A critically appraised topic (CAT) to compare the effects of single and multi-cat housing on physiological and behavioural measures of stress in domestic cats in confined environments

Finka et al.
A critically appraised topic (CAT) to compare the effects of single and multi-cat housing on physiological and behavioural measures of stress in domestic cats in confined environments

Lauren R Finka¹, Sarah LH Ellis¹ and Jenny Stavisky²*

Abstract

Background: Domestic cats have evolved from solitary, asocial predators and whilst they may display social behaviours, they can still exist as solitary survivors. Over-population and relinquishment of pet cats are ubiquitous problems worldwide, and rehoming centres (also known as rescues/shelters) aim to ameliorate this by holding cats in confinement for a variable period until a new home is found. The provision of optimal housing for large numbers of cats in close confinement, such as in rehoming centres, is therefore inherently difficult. Under these conditions there is the potential for individuals to develop signs of physical and psychological ill health, and thus experience compromised welfare. Available information regarding housing practices that maximise welfare currently provides conflicting results, and as a consequence there are no unanimous housing recommendations. The aim of this study was therefore to review the evidence on the impact of single housing compared to multi-cat housing on stress in confined cats, as measured by physiological and/or behavioural outcomes. The review was conducted using a Critically Appraised Topic (CAT) format. A systematic search of electronic databases (CAB Abstracts, Zoological Records and Medline) was carried out to identify peer-reviewed literature comparing single and multi-cat housing in confined environments.

Results: A total of 959 papers were initially identified, six of which met sufficient criteria based on their relevance to be included within this review. All of the studies had significant limitations in design and methodology, including a lack of information on how groups were assigned, inconsistent handling and enrichment provision between groups, and lack of information on the socialisation status of cats.

Conclusions: Whilst some studies suggested that single housing may be less stressful for cats, others suggested group housing was less stressful. Several other important factors were however identified as potential mediators of stress within the different housing systems, and recommendations based upon these findings are presented.

Keywords: Cat, Feline, Stress, Housing, Welfare

* Correspondence: jenny.stavisky@nottingham.ac.uk
²Centre for Evidence-based Veterinary Medicine, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
Full list of author information is available at the end of the article

© 2014 Finka et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Background

Clinical scenario
Many cats are kept in captive environments such as rehoming centres (also referred to as rescues/shelters), often for indefinite periods of time. In trying to accommodate these individuals as optimally as possible, it is important that they are provided with suitable housing conditions, which aim to minimise exposure to stress in order to maximise welfare.

Whilst recommendations for the housing of the domestic cat in laboratories, rehoming centres and other facilities have been put forward [1-3], the strength of evidence in support of these recommendations is rarely considered critically, and can be contradictory. This study was conceived as part of the development of evidence-based guidelines on the housing of cats in such contained environments, specifically cat rehoming centres. The aim was to assess the evidence on whether housing cats singly as compared to groups of two or more in these types of environments results in changes to physiological and/or behavioural measures of stress, and therefore which system should be recommended as preferable in order to minimise stress.

Introduction

A recent survey of cat rehoming organisations within the UK estimated their total intake of cats over a 12 month period to be 156,826, and 70% of these organisations were usually or always operating at full capacity [4]. Unfortunately, the provision of optimal housing for such large quantities of cats within these environments is inherently difficult, and under such conditions there is the potential for individuals to develop signs of physical and psychological ill health.

As a species, *Felis catus* is thought to have originated from primarily solitary dwelling felids [5-7], and whilst populations of free living *F. catus* may reside in groups, they may also live independently [8-11]. The feline social system is therefore one of variability and flexibility. In cat colonies, social structuring, relationships and potential conflicts may be the result of complex interactions between age, gender, sex ratio, relatedness and individuality [12]. It is thought that the occurrence of group living and the subsequent population densities of free ranging cats are ultimately influenced by the abundance of food resources rather than an inherent need for protection or regular social contact/interaction *per se* [13-17]. In contrast to free ranging populations, group living in domestic companion cats may often take the form of temporary or transitory housing during a stay in a rehoming centre, or when living in a domestic home environment. In both contexts, individuals may have limited choice or control over the nature of their ‘group living’, especially when their environment prevents them from making the choice to live independently (for example, multiple cats kept in a single enclosure at a rehoming facility, or multiple cats kept strictly indoors in the home).

