Supplementary data - figures and tables

The H2BG53D oncohistone directly upregulates ANXA3 transcription and enhances cell migration in Pancreatic Ductal Adenocarcinoma

Yi Ching Esther Wan1,2#, Jiaxian Liu1,2#, Lina Zhu1,2#, Tze Zhen Evangeline Kang1,2, Xiaoxuan Zhu1,2, John Lis3, Toyotaka Ishibashi4, Charles G. Danko5*, Xin Wang1,2*, Kui Ming Chan1,2*

1Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China

2Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China

3Department of Molecular Biology and Genetics, Cornell University, NY, USA

4Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China

5USA James A Baker Institute for animal health, Cornell University, NY, USA

This supplementary data file contains:

- Supplementary Figure 1-5
- Supplementary Table 1-2
- Supplementary Methods
- References
Supplementary Fig. 1 | Differential gene expression and Pol II occupancy alteration between H2BG53D mutant and wildtype cells are well correlated. (a) Gene set enrichment plot shows genes with significantly elevated RNA-seq signals have remarkably increased Pol II occupancy in PRO-seq ($p < 1e^{-04}$, permutation test, $n=10,000$). The upper panel illustrates the running sum scores of GSEA (Gene Set Enrichment Analysis) random walks, the middle and lower panels show the positions of genes with significantly elevated RNA-seq signals in the gene list ranked by PRO-seq log2 fold change. (b) Gene set enrichment plot shows genes with elevated PRO-seq signals have significantly higher expression in RNA-seq ($p < 1e^{-04}$, permutation test, $n=10,000$). The middle and lower panels show the positions of genes with significantly elevated PRO-seq signals in the gene list ranked by RNA-seq log2 fold change. (c) Venn diagram illustrating that 99 genes have elevated signals in both RNA-seq and PRO-seq.
Supplementary Fig. 2 | H2BG53D is enriched at ANXA3. (a) Genome viewer showing region with H2BG53D-FLAG enrichment (ANXA3, red box), and a region without specific H2BG53D-FLAG enrichment (downstream of LINC01094, black box). (b) Validation of H2BG53D enrichment at ANXA3 locus by independent FLAG CUT&RUN in wildtype and two H2BG53D mutant lines. Parental cells served as negative control for the FLAG CUT&RUN experiments. (c) qPCR amplicon centers +608 (relative to TSS) of the ANXA3 locus. Error bars indicate standard deviation from three independent experiments.
Supplementary Fig. 3

a

b

c

d

ANXA3 (58.9 kb)
Ex2-In2 | Ex3-In3 | Ex7-In7 | Ex12-In12

WT 16 | G53D 32

SNAP47 (53.1 kb)
Ex2-In2 | Ex5-In5 | In6-Ex7

WT 16 | G53D 32

* p < 0.05
** p < 0.01
Supplementary Fig.3 | H2BG53D alters transcription of ANXA3 in vivo. (a) Genome viewer showing the normalized RNA-seq reads (upper) and PRO-seq reads (lower) of ANXA3 in two wildtype and two H2BG53D cell lines. Validation of the elevated expression of ANXA3 by (b) RT-qPCR (*p < 0.05; LSD post hoc one-way ANOVA test) and (c) Western Blotting. (d) Levels of transcription of the indicated genes were detected by RT-qPCR using primers at indicated intron-exon boundaries. (*p < 0.05) Schematic diagram showing exon (Ex)–intron (In) junctions along the gene body of ANXA3 and SNAP47. Cells were first incubated with 300 μM of DRB for 3.5 hours and then the cells were washed with PBS and further incubated in fresh medium for the indicated times. Levels of pre-mRNA of the regions were measured by RT-qPCR. Pre-mRNA values are normalized to the values of DMSO-treatment control, which was set to 1. Results are shown as means ± standard deviation (SD) from three independent experiments (*p < 0.05 vs. WT with unpaired t-test).
Supplementary Fig. 4

