A 2015 inventory of embodied carbon emissions for Chinese power transmission infrastructure projects

Wendong Wei1,2, Meng Wang2, Pengfei Zhang3, Bin Chen4, Dabo Guan5, Shuai Shao6 & Jiashuo Li3✉

The spatial mismatch of energy resources and electricity demand in China drives the large-scale construction of power transmission infrastructure, which consumes a large amount of carbon-intensive products. However, a systematic accounting framework for the carbon emissions of power transmission infrastructure has not yet been established. This study for the first time compiles an embodied carbon emissions inventory covering 191 typical power transmission infrastructure projects in China in 2015, including 145 types of alternating current (AC) transmission line projects, 37 typical AC substation projects, 8 typical direct current (DC) transmission line projects and 1 typical DC converter station project. The inventory also shows the detailed inputs of all the projects. These data not only enable a quantitative assessment of the embodied carbon emissions of power transmission infrastructure in China but also provide essential information for climate mitigation policy design in the power sector.

Background & Summary

The spatial mismatch between China's energy centres and load centres has led to China's large-scale power transmission infrastructure construction1,2. In 2001, the Chinese government launched the West-East Power Transmission project3, which triggered the large-scale construction of transmission infrastructure. From 1990 to 2015, the total length of 220 kV and above transmission lines increased from 8.43×10^4 km to 6.83×10^5 km, making China the country with the largest transmission infrastructure in the world. Notably, in recent years, Chinese government attaches great importance to the construction of ultra-high voltage (UHV) power grids, which will lead to the acceleration of domestic power transmission infrastructure construction. In addition, the Global Energy Interconnection strategy proposed by the Global Energy Interconnection Development and Cooperation Organization (GEIDCO)4 has also received support from Chinese government and many other countries in the world, and will promote the construction of power transmission infrastructure worldwide5,6.

The construction of power transmission infrastructure can directly lead to carbon emissions from the consumption of gasoline, diesel, etc7, and can also indirectly lead to carbon emissions through the inputs of building materials (cement, steel, etc.) and electric equipment (cables, transformers, hanging wire fittings, etc.)8–11. Researchers have calculated greenhouse gas (GHG) emissions of transmission infrastructure in European regions12, countries13,14 and Northern Europe15 and verified that transmission infrastructure construction has a great impact on climate. However, the impact of the world's largest power transmission infrastructure remains unknown. Moreover, there were limitations in the previous studies. First, in these studies, only data of raw materials were collected to calculate GHG emissions caused by construction processes16, and data of tools, vehicles, office equipment and other materials used in construction processes were not statistically complete. Second, these studies were based on the production and construction data of developed regions such as Europe and provide limited guidance for large-scale transmission infrastructure construction in developing countries.

To have a clear understanding of the carbon emissions caused by China's transmission infrastructure construction, this study builds an embodied carbon emissions inventory of power transmission infrastructure in China in 2015 by combining process analysis and input-output (IO) analysis. The dataset described here includes

1School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai, 200030, China. 2Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China. 3Institute of Blue and Green Development, Shandong University, Weihai, 264209, China. 4College of Engineering, Peking University, Beijing, 100871, China. 5Department of Earth System Sciences, Tsinghua University, Beijing, 100080, China. 6School of Business, East China University of Science and Technology, Shanghai, 200237, China. ✉e-mail: lijiashuo@sdu.edu.cn
more than 10,000 inputs and their emissions for 191 typical power transmission infrastructure projects in China, involving projects in six different terrains and six different voltage classes. All the data have been uploaded to the open-access online dataset figshare (figshare.com) for free download.

The dataset can be used, including but not limited to, in the following ways:

1. Analysing the changes in the embodied carbon emissions of China’s transmission infrastructure over a period
2. Evaluating the structure of carbon emissions caused by transmission infrastructure in different regions of China and optimizing the design of transmission infrastructure
3. Incorporating carbon emissions into the construction feasibility assessment of the project to achieve a more environmentally friendly construction process

Methods

Input data collection. The input inventory for transmission line, substation and converter station projects is derived from the General Cost of Power Transmission and Distribution Project of the State Grid Corporation of China (GCPT)17–27, which has more than 10 sub-volumes. The sub-volumes of 220 kV, 330 kV, 500 kV, and 750 kV AC substations and 220 kV, 330 kV, 500 kV, and 750 kV AC transmission lines are used. In addition, for UHV parts, the sub-volumes of ±800 kV DC converter stations and transmission lines and 1000 kV AC substations and transmission lines are also collected. In each volume, there are different construction cases and input cost data for six different terrains (including flatland, hill, mountain, high mountain, desert, and river swamp). This series of books reports the general cost of China’s power transmission infrastructure and can be used by all power system designers, as well as professionals engaged in power engineering planning, management, construction and installation, and can also be used as a reference for researchers and students of relevant majors in universities.

