Asymptotic structure of symmetry reduced general relativity

Abhay Ashtekar1, Jiří Bičák2, and Bernd G. Schmidt3

1 Center for Gravitational Physics and Geometry
Department of Physics, Penn State, University Park, PA 16802, USA
2 Department of Theoretical Physics, Charles University
V Holešovičkách 2, 180 00 Prague 8, Czech Republic
3 Max-Planck-Institut für Gravitationsphysik,
Schlaatzweg 1, 14473 Potsdam, Germany

Abstract

Gravitational waves with a space-translation Killing field are considered. In this case, the 4-dimensional Einstein vacuum equations are equivalent to the 3-dimensional Einstein equations with certain matter sources. This interplay between 4- and 3-dimensional general relativity can be exploited effectively to analyze issues pertaining to 4 dimensions in terms of the 3-dimensional structures. An example is provided by the asymptotic structure at null infinity: While these space-times fail to be asymptotically flat in 4 dimensions, they can admit a regular completion at null infinity in 3 dimensions. This completion is used to analyze the asymptotic symmetries, introduce the analog of the 4-dimensional Bondi energy-momentum and write down a flux formula.

The analysis is also of interest from a purely 3-dimensional perspective because it pertains to a diffeomorphism invariant 3-dimensional field theory with local degrees of freedom, i.e., to a midi-superspace. Furthermore, due to certain peculiarities of 3 dimensions, the description of null infinity does have a number of features that are quite surprising because they do not arise in the Bondi-Penrose description in 4 dimensions.

I. INTRODUCTION

Einstein-Rosen waves are among the simplest non-stationary solutions to the vacuum Einstein equations (see, e.g., [1]). Not surprisingly, therefore, they have been used in a number of different contexts: investigation of energy loss due to gravity waves [2], asymptotic structure of radiative space-times [3], quasi-local mass [4], the issue of time in canonical gravity [5], and quantum gravity in a simplified but field theoretically interesting context of midi-superspaces [6]. These solutions
admit two Killing fields, both hypersurface orthogonal, of which one is rotational, \(\partial/\partial \phi \), and the other translational, \(\partial/\partial z \), along the axis of symmetry. (In certain applications, the orbits of the Killing field \(\partial/\partial z \) are compactified, i.e., are taken to be circles. Our analysis will allow this possibility.) When the hypersurface orthogonality condition is removed, we obtain the cylindrical gravitational waves with two polarization modes. These have also been used to explore a number of issues, ranging from the study of Hamiltonian densities \[7\] and numerical analysis of interacting pulses \[8\] to the issue of cosmic censorship \[9\].

The presence of a translational Killing field, however, makes the analysis of the asymptotic structure of these space-times quite difficult: they fail to be asymptotically flat either at spatial or null infinity. Consequently, one can not use the standard techniques to define asymptotic symmetries or construct the analogs of the ADM or Bondi energy momenta. Therefore, until recently, conserved quantities for these space-times—such as the C-energy \[2,7\]—were constructed by exploiting the local field equations, without direct reference to asymptotics. It is not apriori clear, therefore, that the quantities have the physical interpretation that has been ascribed to them.

What is of physical interest are the values of conserved quantities per unit length along the axis of symmetry, i.e. along the integral curves of \(\partial/\partial z \); because of the translational symmetry, the total conserved quantities in such a space-time would be clearly infinite. A natural strategy then is to go to the manifold of orbits of the \(\partial/\partial z \)-Killing field. Since this 3-dimensional space-time does not have a translational symmetry, one would expect it to be asymptotically flat in an appropriate sense. Hence, it should be possible to analyze its asymptotic structure unambiguously. In this paper, we will adopt this approach to explore the symmetries and physical fields at null infinity. A similar analysis of spatial infinity was performed recently \[10\] in the context of the phase space formulation of general relativity. Somewhat surprisingly, it turned out that the C-energy is not the generator of the time translation which is unit at infinity; it does not therefore represent the Hamiltonian, or the physical energy (per unit \(z \)-length) in the space-time. The physical Hamiltonian turns out to be a non-polynomial function of the C-energy. In the present paper, we will see that the same is true of the analog of Bondi energy at null infinity.

Thus, the purpose of this paper is to develop a framework to discuss the asymptotic structure at null infinity for 3-dimensional space-times. The underlying theory is general relativity coupled to matter fields satisfying appropriate fall-off conditions. The conditions on matter are satisfied, in particular, by the fields that arise from a symmetry reduction of a large class of 4-dimensional vacuum space-times admitting a space translation. Therefore, we will, in particular, provide a framework for analyzing the behavior of the gravitational field near null infinity of such space-times. We call such space-times generalized cylindrical waves since they need not admit an axial Killing field \(\partial/\partial \phi \). Our analysis is also useful in a completely different context; that of quantum gravity. For, this class of space-times also provides interesting midi-superspace for quantum gravity and our results set the stage for its asymptotic
quantization and the corresponding S-matrix theory.

The plan of the paper is as follows. In Sec. II, we will analyze the asymptotic structure of the Einstein-Rosen waves from a 3-dimensional perspective. This analysis will motivate our general definition of asymptotic flatness in Sec. III and also make the main results plausible. In Sec. IV, we introduce the notion of asymptotic flatness at null infinity in 3 space-time dimensions and analyze the structure of asymptotic fields. In Sec. V, we discuss asymptotic symmetries and in Sec. VI, conserved quantities. While the general methods adopted are suggested by the standard Bondi-Penrose treatment of null infinity in 4-dimensional general relativity, there are a number of surprises as well. First, in 3 dimensions, the physical metric g_{ab} is flat outside sources. Consequently, there are physically interesting solutions to the constraints which lead to space-times which are flat near spatial infinity i^0; the energy-momentum at i^0 is coded, not in local fields such as the curvature, but in a globally defined deficit angle. This simplifies the task of specifying boundary conditions as one approaches i^0 along null infinity I. On the other hand, there are also a number of new complications. In 4 dimensions, the stationary and the radiative space-times satisfy the same boundary conditions at null infinity. This is not the case in 3 dimensions. Hence, while dealing with radiative solutions, we can not draw on our intuition from the stationary case. Secondly, in 4 dimensions, up to a super-translation freedom— which corresponds to terms $O(1/r)$—there is a fixed Minkowskian metric at infinity. In 3 dimensions, this is not the case; the Minkowski metric η_{ab} to which a physical metric approaches varies even in the leading order, depending on the radiative content of the physical space-time. Consequently, the symmetry group is larger than what one might expect from one's experience in 4 dimensions. Furthermore, while one can canonically single out the translational subgroup of the BMS group in 4 dimensions, now the task becomes subtle; in many ways it is analogous to the task of singling out a preferred Poincaré subgroup of the BMS group. This in turn makes the task of defining the analog of Bondi energy much more difficult. These differences make the analysis non-trivial and hence interesting.

Some detailed calculations are relegated to appendices. Using Bondi-type coordinates, the asymptotic behavior of curvature tensors of Einstein-Rosen waves is analyzed in the 3-dimensional framework in Appendix A. Appendix B considers static cylindrical solutions whose asymptotics, as mentioned above, is quite different from that of the radiative space-times analyzed in the main body of the paper.

It should be emphasized that while part of the motivation for our results comes from the symmetry reduction of 4-dimensional general relativity, the main analysis itself refers to 3-dimensional gravity coupled to arbitrary matter fields (satisfying suitable fall-off conditions) which need not arise from a symmetry reduction. Nonetheless, the framework has numerous applications to the 4-dimensional theory. For example, in the accompanying paper [11], we will use the results of this paper to study the behavior of Einstein-Rosen waves at null infinity of the 4-dimensional space-times.
In this paper, the symbol I will generally stand for I^+ or I^-. In the few cases where a specific choice has to be made, our discussion will refer to I^+.

II. EINSTEIN-ROSEN WAVES: ASYMPTOTICS IN 3 DIMENSIONS

This section is divided into three parts. In the first, we recall the symmetry reduction procedure and apply it to obtain the 3-dimensional equations governing Einstein-Rosen waves. (See, e.g., [1] for a similar reduction for stationary space-times.) This procedure reduces the task of finding a 4-dimensional Einstein-Rosen wave to that of finding a solution to the wave equation on 3-dimensional Minkowski space. In the second part, we analyze the asymptotic behavior (at null infinity) of these solutions to the wave equation. In the third part, we combine the results of the first two to analyze the asymptotic behavior of space-time metrics. We will find that there is a large class of Einstein-Rosen waves which admit a smooth null infinity, I, as well as a smooth time-like infinity i^\pm. (As one might expect, the space-like infinity, i^0, has a conical defect.) These waves provide an important class of examples of the more general framework presented in Sec.III.

A. Symmetry reduction

Let us begin with a slightly more general context, that of vacuum space-times which admit a space-like, hypersurface orthogonal Killing vector $\partial/\partial z$. These space-times can be described conveniently in coordinates adapted to the symmetry:

$$ds^2 = V^2(x)dz^2 + \bar{g}_{ab}(x) \, dx^a dx^b, \quad a, b, \ldots = 0, 1, 2$$

(2.1)

where $x \equiv x^a$ and \bar{g}_{ab} is a 3-metric metric with Lorentz signature. As in the more familiar case of static space-times [1] the field equations are

$$\bar{R}_{ab} - V^{-1} \bar{\nabla}_a \bar{\nabla}_b V = 0, \quad (2.2)$$

$$\bar{g}^{ab} \bar{\nabla}_a \bar{\nabla}_b V = 0, \quad (2.3)$$

where $\bar{\nabla}$ and \bar{R}_{ab} are the derivative operator and the Ricci tensor of \bar{g}_{ab}. These equations can be simplified if one uses a metric in the 3-space which is rescaled by the norm of the Killing vector and writes the norm of the Killing vector as an exponential [12,1]. Then (2.1)–(2.3) become

$$ds^2 = e^{2\psi(x)}dz^2 + e^{-2\psi(x)} \bar{g}_{ab}(x) \, dx^a dx^b,$$

(2.4)

$$R_{ab} - 2\bar{\nabla}_a \psi \bar{\nabla}_b \psi = 0, \quad (2.5)$$
\[g^{ab} \nabla_a \nabla_b \psi = 0 \quad , \tag{2.6} \]

where \(\nabla \) denotes the derivative with respect to the metric \(g_{ab} \).

These equations can be re-interpreted purely in a 3-dimensional context. To see this, consider Einstein’s equations in 3 dimensions with a scalar field \(\Phi \) as source:

\[R_{ab} - \frac{1}{2} R g_{ab} = 8 \pi G T_{ab} = 8 \pi G (\nabla_a \Phi \nabla_b \Phi - \frac{1}{2} (\nabla_c \Phi \nabla^c \Phi) g_{ab}) \quad , \tag{2.7} \]

\[g^{ab} \nabla_a \Phi \nabla_b \Phi = 0 \quad . \tag{2.8} \]

Since the trace of equation (2.7) gives \(R = 8 \pi G \nabla^c \Phi \nabla_c \Phi \), (2.7) is equivalent to

\[R_{ab} = 8 \pi G \nabla_a \Phi \nabla_b \Phi \quad . \tag{2.9} \]

Now, with \(\Phi = \psi / \sqrt{4 \pi G} \) we obtain (2.5) and (2.6). Thus, the 4-dimensional vacuum gravity is equivalent to the 3-dimensional gravity coupled to a scalar field. Recall that in 3 dimensions, there is no gravitational radiation. Hence, the local degrees of freedom are all contained in the scalar field. One therefore expects that the Cauchy data for the scalar field will suffice to determine the solution. For data which fall off appropriately, we thus expect the 3-dimensional Lorentzian geometry to be asymptotically flat in the sense of Penrose \[13\], i.e. to admit a 2-dimensional boundary representing null infinity.

Let us now turn to the Einstein-Rosen waves by assuming that there is further space-like, hypersurface orthogonal Killing vector \(\partial / \partial \phi \) which commutes with \(\partial / \partial z \). Then, as is well known, the equations simplify drastically. Hence, a complete global analysis can be carried out easily. Recall first that the metric of a vacuum space-time with two commuting, hypersurface orthogonal space-like Killing vectors can always be written locally as \[14\]

\[ds^2 = e^{2\psi} dz^2 + e^{2(\gamma - \psi)} (-dt^2 + d\rho^2) + \rho^2 e^{-2\psi} d\phi^2 \quad , \tag{2.10} \]

where \(\rho \) and \(t \) (the “Weyl canonical coordinates”) are defined invariantly and \(\psi = \psi(t, \rho) \), \(\gamma = \gamma(t, \rho) \). (Here, some of the field equations have been used.) Hence the 3-metric \(g \) is given by

\[d\sigma^2 = g_{ab} dx^a dx^b = e^{2\gamma} (-dt^2 + d\rho^2) + \rho^2 d\phi^2 \quad . \tag{2.11} \]

Let us now assume that \(\partial / \partial \phi \) is a rotational field in the 3-space which keeps a time-like axis fixed. Then the coordinates used in (2.10) are unique up to a translation \(t \to t + a \). (Note, incidentally, that “trapped circles” are excluded by the field equations \[9\].)
The field equations (2.11) and (2.12) now become

\begin{align}
R_{tt} &= \gamma'' - \dot{\gamma} + \rho^{-1} \gamma' = 2 \psi^2, \quad (2.12) \\
R_{\rho\rho} &= -\gamma'' + \dot{\gamma} + \rho^{-1} \gamma' = 2 \psi^2, \quad (2.13) \\
R_{t\rho} &= \rho^{-1} \dot{\gamma} = 2 \psi \psi', \quad (2.14)
\end{align}

and

\begin{equation}
-\ddot{\psi} + \psi'' + \rho^{-1} \psi' = 0, \quad (2.15)
\end{equation}

where the dot and the prime denote derivatives with respect to \(t \) and \(\rho \) respectively. The last equation is the wave equation for the non-flat 3-metric (2.11) as well as for the flat metric obtained by setting \(\gamma = 0 \). This is a key simplification for it implies that the equation satisfied by the matter source \(\psi \) decouples from the equations (2.12)-(2.14) satisfied by the metric. These equations reduce simply to:

\begin{equation}
\gamma' = \rho (\dot{\psi}^2 + \psi'^2), \quad (2.16)
\end{equation}

\begin{equation}
\dot{\gamma} = 2 \rho \dot{\psi} \psi'. \quad (2.17)
\end{equation}

Thus, we can first solve for the axi-symmetric wave equation (2.15) for \(\psi \) on Minkowski space and then solve (2.16) and (2.17) for \(\gamma \) –the only unknown metric coefficient– by quadratures. (Note that (2.16) and (2.17) are compatible because their integrability condition is precisely (2.15).)

\section*{B. Asymptotic behavior of scalar waves}

In this subsection we will focus on the axi-symmetric wave equation in 3-dimensional Minkowski space and analyze the asymptotic behavior of its solutions \(\psi \).

