Controlling postoperative ileus by vagal activation

Tim Lubbers, Wim Buurman, Misha Luyer

Introduction

Postoperative ileus is a frequently occurring surgical complication, leading to increased morbidity and hospital stay. Abdominal surgical interventions are known to result in a protracted cessation of bowel movement. Activation of inhibitory neural pathways by nociceptive stimuli leads to an inhibition of propulsive activity, which resolves shortly after closure of the abdomen. The subsequent formation of an inflammatory infiltrate in the muscular layers of the intestine results in a more prolonged phase of ileus. Over the last decade, clinical strategies focusing on reduction of surgical stress and promoting postoperative recovery have improved the course of postoperative ileus. Additionally, recent experimental evidence implicated antiinflammatory interventions, such as vagal stimulation, as potential targets to treat postoperative ileus and reduce the period of intestinal hypomotility. Activation of nicotinic receptors on inflammatory cells by vagal input attenuates inflammation and promotes gastrointestinal motility in experimental models of ileus. A novel physiological intervention to activate this neuroimmune pathway is enteral administration of lipid-rich nutrition. Perioperative administration of lipid-rich nutrition reduced manipulation-induced local inflammation of the intestine and accelerated recovery of bowel movement. The application of safe and easy to use antiinflammatory interventions, together with the current multimodal approach, could reduce postoperative ileus to an absolute minimum and shorten hospital stay.

Abstract

Postoperative ileus is a frequently occurring surgical complication, leading to increased morbidity and hospital stay. Abdominal surgical interventions are known to result in a protracted cessation of bowel movement. Activation of inhibitory neural pathways by nociceptive stimuli leads to an inhibition of propulsive activity, which resolves shortly after closure of the abdomen. The subsequent formation of an inflammatory infiltrate in the muscular layers of the intestine results in a more prolonged phase of ileus. Over the last decade, clinical strategies focusing on reduction of surgical stress and promoting postoperative recovery have improved the course of postoperative ileus. Additionally, recent experimental evidence implicated antiinflammatory interventions, such as vagal stimulation, as potential targets to treat postoperative ileus and reduce the period of intestinal hypomotility. Activation of nicotinic receptors on inflammatory cells by vagal input attenuates inflammation and promotes gastrointestinal motility in experimental models of ileus. A novel physiological intervention to activate this neuroimmune pathway is enteral administration of lipid-rich nutrition. Perioperative administration of lipid-rich nutrition reduced manipulation-induced local inflammation of the intestine and accelerated recovery of bowel movement. The application of safe and easy to use antiinflammatory interventions, together with the current multimodal approach, could reduce postoperative ileus to an absolute minimum and shorten hospital stay.
per patient who develops ileus\cite{5}. The additional health care costs in the US have been estimated to be 1.5 billion US\$ annually\cite{35}. Increased insight into the pathophysiology and discovery of novel treatment options could diminish the length of postoperative ileus, decrease patient morbidity, and reduce hospital costs.

PATHOPHYSIOLOGY OF POSTOPERATIVE ILEUS

The pathophysiology underlying postoperative ileus is complex and multifactorial, consisting of endogenous and pharmacological characteristics. Recent experimental studies have demonstrated that the pathogenesis of the endogenous component of postoperative ileus can be grossly divided in two distinct phases\cite{1}. The first phase, or neural phase, results from activation of mechanoreceptors and nociceptors by stimuli, such as incision of the skin and, more importantly, by direct manipulation of the intestine\cite{7}. Activation of these receptors initiates a neural reflex, which is dependent on release of mediators, such as \(\alpha \)-calcitonin gene-related peptide and substance P, which inhibit gastrointestinal motility and result in generalized intestinal hypomotility\cite{8-10}. The neural phase of postoperative ileus lasts minutes to hours and resolves after closure of the wound when the noxious stimuli have ceased\cite{9,11,12}. The motility of the colon in particular depends heavily on input from the autonomic nervous system, which might explain colonic susceptibility to isolated and prolonged ileus\cite{13}.

