Heterogeneity in Comparisons of Discontinuation of Tumor Necrosis Factor Antagonists in Rheumatoid Arthritis - A Meta-Analysis

Anat Fisher1*, Ken Bassett1,2, Gautam Goel3, Dana Stanely1, M. Alan Brookhart4, Hugh R. Freeman5, James M. Wright1,5, Colin R. Dormuth1

1 Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada, 2 Department of Family Practice, University of British Columbia, Vancouver, British Columbia, Canada, 3 Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada, 4 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America, 5 Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada

* anat.fisher@ti.ubc.ca

Abstract

Objective
We did a systematic review of studies comparing discontinuation of tumor necrosis factor alpha (TNF) antagonists in rheumatoid arthritis (RA) patients, pooled hazard ratios and assessed clinical and methodological heterogeneity.

Methods
We searched MEDLINE and EMBASE until June 2015 for pairwise hazard ratios for discontinuing infliximab, etanercept, and adalimumab from cohorts of RA patients. Hazard ratios were pooled using inverse variance weighting and random effects estimates of the combined hazard ratio were obtained. Clinical and methodological heterogeneity was assessed using the between-subgroup I-square statistics and meta-regression.

Results
Twenty-four unique studies were eligible and large heterogeneity (I-square statistics > 50%) was observed in all comparisons. Type of data, location, and order of treatment (first or second line) modified the magnitude and direction of discontinuation comparing infliximab with either adalimumab or etanercept; however, some heterogeneity remained. No effect modifier was identified when adalimumab and etanercept were compared.

Conclusion
Heterogeneity in studies comparing discontinuation of TNF antagonists in RA is partially explained by type of data, location, and order of treatment. Pooling hazard ratios for
discontinuing TNF antagonists is inappropriate because largely unexplained heterogeneity was demonstrated when random effect estimates were calculated.

Introduction

The tumor necrosis factor alpha (TNF) antagonists target a cytokine that regulates inflammation in multiple diseases, including rheumatoid arthritis (RA) [1]. Evidence on the relative efficacy and safety of these medications is indirect and incomplete because no randomized controlled trials (RCTs) directly compare two or more TNF antagonists in RA patients [2]. Lack of efficacy and adverse effects are the most common reasons for discontinuing TNF antagonists [3–9], and therefore discontinuation risk is a good measure of the benefit-harm balance of these medications [10]. Hence, comparison of discontinuation risk of different TNF antagonists can help in treatment decisions, especially selection of an individual medication.

Since their introduction in the late 1990s, multiple observational studies have compared discontinuation of TNF antagonists, but the results were inconsistent [11–15] due to methodological and clinical heterogeneity. Methodological heterogeneity, defined as “variability in study design and risk of bias” [16], may be caused, for example, by differences in data collection. Clinical heterogeneity, defined as “variability in the participants, interventions and outcomes” [16], could be caused by differences in location and dates, or frequency of dose adjustments. A previous systematic review summarized hazard ratios for discontinuing TNF antagonists but failed to identify predictors of methodological or clinical heterogeneity [15]. The objective of this study is to investigate methodological and clinical heterogeneity in hazard ratios for discontinuing TNF antagonists in RA patients.

Methods

Systematic literature search

Electronic databases (MEDLINE and EMBASE) to June 2015 were searched using the following strategy: (1) adalimumab.mp. (2) infliximab.mp. (3) etanercept.mp. (4) tumour necrosis factor antagonists.mp. or Receptors, Tumour Necrosis Factor/ (5) 1 or 2 or 3 or 4 (6) (patient compliance or adherence or persistence or discontinuation or switching or treatment duration).mp. [mp = ti, ab, sh, hw, ot, dm, mf, ps, rs, nm, ui] (7) rheumatoid arthritis.mp. or rheumatoid arthritis/ (8) 5 and 6 and 7. Additional studies were identified by reviewing reference lists of publications meeting the inclusion criteria and other published reviews.

Selection criteria for studies

We included studies of RA patients treated with infliximab, adalimumab, or etanercept that met the following criteria:

Study design. Cohort studies with multiple TNF antagonists. RCTs were excluded due to differences between RA patients in RCTs and those treated in routine clinical practice [17–20]. Studies were selected regardless of the language and the type of publication (full articles, abstracts, or conference proceedings).

Participants. RA patients, based on either the American College of Rheumatology diagnosis criteria [21,22] or the clinical judgment of the care-providing physicians. Studies of multiple diseases were included only if the outcomes of interest were presented separately for RA.
Types of interventions. First or second line treatments with infliximab, adalimumab, or etanercept selected by the care-providing physician and/or the patient. Studies of the newer TNF antagonists, such as certolizumab pegol or golimumab, were excluded due to shorter availability and fewer studies [15].

Duration of follow-up. At least one year from treatment initiation.

Outcome of interest. Pairwise hazard ratios for discontinuation: infliximab vs. etanercept, infliximab vs. adalimumab, and adalimumab vs. etanercept.

Data extraction

Two reviewers (AF and GG/DS) independently selected studies and extracted data. In case of a discrepancy, a decision was reached by consensus. Authors of published studies were contacted when reports were incomplete, confusing, or difficult to interpret. The reviewers extracted as-reported hazard ratios, and 95% confidence intervals (CI) or p-value. If the hazard ratio for a specific comparison was missing, we attempted to calculate it using indirect comparison methodology [23] or synthesis of estimates from subgroups. To prevent the use of duplicate or overlapping data from the same source, we selected a single hazard ratio from a fully-published manuscript with the largest population for each comparison and data source.

