Identification and Analysis of Economic Model Based on Longnan Southeast

Wanjun Zhang¹,²,³,⁴, Feng Zhang¹,⁵, Jingxuan Zhang¹,⁵, Jingyi Zhang²,⁶, Jingyan Zhang²,⁷

¹Quanzhou Institute of Information Engineering, 362000, China.
²Qingyang Xinyuan Engineering Co., Ltd., 745000, China.
³Lanzhou Industry and Equipment Co., Ltd., Lanzhou 730050, China.

Abstract. Through the establishment of the environmental identification and diagnosis model of the regional economic model, we can determine the usable elements, exploitable elements and restricted elements according to the differences in the utilization degree, development potential and constraint strength of each element from many environmental factors. And deeply understand the structure of the system, find out the root causes of the problems in the real system and the way to solve the problem, breakthrough. Based on the identification and analysis of the economic model of Southeast longnan, through the analysis of the identification model, it conforms to the development of Southeast longnan economy and has strong reference significance in other places. The simulation results verify the feasibility and effectiveness of the proposed identification and modeling method.

1. Introduction

The latest individual studies believe that wage income is the main reason for the increase in regional differences [1-3]. Due to time constraints, the latest data on the change in income gap among rural residents came from 1993 to 2005. Most scholars are limited to the study of the social and cultural aspects of the region and do not study the income gap of farmers. Therefore, the change of income gap between 2000 and 2012 is selected as the research stage in this paper. The Gini coefficient model is used to calculate the Gini coefficient in the Southeast and Southeast regions, and the difference of rural income in the region is analyzed. The Gini coefficient is decomposed and the contribution of income structure to Gini coefficient is analyzed. Combined with these two methods, this paper analyzes the difference of economic development in rural areas of Longdong and Southeast China, and puts forward corresponding countermeasures.

In addition, we can also convert certain multivariate systems into multiple single inputs by decomposing the root. Single-output systems, so this paper is based on the assumption that we can approximate an economic system with a linear system so that they are in the same input drive [4]. It has the same system output, determines the linear system model by identification, replaces the economic system, and in the process of identification, we have the system [5-7]. The input is applied so that its output tracks the intended target. Once the output of the system is found to deviate from the
expected target, the deviation is fed back to the Control variables are modified so that the system output at the next moment is consistent with the expected goal, which we call reference output. The adaptive identification algorithm of the model will be given.

Through the establishment of the environmental identification and diagnosis model of the regional economic model [8-32], we can determine the usable elements, exploitable elements and restricted elements according to the differences in the utilization degree, development potential and constraint strength of each element from many environmental factors. And deeply understand the structure of the system, find out the root causes of the problems in the real system and the way to solve the problem, breakthrough. Based on the identification and analysis of the economic model of Southeast longnan, through the analysis of the identification model, it conforms to the development of Southeast longnan economy and has strong reference significance in other places. The simulation results verify the feasibility and effectiveness of the proposed identification and modeling method.

2. Identification structure model
In general, the environmental factors that affect regional economic development can be divided into two categories: natural environment factors and social environmental factors. The complete set of environmental factors of the system D: \(D = \{ \theta, \Theta \} \). \(\theta, \Theta \) are the collection of natural environmental factors and the collection of social environmental factors, each of which is also included. Contains several factors:

\[
\theta = [a_1 \cdots a_n, E_1 \cdots E_n]^T, \quad \Theta = [c_1 \cdots c_m]^T
\]

(1)

The negative logarithmic likelihood function can be expressed as:

\[
J(\theta, \Theta, \sum) = -J(\theta, \Theta, \sum) \\
= -\frac{L}{2} \ln(2\pi) + \frac{L}{2} \ln(\det \sum) + \frac{1}{2} v^T v_l
\]

(2)

In the formula (3), \(v(k) \) can be written as:

\[
\begin{align*}
 v(k) &= z_f(k - h_f(k) \theta \\
 \left[v_L = [v(1), v(2), \cdots, v(L)]^T
\end{align*}
\]

(3)

