The algebraic and geometric classification of nilpotent left-symmetric algebras

Jobir Adashev\(^a\), Ivan Kaygorodov\(^b,c,d\), Abror Khudoyberdiyev\(^a,e\) & Aloberdi Sattarov\(^a\)

\(^a\) Institute of Mathematics Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan.
\(^b\) CMCC, Universidade Federal do ABC, Santo André, Brazil.
\(^c\) Moscow Center for Fundamental and Applied Mathematics, Moscow, GSP-1, 119991, Russia.
\(^d\) Saint Petersburg University, Russia.
\(^e\) National University of Uzbekistan, Tashkent, Uzbekistan.

E-mail addresses:
Jobir Adashev (adashevjq@mail.ru)
Ivan Kaygorodov (kaygorodov.ivan@gmail.com)
Abror Khudoyberdiyev (khabor@mail.ru)
Aloberdi Sattarov (saloberdi90@mail.ru)

Abstract: This paper is devoted to the complete algebraic and geometric classification of complex 4-dimensional nilpotent left-symmetric algebras. The corresponding geometric variety has dimension 15 and decomposes into 3 irreducible components determined by the Zariski closures of two one-parameter families of algebras and a two-parameter family of algebras (see Theorem B). In particular, there are no rigid 4-dimensional complex nilpotent left-symmetric algebras.

Keywords: left-symmetric algebras, Novikov algebras, assosymmetric algebras, nilpotent algebras, algebraic classification, central extension, geometric classification, degeneration.

MSC2010: 17D25, 17A30, 14D06, 14L30.

INTRODUCTION

The algebraic classification (up to isomorphism) of algebras of dimension \(n\) from a certain variety defined by a certain family of polynomial identities is a classic problem in the theory of non-associative algebras. There are many results related to the algebraic classification of small-dimensional algebras in the varieties of Jordan, Lie, Leibniz, Zinbiel and many other algebras [9, 10, 12, 15, 17, 23, 25, 29, 30, 32, 34]. Another interesting direction in the classification of algebras is the geometric classification. There are many results related to the geometric classification of Jordan, Lie, Leibniz, Zinbiel and many other algebras [5, 8, 10, 11, 21, 22, 26, 27, 30, 32, 33, 37, 40]. An algebraic classification of complex 3-dimensional left-symmetric algebras is given in [2]. In the present paper, we give the algebraic and geometric classification of 4-dimensional nilpotent left-symmetric algebras.

Left-symmetric algebras (or under other names like Koszul–Vinberg algebras, quasi-associative algebras, pre-Lie algebras, and so on) are a class of nonassociative algebras coming from the study of several topics in geometry and algebra, such as rooted tree algebras, convex homogeneous cones

\(^1\)The work was supported by Russian Science Foundation under grant 19-71-10016. The authors thank the referee for constructive comments.
affine manifolds and affine structures on Lie groups, deformation of associative algebras, and so on. They are Lie-admissible algebras (in the sense that the commutators define Lie algebra structures) whose left multiplication operators form a Lie algebra. The class of left-symmetric algebras contains associative algebras, Novikov algebras and assosymmetric algebras as subvarieties. The variety of left-symmetric algebras is defined by the following identity:

\[(xy)z - x(yz) = (yx)z - y(xz).\]

The variety of Novikov algebras is a subclass of left-symmetric algebras defined by the following identity:

\[(xy)z = (xz)y.\]

Furthermore, left-symmetric algebras are a kind of natural algebraic systems appearing in many fields in mathematics and mathematical physics. Perhaps this is one of the most attractive and interesting places. As it was pointed out in a paper of Chapoton and Livernet, the left-symmetric algebra “deserves more attention than it has been given.” For example, left-symmetric algebras appear as an underlying structure of those Lie algebras that possess a phase space, thus “they form a natural category from the point of view of classical and quantum mechanics”; they are the underlying algebraic structures of vertex algebras; there is a correspondence between left-symmetric algebras and complex product structures on Lie algebras, which plays an important role in the theory of hypercomplex and hypersymplectic manifolds; left-symmetric algebras have close relations with certain integrable systems, classical and quantum Yang–Baxter equation, Poisson brackets and infinite-dimensional Lie algebras, operads, quantum field theory, and so on (see and the references therein).

Our method for classifying nilpotent left-symmetric algebras is based on the calculation of central extensions of nilpotent algebras of smaller dimensions from the same variety. The algebraic study of central extensions of Lie and non-Lie algebras has been an important topic for years. First, Skjelbred and Sund used central extensions of Lie algebras to obtain a classification of nilpotent Lie algebras. After that, using the method described by Skjelbred and Sund, all non-Lie central extensions of all 4-dimensional Malcev algebras were described, and also all non-associative central extensions of 3-dimensional Jordan algebras. Note that the Skjelbred-Sund method of central extensions is an important tool in the classification of nilpotent algebras, which was used to describe all 4-dimensional nilpotent associative algebras, all 5-dimensional nilpotent Jordan algebras, all 5-dimensional nilpotent restricted Lie algebras, all 6-dimensional nilpotent Lie algebras, all 6-dimensional nilpotent Malcev algebras and some others.

1. **The Algebraic Classification of Nilpotent Left-Symmetric Algebras**

1.1. **Method of classification of nilpotent algebras.** Throughout this paper, we use the notations and methods well written in, which we have adapted for the left-symmetric case with some modifications. Further in this section we give some important definitions.
Let \((A, \cdot)\) be a left-symmetric algebra over \(\mathbb{C}\) and \(V\) a vector space over \(\mathbb{C}\). The \(\mathbb{C}\)-linear space \(Z^2(A, V)\) is defined as the set of all bilinear maps \(\theta: A \times A \rightarrow V\) such that
\[
\theta(xy, z) - \theta(x, yz) = \theta(yx, z) - \theta(y, xz).
\]

These elements will be called cocycles. For a linear map \(f\) from \(A\) to \(V\), if we define \(\delta f: A \times A \rightarrow V\) by \(\delta f(x, y) = f(xy)\), then \(\delta f \in Z^2(A, V)\). We define \(B^2(A, V) = \{\theta = \delta f : f \in \text{Hom}(A, V)\}\). We define the second cohomology space \(H^2(A, V)\) as the quotient space \(Z^2(A, V) / B^2(A, V)\).

Let \(\text{Aut}(A)\) be the automorphism group of \(A\) and let \(\phi \in \text{Aut}(A)\). For \(\theta \in Z^2(A, V)\) define the action of the group \(\text{Aut}(A)\) on \(Z^2(A, V)\) by \(\phi \theta(x, y) = \theta(x, \phi(y))\). It is easy to verify that \(B^2(A, V)\) is invariant under the action of \(\text{Aut}(A)\). So, we have an induced action of \(\text{Aut}(A)\) on \(H^2(A, V)\).

Let \(A\) be a left-symmetric algebra of dimension \(m\) over \(\mathbb{C}\) and \(V\) be a \(\mathbb{C}\)-vector space of dimension \(k\). Given a bilinear map \(\theta\), define on the linear space \(A_\theta = A \oplus V\) the bilinear product “\([-\,-\,]_{A_\theta}\)” by \([x + x', y + y']_{A_\theta} = xy + \theta(x, y)\) for all \(x, y \in A, x', y' \in V\). The algebra \(A_\theta\) is called a \(k\)-dimensional central extension of \(A\) by \(V\). One can easily check that \(A_\theta\) is a left-symmetric algebra if and only if \(\theta \in Z^2(A, V)\).

Call the set \(\text{Ann}(\theta) = \{x \in A : \theta(x, A) + \theta(A, x) = 0\}\) the annihilator of \(\theta\). We recall that the annihilator of an algebra \(A\) is defined as the ideal \(\text{Ann}(A) = \{x \in A : xA + A x = 0\}\). Observe that \(\text{Ann}(A_\theta) = (\text{Ann}(\theta) \cap \text{Ann}(A)) \oplus V\).

The following result shows that every algebra with a non-zero annihilator is a central extension of a smaller-dimensional algebra.

Lemma 1. Let \(A\) be an \(n\)-dimensional left-symmetric algebra such that \(\dim(\text{Ann}(A)) = m \neq 0\). Then there exists, up to isomorphism, a unique \((n - m)\)-dimensional left-symmetric algebra \(A'\) and a bilinear map \(\theta \in Z^2(A', V)\) with \(\text{Ann}(A') \cap \text{Ann}(\theta) = 0\), where \(V\) is a vector space of dimension \(m\), such that \(A \cong A_\theta\) and \(A / \text{Ann}(A) \cong A'\).

Proof. Let \(A'\) be a linear complement of \(\text{Ann}(A)\) in \(A\). Define a linear map \(P: A \rightarrow A'\) by \(P(x + v) = x\) for \(x \in A'\) and \(v \in \text{Ann}(A)\), and define a multiplication on \(A'\) by \([x, y]_{A'} = P(xy)\) for \(x, y \in A'\). For \(x, y \in A\), we have
\[
P(xy) = P((x - P(x) + P(x))(y - P(y) + P(y))) = P(P(x)P(y)) = [P(x), P(y)]_{A'}.
\]

Since \(P\) is a homomorphism \(P(A) = A'\) is a left-symmetric algebra and \(A / \text{Ann}(A) \cong A'\), which gives us the uniqueness. Now, define the map \(\theta: A' \times A' \rightarrow \text{Ann}(A)\) by \(\theta(x, y) = xy - [x, y]_{A'}\). Thus, \(A_\theta\) is \(A\) and therefore \(\theta \in Z^2(A', V)\) and \(\text{Ann}(A') \cap \text{Ann}(\theta) = 0\.\)

Definition 2. Let \(A\) be an algebra and \(I\) be a subspace of \(\text{Ann}(A)\). If \(A = A_0 \oplus I\) then \(I\) is called an annihilator component of \(A\). A central extension of an algebra \(A\) without annihilator component is called a non-split central extension.
Our task is to find all central extensions of an algebra A by a space V. In order to solve the isomorphism problem we need to study the action of $\text{Aut}(A)$ on $H^2(A, V)$. To do that, let us fix a basis e_1, \ldots, e_s of V, and $\theta \in Z^2(A, V)$. Then θ can be uniquely written as $\theta(x, y) = \sum_{i=1}^{s} \theta_i(x, y) e_i$, where $\theta_i \in Z^2(A, \mathbb{C})$. Moreover, $\text{Ann}(\theta) = \text{Ann}(\theta_1) \cap \text{Ann}(\theta_2) \cap \ldots \cap \text{Ann}(\theta_s)$. Furthermore, $\theta \in B^2(A, V)$ if and only if all $\theta_i \in B^2(A, \mathbb{C})$. It is not difficult to prove (see [24, Lemma 13]) that given a left-symmetric algebra A_θ, if we write as above $\theta(x, y) = \sum_{i=1}^{s} \theta_i(x, y) e_i \in Z^2(A, V)$ and $\text{Ann}(\theta) \cap \text{Ann}(A) = 0$, then A_θ has a nonzero annihilator component if and only if $[\theta_1], [\theta_2], \ldots, [\theta_s]$ are linearly dependent in $H^2(A, \mathbb{C})$.

