Two new triterpenoid saponins derived from the leaves of Panax ginseng and their antiinflammatory activity

Fu Li1,*, Yufeng Cao2,*, Yanyan Luo2,*, Tingwu Liu2, Guilong Yan2, Liang Chen2, Lilian Ji2, Lun Wang1, Bin Chen1, Aftab Yaseen1, Ashfaq A. Khan3, Guolin Zhang1, Yunyao Jiang5, Jianxun Liu5, Gongcheng Wang4,**, Ming-Kui Wang1,***, Weicheng Hu2,****

1 Key Laboratory of Mountain Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
2 Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, China
3 Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
4 Department of Urology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
5 Xinyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China

**Corresponding author. Key Laboratory of Mountain Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.

Abstract

Background: The leaves and roots of Panax ginseng are rich in ginsenosides. However, the chemical compositions of the leaves and roots of P. ginseng differ, resulting in different medicinal functions. In recent years, the aerial parts of members of the Panax genus have received great attention from natural product chemists as producers of bioactive ginsenosides. The aim of this study was the isolation and structural elucidation of their structures were determined by nuclear magnetic resonance and high-resolution mass spectrometry, as well as chemical methods. The antiinflammatory effect of the new compounds was evaluated on lipopolysaccharide-stimulated RAW 264.7 cells.

Methods: Various chromatographic techniques were applied to obtain pure individual compounds, and their structures were determined by nuclear magnetic resonance and high-resolution mass spectrometry. The isolated compounds

Results and conclusions: Two novel, minor triterpenoid saponins, ginsenoside LS1 (1) and 5,6-didehydroginsenoside Rg2 (2), were isolated from the leaves of P. ginseng. The isolated compounds 1 and 2 were assayed for their inhibitory effect on nitric oxide production in LPS-stimulated RAW 264.7 cells, and Compound 2 showed a significant inhibitory effect with IC50 of 37.38 μM compared with that of NG-monomethyl-L-arginine (IC50 = 90.76 μM). Moreover, Compound 2 significantly decreased secretion of cytokines such as prostaglandin E2, and tumor necrosis factor-α. In addition, Compound 2 significantly suppressed protein expression of inducible nitric oxide synthase and cyclooxygenase-2. These results suggested that Compound 2 could be used as a valuable candidate for medicinal use or functional food, and the mechanism is warranted for further exploration.

© 2018 The Korean Society of Ginseng. Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ginseng (Panax ginseng Meyer) has been used as an herbal medicine or a functional food in East Asian countries because of its health-enhancing effects. The principle bioactive ingredients, termed ginsenosides, can be secreted from almost every part of this medicinal plant [1]. However, the chemical compositions of the aerial and underground parts of P. ginseng differ significantly. The roots are rich in protopanaxadiol saponins (PPDs; e.g., the ginsenosides Rb1, Rb2, and Rc), whereas the leaves contain high levels of protopanaxatriol saponins (PPTs; e.g., the ginsenosides Rg1, and Re) [2–4]. Pharmacological studies have demonstrated the different biological activities of these
two categories of ginsenosides. For example, the ginsenoside Rg1 has been shown to induce angiogenesis, whereas Rb1 exerted an opposite effect [5,6]. Thus, the roots and leaves of ginseng can be used for different medicinal purposes. Ginseng roots, the most commonly used part of the P. ginseng plant, have been extensively investigated. The leaves, which contain a higher level of total ginsenosides, have been relatively less studied [7].

In recent years, many ginsenosides with unique C-17 side chains have been isolated from the aerial components of ginseng [8–11]. In particular, the ginsenosides Rg3, F4, Rg1, Rk1, and Rg5 were previously isolated from red ginseng in which the ginsenoside profile of ginseng products was altered by steaming [12–14]. These minor ginsenosides showed greater biological activities than the main constituents, such as ginsenosides Rg1, Rc, and Rd [15,16]. In terms of cost and availability, ginseng leaves are more advantageous than the roots.