We begin with an observation. The “method of descent” from the Kirchoff formula in 4 dimensions gives the following representation of the solution of the wave equation in 3 dimensions, in terms of Cauchy data \(\Psi_0 = \psi(t = 0, x, y), \Psi_1 = \psi_1(t = 0, x, y) \):

\begin{equation}
\psi(t, x, y) = \frac{1}{2\pi} \frac{\partial}{\partial t} \int_S \frac{\Psi_0(x', y') dx'dy'}{[t^2 - (x - x')^2 - (y - y')^2]^{1/2}} + \frac{1}{2\pi} \int_S \frac{\Psi_1(x', y') dx'dy'}{[t^2 - (x - x')^2 - (y - y')^2]^{1/2}}, \quad (2.18)
\end{equation}

where \(S \) is the disk

\begin{equation}
(x - x')^2 + (y - y')^2 \leq t^2 \quad (2.19)
\end{equation}
in the initial Cauchy surface (see, e.g., [15]). We will assume that the Cauchy data are axially symmetric and of compact support.

Let us first investigate the behavior of the solution at future null infinity \(I \). Let \(\rho, \phi \) be polar coordinates in the plane and introduce the retarded time coordinate

\[
u = t - \rho
\] (2.20)

to explore the fall-off along the constant \(\nu \) null hypersurfaces. Because of axial symmetry, we may put \(y = 0 \) without loss of generality. The integration region becomes

\[
(\rho - x')^2 + y'^2 \leq (u + \rho)^2.
\] (2.21)

Let us rewrite the integrands of (2.18) as

\[
\frac{\Psi(x', y')dx'dy'}{[2\rho(u + x') + u^2 - x'^2 - y'^2]^{1/2}} = \frac{1}{(2\rho)^{1/2}} \Psi(x', y')dx'dy' \left(\frac{1}{u + x'} - \frac{1}{\rho} \right)^{-1/2}.
\] (2.22)

For large \(\rho \), (2.22) admits a power series expansion in \(\rho^{-1} \) which converges absolutely and uniformly. Hence we can exchange the integration in (2.18) with the summation and we can also perform the differentiation \(\partial/\partial \nu \) term by term. Therefore on each null hypersurface \(\nu = \text{const} \) one can obtain an expansion of the form

\[
\psi(\nu, \rho) = \frac{1}{\sqrt{\rho}} \left(f_0(\nu) + \sum_{k=1}^{\infty} \frac{f_k(\nu)}{\rho^k} \right).
\] (2.23)

The coefficients in this expansion are determined by integrals over the Cauchy data. These functions are particularly interesting for \(\nu \) so large that the support of the data is completely in the interior of the past cone. One finds

\[
f_0(\nu) = \frac{1}{2\sqrt{2\pi}} \int_{0}^{\infty} \int_{0}^{2\pi} \rho' d\rho' d\phi' \left[-\frac{1}{2} \frac{\Psi_0}{(u + \rho' \cos \phi')^{3/2}} + \frac{\Psi_1}{(u + \rho' \cos \phi')^{3/2}} \right].
\] (2.24)

Note that the coefficient is analytic in \(u^{-1/2} \), and at \(\nu \gg \rho_0 \), \(\rho_0 \) being the radius of the disk in which the data are non-zero, we obtain

\[
f_0(\nu) = \frac{k_0}{u^{3/2}} + \frac{k_1}{u^{1/2}} + \ldots,
\] (2.25)

where \(k_0, k_1 \) are constants which are determined by the data. If the solution happens to be time-symmetric, so that \(\Psi_1 \) vanishes, we find \(f_0 \sim \nu^{-3/2} \) for large \(\nu \). This concludes our discussion of the asymptotic behavior along \(\nu = \text{const} \) surfaces.

Finally, we wish to point out that the main results obtained in this section continue to hold also for general data of compact support which are not necessarily axi-symmetric. In particular, one obtains an expansion like (2.23) where the coefficients now depend on both \(\nu \) and \(\phi \), and asymptotic forms like (2.25). The assumption of compact support can also be weakened to allow data which decay near spatial infinity sufficiently rapidly so that we still obtain solutions smooth at null infinity. (This is in particular the case for the Weber-Wheeler pulse considered in the accompanying paper [11].)
C. Asymptotic behavior of the metric

We now combine the results of the previous two subsections. Recall from Eq. (2.11) that the 3-dimensional metric g_{ab} has a single unknown coefficient, $\gamma(t, \rho)$, which is determined by the solution $\psi(t, \rho)$ to the wave equation in Minkowski space (obtained simply by setting $\gamma = 0$). The asymptotic behavior of $\psi(t, \rho)$ therefore determines that of the metric g_{ab}.

Let us begin by expressing g_{ab} in the Bondi-type coordinates $(u = t - \rho, \rho, \phi)$. Then, Eq. (2.11) yields

$$d\sigma^2 = e^{2\gamma}(-du^2 - 2dud\rho) + \rho^2 d\phi^2; \quad (2.26)$$

the Einstein equations take the form

$$\gamma_{,u} = 2\rho\psi_{,u}(\psi_{,\rho} - \psi_{,u}), \quad (2.27)$$

$$\gamma_{,\rho} = \rho\psi_{,\rho}^2; \quad (2.28)$$

and the wave equation on ψ becomes

$$-2\psi_{,\rho \rho} + \psi_{,\rho} + \rho^{-1}(\psi_{,\rho} - \psi_{,u}) = 0. \quad (2.29)$$

The asymptotic form of $\psi(t, \rho)$ is given by the expansion (2.23). Since we can differentiate (2.23) term by term, the field equations (2.27) and (2.28) imply

$$\gamma_{,u} = -2\dot{f}_0(u)^2 + \sum_{k=1}^{\infty} \frac{g_k(u)}{\rho^k}, \quad (2.30)$$

$$\gamma_{,\rho} = \frac{1}{4}\dot{f}_0(u)^2 \frac{1}{\rho^2} + \sum_{k=1}^{\infty} \frac{h_k(u)}{\rho^{k+2}}, \quad (2.31)$$

where the functions g_k, h_k are products of the functions $f_0, f_k, \dot{f}_0, \dot{f}_k$. Since for data of compact support f_0, f_k vanish for all $u < u_0$, we can integrate (2.30) as follows:

$$\gamma = \gamma_0 + \int_{-\infty}^{u} \left(-2(\dot{f}_0(u))^2 + \sum_{k=1}^{\infty} \frac{g_k(u)}{\rho^k}\right) du. \quad (2.32)$$

Thus, γ also admits an expansion in ρ^{-1} where the coefficients depend smoothly on u.

It is now straightforward to show that the space-time admits a smooth future null infinity, I. Setting $\tilde{\rho} = \rho^{-1}, \tilde{u} = u, \tilde{\phi} = \phi$ and rescaling g_{ab} by a conformal factor $\Omega = \tilde{\rho}$, we obtain

$$d\tilde{\sigma}^2 = \Omega^2 d\sigma^2 = e^{2\tilde{\gamma}}(-\tilde{\rho}^2 d\tilde{u}^2 + 2d\tilde{u}d\tilde{\rho}) + d\tilde{\phi}^2, \quad (2.33)$$
where $\tilde{\gamma}(\tilde{u}, \tilde{\rho}) = \gamma(u, \tilde{\rho}^{-1})$. Because of (2.32), $\tilde{\gamma}$ has a smooth extension through $\tilde{\rho} = 0$. Therefore, \tilde{g}_{ab} is smooth across the surface $\tilde{\rho} = 0$. This surface is the future null infinity, I.

Using the expansion (2.23) of ψ near null infinity, various curvature tensors can be expanded in powers of ρ^{-1}. More precisely, a suitable null triad can be chosen which is parallel propagated along $u = \text{const}$, $\phi = \text{const}$ curves. The resulting triad components of the Riemann tensor and the Bach tensor are given in Appendix A. The (conformally invariant) Bach tensor is finite but non-vanishing at null infinity. This is to be contrasted with the Bondi-Penrose description of null infinity in asymptotically flat, 4-dimensional space-times, where the (conformally invariant) Weyl tensor vanishes. In this sense, while in the standard 4-dimensional treatments the metric is conformally flat at null infinity, in a 3-dimensional treatment, it will not be so in general. This is one of the new complications that one encounters.

To understand the meaning of the constant γ_0 let us consider the solution on the Cauchy surface $t = 0$. Eq. (2.16) implies that we can determine γ by a ρ-integration from the center. If we insist on regularity at $\rho = 0$ we have

$$\gamma(t = 0, \rho) = \int_0^\rho \rho (\dot{\psi}^2 + \psi'^2) d\rho.$$ \hfill (2.34)

Hence, for data of compact support, γ_0 is a positive constant whose value is determined by the initial data for ψ:

$$\gamma_0 = \gamma(t = 0, \rho = \infty) = \int_0^\infty \rho (\dot{\psi}^2 + \psi'^2) d\rho.$$ \hfill (2.35)

This way the constant γ_0 in (2.32) is uniquely determined for solutions which are regular at $\rho = 0$. Its value is given by the total energy of the scalar field ψ computed using the Minkowski metric (obtained from g_{ab} by setting $\gamma = 0$).

On a constant t surface, for a point outside the support of the data, we have $\gamma = \gamma_0$, a constant. Hence, outside the support of the data, the 3-metric on the Cauchy surface is flat. For any non-trivial data, however, γ_0 is strictly positive, whence the metric has a “conical singularity” at spatial infinity: the metric there is given by

$$d\sigma^2 = e^{2\gamma_0} (\rho^2 d\phi^2) + \rho^2 (d\theta^2 + \sin^2 \theta \, dt^2).$$ \hfill (2.36)

Notice that a conical singularity can also be seen near null infinity in this physical metric because the change of the proper circumference of a circle with proper radial distance is different from the case of asymptotically Minkowskian space.

Finally, using (2.32), we find that, as one approaches I (i.e. $\rho \to \infty$), we have:

$$\gamma(u, \infty) = \gamma_0 - 2 \int_{-\infty}^u \dot{f}_0(u)^2 du.$$ \hfill (2.37)

Now, a detailed examination [11] of the behavior of the scalar field ψ near time-like infinity i^+ reveals that the space-time is smooth at i^+ and that γ vanishes there. Hence, we obtain the simple result

$$\gamma_0 = 2 \int_{-\infty}^{+\infty} \dot{f}_0(u)^2 du.$$ \hfill (2.38)
Thus, there, is a precise sense in which the conical singularity, present at spacelike infinity, is “radiated out” and a smooth (in fact analytic) time-like infinity “remains”. We will see that, modulo some important subtleties, Eq. \((2.37)\) plays the role of the Bondi mass-loss formula \([16]\).

III. NULL INFINITY IN 3 DIMENSIONS: GENERAL FRAMEWORK

In this section, we will develop a general framework to analyze the asymptotic structure of the gravitational and matter fields at null infinity in 3 dimensions along the lines introduced by Penrose in 4 dimensions. As a special case, when the matter field is chosen to be the massless Klein-Gordon field, we will recover a 3-dimensional description of null infinity of generalized cylindrical waves. It turns out that the choice of the fall-off conditions on matter fields is rather subtle in 3 dimensions. Fortunately, the analysis of the Einstein-Rosen waves presented in Sec.\([IV]\) provides guidelines that restrict the available choices quite effectively.

In Sec.\([IVA]\), we specify the boundary conditions and discuss some of their immediate consequences. In \([IVB]\), we extract the important asymptotic fields and discuss the equations they satisfy at null infinity. Sec.\([IVC]\) contains an example which, so to say, lies at the opposite extreme from the Einstein-Rosen waves: the simplest solution corresponding to a static point particle in 3 dimensions. This example is simple enough to bring out certain subtleties which in turn play an important role in the subsequent sections.

A. Boundary conditions

A 3-dimensional space-time \((M, g_{ab})\) will be said to be \textit{asymptotically flat at null infinity} if there exists a manifold \(\tilde{M}\) with boundary \(I\) which is topologically \(S^1 \times R\), equipped with a smooth metric \(\tilde{g}_{ab}\), such that

i) there is a diffeomorphism between \(\tilde{M} - I\) and \(M\) (with which we will identify the interior of \(\tilde{M}\) and \(M\));

ii) there exists a smooth function \(\Omega\) on \(\tilde{M}\) such that, at \(I\), we have \(\Omega = 0\), \(\nabla_a \Omega \neq 0\), and on \(M\), we have \(\tilde{g}_{ab} = \Omega^2 g_{ab}\);

iii) If \(T_{ab}\) denotes the stress-energy of matter fields on the physical space-time \((M, g_{ab})\), then \(\Omega T_{ab}\) admits a smooth limit to \(I\) which is \textit{trace-free}, and the limit to \(I\) of \(\Omega^{-1} T_{ab} \tilde{n}^a \tilde{V}^b\) vanishes, where \(\tilde{V}^a\) is any smooth vector field on \(\tilde{M}\) which is tangential to \(I\) and \(\tilde{n}^a = \tilde{g}^{ab} \tilde{\nabla}_b \Omega\);

iv) if \(\Omega\) is so chosen that \(\tilde{\nabla}^a \tilde{\nabla}_a \Omega = 0\) on \(I\), then the vector field \(\tilde{n}^a\) is complete on \(I\).
Conditions i), ii) and iv) are the familiar ones from 4 dimensions and have the following implications. First, since \(\Omega \) vanishes at \(I \), points of \(I \) can be thought of as lying at infinity with respect to the physical metric. Second, since the gradient of \(\Omega \) is non-zero at \(I \), \(\Omega \) “falls off as \(1/\rho \)”. Finally, we know that \(I \) has the topology \(S^1 \times R \) and condition iv) ensures that it is as “complete in the R-direction” as it is in Minkowski space.

