Thermodynamic modeling and controlling of a combined Free Piston Stirling Engine System (FPSE) with a Permanent Magnet Linear Synchronous Machine (PMLSM)

M Majidniya¹, T Boileau¹, B Remy¹, and M Zandi²

¹Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France
²Renewable Energies Engineering Department, Shahid Beheshti University, Tehran, Iran

Abstract. Converting thermal energy to electricity is one of the most common energy conversions in the field of electricity production. This transformation of energy is essential for both renewable and non-renewable heat sources. One of the main parameters of such a system that is responsible for this conversion is its efficiency. To have an efficient transformation, many improvements have been made to the old methods, and also new techniques were developed. One of these new methods that will be discussed here is a combined system of a Free Piston Stirling Engine (FPSE) with a Permanent Magnet Linear Synchronous Machine (PMLSM). The two purposes of presenting such a system are that firstly, the theoretical efficiency of a Stirling engine is high. Secondly, by eliminating crank-shaft from this system compared to the standard Stirling engine system, some of the losses will be removed. To study this system, a thermodynamic model of a RE-1000 FPSE was presented and validated. Then it was coupled with a PMLSM, and the combined system was controlled. The total efficiency of this system in steady-state is 14.4%.

1. Introduction

Due to the increase in energy demand, many methods were developed to produce it. In most of these methods, a heat source is converted into electricity [1]. This conversion should be done most efficiently. Among all the developed methods for this purpose, Stirling engines, due to their high theoretical efficiency and capability of working with different heat sources [2–5], are interesting.

A Free Piston Stirling Engine (FPSE) is a standard Stirling engine that its crank-shaft and rotary generator were replaced with a linear alternator. For the present case, a Permanent Magnet Linear Synchronous Machine (PMLSM) was used as the alternator. By doing this, the result will be a more reliable system that is more compact and lightweight and also has better sealing [6–8]. Due to such interesting aspects of this system, in the present study, a combined FPSE with PMLSM was studied.

First, a non-linear thermodynamic model of the RE-1000 FPSE was developed and validated. PMLSM also was modeled separately and controlled. Then, both systems were combined and controlled.

Most of the FPSE-PMLSM studies developed a linear model for FPSE. Part of these studies focused on the FPSE system and did not present a detailed model for PMLSM. These studies presented PMLSM as a damper for the linear model of FPSE. Boucher et al. [9] modeled PMLSM as a damper besides the analytical linear model of a dual FPSE. Karabulut et al. [10] also presented the thermodynamic behavior of a Martini FPSE by a linear model combined with a PMLSM as a damper.
On the other side, some studies focused on the PMLSM model and did not present a detailed model for FPSE. Some of these studies theoretically and experimentally tried to design an optimum PMLSM that can be used as an FPSE generator [11–14] without presenting a model for FPSE. Zheng et al. [15] also, by defining two simple equations for the FPSE model, theoretically and experimentally tried to identify the best control method for the combined system.

There are also a few studies that proposed a linear model for both systems. Zhu et al. [16] proposed a linear model for the combined system based on the thermoacoustic theory and validated their model with the experimental setup. Zheng et al. [17] also developed their previous system [15] with a linear model of FPSE.

As can be seen, first of all, there are a few numbers of studies that developed a detailed model for both PMLSM and FPSE systems in the combined model. In the present study, a detailed model for both systems is presented. Secondly, all these studies used a linear model for FPSE. Majidniya et al. [1] showed that a linear model for FPSE is not always a reliable model, and it is necessary to develop a non-linear model for that. Thus, in the present study, a non-linear model of the FPSE was used. Lastly, most researchers did not present the thermal behavior of the system; thus, developing a non-linear thermodynamic model of an FPSE in such a system is a new idea that has not been developed already. Accompanying this non-linear model with a linear model of the PMLSM makes this study unique and new.

In the present study, first, a non-linear thermodynamic model of RE-1000 FPSE was presented and validated. Then the PMLSM was modeled and controlled. Finally, two models were combined and controlled. Controlling this system makes it possible to lead the system to its best performance at each operating point. Also, an thermic model allows studying the behavior of the system in transient mode. In most of the energy sources, especially renewable ones, the heat source has unsteady behavior. A thermodynamic model combined with a PMLSM model makes it possible to analyze the impact of the system's control on its performance.

