Declining trends in arthroscopic meniscus surgery and other arthroscopic knee procedures in Denmark: a nationwide register-based study

Matilde LUNDBERG 1, Jens SØNDERGAARD 1, Bjarke VIBERG 3, L Stefan LOHMANDER 4, and Jonas B THORLUND 1,2

Background and purpose — A doubling of arthroscopic meniscal procedures was observed in Denmark from 2000 to 2011, but arthroscopic meniscal procedures for degenerative meniscal tears are no longer recommended. We performed an updated investigation of Danish meniscal procedure trends in the private and public healthcare sectors in Denmark from 2006 to 2018, including trends for other arthroscopic knee procedures.

Patients and methods — We extracted data on the 5 most commonly registered arthroscopic knee procedures (diagnostic arthroscopy, meniscal surgery, anterior cruciate ligament reconstruction, synovectomy, and cartilage resection) from the Danish National Patient Register from January 1, 2006 to December 31, 2018, linked with the Danish Population Statistic Register, to obtain data on age and sex.

Results — 414,253 arthroscopic knee procedures were registered during 315,290 surgeries on 244,113 individual patients in the study period. For meniscal procedures, the highest incidence was observed in 2010 (319 per 10^5 persons/year, 95% CI 314–323) and the lowest in 2018 (173 per 10^5 persons/year, CI 169–176), corresponding to relative decrease of 46% from 2010 to 2018. Remaining arthroscopic procedures also showed declining trends, with lowest incidence for all procedures in 2018.

Interpretation — A large decrease in the incidence for arthroscopic meniscal procedures was observed from 2010 to 2018, possibly in response to mounting evidence of limited benefit of this procedure for degenerative knee disease. All other investigated arthroscopic knee procedures also declined in the same period.

Arthroscopic procedures to treat different knee conditions are the most common types of orthopedic procedures (1). A doubling of arthroscopic meniscal procedures was observed in Denmark in the period from 2000 to 2011, with the largest increase observed in middle-aged and older patients (i.e., aged 35 years or older) (2). During the same period, mounting evidence from several randomized trials, synthesized in systematic reviews and meta-analyses, reported no added benefit of arthroscopic meniscal procedures over placebo or exercise therapy for degenerative meniscal tears (2–4). These results eventually led to clinical guidelines either advising against knee arthroscopy to treat degenerative meniscal tears (5) or a more restricted selection of patients (6), but it is not well documented as to whether these recommendations have led to a reduction in the number of arthroscopic meniscal procedures performed in Denmark.

In 2010, a landmark study comparing anterior cruciate ligament (ACL) reconstruction with exercise therapy with the option of later surgery for patients with ACL tears found that about half of patients randomized to exercise therapy managed without ACL surgery (7). A recent Dutch study confirmed these results with similar findings (8), but how this has been translated into practice is less well known.

The primary aim of the present study was to investigate whether the number of meniscal procedures performed in Denmark had decreased, using data from 2006 to 2018. We also investigated whether the number of arthroscopic ACL reconstructions in Denmark between 2006 and 2018 had changed following the publication of recent clinical trials and clinical guidelines. To address a potential shift in the coding of procedures we also investigated changes in the incidence of related procedures.
Patients and methods

Study sample

We conducted a nationwide register-based study. The 5 most common arthroscopic knee procedures were identified by initial screening of all arthroscopic codes in the study period (January 1, 2006 to December 31, 2018). The 5 most common registered arthroscopic knee procedures, accounting for 96% of procedures, were: diagnostic arthroscopy, KNGA11 = arthroscopic exploratory examination; arthroscopic meniscal surgery, KNGD0 = arthroscopic meniscectomy; KNGD11 = arthroscopic partial resection of the meniscus; KNGD21 = arthroscopic reinsertion of the meniscus; KNGD91 = other arthroscopic surgery on the meniscus; arthroscopic anterior cruciate ligament (ACL) reconstruction, KNGE45 = arthroscopic reconstruction of the anterior cruciate ligament without foreign material; KNGE55 = arthroscopic reconstruction of the anterior cruciate ligament with foreign material; arthroscopic synovectomy, KNGF01 = arthroscopic total synovectomy; KNGF11 = arthroscopic partial synovectomy; and arthroscopic cartilage resection, KNGF31 = arthroscopic resection of articular cartilage. An arthroscopic procedure was considered the primary surgical procedure if the procedure was coded as the most important surgical procedure. An arthroscopic procedure coded as the secondary procedure or part of surgery without being the primary procedure was considered a secondary surgical procedure. Thus, several procedures could be conducted at the same surgery and the same patient could have several surgeries during the study period. When diagnostic arthroscopy was coded in combination with other arthroscopic knee procedure codes, we did not consider this to be an actual procedure. Thus, diagnostic arthroscopy was included in this study only if it was coded as the only knee procedure on a given surgery date.

