MATCHING THE DARK MATTER PROFILES OF dSph GALAXIES WITH THOSE OF SIMULATED SATELLITES: A TWO-PARAMETER COMPARISON

MAARTEN A. BREDDELS1, CARLOS VERA-CIRO2, AND AMINA HELMI1

1 Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands; breddels@astro.rug.nl
2 Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53076, USA

Received 2015 July 14; accepted 2015 November 5; published 2015 November 25

ABSTRACT

We compare the dark matter halos’ structural parameters derived for four Milky Way dwarf spheroidal galaxies to those of subhalos found in cosmological N-body simulations. We confirm that estimates of the mass at a single fixed radius are fully consistent with the observations. However, when a second structural parameter such as the logarithmic slope of the dark halo density profile measured close to the half-light radius is included in the comparison, we find little to no overlap between the satellites and the subhalos. Typically the right mass subhalos have steeper profiles at these radii than measurements of the dSph suggest. Using energy arguments we explore if it is possible to solve this discrepancy by invoking baryonic effects. Assuming that feedback from supernovae (SNe) can lead to a reshaping of the halos, we compute the required efficiency and find entirely plausible values for a significant fraction of the subhalos and even as low as 0.1%. This implies that care must be taken not to exaggerate the effect of SNe feedback as this could make the halos too shallow. These results could be used to calibrate and possibly constrain feedback recipes in hydrodynamical simulations.

Key words: galaxies: dwarf – galaxies: kinematics and dynamics

1. INTRODUCTION

The ΛCDM currently favored paradigm of structure formation has proven to be a successful model to explain the evolution and large scale structure of the universe. It is on small scales, however, where the concordance cosmology faces most of its challenges. One example is the well-known mismatch in the number of observed satellites around systems like the Milky Way and those found in cosmological N-body simulations (Klypin et al. 1999; Moore et al. 1999). Although this can be solved by invoking baryonic effects, a new problem has been reported regarding the abundance of massive satellites (so-called “Too Big to Fail problem”; Boylan-Kolchin et al. 2011). Pure N-body simulations in ΛCDM also predict self-similar halos that have divergent central densities ρ ∼ r−1 (Navarro et al. 1996b, 1997). However, models of the internal kinematics of Milky Way dSph have so far yielded ambiguous results regarding the inner slopes of the halos hosting these galaxies (Battaglia et al. 2008; Walker et al. 2009; Breddels & Helmi 2013; Amorisco et al. 2014), although see e.g., Walker & Peñarrubia (2011) for a different conclusion.

The fundamental question that these studies have tried to address is whether a cusped dark matter density profile fits the observations better than a cored one. This is however, very difficult to answer with current data. For instance, Breddels et al. (2013) using non-parametric orbit-based dynamical models showed that, although small values of the logarithmic inner slope of the dark matter density profile are preferred in the case of the Sculptor dSph, the inner slope value is strongly degenerate with the scale radius and the uncertainties are large (Although a multiple component analysis of Scl appears to be more constraining, as argued by Walker & Peñarrubia 2011).

A more feasible task is to measure the logarithmic slope at a finite radius, e.g., at r−3, the radius where the logarithmic slope of the light profile is −3. Breddels & Helmi (2013, hereafter BH13) have determined the logarithmic slope robustly (i.e., independently of the assumed profile, be it cored or cusped) at r−3, for the dSph Fornax (Fnx) and Sculptor (Scl), and placed strong constraints on the values for Sextans (Sxt) and Carina (Car). In addition, BH13 confirmed using Schwarzschild modeling, that the mass at this radius can also be tightly constrained (Strigari et al. 2008; Walker et al. 2009; Wolf et al. 2010).

This result shifts the discussion to a better posed question, namely: Are the logarithmic slope and mass at r−3 inferred for these four dwarfs consistent with those found in simulations? This phrasing has the additional advantage that measuring these two quantities in simulations of dwarf galaxies is less prone to numerical artifacts. In this Letter we focus on answering this question using the Aquarius simulations (Springel et al. 2008). Since these simulations do not include baryons, discrepancies could possibly be attributed to missing physics. For instance, early adiabatic contraction could make the density distribution of the central parts steeper (Blumenthal et al. 1986). On the other hand, feedback by supernovae (SNe) may modify the dark matter profile and lead to a shallower inner slope, especially for low mass galaxies (Navarro et al. 1996a; Mashchenko et al. 2006, 2008; Governato et al. 2012; Pontzen & Governato 2012; Teyssier et al. 2013; Di Cintio et al. 2014a, 2014b). Finally, dynamical friction of large baryonic clumps has also been shown to modify the logarithmic slope in the same sense (El-Zant et al. 2001; Goerdt et al. 2006; Nipoti & Binney 2015).

