Every planar graph without i-cycles adjacent simultaneously to j-cycles and k-cycles is DP-4-colorable when $\{i, j, k\} = \{3, 4, 5\}$.

Pongpat Sittitrai

*Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand

E-mail address: pongpat_s@kkumail.com

Kittikorn Nakprasit *

*Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand

E-mail address: kitnak@hotmail.com

Abstract

DP-coloring is a generalization of a list coloring in simple graphs. Many results in list coloring can be generalized in those of DP-coloring. Kim and Ozeki showed that planar graphs without k-cycles where $k = 3, 4, 5$, or 6 are DP-4-colorable. Recently, Kim and Yu extended the result on 3- and 4-cycles by showing that planar graphs without triangles adjacent to 4-cycles are DP-4-colorable. Xu and Wu showed that planar graphs without 5-cycles adjacent simultaneously to 3-cycles and 4-cycles are 4-choosable. In this paper, we extend the result on 5-cycles and triangles adjacent to 4-cycles by showing that planar graphs without i-cycles adjacent simultaneously to j-cycles and k-cycles are DP-4-colorable when $\{i, j, k\} = \{3, 4, 5\}$. This also generalizes the result of Xu and Wu.

*Corresponding Author
1 Introduction

Every graph in this paper is finite, simple, and undirected. Embedding a graph G in the plane, we let $V(G)$, $E(G)$, and $F(G)$ denote the vertex set, edge set, and face set of G. For $U \subseteq V(G)$, we let $G[U]$ denote the subgraph of G induced by U. For $X, Y \subseteq V(G)$ where X and Y are disjoint, we let $E_G(X, Y)$ be the set of all edges in G with one endpoint in X and the other in Y.

The concept of choosability was introduced by Vizing in 1976 [10] and by Erdős, Rubin, and Taylor in 1979 [5], independently. A k-list assignment L of a graph G assigns a list $L(v)$ (a set of colors) with $|L(v)| = k$ to each vertex v. A graph G is L-colorable if there is a proper coloring f where $f(v) \in L(v)$. If G is L-colorable for every k-assignment L, then we say G is k-choosable.

Dvořák and Postle [4] introduced a generalization of list coloring in which they called a correspondence coloring. But following Bernshteyn, Kostochka, and Pron [3], we call it a DP-coloring.

Definition 1. Let L be an assignment of a graph G. We call H a cover of G if it satisfies all the followings:

(i) The vertex set of H is $\bigcup_{u \in V(G)} (\{u\} \times L(u)) = \{(u, c) : u \in V(G), c \in L(u)\}$;

(ii) $H[u \times L(u)]$ is a complete graph for every $u \in V(G)$;

(iii) For each $uv \in E(G)$, the set $E_H(\{u\} \times L(u), \{v\} \times L(v))$ is a matching (maybe empty).

(iv) If $uv \notin E(G)$, then no edges of H connect $\{u\} \times L(u)$ and $\{v\} \times L(v)$.

Definition 2. An (H, L)-coloring of G is an independent set in a cover H of G with size $|V(G)|$. We say that a graph is DP-k-colorable if G has an (H, L)-coloring for every k-assignment L and every cover H of G. The DP-chromatic number of G, denoted by $\chi_{DP}(G)$, is the minimum number k such that G is DP-k-colorable.

If we define edges on H to match exactly the same colors in $L(u)$ and $L(v)$ for each $uv \in E(H)$, then G has an (H, L)-coloring if and only if G is L-colorable. Thus DP-coloring is a generalization of list coloring. This also implies that $\chi_{DP}(G) \geq \chi_l(G)$. In fact, the difference of these two chromatic numbers can be arbitrarily large. For graphs with average degree d, Bernshteyn [2] showed that $\chi_{DP}(G) = \Omega(d/\log d)$, while Alon [1] showed that $\chi_l(G) = \Omega(\log d)$.

