Changing the topology of Tensor Networks

Stefan Handschuh

May 5, 2014

Abstract

In many applications, it is needed to change the topology of a tensor network directly and without approximation. This work will introduce a general scheme that satisfies these needs. We will describe the procedure by two examples and show its efficiency in terms of memory consumption and speed in various numerical experiments. In general, we are going to provide an algorithm to add an edge to a tensor network as well as an algorithm to remove an edge unless the resulting network is a connected graph.

Keywords: tensor format, tensor network, conversion, TT, TC, PEPS

1 Introduction

Tensor networks are of interest especially in quantum chemistry (see [1, 2]) but also for general large data sets, they can become of practical use. Changing the topology of a tensor network, i.e. representing a tensor given in structure $A$ as a tensor in structure $B$ may result in the opportunity to treat originally differently structured tensors equally.

One main interest is to convert an arbitrary tensor network into a tree structured tensor network which has nice properties in terms of stability and computational effort. More about the indicated properties can be found in [3], [4] and [5].

We want to consider only conversion from connected graph structured tensors to connected graph structured tensors where rank 1 edges will be neglected.

2 Problem description

One of the main problems with arbitrary tensor networks is, that they might contain cycles. This leads in the representation to be not stable (see [6]) which results in additional conditions that have to be preserved while performing algorithms. With having a procedure that stabilizes the representation by changing its structure to a tree structure (which is stable, see [7] Lemma 8.6 for the Tucker format and Lemma 11.55 for the
Hierarchical format and [3, Theorem 3.2]) we can avoid the constraints. For example, one could transform the structure into a tree, perform stable computation with it and re-transform it back to the original structure.

Another problem is that for general tensor networks the contraction (i.e. carrying out the summations) is hard to perform in terms of the computational cost. If an algorithm has to compute the inner product after each iteration, this will become a main part of the whole cost of the algorithm. Contracting tree structured tensor networks however, has a much smaller complexity that is linear in the dimension of the tensor network.

Furthermore, it is important for the addition of tensors that are represented in networks, that the formats of all terms have a matching structure. Performing computations with differently structured tensor networks is in general harder than performing computations with equally structured ones. This even holds for different tree structures which should be avoided. See [4, Section 5.2] for an example.

3 Direct conversion from TC to TT w/o approximation

Our first example will be the topology change from a ring structure (Tensor Chain or TC, see below) to a string structure (Tensor Train or TT, see below). The two topologies differ only in one edge and therefore they have a lot in common which we can use for our advantage.

Let $d \in \mathbb{N}_{\geq 2}, n_1, \ldots, n_d, r_1, \ldots, r_d \in \mathbb{N}$, then we define

$$v = \sum_{j_1, \ldots, j_d=1}^{r_1, \ldots, r_d} v_1(j_d, j_1) \otimes v_2(j_1, j_2) \otimes \ldots \otimes v_d(j_{d-1}, j_d) \in \bigotimes_{\mu=1}^{d} \mathbb{K}^{n_{\mu}}$$

with

$$v_1 : \{1, \ldots, r_d\} \times \{1, \ldots, r_1\} \to \mathbb{K}^{n_1}$$

$$v_i : \{1, \ldots, r_{i-1}\} \times \{1, \ldots, r_i\} \to \mathbb{K}^{n_i} \quad \text{for } i = 2, \ldots, d$$

as a **Tensor Chain representation** with representation rank $(r_1, \ldots, r_d)$, see Figure 1.

![Tensor Chain of order d](image-url)

Figure 1: Tensor Chain of order $d$
Our goal structure is defined by

\[ \tilde{v} = \sum_{j_1, \ldots, j_{d-1}} v_1(j_1) \otimes v_2(j_1, j_2) \otimes \ldots \otimes v_{d-1}(j_{d-2}, j_{d-1}) \otimes v_d(j_{d-1}) \]

with

\[
v_1 : \{1, \ldots, \tilde{r}_1\} \to \mathbb{K}^{n_1} \\
v_i : \{1, \ldots, \tilde{r}_{i-1}\} \times \{1, \ldots, \tilde{r}_i\} \to \mathbb{K}^{n_i} \text{ for } i = 2, \ldots, d-1 \\
v_d : \{1, \ldots, \tilde{r}_{d-1}\} \to \mathbb{K}^{n_d}
\]

which is called a Tensor Train representation with representation rank \((\tilde{r}_1, \ldots, \tilde{r}_{d-1}) \in \mathbb{N}^{d-1}\) and visualized in Figure 2. This is a special case of the Tensor Chain format (see [9]).

![Figure 2: Tensor Train of order d](image)

To be able to use the given ring structure of the Tensor Chain, we will convert it to the simplest possible order \(d\) tree, which is the Tensor Train. We successively move one specific edge of the ring further and further to the edge that is at the center of the ring without this specific moving edge. The following part visualizes this scheme.

In the following description, we are using the singular value decomposition (SVD) to decompose a matrix. We could also utilize other decompositions, like the QR decomposition, but they have the same computational complexity as the SVD. A main advantage of the SVD is, that it provides a best rank \(k\) approximation for matrices which we want to use later in approximated results.