Risk of bias

We identify two specific sources of bias in studies of discontinuation and included only studies with low risk of bias, defined as:

1. The study outcome was discontinuing the individual medication or switching to a second biologic anti-rheumatic medication. Patients remaining on treatment at the end of the study period were censored.

2. Discontinuation was not associated with the likelihood to be included in the study; i.e., new-user design without mandatory minimum treatment duration. In prevalent-user design, patients who started treatment before the study period are included only if they are still treated at the beginning of the study; hence, patients with longer use are overrepresented.

Statistical analysis

Hazard ratios for discontinuation with 95% CI were combined using an inverse variance approach, and data were recorded on the natural logarithm scale [24]. We calculated random effect estimates [25] because substantial heterogeneity has previously been observed [11,15].

In the absence of a definitive statistical test to assess whether a factor causes heterogeneity, we identified effect modifiers. We tested for the association between the effect size and clinical factors: continent, order of treatment, age, sex, and Disease Activity Score (DAS-28) as well as methodological factors: type of data and duration of follow-up. Categorical factors consisted of continent (Europe, Asia, or America), order of treatment (first or second line), and type of data (clinical charts, disease or drug registries, or administrative claim data). For these factors, we conducted between-subgroup I-square statistics, and estimated the significance using chi-squared test [26]. For continuous factors, i.e., age, sex, baseline DAS-28, and duration of follow-up, we conducted meta-regression [27] with a fixed effect model and weights based on the inverse of the variance of the logarithm of the hazard ratio. For factors that were reported as the average or the median of populations, we stratified the regression model by type of central measure. A significant association between a factor and the effect size was defined as a two-tailed p-value <0.05 for both categorical and continuous variables. Analyses were conducted
using the Review Manager (RevMan) statistical software (Version 5.3, The Nordic Cochrane Centre, The Cochrane Collaboration, Denmark) and SAS software package (Version 9.4, SAS Institute Inc., Cary, NC).

Results

A total of 2,409 unique citations were identified and screened (Fig 1), and 24 unique studies were eligible for inclusion (Table 1). Forty studies reported hazard ratios for discontinuing TNF antagonists but were excluded, most commonly because the study drugs were not compared (S1 Table in the on-line supporting information). Two of the studies were excluded due to high risk of bias [28,29]. Three studies reported outcomes from the SSTAG/ARTIS Swedish registry [5,30,31], two studies from the Spanish BIOBADASER 2.0 registry or hospitals contributing to it [6,32], two studies from the Italian MonitorNet registry [33,34], two studies from the American claim database MarketScan [35,36], and three studies from the national insurance claim data or hospitals in South Korea [37,38] (Table 1).

Fifteen studies (20,796 patients) from unique data sources compared infliximab and adalimumab with the overall pooled hazard ratio of 1.08 (95% CI 0.92–1.27) (S1 Fig). Fifteen studies (23,671 patients) from unique data sources compared infliximab and etanercept with the overall pooled hazard ratio of 1.22 (1.00–1.49) (S2 Fig). Seventeen studies (27,799 patients) from different data sources showed higher risk of discontinuing adalimumab compared with etanercept and the overall pooled hazard ratio was 1.17 (1.08–1.27) (S3 Fig). There was significant heterogeneity between studies for all three comparisons, with I square statistics of 86%, 92%, and 56%, respectively.

Assessment of methodological and clinical heterogeneity is presented in Table 2. In analysis of categorical factors, effect modifications of the type of data (Fig 2), location (Fig 3), and order of treatment (Fig 4) was observed in comparisons of infliximab with adalimumab or etanercept, but not comparing adalimumab with etanercept. This effect modification was expressed as I squared statistics of 69.1–92.7%, with p-value <0.05 in Chi squared test. These percentages could be interested as following: 69.1–92.7% of variation across subgroups in each comparison is due to heterogeneity rather than chance. We also noticed that in all comparisons, not all subgroup hazard ratios reach statistical significance level and in most cases a residual within subgroup heterogeneity was observed. For example, in analysis of type of data (Fig 2), when comparing infliximab with etanercept, we observed significant heterogeneity between the three subgroups compared: studies based on clinical charts, those conducted on registries and analyses of claim data (I square statistics of 69.1%). Only studies conducted on registries had a significant pooled hazard ratio of 1.49 (95% CI 1.23–1.81), but they also consisted the largest subgroup. A reversed direction of hazard ratio was estimated in two studies based on clinical charts and three analyses of claim data, i.e., lower risk of discontinuing infliximab, but these pooled estimates did not reach significance level. We noticed residual heterogeneity within each subgroup: clinical chart, registries, and claim data.

In analysis of continuous factors (Table 2), the proportion of female patients using infliximab modified the hazard ratio in comparison of infliximab with etanercept. However, in the presence of multiple comparisons and in the absence of similar effect of the proportion of female patients using etanercept we discarded this finding. Finally, duration of follow up, age, and baseline DAS-28 did not modify the hazard ratios (Table 2).

Discussion

This review explored sources of clinical and methodological heterogeneity in studies comparing discontinuation of TNF antagonists in RA patients. The type of data (i.e. charts, registries,
Fig 1. QUOROM flow chart.

