The role of P2 receptors in controlling infections by intracellular pathogens

Robson Coutinho-Silva · Cristiane Monteiro da Cruz · Pedro M. Persechini · David M. Ojcius

Received: 28 December 2005 / Accepted: 13 January 2006 / Published online: 12 January 2007 © Springer Science + Business Media B.V. 2007

Abstract A growing number of studies have demonstrated the importance of ATP_e-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATP_e can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATP_e may function as a “danger signal” that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATP_e-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens.

Key words apoptosis · ATP · infection · inflammation · necrosis · purinergic receptors

Abbreviations
ATP_e Extracellular ATP
IL-1β Interleukin-1β
IFN-γ Interferon-γ
LPS Lipopolysaccharide
PGE_2 Prostaglandin E2
PLD Phospholipase D
ROI Reactive oxygen intermediates
RNI Reactive nitrogen intermediates
TNF-α Tumour necrosis factor-α

Introduction
Intracellular pathogens invade, survive and replicate in mammalian cells, modulating host-cell membrane trafficking and cytoskeletal dynamics in order to establish persistent infection in the mammalian host [1–3]. Macrophages are a frequent target of microbial infections, and they respond to microbial invasion by producing factors such as reactive nitrogen and oxygen intermediates (RNIs and ROIs) that have strong microbicidal activity [4]. But many pathogens have evolved different strategies for avoiding destruction by the macrophage. Some intracellular pathogens, such as Mycobacteria, inhabit a compartment whose endocytic maturation is delayed, while Chlamydiae survive within a membrane-bound vacuole that avoids fusion with lysosomes and maintains a neutral pH [5, 6]. Unlike Mycobacteria and Chlamydia, the protozoan parasite Leishmania thrives in a parasitophorous vacuole that has an acidic pH and high hydrolytic activity, and Trypanosoma cruzi actively induces its uptake into lysosome-like host-cell vacuoles, from which, the parasite rapidly escapes into the cytosol [7–10].
At the end of their infection cycle, each of these intracellular parasites is released from the host cell, triggering macrophage death and inducing local inflammation, accompanied by the possible release of ATP, as shown for macrophages infected with *Mycobacterium tuberculosis* [11]. As extracellular ATP (ATP_e) can be used by neighbouring macrophages as ammunition to inhibit infection (described below), many intracellular pathogens—such as *Mycobacterium bovis* BCG, *Vibrio cholerae*, *M. tuberculosis*, *T. cruzi* and *Leishmania*—also secrete or express on their outer surface enzymes that degrade or synthesise nucleotides [12–15]; and microbial enzymes that consume or produce ATP are considered as virulence factors for *M. tuberculosis*, *Leishmania amazonensis* and *T. cruzi* [14, 16–18].

Macrophages activate microbicidal pathways and contribute to inflammation after the ligation of purinergic P2 receptors by ATP_e. This review will, therefore, describe some of the P2-dependent mechanisms used by macrophages to eliminate infection by intracellular bacteria and protozoan parasites, and, whenever possible, will correlate these findings with host susceptibility and resistance to infection.

Effect of ATP_e on macrophage infection by *M. tuberculosis*

The first evidence for an involvement of ATP_e in the control of intracellular infections came from the laboratory of Kaplan, who demonstrated in 1994, that ATP_e-mediated apoptosis in *Mycobacterium tuberculosis*-infected macrophages is associated with the inhibition of mycobacterial infection [19]. This early study also showed that ATP_e-induced macrophage apoptosis, but not H_2O_2-induced necrosis, is associated with the killing of the intracellular mycobacteria. These findings were confirmed by Lammas et al., who proposed that the ATP_e-induced elimination of BCG-infected human macrophages is mediated by the purinergic receptor, P2X_7, through a mechanism independent of both RNIs and ROIs [20]. In comparison with other ligands that can trigger the lysis of macrophages, including complement-mediated cytolysis, Fas ligation and CD69 activation, only ATP_e treatment could stimulate the death of both host macrophages and intracellular mycobacteria. Subsequently, several laboratories confirmed that the P2X_7 receptor plays a role in limiting infection in murine and bovine macrophages infected with mycobacteria, and in human macrophages infected with BCG bacillus and virulent strains of *M. tuberculosis* [11, 21–23].

