Endophytic Lifestyle of Global Clones of Extended-Spectrum β-Lactamase-Producing Priority Pathogens in Fresh Vegetables: a Trojan Horse Strategy Favoring Human Colonization?

Ralf Lopes,a Danny Fuentes-Castillo,b,c Herrison Fontana,c,d Larissa Rodrigues,c,d Karine Dantas,a Louise Cerdeira,e Isabel Henriques,f,g Nilton Lincopan,c,d

aDepartment of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
bDepartment of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
cOne Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
dDepartment of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
eDepartment of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
fCentre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
gDepartment of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal

ABSTRACT The global spread of antibiotic-resistant bacteria and their resistance genes is a critical issue that is no longer restricted to hospital settings, but also represents a growing problem involving environmental and food safety. In this study, we have performed a microbiological and genomic investigation of critical priority pathogens resistant to broad-spectrum cephalosporins and showing endophytic lifestyles in fresh vegetables sold in a country with high endemicity of extended-spectrum β-lactamases (ESBLs). We report the isolation of international high-risk clones of CTX-M-15-producing Escherichia coli, belonging to clonal complexes CC38 and CC648, and Klebsiella pneumoniae of complex CC307 from macerated tissue of surface-sterilized leaves of spinach, cabbage, arugula, and lettuce. Regardless of species, all ESBL-positive isolates were able to endophytically colonize common bean (Phaseolus vulgaris) seedlings, showed resistance to acid pH, and had a multidrug-resistant (MDR) profile to clinically relevant antibiotics (i.e., broad-spectrum cephalosporins, aminoglycosides, and fluoroquinolones). Genomic analysis of CTX-M-producing endophytic Enterobacterales revealed a wide resistome (antibiotics, biocides, disinfectants, and pesticides) and virulome, and genes for endophytic fitness and for withstanding acidic conditions. Transferable IncFIB and IncHI2A plasmids carried blaCTX-M-15 genes and, additionally, an IncFIB plasmid (named pKP301cro) also harbored genes encoding resistance to heavy metals. These data support the hypothesis that fresh vegetables marketed for consumption can act as a figurative Trojan horse for the hidden spread of international clones of critical WHO priority pathogens producing ESBLs, and/or their resistance genes, to humans and other animals, which is a critical issue within a food safety and broader public and environmental health perspective.

IMPORTANCE Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales are a leading cause of human and animal infections, being classified as critical priority pathogens by the World Health Organization. Epidemiological studies have shown that spread of ESBL-producing bacteria is not a problem restricted to hospitals, but also represents a growing problem involving environmental and food safety. In this regard, CTX-M-type β-lactamases have become the most widely distributed and clinically relevant ESBLs worldwide. Here, we have investigated the occurrence and genomic features of ESBL-producing Enterobacterales in surface-sterilized fresh vegetables. We have uncovered that international high-risk clones of CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae harboring a wide resistome and virulome,
carry additional genes for endophytic fitness and resistance to acidic conditions. Furthermore, we have demonstrated that these CTX-M-15-positive isolates are able to endophytically colonize plant tissues. Therefore, we believe that fresh vegetables can act as a figurative Trojan horse for the hidden spread of critical priority pathogens exhibiting endophytic lifestyles.

KEYWORDS
E. coli ST648, *E. coli* ST38, *K. pneumoniae* CC307, CTX-M-15, food, One Health, ESBL

Extended-spectrum β-lactamase (ESBL)-producing Gram-negative bacteria are a leading cause of human and animal infection, being categorized as critical priority pathogens by the World Health Organization (1). In this regard, plasmid-mediated ESBLs of the CTX-M family have been widely identified in different genera of *Enterobacterales*, with CTX-M-15 being the most clinically relevant ESBL worldwide (2). Curiously, *Kluyvera* species, bacteria commonly found in the rhizosphere and endophytic ecosystems, have been proposed as the original source of *bla*CTX-M-type genes (3). Therefore, endophytic bacteria that colonize internal tissues of vegetables can represent a hidden mode of transmission of virulent and/or antibiotic-resistant bacteria and their resistance genes to humans and other animals (4–7).

Currently, epidemiological studies have shown that the spread of CTX-M-producing bacteria is not a problem restricted to hospitals, but also represents a growing problem involving environmental and food safety (2). On the other hand, rates of CTX-M-producing *Enterobacterales* in community-acquired urinary tract infections (UTIs) and community fecal carriage have increased significantly worldwide, with developing countries being the most affected (8, 9). In this regard, various factors, such as environmental sources, international travel, and wild, companion, and food-producing animals, have accelerated the global spread of CTX-M ESBLs in the community, mainly in countries with endemic status (8, 10–12).

Specifically, contamination of fresh vegetables by critical priority pathogens is the greatest concern (6, 7, 13, 14), since these foods are consumed raw and this increases the risk of human exposure to ESBL producers and other antibiotic-resistant bacteria with clinical interest (15). Although ingestion of ESBL-producing bacteria may not have an immediate clinical health implication, colonization by this pathway can contribute to the transfer of antibiotic resistance genes to other bacterial species present in the gut microbiota (7, 14, 16). Consequently, a potential threat to human health would be associated with future endogenous infections, mainly in immunosuppressed patients, where therapeutic failure could occur.

Even though clinically significant ESBL-producing *Enterobacterales*, such as *Escherichia coli*, *Klebsiella pneumoniae*, and *Enterobacter cloacae*, have been frequently found as epiphytes on fresh vegetables (13, 14), little is known about their endophytic existence. Therefore, we have performed a microbiological and genomic investigation of critical priority pathogens displaying resistance to broad-spectrum cephalosporins and showing endophytic lifestyles in fresh vegetables sold in a country with high endemicity of ESBLs.

