Original Article

Antibiotic resistance and molecular characterization of ophthalmic Staphylococcus pseudintermedius isolates from dogs

Min-Hee Kang¹, Min-Joo Chae¹, Jang-Won Yoon², Seung-Gon Kim¹, So-Young Lee¹, Jong-Hyun Yoo¹, Hee-Myung Park¹,²∗

¹Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
²Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea

The prevalence, virulence potential, and antibiotic resistance of ophthalmic Staphylococcus pseudintermedius (SP) isolated from dogs were examined. Sixty-seven Staphylococcus species were isolated from ophthalmic samples and surveyed for species-specific sequences in the Staphylococcus intermedius group (SIG) nuclease gene (Slnuc), exfoliative toxin gene for SIG (siet), and antibiotic resistance genes (blaZ and mecA). PCR-restriction fragment length polymorphism analysis of the pta gene was also performed. Fifty isolates were identified as SIG strains, all of which were found to be SP. The blaZ gene was detected in 42 of the 50 SP strains and mecA gene was observed in 18 of the 50 SP strains. The 50 SP strains were most susceptible to amoxicillin/clavulanic acid (94%) and chlorampenicol (70%), and highly resistant to tetracycline (94%) and penicillin (92%). It was also found that 16 (88.9%) mecA-positive SP strains were resistant to oxacillin, tetracycline and penicillin. All mecA-positive SP were resistant to more than four of the eight tested antibiotics and therefore considered SP with multi-drug resistance (MDR). Our results indicate a high prevalence of antibiotic resistance genes in ophthalmic SP along with a close relationship between MDR SP strains and mecA gene. Based on our findings, judicious administration of antibiotics to companion dogs is necessary.

Keywords: antibiotic resistance, canine, methicillin resistance, ophthalmic, Staphylococcus pseudintermedius

Introduction

The Staphylococcus intermedius group (SIG), previously called ‘Staphylococcus (S.) intermedius’, is an opportunistic bacterium that is most frequently associated with skin diseases such as pyoderma and otitis externa in dogs [9]. The SIG inhabiting skin includes three species: S. pseudintermedius (SP), S. intermedius, and S. delphini. These coagulase-positive staphylococci (CoPS) have similar phenotypes and differentiation among CoPS have relied on molecular identification techniques [17]. In companion dogs, the SIG seems to consist solely of SP [17,31]. The SIG is also known to be a primary pathogen that causes canine ocular diseases such as keratitis and abscess; however, little information is available about the prevalence of SP in canine ophthalmic microflora [24,27,28].

The SIG bacterium disrupts cell-to-cell adhesion of eukaryotic cells during skin infection by producing a 27-kDa exfoliative toxin (siet) that targets a desmosomal cell-cell adhesion molecule in the superficial epidermis (desmoglein 1) and facilitates percutaneous bacterial invasion of mammalian skin [15,23]. In recent studies, methicillin resistance and multi-drug resistance (MDR) in animal pathogenic Staphylococcus spp. have been implicated in potential zoonotic infections among humans [20,21,32]. In particular, mecA has been closely linked with MDRSP or methicillin-resistant SP (MRSP), thereby decreasing the arsenal of effective antibiotics [6,10,30,31]. The zoonotic transfer of MDRSP and MRSP could critically impact public health. The indiscriminate use of broad-spectrum systemic or topical antibiotics for therapeutic purposes and as a prophylaxis against ocular disease could increase bacteria resistance and zoonotic potential [27]. However, limited data on the prevalence of ophthalmic MDRSP and MRSP is available in veterinary practice and literature. The purpose of this study was to evaluate the prevalence and antibiotic resistance of SP isolates from canine eyes, and identify potential virulence
genes using molecular techniques.

**Materials and Methods**

**Collection of the staphylococcal strains**

Sixty-seven staphylococcal strains were isolated from individual canine eyes between March 2005 and September 2007 using a standard bacteriological method. Collection of the isolates was performed at the Veterinary Medical Teaching Hospital of Konkuk University (Korea). Thirty-three dogs referred for ocular disease were treated or suspected of having been treated with antibiotics. Ocular diseases included corneal ulcer, conjunctivitis, keratoconjunctivitis sicca, uveitis, keratoconjunctivitis, blepharitis, glaucoma, corneal degeneration, conjunctival hyperemia, ocular hemorrhage, cataract, progressive retinal atrophy, and retinal detachment. Other dogs were referred for non-ocular disease, and no information was available. Two cotton-tipped culture swabs were taken from each dog. Preliminary screening was conducted using standard microbiological procedures including a phenotypical test, Gram staining, and a catalase test to differentiate staphylococcal species.

