Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review

Roberto D’Amato, Luca Regni, Beatrice Falcinelli, Simona Mattioli, Paolo Benincasa, Alessandro Dal Bosco, Pablo Pacheco, Primo Proietti, Elisabetta Troni, Claudio Santi, and Daniela Businelli

ABSTRACT: Selenium (Se) is an important micronutrient for living organisms, since it is involved in several physiological and metabolic processes. Se intake in humans is often low and very seldom excessive, and its bioavailability depends also on its chemical form, with organic Se as the most available after ingestion. The main dietary source of Se for humans is represented by plants, since many species are able to metabolize and accumulate organic Se in edible parts to be consumed directly (leaves, flowers, fruits, seeds, and sprouts) or after processing (oil, wine, etc.). Countless studies have recently investigated the Se biofortification of plants to produce Se-enriched foods and elicit the production of secondary metabolites, which may benefit human health when incorporated into the diet. Moreover, feeding animals Se-rich diets may provide Se-enriched meat. This work reviews the most recent literature on the nutraceutical profile of Se-enriched foods from plant and animal sources.

KEYWORDS: speciation, micronutrient, metabolite, vegetable, fruit, meat

INTRODUCTION

Selenium (Se) is an essential micronutrient, and an adequate intake of this essential trace element is thought to be beneficial for maintaining human health. It is present in several natural kingdoms, humans, animals, cyanobacteria, and some plants; it contributes to the control of water status of plants, prevents oxidative stress, delays senescence, and promotes growth. Included in the biological processes that can be modulated by Se are not only the cellular response to oxidative stress but also the cellular differentiation, function (including enterocytes and adipocytes), immune response; the redox signaling and protein folding; and the regulation of insulin action and secretion.

People living in the United States and Canada normally have no problems connected with Se deficiency; on the contrary, those who live in China, New Zealand, and parts of Europe and Russia occasionally show an insufficient intake of this micronutrient due to low levels of Se in soil and, as a consequence, in food.

Se concentration in mammals’ serum ranges between 7 and 14 μg/dL, and Se is taken in by food as both inorganic forms (such as selenite, SeO$_3^{2-}$, and selenate, SeO$_4^{2-}$) and/or organic derivatives (such as the amino acid selenomethionine (SeMet) and selenocysteine (SeCys)). As for many nutrients, several studies in humans have provided evidence of a U-shaped relationship between Se concentration in the blood and the risk of disease, with possible harm occurring both below and above the physiological range for optimal activity of some or all selenoproteins. High serum Se levels are associated with increased risk such as in the case of diabetes mellitus, while Se deficiency occurs when the intake is lower than 20 μg/day, and this condition has been correlated to a number of pathologies including cancers, Alzheimer’s or Parkinson’s disease, male infertility, and thyroidal dysfunctions.

Some plants, in the presence of high levels of inorganic Se, can metabolize and accumulate Se in the form of organic derivatives. This process is important for the plant because it reduces the toxicity of the chalcogen, and at the same time, when bioaccumulation occurs in edible tissues, this process...
allows the production of Se-enriched foods that have use as a potential nutraceutical for humans and animals.15 Moreover, Se biofortification may elicit the production of secondary metabolites, which may benefit human health when assumed with the diet.16−18

Therefore, biofortification strategies applied to produce Se-enriched foods could help overcome Se deficiency and its implications in human health and improve the nutraceutical value of food. Despite several scientific works that have dealt with Se-biofortification strategies, the production of Se-enriched foods suitable for animal and human consumption is still challenging.

This review is focused on the Se biofortification of plants to obtain both Se- and phytochemical-enriched foods and feeds, which are potentially useful in increasing, directly or indirectly (i.e., by transfer to livestock meat obtained with Se-enriched feeds), human intake of Se and bioactive compounds. Studies concerning Se content in mushrooms are not included here since the wide literature devoted to this subject would deserve a specific review, taking into account also Se-containing proteins and polysaccharides that are of interest in cancer chemoprevention.19,20

Since different Se forms have different bioavailability as well as different metabolic pathways, Se speciation analysis is examined first as a powerful tool to evaluate the Se species in the Se-enriched foods.

ADVANCES IN SPECIATION ANALYSIS

Total Se concentration (TSeC) in biofortification is determined to evaluate the biofortification efficiency. However, this information is incomplete considering that different Se species possess different bioavailability for humans. It is well-known that organic Se forms (e.g., Se amino acids) are more bioavailable than inorganic forms, such as selenite and selenate; indeed, the human body absorbs more than 90% of SeMet but only about 50% of Se from selenite.21

In humans, Se absorption from products of plant origin is much easier than Se absorption from products of animal origin. Therefore, scientists are mostly interested in analyzing Se speciation in plant-derived fortified foods.22

The analysis of Se species requires considerations from the treatment of samples to the identification and quantification of these species. The selenol group (−SeH) of SeCys and other Se-amino acids have very low oxidation potential. During extraction procedures, the addition of dithiothreitol (DTT) is advised to avoid oxidation.23 Direct analysis of Se species in samples can also be performed by using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS).24 Similarly, laser ablation (LA) coupled to inductively coupled plasma mass spectrometry (ICP MS) has been used for bioimaging the Se distribution and localization in tissues.25

The principal analytical approach to Se speciation has been based on the fractionation and separation of extracts by chromatography (or electrophoresis) while specifically monitoring Se by ICP MS. High performance liquid chromatography (HPLC) has almost universal applicability, and it is the most versatile separation technique, which benefits from a wide array of stationary phases providing different separation modes.26

ICP MS can be used for the quantification of Se species, owing to its high sensitivity and element-specific analytical response, independent of the molecular structure, even in case of unidentified Se species. At first sight, it seems there is a full compatibility between HPLC and the traditional sample introduction system of ICP MS, as HPLC provides a typical flow rate in a range of 0.2−1.0 mL min−1, which perfectly matches the flow rate range of the traditional nebulizers used (in combination with a spray chamber) for sample introduction in ICP MS. Three different ICP MS sample introduction systems (i.e., a micro concentric nebulizer mounted onto a cyclonic spray chamber, a direct injection nebulizer (DIN), and an ultrasonic nebulizer) were compared in the context of HPLC ICP MS analysis of Se species. The micro-concentric nebulizer combined with a cyclonic spray chamber was found to be the optimal sample introduction system, taking the chromatographic peak shape, sensitivity, and limits of detection (LODs) into account. Ar-based spectral interferences, while monitoring the ion signals of the 78Se, 80Se, and 82Se isotopes, can be solved with methane as a reaction gas in the dynamic reaction cell (DRC) used in ICP MS to eliminate the on-mass.27 The quantification accuracy of Se species can be increased by isotopic dilution mass spectrometry (IDMS). The principle of IDMS is based on the alteration of the isotopic ratio of the analyte’s two or more isotopes, by spiking the sample with an isotopically enriched standard. By applying relevant mathematical equations for IDMS and measuring the altered isotopic ratio, the concentration in the sample can be obtained. IDMS can be performed as a species-specific or a species-unspecific analysis.

The identification of Se metabolites can usually be achieved by using traditional techniques, MS and Nuclear Magnetic Resonance (NMR). Electrospray ionization (ESI) in MS is often used either in tandem with ICP MS or as a complementary detector. ESI is a soft ionization mode that can preserve the molecular form of biomolecules, and since its implementation into analytical methods, this instrument has proven to be invaluable for the structural elucidation of molecular species. On the other hand, ESI MS also enables fragmentation of selected molecules, and produced fragments are very often crucial in the identification of unknown molecular species. The identification of novel Se species has been exclusively done by ESI MS, with high molecular mass precision, when high resolution instruments such as Orbitrap, ESI, time of flight (TOF) MS, or ESI MS/MS are used.28 In addition, the growing sensitivity of ICP MS detection, owing to collision cell and triple quadrupole mass spectrometers, has resulted in an increasing number of unidentified peaks in HPLC and ICP MS chromatograms.

On the level of selenoproteins, bioinformatics approaches have allowed the putative description of selenoproteomes (sets of Se-containing proteins with genetically introduced selenocystein via a SeCys element). In parallel, the increasing robustness of ESI sources and the advent of high-resolution high-mass-accuracy mass analyzers (notably TOF and Orbitrap) coupled with HPLC continuously increased the number of identified compounds.29,30

SELENIUM BIOFORTIFICATION STRATEGIES IN PLANTS

Agronomic Se biofortification has many advantages over direct Se supplementation, since inorganic Se absorbed by the plant is transformed into organic forms, which have a higher bioavailability. Many variables are involved in Se biofortification strategies, such as the Se administration mode (soil fertilization, foliar spray, or hydroponics), Se dose, species and...
Table 1. Cereals: Crop Species, Se Treatment (Se Source, Dose, and Application Mode), and Effects on Total (TSeC) and Organic Se Content and Other Nutritional Traits

species	Se source	dose	type of treatment	TSeC	organic Se	other nutritional traits	references
Oryza sativa L. (cv. Xiushui 134)	soil culture: sodium selenite	790 μg of Se pot⁻¹ foliar application	root treatment foliar application	in rice seeds: Se inorganic > Se organic (foliar application), ↑semitate (root application)	↑Se Amino acid, ↑Non-amino acid organic Se	↑antioxidant capacity; ↓amino acids; ↓Ca, Mg, Zn, Mn	36
Oryza sativa L. (cv. Premium No. 59, Teyou 59)	sodium selenite	20 g of Se Ha⁻¹ (sodium selenite)	foliar application	in grain samples (μg of Se g⁻¹): 0.471–0.640	NA	↑Se concentration	121
Zea mays L.	sodium selenite	5.0–20.0 g of Se Ha⁻¹	field experiment soil application foliar application	in grain (mg of Se kg⁻¹ DW): 0.042–0.068 (soil application), 0.157–0.306 (foliar application)	NA	↑Se concentration	122
Zea mays L. (Dekalb DKC4316, FO 300)	sodium selenite	200 g of Se Ha⁻¹ at low (LH) and high (HH)	field experiment (soil application; years, 2016 and 2017)	in grain (μg of Se kg⁻¹ DW): 1310 (LH) and 1390 (HH), in 2016 80 (LH) and 200 (HH), in 2017	SeMet	↑organic and organic Se forms, ↑anthophyll, ↑saccharyl, ↑hydrocinnamic acid content, ↑antioxidant activities	18
Zea mays L. (cv. Zhengdan 958)	sodium selenite	Se sprayed and then incorporated (SA): 150–600 g of Se Ha⁻¹	field experiment soil addition: SA and FA	in grain (μg of Se kg⁻¹ DW): 0.6–206.0 (SA), 7.0–2312.0 (FA)	NA	↑Se concentration; ↑gladin, ↑glutenin, ↑albumin, ↓globulin, ↓iron, zinc, ↓copper, ↑manganese, ↑amino acids, ↑anthocyanins	123
Triticum aestivum L. (cv. Shannong 1 (purple), Shannong 031244 (blue), and Shannong 129 (white))	sodium selenite	37.5–112.5 g of Se Ha⁻¹	field experiment (foliar addition)	in grain (μg of Se kg⁻¹ DW): 0.23–0.54	NA	↑Se concentration	124
Triticum aestivum L. (var. BRS 264)	sodium selenite	12–120 g of Se Ha⁻¹	field experiment (foliar addition)	in grain (mg of Se kg⁻¹ DW): 2.86 (average value at the highest dose)	NA	↑starch content, ↑total soluble sugars, ↑reducing sugars, ↓sucrose, ↓N and ↑antioxidant metabolism	125
Triticum aestivum L. (cv. Jordiao, bread wheat, TA)	sodium selenite (ate)	4, 20, and 100 g of Se Ha⁻¹	field experiment (soil treatment, ST; foliar spray, FS)	in leave (μg of Se kg⁻¹ DW): 1.20–2.32	↑SeMet	↑SeMet	126
Triticum durum Desf. (cv. Marialva, TD)	sodium selenite (i.e.)	10–40 g of Se Ha⁻¹	field experiment (foliar spray)	in grain (μg of Se kg⁻¹ DW): 4.57–12.430	↑SeMet	↑Se content	127
Triticum durum Desf.	sodium selenite	10–40 g of Se Ha⁻¹	field experiment (foliar spray)	in grain: (μg of Se kg⁻¹ DW) 5–33 and 10–6 for each g ha⁻¹ of Se	NA	↑Se concentrations	128

NA: not analyzed. DW: dry weight.
fertilizer form, crop species, and variety and growth stage, to name a few. Indeed, Se species distribution in soils shows that, after irrigation, selenate can be considered as an easily available short-term pool of Se for plants. The long-term pool of Se in the topsoil mainly consists of selenite and organic Se species. These species are readily retained but still sufficiently mobile to be taken up by plants. The formation of elemental Se can be considered as a nonavailable Se pool and is thus the major cause of Se immobilization and long-term enrichment of Se in soils. In this sense, two years of selenite fertigation in maize (*Zea mays* L.) increased the content of inorganic and organic Se forms, while irrigation did not affect Se concentration. In rice, selenite uptake promoted organic Se accumulation, but this was mainly stored in roots, a nonedible part of the plant. On the contrary, selenate uptake resulted in the accumulation of selenate in the higher part of the shoots, which is an essential requirement for Se to be transported to the grain. Foliar application is a valid alternative for Se enrichment of agricultural products. Compared to Se fertilization to the soil, foliar application by-passes any interference due to soil chemistry and microbiology issues, ensuring a higher efficacy even with low volumes of Se solution. Foliar application of selenite or selenate has been successfully performed to increase the Se content in many crops. Furthermore, the technique paves the road toward the enrichment of plants by costly stable isotopes, which are useful tools in plant physiology research.