Inflammation is a clinically common and significant basic pathological process. Chronic inflammation may lead to many serious diseases. Nowadays, scientists are paying more and more attention to develop antiinflammatory agents from natural resources [17–19]. Some ginsenosides from the genus Panax also exhibited good antiinflammatory activities [20–22]. To adequately understand and explore the easily obtained ginseng leaves, this study focused on the isolation and antiinflammatory evaluation of previously undiscovered ginsenosides from this valuable source.

2. Materials and methods

2.1. Plant material and chemicals

Panax ginseng leaves were purchased in August 2013 from Jinyu County, Jilin Province, China. A voucher specimen (no. 20130820) of this plant was deposited in our laboratory. 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan and lipopolysaccharide (LPS) were obtained from Sigma-Aldrich (St. Louis, MO, USA). RPMI 1640 medium and antibiotics were obtained from Gibco BRL (Life Technologies, Shanghai, China). Fetal bovine serum was obtained from Corning (Mediatech, Inc., Manassas, VA, USA). Goat anti-rabbit IgG H&L (ab6721) and the enzyme-linked immunoprecipitation assay (RIPA) lysis buffer, and bicinchoninic acid (BCA) assay kit for protein detection (Beyotime, Haimen, China). Methanol (MeOH), acetonitrile (CH3CN), and dichloromethane (CH2Cl2) were purchased from Qingdao Haiyang Chemical Group Co., Ltd. (Qingdao, China). 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan and lipopolysaccharide (LPS) were obtained from Sigma-Aldrich (St. Louis, MO, USA). RPMI 1640 medium and antibiotics were obtained from Gibco BRL (Life Technologies, Shanghai, China). Fetal bovine serum was obtained from Corning (Mediatech, Inc., Manassas, VA, USA).

Optical rotations were measured using a PerkinElmer 341 polarimeter (PerkinElmer, MA, US). Infrared (IR) spectra were obtained using a PerkinElmer 1725X-FT spectrometer with potassium bromide disks. The high resolution electrospray ionization mass spectroscopy (HRESIMS) spectra were acquired on a Vion IMS QToF (Waters Corp., Milford, Massachusetts, USA) in positive ion mode. One-dimensional (1D) and two-dimensional (2D) NMR data were obtained using a Bruker Avance-600 spectrometer in CD3D2N. Analysis of the sugar residues by HPLC was carried out on an Alltech series III apparatus with an evaporative light-scattering detector with a COSMOSIL Sugar-D packed column (Nacalai Tesque, Inc., Tokyo, Japan) using a mobile phase of 80% acetonitrile (CH3CN). Preparation-scale HPLC was implemented on a CXT system, equipped with a C18 column (50 × 250 mm i.d., 10 μm, Daido SP-100-10-ODS-P) from Daido Co., Ltd. (Osaka, Japan) at a flow rate of 90 mL/min.

2.2. General experimental procedures

The leaves (100.0 kg) of P. ginseng plants were powdered and extracted with 80% MeOH (3 × 250 L, each 24 h) at 60°C. The concentration of the extract was implemented under a rotary evaporator (R-114, Buchi, Switzerland) to yield a dark residue, which was suspended in H2O and partitioned successively with CH2Cl2 (3 × 15 L) and n-ButOH (3 × 15 L) to generate CH2Cl2 (1.1 kg) and n-ButOH (4.2 kg) soluble fractions.

A portion of the n-ButOH (4.0 kg) extract was applied to silica gel CC for separation using an H2O-saturated CH2Cl2/MeOH solvent system (gradient: 15:1 to 1:1) to generate 12 fractions (Fr.1 to Fr.12). Fr.2 (32.6 g) was purified by preparative HPLC and eluted with 58% and 80% MeOH, producing five subfractions (Fr.2-1 to Fr.2-5). Fr.2-1 (5.6 g) was further purified by preparative HPLC using 35% CH3CN to yield Compound 1 (fr. 33.8 ± 26 mg). Fr.4 (40 g) was fractionated by preparative HPLC using 68%, 80%, and 90% MeOH as eluent to generate nine subfractions (Fr.4-1 to Fr.4-9). Further separation of Fr.4-6 (2.3 g) by preparative HPLC with 65% CH3CN yielded Compound 2 (fr. 27.4 ± 43 mg).

