12th GLOBAL CONGRESS ON MANUFACTURING AND MANAGEMENT, GCMM 2014

Analyzing transportation and distribution in emergency humanitarian logistics

M. Safeer*, S.P. Anbuudayasankara, Kartik Balkumar a, K. Ganesh b

* Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore – 641112, India
b Knowledge Specialist, Supply Chain Management - Center of Competence McKinsey & Company, Inc., Chennai – 600113, India

Abstract

Most of the disasters occur unexpectedly with respect to time, place and intensity. Due to these reasons, humanitarian logistics has attracted considerable research attention in the recent past. This paper reviews modeling parameters for objective functions and constraints in humanitarian logistics distribution. The objective functions that are realized in various humanitarian emergency operations aim to increase the supply of relief aid. In this paper, a classification based review methodology is employed to identify various cost functions and constraints for primary emergency operations in logistics viz. casualty transportation and relief distribution problems. Based on the classification, areas of future research are discussed that would be useful for key decision makers in planning logistics activities in emergency situations. The paper also serves to delineate the recent trends, challenges and research gaps in the area of Humanitarian Logistics.

© 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the Organizing Committee of GCMM 2014

Keywords: Humanitarian logistics; Casualty transportation and evacuation; Relief distribution; Objective functions; Network design; Location/Allocation;

1. Introduction

The World Health Organization (WHO) defines a ‘disaster’ as any occurrence that causes damage, destruction, ecological disruption, loss of human life, human suffering, deterioration of health and health services on a scale sufficient to warrant an extraordinary response from outside the affected community or area. Earthquakes, hurricanes, tornadoes, volcanic eruptions, fire, floods, blizzard, drought, terrorism, chemical spills, nuclear accidents

* Corresponding author. Tel.: +91 9061808700.
E-mail address: mtsafeer@gmail.com
are included among the causes of disasters, and all have significant devastating effects in terms of human injuries and property damages.

Most of the disasters strike without prediction and expectation leading to limited preparation for mitigating the same. Disasters create a massive demand for relief aids that include food, medicines, shelter, water and other resources. Efficient emergency operations are required to increase the supply of relief aids. Managing emergency humanitarian logistics operations is more complex due to the risks and uncertainties that accompany any disaster. This poses difficulties in the planning and mitigation phases in the event that a disaster is expected. In the response phase, damages in transportation medium such as road, rail, compounded with uncertainties in demand, supply and environmental conditions further complicates humanitarian operations.

Modeling, optimization and simulation are the major tools to address and overcome these challenges. Other tools like fuzzy logic (Sheu et al.,(2005)), queuing theory (Mendonca and Morabito (2001)), decision theory, and reference point method are also used. Most researchers employ modeling and optimization to derive solutions to problems in emergency humanitarian logistics. Emergency operations in logistics include facility location, casualty transportation, relief distribution, stockpre-positioning and evacuation among many others (Caunhye et al., (2011)). Generally governments, military, civil society, and humanitarian organizations are responsible for undertaking such emergency relief operations. Disasters also test the capacity of different emergency operations in working together to deliver the best possible relief aid.

A major part of research in extent literature focuses on transportation models alone. Horner and Widener (2011), Hamedi et al., (2012), Campos et al., (2012), Ozdamar (2011), Song et al., (2009) and Barbarosoglu and Arda (2004) have formulated emergency transportation models, which achieve the multiple objectives of minimizing the travel time and travel cost.

In humanitarian operations quick response and demand satisfaction take precedence over profit as being important parameters while delivering relief. In other words, the right goods should reach the right place, at the right time (within the shortest possible time) to those who need it the most.

This article attempts to distill various objective functions and constraints from the literature on humanitarian logistics, with the aim of identifying research gaps and giving direction to future research work.

2. Humanitarian logistics

Humanitarian logistics is defined as “the process of planning, implementing and controlling the efficient, cost effective flow and storage of goods and materials as well as related information from the point of origin to the point of consumtion for the purpose of alleviating the suffering of vulnerable people”.