1 SSATG is part of ARTIS, data were overlapping with Neovius 2015.
2 Carlos Haya hospital is included in BIOBADASER 2.0, data were overlapping with Gomez-Reino 2012.
3 Data from South Korea NIH, also known as Health Insurance Review and Assessment Service, were included in Lee 2014.
4 Data from MonitorNet were included in Scire 2013.
5 Data from MarketScan were included in Johnstone 2015.
Table 1. Characteristics of eligible studies.

Reference	Data source	Period	RA diagnosis	Type of users	Previous DMARDs	Persistence/ discontinuation	N (INF, ADA, ETA)	Follow up
Kristensen 2006 [39]	South Swedish Arthritis Treatment Group (SSATG), Sweden	March 1999—December 2004	Clinical judgement by the treating physician. 98% fulfilled the ACR 1987 criteria	Biologics naive	>2, including MTX previously without satisfactory response	Registered prospectively, based on the judgement of the treating physician.	1161 (721, 440)	Not reported
Fernandez-Nebro 2007 [32]	A tertiary care center, a structured clinical follow-up protocol, Spain	March 1999—January 2006	ACR criteria	Anti-TNF-naive	>2, including MTX previously without satisfactory response	*Definitive*	161 (60, 22°, 79)	Mean (STD) 20.6
Borah 2009 [40]	Claims data (I3 Innovus), a large managed health care plan, US	January 2000—December 2006	≥1 medical claim with RA as the primary diagnosis prior to the index date	≥6 months without dispensing	Not reported	>30-day medication-free gap or switching	1230 (0, 527, 703)	12 months
Du Pan 2009 [41]	Swiss Clinical Quality Management for Rheumatoid Arthritis (SCQM-RA) registry, Switzerland	January 1997—December 2006	ACR criteria	First course in the registry	Discontinuation due to clinical remission—censored	1064 (519, 303, 242)	6–36 months of follow-up, or discontinued therapy within 6 months	
Marchesonni 2009 [42]	LORHEN registry, Italy	January 1999—December 2001	ACR criteria	First course in the registry	Discontinuation due to clinical remission—censored	1064 (519, 303, 242)	6–36 months of follow-up, or discontinued therapy within 6 months	
Hetland 2010 [43]	DANBIO registry, Denmark	October 2000–3 April 2009	Clinical judgement by the treating physician	≥1 without satisfactory response	Not reported	2326 (1134, 675, 517)	Median (IQR) for adalimumab, 20 months 7–39; etanercept, 21 months (9–42); infliximab, 16 months (5–36)	
Cho 2012 [37]	National Health Insurance (NHI) claim database, South Korea	January 2007—December 2009	A diagnosis of RA (ICD10-M05 or M06)	New-user design (washout period from January 2007 to June 2007 without anti-TNF)	Not reported	388(28°, 219, 143)	Not reported	
Gomez-Reino 2012 [4]	BIOBADASER 2.0, Spain	February 2000–December 2010	Clinical judgement by the treating physician	≥1 without satisfactory response	Not reported	2097 (1273, 761, 873)	First year	
Greenberg 2012, [44]	CORRONA registry, US	February 2002–March 2008	Not reported	(1) Biologics naive (2) First time switchers	Data was collected every 3 months. “we used the visit dates of reported initiation and visit dates of reported discontinuation”	(1) 1475 (535, 460, 480) (2) 616 (166, 311, 139)	Not reported	
Soderlin 2012 [31]	South Swedish Arthritis Treatment Group (SSATG) biologics register, Sweden	March 1999—December 2005	A clinical diagnosis	First anti-TNF course	MTX alone or in combination without any satisfactory response and/or intolerance	534	A minimum of 3.6 years	
Caporali 2013 [33]	MonitorNet database, Italy	from January 2007	Not reported	First course	Not reported	1992(426, 665, 881)	Not reported	

(Continued)
Table 1. (Continued)