2.4. Spectroscopic data

Ginsenoside LS1 (1): amorphous white powder; [α]D20 +20.7° (c 0.11, MeOH); IR: νmax 3393, 2950, 2351, 1386, 1305, 1078, 1036, 931, 894, and 655 cm−1; 1H-NMR (600 MHz, Cδ2N) and 13C-NMR (150 MHz, Cδ2N) data are shown in Table 1; m/z 659.4144 [M+Na]+ (calculated for C49H54O14) from HRESIMS.

5,6-Didehydroginsenoside Rg3 (2): amorphous white powder; [α]D20 +7.1° (c 0.15, MeOH); IR: νmax 3362, 2925, 2351, 1447, 1376, 1078, 1028, 896, and 655 cm−1; 1H-NMR (600 MHz, Cδ2N) and 13C-NMR (150 MHz, Cδ2N) data are shown in Table 1; m/z 805.4741 [M+Na]+ (calculated for C42H27O14) from HRESIMS.

2.5. Determination of the absolute configurations of sugar moieties

The previously described method was used to determine the absolute configurations of the sugar residues [23]. Compounds 1 and 2 (5 mg each) were mixed and heated with 5% sulfuric acid (2 mL) at 105°C for 8 h. The resultant reaction mixture was exhaustively leached with CH2Cl2. Then, the water part was neutralized with barium hydroxide, filtered, and subjected to HPLC analysis compared to a standard glucose sample. The determined optical rotation value of [α]D20 +48.8° (c 0.05, H2O) suggested the D-form for the glucose moieties in the identified compounds.

2.6. Cell lines and cell culture

RAW 264.7 cells were maintained in RPMI 1640 medium containing 10% fetal bovine serum and 1% antibiotics at 37°C under 5% CO2/95% air.

2.7. Cell viability assay

RAW 264.7 macrophage cells (1 × 105 cells/well) were seeded into 96-well plates and cultured for 18 h. Then, the culture medium was replaced with fresh medium along with the test compounds at
various concentrations for 24 h. Cytotoxicity was investigated by 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan assay as previously described [24]. Cell viability was expressed as a percentage of control cells.

2.8. Determination of NO, PGE2, and TNF-α production

RAW 264.7 macrophage cells (1 × 10^5 cells/well) were cultured for 18 h in a 96-well plate; the cells were pretreated with different concentrations of test samples for 30 min before treatment with LPS for 24 h. Nitrite contents were determined by the Griess reaction. The contents of TNF-α and PGE2 were evaluated according to the instruction on the kits.

2.9. Western blot analysis

RAW 264.7 cells were seeded onto 60-mm plates at 5 × 10^6 cells/well. After treatment, the cells were washed with cold phosphate buffered saline (PBS), and the whole protein was extracted with RIPA lysis buffer containing protease inhibitor cocktail tablets (Complete ultra, Roche, Germany) under a FastPrep-24 homogenizer (MP, Solon, OH) with glass beads. Equal amounts of proteins were separated using 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred onto a polyvinylidene fluoride (PVDF) membrane. The transferred protein was detected by iNOS (1:1000 dilution), COX-2 (1:1000 dilution), and β-actin (1:1000 dilution) using an enhanced chemiluminescence Western blot kit. The bands were visualized and photographed using the Tanon-5200 multi-imaging system (Tanon Science & Technology, Shanghai, China).

2.10. Data analysis

The values are presented as the mean ± standard derivation. Differences between various experimental and control groups were compared using one-way analysis of variance followed by unpaired Student t test, and p-values less than 0.05 were considered significant.

