On R-duals of Type III in Hilbert Spaces

H. Führ, J. Cheshmavar, and A. Akbarnia

Received August 18, 2020; in final form, March 14, 2021; accepted March 15, 2021

ABSTRACT. Following work by Casazza, Kutyniok, and Lammers and its development by Stoeva and Christensen, we provide some novel characterizations of R-dual sequences of type III in Hilbert spaces. We systematically extend the construction procedure by basing it on a choice of an antiunitary involution. For certain classes of R-duals of type III, we derive a representation of the associated frame operator in terms of spectral measures.

KEY WORDS: frames, Riesz sequence, Riesz basis, spectral representation, R-dual of type I, R-dual of type III.

DOI: 10.1134/S0016266321030059

1. Introduction

In this paper we consider frame/Riesz sequence properties for a sequence \(F = \{f_i\}_{i \in I} \) in a Hilbert space \(\mathcal{H} \) and the corresponding sequence depending on two orthonormal bases, the so-called Riesz dual, or R-dual, sequences \(\Omega = \{\omega_j\}_{j \in I} \) generated by a combined action of certain operators on one of these orthonormal bases. Sequences of this form were introduced in [1] by Casazza, Kutyniok, and Lammers with the purpose of deriving duality principles for frames in an arbitrary separable Hilbert space \(\mathcal{H} \). For each sequence in \(\mathcal{H} \), they constructed a corresponding sequence depending on the choice of two orthonormal bases with a kind of duality relation between them, and then used this construction to derive duality principles for frames. They called the constructed sequence R-dual sequence. R-dual sequences have since been considered by several authors; see [5]–[7]. One of the extensions most important for the present paper appears in the work of Stoeva and Christensen, which introduces various classes of R-duals, for example, aimed at obtaining general versions of the duality principle in Gabor frames [8]. The authors of [7] gave an equivalent condition of two sequences to be R-duals.

In this paper we present variations of these constructions, which are based on choices of certain isometric operators on \(\ell^2(I) \) that help implement the duality principles. Each choice of operator gives rise to a construction of R-dual sequences that have the same desirable properties as the original construction in [1], relating frame/Riesz sequence properties of the sequence \(F = \{f_i\}_{i \in I} \) to properties of its R-dual \(\Omega = \{\omega_j\}_{j \in I} \), as studied by Casazza in [1] and also by Christensen and Kim in [5] and by Stoeva and Christensen in [8]. Finally, given an R-dual of a frame of type III, we derive a representation for its frame operator (see Theorem 4.4) via the spectral theorem. The main results appear in Section 3 and Section 4. Section 2 contains some basic definitions and results.

2. Preliminaries

In what follows, we will review basic definitions of frame and Riesz basis and present types I and III of R-duals; for more details, we refer the interested reader to [4], [3], and [1]. Throughout this paper, \(\mathcal{H} \) is a separable Hilbert space, \(I_{\mathcal{H}} \) is the identity operator on \(\mathcal{H} \), and \(I \) is a countable index set.

A collection of vectors \(F = \{f_i\}_{i \in I} \) in \(\mathcal{H} \) is a Bessel sequence if there exists a constant \(B > 0 \) such that
\[
\sum_{i \in I} |\langle f, f_i \rangle|^2 \leq B\|f\|^2
\]
for all \(f \in \mathcal{H} \). If, in addition, there is a constant \(A > 0 \) such that
\[
A \|f\|^2 \leq \sum_{i \in I} |\langle f, f_i \rangle|^2
\]
for all \(f \in \mathcal{H} \), then \(F = \{ f_i \}_{i \in I} \) is a frame for \(\mathcal{H} \). The constants \(A \) and \(B \) are called frame bounds. A frame \(F = \{ f_i \}_{i \in I} \) is \(A \)-tight if \(A = B \). The synthesis operator of \(F = \{ f_i \}_{i \in I} \) is defined by
\[
T_F : \ell^2(I) \rightarrow \mathcal{H}, \quad T_F \{ t_i \}_{i \in I} = \sum_{i \in I} c_i f_i.
\]
Given a frame \(F = \{ f_i \}_{i \in I} \) in \(\mathcal{H} \), its frame operator is
\[
S_F := T_F T_F^* : \mathcal{H} \rightarrow \mathcal{H}, \quad S_F f = \sum_{i \in I} \langle f, f_i \rangle f_i,
\]
where \(T_F^* \) is the adjoint of \(T_F \), which is given by \(T_F^* f = \{ \langle f, f_i \rangle \}_{i \in I} \). In this case, the operator \(S_F \) is bounded, invertible, self-adjoint, and positive. Moreover, the sequence \(\tilde{F} = \{ S_F^{-1} f_i \}_{i \in I} \) is also a frame for \(\mathcal{H} \) and satisfies the reconstruction formula \(f = \sum_{i \in I} \langle f, f_i \rangle S_F^{-1} f_i \) for every \(f \in \mathcal{H} \). The sequence \(\tilde{F} = \{ S_F^{-1} f_i \}_{i \in I} \) is called the canonical dual frame of \(F = \{ f_i \}_{i \in I} \). Also, any sequence \(G = \{ g_i \}_{i \in I} \) in \(\mathcal{H} \) which is not the canonical dual and satisfies \(f = \sum_{i \in I} \langle f, g_i \rangle f_i \) is called an alternate dual frame of \(F = \{ f_i \}_{i \in I} \).