**1st step**

We define

\[
v_{1,2}(j_d, j_2) := \sum_{j_1=1}^{r_1} v_1(j_d, j_1) \otimes v_2(j_1, j_2)
\]
and interpret \( v_{1,2} \) as \( n_1 \times n_2 \cdot r_d \cdot r_2 \) matrix on which we apply the SVD to obtain

\[
v_{1,2}(j_d, j_2) = \sum_{j_1=1}^{\tilde{r}_1} v_1'(j_1) \otimes v_2'(j_1, j_2, j_d),
\]

where \( \tilde{r}_1 \leq n_1 \) is the full SVD rank. Consequently,

\[
v = \sum_{j_1=1}^{\tilde{r}_1} \sum_{j_2, \ldots, j_d=1}^{r_2, \ldots, r_d} v_1'(j_1) \otimes v_2'(j_1, j_2, j_d) \otimes v_3(j_2, j_3) \otimes \ldots \otimes v_d(j_{d-1}, j_d),
\]

whose schematic representation is Figure 3.

**Figure 3:** Structure after the 1st step

2nd step

Analogous to step 1, we define

\[
v_{d-1,d}(j_{d-2}, j_d) := \sum_{j_{d-1}=1}^{r_{d-1}} v_{d-1}(j_{d-2}, j_{d-1}) \otimes v_d(j_{d-1}, j_d)
\]

and interpret \( v_{d-1,d}(j_{d-2}, j_d) \) as \( n_{d-1} \times n_d \cdot r_{d-2} \cdot r_d \) matrix, of which we compute the SVD, in order to get

\[
v_{d-1,d}(j_{d-2}, j_d) = \sum_{j_{d-1}=1}^{\tilde{r}_{d-1}} v_{d-1}'(j_{d-2}, j_{d-1}, j_d) \otimes v_d'(j_{d-1})
\]

where again \( \tilde{r}_{d-1} \) is the full SVD rank. The result is

\[
v = \sum_{j_1, j_{d-1}=1}^{\tilde{r}_1, \tilde{r}_{d-1}} \sum_{j_2, \ldots, j_{d-2}, j_d=1}^{r_2, \ldots, r_{d-2}, r_d} v_1'(j_1) \otimes v_2'(j_1, j_d, j_2) \otimes v_3(j_2, j_3) \otimes \ldots \otimes v_{d-2}(j_{d-3}, j_{d-2}) \otimes v_{d-1}'(j_{d-2}, j_{d-1}, j_d) \otimes v_d'(j_{d-1})
\]
as visualized in Figure 4.

Figure 4: Structure after the 2nd step

Penultimate step

We apply the above written scheme successively, we end up in a situation that is equivalent to Figure 5.

Figure 5: Structure before the penultimate step

The penultimate step is to apply the SVD to

\[
\sum_{j_1}^{n_1+1} v_{j_1}^{n_1+1} (j_1,j_2) \otimes v_{j_2}^{n_2+1} (j_1,j_2) \overset{SVD}{=} \sum_{j_1}^{n_1+1} v_{j_1}^{n_1+1} (j_1,j_2,\ldots,j_d) \otimes v_{j_2}^{n_2+1} (j_1,j_2,\ldots,j_d)
\]
and obtain
\[ v = \sum_{j_1, \ldots, j_{\lceil d/2 \rceil}} \sum_{j_{d-1} = 1} r_{\lceil d/2 \rceil} v'_{\lceil d/2 \rceil} (j_1) \otimes v''_{\lceil d/2 \rceil} (j_1, j_2) \otimes \cdots \otimes v''_{\lceil d/2 \rceil - 1} (j_{\lceil d/2 \rceil - 2}, j_{\lceil d/2 \rceil - 1}) \]
\[ \otimes \cdots \otimes v''_{\lceil d/2 \rceil} + 2 (j_{\lceil d/2 \rceil} + 1, j_{\lceil d/2 \rceil} + 2) \otimes \cdots \otimes v''_{d-2} (j_{d-2}, j_{d-1}) \]
\[ \otimes v''_{d} (j_{d-1}) \]
with the corresponding Figure 6.

Figure 6: Structure after the penultimate step

Remark 3.1. Formally speaking, this structure is already the Tensor Train format since we can interpret edge \( j_d \) and \( j_{\lceil d/2 \rceil} \) as together as one edge with multiplied ranks. This situation however, can be improved by performing one additional SVD to combine the two edges to be able to obtain the real rank of the center edge.

Final step

In the last step, we perform a singular value decomposition of
\[ r_{\lceil d/2 \rceil} \sum_{j_{d-1} = 1} v'_{\lceil d/2 \rceil} (j_{\lceil d/2 \rceil - 1}, \ldots, j_{\lceil d/2 \rceil}) \otimes v''_{\lceil d/2 \rceil} + 1 (j_{\lceil d/2 \rceil}, j_{\lceil d/2 \rceil} + 1, j_d) \]
and obtain analogously to the previous step a structure that is visualized in Figure 7. The distinction of ' and " important since " means that this node has been changed by two SVDs whereas ' stands for one SVD. On the other hand, ~ indicates that a double edge has been united.
Ranks

If we consider the new ranks $\tilde{r}_1, \ldots, \tilde{r}_{d-1}$, we have to look at the dimension of the matrices that we decompose via the SVD. We have

$\tilde{r}_1 = n_1$

$\tilde{r}_i = \min(n_i \cdot \tilde{r}_{i-1}, n_{i+1} \cdot r_d \cdot r_{i+1}) \leq \min(n_i, n_{i+1} \cdot r_d \cdot r_{i+1})$ for $i = 2, \ldots, \left\lceil \frac{d}{2} \right\rceil - 1$ \hspace{1cm} (1)

