Targeted genomic profiling revealed a unique clinical phenotype in intrahepatic cholangiocarcinoma with fibroblast growth factor receptor rearrangement

Zhongzheng Zhu,1, Hui Dong,1, Jianguo Wu,1, Wei Dong,1, Xianling Guo,1, Hua Yu,2, Juemin Fang,2, Song Gao,2, Xuejun Chen,2, Huangbin Lu,3, Wenming Cong,1, Qing Xu,1,2

1 Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, P.R. China
2 Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, P.R. China
3 Amoy Diagnostics Co., Ltd. 39 Dingshan Road, Xiamen 361027, P.R. China

ARTICLE INFO
Keywords:
Intrahepatic cholangiocarcinoma
Fibroblast growth factor receptor
Gene rearrangement
Genomic aberration
Target therapy

ABSTRACT
Genomic aberrations (GAs) in fibroblast growth factor receptors (FGFRs) are involved in the pathogenesis of intrahepatic cholangiocarcinoma (ICC), and clinical trials have shown efficacy of FGFR inhibitors in treating ICC patients with FGFR GAs such as FGFR2 rearrangement. To clarify the FGFRs GA profile and corresponding clinicopathological features in Chinese patients with ICC, a total of 257 cases were identified. Fourteen cases (5.45%) were positive for FGFR2 rearrangement. Further analysis on the 110 FGFR2 rearrangement negative cases showed that 13 patients present additional FGFRs GAs, including FGFR3 rearrangement (2.73%), and FGFRs mutations. When compared with patients without FGFRs GAs, those with FGFR2 or FGFR3 rearrangement presented more under the age of 58 years, female sex, HBsAb positivity, CD10 expression, and PD-L1 expression. The clinical characteristics between patients with FGFRs mutation and those without FGFRs GAs were similar, with the exception that cases with FGFRs mutation have more hepatolithiasis. We concluded that FGFR rearrangement is associated with unique clinical phenotypes in ICC.

INTRODUCTION
Intrahepatic cholangiocarcinoma (ICC) is the second most diagnosed hepatobiliary tumor, which is characterized by late diagnosis, extraordinary heterogeneity, limited treatment option and dismal prognosis [1]. Epidemiological studies have shown that the incidence of the deadly tumor has significantly increased in recent years [1,2]. Risk factors attributed to the tumorigenesis of ICC include parasitic infection, viral hepatitis, hepatolithiasis, choledochal cysts, primary sclerosing cholangitis, diabetes, obesity, smoking, alcohol-related disorders, and genetic susceptibility [3,4]. Surgical resection remains the gold standard treatment, however a surgical approach with curative intention may not be feasible in majority of ICC cases as the disease is typically diagnosed at advanced stage. For locally advanced or metastatic disease, the chemotherapy combination of gemcitabine and cisplatin remains the only preferred systemic treatment, with a median survival of less than one year [5,6]. Therefore, there is an urgent need for more treatment modalities for this severe tumor.

Recently, advances in integrated sequencing technology have provided a compendium of ICC genomic aberrations, which creates unprecedented opportunities for precision targeted therapy to the tumor [7]. Genomic aberrations in fibroblast growth factor receptors (FGFRs) are among the most frequent events during ICC development [8]. The FGFRs are part of the larger receptor tyrosine kinases family and contain...
four members: FGFR1, FGFR2, FGFR3, and FGFR4. Upon binding of fibroblast growth factors, the FGFRs undergo receptor dimerization and initiate downstream signaling, which is essential for diverse physiologic processes [9]. The altered FGFRs because of different genetic aberrations (GAs), including chromosomal translocation and activating mutation, have been proved to play a key role in tumor onset and progression in several human malignancies [10]. In ICC, chromosomal translocations involving FGFR2 have been frequently identified, resulting in the creation of oncogenic fusion proteins. The chimeric FGFR2 fusion proteins are assumed to undergo ligand-independent receptor dimerization resulting in a fully activated kinase, leading to activation of various oncogenic downstream pathways such as RAS/MAPK, PI3K/ AKT, and JAK/STAT [11]. As the FGFR2 rearrangement is particularly common in ICC as compared with other cancer types, it has been rapidly translated into a promising therapeutic target in this type of cancer [12, 13]. Several pre-clinical and clinical trials have shown the efficacy of FGFR inhibitors in treating ICC patients with FGFR2 rearrangement, as well as with FGFR3 rearrangement [14–22]. However, FGFRs GA profiling in ICC and corresponding clinico-pathological features remain unclear, which would hinder the optimal therapeutic application of the FGFR inhibitors.

In the present study from a Chinese ICC population, we sought to determine: 1) the FGFR2 rearrangement status in a total of 257 cases; 2) the FGFRs GA profile in 110 FGFR2 rearrangement-absent cases; and 3) the clinical and pathological features in cases with FGFRs GAs.

