Electronic Supplementary Information

Engineering doping-vacancy double defects and insights into the conversion mechanisms of an Mn-O-F ultrafine nanowire anode for enhanced Li/Na-ion storage and hybrid capacitors

Yongfa Huang, Rui Ding,* Danfeng Ying, Wei Shi, Yuxi Huang, Caini Tan, Xiujuan Sun, Ping Gao, and Enhui Liu

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China

*E-mails: drm8122@163.com; drm8122@xtu.edu.cn
Table of Contents

Experimental

Scheme S1 Schematics of the process for the formation of Mn-O-F ultrafine nanowires.

Figure S1 The crystal structures of tetragonal MnF$_2$ (A) and defective MnF$_2$-E (B) and detailed crystalline parameters for tetragonal MnF$_2$ (C).

Figure S2 XRD patterns of MnF$_2$ 1-9#.

Figure S3 SEM (A)/TEM (B) images of MnF$_2$ 8#-E sample.

Figure S4 A picture of MnF$_2$ 8# and MnF$_2$ 8#-E samples.

Figure S5 EDS spectra of MnF$_2$ 8# (A) and MnF$_2$ 8#-E (B) samples.

Figure S6 Specific capacity and Coulombic efficiency derived from the respective 5th cycle at 0.1-3.2 A g$^{-1}$ of MnF$_2$ 1#-9# electrodes (A); cycling stability for 500 cycles at 2 A g$^{-1}$ of MnF$_2$ 1#-9# electrodes (B).

Figure S7 CV plots of the first three cycles of MnF$_2$ 1#-9# electrodes at 0.3 mV s$^{-1}$.

Figure S8 GCD curves of the first five cycles for MnF$_2$ (1#, 2#, 3#, 4#, 5#, 6#, 7#, 9#) electrodes at 0.1 A g$^{-1}$.

Figure S9 GCD curves of MnF$_2$ 1#-6# electrodes at 0.1-3.2 A g$^{-1}$.

Figure S10 GCD curves of MnF$_2$ 7#-9# and MnF$_2$ 8#-E electrodes at 0.1-3.2 A g$^{-1}$.

Figure S11 Rate performance and Coulombic efficiency of MnF$_2$ 1#-6# electrodes at 0.1-3.2-0.1 A g$^{-1}$.

Figure S12 Rate performance and Coulombic efficiency of MnF$_2$ 7#-9# and MnF$_2$ 8#-E electrodes at 0.1-3.2-0.1 A g$^{-1}$.

Figure S13 Cycling stability and Coulombic efficiency of MnF$_2$ 1#-6# electrodes at 2 A g$^{-1}$ for 500 cycles.

Figure S14 Cycling stability and Coulombic efficiency of MnF$_2$ 7#-9# and MnF$_2$ 8#-E electrodes at 2 A g$^{-1}$ for 500 cycles.

Figure S15 XRD patterns and TEM images of the MnF$_2$ 8# (A, C, E) and MnF$_2$ 8#-E (B, D, F) electrodes after the cycling for Li-ion storage.

Figure S16 The pseudocapacitive contributions (the shaded region) of the MnF$_2$ 8# electrode at 0.1-0.3 mV s$^{-1}$ (a-c) and the contribution ratios (d) for Li-ion storage.

Figure S17 The pseudocapacitive contributions (the shaded region) of the MnF$_2$ 8#-E electrode at 0.1-0.3 mV s$^{-1}$ (a-c) and the contribution ratios (d) for Li-ion storage.
Figure S18 The equivalent circuit model of Nyquist plots for MnF$_2$ and MnF$_2$ 8#-E electrodes.

Figure S19 Nyquist plots of MnF$_2$ and MnF$_2$ 8#-E electrodes (the insets are the enlarged high frequency regions).

Figure S20 GCD curves of MnF$_2$ 8# (A) and MnF$_2$ 8#-E (B) electrodes at the precharged current density of 0.1 A g$^{-1}$.

Figure S21 Performance of AC electrode for Li-ion storage.

Figure S22 CV plots at 40 mV s$^{-1}$ (A), GCD curves at 1 A g$^{-1}$ (B), Ragone plots (C) and cycling behavior for 5000 cycles at 5 A g$^{-1}$ (D) of 4.5 V-MnF$_2$//AC LICs (1:1) and 4.6 V-MnF$_2$//AC LICs (1:2).

Figure S23 The third cycle of CV curves under 0-5 V at 1 mV s$^{-1}$: MnF$_2$//AC LICs (1:1) (A), MnF$_2$//AC LICs (1:2) (B).

Figure S24 CV plots of 4.5 V-MnF$_2$//AC LICs (1:1) at 10-160 mV s$^{-1}$ (A), GCD curves of 4.5 V-MnF$_2$//AC LICs (1:1) at 0.5-16 A g$^{-1}$ (B), CV plots of 4.6 V-MnF$_2$//AC LICs (1:2) at 10-160 mV s$^{-1}$ (C), GCD curves of 4.6 V-MnF$_2$//AC LICs (1:2) at 0.5-16 A g$^{-1}$ (D).

Figure S25 CV plots at 40 mV s$^{-1}$ (A), GCD curves at 1 A g$^{-1}$ (B), Ragone plots (C) and cycling behavior for 5000 cycles at 5 A g$^{-1}$ (D) of 4 V-MnF$_2$//AC LICs (1:1), (1:2) and (1:3).