Dvořák and Postle [4] showed that $\chi_{DP}(G) \leq 5$ for every planar graph G. This extends a seminal result by Thomassen [8] on list colorings. On the other hand, Voigt [11] gave an
example of a planar graph which is not 4-choosable (thus not DP-4-colorable). It is of interest to obtain sufficient conditions for planar graphs to be DP-4-colorable. Kim and Ozeki \cite{6} showed that planar graphs without k-cycles are DP-4-colorable for each $k = 3, 4, 5, 6$. Kim and Yu \cite{7} extended the result on 3- and 4-cycles by showing that planar graphs without triangles adjacent to 4-cycles are DP-4-colorable. In this paper, we extend the result on 5-cycles and triangles adjacent to 4-cycles by showing that planar graphs without i-cycles adjacent simultaneously to j-cycles and k-cycles are DP-4-colorable when $\{i, j, k\} = \{3, 4, 5\}$.

Theorem 1. Every planar graph without i-cycles adjacent simultaneously to j-cycles and k-cycles is DP-4-colorable when $\{i, j, k\} = \{3, 4, 5\}$.

Theorem \ref{thm:1} generalizes the result of Xu and Wu \cite{9} as follows.

Corollary 3. Every planar graphs without 5-cycles adjacent simultaneously to 3-cycles and 4-cycles is 4-choosable.

2 Structure Obtained from Condition on Cycles

First, we introduce some notations and definitions. A k-vertex (k^+-vertex, k^--vertex, respectively) is a vertex of degree k (at least k, at most k, respectively. The same notations are applied to faces. A (d_1, d_2, \ldots, d_k)-face f is a face of degree k where all vertices on f have degree d_1, d_2, \ldots, d_k in any arbitrary order. A (d_1, d_2, \ldots, d_k)-vertex v is a vertex of degree k where all faces incident to v have degree d_1, d_2, \ldots, d_k in any arbitrary order. A graph $C(m, n)$ is a plane graph obtained from an $(m+n-2)$-cycle with one chord such that internal faces have length m and n. A graph $C(l, m, n)$ is a plane graph obtained from an $(l+m+n-4)$-cycle with two chords such that internal faces have length $l, m,$ and n where a middle face has length m. Note that each $C(l, m, n)$ is not necessary unique. For example, there are two non isomorphic graphs that are $C(3, 4, 3)$.

Let G be a graph without i-cycles adjacent simultaneously to j-cycles and k-cycles where $\{i, j, k\} = \{3, 4, 5\}$ The following property is straightforward.

Proposition 4. G does not contain $C(3, 4), C(3, 3, 3), \text{ and } C(3, 3, 5)$.

Proposition \ref{prop:4} yields the following immediate consequence.

Proposition 5. If v be an n-vertex in G, then v in G is incident to at most $n - 2$ 3-faces.
3 Structure of Minimal Non DP-4-colorable Graphs

Definition 6. Let H be a cover of G with list assignment L. Let $G' = G - F$ where F is an induced subgraph of G. A list assignment L' is a restriction of L on G' if $L'(u) = L(u)$ for each vertex in G'. A graph H' is a restriction of H on G' if $H' = H[\{v \times L(v) : v \in V(G')\}]$. Assume G' has an (H', L')-coloring with an independent set I' in H' such that $|I'| = |V(G)| - |V(F)|$.

A residual list assignment L^* of F is defined by

$$L^*(x) = L(x) - \bigcup_{ux \in E(G)} \{c' \in L(x) : (u, c)(x, c') \in M_{L,ux} \text{ and } (u, c) \in I'\}$$

for each $x \in V(F)$.

A residual cover H^* is defined by $H^* = H[\{x \times L^*(x) : x \in V(F)\}]$.

From above definitions, we have the following fact.

Lemma 7. A residual cover H^* is a cover of F with an assignment L^*. Furthermore, if F is (H^*, L^*)-colorable, then G is (H, L)-colorable.

Proof. One can check from the definition of a cover and residual cover that H^* is a cover of F with an assignment L^*.

Suppose that F is $H^*(L^*)$-colorable. Then H^* has an independent set I^* with $|I^*| = |F|$. It follows from Definition 6 that no edges connect H^* and I'. Additionally, I' and I^* are disjoint. Altogether, we have that $I = I' \cup I^*$ is an independent set in H with $|I| = (|V(G)| - |V(F)|) + |V(F)| = |V(G)|$. Thus G is (H, L)-colorable.