A collection of vectors \(\Omega = \{ \omega_j \}_{j \in I} \) in \(\mathcal{H} \) is a Riesz sequence if there exist constants \(C, D > 0 \) such that
\[
C \sum_{j \in I} |c_j|^2 \leq \| \sum_{j \in I} c_j \omega_j \|^2 \leq D \sum_{j \in I} |c_j|^2
\]
for all finite sequences \(\{c_j\}_{j \in I} \). The numbers \(C \) and \(D \) are called Riesz bounds. A Riesz sequence \(\Omega = \{ \omega_j \}_{j \in I} \) is a Riesz basis for \(\mathcal{H} \) if \(\overline{\operatorname{span}} \{ \omega_j \}_{j \in I} = \mathcal{H} \).

We are now ready to introduce the main definitions used in this paper. We begin with the following well-known properties:

- \(F = \{ f_i \}_{i \in I} \) is a Bessel sequence in \(\mathcal{H} \) if and only if \(T_F^* \) is a well-defined bounded operator on \(\mathcal{H} \);
- \(F = \{ f_i \}_{i \in I} \) is a frame for \(\mathcal{H} \) if and only if \(T_F T_F^* : \mathcal{H} \rightarrow \mathcal{H} \) is a bounded invertible operator;
- \(F = \{ f_i \}_{i \in I} \) is a Riesz sequence in \(\mathcal{H} \) if and only if \(T_F^* T_F : \ell^2(I) \rightarrow \ell^2(I) \) is a bounded invertible operator.

Definition 2.1 [1]. Let \(\{ e_i \}_{i \in I} \) and \(\{ h_i \}_{i \in I} \) be orthonormal bases for \(\mathcal{H} \). Let \(F = \{ f_i \}_{i \in I} \subseteq \mathcal{H} \) be such that \(\sum_{i \in I} |\langle f_i, e_j \rangle|^2 < \infty \) for any \(j \in I \). The R-dual of \(F = \{ f_i \}_{i \in I} \) with respect to the orthonormal bases \(\{ e_i \}_{i \in I} \) and \(\{ h_i \}_{i \in I} \) is defined as the sequence given by
\[
\omega_j = \sum_{i \in I} \langle f_i, e_j \rangle h_i, \quad j \in I.
\]
This R-dual is said to be of type I in [8]. Below we give the definition of R-duals of type III, which are essential to our main result in the next section.

Definition 2.2 [8]. Let \(F = \{ f_i \}_{i \in I} \) be a frame for \(\mathcal{H} \) with frame operator \(S_F \). Let \(\{ e_i \}_{i \in I} \) and \(\{ h_i \}_{i \in I} \) denote orthonormal bases for \(\mathcal{H} \), and let \(Q : \mathcal{H} \rightarrow \mathcal{H} \) be a bounded bijective operator with \(\| Q \| \leq \sqrt{|S_F|} \) and \(\| Q^{-1} \| \leq \sqrt{|S_F^{-1}|} \). The R-dual of type III of \(F = \{ f_i \}_{i \in I} \) with respect to the triple \((\{ e_i \}_{i \in I}, \{ h_i \}_{i \in I}, Q) \) is the sequence \(\Omega = \{ \omega_j \}_{j \in I} \) defined by
\[
\omega_j = \sum_{i \in I} \langle S_F^{-1/2} f_i, e_j \rangle Q h_i, \quad j \in I.
\]
In this case, \(F = \{f_i\}_{i \in I} \) obtained as
\[
 f_i = \sum_{j \in I} \langle \omega_j, (Q^*)^{-1}h_i \rangle S_F^{1/2} e_j, \quad i \in I. \tag{2}
\]

Relation (2) does not imply, in general, that \(F = \{f_i\}_{i \in I} \) is an R-dual of type III of \(\Omega = \{\omega_j\}_{j \in I} \); that is, this definition of R-duality is not symmetric. However, an appropriate choice of \(Q \) ensures the following symmetry property of the sequences \(F = \{f_i\}_{i \in I} \) and \(\Omega = \{\omega_j\}_{j \in I} \) (see [8; Theorem 4.4]).

Theorem 2.3. Let \(F = \{f_i\}_{i \in I} \) be a frame for \(\mathcal{H} \), and let \(\Omega \) be a Riesz sequence with the same optimal bounds as \(F = \{f_i\}_{i \in I} \). Denote the synthesis operator for \(F = \{f_i\}_{i \in I} \) by \(T_F \) and the frame operators for \(F = \{f_i\}_{i \in I} \) and \(\Omega \) by \(S_F \) and \(S_{\Omega} \), respectively. If \(\dim(\ker T_F) = \dim(\text{span}\{\omega_j\}_{j \in I} \}^\perp) \), then there exist orthonormal bases \(\{e_i\}_{i \in I} \) and \(\{h_i\}_{i \in I} \) for \(\mathcal{H} \) such that
\[
 \omega_j = \sum_{i \in I} \langle f_i, S_F^{-1/2} e_j \rangle \widetilde{S}_{\Omega}^{1/2} h_i, \quad j \in I,
\]
where \(S_{\Omega}^{1/2} \) is an extension of \(S_{\Omega}^{1/2} \) to an operator on \(\mathcal{H} \).