3. Results and discussion

Separation of the n-BuOH fraction of P. ginseng leaves by open silica gel CC and preparative reversed HPLC yielded Compounds 1 and 2 (Fig. 1). Compound 1, an amorphous white powder, had a

Position	δ_H	δ_C	Position	δ_H	δ_C
1	1.05, 1.73 (m)	39.4 (CH₂)	1	0.93, 1.68 (m)	39.8 (CH₂)
2	1.86, 1.96 (overlap)	28.2 (CH)	2	1.92, 2.26 (overlap)	27.0 (CH₂)
3	3.53 (dd, J = 11.4, 4.6 Hz)	78.6 (CH)	3	3.35 (dd, J = 11.5, 4.4 Hz)	88.0 (CH)
4	40.4 (C)	43.1 (C)	5	61.8 (CH)	147.2 (C)
6	4.42 (m)	67.8 (CH)	6	5.63 (brs)	119.9 (CH)
7	1.88, 1.98 (overlap)	47.4 (CH₂)	7	1.73, 2.07 (overlap)	34.9 (CH₂)
8	41.3 (C)	37.2 (C)	9	1.58 (overlap)	49.9 (CH)
10	39.4 (C)	37.4 (C)	11	1.57, 2.13 (overlap)	31.0 (CH₂)
12	3.97 (m)	70.7 (CH)	12	1.10, 1.62 (overlap)	32.1 (CH₂)
13	2.04 (overlap)	49.2 (CH)	13	3.93 (overlap)	70.7 (CH)
14	51.6 (C)	51.3 (C)	15	0.98, 1.57 (overlap)	30.7 (CH₂)
16	1.42, 1.78 (overlap)	26.6 (CH₂)	16	1.74, 2.07 (overlap)	33.8 (CH₂)
17	2.39 (m)	52.3 (CH)	17	1.45, 2.02 (overlap)	27.6 (CH)
18	1.05 (s)	17.5 (CH)	18	2.40 (m)	54.8 (CH)
19	1.15 (s)	17.5 (CH)	19	0.95 (s)	17.8 (CH)
20	83.3 (C)	73.1 (C)	20	1.12 (s)	20.4 (CH)
21	1.59 (s)	23.6 (CH₂)	21	1.46 (s)	27.3 (CH)
22	2.85 (dd, J = 14.2, 8.6 Hz)	40.2 (CH₂)	22	1.73, 2.02 (overlap)	36.2 (CH₂)
23	3.10 (dd, J = 14.2, 6.5 Hz)	127.5 (CH)	23	2.31, 2.61 (m)	23.1 (CH)
24	6.08 (m)	136.0 (CH)	24	5.33 (m)	126.4 (CH)
25	6.42 (d, J = 15.6 Hz)	142.6 (C)	25	130.9 (C)	
26	5.04 (s)	115.0 (CH₂)	26	1.67 (s)	25.9 (CH₂)
27	4.98 (s)		27	1.93 (s)	19.0 (CH₂)
28	1.99 (s)	32.1 (CH)	28	1.52 (s)	28.2 (CH)
29	1.47 (s)	16.6 (CH₂)	29	1.45 (s)	24.2 (CH)
30	0.91 (s)	17.2 (CH₂)	30	1.04 (s)	16.8 (CH)
3 or 20-Glc					

1 | 5.20 (d, J = 7.7 Hz) | 98.4 (CH) | 1 | 5.36 (d, J = 7.6 Hz) | 106.2 (CH) |
2 | 4.00 (t, J = 8.6 Hz) | 75.4 (CH) | 2 | 4.15 (overlap) | 77.1 (CH) |
3 | 4.23 (t, J = 9.0 Hz) | 78.8 (CH) | 3 | 4.22 (overlap) | 83.6 (CH) |
4 | 4.16 (t, J = 9.0 Hz) | 71.6 (CH) | 4 | 4.24 (overlap) | 78.1 (CH) |
5 | 3.93 (m) | 78.5 (CH) | 5 | 4.15 (overlap) | 71.8 (CH) |
6 | 4.34 (dd, J = 11.8, 5.4 Hz) | 62.9 (CH₂) | 6 | 4.31 (overlap) | 78.4 (CH) |
7 | 4.51 (dd, J = 11.8, 1.8 Hz) | 62.9 (CH₂) | 7 | 4.35, 4.48 (overlap) | 62.9 (CH₂) |
8 | | | | 1′ | 5.36 (d, J = 7.6 Hz) | 106.2 (CH) |
9 | | | | 2′ | 4.15 (overlap) | 77.1 (CH) |
10 | | | | 3′ | 4.24 (overlap) | 78.0 (CH) |
11 | | | | 4′ | 4.32 (overlap) | 71.7 (CH) |
12 | | | | 5′ | 3.90 (overlap) | 78.3 (CH) |
13 | | | | 6′ | 4.35, 4.53 (overlap) | 62.8 (CH₂) |

