Critical behavior of density of states near Fermi energy in low-dimensional disordered metals

E. Şaşoğlu, S. Çalışkan and M. Kumru

1 Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
2 Department of Physics, Fatih University, TR-34500, Büyükçekmece, İstanbul, Turkey

(Dated: August 21, 2009)

We study the effect of electron-electron interaction on the one-particle density of states (DOS) \(\rho^{(d)}(\epsilon, T) \) of low-dimensional disordered metals near Fermi energy within the framework of the finite temperature conventional impurity diagram technique. We consider only diffusive limit and by a geometric re-summation of the most singular first order self-energy corrections via the Dyson equation we obtain a non-divergent solution for the DOS at low energies, while for higher energies the well-known Altshuler-Aronov corrections are recovered. At the Fermi level \(\rho^{(d)}(\epsilon, T = 0) \rightarrow 0 \), this indicates that interacting disordered two- and quasi-one-dimensional systems are in insulating state at zero temperature. The obtained results are in good agreement with recent tunneling experiments on two-dimensional GaAs/AlGaAs heterostructures and quasi-one-dimensional doped multiwall carbon nanotubes.

PACS numbers: 71.10.Pm, 71.23.-k, 71.30.+h, 72.15.Rn

I. INTRODUCTION

In the last three decades, a great deal of progress has been made towards revealing the behavior of electrons in a random potential. Efforts have led to a detailed understanding of the low-temperature properties of the weakly disordered systems, i.e., systems for which \(k_F l \gg 1 \) where \(k_F \) is the Fermi wave number and \(l \) is the elastic mean free path. This understanding has been embodied in weak localization theory and disorder enhanced electron-electron (ee) interaction effects. The interplay of ee interaction and random impurity potential on the transport and thermodynamic properties of disordered systems has been studied intensively. In particular, treatment of the problem within perturbation theory lead to the understanding of the anomalous logarithmic decrease in conductivity with decreasing temperature in two-dimensional (2d) electron gas, negative magnetoresistance observed in many 2d and 3d systems as well as the depression in the DOS near the Fermi energy.

Extensive experimental and theoretical studies have shown that interaction effects are enhanced by disorder and generally result in a decrease of the DOS near the Fermi level. Studies on the theoretical side have, for the most part, concerned two extreme limits. In the limit of strong disorder, this decrease takes the form of a complete gap in the DOS at the Fermi energy. It is known that this Coulomb gap can turn a highly disordered pure metal into a poorly conducting insulator. In the opposite limit, i.e., the diffusive limit, in a pioneering paper Altshuler, Aronov and Lee (AAL) treated the 2d disordered electron problem within the perturbation theory to lowest order in interaction strength. The authors showed that interaction effects in a 2d disordered metal lead to the development of a logarithmic singularity in the one-particle DOS, \(\delta \rho^{(2)}(\epsilon) \sim \ln(\epsilon/\tau) \) near the Fermi energy \(\epsilon_F \), where \(\tau \) and \(\epsilon \) are the impurity scattering time and the energy of the electron measured from the Fermi level, respectively. Such effects become even more stronger in quasi-1d disordered metals, \(\delta \rho^{(1)}(\epsilon) \sim -|\epsilon/\tau|^{-1/2} \). Unlike the low-dimensional systems, the quantum corrections to the DOS in 3d is rather small, \(\delta \rho^{(3)}(\epsilon) \sim \sqrt{\epsilon/\tau} \) giving rise to cusp at the Fermi energy. Extension of the AAL theory to the ballistic limit shows that the interaction effects give rise to non-trivial corrections to the corresponding physical properties of the disordered systems also in this regime. The reduction in the one-particle DOS near the Fermi energy results in suppression of the tunneling conductance at small voltages, a phenomenon commonly known as the zero-bias anomaly (ZBA). Several groups have performed tunneling measurements on 3d and quasi-2d systems since early 1980’s and observed the predicted dependence of the tunneling conductance with voltage.

Recently the problem of ee interaction in disordered metals received considerable interest due to the discovery of the unexpected metallic state in high-mobility two-dimensional semiconductors by Kravchenko et al. and development of the new experimental techniques such as time domain capacitance spectroscopy (TDCS). The existence of a metallic state in 2d with finite conductivity at zero temperature is in conflict with the conventional weak localization theory, which predicts that even negligible amount of disorder in low dimensional systems (\(d \leq 2 \)) localizes electrons at sufficiently low temperatures. Thus, in spite of several theoretical proposals, the metallic state in 2d is one of the puzzling phenomena that is still waiting for an adequate description. On the other hand, TDCS is appeared to be a very useful technique for detection of the tunneling current in regimes difficult to access by conventional methods, and, thus allows the quantitative comparison of the existing theories with experiments. Using TDCS Chan et al., for the first time measured the entire voltage dependence of the tun-
neling conductance of a two-dimensional electron system in a GaAs/AlGaAs heterostructure for different electron densities. The authors observed the expected logarithmic Coulomb anomaly only in the case of a small suppression of the tunneling current. However, for large suppressions corresponding to small electron densities the functional form of the ZBA vs bias voltage was significantly deviating from the predictions of the AAL theory, especially in the regime of very small voltages.

