This is the accepted manuscript made available via CHORUS. The article has been published as:

Operational approach to quantum stochastic thermodynamics

Philipp Strasberg

Phys. Rev. E **100**, 022127 — Published 21 August 2019

DOI: [10.1103/PhysRevE.100.022127](https://doi.org/10.1103/PhysRevE.100.022127)
An operational approach to quantum stochastic thermodynamics

Philipp Strasberg

Physics and Materials Science Research unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg and Física Teórica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain

(Dated: July 22, 2019)

We set up a framework for quantum stochastic thermodynamics based solely on experimentally controllable, but otherwise arbitrary interventions at discrete times. Using standard assumptions about the system-bath dynamics and insights from the repeated interaction framework, we define internal energy, heat, work and entropy at the trajectory level. The validity of the first law (at the trajectory level) and the second law (on average) is established. The theory naturally allows to treat incomplete information and it is able to smoothly interpolate between a trajectory based and ensemble level description. We use our theory to compute the thermodynamic efficiency of recent experiments reporting on the stabilization of photon number states using real-time quantum feedback control. Special attention is also payed to limiting cases of our general theory, where we recover or contrast it with previous results. We point out various interesting problems, which the theory is able to address rigorously, such as the detection of quantum effects in thermodynamics.

I. INTRODUCTION

The nonequilibrium thermodynamics of small Markovian systems is well-studied for decades if we are interested only in ensemble averaged quantities of internal energy, heat, work or entropy [1–6]. For classical systems it became clear during the past 25 years that also fluctuations in thermodynamic quantities bear important information and that those fluctuations are constrained by fundamental symmetry relations valid arbitrary far from equilibrium. These symmetry relations are known as fluctuation theorems [7, 8]. For a given realization of a stochastic process an understanding of the fluctuation theorem required to extend the ensemble averaged energetic [9, 10] and entropic [11] description to the level of single stochastic trajectories. The resulting theoretical framework is called stochastic thermodynamics [12, 13].

Quantum stochastic thermodynamics tries to generalize classical stochastic thermodynamics to systems whose quantum nature cannot be neglected. Obviously, the very definition of a trajectory dependent quantity is non-trivial as any measurement disturbs the system and the meaning of a ‘trajectory’ is a priori not clear. We note that incomplete and disturbing measurements are also prevalent in classical systems [14], but exploring their consequences for classical stochastic thermodynamics has raised relatively little attention so far [15–21].

Soon after the discovery of classical fluctuation theorems, much effort was devoted to derive fluctuation theorems for quantum systems. A theoretically successful strategy is the two-point measurement approach [22, 23]. It requires to measure the energy of the system and the bath at the beginning and at the end of the thermodynamic process. Obviously, for a bath with its prosaic 10^{23} degrees of freedom such a scheme is not even for a classical system practically feasible. In addition, the resulting statistics for internal energy and work cannot fulfill an averaged first law if the initial state is not diagonal in the energy eigenbasis [24]. Nevertheless, within this approach quantum fluctuation theorems can be derived, which are formally identical to their classical counterpart. Thus, by measuring the whole universe (system plus bath), the two-point measurement approach circumvents the need to define thermodynamic quantities along a specific system trajectory. Also alternative and complementary approaches based on interferometric measurements [25–29], a single projective measurement [30, 31] or no measurement at all [32, 33] have been put forward and the semiclassical limit was studied too [34–36]. To conclude, even though those approaches are theoretically powerful, they are experimentally hard to confirm and an important feature of classical stochastic thermodynamics is still missing, namely the definition of internal energy and entropy along a given ‘quantum trajectory’.

Exceptions are quantum systems which, when perfectly observed in the energy eigenbasis, follow Markovian rate master equation. This is approximately the case in electronic nanostructures (quantum dots) in the sequential tunneling regime [37–40], where the framework of classical stochastic thermodynamics was carried over one by one. Interestingly, trying to adopt this picture to more general quantum dynamics results in unconventional definitions for thermodynamic quantities [41], not to mention the measurement problem. This further demonstrates the need for a radically different approach to quantum stochastic thermodynamics.

One such approach makes use of the framework of repeated interactions [42–44]. In there, the static bath is replaced by an external stream of ancilla systems, which are put into contact with the system one by one and are designed to simulate a thermal bath (arbitrary initial states of the bath were recently treated in Ref. [45]). If the external systems are projectively measured before and after the interaction, a trajectory based formulation becomes possible similar to classical stochastic thermodynamics. Although such a description yields theoretical insights, in experimental reality a system is usually also in permanent contact with a bath.
An experimentally closer approach uses a technique, which was discovered in quantum optics in order to describe the stochastic evolution of a quantum system based on monitoring the environment of the system [46–48]. Given such a measurement scheme, the system dynamics can be ‘unraveled’ by describing it in terms of a stochastic Schrödinger or master equation. Combined with this dynamical description, researchers recently applied the ideas of stochastic thermodynamics to such quantum systems [49–55]: a completely general picture is, however, still missing. For instance, a trajectory dependent system entropy was never introduced making it hard to study entropy production along a single trajectory or on average (specific fluctuation theorems based on a particular choice of the backward dynamics were studied in Refs. [51, 53–55]; we will come back to this at the end). Furthermore, the above publications focused only on efficient measurements in which the state of the system is always in a pure state along every trajectory. In this sense, there is no essential departure from the two-point measurement scheme in which perfect knowledge of every involved degree of freedom is crucial.

A. Results and outline

We here put forward a novel approach, which we propose to call operational quantum stochastic thermodynamics because it places the experimenter in the foreground. A ‘stochastic trajectory’ – and the corresponding thermodynamic quantities internal energy, heat, work and entropy along such a trajectory – are defined solely in terms of experimentally meaningful interventions or control operations of the system dynamics. Dynamically, our description rests on recent theoretical progress in describing ‘quantum causal models’ or ‘quantum stochastic processes’ [56–65]. Within this picture it is possible to describe the effect of arbitrary control operations happening at arbitrary discrete times applied to an arbitrary quantum system in an experimentally measurable way. It is different from conventional quantum trajectory approaches and we will start the paper by discussing it in Sec. II.

In Sec. III we then connect this approach to the framework of repeated interactions. Partially based on insights from earlier work [66], we will see in Sec. IV that this allows us to find an unambiguous first and second law of thermodynamics for each single control operation.

The only standard assumption we are here using is that the system in absence of control operations can be modeled by a quantum master equation with a transparent thermodynamic interpretation describing a driven system coupled to a single heat bath. Based on the repeated interaction picture, we will then see in Sec. IV that the definitions of internal energy and system entropy emerge naturally out of the framework if we properly take into account all interacting subsystems. In fact, following the credo “information is physical” [67], we will see that it is necessary to include the full information generated by the measurements into the entropic balance from the beginning on. With this step we also depart from the approaches reviewed above, which need to be modified in presence of feedback control (see Ref. [68] for an introduction). The first law at the trajectory level and the second law on average is finally verified.

This concludes the first part of the manuscript, which is about the basic framework of operational quantum stochastic thermodynamics. Its novelties are:

(1) It does neither rely on the ability to have control about the environment nor does it require continuous measurements.

(2) By allowing to treat any kind of incomplete information, it respects experimental reality where every measurement is imprecise and imperfect.

(3) It shows that any conceivable feedback scenario has a consistent thermodynamic interpretation.

(4) The notion of stochastic entropy for a quantum system is defined and the second law follows without the need to introduce any ‘backward’ dynamics.

(5) The framework reveals that quantum stochastic thermodynamics is more than a mere extension of classical stochastic thermodynamics. Any measurement strategy has in general a non-trivial impact on the quantum system and hence, there is a plurality of first and second laws in quantum thermodynamics depending on how we measure the system. Notice that these many laws of thermodynamics are conceptually different from the many second laws of Ref. [69].

The rest of the paper is about illuminating applications and special cases of the general theory:

(6) To illustrate point (2) and (3), we analyze in Sec. V the quantum stochastic thermodynamics of recent experiments reporting on the preparation and stabilization of photon number states [70, 71]. We uncover that the efficiency to prepare such states is remarkably high.

(7) We consider the case of projective measurements in detail and compare our definitions with the recently introduced notion of “quantum heat” [51] in Sec. VI A.

1 An extension beyond this Markovian picture is, however, possible in some cases, see Sec. VII B.

2 This includes the case of real-time feedback control, where – in contrast to deterministic feedback control where the time of measurement and feedback are pre-determined [68] – the control strategy is adapted during the run of the experiment. It also includes the case of time-delayed feedback control.
(8) In Sec. VI B we provide a resolution to the no-go theorem derived by Perarnau-Llobet et al. [24], which (in a nutshell) shows that the conventional definition of work used in the two-point measurement scheme [22, 23] is doubtful. Indeed, we show that it is inconsistent with our definition of stochastic work.

(9) Secs. VIC, VID and VIE provide important consistency checks. We show that the definitions of standard quantum thermodynamics [3–6] and the repeated interaction framework [66] are contained in our general approach. They arise, however, not by averaging over many trajectories, but by deciding not to do any measurements at all. In the limit of a perfectly observed classical system we recover the definitions of internal energy, heat and work of standard stochastic thermodynamics. Only our second laws differ because our framework remains valid in case of feedback control, whereas the conventional framework [10, 12, 13] needs to be modified then [68].

(10) In Secs. VIF and VIG we discuss particularly interesting cases, which allow to reduce the complexity of our general framework.

The paper ends with some remarks and an outlook. Sec. VII A discusses the case of multiple heat baths, possible `second laws' that follow from a time-reversed process, and the necessity to use the repeated interaction framework and to focus on incomplete information from the beginning on. In Sec. VII B we point out to interesting future applications such as finding true quantum features in quantum heat engines, relations to Leggett-Garg inequalities and the detection of non-Markovian effects in thermal machines.

B. Basic notation

The state of a system X at time t is described by a density operator $\rho_X(t)$. The corresponding Hilbert space of the system is denoted by \mathcal{H}_X and the Hamiltonian by H_X or $H_X(\lambda_t)$ if it depends on an externally controlled time-dependent parameter λ_t. The von Neumann entropy of an arbitrary state ρ_X is defined as $S_N(\rho_X) \equiv -\operatorname{tr}\{\rho_X \ln \rho_X \}$ and the Shannon entropy of an arbitrary probability distribution $p(x)$ is $S_{\text{sh}}[p(x)] \equiv -\sum_x p(x) \ln p(x)$. To characterize the correlations of a bipartite system XY in the state ρ_{XY}, we use the always positive mutual information $I_{X:Y} \equiv S_N(\rho_X) + S_N(\rho_Y) - S_N(\rho_{XY})$. It is closely related to the always positive relative entropy $D[\rho||\sigma] \equiv \operatorname{tr}\{\rho(\ln \rho - \ln \sigma)\}$ by noting that $I_{X:Y} = D[\rho_{XY}||\rho_X \otimes \rho_Y]$ where $\rho_{X/Y} \equiv \operatorname{tr}_Y[\rho_{XY}]$ denotes the marginal state. Furthermore, we denote superoperators, which map operators onto operators, by calligraphic letters, e.g., U, V, \mathcal{P}, etc.

Below, we will see that a stochastic trajectory is specified by a sequence of measurement results or outcomes r_{n_1}, \ldots, t_1, which were obtained at times $t_n > \cdots > t_1$. The sequence of outcomes will be denoted by $r_n \equiv (r_{n_1}, \ldots, t_1)$. The state of a system X at time $t > t_n$ conditioned on such a sequence will be denoted by $\rho_X(t, r_n)$. The ensemble averaged state is given by $\rho_X(t) = \sum_{r_n} p(r_n) \rho_X(t, r_n)$ where $p(r_n)$ denotes the probability of obtaining the sequence of outcomes r_n. We will also keep this notation for thermodynamic quantities such as internal energy E, heat Q, work W and entropy S (which possibly have additional sub- and superscripts). This means, for instance, that the stochastic internal energy depending on the outcomes r_n is denoted by $E(t, r_n)$ whereas the ensemble averaged internal energy is written $E(t) = \sum_{r_n} p(r_n) E(t, r_n)$.

II. THE PROCESS TENSOR

Classical stochastic thermodynamics is based on the theory of classical stochastic processes. A corresponding quantum thermodynamic framework needs to be based on the theory of quantum stochastic processes. There has been recently large progress on this topic and we will here use the process tensor to represent a quantum stochastic process [61–65]. It is the extension of `quantum superchannels' [72, 73] to multiple control operations and it is closely related to the `quantum comb' framework studied in Refs. [56, 57]. Similar frameworks have been also developed within the emergent field of quantum causal modelling [58–60] and even earlier attempts in that direction can be found in Refs. [74, 75]. The basic insight behind this formulation is to treat the control operations performed on the system as the elementary objects and not the state of the system itself because the latter can in general not be fully controlled. Here, the terminology `control operation' is used in a wide sense and could describe any action of an external agent such as measurements, unitary kicks, state preparations, noise addition, feedback control operations, etc. Mathematically, we only require that each control operation is described by a completely positive (CP) map. The following review about the basics of the process tensor requires some knowledge about quantum operations and quantum measurement theory, see Refs. [76–80] for introductory texts.

As usual we consider a system S coupled to a bath B described by an arbitrary initial system-bath state $\rho_{SB}(t_0)$. The composite system-bath state evolves unitarily up to time $t_1 \geq t_0$ according to the Liouville-von Neumann equation $\partial_\tau \rho_{SB}(t) = -i[H_{\text{tot}}(\lambda_t), \rho_{SB}(t)]$ ($\hbar \equiv 1$) with global Hamiltonian

$$H_{\text{tot}}(\lambda_t) = H_S(\lambda_t) + H_{SB} + H_B. \quad (1)$$

Here, the system Hamiltonian H_S might depend on some arbitrary time dependent control protocol λ_t, but not the interaction Hamiltonian H_{SB} and the bath Hamiltonian H_B. The resulting unitary evolution is described by the superoperator

$$U_{t_0}(\rho_{SB}(t_0)) \equiv U(t_1, t_0) \rho_{SB}(t_0) U^\dagger(t_1, t_0) \quad (2)$$

where $U(t_1, t_0) \equiv T+ \exp[-i \int_{t_0}^{t_1} dt H_{\text{tot}}(\lambda_t)]$ with the time ordering operator $T+$.
Then, at time $t_1 > t_0$ we interrupt the evolution by a CP operation $A(r_1)$, which only acts on the system and yields ‘outcome’ r_1 (for instance, the result of a projective measurement). Mathematically, we write the operation as

$$\tilde{\rho}_{SB}(t^+_1, r_1) = [A(r_1) \otimes I_B] \rho_{SB}(t^-_1).$$ (3)

Here, $t^+_1 = \lim_{\gamma \to 0} (t_1 \pm \epsilon)$ denotes a time shortly after or before t_1 and I_B denotes the identity superoperator acting on B. Note that we assume the control operation to happen instantaneously. It ensures that the experimenter has complete control over the operation: if the control operations takes longer, it would also affect the bath and a clear separation of the dynamics into a dynamics induced by the bath or the external agent becomes problematic. The final state of knowledge after the operation $\tilde{\rho}_{SB}(t^+_1, r_1)$ can explicitly depend on the outcome r_1. Since $A(r_1)$ is CP, it admits an operator-sum (Kraus) representation of the form

$$A(r_1) \rho_S = \sum_{\alpha} A_{\alpha}(r_1) \rho_S A_{\alpha}^\dagger(r_1),$$ (4)

but we do not require it to be trace preserving (TP). For this reason we have used a ‘tilde’ in Eq. (3) to emphasize that the state is not normalized. The probability to observe outcome r_1 at time t_1 is $p(r_1) = \text{tr}_B \{\tilde{\rho}_{SB}(t^+_1, r_1)\}$. Then, the normalized system state after the control operation at time t_1 becomes $\rho_S(t^+_1, r_1) = A(r_1) \rho_S(t^-_1)/p(r_1)$. Notice that the map $A(r_1)/p(r_1)$ is CPTP, but non-linear in the state $\rho_S(t^-_1)$. It is the quantum analog of Bayes’ rule. The average system state is accordingly

$$\rho_S(t^+_1) = \sum_{r_1} p(r_1) \rho_S(t^+_1, r_1) = \sum_{r_1} A(r_1) \rho_S(t^-_1).$$ (5)

This would also correspond to our state of knowledge if we ignore the outcome r_1. Notice that the average control operation $\sum_{r_1} A(r_1)$ is now a CPTP map and can be written as

$$\sum_{r_1} A(r_1) \rho_S = \sum_{r_1, \alpha} A_{\alpha}(r_1) \rho_S A_{\alpha}^\dagger(r_1)$$ (6)

with $\sum_{r_1, \alpha} A_{\alpha}^\dagger(r_1) A_{\alpha}(r_1) = 1_S$.

We then iterate the above procedure by letting the joint system-bath state evolve unitarily up to time $t_2 \geq t_1$: $\rho_{SB}(t_2, r_1) = U_{t_2,1}(r_1) \rho_{SB}(t^+_1, r_1)$. Now, however, the unitary operation is allowed to depend on r_1 by changing the control protocol of the system Hamiltonian $H_S[\lambda(r_1)]$. This actually corresponds to the simplest form of measurement-based quantum feedback control. Then, at time t_2 we subject the system to another CP control operation $A(r_2| r_1)$, which is also allowed to depend on r_1 and which gives outcome r_2. Thus, $\rho_{SB}(t^+_2, r_2) = [A(r_2| r_1) \otimes I_B] \rho_{SB}(t^+_2, r_1)$, where $r_2 = (r_2, r_1)$.

