Novelties in *Chrysochlamys membranacea* (Clusiaceae: Clusieae), an Update on the Nomenclatural and Morphological Knowledge of this Species Described from Biogeographic Chocó, Colombia

Angy V. Caro-Sánchez a*, Álvaro Idárraga-Piedrahíta b and Fernando Alzate-Guarín a

a Grupo de Estudios Botánicos (GEOBOTA) and Herbario Universidad de Antioquia (HUA), Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 67 N° 53-108, Medellín, Colombia.
b Fundación Jardín Botánico de Medellín and Herbario Joaquín Antonio Uribe (JAUM), Calle 73 No. 51D–14, Medellín, Colombia.

Authors’ contributions

This work was carried out in collaboration among all authors. Author AVCS worked earlier on Clusiaceae studies, developed the conceptualization of the current work, and wrote the original draft of this article. Both authors FAG and AIP supervised the project and contributed to the review and editing of all previous versions. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/APRJ/2022/v10i2186

Original Research Article

Received: 13/09/2022
Accepted: 18/11/2022
Published: 22/11/2022

Corresponding author: E-mail: angy.caro@udea.edu.co; Asian Plant Res. J., vol. 10, no. 2, pp. 11-20, 2022
ABSTRACT

Chrysochlamys membranacea Planch. & Triana is a species described as a pistillate specimen collected between Nariño and Cauca departments, in the locality of biogeographic Chocó, Colombia. In that publication the authors also provide a description of staminate flowers, however, there is no clarity about the collection related to it. During studies on the Clusiaceae family in Colombia, it was shown that C. membranacea is one of the species for which clarity about its sexual dimorphism is lacking and that, additionally, the citation of collections and localities has also generated taxonomic and nomenclatural uncertainty. In this work the knowledge about the identity of C. membranacea is revalued, its morphology is extensively described, emphasizing the fruits and staminate flowers, and the lectotype for this species is proposed. Finally, some notes are provided on its geographic distribution, phenology, taxonomic affinities, sexual dimorphism, and threat category according to the categories and criteria of the IUCN.

Keywords: Balboa; dioecious; malpighiales; neotropical flora; Tovomitopsis; Triana.

1. INTRODUCTION

The genus Chrysochlamys Poepp. is circumscribed in the tribe Clusieae of the family Clusiaceae s.s. together with the genera Arawakia L. Marinho, Clusia L., Dystovomita (Engl.) D’Arcy, Tovomita Aubl. and Tovomitopsis Planch. & Triana [1]. Chrysochlamys has some 35-55 species, representing between 7-11% of the diversity of the tribe, distributed from Mexico and the Caribbean Islands to Bolivia and the North of Brazil, mainly in humid and low elevations forests, reaching ca. 2300 m a.s.l. [1,2,3,4].

All species of Chrysochlamys are dioecious and usually, these are described only of pistillate or staminate specimens. This condition is frequent in the species described by Planchon & Triana [5,6], which generates problems to define the morphological limits of the species. To overcome this problem, a complement to descriptions is necessary [5,7,8]. Additionally, the names of these taxa need typification’s, notes on the type location, and the accuracy of the description to diminish taxonomic issues [9,10].

Chrysochlamys membranacea is a species that has been reported in Brazil, Colombia, Ecuador, Venezuelan Guayana and, Perú [11,12,13,14, 15]. However, only in the Brazil and Venezuelan Guayana flora’s is provided a critical morphology analysis of the specimens, considering mainly vegetative characters and infructescence being the last one, a structure that was not described or considered in the protologue [6,11,15].

Based on the protologue, the type collections and 19 additional specimens belonging to C. membranacea, a nomenclatural treatment, a morphological re-circumscription and notes on its geographical distribution, ecology, dioecious condition, and local conservation status are proposed. This work contributes to the morphological knowledge of one of the least studied genera of the Clusiaceae, additionally this is a first approach to the evaluation of the dioecious condition and its implications for the taxonomic and ecological knowledge of Chrysochlamys in Northwestern of South America.

