Part 1: Size-independent quantification of ligand binding site depth in receptor proteins. Part 2: Representing rod-shaped protein 3d structures in cylindrical coordinates

Srujana Cheguri

Follow this and additional works at: http://scholarworks.rit.edu/theses
Part 1: Size-Independent Quantification of Ligand Binding Site Depth in Receptor Proteins

Part 2: Representing Rod-Shaped Protein 3D Structures in Cylindrical Coordinates

Srujana Cheguri

Approved: __________________________

Vicente Reyes, Ph.D.
Thesis Advisor

Gary Skuse, Ph.D.
Committee Member

Paul Craig, Ph.D.
Committee Member

Submitted in partial fulfillment of the requirements for the degree of Master of Science
Department of Bioinformatics
College of Science
Rochester Institute of Technology
Rochester, NY
November, 2011
This thesis is dedicated to my beloved family, to my parents for their never-ending encouragement, love and confidence in me and to my brother for his motivation and guidance.
ACKNOWLEDGEMENTS

I feel it as a unique privilege, combined with immense happiness, to acknowledge the contributions and support of all the wonderful people who have been responsible for the completion of my master’s degree. The two and a half years of graduate study at RIT has taught me that creative instinct, excellent fellowship and perceptiveness are the very essence of science. They not only impart knowledge but also place emphasis on the overall development of an individual. I am extremely appreciative of RIT, especially the Department of Biological Sciences (Bioinformatics Option) in this regard. I owe it to my mentors at RIT to what I am today.

I would like to express my deepest gratitude to my thesis advisor, Dr. Vicente Reyes who continually encouraged and guided me during the course of my thesis work. I would also like to express my appreciation to my committee members Dr. Gary Skuse and Dr. Paul Craig for their valuable guidance, timely help and support. A special thanks to Nicoletta Bruno Collins for all the academic formalities that was needed to be done.

I would like to thank all professors, mentors, family and friends who have helped me scale heights and achieve this prestigious degree at RIT. Finally, I would like to thank RIT for giving me an opportunity to be a part of this family.
Abbreviation	Description
SPi	Secant Plane Index
TSi	Tangent Sphere Index
SPM	Secant Plane Method
TSM	Tangent Sphere Method
GC	Global Centroid
LC	Local Centroid
LBS	Ligand Binding Site
3D	Three Dimensional
RSP	Rod Shaped Protein
PDB	Protein Data Bank
α	Alpha
β	Beta
HTML	Hyper Text Markup Language
PHP	Hypertext Preprocessor
CSS	Cascading Style Sheets
GUI	Graphical User Interface
KB	Kilo Bytes
ABSTRACT FOR PART 1:

We have developed a web server that implements the two complementary methods to quantify the depth of ligand and/or ligand binding site (LBS) in a protein-ligand complex. The two methods are the ‘secant plane’ (SP) and the ‘tangent sphere’ (TS) methods. In the SP and TS methods, the protein molecular centroid (global centroid, GC), and the LBS centroid (local centroid, LC) are first determined. The SP is defined as the plane passing through the LBS centroid and normal to the line passing through the LC and the protein molecular centroid. The “exterior side” of the SP is the side opposite GC. The TS is defined as the sphere with center at GC and tangent to the SP at LC. The percentage of protein atoms (a.) inside the TS (TSi) and (b.) on the exterior side of the SP (SPI), are two complementary measures of ligand or LBS depth. The SPI is directly proportional to LBS depth while the TSi is inversely proportional to LBS depth. We tested the SP and TS methods using a test set of 67 well characterized protein-ligand structures (Laskowski, et al. 1996), as well as the theoretical case of an artificial protein in the form of a cubic lattice grid of points in the overall shape of a sphere and in which LBS of any depth can be specified. Results from both the SP and TS methods agree very well with reported data (Laskowski, et al. 1996), and results from the theoretical case further confirm that both methods are suitable measures of ligand burial or LBS depth. There are two modes by which one can utilize our web server. In the first mode we term the ‘ligand mode’, the user inputs the PDB structure coordinates of the protein as well as those of its ligand (one ligand at a time if there is more than one). The second mode, the ‘LBS mode’, is the same as the first except that the ligand coordinates are assumed to be unavailable; hence the user inputs what s/he believes to be the coordinates of the LBS amino acid residues. In
both cases, the web server outputs the SP and TS indices. LBS depth is an important parameter as it is usually directly related to the amount of conformational change a protein undergoes upon ligand binding, and ability to quantify it could allow meaningful comparison of protein flexibility and dynamics. The URL of our web server is http://tortellini.bioinformatics.rit.edu/sxc6274/thesis1.php
LIST OF FIGURES

Figure 1: Proteins are of same size ... 6
Figure 2: Proteins are of different sizes ... 7
Figure 3: Secant Plane and Tangent Sphere Methods 10
Figure 4: Equations representing SPM and TSM ... 11
Figure 5: Depiction of SPI and TSI .. 12
Figure 6: Home page of "Ligand Burial Site Depth Determination" web server 15
Figure 7: Result page of "Ligand Burial Depth Determination" 18
Figure 8: Alert button in "Ligand Burial Depth Determination" webserver 19
Figure 9: Flow chart of the steps in "Ligand Burial Depth Determination" web server 20
Figure 10: structure of 1CMY (Quarternary state of human hemoglobin) 27
Figure 11: Structure of 1QCE (Ectodomain of SIV GP41) 28
Figure 12: Home page of "Cylindrical coordinates" web server 32
Figure 13: Results page of "Cylindrical coordinates" webserver 33
Figure 14: Sample Result file showing cylindrical coordinates 33
Figure 15: Alert button in Cylindrical coordinates web server 34
Figure 16: 3MQC with tips identified ... 35
Figure 17: 3MQC after Translation .. 35
Figure 18: 3MQC after rotation ... 36
Figure 19: 3MQC after transformation .. 36
Figure 20: 2JJ7 with tips identified ... 37
Figure 21: 2JJ7 after translation ... 37
Figure 22: 2JJ7 after rotation ... 38
Figure 23: 2JJ7 after transformation ... 38
LIST OF TABLES

Table 1: List of Protein-ligand complexes...17

Table 2: List of rod shaped proteins used for research ...31
Table of Contents

Part 1: Size-Independent Quantification of Ligand Binding Site Depth in Receptor Proteins ... 1

Chapter 1 ... 2

1. Introduction .. 2
 1.1 Ligand Binding Sites ... 2
 1.2 Ligand binding site depth .. 3

Chapter 2 ... 6

1. Statement of the Problem ... 6

Chapter 3 ... 8

1. Methods ... 8
 1.1 Secant Plane Method .. 8
 1.2 Tangent Sphere Method .. 9
 1.3 Sub methods .. 13
 1.4 PDB ... 13

Chapter 4 ... 14

1. Web server Implementation and Results .. 14
 1.1 Ligand Sub Method ... 15
 1.2 Residue Sub Method ... 16
 1.3 Results .. 16
 1.4 Validation .. 18

Chapter 5 ... 21

1. Challenges and Conclusion ... 21

Problem with the PDB format ... 21

Part 2: Representing Rod-Shaped Protein 3D Structures in Cylindrical Coordinates 22
Part 1: Size-Independent Quantification of Ligand Binding Site Depth in Receptor Proteins
Chapter 1

1. Introduction
How ligands bind their cognate receptor proteins is an important question in biology.

Most proteins are flexible, and the ligand-binding event induces a conformational change in both ligand and protein leading to the more stable structure of the protein-ligand complex. The amount of conformational change a protein undergoes varies and is usually directly related to the depth of the ligand-binding site. Therefore, it is very important to be able to determine the ligand binding sites and their depths, as this information provides insight into protein dynamics and flexibility.

1.1 Ligand Binding Sites
Although the main objective of this study is not the prediction of ligand binding sites, but instead the quantitative determination of the depth (degree of burial) of ligand binding sites, we present here a few methods for predicting ligand binding sites, as it is a related concept (Alasdair & Richard, 2005). In order to study the protein ligand binding sites, their prediction is necessary. There are mainly two types of methods that are used to predict the ligand binding sites in proteins. They are geometric and non-geometric methods.