Let V be a finite-dimensional vector space over \mathbb{C}. The Grassmannian $G_k(V)$ is the set of all k-dimensional linear subspaces of V. Let $G_s(H^2(A, \mathbb{C}))$ be the Grassmannian of subspaces of dimension s in $H^2(A, \mathbb{C})$. There is a natural action of $\text{Aut}(A)$ on $G_s(H^2(A, \mathbb{C}))$. Let $\phi \in \text{Aut}(A)$. For $W = \langle [\theta_1], [\theta_2], \ldots, [\theta_s] \rangle \in G_s(H^2(A, \mathbb{C}))$ define $\phi W = \langle \phi \theta_1, \phi \theta_2, \ldots, \phi \theta_s \rangle$. We denote the orbit of $W \in G_s(H^2(A, \mathbb{C}))$ under the action of $\text{Aut}(A)$ by $\text{Orb}(W)$. Given $W_1 = \langle [\theta_1], [\theta_2], \ldots, [\theta_s] \rangle, W_2 = \langle [\vartheta_1], [\vartheta_2], \ldots, [\vartheta_s] \rangle \in G_s(H^2(A, \mathbb{C}))$, we easily have that if $W_1 = W_2$, then $\bigcap_{i=1}^{s} \text{Ann}(\theta_i) \cap \text{Ann}(A) = \bigcap_{i=1}^{s} \text{Ann}(\vartheta_i) \cap \text{Ann}(A)$, and therefore we can introduce the set

$$T_s(A) = \left\{ W = \langle [\theta_1], [\theta_2], \ldots, [\theta_s] \rangle \in G_s(H^2(A, \mathbb{C})) : \bigcap_{i=1}^{s} \text{Ann}(\theta_i) \cap \text{Ann}(A) = 0 \right\},$$

which is stable under the action of $\text{Aut}(A)$.

Now, let V be an s-dimensional linear space and let us denote by $E(A, V)$ the set of all non-split s-dimensional central extensions of A by V. By the above, we can write

$$E(A, V) = \left\{ A_\theta : \theta(x, y) = \sum_{i=1}^{s} \theta_i(x, y) e_i \text{ and } \langle [\theta_1], [\theta_2], \ldots, [\theta_s] \rangle \in T_s(A) \right\}.$$

We also have the following result, which can be proved as in [24, Lemma 17].

Lemma 3. Let $A_\theta, A_\vartheta \in E(A, V)$. Suppose that $\theta(x, y) = \sum_{i=1}^{s} \theta_i(x, y) e_i$ and $\vartheta(x, y) = \sum_{i=1}^{s} \vartheta_i(x, y) e_i$. Then the left-symmetric algebras A_θ and A_ϑ are isomorphic if and only if $\text{Orb} \langle [\theta_1], [\theta_2], \ldots, [\theta_s] \rangle = \text{Orb} \langle [\vartheta_1], [\vartheta_2], \ldots, [\vartheta_s] \rangle$.
This shows that there exists a one-to-one correspondence between the set of Aut(A)-orbits on T_s(A) and the set of isomorphism classes in E(A, V). Consequently we have a procedure that allows us, given a left-symmetric algebra A' of dimension n - s, to construct all non-split central extensions of A'. This procedure is:

1. For a given left-symmetric algebra A' of dimension n - s, determine H^2(A', C), Ann(A') and Aut(A').
2. Determine the set of Aut(A')-orbits on T_s(A').
3. For each orbit, construct the left-symmetric algebra associated with a representative of it.

The above described method gives all (Novikov and non-Novikov) left-symmetric algebras. But we are interested in developing this method in such a way that it only gives non-Novikov left-symmetric algebras, because the classification of all Novikov algebras is given in [28]. Clearly, any central extension of a non-Novikov left-symmetric algebra is non-Novikov. But a Novikov algebra may have extensions which are not Novikov algebras. More precisely, let N be a Novikov algebra and θ ∈ Z^2_L(N, C). Then N_θ is a Novikov algebra if and only if

θ(xy, z) = θ(xz, y),

for all x, y, z ∈ N. Define the subspace Z^2_N(N, C) of Z^2_L(N, C) by

Z^2_N(N, C) = { θ ∈ Z^2_L(N, C) : θ(xy, z) = θ(xz, y) for all x, y, z ∈ N }.

Observe that B^2(N, C) ⊆ Z^2_N(N, C). Let H^2_N(N, C) = Z^2_N(N, C)/B^2(N, C). Then H^2_N(N, C) is a subspace of H^2_L(N, C). Define

R_s(N) = \{ W ∈ T_s(N) : W ∈ G_s(H^2_N(N, C)) \},
U_s(N) = \{ W ∈ T_s(N) : W ∉ G_s(H^2_N(N, C)) \}.

Then T_s(N) = R_s(N) ∪ U_s(N). The sets R_s(N) and U_s(N) are stable under the action of Aut(N). Thus, the left-symmetric algebras corresponding to the representatives of Aut(N)-orbits on R_s(N) are Novikov algebras, while those corresponding to the representatives of Aut(N)-orbits on U_s(N) are not Novikov algebras. Hence, we may construct all non-split non-Novikov left-symmetric algebras A of dimension n with s-dimensional annihilator from a given left-symmetric algebra A' of dimension n - s in the following way:

1. If A' is non-Novikov, then apply the Procedure.
2. Otherwise, do the following:
 a. Determine U_s(A') and Aut(A').
 b. Determine the set of Aut(A')-orbits on U_s(A').
 c. For each orbit, construct the left-symmetric algebra corresponding to one of its representatives.

1.2. Notations. Let us introduce the following notations. Let A be a nilpotent algebra with a basis e_1, e_2, . . . , e_n. Then by Δ_{ij} we will denote the bilinear form Δ_{ij} : A × A → C with Δ_{ij}(e_i, e_m) = δ_{il}δ_{jm}. The set \{ Δ_{ij} : 1 ≤ i, j ≤ n \} is a basis for the linear space of bilinear forms on A, so every
\(\theta \in Z^2(\mathbf{A}, \mathcal{V}) \) can be uniquely written as \(\theta = \sum_{1 \leq i, j \leq n} c_{ij} \Delta_{ij} \), where \(c_{ij} \in \mathbb{C} \). Let us fix the following notations:

- \(L^i_j \) — \(j \)th \(i \)-dimensional left-symmetric (non-Novikov) algebra.
- \(L^i_j^* \) — \(j \)th \(i \)-dimensional left-symmetric (Novikov) algebra.

1.4. **The algebraic classification of 3-dimensional nilpotent left-symmetric algebras.** There are no nontrivial 1-dimensional nilpotent left-symmetric algebras. There is only one nontrivial 2-dimensional nilpotent left-symmetric algebra (it is the non-split central extension of the 1-dimensional algebra with zero product):

\[
L^{2*}_{01} : e_1 e_1 = e_2.
\]

The classification of all non-split 3-dimensional nilpotent left-symmetric algebras is known:

- \(L^{3*}_{02} : e_1 e_1 = e_3 \quad e_2 e_2 = e_3 \)
- \(L^{3*}_{03} : e_1 e_2 = e_3 \quad e_2 e_1 = -e_3 \)
- \(L^{3*}_{04}(\lambda) : e_1 e_1 = \lambda e_3 \quad e_2 e_1 = e_3 \quad e_2 e_2 = e_3 \)
- \(L^{3*}_{05} : e_1 e_1 = e_2 \quad e_1 e_2 = e_3 \quad e_2 e_1 = \lambda e_3 \).

1.4. **Central extensions of 3-dimensional nilpotent left-symmetric algebras.**

1.4.1. **The description of the second cohomology spaces of 3-dimensional nilpotent left-symmetric algebras.** In the following table we give the description of the second cohomology space of 3-dimensional nilpotent left-symmetric algebras.

\(\mathbf{A} \)	\(H^2_N(\mathbf{A}) \)	\(H^2_L(\mathbf{A}) \)
\(L^{3*}_{01} \)	\(\langle [\Delta_{12}], [\Delta_{13}], [\Delta_{21}], [\Delta_{31}], [\Delta_{33}] \rangle \)	\(H^2_N(L^{3*}_{01}) \oplus \langle [\Delta_{25}] \rangle \)
\(L^{3*}_{02} \)	\(\langle [\Delta_{12}], [\Delta_{21}], [\Delta_{22}] \rangle \)	\(H^2_N(L^{3*}_{02}) \oplus \langle [\Delta_{31}, [\Delta_{32}] \rangle \)
\(L^{3*}_{03} \)	\(\langle [\Delta_{11}], [\Delta_{21}], [\Delta_{22}] \rangle \)	\(H^2_N(L^{3*}_{03}) \oplus \langle [\Delta_{31} - 2\Delta_{13}, [\Delta_{32} - 2\Delta_{23}] \rangle \)
\(L^{3*}_{04}(\lambda)_{\lambda \neq 0} \)	\(\langle [\Delta_{11}], [\Delta_{12}], [\Delta_{21}] \rangle \)	\(H^2_N(L^{3*}_{04}(\lambda)) \oplus \langle [\Delta_{13} - \Delta_{31} - \Delta_{32}, [\Delta_{23} + \lambda \Delta_{31}] \rangle \)
\(L^{3*}_{04}(0) \)	\(\langle [\Delta_{11}], [\Delta_{12}], [\Delta_{21}, [\Delta_{13} - \Delta_{31} - \Delta_{32}], [\Delta_{23}] \rangle \)	\(H^2_N(L^{3*}_{04}(0)) \)
\(L^{3*}_{05} \)	\(\langle [\Delta_{12}], [\Delta_{13} - \Delta_{31}] \rangle \)	\(H^2_N(L^{3*}_{05}) \oplus \langle [\Delta_{22} + \Delta_{31}, [\Delta_{23}] \rangle \)
\(L^{3*}_{06}(\lambda) \)	\(\langle [\Delta_{21}], [(2 - \lambda)\Delta_{13} + \lambda(\Delta_{22} + \Delta_{31})] \rangle \)	\(H^2_N(L^{3*}_{06}(\lambda)) \oplus \langle [\Delta_{22} + \Delta_{13} - \Delta_{31}] \rangle \)
Remark 4. Since \(H^2_L(L^3_{01}(0)) = H^2_N(L^3_{01}(0)) \), then central extensions of the algebra \(L^3_{01}(0) \) give us only Novikov algebras.