In addition to the P2X_7 receptor, other P2 receptor subtypes, possibly P2Y, are apparently involved in ATP_e-mediated bactericidal activity in macrophages [11, 21, 23]. Experiments using macrophages derived from P2X_7-deficient mice revealed that ATP_e stimulates the production of reactive species such as RNIs equally well in both wildtype and P2X_7-deficient macrophages [11]. Moreover, it was found that ATP_e induces bactericidal effects in the macrophages better than BzATP (the most potent known agonist for the P2X_7 receptor), suggesting that P2X_7 receptors are necessary, but not sufficient, for maximal ATP_e-dependent killing of intracellular *M. tuberculosis* by human and bovine macrophages [21, 22]. Lammas et al. have further observed that the ATP_e activity is potentiated by extracellular Zn^{2+} [20]. This effect was initially ascribed to the P2X_7 receptor, but now, P2X_7 activity is known to be blocked by extracellular Zn^{2+}, while the activity of another purinergic receptor, P2X_4, is potentiated by Zn^{2+} [24]. Since macrophages express functional P2X_4 receptors [25] and inflammatory mediators can upregulate this receptor on macrophages [26], it is likely that both P2X_7 and P2X_4 are involved in the ATP_e-induced killing of *M. tuberculosis* in macrophages.

More recent reports have also confirmed the predominant role of the P2X_7 receptor in mycobacterial clearance, extending these results to show that loss-of-function polymorphisms in human P2X_7 receptors lead not only to reduced ATP_e-induced apoptosis, but also to impaired ATP_e-induced killing of intracellular mycobacteria (BCG) by macrophages [27–29]. Nonetheless, more experiments will be required to elucidate the role that P2X_7, possibly in conjunction with other P2 receptors, may play in the killing of intracellular mycobacteria in vivo, since P2X_7-deficient mice control lung infection as well as wildtype mice after low-dose aerosol infection with virulent *M. tuberculosis* [30].

Cellular mechanisms of ATP_e-induced mycobacterial killing

ATP_e ligation of P2X_7 on macrophages results in a variety of different cellular effects, including the activation of phospholipase D (PLD), maturation and release of interleukin-1β (IL-1β), generation of macrophage polykarions, modification of lipopolysaccharide (LPS) induced macrophage activation through modulation of iNOS expression and NO production, and the induction of macrophage death by necrosis and/or apoptosis [31–40]. The original findings from the Kaplan laboratory suggested that the apoptosis of macrophages is necessary for ATP_e-mediated killing of intracellular bacteria [19], but it was later established that the ATP_e-induced killing of mycobacteria in human and mice macrophages can occur without macrophage death, through a pathway requiring PLD activation, the acidification of phagosomes and phagosome–lysosome fusion [21]...
(Fig. 1) [23, 41]. A more recent study showed that, when combined, two loss-of-function polymorphisms in human P2X7 receptors impair ATPe-mediated apoptosis, despite the normal killing of BCG bacillus [28], reinforcing the view that the apoptosis of macrophages is not necessary for the elimination of mycobacteria.

In fact, it was recently shown [42] that cyclosporine A, an inhibitor of the mitochondrial permeability transition, increases the survival of human monocyte-derived macrophages infected with *M. tuberculosis*, restores P2X7 function and enhances antimycobacterial activity. Conversely, *M. tuberculosis* has developed mechanisms to evade P2X7-triggered mechanisms, since it can secrete a nucleoside diphosphate kinase that produces ATP and kills macrophages through a P2X7-dependent mechanism [14]. New experiments are needed to clarify the role played by ATPe in killing intracellular pathogens and inducing host-cell death.

Inhibition of chlamydial infection in macrophages

The *Chlamydia* species are obligate intracellular bacteria that infect mainly epithelial mucosa, where they survive within intracellular vacuoles that avoid fusion with host-cell lysosomes [6, 43]. Different strains of *C. trachomatis* are responsible for the infection of genital and ocular tissue in humans [44–48]. *C. pneumoniae* is a common cause of community-acquired pneumonia in humans and is associated with an increased risk for atherosclerosis [44, 49]. Both *C. trachomatis* and *C. pneumoniae* can invade epithelial cells and macrophages in vitro and in vivo [49, 50].

It was recently shown that ATPe inhibits the infection of macrophages by the murine species of *C. trachomatis*, *C. muridarum*, through a mechanism that required PLD activation and fusion between lysosomes and the *Chlamydia* vacuoles [51]. The effect of ATPe was dependent on the presence of the P2X7 receptor, since there was no PLD activation nor killing of chlamydiae in infected macrophages that had been isolated from P2X7-deficient mice. Although P2X7 ligation also led to macrophage death, the inhibition of PLD prevented chlamydial killing but had no effect on macrophage death, suggesting that PLD activation was directly responsible for the inhibition of chlamydial infection (Table 1). Moreover, fusion between lysosomes and chlamydial vacuoles preceded macrophage death, further strengthening the conclusion that the killing of chlamydiae is independent of host-cell death [51].