The subtle part is the fall-off conditions on stress-energy; these are substantially weaker than those in the standard 4-dimensional treatment. For instance, in 4 dimensions, if we use Maxwell fields as sources, then because of conformal invariance, if \(F_{ab} \) solves Maxwell’s equations on the physical space-time \((M, g_{ab}) \), then \(\tilde{F}_{ab} := F_{ab} \) satisfies them on the completed space-time \((\tilde{M}, \tilde{g}_{ab}) \). Hence \(\tilde{F}_{ab} \) admits a smooth limit to \(I \). This immediately implies that \(\Omega^{-2}T_{ab} \) also admits a smooth limit, where \(T_{ab} \) is the stress-energy tensor of \(F_{ab} \) in the physical space-time. In the case of a scalar field source, the fall-off is effectively the same although the argument is more subtle (see page 41 in [17]). In 3 dimensions, on the other hand, we are asking only that \(\Omega^{-1}T_{ab} \) admits a limit (although, as noted above, the asymptotic fall-off of \(\Omega \) is the same in 3 and 4 dimensions). This is because a stronger condition will have ruled out the cylindrical waves discussed in Sec.II. To see this, consider smooth scalar fields \(\psi \) with initial data of compact support. Then, if we set \(\tilde{\psi} = \Omega^{-1/2}\psi \), we have the identity:

\[
\tilde{g}^{ab}\tilde{\nabla}_a\tilde{\nabla}_b\tilde{\psi} - \frac{1}{8}\tilde{R}\tilde{\psi} = \Omega^{-\frac{5}{2}}(g^{ab}\nabla_a\nabla_b\psi - \frac{1}{8}R\psi),
\]

where \(R \) and \(\tilde{R} \) are the scalar curvatures of \(g_{ab} \) and \(\tilde{g}_{ab} \) respectively. Hence \(\tilde{\psi} \) is well-behaved on \(I \) which implies that

\[
\Omega T_{ab} \equiv 2\Omega^2(\tilde{\nabla}_a\tilde{\psi})(\tilde{\nabla}_b\tilde{\psi}) + 2\Omega\tilde{\psi}\tilde{n}_a(\tilde{\nabla}_b)\tilde{\psi} + \frac{1}{2}\tilde{\psi}^2\tilde{n}_a\tilde{n}_b
- \frac{1}{2}g_{ab}[\Omega^2\tilde{\nabla}^m\tilde{\nabla}_m\tilde{\psi} + \Omega\tilde{\psi}\tilde{n}^m\tilde{\nabla}_m\tilde{\psi} + \tilde{n}^m\tilde{n}_m\tilde{\psi}^2]
\]

admits a well-defined, non-zero limit at \(I \) satisfying the conditions of our definition. Hence, stronger fall-off requirements on \(T_{ab} \) would have made the framework uninteresting. We will see that this weak fall-off is responsible for a number of surprises in the 3-dimensional theory. Could we have imposed even weaker fall-off conditions? The requirement of smoothness on \(\tilde{g}_{ab} \), \(\Omega \) and \(\Omega T_{ab} \) can be substantially weakened: All our analysis will go through if \(\tilde{g}_{ab} \) and \(\Omega \) are only \(C^3 \), and \(\Omega T_{ab} \) only \(C^1 \) at \(I \). On the other hand, we will see that the condition on the trace of \(\Omega T_{ab} \) is necessary to endow \(I \) with interesting structure. We will see that the vanishing of the limit of \(\Omega^{-1}T_{ab}\tilde{n}^a\tilde{V}^b \) is necessary to ensure that the energy and super-momentum fluxes of matter across (finite patches of) \(I \) are finite.

Let us now examine the structure available at the boundary \(I \).

As in 4 dimensions, it is convenient to work entirely with the tilde fields which are smooth at \(I \). Let us set

\[
\tilde{L}_{ab} = \Omega(R_{ab} - \frac{1}{4}R g_{ab}) =: \Omega S_{ab}
\]
and lower and raise its indices with \tilde{g}_{ab} and its inverse. \tilde{L}_{ab} carries the same information as the stress-energy tensor T_{ab} of matter and our conditions on T_{ab} ensure that \tilde{L}_{ab} is smooth at I. Set

$$\bar{f} = \Omega^{-1}\tilde{n}^{a}\tilde{n}_{a}.$$

Then, using the expression $R_{abcd} = 2(S_{a[c}g_{d]b} - S_{b[c}g_{d]a})$ of the Riemann tensor in 3 dimensions, the formula expressing the relation between curvature tensors of g_{ab} and \tilde{g}_{ab} reduces to:

$$\Omega \tilde{S}_{ab} + \tilde{\nabla}_{a}\tilde{n}_{b} - \frac{1}{2} \bar{f}\tilde{g}_{ab} = \tilde{L}_{ab}, \quad (3.2)$$

where $\tilde{S}_{ab} = (\tilde{R}_{ab} - \frac{1}{4}\tilde{R}\tilde{g}_{ab})$. This is the basic field equation in the tilde variables. Since all other fields which feature in it are known to be smooth at I, it follows that \bar{f} is also smooth. This implies in particular that \tilde{n}^{a} is null. Since $\tilde{n}_{a} = \tilde{\nabla}_{a}\Omega$ is the normal field to I, we conclude that I is a null surface.

Next, we note that there is a considerable freedom in the choice of the conformal factor Ω. Indeed, if $(\tilde{M}, \tilde{g}_{ab} = \Omega^{2}g_{ab})$ is an allowable completion, so is $(\tilde{M}, \Omega'\tilde{g}_{ab})$ where $\Omega' = \omega\Omega$ for any smooth, nowhere vanishing function ω on \tilde{M}. Now, under the conformal transformation $\Omega \mapsto \Omega'$, we have:

$$\tilde{\nabla}_{a}'\tilde{n}^{a} \cong \omega^{-1}\tilde{\nabla}_{a}\tilde{n}^{a} + 3\omega^{-2}\mathcal{L}_{\tilde{n}}\omega,$$

where, from now on, \cong will stand for “equals at the points of I to”. Hence, by using an appropriate ω, we can always make \tilde{n}^{a} divergence-free. Such a choice will be referred to as a divergence-free conformal frame. This frame is, however, not unique. The restricted gauge freedom is given by:

$$\Omega \mapsto \omega\Omega, \quad \text{where} \quad \mathcal{L}_{\tilde{n}}\omega \cong 0. \quad (3.3)$$

Now, condition iv) in our definition requires that, in any divergence-free conformal frame, the vector field \tilde{n}^{a} be complete on I. Suppose it is so in one divergence-free conformal frame Ω. Let Ω' correspond to another divergence-free frame. Then, $\Omega' = \omega\Omega$, with ω smooth, nowhere vanishing and satisfying $\mathcal{L}_{\tilde{n}}\omega \cong 0$. The last equation implies that \tilde{n}^{a} is complete on I if and only if \tilde{n}^{a} is complete there. Hence, we need to verify iv) in just one divergence-free conformal frame. In what follows, we will work only in divergence-free conformal frames.

Next, taking the trace of (3.1) and using the fact that \tilde{L} vanishes on I we conclude that, in any divergence-free frame, \bar{f} vanishes on I, whence

$$\bar{f} := \Omega^{-1}\bar{f}$$

admits a smooth limit there. The field \bar{f} will play an important role. Finally, it is easy to check that in any divergence-free conformal frame, we have:

$$\tilde{n}^{b}\tilde{\nabla}_{b}\tilde{n}_{a} \cong 0, \quad \text{and} \quad \tilde{L}_{ab}\tilde{n}^{b} \cong 0. \quad (3.4)$$
Thus, in particular, as in 4 dimensions, \(I \) is ruled by null geodesics. The space \(\mathcal{B} \) of orbits of \(\tilde{n}^a \)– the “base space” of \(I \)– is diffeomorphic to \(S^1 \). The second equation and the trace-free character of \(\tilde{L}_{ab} \) imply that, on \(I \), \(\tilde{L}_{ab} \) has the form

\[
\tilde{L}_{ab} \cong \tilde{L}_{(a}\tilde{n}_{b)} , \quad \text{with} \quad \tilde{L}_{a}\tilde{n}^a \cong 0 , \tag{3.5}
\]

for some smooth co-vector field \(\tilde{L}_a \). Hence, the pull-back to \(I \) of \(\tilde{L}_{ab} \) vanishes which in turn implies, via (3.1), the pull-back to \(I \) of \(\tilde{\nabla}_a\tilde{n}_b \) also vanishes. Hence, if we denote by \(\tilde{g}_{ab} \) the pull-back of \(\tilde{g}_{ab} \), we have:

\[
\mathcal{L}_{\tilde{n}}\tilde{g}_{ab} \cong 0 . \tag{3.6}
\]

Since \(I \) is null, it follows that

\[
\tilde{q}_{ab}\tilde{n}^b \cong 0 . \tag{3.7}
\]

Thus, \(\tilde{q}_{ab} \) is the pull-back to \(I \) of a positive definite metric on the manifold of orbits \(\mathcal{B} \) of the vector field \(\tilde{n}^a \). By construction, \(\mathcal{B} \) is a 1-dimensional manifold with topology of \(S^1 \). Hence, there exists a 1-form \(\tilde{m}_a \) on \(I \) such that

\[
\tilde{q}_{ab} = \tilde{m}_a\tilde{m}_b . \tag{3.8}
\]

(In cylindrical waves, \(\tilde{m}_a \) is the pull-back to \(I \) of \(\nabla_a\phi \) and \(\tilde{n}^a \) equals \(\exp(-2\tilde{\gamma}) (\partial/\partial u) \) on \(I \).) Under a conformal rescaling \(\Omega \mapsto \omega \Omega \) (from one divergence-free frame to another), we have:

\[
\tilde{m}_a \mapsto \omega \tilde{m}_a \quad \tilde{n}^a \mapsto \omega^{-1}\tilde{n}^a . \tag{3.9}
\]

The pairs \((\tilde{m}_a, \tilde{n}^a) \) (or, equivalently, \((\tilde{q}_{ab}, \tilde{n}^a) \)) are the kinematical fields which are “universal” to \(I \): In any asymptotically flat space-time, we obtain the same collection of pairs. This situation is analogous to that in 4 dimensions where pairs \((\tilde{q}_{ab}, \tilde{n}^a) \) constitute the universal kinematic structure. However, whereas the 4-metric evaluated at \(I \) has no dynamical content, in the present case, the 3-metric at \(I \) does carry dynamical content and varies from one space-time to another.

B. Asymptotic fields

The pairs \((\tilde{q}_{ab}, \tilde{n}^a) \) on \(I \) represent the leading or the “zeroth order” structure at \(I \). The next, in the hierarchy, is an intrinsic derivative operator. Let \(\tilde{K}_b \) be a smooth co-vector field on \(\tilde{M} \), and \(\tilde{K}_b \), its pull-back to \(I \). Define:

\[
\tilde{D}_a\tilde{K}_b := \tilde{\nabla}_a\tilde{K}_b , \tag{3.10}
\]

where the under-bar on right side denotes the pull-back to \(I \). (Since \(\tilde{K}_b = \tilde{K}_b' \) if and only if \(\tilde{K}_b' = \tilde{K}_b + \tilde{h}\tilde{n}_b + \Omega \tilde{W}_b \) for some smooth \(\tilde{h} \) and \(\tilde{W}_b \), \(\tilde{D} \) is a well-defined operator if and only if the pull-back to \(I \) of \(\tilde{\nabla}_a(\tilde{h}\tilde{n}_b + \Omega \tilde{W}_b) \) vanishes. It is easy to check that
it does.) In 4 dimensions, the two radiative degrees of freedom of the gravitational field are coded in this intrinsic derivative operator \[18\]. In 3 dimensions, on the other hand, there is no “pure” gravitational radiation. Hence, one would expect that the derivative operator \(\tilde{D}\) has no invariant physical content. This is indeed the case.

To see this, note first that given any vector field \(\tilde{V}^a\) tangential to \(I\) we have:

\[
\tilde{V}^a \tilde{D}_a \tilde{q}_{ab} \cong 0, \quad \text{and} \quad \tilde{V}^a \tilde{D}_a \tilde{n}^b \cong \tilde{V}^a \tilde{L}_a^b,
\]

where, in the second equation, we have used Eq. \[3.4\]. Now, for a zero rest mass scalar field (i.e., for 4-dimensional Einstein-Rosen waves), \(\tilde{L}_{ab} \cong \frac{1}{2} \tilde{g} \tilde{n}_a \tilde{n}_b\), whence \(\tilde{V}^a \tilde{D}_a \tilde{n}^a \cong 0\). Hence, the difference between any two permissible derivative operators on \(I\) is given by:

\[
(\tilde{D}'_a - \tilde{D}_a) \tilde{K}_b \cong \tilde{C}^c_{ab} \tilde{K}_c, \quad \text{with} \quad \tilde{C}^c_{ab} = \tilde{\Sigma}_{ab} \tilde{n}^c \tilde{K}_c,
\]

where \(\tilde{K}_b\) is any co-vector field on \(I\) and \(\tilde{\Sigma}_{ab}\), a symmetric tensor field on \(I\), transverse to \(\tilde{n}^a\); \(\tilde{\Sigma}_{ab} \tilde{n}^a \cong 0\). Thus, \(\tilde{\Sigma}_{ab} \cong g \tilde{m}_a \tilde{m}_b\) for some function \(g\) on \(I\). Now, if we make a conformal transformation \(\Omega \mapsto \Omega' = (1 + \omega_1 \Omega)\Omega\), the derivative operator \(\tilde{D}\) changes through: \((\tilde{D}'_a - \tilde{D}_a) \tilde{K}_b = \omega_1 \tilde{m}_a \tilde{m}_b \tilde{n}^c \tilde{K}_c\), \text{even though the transformation leaves} \(\tilde{m}_a\) \text{and} \(\tilde{n}^a\) \text{invariant}. Thus, as in 4 dimensions, the “trace-part” of \(\tilde{\Sigma}_{ab}\) is “pure-gauge”. Now, in 4 dimensions, the degrees of freedom of the gravitational field reside in the trace-free part of \(\tilde{\Sigma}_{ab}\) \[18\]. For the 3-dimensional description of Einstein-Rosen waves, by contrast, since \(\tilde{\Sigma}_{ab}\) is itself pure-trace, the trace-free part vanishes identically reflecting the absence of pure gravitational degrees of freedom.

In 4 dimensions, the Bondi news—which dictates the fluxes of energy-momentum carried away by gravity waves—is coded in the curvature of \(\tilde{D}\). By contrast, in the general 3-dimensional case (i.e. without restriction on the form of matter sources), we can always make the curvature vanish by going to an appropriate conformal frame. To see this, recall, first that, since \(I\) is 2-dimensional, the full curvature of any connection is determined by a scalar. For connections under consideration, we have: \(2 \tilde{\tilde{D}}_a \tilde{D}_b \tilde{K}_c = \tilde{\tilde{R}} \tilde{e}_{ab} \tilde{m}^d \tilde{n}^c \tilde{K}_d\), where \(\tilde{e}_{ab}\) is the obvious alternating tensor on \(I\). (Thus, \(\tilde{e}_{ab} = 2 \tilde{l}_{[a} \tilde{m}_{b]}\), where \(\tilde{l}_a\) is a null co-vector field on \(I\) satisfying \(\tilde{l}_a \tilde{n}^a = 1\).) Under conformal re-scalings \(\Omega \mapsto \Omega' = (1 + \omega_1 \Omega)\Omega\), we have \(\tilde{\tilde{R}} \mapsto \tilde{\tilde{R}}' = \tilde{\tilde{R}} + \tilde{\tilde{L}} \omega_1\). Thus, by choosing an appropriate \(\omega_1\), we can always set \(\tilde{\tilde{R}}' = 0\). There is no invariant physical information in the curvature of the derivative operator \(\tilde{D}\) intrinsic to \(I\).

Let us therefore examine the curvature of the full 3-dimensional connection \(\tilde{\nabla}\). Using Eq. \[3.2\] and the Bianchi identity of the rescaled metric \(\tilde{g}_{ab}\) we have:

\[
2 \tilde{\tilde{S}}_{ab} \tilde{n}^a + \tilde{\tilde{\nabla}}_b (\Omega \tilde{f}) = \tilde{\tilde{V}}^a \tilde{L}_{ab} - \tilde{\tilde{\nabla}}_b \tilde{L}, \tag{3.11}
\]

where \(\tilde{L} = \tilde{g}^{ab} \tilde{L}_{ab}\). The Bianchi identity for the physical metric \(g_{ab}\) implies that the right side of Eq. \[3.11\] is given by \(2 \Omega^{-1} \tilde{L}_{ab} \tilde{n}^a\). Hence, combining the two, we have:

\[
2 \tilde{\tilde{S}}_{ab} \tilde{n}^a + \Omega \tilde{\tilde{\nabla}}_b \tilde{f} + \tilde{f} \tilde{n}_b = 2 \Omega^{-1} \tilde{L}_{ab} \tilde{n}^a. \tag{3.12}
\]
These, together with (3.1), are the basic equations that govern the asymptotic dynamics.

