STUDY OF METHANE OXYCHLORINATION REACTION

Hamidov D.R.
Karshi engineering economic institute
REPUBLIC OF UZBEKISTAN

Abstract. The article investigated the methane oxychlorination reaction in a flow reactor and selected a catalyst containing \((\text{CuCl}_2)_x : (\text{KCl})_y : (\text{ZnCl}_2)_z : (\text{MnCl}_2)_k / \text{HSZ} \) (high-silicon zeolite) with high activity, selectivity and efficiency. The influence of various factors on the rate of the methane oxychlorination reaction and the yield of the reaction products in the presence of the selected catalyst was studied. Based on the results obtained, the kinetic laws of the reaction were investigated and the following optimal conditions for the methane oxychlorination reaction were selected: \((\text{CuCl}_2)_x : (\text{KCl})_y : (\text{ZnCl}_2)_z : (\text{MnCl}_2)_k / \text{HSZ} \)-containing catalyst, \(T = 340 \) °C, \(\tau = 0.1 \) second, \(N_2 : CH_4 : HCl : O_2 = 5 : 14 : 2 : 1 \) volume ratio, \(P = 0.1 \) MPa, size of catalyst fractions \(0.7 \div 1.2 \) mm, gas flow rate \(17 \), \(2 \) l/h, contact time \(0.1 \), linear flow rate \(10.2 \) cm / sec.

Introduction. Ethylene is the most widely used organic product worldwide and is widely used as a primary semi-product in the chemical and petrochemical industries. Currently, the annual demand for ethylene is more than 180 million tons. Currently, the main feedstock for the production of ethylene and propylene is naphtha (gasoline fraction of direct oil transfer) and compressed hydrocarbons [1-5].

Today, the following methods for producing ethylene are of great interest to scientists in world practice:
1) Oxidative dimerization of methane;
2) by recovering methane chloride from methane and its pyrolysis;
3) Synthesis gas from methane and methanol and ethylene recovery from methanol.

Among the methods mentioned above, the catalytic oxidation and dimerization (oxycondensation) reaction of methane is a step-by-step method at normal atmospheric pressure, a method that has not yet been introduced into the industry. However, laws, mechanism, kinetics and other reaction parameters have been studied in detail. To date, catalysts with high catalytic activity, selectivity and efficiency have been developed for this reaction. Such catalysts include those containing \(\text{MeMnW} / \text{SiO}_2 \) \((\text{Me} = \text{Li}, \text{Na}, \text{K}) [6-9] \) and \(\text{(MoO}_3)_x (\text{ZnO})_y (\text{ZrO}_2)_z \) [10-18].
The second method, the process of producing ethylene from natural gas through methanol, involves the following reactions:

1. Synthesis gas production:

 \[
 \begin{align*}
 CH_4 + H_2O & \rightleftharpoons CO + 3H_2 & -206 \text{ kJ/mol} \\
 CH_4 + CO_2 & \rightleftharpoons 2CO + 2H_2 & -247 \text{ kJ/mol} \\
 CH_4 + 1/2O_2 & \rightarrow CO + 2H_2 & +36 \text{ kJ/mol}
 \end{align*}
 \]

2. Extraction of methanol:

 \[
 CO + CO_2 + 5H_2 \rightarrow 2CH_3OH + H_2O \\
 T=220-280^0C; \ P = 5-10 \text{ MPa}, Cu/Zn catalyst [19].
 \]

3. Conversion of methanol in the presence of a catalyst:

 \[
 nCH_3OH \rightarrow C_2H_4 + C_3H_6 + C_4H_8 + C_nH_{2n} + nH_2O
 \]

The third method involves the reaction of obtaining ethylene by pyrolysis of methyl chloride obtained by oxidizing methane. The main reactions that take place in this process are as follows:

\[
\begin{align*}
2CH_4 + 2HCl + O_2 & \leftrightarrow 2CH_3Cl + 2H_2O \Delta H=157 \text{ kJ/mol} \\
nCH_3Cl & \rightarrow C_2H_4 + C_nH_{2n} + nHCl \Delta H=-10-70 \text{ kJ/mol}
\end{align*}
\]

However, there is also a coking reaction:

\[
CH_3Cl \rightarrow C + H_2 + HCl \Delta H=-10,3 \text{ kJ/mol}
\]

The main catalysts for methyl chloride pyrolysis are SAPO-34 and SAPO-18 [20]. Many scientists have used catalysts based on copper (II) chloride in the methane oxychlorination reaction, which is explained by the relatively low cost of copper (II) chloride [21], high catalytic activity, selectivity, corrosion resistance [22]. Lanthanum chloride is used as a promoter for copper-based catalysts. Lithium or potassium is used as a catalyst enhancer [23]. Based on the above, the aim of the work is to develop a method for obtaining the catalyst \((CuCl_2) \times \cdot (KCl) y \cdot (ZnCl_2) z \cdot (MnCl_2) k\) for the process of obtaining methyl chloride by oxychlorination of methane and to study the kinetic laws of the reaction.

