Aims and scope: The *Western Indian Ocean Journal of Marine Science* provides an avenue for the wide dissemination of high quality research generated in the Western Indian Ocean (WIO) region, in particular on the sustainable use of coastal and marine resources. This is central to the goal of supporting and promoting sustainable coastal development in the region, as well as contributing to the global base of marine science. The journal publishes original research articles dealing with all aspects of marine science and coastal management. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between humans and the coastal and marine environment. In addition, *Western Indian Ocean Journal of Marine Science* features state-of-the-art review articles and short communications. The journal will, from time to time, consist of special issues on major events or important thematic issues. Submitted articles are subjected to standard peer-review prior to publication.

Manuscript submissions should be preferably made via the African Journals Online (AJOL) submission platform (http://www.ajol.info/index.php/wiojms/about/submissions). Any queries and further editorial correspondence should be sent by e-mail to the Chief Editor, wiojms@fc.ul.pt. Details concerning the preparation and submission of articles can be found in each issue and at http://www.wiomsa.org/wio-journal-of-marine-science/ and AJOL site.

Disclaimer: Statements in the Journal reflect the views of the authors, and not necessarily those of WIOMSA, the editors or publisher.

Copyright © 2021 – Western Indian Ocean Marine Science Association (WIOMSA)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without permission in writing from the copyright holder.

ISSN 0856-860X
Composition and structure of the mangrove fish and crustacean communities of Vanga Bay, Kenya

Caroline Wanjiru¹*, Sonja Rueckert², Mark Huxham³

¹ Kenyatta University, Mombasa campus, PO Box 1678-80100, Mombasa, Kenya
² School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Room 3.B.36, Edinburgh, EH11 4BN, Scotland, United Kingdom
³ School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Room 7.B.04, Edinburgh EH11 4BN, Scotland, United Kingdom

* Corresponding author: wanjiru.caroline@ku.ac.ke

Abstract
Mangroves support coastal fisheries, particularly by providing nurseries for juvenile fish. However, much remains unknown about the fish and crustacean communities in mangroves and about the lifecycles and behaviours of individual species. This study is the first to describe the fish and crustacean communities in the Vanga mangrove ecosystem, the largest mangrove forest and the most important marine fisheries landing site in southern Kenya. Using fyke nets, 14 mangrove creek sites were sampled once every 3 months during spring tides, between September 2015 and September 2017. The sampling period covered the north east (NEM) and south east (SEM) monsoon seasons. A total of 1,879 fishes and 1,132 crustaceans were caught, represented by 59 and 16 species, respectively. Over 95% of the fishes caught were juveniles with 50% of both fish and crustacean species being of commercial importance. About 70% of the catch was dominated by only 6 fish species with Yarica hyalosoma and Acropoma japonicum contributing 44% of the total abundance. Penaeus semisulcatus and Penaeus indicus dominated the crustaceans. Fish abundances differed significantly between seasons, with the SEM catches almost three times higher than those in the NEM, while crustaceans displayed no clear seasonality. The study documents for the first time the fish and crustacean communities in Vanga mangroves and confirms their importance as juvenile habitat for commercial species. The importance of mangrove and near mangrove habitat as nursery habitat for both fish and crustaceans emphasizes the need for conservation particularly of seaward edges.

Keywords: nursery habitat, juvenile, size distribution, intertidal, seasons

Introduction
Estuarine habitats are often important nursery areas for juvenile fishes and crustaceans (Laegdsgaard and Johnson, 1995; Rozas and Minello, 1997; Sheridan and Hays, 2003; Barbier, 2011; Lefcheck et al., 2019). Nursery habitats are defined as areas that contribute disproportionately to adult populations of fish, with juveniles occurring in high densities, or achieving better growth or survival, or all of these combined (Beck et al., 2001). The nursery function of mangroves has been studied in most mangrove regions of the world, including South America and the Caribbean, South East Asia, Australia and East Africa (Primavera, 1997; Laegdsgaard and Johnson, 2001; Lugendo et al., 2007; Nagelkerken et al., 2008; Abrantes and Sheaves, 2009; Gajdzik et al., 2014). These studies and others give evidence that mangroves can provide shelter and food for juvenile fish, but it is still challenging to prove that these juveniles successfully move from mangrove nurseries to adult habitats (Beck et al., 2001; Gillanders et al., 2008). The scarcity of permanent residents in intertidal mangrove habitats means that fish within commonly found families such as Lethrinidae, Lutjanidae and Monodactylidae (Kimani et al., 1996; Wainaina et al., 2013), which may be heavily reliant on mangroves at a given site, must utilise other habitats as well.

Penaeid shrimp contribute to artisanal and commercial fisheries in the Western Indian Ocean (WIO) which includes mainland continental states of Kenya,
Tanzania, Mozambique and the small island states of Madagascar, Mauritius, Seychelles, Comoros and Reunion. The commercially important penaeid shrimp species in WIO nearshore habitats include: *Peneaeus indicus*, *Peneaues semisulcatus*, *Peneaues monodon* and *Metapeneaues monoceros* (Wakwabi and Mees, 1999; Macia, 2004) and have been shown to use mangrove habitats at various life stages (Rönnbäck et al., 1999; Crona and Rönnbäck, 2005). *P. indicus* has been found to prefer vegetated, muddy bottoms, and other species found in mangrove areas such as *Peneaues japonicus* prefer bare areas (due to its ability to burrow and hide from predators) while *P. semisulcatus* prefers deep, less clear waters (Macia, 2004; Crona and Rönnbäck, 2005; Munga et al., 2013). In Kenya, penaeid shrimp generally exhibit no seasonality (Ndoro et al., 2014).

Given the broad association between healthy mangrove ecosystems and fisheries production (e.g. Barbier, 2000), it is unfortunate that mangroves in the WIO region continue to face a wide range of anthropogenic pressures, such as overharvesting and conversion to other uses, which have resulted in long-term declines in extent and quality (Kairo et al., 2002; Ochiewo, 2004; Fulanda et al., 2009; Huxham et al., 2015). Securing a reliable and sustainable occurrence of fishes and crustaceans, for food and as well as for biodiversity, will require sound mangrove and coastal management, which ideally should be informed by a better understanding of how fishes and other fauna are using the habitat. However, conducting the research that would allow this is difficult; sampling mobile fishes and crustaceans within mangrove forests is challenging. The complex root network in mangroves makes it difficult to use most conventional fish sampling gear to carry out effective and quantitative sampling. Faunce and Serafy (2005) highlighted that most mangrove fish sampling surveys conducted between 1955 - 2005 had failed to sample inside the mangrove forest due to such limitations. Instead, many studies on mangrove fishes restricted sampling to adjacent bays or large, permanently inundated creeks. Whilst this literature provides important insights into the range of species present, doubts remain over whether, and to what extent, individual fish captured adjacent to mangroves venture into the forest at high tide. It is possible that some or many of these species that use permanent open water habitats never enter the inter-tidal areas. To overcome this problem, barrier enclosure samplers (stake nets) and visual methods (whenever water is clear enough) have been used to collect data on fish species within forests (Vance et al., 1996; Rönnbäck et al., 1999; Huxham et al., 2004; Crona and Rönnbäck, 2005; 2007). Although such approaches provide thorough quantitative data, they are very labour intensive, cumbersome, and restricted to sampling small (and possibly unrepresentative) areas and therefore limited to mangrove areas that are easily accessible or (in the case of visual surveys) low in turbidity.

Work on mangrove fish communities typically features large spatial and temporal variability, which may arise through these methodological limitations; fine-grained approaches at small sites within a forest may sample statistical noise that would disappear in larger data sets. However, this variability may be more than noise; it could imply major differences in the value of sampled areas within mangrove sites for individual fish species or communities as a whole. Explaining this variability remains a major research challenge with important management implications, since identifying forest characteristics that are of importance for the utilization of mangroves by fishes, crustaceans and other fauna would allow managers to target conservation efforts at such areas and features.

