Research and Development of Zincoborates: Crystal Growth, Structural Chemistry and Physicochemical Properties

Yanna Chen 1,2,†, Min Zhang 1,‡, Miriding Mutailipu 1,2,†, Kenneth R. Poeppelmeier 3 and Shilie Pan 1,*

1 CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
* Correspondence: slpan@ms.xjb.ac.cn
† These authors contributed equally to this work.

Abstract: Borates have been regarded as a rich source of functional materials due to their diverse structures and wide applications. Therein, zincoborates have aroused intensive interest owing to the effective structural and functional regulation effects of the strong-bonded zinc cations. In recent decades, numerous zincoborates with special crystal structures were obtained, such as Cs3Zn6B9O21 and AZn2BO3X2 (A = Na, K, Rb, NH4; X = Cl, Br) series with KBe2BO3F2-type layered structures were designed via substituting Be with Zn atoms, providing a feasible strategy to design promising non-linear optical materials; KZnB3O6 and Ba4Na2Zn4(B3O6)2(B12O34) with novel edge-sharing [BO4]5− tetrahedra were obtained under atmospheric pressure conditions, indicating that extreme conditions such as high pressure are not essential to obtain edge-sharing [BO4]5−-containing borates; Ba4K2Zn3(B6O19) and Ba2KZn3(B3O6)(B6O13) comprise two kinds of isolated polyborate anionic groups in one borate structure, which is rarely found in borates. Besides, many zincoborates emerged with particular physicochemical properties; for instance, Bi2ZnOB2O6 and BaZnBO3F are promising non-linear optical (NLO) materials; Zn4B6O13 and KZnB6O6 possess anomalous thermal expansion properties, etc. In this review, the synthesis, crystal structure features and properties of representative zincoborates are summarized, which could provide significant guidance for the exploration and design of new zincoborates with special structures and excellent performance.

Keywords: zincoborate; structural chemistry; structure–property relationship; non-linear optical crystal

1. Introduction

Over the past decades, borates have attracted burgeoning attention owning to their excellent properties and wide applications such as non-linear optical (NLO) materials, birefringent materials, electrode materials, etc [1–7]. The attractive properties of borates mainly depend on their structural diversity, as the boron atoms can be three- or four-coordinated with oxygen atoms to construct the planar triangular [BO3]3− groups or tetrahedral [BO4]5− groups, respectively, which could further link together via corner- or edge-sharing to form different types of fundamental building blocks (FBBs) [8–11]. For example, the FBBs of classical KBe2BO3F2 (KBBF) [12,13] and Sr2Be2B2O7 (SBBBO) [14,15] are [BO3]3− triangles, while the commercial NLO crystals β-BaB2O4 (β-BBO) [16] and LiB2O5 (LBO) [17]
are composed of \([B_3O_6]^{3-}\) and \([B_3O_7]^{5-}\) groups, respectively. These FBBs, in turn, may polymerize to form isolated clusters, infinite one-dimensional (1D) chains, two-dimensional (2D) layers or three-dimensional (3D) frameworks, which endow borates with rich structural chemistry and extensive applications [18–21].

From the viewpoint of structural chemistry, the anionic groups are relatively independent structural and functional modules. The expected excellent optical properties could be achieved through screening and assembling FBBs with a specific arrangement [22–28], which constitutes a tight combination between the chemistry synthesis and optical properties of materials, as well as establishes a theoretical foundation for rationally designing or synthesizing ultraviolet (UV) and deep-UV (DUV) NLO materials. In particular, the isolated planar B-O groups with coplanar or aligned arrangement could produce large microscopic second-order susceptibility and birefringence, which are suitable to design NLO and birefringent materials for UV/DUV light generation [29–31]. For instance, KBBF and \(\beta\)-BBO with isolated coplanar B-O units \((BO_3)^{3−}\) and \((BO_4)^{3−}\) exhibit large birefringence and second harmonic generation (SHG) response, which enables them to be world famous as optical crystals and widely applied in the field of laser technology [32–34]. However, the design and synthesis of borates with isolated coplanar B-O groups is still a research challenge. According to the statistical analysis of borate FBBs proposed by P. Becker [35], isolated borate polyhedra occur for cations/boron \((A:B) > 1\), which guides researchers to obtain borates with isolated B-O groups by increasing the ratio of cations and boron [36–38]. Recently, many investigations reveal that the introduction of covalent mental cations (such as, Be\(^{2+}\), Mg\(^{2+}\), Zn\(^{2+}\), Al\(^{3+}\), etc.) may effectively restrain the polymerization of B-O units and is beneficial to the formation of isolated B-O groups [39–43]. Moreover, the cooperation of highly-coordinated cations (such as, Ba\(^{2+}\), Sr\(^{2+}\), Rb\(^{+}\), K\(^{+}\), etc.) with low-coordinated covalent mental cations can synergistically affect the frameworks and facilitate the benign B-O arrangement, such as SBBBO, Na\(_2\)Be\(_2\)B\(_5\)O\(_{11}\) [44], Cs\(_3\)Zn\(_6\)B\(_3\)O\(_{21}\) [45,46], Ba\(_3\)Mg\(_3\)(BO\(_3\))\(_3\)F\(_3\) [47], A\(_3\)B\(_2\)Li\(_2\)M\(_4\)B\(_6\)O\(_{20}\)F (A = K, Rb; B = Ba, Sr; M = Al, Ga) series [48–54], etc.

In the last few decades, borates containing zinc cations have become a research focus and zincoborates with novel structures or good properties were continuously reported [55–57]. There are several advantages motivating researchers to design new compounds in a zinc-containing borate system: (1) the zinc-containing borate has been regarded as a fertile field to search for the expected compounds with high physicochemical performance. In recent years, using Zn\(^{2+}\) to substitute Be\(^{2+}\) in the KBBF family has been proved to be a rational design strategy to synthesize desired compounds with KBBF-type layered structures, which is an effective way to explore new UV/DUV NLO materials. For example, KZn\(_2\)BO\(_3\)Cl\(_2\) [58,59] and Cs\(_2\)Zn\(_6\)B\(_3\)O\(_{21}\) were designed with KBBF-type layered structures and exhibit enhanced SHG efficiency of about 3.0 and 3.3 \times KH\(_2\)PO\(_4\) (KDP), respectively. Furthermore, the [ZnO\(_4\)]\(^{16−}\) tetrahedron has been regarded as a NLO-active unit with good UV transparency. For instance, Ba\(_3\)(ZnB\(_5\)O\(_{10}\))PO\(_4\) [60], BaZnBO\(_3\)F [61], Ba\(_6\)Zn\(_4\)(BO\(_3\))\(_6\) [62], Ba\(_2\)Zn(BO\(_3\))\(_2\) [63,64], etc. exhibit enhanced NLO performance. In addition, KZn\(_4\)O\(_6\) and Zn\(_4\)B\(_2\)O\(_{13}\) possess anomalous thermal expansion properties [65–68], which revive the studies on new functionalities in borates that have long been overlooked, and might eventually give rise to the discovery of more exciting and exotic emerging physicochemical properties in borates. (2) Many zincoborates possess exceptional structural configurations. For instance, KZn\(_2\)O\(_6\) is the first borate possessing the novel edge-sharing (es-) [BO\(_4\)]\(^{3−}\) tetrahedra synthesized under ambient pressure [69,70]. Previously, the es-[BO\(_4\)]\(^{3−}\) tetrahedra were considered only to exist in some compounds synthesized under high-pressure/high-temperature conditions [71–74]. Interestingly, Ba\(_4\)Na\(_2\)Zn\(_6\)(B\(_2\)O\(_6\))(B\(_2\)O\(_4\)) [75] is the second case of borate possessing the es-[BO\(_4\)]\(^{3−}\) tetrahedra that obtained under ambient pressure. Besides, several zincoborates comprise of two types of isolated B-O groups, which violates the Pauling’s Rule of parsimony (Pauling’s fifth rule) [76,77]. For instance, Cs\(_3\)Zn\(_4\)B\(_2\)O\(_{21}\) \(((BO_3)^{3−} + [BO_5]^3\)) \(_−\) , Ba\(_3\)Zn(BO\(_3\))(B\(_2\)O\(_3\))F and Ba\(_4\)Zn\(_2\)(BO\(_3\))\(_2\)(B\(_2\)O\(_3\))F\(_2\) [78] with [BO\(_3\)]\(^{3−}\) triangles and another relatively low-polymerized polyborate anions have been reported; moreover, compounds with two kinds of isolated polyborate anions, such as Ba\(_2\)KZn\(_3\)(B\(_2\)O\(_6\))(B\(_2\)O\(_{13}\)) [79], Ba\(_4\)K\(_2\)Zn\(_5\)(B\(_2\)O\(_6\))\(_3\)(B\(_2\)O\(_{19}\)) [80], Ba\(_4\)Na\(_2\)Zn\(_4\)(B\(_2\)O\(_3\))\(_2\)(B\(_2\)O\(_4\)) and Ba\(_2\)ZnO(B\(_2\)O\(_6\))
1.814–2.479 Å, 2.023–2.516 Å, respectively, which is in agreement with reasonable values. As shown in
with oxygen (about 66% of zincoborates contain the [ZnO
4
/edge-sharing, which can further connect with different B-O groups to form Zn-B-O/X structures. To
polyhedra can polymerize into isolated Zn-O/X clusters, 1D chains, 2D layers or 3D network through vertex-
thresholds of bond lengths were applied for the Zn-O and B-O bonds at the maximum in the
continuity distribution of the Zn-O distances (2.6 Å) and the B-O distances (1.65 Å), respectively. All the
available anhydrous and disorder-free zinc-containing borates (64 cases) are summarized. Structural
comparisons were carried out and summarized as follows:

(1) The Zn-O, Zn-X (X = F, Cl, Br) bond lengths of the summarized compounds range from
1.814–2.479 Å, 2.023–2.516 Å, respectively, which is in agreement with reasonable values. As shown in
Figure 1a, most of the Zn-O bond lengths are in the range of 1.90–2.16 Å. The zinc atoms can coordinate
with four, five, or six O/X atoms to form [ZnO4]6−, [ZnO5]8−, [ZnO6]10−, [ZnO3X]3−, [ZnO4X]7−, [ZnO3X2]9− polyhedra, respectively, and the coordination of zinc are mostly four coordinated with oxygen (about 66% of zincoborates contain the [ZnO4]6− tetrahedra). These zinc-centered polyhedra can polymerize into isolated Zn-O/X clusters, 1D chains, 2D layers or 3D network through vertex-/edge-sharing, which can further connect with different B-O groups to form Zn-B-O/X structures. To the best of our knowledge, the Zn-B-O configurations in zincoborates are always 2D layers or 3D frameworks, except that the special [Zn3(B2O3)3]14− and [ZnB6O18]16− isolated clusters exist in Ba2ZnSc(BO3)3 [85] and Pb2Zn(BO3)6 [86], respectively.

2. Structural Chemistry of Zincoborates

2.1. Statistical Analysis of Structural Configurations

In order to better understand the structural diversity of zincoborates, systematic analysis of
the Zn-B-O system was carried out by taking the Inorganic Crystal Structure Database (ICSD-4.2.0,
the latest release of ICSD-2019/1) as the source of data. The connection modes of zinc cations with
oxygen or halogen anions as well as the influence of the zinc cations to the structures are investigated.
The thresholds of bond lengths were applied for the Zn-O and B-O bonds at the maximum in the
continuity distribution of the Zn-O distances (2.6 Å) and the B-O distances (1.65 Å), respectively. All the
available anhydrous and disorder-free zinc-containing borates (64 cases) are summarized. Structural
comparisons were carried out and summarized as follows:

(1) The Zn-O, Zn-X (X = F, Cl, Br) bond lengths of the summarized compounds range from
1.814–2.479 Å, 2.023–2.516 Å, respectively, which is in agreement with reasonable values. As shown in
Figure 1a, most of the Zn-O bond lengths are in the range of 1.90–2.16 Å. The zinc atoms can coordinate
with four, five, or six O/X atoms to form [ZnO4]6−, [ZnO5]8−, [ZnO6]10−, [ZnO3X]3−, [ZnO4X]7−, [ZnO3X2]9− polyhedra, respectively, and the coordination of zinc are mostly four coordinated with oxygen (about 66% of zincoborates contain the [ZnO4]6− tetrahedra). These zinc-centered polyhedra can polymerize into isolated Zn-O/X clusters, 1D chains, 2D layers or 3D network through vertex-/edge-sharing, which can further connect with different B-O groups to form Zn-B-O/X structures. To the best of our knowledge, the Zn-B-O configurations in zincoborates are always 2D layers or 3D frameworks, except that the special [Zn3(B2O3)3]14− and [ZnB6O18]16− isolated clusters exist in Ba2ZnSc(BO3)3 [85] and Pb2Zn(BO3)6 [86], respectively.

[Figure 1. Distribution of (a) Zn-O and B-O bond lengths; (b) dimensionality of B-O configuration in zinc-containing borates.

(2) The B-O bond lengths of the summarized compounds range from 1.254–1.565 Å, which are in accordance with those of other reported borates. Most of the B-O bond lengths are distributed in the range of 1.30–1.52 Å (Figure 1a). As shown in Figure 1b, approximately 78% of zincoborate structures are built up of isolated B-O groups (0D), such as isolated [BO3]3−, [B2O5]4−, [B3O6]3−, [B3O11]5−, [B4O21]7− units, etc., while no 1D B-O configuration is observed. It could be considered that the introduction of zinc cations has profitable impact on the prevention of polymerization of B-O
anionic structures. Notably, about 20 % of zincoborates with isolated B-O groups contain coplanar (or nearly coplanar) \([\text{BO}_3]^{3-}/[\text{B}_2\text{O}_6]^{2-}\) units, which paves a comprehensive road map for us to design new compounds with benign isolated B-O groups.

2.2. **Zincoborates Possessing Special Structural Features**

It is expected that the introduction of zinc cations into borates can enrich the structural diversity and be beneficial to obtain new zincoborates with special structural features. In this section, several compounds with distinctive crystal structure characteristics are given.

2.2.1. **Zincoborates with Benign KBe_2BO_3F_2 (KBBF)-Type Layered Structures**

The world-famous KBBF is the unique practical NLO crystal in the DUV region that can generate the 177.3 nm coherent laser by a direct SHG method using Q-switched neodymium (Nd):YAG (1064 nm) laser [87]. Structurally, the perfectly coplanar \([\text{BO}_3]^{3-}\) anionic groups in the \(2_{\infty}\)[Be_2BO_3F_2] layers of KBBF provide a relatively large SHG coefficient \((d_{11} = 0.47 \text{ pm/V})\) and a moderate birefringence \((\Delta n = 0.07 \text{ at 1064 nm})\), which endow KBBF with unprecedented performances [88,89]. The excellence for the KBBF family crystals used as the DUV NLO crystals inspirits researchers to explore beryllium-free borates with benign KBBF-type layered structures [90–93].

