2020

Low-temperature sintering and microwave dielectric properties of CaMg1-xLi2xSi2O6 (x = 0-0.3) ceramics

Fangyi HUANG
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

Hua SU
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China Jiangxi Guo Chuang Industrial Park Development Co., Ltd., Ganzhou 341000, China

Yuanxun LI
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China Jiangxi Guo Chuang Industrial Park Development Co., Ltd., Ganzhou 341000, China

Huaiwu ZHANG
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

Xiaoli TANG
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

Follow this and additional works at: https://dc.tsinghuajournals.com/journal-of-advanced-ceramics

Recommended Citation
Fangyi HUANG, Hua SU, Yuanxun LI et al. Low-temperature sintering and microwave dielectric properties of CaMg1-xLi2xSi2O6 (x = 0-0.3) ceramics. Journal of Advanced Ceramics 2020, 9(4): 471-480.

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. It has been accepted for inclusion in Journal of Advanced Ceramics by an authorized editor of Tsinghua University Press: Journals Publishing.
Low-temperature sintering and microwave dielectric properties of CaMg$_{1-x}$Li$_{2x}$Si$_2$O$_6$ ($x = 0–0.3$) ceramics

Fangyi HUANGa, Hua SUa,b,*, Yuanxun LIa,b, Huaiwu ZHANGa, Xiaoli TANGa

aState Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
bJiangxi Guo Chuang Industrial Park Development Co., Ltd., Ganzhou 341000, China

Received: December 24, 2019; Revised: May 22, 2020; Accepted: May 22, 2020 © The Author(s) 2020.

Abstract: In this study, low-temperature fired CaMg$_{1-x}$Li$_{2x}$Si$_2$O$_6$ microwave dielectric ceramics were prepared via the traditional solid-state reaction method. In this process, 0.4 wt% Li$_2$CO$_3$–B$_2$O$_3$–SiO$_2$–CaCO$_3$–Al$_2$O$_3$ (LBSCA) glass was added as a sintering aid. The results showed that ceramics consisted of CaMgSi$_2$O$_6$ as the main phase. The second phases were CaSiO$_3$ always existing and Li$_2$SiO$_3$ occurring at substitution content $x > 0.05$. Li$^+$ substitution effectively lowered sintering temperature due to 0.4 wt% LBSCA and contributed to grain densification, and the most homogeneous morphology could be observed at $x = 0.05$. The effects of relative density, the second phase, and ionic polarizability on dielectric constant (ε_r) were investigated. The quality factor ($Q \times f$) varied with packing fraction that concerned the second phase. Moreover, the temperature coefficient of the resonant frequency (τ_f) was influenced by MgO$_6$ octahedral distortion and bond valence. Excellent dielectric properties of the CaMg$_{1-x}$Li$_{2x}$Si$_2$O$_6$ ceramic was exhibited at $x = 0.05$ with $\varepsilon_r = 7.44$, $Q \times f = 41,017$ GHz ($f = 15.1638$ GHz), and $\tau_f = -59.3$ ppm/°C when sintered at 900 °C. It had a good application prospect in the field of low-temperature co-fired ceramic (LTCC) substrate and devices.

Keywords: low permittivity; low-temperature sintering; crystal structure; microwave dielectric properties

1 Introduction

Microwave dielectric ceramics constitute key materials used in microwave band communication (mainly from 300 MHz to 300 GHz). With the rapid development of information technology, microwave dielectric ceramics with low dielectric constant (ε_r), high quality factor ($Q \times f$) value, and near-zero temperature coefficient of resonant frequency (τ_f) were extensively studied [1]. Besides, low-temperature co-fired ceramics (LTCC) technology facilitates the production and integration of miniature microwave devices. Therefore, it is widely applied in the field of wireless communications [2–7]. In order to co-fire with silver electrodes, the sintering temperature of LTCC materials should be approximately 900 °C or lower, but most microwave dielectric ceramic densification is achieved and good properties are obtained only during high-temperature sintering. Therefore, LTCC with low permittivity and perfect microwave dielectric properties has become a
significant research object. Typical low permittivity microwave dielectric ceramic material systems mainly include Al_2O_3, silicates, tungstate, phosphates, and garnet structure compounds. As examples, the ceramics of ZnAl_2O_4, Li_2TiMO_5 ($\text{M} = \text{Ge, Si}$), LiYGEO_{12}, AgEO_2 ($\text{A} = \text{Mg, Zn}$), Li_3GeO_4 ($\text{A} = \text{Zn, Mg}$), $\text{Ba}_2\text{MGe}_2\text{O}_7$ ($\text{M} = \text{Mg, Zn}$), CaAl_2O_4, $\text{Ba}_{1+x}\text{Sr}_x\text{Si}_2\text{O}_6$, $\text{BaAl}_{2-x}(\text{ZnSi})_x\text{Si}_2\text{O}_6$, and $\text{NaCa}_4\text{V}_5\text{O}_{17}$ have been investigated in recent decades [8–17]. CaSiO_3, Zn_2SiO_4, and Mg_2SiO_4 are three materials mainly studied in the silicate system.

