Opening- and Closing-Wedge Distal Femoral Osteotomy

A Systematic Review of Outcomes for Isolated Lateral Compartment Osteoarthritis

Jorge Chahla,* MD, Justin J. Mitchell,* MD, Daniel J. Liechti,* MD, Gilbert Moatshe,*† MD, Travis J. Menge,* MD, Chase S. Dean,* MD, and Robert F. LaPrade,∗‡§ MD, PhD

Investigation performed at the Steadman Clinic, Vail, Colorado, USA

Background: Lateral compartment osteoarthritis of the knee can be a challenging pathology in the younger, active population due to limited treatment options and high patient expectations. Distal femoral osteotomy (DFO) has been reported to be a potential treatment option.

Purpose: To perform a systematic review on the survival, outcomes, and complications of DFO for treatment of genu valgum with concomitant lateral compartment osteoarthritis of the knee.

Study Design: Systematic review; Level of evidence, 4.

Methods: A systematic review of the literature was performed using the Cochrane Database of Systematic Reviews, the Cochrane Central Registry of Controlled Trials, PubMed, and MEDLINE from 1980 to present. Inclusion criteria were as follows: outcomes of opening- and closing-wedge DFOs performed for treatment of genu valgum with concomitant lateral compartment osteoarthritis of the knee, English language, minimum 2-year follow-up, and human studies. Data abstracted from the selected studies included type of osteotomy (opening vs closing), survival rate, patient-reported and radiographic outcomes, and complications.

Results: Fourteen studies met the inclusion criteria and were considered for the review. A total of 9 closing-wedge and 5 opening-wedge DFO studies were included. All were retrospective studies and reported good to excellent patient-reported outcomes after DFO. Survival decreased with increasing time from surgery, with 1 study reporting a 100% survival rate at 6.5 years, compared with 21.5% at 20 years in another study. A low rate of complications was reported throughout the review.

Conclusion: Highly heterogeneous literature exists for both opening- and closing-wedge DFOs for the treatment of isolated lateral compartment osteoarthritis with valgus malalignment. A mean survival rate of 80% at 10-year follow-up was reported, supporting that this procedure can be a viable treatment option to delay or reduce the need for joint arthroplasty. A low complication rate was observed, with symptomatic hardware being the most prevalent postoperative complication.

Keywords: distal femoral osteotomy; lateral compartment osteoarthritis; valgus alignment; genu valgum; opening wedge; closing wedge

Valgus malalignment of the knee in young, active patients is a challenging entity because it may lead to the early development or progression of lateral compartment osteoarthritis.8 While knee varus deformity is more common, valgus malalignment can result after trauma, as part of metabolic disease, after lateral meniscectomy, or from other conditions affecting growth plate morphology.11 Valgus knee anatomic alignment beyond physiologic valgus (5°-8°) leads to excessive loading of the lateral compartment, which can increase the risk for progression of osteoarthritis and can theoretically place the medial knee structures at risk for chronic attenuation.8 Furthermore, it has been reported that the amount of wear leading to cartilaginous breakdown within the joint correlates with...
the degree of valgus deformity. Deviation from the normal lower limb axis can result in alterations in gait, as well as malfunctioning or imbalance of the knee ligamentous complexes.

In severe cases of valgus deformity greater than 12°, the distal femur is the preferred site of osteotomy because correction through the proximal tibia often fails to correct the orientation of the joint line and can result in lateral subluxation of the tibia. Of note, distal femoral osteotomy (DFO) should only be used to correct malalignment in extension and not in flexion. This finding of lateral tibial subluxation was clinically reinforced by Coventry, who reported poor results after proximal tibial osteotomy in patients with valgus deformity. For this reason, varus-producing DFOs are widely accepted to treat lateral compartment overload or isolated osteoarthrosis. However, the choice to utilize an opening- or closing-wedge technique is less uniform.