RESULTS

Multidrug-resistant ESBL-producing endophytic *Enterobacterales* isolated from fresh vegetables. The presence of endophytic ESBL-producing *Enterobacterales* was confirmed in 10.4% of 48 fresh vegetables samples screened after surface sterilization, including spinach (2 positive samples for ESBL-producing *E. coli* strain ESP110 and *E. cloacae* strain ESP151), cabbage (1 positive sample for 2 ESBL-producing *E. coli* strains [REP215 and REP237]), lettuce (1 positive sample for ESBL-producing *K. pneumoniae* [strain ALF301]), and arugula (1 positive sample for ESBL-producing *K. pneumoniae* [strain RUC232]). All strains displayed a multidrug-resistant profile (17) with high MIC values above resistance breakpoints for broad-spectrum cephalosporins (Table 1). Further resistance to fluoroquinolones was detected in *K. pneumoniae* RUC232 and *E.
Strain	Vegetable	Geographical coordinates a	MIC (µg/ml)	Ptz	Cef	Cro	Caz	Fep	Fox	Atm	Ipm	Mem	Etp	Gen	Ami	Nal	Cip	Enr	Lvx	Mxf	Sxt	Chl	Tet
E. cloacae ESP151	Spinach	23°23'24.0" S; 47°07'48.0" W	≥256	≥256	≥32	8	12	128	32	0.75	0.094	0.25	16	4	16	0.75	0.09	0.5	0.06	≥32	≥256	6	
K. pneumoniae ALF301	Lettuce	23°32'03.8" S; 46°44'08.4" W	4	≥256	≥32	8	24	4	48	0.25	0.023	0.09	≥1024	4	3	0.12	0.04	0.06	0.03	≥32	≥256	64	
K. pneumoniae RUC232	Arugula	23°13'48.0" S; 46°11'24.0" W	≥256	≥256	≥32	16	12	4	16	0.38	0.032	0.25	1	8	≥32	16	4	0.5	0.06	2	6	16	
E. coli ESP110	Spinach	23°23'24.0" S; 47°07'48.0" W	≥256	≥256	≥32	16	4	12	32	0.25	0.094	0.19	16	8	16	1	0.04	0.25	0.03	≥32	≥256	64	
E. coli REP215	Cabbage	23°25'12.0" S; 47°15'00.0" W	4	≥256	≥32	8	16	12	16	0.19	0.047	0.25	48	16	≥256	≥32	≥32	≥32	6	1.5			
E. coli REP237	Cabbage	23°25'12.0" S; 47°15'00.0" W	≥256	≥256	≥32	12	≥32	3	24	0.38	0.032	0.19	0.5	4	6	0.5	0.06	0.25	0.12	≥32	3	192	

aGeographical coordinates indicate origin of cultivated vegetables.

bPtz, piperacillin-tazobactam; Cef, cephalothin; Cro, ceftriaxone; Caz, ceftazidime; Fep, cefepime; Fox, cefoxitin; Atm, aztreonam; Ipm, imipenem; Mem, meropenem; Etp, ertapenem; Gen, gentamicin; Ami, amikacin; Nal, nalidixic acid; Cip, ciprofloxacin; Enr, enrofloxacin; Lvx, levofloxacin; Mxf, moxifloxacin; Sxt, sulfamethoxazole/trimethoprim; Chl, chloramphenicol; Tet, tetracycline. Resistant MIC values are shown in boldface type, with resistance profiles determined using the CLSI 2020 guidelines (69). For enrofloxacin and moxifloxacin, resistance profiles were determined using CLSI 2018 (70) and EUCAST 2021 (https://www.eucast.org/) guidelines, respectively.
coli REP215 strains, whereas all endophytic ESBL-positive strains remained susceptible to carbapenems (i.e., imipenem, meropenem, and ertapenem) and amikacin (Table 1).

Identification of global clones and phylogenomic analysis. Endophytic ESBL-producing isolates belonged to different sequence types (ST). In this regard, E. coli ESP110, REP215, and REP237 from spinach and cabbage belonged to ST4012 and the international ST648 and ST38, respectively. K. pneumoniae ALF301 belonged to ST198 and K. pneumoniae RUC232 belonged to the new sequence type ST2739, a single-locus variant of international ST307. E. cloacae ESP151 isolated from spinach was assigned to the new ST927.

Genomic relatedness analysis of 798 assembled genomes of globally reported E. coli strains belonging to ST38, constructed by the MSTree V2 tool from Enterobase. The E. coli strain REP237 was organized in the cluster highlighted in red. The highlighted cluster includes a partial depiction of the tree, including the Enterobase identification (ID), source of origin, country, and isolation year of genomically related isolates. The figure was generated with iTOL v.5.5 (https://itol.embl.de). An interactive version of the tree can be found at https://itol.embl.de/tree/14310712557248381595353218.
spanning tree for E. coli REP215 isolate and the other 389 genome assemblies belonging to ST648 assigned E. coli REP215 to a cluster comprising human genomes from Europe, Asia, America, and Oceania (Fig. 2).

While genomes of E. cloacae and K. pneumoniae strains belonging to ST927 and ST2739, respectively, were not publicly available for comparative phylogenetic analysis, comparative core-genome multilocus sequence type (cgMLST) analysis of endophytic K. pneumoniae strain ALF301 with human K. pneumoniae strains belonging to ST198, previously identified in Brazil, revealed that endophytic K. pneumoniae ALF301 differs in 23 and 72 cgMLST alleles from human K. pneumoniae ICBKpBL-III-03(1) (GenBank accession number NIHK00000000.1) and ICBKpBL-III-02(1) (GenBank accession number: NGJM00000000.1) strains, respectively.

