Enteric methane emission estimates for the Zimbabwean Sanga cattle breeds of Tuli and Mashona

Showman Gwatibaya1 · Chrispen Murungweni1 · Irvine Mpofu1 · Raphael Jingura1 · Accadius Tinarwo Tigere2 · Bosiwe Tererai3

Received: 11 October 2021 / Accepted: 6 March 2023 / Published online: 15 March 2023 © The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
The effectiveness of methane mitigation in ruminant livestock production systems depends on the accuracy of estimating methane emission factors and providing accurate emission inventories. Following the Paris Climate agreement, it is recommended that countries adopt the Tier-2 approach for estimating enteric methane emissions from ruminants instead of the Tier-1 approach currently used by most countries. This study sought to provide base line enteric methane emission estimates for the Tuli and Mashona Sanga cattle breeds in Zimbabwe using the IPCC Tier-2 model. Using animal characterization data collected from 412 cattle from Grasslands Research Institute and 406 cattle from Makoholi Research Institute, net energy requirements were estimated. From this and the estimate for digestibility, gross energy intake and dry matter intake were estimated. Gross energy intakes and the estimated methane conversion factor were used to estimate enteric methane emissions. Mean emission factors for Tuli were 45.1, 56, 28.5, 28.4 and 20.6 kg CH4/head/year for cows, bulls, heifers, steers and calves, respectively. For Mashona, they were 47.8, 51.9, 29, 29.1 and 20.7 kg CH4/head/year for cows, bulls, heifers, steers and calves, respectively. Generally, estimated Tier-2 emission factors were significantly different from the IPCC Tier-1 default emission factors. This study concluded that enteric methane emission factors estimated using the IPCC Tier-2 model offer insights into the controversial use of the default IPCC Tier-1 emission factors.

Keywords Methane · Enteric fermentation · Emission factor · Conversion factor · Tier-1 · Tier-2

Introduction
A significant portion of agricultural emissions in most developing countries come from ruminant livestock, which include cattle, sheep and goats (Abdelrahman and Lou, 2015; Gupta et al., 2018; Reisinger and Clark, 2018). The bulk of the emissions from ruminant livestock are in the form of methane produced through enteric fermentation. Cattle dominate ruminant livestock emissions in most developing countries especially in Sub-Saharan Africa (Bhatta et al., 2015). Globally enteric methane emissions account for 47% of the livestock sector emissions (de Haan, 2006, Henning, 2011, Mitloehner and Place, 2011) and cattle are a major contributor (Agrawal and Kamra, 2010; Allievi et al., 2019; Caro et al., 2014). Methane production from ruminants takes place through enteric fermentation mainly in the reticulo-rumen as part of the normal digestive process through the activity of methanogens (Buccioni et al., 2015). The bulk of enteric methane (87–90%) is produced in the rumen and released into the atmosphere through eructation and belching (Pashaei et al., 2010). Besides being a potent greenhouse gas, enteric methane also represents energy loss ranging from 3 to 12% of gross energy intake (Yan et al., 2000). The amount of methane produced through enteric fermentation depends on animal factors like breed, animal body size, animal metabolism, physiological state, animal activity, animal productivity.
levels and feed factors like feed quality and the level of feed intake (Kumar et al., 2009; Shibata and Terada, 2010).

Due to methane’s contribution to global warming (Etiope, 2012), it has become increasingly necessary to manage methane produced through enteric fermentation (Grossi et al., 2019). However, the effectiveness of methane mitigation techniques significantly depends on the accuracy of estimating ruminant enteric methane emission factors and providing accurate emission inventories (Herrero et al., 2016). In light of the foregoing, the Intergovernmental Panel on Climate Change (IPCC) has developed three different approaches for estimating enteric methane emissions (Pennyman et al., 2006). The three-tiered approach is made up of Tier-1, Tier-2 and Tier-3 models with tier levels determining the level of detail and complexity (Eggleston et al., 2006; Hiraishi et al., 2014). Tier-1 estimates are default values derived from livestock data for livestock systems in developed countries and adjusted to fit different continental geographic regions (Bernoux and Wolf, 2017; FAO, 2015). By their nature, Tier-1 estimates cannot accommodate changes in emissions caused by changes to livestock production systems. Tier-2 estimates represent a substantial increase in precision of estimating enteric methane emissions because they are based on country specific livestock data. The Tier-3 estimates are high complexity estimates which are based on country specific models (Bannink et al., 2010, 2011). The Tier-3 approach is based on the feeding system applied to each type of animal with the feed basket sufficiently defined (Eugène et al., 2019). It is therefore recommended that country specific emission factors for the major ruminant livestock species are developed using the more representative Tier-2 or Tier-3 approaches.

In Zimbabwe, the Tuli and Mashona are the dominant indigenous cattle breeds (Ramsay, 2010). The two breeds have been the most preferred among communal farmers because of their adaptability to the local climatic conditions (Gororo et al., 2017). With the possibility of an expansion of dry regions due to climate change, Mashona and Tuli are going to be more desirable for beef production in Zimbabwe. With their population likely to increase, there is a need to characterize their enteric methane emissions. Cur-
from MRI. Under the Tier-2 approach, animals are grouped into homogeneous sub-categories. Data was sampled for six live weight measurements per animal per year for each sub-category with two live weight measurements representing three distinct seasons: hot wet (December to March), cold dry (April to July) and hot dry (August to November). The collected live weight data was measured using a digital weighing scale.

Animals and feed characterization

Live weight data collected across the different seasons for the sampled animals were used to estimate average daily weight gain or loss. Seasonal average daily weight gain or loss was calculated as seasonal live weight changes divided by the number of days across the season. Metabolic body weight was calculated using the following equation according to Kumar et al. (2016):

\[
MBW = LW^{0.75}
\]

where MBW is the metabolic body weight in kg and LW is the live weight in kg.

Forage digestibility estimation was based on proximate analysis data (Table 1) from a research by Tavirimirwa et al. (2012). The dry matter digestibility was estimated using the equation below (KILIÇ et al., 2021).

\[
DMD = 88.9 - (0.779 \times \%ADF)
\]

where DMD is dry matter digestibility and ADF is the acid detergent fibre content.

Estimating energy requirements

The estimations of enteric methane emissions were based on the calculations of net energy components using the algorithms detailed in the IPCC guidelines (IPCC, 2006, 2019). The estimated net energy requirements were calculated for maintenance, activity, growth and pregnancy (cows). Gross energy intake and estimated dry matter intake were then calculated using the component net energy requirements and estimated dry matter digestibility.

Estimation of net energy requirements for maintenance \((NE_m) \)

Net energy requirements for maintenance \((NEm) \) were calculated based on the live body weight of the animal according to the following equation:

\[
NEm = Cfi \times LW^{0.75}
\]

where:

- \(NEm \) net energy required by the animal for maintenance, MJ day.\(^{-1}\)
- \(Cfi \) maintenance energy coefficient and varies across sub-categories (0.322 for calves, heifers and steers, 0.386 for cows and 0.370 for bulls), MJ day.\(^{-1}\) kg.\(^{-1}\)
- \(LW \) animal live weight, kg.