The critical behavior of the DOS for $\epsilon \to 0$ in reduced dimensions which is not accessible within the first-order perturbation theory, is of great interest to understand the low-temperature transport and thermodynamic properties of the disordered metals. In this respect an initial attempt was made by Finkelstein using field theoretic renormalization group theory, who found that $\rho^{(2)}(\epsilon) \sim \epsilon^{1/4}$ as $\epsilon \to 0$ for 2d systems. Since then there has been a lot of attempt to study energy and temperature dependence of the DOS around the Fermi level employing different methods. Kopietz has considered a 2d system and by re-summing the most singular contributions to the average DOS via a gauge-transformation obtained that $\rho^{(2)}(\epsilon) \sim C|\epsilon|^{1/4}$ for $\epsilon \to 0$, where where C is a dimensionless constant and ϵ is the charge of the electron. Kamenev and Andreev using Keldysh $\sigma-$model derived a non-perturbative result for the DOS of quasi-2d systems. Rollbühler and Grabert extended this work to quasi-1d systems including additionally the interelectrode interactions and obtained a non-divergent solution for the DOS at low energies, that recovers the $(|\epsilon|)^{-1/2}$ behavior for higher energies. It should be emphasized that in reduced dimensions, in contrast to first-order perturbation theory (AAL theory), all these different methods yield a non-divergent solution for the DOS around Fermi level with a power-law behavior, whereas for higher energies results of AAL theory is recovered.

The aim of the present work is a detailed study of the critical behavior of DOS around Fermi level in low-dimensional disordered metals within the diagrammatic perturbation theory. This technique, in contrast to above mentioned non-perturbative schemes, provides a mathematically clear and transparent framework in studying impurity problems in condensed-matter physics. In the present work we consider only diffusive regime and go beyond the first-order perturbation theory. We show that a geometric re-summation of the most singular first-order self-energy corrections via the Dyson equation gives a non-divergent solution for the DOS at low energies, while for higher energies the obtained expressions are reduced to the predictions of the AAL theory. At zero temperature in both dimensions the DOS vanishes at the Fermi energy. In spite of good agreement between present approach and above mentioned non-perturbative treatments for the DOS at small corrections (higher energies) an essential difference appears in the asymptotic energy dependence of the DOS. The remaining of the paper is organized as follows. In Sec. II high-order perturbation corrections to the DOS is calculated and compared with AAL theory. In Sec. III we dwell on the zero-bias anomaly of the tunneling conductivity and make a qualitative comparison of the obtained results with recent tunneling experiments. Section IV gives the conclusions.

II. HIGH-ORDER PERTURBATION CORRECTIONS TO THE DOS

As it is well known the main contributions to the physical properties of disordered systems in the weak localization theory are connected with two singularities: First appears in the diffusion propagator, characterizing an
electron-hole pair with small difference of the momenta \(\mathbf{q} \) and of the energies \(\omega \) (Diffusion pole). Other singularity is due to propagation of electron-electron pair with small sum of the momenta \(\mathbf{q} \) and small difference of the energies \(\omega \) (Cooper pole). In weak disorder case, corrections to the DOS can be obtained through the self-energy \(\Sigma(p, i\epsilon_n) \). First order in Coulomb interaction contributions to the self-energy are illustrated in Fig. 1. Higher order in Coulomb interaction also gives contributions to the self-energy. Some particular diagrams concerning the order in Coulomb interaction also gives contributions to the self-energy. Some particular diagrams concerning the order in Coulomb interaction also gives contributions to the self-energy.