To inherit the favorable structural arrangement of KBBF, one effective molecular engineering design strategy is to substitute the \([\text{BeO}_3]^{3-}\) tetrahedra in \(2_{\infty}\)[Be_2BO_3F_2] layers of KBBF with \([\text{MO}_3]/[\text{MO}_3\text{F}]\) \((\text{M} = \text{Li}^+, \text{Zn}^{2+}, \text{Al}^{3+}, \text{and Ga}^{3+}, \text{etc.})\) tetrahedra to achieve structural modification [94–96]. Therein, most of \(\text{Zn}^2+\) and \(\text{Be}-\text{O/X\ polyhedra have similar coordination environment and approximate bond length, thus the substitution of } \text{Zn}^{2+} \text{ for } \text{Be}^{2+} \text{ has attracted the most attention and obtained a number of compounds possessing benign KBBF-type layered structures, for example, } \text{AZn}_2\text{BO}_3\text{X}_2 \text{ (A = Na, K, Rb, NH}_4; X = \text{Cl, Br}) series [58,59], CS}_3\text{Zn}_6\text{BO}_{21} [45,46], \text{BaLiZn}_3(\text{BO}_3)_3 [97,98], \text{CdZn}_2\text{KB}_2\text{O}_6\text{F} [99,100], \text{etc.}}

AZn_2BO_3X_2 \text{ (A = Na, K, Rb, NH}_4; X = \text{Cl, Br}) \text{ Series with } 2_{\infty}[\text{Zn}_2\text{BO}_3\text{X}_2] \text{ Layers}

AZn_2BO_3X_2 \text{ (A = Na, K, Rb, NH}_4; X = \text{Cl, Br}) \text{ series of compounds were reported by two independent groups of Chen and Ye in 2016 [58,59], which were developed as the production of the “transgenosis” process on KBBF structure, specifically, using } [\text{ZnO}_3\text{X}]^{3-} \text{ tetrahedra to substitute the } [\text{BeO}_3]^{3-} \text{ tetrahedra and yield the } 2_{\infty}[\text{Zn}_2\text{BO}_3\text{X}_2] \text{ layers similar to the } 2_{\infty}[\text{Be}_2\text{BO}_3\text{F}_2] \text{ layers in KBBF (Figure 2). AZn}_2\text{BO}_3\text{X}_2 \text{ (A = Na, K, Rb, NH}_4; X = \text{Cl, Br}) \text{ crystals all crystallize in R32 (No. 155) chiral space group and are isostructural to KBBF. In the } 2_{\infty}[\text{Zn}_2\text{BO}_3\text{X}_2] \text{ layers, the } [\text{ZnO}_3\text{X}]^{3-} \text{ tetrahedra induce } [\text{BO}_3]^{3-} \text{ groups to arrange into a nearly coplanar and aligned arrangement, which is beneficial to generate large SHG responses and birefringence, indicating that they are likely to inherit the optical advantages of KBBF.}

![Figure 2. Structural evolution from KBBF to AZn_2BO_3X_2. Reprinted with permission from Ref. [58]. Copyright (2016) American Chemical Society.](image-url)
Cs$_3$Zn$_6$B$_9$O$_{21}$ with 2$_\infty$[Zn$_2$BO$_3$O$_2$] Layers

On the basis of substituting Be$^{2+}$ with Zn$^{2+}$, Cs$_3$Zn$_6$B$_9$O$_{21}$ with 2$_\infty$[Zn$_2$BO$_3$O$_2$] layers was synthesized and reported by two independent groups as a new UV NLO material [45,46]. Cs$_3$Zn$_6$B$_9$O$_{21}$ crystallizes in the orthorhombic system of space group Cmca (No. 36). Within the targeted 2$_\infty$[Zn$_2$BO$_3$O$_2$] layers, the [BO$_3$]$_{3^-}$ triangles are in an approximately coplanar and aligned arrangement, which is arranged by the [ZnO$_4$]$_{6^-}$ tetrahedra (Figure 3b). The adjacent 2$_\infty$[Zn$_2$BO$_3$O$_2$] layers are bridged through [B$_2$O$_6$]$_{3^-}$ groups (Figure 3a), which would reinforce the interlayer bonding compared with the weak K$^+$-F$^-$ ionic bonds in KBBF. Verified by experiments, Cs$_3$Zn$_6$B$_9$O$_{21}$ maintains the optical properties of KBBF, and the crystals of Cs$_3$Zn$_6$B$_9$O$_{21}$ are of block shape without layering tendency.

![Figure 3. (a) The crystal structure of Cs$_3$Zn$_6$B$_9$O$_{21}$ viewed along the a-axis; (b) the 2$_\infty$[Zn$_2$BO$_3$O$_2$] layer composed of [ZnO$_4$]$_{6^-}$ tetrahedra and nearly coplanar [BO$_3$]$_{3^-}$ triangles. Adapted with permission from Ref. [45,46]. Copyright (2014) American Chemical Society.](image-url)

BaLiZn$_3$(BO$_3$)$_3$ with 2$_\infty$[LiZn$_3$(BO$_3$)$_3$] Layers and CdZn$_2$KB$_2$O$_6$F with 2$_\infty$[ZnBO$_3$] Layers

BaLiZn$_3$(BO$_3$)$_3$ [97,98] and CdZn$_2$KB$_2$O$_6$F [99,100] are the other two beryllium-free borates with KBBF-type structures. BaLiZn$_3$(BO$_3$)$_3$ features a special zigzag 2$_\infty$[LiZn$_3$(BO$_3$)$_3$] layer that is constructed by 1$_\infty$[LiZnO$_{11/3}$(BO$_2$)] chains and [BO$_3$]$_{3^-}$ units, which is evolved from 2$_\infty$[Be$_2$BO$_3$F$_2$] layer in KBBF (Figure 4). The adjacent 2$_\infty$[LiZn$_3$(BO$_3$)$_3$] layers are tightly stacked directly via Li/Zn-O bonds in the layers, which is different from most of the KBBF derivatives that connect the adjacent layers through cations or B-O groups between the layers. For instance, the adjacent layers in KBBF [12,13], Na$_2$CsBe$_4$B$_6$O$_{15}$ [101], β/γ-KBe$_2$B$_2$O$_7$ [102] and Cs$_2$Zn$_6$B$_9$O$_{21}$ [45,46], are connected by K-F bonds, [BO$_3$]$_{3^-}$ groups, 1$_\infty$[BO$_2$] chains and [B$_2$O$_6$]$_{3^-}$ groups, respectively. The strong Li/Zn-O covalent bonds in BaLiZn$_3$(BO$_3$)$_3$ can effectively reinforce the interlayer force and improve the layering tendency of KBBF-type structures.

CdZn$_2$KB$_2$O$_6$F crystallizes in the space group of $P\overline{3}1c$ (No. 163) [99,100]. In the structure, the [BO$_3$]$_{3^-}$ triangles and [ZnO$_3$]$_{3^-}$ pyramids (from the [ZnO$_3$F]$_{5^-}$ tetrahedra) share the vertex O atoms to form a 2$_\infty$[ZnBO$_3$] layer (Figure 5b), which is also similar to the 2$_\infty$[Be$_2$BO$_3$F$_2$] layer in KBBF. The 2$_\infty$[ZnBO$_3$] layers are connected by bridging F and Cd atoms alternately along the c-axis, and the K$^+$ cations are filled in the interlayer to balance charge (Figure 5a). In the 2$_\infty$[ZnBO$_3$] layers, the [BO$_3$]$_{3^-}$ triangles are also in a coplanar arrangement influenced by the [ZnO$_3$F]$_{5^-}$ tetrahedra (Figure 5b).
Since then, several new es-[BO₃] tetrahedra appear in corner-sharing (cs-) rather than edge-sharing (es-) or face-sharing [103–105]. In terms of Pauling’s 3rd and 4th rules and the orbital interpretation rules, the connection mode of es-polyhedra for high-valence and low coordinated small cations is scarcely seen except under extreme conditions such as high pressure (HP), for the reason that the repulsion interactions between the adjacent cations and anions may be increased when two anion-based polyhedra adopt edge-sharing connection mode [76,77]. Thus, the formation of es-[BO₄]⁵⁻ tetrahedra is extremely unfavored, and, the es-[BO₄]⁵⁻ units can only be observed in very few borates.

In 2002, borate with es-[BO₄]⁵⁻ tetrahedra, Dy₄B₆O₁₅ [106], was firstly synthesized under high pressure conditions (8 GPa, 1000 K) by Huppertz and van der Eltz, which indicates that the [BO₄]⁵⁻ tetrahedra can link together not only via common corners but also via common edges. Since then, several new es-[BO₄]⁵⁻ tetrahedra-containing borates have been synthesized under high pressure and high temperature conditions, for instance, REₓB₆O₁₅ (RE = Dy and Ho) [107], α-(RE)₂B₄O₉ (RE = Eu, Gd, Tb, Dy, Sm, Ho) [108,109], HP-AB₃O₉ (A = K, NH₄, Rb, Tl) [71–73] and HP-MB₂O₄ (M = Fe, Ni, Co) [110,111]. Recently, α-Ba₃[BO₄]O₁₇(OH)₂ with es-[BO₄]⁵⁻ tetrahedra was synthesized through hydrothermal reactions at 500 °C and 1000 bar [112]. Although the es-[BO₄]⁵⁻
tetrahedra appear in these compounds, the high pressure condition is indispensable prerequisite. Extraordinarily, two zincoborates, KZnB$_3$O$_6$ [69,70] and Ba$_4$Na$_2$Zn$_4$(B$_3$O$_6$)$_2$(B$_{12}$O$_{24}$)$_2$ [75], possessing es-[BO$_4$]$^{5-}$ configuration were obtained under ambient pressure in 2010 and 2013, respectively, demonstrating that high pressure is not essential for the formation of es-[BO$_4$]$^{5-}$ polyhedra. In addition, the synthesis of Li$_4$Na$_2$CsB$_7$O$_{14}$ and BaAlBO$_4$ with es-[BO$_4$]$^{5-}$ tetrahedra further enriches the es-[BO$_4$]$^{5-}$-containing borate system synthesized under atmospheric environment [113,114]. Very recently, β-CsB$_9$O$_{14}$, the first triple-layered borate with es-[BO$_4$]$^{5-}$ tetrahedra, was obtained under the vacuum sealed condition [115].

KZnB$_3$O$_6$

KZnB$_3$O$_6$ crystallizes in the space group of $\text{P}\bar{4}$ (No. 2) [69,70]. As shown in Figure 6, its structure contains a remarkable [B$_6$O$_{12}$]$^{6-}$ group consisting of two es-[BO$_4$]$^{5-}$ tetrahedra and four cs-[BO$_3$]$^{3-}$ triangles, the [B$_6$O$_{12}$]$^{6-}$ groups are further connected by distorted [ZnO$_4$]$^{6-}$ tetrahedra in edge-shared pairs to form a 3D framework, then the K$^+$ cations fills in the cavities to construct the whole structure.

![Figure 6](image-url)

Figure 6. (a) The crystal structure of KZnB$_3$O$_6$ viewed along the [01$\bar{1}$] direction; (b) Connection details of [B$_6$O$_{12}$]$^{6-}$ and [Zn$_2$O$_6$]$^{8-}$ blocks in the (1 1 1) plane; (c) The [B$_6$O$_{12}$]$^{6-}$ group. Adapted from Ref. [66,69], with permission of John Wiley and Sons.

KZnB$_3$O$_6$ was synthesized using a conventional solid-state reaction under ambient pressure. In detail, a single-phase white powder of KZnB$_3$O$_6$ was prepared by grinding a stoichiometric mixture of K$_2$CO$_3$, ZnO, and H$_3$BO$_3$, which was heated to 500 °C to decompose the salt and annealed at 750 °C for 24 h. Single crystals of KZnB$_3$O$_6$ were obtained by spontaneous nucleation by melting the obtained pure phase powder at 820 °C, then slowly cooling the melt to 600 °C at a rate of 1 °C h$^{-1}$. Although the synthesis condition of KZnB$_3$O$_6$ is different from that of previously reported HP borates, further examination of the edge-sharing geometry reveals that the B-O bond lengths and O-B-O angles in KZnB$_3$O$_6$ are consistent with those of HP borates. As a common feature, the O-B-O angles within the [B$_2$O$_2$] ring of es-[BO$_4$]$^{5-}$ are remarkably reduced and the B-O bonds within the ring are elongated due to the like-charges repulsion, which will push higher valence ions apart in the es-polyhedra to minimize the electrostatic potential.

Theoretical insight into the structural stability of KZnB$_3$O$_6$ was carried out by Yang and coworkers [116]. They investigated the molecular dynamics, lattice dynamics and electronic properties of es-KZnB$_3$O$_6$ and cs-KZnB$_3$O$_6$ (hypothetical one, constructed based on isostructural KCd$_3$O$_6$) via density functional theory. Molecular dynamics simulations show that, es-KZnB$_3$O$_6$ is stable from 100 to 1000 K while cs-KZnB$_3$O$_6$ deforms with bond stretching. Analysis of lattice dynamics shows that, a soft-mode reflecting the dynamic instability exists in the cs-KZnB$_3$O$_6$, which probably comes from an overlong Zn-O bond in the [ZnO$_4$]$^{8-}$ polyhedra. Electronic property calculation indicates that the longest B-O σ bonds connecting the es-[BO$_4$]$^{5-}$ polyhedra are stable enough to provide a solid framework for es-KZnB$_3$O$_6$. The stability of cs-KZnB$_3$O$_6$ is reduced by the overlong Zn-O bond that possesses the smallest covalent nature and the least orbital overlap among the bonds in a [ZnO$_3$]$^{8-}$ polyhedron, which further confirms the results that are obtained from lattice dynamics.
analysis. The results strongly support explanation of the structural stability origination of es-KZnB₃O₆, and provide a fundamental understanding on the origin of the unique es-[BO₄]⁻⁵⁻ connection mode.