Geometric Methods
Geometric methods take the geometry of the protein into consideration. Generally Geometric based methods are most widely used to detect the ligand binding sites on the proteins. Some of the geometric based methods are ligsite (Hendlich, Rippmann & Barnickel, 1997), pass (Brady & Stouten, 2000), travel depth (Coleman & Sharp, 2006), pocket-picker (Martin, Ewgenij & Gisbert, 2007), surfnet (Laskowski, 1995) and pocket-
finder (Alasdair & Richard, 2004). These methods identify the ligand binding sites and also compare different ligand binding sites. But each of them has its own shortcomings.

Non-Geometric Methods

Non-geometric methods take into account of the interaction energy between protein and the probe and evolutionary information of the protein into consideration. One of the important non-geometric based approaches developed was Q-Site Finder. The success rate for Q-Site Finder is very high when compared to all the geometric based approaches. In ninety percent of the proteins tested in Q-Site Finder there is more than one successful prediction in the top three binding sites. It is one of the important non-geometric methods. It takes evolutionary information of the proteins into consideration and is proved to be more accurate when compared to the other geometric based methods (Alasdair & Richard, 2005).

However, in addition to the prediction of ligand binding sites the determination of the ligand binding site depth in a quantitative way is also necessary for a full understanding of protein-ligand interactions.

1.2 Ligand binding site depth

There are limited resources that can quantitatively measure the depth of the ligand binding sites. Some of the geometric based methods such as ligsite (Hendlich, Rippmann & Barnickel, 1997), surfnet (Laskowski, 1995), pocket-finder (Alasdair & Richard, 2004) estimates the depths of the pockets present on the protein surface. They are discussed below.
Ligsite: A program that automatically detects pockets on the surface of proteins by binding hydrophobic probes to the proteins in a time-efficient manner. It is used for comparative studies of the proteins for the large set of proteins. It does not give any quantitative results of the protein (Hendlich, Rippmann & Barnickel, 1997).

Surfnet: This program generates surfaces and void regions. The program detects the gap regions that are present in between the protein and it isolates the protein from the gap region. The binding site is predicted to be in the largest gap region (Laskowski, 1995).

Pocket-Finder: This program is based on ligsite, which detects the ligand binding sites. Pocket Finder predicts the volume of the binding sites, but does not give depth of the binding site (Alasdair & Richard, 2004).

Mathematical Model: Depth of the LBS can be determined using Mathematical model. The mathematical model uses accessible radius function theory in spatial particle system as the first step. The second step is applying hierarchical analysis on the peptide chains and proteins and then determining the depth using mathematical function known as depth function algorithm. The equation for the depth of a point ‘a’ in a set ‘A’ in the algorithm is defined as:

\[S_A(a) = \min \{ n_1(\pi, a): \pi \in \pi'(a) \} \]

where \(\pi'(a) \) is a plane that contains point a. Finally a depth database can be built for all the proteins in the PDB. (Shen & Tuszynski, 2008).
In summary the present methods compare the sizes of the pockets detected in a protein or in proteins of same size and detect the void volumes present in a protein.
Chapter 2

1. Statement of the Problem
Currently available methods compare LBS in proteins of equal size. It is very important in structural biology studies to determine the ligand binding site depths and quantitatively compare the LBS in proteins of different sizes instead of simply detecting and counting the ligand binding sites.

Figure 1: Proteins are of same size

In Figure 1 all the three proteins are of same size in which the first protein has shallow binding site, second protein has intermediate depth binding site and the third protein has deepest binding site. As the proteins are of same size we are able to readily compare the ligand binding site depths. The amount of conformational change a protein undergoes is thought to be directly proportional to the depth of the ligand-binding site. We may conclude that the first protein undergoes little conformational change, second protein
undergoes intermediate amount of conformational change and the third protein undergoes higher conformational change upon binding their cognate ligands.

But in more of the case in practice, we have proteins of different sizes and their ligand binding site depths have to be compared. For example in Figure 2 the two proteins are of different size but they might have equal ligand binding site depths or volume in absolute terms.

![Image](image.jpg)

The two proteins are of different size, therefore the ligand binding site depths are not directly comparable

Figure 2: Proteins are of different sizes

The aim of this work is to device a quantitative metric for comparing LBS depth (or burial) that takes into account the volume of the protein so that the comparison of LBS depth (or burial) is meaningful.
Chapter 3

1. Methods
We have developed the Secant Plane Method and Tangent Sphere Method (SPM and TSM, respectively) to quantitatively determine the binding site depths in proteins. To the best of our knowledge, this work is the first quantitative and comparative measure of ligand binding site depth in proteins. SPM and TSM are explained in Figure 3. Here for the Secant Plane and Tangent Sphere Methods we consider the following two points.

a) Protein Centroid: It is the geometric center of the protein, found by analysis of the x, y and z coordinates. It is also known as the Global Centroid.

b) Local Centroid: The centroid of the bound ligand, or a few amino acid residues in the LBS.

1.1 Secant Plane Method
We define that the Secant Plane passes through the Local Centroid and is normal to the line passing through the local centroid and the global centroid. The Secant Plane index (SPi) is defined as the percentage of the protein atoms on the exterior side of the Secant Plane

\[
SP_i = \frac{\text{Number of protein atoms on the external side of the Secant Plane}}{\text{Total number of atoms}} \times 100
\]
1.2 Tangent Sphere Method

We define tangent sphere as the sphere at the center of the protein and it is tangent to the secant plane and its radius is equal to the distance between global centroid and local centroid. The Tangent Sphere Index (TSi) is defined as the percentage of protein atoms inside the tangent sphere.

\[
\text{TSi} = \frac{\text{Number of protein atoms inside the Tangent Sphere}}{\text{Total number of Atoms}} \times 100
\]

Depth of LBS burial is directly proportional to the SPi (as shown in the figure 3), the deeper the LBS the higher the SPi. On the other hand, depth of the LBS burial is inversely proportional to the TSi, the deeper the LBS the lower the TSi.

Programs: TSM and SPM are written in Fortran 77 and 90 to calculate the SPi and TSi.
Therefore, the SP and TS methods are complementary to each other. However, they are not redundant, as one cannot be calculated from the other. This is due to the fact that proteins are irregular in shape instead of being in perfect sphere. The equation of the Secant Plane is given by $Ax+By+Cz+D=0$ where A, B, C, D are constants and x, y, z are the coordinates of the points that lie on the plane. The points that lie on the exterior side of the Secant Plane satisfy this equation $Ax+By+Cz+D<0$ and the points on the other side (interior) of the Secant Plane satisfies this equation $Ax+By+Cz+D>0$.

Figure 3: Secant Plane and Tangent Sphere Methods
The equations and relations have been devised on the condition that a vector with initial point at the local centroid (as in figure 4) and final point at the global centroid (as in figure 4) is normal to the secant plane at L. The equation of the tangent sphere is given by $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$ and the points that lie inside the tangent sphere is given by $(x-a)^2 + (y-b)^2 + (z-c)^2 < r^2$ where r is the distance between the local centroid and the global centroid and (a,b,c) are the coordinates of the center of the protein.

Figure 4: Equations representing SPM and TSM
Figure 5 demonstrates the values of SPI and TSi in steps. In the first sphere the burial site depth is minimum, which means SPI is minimum and TSi is maximum. SPI increases gradually from first to fifth sphere whereas TSi decreases simultaneously. In the fifth sphere when the SPI reaches maximum and touches the protein centroid or global centroid the entire process reverses. From sixth to ninth sphere SPI decreases gradually and TSi increases.
1.3 Sub methods
There are two sub methods that calculate the binding site depths. We have done all these methods and we call them as below.

(1) **Ligand sub method**: A Protein PDB file and the ligand attached to that particular protein is needed to calculate the TSi and SPi for this method.

(2) **Residue sub method**: This is the more general sub method as it enables SPi and TSi calculation even in the absence of the ligand, as long as the residue knows which amino acids bind the ligand.

1.4 PDB
One hundred globular proteins were selected from the PDB, a database consisting of seventy six thousand of protein 3D structures and among these the globular or spherical human proteins are selected by using advanced search parameters such as number of entities and number of models. All the proteins we considered for our research were human proteins as they can be used in for their potential uses in medicine such as drug development research. Each protein might have one or more ligands.