We can re-iterate the above procedure by letting the external agent interrupt the unitary system-bath evolution at times $t_n > t_{n-1} > \cdots > t_1$. Let us denote by t an arbitrary time after the n’th but before the $(n + 1)$’th control operation, i.e., $t_{n+1} > t > t_n$. The unnormalized state of the system conditioned on the sequence of outcomes r_n at such a time t is then given by

$$\rho_S(t, r_n) = \mathcal{T}[A(r_n| r_{n-1}) \ldots, A(r_1)]$$ (7)

$$= \text{tr}_B \{U_{t,n}(r_n) A(r_n| r_{n-1}) \ldots U_{t,1}(r_1) A(r_1) U_{t,0,0} \rho_{SB}(t_0)\}.$$

Here, we have introduced the process tensor \mathcal{T}. Its variable inputs are the set of control operations $\{A(r_i| r_{i-1})\}_{i=1}^n$, but not the initial state of the system, the bath or the composite. The trace of the process tensor gives the probability to observe the sequence of outcomes r_n,

$$p(r_n) = \text{tr}_S \{\mathcal{T}[A(r_n| r_{n-1}) \ldots, A(r_1)]\}$$ (8)

such that the normalized state of the system can be written as

$$\rho_S(t, r_n) = \mathcal{T}[A(r_n| r_{n-1}) \ldots, A(r_1)]/p(r_n).$$ (9)

The process tensor is an operationally well-defined object for any open system dynamics (in particular for any environment) for any possible, physically admissible form of interventions in an experiment. It is different from typical quantum trajectory methods or quantum jump expansions [46–48, 78–80], which rely on continuously monitoring the environment of the system. This framework is included as a limiting case in the process tensor, but it does not rely on it: any set of discrete times is allowed and the (often uncontrollable) environment does not need to be monitored. For further research on this topic see Refs. [56–65].

III. PROCESS TENSOR FROM REPEATED INTERACTIONS

In practise the control operations $A(r_n| r_{n-1})$ do not happen spontaneously, but require an active intervention from the outside. They are typically implemented by letting the system interact for a short time with an externally prepared apparatus (e.g., a memory or detector). It is the interaction time and the initial state of the apparatus, which can be usually well-controlled experimentally. This insight will naturally lead us to the framework of repeated interactions, in which we will model at least parts of the external apparatus explicitly.

The main insight of this section rests on Stinespring’s theorem [81], which states that any CPTP map A can be seen as the reduced dynamics of some unitary evolution in an extended space. More precisely, we can always write

$$A \rho_S = \text{tr}_U \{V \rho_S \otimes \rho_U V^\dagger\},$$ (10)

where we labeled the additional subsystem by U for ‘unit’ in view of the thermodynamic framework considered later on and in unison with Ref. [66]. The unit is in an initial
state ρ_V and V denotes the unitary operator which acts jointly on SU. Furthermore, any non-trace preserving CP map $\mathcal{A}(r)$ with outcome r can be modeled as [78]

$$\mathcal{A}(r)\rho_S = \text{tr}_U\{P_U(r)V\rho_S \otimes \rho_V V^\dagger P_U(r)\},$$

(11)

where each positive operator $P_U(r)$ acts only on \mathcal{H}_U and fulfills $\sum_r P_U^2(r) = 1_U$. Notice that Eq. (10) can be recovered from Eq. (11) either by choosing $P_U(r) = 1_U$ or by summing over r. In accordance with our previous superoperator notation, we introduce $P_U^\dagger(r)\rho_U \equiv P_U(r)\rho_U P_U(r)$ and $V_{SU} \equiv V_{PSU} V^\dagger$ such that we can write Eq. (11) in the shorter form $\mathcal{A}(r)\rho_S = \text{tr}_U\{P_U(r)V\rho_{PS} \otimes \rho_V\}$.

It is worth to remark that the above representation of the control operation is not unique. What we are aiming at here is a minimal consistent thermodynamic description for any given set of control operations. If additional physical insights are available, they have to be taken into account (see Sec. V for a clear experimental example). The only important point, however, is that the general operator-sum representation (4) can be decomposed into more primitive operations (a unitary and a measurement of the unit).

The whole process tensor $\mathcal{T}_r[\mathcal{A}(r_1),\ldots,\mathcal{A}(r_1)]$ can then be seen as describing the reduced dynamics of a system coupled to a stream of units, which interact sequentially at times $t_n > \cdots > t_1$ with the system, see Fig. 1. This constitutes the framework of repeated interactions. Then, the unnormalized joint state of the system and all units, which have interacted with the system up to time t ($t_{n+1} > t > t_n$) with outcome r_n, can be written as

$$\tilde{\rho}_{SU(n)}(t, r_n) =$$

$$\text{tr}_B\{U_{t_n}(r_n)\mathcal{P}_{U(n)}(r_n|r_{n-1})V_{SU(n)}(r_{n-1})\ldots U_{t_1}(r_1)\mathcal{P}_{U(1)}(r_1)V_{SU(1)} U_{t_0}[\rho_{SB}(t_0) \otimes \rho_{U(n)}(r_{n-1}) \otimes \cdots \otimes \rho_{U(1)}]\}.$$

(12)

Except for the unitary system-bath evolution superoperator U (where the subscripts denote time intervals), subscripts are used to denote the Hilbert space on which the respective (super-) operator is acting. In this respect, the joint space of all n units is denoted by $U(n)$. Notice that $V_{SU(n)}(r_{n-1})$ depends on all previous outcomes r_{n-1}, but due to causality it cannot depend on the n'th outcome r_n. The same holds true for the initial state $\rho_{SU(n)}(r_{n-1})$ of the n'th unit and also the chosen projection operator $\mathcal{P}_{U(n)}(r_n|r_{n-1})$ can depend on r_{n-1}. Therefore, the external agent has all the freedom she needs to engineer a desired control operation $\mathcal{A}(r_n|r_{n-1})$. By construction, after tracing out the units, we obtain the process tensor for the system $\mathcal{T}_r[\mathcal{A}(r_n|r_{n-1}),\ldots,\mathcal{A}(r_1)] = \text{tr}_{U(n)}\{\tilde{\rho}_{SU(n)}(t, r_n)\}$. As it is in most situations obvious from the context which superoperator acts on which object living in which space, we will usually drop the subscripts $S, U(n), \ldots$ on superoperators.

IV. OPERATIONAL QUANTUM STOCHASTIC THERMODYNAMICS

A. Preliminary considerations

The process tensor is a formal object which does not make any assumptions about the system-bath dynamics. On the contrary, the standard ensemble averaged (or better: unmeasured) framework of quantum thermodynamics relies on a weakly coupled, memoryless and macroscopic bath [3–6]. In this section we remain within this weak-coupling paradigm because possible extensions beyond the weak-coupling and Markovian assumption have only recently raised attention (see also Sec. VII B). Furthermore, we consider in this section only the case of a single heat bath at inverse temperature $\beta = 1/T$ ($k_B \equiv 1$). The extension to multiple heat baths is subtle, see Sec. VII A.
Let us focus on the interval \((t_{n-1}, t_n)\) (excluding the control operations at the boundaries) and let \(\rho_S(t)\) be the system state at time \(t \in (t_{n-1}, t_n)\) (which is later on allowed to depend on \(r_{n-1}\)). The state functions internal energy and system entropy for an arbitrary system state \(\rho_S(t)\) are defined as
\[
E_S(t) \equiv \text{tr}_S[H_S(\lambda_t)\rho_S(t)], \quad S_S(t) \equiv S_C \equiv \rho_S(t).
\]
According to the first law, the change in system energy \(\Delta E_S^{(n)} \equiv E_S(t_n^+) - E_S(t_{n-1}^-)\) can be split into heat and work,
\[
\Delta E_S^{(n)} = W_S^{(n)} + Q_S^{(n)},
\]
by defining
\[
W_S^{(n)} \equiv \int_{t_{n-1}}^{t_n^-} dt \text{tr}_S \left\{ \frac{\partial H_S(\lambda_t)}{\partial t} \rho_S(t) \right\}, \quad Q_S^{(n)} \equiv \int_{t_{n-1}}^{t_n^-} dt \text{tr}_S \left\{ H_S(\lambda_t) \frac{\partial \rho_S(t)}{\partial t} \right\}.
\]
Furthermore, the validity of the second law can be also derived and states that the entropy production is always positive:
\[
\Sigma^{(n)} \equiv \Delta S_S^{(n)} - \beta Q_S^{(n)} \geq 0,
\]
where \(\Delta S_S^{(n)} \equiv S_S(t_n^-) - S_S(t_{n-1}^-)\).

Our goal in the rest of this section is to find definitions of internal energy, work, heat and system entropy along a single trajectory, where a trajectory is defined by the observed sequence of outcomes \(r_n\). The sought-after definitions are required to be intuitively meaningful, to fulfill the first law at the trajectory level and the second law on average. Further appeal to our definitions will be added in Secs. V, VI and VII.

Note that, after tomographic reconstruction of the process tensor (see Sec. II), we know the conditional system states \(\rho_S(t_{n-1}^-; r_n)\) only right before or right after the \(n\)th control operation, but not in between for \(t_{n-1} < t < t_n\). To compute the work (15) or heat (16) in between two control operations, additional \(\text{theoretical}\) input is required, e.g., by solving the master equation for the system or by other forms of inference. This ensures that we recover the standard weak coupling framework of quantum thermodynamics in absence of any control operations (see Sec. VI C). Nevertheless, as it increases the computational effort, we present in Sec. VI G possible ways to avoid any additional theory input.

For definiteness, we aim at a stochastic thermodynamic description in the time interval \((t_{n-1}, t_n)\) starting shortly after the \((n-1)\)th control operation and ending shortly after the \(n\)th control operation. The change in any state function \(X\) over the complete interval is denoted by \(\Delta X^{(n)}\), whereas \(\Delta X^{(n)}\) denotes the change in \((t_{n-1}, t_n)\) (excluding the \(n\)th control operation) and \(\Delta X^{(\text{ctrl})}\) the change due to the control operation only. Changes in the respective time intervals of any quantity which is not a state function are denoted without a delta \((X_{\text{ctrl}}, X^{(n)}\) or \(X^{(\text{ctrl})}\)).

B. Stochastic energy and first law

To formulate the first law at the trajectory level correctly, we need to take into account the internal energy of the system and all units. Thus, we define the trajectory dependent internal energy
\[
E_{SU}^{(n)}(t, r_n) \equiv \text{tr}_S \{ H_{SU}^{(n)}(\lambda_t, r_n) \rho_{SU}^{(n)}(t, r_n) \},
\]
where \(H_{SU}^{(n)}(\lambda_t, r_n) = H_S(\lambda_t, r_n) + \sum_{i=1}^{n} H_{U(i)}\) denotes the sum of the system and all unit Hamiltonians. Since the Hamiltonian is additive, the internal energy splits into its marginal contributions in the obvious way,
\[
E_{SU}^{(n)}(t, r_n) = E_S(t, r_n) + \sum_{i=1}^{n} E_{U(i)}(t, r_n).
\]
Notice that it is always simple to get rid of the units in the energetic description by assuming that \(H_{U(i)} \sim 1_{U(i)}\). However, already the energetic changes of the units can bear some interesting non-trivial features. For instance, it is not sufficient to consider only the actual \(n\)th unit in the energetic balance: in our general theory the energy of previous units can change even though they are physically decoupled from the system. This phenomenon does not necessarily require quantum entanglement and simply occurs because our state of knowledge about past units \(U(i < n)\) can change depending on the outcome \(r_n\) (see below).

In absence of any control operations, the first law simply follows from the preceding subsection and reads
\[
\Delta E_S^{(n)}(r_{n-1}) = W_S^{(n)}(r_{n-1}) + Q_S^{(n)}(r_{n-1}) \equiv 0
\]
because the marginal state of the units does not change and hence, \(\Delta E_{U(i)} = 0\) for all \(i\). Note that the work \(W_S^{(n)}(r_{n-1})\) and heat \(Q_S^{(n)}(r_{n-1})\) depend on previous outcomes \(r_{n-1}\) for two reasons: first, the initial system state \(\rho_S(t_{n-1}^-; r_{n-1})\) depends on it, and second, the Hamiltonian \(H(\lambda_t, r_{n-1})\) can be a function of it in case we apply feedback control.

The first law during the control operation at time \(t_n\) is more interesting as the internal energy of both, system and units, can change. In total, the energetic cost \(E_{\text{ctrl}}\) of the control operation is defined by
\[
E_{\text{ctrl}}(t, r_n) \equiv \Delta E_S^{(\text{ctrl})}(t, r_n) + \sum_{i=1}^{n} \Delta E_{U(i)}^{(\text{ctrl})}(t, r_n).
\]
It is not a state function and can be split into a work and heat like contribution,
\[
E_{\text{ctrl}}(t, r_n) = W_{\text{ctrl}}(t, r_n) + Q_{\text{ctrl}}(t, r_n).
\]
This splitting stems from the convention we used to implement the control operation \(A(r_{n-1})\) in the repeated interaction framework: we first applied the unitary operation \(V(r_{n-1})\) to the joint system-unit state and afterwards measured the unit via \(\mathcal{P}(r_n)\). In general, we therefore use the definitions
with $\lambda_n \equiv \lambda_{r_n}$. Notice that the work-like contribution does not depend on the actual measurement outcome r_n and corresponds to the energetic changes caused by a reversible (unitary) operation. The meaning of the heat injected during the control operation $Q^{\text{ctrl}}(t_n, r_n)$ will be discussed further below, but we remark that a very similar construction was called ‘quantum heat’ in Ref. [51]. A difference, which turns out to be crucial, is the fact that Elouard et al. applied this definition for the system only without including the unit in the description [51], which causes different interpretations. Furthermore, we are more cautious and do not call it ‘quantum’ heat. For further discussion on this topic see Sec. VI.A.

For now, let us notice that both quantities have some additional important properties. First of all, both can be split additively into changes affecting the system or the units,

$$W^{\text{ctrl}}(r_{n-1}) = W_S^{\text{ctrl}}(r_{n-1}) + \sum_{i=1}^{n} W_{U(i)}^{\text{ctrl}}(r_{n-1}), \quad (25)$$

$$Q^{\text{ctrl}}(r_n) = Q_S^{\text{ctrl}}(r_n) + \sum_{i=1}^{n} Q_{U(i)}^{\text{ctrl}}(r_n). \quad (26)$$

Especially, the part affecting the system can be expressed solely in terms of the control operation $A(r_n|r_{n-1})$ and its average $A_n \equiv \sum_{r_n} A(r_n|r_{n-1})$ and is thus independent of the details of the unit $U(n)$, see also Ref. [82]. Specifically,

$$W_S^{\text{ctrl}}(r_{n-1}) = \text{tr}_{S} \{ H_S(\lambda_n, r_{n-1}) (A_n - I) \rho_S(t_n^-; r_{n-1}) \}, \quad (27)$$

$$Q_S^{\text{ctrl}}(r_n) = \text{tr}_{S} \{ H_S(\lambda_n, r_{n-1}) [A(r_n|r_{n-1}) - A_n] \rho_S(t_n^-; r_{n-1}) \}. \quad (28)$$

Furthermore, if we use that the marginal state of the previous $n-1$ units does not change during the unitary operation $\mathcal{V}(t_{n-1})$, we can deduce that the work actually depends only on the energetic changes of the system and the n’th unit,

$$W^{\text{ctrl}}(r_{n-1}) = W_S^{\text{ctrl}}(r_{n-1}) + W_{U(n)}^{\text{ctrl}}(r_{n-1}). \quad (29)$$

The previous properties allow us to deduce two separate first laws for the control operation:

$$\Delta E_S^{[n]}(r_n) + \Delta E_{U(n)}^{[n]}(r_n) = W^{[n]}(r_{n-1}) + Q^{[n]}(r_n), \quad (30)$$

$$\Delta E_{U(i)}^{[n]}(r_n) = W_{U(i)}^{[n]}(r_{n-1}) + Q_{U(n)}^{[n]}(r_n). \quad (31)$$

Finally, we can deduce that the average heat injected into the system or the previous units $U(i)$ ($i < n$) is always zero. Specifically,

$$Q_{SU(i<n)}^{\text{ctrl}}(t_n, r_n) \equiv \sum_{r_n} p(r_n|r_{n-1}) Q^{\text{ctrl}}_{SU(i<n)}(r_n) = 0, \quad (32)$$

where $p(r_n|r_{n-1}) \equiv p(r_n)/p(r_{n-1})$. Note that the last equation implies $Q^{\text{ctrl}}_{SU(i<n)}(t_n) \equiv \sum_{r_n} p(r_n) Q^{\text{ctrl}}_{SU}(r_n) = 0$. In contrast, for the actual unit we have $Q^{\text{ctrl}}_{U(n)}(t_n) = 0$ if and only if $[H_{U(n)}, P(r_n|\mathbf{r}_{n-1})] = 0$. We remark that it also appears reasonable to call Q^{ctrl} ‘heat’ because the emergence of a projector $\mathcal{P}(r_n)$ requires in a microscopic picture to couple the unit to some macroscopic and classical device, which allows the unit to lose information irreversibly due to dissipation and decoherence [83]. This last phenomenological step in quantum measurement theory is sometimes referred to as the ‘Heisenberg cut’ [79]. It necessarily entails a certain level of arbitrariness because we do not explicitly model the microscopic interaction between the unit and the final classical environment. It therefore remains unclear how far any notion of temperature is associated to the heat Q^{ctrl} and we will investigate this in the next section further.

