Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Narrative Review

The efficacy of probiotics on virus titres and antibody production in virus diseases: A systematic review on recent evidence for COVID-19 treatment*

Shahrzad Mirashrafi a, Amir Reza Moravejolahkami a,*, Zakiyeh Balouch Zehi b, Mohammad Ali Hojjati Kermani c, Nimah Bahreini-Esfahani d, Mohsen Haratian e, Marjan Ganjali Dashti f, Meraj Pourhossein d, **

a Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
b Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
c Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
d Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
e Department of Nutrition, Vice Chancellor of Health, Hamadan University of Medical Sciences, Hamadan, Iran
f Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, USA

article info

Article history:
Received 27 March 2021
Accepted 18 October 2021

Keywords:
Probiotics
COVID-19
SARS-CoV-2
Virus diseases

SUMMARY

Background & aims: There are some studies indicating the effects of probiotic-containing foods or supplements on viral diseases. We aimed to conduct a rapid review of probiotics with specific emphasis on their potential for early administration in patients at greater risk of SARS-CoV-2 infection.

Methods: We searched on PubMed, EMBASE, Google Scholar, Science Direct, Scopus and Web of Science up to February 2021 to identify interventional and observational studies documenting the effects of probiotics strains on interleukins, virus titers, and antibody production with a focus on probiotic-containing foods (PROSPERO Registration ID. CRD42020181453)

Results: From a total of 163 records, 21 studies were classified into three domains based on the efficacy of probiotics on 1) the level of interleukins (n = 7), 2) virus titers (n = 2), and 3) interferon (IFN) and antibody production (n = 12). The suppuration of pro-inflammatory interleukins and type 1 IFN production seemed to be the main anti-viral effect of probiotics. Nine studies also indicated the beneficial effects of probiotics and fermented foods on viral diseases.

Conclusion: Based on evidence, some probiotic strains may be useful in viral infections; randomized trials are needed to confirm these findings.

© 2021 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) is a new public health crisis threatening the humanity [1,2]. SARS-CoV-2 attaches to Angiotensin Converting Enzyme 2 (ACE2) receptor with 10–20 folds higher affinity than SARS-CoV [3]. Practically, antibiotic therapy results in more susceptibility to subsequent infections in severe COVID-19 patients [4]; one of the most irritating complication is antibiotic-associated diarrhea [5].

Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit to the host [6]. Clinical evidence shows that certain probiotics may help treat and prevent viral infections [7,8] due to the proven immunomodulatory activity and ability to stimulate interferon (INF) production [9]. Based on evidence, the gut–lung axis explains the possible relationship between respiratory disorders and gut microbiome [10]. It was indicated that some probiotic strains activate the innate and the acquired immune system, resulting in an anti-viral protection [11–13].

Recently, some COVID-19 patients showed microbial dysbiosis with decreased Lactobacillus and Bifidobacterium [14]. In addition, gut microbiota diversity is reduced in older peoples, who are vulnerable to severe forms of COVID-19 [15]. There are limited data on the effects of probiotics in COVID-19. Several different probiotics, including Lactobacillus acidophilus, Bifidobacterium and Saccharomyces boulardii, along with minerals and vitamins were given to a COVID-19 case; this type of nutritional support lowered the complications of massive antibiotic therapy (antibiotic-associated diarrhea and recurrent Clostridiodes Difficile infections) [16]. Furthermore, another author suggested the concurrent use of probiotics in COVID-19 patients to decrease the risk for Candida albicans (caused by prophylaxis with azithromycin) [17].

In another report, COVID-19-like symptoms disappeared after two days administration of oral probiotic in a 9 years-old boy [18]. Results of a case series - consists of 62 SARS-CoV2 infected patients in Zhejiang province - was interesting. In this research, probiotics were administered as adjunct and the authors reported that only two patients (3%) developed shortness of breath on admission. Moreover, only one was admitted to an intensive care unit [19]. Other reports showed a significant effect of probiotics; compared to patients with non-severe disease, patients with severe disease were more likely to be treated by probiotics therapy (87.5% vs 40.4%, p = 0.037) [20].