The Vanga mangrove ecosystem is one of the largest contiguous mangrove blocks in Kenya and supports rich fishing grounds (Obura, 2001; GoK, 2017). The fishery resource is transboundary and attracts a substantial number of migrant fishers from Tanzania over the fishing seasons. There is evidence that the fishery is under pressure and declining; a recent analysis suggests total officially recorded catches have declined by ~40% over the past ten years (Fortnam et al., 2020). The causes of this decline are unknown; whilst they may be related to changes in mangrove extent and quality (in common with other Kenyan mangroves, the forest here has suffered declines in total area and increasing evidence of human impact such as cutting over the past four decades), there is a major gap in knowledge with respect to the Vanga mangroves; the only peer-reviewed study published on mangrove ecology from the site is Gress et al. (2016), which documents carbon storage. The present study therefore is a first step in filling this gap by assessing the community structure of fishes and crustaceans (based on species composition, abundance and size) in the Vanga mangrove ecosystem. In addition, seasonal and spatial variations of these variables for the dominant species were assessed. This will help to understand ontogenetic changes in habitat use in fish, and seasonality effects on fish and crustacean species.
Study sites
The study site is Vanga on the south coast of Kenya (4° 39’ 38.42”S, 39° 13’ 9.71”E; Fig. 1). The climate of Vanga is typical for east African coastal areas where the Inter Tropical Convergence Zone (ITCZ) partitions the year into two distinct seasons i.e. the South East Monsoon (SEM) and North East Monsoon (NEM). The rainy SEM season is from March to October and the dry NEM season from September to March (McClanahan, 1988). Fish catch and reproduction typically peak during NEM at the east African coast when the waters are more stable and nutrition available (McClanahan, 1988). The tidal regime is semi diurnal and ranges between amplitudes of 1.5m at neap tide and up to 4 m at spring tides (Obura, 2001). The Vanga mangrove complex covers a total area of > 4000 ha, and comprises 7 species of mangrove trees, although forests are dominated by 5 common species: *Avicennia marina*, *Bruguiera gymnorrhiza*, *Ceriops tagal*, *Rhizophora mucronata*, and *Sonneratia alba* (GoK, 2017). The rivers Umba and Mwena drain fresh water into the Vanga mangrove ecosystem, with the River Umba, (source in Tanzania), discharging circa 16 million m3 of fresh water into the sea annually (UNEP, 1998; GoK, 2017).

Sampling design and methodology
Fishes and crustaceans were sampled at 14 mangrove sites, situated between Jimbo and Majoreni villages in the Vanga Bay along around 11 km of coastline. Sites were chosen to cover a wide geographical area of the Vanga mangrove forest, whilst still being accessible enough to allow regular sampling. Fyke nets were deployed and retrieved after 24 hours within small creeks that drained the 14 mangrove sites, in order to sample fish communities leaving these areas during the ebb tide. The nets had two wings each of 9.5 m length and a height of 1m. The length of the body frame was 3.6 m. The main frame was made of metal measuring 1 m x 1 m with three rings (0.9 m, 0.7 m, and 0.6 m in diameter) distributed along the body frame. The net had a mesh size of 1.9 cm when stretched. Sites were sampled once every three months between September 2015 and September 2017. Each sampling campaign was spread over a six-day period during new moon spring tides. Hence replicate samples were taken eight times from each of the 14 sites giving a total of 112 samples. March 2017 was not sampled due to logistical reasons. Fish and crustacean samples collected in the field were placed in a cool box and later sorted and identified.
in the laboratory to the lowest possible taxonomic level using Anam and Mostarda (2012) and Richmond (2011). Fish standard length and total length were measured (to the nearest 0.1 cm) and individual mass recorded (to the nearest 1 g). Crustaceans were counted and weighed to the nearest 0.1 g. To classify the fishes into size classes, the maximum length of each species was sourced from FishBase (Froese and Pauly, 2017). Using guidelines from Nagelkerken and Velle (2002), fishes with total length ≤1/3 maximum length were classified as small juveniles, between >1/3 to ≤2/3 maximum length classified as large juveniles/sub adults and those >2/3 maximum length were classified as adults. Fishes were also classified into their trophic groups and importance to fisheries as guided by information on FishBase (Froese and Pauly, 2017).

Statistical analysis

Fish and crustacean data were analysed separately. ‘Fish’ in this case stands for all the teleost fish species caught while crustaceans included shrimp and crabs. Data were analysed using R Core Team (2013) and Plymouth Routines In Multivariate Ecological Research (PRIMER) version 6.0 Clarke and Warwick (2001). Shannon’s diversity index (H'), Margalef’s (D) and Pielou’s evenness index (J') were used to compare fish and crustacean community structure between seasons. Statistical analysis used all 112 samples as raw data in this analysis.

To test for differences between seasons, September and June abundance data were pooled under the season ‘South East Monsoon (SEM)’ and March and December data under ‘North East Monsoon (NEM)’; separate analyses were performed for fishes and crustaceans.

Non-metric multidimensional scaling (nMDS) ordination plots based on the Bray Curtis similarity index were then developed to visualize seasonal differences (Clarke and Warwick, 2001). One-way Analysis of Similarities (ANOSIM) was used to test for significant differences among fish and crustacean community structure between seasons, after which similarity of percentages (SIMPER) was used to establish the fish and crustacean taxa that mainly contributed to the differences found.

ANOVA was used to test for differences between mean fish abundance in NEM and SEM seasons and a significance level of p < 0.05 was used. A Kruskal –Wallis H test was used to test the differences between mean crustacean abundance in both seasons since the datasets could not meet the assumptions of normality. A significance level of (p<0.05) was used. *Yarica hyalosoma*, *Acropoma japonicum* and *Gerres oyena* were sufficiently abundant (both overall and between dates) to allow comparisons of size-frequency distributions among some of the sampling dates, in order to explore growth patterns. Chi – square tests of association (p<0.05) were performed to test for differences between size classes distributions at different sampling times for *Y. hyalosoma*, *A. japonicum* and *G. oyena*.

Results

Fish and crustacean community structure

A total of 1,879 fishes were caught, represented by 28 families and 59 species. Six species dominated the catch and contributed about 70 % of the total abundance: *Y. hyalosoma* (25 %), *A. japonicum* (18.9 %), *Ambassia natalensis* (11.2 %), *Ambassis ambassis* (7.2 %), *Leiognathus equulus* (7.2 %) and *G. oyena* (5.7 %) (Table 1). The 5 most common families were Apogonidae, Ambassidae, Acropomatidae, Gerreidae and Leiognathidae. Serranidae was the most diverse family (5 species) followed by Lutjanidae and Haemulidae, which had 4 species each. *Gerres filamentosus* and *G. oyena* were the most widely spatially distributed with each being caught at 10 different sites. The species *Lutjanus fulvus*, *L. bohar*, *Pterois volitans* and *Tylosurus crocodilus* (single individuals each) were considered rare. Circa 50 % of the total species caught were of commercial importance, based on information from FishBase (Froese and Pauly, 2017) (Table 1).

A total of 1,161 crustaceans were recorded, distributed between 16 species. Most of them belonged to infra-order Brachyura for crabs and family Penaeoidea for the shrimp. The most abundant crustacean species were *P. semisulcatus* (46.5 %) and *P. indicus* (36.2 %) (Table 2). *P. indicus*, *P. semisulcatus* and *Thalamita crenata* were encountered in all 14 sites sampled. The penaeid species *Macrobrachium rude*, *Scylla serrata* and *T. crenata* are of high commercial value.

Seasonal variations in fish assemblages (SEM – NEM)

The mean catches of fish (pooled across all sites) during the SEM months were 330 and 294 in September and June, respectively. By comparison, the NEM months of December and March had much lower means of 80 and 139, respectively (Fig. 2), a difference which was highly statistically significant (one-way ANOVA $F_{(1,110)} = 8.58$, p=0.004). September and June (SEM) also
Table 1. Summary information on fish communities including fish abundance (catch per net), respective families, associated fish species in the families (fish that were not identified to species level are shown as unidentified), total abundance and total species per site. The commercial importance of the fish abbreviated: HC=highly commercial, C=commercial, MC=minor commercial, AQ=Aquarium, NCI = no commercial importance; based on Froese and Pauly (2017) at the 14 sampling sites in Vanga, Kenya. The symbol (*) was used to indicate fish whose importance has not been documented.