To conclude, after adding the first laws with and without control operation together, we obtain for the changes over a complete interval

$$\Delta E_S^{[n]}(r_n) + \Delta E_{U(n)}^{[n]}(r_n) = W^{[n]}(r_{n-1}) + Q^{[n]}(r_n), \quad (33)$$

where we can split the work and heat into $W^{[n]}(r_{n-1}) = W^{\text{ctrl}}(r_{n-1}) + W^{[n]}_U(r_{n-1})$ and $Q^{[n]}(r_n) = Q^{\text{ctrl}}(r_n) + Q^{[n]}_U(r_{n-1})$. If we assume trivial Hamiltonians for the units ($H_{U(i)} \sim I_U$), we get the simplified first law

$$\Delta E_S^{[n]}(r_n) = W_S^{[n]}(r_{n-1}) + Q_S^{[n]}(r_n). \quad (34)$$

For the entropic balance, it will be in general not that simple.

C. Stochastic entropy and second law

To account for all entropic changes, we do not only need to consider the system and all units, but also the entropy of the outcomes r_n stored in a classical memory (see Fig. 1). This is a crucial point, which distinguishes our theory from standard stochastic thermodynamics where the entropic contribution of the measurement results is neglected (this will play an important role in Sec. VII E). In general, the process tensor depends explicitly on the knowledge of r_n, which cannot be neglected. Furthermore, it is important to also keep the past information of
all previous units $U(i < n)$ and outcomes r_{n-1} because we explicitly allow the current unit and Hamiltonian to depend on all earlier outcomes (this is, for instance, essential if we apply time-delayed feedback control). Thus, we define the stochastic entropy of the process as

$$S_{SU(n)}(t, r_n) = -\ln p(r_n) + S_N[\rho_{SU(n)}(t, r_n)].$$

(35)

Note that the probability $p(r_n)$ of a particular trajectory can be straightforwardly computed from knowing the un-normalized state of the system, see Eq. (8). If this state is not known, evaluation of Eq. (35) requires knowledge of many experimentally sampled trajectories first. Notice that the same is true for the definition of the trajectory dependent entropy in classical stochastic thermodynamics [11–13].

Next, we define the entropy production along a single trajectory over a time interval $[t_{n-1}, t_n]$ by adding to the change in stochastic entropy the heat flow into the system,

$$\Sigma^{(n)}(r_n) = \Delta S^{(n)}_{SU(n)}(r_n) - \beta Q_S^{(n)}(r_n).$$

(36)

As in classical stochastic thermodynamics, this expression can have either sign, but on average it is always positive as we will show below. Crucially, we have only taken into account the heat associated with system changes whereas we did not include $Q_{U(n)}$ in the entropic balance. This will give us the correct result in all limiting cases and, if we use the commonly made assumption that $H_{U(i)} \sim 1_{U(i)}$, we anyway have $Q_{U(n)} = 0$ always. Furthermore, as we do not microscopically model the final projective measurement step of the units, it is also unclear which temperature we should associate to heat changes in the units and hence, including $Q_{U(n)}$ in the second law would necessarily imply some ambiguity. While these are all good a posteriori arguments, the question whether there exist good a priori arguments remains.

To show the positivity of the average entropy production, it is useful to split it into two contributions similar to the first law:

$$\Sigma^{(n)}(r_n) = \Sigma^{\text{ctrl}}(r_n) + \Sigma^{(n)}(r_{n-1})$$

(37)

with

$$\Sigma^{\text{ctrl}}(r_n) = \Delta S^{\text{ctrl}}_{SU(n)}(r_n) - \beta Q_S^{\text{ctrl}}(r_n),$$

(38)

$$\Sigma^{(n)}(r_{n-1}) = \Delta S^{(n)}_{SU(n)}(r_{n-1}) - \beta Q_S^{(n)}(r_{n-1}).$$

(39)

We will now show that the second contribution $\Sigma^{(n)}$ is positive even along a single trajectory, whereas the first contribution Σ^{ctrl} is positive only on average.

To show $\Sigma^{(n)}(r_{n-1}) \geq 0$ we will use Eq. (17), which holds for an arbitrary initial state $\rho_S(t_{n-1}^-, r_{n-1})$, together with the fact that the system evolution in between two control operations can be described by a CPTP map independent of the initial state. This is true within the weak cooling paradigm of quantum thermodynamics [3–6] where the time evolution is governed by a (possible time dependent) master equation in Lindblad-Gorini-Kossakowski-Sudarshan form. Let us denote the CPTP map by $\mathcal{E}_n = \mathcal{E}_n(r_n)$ such that

$$\rho_S(t_{n-1}^-, r_{n-1}) = \mathcal{E}_n \rho_S(t_{n-1}^-, r_{n-1}).$$

(40)

The inequality $\Sigma^{(n)}(r_{n-1}) \geq 0$ can then be derived along the following lines:

First, by using the mutual information $I_{SU(n)}$ between the system and the stream of units, we can split the change in joint entropy as

$$\Delta S^{(n)}_{SU(n)}(r_n) = S_N[\rho_{SU(n)}(t_n, r_n)] - S_N[\rho_{SU(n)}(t_{n-1}, r_{n-1})] - I_{SU(n)}(t_n)$$

(41)

Since the marginal state of the units does not change under the action of the CPTP map \mathcal{E}_n, their entropic contribution cancels out and we can write in short

$$\Delta S^{(n)}_{SU(n)}(r_n) = S_N[\rho_{SU(n)}(t_n, r_n)] - S_N[\rho_{SU(n)}(t_{n-1}, r_{n-1})] - I_{SU(n)}(t_n).$$

(42)

The positivity of the right hand side is then guaranteed by contractivity of relative entropy under CPTP maps [84, 85]. More specifically, the following chain of (in)equalities applies:

$$I_{SU(n)}(t_{n-1}^+, r_{n-1}) = D[\rho_{SU(n)}(t_{n-1}^+, r_{n-1}) || (\rho_S \otimes \rho_{U(n)})(t_{n-1}^+, r_{n-1})]$$

$$\geq D[\mathcal{E}_n \rho_{SU(n)}(t_{n-1}^+, r_{n-1}) || \mathcal{E}_n (\rho_S \otimes \rho_{U(n)})(t_{n-1}^+, r_{n-1})] = I_{SU(n)}(t_n, r_n),$$

(43)

where it was essential that \mathcal{E}_n acts only on S and not on $U(n)$. This concludes the proof of positivity of $\Sigma^{(n)}(r_{n-1})$.

Next, we will show that $\Sigma^{\text{ctrl}}(r_n)$ is positive on average.

More specifically, we will show that

$$\Sigma^{\text{ctrl}}(r_{n-1}) = \sum_{r_n} p(r_n | r_{n-1}) \Sigma^{\text{ctrl}}(r_n) \geq 0.$$
Finally, we remark that inequality (48) was used before. Using that the von Neumann entropy is invariant under unitary transformations, we deduce our desired result. Finally, we remark that inequality (48) was used before in quantum thermodynamics to show the positivity of the second law for a Maxwell demon employing quantum measurements [89].

\[\Sigma_{\text{ctrl}}(t_n) = \sum_{r_n} p(r_n) \Sigma_{\text{ctrl}}^{(r_n)}(r_n) \geq 0. \]

After taking the average and using Eq. (32), we are left with three terms

\[
\Sigma_{\text{ctrl}}(r_n, r_{n-1}) = S_{\text{Sh}}[p(r_n|r_{n-1})] + \sum_{r_n} p(r_n|r_{n-1}) S_{\text{vN}}[\rho_{SU(n)}(t_n^+, r_n)] - S_{\text{vN}}[\rho_{SU(n)}(t_n^+, r_{n-1})],
\]

where \(S_{\text{Sh}}[p(r_n|r_{n-1})] \) is the Shannon entropy of the conditional probability \(p(r_n|r_{n-1}) \). The positivity of \(\Sigma_{\text{ctrl}}(t_n, r_{n-1}) \) then follows from combining two theorems in quantum measurement theory:

Lemma IV.1. Let \(\rho \) be an arbitrary state, \(\{P_n\} \) a set of positive operators fulfilling \(\sum_n P_n^2 = 1 \), \(p_n = \text{tr}\{P_n\rho P_n\} \) the probability to obtain outcome \(n \) and \(\rho(n) = P_n\rho P_n/p_n \) the post-measurement state conditioned on outcome \(n \). Then,

\[
S_{\text{vN}}(\rho) \leq S_{\text{Sh}}(p_n) + \sum_n p_n S_{\text{vN}}(\rho^{(n)}). \tag{46}
\]

Proof. We first use that for any such set \(\{P_n\} \) (see Theorem 11 in Ref. [80] or Ref. [86])

\[
S_{\text{vN}}(\rho) \leq S_{\text{vN}}\left(\sum_n p_n \rho^{(n)} \right), \tag{47}
\]

i.e., the average uncertainty after the measurement can only increase. Next, we use (see Theorem 11.10 in Ref. [77] or Refs. [87, 88])

\[
S_{\text{vN}}\left(\sum_n p_n \rho^{(n)} \right) \leq S_{\text{Sh}}(p_n) + \sum_n p_n S_{\text{vN}}(\rho^{(n)}). \tag{48}
\]

This concludes the proof.

We now apply the lemma to Eq. (45). If we identify \(\{P_n\} \) with \(\{P(r_n|r_{n-1})\} \) acting in the joint system-unit space, the probability \(p_n \) with the conditional probability \(p(r_n|r_{n-1}) \) and the post-measurement state \(\rho^{(n)} \) with \(\rho_{SU(n)}(t_n^+, r_n) \), we can deduce that

\[
S_{\text{Sh}}[p(r_n|r_{n-1})] + \sum_{r_n} p(r_n|r_{n-1}) S_{\text{vN}}[\rho_{SU(n)}(t_n^+, r_n)] \\
\geq S_{\text{vN}}[\rho_{SU(n)}(t_n^+, r_{n-1})].
\]

(49)

Using that the von Neumann entropy is invariant under unitary transformations, we deduce our desired result.

\[\text{V. Real-time Preparation and Stabilization of Photon Number States via Quantum Feedback}\]

The ability to control individual quantum systems and to protect them against decoherence has become a key challenge in modern quantum science. Recently, experiments in quantum optics reported on the preparation and stabilization of photon number states by using quantum feedback control [70, 71]; see also Ref. [90] for preceding theoretical work. We will here analyse Ref. [71] (which is very similar to Ref. [70]) within the operational framework of quantum stochastic thermodynamics. We will give unique insights into the energetic and entropic balances of these experiments by using the time- and energiescales as reported in Ref. [71]. Moreover, we will see that the efficiency to prepare a pure photon number state is surprisingly high in the experiment (the efficiency to stabilize the pure photon state is zero). However, in order not to overburden the paper, we will leave some experimental imperfections aside. These additional imperfections are listed at the end of this section, but we emphasize already here that all of them can be included into the operational framework of quantum stochastic thermodynamics. We will further assume some familiarity of the reader with concepts from quantum optics, for a basic introduction see Ref. [91] and references therein. The notation is chosen close to the original references [70, 71].

A. Setup and dynamics

A sketch of the experimental setup is shown in Fig. 2. The system we want to control is a superconducting Fabry-Perot cavity C with Hamiltonian \(\hbar \omega_c a^\dagger a \), where \(a^\dagger \) and \(a \) denote photon creation and annihilation operators.
and $\omega_c/2\pi = 51.1$ GHz is the experimentally measured frequency of the cavity (in this section we do not set $\hbar \equiv 1$). The cavity is coupled to an outside environment at temperature $T = 0.8$ K, which implies a Bose-Einstein distribution of $N_{th} = (e^{\beta \omega_c} - 1)^{-1} \approx 0.05$ (we also do not set $k_B \equiv 1$). The dynamics of the cavity are described by the master equation (in a rotating frame)

$$\partial_t \rho_S(t) = L_0 \rho_S(t) + \frac{N_{th}}{2T_c} D[a] \rho_S(t) + \frac{N_{th}}{2T_c} D[a^\dagger] \rho_S(t).$$

(50)

Here, the dissipator is defined as $D[a] \rho \equiv a \rho a^\dagger - \{a^\dagger a, \rho\}/2$ and the experimental cavity lifetime is $T_c \approx 65$ ms.

Due to the interaction with the environment the cavity tends to thermalize to a Gibbs state, which, for the present parameters, means with probability 0.95 the vacuum state $|0\rangle$ with zero photons. The goal of the feedback loop is to reverse the effect of the dissipation and to stabilize a photon number state $|n\rangle = |n_t\rangle$ where $n_t > 0$ denotes the target number of photons in the following (we will choose $n_t = 2$ in the numerics). To achieve this goal, a beam of atoms created in B via velocity selection and laser excitation is used. The atoms are repeatedly prepared at regular intervals of duration $T_n = 82$ µs and they leave B with a velocity of $v = 250$ m/s. The interaction time of each atom with the cavity can be estimated as $t_{int} = \sqrt{\pi/2} \omega_0/v$ where $\omega_0 = 6$ mm is the waist of the Gaussian cavity mode. This results in an interaction time of roughly $t_{int} \approx 30$ µs such that $T_c \approx 2000$ t_{int}. Thus, within very good approximation we can treat the interactions with the atoms as happening instantaneously as we have assumed in the formal development of our theory. Furthermore, the cavity lifetime is much larger than T_n ($T_c \approx 800$ T_n) such that we will approximate the dissipative time evolution in between interactions by

$$\mathcal{E} = e^{C(a) T_n} \approx 1 + L_0 T_n.$$

(51)

To counteract the dissipation by quantum feedback control, we first of all need to measure the state of the cavity. Importantly, this is done in a non-destructive way without absorbing or emitting a photon using a modified Ramsey interferometry scheme. A brief theoretical description works as follows. First of all, the atoms are well-described as two-level systems with an energy gap $\hbar \omega_a \approx \hbar \omega_c$ close to the single photon energy in the cavity. We will denote the two levels as $|g\rangle$ and $|e\rangle$ for ground and excited state, respectively, albeit both states correspond to highly excited states of the atom, where the orbit of the outer electron is far away from the nucleus creating in turn a large dipole moment [91]. The atoms leave B in the ground state $|g\rangle$ and are afterwards subjected to a $\pi/2$ pulse in cavity R_1, which prepares them in the superposition $(|g\rangle + |e\rangle)/\sqrt{2}$. Due to an atom-cavity detuning of $\omega_a - \omega_c \approx 1.5$ MHz, the atom then interacts dispersively with the cavity field, which changes its state to $(|g\rangle + e^{i\phi(n)}|e\rangle)/\sqrt{2}$. Here, the n-dependent phase shift $\phi(n) = \Phi_0 n + \varphi_r$ is determined by the phase shift Φ_0 per photon and the phase φ_r, which is adjustable in the Ramsey interferometer. Importantly, no energy is exchanged between the cavity and the atom during the interaction. Then, the atom is subjected to another $\pi/2$ pulse in cavity R_2 and finally it is projectively measured in the detector D revealing it either to be in the ground or excited state. The crux of the setup is that the probability to find the atom in the ground or excited state depends on the number n of photons in the cavity C. If we denote by $r = 0$ the result corresponding to an atom found in the ground state and by $r = 1$ for an atom in an excited state, the conditional probability to obtain outcome r given that there are n photons in the cavity is

$$\pi_s(r|n) = \frac{1}{2} \left\{ 1 + \cos \left[\frac{\pi}{4} (n - n_t) + \frac{\pi}{2} (2r - 1) \right] \right\}. \quad (52)$$

For $n_t = 2$ this is exemplarily plotted in Fig. 3 showing that it is clearly possible to distinguish between $n > n_t$, $n = n_t$ or $n < n_t$ photons in the cavity, but also demonstrating that we are far away from an ideal projective measurement of the cavity. If we want to change the number of photons in the cavity, we can send an emitter or absorber atom into the cavity C, which is either prepared in the excited or ground state respectively. For this purpose, the energy gap of the atoms is brought in exact resonance with the cavity by applying an external voltage V (Stark shift) such that the atom-cavity dynamics is well-described by a Jaynes-Cummings Hamiltonian of the form (interaction picture)

$$h(a|e\rangle \langle g + a^\dagger|g\rangle \langle e|).$$

We will then ideally choose an effective interaction time $t_e = \pi/2\hbar \sqrt{\mathcal{m}}$ or $t_e = \pi/2\hbar \sqrt{n_t} + 1$ depending on whether we send an emitter or absorber

4 To deduce Eq. (52), we neglect experimental imperfections in the preparation and readout of the atoms and use in the notation of Ref. [71] $\pi_s(j|n) = [1 + \cos (\Phi_0 n + \varphi_r - j \pi)]/2$, where (opposite to our notation) $j = 0$ ($j = 1$) denotes an atom in the excited (ground) state. After taking this into account, setting the phase shift per atom to $\Phi_0 \approx \pi/4$ [71] and adjusting the variable phase φ_r of the Ramsey interferometer to the optimal value $\varphi_r + \Phi_0 n_t = \pi/2$ [71], we obtain Eq. (52).
atom respectively (this is slightly different from the experimental values). In the emitter case, the conditional probability to obtain outcome \(r \in \{0, 1\} \) and to observe a transition \(n' \rightarrow n \) in the state of the cavity reads (compare, e.g., with Sec. 6.2. in Ref. [92])

\[
\pi_e(r, n|n') = \sin^2 \left(\frac{\pi \sqrt{n + r}}{2 \sqrt{n_t}} + \frac{\pi r}{2} \right) \delta_{n-1+r,n'},
\]

where \(\delta_{n,n'} \) denotes the Kronecker delta. For the absorber case we get

\[
\pi_a(r, n|n') = \cos^2 \left(\frac{\pi \sqrt{n + r}}{2 \sqrt{n_t}} + \frac{\pi r}{2} \right) \delta_{n+r,n'}.
\]

Note that, depending on the number \(n \) of photons in the cavity, an absorber (emitter) atom will not always absorb (emit) a photon.