![Fig. 1 ATP released from infected cells undergoing necrosis or sites of inflammation can bind to the P2X7 receptor on neighbouring macrophages and other cells. Ligation of the P2X7 receptor initiates signalling through several pathways, which result in the activation of caspase-1, activation of phospholipase D (PLD) and, ultimately, cell death. Caspase-1 activation stimulates the inflammatory response by the cleavage of pro-IL-1β and secretion of the mature cytokine. PLD activation modifies membrane trafficking in the cell, which can induce fusion between lysosomes and vacuoles, harbouring intracellular pathogens such as mycobacteria and chlamydiae. The death of macrophages is partly necrotic, which may amplify inflammation even further, through the ligation of P2X7 receptors on other cells. Some extracellular ATP may also bind to other P2 receptors, which may inhibit infection by activating as-yet-uncharacterised pathways.](image-url)
Conversely, as the activation of P2X7-dependent pathways is deleterious for *Chlamydia*, both directly and through the demise of the macrophage, the intracellular pathogen has also evolved a mechanism for protecting its host cell. Thus, the infection of macrophages with a related species, *C. psittaci* (also known as *C. caviae*), inhibits partially ATPe-mediated macrophage death [52]. While the molecular basis for host-cell protection remains to be investigated, chlamydial infection decreases partially the ability of ATPe to induce plasma–membrane permeabilisation and calcium fluxes [52]. Chlamydiae, therefore, resemble other pathogenic bacteria and protozoan parasites that attempt to protect themselves and the host cell by degrading nucleotides or hydrolysing ATP.

Effects of ATPe on leishmaniasis

Leishmaniasis is used to describe several diseases caused by the obligate intracellular protozoan parasite *Leishmania*, which infects mainly macrophages [53]. The diseases range from self-healing cutaneous lesions to visceral and potentially fatal disseminating infection. *Leishmania* infections are found in 80 countries, with a prevalence of 12 million human cases. The development of different clinical forms is associated with both the immunological status of the host and the parasite species [53]. The expression of the P2X7 receptor has recently been examined during *Leishmania* infection, revealing upregulation of the receptor during both in vivo and in vitro infection with *L. amazonensis* [54]. These changes were correlated with functional responses, as reflected by an increase in ATPe-mediated plasma–membrane permeabilisation and host-cell apoptosis ([54] and Chaves et al. (manuscript in preparation)) (Table 1).

The increase in ATPe-induced membrane permeabilisation was also observed in spleen macrophages isolated from mice infected with *L. donovani*, suggesting that this may be a general phenomenon relevant for all *Leishmania* infections. It has been proposed that intracellular infection by *Leishmania donovani* inhibits macrophage apoptosis induced by growth factor deprivation [55]. In contrast, there is an increase in the ATPe-mediated apoptosis of macrophages infected with *Leishmania* (our unpublished data), consistent with the increases in ATPe-mediated membrane permeabilisation. Thus, despite the production of ecto-ATPases by *Leishmania* [16], this strategy is not sufficient to protect the host cell against the infection-dependent upregulation in P2X7 expression.

We have observed that the presence of ATPe during *L. amazonensis* infection does not interfere with *Leishmania* invasion, but the ATPe treatment of macrophages that are already infected with *L. amazonensi* leads to a decrease in *Leishmania* survival (our unpublished observations). In addition, we observed that ATPe has no effect on the

Table 1	Effect of extracellular ATP on intracellular pathogens	P2 receptor subtype involved	References
Cell type	Pathogen	Effect described	References
Human macrophages	BCG	Mycobacterial clearance	Not determined [19]
Human macrophages	BCG	Mycobacterial clearance	P2X7, P2Y [20, 23]
	BCG—*M. tuberculosis* H37Ra	Acidification of mycobacteria-containing phagosomes—Inhibition of P2X7-associated permeabilisation	P2X7 [42]
Mouse macrophage	BCG	Production of NO and ROI	P2Y(?) [11]
Human macrophages	*M. tuberculosis* (H37Rv, Erdman and CSU#93)	Mycobacterial clearance; PLD activation	P2X7+P2(?) [21]
Mouse macrophages and J774 cell line	BCG	Mycobacterial clearance, PLD activation, phagosome–lysosome fusion	P2X7 [41]
Bovine macrophages	BCG	Mycobacterial clearance, increase P2X7 mRNA	P2X7 [22]
J774 macrophage	*C. caviae*	Chlamydial clearance—Inhibition of P2X7-mediated apoptosis	P2X7 [52]
Mouse macrophages	*C. trachomatis*	Chlamydial clearance, PLD activation, phagosome–lysosome fusion	P2X7 [51]
Mouse thymocytes	*T. cruzi*	Modulation of thymocyte death	P2X7(?) [64]
Mouse macrophages	*T. cruzi*	Inhibition of P2X7-mediated permeabilisation	P2X7 [65]
Mouse macrophages	*L. amazonensis*, *L. donovani*	Increase of P2X7-mediated permeabilisation	P2X7 [54]