The DOS \(\rho^{(d)}(\epsilon, T) \) of a 2d-dimensional system is defined in terms of the total retarded GF, \(G^R(p, i\epsilon_n) \)

\[
\rho^{(d)}(\epsilon, T) = -\frac{1}{\pi} \text{Im} \int \frac{d^dp}{(2\pi)^d} G^R(p, i\epsilon_n)_{i\epsilon_n \rightarrow \epsilon} \tag{7}
\]

Substituting Eq. (6) into Eq. (5) and utilizing Eq. (7) the DOS takes the following form

\[
\rho^{(d)}(\epsilon, T) = \rho_0^{(d)} - \frac{1}{\pi} \text{Im} \sum_{n=1}^{\infty} A_n [\alpha(\epsilon, T)]^n \tag{9}
\]

where

\[
A_n = \int \frac{d^dp}{(2\pi)^d} [G^R_0(p, i\epsilon_n)]^{n+1} [G^A_0(p, i\epsilon_n)]^n \tag{10}
\]

Substituting Eq. (11) into Eq. (10) and taking the sum over \(n \), one obtains the total contribution to the DOS from the diffusion channel

\[
\rho^{(d)}(\epsilon, T) = \rho_0^{(d)} - \rho_0^{(d)} \text{Im} \left\{ \frac{\beta}{\sqrt{1 - i\beta(1 + \sqrt{1 - i\beta})}} \right\} \tag{12}
\]

where \(\beta = 4\pi^2 \alpha(\epsilon, T) \). Note that we use the expression

\[
\ln \left[1 + \sqrt{1 + x^2} \right] = \ln 2 - \sum_{n=1}^{\infty} (-1)^n \frac{(2n-1)!!}{(n!!)^2 x^{2n}} \tag{13}
\]

in evaluating the sum in Eq. (9).
For a short range (static) Coulomb interaction the equation above can be simplified considerably. In this case Coulomb potential depends neither on nor and thus the integration in Eq. (20) is straightforward, in which calculation for two and one dimensions gives

$$\alpha(\epsilon, T) = -\frac{\pi \lambda_{\rho}}{8 \epsilon F T^3} + i \frac{\lambda_{\rho}}{4 \epsilon F T^3} \ln \left[\frac{1}{2 \tau(|\epsilon|, T)} \right], \quad (d = 2)$$

$$\alpha(\epsilon, T) = \frac{\lambda_{\rho}}{4 \pi^2 \sqrt{2 \tau(|\epsilon|, T)}(1 + i), \quad (d = 1) \tag{13}$$

where $$\lambda_{\rho} = \rho_0^{(d)} V(0, 0)$$ and $$\epsilon$$ is the energy reckoned from the Fermi level.

If we write $$\beta \equiv \beta_R + i \beta_I$$ where $$\beta_R$$ and $$\beta_I$$ are real and imaginary parts, respectively, and then the Eq. (12) takes the following form

$$\rho^{(d)}(\epsilon, T) = \frac{\rho_0^{(d)}}{2} \sqrt{1 + \beta_R + \sqrt{(1 + \beta_R)^2 + \beta_I^2}} \sqrt{(1 + \beta_R)^2 + \beta_I^2} \tag{14}$$

Using Eqs. (13) and (14) one obtains the following expressions for the DOS of 2d and quasi-1d systems.

$$\rho^{(2)}(\epsilon, T) \simeq \frac{\rho_0^{(2)}}{\sqrt{1 + 2 \lambda_{\rho} / \epsilon F \ln \left[\frac{1}{2 \tau(\epsilon, T)} \right]}} \tag{15}$$

$$\rho^{(1)}(\epsilon, T) \simeq \frac{\rho_0^{(1)}}{\sqrt{1 + \frac{2 \lambda_{\rho}}{\epsilon F \ln \left[\frac{1}{2 \tau(\epsilon, T)} \right]}}} \tag{16}$$

It follows from Eqs. (15) and (16) that for small corrections one recovers the results of the AAL theory.

$$\rho^{(2)}(\epsilon, T) \simeq \rho_0^{(2)} \left(1 - \frac{\lambda_{\rho}}{\epsilon F \ln \left[\frac{1}{2 \tau(\epsilon, T)} \right]} \right) \tag{17}$$

$$\rho^{(1)}(\epsilon, T) \simeq \rho_0^{(1)} \left(1 - \frac{\lambda_{\rho}}{\sqrt{2 \tau(\epsilon, T)}} \right) \tag{18}$$

Consideration of the direct process in diffusion channel depicted in Fig. (b) yields similar expression for the DOS. Thus, the $$\lambda_{\rho}$$ in Eq. (13) should be replaced by $$\lambda_{\rho}^D = \rho_0^{(d)} \left[V(0, 0) - 2V(p' - p', 0) \right]$$ where the bar over Coulomb potential corresponding to the Hartree diagram denotes averaging over the Fermi surface and the factor 2 appearing because electrons with both spin orientations contribute to the Hartree correction. Note that Hartree term involves zero energy and large momentum transfers.