**Multiplex PCR and molecular identification**

Bacterial DNA extraction was performed by inoculating Luria-Bertani (LB) medium with a single colony and incubating overnight at 37°C. Next, 1.5 mL of the cultured medium was centrifuged at 12,000 × g for 1 min. The bacterial pellet was then suspended in 500 μL of Tris-EDTA (10 mM Tris, pH 8.0, and 0.1 mM EDTA) buffer and DNA was extracted using a commercial kit (Optima Scientific, Japan).

PCR-based confirmation of SIG was carried out with species-specific primers targeting the SIG nuclease (nuc) gene as previously described [2]. Additionally, PCR reactions specific for the siet, mecA, and blaZ genes were performed to identify exfoliative toxin production, oxacillin resistance, and penicillin resistance, respectively, as previously described [14,22]. Five primer pairs were used for our multiplex PCR and the blaZ gene-targeting primers were modified to distinguish the amplicon of interest from other amplicons based on size. The oligonucleotide primer sequences and PCR programs are summarized in Table 1.

After primer modification, the amplicon size of the blaZ gene was about 700 bp. The PCR-amplified products were subsequently analyzed by direct DNA sequencing (Macrogen, Korea). All of the multiplex PCR amplicons were the expected size when the DNA templates were 10 ~ 10² ng. The amplicons were between 125 and 700 bp in size, and correctly differentiated by agarose gel electrophoresis.

For this study, we mixed 2 ng of the template DNA from the 67 samples with 12.5 μL of 2× EF-Taq PCR Pre-Mix (SolGent, Korea). Next, 2.5 pmol of 16S primers or 10 pmol of the other primers were added to amplify the gene-specific PCR fragment. The PCR conditions are described in Table 1. To identify the PCR product, we separated 10 μL of the reaction product in a 2% agarose gel by electrophoresis and stained with ethidium bromide for visualization. A 16S rDNA primer pair specific for Staphylococcus functioned as the internal control, confirming the amplification efficiency (Fig. 1).

PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the pta gene was performed for SP identification. Following a previously described

---

### Table 1. Oligonucleotide sequences and PCR conditions used in the present study

| Target gene | Primers | Sequence (5’→3’) | Program | Expected amplicon size (bp) | Reference |
|-------------|---------|------------------|---------|----------------------------|-----------|
| SInuc       | SInuc1  | CAA TGG AGA TGG CCC TTT TA | 1*      | 125                        | Baron et al. [2] |
|             | SInuc2  | AGC GTA CAC GTT CAT CTT G |         |                             |           |
| 16S rDNA    | 16S1    | GGA CGG TGA GTA ACA CGT GG | 1       | 252                        | Baron et al. [2] |
|             | 16S2    | TCC CGT AGG AGT CTC AGC GTT |         |                             |           |
| siet        | siet1   | ATG GAA AAT TTA GCG GCA TCT GG | 1       | 359                        | Lautz et al. [14] |
|             | siet2   | CCA TTA CTT TTC GCT GTC TGT GC |         |                             |           |
| mecA        | mecA1   | AAA ATC GAT GGT AAA GGT TGG C | 1       | 532                        | Strommenger et al. [22] |
|             | mecA2   | AGT TCT GCA GTA CCG GAT TGG C |         |                             |           |
| blaZ        | blaZ3   | TGA CCA CTT TTA TCA GCA ACC | 1       | 700                        | In this study |
|             | blaZ2   | GCC ATT TCA ACA CCT TCT TTC |         |                             |           |
| pta         | pta_f1  | AAA GAC AAA CTT TCA GGT AA | 2†      | 320                        | Bannoehr et al. [1] |
|             | pta_r1  | GCA TAA ACA AGC ATT GTA CCG |         |                             |           |