Visualization Tools: The protein shape is determined by using the J-Mol visualization tool. Proteins that are roughly spherical or globular were selected.
Chapter 4

1. Web server Implementation and Results

We developed a web server for the Ligand Burial Site Depth Determination using HTML, Java Script and PHP so that users can upload PDB file of a protein. The server outputs the SPi and TSi (see next sections). The web server is hosted at tortellini.bioinformatics.rit.edu/sxc6274/thesis1.php

There are three file upload options displayed on the web server as in Figure 6. There are two modes in the web server

(1) Ligand Mode: A user can upload both protein PDB file and a ligand PDB file and select the ligand sub method radio button.

(2) Residue Mode: A user can upload both protein PDB file and a residue PDB file (LBS PDB file), and select the residue sub method radio button. The LBS PDB file contains coordinates of one or more amino acids known to be in the LBS.

The minimum number of Ligand or Residue atoms to be uploaded is four (See last sections). All the PDB files to be uploaded in web server should be without header and footer information and it should consist of only the ATOM or HETATM records.
The Ligand sub method is used for protein structures with bound ligands. The PDB coordinates of the protein and the ligand are separated into two files and these two files are the two inputs for this sub method. Shell scripts are written by combining the programs required to calculate SPI and TSI. Two scripts are written separately for this method one each for calculating TSI and SPI. The TSI script comprises of three programs that determine center of mass, radius and TSI for a specific protein-ligand complex. The SPI script consists of three programs that determine Centre of Mass, Secant Plane Coefficients and Secant Plane Index for a protein-ligand complex. The Secant Plane and Tangent sphere indices are displayed on the results web page as in Figure 7.
1.2 Residue Sub Method
The residue Sub Method allows calculation of the LBS in the absence of the ligand (i.e., structures that don’t contain bound ligand). In this case the user needs to know beforehand, which residues in the protein is part of the LBS. PDB coordinates of the protein file and residue file are required for this sub method. Scripts are similar to those of Ligand Sub method, except a residue file is used instead of the ligand file. The SPi and TSi indices will be similarly displayed on the results web page as in Figure 7 upon execution of the scripts.

1.3 Results
SPM and TSM methods were applied on about 60 globular protein-ligand complexes. Some of the protein-ligand complexes used for the research are listed in Table1. The depth measurements from the SP and TS methods correlate closely with the ligand pocket size measurements done by visual inspection in the work by Laskowski, et al., (1996; Reyes, V.M. and Cheguri, S.R., manuscript in preparation). This is strong evidence that the SP and TS methods work as they were meant to.
Protein	ligand
1CMY	HEM
1COH	COH
1DRF	SO4
1FDH	HEM
1HBS	HEM
1HCO	HEM
1HHO	PO4
1NIH	HNI
1RNE	NGA
1THB	IHP
2HCO	HEM
2HHB	HEM
2HHM	SO4
2LOV	CA
2WMB	MG
2WR6	ODT
2XCG	FA8
2XDK	XDK
2XDL	2DL
2XDT	EDO
2XFN	FAD
2XFO	FA8
2XFP	ISN
2XFQ	RAS
2XHR	COP
2XP2	VGH
2XRE	CO
2XRF	URA
3A5N	ATP
3A7E	SAM
3AGM	A67
3BSZ	RTL
3F7H	LI
3GPD	SO4
3GT9	ZN
3HFW	ADP
3HHB	HEM
3I25	MV7
3ID8	MRK
3ILG	SR
3INC	NI
3IR0	CU
3K5U	PFQ

Table 1: List of Protein-ligand complexes
Web Server Results: If the user uploads PDB format text files and selects the respective sub method the files are stored in the web server with distinct names under a temporary directory. Then the appropriate shell script is called and applied on the saved files stored in the temporary web directory and the SPi and TSi are calculated and displayed on the web page. The results page should look similar to the figure 7.

Results Page Screen shot:

![Results Page Screen shot](image)

Figure 7: Result page of "Ligand Burial Depth Determination"

1.4 Validation

Two types of validation are performed on the web server. They are

Server Side Validation: This validation is performed at the server side (back end).

This includes checking the format of the uploaded files; it prompts the user if it is not in a right format. It also checks for the size of the uploaded file. The following error messages will be displayed on the results page if there are problems with file uploads:

- a) If the user uploads only a protein file and hits the submit button the error message is: “Not uploaded right type of files”
b) If the respective sub method is not selected then user will be redirected to a blank result page.

c) If non-text files and files greater than 1MB are uploaded the error message is:

“Error: Only text files and below the size of 100,000 KB are accepted”

d) If the file entered is a text file and not in PDB format the error message is: “Not in PDB Format”

The Reset button sets the server back to original.

Client Side Validation: It is performed at the client side (front end). It includes generation of an alert button, when the user hits the submit button before uploading the files. An alert button is displayed as shown in the Figure 8.

![Alert button](image)

Figure 8: Alert button in "Ligand Burial Depth Determination" webserver
Figure 9: Flow chart of the steps in "Ligand Burial Depth Determination" web server

Figure 9 describes the sequence of steps carried out at the back-end of the web server once the files are uploaded.
Chapter 5

1. Challenges and Conclusion

Problem with the PDB format
We initially observed that the results obtained in UNIX command line method were different compared to the results from the web server (GUI). The problem here is the inconsistent format of the PDB files. The inconsistencies include:

 a) Some files differ in the effective number of columns due to merging of two neighboring columns, eliminating the space between them.

 b) Some files have misaligned atoms.

The problem arises when we perform a sort step, where the sorting is done on a specified column number. We partially solved this problem by executing a pre-processing step before calling any other program in the script. The pre-processing program written in FORTRAN, rearranges the first few columns in the PDB file so that the number of effective columns in the uploaded files are consistent.
Part 2: Representing Rod-Shaped Protein 3D Structures in Cylindrical Coordinates
ABSTRACT FOR PART 2:
Based on overall 3D structure, proteins may be grouped into two broad, general categories, namely, globular proteins or ‘spheroproteins’, and elongated or ‘fibrous proteins’. The former comprises the significant majority. This work concerns the second general category of protein structures, namely, the fibrous or rod-shaped class of proteins (sometimes also referred to as “filamentous proteins”). Unlike an spheroprotein, a rod-shaped protein (RSP) possesses a visibly conspicuous axis along its longest dimension. To take advantage of this potential symmetry element, we decided to represent RSPs using cylindrical coordinates, (ρ, θ, z), with the z-axis as the main axis and one ‘tip’ of the protein at the origin. A ‘tip’ is defined as one of two extreme points in the protein lying along the protein axis and defining its longest dimension. To do this, we first visually identify the two tips T₁ and T₂ of the protein using appropriate graphics software, then determine their Cartesian coordinates, (h, k, l) and (m, n, o), respectively. Arbitrarily selecting T₁ as the tip to coincide with the origin, we translate the protein by subtracting (h, k, l) from all structural coordinates. We then find the angle α (in degrees) between vectors T₁ T₂ and the positive z-axis by computing the scalar product of vectors T₁ T₂ and OP where P is an arbitrary point along the positive z-axis. We typically use (0, 0, p) where p is a suitable positive number. Then we compute the cross product of the two vectors to determine the axis about which we should rotate vector T₁ T₂ so it will coincide with the positive z-axis. We use a matrix form of Rodrigue’s formula to perform the actual rotation. Finally we apply the Cartesian to cylindrical coordinate transformation equations to the system. Thus far, we have applied the above transformation to 15 rod-shaped proteins (1QCE, 2JJ7, 2KPE, 3K2A, 3LHP, 2LOE,
2L3H, 2L1P, 1KSG, 1KSJ, 1KSH, 2KOL, 2KZG, 2KPF and 3MQC. We have also created a webserver that can take the PDB coordinate file of a rod-shaped protein and output its cylindrical coordinates based on the transformation steps described above. The URL of our web server is http://tortellini.bioinformatics.rit.edu/sxc6274/thesis2.php
Chapter 6

Introduction

1. Background

Proteins have different levels of structures: primary, secondary and tertiary. Primary structure represents the sequence of amino acids, which is determined by the genetic code. Secondary structure representation consists of the amino acid residues such as α helices and β sheets. Tertiary structure is the three dimensional structure of a protein. In tertiary structures α Helices and β sheets are folded by hydrophobic interactions and are locked into place by tertiary interactions such as salt bridges, hydrogen bonds, disulfide bonds and side packing of side chains. Quaternary structure of the protein is a complex of many subunits of the protein or polypeptides that are formed by the interactions as in the tertiary structures.

