Characteristics of biofilms and iron corrosion scales with ground and surface waters in drinking water distribution systems

Xiaoxiao Li a, Haibo Wang a, Chun Hu a,⁎, Min Yang a, Hongying Hu b, Junfeng Niu c

a Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
b School of Environment, Tsinghua University, Beijing 100084, China
c School of Environment, Beijing Normal University, Beijing 100875, China

A R T I C L E I N F O

Article history:
Received 2 May 2014
Accepted 22 October 2014
Available online 28 October 2014

Keywords:
A. Iron
B. XRD
B. SEM
C. Microbiological corrosion

A B S T R A C T

The composition of biofilm bacterial communities and iron corrosion scales were studied in two drinking water distribution systems transporting groundwater (DWDS-GW) and surface water (DWDS-SW). Loose corrosion products were formed containing α-FeOOH in DWDS-GW, while dense crystallized particles were formed in DWDS-SW, including α-FeOOH, Fe3O4 and CaCO3. The biofilms in the two systems had the same bacterial diversity, denitrifying functional genes and 16S rRNA gene copies, but the bacterial communities were very different. It was found that nitrate-reducing bacteria in biofilms that are associated with iron cycling played a large role in the formation of Fe3O4 and corrosion layers. © 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cast iron pipes have been used in drinking water distribution systems (DWDSs) for over 500 years [1]. Corrosion of cast iron pipes is the most common distribution system problem [2–4], and it can cause three distinct but related problems: pipe mass loss, decreasing water capacity, and production of red water at the tap. Corrosion scales in iron pipes interact with finished water with resulting adverse effects on distribution water quality, possibly leading to release of undesirable substances.

In recent years, several serious red water cases have occurred due to switching of source water, such as in Southern California, Tucson, Arizona and Tampa, Florida in the United States [5–7]. In October, 2008, red water appeared in some areas in a city in Northern China soon after 80% of the local source water was replaced with source water from a neighboring province. It was noticed that the areas suffering from red water were historically supplied with local groundwater, but the areas without red water were historically supplied with local surface waters [8]. The Tucson, Arizona and Tampa, Florida red water cases were also caused by source water switches from groundwater to surface water. These phenomena indicated that the structure and morphology of corrosion scales played important roles in changes of distribution water quality from the interaction of corrosion scales with finished water. It was reported that thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater [8]. Unstable and less protective corrosion scale is one of the main factors causing red water when the quality of water entering a distribution system changes significantly. Therefore, previous studies of iron pipe corrosion have focused on pipe degradation, corrosion scale formation, and iron release. A large number of factors were examined for their influence on iron pipe corrosion parameters, including water quality and composition, flow conditions, biological activity, and corrosion inhibitors [9–11]. In particular, some contradictory results have appeared on the effects of chloride and sulfate on iron corrosion [1,12,13], so the Larson–Skold Index does not provide an effective means of controlling iron corrosion, and biofilms may be used as an alternative method to combat corrosion [14].

Microbes perform oxidation and reduction reactions with iron to greatly affect the stability of minerals in the environment and are thought to play an important role in iron transformation [15,16]. Microbiologically influenced corrosion (MIC) affects diverse processes in DWDSs. Some theories about possible mechanisms of MIC exist, with the process depending on both the type of microorganisms involved and the environmental conditions experienced. The existing literatures on MIC are somewhat complex and confusing because bacterial activity at metal surfaces has been shown to both increase and in some cases reduce corrosion rates [17,18]. It is estimated that approximately 20% of annual damage due to corrosion in metals results from microbial activities, of which a
significant part is due to aerobic corrosion influenced by iron-oxidizing bacteria (IOB) [19]. In addition, anaerobes such as sulfate-reducing (SRB) and iron-reducing bacteria (IRB) were reported to promote corrosion [20,21], while IRB exhibited a protective effect in other studies [22]. Recently, Xu et al. [23] found that a nitrate reducer was more corrosive than typical SRB by pitting data under strict anaerobic conditions. On the other hand, the nitrate-dependent Fe(II) oxidation from nitrate-reducing bacteria (NRB) metabolism has the potential to contribute to a dynamic iron redox cycle in freshwater sediments [16], which has been proven inhibiting iron corrosion [24]. Additionally, more and more studies have begun to show protective effects against corrosion by some bacterial biofilms on metal. Biofilms comprising iron-respiring bacteria, such as \textit{Bacillus infernus}, \textit{Desulfovibrio profundi}, and \textit{Geothrix fermentans}, may reduce rather than accelerate the corrosion rate of steel [14]. Recent progress in corrosion inhibition using beneficial bacterial biofilms (BBB) has been reviewed [25]. Biofilm communities on corrosion scales are heterogeneous in DWDSs, so their effects on corrosion predominantly depend on the environmental characteristics of the metal/biofilm/medium interface.

