CLONING, OVEREXPRESSION AND BIOCATALYTIC EXPLORATION OF A NOVEL BAIZER-VILLIGER MONOOXYGENASE FROM *ASPERGILLUS FUMIGATUS* AF293

Maria Laura Mascotti¹, Maximiliano Juri Ayub², Hanna Dudek³, Marcela Kurina Sanz*¹, Marco W. Fraaije**³

¹ INTEQUI-CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, CP 5700, San Luis, Argentina
² IMIBIO-CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, CP 5700, San Luis, Argentina
³ Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.

Corresponding authors:

*Marcela Kurina-Sanz
E-mail: marcelakurina@gmail.com; Tel: +54-0266-4439909

**Marco W. Fraaije
E-mail: m.w.fraaije@rug.nl; Tel: +31 50-363-4345

Electronic Supplementary Material

Contents

1. PCR protocols: Primers & Vectors
2. Expression conditions
3. Expression of BVMOAf
4. Substrates screening
5. GC analyses
6. *Aspergillus fumigatus* Af293 BVMO encoding genes
1. PCR protocols: Primers & Vectors

Table S1

Cloned genes, expression vectors and primers used for genomic DNA amplification. Restriction sites are underlined

Gene	Size	Vector	Oligonucleotides 5’→3’
Af1	2718	pET200	Fw: CACCATGACCAGAAATACGTCACAGAC
			Rev_EcoRI: CGGAATTCTCAATGCCCATTTAGTAGTAACGG
Af1 truncated	1614	pCRE2	Fw: ACTCGAGATCTGCAGCTGTATGACCAGAAATACGTCACAG
			Rev: GTCGGGCCCCCAAGCTTTAACGTGTAAGCTCATA
Af2	1461	pET200	Fw_Nde I: CACCATATGGATTACGATATTATCATATTGTTGG
			Rev_Hind III: GCGAAGCTTCTATTGCTGCTTCTTCAGGCC
		pCRE2	Fw: ACTCGAGATCTGCAGCTGTATGACCAGATATTATCATATTGTTGG
			Rev: GTCGGGCCCCCAAGCTTTAACGTGTAAGCTCATA
Af3	1806	pET200	Fw_Nde I: CACCATATGGTTGCTACCCTGCC
			Rev_Eco RI: GCGGAATTCTTATAGAAGCGGCGCGCGGC
Af3 truncated	1632	pCRE2	Fw: ACTCGAGATCTGCAGCTGTATGTCAGAAACTACCTCG
			Rev: GTCGGGCCCCCAAGCTTTATAGAAGCGGCGCGCGGC
2. Expression conditions

Table S2

All the expression conditions assayed are listed below

Vector	Cells	Growing Temp	Inductor	Induction Temp	Induction time
pET-Af1	BL21	37 °C (OD₆₀₀=0.5)	IPTG 0.5 mM	17°C	6 h
pET-Af2				24°C	
pET-Af3				30°C	
				37°C	
pET-Af1	BL21	37 °C (OD₆₀₀=0.5)	IPTG 1 mM	17°C	6 h
pET-Af2				24°C	
pET-Af3				30°C	
				37°C	
pCRE-Af1	TOP 10	-	Arabinose 0.002% w/v	17°C	48 h
pCRE-Af2				24°C	36 h
pCRE-Af3				30°C	24 h
				37°C	12 h
pCRE-Af1	TOP 10	-	Arabinose 0.02% w/v	17°C	48 h
pCRE-Af2				24°C	36 h
pCRE-Af3				30°C	24 h
				37°C	12 h
pCRE-Af1	TOP 10	-	Arabinose 0.2% w/v	17°C	48 h
pCRE-Af2				24°C	36 h
pCRE-Af3				30°C	24 h
				37°C	12 h

* For pCRE2 based constructs, no pre-culture is needed, growing is directly in the presence of inducer
3. Expression of BVMO$_{A1}$

Figure S1

SDS-PAGE analyses for BVMO$_{A1}$ purification fractions. *lane 1:* crude extract, *lane 2:* flow through, *lanes 3, 4, and 5:* sequential washes with imidazole increasing concentrations, *lane 6:* yellow, active fraction. The arrow refers to purified BVMO$_{A1}$
4. Substrates screening