Our assumptions on the stress-energy tensor imply that \(\Omega^{-1} \tilde{L}_{ab} \tilde{n}^a \tilde{V}^b \) vanishes on \(I \) for any vector \(\tilde{V}^a \) tangential to \(I \). Eq. (3.12) now implies: \(\tilde{S}_{ab} \tilde{n}^a \tilde{V}^b \sim 0 \). Hence, the pull-back \(\tilde{S}_{ab} \) to \(I \) of \(\tilde{S}_{ab} \) has the form

\[
\tilde{S}_{ab} = \tilde{S} \tilde{m}_a \tilde{m}_b .
\]

Similarly, since \(\tilde{L}_{ab} \) is trace-free on \(I \) and since \(\tilde{L}_{ab} \tilde{n}^b \) vanishes there (cf. Eqs. (3.4) and (3.3)), the pull-back \(\tilde{L}_{ab} \) of \(\Omega^{-1} L_{ab} \) to \(I \) exists and has the form:

\[
\tilde{L}_{ab} = \tilde{L} \tilde{m}_a \tilde{m}_b.
\]

The field

\[
\tilde{B} := \tilde{S} - \tilde{L}
\]

will play an important role in what follows.

The Bach tensor \(\tilde{B}_{abc} \) vanishing of which is a necessary and sufficient condition for conformal flatness in 3 dimensions is given by:

\[
\tilde{B}_{abc} = 2 \tilde{\nabla}_b \tilde{S}_c - 2 \Omega^{-1} (\tilde{\nabla}_b \tilde{L}_c - \Omega^{-1} \tilde{n}_m \tilde{g}_{a[b} \tilde{L}_{c]m}).
\]

Thus, the Bach tensor is non-zero only in presence of matter. Note that, in general, it does not vanish even at \(I \). This is in striking contrast with the situation in 4 dimensions where the Weyl tensor of the rescaled metric does vanish at \(I \). We will see that the fact that in 3 dimensions we do not have conformal flatness even at \(I \) makes the discussion of asymptotic symmetries much more difficult. Transvecting the Bach tensor with \(\tilde{n}^a \) and pulling the result back to \(I \), we obtain:

\[
\tilde{n}^a \tilde{B}_{abc} \sim - \tilde{L} \tilde{n}_c \tilde{S}_b \sim - \tilde{L} \tilde{n} \tilde{L}_{bc} - (\lim_{\to I} \Omega^{-2} \tilde{n}_m \tilde{g}_{a[b} \tilde{L}_{c]m}) \tilde{q}_{bc} .
\]

Since the last term in this equation has the form of the flux of “matter-energy” across \(I \) (it equals \(2(\mathcal{L}_{\tilde{\nabla}})^2 \) in the case of Einstein-Rosen waves, cf. Eq. (3.1)), it is tempting to interpret this equation as the analog of the local Bondi conservation law on \(I \) in 4 dimensions. Let us rewrite this equation in a more convenient form:

\[
\tilde{D}_{[a}(\tilde{S}_b - \tilde{L}) \tilde{m}_{b]} = \frac{1}{2} \lim_{\to I} [\Omega^{-2} (\tilde{L}_{mn} \tilde{n}^m \tilde{n}^n) \tilde{\epsilon}_{ab}] .
\]

Then, it is tempting to regard the 1-form \(\tilde{B} \tilde{m}_a \sim (\tilde{S}_b - \tilde{L}) \tilde{m}_a \) as the analog of the 4-dimensional “Bondi mass aspect”. Let us therefore study its conformal properties. Under a rescaling \(\Omega \mapsto \Omega' = \omega \Omega \), we have:

\[
\tilde{B} \tilde{m}_a \mapsto \tilde{B}' \tilde{m}'_a = [\omega^{-1} \tilde{B} - \omega^{-2} \tilde{n}^a \tilde{m}^b \tilde{D}_a \tilde{D}_b \omega + \frac{3}{2} \omega^{-3} (\tilde{m}^a \tilde{D}_a \omega)^2] \tilde{m}_a ,
\]

where \(\tilde{m}^a \) is a vector field tangential to \(I \) satisfying \(\tilde{m}^a \tilde{m}_a = 1 \). Note that the transformation law involves only the values of \(\omega \) on \(I \); unlike in the transformation
law for \(\tilde{R} \), discussed above, the field \(\omega_1 \) (which measures the first derivative of \(\omega \) off \(I \)) never enters. This transformation law will play an important role in the next two sections.

Finally, we note an identity which enables us to express, at \(I \), the quantity \(\tilde{B} \) constructed from the curvatures of \(\tilde{g}_{ab} \) and \(g_{ab} \) in terms of the metric coefficients. To see this, recall first that the derivative operator \(\tilde{D} \) within \(I \) is obtained by “pulling back” the space-time derivative operator \(\tilde{\nabla} \) to \(I \). Hence one can express the curvature \(\tilde{R} \) of \(\tilde{D} \) in terms of the curvature \(\tilde{S}_{ab} \) of \(\tilde{\nabla} \). Using the Bianchi identity (3.10) to express some of the components of \(\tilde{S}_{ab} \) in terms of matter fields, we obtain:

\[
\tilde{B} \cong \tilde{S} - L \cong \frac{1}{2} \tilde{f} - \tilde{R}.
\]

Thus, in a conformal frame in which \(\tilde{R} \) is zero, the analog \(\tilde{B} \) of the Bondi-mass aspect can be computed directly from the metric coefficient \(\tilde{f} = \Omega - 2 \tilde{g}_{ab} \tilde{n}^a \tilde{n}^b \). For the Einstein-Rosen waves, for example, it is straightforward to check that the completion given in Sec.II satisfies the condition \(\tilde{R} = 0 \) and by inspection \(\tilde{f} \) is given by \(\exp (-2\gamma) \). Thus, in practice, Eq. (3.18) often provides an easy way to calculate \(\tilde{B} \). Finally, note that, under conformal rescalings \(\Omega \rightarrow (1 + \omega_1 \Omega) \Omega \), both \(\tilde{f} \) and \(\tilde{R} \) transform non-trivially. However, the combination \(\tilde{f} - \tilde{R} \) remains unchanged.

\section*{C. Point particle}

In this sub-section, we will consider the simplest point-particle solution to 3-dimensional gravity and, using the results obtained in the last two sub-sections, study its behavior at null infinity.

In an obvious coordinate system adapted to the world line of the point particle, the physical space-time metric \(g_{ab} \) is given by \[19\] :

\[
d\sigma^2 = -dt^2 + r^{-6GM}(dr^2 + r^2 d\phi^2),
\]

where \(-\infty < t < \infty, 0 < r < \infty \) and \(0 \leq \phi < 2\pi \). The particle has mass \(M \) and “resides” at the origin. Since the stress-energy tensor vanishes everywhere outside the \(r = 0 \) world-line (which is excised from the space-time) the metric is flat outside the origin. We can transform it in a manifestly flat form by setting

\[
\rho = \frac{r^\alpha}{\alpha}, \quad \tilde{\phi} = |\alpha| \phi, \quad \text{where} \quad \alpha = 1 - 4GM.
\]

(Note that \(\tilde{\phi} \) now ranges in \([0, 2\pi |\alpha|]\).) In terms of these coordinates, the metric is given by:

\[
d\sigma^2 = -dt^2 + d\rho^2 + \rho^2 d\tilde{\phi}^2.
\]

(Note that \(\tilde{\phi} \) now ranges in \([0, 2\pi |\alpha|]\).) In terms of these coordinates, the metric is given by:

\[
d\sigma^2 = -dt^2 + d\rho^2 + \rho^2 d\tilde{\phi}^2.
\]

Although the metric is manifestly flat, it fails to be globally Minkowskian because of the range of \(\tilde{\phi} \); there is a conical singularity at the origin and the resulting deficit angle measures the mass.
It is straightforward to conformally complete this space-time to satisfy our definition of asymptotic flatness. Setting \(u = t - \rho \) and \(\Omega = 1/\rho \), the rescaled metric \(\tilde{g}_{ab} \) is given by:

\[
\tilde{d}\sigma^2 := \Omega^2 d\sigma^2 = -\Omega^2 du^2 + 2dud\Omega + d\tilde{\phi}^2.
\]

(3.20)

It is trivial to check that the completion satisfies all our conditions and that the conformal frame is divergence-free. The kinematic fields are given by \(\tilde{n}^a \equiv \partial/\partial u \) and \(\tilde{m}_a = \tilde{D}_a \tilde{\phi} \). By inspection \(\tilde{f} = 1 \) and a simple calculation shows that \(\tilde{R} = 0 \). Thus, \(\tilde{B} = 1/2 \); it carries no information about mass. This information is hidden in the deficit angle: Integrating \(\tilde{m}_a \) on the base space \(\mathcal{B} \), we have:

\[
\oint_{\mathcal{B}} \tilde{m}_a dS^a = 2\pi \alpha = 2\pi (1 - 4GM).
\]

(3.22)

Thus, our expectation of the last sub-section that \(\tilde{B} \) would be the analog of the Bondi mass aspect is correct. However, to arrive at this interpretation, we must use a properly normalized (“Bondi-like”) conformal frame. This point will be important in Sec.V.

We will conclude this discussion with two remarks.

The metric considered in this sub-section is stationary and so it is appropriate to compare the situation we encountered with that in 4-dimensional stationary space-times. In both cases, the stationary Killing field selects a preferred rest frame at \(I \) (which, in our example, is given by the time translation \(\partial/\partial u \)). However, in 4 dimensions, one can find asymptotic Killing fields corresponding to space translations as well. In the present case, on the other hand, due to the conical singularity, globally defined space-translation vector fields fail to exist even asymptotically (unless \(M = 0 \).
in which case the deficit angle vanishes). For example, we can introduce Cartesian coordinates t, \bar{x}, \bar{y} corresponding to $t, \rho, \tilde{\phi}$. Then, $\bar{X}^a \equiv \partial/\partial \bar{x}$ and $\bar{Y}^a \equiv \partial/\partial \bar{y}$ are local Killing fields. However, the chart itself fails to be globally defined and so do the vector fields. Another strategy is suggested by what happens in Minkowski space-time. In any of its standard completions space-translations are represented by the vector fields $(\cos \phi)\tilde{n}^a$ and $(\sin \phi)\tilde{n}^a$. In the “Bondi-like” conformal frame introduced above these vector fields are globally defined at null infinity of our point particle space-time as well. However, now they fail to be Killing fields even asymptotically.

The second remark is that the stationary space-time we considered here is a very special solution. Generic stationary solutions in 3-dimensional general relativity have a logarithmic behavior near infinity and therefore fail to satisfy our definition of asymptotic flatness at null infinity. (See Appendix B. Our point particle solution corresponds essentially to the special case $C = 0$ in Eqs. (B2,B3).) This is another key difference between 3 and 4 dimensions.

IV. ASYMPTOTIC SYMMETRIES

In 4 dimensions, the asymptotic symmetry group at null infinity is given by the BMS group $[13,14,17,20]$. Its structure is the same as that of the Poincaré group in that it is a semi-direct product of an Abelian group with the Lorentz group. The Abelian group, however, is infinite dimensional; it is the additive group of functions on a 2-sphere (the base space of I) with conformal weight +1. It is called the group of super-translations. The four dimensional group of translations can be invariantly singled out. However, unless additional conditions are imposed (near i^0 or i^+), the BMS group does not admit a preferred Lorentz or Poincaré sub-group. This enlargement from the ten dimensional Poincaré group to the infinite dimensional BMS group is brought about because, in presence of gravitational radiation, one can not single out a preferred Minkowski metric even at infinity; one can only single out a family of Minkowskian metrics and they are related by super-translations.

In this section, we will examine the asymptotic symmetry group in 3 dimensions. One’s first impulse is to expect that the situation would be completely analogous to that in 4 dimensions since the “universal structure” available at I in the two cases is essentially the same. It turns out however that because the space-time metric is dynamical even at infinity -i.e., because in general the physical metric does not approach a Minkowskian metric even to the leading order– the group of asymptotic symmetries is now enlarged even further. Furthermore, now it is not possible to single out even the group of translations without additional conditions.

This section is divided into two parts. The first discusses the asymptotic symmetry group and the second introduces additional conditions to single out translations.
A. Asymptotic symmetry group

Let us begin by recalling the universal structure, i.e., the structure at infinity that is common to all asymptotically flat space-times. As usual, the asymptotic symmetries will then be required to preserve this structure.

Given any space-time satisfying our definition of asymptotic flatness and any conformal completion thereof, its null infinity, \(I \), is a 2-manifold, topologically \(S^1 \times \mathbb{R} \). It is ruled by a (divergence-free) null vector field \(\tilde{n}^a \) and its intrinsic, degenerate metric \(\tilde{q}_{ab} \) satisfies:

\[
\tilde{q}_{ab} \tilde{V}^b \sim 0 \quad \text{if and only if} \quad \tilde{V}^b \propto \tilde{n}^b,
\]

(4.1)

where \(\tilde{V}^b \) is an arbitrary vector field on \(I \). The “base space” \(B \) of \(I \), i.e., the space of integral curves of \(\tilde{n}^a \) on \(I \), has the topology of \(S^1 \). As in 4 dimensions, the intrinsic metric \(\tilde{q}_{ab} \) on \(I \) is the pull-back to \(I \) of a metric \(\bar{q}_{ab} \) on \(B \); that is, \(\mathcal{L}_{\tilde{n}} \tilde{q}_{ab} = 0 \). Next, we have the conformal freedom given in Eq. (3.3). Thus, \(I \) is equipped with an equivalence class of pairs \((\tilde{q}_{ab}, \tilde{n}^a)\) satisfying Eqs. (4.1, 3.6), where two are considered as equivalent if they differ by a conformal rescaling: \((\tilde{q}_{ab}, \tilde{n}^a) \approx (\omega^2 \tilde{q}_{ab}, \omega^{-1} \tilde{n}^a)\), with \(\mathcal{L}_{\tilde{n}} \omega = 0 \). This structure is completely analogous to that at null infinity of 4-dimensional asymptotically flat space-times.