Finally, it is important to realize that the atoms are detected time-delayed, as indicated also in Fig. 2. This means that, before the \(i \)th atom is registered with outcome \(r_i \) at the detector \(D \), there have been already \(d = 5 \) atoms which have been interacted or are about to interact with the cavity such that we cannot influence their initial state anymore. This point is important for the design of the feedback control law. In order to decide at time \(t_i = iT_A \) what kind of atom to send into the cavity, we can only use the state estimate \(p_n(t_i^{d-1}, r_{i-d}) \) at time \(t_{i-d} = (i - d)T_A \). Then, finally, the feedback control law is simply to send an absorber atom as soon as we estimate \(\sum_{n>n_i} p_n(t_{i-d}, r_{i-d}) > p_n(t_{i-d}, r_{i-d}) \) and an emitter atom if we estimate \(\sum_{n<n_i} p_n(t_{i-d}, r_{i-d}) > p_n(t_{i-d}, r_{i-d}) \), where \(p_n(t, r) \) denotes the probability to have \(n \) photons in the cavity at time \(t \) given a measurement record \(r \).

Otherwise we keep measuring the system. After each feedback operation we also wait \(d \) time-steps before we apply the feedback control law again. This simple feedback control law is slightly different from the experiment, but as we will see now it works well.

B. Quantum stochastic thermodynamics

In the previous section we have stated all necessary ingredients to apply our framework. The state of the cavity is conveniently described by the probability \(p_n(t, r) \) because coherences between different photon number states never play a role. The control operations \(\mathcal{A}(r, r_{i-1}) \) are either measurements or feedback operations (which can be emittive or absorptive). Its effect on the cavity field, can be described by the conditional probabilities (52), (53) and (54). Due to the time-delay, we can set \(\mathcal{A}(r_i|r_{i-1}) = \mathcal{A}(r_i|r_{i-d-1}) \). Furthermore, the atoms always leave \(B \) in the ground state \(|\gamma\rangle \) and they are always projected at the end of the interaction such that the sequence of outcomes \(r_i \) is simply a sequence of zeros and ones. Finally, the evolution in between two interactions is modeled by Eq. (51). Also numerically all parameters have been fixed in the previous section.

Fig. 4 shows various quantities for a single realization of the process over 1000 time intervals. The plot on the left shows the evolution of the conditional mean photon number \(\langle n \rangle(t, r_i) \equiv \sum_n n p_n(t, r_i) \) (blue thick line) and the conditional variance \(\langle n^2 \rangle(t, r_i) - \langle n \rangle^2(t, r_i) \) (pink thin line). For perfect stabilization around \(n = 2 \) one would expect \(\langle n \rangle(t, r_i) = n_t \) and zero variance. As the plot shows, we are not far from that limit. The variance stays most of the time below 0.1 and only significantly deviates from it when our knowledge about the mean changes. This can be caused by an emission or absorption of a photon into or from the environment or by erroneous detection events as it is not perfectly possible to distinguish between 1, 2 or 3 photons (recall Fig. 3).

Whenever our estimate about the mean changes significantly, the external agent performs a feedback control operation, which changes the energy of the cavity in a deterministic way and entails a work cost \(W_{\text{ctrl}}^{|r_i \rangle}(r_{i-1}) \) as depicted in the middle of Fig. 4.

Note that the work.
cost associated to the measurement of the cavity is zero, \(W^\text{ctrl}_{C}(\mathbf{r}_{i-1}) = 0 \), although there is always a work cost \(W^\text{ctrl}_A(\mathbf{r}_{i-1}) \) associated with the preparation of the atoms except for the case of absorptive feedback (see below; keep in mind that we use the subscripts \(C \) and \(A \) here instead of \(S \) and \(U \) as in the general Sec. IV). As the plot demonstrates the experiment is not very costly in terms of the work invested into the cavity, which is roughly a few \(k_B T \). Note that we also sometimes gain work as indicated by negative values and that also the work costs fluctuate due to the fact that the state of the system can be different at different times. What is more costly is the generation of the information needed to estimate the state of the cavity. This is shown in the plot on the right where the entropy production \(\Sigma^{\text{ctrl}}(t_i, \mathbf{r}_i) \) (thick blue line) is roughly 0.7 \(k_B \) at each time step with some rare exceptions and strong fluctuations at the times where we perform feedback control operations. As a closer inspection reveals (not shown here), the main cause of this is the generation of information in the memory quantified by \(-k_B \ln p(\mathbf{r}_i|\mathbf{r}_{i-1}) \). In comparison, the entropy produced in between two control operation \(\Sigma^{(n)}(t_i, \mathbf{r}_i) \) (thin pink line), upscaled by a factor of 100, is much smaller than \(\Sigma^{\text{ctrl}}(t_i, \mathbf{r}_i) \) due to the fact that in the short time interval \(T_a \) not much is happening. Also note that \(\Sigma^{(n)}(t_i, \mathbf{r}_i) \) is always positive as predicted by our theory.

The previous observations are also confirmed by the average description. Fig. 5 shows the (thermo)dynamics for 30 time-steps averaged over 2000 numerical realisations. The first plot on the left depicts the time-evolution of the probabilities \(p_0(t) = \sum_{\mathbf{r}} p_0(t, \mathbf{r}) p(\mathbf{r}) \) (dotted pink line), \(p_1(t) \) (dashed blue line), \(p_2(t) \) (solid black line) and \(p_3(t) \) (dash-dotted green line) to have 0, 1, 2 or 3 photons in the cavity. The effect of the time-delay \(d = 5 \) can be clearly recognized as well as the success of the feedback loop to reach a pure photon state with probability \(p_{n=2}(t) \approx 0.96 \). Note that the shown time interval of 30 \(T_a \approx 0.04 \ T_c \) is too small to have a significant probability for a quantum jump induced by the environment, but to better see the impact of the time-delay we have decided to show here only a short time-window. Furthermore, the plot in the middle shows the entropy production \(\Sigma^{\text{ctrl}} \) (thick blue line) and \(\Sigma^{(n)} \) (thin pink line, scaled by a factor 100). In accordance with the previous plot we can conclude that the maintenance of the measurement and feedback loop is the thermodynamically most costly part with the most dominant contribution stemming from the recording of the outcomes \(\mathbf{r}_i \) in a classical memory (not shown). In addition, the plot also demonstrates that \(\Sigma^{\text{ctrl}} \) is positive on average as predicted by our theory.

Finally, the right plot in Fig. 5 shows the efficiency of the experiment in terms of generating a nonequilibrium state of the cavity with respect to the resources invested in the feedback loop. If we sum up the entropy production \(\Sigma^{(37)} \) in each time step and use the first laws (20) and (30), we can confirm that the average integrated entropy production after \(N \) time-steps becomes

\[
\sum_{i=1}^{N} \Sigma^{[i]} = \frac{W^\text{tot}_{C}}{T} - k_B S_{\text{Sh}}[\rho(\mathbf{r}_N)] \geq 0. \tag{55}
\]

Here, \(W^\text{tot}_{C} \) is the average integrated work invested into the cavity during the feedback loop (also see the middle plot in Fig. 4) and \(\Delta F_C = F_C(NT_a) + k_B T \ln Z_C \) is the change in nonequilibrium free energy starting from a cavity state in equilibrium with partition function \(Z_C = \text{Tr}_C[e^{-\beta \omega_a a_0^\dagger a_0}] \). The average free energy after \(N \) time-steps is computed by averaging over the energy and entropy of the cavity state, i.e.,

\[
F_C(NT_a) = \sum_{\mathbf{r}_N} p(\mathbf{r}_N) \{E_C(\mathbf{r}_N) - k_B T S_N[\rho_C(\mathbf{r}_N)]\}. \tag{56}
\]

Finally, the last term in Eq. (55) denotes the entire average information content \(S_{\text{Sh}}[\rho(\mathbf{r}_N)] \) associated to the outcomes of the experiment. It follows from the second
law (55) that the following efficiency is bounded by one:

$$\eta \equiv \frac{\Delta F_C}{W_C^\text{tot} + k_B T S_{sh}[p(r_N)]} \leq 1. \quad (57)$$

As the right plot in Fig. 5 demonstrates, we can achieve remarkable high efficiencies peaked around values of 0.8 and 0.65 before they decay in the long run to zero. This decay is due to the fact that stabilizing the photon number state does not change its free energy anymore while the measurement and feedback loop still consumes resources. Thus, the preparation of the photon number state is very efficient, but the stabilization of it has by definition an efficiency zero. While we focused on the average efficiency here, we remark that our framework is also ideally suited to study efficiency fluctuations [93].

One might wonder why only the work invested into the cavity enters the definition of the efficiency (57), but not the work W_A^{ctrl} invested to prepare the state of the atoms. The latter is non-negligible: since the atoms leave B in the ground state and the outgoing stream of atoms is roughly an equal mixture of atoms in the excited and ground state (which follows from Fig. 3 once we have stabilized the state around n_t photons), the work invested per atom is $W_A^{\text{ctrl}} \approx \hbar \omega_0/2$. This has its origin in the initial creation of the superposition in cavity \mathcal{R}_1. However, what we are interested in here is how efficiently can we use a given amount of nonequilibrium resources (i.e., atoms in a pure state) to perform some task (creation of Fock states). That efficiency should be the same independent of, for instance, the question whether the atoms leaving B are in the ground or excited state (in the latter case we would additionally extract work $W_A^{\text{ctrl}} \approx -\hbar \omega_0/2$ from the atoms). The second law of thermodynamics cares only about changes in entropy, which are zero for the incoming and outgoing stream of atoms. In fact, the outgoing stream of atoms can be re-used again, e.g., for the next experiment. To make sense of this argument, it is important to note that the state of the atoms is not in a mixture of ground and excited states because in each experimental run we exactly know the state of the atoms by looking at the measurement record r_N. There is thus zero uncertainty associated to their state.

The thermodynamic description would not be complete if we were to forget to mention that the experimental implementation also involves other costs, e.g., the cooling of the environment down to less than 1 K, the laser preparation of the atoms in B or the electronics associated to the controller K. What we have provided here is a minimal thermodynamic description of the system, which involves all essential contributions. Similar to other idealizations in thermodynamics, it is possible to imagine that the hidden thermodynamic costs of running the laboratory equipment can be made arbitrarily small in an ideal world.

C. Further experimental imperfections

Finally, we mention that the experiment is a little more complicated than described here. For instance, the number of atoms interacting with the cavity at a given time is not fixed to one, but rather Poisson distributed (with an average number of 0.6 atoms) such that there could be 0, 1 or 2 atoms per interaction. Furthermore, it can also happen that the detector D misses to detect an atom. Those and other small imperfections are the reason why the experimentally observed probability $p_i(n_t)$ is around 0.8 [71].

VI. SPECIAL CASES

A. Projective measurement

We start this section by considering the case of a single projective measurement. This is not only an illustrative example, but we will also need it in Secs. VI B and VI E.

We denote the outcome of the projective measurement by r and the associated projector by $|r\rangle\langle r|_S$. We assume no degeneracies in the measured observable here. Within our repeated interaction framework, we use a unit with Hilbert space of dimension $\dim H_U = \dim H_S$, the initial state is taken to be the pure state $|1\rangle\langle 1|_U$ and we assume a trivial unit Hamiltonian $H_U \sim 1_U$. The dynamical aspects of the Stinespring dilation are then fixed by the unitary V,

$$V = \sum_{r,u} |r,u + r - 1\rangle\langle r,u|_U \quad (58)$$

(where the sum in the ‘ket’ has to be interpreted modulo $\dim H_U$), which is followed by a projective measurement of the unit in the basis $\{ |r\rangle_U \}$. It is interesting to look at the states at the different steps of the process given an arbitrary initial system state $\rho_s(t^-) = \sum_s \lambda_s |s\rangle\langle s|_S$. After the unitary V the marginal states of $\rho_{SU} \equiv V \rho_s(t^-) \rho_U V^\dagger$ are

$$\rho_s^* = \sum_r p(r) |r\rangle\langle r|_S, \quad \rho_U^* = \sum_r p(r) |r\rangle\langle r|_U. \quad (59)$$

Here, we have introduced the probability $p(r) = \sum_s |\langle r|s\rangle|^2 \lambda_s$ to obtain result r. After the projective measurement, the unnormalized state reads

$$\tilde{\rho}_{SU}(r,t^+) = p(r) |r\rangle\langle r|_SU, \quad (60)$$

\footnote{This simple argument neglects the atoms used for the feedback control, which, however, constitute only a small fraction of the atoms used in the experiment. Furthermore, the proportion of outgoing atoms in the excited state is not exactly 0.5, but depends on the question whether the target photon number n_t is above or below the thermal equilibrium value, which determines whether a state with n_t photons tends to absorb or emit a photon into or from the environment.}
from which it is easy to read of the marginal states and the average state after the control operation.

Let us now look at the thermodynamic interpretation of a projective measurement within our framework. The work (23) and heat (24) of the control operation become

\[W_S^{\text{ctrl}} = \sum_r p(r)(r|H_S|r) - \sum_s \lambda_s (s|H_S|s), \quad (61) \]
\[Q_S^{\text{ctrl}}(r) = \langle r|H_S|r \rangle - \sum_{r'} p(r')(r'|H_S|r'). \quad (62) \]

We easily confirm \(\sum_r p(r)Q_S^{\text{ctrl}}(r) = 0 \). Moreover, the work vanishes whenever the measured basis coincides with the eigenbasis of the initial system state \(\rho_S(t^-) \), albeit the fluctuating heat does not. Finally, we can also confirm Eq. (46), which boils down in this case to \(S_{\text{Sh}}[p]\geq S_{\text{Sh}}(\lambda_s) \).

It is instructive to compare these results with the framework of Ref. [51]. In there, the quantum stochastic thermodynamics of projective measurements was also considered and the authors called the sum \(W_S^{\text{ctrl}}+Q_S^{\text{ctrl}}(r) \) ‘quantum heat’ and justified it by the fact that a quantum measurement is intrinsically stochastic unless the measured basis coincides with the basis of \(\rho_S(t^-) \) (we add that only pure states were considered in Ref. [51], thus leaving any classical uncertainty aside). Remarkably, we reach exactly the opposite conclusion on average: since \(\sum_r p(r)Q_S^{\text{ctrl}}(r) = 0 \), we infer that the average energetic change is purely work \(W_S^{\text{ctrl}} \) instead of heat.

This discrepancy can be traced back to the fact that we model the projective measurement in a larger space using Stinespring’s theorem, which was not done in Ref. [51]. Remarkably, in this larger space we also called the energetic changes caused by the final measurement \(P_U(r) \) ‘heat’ (albeit not ‘quantum’ heat because, as soon as classical uncertainty is considered too, it also plays a role, e.g., in classical stochastic thermodynamics, see Sec. VI E). Thus, we applied somewhat similar philosophy as Elouard et al. [51], but reached the opposite conclusion. This shows that the thermodynamic interpretation of a quantum measurement depends on where we put the Heisenberg cut. To defend the present approach, we want to highlight a number of key differences.

First, by using Stinespring’s theorem we pay duty to the fact that a quantum measurement does not happen spontaneously, but requires an active intervention by the experimentalist, who brings two systems (the system to be measured and the detector) into contact. But bringing two different physical systems into contact, requires in general work (compare also with the ‘switching work’ in Ref. [66]).

Second, our second law differs from the one derived in Ref. [51] as soon as multiple projective measurements are considered. In our case, the entropy production is on average given by the Shannon entropy of the entire sequence of measurement results \(S_{\text{Sh}}[p]\) = \(\frac{1}{Z(\lambda_0)} \sum_{\epsilon_0} e^{-\beta H(\lambda_0)} \epsilon_0 \langle \epsilon_0 | \epsilon_0 \rangle \),

where \(Z(\lambda_0) = \text{tr} e^{-\beta H(\lambda_0)} \) denotes the partition function. Its internal energy is denoted by \(U(t_0) = \text{tr} (H(\lambda_0) \rho(t_0)) \). Then, at time \(t_0 \) we projectively measure the energy and obtain outcome \(r_0 \), which is uniquely

B. The two-point measurement approach

The two-point measurement approach, which is closely related to the theory of full counting statistics, has become the primarily used approach to derive quantum fluctuation relations in various open quantum systems [22, 23, 40]. While theoretically powerful, we already discussed the practical weakness of this approach in the introduction: experimental confirmations have been so far only achieved for work fluctuation relations in isolated systems [27, 31, 100] or in electronic nanocircuits when the electrons behave according to a classical rate master equation [37–39].