In terms of gross 3D structure, the majority of the proteins are globular some are rod shaped and some are irregular in shape.

1.1 Globular proteins: Globular proteins are also known as spheroproteins and they are spherical in shape and are soluble in aqueous solutions. Enzymes involved in metabolic functions are mostly spheroproteins.

1.2 Rod shaped proteins: Rod shaped proteins are elongated in shape and, insoluble in aqueous solutions and are major component of hair, horns, nails, wool, silk etc., which play important structural role. Examples of rod shaped proteins are keratin, collagen. Most rod shaped proteins are elongated as they have repeated structures of amino acids.
1.3 Cartesian Coordinate System
Here we are interested in the three-dimensional structures of proteins, which is the set of
coordinates that describe the position of the atoms in the protein. Cartesian coordinates in
3D are based on three mutually perpendicular axes x, y and z. Protein Cartesian
Coordinate files are called PDB files and have a specific format (Berman et al. 2000).

1.4 PDB: Protein Data Bank (PDB) is the central repository in the world where the three
dimensional structures of proteins and nucleic acids are deposited. The 3D structures are
determined by using various experimental methods like X-ray diffraction, NMR, electron
microscopy and other methods. The structures are deposited in a specific file format
called PDB file format. The PDB file describes the position of the protein atoms as (x, y,
z) coordinates in protein in three-dimensional space. It also includes the ligands that are
bound to a protein as well as water molecules in the structure, if any. Our project focuses
on the x, y, z coordinates of the atoms, as these represent the position of the atoms in 3D
structure (Berman et al. 2000).

1.5 Visualization of the protein 3D structure: We used Jmol to visualize
protein 3D structures. The graphic image obtained from Jmol can be clicked and rotated
in every direction to have a thorough view of the protein shape (Jmol). The gross shape
of proteins in Jmol could be (1) spherical or globular (2) rod shaped or cylindrical or (3)
irregularly as described previously.
Chapter 7

1. Statement of the Problem
A typical globular protein is 1CMY which is a composite quaternary state of human hemoglobin whose structure is shown in Figure 10. A typical rod shaped protein is 1QCE as shown in the Figure 11.

![Figure 10: structure of 1CMY (Quarternary state of human hemoglobin)](image)

It is evident that rod shaped or elongated proteins have a main axis running through its maximal dimension. The aim of this work is to take advantage of this inherent symmetry by using the cylindrical coordinates.
Figure 11: Structure of 1QCE (Ectodomain of SIV GP41)
Chapter 8

1 Methods

1.1 Identification of the extreme points of the rod shaped proteins

We have written a set of programs in Fortran 77 and 90 that transform the PDB (i.e., Cartesian) coordinates of a protein into Cylindrical coordinates, where one end or “tip” of the protein is at the origin and its main axis coincides with the primitive Z-axis.

To convert Cartesian coordinates to cylindrical coordinates three sequential steps have to be performed. (1) Translation (2) Rotation (3) Transformation. The extreme points, or “tips” of the rod-shaped protein are identified visually using graphical software, JMol. This step is not yet automated. Cylindrical proteins are translated, rotated and transformed based on the tip. The extreme points are the two points at the two ends, of the rod-shaped protein along its maximal dimension. Here we designate them as T_1 and T_2 points.

1.2 Translation: Translation preserves the distances and directions between the points in a plane. In translation fixed number of points is added to the Cartesian coordinates for every point in the plane. Translation moves all the points in the PDB in the same direction with the same distance. If (h, j, k) are the Cartesian coordinates of one of the tip points of the rod-shaped proteins, T_1, then translation on every point in the protein is achieved by the equation:

\[(x', y', z') = (x-h, y-j, z-k)\]
1.3 Rotation: Rotation in 3D is the motion of a rigid body around a fixed rotation axis. After translation, we need to rotate the rod shaped protein along a rotation axis (a line in 3D) so that the protein’s main axis is coincident with the positive Z-axis. We used two pieces of information to effect this rotation. First, the rotation axis needs to be identified. Rotation axis is determined by doing the cross product of vectors T_1 T_2 and OP where P is a conventional point along the positive Z-axis. Second, the amount of rotation (in degrees) must be determined. The amount of rotation is determined by doing the dot product of the same vectors T_1 T_2 and OP. ‘Rodrigues’ formula is used to perform the actual rotation (see appendix).

1.4 Transformation: The transformation step is the conversion of the rotated Cartesian coordinates to cylindrical coordinates. Once the rod-shaped protein has been rotated and is along the positive Z-axis, it can be transformed from Cartesian to Cylindrical coordinates. In this transformation, standard equations are used (see appendix).

In summary, the programs for the three steps are written in FORTRAN.

a) Initially a PDB file is given as the input for the translation program. The program outputs a translated PDB file.

b) The next step is to rotate the translated file. Using Rotation program the translated PDB file is converted to rotated PDB file.
c) The final step is the transformation of the coordinates by inputting rotated PDB file and it outputs transformed PDB file, which has cylindrical coordinate, RHO, PHI, Z (see results).

A shell script is written to apply all the three programs in a single step.

Rod Shaped proteins
1QCE
3MQC
3K2A
2JJ7
3LHP
1DXX
2L3H
2L1P
2KPE
2KZG
2KOL
1KSG
1KSH
1KSJ
3T5G
3T5I

Table 2: List of rod shaped proteins used for research
Chapter 9

1 Web Server Implementation and Results

A web server is designed using HTML, CSS, Java Script, and PHP in which user inputs a PDB file (without header and footer) of a rod-shaped protein and extreme point or “tip” of the protein in f10.4 format. The tip point of the protein is obtained by visual inspection using Jmol by clicking on the selected point. The Cylindrical coordinates web server is hosted at tortellini.bioinformatics.rit.edu/sxc6274/thesis2.php.

Figure 12 shows a screen shot of the cylindrical coordinates web server.

Figure 12: Home page of "Cylindrical coordinates" web server

Reset button sets the server back to original.