It is likely that most rehoming centres will contain diverse populations of cats of varied ages and temperaments. Some cats may be related or familiar with each other (which may facilitate more amicable relationships in certain instances [18]), but the majority are potentially unrelated and also unfamiliar. For many individuals, being forced to reside in close proximity to other cats under these types of conditions may result in stress, conflict and potentially compromised health and welfare [19,20]. Organisations caring for such animals often operate under conditions of limited resources of space, staffing, time and finances. Currently, there is conflict in which housing practices are recommended to maximise use of resources but simultaneously preserve a basic standard of welfare for the cats.

The aim of this study was therefore to review the evidence on the impact of single housing compared to multi-cat housing on stress in cats, as measured by physiological or behavioural effects.

Focussed clinical question

In [cats kept in confined environments] does [single housing compared to multi-cat housing] result in [changes in physiological and/or behavioural measures of stress]?

Methods

Search strategy

The search strategy included the use of three separate electronic databases; CAB Abstracts (1910 – present, via the Ovid interface), Zoological Records (1998 – 2007) and Medline (In-process & other non-indexed citations, 1946- present, via the Ovid interface). The search was conducted in October 2012.

After accounting for specific syntax associated with each database, each search had similar components (search terms are listed in Additional file 1) and all were searched as both keywords and subject heading terms, joined using Boolean operators. All references obtained were imported into Endnote, combined into a master database, and all duplicates (identified based on title, date published and authors) were removed.

Inclusion criteria

Studies were not excluded on any grounds of quality, only on relevance to the study aim. For inclusion, papers had to include:

- Domestic cats kept in an enclosed area from which they were unable to exit (omitting the domestic home), for example, rehoming centres, boarding catteries and laboratories.
Comparison of both single and multi-cat (i.e. two or more cats) housing conditions within a single study, with outcome measures that were either behavioural, physiological or both, and were classed as indicators of stress. Our working definition of stress was:

“an inferred internal state which denotes a real or perceived perturbation to an organism’s physiological homeostasis or psychological well-being”, as used by Ward et al. [21], and similar to that used by McEwen [22], as we felt it was appropriate to this context. However many other definitions exist [23-25], and in the present study papers were not included or excluded on the basis of this definition.

Original observed or experimental data.

Studies were also required to be peer-reviewed, with the full text available in English.

Screening process
Two stages of eligibility screening were carried out. The first stage was completed independently by two of the authors (LF and JS), and any references that clearly did not fit the eligibility criteria were excluded. After this, in stage two, the remaining references were screened again by all three authors. For this stage, full text was retrieved for any papers where the information contained within the abstract was deemed insufficient to make a decision upon eligibility. Where there was initial disagreement over eligibility, the papers were read and discussed until consensus was reached among the reviewers [26].

Critical appraisal
All remaining papers were independently appraised by all three authors, using critical appraisal tools developed by the Department for Emergency Medicine at Manchester Royal Infirmary (www.bestbets.org/) and used extensively in the literature [27-29]. These appraisals were then collated by the lead author (LF) into a summary table. All three authors re-checked this summary of evidence for consistency of interpretation.

Results
959 papers were initially identified. Following screening as in Figure 1, six papers fulfilled all of the inclusion criteria. The results of the appraisal can be seen in Table 1.

Summary of the evidence
The findings of the appraisals are summarised in Table 1. There was a lack of agreement overall as to whether single or multi-cat housing was associated with higher levels of stress. The majority of the studies (four out of six) showed no difference in stress levels between single and multi-cat housing [30-33]. However, one of these studies only compared single cats with those housed with one or two other familiar conspecifics and not with larger multi cat groups [33]. One study suggested that stress levels were higher in cats housed singly in barren environments as compared to singly and group-housed cats provided with varying levels of enrichment [34]. The final study included showed no difference in stress levels between single and group housing in socialised cats, but found that cats previously unsocialised to conspecifics showed fewer signs of stress when single housed [35].

There were significant limitations to all of the identified studies. These included differential treatment of the groups within the study. For example cats in the single housing conditions either had inconsistent handing [34], were exposed to their housing condition for a much shorter period of time [30,34], were deliberately given barren, non-enriched housing [34], or experienced a non-stable environment over the course of the study period [30], when compared with group-housed cats. Sample size calculation was performed in only one study
To investigate levels of stress in cats housed singly, in pairs and in groups.

To provide recommendations for the most suitable housing type for cats with known socialization status.