In hydroponic systems, as it may be the case in the production of soil-less vegetables and microscale vegetables, Se can be supplied to the water or the nutrient solution. As far as the plant growth stage is concerned, Se may be applied all at once or repeatedly and from sowing to stem elongation, with different outcomes in terms of Se accumulation and partitioning among plant organs. At the vegetative stage, root application of selenomethylselenocysteine (SeMeSeCys) caused the highest water extractable Se content in leaves with major a contribution from organic Se species such as Se amino acid and non-amino acid organic Se. Further investigation at the reproductive stage revealed that foliar application of selenite resulted in the highest total Se content in rice seeds, which was largely attributed to inorganic Se. In contrast, the root application of selenite led to the maximum accumulation of organic Se compounds, which are the most beneficial to human health. The application of Se during the booting stage resulted in the highest concentration of Se in brown rice due to the highest upward translocation of Se. More than 90% of Se in brown rice was accounted for by organic species, mainly SeMet. The proportion of SeMet in the brown rice decreased with the delay in application time. In potatoes, foliar application of selenite during the tuber bulking stage was appropriate for the production of Se-rich potatoes. In broccoli, Se fortification at developmental stages increased SeMeSeCys content.

Finally, the environmental factors (soil characteristics, rainfall, and temperature regimes, etc.) and the cultivation practices (sowing date, fertilization and irrigation schedules, use of growth stimulators, etc.) may greatly affect the Se uptake and partitioning among plant organs. Moreover, both environmental stresses and Se may interfere in affecting the content of secondary metabolites in plant tissues.

For all the aforementioned reasons, reviewing the literature available on Se-biofortified foods is not easy, and any effort to regroup treatments and effects may give arbitrary interpretations that may be questionable. In light of this, the last 10 years of literature is summarized in Tables 1–11, regrouping plant foods by crop types (arable crops, vegetables, microscale vegetables, and fruit trees) and pointing out, for any reference, the plant species and cultivar; the Se source, dose, and application mode; and the main effects of Se biofortification in terms of total and organic Se content and other nutritional traits (such as bioactive compounds and antioxidant activity). Only literature dealing with the content of Se species in edible portions of plants is considered here, neglecting references focused on the effect of Se on plant physiology, biochemistry, and molecular biology. Finally, Table 12 summarizes literature on Se-enriched meat from livestock fed with Se-enriched feed. Since cooking methods could imply losses of Se species, the results reported in the following Tables 1 – 12 are referred to as raw products. Indeed, it has been estimated that around 13.5, 24.0, 3.1, and 46.9% of SeMet were lost during the processes of steaming, boiling, frying, and milking, respectively, while SeCys and SeMeSeCys were completely lost from boiled cereals.

SE-BIOFORTIFIED PLANT FOODS

Arable Crops.** Tables 1 and 2 report total and organic Se contents and effects on other nutritional traits of cereal and legume grains, as affected by biofortification strategies. From the results in Table 1, it can be drawn that the fortifying methods used in literature to enrich the crops (foliar spray and soil application) are able to supply the grain with doses of Se suitable for human nutrition; in particular, for rice, the higher Se concentration in grain was achieved by absorbing Se from roots in the form of selenite, while for all the other plant species, the most efficient method of fortification was foliar spray. The nutritional benefits that cereal grain may obtain with Se fortification were an increase in antioxidant activity; a nutrient content higher than in the control; and an increase in amino acids, phenols, anthocyanins, sugars, and Se organic forms. This seems to encourage further research on the possible use of Se-fortified cereals in the diet.

Table 2 summarizes recent literature on Se biofortification in legumes (bean, lentil, chickpea, and soybean). The results obtained for legumes do not yet make completely clear the nutritional benefits of Se fortification. Both selenite and selenate, as well as both foliar spray and soil addition, are effective in increasing Se content in seeds. Unfortunately, information about the increase in the nutritional quality of Se-enriched seeds is still lacking; however, the ascertained presence of SeMet in chickpea and soybean seeds encourages further research to deepen these studies.

Vegetable Crops. Much research was also conducted on the Se fortification of lettuce and other leafy vegetables, such as spinach, basil, endive, and chicory. The results are reported in Tables 3 and 4.

The total Se concentration in the leaves of Se-treated lettuce changed greatly, depending on the Se fertilizer (selenite or selenate) and the method of Se-fortification used (Table 3). The most important benefits due to Se fortification were a decreased nitrate content; an elevated lettuce quality and yield; an increased leaf area, dry weight, pigment content, and antioxidant enzyme activity; a slightly higher shelf life with respect to the control; an enhanced N and/or S metabolism or total sugar content; and an increased stress tolerance. As far as lettuce is concerned, the risk of reaching total Se concentrations in the leaves that is too high for the
Table 2. Legumes: Crop Species, Se Treatment (Se Source, Dose and Application Mode), and Effects on Total (TSeC) and Organic Se Content and Other Nutritional Traits

species	type of treatment	TSeC	other nutritional traits reference
Lens culinaris	500 g of Se Na\textsubscript{2}SeO\textsubscript{3}	753	1 DW (Table 4)
Cicer arietinum	0.9 % of Se	0.9 % of Se	1 DW (Table 4)
Glycine max	400 g of Se Na\textsubscript{2}SeO\textsubscript{3}	753	1 DW (Table 4)

DW: dry weight. NA: not analyzed.

SeMet; SeMetSeCys; SeCys.

The studies on chicory evidenced an increase in plant yield and antioxidant compounds, which is rich in carotenoids, soluble phenols, proline, and anthocyanin, whereas contrasting effects on biomass increase have been highlighted. The essential oil content was not influenced by Se fortification. The nutritional benefits obtained from the biofortification of basil have been achieved with doses of Se too high to be compatible with human nutrition. However, this plant material, which is rich in carotenoids, soluble phenols, proline, and anthocyanin, could be used by mixing it with similar untreated plant material to obtain a Se content suitable for human diet. The studies on chicory have been achieved with doses of Se too high to be compatible with human nutrition. However, this plant material, which is rich in carotenoids, soluble phenols, proline, and anthocyanin, could be used by mixing it with similar untreated plant material to obtain a Se content suitable for human diet.

Particularly relevant are the studies on the Se biofortification of Brassicaceae (Table 5), as these leafy vegetables are Se-hyperaccumulating plants.

Interestingly, of the beneficial Se amino acids, SeMetSeCys was the only one identified in radish plants. This compound has recognized anticarcinogenic properties; thus its accumulation in radish roots is a valuable result. Plants sprayed with Se produced more SeMetSeCys compared to plants grown in hydroponics. The contents of Cys, polyphenols, and glutathione in Se-treated plants were higher than in the untreated plants. Concerning cabbage, both the total Se content and some nutritional traits of the edible parts increased after Se biofortification; in florets, Bafuelos et al. found higher percentages of Se organic compounds (such as SeMet and MeSeCys) than those of Se inorganic compounds. Also, Sindelárková et al. found the presence of Se organic compounds, such as SeMet and SeMetSeCys, in all the parts of the Se-biofortified plants and reported that Se accumulated mainly in the flower heads. Mechora et al. reported that the main soluble species in the Se-biofortified plants was SeMet, even if the major amount of Se was in insoluble forms (31–53%). Ramos et al. reported that half of the total Se accumulated in leaves was SeMetSeCys and SeMet, the total glucosinolate contents were not affected by the concentration of selenate application, and the total antioxidant capacity of plants was greatly stimulated by selenate. Mechora et al. reported that selenate addition had no effect on the amounts of anthocyanins or chlorophyll. Leafy crops are the most suitable for fortification studies; they require little time to reach maturity, they can be grown in pots, and they easily allow for the evaluation of the dose of the element that will be present in the edible part. Among all the leafy crops mentioned above, the most suitable for Se biofortification seem to belong to the Brassicaceae family. Since these are Se-hyperaccumulating plants, the main concern could be the risk of excessive doses of Se in the edible parts. However, as demonstrated by the total Se concentration values found by Mechora et al. and Sindelárková et al. on cabbage grown in fields and fertilized with Se by soil addition or foliar spray, it should not be difficult.
Table 3. Lettuce: Plant Genotype, Se Treatment (Se Source, Dose, and Application Mode), and Effects on Total (TSeC) and Organic Se Content and Other Nutritional Traits

species	Se source	dose	type of treatment	TSeC	organic Se	other nutritional traits	references
Lactuca sativa L. (cv. Susana, Hungary)	sodium biselenite	50–100 ppm Se	field trials plus soil application	in leaves (μg of Se kg⁻¹)	46–1708	NA	152
Lactuca sativa L. (cv. Venezaroxa)	sodium selenite sodium selenate	0–40 μM Se L⁻¹	in hydroponics	in leaves (μg of Se g⁻¹ DW³); selenite, 23.2–50.8; selenate, 57.4–60.2	NA	Se concentration	41
Lactuca sativa L. (var. Romana)	sodium selenate	1–50 mg of Se kg⁻¹ of peat	in pots (some plants grown and Se-fortified in pots were transplanted in open field)	in edible organs; open field experiments: (μg of Se kg⁻¹ DW): 2.14–61.3 (in 2012); 24.1–45.5 (in 2013)	NA	Se in edible organs	45
Lactuca sativa L. (var. Capitata, cv. Batavia Rubia Mungui, cv. Maravilla de Verano)	sodium selenite, organic seleno compound, SeCH́	40 μg of Se plant⁻¹ Se added to the substrate	in pots (greenhouse experiment)	in plants (pg): 439–4501	NA	Mineral composition, soluble proteins, concentration of non-structural sugars in shoots	48
Lactuca sativa L. (var. Capitata)	sodium selenite	0.0–30 μM sodium selenite	in hydroponics	in shoots (mg of Se kg⁻¹ DW): selenite, 3.7–30.6; selenate, 4.7–43.3	NA	Se concentration	43
Lactuca sativa L. (cv. Vera)	sodium selenite sodium selenate	0–64 μmol of Se L⁻¹ with the nutrient solution both as selenite and selenate	in shoots (mg of Se kg⁻¹ DW): selenite, 0–12; selenate, 0–23	NA	Se concentration	44	
Lactuca sativa L. (cv. Philipus)	sodium selenite sodium selenate	5–120 μmol of Se L⁻¹ with the nutrient solution both as selenite and selenate	in pots (greenhouse experiment)	NA	NA	Se content	47
Lactuca sativa L. (cv. Philipus)	sodium selenite sodium selenate	5–120 μmol L⁻¹ with the nutrient solution both as selenite and selenate	in pots (greenhouse experiment)	in leaves (mg of Se kg⁻¹ DW): selenite, 2.5–38; selenate, 1.5–42	NA	Se concentration	49
Lactuca sativa L. (cv. Philipus)	sodium selenite sodium selenate	5–120 μmol L⁻¹ with the nutrient solution both as selenite and selenate	in pots (greenhouse experiment)	in leaves (mg of Se kg⁻¹ DW): selenite, 2.5–40.0; selenate, 1.0–44.0	Cys (mg g⁻¹ FW): selenite, 0.48–0.98; selenate, 1.34–2.17. Amino acids (mg of Gly g⁻¹ FW): selenite, 0.50–1.07; selenate, 0.50–0.77. Proteins (mg of Alb g⁻¹ FW): selenite, 2.30–3.96; selenate, 2.78–2.84	Se concentration	46
Lactuca sativa L.	sodium selenite	selenite: 1.5 and 5.0 mg of Se kg⁻¹ of soil	in pots (application to soil substrate; greenhouse experiment)	selenite (mg of Se kg⁻¹ DW) in shoots: 0.74–1.11	NA	Se concentration	99
	sodium selenate	selenate: 1.5 mg of Se kg⁻¹ of soil	in pots (application to soil substrate; greenhouse experiment)	selenate (mg of Se kg⁻¹ DW) in shoots: 6.21–6.68	NA	Se concentration	101