This Letter is structured as follows. In Section 2 we compare the observational results from BH13 to the subhalos from the Aquarius simulations and highlight the discrepancies. In Section 3 we use analytic arguments to estimate the minimum amount of energy needed to transform the subhalos’ profiles to a distribution more consistent with the observational constraints following the arguments laid out by Peñarrubia et al. (2012), Amorisco et al. (2014), Maxwell et al. (2015), and derive the required SNe feedback efficiencies. Finally in Section 4 we discuss the broader implications of our results.
2. COMPARISON OF THE DARK HALOS STRUCTURAL PROPERTIES

The Aquarius simulations are a suite of six (labeled Aq-A to Aq-F) high resolution cosmological dark matter only runs of Milky Way-like halos. Here we use the highest resolution simulations available for all six halos (known as level-2), with a particle mass of $M_{1.4 \times 10^4}$ and a softening length of 66 pc (for more details see Springel et al. 2008). For a more direct comparison of the different systems, we have scaled all halos such that the Milky Way-like hosts have a common mass of $M_{\text{8.2} \times 10^{11}}$ (as in Vera-Ciro et al. 2013). A dark halo potentially hosting a galaxy such as Fnx ($M_{\text{8.2} \times 10^{11}}$) is resolved with $\sim 2 \times 10^5$ particles, and we expect our results to be reliable beyond a radius of ~ 200 pc, which for Fnx corresponds to $\sim 0.2 \ r_{3}$.

As mentioned in the Introduction, BH13 have shown that, besides M_{-3} (the mass within r_{-3}; Strigari et al. 2008; Walker et al. 2009; Wolf et al. 2010), also $\gamma_{-3} = d \log \rho_{\text{dm}}/d \log r |_{r_{-3}}$ can be robustly determined for the dSph using current data (see also Wolf & Bullock 2012). γ_{-3} does not depend strongly on the assumed profile’s functional form, whether cusped, cored or logarithmically cored\(^5\) when two independent parameters are fitted. M_{-3} and γ_{-3} can also be estimated for our simulated halos. For each Aquarius satellite we compute these using the values of r_{3} measured for each individual dSph galaxy. M_{-3} follows trivially from the number of particles within r_{3}. We determine the slope γ numerically using the algorithm described in Lindner et al. (2015). The values obtained are in good agreement with those derived assuming parametric forms for the density profile (such as truncated Einasto or Navarro–Frenk–White (NFW) profiles), which are fitted to the data and from which γ can then be computed. Comparing the non-

\(^5\) A distinction is made between strictly cored ($\lim_{r \to 0} d \rho_{\text{dm}}/d r = 0$), and logarithmically cored ($\lim_{r \to 0} d \log \rho_{\text{dm}}/d \log r = 0$).
parametric and parametric estimates we gauge the uncertainty on γ to be ~ 0.2.

In Figure 1, we show the posteriors for the joint distribution of M_3 and γ_3 derived by BH13 separately for each dSph galaxy. The red contours correspond to the 1 and 2σ equivalent contours for the NFW (Navarro et al. 1996b, 1997) profile

$$\rho_{dm}(r) = \rho_0 \frac{1}{r/r_i(1 + r/r_i)^2},$$

(1)

while green corresponds to the logarithmic cored profile (core13 in the nomenclature of BH13)

$$\rho'_{dm}(r) = \rho'_0 \frac{1}{(1 + r/r'_i)^2},$$

(2)

where r_i and r'_i are the scale radii and ρ_0 and ρ'_0 characteristic densities. Because the contours overlap substantially this implies that at fixed γ_3 the relation between the scale radii must be $r_i/r'_i = \gamma_3/(1 + \gamma_3)$, for $\gamma_3 < -1$. We also plot in these panels the subhalos’ structural parameters determined non-parametrically and computed at the r_3 of the corresponding dSph. We show here only those subhalos that host a luminous galaxy according to the semi-analytic model of Starkenburg et al. (2013). The black dots correspond to all such subhalos present in the six scaled Aquarius simulations, while the colored triangles are those that host a galaxy with an absolute magnitude within ± 0.75 of the respective dSph.

From the top left panel, we see that the subhalos overlap little with Fnx, especially if only the correct luminosity range is considered. Note that if one only compares the M_3 values, then some subhalos with the right luminosity do actually match. Also if only the slope γ_3 were to be taken into account, several subhalos would be compatible with the observational constraints.