2. MATERIALS AND METHODS

Clusiaceae collections from HUA, FAUC, JAUM, MEDEL herbaria and, digital images from BM, COL, F, K, MPU, NY, P, SINCHI, UDBC and, US herbaria were revised in detail (acronyms according to [16]). In this search 39 sheets of C. membranacea were found, 15 with staminate flowers, 22 pistillate flowers, and 2 with immature flower buds. Morphological descriptions follow [17,18,19,20]. The nomenclatural treatment is according to the International Code of Nomenclature for algae, fungi, and plants (ICN) [21].

The threat category analysis was carried out following the guidelines of the IUCN [22,23], and using "ConR" package [24]. Based on the coordinates of all collections examined, this software calculates the “extent of occurrence” and the “area of occupancy” of the species. A 2 km cell width was used for the area of occupancy and a radius of 5 km was applied for the number of sub-populations, the cartography of protected areas of Colombia [25], (available at: https://www.iucn.org/), and Protected planet [26],
3. RESULTS AND DISCUSSION

Chrysochlamys membranacea Planch. & Triana Ann. Sci. Nat., Bot., Sér. 4, 14: 260. 1860 ≡ *Tovomitopsis membranacea* (Planch. & Triana) D’Arcy Ann. Missouri Bot. Gard. 67(4): 1034. 1980.

Type (lectotype, designed here): —COLOMBIA. “Choco et Barbacoas, côtes de l’océan Pacifique, alt. 200 mètres, le long des cours d’eau, dans les forêts”, May. 1853, *Triana* 5433-12 (BM000611594 [digital image!]; islectotypes P00093887 [digital image!], K000488480 [digital image!]; remanescent syntypes F00114316 [digital image!] (negative). Possible remanecent syntypes: —COLOMBIA. “Prov. del Chocó costas del pacifico, alt. 250”, Mar. 1853, *Triana* 5433-13 (BM000939035, COL000118341 [digital image!]).

Nomenclatural notes: When Planchon & Triana [6] described *Chrysochlamys membranacea* they provide the description of a vegetative and pistillate flowers followed by the citation of unnumbered Triana collections, and “Province of Barbacoas” as the locality of the specimen. Subsequently, they describe staminate flowers without relating a collection or locality to this.

After reviewing the original material collections, it was possible to show that they have label notes with Triana’s calligraphy where, presumably numbered by him [10,28]. Nevertheless, there is uncertainty regarding the nature of this numbering. With the information provided in the protologue of the pistillate individual were found the original material in BM, K, and P herbaria. The BM voucher is mixed (BM000611594 and BM000939035, see Fig. 1), the portion of the specimen on the left coincides with the locality cited in the protologue (*Triana* 5433-12), is designated as a lectotype in accordance with ICN Art. 9.3, Art. 9.6, Art. 9.14 and following the 9A recommendation [21].

![Image](https://example.com/image.png)

Fig. 1. *Chrysochlamys membranacea* original material. A) *Triana*, 5433-12 (Lectotype) and B) *Triana*, 5433-13 in BM herbarium. C) Labels notes with Triana calligraphy in *Triana*, 5433-13 COL herbarium. D) Labels notes with Triana calligraphy in *Triana*, 5433-12 P herbarium. E) Labels notes with Triana calligraphy in *Triana*, 5433-13 BM herbarium. F) Labels notes with Triana calligraphy in *Triana*, 5433-13 BM herbarium (Lectotype)
On the other hand, BM000939035 numbered as Triana 5433-13, shares the sheet with the lectotype, their vegetative morphology coincides with the pistillate specimen, and the biogeographic region and the date agree with the route of the trips made by Triana in the Choreographic Expedition of Colombia, in the former provinces of Barbacoas and Chocó [29, 30], the same label information is present in the collections deposited in COL herbarium. Both are considered in this work as possible remanescent syntypes (see Art. 9.6, Art. 9.14, and 9C in [21]), and it is very probable that these collections correspond to the description made by the authors of the inflorescences and staminate flowers [6].