The sequence \(\Omega = \{\omega_j\}_{j \in I} \) defined in (3) is called the symmetrical R-dual of type III of \(F = \{f_i\}_{i \in I} \) with respect to the triple \((\{e_i\}_{i \in I}, \{h_i\}_{i \in I}, S_{\Omega}^{1/2}) \). In this case, for all \(i \in I \),
\[
 f_i = \sum_{j \in I} \langle \omega_j, S_{\Omega}^{-1/2} h_i \rangle \tilde{S}_{\Omega}^{1/2} e_j, \tag{4}
\]
that is, \(F = \{f_i\}_{i \in I} \) is an R-dual of type III of \(\Omega = \{\omega_j\}_{j \in I} \) with respect to the triple \((\{h_i\}_{i \in I}, \{e_i\}_{i \in I}, S_{\Omega}^{1/2}) \).

3. Characterizing R-Duality in \(\mathcal{H} \)

We first consider symmetrical R-duals of type III. In [8; Theorem 4.3] it was proved that if \(F = \{f_i\}_{i \in I} \) is a frame sequence and \(\Omega = \{\omega_j\}_{j \in I} \) is an R-dual of \(F = \{f_i\}_{i \in I} \) of type III, then the following assertions hold:

(i) \(F = \{f_i\}_{i \in I} \) is a frame for \(\mathcal{H} \) if and only if \(\Omega = \{\omega_j\}_{j \in I} \) is a Riesz sequence; in the affirmative case, the bounds for \(F = \{f_i\}_{i \in I} \) are also bounds for \(\Omega = \{\omega_j\}_{j \in I} \);

(ii) \(F = \{f_i\}_{i \in I} \) is a Riesz sequence if and only if \(\Omega \) is a frame for \(\mathcal{H} \); in the affirmative case, the bounds for \(F = \{f_i\}_{i \in I} \) are also bounds for \(\Omega = \{\omega_j\}_{j \in I} \);

(iii) \(\Omega = \{\omega_j\}_{j \in I} \) is a Riesz basis if and only if \(F = \{f_i\}_{i \in I} \) is a Riesz basis.

The following section presents another viewpoint of the construction of R-duals of type III. In order to develop this viewpoint, we introduce some additional terminology.

Definition 3.1. A map \(J: \mathcal{H} \to \mathcal{H} \) is called conjugate-linear if
\[
 J(\lambda_1 u + \lambda_2 v) = \overline{\lambda_1} J(u) + \overline{\lambda_2} J(v)
\]
for all \(\lambda_1, \lambda_2 \in \mathbb{C} \) and all \(u, v \in \mathcal{H} \). If, in addition, \(J \) is bijective and isometric, then it is called an antiunitary operator on \(\mathcal{H} \). It is called an involution if \(J^2 = I_\mathcal{H} \).

The following lemma characterizes antiunitary involutions.

Lemma 3.2. Let \(\mathcal{H} \) denote a Hilbert space, and let \(J_1: \mathcal{H} \to \mathcal{H} \) be an antiunitary involution. Let \(J: \mathcal{H} \to \mathcal{H} \) denote a bijection. Then the following conditions are equivalent:

(i) for all \(u, v \in \mathcal{H} \), \(\langle J u, v \rangle = \overline{\langle u, J v \rangle} \) and \(J^2 = I_\mathcal{H} \);

(ii) \(J \) is conjugate-linear and satisfies \(J^2 = I_\mathcal{H} \);

(iii) there exists a unitary map \(U \) such that \(J = U J_1 \) and \(J_1 U J_1 = U^* \).
Proof. (i) To prove the conjugate linearity of \(J \), we observe that, by (i), for all \(\lambda \in \mathbb{C} \) and all \(u, v \in \mathcal{H} \), we have
\[
\langle J\lambda u, v \rangle = \overline{\langle \lambda u, Jv \rangle} = \overline{\lambda} \langle Ju, v \rangle,
\]
which gives \(J\lambda u = \overline{\lambda} Ju \). By a similar reasoning, we obtain \(J(u + v) = Ju + Jv \), which proves (ii).

To prove that \((ii) \implies (iii) \), we set \(U = JJ_1 \). Then \(U \) is isometric, bijective, and linear, and hence unitary. Furthermore, \(UJ_1 = JJ_1^2 = J \), and \(J^2 = JJ_1^2 = I_\mathcal{H} \) implies
\[
UJ_1UJ_1 = JJ_1J_1JJ_1J_1 = I_\mathcal{H},
\]
and thus \(U^* = J_1UJ_1 \).

Let us prove \((iii) \implies (i) \). If \(J = UJ_1 \) is as in \((iii) \), then \(J^2 = UJ_1UJ_1UU^* = I_\mathcal{H} \). Since \(J \) is bijective, conjugate-linear, and isometric, polarization yields
\[
\langle Ju, Ju \rangle = \langle u, u \rangle
\]
for all \(u \) and \(w \), so that setting \(w = Ju \) and using \(J^2 = I_\mathcal{H} \), we obtain
\[
\langle Ju, v \rangle = \overline{\langle u, Jv \rangle},
\]
which is (i). \(\square \)

We will explain below that any choice of an antiunitary involution gives rise to a construction of R-dual sequences that have all the desirable properties of the original construction. The original construction in [1] is based on the following concrete choice of \(J_1 \): \(\ell^2(I) \to \ell^2(I) \):
\[
J_1((x_i)_{i \in I}) = (\overline{x}_i)_{i \in I}.
\]
Since each Hilbert space is isometrically isomorphic to some \(\ell^2(I) \), this example also establishes that antiunitary involutions exist on every Hilbert space \(\mathcal{H} \).