Whether an opening- or a closing-wedge osteotomy yields superior outcomes remains to be determined, as current literature supports both procedures. The available literature regarding DFO is limited and heterogeneous with respect to indications, surgical technique, timing of surgery, rehabilitation, and outcomes. The purpose of this study was to systematically review the literature on opening- and closing-wedge DFO with regard to survival rate (defined as the rate of conversion to total knee replacement). Furthermore, this study seeks to compare patient-reported and radiographic/alignment outcomes for the treatment of valgus deformity of the knee with lateral compartment osteoarthritis and complication rates for an opening- or closing-wedge DFO procedure. Our hypothesis was that DFOs had good reported outcomes with a high survival rate up to 10 years postoperatively.

METHODS

Article Identification and Selection

This study was conducted in accordance with the 2009 Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. A systematic review of the literature regarding the existing evidence for outcomes of opening- and closing-wedge DFOs was performed using the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, PubMed (1980-2014), and MEDLINE (1980-2014). The queries were performed in November 2015.

The literature search strategy included the following: Search 1: distal [All Fields] AND (“femur”[MeSH Terms] OR “femur”[All Fields] OR “femoral”[All Fields]) AND (“osteotomy”[MeSH Terms] OR “osteotomy”[All Fields]) AND valgus[All Fields] and search 2: distal [All Fields] AND (“femur”[MeSH Terms] OR “femur”[All Fields] OR “femoral”[All Fields]) AND (“osteotomy”[MeSH Terms] OR “osteotomy”[All Fields]) AND valgus[All Fields] AND opening[All Fields] OR closing [All Fields] AND wedge[All Fields].

Inclusion criteria were as follows: studies including outcomes of opening- and/or closing-wedge DFOs performed for the treatment of genu valgum with concomitant lateral compartment osteoarthritis of the knee, written in the English language, with a minimum of 2-year follow-up, and evaluating only human subjects. We excluded cadaveric studies, animal studies, basic science articles, editorial articles, surgical technique descriptions, surveys, DFO used to treat conditions other than malalignment and osteoarthritis (such as patellar dislocation), the use of external fixator as the predominant mode of fixation, or casting to maintain the reduction. We also excluded publications that evaluated patients with posttraumatic deformities.

Three investigators (J.C., J.J.M., D.J.L.) independently reviewed the abstracts from all identified articles. Full-text articles were obtained for review, if necessary, to allow further assessment of inclusion and exclusion criteria. Additionally, all references from the included studies were reviewed and reconciled to verify that no relevant articles were missing from the systematic review.

Data Collection

The level of evidence of the studies was assigned according to the classification as specified by Wright et al. Using the included studies, reported survival rates were collected for our primary endpoint. Additionally, our secondary endpoints were preoperative and postoperative patient-reported outcomes and complication rates for an opening- or closing-wedge DFO procedure. Patient demographics, follow-up, and objective and subjective outcomes were extracted and recorded. For continuous variables (eg, age, timing, follow-up, outcome scores), the mean and range were collected if reported. Data were recorded into a custom Excel spreadsheet (Microsoft Corp) using a modified information extraction table.

RESULTS

Study Selection

The process for study selection is presented in Figure 1. Literature searches of the PubMed database along with careful examination of reference lists and citation searches revealed a total of 696 individual titles and abstracts, including duplicates. After initial screening and removal of duplicates, 658 studies were eliminated based on the inclusion and exclusion criteria noted above, leaving a total of 38 articles for full-text review. After a thorough review of these articles and their citations along with a repeated search of the literature, a total of 9 closing-wedge and 5 opening-wedge DFO clinical studies were included in the systematic review. All included articles had an evidence level of 4.

Closing-Wedge Distal Femoral Osteotomy

Indications. All patients included in the studies were indicated for surgery because of painful isolated lateral compartment osteoarthritis and associated valgus deformity.
However, preoperative patient selection criteria differed among the included studies (Table 1).

Demographics. All studies were performed retrospectively and included a total of 236 patients (248 knees) with a mean age of 48.9 years (range, 40-56 years). The mean follow-up was 8 years (range, 2.5-15.1 years). None of these studies stratified their patients according to Kellgren-Lawrence or Ahlbäck classification (Table 2). Regarding rehabilitation protocols, all closing-wedge osteotomy studies utilized a partial weightbearing protocol for 6 weeks. Healy et al11 restricted weightbearing to toe-touch for the first 4 weeks (Table 3).