1.1 Results

Web Server Results: When uploaded protein file is in PDB format and the tip file in f10.4 format the user is redirected to the results page, where three links to translated file, rotated file and transformed file are displayed as in Figure 13. When the links are clicked the respective files for the protein are displayed.
A portion of the final output file in cylindrical coordinates is shown in the Figure 14:

```
  ATOM  1  N  VAL  H  2  55.27927428  -79.10767305  1.353889873  CYL (RHO, PHI, Z) in degrees
  ATOM  2  CA  VAL  H  2  55.96499442  -70.72250200  1.20510033  CYL (RHO, PHI, Z) in degrees
  ATOM  3  C  VAL  H  2  57.31262948  -71.36230777  1.20090005  CYL (RHO, PHI, Z) in degrees
  ATOM  4  O  VAL  H  2  58.22193070  -70.61363700  1.32530020  CYL (RHO, PHI, Z) in degrees
  ATOM  5  CB  VAL  H  2  52.48500406  -69.63283125  1.42900013  CYL (RHO, PHI, Z) in degrees
  ATOM  6  CG1  VAL  H  2  56.45404053  -70.77360309  1.01299960  CYL (RHO, PHI, Z) in degrees
  ATOM  7  CG2  VAL  H  2  54.58815765  -68.97824097  1.12349966  CYL (RHO, PHI, Z) in degrees
  ATOM  8  N  GLN  H  3  57.60952939  -72.9829388  12.47799969  CYL (RHO, PHI, Z) in degrees
  ATOM  9  CA  GLN  H  3  58.22063671  -73.18972002  12.61800009  CYL (RHO, PHI, Z) in degrees
  ATOM 10  C  GLN  H  3  59.27190289  -73.02250214  11.51299973  CYL (RHO, PHI, Z) in degrees
  ATOM 11  O  GLN  H  3  58.55273932  -74.57799495  10.69699955  CYL (RHO, PHI, Z) in degrees
  ATOM 12  CB  GLN  H  3  58.62228511  -74.19708252  19.74500043  CYL (RHO, PHI, Z) in degrees
  ATOM 13  CG  GLN  H  3  60.19552612  -74.61379434  14.30009964  CYL (RHO, PHI, Z) in degrees
  ATOM 14  CD  GLN  H  3  60.13618851  -75.31579590  15.57400036  CYL (RHO, PHI, Z) in degrees
  ATOM 15  OE1  GLN  H  3  59.65722214  -75.69996549  16.07900047  CYL (RHO, PHI, Z) in degrees
  ATOM 16  NE2  GLN  H  3  61.31660161  -75.64809039  16.10000038  CYL (RHO, PHI, Z) in degrees
  ATOM 17  N  LEU  H  4  60.49272537  -76.54133606  10.8920002  CYL (RHO, PHI, Z) in degrees
  ATOM 18  CA  LEU  H  4  61.05138820  -74.15888878  9.71800030  CYL (RHO, PHI, Z) in degrees
  ATOM 19  C  LEU  H  4  62.16654857  -74.09761210  0.18600002  CYL (RHO, PHI, Z) in degrees
  ATOM 20  O  LEU  H  4  62.90804039  -74.40048786  11.00199986  CYL (RHO, PHI, Z) in degrees
  ATOM 21  CB  LEU  H  4  61.37292905  -73.16161346  8.71599960  CYL (RHO, PHI, Z) in degrees
  ATOM 22  CG1  LEU  H  4  60.19553888  -72.19555664  8.25199986  CYL (RHO, PHI, Z) in degrees
  ATOM 23  CD2  LEU  H  4  61.18471287  -73.04257986  7.44800091  CYL (RHO, PHI, Z) in degrees
  ATOM 24  C  LEU  H  4  55.84490280  -72.74888283  7.80200008  CYL (RHO, PHI, Z) in degrees
  ATOM 25  N  VAL  H  5  62.21088303  -76.05688888  9.66800022  CYL (RHO, PHI, Z) in degrees
  ATOM 26  CA  VAL  H  5  63.28472000  -75.83777731  9.98800014  CYL (RHO, PHI, Z) in degrees
  ATOM 27  C  VAL  H  5  65.02070706  -77.88820813  8.72800038  CYL (RHO, PHI, Z) in degrees
  ATOM 28  O  VAL  H  5  65.29615988  -78.8558138  7.81800077  CYL (RHO, PHI, Z) in degrees
  ATOM 29  CB  VAL  H  5  62.78526868  -78.00840010  10.84300041  CYL (RHO, PHI, Z) in degrees
  ATOM 30  CG1  VAL  H  5  62.32566530  -77.57726659  12.27600002  CYL (RHO, PHI, Z) in degrees
  ATOM 31  CD2  VAL  H  5  61.54550003  -78.61776733  10.22599883  CYL (RHO, PHI, Z) in degrees
  ATOM 32  N  GLN  H  6  65.28579712  -77.25366729  8.66300011  CYL (RHO, PHI, Z) in degrees
  ATOM 33  CA  GLN  H  6  66.04741669  -77.5066971  7.45100021  CYL (RHO, PHI, Z) in degrees
  ATOM 34  C  GLN  H  6  66.77519989  -78.45742493  7.81599879  CYL (RHO, PHI, Z) in degrees
```

Figure 14: Sample Result file showing cylindrical coordinates

1.2 Validation of the Web Server: Server side and client side validations are incorporated into the web server to prompt the user.
Client side validation: It includes generation of an alert button, when the user hits the submit button before uploading the files. An alert button is displayed as shown in the Figure 15. This prompts the user to upload a protein file and tip before clicking the submit button.

![Alert button in Cylindrical coordinates web server](image)

Server side validation: It includes checking the format of the uploaded files, it prompts the user if it is not in a right PDB format. It also checks for the size of the uploaded file. The size of the uploaded PDB file must be less than 10,000 KB and the other input file, protein tip, must be in f10.4 format.

1.3 Figures explaining steps of conversion
The steps of conversion from Cartesian to Cylindrical coordinates for two prominent rod shaped proteins are depicted as in the figures below:
Figures 16, 17, 18 and 19 describe transformation steps for the protein 3MQC (Crystal Structure of Ectodomain of BST-2/Tetherin/CD317).

Figure 16: 3MQC with tips identified

Figure 17: 3MQC after Translation
Figure 18: 3MQC after rotation

Figure 19: 3MQC after transformation
Figures 20, 21, 22 and 23 describe transformation steps for the protein 2JJ7 (crystal structure of HLYIIR mutant protein).

Figure 20: 2JJ7 with tips identified

Figure 21: 2JJ7 after translation
Figure 22: 2JJ7 after rotation

Figure 23: 2JJ7 after transformation
1.4 Conclusion:

To the best of our knowledge, this work is the first time that rod shaped proteins, or any protein for that matter have been represented in cylindrical coordinates. Current visualization tools like J Mol, Pymol does not visualize the cylindrical coordinates, as this is first method that converts Cartesian to cylindrical coordinates.
References:

1. Ask the CSS Guy. (2011). Form field hints with CSS and JavaScript. Retrieved March 20 2011 from http://www.askthecssguy.com/2007/03/form_field_hints_with_css_and.html

2. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Bourne, P. E. (2000). The protein data bank. *Nucleic Acids Research*, 28(1), 235-242.

3. Binding Site. (2011). Binding site of dihydrofolate reductase (3dfr). Retrieved July 11 2011, from http://www.biochem.ucl.ac.uk/~roman/surfnet/examples/3dfr_site.html

4. Brady, G. P., Jr., & Stouten, P. F. (2000). Fast prediction and visualization of protein binding pockets with PASS. *Journal of Computer-Aided Molecular Design*, 14(4), 383-401.

5. Coleman, R. G., & Sharp, K. A. (2006). Travel depth, a new shape descriptor for macromolecules: Application to ligand binding. *Journal of Molecular Biology*, 362(3), 441-458. doi:10.1016/j.jmb.2006.07.022

6. Hendlich, M., Rippmann, F., & Barnickel, G. (1997). LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. *Journal of Molecular Graphics & Modelling*, 15(6), 359-63, 389.

7. Introductory Biology, Cornell University. (2011) Fibrous vs Globular Proteins. Retrieved July 15 2011 from http://www.biog11051106.org/demos/105/unit1/fibrous_v_glob.html

8. Jmol. (2011). Jmol: an open-source Java viewer for chemical structures in 3D. Retrieved July 15, 2011 from http://www.jmol.org

9. Laskowski, R. A., Luscombe, N. M., Swindells, M. B., & Thornton, J. M. (1996). Protein clefts in molecular recognition and function. *Protein Science: A Publication of the Protein Society*, 5(12), 2438-2452. doi:10.1002/pro.5560051206

10. Laurie, A. T., & Jackson, R. M. (2005). Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites. *Bioinformatics (Oxford, England)*, 21(9), 1908-1916. doi:10.1093/bioinformatics/bti315

11. PHP. (2011). PHP Tutorial. Retrieved July 15 2011 from http://www.w3schools.com/php/
12. Pocket-Finder Pocket Detection. (2011). Detection of Pockets using Pocket Finder
Retrieved July 15 2011 from http://www.modelling.leeds.ac.uk/pocketfinder/
13. Shen, S., & Tuszyński, A. (2008). Theory and Mathematical methods in
Bioinformatics. Berling: Germany.
14. Sheth, V.N., (2009). Visualization of Protein 3D Structures in Reduced
Representation with Simultaneous Display of Intra and Inter-molecular Interactions
(Master’s Thesis). Retrieved March 15 2011 from http://rc.rit.edu/docs/sheth-thesis-10.09.pdf
15. thesitewizard.com. (2011). Form Input Validation JavaScript. Retrieved March 20
2011 from http://www.thesitewizard.com/archive/validation.shtml
16. Voet D, Voet J.G. Biochemistry. New York: John Wiley and Sons, 1990. Print.
17. Weisel, M., Proschak, E., & Schneider, G. (2007). PocketPicker: Analysis of ligand
binding-sites with shape descriptors. Chemistry Central Journal, 1, 7.
doi:10.1186/1752-153X-1-7
Appendix
PART-1

