Supporting Information

Investigation on Stripping-down TNT from Waste Munitions by Supercritical CO\textsubscript{2} Fluid Extraction under Low Temperature Conditions

Tsung-Mao Yang,1,2 Jin-Shuh Li,* Chie-Shaan Su,2 Kai-Tai Lu,1 Tsao-Fa Yeh1

1Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, ROC
2Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, ROC
*E-mail: lijinshuh@gmail.com

Figure S1 shows the morphological changes of the cylindrical TNT pellets at a constant temperature of 35 °C and pressure range 5-50 MPa. The melting phenomenon was not observed at pressures of 5 MPa, 10 MPa and 15 MPa. There was only a small amount of recrystallized TNT on the bottom of the glass sample bottle. However, the melting phenomenon was observed in the pressure range of 20-50 MPa. It was observed that the TNT accumulated at the bottom of the bottle solidified with a deeper colour when the experimental pressure was returned to atmospheric pressure.

Figure S1. Morphological changes of cylindrical TNT pellets after the experiments at a constant temperature of 35 °C and pressure range 5-50 MPa
Figures S2-S4 show the experimental results at constant temperatures of 45 °C, 55 °C and 65 °C, respectively, and the melting phenomenon was observed in the pressure ranges of 15-50 MPa, 10-50 MPa and 10-50 MPa, respectively.

Figure S2. Morphological changes of cylindrical TNT pellets after the experiments at a constant temperature of 45 °C and pressure range 5-50 MPa

Figure S3. Morphological changes of cylindrical TNT pellets after the experiments at a constant temperature of 55 °C and pressure range 5-50 MPa

Figure S4. Morphological changes of cylindrical TNT pellets after the experiments at a constant temperature of 65 °C and pressure range 5-50 MPa
Figure S5 shows the removal efficiency of TNT for the simulated warhead with a weight loading of 1 kg of TNT under the set operating conditions. TNT was also completely removed from the simulated warhead.

Figure S5. Removal efficiency of TNT for the simulated warhead with a weight loading of 1 kg of TNT at a residence time of 30 min under the operating pressure and temperature conditions of 25 MPa and 55 °C