New Continuous Air Pumping Technique to Improve Clinical Outcomes of Descemet-Stripping Automated Endothelial Keratoplasty in Asian Patients with Previous Ahmed Glaucoma Valve Implantation

Chang-Min Liang, Yi-Hao Chen, Da-Wen Lu, Jiann-Torng Chen, Ming-Cheng Tai*
Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

Abstract

Background: To evaluate the outcomes of Descemet-stripping automated endothelial keratoplasty (DSAEK) with the use of continuous air pumping technique in Asian eyes with previous Ahmed glaucoma valve implantation.

Methods: The DSAEK procedure was modified in that complete air retention of the anterior chamber was maintained for 10 min using continuous air pumping at 30 mm Hg. The primary outcome measurement was graft survival, and postoperative clinical features including, rate of graft detachment, endothelial cell count, intraocular pressure (IOP), surgical time and cup/disc ratio were also recorded.

Results: A total of 13 eyes of 13 patients which underwent modified DSAEK and 6 eyes of 6 patients which underwent conventional DSAEK were included. There was a significant difference in graft survival curves between two groups (P = 0.029); the 1-year graft survival rates were estimated as 100% and 66.7% for patients with modified DSAEK and those with traditional DSAEK, respectively. The rate of graft detachment were 0% and 33.3% for the modified DSAEK and conventional DSAEK groups, respectively (P = 0.088). The significantly lowered surgical time for air tamponade was noted in the modified DSAEK group compared to that in the conventional DSAEK group [median (IQR): 10.0 (10.0, 10.0) min vs. 24.5 (22.0, 27.0) min; P < 0.001]. Postoperatively, patients in the modified DSAEK group had significantly lower IOP as compared to the conventional DSAEK group [12.0 (11.0, 15.0) mm Hg vs. 16.0 (15.0, 18.0) mm Hg; P = 0.047]. Modified DSAEK patients had higher endothelial cell counts as compared to conventional DSAEK patients [2148.0 (1964.0, 2218.0) vs. 1529.0 (713.0, 2014.0)], but the difference did not reach statistical significance (P = 0.072).

Conclusions: New continuous air pumping technique in DSAEK can be performed safely and effectively in patients with prior GDDs placement who have corneal failure.

Introduction

Patients who have had poor glaucoma control with frequent acute attacks and long-term high intraocular pressure (IOP) usually develop irreversible endothelial compromise and chronic corneal edema. [1] Implantation of glaucoma drainage devices (GDDs) have assumed an important role in the surgical treatment of complicated and refractory glaucoma. [2] However, patients with GDDs are at further risk for developing corneal endothelial failure, and corneal transplantation has been the only successful option to preserve vision. [2] Full-thickness penetrating keratoplasty (PKP) is commonly performed for visual rehabilitation; however, drawbacks of the procedure include prolonged visual recovery, risk of wound dehiscence and infection, development of secondary glaucoma, and high rates of graft failure. [3].

Endothelial keratoplasty has been developed an alternative to PKP for the treatment of corneal endothelial decompensation. [4] Recently, Descemet’s stripping automated endothelial keratoplasty (DSAEK) has been developed, and is rapidly becoming the procedure of choice in patients with corneal disease. [3] Advantages of DSAEK over PKP include rapid healing and visual recovery, smaller incision and hence a stronger wound after healing, better visual acuity, and lower risk of graft failure. [3,5,6] Though a relatively new procedure, excellent long-term outcomes have been reported. [7–9] Letko et al. [10] reviewed a consecutive series of 1050 primary DSAEK procedures and reported that in cases of unacceptable visual acuity after primary DSAEK repeat endothelial keratoplasty can improve vision in select patients. In addition, good outcomes have been reported with the use of
corneal donor tissue that is not suitable for PKP, thus increasing the potential donor pool. [11].

Despite the advantages of DSAEK, the procedure is more challenging in patients with prior glaucoma surgery, and in particular in those with tube shunt placement. [3,12–14] Potential complications in patients with prior tube shunts include the tube interfering with the placement of the graft, the tube providing a potential route for air to escape, inadequate air tamponade, possible graft detachment and papillary block glaucoma, and air migrating behind the pupil. [12].

Figure 1. Schematic illustration of the modified DSAEK procedure. A, B) Donor tissue insertion. C, D) Continuous air pumping. E, F) Drainage of interface fluid from venting incision.
doi:10.1371/journal.pone.0072089.g001
To overcome the challenges of DSAEK, we developed a modified DSAEK using a continuous air pumping technique. The purpose of this study is to report the clinical outcomes of the modified DSAEK in Asian patients with glaucoma and prior Ahmed tube placement using anterior segment optical coherence tomography (AS-OCT) as an assessment tool.