In above expressions the constant $$\lambda_{\rho}$$ is the only unknown parameter that can not be derived in a general way. For a dynamically screened Coulomb interaction within some approximations the $$\lambda_{\rho}$$ can be cast into the following form

$$\lambda_{\rho} = \frac{1}{2} \ln \left[\frac{\ln \left(\frac{|\epsilon|}{T} \right)}{\tau} \right] - \frac{3}{2} F, \quad (d = 2) \tag{19}$$

$$\lambda_{\rho} = \frac{a \kappa_3}{\sqrt{\pi}} \ln^{1/2} \left[\frac{D \kappa_3^2}{(|\epsilon|, T)} \right] - \frac{3}{2} F, \quad (d = 1) \tag{19}$$

where $$\kappa_3 = \sqrt{4 \pi e^2 \rho_0^{(3)}}$$ and the first terms represent the exchange contribution to the effective interaction constant $$\lambda_{\rho}$$ in diffusion channel while the second term $$\left(\frac{3}{2} F \right)$$ is associated with the Hartree contribution in the same channel. The specific nature for Coulomb interaction in low-dimensional systems manifest itself only in a logarithmic dependence of the constant $$\lambda_{\rho}$$ on $$\epsilon$$ and $$T$$. In contrast to exchange process the Hartree or direct contribution to the $$\lambda_{\rho}$$ is relatively small ($$F \ll 1$$), in both dimensions the evident expression of the parameter $$F$$ is logarithmic.6

$$F = \frac{2}{x^2} \ln(1 + x^2), \quad (d = 2) \tag{20}$$

$$F = \frac{1}{\pi \sqrt{x^2 - 1}} \ln \left[\frac{x + \sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} \right], \quad (d = 1) \tag{20}$$

where $$x = \frac{2 \pi e^2 \kappa_3}{\kappa_3}$$. If $$\kappa_3 \ll p_F$$ then $$F \ll 1$$. For a detailed discussion the reader is referred to the review article by Altshuler and Aronov.2

So far we have restricted our attention here to the calculation of self energies in the diffusion channel only. First order corrections to the self energy given in Fig. (a) include interactions in the Cooperon channel as well. The extension to include the contribution of the Cooperon

\[FIG. 3: Normalized DOS of a 2d disordered system as a function of the energy reckoned from the Fermi level at $$T = 0$$ for selected impurity concentrations. The normalized pure DOS $$\rho_0^{(2)}$$, corresponding to $$\tau = \infty$$, is also given for comparison. In the inset we show the comparison of the DOS with the AAL theory (broken line) in logarithmic scale (left hand side) and linear scale (right hand side) for $$\tau = 0.01$$. Notice the deviations from the logarithmic behavior (broken line).\]
channel is straightforward. It is clear that the additional self-energy parts from this channel only renormalizes the dimensionless interaction constant λρ. Then, one can write the total self-energy Σ(p, iεn) by adding the self-energies in diffusion ΣD(p, iεn) and Cooperon ΣC(p, iεn) channels as Σ(p, iεn) = ΣD(p, iεn) + ΣC(p, iεn). Accordingly, renormalized dimensionless interaction constant becomes λρ ⇒ λ = λDρ + λCρ, where λCρ is the interaction constant related to the self-energies in the Cooperon channel in Fig. 1. Consequently, replacing λρ of Eqs. (15) and (16) by λ we obtain the total contribution (including both Cooperon and diffusion channels) to the DOS.

In Figs. 3 and 4 we present normalized DOS near the Fermi energy for a 2d and quasi-1d systems at T = 0 for selected impurity concentrations. In the insets a comparison with the AAL theory is given. As seen, in contrast to first-order perturbation theory, we obtain a vanishing DOS at Fermi level within the high-order perturbation theory, i.e., in both dimensions ρ(ε, T = 0) → 0 for ε → 0. This implies that interacting disordered 2d and quasi-1d systems are in insulating state at T = 0 in diffusive regime. On the other hand, the suppression of the DOS around Fermi level is less singular compared to first-order perturbation theory, for example in 2d systems the calculated DOS substantially deviates from the the logarithmic behavior (see Fig. 3). Such behavior might be connected with the excluded high-order self-energy diagrams in derivation of the Eqs. (15) and (16). Note that the complexity of the diagrams increases dramatically with increasing order of the perturbation theory (For example see Fig. 2 for second order self-energy contributions) and those neglected terms can further decrease the DOS around Fermi level. However, these complex terms can not be systematically included in our treatment. It is worth to mention that within the present approach the results of the AAL theory is recovered at small corrections, i.e., when εFτ ≫ 1 (see Eqs. (17) and (18)). Note that in low-dimensional systems the AAL theory is valid as long as corrections to the DOS are small. When corrections to the DOS are so large, one expects the perturbation calculation to break down and the DOS at the Fermi level diverges to negative infinity.