To compare stress levels for the most suitable housing type for cats with known socialization status in newly arrived cats to a longer-term control group.

Stress and adaptation of socialization and stress in cats (Felis silvestris catus) housed singly, in pairs and in groups in boarding catteries.

Cat housing in rescue shelters: A welfare comparison between communal and discrete-unit housing.

The effect of housing and handling practices on the welfare, behaviour and selection of domestic cats (Felis silvestris catus) by adopters in an animal shelter.

Socialization and stress in cats (Felis silvestris catus) housed singly and in groups in animal shelters.

Stress and adaptation of cats (Felis silvestris catus) housed singly, in pairs and in groups in boarding catteries.

Table 1 Summary of appraisal of the six papers meeting the inclusion criteria of assessing single versus multi-cat environments on physiological and behavioural measures of stress in confined domestic cats

Author, date and title	Study design	Stated aim of paper	Subjects	Environment prior to study
Uetake and others [30]	Randomised controlled trial	To provide information on the minimum spatial requirement for singly caged cats in animal shelters	6 cats between 2–15 years old residing in an animal shelter	All cats had previously been kept in a socially stable group environment for at least 7 months
Lichtsteiner and Turner [31]*	Controlled trial	The relevant aim was to determine “whether the urinary cortisol levels of the cats are related to environmental parameters…” additionally the cortisol levels of cats from private households were compared with shelter cats to check for an influence of location	Twenty-one shelter cats	All cats had lived in the shelter for at least 3 weeks and were considered “adaptable”
Fraser D [34]	Randomised controlled trial	To examine how different housing and handling conditions affected the welfare, behaviour, adoption rate and selection of individual cats by adopters	165 cats entering an animal shelter	All cats had been in the shelter for at least 7 months
Ottway, D. S. & Hawkins, D. M. [33]*	Cohort	To test the hypothesis that, in long-term shelter care, cats housed communally with unfamiliar conspecifics experience higher levels of stress than do cats housed in discrete units, due to inappropriate and unstable social grouping	74 cats residing in 2 animal shelters, randomly selected from the shelter population	All cats had been in the environment for at least 1 month
Kessler M. R. & Turner D. C. [35]	Randomised controlled trial	To provide recommendation for the most suitable housing type for cats with known socialization status	169 cats between 1–8 years old residing within an animal shelter	Excluded: cats having been in the shelter < 1 month
Kessler M. R. & Turner D. C. [32]	Cohort	To investigate levels of stress in cats housed singly, in pairs and in groups	140 cats between 1–15 years old, residing in a boarding cattery in 2 categories, plus a “control” group of 45 un-owned cats	Excluded: ill cats, “highly stressed” cats (in “control” group only)

Table 1: Summary of appraisal of the six papers meeting the inclusion criteria of assessing single versus multi-cat environments on physiological and behavioural measures of stress in confined domestic cats.

The table includes details of the study design, stated aim of the paper, subjects, and environment prior to the study for each of the six papers. The information is provided in a structured format, making it easier to compare and analyze the studies.
Table 1 Summary of appraisal of the six papers meeting the inclusion criteria of assessing single versus multi-cat environments on physiological and behavioural measures of stress in confined domestic cats (Continued)