NA: not analyzed. DW: dry weight. FW: fresh weight.
species	Se source	dose	type of treatment	total Se concentrations	Se organic	other nutritional traits	references
Cichorium endivia L. (var. crispum Hegi)	sodium selenate	0–80 μmol of Se L⁻¹	in hydroponics (fertigation or foliar spray)	in shoots (mg kg⁻¹ DW¹): fertigation, 1.94–17.61; foliar spray, 0.95–12.67	NA¹	† ascorbic acid and total phenolics	133
Cichorium intybus L. (cv. Anivip and Monivip)	sodium selenate	10 mg of Se L⁻¹ (moistening the roots)	in aeroponic system (greenhouse)	in leaves (mg kg⁻¹ DW): 1.39–370 in Anivip cv., 205–460 in Monivip cv.	NA	† Se content	134
Ocimum basilicum L. (cv. Tiglius)	sodium selenate	0.5–4.0 mg of Se L⁻¹	in hydroponics (floating system)	in stems (mg kg⁻¹ DW): 4–21 (1st experiment), 0.98–1.25 (2nd experiment). In leaves (mg kg⁻¹ DW): 11–32 (1st experiment), 2–5 (2nd experiment)	NA	† Se concentration, † rosmarinic acid content	135
Ocimum basilicum L. (var. Red Rubin and Dark Green)	sodium selenate	25 mg of Se m⁻²	foliar applied	in leaves (mg kg⁻¹ DW): 2.31–7.01 in Red Rubin var. (first harvest), 1.71–4.08 in Dark green var. (1st harvest)	NA	† Se content	55
Ocimum basilicum L. (var. Dark green and Red Opal)	sodium selenate	25 mg of Se m⁻²	foliar applied	NA	NA	† antioxidant activity, † total polyphenol content	136
Ocimum basilicum L.	not reported	0–120 mg of Se L⁻¹	pot experiment (foliar application)	not reported	NA	† Chlb, † Car, † antioxidant activity, † soluble phenol, † proline content	52
Ocimum basilicum L.	sodium selenate	1–50 mg of Se L⁻¹	pot experiment (foliar application)	in shoots (mg kg⁻¹ DW): 0.95–150	NA	† anthocyanin and phenolics, † MDA decreased, † pigments, † total Se content	53
Spinacia oleracea L.	sodium selenite	0–5.2 μM	in floating system	in leaves (μg kg⁻¹ DW): 9.3–15.5	NA	† Se content, † sugars, † sucrose, † nitrate content	50
Spinacia oleracea L. (cv. Missouri)	sodium selenite	1–10 mg of Se L⁻¹	in hydroponics	in shoots (mg g⁻¹ DW): 1.71–3.89	NA	† micronutrient, † antioxidant capacity	51

¹DW: dry weight. ²NA: not analyzed.
species	Se source	dose	type of treatment	total Se concentrations	Se organic	other nutritional traits	references
Raphanus sativus L. (cv. Saxa)	sodium selenate	5−20 mg of Se plant$^{-1}$ (pot experiment) 0.4−1.6 mg of Se plant$^{-1}$ (hydr. experiment)	pot experiment (soil substrate, foliar application) in hydroponics	pot experiment (μg plant$^{-1}$): in roots, 6.87−15.38 in hydroponics (μg); in roots, 0.007−6.56	pot experiment (mg 100 mg$^{-1}$ tissue FW$^{-1}$): ↑SeMetSeCys in roots, 1.62−3.34. In hydroponics (mg 100 mg$^{-1}$ tissue FW): in roots, 0.75−1.51	↑phenolic, ↑cysteine, ↑glutathione, ↑glutathione, ↓total N, ↓polyphenols in hydroponics, ↑biomass cysteine in roots and leaves, ≈polyphenols	137
Brassica oleracea L. (var. Marathon)	shoots of Se-accumulator plant *Stanleya pinetorum* L. (powdered plant material, 700 μg of Se g$^{-1}$ DW)	17.5−140 mg of Se lisimeter$^{-1}$	field-installed lysimeters filled with amended soil	in florets (μg of Se g$^{-1}$ DW$^{-1}$): 0.5−3.5	in florets (%): (real time SAX-HPLC-ICPMS): 58 SeMet, 15 CysSeSeCys, 7.4 MeSeCys, 6 selenate, 3.1 selenate. (XANES): 55 SeMet and MeSeCys, 23 CysSeSeCys, 18 SeOMet, 4 selenate	↑Se content, ↓Se in the flower heads. ↑Se content in all parts of the plants.	56
Brassica oleracea L. (var. Heraklion, Marathon, Parthenon, and Naxos)	sodium selenate	25−50 g of Se Hα$^{-1}$	field experiment (foliar application)	selenate, SeCys2, Se-MetSeCys, SeMet, and 2 unknown species	↑Se content	↑Se content	57
Brassica oleracea L. (var. Capitata, cv. Pandion) and *Brassica oleracea* L. (var. Capitata, f rubra, cv. Erfurtskorano)	sodium selenate	20 mg of Se L$^{-1}$ (Pandion), 0.5 mg of Se L$^{-1}$ (f rubra)	field experiment (foliar application Pandion, soil fertilized twice, f rubra)	Pandion: in stems (μg of Se g$^{-1}$ DW), 5.45. F rubra: in stems (μg of Se g$^{-1}$ DW), 0.81	(ng of Se g$^{-1}$ of sample): ↑SeMet Pandion in stems, 820; f rubra in stems, 200	↑Se content	58
Brassica oleracea L. (var. Italica, cv. Monaco)	sodium selenate	young plants: weekly selenate application of 0.8 μmol plant$^{-1}$ via the root adult plants: single foliar selenate application of 25.3 or 255 μmol plant$^{-1}$	young plants, 2 weeks after transplant (soil application, pot experiment, sand substrate) adult plants, 3-month old (field experiment, foliar application)	in the adult plant heads (mg of Se kg$^{-1}$ DW): upper stems, 5.5−58.0; terminal florets, 10−57.0	NA	≈anthocyanins, ≈chlorophyll	138
Brassica oleracea L. (var. Capitata, f rubra, cv. Erfurtskorano)	sodium selenate	1st group: with a solution at a concentration of 2 μg of Se L$^{-1}$ every second day for 2 months 2nd group: fertilized with 0.5 mg of Se L$^{-1}$ twice in the same test period	field experiment (soil substrate)	in stems (ng of Se g$^{-1}$ DW): 25−810. In leaves (ng of Se g$^{-1}$ DW): 20−960	NA	60	

aFW: fresh weight. bDW: dry weight. cNA: not analyzed.
Table 6. Bulb and Root Crops: Crop Species, Se Treatment (Se Source, Dose, and Application Mode), and Effects on Total (TSeC) and Organic Se Content and Other Nutritional Traits

species	Se source	dose	type of treatment	TSeC	Se organic forms	other nutritional traits	references
Solanum tuberosum L. (cv. E potato-10)	sodium selenate, sodium selenite	100 mg of Se L−1 and the final volume of the solution applied was 2 L plot−1	field experiment (foliar spraying) in tubers (mg of Se kg−1 DW): 0.05−1.05 (selenite), 1.04−1.50 (selenate)	↑SeMet (the main species), ↑SeMeCys, ↑SeCys2	↑Se concentration	[34]	
Solanum tuberosum L. (cv. Agata)	sodium selenate, sodium selenite	0.75−5.0 mg of Se kg−1	pot experiment (soil fortification) in shoots (mg of Se kg−1 DW): 6.20 (selenite), 5.63 (selenate)	in tubers (mg of Se kg−1 DW): 5.0 (selenite), 10.0 (selenate)	NA	↑Se content	[63]
Solanum tuberosum L. (cv. Karin and Cv. Ditta)	sodium selenite	200−400 g of Se Ha−1	field experiment (foliar application) in tubers (mg of Se kg−1 DW): 1.562−2.027 (Karin), 0.693−1.129 (Ditta)	NA	↑ content of total essential and nonessential amino acids	[139]	
Solanum tuberosum L. (cv. Desiree)	sodium selenite	10 mg of Se L−1	field experiment (foliar application) in tubers (ng of Se g−1 DW): 347 (drought exposed), 1101 (well-watered)	↑SeMet (68% of total Se)	↑selenate	[61]	
Solanum tuberosum L. (cv. Satu)	sodium selenite	0.073−0.3 mg of Se kg−1 sand	in quartz sand (Se applied to the substrate) in roots (μg of Se g−1 DW): 5−30 in stolons (μg of Se g−1 DW): 4−40	NA	NA	[62]	
Solanum tuberosum L. (cv. Primura)	sodium selenite	50−150 g of Se Ha−1 in aqueous solution and in humic acid solution.	field experiment (soil substrate, foliar application) in tubers (mg of Se kg−1 FW):0.01−0.15 (selenite), 0.01−0.11 (selenite) in aqueous solution. in humic acid solution: 0.01−0.35 (selenite)	NA	↑Se concentration	[30]	
Allium sativum L.	sodium selenite	20.0−50.0 g of Se Ha−1	field experiment (foliar spray, FS; soil flood application, SFA) in bulbs (mg kg−1 DW): 3.23 (highest average concentration)	NA	↑Se content, ↑total phenolics, ↑total flavonoids, ↑total antioxidant capacity	[64]	
Allium cepa L. (aggregatum group, cv. Alba)	sodium selenate, selenocystine solution	63 mg of Se m−2, 50 mg L−1 SeCys solution	field experiment (foliar spray) Some plots were previously treated with an arbuscular mycorrhizal fungi (AMF)-based formulation	the inoculation of shallot plant roots with AMF increased the bulb Se content by 550%, and Se biofortification with (SeCys), and sodium selenate increased this value by 36% and 21%, respectively, compared to control	NA	↑ascorbic acid, ↑antioxidant activity	[65]
Daucus carota (cv. Mokum F1)	sodium selenate, sodium selenite	10 and 100 μg of Se mL−1 pot experiment (foliar spray)	in roots (μg g−1 DW): 0.5−2.2 (selenite), 0.4−1.5 (selenite)	↑SeMet, ↑γ-glutamyl-SeMet-SeCys	↑Se content in roots and leaf	[66]	

*DW: dry weight. *NA: not analyzed.
Table 7. Tomato: Plant Genotype, Se Treatment (Se Source, Dose, and Application Mode), and Effects on Total (TSeC) and Organic Se Content and Other Nutritional Traits

species	Se source	dose	type of treatment	TSeC	Se organic forms	other nutritional traits	references
Solanum lycopersicum L. (cv. Red Bunch)	sodium selenate	1−1.5 mg of Se L⁻¹	in hydroponics	in fruits (mg kg⁻¹ DW): 0.94−2.76 (1 mg L⁻¹ treatment), 2.08−3.54 (1.5 mg L⁻¹ treatment)	NA	↑delayed fruit ripening, ↑shelf life, ↑delayed lycopene and β-carotene synthesis, ↑chlorophyll degradation	54
Lycopersicon esculentum Mill. (var. Durpeel and var. Uno Rosso F1)	sodium selenate	150 g of Se Ha⁻¹ (at the flowering stage)	field experiment (foliar application)	in fruits (mg kg⁻¹ DW): 0.378 (Durpeel)−0.990 (Uno Rosso F1)	NA	↑Se content in fruits, ≈total carotenoids, ≈vitamin C, ↑total polyphenols	72
Solanum lycopersicon L. (cv. Provence)	sodium selenate	1 mg of Se L⁻¹ (at the onset of flowering)	Green house experiment (foliar application)	Not reported	NA	↑fruit firmness, ↑total solids; ≈N, P, K, Ca, and Mg; ↑antioxidant enzyme activities	67
Lycopersicon esculentum Mill. (var. Toro)	sodium selenate	5 and 10 mg of Se L⁻¹ (nutrient solution)	pot experiment (peat moss and perlite substrate, Se with the nutrient solution)	in fruits (μg g⁻¹ DW): 24.0−33.0	NA	↑Se content, ↑antioxidant activities	70
Solanum lycopersicum L. (cv. Karst)	sodium selenate	1–50 mg of Se kg⁻¹ of peat.	in pots (peat substrate, greenhouse experiment)	in edible organs, open field experiments (μg of Se kg⁻¹ DW): 15.4−19.7 (in 2012), 14.9−20.2 (in 2013)	NA	↑Se content, ↑vitamin A	45
Solanum lycopersicum L.	sodium selenate	2.0−10.0 mg of Se L⁻¹ solution.	in pots (greenhouse experiment): soil application + foliar spray (SF) seed soaking (SS)	Not reported	NA	↑total phenolic, ↑fruit protein, ↑nitrate, ↑total antioxidant activity, ↑chlorophyll, ↑Se concentrations	71
Solanum lycopersicum L. (cv. PKM. 1)	sodium selenate	2.0−10.0 mg of Se L⁻¹ solution.	in pots (greenhouse experiment): soil application + foliar spray (SF) seed soaking (SS)	in fruits (μg of Se g⁻¹ DW): 26.52−52.24	↑SeMet, ↑MeSeCys	↑Se content, ↑β-carotene content, ↓ethylene, ↑delay in the onset of fruit ripening	69
Solanum lycopersicum L. (cv. Red Bunch)	sodium selenate	1.0 mg of Se L⁻¹ (in the nutrient solution 2 weeks after transplanting)	in greenhouse (plants hydroponically grown and then transplanted into rock wool slabs)	in fruits (μg of Se g⁻¹ DW): 10.28−11.46	NA	↑Se content, ↑β-carotene content, ↓ethylene, ↑delay in the onset of fruit ripening	68

aDW: dry weight. bNA: not analyzed.
to develop an agronomic methodology to obtain leaves or plant heads with the right dose of Se. These edible parts contain, in addition to Se in inorganic forms, Se in organic forms (SeMet and SeMetSeCys), which are more easily available to the consumer.37,58,60

Se-biofortification studies were also carried out on plants whose edible parts were tuber, bulb, or root (potato, garlic, shallot, and carrot), and the obtained results are reported in Table 6.