Ba₄Na₂Zn₄(B₂O₆)₂(B₁₂O₄₁₂)

Ba₄Na₂Zn₄(B₂O₆)₂(B₁₂O₄₁₂) is the second reported borate possessing the special es-[BO₄]⁻⁵⁻ configuration obtained under ambient pressure [75]. Single crystals of Ba₄Na₂Zn₄(B₂O₆)₂(B₁₂O₄₁₂) were synthesized by high temperature solution method using Na₂CO₃, BaCO₃, ZnO, H₂BO₃, Na₂B₄O₇-10H₂O as raw materials (Na₂CO₃/BaCO₃/ZnO/H₂BO₃/Na₂B₄O₇ molar ratio = 1:4:6:18:2). The basic structural units in Ba₄Na₂Zn₄(B₂O₆)₂(B₁₂O₄₁₂) are the [ZnO₄]⁶⁺ tetrahedra, [B₂O₆]⁻³ and [B₁₂O₄₁₂]¹²⁻ groups. Therein, the [B₁₂O₄₁₂]¹²⁻ group is composed of [BO₄]⁻³ groups and [BO₄]⁻⁵⁻ tetrahedra via vertex- and edge-sharing. In detail, one [BO₄]⁻³ tetrahedron and two [BO₄]⁻³ triangles form a [B₃O₇]⁻⁵⁻ group via vertex-sharing, a [BO₄]⁻⁵⁻ tetrahedron of the [B₃O₇]⁻⁵⁻ group links to a [BO₄]⁻³ triangle of another [B₃O₇]⁻⁵⁻ group to form a [B₃O₁₃]⁻⁸⁻ group, then two inversion-center-related [B₆O₁₃]⁻⁸⁻ groups are further connected by es-[BO₄]⁻⁵⁻ tetrahedra to form a [B₁₂O₄₁₂]¹²⁻ group (Figure 7b). As shown in Figure 7a, the [B₁₂O₄₁₂]¹²⁻ groups are located between parallel [B₃O₆]⁻³ rings to form a sandwich structural block, which are bridged by [ZnO₄]⁶⁻ tetrahedra to generate a 2D infinite ²∞₂[Zn₄(B₂O₆)₂(B₁₂O₄₁₂)] layer. The intralayer open channels and interlayer void spaces are filled with Ba²⁺ and Na⁺ cations to balance charge and form a 3D framework.

Figure 7. (a) The crystal structure of Ba₄Na₂Zn₄(B₂O₆)₂(B₁₂O₄₁₂) viewed along the b-axis; (b) the [B₁₂O₄₁₂]¹²⁻ group containing es–[BO₄]⁻⁵⁻ tetrahedra. Adapted from Ref. [75]. Copyright (2013) with permission from Elsevier.

The structural features of es-[BO₄]⁻⁵⁻ tetrahedra in aforementioned anhydrous borates are highly consistent and the FBBs share common features. Taking the basic [B₂O₆]⁶⁻ unit as the prototype, all the available FBBs of these es-[BO₄]⁻⁵⁻ tetrahedra-containing borates can be evolved by replacing the four nodes with different types of B-O blocks (Figure 8). For the type A model, the replaced nodes are the same B-O blocks, such as the [B₂O₆]⁶⁻ FBB of HP-MB₂O₄, [B₆O₁₂]⁶⁻ FBB of KZnB₃O₆, [B₆O₁₃]¹⁸⁻ FBB of RE₄B₆O₁₅, and [B₂₀O₆₁₆]³²⁻ FBB of a-RE₂B₄O₉ series can be regarded as the derivatives obtained by replacing the nodes of basic [B₂O₆]⁶⁻ units with four identical [B₂O₆]⁶⁻, [BO₃]⁻³, [B₂O₇]⁻⁸⁻, and [B₄O₁₃]¹⁴⁻ units, respectively. While the replaced nodes for type B model are different, such as the corresponding replaced units are [BO₄]⁻³ for [B₄O₁₀]⁻⁸⁻ FBB of BaAlBO₆, [BO₃]⁻³ and [BO₄]⁻⁵⁻ for [B₃O₁₄]¹₀⁻ FBB of HP-AB₂O₅ (A = K, NH₄⁺, Rb, Tl), as well as [BO₃]⁻³ and [B₂O₁₁]⁷⁻ blocks for [B₁₄O₂₆]¹⁴⁻ FBB of Li₄Na₂CsB₇O₁₄.

The above findings prove that the borate structure is very flexible and confirm the feasibility of incorporating the es-[BO₄]⁻⁵⁻ configuration into traditional borate chemistry to enrich the borate structure.
2.2.3. Zincoborates with Two Kinds of Isolated Anion Groups

According to the Pauling’s fifth rule [76,77], the number of essentially different kinds of constituents in a crystal tends to be small, which means that the number of components of various types in a crystal tends to be small. For most borates, there is only one kind of isolated B-O group in the structure [117,118]. Although violating Pauling’s fifth rule, several zincoborates with two kinds of isolated B-O groups have been discovered, for instance, Cs₂Zn₆B₉O₂₁ ([BO₄]− + [B₉O₁₅]³⁻) [45,46], Ba₃Zn₆(B₂O₇)F and Ba₄Zn₂(B₂O₅)₂(B₂O₃)F₂ [78], etc., in which two kinds of isolated B-O groups are [BO₄]− triangle and another relatively low-polymerized polyborate anion. Specifically, there are few examples of two kinds of isolated polyborate (polymerization is no less than 2) anions coexisting in one zincoborate structure, such as, Ba₂KZn₅(B₂O₅)(B₂O₁₃) [79], Ba₄K₂Zn₃(B₂O₅)₃(B₂O₁₃) [80], Ba₄Na₂Zn₄(B₂O₅)₂(B₁₂O₂₄) [75], Bi₂ZnO(B₂O₅) ([B₂O₅]⁴⁻ + [B₂O₇]⁵⁻) [81–83], α/β-/γ-Pb₂Ba₄Zn₄B₁₄O₃₁ ([B₂O₅]⁴⁻ + [B₆O₁₃]⁵⁻) [84], etc. The uncommon coexistence of different B-O polyanions in these zincoborates further implies the prevention effect of strong-bonded zinc cations on the polymerization of B-O configuration.

3. Zincoborates with Excellent Properties

Based on the previous reports, it should be emphasized that Zn-O/F polyhedra, especially the [ZnO₄]⁶⁻ and [ZnO₅F]⁵⁻ tetrahedra, have impacts on both crystal structures and properties. In this section, a series of zincoborates with UV/DUV cutoff edges, second-order NLO properties and anomalous thermal expansion properties are briefly reviewed.

3.1. Zincoborates with Short Ultraviolet (UV) Cutoff Edges

With the rapid development of UV technology, NLO and birefringent materials with high transparency in the UV regions are generally required from both an academic and technological standpoint [119–121]. Since the d-d or f-f electronic transitions will have a negative influence on the large energy band gap, thus, in consideration of the absorption edge, it is a common strategy to introduce cations without d-d or f-f transitions (such as alkali and alkaline-earth metals) to blue shift the cutoff edge to the UV regions [122,123]. Besides, cations with fully occupied d or half-occupied f electronic shells, such as Zn^2+, Gd^3+, and Y^3+, can also be used in UV materials since their electronic shells can effectively inhibit unfavorable electronic transitions [124–127]. Insofar as we know, there are a number of zinc-containing borates reported in the UV/DUV regions. For instance, Ba₃(ZnB₅O₁₀)PO₄ (~180 nm) [60], Cs₂Zn₆B₉O₂₁ (~200 nm) [45,46], A[Zn₂BO₅X₂ (A = Na, K, Rb, NH₄; X = Cl, Br) series (~190-209nm) [58,59], K₂ZnSb₂B₁₅O₃₀ (~200 nm) [128], K₂ZnB₅O₁₀ (~190 nm) [129], Cs₁₂Zn₄(B₂O₅)₄ (below 185 nm) [130], etc. Hence, the Zn-containing borate system is also a candidate for exploring promising UV even DUV materials.
3.2. Zincoborates with Large Second-Order Non-Linear Optical (NLO) Response

The increasing need for high-power all-solid-state UV light sources promotes the development of NLO borate crystals, especially those with large second-order NLO responses and short UV-transmission cutoff edges [131,132]. After continuous efforts in the past few decades, a series of borate-based NLO materials were developed and have been widely used in many optoelectronic devices, such as KBBF [12,13], β-BBO [16], LBO [17], CsLiB2O10 (CLBO) [133,134], etc. Up to now, many NLO zincoborates with good performance in the UV/DUV regions have been discovered. In this section, we focus on recent studies of zincoborate crystals with good second-order NLO properties and the representative ones are included in Table 1.

Table 1. The representative non-linear optical (NLO) zincoborates.

Compounds	Space Group	Structural Features	Second Harmonic Generation (SHG) @ 1064nm	Absorption Edge	Refs.
Cs3Zn6B9O21	Cm21	2-[Zn2BO3O] layer	3.3 × KDP	~200 nm	[45]
KZn5BO3Cl2	R32	Isolated [BO3]2−	3.01 × KDP	~194 nm	[58]
RbZn5BO3Cl2	R32	Isolated [BO3]2−	2.85 × KDP	~198 nm	[58]
NH4Zn5BO3Cl2	R32	Isolated [BO3]2−	2.82 × KDP	~190 nm	[58]
KZn5BO3Br2	R32	Isolated [BO3]2−	2.68 × KDP	~209 nm	[58]
RbZn5BO3Br2	R32	Isolated [BO3]2−	2.53 × KDP	<214 nm	[58]
Ba3(Zn2BO3)2PO4	Pmnm21	4−[Zn2BO3]O layer	4 × KDP (@ 532nm)	~180 nm	[60]
Ba2Zn4(BO3)6	Pnma	Isolated [BO3]2−	2.6 × KDP	~223 nm	[62]
Ba2Zn3(BO3)2	R-32	2−[Zn2BO3]2− layer	1.5 × KDP	~230 nm	[64]
Ba2ZnOB2O6	Pbc2	Isolated [BO3]2− +	3−4 × KDP	~330 nm	[83]
α-Pb2Ba4Zn4B10O11	P1	Isolated [BO3]2− +	0.6 × KDP	<289 nm	[84]
β-Pb2Ba4Zn4B10O11	Cc	Isolated [BO3]2− +	1.1 × KDP	<304 nm	[84]
Cs12Zn4(BO3)2	I4	2−[Zn2BO3]2− layer	0.5 × KDP	<185 nm	[130]
Ba2ZnBO3F	I4	Isolated [BO3]2−	2.8 × KDP	~223 nm	[135]
β-Zn2BPO3	I4	/	1.8 × KDP	<250 nm	[136]
Mg2Na2ZnB2O10	/	/	2.78 × KDP	<210 nm	[137]

3.2.1. NLO Properties of Zincoborates Containing Alkali/Alkaline-Earth Metals

Cs3Zn6B9O21

Single crystals of Cs3Zn6B9O21 were grown by the high temperature solution method using Cs2O-B2O3-PbO (Cs2O2:ZnO:H3BO3:PbO = 1:1:5:1) or Cs2O-ZnF2-B2O3 (Cs2CO3:ZnO:ZnF2:H3BO3 = 1:5:1:2:8) as the flux system [45,46]. The absorption edge of Cs3Zn6B9O21 is below 200 nm in the UV region and its powder SHG efficiency is approximately 3.3 times that of KDP, which implies that Cs3Zn6B9O21 has potential application prospects as an UV NLO material. Remarkably, Cs3Zn6B9O21 has a small density of the [BO3]2− triangles but exhibits a large SHG response in the KBBF family. Based on the calculation of the dipole moments, the inversion symmetry lifting atomic distortions (Figure 9), electronic structure and atom-cutting analysis, the enhanced SHG response originates from the cooperative effect of coparallel [BO3]2− triangles and distorted [ZnO4]6− tetrahedra in the 2−[Zn2BO3O2] layers. In particular, the contribution of the [ZnO4]6− groups to the SHG effect is significantly larger than that from the aligned [BO3]2− groups, i.e., the [ZnO4]6− tetrahedra dominate the SHG enhancement, which distinguishes [ZnO4]6− tetrahedra as an UV-transparent NLO-active units. The results imply that facile synthesis of useful NLO crystals can be achieved by combining [ZnO4]6− tetrahedra and π-orbital systems in borates.
Figure 9. Atomic distortion patterns obtained from the symmetry-mode analysis: Oxygen atom displacements belonging to (a) the \([\text{ZnO}_3]^{6-}\) tetrahedra, (b) the \([\text{BO}_3]^{3-}\) network, and (c) the complete distortion projected along the \(a\)-axis. Reprinted (adapted) with permission from Ref. [45], Copyright (2014) American Chemical Society.

AZn\(_2\)BO\(_3\)X\(_2\) (\(A = \text{Na}, \text{K}, \text{Rb}, \text{NH}_4; X = \text{Cl}, \text{Br}\)) Series

Crystals of KZn\(_2\)BO\(_3\)Cl\(_2\), RbZn\(_2\)BO\(_3\)Cl\(_2\), KZn\(_2\)BO\(_3\)Br\(_2\), and RbZn\(_2\)BO\(_3\)Br\(_2\) can be obtained by high temperature solution method as well as solvothermal techniques, while crystals of NH\(_4\)Zn\(_2\)BO\(_3\)Cl\(_2\) were grown only by solvothermal techniques due to the decomposition of ammonium compounds at high temperature. The series of borates are isostructural with KBBF and preserve the NLO-favorable structural features [58,59]. Remarkably, this series of materials exhibits strong SHG responses of approximately more than 2 times that of benchmark KBBF, and the compounds are phase-matchable in the visible and UV regions and possess UV-transmission cutoff edges (~200 nm), indicating that this series of crystals may have potential application in the short-wave NLO field. Theoretical calculations reveal that the SHG enhancement mainly originates from the distorted \([\text{ZnO}_3X]^{5-}\) tetrahedra. The cooperative effect of \([\text{ZnO}_3X]^{5-}\) tetrahedra and the coparallel \([\text{BO}_3]^{3-}\) triangles results in the large SHG responses. In particular, it is the first case where \([\text{ZnO}_3X]^{5-}\) groups can be used as the NLO-active structural units in NLO materials.

BaZnBO\(_3\)F

Initially, structure of BaZnBO\(_3\)F was determined by powder X-ray diffraction data in 2010. Single crystal growing trials of BaZnBO\(_3\)F with different fluxes have not been successful until 2016 [61,135]. In the structure of BaZnBO\(_3\)F, the \([\text{ZnO}_3\text{F}_2]^{6-}\) bipyramid shares its three equatorial oxygen atoms with three \([\text{BO}_3]^{3-}\) groups to form a flat \(2_{\infty}\)\([\text{ZnBO}_3\text{F}]\) layer, and the adjacent layers are further linked via the apical F atoms of \([\text{ZnO}_3\text{F}_2]^{6-}\) bipyramids to form a 3D framework (Figure 10). Within a single \(2_{\infty}\)\([\text{ZnBO}_3\text{F}]\) layer, the \([\text{ZnO}_3\text{F}_2]^{6-}\) bipyramid facilitates its three neighboring \([\text{BO}_3]^{3-}\) units to arrange into a perfect coplanar alignment in the plane through three basal or equatorial bonds of \([\text{ZnO}_3\text{F}_2]^{6-}\) bipyramid. Meanwhile, among different layers, the \([\text{BO}_3]^{3-}\) units are also governed by the \([\text{BaO}_6\text{F}_3]^{13-}\) polyhedra and arranged parallel to each other in neighboring layers. The perfectly coplanar manner of the \([\text{BO}_3]^{3-}\) groups produces a cooperative effect and gives maximum contribution to the NLO response. As a result, a large NLO effective coefficient, \(2.8 \times d_{\text{eff}}\) (KDP), is observed.
LO crystals can be achieved by combining [ZnO$_2$] and [ZnO$_3$F]$_2$ polyhedra, while quality sizable single crystal by the top-seeded growth method [83]. The structure of Bi$_3$F$_2$ was grown only by solvothermal techniques [62]. The structure is constructed with three [BO$_3$]$_6$ tetrahedra and π-interactions [138,139], show that the theoretically calculated SHG response coming from the [BO$_3$]$_6$- and [ZnO$_3$]$_6$- NLO active groups. Calculation results, based on the anion group theory [138,139], show that the theoretically calculated SHG response coming from the [BO$_3$]$_6$- groups (d_{111} and d_{122} coefficients with values of +0.403 and −0.42 pm/V, respectively) is far smaller than the total SHG response, which implies that the [ZnO$_3$]$_6$- groups contribute a lot to the large SHG response, and further confirms the function of the [ZnO$_3$]$_6$- groups as NLO active groups.