Supplementary Fig. 4 | ANXA3 depletion in H2BG53D cell lines reverse migration properties. Depletion of ANXA3 by shRNA (knockdown efficiency measured by (a) RT-qPCR and (b) western blot) reduced the migration ability in both wildtype and G53D cell lines. Migration ability was measure by both gap closure assay (Figure 1k) and transwell migration assay (c), showing representative image from 3 independent experiments.
Supplementary Fig. 5 | H2BG53D is correlated with higher ANXA3 expression and poor survival. (a) Gene expression analysis of ANXA3 of the 146 PDAC patients available from the TCGA database. The 10 H2BG53D patients have higher ANXA3 expression compared to the 136 non-H2BG53D PDAC patients. $p=0.082$, one-tailed, two-sample t-test. (b) Comparison of the overall survival between PDAC patients with (10 patients) and without (136 patients) the H2BG53D mutation in TCGA data set. $p=0.075$, log-rank test. (c) Comparison of the overall survival between PDAC patients with high ANXA3 expression and low ANXA3 expression in TCGA data set (divided based on the mean expression of ANXA3). $p=6.06e^{-4}$, log-rank test.
Supplementary Table 1

The 99 genes showing significant elevated signals in both RNA-seq and PRO-seq in H2BG53D mutant cells.