We extracted data on age, sex, diagnosis, and procedural sector (public or private) for each contact. The CPR number, a unique personal identifier given to all Danish residents (i.e., at birth or upon immigration), was used to track patients with several arthroscopic surgeries during the study period (defined as surgery on separate dates) and ensure linkage between all Danish health and population registries (9). We excluded patients if we could not retrieve age or sex from the Danish Population Register or if patients had a date of death before surgery date.

Data sources

The Danish National Patient Register (DNPR) contains information on all in- and outpatient contacts with Danish private and public hospital departments (10). The completeness and validity of the clinical data in DNPR vary, but the registration of orthopedic procedure codes is considered to have the highest validity and accuracy of all clinical specialties. The data reported in the DNPR is of 2 types: administrative data including the CPR number, date, and time of activity; and clinical data including diagnosis and surgical procedures (10). The surgical procedures have been coded with high validity according to the Danish version of Nordic Medico-Statistical Committee Classification of Surgical Procedures (11). The Danish Register of Causes of Death and the Danish Population Register from Statistics Denmark contributed information on age, sex, and death (12, 13).

Statistics

We retrieved information on the numbers of registered Danish inhabitants as at January 1 for each year from Statistics Denmark (14). We estimated the mid-year population from numbers at the beginning of each year as the mid-year data was not available (e.g., the mid-year population of 2006 was the average of the population from January 2006 and January 2007). We summarized the total annual number of procedures for each procedure category (diagnostic arthroscopy; arthroscopic meniscal surgery; arthroscopic ACL reconstruction; arthroscopic synovectomy; and arthroscopic cartilage resection) and reported these stratified by sex in the age groups: 0–9 years, 10–19 years, 20–29 years, 30–39 years, 40–49 years, 50–59 years, 60–69 years, 70–79 years, and 80 years or older. The yearly incidence of knee procedures per 10^5 inhabitants was calculated with 95% confidence intervals (CI) for each procedure category and in different age groups.

All analyses and graphics were performed using Stata Release 15.2 (StataCorp, College Station, TX, USA) and the R software/environment version 1.4.1106 (R Core Team 2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ethics, funding, data sharing, and potential conflicts of interest

This register-based study was approved by the University of Southern Denmark for the Danish Data Protection Agency (Reference Number: 10.574). According to Danish law, this study was exempt from ethics approval as it pertained only to registry-based data for research purposes (15). The datasets were constructed by and stored at Statistics Denmark according to the Act on Processing of Personal Data (16). This study received no funding. Data sharing is not possible.

JBT holds a research grant from Pfizer outside the submitted work. All other authors have no competing interests to declare.

Results

414,253 arthroscopic knee procedures were registered at 315,290 individual surgery dates on 242,113 patients between 2006 and 2018 (Figure 1, see Supplementary data). Most patients had 1 arthroscopic surgery while 55,196 patients had
Table 4. Incidences of procedure categories, number of procedures, mean age at surgery, sex, and sector distribution per year from 2006 to 2018 (primary and secondary procedures combined)

Procedure	Total	Surgical procedure	Incidence per 10^5 persons/year (95% CI)
Diagnostic arthroscopy	55 (54–58)		66 (CI) (155–162)
Arthroscopic			(67–72)
meniscal surgery	235 (221–249)	239 (225–243)	51,974 (22,855 (44) 29,119 (56)
ACL reconstruction	214 (201–228)	239 (225–243)	35,074 (15,932 (45) 19,142 (44)
synovectomy	159 (145–173)	160 (157–164)	122,145 (68,313 (56) 53,832 (44)
cartilage resection	66 (61–71)		214,782 (107,256 (50) 107,526 (48)
ACL (CI)			(59–63)
synovectomy	127 (116–138)	127 (115–139)	53,832 (23,414 (44) 29,418 (45)
cartilage resection	65 (56–74)		41,140 (21,410 (100) –
Procedures, n	29,827	31,749	414,253 (299,267 114,986)

The total number of arthroscopic procedures peaked in 2010 (n = 39,486 procedures) and was the lowest in 2018 (n = 21,469 procedures) (Table 4). Arthroscopic meniscal procedures accounted for 44% of all arthroscopic knee procedures followed by arthroscopic synovectomy, which accounted for 29% of the procedures in the study period. The procedure code KNGD11 (i.e., arthroscopic partial meniscectomy) accounted for 91% of the arthroscopic meniscal procedures (Table 5, see Supplementary data). When the procedure group arthroscopic meniscal procedures (KNGD) was differentiated in procedure code KNGD11 and KNGD21, those aged 35–55 years had the highest incidence with KNGD11 and those younger than 35 had the lowest. However, for KNGD21 the highest incidence was observed for those younger than 35 and the lowest for those older than 55 years (Table 6).