1.4.2. Central extensions of \(L^3_{01} \). Let us use the following notations:

\[
\begin{align*}
\nabla_1 &= [\Delta_{12}], & \nabla_2 &= [\Delta_{13}], & \nabla_3 &= [\Delta_1], & \nabla_4 &= [\Delta_3], & \nabla_5 &= [\Delta_2], & \nabla_6 &= [\Delta_3].
\end{align*}
\]

Take \(\theta = \sum_{i=1}^{6} \alpha_i \nabla_i \in H^2_L(L^3_{01}) \). The automorphism group of \(L^3_{01} \) consists of invertible matrices of the form

\[
\phi = \begin{pmatrix} x & 0 & 0 \\ y & x^2 & u \\ z & 0 & t \end{pmatrix}.
\]

Since

\[
\phi^T \begin{pmatrix} 0 & \alpha_1 & \alpha_2 \\ \alpha_3 & 0 & \alpha_6 \\ \alpha_4 & 0 & \alpha_5 \end{pmatrix} \phi = \begin{pmatrix} \alpha^*_1 & \alpha^*_1 & \alpha^*_2 \\ \alpha^*_3 & 0 & \alpha^*_6 \\ \alpha^*_4 & 0 & \alpha^*_5 \end{pmatrix},
\]

we have that the action of \(\text{Aut}(L^3_{01}) \) on the subspace \(\sum_{i=1}^{6} \alpha_i \nabla_i \) is given by \(\sum_{i=1}^{6} \alpha^*_i \nabla_i \), where

\[
\begin{align*}
\alpha^*_1 &= \alpha_1 x^3, & \alpha^*_2 &= \alpha_1 x u + \alpha_2 x t + \alpha_5 z t + \alpha_6 y t, \\
\alpha^*_3 &= \alpha_3 x^3 + \alpha_6 x^2 z, & \alpha^*_4 &= \alpha_3 x u + \alpha_4 x t + \alpha_5 z t + \alpha_6 z u, \\
\alpha^*_5 &= \alpha_5 t^2 + \alpha_6 t u, & \alpha^*_6 &= \alpha_6 x^2 t.
\end{align*}
\]

Since \(H^2_L(L^3_{01}) = H^2_N(L^3_{01}) \oplus \langle \nabla_6 \rangle \) and we are interested only in new algebras, we have \(\alpha_6 \neq 0 \).

Then putting \(z = -\frac{\alpha x}{\alpha_6}, u = -\frac{\alpha t}{\alpha_6} \) and \(y = \frac{(\alpha_3 \alpha_5 + \alpha_1 \alpha_5 - \alpha_2 \alpha_6)x}{\alpha_6} \), we have

\[
\alpha^*_2 = \alpha^*_3 = \alpha^*_5 = 0, \quad \alpha^*_1 = \alpha_1 x^3, \quad \alpha^*_4 = \frac{(\alpha_4 \alpha_6 - \alpha_3 \alpha_5)xt}{\alpha_6}, \quad \text{and} \quad \alpha^*_6 = \alpha_6 x^2 t .
\]

Consider the following cases.

(1) \(\alpha_1 \neq 0, \alpha_4 \alpha_6 - \alpha_3 \alpha_5 \neq 0 \), then by choosing \(x = \frac{\alpha_4 \alpha_6 - \alpha_3 \alpha_5}{\alpha_6^2}, \ t = \frac{\alpha_1 (\alpha_4 \alpha_6 - \alpha_3 \alpha_5)}{\alpha_6^2} \), we have the representative \(\langle \nabla_1 + \nabla_4 + \nabla_6 \rangle \).

(2) \(\alpha_1 = 0, \alpha_4 \alpha_6 - \alpha_3 \alpha_5 \neq 0 \), then by choosing \(x = \frac{\alpha_4 \alpha_6 - \alpha_3 \alpha_5}{\alpha_6} \), we have the representative \(\langle \nabla_4 + \nabla_6 \rangle \).

(3) \(\alpha_1 \neq 0, \alpha_4 \alpha_6 - \alpha_3 \alpha_5 = 0 \), then by choosing \(t = \frac{\alpha_1 x}{\alpha_6} \), we have the representative \(\langle \nabla_1 + \nabla_6 \rangle \).

(4) \(\alpha_1 = 0, \alpha_4 \alpha_6 - \alpha_3 \alpha_5 = 0 \), then we have the representative \(\langle \nabla_6 \rangle \).

Hence, we have the following distincts orbits

\[
\langle \nabla_1 + \nabla_4 + \nabla_6 \rangle, \ \langle \nabla_4 + \nabla_6 \rangle, \ \langle \nabla_1 + \nabla_6 \rangle \text{ and } \langle \nabla_6 \rangle,
\]

which give the following new algebras:

\[
\begin{array}{c}
\text{L}_{41}^0: & e_1 e_1 = e_2 & e_1 e_2 = e_4 & e_2 e_3 = e_4 & e_3 e_1 = e_4 \\
\text{L}_{42}^0: & e_1 e_1 = e_2 & e_2 e_3 = e_4 & e_3 e_1 = e_4 \\
\text{L}_{43}^0: & e_1 e_1 = e_2 & e_1 e_2 = e_4 & e_2 e_3 = e_4
\end{array}
\]
\[L_{04} : e_1 e_1 = e_2 \quad e_2 e_3 = e_4 \]

1.4.3. Central extensions of \(L_{02}^{3^3} \): Let us use the following notations:
\[
\nabla_1 = [\Delta_{12}], \quad \nabla_2 = [\Delta_{21}], \quad \nabla_3 = [\Delta_{22}], \quad \nabla_4 = [\Delta_{31}], \quad \nabla_5 = [\Delta_{32}].
\]

Take \(\theta = \sum_{i=1}^{5} \alpha_i \nabla_i \in H^2_L(L_{02}^{3^3}) \). The automorphism group of \(L_{02}^{3^3} \) consists of invertible matrices of the form
\[
\phi_1 = \begin{pmatrix} x & -y & 0 \\ y & x & 0 \\ z & t & x^2 + y^2 \end{pmatrix} \quad \text{or} \quad \phi_2 = \begin{pmatrix} x & y & 0 \\ y & -x & 0 \\ z & t & x^2 + y^2 \end{pmatrix}.
\]

Since
\[
\phi_1^T \begin{pmatrix} 0 & \alpha_1 & 0 \\ \alpha_2 & \alpha_3 & 0 \\ \alpha_4 & \alpha_5 & 0 \end{pmatrix} \phi_1 = \begin{pmatrix} \alpha_1^* & \alpha_3^* & 0 \\ \alpha_2^* + \alpha_3^* & \alpha_4^* + \alpha_5^* & 0 \\ \alpha_4^* & \alpha_5^* & 0 \end{pmatrix},
\]

we have that the action of \(\text{Aut}(L_{02}^{3^3})^+ \) (it is the subgroup in \(\text{Aut}(L_{02}^{3^3}) \) formed by all automorphisms of the first type) on the subspace \(\langle \sum_{i=1}^{5} \alpha_i \nabla_i \rangle \) is given by \(\langle \sum_{i=1}^{5} \alpha_i^* \nabla_i \rangle \), where
\[
\begin{align*}
\alpha_1^* &= \alpha_1 x^2 - \alpha_2 y^2 + \alpha_3 x y - \alpha_4 y z + \alpha_5 x z, \\
\alpha_2^* &= -\alpha_1 y^2 + \alpha_2 x^2 + \alpha_3 x y + \alpha_4 x t + \alpha_5 y t, \\
\alpha_3^* &= -2\alpha_1 x y - 2\alpha_2 x y + \alpha_3 (x^2 - y^2) - \alpha_4 (x z + y t) - \alpha_5 (y z - x t), \\
\alpha_4^* &= (\alpha_4 x + \alpha_5 y) (x^2 + y^2), \\
\alpha_5^* &= (-\alpha_4 y + \alpha_5 x) (x^2 + y^2).
\end{align*}
\]

Since \(H^2_L(L_{02}^{3^3}) = H^2_N(L_{02}^{3^3}) \oplus \langle \nabla_4, \nabla_5 \rangle \) and we are interested only in new algebras, we have \((\alpha_4, \alpha_5) \neq (0,0) \). Moreover, without loss of generality, one can assume \(\alpha_4 \neq 0 \). Then we have the following cases.

1. \(\alpha_4^2 + \alpha_5^2 \neq 0 \), then by choosing \(y = \frac{\alpha_5}{\alpha_4}, \quad t = \frac{(\alpha_1 \alpha_2^2 - \alpha_2 \alpha_5^2 - \alpha_3 \alpha_4 \alpha_5) x}{\alpha_4 (\alpha_4^2 + \alpha_5^2)}, \quad z = \frac{\alpha_4 (\alpha_2^2 - \alpha_2 \alpha_5^2 + \alpha_3 \alpha_4 \alpha_5)}{\alpha_4^2 + \alpha_5^2} \), we have

\[
\alpha_1^* = \frac{(\alpha_1 \alpha_2^2 - \alpha_2 \alpha_5^2 - \alpha_3 \alpha_4 \alpha_5) x}{\alpha_4 (\alpha_4^2 + \alpha_5^2)}, \quad \alpha_2^* = \frac{(\alpha_1 \alpha_2^2 - \alpha_2 \alpha_5^2 + \alpha_3 \alpha_4 \alpha_5) x}{\alpha_4 (\alpha_4^2 + \alpha_5^2)}, \quad \alpha_3^* = \frac{(\alpha_1 \alpha_2^2 - \alpha_2 \alpha_5^2 - \alpha_3 \alpha_4 \alpha_5) x}{\alpha_4 (\alpha_4^2 + \alpha_5^2)}.
\]

(a) if \(\alpha_1 \alpha_4^2 - \alpha_2 \alpha_5^2 + \alpha_3 \alpha_4 \alpha_5 = 0 \), then we have the representative \(\langle \nabla_4 \rangle \);

(b) if \(\alpha_1 \alpha_4^2 - \alpha_2 \alpha_5^2 + \alpha_3 \alpha_4 \alpha_5 \neq 0 \), then by choosing \(x = \frac{(\alpha_1 \alpha_2^2 - \alpha_2 \alpha_5^2 + \alpha_3 \alpha_4 \alpha_5)}{\alpha_4^2 + \alpha_5^2} \), we have the representative \(\langle \nabla_4 \rangle \);