Humanitarian agencies prioritize to maximizing the demand met, maximizing the response and prevention of further damage. To support these priorities, response or lead time reduction is an important consideration. Any reduction in the lead time can have a significant positive impact for the beneficiaries. Humanitarian logistics differs from the logistics operations in commercial supply chains because of uncertainties in route selection, changing facility capacity, changing demand, safety issues, unused routes and other challenges like disrupted communication systems, limited availability of resources, and the need for efficient and timely delivery (Balci et al., (2008)).

Fig.1. Primary Emergency humanitarian logistics operations

Humanitarian operations should be planned accordingly to get maximum response and minimum loss. Costa et al.,(2012) identified the following actions that need to be developed for better performance in humanitarian operations: transport, storage and handling, distribution and performance evaluation. In this paper we focus on the
two primary operations-casualty transportation/evacuation and relief distribution. The major challenging areas under these primary operations are vehicle routing, network design, and location /allocation. Vehicle routing, location and allocation of various logistics problems has been the focus of many recent researches (Anbuudayasankar et al., (2012), Sivakumar et al., (2012), Anbuudayasankar et al., (2010)). But most of these researches are applicable only in ordinary logistics problems. Some of researchers developed distinct models for emergency logistics operations due to its high degree of uncertainty (Abounacer et al., (2014), Liberatore et al., (2014), Safeer et al., (2014), Wilson et al., (2013), Davis et al., (2013)).

2.1.1 Network design and vehicle routing

Critical problem in vehicle routing is to find out the shortest time path between origin and destination. Unlike classical vehicle routing problems, the emergency vehicle routing problem minimizes sum of arrival times instead of minimizing the cost. Network design includes defining the routes and allocating the available resources (resources being mostly vehicles and tasks being varied ones such as structure stabilization and roadway repair). The performance of a network is evaluated by network vulnerability analysis and network reliability analysis. Vulnerability analysis ensures the connectivity between all origin-destination pairs following a disaster. Network reliability analysis evaluates the stability of a transportation network under different circumstances. Some researchers like Hamedi et al., (2012) and Feng and Wang (2003) have studied network reliability in such emergency transportation.

2.1.2 Location / Allocation

Location allocation problem includes selecting the facilities and allocating the available resources and tasks. Facility location problems are of two types, selecting a facility from existing facilities and selecting the location for building the new facility. Location / Allocation problems are highly uncertain in terms of travel time, cost and demand. Many of these models have as an objective the minimization of cost (Davis et al., (2013), Bozorgi-Amiri et al., (2011), Charles and Lauras, (2011), Sheu,(2007)) or time (Edrissi et al., (2013), Noyan, (2012), Ji and Zhu, (2012), Zhang et al., (2012)). Others take nodal demand (Liberatore et al., (2014), Holguín-Veras et al., (2013)) as the major objective. The main objective of allocation problem is to maximize the level of demand satisfaction that can be achieved by the effective utilization of available vehicles and resources.

2.1.3 Integrated operations

Integrated operation involves a network design, route selection, facility location and resource allocation incorporated into a single model in such a way that so as to achieve minimum time. The application of these models facilitates coordination of all operations in during emergency relief. Time and demand are the major objectives identified in table 3 and 6.

3. Classification of modeling parameters

3.1 Casualty Transportation and evacuation

Casualty transportation is one of the most critical actions in emergency logistics. Casualty transportation includes evacuation and people flow from affected areas to medical centers. Most of the researchers focus on minimizing the travel cost and travel time, as outlined in the Table I, II, and III. Minimization of travel time leads to improvement in overall response and is sought for identifying the right path with minimum risk for transportation.