The second, more protracted, inflammatory phase is caused by formation of an inflammatory infiltrate in the muscular layers of the intestine\cite{14,15}. Manipulation of the intestine initiates an inflammatory cascade starting with activation and degranulation of mast cells\cite{16-18}. Subsequently, resident macrophages are activated either via mast cell-derived mediators or by luminal antigens\cite{17,19,20}. These activated macrophages produce cytokines and chemokines, which attract neutrophils to the muscular layer of the intestine. Invaded neutrophils directly impair intestinal smooth muscle cell contractility via release of nitric oxide and prostaglandins\cite{21,22}. The formation of an inflammatory infiltrate not only impairs motility in the manipulated areas, but also leads to generalized hypomotility of the gastrointestinal tract via activation of inhibitory adrenergic neural pathways. There is emerging evidence that inflammation also plays a vital role in postoperative ileus in humans, therefore a major focus of current research has been directed at the development of antiinflammatory treatments\cite{18,23,24}. In experimental models of intestinal manipulation, it was demonstrated that administration of antiinflammatory agents, such as mast cell stabilizers\cite{17}, non-steroidal antiinflammatory drugs\cite{25,26}, and interleukin (IL)-10\cite{27}, prevent development of postoperative ileus. In addition, it was recently shown in patients undergoing major abdominal surgery that an intervention with the mast cell stabilizer, Ketotifen, reduced gastroparesis\cite{24}.

CLINICAL STRATEGIES TO TREAT POSTOPERATIVE ILEUS

A number of strategies for preventing postoperative ileus are combined in the so-called fast-track program. The goals of fast-track surgery are reduction of perioperative surgical stress and promotion of postoperative recovery. Adequate pain relief, minimal invasive surgery and early enteral nutrition are important to achieve these goals\cite{28}. Adequate pain relief can attenuate postoperative ileus in two important ways. First, intraoperative spinal anesthesia and postoperative epidural analgesia with local anesthetics during abdominal surgery reduce the neural phase of ileus by interruption of neural transmission. Second, local anesthetic interventions minimize the use of opioid-derivatives\cite{29,30}. Both endogenous opioids, released in response to noxious stimuli, and exogenous opioids are notorious for their inhibitory effect on gastrointestinal motility, thereby aggravating postoperative ileus\cite{31}. Blocking the \(\mu \)-opioid receptor with Alvimopan, a selective, peripherally active antagonist, has been demonstrated to accelerate recovery of bowel function and decrease hospital stay, without affecting the analgesic effects of opioids\cite{32,33}. In addition, non-steroidal antiinflammatory drugs seem promising for their opioid-sparing and antiinflammatory effects\cite{34,35}. However, caution should be taken as the use of cyclo-oxygenase-2 inhibitors after colonic surgery has been associated with increased anastomotic leakage\cite{36}.

Surgical trauma and direct manipulation of the intestine are major factors in the occurrence of postoperative ileus. The degree of gastrointestinal hypomotility correlates with the degree of manipulation and intestinal inflammation\cite{19}. The introduction of minimally invasive techniques, such as laparoscopy, significantly reduced the duration of postoperative ileus and length of hospital stay\cite{28}. This improvement is probably due to minimization of trauma, resulting in less pain and a diminished release of neurotransmitters and inflammatory mediators\cite{14,28,37}.

Finally, enteral nutrition is found to be essential for enhanced recovery after surgery. Ingestion of nutrients elicits various reflexes and releases several neuropeptides that promote gastrointestinal motility\cite{38,39}. Traditionally however, a nil-by-mouth regime is often enforced starting from several hours before surgery until days postoperatively. Recent studies have demonstrated that early enteral nutrition is safe and well tolerated after abdominal surgery. In addition, early enteral nutrition reduces postoperative ileus and length of hospital stay\cite{40,41}. Unfortunately, studies investigating the effect of early enteral nutrition on postoperative ileus remain difficult to interpret, as the studies often lack essential information on the type of analgesia that was used\cite{2}. Enteral nutrition is a promising intervention to treat ileus; however, future well-designed studies are needed to evaluate the effect of early enteral nutrition on intestinal motility. When implementing early enteral nutrition routinely,
caution should be taken, as there is a small chance that enteral nutrition could lead to intestinal ischemia in the circulatory compromised patient[42,43].

The implementation of fast-track regimes in the surgical field has improved the course of postoperative ileus. However, despite these efforts, it still remains an important clinical challenge. Inhibition of the inflammatory phase, by targeting the cellular and molecular changes underlying postoperative ileus is another focus of treatment.