2. \(\alpha_4^2 + \alpha_5^2 = 0 \), i.e., \(\alpha_5 = \pm i \alpha_4 \), then by choosing

\[
t = \frac{\alpha_1 y^2 - \alpha_2 x^2 - \alpha_3 x^2 y}{\alpha_4 (x^2 + y^2)}, \quad z = \frac{-2\alpha_1 x y - 2\alpha_2 x y + \alpha_3 (x^2 - y^2) + \alpha_4 (-y + \pm i x)}{\alpha_4 (x^2 + y^2)},
\]

we have...
\[\alpha_2^* = \alpha_3^* = 0, \quad \alpha_1^* = -\frac{(\alpha_1 + \alpha_2 \pm i \alpha_3)(x^2 + y^2) \mp i(x^2 + y^2)}{(x \pm iy)^2}, \]
\[\alpha_4^* = (x^2 + y^2)(x \pm iy) \alpha_4, \quad \alpha_5^* = \pm i(x^2 + y^2)(x \pm iy) \alpha_4. \]

(a) \(\alpha_1 + \alpha_2 \pm i \alpha_3 = 0, \) then we have representative \(\langle \nabla_4 + i \nabla_5 \rangle. \)
(b) \(\alpha_1 + \alpha_2 \pm i \alpha_3 \neq 0, \) then by choosing \(x = -\frac{\alpha_1 + \alpha_2 \pm i \alpha_3}{\alpha_4} \) and \(y = 0, \) we have representative \(\langle \nabla_1 + \nabla_4 \pm i \nabla_5 \rangle. \)

Since the automorphism \(\phi = \text{diag}(1, -1, 1) \) acts as
\[\phi(\nabla_4 + i \nabla_5) = \langle \nabla_4 - i \nabla_5 \rangle \quad \text{and} \quad \phi(\nabla_1 + \nabla_4 + i \nabla_5) = \langle \nabla_1 + \nabla_4 - i \nabla_5 \rangle, \]
we have two representatives of distinct orbits \(\langle \nabla_4 + i \nabla_5 \rangle \) and \(\langle \nabla_1 + \nabla_4 + i \nabla_5 \rangle. \)

Hence, we have the following distincts orbits
\(\langle \nabla_4 \rangle, \langle \nabla_1 + \nabla_4 \rangle, \langle \nabla_4 + i \nabla_5 \rangle \) and \(\langle \nabla_1 + \nabla_4 + i \nabla_5 \rangle, \)
which give the following new algebras:

\[
\begin{align*}
\mathbf{L}^4_{05} & : \quad e_1 e_1 = e_3 \quad e_2 e_2 = e_3 \quad e_3 e_1 = e_4 \\
\mathbf{L}^4_{06} & : \quad e_1 e_1 = e_3 \quad e_1 e_2 = e_4 \quad e_2 e_2 = e_3 \quad e_3 e_1 = e_4 \\
\mathbf{L}^4_{07} & : \quad e_1 e_1 = e_3 \quad e_2 e_2 = e_3 \quad e_3 e_1 = e_4 \quad e_3 e_2 = e_4 \\
\mathbf{L}^4_{08} & : \quad e_1 e_1 = e_3 \quad e_1 e_2 = e_4 \quad e_2 e_2 = e_3 \quad e_3 e_1 = e_4 \quad e_3 e_2 = e_4
\end{align*}
\]

1.4.4. Central extensions of \(\mathbf{L}^{3*}_{03}. \) Let us use the following notations:
\(\nabla_1 = [\Delta_{11}], \quad \nabla_2 = [\Delta_{21}], \quad \nabla_3 = [\Delta_{22}], \quad \nabla_4 = [\Delta_{31} - 2 \Delta_{13}], \quad \nabla_5 = [\Delta_{32} - 2 \Delta_{23}]. \)

Take \(\theta = \sum_{i=1}^{5} \alpha_i \nabla_i \in H^2(\mathbf{L}^{3*}_{03}). \) The automorphism group of \(\mathbf{L}^{3*}_{03} \) consists of invertible matrices of the form
\[\phi = \begin{pmatrix} x & u & 0 \\ y & v & 0 \\ z & t & xv - yu \end{pmatrix}. \]

Since
\[\phi^T \begin{pmatrix} \alpha_1 & 0 & -2 \alpha_4 \\ \alpha_2 & \alpha_3 & -2 \alpha_5 \\ \alpha_4 & \alpha_5 & 0 \end{pmatrix} \phi = \begin{pmatrix} \alpha_1^* & \alpha_2^* & \alpha_3^* & -2 \alpha_4^* \\ \alpha_2^* & \alpha_3^* & -2 \alpha_5^* \\ \alpha_4^* & \alpha_5^* & 0 \end{pmatrix}, \]
we have that the action of \(\text{Aut}(\mathbf{L}^{3*}_{03}) \) on the subspace \(\sum_{i=1}^{5} \alpha_i \nabla_i \) is given by \(\langle \sum_{i=1}^{5} \alpha_i^* \nabla_i \rangle, \) where
\[
\begin{align*}
\alpha_1^* &= \alpha_1 x^2 + \alpha_2 xy + \alpha_3 y^2 - \alpha_4 xz - \alpha_5 yz, \\
\alpha_2^* &= 2 \alpha_1 x u + \alpha_2 (x v + y u) + 2 \alpha_3 y v - \alpha_4 (x t + z u) - \alpha_5 (y t + z v), \\
\alpha_3^* &= \alpha_1 u^2 + \alpha_2 u v + \alpha_3 v^2 - \alpha_4 u t - \alpha_5 v t, \\
\alpha_4^* &= (\alpha_4 x + \alpha_5 y)(x v - y u), \\
\alpha_5^* &= (\alpha_4 u + \alpha_5 v)(x v - y u).
\end{align*}
\]
Since $H^2_L(L^{3\ast}_{03}) = H^2_N(L^{3\ast}_{03}) \oplus (\nabla_4, \nabla_5)$, we have $(\alpha_4, \alpha_5) \neq (0, 0)$. Moreover, without loss of generality, one can assume $\alpha_4 \neq 0$. Choosing

$$u = -\frac{\alpha_5 v}{\alpha_4}, \quad z = \frac{\alpha_2 x^2 + \alpha_3 x y + \alpha_5 y^2}{\alpha_2 x + \alpha_5 y} \quad \text{and} \quad t = \frac{2 \alpha_1 x u + \alpha_2 (x y + y z) + \alpha_3 y v}{\alpha_2 x + \alpha_5 y},$$

we obtain

$$\alpha_1^* = \alpha_2^* = \alpha_5^* = 0, \quad \alpha_3^* = \frac{(\alpha_1 a_5^2 + \alpha_2 a_4 a_5 + \alpha_3 a_4^2) y^2}{\alpha_4} \quad \text{and} \quad \alpha_4^* = \frac{u(\alpha_4 x + \alpha_5 y)^2}{\alpha_4}.$$

Then we have the following cases.

1. $\alpha_1 a_5^2 - \alpha_2 a_4 a_5 + \alpha_3 a_4^2 = 0$, then we have the representative (∇_4).
2. $\alpha_1 a_5^2 - \alpha_2 a_4 a_5 + \alpha_3 a_4^2 \neq 0$, then by choosing $v = \frac{\alpha_1 a_4 (\alpha_4 x + \alpha_5 y)^2}{(\alpha_1 a_2 a_5 + \alpha_2 a_4 a_5 + \alpha_3 a_4^2)}$, we have the representative $(\nabla_3 + \nabla_4)$.

Summarizing, we have the following distinct orbits

(∇_4) and $(\nabla_3 + \nabla_4)$.

Hence, we have the following new algebras:

\[
\begin{align*}
L^{1}_{00} & : e_1 e_2 = e_3, \quad e_1 e_3 = -2 e_4, \quad e_2 e_1 = -e_3, \quad e_3 e_1 = e_4, \\
L^{1}_{10} & : e_1 e_2 = e_3, \quad e_1 e_3 = -2 e_4, \quad e_2 e_1 = -e_3, \quad e_2 e_2 = e_4, \quad e_3 e_1 = e_4.
\end{align*}
\]

1.4.5. Central extensions of $L^{3\ast}_{04}(\lambda)_{\lambda \neq 0}$. Let us use the following notations:

\[\nabla_1 = [\Delta_{12}], \quad \nabla_2 = [\Delta_{21}], \quad \nabla_3 = [\Delta_{22}], \quad \nabla_4 = [\Delta_{13} - \Delta_{31} - \Delta_{32}], \quad \nabla_5 = [\Delta_{23} + \lambda \Delta_{31}].\]

Take $\theta = \sum_{i=1}^{5} \alpha_i \nabla_i \in H^2_L(L^{3\ast}_{04}(\lambda)_{\lambda \neq 0})$. The automorphism group of $L^{3\ast}_{04}(\lambda)_{\lambda \neq 0}$ consists of invertible matrices of the form

\[\phi = \begin{pmatrix} x & y & 0 \\ -\lambda y & x - y & 0 \\ z & t & x^2 - xy + \lambda y^2 \end{pmatrix}.\]

Since

\[\phi^T \begin{pmatrix} 0 & \alpha_1 & \alpha_4 \\ \alpha_2 & \alpha_3 & \alpha_5 \\ -\alpha_4 + \lambda \alpha_5 & -\alpha_4 & 0 \end{pmatrix} \phi = \begin{pmatrix} \lambda \alpha^* & \alpha_1^* & \alpha_4^* \\ \alpha_2^* & \alpha_3^* & \alpha_5^* \\ -\alpha_4^* + \lambda \alpha_5^* & -\alpha_4^* & 0 \end{pmatrix},\]

we have that the action of $\text{Aut}(L^{3\ast}_{04}(\lambda)_{\lambda \neq 0})$ on the subspace $\langle \sum_{i=1}^{5} \alpha_i \nabla_i \rangle$ is given by $\langle \sum_{i=1}^{5} \alpha_i^* \nabla_i \rangle$, where

\[\begin{align*}
\alpha_1^* &= \alpha_1 (x^2 - xy) - \alpha_2 \lambda y^2 - \alpha_3 (\lambda x y - \lambda y^2) + \alpha_4 (xt - xz) + \alpha_5 (\lambda y z - \lambda yt), \\
\alpha_2^* &= \alpha_1 (xy - \lambda y^2) + \alpha_2 x^2 - \alpha_3 \lambda x y + \alpha_4 (\lambda yt - xt) + \alpha_5 \lambda x t, \\
\alpha_3^* &= \alpha_1 (2 xy - y^2) + \alpha_2 (2 xy - y^2) + \alpha_3 (x - y)^2 - \lambda y^2 \\
&\quad + \alpha_4 (yt - xt - yz) + \alpha_5 (\lambda y t + xt - yt - xz + yz), \\
\alpha_4^* &= (\alpha_4 x - \alpha_5 \lambda y) (x^2 - xy + \lambda y^2), \\
\alpha_5^* &= (\alpha_4 y + \alpha_5 (x - y)) (x^2 - xy + \lambda y^2).\end{align*}\]
Since $H^2_T(L^3_{04})(\lambda \neq 0) = H^2_T(L^3_{04})(\lambda \neq 0) \oplus \langle \nabla_4, \nabla_5 \rangle$, we have $(\alpha_4, \alpha_5) \neq (0, 0)$. Then we have the following cases.