The objective functions that are used to optimize casualty transportation operations with the corresponding constraints are depicted in Table 1, 2 and 3. Important and recurrent objective functions discussed in literature and outlined in the table 1, 2 and 3 are:

- Travel cost - Maintenance Cost, Idle time cost of vehicle and Travel distance cost.
- Loading and Unloading Time – Loading and unloading time of resources to and from the vehicle.
- Distance – Short path selection.
- Travel time – Minimum travel time.
- Evacuation time – Minimum evacuation time.
- Distance – Selection of path based on shortest path.
- Quantity – Unmet Demand and demand satisfaction, Total life saving, Number of emergency units needed...
Table 1
Modeling Parameters: Network design and vehicle routing

Basis	Objective function	Author	Constraints
			Capacity
Cost	Travel cost	Hamedi et al., (2012)	-
		Taniguchi et al., (2012)	-
		Ben-Tal et al, (2011)	Vehicle, link
		Viswanath and Peeta, 2003	-
Resource selection cost		Barbarosoglu et al., (2002)	Vehicle Pilot, duration
Time	Travel time	Yuan and Wang, (2009)	-
		Feng and Wen, (2003a)	Link
		Barbarosoglu et al., (2002)	-
		Loading, unloading time	-
		Campos et al., (2012)	-
Distance	Distance	Shen et al., (2008)	Demand, travel time
		Feng and Wen, (2003b)	Node, Time, Damaged node
	Unmet demand	Yi and Özdamar, (2007)	Vehicle Demand, number of vehicle
	Number of	Yi and Özdamar, (2007)	Vehicle Demand, number of vehicle
	emergency units		Balanced material flow, vehicle type,
	needed		
	Total demand	Viswanath and Peeta, 2003	-
	covered		Total covered area, cost
	Total life saving,	Feng and Wen, (2003b)	-
	risk		Node, Time, Damaged node
	Number of	Yi and Özdamar, (2007)	Vehicle Demand, number of vehicle
	wounded people		Balanced material flow, vehicle type,
	waiting		Traffic inflows
	Traffic Volume	Feng and Wen, (2003a)	Link
	Capacity	Campos et al, (2012)	-

Table 2
Modeling Parameters: Location / Allocation

Basis	Objective function	Author	Constraints
			Capacity
Time	Transportation	Edrissi et al., (2013)	-
	time	Yazici and Ozbay, (2007)	Vehicle, link, facility
	Resource allocation time	Fiedrich et al., (2000)	-
			Supply, Demand, Budget (cost)
			Number of vehicle, Facility
			Resource restriction due to local conditions
			Available resources
Table 3
Modeling Parameters: Integrated

Basis	Objective function	Author	Constraints			Others
			Capacity bounds	Others		
Time	Transportation	Wilson et al., (2013)	Facility	Task completion time	Location	
	time	Ozdamar, (2011)	-	Unmet demand, commodities, total supply	Material flow	
		Horner and Widener, (2011)	-	Relief demand, service level	-	
		Song et al., (2009)	Vehicle	Vehicle serving time	Route continuity constraints,	
	Evacuation time	Song et al., (2009)	Vehicle	Vehicle serving time	Route continuity constraints,	
Distance	Distance	Song et al., (2009)	Vehicle	Vehicle serving time	Route continuity constraints,	
Quantity	Total life saving	Wilson et al., (2013)	Facility	Task completion time	Location	

3.2 Distribution

Distribution is the flow of resources from warehouses or medical centers to affected areas. Relief distribution provides relief in the form of food, medicines, shelters and other related relief resources to wounded people. Due to uncertainties in the post-disaster environment, maximum relief distribution can be achieved by efficient planning. Some uncertainties in post disaster environments are demand variations, link and facility damage and shortages in resources. Better relief distribution is essential for achieving demand satisfaction, reduced unmet demand (unsatisfied demand level), minimum fatality and maximum lifesaving. Most of the distribution models are single objective and deterministic(Caunhye et al., (2011)).

In relief distribution, a significant portion of the literature tries to reduce the unmet demand for improving the distribution of relief. Afshar and Haighani (2012) have proposed a mathematical model that controls the flow of several relief commodities in a supply chain from the source till the point they are delivered to the hands of recipients. Some researchers have worked on resource allocation, the resources being vehicles, commodities, or equipment (Holguín-Veras et al., (2013), Zhang et al., (2012) and Fiedrich et al., (2000)). Resource allocation involves assigning the resources without consideration for the flow. As demand increases resource allocation becomes more difficult. Initially Brown and Vassilou (1993) proposed a resource allocation model for disasters; later Fiedrich et al., (2000) introduced a better disaster allocation model.