Reference	Data source	Period	RA diagnosis	Type of users	Previous DMARDs	Persistence/discontinuation	N (INF, ADA, ETA)	Follow up	
Chen 2013 [45]	National Health Insurance (NHI), Taiwan	Not reported	Not reported	Anti-TNF naive	Not reported	>84-day refill free gap	4592 (0, 1982, 2609)	First year	
Hishitani 2013 [46]	Osaka BiRD registry, Japan	September 1999—April 2012	ACR criteria	Biologics naive	≥1	Discontinuation due to remission or miscellaneous reasons and missing data were treated as censored cases	401 (103, 58, 143)	Not reported	
Johnston 2013 [35]	Truven Health MarketScan databases, US	January 2010—June 2011	Not reported	Used at least one biologic prior to index	Not reported	A 90-day medication-free gap or switching to another biologic	7515 (672, 1504, 1114)	Not reported	
Scire 2013 [34]	Monitornet database, Italy	January 2007—April 2012	Not reported	Anti-TNF-naive Failure	Not reported	≥180 days medication-free gap or switching to another "biologic"	2286 (620, 344, 1322)	Not reported	
Senabre-Gallego 2013 [47,48]	"our local cohort" Asociación para la Investigación en Reumatología de la Marina Baixa (AIRE-MB), Spain	January 2001—November 2011	≥2 outpatient at least 60 days apart or ≥1 inpatient diagnosis of RA (ICD-9 714.XX) the three years prior to TNF-b initiation	Biologics naive	Not reported	The first definitive treatment interruption or last observation on treatment after initiation (exact time collected via the patient chart): indicated by the treating rheumatologist, or no consecutive re-introduction of treatment	1028 patients, 1297 courses (560, 435, 302)	The median (IQR) 3.0(1.2–6.2) years for infliximab, 2.9 (1.1–5.9) years for adalimumab, and 2.9(1.1–5.0) years for etanercept.	
Fisher 2014 [49]	BC Ministry of Health databases, Canada	March 2001—December 2009	According to the treating physician 79% anti-TNF naive	Biologics naive	Not reported	≥1	"registered prospectively"	2203 (458, 1202, 543)	Not reported
Flouri 2014 [50]	Hellenic Registry of Biologic Therapies, Greece	January 2004—April 2011	1987 ACR criteria	(1) Biologics naive (2) second anti-TNF medication	Not reported	The first definitive treatment interruption or last observation on treatment after initiation (exact time collected via the patient chart): indicated by the treating rheumatologist, or no consecutive re-introduction of treatment	(1) 706 (99, 203, 404) (2) 231 (20, 105, 106)	2–6 years	
Kang 2014 [53,54]	Medical charts, Chonnam National University Hospital, Gwangju, South Korea	December 2002—November 2011	ACR criteria	Anti-TNF naive	Not reported	Not reported	144 (22, 48, 39)	At least one year	
Lee 2014 [39] [A]	Health Insurance Review and Assessment Service, South Korea	2006—December 2010	≥2 prescriptions of DMARD under the diagnosis of RA	New-user design (washout period without DMARDs during 2006)	Not reported	Medication-free gap of ≥ half of the days supply of the previous prescription, or switching to other TNF inhibitors	2203 (458, 1202, 543)	Not reported	
Neovius 2015, [5]	Swedish Biologics Register (ARTIS), Sweden	January 2003—December 2011	Assessment of the treating rheumatologists	Anti-TNF-naive	Not reported	As reported by the treating rheumatologist, due to any cause, except for pregnancy and remission. discontinuation	2898	Up to 5 years	

(Continued)
Table 1.

Reference	Data source	Period	RA diagnosis	Type of users	Previous DMARDs	Persistence/discontinuation	N (INF, ADA, ETA)	Follow up
Johnston 2015	Truven Health MarketScan database, US	January 2010 – December 2011	ICD-9-CM codes recorded on medical claims between January 2009 and March 2012	Previously used >1 other biologic	Not reported	>90 days Medication-free gap or switching to another biologic	9782	Not reported

a Patients treated with adalimumab were excluded due to the reduced sample size.
b Patients treated with infliximab were excluded from analysis, since this medication was not available throughout the analysis period.

Table 2. Assessment of heterogeneity: association between study design and patient characteristics and effect sizes.

Factor tested and statistics	Infliximab vs. adalimumab	Infliximab vs. etanercept	Adalimumab vs. etanercept	
Clinical heterogeneity				
Continent I², p-value	82.7, <0.0001	91.3, <0.0001	0, 039	
Order of treatment I², p-value	77.5, 0.03	92.1, 0.004	0, 0.49	
Age (infliximab users), regression parameter (standard error), p-value	0.015 (0.032), 0.66	0.006 (0.029), 0.8		
Age (adalimumab users), regression parameter (standard error), p-value	0.037 (0.034), 0.30	n/a		
Age (etanercept users), regression parameter (standard error), p-value	0.142 (0.085), 0.14	-0.006 (0.022), 0.72		
Sex (infliximab users), regression parameter (standard error), p-value	0.77 (0.532), 0.18	4.668 (1.49), 0.01	n/a	
Sex (adalimumab users), regression parameter (standard error), p-value	0.757 (0.443), 0.12	n/a	-0.140 (0.398), 0.73	
Sex (etanercept users), regression parameter (standard error), p-value	n/a	2.054 (0.929), 0.05	-0.186 (0.486), 0.71	
Baseline DAS (infliximab users), regression parameter (standard error), p-value	0.055 (0.084), 0.54	-0.234 (0.338), 0.51	n/a	
Baseline DAS (adalimumab users), regression parameter (standard error), p-value	0.051 (0.072), 0.51	n/a	-0.088 (0.165), 0.61	
Baseline DAS (etanercept users), regression parameter (standard error), p-value	n/a	-0.225 (0.266), 0.43	-0.145 (0.193), 0.48	
Methodological heterogeneity	Type of data I², p-value	79.4, 0.008	69.1, 0.04	11.6, 0.32
Duration of follow-up, regression parameter per 10 years (standard error), p-value	-0.004 (0.001), 0.62	-0.033 (0.03), 0.30	-0.001 (0.004), 0.90	

P-value <0.05 represents a significant effect of the factor tested on the hazard ratio in the individual comparison (between-subgroup I-square statistics [26] and p-value of chi-squared test for categorical factors, and meta-regression [27] with a fixed effect model and weights based on the inverse of the variance of the logarithm of the hazard ratio for continuous factors).

DAS- disease activity score; n/a–not applicable

doi:10.1371/journal.pone.0168005.001
or claims modified the effect size in comparisons of infliximab with etanercept or adalimumab. However, this factor was not responsible for all the heterogeneity. Different types of data are susceptible to different types of biases. Registries are susceptible to selection bias caused by the volunteer enrollment and data collection [56]. Administrative data are susceptible to confounding due to the absence of clinical variables and exposure ascertainment bias because of the uncertainty whether patients who refilled the medication actually used it. Type of data also determines how the outcome, discontinuation, is defined. In analysis of registries or medical charts, discontinuation is recorded by physicians, either during a routine visit or in real-time. In analysis of administrative data, discontinuation is usually ascertained using prescription-refill analysis and applying grace periods [57]. Comparisons of discontinuing TNF antagonists are especially sensitive to these differences in outcome definition because of the intermittent dosing schedules and different lengths of dose interval for different medications. Comparisons of infliximab were more sensitive to the data source probably because it has a significantly longer dose interval than adalimumab and etanercept.

