Transcriptome analysis of neural progenitor cells derived from Lowe syndrome induced pluripotent stem cells: identification of candidate genes for the neurodevelopmental and eye manifestations

Hequn Liu1†, Jesse Barnes1†, Erika Pedrosa2, Nathaniel S. Herman2, Franklin Salas2, Ping Wang1, Deyou Zheng1,3,4† and Herbert M. Lachman1,2,3,5*

Abstract

Background: Lowe syndrome (LS) is caused by loss-of-function mutations in the X-linked gene OCRL, which codes for an inositol polyphosphate 5-phosphatase that plays a key role in endosome recycling, clathrin-coated pit formation, and actin polymerization. It is characterized by congenital cataracts, intellectual and developmental disability, and renal proximal tubular dysfunction. Patients are also at high risk for developing glaucoma and seizures. We recently developed induced pluripotent stem cell (iPSC) lines from three patients with LS who have hypomorphic variants affecting the 3′ end of the gene, and their neurotypical brothers to serve as controls.

Methods: In this study, we used RNA sequencing (RNA-seq) to obtain transcriptome profiles in LS and control neural progenitor cells (NPCs).

Results: In a comparison of the patient and control NPCs (n = 3), we found 16 differentially expressed genes (DEGs) at the multiple test adjusted p value (padj) < 0.1, with nine at padj < 0.05. Using nominal p value < 0.05, 319 DEGs were detected. The relatively small number of DEGs could be due to the fact that OCRL is not a transcription factor per se, although it could have secondary effects on gene expression through several different mechanisms. Although the number of DEGs passing multiple test correction was small, those that were found are quite consistent with some of the known molecular effects of OCRL protein, and the clinical manifestations of LS. Furthermore, using gene set enrichment analysis (GSEA), we found that genes increased expression in the patient NPCs showed enrichments of several gene ontology (GO) terms (false discovery rate < 0.25): telencephalon (Continued on next page)
Introduction

Lowe syndrome (LS) (OMIM #300535) is a rare genetic disorder (~1/500,000 males) caused by mutations in the X-linked gene, OCRL (OCRL-1) [1–4]. It is characterized by the triad of congenital cataracts, intellectual and developmental disability (IDD), and renal proximal tubular dysfunction [1, 5–10]. Hypotonia, epilepsy, stereotypical behaviors, and a high rate of glaucoma are also observed.

OCRL codes for a 901 amino acid protein, inositol polyphosphate 5-phosphatase that plays a key role in endosome trafficking, clathrin-coated pit formation, and actin polymerization, by catalyzing the removal of the 5′ phosphate from phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), phosphatidylinositol 1,4,5-trisphosphate, and inositol 1,3,4,5-tetrakis phosphate [10–16].

The molecular basis of LS has primarily been studied in fibroblasts derived from patients and immortalized cell lines (e.g., HeLa; Cos-7 cells). These studies show that abnormalities in endosome recycling, in particular, megalin receptor recycling in the proximal tubules, and primary cilia dysfunction in the eye, underlie some of the clinical features [7, 11, 17–21]. However, the neurodevelopmental and behavioral aspects of LS have not been adequately investigated in human neuronal cells or animal models. A zebrafish ocr1I deficiency model has been developed, in which an increase in the susceptibility to heat-induced seizures, cystic brain lesions, and reduced Akt signaling have been observed [22]. Unfortunately, Ocr1 knock-out (KO) mice have significant limitations as a model system to study the neurodevelopmental aspect of LS. The original KO mouse is asymptomatic, due to compensation by the Ocr1 paralog, Inpp5b, since a double Ocr1/Inpp5b KO is embryonic lethal [23–25]. Recently, a mouse model was developed by expressing the human INPP5B gene, which rescues the double KO, embryonic lethal phenotype KO [26]. These mice show an endolysosomal deficit in cultured proximal tubule cells. However, learning and behavioral deficits and eye pathologies were not observed.

Because of the dearth of neurodevelopmental findings in Ocr1 KO mice, we developed an induced pluripotent stem cell (iPSC) model from three patients and their typically developing brothers. All three LS subjects have hypomorphic mutations affecting the C-terminal end of the protein [27]. We previously showed that neural progenitor cells (NPCs) derived from patient-specific iPSCs are deficient in their capacity to produce filamentous actin fibers (F-actin) and WAVE-1, a component of the WAVE regulatory complex (WRC) that controls actin polymerization [27]. The effect of these deficits on neuronal function is currently under investigation.

Although our preliminary studies have focused on some of the known effects of OCRL described in non-neuronal cells, we are also interested in identifying molecular and cellular pathways that might be uniquely affected in neural cells. One effective approach to examine molecular disruptions in an unbiased, genome-wide manner is RNA-seq. Our previous RNA-seq studies have resulted in the discoveries of novel pathways involved in autism spectrum disorder (ASD), schizophrenia (SZ) associated with 22q11.2 deletion syndrome, and a mouse model for Rett syndrome [28–30]. RNA-seq has also been used successfully by other groups to identify pathways of interest in neuropsychiatric and neurodevelopmental disorders [31–35].

Consequently, RNA-seq was used to screen NPCs derived from LS-specific iPSCs and controls; their typically developing brothers. At the significant level of nominal p value < 0.05, 319 differentially expressed genes (DEGs) were found. Among them, 16 remained statistically significant after multiple test correction at the adjusted p (padj) < 0.1, and nine at the padj < 0.05. However, among these, there were several strong candidates for the eye and behavioral/ neurological pathologies seen in LS; most notably, EFEMP1, DPP10, and SPON1.
methods
subjects
the study and consent forms were approved by the albert einstein college of medicine (aecom) internal review board (irb). a diagnosis of ls was made during infancy in each patient based on clinical findings (congenital cataracts, hypotonia), fibroblast ocrl enzyme activity, and ultimately by genotyping. the patients (ls100, ls300, ls500) harbor mutations in the 3′ end of the gene that codes for the ash-rho gap domain (table 1). a detailed molecular genetic analysis of the effects of these mutations on splicing can be found in our previous publication [27]. their neurotically developing brothers (ls200, ls400, ls600, respectively) served as controls. all subjects were between 11 and 25 years of age when recruited, and the sibling pairs were 2–4 years apart in age.