2. Combined system analysis

The proposed system is a combined system of a RE-1000 FPSE with a three-phase PMLSM. The schematic of the system is shown in Figure 1.

As can be seen in Figure 1, the PMLSM mover is connected to the FPSE power piston. The control system delivers the required three-phase reference voltages (\(v_{\text{aref}}, v_{\text{bref}}, v_{\text{cref}}\)) based on two currents (\(i_a, i_b\)) and the mover position. Then, three required voltages will be produced by an inverter.

2.1. Thermodynamic model of FPSE

The main spaces of the FPSE were shown in Figure 1. Based on these spaces, the force balance around the power piston and displacer piston was obtained. These dynamic equations of the system were studied
in detail in the previous study of authors [1]. Furthermore, gas temperatures \(T_i \) in each space can be calculated based on the energy balance equation of each space [18]:

\[
\dot{Q}_{in} + \left(mC_pT \right)_{in} - \left(mC_pT \right)_{out} - \dot{W}_{out} = C_v \frac{d}{dt}(mT)
\]

(1)

For the heater, cooler, and regenerator, the work \(\dot{W} \) is equal to zero, and for expansion and compression spaces it is assumed there is no heat transfer/loss \(\dot{Q} \). The detailed thermal formulations were presented in Majidniya et al. [18] study for temperature calculation of each space.

The results of coupling the energy equation with dynamic equations are presented in Table 1. The results were validated with experimental results of Schreiber [19] at the same conditions for the same system.

Table 1. Validation of FPSE thermodynamic model
Exp. [19]

Theoretical
Error (\%)

As can be seen in Table 1, there is a good agreement between the theoretical and experimental results. The maximum error is in the phase shift that might be due to ignoring the heat losses including the enthalpy pumping and the shuttle effect around the pistons.

2.2. PMLSM model

The model of PMLSM was developed in the previous papers of the authors [20–22]. For the control system, two PR (Proportional Resonant) controllers for controlling mover velocity and current in \(q \) frame and one PI (Proportional Integrator) controller for controlling current in \(d \) frame are used. Input parameters of PMLSM have been shown in Table 2. In this table \(R \) is resistance, \(L_i \) are inductances, \(\psi_f \) is flux linkage, \(B_v \) is friction coefficient, \(m_m \) is mover mass and \(\tau \) is pole pitch.

Table 2. PMLSM input data
\(R \)

3. Results and discussion

After modeling each system, their dynamic equations were coupled. The results of the combined FPSE-PMLSM system are shown in Figure 2 - Figure 5.
In Figure 2 - Figure 5, results of the combined system from starting point to the steady-state situation of the system were shown. In these figures, piston stands for power piston, and displacer stands for displacer piston. The input parameters of each system in combined mode are the same input parameters that they have in the last section. For the combined system, it was assumed that the walls’ temperatures are constant, and their values are based on Schreiber study [19]. As can be seen in Figure 2 and Figure 3, the combined system was well controlled, and all the modeling results are following very well their reference values. As it was discussed before, two PR controllers and one PI controller were used to control the system. The reference velocity is chosen a 30 (Hz) sinusoidal wave with an amplitude of 1.5 (m/s). The system gets a steady state at about 0.4 (s). Also, the gas temperature variations in each space were shown in Figure 5. In steady behavior, the temperatures are varying around a specific value. The efficiency of the combined system in steady-state mode is equal to 14.4%.

4. Conclusions
In the present study, first, a thermodynamic model of the Free Piston Stirling Engine was developed. Then, this model was validated with the existed experimental results. After validation, it was coupled with the electro-dynamic model of the Permanent Magnet Linear Synchronous Machine and its control system. The controlled parameters were i_d, i_q and \dot{x}_p that one PI and two PR controllers were used to control them, respectively. Finally, the results of the combined FPSE-PMLSM system were presented. It was shown that the system met its steady-state condition at about 0.4 (s). Also, the results showed that the selected controllers (one PI and two PRs) were well adapted for the presented combined system, and i_d, i_q and \dot{x}_p were following their references accurately.