The next lemma shows how \(J_1 \), as defined above, enters the definition of R-duals.

Lemma 3.3. Under the assumptions of Theorem 2.3, for any \(i, j \in I \),
\[
\omega_j = T_{\overline{\mathcal{H}}}J_1T_{\overline{F}}^*(e_j),
\]
where \(\overline{\mathcal{H}} := \{ S_{\overline{h}} \}_{h \in I} \) and \(\overline{F} := \{ S_{\overline{f}} \}_{f \in I} \). Also,
\[
f_i = T_{\overline{F}}J_1T_{\overline{\Omega}}^*(h_i),
\]
where \(\overline{F} := \{ S_{\overline{e}} \}_{e \in I} \) and \(\overline{\Omega} := \{ S_{\overline{\omega}} \}_{\omega \in I} \).

Proof. By a direct and simple calculation we obtain (5), which is an operator representation of the symmetrical type-III R-duality of \(\Omega = \{ \omega_j \}_{j \in I} \) and \(F = \{ f_i \}_{i \in I} \) expressed by (3) and (4). \(\square \)

Following this example, we define the symmetrical R-dual associated to an antiunitary involution \(J \), a frame \(F = \{ f_i \}_{i \in I} \), and a Riesz sequence \(\Omega = \{ \omega_j \}_{j \in I} \) by replacing \(J_1 \) with \(J \), which leads to
\[
\omega_j = T_{\overline{\mathcal{H}}}JT_{\overline{F}}^*(e_j).
\]
Our aim is to prove that, for any choice of \(J \), this construction yields a notion of an R-dual that has all the desired properties of the original construction. We will use the following simple Lemma.

Lemma 3.4. Let \(U : \ell^2(I) \to \ell^2(I) \) be a linear operator, and let \(\tilde{U} = JUJ \), where \(J \) is an antiunitary involution. Then \(\tilde{U} \) is linear, \(\| U \| = \| \tilde{U} \| \), and \(\tilde{U}^* = JU^*J \).

Proof. \(\langle \tilde{U}f, g \rangle = \langle JUJf, g \rangle = \langle UJf, Jg \rangle = \langle Jf, U^*Jg \rangle = \langle f, JU^*Jg \rangle \). \(\square \)
The next result is as follows.

Proposition 3.5. Given a Bessel sequence \(F = \{ f_i \}_{i \in I} \) in \(\mathcal{H} \), let \(\mathcal{H}_F = \text{span} \{ f_i \}_{i \in I} \), and let \(P_F : \mathcal{H} \to \mathcal{H}_F \) be an orthogonal projection. Assume that \(F = \{ f_i \}_{i \in I} \) is a Riesz sequence. Then the following statements hold:

(i) \(\tilde{F} = \{ Pf_i \}_{i \in I} \) is a Riesz sequence if and only if \(P_F P^* P F : \mathcal{H} \to \mathcal{H}_F \) is an invertible operator, where \(P = S_F^{-1/2} \);
(ii) \(T^*_\Omega = JT^*_E T^*_F J T^*_H \) and \(T^*_F = JT^*_H T^*_\Omega J T^*_E \), where \(E = \{ e_i \}_{i \in I} \) and \(H = \{ h_i \}_{i \in I} \). In particular, \(\Omega = \{ \omega_j \}_{j \in I} \) is a Bessel sequence in \(\mathcal{H} \) if \(F = \{ f_i \}_{i \in I} \) is a Bessel sequence in \(\mathcal{H} \), and vice versa.

Proof. We first note that \(\tilde{F} \) is a Bessel sequence in \(\mathcal{H} \) with \(T^*_F = T^*_F P^* \), because, for \(f \in \mathcal{H} \),

\[
\sum_{i \in I} |\langle f, Pf_i \rangle|^2 \leq B\|P^* f\|^2 = B\|P\|^2 \|f\|^2
\]

and \(T^*_F f = \{ \langle f, Pf_i \rangle \}_{i \in I} \). In particular, \(\tilde{F} \) is a Bessel sequence if \(T^*_F \) is a bounded operator on \(\mathcal{H} \). To prove (i), note that, on the other hand, we have

\[
T^*_F T^*_F = T^*_F P^* P T_F = T^*_F P_F P^* P P_F T_F,
\]

and \(T_F : \ell^2(I) \to H_F \) is invertible. Hence \(T^*_F : H_F \to \ell^2(I) \) is invertible; thus, \(\tilde{F} \) is a Riesz sequence if and only if \(T^*_F T^*_F \) is an invertible operator on \(\ell^2(I) \), and this is so if and only if \(P_F P^* P F \) is an invertible operator on \(\mathcal{H}_F \), as desired.