Morphologic description: Dioecious trees or shrubs, 2.5–15.0 m. Reddish bark. Exude white or hyaline, viscid and abundant.

Leaves: Peltioles 5.0–6.3 mm long, leaf blade elliptic to oblanceolate, 10.0–37.5×4.0–17.0 cm, membranous; olive green or green grayish in sicco; base attenuate to slightly obtuse, recurved towards peltiole; apex acuminate; brochidodromous venation, prominent in the abaxial face, 19–25 pairs evenly spaced, 5.9–11.1 mm, 20°–30°; intersecondary veins non-obvious; tertiary veins forming inverted V or branching dichotomously; slightly puberulent around midvein and secondary veins; exude canals on both sides, very abundant.

Staminate inflorescences: Ramiflorus thyrsus, ca. 17.2 cm long, quadrangulates, without or very few irregular structures, puberulent, green; peduncle 0.4 to 2.5 cm long; internodes 0.7 to 4.5 cm long; proximal paracladia ca. 2.5 mm long.

Staminate flowers: Ca. 5.3×4.8 mm, globose in floral buds; pedicels 5.9–11.8 mm long, quadrangulate; bracteoles 2, ca. 0.9–1.6 mm long, inserted ca. 3.7 mm from the base, triangular, coriaceous, puberulent, wavy margin, basally fused. Calyx 5-merous; outer whorl 2-merous, parts connate, white occasionally with pinkish variegation, cucullate, coriaceous, puberulent, non-proportional, ca. 2.6–3.2×2.7 mm, sinuous margin; inner whorl 3-merous, free parts, white, cucullate, membranous, puberulent and with visible light streaks, not proportional, ca. 3.9–5.2×3.9 mm, scarious margin. Corolla 5-merous, petals connate, yellow, pink, or white, occasionally with reddish variegation, elliptic to obovate, proportional, ca. 10.5×5.4 mm, lustrous, reflexed, margin irregular and sinuous. Staminodia in a thick uniseriate or biseriate ring, basally connate to ovary, not persistent at maturity, resinous, possible find series of epipetalous staminodes, ca. 1.8 mm long; developed anthers, globose, located in the distal portion, ca. 0.1 mm, undeveloped connective. Ovary ca. 3.9×3.9 mm, elliptic, puberulent; 4–5 locular. Stigmata 4–5; 1.3 mm long, foveolate, forming a crown.

Fruits: Obovate, 1.7×1.5–1.9 cm; epicarp reddish green to wine brown; deciduous sepals and staminodes; pedicels 12.7–17.3 mm long covered with verrucose protuberances. Aril orange. Seeds elliptic, ca. 0.8 cm long.

Common name: Sanca sanca in Chocó, Colombia (E. Renteria 59 COL, HUA ♂).

Sexual dimorphism: When evaluating the intraspecific sexual differences in the revised specimens, a marked collectors bias towards pistillate specimens was observed, maybe related to the duration of staminate flowers vs. fruits in several stages of development. However,
with the individuals evaluated, it can be seen sexual dimorphism in *C. membranacea* occurs at the level of inflorescences and flowers, the vegetative characters are very stable which has facilitated the generation of a hypothesis of conspecificity between the specimens (see Fig. 2).

Staminate and pistillate individuals differ in the length of the inflorescence, shape of the floral whorls, and size and number of flowers. Staminate plants have internal sepals connate, and asymmetrical petals, obovate to orbicular, shorter than in pistillate individuals. The size and number of flowers, the lengths of the inflorescences, paracladia, peduncles, internodes and pedicels also seem to be morphological characters that showed variation in the different collections, however, there are not enough data to conclude that it is an intraspecific difference related to dioeciousness.

Resins were found in the staminodes of both sexual morphs, a trait not previously reported for this species.