Finally we should note that despite good agreement between present results and non-perturbative studies for the energy and temperature dependence of the DOS at small corrections (higher energies) an essential difference appears in the asymptotic energy dependence of the DOS. For example in 2d systems (see Eq. (19)) our calculated zero temperature DOS vanishes as ρ(0)(ε) ∼ [−ln(τε)]−1/2 for ε → 0, whereas non-perturbative schemes give a power-law behavior.40,47,48

III. ZERO-BIAS ANOMALY OF THE TUNNELING CONDUCTIVITY

The singularity in the energy dependence of the one-particle DOS would be reflected in thermodynamic and transport properties of disordered conductors. A clear manifestation of this effect is the minimum of the tunneling conductivity at zero bias. The conductivity of the tunneling contact is related to DOS by

\[\frac{\sigma^{(d)}(V, T)}{\sigma_0^{(d)}} = \frac{1}{4T} \int_{-\infty}^{+\infty} d\epsilon \frac{\rho^{(d)}(\epsilon, T)}{\rho_0^{(d)}} \left[\frac{1}{\cosh^2 \left(\frac{\epsilon - \mu}{2T} \right)} - \frac{1}{\cosh^2 \left(\frac{\epsilon + \mu}{2T} \right)} \right] \]

where \(\sigma_0 \) being classical conductivity, called Drude expression. At zero temperature Eq. (21) reduces to

\[\frac{\sigma^{(d)}(V)}{\sigma_0^{(d)}} = \frac{\rho^{(d)}(\epsilon V)}{\rho_0^{(d)}} \]

As seen from Eq. (22) at T = 0 the \(\sigma(V) \) is directly proportional to \(\rho(V) \). Thus the measurement of the tunneling conductivity as a function of bias voltage provides important information on the energy dependence of the one-particle DOS. On the other hand, at finite temperatures the Eq. (21) can be written as

\[\frac{\sigma^{(d)}(T)}{\sigma_0^{(d)}} = \frac{2\rho^{(d)}(T)}{\rho_0^{(d)}} \int_0^1 dx \frac{\rho^{(d)}(2Tx)}{\cosh^2 x} + \frac{2}{\rho_0^{(d)}} \int_0^\infty dx \frac{\rho^{(d)}(2Tx)}{\cosh^2 x} \]

In this expression the major contribution comes from the first integral and calculation for 2d- and quasi-1d systems gives

\[\frac{\sigma^{(d)}(T)}{\sigma_0^{(d)}} = \frac{2C_0}{\sqrt{1 + \frac{2\lambda}{\epsilon_F T}}} \]

\[\frac{2C_0}{\sqrt{1 + \frac{2\lambda}{\sqrt{2}\tau}}} \]

(d = 2)

(d = 1)
where \(C_0 \approx 1 \) is a coefficient. The expression (24) shows the change of the tunneling conductivity of the low-dimensional systems corresponding to the temperature in the small value of the potential \((V \rightarrow 0) \).

Since early 1980’s several research groups have performed tunneling measurements of quasi-2d disordered metal and semi-metal films and observed the predicted logarithmic dependence of tunneling conductance with voltage.21,22,23,24,25 Note, however, that the experimental techniques used in these early studies was not capable of detecting tunneling current for small voltages. Access to such regimes becomes possible only recently with TDCS method as we mentioned in the introduction. It should be emphasized that TDCS is unique in allowing complete extraction of the tunneling spectrum of low-dimensional systems. Using this technique Chan et al., for the first time measured the entire voltage dependence of the tunneling conductance of a 2d electron system in a GaAs/AlGaAs heterostructure for various electron densities.27,28 The authors observed the expected logarithmic Coulomb anomaly only in the case of a small suppression of the tunneling current (\(\epsilon_F \tau \gg 1 \)). However, for large suppressions corresponding to small electron densities for which \(\epsilon_F \tau \approx 1 \) the functional form of the ZBA vs bias voltage was significantly deviating from the predictions of the AAL theory, especially in the regime of very small voltages. Furthermore, application of magnetic field perpendicular to the 2d plane results in a linear dependence of the tunneling conductance on voltage near zero bias for all magnetic field strengths and electron densities. This latter phenomena is not yet completely understood.32 Peculiar behavior of the tunneling conductivity at small electron densities can be qualitatively explained by the present theory. Indeed, as seen from Fig. 4 the DOS of 2d systems strongly deviates from the logarithmic behavior for small energies in agreement with observations of Chan et al. However, in our case the deviations seem to be stronger than the one observed in the experiment. As commented in previous section this might be due to excluded high-order self-energy diagrams in calculation of the corrections to the DOS.