Materials and methods

Patients and specimens

A total of 257 ICC cases were enrolled in this study. We retrieved archived formalin-fixed, paraffin-embedded (FFPE) diagnostic material from surgical cases of ICC diagnosed at Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China, between September 2015 and August 2018. None of the enrolled patients received radiation therapy, chemotherapy, or other anticancer therapy before surgery. Glass slides were reviewed by pathologists (Drs. H. Dong and W. Cong) to confirm the pathological diagnosis of adenocarcinoma, determine the tumor grade, and select an appropriate paraffin block for ancillary studies. Cases with insufficient tumor for testing were excluded. Information including age, gender, cigarette smoking, alcohol drinking, hepatolithiasis, serum CA19-9, and radiological and pathological reports, was obtained when available. An ever-smoker was defined as a smoker of at least 1 cigarette/day for 6 months or longer. An ever-drinker was defined as a person who reported drinking alcoholic beverages at least once a week for 6 months or longer. The serologic tests for hepatitis B virus (HBV) and hepatitis C virus (HCV) infection were performed using commercially available products (ELISA Processor III, Behring, Germany). Anti-programmed cell death-ligand 1 (PD-L1) expression was measured by using commercially available products (ELISA Processor III, Behring, Germany). Anti-programmed cell death-ligand 1 (PD-L1) expression was measured by using commercially available products (ELISA Processor III, Behring, Germany). Anti-programmed cell death-ligand 1 (PD-L1) expression was measured by using commercially available products (ELISA Processor III, Behring, Germany).

Library preparation and Next-Generation Sequencing (NGS) assay

DNA and total RNA extraction

DNA and total RNA from FFPE tissue sections were extracted and purified using the MagMAX™ FFPE DNA/RNA Ultra Kit (ThermoFisher, A31881) and processed following the manufacturer’s instructions. The quality of isolated DNA and total RNA was verified using QuantiFluor dsDNA System (Promega, E2760) and QuantiFluor RNA system (Promega, E3310) in Quantus™ Fluorometer E6150. RNA integrity was checked by running on the Agilent Bioanalyzer (RNA Nano Chip).

Fluorescence in Situ Hybridization (FISH)

FGFR2 rearrangement was identified using a break-apart FISH probe kit (5’ flank and 3’ flank of FGFR2 were labeled in green and orange, respectively) from AmoyDx (Amoy Diagnostics, Xiamen, China), and the performance was done according to the manufacturer’s instruction. In briefly, the 4 μm-thick sections cut from FFPE tissue block were deparaffinized in xylene, rehydrated in gradient ethanol (100%, 85%, 70%) to deionized water. Sections were then boiled in the pretreatment solution (pH 7.0) for 20 min, and air-dried. Sections were digested in proteinase K working solution (final concentration was 0.05 mg/mL, pH 7.0) for 6 min, dehydrated in gradient ethanol (70%, 85%, 100%), and air-dried. 10 μL FGFR2 break-apart probe described above was added on each slide. After sealing, slides were put on the hybridizer (Abbott Molecular, Des Plaines, IL), and codenaturation and hybridization were carried out at 85 °C for 5 min and 37 °C for overnight, respectively. After hybridization, slides were immersed in 2 × saline sodium citrate buffer (2 × SSC, pH 7.0) for 5 min, following washed in 0.1% NP40/2 × SSC at 46 °C for 7 min, then dehydrated and air-dried. Finally, DAPI solution was used as a counterstain, and slides were cover slipped.

The ZytoLight® SPEC FGFR2 Dual Color Break Apart Probe from ZytoVision (ZytoVision GmbH, Bremerhaven, Germany) was selected to confirm the result of the AmoyDx’s probe. The probe was performed in a similar way described above according to the manufacturer’s instruction. In particular, the denaturation and hybridization condition were 75 °C for 10 min and 37 °C for overnight, respectively.

Analysis was performed using 100 × 1.4 NA oil objective under Olympus BX53 (Olympus, Tokyo, Japan) microscopy equipped with the appropriate filter sets including DAPI single bandpass, Green single bandpass and Orange single bandpass. For each specimen, 50–100 non-overlapping tumor cells were analyzed, positive was considered if separate green and orange signals or single green signal besides undivided signals had to be present in at least 15% of nuclei throughout the tumor. On the contrary, specimens with qualified FISH signals but not meeting the criteria were considered as negative. The representative images of each specimen were acquired with ProgRes cooled CCD camera (Analytik Jena AG, Jena, Germany) in monochromatic layers that were subsequently merged by the FISH 3.0 software (ImStar Thapeutics, Paris, France).