All the input data were extracted by one member of our group and then confirmed by another member to ensure the accuracy of the extracted data28. We aggregate the same type inputs with different voltage class into a same classification. For example, 1000 kV power devices, 500 kV power devices, 110 kV power devices and other power devices were all integrated into the input of transmission and distribution equipment. To ensure the accuracy of data merging, a third member of the group checked the data again.

Embodied carbon emission intensity calculation. First, we built a direct emission inventory from EXIOBASE28,30, and then adopted an environmentally extended input-output analysis (EEIOA)31–33 to calculate the embodied emissions intensities34, which are expressed as:

\[
e = E(X - A)^{-1}
\]

where \(e\) is a \(1 \times N\) matrix that represents sectoral embodied carbon emissions intensities; \(E\) is a \(1 \times N\) matrix of sectoral direct carbon emissions in year \(t\); \(X\) represents the diagonal matrix of sectoral total output; and \(A\) represents the intermediate input matrix.

Input-output (IO) tables from EXIOBASE were used to calculate the embodied carbon emissions intensities. IO tables from EXIOBASE enable us to differentiate China’s domestic products and imports. It is worth noting that when using single regional IO tables to calculate embodied carbon intensities, there is an assumption that the embodied carbon emissions intensities of domestic products and imports are the same, and this assumption may lead to great uncertainty35, as China’s energy structure and industrial technology vary significantly from those in other countries. By contrast, IO tables from EXIOBASE clearly differentiate domestic products and imports, thus enabling us to obtain a more accurate carbon intensity36.

Embodied carbon emissions calculation. The EXIOBASE IO table includes 163 sectors and has a higher sector resolution than the China IO table, which contains 42 sectors. The higher the sector resolution that an IO table has, the more accurate the intensity data could be, as aggregation of sectors will lead to biased results36. We followed these sector definitions to construct our emission inventories. It is worth noting that the monetary unit of the original input inventories is CNY, while the monetary unit of EXIOBASE is EUR. Therefore, the average exchange rate in 2015 was used for currency conversion37. Like the input data collection, one of our team members matched the inputs with IO table sectors, and another member verified the results. The emissions can be calculated as:

\[
CE_a = V_a \times c_a
\]

where \(CE_a\) represents the embodied carbon emissions of Sector \(a\), \(V_a\) represents the input quantity of Sector \(a\) and \(c_a\) represents the embodied emission intensity of Sector \(a\).

Data Records

The database is publicly available from Figshare38.

(1) Part 1. 1 table of the corresponding relationship among the original data, initial classification of inputs and IO sectors.

- **Original data classification** (column A): The classification of the original data in the book.
- **Detailed input sectors** (column B): When our team extracted the data, we aggregated some data according to the sector resolution used in this study.
- **IO sector** (column C): The sectors in the EXIOBASE IO table.
Steel towers, wires and construction site clearing represent the top three aspects of the budget and emissions, with the second-largest emission sector. The input budget and emission structures of 2AP and 10GB4S are very similar.

the former two accounting for approximately 20% and the latter accounting for approximately 10%.

Professional technical services, ranked second in budget share (5.18%), caused 1.05% of emissions. The budget proportion of equipment input (transmission and distribution equipment) are 79.67% and 82.80%, respectively. Construction creates 6.03% of emissions and uses 5.21% of the budget, constituting the transmission and distribution equipment) accounts for the vast majority of the budget and emissions, 74.18% and 76.90%, respectively. Construction creates 6.03% of emissions and uses 5.21% of the budget, constituting the second-largest emission sector. The input budget and emission structures of 2AP and 10GB4S are very similar. Steel towers, wires and construction site clearing represent the top three aspects of the budget and emissions, with the second-largest emission sector. The input budget and emission structures of 2AP and 10GB4S are very similar.