As far as the nutritional benefits are concerned, selenate was the most efficient source for Se biofortification of tubers;34 the accumulation of inorganic Se was higher in tubers treated with selenate (31.9% of the total Se content) than in those treated with selenite (1.5%).34 However, selenate was markedly inferior to selenite in terms of the organic transformation rate of Se.34 Selenate and SeMet were the main soluble Se species in potato tubers.61 In tubers, plant application of Se increased the relative content of total essential and nonessential amino acids compared to the controls (phenylalanine was enhanced particularly).52 When applied in small doses, Se provided beneficial effects on the tuber production, activated enzymes of the antioxidant system,63 and delayed aging of the stolons and roots, contributing to an increased shelf life of potatoes.64 At harvest, the starch concentration in tubers did not change.51 In garlic, foliar spray was more effective than soil application. A significant increase in total phenolics, total flavonoids, and total antioxidant capacity was observed in bulbs.64 Concerning shallots, it was reported that Se biofortification combined with pretreatment of an arbuscular mycorrhizal fungi (AMF)-based formulation increased the bulb Se content by 530%, while Se biofortification with selenocysteine (SeCys) and selenate increased this value by 36% and 21%, respectively, compared to the control. The values of bulb quality indicators, macro- and microelements, ascorbic acid, and antioxidant activity increased upon AMF inoculation;50 both selenite and selenate positively affected most of the quality attributes and macroelements as well as the contents of Se and ascorbic acid. For carrots, inorganic Se, SeMet, and γ-glutamyl-SeMet-SeCys were the predominant Se forms in roots.80

In Italy, potatoes, onions, and carrots containing low concentrations of Se (suitable for human diet) are already in trade and are produced by the Italian Potatoes of Quality Consortium, with headquarters in Bologna.30 Since tubers, bulbs, and roots are poor but nutritious foods, improving their nutritional characteristics even by increasing their content of Se in organic forms appears relevant for the wellness of populations of the poorest areas of the world.

As far as fruit vegetables are concerned, the plant most commonly used in Se biofortification studies was tomato, whose results are reported in Table 7. Biofortification with Se seemed to cause a delay in the onset of the fruit ripening.58,67,68 This effect may be positive because it could affect the postharvest shelf life of tomatoes; Zhu et al.67 reported that this could be due to an inhibition of reactive oxygen species (ROS) generation by stimulation of antioxidant defense systems, together with a downregulation of ethylene biosynthesis genes. Similarly, Puccinelli et al.68 noticed a lower respiration rate and ethylene production, associated with a delayed lycopene and β-carotene synthesis and chlorophyll degradation. The nutritional benefits that tomato fruits acquired with Se biofortification were the presence of SeMet and MetSeCys as the major forms of Se compounds in the fruits,69 an increase of the antioxidant activity,70,71 a slightly higher level of vitamin A,45 and an increase in fruit firmness and fruit total solids.70 Se biofortification of tomatoes may be interesting for fortified food producers. Also, in this case, it is essential to develop an agronomic method that allows fruits to be obtained with a dose of Se suitable for the human diet. Particularly interesting, from this point of view, is the fortification technique developed by Businelli et al.72 which is as follows: (i) enrich an appropriate amount of peat in Se, (ii) sow the seeds of the selected crop species in Se-enriched peat until seedlings have the appropriate size for transplanting, (iii) transfer these Se-enriched transplants in the field. Moreover, using this technique, the environmental spread of Se is minimized, as this element is not in any way distributed in the field, but it is only used during the pre-transplanting stage and is immediately absorbed by the seedlings. Another on-field fortification technique, suitable for obtaining a Se-fortified tomato without excessive Se concentrations, is that proposed by Andrejiova et al.72 The Se fortification of tomatoes has potential for obtaining a table fruit with a longer shelf-life and with high levels of Se-organic forms and antioxidant compounds. Another possible use could be the production of sauce; in this case, Se-fortified tomatoes could be mixed with untreated tomatoes in order to avoid excessive Se concentrations in the final product.

Microscale Vegetables. Recent studies on Se biofortification were focused on “microscale vegetables”, i.e., plants in early growth stages, since they are able to absorb relevant amounts of Se75 and are naturally rich in phytochemicals.74–76 Microscale vegetables differ from each other according to their corresponding growing cycle lengths, plant heights, edible portions, and other secondary traits.74–76 This section will review only literature on sprouts (i.e., 3–5 day-old seedlings), grasses (7–12 day-old seedlings from Graminaceae species), and microgreens (5–10 day-old seedlings from all plant species except for Graminaceae species). These require a short time interval to be produced (1–3 weeks) and few inputs (i.e., no soil, only water, and no or low light).74,76 **Tables 8–10** report the studies of the last ten years that concern the most exploited technique for Se biofortification in sprouts, grasses, and microgreens: Se is supplied by (i) the germination substrate (Table 8), (ii) the soaking procedure (Table 9), and (iii) the chemical priming (Table 10). All the tables report the effect of these methods on total and organic Se content and, where studied, on phytochemicals.

All the procedures used for Se biofortification generally cause an increase of Se content, but results varied with the species; the growth stage; and the Se source, dose, timing of application.

The growth stage should be chosen accurately since it is related to the edible portion of the plant. In the case of sprouts, the whole seedling (shoots and roots) is edible, while in the case of microgreens and grass, only the shoot is used in human nutrition (i.e., for salads, soups, or juices).75,76

The organ to be consumed may also depend on the form of Se used for biofortification. In fact, by using sodium selenite (Na2SeO3), the Se might be highly accumulated in the roots (i.e., mainly as selenite), while by using sodium selenate (Na2SeO4), the Se will be accumulated mainly in the shoots as selenate and organic Se.56,77

The Se source used for biofortification is strongly related to the chemical form of Se consumed by nutrition. On the other hand, the chemical product containing Se is often chosen
Table 8. Microscale Vegetables: Plant Species, Growth Stage, and Se Treatment (i.e., Se Source, Se Doses, and Time of Exposition) with Se Applied to the Germination Substrate

species	growth stage (DAS)**	Se source	dose	TSeC	organic Se	other nutritional traits	reference
Graminaceae							
Oryza sativa (rice)	10	sodium selenite	5, 10, 15, and 20 mg of Se L⁻¹	300–500 mg kg⁻¹ DM	SeMet, SeCys₂, SeMetCys	↑PAs (free and conjugated), ↓carotenoids	77
	10	sodium selenite	5, 10, 15, 20 and 40 mg of Se L⁻¹	300–500 mg kg⁻¹ DM	SeMet, SeCys₂, SeMetCys	↑PAs (free and conjugated), ↓carotenoids	77
	8	sodium selenite	10, 20, 30, and 40 mg of Se L⁻¹	10–25 mg kg⁻¹ DM	NA	≈polypheolns	140
	1–4	sodium selenite	10, 20, 30, and 60 μM	~2 and 8 μg g⁻¹ DM	NA	NA	78
Leguminosae							
Secale cereale (rye)	7	Se oxide	10 mg of Se L⁻¹	53 μg g⁻¹ DM	NA	↓antioxidant activity, ≈GLS⁻¹	80
Lupinus angustifolius (lupin)	5	sodium selenite	2, 4, 6, and 8 mg L⁻¹	~1–5 μg g⁻¹ DM	NA	↑antioxidant activity	141
	5	sodium selenite	2, 4, 6, and 8 mg L⁻¹	~2–4 μg g⁻¹ DM	NA	↑antioxidant activity	
Medicago sativa (alfalfa)	21	sodium selenite	1, 2.5, and 4 mg of Se L⁻¹	132–284 mg kg⁻¹ DM	SeCys₂, SeMet	NA	83
Lens culinaris (lentil)	21	sodium selenite	1, 2.5, and 4 mg of Se L⁻¹	98–111 mg kg⁻¹ DM	SeCys₂, SeMet	NA	83
Glycine max (soy)	21	sodium selenite	1, 2.5, and 4 mg of Se L⁻¹	158–188 mg kg⁻¹ DM	SeCys₂, SeMet	NA	83
Brassicaceae							
Brassica oleracea (var. italica) (broccoli)	15	sodium selenite	20 μM	801–1789 μg g⁻¹	SeMetCys, SeMet	↑antioxidant activity, ↑GLS in some varieties	59
	7	sodium selenite	10, 25, 50, 75, and 100 μM	20–185 μg g⁻¹ DM	SeMetCys	↑glucoraphanin	79
	7	sodium selenite	10, 25, 50, 75, and 100 μM	32–263 μg g⁻¹ DM	SeMetCys	≈GLS	79
	8	sodium selenite	50 μM	132 μg g⁻¹ DM	NA	↑antioxidant activity and phenolics	142
	5	sodium selenite	100 μM	70 μg g⁻¹ DM	NA	↓polyphenols, ↑anthocyanins, ↑flavonoids, ≈GLS	81
	5	sodium selenite	100 μM	85 μg g⁻¹ DM	NA	↓polyphenols, ↑anthocyanins, ≈GLS (sulphoraphane variable among cultivars)	81
	7	sodium selenite	50 μM	160 μg g⁻¹ DM	SeMeCys	≈GLS	79
	7	sodium selenite	30, 60, 90, 120, and 150 mg of Se L⁻¹	467 mg kg⁻¹	SeMeCysSeMeCys	NA	82
B. oleracea (var. botrytis) (cauliflower)	7	Se oxide	10 mg of Se L⁻¹	400 μg g⁻¹ DM	NA	↓antioxidant activity, ≈GLS content	80
B. oleracea (var. acephala) (kale)	7	sodium selenite	50 μM	150–230 μg g⁻¹ DM	SeMeCys	↑total and single GLS depending on varieties	79
B. oleracea (var. gemmifera) (Brussels sprouts)	7	sodium selenite	50 μM	140–320 μg g⁻¹ DM	SeMeCys	≈GLS	79
B. oleracea (var. capitata) (cabbage)	7	sodium selenite	50 μM	80 μg g⁻¹ DM	SeMeCys	≈GLS	79
Table 8. continued

Species	Growth stage (DAS)	Se source	dose	TSC	organic Se	Other nutritional traits	Reference
Brassicaceae							
B. rapa (ssp. pekinensis)	7	sodium selenate	50 μM	160–310 μg L⁻¹ DM	SeMcCys	GLS	79
(Chinese cabbage)							
B. chinensis var. pekinensis	7	sodium selenate	30, 60, 90, 120, and 150 mg of Se L⁻¹	312 mg kg⁻¹	SeMetSeMeCys	NA	82
(packchoi)							
B. albogabra	7	sodium selenate	30, 60, 90, 120, and 150 mg of Se L⁻¹	156 mg kg⁻¹	SeMetSeMeCys	NA	82
(var. pekinensis)							
B. chinensis var. alba	7	Se oxide	10 mg of Se L⁻¹	382 μg L⁻¹ DM	NA	antioxidant activity; GLS content	80
(white cabbage)							
Sinapis alba (mustard)	7	selenium oxide	10 mg of Se L⁻¹	138 μg L⁻¹ DM	NA	antioxidant activity; GLS	80
	5	sodium selenite	4 and 8 mg of Se L⁻¹	21–36 μg L⁻¹ DM	NA	antioxidant activity; TGLS	141
Lepidium sativum (garden cress)	5	sodium selenate	4 and 8 mg of Se L⁻¹	27–39 μg L⁻¹ DM	NA	antioxidant activity; TGLS	141

"DAS: days after sowing. "DM: dry matter. "NA: not analyzed. "GLS: glucosinolate content."
species	growth stage (DAS)	Se source	dose	time	TSeC	organic Se	other nutritional traits	reference	
Cicer arietinum (chickpea)	1−4	sodium selenite	1 and 2 mg in 85 mL of water	6 h	4−7 μg g⁻¹ DM	NA	↑antioxidant activity, ↑total isoflavones, ↑some single isoflavone	143	
Medicago sativa (alfalfa)	∼5, 7	sodium selenite	1 and 10 mg of Se L⁻¹	6−10 h	13−109 mg kg⁻¹ DM	SeMet, SeMetSeCys	NA		80
Vigna radiata (mung bean)	3, 5	sodium selenate	127, 1270, and 12700 μM	10 h	up to 200 μg g⁻¹ DM	NA	NA		144
	3	sodium selenite	0−12 mg of Se L⁻¹	24 h	571−7275 μg kg⁻¹ DM	SeMetSeCys	NA		145
Brassicaceae									
B. oleracea (var. *italica*) (broccoli)	11	sodium selenate	10, 50, and 90 μM	4 h	NA	NA	≈polyphenols, ↑quercetin and sinapic acid, ↑morine and genisteine	146	
	∼5, 7	sodium selenite	1 and 10 mg of Se L⁻¹	6−10 h	~22−133 mg kg⁻¹ DM	SeMet, SeMetSeCys	NA		80
	3, 5	sodium selenate	127, 625, and 1270 μM	10 h	~250 μg g⁻¹ DM	NA	NA		144
B. oleracea (var. *capitata*) (red cabbage)	∼5, 7	sodium selenite	1 and 10 mg of Se L⁻¹	6−10 h	13−82 mg kg⁻¹ DM	SeMet, SeMetSeCys	NA		80
Raphanus sativus (var. *satius*) (radish)	∼5, 7	sodium selenite	1 and 10 mg of Se L⁻¹	6−10 h	10−103 mg kg⁻¹ DM	SeMet, SeMetSeCys	NA		80
R. sativus (var. *longipinnatus*) (daikon sprouts)	∼5, 7	sodium selenite	1 and 10 mg of Se L⁻¹	6−10 h	13−97 mg kg⁻¹ DM	SeMet, SeMetSeCys	NA		80
Sinapis alba (white mustard)	∼5, 7	sodium selenite	1 and 10 mg of Se L⁻¹	6−10 h	12−78 mg kg⁻¹ DM	SeMet, SeMetSeCys	NA		80
other									
Allium cepa (onion)	5, 7	sodium selenate	127, 625, and 1270 μM	10 h	up to 600 μg g⁻¹ DM	NA	NA		144
Amaranthus cruentus, *A. cannabinus*, *A. paniculatus*, and *A. tricolor* (amaranth)	6	sodium selenite	10, 15, and 30 mg L⁻¹	3 h	35−80 mg kg⁻¹ DM	NA	≈antioxidant activity (FRAP), ≈1DPPH	147	
Fago pyrum esculentum (buckwheat)	11	sodium selenite	10 mg of Se L⁻¹	4 h	2 μg g⁻¹ DM	SeMet	NA		148
	11	sodium selenite	10 mg of Se L⁻¹	4 h	7 μg g⁻¹ DM	SeMet	NA		148
	11	SeMet	10 mg of Se L⁻¹	4 h	3 μg g⁻¹ DM	SeMet	NA		148

*a*DAS: days after sowing. *b*DM: dry matter. *c*NA: not analyzed.
In general, foliar spraying was preferable in comparison to soil application, since it involves a more efficient uptake of Se, an absence of residual effects, and a minimum consumption of Se salts, resulting in the most environmentally safe and economically acceptable method. A little-explored treatment modality is that of fruit treatment. Pezzarossa et al. investigated the effects of foliar and fruit spraying of sodium selenite on Se accumulation, fruit growth, and senescence in peach and pear fruit crops. Both treatments increased the fruit Se concentration, but fruit treatment was more effective than leaf treatment in increasing Se content in fruits. The daily consumption of pears and peach treated with 1 mg of Se L\(^{-1}\) does not induce toxicity but can even provide a rational Se supplementation for human nutrition. Se accumulated in the pear juice was almost all inorganic, so the application of selenite is considered more suitable than selenate from the viewpoint of food safety. In apples and pomegranates, Se supplementation via foliar spray enhanced fruit quality. In particular, in apples, in addition to the increase of Se content, an increase in the flesh firmness, titratable acidity, soluble solid content, and activities of antioxidant enzymes were observed, while in pomegranates, Se fertilization led to an important increase of the content of phenolic compounds, antioxidants, and anthocyanins.