From now on, let G be a minimal non DP-4-colorable graph.

Lemma 8. Every vertex in G has degree at least 4.

Proof. Suppose to the contrary that G has a vertex x degree at most 3. Let L be a 4-assignment and let H be a cover of G such that G has no (H, L)-coloring. By the minimality of G, the subgraph $G' = G - x$ admits where L' (H') is a restriction of L (H) in G'. Thus there is an independent set I' with $|I'| = |G'|$ in H'. Consider a residual list assignment L^* on x. Since $|L(x)| = 4$ and $d(x) \leq 3$, we obtain $|L^*(x)| \geq 1$. Clearly, $\{(x, c)\}$ is an independent set in $G[x]$ where $c \in L^*(x)$. Thus $G[x]$ is (H^*, L^*)-colorable. It follows from Lemma 7 that the graph G is (H, L)-colorable, a contradiction.

Lemma 9. If F is an induced subgraph of G obtained from a cycle $x_1x_2 \ldots x_m x_1$ and k chords $x_1x_i, x_1x_i, \ldots, x_1x_k$, then $d(x_1) \geq k + 4$ or $d(x_i) \geq 5$ for some $i \in \{2, 3, \ldots, m\}$
Proof. Suppose to the contrary that \(d(x_i) \leq k + 3 \) and \(d(x_i) \leq 4 \) for \(i = 2, 3, \ldots, m \).
Let \(L \) be a 4-assignment and let \(H \) be a cover of \(G \) such that \(G \) has no \((H, L)\)-coloring.
By the minimality of \(G \), the subgraph \(G' = G - F \) admits an \((H', L')\)-coloring where \(L' \) \((H')\) is a restriction of \(L \) \((H)\) in \(G' \). Thus there is an independent set \(I' \) with \(|I'| = |G'|\) in \(H' \). Consider a residual list assignment \(L^* \) on \(x \). Since \(|L(v)| = 4\) for every \(v \in V(G) \), we have \(|L^*(x_1)|, |L^*(x_i)|, |L^*(x_k)|, \ldots, |L^*(x_k)| \geq 3\) and \(|L^*(x_i)| \geq 2\) for remaining vertices in \(H \). Let \(H^* \) be an residual cover of \(F \). We can choose a color \(c \) from \(L^*(x_1) \) such that \(|L^*(x_m) - \{\ f' : (x_1, c)(x_m, c') \in H^* \}| \geq 2\). By choosing colors of \(x_2, x_3, \ldots, x_m \) in this order, we obtain an independent set \(I^* \) with \(|I^*| = m = |F|\). Thus \(F \) is \((H^*, L^*)\)-colorable. It follows from Lemma 7 that the graph \(G \) is \((H, L)\)-colorable, a contradiction. \(\square \)

By Lemma 9 we obtain the lower bound of the number of incident faces of a 6-vertex that are incident to at least two \(5^+ \)-vertices.

Corollary 10. Every 6-vertex \(v \) in \(G \) has at least two incident faces of \(v \) that are incident to at least two \(5^+ \)-vertices.

4 Main Result

Theorem 2. Every planar graph without \(i \)-cycles is adjacent simultaneously to \(j \)-cycles and \(k \)-cycles is DP-4-colorable when \(\{i, j, k\} = \{3, 4, 5\} \).

Proof. Suppose that \(G \) is a minimal counterexample. Then each vertex in \(G \) is a \(4^+ \)-vertex by Lemma 8. The discharging process is as follows. Let the initial charge of a vertex \(u \) in \(G \) be \(\mu(u) = 2d(u) - 6 \) and the initial charge of a face \(f \) in \(G \) be \(\mu(f) = d(f) - 6 \). Then by Euler’s formula \(|V(G)| - |E(G)| + |F(G)| = 2\) and by the Handshaking lemma, we have

\[
\sum_{u \in V(G)} \mu(u) + \sum_{f \in F(G)} \mu(f) = -12.
\]

Now, we establish a new charge \(\mu^*(x) \) for all \(x \in V(G) \cup F(G) \) by transferring charge from one element to another and the summation of new charge \(\mu^*(x) \) remains \(-12\). If the final charge \(\mu^*(x) \geq 0 \) for all \(x \in V(G) \cup F(G) \), then we get a contradiction and the proof is completed.