In this present study, groundwater (GW) and surface water (SW) were selected to investigate the effects of water-bacterial community composition of biofilms and corrosion of cast iron pipes in DWDSs. Corrosion behavior and corrosion scales were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analysis. Quantitative real-time PCR (qPCR) was used to monitor changes in the microbial abundances of biofilms inside corrosion scales according to specific groups: total bacteria based on the 16S rRNA gene and denitrifiers based on the functional genes nosZ, nirK and nirS. Most probable number enumerations of NRB, IRB and nitrate-dependent Fe(II)-oxidizing microorganisms were detected under different conditions for different corrosion scale biofilms. Pyrosequencing was used to monitor changes in diversity in the microbial community of biofilms, including corrosion-related bacteria. The relationship between corrosion and biofilms is discussed.

2. Materials and methods

2.1. Source water

This study focused on two principal water sources, groundwater (GW) and surface water (SW), in Northern China. The GW source is untreated groundwater prior to contact tank chlorination. The tested SW was treated by chemical precipitation and flocculation, settling, sand filtration, and biologically activated carbon filtration (prior to entering the chlorine contact tanks) in a drinking water treatment plant.

2.2. Pilot pipe distribution systems

Two pilot distribution systems were assembled with new cast iron pipe materials to transport GW and SW. The length of each line was approximately 50 cm. Pipe diameters were 10 cm. The elemental compositions (wt.%) of the cast iron pipe were C 3.21%, O 1.63%, Al 1.1%, Si 1.85%, and Fe 92.21%. The pilot systems were placed with fresh water at 2 d intervals same as the tested pilot systems with a two-day hydraulic retention time. The weight loss method was utilized to determine the corrosion rate [24].

2.3. Weight loss

To determine the corrosion rate in DWDSs, cast iron coupons, 80 × 15 × 5 mm, were immersed in covered 250 mL glass bottles filled with each of GW and SW containing chlorine disinfection, respectively. The bottles were kept in dark and triplicates were measured monthly. The elemental compositions (wt.%) of the iron coupons were C 19.08%, O 6.09%, Ca 0.58%, P 0.65%, S 1.60%, Fe 65%, Cu 1.98%, Mn 0.92%, Zn 2.04%. The water was displaced with fresh water at 2 d intervals same as the tested pilot systems with a two-day hydraulic retention time. The weight loss method was utilized to determine the corrosion rate [24].

2.4. Physicochemical analysis

Water quality parameters, such as pH, alkalinity and chlorine concentration, were analyzed according to standard methods [26]. Chloride (Cl−), sulfate (SO4 2−) and nitrate (NO3−) were analyzed by ion chromatography (DIONEX ICS-2000). Dissolved oxygen (DO) was monitored with an Orion 4 Star meter (Thermo, USA). The Larson-Skold Index (LI) was calculated using the concentration of chlorides, sulfates and bicarbonates [27]:

\[LI = \frac{[\text{Cl}^-]}{[\text{HCO}_3^-]} + 2\frac{[\text{SO}_4^{2-}]}{[\text{HCO}_3^-]} \]

The corrosion scales were measured by an X-ray powder diffractometer (X’Pert PRO MD, PANalytical, Almelo, The Netherlands) and photographed using scanning electron microscopy (SEM) (S-3000N, Hitachi, Japan). Nitrogen adsorption/desorption experiments were carried out on various samples using a Micromeritics ASAP 2020 analyser (Micromeritics ASAP 2020, USA).

2.5. Sampling and extraction of total DNA from water and biofilms

For bulk water samples, bacteria from 3 L of each water sample were harvested by membrane filtration with 0.22 μm Millipore GF T filters and then transferred to sterile tubes for isolation [28]. For corrosion scales with biofilms, samples were collected with a sterile metal spatula scraping approximately 3 cm2 surface area from 6 different locations on each pipe [29]. Then, the samples from the same pipe were mixed and lyophilized for further characterization.

DNA was extracted in triplicate samples with the Fast DNA SPIN Kit for soil (MP Biomedicals, Solon, OH, USA) according to the manufacturer’s instructions [30]. DNA quality was checked on an agarose gel, and concentrations were measured with a NanoDrop (ND-1000, NanoDrop, USA). All DNA samples were stored at −80 °C for future use.

2.6. Quantitative PCR assay

To quantify all bacteria and denitrifiers in water and biofilm samples, quantitative PCR (qPCR) targeting 16S rRNA, nirK, nirS and nosZ genes was performed. For all bacteria, primer pairs 1369F and 1492R were determined [24,25]; for denitrifiers, nirK 876 and nirK 1040, R3cd and cd3af, and nosZ-F and 1622R were used (Table 1) [32–34]. qPCR experiments were carried out with the Applied Biosystems 7300 qPCR system using premix Ex Taq™ or SYBR® premix Ex Taq™ (TaKaRa) in a 25 μL reaction volume. The annealing temperatures used were 60 °C for universal primer pairs, 55 °C for nirK 876/nirK 1040, 53 °C for R3cd/cd3af and 58 °C for nosZ-F/1622R, which were determined by gradient PCR to be the most suitable for the present samples.
2.7 Pyrosequencing analysis

DNA was amplified with bacteria-specific forward primer 341F (5'-Fusion A-Barcode-CA-linker-CTTACGGGAGGCAGCAG-3') and reverse primer 1078R (5'-Fusion B-TC-linker-ACGAGCTGAC-GACARCCATG-3') and used for qPCR analysis.