Figure S26 CV plots of 4 V-MnF$_2$-E//AC LICs (1:1) (A), 4 V-MnF$_2$-E//AC LICs (1:2) (C) and 4 V-MnF$_2$-E//AC LICs (1:3) (E) at 10-160 mV s$^{-1}$, GCD curves of 4 V-MnF$_2$-E//AC LICs (1:1) (B), 4 V-MnF$_2$-E//AC LICs (1:2) (D) and 4 V-MnF$_2$-E//AC LICs (1:3) (F) at 0.5-16 A g$^{-1}$.

Figure S27 CV plots of 4 V-MnF$_2$//AC LICs (1:1) (A) and 4.3 V-MnF$_2$//AC LICs (1:1) (C) at 10-160 mV s$^{-1}$, GCD curves of 4 V-MnF$_2$//AC LICs (1:1) (B) and 4.3 V-MnF$_2$//AC LICs (1:1) (D) at 0.5-16 A g$^{-1}$.

Figure S28 CV plots of 4.3 V-MnF$_2$-E//AC LICs (1:2) (A), GCD curves of 4.3 V-MnF$_2$-E//AC LICs (1:2) (B) at 0.5-16 A g$^{-1}$.

Figure S29 GCD curves of MnF$_2$ 8# (A) and MnF$_2$ 8#-E(B) at 0.1-1.6 A g$^{-1}$.

Figure S30 Rate performance and Coulombic efficiency of MnF$_2$ 8# (A) and MnF$_2$ 8#-E (B) electrodes at 0.1-1.6-0.1 A g$^{-1}$, Cycling stability and Coulombic efficiency of MnF$_2$ 8# (C) and MnF$_2$ 8#-E (D) electrodes at 0.3 A g$^{-1}$ for 500 cycles.

Figure S31 XRD patterns and TEM images of the MnF$_2$ 8# (A, C, E) and MnF$_2$ 8#-E (B, D, F) electrodes after the cycling for Na-ion storage.

Figure S32 The pseudocapacitive contributions (the shaded region) of the MnF$_2$ 8# electrode at 0.1-0.3 mV s$^{-1}$ (a-c) and the contribution ratios (d) for Na-ion storage.
Figure S33 The pseudocapacitive contributions (the shaded region) of the MnF₂ 8#-E electrode at 0.1-0.3 mV s⁻¹ (a-c) and the contribution ratios (d) for Na-ion storage.

Figure S34 Nyquist plots of MnF₂ and MnF₂ 8#-E electrodes (the insets are the enlarged high frequency regions).

Figure S35 GCD curves of MnF₂ 8# (A) and MnF₂ 8#-E (B) electrodes at the precharged current density of 0.1 A g⁻¹.

Figure S36 Performance of AC electrode for Na-ion storage.

Figure S37 CV plots at 40 mV s⁻¹ (A), GCD curves at 1 A g⁻¹ (B), Ragone plots (C) and cycling behavior for 5000 cycles at 3 A g⁻¹ (D) of 4.6 V-MnF₂//AC NICs (1:1) and 4.8 V-MnF₂//AC NICs (1:2).

Figure S38 The third cycle CV curves at 1 mV s⁻¹ under 0-5 V: MnF₂//AC NICs (1:1) (A), and MnF₂//AC NICs (1:2) (B).

Figure S39 CV plots of 4.6 V-MnF₂//AC NICs (1:1) (A) and 4.8 V-MnF₂//AC NIC (1:2) (C), at 10-160 mV s⁻¹, GCD curves of 4.6 V-MnF₂//AC NIC (1:1) (B) and 4.8 V-MnF₂//AC NICs (1:2) (D) at 0.5-8 A g⁻¹.

Figure S40 CV plots of 4 V-MnF₂//AC NICs (1:1) (A) and 4.3 V-MnF₂//AC NICs (1:1) (C), at 10-160 mV s⁻¹, GCD curves of 4 V-MnF₂//AC NICs (1:1) (B) and 4.3 V-MnF₂//AC NICs (1:1) (D) at 0.5-8 A g⁻¹.

Figure S41 CV plots of 4 V-MnF₂-E//AC NICs (1:1) (A) and 4.3 V-MnF₂-E//AC NICs (1:1) (C) at 10-160 mV s⁻¹, GCD curves of 4 V-MnF₂-E//AC NICs (1:1) (B) and 4.3 V-MnF₂-E//AC NICs (1:1) (D) at 0.5-8 A g⁻¹.

Table S1 Orthogonal experimental design.

Table S2 Synthesis condition of MnF₂ 1#-9#.

Table S3 Orthogonal experimental analysis results of MnF₂.

Table S4 Summary of performance of MnF₂ 1#-9# and MnF₂ 8#-E electrodes.

Table S5 A comparasion for Mn-O-F (MnF₂ 8#-E) anode with literature for LIBs.

Table S6 EIS parameters of MnF₂ and MnF₂ 8#-E electrodes for Li-ion storage.

Table S7 Summary of performance of MnF₂//AC and MnF₂-E//AC LICs and NICs.

Table S8 Electrochemical performance comparison for some reported LICs.

Table S9 EIS parameters of MnF₂ 8# and MnF₂ 8#-E electrodes for Na-ion storage.

Table S10 Electrochemical performance comparison for some reported NICs.

Table S11 Chemicals, agents and materials.