Regarding the effects of Se supplementation (100 mg L\(^{-1}\) via foliar spray) in table olives, D’Amato et al. reported that, at harvesting time, the concentration in the edible part of the drupes delivered 6.1 \(\mu\)g g\(^{-1}\), corresponding to 29 \(\mu\)g of Se per 5 olives (39 and 49% of the recommended dietary allowance (RDA) for adult men and women, respectively), and such enrichment also changed the nutritional quality of the drupes, with significant increases in the concentrations of B, Na, Mg, K, Cr, Mn, Fe, and Cu compared to the untreated control group. Therefore, in addition to Se, the consumption of 10 g of Se-enriched olives (five olives) per day per person would provide a quantity of Cu, K, Fe, Mg, Mn, and Zn equal to 3, 9, 1, 1, 1, and 0.5% of the RDA, respectively.

Se fertilization via foliar spray (50, 100, and 150 mg L\(^{-1}\)) is also effective for the enrichment of extra virgin olive oil (EVOO) in Se content (up to 120 \(\mu\)g kg\(^{-1}\)). Moreover, Se fertilization increased SeMet, carotenoid, chlorophyll, and phenol content in EVOO. In particular, the phenolic profiles showed that oleocanthal, ligustroside aglycone, and oleocanthal were the most affected compounds and were increased by 57, 50, and 32%, respectively. All these compounds, especially oleocanthal, have been shown to exert a relevant antioxidant activity, contributing to both the shelf life of EVOOs and positive effects on human health. It is important to underline that foliar spray with Se may be particularly useful with EVOOs characterized by a poor phenolic profile, which cannot meet the European Food Safety Authority (EFSA) statement about the admissibility of the health claim for EVOOs. Indeed, a well-planned Se fertilization before flowering may help these EVOOs reach the minimum content of hydroxytyrosol and its derivatives (e.g., the oleuropein complex and tyrosol).

In vitis grapes, the acid invertase activity, total soluble sugar, and Se content produced by plants treated with Se amino-acid-chelated fertilizer were higher than in the untreated control. In addition, Se fertilizer improved the nutritional characteristics, including soluble sugar, soluble protein, soluble solid, and reduced organic acid contents, while it had no effect on the polyphenol antioxidants of Eurasian species. Moreover, Se fertilization can be used not only to increase the Se content and nutrition quality of grapes but also to reduce the accumulation of heavy metals Pb, Cr, Cd, As, and Ni.

Immediately after the malolactic fermentation of Se-enriched (100 mg L\(^{-1}\) via foliar spray) grape berries, the wine obtained from treated trees had a Se content of 0.620 \(\pm\) 0.09 mg of Se L\(^{-1}\). In particular, the percentage of inorganic Se was 26% of the total Se in the untreated wine, while in Se-enriched wine, this percentage increased to 47.5% of the total Se. Selenite was the inorganic chemical form most present in enriched wine, probably due to the foliar application with selenate. Given a daily wine consumption of 50 mL, the contribution to the daily Se RDA is remarkable, since it is 91 and >100% for adult men and women, respectively, as considered by FAO/IAEA/WHO consultation, and 44 and 62% for adults, as considered by USDA. In addition, the amount of alcohol contained in a recommended volume of enriched Sangiovese wine is less than the quantity referred to the moderate wine consumption (15.5–31 g of alcohol day\(^{-1}\)).

In general, foliar treatment with Se resulted in the effective enhancement of Se content in fruits (olives, grapes, pears, peaches, pomegranates, and apples) and their derivatives (oil, wine, and juice) and their nutritional quality. However, the accurate planning of Se fertilization (time and dose) is necessary in order to avoid damage to the photosynthetic apparatus, inhibiting photosynthesis and the primary metabolism, and to maximize the protection from environmental stresses and the products quality.

Selenium Supplementation in Livestock: Effects on Meat Quality

Se is an essential trace element in animal nutrition and exerts multiple actions related to performance, fertility, health, and product quality. Different forms of Se supplements are available for animal feed, and in particular, two major Se

Table 10. Microscale Vegetables: Plant Species, Growth Stage, and Se Treatment (i.e., Se Source, Se Doses, and Time of Exposition) with Se Applied by Priming

species	growth stage (DAS)\(^{a}\)	Se source	dose	time	TSeC	organic Se	phytochemicals	reference
Oryza sativa (rice)	5, 10	sodium selenite	0.8 and 1 mg of Se L\(^{-1}\)	24 h	NA\(^b\)	NA	polyphenols	149
	18	sodium selenite	15, 30, 45, 60, 75, 90, and 105 \(\mu\)mol of Se L\(^{-1}\)	24 h	NA	NA	polyphenols (slight increase at the highest Se dose)	150
	7	not specified	60 \(\mu\)M Se	24 h	NA	NA	NA	151
Triticum aestivum (wheat)	18	sodium selenite	0, 25, 50, 75, and 100 \(\mu\)M Se	30 min	NA	NA	antioxidant activity	152

\(^{a}\)DAS.: days after sowing. \(^{b}\)NA: not analyzed.
Table 11. Fruit Tree: Crop Species and Genotype, Se Treatment (Se Source, Dose, and Application Mode), and Effects on Total (TSeC) and Organic Se Content and Other Nutritional Traits

sample	Se source	dose	type of treatment	Se content	TSeC	Se organic forms	other nutritional traits	reference
Olea europaea L. (cv. Leccino)	sodium selenite	100 mg of Se L\(^{-1}\)	leaves spray	↑oil up to 120 μg of Se g\(^{-1}\)	NA\(^a\)	↑phenols content in the oil, ↑PAL activity	↑B, Mg, K, Cr, Mn, Fe, and Cu in edible parts	93
Olea europaea L. (cv. Leccino)	sodium selenite	100 mg of Se L\(^{-1}\)	leaves spray	↑fruits 6.1 μg of Se g\(^{-1}\)	NA	↑pigment, ↑phenol content, ≈fruit characteristics, ≈sensory quality of the oil		31
Olea europaea L. (cv. Maurino)	sodium selenite	100 mg of Se L\(^{-1}\)	leaves spray	↑Se content in extra virgin olive oil 171–529 μg of Se kg\(^{-1}\)	SeMet	↑phenol, carotenoid, and chlorophyll		154
Vitis vinifera L. (cv. Hutai no. 08)	amino acid-chelated Se	≥0.12 g L\(^{-1}\)	leaves spray	↑fruits 22.90 μg of Se kg\(^{-1}\)	NA	↑acid invertase activity, ↑total soluble sugar and Se content in berries		96
Vitis vinifera L. (cv. Sangiovese)	sodium selenite	100 mg of Se L\(^{-1}\)	leaves spray	↑fruits and wine 0.800 ± 0.08 mg of Se kg\(^{-1}\) (DM\(^b\))	52.5% of the total Se	↑Se content		97
Vitis vinifera L. (cvs. Crimson Seedless, RedBarbara, Summer Black, and Hutai no.8)	amino acid-chelated Se	organic Se content ≥60 g L\(^{-1}\) (diluted 500 times)	leaves spray	↑fruits 19.46–34.96 μg of Se kg\(^{-1}\) (FW\(^c\))	NA	↑soluble sugar, ↑Vc, ↑soluble protein; ↑soluble solid; ↑polyphenol; ↑K and Ca; ↑Pb, Cr, Cd, As, Ni		98
Malus domestica Borkh. (cv. Starking Delicious)	sodium selenite	0, 0.5, 1, and 1.5 mg of Se L\(^{-1}\)	leaves spray	↑fruits 0.1 μg of Se kg\(^{-1}\)	NA	↑fresh firmness, ↑titrable acidity, and soluble solid content; ↑activities of antioxidant enzymes		88
Prunus Persica L. Batsch (cv. Flavorcrest and cv. Suncrest) and Pyrus communis L. (cv. Conference)	sodium selenite	0.1 and 1.0 mg of Se L\(^{-1}\)	leaves (LT) and fruits spray (FT)	↑fruits 33–199 μg of Se kg\(^{-1}\)	NA	↑fruits fresh firmness, ↑soluble solid content		86
Pyrus communis L. (cv. Liuyuexueli)	sodium selenite and sodium selenate	20, 40, 50, 100, 200 mg of Se L\(^{-1}\)	leaves spray	↑fruits selenate treated > selenite treated 70–80% Se transformed in organic form	NA	<40 mg L\(^{-1}\) optimal Se concentration and Se(IV) more suitable (food safety)		87
Punica granatum L. (cv. Malase Svehe)	sodium selenite and Se nanoparticles	1 and 2 μM	leaves spray	↑leaves 1.5–2.5 μg Se g\(^{-1}\)	NA	↑peel thickness, ↑phenolic compounds, ↑antioxidants, ↑anthocyanins		89

\(^a\)NA: not analyzed. \(^b\)DM: dry matter. \(^c\)FW: fresh weight.
blood, liver, and edible tissues, which might be connected animal feed resulted in enhanced GPx activity and oxidative several documented reports that the addition of organic Se in part of the active center of the enzyme glutathione peroxidase (GPx) as well as a cofactor for thioredoxin reductase in nutritional value. Joksimovic-Todorovic et al. reported deteriorating meat quality in terms of color, cholesterol contents in the meat (i.e., beef). Se is classified as an antioxidant microelement because it is a part of the active center of the enzyme glutathione peroxidase (GPx) as well as a cofactor for thioredoxin reductase in blood, liver, and edible tissues, which might be connected with enhancing the immune response in mammals. There were several documented reports that the addition of organic Se in animal feed resulted in enhanced GPx activity and oxidative stability of meat.

Furthermore, Se may play a role in the alteration of lipid metabolism; a decrease in the content of cholesterol in meat when adding Se would be a beneficial effect of its supplementation. Nevertheless, the results concerning lipid decrease were not consistent with those reported in other studies in beef, rabbit, and pigs, for which no difference was observed in lipid amount when adding Se. The Se source was reported to have no direct effect on the meat fatty acid profile; however, improving the oxidative stability of meat indirectly affected the lipid composition, thereby preserving the meat quality (Table 12). Such a discrepancy is mainly due to the form in which Se was administered; the organic Se is known to be linked to a higher diminishing meat quality in terms of color, hardness, and texture in some cases. The form of Se supplementation is a key factor in determining its effects on meat quality. The effects of Se on meat quality are summarized in Table 12. SeCys, which is the form in which Se is also consumed by humans (through animal-origin products). The body of literature has reported that dietary Se supplementation increases Se concentration in the meat of rabbits, lambs, calves, and chickens. Se is classified as an antioxidant microelement because it is a part of the active center of the enzyme glutathione peroxidase (GPx) as well as a cofactor for thioredoxin reductase in blood, liver, and edible tissues, which might be connected with enhancing the immune response in mammals. There were several documented reports that the addition of organic Se in animal feed resulted in enhanced GPx activity and oxidative stability of meat. Lipid oxidation is the main cause of deteriorating meat quality in terms of color, flavor, texture, and nutritional value. Joksimovic-Todorovic et al. reported that Se has an effect of preserving the texture and sensory characteristics of meat among domestic animals. Also, this type of supplementation induced a decrease in the fat and cholesterol contents in the meat (i.e., beef).