The NGS assay was performed using a laboratory developed test kit from AmoyDx (Amoy Diagnostics, Xiamen, China), which was designed to sequence the whole coding sequences of FGFR1, FGFR2, FGFR3, and FGFR4. Sequencing data was processed using a customized bioinformatics pipeline designed to detect several classes of genomic alterations, including nucleotide substitution, indel, and genomic rearrangement. The DNA (100 ng) was sheared using a Covaris M220 instrument. The input amount of RNA used for library preparation was 100 ng. The RNA fragmentation time was accounted for the degree of fragmentation determined by the RNA integrity check. After first and second strand synthesis, the dsDNA were mixed with fragmented DNA and purified using AMPure XP Beads (Beckman, A63880). The dsDNA and RNA mix were then repaired to make them blunt and phosphorylated, followed by dA-tailing and adaptor ligation. Sample indexes were added during the PCR...
enrichment step. FGFR capture was conducted by hybridizing the pre-PCR libraries with biotinylated DNA baits at 65 °C for 16–24 h followed by extraction using Dynabeads MyOne™ Streptavidin T1 beads (Thermo Fisher, 65,601). The capture libraries were pooled and sequenced on Illumina Novaseq6000 with PE150 cycles. FASTQ files obtained from different samples were first processed by FormatFastq to complete basic QC and generate high-quality clean data. Valid sequencing data were then mapped to the human genome (UCSC hg19) by Burrows-Wheeler Aligner (BWA) to generate original alignment in BAM format. Then, a custom pipeline was used to do the variant calling and identify single nucleotide variant (SNV), insertion and deletion. For rearrangement detecting analysis, valid sequencing data were then mapped to the human genome (UCSC hg19) by STAR (Spliced Transcripts Alignment to A Reference) to generate original mapping results in BAM format, and Chimeric reads. Then, STAR-Fusion was used to call and filter candidate rearrangements with Chimeric reads. The most arguments in STAR and STAR-Fusion are default, but some arguments are optimized according our pre-experiments. The SNV or indel mutation was filtered out using 1000genome database supporting reads. The fusion was defined positive as ≥5 unique fusion reads. Germline mutation was filtered out using 1000genome database (allele frequency ≥1%) and ExAC and GnomAD database (allele count ≥2), and the remaining mutations except synonymous mutations were exported.

Statistical analysis

The associations between the occurrence of FGFRs GAs and clinicopathologic features were assessed utilizing χ² or Fisher exact tests, as appropriate. All reported P values were 2-sided, and P < 0.05 was considered significant. All statistical analyses were performed with Stata 16.0 (Stata, College Station, USA).

Results

In total, 257 ICC cases were subjected to FISH screening for FGFR2 rearrangements based on the AmoyDx platform. Fourteen cases were observed positive for the presence of the rearrangement, which accounts for 5.45% of the cohort here analyzed. The FGFR2 rearrangement status of 122 cases (114 negative and 8 positive patients) from our screening cohort was also explored by a second FISH platform (ZytoVision), and 100% concordance result between the two FISH platforms were obtained (Fig. 1).

The demographic and clinical characteristics of the cases harboring FGFR2 rearrangement are summarized in Table 1. The median age of patients with FGFR2 rearrangement was 49 years (range, 39 to 69 years). The number of women with FGFR2 rearrangement (n = 7, 50.0%) was equal to the number of men (n = 7, 50.0%). Most of patients with FGFR2 rearrangement were non-smoker (n = 8, 66.7%) and non-drinker (n = 9, 81.8%). All the FGFR2 rearrangement positive patients had hepatolithiasis. Eleven patients (78.6%) with FGFR2 rearrangement presented a normal serum level of CA19-9 (< 39 U/mL). Patients with FGFR2 rearrangement predominantly had positive HBsAb (n = 9, 69.2%), and smaller numbers of patients had positive HBsAg (n = 3, 23.1%) or negative HBsAb/HBsAg (n = 1, 7.7%). Thirteen patients (92.9%) presented with earlier disease (stage I or II) at the time of diagnosis. The tumor grade of the analyzed specimens was predominantly moderately differentiated (n = 12, 85.7%). By immunohistochemistry, 6 cases (46.1%) with FGFR2-rearrangement showed positive for CD10. Eight cases (57.1%) were positive for PD-L1 expression. Examples of CD10 and PD-L1 immunoactivity are shown in Fig. 2.

Overall, there were no significant differences between patients with and without FGFR2 rearrangement regarding gender, cigarette smoking, alcohol drinking, hepatolithiasis, serum CA19-9, tumor grade, and tumor stage. However, some significant differences were noted. When compared with patients without FGFR2 rearrangement, more FGFR2 rearrangement patients presented before the age of 58 years (P = 0.028), HBsAb positivity (P = 0.008), CD10 expression (P = 0.013), and PD-L1 expression (P = 0.024) (Table 2).

Next, we performed NGS assay on 12 FGFR2 rearrangement positive and 110 negative cases from the cohort, achieving the same result on FGFR2 rearrangement status between NGS and FISH platform. For FGFR2 rearrangement positive cases, no further FGFR1–4 GA was observed. Multiple FGFR2 rearrangement partners were discovered including CUX1 (n = 2), SORB1, SHROOM3, WAC, TNL4A, CBX5, COL16A1, ALAD, POF1B, FILIP1, and POC1B (Fig. 3). For FGFR2-POC1B and FGFR2-SORB1, respectively, 2 rearrangement transcripts were identified in a single case, because of the diversity of genomic breakpoints. To our knowledge, most of the FGFR2 rearrangement partners have not previously been reported in ICC, except for SHROOM3, SORB1, and WAC [22-24]. Among the 110 FGFR2 rearrangement negative cases, 13 (11.8%) patients present FGFRs GAs, including FGFR3 rearrangement (n = 3) (Fig. 3), and mutations at FGFR1 (n = 1), FGFR2 (n = 3), FGFR3 (n = 2), and FGFR4 (n = 4) (Table 3). The FGFR3 rearrangements were MYT1L-FGFR3, FGFR3-TACC3, and FGFR3-MSRB2 (Fig. 3), and only FGFR3-TACC3 has been reported previously in ICC [24] and other cancers [25]. One 72-year-old male had coexisting 2 FGFR2 mutations (Table 3). Rearrangement at FGFR2–3 (FGFRs probe; the dominant positive signal pattern displays as single orange signal besides undivided signals (5′ flank of FGFR2 was labeled in green). F Enlargement of boxed area in panel E. G Tumor positive for FGFR2 rearrangement with ZytoVision FGFR2 Break-apart probe; the dominant positive signal pattern displays as single orange signal besides undivided signals (5′ flank of FGFR2 was labeled in orange). H, Enlargement of boxed area in panel G.

