CLASSIFICATION OF BASE SEQUENCES $BS(n+1,n)$

DRAGOMIR Ž. ĐOKOVIĆ

ABSTRACT. Base sequences $BS(n+1,n)$ are quadruples of $\{±1\}$-sequences $(A; B; C; D)$, with A and B of length $n+1$ and C and D of length n, such that the sum of their nonperiodic autocorrelation functions is a $δ$-function. The base sequence conjecture, asserting that $BS(n+1,n)$ exist for all n, is stronger than the famous Hadamard matrix conjecture. We introduce a new definition of equivalence for base sequences $BS(n+1,n)$, and construct a canonical form. By using this canonical form, we have enumerated the equivalence classes of $BS(n+1,n)$ for $n ≤ 30$. As the number of equivalence classes grows rapidly (but not monotonically) with n, the tables in the paper cover only the cases $n ≤ 13$.

2000 Mathematics Subject Classification 05B20, 05B30

1. INTRODUCTION

Base sequences $BS(m,n)$ are quadruples $(A; B; C; D)$ of binary sequences, with A and B of length m and C and D of length n, such that the sum of their nonperiodic autocorrelation functions is a $δ$-function. In this paper we take $m = n + 1$.

Sporadic examples of base sequences $BS(n+1,n)$ have been constructed by many authors during the last 30 years, see e.g. [5, 6, 7, 10] and the survey paper [9] and its references. A more systematic approach has been taken by the author in [2, 4]. The $BS(n+1,n)$ are presently known to exist for all $n ≤ 38$ (ibid) and for Golay numbers $n = 2^a10^b26^c$, where a, b, c are arbitrary nonnegative integers. However the genuine classification of $BS(n+1,n)$ is still lacking. Due to the important role that these sequences play in various combinatorial constructions such as that for T-sequences, orthogonal designs, and Hadamard matrices [3, 5, 8], it is of interest to classify the base sequences of small length. Our main goal is to provide such classification for $n ≤ 30$.

Key words and phrases. Base sequences, nonperiodic autocorrelation functions, canonical form.
In section 2 we recall the basic properties of base sequences $BS(n + 1, n)$. We also recall the quad decomposition and our encoding scheme for this particular type of base sequences.

In section 3 we enlarge the collection of standard elementary transformations of $BS(n + 1, n)$ by introducing a new one. Thus we obtain new notion of equivalence and equivalence classes. Throughout the paper, the words “equivalence” and “equivalence class” are used in this new sense. We also introduce the canonical form for base sequences. By using it, we are able to compute the representatives of the equivalence classes.

In section 4 we introduce an abstract group, G_{BS}, of order 2^{12} which acts naturally on all sets $BS(n + 1, n)$. Its definition depends on the parity of n. The orbits of this group are just the equivalence classes of $BS(n + 1, n)$.

In section 5 we tabulate some of the results of our computations (those for $n \leq 13$) giving the list of representatives of the equivalence classes of $BS(n + 1, n)$. The representatives are written in the encoded form which is explained in the next section. For $n \leq 8$ we also include the values of the nonperiodic autocorrelation functions of the four constituent sequences. We also raise the question of characterizing the binary sequences having the same nonperiodic autocorrelation function. A class of examples is constructed, showing that the question is interesting.

The column “Equ” in Table 1 gives the number of equivalence classes in $BS(n + 1, n)$ for $n \leq 30$. The column “Nor” gives the number of normal equivalence classes (see Section 5 for their definition).
Table 1: Number of equivalence classes of $BS(n+1,n)$

n	Equ.	Nor.	n	Equ.	Nor.
0	1	1	16	1721	104
1	1	1	17	2241	0
2	1	1	18	1731	2
3	1	1	19	4552	2
4	3	2	20	3442	72
5	4	1	21	3677	0
6	5	0	22	15886	0
7	17	6	23	6139	0
8	27	14	24	10878	0
9	44	4	25	19516	4
10	98	10	26	10626	4
11	84	3	27	22895	0
12	175	8	28	31070	0
13	475	5	29	18831	2
14	331	0	30	19640	0
15	491	2	31	?	0