(ii) We have

\[
T^*_\Omega f = \{ \langle f, \omega_j \rangle \}_{j \in I} = \{ \langle f, T^*_H (T^*_F e_j) \rangle \}_{j \in I} = \{ \langle T^*_F f, (T^*_F e_j) \rangle \}_{j \in I} = \{ \langle T^*_F f, T^*_F e_j \rangle \}_{j \in I} \equiv \{ T^*_F (T^*_F e_j) \}_{j \in I} = \{ T^*_F (T^*_H J T^*_E) f \}.
\]

This means that \(T^*_\Omega = JT^*_E T^*_F J T^*_H \). The argument for \(T^*_F \) is similar.

The following theorem shows that any antiunitary involution can be employed to define a notion of an R-dual of type III.

Theorem 3.6. Let \(F = \{ f_i \}_{i \in I} \) be a frame sequence, and let \(\Omega = \{ \omega_j \}_{j \in I} \) be an R-dual of type III of \(F = \{ f_i \}_{i \in I} \) associated to an antiunitary involution \(J \). Then

\[
T^*_\Omega T^*_\Omega = (T^*_H J T^*_E) (T^*_E T^*_F J T^*_H) = T^*_H J T^*_F J T^*_H,
\]

and

\[
T^*_\Omega T^*_\Omega = (J T^*_E T^*_F J T^*_H) (T^*_H J T^*_E) T^*_F J T^*_H.
\]

Furthermore,

(i) \(\Omega = \{ \omega_j \}_{j \in I} \) is a Riesz sequence in \(\mathcal{H} \) if and only if \(F = \{ f_i \}_{i \in I} \) is a frame for \(\mathcal{H} \);

(ii) \(F = \{ f_i \}_{i \in I} \) is a Riesz sequence in \(\mathcal{H} \) if and only if \(\Omega = \{ \omega_j \}_{j \in I} \) is a frame for \(\mathcal{H} \).

Proof. A straightforward computation using the relations \(J^2 = I_{\mathcal{H}} \) and \(T_E T_E^* = I_{\mathcal{H}} \), as well as Lemma 3.4 and Proposition 3.5, yields formulas (8) and (9).

(i) \(\Omega = \{ \omega_j \}_{j \in I} \) is a Riesz sequence if and only if \(T^*_\Omega T^*_\Omega \) is a bounded invertible operator on \(\ell^2(I) \), and this is so if and only if

\[
T^*_F J T^*_H J T^*_F := U
\]
is invertible (because $S_F^{-1/2}$ is bounded and invertible). Let now $U := JT_F^*T_H^*J$. Then $U : \ell^2(I) \to \ell^2(I)$ is a positive invertible operator. Finally, to prove the proposition, it is enough to show that F is a frame for \mathcal{H} if and only if $T_FU_T^* : \mathcal{H} \to \mathcal{H}$ is invertible.

Let $V := U^{1/2}$; then V is a positive invertible operator on $\ell^2(I)$, and we have

$$T_FU_T^* = (VT_F^*)^*(VT_F^*).$$

In particular, F is a frame for \mathcal{H} if and only if $T_FT_F^* : \mathcal{H} \to \mathcal{H}$ is a bounded invertible operator, which is so if and only if $T_F^* : \mathcal{H} \to \ell^2(I)$ is an embedding, that is, if and only if $VT_F^* : \mathcal{H} \to \ell^2(I)$ is an embedding, or, equivalently, $(VT_F^*)^*(VT_F^*) = T_FU_T^*$ is an invertible operator, as desired.

(ii) $F = \{f_i\}_{i \in I}$ is a Riesz sequence in \mathcal{H} if and only if $T_F^*T_F$ is a bounded invertible operator on $\ell^2(I)$, that is,

$$T_O J T^*_E T^*_G J T^*_O := W$$

is invertible (because $S_{T_O}^{-1/2}$ is bounded and invertible). Let $W := J T^*_E T^*_G J$. An argument similar to that used in (i) proves that $\Omega = \{\omega_j\}_{j \in I}$ is a frame for \mathcal{H}. \qed

The generalization using antunitary involutions highlights the algebraic and geometric properties of the map J that lead to the desirable properties of the R-dual. Further benefits of this additional freedom of choice in the design of R-duals remain to be explored. For example, it is conceivable that a clever choice of J may yield R-duals with additional symmetry properties.

4. Representation of S_O

In [7] Chuang and Zhao characterized R-duals $\Omega = \{\omega_j\}_{j \in I}$ of type I of a given frame F by conditions formulated without explicit reference to the construction procedure of such duals. In principle, this result shows that the frame operator S_O is computable from S_F, although the proof of the theorem is not explicit. The rest of this section is devoted to a more explicit description of S_O in terms of S_F.

Theorem 4.1 [7]. Let $F = \{f_i\}_{i \in I}$ be a frame for \mathcal{H}, and let $\Omega = \{\omega_j\}_{j \in I}$ be a Riesz sequence in \mathcal{H}. Denote the synthesis operator for $F = \{f_i\}_{i \in I}$ by T_F, the frame operator of F by S_F, and the frame operator of $\Omega = \{\omega_j\}_{j \in I}$ by S_O. Then $\Omega = \{\omega_j\}_{j \in I}$ is an R-dual of type I of $F = \{f_i\}_{i \in I}$ if and only if the following two conditions hold:

(i) there exists an antunitary operator $\Lambda : \mathcal{H} \to \overline{\text{span}} \Omega$ such that $S_O = \Lambda S_F \Lambda^{-1}$,

(ii) $\dim(\ker T_F) = \dim((\text{span}\{\omega_j\}_{j \in I})^\perp)$.