References
Experimental

Synthesis of materials
The MnF$_2$ materials were synthesized by one-pot solvothermal method according to the orthogonal experiment (Table S1, S2). Take the procedure of MnF$_2$ 8# for an example. The compounds of 4 mmol Mn(CH$_3$COO)$_2$•4H$_2$O and 7 mL HF (40%) were added into 30 mL ethylene glycol (EG) solvents, and the mixture was magnetically stirred thoroughly and dispersed well in an ultrasonic bath. Subsequently, the mixture was put into a 50 ml Teflon lined stainless steel reactor, which was heated at 190 °C for 6 h in an electric oven, and cooled down naturally. Then, the yielded precipitates were washed with absolute alcohol several times and collected by centrifugal filtration. Finally, the collected precipitates were dried overnight at 100 °C to obtain the ultimate products. The other eight MnF$_2$ samples were also synthesized as the procedure described above based on the specific orthogonal experiment conditions.

The Mn-O-F (MnF$_2$ 8#-E) materials were synthesized by a simple etching method as follows: 100 mg of MnF$_2$ 8# was added into 1 M NaBH$_4$ aqueous solution with continuous stirring for 1 h, next, the mixture was centrifuged with distilled water and absolute alcohol in turn for several times, and then the precipitates were placed in a drying oven at 100 °C for 12 h to obtain the Mn-O-F materials. The possible process for the formation of Mn-O-F ultrafine nanowires can be seen in the Scheme 1 (ESI) (the chemicals in the experiment can be seen in the Table S11).

Characterizations
The phases and crystallinity properties were determined by X-ray diffraction (XRD). The surface chemical compositions and electronic structures were checked by X-ray photoelectron spectra (XPS). The morphology and size of particles were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystalline microstructures were resolved by the high-resolution TEM (HRTEM) and selected area electron diffraction (SAED). The element composition and distribution were measured by X-Ray energy dispersive spectra (EDS) and mapping. The chemical functional groups were measured by Fourier transform infrared spectroscopy (FTIR). The specific surface area, pore volume and size distribution were examined by nitrogen isothermal sorptions with Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.
Electrochemical measurements

The electrodes were prepared as follows: firstly, a well-dispersed mixture of 70 wt% active materials (as-synthesized MnF_2 (1#-9# and 8#-E) or commercial activated carbon (AC), 20 wt% AB conductive agent and 10 wt% polyvinylidene fluoride (PVDF) binder dissolved into the N-methyl-2-pyrrolidone (NMP)) were casted onto the current collectors (the collectors for anode and cathode are Cu foil and carbon-coated Al foil respectively, with the thickness of 15 μm), and followed by drying in a vacuum oven at 110 °C for 12 h; Secondly, the electrodes were punched into disks with diameter of 12 mm, and the mass loading of active materials was about 1-4 mg cm⁻². The electrochemical performances were examined by cyclic voltammetry (CV), galvanostatistic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests via CHI 660E electrochemical working stations and Neware-CT-4008 testers. Tests for Li//MnF_2 (1#-9# and 8#-E) and Li//AC or Na//MnF_2 (8# and 8#-E) and Na//AC half-cells were conducted by using the type 2032 coin cells with a MnF_2 or AC working electrode (WE), a Li or Na plate as both counter electrode (CE) and reference electrode (RE), and one piece of glass fiber (GF) as separator. Tests for MnF_2 (8# and 8#-E)//AC LICs/NICs full-cells were conducted via type 2032 coin cells, with certain active mass ratio of anode and cathode, and the MnF_2 (8# and 8#-E) anodes were precharged (pre-lithiation or pre-sodiation) at 0.1 A g⁻¹ for 3.5 cycles. The electrolytes for Li//MnF_2 (1#-9# and 8#-E) and Li//AC half-cells and MnF_2 (8# and 8#-E)//AC LICs were 1 M LiPF_6 dissolved in the mixed solvents of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) (1:1:1 in volume) with 1% vinylene carbonate (VC) additives (CAPCHEM); The electrolytes for Na//MnF_2 (8# and 8#-E) and Na//AC half-cells and MnF_2 (8# and 8#-E)//AC NICs were 0.85 M NaPF_6 dissolved in the mixed solvents of EC, and dimethyl carbonate (DEC) (1:1 in volume) with 5% fluoroethylene carbonate (FEC) additives (MJS). All cell assemblies were performed in an high pure Ar-filled dry glovebox (MIKROUNA, O₂ and H₂O<0.1 ppm), and all tests were carried out at room temperature (about 25 °C). The chemicals, agents and materials for electrochemical tests are listed in the Table S11. The calculations for the specific capacity (Cₘₙ, mAh g⁻¹), energy density (Eₘₙ, Wh kg⁻¹) and power density (Pₘₙ, kW kg⁻¹) are on the basis of Equations S(1), (2) and (3):

\[C_m = \frac{Q}{3.6m} \] \hspace{1cm} S(1)

\[E_m = \frac{(C_m \Delta V)}{2} \] \hspace{1cm} S(2)

\[P_m = 3.6E_m/t \] \hspace{1cm} S(3)

Where \(m \), \(Q \), \(\Delta V \), and \(t \) are mass of active materials (g, for LICs and NICs, it refers to the total masses of active materials of anode and cathode), charge quantity (C), voltage window (V), and discharge time (s), respectively.
Scheme S1 Schematics of the process for the formation of Mn-O-F ultrafine nanowires.