We here critically re-examine the two-point measurement approach from a foundational perspective. We also view it in context of Ref. [24], which proves that there exists no measurement strategy of work, whose statistics fulfill (i) a quantum work fluctuation theorem and (ii) reproduce – when averaged – the unmeasured first law for arbitrary initial states. This important “no-go theorem” proves that quantum stochastic thermodynamics is distinctively different from its classical counterpart: it is in general impossible to make the averaged picture coincide with the unmeasured picture in quantum thermodynamics. Nevertheless, within our framework we will find that the no-go theorem does not apply in the sense that the ‘work’ defined in the two-point measurement approach is not even work according to our framework.

We consider the following standard scenario, where the unitary evolution of an isolated system is interrupted by two projective measurements. We assume that the projective measurements are described as in Sec. VI A with energetically neutral units. Since the system is isolated, we will also drop the subscript ‘S’ on all quantities.

First, the system is prepared in a Gibbs state such that

\[\rho(t^-) = e^{-\beta H(\lambda_0)} Z(\lambda_0) \sum_{\epsilon_0} e^{-\beta \epsilon_0} \langle \epsilon_0 | \epsilon_0 \rangle, \quad (63) \]

where \(Z(\lambda_0) = \text{tr} e^{-\beta H(\lambda_0)} \) denotes the partition function. Its internal energy is denoted by \(U(t^-) = \text{tr} (H(\lambda_0) \rho(t^-)) \). Then, at time \(t_0 \) we projectively measure the energy and obtain outcome \(r_0 \), which is uniquely
associated to one energy eigenvalue $\epsilon_0(r_0)$. Since the measurement basis coincides with the eigenbasis, the work during this measurement is zero. However, the internal energy clearly changes along a single trajectory and this is due to heat:

$$\epsilon_0(r_0) - U(t_0) = Q^{\text{ctrl}}(r_0). \quad (64)$$

In the next step we let the isolated system evolve according to an arbitrary time-dependent Hamiltonian $H(\lambda_t)$. The state at time $t_1 > t_0$ is given by $|\psi(t_1, r_0)\rangle = U(t)|\psi_0(r_0)\rangle$ where $U(t)$ denotes the unitary time evolution operator generated by $H(\lambda_t)$. As the system is completely isolated, the change in internal energy is purely given by work:

$$\langle \psi(t_1, r_0)|H(\lambda_1)|\psi(t_1, r_0)\rangle - \epsilon_0(r_0) = W^{(1)}(r_0). \quad (65)$$

Finally, there is another projective measurement in the eigenbasis of $H(\lambda_1)$ with outcome r_1, uniquely associated to some eigenenergy $\epsilon_1(r_1)$. The change in internal energy now has in general a work and a heat contribution:

$$\epsilon_1(r_1) - \langle \psi(t_1, r_0)|H(\lambda_1)|\psi(t_1, r_0)\rangle = W^{\text{ctrl}}(r_0) + Q^{\text{ctrl}}(r_1, r_0). \quad (66)$$

To derive an explicit form for it, we expand the prior state with respect to the final measurement basis: $|\psi(t_1, r_0)\rangle = \sum_{\epsilon_1} \epsilon_1 |\epsilon_1\rangle$. Then, we obtain

$$W^{\text{ctrl}}(r_0) = \sum_{\epsilon_1} |\epsilon_1|^2 \epsilon_1 - \langle \psi(t_1, r_0)|H(\lambda_1)|\psi(t_1, r_0)\rangle$$

$$Q^{\text{ctrl}}(r_1, r_0) = \epsilon_1(r_1) - \sum_{\epsilon_1} |\epsilon_1|^2 \epsilon_1. \quad (67)$$

Both contributions differ from zero unless in the classical case where $|\psi(t_1, r_0)\rangle = |\epsilon_1(r_1)\rangle$. Thus, in that scenario it would be justified to call $Q^{\text{ctrl}}(r_1, r_0)$ ‘quantum’ heat.

Now, consider the probability for the sequence of outcomes

$$p(r_1, r_0) = |\langle \epsilon_1(r_1)|U(t)|\epsilon_0(r_0)\rangle|^2 \frac{e^{-\beta \epsilon_0(r_0)}}{Z(\lambda_0)}. \quad (69)$$

It is a straightforward exercise to show that this probability distribution implies the so-called quantum work theorem or quantum Jarzynski equality, first derived in Refs. [101–103]:

$$\langle e^{-\beta [\epsilon_1(r_1) - \epsilon_0(r_0)]} \rangle = \sum_{\epsilon_1, \epsilon_0} p(r_1, r_0) e^{-\beta [\epsilon_1(r_1) - \epsilon_0(r_0)]} \frac{Z(\lambda_1)}{Z(\lambda_0)}. \quad (70)$$

Now, in analogue to the classical Jarzynski equality, the fluctuating quantity $\epsilon_1(r_1) - \epsilon_0(r_0)$ in the exponent was called ‘work’ in the two-point measurement approach [22, 23]. However, our framework reveals that

$$\epsilon_1(r_1) - \epsilon_0(r_0) = W^{(1)}(r_0) + W^{\text{ctrl}}(r_0) + Q^{\text{ctrl}}(r_1, r_0). \quad (71)$$

That is to say, the fluctuating quantity in the exponent is not work alone. Hence, one better calls the quantum work theorem a quantum internal energy theorem.

We end this section by pointing out that we are not the first to criticize the notion of work within the two-point measurement approach. For instance, Deffner, Paz and Zurek also criticize this approach for not being “thermodynamically consistent as it does not account for the thermodynamic cost of measurements” [97].Remarkably, they were able to derive a modified quantum Jarzynski equality for the work (65) done in between the two projective measurements [97].

C. The standard framework of quantum thermodynamics

If we perform no control operations at all, our framework obviously reproduces the standard framework of quantum thermodynamics mentioned at the beginning in Sec. IV A. This fact might seem so obvious that it is not worse to stress. However, it is important to realize that the standard framework of quantum thermodynamics cannot be recovered by performing an ensemble average over $p(r_n)$, but only by deciding not to apply any control operation at all (apart from maybe preparing a certain initial state and reading out the final state). That is to say, in order to recover standard quantum thermodynamics, it is important to have a framework which can cope with incomplete information and allows to do ‘nothing’ on the system. All previous frameworks of quantum stochastic thermodynamics, which rely on a perfectly measured system in a pure state, fail to reproduce the picture without control operations because any measurement disturbs the process in general. In fact, in almost all previous works the notion of a stochastic entropy along a single trajectory is not even defined. To the best of the author’s knowledge, the only exceptions are Refs. [42, 43] where, however, the definition of stochastic entropy depends on the initial state chosen and therefore, needs to be adapted in each experiment. The reason why classical stochastic thermodynamics reproduces the average picture (see Sec. VIE) is the fact that there is always one fixed basis and no coherences are possible. The current framework therefore fills an important conceptual gap between quantum and classical stochastic thermodynamics.

D. The conventional repeated interaction framework

The framework of repeated interactions gives rise to a generalized thermodynamic theory by realizing that the stream of external units can act in the most general scenario as a resource of nonequilibrium free energy, which encompasses many previously considered theories [66] (see also Ref. [104] for important earlier work).
However, the repeated interaction framework considered previously differs from our framework by avoiding to do any measurement on the units. In order to recover this thermodynamic framework, it is important to realize (as in Sec. VIIC) that a simple ensemble average of the process tensor over the outcomes r_n will not do the job. The only correct way to recover previous results from our framework is to not perform any measurement, i.e., in the language of Sec. III to choose the ‘projector’ $P(r_n|r_{n-1}) = 1_U$ throughout. In this case, the process tensor can be written as $\mathcal{T}[A_n,\ldots,A_1]$ where A_i is a CPTP map acting at time t_i. The control operations and hence, also the process tensor, do not depend on any outcome r_n anymore (alternatively, one could say that each control operation at time t_i has only one possible outcome). Furthermore, every incoming unit is decorrelated from the previous units as in Ref. [66].

Our thermodynamic framework of the process tensor is therefore much more general and flexible than the previous framework apart from one important difference. In Ref. [66] the units were allowed to interact with the system for a finite duration whereas we here only consider instantaneous interactions (or more precisely, interaction times where the effect of the bath can be neglected to leading order). From a thermodynamic point of view, this is not necessary. However, to be able to clearly distinguish between control operations on the system and system-bath dynamics, this assumption is necessary (compare with the discussion in Sec. II).

We now show that our thermodynamic framework is not in contradiction to the one of Ref. [66], if we avoid any measurements of the units. Since no quantity depends on r_n anymore, the internal energy is simply

$$E_{SU(n)}(t) = E_S(t) + \sum_{i=1}^{n} E_{U(i)}(t). \quad (72)$$

But the internal energy of all previous units $U(i < n)$ never enters the first law and thus, can be neglected. In fact, in absence of any control operation this is evident from Eq. (20). During the control operations, because there is no final measurement, $Q_{\text{ctrl}}(t_n) = 0$ and only $W_{\text{ctrl}}(t_n)$ can differ from zero. But the work only depends on the state of the n'th unit and not on previous units [cf. Eq. (29)]. Hence, the first law during the control operation becomes $W_{\text{ctrl}}(t_n) = \Delta E_S(t_n) + \Delta E_{U(n)}(t_n)$ because the marginal state of all other units does not change. We therefore obtain the same first law over one interaction period (t_{n-1}, t_n):

$$\Delta E_S^{(n)} + \Delta E_{U(n)}^{(n)} = W_{\text{ctrl}}^{(n)} + W^{(n)} + Q^{(n)}. \quad (73)$$

Finally, note that $W_{\text{ctrl}}^{(n)}$ would be identified in context of Ref. [66] with the switching work W_{switch} required to turn on and off the system-unit interaction.

We now turn to the second law. Without any outcomes r_n we obtain from Eq. (35) the entropy $S_{SU(n)}(t) = S_{SV|SU(n)}(t)$. Again, this differs from Ref. [66] by explicitly taking into account the joint entropy of all units and the system. To recover Ref. [66], we start again with the situation without control operation. From Eq. (17) we know that $\Delta S_S^{(n)} - \beta Q_S^{(n)} \geq 0$ and, since the marginal unit states do not change, we can extend this to

$$\Delta S_S^{(n)} + \Delta S_{U(n)}^{(n)} - \beta Q_S^{(n)} \geq 0. \quad (74)$$

Next, our second law during the control operation becomes

$$\Sigma_{\text{ctrl}}^{(n)}(t_n) = S_{SV|SU(n)}(t_n^+) - S_{SV|SU(n)}(t_n^-) = 0, \quad (75)$$

because the von-Neumann entropy is invariant under unitary transformation. If we use the two facts that the unitary V acts only locally on the system and the n'th unit and that the initial state of the unit is decorrelated from the system, we immediately confirm that Eq. (75) can be rewritten as

$$\Sigma_{\text{ctrl}}^{(n)}(t_n) = \Delta S_{SV|SU(n)}^{\text{ctrl}}(\rho_S) + \Delta S_{SV|SU(n)}^{\text{ctrl}}(\rho_U) - I_{SU(n)}^{(n)}(t_n^+) = 0. \quad (76)$$

Taking the mutual information to the other side of the equation and combining it with Eq. (74), we can confirm for an entire interaction interval that

$$\Delta S_S^{(n)} + \Delta S_{U(n)}^{(n)} - \beta Q^{(n)} \geq I_{SU(n)}^{(n)}(t_n^+) \geq 0. \quad (77)$$

This reproduces the generalized second law from Ref. [66]. The reason why the final mutual information between the system and the previous units was discarded in Ref. [66] becomes clear by recalling that every unit which has already interacted with the system does not have the chance to interact with the system again. All final mutual information will therefore be lost. This is in contrast to the general framework developed here where we allowed for all kinds of feedback control. Under these more general circumstances, the remaining mutual information after the interaction represents a valuable thermodynamic resource, which cannot be neglected.

E. Standard classical stochastic thermodynamics

A tacitly made assumption in classical stochastic thermodynamics is the ability to measure perfectly (i.e., without error and without disturbance) the state of the system [12, 13]. These assumptions can be completely overcome by using the operational approach to stochastic thermodynamics, but attention has to be paid to the fact that the classical version of Stinespring’s theorem does not follow from the quantum version stated in Sec. III [82].

Here, we restrict ourselves to study the standard case of stochastic thermodynamics assuming perfect continuous measurements and no feedback control. We focus only on a classical discrete system, which makes random jumps between a finite set of states $s \in \{1, \ldots, d\}$. Its dynamics are described by a rate master equation

$$\frac{d}{dt} p_s(t) = \sum_{s'} R_{s,s'}(\lambda_t)p_{s'}(t). \quad (78)$$
Here, \(p_s(t) \) is the probability to find the system in state \(s \) at time \(t \), whose energy we denote by \(H(s, \lambda_t) \) (dropping the subscript \(S \) on \(H \)). The rate matrix \(R_{s',s}(\lambda_t) \) can depend on an external control parameter \(\lambda_t \). It is required to fulfill the local detailed balance condition

\[
\frac{R_{s,s'}(\lambda_t)}{R_{s',s}(\lambda_t)} = e^{-\beta[H(s,\lambda_t)-H(s',\lambda_t)]},
\]

(79)

which allows to link energetic changes in the system to entropic changes in the bath. Due to the assumptions of standard stochastic thermodynamics one knows at each time \(t \) the state \(s \) of the system without any uncertainty (denoted \(s_t \) in the following). The stochastic energy and entropy at time \(t \) is then defined by

\[
E_{ST}(s_t) \equiv H(s_t, \lambda_t), \quad S_{ST}(s_t) \equiv -\ln p_{s_t}(t),
\]

(80)

where we used a subscript ‘ST’ to denote definitions used in standard stochastic thermodynamics. Note that the stochastic entropy \(S_{ST}(s_t) \) is determined by evaluating the solution of the rate master equation along a particular stochastic trajectory [11]. Work and heat for a sufficiently small time-step \(dt \) are defined as

\[
W_{ST}(s_t) \equiv H(s_{t-dt}, \lambda_t) - H(s_{t-dt}, \lambda_{t-dt}),
\]

(81)

\[
Q_{ST}(s_t) \equiv H(s_t, \lambda_t) - H(s_{t-dt}, \lambda_t),
\]

(82)

such that \(E_{ST}(s_t) - E_{ST}(s_{t-dt}) = W_{ST}(s_t) + Q_{ST}(s_t) \). Furthermore, using rather complicated algebraic manipulations, one can compute the change of stochastic entropy along a particular trajectory [11–13] (we will see below that evaluating the quantities in discrete time steps simplifies the algebra significantly). In the resulting expression it is then possible to single out a term related to the entropy production, which – on average – yields the always positive expression

\[
\Sigma_{ST}(t) \equiv \Delta S_{ST}(t) - \beta Q_{ST}(t) \geq 0,
\]

(83)

where \(\Delta S_{ST}(t) \equiv S_s[p_s(t)] - S_s[p_s(t-dt)] \) turns out to be the (infinitesimal) change in Shannon entropy of the solution \(p_s(t) \) of the rate master equation \(Q_{ST}(t) = \sum_s H(s, \lambda_t)[p_s(t)] - p_s(t-dt) \) is the average heat entering the system per time step \(dt \).

Our goal is now to show the following: (1) how a perfect, non-disturbing measurement arises in our context; (2) that we obtain identical expressions for the stochastic heat, work and internal energy in this limit; (3) that we obtain a different expression for stochastic entropy, which yields a different, but meaningful second law; (4) how the entropy production of standard stochastic thermodynamics arises in our context when we change the definition of stochastic entropy.