![Fig. 1. Schematic representation of FGFR2 rearrangement in intrahepatic cholangiocarcinoma, by FGFR2 break-apart FISH probe.](image-url)
Table 1
Clinicopathological features of patients with intrahepatic cholangiocarcinoma with FGFR2 rearrangement.

Sample no.	Gender	Age (years)	HBV status	CA19–9 (U/mL)	Tumor grade	TNM stage	CD10 expression	PD-L1 expression
1	Male	65	HBsAg+, HBeAg+, HBcAb+	33.6	Moderately differentiated	I	Negative	Negative
2	Female	56	HBsAg+, HBeAg+, HBcAb+	106.3	Poorly differentiated	I	Negative	Positive
3	Female	54	HBsAg+, HBeAg+, HBcAb+	0.8	Moderately differentiated	I	n/a	Positive
4	Female	46	HBsAg+, HBeAg+, HBcAb+	66.8	Moderately differentiated	I	Negative	Positive
5	Male	56	HBsAg+, HBeAg+, HBcAb+	24.2	Moderately differentiated	II	Positive	Negative
6	Male	65	HBsAg+, HBeAg+, HBcAb+	21.0	Moderately differentiated	I	Positive	Positive
7	Female	45	HBsAg+, HBeAg+, HBcAb+	422.2	Moderately differentiated	I	Positive	Positive
8	Male	39	HBsAg+, HBeAg+, HBcAb+	7.6	Moderately differentiated	II	Positive	Negative
9	Female	47	HBsAg+, HBeAg+, HBcAb+	0.6	Moderately differentiated	III	Negative	Negative
10	Male	48	n/a	25.2	Moderately differentiated	I	Negative	Positive
11	Female	45	HBsAg+, HBeAg+, HBcAb+	11.7	Moderately differentiated	I	Negative	Positive
12	Male	69	HBsAg+, HBeAg+, HBcAb+	8.6	Moderately differentiated	I	Negative	Negative
13	Female	49	HBsAg+	16.1	Moderately differentiated	II	Positive	Positive
14	Male	58	HBsAg+	8.3	Poorly differentiated	I	Positive	Positive

n/a, not available; HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen; HBsAb, anti-hepatitis B surface antibody; HBeAb, anti-hepatitis B virus e antibody; HBcAb, anti-hepatitis B virus core antibody; TNM, tumor-node-metastasis; CD10, cluster of differentiation 10; PD-L1, programmed cell death-ligand 1.

Table 2
Clinicopathological characteristics of patients with intrahepatic cholangiocarcinoma with and without FGFR2 rearrangement [n (%)].

Characteristics	No FGFR2 rearrangement (n = 243)	FGFR2 rearrangement (n = 14)	P-value*
Gender	Male 85 (34.0) 7 (50.0)	158 (65.0) 7 (50.0)	0.265
Age (years)	≤58 115 (47.3) 11 (78.6)	128 (52.7) 3 (21.4)	0.028
	>58 120 (50.4) 11 (78.6)	118 (49.6) 3 (21.4)	0.003
Hepatolithiasis	Positive 66 (27.9) 9 (69.2)	171 (72.1) 4 (30.8)	0.053
Serum CA19–9 (U/mL) <39 120 (50.4) 11 (78.6)	118 (49.6) 3 (21.4)	0.079	
	≥39 118 (49.6) 3 (21.4)	120 (50.4) 11 (78.6)	0.003
Smoker	No-smoker 148 (63.3) 8 (66.7)	63 (26.9) 2 (16.7)	0.540
	Current smoker 23 (9.8)	23 (9.8) 2 (16.7)	1.000
	Former smoker 164 (73.2) 9 (61.8)	46 (20.5) 2 (18.2)	0.492
	-former smoker 4 (1.7)	0 (0.0)	0.492
Tumor grade	Well differentiated 167 (68.7) 12 (85.7)	4 (1.7) 0 (0.0)	1.000
	Moderately differentiated 72 (29.6)	2 (14.3)	0.013
	Poorly differentiated 191 (78.6) 13 (92.9)	52 (21.4) 1 (7.1)	0.013
	CD10 expression 189 (84.4) 7 (53.9)	35 (15.6) 6 (46.1)	0.024
	PD-L1 expression 127 (71.8) 6 (42.9)	50 (28.2) 8 (57.1)	0.024

TNM, tumor-node-metastasis; HBsAb, anti-hepatitis B surface antibody; CD10, cluster of differentiation 10; PD-L1, programmed cell death-ligand 1.

* P-value from Fisher exact test, as appropriate.