The possible process for the formation of Mn-O-F ultrafine nanowires can be seen in the **Scheme 1** (ESI). In the etching process by NaBH₄ solutions, the bonds among crystalline particles would be weakened and the crystals would become more porous and linear and finally form nanowire morphology under the continuous impact of H₂ flow, meanwhile, the Mn²⁺ would be partially reduced to unstable Mn⁺ in the MnF₂ nanocrystal and produce the F⁻ vacancy; during the centrifugal filtration, with the removal of the excess of NaBH₄ solutions, the unstable Mn⁺ in the MnF₂ nanocrystal would be oxidized to stable Mn²⁺ by O₂ in air and the O²⁻ would also partially occupy the position of F⁻ vacancy and finally form the Mn-O-F nanowires with the hetero oxygen doping and fluorine vacancies double defects.
Figure S1 The crystal structures of tetragonal MnF$_2$ (A) and defective MnF$_2$-E (B) and detailed crystalline parameters for tetragonal MnF$_2$ (C).
Figure S2 XRD patterns of MnF$_2$ 1-9# samples.
Figure S3 SEM (A)/TEM (B) images of MnF$_2$ 8#-E sample.
Figure S4 A picture of MnF$_2$ 8# and MnF$_2$ 8#-E samples.
Figure S5 EDS spectra of MnF$_2$ 8# (A) and MnF$_2$ 8#-E (B) samples.
Figure S6 Specific capacity and Coulombic efficiency derived from the respective 5th cycle at 0.1-3.2 A g-1 of MnF\textsubscript{2} 1#-9# electrodes (A); cycling stability for 500 cycles at 2 A g-1 of MnF\textsubscript{2} 1#-9# electrodes (B).
Figure S7 CV plots of the first three cycles of MnF₂ 1#-9# electrodes at 0.3 mV s⁻¹.
Figure S8 GCD curves of the first five cycles for MnF$_2$ (1#, 2#, 3#, 4#, 5#, 6#, 7#, 9#) electrodes at 0.1 A g$^{-1}$.
Figure S9 GCD curves of MnF$_2$ 1#-6# electrodes at 0.1-3.2 A g$^{-1}$.
Figure S10 GCD curves of MnF$_2$ 7#-9# and MnF$_2$ 8#-E electrodes at 0.1-3.2 A g$^{-1}$.
Figure S11 Rate performance and Coulombic efficiency of MnF$_2$ 1#-6# electrodes at 0.1-3.2-0.1 A g$^{-1}$.
Figure S12 Rate performance and Coulombic efficiency of MnF$_2$ 7#-9# and MnF$_2$ 8#-E electrodes at 0.1-3.2-0.1 A g$^{-1}$.
Figure S13 Cycling stability and Coulombic efficiency of MnF$_2$ 1#-6# electrodes at 2 A g$^{-1}$ for 500 cycles.
Figure S14 Cycling stability and efficiency efficiency of MnF$_2$ 7#-9# and MnF$_2$ 8#-E electrodes at 2 A g$^{-1}$ for 500 cycles.
Figure S15 XRD patterns and TEM images of the MnF$_2$ 8# (A, C, E) and MnF$_2$ 8#-E (B, D, F) electrodes after the cycling for Li-ion storage.
Figure S16 The pseudocapacitive contributions (the shaded region) of the MnF$_2$ 8# electrode at 0.1-0.3 mV s$^{-1}$ (a-c) and the contribution ratios (d) for Li-ion storage.