Relief distribution operations are time and cost dependent. Davis et al., (2013) proposed a model based on relief distribution cost. The model is helpful for positioning of quantities and distribution of supplies to the affected counties based on the desired response time.

The objective functions that are used to optimize distribution operations is categorized in Table 4, 5 and 6.

- Relief Distribution cost
- Relief Distribution time
- Responds
- Resource allocation
- Fatalities
- Demand satisfaction
- Unmet Demand
- Total life saving
- Number of wounded people waiting
Table 4
Modeling Parameters: Network design and vehicle routing

Basis	Objective function	Author	Constraints
			Capacity bounds Others
Cost	Travel cost	Ben-Tal et al., (2011)	Vehicle, link - Total flow
		Barbarosoglu and Arda, (2004)	Vehicle, link, Supply Flow
		Hamedi et al., (2012)	Flow, Time, arrival and destination -
		Viswanath and Peeta, 2003	Total covered area, cost Flow -
Distribution	Cost	Holguín-Veras et al., (2013)	Time between deliveries, unmet demand -
		Vitoriano et al., (2011)	Vehicle Total operation cost, transported load Flow balance
Distance		Liberatore et al., (2014)	Supply, delivery, demand Unreliable arc flow, time
Time	Transportation	Chen et al., (2011)	Vehicle, Link Demand, supply Maintain the balance of in-flow and out-flow at each node
	Time	Yuan and Wang, (2009)	- Supply, delivery, demand Feasible path, no circles in the path
	Resource allocation time	Holguín-Veras et al., (2013)	Time between deliveries, unmet demand -
	Distribution time,	Yan and Shih, (2009)	Relief commodities, Repair point, flow
	Demand satisfaction	Liberatore et al., (2014)	Supply, delivery, demand Unreliable arc flow, reach time,
	Unmet demand	Holguín-Veras et al., (2013)	Time between deliveries, unmet demand -
		Viswanath and Peeta, (2003)	Total covered area, cost Flow
		Yi and Özdamar, (2007)	Vehicle Demand, number of vehicle Balanced material flow, vehicle type,
	Number of emergency units and wounded people waiting	Yi and Özdamar, (2007)	Vehicle Demand, number of vehicle Balanced material flow, vehicle type,

Table 5
Modeling Parameters: Location / Allocation

Basis	Objective function	Author	Constraints
			Capacity bounds Others
Cost	Relocation /	Davis et al., (2013)	Facility Supply quantity, time and demand Flow balance
	Allocation cost	Bozorgi-Amiri et al., (2011)	Facility Demand, amount of commodity, inventory -
		Charles and Lauras, (2011)	Facility DemandSatisfaction Balance of inventory.
		Sheu,(2007)	Vehicle, facility Relief amount
Travel cost		Brown and Vassiliou, (1993)	- Resource allocation Resource flow
Table 6

Modeling Parameters: Integrated

Basis	Objective function	Author	Constraints
Cost			
Travel cost	Horner and Widener, (2011)	-	Relief demand, service level
Relief distribution cost	Horner and Widener, (2011)	-	Relief demand, service level
	Rath and Gutjahr, (2011)	Vehicle, facility	Budget limit, delivery amount, time
			Each customer can be visited at most once.
Time			
Transportation Time	Abounacer et al., (2014)	Vehicle, link	supply quantity, total working time, delivery,
	Safeer et al., (2014)	Vehicle, facility	Supply Quantity, Demand, Capacity
	Ozdamar, (2011)	-	Unmet demand, commodities, total supply
	Mete and Zabinsky, (2010)	Vehicle, facility	Unsatisfied demand, medical supply
	Van Hentenryck et al., (2010)	Vehicle	costs
			Vehicules start and end locations
Loading, unloading Time	Safeer et al., (2014)	Vehicle, facility	Supply Quantity, Demand, Capacity
	Ozdamar, (2011)	-	Unmet demand, commodities, total supply