Arthroscopic meniscal procedures were typically coded in combination with a diagnosis of “unspecific knee problems” (58%) or “traumatic meniscus tear” (27%). Arthroscopic ACL reconstructions were mostly coded with the diagnoses “lesion/rupture of cruciate ligament” (62%) followed by “unspecific knee problems” (28%) (Table 7, see Supplementary data).

Arthroscopic knee procedures were more often registered for males than females across all procedure categories except for diagnostic arthroscopic procedures. For all procedures except ACL reconstruction, most procedures were registered on patients in their 40s, whereas ACL reconstruction was most often registered for patients in their 20s (Figure 2). The same distribution was present when procedures registered as secondary surgical procedures were removed (Figure 3, see Supplementary data). Patients aged 35–55 years accounted for 47% of the total number of arthroscopic procedures in the years 2006–2018, whereas patients younger than 35 years

Table 2. Primary and secondary procedures in the period 2006–2018 in Denmark. Values are count (%)

Procedure	Total 2006	Total 2007	Total 2008	Total 2009	Total 2010	Total 2011	Total 2012	Total 2013	Total 2014	Total 2015	Total 2016	Total 2017	Total 2018
Diagnoses													
Diagnostic arthroscopy													
Arthroscopic													
meniscal surgery	184,782	151,614	31,168	31,168	31,168	31,168	31,168	31,168	31,168	31,168	31,168	31,168	31,168
ACL reconstruction	35,942	35,942	35,942	35,942	35,942	35,942	35,942	35,942	35,942	35,942	35,942	35,942	35,942
synovectomy	124,145	68,313	53,832	53,832	53,832	53,832	53,832	53,832	53,832	53,832	53,832	53,832	53,832
cartilage resection	51,974	22,855	29,119	29,119	29,119	29,119	29,119	29,119	29,119	29,119	29,119	29,119	29,119
Total	414,253	299,267	114,986	114,986	114,986	114,986	114,986	114,986	114,986	114,986	114,986	114,986	114,986

Diagnostic procedures were included only if they were the only procedure registered on a separate surgery date.
Table 6. Incidences of the arthroscopic meniscal procedures (KNGD11: arthroscopic partial resection of the meniscus and KNGD21: arthroscopic reinsertion of the meniscus) and mean age at surgery per year from 2006 through 2018 (primary and secondary procedures combined)

Procedure	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Age, mean (SD)	KNGD11	KNGD21	KNGD11										
<35 years	102 (106)	107 (110)	126 (129)	117 (121)	119 (119)	111 (112)	119 (119)	107 (111)	116 (116)	112 (112)	111 (111)	109 (109)	112 (112)
CI	(197–106)	(101–110)	(117–126)	(113–122)	(113–122)	(107–116)	(112–122)	(107–116)	(95–103)	(89–99)	(96–100)	(96–100)	(96–100)
35–55 years	168 (175)	230 (236)	284 (292)	319 (324)	301 (302)	299 (301)	297 (299)	304 (305)	306 (308)	300 (302)	290 (293)	291 (293)	289 (290)
CI	(330–348)	(371–390)	(379–399)	(495–517)	(511–533)	(495–516)	(481–502)	(468–508)	(370–388)	(304–329)	(283–299)	(283–301)	(283–301)
>55 years	179 (193)	222 (236)	275 (292)	310 (328)	293 (301)	291 (308)	287 (303)	285 (302)	286 (302)	282 (298)	277 (292)	276 (290)	276 (290)
CI	(179–193)	(211–226)	(222–236)	(293–308)	(291–308)	(291–308)	(291–308)	(291–308)	(291–308)	(291–308)	(291–308)	(291–308)	(291–308)

Figure 2. Number of primary and secondary procedures stratified by sex in the study period (2006–2018).

Trends in the 5 most common arthroscopic knee procedures

A 45% decrease in the incidence of arthroscopic meniscal procedures was observed from 2010 (319 per 10^5 persons/year, 95% CI 314–323) to 2018 (173 per 10^5 persons/year, CI 169–176) (Table 4). The incidence of meniscal procedures decreased for all age groups. However, the relative decrease was largest for those aged 35–55 years (41%) and over 55 years (59%) from 2010 to 2018, compared with those younger than 35 (33%) (Figure 4 and Table 8, see Supplementary data).

A 39% reduction was observed in the incidence of arthroscopic ACL reconstructions from 2010 (57 per 10^5 persons/year, CI 55–59) to 2018 (35 per 10^5 persons/year, CI 34–37), with most of this reduction observed from 2017 to 2018. Patients aged 35–55 years had the largest relative decrease in incidence (55%) from 2010 to 2018 (Figure 4 and Table 8, see Supplementary data).

The incidence of arthroscopic synovectomy followed the same pattern as meniscal procedures whereas the incidence of arthroscopic cartilage resection increased until 2012 and then decreased until 2018. The incidence of diagnostic arthroscopy...
procedures for degenerative meniscal tear procedures and relatively stable over time. Similar reductions in arthroscopic partial meniscectomy (KNGD11), whereas meniscal repair was not.

