels of K could modulate the absorption and the transport of Na and limit the damages attributed to it. The purpose of this experiment was to determine the effects of high amounts of K in the hydroponic solution on the uptake and accumulation of Na in tomatoes.

Materials and Methods

Plant material. On 14 Feb. 1997, seeds of ‘Edkawi’ tomato, with an indeterminate growth habit, and of ‘UC 82B’, with a determinate growth habit, were sown, one seed per cell, in 160-cell, 18-cm³ polystyrene trays, containing a substrate composed of perlite and vermiculite (50/50) plus 60, 78.6, or 179 mg·L⁻¹ of N, P, and K, respectively.

Growing conditions. After 2 weeks, the seedlings were placed in 75-cm³ pots filled with 4-mm-diameter expanded clay. These pots were placed in 20 × 10 × 5 cm plastic containers and watered with a standard nutritive solution for 8 d. The seedlings were then transferred into the hydroponic culture system, which provided constant control of the nutrient solution and environmental parameters. The system consisted of a 100-L solution tank, a circulation pump (model VXm8/35; “Pedrollo”, Verona, Italy), and a closed-loop recirculating system. The hydroponic culture system was previously disinfected with a commercial solution of NaOCl (8%) for 24 h. The culture-system was then rinsed several times with tap water to eliminate residual NaOCl.

Treatments. All seedlings were grown in a standard hydroponic solution containing 3 mM K₂SO₄, 5 mM Ca(NO₃)₂, 1 mM H₂PO₄, 20 mg·L⁻¹ Sequestrene 138 (Ciba-Geigy, Varese, Italy), and 20 mg·L⁻¹ Microfol (E.D. S.p.A., Pistoia, Italy) [electrical conductivity (EC) 2.4 dS·m⁻¹]. A preliminary experiment was performed by growing the ‘Edkawi’ seedlings in hydroponic solutions containing 2, 50, 100, 150, or 200 mM of NaCl in order to select the appropriate Na concentration. The 150-mM solution reduced yield to 50% of the control and was used in the next trials. The three treatment solutions contained 150 mM of NaCl, plus K₂SO₄ at 3, 18.75, or 37.5 mM, corresponding to 11.4, 14.1, and 19.7 dS·m⁻¹ EC, respectively.

According to the hypothesis of Rubio et al. (1995), we should have had to use equimolar concentrations of K and Na ions in the hydroponic solutions. However, the amount of K ions supplied increased the EC too much and induced the formation of insoluble compounds. For this reason we utilized 37.5 and 75 mM of K to reach the highest possible concentration of ions that avoided precipitation.

The pH of the solution was maintained at 6.1–6.5 with sulfuric acid. The solutions were renewed every 7 d.

The experimental design was a randomized complete-block with four replicates of 16 plants per treatment.

Data collection. Yield data were collected from 15 May to 28 June. Only entirely red fruit were harvested twice per week, weighed, and dried for ion measurements. Whole plants were harvested on 28 June for fresh weight determination and partitioned into roots, stems, and leaves for ion determinations. Petioles consisted of the main and secondary petioles of compound leaves. Leaves were lamina only. Plant tissues were oven-dried at 70 °C for 6 d before dry weights were determined. Flower and fruit numbers of the first three flower clusters were monitored every 2 d beginning with the appearance of the first flower.

Tissue analysis. For ion determinations, 2-g samples of dried, ground tissues were digested in 70% HClO₄ and concentrated HNO₃ (1:2 v/v). The Na, K, and Ca contents were then quantified using atomic absorption technology (model S11; Allied Analytical System, Waltham, Mass.).

Statistical analysis. Data were subjected to regression analysis, and SE was calculated (Jandel Scientific, 1986). The significance of differences between means were determined by using Duncan’s multiple range test (SAS Institute, 1990).

Results and Discussion

Yield. The salinity and the methodology employed to study the plant responses under salt stress can seriously affect the process of uptake and transport of fertilizer ions. Our data suggest that increasing salinity in the substrate
reduced both yield and plant fresh weight (Table 1), as reported for other vegetables (Graifenburg et al., 1993; Lauchli and Epstein, 1990; Munns and Ternot, 1986). Regression analysis indicated that increasing the EC level reduced yield of both cultivars. The total number of fruit in all treatments was higher in ‘UC 82B’ than in ‘Edkawi’, but treatment 3 increased the total number of ‘Edkawi’ fruits with respect to the control treatment (data not reported). This was also reported by Satti and Al-Yahyal (1995). In ‘UC 82B’, both plant fresh weight and root dry weight declined as EC increased. Lopez and Satti (1996) reported that nutrient solutions with elevated amounts of K increased yield in cultivars with indeterminant growth habit. Our yield results can be attributed to the high EC, and to a low amount of N supplied in the nutrient solution. We used K\textsubscript{2}SO\textsubscript{4} in place of KNO\textsubscript{3}, as did Lopez and Satti (1996), to avoid the effects of a positive interaction between K and nitrate ions on yield. The yield reduction was less evident in ‘Edkawi’ than in ‘UC 82B’.