According to recent data, more than ten clinical trials have been registered regarding the probiotics supplementation in COVID-19 patients [21], however, more information is needed for designing future research protocols. We aimed to summarize the effects of probiotic supplementation on interleukins, viral titers, interferons, and antibody production in viral infections especially SARS-CoV-2.

2. Methods

2.1. Protocol registration

The protocol of this systematic review has been registered on PROSPERO website (www.crd.york.ac.uk/PROSPERO) developed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines [22]. The selected studies did not provide sufficient data for quantitative analysis, therefore, all studies were just systematically reviewed.

2.2. Search strategy

A comprehensive search of the literature was conducted in the following databases up to June 30, 2020: PubMed, EMBASE, Google Scholar, Science Direct, Scopus, and Web of Science. All citations were imported into a bibliographic database (EndNote X8.1; Thomson Reuters) and duplicates were removed. The search strategy was handled independently by two authors.

The used search string - based on suitable MESH and non-MESH keywords - were: ("COVID-19" OR "SARS-CoV-2" OR "Severe Acute Respiratory Coronavirus 2" OR "Coronavirus" OR "Virus Disease" OR "Viral Infection" OR "Virus") AND ("(Virus Titers" OR "Titers" OR "Interleukin" OR "IL-6" OR "IL-17" OR "Antibody" OR "IgG" OR "IgA") OR "Interferon" OR "INF") AND ("(Synbiotics" OR "Probiotics" OR "Prebiotics" OR "Probiotic Milk" OR "Probiotic Yoghurt" OR "Probiotic Honey" OR "Probiotic Food" OR "Fermented Foods"))]. Moreover, bibliographies of all published reviews and studies were assessed for additional relevant papers.

2.3. Study selection criteria, data extraction and quality assessment

Title, abstract, and full-text of all articles were screened to select and extract studies that investigated the effect of probiotics on viral infections (with emphasis on SARS-CoV-2) in English language (all research types with both human and animal origin). We excluded HIV papers, due to not being directly related to respiratory viral infections. Data extraction from primary articles was performed by one author using a standardized form. A second author checked the accuracy of the data extracted. Data collected from the studies included authors' family name, type of study, probiotic strains and dose, sample size, and overall outcomes. The cochrane collaboration criteria for assessing risk of bias were applied to assess the quality of the studies included in the review [23].

2.4. Risk of bias assessment

The included studies were evaluated for bias by using the Cochrane Risk-Of-Bias. Each included study was evaluated for the following biases: random sequence generation (selection bias), allocation concealment (selection bias), blinded to participant and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias) and other bias. The reviewers' judgment was classified as “Low risk,” “High risk” or “Unclear risk” of bias.

3. Results

A diagram showed the details of included studies (Fig. 1), 163 records were identified initially from selected databases. After excluding duplicates and articles that did not meet the inclusion criteria, we obtained 58 papers with full-texts, which were read for further evaluation. Another 28 papers were excluded due to insufficient data and duplication. In general, we included 30 articles for qualitative analysis; 21 studies were classified into three domains based on the efficacy of probiotics on 1) the level of interleukins (n = 7), 2) virus titers (n = 2), and 3) interferon and antibody production (n = 12). Another nine papers evaluated the efficacy of probiotics-containing and fermented foods on viral diseases.

3.1. Risk of bias report

Risk of bias was low in the following domains: selection bias (random sequence generation and allocation concealment, eight and twelve studies, respectively), performance bias (nine studies), detection bias (thirteen studies), attrition bias (two studies), and reporting bias (four studies). In overall state, thirteen studies had low risk of bias, three studies seemed to be at a high risk of attrition bias. Moreover, five studies had unclear risk of bias.
3.2. Major effects of probiotics in viral infections

The effects of probiotics supplementation on interleukins, viral titers and antibody production were briefly displayed in Fig. 2. Moreover, clinical evidence for the role of probiotics in COVID-19 - up to June 2021 - was summarized in Fig. 3.