Estimation of net energy requirements for activity \((NE_a) \)

Net energy requirements for activity \((NEa) \) were calculated based on the maintenance energy requirements \((NEm) \) with an activity coefficient assigned to the animal depending on the feeding situation. The calculation was done using the following equation:

\[
NEa = C_a \times NEm
\]

where:

- \(NEa \) net energy for animal activity, MJ day.\(^{-1}\)
- \(C_a \) animal activity coefficient corresponding to the feeding situation (used 0.36 for grazing large areas).
- \(NEm \) net energy for maintenance, MJ day.\(^{-1}\)

Estimation of net energy requirements for growth \((NE_g) \)

Net energy requirements for growth were calculated based on average animal live weight, average daily weight gain and breed mature weight. The calculation was done according to the following equation:

\[
NE_g = 22.02 \times \left(\frac{BW}{C} \times MW \right) \times WG^{1.097}
\]

\(DM \), dry matter; \(Ash \), ash content; \(CP \) crude protein; \(ADF \), acid detergent fibre; \(NDF \), neutral detergent fibre

Source: (Tavirimirwa et al., 2012)
Estimation of net energy requirements for pregnancy (NEp)

Net energy requirements for pregnancy were calculated for cows and were estimated as a fraction of the net energy requirements for maintenance according to the following equation:

\[NEp = C_{pregnancy} \times NEm \]

where:

- \(NEp \) net energy for pregnancy, MJ day\(^{-1} \)
- \(C_{pregnancy} \) pregnancy coefficient (0.10 for cattle).
- \(NEm \) net energy for maintenance, MJ day\(^{-1} \)

Estimation of the ratios of the net energy available in the diet for maintenance and growth to digestible energy consumed (REM and REG)

Intermediate values in respect of the ratio of net energy available in the diet for maintenance to digestible energy consumed (REM) and ratio of net energy available for growth in the diet to digestible energy consumed (REG) were calculated using the following equations (IPCC, 2019):

\[REM = 1.123 - \left(4.092 \times 10^{-3} \times DE\% \right) \]
\[\quad + \left[1.123 \times 10^{-5} \times DE\%^2 \right] - \left(\frac{25.4}{DE\%} \right) \]

where:

- \(REM \) ratio of net energy available in the diet for maintenance to digestible energy consumed.
- \(DE\% \) dry matter digestibility, %

\[REG = 1.164 - \left(5.160 \times 10^{-3} \times DE\% \right) \]
\[\quad + \left[1.308 \times 10^{-5} \times DE\%^2 \right] - \left(\frac{37.4}{DE\%} \right) \]

where:

- \(REG \) ratio of net energy available for growth in the diet to digestible energy consumed.
- \(DE\% \) dry matter digestibility, %

Estimation of gross energy intake (GEI)

Gross energy intake was calculated using the different components of the net energy requirements and the REM and REG ratios according to the following equation (IPCC, 2019):

\[GE = \frac{(NEm + NEa + NEp)}{REM} + \left(\frac{NEg}{REG} \right) \]

where:

- \(GE \) gross energy intake for the animal, MJ day\(^{-1} \)
- \(NEm \) net energy for maintenance, MJ day\(^{-1} \)
- \(NEa \) net energy for animal activity, MJ day\(^{-1} \)
- \(NEp \) net energy for pregnancy, MJ day\(^{-1} \)
- \(REM \) ratio of net energy available in the diet for maintenance to digestible energy consumed
- \(NEg \) net energy for growth, MJ day\(^{-1} \)
- \(REG \) ratio of net energy available for growth in the diet to digestible energy consumed
- \(DE\% \) dry matter digestibility

Estimating dry matter intake (DMI)

Once the values for gross energy intake were estimated for each animal in each animal sub-category, the dry matter intake in kilograms of dry matter per day (kg day\(^{-1} \)) was also calculated. To convert gross energy intake in energy units to dry matter intake (DMI), the gross energy intake was divided by the estimated energy density of the feed (IPCC, 2006, 2019). A default value of 18.45 MJ kg\(^{-1} \) of dry matter was used for the energy density.

Estimating enteric methane emission factor (EF)

Emission factors for enteric fermentation for each animal sub-category were calculated based on gross energy intake and the estimated methane conversion factor (IPCC, 2006, 2019). The methane conversion factors (Y\(_m\)) specific to the animal sub-categories were calculated based on sub-category dry matter intake (DMI) estimates and estimates of acid detergent fibre intake (FAO, 2015). The sub-category methane conversion factors were calculated using the following equation (Kaewpila and Sommart, 2016):

\[Y_m = \left[0.0522 + 0.069 \times \left(\frac{ADFI\text{DMI}}{DMI} \right) \right] \times 100 \]
where:

- \(Y_m \) enteric methane conversion factor, %
- \(ADFI \) acid detergent fibre intake, kg day.\(^{-1}\)
- \(DMI \) dry matter intake, kg day.\(^{-1}\)

The sub-category enteric methane emission factors were then calculated using the following equation (IPCC, 2019):

\[
EF = \frac{GEI \times \left(\frac{Y_m}{100} \right) \times 365}{55.65}
\]

where:

- \(EF \) emission factor, kg CH₄ head\(^{-1}\) year\(^{-1}\)
- \(GEI \) gross energy intake, MJ head\(^{-1}\) day\(^{-1}\)
- \(Y_m \) methane conversion factor which is the percentage of gross energy in feed converted to methane, %
- 55.65 the energy content of methane, MJ kg\(^{-1}\) CH₄

Calculations

Other measures of enteric methane emission that were calculated included daily methane production (g CH₄ day\(^{-1}\)), methane energy loss (MJ/day), methane yield (g CH₄ kg\(^{-1}\) DMI) and enteric methane emission intensities (g CH₄ kg LW and kg CO₂ eq/kg LW). Daily methane production (DMP) was calculated using the following equation:

\[
DMP = \frac{EF \times 1000}{365}
\]

where:

- \(DMP \) daily methane production, g day\(^{-1}\)
- \(EF \) enteric methane emission factor, kg CH₄ head\(^{-1}\) year\(^{-1}\)
- 365 number of days per year.

Methane yield (MY) was estimated using the following equation:

\[
MY = \frac{DMP}{DMI}
\]

where:

- \(MY \) methane yield, g CH₄ kg\(^{-1}\) DMI.
- \(DMP \) daily methane production, g day\(^{-1}\)
- \(DMI \) dry matter intake, kg day\(^{-1}\)

Enteric methane emission intensity in grams CH₄ per kg live weight was estimated using the following equation:

\[
EI = \frac{DMP}{LW}
\]

where:

- \(EI \) emission intensity, g kg\(^{-1}\) LW.
- \(DMP \) daily methane production, g CH₄/day.
- \(LW \) live weight, kg.

Enteric methane emission intensity in kg CO₂ eq per kg live weight was estimated using the following equation according to (FAO, 2015):

\[
EI_{CO2-equivalence} = 379.0 \times LW^{-0.354}
\]

where:

- \(EI_{CO2-equivalence} \) emission intensity, kg CO₂ eq kg\(^{-1}\) LW.
- \(LW \) live weight, kg.

Statistical analysis

Data was analysed using TIBCO Statistica Version 13.3.0. Descriptive statistics (mean, standard deviation, standard error of means and 95% confidence intervals) were calculated. Test of homogeneity of variances was also done. Analysis of variance (ANOVA) was done at a significance level of \(\alpha = 0.05 \). Differences were tested using the Fisher’s least significance difference (LSD) test. The following linear mixed model with station and animal class as factors was used in the analysis:

\[
Y_{ijk} = \mu + S_i + C_j + \varepsilon_{ijk}
\]

where:

- \(Y_{ijk} \) observed data.
- \(\mu \) overall mean
- \(S_i \) effect of station.
- \(C_j \) effect of animal class.
- \(\varepsilon_{ijk} \) error

Results

Animal characterization

The sampled animals were grouped into five sub-categories according to age and/or sex (Table 2). Daily weight gain was significantly \((P < 0.05) \) different across the five classes for both the Tuli and Mashona breeds. It ranged from \(-0.07 \pm 0.009\) to \(0.08 \pm 0.001\) kg/day across the Tuli animal classes and from \(-0.01 \pm 0.010\) to \(0.07 \pm 0.006\) kg/day across the Mashona animal classes. The average daily
weight gain was -0.02 ± 0.005 kg/day and 0.03 ± 0.006 kg/day for Tuli and Mashona, respectively. Cows from both research stations had a negative weight gain.