Materials and Methods

Patient Selection

The study was approved by the institutional review board and Independent Ethics Committee of Tri-Service General Hospital, and all patients gave written informed consent for the surgical intervention.

Figure 2. Modified DSAEK procedure. A) Preoperative image. B-D) Tube was cut intraoperatively. E) Descemet's stripping with 30 mm Hg pressure. F) Donor tissue insertion. G) Continuous air pumping (30 mm Hg for 10 min). H) Drainage of interface fluid from venting incision. I) Residual air bubble left at the end of the surgery. J) Image at 1 week postoperatively.

doi:10.1371/journal.pone.0072089.g002
procedures. As the study was a review of medical records, the requirement of informed consent for the study was waived.

The records of patients with refractory glaucoma and an existing Ahmed glaucoma valve whose IOP was controlled and had a cup/disc ratio, 0.7, but required corneal transplantation due to chronic corneal decompensation who had undergone DSAEK from May 2010 to December 2011 were retrospectively reviewed. Patients with preexisting ocular comorbidities that could result in less than optimal visual potential (e.g., optic atrophy, blindness) and those without complete follow-up were excluded. Patients were divided into 2 groups for analysis, those that received the modified DSAEK and those that received conventional DSAEK. The procedures and treatments were the same for both groups, except in the modified DSAEK group the continuous air pumping technique was used.

The presence of graft detachment within one day postoperatively, surgical time for air tamponade, as well as visual acuity, intraocular pressure (IOP), and endothelial cell count (ECC) at 1, 3, 6, and 12 months postoperatively were recorded. Modified surgical maneuvers and time used at the time of the procedure were also recorded. Additionally, the corneal grafts and tube positions were imaged in all cases with the Fourier-domain AS-OCT. The AS-OCT device yields 26000 A-scans per second, and has a depth resolution of 5.0 μm using an RTVue system (version 3.0, Optovue, Inc.).

The primary outcome measurement was graft survival, and postoperative clinical features were rate of graft detachment, endothelial cell counts, intraocular pressure (IOP), surgical time and cup/disc ratio.

Table 1. Characteristics of patients who received modified DSAEK and those who received conventional DSAEK.

	Modified DSAEK (n=13)	Conventional DSAEK (n=6)	P-value
Age (y)	66.0 (57.0, 68.0)	65.5 (57.0, 69.0)	0.930
Gender			
Female	6 (46.2)	4 (66.7)	0.629
Male	7 (53.9)	2 (33.3)	
OD/OS			
OD	8 (61.5)	3 (50.0)	1.000
OS	5 (38.5)	3 (50.0)	
Type of glaucoma			
Open angle	4 (30.8)	0 (0.0)	0.292
Uveitic	4 (30.8)	1 (16.7)	
Closed angle	5 (38.5)	5 (83.3)	
Prior PK			
0	4 (30.8)	0 (0.0)	0.119
1	7 (53.9)	3 (50.0)	
2	1 (7.7)	3 (50.0)	
3	1 (7.7)	0 (0.0)	
Ahmed tube location			
Anterior Chamber	10 (76.9)	5 (83.3)	1.000
Posterior chamber	3 (23.1)	1 (16.7)	
Follow-up time (month)	15.0 (10.0, 15.0)	18.5 (4.0, 19.0)	0.427

*Continuous data are presented as median (IQR),
*Categorical data are presented as number (%).
1Mann-Whitney U test;
Fisher’s exact test.

DSAEK, Descemet’s stripping automated endothelial keratoplasty.
doi:10.1371/journal.pone.0072089.t001

Modified DSAEK

The modified DSAEK in this study involved continuous air pumping/inflation to enhance graft adherence, rather than the commonly used single air pumping/inflation. Single air pumping has been associated with frequent air migration to the posterior...
Table 2. Postoperative clinical features compared between patients who received modified DSAEK and those who received conventional DSAEK.