Script for Ligand Sub Method

cp residue file1; ./pre_process.x; mv file2 filei; ./find_CM.x; mv fileo filea; cp protein file1; ./pre_process.x; cp file2 filei; ./find_CM.x;
mv fileo fileb; ./find_CP_coeffs.x; mv fileo filea; cp file2 fileb; ./CPM_NegSid.x;

Script for Residue Sub Method

cp protein file1; ./pre_process.x; mv file2 filei; ./find_CM.x; mv fileo filea; cp residue file1; ./pre_process.x; mv file2 filei; ./find_CM.x;
mv fileo fileb; ./find_len_2pts.x; cp fileo fileb; cp protein file1; ./pre_process.x; mv file2 filec; ./tangent_sphere_method.x;

Front end code

<html>
<head>
<!-- Reference Form Input Validation
(http://www.thesitewizard.com/archive/validation.shtml) -->

 <script type="text/javascript" language="javascript">
 function validate_form (form)
 {
 if(form.protein.value == "")
 {
 alert("Please upload the files and select the respective submethod");
 form.protein.focus();
 return false;
 }
 return true;
 }

 function trim(str)
 {

42
return str.replace(/\s+\|s+$;/g,'');
}
</script>
<!- Reference Form Input Validation Ends here-->
<style type="text/css">

h1
{
 background-color: #F36E21;
 border-style: solid;
 border-width: 3px;
 border-left-width:5px;
 border-right-width:5px;
 border-color: #F36E21;
 margin-top: -8.5px;
 margin-right: -5px;
 margin-left: -5px;
 margin: 0.5em;-->
 padding:4em;
 font-size:50px;
}

h2
{
 font-family:font-family:Berlin Sans FB;
 font-size:27px;
}

p
{

Ligand Burial Site Depth Determination

Calculation of Ligand Burial Site Depth parameters in proteins by using TSM* and CPM*

ProteinFile <input type="file" name="protein" input type="hidden" name="MAX_FILE_SIZE" value="1000000" />

LigandFile <input type="file" name="ligand" input type="hidden" name="MAX_FILE_SIZE" value="500000" />

OR

If a ligand is absent for a specific protein then upload at least 3 residue atoms for that protein in a file format.

ResidueFile <input type="file" name="residue" input type="hidden" name="MAX_FILE_SIZE" value="500000" />
Ligand Submethod

Residue Submethod

TSM* is Tangent Sphere Method which calculates percentage of protein atoms present inside the sphere

CPM* is Secant Plane Method which calculates the percentage of protein atoms present outside the sphere

Contact Us: Please email your queries and bugs to us at Srujana Cheguri - sxc6274@rit.edu, Dr. Vicente Reyes - vmrsbi@rit.edu

Please check our other Web Server: Cylindrical Coordinates Web Server
Back end code

<html>
 <head>
 <title>
 Results Page
 </title>
 </head>
 <style type="text/css">
 h1
 {
 background-color: #F36E21;
 border-style: solid;
 border-width: 3px;
 border-left-width: 5px;
 border-right-width: 5px;
 border-color: #F36E21;
 margin-top: -8.5px;
 margin-right: -5px;
 margin-left: -5px;
 --margin: 0.5em;-->
 padding: 4em;
 font-size: 50px;
 }
 h2
 {
 font-family:Berlin Sans FB;
 font-size: 27px;
 }
 </style>
</html>
Ligand Burial Site Depth Determination

Results of the Ligand Burial Depth Parameters SPi* and tsi*
// Log errors to the web server's error log
ini_set('log_errors', 1);

// Destinations
define("ADMIN_EMAIL", "sxc6274@rit.edu");
define("LOG_FILE", "/home/sxc6274/public_html/error1.log");

// Destination types
define("DEST_EMAIL", "1");
define("DEST_LOGFILE", "3");

/* Examples */

// Send an e-mail to the administrator
error_log("Fix me!", DEST_EMAIL, ADMIN_EMAIL);

// Write the error to our log file
error_log("Error", DEST_LOGFILE, LOG_FILE);

function my_error_handler($errno, $errstr, $errfile, $errline)
{
 switch ($errno) {
 case E_USER_ERROR:
 // Send an e-mail to the administrator
 error_log("Error: $errstr \n Fatal error on line $errline in file $errfile \n", DEST_EMAIL, ADMIN_EMAIL);

 // Write the error to our log file
 error_log("Error: $errstr \n Fatal error on line $errline in file $errfile \n", DEST_LOGFILE, LOG_FILE);
 break;

 case E_USER_WARNING:
// Write the error to our log file

error_log("Warning: $errstr \n in $errfile on line $errline \n", DEST_LOGFILE, LOG_FILE);

break;

case E_USER_NOTICE:

 // Write the error to our log file

 error_log("Notice: $errstr \n in $errfile on line $errline \n", DEST_LOGFILE, LOG_FILE);

 break;

default:

 // Write the error to our log file

 error_log("Unknown error [#errno]: $errstr \n in $errfile on line $errline \n", DEST_LOGFILE, LOG_FILE);

 break;

}

// Don't execute PHP's internal error handler

return TRUE;

} // Use set_error_handler() to tell PHP to use our method

$old_error_handler = set_error_handler("my_error_handler");

#include('/home/sxc6274/config.php');

#http://myphpform.com/validating-forms.php

$file1 = input_val($_POST["protein"]);

#chmod("file1",0777);

$file2 = input_val($_POST["ligand"]);

#chmod("file2",0777);
$submethod = input_val($_POST["submethod"]);

$file3 = input_val($_POST["residue"]);
#chmod("$file3",0777);

function input_val($data)
{
 $data = trim($data);
 $data = stripslashes($data);
 $data = htmlspecialchars($data);
 return $data;
}

$filename1 = basename($_FILES["protein"]['name']);

#echo $filename1;
#chmod("$filename1",0777);
$filename2=basename($_FILES["ligand"]['name']);
#echo $filename2;
#chmod("$filename2",0777);
$filename3=basename($_FILES["residue"]['name']);
#echo $filename3;
#chmod("$filename3",0777);

$findkey1='ATOM';
$findkey2='HETATM';

$ext1=substr($filename1, strpos($filename1,'.')+1);
$ext2=substr($filename2, strpos($filename2,'.')+1);
$ext3=substr($filename3, strpos($filename3,'.')+1);

$target_path = "/home/sxc6274/public_html/uploads/";
$newname1 = $target_path.$filename1;
#echo "$newname1
\n";
#chmod("$newname1",0777);
$newname2 = $target_path.$filename2;
#echo "$newname2
 \n";
#chmod("$newname2",0777);
$newname3 = $target_path.$filename3;
#echo "$newname3
 \n";
#chmod("$newname3",0777);
$dirname=substr($filename1,0,4);
#echo "$dirname
 \n";
#$dirname2=substr($filename2,0);
$check1='($ext1=="txt") && ($_FILES['protein']['size'] < 1000000)';
#echo "$check1
 \n";
$check2='($ext2="txt") && ($_FILES['ligand']['size'] < 1000000)';
#echo "$check2
 \n";
$check3= '($ext3=="txt") && ($_FILES['residue']['size'] < 1000000)';
#echo "$check3
 \n";
if (($check1 & $check2) || ($check1 & $check3))
{
 #echo "yes first if loop";
 if((is_uploaded_file($_FILES['protein']['tmp_name'])) &&
((is_uploaded_file($_FILES['ligand']['tmp_name']))||(is_uploaded_file($_FILES['residue'][
['tmp_name']]))))
{
 #echo "second ",
 $handle1 =fopen($_FILES['protein']['tmp_name'], "r");
 $handle2 =fopen($_FILES['ligand']['tmp_name'], "r");
$handle3 = fopen(S_FILES['residue']"[tmp_name]", "r");
$line1 = fgets($handle1);
echo "$line1 line1
\n";
$line2 = fgets($handle2);
echo "$line2 line2
\n";
$line3 = fgets($handle3);
echo "$line3 line3
\n";
$pos1 = strpos($line1, 'ATOM');
echo "$pos1 for pos1
\n";
$pos2 = strpos($line2, 'HETATM');
echo "$pos2 for pos2
\n";
$pos3 = strpos($line3, 'ATOM');
echo "$pos3 for pos3
\n";
if (($pos1 === FALSE) && (($pos2 === FALSE) || ($pos3 === FALSE)))
{
 echo "Not a PDB file
\n";
 exit(1);
}
else
{
 while (!feof($handle1) && !feof($handle2) || !feof($handle3))
 {
 $line1 = fgets($handle1);
 $line2 = fgets($handle2);
 $line3 = fgets($handle3);
 if ($pos1 == 0) && (($pos2 == 0) || ($pos3 == 0))
 {
 52
$nf1=preg_split("/\s+,\)/",$line1);