1. $\alpha_4 = 0$, then $\alpha_5 \neq 0$ and choosing $y = 0$, $t = -\frac{\alpha_2 x}{\alpha_5}$, $z = \frac{(\alpha_1 \lambda - \alpha_2) x}{\alpha_5 \lambda}$, we have
 \[\alpha_2^* = \alpha_3^* = \alpha_4^* = 0, \alpha_1^* = \alpha_1 x^2 \text{ and } \alpha_5^* = \alpha_5 x^3. \]
 (a) $\alpha_1 = 0$, then we have the representative $\langle \nabla_5 \rangle$.
 (b) $\alpha_1 \neq 0$, then by choosing $x = \frac{\alpha_4}{\alpha_5}$, we have the representative $\langle \nabla_1 + \nabla_5 \rangle$.

2. $\alpha_4 \neq 0$, and $\alpha_4^2 - \alpha_4 \alpha_5 + \alpha_5^2 \lambda \neq 0$, then by choosing $x = \frac{\lambda \alpha_5}{\alpha_4}$ and $y = 1$, we have $\alpha_4^* = 0$ and it is the situation considered above.

3. $\alpha_4 \neq 0$ and $\alpha_4^2 - \alpha_4 \alpha_5 + \alpha_5^2 \lambda = 0$, then by choosing
 \[y = 0, \quad t = \frac{\alpha_2 x}{\alpha_4 - \lambda \alpha_5} \quad \text{and} \quad z = \frac{(\alpha_1 \alpha_4 - \lambda \alpha_1 \alpha_5 + \alpha_2 \alpha_4) x}{\alpha_4 (\alpha_4 - \lambda \alpha_5)}, \]
 we have
 \[\alpha_1^* = \alpha_2^* = 0, \alpha_3^* = \frac{(\alpha_4 - \lambda \alpha_5)(\alpha_3 \alpha_4 - \alpha_1 \alpha_5) - \alpha_2 \alpha_4^2}{\alpha_4 (\alpha_4 - \lambda \alpha_5)} x^2, \alpha_4^* = x^3 \alpha_4 \text{ and } \alpha_5^* = x^3 \alpha_5. \]
 (a) $\alpha_2 \alpha_4^2 = (\alpha_4 - \lambda \alpha_5)(\alpha_3 \alpha_4 - \alpha_1 \alpha_5)$, then we have the representative $\langle \nabla_4 + \frac{1 \pm \sqrt{1 - 4 \lambda}}{2 \lambda} \nabla_5 \rangle$.
 (b) $\alpha_2 \alpha_4^2 \neq (\alpha_4 - \lambda \alpha_5)(\alpha_3 \alpha_4 - \alpha_1 \alpha_5)$, then we have the representative $\langle \frac{1}{\lambda} \nabla_3 + \nabla_4 + \frac{1 \pm \sqrt{1 - 4 \lambda}}{2 \lambda} \nabla_5 \rangle$.

Summarizing, we have the following distinct orbits
\[\langle \nabla_5 \rangle \quad \langle 2 \lambda \nabla_4 + (1 - \sqrt{1 - 4 \lambda}) \nabla_5 \rangle \quad \langle \nabla_3 + 2 \lambda \nabla_4 + (1 - \sqrt{1 - 4 \lambda}) \nabla_5 \rangle \\
\langle \nabla_1 + \nabla_5 \rangle \quad \langle 2 \lambda \nabla_4 + (1 + \sqrt{1 - 4 \lambda}) \nabla_5 \rangle \quad \langle \nabla_3 + 2 \lambda \nabla_4 + (1 + \sqrt{1 - 4 \lambda}) \nabla_5 \rangle. \]

Hence, we have the following new algebras:

\begin{align*}
L^1_{11}(\lambda \neq 0) & \colon e_1 e_1 = \lambda e_3 & e_2 e_1 = e_3 & e_2 e_2 = e_3 \\
& e_2 e_3 = e_4 & e_3 e_1 = \lambda e_4 & \\
L^1_{12}(\lambda \neq 0) & \colon e_1 e_1 = \lambda e_3 & e_1 e_2 = e_4 & e_2 e_1 = e_3 \\
& e_2 e_2 = e_3 & e_2 e_3 = e_4 & e_3 e_1 = \lambda e_4 \\
L^1_{13}(\lambda \neq 0) & \colon e_1 e_1 = \lambda e_3 & e_2 e_2 = e_3 & e_2 e_3 = (1 - \sqrt{1 - 4 \lambda}) e_4 & e_3 e_2 = -2 \lambda e_4 \\
& e_2 e_1 = e_3 & e_1 e_3 = 2 \lambda e_4 & e_3 e_1 = -\lambda (1 + \sqrt{1 - 4 \lambda}) e_4 \\
L^1_{14}(\lambda \neq 0) & \colon e_1 e_1 = \lambda e_3 & e_2 e_2 = e_3 + e_4 & e_2 e_3 = (1 - \sqrt{1 - 4 \lambda}) e_4 & e_3 e_2 = -2 \lambda e_4 \\
& e_2 e_1 = e_3 & e_1 e_3 = 2 \lambda e_4 & e_3 e_1 = -\lambda (1 + \sqrt{1 - 4 \lambda}) e_4 \\
L^1_{15}(\lambda \neq 0) & \colon e_1 e_1 = \lambda e_3 & e_2 e_2 = e_3 + e_4 & e_2 e_3 = (1 + \sqrt{1 - 4 \lambda}) e_4 & e_3 e_2 = -2 \lambda e_4 \\
& e_2 e_1 = e_3 & e_1 e_3 = 2 \lambda e_4 & e_3 e_1 = -\lambda (1 - \sqrt{1 - 4 \lambda}) e_4 \\
L^1_{16}(\lambda \neq 0) & \colon e_1 e_1 = \lambda e_3 & e_2 e_2 = e_3 + e_4 & e_2 e_3 = (1 + \sqrt{1 - 4 \lambda}) e_4 & e_3 e_2 = -2 \lambda e_4 \\
& e_2 e_1 = e_3 & e_1 e_3 = 2 \lambda e_4 & e_3 e_1 = -\lambda (1 - \sqrt{1 - 4 \lambda}) e_4
\end{align*}

1.4.6. **Central extensions of L^3_{05}.** Let us use the following notations:
\[\nabla_1 = [\Delta_{12}], \quad \nabla_2 = [\Delta_{13} - \Delta_{31}], \quad \nabla_3 = [\Delta_{22} + \Delta_{31}], \quad \nabla_4 = [\Delta_{23}]. \]
Take $\theta = \sum_{i=1}^{4} \alpha_i \nabla_i \in H^2_L(L_{05}^{3*})$. The automorphism group of L_{05}^{3*} consists of invertible matrices of the form

$$\phi = \begin{pmatrix} x & 0 & 0 \\ y & x^2 & 0 \\ z & xy & x^3 \end{pmatrix}.$$

Since

$$\phi^T \begin{pmatrix} 0 & \alpha_1 & \alpha_2 \\ 0 & \alpha_3 & \alpha_4 \\ -\alpha_2 + \alpha_3 & 0 & 0 \end{pmatrix} \phi = \begin{pmatrix} \alpha_1^* & \alpha_2^* \\ \alpha_3^* & \alpha_4^* \end{pmatrix},$$

we have that the action of $\text{Aut}(L_{05}^{3*})$ on the subspace $\bigoplus_{i=1}^{4} \langle \alpha_i \nabla_i \rangle$ is given by $\bigoplus_{i=1}^{4} \langle \alpha_i^* \nabla_i \rangle$, where

$$\alpha_1^* = \alpha_1 x^3 + (\alpha_2 + \alpha_3)x^2y + \alpha_4xy^2, \quad \alpha_2^* = \alpha_2 x^4 + \alpha_4x^3y,$$

$$\alpha_3^* = \alpha_3 x^4 + \alpha_4x^3y, \quad \alpha_4^* = \alpha_4 x^5.$$

Since $H^2_L(L_{05}^{3*}) = H^2_N(L_{05}^{3*}) \oplus \langle \nabla_3, \nabla_4 \rangle$, we have $(\alpha_3, \alpha_4) \neq (0, 0)$. Then we have the following cases.

1. $\alpha_4 = 0$, then
 (a) if $\alpha_2 + \alpha_3 \neq 0$, then by choosing $y = -\frac{\alpha_1 x}{\alpha_2 + \alpha_3}$, we have the representative $\langle \alpha \nabla_2 + \nabla_3 \rangle_{\alpha \neq -1}$;
 (b) if $\alpha_2 + \alpha_3 = 0$, then we have the representatives $\langle -\nabla_2 + \nabla_3 \rangle$ and $\langle \nabla_1 - \nabla_2 + \nabla_3 \rangle$ depending on whether $\alpha_1 = 0$ or not.

2. if $\alpha_4 \neq 0$, then by choosing $y = -\frac{\alpha_1 x}{\alpha_4}$, we have
 \begin{align*}
 \alpha_1^* &= \frac{(\alpha_1 \alpha_4 - \alpha_2 \alpha_3)x^3}{\alpha_4}, \\
 \alpha_2^* &= (\alpha_2 - \alpha_3)x^4, \\
 \alpha_3^* &= 0, \quad \text{and} \\
 \alpha_4^* &= \alpha_4 x^5,
 \end{align*}
 (a) if $\alpha_1 \alpha_4 - \alpha_2 \alpha_3 = 0$, $\alpha_2 - \alpha_3 = 0$, then we have the representative $\langle \nabla_1 \rangle$;
 (b) if $\alpha_1 \alpha_4 - \alpha_2 \alpha_3 = 0$, $\alpha_2 - \alpha_3 \neq 0$, then we have the representative $\langle \nabla_2 + \nabla_4 \rangle$;
 (c) if $\alpha_1 \alpha_4 - \alpha_2 \alpha_3 \neq 0$, then we have the representative $\langle \nabla_1 + \alpha \nabla_2 + \nabla_4 \rangle$.