Resistome, virulome, and identification of endophytic and acid tolerance genes. Whole-genome sequence (WGS) analysis revealed that in all endophytic strains, ESBL production was associated with the presence of blaCTX-M-15 genes (Fig. 3). Additionally, the blaOXA-1 β-lactamase gene was further identified in all strains, except in E. coli ESP110. On the other hand, while E. coli strains ESP110 and REP215, K. pneumoniae RUC232, and E. cloacae ESP151 carried the blaTEM-1B β-lactamase gene, both K. pneumoniae strains were also blaSHV-positive. In addition to beta-lactam resistance genes, the presence of resistance determinants to aminoglycosides (strA, strB, aac(3) — II, aac(6)lb — cr, adaA5 and ant(3’3)Ida), quinolones (aac(6)lb — cr, qnrB1, oqxA, and oqxB), sulfonamides (sul1 and sul2), trimethoprim (dfrA14 and dfrA17), phenicolcs (catA1, cmlA1, and floR), tetracyclines (tetA and tetB), fosfomycin (fosA) and macrolides (ermB and mphA) was confirmed among endophytic strains (Fig. 3). Substitutions Thr-83→Ile and Ser-80→Ile in the quinolone resistance-determining region (QRDR) of GyrA and ParC, respectively, were identified in the quinolone-resistant K. pneumoniae RUC232 strain, whereas substitutions Ser-83→Leu and Asp87→Asn in GyrA, and Ser-80→Ile in ParC were found in E. coli REP215 (Fig. 3).
FIG 3 Heat map of resistome, virulome, plasmidome, and MLST and serotype data generated from whole-genome comparative genomics for endophytic multidrug-resistant Enterobacterales isolated from commercial vegetables. NT, not typed. For all predicted genes, a >90% identity threshold was used as a filter for identification.
Heavy metals resistance gene clusters, such as *cursR*/*fba*, *copE2ABCDRSE1*, *arsR*/*DABC*, and *merT*/*RPCAD*, encoding resistance to copper/silver, copper, arsenic, and mercury, respectively, were identified in *K. pneumoniae* ALF301 isolated from commercial lettuce (Fig. 3), whereas *E. coli* REP237 carried tellurite resistance genes *tehA*/*tehB*. On the other hand, *E. coli* REP215, *E. coli* ESP110, *K. pneumoniae* ALF301, and *E. cloacae* ESP151 harbored the *phnC*/*P* gene system conferring resistance to glyphosate herbicide.

Regarding antiseptics and disinfectants, genes predicted to confer tolerance to hydrogen peroxide (*cpxA* and *kpnE*) and resistance to quaternary ammonium compounds (*acrF*/*envD, amvA*/*ermB, cpxA, kpnE, mdfA/cmR, mdtK/ydhE, oqxB, phoB, phoR, qacEdelta1, smvA/*ermB, tehA*, and *tolC*), phenol (*tolC*), triclosan (*fabI, kpnE, oqxB*, and *tolC*), biguanides/chlorhexidine (*cpxA, kpnE, oqxB, phoB, phoR*, and *qacEdelta1*), organosulfate/sodium dodecyl sulfate compounds (*acrF*/*envD, amvA/*ermB, kdeA, *kpnE, oqxB, qacEdelta1*, and *tolC*), and/or ionic detergents/sodium deoxycholate (*kexD, kpnE, mdtK/ydhE*, and *qacEdelta1*) were also identified in all CTX-M-15-positive endophytic isolates (Fig. 3).

Virulome analysis of *E. coli* strains revealed the presence of genes involved in adherence (*air, eIIA*, and *nfaE*), toxin production (*sat* and *senB*), long polar fimbriae (*lpfA*), increased serum survival (*iss*), and acid resistance (*gad*). In this regard, *E. coli* REP215 and REP237 belonged to the phylodogroup D known for including highly virulent lineages, whereas *E. coli* ESP110 was assigned to the low-virulence phylogroup A, common among commensal lineages (18). Virulome analysis of *K. pneumoniae* strains confirmed genes encoding the production (*irp2* and *ybt*) and uptake (*fyuA*) of the siderophore yersiniabactin, and/or genes encoding type 3 fimbriae (*mrk* gene cluster) (Fig. 3). On the other hand, *K. pneumoniae* RUC232 showed an identical capsular polysaccharide serotype (KL102-wzi173) and O-locus (O2v2) than *K. pneumoniae* strains belonging to clonal complex CC307 (19), whereas *K. pneumoniae* ALF301 of ST198 displayed *ybt*16, ICEKp12, *wzi85*, KL30, and O1v1 serotype. In *E. cloacae* ESP151, genes involved in hyperadherence (*ydeI*) and curli fimbriae formation (*csgABCD*/*EFG* operon) were predicted (Fig. 3).

Genetic determinants contributing to an endophytic lifestyle, such as genes for nitrogen supply favoring plant growth (*narI, narJ*, and *nirB*), were found in all CTX-M-15-positive strains (20, 21). On the other hand, genes for biosynthesis of 2,3-butanediol, involved in plant growth (22), were found in all *K. pneumoniae* and *E. cloacae* strains. Furthermore, genes encoding chitinase ChiC (EC 3.2.1.14) were identified in *E. cloacae* ESP151, *K. pneumoniae* ALF301 and RUC232, and *E. coli* ESP110 strains. Genes encoding cellulase A 3 (EC 3.2.1.4) were harbored by all endophytic ESBL producers.

Plasmidome, horizontal transfer of plasmids, and genetic environments of bla_{CTX-M-15}**ESBL genes.** IncFIB and IncFII plasmid replicon types were harbored by CTX-M-15-producing endophytic strains. However, while in *E. coli* and *K. pneumoniae* strains the *bla*_{CTX-M-15} gene was carried on IncFIB plasmids, in *E. cloacae* this gene was harbored by an IncHIIA plasmid (Fig. 3). Conjugation assays confirmed transfer of *bla*_{CTX-M-15}/IncFIB plasmids from *E. coli* strains REP215 (ST648), REP237 (ST38), and ESP110 (ST4012) at frequencies of 8.67×10^{-4}, 2.33×10^{-3}, and 5.14×10^{-3} transconjugants/recipient cell, respectively. For *K. pneumoniae* RUC232 and ALF301, and *E. cloacae* ESP151, transfer of plasmid carrying the *bla*_{CTX-M-15} gene was only achieved by transformation with efficiency of 4.95×10^5, 6.12×10^5, and 1.05×10^6 transformants/µg of plasmid, respectively.

In *K. pneumoniae* ALF301, the *bla*_{CTX-M-15} gene was carried on an IncFIB plasmid named pKP301cro. The pKP301cro plasmid is 147,442 bp in size, with G+C content of 50.78%, cohaboring *cursR*/*fba, copE2ABCDRSE1*, and *arsR*/*DABC* gene clusters (Fig. 4A and C). Interestingly, this plasmid showed significant divergence from others of the same incompatibility group identified in clinical and environmental strains (Fig. 4B).