The incidence of registered meniscal procedures from 2010 to 2018. Arthroscopic ACL reconstructions were at their highest peak of procedures registered in the private sector in 2008, with the lowest proportion observed in 2008. After the peak of procedures registered in the private sector in 2008, the proportion decreased until 2015. From 2016 to 2018, an increase in the proportion of procedures in the private sector was observed (Table 4 and Figure 6).

Discussion

The number and annual incidence of arthroscopic meniscal procedures decreased substantially in the period from 2010 to 2018. Arthroscopic ACL reconstructions were at their highest in 2010 and the number and annual incidence have decreased steadily since. A decrease was also observed across other related procedure categories, and, similar to meniscal procedures, the lowest number of procedures and incidences were observed in 2018 for these procedures.

We previously reported a marked increase in the use of arthroscopic meniscal procedures from 2000 to 2008, especially for middle-aged and older patients, despite mounting evidence in the same time period pointing to limited benefit for this age group (3,4). Since then, further evidence from randomized trials has influenced clinical guidelines in advising against knee arthroscopic surgery to treat degenerative meniscal tears (5) or a more restricted selection of patients (6). In the present study, we observed a marked decrease in the incidence of registered meniscal procedures from 2010 to 2018. This decrease was due to a decrease in arthroscopic partial meniscectomy (KNGD11), whereas meniscal repair was relatively stable over time. Similar reductions in arthroscopic procedures for degenerative meniscal tear procedures and meniscal resections have been observed in other countries. For instance, a general reduction in the incidence of arthroscopic partial meniscectomies has been observed in the UK from 2014 to 2017 (17), and in Norway from 2012 to 2016 (18). In Finland, arthroscopic procedures for degenerative meniscal tears have been reported to decrease from 2007 to 2012 (19).

These comparisons should be made with caution due to variations in healthcare systems, coding practices, procedure codes studied, and years of reporting. Nevertheless, the decrease in meniscal procedures across several countries suggests that research evidence on the treatment of degenerative meniscal tears may have influenced clinical practice.

When investigating surgical procedural trends, it is important to consider that temporal changes in individual procedure codes may result from a change in coding practice. This has been observed in the United States and Finland as a simultaneous increase in the coding of one procedure alongside a decrease in another procedure (3,20). We therefore included in this study several other common arthroscopic knee procedural codes typically performed together with meniscal and ACL procedures (i.e., diagnostic arthroscopy, synovectomy, cartilage procedures). As similar trends of decreasing incidence of these procedures were observed we consider it unlikely that the observed decrease in meniscal procedures can be attributed to a shift in coding practice.

Even though we observed a larger relative reduction in the incidence of meniscal procedures for middle-aged (35–55 years) and older patients (over 55 years) compared with younger patients under 35 years, the distribution of patients in the different age groups did not appear to change much over the years, with about 75% of patients being over 35 years throughout the study period (Table 9, see Supplementary data). In spite of the decrease in the incidence of meniscal procedures for the middle-aged and older patients observed in this report, the current levels of this practice remain high in the face of high-level evidence speaking against. Continued efforts are needed to inform patients and health professionals of current evidence to support guideline implementation.

The incidence of arthroscopic synovectomy procedures followed the same trend as the incidence of meniscal procedures. A possible explanation is that around 40% of the arthroscopic synovectomy procedures were performed...
together with meniscal procedures and coded as secondary surgical procedures in the period when the incidence of meniscal procedures was highest (2009–2013) (Figure 4 and Figure 5, see Supplementary data). That said, the number of synovectomies performed, especially as a primary procedure was higher than expected. The most common diagnosis in relation to primary synovectomies was synovitis (32%), unspecified knee problem (25%), other (21%), and osteoarthritis (11%). Further review of surgical records is needed to better understand the indication for this procedure for these unspecified diagnoses.

In 2010, the first randomized controlled trial comparing ACL reconstruction with exercise therapy for patients with ACL tears reported that about half of ACL reconstructions in young adults could be avoided with similar outcomes if following a strategy of initial structured rehabilitation before considering surgery (7). Initial structured exercise before ACL reconstructions has been recommended in Denmark for several years (21). In 2020, the Danish clinical guidelines were published and recommended that the surgery should be considered in patients who do strenuous physical work or do pivoting sports, whereas the non-surgical approach is likely to be sufficient in other patient groups (22). We observed a decrease in the incidence of registered arthroscopic ACL reconstructions for both younger (under 35 years) and middle-aged patients (35–55 years) since 2010, especially from 2017 to 2018. This suggests that the clinical management of persons with ACL tears had begun to incorporate the new evidence before the publication of the new clinical guidelines. Contrary to our findings the number of ACL reconstructions in the UK increased fourfold from 2005 to 2017 in the UK, suggesting a limited impact of recent evidence (23).