Discussion

Our results demonstrated that patients with ICC with FGFRs rearrangement have distinct clinical phenotype compared with the general population of patients with ICC. Specifically, we observed significant enrichment for FGFR2–3 rearrangement in patients age ≤ 58 years, of female, with positive serum HBsAb, and whose tumor expressed CD10 and PD-L1. Since FGFRs rearrangement-positive tumors can be sensitive to FGFR inhibitors [14–22], these observations suggest that molecular testing to detect FGFRs rearrangement in ICC should be prioritized for patients with these clinical and pathological features. In addition, our
Table 3

Sample no.	Gene	Transcript	Coding sequence change	Clinical significance
1	FGFR1	NM_023110	Exon6, c.742G > A: p. V248M	Likely benign
2	FGFR2	NM_000141	Exon 7, c.870G > T: p. W290C	Pathogenic
3	FGFR2	NM_000141	Exon 3, c.185G > A: p. G62Y	Uncertain significance
4	FGFR2	NM_000141	Exon 14, c.1976A > T: p. K659M	Pathogenic
5	FGFR2	NM_000141	Exon 14, c.1880T > A: p. L627	Likely significance
6	FGFR3	NM_000142	Exon 6, c.713G > A: p. R238Q	Uncertain significance
7	FGFR3	NM_000142	Exon 7, c.796G > A: p. V266M	Uncertain significance
8	FGFR3	NM_000142	Exon 9, c.1183C > T: p. L395F	Uncertain significance
9	FGFR4	NM_213,647	Exon 10, c.1310G > A: p. V437H	Uncertain significance
10	FGFR4	NM_213,647	Exon 3, c.187G > T: p. G66C	Uncertain significance

* Nonsense mutation.

The frequency of FGFR2 rearrangement were lower in Asian ICC patients than that in Caucasian patients, possibly reflecting the differences in ethnicity, causative etiology, and compositions of various clinical characteristics. Importantly, in ICC lacking FGFR2 rearrangement, we revealed FGFR3 rearrangement and FGFR1–4 mutations, with frequencies of 2.7% and 9.1%, respectively. Several pre-clinical and clinical trials have shown the efficacy of FGFR inhibitors in treating ICC patients with FGFR3 rearrangement or certain FGFRs mutations, as well as with FGFR2 rearrangement [14–17]. Thus, the findings of biomarker profile in our data may expand the proportion of potential FGFR-targetable cases in ICC. Several studies have already identified secondary resistance mutations to FGFR-targeted therapies, most of which occurred in the Tyrosine Kinase Domain (TKD) of the FGFR genes [35–37]. However, in our dataset, all the FGFRs mutations were detected in non-TKD and none of the ICC patients received FGFR inhibitors, representing primary mutations. The associations of these primary mutations with the sensitivity and resistance to FGFR inhibitors merit further studies.

FGFR pathway GAs have been examined in relation to clinical and pathological characteristics in biliary tract cancers, with several studies on Caucasian patients reporting an association. Jain et al. [21] have reported that FGFR2 rearrangements or mutations in ICC were associated with younger age at onset and female sex. Graham et al. [27] have reported that FGFR2 rearrangement in mixed intrahepatic, perihilar and extrahepatic cancer was associated with a female predominance. Jain et al. [22] have reported in mixed intrahepatic, extrabiliary and gallbladder cancer, FGFR and FGFI9 GAs occurred more frequently in younger patients and presented at an earlier tumor stage. In the present study, we provided further valuable information that FGFR2-3 rearrangement in ICC was associated with younger age (< 58 years), female sex, serum HBsAb positivity, and tumoral CD10 and PD-L1 expression, while FGFRs GAs were associated with an earlier tumor stage. HBV infection has been proved to be associated with an increased risk of ICC incidence [38]. It has been reported that FGFR2 rearrangement positive cases had a propensity for hepatitis virus infection (HCV or HBV) in
mixed intrahepatic and extrahepatic cancer from a Japanese population [29]. However, we observed significant enrichment for FGFR rearrangement in patients with positive HBsAb, rather than those with positive HBsAg (P = 0.381), consistent with the findings from another study in China reporting no significant association between FGFR2 rearrangement in ICC and HBV infection [34]. Although PD-L1 expression, as a potential predictor for anti-PD-1/PD-L1 immune checkpoint inhibitors (ICIs) treatment, was enriched in FGFR rearrangement-positive ICCs, it is still unknown whether implications for combining FGFR inhibitor and anti-PD-1/PD-L1 agent could enhance treatment response for these patients. It has been reported that, in patients with advanced urothelial cancer with FGFR alterations, sequential application of FGFR inhibitor and PD-1/PD-L1 inhibitor enhanced the ICI response rate to approximately 30% in contrast to only 3.6% for patients receiving initial PD-1/PD-L1 inhibitors [39]. CD10, a cell surface ectoenzyme, is widely expressed on different types of cancers, and has been associated with tumor progression, therapeutic resistance, and molecular dysregulation in the tumor microenvironment [40]. Further studies are needed to explore whether the CD10 and/or PD-L1 expression impact the response of targeted therapy and immunotherapy in ICCs.