Designation	Sequence (5’-3’)	Target
1360F	CGGTGATAGGTCGTTCGCCG	All bacteria 16S rRNA
1492R	TACGGTATCGATATTCCTGAGT	Denitrifying bacteria nirK
Probe TM1389F	TACGGTATCGATATTCCTGAGT	Denitrifying bacteria nirK
nirK 870	ATYGGCGGACGYYGCGCA	Denitrifying bacteria nirS
nirK 1047	GCCTGATACGCTTGTTCGGT	Denitrifying bacteria nosZ
cd68F	AACGGAAGGACAGGAGG	Denitrifying bacteria nosZ
R3cd	GASTTCGGRTGSGTCTTSAYGAA	Denitrifying bacteria nosZ
nosZ-F	CGYTTGTCMTGACAGGACCCAG	Denitrifying bacteria nosZ
1622R	CGSACCTTCTGTCCTSGYGGG	Denitrifying bacteria nosZ

2.8 Most probable number (MPN) enumerations

In the all MPN experiments, for corrosion scales with biofilms, samples were scraped with a sterile metal spatula on the surface of each pipe. Upon return to laboratory, corrosion scales were homogenized and placed in an N2 atmosphere at room temperature. The abundance of culturable acetate-oxidizing NRB, acetate-oxidizing IRB and nitrate-dependent Fe(II)-oxidizing microorganisms of biofilms inside corrosion scales were estimated using a three-tube MPN technique [16]. Triplicate pressure tubes containing sterile, anaerobic (N2) AGW medium (10 mM PIPES, 2 mM NaHCO3, 5 mM NH4Cl, 0.5 mM KH2PO4, pH 6.8) were inoculated with serially diluted homogenized corrosion scales. For enumeration of acetate-oxidizing NRB, tubes were amended with 5 mM NaNO3 and 10 mM Na-acetate. Acetate-oxidizing IRB were enumerated in medium amended with 10 mM synthetic hydrous ferric oxide, 10 mM Na-acetate and 2 mM FeCl2 (as a reducing agent). The medium for enumeration of nitrate-dependent Fe(II)-oxidizing bacteria was amended with 0.5 mM Na-acetate, 5 mM NO3 and 10 mM FeCl2. Pressure tubes were incubated statically in the dark at 30 °C for 10 weeks. Positive results for acetate-oxidizing nitrate reducers were determined checking for depletion of NO3 (to <1 mM). Visual assessment of medium blackening and formation of reddish-brown precipitates was used to identify positive results for Fe(III) reducers and nitrate-dependent Fe(II) oxidizers, respectively. Hydrous ferric oxide was synthesized according to the described method [35].

2.9 Statistical analysis

Student's paired t-tests were performed on experimental data using SPSS software (version 16.0), and p < 0.05 was considered statistically significant.

3 Results

3.1 Water quality of water sources and effluents

Significant differences between the water quality of groundwater (GW) and surface water (SW) are listed in Table 2. In GW, the concentration of nitrate-N was 5.04–7.89 mg L−1, Li was 0.22–0.31; and these values were 0.87–2.17 mg L−1, 0.60–1.05 in SW, respectively. In the effluents from DWDSs, DO decreased (p < 0.05) to approximately 1 mg L−1. Alkalinity in GW and SW DWDSs decreased to 118 mg L−1 (p < 0.05) and 89 mg L−1 (p < 0.05), respectively; the pH and SO4 did not change significantly, and together with the change in chloride concentration, resulted in an increase in the Li index. The total iron concentration of effluents in DWDS-GW was 1.78 mg L−1 at 7 d, and increased to 2.32 mg L−1 at 11 d. Then it showed a little fluctuation at around 2 mg L−1 from 11 d to 50 d. After that, it gradually decreased to 1.62 mg L−1 at 73 d, but quickly decreased to 0.33 mg L−1 at 91 d, then fluctuated from 0.57 to 0.96 mg L−1 during 101 to 168 d, and increased to approximately 1.09 mg L−1 after 168 d (Fig. 1). In DWDSs transporting SW, the concentration of total iron in effluents fluctuated from 1.05 to 1.92 mg L−1 before 70 d, then decreased to 0.57 at 76 d, but increased to approximately 1.83 mg L−1 after 70 d.

Parameters	GW	GW-effluent	SW	SW-effluent
pH	7.60–8.06	8.20 ± 0.38	7.62–8.10	8.04 ± 0.29
DO (mg L−1)	7.35–7.46	0.95 ± 0.16	7.93–8.27	1.17 ± 0.08
Cl− (mg L−1)	14.13–16.02	31.45 ± 2.80	19.85–22.37	43.06 ± 3.30
SO4− (mg L−1)	21.41–24.85	19.09 ± 1.91	50.22–76.46	53.92 ± 2.30
NO3− (mg L−1)	5.04–7.89	0.87–2.17	0.31	0.22–0.31
Alkalinity (mg L−1)	155–198	118 ± 7	106–138	88 ± 5
Li	0.22–0.31	0.61 ± 0.15	0.60–1.05	1.41 ± 0.17

a Value range.
b Mean ± standard deviation.
c mg CaCO3.