Supposed

\[
\begin{align*}
 z_L(k) &= C(z^{-1}) z(k) \\
 u_f(k) &= C(z^{-1}) u(k) \\
 h_f &= \begin{bmatrix}
 -z_f(k-1) & \cdots & -z_f(k-n), -u_f(k-1) & \cdots & -u_f(k-n)
 \end{bmatrix}^T
\end{align*}
\]

(4)

If you fix \(\hat{\Theta} = \Theta \), minimize \(\hat{\Theta} = \Theta J(\theta, \hat{\Theta}, \sum_v) \), you can get
\[
\hat{\theta} = \left[\sum_{k=1}^{L} H_f(k) \sum_{y}^{-1} H_y(k) \right]^{-1} \left[\sum_{k=1}^{L} H_f(k) \sum_{y}^{-1} H_y(k) \right]
\] (5)

If \(\hat{\Theta} = \Theta \) and \(\theta = \hat{\theta} \) are fixed, minimize \(J(\theta, \hat{\Theta}, \sum_{y}) \), and according to

\[
\frac{\partial \ln(\det(A))}{\partial A} = (A^{-1})^T
\] (6)

\[
\frac{\partial (x^T A^{-1} y)}{\partial A} = (A^{-1} x^T A^{-1})^T
\] (7)

Since

\[
\sum_{y} = \frac{1}{L} \sum_{k=1}^{L} \hat{\nu}^2(k)
\] (8)

The \(D = \{\theta, \Theta\} \) sequence is divided into several levels according to the size of \(D = \{\theta, \Theta\} \). Potential factors, which belong to the lower level, are disadvantages or constraints.

3. Modelling steps

If the order

\[
\begin{bmatrix}
\hat{\nu}(k) = \hat{C}(z^{-1}) \hat{e}(k) \\
\hat{e}(k) = \hat{A}(z^{-1}) z(k) - \hat{B}(z^{-1}) u(k)
\end{bmatrix}
\] (9)

Then, We can rewrite the above equation (10) to

\[
\hat{e}(k) = \left[1 - \hat{C}(z^{-1}) \right] \hat{e}(k) + \hat{\nu}(k)
\]

\[
= -C_1 \cdot \hat{e}(k-1) - C_2 \cdot \hat{e}(k-2) \cdots - C_{n_x} \cdot \hat{e}(k-n_x) + \hat{\nu}(k)
\] (10)

After estimation, it can be obtained by form (10),

\[
\left(H^* \right)^T = \left[-\hat{e}(k-1) - \hat{e}(k-2) \cdots - \hat{e}(k-n_x) \right]
\] (11)

Available by least squares

\[
\hat{\Theta} = \left[\sum_{k=1}^{L} (H^*(k))^T H^*(k) \right]^{-1} \left[\sum_{k=1}^{L} (H^*(k))^T e^*(k) \right]
\] (12)

Using the formula (12) iteration, the model parameter estimate can be obtained.
4. An example of rural economic identification in southeastern Yunnan

The net income of per capita income and various sources of income in rural areas were selected as the objects of analysis. The data were derived from the survey of household basic conditions in the four counties in the southeast of Longnan from 2000 to 2012. The sample was 32 questionnaires in Wushan County, Tianshui City, and 33 in Hui County, Weinan City. There are 30 counties in Zhuanglang County in Pingliang City and 35 counties in Qingyang City. (In order to group the Gini coefficient, 120 survey reports were actually used and 30 were in counties, totaling 120 households.) To identify the rural economy in southeastern Yunnan, the data list is shown in Table 1, 2:

Table 1. Income status of rural households in Longnan region, 2000-2012.

year	Southeast	Hui County	Wushan County	Huan County	Zhuanglang County
2000	1838.42	1724.98	1314.04	1610.72	2703.93
2003	2447.11	2250.34	1903.62	2082.52	3551.97
2006	3053.24	3147.75	2435.96	2496.33	4132.94
2009	4302.11	4323.36	3667.87	3983.52	5233.68
2012	6048.38	6183.30	4532.29	5690.33	7787.59