3.2.1. Effects on levels of interleukins

Jiang et al. [24] administered an oral *Lactobacillus casei* ATCC 39392 vaccine against anti-transmissible gastroenteritis virus (TGEV) in piglets. This vaccine polarized Th2 cell immunity, stimulated Interleukin (IL)-17 expression, and induced an anti-TGEV infection Th17 pathway. However, Bozkurt et al. [25] reported that the *Bifidobacterium animalis* strain may be effective in preventing colorectal cancer through non-stimulatory effects on Th17 (and IL-17) cells, and a promoting effect on Th1 cells. In another study, the strain 'heat-killed *Lactobacillus plantarum* L-137' was introduced as an IL-12 inducer in mice [26].

In a trial conducted by Kimmel et al. [27], ten healthy Subjects consumed one capsule/day of *Bacillus coagulans* GBI-30 6086 (GanedenBC30) for 28 days and returned for post-treatment immunological markers evaluation; IL-6, IL-8, and Tumor Necrosis Factor-alpha (TNF-α) levels were increased after exposure to a strain of adenovirus (AdenoVI) and influenza A (H3N2 Texas strain; FluTex). IL-1beta levels also increased after exposure to AdenoVI but were reduced after ex vivo exposure to FluTex.

Abt et al. [28] described the antiviral activity of *Streptococcus salivarius* K12. Some hypotheses indicated that oral administration of the *S. salivarius* K12, through a still not perfectly clear molecular anti-inflammatory mechanism, reduced IL-8 plasma concentrations and increased salivary INF-γ. These modulations may also realistically account for anti-inflammatory and antiviral activity, which would then be added to the antibacterial action of the K12 strain [29]. However, it seems that not all *S. salivarius* strains elicit similar immune responses, since *S. salivarius* ATCC 25975 was reported to upregulate IL-6, IL-8 and TNF-α gene expression [30].

Coronaviruses may also be vulnerable to probiotics. Chi et al. [31] noted that pretreating swine testicular cells with *Enterococcus faecium* NCIMB 10415, which is approved as a feed additive in the European Union, led to protective effects against the enteropathogenic coronavirus transmissible gastroenteritis virus (TGEV). A stimulated cellular defense was suggested as the underlying mechanism because of increased cellular production of nitric oxide and IL-6 and IL-8 expression. Although *E. faecium* NCIMB 10415 reduced all viral structural proteins, this strain significantly increased the production of pro-inflammatory factors IL-6 and IL-8.
in TGEV-infected ST cells. In contrast, Tian et al. [32] claimed that E. faecium HDRsE1 can significantly downregulate the mRNA level of pro-inflammatory factors IL-1β, IL-6, IL-8, IL-12, IL-17, and TNF-α.

3.2.2. Effects on viral titers

In an animal study, the administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (1073R-1) for 21 days significantly decreased influenza virus titers in infected mice [33].

Results of another animal study, conducted by Maeda et al. [34], showed that heat-killed Lactobacillus plantarum L-137 can lower the viral titers of influenza virus A/36H1N1, a mouse-adapted strain) in infected mice, however, researchers demonstrated this effect on humans [35]. Contrary, the strain “heat-treated Enterococcus faecalis FK-23” during 6–36 months administration for 39 adult HCV-positive subjects could reduce Alanine Aminotransferase (ALT) and Aspartate Transaminase (AST) with no significant effect on viral load [36].

3.2.3. Effects on interferon and antibody production

IgA and type 1 Interferons (IFNs) production are direct mediators of protection against viral infections especially in SARS-CoV-2 [37]. Based on previous findings, the consumption of one capsule/day Bacillus coagulans GBS-30 (CNCMI-1518) for 13 weeks [41]. Moreover, Nagai et al. [33] reported that Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (1073R-1) increases anti-inflammatory virus (A/P/B/34/H1N1) antibodies (IgA, IgG1) in an animal model. Interestingly, heat-killed Lactobacillus plantarum L-137 can act as an IFN-β inducer [34].