In contrast to 2d systems, ZBA in quasi-1d conductors received less attention. White et al., reported the first systematic study of the corrections to the DOS of quasi-1d granular aluminum wires.53 The obtained corrections to the DOS somehow do not have the \(V^{-1/2} \) dependence predicted by AAL theory, but are significantly larger than the corrections observed in corresponding bulk samples. Pierre et al., measured the tunneling DOS of a metallic wire in perturbative regime in a controlled way and obtained the predicted behavior for the suppression of the tunneling conductance.54 Recently, Yu and Natelson studied the ZBA in electrochemically fabricated disordered nanojunctions of various size. For large junctions the authors obtained a small ZBA which is consistent with the perturbative theory of AAL.55 However, in atomic scale junctions the observed ZBA was approaching 100% conductance suppression as \(T \rightarrow 0 \).24

Finally, we will briefly discuss the ZBA observed in doped multiwall carbon nanotubes (MWCNT). MWCNT constitute a quasi-1d systems with fascinating physical properties. Several experiments have demonstrated that the charge transport in these systems is diffusive,37,38,39,40 i.e., showing typical weak localization features in the magnetoconductance and thus, their physical properties show Fermi-liquid (FL) behavior. However, the functional form of the observed ZBA in MWCNT is characteristics of the Luttinger-liquid state in 1d clean (ballistic) systems of interacting electrons. One of the main features of the LL state in 1d is the power-law dependence of physical quantities, for instance tunneling DOS, as a function of energy or temperature \((\rho(\epsilon) \sim \epsilon^\alpha) \).21

In MWCNT the observed values for the exponent \(\alpha \) is rather scattered within 0.04 and 0.37 depending on the geometry of the samples.62,63,64,65,66,67,68 The observed peculiar behavior of the tunneling conductivity was attributed to the disorder enhanced ee interaction effects and its theoretical descriptions was beyond the first-order perturbation theory due to large suppressions of the tunneling conductance. Thus, a non-perturbative treatment has recently been put forward by Egger and Gogolin.69 The authors predicted a geometry dependent LL-like ZBA in doped MWCNT. Somehow the situation is not so different within present scheme, it follows from the Eq. (16) that the tunneling DOS around Fermi level for quasi-1d systems presents a power-law behavior \((\rho^{(1)}(\epsilon) \sim (\epsilon\tau)^{1/4}) \) with an exponent \(\alpha = 0.25 \). Note that in several tunneling experiments on doped MWCNT the observed value of \(\alpha \) is close to 0.25 in good agreement with our predictions.62,67,68

IV. CONCLUSIONS

In conclusion, we propose a diagrammatic approach to study critical behavior of the one-particle DOS of low-dimensional disordered metals in diffusive regime. By a geometric re-summation of the most singular first order self-energy corrections via the Dyson equation we obtain a non-divergent solution for the DOS at low energies, while for higher energies the well-known Altshuler-Aronov corrections are recovered. At the Fermi level \(\rho^{(0)}(\epsilon, T = 0) \rightarrow 0 \), this indicates that interacting disordered 2d and quasi-1d systems are in insulating state at zero temperature. However, asymptotic energy dependence of the calculated DOS differs from those obtained by non-perturbative methods. For 2d systems at zero temperature the DOS vanishes as \((\rho^{(2)}(\epsilon) \sim [-\ln(|\epsilon\tau|)]^{-1/2}) \) for \(\epsilon \rightarrow 0 \), whereas non-perturbative schemes give a power-law behavior (See Refs. 40,47 and 48). In contrast to 2d case, a power-law behavior \((\rho^{(1)}(\epsilon) \sim (\epsilon\tau)^{1/4}) \) is predicted for the asymptotic energy dependence of the DOS of quasi-1d systems. The obtained results are in good agreement with recent tunneling experiments on two-dimensional GaAs/AlGaAs heterostructures and quasi-one-dimensional doped multiwall
carbon nanotubes.