Energy requirements, dry matter intake and feed digestibility

Estimates of net energy requirements generally followed the variations in live weight. Table 3 shows the estimates for net energy requirements for the two breeds of Tuli and Mashona. Net energy for maintenance and activity were significantly ($P = 0.002$) different across the five animal classes from both breeds with bulls expectedly having the highest net energy requirements for both maintenance and activity. Cows from both research stations had a negative estimate for net energy requirement for growth. Mashona bulls and Mashona heifers and steers had the highest estimate for net energy requirement for growth of about 0.5 MJ/day. Estimate for net energy requirement for pregnancy was not different between the Tuli and Mashona cows (2.2 MJ/day).

Estimates for gross energy intake also varied with variations in live weight and these directly affected dry matter intake calculations. Table 4 shows estimates for gross energy intake and dry matter intake and the estimated dry matter digestibility (DMD) across the five animal sub-categories. Both gross energy intake estimates and dry matter intake estimates were significantly ($P < 0.05$) different across the five classes. Tuli bulls had the highest gross energy intake and corresponding dry matter intake estimates. Gross energy intake ranged from a low of 41.7 ± 0.16 MJ/day for Tuli calves to a high of 152.8 ± 2.72 MJ/day for Tuli bulls. Average dry matter intake estimates as a percentage of live weight was 2.36, 2.19, 2.82 and 3.41% for cows, bulls, heifers and steers, respectively. Dry matter digestibility estimate was calculated at 53.9%.

Table 2: Animal characterization parameters

Research station and AEZ	Breed	Sub-category	n	LW (kg)	MBW (kg)	DWG (kg/day)
GRI (IIa) Tuli	Cows	216	286.7 ± 0.30a	69.5 ± 0.54a	-0.07 ± 0.009a	
Bulls	29	390.9 ± 9.58b	87.8 ± 1.61b	0.02 ± 0.007c		
Heifers	65	145.8 ± 3.97d	41.8 ± 0.86d	0.01 ± 0.004d		
Steers	42	144.5 ± 5.79d	41.4 ± 1.23d	0.01 ± 0.006d		
Calves	60	66.4 ± 0.30 g	23.3 ± 0.08f	0.08 ± 0.001 g		
MRI (IV) Mashona	Cows	206	288.7 ± 2.88a	69.9 ± 0.52a	-0.01 ± 0.010b	
Bulls	28	345.4 ± 4.10c	79.4 ± 3.63c	0.04 ± 0.013c		
Heifers	65	137.6 ± 3.80e	39.9 ± 0.83e	0.07 ± 0.007f		
Steers	50	142.7 ± 4.83f	41.1 ± 1.04d	0.06 ± 0.009e		
Calves	57	66.5 ± 0.47 g	23.3 ± 0.12f	0.06 ± 0.002e		

n, sample size; LW, live weight; MBW, metabolic body weight; DWG, daily weight gain

Mean values within a column with unlike subscript letters were significantly different ($P < 0.05$)

Enteric methane emissions

Enteric methane emissions for the two breeds were determined in terms of the seven important emission coefficients, namely, methane conversion factor, daily methane production, methane energy loss, methane yield, methane emission factor and methane emission intensity. Table 5 shows the estimated methane conversion factor, daily methane production, methane energy loss and methane yield for the two breeds across the four animal sub-categories. Generally, there were significant ($P < 0.05$) differences in methane conversion factor, daily methane production, methane energy loss and methane yield across the five animal classes for both breeds. Estimated methane conversion factors ranged from 5.6 to 7.5%, and the estimates were significantly different across the five classes. Estimates for daily methane production increased with increasing live weight (Table 5). Daily methane production ranged from a low of about 56.5 gCH4/day for calves to a high of about 153.5 gCH4/day for Tuli bulls. Methane energy loss was significantly different across the four classes ranging from a low of around 2.3 MJ/day for calves to a high of about 8.5 MJ/day for Tuli bulls and was even significantly higher than the energy allocated to productive components like growth. Estimated methane yield ranged from a low of 18.5 gCH4/kgDMI for Tuli calves to a high of 25.0 gCH4/kgDMI for Tuli calves. The respective methane emission factors and methane emission intensities for the five animal classes across the two breeds are given in Table 6.

Discussion

The IPCC Tier-2 model for estimating enteric methane emissions is a function of a number of animal parameters which include live weight, weight gain, feeding system, sex,
and productivity (Goopy et al., 2018). These parameters influence cattle energy demand and hence enteric methane production with the level of animal productivity being the most important factor. The results from this study showed that the animal characterization parameters were generally in agreement with reports from other researches but they contributed significantly to the variation in estimated emissions. The live weights for cows from both breeds were generally within the ranges reported by Dzama et al. (1995) of 275 to 350 kg for Mashona cows and 280 to 468 kg for Tuli cows. Bull weights were notably lower than the weights reported by Assan (2012b) of 430 to 680 kg for Mashona bulls and 770 to 800 kg for Tuli bulls. The differences could be due the variation in production systems under which data was collected. Of the three Zimbabwean Sanga cattle breeds of Mashona, Tuli and Nkone, the Tuli breed is relatively bigger and is a better performing breed with relatively higher live weight gains (Assan, 2012a). Live weight is the most important parameter determining absolute enteric methane emissions with higher live weights resulting in higher emissions (Robinson et al., 2014). A bigger animal has a bigger rumen capacity hence higher level of fermentation resulting in higher enteric methane production. Scholtz (2016) reported daily weight gains of 0.05 ± 0.11 and 0.09 ± 0.06 kg/day for Afrikander and Mashona steers, and these were not very different from the daily weight gain estimates for heifers and steers from this study. The observed negative weight gain in cows across both breeds could be an indication that cows are mostly in negative energy balance throughout the year, and this is in agreement with a report by Tada et al. (2013), where negative weight gains were observed for lactating Nguni cows during the dry season. In most tropical production systems, feed is abundant during the wet season with severe scarcity

Table 3	Estimated net energy requirements					
Breed	Sub-category	n	NEm (MJ/day)	NEa (MJ/day)	NEg (MJ/day)	NEp (MJ/day)
Tuli (GRI)	Cows	216	22.4 ± 0.18a	8.1 ± 0.06a	−1.1 ± 0.14a	2.2 ± 0.02a
	Bulls	29	28.3 ± 0.52b	10.2 ± 0.19b	0.2 ± 0.06c	n.a
	Heifers	65	13.5 ± 0.28d	4.8 ± 0.09d	0.3 ± 0.04d	n.a
	Steers	42	13.3 ± 0.39d	4.8 ± 0.14d	0.7 ± 0.03f	n.a
	Calves	60	7.5 ± 0.03f	2.7 ± 0.01f	0.2 ± 0.01c	n.a
Mashona (MRI)	Cows	206	22.5 ± 0.17a	8.1 ± 0.06a	−0.2 ± 0.16b	2.2 ± 0.02a
	Bulls	28	25.6 ± 1.17c	9.2 ± 0.42c	0.5 ± 0.18d	n.a
	Heifers	65	12.9 ± 0.27e	4.6 ± 0.09e	0.6 ± 0.06g	n.a
	Steers	50	13.2 ± 0.33d	4.8 ± 0.12d	0.4 ± 0.06e	n.a
	Calves	57	7.5 ± 0.04f	2.7 ± 0.01f	0.2 ± 0.02c	n.a

n, sample size; NEm, net energy for maintenance; NEa, net energy for activity; NEg, net energy for growth; NEp, net energy for pregnancy.