Family	Species	Importance	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Acropomatidae	Acropoma japonicum	C	29	6	96	49	29	23	4	14	7	5	0	0	0	0
	Ambassia ambassia	Non	0	0	70	25	14	26	0	0	1	0	0	0	0	0
Ambassidae	Ambassia gymnocephalus	MC	0	0	0	0	8	0	0	0	0	0	0	0	0	0
	Ambassia natalensis	C	0	0	2	107	13	28	58	0	0	6	0	0	0	1
Antennariidae	Frog fish (unidentified)	*	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Apogonidae	Yarica hyalosoma	Non	178	45	99	1	7	0	27	40	16	22	9	4	9	21
Atherinidae	Atherinomorus lacunosus	C	2	0	0	0	0	0	20	44	0	11	3	6	0	0
Belonidae	Tylosurus acus melanotus	C	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Carangidae	Carangoides ferdau	C	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Caranx ignobilis	Caranx ignobilis	C	0	0	0	0	0	1	0	0	1	0	1	0	0	0
Chanidae	Chanos chanos	HC	0	0	0	0	0	0	0	0	2	0	0	0	0	0
Clupeidae	Sardinella gibbosa	HC	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Spratelloides	Gracilis	MC	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Engraulidae	Stolephorus commersonii	C	0	0	0	0	1	0	0	0	0	0	0	1	0	0
Thryssa setirostris		MC	0	0	0	0	0	1	1	0	0	0	0	0	0	0
Platax orbicularis		MC	0	0	0	0	0	0	1	0	0	0	0	0	0	1
Platax pinnatus		MC	0	0	0	1	1	0	0	0	0	0	0	0	0	1
Gerreidae	Gerres longirostris	C	1	0	0	0	0	2	0	0	0	0	0	0	0	1
Gerres filamentosus		MC	20	25	12	1	10	0	1	0	1	0	4	1	13	0
Gerres eya		C	28	0	1	4	4	1	17	0	0	15	1	8	22	7
Acentrogobius nebulosus		*	0	0	1	0	1	0	0	0	1	0	0	0	0	0
Gobiidae	Goby	AQ	0	1	0	0	3	0	0	1	1	0	0	0	0	0
Periophthalmus spp.		*	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gynglymostomatidae	Blue spotted goby	*	0	0	0	3	0	0	0	0	0	0	0	0	0	0
Plectorhinus plagiodesmus		C	0	1	1	0	0	0	0	1	0	0	0	0	0	0
Haemulidae	Pomadasys argenteus	C	0	0	1	1	0	1	2	0	0	3	0	0	0	0
Pomadasys multimaculatus		C	0	1	0	1	1	3	0	3	0	2	0	2	0	0
Pomadasys kaakan		C	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Family	Species	Importance	1	2	3	4	5	6	7	8	9	10	11	12	13	14
---------------	--	------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----
Hemiramphidae	*Hyporhamphus gamberur*	Non	1	0	2	1	0	0	1	0	0	0	0	0	0	0
	Hyporhamphus affinis	Non	13	0	10	6	2	0	2	4	0	3	1	0	0	0
	Zenarchopterus dispar	C	1	0	2	5	0	0	0	0	0	0	1	0	0	0
	Gazza minuta	C	0	0	0	7	0	1	0	0	40	0	0	0	4	0
Leiognathidae	*Leiognathus equulus*	MC	2	0	0	1	0	3	0	0	125	3	0	2	0	0
Lethrinidae	*Lethrinus harak*	C	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Lutjanidae	*Lutjanus argimaculatus*	C	1	2	0	1	3	0	0	0	0	3	0	0	0	0
	Lutjanus bohar	C	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	Lutjanus fulviflamma	C	3	0	1	0	0	1	0	0	4	2	1	0	0	0
Lutjanidae	*Lutjanus fulus*	C	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Monodactylidae	*Monodactylus argenteus*	MC	7	0	0	0	4	4	7	0	0	0	0	0	15	0
	Crenimugil crenilabis	C	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Mugilidae	*Moolgarda seheli*	C	0	0	15	4	3	0	0	0	1	0	0	0	0	0
	Mugil cephalus	HC	0	10	0	0	5	0	0	0	0	0	0	0	0	0
Percophidae	*Bembrops platyrhynchus*	Non	1	0	0	0	0	0	1	0	0	0	0	0	0	0
	Bembrops caudimaculata	*	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Platycephalidae	*Platycephalus indicus*	C	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Pomacentridae	*Dascyllus spp.*	*	0	0	0	0	0	0	2	0	0	0	0	0	0	0
Scorpnaenidae	*Pterois volitans*	C	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Epinephelus coeruleopunctatus	MC	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	Epinephelus cooides	C	0	1	0	2	1	0	1	0	0	0	0	0	0	0
Serranidae	*Epinephelus lanceolatus*	C	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	Epinephelus malabaricus	HC	0	1	0	2	2	0	0	0	0	1	0	0	1	0
	Epinephelus spilotoceps	C	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Sillaginidae	*Sillago sihama*	C	0	0	0	5	0	7	0	0	13	2	0	9	0	0
Sphyraenidae	*Sphyraena barracuda*	MC	2	0	1	0	0	0	0	0	1	1	1	1	1	0
	Sphyraena jello	C	2	2	2	0	0	0	3	0	1	3	1	0	1	0
	Sphyraena putnamae	C	0	0	0	0	0	0	2	0	0	0	0	0	0	0
Terapontidae	*Terapon jarbua*	MC	0	0	5	0	0	0	0	0	3	0	0	1	0	0
Tetraodontidae	*Arothron immaculatus*	MC	0	0	0	1	0	0	1	0	0	0	0	0	0	0

Total individuals (N) 293 100 427 135 128 125 102 108 217 81 23 37 69 34

Total species (S) 18 15 18 22 20 12 24 8 13 17 9 12 11 7
Table 2. Summary of crustacean community structure at the 14 sampling sites, including crustacean abundance (catch per net), respective families, number of species and the total abundance and species per sites. The importance of species is abbreviated: NAI=No available information, C=commercial, HC=highly commercial, NCI= no commercial importance.

Family/infaorder	Species	Percentage (%) of total N	Importance	Sampling sites				
				1 2 3 4 5 6 7 8 9 10 11 12 13 14				
Brachyura	Crab 1	0.2	NAI	0 0 0 0 0 0 0 0 0 1 0 0 0 0				
Brachyura	Crab 2	0.2	NAI	0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Brachyura	Crab 3	0.2	NAI	0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Caridea	Caridean shrimp	1.5	C	1 0 0 2 6 0 0 1 1 2 1 3 0 0				
Matutidae	Ashorex lunaris	0.2	NIC	1 0 0 0 0 0 0 0 0 1 0 0 0 0				
Ocypodidae	Uca spp.	0.2	NIC	1 0 0 0 0 0 0 0 0 0 1 0 0 0				
Palaemonidae	Macrobrachium rude		HC	0 0 0 0 0 0 0 0 0 1 0 0 0 0				
	Metapenaeus stebbingsi	0.2	HC	1 0 0 1 0 0 1 0 5 0 5 0 7 0				
	Metapenaeus monoceros	1.7	HC	1 0 0 1 0 0 1 0 5 0 5 0 7 0				
Penaeidae	Penaeus indicus		HC	36.2 42 19 48 77 82 28 24 13 42 2 18 19 5				
Penaeidae	Penaeus monodon		HC	5.9 1 1 1 2 4 6 4 5 0 12 5 7 8 12				
Penaeidae	Penaeus semisulcatus		HC	46.5 11 4 4 15 13 22 15 177 10 75 13 176				
Portunidae	Scylla serrata		HC	1.7 1 4 0 2 1 4 0 1 1 1 0 0 3 2				
Portunidae	Thalamita crenata		HC	2.5 1 3 1 1 3 0 3 1 2 2 1 7 3				
	Shrimp 1 (unidentified)	0.2	NAI	1 0 0 0 0 0 0 0 0 0 0 0 0 0				
	Shrimp 2 (unidentified)	0.2	NAI	16 61 26 77 98 112 45 64 33 245 21 114 51 198				
Total individuals N				16 5 5 9 7 7 3 8 7 9 6 7 6 5				
Total species								

Table 3. Margalef’s species richness (D), Pielou’s evenness index (J’) and Shannon diversity index (H’) (±sd) for fish species in the different sampling months/seasons.