Lactobacillus casei Shirota, another potential probiotic, was capable to reduce plasma antibody titers in cytomegalovirus and Epstein–Barr virus infected people through modulation the activity of Natural Killer (NK) cells [38]; but it did not have any therapeutic effect on norovirus-induced gastroenteritis [39].

Oral administration of yogurt containing Lactobacillus gasseri SBT2055 (LG2055) in healthy adult subjects potentiated vaccine-specific antibody production against A/H1N1 and B influenza viruses [40]. In another trial, titers against the influenza B strain increased significantly in group receiving Lactobacillus casei DN-114 001 (CNCMI-1518) for 13 weeks [41].

Another strain, Lactobacillus rhamnosus GG (LGG), when administered for 4 weeks to children with gastroenteritis, who were positive for either rotavirus or Cryptosporidium in stool, caused a significant increase in serum Immunoglobulin (Ig) G levels [42]. According to evidence, the titers of vaccine-specific IgG, IgG1, and IgG3 in plasma as well as that of vaccine-specific secretory IgA in saliva were significantly greater in those who received both probiotics “B. animalis ssp. lactis and Lactobacillus paracasei ssp. Paracasei (10^9 CFU for 6 weeks)" [43]. Furthermore, 172 full-term infants who were fed probiotic formula 10^6 CFU/g B. animalis subspecies lactis (Bb12), had more anti-poliovirus-specific IgA in the feces sample, but not anti-rotavirus-specific IgA [44].

Akatsu et al. [45] highlighted a significant association between Bifidobacterium and increased immune function and intestinal microbiota in the elderly; administration of Bifidobacterium longum (BB536) for 5 weeks resulted in an increase of serum IgA. BB536 did not significantly affect hemagglutination inhibition in response to influenza vaccine. NK cell activity did not also decrease significantly in probiotic group.

Interestingly, Receiving a jelly containing 10 billion heat-killed Lactobacillus paracasei MCC189 cells for 6 weeks could improve the antibody responses to the A/H1N1 and B antigens in ≥85 years of age subgroup (n = 27), however, the overall results were not significant in comparison with placebo group [46].

Fig. 2. Evidence-based efficacy of some probiotic strains on interleukins, virus titers and antibody production in viral infections.

Fig. 3. The probiotics strains that have been reported in the context of COVID-19.
3.3. Major effects of probiotic-containing and fermented foods on viral infections

Probiotic milk, yoghurt and honey are the most common probiotics-containing foods worldwide. There are some reports indicating the beneficial effects of these foods on viral diseases. Human milk is the main source of Lactic Acid Bacteria (LAB); LAB indicated a protective effect against rotavirus and TGEV [47]. Moreover, two strains Lactobacillus acidophilus DSM32241, L. helveticus DSM32242, L. paracasei DSM32243, L. plantarum DSM32244, S. thermophilus DSM32245, Bifidobacterium lactis DSM32246, and B. lactis DSM32247 for 2 weeks at 2.4 × 10^6 CFU/day have beneficial effect on diarrhea and respiratory failure in COVID-19 patients, however, they did not conduct an initial gut microbiome screening before intervention. Altered intestinal microbiomes have been detected in COVID-19 patients [68–71], therefore, nutritional interventions such as probiotics and prebiotics may be beneficial as a fundamental therapeutic technique [72,73].

Coronaviruses (CoVs) involve a large family of surrounded, positive-stranded RNA viruses that infect a wide range of animal hosts as well as humans. The most recognized coronavirus, the Middle East respiratory syndrome virus, was found in Africa and Asia [74]. The currently available antiviral agents for management of CoV-induced infections does not take into consideration the effect of other factors on the treatment process including intestinal microbiota. Lactobacilli and Bifidobacteria are two conventional probiotics that can regulate the balance of a diverse gut ecosystem in combating COVID-19 [141].