Secondary outcomes	Modified DSAEK (n=13)	Conventional DSAEK (n=6)	P-value
Rate of graft detachment*	0/13 (0%)	2/6 (33.3%)	0.088
Preoperative IOP (mm Hg)*	14.0 (13.0, 18.0)	15.0 (15.0, 18.0)	0.627
Postoperative IOP (mm Hg)*	12.0 (11.0, 15.0)	16.0 (15.0, 18.0)	0.047
Difference of IOP (mm Hg)*	–2.0 (–3.0, –1.0)	0.0 (–2.0, 2.0)	0.289
Endothelial cell count*	2148.0 (1964.0, 2218.0)	1529.0 (713.0, 2014.0)	0.072
Surgical time for air tamponade*	10.0 (10.0, 10.0)	24.5 (22.0, 27.0)	<0.001†

*Categorical data are presented by counts and percentage.
† Continuous data are presented as median (IQR).
‡ Differences are calculated as postoperative IOP minus preoperative IOP.
§ Mann-Whitney U test.

DSAEK, Descemet’s stripping automated endothelial keratoplasty; IOP, intraocular pressure.
doi:10.1371/journal.pone.0072089.t002

Results

A total of 13 eyes of 13 patients which underwent modified DSAEK and 6 eyes of 6 patients which underwent conventional DSAEK were identified and included in the analysis. All eyes had prior Ahmed valve tube shunt placement. The median age of the patients who received modified DSAEK was 66 years (IQR, 57 to 68 years) and that of the patients who received conventional DSAEK was 65.5 years (IQR, 57 to 69 years). The clinical features of the 2 groups were not different (Table 1). Kaplan-Meier survival curves of graft survival are shown in Figure 3. There was a significant difference in graft survival curves between two groups \(P = 0.029 \); the 1-year graft survival rates were estimated as 100% and 66.7% for patients with modified DSAEK and those with traditional DSAEK, respectively. Postoperative clinical features results are shown in Table 2. In study group, all the grafts were attached on postoperative day 1 and corneal edema was resolved. In control group, two patients that experienced graft detachment underwent rebubbling with C3F8 on postoperative day 2 resulting in attachment of graft. The rate of graft detachment were 0% and 33.3% for the modified DSAEK and those with conventional DSAEK, respectively. Postoperative clinical features results are shown in Table 2. In study group, all the grafts were attached on postoperative day 1 and corneal edema was resolved. In control group, two patients that experienced graft detachment underwent rebubbling with C3F8 on postoperative day 2 resulting in attachment of graft. The rate of graft detachment were 0% and 33.3% for the modified DSAEK and conventional DSAEK groups, respectively \(P = 0.038 \). There were no cases of IOP elevation or papillary block immediately after surgery, but in 1 patient in control group loss of pressure control developed after the DSAEK. This patient required repeat Ahmed valve implantation to regain normal pressure control. No patients in the study developed swelling of the periorbital area.

After receiving DSAEK, patients in the modified DSAEK group had significantly lower IOP as compared to the conventional DSAEK group \(12.0 (11.0, 15.0) \) mm Hg vs. \(16.0 (15.0, 18.0) \) mm Hg \(P = 0.047 \). Moreover, patients in the modified DSAEK group had higher endothelial cell counts as compared to the conventional DSAEK group \(2148.0 (1964.0, 2218.0) \) vs. \(1529.0 (713.0, 2014.0) \) mm Hg. There were no cases of IOP elevation or papillary block immediately after surgery, but in 1 patient in control group loss of pressure control developed after the DSAEK. This patient required repeat Ahmed valve implantation to regain normal pressure control. No patients in the study developed swelling of the periorbital area.

Method, and compared by the log-rank test. The secondary outcomes were defined as postoperative clinical features, such as rate of graft detachment, surgical time for air tamponade, IOP, and endothelial cell count. The difference of IOP was calculated as postoperative IOP minus preoperative IOP. The comparisons between patients with modified DSAEK and those with conventional DSAEK were performed by the Mann-Whitney U test for continuous variables, and by the Fisher’s exact test for categorical variables. The statistical analyses were performed with SAS software version 9.2 (SAS Institute Inc., Cary, NC). A two-tailed \(P < 0.05 \) indicated statistical significance.
2014.0], but the difference did not reach statistical significance ($P=0.072$). Surgical time for air tamponade showed significant decrease in the modified DSAEK group compared to that in the conventional DSAEK group [median (IQR): 10.0 (10.0, 10.0) min vs. 24.5 (22.0, 27.0) min; $P<0.001$]. Other secondary outcome measures were not different between the groups (Table 2).

Preoperative position of the Ahmed valve and postoperative position of the graft and Ahmed valve were assessed with AS-OCT for all patients. Preoperative AS-OCT demonstrated the Ahmed tube position close to the endothelium causing endothelial failure (Fig. 4A). Postoperative AS-OCT revealed the wide open angle after synechiolysis and air tamponade (Fig 4B, C). The trimmed Ahmed tube was also visible with good function in AS-OCT image (Fig. 4D). Additionally, AS-OCT also allowed easily evaluating the angle (Fig. 4E).