EXPERIMENTAL STRATEGIES TO CONTROL POSTOPERATIVE ILEUS

The inflammatory phase dominates the course of postoperative ileus. Novel experimental interventions aimed at preventing the activation of inflammatory cells, such as administration carbon monoxide[44,45], pretreatment with blocking antibodies to intracellular adhesion molecule-1 and lymphocyte function-associated antigen-1[46,47], inactivating macrophages[47], and preventing mast cell activation[48], have displayed promising results in reducing gastrointestinal hypomotility. Borovikova et al[49] described a novel approach for modulating the inflammatory response; electrical stimulation of the vagus nerve attenuates systemic inflammation in a murine endotoxin model. Stimulation of the vagus nerve modulates inflammation via release of acetylcholine that binds to nicotinic receptors on inflammatory cells, hence the term “cholinergic anti-inflammatory pathway”[48]. In addition, the vagus nerve has recently been identified as an important modulator of intestinal health; loss of vagal integrity aggravates intestinal inflammation and augments loss of gut barrier function[51,52].

In a murine model of intestinal manipulation, electrical stimulation of the vagus nerve ameliorates postoperative gastrointestinal hypomotility via inhibition of local intestinal inflammation. Vagal stimulation activates the α7 nicotinic acetylcholine receptor on intestinal macrophages and attenuates release of pro-inflammatory cytokines via the Jak2-Stat3 signaling pathway[53]. Furthermore, administration of the selective α7 receptor agonist, AR-R17779, prevented postoperative ileus in mice[54]. Although very effective in preventing postoperative ileus in animal models, caution should be taken when implementing electric vagus stimulation and pharmacologic interventions in patients. Electrical stimulation remains an invasive procedure, while pharmacologic stimulation of nicotinic receptors might cause unwanted stimulation of different cell types and organs[55,56].

A more physiological way to activate the vagal anti-inflammatory pathway is by administration of enteral nutrition enriched with lipids. Administration of lipid-rich nutrition prior to, or following, hemorrhagic shock attenuates systemic inflammation and preserves intestinal integrity[57,58]. These positive effects of lipid-rich nutrition on gut barrier function and systemic inflammation are specific for the amount of lipids in the nutrition, as a low-lipid control feeding did not exert these protective effects. The enteral presence of lipids activates the autonomic nervous system via cholecystokinin (CCK) receptors. Subsequently, inflammation is inhibited through activation of nicotinic receptors on inflammatory cells via the efferent vagus[59]. Enteral administration of lipid-rich nutrition was demonstrated to reduce postoperative ileus in a rodent model of intestinal manipulation[16]. Enteral nutrition enriched with lipids prevented degranulation of mast cells, inhibited release of macrophage-derived tumor necrosis factor-α and IL-6, and prevented influx of neutrophils into the intestinal muscularis to a greater extent than the control, low-lipid, nutrition. More importantly, the beneficial effect of lipid-rich nutrition on manipulation-induced local inflammation promoted gastrointestinal transit in a CCK-receptor-dependent manner[60]. These findings indicate that lipid-rich nutrition reduces postoperative ileus via activation of the nutritional antiinflammatory pathway. Luminal lipids are known to activate the autonomic nervous system via CCK-mediated stimulation of peripheral CCK-1 receptors on afferent vagal fibers, resulting in several regulatory digestive functions, such as satiety[61]. Therefore, the antiinflammatory potential of lipid-rich enteral nutrition could rely on activation of a nutritional CCK-dependent vagovagal reflex.

Interestingly, sham feeding is another physiological technique that activates the cephalic vagal axis by mimicking food intake, thereby stimulating bowel motility[62,63]. Furthermore, activation of the cephalic phase elicits digestive functions via vagovagal cholinergic reflexes[60]. Sham feeding by chewing gum has been shown to improve bowel movement and reduce time to first flatus and first defeation after open gastrointestinal surgery, and demonstrates a trend towards a reduced hospital stay[62,63]. However, the exact mode of action remains to be investigated.

CONCLUSION

Surgical interventions, and abdominal surgery in particular, are frequently accompanied by the occurrence of postoperative ileus. Postoperative ileus is a multifactorial surgical complication that requires a multifactorial treatment approach. Minimal invasive surgery to reduce surgical stress, epidural analgesia to block inhibitory reflexes, minimizing opioid use, and attenuation of intestinal inflammation by antiinflammatory interventions should reduce postoperative ileus to a minimum. The development of safe and easy-to-use treatments to prevent intestinal inflammation will play a key role in controlling postoperative ileus and deserves further investigation. Stimulation of the vagal antiinflammatory pathway, by interventions such as enteral administration of lipids, is one of the promising interventions contributing to a further reduction of postoperative ileus.