Figure S17 The pseudocapacitive contributions (the shaded region) of the MnF$_2$ 8#-E electrode at 0.1-0.3 mV s$^{-1}$ (a-c) and the contribution ratios (d) for Li-ion storage.
Figure S18 The equivalent circuit model of Nyquist plots for MnF$_2$ and MnF$_2$ 8#-E electrodes.
Figure S19 Nyquist plots of MnF₂ and MnF₂ 8#-E electrodes (the insets are the enlarged high frequency regions).
Figure S20 GCD curves of MnF$_2$ 8# (A) and MnF$_2$ 8#-E (B) electrodes at the precharged current density of 0.1 A g$^{-1}$.
Figure S21 Performance of AC electrode for Li-ion storage.
Figure S22 CV plots at 40 mV s\(^{-1}\) (A), GCD curves at 1 A g\(^{-1}\) (B), Ragone plots (C) and cycling behavior for 5000 cycles at 5 A g\(^{-1}\) (D) of 4.5 V-MnF\(_2\)//AC LICs (1:1) and 4.6 V-MnF\(_2\)//AC LICs (1:2).
Figure S23 The third cycle of CV curves under 0-5 V at 1 mV s\(^{-1}\): MnF\(_2\)//AC LICs (1:1) (A), MnF\(_2\)//AC LICs (1:2) (B).
Figure S24 CV plots of 4.5 V-MnF$_2$//AC LICs (1:1) at 10-160 mV s$^{-1}$ (A), GCD curves of 4.5 V-MnF$_2$//AC LICs (1:1) at 0.5-16 A g$^{-1}$ (B), CV plots of 4.6 V-MnF$_2$//AC LICs (1:2) at 10-160 mV s$^{-1}$ (C), GCD curves of 4.6 V-MnF$_2$//AC LICs (1:2) at 0.5-16 A g$^{-1}$ (D).
Figure S25 CV plots at 40 mV s\(^{-1}\) (A), GCD curves at 1 A g\(^{-1}\) (B), Ragone plots (C) and cycling behavior for 5000 cycles at 5 A g\(^{-1}\) (D) of 4 V-MnF\(_2\)/AC LICs (1:1), (1:2) and (1:3).
Figure S26 CV plots of 4 V-MnF₂-E//AC LICs (1:1) (A), 4 V-MnF₂-E//AC LICs (1:2) (C) and 4 V-MnF₂-E//AC LICs (1:3) (E) at 10-160 mV s⁻¹, GCD curves of 4 V-MnF₂-E//AC LICs (1:1) (B), 4 V-MnF₂-E//AC LICs (1:2) (D) and 4 V-MnF₂-E//AC LICs (1:3) (F) at 0.5-16 A g⁻¹.
Figure S27 CV plots of 4 V-MnF₂//AC LICs (1:1) (A) and 4.3 V-MnF₂//AC LICs (1:1) (C) at 10-160 mV s⁻¹, GCD curves of 4 V-MnF₂//AC LICs (1:1) (B) and 4.3 V-MnF₂//AC LICs (1:1) (D) at 0.5-16 A g⁻¹.
Figure S28 CV plots of 4.3 V-MnF$_2$-E//AC LICs (1:2) (A), GCD curves of 4.3 V-MnF$_2$-E//AC LICs (1:2) (B) at 0.5-16 A g$^{-1}$.
Figure S29 GCD curves of MnF$_2$ 8# (A) and MnF$_2$ 8#-E (B) at 0.1-1.6 A g$^{-1}$.
Figure S30 Rate performance and Coulombic efficiency of MnF$_2$ 8# (A) and MnF$_2$ 8#-E (B) electrodes at 0.1-1.6-0.1 A g$^{-1}$, Cycling stability and Coulombic efficiency of MnF$_2$ 8# (C) and MnF$_2$ 8#-E (D) electrodes at 0.3 A g$^{-1}$ for 500 cycles.
Figure S31 XRD patterns and TEM images of the MnF$_2$ 8# (A, C, E) and MnF$_2$ 8#-E (B, D, F) electrodes after the cycling for Na-ion storage.
Figure S32 The pseudocapacitive contributions (the shaded region) of the MnF$_2$ 8# electrode at 0.1-0.3 mV s$^{-1}$ (a-c) and the contribution ratios (d) for Na-ion storage.

Figure S33 The pseudocapacitive contributions (the shaded region) of the MnF$_2$ 8#-E electrode at 0.1-0.3 mV s$^{-1}$ (a-c) and the contribution ratios (d) for Na-ion storage.
Figure S34 Nyquist plots of MnF$_2$ 8# and MnF$_2$ 8#-E electrodes (the insets are the enlarged high frequency regions).
Figure S35 GCD curves of MnF$_2$ 8# (A) and MnF$_2$ 8#-E (B) electrodes at the precharged current density of 0.1 A g$^{-1}$.
Figure S36 Performance of AC electrode for Na-ion storage.
Figure S37 CV plots at 40 mV s$^{-1}$ (A), GCD curves at 1 A g$^{-1}$ (B), Ragone plots (C) and cycling behavior for 5000 cycles at 3 A g$^{-1}$ (D) of 4.6 V-MnF$_2$/AC NICs (1:1) and 4.8 V-MnF$_2$/AC NICs (1:2).
Figure S38 The third cycle CV curves at 1 mV s\(^{-1}\) under 0-5 V: MnF\(_2\)/AC NiCs (1:1) (A), and MnF\(_2\)/AC NiCs (1:2) (B).
Figure S39 CV plots of 4.6 V-MnF$_2$/AC NICs (1:1) (A) and 4.8 V-MnF$_2$/AC NIC (1:2) (C) at 10-160 mV s$^{-1}$, GCD curves of 4.6 V-MnF$_2$/AC NIC (1:1) (B) and 4.8 V-MnF$_2$/AC NICs (1:2) (D) at 0.5-8 A g$^{-1}$.
Figure S40 CV plots of 4 V-MnF$_2$/AC NICs (1:1) (A) and 4.3 V-MnF$_2$/AC NICs (1:1) (C) at 10-160 mV s$^{-1}$, GCD curves of 4 V-MnF$_2$/AC NICs (1:1) (B) and 4.3 V-MnF$_2$/AC NICs (1:1) (D) at 0.5-8 A g$^{-1}$.
Figure S41 CV plots of 4 V-MnF$_2$-E//AC NICs (1:1) (A) and 4.3 V-MnF$_2$-E//AC NICs (1:1) (C) at 10-160 mV s$^{-1}$, GCD curves of 4 V-MnF$_2$-E//AC NICs (1:1) (B) and 4.3 V-MnF$_2$-E//AC NICs (1:1) (D) at 0.5-8 A g$^{-1}$.
Level	Solvent (mL)-A	Temperature (°C)-B	Time (h)-C
1	NPA	180	6
2	NBA	190	12
3	EG	200	24

Note: NPA n-propyl alcohol; NBA n-butyl alcohol; EG ethylene glycol.