Table S3

BVMO_{Ap1} substrates profile

Entry	Substrate	BVMO_{Ap1}^a
1	2-propanone	
2	2-butanoone	
3	3-buten-2-one	
4	2-octanoone	
5	3-octanoone	
6	4-octanoone	
7	2-decanone	
8	butyl levulinate	
9	3-methyl-2,4-pentanedione	
10	cyclobutanone	
11	cyclopentanone	
12	cyclohexanone	
13	cyclopentadecanone	
14	2-oxocyclohexanecarbonitrile	++
15	4-methyl cyclohexanone	
16	2-propyl cyclohexanone	
17	dehydrocarvone	
18	cyclopropyl methyl ketone	
19	norcamphor	
20	bicyclo[3.2.0]hept-2-en-6-one	+++
21	progesterone	
22	androstenedione	
23	4-dimethylamino benzaldehyde	
24	nicotine	
25	thioanisole	+

^a Activity is indicated by:
- +: low activity
- ++: medium activity
- +++: high activity
| No. | Compound | Activity |
|-----|----------------------------------|----------|
| 26 | benzyl ethyl sulfide | +++ |
| 27 | benzyl phenyl sulfide | + |
| 28 | ethionamide | + |
| 29 | diphenylmethylthioacetamide | |
| 30 | thiacetazone | |
| 31 | indole | |
| 32 | 3-acetyl indole | |
| 33 | 5-methyl furfural | |
| 34 | benzaldehyde | |
| 35 | acetophenone | |
| 36 | 4-hydroxyacetophenone | |
| 37 | 2,6-dihydroxy acetophenone | |
| 38 | 3-phenylpentane-2,4-dione | +++ |
| 39 | phenylacetone | |
| 40 | 4-(4-hydroxyphenyl)-2-butanone | |
| 41 | 2-phenyl cyclohexanone | |
| 42 | benzoin | |
| 43 | phenindione | |
| 44 | 2-indanone | |
| 45 | 1-indanone | |

a Activity was measured employing a colorimetric (phosphate-based detection) screening assay, previously reported for BVMOs substrate screening (Riebel et al. 2012). The activity is indicated as +, ++ or +++ representing 1.2-, 2- or 5-fold phosphate formation (substrate conversion) respectively, when comparing with the blanks.
5. GC analyses

The following columns were used for the determination of conversions and enantiomeric excesses: Column A: Alltech GT-A (30 m x 0.25 mm x 0.25 µm, 12.2 psi N₂); column B: Hewlett Packard HP-1 (30m x 0.32 mm x 0.25µm, 12.2 psi N₂) and C: Chirasil Dex CB (30 m x 0.25 mm x 0.25 µm, 12 psi N₂). For all the analyses, the injector temperature was 200ºC and the FID temperature was 250ºC.

Table S4

GC employed conditions and retention times (t_R) of substrates and products

compound	program	column	t_R (min) substrates	t_R (min) products
1	130°C isotherm	C	9 (1S,5R)	16.5 Abnormal (1R,5S)
2	70/0/5/200/0	B	9.63	16.9 Normal (1R,5S)
1	130°C isotherm	C	9.2 (1R,5S)	17.2 Abnormal (1S,5R)
2	70/0/5/200/0	B	9.63	17.4 Normal (1S,5R)
3	70/5/5/200/5	B	12.5	16.5 sulfoxide
4	40/0/10/160/8	A	8.8	16.9 sulfone

Program: initial T (°C)/ time (min)/ slope (°C/min)/T (°C)/ time (min)/ slope (°C/min)/T (°C)/ time (min).

Bicyclo[3.2.0]6hepten-2-one (1), thioanisol (2), benzyl ethyl sulfide (3)
6. Aspergillus fumigatus Af293 BVO encoding genes

Figure S2

Multiple sequence alignment of A. fumigatus Af293 BVOs sequences. Sequences are:
BVOAf1 (XP_747160), BVOAf2 (XP_746949), BVOAf3 (XP_755274), XP_751302,
XP_747774, XP_754119, XP_752204, XP_756084 from A. fumigatus Af293, PAMO
(YP_289549) from Thermobifida fusca, CHMO (AAG10021) from Acinetobacter sp., and CAMO
(AET80001.1) from Cylindrocarpon radicicola. The two Rossmann folds (GxGxxG) and the
BVOMO fingerprint (FxGxxxHxxxWP/D) are in bolds