Bold, italic, and mean values within a column with unlike subscript letters were significantly different ($P < 0.05$)

Table 4	Estimated gross energy intake, dry matter intake and dry matter digestibility				
Breed	Sub-category	n	GEI (MJ/day)	DMI (kg/day)	DMD(%)
Tuli (GRI)	Cows	216	120.7 ± 1.40a	6.6 ± 0.08a	53.9 ± 0.00a
	Bulls	29	152.8 ± 2.72c	8.3 ± 0.15c	53.9 ± 0.00a
	Heifers	65	72.4 ± 1.43e	3.9 ± 0.08e	53.9 ± 0.00a
	Steers	42	72.1 ± 2.23e	3.9 ± 0.12e	53.9 ± 0.00a
	Calves	60	41.7 ± 0.16g	2.3 ± 0.01f	53.9 ± 0.00a
Mashona (MRI)	Cows	206	127.9 ± 1.53b	6.9 ± 0.08b	53.9 ± 0.00a
	Bulls	28	140.6 ± 3.21d	7.6 ± 0.37d	53.9 ± 0.00a
	Heifers	65	73.9 ± 1.58f	4.0 ± 0.09e	53.9 ± 0.00a
	Steers	50	73.9 ± 1.86f	4.0 ± 0.01e	53.9 ± 0.00a
	Calves	57	41.8 ± 0.26g	2.3 ± 0.01f	53.9 ± 0.00a
IPCC(2006)	n.a	n.a	n.a	2–3%*LW	45–55
IPCC(2019)	n.a	n.a	n.a	2.5%*LW	≤ 62

n, sample size; GEI, gross energy intake; DMI, dry matter intake; DMD, dry matter digestibility.

Bold, italic, and mean values within a column with unlike subscript letters were significantly different ($P < 0.05$)
experienced during the dry season resulting in severe weight loss (Peters et al., 2012).

Estimates of net energy requirements for maintenance for cows and bulls were not very different from the net energy requirements of a 300 kg live weight animal of between 23.3 and 25.5 MJ/day (CSIRO, 2007) although net energy requirements for steers and heifers were significantly lower than the estimates of about 20.3 MJ/day reported by da Fonseca et al. (2019). Azizi et al. (2017) reported estimates for net energy requirement for activity of 4.6 MJ/day, and this was similar to the estimates for heifers and steers in this study but significantly lower than estimates for both cows and bulls and considerably higher than estimates for calves. Generally, animals under agro-pastoral grazing systems tend to have higher energy requirements for activity as they spend a lot of energy looking for food (Peters et al., 2012). The estimates for net energy requirement for growth obtained from this study were significantly lower than the estimates reported for Zebu bulls, steers and heifers which ranged from 0.93 Mcal/day to 9.54 Mcal/day (Marcondes et al., 2010). The lower net energy requirements for growth could be explained by the lower daily weight gains which are a result of lower feed intakes as animals are usually under a restricted feeding system. Net energy requirement for pregnancy of 567 kcal/day (2.37 MJ/day) at 190 days gestation and 821 kcal/day (3.44 MJ/day) at 270 days of gestation were reported by Bell et al. (2016). These estimates were comparable to the 2.2 ± 0.02 MJ/day net energy for pregnancy estimated for both Tuli and Mashona cows.

Table 5
Estimated methane conversion factor, daily methane production, methane energy loss and methane yield

Breed	Sub-category	n	Ym (%)	DMP (g/day)	MY (gCH4/kgDMI)
Tuli (GRI)	Cows	216	5.7 ± 0.00a	124.3 ± 1.45a	18.9 ± 0.09a
	Bulls	29	5.6 ± 0.00b	153.3 ± 2.73c	18.5 ± 0.00a
	Heifers	65	6.0 ± 0.00	78.2 ± 1.54	19.9 ± 0.00
	Steers	42	6.0 ± 0.00	77.9 ± 2.41	19.9 ± 0.00
	Calves	60	7.5 ± 0.00d	56.5 ± 0.23f	25.0 ± 0.00c
Mashona (MRI)	Cows	206	5.7 ± 0.00a	130.9 ± 1.57b	18.9 ± 0.00a
	Bulls	28	5.6 ± 0.00b	142.2 ± 3.14d	18.7 ± 0.00a
	Heifers	65	5.9 ± 0.00	79.5 ± 1.70	19.8 ± 0.00
	Steers	50	5.9 ± 0.00	76.9 ± 2.00	19.8 ± 0.00
	Calves	57	7.5 ± 0.00d	56.6 ± 0.35f	24.9 ± 0.01c
IPCC(2006)	n.a	n.a	6.5 ± 1.0e	n.a	n.a
IPCC(2019)	n.a	n.a	7.0 ± 0.00f	n.a	23.3 ± 0.00d

n, sample size; Y_m, methane conversion factor, DMP, daily methane production, CH_4E, methane energy loss; MY, methane yield

Mean values within a column with unlike subscript letters were significantly different ($P < 0.05$)

Table 6
Estimated enteric methane emission factors and methane emission intensities

Breed	Sub-category	n	EF (kgCH4/year)	EI (gCH4/kgLW)	EI_{CO2-eq} (kgCO2-eq/kgLW)
Tuli	Cows	216	45.4 ± 0.53a	0.4 ± 0.01a	51.4 ± 0.20a
	Bulls	29	56.0 ± 0.99c	0.4 ± 0.01a	46.0 ± 0.39b
	Heifers	65	28.5 ± 0.56f	0.5 ± 0.01b	65.7 ± 0.65
	Steers	42	28.4 ± 0.88f	0.6 ± 0.01c	66.1 ± 0.88
	Calves	60	20.6 ± 0.08 h	0.9 ± 0.00d	85.8 ± 0.14e
Mashona	Cows	206	47.8 ± 0.57b	0.5 ± 0.01b	51.3 ± 0.18a
	Bulls	28	51.9 ± 1.01d	0.4 ± 0.01a	49.0 ± 1.05c
	Heifers	65	29.0 ± 0.62 g	0.6 ± 0.01c	67.1 ± 0.67
	Steers	50	29.1 ± 0.73 g	0.6 ± 0.01c	66.3 ± 0.78
	Calves	57	20.7 ± 0.13 h	0.8 ± 0.00d	85.8 ± 0.22c
IPCC(2006)	n.a	n.a	31.0 ± 0.00e	n.a	n.a
IPCC(2019)	n.a	n.a	48.0 ± 0.00b	n.a	n.a

n, sample size; EF, methane emission factor; EI, methane emission intensity; EI_{CO2-eq}, carbon dioxide equivalent emission intensity

Mean values within a column with unlike subscript letters were significantly different ($P < 0.05$)
The gross energy intake estimates for Tuli and Mashona cows and bulls were considerably higher than those reported by Kouazounde et al. (2015) for the Somba, Borgou and Lagune cattle of Benin. These differences could be due to the differences in mature live weight with Benin cattle breeds having a lower mature live weight than the Zimbabwean Sanga breeds. Gross energy intake estimates for both Tuli and Mashona were also comparable to estimates of 42.65 ± 0.998 MJ/day for calves, 63.75 ± 0.793 MJ/day for heifers and steers and 131.11 ± 4.63 MJ/day for mature males and females reported by Caetano et al. (2018) for Indian beef cattle. Although dry matter intake estimates for both Tuli and Mashona were within the IPCC range of 2–3% of live weight, they were based on ad libitum feeding, which could not be the case in most African cattle production systems. Both gross energy intake and dry matter intake are important parameters in the estimation of enteric methane emissions using the Tier-2 approach. The dry matter digestibility estimate of 53.9% was within the range of dry matter digestibility of 39 to 63% reported for the common grass species of tropical South Africa (du Toit et al., 2018). The dry matter digestibility estimate was also within the range of the IPCC representative digestibility for cattle fed on low quality forage which ranges from 45 to 55% (IPCC, 2006). The digestibility estimates used for beef cattle Tier-2 enteric methane estimations in Ethiopia which ranged from 53.51 to 53.94% (Wilkes et al., 2020) were also similar to the estimate obtained from this study. Most cattle production systems in Africa are based on natural veld which tend to have low digestibility during most parts of the year. Low forage digestibility results in high methane conversion factor and high methane yield (Goopy et al., 2014; Ku-Vera et al., 2018).