Let \(w(v \to f) \) be the charge transferred from a vertex \(v \) to an incident face \(f \). A 4-vertex \(v \) is flaw if \(v \) is a \((3, 3, 5, 5^+)\)-vertex. The discharging rules are as follows.

(R1) Let \(f \) be a 3-face.
\(w(v \rightarrow f) = \begin{cases}
0.6, & \text{if } v \text{ is flaw and } f \text{ is a } (4, 5^+, 5^+)-\text{face,} \\
0.8, & \text{if } v \text{ is flaw and } f \text{ is a } (4, 4^+)-\text{face,} \\
1, & \text{otherwise.}
\end{cases}\)

\((R1.2)\) For a 5\(^+\)-vertex \(v\),
\[w(v \rightarrow f) = \begin{cases}
1.4, & \text{if } f \text{ is a } (4, 4, 5^+)-\text{face with two incident flaw vertices,} \\
1.2, & \text{if } f \text{ is a } (4, 4^+, 5^+)-\text{face with exactly one flaw vertex,} \\
1, & \text{otherwise.}
\end{cases}\]

\((R2)\) Let \(f\) be a 4-face.
For a 4\(^+\)-vertex \(v\), \(w(v \rightarrow f) = 0.5\).

\((R3)\) Let \(f\) be a 5-face.
\((R3.1)\) For a 4-vertex \(v\),
\[w(v \rightarrow f) = \begin{cases}
0, & \text{if } v \text{ is flaw vertex with four 4-neighbors,} \\
0.1, & \text{if } v \text{ is flaw vertex with exactly one } 5^+\text{-neighbor,} \\
0.2, & \text{if } v \text{ is flaw vertex with at least two } 5^+\text{-neighbors,} \\
0.2, & \text{if } v \text{ is a } (3, 5, 5, 4)-\text{vertex,} \\
1/3, & \text{otherwise.}
\end{cases}\]

\((R3.2)\) For a 5-vertex \(v\),
\[w(v \rightarrow f) = \begin{cases}
0.7, & \text{if } f \text{ is a } (4, 4, 4, 4, 5)-\text{face with five adjacent } 4^-\text{-faces,} \\
0.6, & \text{if } f \text{ is a } (4, 4, 4, 4, 5)-\text{face and at least one adjacent } 5^+\text{-face,} \\
0.4, & \text{if } f \text{ is a } (4, 4, 4, 5, 5^+)-\text{face with both incident } 5^+\text{-vertices are adjacent} \\
0.3, & \text{otherwise.}
\end{cases}\]

\((R3.3)\) For a 6\(^+\)-vertex \(v\),
\[w(v \rightarrow f) = \begin{cases}
0.8, & \text{if } f \text{ is a } (4, 4, 4, 4, 6^+)-\text{face,} \\
0.4, & \text{if } f \text{ is incident to a } 5^+\text{-vertex other than } v.
\end{cases}\]

It remains to show that resulting \(\mu^\ast(x) \geq 0\) for all \(x \in V(G) \cup F(G)\). Moreover, it is evident for each 6\(^+\)-face \(f\) that \(\mu^\ast(f) \geq 0\).

CASE 1: A 4-vertex \(v\).
We use \((R1.1)\), \((R2)\), and \((R3.1)\) to prove this case.

SUBCASE 1.1: \(v\) is a flaw vertex, that is a \((3, 3, 5, 5^+)-\text{vertex.}\)
If each adjacent vertex of \(v\) is a 4-vertex, then \(\mu^\ast(v) \geq \mu(v) - 2 \times 1 = 0\). If \(v\) is
adjacent to exactly one 5^+-vertex, then we obtain $\mu^*(v) \geq \mu(v) - 1 - 0.82 \times 0.1 = 0$. Now, assume v is adjacent to at least two 5^+-vertices. If v is incident to a $(4,5^+,5^+)$-face, then $\mu^*(v) \geq \mu(v) - 1 - 0.6 - 2 \times 0.2 = 0$, otherwise, $\mu^*(v) \geq \mu(v) - (2 \times 0.8 + 2 \times 0.2) = 0$.