* Electronic address: e.sasioglu@fz-juelich.de
† Electronic address: scaliskan@fatih.edu.tr
‡ Electronic address: mkumru@fatih.edu.tr

1 A. A. Abrikosov, L. P. Gor’kov and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics, Pergamon Press, New York, 1965.
2 G. Bergmann, Phys. Rep. 107, 1 (1984).
3 B. L. Altshuler and A. G. Aronov, Chap.1 in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (Elsevier, North- Holland, 1985).
4 H. Fukuyama , Chap.2 in Electron- Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (Elsevier, North- Holland, 1985).
5 P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
6 B. I. Shklovskii, A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984).
7 J. G. Massey and M. Lee, Phys. Rev. Lett. 75 4266 (1995).
8 J. G. Massey and M. Lee, Phys. Rev. Lett. 77 3399 (1996).
9 V. Yu. Butko, J. F. DiTusa, P. W. Adams, Phys. Rev. Lett. 84 1543 (2000).
10 B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett. 44 1288 (1980).
11 B. L. Altshuler and A. G. Aronov, Sov. Phys. JETP 50 968 (1979).
12 Gábor Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001); Gábor Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 201201 (2001); Gábor Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 65, 020201 (2002).
13 S. A. Vitkalov, K. James, B. N. Narozhny, M. P. Sarachik, and T. M. Klapwijk, Phys. Rev. B 67, 113310 (2003).
14 I. Paul, C. Pépin, B. N. Narozhny, and D. L. Maslov, Phys. Rev. Lett. 95, 017206 (2005).
15 E. McCann, K. Kechedzhi, Vladimir I. Falko, H. Suzuura, T. Ando, and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).
16 Y. Adamov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 73, 045426 (2006); I. V. Gornyi and A. D. Mirlin, Phys. Rev. B 69, 045313 (2004); Ya. M. Blanter and A. D. Mirlin, Phys. Rev. B 57, 4566 (1998).
17 E. G. Mishchenko, A. V. Andreev, and L. I. Glazman, Phys. Rev. Lett. 87, 246801 (2001); A. M. Rudin, I. L. Aleiner, and L. I. Glazman, Phys. Rev. B 55, 9322 (1997); L. Shekhtman and L. I. Glazman, Phys. Rev. B 52, 229 (1995).
18 E. Kogan and B. Rosenstein, Phys. Rev. B 69, 113105 (2004).
19 A. A. Koulakov, Phys. Rev. B 62, 6858 (2000).
20 W. L. McMillan and Jack Mochel, Phys. Rev. Lett. 46 556 (1981).
21 Y. Imry and Z. Ovadyahu, Phys. Rev. Lett. 49 841 (1982).
22 M. E. Gershenson, V. N. Gubankov and M. I. Falei, JETP Lett. 41 534 (1985).
23 A. E. White, R. C. Dynes and J. P. Garno, Phys. Rev. B 31 1174 (1985).
24 J. M. Valles, Jr., R. C. Dynes, and J. P. Garno, Phys. Rev. B 40 7590 (1989).
25 Shih-Ying Hsu and J. M. Valles, Phys. Rev. B 49 16600 (1994).
26 S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’lorio, Phys. Rev. B 50, 8039 (1994); S. V. Kravchenko, Whitney E. Mason, G. E. Bowker, J. E. Furneaux, V. M. Pudalov, and M. D’lorio Phys. Rev. B 51, 7038 (1995).
27 S. V. Kravchenko, D. Simonian, M. P. Sarachik, Whitney Mason, and J. E. Furneaux, Phys. Rev. Lett. 77, 4938 (1996); D. Simonian, S. V. Kravchenko, M. P. Sarachik, and V. M. Pudalov, Phys. Rev. Lett. 79, 2304 (1997); S. V. Kravchenko and T. M. Klapwijk, Phys. Rev. Lett. 84, 2909 (2000).
28 H. B. Chan, P. I. Glicofridis, R. C. Ashoori, and M. R. Melloch, Phys. Rev. Lett. 79, 2867 (1997).
29 Elihu Abrahams, Sergey V. Kravchenko, and Myriam P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).
30 S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys. 67, 1 (2004).
31 Qimiao Si and C. M. Varma, Phys. Rev. Lett. 81, 4951 (1998).
32 Boris L. Altshuler and Dmitrii L. Maslov, Phys. Rev. Lett. 82, 145 (1999).