Hence, we have the following distinct orbits

$$\langle \alpha \nabla_2 + \nabla_3 \rangle, \langle \nabla_1 - \nabla_2 + \nabla_3 \rangle, \langle \nabla_4 \rangle, \langle \nabla_2 + \nabla_4 \rangle, \text{and} \langle \nabla_1 + \alpha \nabla_2 + \nabla_4 \rangle,$$

which give the following new algebras:

$L^4_{17}(\alpha)$	$e_1 e_1 = e_2$	$e_1 e_3 = \alpha e_4$	$e_2 e_1 = e_3$	$e_2 e_2 = e_4$	$e_3 e_1 = (1 - \alpha) e_4$	
L^4_{18}	$e_1 e_1 = e_2$	$e_1 e_2 = e_4$	$e_1 e_3 = -e_4$	$e_2 e_1 = e_3$	$e_2 e_2 = e_4$	$e_3 e_1 = 2e_4$
L^4_{19}	$e_1 e_1 = e_2$	$e_1 e_2 = e_3$	$e_2 e_3 = e_4$			
L^4_{20}	$e_1 e_1 = e_2$	$e_1 e_2 = e_4$	$e_2 e_1 = e_3$	$e_2 e_2 = e_4$	$e_3 e_1 = -e_4$	
$L^4_{21}(\alpha)$	$e_1 e_1 = e_2$	$e_1 e_2 = e_4$	$e_1 e_3 = \alpha e_4$	$e_2 e_1 = e_3$	$e_2 e_2 = e_4$	$e_3 e_1 = -\alpha e_4$

1.4.7. *Central extensions of $L_{06}^{3*}(\lambda)$*. Let us use the following notations:
\n
\[\nabla_1 = [\Delta_{21}] \quad \nabla_2 = [(2 - \lambda)\Delta_{13} + \lambda \Delta_{22} + \lambda \Delta_{31}] \quad \nabla_3 = [\Delta_{22} + \Delta_{13} - \Delta_{31}] \n\]

Take \(\theta = \sum_{i=1}^{3} \alpha_i \nabla_i \in H^2_L(R^3e_2(\lambda)) \). The automorphism group of \(L^3e_2(\lambda) \) consists of invertible matrices of the form

\[
\phi = \begin{pmatrix}
x & 0 & 0 \\
y & x^2 & 0 \\
z & xy(1 + \lambda) & x^3
\end{pmatrix}.
\]

Since

\[
\phi^T \begin{pmatrix} 0 & 0 & (2 - \lambda)\alpha_2 + \alpha_3 \\ \alpha_1 & \lambda \alpha_2 + \alpha_3 & 0 \\ \lambda \alpha_2 - \alpha_3 & 0 & 0 \end{pmatrix} \phi = \begin{pmatrix} \alpha^{**} & \alpha^* & (2 - \lambda)\alpha^*_2 + \alpha^*_3 \\ \alpha^*_1 + \lambda \alpha^*_2 & \lambda \alpha^*_2 + \alpha^*_3 & 0 \\ \lambda \alpha^*_2 - \alpha^*_3 & 0 & 0 \end{pmatrix},
\]

we have that the action of \(\text{Aut}(L^3e_2(\lambda)) \) on the subspace \(\langle \sum_{i=1}^{3} \alpha_i \nabla_i \rangle \) is given by \(\langle \sum_{i=1}^{3} \alpha_i^* \nabla_i \rangle \), where

\[
\alpha_1^* = \alpha_1 x^3 + (\alpha_2(\lambda^3 - \lambda^2) - \alpha_3(\lambda^2 + 3\lambda)) x^2 y \quad \alpha_2^* = \alpha_2 x^4 \quad \alpha_3^* = \alpha_3 x^4.
\]

Since \(H^2_L(R^3e_2(\lambda)) = H^2_X(R^3e_2(\lambda)) \oplus \langle \nabla_3 \rangle \), we have \(\alpha_3 \neq 0 \). Then we have the following cases:

1. If \(\lambda = 0 \), then we have the representatives \(\langle \alpha \nabla_2 + \nabla_3 \rangle \) and \(\langle \nabla_1 + \alpha \nabla_2 + \nabla_3 \rangle \) depending on whether \(\alpha_1 = 0 \) or not.
2. If \(\lambda = 1 \), then by choosing \(y = \frac{\alpha_1 x}{\lambda \alpha_3} \), we have the representative \(\langle \alpha \nabla_2 + \nabla_3 \rangle \).
3. If \(\lambda \notin \{0,1\} \), then:
 a. If \(\alpha_2(\lambda^3 - \lambda^2) - \alpha_3(\lambda^2 + 3\lambda) \neq 0 \), then by choosing \(y = \frac{\alpha_1 x}{\alpha_3(\lambda^3 + 3\lambda) - \alpha_2(\lambda^3 - \lambda^2)} \), we have the representative \(\langle \alpha \nabla_2 + \nabla_3 \rangle \).
 b. If \(\alpha_2(\lambda^3 - \lambda^2) - \alpha_3(\lambda^2 + 3\lambda) = 0 \), then we have the representatives

\[
\langle \frac{\lambda + 3}{\lambda(\lambda - 1)} \nabla_2 + \nabla_3 \rangle \quad \text{and} \quad \langle \frac{1}{\lambda(\lambda - 1)} \nabla_1 + \frac{\lambda + 3}{\lambda(\lambda - 1)} \nabla_2 + \nabla_3 \rangle,
\]

depending on whether \(\alpha_1 = 0 \) or not.

Thus, we have the following orbits:

\(\langle \nabla_1 + \alpha \nabla_2 + \nabla_3 \rangle_{\lambda = 0} \), \(\langle \alpha \nabla_2 + \nabla_3 \rangle \), and \(\langle \nabla_1 + (\lambda + 3) \nabla_2 + \lambda(\lambda - 1) \nabla_3 \rangle_{\lambda \neq 0,1} \).

Hence, we have the following new algebras:

\[
\begin{array}{c|ccc|c}
\text{L}_4^{22}(\alpha) & e_1e_1 & e_1e_2 & e_1e_3 & e_1e_4 \\
\hline
& e_2 & e_3 & e_4 & (2\alpha + 1)e_4 \\
e_2e_1 & e_4 & e_2 & e_3 & e_1 & -e_4 \\
e_3e_1 & e_4 & e_2 & e_3 & e_1 & e_4 \\
e_4e_1 & e_3 & e_2 & e_1 & e_4 & e_1 \\
\end{array}
\]

\[
\begin{array}{c|ccc|c}
\text{L}_4^{23}(\lambda, \alpha) & e_1e_1 & e_1e_2 & e_1e_3 & e_1e_4 \\
\hline
& e_2 & e_3 & e_4 & (2\alpha + 1)e_4 \\
e_2e_1 & e_4 & e_2 & e_3 & e_1 & -e_4 \\
e_3e_1 & e_4 & e_2 & e_3 & e_1 & e_4 \\
e_4e_1 & e_3 & e_2 & e_1 & e_4 & e_1 \\
\end{array}
\]

\[
\begin{array}{c|ccc|c}
\text{L}_4^{24}(\lambda)_{\lambda \notin \{0,1\}} & e_1e_1 & e_1e_2 & e_1e_3 & e_1e_4 \\
\hline
& e_2 & e_3 & e_4 & 2(3 - \lambda)e_4 \\
e_2e_1 & e_4 & e_2 & e_3 & e_1 & 4\lambda e_4 \\
e_3e_1 & e_4 & e_2 & e_3 & e_1 & 4\lambda e_4 \\
e_4e_1 & e_3 & e_2 & e_1 & e_4 & e_1 \\
\end{array}
\]

1.5. **Classification theorem.** Now we are ready summarize all results related to the algebraic classification of complex 4-dimensional nilpotent left-symmetric algebras.
Theorem A. Let L be a complex 4-dimensional nilpotent left-symmetric algebra. Then either L is a Novikov algebra or it is isomorphic to one algebra from the following list:

\begin{align*}
L_{01} & : e_1e_1 = e_2 & e_1e_2 = e_4 & e_2e_3 = e_4 & e_3e_1 = e_4 \\
L_{02} & : e_1e_1 = e_2 & e_2e_3 = e_4 & e_3e_1 = e_4 \\
L_{03} & : e_1e_1 = e_2 & e_1e_2 = e_4 & e_2e_3 = e_4 \\
L_{04} & : e_1e_1 = e_2 & e_2e_3 = e_4 \\
L_{05} & : e_1e_1 = e_3 & e_2e_2 = e_3 & e_3e_1 = e_4 \\
L_{06} & : e_1e_1 = e_3 & e_1e_2 = e_4 & e_2e_3 = e_3 & e_3e_1 = e_4 \\
L_{07} & : e_1e_1 = e_3 & e_2e_2 = e_3 & e_3e_1 = e_4 & e_3e_2 = ie_4 \\
L_{08} & : e_1e_1 = e_3 & e_1e_2 = e_4 & e_2e_3 = e_3 & e_3e_1 = e_4 & e_3e_2 = ie_4 \\
L_{09} & : e_1e_2 = e_3 & e_1e_3 = -2e_4 & e_2e_1 = -e_3 & e_3e_1 = e_4 \\
L_{10} & : e_1e_2 = e_3 & e_1e_3 = -2e_4 & e_2e_1 = -e_3 & e_3e_2 = e_4 & e_3e_1 = e_4 \\
L_{11}^{(\lambda)\lambda \neq 0} & : e_1e_1 = \lambda e_3 & e_2e_1 = e_3 & e_2e_2 = e_3 & e_3e_1 = \lambda e_4 \\
L_{12}^{(\lambda)\lambda \neq 0} & : e_1e_1 = \lambda e_3 & e_2e_1 = e_3 & e_2e_2 = e_3 & e_3e_1 = \lambda e_4 \\
L_{13}^{(\lambda)\lambda \neq 0} & : e_1e_1 = \lambda e_3 & e_2e_2 = e_3 & e_2e_3 = (1 - \sqrt{1 - 4\lambda})e_4 & e_3e_2 = -2\lambda e_4 \\
L_{14}^{(\lambda)\lambda \neq 0} & : e_1e_1 = \lambda e_3 & e_2e_2 = e_3 & e_2e_3 = (1 - \sqrt{1 - 4\lambda})e_4 & e_3e_2 = -2\lambda e_4 \\
L_{15}^{(\lambda)\lambda \neq 0} & : e_1e_1 = \lambda e_3 & e_2e_2 = e_3 & e_2e_3 = (1 + \sqrt{1 - 4\lambda})e_4 & e_3e_2 = -2\lambda e_4 \\
L_{16}^{(\lambda)\lambda \neq 0} & : e_1e_1 = \lambda e_3 & e_2e_2 = e_3 & e_2e_3 = (1 - \sqrt{1 - 4\lambda})e_4 & e_3e_2 = -2\lambda e_4 \\
L_{17}^{(\alpha)} & : e_1e_1 = e_2 & e_1e_3 = \alpha e_4 & e_2e_1 = e_3 & e_3e_2 = e_4 & e_3e_1 = (1 - \alpha)e_4 \\
L_{18} & : e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = -e_4 \\
e_2e_1 = e_3 & e_2e_2 = e_4 & e_3e_1 = 2e_4 \\
L_{19} & : e_1e_1 = e_2 & e_2e_1 = e_3 & e_2e_3 = e_4 \\
L_{20} & : e_1e_1 = e_2 & e_1e_3 = e_4 & e_2e_1 = e_3 & e_2e_3 = e_4 & e_3e_1 = -e_4 \\
L_{21}^{(\alpha)} & : e_1e_1 = e_2 & e_1e_2 = e_4 & e_1e_3 = \alpha e_4 \\
e_2e_1 = e_3 & e_2e_3 = e_4 & e_3e_1 = -\alpha e_4 \\
L_{22}^{(\alpha)} & : e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = (2\alpha + 1)e_4 \\
e_2e_1 = e_4 & e_2e_2 = e_4 & e_3e_1 = -e_4 \\
L_{23}^{(\lambda, \alpha)} & : e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = (2 - \lambda)\alpha + 1)e_4 \\
e_2e_1 = \lambda e_3 & e_2e_2 = (\lambda\alpha + 1)e_4 & e_3e_1 = (\lambda\alpha - 1)e_4 \\
L_{24}^{(\lambda)\lambda \notin \{0, 1\}} & : e_1e_1 = e_2 & e_1e_2 = e_3 & e_1e_3 = 2(3 - \lambda)e_4 \\
e_2e_1 = \lambda e_3 + e_4 & e_2e_2 = 2(\lambda + 1)e_4 & e_3e_1 = 4\lambda e_4 \\
\end{align*}

2. The geometric classification of nilpotent left-symmetric algebras

2.1. Definitions and notation. Given an n-dimensional vector space V, the set $\text{Hom}(V \otimes V, V) \cong V^* \otimes V^* \otimes V$ is a vector space of dimension n^3. This space has the structure of the affine variety \mathbb{C}^{n^3}. Indeed, let us fix a basis e_1, \ldots, e_n of V. Then any $\mu \in \text{Hom}(V \otimes V, V)$ is determined by n^3 structure constants $c^k_{ij} \in \mathbb{C}$ such that
\[\mu(e_i \otimes e_j) = \sum_{k=1}^{n} c_{ij}^{k} e_k. \]
A subset of \(\text{Hom}(V \otimes V, V) \) is Zariski-closed if it can be defined by a set of polynomial equations in the variables \(c_{ij}^{k} \) (\(1 \leq i, j, k \leq n \)).

Let \(T \) be a set of polynomial identities. The set of algebra structures on \(V \) satisfying polynomial identities from \(T \) forms a Zariski-closed subset of the variety \(\text{Hom}(V \otimes V, V) \). We denote this subset by \(\mathbb{L}(T) \). The general linear group \(GL(V) \) acts on \(\mathbb{L}(T) \) by conjugation:

\[(g \ast \mu)(x \otimes y) = g \mu(g^{-1} x \otimes g^{-1} y) \]

for \(x, y \in V, \mu \in \mathbb{L}(T) \subset \text{Hom}(V \otimes V, V) \) and \(g \in GL(V) \). Thus, \(\mathbb{L}(T) \) is decomposed into \(GL(V) \)-orbits that correspond to the isomorphism classes of algebras. Let \(O(\mu) \) denote the orbit of \(\mu \in \mathbb{L}(T) \) under the action of \(GL(V) \) and \(\overline{O(\mu)} \) denote the Zariski closure of \(O(\mu) \).

Let \(A \) and \(B \) be two \(n \)-dimensional algebras satisfying the identities from \(T \), and let \(\mu, \lambda \in \mathbb{L}(T) \) represent \(A \) and \(B \), respectively. We say that \(A \) degenerates to \(B \) and write \(A \to B \) if \(\lambda \in \overline{O(\mu)} \). Note that in this case we have \(\overline{O(\lambda)} \subset \overline{O(\mu)} \). Hence, the definition of a degeneration does not depend on the choice of \(\mu \) and \(\lambda \). If \(A \not\cong B \), then the assertion \(A \to B \) is called a proper degeneration. We write \(A \not\to B \) if \(\lambda \notin \overline{O(\mu)} \).

Let \(A \) be represented by \(\mu \in \mathbb{L}(T) \). Then \(A \) is rigid in \(\mathbb{L}(T) \) if \(O(\mu) \) is an open subset of \(\mathbb{L}(T) \). Recall that a subset of a variety is called irreducible if it cannot be represented as a union of two non-trivial closed subsets. A maximal irreducible closed subset of a variety is called an irreducible component. It is well known that any affine variety can be represented as a finite union of its irreducible components in a unique way. The algebra \(A \) is rigid in \(\mathbb{L}(T) \) if and only if \(\overline{O(\mu)} \) is an irreducible component of \(\mathbb{L}(T) \).

Given the spaces \(U \) and \(W \), we write simply \(U > W \) instead of \(\text{dim} \ U > \text{dim} \ W \).

2.2. Method of the description of degenerations of algebras.

In the present work we use the methods applied to Lie algebras in \([8,21,22,37]\). First of all, if \(A \to B \) and \(A \not\cong B \), then \(\text{Der}(A) < \text{Der}(B) \), where \(\text{Der}(A) \) is the Lie algebra of derivations of \(A \). We compute the dimensions of algebras of derivations and check the assertion \(A \to B \) only for \(A \) and \(B \) such that \(\text{Der}(A) < \text{Der}(B) \).

To prove degenerations, we construct families of matrices parametrized by \(t \). Namely, let \(A \) and \(B \) be two algebras represented by the structures \(\mu \) and \(\lambda \) from \(\mathbb{L}(T) \) respectively. Let \(e_1, \ldots, e_n \) be a basis of \(V \) and \(c_{ij}^{k} \) (\(1 \leq i, j, k \leq n \)) be the structure constants of \(\lambda \) in this basis. If there exist \(a_{ij}^{t}(t) \in \mathbb{C} (1 \leq i, j \leq n, t \in \mathbb{C}^{*}) \) such that \(E_{i}^{t} = \sum_{j=1}^{n} a_{ij}^{t}(t)e_j \) (\(1 \leq i \leq n \)) form a basis of \(V \) for any \(t \in \mathbb{C}^{*} \), and the structure constants of \(\mu \) in the basis \(E_{1}^{t}, \ldots, E_{n}^{t} \) are such rational functions \(c_{ij}^{t}(t) \in \mathbb{C}(t) \) that \(c_{ij}^{t}(0) = c_{ij}^{k} \), then \(A \to B \). In this case \(E_{1}^{t}, \ldots, E_{n}^{t} \) is called a parametrized basis for \(A \to B \). To simplify our equations, we will use the notation \(A_i = \langle e_i, \ldots, e_n \rangle, i = 1, \ldots, n \) and write simply \(A_pA_q \subset A_r \) instead of \(c_{ij}^{k} = 0 \) (\(i \geq p, j \geq q, k < r \)).

Since the variety of 4-dimensional nilpotent left-symmetric algebras contains infinitely many non-isomorphic algebras, we have to do some additional work. Let \(A(*) := \{ A(\alpha) \}_{\alpha \in I} \) be a series of algebras, and let \(B \) be another algebra. Suppose that for \(\alpha \in I, A(\alpha) \) is represented by the structure \(\mu(\alpha) \in \mathbb{L}(T) \) and \(B \in \mathbb{L}(T) \) is represented by the structure \(\lambda \). Then we say that \(A(*) \to B \) if \(\lambda \in \bigcup_{\alpha \in I} O(\mu(\alpha)) \), and \(A(*) \not\to B \) if \(\lambda \notin \bigcup_{\alpha \in I} O(\mu(\alpha)) \).

Let \(A(*) \), \(B \), \(\mu(\alpha) (\alpha \in I) \) and \(\lambda \) be as above. To prove \(A(*) \to B \) it is enough to construct a family of pairs \((f(t), g(t)) \) parametrized by \(t \in \mathbb{C}^{*} \), where \(f(t) \in I \) and \(g(t) \in GL(V) \). Namely, let \(e_1, \ldots, e_n \) be a basis of \(V \) and \(c_{ij}^{t} \) (\(1 \leq i, j, k \leq n \)) be the structure constants of \(\lambda \) in this basis. If we construct \(a_{ij}^{t} : \mathbb{C}^{*} \to \mathbb{C} (1 \leq i, j \leq n) \)
and $f : \mathbb{C}^* \to I$ such that $E_i^t = \sum_{j=1}^n a_i^j(t)e_j$ ($1 \leq i \leq n$) is a basis of \mathbb{V} for any $t \in \mathbb{C}^*$, and the structure constants of $\mu_{f(t)}$ in the basis E_1^t, \ldots, E_n^t are such rational functions $c_{ij}^k(t) \in \mathbb{C}(t)$ that $c_{ij}^k(0) = c_{ij}^k$, then $\mathcal{A}(*) \to \mathbb{B}$. In this case E_1^t, \ldots, E_n^t and $f(t)$ are called a parametrized basis and a parametrized index for $\mathcal{A}(*) \to \mathbb{B}$, respectively.

We now explain how to prove $\mathcal{A}(*) \not\to \mathbb{B}$. Note that if $\det \mathcal{A}(\alpha) > \det \mathcal{B}$ for all $\alpha \in I$, then $\mathcal{A}(*) \not\to \mathbb{B}$. One can also use the following Lemma, whose proof is the same as the proof of Lemma 1.5 from [21].