As we already saw, in 3 dimensions, a further simplification occurs: in any conformal frame, \(I \) admits a unique co-vector field \(\tilde{m}^a \) such that: \(\tilde{q}_{ab} = \tilde{m}_a \tilde{m}_b \). Hence, in the universal structure, we can replace \(\tilde{q}_{ab} \) by \(\tilde{m}_a \). Thus, \(I \) is equipped with equivalence classes of pairs \((\tilde{m}_a, \tilde{n}^a)\) satisfying:

\[
\tilde{m}_a \tilde{n}^a \approx 0 \quad \text{and} \quad \mathcal{L}_{\tilde{n}} \tilde{m}_a \approx 0,
\]

(4.2)

where \((\tilde{m}_a, \tilde{n}^a) \approx (\omega \tilde{m}_a, \omega^{-1} \tilde{n}^a)\) for any nowhere vanishing smooth function \(\omega \) on \(I \) satisfying \(\mathcal{L}_{\tilde{n}} \omega = 0 \). Note that the second equation in (4.2) implies that \(\tilde{m}_a \) is the pull-back to \(I \) of a co-vector field \(\bar{m}_a \) on the base space \(B \).

The asymptotic symmetry group \(\mathcal{G} \) is the sub-group of the diffeomorphism group of \(I \) which preserves this structure. An infinitesimal asymptotic symmetry is therefore a vector field \(\xi^a \) on \(I \) satisfying:

\[
\mathcal{L}_{\xi} \tilde{m}_a \approx \tilde{\alpha} \tilde{m}_a \quad \text{and} \quad \mathcal{L}_{\xi} \tilde{n}^a \approx -\tilde{\alpha} \tilde{n}^a,
\]

(4.3)

for some smooth function \(\tilde{\alpha} \) (which depends on \(\tilde{\xi}^a \)) satisfying \(\mathcal{L}_{\tilde{n}} \tilde{\alpha} \approx 0 \). Eqs. (4.3) ensure that the 1-parameter family of diffeomorphisms generated by \(\tilde{\xi}^a \) preserves the “ruling” of \(I \) by the integral curves of its null normal, its divergence-free character, and maps pair \((\tilde{m}_a, \tilde{n}^a)\) to an equivalent one, thereby preserving each equivalence class. It is easy to check that vector fields satisfying Eqs. (4.3) form a Lie algebra which we will denote by \(\mathcal{L}\mathcal{G} \). This is the Lie algebra of infinitesimal asymptotic symmetries.
To unravel the structure of $\mathcal{L}G$, we will proceed as in 4 dimensions. Let $\mathcal{L}S$ denote the subspace of $\mathcal{L}G$ spanned by vector fields of the type $\xi^a \cong \tilde{h}\tilde{n}^a$. Elements of $\mathcal{L}S$ will be called infinitesimal super-translations. Eqs. (4.3) imply:

$$\mathcal{L}\tilde{h}\tilde{n} = 0, \quad \mathcal{L}_{\tilde{n}}\bar{m}_a = 0, \quad \text{and} \quad \mathcal{L}_{\tilde{h}}\tilde{n}^a = 0. \quad (4.4)$$

Thus, for any super-translation, \tilde{h} is the pull-back to I of \bar{h} on the base space B and the action of the super-translation leaves each pair $(\tilde{m}_a, \tilde{n}^a)$ individually invariant. Furthermore, given any $\tilde{\xi}^a \in \mathcal{L}G$ and any $\tilde{h}\tilde{n}^a \in \mathcal{L}S$, we have:

$$[\tilde{\xi}, \tilde{h}\tilde{n}]^a = (\mathcal{L}_{\tilde{\xi}}\tilde{h} - \tilde{\alpha})\tilde{n}^a. \quad (4.5)$$

Thus, $\mathcal{L}S$ is a Lie ideal of $\mathcal{L}G$.

To unravel the structure of $\mathcal{L}G$, let us examine the quotient $\mathcal{L}G/\mathcal{L}S$. Let $[\tilde{\xi}^a]$ denote the element of the quotient defined by $\tilde{\xi}^a$; $[\tilde{\xi}^a]$ is thus an equivalence class of vector fields on I satisfying (4.3), where two are regarded as equivalent if they differ by a super-translation. The second equation in (4.3) implies that every $\tilde{\xi}^a$ in $\mathcal{L}G$ admits an unambiguous projection $\bar{\xi}^a$ to the base space B. The equivalence relation implies that all vector fields $\tilde{\xi}^a$ in $[\tilde{\xi}^a]$ project to the same field $\bar{\xi}^a$ on B and that $[\tilde{\xi}^a]$ is completely characterized by $\bar{\xi}^a$. What conditions does $\bar{\xi}^a$ have to satisfy? The only restriction comes from the first equation in (4.3): $\bar{\xi}^a$ must satisfy $\mathcal{L}_{\bar{\xi}}\bar{m}_a = \bar{\alpha}\bar{m}_a$ for some $\bar{\alpha}$ on B. However, since B is one dimensional, this is no restriction at all! Thus, $\bar{\xi}^a$ can be any smooth vector field on the circle B. $\mathcal{L}G/\mathcal{L}S$ is thus the Lie algebra of all smooth diffeomorphisms on S^1. (In 4 dimensions, by contrast, the first of equations (4.3) is very restrictive since the base space is a 2-sphere; $\bar{\xi}^a$ has to be a conformal Killing field on (S^2, \bar{g}_{ab}). The Lie algebra of these conformal Killing fields is just six dimensional and is isomorphic to the Lie algebra of the Lorentz group in 4 dimensions.)

These results imply that the group \mathcal{G} of asymptotic symmetries has the structure of a semi-direct product. The normal subgroup S is the Abelian group of super-translations. Given a conformal frame, each infinitesimal super-translation $\tilde{\xi}^a = \tilde{h}\tilde{n}^a$ is characterized by a function \tilde{h}. If we change the conformal frame, $g_{ab} \mapsto \tilde{g}_{ab} = \omega^2\tilde{g}_{ab}$, we have $\tilde{n}^a \mapsto \tilde{\tilde{n}}^a = \omega^{-1}\tilde{n}^a$ and hence $\tilde{h} \mapsto \tilde{h}' = \omega\tilde{h}$. Thus, each super-translation is characterized by a conformally weighted function on the circle B; the super-translation subgroup S is isomorphic with the additive group of smooth functions on a circle with unit conformal weight. The quotient \mathcal{G}/S of \mathcal{G} by the super-translation subgroup S is the group Diff(S^1) of diffeomorphisms on a circle. In the semi-direct product, Diff(S^1) acts in the obvious way on the additive group of conformally weighted functions on S^1.

We will conclude this sub-section with some remarks.

1. In the light of the above discussion, let us re-examine the conditions on the stress-energy tensor in our definition of asymptotic flatness. In Sec.IIIA we pointed out that the conditions are considerably weaker than those normally imposed in 4 dimensions and argued that imposition of stronger conditions would deprive the
framework of interesting examples. Could we have imposed even weaker conditions? Note that, if \(\Omega_{I} \) fails to admit a well-defined limit to \(I \), we could not even have concluded that \(I \) is a null hypersurface (see Eq. (3.2)). What about the condition on the trace? In absence of this condition, the pull-back of \(\tilde{L}_{ab} \) to \(I \) would not have vanished. This then would have implied \(L_{\tilde{q}_{ab}} \approx (4/3)\tilde{L}_{q_{ab}} \neq 0 \). Consequently, the asymptotic symmetry group would have borne little resemblance to the BMS group \([13,16,17,20]\) that arises in 4 dimensions. Thus, the specific conditions we used in the definition strike a balance: they are weak enough to admit interesting examples and yet strong enough to yield interesting structure at \(I \).

2. The semi-direct product structure of the asymptotic symmetry group is the same as that of the BMS group. The super-translation group is also the natural analog of the super-translation subgroup of the BMS group. The quotient, however, is quite different: while it is the Lorentz group in the 4-dimensional case, it is now an infinite dimensional group, \(\text{Diff}(S^1) \). Recall, however, that in the corresponding analysis in 4 dimensions, the base space of \(I \) is a 2-sphere. \(S^2 \) admits a unique conformal structure and the Lorentz group arises as its conformal group. In the present case, the base space \(B \) is topologically \(S^1 \) and the quotient of \(G \) by the super-translation subgroup is the conformal group of \(S^1 \). (Recall that \(\tilde{\xi}^a \) has to satisfy \(\mathcal{L}_{\tilde{\xi}}\tilde{q}_{ab} = 2\tilde{\alpha}_{ab} \) since \(\tilde{q}_{ab} = \tilde{m}_a\tilde{m}_b \).) It just happens that, since \(S^1 \) is 1-dimensional, every diffeomorphism of \(S^1 \) maps \(\tilde{q}_{ab} \) to a conformally related metric. This is the origin of the enlargement.

3. Can one understand this enlargement from a more intuitive standpoint? Recall that the symmetry group is enlarged when the boundary conditions are weakened. Thus, it is the weaker conditions on the fall-off of stress-energy—and hence on the curvature of the physical metric— that is responsible for the enlargement of the group. This can be seen in the explicit asymptotic form of the metric of Einstein-Rosen waves that we encountered in Sec. II C,

\[
d\sigma^2 = e^{2\gamma}(-du^2 - 2dud\rho) + \rho^2d\Sigma^2, \tag{4.6}
\]

where \(\gamma \approx \gamma (u) \) is a dynamical field on \(I \), sensitive to the radiation. If \(\gamma = 0 \), we obtain Minkowski space. The radiative space-times that result when \(\gamma \neq 0 \) thus differ from the radiation-free Minkowski space already to the leading order at null infinity. In 4 dimensions, by contrast, the leading order behavior of the physical metric has no dynamical content; the components of the metric carrying physical information fall as \(1/r \). It is this difference that is responsible for the tremendous enlargement of the asymptotic symmetry group.

Let us analyze this point further. Suppose, in 4 dimensions, we consider metrics whose form is suggested by (4.6):

\[
ds^2 = e^{2\gamma}(-du^2 - 2dudr) + r^2d\Sigma^2, \tag{4.7}
\]

where \(\gamma = \gamma (u, r, \theta, \phi) \) has a well defined limit as \(r \) tends to infinity along constant \(u, \theta, \phi \) curves, and \(d\Sigma^2 \) denotes the 2-sphere metric. Now, the situation is similar
to that encountered in the Einstein-Rosen waves: metrics with different radiative content differ already to the leading order. Nonetheless, setting $\Omega = 1/r$, it is easy to carry out a conformal completion of this metric and verify that it admits a smooth I. However, the problem is that the curvature of this metric fails to fall off sufficiently rapidly for the stress-energy tensor to have the fall-off normally required in 4 dimensions. Hence, this metric fails to be asymptotically flat in the usual 4-dimensional sense. In 3 dimensions, on the other hand, to obtain an interesting framework, we are forced to admit the analogous metrics (4.6).

B. Translations

In 4 dimensions, one can single out translations from the BMS group in a number of ways. Somewhat surprisingly, it turns out that every one of those techniques fails in 3 dimensions. We will first illustrate this point and then show that one can introduce additional conditions to single out translations. As one might expect from our discussion of Sec.III C, the situation is subtle even after introduction of the stronger conditions.

Among various characterizations of the translation sub-group of the BMS group, the one that is conceptually simplest and aesthetically most pleasing is given by group theory [20]: Translations form the unique 4-dimensional normal subgroup of the BMS group. In three dimensions, however, the asymptotic symmetry group is much larger; the quotient of \mathcal{G} by super-translations is now $\text{Diff}(S^1)$ –the full diffeomorphism group of a circle– rather than the (finite dimensional) Lorentz group. Consequently, \mathcal{G} does not admit any finite dimensional normal subgroup. Thus, the most obvious 4-dimensional strategy is not applicable.

In 4 dimensions, another method of singling out translations is to use the notion of “conformal-Killing transport” [21]. The conformal Killing data at any point of I corresponding to translations are integrable because the Weyl tensor (of the tilde metric) vanishes there identically. In 3 dimensions, the analogous condition would be vanishing of the Bach tensor. Unfortunately, as we saw in Sec.III B, in presence of matter fields the Bach tensor fails to vanish at I. (The explicit expression of the Bach tensor in the case of Einstein-Rosen waves is given in Appendix A.) This in turn makes the conformal-Killing transport of data that would have corresponded to translations non-integrable on I and the strategy fails.

Finally, a third method of selecting translations in 4 dimensions is to go to a Bondi conformal frame, i.e., one in which the metric \tilde{q}_{ab} on the base space is the unit 2-sphere metric and consider the 4-parameter family of super-translations $\tilde{\xi}^a = \tilde{h}\tilde{n}^a$, where \tilde{h} is any linear combination of the $\ell = 0, 1$ spherical harmonics. There is only a 3-parameter family of Bondi frames and the conformal factor that relates them is highly constrained. As a result, if \tilde{h} is a linear combination of the $\ell = 0, 1$ spherical harmonics in one Bondi frame, it is so in all Bondi frames [20]. The construction thus selects precisely a 4-parameter sub-group of the super-translation group \mathcal{S}. This strategy fails in 3 dimensions because the base space is now S^1 and the notion
of a “unit S^1 metric” fails to have the rigidity that the unit 2-sphere metrics enjoy. Indeed, as we already remarked in Sec.III.C, the only non-trivial analog of the Bondi frames condition is to require that the conformal frame be such that the length of the base space B be 2π and there is an infinite dimensional freedom in the choice of such frames. Consequently, we can not select a 3-dimensional space of translations in this manner.

Thus, to select translations, we need to impose additional conditions. To be viable, they should select the standard, 3-dimensional translation group in Minkowski space-time. However, as we saw in the point particle space-time, asymptotic space-translations do not exist globally near I if $M \neq 0$. (This is also the case for Einstein-Rosen waves.) Hence, one would expect that, when the total (ADM-type) mass is non-zero, the conditions should select only a time translation. Thus, the conditions have to be subtle enough to achieve both these goals at once. Fortunately, such conditions do exist and are, furthermore, satisfied by a large class of examples.

A space-time (M,g_{ab}) will be said to be strongly asymptotically flat at null infinity if it satisfies the boundary conditions of Sec.III.A and admits a conformal completion in which

$$\tilde{B} \equiv \tilde{S} - \tilde{L} \equiv \frac{1}{2} \tilde{f} - \tilde{R} \to \frac{k}{2} \geq 0 \quad \text{as one approaches } i^0 \text{ along } I,$$

where k is a constant. Note that if the space-time is axi-symmetric, \tilde{B} automatically approaches a constant: if Ω is chosen to be rotationally symmetric, \tilde{B} would also be rotationally symmetric everywhere on I and hence, in particular, its limit to i^0 along I will be angle independent as required. (We will see in Sec.V that the positivity of k ensures that the ADM-type energy is well-defined.) Thus, the additional condition is satisfied in a large class of examples, including the Einstein-Rosen waves and our point particle space-time.

Note that if the last condition is satisfied in a given conformal frame, we can rescale the conformal factor by a constant and obtain another conformal frame in which it is also satisfied. We can eliminate this trivial freedom by a normalization condition. A conformal frame will be said to be of Bondi-type if \tilde{B} satisfies (4.8) and if $\int_B \bar{m}_a dS^a = 2\pi$. A natural question is: How many Bondi-type conformal frames does a strongly asymptotically flat space-time admit? We will show that Minkowski space admits precisely a 2-parameter family of them and the freedom corresponds precisely to that of choosing a unit time-like vector (i.e. a rest frame). This is completely analogous to the freedom in the choice of Bondi frames in 4 dimensions. If the ADM-type mass is non-zero, however, the Bondi-type frame will turn out to be generically unique (unlike Bondi frames in 4 dimensions).