References
[1] Majidniya M, Boileau T, Remy B and Zandi M 2020 Nonlinear modeling of a Free Piston Stirling Engine combined with a Permanent Magnet Linear Synchronous Machine Appl. Therm. Eng. 165 114544
[2] Ross B 1995 Status of the Emerging Technology of Stirling Machines IEEE Aerosp. Electron. Syst. Mag. 10 34–9
[3] Podesser E 1999 Electricity production in rural villages with a biomass Stirling engine Renew. Energy 16 1049–52
[4] Rix D H 1996 Some aspects of the outline design specification of a 0.5 kW Stirling engine for domestic scale co-generation Proc. Inst. Mech. Eng. Part A J. Power Energy 210 25–32
[5] Kongtragool B and Wongwises S 2003 A review of solar-powered Stirling engines and low temperature differential Stirling engines Renew. Sustain. Energy Rev. 7 131–54
[6] Redlich R 1995 A summary of twenty years experience with linear motors and alternators Sunpower Inc 1–9
[7] Subramanian J, Heiskell G, Mahmudzadeh F and Famouri P 2017 Study of radial and axial magnets for linear alternator - Free piston engine system 2017 North American Power Symposium, NAPS 2017 (IEEE) pp 1–6
[8] Loktionov E Y, Martirosyan A A and Shcherbina M D 2016 Solar powered free-piston stirling-
Linear alternator module for the lunar base 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016 - Proceedings (IEEE) pp 1–6

[9] Boucher J, Lanzetta F and Nika P 2007 Optimization of a dual free piston Stirling engine Appl. Therm. Eng. 27 802–11

[10] Karabulut H, Okur M and Ozdemir A O 2019 Performance prediction of a Martini type of Stirling engine Energy Convers. Manag. 179 1–12

[11] Dang T T, François P, Prévond L and Ben Ahmed H 2010 Theoretical and experimental results of tubular linear induction generator for stirling cogeneration system 19th International Conference on Electrical Machines, ICEM 2010 (IEEE) pp 1–7

[12] Dang T T, Ruellan M, Ben Ahmed H, Prévond L and Multon B 2014 Sizing optimization of tubular linear induction generator for a new stirling micro-cogeneration system 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014 (IEEE) pp 1362–7

[13] Dang T T, Ruellan M, Prévond L, Ben Ahmed H and MULTON B 2015 Sizing Optimization of Tubular Linear Induction Generator and Its Possible Application in High Acceleration Free-Piston Stirling Microcogeneration IEEE Trans. Ind. Appl. 51 3716–33

[14] Kim J M, Choi J Y, Lee K S and Lee S H 2017 Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems AIP Adv. 7 56667

[15] Zheng P, Yu B, Zhu S, Gong Q and Liu J 2014 Research on control strategy of free-piston stirling-engine linear-generator system Electrical Machines and Systems (ICEMS), 2014 17th International Conference on (IEEE) pp 2300–4

[16] Zhu S, Yu G, Jongmin O, Xu T, Wu Z, Dai W and Luo E 2018 Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system Appl. Energy 226 522–33

[17] Zheng P, Tong C, Bai J, Yu B, Sui Y and Shi W 2012 Electromagnetic design and control strategy of an axially magnetized permanent-magnet linear alternator for free-piston stirling engines IEEE Trans. Ind. Appl. 48 2230–9

[18] Majidniya M, Boileau T, Remy B and Zandi M 2021 Performance simulation by a nonlinear thermodynamic model for a Free Piston Stirling Engine with a linear generator Appl. Therm. Eng. 184 116128

[19] Schreiber J 1983 TESTING AND PERFORMANCE CHARACTERISTICS OF A 1-kW FREE PISTON STIRLING ENGINE. NASA Tech. Memo.

[20] Majidniya M, Remy B, Boileau T and Zandi M 2021 Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell Renew. Energy 171 1188–201

[21] Majidniya M, Boileau T, Benjamin R and Zandi M 2019 Modélisation thermo-électrique d’un moteur Stirling à piston libre et d’une machine synchrone linéaire à aimant permanent avec sa commande congrès annuel de la Société Française de Thermique

[22] Majidniya M, Boileau T, Benjamin R and Zandi M 2019 Thermoelectric modeling of a Free Piston Stirling Engine (FPSE) combined with a Permanent Magnet Linear Synchronous Machine (PMLSM) with its control system International Conference on Renewable Energy and Distributed Generation of Iran