Table 12. Livestock (Species, Breed, and Muscle), Se Treatment (Se Dose and Source), and Main Effects of Se Supplementation in Animal Feeding

species	breed	muscle	dose	Se source	main effects	reference
Beef	Limousin × Holstein–Friesian	longissimus dorsi and psos major	0.30 or 0.50 mg of Se kg⁻¹	Se-enriched yeast, sodium selenite	↑Se and GPx activity in meat, little or no effect in meat oxidative stability	155
				Se-enriched yeast, sodium selenite	↑Se concentrations for the Se yeast, ↑color lightness, ↓shear force	113
Pig	[Landrace × Yorkshire] × Duroc	loin	0.3 mg of Se kg⁻¹	Se-enriched yeast, Se-protein	↑Se concentrations in loin for the Se yeast, ↓drip loss; ↑lightness; →redness, ↓TBARS, and thiols	156
Poultry	broiler	breast and leg	0.3 mg of Se kg⁻¹	sodium selenite	↑color degree, ↓drip losses, ↑serum GPx	158
	ArborAcre	pectoralis major	0.3, 0.5, 1.0, or 2.0 mg of Se kg⁻¹	nano-Se	↑TBARS, ↑muscle glutathione peroxidase	159
	Ross 308	breast	0.15 mg of Se kg⁻¹	SeMet	↑total antioxidant capacity, ↓malon dialdehyde concentration	160
	high line turkeys	pectoralis major and peroneus longus	0.08 or 0.23 mg of Se kg⁻¹	seleno yeast, sodium selenite	↑muscle tissue GPx activities	161
Rabbit	Californian	hindleg	0.3 mg of Se kg⁻¹	SeMet	↑vitamin E and Se; ↓index of lipid oxidation, TBARS	162
	New Zealand white	longissimus dorsi	10% of Se-fortified olive leaves (2.10 mg kg⁻¹)	sodium selenate solution	↑oleic acid, ↓desaturase index, ↓TBARS	117
	New Zealand white	longissimus dorsi	10% of Se-fortified olive leaves (2.10 mg kg⁻¹)	sodium selenate solution	↑TBARS, ↑GPx and α-tocopherol, ↑SeMet and SeCys, in meat	114
	76 plus	loin and hindleg	0.12 mg of Se kg⁻¹	Se yeast (Sel-Plex, Alltech)	↑Se content of meat	100
Lamb	Italian apennine lambs	longissimus dorsi	0.30 mg of Se kg⁻¹	sodium selenite	↑Se content of meat	163
	76 lamb	longissimus dorsi	0.30 mg of Se kg⁻¹	sodium selenite + Vit E	↓TBARS	164
	north country mule × Suffolk	longissimus dorsi	0.01, 0.21, or 0.31 mg of Se kg⁻¹	selenized enriched yeast, sodium selenite	no significant effects of treatment on meat quality assessments	165
is necessary to carefully evaluate the applied Se-biofortification strategies and cost-effective parameters. In this regard, the challenge for future research on plant-food biofortification will be to fine-tune the fortification techniques in terms of the Se source and dose as well as the timing and modality of application, tailored for each plant species, growth stage, and cultivation condition. An abundance of the literature reviewed here considered Se hyperaccumulator plants and very high Se doses, which normally depress plant growth. Future research should focus on biofortification at lower Se doses, since this is expected to increase Se yield (i.e., the product between plant biomass and its Se concentration), and with organic rather than inorganic Se forms, while avoiding overabundant accumulation in plant foods, thus limiting the risk of exceeding the recommended dietary intake in humans. Finally, future research on the Se biofortification of plants will have to consider species that are scarcely exploited for food items but may be of interest in food supplementation and nutraceutics. An example is given by the Se enrichment of *Pueraria lobata*, whose roots were found to be high in Se-containing proteins and polysaccharides potentially useful as anticarcinogenic molecules.120

■ AUTHOR INFORMATION

Corresponding Author

Paolo Benincasa — Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy; orcid.org/0000-0001-8502-8026; Email: paolo.benincasa@unipg.it

Authors

Roberto D’Amato — Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy; orcid.org/0000-0003-0662-1417

Luca Regni — Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy; orcid.org/0000-0002-9905-8178

Beatrice Falcinelli — Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy; orcid.org/0000-0001-9563-6785

Simona Mattioli — Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy; orcid.org/0000-0001-5063-6785

Alessandro Dal Bosco — Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy

Pablo Pacheco — Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas — Universidad Nacional de San Luis, Ciudad de San Luis S700, Argentina

Primo Proietti — Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy

Elisabetta Troni — Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy

Claudio Santi — Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy

Daniela Businelli — Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jafc.0c00172

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This manuscript is part of the scientific collaboration undertaken under the umbrella of the international scientific network SeSRedCat (Selenium Sulfur and Redox Catalysis).

■ REFERENCES

(1) Schwartz, K.; Foltz, C. M. Selenium as an Integral Part of Factor 3 Against Dietary Necrotic Liver Degeneration. *J. Am. Chem. Soc.* 1957, 79 (12), 3292–3293.
(2) Germ, M.; Stibili, V. Selenium and plants. *Acta Agric. Slov.* 2007, 89 (1), 1.
(3) Kuznetsov, V.; Kuznetsov, V. Selenium regulates the water status of plants exposed to drought. *Dokl. Biol. Sci.* 2003, 390 (1/6), 266–268.
(4) Xue, T.; Hartikainen, H.; Piironen, V. Antioxidative and growth-promoting effect of selenium on senescing lettuce. *Plant and Soil* 2001, 237, 55–61.
(5) Pennanen, A.; Xue, T.; Hartikainen, H. Protective role of selenium in plant subjected to severe UV irradiation stress. *J. Appl. Bot.* 2002, 76 (1–2), 66–76.
(6) Schweizer, U.; Fradejas-Villar, N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. *FASEB J.* 2016, 30 (11), 3669–3681.
(7) Labunsky, V. M.; Hattfied, D. L.; Gladyshev, V. N. Selenoproteins: Molecular Pathways and Physiological Roles. *Physiol. Rev.* 2014, 94 (3), 739–777.
(8) Lenardão, E. J.; Sancineto, L.; Santi, C. New frontiers in organoselenium compounds; Springer International Publishing: Cham, Switzerland, 2018.
(9) Steinbrenner, H.; Speckmann, B.; Klotz, L.-O. Selenoproteins: Antioxidant selenoenzymes and beyond. *Arch. Biochem. Biophys.* 2016, 595, 113–119.
(10) Chun, O. K.; Floegel, A.; Chung, S.-J.; Chung, C. E.; Song, W. O.; Koo, S. I. Estimation of Antioxidant Intakes from Diet and Supplements in U.S. Adults. *J. Nutr.* 2010, 140 (2), 317–324.
(11) Kipp, A. P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechtold, A.; Leschik-Bonnet, E.; Heseker, H. German Nutrition Society (DGE). Revised reference values for selenium intake. *J. Trace Elem. Med. Biol.* 2015, 32, 195–199.
(12) Neumeister, B.; Böhm, B. O. Klinikleitfaden Labordiagnostik; Neumeister, B., Ravensburg, Böhm, B. O., Singapur, L. und, Eds.; Munich, Germany, 2018.
(13) Rayman, M. P. Selenium intake, status, and health: a complex relationship. *Hormones* 2019, 19 (1), 9–14.
(14) Lu, C. W.; Chang, H. H.; Yang, K. C.; Kuo, C. S.; Lee, L. T.; Huang, K. C. High serum selenium levels are associated with increased risk for diabetes mellitus independent of central obesity and insulin resistance. *BMJ. Open Diabetes Res. Care* 2016, 4 (1), e000253.
(15) Achi cabbage; AlOmani, N. A.; Messina, F.; Sancineto, L.; Khouili, M.; Santi, C. Organoselenium Compounds as Phytochemicals from the Natural Kingdom. *Nat. Prod. Commun.* 2015, 10 (11), 193457871S100100.
(16) Barickman, T. C.; Kopsell, D. A.; Sams, C. E. Selenium influences glucosinolate and isothiocyanates and increases sulfur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea. *J. Agric. Food Chem.* 2013, 61 (1), 202–209.
(17) Schiavon, M.; Dall’Acqua, S.; Mietto, A.; Pilon-Smiths, E. A. H.; Sambo, P.; Masi, A.; Malagoli, M. Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). *J. Agric. Food Chem.* 2013, 61 (44), 10542–10554.
(18) D’Amato, R.; De Feudis, M.; Guiducci, M.; Businelli, D. Zea mays L. Grain: Increase in Nutraceutical and Antioxidant Properties Due to Se Fortification in Low and High Water Regimes. *J. Agric. Food Chem.* 2019, 67 (25), 7050–7059.
(19) Mao, G.; Feng, W.; Xiao, H.; Zhao, T.; Li, F.; Zou, Y.; Ren, Y.; Zhu, Y.; Yang, L.; Wu, X. Purification, characterization, and antioxidant activities of selenium-containing proteins and polysaccharides in royal sun mushroom, Agaricus brasiliensis (Higher Basidiomycetes). *Int. J. Med. Mushrooms* 2014, 16 (5), 463–475.

(20) Shang, D.; Li, Y.; Wang, C.; Wang, X.; Yu, Z.; Fu, X.; A novel polysaccharide from Se-enriched Ganoderma lucidum induces apoptosis of human breast cancer cells. *Oncol. Rep.* 2011, 25 (1), 267–272.

(21) Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. *Dietary Reference Intakes for Vitamin E, Vitamin C, Selenium, and Carotenoids*; National Academies Press: Washington, D.C., 2000.

(22) Torres, S.; Gil, R.; Silva, M. F.; Pacheco, P. Determination of seleno-amino acids bound to proteins in extra virgin olive oils. *Food Chem.* 2016, 197 (PartA), 400–405.

(23) Lopez, R.; Escudero, L.; D’Amato, R.; Businelli, D.; Trabalza-Marinucci, M.; Cerutti, S.; Pacheco, P. Optimisation of microwave-assisted acid hydrolysis for the determination of seleno-amino acids bound to proteins in powdered milk, lyophilized milk and infant formula. *J. Food Compos. Anal.* 2019, 79, 128–133.

(24) El Mehdaoui, A. F.; Lindblom, S. D.; Capasso, J.; Fakra, S. C.; Pilon-Smits, E. A. H. Selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-Ray Microprobe Analysis. *Int. J. Phytorem.* 2015, 17 (8), 753–765.

(25) Gajdosechova, Z.; Menter, Z.; Feldmann, J.; Krupp, E. M. The role of selenium in mercury toxicity – Current analytical techniques and future trends in analysis of selenium and mercury interactions in biological matrices. *TrAC, Trends Anal. Chem.* 2018, 104, 95–109.

(26) Bierla, K.; Godin, S.; Lobinski, R.; Steininger, R.; ttlicher, J.; Steininger, R.; Díaz, M.; Palop, J. M. The positive function of selenium supplementation on reducing nitrate accumulation in hydropodic lettuce (Lactuca sativa L.). *J. Integr. Agric.* 2018, 17 (4), 837–846.

(27) Shalaby, T.; Bayoumi, Y.; Alshaal, T.; El-Rayamy, H. Selenium biofortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in saline-sold affected soils using foliar and soil applications. *Plant Soil* 2017, 421 (1–2), 245–258.

(28) Amato, R.; Prioleti, P.; Nasini, L.; Del Buono, D.; Tei, F.; Mei, R.; Carvalho, G. S.; Bastos, C. E. A.; Oliveira, C. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. *Plant Soil Environ.* 2010, 56 (12), 584–588.

(29) Businelli, D.; D’Amato, R.; Onofri, A.; Tedeschini, E.; Tei, F.; Mei, R. Selenium enrichment of cucumber (Cucumis sativus L.) lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. *Sci. Hortic. (Amsterdam, Neth.)* 2015, 197, 697–704.

(30) Poggio, V.; Arcioni, A.; Filippini, P.; Piifferi, P. G. Folar application of selenite and selenate to potato (Solanum tuberosum). Effect of a lipid agent on selenium content of tubers. *J. Agric. Food Chem.* 2000, 48 (10), 4749–4751.

(31) D’Amato, R.; Proietti, P.; Nasini, L.; Del Buono, D.; Tedeschini, E.; Businelli, D. Increase in the selenium content of extra virgin olive oil: quantitative and qualitative implications. *Grass. Acites* 2014, 65 (2), e025.

(32) Longchamp, M.; Angeli, N.; Castrec-Rouelle, M. Selenium uptake in Zea mays supplied with selenate or selenite under hydropodic conditions. *Plant Soil* 2013, 362 (1–2), 107–117.

(33) Hajiroland, R.; Amjad, L. The effects of selenite and sulphate supply on the accumulation and volatilization of Se by cabbage, kohlrabi and alfalfa plants grown hydropodically. *Agric. Food Sci.* 2008, 17 (2), 177–189.

(34) Zhang, H.; Zhao, Z.; Zhang, X.; Zhang, W.; Huang, L.; Zhang, Z.; Yuan, L.; Liu, X. Effects of foliar application of selenate and selenite at different growth stages on Selenium accumulation and speciation in potato (Solanum tuberosum L.). *Food Chem.* 2019, 286, 550–556.

(35) Goversmark, E.; Singh, B. R.; MacLeod, J. A.; Grimmett, M. G. Selenium concentration in spring wheat and leaching water as influenced by application times of selenium and nitrogen. *J. Plant Nutr.* 2008, 31 (2), 193–203.

(36) Yi, H.; Qi, Z.; Li, M.; Ahammed, G. J.; Chu, X.; Zhou, J. Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. *Ecosystems* 2019, 169, 911–917.