To establish these results, let us fix a strongly asymptotically flat space-time and two Bondi-type completions thereof in which \tilde{B} tends, respectively, to $k/2$ and $k'/2$ for some constants k and k'. (In Minkowski space-time, it turns out that $k = k' = 1$.) Let us suppose that the two conformal frames are related by $\Omega = \alpha \Omega'$, i.e., $\tilde{g}_{ab} = \alpha^2 \tilde{g}'_{ab}$. Then, the transformation property (3.17) of \tilde{B} implies:
where $\tilde{\partial} \equiv \tilde{m}^a \tilde{D}_a \equiv \partial/\partial \phi$. The question now: How many (smooth) solutions does Eq. (4.9) admit? The equation is non-linear and rather complicated. However, if we take its $\tilde{\partial}$-derivative we are left with a linear equation:

$$\tilde{\partial} (\tilde{\partial}^2 \alpha + k \alpha) = 0.$$

This has regular solutions only if $k = n^2$ for an integer n (recall that, in a Bondi-frame, the range of ϕ on B is in $[0, 2\pi]$). Similarly, interchanging the role of primed and unprimed frames, we conclude that $k' = n'^2$ for some integer n'. Finally, the fact that the length of B in both conformal frames is 2π, implies that $n' = n$. Thus, unless $k = k' = n^2$, Eq. (4.9) does not admit a regular solution. Thus, unless $k = n^2$, the Bondi-type conformal frame is in fact unique. In this generic case, we have a preferred time translation sub-group of G generated by $\tilde{\xi}^a = \tilde{n}^a$. In the point particle example, this is precisely the time translation selected by the rest frame of the particle. In Einstein-Rosen waves, it turns out to be the one selected by the total Hamiltonian of the system [10].

If $k = n^2$, the reduced equation (4.10) clearly admits a 2-parameter family of solutions: In terms of the angular coordinate ϕ on B (with $\tilde{m}_a = \tilde{D}_a \phi$), these are given by

$$\alpha = A + B \cos n\phi + C \sin n\phi, \quad \text{with} \quad -A^2 + B^2 + C^2 = -1.$$

It is straightforward to check that they also satisfy the full equation (4.9).

In the obvious completion of Minkowski space-time (obtained by setting $M = 0$ in the point particle example or $\psi = 0$ in Einstein-Rosen waves), we have $\tilde{f} = 1$ and $\tilde{R} = 0$, whence $\tilde{B} = 1/2$. This corresponds to the case $n = 1$. Thus, Minkowski space-time does admit Bondi-type conformal frames and the constant k is precisely 1 (i.e., we can not obtain any other value by going from one Bondi-type frame to another). There is precisely a 2-parameter family of Bondi-type conformal frames related by a conformal factor α of Eq. (4.11) (with $n = 1$). Fix any one of these and consider the 3-parameter family of super-translations of the form $\tilde{h} \tilde{n}^a$ where

$$\tilde{h} = (a + b \cos \phi + c \sin \phi).$$

Using Eq. (4.11) (with $n = 1$), one can check that this 3-dimensional space of these super-translations is left invariant if we replace one Bondi-type frame by another. Following the (third) strategy (mentioned above) used in 4 dimensions, one can call this the translation sub-group of the asymptotic symmetry group. This label is indeed appropriate: It is easy to check that the restrictions to I of any translational Killing field of Minkowski space has precisely this form. Thus, if $n = 1$, the procedure does select for us a 3-dimensional translation sub-group of G.

It turns out, however, that if $n = 1$, the deficit angle at spatial infinity vanishes and we therefore have zero ADM-type energy. By 3-dimensional positive energy
theorem [10], the only physically interesting space-time in which this can occur is the Minkowski space-time. If \(k > 1 \), we have a surplus angle at spatial infinity and the ADM-type energy is now negative. We will therefore ignore the \(n > 1 \) cases from now on (although they do display interesting mathematical structures; see Appendix B).

To summarize, strongly asymptotically flat space-times generically admit a preferred Bondi-type frame and a preferred time-translation. In the exceptional cases, where \(k = n^2 \), we obtain a 3-parameter family of Bondi-type frames. However, the only physically interesting exceptional case is Minkowski space-time where \(n = 1 \).

V. CONSERVED QUANTITIES

This section is divided into two parts. In the first, we introduce the notion of energy at a retarded instant of time and of fluxes of energy and, in the second, we discuss super-momenta. Again, while the general ideas are similar to those introduced by Bondi, Sachs and Penrose in 4 dimensions, there are also some important differences.

Perhaps the most striking difference is the following. Consider generic, strongly asymptotically flat space-times. As we saw, in this case, there is a preferred Bondi-type frame and a preferred translation subgroup of the asymptotic symmetry group. However, as the example of Einstein-Rosen waves illustrates, because the space-time metric is dynamical even at infinity, the vector field \(\tilde{n}^a \) (or a constant multiple thereof) in the Bondi-type frame is not the extension to \(I \) of a unit time translation in the space-time. If the initial data of the scalar field are of compact support, space-time is flat in a neighborhood of \(i^o \) and a constant multiple of \(\tilde{n}^a \) – namely, \((\exp \tilde{\gamma}_0)\tilde{n}^a\) – coincides with the extension to \(I \) of the unit time translation near \(i^o \). However, in the region of \(I \) with non-trivial radiation, the restriction of the unit time translation is given by \((\exp \tilde{\gamma}(u))\tilde{n}^a\); the rescaling involved is \(u \)-dependent whence the vector field is not even a super-translation! Energy, on the other hand, is associated with unit time translations. Hence, energy at null infinity is not directly associated with any component of super-momentum and a new strategy is needed to define it.

A. Energy

The strategy we will adopt is to capture the notion of energy through the appropriate deficit angle. We will first begin with motivation, then write down the general expression of energy and finally verify that it has the expected physical properties.

Let us begin with an axi-symmetric, strongly asymptotically flat space-time, consider its Bondi-type completion with an axi-symmetric conformal factor. (Thus, \(\oint_{\partial I} \tilde{m}_a dS^a = 2\pi \).) Fix a cross-section \(C_o \) of \(I \) to which the rotational Killing field is tangential. Because of axi-symmetry of the construction, the field \(\tilde{B} \) is constant on...
Co, say \(\tilde{B}|_{C_o} = k_o/2 \). If this were a cross-section of \(I \) of the point particle space-time, it follows from our discussion of Sec.III C (cf Eq. (3.22)) that we would associate with it energy

\[
E = \frac{1}{4G}(1 - \sqrt{k_o}). \tag{5.1}
\]

(Thus, in particular, if \(k_o = 1 \) as in Minkowski space-time, we would have \(E = 0 \).)

By inspection, we can generalize this expression to arbitrary cross-sections of null infinity of general—i.e., non-axi-symmetric—space-times. Given any strongly asymptotically flat space-time, a Bondi-type conformal frame and a cross-section \(C \) of \(I \), we will set:

\[
E[C] := \frac{1}{8\pi G} \oint_C (1 - \sqrt{2\tilde{B}}) \tilde{m}_a dS^a. \tag{5.2}
\]

The appearance of the square-root is rather unusual and seems at first alarming: the formula would not be meaningful if \(\tilde{B} \) were to become negative. Note, however, that, by assumption of strong asymptotic flatness, the limit \(\frac{k}{2} \) of \(\tilde{B} \) to \(i^o \) is positive. Furthermore, since \(L_n \tilde{B} = \lim_{\omega \to I} \Omega^{-2} \tilde{L}_{cd} \tilde{m}_c \tilde{m}_d \) and since the right side is positive definite if the matter sources satisfy local-energy conditions, \(\tilde{B} \) remains positive on \(I \). Thus, \(E[C] \) is bounded above by \(1/4G \) which is also the upper bound of the total Hamiltonian at spatial infinity \([10]\).

Let us now verify various properties of this quantity which provide a strong support in favor of its interpretation as energy.

- First, let us suppose that we are in Minkowski space-time. Then, in any Bondi-type frame, we have \(\tilde{B} = 1/2 \) everywhere on \(I \). Hence, on any cross-section, the energy vanishes.

- Next, let us consider the point-mass space-time with positive \(M \). Then from Sec.IV B we know that there is a unique Bondi-type frame and in this frame, \(2\tilde{B} = (1 - 4GM)^2 \) whence, on any cross-section \(C \), we obtain \(E[C] = M \). This is of course not surprising since our general definition was motivated by the point mass example. However, the result is not totally trivial because we are now allowing arbitrary cross-sections, not necessarily tangential to the rotational Killing field.

- Consider Einstein-Rosen waves. In the non-trivial case when the scalar field \(\psi \) is non-zero, the Bondi-type frame is unique. In this frame, \(2\tilde{B} = \exp(-2\tilde{\gamma}(u)) \). Hence,

\[
E[C] = \frac{1}{8\pi G} \oint_C (1 - e^{-\tilde{\gamma}(u)})d\phi.
\]

In the limit to \(i^o \) (or, in the past of the support of \(\tilde{\psi}(u) \) on \(I \)), we have \(E \mapsto (1/4G)(1 - \exp(-\tilde{\gamma}_0)) \). This is precisely the value of the total Hamiltonian at spatial infinity—the generator of unit time translations near \(i^o \). This result is non-trivial because the Hamiltonian is defined \([10]\) through entirely different techniques using the symplectic framework based on Cauchy slices. In the limit to \(i^+ \), we know from Sec.III C that \(\tilde{\gamma}(u) \) tends to zero. Hence \(E[C] \) tends to zero. This behavior of \(E[C] \)
is also physically correct because i^+ is regular in these space-times. We wish to emphasize that these two constraints—agreement with the known expressions both at i^0 and i^+ of Einstein-Rosen waves—on the viable expression of energy are strong. Hence, the fact that there exists a general expression for $E[C]$ involving only fields defined locally on the cross-section C which reduces to the correct limits at both ends of I of the Einstein-Rosen waves is quite non-trivial.

• What about the flux of energy? If a cross-section C_1 is in the future of a cross-section C_2, from Eqs. (3.16, 5.2) we have:

$$E[C_1] - E[C_2] = \frac{1}{8\pi G} \int_{\Delta} \tilde{D}_{\alpha}(1 - \sqrt{2\tilde{B}}) \tilde{m}_{\beta} dS^{ab}$$

$$= -\frac{1}{16\pi G} \int_{\Delta} (2\tilde{B})^{-\frac{1}{4}} \lim_{\rightarrow I} (\Omega^{-2}\tilde{L}_{mn}\tilde{\eta}^m\tilde{\eta}^n) \tilde{\epsilon}_{ab} dS^{ab}, \quad (5.3)$$

where Δ is the portion of I bounded by C_1 and C_2. (The limit in the integrand is well-defined because of our conditions on the stress-energy tensor. For the Einstein-Rosen waves, it is $(L_\tilde{\eta}\tilde{\psi})^2$; see Eq. (3.1).) If the matter sources satisfy local energy conditions, the integrand in the second expression is positive definite. Thus, $E[C_1] \leq E[C_2]$, the equality holding if and only if there is no flux of matter through the region Δ. As one would expect, radiation through I carries positive energy. The appearance of $1/\sqrt{2\tilde{B}}$ in the integrand is not alarming because, as remarked above, for the class of space-times under consideration, \tilde{B} is guaranteed to be positive on I in Bondi-type frames.

• In the case when the source is a zero rest-mass scalar field, we can make the energy flux more explicit: \(\lim_{\rightarrow I} (\Omega^{-2}\tilde{L}_{mn}\tilde{\eta}^m\tilde{\eta}^n) = 2(L_\tilde{\eta}\tilde{\psi})^2. \) Hence, for Einstein-Rosen waves, Eq. (5.3) reduces to:

$$E[C_1] - E[C_2] = -\frac{1}{8\pi G} \int_{\Delta} e^{\tilde{\gamma}(u)}(L_\tilde{\eta}\tilde{\psi})^2 \tilde{\epsilon}_{ab} dS^{ab}. \quad (5.4)$$

In the limit in which the cut $[C_2]$ tends to i^0, $E[C_2]$ reduces to the gravitational Hamiltonian $[11]$. Hence, on any cut, $E[C]$ is given by the difference between the total Hamiltonian and the energy that is radiated out up until that cut. Finally, note that, because of the appearance of $\exp \tilde{\gamma}(u)$ in the integrand, this expression of energy-flux more complicated than the flux formula \((2,37) \) for $\gamma(u)$, i.e., the flux formula for Thorne’s C-energy [2]. This is, however, to be expected: Even at spatial infinity, the total Hamiltonian is $(1/4G)(1 - \exp(-\tilde{\gamma}_0))$ while the C-energy is just $(1/4G)\tilde{\gamma}_0$. In the weak field limit the two agree. But in strong fields, they are quite different. In particular, the total Hamiltonian and $E[C]$ are bounded above by $1/4G$ while the C-energy is unbounded above.

• We saw that, in the case of Einstein-Rosen waves, our expression (5.2) of energy reduces to the total Hamiltonian in the limit as the cross-section approaches i^0. We expect that this result holds much more generally: It should hold in any space-time which is strongly asymptotically flat at null infinity and also satisfies the boundary conditions at spatial infinity needed in the Hamiltonian formulation.
That is, broadly speaking, we expect the agreement to hold if the space-time is sufficiently well-behaved to have a well-defined total Hamiltonian and a well-defined limit of (5.2) to i°. It is easy to provide strong plausibility arguments for this conjecture since both quantities measure the deficit angle at i°. However, more detailed arguments are needed to establish this result conclusively.

B. Super-momentum

We will conclude the main paper by introducing a notion of super-momentum. For reasons indicated in the beginning of this section, however, these quantities are not related to the energy in a simple way. They are given primarily for completeness. As in 4 dimensions, in a suitable Hamiltonian formulation based on null infinity, they may be the generators of canonical transformations induced by super-translations.

Recall first that, in 4 dimensions, super-momentum arises as a linear map from the space of super-translations to reals and is expressible in any conformal frame. The basic fields that enter are constructed from the asymptotic curvature of the rescaled metric (and matter sources). However, in order to “remove irrelevant conformal factor terms”, one also has to introduce a kinematic field with appropriate conformal properties. The situation in 3 dimensions is rather similar.

Let us begin by introducing the analog $\tilde{\rho}$ of the kinematical field. Set $\tilde{\rho} = 1/2$ in any Bondi-type conformal frame and transform it to any other frame via the following law: if $\Omega = \alpha \Omega'$, then

$$\tilde{\rho}' = \alpha^2 \tilde{\rho} + \alpha \tilde{\partial}^2 \alpha - \frac{1}{2} (\tilde{\partial} \alpha)^2,$$

where, as before $\tilde{\partial} \equiv \tilde{m}^a \tilde{D}_a$. Hence, the field $\tilde{\rho} - \tilde{B}$ transforms rather simply: $(\tilde{\rho}' - \tilde{B}') = \alpha^2 (\tilde{\rho} - \tilde{B})$ (see Eq. (3.17)). As in 4 dimensions, the field ρ serves two purposes: it removes the unwanted, inhomogeneous terms in the transformation properties of \tilde{B} and it removes the “purely kinematical” part of \tilde{B} in the Bondi-type frames.