However the discrepancy becomes noteworthy for Fnx when comparing the observations and simulations in the two-dimensional space spanned by M_3 and γ_3. For Scl and Car there is some, although small, amount of overlap with the subhalos, but this is less so for Sxt. Both Car and Sxt have large uncertainties on the slope estimate, which makes the comparison less conclusive.

Therefore it is clear that the slope of the dark matter profiles of these four dwarfs are systematically shallower at r_3 (whether in the very center assumed to be cored or cusped) than those found in the Aquarius simulations, even if we consider subhalos with a broader range of predicted luminosities.

3. RESHAPING SIMULATED DARK MATTER HALOS

As we have just seen, dark matter only simulations in the LCDM cosmology predict steeper dark matter profile slopes at r_3 than those determined for the dSphs. The most commonly proposed mechanism to transform the shape of the dark matter profile is feedback from SNe that affects the baryons and, through gravity, ultimately alters the dark matter mass distribution in these systems (Mashchenko et al. 2006, 2008; Governato et al. 2012; Pontzen & Governato 2012; Teyssier et al. 2013; Di Cintio et al. 2014b).

To establish whether a given Aquarius subhalo can be reshaped into a halo that is compatible with a dSph, we first need to know how much energy is required to do the transformation. Following Peñarrubia et al. (2012) we assume that each dwarf is in virial equilibrium, and we compute the energy needed to transform a subhalo i to match the dSph model j (given by Equations (1) and (2)):

$$\delta E = (W_{dSph} - W_{sub})/2.$$ Here W_{sub} is the potential energy of the subhalo and W_{dSph} is the potential energy of the best fitting model for our dSph:

$$W_{dSph} = -4\pi G \int_0^{r_{max,i}} dr \rho_{dm,j}(r)M_j(r)r,$$

(3)

with $M(r) = M_{dm}(r)$, i.e., we ignore the baryonic component which is sub-dominant for dSph. We choose two different values of r_{max}, namely r_{50} and r_{95}, the radii enclosing 50% or 95% of the bound mass of each subhalo. The potential energy at r_{95} is more negative than at r_{50}, and thus the energy required to transform the system inside r_{50} is smaller than that required for r_{95}. (Note that these values are larger than those used by Maxwell et al. 2015, who took $r_{max} = 3r_c$ with r_c the radius where the dark halo profile’s logarithmic slope is -0.5).

We calculate W_{sub} directly using the particles from the dark matter simulations:

$$W_{sub} = -4\pi G \int_0^{r_{max,i}} dr \rho_{dm,j}(r)M_j(r)r$$

$$= - G \int_0^{r_{max,i}} dM_j(r)/r$$

$$= - G \sum_{k=1}^{N} m^2 k/r_k,$$

(4)

where m is the dark matter particle mass, r_k is the sorted radial distance of particle k from the center of the subhalo such that r_k is the innermost particle and r_N that farthest away but still within r_{max}.

Figure 2 shows for each dSph the ratio W_{dSph}/W_{sub} as a function of absolute magnitude M_V as given by the semi-analytic model. The blue bands indicate a magnitude range of ± 0.75 around the corresponding dSph. The solid circles are for the NFW (red) and core13 (green) best fit models computed for r_{95} while the triangles are for r_{50}.

When $W_{dSph}/W_{sub} < 1$ (all symbols below the horizontal line) objects need energy to transform their halos. In these cases the binding energy of the resulting object is larger (less negative) than that of the original untransformed subhalo. When $W_{dSph}/W_{sub} > 1$ (symbols above the line) the binding energy of the resulting object is smaller and such objects would have to lose energy to be transformed into a profile matching the observations. Regardless of the mechanism, this transformation is energetically possible and we do not discuss it further.

As in Peñarrubia et al. (2012), we estimate the total available energy from SNe as

$$E_{SN, total} = \frac{M_s}{\langle m_s \rangle} \xi (m_s > 8 M_\odot) E_{SN},$$

(5)

where $\xi (m_s > 8 M_\odot) = 0.0037$, $\langle m_s \rangle = 0.4 M_\odot$ and M_s is the given dSph stellar mass. If the energy needed to transform a given halo is larger than what can be delivered from SNe (i.e., the SN efficiency is larger than 100%), it is plotted in Figure 2 with an open symbol. Note that for Fnx only a few open
symbols exist. This means that almost all candidate subhalos could be reshaped into Fnx given its stellar mass and the SNe available energy.