REFERENCES

1. Bauer AJ, Boeckxstaens GE. Mechanisms of postoperative ileus. Neurogastroenterol Motil 2004; 16 Suppl 2: 54-60
Lubbers TE et al. Vagal control over postoperative ileus

2 Holte K, Kehlet H. Postoperative ileus: a preventable event. Br J Surg 2000; 87: 1480-1493

3 Livingston EH, Passaro EP Jr. Postoperative ileus. Dig Dis Sci 1990; 35: 121-132

4 Story SK, Chamberlain RS. A comprehensive review of evidence-based strategies to prevent and treat postoperative ileus. Dig Surg 2009; 26: 265-275

5 Johnson MD, Walsh RM. Current therapies to shorten postoperative ileus. Cleve Clin J Med 2009; 76: 641-648

6 Kraft MD. Methylxanthine, a new peripherally acting mu-opioid receptor antagonist being evaluated for the treatment of postoperative ileus. Expert Opin Investig Drugs 2008; 17: 1365-1377

7 de Jonge WJ, van den Wijngaard RM, The FO, ter Beek ML, Bennink RJ, Tytgat GN, Buijs RM, Reitsma PH, van Deventer SJ, Boeckxstaens GE. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology 2003; 125: 1157-1147

8 Plourde V, Wong HC, Walsh JH, Raybould HE, Taché Y. CGRP antagonists and capsaicin on celiac ganglia partly prevent postoperative gastric ileus. Peptides 1993; 14: 1225-1229

9 Zittel TT, Lloyd KC, Rothenhöfer I, Wong H, Walsh JH, Raybould HE. Calcitonin gene-related peptide and spinal afferents partly mediate postoperative colonic ileus in the rat. Surgery 1998; 123: 518-527

10 Luckey A, Livingston E, Taché Y. Mechanisms and treatment of postoperative ileus. Arch Surg 2003; 138: 206-214

11 Holzer P, Lippe JT, Holzer-Petsche U. Inhibition of gastrointestinal transit due to surgical trauma or peritoneal irritation is reduced in capsaicin-treated rats. Gastroenterology 1986; 91: 360-363

12 Boeckxstaens GE, Hirsch DP, Kodee A, Moojen TM, Blackshaw A, Tytgat GN, Blommairaert PJ. Activation of an adrenergic and vagically-mediated NANC pathway in surgery-induced fundic relaxation in the rat. Neurogastroenterol Motil 1999; 11: 467-474

13 Baig MK, Wexner SD. Postoperative ileus: a review. Dis Colon Rectum 2004; 47: 516-526

14 Kalff JC, Buchholz BM, Eskandari MK, Gerkin TM, Bauer AJ. Biphasic response to gut manipulation and temporal correlation of cellular infiltrates and muscle dysfunction in rat. Surgery 1999; 126: 498-509

15 Kalff JC, Carlos TM, Schraut WH, Billiar TR, Simmons RL, Bauer AJ. Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology 1999; 117: 378-387

16 Lubbers T, Luyer MD, de Haan JA, Hadfoune M, Buurman WA, Greve JW. Lipid-rich enteral nutrition reduces postoperative ileus in rats via activation of cholecystokinin receptors. Br J Surg 2009; 96: 806-814

17 de Jonge WJ, The FO, van der Coelen D, Bennink RJ, Reitsma PH, van Deventer SJ, van den Wijngaard RM, Boeckxstaens GE. Mast cell degranulation during abdominal surgery initiates postoperative ileus in mice. Gastroenterology 2004; 127: 535-545

18 The FO, Bennink RJ, Ankum WM, Buist MR, Busch OR, Gouma DJ, van der Heide S, van den Wijngaard RF, de Jonge WJ, Boeckxstaens GE. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus. Gut 2008; 57: 53-60

19 Kalff JC, Schraut WH, Simmons RL, Bauer AJ. Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus. Ann Surg 1998; 228: 652-663

20 Schwarz NT, Beer-Stolz D, Simmons RL, Bauer AJ. Pathogenesis of paralytic ileus: intestinal manipulation opens a transient pathway between the intestinal lumen and the leukocytic infiltrate of the jejunal muscularis. Ann Surg 2002; 235: 31-40

21 Kalff JC, Schraut WH, Billiar TR, Simmons RL, Bauer AJ. Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology 2000; 118: 316-327