Sun et al. [18] studied the effect of Mg^{2+} substitution of CaSiO_3 on the microwave dielectric properties of CaSiO_3 after which, the ceramic acquired the dielectric properties of $\text{CaMgSi}_2\text{O}_6$ sintered at 1290 °C: $\varepsilon_r = 7.46$, $Q \times f = 59,638$ GHz, and $\tau_f = -46$ ppm/°C. Consequently, a series of studies on $\text{CaMgSi}_2\text{O}_6$ were carried out. According to these studies, many investigations concentrated on the ion substitution for Mg ions to $\text{CaMgSi}_2\text{O}_6$ ceramics were conducted to enhance the microwave dielectric properties, indifferently to sintering temperature decrease [19,20]. Furthermore, to meet the requirements of LTCC applications, the sintering temperature decrease [19,20]. Moreover, to microwave dielectric properties, indifferently to sintering temperature could be attributed to the stoichiometric formula. The mixed raw powders were milled with zirconia balls and distilled water in nylon containers for 12 h. The slurries were subsequently dried in air for 24 h and calcinated at 900 °C for 3 h. Following, the pre-sintered powders were re-milled with 0.4 wt% LBSCA glass for 6 h and dried for 24 h. The LBSCA glass was obtained through the quenching method. Following weighing at the molar ratio of $\text{Li}_2\text{CO}_3:\text{B}_2\text{O}_3:\text{SiO}_2:\text{CaCO}_3:\text{Al}_2\text{O}_3=52:31.06:11.99: 2.25:2.25$, the mixed analytical grade raw powder was ball-milled with ethanol for 48 h, dried at 40 °C or lower, and melted in alumina crucible at 1000 °C for 2 h. Next, the alumina crucible was instantly removed from the furnace, and the molten glass was quenched in cold distilled water [29]. The crushed glass powder was added to the pre-sintered powders. The second-milled powder with LBSCA glass was mixed with 10 wt% PVA to obtain granulations that were squashed into cylinders of 12 mm in diameter and 6 mm in thickness. Sintering of these cylinders was achieved at temperatures of 875, 900, and 925 °C.

In order to obtain the microwave dielectric properties of the ceramics, the network analyzer based on Hakki–Coleman resonator method was used, while the τ_f value could be calculated according to Eq. (1). The microstructure images of the polished and thermally etched surfaces were observed via scanning electron microscopy (SEM: Versa3D; FEI, USA). Moreover, the bulk density was calculated via the Archimedes principle. Regarding the crystal phase compositions of the $\text{CaMg}_{1-x}\text{Li}_x\text{Si}_2\text{O}_6$ ceramics, they were identified via $\text{X}-\text{ray diffraction}$ (XRD: MinFlex 600; Rigaku, Japan), while crystal structure refinement could be obtained via the XRD diffraction data input to Fullprof software. Refined results were applied to draw the crystal structure charts with VESTA software. The τ_f (ppm/°C) values were calculated according to the following equation:

$$\tau_f = \frac{f}{C_0} \times \frac{1}{\varepsilon_r}$$

where f is the resonant frequency, C_0 is the free space capacitance, and ε_r is the relative permittivity. The contribution of Li^+ substitution to the sintering temperature could be attributed to the vacancies caused by the unequal substitution, and similar phenomena could be seen in Al^{3+} substitution for Mg^{2+} and Si^{4+} [22], and Cr^{3+} substitution for Mg^{2+} [20]. Furthermore, $\text{Li}_2\text{CO}_3: \text{B}_2\text{O}_3: \text{SiO}_2: \text{CaCO}_3: \text{Al}_2\text{O}_3$ (LBSCA) glass has been reported to effectively reduce the sintering temperature of ceramics [6,29]. In the present study, the effects of Li^- substitution for Mg^{2+} on crystal structure and microwave dielectric properties of $\text{CaMg}_{1-x}\text{Li}_x\text{Si}_2\text{O}_6$ ($x = 0–0.3$) ceramics, with 0.4 wt% LBSCA glass as a sintering aid, were investigated.
\[\tau_f = \frac{f_T - f_0}{f_0 (T - T_0)} \times 10^6 \]
where \(f_T \) and \(f_0 \) are the resonant frequencies at \(T (85 \, ^\circ \text{C}) \) and \(T_0 (25 \, ^\circ \text{C}) \), respectively.