Lemma 5. Let \mathbb{B} be a Borel subgroup of $\text{GL}(\mathbb{V})$ and $\mathcal{R} \subset \mathbb{L}(T)$ be a \mathbb{B}-stable closed subset. If $\mathcal{A}(*) \to \mathbb{B}$ and for any $\alpha \in I$ the algebra $\mathcal{A}(\alpha)$ can be represented by a structure $\mu(\alpha) \in \mathcal{R}$, then there is $\lambda \in \mathcal{R}$ representing \mathbb{B}.

2.3. The geometric classification of 4-dimensional nilpotent left-symmetric algebras

The main result of the present section is the following theorem.

Theorem B. The variety of 4-dimensional nilpotent left-symmetric algebras has dimension 15 and it has three irreducible components defined by infinite families of algebras $L_{12}^4(\lambda)$, $L_{21}^4(\lambda)$ and $L_{23}^4(\lambda, \alpha)$.

Proof. Recall that the description of all irreducible components of 4-dimensional nilpotent Novikov algebras was given in [23]. Using the cited result, we can see that the variety of 4-dimensional Novikov algebras has two irreducible components given by the following families of algebras:

\[
\begin{align*}
N_{20}^3(\alpha) &: e_1e_2 = e_3, \\ e_1e_1 = \alpha e_4 & \quad e_1e_3 = e_4 \\
N_{22}^3(\lambda) &: e_1e_2 = e_2, \quad e_1e_3 = e_3, \quad e_1e_4 = \frac{1}{2}(\lambda e_4 - e_1), \quad e_2e_2 = e_4, \quad e_2e_3 = e_4, \quad e_2e_4 = \lambda e_4, \quad e_3e_1 = \lambda e_4
\end{align*}
\]

Now we can prove that the variety of 4-dimensional nilpotent left-symmetric algebras has three irreducible components. One can easily compute that

\[
\det L_{12}^4(\lambda) = 2, \quad \det L_{21}^4(\lambda) = 2, \quad \det L_{23}^4(\lambda, \alpha) = 3.
\]

The list of all necessary degenerations is given below:

$L_{12}^4(t)$	\to	$N_{20}^3(\alpha)$	$E_1^1 = t e_1$	$E_2^1 = t^2 e_2$	$E_3^1 = -\frac{3 t^3}{4} e_4$	$E_4^1 = \frac{1}{t - 1} e_1 + \frac{1}{t} e_2 +\frac{1}{\lambda} e_3$	$E_2^2 = \frac{1}{t - 1} e_2 + \frac{1}{\lambda} e_3$
$L_{21}^4(\lambda)$	$L_{24}^4(t + \lambda - \frac{2}{t^2 + \lambda})$	$N_{22}^3(\lambda)$	$E_1^1 = t e_1$	$E_2^1 = t e_2$	$E_3^1 = t e_3$	$E_4^1 = t e_4$	
$L_{23}^4(-t)$	\to	L_{01}^4	$E_1^1 = e_1 + t^2 e_2 + (1 - 2t^2 + t^3) e_3$	$E_2^1 = t e_2 + t^2 e_3 + t e_4$	$E_3^1 = t e_3 + (1 - t^2 + t^3) e_4$	$E_4^1 = t e_4$	
L_{01}^4	\to	L_{02}^4	$E_1^1 = e_1 + t e_2$	$E_2^1 = t e_2$	$E_3^1 = t e_3$	$E_4^1 = t e_4$	
L_{02}^4	\to	L_{03}^4	$E_1^1 = t e_1$	$E_2^1 = t e_2$	$E_3^1 = t e_3$	$E_4^1 = t e_4$	
L_{03}^4	\to	L_{04}^4	$E_1^1 = t e_1$	$E_2^1 = t e_2$	$E_3^1 = t e_3$	$E_4^1 = t e_4$	
L_{04}^4	\to	L_{05}^4	$E_1^1 = t e_1$	$E_2^1 = t e_2$	$E_3^1 = t e_3$	$E_4^1 = t e_4$	
L_{05}^4	\to	L_{06}^4	$E_1^1 = t e_1$	$E_2^1 = t^2 e_2$	$E_3^1 = t e_3$	$E_4^1 = t e_4$	
L_{06}^4	\to	L_{07}^4	$E_1^1 = t e_1$	$E_2^1 = t e_2$	$E_3^1 = t e_3$	$E_4^1 = t e_4$	
L_{07}^4	\to	L_{08}^4	$E_1^1 = t e_1$	$E_2^1 = t e_2$	$E_3^1 = t e_3$	$E_4^1 = t e_4$	
L_{08}^4	\to	L_{09}^4	$E_1^1 = t e_1$	$E_2^1 = t e_2$	$E_3^1 = t e_3$	$E_4^1 = t e_4$	
References
[6] Bordemann M., Generalized Lax pairs, the modified classical Yang–Baxter equation, and affine geometry of Lie groups, Communications in Mathematical Physics, 135 (1990), 1, 201–216.

[7] Burde D., Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Central European Journal of Mathematics, 4 (2006), 3, 323–357.

[8] Burde D., Steinhoff C., Classification of orbit closures of 4–dimensional complex Lie algebras, Journal of Algebra, 214 (1999), 2, 729–739.

[9] Cañete E., Khudoyberdiyev A., The classification of 4-dimensional Leibniz algebras, Linear Algebra and its Applications, 439 (2013), 1, 273–288.

[10] Camacho L., Kaygorodov I., Lopatkin V., Salim M., The variety of dual Mock-Lie algebras, Communications in Mathematics, 28 (2020), 2, 161–178.

[11] Casas J., Khudoyberdiyev A., Ladra M., Omirov B., On the degenerations of solvable Leibniz algebras, Linear Algebra and its Applications, 439 (2013), 2, 472–487.

[12] Cicalò S., De Graaf W., Schneider C., Six-dimensional nilpotent Lie algebras, Linear Algebra and its Applications, 436 (2012), 1, 163–189.

[13] Chapoton F., Livernet M., Pre-Lie algebras and the rooted trees operad, International Mathematics Research Notices. IMRN, (2001), 8, 395–408.

[14] Connes A., Kreimer D., Hopf algebras, renormalization and noncommutative geometry, Communications in Mathematical Physics, 199 (1998), 1, 203–242.

[15] Darjani I., Usefi H., The classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect fields, I., Journal of Algebra, 464 (2016), 97–140.

[16] De Graaf W., Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, Journal of Algebra, 309 (2007), 2, 640–653.

[17] De Graaf W., Classification of nilpotent associative algebras of small dimension, International Journal of Algebra and Computation, 28 (2018), 1, 133–161.

[18] Etingof P., Schedler T., Soloviev A., Set-theoretical solutions to the quantum Yang–Baxter equations, Duke Mathematical Journal, 100 (1999), 2, 169–209.

[19] Gelfand I., Dorfman I., Hamiltonian operators and algebraic structures related to them, Funktsionalnyi Analiz i ego Prilozheniya, 13 (1979), 4, 248–262.

[20] Gerstenhaber M., The cohomology structure of an associative ring, Annals of Mathematics (2), 78 (1963), 267–288.

[21] Grunewald F., O’Halloran J., Varieties of nilpotent Lie algebras of dimension less than six, Journal of Algebra, 112 (1988), 315–325.

[22] Grunewald F., O’Halloran J., A Characterization of orbit closure and applications, Journal of Algebra, 116 (1988), 163–175.

[23] Hegazi A., Abdelwahab H., Classification of five-dimensional nilpotent Jordan algebras, Linear Algebra and its Applications, 494 (2016), 165–218.

[24] Hegazi A., Abdelwahab H., Calderón Martín A., The classification of n-dimensional non-Lie Malcev algebras with $(n − 4)$-dimensional annihilator, Linear Algebra and its Applications 505 (2016), 32–56.

[25] Hegazi A., Abdelwahab H., Calderón Martín A., Classification of nilpotent Malcev algebras of small dimensions over arbitrary fields of characteristic not 2, Algebras and Representation Theory, 21 (2018), 1, 19–45.

[26] Ismailov N., Kaygorodov I., Volkov Yu., The geometric classification of Leibniz algebras, International Journal of Mathematics, 29 (2018), 5, 1850035.

[27] Ismailov N., Kaygorodov I., Volkov Yu., Degenerations of Leibniz and anticommutative algebras, Canadian Mathematical Bulletin, 62 (2019), 3, 539–549.

[28] Karimjanov I., Kaygorodov I., Khudoyberdiyev A., The algebraic and geometric classification of nilpotent Novikov algebras, Journal of Geometry and Physics, 143 (2019), 11–21.

[29] Kaygorodov I., Khrypchenko M., Lopes S., The algebraic and geometric classification of nilpotent anticommutative algebras, Journal of Pure and Applied Algebra, 224 (2020), 8, 106337.
[30] Kaygorodov I., Khrypchenko M., Popov Yu., The algebraic and geometric classification of nilpotent terminal algebras, Journal of Pure and Applied Algebra, 225 (2021), 6, 106625.
[31] Kaygorodov I., Lopes S., Páez-Guillán P., Non-associative central extensions of null-filiform associative algebras, Journal of Algebra, 560 (2020), 1190–1210.
[32] Kaygorodov I., Volkov Yu., The variety of 2-dimensional algebras over an algebraically closed field, Canadian Journal of Mathematics, 71 (2019), 4, 819–842.
[33] Kaygorodov I., Volkov Yu., Degenerations of Filippov algebras, Journal of Mathematical Physics, 61 (2020), 2, 021701.
[34] Khudoyberdiyev A., Rakhimov I., Said Husain Sh.K., On classification of 5-dimensional solvable Leibniz algebras, Linear Algebra and its Applications, 457 (2014), 428–454.
[35] Koszul J.-L., Domaines bornés homogènes et orbites de groupes de transformations affines, Bulletin de la Société Mathématique de France, 89 (1961), 515–533.
[36] Kupershmidt B., Non-abelian phase spaces, Journal of Physics. A. Mathematical and Theoretical, 27 (1994), 8, 2801–2810.
[37] Seeley C., Degenerations of 6-dimensional nilpotent Lie algebras over C, Communications in Algebra, 18 (1990), 3493–3505.
[38] Skjelbred T., Sund T., Sur la classification des algébres de Lie nilpotentes, C. R. Acad. Sci. Paris Ser. A-B, 286 (1978), 5, A241–A242.
[39] Vinberg E., The theory of homogeneous convex cones, Trudy Moskovskogo Matematicheskogo Obshchestva, 12 (1963), 303–358.
[40] Volkov Yu, Anticommutative Engel algebras of the first five levels, Linear and Multilinear Algebra, 2020, DOI: 10.1080/03081087.2020.1715333