33 E. P. Nakhmedov, V. Prigodin, S. O. S. and E. Szász, Phys. Rev. B 66, 233105 (2002); E. P. Nakhmedov and V. N. Prigodin, Phys. Rev. B 65, 235107 (2002).
34 E. P. Nakhmedov and K. Morawetz, Phys. Rev. B 66, 195333 (2002); E. P. Nakhmedov, K. Morawetz, M. A. duri, A. Yurtsever, and C. Radehaus, Phys. Rev. B 67, 205106 (2003).
35 B. Rosenstein and Tran Minh-Tien, Phys. Rev. B 68, 245321 (2003).
36 Matthew S. Foster and Andrews W. W. Ludwig, Phys. Rev. B 74, 241102 (2006); ibid. 77, 165108 (2008).
37 Hu Bun Chan, Tunneling spectroscopy of the two-dimensional electron gas, PhD thesis, MIT, 1999.
38 R. C. Ashoori and H. B. Chan, Solid State Commun., 127, 709 (2003).
39 O. E. Dial, R. C. Ashoori, L. N. Pfeiffer, and K. W. West, Nature 448, 176 (2007).
40 A. M. Finkelstein, Zh. Eksp. Teor. Fiz. 84, 168 (1983) [Sov. Phys. JETP 57, 97 (1983)].
41 R. Oppermann, Z. Phys. B 49, 273 (1983).
42 H. Fukuyama, Y. Isawa and H. Yasuhara: J. Phys. Soc. Jpn. 52, 16 (1983).
43 C. Castellani, C. di Castro, and G. Forgacs, Phys. Rev. B 30 1593 (1984).
44 D. Belitz and T. R. Kirkpatrick, Phys. Rev. B 48 14072 (1993); D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).
45 V. Dobrosavljević, Elihu Abrahams, E. Miranda, and Sudip Chakravarty, Phys. Rev. Lett. 79 455 (1997).
46 S. Levitov and A. V. Shytov, Prisma Zh. Eksp. Teor. Fiz. 66, 200 (1997) [JETP Lett. 66, 214 (1997)].
47 Peter Kopietz, Phys. Rev. Lett. 81, 2120 (1998); L. Bartsch and P. Kopietz, Eur. Phys. J. B 28, 29 (2002).
48 A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218 (1999).
49 Jörg Rollbühler and Hermann Grabert, Phys. Rev. Lett. 87, 126804 (2001).
50 Yuval Oreg, P. W. Brouwer, B. D. Simons, and Alexander Altland, Phys. Rev. Lett. 82, 1269 (1999).
51 E. P. Nakhmedov, M. Kumru, and R. Oppermann, Phys. Rev. Lett. 84, 3930 (2000); E. P. Nakhmedov, H. Feldmann, R. Oppermann, and M. Kumru Phys. Rev. B 62, 13490 (2000).
52 T. F. Rosenbaum, K. Andres, G. A. Thomas and P. A. Lee, Phys. Rev. Lett. 46 568 (1981).
53 Alice E. White, R. C. Dynes, and J. P. Garno, Phys. Rev. Lett. 56, 532 (1986).
54 F. Pierre, H. Pothier, P. Joyez, Norman O. Birge, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 86, 1590 (2001).
55 L. H. Yu and D. Natelson, Phys. Rev. B 68, 113407 (2003).
56 L. H. Yu and D. Natelson. Appl. Phys. Lett. 82, 2332 (2003).
57 L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 76, 479 (1996).
58 A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forro, T. Nussbaumer, and C. Schonenberger, Nature 397, 673 (1999).
59 A. Bachtold, M. S. Fuhler, S. Plyasunov, M. Forero, Erik H. Anderson, A. Zettl, and Paul L. McEuen, Phys. Rev. Lett. 84, 6082 (2000).
60 R. Tarkiainen, M. Ahlskog, A. Zyuzin, P. Hakonen, and M. Paalanen, Phys. Rev. B 69, 033402 (2004).
61 C. L. Kane and Matthew P. A. Fisher, Phys. Rev. B 46, 15233 (1992).
62 A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P. L. McEuen, M. Buitelaar, and C. Schonenberger, Phys. Rev. Lett. 87, 166801 (2001).
63 E. Graugnard, P. J. de Pablo, B. Walsh, and R. Reifenberger, Phys. Rev. B 64, 125407 (2001).
64 R. Tarkiainen, M. Ahlskog, J. Penttila, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin, Phys. Rev. B 64, 195412 (2001).
65 K. Liu, Ph. Avouris, R. Martel, and W. K. Hsu, Phys. Rev. B 63, 161404 (2001).
66 W. Yi, L. Lu, H. Hu, Z. W. Pan, and S. S. Xie, Phys. Rev. Lett. 91, 076801 (2003).
67 V. Krstić, S. Blumentritt, J. Muster, S. Roth, and A. Rubio, Phys. Rev. B 67, 041401 (2003).
68 Akinobu Kanda, Kazuhiro Tsukagoshi, Yoshinobu Aoyagi, and Youiti Ootuka, Phys. Rev. Lett. 92, 036801 (2004).
69 R. Egger and A. O. Gogolin, Phys. Rev. Lett. 87, 066401 (2001).