Fig. 1. Total iron concentration in effluents of GW and SW DWDSs with increasing time.
was observed in the 79 d sample, increased with increasing time. These peak was formed from the transformation to N2 this period. The results suggested that most of nitrate was biologically transformed to ammonium. Also the nitrite concentration was below the detection limit during this period, indicating that most of nitrate were not transformed to ammonium.

91 d, and stabilized at approximately 1.03 mg L\(^{-1}\) except the point at 210 d (Fig. 1). Furthermore, the total iron concentration of effluents in the two DWDSs showed no significant difference (\(p = 0.68\)). However, for 31 d and 65 d, the average weight loss values of the corrosion coupons were about 0.15, and 0.0646 mm/year in GW DWDSs, while that ones were about 0.156 and 0.142 mm/year (Table 3) in SW DWDSs, indicating that iron release in two systems was not agreed with corrosion rate of iron.

In addition, the two DWDSs exhibit greatly changes of NO\(_3\)–N with increasing time (Fig. 2). In GW DWDSs, NO\(_3\)–N removal greatly increased about 3.53 mg L\(^{-1}\) before 64 d, then gradually increased to 5.55 mg L\(^{-1}\) at 135 d, and tended to a stable value of 4.28 mg L\(^{-1}\), while the concentration of NH\(_4\)–N in effluent increased to a maximum about 0.78 mg L\(^{-1}\) throughout experimental time, indicating that most of nitrate were not transformed to ammonium. Also the nitrite concentration was below the detection limit during this period. The results suggested that most of nitrate was biologically denitrified to N\(_2\), not converted to ammonium by the reduction of zero-valent iron [36,37]. The same phenomena occurred in SW DWDSs, where 1 mg L\(^{-1}\) of NO\(_3\)–N was removed after 130 d.

3.2. Characterization of corrosion scales on cast iron pipes

Fig. 3 shows the XRD patterns of corrosion scales at different time points from DWDSs transporting GW and SW. In the GW DWDSs, the predominant crystalline corrosion product was goethite (\(\alpha\)-FeOOH) with peak intensities increasing with increasing exposure. In addition, CaCO\(_3\) was observed in the 79 d sample, and then disappeared in other samples. In the SW DWDSs, the main crystalline compounds were \(\alpha\)-FeOOH and \(\gamma\)-FeOOH in the sample after a 79 d exposure. The peak intensity of \(\alpha\)-FeOOH increased up to 220 d and then decreased from 220 to 550 d, whereas the proportion of Fe\(_3\)O\(_4\) increased with increasing time. The intensity of \(\gamma\)-FeOOH peaks decreased from 79 to 220 d, and then increased with time, indicating that \(\gamma\)-FeOOH was unstable [9]. The results suggested that Fe\(_3\)O\(_4\) was formed from the transformation of \(\alpha\)-FeOOH and \(\gamma\)-FeOOH. CaCO\(_3\) appeared in samples from the 550 d exposure. Figs. 4 and 5 show representative SEM micrographs of the corrosion scales on the GW and SW DWDSs at different time points. The GW DWDSs exhibited loosely amorphous corrosion scales before 137 d, and filaments of \(\alpha\)-FeOOH had formed by 220 d. In the SW DWDSs, well-crystallized particles were observed at 79 d, indicating the formation of a dense oxide layer, and more densely crystallized particles appeared at 137 and 220 d, indicating stable protective layer formation. The BET surface areas of the corrosion scales were approximately 85.5 and 18.8 m\(^2\) g\(^{-1}\) from GW and SW DWDSs, respectively. This result confirmed that loose corrosion layers formed on the pipe transporting GW, while a compact corrosion layer formed on the pipe transporting SW, which agreed with the description from Yang et al. [8]. Furthermore, as a reference, in sanitized SW with chlorination, the corrosion scales were characterized by XRD and SEM in order to illustrate the impact of water chemical parameters and microorganisms on the structure of iron corrosion products. The main compounds were \(\alpha\)-FeOOH and CaCO\(_3\) (Fig. 6). These peak intensities increased with increasing time. There was no Fe\(_3\)O\(_4\) formation in corrosion scales through the entire experimental period in sanitized water, and the corrosion products exhibited flower-like crystals and porous structures (Fig. 7), and its BET surface area was approximately 50.8 m\(^2\) g\(^{-1}\).
3.3. Denitrifying functional genes and most probable number enumerations