Uncertainties.

Technical Validation
Uncertainties. The input inventories and carbon emission intensities are two main reasons leading to uncertainties in this study. According to the equations in the uncertainty analysis, the key parameter for the simulation is the relative standard deviation (RSD), also known as the coefficient of variation (CV). Here, we assume a CV of 10% for the various input inventories. For the carbon emission intensities, our study is based on EXIOBASE 3.3. However, no official uncertainty information is available for EXIOBASE. Therefore, we use other CVs of the proxy data based on Hertwich and Peters49. Detailed CVs and their specifications are listed in Table S1. It should be noted that the carbon emission inventory for China has the largest impact on overall uncertainties in this study, and a specific estimation of the CVs for China's carbon emission inventory is conducted based on the China Emission Accounts and Datasets40 (CEADs). The CEADs provide CVs for energy consumption and...
corresponding emission factors for various sectors41–44 (shown in Tables S2 and S3). Consequently, we use such information to generate the CVs of the carbon emission inventory for various sectors.

Then, a Monte Carlo perturbation was adopted to conduct at least 10,000 simulations for the given source data, based on which the probability distributions of errors in individual source input parameters could be obtained.

The results show that the maximum uncertainty range appears in typical project 10A-2 and is $(-18.05\%, +21.06\%)$. The 10 projects with the largest uncertainty ranges among the transmission line and substation projects are shown in Table 1. Other uncertainty results are shown in Table S4.

Comparison with the existing studies. In order to validate our dataset, we compared our study with existing studies using life cycle assessment (LCA)8,10,14,16,45. The input inventory in the current study covers
products such as temporary facilities, fixed machinery cost, construction tools and appliances, which are integral parts for transmission infrastructure construction. However, these inputs were not considered by the LCA based studies, thus inevitably leading to underestimation for embodied carbon emissions of transmission infrastructure. Moreover, the present study used IO to calculate the embodied carbon emission intensities, which can avoid the endless trace and truncation error problems inherent in LCA. Therefore, our study provides a more comprehensive and accurate carbon accounting for China’s transmission infrastructure.

Code availability

Matlab program is used to generate the hybrid method calculation and Monte Carlo simulation. The full custom MATLAB script is provided on the open-access online dataset figshare and GitHub (https://github.com/conanbean). The carbon emissions are calculated by multiplying the various inputs of the project by the corresponding embodied carbon intensity. The sectoral embodied carbon intensities in China are calculated by using EEIOA (see algorithm in Method), based on EXIOBASE database. And then, the stochastic modelling is adopted to carry out Monte Carlo simulation in terms of the standard deviation (SD). We define the order of magnitude of each source data as x lg x, then the perturbation of x (denoted as x^Φ) is lg(x^Φ) ≈ lg(x + dx) = lg x + lg(x + dx)/x = lg x + lg(1 + Rx). The Rx represents the relative SD, which is also named as coefficient of variation (CV). Consequently, the perturbation be conducted 10000 times for every raw data, including input inventory, carbon emission inventory, and each item in MRIO table, to obtain the SD of the embodied carbon emissions for each project.

Received: 11 May 2020; Accepted: 19 August 2020;
Published online: 01 October 2020