$\tilde{r}_{d-1} = n_d$

$\tilde{r}_i = \min(n_{i+1} \cdot \tilde{r}_{i+1}, n_i \cdot r_d \cdot r_{i-1}) \leq \min(n_{i+1}, n_i \cdot r_d \cdot r_{i-1})$ for $i = d - 2, \ldots, \left\lceil \frac{d}{2} \right\rceil + 1$ \hspace{1cm} (2)

$\tilde{r}_{\left\lceil \frac{d}{2} \right\rceil} = \min(n_{\left\lceil \frac{d}{2} \right\rceil} \cdot \tilde{r}_{\left\lceil \frac{d}{2} \right\rceil - 1}, n_{\left\lceil \frac{d}{2} \right\rceil + 1} \cdot \tilde{r}_{\left\lceil \frac{d}{2} \right\rceil + 1}) \leq \min(n_{\left\lceil \frac{d}{2} \right\rceil}, n^2 \cdot r^2)$, \hspace{1cm} (3)

which is summarized in Figure 8.
Remark 3.2. With this approach the upper bounds for the ranks are the full TT-ranks (see [10] and compare with (1) – (5)), but also available TC-ranks influence the resulting representation rank.

Theorem 3.3. The overall computational cost for the conversion is in

\[ O \left( (d - 2) \cdot n^4 r^6 + n^6 r^6 \right), \]

so it is linear in \( d \) where \( r := \max(r_1, \ldots, r_{d-1}) \).

Proof. Due to (1) – (4), we have

\[ \tilde{r}_i \leq n \cdot r_d \cdot r_i \leq n \cdot r^2 \quad \forall i \in \{1, \ldots, d-1\} \setminus \left\{ \left\lfloor \frac{d}{2} \right\rfloor \right\}. \]

Consequently, the matrices, that we have to decompose with the SVD have at most the size

\[ n \cdot \tilde{r}_i \times n \cdot r_d \cdot r \quad \forall i \in \{1, \ldots, d-1\} \setminus \left\{ \left\lfloor \frac{d}{2} \right\rfloor \right\}, \]

except for the final step. There, the matrix has at most the size

\[ n \cdot \tilde{r}_{\left\lfloor \frac{d}{2} \right\rfloor} \times n \cdot \tilde{r}_{\left\lfloor \frac{d}{2} \right\rfloor} \]

due to (5), which finishes the proof. \( \square \)

Remark 3.4. Steps 1, 3, \ldots, \( d_1 \) and 2, 4, \ldots, \( d_2 \) are independent of each other and therefore parallelizable where

\[ d_1 := \begin{cases} d - 3 & \text{if } d \equiv 0 \mod 2, \\ d - 2 & \text{otherwise} \end{cases} \]
and

\[ d_2 := \begin{cases} 
  d - 2 & \text{if } d \equiv 0 \mod 2, \\
  d - 3 & \text{otherwise}.
\end{cases} \]

We can easily extend this scheme to more complex structures which we will do in Section 4 by converting a $2d$ grid structured tensor into a string structured tensor.

### 3.1 Numerical example

All numerical experiments in this paper have been done with [11] with the following setup:

- the function values have are generated with a pseudo-random number generator
- each direction has 10 entries, i.e. $n_1 = \ldots, n_d = 10$
- the representation rank of the tensor chain tensor is $(r_1, \ldots, r_d) = (6, \ldots, 6)$

| $d$ | CPU-time | Avg. rank | Max. rank |
|-----|----------|-----------|-----------|
| 4   | 0.01s    | 18.67     | 36        |
| 10  | 1557.59s | 188.44    | 360       |
| 100 | 1845.43s | 344.40    | 360       |
| 1000| 3850.65s | 358.45    | 360       |

Table 1: Exact TC to TT conversion

In practice, it is often sufficient to convert a format only approximately instead of a non-approximated conversion. Our approach can be easily changed to an approximated conversion by using the SVD only up to a certain accuracy. We will demonstrate this by simple computations with an allowed SVD error of $10^{-10}$

| $d$ | CPU-time | Avg. rank | Max. rank | rel. error |
|-----|----------|-----------|-----------|------------|
| 4   | 0.01s    | 18.67     | 36        | $1.49 \cdot 10^{-8}$ |
| 10  | 2.93s    | 30.22     | 36        | $1.61 \cdot 10^{-7}$ |
| 100 | 56.6s    | 35.47     | 36        | $7.12 \cdot 10^{-7}$ |
| 1000| 551s     | 35.95     | 36        | $1.54 \cdot 10^{-6}$ |
| 10000| 6042s   | 35.99     | 36        | $1.83 \cdot 10^{-5}$ |

Table 2: Approximated TC to TT conversion

**Remark 3.5.** We do not need to hold the whole tensor in the RAM since the conversion acts only locally on the two involved edges. This reduces the practical memory consumption to a very small fraction of the theoretical consumption (when storing the whole tensor in the RAM). Especially if we increase the accuracy of the singular value decomposition by increasing the rank, this locality-advantage plays an important role.
4 Converting PEPS to TT w/o approximation

In Section 3, the topology changed only slightly as we removed just one edge from the graph to obtain a tree. The method that has been used there can be also used for more complicated structures such as 2d grids which we want to explain in this section.