Intervention/group definition	Outcome measures (refer to Table 2 for further information on measures)	Data collection period and frequency of relevant measures taken to assess stress.
All individuals were exposed either to small, medium or large single cages in varying orders, all without human social contact. This was compared with their baseline stress levels when previously group housed (it is assumed the group size at this point was six)	- Urinary cortisol: creatinine ratios	- Cats were exposed to each condition for six days, i.e. the study period was a total of 18 days
Two groups, comprising six and seven cats housed communally	- Urine cortisol: creatinine ratio on a single voided sample	- Behavioural observations made over 3 hours during the last 2 days in each of the different housing conditions
Four of these group-housed cats were removed from each group and housed singly for one week prior to being sampled	- Cat Stress Scores (CSS)	- Urine samples were collected in the morning and evening of each day and then averaged, repeated each day of the study period
Assigned to one of four housing conditions:	- Outcome of stay i.e. adopted, not adopted, euthanized or isolated for physical health reasons	- A single urine sample was taken for each cat on a convenience basis during the study period (14 days).
- basic single (minimal human interaction)	- Time to adoption	- The study period lasted 21 days
- enriched single (with consistent human handling and human interaction)		- Cats were observed for 2 minutes each day, and assigned a Cat Stress Score for the first 10 days of the study period, however, not all cats were assessed for the full 10 days
- basic communal (eight cats per group), with consistent human handling and human interaction		- Data on individuals was collected each day over 15 consecutive week days, however, it is unclear if all cats were sampled for full duration due to cat turnover during the study period
- enriched communal (eight cats per group), with consistent human handling and human interaction and extra hiding places and toys		- Cats instantaneously scan sampled and assigned a CSS each day, every 30 minutes from 08:30 am to 15:30. All other behavioural data was collected via one-zero sampling in between each scan interval
In one shelter, individuals were already housed communally in one of three groups (either 33, 47 or 65 individuals per group)		- Data collected over a 7 day period
In the other, 12 cats were housed in pairs and nine cats were divided into threes. These cats were previously socialised together or siblings. Additionally, 15 cats were housed singly		- Cat-Stress-Score was assessed every 10 minutes during the first hour post placement into the test condition, then twice (within a 15-min interval) after 6 hours. For the following days, 2 observations were made in the morning and 2 in the evening
Cats housed in individual units or in a group enclosure (specific group sizes unspecified but at least >5)		- Data collected over 14 days
“Control” cats (45) were living in six groups (size unspecified), which had been stable and un-altered for at least 2 weeks prior to the study		- CSS were initially recorded after the first two hours of entry into the test environment and were then taken 4 times daily, each day, twice in the morning and twice in the evening
Boarding cats housed singly (60), in pairs (40) or groups (40) (each group size unspecified but at least >2) according to owner preference		

Data collection period and frequency of relevant measures taken to assess stress.

- Urine samples were collected from each cat on a convenience basis and then averaged, repeated each day of the study period.
- CSS taken 4 x daily
- CSS were initially recorded after the first two hours of entry into the test environment and were then taken 4 times daily, each day, twice in the morning and twice in the evening.

Reference:
Finka et al. BMC Veterinary Research 2014, 10:73
http://www.biomedcentral.com/1746-6148/10/73
Key results	Conclusion	Main limitations
• Time spent in locomotion and solitary play were lower in individual cages than in group housing conditions	• The experience of cats being exposed to a rotation of individual cages of varying sizes for 18 consecutive days (6 days in 3 different cages) appears to be more physiologically stressing than when they are housed in a familiar group environment, with no intervention	• No sample size calculation, but sample size very small.
• Urinary cortisol:creatinine ratios were highly variable in group housing conditions	• Group versus single housing did not result in a significant difference in cortisol:creatinine ratios	• No blinding of observer
• No statistically significant differences between groups	• Cats in barren single housing had higher stress levels than cats in the other 3 housing types and lowest adoption rates	• Insufficient detail to determine if groups were comparable at baseline
• CSS were highest in the basic single housing treatment	• Whether cats are housed individually or with one to two other familiar conspecifics does not appear to differentially affect stress levels	• No blinding of observer
• These cats also had the lowest adoption rate.	• Housing cats in large groups appears to be more stressful than housing cats in discrete units (1–3 individuals in a single unit)**	• Insufficient detail to determine if groups were comparable at baseline
• No significant differences noted between other housing conditions	• Cats which have not been previously socialised to humans may find the shelter environment more stressful than those accustomed to humans	• Non-random assignment of cats to groups
• Cats that were considered non-socialised with people had higher CSS levels than those considered socialised, irrespective of housing type	• Cats which are not successfully socialised to conspecifics may find group housing more stressful than those socialised to conspecifics	• Randomisation method not described
• Overall CSS scores were higher in cats housed communally than cats housed in discrete units alone or with previously familiar conspecifics. Highest scores were only seen in communal housing**	• Group housed cats had higher CSS when a cat considered non-socialised to conspecifics entered the group, compared to when a cat considered socialised with conspecifics entered	• Comparisons made between two very different types of cats
• Play and resting/sleeping in close contact with conspecifics were observed in more instances in cats housed in pairs or threes than in communal housing**	• Cats considered non-socialised to conspecifics had lower CSS during the first hour of the study and on the last two days when housed singly compared with group housing	• No sample size calculation
• Agonistic encounters were observed in more instances in communal housing than in discrete–unit housing**		• No blinding of observer
• Cats considered non-socialised to conspecifics had higher CSS than those which were socialised to conspecifics, when housed in groups		• Insufficient detail to determine if groups were comparable at baseline
Table 1 Summary of appraisal of the six papers meeting the inclusion criteria of assessing single versus multi-cat environments on physiological and behavioural measures of stress in confined domestic cats (Continued)