Authors: Edrissi et al., (2013) - Noyan, (2012) - Ji and Zhu, (2012) - Duran et al., (2011) - Sheu et al., (2005) - Ji and Zhu, (2012) - Sheu, (2007) - Zhang et al., (2012) - Fiedrich et al., (2000) - Balcik and Beamon, (2008) - Brotcorne et al., (2003) - Brown and Vassillou, (1993) - Paul and Hariharan, (2012) - Ozdamar, (2011) - Horner and Widener, (2011) - Rath and Gutjahr, (2011) - Abounacer et al., (2014) - Safeer et al., (2014) - Van Hentenryck et al., (2010) - Mete and Zabinsky, (2010) - Ozdamar, (2011)
Quantity	Unmet demand	Abounacer et al., (2014)	Vehicle, link	supply quantity, total working time, delivery	-
	Afshar and Haghani, (2012)	Vehicle, facility	Commodity flow, resource flow, minimum percentage of total demand	-	
	Van Hentenryck et al., (2010)	Vehicle	Total costs	Vehicles start and end locations	
	Rath and Gutjahr, (2011)	Vehicle, facility	Budget limit, delivery amount, time	Each customer can be visited at most once.	
	Lin et al., (2009)	Vehicle	Satisfaction rate, delivery amount	-	
	Abounacer et al., (2014)	Vehicle, link	supply quantity, total working time, delivery	-	

4. Future research direction

The major objective of disaster management is to reduce loss. Loss refers to infrastructure loss and human loss which includes the number of persons injured. After a disaster strikes, the losses in affected areas increase proportionately with time. This calls for quick response in providing relief and shelter in order to minimize the loss.

Another research direction is developing a novel basis for relief distribution in the disaster-affected area- giving more priority in relief delivery to persons more affected or injured in a disaster. Other factors are that people need to be allocated to hospitals based on the type and severity of injuries. Which minimizes the individual or overall risk. For an efficient relief distribution planning it is required to develop a new model to achieve maximum response by taking into account the above consideration. The severity of the risk can be integrated into the model based on a ranking system that prioritizes medical aid based on severity of the injury.

Facility location model development is an important research area. In post-disaster situations, the affected nodes need to be allocated to the best facility so that relief is delivered to a particular demand point with minimum time, minimum probability of path failure, maximum path capacity between allocated facility and demand points, maximum availability of resources, balanced facility capacity and expected demand at the demand points.

There is scope for development of a pre-facility location model that is capable of accommodating more uncertainty and dynamic situations. The uncertainties mentioned include variations in demand, supply, availability of resources (relief items, vehicle, trained workers etc.), whereas dynamic situations include environmental changes during the operations, barriers from the Government, political barriers and barriers from other organizations.

Other research areas which require emphasis are development of an inventory and relief distribution model that incorporates new demand patterns; capacity planning for pre-post disaster situations; and development of a more realistic humanitarian model that incorporates several more tasks and uncertainties.

5. Conclusion

Transportation models serve as critical decision making tools for providing quicker response to a disaster situation. With the help of a classification-based methodology of the literature, this paper identifies major transportation model objective functions and constraints that are mostly used in two primary relief operations- casualty transportation and evacuation and distribution. The paper gives an aerial view of the research on transportation models and will prove useful for managers and academicians for decision support and planning, and stimulating further research work in the area. Categorized list of major transportation operations that are identified from literatures are given in table 7.
Table 7
Challenging transportation operation

Network reliability analysis and path selection	Wilson et al., (2013), Taniguchi et al., (2012), Hamedi et al., (2012), Ben-Tal et al., (2011), Fang and Wakabayashi, (2011), Vitoriano et al., (2011), Song et al., (2009), Yuan and Wang, (2009), Shen et al., (2008).
Allocate people, facility and vehicle according to demand and severity	Holguín-Veras et al., (2013), Zhang et al., (2012), Bozorgi-Amiri et al., (2011), Döyen et al., (2011), Mete and Zabinsky (2010), Shen et al., (2008).
Capacity planning	Campos et al., (2012).
Inventory level	Davis et al., (2013), Bozorgi-Amiri et al., (2011), Döyen et al., (2011), Döyen et al., (2011), Charles and Lauras (2011), Mete and Zabinsky (2010).