development of ipsces cells from peripheral blood cd34+ cells
ipsces lines were generated from human peripheral blood cd34+ cells with a cytome-trine-iPS 2.0 sendai reprogramming kit (invitrogen) as previously described [36]. the growth and maintenance of the ipsces used in this study are described in our recent publication [27].

generating neural progenitor cells from ipsces using dual smad inhibition
a monolayer neural progenitor cell (npc) culture protocol was adapted from the stemcell Technologies stemdiff™ smadi neural induction kit with slight modifications. briefly, ipsces were maintained in mteSR1 with daily feeding until cells reached the point of passaging. at the start of induction, differentiated cells, if present, were manually removed and the ipsces were washed with PBS. gentle dissociation reagent (stemcell Tech) was added for 8–10 min at 37 °C. Cells were dislodged by pipetting with a sterile 1 ml pipet tip and collected in a 15 ml tube containing DMEM/Laminin. NPCs were fed daily, without Y-27632m, and were ready for downstream applications at passage 3. at this stage, none of the cells stained for the stem cell marker, OCT4 (POU5F1) and virtually 100% were positive for the NPC markers vimentin and SOX2 (additional file 1: figure S1). Furthermore, we compared our NPC RNA-seq data with gene expression in multiple neural and non-neural cell lines (or tissues) analyzed by RNA-seq in the ENCODE project [37] and found that the most correlated cell line was neural progenitor cell (ENCFF663ARH, Pearson’s correlation coefficients (r) = 0.88) (Additional file 2: figure S2).

RNA-seq
total cellular RNA was extracted using the mirneasy mini kit (qiagen, catalogue# 217004) according to the manufacturer’s instructions (qiagen). an additional treatment with DNase I (qiagen, valencia, CA) was included to remove genomic DNA. After passing quality control, high throughput sequencing libraries were prepared by Novogene, and 150 bp paired-end RNA-seq reads were obtained. RNA-seq reads were aligned to the human reference genome (hg19) by the software HISAT2 (v2.0.4) [38], HTseq (v0.11.0) [39] was used to determine the read counts while the Stringtie (v1.2.2) [40] was used to compute fragments per kilobase of exon per million fragments mapped (FPKM) and transcript per million (TPM) for each of the genes annotated in the GENCODE database (v29) [41], including protein-coding, non-coding, and all other transcript types. Genes with TPM > 1 in at least one of the 12 samples were used for downstream analysis. RNA-seq read counts of the two biological replicates (A/B) were merged using the “collapseReplicates” function in the software DEseq2 [42], resulting in three samples each for the patient and control NPCs for differential expression analysis genes by DEseq2.

Table 1. OCRL mutations in patients

Patient	Exon/intron	Mutation	Genomic position (hg19)	Type
LS100	Intron 23	c.2582-1 G>T	chrX:128724122	Splice acceptor
LS300	Intron 22	c.2470-2 A>G	chrX:128723820	Splice acceptor
LS500	Exon 20	c.2179delC	chrX:128721069	Del/frame shift
The overlap of DEGs with various disease gene lists was evaluated for statistical significance by Fisher’s test. We also performed gene set enrichment analysis (GSEA; v4.0.1), using the gene sets in the gene ontology (GO) “Biological Process” category and ranking genes (n = 20,728) by fold changes (“log2_Ratio_of_Classes”), and otherwise default parameters.

Quantitative real time PCR
Quantitative real-time PCR (qPCR) was carried out on reverse-transcribed PCR using the $2^{\Delta\Delta C_T}$ method as we previously described [28, 29, 43].

Immunocytochemistry
Immunocytochemistry (ICC) was carried out as previously described [27] using mouse anti-Vimentin (Invitrogen cat#18-0052) at a 1:100 dilution, and Anti-Sox2 (StemCell Technologies cat#60055.1) at a 1:50 dilution.

Western blotting
Proteins were prepared with ProteoExtract Complete Mammalian Proteome Extraction Kit (Millipore cat# 539779) according to the manufacturer’s protocol. Protein concentrations were verified using the Bradford method. Briefly, 30–60 µg of protein were denatured with the addition of Laemmli buffer and 2-mercaptoethanol, and boiled for 5 min. Samples were loaded onto a 12% precast polyacrylamide gel (BIO-RAD cat#456-1044). Gel electrophoresis was set at constant voltage (50 V) for the first 30 min and 120 V for the remainder of the run. The running buffer was in 1× TrisGlycine/SDS buffer. After separation by electrophoresis, proteins were transferred using the Trans-Blot® Turbo™ Transfer System according to the manufacturer’s instructions. A 7-min transfer was executed using the turbo program setting. After transfer, membranes were blocked in 5% milk with gentle agitation for 1 h at room temperature. Membranes were then incubated overnight with gentle agitation at 4 °C with primary antibodies for 48 h (Anti-OCRL; Proteintech Group, catalog# 17695-1-AP, 1: 500 dilution: Anti-GAPDH; ThermoFisher Scientific, catalog# MA5-15738, 1:2,000 dilution). Following primary antibody incubation, membranes were washed three times with gentle agitation in 1× TBS/T buffer (20 mM Tris Base, 0.136 M NaCl, 0.1% Tween-20). Membranes were then incubated with a secondary antibody (1:5,000 dilution) plus anti-biotin (1:2,000 dilution) for 1 h at room temperature with gentle agitation. Membranes were washed again, as above, and subsequently incubated with SuperSignal™ West Dura Extended Duration Substrate (Thermo Scientific cat# 34075) for 5 min at room temperature with gentle agitation. Immediately thereafter, membranes were exposed to blue autoradiograph film for visualization. For quantification, autoradiograms were scanned and the protein of interest was normalized against a control protein, GAPDH.

OCRL knockdown
An immortalized human retinal pigmented epithelium cell line, RPE-1 (ATCC® Number: CRL-4000), was used for OCRL knockdown (KD) experiments. These were carried out with Dharmacon™ siGENOME Human OCRL siRNA (cat# D-010026-01-005, Horizon Discovery) and were transfected into RPE cells using DharmaFECT 1 Transfection reagent (Horizon Discovery) in DMEM medium containing 10% FBS without antibiotics. siGENOME non-targeting siRNA #3 (cat#D-001210-03-05, Horizon Discovery) was used as a control. siRNAs were transfected into RPE-1 cells at a concentration of 25 nM for 72 h according to the manufacturer’s protocol.