Randomisation methods unclear	No detail of how cats were assigned to groups	Single cortisol: creatinine measure of uncertain significance	"Discretely-housed" cats could be housed singly, or in twos or threes with other cats they were previously socialised to. This limits the extent to which such comparisons meet the criteria of this CAT
Inappropriate comparisons used – stable enriched social group versus relatively barren single housing with minimal human contact	Groups not treated equally – all but basic single received extra human interaction causing potential confound	Validity of the CSS as a measure of 'Stress' in cats (see Table 2)	Sample size relatively small considering 8 sub-groups analysed
Stress measures may have related to barren environment/ frequent changes to housing conditions, especially in cats accustomed to a stable group housing situation	No physiological measures considered	No detail of how cats were assigned to groups	The validity of Cat-Approach and Human-Approach-Tests is questionable based on the methods used, (Non-conformity between the two different measures used to assess whether cats were socialised with conspecifics and with humans led to 30% of individuals being excluded from the data analysis)
Behavioural time budgets potentially a crude form of measurement to assess stress	Main aims of this study were not related to the topic of the CAT	No physiological measures considered	Excluding individuals that were 'highly stressed' a potential confounder
Behavioural time budgets potentially a crude form of measurement to assess stress	No physiological measures considered	No physiological measures considered	Validity of the CSS as a measure of 'Stress' in cats (see Table 2)

*The primary aims of this study were unrelated to the CAT question. However, a small sub-component of the study was relevant, and the critical review refers only to this portion.**

**This portion of the study relates to comparisons that did not meet the inclusion criteria of the CAT due to the way that data was concatenated prior to statistical comparison. Such results are however included because they are considered otherwise highly relevant to the topic of the CAT.
[33], and some of the studies involved very small numbers of cats, which in one case amounted to six cats each exposed to three different interventions [30]. In none of the studies was the assessor of the outcome blinded to the intervention.

Additionally, the diverse populations under study and variations in methodology complicate comparison. Group sizes in the multi-cat environment were variable, from 2 to eight [33,34]. The effect of population density was not assessed, as this information was not available for all studies; however this may clearly be a potential confounding factor. The previous social experience of the cats varied, with some cats living in established social groups [30], some having been assessed as non-socialised to other cats by shelter staff [35] and others with no known or stated history of socialisation. A cats prior social experience was identified by one study as a factor in its stress levels in group housing, and the same study showed that the introduction of an “unsocialised” cat to a stable group caused an increase in the stress levels of all of the cats under observation [35].

There were also substantial differences in duration of the data collection periods across all studies, ranging from a single instance [31] to fifteen days [34], which could have affected the extent to which the cats had the opportunity to habituate to their respective study environments, or resulted in some cats exhibiting acute and others chronic signs of stress.

Thus these studies may not be truly comparing single and multi-cat environments, so much as suggesting the presence of several other factors that may be equally important in determining stress levels. These include: how consistent handling and husbandry routines are [34], as well as the amount of environmental manipulation, such as changes in housing location and type, that the individual is exposed to [30]. In one study, stress levels in their stable, long-term and group housed control population were lower than in any other experimental condition (i.e. individual, pair and group) [32], suggesting that group stability (and presumably familiarity) were also important mitigators of stress levels.

Discussion

The majority of the studies did not find significant differences between single and group housed cats in regards to their stress levels. Whilst this may suggest that group size does not in fact impact upon the stress of confined cats in rehoming and similar environments, it is arguable whether this can be assumed unequivocally. This is due to the lack of overall agreement between studies, as indicated by the conflicting evidence found in two of four such studies [34,35], as well as the various confounding elements of study designs found throughout the reviewed papers. These included factors such as differential provision of enrichment or human contact between groups, differences in the cats’ socialisation and housing experience prior to the studies, and potential differences in sizes of groups in the group housing conditions. These results also suggest that a stable environment (both social and physical) may be an important factor in managing stress, and that some cats (such as those previously successfully socialised to conspecifics) may cope better in a multi-cat environment than those with little, or aversive previous experience of conspecifics. Therefore, when providing housing for cats, it is important to consider their likely prior social experience. When housing cats communally, keeping cats in large group sizes may also be more stressful than keeping them in smaller groups [33] although there is only a small amount of relevant data to support this, and it is possible that population density may also be a confounding factor.