SUBCASE 1.2: v is not a flaw vertex.

If v is not incident to any 3-face, then $\mu^*(v) \geq \mu(v) - (4 \times 0.5 = 0$. It follows from Proposition 4 that any 4-face, then $\mu^*(v) \geq \mu(v) \geq \mu(v) - 1 - 0.6 - 2 \times 0.2 = 0$. This implies that v is incident to at least two 3-faces by Corollary 10. Thus $\mu^*(v) \geq \mu(v) - 1 - 3 \times 1/3 = 0$. If v is incident to two 3-faces, then the remaining two incident faces are 6^+ by Proposition 4. Thus $\mu^*(v) \geq \mu(v) - 2 \times 1 = 0$.

CASE 2: Consider a 5-vertex v.

We use (R1.2), (R2.2), and (R3.2) to prove this case.

If v is incident to some 3-face in $C(3,3)$, then two incident faces of v are 6^+-faces by Proposition 4. Thus $\mu^*(v) \geq \mu(v) - 1 - 4 \times 0.6 > 0$. Now, assume v is not incident to $C(3,3)$. This implies that v is adjacent to at most two 3-faces.

SUBCASE 2.1: v is incident to at most one 3-face.

If v is not incident to any 4-face, then each incident 5-face of v is adjacent to some 5-face. Thus $\mu^*(v) \geq \mu(v) - 1 - 4 \times 0.6 > 0$. If v is incident to at least one 4-face, then $\mu^*(v) \geq \mu(v) - 1 - 3 \times 0.7 - 0.5 = 0$.

SUBCASE 2.2: v is incident to two 3-faces.

Let v be incident to faces f_1, f_2, \ldots, f_5 in a cyclic order where f_1 and f_3 are 3-faces. It follows from Proposition 4 that $f_2, f_4,$ and f_5 are 5^+-faces. Assume f_1 and f_3 are $(4,4,5)$-faces. It follows from Corollary 10 that f_2 is incident to at least two non-adjacent 5^+-vertices. If either f_4 or f_5 is incident to one 5^+-vertex, then the other is incident to at least one non-adjacent two 5^+-vertices by Corollary 10. Thus $\mu^*(v) \geq \mu(v) - 2 \times 1.4 - 0.6 - 2 \times 0.3 > 0$. If both f_4 and f_5 are incident to at least two 5^+-vertices, then $\mu^*(v) \geq \mu(v) - 2 \times 1.4 - 2 \times 0.4 - 0.3 > 0$. If f_1 (or f_3) is a $(5,5^+,5^+)$-face, then f_2 and f_5 (or f_4) are incident to at least two 5^+-vertices. Thus $\mu^*(v) \geq \mu(v) - 1.4 - 1 - 0.6 - 2 \times 0.4 > 0$.

Assume that both f_1 and f_3 are $(4,5,5^+)$-faces where 5^+-vertex other than v are x and y. If x and y are not in f_2, then both f_4 and f_5 are adjacent to at least two 5^+-vertices. Thus $\mu^*(v) \geq \mu(v) - 2 \times 1.2 - 0.7 - 2 \times 0.4 > 0$. If x and y are in f_2, then $\mu^*(v) \geq \mu(v) - 2 \times 1.2 - 2 \times 0.6 - 0.3 > 0$. If exactly one of x and y is in f_2, then $\mu^*(v) \geq \mu(v) - 2 \times 1.2 - 0.6 - 2 \times 0.4 > 0$.

Assume that exactly one of f_1 and f_3 is a $(4,5,5^+)$-face where 5^+-vertex other than v is
w and w is in f_2. It follows from Corollary 10 that at least one of f_4 and f_5 is incident to at least two 5^+-vertices. If f_4 or f_5 is incident to at least two 5^+-vertices and two of them are not adjacent, then $\mu^*(v) \geq \mu(v) - 1.4 - 1.2 - 0.6 - 0.4 - 0.3 > 0$, otherwise f_4 and f_5 are incident to at least two 5^+-which implies $\mu^*(v) \geq \mu(v) - 1.4 - 1.2 - 3 \times 0.4 > 0$.