We are going to convert a PEPS (projected entangled pair state; see [12] for applications) structured tensor into a tree structured tensor in the TT-format. In our framework of arbitrary tensor representations, a PEPS-Tensor of order 16 has the following formula:

\[ v = \sum_{j_1, \ldots, j_{24}} v_1(j_4, j_1) \otimes v_2(j_1, j_5, j_2) \otimes v_3(j_2, j_6, j_3) \otimes v_4(j_3, j_7) \otimes v_5(j_4, j_8, j_{11}) \otimes v_6(j_8, j_5, j_{12}, j_9) \otimes v_7(j_9, j_6, j_{13}, j_{10}) \otimes v_8(j_{10}, j_7, j_{14}) \]

\[ \otimes v_9(j_{11}, j_{18}, j_{15}) \otimes v_{10}(j_{15}, j_{12}, j_{19}, j_{16}) \otimes v_{11}(j_{16}, j_{13}, j_{20}, j_{17}) \otimes v_{12}(j_{17}, j_{14}, j_{21}) \]

\[ \otimes v_{13}(j_{18}, j_{22}) \otimes v_{14}(j_{22}, j_{19}, j_{23}) \otimes v_{15}(j_{23}, j_{20}, j_{24}) \otimes v_{16}(j_{24}, j_{21}), \]

see Figure 9 for the visualization. The Motivation for this conversion is due to the fact that the complexity of contracting a PEPS tensor is very high and the optimization procedure is not stable (see [13] for an approximated contraction scheme). Tree structured tensors on the other hand are easy to contract and stable.

Each tree with \( p \) vertices has \( p - 1 \) edges such that it is reasonable to choose the simplest tree structure, which is a string, as the destination structure. This is no restriction of the method, we just chose the string structure only for visual reasons.

For the sake of simplified notations, we set \( n_1 = \ldots = n_d =: n \in \mathbb{N} \), so all our vector spaces \( V_\mu \) have the same dimension \( n \).
We want to visualize the scheme that we introduced in Section 3 by looking at the upper left corner of the PEPS tensor. Figure 10(a) displays the initial situation. The first step, that we want to perform is moving the edge $j_4$ to the left.

$$
\sum_{j_1=1}^{r_1} v_1(j_4, j_1) \otimes v_2(j_1, j_2, j_5) \xrightarrow{SVD} \sum_{j_1=1}^{r_1} v'_1(j_1) \otimes v'_2(j_1, j_2, j_4, j_5)
$$

and we get the structure 10(b) Hereafter, we perform

$$
\sum_{j_8=1}^{r_8} v_5(j_4, j_8, j_{11}) \otimes v_6(j_5, j_8, j_9, j_{12}) \xrightarrow{SVD} \sum_{j_8=1}^{r_8} v'_5(j_8, j_{11}) \otimes v'_6(j_4, j_5, j_8, j_9, j_{13})
$$

which is shown in Figure 10(c). The next step could be to move those two edges $j_4$ and $j_5$ both further to the left, but this would increase the complexity of the formulas as well as of the schematic drawings. Additionally, it might be the case that the product of the moved edges ranks is to high (see Remark 3.1).

So, we want to combine $j_4$ and $j_5$ into a new $j_5$ and we can do this by one SVD:

$$
\sum_{j_4,j_5=1}^{r_4,r_5} v'_2(j_1, j_2, j_4, j_5) \otimes v'_6(j_4, j_5, j_8, j_9, j_{12}) \xrightarrow{SVD} \sum_{j_5=1}^{r_5} \widetilde{v}'_2(j_1, j_2, j_5) \otimes \widetilde{v}'_6(j_5, j_8, j_9, j_{12})
$$

such that we get a structure as of Figure 10(d).
Afterwards, we can proceed as before (see Figure 10(e)). If we apply this procedure until we have eliminated also edges $j_5$ and $j_6$ with edge $j_7$ left, we get a structure as in Figure 11.
Applying this scheme also on edges \((j_{18}, j_{19}, j_{20})\) we first get the structure of Figure 12 and afterwards the structure of Figure 13 if we eliminate edges \((j_{14}, j_{13}, j_{12})\).

Figure 11: PEPS series 1

Figure 12: PEPS series 2
The elimination processes of \((j_4, j_5, j_6)\) and of \((j_{18}, j_{19}, j_{20})\) do not affect each other such that we can state the rank distribution independently:

\[
\begin{align*}
\tilde{r}_1 &= n \cdot \min(1, r_2 \cdot r_4 \cdot r_5) = n \\
\tilde{r}_8 &= n \cdot \min(r_{11}, r_4 \cdot r_5 \cdot r_9 \cdot r_{12}) \\
\tilde{r}_5 &= n \cdot \min(\tilde{r}_1 \cdot r_2, \tilde{r}_8 \cdot r_9 \cdot r_{12}) = n \cdot \min(n \cdot r_2, \tilde{r}_8 \cdot r_9 \cdot r_{12}) \\
\tilde{r}_2 &= n \cdot \min(\tilde{r}_1, r_3 \cdot \tilde{r}_5 \cdot \tilde{r}_6) = n \cdot \min(n, r_3 \cdot \tilde{r}_5 \cdot \tilde{r}_6) \\
\tilde{r}_9 &= n \cdot \min(\tilde{r}_8 \cdot r_{12}, \tilde{r}_5 \cdot \tilde{r}_6 \cdot r_{10} \cdot r_{13}) \\
\tilde{r}_6 &= n \cdot \min(\tilde{r}_2 \cdot r_3, \tilde{r}_9 \cdot r_{10} \cdot r_{13}) \\
\tilde{r}_3 &= n \cdot \min(\tilde{r}_2, \tilde{r}_6 \cdot r_7) \\
\tilde{r}_{10} &= n \cdot \min(\tilde{r}_9 \cdot r_{13}, \tilde{r}_6 \cdot r_7 \cdot r_{14}) \\
\tilde{r}_7 &= n \cdot \min(\tilde{r}_3, \tilde{r}_{10} \cdot r_{14}) \\
\tilde{r}_{22} &= n \cdot \min(1, r_{18} \cdot r_{19} \cdot r_{23}) = n \\
\tilde{r}_{15} &= n \cdot \min(r_{11}, r_{12} \cdot r_{16} \cdot r_{18} \cdot r_{19}) \\
\tilde{r}_{19} &= n \cdot \min(\tilde{r}_{22} \cdot r_{23}, r_{12} \cdot \tilde{r}_{15} \cdot r_{16}) = n \cdot \min(n \cdot r_{23}, r_{12} \cdot \tilde{r}_{15} \cdot r_{16}) \\
\tilde{r}_{23} &= n \cdot \min(\tilde{r}_{22}, \tilde{r}_{19} \cdot r_{20} \cdot r_{24}) = n \cdot \min(n, \tilde{r}_{19} \cdot r_{20} \cdot r_{24}) \\
\tilde{r}_{16} &= n \cdot \min(r_{12} \cdot \tilde{r}_{15}, r_{13} \cdot r_{17} \cdot \tilde{r}_{19} \cdot r_{20}) \\
\tilde{r}_{20} &= n \cdot \min(\tilde{r}_{23} \cdot r_{24}, r_{13} \cdot \tilde{r}_{16} \cdot r_{17}) \\
\tilde{r}_{24} &= n \cdot \min(\tilde{r}_{23}, \tilde{r}_{20} \cdot r_{21}) \\
\tilde{r}_{17} &= n \cdot \min(r_{13} \cdot \tilde{r}_{16}, r_{14} \cdot \tilde{r}_{20} \cdot r_{21}) \\
\tilde{r}_{21} &= n \cdot \min(\tilde{r}_{24}, r_{14} \cdot \tilde{r}_{17})
\end{align*}
\]
\[ r_{10} \approx n \cdot \min(\tilde{r}_7, \tilde{r}_9 \cdot r_{13} \cdot r_{14}) \]
\[ r_{17} \approx n \cdot \min(\tilde{r}_{21}, r_{13} \cdot r_{14} \cdot \tilde{r}_{16}) \]
\[ r_{13} \approx n \cdot \min(\tilde{r}_9, \tilde{r}_{10}, \tilde{r}_{16} \cdot \tilde{r}_{17}) \]
\[ r_{15} \approx n \cdot \min(\tilde{r}_{16}, r_{11} \cdot \tilde{r}_{12}) \]
\[ r_{16} \approx n \cdot \min(\tilde{r}_{16}, r_{11} \cdot \tilde{r}_{12}) \]
\[ r_{11} \approx n \cdot \min(\tilde{r}_{15}, \tilde{r}_{8}) \]

Resulting in the tree structure which had to be established.

**Remark 4.1.** Series 1 and series 2 are parallelizable without any restriction since they do not have a vertex in common. Series 3 can be performed at the same time as series 1 and 2 but one has to be careful with overlapping cycle elimination series since it might be possible that \( v_6 \) is changed by two processes at the same time, for instance. This can
be worked around by adding simple synchronizers. Note that there is at most one edge of the edges in common of two processes that may be changed simultaneously.

Performing the conversion in parallel may lead to different ranks in the ranks that are adjusted more than once.

**Remark 4.2.** The order of the series is not unique. One can choose any other series that produces a string like tree.

Since we are removing in general $d - 2\sqrt{d} + 1 = (\sqrt{d} - 1)^2$ edges from the graph, we get a complexity of the whole algorithm that is quadratic in $d$ (with some factor $< 1$).

## 5 Direct conversion from TT to TC w/o approximation

For some applications it is needed to destroy the tree topology of a tensor network in favor of a more complex structure. For example if one has converted a cycle structured tensor network into a tree to perform stable algorithms and after the computation the original structure is needed again.

The reader is reminded of the definition of the Tensor Train format that has been introduced in Section 3.

We want to convert the Tensor Train into a cyclic structured tensor (Tensor Chain). In general, every Tensor Train is already a Tensor Chain, since there is a rank one edge between $v_1$ and $v_d$ on every Tensor Train. Our objective here is to get a balanced distribution of the ranks in the Tensor Chain and to obtain that, we have to perform a procedure that successively moves an artificially inserted edge to the start $v_1$ and the end $v_d$ of the train. In practice however, this leads to several problems that are inspected in Section 5.1.

This procedure depends on the singular value decomposition (SVD) and we want to mark a node that has been change by the SVD once with ‘$\prime$ and a node that has been changed twice with ‘$\prime\prime$.