Measuring stress in non-human animals is inherently difficult, and it is unlikely that any one measure can accurately capture how stressed an animal is [36,37]. However, the more separate (suitable) measures considered within a single study, the greater the potential for robustness. As there is no consistent definition used within the scientific literature for this term nor specific aetiology or prognosis for stress [23], it is important that where studies attempt to measure stress, a clear definition of this concept is given. This will facilitate in the ease of assessing the suitability of study methodology, as well as determining whether the main aims and objectives of a study have been achieved. All of the studies aimed to measure stress, but only one of them attempted to provide a clear definition of it [33]. Of the six papers that were critically appraised, only one study used both behavioural and physiological measures to assess stress [30] and only one used more than one set of behavioural outcome measures [33]. Only one study assessed whether the study cats were previously socialised with conspecifics [35], which again makes direct comparison between group housing conditions across the different studies difficult, because this appeared to influence the stress levels experienced by cats when housed in groups.

Comparison between the studies is further complicated by the variety of methods used to assess stress, all of which have their limitations (further details of these methods used are provided in Table 2). The duration of time over which individuals were exposed to specific housing conditions also varied considerably (both within and between studies). This affects the comparison of stress levels between cats under different housing conditions due to possible confounds of comparing cats which are acutely stressed (e.g. from being taken from stable enriched group housing to barren single housing) to cats which are chronically stressed, or to those that have
actually begun to habituate to their environment. The physiological and behavioural signs of acute as compared to chronic stress may vary [38,39] making it difficult to isolate the specific effects of the environment, from the effects of period of exposure, upon the stress levels experienced by cats. However, by implication, the acutely raised stress levels in some of the single housed cats may have been as attributable to the acute change in environment rather than to the actual housing condition itself.

Whether individuals have previous experience of the housing environment may also be another important mitigator of stress. Previous research indicates that cats that have been housed in rehoming centre environments previously may cope better under these conditions than those that have not [47]. It is unknown if any of the study populations within the appraised papers had been housed under such conditions before, but this may have been an important factor to consider.

Conclusion

On the basis of the evidence available, the below recommendations for practice have been provided. It is
however important to consider the complex nature of stress, and the methodological limitations of the above studies, in relation to their ability to help us isolate and assess the effects of multiple and single housing alone on stress in cats (Table 1). There are also numerous other factors which have not been considered here, particularly disease control, which is also of great importance in rehoming centres [48-50]. These results should draw attention to the importance of other potential mitigating factors which may influence how stressful single or multiple housing can be for individuals, and suggest ways these may be utilised practically to improve the welfare of confined cats in these types of environments.

Recommendations for practice

- Especially where the previous social history of cats towards conspecifics is unknown, individuals should be housed singly, but with the appropriate environmental enrichment in place (e.g. places to hide and perch, toys, consistent positive human handling where appropriate).
- Cats should be exposed to as few environmental changes/manipulations as possible during their stay and husbandry routines should be as consistent as possible.
- If cats are to be housed in groups, they should ideally be housed together with other cats considered socialised to conspecifics.
- If cats are to be housed in groups, or with those that are initially unfamiliar, wherever possible, groups should have a stable composition (i.e. group members are not constantly changed).

Additional file

Additional file 1: Search terms used in constructing the CAT.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LF carried out data collection, coordination, analysis and interpretation of data as well as the drafting of the manuscript. SE contributed towards the analysis and interpretation of data as well as critical revision of the manuscript. JS conceived of the study, participating in its design and coordination, data collection and critical revision of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
LF’s PhD is supported by International Cat Care. We also acknowledge the role of International Cat Care in generating the research question in the preparation of their guidelines for the management of un-owned domestic cats. The Centre for Evidence-based Veterinary Medicine is supported by an unrestricted grant from Novartis Animal Health and The University of Nottingham.

Author details
1School of Life Sciences, Faculty of Science, University of Lincoln, Riseholme Park, Lincoln, Lincolnshire LN2 2LG, UK. 2Centre for Evidence-based Veterinary Medicine, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonnington Campus, Loughborough LE12 8RD, UK.