$x=sizeof($nf1);
#echo "$x for nf1
\n";

$nf2=preg_split("/\s+,\)/",$line2);
$y=sizeof($nf2);
#echo "$y for nf2
\n";

$nf3=preg_split("/\s+,\)/",$line3);
$z=sizeof($nf3);
#echo "$z for nf3
\n";

$cond1=((($x==13)||($x==12)));
$cond2=((($y==13)||($y==12)));
$cond3=((($z==13)||($z==12)));

if (($cond1 && $cond2)||($cond1 && $cond3))
{
 break;
 #echo"checking if or condition";

}
else
{
 echo "Not in PDB Format
\n";
 exit(1);
}
}
else
{
 echo "Not uploaded right type of files
 \n";
 exit(1);
}

$expr1=(!file_exists($newname1));
#echo "$expr1 for expr1
 \n";
$expr2=(!file_exists($newname2));
#echo "$expr2 for expr2
 \n";
$expr3=(!file_exists($newname3));
#echo "$expr3 for expr3
 \n";
$exprval1=($expr1 && $expr2);
#echo "$exprval1 for expr1
 \n";
$exprval2=($expr1 && $expr3);
#echo "$exprval2 for expr2
 \n";

if(($expr1 && $expr2) || ($expr1 && $expr3))
{
 @system("rm -r /home/sxc6274/public_html/uploads/$dirname");
 #echo "entered file_exists if loop
 \n";
 $rval1= move_uploaded_file($_FILES['protein']['tmp_name'],$newname1);
 $rval2 =
 move_uploaded_file($_FILES['ligand']['tmp_name'],$newname2);
 $rval3 =
 move_uploaded_file($_FILES['residue']['tmp_name'],$newname3);
 $rval = $rval1 && $rval2;
 $rvalx = $rval1 && $rval3;
if((rval)||(rvalx))
{
 #echo "succesfully entered the loop of move uploaded file";
 @system("mkdir /home/sxc6274/public_html/uploads/$dirname");
 @system("mv $newname1 /home/sxc6274/public_html/uploads/$dirname/protein");
 @system("mv $newname2 /home/sxc6274/public_html/uploads/$dirname/ligand");
 @system("mv $newname3 /home/sxc6274/public_html/uploads/$dirname/residue");
 #chdir("/home/sxc6274/public_html/files/$dirname");
 #chdir("/home/sxc6274/public_html/files");
 @system("cp /home/sxc6274/public_html/uploads/pre_process.f /home/sxc6274/public_html/uploads/$dirname");
 @system("cp /home/sxc6274/public_html/uploads/pre_process.x /home/sxc6274/public_html/uploads/$dirname");
 @system("cp /home/sxc6274/public_html/uploads/CPM_NegSid.f /home/sxc6274/public_html/uploads/$dirname");
 @system("cp /home/sxc6274/public_html/uploads/CPM_NegSid.x /home/sxc6274/public_html/uploads/$dirname");
 @system("cp /home/sxc6274/public_html/uploads/find_CM.f /home/sxc6274/public_html/uploads/$dirname");
 @system("cp /home/sxc6274/public_html/uploads/find_CM.x /home/sxc6274/public_html/uploads/$dirname");
 @system("cp /home/sxc6274/public_html/uploads/find_CP_coeffs.f /home/sxc6274/public_html/uploads/$dirname");
 @system("cp /home/sxc6274/public_html/uploads/find_CP_coeffs.x /home/sxc6274/public_html/uploads/$dirname");
}
```bash
@system("cp
/home/sxc6274/public_html/uploads/find_len_2pts.f
/home/sxc6274/public_html/uploads/$dirname");

@system("cp
/home/sxc6274/public_html/uploads/find_len_2pts.x
/home/sxc6274/public_html/uploads/$dirname");

@system("cp
/home/sxc6274/public_html/tangent_sphere_method.f
/home/sxc6274/public_html/uploads/$dirname");

@system("cp
/home/sxc6274/public_html/tangent_sphere_method.x
/home/sxc6274/public_html/uploads/$dirname");

if($submethod=='Ligand Submethod')
{
    @system("cp
/home/sxc6274/public_html/uploads/ligand_SPi.sh
/home/sxc6274/public_html/uploads/$dirname");

    #chmod("/home/sxc6274/public_html/uploads/$dirname",0777);
    chdir("/home/sxc6274/public_html/uploads/$dirname");
    #system('pwd');
    #echo "entered ligand submethod <br>\n";
    @system("./ligand_SPi.sh");
    $out1=file_get_contents('filez');
    echo "Ligand sub method SPi results $out1 <br>\n";

    @system("cp
/home/sxc6274/public_html/uploads/ligand_tsi.sh
/home/sxc6274/public_html/uploads/$dirname");

    #system('pwd');
    @system("./ligand_tsi.sh");
    $out2=file_get_contents('fileg');
    echo "Ligand sub method TSi results $out2 <br>\n";
}
```
elseif($submethod=='Residue Submethod')
{
 #chmod("/home/sxc6274/public_html/uploads/$dirname",0777);
 chdir("/home/sxc6274/public_html/uploads/$dirname");
 @system("cp /home/sxc6274/public_html/uploads/residue_SPi.sh
 /home/sxc6274/public_html/uploads/$dirname");
 #chmod("/home/sxc6274/public_html/uploads/residue_SPi.sh", 0777);
 @system("cp
 /home/sxc6274/public_html/uploads/residue_tsi.sh
 /home/sxc6274/public_html/uploads/$dirname");
 #chmod("/home/sxc6274/public_html/uploads/residue_tsi.sh", 0777);
 @system("./residue_SPi.sh");
 $out3=file_get_contents('filez');
 echo "Residue sub method SPi results $out3

 @system("./residue_tsi.sh");
 $out4=file_get_contents('fileg');
 echo "Residue sub method TSi results $out4

 }
echo "Error: Only text files and below the size of 100,000 KB are accepted";

PART 2

Wrapper Script

cp tip filea; cp protein fileb; ./translate.x;
cp fileo filei; ./Zrotation.x;
cp fileo filei; ./cart2cyl_v2_deg.x;

Front end Code

<html>
<head>
<style type="text/css">

h1 {
 background-color: #513127;
 border-style: double;
 border-width: 3px;
 border-left-width:5px;
 border-right-width:5px;
 border-color: #E67451;
 margin-top: -8.5px;
 margin-right: -5px;
 margin-left: -5px;
 --margin: 0.5em;-->
 padding:4em;
 font-size:50px;
}

h2 {
 font-size:34px;
}

p {

Conversion of Cartesian Coordinates to Cylindrical Coordinates in rod shaped proteins

<form action="result2.php" name="file_form" method="post" enctype="multipart/form-data" onSubmit="return validate_form (this);">

 -- Reference: Form Input Validation ends here -- </form>
For your queries contact us:
Srujana Cheguri - sxc6274@rit.edu
Dr. Vicente Reyes - vmrsbi@rit.edu

Please check our other Web Server:
Ligand Burial Site Depth Determination

Back End Code

```html
<html>
<head>
<title>
Results Page
</title>
<style type="text/css">
h1 {
    background-color: #513127;
    border-style: solid;
    border-width: 3px;
    border-left-width:5px;
    border-right-width:5px;
    border-color: #E67451;
    margin-top: -8.5px;
}
</style>
</head>
<body>
</body>
</html>
```
margin-right: -5px;
margin-left: -5px;
<!--margin: 0.5em;-->
padding:4em;
font-size:50px;
}

h2
{
font-size:27px;
}

p
{
font-family:Verdana;
font-size:15px;
}
</style>
</head>
<body>
<center>

<h1>
<img align=middle src="tiger.jpg" alt="Rochester Institute of Technology" height="120"
width="200"> Cylin

h2>

<h2> Results for the Conversion of Cartesian Coordinates to Cylindrical
Coordinates</h2>
<!-- <p>Click here for the results
result -->
</center>
</body>
<html>
<?php
#Reporting the simple errors
// Report simple running errors
ini_set('error_reporting', E_ALL ^ E_NOTICE);