**1st step**

Our first step will be to introduce an artificial edge between node $v\lceil \frac{d}{2} \rceil$ and $v\lceil \frac{d}{2} \rceil + 1$, which we want to name $j_d$ (see Figure 14 for the visualization).
We choose \( r_d \) and \( \tilde{r}_{\lceil \frac{d}{2} \rceil} \) such that \( r_d \cdot \tilde{r}_{\lceil \frac{d}{2} \rceil} \geq r_{\lceil \frac{d}{2} \rceil} \) and define the mapping

\[
\begin{align*}
&[\cdot, \cdot] : \{1, \ldots, \tilde{r}_{\lceil \frac{d}{2} \rceil}\} \times \{1, \ldots, r_d\} \to \{1, \ldots, r_d \cdot \tilde{r}_{\lceil \frac{d}{2} \rceil}\} \\
&a, b \mapsto a + \tilde{r}_{\lceil \frac{d}{2} \rceil} \cdot b,
\end{align*}
\]

so \([\cdot, \cdot]\) is a bijective map to assign a 2-tuple to a natural number. Consequently, we have

\[
\begin{align*}
\sum_{j_{\lceil \frac{d}{2} \rceil} = 1}^{r_{\lceil \frac{d}{2} \rceil}} v_{\lceil \frac{d}{2} \rceil} (j_{\lceil \frac{d}{2} \rceil}, j_{\lceil \frac{d}{2} \rceil} - 1, j_{\lceil \frac{d}{2} \rceil}) &\otimes v_{\lceil \frac{d}{2} \rceil + 1} (j_{\lceil \frac{d}{2} \rceil}, j_{\lceil \frac{d}{2} \rceil} + 1) = \\
\sum_{j_{\lceil \frac{d}{2} \rceil} = 1}^{r_{\lceil \frac{d}{2} \rceil}} v_{\lceil \frac{d}{2} \rceil} (j_{\lceil \frac{d}{2} \rceil}, j_{\lceil \frac{d}{2} \rceil} - 1, j_d, j_{\lceil \frac{d}{2} \rceil}) &\otimes v_{\lceil \frac{d}{2} \rceil + 1} (j_{\lceil \frac{d}{2} \rceil}, j_d, j_{\lceil \frac{d}{2} \rceil} + 1).
\end{align*}
\]

**2nd step**

In this step, we want to move the edge \( j_d \) from node \( v_{\lceil \frac{d}{2} \rceil} + 1 \) to \( v_{\lceil \frac{d}{2} \rceil} + 2 \) and as written before, we will do this with a single SVD.
\[
\sum_{j_{d-1}+1}^{r_{[d]}+1} v_{[\frac{d}{2}]+1} \left( j_{\frac{d}{2}}, j_d \right) \otimes v_{[\frac{d}{2}]+2} \left( j_{[\frac{d}{2}]+1}, j_{[\frac{d}{2}]+2} \right) = \text{SVD}
\]

3rd step

Edge \( j_d \) has to be moved to node \( v_{[\frac{d}{2}]-1} \) and this will be done analogously to the second step.

Figure 15: Situation after the 3rd step
\[ \sum_{j=1}^{d-1} v_{\lceil \frac{d}{2} \rceil - 1}^r \left( j \left[ \frac{d}{2} \right] - 2, j \left[ \frac{d}{2} \right] - 1 \right) \otimes v_{\lceil \frac{d}{2} \rceil}^r \left( j \left[ \frac{d}{2} \right] - 1, j \left[ \frac{d}{2} \right] \right) \] 

\[ \sum_{j=1}^{d-1} v_{\lceil \frac{d}{2} \rceil - 1}^l \left( j \left[ \frac{d}{2} \right] - 2, j \left[ \frac{d}{2} \right] - 1, j \right) \otimes v_{\lceil \frac{d}{2} \rceil}^l \left( j \left[ \frac{d}{2} \right] - 1, j \right) \] 

**Remark 5.1.** Step 2 and 3 are independent of each other and can be performed in parallel.

**Final step**

After moving the edge successively further towards \( v_d \) and \( v_1 \), we get the situation that is visualized in Figure 16. The last step in the conversion is to move edge \( j_d \) from node \( v_2 \) to node \( v_1 \) with the described procedure.

![Figure 16: Situation before the final step](image)

So in formulas, one SVD is performed to make the edge shift:

\[ \left( \sum_{j_1 = 1}^{r_1} v_{j_1} \left( j_1, j_2, j_d \right) \right) \xrightarrow{\text{SVD}} \left( \sum_{j_1 = 1}^{r_1} v_{j_1}^l \left( j_d, j_1 \right) \otimes v_{j_2}^l \left( j_1, j_2 \right) \right), \]

which is resulting in the structure that we wanted to obtain (see Figure 17).
Ranks

After we have chosen the ranks $r_d$ and $\tilde{r}_{\lceil \frac{d}{2} \rceil}$, we update all remaining $d - 2$ ranks and get the following upper bounds

$$\tilde{r}_i = \min(n_i \cdot r_{i-1} \cdot r_d, n_i \cdot r_{i+1}) \leq n \cdot r \cdot r_d \quad \text{for } i = 1, \ldots, \left\lfloor \frac{d}{2} \right\rfloor - 1$$

$$\tilde{r}_i = \min(n_{i+1} \cdot r_{i+1} \cdot r_d, n_i \cdot r_{i-1}) \leq n \cdot r \cdot r_d \quad \text{for } i = \left\lceil \frac{d}{2} \right\rceil + 1, \ldots, d - 1.$$  \hspace{1cm} (6) \hspace{1cm} (7)

Theorem 5.2. The computational cost of the described scheme is in

$$O((d - 2) \cdot n^4 r^3 r_d^3)$$

so it is again linear in $d$ with $r := \max(r_1, \ldots, r_{d-1})$.

Proof. Follows directly from Equations (6) and (7) since these equations determine the upper bound for the matrix sizes.