Gene	RNA-seq log2FC	RNA-seq p	PRO-seq log2FC	PRO-seq p	CUT&RUN log2FE	CUT&RUN p
EGF	1.56	0.0143	1.05	0.0364	0.717	0.000436
DGAT1	0.326	0.0268	0.87	0.0319	0.814	0.000912
CEMIP	1.74	8.25E-11	2.38	3.55E-05	0.632	0.00107
FAT4	0.598	0.0145	0.521	0.00606	0.609	0.00129
JPH1	3.03	6.29E-16	2.37	5.52E-05	0.63	0.00135
FAM83H-AS1	1.15	0.0016	1.29	0.00204	0.834	0.00138
EPHA10	1.02	0.0364	1.12	0.00348	0.625	0.00161
KCNT2	2.55	0.0469	1.22	0.0148	0.615	0.00174
ABHD17C	0.551	1.68E-07	0.338	0.0442	0.627	0.00181
TMPRSS4	2.74	0.0151	1.8	0.0297	0.624	0.00198
LAMA3	0.552	0.0107	0.733	0.00479	0.527	0.00214
GRHL2	1.91	0.0162	1.29	0.0045	0.558	0.00268
CDS1	0.775	0.0326	1.17	0.00658	0.611	0.00332
FRAS1	2.21	9.85E-08	2.15	0.000199	0.594	0.00379
IL20RA	0.67	0.0176	0.884	0.00112	0.602	0.00399
ESRP1	3.75	0.00052	3.83	8.60E-07	0.615	0.00431
HOOK1	1.05	5.98E-08	1.21	3.56E-07	0.562	0.00433
EPB41L5	0.416	9.39E-05	0.805	0.000597	0.541	0.00443
LMTK3	0.473	0.00464	0.581	0.0417	0.702	0.00468
DLC1	1.07	5.73E-05	1.36	3.36E-06	0.603	0.00483
ERVMER34-1	0.726	0.00904	1.14	0.0424	0.78	0.00515
MYH10	0.724	0.00125	0.942	0.0271	0.581	0.00521
ANXA3	0.566	0.0221	1.24	0.00147	0.61	0.00576
DCLK1	0.749	0.0189	1.17	0.000247	0.523	0.00627
PODXL	0.421	0.0458	0.911	0.0463	0.536	0.00643
Sema6A	2.7	5.11E-11	2.49	2.30E-05	0.544	0.00671
COL4A5	1.36	0.00393	1.03	0.00757	0.538	0.00678
VVDE	1.56	0.0212	2.14	6.23E-06	0.601	0.0079
QPRT	2.21	0.00013	1.52	0.00774	0.648	0.00851
TMEM56	1.02	0.000101	1.57	3.78E-08	0.546	0.009
DTX4	0.708	0.0257	0.866	0.0465	0.575	0.0092
CDK14	2.48	7.72E-05	1.61	9.36E-06	0.489	0.00995
ADAP2	1.1	0.0191	0.794	0.0409	0.52	0.0103
LINC01559	0.574	0.00574	1.7	0.00437	0.749	0.0105
LRRCC8B	0.348	0.0212	0.733	0.0432	0.502	0.0109
MITF	0.777	0.0106	0.596	0.0305	0.512	0.0113
SPNS2	0.607	0.0261	1.95	0.00169	0.543	0.0123
PRDM6	3.02	2.48E-07	1.71	0.000102	0.536	0.0126
GPC4	2.09	8.02E-16	2.25	4.46E-09	0.575	0.0139
Gene	Log2FC	LogEP	LogEP	LogEP	LogEP	LogEP
------------	--------	---------	------------	------------	------------	------------
CAPN8	2.78	4.64E-06	2.71	6.97E-28	0.516	0.014
MSLN	0.274	0.0334	0.905	0.00784	0.668	0.0152
MARVELD3	2.38	0.0293	2.11	0.0058	0.665	0.0153
LCK	1.54	2.24E-06	0.994	0.0017	0.5	0.0156
PPP1R9A	0.892	0.000576	0.788	0.000327	0.491	0.0163
MARK1	2.52	0.0287	1.39	0.0109	0.512	0.0178
NTN4	1.14	2.00E-04	0.823	0.00129	0.459	0.018
LAD1	0.638	5.77E-08	0.473	0.0284	0.597	0.0184
FAM169A	1.26	0.000804	1.46	0.00736	0.464	0.0186
LOC2021B1	1.49	0.013	2.31	0.0015	0.573	0.0193
PLCB4	0.636	0.0326	0.813	0.00796	0.613	0.0198
FUT8	1.02	0.0183	1.86	0.00325	0.487	0.0216
LGR5	0.353	0.0238	0.489	0.0233	0.513	0.022
PLAC8	0.842	4.81E-05	0.566	0.00654	0.445	0.0227
PCSK6	0.888	0.000461	0.748	0.0425	0.443	0.0228
ST14	1.38	3.70E-06	1.24	0.0103	0.473	0.0243
CDH10	4.32	0.0444	2.67	0.00131	0.521	0.0246
ENPP1	0.997	0.0062	1.29	0.0338	0.513	0.0254
PTGFRN	1.01	0.00117	1.05	0.00685	0.477	0.0282
PRICKLE2	2.28	0.00892	2.89	3.39E-10	0.47	0.0289
TNF5F11	1.09	0.0142	1.19	0.0106	0.496	0.0296
SFTA1P	4.08	0.031	5.72	0.0194	0.954	0.0307
SLC16A10	1.54	0.0477	1.23	0.00335	0.438	0.0313
FAM83F	2.34	0.0436	1.89	0.00276	0.466	0.0368
PLA2G12A	0.327	0.0421	0.957	0.00167	0.51	0.0388
FLNC	1.07	0.0117	1.74	0.0327	0.469	0.0389
ELOVL2	3.21	0.0214	1.01	0.0206	0.484	0.0395
BCL11A	2.64	0.0384	3.04	0.00238	0.514	0.0406
WSCD1	1.7	0.0357	1.47	0.0217	0.455	0.0427
HSH2D	0.795	0.0153	0.57	0.0107	0.543	0.0427
DOK5	3.58	0.0143	4.39	0.00117	0.512	0.0454
MGAT3	1.14	0.000198	1.09	4.65E-07	0.446	0.0477
B4GALNT3	1.06	3.25E-05	1.78	7.14E-11	0.396	0.0497
WNT10A	1.45	0.00854	1.78	0.000167	0.545	0.0503
GJB1	0.908	0.0123	2.67	0.0289	0.716	0.0512
UCN13D	0.992	0.0392	1.21	0.0454	0.469	0.0515
LPAR1	0.811	0.0048	0.645	0.0133	0.349	0.058
SLC44A3	0.835	0.000993	0.496	0.0196	0.365	0.0589
OAF	0.279	0.0346	0.852	0.032	0.41	0.0667
GPRC5B	0.661	0.0102	1.47	0.00456	0.446	0.0744
MAP7	1.32	1.79E-07	1.24	3.35E-07	0.359	0.0805
VAV1	2.4	0.000412	2.6	5.35E-10	0.359	0.0827
SYK	2.2	0.00244	1.56	0.000189	0.334	0.091
MARVELD2	0.856	6.89E-08	1.15	0.00022	0.384	0.0933
Gene	Mean	SD	Min	Max	Fold Change	SE
--------	--------	--------	-------	---------	-------------	--------
AGMAT	0.414	0.0471	0.912	0.0105	0.423	0.0964
LRIG1	1.19	0.00306	1.18	0.0358	0.344	0.111
UCA1	0.653	0.00378	1.1	5.57E-05	0.468	0.116
LIPG	0.503	0.0232	1.2	0.00913	0.398	0.136
MPP7	0.618	0.0269	0.723	0.0286	0.353	0.137
TSPAN13	0.849	1.20E-05	0.717	0.0104	0.304	0.17
CLDN9	1.24	0.0488	1.55	0.0286	0.55	0.18
PJA1	0.338	0.00392	0.987	0.00388	0.515	0.247
FBP1	0.374	0.0357	1.17	0.00289	0.281	0.251
DMKN	1.2	1.80E-09	1.75	3.04E-15	0.279	0.337
GPX3	0.564	0.0264	0.763	0.0187	0.271	0.398
EPPKI	1.45	4.41E-05	1.47	0.000923	0.222	0.477
FAM110C	0.528	0.0482	0.972	0.0244	0.222	0.528
NAPRT	0.7	0.0108	1.22	0.011	0.0871	0.801
FOXA2	2.17	3.52E-05	3.24	5.19E-08	0.0301	0.949
Supplementary Table 2