PLD=phospholipase D; ROI=reactive oxygen intermediates
viability of extracellular *Leishmania* promastigotes. In fact, some nucleotides, such as UTP, stimulate the proliferation of promastigotes. It is also worthwhile noting that the more infective forms of *L. amazonensis* express more magnesium-dependent ecto-ATPase on their membranes than less virulent *Leishmania*, leading to the proposal that the ecto-ATPase should be viewed as a virulence factor of the parasite [16].

The cellular pathway allowing ATP_e to decrease *Leishmania* infection remains to be determined, but must be different from the PLD activation observed during *Chlamydia* and *Mycobacterium* infection [41, 51], since both *Chlamydia* and *Mycobacterium* inhibit phagolysosome formation and acidification [4, 6, 8], while *Leishmania* survives well in acidic phagolysosomes [56]. Interestingly, *Leishmania* lipophosphoglycans, which promote parasite survival, act by perturbing MAPKinase signalling in macrophages to inhibit macrophage IL-1β [57]. This might be relevant for the involvement of P2 receptors in the escape mechanisms used by *Leishmania*, since several P2 receptors are connected to MAPKinase pathways [58].

The involvement of ATP_e in Chagas’ disease

Chagas’ disease is caused by the facultative intracellular protozoan pathogen, *T. cruzi*. The disease is a chronic inflammatory condition characterised by cardiomyopathy and digestive disorders [59, 60]. *T. cruzi* infection affects over 17 million people in endemic areas of Latin America, leading to 45 thousand deaths per year [61]. The involvement of ATP_e signalling was recently examined during the acute phase of *T. cruzi* infection. Thymus atrophy occurs during the acute phase of infection but the thymus recovers weight and cellularity during the chronic phase [62]. These alterations do not appear to be associated with stress or glucocorticoid release [63]. It has recently been observed that thymocytes are sensitive to ATP_e-induced membrane permeabilisation and host-cell death only during the atrophy phase of infection, with CD4⁺/CD8⁺ double-positive thymocytes being the most sensitive subpopulation of thymocytes [64] (Table 1). Since the phenomenon of ATP-induced permeabilisation can be blocked by the P2X₇ inhibitor, oxised ATP and Mg²⁺, and the P2X₇ agonist, BzATP, was more potent than ATP, we proposed that the increased sensitivity to ATP_e may be responsible, at least in part, for the thymocyte clearance and thymic atrophy observed during the acute phase of Chagas’s disease [64].

It is, therefore, reasonable to suppose that ATP_e plays an important role in the *T. cruzi* infection cycle. In this context, it is worth noting that the ecto-ATPases produced by these parasites have been associated with strain virulence [17].

P2X₇ receptors and inflammation

The stimulation of P2X₇ by ATP_e leads to caspase-1 activation, cleavage of pro-IL-1β and the secretion of mature IL-1β [66] (Fig. 1). The P2X₇ receptor is also upregulated in macrophages by inflammatory cytokines, such as interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α), and lipopolysaccharide (LPS). LPS, a surface component of most Gram-negative bacteria, and IFN-γ act synergistically to upregulate P2X₇ receptor function and P2X₇ mRNA in the human monocyte cell line, THP-1, and human macrophages [34, 37]. In fact, P2X₇ receptors contain several motifs that are homologous to motifs from other receptors known to be involved in protein–protein interactions and LPS binding [67]. The upregulation of P2X₇ expression in monocytes by TNF-α, LPS and IFN-γ is consistent with the ability of these cytokines to act as inflammatory mediators, and these effects are markedly attenuated by coinubcation with prostaglandin E2 (PGE₂) or the membrane-permeable cAMP analogue, dibutyryl cAMP [68]. It is tempting to speculate that the temporal sequence of macrophage exposure to pro-inflammatory activators and anti-inflammatory stimuli (such as PGE₂) might regulate not only receptor expression, but also downstream signalling by the P2X₇ receptors.