*PCR program 1: one cycle at 95°C for 240 sec, 30 cycles at 95°C for 60 sec, 58°C for 60 sec, and 72°C for 60 sec; one cycle at 72°C for 420 sec.
†PCR program 2: one cycle at 95°C for 120 sec, 30 cycles at 95°C for 60 sec, 55°C for 60 sec, and 72°C for 60 sec; one cycle at 72°C for 420 sec.
protocol [1], we used pta primers and MboI restriction enzyme. The concentrations of the primers, template DNA, and restriction enzyme were modified along with the PCR product volume to increase the reaction efficiency. We mixed 2 ng of template DNA with 15 μL of 2× SolGent EF-Taq PCR Pre-Mix, 10 pmol of the pta primers, and 11 μL of distilled water. The PCR conditions are described in Table 1. After post-extension, we mixed 5 μL of the PCR product with 2 μL of 10× NE buffer 4 (50 mM potassium-acetate, 20 mM Tris-acetate, 10 mM Mg-acetate, 1 mM DTT, pH 7.9), 1 U of MboI restriction enzyme, and 12 μL of distilled water. The solution was then incubated at 37°C for 4 h. SP was identified based on the detection of 107 and 203 bp pta gene fragments (Fig. 2).

**Antimicrobial susceptibility testing**

An antibiogram analysis was carried out following the guidelines of the Clinical and Laboratory Standards Institute [5]. Eight commonly prescribed antibiotics were tested [amoxicillin/clavulanic acid (30 μg), oxacillin (1 μg), chloramphenicol (30 μg), gentamycin (10 μg), erythromycin (15 μg), sulfamethoxazole/trimethoprim (25 μg), tetracycline (30 μg), and penicillin (10 μg)] using commercially available BD BBL Sensi-Disc disks (BD Diagnostics, USA).

**Results**

According to the multiplex PCR results, eight groups were identified based on the prevalence of the SInuc, siet, blaZ, and mecA genes (Fig. 1; Table 2). The 16S rDNA gene amplicon internal control was clearly positive for all 67 strains. Among these, 50 strains (74.6%) in groups 1 to 3 contained the SInuc gene specific for SIG. Out of the 50 ophthalmic SP strains, 25 were isolated from dogs with ocular disease and the other 25 were isolated from dogs without ocular disease. Similar to a previous report [26], all SIG strains were confirmed as SP according to the PCR-RFLP assay and all SP-encoded exfoliative toxin-producing genes were predominantly found in the

![Fig. 1. Results of the multiplex PCR assay. Detection of the SInuc (125 bp), siet (359 bp), mecA (532 bp), and blaZ (700 bp) genes. A highly conserved region of 16S rDNA (252 bp) was used as an internal positive control. Marker, 100 bp ladder; SIG, S. intermedius group.](image1)

![Fig. 2. PCR-restriction fragment length polymorphism (RFLP) analysis of the SP pta gene. M, 100 bp ladder; 1, S. pseudintermedius (SP; 213 and 107 bp); 2, S. aureus (156 and 164 bp); 3, S. intermedius or S. delphini (Others, 320 bp); 4, Not S. intermedius or S. aureus.](image2)

**Table 2.** Multiplex PCR and PCR-RFLP results for the 67 *Staphylococcus* species isolated from canine eyes

| PCR type          | Multiplex PCR | PCR-RFLP   |
|-------------------|---------------|------------|
| 16S rDNA          | SInuc         | mecA       |
| Group 1           | +             | +          | +         | 18 (26.9) | 18 (36.0) |
| Group 2           | +             | +          | +         | 28 (41.8) | 28 (56.0) |
| Group 3           | +             | +          | −         | 4 (6.0)   | 4 (8.0)   |
| Group 4           | +             | −          | +         | 1 (1.5)   | 0 (0.0)   |
| Group 5           | +             | −          | −         | 4 (6.0)   | 0 (0.0)   |
| Group 6           | +             | −          | +         | 2 (3.0)   | 0 (0.0)   |
| Group 7           | +             | −          | −         | 3 (4.5)   | 0 (0.0)   |
| Group 8           | +             | −          | −         | 7 (10.4)  | 0 (0.0)   |
| Total             |               |            |           | 67 (100.0)| 50 (100.0)|
ophthalmic SP strains. None of the *Slmuc* gene-negative strains were identified as SP. The *blaZ* antibiotic resistance gene was present in 46 of the 50 SP strains (94%). Among these, 18 strains (36%) also contained the *mecA* gene. Notably, none of the *blaZ* gene-negative strains expressed the *mecA* gene (Table 2). Prevalence of the *mecA* gene was twice as high in SP isolated from dogs with ocular disease (12/25, 48%) compared to ones without (6/25, 24%).