References

1. A. Afshar and A. Haghani, Modeling integrated supply chain logistics in real-time large-scale disaster relief operations, Socio-Economic Planning Sciences. vol. 46, pp. 327-338, 2012.
2. A. Ben-Tal, B. D. Chung, S. R. Mandala, and T. Yao, Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains, Transportation research part B: methodological. vol. 45, pp. 1177-1189, 2011.
3. A. Bozorgi-Amiri, M. S. Jabalameli, and S. M. J. Mirzapour Al-e-Hashem, A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty, OR Spectrum, pp. 1-29, 2011/08/01 2011.
4. A. Charles and M. Lauras, An enterprise modelling approach for better optimisation modelling: application to the humanitarian relief chain coordination problem, OR Spectrum, vol. 33, pp. 815-841, 2011.
5. A. Döyen · N. Aras and G. Barbarosoglu. A two-echelon stochastic facility location model for humanitarian relief logistics, Optim Lett. vol. 6: pp. 1123–1145, 2012.
6. A. Edrissi, H. Poorzahedy, H. Nassiri, and M. Nourinejad, A multi-agent optimization formulation of earthquake disaster prevention and management, European Journal of Operational Research, vol. 229, pp. 261-275, 2011.
7. A. M. Caunhye, X. Nie, and S. Pokharel, Optimization models in emergency logistics: A literature review, Socio-Economic Planning Sciences, vol. 46, pp. 4-13, 2012.
8. A.Y. Chen, F. Peña-Mora and Y. Ouyang. A collaborative GIS framework to support equipment distribution for civil engineering disaster response operations. Automation in Construction vol. 20 pp. 637–648, 2011.
9. B. Balcik and B. M. Beamon, Facility location in humanitarian relief, International Journal of Logistics Research and Applications, vol. 11, pp. 101-121, 2008/04/01 2008.
10. B. Rottkemper, K. Fischer, A. Blecken, and C. Danne, Inventory relocation for overlapping disaster settings in humanitarian operations, OR Spectrum, vol. 33, pp. 721-749, 2011..
11. B. Vitoriano, M. T. Ortúñio, G. Tirado, and J. Montero, A multi-criteria optimization model for humanitarian aid distribution, Journal of Global Optimization, vol. 51, pp. 189-208, 2011.
12. C.-M. Feng and C.-C. Wen, A fuzzy bi-level and multi-objective model to control traffic flow into the disaster area post earthquake, Journal of the Eastern Asia Society for Transportation Studies, vol. 6, pp. 4253-4268, 2005.
13. C.-M. Feng and C.-C. Wen, Traffic control management for earthquake-raided area, Journal of the Eastern Asia Society for Transportation Studies, vol. 5, pp. 3261-3275, 2003a.
14. C.-M. Feng and T-C. Wang, Highway emergency rehabilitation scheduling in post-earthquake 72 hours, Journal of the 5th Eastern Asia Society for Transportation Studies, vol. 5, pp 3276 - 3285, 2003b.
15. D. T. Wilson, G. I. Hawe, G. Coates, and R. S. Crouch, A multi-objective combinatorial model of casualty processing in major incident response, European Journal of Operational Research, vol. 230, pp. 643-655, 2013.
16. E. Taniguchi, Frederico Ferreira, Alan Nicholson. A conceptual road network emergency model to aid emergency preparedness and response decision-making in the context of humanitarian logistics Procedia - Social and Behavioral Sciences vol. 39 pp 307 – 320, 2012
17. FC Mendonca and R Morabito . Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model, Journal of the Operational Research Society (2001) vol. 52, pp. 26-270.
18. F. Friedrich, F. Gehbauer, and U. Rickers, Optimized resource allocation for emergency response after earthquake disasters, Safety Science, vol. 35, pp. 41-57, 2000.
19. F. Liberatore, M. T. Ortúñio, G. Tirado, B. Vitoriano, and M. P. Scaparra, A hierarchical compromise model for the joint optimization of recovery operations and distribution of emergency goods in Humanitarian Logistics, Computers & Operations Research, vol. 42, pp. 3-13, 2014.
20. G. Barbarosoglu and Y. Arda, A two-stage stochastic programming framework for transportation planning in disaster response, Journal of the Operational Research Society, vol. 55, pp. 43-53, 2004.
21. G. Barbarosoglu, L. Özdamar, and A. Çevik, An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations, European Journal of Operational Research, vol. 140, pp. 118-133, 2002.
22. G. G. Brown and A. L. Vassiliou, Optimizing disaster relief: real-time operational and tactical decision support, Naval Research Logistics, vol. 40, pp. 1-23, 1993.
23. G. Ji and C. Z. Shao, A Study on Emergency Supply Chain and Risk Based on Urgent Service in Disasters, Systems Engineering Procedia, vol. 5, pp. 313-325, 2012.
24. H. O. Mete and Z. B. Zabinsky, Stochastic optimization of medical supply location and distribution in disaster management, International Journal of Production Economics, vol. 126, pp. 76-84, 2010.
25. J. A. Paul and G. Harirahan, Location-assignment planning of stockpiles for effective disaster mitigation, Annals of operations research, vol. 196, pp. 469-490, 2012.