There are some mechanisms explaining the antiviral impacts of probiotics. Some authors claimed that high-single dose endoscopic administration of Bifidobacterium infantis (BB-12), as a potential probiotic, or bacterial lipopolysaccharide membrane in vaccine production can result in more therapeutic and preventive effects in CoV-infected patients especially in individuals with gastrointestinal symptoms (diarrhea, abdomen pain, vomiting) [75–77]. Moreover, B. animalis theoretically can inhibit the replication of CoVs by reducing endoplasmic reticulum stress-related autophagy, especially through the Inositol-Require Enzyme 1 (IRE1) pathway, over its anti interleukin-17 effect [25]. Apparently, the main pathogenic mechanism in the viral infection-induced pneumonia seems to be a “cytokine storm” [78]; IL-6 is the main pro-inflammatory marker in the infectious diseases [78]. Coomes et al. [79] in a meta-analysis concluded that inhibition of IL-6 may be a novel target for therapeutic goals in patients with COVID-19. The current state of knowledge on the immunomodulatory effects of probiotics has recently advanced [80].

Some probiotics have potency to induce the IFN production pathways. L. lactis JCMS805 can activate human plasmacytoid Dendritic Cells (pDCs) in vitro; pDCs play a crucial role in antiviral immunity as proficient type I IFN producing cells (IPCs) [81,82] and mucosal T cell independent IgA production [83], pDC-derived type I IFNs can indirectly inhibit viral replication and spread [84], and activation of NK cells [83]. Two distinct types of Toll-Like Receptors (TLR7 and TLR9) - expressed by pDCs - have some molecular role [85]; TLR7 recognizes the microbial RNA of virus [86,87], and TLR9 senses the ssDNA containing CpG motifs [88,89]. Upon sensing the viral nucleic acid, Interferon Regulatory Factor 7 (IRF7) is activated, phosphorylated, and translocated into the nucleus to begin the transcription of type I IFNs [90]. In conclusion, this strain had many important roles in both innate immunity and adaptive immunity. In addition, several human-based trials confirmed this observation (influenza virus as main target) [91–93]. Furthermore, some probiotic strains such as E. faecium HDR5SE1 could significantly downregulate the mRNA level of TLR4, TLR5, TLR7, and TLR8 [32].

As discussed earlier, there have also been negative reports against probiotics. According to scRNA-Seq analysis, Feng et al. found that the SARS-Cov-2 receptor, ACE2, could be elevated in the presence of both invasive bacteria Salmonella Enterica and its counterpart, Segmented Filamentous Bacteria as probiotics in the
mouse small intestine [94] and human enterocytes [95], in another study *Lactobacillus acidophilus* and *Bacillus clausii* also failed to decrease the coronavirus receptors expression in the murine small intestine compared to control and post *Salmonella* infection [96].

In total, the US Food and Drug Administration classifies probiotics as Generally Recognized As Safe (GRAS) organisms, meaning that the risks of probiotics administration seem to be low, however, the amount and type of probiotic strains are also considerable [97–99]. Notably, unconfirmed prescription of conventional probiotics for COVID-19 is not recommended until further investigations regarding the pathogenesis of SARS-CoV-2 and their effect on gut microbiota were published.

A few limitations of this review shall be highlighted. The systematic review table was not designed due to inconsistent data of relevant studies. Moreover, meta-analysis has not been performed due to heterogeneity of studies, especially in relation to published data for SARS-CoV-2. In addition, we excluded a large number of research on supplementation of different nutrients, which were related to immune function. However, the main strength of the current study was that we performed an exclusive investigation for diseases of the same origin i.e. viral diseases, especially COVID-19.

5. Conclusion

We described the efficacy of probiotics for the prevention or treatment of viral-based infectious diseases; more than twenty strains improved the anti-inflammatory interleukins and anti-body production against viruses. Moreover, virus titers were lowered after probiotics supplementation. Probiotic-containing foods and fermented food products also showed significant effect on prevention and treatment of viral diseases. The large number of viral species and their subtypes as well as the high mutation rate of viruses do not allow scientists to discover appropriate vaccines and antiviral drugs, therefore, the administration of pro/prebiotics - as immune function modulators and antibiotic-related side effects removers - is recommended. Although further detailed research is necessary, the authors recommend researchers/physicians/dietitians to use probiotics as more rational adjunctive option in COVID-19 pandemic, especially in mechanically ventilated patients.