A new NLO crystal Ba$_5$Zn$_4$(BO$_3$)$_6$ was obtained by substituting the Be atom with the Zn atom, single crystals of which were obtained from a high-temperature solution with BaCO$_3$, ZnO, H$_3$BO$_3$, and NaF in a molar ratio of 2:2:4:1 [62]. The structure is constructed with 2_∞[Zn$_4$(BO$_3$)$_4$O$_6$]$_x$ layers bridged by planar [BO$_3$]$_6$- groups (Figure 11), and the distance between adjacent 2_∞[Zn$_4$(BO$_3$)$_4$O$_6$]$_x$ layers in Ba$_5$Zn$_4$(BO$_3$)$_6$ is much shorter than that of KBBF, thus, Ba$_5$Zn$_4$(BO$_3$)$_6$ may show a better growth habit. Also, Ba$_5$Zn$_4$(BO$_3$)$_6$ features a relatively large SHG response of about 2.6 times that of KDP, owing to the incorporation of [BO$_3$]$_6$- and [ZnO$_3$]$_6$- NLO active groups. Calculation results, based on the anion group theory [138,139], show that the theoretically calculated SHG response coming from the [BO$_3$]$_6$- groups (d_{111} and d_{122} coefficients with values of +0.403 and −0.42 pm/V, respectively) is far smaller than the total SHG response, which implies that the [ZnO$_3$]$_6$- groups contribute a lot to the large SHG response, and further confirms the function of the [ZnO$_3$]$_6$- groups as NLO active groups.

![Figure 10](image1.png)

Figure 10. (a) Crystal structure of BaZnBO$_3$F viewed along the b-axis; (b) Flat 2_∞[ZnBO$_3$]$_x$ layer; (c) [BaO$_6$F$_2$]$_x$-δ polyhedron connects to six [BO$_3$]$_6$- groups; (d) [ZnO$_3$F$_2$]$_x$ trigonal bipyramid connects to three [BO$_3$]$_6$- groups. Adapted from Ref. [29], Copyright (2018) with permission from Elsevier.

![Figure 11](image2.png)

Figure 11. (a) The crystal structure of Ba$_5$Zn$_4$(BO$_3$)$_6$; (b) Basic building blocks in Ba$_5$Zn$_4$(BO$_3$)$_6$. Reprinted with permission from Ref. [62], Copyright (2017) American Chemical Society.

3.2.2. Other Zinc-Containing Compounds with NLO Properties

Bi$_2$ZnOB$_2$O$_6$

Bi$_2$ZnOB$_2$O$_6$ was first reported by J. Barbier et al. in 2005 and its structure was determined by powder X-ray diffraction and refined by the Rietveld method using powder neutron diffraction data [81]. Two years later, the crystal of Bi$_2$ZnOB$_2$O$_6$ with a size of 0.4 × 0.4 × 0.5 mm3 was prepared by the conventional solid-state reaction method [82]. Until 2009, Pan group firstly obtained the high quality sizable single crystal by the top-seeded growth method [83]. The structure of Bi$_2$ZnOB$_2$O$_6$ consists of 2_∞[ZnB$_2$O$_7$] layers alternating with six-coordinated Bi$^{3+}$ cations (Figure 12) [140]. In the 2_∞[ZnB$_2$O$_7$] layer, [Bi$_2$O$_5$]$_{4^{-}}$ and [Bi$_2$O$_5$]$_{8^{-}}$ units are bridged by [ZnO$_3$]$_{6^{-}}$ tetrahedra via sharing oxygen atoms. It is a positive biaxial optical crystal with large birefringence (0.1066-0.0794) and has a large...
SHG effect of about 3–4 times that of KDP. These advantages make Bi$_2$ZnOB$_2$O$_6$ a promising candidate for NLO materials and attractive for continued research.

![Crystal structure of Bi$_2$ZnOB$_2$O$_6$](image)

Figure 12. The crystal structure of Bi$_2$ZnOB$_2$O$_6$ viewed along b-axis. Reprinted with permission from Ref. [140]. Copyright (2009) American Chemical Society.

Ba$_3$(ZnB$_5$O$_{10}$)PO$_4$

Ba$_3$(ZnB$_5$O$_{10}$)PO$_4$ was successfully synthesized as the first DUV NLO zincoborate-phosphate crystal by combining [ZnO$_4$]$^{6-}$ tetrahedra, [PO$_4$]$^{3-}$ tetrahedra, and B-O groups into one compound [60]. In the crystal structure, the basic building unit [ZnB$_5$O$_{10}$]$^{3-}$ is composed of three [BO$_3$]$^{3-}$ triangles, two [BO$_4$]$^{5-}$ tetrahedra, and one [ZnO$_4$]$^{6-}$ tetrahedron via sharing the corner oxygen atoms (Figure 13a). The adjacent [ZnB$_5$O$_{10}$]$^{3-}$ building units are further interconnected through corners to create a 3_∞[ZnB$_5$O$_{10}$] framework (Figure 13b). The Ba atoms and the [PO$_4$]$^{3-}$ tetrahedra are embedded in the voids of the 3_∞[ZnB$_5$O$_{10}$] framework (Figure 13c). Ba$_3$(ZnB$_5$O$_{10}$)PO$_4$ exhibits a DUV absorption edge of 180 nm, large SHG responses of approximately 4 × KDP at 1064 nm, and is type-I phase-matchable. All these results indicate that Ba$_3$(ZnB$_5$O$_{10}$)PO$_4$ is a promising NLO material. Based on the calculation results, the rotation of the B-O groups is pivotal for enabling the SHG. In particular, the valence band maximum consists of Zn 3d states of O 2p states derived from the [ZnO$_4$]$^{6-}$ tetrahedra, which along with the [BO$_3$]$^{3-}$ triangles make the most important contributions to the NLO response.

![Crystal structure of Ba$_3$(ZnB$_5$O$_{10}$)PO$_4$.](image)

Figure 13. The crystal structure of Ba$_3$(ZnB$_5$O$_{10}$)PO$_4$. (a) The [ZnB$_5$O$_{10}$]$^{3-}$ units consist of [BO$_3$]$^{3-}$, [BO$_4$]$^{5-}$, and [ZnO$_4$]$^{6-}$ polyhedra; (b) The 3_∞[ZnB$_5$O$_{10}$] network within which the (c) [PO$_4$]$^{3-}$ anions and Ba$^{2+}$ cations occupy the channels. Reprinted from Ref. [60], with permission of John Wiley and Sons.
3.3. Zincoborates with Anomalous Thermal Expansion Properties

Most of the materials exhibit positive thermal expansion, i.e., expanding on heating and contracting on cooling in three dimensions. Interestingly, an increasing quantity of materials with anomalous thermal expansion properties, such as negative thermal expansion (NTE) (materials contract along some specific directions when heated) and zero thermal expansion (ZTE) (materials can retain a constant size in a specified temperature range), have attracted a great deal of attention in laboratories and industries [141,142].

As abundant inorganic compounds resources, borates not only have promising applications as optical materials, but also are recognized with unusual thermal expansion behavior [143,144]. The bond lengths and angles of \([\text{BO}_3]^{3-}\) triangles or \([\text{BO}_4]^{5-}\) tetrahedra in a borate structure remain almost constant as the ambient temperature varies. When these rigid B-O groups further construct 0D clusters, 1D chains, 2D layers, or 3D frameworks, the rotation between the rigid B-O groups combined with expansion and/or tilting of other polyhedra in borate structures will control the thermal expansion property and may result in the anomalous thermal expansion. In recent years, many borate crystals have been reported to exhibit abnormal thermal expansion behaviors. For instance, the 1D NTE behavior has been detected in LiB\(_3\)O\(_5\) [145] and BiB\(_3\)O\(_6\) [146], the area NTE behaviors were discovered in LiBeBO\(_3\) [147] and KZnB\(_3\)O\(_6\) [65,66], and the isotropic area NTE effect were found in KBBF [148]. Most interestingly, the 3D ZTE effect was discovered in Zn\(_4\)B\(_6\)O\(_{13}\) [67,68], which possess the intrinsic isotropic near-ZTE behavior as the first case. The discoveries of presented zincoborates add important members to the family of materials with anomalous thermal expansion properties.

3.3.1. Near-Zero Thermal Expansion Properties in Zn\(_4\)B\(_6\)O\(_{13}\)

Zn\(_4\)B\(_6\)O\(_{13}\) crystallizes in the cubic space group of \(I\bar{4}3m\) (No. 217) and possesses a very rare sodalite cage structure [67,68]. As shown in Figure 14, each \([\text{B}_2\text{O}_4]^{24-}\) sodalite cage is constructed by 24 \([\text{BO}_4]^{5-}\) tetrahedra via sharing the corner oxygen atoms (O2 atoms). In detail, the \([\text{BO}_4]^{5-}\) tetrahedra are interconnected to form the quadrangles and hexagons with four and six \([\text{BO}_4]^{5-}\) units, respectively. Further, every six B4 quadrangles and eight B6 hexagons are combined to construct the closed \([\text{B}_2\text{O}_4]^{24-}\) sodalite cage. The \([\text{Zn}_4\text{O}_{13}]^{18-}\) cluster, locked in the \([\text{B}_2\text{O}_4]^{24-}\) sodalite cage, is composed of four \([\text{ZnO}_4]^{6-}\) tetrahedra via sharing the vertex O1 atom located at the center of cage. The inside \([\text{Zn}_4\text{O}_{13}]^{18-}\) cluster can effectively reinforce the \([\text{B}_2\text{O}_4]^{24-}\) cage through the relatively strong Zn-O2 covalent bonds, which could decrease the thermal expansion.

![Figure 14](image-url) The crystal structure of Zn\(_4\)B\(_6\)O\(_{13}\). The neighboring boron atoms are connected by thick black lines to explicitly display the sodalite cages. Reprinted from Ref. [67], with permission of John Wiley and Sons.
The thermal expansion behavior of Zn$_4$B$_6$O$_{13}$ between 13 and to 270 K was investigated by the variable-temperature X-ray diffraction (XRD) and variation of refined cell parameters (refined by the Rietveld method). As results, in the measured temperature range, no new peaks appear in all the XRD patterns, which indicates that the structure of Zn$_4$B$_6$O$_{13}$ is kept in the cubic $I\overline{4}3m$ space group, and the thermal expansion is completely 3D isotropic. The cell parameter of Zn$_4$B$_6$O$_{13}$ increases by just 0.03%, this thermal-expansion behavior is very low and consistent with the observation of positions of the XRD peaks, as shown in the insert in Figure 15, the (004) peaks remain nearly constant in the varying temperature environment. Further, the fitted average thermal expansion coefficient (by PASCal software) in the whole temperature range is 1.00(14)/MK. Particularly, from 13 to 110 K, the thermal expansion coefficient in Zn$_4$B$_6$O$_{13}$ is even much smaller (0.28(06)/MK), which can be accurately cataloged to ZTE.

![Figure 15. Variation of the refined cell parameters of Zn$_4$B$_6$O$_{13}$ with respect to temperature. Reprinted from Ref. [67], with permission of John Wiley and Sons.](image)

First principles calculations were carried out for further investigation and demonstrate that the intrinsic isotropic near-ZTE behavior of Zn$_4$B$_6$O$_{13}$ mainly originates from the invariability of the solid $[\text{B}_2\text{O}_5]^{2-}$ cage fixed by the $[\text{ZnO}_3]^{18-}$ clusters, affirming the important impact of the relatively strong Zn-O bonds. The discovery of Zn$_4$B$_6$O$_{13}$ with intrinsic isotropic near-ZTE behavior not only gains an important member to the family of ZTE materials, but also revives the studies on new functionalities in borates, which may eventually lead to the discovery of more exciting and exotic emerging physicochemical properties in borates.

3.3.2. Unidirectional Thermal Expansion in KZnB$_3$O$_6$

As described before, KZnB$_3$O$_6$ is the first borate that contains the es-[BO$_4$]$^{3-}$ tetrahedra under ambient pressure [69,70]. Lou et al. investigated the thermal expansions of KZnB$_3$O$_6$ from room temperature to 1013 K (Figure 16a) [65,66]. Interestingly, KZnB$_3$O$_6$ shows an unusual unidirectional thermal expansion along the approximate [302] direction, i.e., the X$_3$ axis direction, over the entire measured temperature (from 298 K to 1013 K). The expansions along other directions on the plane perpendicular to [302] are negligibly small, i.e., the area shows zero expansion (Figure 16b). Further investigations reveal that the abnormal thermal behavior originates from the cooperative hinge rotations of $[\text{B}_8\text{O}_{12}]^{8-}$ (contain es-[BO$_4$]$^{3-}$ tetrahedra) and $[\text{Zn}_2\text{O}_6]^{8-}$ rigid groups, which are probably driven by asymmetrical elongations of K-O bonds and only leads to a quasi-unidirectional expansion upon heating. These findings will help us better understand the relationship between structure and property and might broaden the applications of borates.
4. Single Crystal Growth of Zincoborates

High-quality and sizable single crystals are essential to measure fundamental properties and to accurately evaluate practical applications. Although a great deal of effort has been put into the exploration of growing sizable single crystals with high optical quality, it is still a great challenge to obtain the large-scale crystals for practical devices [149–151]. As for the zinc-containing system, the growth of large crystal seems more difficult since compounds containing zinc element usually have a high melting point (ZnO, 1975 °C at 5.2 MPa). Usually, the effective fluxes, such as PbO, PbF₂, H₃BO₃, etc., are introduced to decrease the melting point and the viscosity during the growth of single crystals. Fortunately, some of them melt congruently and sizable crystals have been grown from a stoichiometric melt by the top-seeded solution growth (TSSG) and Czochralski method.