Survival Rate. Closing-wedge DFO survival rates varied from 83\%11 to 92\%15 at 4 years follow-up to 21.5\% at 20-year follow-up. Survival rates after 10 years varied from 64\% to 89.9\% reported in 4 studies.1,6,21,23 Three studies1,13,21 reported survival rates after 15 years ranging from 45\% to 78.9\%. Survival rates of the included studies are summarized in Table 3. Failure rates tended to increase with time, particularly in postoperative periods greater than 10 years.

Radiologic and Patient-Reported Outcomes. Five of the 9 studies reported preoperative valgus deformity, yielding a range from 11.6° to 18.2° anatomic alignment.1,23 After closing-wedge correction, mean postoperative deformity was 1.2° to 2°.1,11,23 One study7 reported preoperative and postoperative valgus deformity as a percentage of the Mikulicz line intersection with the tibial plateau, defining greater than 60\% intersection as genu valgum, and found pre- and postoperative values to be 77.3\% and 42.6\%, respectively.

Two of 9 studies11,23 reported Hospital for Special Surgery (HSS) knee scores with mean preoperative scores of 46 and 65 and mean postoperative scores of 88 and 86, respectively. Two of 9 studies3,21 reported Modified Knee Society Scores (MKSS) with mean preoperative scores of 36.1 and 36.8 and mean postoperative scores from 60.5 and 59, respectively. Overall, all patient-reported outcome scores improved postoperatively. The data are summarized in Table 4.

Safety. Five of the 9 closing-wedge DFO studies reported complications6,7,11,14,15 ranging from 0\%14 to 73\%7. The high percentage of adverse events reported by Forkel et al7 were due to discomfort over the plate in 16 of 22 patients. Major complications included 2 pulmonary emboli,6,15 which were both treated successfully with anti-coagulation. Failure of fixation with need for revision surgery was reported in 2 patients.6,15 One of these patients went on to have a satisfactory result,15 while the other patient experienced a femur fracture proximal to the blade plate that required conversion to a total knee arthroplasty with a long stem femoral component.6 Wound infections were reported in 2 patients.6,15 Manipulation under anesthesia was required in 8 patients (6 in the study by Healy et al11, 1 for McDermott et al,15 and 1 for Finkelstein et al). Nonunion was reported in 2 patients.11

Figure 1. Flowchart showing selection process of systematic review.
Five studies reported on a total of 71 knees with a mean age of 49.5 years (range, 46-55 years) treated with opening-wedge DFO for lateral compartment osteoarthritis. All included studies were performed retrospectively with a mean follow-up of 4.6 years (range, 2.8-6.5 years). The Kellgren-Lawrence (K-L) classification was utilized to stratify patients in 2 studies (mean, 1.76 out of 5; and 2.32 out of 5), and the Ahlbäck classification was used in 1 study (mean, 2.75 out of 5). The opening-wedge group was more heterogeneous regarding rehabilitation protocol. Nonweightbearing was the most utilized protocol (for 4 weeks, 6 weeks, and 3 months), while Das et al utilized a partial weightbearing protocol.

Survival Rate. Survival rate was reported to be between 82% and 100% at final follow-up (range, 64-8 years). Zarrouk et al reported the longest follow-up (8 years) on 20 patients with a survival rate of 91%. Of the 75 knees, there were 4 patients (5%) who went on to receive a total knee replacement at time of final follow-up. Survival rates are summarized in Table 3.

Radiologic and Patient-Reported Outcomes. Five studies reported on mean preoperative valgus deformity with a valgus deformity range of 5.3° to 16° of anatomic alignment. Postoperative alignment improved in all studies, ranging from 1.3° to 5°. One study reported the HSS score, which improved from 42 preoperatively to 64 postoperatively. Zarrouk et al reported improvements in 3 scores (IKS, modified KSS, and Functional scores). Time to union was reported in 3 studies and ranged from 3 to 6 months. The results are summarized in Table 4.