Susceptibility to eight commonly used antibiotics of the 50 SP isolates is presented in Table 3. More than 50% of the SP isolates were resistant to tetracycline, penicillin, sulfamethoxazole/trimethoprim, erythromycin, and gentamycin. The levels of susceptibility were highest for amoxicillin/clavulanic acid and chloramphenicol. Seventeen of the 50 (34%) SP strains were resistant to oxacillin, indicating a high prevalence of MRSP (Table 3).

| Antimicrobial agent | Number of SP isolates (%) |
|---------------------|---------------------------|
|                     | Resistant | Intermediate | Susceptible |
| Tetracycline        | 47 (94.0) | 0 (0.0)      | 3 (6.0)     |
| Penicillin          | 46 (92.0) | 0 (0.0)      | 4 (8.0)     |
| Sulfamethoxazole/trimethoprim | 32 (64.0) | 0 (0.0)     | 18 (36.0)  |
| Erythromycin        | 29 (58.0) | 0 (0.0)      | 21 (42.0)   |
| Gentamycin          | 25 (50.0) | 1 (2.0)      | 24 (48.0)   |
| Oxacillin           | 17 (34.0) | 0 (0.0)      | 33 (66.0)   |
| Chloramphenicol     | 14 (28.0) | 1 (2.0)      | 35 (70.0)   |
| Amoxicillin/clavulanic acid | 3 (6.0) | 0 (0.0) | 47 (94.0) |

There was significant correlation between genes conferring antibiotic resistance (*mecA* and *blaZ*) and antibiotic susceptibility (penicillin and oxacillin). The 18 *mecA*-positive and *blaZ*-positive strains were 100% resistant to penicillin. Most of the 18 *mecA*-positive strains were resistant to oxacillin (88.9%). However, only 37% of the 46 *blaZ*-positive strains were resistant to this reagent. Based on these results, antimicrobial resistance of the 50 ophthalmic SP isolates was re-evaluated based on the presence of the *mecA* gene. Among the *mecA*-positive isolates (18/50), most oxacillin-resistant SP strains (16/18) were also resistant to multiple antibiotics such as tetracycline, sulfamethoxazole/trimethoprim, erythromycin, and gentamycin. Additionally, two of the *mecA*-positive SP strains were oxacillin susceptible and one *mecA*-negative SP strain was resistant to oxacillin (Table 4). All *mecA*-positive SP isolates were resistant to oxacillin according to the disk diffusion assay.

**Table 3.** Antibiogram results for the 50 ophthalmic SP isolates

| Antimicrobial agent | Number of SP isolates (%) |
|---------------------|---------------------------|
|                     | Resistant | Intermediate | Susceptible |
| Tetracycline        | 47 (94.0) | 0 (0.0)      | 3 (6.0)     |
| Penicillin          | 46 (92.0) | 0 (0.0)      | 4 (8.0)     |
| Sulfamethoxazole/trimethoprim | 32 (64.0) | 0 (0.0) | 18 (36.0)  |
| Erythromycin        | 29 (58.0) | 0 (0.0)      | 21 (42.0)   |
| Gentamycin          | 25 (50.0) | 1 (2.0)      | 24 (48.0)   |
| Oxacillin           | 17 (34.0) | 0 (0.0)      | 33 (66.0)   |
| Chloramphenicol     | 14 (28.0) | 1 (2.0)      | 35 (70.0)   |
| Amoxicillin/clavulanic acid | 3 (6.0) | 0 (0.0) | 47 (94.0) |

**Table 4.** Antimicrobial resistance of the *mecA*-positive or -negative ophthalmic SP isolates from dogs

| Antimicrobial agent | Number of antibiotic-resistant SP isolates (%) |
|---------------------|-----------------------------------------------|
|                     | *mecA* PCR-negative (n = 32) | *mecA* PCR-positive (n = 18) |
|                     |                          | Oxa-R* (n = 16) | Oxa-Susc1 (n = 2) |
| Tetracycline        | 29 (90.6)                | 16 (100.0)   | 2 (100.0)         |
| Penicillin          | 28 (87.5)                | 16 (100.0)   | 2 (100.0)         |
| Sulfamethoxazole/trimethoprim | 16 (50.0) | 15 (93.8) | 1 (50.0) |
| Erythromycin        | 14 (43.8)                | 14 (87.5)    | 1 (50.0)          |
| Gentamycin          | 9 (28.1)                 | 14 (87.5)    | 2 (100.0)         |
| Chloramphenicol     | 4 (12.5)                 | 8 (50.0)     | 2 (100.0)         |
| Oxacillin           | 1 (3.1)                  | 16 (100.0)   | 0 (0.0)           |
| Amoxicillin/clavulanic acid | 0 (0.0) | 3 (18.8) | 0 (0.0) |