Table 1

^1H and ^13C NMR (600 MHz, 150 MHz in CD3N) data for Compounds 1 and 2
molecular formula of C_{36}H_{60}O_{9}, which was based on the m/z of 659.4144 [M+Na]^+ determined in the HRESIMS analysis. Thin layer chromatography visualization by heating at 105°C after spraying with 5% H_2SO_4 ethanol solution and the ^{13}C-NMR spectrum of Compound 1 suggested that it was a triterpene glycoside. The ^1H-NMR spectrum of 1 revealed one anomeric proton signal at δH 5.20 (d, 7.7 Hz), whereas the ^{13}C-NMR spectrum displayed one anomeric carbon signal at δC 98.4. The sugar residue was determined as D-glucose by acid hydrolysis experiment. The β configuration for the glucose residue was verified according to the coupling constant of the anomeric proton. The signals at δH 4.98 (s), 5.04 (s), 6.08 (m), and 6.42 (d, 15.6 Hz) in the ^1H-NMR spectrum, along with the signals at δC 127.5 (C-23), 136.0 (C-24), 142.6 (C-25), and 115.0 (C-26) in the ^{13}C-NMR spectrum suggested the presence of two double bonds in 1. Compound 1 showed a maximum absorbance at 230 nm in its UV spectrum, indicating that the two double bonds were conjugated. Comparison of the ^{13}C-NMR data of 1 with those of quinquenoside L1 demonstrated that they shared similar aglycones [25]. The appearance of carbon signals at δC 61.8 (C-5) and 67.8 (C-6) in 1 rather than at around δC 56.1 (C-5) and 18.2 (C-6) suggested the existence of a hydroxyl group at C-6 in 1 [8]. The ^1H- and ^{13}C-NMR signals of Compound 2 indicated they had comparable chemical structures except for the linkage type attaching to C-3 of the glucose residue and C-20 (δC 83.3) of the aglycone suggested the location of the sugar residue (Fig. 2). The positions of the two double bonds in the side chain were confirmed by correlations between H1-23 (δH 6.08) and C-22 and C-25 (δC 40.2 and 142.6); H1-24 (δC 6.42) and C-22, C-25, and C-27 (δC 40.2, 142.6, and 19.0); H2-26 (δC 4.98 and 5.04) and C-24 and C-27 (δC 136.0 and 19.0); and H3-27 (δC 1.93) and C-24, C-25, and C-26 (δC 136.0, 142.6, and 115.0). Accordingly, Compound 1 was identified and named ginsenoside LS1.