4.1. Bi₂ZnOB₂O₆

In 2009, Li et al. successfully grew the single crystal of Bi₂ZnOB₂O₆ with high quality and dimensions of 18 mm × 13 mm × 6 mm through the TSSG method (Figure 17a) [83]. The low melt point (no more than 700 °C), non-viscous properties, and the congruent melting performance make Bi₂ZnOB₂O₆ capable to grow sizable single crystals. Followed by these, a sizable single crystal with sizes up to Φ 30 mm × 55 mm has been obtained along the c-axis direction using the Czochralski method (Figure 17b) [152]. The NLO coefficients have been determined through the Maker fringes method at 1064 nm [140]. Results show that the coefficients of Bi₂ZnOB₂O₆ relative to d₃₆ for KDP are $d_{31} = (2.34 \pm 0.05) \; d_{36}$ (KDP), $d_{32} = (7.90 \pm 0.16) \; d_{36}$ (KDP) and $d_{33} = (2.60 \pm 0.06) \; d_{36}$ (KDP). The large NLO coefficients and the easy crystal growth behavior suggest that Bi₂ZnOB₂O₆ is a promising candidate for NLO materials.
4.2. Ba₃(ZnB₅O₁₀)PO₄

Ba₃(ZnB₅O₁₀)PO₄ melts congruently, but its relatively high viscosity and melting temperature are unfavorable to obtain high-quality crystals from a stoichiometric melt. Therefore, large single crystals of Ba₃(ZnB₅O₁₀)PO₄ were grown through a TSSG method by using the ZnO-B₂O₃ self-flux system (Figure 18) [153]. The seed orientations have a great impact on the growth rate, morphology, and quality of the crystals. With the [010]- and [101]-oriented seed, Ba₃(ZnB₅O₁₀)PO₄ crystals with size dimensions of 35 mm × 20 mm × 5 mm and 34 mm × 15 mm × 8 mm were obtained, respectively, both of which have high optical quality. Compared with the crystal grown with the [010]-oriented seed, the crystal grown with the [101]-oriented seed has a thicker dimension and exhibits a more regular shape (Figure 18a). Refractive index measurements show that Ba₃(ZnB₅O₁₀)PO₄ is a negative biaxial crystal with birefringence ranging from 0.0418 to 0.0306 in a wavelength range of 253.6–2325.4 nm. Based on the measured refractive index and fitted Sellmeier equations, the calculated phase match (PM) regions for SHG based on the fundamental light are 730–3386 nm for type I SHG PM (Figure 18b). The measurement results indicate that Ba₃(ZnB₅O₁₀)PO₄ crystal is a promising NLO material in the UV region.

4.3. β-Zn₃BPO₇

In 1982, Liebertz and Stahr reported the existence of Zn₃BPO₇ that occur in two phases with a phase transition at 602 °C [154]. β-Zn₃BPO₇ (high-temperature phase) has been characterized as a NLO crystal owning to its significant properties. However, the growth of large crystals of β-Zn₃BPO₇ is difficult since the crystal will transfer from β- to α-phase. Unremitting efforts have been made to obtain sizable and high-quality β-Zn₃BPO₇ crystals. Consequently, the phase transition of β-Zn₃BPO₇ to α-Zn₃BPO₇ is effectively suppressed through adopting appropriate heat treatment. In 2000 to 2002 [136,155,156], the transparent and crack free single crystals of β-Zn₃BPO₇ with size dimensions

Figure 17. (a) Photograph of Bi₂ZnOB₂O₆ crystal grown by the top-seeded solution growth (TSSG) method and (b) Czochralski method, respectively. Reprinted with permission from Ref. [83,152], Copyright (2009) American Chemical Society, Copyright (2010) Elsevier, respectively.

Figure 18. (a) The as-grown Ba₃(ZnB₅O₁₀)PO₄ crystal with [101]-oriented seed; (b) Phase-matching calculation for Ba₃(ZnB₅O₁₀)PO₄ crystal: PM angle curves for type-I (black) and type-II (red) SHG as a function of the fundamental wavelength. Reprinted (adapted) with permission from Ref. [153], Copyright (2016) American Chemical Society.
of 35 mm × 20 mm × 10 mm and 43 mm × 43 mm × 12 mm (Figure 19a) were grown by Wu and Wang et al. using the Czochralski and TSSG methods, respectively.

![Figure 19](image1.png)

Figure 19. (a) Bottom of the as-grown β-Zn$_3$BPO$_7$ crystal with size up to 43 mm × 43 mm × 12 mm; (b) transmittance spectrum of β-Zn$_3$BPO$_7$. Reprinted with permission from Ref. [136], Copyright (2002) American Chemical Society.

The linear and non-linear optical properties are investigated. Results show that β-Zn$_3$BPO$_7$ has a UV absorption edge at about 250 nm (Figure 19b) and the none-zero NLO coefficient d_{11} measured by the Maker fringes method is 0.69 pm/V (1.8 times as large as that of d_{36} (KDP)). The Sellmeier equations suggest that the shortest SHG wavelengths for the crystal are 399 and 605 nm for types I and II, respectively. The easy growth habit and good NLO properties make β-Zn$_3$BPO$_7$ attractive for continued research as NLO materials.

4.4. Zn$_4$B$_6$O$_{13}$

The large-sized Zn$_4$B$_6$O$_{13}$ single crystal with dimensions of about 40 mm × 40 mm × 18 mm and exhibiting good optical quality was grown using the conventional TSSG method (Figure 20) [67]. Optical transmittance measurements show that Zn$_4$B$_6$O$_{13}$ possesses a wide transmission range covering a wide spectral region from the UV to the near-infrared (wavelength from 217 to 3100 nm). The UV cutoff edge of Zn$_4$B$_6$O$_{13}$ is the shortest among the ZTE crystals, implying the potential applications of Zn$_4$B$_6$O$_{13}$ in ultra precise optical instruments. Notably, the short UV cutoff edge of Zn$_4$B$_6$O$_{13}$ also stems from the relatively strong Zn-O bond based on the analysis of the ab initio partial density of states. Moreover, Zn$_4$B$_6$O$_{13}$ exhibits high thermal stability, thermal conductivity and high mechanical hardness, which are also important for practical applications. Combined with the intrinsic isotropic near-ZTE behavior, the environmentally friendly feature and easy growth habit facilitate the practical applications of Zn$_4$B$_6$O$_{13}$.

![Figure 20](image2.png)

Figure 20. (a) The as-grown Zn$_4$B$_6$O$_{13}$ single crystal with a dimension of 40 mm × 40 mm × 18 mm; (b) Fabricated single crystal with a dimension of 20 mm × 20 mm × 10mm. Reprinted from Ref. [67], with permission of John Wiley and Sons.
4.5. BaZnBO$_3$F

BaZnBO$_3$F exhibits typical layer habit due to structural characteristics, which is familiar with the KBBF family crystals. Crystal of BaZnBO$_3$F with the dimensions of about 20 mm \times 20 mm \times 0.5 mm has been grown by high temperature solution method from BaF$_2$-NaF flux (Figure 21) [135]. The perfect coplanar and alignment [BO$_3$]$^{3-}$ groups in the structure result in an observed large effective NLO coefficient (2.8 \times d_{eff} KDP). BaZnBO$_3$F crystal possesses chemical stability and high transmittance in the range of 300–3000 nm wavelength with the UV cut-off edge of 223 nm. In the consideration of its superior optical properties in the visible to UV range, larger-size crystals should be developed for practical applications by exploiting several methods or flux to overcome the strong anisotropic growth habit.

![Figure 21](image)

Figure 21. (a) The as-grown BaZnBO$_3$F crystal; (b) Interference pattern of BaZnBO$_3$F along the c-axis. Reprinted from Ref. [135], Copyright (2016) with permission from Elsevier.

5. Conclusions

In this review, we have examined the recent development of zincoborates, focusing on the crystal structure chemistry as well as their physicochemical properties. The introduction of the strong-bonded zinc cations into borates effectively enriches the structural diversity of borates and further results in extensive applications. Several examples were given. (1) A series of zincoborates display unique structural features in crystal chemistry of borates, for example, KZnB$_3$O$_6$ and Ba$_4$Na$_2$Zn$_4$(B$_3$O$_9$)$_2$(B$_4$O$_{24}$) with novel es-[BO$_4$]$^{5-}$ tetrahedra; Ba$_4$K$_2$Zn$_9$(B$_3$O$_9$)$_3$(B$_9$O$_{19}$), Ba$_2$KZn$_5$(B$_3$O$_9$)(O(B$_3$O$_{12}$)) with two kinds of isolated polyborate anionic groups coexisting in one borate structure; AZn$_2$BO$_3$N$_2$ (A = Na, K, Rb, NH$_4$; X = Cl, Br) series, Cs$_3$Zn$_6$B$_9$O$_{21}$, BaLiZn$_3$(BO$_3$)$_3$ with benign KBBF-type layered structures, etc. (2) Numerous zincoborates with brilliant physicochemical performance have emerged. For instance, Cs$_5$Zn$_6$B$_9$O$_{21}$, BaZnBO$_3$F, Bi$_2$ZnOB$_2$O$_6$, Ba$_5$Zn$_4$(BO$_3$)$_6$, Ba$_3$(ZnB$_3$O$_{10}$)PO$_4$, etc. have been suggested to be suitable for UV NLO applications; Zn$_4$B$_6$O$_{13}$ and KZnB$_3$O$_6$ with anomalouse thermal expansion properties have inspired the discovery of different applications for borates.

Based on the aforementioned findings, the regulation effect of introducing Zn-O/F polyhedra into borates can be emphasized. Firstly, the introduction of Zn-O/F polyhedra can effectively inhibit the polymerization of B-O anionic structures, which is beneficial to obtain isolated B-O groups. In particular, it is propitious to obtain good NLO or birefringent properties when the isolated B-O groups are induced by Zn-O/F polyhedra and exhibit a coplanar arrangement. The terminal oxygen atoms of the B-O groups are linked with zinc atoms, eliminating the dangling bonds of the B-O groups, which would further widen the transparence in the UV region. Moreover, the distorted [ZnO$_4$]$^{5-}$ and [ZnO$_2$F]$^{3-}$ tetrahedra are NLO-active structural units, which should provide an enhanced contribution to the SHG response, indicating that the zinc-containing borate system is optimal for exploring new NLO materials. However, it is not yet clearly understood which factors determine the special effect of Zn-O/F polyhedra in zincoborates. The intrinsic mechanism understanding of the special contribution of the covalent zinc cations on structural and functional regulation should be theoretically elucidated and
exploited in the future, which will present an useful guide for the exploration of undiscovered NLO crystals in zincoborate system that can be practically applied for UV/DUV NLO materials. In addition, although several zincoborates have been grown with sizable single crystals, there are still great hurdles to develop new zincoborates with excellent properties that are feasible for growing large single crystals. Looking into the future, continuous exploration and considerable effort should be made in growing large-size single crystals for more detailed physical measurements and practical applications.

Author Contributions: Every author contributed to this overview.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos. 21501194, 51872323, 91622107) and NSF-DMR–Solid State and Materials Chemistry (Grant No. 1904701).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, C.T.; Liu, G.Z. Recent advances in nonlinear optical and electro-optical materials. *Annu. Rev. Mater. Sci.* 1986, 16, 203–243. [CrossRef]
2. Chen, C.T.; Ye, N.; Lin, J.; Jiang, Y.; Zeng, W.R.; Wu, B.C. Computer-assisted search for nonlinear optical crystals. *Adv. Mater.* 1999, 11, 1071–1078. [CrossRef]
3. Becker, P. Borate materials in nonlinear optics. *Adv. Mater.* 1998, 10, 979–992. [CrossRef]
4. Halasyamani, P.S.; Poeppelmeier, K.R. Noncentrosymmetric oxides. *Chem. Mater.* 1998, 10, 2753–2769. [CrossRef]
5. Halasyamani, P.S.; Rondinelli, J.M. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals. *Nat. Commun.* 2018, 9, 2972. [CrossRef] [PubMed]
6. Ok, K.M.; Chi, E.O.; Halasyamani, P.S. Bulk characterization methods for non-centrosymmetric materials: Second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. *Chem. Soc. Rev.* 2006, 35, 710–717. [CrossRef] [PubMed]
7. Tran, T.T.; Yu, H.W.; Rondinelli, J.M.; Poeppelmeier, K.R.; Halasyamani, P.S. Deep ultraviolet nonlinear optical materials. *Chem. Mater.* 2016, 28, 5238–5258. [CrossRef]
8. Huang, C.; Zhang, J.H.; Hu, C.L.; Xu, X.; Kong, F.; Mao, J.G. KSB2O6 and BaSb2B4O12: Novel boroantimonates with 3D anionic architectures composed of 1D chains of SbO6 octahedra and B2O5 groups. *Inorg. Chem.* 2014, 53, 3847–3853. [CrossRef]
9. Yan, D.; Hu, C.L.; Mao, J.G. A2Sb2B6O16 (A = Na, K, Rb) and β-RbSb2O6: Two types of alkali boroantimonates with 3D anionic architectures composed of SbO6 octahedra and borate groups. *CrystEngComm* 2016, 18, 1655–1664. [CrossRef]
10. Zhang, M.; An, D.H.; Hu, C.; Chen, X.L.; Yang, Z.H.; Pan, S.L. Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene. *J. Am. Chem. Soc.* 2019, 141, 3238–3241. [CrossRef] [PubMed]
11. Mutailipu, M.; Zhang, M.; Yang, Z.H.; Pan, S.L. Targeting the next generation of deep-ultraviolet nonlinear optical materials: Expanding from borates to borate fluorides to fluorooxoborates. *Acc. Chem. Res.* 2019, 52, 791–801. [CrossRef] [PubMed]
12. Mei, L.F.; Wang, Y.B.; Chen, C.T.; Wu, B.C. Nonlinear optical materials based on MBe2BO3F2 (M = Na, K). *J. Appl. Phys.* 1993, 74, 7014–7015. [CrossRef]
13. Mei, L.; Huang, X.; Wang, Y.; Wu, Q.; Wu, B.; Chen, C. Crystal structure of KBe2BO3F2. *Z. Kristallogr.* 1995, 210, 93–95. [CrossRef]
14. Chen, C.T.; Wang, Y.B.; Wu, B.C.; Wu, K.C.; Zeng, W.L.; Yu, L.H. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. *Nature* 1995, 373, 322–324. [CrossRef]
15. Chen, C.T.; Wang, Y.B.; Xia, Y.N.; Wu, B.C.; Tang, D.Y.; Wu, K.C.; Zeng, W.R.; Yu, L.H.; Mei, L.F. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach. *J. Appl. Phys.* 1995, 77, 2268–2272. [CrossRef]
16. Chen, C.T.; Wu, B.C.; Jiang, A.D.; You, G.M. A new-type ultraviolet SHG crystal-β-BaB2O4. *Sci. Sin. B* 1985, 28, 235–243.
17. Chen, C.T.; Wu, Y.C.; Jiang, A.D.; Wu, B.C.; You, G.M.; Li, R.K.; Lin, S.J. New nonlinear-optical crystal: LiB$_2$O$_3$. J. Opt. Soc. Am. B 1989, 6, 616–621. [CrossRef]

18. Wu, H.Q.; Ju, P.; He, H.; Yang, B.F.; Yang, G.Y. Three new mixed-alkali- and alkaline-earth-metal borates: From 1D chain to 2D layer to 3D framework. Inorg. Chem. 2013, 52, 10566–10570. [CrossRef]