*Oxa-R, resistant to oxacillin according to the disk diffusion assay; †Oxa-susc, susceptible or intermediate resistance to oxacillin according to the disc diffusion assay.
resistant to more than four of the eight tested antibiotics, indicating an association of MDRSP with mecA gene-positive SP (Fig. 3).

Discussion

All ophthalmic SIG isolates (50/67, 74.6%) in this study were re-identified as SP. These results were similar with ones from a study on skin-derived SIG [30]. It has been suggested that SP is highly host-specific and foot-to-eye transmission is possible. Universal prevalence of exfoliative toxin-producing genes among the SP strains examined in the current investigation strongly implies the high possibility that these bacteria can cause ophthalmic disease [14].

The prevalence of MRSP has been commonly studied in dogs and cats with skin disease [26]. According to a recent report, the prevalence of MRSP in North America and Canada is 0% ~ 7% [26]. These rates are slightly elevated in other countries with 12.7% in China [29], 11.4% in Japan [16], and 17.6% in Korea [31]. In the present investigation, the MRSP rate was 34%, which was higher than that previously reported in studies of skin. The frequent use of broad-spectrum antibiotics as canine ocular medications could have contributed to the relatively high prevalence of MRSP we observed although the exact history of antibiotic administration was not obtained for our survey.

In the current study, 46 out of 50 (92%) SP isolates possessed the blaZ gene while 18 out of 50 (36%) had the mecA gene. These two genes are specific for Staphylococcus penicillin- and oxacillin-like β-lactam antibiotic resistance. Furthermore, prevalence of the mecA gene was approximately two-times higher among dogs with ocular diseases. These results indicate a high rate of antibiotic resistance genes in ophthalmic SP. Among the 50 SP strains, 16 (32%) of the oxacillin-resistant isolates possessing the mecA gene were twice as likely to be resistant to the three most susceptible antibiotics, suggesting that the mecA gene is closely associated with MDR [11,12]. The increased prevalence of SP harboring the mecA gene could thus impact patient health since the antibiotic choices for therapy would be narrowed.

Two out of the 18 SP isolates harboring the mecA gene were susceptible to methicillin and therefore classified as pre-MRSP [3]. Pre-MRSP strains contain a functionally intact mecR1-mecI regulatory region. As a result, mecA expression might be strongly repressed. Under antibiotic pressure, such pre-MRSPs tend to constitutively produce penicillin-binding protein (PBP2a) and acquire increased resistance to methicillin.

One strain was negative for the mecA gene but methicillin-resistant (1/32, 3.1%). It is possible that the hyperproduction of β-lactamase or PBPs alternatively produced by another type of antibiotic resistance gene could help the bacteria resist oxacillin-like β-lactam antibiotics in the absence of the mecA gene [8,25]. In 2011, a novel mecA homologue designated mecC (or mecAEGAS1) was described [7]. Because of its highly divergent sequence, this gene cannot be detected by routine molecular assays designed to identify mecA [13,18]. This suggests that a different mec element not detectable by conventional mecA-specific PCR could be involved. Further study of these mechanisms will be helpful for developing new drugs that target β-lactam-resistant Staphylococcus.

In this study, we described a multiplex PCR procedure to detect clinically relevant antibiotic resistance genes in ophthalmic SP isolates. Although classical susceptibility testing methods are relatively simple, the results may be highly dependent on experimental conditions. Furthermore, there is no certain way to determine antibiotic concentrations in ocular tissues during topical therapy. Results of our multiplex PCR assay were comparable to ones from the standard susceptibility test performed in this study. A recent Clinical and Laboratory Standards Institute (CLSI) recommendation [5] is germane to the discrepancy observed between the mecA gene prevalence and oxacillin resistance we observed. According to this recommendation, strains of S. aureus and S. lugdunensis should be reported as oxacillin-resistant if either disc result indicates resistance when both cefoxitin and oxacillin are tested. Indeed, some studies have reported that a 30-μg cefoxitin disc is more sensitive than a 1-μg oxacillin disc when detecting mecA-mediated oxacillin resistance among staphylococci [4,19]. However, pre-MRSP and mecA-negative oxacillin-resistant SP strains were also sensitive to cefoxitin in the present study (data not shown). Thus, we recommend that both an oxacillin disc test and PCR detection should be performed together to identify ophthalmic MRSP. In addition, multiplex PCR detection could provide more information for developing an effective antibiotic therapy.