Sample	Sep-15a	Dec-15b	Mar-16b	Jun-16a	Sep-16a	Dec-16b	Jun-17a	Sep-17a
No. of species	26	15	15	27	18	15	17	17
No. of individuals	578	48	139	385	183	112	202	230
Margalef’s species richness (D)	3.9±0.5	3.6±0.7	2.8±0.6	4.4±0.8	3.3±0.7	3.0±0.5	3.01±0.6	2.9±0.7
Pielou’s evenness index (J’)	0.6±0.2	0.7±0.1	0.6±0.2	0.7±0.2	0.7±0.2	0.7±0.2	0.6±0.2	0.7±0.2
Shannon Weiner index (H’)	1.9±0.5	2.0±0.5	1.7±0.5	2±0.6	1.9±0.5	1.8±0.4	1.6±0.5	2.0±0.5

a=SEM, b=NEM seasons
showed higher diversity compared to December and March (NEM) (Fig. 3). The most abundant species in SEM were *Y. hyalosoma*, *A. ambassis*, *A. natalensis* and *L. equulus*. In NEM the most abundant species were *A. japonicum*, *Y. hyalosoma*, *L. equulus* and *S. sihama*. The family Ambassidae, that comprised of *A. ambassis*, *A. natalensis* and *A. gymnocephalus*, showed strong seasonality as it only occurred in SEM. *Acropoma japonicum* had a higher mean abundance in NEM than in SEM i.e. 40 and 28 individuals respectively. Other species that showed marked seasonality included *G. oyena* and *A. lacunosus*. The highest species diversity H’ was in June 2016 (H’=2.15±0.6) and the lowest was in June 2017 (H’=1.64±0.5). The species evenness index (J) was more stable, varying between 0.58±0.2 (June 2017) and 0.72±0.2 (Dec 2015) (Table 3). ANOVA revealed no significant differences in Margalef (D) and Pielou’s evenness (J’) indices of fishes for the 8 sampling dates, p=0.111 and p=0.170 respectively. However, there was a significant difference in Shannon’s diversity index (H) p= 0.036. A non-metric multi-dimensional (nMDS) ordination plot of square root transformed abundance data of all fish species in the sites during NEM and SEM seasons showed separation between SEM and NEM seasons (Fig. 4). ANOSIM revealed significant differences of fish assemblages between NEM and SEM.
seasons on square root transformed abundance data, with R=0.263 and p=0.004. SIMPER analysis showed an average dissimilarity of 82.62% between the NEM and SEM seasons and the species *A. hyalosoma, A. japonicum, G. oyena, A. natalensis, G. filamentosus* and *A. lacunosi* contributing to over 40% of this dissimilarity.

Seasonal variations in crustacean assemblages (SEM – NEM)

Penaeus indicus did not show any marked seasonality while *T. crenata* and *M. rude* showed tendencies to seasonality as they mostly occurred in SEM (Fig. 5).

Generally, the highest crustacean abundance was recorded in the NEM as opposed to fish where the highest abundances were in the SEM. The highest species diversity *H'* was found in March 2016 (*H'=0.9±0.3*) and the lowest in December 2015 (*H'=0.5±0.3*). The species evenness index (*J*) varied between 0.6±0.3 (December 2015) and 0.9±0.1 (September 2016) (Table 4). ANOVA revealed no significant differences in Margalef’s species richness (*D*), Pielou’s evenness index (*J’*) and Shannon diversity index (*H’*) in crustaceans in the 8 sampling seasons with *p*=0.634; *p*=0.149 and *p*=0.419 for *D*, *J’* and *H’* respectively. A Kruskal Wallis

Sample	Sep-15^a	Dec-15^b	Mar-16^b	Jun-16^a	Sep-16^a	Dec-16^b	Jun-17^a	Sep-17^a
No. of species	6	5	7	11	7	9	7	54
No. of individuals	45	341	151	125	49	164	79	5
Margalef’s species richness (*D*)	0.9±0.4	0.5±0.3	1.0±0.3	0.9±0.5	0.9±0.4	0.9±0.5	1.0±0.5	0.9±0.4
Pielou’s evenness index (*J’*)	0.8±0.2	0.6±0.3	0.8±0.2	0.7±0.2	0.9±0.1	0.6±0.7	0.8±0.2	0.8±0.2
Shannon Weiner index (*H’*)	0.8±0.2	0.5±0.3	0.9±0.3	0.8±0.3	0.7±0.2	0.7±0.4	0.7±0.4	0.7±0.2

^aSEM,^bNEM seasons
test was used to test for differences in mean crustacean abundance between NEM and SEM season and no significant differences were detected (p =0.843). The pattern of crustacean seasonality was visualised in an nMDS ordination plot (Fig. 5). The nMDS plots (Fig. 5) revealed differences in the crustacean assemblages between the seasons. One-way ANOSIM showed significant differences in crustacean assemblages on square root transformed abundance data between NEM and SEM seasons (R=0.158, p=0.003). SIMPER analysis revealed an average dissimilarity of 52.9 % in the assemblages between the two seasons, with P. semisulcatus (26.16 %), P. indicus (22.92%), P. monodon (11.32%) and T. crenata (9.97 %) contributing to 70.37 % of the difference between the seasons.

Size classes of the most abundant fishes
Circa 60 % of all individuals caught were classified as small juveniles while 37 % appeared as large juveniles/sub adults. A total of 32 species appeared as small juveniles only while 8 species appeared as 100 % large juveniles/sub adults. Of the 6ix most abundant species, L. equulus and A. natalensis appeared as 100 % small juveniles and 100 % large juveniles/sub adults, respectively. Ninety seven per cent (97 %) of G. oyena were small juveniles (Table 5).

Size classes for 3 of the most abundant species A. japonicum, Y. hyalosoma, and G. oyena, as shown in Figure 6 – 8, were used to conduct cohort analyses to investigate evidence for spawning periods and growth rates. For A. japonicum there were significant differences between size frequency distributions (X²=9.98, df=1, p=0.041).

A fairly stable mode was demonstrated by Y. hyalosoma over most sampling months, although the large dispersion was reflected in the significant difference among frequency distributions (X²=52.85, df=4, p<0.001) (Fig. 7). In contrast with A. japonicum the largest individuals were found in December with the smallest in June and September, suggesting a later spawning date during the NEM. For G. oyena, the greatest variation was found between size frequency distributions (X²=19.288, df=1 and p<0.001) with most smaller fish found in September and most larger ones in June, suggesting a late NEM or early SEM spawning time.

Discussion
Fish communities in intertidal areas have been studied using varying sampling techniques and gears. Here, an approach intermediate to sampling large areas adjacent to the forest (such as seine netting in bays) and sampling very small, possibly unrepresentative plots (such as stake netting quadrats) was taken; in order to capture forest variability, fishes were sampled at multiple discrete sites within a forest canopy using repeat samples. Using passive gear (fyke nets) situated in small mangrove creeks, the present study documented 59 fish
Table 5. Maturity stages of fish species caught in Vanga from September 2015 to June 2017. The maturity stage was determined according to Nagelkerken and Velde (2002). Individuals with a third or less of the max length were classified as small juveniles, between one third and two thirds of maximum length as big juveniles to sub adults and above two thirds maximum length as adults. Max length, standard length, preferred habitats and environment were sourced from Froese and Pauly (2017).