19. Wang, J.J.; Yang, G.Y. A novel supramolecular magnesoborate framework with snowflake-like channels built by unprecedented huge B$_{60}$ cluster cages. Chem. Commun. 2017, 53, 10398–10401. [CrossRef]

20. Kong, F.; Huang, S.P.; Sun, Z.M.; Mao, J.G.; Cheng, W.D. Sc$_2$(B$_2$O$_7$): A new type of second-order NLO material. J. Am. Chem. Soc. 2006, 128, 7750–7751. [CrossRef]

21. Li, L.Y.; Li, G.B.; Wang, Y.X.; Liao, F.H.; Lin, J.H. Bismuth borates: One-dimensional borate chains and nonlinear optical properties. Chem. Mater. 2005, 17, 4174–4180. [CrossRef]

22. Ok, K.M. Toward the rational design of novel noncentrosymmetric materials: Factors influencing the framework structures. Acc. Chem. Res. 2016, 49, 2774–2785. [CrossRef] [PubMed]

23. Xia, Z.G.; Poeppelmeier, K.R. Chemistry-inspired adaptable framework structures. Acc. Chem. Res. 2017, 50, 1222–1230. [CrossRef] [PubMed]

24. Yang, Z.H.; Lei, B.H.; Zhang, W.Y.; Pan, S.L. Module-analysis-assisted design of deep ultraviolet fluorooxoborates with extremely large gap and high structural stability. Chem. Mater. 2019, 31, 2807–2813. [CrossRef]

25. Song, J.L.; Hu, C.L.; Xu, X.; Kong, F.; Mao, J.G. A facile synthetic route to a new SHG material with two types of parallel π-conjugated planar triangular units. Angew. Chem. Int. Ed. 2015, 54, 3679–3682. [CrossRef] [PubMed]

26. Chen, J.; Hu, C.L.; Mao, F.F.; Feng, J.H.; Mao, J.G. A facile route to nonlinear optical materials: Three-site aliovalent substitution involving one cation and two anions. Angew. Chem. Int. Ed. 2019, 131, 2120–2124. [CrossRef]

27. Jing, Q.; Yang, G.; Chen, Z.H.; Dong, X.Y.; Shi, Y.J. A joint strategy to evaluate the microscopic origin of the second-harmonic-generation response in nonpolar ABCO$_3$F Compounds. Inorg. Chem. 2018, 57, 1251–1258. [CrossRef] [PubMed]

28. Lei, B.H.; Yang, Z.H.; Yu, H.W.; Cao, C.; Li, Z.; Hu, C.; Poeppelmeier, K.R.; Pan, S.L. Module-guided design scheme for deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 2018, 140, 10726–10733. [CrossRef]

29. Shen, Y.G.; Zhao, S.G.; Luo, J.H. The role of cations in second-order nonlinear optical materials based on π-conjugated [BO$_3$]$^{2-}$ groups. Coord. Chem. Rev. 2018, 366, 1–28. [CrossRef]

30. Zhang, H.; Zhang, M.; Pan, S.L.; Yang, Z.H.; Wang, Z.; Bian, Q.; Hou, X.L.; Yu, H.W.; Zhang, F.F.; Wu, K.; et al. Na$_3$Ba$_2$(BO$_3$)$_3$:F Next generation of deep-ultraviolet birefringent materials. Cryst. Growth Des. 2015, 15, 523–529. [CrossRef]

31. Huang, H.W.; Yao, J.Y.; Lin, Z.S.; Wang, X.Y.; He, R.; Yao, W.J.; Zhai, N.X.; Chen, C.T. Molecular engineering design to resolve the layering habit and polymorphism problems in deep UV NLO crystals: New structures in MM’Be$_2$B$_2$O$_7$F (M = Na, M’ = Ca; M = K, M’ = Ca, Sr). Chem. Mater. 2011, 23, 5457–5463. [CrossRef]

32. Chen, C.T.; Wang, G.L.; Wang, X.Y.; Xu, Z.Y. Deep-UV nonlinear optical crystal KBe$_2$BO$_3$F$_2$-discovery, growth, optical properties and applications. Appl. Phys. B 2009, 97, 9–25. [CrossRef]

33. Eimerl, D.; Davis, L.; Velsko, S.; Graham, E.K.; Zalkin, A. Optical, mechanical and thermal-properties of barium borate. J. Appl. Phys. 1987, 62, 1968–1983. [CrossRef]

34. Cyranoski, D. Materials science: China’s crystal cache. Nature 2009, 457, 953–955. [CrossRef]

35. Becker, P. A contribution to borate crystal chemistry: Rules for the occurrence of polyborate anion types. Z. Kristallogr. 2001, 216, 523–533. [CrossRef]

36. Zhao, S.G.; Gong, P.F.; Bai, L.; Xu, X.; Zhang, S.Q.; Sun, Z.H.; Lin, Z.S.; Hong, M.C.; Chen, C.T.; Luo, J.H. Beryllium-free Li$_4$Sr(B$_2$O$_4$)$_3$ for deep-ultraviolet nonlinear optical applications. Nat. Commun. 2014, 5, 4019. [CrossRef] [PubMed]

37. Feng, J.H.; Hu, C.L.; Xu, X.; Kong, F.; Mao, J.G. Na$_2$RE$_2$TeO$_4$(BO$_3$)$_2$ (RE = Y, Dy-Lu): Luminescent and structural studies on a series of mixed metal borotellurates. Inorg. Chem. 2015, 54, 2447–2454. [CrossRef] [PubMed]

38. Zhang, W.L.; Cheng, W.D.; Zhang, H.; Geng, L.; Lin, C.S.; He, Z.Z. A strong second-harmonic generation material Cd$_4$(BiO(BO$_3$)$_3$ originating from 3-chromophore asymmetric structures. J. Am. Chem. Soc. 2010, 132, 1508–1509. [CrossRef]
39. Hao, Y.C.; Xu, X.; Kong, F.; Song, J.L.; Mao, J.G. PbCd$_2$B$_6$O$_{12}$ and EuZnB$_2$O$_{10}$: Syntheses, crystal structures and characterizations of two new mixed metal borates. *CrystEngComm* **2014**, *16*, 7689–7695. [CrossRef]
40. Cheng, L.; Wei, Q.; Wu, H.Q.; Zhou, L.J.; Yang, G.Y. Nonlinear optical metal borates containing two types of oxoboron clusters. *Chem. Eur. J.* **2013**, *19*, 17662–17667. [CrossRef]
41. Song, H.M.; Wang, N.Z.; Jiang, X.X.; Fu, Y.; Li, Y.F.; Liu, W.; Lin, Z.S.; Yao, J.Y.; Zhang, G.C. Growth, crystal structures, and characteristics of Li$_2$AsRbMgB$_2$O$_{24}$ (A = Zn, Mg; M = Al, Ga) with [MgB$_2$O$_{24}$] frameworks. *Inorg. Chem.* **2019**, *58*, 1016–1019. [CrossRef] [PubMed]
42. Wei, L.; Wei, Q.; Lin, Z.E.; Meng, Q.; He, H.; Yang, B.F.; Yang, G.Y. A 3D aluminoborate open framework interpenetrated by 2D zinc-amine coordination-polymer networks in its 11-ring channels. *Angew. Chem. Int. Ed.* **2014**, *53*, 7188–7191. [CrossRef] [PubMed]
43. Zhou, J.; Fang, W.H.; Rong, C.; Yang, G.Y. A series of open-framework aluminoborates templated by transition-metal complexes. *Chem. Eur. J.* **2010**, *16*, 4852–4863. [CrossRef] [PubMed]
44. Huang, H.W.; Liu, L.J.; Jin, S.F.; Yao, W.J.; Zhang, Y.H.; Chen, C.T. Deep-ultraviolet nonlinear optical materials: Na$_2$Be$_4$B$_6$O$_{11}$ and LiNa$_2$Be$_{12}$B$_{12}$O$_{33}$. *J. Am. Chem. Soc.* **2013**, *135*, 18319–18322. [CrossRef] [PubMed]
45. Yu, H.W.; Wu, H.P.; Fan, S.L.; Yang, Z.H.; Hou, X.L.; Su, X.; Jing, Q.; Poeppelmeier, K.R.; Rondinelli, J.M. Cs$_2$Zn$_8$B$_{22}$O$_{31}$: A chemically benign member of the KBBF family exhibiting the largest second harmonic generation response. *J. Am. Chem. Soc.* **2014**, *136*, 1264–1267. [CrossRef] [PubMed]
46. Zhao, S.G.; Zhang, J.; Zhang, S.Q.; Sun, Z.H.; Lin, Z.S.; Wu, Y.C.; Hong, M.C.; Luo, J.H. A new UV nonlinear optical material CsZn$_3$B$_4$O$_7$: ZnO$_4$ tetrahedra double the efficiency of second-harmonic generation. *Inorg. Chem.* **2014**, *53*, 2521–2527. [CrossRef] [PubMed]
47. Mutailipu, M.; Zhang, M.; Wu, H.P.; Yang, Z.H.; Shen, Y.H.; Sun, J.L.; Pan, S.L. Ba$_3$Mg$_3$(BO$_3$)$_3$F$_3$ polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. *Nat. Commun.* **2018**, *9*, 3089. [CrossRef]
48. Zhao, S.G.; Kang, L.; Shen, Y.G.; Wang, X.D.; Asghar, M.A.; Lin, Z.S.; Xu, Y.Y.; Zeng, S.Y.; Hong, M.C.; Luo, J.H. Designing a beryllium-free deep-ultraviolet nonlinear optical material without a structural instability problem. *J. Am. Chem. Soc.* **2016**, *138*, 2961–2964. [CrossRef]
49. Zhao, B.Q.; Bai, L.; Li, B.X.; Zhao, S.G.; Shen, Y.G.; Li, X.F.; Ding, Q.R.; Ji, C.M.; Lin, Z.S.; Luo, J.H. Crystal growth and optical properties of beryllium-free non-linear optical crystal K$_3$Ba$_3$L$_2$Al$_4$B$_6$O$_{20}$F. *Cryst. Growth Des.* **2018**, *18*, 1168–1172. [CrossRef]
50. Zhao, B.Q.; Li, B.X.; Zhao, S.G.; Liu, X.T.; Wu, Z.Y.; Shen, Y.G.; Li, X.F.; Ding, Q.R.; Ji, C.M.; Luo, J.H. Physical properties of a promising nonlinear optical crystal K$_3$Ba$_3$L$_2$Al$_4$B$_6$O$_{20}$F. *Cryst. Growth Des.* **2018**, *18*, 7368–7372. [CrossRef]
51. Wu, H.P.; Yu, H.W.; Pan, S.L.; Halasaymani, P.S. Deep-ultraviolet nonlinear-optical material K$_3$Sr$_2$L$_2$Al$_4$B$_6$O$_{20}$F: Addressing the structural instability problem in KBe$_3$B$_3$O$_7$. *Inorg. Chem.* **2017**, *56*, 8755–8758. [CrossRef] [PubMed]
52. Yu, H.W.; Young, J.; Wu, H.P.; Zhang, W.G.; Rondinelli, J.M.; Halasaymani, P.S. The next-generation of nonlinear optical materials: Rb$_3$Ba$_3$L$_2$Al$_4$B$_6$O$_{20}$F-synthesis, characterization, and crystal growth. *Adv. Opt. Mater.* **2017**, *5*, 1700840. [CrossRef]
53. Shen, Y.G.; Zhao, S.G.; Yang, Y.; Cao, L.L.; Wang, Z.J.; Zhao, B.Q.; Sun, Z.H.; Lin, Z.S.; Luo, J.H. A new KBBF-family nonlinear optical material with strong interlayer bonding. *Cryst. Growth Des.* **2017**, *17*, 4422–4427. [CrossRef]
54. Meng, X.H.; Liang, F.; Xia, M.J.; Lin, Z.S. Beryllium-free nonlinear-optical crystals A$_2$Ba$_3$L$_2$Ga$_4$B$_6$O$_{20}$F (A = K and Rb): Members of the Sr$_2$Be$_2$(BO$_3$)$_3$O family with a strong covalent connection between the [Li$_2$Ga$_4$B$_6$O$_{20}$F$^-$] double layers. *Inorg. Chem.* **2018**, *57*, 5669–5676. [CrossRef] [PubMed]
55. Yu, H.W.; Wu, H.P.; Pan, S.L.; Zhang, B.B.; Dong, L.Y.; Han, S.J.; Yang, Z.H. Pb$_4$Zn$_2$B$_9$O$_{21}$: A congruently melting lead zinc borate with a novel [B$_{10}$O$_{24}$] anionic group and an interesting [Pb$_4$O$_{12}$]$_n$ chain. *New J. Chem.* **2014**, *38*, 285–291. [CrossRef]
56. Mutailipu, M.; Li, Z.; Zhang, M.; Hou, D.W.; Yang, Z.H.; Zhang, B.B.; Wu, H.P.; Pan, S.L. The mechanism of large second harmonic generation enhancement activated by Zr$^2^+$/substitution. *Phys. Chem. Chem. Phys.* **2016**, *18*, 32931–32936. [CrossRef] [PubMed]
57. Chen, Y.N.; An, D.H.; Zhang, M.; Hu, C.; Mutailipu, M.; Yang, Z.H.; Lu, X.Q.; Pan, S.L. Li$_6$Zn$_3$(BO$_3$)$_4$: A new zincoborate featuring vertex-, edge- and face-sharing LiO$_4$ tetrahedra and exhibiting reversible phase transitions. *Inorg. Chem. Front.* **2017**, *4*, 1100–1107. [CrossRef]
58. Yang, G.S.; Gong, P.F.; Lin, Z.S.; Ye, N. AZn$_2$BO$_3$X$_2$ (A = K, Rb, NH$_4$; X = Cl, Br): New members of KBBF family exhibiting large SHG response and the enhancement of layer interaction by modified structures. *Chem. Mater.* 2016, 28, 9122–9131. [CrossRef]

59. Huang, Q.; Liu, L.J.; Wang, X.Y.; Li, R.K.; Chen, C.T. Beryllium-free KBBF family of nonlinear-optical crystals: AZn$_2$BO$_3$X$_2$ (A = Na, K, Rb; X = Cl, Br). *Inorg. Chem.* 2016, 55, 12496–12499. [CrossRef]

60. Yu, H.W.; Zhang, W.G.; Young, J.; Rondinelli, J.M.; Halasyamani, P.S. Design and synthesis of the beryllium-free deep-ultraviolet nonlinear optical material Ba$_3$(Zn$_2$BO$_6$)$_3$PO$_4$. *Adv. Mater.* 2015, 27, 7380–7385. [CrossRef]

61. Li, R.K.; P. Cation coordination control of anionic group alignment to maximize SHG effects in the BaMBO$_3$F (M = Zn, Mg) series. *Inorg. Chem.* 2010, 49, 1561–1565. [CrossRef] [PubMed]