We can now define the super-momentum. Fix any conformal completion of the physical space-time (not necessarily of a Bondi-type). The value of the super-momentum on a super-translation $\tilde{T} \tilde{n}^a$, evaluated at a cross-section C of I will be:

$$P_T[C] = \frac{1}{8\pi G} \oint_C (\tilde{\rho} - \tilde{B}) \tilde{T} \tilde{m}^a dS^a.$$

Under a conformal transformation, $\Omega \mapsto \Omega' = \alpha^{-1} \Omega$, we have $\tilde{T}' = \alpha^{-1} \tilde{T}$ and $\tilde{m}' = \alpha^{-1} \tilde{m}$. Hence, the 1-form integrand remains unchanged. Thus, as needed, the expression of super-momentum is conformally invariant; i.e., it is well-defined.

Let us note its basic properties. First, by inspection, the map defined by the super-momentum P from super-translations to reals is linear. Second, in Minkowski
space-time, \(\hat{\rho} = \hat{B} \) in any conformal frame. Hence, the value of super-momentum vanishes identically on any cross-section. Finally, since \(\mathcal{L}_{\tilde{n}} \hat{\rho} = 0 \), we have

\[
\mathcal{L}_{\tilde{n}}[(\hat{\rho} - \hat{B}) \tilde{T} \tilde{m}_a] = - \lim_{\Omega \to 1} (\Omega^{-2} \tilde{L}_{mn} \tilde{n}^m \tilde{n}^n) \tilde{T} \tilde{m}_a.
\]

Therefore, as in the case of energy, the flux of the component of the super-momentum along any time-like super-translation (i.e., one in which \(\tilde{T} > 0 \)) is positive.

VI. DISCUSSION

In this paper, we developed the general framework to analyze the asymptotic structure of space-time at null infinity in 3 space-time dimensions. We did not have to restrict ourselves to any specific type of matter fields. However, if the matter sources are chosen to be a triplet of scalar fields constituting a non-linear (\(SO(2, 1) \)) \(\sigma \)-model, the space-times under considerations can be thought of as arising from symmetry reduction of 4-dimensional generalized cylindrical waves, i.e., vacuum solutions to the 4-dimensional Einstein equations with one space-translation isometry. If the source consists of a single zero rest mass scalar field, the translation Killing field in four dimensions is hypersurface orthogonal. Finally, if there is, in addition, a rotational Killing field, the space-times are symmetry reductions of the 4-dimensional Einstein-Rosen waves.

The general strategy we adopted was to follow the procedures developed by Bondi and Penrose in 4 dimensions. However, we found that due to several peculiarities associated with three dimensions, those procedures have to be modified significantly. A number of unexpected difficulties arise and the final framework has several surprising features. This is in contrast with the situation in higher dimensions where the framework is likely to be very similar to that in 4 dimensions.

The new features can be summarized as follows. First, in 3 dimensions, the space-time metric is flat in any open region where stress-energy vanishes and thus we are forced to consider gravity coupled with matter. To accommodate physically interesting cases, we have to allow matter fields such that the fall-off of the stress-energy tensor at null infinity is significantly weaker than that in 4 dimensions. This in turn means that the metric is dynamical even at infinity; it does not approach a Minkowskian metric even in the leading order. In fact, physically interesting information, such as the energy and energy fluxes, is coded in these leading order, dynamical terms. As a result, the asymptotic symmetry group \(\mathcal{G} \) is enlarged quite significantly. Like the BMS group in 4 dimensions, it admits an infinite dimensional normal subgroup \(\mathcal{S} \) of super-translations. The structure of this sub-group is completely analogous to that of its counterpart in 4 dimensions. However, the quotient, \(\mathcal{G}/\mathcal{S} \), is significantly larger. While in 4 dimensions the quotient is the six dimensional Lorentz group, now it is the infinite dimensional group \(\text{Diff}(S^1) \) of diffeomorphisms of a circle. Furthermore, whereas the BMS group admits a preferred (4-dimensional) group of translations, \(\mathcal{G} \) does not. To select translations, one has to impose additional conditions, which in some ways are analogous to the conditions needed in 4
dimensions to extract a preferred Poincaré subgroup of the BMS group. We imposed these by demanding that there should exist a conformal frame in which the field \tilde{B} tends to a constant as one approaches i^o along I. This condition is automatically satisfied in axi-symmetric space-times. We saw that, in a generic situation, it selects a unique conformal frame (up to constant rescalings which can be removed by a normalization condition) and we can then select a preferred time translation in \mathcal{S}. If the past limit of the I-energy is zero, it selects a 2-parameter family of frames—the analogs of Bondi frames in 4 dimensions. In this case, we can select a 3-dimensional sub-group of translations from \mathcal{S}. Finally, given any cross-section C of I, we associated with it energy, $E[C]$, as well as a super-momentum $P_{\tilde{T}}[C]$. The former is a scalar and has several properties that one would expect energy to have. The latter is a linear map from the space of super-translations to reals and may arise, in an appropriate Hamiltonian formulation based on I, as the generator of canonical transformations corresponding to super-translations.

These results refer to 3-dimensional general relativity coupled to arbitrary matter fields. However, as noted above, if the matter fields are chosen appropriately, we can regard the 3-dimensional system as arising from a symmetry reduction of 4-dimensional vacuum general relativity by a space-translation Killing field. (One can also consider 4-dimensional general relativity coupled to suitable matter. Then, one acquires additional matter fields in 3 dimensions.) In this case, the energy $E[C]$ (or the super-momentum $P_{\tilde{T}}[C]$) associated with a cross-section C of 3-dimensional null infinity represents the energy (or super-momentum) per unit length (along the symmetry axis) in four dimensions. Thus, the 3-dimensional results have direct applications to 4-dimensional general relativity as well. In addition, as we will see in the companion paper [11], the analysis of the asymptotic behavior of fields in 3 dimensions can also be used to shed light on the structure of null infinity in 4 dimensions.

There are a number of technical issues that remain open. First, as indicated in Sec.VA it is desirable to find the precise conditions under which the past limit of $E[C]$ yields the total Hamiltonian [10]. A second important issue is that of positivity of $E[C]$. For the total Hamiltonian, this was established [10] using a suitable modification of Witten’s spinorial argument in 4 dimensions. Can this argument be further modified to show positivity of $E[C]$? If space-time admits a regular i^+, the limit of $E[C]$ as C tends to i^+ vanishes. Since the flux is positive, this implies that $E[C]$ is positive on every cross-section. However, in the general case, it is not apriori clear that in the Bondi-type frame, \tilde{B} will not exceed $1/2$ making $E[C]$ negative on some cross-section. Next, in the case when the matter fields admit initial data of compact support, space-time is flat near i^o. In this case, it should be possible to select a preferred 1-parameter sub-group of rotations in \mathcal{G} and define angular momentum. Finally, in the case when i^+ is regular, one would expect that, as in Minkowski space, there exists a 2-parameter family of Bondi-type conformal frames in which \tilde{B} tends to a constant at i^+. It is not apriori clear whether the Bondi-type frame selected by the behavior of \tilde{B} at i^o is included in the family.
selected at i^+. If the space-time is axi-symmetric, the answer is in the affirmative.

It would be interesting to investigate what happens in the general case.

The present framework provides a natural point of departure for constructing an S-matrix theory both classically and, especially, quantum mechanically. 3-dimensional quantum gravity without matter fields is fully solvable but the solution is trivial in the asymptotically flat case. When we bring in matter, we have a genuine field theory which is diffeomorphism invariant. If the matter fields are suitably restricted, the theories are equivalent to the reduction of 4-dimensional general relativity (or of 10-dimensional string theories). Quantization of such theories should shed considerable light on the conceptual problems of non-perturbative quantum gravity. As a first step towards quantization, one might use ideas from the asymptotic quantization scheme introduced in 4 dimensions [22]. Since the Lorentz sub-groups are now replaced by the Diff(S^1) sub-groups of G and since Diff(S^1) admits interesting representations (with non-zero central charges), the asymptotic quantum states would now have interesting, non-trivial sectors. Secondly, this quantization would also lead to “fuzzing” of space-time points along the lines of Ref. [23]. To see this, recall first that the light cone of each space-time point gives rise to a “cut” of I (which, in general, is quite complicated). Thus, given I and these light cone cuts, one can “recover” space-time points in an operational way. Now, in a number of cases with scalar field sources –including of course the Einstein-Rosen waves– one expects the initial-value problem based on I to be well-posed and the classical S-matrix to be well-behaved. In such cases, it should be possible to express the light cone cuts on I directly in terms of the data of the scalar field on I. Now, in the quantum theory, the scalar field on I is promoted to an operator-valued distribution and, given any quantum state, one only has a probability distribution for the scalar field to assume various values. This immediately implies that one would also have only probability distributions for light cone cuts, i.e., for points of space-time. This approach may well lead one to a non-commutative picture of space-time geometry.

Acknowledgements: AA and JB would like to thank the Max-Planck-Institute for Gravitational Physics for its kind hospitality. AA was supported in part by the NSF grants 93-96246 and 95-14240 and by the Eberly Research Fund of Penn State University. JB was supported in part by the grants GACR–202/96/0206 and GAUK–230/1996 of the Czech Republic and the Charles University, and by the US-Czech Science and Technology grant 92067.

APPENDIX A: RIEMANN AND BACH TENSORS

In this Appendix we will provide the behavior of the Riemann and Bach tensors at null infinity in (2+1) dimensions.
Assume the metric to be given in Bondi–type coordinates \((x^0, x^1, x^2) = (u, \rho, \phi) \) as in (2.26). The Christoffel symbols are

\[
\Gamma^0_{00} = 2\gamma,u - \gamma,\rho, \quad \Gamma^0_{22} = \rho e^{-2\gamma}, \\
\Gamma^1_{00} = \gamma,\rho - \gamma,u, \quad \Gamma^1_{01} = \gamma,\rho, \quad \Gamma^1_{11} = 2\gamma,\rho.
\]

\[
\Gamma^1_{22} = -\rho e^{-2\gamma}, \quad \Gamma^2_{12} = \rho^{-1}. \tag{A1}
\]

The Riemann tensor \((R^i_{jkl} = \Gamma^i_{jl,k} - \ldots)\) reads

\[
R_{0101} = e^{2\gamma}(\gamma,\rho \rho - 2\gamma,\rho u), \quad R_{0202} = \rho (\gamma,\rho - \gamma,u), \\
R_{0212} = \rho \gamma,\rho, \quad R_{1212} = 2\rho \gamma,\rho. \tag{A2}
\]

In a general \((2+1)\)-dimensional spacetime the Riemann tensor has the form

\[
R_{ijkl} = 2(S_{ik[j}g_{j]l} - S_{j[k}g_{kl]}), \tag{A3}
\]

where

\[
S_{ik} = R_{ik} - \frac{1}{4}g_{ik}R. \tag{A4}
\]

It has six independent components given by the symmetric tensor \(S_{ik}\). In the case of the rotation symmetry the following components are non-vanishing:

\[
S_{00} = \frac{1}{2} \gamma,\rho \rho - \gamma,u \rho + \rho^{-1}(\gamma,\rho - \gamma,u), \\
S_{01} = S_{10} = \frac{1}{2} \gamma,\rho \rho - \gamma,u \rho + \rho^{-1} \gamma,\rho, \\
S_{11} = 2\rho^{-1} \gamma,\rho, \\
S_{22} = \rho^2 e^{-2\gamma}(\frac{1}{2} \gamma,\rho \rho - \gamma,u \rho). \tag{A5}
\]

The role of the Weyl tensor in 3 dimensions is played by the conformally invariant Bach tensor (see e.g. [1]):

\[
B_{ijk} = S_{ik[j} - S_{ij}k. \tag{A6}
\]

The Bach tensor satisfies \(B_{ijk} = -B_{ikj}\) and \(B_{[ijk]cijkl} = 0\), and it thus has five independent components. In the rotation–symmetric case the Bach tensor writes \((\delta = \gamma,\rho - 2\gamma,u)\)

\[
B_{001} = \frac{1}{2} (\delta,u - \delta,\rho),_\rho + (\delta + \gamma,u)(\delta,\rho + \rho^{-2}) - \rho^{-1}\delta,\rho.
\]
\[B_{101} = -\frac{1}{2} \delta_{,\rho\rho} + (\delta + 2\gamma, u)(\delta_{,\rho} + \rho^{-2}) - \rho^{-1} \delta_{,\rho}, \]

\[B_{202} = \rho^2 e^{-2\gamma}(B_{001} - B_{101}), \quad B_{212} = -\rho^2 e^{-2\gamma} B_{101}. \quad (A7) \]

Let us choose the real null triad
\[l^i = (0, e^{-2\gamma}, 0), \quad n^i = (1, -\frac{1}{2}, 0), \quad m^i = (0, 0, \rho^{-1}). \quad (A8) \]

It is easy to see that it is parallel propagated along \(u = \)const, \(\phi = \)const, and it satisfies
\[l_i n^i = -1, \quad m_i m^i = 1, \quad l_i l^i = l_i m^i = n_i n^i = n_i m^i = 0. \quad (A9) \]

Further, let us introduce six real triad components of the Riemann tensor or, equivalently, of the tensor \(S_{ik} \) given by (A4) as follows:
\[S_1 = R_{ijkl} l^i m^j k^m l^l = S_{ik} l^i l^k, \]
\[S_2 = R_{ijkl} l^i n^j k^m l^l = S_{ik} l^i m^k, \]
\[S_3 = R_{ijkl} \left(\frac{1}{2} l^i n^j k^m l^l - m^i n^j m^k l^l \right) = S_{ik} m^i m^k, \]
\[S_4 = \frac{1}{2} R_{ijkl} l^i n^j k^m l^l = S_{ik} l^i n^k, \]
\[S_5 = R_{ijkl} n^i l^j k^m l^l = S_{ik} n^i m^k, \]
\[S_6 = R_{ijkl} m^i n^j k^m n^l = S_{ik} n^i n^k. \quad (A10) \]

Under the rotation symmetry we find
\[S_1 = 2\rho^{-1} \gamma_{,\rho} e^{-4\gamma}, \quad S_2 = 0, \]
\[S_3 = S_4 = e^{-2\gamma} \left(\frac{1}{2} \gamma_{,\rho\rho} - \gamma_{,u\rho} \right), \quad S_5 = 0, \]
\[S_6 = \rho^{-1} (\gamma_{,\rho} - \gamma_{,u}). \quad (A11) \]

Assume now the scalar field admits an expansion (2.23). The field equations (2.27), (2.28) imply
\[\gamma_{,u} = -2\dot{f}_0^2 - \frac{1}{2} f_0 \dot{f}_0 \frac{1}{\rho} + \ldots, \]
\[\gamma_{,\rho} = \frac{1}{4} \dot{f}_0^2 \frac{1}{\rho^2} + \ldots. \quad (A12) \]
The Riemann tensor (A11) has then the following asymptotic form:

\[S_1 = \frac{1}{2} e^{-4\gamma} f_0^2 \frac{1}{\rho^3} + O\left(\frac{1}{\rho^4}\right) , \]

\[S_3 = S_4 = \frac{1}{2} e^{-2\gamma} f_0 f_0' \frac{1}{\rho^2} + O\left(\frac{1}{\rho^3}\right) , \]

\[S_6 = 2 f_0'^2 \frac{1}{\rho} + O\left(\frac{1}{\rho^2}\right) , \] \hspace{1cm} (A13)

where \(\gamma = \lim_{\rho \to \infty} \gamma(u, \rho) \).