In the following theorem we present a representation for the operator S_O associated with R-duals of types I and III. Let now the countable index set I be the set \mathbb{Z} of integers. We use some ideas of [2].

Theorem 4.2. Let $F = \{f_i\}_{i \in I}$ be a frame for \mathcal{H}, and let $\Omega = \{\omega_j\}_{j \in I}$ be an R-dual of type I of $F = \{f_i\}_{i \in I}$ with respect to orthonormal bases $\{e_i\}_{i \in I}$ and $\{h_i\}_{i \in I}$. Denote the frame operator of $F = \{f_i\}_{i \in I}$ and $\Omega = \{\omega_j\}_{j \in I}$ by S_F and S_O, respectively, and suppose that

$$\sum_{j \in I} |\langle S_O h_0, h_j \rangle| < \infty. \quad (10)$$

Then there exist operators $\{V_j\}_{j \in I}$ on \mathcal{H} such that

(i) $V_j(S_O h_0) = S_O h_j$.
(ii) if, for each \(k \in I \), \(\{ \mathcal{V}_j(h_k) \}_{j \in I} \) is a Bessel sequence with Bessel bound \(B \), then there exist bounded operators \(\{ \Lambda_k \}_{k \in \mathbb{Z}} \), which satisfy \(\sup_{k \in \mathbb{Z}} \| \Lambda_k \| < \infty \), so that \(S_\Omega \) associated with \(F = \{ f_i \}_{i \in I} \) has the representation
\[
S_\Omega f = \sum_{i \in \mathbb{Z}} \langle f_i, f_0 \rangle \Lambda_i(f)
\]
with unconditional convergence in the operator norm.

Proof. Let \(\mathcal{U} : \mathcal{H} \to \mathcal{H} \) be unitary shift operator \(\mathcal{U}h_i := h_{i+1} \), and let \(\mathcal{V} : \mathcal{H} \to \mathcal{H} \) be the operator defined by \(\mathcal{V} = S_\Omega \mathcal{U} S_\Omega^{-1} \). We define \(\{ \mathcal{V}_j \}_{j \in I} \) on \(\mathcal{H} \) by
\[
\mathcal{V}_j := \mathcal{V}^j = S_\Omega \mathcal{U}^j S_\Omega^{-1}.
\]
Then (i) is obviously fulfilled, since
\[
\mathcal{V}_j(S_\Omega h_0) = \mathcal{V}^j(S_\Omega h_0) = S_\Omega \mathcal{U}^j h_0 = S_\Omega h_j \quad \text{for all } j \in I.
\]
Assertion (ii) is proved by calculations similar to those in the proof of Theorem 4.5 in [2].

For type III, the above procedure for computing \(\langle S_\Omega h_0, h_j \rangle \) does not work, and we have to change our strategy. First, recall (see, e.g., [9]) that a representation of \(S_\Omega \) in terms of simple operators (projections) is called a spectral representation of the operator \(S_\Omega \).

Let \(T : \mathcal{H} \to \mathcal{H} \) be a bounded self-adjoint linear operator. For \(\lambda \in \mathbb{R} \), let \(T_\lambda = T - \lambda I \mathcal{H} \). We denote the positive square root of \(T_\lambda^2 \) by \(|T_\lambda| \); the operator \(T_\lambda^+ = \frac{1}{2}(|T_\lambda| + T_\lambda) \) is called the positive part of \(T_\lambda \), and the operator \(T_\lambda^- = \frac{1}{2}(|T_\lambda| - T_\lambda) \) is called the negative part of \(T_\lambda \). We have \(T_\lambda = T_\lambda^+ - T_\lambda^- \), and the spectral family \(\mathcal{E} \) of \(T \) is defined by \(\mathcal{E} = \{ E_\lambda \}_{\lambda \in \mathbb{R}} \), where \(E_\lambda \) is the projection of \(\mathcal{H} \) onto the null space \(\mathcal{N}(T_\lambda^+) \) of \(T_\lambda^+ \). Let
\[
m = \inf \frac{\langle Tx, x \rangle}{\| x \| = 1} \quad \text{and} \quad M = \sup \frac{\langle Tx, x \rangle}{\| x \| = 1}.
\]
The following theorem holds [9; Theorem (9.2-1)].

Theorem 4.3. Let \(T : \mathcal{H} \to \mathcal{H} \) be a bounded self-adjoint linear operator on a complex Hilbert space \(\mathcal{H} \). Then \(T \) has the spectral representation
\[
T = mE_m + \int_m^M \lambda dE_\lambda,
\]
where the integral is to be understood in the sense of uniform operator convergence. Also, for all \(x, y \in \mathcal{H} \),
\[
\langle Tx, y \rangle = mW(m) + \int_m^M \lambda dW(\lambda),
\]
where \(W(\lambda) = \langle E_\lambda x, y \rangle \), and the integral is an ordinary Riemann–Stieltjes integral.

Now we are ready to present a representation for the operator \(S_\Omega \) associated with R-duals of type III.