References

1. Wei, W. et al. Multi-scene electricity-related carbon emissions accounting: A case study of Shanghai. *J. Clean. Prod.* 252, 1–10, https://doi.org/10.1016/j.jclepro.2019.119789 (2020).
2. Zhang, P. et al. Urban carbon emissions associated with electricity consumption in Beijing and the driving factors. *Appl. Energy* 275, https://doi.org/10.1016/j.apenergy.2020.115425 (2020).
3. Zeng, M. et al. Review on transaction status and relevant policies of southern route in China’s West-East Power Transmission. *Renew. Energy* 60, 454–461.
4. Liu, Z. Global Energy Interconnection, 5 (Academic Press, 2015).
5. Nikolai, V., Sergei, P. & Kirill, O. From interconnections of local electric power systems to Global Energy Interconnection. *Global Energy Interconnection* 1, 4–10, https://doi.org/10.14171/I.2096-5117.gei.2018.01.001 (2018).
6. Jiang, H., Guo, Y., Xu, P. & Li, J. Study of future power interconnection scheme in ASEAN. *Global Energy Interconnection* 2, 549–559, https://doi.org/10.1016/j.gei.2020.01.009 (2019).
7. Jingyu, Liu et al. Identifying trade-offs and co-benefits of climate policies in China to align policies with SDGs and achieve the 2°C goal. *Environ. Res. Lett.* 14, 124070 (2019).
8. Jorge, R. S., Hawkins, T. R. & Hertz, E. G. Life cycle assessment of energy transmission and distribution—part 2: transformers and substation equipment. *Int. J Life Cycle Ass.* 17, 184–191, https://doi.org/10.1007/s11367-011-0336-0 (2012).
9. Wei, W. et al. Carbon emissions of urban power grid in Jing-Jin-Ji region: Characteristics and influential factors. *J. Clean. Prod.* 168, 428–440, https://doi.org/10.1016/j.jclepro.2017.09.015 (2017).
10. Jorge, R. S., Hawkins, T. R. & Hertz, E. G. Life cycle assessment of energy transmission and distribution—part 1: power lines and cables. *Int. J. Life Cycle Ass.* 17, 184–191, https://doi.org/10.1007/s11367-011-0335-1 (2012).
11. Li, J., Wei, W., Zhen, W., Guo, Y. & Chen, B. How green transition of energy system impacts China’s mercury emissions. *Earth’s Future* 7, https://doi.org/10.1002/2019EF001269 (2019).
12. Jones, C. I. & McManus, M. C. Life-cycle assessment of 11kV electrical overhead lines and underground cables. *J. Clean. Prod.* 18, 1464–1477, https://doi.org/10.1016/j.jclepro.2010.05.008 (2010).
13. Arvesen, A., Haauan, I. B., Bolset, B. M. & Hertz, E. G. Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway. *Appl. Energy* 157, 144–151, https://doi.org/10.1016/j.apenergy.2015.08.013 (2015).
14. Harrison, G. P., Maclean, E. J., Karamanlis, S. & Ochoa, L. F. Life cycle assessment of the transmission network in Great Britain. *Energy Policy* 38, 3622–3631, https://doi.org/10.1016/j.enpol.2010.02.039 (2010).
15. Jorge, R. S. & Hertz, E. G. Grid infrastructure for renewable energy in Europe: The environmental cost. *Energy* 69, 760–768, https://doi.org/10.1016/j.energy.2014.03.073 (2014).
16. Alessia, G., Pierpaolo, G. & Andrea, T. LCA of electricity networks: a review. *Int. J. Life Cycle Ass.* 22, 1502–1513, https://doi.org/10.1016/j.scsd.2017.06.014 (2017).
17. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - 220kV transmission line volume (2010 Edition). (China Electric Power Press, Beijing, China, 2010).
18. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - 330kV transmission line volume (2010 Edition). (China Electric Power Press, Beijing, China, 2010).
19. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - 500kV transmission line volume (2010 Edition). (China Electric Power Press, Beijing, China, 2010).
20. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - 750kV transmission line volume (2010 Edition). (China Electric Power Press, Beijing, China, 2010).
21. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - 220kV substation volume (2010 Edition). (China Electric Power Press, Beijing, China, 2010).
22. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - 330kV substation volume (2010 Edition). (China Electric Power Press, Beijing, China, 2010).
23. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - 500kV substation volume (2010 Edition). (China Electric Power Press, Beijing, China, 2010).
24. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - 750kV substation volume (2010 Edition). (China Electric Power Press, Beijing, China, 2010).
25. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - ±800kV DC transmission line volume (2013 Edition). (China Electric Power Press, Beijing, China, 2014).
26. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - ±1000kV DC transmission line volume (2013 Edition). (China Electric Power Press, Beijing, China, 2014).
