The subgroup $\text{PSL}_2(\mathbb{R})$ is spherical in the group of diffeomorphisms of the circle

Yury A. Neretin

We show that the group $\text{PSL}_2(\mathbb{R})$ is a spherical subgroup in the group of C^3-diffeomorphisms of the circle. Also, the group of automorphisms of a Bruhat–Tits tree is a spherical subgroup in the group of hierarchomorphisms of the tree.

1. Sphericity. Let G be a topological group, K be a subgroup. An irreducible unitary representation ρ of G in a Hilbert space H is called spherical if there is a unique up to a scalar factor non-zero K-invariant vector v in H. The matrix element

$$\Phi(g) := \langle \rho(g)v, v \rangle$$

is called a spherical function on G. A subgroup K in G is called spherical if for any irreducible unitary representation of G the dimension of the space of K-invariant vectors is ≤ 1.

For various types of spherical pairs in this sense, see [5], [8], [18], [3], [16], [15]. For all known examples the group K is compact or is an infinite-dimensional analog of compact groups as $U(\infty)$, $O(\infty)$, $\text{Sp}(\infty)$, $S(\infty)$ etc. ('heavy groups' in the sense of [13]).

2. Statements. Let $\text{SL}_2(\mathbb{R})$ be the group of 2×2 real matrices with determinant 1, let $\text{PSL}_2(\mathbb{R})$ be its quotient with respect to the center, $\text{SL}_2(\mathbb{R})^\sim$ be the universal covering group. Denote by Diff (respectively by Diff^3) the group of C^∞-smooth (resp. C^3-smooth) orientation preserving diffeomorphisms of the circle. Denote by Diff^\sim the universal covering of Diff, we realize Diff^\sim as the group of smooth diffeomorphisms q of the line \mathbb{R} satisfying the condition

$$q(\varphi + 2\pi) = q(\varphi) + 2\pi.$$

The Bott cocycle $c(q_1, q_2)$ on Diff^\sim is defined by the formula

$$c(q_1, q_2) = \int_0^{2\pi} q_1'(\varphi)q_2'(\varphi) d\varphi.$$

Consider the central extension $\widetilde{\text{Diff}}$ of Diff^\sim determined by the Bott cocycle (see, e.g., [4], §3.4). By $\widetilde{\text{Diff}}^3$ we denote the similar central extension of Diff^3.

Theorem 1 The subgroup $\text{PSL}_2(\mathbb{R})$ is spherical in the group Diff^3.

Theorem 2 The subgroup $\text{PSL}_2^\sim(\mathbb{R})$ is spherical in the group $\widetilde{\text{Diff}}^3$.

Remark. a) Several series of spherical representations of Diff and Diff^\sim were constructed in [11], see also [13], §IX.6. All such spherical representations are continuous in the C^3-topology.

1Supported by the grant FWF, Project P25142
b) Sobolev diffeomorphisms of the circle of the class $s > 3/2$ form a group (see [7], Theorem 1.2 and Appendix B). Our proof survives for the group of Sobolev diffeomorphisms of the class H^5.

Next, consider a combinatorial analog of Diff. Fix an integer $n \geq 2$. Consider the Bruhat–Tits tree T_n, i.e., the infinite tree such that each vertex is incident to $n + 1$ edges. Let $\text{Abs}(T_n)$ be its boundary (for detailed definitions, see, e.g., [17], [12]). Denote by $\text{Aut}(T_n)$ the group of all automorphisms of the graph T_n. It is a locally compact group, stabilizers of finite subtrees form a base of open-closed neighborhoods of unit.

Denote by $\text{Vert}(T_n)$ the set of vertices of T_n. Consider a bijection $\theta : \text{Vert}(T_n) \to \text{Vert}(T_n)$ such that for all but a finite numbers of pairs of adjacent vertices (a, b), vertices $\theta(a), \theta(b)$ are adjacent. Hierarchomorphism of the tree T_n is are homeomorphisms of $\text{Abs}(T_n)$ induced by such maps, see [12], [14]. Denote by $\text{Hier}(T_n)$ the group of all hierarchomorphisms of the tree T_n.

Remark. a) For a prime $n = p$ the boundary $\text{Abs}(T_p)$ can be identified with a p-adic projective line. The group $\text{Aut}(T_p)$ contains the p-adic PSL$_2$ and the representation theory of $\text{Aut}(T_p)$ is similar to the representation theory of p-adic and real SL$_2$ (see [2], [17]). The group $\text{Hier}(T_p)$ contains the group of locally analytic diffeomorphisms of the p-adic projective line.

b) Richard Thompson groups (see [1]) are discrete subgroups of $\text{Hier}(T_n)$.

c) Several series of $\text{Aut}(T_n)$-spherical representations of $\text{Hier}(T_n)$ were constructed in [10], [12].