2. Quadratic Decomposition and the Encoding Scheme

We denote finite sequences of integers by capital letters. If, say, A is such a sequence of length n then we denote its elements by the corresponding lower case letters. Thus

$$A = a_1, a_2, \ldots, a_n.$$

To this sequence we associate the polynomial

$$A(x) = a_1 + a_2x + \cdots + a_nx^{n-1},$$

viewed as an element of the Laurent polynomial ring $\mathbb{Z}[x, x^{-1}]$. (As usual, \mathbb{Z} denotes the ring of integers.) The nonperiodic autocorrelation function N_A of A is defined by:

$$N_A(i) = \sum_{j \in \mathbb{Z}} a_j a_{i+j}, \quad i \in \mathbb{Z},$$

where $a_k = 0$ for $k < 1$ and for $k > n$. Note that $N_A(-i) = N_A(i)$ for all $i \in \mathbb{Z}$ and $N_A(i) = 0$ for $i \geq n$. The norm of A is the Laurent polynomial $N(A) = A(x)A(x^{-1})$. We have

$$N(A) = \sum_{i \in \mathbb{Z}} N_A(i)x^i.$$
The negation, \(-A\), of \(A\) is the sequence
\[-A = -a_1, -a_2, \ldots, -a_n.\]

The reversed sequence \(A'\) and the alternated sequence \(A^*\) of the sequence \(A\) are defined by
\[A' = a_n, a_{n-1}, \ldots, a_1\]
\[A^* = a_1, -a_2, a_3, -a_4, \ldots, (-1)^{n-1}a_n.\]

Observe that \(N(-A) = N(A') = N(A)\) and \(N_{A^*}(i) = (-1)^i N_A(i)\) for all \(i \in \mathbb{Z}\). By \(A, B\) we denote the concatenation of the sequences \(A\) and \(B\).

A binary sequence is a sequence whose terms belong to \(\{-1, 1\}\). When displaying such sequences, we shall often write + for +1 and − for −1.

The base sequences consist of four binary sequences \((A; B; C; D)\), with \(A\) and \(B\) of length \(m\) and \(C\) and \(D\) of length \(n\), such that

\[N(A) + N(B) + N(C) + N(D) = 2(m + n).\]

Thus, for \(i \neq 0\), we have
\[N_A(i) + N_B(i) + N_C(i) + N_D(i) = 0.\]

We denote by \(BS(m, n)\) the set of such base sequences with \(m\) and \(n\) fixed. From now on we shall consider only the case \(m = n + 1\).

Let \((A; B; C; D) \in BS(n+1, n)\). For convenience we fix the following notation. For \(n\) even (odd) we set \(n = 2m\) \((n = 2m+1)\). We decompose the pair \((A; B)\) into quads
\[
\begin{bmatrix}
 a_i & a_{n+2-i} \\
 b_i & b_{n+2-i}
\end{bmatrix}, \quad i = 1, 2, \ldots, \left\lfloor \frac{n+1}{2} \right\rfloor,
\]
and, if \(n\) is even, the central column \([a_{m+1} \ b_{m+1}]\). Similar decomposition is valid for the pair \((C; D)\).

Recall the following basic and well-known property [7, Theorem 1].

Theorem 2.1. For \((A; B; C; D) \in BS(n+1, n)\), the sum of the four quad entries is 2 (mod 4) for the first quad of the pair \((A; B)\) and is 0 (mod 4) for all other quads of \((A; B)\) and also for all quads of the pair \((C; D)\).

Thus there are 8 possibilities for the first quad of the pair \((A; B)\):
CLASSIFICATION OF BASE SEQUENCES $BS(n + 1, n)$

1' = \begin{bmatrix} - & + & - \\ + & - & - \end{bmatrix}, \quad 2' = \begin{bmatrix} + & - & + \\ + & + & - \end{bmatrix}, \quad 3' = \begin{bmatrix} + & - & - \\ + & + & + \end{bmatrix}, \quad 4' = \begin{bmatrix} + & - & + \\ - & - & + \end{bmatrix}, \quad 5' = \begin{bmatrix} + & - & + \\ - & - & - \end{bmatrix}, \quad 6' = \begin{bmatrix} + & - & + \\ - & - & - \end{bmatrix}, \quad 7' = \begin{bmatrix} + & - & + \\ - & - & - \end{bmatrix}, \quad 8' = \begin{bmatrix} + & - & + \\ - & - & - \end{bmatrix}.

These eight quads occur in the study of Golay sequences (see e.g. [1]) and we refer to them as the Golay quads.