Several limitations should be noted in the present study. Firstly, the number of samples remains relatively small, especially for the FGFRs GA subsets, which reflects the relatively rare molecular subsets of ICC. Despite these limitations, this study is important, as it is, to our knowledge, the first profiling of FGFR GAs in a cohort of patients with ICC. Secondly, the cohort investigated is made up of surgery patients who are mostly in earlier tumor stage (stage I/II: 79.4%). Since the incidence of FGFRs GAs in ICC may be higher in surgically resectable disease stages [31], future studies should address the rate of these GAs in patients with later tumor stages, as well as in different tumor locations (primary tumor vs. metastases). Thirdly, the FGFRs GAs detected by NGS array was not validated by other methods such as PCR-based first-generation sequencing. Finally, all the patients in the present study did not received the FGFR inhibitors, which hindered our further analysis on the association between FGFRs GAs and clinical response to FGFR inhibitors. We recognize that the detection of candidate FGFRs GAs does not necessarily indicate its relevance as a potential therapeutic target. Thus, the functional consequences of these FGFRs GAs, especially mutations, await further investigation.

In conclusion, our data showed that FGFR2 and FGFR3 rearrangement in ICC is associated with unique clinical phenotypes, with features of younger age at onset, female sex, serum HBsAb positivity, and tumoral CD10 and PD-L1 expression.

Table 4

Clinicopathological characteristics of patients with FGFR2–3 rearrangement versus those with FGFR1–4 mutation or those without rearrangement and mutation.

	No FGFRs rearrangement or mutation (n = 97)	FGFR2–3 rearrangement (n = 17)	FGFR1–4 mutation (n = 10)	p-value1	p-value2
Gender					
Female	26 (26.8)	9 (52.9)	5 (50.0)	0.034	0.598
Male	71 (73.2)	8 (47.1)	5 (50.0)		
Age (years)					
≤58	49 (50.5)	14 (82.4)	3 (30.0)	0.017	0.013
>58	48 (49.5)	3 (17.6)	7 (70.0)		
Hepatolithiasis					
Negative	81 (83.5)	17 (100.0)	4 (40.0)	0.124	0.001
Positive	16 (16.5)	0 (0.0)	6 (60.0)		
HBsAb status					
Positive	25 (26.6)	11 (68.8)	2 (22.2)	0.003	0.041
Negative	69 (73.4)	5 (31.2)	7 (77.8)	0.021	0.022
CD10 expression					
Negative	76 (80.9)	8 (50.0)	9 (100.0)	0.009	0.069
Positive	18 (19.1)	8 (50.0)	0 (0.0)		
PD-L1 expression					
Negative	58 (71.6)	6 (37.5)	6 (85.7)		
Positive	23 (28.4)	10 (62.5)	1 (14.3)		

1 FGFR2–3 rearrangement vs. FGFRs negative.

2 FGFR2–3 rearrangement vs. FGFR1–4 mutation.

Prior presentation

Presented (Oral) in part in the form of an abstract at the Chinese Society of Clinical Oncology (CSCO) Symposium, Xiamen, Fujian Province, China, September 21–24, 2019.

Authors’ contribution

Conceptualization, Z.Z., H.D., J.W., W.C. and Q.X.; methodology, X. C. and H.L.; investigation, W.D., X.G., H.Y., J.F., S.G., X.C. and H.L.; resources, W.D. and H.Y.; writing—original draft preparation, Z.Z., H. D., X.C. and H.L.; writing—review and editing, W.D., W.C. and Q.X.; supervision, Z.Z.; funding acquisition, Z.Z.. All authors have read and agreed to the published version of the manuscript.

Declaration of Competing Interest

Two authors, X.C. and H.L, work at the Amoy Diagnostics Co., Ltd. whose product, the break-apart FISH probe kit, was used to detect FGFR2 rearrangement in the manuscript. Other authors listed in the authorship declared they had no competing financial interests.

Funding

This work was supported by the Medical Science and Technology Innovation Funds of PLA, Nanjing branch, China (No. 13ZX06 and No. 14ZZ07).

References

1. A.E. Sirica, G.J. Goeres, J.D. Groopman, F.M. Selaru, M. Stazzabosco, X. Wei Wang, A.X. Zhu, Intrahepatic Cholangiocarcinoma: continuing challenges and translational advances, Hepatology 69 (2019) 1803–1815.
2. P. Bertuccio, M. Malvezzi, G. Carioli, D. Hashim, P. Boffetta, H.B. El-Serag, C. La Vecchia, E. Negri, Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma, J. Hepatol. 71 (2019) 104–114.
3. O. Clements, J. Eliahou, J.U. Kim, S.D. Taylor-Robinson, S.A. Khan, Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis, J. Hepatol. 72 (2020) 95–103.
4. J.L. Petrick, B. Yang, S.F. Altekruse, A.L. Van Dyke, J. Koshiol, B.I. Graubard, K. A. McGlynn, Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-Medicare, PLoS ONE 12 (2017), e0186643.
5. K.R. Kelley, J. Bridgewater, G.J. Goeres, A.X. Zhu, Systemic therapies for intrahepatic cholangiocarcinoma, J. Hepatol. 72 (2020) 353–363.
6. J. Valle, H. Wasan, D.H. Palmer, D. Cunningham, A. Anthoney, A. Maraveyas, S. Madhusudan, T. Iveson, S. Hughes, S.P. Pereira, M. Roughton, J. Bridgewater, A.
B.C.T. Investigators, Cioplatin plus gemcitabine versus gemcitabine for biliary tract cancer, N. Engl. J. Med. 362 (2010) 1273–1281.

[7] A. Lamarca, J. Barnes, M.H. Mclaren, J.W. Valley, Molecular targeted therapies: ready for ‘prime time’ in biliary tract cancer, J. Hepatol. 73 (2020) 170–185.