Theorem 4.4. Let \(F = \{ f_i \}_{i \in I} \) be a frame for \(\mathcal{H} \) with frame operator \(S_F \), and let \(\Omega = \{ \omega_j \}_{j \in I} \) be a symmetrical R-dual of type III of \(F = \{ f_i \}_{i \in I} \) with respect to the triple \(\{ e_i \}_{i \in I}, \{ h_i \}_{i \in I}, S_\Omega^{1/2} \).

Suppose that
\[
\sum_{j \in I} |\langle S_\Omega h_0, h_j \rangle| < \infty.
\]
Assume there exist operators \(\{ \mathcal{V}_j \}_{j \in I} \) on \(\mathcal{H} \) such that

(i) \(\mathcal{V}_j(S_\Omega h_0) = S_\Omega h_j \) for all \(j \in I \);
(ii) there is a constant $B > 0$ such that, for each $k \in I$, the set $\{V_j(h_k)\}_{j \in I}$ is a Bessel sequence with Bessel bound B.

Then there exist bounded operators $\{\Lambda_i\}_{i \in I}$, which satisfy $\sup_{i \in I} \|\Lambda_i\| < \infty$, and constants C_i such that S_Ω associated with $F = \{f_i\}_{i \in I}$ has the representation

$$S_\Omega f = \sum_{i \in I} (M(S_F^{-1/2} f_i, S_F^{-1/2} f_0) - C_i) \Lambda_i(f)$$

(15)

with unconditional convergence in the operator norm.

Proof. Since S_Ω is a bounded self-adjoint linear operator on H, by Eq. (13) we have

$$\langle S_\Omega h_0, h_i \rangle = MW(m) + \int_m^M \lambda dW(\lambda)$$

$$= MW(m) + MW(M) - MW(m) - \int_m^M W(\lambda) d\lambda$$

(the integral is the ordinary Riemann–Stieltjes integral), where $W(\lambda) = \langle E_\lambda h_0, h_i \rangle$ and E_λ is the projection of H onto the null space $N(S_\Omega^+)$ of S_Ω^+ for $S_\Omega = S_\Omega - \lambda I$. Therefore,

$$\langle S_\Omega h_0, h_i \rangle = MW(M) - \int_m^M W(\lambda) d\lambda. \quad (16)$$

On the other hand, $\Omega = \{\omega_j\}_{j \in I}$ is a Riesz sequence in H, and hence it is a Riesz basis for $V := \text{span} \Omega$. Thus, the sequence $\{S_\Omega^{-1/2} \omega_j\}_{j \in I}$ is an orthonormal basis for V [8; Lemma (1.1)] (note that $N(S_\Omega^+)$ is a Riesz sequence in H, and hence it is a Riesz basis for V). Consider the extension $S_\Omega^{-1/2}$ of $S_\Omega^{-1/2}$ to an operator on H as in [8; Lemma (1.3)]; $\{S_\Omega^{-1/2} \omega_j\}_{j \in I}$ is an orthonormal basis for V, too. Therefore, the orthogonal projection E_M of H onto $N(S_\Omega^+)$ is given by

$$E_M f = \sum_{j \in I} \langle f, S_\Omega^{-1/2} \omega_j \rangle S_\Omega^{-1/2} \omega_j, \quad f \in H. \quad (17)$$

It is enough to prove that if we define E_M by (17), then $E_M f = f$ for $f \in N(S_\Omega^+)$ and $E_M f = 0$ for $f \in (N(S_\Omega^+))^\perp$; the first equation follows by the orthonormality of $\{S_\Omega^{-1/2} \omega_j\}_{j \in I}$, and the second, by the fact that the range of $S_\Omega^{-1/2}$ equals $N(S_\Omega^+)$, because $S_\Omega^{-1/2}$ is a bijection on $N(S_\Omega^+)$. Therefore,

$$\langle E_M h_0, h_i \rangle = \sum_{j \in I} \langle h_0, S_\Omega^{-1/2} \omega_j \rangle \langle S_\Omega^{-1/2} \omega_j, h_i \rangle = \langle S_F^{-1/2} f_1, S_F^{-1/2} f_0 \rangle$$

(17)

(the second equality follows from (4)). We now have

$$S_\Omega f = \sum_{j \in I} \langle f, h_j \rangle S_\Omega(h_j) = \sum_{j \in I} \langle f, h_j \rangle V_j(S_\Omega(h_0)) = \sum_{j \in I} \langle f, h_j \rangle V_j \left(\sum_{i \in I} \langle S_\Omega(h_0), h_i \rangle h_i \right)$$

$$= \sum_{i \in I} \langle S_\Omega h_0, h_i \rangle \sum_{j \in I} \langle f, h_j \rangle V_j(h_i) = \sum_{i \in I} (M(E_M h_0, h_i) - C_i) \sum_{j \in I} \langle f, h_j \rangle V_j(h_i)$$

$$= \sum_{i \in I} (M(S_F^{-1/2} f_1, S_F^{-1/2} f_0) - C_i) \sum_{j \in I} \langle f, h_j \rangle V_j(h_i),$$
where $C_i := \int M W(\lambda) \, d\lambda$. Defining Λ_i by $\Lambda_i(f) = \sum_{j \in I}(f, h_j)\mathcal{V}_j(h_i)$, we obtain