(1) To obtain a perfect measurement, we can basically use the same steps as in Sec. VI A. We start with a classical probability \(p_U = \delta_{u,1} \) and view the unitary (58) as a permutation matrix. Then, the result is that the state of the system gets copied onto the state of the unit. Next, we consider the limit where we measure the system continuously, i.e., in small time-steps \(dt = t_n - t_{n-1} \) such that the probability for a jump in each interval is very small: \(R_{s,s'}(\lambda_t)dt \ll 1 \). Furthermore, we assume that all units are identical and uncorrelated initially. In this limit, the sequence of measurement outcomes \(r_n \) is identical to the trajectory taken by the system. This is the essence of a perfect classical and continuous measurement. As a consequence, the state of the system at time \(t \geq t_n^+ \) only depends on the last measurement outcome \(r_n \), but not on any of the previous outcomes \(r_{n-1} \). Furthermore, the state of the system during the interval \((t_{n-1}, t_n] \) changes from \(p(t_{n-1}, r_{n-1}) = \lvert r_{n-1} \rangle \) to \(p(t_n^+, r_{n-1}) = \lvert r_n \rangle \) at the beginning of the interval is simply \(H(r_{n-1}, \lambda_{t-dt}) \) and at the end it reads \(H(r_n, \lambda_t) \), which is identical to the definition used in classical stochastic thermodynamics. Furthermore, in absence of control, we obtain from Eq. (15)

\[
W^{(n)}(r_{n-1}) = \sum_s [H(s, \lambda_t) - H(s, \lambda_{t-dt})]p_s(t_{n-1}^+, r_{n-1}) = H(r_{n-1}, \lambda_t) - H(r_{n-1}, \lambda_{t-dt}),
\]

(84)

which is identical to Eq. (81). Furthermore, the work during the control step, Eq. (23), is zero because the marginal state of the system does not change, see also Sec. VI A. Thus, we conclude that the definition of the total work \(W^{(n)}(r_{n-1}) \) during one full interval is identical to the definition used in classical stochastic thermodynamics. It remains to look at the change of heat during one full interval \(Q_S^{(n)}(r_n, r_{n-1}) \). First of all, from Eq. (16) the heat exchanged during the interval without control

\footnote{In stochastic thermodynamics, one usually writes \(\delta W \) or \(dW \) to denote the infinitesimal character of the quantity. Often, one also denotes quantities defined for single trajectories with a small letter, e.g., \(w \). We here decided to stick closer to our notation from Sec. IV keeping in mind that we are only interested in small time steps \(dt \).}

\footnote{We remark that there is a certain degree of freedom involved in the evaluation of the integral in Eq. (15). However, this degree of freedom is also there in the identification (81) and (82) and it is only important to stick consistently to one choice.}
becomes
\[Q_S^{(n)}(r_{n-1}) = \sum_s H(s, \lambda_t)p_s(t_n, r_{n-1}) - H(r_{n-1}, \lambda_t), \]
which is different from the definition (82). However, it is now also important to take into account the heat exchanged during the control step, Eq. (24), in which we update our knowledge about possible system changes. It is simple to see that this quantity reduces to
\[Q_{ST}^{(n)}(r_{n-1}) = H_S(r_n, \lambda_t) - \sum_s H(s, \lambda_t)p_s(t_n, r_{n-1}), \]
such that \(Q_S^{(n)}(r_{n-1}) = Q_{ST}^{(n)}(r_{n-1}) + Q_S^{(n)}(r_{n-1}) \) is identical to the standard definition in classical stochastic thermodynamics. To conclude, our definitions for stochastic internal energy, work and heat are identical to the ones used in classical stochastic thermodynamics. (3) We now take a look at the entropic balance. The change in stochastic entropy (35) over a full interval becomes
\[\Delta S^{(n)}_{ST}(r_{n-1}) = -\ln p(r_n| r_{n-1}), \]
where we used that the system and units are after each measurement in a pure state and their entropy vanishes. Furthermore, we used that the system dynamics are Markovian and hence, \(p(r_n| r_{n-1}) = p(r_n| r_{n-1}) \). The stochastic entropy production (36) over one interval then becomes
\[\Sigma^{(n)}(r_{n-1}) = -\ln p(r_n| r_{n-1}) - \beta Q_S^{(n)}(r_{n-1}), \]
which can have either sign. As deduced in Sec. IV, it is positive after averaging over \(p(r_n| r_{n-1}) \):
\[\Sigma^{(n)}(r_{n-1}) = \sum_{r_n} p(r_n| r_{n-1}) \Sigma^{(n)}(r_n, r_{n-1}) = S_{Sh}(p(r_n|r_{n-1})) - \beta Q_S^{(n)}(r_{n-1}) \geq 0. \]
Notice that this second law is identical to the conventional one of stochastic thermodynamics if we apply Eq. (83) to an initially pure state \(p_s(t - dt) = \delta s, r_{n-1} \), which implies \(\Delta S_{ST}(t) = S_{Sh}(p(r_n| r_{n-1})) \) and \(Q_{ST}(t) = Q_S^{(n)}(r_{n-1}) \). Unfortunately, although \(S_{Sh}(p(r_n|r_{n-1})) \) is infinitesimal small, it is of order \(O(dt^\nu) \) with \(\nu < 1 \). Therefore, the rate of entropy production diverges:
\[\lim_{dt \to 0} \frac{\Sigma^{(n)}(r_{n-1})}{dt} = \infty. \]
Although seldomly stated [105], this is related to the fact that the Shannon entropy \(S_{Sh}(p_s(t)) \) is not differentiable when the kernel of \(p_s(t) \) changes. Furthermore, by averaging Eq. (89) also over \(p(r_{n-1}) \), we obtain
\[\Sigma^{(n)} = S_{Sh}(r_n| r_{n-1}) - \beta Q_S^{(n)} \geq 0. \]
Here, \(S_{Sh}(r_n| r_{n-1}) = \sum_{r_{n-1}} p(r_{n-1})S_{Sh}(p(r_n| r_{n-1})) \) denotes the conditional Shannon entropy. This second law is different from the conventional one (83). Instead of containing the change in Shannon entropy of the system state, it contains the conditional Shannon entropy, which is nothing else than the entropy rate of the stochastic process [106]. Of course, if we devide Eq. (91) by \(dt \), it still diverges. Furthermore, the difference in the two entropy productions is precisely given by \(\Sigma^{(n)} - \Sigma_{ST}(t) = S_{Sh}(r_n| r_{n-1}). \)
Here, the ‘backward’ conditional entropy production \(S_{Sh}(r_{n-1}| r_n) = \sum_{r_n} p(r_n)S_{Sh}(p(r_n| r_{n-1})) \) can be computed via Bayes’ rule: \(p(r_{n-1}| r_n) = p(r_n|r_{n-1})p(r_{n-1})/p(r_n) \).
We emphasize that our novel second law (91) has a transparent physical interpretation. It consists of the entropic change in the bath quantified by the Clausius-like term \(-\beta Q_S^{(n)} \) plus the change in entropy in our memory for the measurement outcomes. As we measure perfectly and continuously, the rate of information generation in the memory is infinite (in reality, every sampling rate is finite and no divergence arises). Therefore, even in equilibrium where \(Q_S^{(n)} = 0 \), we will have a positive entropy production \(\Sigma^{(n)} > 0 \) due to the fact that we measure the system and continuously generate information. In stochastic thermodynamics, one instead finds \(\Sigma_{ST} = 0 \) at equilibrium. The discrepancy of the second two laws is rooted in the fact that standard stochastic thermodynamics keeps the observer out of the construction. This works well if one only perfectly monitors a classical system, but if one starts to apply feedback control one needs to modify the theory [68]. By following the credo “information is physical” [67] and by treating the measurement and the system on an equal footing, no modification is necessary in our framework. We remark that our novel second law (91) was very recently already experimentally confirmed [107], see also the discussion in Ref. [82]. (4) In addition, we can recover the conventional second law of stochastic thermodynamics, if we redefine entropy. Namely, if we replace our definition of entropy by the conventional one (80), the stochastic entropy production becomes in our notation
\[-\ln p(r_n) + \ln p(r_{n-1}) - \beta[H(r_n, \lambda_t) - H(r_{n-1}, \lambda_t)]. \]
If we average over \(p(r_n) \) and use that the measured probabilities are identical to the probabilities of the system, \(p(r_n = s) = p_s(t) \) and \(p(r_{n-1} = s) = p_s(t - dt) \), we obtain
\[S_{Sh}(p_s(t)) - S_{Sh}(p_s(t - dt)) - \beta \sum_s H(s, \lambda_t)[p_s(t) - p_s(t - dt)]. \]
This is identical to Eq. (83).

F. Getting rid of the units in the thermodynamics

We used the external stream of units to guide our thermodynamic analysis along the framework of repeated in-
teractions. In many important realistic situations it is also clear how to model the units physically. This is, for instance, the case for the micromaser, the experimental setup studied in Sec. V or for certain mesoscopic devices where tunneling electrons and Cooper pairs could be identified as units \cite{108,109}. Therefore, the framework of repeated interactions allows us to treat a larger class of physically relevant scenarios.

Nevertheless, there are also scenarios where the exact microscopic nature of the units is not known or hard to model. Furthermore, as also the process tensor relies only on specifying CP maps \(\mathcal{A}(r_n | r_{n-1})\) acting on the system, it is worth to ask whether we can get rid of the sometimes rather artificial units in the thermodynamic description. Energetically, we have already seen that simply setting \(H_{U(n)} \sim 1_U\) for all \(n\) cancels out all unit contributions from the first law. To get rid of the units from the entropic considerations, we will need to restrict ourselves to efficient control operations \cite{79,80}. Efficient control operations are defined by the requirement that they can be written as

\[\hat{\rho}_{S}(r) = \mathcal{A}(r)\rho_{S} = A(r)\rho_{S}A(r) \dagger \]

(94)

as opposed to the more general form (4). They have the specific property that any initially pure state \(\rho_{S}\) gets mapped to a pure state again. Mathematically, every efficient control operation can be modeled by an initially pure unit state \(\rho_{U} = |\psi\rangle\langle\psi|_{U}\), which interacts unitarily via \(V\) with the system and is finally projectively measured using \(P(r) = |r\rangle\langle r|\). This implies

\[\hat{\rho}_{S}(r) = \mathcal{A}(r)\rho_{S} = \langle r|V|\rho_{S} \otimes |\psi\rangle\langle\psi|_{U}|r\rangle_{U}. \]

(95)

This construction extends to multiple operations conditioned on previous results \(r_{n-1}\) in the obvious way.

To see that the units also do not enter the entropic balance in this case, notice that the unit state is pure and decorrelated from the system after every operation. This follows from the fact that we perform a rank 1 projective measurement on the units after each control operation. The joint state of the system and all units after obtaining the sequence of outcomes \(r_{n}\) is simply \(\rho_{SU(n)}(t, r_{n}) = \rho_{S}(t, r_{n}) \otimes |r_{n}\rangle\langle r_{n}|_{U(n)}\) with \(|r_{n}\rangle\langle r_{n}|_{U(n)} \equiv |r_{n}\rangle_{U(n)} \otimes \cdots \otimes |r_{1}\rangle_{U(1)}\). The joint entropy for this state becomes \(S_{N}[\rho_{SU(n)}(t, r_{n})] = S_{N}[\rho_{S}(t, r_{n})]\). Before the interaction at time \(t_{n}\), we have

\[S_{N}[\rho_{SU(n)}(t_{n}, r_{n})] = S_{N}[\rho_{S}(t_{n}, r_{n})], \]

(96)

where we used that the initial unit state is pure and hence, always decorrelated from the system. We note that the ensemble averaged system unit state \(\sum_{\mathcal{P}} p(r_{n})\rho_{SU(n)}(t, r_{n})\) is in general classically correlated. To summarize, in case of energetically neutral units and efficient control operations, the stochastic internal energy and entropy can be reduced to

\[E_{S}(t, r_{n}) = \text{tr}_{S}\{H_{S}(\lambda_{t}, r_{n})\rho_{S}(t, r_{n})\}, \]

(97)

\[S_{S}(t, r_{n}) = -\ln p(r_{n}) + S_{N}[\rho_{S}(t, r_{n})]. \]

(98)

Note, however, that we are still using the external units to model the control operations dynamically. In fact, we will argue in Sec. VIIA that it is impossible to get completely rid of them in general.

G. Quantum stochastic thermodynamics without theory input

To set up our framework of quantum stochastic thermodynamics, we needed to be able to know the work (15) and heat (16) exchanged with the bath in between two control operations. Those are path dependent quantities [i.e., they are not determined alone by the state at the boundary \(\rho_{S}(t_{n}^{\pm}, r_{n})\)] and estimating them requires additional theoretical input. Albeit this is necessary to recover the average picture in general (see Sec. VIC), it is instructive to discuss cases which do not require any additional theoretical modeling.

Without changing any of our general conclusions, one way would be to consider only a specific subset of control protocol \(\lambda_{t}\). These control protocols consist of a sudden switch of the Hamiltonian after each control operation, i.e., the protocol changes instantaneously from \(\lambda_{n-1}\) to \(\lambda_{n}\) at time \(t_{n}^{\pm}\), and after the switch we keep the protocol constant until the next control operation. Note that the protocol is still allowed to depend on \(r_{n}\), which we have suppressed for notational convenience. Thus, in short we can write that \(\lambda_{t}(r_{n-1}) = \lambda_{n-1}(r_{n-1})\) if \(t \in (t_{n-1}, t_{n})\). Those sets of control protocols are characterized by the fact that the work (15) and heat (16) can be computed without any knowledge about the system state in between two control operations:

\[W_{S}^{(n)}(r_{n-1}) = \]

(99)

\[\text{tr}_{S}\{[H_{S}(\lambda_{n-1}, r_{n-1}) - H_{S}(\lambda_{n-2}, r_{n-2})]\rho_{S}(t_{n-1}^{+}, r_{n-1})\}\]

(100)

\[Q_{S}^{(n)}(r_{n-1}) = \]

\[\text{tr}_{S}\{H_{S}(\lambda_{n-1}, r_{n-1})\rho_{S}(t_{n-1}^{+}, r_{n-1}) - \rho_{S}(t_{n-1}^{+}, r_{n-1})]\}]. \]

Another way to approach this problem is to try to set up an effective thermodynamic description based solely on knowledge of the dynamical map \(\mathcal{E}_{n}\) defined in Eq. (40). Note that the dynamical map can be inferred from knowledge of the process tensor. The very problem of this approach comes from the fact that different physical situations (with different thermodynamic values for \(W_{S}^{(n)}\) and \(Q_{S}^{(n)}\)) can give rise to the same dynamical map \(\mathcal{E}_{n}\). Thus, if we try to pursue the second way, we will not be able to recover the results from Secs. VID and VIC in general. Nevertheless, the author believes that it could be worthwhile to pursue this direction because the thermodynamic description of dynamical maps was already investigated before \cite{110-113}. Especially, for dynamical maps which have additional properties, such as being Gibbs state-preserving, the present framework could be fruitfully combined with the resource theory approach to quantum thermodynamics \cite{114,115}.
VII. FINAL REMARKS AND OUTLOOK

A. Final remarks

We have presented a theoretical framework, which is able to cope with arbitrary quantum operations and arbitrary ‘unravelings’ of them. It uses very natural definitions of internal energy (18) and entropy (35), but in its most general form it can appear quite heavy. Especially, the framework of repeated interactions added another layer of complexity and it is worthwhile to ask whether we can get completely rid of it. For efficient control operations we have seen already in Sec. VI F that the units do not enter the laws of thermodynamics anymore, albeit they still played a role dynamically. We will here argue that this has to remain like this in order to arrive at an unambiguous interpretation of heat and work during the control step. Let us look at an arbitrary efficient operation \(\rho_S(r) = A(r) \rho_S A(r)\dagger \) again. It is tempting to use the polar decomposition theorem \(A(r) = U(r)P(r) \), where \(U(r) \) is a unitary matrix and \(P(r) \) a positive matrix, to define work and heat exchanges. One idea could be to associate changes in the energy caused by \(P(r) [U(r)] \) as heat (work).

Unfortunately, one then arrives at the conclusion that a projective measurement is on average a heat and not a work source and we have debated this conclusion that a projective measurement is on average a heat and not a work source and we have debated this conclusion that a projective measurement is on average a heat and not a work source and we have debated this conclusion that a projective measurement is on average a heat and not a work source.

Remarkably, within the framework of repeated interactions added another layer of complexity and it is worthwhile to ask whether we can get completely rid of it. For efficient control operations we have seen already in Sec. VI F that the units do not enter the laws of thermodynamics anymore, albeit they still played a role dynamically. We will here argue that this has to remain like this in order to arrive at an unambiguous interpretation of heat and work during the control step. Let us look at an arbitrary efficient operation \(\rho_S(r) = A(r) \rho_S A(r)^\dagger \) again. It is tempting to use the polar decomposition theorem \(A(r) = U(r)P(r) \), where \(U(r) \) is a unitary matrix and \(P(r) \) a positive matrix, to define work and heat exchanges. One idea could be to associate changes in the energy caused by \(P(r) [U(r)] \) as heat (work).

Unfortunately, one then arrives at the conclusion that a projective measurement is on average a heat and not a work source and we have debated this conclusion that a projective measurement is on average a heat and not a work source and we have debated this conclusion that a projective measurement is on average a heat and not a work source and we have debated this conclusion that a projective measurement is on average a heat and not a work source and we have debated this conclusion that a projective measurement is on average a heat and not a work source.

Another subtle point concerns the definition of an ‘entropy production’ via a time-reversed process. We have here decided to find a meaningful definition of heat and entropy production as

\[\Sigma = \Delta S - \beta Q. \tag{101} \]

Here, \(p^1(r_n) \) is the probability to observe the time-reversed trajectory in a suitably chosen time-reversed experiment [12, 13]. This stochastic entropy production fulfills a fluctuation theorem and a second law and it is linked to the (breaking of) time-reversal symmetry of the underlying microscopic Hamiltonian dynamics [7, 8, 22, 23].

As a final ‘final remark’ we comment on the possibility to extend the present framework beyond the case of a single heat bath. In fact, this is even an open problem in classical stochastic thermodynamics from an experimental point of view: as soon as multiple heat baths induce transitions between the same system states, a local measurement of the system only will not reveal which bath has triggered the transition. Classically, a way out of this dilemma is to experimentally ensure that the transition between each pair of states is only caused by a single bath, for instance by geometrically separating the system into subsystems, where each subsystem interacts only with one bath. This is indeed what happens in transport experiments through quantum dots [37, 38]. Quantum mechanically, this separation is more difficult to achieve. At least within the standard approach based on a Born-Markov-secular approximation [3–6], the system jumps between energy eigenstates of the composite system which are in general entangled. On the other hand, it was recently also argued that a ‘local’ approach to the dynamics (where each dissipator in a quantum system acts only on a specific subsystem) is feasible from a thermodynamic point of view [104, 118, 119]. If that is the case, it should be in principle possible to apply our framework to a situation with multiple baths in some limit. As the proper extension of quantum thermodynamics to the presence of multiple heat baths can already bear surprising difficulties at the average level [120], these investigations are left for the future.