Phenology: The staminate individuals of *C. membranacea* have been collected with flowers (floral buds and anthesis) in February, March, April, May, September, and December. Pistillate individuals have been collected with flowers (floral buds and anthesis) in March, July, and November. The fruiting occurs in the months of February, April, August and with both stages in February, May, and November. However, the data provided are still insufficient to establish a precise phenological pattern or to evaluate the synchrony of flowering between both sexualities.

Fig. 2. *Chrysochlamys membranacea.* A) Stem with leaf, staminate inflorescence, and bark. B) Details of staminate inflorescence. C) Stem with leaf, and pistillate inflorescence D) Details of staminate inflorescence. E) Detail of resins canals in the leaf (adaxial face). F) Staminate flowers at anthesis, resins in central position (lateral view). G) Detail of pubescent secondary and tertiary venation (abaxial face). H) Pistillate flowers at anthesis with staminode arrangement and ovary indument (lateral view). I) Detail of pedicel in fruits with verrucose protuberances (lateral view). Figure by Cristina Pareja, based on *E. Rentería* 59 (HUA) ♂, *D. Sánchez* 1074 (HUA) ♂, *L. Londoño* 09 (HUA) ♀, and *D. Sánchez* 1081 (MEDEL) ♀
Table 1. Comparison between *C. membranacea* and its related species

Morphologic character	*C. membranacea*	*C. balboa*	*C. croatii*	*C. gloriosa*
Pubescent veins	Present	Absent	Absent	Absent
Petiole length (mm long)	5.0–6.3	9.5–15.8	12.1–24.3	15–30
Peduncle length (♂, cm long)	0.4–2.5	ca 0	ca. 27.7	Not known
Arrangement of stamens	Free	Adelphous	Free	Not known
Staminodes (♂)	Present	Absent	Absent	Absent
Sepals color (♀)	White to pink	Not known	Red	Red
Staminodes (♀)	Connate	Not known	Glomerate	Not known
Irregular structures on pedicels (♀)	Present	Not known	Absent	Absent
Stigmas	Foveolate	Not known	Flapped	Not seen

Fig. 3. Distribution of *Chrysochlamys membranacea* showing the altitudinal distribution and the EOO (extent of occurrence)
Taxonomic notes: *Balboa* is a monospecific genus described as a staminate specimen collected in San Pablo, a locality in the current department of Nariño, Colombia. *Balboa membranacea* Planch. & Triana was proposed as a synonym of *C. membranacea* in the treatment for Clusiaceae carried out by Guzmán-Teare *et al.* in the "Catalogue of flowering plants and gymnosperms of Perú" [12], later this synonymization was reevaluated and a new name, *Chrysochlamys balboa* Hammel, was proposed [3,14]. In Table 1 has provided a morphological comparison between the staminate individuals of both species, considering that the pistillate morphotype of *C. balboa* is still unknown.

Affinities: *Chrysochlamys membranacea* differs from the other species by the combination of short petioles (5.0–6.3 mm long), primary and secondary venation puberulent, staminate flowers with staminodes clustered, anantherous and resiniferous in the central region of the flower, pedicel in pistillate flowers with verrucose protuberances (more development in fruit), sepal whitish to pinkish, with staminodes arranged in a deciduous, leathery staminodial ring, with antherodes sessile, ovary pubescent with broad foveolate stigmas. In addition, to these characters, *C. membranacea* can be confused with similar species as *Chrysochlamys croatii* (Maguire) L. Marinho & Hammel, and *Chrysochlamys gloriosa* Cuatrec., a table by the differentiation of these taxa and *C. balboa* are provided below (see Table 1).