It is known that macrophages express adenosine receptors, which are expressed during the differentiation of monocytes to macrophages and may influence phagocytosis [69]. Moreover, the treatment of macrophages with IFN-γ upregulates expression of the adenosine receptor, A_{2B}, and the activation of A_{2B} receptors is involved with the deactivation of macrophages, possibly through an increase of cAMP [70]. Therefore, the extracellular nucleotides may be involved with activation and a feedback mechanism for macrophage deactivation, depending on the timing and type of nucleotide released during infection. In this context, studies with P2X₇-deficient mice have reinforced the view that P2X₇ receptors are involved in inflammation. Thus, disruption of the P2X₇ receptor gene is associated with less severe disease in an arthritis model [71] and studies of chronic inflammation and neuropathic pain [72]. These results led to the hypothesis that the P2X₇ receptor, through the regulation of IL-1β production and secretion, plays a common, early role in the development of pain of neuropathic and inflammatory origin [71, 72]. Additionally, a recent study demonstrates that the inhibition of the P2X₇ receptor attenuates fever and cytokine responses induced by LPS in rats [73]. Finally, the P2X₇ receptor is present and its expression is modulated by inflammation in sites of chronic inflammation [74].

All of these findings reinforce the conclusion that P2X₇-dependent signalling plays a significant role in host
responses during various types of inflammatory disease. However, the involvement of P2X7 during disease is complicated by the presence of other P2 receptors, which may also contribute to either pro- or anti-inflammatory immune responses. Moreover, ATP can negatively regulate Toll-like receptor signalling, suppress LPS-induced MCP-1 and TNF-α, and augments IL-10 production in human monocytes [75]. Many infectious agents that survive in these immune effector cells may have evolved complex nucleotide-based strategies to evade the immune system. Dissection of these strategies may lead us to a better understanding of the role of nucleotide signalling in the immune response and to the development of new approaches to combat infectious diseases.

Concluding remarks

As large concentrations of ATP are present outside of the cell only when the cell is damaged or is part of an inflamed tissue (Fig. 1), it has been proposed that ATPe may function as a generic “danger signal,” which could alert the immune system to the presence of any type of intracellular pathogen that induces host-cell death [76–78]. Different intracellular pathogens, such as bacteria and protozoan parasites, express ecto-ATPases or other mechanisms to either inhibit or enhance ATPe-mediated death of their host cell, suggesting that ATPe may have been used by the host as an ancient danger signal, to which, intracellular pathogens have been exposed since the early evolution of the immune system. In this context, the ability of some intracellular pathogens to inhibit the ATPe-dependent response mediated by P2 receptors could be an example of adaptation of the pathogenic invaders to the immune response, and may help to explain why the most virulent pathogens express high ecto-ATPase levels on their surface [14–17]. Given the availability of animals that are deficient in P2X7 and other P2 receptors, further research in the future will, thus, need to address the relevance of P2-dependent immune mechanisms in controlling infections in whole organisms.

Acknowledgements This work was supported by grants from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, and the University of California.