PCR primers used in this study

Gene	Left	Right
β2M	gctgcgcgtctctctcttt	caatgtcggatggatgaaac
OCRL LS500	cctgcattgaccgaagatta	ttaaaagcgctatgctgacg
OCRL exp-F	acagggctctctctccacta	tgagggtggatgctctaggca
OCRL exp2-F	atccacccctcagacaacac	gctgtggaaggaacatag
OCRL KO	aaggtgaccttcatctttcag	tggctggctgactgaagaa
LS100cDNA	ttctcttgagcctctgcca	tgccataaagttggtggtag
LS300cDNA	agctctcaatgcccaacatgct	aagggaggtgtaaaagggcctc
OCRL LS100/300	atttgtttgtgccataggaagag	ggaagcctcagagagagact

Sequencing primers

Seq	Primer
LS100seq	aactctcttagtgcagttactc
LS300seq	tagaaggtagcagatagagaatg
LS500	cctgcattgaccgaagatta

qPCR primers

Gene	Primer
TMEM132C	cacctctatgggaggcttcc
TMEM132D	gaatctctgcaattcatcttc
INPP5F	taqgctgctatctctcttc
MEIS2	ccagggccactagtttctca
SLC1A3a	gcttggaggaattaggaaacgctc
ADCA2	gtggctgtgctgtgtcttc
TMEM47	tctcttgctgcactaatgat
EFEMP1	aaaggtgctgcttgctgct
RPLPO	cccaccacagctgcttcag
DPP10	tggtttgctgctcacttactgg
SPON1	aagaggatagctgagcactc
NLRP2	atgtcagactgggaggagag
Methods (Continued)

CALB1 tattcaggtgtggtgccta tgggtgtactgactggccta

Results

RNA-seq and bioinformatics

iPSCs from three subjects with LS and controls were differentiated into NPCs. RNA was extracted and analyzed by paired-end RNA-seq. Two independent NPC samples differentiated from each iPSC line were prepared for duplicated RNA libraries sent for RNA-seq, resulting in a total of 12 biological samples. The overall quality of the RNA-seq reads and alignment was excellent, with a range of 22,150,351–29,297,502 reads, and alignment rates from 85.58 to 90.67% (Additional file 3: Table S1). In addition, we were able to confirm the mutant OCRL genotype for each patient sample in the RNA-seq reads: loss of intron 23/exon 24 splice site with absence of exon 23 in the final cryptic splice site in exon 24 (LS100); loss of intron 22/exon 23 splice site with absence of exon 23 in the final transcript (LS300); and a “C” del in exon 20 (LS500) (Table 1; Additional file 4: Figure S3A-C).

Since the gene expression profiles of the two duplicated samples were highly correlated, we merged them for determining DEGs in NPCs comparing LS samples and controls, no GO terms passed the 25% FDR threshold. At showing decreased expression in LS NPCs (an increase in p value from 0.155 lower) (Additional file 5: Table S2). At the multiple test adjusted p value (padj) < 0.05, we found nine DEGs (PCDH5, BARH1, NLRP2, EFEMP1, SPONI, GDA, CALB1, ZNF736, PITX2), with an additional seven at padj between 0.05 and 0.1 (INPP5F, PEG3, SPINK5, DPP10, MAFB, OTP, TMEM132C) (Fig 1a). Of the 16 DEGs that achieved padj < 0.1, five are known SZ, ASD, IDD or eye disorder candidate genes (DPP10, GDA, PITX2, EFEMP1, SPONI) (Table 2).

To address the potential limitation in using thresholds for selecting DEGs, we also applied the software DESeq2 [42]. At a nominally significant level (p < 0.05), 319 DEGs were found (164 genes expressed at higher levels in LS; 155 lower) (Additional file 5: Table S2). At the multiple test adjusted p value (padj) < 0.05, we found nine DEGs (PCDH5, BARH1, NLRP2, EFEMP1, SPONI, GDA, CALB1, ZNF736, PITX2), with an additional seven at padj between 0.05 and 0.1 (INPP5F, PEG3, SPINK5, DPP10, MAFB, OTP, TMEM132C) (Fig 1a). Of the 16 DEGs that achieved padj < 0.1, five are known SZ, ASD, IDD or eye disorder candidate genes (DPP10, GDA, PITX2, EFEMP1, SPONI) (Table 2).

Finally, we analyzed the overlap of the 319 nominal DEGs with lists of genes that were associated with ASD, schizophrenia (SZ), IDD, and eye diseases in previous studies [46–53] (SFARI [https://gene.sfari.org/autdb/GS_Home.do]; https://neibank.nei.nih.gov/cgi-bin/eyeDiseaseGenes.cgi) (Additional file 7: Table S3). We found that ASD-related genes showed a significant overlap with our DEGs (Fig. 2). Among the more interesting DEGs in the context of behavioral and cognitive problems are AFF2, ADCY2, DNER, DPP10, CACNA1C, MEIS2, GDA, RELN, which have been linked to neurodevelopmental disorders and neuropsychiatric disorders in multiple studies (Table 2) [54–81]. There was also an overlap for genes involved in intellectual disabilities, including AFF2, AIFM1, CA8, EEF1A2, MLC1, and XLYT1 [82–87], but statistically the overlap is not significant.

Interestingly, some enrichment (OR = 1.45; Fig. 2) was also seen for DEGs involved in eye disorders, consistent with the clinical problems seen in LS. One such gene is EFEMP1 (EGF containing fibulin extracellular matrix protein 1), which was the most significantly upregulated DEG in our study. EFEMP1 has been implicated in glaucoma in several genome-wide association studies (GWAS), macular degeneration, age-related macular dystrophy, and Doyne honeycomb retinal dystrophy [88–94]. EFEMP1 has also been found to be associated with suicidal behavior in genetic and molecular studies [95–98].