27. Liu, Z. General Cost of Power Transmission and Distribution Project of State Grid Corporation of China - ±800kV power transmission and transformation volume (2013 Edition). (China Electric Power Press, Beijing, China, 2014).
28. Zhang, G., Zheng, D., Tian, Y. & Li, S. A dataset of distribution and diversity of ticks in China. Sci. Data 6, 105, https://doi.org/10.1038/s41597-019-0115-5 (2019).
29. Konstantin, S. et al. EXIOBASE: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. J. Ind. Ecol. 22, 502–515, https://doi.org/10.1111/jiec.12715 (2018).
30. Richard, W. et al. Growth in Environmental Footprints and Environmental Impacts Embodied in Trade: Resource Efficiency Indicators from EXIOBASE3. J Ind. Ecol. 22, 553–564, https://doi.org/10.1111/jiec.12735 (2018).
31. Mi, Z. et al. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 8, 1712 (2017).
32. Meng, J. et al. The rise of South–South trade and its effect on global CO2 emissions. Nat. Commun. 9, 1871 (2018).
33. Wei, W. et al. Ultra-high voltage network induced energy cost and carbon emissions. J. Clean Prod. 178, 276–292, https://doi.org/10.1016/j.jclepro.2017.12.175 (2018).
34. Shao, L. & Chen, G. G. Water footprint assessment for wastewater treatment: method, indicator, and application. Environ. Sci. Technol. 47, 7787–7794, https://doi.org/10.1021/acs.est.0c02013 (2013).
35. Owen, A. et al. Energy consumption–based accounts: A comparison of results using different energy extension vectors. Appl. Energy 190, 464–473, https://doi.org/10.1016/j.apenergy.2016.12.089 (2017).
36. Heinonen, J. et al. Spatial consumption-based carbon footprint assessments - A review of recent developments in the field. Journal of Cleaner Production 256, https://doi.org/10.1016/j.jclepro.2020.120335 (2020).
37. China Trade and External Economic Statistical Yearbook (China Statistics Press, 2018).
38. Wei, W. et al. A 2015 inventory of embodied carbon emissions for Chinese power transmission infrastructure projects. figshare https://doi.org/10.6084/m9.figshare.12661769.v1 (2020).
39. Edgar, G., Hertwich & Peters, G. P. Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).
40. Shan, Y., Guan, D., Zheng, H., Ou, J. & Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 5, 170201 (2018).
41. Wu, Y., S. D., Wang, S. & Hao, J. M. Uncertainties in estimating mercury emissions from coal-fired power plants in China. Atmos. Chem. Phys. 10, 2937–2946 (2010).
42. Zhang, Q. et al. NOx emission trends for China, 1995–2004: The view from the ground and the view from space. J. Geophys. Res. D 112, D22306 (2007).
43. Karvosenoja, N. et al. Evaluation of the emissions and uncertainties of PM2.5 originated from vehicular traffic and domestic wood combustion in Finland. Boreal. Environ. Res. 13, 465–474 (2008).
44. Wang, S. & Zhang, C. Spatial and temporal distribution of air pollutant emissions from open burning of crop residues in China. Sciencepaper Online 5 (2008).
45. Raquel, J. S. & Edgar, H. G. Environmental evaluation of power transmission in Norway. Appl. Energy 101, 513–520.
46. Wu, X., Yang, Q., Chen, G., Hayat, T. & Alsadri, A. Progress and prospects of CCS in China: Using learning curve to assess the cost- viability of a 2 × 600 MW retrofitted oxyfuel power plant as a case study. Renew. Sust. Energy Rev. 60, 1274–1285 (2016).
47. Wu, X., Guo, J. & Chen, G. The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China. Energy Policy 117, 358–369 (2018).
48. Wei, W. et al. A 2015 inventory of embodied carbon emissions for Chinese power transmission infrastructure projects. figshare https://doi.org/10.6084/m9.figshare.12812990.v1 (2020).

Acknowledgements

This study was supported by the National Natural Science Foundation of China (71904125, 71961137010, 71922015, 71773075, 72033005), the Shanghai Sailing Program (18YF1417500), the Taishan Scholars Program of Shandong Province, China, the Philosophy and Social Science Project of Shanghai (2018EGL003), and the MOE (Ministry of Education of China) Special Funds for National and Regional Studies (19GBQY055), and the National Top-Notch Young Talent Support Program of China.

Author contributions

WWW led the project, collected and assembled the data, and prepared the manuscript. J.L. designed the research. M.W., P.Z. and B.C. collected the raw data. W.W, M.W., P.Z., B.C., D.G., S.S. and J.L. revised the manuscript and participated in the construction of the database.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41597-020-00662-4.

Correspondence and requests for materials should be addressed to J.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.