From 2000 to 2012, the overall income of rural households in the southeast of Longdong showed a significant upward trend. From 1838.42 yuan per person in 2000 to 6048.38 yuan per person in 2012 (table 1). From table 1, it can be seen that the per capita income of Zhuanglang County is always higher than the per capita income of southeastern Yunnan Province, especially in 2012. The rate of growth of Huixian County is consistent with that of the Southeast region of Longdong, and the average household income of the Southeast region of Zhuanglang Gaochu. It can be seen from this that Zhang Lang has the highest economic level and the fastest development in the southeastern region of Longdong, while the development in the other three places is basically the same, and there is no big floating. It coordinates development within the region, reduces the income gap between regions, and promotes the overall development of the southeastern region.

The influence of different source factors on the income gap is further analyzed. Gini coefficient calculation formula:
In Figure 1, 2, 3, based on the identification and analysis of the economic model of Southeast Longnan, through the analysis of the identification model, it conforms to the development of Southeast Longnan economy and has strong reference significance in other places.
5. Summary
(1) Through the establishment of the environmental identification and diagnosis model of the regional economic model, we can determine the usable elements, exploitable elements and restricted elements according to the differences in the utilization degree, development potential and constraint strength of each element from many environmental factors. And deeply understand the structure of the system, find out the root causes of the problems in the real system and the way to solve the problem, breakthrough.

(2) Based on the identification and analysis of economic model, it is in line with the development of economic development in Longnan, and it has a strong reference significance for development in other places.

Acknowledgements
The authors thank the financial supports from National Natural Science Foundation of China (Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX040001-181).

First author(communication author): Zhangwanjun, male, born in 1986, doctoral student in engineering(bachelor's degree in law and management), professorial senior engineer, senior economist(mechanical engineer, CNC senior craftsman), Senior member of China Society of Mechanical Engineering, Senior member of China Agricultural Machinery Society, Senior member of the China Agricultural Machinery Engineering Society, member of the China Invention Society, director of the China Invention Society, member of the Standing Committee of the Committee of Experts of the Modern Manufacturing Engineering(Chinese Core, Science and Technology Core), member, and review expert. Mainly engaged in numerical control technology equipment, new energy research and electromechanical transmission control work. We have authorized more than 250 patents for invention and utility models as the first applicant (patentee) and inventor, and nearly 200 patents for design as the first applicant (patentee) and inventor, and published more than 50 academic papers in core or above journals. SCI/ EI/ ISTP has more than 40 searches papers, including more than EI 30 papers, SCI 5 papers. Email: gszwj_40@163.com.

References
[1] F. GIRI, J.M. MDION, M.M’ S AAD, L. DUGARD, A GLOBALLY CONVERGENT POLE PLACEMENT INDIRECT ADAPTIVE CONTROLLER[J]. IEEE Trans. Auto. Contr. 1989, Mar., vol. 34, NO. 3, pp. 353-356.
[2] G. C. Goodwin, K. S. Sin, Adaptive Filtering Prediction and Control [M]. Prentice - Hall, Inc, 1984.
[3] Estimating control function benefits. Martin G D, Turpin L E. Hydrocarbon Processing. 1991
[4] Determining controller benefits via probabilistic optimization. Zhou Y, Forbes J F. International Journal of Adaptive Control and Signal Processing. 2003
[5] Economic performance assessment with optimized LQG benchmarking in MIMO systems. Marshman D [22] J, Chmelyk T, Sidhu M S. Proceedings of the 9th International Symposium on Dynamics and Control of Process Systems (DYCOPS 2010). 2010
[6] Study on Economic Performance Assessment for Process Control. Zhao Chao. . 2009, pp :453 -456.
[7] Sensitivity analysis for selective constraint and variability tuning in performance assessment of industrial MPC. Kwan Ho Lee, Biao Huang, Edgar C. Tamayo. Control Engineering. 2018,
Process control: Clifftent shows its profitable than expected. LATOUR P. Hydrocarbon Processing. 2017, Vol 33, pp. 1163 -1176.

Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Fuzzy Control of Wind Turbine Based on Directional Power Conversion. [J]. Electric Power Construction, 2014, 10,35(10): 13-16.