Two other DEGs that are involved in both neurodevelopmental and eye pathologies are MEIS2 and SPONI. MEIS2 codes for a homeobox protein, and is a key regulator of trabecular meshwork, lens, and retina development [99–102]. It was also identified as a risk factor in an open-angle glaucoma GWAS [103], and MEIS2 missense mutations and microdeletions have been found in patients with ASD and developmental delay [60–62, 81, 104].

SPONI codes for SPONDIN-1, an extracellular matrix component involved in axon guidance. Mutations have been found in a SZ exome sequencing study, and genome-wide association studies have implicated the gene in the rate of cognitive decline and dementia severity in Alzheimer disease [105–108]. It is also a differentially expressed protein in the development of cataracts, and is a major target of the Pax6 pathway during lens development [109].

We validated six DEGs by qPCR that were significant at padj < 0.1 (EFEMP1, TMEM132C, INPP5F, DPP10, SPONI, CALB1), as well as six others that were nominally significant (p < 0.05), which showed significant differences that were in agreement with the RNA-seq data, with the exception of CALB1. This showed the expected decrease, but only a trend toward statistical significance was found (p < 0.08) (Fig. 3). The analysis was carried out on the two...
original RNA samples sent for sequencing and an independent set of NPCs.

These findings suggest that the neurodevelopmental features and eye pathologies seen in LS are mediated, in part, by altered expression of the DEGs we identified.

OCRL KD in RPE-1 cells

To further validate the connection between OCRL expression and genes involved in eye pathology, we knocked down OCRL expression in a human retinal pigmented epithelial cell line, RPE-1. An R345W mutation in EFEMP1 causes Doyne honeycomb retinal dystrophy [92], which leads to activation of the alternative complement pathway in RPE cells [110]. RPE-1 cells were transfected with siRNAs targeting OCRL mRNA, and a scrambled control. As seen in Fig. 4, significant decrease in OCRL protein (left panel), and OCRL mRNA (right panel) occurred in cells treated with scrambled control siRNA (83% decrease in normalized OCRL protein, \(p = 0.02 \); 70% decrease in normalized OCRL mRNA, \(p = 3.1E-07 \), Student’s \(t \) test, two-tailed). This was accompanied by extremely large increases in the expression of MEIS2, which is a regulator of retinal development, as noted above, and EFEMP1 mRNA (\(p = 0.04 \) and 0.03, respectively, Student’s \(t \) test, two-tailed). The relatively modest levels of statistical significance compared with large fold changes are due to the small sample size (two independent KD experiments; qPCR carried out in duplicate).

These findings show that the increase in expression of these genes seen in LS NPCs is directly related to the loss of function, patient-specific OCRL mutations found in our subjects.

Discussion

Overall, the transcriptome findings were relatively modest with respect to the number of DEGs found in all three LS/control pairs compared to differences found between patients and controls in other iPSC disease-model systems that we have analyzed. For example, transcriptome analyses on NPCs, monolayer neurons, and cerebral organoids derived from CHD8 haploinsufficient iPSC lines resulted in hundreds of shared DEGs with highly significant enrichment of pathways relevant to ASD pathogenesis [28, 30]. This could reflect the biological function of the underlying candidate genes. CHD8 codes for a member of the CHD family of ATP-dependent chromatin-remodeling factors, so major changes in gene expression...
through both direct and indirect effects on target genes are expected from its haploinsufficiency. By contrast, all of the functions so far attributed to OCRL in non-neuronal cells occur at the post-translational level. As such, many of our observed DEGs could be due to secondary effects through a variety of potential OCRL-affected pathways, such as altered recycling of growth factor receptors linked to activation of transcription factors, and increases in membrane-associated phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which can potentially affect protein kinase C-mediated gene expression. Interestingly, a transcription factor binding motif analysis of the promoters of the 319 DEGs found a nominally significant enrichment of a PITX2 motif ($p < 0.05$, vs. all promoters). The expression of PITX2, which is important for the development of the anterior chamber of the eye and is a glaucoma candidate gene [111–113], was significantly reduced in the LS NPCs (Additional file 5: Table S2).

Another factor that could have limited the full potential of RNA-seq to help understand disease pathogenesis in our study is that NPCs derived from iPSCs are grown in vitro under very specific conditions, as opposed to NPCs and other neuronal cells derived from a developing brain where the full repertoire of growth factors and cell-cell interactions that might affect NPC differentiation and gene expression potentially influenced by OCRL could come into play. Testing this hypothesis in mammalian brains will have to await the development of a suitable mouse model that recapitulates the neurodevelopmental features of LS.

Finally, the number of DEGs might have been reduced because of differences in OCRL expression in the three LS NPC samples. Although all three patients have mutations in the ASH-RhoGAP binding domains that generally produce hypomorphic variants, expression of LS500 is substantially lower than his brother and the other LS/control samples (Additional file 5: Table S2). This was confirmed by qPCR (Fig. 5, top panel). The decrease in OCRL mRNA in LS500 is most likely due to nonsense-mediated decay, and is accompanied by a marked decrease in OCRL protein (Fig. 5, bottom panel). These observations suggest that producing a truncated, dysfunctional OCRL protein may have additional effects on gene expression and other phenotypes compared with a simple reduction in OCRL protein levels. This could help explain phenotypic differences seen in LS patients. For example, while every patient has the triad of congenital cataracts, IDD, and renal proximal tubular dysfunction, subgroups of patients have epilepsy, stereotypical behaviors, and glaucoma. In addition, this hypothesis could also help explain the more dramatic clinical differences seen in LS and patients with OCRL-associated DENT-2 disease, the latter of which is characterized by renal disease, without eye and behavioral manifestations [114–117]. In addition, we previously found differences in the production of F-actin and WAVE-1 in LS NPCs compared with NPCs made from a null OCRL iPSC line that we generated using CRISPR-Cas9 gene editing [27]. However, in that study, the LS500/LS600 pair showed the same abnormality as the other two patient/control sets. Thus, other factors need to be invoked to help explain the clinical and molecular heterogeneity seen in LS and DENT-2 disease, such as genetic background. Generating additional patient-specific lines, as well as creating null and patient-specific mutations using CRISPR-Cas9 gene editing in isogenic lines to control for genetic background, will be needed to sort through these intriguing possibilities.