Three different genetic environments were found surrounding *bla*_{CTX-M-15} (Fig. 5). In *K. pneumoniae* and *E. cloacae* strains and one *E. coli* strain (REP215), the international *bla*_{CTX-M-15} genetic environment was confirmed (Fig. 5A) (23). Moreover, two novel environments were present in the endophytic *E. coli* strains belonging to ST38 (REP237)
and ST4012 (ESP110) isolated from cabbage and spinach, respectively (Fig. 5B and C).

In these novel environments, the ST38 lineage showed an 1,171-bp IS\textit{Ecp1} insertion element truncated by an incomplete IS\textit{26} upstream of the \textit{bla}CTX-M-15 gene, while the ST4012 lineage exhibited a 494-bp IS\textit{Ecp1} truncated by an inverted IS\textit{26}.

Endophytic properties of CTX-M-15-producing \textit{Enterobacterales}. This assay was designed to exclusively evaluate endophytic properties and plant-colonizing abilities of ESBL-producing isolates by using a common bean (\textit{Phaseolus vulgaris}) model, determining endophytic bacterial loads recovered from root and shoot tissues (leaves) after inoculation of sterile sprouts obtained from surface-sterilized bean seeds (Table 2). In this regard, all CTX-M-15-positive isolates were able to endophytically colonize common bean seedlings. In order to evaluate endophytic properties and plant-colonizing abilities, bacterial burdens were evaluated at 15 days after inoculation of common bean. All strains efficiently colonized the interior of the root and shoot systems, supporting endophytic behaviors. Significantly higher bacterial counts in the root ($P < 0.05$) were determined for CTX-M-15-producing \textit{K. pneumoniae} ALF301 and RUC232. Otherwise, the \textit{E. cloacae} ESP151 displayed a higher bacterial burden within the shoot than the other strains ($P < 0.05$) (Table 2).

Tolerance of CTX-M-15-producing endophytic \textit{Enterobacterales} to acid pH. Initially, all \textit{Enterobacterales} strains were grown in Trypticase soy broth (TSB) medium.
at pH 7.0 to a cell density of ~1 × 10^8 CFU/ml, and the cells were collected, washed, and transferred into the same medium at pH ranging from 7.0 to 2.0, at a final concentration of 10^5 cells per well. For all strains, no reduction of CFU/ml was observed after 24 h of incubation at pH 6.0 to 5.0. However, at pH 4.0, while no reduction in CFU/ml of *K. pneumoniae* was observed after 24 h of incubation, for *E. coli* and *E. cloacae* the cell density was reduced by 2 to 3 log CFU/ml. On the other hand, pH 3.0 led to reduction of *K. pneumoniae* and *E. coli* cell densities by 3 to 5 and 2 to 4 log CFU/ml at 1 h and 2 h of incubation, respectively, whereas for all strains CFU/ml were undetectable after 24 h of incubation.

![Fig 5](image)

TABLE 2

Inoculating strain	CFU/g tissue ± SD	
	Root	Shoot
K. pneumoniae ALF301	1.6 ± 0.1 × 10^4	6.9 ± 0.4 × 10^2
K. pneumoniae RUC232	8.7 ± 0.5 × 10^4	3.8 ± 0.3 × 10^2
E. cloacae ESP151	6.4 ± 0.4 × 10^4	2.1 ± 0.1 × 10^3
E. coli REP215	3.9 ± 0.4 × 10^4	7.0 ± 0.9 × 10^1
E. coli ESP110	3.2 ± 0.6 × 10^4	3.1 ± 0.5 × 10^2
E. coli REP237	5.1 ± 0.5 × 10^3	7.5 ± 1.0 × 10^1
A. baumannii ATCC 19606	-	-

a Significantly higher bacterial counts in the root (*P* < 0.05).
b Significantly higher bacterial counts in the shoot (*P* < 0.05).
c Undetectable bacterial colonies.
*Common beans (Phaseolus vulgaris) grains were surface-sterilized and, after a two-day germination, sprouts were incubated for 30 min with bacterial suspension (OD_{600} = 1.5) and transferred to plant culture bottles with Murashige and Skoog medium. Endophytic bacterial load in root and shoot tissue was assessed at 15 days after inoculation. All assays were performed in triplicate. Acinetobacter baumannii ATCC 19606 was used as a negative control for endophytic colonization.
Finally, only *E. coli* strains presented tolerance to pH 2.0, where cell density was reduced by 3 to 4 and 2 to 3 log CFU/ml at 1 h and 2 h of incubation, respectively.

DISCUSSION

Members of the *Enterobacterales* order have been shown to colonize and benefit plant growth in various crops, such as wheat, maize, rice, and cucumber (4, 24–27). Worryingly, ESBL-producing *Enterobacterales*, including CTX-M-15 producers, have also been reported in vegetables, representing a risk of human exposure to MDR critical priority pathogens through this food source (7, 13, 14). In this regard, the occurrence of epiphytic ESBL producers in fresh vegetables has been described in North American, Asian, and European countries (13, 28). In South America, ESBL-positive *E. coli* of types ST44 and ST410 have been recently identified in fresh vegetables sold in Ecuador (14).

In Brazil, the largest and most populated country in South America, ESBL production has been documented to be more challenging than in developed countries. In fact, ESBL-producing *Enterobacterales* are endemic in both hospital and community settings (29–31). *K. pneumoniae* and *E. coli* have been frequently associated with the production of CTX-M-15 ESBLs (32). Worryingly, in this country, CTX-M-15 producers have also been identified in chicken meat, wild and food-producing animals, pets, Amazonian fish, and aquatic environment samples (11, 33–44), whereas its presence in vegetables has not been investigated in deep, so far.

Most studies conducted to evaluate contamination of commercial vegetables by MDR pathogens have focused on epiphytic bacteria, which colonize the surface of leaves, roots, seeds, and fruits (5) and thus remain susceptible to disinfecting methods, which have been shown to be effective against bacteria colonizing fruit and vegetable surfaces (45). Therefore, identification of CTX-M-15-producing *Enterobacterales* with endophytic lifestyles is a critical public health issue, since endophytic bacteria colonize protected sites of internal plant tissues, from where they are able to resist conventional treatments used for disinfecting leafy vegetables (13, 46). Consequently, CTX-M-15 producers with endophytic lifestyles could begin to colonize hosts that use vegetables in the diet.