Flowering and fruit set. The ratio of fruit : flower in both cultivars decreased similarly until the EC of 11.4 dS·m-1 (75 mM K) was reached; the ratio for ‘UC 82B’ then started to increase while that for ‘Edkawi’ continued to decline (Fig. 1). This response might be related to the different flowering habits of these two cultivars.

These data differ from those reported by Satti and Al-Yahyal (1995), who obtained higher numbers of fruit per plant, particularly in indeterminant cultivars. We observed an increase in the number of fruit per plant in the determinate cultivar UC 82B. This controversial response can be ascribed to the well-known low production of fruits in the first clusters of ‘Edkawi’.

Tissue Na concentration. Treatment 2 (150 mM Na) produced the maximum values of Na in the roots, stem, and petioles (Table 2), while treatment 4 produced the minimum values, as reported by reductions of 44% and 34% in roots, 53% and 55% in stem, and 53% and 42% in petioles of ‘Edkawi’ and ‘UC 82B’, respectively. A different trend was evident in the leaves of both cultivars, which accumulated the maximum Na concentration in treatment 4. A significant increase in Na concentration in fruits was observed only in ‘UC 82B’.

Tissue K concentration. Treatment 2 produced the lowest, and treatment 4 the highest, K concentrations in all plant parts of both cultivars (Table 2). Concentrations were highest in the petioles.

Besford and Maw (1975) reported a positive effect of K ions on flowering and pollination. In tomato cultivars with indeterminant growth habit, the rate of K uptake varied with the stage of growth and was closely correlated with fruit load. Adams and Windsor (1979) reported that K uptake in cultivars with indeterminant growth habit was extended and correlated with the blooming period. In tomatoes with determinant growth habit, the vegetative and reproductive phases of growth are shortened, thus creating an elevated requirement for K in a short time because of higher fruit load. Our data confirmed this trend. ‘UC 82B’, a determinate tomato cultivar, exhibited higher shoot K concentration and a higher fruit load than did ‘Edkawi’.

Our data suggest a different distribution of K in tissues between the cultivars, particularly when the K concentration in the substrate was increased from 6 to 75 mM K from the beginning of hydroponic cultivation, both cultivars were grown in the presence of Na and K. This method resulted in a greater accumulation of K in the plant, particularly in the petiole, and with obvious differences in leaves and roots. These data can be explained by the different times at which ions are transported and accumulated in the tissues of both cultivars (Lauchli and Pflugler, 1978). Moreover, the high concentration of K detected in roots could cause a temporary arrest of the transport of Na ions in roots, petioles, and leaves. The roots of tomato plants grown in hydroponic culture are fasciculate, long, and thin. This feature is correlated with a reduction of cell layers in the root cortex, which can contribute to higher rates of selective uptake of functional ions (Poljakoff-Mayber, 1975).

The accumulation of Na in both cultivars confirms that the Na ions always reached the leaves. But it is also evident that Na uptake did not interfere with K movement and accumulation.

‘Edkawi’ was less sensitive to salt stress than ‘UC 82B’. This tolerance is probably due to the characteristic of this cultivar to withhold sufficient amounts of active K ions in functional tissues such as roots (Taleisnik and Grunberg, 1994).

Tissue Ca concentration. Treatments 1 and 4 yielded the highest concentration in the root, and treatment 4 yielded the lowest accumulation.

Table 1. The effects of four different hydroponic solutions on yield, fresh weight, and dry weight of two tomato cultivars.