We presented our results by a combined analysis of the patient and control NPCs. We have also tried to

ASD	SZ	IDD	EYE
AFF2	BMP6	AFF2	CNGB1
ANOS	CA8	CA8	COL2A1
CACNA1C	CACNA1C	EEF1A2	EFEMP1
CACNA1C	CHN2	MLC1	MEIS2*
CADPS2	CHRFAM7A	RELN	PITX2
COMT	COMT	TH	SPON1*
DNAH3	MLC1	XYL1	TNFRSF11B
DNKR	PCDHA6		
DPP10			
DPP6	PPI1R16B		
EEF1A2	PRKZ		
GABRB3	RELN		
GALNT10	SLCA3		
GDA	SNCG		
KCND3	SPON1*		
KCNJ12	TH		
MEIS2	ADCY2		
OTX1			
PCDHA6			
RELN			
RORA			
SYT17			
ZNF385B			
identify DEGs between the LS samples and controls of each family. The sample size was small ($n = 2$), thus statistical power is weak, but a few thousand DEGs were detected at fold change > 2 and adjusted $p < 0.05$ between LS and their corresponding sibling NPC controls (data not shown). The overlap of the DEGs from the three families, however, was relatively small, indicating a high level of gene expression variation in these NPC samples. Additional LS/control sets, analysis of multiple clones from the same subjects, and analyzing isogenic control/CRISPR-edited lines will be needed to resolve this issue. We are currently generating such lines.

As an alternative to DESeq2, we also applied the limma voom differentiation expression analysis [118] to the jointed analysis of our samples, using its “duplicateCorrelation” function to account for two replicates per iPSC line. However, it did not yield DEGs by our statistical criteria of $p_{adj} < 0.05$ (data not shown).

Despite the lack of highly enriched pathways from our DEG analysis, a number of interesting candidate genes emerged that strongly suggest a role in the neurodevelopmental and eye problems associated with LS, and cellular phenotypes we previously identified in NPCs. As noted in the results section, four out of the top 16 DEGs genes are known SZ, ASD, IDD candidate genes (DPP10, GDA, PITX2, SPON1), and overall, there was a significant overlap between the 319 DEGs and ASD candidate genes (Fig. 2).

Two other DEGs of note are $TMEM132C$ and $TMEM132D$, which are feasible candidates for the F-
actin/WAVE1 abnormalities we previously found in LS NPCs [27]. These genes code for members of a family of transmembrane, cell-surface molecules expressed in the brain [119]. TMEM132 proteins have an intracellular WAVE regulatory complex interacting receptor sequence cytoplasmic motif, which is a key regulator of actin polymerization by initiating F-actin nucleation through an interaction with the Arp2/3 complex [120].
Whether TMEM132 proteins affect WAVE-1 expression in LS NPCs remains to be determined.

One of the more interesting findings in the NPC transcriptome analysis are the DEGs implicated in eye pathology. This could represent differential expression in eye tissue that happen to be similarly affected in neural cells, or to common developmental pathways, although this remains to be determined. On the other hand, recent research suggests that some forms of glaucoma should be viewed as neurodegenerative disorders caused by retinal and optic nerve injury [121, 122], so it is possible that the primary defect

Fig. 4 OCRL knockdown. Left panel shows a western blot of OCRL along with a control protein, GAPDH, after NPCs were exposed to an OCRL siRNA and a scrambled control. Two independent KD experiments were carried out. The right three panels are qPCR results for OCRL, MEIS2 and EFEMP1 carried out on two independent RNA samples, both analyzed in duplicate, as described in the methods section an in the Fig. 3 legend.

Fig. 5 OCRL protein and RNA. OCRL RNA was analyzed by qPCR (top) as described in the Fig. 3 legend. OCRL protein (bottom) was analyzed by Western blotting, as described in the methods section. The Western blot was done twice with two independent samples.
related to these DEGs is due to aberrant expression in neuronal cells.

The most significant DEGs related to LS eye pathology are EFEMP1, MEIS2, and SPON1, as noted above. EFEMP1 is particularly interesting from a therapeutic perspective because it is connected to several potentially druggable pathways, including complement activation, the EGF receptor, and BMP7 and TGFβ2 signaling [110, 123–125]. In addition, EFEMP1, as a protein secreted into the extracellular matrix, could be a target for therapeutic intervention as well.

With respect to EFEMP1, MEIS2, and SPON1, and glaucoma risk in LS, the fact that these genes have been implicated in glaucoma and other eye disorders suggests that understanding how they cause severe eye disease in LS could have much broader public health implications, considering the high prevalence of these conditions in the general population. Thus, the iPSC lines we have developed could be very useful for screening small molecule modulators of EFEMP1 and other eye-related DEGs for a wide range of eye disorders. Their role in eye pathology can now be analyzed in our iPSC model system since several protocols have been published for inducing differentiation into various types of eye tissues [126, 127].

Limitations
A limitation of the study is the sample size, which is a general limiting factor for most iPSC studies, considering the expense and time it takes to cultivate these lines. In addition, there is a dearth of protein and functional validation, which means that individual DEG findings may ultimately fail to be biologically relevant. Nevertheless, our findings are still of great interest because the differentially expressed genes are consistent with what is known about LS with respect to both neurodevelopmental and eye pathologies. We plan on increasing our sample size in the next year to improve the scientific rigor of future transcriptomic studies.

Conclusions
RNA-seq analysis of iPSC-derived NPCs from patients with Lowe syndrome and their typically developing brothers identified 319 DEGs, which are enriched with genes that have been identified as ASD candidates. In addition, several DEGs code for genes that have been implicated in the development of cataracts, glaucoma, and retinal disease. Altered expression of these genes may play a role in the behavioral and ocular problems occurring in LS and connect this extremely rare condition at a pathophysiological level to a much wider population of disorders. The study also points to several feasible targets for therapeutic intervention.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s11689-020-09317-2.

Additional file 1: Figure S1. Immunocytochemistry (ICC) of NPCs used in the RNA-seq study (one set) showing Vimentin and Sox2 staining (A and B, respectively) with a nuclear stain (DAPI).