Safety. All 5 opening-wedge DFO studies reported complication rates. Complication rates ranged from 0% to 30% depending on the author definition of complication. Symptomatic hardware was the most frequent reported adverse event when combining all complications.
from the opening-wedge studies. A delayed union was reported in 2 patients.4,25 Dewilde et al5 reported a fall in 1 patient at 2 months postoperatively sustaining a fracture and angulation of the osteotomy site. She was successfully revised using an Ilizarov frame but was considered as a failure in our survivorship analysis.5 In contrast to the closing-wedge DFO studies, no patients required manipulation under anesthesia for postoperative stiffness.

DISCUSSION

The most important finding of this systematic review was that a limited and highly heterogeneous body of literature was found to exist for both opening- and closing-wedge DFOs for the treatment of isolated lateral compartment osteoarthritis with valgus malalignment. A mean survival rate of 65\% to 90\% at 10-year follow-up was reported for closing-wedge DFOs. However, mean survival rates decreased over time with 58\% at 15 years and 21.5\% at 20 years.21 Of note, the survival reporting from the closing-wedge group has considerably longer follow-up, making comparison difficult. However, the available data from the opening-wedge cohort are similar in reported numbers. Survival data are also limited in that they do not stratify failure rates based on age. For the purpose of patient selection and to help in decision-making, a more clearly defined age cutoff describing at which age patients begin to have decreased survivorship would be advantageous.

Age-corrected survival rates are pertinent because previous reports have noted decreased clinical outcomes for total knee arthroplasty (TKA) after DFO.17 Although TKA has a high success rate in the older population, patients younger than 55 years have a 3- to 5-fold increase in risk of revision surgery.19 TKA after closing-wedge DFO has also been reported to be more difficult to perform, as the deformity is shifted extra-articularly and as such, isolated intra-articular correction during TKA could result in varus positioning of the prosthesis or result in ligamentous instability, requiring the use of a constrained prosthesis.17,18 While there are some reports noting good functional outcomes and similar technical demands compared with primary TKA,5,6 it would still stand to reason that

Study (Year)	Level of Evidence	Study Design	Patients (Knees), n	Age, y	Follow-up, y	K-L or Ahlback Grade	Concurrent Procedures
Closing-wedge DFO							
Backstein et al1 (2007)	4	Retrospective	36 (38)	44.1	10.25		0
Finkelstein et al6 (1996)	4	Retrospective	20 (21)	56	11.08		0
Sternheim et al21 (2011)	4	Retrospective	41 (45)	46.2	13.3		0
Kosashvili et al13 (2009)	4	Retrospective	31 (33)	45.5	15.1		0
Forkel et al5 (2013)	4	Retrospective	22 (22)	47	2.5		0
Wang and Hsu23 (2005)	4	Retrospective	30 (30)	53	8.25		0
Healy et al13 (1996)	4	Retrospective	21 (23)	56	4		0
Learmonth et al14 (1990)	4	Retrospective	11 (12)	40	3.41		0
Total			236 (248)	48.98	7.99	55	
Opening-wedge DFO							
Das et al4 (2007)	4	Retrospective	12 (13)	55	2.83		0
Dewilde et al5 (1996)	4	Retrospective	19 (19)	47	5.66	1.76	0
Jacobi et al12 (2011)	4	Retrospective	14 (14)	46	3.75		0
Thein et al22 (2005)	4	Retrospective	6 (7)	46.7	6.5	2.3	0
Zarrouk et al25 (1988)	4	Retrospective	20 (22)	53	4.5	2.75b	0
Total			71 (75)	49.54	4.65	4.65	1

aDFO, distal femoral osteotomy; K-L, Kellgren-Lawrence.
bAhlback classification.
TABLE 3
Objective Outcomes and Postoperative Management