There are also 8 possibilities for each of the remaining quads of $(A; B)$ and all quads of $(C; D)$:

1 = \begin{bmatrix} + & + & + \\ + & + & + \end{bmatrix}, \quad 2 = \begin{bmatrix} + & + & - \\ - & - & - \end{bmatrix}, \quad 3 = \begin{bmatrix} - & + & - \\ - & + & - \end{bmatrix}, \quad 4 = \begin{bmatrix} - & + & - \\ - & + & - \end{bmatrix}, \quad 5 = \begin{bmatrix} - & + & - \\ - & + & - \end{bmatrix}, \quad 6 = \begin{bmatrix} + & - & + \\ + & + & + \end{bmatrix}, \quad 7 = \begin{bmatrix} - & + & - \\ - & + & - \end{bmatrix}, \quad 8 = \begin{bmatrix} - & + & - \\ - & + & - \end{bmatrix}.

We shall refer to these eight quads as the BS-quads. We say that a BS-quad is symmetric if its two columns are the same, and otherwise we say that it is skew. The quads 1, 2, 7, 8 are symmetric and 3, 4, 5, 6 are skew. We say that two quads have the same symmetry type if they are both symmetric or both skew.

There are 4 possibilities for the central column:

0 = \begin{bmatrix} + & + & + \\ + & + & + \end{bmatrix}, \quad 1 = \begin{bmatrix} + & - & + \\ + & + & + \end{bmatrix}, \quad 2 = \begin{bmatrix} - & + & - \\ - & + & - \end{bmatrix}, \quad 3 = \begin{bmatrix} - & + & - \\ - & + & - \end{bmatrix}.

We encode the pair $(A; B)$ by the symbol sequence

(2.2) \quad p_1p_2 \cdots p_mp_{m+1},

where p_i is the label of the ith quad except in the case where n is even and $i = m + 1$ in which case p_{m+1} is the label of the central column.

Similarly, we encode the pair $(C; D)$ by the symbol sequence

(2.3) \quad q_1q_2 \cdots q_m \text{ respectively } q_1q_2 \cdots q_m q_{m+1}

when n is even respectively odd. Here q_i is the label of the ith quad for $i \leq m$ and q_{m+1} is the label of the central column (when n is odd).

3. THE EQUIVALENCE RELATION

We start by defining five types of elementary transformations of base sequences $BS(n + 1, n)$. These elementary transformations include the standard ones, as described in [7] and [2]. But we also introduce one additional elementary transformation, see item (T4) below, which made its first appearance in [3] in the context of near-normal sequences. The
quad notation was instrumental in the discovery of this new elementary operation.

The elementary transformations of \((A; B; C; D) \in BS(n + 1, n)\) are the following:

1. Negate one of the sequences \(A; B; C; D\).
2. Reverse one of the sequences \(A; B; C; D\).
3. Interchange the sequences \(A; B\) or \(C; D\).
4. Replace the pair \((C; D)\) with the pair \((\tilde{C}; \tilde{D})\) which is defined as follows: If \((2.3)\) is the encoding of \((C; D)\), then the encoding of \((\tilde{C}; \tilde{D})\) is \(\tau(q_1)\tau(q_2)\cdots\tau(q_m)q_{m+1}\) or \(\tau(q_1)\tau(q_2)\cdots\tau(q_m)\) depending on whether \(n\) is even or odd, where \(\tau\) is the transposition \((45)\). In other words, the encoding of \((\tilde{C}; \tilde{D})\) is obtained from that of \((C; D)\) by replacing each quad symbol 4 with the symbol 5, and vice versa. (We verify below that \(N_{\tilde{C}} + N_{\tilde{D}} = N_C + N_D\).)
5. Alternate all four sequences \(A; B; C; D\).

