Supplementary Data for

"Possible electronic entropy-driven mechanism for non-thermal ablation of metals"

Yuta Tanaka1, a) and Shinji Tsuneyuki1, 2

1) Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2) Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

a) Electronic mail: tanaka@cms.phys.s.u-tokyo.ac.jp
Here, a method of the determination of the local reflectivities $R_n^L(J)$ as a function of laser fluence J is explained. In a previous experiment,1 total reflectivity $R_n^T(J_0)$ was observed by irradiation with a laser whose peak fluence is J_0. $R_n^T(J_0)$ is calculated with $R_n^L(J)$ and the space distribution of the laser fluence $J(r)$:

$$R_n^T(J_0) = \frac{\int_0^{2\pi} \int_0^{\infty} J(r) R_n^L(J(r)) r d\theta dr}{\int_0^{2\pi} \int_0^{\infty} J(r) r d\theta dr} \quad (s1)$$

Here r is the distance from the center of the laser spot. To obtain $R_n^L(J)$ from $R_n^T(J_0)$, we make assumptions that the space distribution of laser fluence is the Gaussian distribution and $R_n^L(J)$ can be described as:

$$R_n^L(J) = a_n \ln J + b_n, \quad (s2)$$

where a_n and b_n are constant parameters. The latter assumption is justified around or somewhat above ablation threshold by a previous model calculation.2 From Eqs. (s1) and (s2),

$$R_n^T(J_0) = a_n \ln J_0 + a_n \left(\frac{1}{2} \ln \frac{\beta}{\pi} - 1 \right) + b_n \quad (s3)$$

can be derived. By fitting the experimental1 reflectivities $R_n^T(J_0)$ with Eq. (s3), a_n and b_n are obtained. As a result, $R_n^L(J_0)$ is determined, of which the root mean square errors were less than 0.02. In our simulation, these a_n and b_n were used to simulate the ablation depth.

REFERENCES

1A. Y. Vorobyev and C. Guo, J. Appl. Phys. 110, 043102 (2011).

2Y. P. Ren, J. K. Chen, and Y. W. Zhang, J. Appl. Phys. 110, 113102 (2011).