Distribution and habitat: *Chrysochlamys membranacea* was described based on specimens from two localities in Colombia, the first in the former Barbacoas Province, currently Nariño and Cauca departments; the second in the former province of Chocó, currently the department of Chocó. These locations belong to the biogeographical Chocó region. The remaining specimens seen, have been found in 17 locations in the departments of Chocó, Antioquia, Valle del Cauca, all in Colombia, and a single specimen in Ecuador, in the province of Esmeraldas (see Fig. 3 and specimens studied item). According to the specimens studied, *C. membranacea* occurs at elevations between 5-1750 m a.s.l. in lowland wet forests or montane cloud forests, with an annual average temperature of 26°C, and annual precipitation between 3,000–11,700 mm [31,32].

Threat category according to IUCN: *Chrysochlamys membranacea* grown in the Biogeographic Chocó region from Colombia and Ecuador. Historically, the region has been impacted by the highest deforestation and intensive mining [31,33], additionally, the number of protected areas in the zone in which *C. membranacea* is distributed is low [23,26]. Based on the extent of occurrence (EOO) of 35313.6 km² (see Fig. 3), the area of occupancy (AOO) of 68 km², that includes 14 sub-populations, close to 35% of occurrences within protected areas, and the decrease in habitat quality due to forest clearing. We suggest the “Near Threatened” (NT) [22,23].

4. CONCLUSION

Updating the dioecious species that have been described from one of the sexual morphs is necessary to fully understand the taxonomic limits, and the ecology of the species. The taxonomic study of Clusiaceae in Colombia is still necessary, especially for those genera that have been scarcely studied in the country. In response to the lack information, this work constitutes a first approach to updating the knowledge of dioeciousness in *Chrysochlamys* from Colombia and South America.

ACKNOWLEDGEMENTS

Authors would like to thank staff from HUA, JAUM and MEDEL herbaria for allowing access to their facilities and equipment, Jhon Steven Murillo for his appropriate comments on the manuscript, Cristina Pareja for the beautiful figure and, David Gutiérrez for the photographs of FAUC sheets. We thank those who oversaw systematizing or digitizing the botanical collections and archives bibliographies consulted for this work, and finally to the manuscript reviewers for their kind comments.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Marinho LC, Cai L, Duan X, Ruhfel BR, Fiaschi P, Amorim AM, et al. Plastomes resolve generic limits within tribe Clusiieae (Clusiaceae) and reveal the new genus *Arawakia*. Molecular Phylogenetics and Evolution. 2019;134: 142–151. Available:https://doi.org/10.1016/j.ympev.2019.02.005
2. Marinho LC, Fiaschi P, Amorim AM, Bittrich V. Clarifying the nomenclatural history of Tovomita lapunza, a Brazilian endemic genus of Clusiaceae. Phyto Keys. 2021;181:49. Available: https://doi.org/10.1007/s00604-014-1193-7

3. Hammel BE. Synopsis of Chrysochlamys (Clusiaceae: Clusioidae: Clusiaceae) Mesos America. Novon. 1999;9(3):360–374. Available: https://doi.org/10.2307/3391734

4. Stevens PF. Clusiaceae-guttiferae. In: Flowering plants eudicots. Springer, Berlin, Heidelberg. 2007;48–66. Available: https://doi.org/10.1007/978-3-540-32219-1_10

5. Cuatrecasas J. Notas a la flora de Colombia. x. Revista Acad. Colomb. Ci. Exact. Latin and Spanish. 1950;8:33-65.

6. Planchnon JE, Triana JJ. Mémoire sur la famille des Guttifères. Ann. Sci. Nat., Bot., sér. Victor Masson et Fils, Paris. French and Latin. 1860:4(14).