5.1 Problems

The main problem has its roots in the first step where an artificial edge is introduced into the graph structure. There we do not a priori know what the best rank splitting is and we also do not know which is the best assignment for the $[\cdot, \cdot]$ function. If we can solve these problems, we are - for example - able to convert a tensor chain formatted tensor into a tensor train formatted tensor and back without different ranks for the tensor chain tensor in before the conversion and after the back-conversion.

5.2 Numerical example

We have the same setup as in 3.1 (except that we are converting a Tensor Train representation into a Tensor Chain representation) and obtain the following results with approximated SVD with a cutoff at $10^{-10}$:
To illustrate the problem that has been described in Section 5.1, we will run a second experiment: first, we will transform a tensor chain tensor into a tensor train tensor and then, we will re-transform it back to the original chain format. In this experiment, we also have the same setup as in 3.1 (initial TC representation rank is $(6, \ldots, 6)$). No SVD approximation is considered.

| $d$ | CPU-time | Avg. rank | Max. Rank | Rel. error |
|-----|----------|-----------|-----------|------------|
| 4   | 0.01s    | 7.25      | 12        | $1.49 \cdot 10^{-8}$ |
| 10  | 0.09s    | 10.1      | 12        | $4.21 \cdot 10^{-8}$ |
| 100 | 1.75s    | 11.81     | 12        | $1.05 \cdot 10^{-8}$ |
| 1000| 18.5s    | 11.98     | 12        | $1.17 \cdot 10^{-7}$ |
| 10000| 189s    | 12        | 12        | $2.33 \cdot 10^{-7}$ |

Table 3: Approximated TT to TC conversion

In the previous computation, we used the full SVD ranks such that we did not benefit from approximated ranks. So we are going to change the algorithm to not use the full SVD rank, but an approximated SVD rank with an accuracy of $10^{-10}$ for each singular value decomposition for both conversions. The error is the relative error with respect to the initial representation. The initial TC representation rank is also $(r_1, \ldots, r_d) = (6, \ldots, 6)$.

| $d$ | Avg. converted TT-rank | Avg. re-converted TC-rank |
|-----|-------------------------|---------------------------|
| 4   | 40                      | 55                        |
| 6   | 244                     | 224                       |
| 8   | 648.57                  | 1815                      |

Table 4: Exact TC to TT to TC conversion

| $d$ | Avg. converted TT-rank | Rel. error | Avg. re-converted TC-rank | Rel. error |
|-----|-------------------------|------------|---------------------------|------------|
| 4   | 18.67                   | $4.47 \cdot 10^{-8}$ | 33                        | $5.96 \cdot 10^{-8}$ |
| 6   | 25.6                    | $3.33 \cdot 10^{-8}$ | 26                        | $1.86 \cdot 10^{-8}$ |
| 8   | 28.57                   | $2.58 \cdot 10^{-8}$ | 28.5                      | $3.65 \cdot 10^{-8}$ |
| 10  | 30.22                   | $2.98 \cdot 10^{-8}$ | 30                        | $1.05 \cdot 10^{-8}$ |
| 12  | 31.27                   | $4.47 \cdot 10^{-8}$ | 31                        | $5.58 \cdot 10^{-8}$ |
| 20  | 33.26                   | $3.33 \cdot 10^{-8}$ | 33                        | $4.94 \cdot 10^{-8}$ |
| 30  | 34.21                   | $3.64 \cdot 10^{-8}$ | 34                        | $3.65 \cdot 10^{-8}$ |

Table 5: Approximated TC to TT to TC conversion

6 Error estimate

While shifting an edge, we can introduce an error by omitting small singular of the SVD’s result. Doing that, we can represent matrix $A$ by an approximated matrix $\tilde{A}$ where we can control the error $\|A - \tilde{A}\|$ with these singular values. The influence on the whole
tensor network representation has to be investigated: We consider the change that is made in the second step of the TC to TT conversion of Section 3. We define

\[ v := \sum_{j_1=1}^{\tilde{r}_1} \sum_{j_2, \ldots, j_{d-1}=1}^{r_2, \ldots, r_d} v_1(j_1) \otimes v_2(j_1, j_2, j_d) \otimes v_3(j_2, j_3) \otimes \ldots \otimes v_d(j_{d-1}, j_d) \]

and

\[ \hat{v} := \sum_{j_1, j_{d-1}=1}^{\tilde{r}_1, \tilde{r}_{d-1}} \sum_{j_2, \ldots, j_{d-2}, j_d=1}^{r_2, \ldots, r_{d-2}, r_d} v_1'(j_1) \otimes v_2'(j_1, j_2, j_d) \otimes v_3(j_2, j_3) \otimes \ldots \otimes v_{d-2}(j_{d-3}, j_{d-2}) \otimes v_d'(j_d-1) \]

such that we have to estimate \( \|v - \hat{v}\| \). To shorten the notation, we introduce

\[ \hat{v}(j_d, j_{d-2}) := \sum_{j_1=1}^{\tilde{r}_1} \sum_{j_2, \ldots, j_{d-1}=1}^{r_2, \ldots, r_{d-3}} v_1'(j_1) \otimes v_2'(j_1, j_2, j_d) \otimes v_3(j_2, j_3) \otimes \ldots \otimes v_{d-2}(j_{d-3}, j_{d-2}) \]

and

\[ B(j_d, j_{d-2}) := \sum_{j_{d-1}=1}^{r_d-1} v_{d-1}(j_{d-2}, j_{d-1}) \otimes v_d(j_{d-1}, j_d) - \sum_{j_{d-1}=1}^{\tilde{r}_{d-1}} v_{d-1}'(j_{d-2}, j_{d-1}, j_d) \otimes v_d'(j_d-1). \]

This leads into the following estimate

\[ \|v - \hat{v}\| \leq \sum_{j_d, j_{d-2}=1}^{r_d, r_d-2} \|v(j_d, j_{d-2}) \otimes B(j_d, j_{d-2})\| \]

with the help of the triangle inequality and the Cauchy-Schwarz-inequality (in that order). This gives us a precise estimate on when we are allowed to cut off singular values while still maintaining a certain error bound for \( \|v - \hat{v}\| \).