Figure 4. Postoperative follow-up AS-OCT images. A) Ahmed tube position close to the endothelium causing endothelial failure. B) Peripheral anterior synechiae (PAS). C) Wide open angle after synechiolysis and air tamponade. D) Position of Ahmed tube. E) Position of graft and evaluation of angle.

doi:10.1371/journal.pone.0072089.g004
Discussion

Patients with refractory or intractable glaucoma may receive implantation of a glaucoma drainage device; however, endothelial failure and chronic corneal edema may still develop in these patients requiring subsequent corneal transplantation as the ultimate treatment for preserving vision. In this study we have reported good outcomes in 13 patients with prior Ahmed valve placement who underwent a modified DSAEK with the use of a continuous air pumping technique. In our series, there was no primary graft failure, no detachment of graft, no postoperative increase of IOP, no papillary block glaucoma, and no postoperative increase of cup/disc ratio.

DSAEK has rapidly gained acceptance as the preferred procedure in patients with corneal disease. However, the most common postoperative complication after DSAEK is donor detachment and this has been shown to depend on the surgeon’s experience and complexity of the patient, with higher rates at the initial portion of the learning curve. In a recent report with a larger study population, Goshe et al. [15] found the rate of graft dislocation in patients with prior glaucoma surgery was significantly higher than in control eyes (9% vs. 2%; P=0.008). This complication eventually increased the failure rate of graft.

In this study, the post-operative IOP was maintained at therapeutic levels in all patients except 1, and 3 patients had a decreased requirement of glaucoma medications after surgery. The possible mechanisms for the control of IOP and graft success included the Ahmed tube provides effective IOP control postoperatively and synechiolysis and intracameral air tamponade during DSAEK not only supports the donor tissue, but also expands the anterior chamber angle. This wide open angle may induce functional recovery of the trabecular meshwork and improve aqueous humor drainage.

AS-OCT is a newly developed method for measuring the anterior chamber angle that is safe and simpler to perform than gonioscopy. We recently reported that AS-OCT provided excellent reproducibility for the quantitative measurement of anterior chamber angles before and after cataract surgery. In this study, we used AS-OCT to assess the variation in angle changes related to DSAEK and found that the technique is useful to determine tube position when there is corneal opacity near the limbus.

Limitations of this study include a small number of patients, relatively short follow-up period, and all surgeries were performed at a single center.

Conclusions

The results of this study indicate that modified DSAEK can be performed safely and effectively in patients with glucoma and prior GDDs placement who have corneal failure. The procedure has a low rate of complications and results in good IOP control.

Author Contributions

Conceived and designed the experiments: MCT. Performed the experiments: CML. Analyzed the data: YHC. Contributed reagents/materials/analysis tools: DWL, JTC. Wrote the paper: MCT.

References

1. Leung EW, Medeiros FA, Weinreb RN (2008) Prevalence of ocular surface disease in glaucoma patients. J Glaucoma 17: 350–355.