3 Results and discussion

The phase composition was confirmed through XRD patterns, as presented in Fig. 1(a), when the CaMg\(_{1-x}\)Li\(_x\)Si\(_2\)O\(_6\) ceramics were sintered at 900 °C. It could be observed that the main phase CaMg\(_{1-x}\)Si\(_2\)O\(_6\) (PDF#11-0654) and the second phase CaSiO\(_3\) (PDF#27-1064) always existed indifferently to \(x \) (0–0.3) variation. When \(x \geq 0.1 \), another second phase, Li\(_2\)SiO\(_3\) (PDF#29-0829) appeared. The unexpected phase CaSiO\(_3\) of wollastonite structure was generated through the following reaction (Eq. (2)), due to low calcination temperature (900 °C) and the same sintering temperature. This signified that the raw materials had not completely reacted at a calcination temperature of 900 °C. Besides, the formation of Li\(_2\)SiO\(_3\) was due to the reaction (Eq. (3)) of SiO\(_2\) and Li\(_2\)CO\(_3\) within the raw powder. From these results, it could be initially determined that lower than 0.2 solid solubility of Li\(^+\) occurred in the lattice of CaMgSi\(_2\)O\(_6\) phase. The presence of three crystal phases would definitely affect the microwave dielectric properties of the ceramics. Figure 1(b) shows the amplification of diffraction peaks (2 2 1) and (3 1 0). The diffraction peaks shifted nonlinearly with the doping amount, which had a close relationship with the unit cell parameters.

\[
\text{CaCO}_3 + \text{SiO}_2 \rightarrow \text{CaSiO}_3 + \text{CO}_2 \uparrow \quad (2)
\]

\[
\text{Li}_2\text{CO}_3 + \text{SiO}_2 \rightarrow \text{Li}_2\text{SiO}_3 + \text{CO}_2 \uparrow \quad (3)
\]

In order to further analyze the relationship between microstructure, phase composition, and microwave dielectric properties of the ceramics, XRD data of the CaMg\(_{1-x}\)Li\(_x\)Si\(_2\)O\(_6\) samples sintered at 900 °C were refined with the Fullprof software. The theoretical models were monoclinic CaMgSi\(_2\)O\(_6\) (\(a = 9.7397 \, \text{Å}, b = 8.9174 \, \text{Å}, \) and \(c = 5.2503 \, \text{Å} \)), triclinic CaSiO\(_3\) (\(a = 7.9400 \, \text{Å}, b = 7.3200 \, \text{Å}, \) and \(c = 7.0700 \, \text{Å} \)), and orthorhombic Li\(_2\)SiO\(_3\) (\(a = 9.3600 \, \text{Å}, b = 5.3950 \, \text{Å}, \) and \(c = 4.6750 \, \text{Å} \)). The refined plots of XRD patterns are exhibited in Figs. 2(a)–2(g) (0 ≤ \(x \) ≤ 0.3), which indicated that the calculated patterns (\(Y_{\text{cal}} \)) fitted well with the observed patterns (\(Y_{\text{obs}} \)). The reliability factors (\(R_{\text{wp}}, R_{\text{ap}}, R_{\text{exp}}, \) and \(\chi^2 \) (> 0)) are the profile factor, weighted profile factor, expected weighted profile factor, and reduced chi-square, respectively) in Table 1 could also help explain that structural information, such as lattice parameters of CaMgSi\(_2\)O\(_6\) phase summarized from the refinement results, was credible. Figure 3 and Table 1 demonstrate that the weight fraction of CaSiO\(_3\), the lattice parameters (especially \(a \) and \(c \)), and the unit cell volume (\(V \)) shared the same trend as \(x \) increased. The fact proved that the content of Li\(^+\) substitution, as well as the CaSiO\(_3\) phase, influenced the lattice structure, which eventually affected the microwave dielectric properties. However, the diffraction peaks shifted and the unit cell volume changed inconsistently, even in the opposite trend. Besides, the refinement results of XRD data could be applied in crystal structure drawings of the three phases of the CaMg\(_{1-x}\)Li\(_x\)Si\(_2\)O\(_6\) ceramics with VESTA software, as presented in Figs. 4(a)–4(c). The performance of the synthesized ceramics would be affected by the three different structures synergistically and these would be discussed further. Moreover, the diffraction peak intensities (Fig. 2) and the content of CaMgSi\(_2\)O\(_6\) phase (Fig. 3) demonstrated the same tendency when Li\(^+\) substitution content increased. The microwave dielectric properties influenced by crystal structure features and the second phase could be investigated via \(V \), bond valence, oxygen octahedron distortion calculated from bond length, and the mixture rules.

Figures 5(a)–5(g) present the morphologies of the CaMg\(_{1-x}\)Li\(_x\)Si\(_2\)O\(_6\) ceramic samples sintered at 900 °C. When \(x = 0 \), the component was porous and the grain size was small, due to insufficiently high sintering temperature. Minor changes existed from Figs. 5(b) to 5(g), i.e., \(x \) value was in the interval of 0.05–0.3, considering the porosity and grain size. While when \(x = 0.05 \), the ceramic demonstrated good homogeneity in relative terms. In contrast, it was presented that the largest bulk density arises at \(x = 0.1 \) in the latter Fig. 6(b), which corresponded well with the SEM images. The enhancement of bulk density could be attributed to
Table 1 Lattice parameters and reliability factors of the CaMg$_{1-x}$Li$_2$xSi$_2$O$_6$ ($x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3$) samples sintered at 900 °C

x (mol)	0	0.05	0.1	0.15	0.2	0.25	0.3
a (Å)	9.74637	9.73884	9.74091	9.73582	9.74028	9.7464	9.75047
b (Å)	8.93908	8.94310	8.94625	8.94136	8.94578	8.94955	8.95045
c (Å)	5.25052	5.24970	5.25083	5.24769	5.25003	5.25222	5.25402
V (Å3)	440.02	439.698	440.005	439.303	439.925	440.544	440.951
R_p (%)	9.00	7.86	7.97	9.01	8.19	9.37	9.44
R_{wp} (%)	10.4	8.54	8.58	10	9.04	10.5	10.6
R_{exp} (%)	9.08	8.77	9.25	8.9	9.04	8.76	9.01
χ^2	1.317	0.9481	0.8611	1.273	1.001	1.425	1.384