In conclusion, results of our study demonstrated that ophthalmic MDRSP and MRSP were prevalent in dogs. The phenotypic and genotypic comparison of antibiotic resistance showed that 88.9% of all the mecA-positive SP isolates was resistant to oxacillin. Notably, all the mecA-positive and oxacillin-resistant SP isolates displayed MDR. Based on our findings, we strongly recommend that judicious selection of antibiotics in companion dogs is necessary to prevent MDR.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2013R1A1A2006152).
Conflict of Interest

There is no conflict of interest.

References

1. Bannoehr J, Franco A, Iurescia M, Battisti A, Fitzgerald JR. Molecular diagnostic identification of Staphylococcus pseudintermedius. J Clin Microbiol 2009, 47, 469-471.
2. Baron F, Cochet MF, Pellerin JL, Ben Zakour N, Lebon A, Navarro A, Proudy I, Le Loir Y, Gautier M. Development of a PCR test to differentiate between Staphylococcus aureus and Staphylococcus intermedius. J Food Prot 2004, 67, 2302-2305.
3. Berger-Bäch B, Rohrer S. Factors influencing methicillin resistance in staphylococci. Arch Microbiol 2002, 178, 165-171.
4. Broekema NM, Van TT, Monson TA, Marshall SA, Warshauer DM. Comparison of cefoxitin and oxacillin disk diffusion methods for detection of mecA-mediated resistance in Staphylococcus aureus in a large-scale study. J Clin Microbiol 2009, 47, 217-219.
5. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. CLSI document M100-S20. Clinical and Laboratory Standards Institute, Wayne, 2010.
6. Descloux S, Rossano A, Perreten V. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. J Clin Microbiol 2008, 46, 1818-1823.
7. García-Álvarez L, Holden MTM, Lindsay H, Webh CR, Brown DFG, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kears AM, Pichon B, Hill RLR, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 2011, 11, 595-603.
8. Griffith GC, Morris DO, Abraham JL, Shofer FS, Rankin SC. Screening for skin carriage of methicillin-resistant coagulase-positive staphylococci and Staphylococcus schleiferi in dogs with healthy and inflamed skin. Vet Dermatol 2008, 19, 142-149.
9. Ihrke PJ. An overview of bacterial skin disease in the dog. Br Vet J 1987, 143, 112-118.
10. Jones RD, Kanla SA, Rohrbach BW, Frank LA, Bemis DA. Prevalence of oxacillin- and multidrug-resistant staphylococci in clinical samples from dogs: 1,772 samples (2001-2005). J Am Vet Med Assoc 2007, 230, 221-227.
11. Khan AU, Sultan A, Tyagi A, Zahoor S, Akram M, Kaur S, Shahid M, Vaishnavi CV. Amplification of mecA gene in multi-drug resistant Staphylococcus aureus strains from hospital personnel. J Infect Dev Ctries 2007, 1, 289-295.
12. Kızırcetver-Swida M, Chrobak D, Rzewuska M, Binek M. Antibiotic resistance patterns and occurrence of mecA gene in Staphylococcus intermedius strains of canine origin. Pol J Vet Sci 2009, 12, 9-13.
13. Laurent F, Chardon H, Huenni M, Bes M, Reverbier ME, Madec JY, Lagier E, Vandenesch F, Tristan A. MRSA harboring mecA variant gene mecC, France. Emerg Infect Dis 2012, 18, 1465-1467.
14. Lautz S, Kanbar T, Alber J, Lämmler C, Weiss R, Prenger-Berninghoff E, Zschäck M. Dissemination of the gene encoding exfoliative toxin of Staphylococcus intermedius among strains isolated from dogs during routine microbiological diagnostics. J Vet Med B Infect Dis Vet Public Health 2006, 53, 434-438.
15. Nishifuji K, Sugai M, Amagai M. Staphylococcal exfoliative toxins: “molecular scissors” of bacteria that attack the cutaneous defense barrier in mammals. J Dermatol Sci 2008, 49, 21-31.
16. Onuma K, Tanabe T, Sato H. Antimicrobial resistance of Staphylococcus pseudintermedius isolates from healthy dogs and dogs affected with pyoderma in Japan. Vet Dermatol 2012, 23, 17-22.
17. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K. Reclassification of phenotypically identified Staphylococcus intermedius strains. J Clin Microbiol 2007, 45, 2770-2778.
18. Shore AC, Deasy EC, Slickers P, Brennan G, O’Connell B, Monecke S, Ehrlich R, Coleman DC. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecl, mecR1, blaZ, and cfr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011, 55, 3765-3773.
19. Skov R, Smyth R, Larsen RO, Bolmström A, Karlsson A, Mills K, Frimodt-Møller N, Kahlmeter G. Phenotypic detection of methicillin resistance in Staphylococcus aureus by disk diffusion testing and Etest on Mueller-Hinton agar. J Clin Microbiol 2006, 44, 4395-4399.
20. Soedarmanto I, Kanbar T, Ulbegi-Mohyla H, Hijazin M, Alber J, Lämmler C, Akinened O, Weiss R, Moritz A, Zschäck M. Genetic relatedness of methicillin-resistant Staphylococcus pseudintermedius (MRSP) isolated from a dog and the dog owner. Res Vet Sci 2011, 91, e25-27.
21. Stegmann R, Burnens A, Maranta CA, Perreten V. Human infection associated with methicillin-resistant Staphylococcus pseudintermedius ST71. J Antimicrob Chemother 2010, 65, 2047-2048.
22. Strommenger B, Kettltiz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol 2003, 41, 4089-4094.
23. Terauchi R, Sato H, Hasegawa T, Yamaguchi T, Aizawa K. Keratitis: 97 cases (1993-2003). J Am Vet Med Assoc 2006, 23, 112-118.
24. Terauchi R, Sato H, Hasegawa T, Yamaguchi T, Aizawa K. Keratitis: 97 cases (1993-2003). J Am Vet Med Assoc 2006, 23, 112-118.
25. Tomasz A, Drugeon HB, de Lencastre HM, Jabes D,
McDougall L, Bille J. New mechanism for methicillin resistance in *Staphylococcus aureus*: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob Agents Chemother 1989, 33, 1869-1874.