(37) Huang, G.; Ding, C.; Yu, X.; Yang, Z.; Zhang, T.; Wang, X. Characteristics of Time-Dependent Selenium Biofortification of Rice (Oryza sativa L.). *J. Agric. Food Chem.* 2018, 66 (47), 12490–12497.

(38) Mahn, A. Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. *Food Chem.* 2017, 233, 492–499.

(39) Lu, X.; He, Z.; Lin, Z.; Zhu, Y.; Yuan, L.; Liu, Y.; Yin, X. Effects of Chinese cooking methods on the content and speciation of selenium in selenium bio-fortified cereals and soybeans. *Nutrients* 2018, 10 (3), 317.

(40) Lei, B.; Bian, Z.-h.; Yang, Q.-c.; Wang, J.; Cheng, R.-f.; Li, K.; Liu, W.-k.; Zhang, Y.; Fang, H.; Tong, Y.-x. The positive function of selenium supplementation on reducing nitrate accumulation in hydropodic lettuce (Lactuca sativa L.). *J. Integr. Agric.* 2018, 17 (4), 837–846.

(41) da Silva, E.; Cidade, M.; Heerdt, G.; Ribessi, R.; Morgon, N.; Cadore, S. Effect of selenite and selenate application on mineral composition of lettuce plants cultivated under hydropodic conditions: Nutritional balance overview using a multifaceted study. *J. Braz. Chem. Soc.* 2018, 29 (2), 371–379.

(42) Ramos, S. J.; Faquin, V.; Guimilheme, L. R. G.; Castro, E. M.; Avila, F. W.; Carvalho, G. S.; Bastos, C. E. A.; Oliveira, C. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. *Plant Soil Environ.* 2010, 56 (12), 584–588.

(43) Businelli, D.; D’Amato, R.; Onofri, A.; Tedeschini, E.; Tei, F.; Mei, R. Selenium enrichment of cucumber (Cucumis sativus L.) lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. *Sci. Hortic. (Amsterdam, Neth.)* 2015, 197, 697–704.

(44) Rios, J. J.; Blasco, B.; Cervilla, L. M.; Rubio-Wilhelmi, M. M.; Ruiz, J. M.; Romero, L. Regulation of sulphur assimilation in lettuce plants in the presence of selenium. *Plant Growth Regul.* 2008, 56 (1), 43–51.

(45) Rios, J. J.; Blasco, B.; Rosales, M. A.; Sanchez-Rodriguez, E.; Leyva, R.; Cervilla, L. M.; Romero, L.; Ruiz, J. M. Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. *J. Sci. Food Agric.* 2010, 11, 1914–1919.

(46) Sanmartin, C.; Garmendia, I.; Romano, B.; Diaz, M.; Palop, J. A.; Goicoecheoa, N. Mycorrhizal inoculation affected growth, mineral composition, proteins and sugars in lettuces biofortified with organic or inorganic selenium compounds. *Sci. Hortic. (Amsterdam, Neth.)* 2014, 180, 40–51.

(47) Rios, J. J.; Blasco, B.; Cervilla, L. M.; Rosales, M. A.; Sanchez-Rodriguez, E.; Romero, L.; Ruiz, J. M. Production of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. *J. Sci. Food Agric.* 2010, 11, 1914–1919.

(48) Saffaryazdi, A.; Lahouti, M.; Ganjeali, A.; Bayat, H. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L.) Plants. *Not. Sci. Biol.* 2012, 4 (4), 95–100.
(52) Oraghi Ardebeli, Z.; Oraghi Ardebeli, N.; Jalili, S.; Saffallah, S. The modified qualities of basil plants by selenium and/or ascorbic acid. Turk. J. Bot. 2015, 39 (3), 401–407.

(53) Hawrylak-Nowak, B. Enhanced Selenium Content in Sweet Basil (Ocimum basilicum L.) by Foliar Fertilization. Vég. Crops Res. Bull. 2008, 69 (1), 63–72.

(54) Puccinelli, M.; Malorgio, F.; Terry, L. A.; Tosetti, R.; Rosellini, L.; Pezzarossa, B. Effect of selenium enrichment on metabolism of tomato (Solanum lycopersicum) fruit during postharvest ripening. J. Sci. Food Agric. 2019, 99 (5), 2463–2472.

(55) Mezeyová, I.; Hagedušová, A.; Andrejová, A.; Hageduš, O.; Golian, M. Phytomass and content of essential oils in Ocimum basilicum after foliar treatment with selenium. J. Int. Sci. Publ. 2016, 4 (1), 19–27.

(56) Banioues, G. S.; Arroyo, I.; Pickering, I. J.; Yang, S. I.; Freemantle, J. L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015, 166, 603–608.

(57) Šindelářová, K.; Šnáková, J.; Tremlová, J.; Mestek, O.; Praus, L.; Kaňa, A.; Najmanová, J.; Člustoš, P. The response of broccoli (Brassica oleracea convar. italicca) varieties on foliar application of selenium: uptake, translocation, and speciation. Food Addit. Contam., Part A 2015, 32 (12), 2027–2038.

(58) Mechora, S.; Germ, M.; Stiblík, V. Selenium compounds in selenium-enriched cabbage. Pure Appl. Chem. 2012, 84 (2), 259–268.

(59) Ramos, S. J.; Yuán, Y.; Faquín, V.; Guilherme, L. R. G.; Li, L. Evaluation of genotypic variation of broccoli (Brassica oleracea var. italicca) in response to selenium treatment. J. Agric. Food Chem. 2011, 59 (8), 3657–3665.

(60) Mechora, S.; Stiblík, V.; Radeček, T.; Gaboščik, A.; Germ, M. Impact of se (VI) fertilization on se concentration in different parts of red cabbage plants. J. Agric. Environ. Conserv. 2011, 9 (2), 357–361.

(61) Cuderman, P.; Kret, I.; Germ, M.; Kovačević, M.; Stiblík, V. Selenium species in selenium-enriched and drought-exposed potatoes. J. Agric. Food Chem. 2008, 56 (19), 9114–9120.

(62) Turakainen, M.; Hartikainen, H.; Seppänen, M. M. Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J. Agric. Food Chem. 2004, 52 (17), 5378–5382.

(63) de Oliveira, V. C.; Faquín, V.; Andrade, F. R.; Carneiro, J. P.; da Silva Júnior, E. C.; de Souza, K. R.; Pereira, J.; Guilherme, L. R. G. Physiological and Physicochemical Responses of Potato to Selenium Biofortification in Tropical Soil. Potato Res. 2019, 62 (3), 315–331.

(64) Shafiq, M.; Qadir, A.; Ahmad, S. R. Biofortification: A sustainable agronomic strategy to increase selenium content and qualitative parameters in tomato (Lycopersicon esculentum Mill.) after its foliar application. Potravin. Slovak J. Food Sci. 2019, 13 (1), 351–358.

(65) Lintschinger, J.; Fuchs, N.; Moser, J.; Kuehnelt, D.; Goessler, W. J. Agric. Food Chem. 2000, 48, 5362–5368.

(66) Krytaciou, M. C.; Roupael, Y.; Di Gioia, F.; Kyračis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115.

(67) Di Gioia, F.; Renna, M.; Santamaria, P. Microgreens and “Baby Leaf” Vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Fatih, Y., Wiley, R. C., Eds.; Springer US: Boston, MA, 2017; pp 403–432.

(68) Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galleri, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11 (2), 421.

(69) D’Amato, R.; Fontanella, M. C.; Falcinelli, B.; Bone, G. M.; Bravi, E.; Marconi, O.; Benincasa, P.; Businelli, D. Selenium Biofortification in Rice (Oryza sativa L.) Sprouting: Effects on Se Yield and Nutritional Traits with Focus on Phenolic Acid Profile. J. Agric. Food Chem. 2018, 66 (16), 4082–4090.

(70) Liu, K.; Chen, F.; Zhao, Y.; Gu, Z.; Yang, H. Selenium accumulation in protein fractions during germination of Se-enriched brown rice and molecular weights distribution of Se-containing proteins. Food Chem. 2011, 127 (4), 1526–1531.

(71) Avila, F. W.; Yang, Y.; Faquín, V.; Ramos, S. J.; Guilherme, L. R. G.; Thannhauser, T. W.; Li, L. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem. 2014, 165, 578–586.

(72) Piekarska, A.; Kołodziejek, D.; Filipczuk, T.; Bodnar, M.; Konieczka, P.; Kusznierekwicz, B.; Hanschen, F. S.; Schreiner, M.; Cyprys, J.; Gloszewa, M.; et al. The influence of selenium addition during germination of Brassica seeds on health-promoting potential of sprouts. Int. J. Food Sci. Nutr. 2014, 65 (6), 692–702.

(73) Tian, M.; Xu, X.; Liu, Y.; Xie, L.; Pan, S. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem. 2016, 190, 374–380.

(74) Thosaikham, W.; Jittmanee, K.; Sittipout, P.; Maneetong, S.; Chantaritkul, A. Chantaritkul, P. Evaluation of selenium species in selenium-enriched pakchoi (Brassica chinensis Jusl var parachinensis) varieties on foliar application of selenium. Minimally Processed Refrigerated Fruits and Vegetables. Food Chem. 2019, 283, 5156–5161.

(75) Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galleri, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11 (2), 421.

(76) Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galleri, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11 (2), 421.

(77) Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galleri, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11 (2), 421.

(78) Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galleri, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11 (2), 421.

(79) Avila, F. W.; Yang, Y.; Faquín, V.; Ramos, S. J.; Guilherme, L. R. G.; Thannhauser, T. W.; Li, L. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem. 2014, 165, 578–586.

(80) Piekarska, A.; Kołodziejek, D.; Filipczuk, T.; Bodnar, M.; Konieczka, P.; Kusznierekwicz, B.; Hanschen, F. S.; Schreiner, M.; Cyprys, J.; Gloszewa, M.; et al. The influence of selenium addition during germination of Brassica seeds on health-promoting potential of sprouts. Int. J. Food Sci. Nutr. 2014, 65 (6), 692–702.

(81) Tian, M.; Xu, X.; Liu, Y.; Xie, L.; Pan, S. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem. 2016, 190, 374–380.

(82) Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galleri, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11 (2), 421.

(83) Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galleri, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11 (2), 421.