Assume that exactly one of f_1 and f_5 is a $(4, 5, 5^+)$-face where 5^+-vertex other than v is w and w is in f_5. It follows that one of f_2 and f_4 is incident to at least two 5^+-vertices. If f_2 is incident at least two 5^+-vertices, then two of them are not adjacent. Thus $\mu^*(v) \geq \mu(v) - 1.4 - 1.2 - 0.6 - 0.4 - 0.3 > 0$. If f_5 is incident to at least two 5^+-vertices, then two of them are not adjacent or two of them are not not adjacent. Thus $\mu^*(v) \geq \mu(v) - 1.4 - 1.2 - 0.7 - 0.4 - 0.3 = 0$.

CASE 3: A 6-vertex v.

We use (R1.2), (R2.2), and (R3.3) to prove this case.

SUBCASE 3.1: v is incident to $C(3, 3)$.

It follows from Proposition 1(b) that v is incident to at least two 6^+-faces. Then $\mu^*(v) \geq \mu(v) - 4 \times 1.4 > 0$.

SUBCASE 3.2: v is not incident to $C(3, 3)$.

It follows that v is incident at most three 3-faces. If v is incident to at most two 3-faces, then $\mu^*(v) \geq \mu(v) - 2 \times 1.4 - 4 \times 0.8 = 0$. Assume v is incident to three 3-faces. By Proposition 1(a), v is not incident to any 4-face. If v is incident to at least one 6$^+$-face, then $\mu^*(v) \geq \mu(v) - 3 \times 1.4 - 2 \times 0.8 > 0$. Now, it remains to consider the case that v is a $(3, 3, 3, 5, 5, 5)$-vertex. By Corollary 10, two of incident faces of v, say f_1 and f_2 (not necessary adjacent), are incident to at least two 5^+-vertices. If f_1 and f_2 are 5^+-faces, then $\mu^*(v) \geq \mu(v) - 3 \times 1.4 - 0.8 - 2 \times 0.4 > 0$. If f_1 or f_2 is a 3-face, then $\mu^*(v) \geq \mu(v) - 2 \times 1.4 - 1.2 - 2 \times 0.8 - 0.4 = 0$.

CASE 4: A k-vertex v with $k \geq 7$.

We use (R1.2), (R2.2), and (R3.3) to prove this case.

SUBCASE 4.1: v is incident to $C(3, 3)$.

It follows from Proposition 1 that v is incident to at least two 6^+-faces. Thus $\mu^*(v) \geq \mu(v) - (k - 2) \times 1.4 > 0$ for $k \geq 6$.

SUBCASE 4.2: v is not incident to $C(3, 3)$.

It follows that v is incident to at most $\frac{d(v)}{2}$ 3-faces. Thus $\mu^*(v) \geq \mu(v) - \frac{k}{2} \times 1.4 - \frac{k}{2} \times 0.8$ for $k \geq 7$.

CASE 5: A 3-face.

We use (R1.1) and (R1.2) to prove this case.
If each vertex of f is not a flaw vertex, then $\mu^*(f) = \mu(f) + 3 \times 1 = 0$.

Now, assume that at least one incident 4-vertex of f is flaw. If f is a $(4,4,5^+)$-face with two incident flaw vertices, then $\mu^*(f) = \mu(f) + 1.4 + 2 \times 0.8 = 0$. If f is a $(4,4,5^+)$-face with exactly one incident flaw vertex, then $\mu^*(f) = \mu(f) + 1 + 0.8 = 0$. If f is a $(4,5^+,5^+)$-face, then $\mu^*(f) = \mu(f) + 2 \times 1.2 + 0.6 = 0$.

CASE 6: A 4-face f.

We obtain $\mu^*(f) \geq \mu(f) + 4 \times 0.5 = 0$ by (R2).

CASE 7: A 5-face f.

We use (R3.1), (R3.2), and (R3.3) to prove this case.

SUBCASE 7.1: f is incident to at least three 5^+-vertices.