7. Engels ME, Marinho LC. Nomenclatural and morphological novelties in Tovomita lapunza (Clusiaceae). Phytotaxa. 2018;334(1):91–94. Available:https://doi.org/10.11646/phytotaxa.a.334.1.16

8. Luján M. Playing the taxonomic cupid: Matching pistillate and staminate conspecifics in dioecious Clusia (Clusiaceae). Systematic Botany. 2019;44(3). 548-559. Available:https://doi.org/10.1600/036364419X15620113920590

9. Aymard GA. Lectotypifications and nomenclatural notes of José Jerónimo Triana’s species of Dilleniaceae. Harvard Pap. Bot. 2017; 22:77–80. Available:https://doi.org/10.3100/ hpib.v22is s2.2017.n1

10. Reinales S, Parra OC. Disentangling the historical collection of José Jerónimo Triana from the República de la Nueva Granada between 1851 and 1857. TAXON. 2022;71(2):420-439. Available:https://doi.org/10.1002/tax.12653

11. Cabral FN, Marinho LC. Chrysochlamys. In: Flora e funga do Brasil. Jardim Botânico do Rio de Janeiro. Accessed 28 October 2022. Available:https://floradobraasil.jbrj.gov.br/FB 81777.

12. Guzmán-Teare M, Ricketson JM, Pipoly JJ. Clusiaceae. In: Brako L & Zarucchi JL. (Eds.). Catalogue of the flowering plants and gymnosperms of Peru: Catálogo de las angiospermas y gimnospermas del Perú. Monographs in Systematic Botany from the Missouri Botanical Garden. 1993;45:1-1286.

13. Hammel BE. Chrysochlamys. In: Bernal R, Gradstein RM & Celis M (eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá; 2015. Accessed 10 October 2022. Available: http://catalogoplantasdecolombia.unal.edu.co.

14. Jørgensen PM, Hammel BE, Pipoly JJ. Chrysochlamys. In: Jørgensen PM & León-Yáñez S (Eds.). Catalogue of the vascular plants of Ecuador. St. Louis: Missouri Botanical Garden. 1999;75:1-1182.

15. Kearns DM, Berry PE, Steven PF, Holst BK, Kubitzki K, Weitzman AL. Clusiaceae. In: Berry PE, Yatskievych K & BK (Eds.) HOLST. Flora of the Venezuelan Guayana. St. Louis: Missouri Botanical Garden. 1998;4:486-663.

16. Thiers B. Index Herbariorum: A global directory of public herbaria and associated staff. Accessed 28 October 2022. Available: http://sweetgum.nybg.org/ih/

17. Ellis B. Manual of leaf architecture. Published in association with the New York Botanical Garden; 2009.

18. Font Quer P. Diccionario de Botánica (2nd ed.). Barcelona, Península; Spanish; 2001.

19. Geber MA, Dawson TE, Delph LF (Eds.). Gender and sexual dimorphism in flowering plants. Springer Science and Business Media; 2012.

20. Reinales S, Parra OC. Disentangling the historical collection of José Jerónimo Triana from the República de la Nueva Granada between 1851 and 1857. TAXON. 2022;71(2):420-439. Available:https://doi.org/10.1002/tax.12653

21. Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, et al. International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Koeltz Botanical Books; 2018.

22. IUCN. IUCN red list categories and criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, U.K; 2012.

23. IUCN Standards and Petitions Committee. Guidelines for using the IUCN red list categories and criteria. Version 14. Prepared by the standards and petitions committee; 2022.
24. Dauby G et al. ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data. – Ecol. & Evol. 2017;7:11292–11303.

25. IUCN. The IUCN Red List of Threatened Species. Version 2022-1; 2022. Accessed 28 October 2022. Available: https://www.iucnredlist.org

26. UNEP-WCMC and IUCN. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OEACM) Cambridge, UK: UNEP-WCMC and IUCN. Accessed 28 October 2022. Available: www.protectedplanet.net

27. QGIS Development Team. QGIS geographic information system: open source geospatial foundation project; 2019. Accessed 28 October 2022. Available: http://qgis.osgeo.org

28. Stafleu FA, Cowan RS. Taxonomic literature. VI: Sti-Vuy. Bohn, Scheltema and Holkema, Utrecht. 1986;486-489.

29. Kirkbride JH. Rubiaceae types in the Triana collections at the Instituto de Ciencias Naturales, Universidad Nacional, Bogota, Colombia. Taxon. 1982;31(2):303–307. Available: https://doi.org/10.2307/1219996