We define a topology on the group $\text{Hier}(T_n)$ assuming that $\text{Aut}(T_n)$ is an open subgroup (the coset space $\text{Hier}(T_n)/\text{Aut}(T_n)$ is countable).

Theorem 3 The subgroup $\text{Aut}(T_p)$ is spherical in $\text{Hier}(T_p)$.

Theorem 4 Let $G \supseteq K$ be a spherical pair. Assume that K does not admit nontrivial finite-dimensional unitary representations. Let $\Phi_1(g), \Phi_2(g)$ be K-spherical functions on G. Then $\Phi_1(g)\Phi_2(g)$ is a spherical function.

The both $K = \text{SL}_2(\mathbb{R})^\sim$ and $\text{Aut}(T_n)$ satisfy this condition.

3. Proof of Theorem 1. Fix a point a in the circle. Denote by $G_0 \subset \text{Diff}$ the group of diffeomorphisms q such that $q(x) = x$ in a neighborhood of a. By G^* we denote the group of diffeomorphisms that are flat at a, i.e.,

$$q(a) = a, \quad q'(a) = 1, \quad q''(a) = q'''(a) = \cdots = 0$$

Let ρ be an irreducible unitary representation of Diff in H. Denote by V the subspace of all $\text{PSL}_2(\mathbb{R})$-fixed vectors. Let P be the operator of orthogonal projection on V. For $h \in \text{PSL}_2(\mathbb{R})$ we have

$$P\rho(h) = \rho(h)P = P.$$

Denote

$$\hat{\rho}(g) := P\rho(g)P.$$
This operator depends only on a double coset of Diff by $\text{PSL}_2(\mathbb{R})$,
$$
\hat{\rho}(h_1 gh_2) := \hat{\rho}(g), \quad h_1, h_2 \in \text{PSL}_2(\mathbb{R}).
$$

Lemma 5 If ρ is continuous in the C^3-topology, then the operators $\hat{\rho}(g)$ pairwise commute.

Proof. The following statement is our key argument:

Let a sequence $h_j \in \text{PSL}_2(\mathbb{R})$ converges to infinity. Then $\rho(h_j)$ weakly converges to P, see Howe, Moore [6], Theorem 5.1 (this is a general theorem for semisimple group, for $\text{PSL}_2(\mathbb{R})$ it can be easily verified case-by-case).

Let us realize the circle as the real projective line $\mathbb{RP}^1 = \mathbb{R} \cup \infty$. Without loss of generality we can set $a = \infty$. Let $U_t(x) = x + t$ be a shift on \mathbb{R}, we have $U_t \in \text{PSL}_2(\mathbb{R})$. Consider diffeomorphisms $r, q \in G_0$. For sufficiently large t the supports of r and $U_t \circ q \circ U_{-t}$ are disjoint. Therefore, these diffeomorphisms commute. Hence,

$$
\rho(r) \rho(U_t) \rho(q) \rho(U_{-t}) = \rho(U_t) \rho(q) \rho(U_{-t}) \rho(r).
$$

Therefore,

$$
P \rho(r) \rho(U_t) \rho(q) P = P \rho(q) \rho(U_{-t}) \rho(r) P.
$$

Passing to a weak limit as $t \to +\infty$, we get

$$
P \rho(r) P \rho(q) P = P \rho(q) P \rho(r) P.
$$

Thus

$$
\hat{\rho}(r) \hat{\rho}(q) = \hat{\rho}(q) \hat{\rho}(r), \quad \text{where } r, q \in G_0.
$$

But G_0 is dense in G^*. Therefore the same identity holds for $r, q \in G_*$, Indeed, let $r_j, q_j \in G_0$ be sequences convergent to r, q respectively. Passing to the iterated limit

$$
\lim_{j \to \infty} \left(\lim_{k \to \infty} \hat{\rho}(r_j) \hat{\rho}(q_k) \right) = \lim_{j \to \infty} \left(\lim_{k \to \infty} \hat{\rho}(q_k) \hat{\rho}(r_j) \right)
$$

and keeping in mind the separate weak continuity of the operator product, we get the desired statement.

Our last argument: the set $\text{PSL}_2(\mathbb{R}) \cdot G_* \cdot \text{PSL}_2(\mathbb{R})$ is dense in Diff with respect to the C^3-topology.