Fig. 2 Structural refinement patterns of the CaMg$_{1-x}$Li$_2$xSi$_2$O$_6$ samples sintered at 900 °C: (a) $x = 0$, (b) $x = 0.05$, (c) $x = 0.1$, (d) $x = 0.15$, (e) $x = 0.2$, (f) $x = 0.25$, and (g) $x = 0.3$.

O vacancies due to Eq. (4):

$$\text{Li}_2\text{CO}_3 + \text{CaMgSi}_2\text{O}_6 \rightarrow 2\text{Li}^+\text{Mg}^2+\text{V}_\text{O}^- + \text{CO}_2 \uparrow \ (4)$$

The generation of vacancy defects was conducive to ion diffusion and promoted the sintering [30]. However, the grain size distribution became gradually uneven as x value increased, accompanied with the occurrence of blurred grain boundaries. This could be originated from the portion increase of the second phases and the cell volume of CaMgSi$_2$O$_6$ main phase. The appearance of pores might be due to the Li$^+$ volatilization [28]. Undoubtedly, Li$^+$ substitution could contribute to sintering temperature reduction and densification improvement of the CaMg$_{1-x}$Li$_2$xSi$_2$O$_6$ ceramics, which would lead to significant influences on microwave dielectric properties.

The $Q \times f$ values of the samples are presented in Fig. 7(a). Regardless of sintering temperatures, $Q \times f$...
values reached the optimal values at $x = 0.05$, where the main phases occupied the dominant positions. As known, the quality factor is primarily determined by the structure and composition of the ceramic material itself. The loss due to crystal structure characteristics constitutes an intrinsic loss, while the losses caused by non-integrity, such as the second phase, impurities, pores, cracks, and grain boundaries are called extrinsic losses [31]. In this study, no pure CaMgSi$_2$O$_6$ phase existed in the samples, and the highest weight fraction (Fig. 3) and peak intensity (Fig. 2) of CaMgSi$_2$O$_6$ were reached at $x = 0.05$. Consequently, the $Q \times f$ value was severely affected by both the second phase and the crystallinity simultaneously. Moreover, the packing fraction is an
Fig. 6 (a) Dielectric constant of the CaMg$_{1-x}$Li$_x$Si$_2$O$_6$ ($x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3$) samples sintered under different temperatures; (b) the dielectric constant, bulk density, and relative density, and (c) the dielectric constant and observed ionic polarizability of the CaMg$_{1-x}$Li$_x$Si$_2$O$_6$ ($x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3$) samples sintered at 900 °C.

Fig. 7 (a) Quality factor of the CaMg$_{1-x}$Li$_x$Si$_2$O$_6$ ($x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3$) samples sintered under different temperatures; (b) the packing fraction and the theoretical quality factor of the CaMg$_{1-x}$Li$_x$Si$_2$O$_6$ ($x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3$) samples sintered at 900 °C.

intrinsic loss and is closely related to lattice vibration. The packing fraction of crystal was determined by the number of formula units per cell unit (Z), V, the volume of atom in the cell, as described in Eq. (5) [32]:

$$\text{Packing fraction} (\%) = \frac{\text{Volume of atoms in the cell}}{V} \times Z$$ \hspace{1cm} (5)

It could be observed that the packing fraction is inversely proportional to V. Figures 3 and 7(a) presented that V and the $Q \times f$ value of the samples sintered at 900 °C were in the opposite trend for $0 \leq x \leq 0.1$ and $0.15 \leq x \leq 0.3$, whereas $Q \times f$ values varied with the packing fraction combining Figs. 7(a) with 7(b). In particular, the packing fraction depicted in Fig. 7(b) was the sum of the products of the packing fraction of each phase and its volume fraction, implying that packing fraction here took the second phase into account. Therefore, it was explained again that the impact of the second phase on the $Q \times f$ value was high. The $(Q \times f)_{\text{theo}}$ values calculated from the mixture rule [33]:

$$(Q \times f)^{-1} = \sum \frac{V'_i}{(Q \times f)_i}$$ \hspace{1cm} (6)

where V'_i and $(Q \times f)_i$ are the volume fraction and $Q \times f$ of each phase, respectively (the $Q \times f$ values of CaSiO$_3$ and Li$_2$SiO$_3$ were 25,398 GHz [34] and 9849 GHz [35], respectively), were in the same trend as the measured ones when combining Figs. 7(a) and 7(b). And the measured values were smaller than those of the theoretical ones, confirming the effect of the second phase on the $Q \times f$ value. Moreover, the effect of relative density on $Q \times f$ value could be ignored when $0.05 \leq x \leq 0.3$. The relative density values of the ceramics sintered at 900 °C were above 94%; the highest $Q \times f$ value did not occur at the largest density. Therefore, it could be easily deduced that the intrinsic loss had an equal impact on the $Q \times f$ value to extrinsic loss, and moderate substitution content of Li$^+$ could decrease the sintering temperature not at the cost of sacrificing the quality factor.