To support this hypothesis, we performed assays measuring tolerance to acid pH using TSB adjusted to pH 2, 3, 4, 5, 6, and 7 to define the survival of the endophytic CTX-M-positive *Enterobacterales* identified in this study. Low pH values were chosen in order to evaluate the ability to survive transit through the acidic conditions of the stomach, which is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria (47). Interestingly, both *K. pneumoniae* and *E. coli* strains exhibited tolerance to acid pH, which was supported by the presence of *eefA* and *gad* genes. While the *gad* system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions, *eefA* confers to the bacteria an acid tolerance response to inorganic acids (48).

Although, the origins of clinically relevant CTX-M-15-producing bacteria found in fresh vegetables in this study were not investigated, they could originate from human (as sewage), animal (manure and wild animal feces), and/or environmental (such as contaminated soil and irrigation water) sources that come into contact with crops (49–52). In this regard, colonization of vegetables can occur through entrances such as stomata, lenticels, root hairs, lesions, and emergent surfaces of radicle and lateral roots (53, 54). Additionally, animal and human pathogens, especially *E. coli* pathotypes, are also able to colonize endospheres (4). This last hypothesis could be supported by the endophytic properties and plant-colonizing abilities of CTX-M-15-producing strains, as observed in this study. In fact, using the common bean model, all strains exhibited endophytic colonization ability.

Another clinically relevant result of this study is the identification of endophytic CTX-M-15-producing *E. coli* strains belonging to pandemic high-risk clonal complexes CC38 and CC648, and *K. pneumoniae* of complex CC307, which have been associated with extraintestinal diseases and (mainly) bloodstream and urinary tract infections (BSIs and UTIs, respectively) (19, 55–58). In Brazil, these international clones have been
previously identified in human and animal infections and in polluted environments, denoting One Health implications (38, 59–63).

The wide host range of these critical priority clonal complexes, including different vegetables evaluated in this study, supports a genetic versatility and adaptation mediated by the gene content, which includes genes conferring endophytic properties and resistance to antibiotics, biocides, and heavy metals. In fact, an IncFIB plasmid (pKP301cro) coharboring the blaCTX-M-15 gene and heavy metals resistance genes (i.e., cussRSCFBA, copE2ABCDRSE1, and arsRDABC) was identified. Heavy metals can come from contaminated soil, irrigation water, and inorganic fertilizers and pesticides commonly used in agricultural practices, which remain in the environment for long periods, accumulating in leaves, stem, and root of plants (45, 64–67). Consequently, these compounds, as well as biocides, may act as selectors of strains resistant to antibiotics. Therefore, the presence of multidrug-resistant pathogens displaying endophytic lifestyles and broad resistomes, resident in fresh vegetables, denotes environmental and food contamination mediated by anthropogenic activities. Future studies that include the analysis of a higher number of vegetables samples of different origins and the quantitative analysis of ESBL producers are worthy of further investigation, in order to gather data for risk assessment.

In conclusion, the occurrence of international clones of critical World Health Organization priority pathogens that are producing CTX-M-15 ESBL, harboring a broad resistome, and displaying endophytic lifestyles in fresh vegetables is a public and environmental health problem; it denotes contamination mediated by anthropogenic activities and a potential risk of human and animal exposure to antibiotic-resistant bacteria and/or their resistance genes. Therefore, fresh vegetables marketed for consumption can act as a figurative Trojan horse for the hidden spread of multidrug-resistant and ESBL-producing pathogens, which could be important bioindicators of environmental and food contamination.

MATERIALS AND METHODS

Isolation of endophytic bacteria displaying a broad-spectrum cephalosporin-resistant profile from surface-sterilized fresh vegetables. During a Brazilian surveillance study (OneBR project), conducted to characterize the burden of antimicrobial resistance associated with critical WHO priority pathogens, 48 samples of fresh vegetables collected from the São Paulo State Food Supply Company, the largest supply center in South America, were investigated. Vegetables included lettuce (n = 6), spinach (n = 6), escarole (n = 6), watercress (n = 4), beet (n = 4), arugula (n = 4), kale (n = 4), radish (n = 4), cabbage (n = 4), celery (n = 2), leek (n = 2), and chicory (n = 2). All samples collected were immediately stored in sealed plastic bags at 4°C and processed within 24 h. Samples were washed in running water and sanitized before the isolation of endophytic bacteria. For surface sterilization, ~4 g of leaves were immersed sequentially in 70% ethanol (1 min), sodium hypochlorite (2.5% chlorine, 4 min), and 70% ethanol (30 s), and then washed three times in sterile distilled water (68). Aliquots of the sterile water used in the final rinse were plated directly onto nutrient agar to confirm the sterilization protocol. For the isolation of ESBL-positive endophytic bacteria, surface-sterilized leaves were macerated in 12 ml of saline solution, serially diluted, and plated in triplicate on MacConkey agar supplemented with ceftriaxone (2 µg/ml). After 24 h of incubation at 37°C, colonies were picked from the selective plates, subcultured, and streaked to obtain pure cultures. Identification of isolates was performed using the Vitek 2 system (bioMérieux, Marcy l’Etoile, France).

Antimicrobial susceptibility testing and phenotypic confirmation of ESBLs. Bacterial isolates were subjected to antimicrobial susceptibility testing by the disk diffusion method, whereas MICs were determined by Etest strips (bioMérieux, Marcy l’Etoile, France), with interpretative criteria according to CLSI (69, 70) or EUCAST (www.eucast.org). ESBL production was screened by the double-disc synergy test (71), with further confirmation by using Etest ESBL strips containing ceftazidime alone and in combination with clavulanic acid (bioMérieux, Marcy l’Etoile, France).