A second hazard modifier is location. In European countries, the risk of discontinuing etanercept and adalimumab is lower compared to infliximab, but in America, patients on infliximab had lower discontinuation risk compared to adalimumab and similar risk as patients treated with etanercept. In a previous review reported similar proportions of patients from European and non-European countries who discontinued any TNF antagonists [15], but the results were not presented separately for each individual medication. Souto et al [15] failed to determine whether these findings are constant across different medications.
Hazard ratio estimates were also modified by the order of treatment (first or second line) in comparisons of infliximab with adalimumab or etanercept. However, in these comparisons the only two studies that reported hazard ratios for second line treatment were American studies. Therefore, we cannot rule out that the modification observed is related to location and not to order of treatment.

Age, sex, baseline disease activity score (DAS), and duration of follow-up did not modify the hazard ratios. The absence of modification by baseline DAS opposes the hypothesis by Greenberg 2014 [58] that the difference in estimates between American and European studies is caused by differences in disease severity.

The results of this review question the reliability of hazard ratios for discontinuing TNF antagonists. Specifically, the residual heterogeneity within subgroups may indicate that stable results cannot be duplicated by different researchers nor can conclusive scientific findings be obtained. Alternately, researchers may not be measuring the same outcome because different types of data, and possibly different definitions of discontinuation, modified the hazard ratios. Standardization of methodological approaches may help achieving the requisite reliability.

There are several limitations to our study. First, we were unable to adequately assess risk of bias in the absence of a specific evaluation tool for discontinuation studies. Available tools for observational studies, such as Newcastle-Ottawa scale [59], do not assess relevant items such as new-user design and ascertainment of discontinuation. The other tools, e.g., STROBE statement [60], assess the quality of reporting and not the risk of bias. Second, in the absence of a statistical test to determine causes of heterogeneity between studies, we could only assess effect
modification. Last, we found significant residual heterogeneity within many of the subgroups and therefore pooled estimates were impossible to interpret.

This review had several strengths including the wide scope: no temporal or linguistic constraints. Second, to minimize bias, this review included only studies reporting adjusted hazard ratios for discontinuation. Earlier systematic reviews summarized proportions of discontinuation for each TNF antagonist individually [14,15]. Because these proportions were crude estimates from observational data, comparisons between medications were most likely confounded. Last, we identified two major risks of bias in discontinuation studies and applied them in study selection.

Conclusions

Substantial heterogeneity was found in studies estimating head-to-head hazard ratios for discontinuing TNF antagonists in RA patients due to differences in type of data, location, and order of treatment. The heterogeneity observed shows that stable results have not been duplicated by different researchers and conclusive scientific findings cannot be obtained by pooling results.

Supporting Information

S1 Fig. Forest Plots: Hazard Ratios of included studies: Infliximab vs. Adalimumab. (TIFF)

S2 Fig. Forest Plots: Hazard Ratios of included studies: Infliximab vs. Etanercept. (TIFF)
S3 Fig. Forest Plots: Hazard Ratios of included studies: Adalimumab vs. Etanercept. (TIFF)

S1 Table. Excluded studies. (PDF)

S2 Table. PRISMA 2009 checklist. (PDF)

Acknowledgments

The authors have no conflicts of interest to declare. The study was supported by the University of British Columbia Graduate Fellowship grant.

Author Contributions

Conceptualization: AF KB JMW CRD.

Data curation: AF GG DS.

Formal analysis: AF KB JMW CRD.

Investigation: AF KB JMW CRD.

Methodology: AF KB JMW CRD MAB.

Project administration: AF JMW CRD.

Software: AF.

Supervision: AF KB JMW MAB HRF CRD.

Validation: AF KB JMW MAB HRF CRD.

Visualization: AF KB JMW MAB HRF CRD.

Writing – original draft: AF GG DS KB JMW MAB HRF CRD.

Writing – review & editing: AF GG DS KB JMW MAB HRF CRD.

References

1. Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 2008 Nov; 118(11):3537–3545. doi: 10.1172/JCI36389 PMID: 18982160

2. Favalli EG, Bugatti S, Biggioggero M, Caporali R. Treatment comparison in rheumatoid arthritis: Head-to-head trials and innovative study designs. BioMed Research International 2014 2014;2014.

3. Fafa BP, Louzada-Junior P, Titton DC, Zandonade E, Ranza R, Laurindo I, et al. Drug survival and causes of discontinuation of the first anti-TNF in ankylosing spondylitis compared with rheumatoid arthritis: analysis from BIOBADABRASIL. Clin Rheumatol 2015 May; 34(5):921–927. doi: 10.1007/s10067-015-2929-7 PMID: 25851594

4. Bolge SC, Goren A, Tandon N. Reasons for discontinuation of subcutaneous biologic therapy in the treatment of rheumatoid arthritis: a patient perspective. Patient Prefer Adherence 2015; 9:121–131. doi: 10.2147/PPA.S70834 PMID: 25653505