Study	Implant/Gap Filling	Mean Preoperative Valgus	Mean Postoperative Axes	Time to Union	Immobilization	Weightbearing	Survival Rate	TKR	Complications				
Closing-wedge DFO	Backstein et al 2	90° offset DCBP	TF 11.6 (range, 4-15)	1.2 varus (0°-5°)	N/R	N/R	PWB 6-8 wk	82%	10 y	45%	15 y	8	N/R
	Finkelstein et al 3	90° offset DCBP	N/R	N/R	2 wk cast	PWB 6-8 wk if	64%	10 y	7	N/R			
	Sternheim et al 4	90° offset DCBP	N/R	N/R	6-8 wk postop if consolidation	89.9%	10 y	78.9%	15 y	21.5%	20 y	—	N/R
	Kosashvili et al 5	90° offset DCBP	N/R	N/R	6-8 wk postop if consolidation	51.5%	15 y	15	N/R				
	Forkel et al 6	Angle stable locking plate	77.30%	42.60%	N/R	N/R	PWB 6 wk	16/22	(73%) plate discomfort				
	Wang and Hsu 7	90° offset DCBP	TF 18.2 (range, 12-27)	1.2 valgus (6 varus to 10 valgus)	4.7 mo healing	PWB 6-8 wk, FWB after 3 mo	87%	10 y	3	N/R			
	McDermott et al 8	90° offset DCBP	N/R	2 valgus (7 varus to 6 valgus)	N/R	N/R	PWB 6 wk if consolidation	92%	4 y	1	4/24 (17%) hardware failure, stiffness, wound infection, PE		
	Healy et al 9	90° offset DCBP	TF 18 (range, 10-33)	2 valgus (9 patients), 2 valgus (2 patients), 1.5 valgus (1 patient)	N/R	N/R	Brace if fixation is questionable	Toe-touch 6 wk, FWB at 12 wk	83%	4 y	2	2 nonunions, 1 traumatic fracture, 1 stiffness None	
	Learmonth et al 10	90° offset AO plate	0° (9 patients), 2° valgus (2 patients), 1.5° valgus (1 patient)	N/R	N/R								
Opening-wedge DFO	Das et al 11	Puddu plate (Arthrex/ allograft)	TF 16	5	N/R	PWB with crutches	84%	6 y	2	1 delayed union, 3 persistent pain			
	Dewilde et al 12	Puddu plate/ calcium phosphate cement	TF 5.3	1.3 varus	N/R	NWB 4 wk	82%	7 y	2	1 osteotomy fracture after fall			
	Jacobi et al 13	Tomofix plate cortical iliac crest autograft 7/14	N/R	Correction 5.8	86% at 6 mo	—	—	—	3 plate discomfort				
	Thein et al 14	Puddu plate/tri cortical iliac crest autograft 20	TF 13.5 ± 4.1	1.6 ± 2.1	3 mo	HKB	NWB 6 wk	100%	6.5 y	0	None		
	Zarrouk et al 15	Blade plate bent to 95/ no grafting	TF 14.5 (range, 6-18)	1.5 (range, −3 to 6)	3.5 mo	NWB 3 mo	91%	8 y	0	1 postop hematoma, 1 delayed union			

aAO, Arbeitsgemeinschaft für Osteosynthesefragen (Association for the Study of Internal Fixation); DCBP, dynamic compression blade plate; DFO, distal femoral osteotomy; FWB, full weightbearing; HKB, hinged brace; N/R, not reported; NWB, no weightbearing; PE, pulmonary embolism; postop, postoperative; PWB, partial weightbearing; TF, tibiofemoral angle; TKR, total knee replacement.

durability of the DFO would be important to prevent progression to TKA for as long as possible. Healy et al 11 reported poor outcomes in patients with rheumatoid arthritis. In their series of 23 distal femoral varus osteotomies, 3 knees that had poorer outcomes were in patients with rheumatoid arthritis. These patients had persistent pain after osteotomy, and TKA was later recommended.

While level 4 studies in both the opening- and closing-wedge groups reported improvements in validated patient-reported outcomes, direct comparisons are difficult as most of the studies utilized different scores to report their results or did not report patient-reported outcomes. 14 In those with reported outcomes, a universal measurement was not utilized, and no clear indications, inclusion criteria, or patient selection for the use of DFO were reported. All studies that had patient-reported outcomes reported improvement after surgery compared with the preoperative baseline.