References

1. Knodler LA, Celli J, Finlay BB (2001) Pathogenic trickery: deception of host cell processes. Nat Rev Mol Cell Biol 2(8):578–588
2. Finlay BB, Falkow S (1989) Common themes in microbial pathogenicity. Microbiol Mol Biol Rev 53(2):210–230
3. Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304(5668):242–248
4. Stafford JL, Neumann NF, Belosevic M (2002) Macrophage-mediated innate host defense against protozoan parasites. Crit Rev Microbiol 28(3):187–248
5. Scott CC, Botelho RJ, Grinstein S (2003) Phagosome maturation: a few bugs in the system. J Membr Biol 193(3):137–152
6. Wyrick PB (2000) Intracellular survival by Chlamydia. Cell Microbiol 2(4):275–282
7. Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3(1):1041–1047
8. Denkers EY, Butcher BA (2005) Sabotage and exploitation in macrophages parasitized by intracellular protozoans. Trends Parasitol 21(1):35–41
9. Andrews NW (2002) Lyosome and the plasma membrane: trypanosomes reveal a secret relationship. J Cell Biol 158(3):389–394
10. Burleigh BA, Woolsey AM (2002) Cell signalling and Trypanosoma cruzi invasion. Cell Microbiol 4(11):701–711
11. Sikora A, Liu J, Brosnan C, Buell G, Chessel I, Bloom BR (1999) Purinergic signalling regulates radical-mediated bacterial killing mechanisms in macrophages through a P2X7-independent mechanism. J Immunol 163(2):558–561
12. Punj V, Zaborina O, Dhiman N, Falzarri K, Bagdasarian M, Chakrabarty AM (2000) Phagocytic cell killing mediated by secreted cytotoxic factors of Vibrio cholerae. Infect Immun 68(9):4930–4937
13. Zaborina O, Li X, Cheng G, Kapralov V, Chakrabarty AM (1999) Secretion of ATP-utilizing enzymes, nucleoside diphosphate kinase and ATPase, by Mycobacterium bovis BCG: sequestration of ATP from macrophage P2Z receptors? Mol Microbiol 31(5):1333–1343
14. Chopra P, Singh A, Koul A, Ramachandran S, Drlica K, Tyagi AK, Singh Y (2003) Cytotoxic activity of nucleoside diphosphate kinase secreted from Mycobacterium tuberculosis. Eur J Biochem 270(4):625–634
15. Bisaggio DF, Peres-Sampaio CE, Meyer-Fernandes JR, Souto-Padron T (2003) Ecto-ATPase activity on the surface of Trypanosoma cruzi and its possible role in the parasite-host cell interaction. Parasitol Res 91(4):273–282
16. Berredo-Pinho M, Peres-Sampaio CE, Chrispim PP, Belmont-Firpo R, Lemos AP, Martiny A, Vannier-Santos MA, Meyer-Fernandes JR (2001) A Mg-dependent ecto-ATPase in Leishmania amazonesi and its possible role in adenosine acquisition and virulence. Arch Biochem Biophys 391(1):16–24
17. Meyer-Fernandes JR, Saad-Nehme J, Peres-Sampaio CE, Belmont-Firpo R, Bisaggio DF, Do Couto LC, Fonseca De Souza AL, Lopes AH, Souto-Padron T (2004) A Mg-dependent ecto-ATPase is increased in the infective stages of Trypanosoma cruzi. Parasitol Res 93(1):41–50
18. Gounaris K, Selkirk ME (2005) Parasite nucleotide-metabolizing enzymes and host purinergic signalling. Trends Parasitol 21(1):17–21
19. Molloy A, Laochumroonvorapong P, Kaplan G (1994) Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin. J Exp Med 180(4):1499–1509
20. Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalangam S, Kumaratane DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7r) receptors. Immunity 7(3):433–444
21. Kusner DJ, Adams J (2000) ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D. J Immunol 164(1):379–388
22. Smith RA, Alvarez AJ, Estes DM (2001) The P2X7 purinergic receptor on bovine macrophages mediates mycobacterial death. Vet Immunol Immunopathol 78(3–4):249–262
23. Stober CB, Lammas DA, Li CM, Kumararatne DS, Lightman SL, McArdle CA (2001) ATP-mediated killing of Mycobacterium bovis. Bacille Calmette-Guerin within human macrophages is calcium dependent and associated with the acidification of mycobacteria-containing phagosomes. J Immunol 166(10):6276–6286

24. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067

25. Coutinho-Silva R, Ojcius DM, Gorecki DC, Persichini PM, Bisaggio RC, Mendes AN, Marks J, Burnstock G, Dunn PM (2005) Multiple P2X and P2Y receptor subtypes in mouse J774, spleen, and peritoneal macrophages. Biochem Pharmacol 69(4):641–655

26. Yeung D, Khairida R, Brown SC, Gorecki DC (2004) Enhanced expression of the P2X4 receptor in Duchenne muscular dystrophy correlates with macrophage invasion. Neurobiol Dis 15(2):212–220

27. Saunders BM, Fernando SL, Sluyter R, Britton WJ, Wiley JS (2003) A loss-of-function polymorphism in the human P2X7 receptor abolishes ATP-mediated killing of mycobacteria. J Immunol 171(10):5442–5446

28. Shemon AN, Sluyter R, Fernandez SL, Clarke AL, Dao-ung LP, Skarratt KK, Saunders BM, Tan KS, Gu BJ, Fuller SJ, Britton WJ, Petrou S, Wiley JS (2005) A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J Biol Chem 281(4):2079–2086

29. Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Wiley JS, Britton WJ (2005) Gene dosage determines the negative effects of polymorphic alleles of the P2X7 receptor on adenosine triphosphate-mediated killing of mycobacteria by human macrophages. J Infect Dis 192(1):149–155