Liu et al. (2017) reported estimates of methane conversion factor that ranged from 3.8 for concentrate based diets to 7.4 for forage-based diets. These estimates for forage-based diets were not very different from methane conversion factors estimated for both Tuli and Mashona cattle which ranged from about 5.6 to 7.5. Generally, methane conversion factor increased with decreasing live weight, and this could be due to a decrease in dry matter intake with decreasing live weight, which has a bearing on rumen retention time (Hellwing et al., 2016). High methane conversion factors are associated with forage-based diets because of the high levels of acid and neutral detergent fibre which tends to reduce dry matter intake and increase rumen digesta retention time (Lima et al., 2016). A reduction in dry matter intake results in increased rumen retention time, thereby giving more time for rumen fermentation and converting more organic matter to methane (Ku-Vera et al., 2018).

Daily methane production for Nguni (263.8 ± 31.25 g/day) and Boran (301.4 ± 25.51 g/day) cows reported by Mapfumo et al. (2018) was considerably higher than estimates for cows obtained from this study. Generally, daily methane production is directly proportional to live weight and dry matter intake (Cottle et al., 2015), and this explains the huge difference between the Nguni and Boran cows and the lower estimates obtained for Tuli and Mashona cows. Methane energy loss of 6.0 to 8.2 MJ/day reported for Thai beef cattle (Yan et al., 2000) was not dissimilar from the estimates for cows and bulls obtained in this study, which ranged from 6.7 to 8.5 MJ/day. Methane energy loss represents a significant loss of gross energy intake (Yan et al., 2000). The estimates for methane yield from this study which ranged from a low of 18.5 ± 0.00 gCH₄/kgDMI for Tuli bulls to a high of 25.0 ± 0.00 gCH₄/kgDMI for calves were considerably lower than methane yields reported by Mapfumo et al. (2018) for Boran and Nguni cows which ranged from a low of 26.5 ± 1.62 gCH₄/kgDMI to a high of 32.8 ± 1.32 gCH₄/kgDMI. The differences could be due to the different methods used in the estimation where Boran and Nguni estimates were based on measurements using the laser methane detector, while estimates in the current study were based on the IPCC Tier-2 model. Generally, methane yield tended to increase with decreasing live weight and dry matter intake (Ku-Vera et al., 2018), and this is possibly due to increased rumen retention time with reduced dry matter intakes. A higher dry matter intake increases rumen passage, thereby giving less time for fermentation and resulting in reduced methane yield (Goopy et al., 2014, 2020).

The estimates for methane emission factors for cows, bulls and calves from this study were notably higher than the 2006 IPCC default emission factor of 31 kg/head/year. However, estimates for heifers and steers were comparable to the IPCC default emission factor for Africa. Estimated Tier-2 emission factors for Tuli and Mashona cows were 20% and 30% higher, respectively, than the default Tier-1 emission factor for Africa. For bulls, Tier-2 emission factors were higher than the Tier-1 emissions factors by 20% and 30% for Tuli and Mashona bulls, respectively. Estimates for heifers and steers were slightly lower than the Tier-1 emission factor differing with the Tier-1 by a margin of 1% and 2% for Tuli and Mashona, respectively. Tier-2 estimates for calves were considerably lower than the default Tier-1 emission factor and differing by a margin of 20% for both Tuli and Mashona calves. Generally, the emission factors for the Tuli and Mashona cattle generated using the IPCC Tier-2 model were notably different from the IPCC default emission factors for Africa. Emission factors reported by Goopy et al. (2018) were comparable to those estimated from this study for heifers and steers but significantly lower than those from this study for cows, bulls and calves. Goopy et al. (2018) reported emission factors of 26.7–34.1 kg/head/year.
for cows, 34.1–37.4 kg/head/year for bulls, 23.0–31.7 kg/head/year for heifers, 27.8–34.5 kg/head/year for steers, and 13.9–18.1 kg/head/year for calves. The differences in emission factors can be explained in terms of differences in live weight which is an important factor in determining levels of enteric methane emissions. Live weight determines gross energy intake which in turn affects enteric methane emission estimates. Estimates for methane emission intensity for calves from this study were comparable to those reported by Mapfumo et al. (2018) which ranged from 0.7 ± 0.05 to 1.0 ± 0.04 gCH₄/LW for Nguni and Boran cows. However, emission intensities for the other animal classes across the two breeds were relatively lower than those reported for the Nguni and Boran cows (Mapfumo et al., 2018). Generally, emission intensity is inversely related to live weight and level of production with lower live weights and low input production systems having high emission intensities (Garg et al., 2018; Samsonstuen et al., 2020). Carbon dioxide equivalent emission intensities estimated for Tuli and Mashona cattle were significantly higher than those reported for beef cattle in Uruguay where reported carbon dioxide equivalent emission intensities under rangeland conditions were estimated at 24.8 kgCO₂eq/kgLW to 41 kgCO₂/kgLW (Becoña et al., 2014). Emission intensity per kg live weight is generally lower as production system intensifies, with the highest values for low-input systems and lowest values under intensive fattening systems (Garg et al., 2018). Emission intensities are high at lower live weight because emissions are spread over a smaller body size (Samsonstuen et al., 2020; Velazco et al., 2017), and this explains the high emission intensities in low production systems especially in Sub-Saharan Africa, Asia and Latin America. Accurately characterizing emissions using country specific parameters will help explain the spatial variation in emissions across countries and regions. Although the Tier-2 methodology is an improvement from the Tier-1 approach, it however cannot be supported in most developing countries due to unavailability of sufficient data. considerably lower than the default IPCC Tier-1 emission factors. Estimated emission factors for heifers and steers were within range of the default Tier-1 emission factors. It can therefore be concluded that the default Tier-1 emission factors underestimate emission factors for certain animal classes while overestimating for others making them generally less representative. The methane emission factors estimated in this study will provide a baseline for improved beef cattle enteric methane emission inventories in Zimbabwe.

Acknowledgements The authors thank research officers from Grassland Research Institute and Makoholi Research Institute for the support during data collection.

Author contribution 1. Conception of the work — Showman Gwatibaya
2. Data collection — Showman Gwatibaya, Accadius Tinarwo
3. Data analysis and interpretation — Chrispen Murungweni
4. Drafting the article — Showman Gwatibaya
5. Critical revision of the article — Raphael Jingura
6. Final approval of the version to be published — Irvine Mpofu

Funding This work was financially supported by Chinhoyi University of Technology through the Staff Development Fellowship Grant number C13122430D.

Data availability All data and materials used in the study can be accessed.

Code availability Not applicable.

Declarations

Ethics approval All procedures performed in the study were in accordance with the ethical standards of the Chinhoyi University of Technology research committee.

Consent to participate All researchers were informed of the risks and benefits involved.

Consent for publication All authors give consent for the publication of details within the text to be published in the Tropical Animal Health and Production journal.

Conflict of interest The authors declare no competing interests.