The large variation in arthroscopic knee procedure trends over time observed between public and private hospitals in Denmark may be explained by different factors. The most likely reason would be that the arthroscopic knee procedures were influenced by changes in national health policy over the study period. On July 1, 2002 a law was introduced in Denmark that allowed patients to seek care at private hospitals if the waiting list at a public hospital was longer than 2 months for a surgical procedure (24,25). This treatment guarantee was reduced to 1 month on October 1, 2007, which likely is the main driver of the increase in arthroscopic procedures at private hospitals in 2008, shifting patients from the public sector as surgery could not be guaranteed within 1 month (25). Due to shifting governments in Denmark, this treatment guarantee was differentiated from January 1, 2013, meaning that for non-severe diseases (such as many knee surgeries) the treatment guarantee was extended to 2 months, and then changed back to 1 month again on October 1, 2016 (25). For most arthroscopic knee procedures these policy changes coincide with fluctuations in the number of arthroscopic procedures performed, particularly at private hospitals. Other potential factors that could also impact changes in knee procedures are changes in the use of MRI, the use of private health insurance, and the financial reimbursement in the Danish healthcare system (26,27).

Our study has limitations. As for all register-based studies, the results are dependent on the validity and the coverage of the registries. The registration of orthopedic procedure codes in Denmark is considered to have the highest validity and accuracy of all clinical specialties (10). The registration by public hospitals has been assumed to be complete since 2000 (28). However, although reporting of all activity has been mandatory since 2003 from private hospitals and clinics, this registration is known to be incomplete. In 2008, the National Board of Health estimated that 5% of all surgeries were missing from the DNPR (28). Thus, the results of this study could be an underestimation of the number of arthroscopic procedures performed in Denmark between 2006 and 2018. Nevertheless, as the majority of arthroscopic procedures were registered in the public sector, combined with the nationwide registration in DNPR and the use of Danish population data, we expect that the time trends observed in this study are valid and reflect the real-time trends of the period.

In conclusion, we observed a 45% and 39% decrease in the incidence of arthroscopic meniscal procedures and arthroscopic ACL reconstruction from 2010 to 2018. Similar trends were observed for other common arthroscopic knee procedural codes typically performed together with meniscal procedures, which suggests that the potential shift in coding practice is minimal. The reduction in the number of arthroscopic meniscal procedures and ACL reconstructions over time may be a result of research evidence impacting clinical practice.

ML and JBT designed the study. JBT and JS were responsible for the collection of the data. ML performed the statistical analysis in collaboration with JBT. All authors participated in the interpretation of data. ML wrote the first draft of the manuscript. All authors contributed to critically reviewing, editing, and revising the manuscript. JBT is the guarantor.

Acta Orthopaedica 2012; 93: 783–793

ML thanks Ville Mattila and Robin Holtedahl for help with peer review of this study.

1. Järvinen T L N, Guyatt G H. Arthroscopic surgery for knee pain. BMJ 2016; 354: i3934-i.
2. Thorlund J B, Hare K B, Lohmander L S. Large increase in arthroscopic meniscus surgery in the middle-aged and older population in Denmark from 2000 to 2011. Acta Orthop 2014; 85(3): 287-92.
3. Sihvonen R, Paaavola M, Malmivaara A, Itälä A, Joukainen A, Nurmi H, et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. NEJM 2013; 369(26): 2515-24.
4. Herrlin S V, Wange P O, Lapidus G, Hållander M, Werner S, Weidenhielm L. Is arthroscopic surgery beneficial in treating non-traumatic, degenerative medial meniscal tears? A five year follow-up. Knee Surg Sports Traumatol Arthros 2013; 21(2): 358-64.
5. Siemeniuk R A C, Harris I A, Agoritsas T, Poolman R W, Briгадельло-Петерсен R, Van de Velde S, et al. Arthroscopic surgery for degenerative knee arthritis and meniscal tears: a clinical practice guideline. Br J Sports Med 2018; 52(5): 313.
Early surgical reconstruction versus rehabilitation

Increase in outcome tempo

Anterior cruciate ligament rupture: COMPARE randomised controlled trial. BMJ 2021; 372: n375.

Supplementary data

6. Beaufils P, Becker R, Kopf S, Englund M, Verdonk R, Ollivier M, et al. Surgical management of degenerative meniscus lesions: the 2016 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc 2017; 25(2): 335-46.

7. Frobell R B, Roos E M, Roos H P, Ranstam J, Lohmander L S. A randomized trial of treatment for acute anterior cruciate ligament tears. N Engl J Med 2010; 363(4): 331-42.

8. Reijman M, Eggerding V, van Es E, van Arkel E, van den Brand I, van Linge J, et al. Early surgical reconstruction versus rehabilitation with elective delayed reconstruction for patients with anterior cruciate ligament rupture: COMPARE randomised controlled trial. BMJ 2021; 372: n375.