Figure 6(a) presents the variations in dielectric constant with x value at three different sintering temperatures: 875, 900, and 925 °C. At any sintering temperature in the experiment, the maximum ε_r was obtained at $x = 0.1$. In general, ε_r is related to relative density, the second phase, and ionic polarizability. Figure 6(b) presents the relationship between ε_r, relative density, and bulk density of samples sintered at 900 °C. The relative density (ρ) was calculated
through Eq. (7). The theoretical density (ρ_{theo}) was decided via Eq. (8) [16] in the multiphase system.

$$\rho = \frac{\rho_{\text{bulk}}}{\rho_{\text{theo}}}$$ (7)

$$\rho_{\text{theo}} = \frac{W_1 + W_2 + W_3 + W_4}{W_1 / \rho_1 + W_2 / \rho_2 + W_3 / \rho_3 + W_4 / \rho_4}$$ (8)

where ρ_{bulk} represents the bulk density; $\rho_1, \rho_2, \rho_3, \rho_4, W_1, W_2, W_3,$ and W_4 represent the theoretical density and weight fraction of CaMg$_2$Si$_2$O$_6$ phase, CaSiO$_3$ phase, Li$_2$SiO$_3$ phase, and LBSCA glass, respectively; for LBSCA glass, $\rho_A = 2.36$ g/cm3 [29]. The microwave dielectric constants of CaMg$_1$-Li$_2$Si$_2$O$_6$ samples were consistent with the trends of ρ. Meanwhile, the influence of porosity on ε_r (ε_{rc}) could be obtained according to Eq. (9):

$$\varepsilon_{\text{mea}} = \varepsilon_{\text{rc}} \left[1 - \frac{3p(\varepsilon_{\text{rc}} - 1)}{2\varepsilon_{\text{rc}} + 1}\right]$$ (9)

where p represents porosity that is opposite to the relative density and ε_{rc} is the dielectric constant corrected by the porosity. The results are listed in Table 2. When combined with the relative density, it was indicated that ε_r was severely affected by ρ and the porosity as Li$^+$ substitution content increased. Moreover, the observed and theoretical ionic polarizability, α_{obs} and α_{theo}, could be calculated through Clausius–Mosotti equation: Eqs. (10) and (11), which was based on the oxide additivity rule [36], and ionic polarizabilities of cations and oxygen were reported by Shannon [37]. The error between α_{obs} and α_{theo} ($\Delta\alpha$) was calculated by Eq. (12).

$$\alpha_{\text{obs}} = \frac{V(\varepsilon_r - 1)}{4b(\varepsilon_r + 2)}$$ (10)

$$\alpha_{\text{theo}} (\text{CaMg}_{1-x}\text{Li}_{2x}\text{Si}_2\text{O}_6) = \alpha_{\text{Ca}}(1-x)\alpha_{\text{Mg}} + (2x)\alpha_{\text{Li}} + 2\alpha_{\text{Si}} + 6\alpha_{\text{O}}$$ (11)

$$\Delta\alpha = \frac{\alpha_{\text{obs}} - \alpha_{\text{theo}}}{\alpha_{\text{theo}}} \times 100\%$$ (12)

where b is a constant of $4\pi/3$. The calculation results of samples sintered at 900 °C are presented in Table 2.

In Fig. 6(c), both ε_r and α_{obs} increased first and consequently decreased with x. ρ_{theo} increased linearly with x, as attributed to the 2 mol Li$^+$ (1.2 Å3) substitution for 1 mol Mg$^{2+}$ (1.32 Å3). The $\Delta\alpha$ is low, as listed in Table 2, facilitating the reliability of the α_{obs}. Besides, α_{obs} was obtained only through the data of CaMgSi$_2$O$_6$ main phase and it produced consonance well with ε_r, when the weight fraction of the second phase increased with x value. More importantly, combined with the mixture rule:

$$\ln\varepsilon_r = \sum_i V_i' \ln\varepsilon_{ri}$$ (13)

where ε_{ri} represents dielectric constant of each phase (ε_r (CaSiO$_3$) = 6.69 [34], ε_r (Li$_2$SiO$_3$) = 7.7 [35]), it could be inferred that ε_r was affected by more ionic polarizability and ρ than the second phase combined with the above analysis.