Figure 2. Ratio of the potential energy of the dSph, W_{dSph}, to that of the Aquarius subhalos W_{sub} as a function of their predicted absolute magnitude M_V, computed for r_{200} (circles) and r_{50} (triangles) for the NFW (red) and core13 (green) models. The blue band indicates an absolute magnitude range within ±0.75 of the of the corresponding dSph. The open symbols are subhalos which cannot be transformed with the energy available in SNe.

Figure 3. Similar to Figure 2, now showing the SN efficiency needed to transform the Aquarius halos.

The Astrophysical Journal Letters, 814:L23 (5pp), 2015 December 1

Breddels, Vera-Ciro, & Helmi
For each dSph, we plot in Figure 3 the ratio of the energy required to transform the system to the SN energy output as estimated above, i.e., \(\varepsilon_{SN} = \frac{dE}{E_{SN, total}} \) is the SN efficiency needed to do the transformation. We thus only plot the objects which lie below the horizontal lines in Figure 2. This analysis reveals that for each dSph, subhalos with the right luminosities exist which can be reshaped to follow a dark matter profile consistent with the observations. The required efficiencies range from \(\sim 0.1\% \) up to slightly more than 100%, depending somewhat on the extent of the region of the subhalo that would be transformed \((r_{50} \text{ or } r_{90}) \). Furthermore there is always at least one subhalo that requires a SN feedback efficiency \(\varepsilon_{SN} < 0.001 \).

4. DISCUSSION AND CONCLUSIONS

We have shown that in the two-dimensional parameter space defined by the mass and the logarithmic slope of the dark matter density profile at \(r_{-3} \), the Milky Way’s dSph do not match the predictions from dark matter only simulations. While in Vera-Ciro et al. (2013) we argued that by rescaling the Milky Way mass to a (low) value of \(\sim 8 \times 10^{11} M_\odot \) we could circumvent the so-called “Too Big To Fail Problem,” we now see that halos with the right mass, do not have the right logarithmic slope at \(r_{-3} \). However, baryons can have a considerable effect on the shape of the dark matter density profile through feedback (e.g., Governato et al. 2012). We have shown here that it is energetically possible at redshift of \(z = 0 \) to reshape the simulated halos and make them compatible with the observations. Note that this process would require even less energy at higher redshift, as discussed by Amorisco et al. (2014), Madau et al. (2014).

Hydrodynamical (cosmological) simulations of (isolated) dwarf galaxies are now available in the literature (e.g., Teyssier et al. 2013; Di Cintio et al. 2014a, 2014b; Sawala et al. 2015), and are more representative of galaxy formation scenarios in ΛCDM, since they self consistently include baryonic physics. Di Cintio et al. (2014b), for instance, predict the slope in a given radial range to be predominantly dependent of the ratio \(M_*/M_{halo} \). In their simulations an object like Fnx (whose \(M_* = 4 \times 10^4 M_\odot \); de Boer et al. 2012), is embedded in dark matter halo of virial mass \(M_{halo} \sim 10^{10} - 10^{10.5} M_\odot \). Such objects are reported to have dark halo profile’s logarithmic slopes \(\alpha \in [-1, -0.5] \) for the radial range 0.8–1.8 kpc. This is inconsistent at a 2σ level with our measurement of the slope for Fnx at \(r_{-3} \sim 1 \) kpc as can be seen from Figure 1. Such simulations therefore, predict slopes that are too shallow compared to what Breddels & Helmi (2013) found (see also Madau et al. 2014; Chan et al. 2015). This suggests that the feedback scheme used might be too strong for objects of this mass scale.

It is more difficult to make a detailed and conclusive comparison the other dSph because the simulations’ suites available in the literature do not contain such faint objects or the ranges in which the slopes are measured are typically larger than the observed \(r_{-3} \).

The steep slopes (corresponding to high concentration) of low mass dark halos could be another manifestation of the “Too Big to Fail” problem (however see Papastergis et al. 2015), although the two issues are not necessarily related, since there are other solutions to this problem (Wang et al. 2012; Vera-Ciro et al. 2013; Brooks & Zolotov 2014; Arraki et al. 2014). For example, Brooks & Zolotov (2014) argue for efficient feedback, but the preliminary comparisons made above show that a careful treatment is required. We hope that our measurements of the logarithmic slopes and masses of dSph at \(r_{-3} \) can be used to better constrain poorly understood processes such as the interplay between adiabatic contraction and supernova feedback in these small mass systems.