62. Duan, M.H.; Xia, M.J.; Li, R.K. Ba$_2$Zn$_4$(BO$_3$)$_5$: A nonlinear-optical material with reinforced interlayer connections and large second-harmonic-generation response. *Inorg. Chem.* 2017, 56, 11458–11461. [CrossRef] [PubMed]

63. Smith, R.W.; Koliha, L.J. A new noncentrosymmetric orthoborate [Ba$_2$Zn(BO$_3$)$_2$]. *Mater. Res. Bull.* 1994, 29, 1203–1210. [CrossRef]

64. Lou, Y.F.; Jiang, X.X.; Molokeev, M.S.; Yang, Y.; Wang, W.; Wang, S.H.; Wu, S.F.; Wang, Y.X.; Huang, R.J.; Li, L.F.; et al. Near-zero thermal expansion and high ultraviolet transparency in a borate crystal of Zn$_4$B$_6$O$_{13}$. *Adv. Mater.* 2016, 28, 7936–7940. [CrossRef]

65. Jiang, X.X.; Molokeev, M.S.; Gong, P.F.; Yang, Y.; Wang, W.; Wang, S.H.; Wu, S.F.; Wang, Y.X.; Huang, R.J.; Li, L.F.; et al. High mechanical strength in Zn$_4$B$_6$O$_{13}$ with an unique sodalite-cage structure. *RSC Adv.* 2017, 7, 2038–2043. [CrossRef]

66. Jin, S.F.; Cai, G.M.; Wang, W.Y.; He, M.; Wang, S.C.; Chen, X.L. Stable oxoborate with edge-sharing BO$_4$ tetrahedra synthesized under ambient pressure. *Angew. Chem. Int. Ed.* 2010, 49, 4967–4970. [CrossRef]

67. Wu, Y.; Yao, J.Y.; Zhang, J.X.; Fu, P.Z.; Wu, Y.C. Potassium zinc borate, KZn$_3$O$_6$. *Acta Crystallogr.* 2010, 66, i45. [CrossRef]

68. Sohr, G.; Perfler, L.; Huppertz, H. The high-pressure thallium triborate HP-TiB$_3$O$_5$. *Z. Naturforsch.* 2014, 69, 1260–1268. [CrossRef]

69. Neumair, S.C.; Vanicek, S.; Kaindl, R.; Többens, D.M.; Martinue, C.; Taulelle, F.; Senker, J.; Huppertz, H. HP-KB$_3$O$_5$ highlights the structural diversity of borates: Corner-sharing BO$_4$/BO$_5$ groups in combination with edge-sharing BO$_4$ tetrahedra. *Eur. J. Inorg. Chem.* 2011, 2011, 4147–4152. [CrossRef]

70. Sohr, G.; Neumair, S.C.; Huppertz, H. High-pressure synthesis and characterization of the alkali metal borate HP-Rb$_2$B$_3$O$_5$. *Z. Naturforsch.* 2012, 67, 1197–1204. [CrossRef]

71. Sohr, G.; Többens, D.M.; Schmedt auf der Günne, J.; Huppertz, H. HP-Cs$_2$B$_3$O$_5$: Synthesis and characterization of an outstanding borate exhibiting the simultaneous linkage of all structural units of borates. *Chem. Eur. J.* 2014, 20, 17059–17067. [CrossRef] [PubMed]

72. Chen, X.A.; Chen, Y.J.; Sun, C.; Chang, X.A.; Xiao, W.Q. Synthesis, crystal structure, spectrum properties, and electronic structure of a new three-borate Ba$_4$Na$_2$Zn$_4$(BO$_3$)$_2$(B$_2$O$_3$)$_2$ with two isolated types of blocks: 3[3A] and 3[2A + 1T]. *J. Alloys Compd.* 2013, 568, 60–67. [CrossRef]

73. Pauling, L. The principles determining the structure of complex ionic crystals. *J. Am. Chem. Soc.* 1929, 51, 1010–1026. [CrossRef]

74. Burdett, J.K.; McLarnan, T.J. An orbital interpretation of Pauling’s rules. *Am. Mineral.* 1984, 69, 601–621.

75. Mutaiilimu, M.; Su, X.; Zhang, M.; Yang, Z.H.; Pan, S.L. Ba$_{n+2}$Zn$_n$(BO$_3$)$_n$(B$_2$O$_3$)$_n$F$_n$ (n = 1, 2): New members of the zincoborate fluoride series with two kinds of isolated B-O units. *Inorg. Chem. Front.* 2017, 4, 281–288. [CrossRef]

76. Busche, S.; Bluhm, K. Zur synthese und kristallstruktur von diberniumkaliumtrizinkborat Ba$_2$KZn$_3$(B$_2$O$_6$)(B$_2$O$_3$)/synthesis and crystal structure of di-barium potassium tri-zinc borate Ba$_2$KZn$_3$(B$_2$O$_6$)(B$_2$O$_3$). *Z. Naturforsch.* 1996, 51, 319–324. [CrossRef]
80. Chen, X.A.; Chen, Y.J.; Wu, L.; Chang, X.A.; Xiao, W.Q. Synthesis, crystal structure, and spectrum properties of a new borate Ba$_4$K$_2$Zn$_3$(BO_3)$_3$(H$_2$O)$_9$ with two isolated types of blocks: 3[3Δ] and 3[2Δ + 1Γ] + 3Δ + 3[2A + 1T]. *Solid State Sci.* 2014, 27, 47–54. [CrossRef]
81. Barbier, J.; Penin, N.; Cranswick, L.M. Melilite-type borates Bi$_2$Zn$_2$O$_7$ and CaBiGa$_2$O$_7$. *Chem. Mater.* 2005, 17, 3130–3136. [CrossRef]
82. Li, M.; Chen, X.A.; Chang, X.A.; Zang, H.G.; Xiao, W.Q. Synthesis, Crystal structure and optical properties of non-centrosymmetric borate, Bi$_2$Zn$_2$O$_7$. *J. Syn. Cryst.* 2007, 36, 1005–1010.
83. Fang, Z.; Jiang, X.X.; Duan, M.H.; Hou, Z.Y.; Tang, C.C.; Xia, M.J.; Liu, L.J.; Lin, Z.S.; Fan, F.D.; Bai, L.; et al. Beryllium-free Rb$_2$Zn$_4$B$_7$O$_{11}$. *Opt. Mater.* 2015, 47, 4779–4788. [CrossRef]
84. Yu, H.W.; Wu, H.P.; Jing, Q.; Yang, Z.H.; Halasyamani, P.S.; Pan, S.L. Polar Polymorphism: α-, β-, and γ-Pb$_2$Ba$_4$Zn$_4$B$_7$O$_{11}$-Synthesis, characterization, and nonlinear optical properties. *Chem. Mater.* 2015, 27, 4779–4788. [CrossRef]
85. Chen, X.A.; Chang, X.A.; Xiao, W.Q. Synthesis, Crystal structure and optical properties of Ba$_2$ZnSc(BO$_3$)$_3$ and Ba$_4$Zn$_2$Sc$_2$(BO$_3$)$_6$: First examples of borates in the Zn-Sc-B-O system featuring special structure configurations. *Inorg. Chem.* 2018, 5, 1787–1794. [CrossRef]
86. Huang, Z.J.; Pan, S.L.; Yang, Z.H.; Dong, X.Y.; Zhao, W.W.; Dong, L.Y.; Su, X. Pb$_2$M(BO$_3$)$_6$ (M = Zn, Cd): Two new isostuctural lead borates compounds with two-dimensional α-[Pb$_4$B$_3$O$_8$]$_2$ layer structure. *Solid State Sci.* 2013, 15, 73–78. [CrossRef]
87. Wang, G.; Wang, X.; Zhou, Y.; Chen, Y.; Li, C.; Zhu, Y.; Xu, Z.; Chen, C. 12.95 mW sixth harmonic generation with KBe$_2$BO$_3$F$_2$ crystal. *Appl. Phys. B* 2008, 91, 95–97. [CrossRef]
88. Wu, B.C.; Tang, D.Y.; Ye, N.; Chen, C.T. Linear and nonlinear optical properties of the KBe$_2$BO$_3$F$_2$ (KBBF) crystal. *Opt. Mater.* 1996, 5, 105–109. [CrossRef]
89. Chen, C.T. Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal. *Opt. Mater.* 2004, 26, 425–429. [CrossRef]
90. Jiang, X.X.; Luo, S.Y.; Kang, L.; Gong, P.F.; Huang, H.W.; Wang, S.C.; Lin, Z.S.; Chen, C.T. First-principles evaluation of the alkali and/or alkaline earth beryllium borates in deep ultraviolet nonlinear optical applications. *ACS Photonics* 2015, 2, 1183–1191. [CrossRef]
91. Zou, G.H.; Lin, C.S.; Jo, H.; Nam, G.; You, T.S.; Ok, K.M. Pb$_2$BO$_3$Cl: A tailor-made polar lead borate chloride with very strong second harmonic generation. *Angew. Chem. Int. Ed.* 2016, 55, 12078–12082. [CrossRef] [PubMed]
92. Yu, H.W.; Koocher, N.Z.; Rondinelli, J.M.; Halasyamani, P.S. Pb$_2$BO$_3$I: A borate iodide with the largest second-harmonic generation (SHG) response in the KBe$_2$BO$_3$F$_2$ (KBBF) family of nonlinear optical (NLO) materials. *Angew. Chem. Int. Ed.* 2018, 57, 6100–6103. [CrossRef] [PubMed]
93. Luo, M.; Song, Y.X.; Liang, F.; Ye, N.; Lin, Z.S. Pb$_2$BO$_3$Br: A novel nonlinear optical lead borate bromide with a KBBF-type structure exhibiting strong nonlinear optical response. *Inorg. Chem. Front.* 2018, 5, 916–921. [CrossRef]
94. Tran, T.T.; Koocher, N.Z.; Rondinelli, J.M.; Halasyamani, P.S. Beryllium-free β-Rb$_2$Al$_2$B$_2$O$_7$ as a possible deep-ultraviolet nonlinear optical material replacement for KBe$_2$BO$_3$F$_2$. *Angew. Chem. Int. Ed.* 2017, 56, 2869–2973. [CrossRef] [PubMed]
95. Zhao, S.G.; Gong, P.F.; Luo, S.Y.; Liu, S.J.; Li, L.N.; Asghar, M.A.; Khan, T.; Hong, M.C.; Lin, Z.S.; Luo, J.H. Beryllium-free Rb$_2$Al$_2$B$_2$O$_7$F with reinforced interlayer bonding as a deep-ultraviolet nonlinear optical crystal. *J. Am. Chem. Soc.* 2015, 137, 2207–2210. [CrossRef] [PubMed]
96. Fang, Z.; Jiang, X.X.; Duan, M.H.; Hou, Z.Y.; Tang, C.C.; Xia, M.J.; Liu, L.J.; Lin, Z.S.; Fan, F.D.; Bai, L.; et al. Deep-ultraviolet nonlinear optical crystal Cs$_2$Al$_2$(BO$_3$)$_2$O: A benign member of the Sr$_2$Be$_2$(BO$_3$)$_2$O family with [Al$_2$(BO$_3$)$_2$O$_2$]$^{2-}$ double layers. *Chem. Eur. J.* 2018, 24, 7856–7860. [CrossRef] [PubMed]
97. Chen, Y.N.; Zhang, M.; Pan, S.L. BaLiZn$_3$(BO$_3$)$_3$- A new member of the KBe$_2$BO$_3$F$_2$ family possessing dense BO$_3$ triangles and the smallest interlayer distance. *New J. Chem.* 2018, 42, 12365–12368. [CrossRef]
98. Duan, M.H.; Xia, M.J.; Li, R.K. BaLiZn$_3$BO$_3$: A mixed-cation KBe$_2$BO$_3$F$_2$-type zinc-borate with a (LiZn$_3$B$_3$O$_9$)$_{∞}$ network. *Euro. J. Inorg. Chem.* 2018, 32, 3686–3698. [CrossRef]
99. Jiao, Z.W.; Zhang, F.; Yan, Q.F.; Shen, D.Z.; Shen, G.Q. Synthesis, structure characterization and fluorescence property of a new fluoride borate crystal, CdZn$_2$K$_2$B$_2$O$_6$F. *J. Solid State Chem.* 2009, 182, 3063–3066. [CrossRef]
100. Zhang, F.; Jiao, Z.W.; Shen, D.Z.; Shen, G.Q.; Wang, X.Q. CdZn$_2$K$_2$B$_2$O$_6$F, a new fluoride borate crystal. *Acta Crystallogr.* 2010, 66, 1–3. [CrossRef]
101. Wang, S.C.; Ye, N. Na₂CsBe₂B₂O₇: An alkaline beryllium borate as a deep-UV nonlinear optical crystal. *J. Am. Chem. Soc.* 2011, 133, 11458–11461. [CrossRef] [PubMed]

102. Wang, S.C.; Ye, N.; Li, W.; Zhao, D. Alkaline beryllium borate NaBe₂B₄O₁₀ (A = K, Rb) as UV nonlinear optical crystals. *J. Am. Chem. Soc.* 2010, 132, 8779–8786. [CrossRef] [PubMed]

103. Knyrim, J.S.; Roeßner, F.; Jakob, S.; Johrendt, D.; Kinski, I.; Glaum, R.; Huppertz, H. Formation of edge-sharing BO₄ tetrahedra. *Inorg. Chem.* 2007, 46, 9097–9100. [CrossRef] [PubMed]

104. Emme, H.; Huppertz, H. High-pressure preparation, crystal structure, and properties of α-[RE]₂B₂O₉ (RE = Eu, Gd, Tb, Dy) with a structure type different BO₄ tetrahedra. *Z. Naturforsch.* 2011, 55, 3623–3633. [CrossRef] [PubMed]

105. Huang, H.W.; Yao, J.Y.; Lin, Z.S.; Wang, X.Y.; He, R.; Yao, W.J.; Zhai, N.X.; Chen, C.T. NaSr₂Be₂B₂O₇F₄: A promising deep-ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be₃B₂O₁₂]²⁻ anionic group. *Angew. Chem. Int. Ed.* 2011, 50, 9141–9144. [CrossRef] [PubMed]

106. Huppertz, H. Tetrahedra: A combined experimental and theoretical study. *Angew. Chem. Int. Ed.* 2000, 4085–4088. [CrossRef] [PubMed]

107. Huppertz, H.; von der Eltz, B. Multianvil high-pressure synthesis of Dy₄B₆O₁₅: The first oxoborate with edge-sharing BO₄ tetrahedra. *J. Am. Chem. Soc.* 2002, 124, 9376–9377. [CrossRef] [PubMed]

108. An, D.H.; Kong, Q.R.; Zhang, M.; Yang, Y.; Li, D.N.; Yang, Z.H.; Pan, S.L.; Chen, H.M.; Su, Z.; Sun, Y.; et al. Versatile coordination mode of LiNa₂B₄O₁₁ with 21-ring channels. *J. Am. Chem. Soc.* 2019, 141, 8779–8786. [CrossRef] [PubMed]