9. Schmidt M, Pedersen L, Sorensen H T. The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol 2014; 29(8): 541-9.

10. Schmidt M, Schmidt S A J, Sandegaard J L, Ehrenstein V, Pedersen L, Sorensen H T. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol 2015; 7: 449-90.

11. The Nordic Medico-Statistical Committee (NOMESCO) Classification of Surgical Procedures. Available from: http://norden.diva-portal.org/smash/get/diva2:968721/FULLTEXT01.pdf. Accessed March 9, 2021.

12. Statistics Denmark. The population. Dated February 11, 2021. Available from: https://www.dst.dk/en/Statistik/dokumentation/documentationofstatistics/the-population. Accessed September 13, 2021.

13. Helweg-Larsen K. The Danish Register of Causes of Death. Scand J Public Health 2011; 39(7 Suppl.): 30-3.

14. Statistik DSD. Population and elections (Befolkning og valg). Available from: http://www.statistikbanken.dk. Accessed November 9, 2021.

15. National Committee on Health Research Ethics. What to notify? Dated February 19, 2019. Available from: https://en.nvk.dk/how-to-notify/what-to-notify. Accessed August 18, 2021.

16. Justitsministeriet. Databeskyttelsesloven. Dated May 23, 2018. Available from: https://www.retsinformation.dk/eli/retsinfor2016/9988. Accessed November 9, 2021.

17. Abram S G F, Judge A, Beard D J, Wilson H A, Price A J. Temporal trends and regional variation in the rate of arthroscopic knee surgery in England: analysis of over 1.7 million procedures between 1997 and 2017. Has practice changed in response to new evidence? Br J Sports Med 2019; 53(24): 1533-8.

18. Holtedahl R, Brox J I, Aune A K, Nguyen D, Risberg M A, Tjomsland O. Changes in the rate of publicly financed knee arthroscopies: an analysis of data from the Norwegian patient registry from 2012 to 2016. BMJ Open 2018; 8(6): e021199-e.

19. Mattila V M, Siivonen R, Paloneva J, Felländer-Tsai L. Changes in rates of arthroscopy due to degenerative knee disease and traumatic meniscal tears in Finland and Sweden. Acta Orthop 2016; 87(1): 5-11.

20. Kim S, Bosque J, Meehan J P, Jamali A, Marder R. Increase in outpatient knee arthroscopy in the United States: a comparison of national surveys of ambulatory surgery, 1996 and 2006. J Bone Joint Surg Am 2011; 93(11): 994-1000.

21. Krogsgaard M R J B, Tordrup P, Kjaer M, Magnussen P, Nielsen M. Reference program for ligamentskader i knæet. SAKS; 2006.

22. Asmussen C. National klinisk retningslinje for behandling af forreste korsbåndsskader hos voksne. SAKS; 2020.

23. Abram S G F, Price A J, Judge A, Beard D J. Anterior cruciate ligament (ACL) reconstruction and meniscal repair rates have both increased in the past 20 years in England: hospital statistics from 1997 to 2017. Br J Sports Med 2020; 54(5): 286-91.

24. Hare K B, Vinther J H, Lohmander L S, Thorlund J B. Large regional differences in incidence of arthroscopic meniscal procedures in the public and private sector in Denmark. BMJ Open 2015; 5(2): e006659.

25. Danish Ministry of Health. Instruction on free choice of hospital, extended free choice of hospital, right to rapid examination and information for referred patients. Dated September 22, 2016. Available from: https://www.retsinformation.dk/eli/retsinfor2016/9988. Accessed November 9, 2021.

26. Hollingsworth J M, Ye Z, Strope S A, Krein S L, Hollenbeck A T, Hollenbeck B K. Physician-ownership of ambulatory surgery centers linked to higher volume of surgeries. Health Aff (Millwood) 2010; 29(4): 683-9.

27. Vrangbæk K, Bech M. County level responses to the introduction of DRG rates for “extended choice” hospital patients in Denmark. Health Policy 2004; 67(1): 25-37.

28. Lyne E, Sandegaard J L, Rebolj M. The Danish National Patient Register. Scand J Public Health 2011; 39(7 Suppl.): 30-3.