Received: 28 May 2013 Accepted: 14 March 2014
Published: 22 March 2014

References
1. McCune S, Smith CP, Taylor V, Nicol C. Enriching the environment of the laboratory cat. In Environmental Enrichment Information Resources for Laboratory Animals. 1985–1995. Brad, Cats, Dogs, Farm Animals, Ferrets, Rabbits, and Rodents. DIANE Publishing, 1996:37–42.
2. Rochlitz I. Recommendations for the housing of cats in the home, in catteries and animal shelters, in laboratories and in veterinary surgeries. J Feline Med Surg 1999, 1(3):181–191.
3. Rochlitz I. Recommendations for the housing and care of domestic cats in laboratories. Lab Anim 2000, 34(1):1–9.
4. Stavisky J, Brennan M, Downes M, Dean R. Demographics and economic burden of un-owned cats and dogs in the UK: results of a 2010 census. BMC Vet Res 2012, 8(1):1–10.
5. Serpell JA. Domestication and History of the Cat. In The Domestic Cat: The Biology of its Behaviour. 2nd edition. Cambridge: Cambridge University Press; 2000:179.
6. Randi E, Ragni B. Genetic Variability and Biochemical Systematics of Domestic and Wild Cat Populations (Felis silvestris: Felidae). J Mammal 1991, 72(1):79–88.
7. Johnson W, O’Brien S. Phylogenetic reconstruction of the felidae using 16S rRNA and NADH-5 mitochondrial genes. J Mol Evol 1997, 44(1):596–5116.
8. Page R, Ross J, Bennett D. A study of the home ranges, movements and behaviour of the feral cat population at Avonmouth Docks. Wild Res 1992, 19(3):263–277.
9. Genovesi P, Besa M, Toso S. Ecology of a feral cat Felis catus population in an agricultural area of northern Italy. Wild Biol 1995, 1(4):233–237.
10. Fitzgerald BM, Karl BJ. Home range of feral house cats (Felis catus) in forest of the Ongorongoro Valley, Wellington, New Zealand. N Z J Ecol 1986, 9:71–82.
11. Devillard S, Say L, Pontier D. Dispersal pattern of domestic cats (Felis catus) in a promiscuous urban population: do females disperse or die? J Anim Ecol 2003, 72(2):203–211.
12. Macdonald DW, Yamaguchi N, Kerby G. Group-living in the Domestic Cat: Its Sociobiology and Epidemiology. In The Domestic Cat: The Biology of its Behaviour. Volume 2. 2nd edition. Cambridge: Cambridge University Press; 2000:119–118.
13. Turner DC, Mertens C. Home range size, overlap and exploitation in domestic farm cats (Felis Catus). Behaviour 1986, 99(1):22–45.
14. Natoli E. Spacing pattern in a colony of urban stray cats (Felis catus L.) in the historic centre of Rome. Appl Anim Behav Sci 1985, 14(3):289–304.
15. Mirmovitch V. Spatial organisation of urban feral cats (Felis Catus) in Jerusalem. Wild Res 1995, 22(3):299–310.
16. Ujberg O, Sandell M, Pontier D, Natoli E. Density, spatial organisation and reproductive tactics in the domestic cat and other felids. In The Domestic Cat: The Biology of its Behaviour. 2nd edition. Cambridge: Cambridge University Press; 2000:119–147.
17. Say L, Pontier D. Spacing pattern in a social group of stray cats: effects on male reproductive success. Anim Behav 2004, 68(1):175–180.
18. Bradshaw JW, Hall SL. Affiliative behaviour of related and unrelated pairs of cats in catteries: a preliminary report. Appl Anim Behav Sci 1999, 63(3):251–255.
19. van den Bos R. Post-conflict stress-response in confined group-living cats (Felis silvestris catus). Appl Anim Behav Sci 1998, 59(4):323–330.
20. Taraka A, Wagner DC, Kass PH, Hurley KF. Associations among weight loss, stress, and upper respiratory tract infection in shelter cats. J Am Vet Med Assoc 2012, 240(5):570–576.
21. Ward PA, Blanchard RL, Bolivar V. Recognition and Alleviation of Distress in Laboratory Animals. Washington (DC): The National Academies Press; 2008.
22. McEwen BS. Stress. In The MIT Encyclopedia of the Cognitive Sciences. Edited by Wilson RA, Keil F. Cambridge, Mass: MIT Press; 1999.
23. Moberg GP: Biological response to stress: implications for animal welfare. In *The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare*. 2000:1–21.

24. Dohms JE, Metz A: Stress — mechanisms of immunosuppression. *Vet Immunol Immunopathol* 1991, 30(1):89–109.

25. Blood DC, Radostits OM: *Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats and horses*. London: W. B. Saunders; 2000.