Table S1 Orthogonal experimental design.
Samples	Mn(CH$_3$COO)$_2$•4H$_2$O (mmol)	HF (40%) (mL)	Solvent (mL)	Temperature (°C)	Time (h)
1#	4	7	NPA 30	180	6
2#	4	7	NPA 30	190	12
3#	4	7	NPA 30	200	24
4#	4	7	NBA 30	180	12
5#	4	7	NBA 30	190	24
6#	4	7	NBA 30	200	6
7#	4	7	EG 30	180	24
8#	4	7	EG 30	190	6
9#	4	7	EG 30	200	12

Table S2 Synthesis condition of MnF$_2$ 1#-9#.
MnF$_2$

The optimal conditions selected are A3B2C1 or A3B2C3.

Table S3 Orthogonal experimental analysis results of MnF$_2$

Samples	Experimental factors	Specific capacity (mAh g$^{-1}$)	Rate retention (%)	Cycle retention (%)		
A	B	C				
	(solvent)	(temperature)	(time)			
1#	1 (NPA)	1 (180°C)	1 (6h)	154	42	118
2#	1 (NPA)	2 (190°C)	2 (12h)	163	42	153
3#	1 (NPA)	3 (200°C)	3 (24h)	146	43	144
4#	2 (NBA)	1 (180°C)	2 (12h)	151	49	129
5#	2 (NBA)	2 (190°C)	3 (24h)	150	46	142
6#	2 (NBA)	3 (200°C)	1 (6h)	149	47	145
7#	3 (EG)	1 (180°C)	3 (24h)	143	51	147
8#	3 (EG)	2 (190°C)	1 (6h)	162	54	141
9#	3 (EG)	3 (200°C)	2 (12h)	144	51	145

Specific capacity: B>C>A
Rate retention: A>C>B
Cycle retention: B>C>A

The optimal conditions: A3B2C3 or A3B2C1

Selected optimal conditions: A3B2C1
Devices	Samples	Li//MnF$_2$ LIBs	Na//MnF$_2$ LIBs					
MnF$_2$ 1#	145	128	112	94	81	65	161	168
MnF$_2$ 2#	149	137	125	109	89	67	123	160
MnF$_2$ 3#	137	130	119	104	84	68	113	153
MnF$_2$ 4#	145	136	125	111	94	74	109	138
MnF$_2$ 5#	143	132	120	105	87	70	107	153
MnF$_2$ 6#	143	133	125	112	97	80	128	154
MnF$_2$ 7#	135	125	118	106	90	74	121	151
MnF$_2$ 8#	153	146	137	124	108	89	138	152
MnF$_2$ 9#	136	127	118	106	89	74	120	154
MnF$_2$ 8#-E	411	346	285	235	179	120	271	207
MnF$_2$ 8#	31	19	10	4	2	-	5.4	90
MnF$_2$ 8#-E	59	22	14	6	4	-	11	77

Table S4 Summary of performance of MnF$_2$ 1#-9# and MnF$_2$ 8#-E electrodes.
Anode materials for LIBs	Specific capacity	Rate behavior	Cycle life	Refs.	
MnF₂	300 mA h g⁻¹	180 mA h g⁻¹	237 mA h g⁻¹	5000 / 10 C	Adv. Energy Mater., 2015, 5, 1401716
CoF₂	350 mA h g⁻¹	#	15.5%	Electrochim. Acta, 2015, 168, 225-233	
Mn₃O₄	180 mA h g⁻¹	#	15.9%	ACS Appl. Mater. Interfaces, 2012, 4, 1636–1642	
NbO₂F	250 mA h g⁻¹	#	72%	J. Power Sources, 2006, 162, 1312–1321	
Mn-O-F (MnF₂-E)	411 mA h g⁻¹	120 mA h g⁻¹	271 mA h g⁻¹	500 / 2 A g⁻¹	This work

Table S5 A comparison for Mn-O-F (MnF₂ 8#-E) anode with literature for LIBs.
Systems (LIBs)	Model $R(QR)W(QR)$	R_s (Ω)	Q_1 (S·secn)	n_1	R_0 (Ω)	W (S·sec$^{0.5}$)	Q_2 (S·secn)	n_2	R_e (Ω)	χ^2
MnF$_2$ 1#		3.419	4.772×10$^{-4}$	0.9674	56.95	0.03817	1.893×10$^{-5}$	0.8383	3.508×105	2.73×10$^{-3}$
MnF$_2$ 2#		3.713	4.931×10$^{-4}$	0.9614	59.62	0.2168	1.584×10$^{-5}$	0.8519	1.144×105	2.1×10$^{-3}$
MnF$_2$ 3#		3.372	1.508×10$^{-5}$	0.8458	59.79	0.02511	6.573×10$^{-4}$	0.9681	3.17×106	3.07×10$^{-3}$
MnF$_2$ 4#		3.549	1.423×10$^{-5}$	0.8667	62.33	0.02601	7.544×10$^{-4}$	0.9733	5.186×105	2.95×10$^{-3}$
MnF$_2$ 5#		3.917	8.254×10$^{-4}$	0.9672	68.34	0.02364	1.57×10$^{-5}$	0.8555	4.375×105	2.53×10$^{-3}$
MnF$_2$ 6#		3.935	1.614×10$^{-5}$	0.8575	63.11	0.02576	7.698×10$^{-4}$	0.9708	5.645×105	2.43×10$^{-3}$
MnF$_2$ 7#		3.34	1.395×10$^{-5}$	0.8741	44.46	0.05389	8.176×10$^{-4}$	0.9665	4.665×105	2.98×10$^{-3}$
MnF$_2$ 8#		3.171	1.435×10$^{-5}$	0.8711	46.13	0.01497	6.862×10$^{-4}$	0.9751	4.267×105	2.8×10$^{-3}$
MnF$_2$ 9#		3.126	5.98×10$^{-4}$	0.9724	43.09	0.02385	1.835×10$^{-5}$	0.8639	3.111×105	3.41×10$^{-3}$
MnF$_2$ 8#-E		3.411	2.26×10$^{-5}$	0.8418	37.33	0.0168	3.506×10$^{-3}$	0.8056	6427	3.61×10$^{-3}$