It follows that each 4-vertex in f is adjacent to at least one 5^+-vertex. Then $\mu^*(f) \geq \mu(f) + 3 \times 0.3 + 2 \times 0.1 > 0$.

SUBCASE 7.2: f is incident to two 5^+-vertices, say x and y.

If x and y is not adjacent, then each 4-vertex in f is adjacent to at least one 5^+-vertex. Additionally, one of them is adjacent to at least two 5^+-vertices. Thus $\mu^*(f) \geq \mu(f) + 2 \times 0.3 + 0.2 + 2 \times 0.1 = 0$. If x and y are adjacent, then two incident 4-vertices of f are adjacent to at least one 5^+-vertex. Thus $\mu^*(f) \geq \mu(f) + 2 \times 0.4 + 2 \times 0.1 = 0$.

SUBCASE 7.3: f is incident to one 5^+-vertex.

If f is a $(4,4,4,4,6^+)$-face, then two 4-vertices in f are adjacent to at least one 6^+-vertex. Thus $\mu^*(f) \geq \mu(f) + 0.8 + 2 \times 0.1 = 0$. Assume f is a $(4,4,4,4,5)$-face with five incident vertices x_1, x_2, \ldots, x_5 in a cyclic order with $d(x_5) = 5$. If each adjacent face of f is a 4$^-$-face and both x_1 and x_4 are flaw, then there is a a $(3,5,5^+)$-face adjacent to f and incident to x_5 by Corollary 10. Consequently, x_1 or x_4 is adjacent to at least two 5^+-vertices. Thus $\mu^*(f) \geq \mu(f) + 0.7 + 0.2 + 0.1 = 0$. If each adjacent face of f is a 4$^-$-face but x_1 or x_4 is not flaw, then $\mu^*(f) \geq \mu(f) + 0.7 + 0.2 + 0.1 = 0$. If one adjacent face of f is a 5$^+$-face, then one of 4-vertex in f is not either flaw or $(3,5,5,4)$-vertex. Thus $\mu^*(f) \geq \mu(f) + 0.6 + \frac{1}{5} + 0.1 > 0$.

SUBCASE 7.4: f is a $(4,4,4,4,4)$-face.

It follows from Lemma 9 that each adjacent 3-face of f is a $(4,4,5^+)$-face. This implies that each flaw vertex in f is adjacent to at least two 5^+-vertex. Consequently, each vertex in f send charge at least 0.2 to f. Thus $\mu^*(f) \geq \mu(f) + 5 \times 0.2 = 0$.

This completes the proof. \qed
5 Acknowledgments

The first author is supported by Development and Promotion of Science and Technology talents project (DPST).
References

[1] N. Alon. Degrees and choice numbers, Random Structures and Algorithms 16(2000) 364–368.

[2] A. Bernshteyn, The asymptotic behavior of the correspondence chromatic number, Discrete Math. 339(2016) 2680–2692.

[3] A. Bernshteyn, A. Kostochka, S. Pron, On DP-coloring of graphs and multigraphs, Sib. Math. J. 58(2017) 28–36.

[4] Z. Dvořák, L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Comb. Theory, Ser. B. (2017) In press.

[5] P. Erdős, A.L. Rubin, H. Taylor, Choosability in graphs, in: Proceedings, West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, CA., Sept. 5-7, in: Congr. Numer., vol. 26, 1979.

[6] S.-J. Kim, K. Ozeki, A sufficient condition for DP-4-colorability, arXiv:1709.09809 (2017) preprint.

[7] S.-J. Kim, X. Yu, Planar graphs without 4-cycles adjacent to triangles are DP-4-colorable, arXiv:1712.08999 (2017) preprint.

[8] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62(1994) 180-181.

[9] R. Xu, J.L. Wu, A sufficient condition for a planar graph to be 4-choosable, Discrete App. Math. 224(2017)120-122.

[10] V.G. Vizing, Vertex colorings with given colors, Metody Diskret. Analiz. 29(1976) 3-10 (in Russian).

[11] M. Voigt, List colourings of planar graphs, Discrete Math. 120(1993) 215-219.