Conclusions

Both Tuli and Mashona breed showed no significant differences in estimated enteric methane emissions. This study concluded that enteric methane emission factors estimated using the IPCC Tier-2 model offer insights into the controversial use of the default IPCC Tier-1 emission factors. The use of country specific animal parameters will result in the generation of more representative emission estimates which in turn will help in producing accurate emission inventories. Based on the results from this study, the estimated emission factors for bulls and cows were higher than the default IPCC Tier-1 emission factors, while those for calves were

References

ABDELRAHMAN, S. M. & LOU, Y. 2015. Some Approaches for Reducing Methane Emissions from Ruminants. Animal Environment and Welfare.

AGRAWAL, D. & KAMRA, D. Global warming: Role of livestock and mitigation strategies. International conference on “Physiological capacity building in livestock under changing climate scenario”. Physiology and Climatology division, Indian Veterinary Research Institute, Izatnagar, 2010. 73–80.

ALLIEVI, F., ANTONELLI, M., DEMBSKA, K. & PRINCIPATO, L. 2019. Understanding the Global Food System. Achieving the Sustainable Development Goals Through Sustainable Food Systems. Springer.
ASSAN, N. 2012a. Genetic improvement and utilization of indigenous cattle breeds for beef production in Zimbabwe: Past, present and future prospects. *Scientific Journal of Agricultural,* 1, 1-13.

ASSAN, N. 2012b. Genetic parameters estimation and trends for birth weight in cattle. *Journal of Animal Science Advances,* 2, 274-281.

AZIZI, A., MARDHATI, M., MOHD FAIRUZ, M., SHAIDATUL AZDAWIYAH, A., NURUL AIN, A., FAUZI, J., MOHAMAD HARIZ, A. & REISINGER, A. 2017. Local emission factors estimates for methane emission from cattle enteric fermentation using IPCC Tier-2 methodology. *Mat. J. Anim. Sci,* 20, 1-10.

BANNINK, A., VAN SCHIJNDEL, M. & Dijkstra, J. 2011. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. *Animal Feed Science and Technology,* 166, 603-618.

BANNINK, A., SCHIJNDEL, M. & Dijkstra, J. A research model of enteric fermentation in dairy cows applied as Tier 3 to estimate methane emission for the Dutch National Inventory Report. 4th international conference on greenhouse gases and animal agriculture, Banff, Canada. 2010. Greenhouse Gases and Animal Agriculture, 158–158.

Becoña, G., ASTIGARRAGA, L. & PICASSO, V. D. 2014. Greenhouse gas emissions of beef cow-calf grazing systems in Uruguay. *Sustainable Agriculture Research,* 3.

BELL, M., ECKARD, R., MOATE, P. J. & YAN, T. 2016. Modelling the effect of diet composition on enteric methane emissions across sheep, beef cattle and dairy cows. *Animals,* 6, 54.

BERNOUX, M. & WOLF, J. 2017. Regional analysis of the nationally determined contributions of Eastern Africa: gaps and opportunities in the agricultural sectors. *Environment and Natural Resources Management. Working Paper (FAO) eng no. 67.*

BHATTA, R. & ENISHI, O. 2007. Measurement of methane production from ruminants. *Asian-australasian journal of animal sciences,* 20, 1305-1318.

BHATTA, R., MALIK, P., PRASAD, C. & BHATTA, R. 2015. Enteric methane emission: status, mitigation and future challenges: an Indian perspective. *Livest Prod Climate Change,* 229.

BUCCIONI, A., CAPPUCCI, A. & MELE, M. 2015. Methane emission from enteric fermentation: methanogenesis and fermentation. *Climate Change Impact on Livestock: Adaptation and Mitigation.* Springer.

CAETANO, M., WILKES, M., PITCHFORD, W., LEE, S. & HYND, P. 2018. Energy relations in cattle can be quantified using open-circuit gas-quantification systems. *Animal Production Science,* 58, 1807-1813.

CARO, D., DAVIS, S. J., BASTIANONI, S. & CALDEIRA, K. 2014. Global and regional trends in greenhouse gas emissions from livestock. *Climatic change,* 126, 203-216.

CHAUCHEYRAS-DURAND, F. & OSSA, F. 2014. The rumen microbiome: composition, abundance, diversity, and new investigative tools. *The Professional Animal Scientist,* 30, 1-12.

COTTLE, D., VELAZCO, J., HEGARTY, R. & MAYER, D. 2015. Estimating daily methane production in individual cattle with irregular feed intake patterns from short-term methane emission measurements. *Animal,* 9, 1949-1957.

CSIRO 2007. *Nutrient requirements of domesticated ruminants,* CSIRO publishing.

DA FONSECA, M. P., BORGES, A. L. D. C., CARVALHO, P. H. D. A., E SILVA, R. R., GONÇALVES, L. C., BORGES, I., LAGE, H. F., FERREIRA, A. L., SALIBA, E. O. S. & JAYME, D. G. 2019. Energy partitioning in cattle fed diets based on tropical forage with the inclusion of antibiotic additives. *Plos one,* 14, e0211565.

DAS, L. K., KUNDU, S., KUMAR, D. & DATT, C. 2014. Assessment of energy content of some tropical concentrate feeds of ruminants using model of National Research Council-2001. *Indian Journal of Science and Technology,* 7, 1999.

DESSUS, B., LE TREUT, H. & LAPONCHE, B. 2008. Global warming: the significance of methane.

DHOUBHADEL, S. P., TAHERIPOUR, F. & STOCKTON, M. C. 2016. Livestock Demand, Global Land Use Changes, and Induced Greenhouse Gas Emissions. *Journal of Environmental Protection,* 7, 985.

DONG, H., MANGINO, J., MCALLISTER, T., HATFIELD, J., JOHN-SON, D., LASSEY, K., LIMA, M. & ROMANOVSKAYA, D. 2006. Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use, Chapter 10: Emissions from Livestock and Manure Management. *Kanagawa, Japan,* 1–87.

DORAN, P. T. & ZIMMERMAN, M. K. 2009. Examining the scientific consensus on climate change. *Eos, Transactions American Geophysical Union,* 90, 22-23.

DU TOIT, C., VAN NIEKERK, W., MEISSNER, H., ERASMUS, L. & MOREY, L. 2018. Nutrient composition and in vitro methane production of sub-tropical grass species in transitional rangeland of South Africa. *The Rangeland Journal,* 40, 1-8.

DZAMA, K., NGWERUME, F. & BHEBHE, E. 1995. Proceedings of the international symposium on livestock production through animal breeding and genetics, 10–11 May 1995.

EGGLESTON, S., BUENDIA, L., MIWA, K., NGARA, T. & TAN-AIBE, K. 2006. 2006 IPCC guidelines for national greenhouse gas inventories, Institute for Global Environmental Strategies Hayama, Japan.

ETIÓPE, G. 2012. Methane uncovered. *Nature Geoscience,* 5, 373-374.

EUGÈNE, M., SAUVANT, D., NOZIERE, P., VILLARD, D., OUE-SLATI, K., LHERM, M., MATHIAS, E. & DOREAU, M. 2019. A new Tier 3 method to calculate methane emission inventory for ruminants. *Journal of environmental management,* 231, 982-988.

FAO 2012. Balanced Feeding for Improving Livestock Productivity. *FAO Animal Production and Health Paper.*

FAO 2015. Estimating Greenhouse Gas Emissions in Agriculture. A manual to Address Data Requirements for Developing Countries. *Food and Agricultural Organization of the United Nations,* 1.

FAWZY, S., OSMAN, A. I., DORAN, J. & ROONEY, D. W. 2020. Strategies for mitigation of climate change: a review. *Environmental Chemistry Letters,* 1-26.