(84) Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galleri, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11 (2), 421.
(99) Pezzarossa, B.; Petruzelli, G.; Petacco, F.; Malorgio, F.; Ferri, T. Absorption of selenium by Lactuca sativa as affected by carboxymethylcellulose. Chemosphere 2007, 67 (2), 322−329.
(100) Dokoupilova, I.; Marounek, M.; Skrivanová, V.; Brezina, P. Selenium content in tissues and meat quality in rabbits fed selenium yeast. Czech J. Anim. Sci. 2008, 52 (6), 165−169.
(101) Liu, S. M.; Sun, H. X.; Jose, C.; Murray, A.; Sun, Z. H.; Biegel, J. R.; Jacob, R.; Tan, Z. L. Phenotypic blood glutathione concentration and selenium supplementation interactions on meat colour stability and fatty acid concentrations in Merino lambs. Meat Sci. 2011, 87 (2), 130−139.
(102) Skrivanová, E.; Marounek, M.; De Smet, S.; Raes, K. Influence of dietary selenium and vitamin E on quality of veal. Meat Sci. 2007, 76 (3), 495−500.
(103) Wang, Y. B.; Xu, B. H. Effect of different selenium source (sodium selenite and selenium yeast) on broiler chickens. Anim. Feed Sci. Technol. 2008, 144 (3−4), 306−314.
(104) Perić, M.; Milošević, N.; Žikić, D.; Kanački, Z.; Đžinić, N.; Nollet, L.; Spring, P. Effect of selenium sources on performance and meat characteristics of broiler chickens. J. Appl. Poult. Res. 2009, 18 (3), 403−409.
(105) Navarro-Alarcón, M.; López-Martínez, M. C. Essentiality of selenium in the human body: Relationship with different diseases. Sci. Total Environ. 2000, 249 (1−3), 347−371.
(106) Surai, P. F. Selenium in poultry nutrition 2. Reproduction, egg and meat quality and practical applications. World’s Poult. Sci. J. 2002, 58 (4), 431−450.
(107) Suchý, P.; Straková, E.; Herzig, I. Selenium in poultry nutrition: A review. Czech J. Anim. Sci. 2014, 59 (11), 495−503.
(108) Fälö, A. B.; Fayed, P. O.; Muchenje, V. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171−181.
(109) Joksimovic-Todorovic, M.; Davidovic, V.; Sretenovic, L. The effect of diet selenium supplementation on meat quality. Biotechnol. Anim. Husk. Biotechnol. u Stoc. 2012, 28 (3), 553−561.
(110) Netto, A. S.; Zanetti, M. A.; Claro, G. R. D.; de Melo, M. P.; Vilela, F. G.; Correa, L. B. Effects of copper and selenium supplementation on performance and lipid metabolism in confined brangus bulls. Asia-Pacific J. Anim. Sci. 2014, 27 (4), 488−494.
(111) Mehdi, Y.; Clinquart, A.; Hornick, J. L.; Cabarraux, J. F.; Istasse, L.; Dufraisse, I. Meat composition and quality of young growing belgian blue bulls offered a fattening diet with selenium enriched cereals. Can. J. Anim. Sci. 2015, 95 (3), 465−473.
(112) Taylor, J. B.; Marchello, M. J.; Finley, J. W.; Neville, T. L.; Combs, G. F.; Caton, J. S. Nutritive value and display-life attributes of selenium-enriched beef-muscle foods. J. Food Compos. Anal. 2008, 21 (2), 183−186.
(113) Cozzi, G.; Prevedello, P.; Stefani, A. L.; Piron, A.; Contiero, B.; Lante, A.; Gottardo, F.; Chevaux, E. Effect of dietary supplementation with different sources of selenium on growth response, selenium blood levels and meat quality of intensively finished Charolais young bulls. Animal 2011, 5 (10), 1531−1538.
(114) Mattioli, S.; Dal Bosco, A.; Duarte, J. M. M.; D’Amato, R.; Castellini, C.; Beone, G. M.; Fontanella, M. C.; Beghelli, D.; Regni, L.; Businelli, D.; et al. Use of Selenium-enriched olive leaves in the feed of growing rabbits: Effect on oxidative status, muscle profile and Selenium speciation of Longissimus dorsi meat. J. Trace Elem. Med. Biol. 2019, 51, 98−105.
(115) Zhan, X. A.; Wang, M.; Zhao, R. Q.; Li, W. F.; Xu, Z. R. Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Anim. Feed Sci. Technol. 2007, 132 (3−4), 202−211.
(116) Svoboda, M.; Saláková, A.; Fajt, Z.; Ficek, B.; Bucíková, H.; Drábek, J. Selenium from Se-enriched lactic acid bacteria as a new Se source for growing-finishing pigs. Polym. J. Vet. Sci. 2009, 12 (3), 355−361.
(117) Mattioli, S.; Machado Duarte, J. M.; Castellini, C.; D’Amato, R.; Regni, L.; Proietti, P.; Businelli, D.; Cotozolo, E.; Rodrigues, M.; Dal Bosco, A. Use of olive leaves (whether or not fortified with sodium selenate) in rabbit feeding: Effect on performance, carcass and meat characteristics, and estimated indexes of fatty acid metabolism. Meat Sci. 2018, 143, 230−236.
(118) Pereira, A. C. S.; Santos, M. V. d.; Aferri, G.; Corte, R. R. P. d. S.; Silva, S. d. L. e.; Freitas Junior, J. E. d.; Leme, P. R.; Renno, F. P. Lipid and selenium sources on fatty acid composition of intramuscular fat and muscle selenium concentration of Nellore steers. Rev. Bras. Zootec. 2012, 41 (11), 2357−2363.
(119) Kielczewski, M.; Blażek, S. Selenium: Significance, and outlook for supplementation. Nutrition 2013, 29 (5), 713−718.
(120) Zou, Y.; Zhao, T.; Mao, G.; Zhang, M.; Zheng, D.; Feng, W.; Wang, W.; Wu, X.; Yang, L. Isolation, purification and characterisation of selenium-containing polysaccharides and proteins in selenium-enriched Radix puerariae. J. Sci. Food Agric. 2014, 94 (2), 349−358.
(121) Chen, L.; Yang, F.; Xu, J.; Hu, Y.; Hu, Q.; Zhang, Y.; Pan, G. Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J. Agric. Food Chem. 2002, 50 (18), 5128−5130.
(122) Ngigi, P. B.; Lachat, C.; Masinde, P. W.; Du Laing, G. Agroonomic biofortification of maize and beans in Kenya through selenium fertilization. Environ. Geochem. Health 2019, 3 (1), 2577−2591.
(123) Wang, J.; Wang, Z.; Mao, H.; Zhao, H.; Huang, D. Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Food Res. 2013, 150, 83−90.
(124) Xia, Q.; Yang, Z. P.; Xue, N. W.; Dai, X. J.; Zhang, X.; Gao, Z. Q. Effect of foliar application of selenium on nutrient concentration and yield of colored grain wheat in China. Appl. Ecol. Environ. Res. 2019, 17 (2), 2187–2202.

(125) Lara, T. S.; Lessa, J. H. de L.; de Souza, K. R. D.; Corquinha, A. P. B.; Martins, F. A. D.; Lopes, G.; Guilherme, L. R. G. Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. J. Food Compos. Anal. 2019, 81, 10–18.

(126) Galinha, C.; Sanchez-Martinez, M.; Pacheco, A. M. G.; Freitas, M. d. C.; Coutinho, J.; Macas, B.; Almeida, A. S.; Perez-Corona, M. T.; Madrid, Y.; Wolterbeek, H. T. Characterization of Selenium-Enriched Wheat by Agronomic Biofortification. J. Food Sci. Technol. 2015, 52, 4236–4245.

(127) Poblaciones, M. J.; Rodrigo, S.; Santamaría, O.; Chen, Y.; McGrath, S. P. Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chem. 2014, 146, 378–384.

(128) Rodrigo, S.; Santamaría, O.; López-Bellido, F. J.; Poblaciones, M. J. Agronomic selenium biofortification of two-rowed barley under Mediterranean conditions. Plant, Soil Environ. 2013, 59 (3), 115–120.

(129) Rahman, M. M.; Erskine, W.; Zaman, M. S.; Thavarajah, P.; Thavarajah, D.; Siddique, K. H. M. Selenium biofortification of lentil (Lens culinaris Medikus subsp. culinaris): Farmers' field survey and genotype × environment effect. Food Res. Int. 2013, 54 (2), 1596–1604.

(130) Poblaciones, M. J.; Rodrigo, S.; Santamaría, O.; Chen, Y.; McGrath, S. P. Selenium accumulation and speciation in biofortified chickpea (Cicer aritinum L.) under Mediterranean conditions. J. Sci. Food Agric. 2014, 94 (6), 1101–1106.

(131) Chan, Q.; Afton, S. E.; Caruso, J. A. Selenium speciation profiles in selenite-enriched soybean (Glycine Max) by HPLC-ICPMS and ESI-ITMS. Metallomics 2010, 2, 147–153.

(132) Shalaby, T.; Bayoumi, Y.; Alshaal, T.; Elhawat, N.; Sztrik, A.; El-Ramady, H. Selenium fortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in salt-affected soil using foliar and soil applications. Plant Soil 2017, 421 (1–2), 245–258.

(133) Sabatinlo, L.; Natsi, G.; Iapichino, G.; D’Anna, F.; De Pasquale, C. Effect of selenium enrichment and type of application on yield, functional quality and mineral composition of curd endive grown in a hydroponic system. Agronomy 2019, 9 (4), 207.

(134) Stibilj, V.; Boltova, L.; Kreft, I.; Stibilj, V. Extraction of Se intermediates in Rice Seedlings Grown under Sub-optimal Temperatures and Nutrient Supply. Front. Plant Sci. 2016, 7, 1371.

(135) Chopan, R.; Srirongvutikorn, S.; Puttarak, P.; Rattanapon, R. Influence of selenium bio-fortification on nutritional compositions, bioactive compounds content and anti-oxidative properties of young ricegrass (Oryza sativa L.). Food. Foods Health Dis. 2017, 7 (3), 195–209.

(141) Frias, J.; Gulewicz, P.; Martínez-Villaluenga, C.; PILarski, R.; Blazquez, E.; Jiménez, B.; Gulewicz, K.; Vidal-Valverde, C. Influence of germination with different selenium solutions on nutritional value and cytotoxicity of lupin seeds. J. Agric. Food Chem. 2009, 57 (4), 1319–1325.

(142) Bachiega, P.; Salgado, J. M.; de Carvalho, J. E.; Ruiz, A. L. T.; Schwarz, K.; Tezotto, T.; Morzelle, M. C. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem. 2016, 190, 771–776.

(143) Guardado-Félix, D.; Serna-Saldivar, S. O.; Cuevas-Rodríguez, E. O.; Jacobo-Vélazquez, D. A.; Gutiérrez-Urbi, J. A. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer aritinum L.) sprouts. Food Chem. 2017, 226, 69–74.

(144) Arscott, S.; Goldman, I. Biomass effects and selenium accumulation in sprouts of three vegetable species grown in selenium-enriched conditions. HorticScience 2012, 47 (4), 497–502.

(145) Tieg, M.; Gao, Y.; Xue, Y.; Zhang, A.; Yao, Y.; Sun, J.; Xue, S. Determination of selenium species and analysis of methyl-seleno-L-cysteine in Se-enriched mung bean sprouts by HPLC-MS. Anal. Methods 2016, 8 (15), 3102–3108.

(146) Barrientos Carvacho, H.; Pérez, C.; Zúñiga, G.; Mahn, A. Effect of methyl jasmonate, sodium selenate and chitosan as exogenous elicitors on the phenolic compounds profile of broccoli sprouts. J. Sci. Food Agric. 2014, 94 (12), 2555–2561.

(147) Pasko, P.; Gulda-Arjanska, J.; Podporska- Carroll, J.; Quilty, B.; Witecka-Polusnazy, R.; Tyszka-Czochara, M.; Zagrodzka, P. Influence of selenium supplementation on fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food. J. Food Sci. Technol. 2015, 52 (8), 4724–4736.

(148) Cuderman, P.; Olibolt, L.; Kreft, I.; Stibilj, V. Extraction of Se species in buckwheat sprouts grown from seeds soaked in various Se solutions. Food Chem. 2010, 123 (3), 941–948.

(149) Moulick, D.; Ghosh, D.; Chandra Santra, S. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol. Biochem. 2016, 109, 571–578.

(150) Khalilq, A.; Aslam, F.; Matloob, A.; Hussain, S.; Geng, M.; Wahid, A.; Ur Rehman, H. Seed priming with selenium: Consequences for emergence, seedling growth, and biochemical attributes of rice. Biol. Trace Elem. Res. 2015, 166 (2), 236–244.

(151) Hussain, S.; Yin, H.; Peng, S.; Khan, F. A.; Khan, F.; Sameeuullah, M.; Hussain, H. A.; Huang, J.; Cui, K.; Nie, L. Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence stress. Front. Plant Sci. 2016, 7, 1–16.

(152) Hussain, S.; Khan, F.; Cao, W.; Wu, L.; Geng, M. Seed Priming Alters the Production and Detoxification of Reactive Oxygen Intermediates in Rice Seedlings Grown under Sub-optimal Temperature and Nutrient Supply. Front. Plant Sci. 2016, 7, 439.

(153) Nawaz, F.; Ashraf, M.; Ahmad, R.; Waraich, E. A. Selenium (Se) Seed Priming Induced Growth and Biochemical Changes in Wheat Under Water Deficit Conditions. Biol. Trace Elem. Res. 2015, 151 (2), 284–293.

(154) D’Amato, R.; De Feudis, M.; Hasuoka, P. E.; Regni, L.; Pacheco, P. H.; Onofri, A.; Businelli, D.; Proietti, P. The Selenium Supplementation Influences Olive Tree Production and Oil Stability Against Oxidation and Can Alleviate the Water Deficiency Effects. Front. Plant Sci. 2018, 9, 1–8.

(155) Juniper, D. T.; Phipps, R. H.; Ramos-Morales, E.; Bertin, G. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle. J. Anim. Sci. 2008, 86 (11), 3100–3109.

(156) Qiu, Y.; Liu, Q.; Beta, T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chem. 2010, 121 (1), 140–147.

(157) Kim, Y. M.; Lee, S. H.; Jiang, G. Y.; Li, M.; Lee, Y. R.; Lee, J.; Jeong, H. S. Changes of phenolic-acids and vitamin E profiles on...
germinated rough rice (Oryza sativa L.) treated by high hydrostatic pressure. *Food Chem.* 2017, 217, 106–111.

(158) Yang, Y. R. Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers. *Afr. J. Biotechnol.* 2012, 11 (12), 3031–3036.

(159) Cai, S. J.; Wu, C. X.; Gong, L. M.; Song, T.; Wu, H.; Zhang, L. Y. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. *Poult. Sci.* 2012, 91 (10), 2532–2539.

(160) Wang, Y.X.; Zhan, X.A.; Yong, D.; Zhang, X.W.; Wu, R.J. Effects of selenomethionine and sodium selenite supplementation on meat quality, selenium distribution and antioxidant status in broilers. *Czech J. Anim. Sci.* 2011, 56 (7), 305–313.

(161) Juniper, D. T.; Phipps, R. H.; Bertin, G. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in commercial-line turkeys. *Animal* 2011, 5 (11), 1751–1760.

(162) Ebeid, T. A.; Zeweil, H. S.; Basony, M. M.; Dosoky, W. M.; Badry, H. Fortification of rabbit diets with vitamin E or selenium affects growth performance, lipid peroxidation, oxidative status and immune response in growing rabbits. *Livest. Sci.* 2013, 155 (2–3), 323–331.

(163) Vignola, G.; Lambertini, L.; Mazzone, G.; Giammarco, M.; Tassinari, M.; Martelli, G.; Bertin, G. Effects of selenium source and level of supplementation on the performance and meat quality of lambs. *Meat Sci.* 2009, 81 (4), 678–685.

(164) Ripoll, G.; Joy, M.; Muñoz, F. Use of dietary vitamin E and selenium (Se) to increase the shelf life of modified atmosphere packaged light lamb meat. *Meat Sci.* 2011, 87 (1), 88–93.

(165) Juniper, D. T.; Phipps, R. H.; Ramos-Morales, E.; Bertin, G. Effects of dietary supplementation with selenium enriched yeast or sodium selenite on selenium tissue distribution and meat quality in lambs. *Anim. Feed Sci. Technol.* 2009, 149 (3–4), 228–239.