This error estimate can be easily generalized to other tensor representations.
7 Alternative approaches

The proposed algorithm is of course not the only way to convert an arbitrary tensor network into a tensor tree network. For example, one could also evaluate the tensor network to obtain the full tensor and perform the Vidal decomposition (see [14, 15]) in order to obtain a tensor in the Tensor Train format. Another possibility is to decompose the full tensor with a high order SVD (HOSVD, see [16]) into a hierarchically formatted tensor (see [4]). Evaluating the full tensor for large $d$ however is in general not feasible due to the amount of storage and computational effort that is needed.

Another general approach is to fix the resulting format and use approximation algorithms such as ALS, DMRG (both are non linear block Gauss-Seidel methods, see [8]). This however is no direct conversion, but an approximation that has certain convergence rates. The advantage there is that this approach allows us to use general tensor representations without being restricted to tensor networks.

References

[1] V. Murg, F. Verstraete, Ö. Legeza, and R. M. Noack. Simulating strongly correlated quantum systems with tree tensor networks. Phys. Rev. B, 82:205105, 2010. doi:10.1103/PhysRevB.82.205105

[2] L. Wang, I. Pižorn, and F. Verstraete. Monte Carlo simulation with tensor network states. Phys. Rev. B, 83:134421, Apr 2011. doi:10.1103/PhysRevB.83.134421

[3] S. Holtz, T. Rohwedder, and R. Schneider. The Alternating Linear Scheme for Tensor Optimisation in the TT Format. DFG SPP 1324 Preprint, 71, 2010.

[4] W. Hackbusch and S. Kühn. A New Scheme for the Tensor Representation. J. Fourier Anal. Appl., 15:706–722, 2009. doi:10.1007/s00041-009-9094-9

[5] I. V. Oseledets. Tensor-Train Decomposition. SIAM J. Sci. Comput., 33(5):2295–2317, 2011. doi:10.1137/090752286

[6] J. M. Landsberg, Y. Qi, and K. Ye. On the geometry of tensor network states. arXiv:1105.4449 [math.AG], 2011. arXiv:1105.4449

[7] Wolfgang Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer, 2012. doi:10.1007/978-3-642-28027-6

[8] M. Espig, W. Hackbusch, S. Handschuh, and R. Schneider. Optimization Problems in Contracted Tensor Networks. MIS Preprint, 66, 2011. Available from: http://www.mis.mpg.de/publications/preprints/2011/2011-66.html

[9] B. N. Khoromskij. $O(d \log N)$-Quantics Approximation of $N - d$ Tensors in High-Dimensional Numerical Modeling. Const. Approx., 34:1–24, 2010. doi:10.1007/s00365-011-9131-1
[10] I. V. Oseledets. Compact matrix form of the $d$-dimensional tensor decomposition. *Preprint*, 09-01, 2009. Available from: [http://spring.inm.ras.ru/osel/?p=15](http://spring.inm.ras.ru/osel/?p=15).

[11] M. Espig, M. Schuster, A. Killaitis, N. Waldren, P. Wähnert, S. Handschuh, and H. Auer. TensorCalculus library, 2008–2012. Available from: [http://gitorious.org/tensorcalculus](http://gitorious.org/tensorcalculus).

[12] V. Murg, F. Verstraete, and J. I. Cirac. Exploring frustrated spin–systems using Projected Entangled Pair States (PEPS). *arXiv:0901.2019v1 [cond-mat.str-el]*, 2009. [arXiv:0901.2019v1](http://arxiv.org/abs/0901.2019v1).

[13] T. Huckle, K. Waldherr, and T. Schulte-Herbrüggen. Computations in Quantum Tensor Networks. *Preprint*, 2010. Available from: [http://www5.in.tum.de/pub/CompQuantTensorNetwork.pdf](http://www5.in.tum.de/pub/CompQuantTensorNetwork.pdf).

[14] I. V. Oseledets and E. E. Tyrtyshnikov. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions. *SIAM J. Sci. Comput.*, 31(5):3744–3759, 2009. [doi:10.1137/090748330](https://doi.org/10.1137/090748330).

[15] Guifré Vidal. Efficient Classical Simulation of Slightly Entangled Quantum Computations. *Phys. Rev. Lett.*, 91:147902, 2003. [doi:10.1103/PhysRevLett.91.147902](https://doi.org/10.1103/PhysRevLett.91.147902).

[16] L. De Lathauwer, B. De Moor, and J. Vandewalle. A Multilinear Singular Value Decomposition. *SIAM J. Matrix Anal. Appl.*, 21(4):1253–1278, 2000. [doi:10.1137/S0895479896305698](https://doi.org/10.1137/S0895479896305698).