Primers for H2B genotyping

Gene	Forward	Reverse
HIST1H2BB	CATAAACCCCAACCCCTCAGT	TGCTTTCGCTAAACATTCAGGAG
HIST1H2BC	CACGGAATGACAACCTGTGCAG	GCACACAGCTCCTTTTATG
HIST1H2BD	ACGATTGGCATTTTGTACACGCA	GGTACTTGCTGTCACTAGCTCCCA
HIST1H2BE	GCTATCGAAACCCCTGCAAGCA	GCCTATTTCTAGCTGACACAGGAG
HIST1H2BF	TGCCGATTCTGATAGGATCTG	AGCGCTTTTGGATAGGTGTATG
HIST1H2BG	TGGTCTACAAACACTTTGCC	AAATGTGCTGATACCTCCCA
HIST1H2BH	GACCTACAAACCCCTGCAAGCA	GTATGGGACACACCTTCCCA
HIST1H2BI	TAAATGAGGCAGTTGTGGCTC	ACAACATGGGATCTCCTAG
HIST1H2BJ	CTACCAATCGAGCAACAGAC	AGGAATACAAAGCAACAGCTCC
HIST1H2BL	GCGATCTCTGTCGATCCAGCAG	GAAGACTGABACACAGCTCC
HIST1H2BM	GCCAAGCTGGCATCTGACG	ATGTACGAGCTTCCCACCCAA
HIST1H2BN	TGCTTAAACCCCAACTTTACCC	ACCGGGATTAGAGGCTTGG
HIST1H2BO	AGCTCATCTGATACCTGCAAGCA	TGACCTGTAGCTTACCCCA
HIST2H2BE	ATGAAGCTGTTGACTACCTTC	TGATGGGACACACCTTCCCA
HIST2H2BF	AGTAAACATGAAGACGCGAGCAG	CCAAAACCAGAATGACACCCCA
HIST3H2BB	GCCTTGCATTTGGATGCTAT	ACCTGAGCAGTTCCTACCC

Primers for q-RT PCR

Primer name	Forward	Reverse
5S mRNA	GGCCATACCAACCCCTGAAAGCA	CAGCCACCGGTATTCCCAAG
GAPDH mRNA	GACAGTGACCGCATCTTCT	TTAAAGACGCCCTGTGAC
ANXA3-ex2in2	GGCAAGTGAGGATACATGGA	CCGGCTGGCTCTTACCCCA
ANXA3-ex3in3	TGGGACACCCAGAAGCAGTAA	TGAGTACGGCTGTGACACCCCA
ANXA3-ex7in7	AAGAAGAAGTCTTGGAGATGACATT	CATGCAGCTACTGGAGAGT
ANXA3-ex12in12	GGAAGATTTGACAGAAGCTTCAAG	GAGATGGTGAAGAGAGGCA
ANXA3 mRNA	CCGGTTCACACCCACAGTAGA	CCGGTTCACACCCACAGTAGA
SNAP47-ex2in2	TCTGTATCTCCTTCCTTTGCC	CCGGCTGTAGCTGACACCCCA
SNAP47-ex5in5	GCAAGAAGATGAGGACTGTGGA	TTTAGAAGCTGTGACACCCCA
SNAP47-in6ex7	CCGTGTAGCTGATCTTGTGC	CATCCAGGCTGTGTCTTGT
SNAP47 mRNA	AGAAGAAGCTGCTGACAGTCCGA	AGTTCCTGTGGATCTGCTTCCAG