Additional file 2: Figure S2. Pearson's correlation coefficients of the gene expression between NPCs described in the current study and ~300 samples from the ENCODE project. Samples with coefficients > 0.85 are shown and the highest correlations are NPCs from ENCODE (ENCFF663ARH), followed by a human neuroblastoma cell line, SK-N-DZ.

Additional file 3: Table S1. Quality of RNA-seq Reads and Mapping. The number of reads, alignment rates, and reads across different gene regions are similar. The instrument ID, run number, lane number and flow-cell ID were provided by the Novogene.

Additional file 4: Figure S3. A and B. Sashimi plots of RNA-seq reads confirming cryptic splice in exon 24 in LS100, and loss of exon 23 in LS200, as described in Barnes et al. C. Shows deletion of "C" in exon 20 in LS500.

Additional file 5: Table S2. Entire gene list arranged in descending order of significance level (pval). The top 16 genes with pval < 0.1 are in bold type.

Additional file 6: Figure S4. Gene Set Enrichment Analysis (GSEA) for genes that are up-regulated in controls (down-regulated in LS). GO terms were selected by nominal pval < 0.01 because none passed FDR < 25%.

Additional file 7: Table S3. Overlap of nominal DEGs with ASD, ID, SZ and eye disease gene datasets. Citations are included in the table.

Abbreviations
DEG: Differentially expressed gene; FPKM: Fragments per kilobase of exon per million fragments mapped; FDR: False discovery rate; GO: Gene ontology; GWAS: Genome-wide association study; iPSC: Induced pluripotent stem cell; KO: Knockout; NPC: Neural progenitor cell; PCR: Polymerase chain reaction; qPCR: Quantitative real-time PCR; Pval: P value; ASD: Autism spectrum disorders; SZ: Schizophrenia; BD: Bipolar disorder; ICC: Immunocytochemistry; PI(4,5)P2: Phosphatidylinositol 4,5-bisphosphate; IRB: Internal review board.

Acknowledgements
We are grateful to the New York State Department of Health (NYSTEM Program) for supporting the Einstein Comprehensive Human Pluripotent Stem Cell Center under the direction of Dr. Eric Bouhassira (NYSTEM C029154). The authors would also like to thank the participating families and Yang Sun, MD, PhD, for providing the RPE cell line.

Authors’ contributions
HL contributed in bioinformatics, data analysis, and manuscript preparation; JB conceived experiment, NPC cultures, protein isolation, and Western blotting; EP contributed in iPSC cultures and RNA isolation qPCR; NH contributed in qPCR; CB contributed in immunohistochemistry; FS contributed in literature search and preparation of tables; PW contributed in bioinformatics and data analysis; DZ contributed in bioinformatics, data analysis, and manuscript preparation; and HML conceived the experiment, manuscript preparation, and data analysis. All authors read and approved the final manuscript.

Funding
This project was supported by pilot grants from the Lowe Syndrome Association and the Lowe Syndrome Foundation. HML is supported by a grant from NIH National Institute of Mental Health (NIMH) (MH099427). This work was also supported in part by a grant to The Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (RFK-IDDRC) from the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) at the NIH (1P30HD071933), and NICHD grant 6U54 HD 090260. JB is supported by The Einstein Training Program in Stem Cell Research of Albert Einstein College of Medicine, Inc. from the Empire State Stem Cell Fund through New York State Department of Health Contract C30292CG. Opinions expressed here are solely those of the author and do
not necessarily reflect those of the Empire State Stem Cell Board, the New York State Department of Health, or the State of New York.

Availability of data and materials
RNA-seq data can be accessed at the Gene Expression Omnibus (GEO), (https://www.ncbi.nlm.nih.gov/geo/), accession number GSE129910, review token, yzuluyoyrtavdkr.

Ethics approval and consent to participate
The study and consent forms were approved by the Albert Einstein College of Medicine Institutional Review Board (IRB). Consent was obtained by a skilled member of the research team who had received prior human subjects training.

Consent for publication
Consent to publish findings and data was provided in the consent form, which was signed by all participants.

Competing interests
None.

Author details
1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA. 2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA. 3Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA. 4Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.