Fish species	Min TL (cm)	Max TL (cm)	N	% Juveniles (Juv)	% Sub adults (Sa)	% Adults (Ad)	Max length (cm)	Preferred habitat and environment
Acentrogobius nebulosus*	6.1	9.7	3	0	100		18.0 SL	sandy shorelines, reefs
Acropoma japonicum	1.7	9.3	252	86.9	13.1	0.0	20.0 TL	sand, sandy mud bottoms
Ambassis ambassis*	3.2	5.7	136	2.2	97.8	0.0	15.0 TL	no information
Ambassis gymnocephalus	5.2	5.9	5	20.0	80.0		16.0 TL	no information
Ambassis natalensis	4.6	7.5	178	0.0	100	0.0	9.0 SL	no information
Yarica hyalosoma	1.0	9.3	470	41.9	58.1	0.0	17.0 TL	mangrove estuaries, tidal creeks (Adults)
Arothron immaculatus	5.3	5.4	2	100			30.0 TL	weedy areas, estuaries, seagrass
Atherinomorus lacunosus	3.5	9.2	84	90.5	9.5	0.0	25.0 TL	sandy shorelines, reef margins
Bembrops caudimacula	8.0	9.0	3	100			24.1 TL	no information
Bembrops platyrhynchus	6.5	6.5	1	100	0.0	0.0	25.0 TL	inhabits offshore trawling grounds
Carangoides ferdau	6.1	6.1	1	100			70.0 TL	sandy beaches; near reefs
Caranx ignobilis	10.6	11.8	3	100			170 TL	Clear lagoons, seaward reefs (Adults)
Chanos chanos*	14.7	16.5	2	100			180 SL	offshore marine waters, shallow coastal embayments
Crenimugil crenilabis	1	1	100				60.0 TL	sandy/muddy lagoons, reef flats
Epinephelus caeruleopunctatus	41.8	41.8	1	100	100		76.0 TL	coral-rich areas, deep lagoos
Epinephelus coioides	15.0	27.8	5	100	0.0	0.0	120 TL	brackish water, mangroves (Juveniles)
Epinephelus lanceolatus	45.0	45.0	1	100			270 TL	caves, estuaries
Epinephelus malabaricus	12.5	35.0	7	100			234 TL	coral reefs, estuaries, mangroves
Epinephelus spilotoceps	22.3	22.3	1	100			35.0 TL	lagoon, reefs,
Gazza minuta	1.2	7.0	49	100	0.0	0.0	21 TL	young ones enter mangrove estuaries/silty reef areas
Gerres filamentosus	4.7	15.2	88	65.9	34.1		35.0 TL	mangrove (Juveniles)
Fish species	Min TL (cm)	Max TL (cm)	N	% Juveniles (Juv)	% Sub-adults (Sa)	% Adults (Ad)	Max length (cm)	Preferred habitat and environment
---------------------------	-------------	-------------	----	------------------	------------------	---------------	----------------	---
Gerres longirostris	5.1	7.0	5	100	0.0	0.0	44.5 TL	adults, coastal waters (Adults), estuaries (Juveniles)
Gerres oyena	4.9	11.0	106	97.2	2.8	0.0	30.0 TL	saltwater lagoons, estuaries
Hyporhamphus affinis*	5.0	13.4	40	90.0	10.0	0.0	38.0 SL	coral reefs
Hyporhamphus gamberur	12.0	13.7	3	33.3	66.7	0.0	37.0 TL	common around reefs
Leiognathus equulus	2.3	6.4	136	100	0.0	0.0	28.0 TL	muddy inshore areas, mangroves
Lethrinus harak	6.3	6.3	1	100	0.0	0.0	50.0 TL	shallow sandy, mangroves, seagrass
Lutjanus argentimaculatus	11.4	19.6	10	100	0.0	0.0	150 TL	Mangrove (Juveniles and young adults)
Lutjanus bohar	15.5	15.5	1	100	0.0	0.0	90.0 TL	coral reefs
Lutjanus fulviflamma	6.5	15.5	36	100	0.0	0.0	35.0 TL	coral reefs (Adults), mangrove (Juveniles)
Lutjanus fulvus	5.8	5.8	1	100	0.0	0.0	40.0 TL	lagoons (Adults), mangroves (Juveniles)
Monodactylus argenteus*	3.9	8.2	36	100	0.0	0.0	27.0 SL	bays, mangroves
Moolgarda seheli	6.7	10.8	23	100	0.0	0.0	60.0 TL	coastal waters, estuaries
Mugil cephalus*	5.3	12.9	15	100	0.0	0.0	100.0 SL	coastal waters
Platax orbicularis	5.5	7.3	2	100	0.0	0.0	60.0 TL	sandy areas (Adults), mangroves (Juveniles)
Platax pinnatus	3.1	5.2	3	100	0.0	0.0	45.0 TL	reef slopes (Adults), mangroves (Juveniles)
Platyccephalus indicus	9.8	9.8	1	100	0.0	0.0	100.0 TL	sandy and muddy bottoms
Plectrohinchus plagiodensmus	7.1	19.4	3	100	0.0	0.0	90.0 TL	coastal, coral crevices
Pomadasys argenteus	5.6	10.4	8	100	0.0	0.0	70.0 TL	coastal waters
Pomadasys kaakan	9.4	9.4	1	100	0.0	0.0	80.0 TL	inshore waters (sandy to muddy bottoms), estuaries
Pomadasys multimaculatus	4.9	15.6	13	100	0.0	0.0	76.0 TL	coastal waters, tidal estuaries
Pterois volitans	20.0	20.0	1	100	0.0	0.0	38.0 TL	lagoons, reefs, turbid inshore
Sardinella gibbosa*	6.1	6.4	2	100	0.0	0.0	17.0 SL	no information
species in the Vanga mangrove system. This is higher than the species numbers recorded from nearby Gazi forest in studies using block nets (another passive gear), which found 30 (Huxham et al., 2004) and 49 species (Crona and Rönnbäck, 2007). Studies in Kenyan mangroves that use active gears, such as seine nets and beam trawls, report higher numbers, for example 128 fish species were recorded in Gazi (Kimani et al., 1996) while at Tudor Creek, 83, 84 and 75 species were recorded by Little et al. (1988), Wainaina et al. (2013) and Wakwabi and Mees, (1999) respectively. Hence the choice of gear clearly has a large influence on the numbers and diversity of fish caught. Netting in bays and large permanent creeks produces bigger samples (and is logistically more straightforward) than placing passive gear under the canopy (Franco et al., 2012; Tietze et al., 2011). However such sampling is less able to discriminate between forest areas of different quality and may include fauna that are not using mangrove habitats at all.

It is generally true that fish communities, like almost all biological communities from inshore habitats, tend to have highly right skewed and steeply sloped rank abundance curves, with only a few species, typically 3 - 7, contributing over 70 % of the total abundance (Bell et al., 1984; Giarrizzo and Krumme, 2007; Shervette et al., 2007). Such a pattern was observed in the present study in Vanga, where 6 species contributed around 70 % of the total abundance. A similar pattern was found in the bay habitats of neighbouring Tanzania, where 9 species contributed 70 % of the total individuals (Lugendo et al., 2007). In Thailand, Tongnunui et al. (2002) found that 20 fish species contributed 88.5 % of the total abundance in the Sikao creek mangrove estuary.

Studies of mangrove fish communities consistently show that juveniles dominate. Ninety nine per cent of the fish reported by Tongnunui et al. (2002) were not adults; 71 % were small juveniles and 28 % were large juveniles/sub adults. Out of the 54 encountered species in this study 34 occurred only as small juveniles, while 9 species occurred only as large juveniles. These results conform to research findings in other mangrove systems. In Tudor creek Kenya, 90 % of the

Fish species	Min TL (cm)	Max TL (cm)	N	% Juveniles (Juv)	% Sub-adults (Sa)	% Adults (Ad)	Max length (cm)	Preferred habitat and environment
Sillago sihama *	9.0	14.7	33	87.9	12.1	0.0	31.0 SL	beaches, sandbars, mangrove
Sphyraena barracuda	11.3	28.7	7	100	0.0	0.0	200 TL	murky harbours (Adults), mangroves (Juveniles)
Sphyraena jello	4.0	21.4	15	100	0.0	0.0	150 TL	Reefs, bays, estuaries
Sphyraena putnamae	14.6	17.5	2	100	0.0	0.0	90.0 TL	lagoons, seaward reefs
Spratelloides gracilis*	3.5	3.5	1	100.0	0.0	0.0	10.5 SL	coastal, reefs
Stolephorus commersonnii*	10.0	10.2	2	0.0	0.0	100	10.0 SL	coastal waters, brackish water
Terapon jarbua	4.0	11.3	9	100	0.0	0.0	36.0 TL	shallow sandy bottoms (Adults)
Thrysa setirostris*	7.5	7.8	2	100.0	0.0	0.0	18.0 SL	no information
Tyloturus acus melanotus	29.8	29.8	1	100	0.0	0.0	100.0 TL	offshore, coastal waters
Tyloturus crocodilus	35.8	35.8	1	100	0.0	0.0	150 TL	lagoons, seaward reefs
Zenarchopterus dispar	8.6	14.5	9	88.9	11.1	0.0	19.0 TL	shallow water, mangroves