26. J. H. McCoy and M. L. Brandeau, Efficient stockpiling and shipping policies for humanitarian relief: UNHCR’s inventory challenge, OR Spectrum, vol. 33, pp. 673-698, 2011.
27. J. Holguin-Veras, N. Pérez, M. Jaller, L. N. Van Wassenhove, and F. Aros-Vera, On the appropriate objective function for post-disaster humanitarian logistics models, Journal of Operations Management, vol. 31, pp. 262-280, 2013.
28. J.-B. Sheu, An emergency logistics distribution approach for quick response to urgent relief demand in disasters, Transportation Research Part E: Logistics and Transportation Review, vol. 43, pp. 687-709, 2007.
29. J.-B. Sheu, Y.-H. Chen, and L. W. Lan, A novel model for quick response to disaster relief distribution, in Proceedings of the Eastern Asia Society for Transportation Studies vol.5, pp. 2454-2462, 2005.
30. J.-H. Zhang, J. Li, and Z.-P. Liu, Multi-resource and multiple-depot emergency response problem considering secondary disasters, Expert Systems with Applications, vol. 39, pp. 11066-11071, 2012.
31. K. Viswanath and S. Peeta, Multicommodity maximal covering network design problem for planning critical routes for earthquake response, Transportation Research Record: Journal of the Transportation Research Board, vol. 1857, pp. 1-10, 2003.
32. L. Brotcorne, G. Laporte, and F. Semet, Ambulance location and relocation models, European Journal of Operational Research, vol. 147, pp. 451-463, 2003.
33. L. Özdamar, Planning helicopter logistics in disaster relief, OR Spectrum, vol. 33, pp. 655-672, 2011.
34. L. Özdamar, E. Ekinci, and B. Küçükayazici, Emergency Logistics Planning in Natural Disasters, Annals of operations research, vol. 129, pp. 217-245, 2004.
35. L. Brotcorne, G. Laporte, and F. Semet, Ambulance location and relocation models, European Journal of Operational Research, vol. 144, pp. 255-270, 2003.
36. T. H. McCoy and M. L. Brandeau, Efficient stockpiling and shipping policies for humanitarian relief: UNHCR’s inventory challenge, OR Spectrum, vol. 33, pp. 673-698, 2011.
37. J. Holguin-Veras, N. Pérez, M. Jaller, L. N. Van Wassenhove, and F. Aros-Vera, On the appropriate objective function for post-disaster humanitarian logistics models, Journal of Operations Management, vol. 31, pp. 262-280, 2013.
38. J.-B. Sheu, An emergency logistics distribution approach for quick response to urgent relief demand in disasters, Transportation Research Part E: Logistics and Transportation Review, vol. 43, pp. 687-709, 2007.
39. J.-B. Sheu, Y.-H. Chen, and L. W. Lan, A novel model for quick response to disaster relief distribution, in Proceedings of the Eastern Asia Society for Transportation Studies vol.5, pp. 2454-2462, 2005.
40. J.-H. Zhang, J. Li, and Z.-P. Liu, Multi-resource and multiple-depot emergency response problem considering secondary disasters, Expert Systems with Applications, vol. 39, pp. 11066-11071, 2012.
41. K. Viswanath and S. Peeta, Multicommodity maximal covering network design problem for planning critical routes for earthquake response, Transportation Research Record: Journal of the Transportation Research Board, vol. 1857, pp. 1-10, 2003.
42. L. Brotcorne, G. Laporte, and F. Semet, Ambulance location and relocation models, European Journal of Operational Research, vol. 147, pp. 451-463, 2003.
43. L. Özdamar, Planning helicopter logistics in disaster relief, OR Spectrum, vol. 33, pp. 655-672, 2011.
44. L. Özdamar, E. Ekinci, and B. Küçükayazici, Emergency Logistics Planning in Natural Disasters, Annals of operations research, vol. 129, pp. 217-245, 2004.
45. L. Brotcorne, G. Laporte, and F. Semet, Ambulance location and relocation models, European Journal of Operational Research, vol. 144, pp. 255-270, 2003.
46. T. H. McCoy and M. L. Brandeau, Efficient stockpiling and shipping policies for humanitarian relief: UNHCR’s inventory challenge, OR Spectrum, vol. 33, pp. 673-698, 2011.
47. J. Holguin-Veras, N. Pérez, M. Jaller, L. N. Van Wassenhove, and F. Aros-Vera, On the appropriate objective function for post-disaster humanitarian logistics models, Journal of Operations Management, vol. 31, pp. 262-280, 2013.
48. J.-B. Sheu, An emergency logistics distribution approach for quick response to urgent relief demand in disasters, Transportation Research Part E: Logistics and Transportation Review, vol. 43, pp. 687-709, 2007.
49. J.-B. Sheu, Y.-H. Chen, and L. W. Lan, A novel model for quick response to disaster relief distribution, in Proceedings of the Eastern Asia Society for Transportation Studies vol.5, pp. 2454-2462, 2005.
49. S.P. Anbuudayasankar, K. Ganesh, S.C. Lenny Koh and K. Mohandas, Unified heuristics to solve routing problem of reverse logistics in sustainable supply chain, International Journal of Systems Science, vol.4 (3), pp. 337-351, (2010).