The Fe(II) oxidation and Fe(III) reduction were induced by respiration of some denitrifying bacteria [16], which may have affected the formation of corrosion products. Therefore, denitrifying functional genes were analyzed quantitatively by qPCR. Fig. 8 shows nosZ, nirS, nirK, and 16S rRNA gene copy numbers at different stages for the two DWDSs. In the source water and effluents from DWDSs, the 16S rRNA gene copy number was approximately 1.23 × 10^{11} copies g^{-1} in the biofilm (Fig. 8C). For source SW, the 16S rRNA gene copy number was 2.24 × 10^{7} copies mL^{-1}, and it was approximately 6.30 × 10^{6} copies mL^{-1} in SW effluent (Fig. 8B), but it was 1.05 × 10^{11} copies g^{-1} in the corrosion scale biofilm (Fig. 8C). The sum of nosZ, nirS and nirK increased from 1.48 × 10^{5} copies mL^{-1} in source GW to 3.65 × 10^{6} copies mL^{-1} in GW effluent, and it was 3.79 × 10^{9} copies g^{-1} in the GW corrosion scale biofilm. The sum of nosZ, nirS and nirK increased from 1.42 × 10^{5} copies mL^{-1} in source SW to 3.38 × 10^{6} copies mL^{-1} in SW effluent, and it was 3.47 × 10^{9} copies g^{-1} in the SW corrosion scale biofilm. Furthermore, in the biofilms within corrosion scales, MPN for NRB, IRB and nitrate-dependent Fe(II)-oxidizing bacteria were determined under different culture conditions. For GW and SW DWDSs, in the presence of NO_{3} and acetate, culturable NRB were...
detected approximately 2.7×10^7 and 7.5×10^6 cells g$^{-1}$, and in the presence of Fe(III) and acetate, the abundances of culturable IRB were approximately 10^7 and 10^7 cells g$^{-1}$, respectively, whereas approximately 10^8 cells g$^{-1}$ and 10^6 cells g$^{-1}$ of culturable (MPN assay) nitrate-dependent Fe(II)-oxidizing microorganisms were detected with Fe(II) and NO$_3^-$ (Table 4). According to the previous work [16,38], biological nitrate-dependent Fe(II) oxidation came from IRB and NRB, and NRB also could reduce Fe(III) at the lower concentration of NO$_3^-$ (<0.5 mM). These results indicated that NRB in DWDSs are able to induce oxidation of Fe(II) or reduction of Fe(III) in the presence or absence of nitrate. Moreover in GW DWDSs, nitrate-dependent Fe(II) oxidation was predominant within corrosion scales, but the reduction of Fe(III) by NRB and IRB were predominant inside corrosion scales in SW DWDSs.

3.4. Bacterial diversity and composition in biofilms and water

Pyrosequencing yielded a total of 51,421 high-quality 16S rRNA gene sequences for all samples. Table 5 shows the diversity indices of bacteria for different samples. The Shannon index was 4.79 and 5.83 for raw GW and SW, respectively, and became 2.62 and 4.19 for the effluents. The results indicated that raw SW had higher bacterial diversity than raw GW, and chlorine disinfection inhibited bacterial activity in the DWDSs. However, the biofilms in both systems had nearly the same Shannon index, indicating the same bacterial diversity within the biofilms.

Table 6 shows a taxonomic breakdown at the class level for GW and SW samples. In raw water, the major classes were Alphaproteobacteria (25.4%), Gammaproteobacteria (23.2%), and Sphingobacteria (20%); Betaproteobacteria (6.6%), and Actinobacteria (3.5%) constituted the other minor classes. In effluent, Alphaproteobacteria became the most abundant class (86.7%), Betaproteobacteria increased to 10.6%, Sphingobacteria decreased to 2.4%, and Gammaproteobacteria and other bacteria disappeared. For biofilm samples from the GW DWDSs at 137 d, the dominant class was Betaproteobacteria (79.4%), and the other minor classes were Alphaproteobacteria (13.1%), Sphingobacteria (5.6%), and Gammaproteobacteria (1.7%); however at 220 d, Betaproteobacteria decreased to 40.2%,
Table 4

Culture conditions	MPN (cells g⁻¹)	95% confidence interval		
	GW DWDS	SW DWDS	GW DWDS	SW DWDS
Acetate + NO₃⁻	2.7 × 10⁶	7.5 × 10⁵	5.7 × 10⁵–1.2 × 10⁶	1.9 × 10⁵–2.1 × 10⁵
Acetate + Fe(III)	5.8 × 10³	4.6 × 10⁴	1.1 × 10⁵–2.3 × 10⁴	1.7 × 10⁵–1.9 × 10⁴
Fe(II) + NO₃⁻	1.6 × 10⁸	1.3 × 10⁶	2.8 × 10⁷–6.6 × 10⁴	2.2 × 10⁷–5.2 × 10⁴

Table 5

Samples	OTUs	Diversity indices	
		Shannon	Simpson
GW	784	4.79	0.0302
GW-220 d	443	2.62	0.03357
BGW-137 d	762	4.15	0.0534
BGW-220 d	620	4.14	0.0719
SW	1286	5.83	0.01
SW-220 d	567	4.19	0.0414
BSW-137 d	317	3.29	0.0944
BSW-220 d	581	4.13	0.0614

GW (groundwater source); GW-220 d (groundwater effluent at 220 d); BGW (corrosion scales of GW DWDS); SW (surface water source); SW-220 d (surface water effluent at 220 d); BSW (corrosion scales of SW DWDS).

Alphaproteobacteria was 12.9%, Sphingobacteria increased to 30.2%, Holophagae (13.4%) and Gemmatimonadetes (2.9%) appeared, and Gammaproteobacteria disappeared. In raw GW, classes Alphaproteobacteria (35.8%), Betaproteobacteria (27%), and Gammaproteobacteria (12.5%) were included. Sphingobacteria was 11.3%, and Actinobacteria was 3.5%. In effluent, the relative abundance of Alphaproteobacteria and Betaproteobacteria increased to 50.4% and 40.7%, respectively, Sphingobacteria decreased to 8.1%, and other bacteria were below 1%. For biofilm samples from the SW DWDS at 137 d, the groups were Alphaproteobacteria (23.1%), Betaproteobacteria (68.8%) and Sphingobacteria (7.8%); however, at 220 d, Alphaproteobacteria decreased slightly to 14.5%, Betaproteobacteria increased to 78.3%, and Sphingobacteria was 7%. None of these classes changed greatly, indicating the stability of the biofilm in the DWDSs transporting SW.