Let us prove this. Choose a coordinate on \mathbb{RP}^1 such that $a = 0$. Let $q \in \text{Diff}$. Consider its Schwarzian derivative,

$$
S(q) = \frac{q' q''' - \frac{3}{2} (q'')^2}{(q')^2}.
$$

Consider a point b such that $S(q)(b) = 0$ (by the Ghys theorem, the Schwarzian derivative of a diffeomorphism of the circle has at least 4 zero, see [19], Theorem 4.2.1). Then for

$$
r := U_{-q(b)} \circ q \circ U_b
$$

2i.e., for any compact subset B, we have $h_j \notin B$ starting some number.
we have \(r(0) = 0, S(r)(0) = 0 \). Consider maps
\[
\sigma(x) = \frac{ux}{u^{-1} + vx},
\]
such \(\sigma \in \text{PSL}_2(\mathbb{R}) \) fix 0. Choosing parameters \(u, v \), we can achieve
\[
(q \circ \sigma)'(0) = 1, \quad (q \circ \sigma)''(0) = 0.
\]
Recall the transformation property of the Schwarzian:
\[
S(q \circ \sigma) = (S(q) \circ \sigma) \cdot (\sigma')^2 + S(\sigma).
\]
Since \(\sigma \) is linear fractional, \(S(\sigma) = 0 \). Therefore \(S(q \circ \sigma) = 0, \) and \(q''(0) = 0 \).
Such \(q \) can be approximated in \(C^3 \)-topology by elements of \(G_\ast \). This proves Lemma 5.
\[\square\]

Theorem 1 is a corollary of the lemma. Note, that \(\tilde{\rho}(g^\ast) = \tilde{\rho}(g^{-1}) \). Thus we get a family of commuting operators in \(V \), such that an adjoint operator \(A^\ast \) is contained in the family together with \(A \). If \(\dim V > 1 \), then this family has a proper invariant subspace in \(V \), say \(W \). Consider the Diff-cyclic span of \(W \), i.e.,
the subspace \(Z \) spanned by vectors \(\rho(g)w \), where \(g \in \text{Diff}_3 \) and \(w \in W \). Then
\[
P \rho(g)w = P \rho(g)Pw = \tilde{\rho}(g)w \in W.
\]
Hence, \(PZ = W \) and therefore \(Z \) is a proper subspace in \(H \).

4. Proof of Theorem 2. It repeats the previous proof with two additional remarks.

1) Consider the homomorphism \(\pi : \text{SL}_2(\mathbb{R})^\sim \rightarrow \text{PSL}_2(\mathbb{R}) \simeq \text{SL}_2(\mathbb{R})^\sim / \mathbb{Z} \). We say that a sequence \(h_j \in \text{SL}_2(\mathbb{R})^\sim \) converges to \(\infty \) if \(\pi(h_j) \rightarrow \infty \). Then the Howe–Moore theorem remains valid.

2) For a pair of diffeomorphisms with disjoint supports \(p, q \) the Bott cocycle \(c(q, p) \) vanishes, hence the diffeomorphisms \(p, q \) commute in the extended group.

5. Proof of Theorem 3. First, there is the following analog of the Howe–Moore theorem: Let a sequence \(h_j \in \text{Aut}(T_n) \) converges to \(\infty \). Then for any unitary representation \(\rho \) of \(\text{Aut}(T_n) \) the sequence \(\rho(h_j) \) converges to the projection to the subspace of \(\text{Aut}(T_n) \)-fixed vectors, see \[9\]; this can be easily verified case-by-case starting the classification theorem of \[17\].

Second, fix a point \(a \in \text{Abs}(T_n) \) and denote by \(G_0 \) the group of hierarchomorphisms that are trivial in a neighborhood of \(a \). Let \(q, r \in G_0 \). Then there is a sequence \(h_j \in \text{Aut}(T_n) \cap G_0 \) such that \(h_j \) tends to \(\infty \) and supports of \(h_jph_j^{-1} \) and \(q \) are disjoint. We omit a proof, since it is easier to understand its self-evidence than to read a formal exposition.

Third,
\[
\text{Aut}(T_n) \cdot G_0 \cdot \text{Aut}(T_n) = \text{Hier}(T_n)
\]
Now we can repeat the proof of Theorem 1.

6. Proof of Theorem 4. The statement is semitrivial.
Lemma 6 Let $\nu_1 \nu_2$ be unitary representations of a group Γ. If the tensor product $\nu_1 \otimes \nu_2$ contains a nonzero Γ-invariant vector, then the both ν_1 and ν_2 have finite-dimensional subrepresentations.