Figure 1. Flowchart.
Table 1. Demographic information of patients who had more than 1 arthroscopic surgery. Values are count (%) unless otherwise specified

Factor	Total	1 surgery	Multiple surgeries
More than 1 arthroscopic surgery			
Patients	242,113	186,917	55,196
Procedures	414,253	316,825	97,428
Procedure categories			
Diagnostic arthroscopy	21,410 (5)	17,511 (6)	3,899 (4)
Arthroscopic meniscal surgery	187,782 (44)	142,503 (45)	40,279 (41)
Arthroscopic ACL reconstruction	35,942 (9)	25,496 (8)	10,446 (11)
Arthroscopic synovectomy	122,145 (29)	92,315 (29)	29,830 (31)
Arthroscopic cartilage resection	51,974 (13)	39,000 (12)	12,974 (13)
Age, mean (SD)	42 (16)	43 (16)	40 (15)
Age categories			
< 35 years	133,009 (32)	96,638 (31)	36,371 (37)
35–55 years	194,277 (47)	148,521 (47)	45,756 (47)
> 55 years	86,967 (21)	71,666 (23)	15,301 (16)
Sex			
Female	186,312 (45)	142,722 (45)	43,590 (45)
Male	227,974 (55)	174,103 (55)	53,838 (55)
Hospital			
Private hospital	104,774 (25)	80,565 (25)	24,209 (25)
Public hospital	309,479 (75)	236,260 (75)	73,219 (75)

Table 3. Primary and secondary surgical procedures in procedure categories

Primary surgical procedure	Registered procedures, n (%)
Secondary surgical procedure	procedures, n (%)
Diagnostic arthroscopy	21,410 (100)
Arthroscopic meniscal surgery	1,017 (< 1)
Arthroscopic ACL reconstruction	1,017 (< 1)
Arthroscopic synovectomy	29,017 (19)
Arthroscopic cartilage resection	11,783 (8)
None	109,457 (72)
Arthroscopic ACL reconstruction	9,172 (26)
Arthroscopic meniscal surgery	60 (< 1)
Arthroscopic ACL reconstruction	60 (< 1)
Arthroscopic synovectomy	1,393 (4)
Arthroscopic cartilage resection	617 (2)
None	23,846 (68)
Arthroscopic synovectomy	4,868 (7)
Arthroscopic meniscal surgery	81 (< 1)
Arthroscopic synovectomy	81 (< 1)
Arthroscopic cartilage resection	5,778 (8)
None	57,526 (84)
Arthroscopic cartilage resection	2,481 (11)
Arthroscopic meniscal surgery	< 10 (< 1)
Arthroscopic ACL reconstruction	< 10 (< 1)
Arthroscopic synovectomy	5,254 (23)
None	15,117 (66)

* Percentages of each surgical procedure do not always add up to exactly 100% because the percentages are rounded to the nearest whole number.

* Primary surgical procedure was coded without a secondary surgical procedure.

* Procedure codes were categorized in procedure categories and, therefore, the same primary and secondary surgical procedure could occur.
Table 5. Number of arthroscopic knee procedures code per year from 2006 through 2018 (primary and secondary procedures combined)

Procedure: Category	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	Total
KNGA11: Diagnostic arthroscopy	2,838	2,506	2,172	2,163	1,815	1,651	1,354	1,330	972	853	561	428	368	19,011
KNGA1B: Diagnostic arthroscopy	210	301	472	303	266	159	125	152	112	96	72	69	62	2,399
KNGD01: Arthroscopic meniscal surgery	59	61	59	89	59	30	29	44	39	38	60	168	97	832
KNGD11: Arthroscopic meniscal surgery	10,807	11,924	12,344	15,502	16,495	15,621	15,661	15,382	14,003	9,631	6,793	5,877	166,416	
KNGD21: Arthroscopic meniscal surgery	930	788	712	965	1,056	1,191	1,292	1,305	1,476	1,301	1,265	1,283	1,280	14,844
KNGD91: Arthroscopic meniscal surgery	47	36	19	66	74	97	44	86	46	34	45	39	57	690
KNGE45: Arthroscopic ACL reconstruction	1,245	1,154	987	1,145	923	682	445	438	457	405	505	368	194	8,948
KNGE45B: Arthroscopic ACL reconstruction	88	82	137	88	107	18	23	23	<10	12	16	23	23	646
KNGE45C: Arthroscopic ACL reconstruction	399	331	250	216	213	142	162	137	199	212	216	220	256	2,953
KNGE45D: Arthroscopic ACL reconstruction	861	913	863	1,303	1,546	1,709	1,739	1,937	1,805	1,712	1,580	1,451	1,106	18,525
KNGE45E: Arthroscopic ACL reconstruction	42	63	33	98	62	47	53	48	76	97	156	193	250	1,218
KNGE45F: Arthroscopic ACL reconstruction	28	36	27	34	75	93	118	128	105	99	88	98	1,081	
KNGE45G: Arthroscopic ACL reconstruction	47	46	34	71	97	74	78	70	42	47	36	25	19	696
KNGE45H: Arthroscopic ACL reconstruction	<10	<10	<10	<10	12	17	18	17	36	49	66	99	33	380
KNGE55: Arthroscopic ACL reconstruction	208	232	229	159	141	82	75	84	71	59	67	66	52	1,525
KNGF01: Arthroscopic synovectomy	675	892	1,008	812	503	487	747	461	364	201	193	159	7,896	
KNGF11: Arthroscopic synovectomy	7,846	8,525	7,802	10,431	10,944	10,778	11,102	10,417	9,642	7,840	6,828	6,305	5,446	114,506
KNGF31: Arthroscopic cartilage resection	3,588	3851	3,613	4,603	4,789	4,848	5,108	4,731	4,308	3,574	3,100	2,969	2,892	51,974
Total	29,827	31,749	30,770	38,360	39,486	37,942	37,913	37,076	33,883	28,494	24,504	22,780	21,469	414,253