FERRELL, C. & OLTJEN, J. 2008. ASAS Centennial Paper: Net energy systems for beef cattle—Concepts, application, and future models. *Journal of Animal Science,* 86, 2779-2794.

GARG, M., SHERASIA, P., PHONDBA, B. & MAKKAR, H. P. 2018. Greenhouse gas emission intensity based on lifetime milk production of dairy animals, as affected by ration-balancing program. *Animal Production Science,* 58, 1027-1042.

GOOPY, J. P., DONALDSON, A., HEGARTY, R., VERCOE, P. E., HAYNES, F., BARNETT, M. & ODDY, V. H. 2014. Low-methane yield sheep have smaller rumens and shorter rumen retention time. *British Journal of Nutrition,* 111, 578-585.

GOOPY, J. P., ONYANGO, A., DICKHOEFER, U. & BUTTERBACH-BAHL, K. 2018. A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa—Results for Nyando, Western Kenya. *Agricultural systems,* 161, 72-80.

GOOPY, J. P., KORIR, D., PELSTER, D., ALI, A., WASSIE, S. E., SCHLECHT, E., DICKHOEFER, U., MERBOLD, L. & BUTTERBACH-BAHL, K. 2020. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. *British Journal of Nutrition,* 123, 1239-1246.

GORORO, E., MAKUZA, S. M., CHATIZA, F. P., GWATIBAYA, S., GAHAZIKWA, P. & CHIDZWONDO, F. 2017. The potential of reproductive technologies in breeding smallholder cattle populations in Zimbabwe. *International Journal of Livestock Production,* 8, 168-179.

GROSSI, G., GOGLIO, P., VITALI, A. & WILLIAMS, A. G. 2019. Livestock and climate change: impact of livestock on climate and mitigation strategies. *Animal Frontiers,* 9, 69-76.
GUPTA, M., MONDAL, T., LOKESHA, E., SINGH, A., ASHWIN, K., PERWEEN, S. & SAHOO, J. K. 2018. Methane Emission by Ruminants and Its Measurement-A Review. Int. J.Curr. Microbiol. App. Sci, 7, 3120-3126.

DE HAAN, C. 2006. Livestock’s long shadow. Environmental issues and options Food and Agriculture Organization of the Nations (FAO) http://www.virtualcentre.org/enlibrary/key_pub/longshad/A0701800.pdf.

HELLWING, A. L. F., WEISBIEG, M. R., BRASK, M., ALstrup, L., JOHANSEN, M., HYMÖLLER, L., LARSEN, M. K. & LUND, P. 2016. Prediction of the methane conversion factor (Ym) for dairy cows on the basis of national farm data. Animal Production Science, 56, 535-540.

HENNING, B. 2011. Standing in Livestock’s ‘Long Shadow’: The Ethics of Eating Meat on a Small Planet. ‘Ethics & the Environment, 16, 63-93.

HERRERO, M., WIRSENIUS, S., HENDERSON, B., RIGOLOT, C., THORNTON, P., HAVLÍK, P., DE BOER, I. & GERBER, P. J. 2015. Livestock and the environment: what have we learned in the past decade? Annual Review of Environment and Resources, 40, 177-202.

HERRERO, M., HENDERSON, B., HAVLÍK, P., THORNTON, P. K., CONANT, R. T., SMITH, P., WIRSENIUS, S., HRISTOV, A. N., GERBER, P. & GILL, M. 2016. Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6, 452-461.

HIRAIISHI, T., KRUG, T., TANABE, K., SRIVASTAVA, N., BAASANSUREN, J., FUKUDA, M. & TROXLER, T. 2014. 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. IPCC, Switzerland.

HOOK, S. E., WRIGHT, A.-D. G. & MCBRIDE, B. W. 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea, 2010.

IPCC 2006. Chapter 10. Emissions from Livestock and Manure Management. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use, 4, 101–108.

IPCC 2019. Task Force on National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change.

KAEWPILA, C. & SOMMART, K. 2016. Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecology and evolution, 6, 7422-7432.

KELLERH., F., CLARK, H., SMITH, M., LASSEY, K. & SED-COLE, R. 2009. Reducing uncertainty of the enteric methane emissions inventory. A report prepared for the New Zealand Ministry of Agriculture and Forestry, Wellington.

KHOMBE, C., HAYES, J., CUE, R. & WADE, K. 1995. Estimation of direct additive and maternal additive genetic effects for weaning weight in Mashona cattle of Zimbabwe using an individual animal model. Animal Science, 60, 41-48.

KILIÇ, Ü., ERİŞEK, A., GARİPOĞLU, A., ILKNUR, A. & ÖNDER, H. 2021. The Effects of Different Forage Types on Feed Values and Digestibilities in Some Brassica Fodder Crops. Türk Tarım ve Doğa Bilimleri Dergisi, 8, 94-102.

KOUAZOUNDE, J., GBENOU, J., BABATOUNDE, S., SRIVASTAVA, N., EGGLESTON, S., ANTWI, C., BAACH, J. & MCALISTER, T. 2015. Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology. animal, 9, 526-533.

KUMAR, S., PUNIYA, A. K., PUNIYA, M., DAGAR, S. S., SIROHI, S. K., SINGH, K. & GRIFFITH, G. W. 2009. Factors affecting rumen methanogens and methane mitigation strategies. World Journal of Microbiology and Biotechnology, 25, 1557-1566.

KUMAR, S., SINGH, S., PANDEY, P., KUMAR, N. & HOODA, O. 2016. Estimation of metabolic heat production and methane emission in Sahiwal and Karan Fries heifers under different feeding regimes. Veterinary world, 9, 496.

KU-VERA, J. C., VALENCIA-SALAZAR, S. S., PIÑEIRO-VÁZQUEZ, A. T., MOLINA-BOTERO, I. C., ARROYAVE-JARAMILLO, J., MONTOYA-FLORES, M. D., LAZOS-BALBUENA, F. J., CANUL-SOLIS, J. R., ARCEO-CASTILLO, J. I. & RAMÍREZ-CANCINO, L. 2018. Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agricultural and forest meteorology, 258, 3-7.

LENKA, S., LENKA, N., SEIJIAN, V. & MOHANTY, M. 2015. Contribution of agriculture sector to climate change. Climate Change Impact on Livestock: Adaptation and Mitigation. Springer.

LIMA, A. R. C., FERNANDES, M. H. M. D. R., TEIXEIRA, I. A. M. D. A., FRIGIETTO, R. T. S., BOMPIADE, T. F. V., BIAGIOLI, B., MEISTER, N. C. & RESENDE, K. T. D. 2016. Effects of feed restriction and forage: concentrate ratio on digestibility, methane emission, and energy utilization by goats. Revista Brasileira de Zootecnia, 45, 781-787.

LIU, Z., LIU, Y., SHI, X., WANG, J., MURPHY, J. P. & MAGH-RANG, R. 2017. Enteric methane conversion factor for dairy and beef cattle: Effects of feed digestibility and intake level. Transactions of the ASABE, 60, 459-464.

MAPFumo, L., Grobler, S., Mupangwa, J., Scholtz, M. & Muchenje, V. 2018. Enteric methane output from selected herds of beef cattle raised under extensive arid rangelands. Pastoralism, 8, 15.

MARCONDES, M. I., CHIZZOTTI, M. L., VALADARES FILHO, S. D. C., GIONBELLI, M. P., PAULINO, P. V. R. & PAULINO, M. F. 2010. Energy requirements of zebu beef cattle. Nutrient requirements of Zebu beef cattle, BR. Corte. 2nd ed. Federal University of Vicos, MG, 81–106.