Primers for ChIP-qPCR

Locus	Forward	Reverse
ANXA3_+3	ATACTCACTGTCGCTGCCAT	CTGTCCCCCTAGACACCTTAC
Supplementary Methods

CUT&RUN

Experiments were performed as described in with modifications. Specifically, 5 million S2VP10 H2B knock-in cell lines and parental cell line were incubated with NE1 (20 mM HEPES-KOH, pH 7.9; 10 mM KCl; 0.5 mM spermidine; 0.1% Triton X-100; 20% Glycerol; proteinase inhibitor cocktail) for 10 min and then with Buffer 1 (20 mM HEPES, pH 7.5; 150 mM NaCl; 2 mM EDTA; 0.5 mM spermidine; 0.1% BSA; proteinase inhibitor cocktail) for 5 min on ice. Nuclei were collected by centrifugation at 600 g for 3 min, and then resuspended in Buffer 2 (20 mM HEPES, pH 7.5; 150 mM NaCl; 0.5 mM spermidine; 0.1% BSA; proteinase inhibitor cocktail). 2 µg of specificity antibody was added to the nuclei and incubated at 4°C overnight. 4 µl of rabbit anti-mouse IgG (Jackson ImmunoResearch, 315-005-003) was incubated with the nuclei for 1 hour for FLAG CUT&RUN since the anti-FLAG antibody was generated from mouse. After washing the nuclei twice with Buffer 2, 0.5 ng/µl of pA-MNase fusion protein was added to the nuclei and incubated at 4°C for 1 hour. The nuclei was then washed once with Buffer 2 and once with low salt rinse buffer (20 mM HEPES, pH 7.5; 0.5 mM spermidine). Nuclei was resuspended in digestion buffer (3.5 mM HEPES, pH 7.5; 10 mM CaCl2; 5 mM MgCl2) and digestion was performed on ice for 15 min. Digestion was quenched by adding 2X STOP buffer containing 144 pg yeast spike-in DNA (40 mM HEPES, pH 7.5; 340 mM NaCl; 40 mM EGTA). Cleaved DNA fragment was released from the insoluble chromatin by incubating at 37°C for 30 min. Supernatant was collected for DNA purification with NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel, 740609.250) and libraries were prepared using Ovation Ultralow System V2 (NuGEN, 0344NB). PCR amplification condition was modified to 72°C 2 min, 95°C 3 min, (98°C 20 sec, 65°C 10 sec) for 11-12 cycles, 72°C 1 min. Paired-end sequencing was performed on the Illumina NextSeq 500 Sequencing System.