2. Ayyala RS, Zurakowski D, Smith JA, Monshizadeh R, Netland PA, et al. (1998) A clinical study of the Ahmed glaucoma valve implant in advanced glaucoma. Ophthalmology 105: 1968–1976.
3. Banitt MR, Chopra V (2010) Descemet’s stripping with automated endothelial keratoplasty and glaucoma. Curr Opin Ophthalmol 21: 144–149.
4. Topouzis F, Coleman AL, choplin N, Bethlem MM, Hill R, et al. (1999) Follow-up of the original cohort with the Ahmed glaucoma valve implant. Am J Ophthalmol 128: 190–204.
5. Ang M, Mehta JS, Anshu A, Wong HK, Htoo HM, et al. (2012) Endothelial cell counts after Descemet’s stripping automated endothelial keratoplasty versus penetrating keratoplasty in Asian eyes. Clin Ophthalmol 6: 537–544.
6. Li JY, Terry MA, Goshe J, Davis-Boozer D, Shanime N (2012) Three-year visual acuity outcomes after Descemet’s stripping automated endothelial keratoplasty. Ophthalmology 2012 Feb 24. Epub ahead of print.
7. Wu EI, Ritterband DC, Yu G, Shields RA, Seedor JA (2012) Graft rejection following descemet stripping automated endothelial keratoplasty: features, risk factors, and outcomes. Am J Ophthalmol 153: 949–957.
8. Ratanasit A, Gorovoy MS (2011) Long-term results of Descemet stripping automated endothelial keratoplasty. Cornea 30: 1414–1418.
9. Price MO, Gorovoy M, Price FW Jr, Benitez BA, Menegay HJ, et al. (2012) Descemet’s stripping automated endothelial keratoplasty: three-year graft and endothelial cell survival compared with penetrating keratoplasty. Ophthalmology 2012 Oct 27. Epub ahead of print.
10. Leiko E, Price DA, Lindoso EM, Price MO, Price FW Jr (2011) Secondary graft failure and repeat endothelial keratoplasty after Descemet’s stripping automated endothelial keratoplasty. Ophthalmology 118: 310–314.
11. Phillips PM, Terry MA, Shamiento N, Chen ES, Hoar KL, et al. (2009) Descemet’s stripping automated endothelial keratoplasty (DSAEK) using corneal donor tissue not acceptable for use in penetrating keratoplasty as a result of anterior stromal scars, pterygia, and previous corneal refractive surgical procedures. Cornea 28: 871–876.
12. Ie T, Yoo SH, Leng T, O’Brien TP (2009) Subconjunctival air leakage after Descemet’s stripping automated endothelial keratoplasty (DSAEK) in a post trabeculectomy eye. Open Ophthalmol J 3: 1–2.
13. Kim P, Amiran MD, Lichtinger A, Yeung SN, Slomovic AR, et al. (2012) Outcomes of Descemet stripping automated endothelial keratoplasty in patients with previous glaucoma drainage device insertion. Cornea 31: 172–175.
14. Phillips PM, Terry MA, Shamiento N, Chen ES, Hoar K, et al. (2010) Descemet stripping automated endothelial keratoplasty in eyes with previous trabeculectomy and tube shunt procedures: intraoperative and early postoperative complications. Cornea 29: 534–540.
15. Goshe JM, Terry MA, Li JY, Straiko MD, Davis-Boozer D (2012) Graft Dislodgement and Hypotony after Descemet’s Stripping Automated Endothelial Keratoplasty in Patients with Previous Glaucoma Surgery. Ophthalmology 119: 1130–1133.
16. Quek DT, Wong T, Tan D, Mehta JS (2011) Corneal graft survival and intraocular pressure control after Descemet stripping automated endothelial keratoplasty in eyes with pre-existing glaucoma. Am J Ophthalmol 152: 49–54.
17. Esquezani S, Rand W (2010) Safety of DSAEK in patients with previous glaucoma filtering surgery. J Glaucoma 19: 219–220.
18. Rine KM, Sugar J, Tu EY, Winerisky JT, et al. (2009) Early results of Descemet-stripping and automated endothelial keratoplasty (DSAEK) in patients with glaucoma drainage devices. Cornea 28: 959–962.
19. Jangi AA, Ritterband DC, Wu EI, Mehta VV, Koplin RS, et al. (2012) Descemet stripping automated endothelial keratoplasty after failed penetrating keratoplasty. Cornea 2012 Feb 21. Epub ahead of print.
20. Bory PY, Mehta JS, Ho CI, Tan DT, Wong TT (2012) Outcomes of trabeculectomy after Descemet stripping automated endothelial keratoplasty: a comparison with penetrating keratoplasty. Am J Ophthalmol 2012 Mar 5. Epub ahead of print.
21. Anshu A, Price MO, Price FW (2012) Descemet’s stripping endethelial keratoplasty: long-term graft survival and risk factors for failure in eyes with preexisting glaucoma. Ophthalmology 119: 1902–1907.
22. Anshu A, Price MO, Price FW Jr (2012) Risk of corneal transplant rejection significantly reduced with Descemet’s membrane endothelial keratoplasty. Ophthalmology 119: 536–540.
23. Guerra FP, Anshu A, Price MO, Giebel AW, Price FW (2011) Descemet’s membrane endothelial keratoplasty: prospective study of 1-year visual outcomes, graft survival, and endothelial cell loss. Ophthalmology 118: 2368–2373.
24. Karimian F, Sadoughi MM (2010) Air-assisted descemet stripping automated endothelial keratoplasty with posterior chamber fixation of an aphakic iris-claw lens. J Ophthalmic Vis Res 5: 205–210.
25. Tai MC, Chien KH, Lu DW, Chen JT (2010) Angle changes before and after cataract surgery assessed by Fourier-domain anterior segment optical coherence tomography. J Cataract Refract Surg 36: 1758–1762.