[8] A. Saborowski, U. Lehmann, A. Vogel, FGFR inhibitors in cholangiocarcinoma: what’s now and what’s next? Ther. Adv. Med. Oncol. 12 (2020), 1000389.

[9] J. Wang, X. Xing, Q. Li, G. Zhang, T. Wang, H. Pan, D. Li, Targeting the FGFR signaling pathway in cholangiocarcinoma: promise or delusion? Ther. Adv. Med. Oncol. 12 (2020), 1000494.

[10] N. Porelnka, M. Latko, M. Kucinska, M. Zakrajsek, J. Olewski, L. Opolanski, Targeting cellular trafficking of fibroblast growth factor receptors as a strategy for selective cancer treatment, J. Clin. Med. 8 (2018) 7.

[11] C. Khalid, S.H. Tellah, D. Anaya, R. Kim, FGFR2 genomic aberrations: achilles heel in the management of advanced cholangiocarcinoma, Cancer Treat. Rev. 78 (2019) 1–7.

[12] F. Li, M.N. Peiris, D.J. Donoghue, Functions of FGFR2 corrupted by translocations is now and what is ready for “prime time” in biliary tract cancer, J. Hepatol. 73 (2020) 170–185.

[13] J.H. Tan, Y. Liang, M.D. Wang, F. Shen, FGFR inhibitors for advanced cholangiocarcinoma, Lancet Oncol. 21 (2020) 610–612.

[14] M. Jalve, M. Lowery, T.R. Shroff, K.H. Weins, C. Springfield, M.J. Borad, R.K. Ramanathan, L. Goyal, S. Nagarajan, W.K. Lim, C.C.Y. Ng, A. Boot, M. Liu, C.K. Ong, V. Rajasegaran, S. Lie, V. Nellore, S. Kongpetch, A.W.T. Ng, L.M. Ng, S.P. Choo, S.S. Myint, R. Thanan, A.S.T. Lim, T.H. Lim, J. Tan, J.L. Loh, J.R. McPherson, N. Khuntikeo, J. Clark, E.J. Kennedy, E.W. Klee, M.J. Borad, M.E. Fernandez-Zapico, Molecular characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma, PO.17.00080.

[15] J.B. Egan, D.L. Marks, T.L. Higenson, A.M. Vrabel, A.N. Sigaffo, E.J. Tolosa, R.M. Carr, S.L. Safgren, E.E. Hesles, L.L. Almada, P.A. Rameur-Duncan, E. Iuchi, A.M. Alderman, J.D. Thome, C. Hierro, A. Cervantes, N. Chan, M. Awad, M. Javle, M. Lowery, R.T. Shroff, K.H. Weiss, C. Springfeld, M.J. Borad, R.J. Clark, E.J. Kennedy, E.W. Klee, M.J. Borad, L. Fernandez-Zapico, Molecular modeling and functional analysis of Exon Sequencing-derived variants of unknown significance identify a Novel, Constitutively Active FGFR2 Mutant in Cholangiocarcinoma, J.Cro. Oncol. Precis. Oncol. 2017 (2017). PO.17.00018.

[16] R. Bahleda, A. Italiano, C. Hierro, A. Mita, A. Cervantes, N. Chan, M. Awad, E. Huneke, C.M. Tagtow, A. Iliaawadmi, S.M. Ansell, M.S. Bank, A.H. Bryce, F. Marballidi, A.A. Chanan-Khan, K.K. Curtis, E. Resnick, D.C. Gawrylent, R.S. Go, T.R. Halliday, T.H. Rose, W.J. Joseph, P. Kapoor, A.S. Mannheim, N. Meurice, A. Novakowska-Rao, K. Paracka, K. Kc, J.G. Raeber, O. Djedjou, K. Dierickx, J.-P. Remy, K. Furuta, K. Shimada, T. Okusaka, T. Shibata, Fibroblast growth factor receptors as targets for advanced cholangiocarcinoma, Cancer Res. 80 (2010) 1275–1285.

[17] J.O. Park, Y.-H. Feng, Y.-C. Chen, W.-H. Su, D.-Y. Oh, L. Shen, K.-P. Kim, X. Liu, Y.-H. Feng, Y.-Y. Chen, W.-C. Su, D.-Y. Oh, L. Shen, K.-P. Kim, X. Liu, M. Martin, K.K. Ciombor, J. Hays, A.G. Freud, S. Roychowdhury, Efficacy of FGFR inhibitors in advanced cholangiocarcinoma, J. Clin. Oncol. 36 (2018) 2762–2769.

[18] M.A. Krook, A. Lenyo, M. Wilberding, H. Barker, M. Dantuono, K.M. Bailey, H. Zhao, R.C. Cao, G. Zhang, Viral hepatitis B and C infection, Pathology, 76 (2018) 100.

[19] Z. Chen, J.W. Reeser, M.R. Wing, J. Miya, E. Samorodnitsky, A.M. Smith, T. Dao, D. Petti, N. Lenzi, A. Rashid, L. Goyal, S.K. Saha, L.Y. Liu, G. Siravegna, I. Leshchiner, L.G. Ahronian, J. Murphy, R.R. McWilliams, S.N. Hart, K.C. Halling, L.R. Roberts, G.J. Gores, F.Y. Feng, M.M. Zalupski, P. Wyngaard, S. Sadis, S. Roychowdhury, M.A. Krook, J.H. Tan, W.Y. Zhou, L. Zhou, R.C. Cao, G. Zhang, Viral hepatitis B and C infection, Pathology, 76 (2018) 100.

