Abstract

Round Robin (RR) Scheduling is the basis of time sharing environment. It is the combination of First Come First Served (FCFS) scheduling algorithm and preemption among processes. It is basically used in a time sharing operating system. It switches from one process to another process in a time interval. The time interval or Time Quantum (TQ) is fixed for all available processes. So, the larger process suffers from Context Switches (CS). To increase efficiency, we have to select different TQ for processes. The main objective of RR is to reduce the CS, maximize the utilization of CPU and minimize the turn around and the waiting time. In this paper, we have considered different TQ for a group of processes. It reduces CS as well as enhancing the performance of RR algorithm. TQ can be calculated using min-max dispersion measure. Our experimental analysis shows that Group Based Time Quantum (GBTQ) RR algorithm performs better than existing RR algorithm with respect to Average Turn Around Time (ATAT), Average Waiting Time (AWT) and CS.
- S. K. Panda and S. K. Bhoi, "An Effective Round Robin Algorithm using Min-Max Dispersion Measure", International Journal on Computer Science and Engineering, Vol. 4, No. 1, Jan. 2012, pp. 45-53.
- P. Balakrishna Prasad, "Operating Systems", Scitech Publications, Second Edition, Sep. 2008, ISBN-9788188429608.
- S. K. Bhoi, S. K. Panda and D. Tarai, "Enhancing CPU Performance using Subcontrary Mean Dynamic Round Robin (SMDRR) Scheduling Algorithm", Journal of Global Research in Computer Science, Vol. 2, No. 12, Dec. 2011, pp. 17-21.
- A. Noon, A. Kalakech and S. Kadry, "A New Round Robin Based Scheduling Algorithm for Operating Systems: Dynamic Quantum Using the Mean Average"; International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011, pp. 224-229.
- S. M. Mostafa, S. Z. Rida and S. H. Hamad, "Finding Time Quantum of Round Robin CPU Scheduling Algorithm in General Computing Systems using Integer Programming"; International Journal of Research and Reviews in Applied Sciences, Vol. 5, No. 1, Oct. 2010, pp. 64-71.
- R. J. Matarneh, "Self-Adjustment Time Quantum in Round Robin Algorithm Depending on Burst Time of the Now Running Processes"; American Journal of Applied Sciences, Vol. 6, No. 10, 2009, pp. 1831-1837.
- A. Silberschatz, P. B. Galvin and G. Gagne, "Operating System Concepts"; John Wiley & Sons, Sixth Edition, 2002, ISBN 9971-51-388-9.
- J. Nieh, C. Vaill and H. Zhong, "Virtual-Time Round-Robin: An O(1) Proportional Share Scheduler"; Proceedings of the USENIX Annual Technical Conference, Boston, Massachusetts, USA, Jun. 2001, pp. 25-30.
- A. Bhunia, "Enhancing the Performance of Feedback Scheduling"; International Journal of Computer Applications, Vol. 18, No. 4, Mar. 2011, pp. 11-16.
- X. Yuan and Z. Duan, "Fair Round-Robin: A Low-Complexity Packet Scheduler with Proportional and Worst-Case Fairness"; IEEE Transactions on Computers, Vol. 58, No. 3, Mar. 2009, pp. 365-379.
- S. Ramabhadran and J. Pasquale, "The Stratified Round Robin Scheduler: Design, Analysis and Implementation"; IEEE / ACM Transactions on Networking, Vol. 14, No. 6, Dec. 2006, pp. 1362-1373.

Index Terms

Computer Science

Operating Systems
Keywords
Round Robin Time Quantum Min-Max Ready Queue Group Based Time Quantum