Experiment. As porous carriers, HSZ obtained from kaolin in the Pakhtachi district of the Republic of Uzbekistan was used. The catalyst was prepared as follows: 30% solution of \(CuCl_2\), \(KCl\), \(ZnCl_2\), \(MnCl_2\) was absorbed per 100 g of HSZ in 12 hours. The catalyst was then separated from the solution and dried at 350-400 \(^0\)C in a stream of nitrogen for 3 hours and reduced to a granule size of 5-7 mm. Experiments were carried out in a flow reactor under laboratory conditions. For qualitative and quantitative analysis of the products of the methane oxychlorination reaction, chromatographs LXM-80 (thermal conductivity detector) and Crystal 2000 (ionization detector) were used. The products of the methane oxychlorination reaction were analysed chromatographically under the following optimal conditions: stationary phase 15% -lestosyl on an N-AW chromaton with a particle size of 0,250-0,315 mm, a glass column with a size of 2 x 0,004 m, the temperature of the thermostat of the columns from 40 to 150 \(^0\)C, with heating at a rate of 10 \(^0\)C/min, nitrogen carrier gas flow rate of -30 ml/min [24-26].

Qualitative analysis of products was carried out by the method of "witnesses" and on the basis of structural-group components "sorbent-sorbate" system, and quantitative-method of internal normalization [27-30]. Thermal analysis of the obtained catalysts was carried out on a derivatograph Q-1500D. The porous structure of the samples was examined by low-temperature nitrogen adsorption at NOVA 1200 e. The specific surface area of the samples was calculated by BET, average mesoporous size by BJH [31-32]. After 200 hours of methane oxychlorination
reaction, the texture characteristics of the catalyst were determined. Prior to analysis of sorption properties, the samples were dried in vacuum at 250 °C.

The support (HSZ), the freshly prepared catalyst \((\text{CuCl}_2)_x\cdot (\text{KCl})_y\cdot (\text{ZnCl}_2)_z\cdot (\text{MnCl}_2)_k\) and the weight loss of the samples after several hours of use were 0.56, respectively; 2.28; and 0.90%.

Results and discussion. Based on the above, we investigated the catalytic activity of catalysts of various compositions based on "Zol-gel" technology in the methane oxidation reaction. The results are shown in Table 1.

Table 1

The catalytic activity of the methane oxychlorination reaction of catalysts of various compositions based on "Zol-gel" technology. (T=340 °C, τ=0.1sec)

№	Catalyst composition (in the ratio of mole)	Conversion rate, %	CH₃Cl, Selectivity, %
1	CuCl₂·KCl·0,3LaCl₃·SiO₂	76.3	36.8
2	CuCl₂·KCl·0,3P₃3Cl₂·SiO₂	80.3	42.5
3	CuCl₂·KCl·SiO₂	51.6	28.6
4	ZnCl₂·KCl·HSZ	49.9	25.4
5	MnCl₂·KCl·HSZ	25.7	24.8
6	MnCl₂·KCl·HSZ	30.6	30.4
7	CuCl₂·KCl·ZnCl₂·HSZ	64.8	34.7
8	CuCl₂·KCl·MnCl₂·HSZ	55.1	42.0
9	CuCl₂·KCl·ZnCl₂·MnCl₂·HSZ	82.6	44.0

As can be seen from Table 1, the catalyst with \((\text{CuCl}_2)_x\cdot (\text{KCl})_y\cdot (\text{ZnCl}_2)_z\cdot (\text{MnCl}_2)_k\) based on "Zol-gel" technology showed the highest catalytic activity in the methane oxidation reaction. The conversion of hydrogen chloride, methane and oxygen in the presence of this catalyst was 82.6%, 44.0% and 61.3%, respectively, and the selectivity to methyl chloride was 98.6%.

After that, we learned about the effect of various factors on the rate of reaction of methane oxychlorination and the target methyl chloride product. The selectivity of methyl chloride formation depends on the temperature of the methane oxychlorination reaction. As the temperature increases, the selectivity of methyl chloride formation decreases, and the selectivity of methylene chloride formation increases. In the methane oxychlorination reaction in the range 315-340 °C, the formation of methane deep oxidation reaction products is increased to 315-340 °C.