$$S_\Omega f = \sum_{i \in I}(M(S_F^{-1/2} f_i, S_F^{-1/2} f_0) - C_i)\Lambda_i(f),$$

as desired. The proof of convergence is almost the same as in Theorem 4.5 of [2], but we review it. The sequence $\{\mathcal{V}_j(h_i)\}_{j \in I}$ is a Bessel sequence with bound B, and hence, for any finite set $J \subset I$,

$$\left\|\sum_{j \in J}(f, h_j)\mathcal{V}_j(h_i)\right\|^2 \leq B \sum_{j \in J}|\langle f, h_j \rangle|^2 = B\|f\|^2,$$

that is, the series defining Λ_i are unconditionally convergent and $\|\Lambda_i\| \leq \sqrt{B}$ for each $k \in \mathbb{Z}$.

On the other hand, for finite subsets I_1 and I_2 of I, it follows from the above calculations that

$$\left\|\sum_{i \in I_1}(M(S_F^{-1/2} f_i, S_F^{-1/2} f_0) - C_i)\sum_{j \in I_2}(f, h_j)\mathcal{V}_j(h_i)\right\|$$

$$= \left\|\sum_{i \in I_1}(S_\Omega h_0, h_i)\sum_{j \in I_2}(f, h_j)\mathcal{V}_j(h_i)\right\|$$

$$\leq \left\{\sum_{i \in I_1}|\langle S_\Omega h_0, h_i \rangle|\right\}\left\|\sum_{j \in I_2}(f, h_j)\mathcal{V}_j(h_i)\right\|$$

$$\leq \left\{\sum_{i \in I_1}|\langle S_\Omega h_0, h_i \rangle|\right\}\sqrt{B}\|f\|.$$

The convergence of the series (10) implies that the series in the construction of Λ_i are unconditionally convergent. Finally, for a finite subset $J \subset I$, we have

$$\left\|S_\Omega - \sum_{i \in J}(M(S_F^{-1/2} f_i, S_F^{-1/2} f_0) - C_i)\Lambda_i\right\|$$

$$= \sup_{\|f\|=1}\left\|S_\Omega(f) - \sum_{i \in J}(M(S_F^{-1/2} f_i, S_F^{-1/2} f_0) - C_i)\Lambda_i(f)\right\|$$

$$= \sup_{\|f\|=1}\left\|\sum_{i \in J}(M(S_F^{-1/2} f_i, S_F^{-1/2} f_0) - C_i)\Lambda_i(f)\right\|$$

$$\leq \left\{\sum_{i \in J}|(M(S_F^{-1/2} f_i, S_F^{-1/2} f_0) - C_i)|\right\}\sup_{\|f\|=1}\sup_{i \in J}\|\Lambda_i(f)\|$$

$$\leq \left\{\sum_{i \in J}|(M(S_F^{-1/2} f_i, S_F^{-1/2} f_0) - C_i)|\right\}\sqrt{B}.$$

Now, using relations (10) and $|\langle S_\Omega h_0, h_i \rangle| = |(M(S_F^{-1/2} f_i, S_F^{-1/2} f_0) - C_i)|$, we see that the operators converge to S_Ω unconditionally in the operator norm.

5. Acknowledgment

The authors would like to thank the referees for valuable comments and suggestions for improvement of the manuscript.
References

[1] P. G. Casazza, G. Kutyniok, and M. Lammers, “Duality principles in frame theory”, J. Fourier Anal. Appl., 10 (2004), 383–408.
[2] P. G. Casazza, G. Kutyniok, and M. Lammers, “Duality principles, localization of frames, and Gabor theory”, SPIE Proceedings in Wavelets XI, no. 5914, 2005.
[3] P. G. Casazza, “Modern tools for Weyl-Heisenberg (Gabor) frame theory”, Adv. in Imag. and Electron. Physics, 115 (2001), 1–127.
[4] O. Christensen, Frame and Bases, An Introductory Course, Birkhäuser, Basel, 2008.
[5] O. Christensen, H. O. Kim, and R. Y. Kim, “On the duality principle by Casazza, Kutyniok, and Lammers”, J. Fourier Anal. Appl., 17 (2011), 640–655.
[6] O. Christensen, X. C. Xiao, and Y. C. Zhu, “Characterizing R-duality in Banach spaces”, Acta Math. Sin. Engl. Ser., 1 (2013), 75–84.
[7] Z. Chuang and J. Zhao, “On equivalent conditions of two sequences to be R-dual”, J. Inequal. Appl., 10 (2015), 1–8.
[8] D. T. Stoeva and O. Christensen, “On R-duals and the Duality principle in Gabor Analysis”, J. Fourier Anal. Appl., 21 (2015), 383–400.
[9] E. Kreyszig, Introductory Functional Analysis with Approximation, John Wiley, New York, 1978.

H. Führ
Lehrstuhl A für Mathematik, RWTH Aachen University, Aachen, Germany
E-mail: fuehr@matha.rwth-aachen.de

J. Cheshmavar
Department of Mathematics, Payame Noor University, Tehran, Iran
E-mail: j_cheshmavar@pnu.ac.ir

A. Akbarnia
Department of Mathematics, Payame Noor University, Tehran, Iran
E-mail: Aliakbarnia7@gmail.com