*indicates standard and not total length was used
fishes caught were juveniles (Little et al., 1988) while in Gazi bay, 63 % of the species caught included juveniles with 29 % caught as juveniles only (Kimani et al., 1996). Crona and Rönnbäck (2007) recorded juveniles in almost all fish taxa encountered in Gazi bay. Over 70 % of the fishes caught in bay habitats of Tanzania were juveniles (Lugendo et al., 2007), whilst in Thailand 57 % of the species were caught as juveniles only (Ikejima et al., 2003). In the current work, only 2 % of individuals caught were classified as adults. Hence the findings of this and other studies are consistent with the nursery hypothesis for mangroves (Beck et al., 2001), although a rigorous test of this would require comparisons of fish densities with other habitats and tracing of fish migration and survival to adult habitats.

The most abundant species in this study – Y. hyalosoma, previously known as Apogon hyalosoma, A. japonicum, A. natalensis, A. ambassis, L. equulus and G. oyena – are reported in most relevant studies in the WIO and also in the Mediterranean (Kimani et al., 1996; Huxham et al., 2004; Crona and Rönnbäck, 2007; Wainaina et al., 2013; Lugendo et al., 2007; Mwandya et al., 2010; El-Regal and Ibrahim, 2014). They have been reported in other regions such as in the intertidal mangrove areas of Thailand where Y. hyalosoma was found to contribute up to 7 % of the total catch (Krumme et al., 2015). In Gazi bay, A. japonicum was strongly associated with mangrove plantations (Crona and Rönnbäck, 2005). Leiognathus equulus is a widely distributed species in inshore areas of the Indo – Pacific region (Blaber and Milton, 1990). Though present in Tudor and Mida creeks in Kenya, it contributed <2% of the total catch in these mangrove systems (Wakwabi and Mees, 1999, Wainaina et al., 2013; Gajdzik et al., 2014). The current study recorded a higher percentage (7.4
% of fishing in reef areas of Vanga by fishermen from neighbouring Tanzania has also been suggested as the cause of these low numbers (Ochiewo, 2004; Samoilys and Kanyange, 2008). The low abundance (<1% of total abundance) and relatively low diversity recorded in this study are consistent with other findings, including that of declines in most *Epinephelus* species at Vanga (Fortnam et al., 2020) indicating that this diverse and commercially important genus could be threatened, creating concern for its future survival.

Size classes

The maximum length of *G. oyena*, a common fish species caught in Vanga mangroves, was 11 cm TL compared to large sized individuals (29.2 cm TL) of the same species caught in Gazi bay (Kimani et al., 1996). However, *G. oyena* caught using passive gear inside Gazi mangrove forests were comparable in size to those caught in the current study i.e. 10.8 cm TL for Gazi (Crona and Rönnbäck, 2007). From this comparison, it could be suggested that *G. oyena* juveniles are likely to be encountered inside the forests and adults in the creeks and nearshore waters. It could also be speculated that size classes are likely to differ between habitat types within similar ecosystems such as mangrove forests and mangrove creeks. It was not possible to compare the sizes of *Y. hyalosoma* and *A. japonicum* with other sites due to a lack of relevant literature; it seems that very little is known about the growth and possible ontogenetic shifts in these species.

The size frequency distributions compared over time for 3 species i.e. *G. oyena*, *Y. hyalosoma* and *A. japonicum* gave an indication of decreases in numbers as the standard length of the fish increased. It was difficult to conclusively point to particular times of spawning for these species due to a lack of supporting literature and insufficient detail in the current cohort analyses. For *A. japonicum* for instance, the significant differences between size frequency distributions, did not provide an unambiguous indication of likely spawning times and growth rates since the mode remained fairly constant; the smallest individuals were found during December and the largest in September, consistent with spawning in the early NEM season. Increases in size between sampling dates could indicate a single cohort that grows whilst in the mangroves and then leaves to be recruited into the coastal fishery later, however much more information would be needed to confirm such a pattern.

Seasonality

Environmental variables such as salinity and temperature are influenced by seasonality and in turn these
may influence fish community structures by affecting feed availability, reproduction and ontogenic migrations (McClanahan, 1988). In Vanga, like the rest of the Kenyan coast, sea surface temperatures may range between 24 °C and 29 °C during the year with salinity levels ranging between 34.5 ‰ and 23.8 ‰. (McClanahan, 1988; Mwashote, 2003).

The overall mean catch per net (abundance) of juvenile fishes and the number of fish species in Vanga was significantly higher during the SEM (rainy) than NEM (dry) seasons. Fish community structures (abundance and diversity) in the WIO region have been found to vary with monsoon seasons (Lugendo et al., 2005; Crona and Rönnbäck, 2007). While juvenile fishes occupying mangrove habitats have been found to be more abundant in SEM than in NEM, in the current and previous work (Crona and Rönnbäck, 2007), densities of planktonic fish larval assemblages in marine parks in Kenya were higher in NEM when waters were calm compared to the rougher SEM season (Mwaluma et al., 2011). McClanahan (1988) also recorded fish spawning in the East African region to peak during the NEM season (McClanahan, 1988). It is possible that fishes spawned offshore in the NEM season move into the mangrove nursery habitats during the rougher SEM season. Fishes in the Ambassidae family, which constituted a large proportion of the catch in the current study, were only found during the NEM season. Most individuals caught were relatively large subadults, and hence may not be showing this pattern since they were not using the Vanga mangroves as habitat during the small juvenile stages. Further studies into the life cycles of these species may help shed more light on their ecology.

Crustacean community structure

Penaeid shrimps comprised over 80% of the crustaceans caught with *P. semisulcatus* and *P. indicus* dominating the catch. These two species have previously been recorded as the most abundant penaeid shrimp in Malindi – Ungwana bay in Kenya (Munga et al., 2013). Similarly, in the same area, *P. indicus* was among the dominant penaeid species (Munga et al., 2013; Ndoro et al., 2014). Munga et al. (2013) found significantly higher prawn densities in SEM compared to NEM while Ndoro et al. (2014) found the biomass of penaeid prawns to be high in NEM with no seasonality in abundance. Generally, crustaceans did not show any clear seasonality in the present study. This contrasts strongly with the fish catches reported here and with commercial and artisanal catches of fish in Vanga waters. In Malindi-Ungwana bay, Kenya (a commercial prawn trawling area), gravid prawns of all penaeid species were recorded all year round with their abundance peaking in December, February and March (Mwatha, 2002). The apparent lack of seasonality for penaeid shrimp means that exploitation can continue throughout the year. There is a real risk of overfishing, especially for juveniles that use intertidal areas as nurseries. In order to protect the stocks which use mangroves as nurseries from overfishing, Mwatha (2002) suggested that the fishery should be closed in February, December and March, the peak months for gravid females. Uncontrolled fishing especially of juveniles is likely to lead to low returns. This work supports the idea of mangrove and near mangrove habitat as nursery habitat for both fish and crustaceans so emphasising the need for conservation particularly of seaward edges. Future studies should focus on size classes of penaeid shrimp species in nearshore habitats in both the NEM and SEM seasons and this would guide the need for closed seasons.

Conclusion

Most of the fish families and species encountered in Vanga are common on the East African coast. The dominance of a few species is commensurate with most findings from tropical mangrove ecosystems where a few species occur in high densities. *Gerres oyena* has been reported as a common species in several other mangrove sites on the Kenya coast; it is strongly associated with and possibly dependent upon mangroves. Close to 50% of the species caught at mangrove sites in Vanga are exploited for commercial fisheries while 32 of the total 59 species were reef associated. Most of these species however occurred in very low numbers. This could mean that they prefer other nursery habitats such as seagrass. If that is not the case, then it can be speculated that their recruitment into the fishery could also be low.