Contributors

Shahrzad Mirashrafi: Writing-Original draft preparation and Software.
Amir Reza Moravejolahkami: Conceptualization, Writing-Original draft preparation and Software, Critical Reviewing and Editing the Final Version of the Manuscript, Assessing Study Eligibility and Conducting Quality Assessments, Supervision, Critical Reviewing and Editing the Final Version of the Manuscript.
Zakieh Balouch Zehi: Investigation, Visualization.
Mohammad Ali Hojati Kermani, Marjan Ganjali Dashti: Assessing Study Eligibility and Conducting Quality.
Mohsen Haratian: Validation.
Meraj Pourhossein, Nimah Bahreini-Esfahani: Critical Reviewing and Editing the Final Version of the Manuscript.

Funding

The authors declare no support from any commercial organization for the submitted study.

Declaration of competing interest

None of the authors had a conflict of interest.

Acknowledgement

We thank all the nurses, doctors, clinicians and researchers during COVID-19 pandemic.

This study protocol was registered on International prospective register of systematic reviews (PROSPERO): (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID¼181453).

Registration ID. CRD42020181453.

References

[1] Malik YS, Sircar S, Bhat S, Vinodhikumar OR, Tiwari R, Sah R, et al. Emerging Coronavirus Disease (COVID-19): a pandemic public health emergency with animal linkages: current status update. 2020.
[2] Lipsitch M, Swerdlow DL, Finelli L. Defining the epidemiology of Covid-19—studies needed. N Engl J Med 2020;382(13):1194–6.
[3] Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020;63(3):457–60.
[4] Mak JW, Chan FK, Ng SC. Probiotics and COVID-19: one size does not fit all. Lancet Gastroenterol & Hepatol 2020;5(7):644–5.
[5] Wei X-S, Wang X, Niu Y-R, Ye I-L, Peng W-B, Wang Z-H, et al. Diarrhea is associated with prolonged symptoms and viral carriage in COVID-19. Clin Gastroenterol Hepatol 2020;18(8):1753–9.
[6] Bahreini-Esfahani N, Moravejolahkami AR. Can symbiotic dietary pattern predict lactobacillales strains in breast milk? Breastfeed Med 2020;15(6):387–93.
[7] Mousa HA-L. Prevention and treatment of influenza, influenza-like illness, and common cold by herbal, complementary, and natural therapies. J Evidence-Based Complement & Alt Med 2017;22(1):166–74.
[8] Paknahad Z, Moravejolahkami AR. Probiotics against viruses; COVID-19 is a paper tiger: a systematic Review. Endocr Metab Immune Disord - Drug Targets 2020;21(7):1252–60.
[9] Bohlouli J, Namjoo I, Borzoo-Ishfani M, Kermani MAH, Zehi ZB, Moravejolahkami AR. Effect of probiotics on oxidative stress and inflammatory status in diabetic nephropathy: a systematic review and meta-analysis of clinical trials. Heliyon 2021;7(1):e06592.
[10] Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Annals Am Thoracic Soc 2015;12(Supplement 2):S150–6.
[11] Asama T, Uematsu T, Kobayashi N, Tatufuji T, Hashimoto K. Oral administration of heat-killed Lactobacillus kunkeei YB38 improves murine influenza pneumonia by enhancing IgA production. Bioscience of Microbiota, Food and Health 2017;36(1):1–8.
[12] Kavasch O, Andoh A, Mesbah, S, Yamamoto N, Probotics and paraprobiotics in viral infection: clinical application and effects on the innate and acquired immune systems. Curr Pharmaceut Des 2018;24(6):710–7.
[13] Michael H, Paul FC, Miyazaki A, Langel SN, Fischer DD, Cheppgenjo J, et al. Escherichia coli Nissle 1917 administered as a dextranomer microsphere biofilm enhances immune responses against human rotavirus in a neonatal malnourished pig model colonized with human infant fecal microbiota. PLoS One 2021;16(2):e0264193.
[14] Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, et al. Management of coronavirus disease-19 (COVID-19): the Zhejiang experience. J Zhejiang Univ 2020;49(1). 0–.
[15] Dhar D, Mohanty A. Gut microbiota and Covid-19-possible link and implications. Virus Res 2020;198:18.
[16] Horowitz RI, Freeman PR, Bruzzese J. Effectiveness of probiotics in relieving dyspepsia associated with COVID-19 pneumonia: a report of 2 cases. Respiratory Med Case Reports 2020:101063.
[17] Block J. High risk COVID-19: potential intervention at multiple points in the COVID-19 disease process via prophylactic treatment with azithromycin or bee derived products. 2020.
[18] Jin L-N, Cao S, Wang Y-J, Li X-J, Mu X-D, Lin M-G, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. Br Med J 2020:368.
[19] Jiang X, Tao J, Wu H, Wang Y, Zhao W, Zhou M, et al. Clinical features and management of severe COVID-19: a retrospective study in WuXi, Jiangsu Province, China. MedRxiv 2020.
[20] Hu J, Zhang L, Lin W, Tang W, Chan FK, Ng SC. Probiotics, prebiotics, and dietary approaches during COVID-19 pandemic. Trends Food Sci Technol 2020.
[21] Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009;151(4):W-65–W-94.
[22] Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons: 2011.
Boge T, R Oo KM, Ayelwin A, Kyaw YY, Tun WM, Fukada K, Goshima A, et al. Safety and Wescombe PA, Hale JD, Heng NC, Tagg JR. Developing oral probiotics from Maruyama M, Abe R, Shimono T, Iwabuchi N, Abe F, Xiao J-Z. The effects of Murosaki S, Yamamoto Y, Ito K, Inokuchi T, Kusaka H, Ikeda H, et al. Heat- Jiang X, Hou X, Tang L, Jiang Y, Ma G, Li Y. A phase trial of the oral Lactobacillus S. Mirashra A probiotic fermented dairy drink improves antibody response to in Immunity and Infection in Health and Disease 2018:249.