5. Neovius M, Arkema EV, Olsson H, Eriksson JK, Kristensen LE, Simard JF, et al. Drug survival on TNF inhibitors in patients with rheumatoid arthritis comparison of adalimumab, etanercept and infliximab. Ann Rheum Dis 2015 01 Feb 2015; 74(2):354–360. doi: 10.1136/annrheumdis-2013-204126 PMID: 24285495

6. Gomez-Reino JJ, Rodriguez-Lozano C, Campos-Fernandez C, Montoro M, Descalzo MA, Carmona L. Change in the discontinuation pattern of tumour necrosis factor antagonists in rheumatoid arthritis over
TNF Antagonists Discontinuation in Rheumatoid Arthritis - Meta Analysis

10 years: Data from the Spanish registry BIOBADASER 2.0. Ann Rheum Dis 2012 March 2012; 71(3):382–385. doi: 10.1136/annrheumdis-2011-200302 PMID: 21998116

7. Markenson JA, Gibofsky A, Palmer WR, Keystone EC, Schiff MH, Feng J, et al. Persistence with anti-tumor necrosis factor therapies in patients with rheumatoid arthritis: Observations from the RADIUS registry. J Rheumatol 2011 July; 38(7):1273–1281. doi: 10.3899/jrheum.101142 PMID: 21572150

8. Hyrich KL, Watson KD, Lunt M, Symmons DPM. Changes in disease characteristics and response rates among patients in the United Kingdom starting anti-tumour necrosis factor therapy for rheumatoid arthritis between 2001 and 2008. Rheumatology 2011 January; 50(1):117–123. PMID: 20671021

9. Hetland ML, Christensen IJ, Tarp U, Dreyer L, Hansen A, Hansen IT, et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: Results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum 2010 January; 62(1):22–32. doi: 10.1002/art.27227 PMID: 20039405

10. Wolfe F. The epidemiology of drug treatment failure in rheumatoid arthritis. Baillieres Clin Rheumatol 1995 Nov; 9(4):619–632. PMID: 8591645

11. Koncz T, Pentek M, Brodszky V, Ersek K, Orlewska E, Gulasci L. Adherence to biologic DMARD therapies in rheumatoid arthritis. Expert Opin Biol Ther 2010 Sep; 10(9):1367–1378. doi: 10.1517/14712598.2010.510508 PMID: 20681888

12. Blum MA, Koo D, Doshi JA. Measurement and rates of persistence with and adherence to biologics for rheumatoid arthritis: A systematic review. Clin Ther 2011 Jul; 33(7):901–913. doi: 10.1016/j.clinthera.2011.06.001 PMID: 21715007

13. Navarro-Millan I, Sattui SE, Curtis JR. Systematic review of tumor necrosis factor inhibitor discontinuation studies in rheumatoid arthritis. Clin Ther 2013 November 2013; 35(11):1850–1861.e1. doi: 10.1016/j.clinthera.2013.09.015 PMID: 24156821

14. Arora A, Mahajan A, Spurden D, Boyd H, Porter D. Long-term drug survival of TNF inhibitor therapy in RA patients: A systematic review of European national drug registers. International Journal of Rheumatology 2013.2013; 2013:764518. doi: 10.1155/2013/764518 PMID: 24307903

15. Souto A, Maneiro JR, Gomez-Reino JJ. Rate of discontinuation and drug survival of biologic therapies in rheumatoid arthritis: a systematic review and meta-analysis of drug registries and health care databases. Rheumatology (Oxford) 2016; 55(3):523–34.

16. Deeks JJ, Higgins JPT, Altman D.J. on behalf of the Cochrane Statistical Methods Group. Section 9.5: Heterogeneity. In: Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions. 5.1.0 ed.: The Cochrane Collaboration; 2011.

17. Kievit W, Fransen J, Oerlemans AJ, Kuper HH, van der Laar MA, de Rooij DJ, et al. The efficacy of anti-TNF in rheumatoid arthritis, a comparison between randomised controlled trials and clinical practice. Ann Rheum Dis 2007 Nov; 66(11):1473–1478. doi: 10.1136/ard.2007.072447 PMID: 17426065

18. Sokka T, Pincus T. Eligibility of patients in routine care for major clinical trials of anti-tumor necrosis factor alpha agents in rheumatoid arthritis. Arthritis Rheum 2003 Feb; 48(2):313–318. doi: 10.1002/art.10617 PMID: 12571838

19. Zink A, Strangfeld A, Schneider M, Herzer P, Hiensen F, Stoyanova-Scholz M, et al. Effectiveness of tumor necrosis factor inhibitors in rheumatoid arthritis in an observational cohort study: Comparison of patients according to their eligibility for major randomized clinical trials. Arthritis Rheum 2006 Nov; 54(11):3399–3407. doi: 10.1002/art.22193 PMID: 17075823

20. Berthelot JM, Benoist-GERARD S, le Goff B, Muller-Chevalet F, Maugars Y. Outcome and safety of TNFalpha antagonist therapy in 475 consecutive outpatients (with rheumatoid arthritis or spondyloarthropathies) treated by a single physician according to their eligibility for clinical trials. Joint Bone Spine 2010 Dec; 77(6):564–569. doi: 10.1016/j.jbspin.2010.05.011 PMID: 20921538

21. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988 Mar; 31(3):315–324. PMID: 3558796

22. Aleataha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010 Sep; 62(9):2569–2581. doi: 10.1002/art.27584 PMID: 20872595

23. Glenny AM, Altman DG, Song F, Sakarowitch C, Deeks JJ, Darms R, et al. Indirect comparisons of competing interventions. Health Technol Assess 2005 Jul; 9(26):1–134, iii–iv. PMID: 16014203