In general, the τ_f value is determined by the linear expansion coefficient (α_1) and the temperature coefficient of dielectric constant (τ_r) as presented in Eq. (14).

$$\tau_f = -\left(\alpha_1 + \frac{1}{2}\tau_r\right)$$ (14)

where α_1 is an empirical constant of approximately 10 ppm/°C. Consequently, τ_f was mainly affected by τ_r, which was closely related to the oxygen polyhedral distortion (MgO$_6$ octahedral distortion in CaMgSi$_2$O$_6$ system). The octahedral distortion (δ) could be calculated via Mg–O bond length, obtained through XRD refinement results, according to Eq. (15). The bond valence, through which the bond strength could be evaluated, V_i of atom i was the sum of all valences V_{ij} from i, calculated via Eqs. (16) and (17) [38].

$$\delta = \frac{1}{6} \sum \frac{R_i - R_A}{R_A}$$ (15)

$$V_i = \sum V_{ij}$$ (16)

$$V_{ij} = \exp\left(\frac{R_{ij} - d_{ij}}{b}\right)$$ (17)
where \(R_i \), \(R_A \), \(R_{ij} \), and \(d_{ij} \) represent the bond length, average bond length, bond valence parameter, and the length of a bond between Mg and oxygen in the MgO\(_6\) octahedron, respectively. Besides, \(b \) is commonly a constant equal to 0.37 Å, while \(R_{ij} \) as 1.661, 1.624, 1.466, and 1.933 Å for Mg–O, Si–O, Li–O, and Ca–O bond, respectively [39,40]. All bond length information and the calculated results are presented in Table 3. As presented in Fig. 8, \(\tau \) and \(\delta \) of cylinders sintered at 900 °C exhibited the same tendency as \(x \) value increased, except the porous samples of \(x = 0 \), which was due to insufficient sintering. The results well agreed with Lai et al. [41,42], which implied that the dependence of \(\tau \) value on \(\delta \) was high. Besides, the curve of total bond valence (\(V_{\text{total}} \)) presented in Fig. 8 also corresponded well with the one of \(\tau \) value, which could be explained by the result that higher bond valence results in lower |\(\tau \)| [43,44]. These phenomena in turn illustrated that although the second phases of CaSiO\(_3\) and Li\(_2\)SiO\(_3\) were observed, the structural characteristics played an important role in \(\tau \).

Table 3 Bond length, MgO\(_6\) octahedral distortion, and total bond valence of the CaMg\(_{1-x}\)Li\(_x\)Si\(_2\)O\(_6\) (\(x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 \)) samples sintered at 900 °C

Bond type	\(x \) (mol)	0	0.05	0.1	0.15	0.2	0.25	0.3	
Bond length (Å)									
Ca\(_1\)_O\(_1\) × 2									
Ca\(_1\)_O\(_2\) × 2		2.31047	2.35409	2.34517	2.33304	2.32141	2.35621	2.3735	
Ca\(_1\)_O\(_3\)(1) × 2		2.32076	2.33614	2.33668	2.32433	2.32405	2.34619	2.36359	
Ca\(_1\)_O\(_3\)(2) × 2		2.55516	2.54331	2.54059	2.53846	2.51846	2.55902	2.55934	
Si\(_1\)_O\(_1\)		1.60651	1.61744	1.6289	1.63807	1.64629	1.64634	1.61091	
Si\(_1\)_O\(_2\)		1.53561	1.57943	1.57741	1.57922	1.57977	1.56284	1.51783	
Si\(_1\)_O\(_3\)(1)		1.71107	1.70073	1.68919	1.68452	1.69012	1.65136	1.67279	
Si\(_1\)_O\(_3\)(2)		1.65246	1.66076	1.66353	1.68722	1.68435	1.70171	1.64362	
Mg\(_1\)_O\(_2\) × 2		2.09544	2.04691	2.06264	2.06631	2.04905	2.10107	2.13182	
Mg\(_1\)_O\(_1\)(1) × 2		2.06176	2.04468	2.04461	2.03722	2.04421	2.03052	2.02668	
Mg\(_1\)_O\(_1\)(2) × 2		2.15943	2.13825	2.13008	2.12265	2.13009	2.11822	2.16782	
\(\delta \)(%)		0.03701	0.044068	0.031303	0.02919	0.03606	0.03340	0.08836	
Bond valence									
Ca\(_1\)_O\(_1\)		0.30907	0.35239	0.33772	0.33439	0.35036	0.30441	0.28013	
Ca\(_1\)_O\(_2\)		0.33853	0.35452	0.35459	0.36174	0.35497	0.36862	0.37828	
Ca\(_1\)_O\(_3\)(1)		0.25999	0.27530	0.28145	0.28716	0.28144	0.29062	0.25416	
Ca\(_1\)_O\(_3\)(2)		1.03713	1.00694	0.97623	0.95233	0.93141	0.96094	1.02487	
Si\(_1\)_O\(_1\)		1.25618	1.11588	1.12199	1.11651	1.11486	1.16705	1.31802	
Si\(_1\)_O\(_2\)		0.78181	0.80397	0.82944	0.83997	0.82736	0.91873	0.86703	
Si\(_1\)_O\(_3\)(1)		0.91600	0.89568	0.88900	0.83387	0.84036	0.80184	0.93815	
Si\(_1\)_O\(_3\)(2)		0.36052	0.32043	0.32825	0.33919	0.35002	0.31860	0.30405	
Ca\(_1\)_O\(_1\)		0.35063	0.33636	0.33587	0.34727	0.34753	0.32734	0.31231	
Ca\(_1\)_O\(_2\)		0.18609	0.19214	0.19356	0.19468	0.20549	0.18416	0.18400	
Ca\(_1\)_O\(_3\)(1)		0.10912	0.11461	0.11499	0.12403	0.11691	0.12378	0.10700	
Ca\(_1\)_O\(_3\)(2)		7.81910	7.71407	7.70960	7.71968	7.72752	7.68368	7.78799	
\(V_{\text{total}} \)			7.81910	7.71407	7.70960	7.71968	7.72752	7.68368	7.78799
4 Conclusions