Received: 16 October 2019 Accepted: 28 April 2020

Published online: 11 May 2020

References
1. Silver DN, Lewis RA, Nussbaum RL. Mapping the Lowe oculocerebrorenal syndrome to Xq24–q26 by use of restriction fragment length polymorphisms. J Clin Invest. 1987;79(1):282–5.
2. Schurman SJ, Scheinman SJ. Inherited cerebrorenal syndromes. Nat Rev Nephrol. 2009;5(9):529–38.
3. Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta. 2015;1851(8):1046–55.
4. Staiano L, De Leo MG, Persico M, De Matteis MA. Mendelian disorders of PI metabolizing enzymes. Biochim Biophys Acta. 2015;1851(8):1066–82.
5. Nandez R, Blando R, Bernardi D, MacDonald M, Cawley J, Gribenberg A, Wynshaw-Boris A, Westphal H, Nussbaum RL. Functional overlap between mutation in Hbbt2 and Ocr1 may explain why the murine ortholog for OCR1 does not cause Lowe syndrome in mice. J Clin Invest. 1998;101(10):2042–53.
6. Festa BP, Berquez M, Gassama A, Amrein I, Issai HM, Samardzija M, Staiano L, Luciani A, Grimm C, Nussbaum RL, De Matteis MA, Dorchies OM, Scapozza L, Wolfer DF, Devos G. OCR1 deficiency impairs endolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease. Hum Mol Genet. 2011;20(13):2443–59.
7. Ramirez IB, Pietka G, Jones DR, Dwecha N, Alaia A, Baraban SC, Hurlstone AF, De Camilli P. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells. Elife. 2014;3:e02975.
8. Piruccello M, De Camilli P. Inositol 5-phosphates: insights from the Lowe syndrome protein OCRL. Trends Biochem Sci. 2012;37(4):134–43.
9. Xue X, Jefferson AB, Aethavekait V, Majerus PW. The protein deficient in Lowe syndrome is a phosphatidylinositol 4,5-bisphosphate 5-phosphatase. Proc Natl Acad Sci U S A. 1995;92(11):4853–8.
10. Xue X, Hartz PA, Philip E, Racusin LC, Majerus PW. Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 1998;273(3):1574–82.
11. Xue X, Hartz PA, Philip E, Racusin LC, Majerus PW. Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 1998;273(3):1574–82.
12. Madhivanan K, Ramadesikan S, Aguilar RC. Role of Ocr1l in primary cilia assembly. Int Rev Cell Mol Biol. 2015;317:331–47.
13. Baidu L, Cui S, Mo D, Carattino M, Rohatgi R, Satlin LM, Szalinski GM, Swanhart LM, Folsch H, Hukriede NA, Weisz OA. OCR1L modulates cilia length in renal epithelial cells. Traffic. 2012;13(9):1295–305.
14. Nandez R, Liu L, Nussbaum RL. The deficiency of PI2 P5-phosphatase in Lowe syndrome affects actin polymerization. Am J Hum Genet. 2002;71(6):1420–7.
15. Bothwell SP, Chan E, Bernardini W, Kuo YM, Gahl WA, Nussbaum RL, Mouse model for Lowe syndrome/Dent disease 2 renal tubulopathy. J Am Soc Nephrol. 2011;22(15):443–8.
16. Janne PA, Suchy SF, Bernard D, MacDonald M, Cawley J, Gribenberg A, Wynshaw-Boris A, Westphal H, Nussbaum RL. Functional overlap between mutation in Hbbt2 and Ocr1 may explain why the murine ortholog for OCR1 does not cause Lowe syndrome in mice. J Clin Invest. 1998;101(10):2042–53.
17. Barnes J, Salas F, Mokhtari R, Dolstra H, Pedrosa E, Lachman HM. Modelling the neuropsychiatric manifestations of Lowe syndrome using induced pluripotent stem cells: defective F-actin polymerization and WAVE-1 expression in neuronal cells. Mol Autism 2018, 9;44 doi: https://doi.org/10.1186/s13229-018-0227-3. eCollection 2018.
18. Wang P, Mokhtari R, Pedrosa E, Kirchenbaum M, Bayrak C, Zheng D, Lachman HM: CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 2017, 8;11 doi: https://doi.org/10.1186/s13229-017-0124-1. eCollection 2017.
19. Zhao D, Mokhtari R, Pedrosa E, Birnbaum R, Zheng D, Lachman HM. Transcriptome analysis of microglia in a mouse model of Rett syndrome: differential expression of genes associated with microglia/macrophage activation and cellular stress. Mol Autism 2017, 8;17 doi: https://doi.org/10.1186/s13229-017-0134-z. eCollection 2017.
20. Wang P, Lin M, Pedrosa E, Brabovsky A, Zhang Z, Guo W, Lachman HM, Zheng D: CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 2017, 8;11 doi: https://doi.org/10.1186/s13229-017-0124-1. eCollection 2017.
21. Broadbent SM, Benes F, Florio M, Kanton S, Gerber T, Wilsh-Brauninger M, Lewitus E, Sikes A, Hevers W, Lancaster M, Knoblich JA, Lachman R, Paabo S, Huttner WB, Treutlein B. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 2015;112(15):4972–9.
63. Corella F, Caffe C, Almeida J, Moura S, Oliveira G. Autism spectrum disorder: FRAXE mutation, a rare etiology. J Autism Dev Disord. 2015;45(3):888–92.
64. Sanchez-Sanchez SM, Magdalon J, Griess-Oliveira K, Yamamoto GL, Santacruz-Perez C, Fogo M, Passos-Bueno MR, Sette AL. Rare RELN variants affect Reelin-DAB1 signal transduction in autism spectrum disorder. Hum Mutat. 2018;39(10):1372–83.
65. Lamment DB, Mittelstadt FA, Pan J, Olson EC, Howell BW. The de novo autism spectrum disorder RELN R292OC mutation reduces Reelin secretion and increases protein disulfide isomerase expression. J Neurochem. 2017;142(1):89–102.
66. Lamment DB, Howell BW. RELN mutations in autism spectrum disorder. Front Cell Neurosci. 2016;10:184.
67. Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N, Chen W, Lou J, Ke J, Zhang T, Wang W, Miao X. Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2014;165B(2):192–200.
68. Bartrik M, Chun-Hui Tsai A, Xie Z, Cheung SW, Stankiewicz P: Disruption of the SCN2A and SCN3A genes in a patient with mental retardation, neurobehavioral and psychiatric abnormalities, and a history of infantile seizures. Clin Genet 2010.
69. Weiss LA, Escayg A, Keamey JA, Trudeau M, MacDonald BT, Mori M, Reichert J, Buxbaum JD, Meisler MH. Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry. 2003;8(2):186–94.
70. Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, Ju J, Mei J, Shi Y, He M, Wang G, Liang J, Wang Z, Cao D, Carter MT, Chrysalis C, Dicmc IE, Howe JL, Lou L, Marsh HK, Merico D, Nalpathamatamal T, Thivadhivshipram B, Thompson A, Uddin M, Walker S, Luo J, Anagnostou E, Zwaigenbaum L, Ring RH, Wang J, Lajonchere C, Wang J, Shih A, Sazmati P, Yang H, Dawson G, Li Y, Scher W. SW. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013;93(2):249–63.