PRO-seq

5-10 × 10^6 cells were harvested by centrifugation. Briefly, cells were rinsed with ice-cold 1X PBS followed by wash buffer (10 mM Tris-Cl, pH 7.4; 10 mM KCl; 150 mM sucrose; 5 mM MgCl2; 0.5 mM CaCl2; 0.5 mM DTT proteinase inhibitor cocktail; 40 units RNase inhibitor/10 ml (added immediately before use) (Ambion, AM2682) dissolved in nuclease-free water once. Cells were lysed by incubating in lysis buffer (10 mM Tris-Cl, pH 7.4; 10 mM KCl; 250 mM sucrose; 5 mM MgCl2; 1 mM EGTA; 0.05% Tween-20; 0.5 mM DTT; 0.2% NP40; proteinase inhibitor cocktail; 40 units RNase inhibitor/10 ml (Ambion, #AM2682) for 5 min. The permeabilized cells were collected at 4°C, 1000 g for 5 min after two washes with wash buffer and flash frozen in 100 µl storage buffer (50 mM Tris-Cl, pH 8.0; 40% glycerol; 5 mM MgCl2; 0.1 mM EDTA; 0.5 mM DTT). Permeabilized cells in 100 µl storage buffer were mixed with 100 µl pre-warmed 2X nuclear run-on reaction mix (10 mM Tris-Cl, pH 8.0; 5 mM MgCl2; 1 mM DTT; 300 mM KCl; 37.5 µM biotin-11-ATP (Perkin Elmer, NEL544001EA); 37.5 µM biotin-11-CTP (Perkin Elmer, # NEL542001EA); 37.5 µM biotin-11-GTP (Perkin Elmer, NEL545001EA); 37.5 µM biotin-11-UTP (Perkin Elmer, NEL543001EA); 0.8 units/µl RNAse Inhibitor (Ambion, AM2682); 1% Sarkosyl (Sigma-Aldrich, #L1525)) and incubated at 37°C for 5 min. The run-on reaction was terminated by adding Trizol LS (Invitrogen, 10296010) and pelleted by ethanol precipitation. RNA pellets were re-dissolved in nuclease-free water and briefly denatured at 65°C followed by base hydrolysis with NaOH to produce 100-150 nt fragments. The biotinylated nascent transcripts were purified three times using Dynabeads™ M-280 Streptavidin (Invitrogen, 11206D), each round followed by Trizol (Invitrogen, 15596026) extraction and ethanol precipitation. The 5’ cap of transcripts were removed with RNA 5’ Pyrophosphohydrolase (NEB, M0356S) and the 5’ hydroxyl group repaired with T4 polynucleotide kinase (NEB, M0201). The libraries were then generated using TruSeq small RNA adapters and size-selected to a range of 140-350bp through Solid Phase Reversible Immobilisation beads (Beckman Coulter AMPURE XP, A63881) before being sequenced using Illumina NextSeq500 with 75 bp paired-end reads.

ATAC-seq

ATAC-seq libraries were generated as described in . 50,000 cells were harvested and washed once with 50 µl of cold 1X PBS and then resuspended in 50 µl of lysis buffer (10 mM Tris-HCl, pH 7.5; 10 mM NaCl; 3 mM MgCl2; 0.1% NP-40). Cells were then centrifuged for 10 min at 500 g. The supernatant which contains the cytoplasmic components was discarded and the pellet was collected. Transposition was initiated by adding 2X TD buffer with 2.5 µl of Tn5 transposase (Illumina, FC121-1030) in 50 µl total volume. Transposition was allowed to proceed for 30 min at 37°C in a thermomixer shaking at 500 rpm. Transposition reactions were cleaned up with Qiagen MinElute Kit. Libraries were generated using the custom Nextera PCR primers and were amplified for 10–12 cycles. Libraries were purified with AMPure beads to remove primer dimmers and > 1,000 bp DNA. Library quality was assessed using the Agilent
Bioanalyzer High-Sensitivity DNA kit and quantified using the NEBNext Library Quant Kit. Libraries were sequenced on Illumina NextSeq 500 with 50 bp paired-end reads.

ChIP-qPCR

Cells were cross-linked with 1% PFA at room temperature for 5 min and then quenched the formaldehyde with 125 mM glycine at room temperature for 5 min. Cells were washed twice with 1X TBS and harvested by scraping in 1 ml extraction buffer (10 mM Tris-HCl, pH 7.5; 10 mM NaCl; 0.5% NP-40; proteinase inhibitor cocktail) and incubated on ice for 30 minutes. Nuclei was washed once with MNase digestion buffer (20 mM Tris-HCl, pH 7.5; 15 mM NaCl; 60 mM KCl; 2 mM CaCl2). Digestion was started by adding 5 μl MNase (NEB, M0247S, diluted 1:10) to the nuclei suspension. The reaction was then incubated at 37°C with 500 rpm shaking for 5 min. Digestion was quenched by adding 2X STOP buffer (100 mM Tris-HCl, pH 8.0; 20 mM EDTA; 200 mM NaCl; 2% Triton X-100; 0.2% sodium deoxycholate). Soluble chromatin was collected after two sequential high-speed centrifugations of the sonicated lysate (10,000 g for 5 min and 15 min at 4°C). 5% of the lysate was taken as input and the remaining lysate was incubated with specific antibodies at 4°C for overnight. 30 μl of pre-washed Protein G Sepharose (GE Healthcare, 17061802) were added to each sample and incubated at 4°C for 1-2 hours. The beads were washed with different buffers, once with ChIP lysis buffer, once with lysis buffer with 0.5 M NaCl once with Tris/LiCl buffer (10 mM Tris, pH 8.0; 0.25 M LiCl; 0.5% NP-40; 0.5% Na-deoxycholate; 1 mM EDTA) and twice with Tris/EDTA buffer (50 mM Tris, pH 8.0; 10 mM EDTA). After washing, 100 μl of 10% chelex (Bio-Rad, cat. no. 142-1253) were added to the washed protein-G beads and boiled at 95°C for 10 min and then 5 μl of 20 mg/ml Proteinase K (NEB, P8107S) were added and incubated at 37°C for 30 min. Samples were boiled again for 10 min to inactivate proteinase K and centrifuged to collect the supernatant. 100 μl of 20 mM Tris, pH 8.0 was added to the pellet and centrifuged again to collect the supernatant. The supernatants were combined, and it was used as template for qPCR reaction. qPCR was performed using Applied Biosystems QuantStudio 3 Real-Time PCR System.