Proof of the lemma. Assume that an invariant vector exists. Denote the spaces of representations by V_1, V_2. We identify $V_1 \otimes V_2$ with the space of Hilbert–Schmidt operators $V'_1 \to V_2$, where V'_1 is the dual space to V_1. An invariant vector corresponds to an intertwining operator $T: V'_1 \to V_2$. The operator TT^* is an intertwining operator in V_2. Since TT^* is compact and nonzero, it has a finite-dimensional eigenspace, and this subspace is G-invariant. □

Proof of the theorem. Let ρ_1 and ρ_2 be K-spherical representations of G in H_1 and H_2. Let v_1, v_2 be fixed vectors. By the lemma, $v_1 \otimes v_2$ is a unique K-fixed vector in $H_1 \otimes H_2$. The cyclic span W of $v_1 \otimes v_2$ is an irreducible subrepresentation. Indeed, let $W = W_1 \oplus W_2$ be reducible. Then the both projections of $v_1 \otimes v_2$ to W_1, W_2 are K-fixed, therefore $v_1 \otimes v_2$ must be contained in one of summands, say W_1, and thus the cyclic span of $v_1 \otimes v_2$ is contained in W_1, i.e., $W = W_1$.

Now we consider the representation of G in W,

$$\langle (\rho_1(g) \otimes \rho_2(g))v_1 \otimes v_2, v_1 \otimes v_2 \rangle_W = \langle \rho_1(g)v_1, v_1 \rangle_{H_1} \cdot \langle \rho_2(g)v_2, v_2 \rangle_{H_2} = \Phi_1(g)\Phi_2(g).$$

References

[1] Cannon, J. W., Floyd, W. J., Parry, W. R. Introductory notes on Richard Thompson’s groups. Enseign. Math. (2) 42 (1996), no. 3-4, 215–256

[2] Cartier, P. Géométrie et analyse sur les arbres, Lecture Notes in Math. 317 (1973) 123–140.

[3] Ceccherini-Silberstein, T.; Scarabotti, F.; Tolli, F. Harmonic analysis on finite groups. Cambridge University Press, Cambridge, 2008.

[4] Fuks, D. B. Cohomology of infinite-dimensional Lie algebras. Consultants Bureau, New York, 1986.

[5] Gelfand, I. M. Spherical functions in symmetric Riemann spaces. Doklady Akad. Nauk SSSR (N.S.) 70, (1950), 5–8.

[6] Howe, R. E.; Moore, C. C. Asymptotic properties of unitary representations. J. Funct. Anal. 32 (1979), no. 1, 72–96.

[7] Inci, H., Kappeler, T., Topalov, P. On the regularity of the composition of diffeomorphisms. Mem. Amer. Math. Soc. 226 (2013), no. 1062.

[8] Krämer, M. Sphärische Unterruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129–153.
[9] Lubotzky, A., Mozes, Sh. Asymptotic properties of unitary representations of tree automorphisms. In Harmonic analysis and discrete potential theory (Frascati, 1991), 289–298, Plenum, New York, 1992.

[10] Neretin, Yu. A. Unitary representations of the groups of diffeomorphisms of the p-adic projective line. Funct. Anal. Appl. 18 (1984), no. 4, 345–346.

[11] Neretin, Yu. A. Almost invariant structures and constructions of unitary representations of the group of diffeomorphisms of the circle. Soviet Math. Dokl. 35 (1987), no. 3, 500–504.

[12] Neretin, Yu. A. Combinatorial analogues of the group of diffeomorphisms of the circle. Russian Acad. Sci. Izv. Math. 41 (1993), no. 2, 337–349.

[13] Neretin, Yu. A. Categories of symmetries and infinite-dimensional groups. Oxford University Press, New York, 1996.

[14] Neretin, Yu. A. Groups of hierarchomorphisms of trees and related Hilbert spaces. J. Funct. Anal. 200 (2003), no. 2, 505–535.

[15] Neretin, Yu. A. Sphericity and multiplication of double cosets for infinite-dimensional classical groups. Funct. Anal. Appl. 45 (2011), no. 3, 225–239.

[16] Nessonov, N. I. Factor-representation of the group $GL(\infty)$ and admissible representations $GL(\infty)$, Mat. Fiz. Anal. Geom. (Kharkov Math. J.), 10:4 (2003), 167–187.

[17] Olshanski, G. I. Classification of the irreducible representations of the automorphism groups of Bruhat-Tits trees. Funct. Anal. Appl. 11 (1977), no. 1, 26–34.

[18] Olshanski, G.I. Unitary representations of infinite dimensional pairs (G, K) and the formalism of R. Howe, in: Representation of Lie Groups and Related Topics, 1990, pp. 269–463

[19] Ovsienko, V., Tabachnikov, S. Projective differential geometry old and new. From the Schwarzian derivative to the cohomology of diffeomorphism groups. Cambridge University Press, Cambridge, 2005.

Math.Dept., University of Vienna,
Oskar-Morgenstern-Platz 1, 1090 Wien;
& Institute for Theoretical and Experimental Physics (Moscow);
& Mech.Math.Dept., Moscow State University.
e-mail: neretin(at) mccme.ru
URL:www.mat.univie.ac.at/~neretin

6