In this study, the effects of Li$^+$ substitution for Mg$^{2+}$ on the microwave dielectric properties and microstructure, and the correlation between performance and structure of the CaMg$_{1-x}$Li$_2$Si$_2$O$_6$ ceramics sintered at 875, 900, and 925°C with 0.4 wt% LBSCA as sintering aid, were investigated. The phase compositions detected from the XRD patterns, which were composed of at least two phases (CaMgSi$_2$O$_4$ and CaSiO$_3$ existed when x varied from 0 to 0.3, and Li$_2$SiO$_3$ occurred since x exceeded 0.05), were confirmed by the Rietveld refinement results. SEM micrographs demonstrated that well-uniform morphologies were observed at $x = 0.05$. The optimal $Q \times f$ value was reached where the fraction of the second phase was the lowest, indicating that the $Q \times f$ value was highly influenced by the second phase, V, and the packing fraction, but the relative density had much less effect on the $Q \times f$ value. The ε was not only affected by the relative density, but also was affected by the ionic polarizability, which was closely related to Li$^+$ ions, and to the second phase. The τ_f values presented nonlinear variations with x and depended highly on the MgO$_6$ octahedral distortion and the bond valence, despite the existence of the second phase in CaMg$_{1-x}$Li$_2$Si$_2$O$_6$ ceramics. Excellent microwave dielectric properties of CaMg$_{1-x}$Li$_2$Si$_2$O$_6$ ceramics sintered at 900°C were: $\varepsilon_r = 7.44$, $Q \times f = 41,017$ GHz ($f = 15.1638$ GHz), and $\tau_f = -59.3$ ppm/°C when $x = 0.05$.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 61771104 and U1809215).