The results are shown in the figure 1 below.

![Fig.1. The selectivity of methyl chloride formatting depends on the temperature of the methane oxychlorination reaction](image)
When studying the effect of the amount of oxygen, hydrogen chloride and methane in the starting mixture on the basic parameters of the methane oxychlorination reaction, the rate of formation of polychloromethanes increases with the increase in the amount of hydrogen chloride in the starting mixture. In the same case, with an increase in the oxygen concentration in the initial mixture, the combustion rate increases sharply and the selectivity of the formation of methyl chloride decreases. This shows the need to increase the amount of methane in the feed to improve the efficiency of the process. Based on the above, we propose the ratio of starting reagents $N_2:CH_4:HCl:O_2 = 5:14:2:1$. The choice of contact time for the methane oxychlorination reaction is an important factor in ensuring the selectivity of formation of the desired product. The results of the contact time selection study are shown in the table below.

Table 2. Effect of reactant contact time on process parameters in methane oxychlorination reaction

Contact time, h	HCl conversion, %	CH₄ conversion, %	O₂ conversion, %	Selectivity, %
0.03	20.45	12.56	15.23	0.14
0.03	24.58	3.72	14.22	0.08
0.10	82.6	44.00	61.30	0.99
0.30	60.65	26.03	43.25	1.94
0.30	61.43	25.53	38.23	1.64
1.00	75.31	55.74	72.05	2.03
1.79	97.30	55.83	89.87	2.46
1.79	94.35	54.74	88.53	4.61

When choosing contact time, we calculated the amount of chlorogenic compounds that can be formed in the value of different contact times, assuming that the formation of additional substances is one of the main factors. The results are presented in Table 3 below.

Table 3. The formation of chlorogenic products at different contact times ($τ/(ml\cdot kat\cdot hour)$)

Substance name	Contact time, second	0.03	0.03	0.10	0.30	0.30	1.00	1.79
XM	0.5873	0.6636	0.4664	0.2144	0.1675	0.115	0.0963	
Ethyl chloride	0.0002	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	
Methylene chloride	0.0265	0.0326	0.0470	0.0218	0.0198	0.0170	0.0143	
1,1-dixlorethane	0.0003	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	
Chloroform	0.0013	0.0015	0.0028	0.0025	0.0020	0.0017	0.0013	
CH₂	0.0000	0.0000	0.0000	0.0001	0.0001	0.0002	0.0002	

As a result of the studies, the following optimal conditions for the reaction of oxychlorination of methane were revealed: catalyst content, $(CuCl_2)_{x} \cdot (KCl)_y \cdot (ZnCl_2)_z \cdot (MnCl_2)_k$, catalyst fraction size 0.7-1.2 mm, $P = 0.1$ MPa, gas flow rate 17.2 l/h, contact time 0.1 sec, linear flow rate 10.2 cm/s. The total flow rate of gases in the reactor remained unchanged by changing the flow rate of nitrogen. These conditions allow the reaction to proceed in the kinetic region. The influence of by-products (methylene chloride, chloroform, carbon (IV) chloride and the products of the reaction of complete oxidation of methane) was not taken into account, since under kinetic conditions the selectivity of the process over methyl chloride exceeds 95%.
Conclusion.
1. The reaction of oxchlorination of methane is investigated in the flowing reactor and the catalyst containing CuCl2•KCl•ZnCl2•MnCl2/HSZ with high activity, selectivity and efficiency are chosen.
2. The influence of various factors on the rate of the methane oxchlorination reaction in the presence of the selected catalyst and the yield of the reaction products was studied.
3. Based on the results obtained, the kinetic patterns of the reaction were tested and the following optimal conditions of the methane oxychlorination reaction were selected: (CuCl2)x•(KCl)y•(ZnCl2)z•(MnCl2)w/HSZ catalyst, T = 340°C, t = 0.1 seconds, N2:CH4:HCl:O2 = 5:14:2:1 volumetric ratio, P = 0.1 MPa, size of catalyst fractions 0.7-1.2 mm, gas flow rate 17.2 l/h, contact time 0.1, linear flow rate 10.2 cm/s. The conversion of hydrogen chloride, methane and oxygen in the presence of the selected catalyst was 82.6%, 44.0% and 61.3%, respectively, and the selectivity to methyl chloride was 98.6%.