Evaluation of type of graft (ie, autograft vs allograft) among the opening-wedge studies was limited due to the heterogeneity of graft choice. Each of the 5 opening-wedge studies that met inclusion criteria utilized a different graft in their study. Graft choices included allograft, 4 calcium phosphate cement, 5 cortical iliac crest autograft, 12 tricortical iliac crest allograft, 22 and the use of no additional graft. 25 Given the wide variability, no conclusions can be drawn on the optimal graft choice for opening-wedge osteotomies.

Another aim of this study was to determine and compare the complication profile of DFO in both the closing- and
opening-wedge groups. The profile was similar between the 2 groups, with 3 major complications (fracture,11 n = 1; pulmonary embolus,15 n = 1) in the closing-wedge group and 2 major complications (fracture,5 n = 1; postoperative hematoma requiring evacuation,25 n = 1) in the opening-wedge group. Only 2 studies reported complications for the closing-wedge group.7,25 Minor complications such as stiffness and postoperative pain appeared in both groups, and the most common complication throughout was plate prominence, discomfort, or irritation over the plate. While rates of required hardware removal secondary to these complications were as high as 72\% in 1 group,1 all remaining articles reported lower rates of hardware removal. Although similar in both groups, the considerable heterogeneity between series precluded statistical analysis. Furthermore, potentially relevant parameters such as obesity, smoking, and compliance with rehabilitation were not reported and could clearly lead to variety in outcomes.

Alignment in both the opening- and closing-wedge groups improved from preoperative baseline and was found to be within the physiologic range in all studies that reported postoperative measurements. However, these measurements should be viewed with caution because only 8 of the included studies reported postoperative measurements as an endpoint, and some studies did not provide preoperative measurements.12 The reporting of these measurements was also highly variable, with correction presented both as a percentage and in degrees. This limitation in reporting makes comparison and interpretation between the groups difficult, as outcomes and postoperative complications or conversion to total knee arthroplasty could be affected by final alignment. Additionally, the majority of studies did not provide time to bony union after surgery or adequate description of the health of the other compartments of the knee. Failure to report preoperative alignment measurements, the cutoff value to proceed with correction, time to bony healing, or the status of the other compartments of the knee also increases the uncertainty of appropriate patient selection.

Limitations exist within this review as the quality and heterogeneity of the included studies prevented both statistical analysis and direct comparison of the groups. In addition to this, there is a concern for selection bias because none of the articles defined a population from which patients had been drawn, and there are limited data available regarding the process by which patients are selected to undergo this procedure. In addition, absence in preoperative valgus measurements and discrepancies as to whether patients with medial and/or patellofemoral degeneration (in addition to the lateral compartment overload) are candidates for the procedure diminishes utility for the reader. This ambiguity is compounded by the lack of standardization for patient selection as it relates to age, weight, or activity level.

While the available literature does provide some insight as to patient selection and indications for DFO, the choice for opening- or closing-wedge osteotomy is largely physician dependent. Based on the results evaluated in this review, it is not possible to argue for a change in this paradigm.

CONCLUSION

Reasonable survival rates have been reported for DFOs for up to 10 years follow-up with a low complication profile, making this procedure a good option to consider for correction of
nonphysiologic valgus at the knee. However, given the paucity of available data, it is recommended that higher level studies with validated patient-reported outcomes data be pursued in the future in an attempt to better qualify factors for appropriate patient selection, degree of correction required, and postoperative rehabilitation.