B. Outlook

In this last section we outline three promising future applications that allow us to answer in a general and rigorous way open problems in quantum thermodynamics.

1. Quantum coherence and Leggett-Garg inequalities

One primary task of quantum thermodynamics is to unravel how quantum features (such as coherence or entanglement) influence the performance of quantum heat
The unitary strokes at point B and D the system density matrix contains coherences in general. If the cycle is performed in finite time such that the heat baths do not fully erase the coherences, then it is possible that coherences are still present at point A and C and it becomes an interesting question whether they change the thermodynamic performance.

To unambiguously answer this question, one could perform a dephasing operation D in the energy eigenbasis at any of the four points. If this changes the work output or the thermodynamic efficiency\(^8\), then the machine shows quantum effects. The dephasing operation D is easily implemented, for instance, by performing a projective measurement of the energy without recording its outcome (see Sec. VI A). Importantly, the energetic cost of this control operation is zero (provided that the unit is energetically neutral) and therefore, it does not inject or extract any work into the engine. Hence, while the dephasing operation has an entropic cost, this does not play any role to compute the work and heat flows in the Otto cycle, which are essential to compute its performance.

Conversely, by the theorem derived in Ref. \cite{124}, we know that coherences can only influence the dynamics, if the statistics associated with projective energy measurements at any subset of the four points in the Otto cycle shows non-classical signatures by not obeying the entropic Leggett-Garg inequalities \cite{122}. As we will show now, our framework allows us to rigorously answer whether a given heat engine uses quantum coherence. Moreover, this is closely related to the violations of Leggett-Garg inequalities \cite{123}.

Our analysis is based on recent progress to understand genuine quantum effects in Markovian systems interrupted by projective measurements at a set of discrete times \cite{124–126}. In a nutshell, the authors of Ref. \cite{124} have proven that the results r_n obtained from the projective measurements in an arbitrary non-degenerate basis $\{|r_n\rangle\}$ cannot be generated by a classical stochastic process if and only if the Markovian dynamics are “coherence-generating-and-detecting” for an initially diagonal state in the measurement basis. The notion “coherence-generating-and-detecting” is defined by using the dephasing operator $D = \sum r_n \mathcal{P} (r_n)$, where $\mathcal{P} (r_n)$ denotes the projection superoperator with respect to $|r_n\rangle\langle r_n|$, and by demanding that there exists times $t, \tau \geq 0$ such that

$$D \circ \mathcal{E} (t) \circ D \circ \mathcal{E} (\tau) \circ D \neq D \circ \mathcal{E} (t + \tau) \circ D. \quad (102)$$

where $\mathcal{E} (t)$ denotes the dynamical map of the system in between the control operations (here assumed to be time-homogeneous for simplicity) and \circ the composition of two maps. An extension to inhomogeneous maps and more general (i.e., non-Markovian) dynamics can be found in Refs. \cite{125, 126}.

This framework fits perfectly into our language as we can deal with projective measurements at discrete times as well as dephasing operations. To give a simple and intuitive example how this framework could be used to detect quantum signatures in thermodynamics, we consider the quantum Otto cycle, which was recently also experimentally realized \cite{127}. The Otto cycle is a four-step process $A \rightarrow B \rightarrow C \rightarrow D$ (see, e.g., Fig. 2 in Ref. \cite{121}). In $A \rightarrow B$ the system undergoes isolated (unitary) Hamiltonian evolution, where the system Hamiltonian changes from $H_S (1)$ to $H_S (2)$. In $B \rightarrow C$ the system is coupled to a cold bath at temperature T_C and undergoes pure relaxation dynamics, which we here assume to be modeled by a Lindblad master equation as often done. In $C \rightarrow D$ the system is again isolated and its Hamiltonian is changed from $H_S (2)$ back to $H_S (1)$ again. Finally, in $D \rightarrow A$ the system is coupled to a hot bath at temperature T_H and undergoes again pure relaxation assumed to be described by a Lindblad master equation. After

\(^8\) Note that we have not specified here how to actually infer the work output or efficiency. This could be done purely theoretically or purely experimentally, for instance, by doing quantum state tomography at the four points A, B, C and D after waiting long enough such that the system operates at steady state (actually, state tomography at two points suffices if we are able to accurately compute the effect of the unitary strokes).
relate Eq. (103) to the entropy of the measurement result $H(y_C, r_B, r_A)$. As this quantity plays a crucial role in our second law, it would be interesting to investigate whether a Maxwell demon can extract more or less work from a system and measurement process able to violate the entropic Leggett-Garg inequalities.

2. Entanglement

Closely related to the previous analysis is the question how far entanglement can boost the performance of a heat engine. There has been much theoretical progress on understanding the role of entanglement for work extraction (see, e.g., Refs. [132–137]), mostly, however, for extracting work in idealized protocols. To the best of the author’s knowledge, a realizable and continuously working heat engine using quantum entanglement has not yet been presented. In contrast, classical correlations are known to be indispensable for autonomous multipartite heat engines such as thermoelectric devices [138–142].

To test whether a thermodynamic process is influenced by entanglement, consider a bipartite system AB living in the Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ as the working fluid. One could then follow a similar strategy as above, but this time — instead of applying a dephasing operation — one would apply an ‘entanglement-breaking’ operation B, which keeps classical correlations. If the reduced state of system A is given by $\rho_A = \sum_i \lambda_i |i\rangle \langle i|_A$, then the control operation

$$B\rho_{AB} = \sum_i |i\rangle \langle i|_A \rho_{AB} |i\rangle \langle i|_A$$

(104)

would destroy any entanglement but keep all classical correlations. Monitoring the response of a multipartite system to such a control operation then allows the experimenter to infer how far quantum correlations play a role thermodynamically. As above, this procedure exemplifies how useful generalized control operation are, not only to control a thermodynamic process but also to unravel specific properties of it.

3. Non-Markovian signatures in heat engines

The last part of this outlook probably requires the largest research effort, but it seems to be necessary in order to obtain a complete framework of stochastic thermodynamics for small quantum systems. Indeed, for sufficiently low temperatures and sufficiently small time-scales (i.e., where the standard Born-Markov secular master equation fails) it is expected that generic open quantum systems behave non-Markovian. Furthermore, even at room temperature there is evidence that non-Markovianity can drastically affect bio-chemical processes such as photosynthesis [143, 144] and there is evidence that non-Markovian effects can also boost the performance of heat engines [145–147]. Despite the fact that there are several ways to rigorously quantify non-Markovianity in open quantum systems [148, 149], establishing a rigorous connection between thermodynamics and non-Markovianity has proven to be challenging so far [150].

Notice that the present framework crucially hinges on the assumptions of a Markovian system evolution. However, it is not unlikely that it is possible to overcome the assumptions from Sec. IV A. One route could be to enlarge the system space by incorporating explicitly the most dominant degrees of freedom of the environment into the dynamics – a strategy which was directly or indirectly proposed in Refs. [146, 147, 151–157]. Preliminary results also show that this is not even necessary if we do not consider real-time feedback control [158].

To outline how it would be possible to rigorously detect non-Markovian effects in quantum thermodynamics, we make use of the notion of a ‘causal break’. This notion was recently introduced in Ref. [61] to give a general and rigorous definition of non-Markovianity based on the process tensor, which generalizes previous attempts [148, 149]. The basic idea is to apply a control operation to the system, which re-prepares it in a state independent of all past events. Any dependence of future events on past events then reveals non-Markovian effects.

To have a particular application in quantum thermodynamics in mind, imagine a steadily working heat engine. The details of the machine — i.e., whether it uses multiple heat baths or feedback control as a resource and whether it acts as a refrigerator or thermoelectric device — do not matter for the present consideration. Furthermore, let us denote the steady state of the machine by ρ_S. Now, as a causal break we apply a control operation which replaces the current state of the system by the steady state ρ_S. This is always possible: we could, for instance, projectively measure the state of the system and then prepare the state ρ_S. Since ρ_S will be in general mixed, this preparation procedure will be probabilistic (i.e., described by multiple Kraus operators and not a single one). The crux is now to apply this control operation when the machine has already reached steady state, i.e., we effectively replace ρ_S by $\bar{\rho}_S$ on average. When the system behaves Markovian, the future statistics of all measurements will not depend on this re-preparation procedure, but if the system behaves non-Markovian, there will be observable consequences as our control operation has destroyed all time-correlations of the system with the past. To see whether such a causal break has an influence on the thermodynamics (which does not need to be the case even when the overall dynamics are non-Markovian), one could measure, e.g., the work output of the device or its efficiency. Since the system was assumed to operate at steady state, any change in its thermodynamic behaviour after the causal break described above unambiguously reveals non-Markovian effects.

Thus, to summarize, we are only beginning to explore quantum effects in thermodynamics. To access those quantum effects in a lab, it is important to be able to ap-
ply various control operations to the system. The present paper provides the toolbox to describe these control operations thermodynamically even along a single stochastic trajectory.

ACKNOWLEDGEMENTS

It is my pleasure to acknowledge useful discussions with and comments from Cyril Elouard, Massimiliano Esposito and Kavan Modi. This research was financially supported by the European Research Council project NanoThermo (ERC-2015-CoG Agreement No. 681456) and the DFG (project STR 1505/2-1). Also, it was supported by the Spanish MINECO FIS2016-80681-P (AEI-FEDER, UE) and in part by the National Science Foundation under Grant No. NSF PHY17-48958.

[1] J. Schnakenberg, “Network theory of microscopic and macroscopic behavior of master equation systems,” Rev. Mod. Phys. 48, 571–585 (1976).
[2] T. L. Hill, Free Energy Transduction in Biology (Academic, New York, 1977).
[3] H. Spohn and J. L. Lebowitz, “Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs,” Adv. Chem. Phys. 38, 109–142 (1979).
[4] R. Alicki, “The quantum open system as a model of the heat engine,” J. Phys. A 12, L103 (1979).
[5] G. Lindblad, Non-Equilibrium Entropy and Irreversibility (D. Reidel Publishing, Dordrecht, Holland, 1983).
[6] R. Kosloff, “Quantum thermodynamics: A dynamical viewpoint,” Entropy 15, 2100–2128 (2013).
[7] D. J. Evans and D. J. Searles, “The fluctuation theorem,” Adv. Phys. 51, 1529–1585 (2002).
[8] C. Jarzynski, “Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale,” Annu. Rev. Condens. Matter Phys. 2, 329–351 (2011).
[9] K. Sekimoto, “Langevin equation and thermodynamics,” Prog. Theor. Phys. Suppl. 130, 17–27 (1998).
[10] K. Sekimoto, Stochastic Energetics, Vol. 799 (Lect. Notes Phys., Springer, Berlin Heidelberg, 2010).
[11] U. Seifert, “Entropy production along a stochastic trajectory and an integral fluctuation theorem,” Phys. Rev. Lett. 95, 040602 (2005).
[12] U. Seifert, “Stochastic thermodynamics, fluctuation theorems and molecular machines,” Rep. Prog. Phys. 75, 126001 (2012).
[13] C. Van den Broeck and M. Esposito, “Ensemble and trajectory thermodynamics: A brief introduction,” Physica (Amsterdam) 418A, 6–16 (2015).
[14] John Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Rev. Mod. Phys. 77, 783–836 (2005).
[15] M. Ribezi-Crivellari and F. Ritort, “Free-energy inference from partial work measurements in small systems,” Proc. Natl. Acad. Sci. 111, 3386–3394 (2014).
[16] A. Alemany, M. Ribezi-Crivellari, and F. Ritort, “From free energy measurements to thermodynamic inference in nonequilibrium small systems,” New. J. Phys. 17, 075009 (2015).
[17] J. Bechhoefer, “Hidden Markov models for stochastic thermodynamics,” New. J. Phys. 17, 075003 (2015).
[18] R. García-García, L. Sourabh, and D. Lacoste, “Thermodynamic inference based on coarse-grained data or noisy measurements,” Phys. Rev. E 93, 032103 (2016).
[19] C. W. Wächtlert, P. Strasberg, and T. Brandes, “Stochastic thermodynamics based on incomplete information: generalized Jarzynski equality with measurement errors with or without feedback,” New J. Phys. 18, 113042 (2016).
[20] M. Polettini and M. Esposito, “Effective thermodynamics for a marginal observer,” Phys. Rev. Lett. 119, 240601 (2017).
[21] M. Polettini and M. Esposito, “Effective fluctuation and response theory,” J. Stat. Phys. (2019).
[22] M. Esposito, U. Harbola, and S. Mukamel, “Nonequilibrium fluctuations, fluctuation theorems and counting statistics in quantum systems,” Rev. Mod. Phys. 81, 1665 (2009).
[23] M. Campisi, P. Hänggi, and P. Talkner, “Colloquium: Quantum fluctuation relations: Foundations and applications,” Rev. Mod. Phys. 83, 771 (2011).
[24] M. Perarnau-Llobet, E. Bäumer, K. V. Hovhannisyan, M. Huber, and A. Acin, “No-go theorem for the characterization of work fluctuations in coherent quantum systems,” Phys. Rev. Lett. 118, 070601 (2017).
[25] L. Mazzola, G. De Chiara, and M. Paternostro, “Measuring the characteristic function of the work distribution,” Phys. Rev. Lett. 110, 230602 (2013).
[26] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and V. Vedral, “Extracting quantum work statistics and fluctuation theorems by single-qubit interferometry,” Phys. Rev. Lett. 110, 230601 (2013).
[27] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, and R. M. Serra, “Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system,” Phys. Rev. Lett. 113, 140601 (2014).
[28] P. Solinas and S. Gasparinetti, “Full distribution of work done on a quantum system for arbitrary initial states,” Phys. Rev. E 92, 042150 (2015).
[29] P. Solinas and S. Gasparinetti, “Probing quantum interference effects in the work distribution,” Phys. Rev. A 94, 052103 (2016).
[30] J. Cerrillo, M. Buser, and T. Brandes, “Nonequilibrium quantum transport coefficients and transient dynamics of full counting statistics in the strong-coupling and non-Markovian regimes,” Phys. Rev. B 94, 214308 (2016).
[31] F. Cerisola, Y. Margalit, S. Machluf, A. J. Roncarlia, J. P. Paz, and R. Folman, “Using a quantum work me-
term to test non-equilibrium fluctuation theorems,” Nat. Comm. 8, 1241 (2017).
[32] Johan Åberg, “Fully quantum fluctuation theorems,” Phys. Rev. X 8, 011019 (2018).
[33] R. S. Whitney, “Non-Markovian quantum thermodynamics: Laws and fluctuation theorems,” Phys. Rev. B 98, 085415 (2018).
[34] C. Jarzynski, H. T. Quan, and S. Rahav, “The quantum-classical correspondence principle for work distributions,” Phys. Rev. X 5, 031038 (2015).
[35] L. Zhu, Z. Gong, B. Wu, and H. T. Quan, “Quantum-classical correspondence principle for work distributions in a chaotic system,” Phys. Rev. E 93, 062108 (2016).
[36] I. García-Mata, A. J. Roncaglia, and D. A. Wisniacki, “Quantum-to-classical transition in the work distribution for chaotic systems,” Phys. Rev. E 95, 050102 (2017).
[37] Y. Utsumi, D. S. Golubev, M. Marthaler, K. Saito, T. Fujisawa, and G. Schön, “Bidirectional single-electron counting and the fluctuation theorem,” Phys. Rev. B 81, 125331 (2010).
[38] B. König, C. Rössler, M. Beck, M. Marthaler, D. S. Golubev, Y. Utsumi, T. Ihn, and K. Ensslin, “Irreversibility on the level of single-electron tunneling,” Phys. Rev. X 2, 011001 (2012).
[39] O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. V. Averin, and J. P. Pekola, “Test of the Jarzynski and Crooks fluctuation relations in an electronic system,” Phys. Rev. Lett. 109, 180601 (2012).
[40] G. Schaller, Open Quantum Systems Far from Equilibrium (Lect. Notes Phys., Springer, Cham, 2014).
[41] M. Esposito and S. Mukamel, “Fluctuation theorems for quantum master equations,” Phys. Rev. E 73, 046129 (2006).
[42] J. M. Horowitz, “Quantum-trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator,” Phys. Rev. E 85, 031110 (2012).
[43] J. M. Horowitz and J. M. R. Parrondo, “Entropy production along nonequilibrium quantum jump trajectories,” New J. Phys. 15, 085028 (2013).
[44] T. Benoist, V. Jakšić, P. Pautrat, and C.-A. Pillet, “On entropy production of repeated quantum measurements. I. General theory,” Comm. Math. Phys. 357, 77–123 (2018).
[45] G. Manzano, J. M. Horowitz, and J. M. R. Parrondo, “Quantum fluctuation theorems for arbitrary environments: Adiabatic and nonadiabatic entropy production,” Phys. Rev. X 8, 031037 (2018).
[46] J. Dalibard, Y. Castin, and K. Molmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992).
[47] C. W. Gardiner, A. S. Parkins, and P. Zoller, “Wave-function quantum stochastic differential equations and quantum-jump simulation methods,” Phys. Rev. A 46, 4363–4381 (1992).
[48] H. J. Carmichael, An Open Systems Approach to Quantum Optics (Lecture Notes, Springer, Berlin, 1993).
[49] F. W. J. Hekking and J. P. Pekola, “Quantum jump approach for work and dissipation in a two-level system,” Phys. Rev. Lett. 111, 093602 (2013).
[50] J. J. Alonso, E. Lutz, and R. Alessandro, “Thermodynamics of weakly measured quantum systems,” Phys. Rev. Lett. 116, 080403 (2016).
[51] C. Elouard, D. A. Herrera-Martí, M. Clusel, and A. Auffèves, “The role of quantum measurement in stochastic thermodynamics,” npj Quantum Inf. 3, 9 (2017).
[52] J. Dressel, A. Chantasri, A. N. Jordan, and A. N. Korotkov, “Arrow of time for continuous quantum measurement,” Phys. Rev. Lett. 119, 220507 (2017).
[53] C. Elouard, N. K. Bernardes, A. R. R. Carvalho, M. F. Santos, and A. Auffèves, “Probing quantum fluctuation theorems in engineered reservoirs,” New J. Phys. 19, 103011 (2017).
[54] S. K. Manikandan, C. Elouard, and A. N. Jordan, “Fluctuation theorems for continuous quantum measurements and absolute irreversibility,” Phys. Rev. A 99, 022117 (2019).
[55] C. Elouard and H. Mohammady, Thermodynamics in the Quantum Regime, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer, Switzerland, 2018) Title: Work, heat and entropy production along quantum trajectories.
[56] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Quantum circuit architecture,” Phys. Rev. Lett. 101, 060401 (2008).
[57] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Theoretical framework for quantum networks,” Phys. Rev. A 80, 022339 (2009).
[58] F. Costa and S. Shrapnel, “Quantum causal modelling,” New J. Phys. 18, 063032 (2016).
[59] O. Oreshkov and C. Giarmatzi, “Causal and causally separable processes,” New J. Phys. 18, 093020 (2016).
[60] J.-M. A. Allen, J. Barrett, D. C. Horsman, C. M. Lee, and R. W. Spekkens, “Quantum common causes and quantum causal models,” Phys. Rev. X 7, 031021 (2017).
[61] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M. Paternostro, and K. Modi, “Operational Markov condition for quantum processes,” Phys. Rev. Lett. 120, 040405 (2018).
[62] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M. Paternostro, and K. Modi, “Non-Markovian quantum processes: Complete framework and efficient characterization,” Phys. Rev. A 97, 012127 (2018).
[63] S. Milz, F. A. Pollock, and K. Modi, “Reconstructing non-Markovian quantum dynamics with limited control,” Phys. Rev. A 98, 012108 (2018).
[64] S. Milz, F. Sakuldee, F. A. Pollock, and K. Modi, “Kolmogorov extension theorem for (quantum) causal modelling and general probabilistic theories,” arXiv: 1712.02589 (2017).
[65] F. Sakuldee, S. Milz, F. A. Pollock, and K. Modi, “Non-Markovian quantum control as coherent stochastic trajectories,” J. Phys. A: Math. Theor. 51, 414014 (2018).
[66] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, “Quantum and information thermodynamics: A unifying framework based on repeated interactions,” Phys. Rev. X 7, 021003 (2017).
[67] R. Landauer, “Information is physical,” Phys. Today 44, 23 (1991).
[68] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, “Thermodynamics of information,” Nat. Phys. 11, 131–139 (2015).
[69] F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, “The second laws of quantum thermodynamics,” Proc. Natl. Acad. Sci. 112, 3275–3279 (2015).
[70] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, and S. Haroche, “Real-time quantum feedback prepares and stabilizes photon number states,” Nature 477, 73–77 (2011).