Table S6 EIS parameters of MnF$_2$ and MnF$_2$ 8#-E electrodes for Li-ion storage.
Systems	Voltage window	Energy density (Wh kg⁻¹)	Power density (kW kg⁻¹)	Cycling behavior				
		0.5 A g⁻¹	4 A g⁻¹	16 A g⁻¹	0.5 A g⁻¹	4 A g⁻¹	16 A g⁻¹	
MnF₂//AC (1:1)	0-4.0 V	69.2	46.7	31.1	0.5	4.0	16.0	5 A g⁻¹ /1000/79.4%
	0-4.3 V	82.9	52.5	38.2	0.54	4.3	17.2	5 A g⁻¹ /1000/63.5%
	0-4.0 V	106.8	71.1	41.4	0.33	2.7	10.7	5 A g⁻¹ /1000/66.5%
MnF₂-E//AC (1:2)	0-4.3 V	132.2	79.6	44.6	0.36	2.9	11.5	5 A g⁻¹ /1000/63.5%
	0-4.0 V	16.4	8.3	4.4	0.5	2.0	8.0	3 A g⁻¹ /200/62.5%
	0-4.3 V	37	18.5	7.2	0.54	2.1	8.6	3 A g⁻¹ /200/66.7%
	0-4.0 V	42.1	28.4	8.9	0.5	2.0	8.0	3 A g⁻¹ /200/63.1%
	0-4.3 V	55.9	36.8	19.2	0.54	1.9	7.7	3 A g⁻¹ /200/51.7%

Table S7 Summary of performance of MnF₂//AC and MnF₂-E//AC LICs and NICs.
Systems	Voltage window / V	Energy density / Wh kg\(^{-1}\)	Power density / kW kg\(^{-1}\)	Cycling behavior / retention%, repeated cycles, current density	Refs.
TiSe\(_{0.8}S_1.4\)//AC	0.0-2.6	50-14	-	69%/5000/1 A g\(^{-1}\)	1
TiO\(_2\)-rGO//AC	1.0-4.5	42-8.9	0.8-8.0	80%/100/0.4 A g\(^{-1}\)	2
CNT/V\(_2O_5\)//AC	1.8-4.0	25.5-6.9	0.04-6.3	-	3
TiO\(_2\)-B//CNT	0.0-2.8	23-7	0.14-2.8	73%/1200/1.5 A g\(^{-1}\)	4
TiO\(_2\) belt///graphene	0.0-3.8	82-21	0.57-19	73%/600/1 A g\(^{-1}\)	5
TiO\(_2\)@EEG//EEG	0.0-3.0	72-10	0.303-2.0	68%/1000/1.5 A g\(^{-1}\)	6
MnF\(_2\) 8#//AC\((1:1)\)	0-4.0	69.2-31.1	0.5-16.0	72.5%/5000/5 A g\(^{-1}\)	
	0-4.3	82.9-38.2	0.54-17.2	63.5%/1000/5 A g\(^{-1}\)	This work
MnF\(_2\) 8#-E//AC\((1:2)\)	0-4.0	106.8-41.4	0.33-10.7	63.4%/3000/5 A g\(^{-1}\)	
	0-4.3	132.2-44.6	0.36-11.5	60.8%/2000/5 A g\(^{-1}\)	

Note: EEG graphene nanosheets; CNT carbon nanotube; rGO Reduced Graphene Oxide

Table S8 Electrochemical performance comparison for some reported LICs.
Systems (NIBs)	R_s (Ω)	Q_1 (S·sec)	n_1	R_{ct} (Ω)	W (S·sec$^{-1/2}$)	Q_2 (S·sec$^{1/2}$)	n_2	R_e (Ω)	χ^2
MnF$_2$ 8#	3.68	6.526×10$^{-4}$	0.9872	144.8	0.004796	1.366×10$^{-3}$	0.8916	2.154×10$^{-14}$	3.26×10$^{-4}$
MnF$_2$ 8#-E	3.632	1.468×10$^{-5}$	0.8627	106.7	8.269×10$^{-7}$	1.775×10$^{-3}$	0.6392	4.173×10$^{-15}$	4.23×10$^{-5}$