In order to justify (T4) one has to verify that \(N_{\tilde{C}} + N_{\tilde{D}} = N_C + N_D\). For that purpose let us fix two quads \(q_k\) and \(q_{k+i}\) and consider their contribution \(\delta_i\) to \(N_{C}(i) + N_{D}(i)\). We claim that \(\delta_i\) is equal to the contribution \(\tilde{\delta}_i\) of \(\tau(q_k)\) and \(\tau(q_{k+i})\) to \(N_{\tilde{C}}(i) + N_{\tilde{D}}(i)\). If neither \(q_k\) nor \(q_{k+i}\) belongs to \(\{4, 5\}\), then \(\tau(q_k) = q_k\) and \(\tau(q_{k+i}) = q_{k+i}\) and so \(\delta_i = \tilde{\delta}_i\). If \(q \in \{4, 5\}\) then \(\tau(q)\) is the negation of \(q\). Hence if \(\{q_k, q_{k+i}\} \subseteq \{4, 5\}\) then again \(\delta_i = \tilde{\delta}_i\). Otherwise, say \(q_k \in \{4, 5\}\) while \(q_{k+i} \notin \{4, 5\}\), and it is easy to verify that \(\delta_i = 0 = \tilde{\delta}_i\). The pairs \(q_k\) and \(q_{n+1-k+i}\) also make a contribution to \(N_{C}(i) + N_{D}(i)\), but they can be treated in the same manner. Finally, if \(n\) is odd then the pair \((C; D)\) also has a central column with label \(q_{m+1}\). In that case, if \(k = m + 1 - i\) and \(q_k \in \{4, 5\}\), the contribution of \(q_k\) and \(q_{m+1}\) to \(N_{C}(i) + N_{D}(i)\) is 0. This completes the verification.

We say that two members of \(BS(n + 1, n)\) are equivalent if one can be transformed to the other by applying a finite sequence of elementary transformations. One can enumerate the equivalence classes by finding suitable representatives of the classes. For that purpose we introduce the canonical form.

Definition 3.1. Let \(S = (A; B; C; D) \in BS(n + 1, n)\) and let \((2.2)\) respectively \((2.3)\) be the encoding of the pair \((A; B)\) respectively \((C; D)\). We say that \(S\) is in the canonical form if the following eleven conditions hold:

1. \(p_1 = 3', p_2 \in \{6, 8\}\) for \(n\) even and \(p_2 \in \{1, 6\}\) for \(n\) odd.
2. The first symmetric quad (if any) of \((A; B)\) is 1 or 8.
3. If \(n\) is even and \(p_i \in \{3, 4, 5, 6\}\) for \(2 \leq i \leq m\) then \(p_{m+1} \in \{0, 3\}\).
4. The first skew quad (if any) of \((A; B)\) is 3 or 6.
CLASSIFICATION OF BASE SEQUENCES $BS(n+1, n)$

(v) $q_1 = 1$ for n even and $q_1 \in \{1, 6\}$ for n odd.
(vi) The first symmetric quad (if any) of $(C; D)$ is 1.
(vii) The first skew quad (if any) of $(C; D)$ is 6.
(viii) If i is the least index such that $q_i \in \{2, 7\}$ then $q_i = 2$.
(ix) If i is the least index such that $q_i \in \{4, 5\}$ then $q_i = 4$.
(x) If n is odd and $q_i \in \{1, 3, 6, 8\}$, $\forall i \leq m$, then $q_{m+1} \neq 2$.
(xi) If n is odd and $q_i \in \{3, 4, 5, 6\}$, $\forall i \leq m$, then $q_{m+1} = 0$.

We can now prove that each equivalence class has a member which is in the canonical form. The uniqueness of this member will be proved in the next section.

Proposition 3.2. Each equivalence class $E \subseteq BS(n+1, n)$ has at least one member having the canonical form.

Proof. Let $S = (A; B; C; D) \in E$ be arbitrary and let (2.2) respectively (2.3) be the encoding of $(A; B)$ respectively $(C; D)$. By applying the first three types of elementary transformations and by Theorem 2.1 we can assume that $p_1 = 3'$ and $c_1 = d_1 = +1$. By Theorem 2.1, $q_1 \in \{1, 6\}$. If n is even and $q_1 = 6$ we apply the elementary transformation (T5). Thus we may assume that $p_1 = 3'$ and that the condition (v) for the canonical form is satisfied. To satisfy the conditions (ii) and (iii), replace B with $-B'$ (if necessary). To satisfy the condition (iv), replace A with A' (if necessary).

We now modify S in order to satisfy the second part of condition (i). Note that p_2 is a BS-quad by Theorem 2.1. If $p_2 = 6$ there is nothing to do.