Antibodies

- Anti-FLAG (Sigma F7425, F1804), Anti-H2A (Cell Signaling Tech 12364S), Anti-H3 (Cell Signaling Tech 13919S), Anti-H2AZ (Abcam ab4174), Anti-H3.1/3.2 (Millipore ABE154), Anti-H3.3 (Millipore 09-838, Anti-CENPA (Cell Signaling Tech 2186), Anti-H2AK119ub (Cell Signaling Tech 8240s), Anti-H2BK120ub (Cell Signaling Tech 5546s), Anti- Anti-H3K4me3 (Active Motif 61379), Anti-H3K9me3 (Active Motif 61013), Anti-H3K27me3 (Cell Signaling Tech 97335), Anti-H3K36me3 (Immunoway YM3088), Anti-H4K20me3 (Active Motif 39671), H4K16ac (Immunoway YK0014), Anti-NAP1L1 (Santa Cruz sc-81328, Abcam ab33076), Anti-NAP1L2 (Abnova H00004674-D01), Anti-SPT16 (Santa Cruz sc-377028), Anti-SSRP1 (Santa Cruz sc-74536), Anti-HSC70 (Santa Cruz sc-7298), Anti-HIRA (Santa Cruz sc130636), Anti-ATRX (Santa Cruz sc-55584), Anti-DAXX (Abcam ab32140), Anti-B23 (Santa Cruz sc-271737), Anti-C23 (Santa Cruz sc-55486), Anti-CAF1 p150 (Abcam ab126625), Anti-CAF1 p60 (Santa Cruz sc-393662), PCNA (Immunoway YM301), Anti-a-tubulin (Immunoway YM3115), SPT6 (Santa Cruz sc-393920), HDAC2 (Abcam ab12169), MCM7 (Santa Cruz sc-9966), Anti- 53BP1 (homemade), Anti-γH2Ax (Abcam ab26350), Anti-BrdU (Cell Signaling Tech 52925), H3K9ac (Immunoway YK0006), H3S10ph (Abcam ab5176), H3K27ac (Active Motif 39685), H3K36me2 (Cell Signaling Tech 29015), H3K79me3 (Immunoway YM3091).

CUT&RUN sequencing data analysis

Reads were aligned to human reference genome hg19 and yeast reference genome sacCer3 by Bowtie 2 separately. Human reads were normalized by spike-in yeast reads using deepTools. MACS2 was used to call peaks using parental as control under p < 0.001 with paired-end mode. Mutant enriched peaks were identified by ‘DESeq2’ taking yeast spike-in reads as scale factor after counting reads within peaks using BEDTools (p < 0.05 and log2 fold change > 0.5). Peak annotation to different genomic regions, including gene body, promoter (transcription start site (TSS) +1 kb), downstream (3kb downstream of transcription end site (TES)) and distal intergenic regions, was performed by R package ‘ChIPseeker’. As a random control, the same number of ‘shuffled peaks’ of the same lengths as mutant enriched peaks were randomly generated for each chromosome for 1,000 times using BEDTools. A Chi-square test was then performed to assess the statistical significance in the difference of genomic distributions between mutant enriched peaks and shuffled peaks. For each gene, the occupancy of FLAG was quantified by the number of reads located in gene body and 1 kb upstream of TSS counted by BEDTools, and subsequently normalized by the yeast spike-in factor. To identify genes showing differential occupancy of FLAG between mutants and WT, differential occupancy analysis was further performed by ‘DESeq2’ (p < 0.01 and log2 fold change > 0.5).
RNA-seq data analysis
Reads were mapped to the human reference genome hg19 and counted by STAR 2.6.1a \(^{10}\) with default parameters. R package ‘DESeq2’ \(^{7}\) was used to perform differential expression analysis \((p < 0.05\) and \(|\log_2\text{fold change}| > 0.25\)). ‘bamCoverage’ in deepTools \(^{5}\) was used to generate bigwig files for IGV visualization using the traditional normalization method: Reads Per Kilobase per Million mapped reads (RPKM). Gene set overrepresentation analysis based on differentially expressed genes was performed by R package ‘HTSanalyzeR2’ \(^{11}\) using hypergeometric tests, and significant gene sets were defined by Benjamini-Hochberg adjusted \(p < 0.05\).