26. Liberati A, Athman DG, Tetelj J, Milrow C, Gatzschke P, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ* 2009, 339:b2700.

27. Garmsten FM, ter Haar NW, Spuls PI: House dust mite reduction in the management of atopic dermatitis: a critically appraised topic. *Br J Dermatol* 2013, 168(4):688–691.

28. Guinane S: The effectiveness of probiotics for managing diarrhoea in people with HIV infection: a critically appraised topic. *HIV Med* 2013, 14:187–190.

29. Nishijima DK, Zehtabchi S: Evidence-basedEmergency Medicine/Critically appraised topic. The efficacy of recombinant activated factor VII in severe trauma. *Ann Emerg Med* 2009, 54(5):737.

30. Uetake K, Goto A, Koyama R, Kikuchi R, Tanaka T: Effects of single caging and cage size on behavior and stress level of domestic neutered cats housed in an animal shelter. *Anim Sci J* 2013, 84(3):272–274.

31. Lichtsteiner M, Turner DC: Influence of indoor-cat group size and dominance rank on urinary cortisol levels. *Anim Welf* 2008, 17(3):215–237.

32. Kessler MR, Turner DC: Stress and adaptation of cats (Felis silvestris catus) housed singly, in pairs and in groups in boarding catteries. *Anim Welf* 1997, 6(3):249–254.

33. Ottway DS, Hawkins DM: Cat housing in rescue shelters: a welfare comparison between communal and discrete-unit housing. *Anim Welf* 2003, 12(2):173–189.

34. Gourkow N, Fraser D: The effect of housing and handling practices on the welfare, behaviour and selection of domestic cats (Felis silvestris catus) by adopters in an animal shelter. *Anim Welf* 2006, 15(4):371.

35. Kessler MR, Turner DC: Socialization and stress in cats (Felis silvestris catus) housed singly and in groups in animal shelters. *Anim Welf* 1999, 8(1):15–26.

36. Dawkins MS: *Animal Suffering: The Science of Animal Welfare*. London: Chapman and Hall Ltd; 1980.

37. Mason G, Mendell M: Why is there no simple way of measuring animal welfare? *Anim Welf* 1993, 2(4):301–319.

38. Rostamkhan F, Zardooc H, Zahediasl S, Farrokh B: Comparison of the effects of acute and chronic psychological stress on metabolic features in rats. *J Zhejiang Univ Sci B* 2012, 13(11):904–912.

39. Dhabhar FS, McEwen BS: Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. *Brain Behav Immun* 1997, 11(4):286–305.

40. McCune S: Temperament and the Welfare of Caged Cats. InDoctoral dissertation. Cambridge: University of Cambridge; 1992.

41. McCobb EC, Patonnek JG, Marder A, Dinnage JD, Stone MS: Assessment of stress levels among cats in four animal shelters. *J Am Vet Med Assoc* 2005, 226(4):548–555.

42. Hawkins KR: *Stress, Enrichment and the Welfare of Domestic Cats in Rescue Shelters*. In Doctoral Dissertation. Bristol: University of Bristol, 2005.

43. Carlotti DN, Gugnot P, Meissonnier E, Gemen PA: Eradication of feline dermatophytosis in a shelter: a field study. *Vet Dermatol* 2010, 21(3):259–266.

44. Bahr NI, Pryce C, Dobeli M, Martin RD: Evidence from urinary cortisol that maternal behavior is related to stress in gorillas. *Dev Psychobiol* 1998, 33(1):21–31.

45. Dettling A, Pryce CR, Martin RD, Dobeli M: Physiological responses to parental separation and a strange situation are related to parental care received in juvenile Goeldi’s monkeys (Callimico goeldii). *Dev Psychobiol* 1998, 33(1):21–31.

46. Gourkow N, Lalvoy A, Dean GA, Phillips CJC: Associations of behaviour with secretory immunoglobulin A and cortisol in domestic cats during their first week in an animal shelter. *Appl Anim Behav Sci* 2014, 150(5–6):54.

47. McCune S: Caged cats: avoiding problems and providing solutions. *Newsletter of the Companion Animal Study Group* 1994, 71:1–9.

48. Bannasch MJ, Foley JE: Epidemiologic evaluation of multiple respiratory pathogens in cats in animal shelters. *J Feline Med Surg* 2005, 7(2):109–119.