30. Villegas Á. El difícil arte de gobernar la Nueva Granada: biopolítica y proyecto letrado en la Comisión Corográfica, 1850-1859. Historia (Santiago). Spanish. 2013;46(2):443-467. Available: https://dx.doi.org/10.4067/S0717-71942013000200005

31. Pérez-Escobar OA, Lucas E, Jaramillo C, Monro A, Morris SK, Bogarín D et al. The origin and diversification of the hyperdiverse flora in the Chocó biogeographic region. Frontiers in Plant Science. 2019;10:1328. Available: https://doi.org/10.3389/fpls.2019.01328

32. Valois-Cuesta H, Martínez-Ruíz C. Vulnerabilidad de los bosques naturales en el Chocó biogeográfico colombiano: actividad minera y conservación de la biodiversidad. Bosque (Valdivia). Spanish. 2016;37(2),295-305. Available: http://dx.doi.org/10.4067/S0717-9200201600200008

33. Fagua JC, Baggio JA, Ramsey RD. Drivers of forest cover changes in the Chocó-Darien Global Ecoregion of South America. Ecosphere. 2019;10(3):e02648. Available: 10.1002/ecs2.2648
Specimens Studied:

—COLOMBIA: ANTIOQUIA: Frontino. Corregimiento la Blanquita, vía Nutibara-La Blanquita, Callejas, R. 6619 (HUA, MO); Corregimiento Nutibara, cuenca alta del Río Cuevas, Sánchez, D. 1074 (COL, FAUC, HUA, MEDEL, MO), Sánchez, D. 1081 (COL, MEDEL, MO); Vereda Venados, Parque Nacional Natural Las Orquídeas. Quebrada La Manzanares, Pipoly, J. 18219 (JAUM, MO), Pipoly, J. 18241 (JAUM). Urrao. Parque Nacional Natural “Las Orquídeas”, vereda Calles, Londoño, L. 9 (HUA); Parque Nacional Natural Las Orquídeas. Sector Caliche, Palacios, C. 186 (JAUM). CHOCÓ: Cantón of San Pablo. Taridó, Rentería, E. 59 (COL, HUA). Novita. Corregimiento San Lorenzo, Quebrada Mancamo, Sánchez, D. 8878 (MEDEL). Pizarro. Bajo Baudó. Margen izquierda del río Pepé, entre Boca de Pepé y Pié de Pepé, Espina, Z. 2002 (COL, MO). Tadó. 27 km al E del Pueblo, Bernal, R. 1031 (COL); 27 km al E del Pueblo, Bernal, R. 1031 (MO). Along road between Quibdó and Medellín, at km 136.4, 63 km E of Tutunendo, 46 km W of Bolivar, Croat, T. 56341 (JAUM); Ansermanuevo-San José del Palmar rd., ca. 3-5 km E of San José del Palmar, Luteyn, J. 10443 (JAUM); “Prov. del Chocó Costas del pacífico”, Triana, J. 5433-13 (BM, COL); Quibdó-Medellín road, 39 km E of Quibdó, Gentry, A. 24526 (HUA); Río Mutatá, tributary of río El Valle, between base of Alto de Buey and mouth of river, Gentry, A. 17279 (COL, MO). NARIÑO: “Côtes de l´océan Pacifique”, Triana, J. 5433-12 (BM, F, K, P). VALLE DEL CAUCA: Costa del pacífico; río Cajambre. Barco, Cuatrecasas, J. 17166 (US); Río Calima (región del Chocó); Entre La Esperanza y Bellavista, Cuatrecasas, J. 16783 (US); Río Calima (región del Chocó); La Trojita, Cuatrecasas, J. 16386 (US).

—ECUADOR: ESMERALDAS: Parroquia de Concepción; below Playa Rica, Mexia, Y. 8484 (US).

© 2022 Caro-Sánchez et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/93857