// Set the display_errors directive to OFF
ini_set('display_errors', 0);

61
// Log errors to the web server's error log
ini_set('log_errors', 1);

// Destinations
define("ADMIN_EMAIL", "sxc6274@rit.edu");
define("LOG_FILE", "/home/sxc6274/public_html/error2.log");

// Destination types
/*define("DEST_EMAIL", "1");
*/
define("DEST_LOGFILE", "3");
/* Examples */

// Send an e-mail to the administrator
error_log("Fix me!", DEST_EMAIL, ADMIN_EMAIL);

// Write the error to our log file
error_log("Error", DEST_LOGFILE, LOG_FILE);

function my_error_handler($errno, $errstr, $errfile, $errline)
{
 switch ($errno) {
 case E_USER_ERROR:
 // Send an e-mail to the administrator
 error_log("Error: $errstr
 Fatal error on line $errline in file $errfile
", DEST_EMAIL, ADMIN_EMAIL);
 // Write the error to our log file
 error_log("Error: $errstr
 Fatal error on line $errline in file $errfile
", DEST_LOGFILE, LOG_FILE);
 break;

 case E_USER_WARNING:
 // Write the error to our log file
 error_log("Warning: $errstr
 in $errfile on line $errline
", DEST_LOGFILE, LOG_FILE);
 break;

 case E_USER_NOTICE:
 // Write the error to our log file
 error_log("Notice: $errstr
 in $errfile on line $errline
", DEST_LOGFILE, LOG_FILE);
 break;
 }
}
default:
 // Write the error to our log file
 error_log("Unknown error [#errno]: $errstr \n in $errfile on line $errline \n",
 DEST_LOGFILE, LOG_FILE);
 break;
}
// Don't execute PHP's internal error handler
 return TRUE;
}
// Use set_error_handler() to tell PHP to use our method
$old_error_handler = set_error_handler("my_error_handler");
#include('/home/sxc6274/config.php');
#http://myphpform.com/validating-forms.php
$file1 = input_val($POST["protein"]);
 chmod("$file1",0777);
$file2 = input_val($POST["tipper"]);
 chmod("$file2",0777);
function input_val($data)
 {
 $data = trim($data);
 $data = stripslashes($data);
 $data = htmlspecialchars($data);
 return $data;
 }
$filename1=basename($_FILES["protein"]['name']);
 #chmod("$filename1",0777);
$filename2=basename($_FILES["tipper"]['name']);
 #chmod("$filename2",0777);
 #echo $filename1;
$findkey1='ATOM';
$findkey2='HETATM';
$ext1=substr($filename1, strpos($filename1, '.')+1);
$ext2=substr($filename2, strpos($filename2, '.')+1);

$target_path = "/home/sxc6274/public_html/files/";
$newname1 = $target_path.$filename1;
 #echo "$newname1

"
 #chmod("$newname1",0777);
$newname2 = $target_path.$filename2;
 #echo "$newname2

"
 #chmod("$newname2",0777);
$dirname=substr($filename1,0,4);
 #echo "$dirname

"
if(($ext1=='txt') && ($_FILES["protein"]['size'] < 1000000)) && (($ext2=='txt') && ($_FILES["tipper"]['size'] < 500)))
if((is_uploaded_file($_FILES['protein']['tmp_name'])&&(is_uploaded_file($_FILES['tipper']['tmp_name']))))
{
 $handle1 = fopen($_FILES['protein']['tmp_name'], "r");
 $handle2 = fopen($_FILES['tipper']['tmp_name'], "r");
 $line1= fgets($handle1);
 $line2= fgets($handle2);
 #echo "$line1

";
 #echo "$line2

";
 $pos1=strpos($line1,'ATOM');
 #echo "$pos1 for pos1

";
 #$pos2=strpos($line1,'HETATOM');
 #echo "$pos2 for pos2

";
 if($pos1===FALSE)
 {
 echo "Not a PDB file

";
 exit(1);
 }
 else
 {
 while(!feof($handle1) && (!feof($handle2)))
 {
 $line1= fgets($handle1);
 $line2= fgets($handle2);

 if($pos1 == 0)
 {
 $nc=preg_split("\s+",$line1);
 $x=sizeof($nc);
 #echo "$x

";

 if (sizeof($nc)=== 13 || 12)
 {
 break;
 }
 else
 {
 echo "Not in PDB Format

";
 exit(1);
 }
 }
 }
 }
}
else
{
 echo "Not uploaded right type of files
 \n";
 exit(1);
}if(!file_exists($newname1))&&!file_exists($newname2))
{
 @system("rm -r /home/sxc6274/public_html/files/$dirname");
 #echo "entered file_exists if loop
 \n";

 $rval1= move_uploaded_file($_FILES['protein']['tmp_name'],$newname1);
 $rval2 = move_uploaded_file($_FILES['tipper']['tmp_name'],$newname2);
 $rval = $rval1 && $rval2;
 #echo "$rval1
\n";
 #echo "$rval2
\n";
 #echo "$rval
\n";

 if($rval)
 {
 #echo "succesfully entered the loop of move uploaded file";
 @system ("mkdir /home/sxc6274/public_html/files/$dirname");
 @system("mv $newname1 /home/sxc6274/public_html/files/$dirname/protein");
 @system("mv $newname2 /home/sxc6274/public_html/files/$dirname/tip");
 @system("cp /home/sxc6274/public_html/files/scriptthesis2.sh /home/sxc6274/public_html/files/$dirname");
 @system("cp /home/sxc6274/public_html/files/pre_process.f /home/sxc6274/public_html/files/$dirname");
 @system("cp /home/sxc6274/public_html/files/pre_process.x /home/sxc6274/public_html/files/$dirname");
 @system("cp /home/sxc6274/public_html/files/Zrotation.f /home/sxc6274/public_html/files/$dirname");
 @system("cp /home/sxc6274/public_html/files/Zrotation.x /home/sxc6274/public_html/files/$dirname");
 @system("cp /home/sxc6274/public_html/files/translate.f /home/sxc6274/public_html/files/$dirname");
 @system("cp /home/sxc6274/public_html/files/translate.x /home/sxc6274/public_html/files/$dirname");
 @system("cp /home/sxc6274/public_html/files/cart2cyl_v2_deg.f90 /home/sxc6274/public_html/files/$dirname");
 @system("cp /home/sxc6274/public_html/files/cart2cyl_v2_deg.x /home/sxc6274/public_html/files/$dirname");
 chdir ("/home/sxc6274/public_html/files/$dirname");
 #chmod ("/home/sxc6274/public_html/files/$dirname",0777);
 #system('pwd');
 }
}
@system("./scriptthesis2.sh");
#$out=file_get_contents('fileo');
#echo "$out";
#chmod("$out", 0777);
#system("cat fileo");
/*/lines = 0;
if ($fh = fopen('fileo', 'r')) {
 while (!feof($fh)) {
 if (fgets($fh)) {
 $linex = fgets($fh);
 echo "$linex
 \n";
 $lines++;
 }
 }
}
echo $lines; // line count*/
#echo "$dirname dirname
 \n";
if (file_exists('fileo')) {
 chdir("/home/sxc6274/public_html/files/$dirname/");
 #system('pwd');
 echo "You can view your result by clicking the link below.
");
 $link = "http://tortellini.bioinformatics.rit.edu/sxc6274/files/$dirname/fileo"
 ;
 #echo "copy and paste this $link
 \n";
 #print (' results ');
 echo " Results ";
}
#@system("rm /home/sxc6274/public_html/files/$dirname/fileo");
}
else {
 echo "Error: File ".$_FILES['protein']['tmp_name']." and ".$_FILES['tipper']['tmp_name']." already exists";
} else {
 echo "Error: Only text files and below the size of 100,000 KB are accepted";
}
?>