Whole-genome sequencing and bioinformatic analysis. All ESBL-producing endophytic isolates underwent whole-genome sequencing (WGS). For genome sequencing, total DNA was extracted from overnight cultures using the PureLink genomic DNA minikit (Thermo Fisher Scientific, USA) according to the manufacturer’s instructions. Sequencing was performed using the MiSeq platform (Illumina, San Diego, CA) (300 bp paired-end) and the reads were de novo assembled using SPAdes v.3.9 and A5-Miseq pipeline (72, 73). Sequence types (STs), serotypes, plasmid replicon types, antimicrobial resistance genes, and virulence genes were identified using MLST 2.0, SerotypeFinder 2.0, PlasmidFinder 2.1, ResFinder 4.1, and VirulenceFinder 2.0, respectively, available from the Center for Genomic Epidemiology (https://cge.cbs.dtu.dk/services/), and databases for bacterial genotyping from the Pasteur Institute (https://bigd.pasteur.fr/). Resistance genes with uncertain assignment by ResFinder were checked manually

January/February 2021 Volume 6 Issue 1 e01125-20

msystems.asm.org 11
and further blasted in NCBI. Analysis of transposable elements flanking \textit{bla}_{CTX-M} genes was performed with ISfinder. For \textit{E. coli}, virulence phylogeny \textit{plasmid pKP301cro} was detected using the online Clermont typing tool (https://clermonttyping.iame-research.center/). \textit{K. pneumoniae} were further analyzed using Kleborate (https://github.com/katholt/Kleborate) to screen assemblies to confirm the species designation, multilocus sequence type (MLST), antibiotic-resistance genes, ICE\textit{Kp}-associated virulence loci (yersiniabactin \textit{[ybt]} and colibactin \textit{[cib]}), and \textit{K} (capsule) and \textit{O} antigen (LPS) serotypes (75–77). Biocide-, heavy metal-, and disinfectant-resistance genes, along with genes to withstand acidic conditions, were identified using the BacMet-Scan script (https://bacmet.biomedicine.gu.se/) against the experimentally confirmed database v.2.0, using an \textit{E} value = 1 and a threshold of >90% of identity and coverage.

Comparative phylogeny analysis of publicly available genomes of \textit{E. coli} ST38 and ST64, from different countries, was performed using a minimum spanning tree constructed in Enterobase using the MSTree V2 algorithm and the wgMLST scheme (https://enterobase.warwick.ac.uk/species/index/ecoli), which consists of 25,002 pangenome genes present in \textit{E. coli} genomes, representing most of the diversity in Enterobase at the time (February 2021) (https://enterobase.readthedocs.io/en/latest/pipelines/escherichia-statistics.html). Images were generated with ITOL v.5.5 (https://itol.embl.de). Comparative phylogeny of publicly available genomes of \textit{K. pneumoniae} belonging to ST198 was performed using core-genome MLST (cgMLST) analysis and the BacWGStdb database (http://bacdb.cn/BacWGStdb/).

Conjugation and transformation of plasmids carrying ESBL genes. \textit{E. coli} C600 (Strr) and \textit{E. coli} J53 (Azr) were used as recipient strains in mating experiments with endophytic ESBL-producing \textit{E. coli} strains as donors, in the ratio 3:1 (recipient:donor) in LB broth. Transconjugants were selected using MacConkey agar supplemented with ceftriaxone (2 \textmu g/mL) and streptomycin (2,000 \textmu g/mL), or ceftriaxone (2 \textmu g/mL) and sodium azide (200 \textmu g/mL). For transformation assay, plasmids were extracted by the alkaline lysis method (78) and ultracompetent \textit{E. coli} TOP10 was heat shock transformed, as previously described (79), increasing the thermal shock time at 42°C to 1.5 min. Positive transconjugants and transformants were confirmed by ESBL production, as described above.

Endophytic properties of ESBL-producing \textit{Enterobacteriales}. Endophytic properties of ESBL-producing isolates were evaluated using a common bean (\textit{Phaseolus vulgaris}) model (68), with modifications. In brief, bean seeds were surface sterilized and then incubated at 30°C until the early growth of the radicle (80). After two days of germination, sprouts were immersed for 30 min in the bacterial cell suspension (optical density at 600 nm [OD\textsubscript{600}] = 1.5) and transferred to plant culture bottles with Murashige and Skoog medium, which were then incubated at 30°C for 15 days. Thereafter, bean plants were aseptically excised into root and shoot and endophytic bacteria were isolated from each of them, as described above. The recovered isolates were confirmed by detecting ESBL genes and by assessment of the clonal relatedness with the strains used to inoculate the sprouts, as determined by comparative enterobacterial repetitive intergenic consensus (ERIC)-PCR analysis (81). All assays were performed in triplicate.

\textit{Acinetobacter baumannii} ATCC 19606 and sterile distilled water were used as negative controls.

Tolerance of endophytic ESBL (CTX-M-15)-producing \textit{Enterobacteriales} to acid pH. Trypticase soy broth (TSB) culture medium was prepared to cover acid pH scales ranging from 2.0 to 7.0. Volumes of 50 ml of TSB were adjusted individually to a final pH of 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0 by aseptically adding 1 N HCl, and using a pH meter (82). Broths were sterilized and the pH was confirmed. Next, 200 \textmu L of each broth at the different pH values were added per well in a 96-well flat-bottomed microtiter plate. All endophytic ESBL producers were tested for pH tolerance (83). In brief, each well of the microtiter plate was inoculated with bacterial cell suspension to a final concentration of 107 cells per well and then the microplates were incubated at 35°C. After 1, 2, and 24 h of incubation, an aliquot (50 \textmu L) of cell suspension was taken from each well, diluted 1:10, 1:100, 1:1,000, and 1:10,000, and cell viability was determined by plating 50 \textmu L of each dilution on Trypticase soy agar (TSA) plates and incubating for 24 h at 35°C (84). All assays were performed in duplicate.

Statistical analysis. Data were subject to analysis of variance (ANOVA) followed by the Duncan’s multiple range test with a significance level of \textit{P} < 0.05, using IBM SPSS Statistics 24 software (IBM, United States).

Data availability. Nucleotide sequences of endophytic CTX-M-producing \textit{Enterobacteriales} have been deposited in the GenBank database under accession numbers: PPHP01000000 (\textit{E. cloacae} ESP151); MRWCD0000000 (\textit{K. pneumoniae} ALF301); PPHO01000000 (\textit{K. pneumoniae} RUC232); PPHN01000000 (\textit{E. coli} ESP110); PPHM01000000 (\textit{E. coli} REP215); PPHL01000000 (\textit{E. coli} REP237); KY354306.1 (plasmid pKP301b from \textit{K. pneumoniae} ALF301); and KY495980.1 (plasmid pKP301cro from \textit{K. pneumoniae} ALF301). Additionally, genomic data of \textit{E. coli} ESP110, REP215, and REP237 and \textit{K. pneumoniae} ALF301 and RUC232 strains are available on the OneBR platform (http://onehealthbr.com/) under numbers ID ONE110, ONE111, ONE112, ONE249, and ONE250, respectively.