Finally, define the five real triad components (scalars) of the Bach tensor:

\[B_1 = B_{ijk} l^i n^j m^k , \quad B_2 = B_{ijk} l^i l'^{j} m^k , \quad B_3 = B_{ijk} n^i n^j m^k , \]

\[B_4 = B_{ijk} m^i m^j l^k , \quad B_5 = B_{ijk} m^i m^j n^k . \] \hspace{1cm} (A14)

Under the rotation symmetry we find only the last two scalars non-vanishing. Their asymptotic behavior is the following:

\[B_4 = -\frac{1}{4} e^{-4\gamma} \left[6(f_0 f_1) + f_0^3 f_0' \right] \frac{1}{\rho^4} + O\left(\frac{1}{\rho^5}\right) , \]

\[B_5 = \frac{1}{2} e^{-2\gamma} \left[f_0 \ddot{f}_0 - 3 \dot{f}_0^2 + 4 f_0 \dot{f}_0' \right] \frac{1}{\rho^2} + O\left(\frac{1}{\rho^3}\right) . \] \hspace{1cm} (A15)

Now the Bach tensor is conformally invariant and it is of interest to see precisely its form at null infinity in the unphysical spacetime. Putting \(\hat{\rho} = \rho^{-1}, \hat{u} = u, \hat{\phi} = \phi \) and using again \(\Omega = \hat{\rho} \) as in (2.33), we introduce the null triad in the unphysical space by \(\vec{l} = \Omega^{-1} l, \vec{n} = n, \vec{m} = \Omega^{-1} m \), so that in the coordinates \((\hat{u}, \hat{\rho}, \hat{\phi})\) we have

\[\vec{l} = (0, -e^{-2\gamma}, 0) , \quad \vec{n} = (1, \frac{1}{2} \rho^2, 0) , \quad \vec{m} = (0, 0, 1) . \] \hspace{1cm} (A16)

(Note that the vector \(\vec{n} \) is null everywhere. Outside \(I \), it is not related in any simple way to the vector field \(\vec{n} \) := \(\vec{\gamma}^{ab} \vec{\nabla} \Omega \) used in the main text.)

Using then \(\vec{B}_{ijk} = B_{ijk} \) we arrive at the following form of the Bach tensor at null infinity \(\hat{I} \):

\[\vec{B}_4 = \vec{B}_{ijk} \vec{n}^i \vec{n}^j \vec{l}^k = -\frac{1}{4} e^{-4\gamma_0} \left[6(\ddot{f}_0 f_1) + f_0^3 \ddot{f}_0 \right] + O(\hat{\rho}) , \]

\[\vec{B}_5 = \vec{B}_{ijk} \vec{m}^i \vec{m}^j \vec{n}^k = \frac{1}{2} e^{-2\gamma_0} \left[\ddot{f}_0 \ddot{f}_0 \vec{n}^2 - 3 \dot{f}_0^2 \vec{a} + 4 f_0 \dot{f}_0' \vec{a} \right] + O(\hat{\rho}) . \] \hspace{1cm} (A17)

where \(\gamma_0 = \gamma(\hat{u}, \hat{\rho} = 0) = \gamma, \hat{f}_0(\hat{u}) = f_0(u), \hat{f}_1(\hat{u}) = f_1(u) \). Hence the Bach tensor is finite and non-vanishing at null infinity in general.
APPENDIX B: ASYMPTOTICS FOR STATIC CYLINDERS IN 3 DIMENSIONS

Starting from the 4-dimensional Einstein-Rosen metric,

\[ds^2 = e^{2\gamma -2\psi}(-dt^2 + d\rho^2) + e^{2\psi}dz^2 + \rho^2 e^{-2\psi}d\phi^2 , \]

(B1)

Marder [24] gives 4-dimensional static solution representing the field outside a static cylinder in the form:

\[\psi = -C(1 - C)^{-1}\ln \rho - (1 - C)\ln D , \]

(B2)

\[\gamma = C^2(1 - C)^{-2}\ln \rho - (1 - 2C)\ln D , \]

(B3)

where \(C \) and \(D \) are constants which can be determined, by matching the solution to an interior one, in terms of mass and pressure distribution inside the cylinder. For mass \(M \) per unit length of the cylinder small, Levi-Civita and others suggest that \(C = 2M \); Thorne’s C-energy [2] leads to the same results as long as the internal pressure of the cylinder is much smaller than its energy density.

The simplest models of the static cylinders employ thin shells. By studying the exterior and flat interior metric of an infinite static cylindrical shell, Stachel [25] found the constants \(C \) and \(D \) to be related to the internal structure of the cylinder in a simple way. Denoting the radius of the shell by \(\rho_0 \), and introducing Stachel’s notation, \(a \) and \(A^+ \), for the constants determining the external metric, we find Marder’s constants \(C \) and \(D \) to be given by

\[C = \frac{a}{a-1} , \]

\[\ln D = \frac{1-a}{1+a}(a^2 \ln \rho_0 + \ln A^+) , \]

(B4)

so that

\[\gamma = a^2 \ln \frac{\rho}{\rho_0} - \ln A^+ , \]

(B5)

\[\psi = a \ln \frac{\rho}{\rho_0} + b . \]

(B6)

An additive constant \(b \) in \(\psi \) can be removed by a rescaling \(\rho \to \xi \hat{\rho} , t \to \xi \hat{t} , z \to \xi^{-1} \hat{z} , \psi \to \hat{\psi} + \ln \xi , \gamma \to \hat{\gamma} , \xi = \text{const} \), which leaves the metric (B1) invariant.

Let \(S_{ab} \) be the surface stress–energy tensor of the shell. Then Stachel’s equations (1.7 a,b,c) determine the surface energy density, \(\sigma = S_{tt} \), and the surface pressures, \(p_z = -S_z^z , p_\phi = -S_{\phi \phi} \), in terms of the constants \(a \) and \(A^+ \) as follows:

\[\sigma = \frac{1-A^+}{\rho_0} , \]
\[p_z = \frac{A^+(a - 1)^2 - 1}{\rho_0}, \quad p_\phi = \frac{a^2 A^+}{\rho_0}. \]

The dominant energy condition, \(\sigma \geq 0, |p_z|, |p_\phi| \leq \sigma \), requires

\[1 - A^+ \geq 0, \quad -\left[1 - \frac{A^+}{A^+}\right]^{\frac{1}{2}} < a \leq 0. \]

Choosing \(a = 0, 0 < A^+ < 1 \), we obtain the cylinders with

\[\sigma = \frac{1 - A^+}{\rho_0} = -p_z, \quad p_\phi = 0, \]

generating the exterior fields as straight cosmic strings: locally flat but conical, with a positive deficit angle given by \(2\pi(1 - A^+) \). Curiously, if we admit a negative mass density such that

\[A^+ = 1 + n, \quad n = 1, 2, \ldots, \]

and thus

\[\sigma = -\frac{n}{\rho_0} = -p_z, \]

the exterior space is some covering space of a part of Minkowski space. Indeed, it is easy to see that with \(\gamma = -\ln(1 + n), \psi = \text{const} \), the metric (B11) can be converted to a flat metric with \(\tilde{\phi} \in [0, 2\pi(n + 1)] \). The holonomy group of such a space is the same as that of a part of Minkowski space so that vectors transported parallel around closed curves coincide with the original (cf. also [27] and [28] who find no “gravitational Aharonov–Bohm effect” in the cases corresponding to \(A^+ \) given by (B10)). The Lie algebra of Killing fields does not differ from that of a part of Minkowski space. However, the geometry (determined by the metric itself, rather than by the connection) is different. With the original coordinate \(\phi \in [0, 2\pi] \) it reads (after rescaling \(t \))

\[ds^2 = -dt^2 + \frac{1}{(n + 1)^2} d\rho^2 + \rho^2 d\phi^2 + dz^2. \]

Considering surfaces \(t = \text{const}, z = \text{const} \), and comparing the proper lengths, \(2\pi \rho_1 \) and \(2\pi \rho_2 \), of the two circles with radii \(\rho_1 \) and \(\rho_2 \), with their proper “orthogonal distance”, \((n + 1)^{-1}(\rho_2 - \rho_1) \), the result differs from that in Minkowski space. This (anti)conical character of spacetime can be observed also at infinity after performing an inversion using Cartesian coordinates (cf. Eqs. (2.19) of [11]). This, of course, is true for any (anti)conical space with \(A^+ \neq 1 \).

In any case, the asymptotic gravitational field describing static cylinders is determined by two parameters, rather than one, describing the asymptotic field of
cylindrical waves considered in the main text. (Relatively recently, Bondi [26] examined quasi-statically changing cylindrical systems and concluded that there is no conservation of these parameters because of gravitational induction transferring energy parallel to the axis.)

The (2+1)-dimensional metric corresponding to (B1) is (cf. (2.11))

\[d\sigma^2 = e^{2\gamma}(-dt^2 + d\rho^2) + \rho^2 d\phi^2. \]

(B12)

Introducing \(u = t - \rho \) and writing \(\gamma \) in the form

\[\gamma = a^2 \ln \rho + B, \quad a^2 \geq 0, \quad B \text{ constant}, \]

we get

\[d\sigma^2 = \rho^{2a^2}e^{2B}(-du^2 - 2dud\rho) + \rho^2 d\phi^2. \]

(B14)

Now we go over to the unphysical 3-dimensional spacetime with coordinates

\[\tilde{u} = u, \quad \tilde{\rho} = \rho^{2a^2-1}, \quad \tilde{\phi} = \phi \]

(B15)

by a conformal transformation with the conformal factor

\[\Omega = \tilde{\rho}^{-1/(2a^2-1)}. \]

(B16)

The metric of the unphysical spacetime then reads

\[d\tilde{\sigma}^2 = \Omega^2 d\sigma^2 = e^{2B} \left[-\tilde{\rho}^{2(a^2-1)/(2a^2-1)}d\tilde{u}^2 - 2(2a^2 - 1)^{-1}d\tilde{u}d\tilde{\rho}\right] + d\tilde{\phi}^2. \]

(B17)

Assume \(a^2 < \frac{1}{2} \). This includes cases when mass per unit length of the cylinder is small because then constant \(C \ll 1 \) and \(0 < a^2 = C^2(1-C)^{-2} \ll 1 \). Transformation (B15) shows that \(\rho \to \infty \) implies \(\tilde{\rho} \to 0 \), and (B16) implies \(\Omega = 0 \) at \(\tilde{\rho} = 0 \). The metric (B17) becomes degenerate here. The conformal completion of the spacetime with a given \(a^2 < \frac{1}{2} \) can thus be constructed, with infinity being at \(\Omega = 0 \). However, (B16) yields \(\nabla \Omega = 0 \) at \(\tilde{\rho} = 0 \). Therefore, the asymptotics for static cylinders is completely different from a standard conformal completion of an asymptotically flat spacetime. In special cases of locally flat but conical space-times the asymptotics in (3+1)–dimensional context is analyzed in [29].
REFERENCES

[1] D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, *Exact solutions of Einstein's field equations* (Cambridge University Press, Cambridge, England 1980).
[2] K. S. Thorne, Phys.Rev. **138**, B251 (1965).
[3] J. Stachel, J. Math. Phys. **7**, 1321 (1966).
[4] K. P. Tod, Class. Quan. Grav. **7**, 2237 (1990).
[5] K. Kuchař, Phys. Rev. **D4**, 955 (1971); A. Ashtekar and M. Pierri, pre-print CGPG-96/5-3.
[6] B. Berger, Ann. Phys. (N.Y.) **83**, 458 (1974); **156**, 155 (1984); A. Ashtekar and M. Pierri, pre-print CGPG-96/5-4.
[7] S. Chandrasekhar, Proc. R. Soc. London **A408**, 209 (1986).
[8] S. Chandrasekhar and V. Ferrari, Proc. R. Soc. London **A412**, 75 (1987).
[9] B. K. Berger, P. T. Chruściew, and V. Moncrief, Ann. Phys. (N.Y.) **237**, 322 (1995).
[10] A. Ashtekar and M. Varadarajan, Phys. Rev. **D50**, 4944 (1994); M. Varadarajan, Phys. Rev. **D52**, 2020 (1995).
[11] A. Ashtekar, J. Bičák and B. G. Schmidt, “Behavior of Einstein-Rosen waves at null infinity” (following paper).
[12] T. Levi–Civita, Rend. Accad. Lincei **27**, 343 (1918).
[13] R. Penrose, Phys. Rev. Lett. **10**, 66 (1963); Proc. R. Soc. London **A284**, 159 (1965).
[14] J. Bičák and B. G. Schmidt, Phys. Rev. **D40**, 1827 (1989).
[15] G. B. Whitman, *Linear and non-linear waves* (J. Wiley, New York, 1974).
[16] H. Bondi, M. van der Burg, and A. Metzner, Proc. R. Soc. London **A269**, 21 (1962).
[17] R. Geroch, in *Asymptotic structure of space-time*, eds P. Esposito and L. Witten (Plenum, New York, 1977).
[18] A. Ashtekar, J. Math. Phys. **22**, 2885 (1981); A. Ashtekar and M. Streubel, Proc. R. Soc. London **A376**, 585 (1981).
[19] S. Deser, R. Jackiw and G. ’t Hooft, Ann. Phys. (N.Y.) **152**, 220 (1984).
[20] R. Sachs, Phys. Rev. **128**, 2851 (1962).
[21] A. Ashtekar and B.C. Xanthopoulos, J. Math. Phys. **19**, 2216 (1978).
[22] A. Ashtekar, Phys. Rev. Lett. **46**, 573 (1981); J. Math. Phys. **22**, 2885 (1981); *Asymptotic Quantization* (Bibliopolis, Naples, 1987).
[23] S. Frettelli, C. Kozameh, E. T. Newman, C. Rovelli and R. S. Tate, pre-print gr-qc 9603061.
[24] L. Marder, Proc. R. Soc. London **A244**, 524 (1958).
[25] J. Stachel, J. Math. Phys. **25**, 338 (1984).
[26] H. Bondi, Proc. R. Soc. London **A427**, 259 (1990).
[27] C. J. C. Burges, Phys. Rev. **D32**, 504 (1985).
[28] V. B. Bezerra, Phys. Rev. **D35**, 2031 (1987).
[29] J. Bičák and B. G. Schmidt, Class. Quantum Grav. **6**, 1547 (1989).