Table 7. Diagnosis coded in combination with the primary surgical procedure. The action diagnosis was used as this is the most important diagnosis for hospitalization per patient. Values are count (%)

Factor	Total no. of primary procedures	Old meniscus tear	Traumatic meniscus tear	Unspecific knee problems	Osteoarthritis	Lesion/rupture of cruciate ligament	Synovitis or tenosynovitis	Other	Missing
Diagnostic arthroscopy	21,410	<10 (<1)	1,408 (7)	7,381 (34)	4,082 (19)	1,075 (5)	647 (3)	6,801 (32)	<10 (<1)
Arthroscopic meniscal surgery	151,614	146 (<1)	41,218 (27)	87,543 (58)	9,407 (6)	3,941 (3)	1,303 (1)	8,005 (5)	51 (<1)
Arthroscopic ACL reconstruction	35,075	<10 (<1)	862 (2)	9,725 (28)	58 (<1)	21,762 (62)	46 (<1)	2,589 (7)	28 (<1)
Arthroscopic cartilage resection	22,855	<10 (<1)	1,375 (6)	5,863 (26)	5,527 (24)	501 (2)	793 (3)	8,780 (38)	<10 (<1)
Sum of registered procedures/ diagnoses	299,267	185 (<1)	48,996 (16)	127,496 (43)	26,925 (9)	12,780 (4)	128 (<1)	40,812 (14)	128 (<1)

Diagnoses coded according to the International Classification of Diseases and Related Health Problems (ICD-10 codes)

- a ICD-10 code—Old meniscus tear: DS232.
- b ICD-10 code—Traumatic tear: DS832.
- c ICD-10 codes—Unspecific knee problems: DM23 and DM24.
- d ICD-10 codes—Osteoarthritis DM17, DM190, and, DM199.
- e ICD-10 codes—Lesion/rupture of cruciate ligament: DS8:3.
- f ICD-10 codes—Synovitis or tenosynovitis: DM658, DM659, DM659B, DM672, DM673, DM678.
- g Not all surgical procedures had a diagnosis coded in combination.

Figure 3. Number of primary procedures stratified by sex in the study period (2006–2018).
Table 8. Incidences (per 10^5 persons/year) (95% CI) of procedure categories per year from 2006 through 2018 (primary and secondary procedures combined)

Factor	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Arthroscopic cartilage resection	35–55 years	56 (43)	56 (40)	53 (39)	48 (34)	42 (31)	37 (30)	34 (28)	31 (25)	27 (21)	23 (19)	19 (16)	16 (14)
	> 55 years	71 (57)	70 (55)	69 (54)	65 (48)	61 (46)	57 (43)	53 (40)	49 (36)	44 (33)	39 (31)	35 (28)	31 (24)

Table 9. Number of arthroscopic knee procedure categories per year from 2006 through 2018 in age categories (primary and secondary procedures combined). Values are count (%)

Age category	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Diagnostic arthroscopy	35–55 years	56 (37)	54 (36)	52 (35)	49 (33)	46 (31)	43 (30)	40 (28)	37 (26)	34 (24)	31 (22)	29 (20)	27 (18)
	> 55 years	72 (42)	70 (39)	68 (36)	65 (33)	62 (30)	59 (28)	56 (26)	53 (24)	50 (22)	47 (20)	44 (18)	41 (16)

Arthroscopic ACL reconstruction

Age category	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Arthroscopic ACL reconstruction	35–55 years	55 (30)	53 (29)	51 (28)	49 (26)	47 (24)	45 (22)	43 (20)	41 (18)	39 (16)	37 (14)	35 (12)	33 (10)
	> 55 years	70 (43)	68 (39)	66 (36)	64 (33)	62 (30)	60 (28)	58 (26)	56 (24)	54 (22)	52 (20)	50 (18)	48 (16)

Arthroscopic ACL reconstruction

Age category	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Arthroscopic ACL reconstruction	35–55 years	54 (29)	52 (28)	50 (27)	48 (26)	46 (24)	44 (22)	42 (20)	40 (18)	38 (16)	36 (14)	34 (12)	32 (10)
	> 55 years	69 (42)	67 (39)	65 (36)	63 (33)	61 (30)	59 (28)	57 (26)	55 (24)	53 (22)	51 (20)	49 (18)	47 (16)
Figure 5. Incidence (per 10\(^5\) person/year) of the 5 most common types of arthroscopic knee procedures in the years 2006–2018 in Denmark.