References:
[1] Fayzullaev, N., Akmalaiev, K., & Habibov, F. (2020). New nanocatalyst for synthesis of acetaldehyde. Zbirnik naukovih praz, 126-129. https://doi.org/10.36074/21.08.2020.v1.46.
[2] Akmalaiev, K., Fayzullaev, N., & Habibov, F. (2020). Heterogene-catalytic synthesis of vinylchloride from acetylene. Zbirnik naukovih praz, 113-115. https://doi.org/10.36074/21.08.2020.v1.42.
[3] Fayzullaev, N., Akmalaiev, K., & Habibov, F. (2020). Catalytic synthesis of vinyl acetate in a gaseous phase. Zbirnik naukovih praz, 118-122. https://doi.org/10.36074/21.08.2020.v1.44.
[4] Fayzullaev, N., Akmalaiev, K., & Habibov, F. (2020). Heterogene-catalytic synthesis of vinylchloride and hydrogenation of acetylene. Zbirnik naukovih praz, 115-118. https://doi.org/10.36074/21.08.2020.v1.43.
[5] Omanov, B. S., Ibodullayevich, F. N., Anorboevich, E. K., & Sattorovna, K. M. (2020). Production of vinyl acetate from acetylene. ACADEMIA: An International Multidisciplinary Research Journal, 10(6), 1031-1038.
[6] Fayzullaev, N. I., Akmalaev, K. A., Karjavov, A., Akbarov, H. I., & Qobilov, E. (2020). Vapor phase catalytic hydration of acetylene. ACADEMIA: An International Multidisciplinary Research Journal, 10(7), 88-98.
[7] Fayzullaev, N. I., & Tursonova, N. C. (2018). Production of vinyl chloride from methane with the help of a high-activity heterogeneous catalyst. Himiya i khimicheskaya technologiya, (1), 24-28.
[8] Fayzullaev, N. I., & Sh, S. B. (2018). Catalytic aromatization of methane with non-contained catalysts. Austrian Journal of Technical and Natural Sciences, (7-8).
[9] Mousumono, N. F. N., & Omanov, B. W. (2019). Bifunctional catalyzatorlarda acetyleninn kelebeli katalitik uzgarishlari. Monografiya. SamDU nauirchi.
[10] Omanov BS, Fayzullaev NI, Musulmonov NK, Xatamova MS, Asrorov DA. Optimization of Vinyl Acetate Synthesis Process. International Journal of Control and Automation. 2020 Feb 27;13(1):231-8.
[11] Fayzullaev NI, Fozilov SF, Ibodullayeva MN, Xotamov KSH. Heteroge-catalitic synthesis of vinylacetate from acetylene. Nauchniy aspekt. 2019(1).
[12] Fayzullaev, N. I., Karjavov, A. R., & Yusupova, S. S. (2020). Catalytic Synthesis of Acetone Direct Acetylene Hydration. International Journal of Advanced Science and Technology, 29(05), 4507-4514.
[13] Omanov, B. Sh, N. I. Fayzullaev, and M. S. Xatamova. Vinyl Acetate Production Technology. International Journal of Advanced Science and Technology, 29, no. 3 (2020): 4923-4930.
[14] Fayzullaev, N., Akmalauly, K., & Karjavov, A. (2020). Catalytic synthesis of a line by acetylene hydration. News of the National Academy of Sciences of the Republic of Kazakhstan, Series chemistry and technology, 2(440), 23-30.
[15] Omanov BS, Fayzullaev NI, Xatamova MS. Vinyl Acetate Production Technology. International Journal of Advanced Science and Technology. 2020;29(3):4923-30.
[16] Omanov, B. S., Fayzullaev, N. I., & Xatamova, M. S. (2019). VINYLACETATE Production Out of ACETYLENE. International Journal of Advanced Research in Science, Engineering and Technology, 6(12).
[17] Fayzullaev, N. I., Yusupov, D., & Shirinov, X. Sh., Korotoev, AV., Umirzakov, RR.(2002). Catalytic
vapor-phase hydration of acetylene and its derivatives. *Chemical Industry. N.*, 7, 1-33.

[18] Файзуллаев, Н. И., Саримсакова, Н. С., & Бакиева, Х. А. (2018). Метод получения винилхлорида и хлоропрена из ацетилена. *Молодой ученый*, (24), 273-275.

[19] Файзуллаев, Н. И., Туробжонов, С. М., & Оманов, Б. Ш. (2018). Винилацетат синтез реакторной модификации как основной продукт акетила. *И. Каримов номидаги Тошкент даям техника университети*. ТошДТУ хабарлары.