interferon production in healthy humans and pigs. Immunopharmacol and Heng NC, Tagg JR. Developing oral probiotics from Maruyama M, Abe R, Shimono T, Iwabuchi N, Abe F, Xiao J-Z. The effects of Murosaki S, Yamamoto Y, Ito K, Inokuchi T, Kusaka H, Ikeda H, et al. Heat- Jiang X, Hou X, Tang L, Jiang Y, Ma G, Li Y. A phase trial of the oral Lactobacillus S. Mirashra A probiotic fermented dairy drink improves antibody response to in Immunity and Infection in Health and Disease 2018:249.
essential role in dampening host proinflammatory responses and repressing local TH17 responses. Appl Environ Microbiol 2016;82(24):7185–96.

[77] Bozkurt K, Denkçay C, Ozdenir O, Altundal A, Avdan Z, Bozkurt H. Charge Transport in Bifidobacterium animalis subsp. lactis BB-12 under the various Atmosphere. 2019. arXiv preprint arXiv:190110765.

[78] Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: the role of the nsp 2 and nsp 3 in its pathogenesis. J Med Virol 2020;92(6):584–8.

[79] Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: a systematic review and meta-analysis. Rev Med Virol 2020;30(6):1–9.

[80] Askari G, Ghavami A, Shahdadian F, Moravejolahkami AR. Effect of synbiotics and probiotics supplementation on autoimmune diseases: a systematic review and meta-analysis of clinical trials. Clin Nutr 2021;40(5):3221–34.

[81] Trinchieri G, Santoli D. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med 1978;147(5):1314–33.

[82] Siegel FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, et al. The nature of the principal type I interferon-producing cells in human blood. Science 1999;284(5421):1835–7.

[83] Tezuka H, Abe Y, Asano J, Sato T, Liu J, Iwata M, et al. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. J Immunol 2011;187(2):2707–15.