BVOAf1 Af293	(5) RPDYANIHPGVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	120
BVOAf2 Af293	(1) -MDYILIITLPLTNNAYTLSQG-QLPSHRYAIALAINTGYDIFPRPIGPEIRGRLD	
BVOAf3 Af293	(61) EHYLVIYMGTMNLQ----KLNKLVKADAS WGVTHNRYSMRVCAMWS	
PAMO	(14) PEYVMDYATYSGLYRER----ELGRSVDVHTYGDCWVTHNRYGRAPNTES	
CAMO	(7) VLNVAVLTVNGYTVKDR---ELELVQIADFQATRSLVTHNRYGALPEGN	
CHMO	(4) KMDHAVIYMGTMNLQ----ELELVQIADFQATRSLVTHNRYGALPEGN	
XP_751302	(51) LPKKAVMTLLSSAARGC----HGPQDVLIPAR-------KDRLLGIV	
XP_747774	(32) ARPLMVIGMVTSNLIRFQRRAIPNVLFRVYKNE---GTVLRHYECAIP	
XP_754119	(54) VVRQKQPLAFSGVAVGTVVPAK---LPLGDLRITKNAVGVTFEPDLLVYGRPVTA	
XP_752204	(29) PRKLAVIYMGTMNLQ----KLNKLVKADAS WGVTHNRYSMRVCAMWS	
XP_755104	(19) HTYSMYIYMGTMNLQ----KLNKLVKADAS WGVTHNRYSMRVCAMWS	
XP_755105	(37) FTRAYVIYMGTMNLQ----KLNKLVKADAS WGVTHNRYSMRVCAMWS	
GPXGXX		

BVOAf1 Af293	(61) WVKALKGLEELLEDKPEPPEECKTSRPILDIVKPEFNEKSKHYBDHS	121
BVOAf2 Af293	(58) PTIGFNIWNNN------QDQIFIAGAEKSKMRDLAPDKGKH---QHLRAFVSANN	
BVOAf3 Af293	(117) HLYMDYDIYD-----YPLRYVRSPPLMLARKRHYVDGERGCMKNDMTSWGS	
PAMO	(70) IEVCHSHEEVLQENWTKASNLKPRRLNHYVRH--kRHRHAFAT	
CAMO	(63) YLRYHEDKEDLRSPGRNHYVPTEDLRHARVHNTLARHDSMQRVYDONS	
CHMO	(61) NLKMDKKGQAPPSTLYVQKPKVVRQLRQ---YGCMAEKNHYTA	
XP_751302	(98) HSNIQHRS------WVYPAKMRPIPRPIGPEIRGRLD	
XP_747774	(79) NRPLMVIGMVTSNLIRFQRRAIPNVLFRVYKNE---GTVLRHYECAIP	
XP_754119	(112) HLYMDYDIYD-----YPLRYVRSPPLMLARKRHYVDGERGCMKNDMTSWGS	
XP_752204	(89) IEVCHSHEEVLQENWTKASNLKPRRLNHYVRH--kRHRHAFAT	
XP_755104	(77) LLYMDYDIYD-----YPLRYVRSPPLMLARKRHYVDGERGCMKNDMTSWGS	
XP_755105	(95) SLRSLSEOKK------ADKPRGPEELDHLHSYTRXGTRHNSAPXRH	

BVOAf1 Af293	(151) FPFGQQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	241
BVOAf2 Af293	(148) IFPGQQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	
BVOAf3 Af293	(203) FPFGQQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	
PAMO	(160) FPFGQQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	
CAMO	(153) IEPFPQKQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	
CHMO	(150) IEPFPQKQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	
XP_751302	(183) PLPGQQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	
XP_747774	(181) IEPFPQKQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	
XP_754119	(203) IEPFPQKQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	
XP_752204	(178) IEPFPQKQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	
XP_755104	(191) IEPFPQKQLSYTVVI VRSLHRER----RLGLTPCFDAGS WGVTHMTY YGRSRTAS	

ESM8

FXGXXXHXXX (P/D) GXGXX (G/A)