WeiTai, ZhangWan-jun, Zhang Yan, et al. Finite Element Analysis and Structural Optimization on the Fasteners Testing Head of Wind Power Equipment. [J]. Mechanical Research & Application, 2015, 4:19-22.

Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on a algorithm of adaptive interpolation for NURBS curve. [J]. Applied Mechanics and Materials, Vol. 687-691, pp. 1600-1603, December 2014.

WeiTai,ZHANG Wanjun, ZHANG Feng, ZHANG Wanjun. Finite Element Analysis and Structural Optimization on the Fasteners Testing Head of Wind Power Equipment. Mechanical Research & Application, 2014, 35(10):13-16.

WU Zai-xin, Zhang Wan-Jun HU Chi-bing, et al. Research on NURBS curve modified interpolation for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8(8), pp. 180-185, October 2011.

Zhang Wan Jun, Hu Chi Bing, Zhang Feng, et al. Honing machine motion control card three B spline curve method of interpolation arithmetic for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8(8), pp. 40-43, August 2012.

Zhang Wan-Jun, HU Chi-bing, WU Zai-xin, et al. Research on modification algorithm of Three B Spline curve interpolation technology [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2 pp. 141-143, February 2013.

Zhang Wan-Jun, Zhang Feng, Zhang Guohua. Research on modification algorithm of Cubic B-spline curve interpolation technology. [J]. Applied Mechanics and Materials, Vol. 687-691, pp. 1596-1599, December 2014.

Zhang Wan-Jun, Zhang Feng, Zhang Wan-liang. Research on high-grade CNC machines tools CNC system for B-Spline curve method of High-speed real-time interpolation arithmetic [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8(8), pp. 172-176, August 2015.

Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation. [J]. advances in Engineering Research, 2016, 12, Vol. 83. 507-512.

Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation. [J]. advances in Engineering Research, 2016, 12, Vol. 83. 513-518.

Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation. [J]. 2016 4th International conference on Machinery, materials and Information Technology Applications, 2016, 12, Vol. 71. 507-512.

Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation. [J]. 2016 4th International conference on Machinery, materials and Information Technology Applications, 2016, 12, Vol. 71. 513-518.

Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A improved algorithm of three B-spline curve interpolation and simulation. [J]. advances in Materials, materials, Machinery, Electronics I, 2017, 2, Vol. 1820. 080004-1-080004-6.

Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Innovation research on Taylor’s iteration algorithm of NURBS curve and simulation. advances in Materials, materials, Machinery, Electronics I, 2017, 2, Vol. 1820. 080014-1-080014-8.

Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. M NURBS curve method Taylor's launch type of interpolation arithmetic. [J]. Advances in Engineering Research, 2016, 12, Vol. 118. 43-52.

Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A Novel of Improved algorithm adaptive of NURBS curve. [J]. Advances in Engineering Research, 2016, 12, Vol. 118. 53-60.
[26] Zhang Wanjun, Zhang Gao Shanping, Zhang Sujia. A novel on high-grade CNC machines tools for B-Spline curve method of High-speed interpolation arithmetic. [J]. 2016 International Conference on Automotive Engineering, Mechanical and Electrical Engineering, 2017, 3, Vol. 118. 53-60.

[27] Zhang Wanjun, Zhang Gao Shanping, Zhang Sujia. Study on Embedded CNC system for NURBS curves method of interpolation arithmetic. [J]. advances in Engineering Research, 2017, 3, Vol. 118. 53-60.

[28] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on cross coupled contour error compensation technology in CNC multi axis linkage of Machine tool [J]. Chinese Journal of Manufacturing Technology & Machine Tool, June. pp. 154-159, 2018.

[29] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Cross coupled contour error compensation technology. [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 032031:1-5.

[30] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on the vector control system based on the difference frequency of wind turbine generator. [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 042020:1-9.

[31] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters. [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028:1-14.

[32] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Flow field analysis and parameter optimization of main and measured nozzles of differential pressure type gas momentum instrument based on CFD. [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028:1-12.