[20] D.P. Ryan, J.R. Stone, A. Alley, A. Albanese, D. Cherniack, V. Deshpande, T. Mounajjed, W.C. Foo, M.S. Torbenson, D.E. Kleiner, M. Martin, K.K. Ciombor, J. Hays, A.G. Freud, S. Roychowdhury, M.A. Krook, J.H. Tan, W.Y. Zhou, L. Zhou, R.C. Cao, G. Zhang, Viral hepatitis B and C infection, Pathology, 76 (2018) 100.

[21] C.M. Tagtow, A. Iliaawadmi, S.M. Ansell, M.S. Bank, A.H. Bryce, F. Marballidi, A.A. Chanan-Khan, K.K. Curtis, E. Resnick, D.C. Gawrylent, R.S. Go, T.R. Halliday, T.H. Rose, W.J. Joseph, P. Kapoor, A.S. Mannheim, N. Meurice, A. Novakowska-Rao, K. Paracka, K. Kc, J.G. Raeber, O. Djedjou, K. Dierickx, J.-P. Remy, K. Furuta, K. Shimada, T. Okusaka, T. Shibata, Fibroblast growth factor receptors as targets for advanced cholangiocarcinoma, Cancer Res. 80 (2010) 1275–1285.

[22] J.B. Egan, D.L. Marks, T.L. Higenson, A.M. Vrabel, A.N. Sigaffo, E.J. Tolosa, R.M. Carr, S.L. Safgren, E.E. Hesles, L.L. Almada, P.A. Rameur-Duncan, E. Iuchi, A.M. Alderman, J.D. Thome, C. Hierro, A. Cervantes, N. Chan, M. Awad, E. Huneke, C.M. Tagtow, A. Iliaawadmi, S.M. Ansell, M.S. Bank, A.H. Bryce, F. Marballidi, A.A. Chanan-Khan, K.K. Curtis, E. Resnick, D.C. Gawrylent, R.S. Go, T.R. Halliday, T.H. Rose, W.J. Joseph, P. Kapoor, A.S. Mannheim, N. Meurice, A. Novakowska-Rao, K. Paracka, K. Kc, J.G. Raeber, O. Djedjou, K. Dierickx, J.-P. Remy, K. Furuta, K. Shimada, T. Okusaka, T. Shibata, Fibroblast growth factor receptors as targets for advanced cholangiocarcinoma, Cancer Res. 80 (2010) 1275–1285.

[23] J.B. Egan, D.L. Marks, T.L. Higenson, A.M. Vrabel, A.N. Sigaffo, E.J. Tolosa, R.M. Carr, S.L. Safgren, E.E. Hesles, L.L. Almada, P.A. Rameur-Duncan, E. Iuchi, A.M. Alderman, J.D. Thome, C. Hierro, A. Cervantes, N. Chan, M. Awad, E. Huneke, C.M. Tagtow, A. Iliaawadmi, S.M. Ansell, M.S. Bank, A.H. Bryce, F. Marballidi, A.A. Chanan-Khan, K.K. Curtis, E. Resnick, D.C. Gawrylent, R.S. Go, T.R. Halliday, T.H. Rose, W.J. Joseph, P. Kapoor, A.S. Mannheim, N. Meurice, A. Novakowska-Rao, K. Paracka, K. Kc, J.G. Raeber, O. Djedjou, K. Dierickx, J.-P. Remy, K. Furuta, K. Shimada, T. Okusaka, T. Shibata, Fibroblast growth factor receptors as targets for advanced cholangiocarcinoma, Cancer Res. 80 (2010) 1275–1285.

[24] J.H. Tan, W.Y. Zhou, L. Zhou, R.C. Cao, G. Zhang, Viral hepatitis B and C infection, Pathology, 76 (2018) 100.

[25] J. Clark, E.J. Kennedy, E.W. Klee, M.J. Borad, M.E. Fernandez-Zapico, Molecular characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma, PO.17.00080.
evidence from a systematic review and meta-analysis, Turk. J. Gastroenterol. 31 (2020) 246-256.

[39] A.O. Siefker-Radtke, A. Necchi, E. Rosenbaum, S. Culine, E.F. Burgess, P. H. O'Donnell, S.T. Tagawa, Y. Zakaria, A. Ohagan, A.N. Avadhan, B. Zhong, A. E. Santiago-Walker, T. Roccia, Y. Loriot, Efficacy of programmed death 1 (PD-1) and programmed death 1 ligand (PD-L1) inhibitors in patients with FGFR mutations and gene fusions: results from a data analysis of an ongoing phase 2 study of erdafitinib (JNJ-42756493) in patients (pts) with advanced urothelial cancer (UC), J. Clin. Oncol. 36 (2018) 450.

[40] D. Mishra, S. Singh, G. Narayan, Role of B cell development marker CD10 in cancer progression and prognosis, Mol. Biol. Int. 2016 (2016), 4328697.