109. Emme, H.; Huppertz, H. High-pressure preparation, crystal structure, and properties of α-[RE]₂B₂O₉ (RE = Eu, Gd, Tb, Dy): Oxoborates displaying a new type of structure with edge-sharing BO₄ tetrahedra. *Chem. Eur. J.* 2003, 9, 3623–3633. [CrossRef]

110. Knyrim, J.S.; Roeßner, F.; Jakob, S.; Johrendt, D.; Kinski, I.; Glaum, R.; Huppertz, H. Formation of edge-sharing BO₄ tetrahedra in the high-pressure borate HP-NiB₂O₅. *Angew. Chem. Int. Ed.* 2007, 46, 1311–1317. [CrossRef] [PubMed]

111. Guo, F.; Han, J.; Cheng, S.C.; Yu, S.J.; Yang, Z.H.; Pan, S.L. Formation of the B-O units from corner-sharing to edge-sharing linkages in BaMBO₆ (M = Ga, Al). *Inorg. Chem.* 2019, 58, 8237–8244. [CrossRef] [PubMed]

112. Han, S.J.; Huang, C.M.; Tudi, A.; Hu, S.S.; Yang, Z.H.; Pan, S.L. β-CsB₄O₁₄: A triple-layered borate with edge-sharing BO₄ tetrahedra exhibiting a short cutoff edge and a large birefringence. *Chem. Eur. J.* 2019. [CrossRef]

113. Wang, Y.; Pan, S.L. Recent development of metal borate halides: Crystal chemistry and application in second-order NLO materials. *Coord. Chem. Rev.* 2016, 323, 15–35. [CrossRef]

114. Zhang, J.H.; Hu, C.L.; Xu, X.; Kong, F.; Mao, J.G. Recent advances in ultraviolet and deep-ultraviolet second-order nonlinear optical crystals. *Coord. Chem. Rev.* 2018, 375, 459–488. [CrossRef]

115. Wei, Q.; Wang, J.J.; He, C.; Cheng, J.W.; Yang, G.Y. Deep-ultraviolet nonlinear optics in a borate framework with 21-ring channels. *Chem. Eur. J.* 2016, 22, 10759–10762. [CrossRef] [PubMed]

116. Sasaki, T.; Mori, Y.; Yoshimura, M.; Yip, Y.K.; Kamimura, T. Recent development of nonlinear optical borate crystals: Key materials for generation of visible and UV light. *Mater. Sci. Eng. R* 2000, 30, 1–54. [CrossRef]

117. Wang, Y.; Pan, S.L. Recent development of metal borate halides: Crystal chemistry and application in second-order NLO materials. *Coord. Chem. Rev.* 2016, 323, 15–35. [CrossRef]

118. Wu, C.; Yang, G.; Humphrey, M.G.; Zhang, C. Recent advances in ultraviolet and deep-ultraviolet second-order nonlinear optical crystals. *Coord. Chem. Rev.* 2018, 375, 459–488. [CrossRef]

119. Dotenko, V.P.; Berezovskaya, I.V.; Fyryushina, N.P.; Voloshinovskii, A.S.; Stryganyuk, G.B. Position of the optical absorption edge of alkaline earth borates. *Opt. Mater.* 2009, 31, 1428–1433. [CrossRef]
123. Huang, J.H.; Jin, C.C.; Xu, P.L.; Gong, P.F.; Lin, Z.S.; Cheng, J.W.; Yang, G.Y. Li₂CsB₂O₁₀(OH)₄: A deep-ultraviolet nonlinear-optical mixed-alkaline borate constructed by unusual heptaborate anions. *Inorg. Chem.* 2019, 58, 1755–1758. [CrossRef] [PubMed]

124. Zou, G.H.; Ma, Z.J.; Wu, K.C.; Ye, N. Cadmium-rich earth oxyborates Cd₄ReO(BO₃)₃ (Re = Y, Gd, Lu): Congruently melting compounds with large SHG responses. *J. Mater. Chem.* 2012, 22, 19911–19918. [CrossRef]

125. Feng, J.H.; Xu, X.; Hu, C.L.; Mao, J.G. K₂Na₂ZnB₂O₇: Nonlinear-optical materials with short UV cutoff edges. *Inorg. Chem.* 2019, 58, 2833–2839. [CrossRef] [PubMed]

126. Zhao, S.G.; Zhang, G.C.; Yao, J.Y.; Wu, Y.C. K₂Na₂ZnB₂O₇: A deep-ultraviolet nonlinear-optical mixed-alkaline borate constructed by unusual heptaborate anions. *Chem. Soc. Rev.* 2016, 45, 629–637. [CrossRef]

127. Mutailipu, M.; Xie, Z.Q.; Su, X.; Zhang, M.; Wang, Y.; Yang, Z.H.; Janjua, M.R.S.A.; Pan, S.L. Chemical cation-directed structural evolution in X₂ZnB₂O₁₀ (X = Na, K, Rb) and Cs₁₂Zn₄(B₂O₁₀)₄ crystals. *Inorg. Chem. Front.* 2019, 6, 1461–1467. [CrossRef]

128. Xie, Z.Q.; Mutailipu, M.; He, G.J.; Han, G.P.; Wang, Y.; Yang, Z.H.; Zhang, M.; Pan, S.L. A series of rare-earth borates K₃M₂B₃O₁₅ (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with large second harmonic generation responses. *Chem. Mater.* 2018, 30, 2414–2423. [CrossRef]

129. Wu, H.P.; Pan, S.L.; Yu, H.W.; Chen, Z.H.; Zhang, F.F. Synthesis, crystal structure and properties of a new congruently melting compound, K₂ZnB₂O₁₀. *Solid State Sci.* 2012, 14, 936–940. [CrossRef]

130. Baiheti, T.; Han, S.J.; Tudi, A.; Yang, Z.H.; Yu, H.H.; Pan, S.L. From centrosymmetric to noncentrosymmetric: Cation-directed structural evolution in X₂ZnB₂O₁₀ (X = Na, K, Rb) and Cs₁₂Zn₄(B₂O₁₀)₄ crystals. *Inorg. Chem. Front.* 2019, 6, 1461–1467. [CrossRef]

131. Sleight, A. Zero-expansion plan. *Nature* 2003, 425, 674–676. [CrossRef] [PubMed]

132. Chen, J.; Hu, L.; Deng, J.X.; Xing, X.R. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. *Chem. Soc. Rev.* 2015, 44, 3522–3567. [CrossRef] [PubMed]

133. Dagdale, S.R.; Muley, G.G. Synthesis and characterization of a novel nonlinear optical material Mg₂Na₂ZnB₂O₁₀. *Proc. Technol.* 2016, 24, 682–688. [CrossRef]

134. Chen, C.T.; Wu, Y.C.; Li, R.K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. *Int. Rev. Phys. Chem.* 1989, 8, 65–91. [CrossRef]

135. Ye, N.; Chen, Q.X.; Wu, B.C.; Chen, C.T. Searching for new nonlinear optical materials on the basis of the anionic group theory. *J. Appl. Phys.* 1998, 84, 555–558. [CrossRef]

136. Li, F.; Pan, S.L.; Hou, X.L.; Yao, J. A novel nonlinear optical crystal Bi₂ZnOB₂O₆. *Cryst. Growth Des.* 2009, 9, 4091–4095. [CrossRef]

137. Watanabe, S.; Nakai, S. New nonlinear optical crystal: Cesium lithium borate. *Appl. Phys. Lett.* 1995, 67, 1818–1820. [CrossRef]

138. Sasaki, T.; Mori, Y.; Kuroda, I.; Nakajima, S.; Sasaki, T.; Nakai, S. New nonlinear optical crystal: Cesium lithium borate. *Appl. Phys. Lett.* 1995, 67, 1818–1820. [CrossRef]

139. Xia, M.J.; Li, R.K. Growth, structure and optical properties of nonlinear optical crystal BaZnBO₃F. *J. Solid State Chem.* 2016, 233, 58–61. [CrossRef]

140. Wang, G.F.; Wu, Y.C.; Fu, P.Z.; Li, X.; Chen, C.T. Crystal growth and properties of β-Zr₃BPO₇. *Chem. Mater.* 2002, 14, 2044–2047. [CrossRef]

141. Halasymani, P.S.; Zhang, W.G. Viewpoint: Inorganic materials for UV and deep-UV nonlinear-optical applications. *Inorg. Chem.* 2017, 56, 12077–12085. [CrossRef] [PubMed]

142. Wu, H.P.; Yu, H.W.; Yang, Z.H.; Hou, X.X.; Su, X.; Pan, S.L.; Poeppelmeier, K.R.; Rondinelli, J.M. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. *J. Am. Chem. Soc.* 2013, 135, 4215–4218. [CrossRef] [PubMed]

143. Mori, Y.; Kuroda, I.; Nakajima, S.; Sasaki, T.; Nakai, S. New nonlinear optical crystal: Cesium lithium borate. *Appl. Phys. Lett.* 1995, 67, 1818–1820. [CrossRef]

144. Sasaki, T.; Mori, Y.; Kuroda, I.; Nakajima, S.; Yamaguchi, K.; Watanabe, S.; Nakai, S. Cesium lithium borate: A new nonlinear optical crystal. *Acta Crystallogr.* 1995, 51, 2222–2224. [CrossRef]

145. Xie, Z.Q.; Mutailipu, M.; He, G.J.; Han, G.P.; Wang, Y.; Yang, Z.H.; Zhang, M.; Pan, S.L. A series of rare-earth borates K₃M₂B₃O₁₅ (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with large second harmonic generation responses. *Chem. Mater.* 2018, 30, 2414–2423. [CrossRef]

146. Wu, H.P.; Yu, H.W.; Yang, Z.H.; Hou, X.L.; Su, X.; Pan, S.L.; Poeppelmeier, K.R.; Rondinelli, J.M. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. *J. Am. Chem. Soc.* 2013, 135, 4215–4218. [CrossRef] [PubMed]

147. Ye, N.; Chen, Q.X.; Wu, B.C.; Chen, C.T. Searching for new nonlinear optical materials on the basis of the anionic group theory. *J. Appl. Phys.* 1998, 84, 555–558. [CrossRef]

148. Li, F.; Pan, S.L.; Hou, X.L.; Yao, J. A novel nonlinear optical crystal Bi₂ZnOB₂O₆. *Cryst. Growth Des.* 2009, 9, 4091–4095. [CrossRef]

149. Sleight, A. Zero-expansion plan. *Nature* 2003, 425, 674–676. [CrossRef] [PubMed]

150. Chen, J.; Hu, L.; Deng, J.X.; Xing, X.R. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. *Chem. Soc. Rev.* 2015, 44, 3522–3567. [CrossRef] [PubMed]

151. Bubnova, R.S.; Filatov, S.K. Strong anisotropic thermal expansion in borates. *Phys. Stat. Sol. B* 2008, 245, 2469–2476. [CrossRef]

152. Bubnova, R.S.; Stepanov, N.K.; Levin, A.A.; Filatov, S.K.; Paufler, P.; Meyer, D.C. Crystal structure and thermal behaviour of boropollucite Cs₂B₅Si₆O₁₆. *Solid State Sci.* 2004, 6, 629–637. [CrossRef]

153. Lin, W.; Dai, G.Q.; Huang, Q.Z.; Zhen, A.; Liang, J.K. Anisotropic thermal expansion of LiB₃O₅. *J. Phys. D: Appl. Phys.* 1990, 23, 1073–1075.
146. Becker, P.; Bohaty, L. Thermal expansion of bismuth triborate. *Cryst. Res. Technol.* 2001, 36, 1175–1180. [CrossRef]

147. Yao, W.J.; Jiang, X.X.; Huang, R.J.; Li, W.; Huang, C.J.; Lin, Z.S.; Li, L.F.; Chen, C.T. Area negative thermal expansion in a beryllium borate LiBeBO$_3$ with edge sharing tetrahedra. *Chem. Commun.* 2014, 50, 13499–13501. [CrossRef] [PubMed]

148. Jiang, X.X.; Luo, S.Y.; Kang, L.; Gong, P.F.; Yao, W.J.; Huang, H.W.; Li, W.; Huang, R.J.; Wang, W.; Li, Y.C.; et al. Isotropic negative area compressibility over large pressure range in potassium beryllium fluoroborate and its potential applications in deep ultraviolet region. *Adv. Mater.* 2015, 27, 4851–4857. [CrossRef] [PubMed]

149. Shi, G.Q.; Wang, Y.; Zhang, F.F.; Zhang, B.B.; Yang, Z.H.; Hou, X.L.; Pan, S.L.; Poeppelmeier, K.R. Finding the next deep-ultraviolet nonlinear optical material: NH$_4$B$_2$O$_6$. *J. Am. Chem. Soc.* 2017, 139, 10645–10648. [CrossRef] [PubMed]

150. Zhang, B.B.; Shi, G.Q.; Yang, Z.H.; Zhang, F.F.; Pan, S.L. Fluoroxyborates: Beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. *Angew. Chem. Int. Ed.* 2017, 56, 3916–3919. [CrossRef] [PubMed]

151. Mutailipu, M.; Zhang, M.; Zhang, B.B.; Wang, L.Y.; Yang, Z.H.; Zhou, X.; Pan, S.L. SrB$_5$O$_7$F$_3$: Functionalized with [B$_5$O$_9$F$_3$]$_6^-$ chromophores: Accelerating the rational design of deep-ultraviolet nonlinear optical materials. *Angew. Chem. Int. Ed.* 2018, 57, 6095–6099. [CrossRef] [PubMed]

152. Li, F.; Pan, S.L.; Hou, X.L.; Zhou, Z.X. Growth of Bi$_2$ZnOB$_2$O$_6$ crystal by the Czochralski method. *J. Cryst. Growth* 2010, 312, 2383–2385. [CrossRef]

153. Yu, H.W.; Cantwell, J.; Wu, H.P.; Zhang, W.G.; Poeppelmeier, K.R.; Halasyamani, P.S. Top-seeded solution crystal growth, morphology, optical and thermal properties of Ba$_3$(ZnB$_5$O$_{10}$)PO$_4$. *Cryst. Growth Des.* 2016, 16, 3976–3982. [CrossRef]

154. Liebertz, J.; Stähr, S. Zur Existenz und Einkristallzüchtung von Zn$_3$BPO$_7$ und Mg$_3$BPO$_7$. *Z. Kristallogr.* 1982, 160, 135–137. [CrossRef]

155. Wang, G.F.; Fu, P.Z.; Wu, Y.C.; Chen, C.T. Study on pulling growth of β-Zn$_3$BPO$_7$ crystal. *J. Synth. Cryst.* 2000, 29, 130–133.

156. Wu, Y.C.; Wang, G.F.; Fu, P.Z.; Liang, X.Y.; Xu, Z.Y.; Chen, C.T. A new nonlinear optical crystal β-Zn$_3$BPO$_7$. *J. Cryst. Growth* 2001, 229, 205–207. [CrossRef]