[84] Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (α/β) in immunity and autoimmunity. Annu Rev Immunol 2005;23:307–35.

[85] Gilliet M, Cao W, Liu Y-J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008;8(8):594–606.

[86] Lund JM, Alexopoulos L, Sato A, Karow M, Adams NC, Gale NW, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci Unit States Am 2004;101(15):5598–603.

[87] Lee HK, Lund JM, Alexopoulou L, Sato A, Karow M, Fujimoto S, Oroguchi T, Sata K, et al. Lactococcus lactis JCM5805 activates anti-viral immunity and reduces symptoms of common cold and influenza in healthy adults in a randomized controlled trial. J Functional Foods 2016;24:492–500.

[88] Fujii T, Jounai K, Horie A, Takahashi H, Suzuki H, Ohshio K, et al. Effects of heat-killed Lactococcus lactis subsp. lactis JCM 5805 on mucosal and systemic immune parameters, and antiviral reactions to influenza virus in healthy adults; a randomized controlled double-blind study. J Functional Foods 2017;35:513–21.

[89] Liang W, Peng Z, Yao S, Xiao C, Xue X, Lin Z, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut 2020;69(6):1141–3.

[90] Feng Z, Wang Y, Qi W. The small intestine, an underestimated site of SARS-CoV-2 infection: from red queen effect to probiotics. Preprints 2020.

[91] Pradhan B, Guha D, Naik AK, Banerjee A, Tambat S, Chawla S, et al. Probiotics L. acidophilus and B. clausii modulate gut microbiota in Th1-and Th2-biased mice to ameliorate salmonella typhimurium-induced diarrhea. Probiotics and Antimicrobial Proteins 2019;11(3):887–904.

[92] Fujii T, Jounai K, Horie A, Takahashi H, Suzuki H, Ohshio K, et al. Effects of heat-killed Lactococcus lactis subsp. lactis JCM5805 on mucosal and systemic immune parameters, and antiviral reactions to influenza virus in healthy adults; a randomized controlled double-blind study. J Functional Foods 2017;35:513–21.

[93] Liang W, Peng Z, Yao S, Xiao C, Xue X, Lin Z, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut 2020;69(6):1141–3.

[94] Feng Z, Wang Y, Qi W. The small intestine, an underestimated site of SARS-CoV-2 infection: from red queen effect to probiotics. Preprints 2020.

[95] Pradhan B, Guha D, Naik AK, Banerjee A, Tambat S, Chawla S, et al. Probiotics L. acidophilus and B. clausii modulate gut microbiota in Th1-and Th2-biased mice to ameliorate salmonella typhimurium-induced diarrhea. Probiotics and Antimicrobial Proteins 2019;11(3):887–904.

[96] Fujii T, Jounai K, Horie A, Takahashi H, Suzuki H, Ohshio K, et al. Effects of heat-killed Lactococcus lactis subsp. lactis JCM5805 on mucosal and systemic immune parameters, and antiviral reactions to influenza virus in healthy adults; a randomized controlled double-blind study. J Functional Foods 2017;35:513–21.

[97] Liang W, Peng Z, Yao S, Xiao C, Xue X, Lin Z, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut 2020;69(6):1141–3.

[98] Feng Z, Wang Y, Qi W. The small intestine, an underestimated site of SARS-CoV-2 infection: from red queen effect to probiotics. Preprints 2020.

[99] Pradhan B, Guha D, Naik AK, Banerjee A, Tambat S, Chawla S, et al. Probiotics L. acidophilus and B. clausii modulate gut microbiota in Th1-and Th2-biased mice to ameliorate salmonella typhimurium-induced diarrhea. Probiotics and Antimicrobial Proteins 2019;11(3):887–904.

[100] Pradhan B, Guha D, Naik AK, Banerjee A, Tambat S, Chawla S, et al. Probiotics L. acidophilus and B. clausii modulate gut microbiota in Th1-and Th2-biased mice to ameliorate salmonella typhimurium-induced diarrhea. Probiotics and Antimicrobial Proteins 2019;11(3):887–904.