22 Schwarz NT, Kalff JC, Türling A, Engel BM, Watkins SC, Billiar TR, Bauer AJ. Prostanoid production via COX-2 as a causative mechanism of rodent postoperative ileus. Gastroenterology 2001; 121: 1354-1371

23 Kalff JC, Türling A, Schwarz NT, Schraut WH, Lee KK, Tweardy D, Billiar TR, Simmons RL, Bauer AJ. Intra-abdominal activation of a local inflammatory response within the human muscularis externa during laparotomy. Ann Surg 2003; 237: 301-315

24 The FO, Buist MR, Lei A, Bennink RJ, Holand J, van den Wijngaard RM, de Jonge WJ, Boeckxstaens GE. The role of mast cell stabilization in treatment of postoperative ileus: a pilot study. Ann J Gastroenterol 2009; 104: 2257-2266

25 Kreiss C, Birder LA, Kiss S, VanBibber MM, Bauer AJ. COX-2 dependent inflammation increases spinal Fos expression during rodent postoperative ileus. Gut 2003; 52: 527-534

26 Schmidt J, Stoffels B, Nazir A, Dehaven-Hudkins DL, Bauer AJ. Alvimopan and COX-2 inhibition reverse opioid and inflammatory components of postoperative ileus. Neurogastroenterol Motil 2008; 20: 689-699

27 Stoffels B, Schmidt J, Nakao A, Nazir A, Chanthaphavong RS, Bauer AJ. Role of interleukin 10 in murine postoperative ileus. Gut 2009; 58: 648-660

28 Kehlet H, Wilmore DW. Evidence-based surgical care and the evolution of fast-track surgery. Ann Surg 2008; 248: 189-198

29 Holte K, Kehlet H. Epidural anaesthesia and analgesia - effects on surgical stress responses and implications for postoperative nutrition. Clin Nutr 2002; 21: 199-206

30 Kehlet H, Mogensen T. Hospital stay of 2 days after open sigmoidectomy with a multimodal rehabilitation programme. Br J Surg 1999; 86: 227-230

31 Schmidt WK. Alvimopan* (ADL 8-2698) is a novel peripheral opioid antagonist. Ann J Surg 2001; 182: 275-285

32 Taguchi A, Sharma N, Saleem RM, Sessler DI, Carpenter RL, Seyedsadr M, Kurz A. Selective postoperative inhibition of gastrointestinal opioid receptors. N Engl J Med 2001; 345: 935-940

33 Wolf BG, Michelassi F, Gerkin TM, Techner L, Gabriel K, Du W, Wallin BA. Alvimopan, a novel, peripherally acting mu opioid antagonist: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and postoperative ileus. Ann Surg 2004; 240: 728-734; discussion 734-735

34 Sim R, Cheong DM, Wong KS, Lee BM, Liew QY. Prospective randomized, double-blind, placebo-controlled study of pre- and postoperative administration of a COX-2-specific inhibitor as opioid-sparing analgesia in major colorectal surgery. Colorectal Dis 2007; 9: 52-60

35 Holte K, Andersen J, Jakobsen DH, Kehlet H. Cyclooxygenase 2 inhibitors and the risk of anastomotic leakage after fast-track colorectal surgery. Br J Surg 2009; 96: 650-654

36 Schwenk W, Haase O, Neudecker J, Müller JM. Short term benefits for laparoscopic colorectal resection. Cochrane Database Syst Rev 2005; CD003145

37 Sylla P, Kirman I, Whelan RL. Immunological advantages of advanced laparoscopy. Surg Clin North Am 2005; 85: 1-18, vii

38 Helman CA. Chewing gum is as effective as food in stimulating cephalic phase gastric secretion. Ann J Gastroenterol 1988; 83: 640-642

39 Person B, Wexner SD. The management of postoperative ileus. Curr Probl Surg 2006; 43: 6-65

40 Lewis SJ, Andersen HK, Thomas S. Early enteral nutrition within 24 h of intestinal surgery versus later commence-
ment of feeding: a systematic review and meta-analysis. J Gastrointest Surg 2009; 13: 569-575

41 Mingi L, Biffi R, Zanagnolo V, Attanasio A, Beltrami C, Bocchiole L, Botteri E, Colombo N, Iodice S, Landoni F, Peiretti M, Roviglione G, Maggioni A. Early oral versus "traditional" postoperative feeding in gynecologic oncology patients undergoing intestinal resection: a randomized controlled trial. Ann Surg Oncal 2009; 16: 1660-1668