References

[1] Hsiang HI, Chen CC, Yang SY. Microwave dielectric properties of Ca$_3$N$_{0.25}$TiO$_3$ ceramic-filled CaO–B$_2$O$_3$–SiO$_2$ glass for LTCC applications. J Adv Ceram 2019, 8: 345–351.
[2] Weng ZZ, Han ZY, Xiao F, et al. Low temperature sintering and microwave dielectric properties of Zn$_{1-x}$SiO$_3$ ceramics with BaCu(B$_2$O$_4$) additive for LTCC applications. Ceram Int 2018, 44: 14145–14150.
[3] Zhang P, Sun KX, Liu L, et al. A novel low loss and low temperature sintering Li$_5$(Mg$_{1-x}$Ca$_x$)$_3$NbO$_6$ microwave dielectric ceramics by doping LiF additives. J Alloys Compd 2018, 765: 1209–1217.
[4] Li EZ, Yang HC, Yang HY, et al. Effects of Li$_2$O–B$_2$O$_3$–SiO$_2$ glass on the low-temperature sintering of Zr$_{0.15}$Nb$_{0.5}$Ti$_{0.55}$O$_2$ ceramics. Ceram Int 2018, 44: 8072–8080.
[5] Ma XH, Kweon SH, Im M, et al. Low-temperature sintering and microwave dielectric properties of B$_2$O$_3$-added ZnO-deficient Zn$_2$GeO$_4$ ceramics for advanced substrate application. J Eur Ceram Soc 2018, 38: 4682–4688.
[6] Chen HW, Su H, Zhang HW, et al. Low-temperature sintering and microwave dielectric properties of (Zn$_{1-x}$Co$_x$)$_2$SiO$_4$ ceramics. Ceram Int 2014, 40: 14655–14659.
[7] Song XQ, Du K, Li J, et al. Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram Int 2019, 45: 279–286.
[8] Cheng K, Li CC, Xiang HC, et al. LiYGeO$_4$: Novel low-permittivity microwave dielectric ceramics with intrinsic low sintering temperature. Mater Lett 2018, 228: 96–99.
[9] Cheng K, Tang Y, Xiang HC, et al. Two novel low permittivity microwave dielectric ceramics Li$_2$TiMO$_5$ (M = Ge, Si) with abnormally positive τ_f. J Eur Ceram Soc 2019, 39: 2680–2684.
[10] Fang WS, Cheng K, Xiang HC, et al. Phase composition and microwave dielectric properties of low permittivity AGeO$_3$ (A = Mg, Zn) ceramics. J Alloys Compd 2019, 799: 495–500.
[11] Li CC, Xiang HC, Xu MY, et al. Li$_x$AlGeO$_4$ (A = Zn, Mg): Two novel low-permittivity microwave dielectric ceramics with olivine structure. J Eur Ceram Soc 2018, 38: 1524–1528.
[12] Liu B, Hu CC, Huang YH, et al. Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl$_2$O$_4$ ceramics with low permittivity. J Alloys Compd 2019, 791: 1033–1037.
[13] Song XQ, Du K, Li J, et al. Crystal structures and microwave dielectric properties of novel low-permittivity Ba$_{0.5}$Sr$_{0.5}$ZnSi$_3$O$_9$ ceramics. Mater Res Bull 2019, 112: 178–181.
[14] Yin CZ, Li CC, Yang GJ, et al. NaCa$_3$V$_5$O$_{17}$: A low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. J Eur Ceram Soc 2020, 40: 386–390.
[15] Li CC, Yin CZ, Chen JQ, et al. Crystal structure and dielectric properties of germanate melilites Ba$_2$MGe$_2$O$_7$ (M = Mg and Zn) with low permittivity. J Eur Ceram Soc 2018, 38: 5246–5251.
[16] Qin TY, Zhong CW, Qin Y, et al. Low-temperature sintering mechanism and microwave dielectric properties of ZnAl$_2$O$_4$–LMZBS composites. J Alloys Compd 2019, 797: 744–753.
[17] Song XQ, Lu WZ, Wang XC, et al. Sintering behaviour and microwave dielectric properties of BaAl$_2$–(ZnSi)$_2$Si$_2$O$_8$ ceramics. J Eur Ceram Soc 2018, 38: 1529–1534.
[18] Sun HP, Zhang QL, Yang H, et al. (Ca$_{1-x}$Mg)$_2$SiO$_4$: A low-permittivity microwave dielectric ceramic system. Mater Sci Eng: B 2007, 138: 46–50.
[19] Li H, Chen QX, Zhang PC, et al. Influence of Mn$^{2+}$ introduction on microwave dielectric properties of
CaMgSi2O6 ceramic. Ceram Int 2019, 45: 24425–24430.

[20] Tang B, Xiang QY, Fang ZX, et al. Influence of Cr³⁺ substitution for Mg²⁺ on the crystal structure and microwave dielectric properties of CaMg₂Cr₂/3Si₃O₉ ceramics. Ceram Int 2019, 45: 11484–11490.

[21] Lai YM, Tang XL, Huang X, et al. Synthesis, characterization and microwave dielectric properties of complex perovskite ceramics. Mater Lett 2019, 231: 4712–4718.

[22] Lai YM, Tang XL, Zhang HW, et al. The effect of A-site nonstoichiometry on the microstructure, electric properties, and phase stability of NaNbO₃ polycrystalline ceramics. J Mater Chem Phys 2019, 39: 181–183.

[23] Lai YM, Tang XL, Zeng HW, et al. Low-temperature sintering of (A₂−_x)CoTiNb₂O₈ ceramics. J Adv Ceram 2019, 8: 228–237.

[24] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[25] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[26] Tang B, Xiang QY, Fang ZX, et al. Influence of Cr³⁺ substitution for Mg²⁺ on the crystal structure and microwave dielectric properties of CaMg₂Cr₂/3Si₃O₉ ceramics. Ceram Int 2019, 45: 11484–11490.

[27] Lai YM, Tang XL, Zeng HW, et al. Synthesis, characterization and microwave dielectric properties of complex perovskite ceramics. Mater Lett 2019, 231: 4712–4718.

[28] Lai YM, Tang XL, Zhang HW, et al. The effect of A-site nonstoichiometry on the microstructure, electric properties, and phase stability of NaNbO₃ polycrystalline ceramics. J Mater Chem Phys 2019, 39: 181–183.

[29] Lai YM, Tang XL, Zeng HW, et al. Low-temperature sintering of (A₂−_x)CoTiNb₂O₈ ceramics. J Adv Ceram 2019, 8: 228–237.

[30] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[31] Lai YM, Tang XL, Zhang HW, et al. Relationship between the structure and microwave dielectric properties of non-stoichiometric Li₂−_xNb₃O₉ ceramics. Ceram Int 2017, 43: 2664–2669.

[32] Lai YM, Tang XL, Zeng HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[33] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[34] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[35] Lai YM, Tang XL, Zhang HW, et al. Relationship between the structure and microwave dielectric properties of non-stoichiometric Li₂−_xNb₃O₉ ceramics. Ceram Int 2017, 43: 2664–2669.

[36] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[37] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[38] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[39] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

[40] Lai YM, Tang XL, Zhang HW, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. J Alloys Compd 2019, 772:

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.