MILNE, A. E., GLENDINING, M. J., BELLAMY, P., MISSELBROOK, T., GILHESPY, S., CASADO, M. R., HULIN, A., VAN OUJEN, M. & WHITMORE, A. P. 2014. Analysis of uncertainties in the estimates of nitrous oxide and methane emissions in the UK’s greenhouse gas inventory for agriculture. Atmospheric Environment, 82, 94-105.

MITLOEHNER, F. M. & PLACE, S. E. 2011. Clearing the air on livestock and climate change The FAO’s “Livestock’s Long Shadow” shrinks dramatically in new estimates. Hound's Dairyman, 156, 51.

MOHAN, H. K. Greenhouse gas emissions, Global warming and climate change. 15th Chittagong Conference on Mathematical Physics, 2017. Jamial Nazrul Islam Research Centre for Mathematical and Physical sciences (JNIRSMPs), 2017. 3.

MUGANDANI, R., WUTA, M., KARAU, A. & CHIPINDU, B. 2012. Re-classification of agro-ecological regions of Zimbabwe in conformity with climate variability and change. African Crop Science Journal, 20, 361-369.

OPIO, C., GERBER, P., MOTTET, A., FALCUCCI, A., TEMPIO, G., MACLEOD, M., VELLINGA, T., HENDERSON, B. & STEINFELD, H. 2013. Greenhouse gas emissions from ruminant supply chains–A global life cycle assessment, Food and agriculture organization of the United Nations.

OTENYO, S. M. 2015. Greenhouse Gas, Climate Change and Carbon Sequestration: Overview and General Principles. Climate Change Impact on Livestock: Adaptation and Mitigation. Springer.

PARRA, A. S. & MORA-DELGADO, J. 2019. Emission factors estimated from enteric methane of dairy cattle in Andean zone using the IPCC Tier-2 methodology. Agroforestry Systems, 93, 783-791.

PASHAEL, S., RAZMAZAR, V. & MIRSHEKAR, R. 2010. Digestion of a Feedstuff in the Rumen. Journal of Biological Sciences, 10, 573-580.

PEMMAN, J., GYTARSKY, M., HIRAIISHL, T., IRVING, W. & KRUG, T. 2006. IPCC Guidelines for National Greenhouse Gas Inventories: overview. IPCC Guidelines for National Greenhouse Gas Inventories, 1–12.

PETERS, M., RAO, I. M., FISHER, M. J., SUBBARAOA, G. V., MARTENS, S., HERRERO, G., TIEMANN, T. T., AYARZA, M. A. & HYMAN, G. 2012. Tropical forage-based systems to
mitigate greenhouse gas emissions. Centro Internacional de Agricultura Tropical (CIAT).

POPOVA, M., MORGAVI, D. & MARTIN, C. 2013. Methanogens and methanogeness in the rumens and ceca of lambs fed two different high-grain-content diets. Applied and environmental microbiology, 79, 1777-1786.

POWERS, W., AUVERMANN, B., COLE, N. A., GOOCH, C., GRANT, R., HATFIELD, J., HUNT, P., JOHNSON, K., LEYTEM, A. & LIAO, W. 2014. Quantifying greenhouse gas sources and sinks in animal production systems. Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory. Technical Bulletin Number 1939. Citeseer.

RAMSAY, K. 2010. Adaptive traits of Sanga cattle: Their importance in meeting the challenges associated with climate change in the tropics and sub tropics. Advances in Animal Biosciences, 1, 381-382.

REISINGER, A. & CLARK, H. 2018. How much do direct livestock emissions actually contribute to global warming? Global change biology, 24, 1749-1761.

REYNOLDS, L. 2013. Agriculture and livestock remain major sources of greenhouse gas emissions. World Watch Institute.

RIPPLE, W. J., SMITH, P., HABERL, H., MONTZKA, S. A., MCSALPINE, C. & BOUCHER, D. H. 2014. Ruminants, climate change and climate policy. Nature climate change, 4, 2-5.

ROBINSON, D. L., GOOPY, J. P., DONALDSON, A., WOODGATE, R., ODDY, V. & HEGARTY, R. 2014. Sire and liveweight affect feed intake and methane emissions of sheep confined in respiration chambers. Animal, 8, 1935-1944.

SAMSONSTUEN, S., ABY, B. A., CROSSON, P., BEAUCHEMIN, K. A., WETLESEN, M. S., BONESMO, H. & AASS, L. 2020. Variability in greenhouse gas emission intensity of semi-intensive suckler cow beef production systems. Livestock Science, 104091.

SCHOLTZ, M. 2016. Environmental benefits of Afrikaner cow productivity: livestock. Farmer’s Weekly, 2016, 44-46.

SHIBATA, M. & TERADA, F. 2010. Factors affecting methane production and mitigation in ruminants. Animal Science Journal, 81, 2-10.

STEINFELD, H., GERBER, P., WASSENAAR, T., CASTEL, V., ROSALES, M., DE HAAN, C. & SHADOW, L. S. L. 2006. Environmental issues and options. Food and Agriculture Organization, Rome, Italy.

STEINFELD, H. & GERBER, P. 2010. Livestock production and the global environment: Consume less or produce better? Proceedings of the National Academy of Sciences, 107, 18237-18238.

SVINURAI, W., MAPANDA, F., SITHOLE, D., MOYO, E. N., NDIDZANO, K., TSIIGA, A. & ZHAKATA, W. 2018. Enteric methane emissions and their response to agro-ecological and livestock production systems dynamics in Zimbabwe. Science of The Total Environment, 616, 710-719.

TADA, O., MUCHENJE, V. & DZAMA, K. 2013. Preferential traits for breeding Nguni cattle in low-input in-situ conservation production systems. Springerplus, 2, 195.

TAVIRIMIRWA, B., MANZUNGU, E. & NCUBE, S. 2012. The evaluation of dry season nutritive value of dominant and improved grasses in fallows in Chivi district, Zimbabwe. Online J. Anim. Feed Res, 2, 470-474.

TONGWANE, M. I. & MOELETSI, M. E. 2018. A review of greenhouse gas emissions from the agriculture sector in Africa. Agricultural systems, 166, 124-134.

TUBIELLO, F., SALVATORE, M., CÓNDOR GOLEC, R., FERRARA, A., ROSSI, S., BIANCALANI, R., FEDERICI, S., JACOBS, H. & FLAMMINI, A. 2014. Agriculture, forestry and other land use emissions by sources and removals by sinks. Statistics Division, Food and Agriculture Organization, Rome.

TUBIELLO, F., CÓNDOR-GOLEC, R., SALVATORE, M., PIERSANTE, A., FEDERICI, S., FERRARA, A., ROSSI, S., FLAMMINI, A., CARDENAS, P. & BIANCALANI, R. 2015. Estimating greenhouse gas emissions in agriculture: a manual to address data requirements for developing countries. Estimating greenhouse gas emissions in agriculture: a manual to address data requirements for developing countries.

VELAZCO, J., HERD, R. M., COTTLE, D. & HEGARTY, R. 2017. Daily methane emissions and emission intensity of grazing beef cattle genetically divergent for residual feed intake. Animal Production Science, 57, 627-635.

WHEELER, T. & VON BRAUN, J. 2013. Climate change impacts on global food security. Science, 341, 508-513.

WILKES, A., WASSIE, S. E., TADESSE, M., ASSEFA, B., ABU, M., KETEMA, A. & SOLOMON, D. 2020. Inventory of greenhouse gas emissions from cattle, sheep and goats in Ethiopia (1994–2018) calculated using the IPCC Tier 2 approach.

WAN, T., AGNEW, R., GORDON, F. & PORTER, M. 2000. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science, 64, 253-263.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.