42 Spalding DR, Behranwala KA, Straker P, Thompson JN, Williamson RC. Non-occlusive small bowel necrosis in association with feeding jejunostomy after elective upper gastrointestinal surgery. Ann R Coll Surg Engl 2009; 91: 477-482

43 Berger MM, Chioriero RL. Enteral nutrition and cardiovascular failure: from myths to clinical practice. JPEN J Parenter Enteral Nutr 2009; 33: 702-709

44 De Backer O, Elincik E, Blancaert B, Leybaert L, Motterlini R, Lebefvre RA. Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut 2009; 58: 347-356

45 Moore BA, Otterbein LE, Türler A, Choi AM, Bauer AJ. Inhaled carbon monoxide suppresses the development of postoperative ileus in the murine small intestine. Gastroenterology 2003; 124: 377-391

46 The FO, de Jonge WJ, Bennink RJ, van den Wijngaard RM, Boeckxstaens GE. The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice. Br J Pharmacol 2005; 146: 252-258

47 Wehner S, Behrendt FF, Lyutenski BN, Lysson M, Bauer AJ, Hirner A, Kalff JC. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 2007; 56: 176-185

48 Borovikova LV, Ivanova S, Zhang M, Yang H, Botechnua GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405: 458-462

49 van der Zanden EP, Snoek SA, Heinsbroek SE, Stanisor DI, Verweijden C, Boeckxstaens GE, Peppelenbosch MP, Greaves DR, Gordon S, De Jonge WJ. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology 2009; 137: 1029-1039, 1039.e1-e4

50 Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulooa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384-388

51 O'Mahony C, van der Kleij H, Bienenstock J, Shanahan F, O'Mahony L. Loss of vagal anti-inflammatory effect: in vivo visualization and adoptive transfer. Am J Physiol Regul Integr Comp Physiol 2009; 297: R1118-R1126

52 Ghia JE, Blennerhassett P, El-Sharkawy RT, Collins SM. The protective effect of the vagus nerve in a murine model of chronic relapsing colitis. Am J Physical Gastrointest Liver Physiol 2007; 293: G711-G719

53 de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 2005; 6: 844-851

54 The FO, Boeckxstaens GE, Snoek SA, Cash JL, Bennink R, Larosa GJ, van den Wijngaard RM, Greaves DR, de Jonge WJ. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology 2007; 133: 1219-1228

55 Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, Ashok M, Goldstein RS, Chavan S, Pavlov VA, Metz CN, Yang H, Czura CJ, Wang H, Tracey KJ. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 2007; 35: 2762-2768

56 Luyer M, Greve JW, de Haan J, Lubbers T, Buurman W. Are we finally taming inflammation? Crit Care Med 2007; 35: 2003-2004

57 de Haan JJ, Lubbers T, Hadfoune M, Luyer MD, Dejong CH, Buurman WA, Greve JW. Postshock intervention with high-lipid enteral nutrition reduces inflammation and tissue damage. Ann Surg 2008; 248: 842-848

58 Luyer MD, Buurman WA, Hadfoune M, Jacobs JA, Konstantinov SR, Dejong CH, Greve JW. Pretreatment with high-fat enteral nutrition reduces endotoxin and tumor necrosis factor-alpha and preserves gut barrier function early after hemorrhagic shock. Shock 2004; 21: 65-71

59 Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 2005; 202: 1023-1029

60 Raybould HE. Mechanisms of CCK signaling from gut to brain. Curr Opin Pharmacol 2007; 7: 570-574

61 Vásquez W, Hernández AV, García-Sabrido JL. Is gum chewing useful for ileus after elective colorectal surgery? A systematic review and meta-analysis of randomized clinical trials. J Gastrointest Surg 2009; 13: 649-656

62 Lunding JA, Nordström LM, Haukelid AO, Gilja OH, Berstad A, Hausken T. Vagal activation by sham feeding improves gastric motility in functional dyspepsia. Neurogastroenterol Motil 2008; 20: 618-624

63 Fitzgerald JE, Ahmed I. Systematic review and meta-analysis of chewing-gum therapy in the reduction of postoperative paralytic ileus following gastrointestinal surgery. World J Surg 2009; 33: 2557-2566

S-Editor Wang YR L-Editor Stewart GJ E-Editor Zheng XM