A.H. and M.B. are grateful to NOVA for financial support. A.H. acknowledges support from the ERC under StG GALACTICA-240271 and an NWO-Vici grant. We are very grateful to the VIRGO consortium for the Aquarius simulations, and particularly indebted to Volker Springel, Else Starkenburg for the outputs of the semi-analytic code used here, and Gabriella De Lucia and Yang-Shyang Li for the contributions to its development.

REFERENCES

Amorisco, N. C., Zavala, J., & de Boer, T. J. L. 2014, ApJL, 782, L39
Arraki, K. S., Klypin, A., More, S., & Trujillo-Gomez, S. 2014, MNRAS, 438, 1466
Battaglia, G., Helmi, A., Tolstoy, E., et al. 2008, ApJL, 681, L13
Blumenthal, G. R., Faber, S. M., Flores, R., & Primack, J. R. 1986, ApJ, 301, 27
Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2011, MNRAS, 415, L40
Breddels, M. A., & Helmi, A. 2013, A&A, 558, A35
Breddels, M. A., Helmi, A., van den Bosch, R. C. E., van de Ven, G., & Battaglia, G. 2013, MNRAS, 433, 3173
Brooks, A. M., & Zolotov, A. 2014, ApJ, 786, 87
Chan, T. K., Kereš, D., O’Toole, J., et al. 2015, MNRAS, 454, 2981
de Boer, T. J. L., Tolstoy, E., Hill, V., et al. 2012, A&A, 544, A73
Di Cintio, A., Brook, C. B., Dutton, A. A., et al. 2014a, MNRAS, 441, 2986
Di Cintio, A., Brook, C. B., Macciò, A. V., et al. 2014b, MNRAS, 437, 415
El-Zant, A., Shlosman, I., & Hoffman, Y. 2001, ApJ, 560, 636
Goerdt, T., Moore, B., Read, J. I., Stadel, J., & Zemp, M. 2006, MNRAS, 368, 1073
Governato, F., Zolotov, A., Pontzen, A., et al. 2012, MNRAS, 422, 1231
Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82
Lindner, R. R., Vera-Ciro, C., Murray, C. E., et al. 2015, AJ, 149, 138
Madau, P., Shen, S., & Governato, F. 2014, ApJL, 789, L17
Maschchko, S., Couchman, H. M. P., & Wadsley, J. 2006, Nat, 442, 539
Maschchko, S., Wadsley, J., & Couchman, H. M. P. 2008, Sci, 319, 174
Maxwell, A. J., Wadsley, J., & Couchman, H. M. P. 2015, ApJ, 806, 229
Moore, B., Ghigna, S., Governato, F., et al. 1999, ApJL, 524, L19
Navarro, J. F., Eke, V. R., & Frenk, C. S. 1996a, MNRAS, 283, L72
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996b, ApJ, 462, 563
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Nipoti, C., & Binney, J. 2015, MNRAS, 446, 1820
Papastergis, E., Giovanelli, R., Haynes, M. P., & Shankar, F. 2015, A&A, 574, A113
Peñarrubia, J., Pontzen, A., Walker, M. G., & Koposov, S. E. 2012, ApJL, 759, L42
Pontzen, A., & Governato, F. 2012, MNRAS, 421, 3464
Sawala, T., Frenk, C. S., Fattahi, A., et al. 2015, MNRAS, 448, 2941
Springel, V., Wang, J., Vogelsberger, M., et al. 2008, MNRAS, 391, 1685
Starkenburg, E., Helmi, A., De Lucia, G., et al. 2013, MNRAS, 429, 725
Strigari, L. E., Bullock, J. S., Kaplinghat, M., et al. 2008, Nasa, 454, 1096
Teyssier, R., Pontzen, A., Dubois, Y., & Read, J. I. 2013, MNRAS, 429, 3068
Vera-Ciro, C. A., Helmi, A., Starkenburg, E., & Breddels, M. A. 2013, MNRAS, 428, 1696
Walker, M. G., Mateo, M., Olszewski, E. W., et al. 2009, ApJ, 704, 1274
Walker, M. G., & Peñarrubia, J. 2011, ApJ, 742, 20
Wang, J., Frenk, C. S., Navarro, J. F., Gao, L., & Sawala, T. 2012, MNRAS, 424, 2715
Wolf, J., & Bullock, J. S. 2012, MNRAS, submitted (arXiv:1203.4240)
Wolf, J., Martinez, G. D., Bullock, J. S., et al. 2010, MNRAS, 406, 1220