30. Myers AJ, Eilertson B, Fulton SA, Flynn JL, Canaday DH (2005) The purinergic P2X7 receptor is not required for control of pulmonary Mycobacterium tuberculosis infection. Infect Immun 73(5):3192–3195

31. el-Moatassim C, Dubyak GR (1992) A novel pathway for the activation of phospholipase-D by P(2)z purinergic receptors in BAC1.2F5 macrophages. J Biol Chem 267(33):23664–23673

32. Ferrari D, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Britton WJ (1998) Effect of the P2 receptor on the expression of the P2X7 receptor in human macrophages. J Immunol 159(3):1451–1458

33. Perregaux DG, Gabel CA (1998) Human monocyte stimulus-coupled IL-1beta posttranslational processing: modulation via monovalent cations. Am J Physiol 275(6 Pt 1):C1538–C1547

34. Falzoni S, Munerati M, Ferrari D, Chiozzi P, Moretti S, Di Virgilio F, Burnstock G, Darville T, Ojcius DM (2003) Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. J Infect Dis 193(3):403–412

35. Coutinho-Silva R, Perfellini J-L, Persichini PM, Dautry-Varsat A, Ojcius DM (2001) Modulation of P2X7 receptor activity in macrophages infected with Chlamydia psittaci. Am J Physiol 280(1):C81–C89

36. Awasthi A, Mathur RK, Saha B (2004) Chlamydia pneumoniae—an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2(1):23–32

37. La Verda D, Byrne GI (1994) Interactions between macrophages and chlamydiae. Immunol Ser 60:381–399

38. Adinolfi E, Pizzirani C, Idzko M, Panther E, Norgauer J, Di Virgilio F, Ferrari D (2005) P2X7 receptor: death or life? Purinergic Signalling 1(3):219–227

39. Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR (1998) Cytolytic P2X7 purinoceptors. Cell Death Differ 5(3):191–199

40. Belland R, Ojcius DM, Byrne GI (2004) Purinergic receptor modulation of intracellular mycobacteria by macrophages is a P2X7-dependent process inducing bacterial death by phagosome–lysosome fusion. J Immunol 167(6):3300–3307

41. Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, Cohen MS, Harris KM, Udry JR (1999) Prevalence of chlamydial and gonococcal infections among young adults in the United States. JAMA 291(18):2229–2236

42. Bervo PM (1994) Determinants of chlamydial pathogenicity in immunity. In: Miller VL, Kaper JB, Portnoy DA, Isberg RR (eds) Molecular genetics of bacterial pathogenesis. ASM Press, Washington, DC, pp 295–308

43. Schachter J (1999) Infection and disease epidemiology. In: Stephens RS (ed) Chlamydia: intracellular biology, pathogenesis, and immunity. ASM Press, Washington, DC, pp 139–169

44. Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY (1995) The global data on blindness. Bull World Health Organ 73(1):115–121

45. Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY (1995) The global data on blindness. Bull World Health Organ 73(1):115–121

46. Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, Cohen MS, Harris KM, Udry JR (1999) Prevalence of chlamydial and gonococcal infections among young adults in the United States. JAMA 291(18):2229–2236

47. Gerbase AC, Rowley JD, Mertens TE (1998) Global epidemiology of sexually transmitted diseases. Lancet 351(Suppl 3):2–4

48. Belland R, Ojcius DM, Byrne GI (2004) Chlamydia. Nat Rev Microbiol 2(7):530–531

49. Campbell LA, Kuo CC (2004) Chlamydia pneumoniae—an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2(1):23–32

50. La Verda D, Byrne GI (1994) Interactions between macrophages and chlamydiae. Immunol Ser 60:381–399

51. Coutinho-Silva R, Stahl L, Raymond M-N, Jungas T, Verbeke P, Burnstock G, Darville T, Ojcius DM (2003) Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19(3):403–412

52. Stafford JL, Neumann NF, Belosevic M (2002) Macrophage–phagosome interaction stabilizes intracellular mycobacteria. J Infect Dis 185(12):1999–2006

53. Awasthi A, Mathur RK, Saha B (2004) Chlamydia pneumoniae—an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2(1):23–32

54. Torres-Santos EC, Mantuano MB, Persichini PM, Coutinho-Silva R, Rossi-Bergmann B (2000) Enhanced macrophage permeabilization by ATP upon leishmanization. Drug Dev Res 50(1):61