[20] Файзуллаев, Н. И., Жуманазаров, Р. Б., Норкулов, У. М., & Оманов, Б. Ш. (2018). Винилацетат илаб чикаришнинн ичатымлабирдиган технологияс. *СамДУ илмий ахборотномаси.*

[21] Файзуллаев, Н. И., Курбанов, А. М., & Шугаев, Н. А. (2016). Оптимизация процесса синтеза ацетона. *Достижения, проблемы и перспективы развития нефтегазовой отрасли.* pp. 479-483.

[22] Fayzullayev, N. I., & Turobjonov, S. M. (2015). Catalytic Aromatization of Methane. *International Journal of Chemical and Physical Science, 4*, 27-34.

[23] Karjavov, A. R., Fayzullayev, N. I., & Musulmonov, N. X. (2020). Jointly Catalytic Synthesis of Vinyl Chloride and Chloroprene from Acetylene. *International Journal of Control and Automation, 13*(4), 55-62.

[24] Omanov, B. S., Fayzullayev, N. I., & Xatamova, M. S. (2020). Catalytic synthesis of acetylene ut of vinyl acetate and texture characteristics of catalysts. *Asian Journal of Multidimensional Research (AJMR). Special Issue, March, 157-164.*

[25] Omanov B.S., Xatamova M.S., & Faiizullayev N.I. (2020). Технологии производственные винилацетат. *Инновационная наука*, (3), 10-12.

[26] Omanov, B. Sh. U., & Faiizullayev, N. I. (2020). Параметры технологического режима синтеза винилацетата. *Universtis: химия и биология*, (4 (70)).

[27] Файзуллаев, Н. И., Файзуллаев, Н. И., & Содикова, М. М. (2019). Катализитическая парофазная гидратация ацетилена. *Научный аспект, 8*(1), 976-979.

[28] Sh, S. B. (2018). Rahmatov Sh. B., Fayzullayev NI High silicon zeolite preparation from kaolin. *Scientific journal of SamSU, 5*(109), 106-111.

[29] Fayzullayev, N. I., Turabjonov, S. M., & Omanov, B. Sh. (2018). Винилацетат синтез реакторини такомиллаштирилган технологияс. *И. Каримов номидаги Тошкент даям техника университети*. ТошДТУ хабарлары.

[30] Fayzullayev, N. I., & Shukurov, V. S. (2017). Kinetics and Mechanism of the Reaction of Catalytic Dehydroaromatization of Methane. *International Journal of Oil, Gas and Coal Engineering, 5*(6), 124.

[31] Fayzullayev, N. I., Курбанов, А. М., Шугаев, Н. А., & Турдиев, М. Ф. (2016). Катализитическое акетилацетированние ацетила в паровой фазе присутствии нанокаталитатора. *Вестник АИНГ.*

[32] Fayzullayev, N. I., Jumanazarov, R. B., & Turabjanov, S. M. (2015). Heterogeneous Catalytic Synthesis of Vinylchloride by Hydrochlorination of Acetylene. *IJISET-International Journal of Innovative Science, Engineering & Technology, 2*(9).

[33] Мухамадиев, А. Н., & Файзуллаев, Н. И. (2018). Газохроматографическое изучение реакции катализитического превращения метана в метанол. In *XXXV Всероссийский симпозиум молодых ученых по химической гинете.* pp. 110-110.

[34] Fayzullayev, N. I., Kurbabov, A. M., & Dskazieva, G. Sh. (2016). Парофазный каталитический синтез ацетона из ацетилена. In *Достижения, проблемы и перспективы развития нефтегазовой отрасли.* pp. 468-474.

[35] Файзуллаев, Н., Ахматбийлы, К., & Хакимов, Ф. (2020). Совместное получение винилхлорида и хлоропрена из ацетилена. *Збирник наукових праць ЛОГОС*, 129-133.

[36] Файзуллаев, Н., Сагинаев, А., Шукров, Б., & Хоплиев, Ш. (2020). Катализитическая дегидроароматизация нефтяного попутного газа. *Збирник наукових праць ЛОГОС*, 122-126.

[37] Файзуллаев, Н. И., & Турбизова, Н. С. (2019). Кинетика катализитической реакции димеризации метана с маганец и молибден содержим катализатором. *Главный редактор.*

[38] Fayzullayev, N. I. (2019). Kinetics and mechanism of the reaction of the catalytic oxycondensation reaction of methane. *Austrian Journal of Technical and Natural Sciences, (5-6).*

[39] Rahmatov, S. B., & Fayzullayev, N. I. (2019). Technology for the production of ethylene by catalytic oxycondensation of methane. *European Journal of Technical and Natural Sciences, (5-6), 44-49.*