In the last paragraph of Sect. 2.5 of the original paper, the treatment of the boundary condition was incorrectly described. In the original paper, we stated that \(\frac{\partial}{\partial r}(\Sigma r^3) = 0 \) was imposed at the inner and outer boundaries, \(r = r_{\text{in}} = 0.01 \) au and \(r = r_{\text{out}} = 10^4 \) au, and that this condition corresponds to the zero-torque boundary condition. However, this statement and explanation were incorrect. The actual boundary condition implemented in our calculations was to impose \(\frac{\partial}{\partial r}(\Sigma r) = 0 \) at \(r = r_{\text{in}} \) and \(r = r_{\text{out}} \). This is consistent with the zero-torque boundary condition, \(r^2 \Sigma r \alpha r \phi c_s^2 \propto \Sigma r^2 \) for a constant \(\alpha r \phi \) and \(T \propto r^{-2} \); see Eqs. (10) and (A.5)) \(\rightarrow 0 \) at the centre, \(r \rightarrow 0 \). The physical meaning of \(\frac{\partial}{\partial r}(\Sigma r) = 0 \) at \(r = r_{\text{in}} \) and \(r = r_{\text{out}} \) is to impose a constant mass accretion rate induced by the \(r \phi \) stress for a constant \(\alpha r \phi \) and \(T \propto r^{-2} \) (Eq. (33)) across the boundary. All of the results presented in the original paper remain unchanged.