Compound 2, an amorphous white powder, possessed a molecular formula of C_{42}H_{70}O_{13}, which was based on the m/z of 805.4741 [M+Na]^+ determined in the HRESIMS analysis. Thin layer chromatography and ^{13}C-NMR analysis demonstrated that Compound 2 was also a triterpene glycoside. The ^1H- and ^{13}C-NMR spectra of 2 exhibited signals that could be assigned to two sugar moieties at δH 4.89 (d, 7.4 Hz), 5.36 (d, 7.6 Hz) and δC 105.0, 106.2, respectively. Acid hydrolysis of 2 indicated that D-glucose was the only sugar component. The β configuration for both of the glucose residues was determined as described previously. The ^1H-NMR spectrum of 2 showed signals due to eight tertiary methyl residues at δH 0.95, 1.04, 1.12, 1.45, 1.46, 1.52, 1.65, and 1.67 and two olefinic protons at δH 5.33 and 5.63 for the aglycone moiety. The existence of two double bonds in 2 was suggested from corresponding signals at δC 119.9, 126.4, 130.9, and 147.2 in the ^{13}C-NMR spectrum. Comparison of the NMR data of 2 with those of 5,6-didehydroginsenoside Rd indicated they had comparable chemical structures except for the absence of the glucose residue at C-20 in 2 [26]. Sugar sequence was indicated to be a 1→2 linkage type attaching to C-3 of the aglycone from the HMBC correlations between δC 88.0 (C-3 of the glc) and δH 4.89 (H-1 of the glc) and δC 83.6 (C-2 of the glc) and δH 5.36 (H-1 of the glc) (Fig. 2). The chemical shifts of C-17, C-21, and C-22 observed at δC 54.8, 27.3, and 36.2, respectively, suggested that the configuration of C-20 was S [27]. As a result, Compound 2 was identified and named 5,6-didehydroginsenoside Rg3.

Macrophages play a key role in the process of inflammation on account of their functions in innate immunity and adaptive
immunity. The activated macrophages by bacterial LPS initiate defensive reactions and release inflammatory mediators including NO and PGE2 and proinflammatory cytokines such as TNF-α, interleukin 1β (IL-1β), and interleukin 6 (IL-6) to improve the defensive ability [28]. Overproduction of NO can be harmful and mediate a broad spectrum of inflammatory disorders. Therefore, the LPS triggered the release of NO in RAW 264.7 cells is an excellent model to assess the effects of drugs on the inflammatory process [29].

As shown in Fig. 3A, the nitrite concentration in unstimulated RAW 264.7 cells was almost undetectable; however, the nitrite concentration was increased significantly upon the treatment of LPS. Among the two compounds, Compound 2 significantly reduced NO production in LPS-stimulated RAW 264.7 with IC50 value of 37.38 μM, which was more potent than the positive control (L-NMA, 90.76 μM), whereas Compound 1 did not exert an inhibitory effect.

To exclude the possibility that the cytotoxicity of Compound 2 might contribute to its antiinflammatory effects, we incubated RAW 264.7 cells with varying concentrations of Compound 2 for 24 h. As shown in Fig. 3B, Compound 2 treatment did not induce cell death in RAW 264.7 cells at concentrations up to 100 μM. Furthermore, the levels of PGE2 and TNF-α were determined using an enzyme-linked immunosorbent assay kit. As shown in Fig. 3C and D, Compound 2 inhibited TNF-α and PGE2 production in a concentration-dependent manner.

Several ginsenosides, such as ginsenosides Rg1, Rf, Rh1, Rh2, Rb1, Rb2, Rc, Rd, Rg3, and Rg5, were previously reported to exert good antiinflammatory activities [30–35]. Ginsenosides Rg1, Rf, and Rh1 (PPT) shared one or two glucose residues at C-6. Ginsenosides Rh2, Rb1, Rb2, Rc, Rd, Rg3, and Rg5 (PPD) had one or two glucose moieties at C-3 position. This conclusion also well fit the results of the present article. Compound 1 (PPT) had no glucose residues at C-6 and did not exhibit antiinflammatory activity, whereas Compound 2 (PPD) bore two glucose moieties at C-3 and showed excellent antiinflammatory activity.

iNOS is a product of transcription expression of activated macrophages and is the reason for the prolonged and profound production of NO [36]. COX-2 is an inducible enzyme, and overexpression of it has been deemed to involve in the pathogenesis of various inflammatory diseases, angiogenesis, and cancer cell...
invasion [37]. The expression of iNOS and COX-2 induces the generation of excessive amounts of NO and PGE2 [38]. In the present study, protein expression of iNOS and COX-2 was attenuated by Compound 2 treatment, which might indicate that Compound 2 inhibited the production of NO and PGE2 by the downregulating protein expression level of iNOS and COX-2 (Fig. 4).