24. Parmar MKB, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 1998 Dec; 17(24):2815–2834. PMID: 9921604
25. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986 Sep; 7(3):177–188. PMID: 3802833

26. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002 Jun; 21(11):1539–1558. doi: 10.1002/sim.1186 PMID: 12111919

27. Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted?. Stat Med 2002 Jun; 21(11):1559–1573. doi: 10.1002/sim.1211920

28. Zhang J, Xie F, Delzell E, Yun H, Lewis JD, Haynes K, et al. Impact of biologic agents with and without Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted?. Stat Med 2002 Jun; 21(11):1559–1573. doi: 10.1002/sim.1211920

29. Martinez-Santana V, Gonzalez-Sarmiento E, Calleja-Hernandez M, Sanchez-Sanchez T. Comparison of drug survival rates for tumor necrosis factor factor antagonists in rheumatoid arthritis. Patient Preference and Adherence 2013 January 2013; 7:719–727. doi: 10.2147/PPA.S47453 PMID: 24023512

30. Kristensen LE, Saxne T, Geborek P. The LUNDEX, a new index of drug efficacy in clinical practice: Results of a five-year observational study of treatment with infliximab and etanercept among rheumatoid arthritis patients in Southern Sweden. Arthritis Rheum 2006 February 2006; 54(2):600–606. doi: 10.1002/art.21570 PMID: 16447237

31. Soderlin MK, Peterson IF, Geborek P. The effect of smoking on response and drug survival in rheumatoid arthritis patients treated with their first anti-TNF drug. Scand J Rheumatol 2012 Feb; 41(1):1–9. doi: 10.3109/03009742.2011.599073 PMID: 22118371

32. Fernandez-Nebro A, Irigoyen MV, Urena I, Belmonte-Lopez MA, Coret V, Jimenez-Nunez FG, et al. Effectiveness, predictive response factors, and safety of anti-tumor necrosis factor (TNF) therapies in anti-TNF-naive rheumatoid arthritis. J Rheumatol 2007 Dec; 34(12):2334–2342. PMID: 17985409

33. Caporali R, Scire CA, Todoerti M, Galeazzi M, Valesini G, Sfriso P, et al. Drug survival of the first course of anti-TNF agents in patients with rheumatoid arthritis and spondyloarthropathies. Results from the MonitorNet database. Annals of the Rheumatic Disease 2013 June 2013; 71.

34. Scire CA, Caporali R, Sarzi-Puttini P, Frediani B, Di Franco M, Tincani A, et al. Drug survival of the first course of anti-TNF agents in patients with rheumatoid arthritis and seronegative spondyloarthropathies: Analysis from the MonitorNet databases. Clin Exp Rheumatol 2013 Nov/Dec 2013; 31(6):857–863. PMID: 23981363

35. Johnston S, McMorrow D, Farr AM, Juneau P, Ogale S. Real world study of biologic disease modifying antirheumatic drug persistence among patients with rheumatoid arthritis who have previously used at least one other biologic agent: A U.S. administrative claims database analysis. Ann Rheum Dis 2013 June 2013; 72.

36. Johnston S, Lobo F, McMorrow D, Fowler R, Smith D, Nadkarni A. Comparison of patient characteristics, healthcare costs, and biologic persistence between patients with rheumatoid arthritis initiating first or second-line subcutaneous abatacept, adalimumab, or etanercept. Arthritis and Rheumatology 2014 October 2014; 66:S40.

37. Cho SK, Sung YK, Choi CB, Bae SC. Impact of comorbidities on TNF inhibitor persistence in rheumatoid arthritis patients: an analysis of Korean National Health Insurance claims data. Rheumatol Int 2012 Dec; 32(12):3851–3856. doi: 10.1007/s00296-011-2312-1 PMID: 22193228

38. Lee J, Choi N-, Yang BR, Jin X-, Park B-. Utilization pattern of tumor necrosis factor alpha inhibitors among patients with rheumatologic arthritis in Korea. Pharmacoepidemiol Drug Saf 2014 October 2014; 23:471.

39. Kristensen LE, Saxne T, Nilsson JA, Geborek P. Impact of concomitant DMARD therapy on adherence to treatment with etanercept and infliximab in rheumatoid arthritis. Results from a six-year observational study in southern Sweden. Arthritis Res Ther 2006 Nov; 8(6):R174. doi: 10.1186/ar2084 PMID: 17121678

40. Borah BJ, Huang X, Zarotsky V, Globe D. Trends in RA patients' adherence to subcutaneous anti-TNF therapies and costs. Curr Med Res Opin 2009 Jun; 25(6):1365–1377. doi: 10.1185/03007990902896386 PMID: 19425902

41. Du Pan SM, Dehler S, Ciurea A, Zewiller HR, Gabay C, Finckh A, et al. Comparison of drug retention rates and causes of drug discontinuation between anti-tumor necrosis factor agents in rheumatoid arthritis. Arthritis Rheum 2009 May; 61(5):560–568. doi: 10.1002/art.24463 PMID: 19405000

42. Marchesoni A, Zaccara E, Gorla R, Bazzani C, Sarzi-Puttini P, Atzeni F, et al. TNF-alpha antagonist survival rate in a cohort of rheumatoid arthritis patients observed under conditions of standard clinical practice. Ann N Y Acad Sci 2009 Sep; 1173(1):837–846.
nationwide Danish DANBIO registry. Arthritis Rheum 2010 Jan; 62(1):22–32. doi: 10.1002/art.27227 PMID: 20039405