71. Callaghan DB, Rapp BP, Tan PC, Pill C, Qiao Y, Baldwin R, Jacobson M, Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, Ju J, Mei J, Shi Y, He M, Wang G, Liang J, Wang Z, Cao D, Carter MT, Chrysalis C, Dicmc IE, Howe JL, Lou L, Marsh HK, Merico D, Nalpathamatamal T, Thivadhivshipram B, Thompson A, Uddin M, Walker S, Luo J, Anagnostou E, Zwaigenbaum L, Ring RH, Wang J, Lajonchere C, Wang J, Shih A, Sazmati P, Yang H, Dawson G, Li Y, Scher W. SW. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing and variant discovery in the ASPIRE autism spectrum disorder cohort. Clin Genet. 2019.
72. Spratt PW, Ben-Shalom R, Kreshen CM, Burke KL, Jr, Clarkson RL, Sanders SJ, Belmadani M, Belmadani M, Holmes N, Yu C, Li Y, Li Y, Kurtzke FE, Kuzeljevic B, Yu AY, Hudson M, Mcaughton AJM, Xu Y, Dionne-Laporte A, Girard S, Liang P, Separovic ER, Liu X, Rouleau G, Pavlidis P, Lewis MES: Whole genome sequencing and variant discovery in the ASPIRE autism spectrum disorder cohort. Clin Genet. 2019.
73. Mondal K, Ramachandran G, Patel VC, Hagen KR, Bose P, Cutler DJ, Zwick ME. Excess variants in AFF2 detected by massively parallel sequencing of male with autism spectrum disorder. Hum Mol Genet. 2012;21(19):4356–4364.
74. Sahoo T, Theisen A, Marble M, Tervo R, Rosenfeld B, Torchia BS, Santacruz-Perez C, Fogo M, Passos-Bueno MR, Sette AL. Rare RELN variants affect Reelin-DAB1 signal transduction in autism spectrum disorder. Hum Mutat. 2018;39(10):1372–83.
75. Mak ASL, Chiu ATG, Leung GKC, Mak CCY, Chu YWW, Mok GTK, Tang WF, Chan K, Tang MKH, Lau Yim ET, So KW, Tso VQ, Fung CW, Wong VCN, Uddin M, Lee SL, Marshall CR, Scherer SW, Kan ASY, Chung BHY. Use of clinical chromosomal microarray in Chinese patients with autism spectrum disorder-implications of a copy number variation involving DPP10. Mol Autism 2017;8, e31 doi: https://doi.org/10.1186/s13229-017-0136-x. eCollection 2017.
76. Djurovic S, Gustafsson O, Mattingsdal M, Anathanus A, Bjella T, Tesli M, Agartz I, Lorentzen S, Melle I, Morken G, Andreasen OA. A genome-wide association study of bipolar disorder in Norwegian individuals, followed by replication in Icelandic sample. J Affect Disord. 2010;126(1):312–6.
77. Verheije R, Kupchik GS, Isidor B, Kroes HY, Lynch SA, Hawkies L, Hempel M, Gelb BD, Ghoumid J, D’Aromous G, Chandler K, Dubourg C, Loddo S, Turner Z, Smith-Charlton C, Nazon M, Shevell M, Van Hoof E, Ananye-Yekbo K, Cebone G, Clayton-Smith J, Cogme B, Core P, Corveleyen A, De Borre M, Hjortshoj TD, Fradin M, Gewillis M, Goldmuntz E, Hens G, Lemyre E, Jourlemen H, Kini U, Kortum F, Le Caingec C, Nokvil A, Odent S, Petit F, Revah-Politi A, Stong N, Strom TM, van Brinsbergen E, DDD study, Devriendt K, Breekpot J. Heterozygous loss-of-function variants of MED22 cause a triad of palatal defects, congenital heart defects, and intellectual disability. Eur J Hum Genet 2018.
78. Schreml J, Durmaz B, Cogulu O, Keupp K, Beleggia F, Pohl E, Milz E, Coker M, Ucar SK, Numberg G, Numberg P, Kuhn J, Okzyafin N. The missing "link": an autosomal recessive short stature syndrome caused by a hypofunctional YXL1 mutation. Hum Genet. 2014;132(9):129–39.
79. Lopez-Hernandez T, Ridder MC, Montolivo M, Capdevilla-Nortes X, Polder E, Sini S, Duarr A, Schulte U, Falker B, Nunes V, Scheper GC, Martinez A, Estevez R, van der Knaap MS. Mutant GlialCAM causes megalencephalic leuкоencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am J Hum Genet. 2011;88(4):422–32.
80. Hamilton EMC, Tekturk P, Cialdella F, van Rappard DP, Wolf NL, Yalcinkaya C, Cotecnicil U, Rajae A, Karimnejad A, Paprocka J, Yapiji Z, Boinagir VM, van der Knaap MS. MLC research group: megalencephalic leuкоencephalopathy with subcortical cysts: characterization of disease variants. Neurobiology. 2018;90(16):e1395–403.
81. Turkmen S, Guo G, Ganshabi M, Hoffmann K, Alshalah Al, Mischung C, Kuss A, Humphrey A, Mundlos S, Robinson PN. CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrapital gait. PLoS Genet. 2009;5(5):e1000487.
82. Lam WW, Millichap JJ, Soares DC, Chin R, McLellan A, FitzPatrick DR, Elmslie F, Lees MM, Schaefger BB. DDD study, Abbott CM: novel de novo EFNA1 missense mutations causing epilepsy and intellectual disability. Mol Genet Genomic Med. 2016;4(4):465–74.
83. Nakajima O, Okamoto N, Tohyama J, Kato M, Aras H, Funahashi O, Tsunusaki Y, Nakahisa M, Kawashima H, Satusu H, Matsumoto N, Miyake N. De novo EFNA1 mutations in patients with characteristic facial features, intellectual disability, autistic behaviors and epilepsy. Clin Genet. 2015;87(4):356–61.
84. Mackay DS, Bennett TM, Shielis A. Exome sequencing identifies a missense variant in EFEMP1 co-regulating in a family with autosomal dominant primary open-angle glaucoma. PloS One. 2015;10(7):e0132529.
85. Liu T, Xie L, Ye J, Liu Y, He X. Screening of candidate genes for primary open angle glaucoma. Mol Vis. 2012;18:2119–26.
86. Springerkol H, Mishra A, Hysl PG, Mairhahini P, Hohn R, Khor CC, Cooke BA, Bailey JN, Luo X, Ramdas WD, Vithana E, Koh Y, Zey W, Xu L, Forward H, Kerns LS, Amin N, Iglesias AI, Sim KS, van Leeuwen EM, Demirkan A, van der Knaap MS. MLC research group: megalencephalic leukoencephalopathy with subcortical cysts: characterization of disease variants. Neurology. 2018;90(16):e1395–403.
87. Liu T, Xie L, Ye J, Liu Y, He X. Screening of candidate genes for primary open angle glaucoma. Mol Vis. 2012;18:2119–26.
127. Zhu W, Jain A, Gramlich OW, Tucker BA, Sheffield VC, Kuehn MH. Restoration of aqueous humor outflow following transplantation of iPSC-derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2017;58(4):2054–62.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.