In conclusion, we reported the isolation of two new and minor ginsenosides from the leaves of *P. ginseng* and found that Compound 2 showed excellent anti-inflammation activity. This study might provide further insights into the chemical compositions and functions of the leaves of *P. ginseng* and help to explore this invaluable source.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

This work was financially supported by the West Light Foundation of Chinese Academy of Sciences (Y7C1031100), Hualan 2016 Annual Promotion Project for Science and Technology International Cooperation (HK0201620 and HAC201622), National Natural Science Foundation of China (21561124003 and 41501262), Natural Science Foundation of Jiangsu Province (BK20171269 and BK20140455), National Basic Research Program of China (973 Program, 2015CB554400), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (17KJAS50001 and 18KJAS50001), and Qing Lan Project of Jiangsu Province.

References

[1] Oh J Y, Kim Y J, Jang M G, Joo S C, Kwon W S, Kim S Y, Jung S K, Yang D C. Investigation of ginsenosides in different tissues after elicitor treatment in *Panax ginseng*. J Ginseng Res 2014;38:270–7.

[2] Cheng Y J, Zhang M, Liang Q L, Hu P, Wang Y M, Jun F W, Luo G A. Two-step preparation of ginsenoside Re, Rb1, Rb2 and Rb3 from the root of *Panax ginseng* by high-performance counter-current chromatography. Sep Purif Technol 2011;77:347–54.

[3] Xie J T, Menghealde S R, Wang A, Aung H H, Wu J, Oijski J, Yuan C S. American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacol Res 2004;49:113–7.

[4] Li S C, Maaza G, Cotrell A C, Gao L. Ginsenosides in roots and leaves of American ginseng. J Agric Food Chem 1996;44:717–20.

[5] Leung K W, Pon Y L, Wong R N S, Wong A S T. Ginsenoside-Rg2 induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/akt and β-catenin/T-cell factor-dependent pathway in human endothelial cells. J Biol Chem 2006;281:36280–8.

[6] Leung K W, Cheung L W T, Pon Y L, Wong R N S, Mak N K, Fan T P D. Au Sci. Tombran-Tink J, Wong A S T. Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen β receptor. Brit J Pharmacol 2007;152:207–15.

[7] Wang H W, Feng D C, Xie J T. Ginseng leaf stem: bioactive constituents and pharmacological functions. Chin Med UK 2009;4:20.

[8] Liu G Y, Liu X W, Wang N B, Zhou H Y, Wei W, Gui M Y, Yang B, Jin Y R. Three new dammarane-type tripterene sapogenins from the leaves of *Panax ginseng* C.A. Meyer. J Asian Nat Prod Res 2010;12:965–73.

[9] Zhu T T, Li F, Chen B, Deng Y, Wang M K, Li H L. Studies on the sapogenins from the leaves of *Panax ginseng*. Chin J Appl Environ Biol 2016;22:70–4.

[10] Yang X W, Liu L Y, Tian J M, Zhang Z W, Ye J M, Gu W F. Ginsenoside-Rg1, a novel tripterpenoid saponin from the stem-leaves of *Panax ginseng* C.A. Meyer. Chin Chem Lett 2000;11:909–12.

[11] Cong D L, Song C C, Xu J D. Isolation and identification of 20 (s)-ginsenoside-Rh1, -Rh2 and ginsenoside-Rh3 from the leaves of *Panax quinquefolium*. Chin J Nat Prod 2000;20:85–4.

[12] Ryu J H, Park J H, Eun J H, Jung J H, Sohn D H. A dammarane ginsenoside from Korean red ginseng. Phytochemistry 1997;44:931–3.

[13] Park I H, Kim N Y, Han S B, Kim J M, Kwon S W, Kim J H, Park J K. Three new dammarane ginsenosides from heat processed ginseng. Arch Pharm Res 2002;25:428–32.