Almost all the individuals encountered in this study were juveniles. This is expected in mangrove habitats. Thus, this study further confirmed the hypothesis that mangroves provide habitats for juvenile fauna, which later migrate offshore.

The strong seasonality in fish catches, with much greater abundance and diversity being found during the SEM season, supports the hypothesis that many species are spawning offshore during the NEM season and then moving into mangroves as juveniles, before
migrating offshore again as sub-adults. In contrast there was no clear seasonality for penaeid shrimp suggesting they show a different lifecycle with more rapid reproduction and more consistent affinity with inshore habitats.

Acknowledgements
The authors are grateful to: EarthWatch UK and also the ESPA funded SPACES project for financing this project, Prof. Ivan Nagelkerken of Adelaide University, Australia for providing supervisory support, Derek and Maureen Moss for their financial support and Transcoast Kenya for partially funding data collection of this work. Messers Boaz Orembo and Rashid Anam from Kenya Marine and Fisheries research Institute (KMFRI) assisted in fish and crustacean identification.

References
Abrantes K, Sheaves M (2009) Food web structure in a near-pristine mangrove area of the Australian wet tropics. Estuarine, Coastal and Shelf Science 82 (4): 597-607 [http://doi.org/10.1016/j.ecss.2009.02.021]
Abu El-Regal MA, Ibrahim, NK (2014) Role of mangroves as a nursery ground for juvenile reef fishes in the southern Egyptian red sea. Egyptian Journal of Aquatic Research 40 (1): 71-78 [http://doi.org/10.1016/j.ejar.2014.01.001]
Agembe S, Mlewa CM, Kaunda-Arara B (2010) Catch composition, abundance and length-weight relationships of groupers (Pisces: Serranidae) from inshore waters of Kenya. Western Indian Ocean Journal of Marine Science 9 (1): 91-102
Anam R, Mostarda E (2012) Field identification guide to the living marine resources of Kenya. FAO Species Identification Guide for Fishery Purposes. FAO, Rome. 357 pp
Barbier EB (2000) Valuing the environment as input: Review of applications to mangrove-fishery linkages. Ecological Economics 35 (1): 47-61 [http://doi.org/10.1016/S0921-8009(00)00167-1]
Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51 (8): 633-641 [http://doi.org/10.1641/0006-3568(2001)0510633:TICA-MO2.0.CO;2]
Bell JD, Pollard DD, Burchmore JJ, Pease BC, Middleton M (1984) Structure of fish community in a temperate tidal mangrove creek. Australian Journal of Marine and Freshwater Research, 35 (1): 33-46
Blaber SJM (2007) Mangroves and fishes: Issues of diversity, dependence, and dogma. Bulletin of Marine Science 80 (3): 457-472
Clarke KR, Warwick R (2001) Change in marine communities. An approach to statistical analysis and interpretation. (2nd ed.). PRIMER-E Plymouth.
Crona BI, Rönnbäck P (2005) Use of replanted mangroves as nursery grounds by shrimp communities in Gazi Bay, Kenya communities in Gazi Bay, Kenya. Estuarine, Coastal and Shelf Science 65: 535–544 [http://doi.org/10.1016/j.ecss.2005.07.001]
Crona BR, Rönnbäck P (2007) Community structure and temporal variability of juvenile fish assemblages in natural and replanted mangroves, Sonneratia alba Sm., of Gazi Bay, Kenya. Estuarine, Coastal and Shelf Science 74 (1–2): 44-52 [http://doi.org/10.1016/j.ecss.2007.03.023]
Faunce CH, Serafy JE (2006) Mangroves as fish habitat: 50 years of field studies. Marine Ecology Progress Series 318: 1-18
Fortnam M, Atkins M, Brown K, Chaigneau T, Frouws MK, Atkins M, Brown K, Chaigneau T, Frouws
Franco A, Pérez-ruzafa A, Drouineau H, Franzoi P, Koutrakis ET, Lepage, M (2012) Assessment of fish assemblages in coastal lagoon habitats: Effect of sampling method. Estuarine, Coastal and Shelf Science 112: 115–125 [http://doi.org/10.1016/j.ecss.2011.08.015]
Froese R, Pauly D (2017) FishBase
Fulanda B, Munga C, Ohtomi J, Osore M, Mugo R (2009) The structure and evolution of the coastal migrant fishery of Kenya. Ocean and Coastal Management 52: 459-466 [http://doi.org/10.1016/j.ocecoaman.2009.07.001]
Gajdzik L, Vanreusel A, Koedam N, Reubens J, Muthumbi AWN (2014) The mangrove forests as nursery habitats for the ichthyofauna of Mida Creek (Kenya, east Africa). Journal of the Marine Biological Association of the United Kingdom 94 (5): 865-877 [http://doi.org/10.1017/S0025315414000290]
Giarrizzo T, Krumme U (2007) Spatial differences and seasonal cyclicity in the intertidal fish fauna from four mangrove creeks in a salinity zone of the Curuçá estuary, north Brazil. Bulletin of Marine Science 80 (3): 739-754
Gillanders BM, Able KW, Brown JA, Eggleson DB, Shepherd P (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Marine Ecology Progress Series 247: 281-295 [http://doi.org/10.3354/meps247281]

Government of Kenya (GoK) (2017) National mangrove ecosystem management plan. Kenya Forest Service, Nairobi, Kenya. 102 pp

Gress SK, Huxham M, Kairo JG, Mugi LM, Briers RA (2017) Evaluating, predicting and mapping below-ground carbon stores in Kenyan mangroves. Global Change Biology 23 (1): 224-234

Huxham M, Kimani E, Augley J (2004) Mangrove fish: A comparison of community structure between forested and cleared habitats. Estuarine, Coastal and Shelf Science 60: 637-647 [http://doi.org/10.1016/j.ecss.2004.03.003]

Huxham M, Kimani E, Augley J (2008) The fish community of an east African mangrove: Effects of turbidity and distance from the sea. Western Indian Ocean Journal of Marine Science 7 (1): 57-67

Huxham M, Emerton L, Kairo J, Munyi F, Abdirizak H, Muriuki T, Nunan F, Briers, RA (2015) Applying climate compatible development and economic valuation to coastal management: A case study of Kenya’s mangrove forests. Journal of Environmental Management 157: 168–181 [http://doi.org/10.1016/j.jenvman.2015.04.018]

Ikejima K, Tongnunui P, Medej T, Taniuchi T (2003) Juvenile and small fishes in a mangrove estuary in Trang province, Thailand: Seasonal and habitat differences. Estuarine, Coastal and Shelf Science 56 (3-4): 447-457 [http://doi.org/10.1016/S0272-7714(02)00194-4]

Kairo JG, Dahdouh-Guebas F, Gwada PO, Ochieng C, Koedam N (2002) Regeneration status of mangrove forests in Mida Creek, Kenya: a compromised or secured future?. Ambio 31 (7/8): 562-568

Kaunda-Arara, B. (1996) Analysis of fish catch data from 1985 to 1994 in the Kenyan inshore marine waters. African Journal of Tropical Hydrobiology and Fisheries 7 (I), 1-6

Kaunda-Arara, B, Rose, GA, Muchiri MS, Kaka R (2003) Long-term trends in coral reef fish yields and exploitation rates of commercial species from coastal Kenya. Western Indian Ocean Journal of Marine Science 2 (2): 105-116

Kimani EN, Mwatha GK, Wakwabi EO, Ntiba JM, Okoth BK (1996) Fishes of a shallow tropical mangrove estuary, Gazi, Kenya. Marine and Freshwater Research 47 (7): 857-868

Krumme U, Grinvalds K, Zagars M, Elferts D, Ikejima K, Tongnunui P (2015) Tidal, diel and lunar patterns in intertidal and subtidal mangrove creek fish assemblages from southwest Thailand. Environmental Biology of Fishes 98 (6): 1671-93