44. Greenberg JD, Reed G, Decktor D, Harrold L, Furst D, Gilofsky A, et al. A comparative effectiveness study of adalimumab, etanercept and infliximab in biologically naive and switched rheumatoid arthritis patients: Results from the US CORRONA registry. Ann Rheum Dis 2012 July; 71(7):1134–1142. doi: 10.1136/annrheumdis-2011-150573 PMID: 22294625

45. Chen H, Chen D, Tang C, Yang Y, Fang C, Huang N. Concomitant methotrexate use and the risk of drug discontinuation for adalimumab compared with etanercept in anti-TNF-naive rheumatoid arthritis patients: A nationwide population-based cohort Study. Arthritis Rheum 2013 October; 65:S452.

46. Hishitani Y, Ogata A, Shima Y, Hirano T, Ebina K, Kunugiz a Y, et al. Retention of tocilizumab and anti-tumor necrosis factor drugs in the treatment of rheumatoid arthritis. Scand J Rheumatol 2013; 42(4):253–259. doi: 10.3109/03009742.2012.762037 PMID: 23470089

47. Senabre-Gallego JM, Rosas J, Santos-Soler G, Santos-Ramirez C, Sanchez-Barriolengo M, Barber X, et al. Comparison of drug retention rates between anti-tumor necrosis factor agents in rheumatoid arthritis and ankylosing spondylitis in daily clinical practice. Annals of the Rheumatic Disease 2013 June; 73.

48. Senabre Gallego JM, Rosas JC, Cano Pérez C, Barber Vallés X, Salas Heredia E, Llaih Vidal N, et al. Retención de los Inhibidores del Factor de Necrosis Tumoral en Artritis Reumatoide y Espondilitis Anquilosante en condiciones de práctica clínica. Revista de la SVR: Sociedad Valenciana de Reumatología 2012; 4(3):5–10.

49. Fisher A, Bassett K, Wright JM, Brookhart MA, Freeman H, Dormuth CR. Comparative Persistence of the TNF Antagonists in Rheumatoid Arthritis—A Population-Based Cohort Study. PLoS One 2014 Aug 20; 9(8):e105193. doi: 10.1371/journal.pone.0105193 PMID: 25141123

50. Flouri I, Markatseli TE, Voulgari PV, Boki KA, Papadopoulos I, Settas L, et al. Comparative effectiveness and survival of infliximab, adalimumab, and etanercept for rheumatoid arthritis patients in the Hellenic Registry of Biologics: Low rates of remission and 5-year drug survival. Semin Arthritis Rheum 2014 Feb; 43(4):447–457. doi: 10.1016/j.semarthrit.2013.07.011 PMID: 24012040

51. Frazier-Mironer A, Dougados M, Mariette X, Cantagrel A, Deschamps V, Filpo RM, et al. Retention rates of adalimumab, etanercept and infliximab as first and second-line biopharma therapy in patients with rheumatoid arthritis in daily practice. Joint Bone Spine 2014 Jul; 81(4):352–359. doi: 10.1016/j.jbspin.2014.02.014 PMID: 24721422

52. Frazier-Mironer A, Cantagrel A, Combe B, Deschamps V, Dougados M, Filpo R., et al. Retention rates of adalimumab, etanercept and infliximab as first and second-line biologic therapy in patients with rheumatoid arthritis in daily practice: The maintain study. Ann Rheum Dis 2013 June; 72:A221–A222.

53. Kang JH, Park DJ, Lee JW, Lee KE, Wen L, Kim TJ, et al. Drug survival rates of tumor necrosis factor inhibitors in patients with rheumatoid arthritis and ankylosing spondylitis. J Korean Med Sci 2014 Sep; 29(9):1205–1211. doi: 10.3346/jkms.2014.29.9.1205 PMID: 25246737

54. Lee S, Lee K, Park D. Drug survival rates of anti-tumor necrosis factor therapies in patients with rheumatoid arthritis. Ann Rheum Dis 2013 June 2013; 72:A875.

55. Johnston SS, McMorrow D, Farr AM, Juneau P, Ogale S. Comparison of biologic disease-modifying antirheumatic drug therapy persistence between biologics among rheumatoid arthritis patients switching from another biologic. Rheumatol The 2015; 2(1):59–71.

56. Curtis JR, Jain A, Aspling J, Bridges SL Jr, Carmona L, Dixon W, et al. A comparison of patient characteristics and outcomes in selected European and U.S. rheumatoid arthritis registries. Semin Arthritis Rheum 2010 Aug; 40(1):2–14.e1. doi: 10.1016/j.semarthrit.2010.03.003 PMID: 20674669

57. Dezii CM. Persistence with drug therapy: A practical approach using administrative claims data. Manag Care 2001 Feb; 10(2):42–45. PMID: 11236643

58. Greenberg JD, Shan Y, Reed GW, Bitman B, Collier D. Comparison of switching to reduced dose vs continuation of standard dose etanercept for rheumatoid arthritis patients in the CORRONA registry. Ann Rheum Dis 2014 June; 73:241.

59. Wells GA, Shea B, O'Connell D, Peterson J, Welch W, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2013; http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 08/20/2013, 2013.

60. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The strengthening of reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Epidemiology 2007 Nov; 18(6):800–804. doi: 10.1097/EDE.0b013e3181577654 PMID: 18049194