55. Moore KJ, Matlashewski G (1994) Intracellular infection by Leishmania donovani. Trends Parasitol 10:121–127

56. Stafford JL, Neumann NF, Belosevic M (2002) Macrophage-mediated innate host defense against protozoan parasites. Crit Rev Microbiol 28(3):187–248

57. Feng GJ, Goodridge HS, Harnett MM, Wei XQ, Nikolaev AV, Higson AP, Liew FY, Di Virgilio F, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR (1998) Cytolytic P2X7 purinoceptors. Cell Death Differ 5(3):191–199

58. da Cruz CM, Ventura AL, Schachter J, Costa-Junior HM, Silva Souza HA, Gomes FR, Coutinho-Silva R, Ojcius DM, Persichini PM (2006) Activation of ERK1/2 by extracellular nucleotides in macrophages is mediated by multiple P2 receptors independently
of P2X7-associated pore or channel formation. Br J Pharmacol 147(3):324–334

59. Chimelli L, Scaravilli F (1997) Trypanosomiasis. Brain Pathol 7 (1):599–611

60. Engman DM, Leon JS (2002) Pathogenesis of Chagas heart disease: role of autoimmune. Acta Trop 81(2):123–132

61. Schmunis GA (1991) Trypanosoma cruzi, the etiologic agent of Chagas’ disease: status in the blood supply in endemic and nonendemic countries. Transfusion 31(6):547–557

62. Leite-de-Moraes MC, Hontebeyrie-Joskowicz M, Dardenne M, Savino W (1992) Modulation of thymocyte subsets during acute and chronic phases of experimental Trypanosoma cruzi infection. Immunology 77(1):95–98

63. Leite de Moraes MC, Hontebeyrie-Joskowicz M, Leboulenger F, Savino W, Dardenne M, Lepault F (1991) Studies on the thymus in Chagas’ disease. II. Thymocyte subset fluctuations in Trypanosoma cruzi-infected mice: relationship to stress. Scand J Immunol 33(3):267–275

64. Mantuano MB, Henriques-Pons A, Araujo-Jorge TC, Di Virgilio F, Coutinho-Silva R, Persechini PM (2003) Extracellular ATP induces cell death in CD4+/CD8+ double-positive thymocytes in mice infected with Trypanosoma cruzi. Microbes Infect 5 (15):1363–1371

65. Mantuano MB, Henriques-Pons A, Persechini PM, Araujo-Jorge TC, Coutinho CMLM, Coutinho-Silva R (2000) P2Z/P2X7 down-regulation: would it be evasion mechanism triggered by Trypanosoma cruzi. Drug Dev Res 50(1):61

66. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15(5):825–835

67. Denlinger LC, Fisette PL, Sommer JA, Watters JI, Prabhu U, Dubyak GR, Proctor RA, Bertics PJ (2001) Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide. J Immunol 167(4):1871–1876

68. Humphreys BD, Dubyak GR (1998) Modulation of P2X7 nucleotide receptor expression by pro- and anti-inflammatory stimuli in THP-1 monocyes. J Leukocyte Biol 64(2):265–273

69. Eppell BA, Newell AM, Brown EJ (1989) Adenosine receptors are expressed during differentiation of monocytes to macrophages in vitro. Implications for regulation of phagocytosis. J Immunol 143(12):4141–4145

70. Xaus J, Mirabet M, Lloberas J, Soler C, Lluis C, Franco R, Celada A (1999) IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J Immunol 162(6):3607–3614

71. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168(12):6436–6445

72. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerston J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yioung Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114(3):386–396

73. Gourine AV, Poputnikov DM, Zhermosek N, Melenchuk EV, Gerstberger R, Spyer KM, Gourine VN (2005) P2 receptor blockade attenuates fever and cytokine responses induced by lipopolysaccharide in rats. Br J Pharmacol 146(1):139–145

74. Luttikhuizen DT, Harmsen MC, de Leij LF, van Lyen MJ (2004) Expression of P2 receptors at sites of chronic inflammation. Cell Tissue Res 317(3):289–298

75. Kaufmann A, Musset B, Limberg SB, Renigunta V, Sus R, Dalpke AH, Heeg KM, Robaye B, Hanley PJ (2005) “Host tissue damage” signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes. J Biol Chem 280(37):32459–32467

76. Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13(1):114–119

77. Di Virgilio F (2005) Purinergic mechanism in the immune system: a signal of danger for dendritic cells. Purinergic Signalling 1 (3):205–209

78. Byrne GI, Ojcius DM (2004) Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2 (10):802–808