ACKNOWLEDGMENTS

We gratefully acknowledge research grants from the Bill & Melinda Gates Foundation (Grand Challenges Explorations Brazil)—new approaches to characterize the global burden of antimicrobial resistance, grant OPP1193112); Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grants 2016/08593-9 and 15/21325-0); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grants 443819/2018-1, 312249/2017-9 and 433128/2018-6); and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, grant 1541491/2015-8, finance code 001). Thanks are
due to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020).

N.L. is a research fellow of CNPq (312249/2017-9). We thank Cefar Diagnóstica Ltd. (São Paulo, Brazil) and CEFA-P-GENIAL facility for kindly supplying antibiotic disks for susceptibility testing and illumina sequencing, respectively.

We declare there are no competing interests.
32. Rocha FR, Pinto VP, Barbosa FC. 2016. Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on β-lactams and polymyxins. Braz J Microbiol 47 Suppl 1:31–37. https://doi.org/10.1016/j.bjm.2016.10.002.

33. Oyewole AO, Loangu P, Selvam R, Sangeetha K, Asare E, Hoste B, Bondiau P, van den Bergh P, Huygen K, Fabre S, Declercq V, Eelen P. 2013. Combined use of 16S rRNA gene and whole-genome analysis for discrimination of CTX-M-producing Enterobacteriaceae. Antimicrob Agents Chemother 57:2650–2657. https://doi.org/10.1128/AAC.00382-13.

34. Silva MM, Fernandes MR, Sellera FP, Ferreira L, Lopes JH, Lincopan N, Azevedo M, Azevedo MS, Lamounier CM, Azevedo RS, da Silva AM, da Silva VS, Lopes L, da Silva DC, Lopes FM, Fernandes MR, Lincopan N. 2018. Multidrug-resistant CTX-M-15-producing Klebsiella pneumoniae ST231 associated with infection and persistent colonisation with diarrhoea. Diagn Microbiol Infect Dis 92:259–261. https://doi.org/10.1016/j.diagmicrobio.2018.06.012.

35. Fontes AM, Werner SM, da Silva LCL, Freitas AC, Medeiros LGR, Paula SR, Lopes JH, Giaretta RL, Lincopan N, da Silva VM, dos Santos AP, da Silva VM. 2015. Detection and whole-genome analysis of a high-risk clone of CTX-M-producing Escherichia coli strains belonging to sequence type (ST) 410, ST224, and ST1284 from commercial swine in South America. Antimicrob Agents Chemother 60:2505–2508. https://doi.org/10.1128/AAC.02788-15.

36. Sato MIZ, Ferreira L, Lopes JH, Lincopan N, Azevedo MS, Azevedo RS, dos Santos AP, da Silva VM, Lopes FM, da Silva VM, Fernandes MR. 2017. Draft genome sequences of two novel fluoroquinolone-resistant Enterobacteriaceae of ST90 (ST23 complex) isolated from a calf and a dairy cow in South America. J Glob Antimicrob Resist 10:279–280. https://doi.org/10.1016/j.jgar.2017.07.017.

37. Coudeyras S, Nakusi L, Charbonnel M, Patinha C, Alves A, Henriques I. 2017. Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms. Int J Food Microbiol 257:192–200. https://doi.org/10.1016/j.ijfoodmicro.2017.06.020.

38. Schau MT, Baraúna RA. 2019. Extended-spectrum β-lactamase-producing Escherichia coli ST307 causing urinary tract infection in a dog in Brazil. J Glob Antimicrob Resist 7:67–68. https://doi.org/10.1016/j.jgar.2016.07.012.

39. Baraúna RA, Sellera FP, da Silva VM, Lopes JH, Lincopan N, Menezes AP, de Souza TA, Cardoso C, Azevedo MS, da Silva VM, Lopes FM, da Silva VM, da Silva AP, de Souza TA, da Silva VM. 2014. First characterization of CTX-M-15-producing Escherichia coli strains belonging to sequence type (ST) 410, ST224, and ST1284 from commercial swine in South America. Antimicrob Agents Chemother 60:2505–2508. https://doi.org/10.1128/AAC.02788-15.

40. Goldberg DW, Fernandes MR, Sellera FP, Moura Q, Souza TA, Ferreira L, Lincopan N. 2017. Draft genome sequence of Enterobacter cloacae ST252 harbouring bla_OPC, blaCTX-M-1, and blaOXA-17 isolated from coastal waters of the South Atlantic Ocean. J Glob Antimicrob Resist 10:279–280. https://doi.org/10.1016/j.jgar.2017.07.017.

41. Sartori L, Fernandes MR, Ienne S, de Souza TA, Gregory L, Ferreira L, Lincopan N. 2017. Draft genome sequences of two fluoroquinolone-resistant CTX-M-15-producing Escherichia coli ST90 (ST23 complex) isolated from a calf and a dairy cow in South America. J Glob Antimicrob Resist 11:145–147. https://doi.org/10.1016/j.jgar.2017.10.009.

42. Freitas DY, Araújo S, Folador AR, Ramos RTJ, Azevedo JSN, Tacão M, Ferreira L, da Silva VM, Lopes JH, Lincopan N. 2019. Multidrug-resistant CTX-M-15-positive Klebsiella pneumoniae ST307 causing urinary tract infection in a dog in Brazil. J Glob Antimicrob Resist 19:96–97. https://doi.org/10.1016/j.jgar.2019.09.003.

43. Hardoim PR, van Overbeek LS, Elas JD. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.trendsmicrobio.2008.07.008.

44. Schau MT, Novak K, Souza TA, Semmler T, Tavares L, Kourouma L, Bangoura K, Wieler LH, Leendertz FH, Guenther S. 2018. Clinically relevant ESBL-producing K. pneumoniae ST307 and E. coli ST38 in an urban west African rat population. Front Microbiol 9:150. https://doi.org/10.3389/fmicb.2018.00150.