PRO-seq data analysis
Adapter cutting, reads alignment and coverage files generation were based on the pipeline illustrated by Dig et al. \(^{12}\) using human genome hg19 as reference genome. Count data was obtained from the bigwig files using R package ‘bigWig’ \(^{13}\). R package ‘DESeq2’ \(^{7}\) was used to perform differential expression analysis, and significantly differentially expressed genes were defined by \(p < 0.05\) and \(|\log_2\text{fold change}| > 0.25\).

ATAC-seq data analysis
Reads were aligned to the human reference genome hg19 by BWA \(^{14}\) with default parameters. Reads from mitochondrial were removed and de-duplicated. Only paired reads were used for further analysis. MACS2 was used to call peaks with paired-end mode \((q < 0.05)\) \(^{6}\). Coverage files for IGV visualization were generated from bam files using deepTools \(^{5}\).

DRB treatment
5,6-Dichlorobenzimidazole 1-b-D-ribofuranoside (DRB) (Sigma, D1916) was dissolved in DMSO as 75 mM solution stored at −20°C. S2VP10 wild type and G53D mutation cells grew overnight on 35 mm plates to 60%-70% confluency and then were treated with 300 μM DRB for 3.5 hours. Cells were washed with PBS to remove the DRB and then incubated in fresh medium for various time periods. Following the incubation period, cells were washed with PBS and subjected to total RNA isolation using a universal RNA extraction kit (Takara, 9767). 500 ng of total RNA were used for reverse transcriptase reaction according to PrimeScript RT Master Mix (TaKaRa, RR036A). The levels of pre-mRNA at various positions of ANXA3 gene were determined by real-time PCR. Values obtained were normalized relative to the average level of 5S and GAPDH. Results were expressed in relation to the pre-mRNA value of cells treated with DMSO.

Primers
All primers used in this study are listed in Supplementary Table 2.

Data Availability
RNA-seq, PRO-seq, ATAC-seq and CUT&RUN sequencing data sets have been deposited to the Gene Expression Omnibus under accession number GSE134864.
References

1. Kujirai, T. et al. Structural basis of the nucleosome transition during RNA polymerase II passage. *Science* **362**, 595-598, doi:10.1126/science.aau9904 (2018).

2. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. *Elife* **6**, doi:10.7554/eLife.21856 (2017).

3. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nat Methods* **10**, 1213-1218, doi:10.1038/nmeth.2688 (2013).

4. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**, 357-359, doi:10.1038/nmeth.1923 (2012).

5. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. *Nucleic Acids Res* **42**, W187-191, doi:10.1093/nar/gku365 (2014).

6. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). *Genome biology* **9**, R137 (2008).

7. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome biology* **15**, 550 (2014).

8. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**, 841-842, doi:10.1093/bioinformatics/btq033 (2010).

9. Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. *Bioinformatics* **31**, 2382-2383, doi:10.1093/bioinformatics/btv145 (2015).

10. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21 (2013).

11. Gao, F. et al. in *Celebrating The 25th Conference on Intelligent Systems for Molecular Biology And The 16th European Conference on Computational Biology: ISMB/ECCB 2017*.

12. Mahat, D. B. et al. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). *Nature Protocols* **11**, 1455-1476, doi:10.1038/nprot.2016.086 (2016).

13. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. *Bioinformatics* **26**, 2204-2207 (2010).

14. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. *bioinformatics* **25**, 1754-1760 (2009).