REFERENCES

1. Backstein D, Morag G, Hanna S, SAFIR O, Gross A. Long-term follow-up of distal femoral varus osteotomy of the knee. J Arthroplasty. 2007; 22(suppl 1):2-6.
2. Cameron HU, Park YS. Total knee replacement after supracondylar femoral osteotomy. Am J Knee Surg. 1997;10:70-71.
3. Coventry MB. Proximal tibial varus osteotomy for osteoarthritis of the lateral compartment of the knee. J Bone Joint Surg Am. 1987; 69:32-38.
4. Das D, SiJbesma T, Hoekstra H, van Leeuwen W. Distal femoral opening-wedge osteotomy for lateral compartment osteoarthritis of the knee. Open Access Surg. 2008;1:25-29.
5. Dewilde TR, Dauw J, Vandenneucker H, Bellemans J. Opening wedge distal femoral varus osteotomy using the Puddu plate and calcium phosphate bone cement. Knee Surg Sports Traumatol Arthrosc. 2013;21:249-254.
6. Finkelstein JA, Gross AE, Davis A. Varus osteotomy of the distal part of the femur. A survivorship analysis. J Bone Joint Surg Am. 1996;78: 1348-1352.
7. Forkel P, Achtchina A, Metzlaff S, Zantop T, Petersen W. Midterm results following medial closed wedge distal femoral osteotomy stabilized with a locking internal fixation device. Knee Surg Sports Traumatol Arthrosc. 2015;23:2061-2067.
8. Gugenheim JJ Jr, Brinker MR. Bone realignment with use of temporary external fixation for distal femoral valgus and varus deformities. J Bone Joint Surg Am. 2003;85-A:1229-1237.
9. Hanssen AD, Stuart MJ, Scuderi GR. Surgical options for the middle-aged patient with osteoarthritis of the knee joint. Instr Course Lect. 2001;50:499-511.
10. Harris JD, Quatman CE, Manring MM, Siston RA, Flanigan DC. How to write a systematic review. Am J Sports Med. 2014;42:2761-2768.
11. Healy WL, Anglen JO, Wasilewski SA, Krackow KA. Distal femoral varus osteotomy. J Bone Joint Surg Am. 1988;70:102-109.
12. Jacobi M, Wahl P, Bousicha S, Jakob RP, Gautier E. Distal femoral varus osteotomy: problems associated with the lateral open-wedge technique. Arch Orthop Trauma Surg. 2011;131:725-728.
13. Kosashvili Y, SAFIR O, Gross A, Morag G, Lakstein D, Backstein D. Distal femoral varus osteotomy for lateral osteoarthritis of the knee: a minimum ten-year follow-up. Int Orthop. 2010;34:249-254.
14. Learmonth ID. A simple technique for varus supracondylar osteotomy in genu valgum. J Bone Joint Surg Br. 1990;72:235-236.
15. McDermott AG, Finkelstein JA, Farine I, Boynton EL, Maclintosh DL, Gross A. Distal femoral varus osteotomy for valgus deformity of the knee. J Bone Joint Surg Am. 1988;70:110-116.
16. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264-269.
17. Nelson CL, Saleh KJ, Kassim RA, et al. Total knee arthroplasty after varus osteotomy of the distal part of the femur. J Bone Joint Surg Am. 2003;85-A:1062-1065.
18. Saithna A, Kundra R, Modi CS, Getgood A, Spalding T. Distal femoral varus osteotomy for lateral compartment osteoarthritis in the valgus knee. A systematic review of the literature. Open Orthop J. 2012;6: 313-319.
19. Santaguida PL, Hawker GA, Hudak PL, et al. Patient characteristics affecting the prognosis of total hip and knee joint arthroplasty: a systematic review. Can J Surg. 2008;51:428-436.
20. Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA. 2001;286:188-195.
21. Sternheim A, Garbedian S, Backstein D. Distal femoral varus osteotomy: unloading the lateral compartment: long-term follow-up of 45 medial closing wedge osteotomies. Orthopedics. 2011; 34:e488-e490.
22. Thein R, Bronak S, Thein R, Haviv B. Distal femoral osteotomy for valgus arthritic knees. J Orthop Sci. 2012;17:745-749.
23. Wang JW, Hsu CC. Distal femoral varus osteotomy for osteoarthritis of the knee. Surgical technique. J Bone Joint Surg Am. 2006;88(suppl 1 pt 1):100-108.
24. Wright JG, Swiontkowski MF, Heckman JD. Introducing levels of evidence to the journal. J Bone Joint Surg Am. 2003;85-A:1-3.
25. Zarrour A, Bouzidi R, Karray B, Kammoun S, Mourali S, Kooli M. Distal femoral varus osteotomy outcome: is associated femoropatellar osteoarthritis consequential? Orthop Traumatol Surg Res. 2010; 96:632-636.