45. Peirano G, Pitout JDD. 2019. Extended-spectrum β-lactamase-producing Enterobacteriaceae update on molecular epidemiology and treatment options. Drugs 79:1529–1541. https://doi.org/10.1007/s40265-019-01180-3.

46. Peirano G, Pitout JDD. 2019. Extended-spectrum β-lactamase-producing Enterobacteriaceae update on molecular epidemiology and treatment options. Drugs 79:1529–1541. https://doi.org/10.1007/s40265-019-01180-3.

47. Mendes RE, Jones RN, Woolsey LN, Cattoir V, Castanheira M. 2019. Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: analysis of the distribution of β-lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis 6:569–578. https://doi.org/10.1093/ofid/ofy073.

48. Schau MT, Novak K, Wieler LH, Leendertz FH, Guenther S. 2019. Genomic and functional analysis of emerging virulent and multidrug-resistant Escherichia coli lineage sequence type 648. Antimicrob Agents Chemother 63:e00243-19. https://doi.org/10.1128/AAC.00243-19.

49. Mendes RE, Jones RN, Woolsey LN, Cattoir V, Castanheira M. 2019. Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: analysis of the distribution of β-lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis 6:569–578. https://doi.org/10.1093/ofid/ofy073.

50. Peirano G, Pitout JDD. 2019. Extended-spectrum β-lactamase-producing Enterobacteriaceae update on molecular epidemiology and treatment options. Drugs 79:1529–1541. https://doi.org/10.1007/s40265-019-01180-3.

51. Mendes RE, Jones RN, Woolsey LN, Cattoir V, Castanheira M. 2019. Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: analysis of the distribution of β-lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis 6:569–578. https://doi.org/10.1093/ofid/ofy073.

52. Hardoim PR, van Overbeek LS, Elas JD. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.trendsmicrobio.2008.07.008.

53. Schau MT, Novak K, Wieler LH, Leendertz FH, Guenther S. 2019. Genomic and functional analysis of emerging virulent and multidrug-resistant Escherichia coli lineage sequence type 648. Antimicrob Agents Chemother 63:e00243-19. https://doi.org/10.1128/AAC.00243-19.

54. Mendes RE, Jones RN, Woolsey LN, Cattoir V, Castanheira M. 2019. Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: analysis of the distribution of β-lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis 6:569–578. https://doi.org/10.1093/ofid/ofy073.
65. Sipter E, Rózsa E, Gruiz K, Tátrai E, Morvai V. 2008. Site-specific risk assessment in contaminated vegetable gardens. Chemosphere 71:1301–1307. https://doi.org/10.1016/j.chemosphere.2007.11.039.

66. Kananke T, Wansapala J, Gunaratne A. 2014. Heavy metal contamination in green leafy vegetables collected from selected market sites of Piliyandala area, Colombo District, Sri Lanka. AJFST 2:139–144. https://doi.org/10.12691/ajfst-2-5-1.

67. Osaili TM, Al Jamali AF, Makhadmeh IM, Taha M, Jarrar SK. 2016. Heavy metal contamination from animals; CLSI supplement VET08, 4th ed. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

68. Araújo WL, Maccheroni W, Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL. 2001. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236. https://doi.org/10.1139/w00-146.

69. Clinical and Laboratory Standards Institute. 2020. Performance standards for antimicrobial susceptibility testing; CLSI supplement M100, 30th ed. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

70. Clinical and Laboratory Standards Institute. 2018. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; CLSI supplement VET08, 4th ed. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

71. Jarlier V, Nicolas MH, Fournier G, Philippon A. 1988. Extended broad-spectrum beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10:867–879. https://doi.org/10.1093/clinids/10.4.A867.

72. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.

73. Coil D, Jospin G, Darling AE. 2015. AS-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589. https://doi.org/10.1093/bioinformatics/btu661.

74. Siguiert P, Perochon J, Lestrado L, Mahillon J, Chandler M. 2006. I5finder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–36. https://doi.org/10.1093/nar/gkj014.

75. Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, Brisse S, Holt KE. 2018. Genetic diversity, mobilisation and spread of the yersinia-bacterin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom 4:e000196. https://doi.org/10.1099/mgen.0.000196.

76. Wick RR, Heinz E, Holt KE, Wyres KL. 2018. Kaptive Web: user-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J Clin Microbiol 56:e00197-18. https://doi.org/10.1128/JCM.00197-18.

77. Wyres KL, Wick RR, Gorrie C, Jenney A, Pollard R, Thomson NR, Holt KE. 2016. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2:e000102. https://doi.org/10.1099/mgen.0.000102.

78. Birnboim HC, Doly J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523. https://doi.org/10.1093/nar/7.6.1513.

79. Inoue H, Nojima H, Okayama H. 1990. High efficiency transformation of *Escherichia coli* with plasmids. Gene 96:23–28. https://doi.org/10.1016/0378-1119(90)90336-P.

80. Tanuja R, Bisht SC, Mishra PK. 2013. Ascending migration of endophytic *Bacillus thuringiensis* and assessment of benefits to different legumes of N.W. Himalayas. Eur J Soil Biol 56:56–58. https://doi.org/10.1016/j.ejsobi.2013.02.004.

81. Versalovic J, Koeth T, Lupski JR. 1991. Distribution of repetitive DNA sequences in eu-bacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831. https://doi.org/10.1093/nar/19.24.6823.

82. Miller LG, Kaspar CW. 1994. *Escherichia coli* O157: H7 acid tolerance and survival in apple cider. J Food Prot 57:460–464. https://doi.org/10.4315/0362-028X-57.6.460.

83. Presser KA, Ratkowsky DA, Ross T. 1997. Modelling the growth rate of *Escherichia coli* as a function of pH and lactic acid concentration. Appl Environ Microbiol 63:2355–2360. https://doi.org/10.1128/AEM.63.6.2355-2360.1997.

84. Lincopan N, Carmona-Ribeiro AM. 2006. Lipid-covered drug particles: combined action of doxycycline-dimethylammonium bromide and amphotericin B or miconazole. J Antimicrob Chemother 58:66–75. https://doi.org/10.1093/jac/dkl153.