50. S. R. A. d. Costa, V. B. G. Campos, and R. A. d. M. Bandeira, Supply Chains in Humanitarian Operations: Cases and Analysis, Procedia - Social and Behavioral Sciences, vol. 54, pp. 598-607, 2012.

51. S. Rath and W. J. Gutjahr, A math-heuristic for the warehouse location–routing problem in disaster relief, Computers & Operations Research, vol. 42, pp. 25-39, 2014.

52. S. Yan and Y.-L. Shih, Optimal scheduling of emergency roadway repair and subsequent relief distribution, Computers & Operations Research, vol. 36, pp. 2049-2065, 2009.

53. V. Campos, R. Bandeira, and A. Bandeira, A Method for Evacuation Route Planning in Disaster Situations, Procedia - Social and Behavioral Sciences, vol. 54, pp. 503-512, 2012.

54. W. Yi and L. Özdamar, A dynamic logistics coordination model for evacuation and support in disaster response activities, European Journal of Operational Research, vol. 179, pp. 1177-1193, 2007.

55. Y. Yuan and D. Wang, Path selection model and algorithm for emergency logistics management, Computers & Industrial Engineering, vol. 56, pp. 1081-1094, 2009.

56. Y.-H. Lin, R. Batta, P. A. Rogerson, A. Blatt, and M. Flanigan, Application of a humanitarian relief logistics model to an earthquake disaster, Word Journal of the International Linguistic Association, pp. 1-14, 2009.

57. Z.-H. Hu, A container multimodal transportation scheduling approach based on immune affinity model for emergency relief, Expert Systems with Applications, vol. 38, pp. 2632-2639, 2011.

58. Z.-J. M. Shen, J. Pannala, R. Rai, and T. S. Tsoi. Modeling transportation networks during disruptions and emergency evacuations. 2008. [Online]. Available: http://escholarship.org/uc/item/12579znm