Furthermore, the community structures of these dominant bacteria were compared at the genus level for different samples (Table 7). The compositions of corrosion-related bacteria underwent large changes in bulk water and biofilms on pipes transporting GW and SW. In raw GW, the dominant bacteria were IOB Sediminibacterium [39] (19.2%), with other iron-respiring bacteria and NRB below 0.8%. In effluent, the Sediminibacterium decreased to 2.4%. NRB associated with redox cycling of iron (NRB-Fe) appeared at 5.8%, including Zoogloea [36,40] (2.7%), Aquabacterium [41] (1.54%), Azospira [42] (0.63%), Dechloromonas [16] (0.42%), and Hyphomicrobium [36,43] (0.29%). In addition, the NRB producing siderophore (NRB-S) Sphingomonas [44] (2.6%) appeared. In the biofilm of the GW DWDSs at 137 d, the IOB Sediminibacterium was 5.6%, and NRB-Fe were 26.8%, including Azospira (15.5%), Dechloromonas (5.9%), Acidovorax [45] (3.2%), and Rhodanobacter [46] (1.6%). Bradyrhizobium (8.4%) and Sphingomonas (0.1%) were NRB-S [47]. At 220 d, IOB Sediminibacterium increased to 30.1%. The Geothrix [48] (12.4%) IRB appeared, while NRB-Fe decreased to 20%, including Azospira (9.6%), Dechloromonas (6%), and Zoogloea (3.6%). Bradyrhizobiobium decreased to 4.99%, and Sphingomonas was 0.1%. In raw SW, the IOB Sediminibacterium was 9.5% and IRB Rhodobacter [49] was 1.2%. NRB-S Sphingomonas was 8.4%. In effluent, the IOB Sediminibacterium decreased to 7.5%, and Rhodobacter decreased to 0.28%. NRB-Fe increased to 28.4%, including Zoogloea (13.1%), Azospira (7.1%), Dechloromonas (5.2%), and Hyphomicrobium (2.8%), but Sphingomonas increased to 16.9%. In the biofilm of SW DWDSs at 137 d, Sediminibacterium was 7.8%, and no significant IRB were detected. However, the NRB-Fe comprised 58.7%, mainly including Acidovorax (56.8%) and Rhodopseudomonas [36] (1.5%). Sphingomonas was 6%. At 220 d, NRB-Fe increased to 64.6%, including Azospira (29.9%), Dechloromonas (17.7%), Zoogloea (8.8%), Rhodopseudomonas (8.3%) and Acidovorax (5%). Sediminibacterium was 7%. NRB-S Sphingomonas decreased to below 1%.

4. Discussion

In DWDSs, iron pipe corrosion, chlorination and transformation of nitrate resulted in the large changes in the bacterial communities from water sources to effluents for GW and SW. However, both the effluents and the biofilms exhibited nearly the same bacterial community types in the two systems at 220 d. The composition of the bacterial communities from both water sources had a large influence on the communities of the biofilms, leading to different bacterial community compositions in the two systems. Furthermore, all the biomass in the effluent of the GW DWDSs was greater than in the SW effluent, which was due to bacteria detaching from the loose corrosion layer in the GW DWDSs. However at 220 d, there was almost same biomass inside the corrosion scales for the two systems. Significantly, denitrifying functional gene copy numbers increased with increasing corrosion time in the effluent.
and biofilm inside corrosion scales, and most of NO$_3^-$–N was removed by denitrification in the two DWDSs. The concentration of NO$_3^-$–N (5–7.9 mg L$^{-1}$) in GW was much higher than SW (0.9–2.2 mg L$^{-1}$), leading higher denitrification reaction, inducing higher nitrate-dependent Fe(II) oxidation than SW DW. The MPN enumerations also suggested that nitrate-dependent Fe(II) oxidation occurred predominantly by NRB-Fe and IOB in GW DWDS, whereas the reduction of Fe(III) and the oxidation of Fe(II) occurred via the anaerobic respiration of NRB-Fe in SW DWDSs. These different iron redox processes may affect the re-precipitation of released iron ions, the formation of corrosion products and the characteristics of microorganisms in the two DWDSs. The corrosion scales were thin and loosely bound reddish filaments of α-FeOOH in the DWDS transporting GW while the dominant corrosion-related bacteria were I Ob S edim inibacterium (30.1%), IRB Goethrix (12.4%), and NRB-Fe Azospira (9.6%), Dechloromonas (6%), and Zoogloea (3.6%) within the biofilm. Conversely, the corrosion scales were thick, hard-shell tubercles consisting of Fe$_2$O$_3$ and α-FeOOH, and the main corrosion-related bacteria were Azospira (29.9%), Dechloromonas (17.7%), Zoogloea (8.8%) and Rhodopseudomonas (8.3%) in the DWDSs transporting SW. In the sanitized SW (without biofilm), loose corrosion scales without Fe$_2$O$_3$ were formed, although the water had the same chemical parameters as the SW DWDSs. The results indicated that the biofilm may play a greater role than water chemical parameters in formation of Fe$_2$O$_3$ and the dense oxide layer. Previous works have verified that the reddish filament morphology of α-FeOOH was mainly formed from the microbial oxidation of Fe(II) in a geological environment [50]. Moreover, some studies indicated that anaerobic iron redox cycling could be catalyzed by a single group of Azospira, Dechloromonas and IRB, and favor the formation of Fe$_3$O$_4$ [15,16], causing formation of more compact corrosion scales [8,51]. In addition, nitrate-dependent Fe(II) oxidation has been suggested to have a direct role in the formation of Fe$_3$O$_4$; however, its role was weaker than that of anaerobic iron redox cycling [15]. In the corrosion processes of iron pipes, iron ions were released into distributed water, and can re-precipitate forming corrosion scales [4]. The total iron concentration in bulk water depended on iron corrosion rate, re-precipitation rate and dissolution rate of corrosion scales [52]. In SW DWDSs, the re-precipitation rate of released iron ions was higher than that in GW DWDSs due to anaerobic iron redox cycling, leading to similar total iron concentration in both DWDSs. Formation of Fe$_3$O$_4$ and a dense corrosion layer greatly depended on the composition of the bacterial community in the biofilm inside the corrosion layer and the concentration of nitrate microbial reduction in DWDSs.