26. van Duijkeren E, Catry B, Greko C, Moreno MA, Pomba MC, Pyörälä S, Ruzauskas M, Sanders P, Threlfall EJ, Torren-Edo J, Törneke K; Scientific Advisory Group on Antimicrobials (SAGAM). Review on methicillin-resistant *Staphylococcus pseudintermedius*. J Antimicrob Chemother 2011, 66, 2705-2714.

27. Varges R, Penna B, Martins G, Martins R, Lilienbaum W. Antimicrobial susceptibility of *Staphylococci* isolated from naturally occurring canine external ocular diseases. Vet Ophthalmol 2009, 12, 216-220.

28. Wang L, Pan Q, Zhang L, Xue Q, Cui J, Qi C. Investigation of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Beijing, China. Vet Ophthalmol 2008, 11, 145-149.

29. Wang Y, Yang J, Logue CM, Liu K, Cao X, Zhang W, Shen J, Wu C. Methicillin-resistant *Staphylococcus pseudintermedius* isolated from canine pyoderma in North China. J Appl Microbiol 2012, 112, 623-630.

30. Yoo JH, Yoon JW, Lee SY, Park HM. High prevalence of fluoroquinolone- and methicillin-resistant *Staphylococcus pseudintermedius* isolates from canine pyoderma and otitis externa in veterinary teaching hospital. J Microbiol Biotechnol 2010, 20, 798-802.

31. Yoon JW, Lee KJ, Lee SY, Chae MJ, Park JK, Yoo JH, Park HM. Antibiotic resistance profiles of *Staphylococcus pseudintermedius* isolates from canine patients in Korea. J Microbiol Biotechnol 2010, 20, 1764-1768.

32. Zubeir IE, Kanbar T, Alber J, Läämmler C, Akineden O, Weiss R, Zschöck M. Phenotypic and genotypic characteristics of methicillin/oxacillin-resistant *Staphylococcus intermedius* isolated from clinical specimens during routine veterinary microbiological examinations. Vet Microbiol 2007, 121, 170-176.