Treatment	EC (dS·m-1)	K (mM)	Na (mM)	Yield (kg/plant)	Fresh wt (g/plant)	Root (g/plant)	Shoot (g/plant)	Total (% fresh wt)
Edkawi								
1 Control	2.4	6	2	1.565	910	20.1	104.9	13.7
2	11.4	6	150	0.865	879	19.7	102.7	13.9
3	14.1	37.5	150	0.761	795	17.5	83.7	12.7
4	19.7	75	150	0.629	777	17.2	79.2	12.3

Linear Quadratic								
UC 82B								
1 Control	2.4	6	2	1.689	1116	24.6	86.6	10.2
2	11.4	6	150	0.743	897	19.8	76.1	10.7
3	14.1	37.5	150	0.602	709	15.2	51.8	9.5
4	19.7	75	150	0.418	621	14.1	40.2	8.7
Linear Quadratic								
¹ Standard solution = 3 mM K\textsubscript{2}SO\textsubscript{4}, 5 mM Ca(NO\textsubscript{3})\textsubscript{2}, 1 mM H\textsubscript{3}PO\textsubscript{4}, 20 mg·L-1 Sequest.138, 20 mg·L-1 Microfol; 2 = same plus 150 mM NaCl; 3 = same plus 150 mM NaCl and 18.75 mM K\textsubscript{2}SO\textsubscript{4}; 4 = same plus 150 mM NaCl and 37.5 mM K\textsubscript{2}SO\textsubscript{4}.
² Nonsignificant or significant at P ≤ 0.05, respectively.
Table 2. Content of Na, K, and Ca (mmol·kg⁻¹ dry weight) in roots, stem, petioles, leaves, and fruit of two tomato cultivars as affected by four different hydroponic solutions.

Cultivar	Treatment¹	EC (dS·m⁻¹)	K (mM)	Na (mM)	Roots	Stem	Petioles	Leaves	Fruits
Edkawi	1 Control	2.4	6	2	606 c	174 d	391 d	283 d	126 a
2	11.4	6	150	1478 a	413 a	1435 a	1457 b	165 a	
3	14.1	37.5	150	978 b	261 a	913 b	1327 c	171 a	
4	19.7	75	150	826 b	196 c	673 c	1717 a	176 a	
UC 82B	1 Control	2.4	6	2	587 c	174 d	348 d	348 d	96 d
2	11.4	6	150	1521 a	630 a	1739 a	1696 c	283 b	
3	14.1	37.5	150	1000 b	415 b	1217 b	870 b	252 c	
4	19.7	75	150	1005 b	283 c	1012 c	2022 a	304 a	

¹Standard solution = 3 mM K₂SO₄, 5 mM Ca(NO₃)₂, 1 mM H₃PO₄, 20 mg·L⁻¹ Sequest.138, 20 mg·L⁻¹ Microfol; 2 = same plus 150 mM NaCl; 3 = same plus 150 mM NaCl and 18.75 mM K₂SO₄; 4 = same plus 150 mM NaCl and 37.5 mM K₂SO₄.

²Mean separation within parameters and columns by Duncan’s multiple range test, P ≤ 0.05.

Adams, P. and G.W. Windsor. 1979. Annu. Rpt. Glasshouse Crops Res. Inst. 1978. p. 84–85.
Besford, R.T. and G.A. Maw. 1975. Effect of potassium nutrition on tomato plant growth and fruit development. Plant Soil 42:395–412.
Flowers, T.J. and A.R. Yeo. 1989. Effects of salinity on plant growth and crop yields, p. 101–118. In: H.J. Cherry (ed.). Environmental stress in plants. Springer-Verlag, Berlin.
Graifenberg, A., L. Botrini, L. Giustiniani, and M. Lipucci di Paola. 1996. Yield, growth and element content of zucchini squash grown under saline sodic conditions. J. Hort. Sci. 71:305–311.
Graifenberg, A., L. Giustiniani, O. Temperini, and M. Lipucci di Paola. 1995. Allocation of Na, Cl and Ca within plant tissues in globe artichoke (Cynara scolymus L.) under saline-sodic condition. Scientia Hort. 63:1–10.
H.J. Cherry (ed.). Environmental stress in plants. Springer-Verlag, Berlin.
Lauchli, A. and R. Pflugler. 1978. Potassium transport through plant cell membranes and metabolic role of potassium in plants, p. 111–163. In: Proc. 11th Congress Int. Potash Inst., Bern, Switzerland.
Lopez, M.V. and S.M.E. Satti. 1996. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Sci. 114:19–27.
Marschner, H. 1986. Functions of mineral nutrients: Macronutrients, p. 299–312. In: H. Marschner (ed.). Mineral nutrition in higher plants. Academic, London.
Marschner, H. and J. Gale (eds.). Plants in saline environments. Springer, New York.
Schachtman, D.P. and J. Schroeder. 1994. Structure and transport from higher plants. Nature 370:655–658.
Taleikis, E. and K. Grunberg. 1994. Ion balance in tomato cultivars differing in tolerance. Sodium and potassium accumulation and fluxes under moderate salinity. Physiol. Plant. 92:528–534.