5. Conclusions

The results showed that a loose corrosion layer was formed containing reddish filaments of α-FeOOH with a BET surface area of 85.5 m2 g$^{-1}$ in DWDS-GW, but in DWDS-SW, a dense corrosion layer was formed, including crystallized particles of γ-FeOOH, γ-Fe$_2$O$_3$ and CaCO$_3$ with a BET surface area of 18.8 m2 g$^{-1}$. In sanitized SW, α-FeOOH and CaCO$_3$ were formed with a loose and porous morphology with a BET surface area of 50.8 m2 g$^{-1}$. These results indicated that microorganisms played a larger role in the formation of Fe$_3$O$_4$ and the properties of the corrosion layer than water chemical parameters. Both bulk bacteria in the effluent and biofilm inside the iron corrosion products had almost the same bacterial community composition for the two DWDSs with GW and SW. The total biomass, including total microorganisms and denitrifying functional bacteria, in the effluent of the GW DWDSs was much larger than in the SW DWDSs due to the loose corrosion layer in the GW DWDSs. However, bacterial diversity, denitrifying functional genes and 16S rRNA gene copy numbers of biofilms were nearly the same in the two systems after 220 d, but the composition of the bacterial communities was very different due to the effect of the water source. With formation of the corrosion layer, the dominant corrosion-related bacteria were I Ob Sediminibacterium (30.1%), IRB Geothrix (12.4%), and NRB-Fe Azospira, Dechloromonas and Zoogloea within the biofilm in DWDS-GW at 220 d, and NRB-Fe (64.7%) were dominant, including the above NRB-Fe and Rhodopseudomonas, in DWDS-SW. Based on the MPN enumerations and qPCR of denitrifying functional bacteria, the formation of corrosion products was mainly affected by nitrate-dependent Fe(II) oxidation of NRB-Fe and Fe(II) oxidation of I Ob Sediminibacterium in the DWDSs transporting GW, but reduction of Fe(III) and oxidation of Fe(II) occurred from the anaerobic respiration of NRB-Fe in the DWDSs transporting SW.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21125731 and 51221892), the Federal Department of Chinese Water Control and Treatment (No.
References

[1] L.S. McNell, M. Edwards, Iron pipe corrosion in distribution systems, J. Am. Water Works Assoc. 92 (2000) 108–109.

[2] S.A. Irman, J.D. Dietz, G. Mutolo, J.S. Taylor, A.A. Randall, C.D. Cooper, Red water release in drinking water distribution systems, J. Am. Water Works Assoc. 97 (2005) 93–100.

[3] P.S. Hushand, J.R. Boxall, Asset deterioration and discoloration in water distribution systems, Water Res. 45 (2011) 113–124.

[4] T.L. Gerke, J.B. Maynard, M.R. Schock, D.L. Lyle, Physicochemical characterization of five iron tubercules from a single drinking water distribution system: possible new insights on their formation and growth, Corros. Sci. 50 (2008) 2030–2039.

[5] S. Reiber, S. Poulsom, S.A.L. Perry, M. Edwards, S. Patel, D.M. Dodrill, A General Framework for Corrosion Control Based on Utility Experience, AWWA Research Foundation, Denver, CO, 1997.

[6] T. Brodeur, F.S. Davis, R. Florence, M. Kim, M. Craig, J. Gianatasio, D. Sharp, P. T.L. Gerke, J.B. Maynard, M.M. Urrutia, P.F. Churchill, R.K. Kukkadapu, E.E. Roden, Anaerobic iron-oxidizing, nitrate-reducing enrichment culture, Appl. Environ. Microbiol. 75 (2009) 1818–1826.