Laegdsgaard P, Johnson, CR (1993) Mangrove habitats as nurseries: unique assemblages of juvenile fish in subtropical mangroves in eastern Australia. Marine Ecology Progress Series 126 (1-3): 67-81 [http://doi.org/10.3354/meps126067]

Laegdsgaard P, Johnson C (2001) Why do juvenile fish utilise mangrove habitats? Journal of Experimental Marine Biology and Ecology 257: 229-253

Lefcheck JS, Hughes BB, Johnson AJ, Pfirrmann BW, Rascher DB, Smyth AR, Williams BL, Beck MW, Orth RJ (2019) Are coastal habitats important nurseries? A meta-analysis. Conservation Letters 1-12 [http://doi.org/10.1111/conl.12645]

Little MC, Reay PJ, Grove SJ (1988) The fish community of an east African mangrove creek. Journal of Fish Biology 32 (5): 729–747

Lugendo BR, Pronker A, Cornelissen I, de Groene A, Nagelkerken I, Dorenbosch M, van der Velde G, Mgaya YD (2005) Habitat utilisation by juveniles of commercially important fish species in a marine embayment in Zanzibar, Tanzania. Aquatic Living Resources 18 (2): 149-158 [http://doi.org/10.1051/alr:2005016]

Lugendo BR, de Groene A, Cornelissen I, Pronker A, Velde VD, Mgaya Y (2007) Spatial and temporal variation in fish community structure of a marine embayment in Zanzibar , Tanzania. Hydrobiologia 586: 1-16 [http://doi.org/10.1007/s10750-006-0398-3]

Macia A (2004) Juvenile penaeid shrimp density, spatial distribution and size composition in four adjacent habitats within a mangrove - fringed bay on Unhana Island, Mozambique. Western Indian Ocean Journal of Marine Science 3 (2): 163-178

McClanahan T (1988) Seasonality in east Africa’s coastal waters. Marine Ecology Progress Series 44: 191-199 [http://doi.org/10.3354/meps044191]

Mees J, Mwamsojo GU, Wakwabi EO (1999) Aspects of the biology and feeding ecology of the orbiculate cardinal fish Sphaeramia orbicularis (Cuvier, 1828) (Teleostei: Apogonidae) in a Kenyan mangrove forest. Biology Jaarb Dodonaea 66: 134-145

Munga CN, Mwangi S, Ong’anda H, Ruwa R, Manyala J, Groeneveld JC, Kimani E, Vanreusel A (2013) Species composition, distribution patterns and population structure of penaeid shrimps in Malindi-Ungwana Bay, Kenya. Fisheries Research 147: 93-102
Mwandya AW, Gullström M, Öhman MC, Andersson, MH, Mgaya, YD (2009) Fish assemblages in Tanzanian mangrove creek systems influenced by solar salt farm constructions. Estuarine, Coastal and Shelf Science 82 (2): 193-200

Mwandya AW, Gullström M, Andersson MH, Öhman MC, Mgaya, YD, Bryceson I (2010) Spatial and seasonal variations of fish assemblages in mangrove creek systems in Zanzibar (Tanzania). Estuarine, Coastal and Shelf Science 89 (4): 277-286 [http://doi.org/10.1016/j.ecss.2010.08.002]

Mwaluma JM, Kaunda-Arara B, Rasowo J, Osore MK, Øresland V (2011). Seasonality in fish larval assemblage structure within marine reef National Parks in coastal Kenya. Environmental Biology of Fishes 90 (4): 393–404 [http://doi.org/10.1007/s10641-010-9749-z]

Mwatha GK (2002) Assessment of the prawn fishery, bycatch, resource-use conflicts and performance of the turtle excluder device. Current status of trawl fishery of Malindi–Ungwana Bay. KMFRI Technical Report. pp 44–65

Mwashote BM (2003) Levels of cadmium and lead in water, sediments and selected fish species in Mombasa, Kenya. Western Indian Ocean Journal of Marine Science 2 (1): 25-34

Nagelkerken I, Velde G Van Der (2002) Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curacao (Netherlands Antilles)? Marine Ecology Progress Series 245: 191-204

Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Sommerfield PJ (2008) The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany 89 (2): 155-185 [http://doi.org/10.1016/j.aquabot.2007.12.007]

Ndoro CK, Kaunda-Arara B, Ruwa R, Munga CN (2014) Influence of seasonality and bathymetry on assemblage structure of decapod crustaceans in the Malindi-Ungwana Bay, Kenya. Western Indian Ocean Journal of Marine Science 13 (1): 31-46

Obura D (2001) Participatory monitoring of shallow tropical marine fisheries by artisanal fishers in Diani, Kenya. Bulletin of Marine Science 69 (2): 777-791

Ochiewo J (2004) Changing fisheries practices and their socioeconomic implications in South Coast Kenya. Ocean and Coastal Management 47 (7–8): 389–408 [http://doi.org/10.1016/j.ocecoaman.2004.07.006]

Primavera JH (1997) Fish predation on mangrove-associated penaeids. The role of structures and substrate. Journal of Experimental Marine Biology and Ecology 215: 205-216

Richmond MD (ed) (2011) A field guide to the seashores of Eastern Africa and the western Indian Ocean islands, Third Edition. Sida/WIOMSA. 464 pp

Rönnbäck P, Troell M, Kautsky N, Primavera JH (1999) Distribution pattern of shrimps and fish among Avicennia and Rhizophora microhabitats in the Pagbilao mangroves, Philippines. Estuarine, Coastal and Shelf Science 48 (2): 223–234 [http://doi.org/10.1006/ecss.1998.0415]

Rozas LP, Minello TJ (1997) Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: a review of sampling design with focus on gear selection. Estuaries 20 (1): 199-213

Sadovy Y (2005) Trouble on the reef: the imperative for managing vulnerable and valuable fisheries. Fish and Fisheries 6 (3): 167-185

Samoilys MA, Kanyange NW (2008) Assessing links between marine resources and coastal peoples’ livelihoods: perceptions from Tanga, Tanzania. IUCN Eastern and Southern Africa Regional Office, Nairobi. 27 pp

Sheridan P, Hays C (2003) Are mangroves nursery habitat for transient fishes and decapods? Wetlands 23 (2): 449–458 [http://doi.org/10.1672/19-20]

Shervette VR, Aguirre WE, Blacio E, Cevallos R, Gonzalez M, Pozo F, Gelwick F (2007) Fish communities of a disturbed mangrove wetland and an adjacent tidal river in Palmar, Ecuador. Estuarine, Coastal and Shelf Science 72 (1-2): 115-128 [http://doi.org/10.1016/j.ecss.2006.10.010]

Tietze U, Lee R, Siar S, Moth-Poulsen T, Båge HE (2011) Fishing with beach seines. FAO Fisheries and Aquaculture Technical Paper (562), 1. 147 pp

Tongnunui P, Ikejima KOU, Yamane T, Horinouchi M, Medej T, Sano M, Kurokura H, Taniuchi T (2002) Fish fauna of the Sikao Creek mangrove estuary, Trang, Thailand. Fisheries Science 68 (1): 10-17 [http://doi.org/10.1046/j.1444-2906.2002.00383.x]

UNEP (United Nations Environmental Program) (2004) Global environment outlook yearbook – An overview of our changing environment. 104 pp

Vance DJ, Haywood MDE, Lea, DS, Kenyon RA, Loneragan NR, Pendrey RC (1996) How far do prawns and fish move into mangroves? Distribution of juvenile banana prawns Penaeus merguiensis and fish in a tropical mangrove forest in northern Australia. Marine Ecology Progress Series 131 (1–3): 115-124 [http://doi.org/10.3354/meps131115]
Wainaina MW, Kaunda-Arara B, Njiru JM (2013) Seasonality in fish assemblage structure in an East African mangrove creek. African Journal of Marine Science 35 (2): 163-173

Wakwabi E, Mees, J (1999) The epibenthos of the backwaters of a tropical mangrove creek (Tudor creek, Mombasa, Kenya). Netherlands Journal of Zoology 49 (3): 189-206 [http://doi.org/10.1163/156854299505696]