Table S9 EIS parameters of MnF$_2$ 8# and MnF$_2$ 8#-E electrodes for Na-ion storage.
Systems	Voltage window / V	Energy density / Wh kg\(^{-1}\)	Power density / kW kg\(^{-1}\)	Cycling behavior / retention%, repeated cycles, current density	Refs.
NiCo\(_2\)O\(_4\)/AC	0-3.0	23.5-13.8	0.036-0.308	61.2%/2000/ 0.15 A g\(^{-1}\)	7
Na\(_{0.44}\)MnO\(_2\)	0-1.6	27.9-15	0.012-0.24	-	8
/Na\(_{0.44}\)MnO\(_2\)					
V\(_2\)O\(_5\)/CNT/AC	0-2.8	38-7.5	0.14-5.0	-	9
Na-TNT/AC	0-3.0	34-13	0.15-0.89	80%/1000/ 0.25 A g\(^{-1}\)	10
MnF\(_2\) 8#/AC (1:1)	0-4.3	37-7.2	0.54-8.6	66.7%/100/ 3 A g\(^{-1}\)\(^\#\)	
				66.7%/300/ 3 A g\(^{-1}\)\(^#\)	
				58.4%/500/ 3 A g\(^{-1}\)\(^#\)	
				58.4%/800/ 3 A g\(^{-1}\)\(^#\)	
				88.8%/100/ 3 A g\(^{-1}\)\(^*\)	
				88.8%/300/ 3 A g\(^{-1}\)\(^*\)	This
				77.9%/500/ 3 A g\(^{-1}\)\(^*\)	work
				77.9%/800/ 3 A g\(^{-1}\)\(^*\)	
MnF\(_2\) 8#/E/AC (1:1)	0-4.0	42.1-8.9	0.5-8.0	68.4%/100/ 3 A g\(^{-1}\)\(^@\)	
				63.1%/200/ 3 A g\(^{-1}\)\(^@\)	
				52.7%/500/ 3 A g\(^{-1}\)\(^@\)	
				52.7%/800/ 3 A g\(^{-1}\)\(^@\)	
				86.7%/100/ 3 A g\(^{-1}\)\(^@\)	
				80.0%/200/ 3 A g\(^{-1}\)\(^@\)	
				67.2%/500/ 3 A g\(^{-1}\)\(^@\)	
				67.2%/800/ 3 A g\(^{-1}\)\(^@\)	

Note: \# Based on the 1\(^{st}\) cycle; * Based on the 5\(^{th}\) cycle; @ Based on the 20\(^{th}\) cycle

Table S10 Electrochemical performance comparison for some reported NICs.
Chemicals, agents and materials	Type or level	Company	Detailed characteristics or parameters
Mn(CH₃COO)₂•4H₂O	AR	SinoPharm	purity≥99.0%
HF	AR	Zhanyun	purity≥40.0%
EG	AR	SinoPharm	purity≥99.0%
NPA	AR	SinoPharm	purity≥99.0%
NBA	AR	SinoPharm	purity≥99.0%
NMP	AR	SinoPharm	purity≥99.0%
NaBH₄	AR	SinoPharm	purity≥96.0%
AB	Battery grade	/	/
PVDF	Battery grade	/	/
Li plate	Battery grade	China Energy	15.6*0.45 mm
Na plate	Battery grade	/	/
Cu foil	200*0.015	GuangZhou	Total thickness: 15 μm; weight: 87 g m⁻²
Carbon coated-Al foil	222*0.015	GuagZhou	Total thickness: 17 μm; Strength: 192 Mpa
Glass microfiber filters	GF/D 2.7 μm; 1823-025	Whatman	Diameter: 25 mm; Thickness: 675 μm; weight: 121 g m⁻²
AC	YEC 8b	Fuzhou YiHuan	D50: ~10 μm; Density: 0.4 g cm⁻³; SSA:2000~2500 m² g⁻¹
Li-ion electrolytes	LBC-305-01	CAPCHEM	1 M LiPF₆ /EC:EMC:DMC (1:1:1) /1% VC 0.85 M NaPF₆ /EC:DEC (1:1) / 5% FEC
Na-ion electrolytes	/	MJS	/
Cell components	CR-2032	Shenzhen	/

Table S11 Chemicals, agents and materials.
References

1. A. Chaturvedi, P. Hu, C. Kloc, Y. S. Lee, V. Aravindan and S. Madhavi, J. Mater. Chem. A, 2017, 5, 19819-19825.
2. H. Kim, M. Y. Cho, M. H. Kim, K. Y. Park, H. Gwon, Y. Lee, K. C. Roh and K. Kang, Adv. Energy Mater., 2013, 3, 1500.
3. Z. Chen, V. Augustyn, J. Wen, Y. W. Zhang, M. Q. Shen, B. Dunn and Y. F. Lu, Adv. Mater., 2011, 23, 791.
4. V. Aravindan, N. Shubha, W. C. Ling and S. Madhavi, J. Mater. Chem. A, 2013, 1, 6145-6151.
5. H. W. Wang, C. Guan, X. F. Wang and H. J. Fan, Small, 2015, 11, 1470-1477.
6. F. X. Wang, C. Wang, Y. J. Zhao, Z. C. Liu, Z. Chang, L. J. Fu, Y. S. Zhu, Y. P. Wu and D. Y. Zhao, Small, 2016, 12, 6207-6213.
7. R. Ding, L. Qi and H. Y. Wang, Electrochim. Acta, 2013, 114, 726-735.
8. Z. X. Chen, T. C. Yuan, X. J. Pu, H. X. Yang, X. P. Ai, Y. Y. Xia and Y. L. Cao, ACS Appl. Mater. Interfaces, 2018, 10, 11689-11698.
9. Z. Chen, V. Augustyn, X. L. Jia, Q. F. Xiao, B. Dunn and Y. F. Lu, ACS Nano, 2012, 6, 4319-4327.
10. J. Yin, L. Qi and H. Y. Wang, ACS Appl. Mater. Interfaces, 2012, 4, 2762-2768.