[7] A. Ashassi-Sorkhabi, M. Moradi-Haghighi, G. Zarrini, R. Javaherdashti, A. Ashassi-Sorkhabi, M. Moradi-Haghighi, G. Zarrini, R. Javaherdashti, K.A. Weber, M.M. Urrutia, J.D. Coates, Microorganisms pumping iron: aerobic microbial iron oxidation and reduction, Nat. Rev. Microbiol. 4 (2006) 572–584.

[8] A. Ashassi-Sorkhabi, M.M. Urrutia, F.P. Churchill, R.K. Kukkadapu, E.E. Roden, Anaerobic reoxy cycling of iron by freshwater sediment microorganisms, Environ. Microbiol. 8 (2006) 100–113.

[9] M.A. Javed, P.R. Stoddart, E.A. Palombo, S.L. McArthur, S.A. Wade, Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron, Water Res. 47 (2013) 5257–5269.

[10] L.K. Herrera, H.A. Videlita, Role of iron-reducing bacteria in corrosion and protection of carbon steel, Int. Biodebiorder. Biodegrad. 63 (2009) 891–905.

[11] K.A. Weber, L.A. Achenbach, J.D. Coates, Microorganisms pumping iron: aerobic microbial iron oxidation and reduction, Nat. Rev. Microbiol. 4 (2006) 572–584.

[12] A. Ashassi-Sorkhabi, M.M. Urrutia, F.P. Churchill, R.K. Kukkadapu, E.E. Roden, Anaerobic reoxy cycling of iron by freshwater sediment microorganisms, Environ. Microbiol. 8 (2006) 100–113.

[13] C.Y. Peng, J.F. Ferguson, G.V. Korshin, Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron, Water Res. 47 (2013) 5257–5269.

[14] C. Pillay, J. Lin, The impact of additional nitrates in mild steel corrosion in a seawater/sediment system, Corros. Sci. 80 (2014) 416–426.

[15] A. Ashassi-Sorkhabi, M. Moradi-Haghighi, G. Zarrini, R. Javaherdashti, Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants, Biodegradation 23 (2012) 69–75.

[16] S.J. Yuan, B. Liang, Y. Zhao, S.O. Pekhonen, Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria, Corros. Sci. 74 (2013) 353–366.

[17] E. Appella-Cabales, E. Martinez-Romero, The corrosion effects of sulfate- and ferric-reducing bacterial consortia on steel, Geomicrobiol. J. 20 (2003) 157–169.

[18] M. Dubiel, C.H. Hsh, C.C. Chies, F. Mansfeld, D.K. Newman, Microbial iron respiration can protect steel from corrosion, Appl. Environ. Microbiol. 68 (2002) 1440–1445.

[19] D. Xu, Y. Li, F. Song, T. Gu, Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate-reducing bacterium Bacillus licheniformis, Corros. Sci. 77 (2013) 385–390.

[20] Y. Zhu, H.B. Wang, XX. Li, C. Hu, M. Yang, J.H. Qu, Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection, Int. Biodeterior. Biodegrad. 69 (2012) 174–181.

[21] R. Zhu, Biofilms: strategies for metal corrosion inhibition employing microorganisms, Appl. Microbiol. Biotechnol. 76 (2007) 1245–1253.

[22] E.D. Lovelock, Dissimilatory iron(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol. 68 (2002) 2294–2299.

[23] D. Lye, Dissimilatory iron(II)- and Mn(IV)-reducing prokaryotes, in: E. Lovelock, D. Lovelock, M. von-resource iron oxidation by the nitrate-reducing bacterium Acidovorax sp. strain BoFeN1, Environ. Sci. Technol. 46 (2011) 1439–1446.

[24] M. Blöthe, E.E. Roden, Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture, Appl. Environ. Microbiol. 75 (2009) 6937–6940.

[25] K. Arif, G. Archana, D.J. Anjana, Engineering heterologous iron siderophore complex utilization in rhizobia: effect on growth of peanut and pigeon pea plants, Appl. Soil Ecol. 53 (2012) 65–73.

[26] P.P. Novick, D.R. Lovelock, Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol. 68 (2002) 2294–2299.

[27] D. Lye, Dissimilatory iron(II)- and Mn(IV)-reducing prokaryotes, in: E. Lovelock, D. Lovelock, M. von-resource iron oxidation by the nitrate-reducing bacterium Acidovorax sp. strain BoFeN1, Environ. Sci. Technol. 46 (2011) 1439–1446.

[28] M. Blöthe, E.E. Roden, Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture, Appl. Environ. Microbiol. 75 (2009) 6937–6940.

[29] P.P. Novick, D.R. Lovelock, Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol. 68 (2002) 2294–2299.

[30] D. Lye, Dissimilatory iron(II)- and Mn(IV)-reducing prokaryotes, in: E. Lovelock, D. Lovelock, M. von-resource iron oxidation by the nitrate-reducing bacterium Acidovorax sp. strain BoFeN1, Environ. Sci. Technol. 46 (2011) 1439–1446.

[31] M. Blöthe, E.E. Roden, Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture, Appl. Environ. Microbiol. 75 (2009) 6937–6940.

[32] P.P. Novick, D.R. Lovelock, Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Environ. Microbiol. 68 (2002) 2294–2299.