[71] X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J. M. Raimond, M. Brune, and S. Haroche, “Field locked to a fock state by quantum feedback with single photon corrections,” Phys. Rev. Lett. 108, 243602 (2012).

[72] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Transforming quantum operations: Quantum supermaps,” Europhys. Lett. 83, 30004 (2008).

[73] K. Modi, “Operational approach to open dynamics and quantifying initial correlations,” Sci. Rep. 2, 581 (2012).

[74] G. Lindblad, “Non-Markovian quantum stochastic processes and their entropy,” Commun. Math. Phys. 65, 281–294 (1979).

[75] L. Accardi, A. Frigerio, and J. T. Lewis, “Quantum stochastic processes,” Publ. RIMS Kyoto Univ. 18, 97 (1982).

[76] K. Kraus, States, Effects and Operations: Fundamentals of Quantum Theory (Springer-Verlag, Berlin Heidelberg, 1983).

[77] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

[78] A. S. Holevo, Statistical Structure of Quantum Theory (Springer-Verlag, Berlin Heidelberg, 2001).

[79] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010).

[80] K. Jacobs, Quantum Measurement Theory and its Applications (Cambridge University Press, Cambridge, 2014).

[81] W. F. Stinespring, “Positive functions on C*-algebras,” Proc. Am. Math. Soc. 6, 211–216 (1955).

[82] P. Strasberg and A. Winter, “Stochastic thermodynamics with arbitrary interventions,” arXiv: 1905.07990 (2019).

[83] W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” Rev. Mod. Phys. 75, 715–775 (2003).

[84] A. Uhlmann, “Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory,” Commun. Math. Phys. 54, 21–32 (1977).

[85] M. Ohya and D. Petz, Quantum Entropy and Its Use (Springer-Verlag, Heidelberg, 1993).

[86] T. Ando, “Majorization, doubly stochastic matrices, and comparison of eigenvalues,” Linear Algebra. Appl. 118, 163–248 (1989).

[87] O. E. Lanford and D. Robinson, “Mean entropy of states in quantum statistical mechanics,” J. Math. Phys. 9, 11201125 (1968).

[88] M. A. Nielsen, “Characterizing mixing and measurement in quantum mechanics,” Phys. Rev. A 63, 022114 (2001).

[89] K. Jacobs, “Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements,” Phys. Rev. A 80, 012322 (2009).

[90] I. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.-M. Raimond, and P. Rouchon, “Quantum feedback by discrete quantum nondemolition measurements: Towards on-demand generation of photon-number states,” Phys. Rev. A 80, 013805 (2009).

[91] Serge Haroche, “Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary,” Rev. Mod. Phys. 85, 1083–1102 (2013).

[92] M. O. Scully and M. Suhail Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

[93] G. Verley, M. Esposito, T. Willaert, and C. Van den Broeck, “The unlikely Carnot efficiency,” Nat. Comm. 5, 4721 (2014).

[94] T. Sagawa and M. Ueda, “Minimal energy cost for thermodynamic information processing: measurement and information erasure,” Phys. Rev. Lett. 102, 250602 (2009).

[95] K. Jacobs, “Quantum measurement and the first law of thermodynamics: The energy cost of measurement is the work value of the acquired information,” Phys. Rev. E 86, 040106 (2012).

[96] P. Kammerlander and J. Anders, “Coherence and measurement in quantum thermodynamics,” Sci. Rep. 6, 22174 (2016).

[97] S. Deffner, J. P. Paz, and W. H. Zurek, “Quantum work and the thermodynamic cost of quantum measurements,” Phys. Rev. E 94, 010103 (2016).

[98] K. Abdelkhalek, Y. Nakata, and D. Reeb, “Fundamental energy cost for quantum measurement,” arXiv:1609.06981 (2016).

[99] C. Elouard, D. Herrera-Martí, B. Huard, and A. Auffeves, “Extracting work from quantum measurement in Maxwell’s demon engines,” Phys. Rev. Lett. 118, 260603 (2017).

[100] S. An, J. N. Zhang, M. Un, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H. T. Quan, and K. Kim, “Experimental test of the quantum Jarzynski equality with a trapped-ion system,” Nat. Phys. 11, 193–199 (2015).

[101] B. Piechocinska, “Information erasure,” Phys. Rev. A 61, 062314 (2000).

[102] J. Kurchan, “A quantum fluctuation theorem,” arXiv: cond-mat/0007360 (2000).

[103] H. Tasaki, “Jarzynski relations for quantum systems and some applications,” arXiv: cond-mat/0009244 (2000).

[104] F. Barra, “The thermodynamic cost of driving quantum systems by their boundaries,” Sci. Rep. 5, 14873 (2015).

[105] H. Spohn, “Entropy production for quantum dynamical semigroups,” J. Math. Phys. 19, 1227–1230 (1978).

[106] T. M. Cover and J. A. Thomas, Elements of Information Theory (John Wiley & Sons, New York, 1991).

[107] M. Ribezi-Crivellari and F. Ritort, “Large work extraction and the Landauer limit in a continuous Maxwell demon,” Nat. Phys. 15, 660 – 664 (2019).

[108] D. A. Rodrigues, J. Imbers, and A. D. Armour, “Quantum dynamics of a resonator driven by a superconducting single-electron transistor: A solid-state analogue of the micromaser,” Phys. Rev. Lett. 98, 067204 (2007).

[109] M. Westig, B. Kubala, O. Parlavecchio, Y. Mukhasrsky, C. Altimiras, P. Joyez, D. Vion, P. Roche, D. Esteve, M. Hofheinz, M. Trif, P. Simon, J. Ankerhold, and F. Portier, “Emission of nonclassical radiation by inelastic Cooper pair tunneling,” Phys. Rev. Lett. 119, 137001 (2017).

[110] J. Anders and V. Giovannetti, “Thermodynamics of discrete quantum processes,” New J. Phys. 15, 033022 (2013).
[111] F. Binder, S. Vinjanampathy, K. Modi, and J. Goold, “Quantum thermodynamics of general quantum processes,” Phys. Rev. E 91, 032119 (2015).

[112] G. Manzano, J. M. Horowitz, and J. M. R. Parrondo, “Nonequilibrium potential and fluctuation theorems for quantum maps,” Phys. Rev. E 92, 032129 (2015).

[113] F. Barra and C. Ledó, “Stochastic thermodynamics of quantum maps with and without equilibrium,” Phys. Rev. E 96, 052114 (2017).

[114] J. Goold, M. Huber, A. Riera, L. del Río, and P. Skrzypczyk, “The role of quantum information in thermodynamics—a topical review,” J. Phys. A 49, 143001 (2016).

[115] M. Lostaglio, “Thermodynamic laws for populations and quantum coherence: A self-contained introduction to the resource theory approach to thermodynamics,” arXiv: 1807.11549 (2018).

[116] G. E. Crooks, “Quantum operation time reversal,” Phys. Rev. A 77, 034101 (2008).

[117] S. K. Manikandan and A. N. Jordan, “Time reversal symmetry of generalized quantum measurements with past and future boundary conditions,” Quantum Stud.: Math. Found. (2019).

[118] A. S. Trushchev and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” Europhys. Lett. 113, 30005 (2016).

[119] P. P. Hofer, M. Perarnau-Llobet, L. D. M. Miranda, G. Haack, R. Silva, J. Bohr Brask, and N. Brunner, “Markovian master equations for quantum thermal machines: local versus global approach,” New J. Phys. 20, 033005 (2018).

[120] A. Levy and D. Gelbwaser-Klimovsky, Thermodynamics in the Quantum Regime, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer, Switzerland, 2018) Title: Quantum features and signatures of quantum-thermal machines.

[121] J. Onam González, J. P. Palao, D. Alonso, and L. A. Correa, “Classical emulation of quantum-coherent thermal machines,” Phys. Rev. E 99, 062102 (2019).

[122] C. Emary, N. Lambert, and F. Nori, “Leggett-Garg inequalities,” Rep. Prog. Phys. 77, 039501 (2014).

[123] A. Smirne, D. Egloff, M. G. Díaz, M. B. Plenio, and S. F. Huelga, “Coherence and non-classicality of quantum Markov processes,” Quantum Sci. Technol. 4, 01LT01 (2018).

[124] P. Strasberg and M. G. Díaz, “Classical quantum stochastic processes,” arXiv: 1905.03018 (2019).

[125] S. Milz, D. Egloff, P. Taranto, T. Theurer, M. B. Plenio, A. Smirne, and S. F. Huelga, “When is a non-Markovian quantum process classical?” arXiv: 1907.05807 (2019).

[126] J. Roßnagel, S. T. Dawkins, K. N. Tölažzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, “A single-atom heat engine,” Science 352, 325–329 (2016).

[127] M. Lostaglio, “Quantum fluctuation theorems, contextuality, and work quasiprobabilities,” Phys. Rev. Lett. 120, 040602 (2018).

[128] H. J. D. Miller and J. Anders, “Leggett-Garg inequalities for quantum fluctuating work,” Entropy 20, 200 (2018).

[129] F. Morikoshi, “Information-theoretic temporal Bell inequality and quantum computation,” Phys. Rev. A 73, 052308 (2006).

[130] A. R. Usha Devi, H. S. Karthik, Sudha, and A. K. Rajagopal, “Macrorealism from entropic Leggett-Garg inequalities,” Phys. Rev. A 87, 052103 (2013).

[131] J. Oppenheim, M. Horodecki, P. Horodecki, and R. Horodecki, “Thermodynamical approach to quantifying quantum correlations,” Phys. Rev. Lett. 89, 180402 (2002).

[132] W. H. Zurek, “Quantum discord and Maxwell’s demons,” Phys. Rev. A 67, 012320 (2003).

[133] R. Allicki and M. Fannes, “Entanglement boost for extractable work from ensembles of quantum batteries,” Phys. Rev. E 87, 042123 (2013).

[134] K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and A. Acín, “Entanglement generation is not necessary for optimal work extraction,” Phys. Rev. Lett. 111, 240401 (2013).

[135] M. Perarnau-Llobet, K. V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, and A. Acín, “Extractable work from correlations,” Phys. Rev. X 5, 041011 (2015).

[136] G. Manzano, F. Plastina, and R. Zambrini, “Optimal work extraction and thermodynamics of quantum measurements and correlations,” Phys. Rev. Lett. 121, 120602 (2018).

[137] Rafael Sánchez and Markus Böttiker, “Optimal energy quanta to current conversion,” Phys. Rev. B 83, 085428 (2011).

[138] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, “Thermodynamics of a physical model implementing a Maxwell demon,” Phys. Rev. Lett. 110, 040601 (2013).

[139] F. Hartmann, P. Pfefeer, S. Höfling, M. Kamp, and L. Worschech, “Voltage fluctuation to current converter with Coulomb-coupled quantum dots,” Phys. Rev. Lett. 114, 146805 (2015).

[140] H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C. Heyn, W. Hansen, H. Buhmann, and L. W. Molenkamp, “Three-terminal energy harvester with coupled quantum dots,” Nat. Nanotechnol. 10, 854–858 (2015).

[141] J. V. Koski, A. Kutvonen, I. M. Khaymovich, T. Alasnissila, and J. P. Pekola, “On-chip Maxwell’s demon as an information-powered refrigerator,” Phys. Rev. Lett. 115, 260602 (2015).

[142] N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, “Quantum biology,” Nat. Phys. 9, 10–18 (2013).

[143] S. F. Huelga and M. B. Plenio, “Vibrations, quanta and biology,” Contemp. Phys. 54, 181–207 (2013).

[144] B. Bylicka, M. Tukiainen, J. Piilo, D. Chruscinski, and S. Maniscalco, “Thermodynamic meaning and power of non-Markovianity,” Sci. Rep. 6, 27089 (2016).

[145] P. Strasberg, G. Schaller, N. Lambert, and T. Brandes, “Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping,” New. J. Phys. 18, 073007 (2016).

[146] M. Wertnik, A. Chin, F. Nori, and N. Lambert, “Optimizing co-operative multi-environment dynamics in a dark-state-enhanced photosynthetic heat engine,” J. Chem. Phys. 149, 084112 (2018).

[147] A. Rivas, S. F. Huelga, and M. B. Plenio, “Quantum non-Markovianity: Characterization, quantification and detection,” Rep. Prog. Phys. 77, 094001 (2014).
[149] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, “Colloquium: Non-Markovian dynamics in open quantum systems,” Rev. Mod. Phys. 88, 021002 (2016).

[150] P. Strasberg and M. Esposito, “Non-Markovianity and negative entropy production rates,” Phys. Rev. E 99, 012120 (2019).

[151] G. Katz and R. Kosloff, “Quantum thermodynamics in strong coupling: Heat transport and refrigeration,” Entropy 18, 186 (2016).

[152] D. Newman, F. Mintert, and A. Nazir, “Performance of a quantum heat engine at strong reservoir coupling,” Phys. Rev. E 95, 032139 (2017).

[153] P. Strasberg and M. Esposito, “Stochastic thermodynamics in the strong coupling regime: An unambiguous approach based on coarse graining,” Phys. Rev. E 95, 062101 (2017).

[154] M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, and J. Eisert, “Strong coupling corrections in quantum thermodynamics,” Phys. Rev. Lett. 120, 120602 (2018).

[155] G. Schaller, J. Cerrillo, G. Engelhardt, and P. Strasberg, “Electronic Maxwell demon in the coherent strong-coupling regime,” Phys. Rev. B 97, 195104 (2018).

[156] P. Strasberg, G. Schaller, T. L. Schmidt, and M. Esposito, “Fermionic reaction coordinates and their application to an autonomous Maxwell demon in the strong-coupling regime,” Phys. Rev. B 97, 205405 (2018).

[157] S. Restrepo, J. Cerrillo, P. Strasberg, and G. Schaller, “From quantum heat engines to laser cooling: Floquet theory beyond the Born-Markov approximation,” New J. Phys. 20, 053063 (2018).

[158] P. Strasberg, “Repeated interactions and quantum stochastic thermodynamics at strong coupling,” arXiv: 1907.01804 (2019).