Assume that the quad p_2 is symmetric. By (ii), $p_2 \in \{1, 8\}$. From equation (2.1) for $i = n - 1$, we deduce that $p_2 = 8$ if $q_1 = 1$ and $p_2 = 1$ if $q_1 = 6$. Note that if n is even, then $q_1 = 1$ by (v). If n is odd and $q_1 = 1$, we switch A and B and apply the elementary transformation (T5). After this change we still have $p_1 = 3'$, $q_1 = 1$, the conditions (ii), (iii) and (iv) remain satisfied, and moreover $p_2 = 6$.

Now assume that p_2 is skew. In view of (iv), we may assume that $p_2 = 3$. Then the argument above based on the equation (2.1) shows that $q_1 = 6$, and so n must be odd. After applying the elementary transformation (T5), we obtain that $p_2 = 1$. Hence the condition (i) is fully satisfied.

To satisfy (vi), in view of (v) we may assume that n is odd and $q_1 = 6$. If the first symmetric quad in $(C; D)$ is 2 respectively 7, we reverse and negate C respectively D. If it is 8, we reverse and negate both C and D. Now the first symmetric quad will be 1.

To satisfy (vii), (if necessary) reverse C or D, or both. To satisfy (viii), (if necessary) interchange C and D. Note that in this process we
do not violate the previously established properties. To satisfy (ix), (if necessary) apply the elementary transformation (T4). To satisfy (x), switch \(C \) and \(D \) (if necessary). To satisfy (xi), (if necessary) replace \(C \) with \(-C'\) or \(D \) with \(-D'\), or both.

Hence \(S \) is now in the canonical form. \(\square \)

4. The symmetry group of \(BS(n + 1, n) \)

We shall construct a group \(G_{BS} \) of order \(2^{12} \) which acts on \(BS(n + 1, n) \). Our (redundant) generating set for \(G_{BS} \) will consist of 12 involutions. Each of these generators is an elementary transformation, and we use this information to construct \(G_{BS} \), i.e., to impose the defining relations. We denote by \(S = (A; B; C; D) \) an arbitrary member of \(BS(n + 1, n) \).

To construct \(G_{BS} \), we start with an elementary abelian group \(E \) of order \(2^8 \) with generators \(\nu_i, \rho_i, \ i \in \{1, 2, 3, 4\} \). It acts on \(BS(n + 1, n) \) as follows:

\[
\begin{align*}
\nu_1 S &= (-A; B; C; D), \quad \rho_1 S = (A'; B; C; D), \\
\nu_2 S &= (A; -B; C; D), \quad \rho_2 S = (A; B'; C; D), \\
\nu_3 S &= (A; B; -C; D), \quad \rho_3 S = (A; B; C'; D), \\
\nu_4 S &= (A; B; C; -D), \quad \rho_4 S = (A; B; C; D'), \\
\end{align*}
\]

i.e., \(\nu_i \) negates the \(i \)th sequence of \(S \) and \(\rho_i \) reverses it.

Next we introduce two commuting involutory generators \(\sigma_1 \) and \(\sigma_2 \). We declare that \(\sigma_1 \) commutes with \(\nu_3, \nu_4, \rho_3, \rho_4 \), and \(\sigma_2 \) commutes with \(\nu_1, \nu_2, \rho_1, \rho_2 \), and that

\[
\begin{align*}
\sigma_1 \nu_1 &= \nu_2 \sigma_1, \quad \sigma_1 \rho_1 = \rho_2 \sigma_1, \\
\sigma_2 \nu_3 &= \nu_4 \sigma_2, \quad \sigma_2 \rho_3 = \rho_4 \sigma_2.
\end{align*}
\]

The group \(H = \langle E, \sigma_1, \sigma_2 \rangle \) is the direct product of two isomorphic groups of order 32:

\[
H_1 = \langle \nu_1, \rho_1, \sigma_1 \rangle, \quad \text{and} \quad H_2 = \langle \nu_3, \rho_3, \sigma_2 \rangle.
\]

The action of \(E \) on \(BS(n + 1, n) \) extends to \(H \) by defining:

\[
\begin{align*}
\sigma_1 S &= (B; A; C; D), \quad \sigma_2 S = (A; B; D; C), \\
\end{align*}
\]

We add a new generator \(\theta \) which commutes elementwise with \(H_1 \), commutes with \(\nu_3 \rho_3, \nu_4 \rho_4 \) and \(\sigma_2 \), and satisfies \(\theta \rho_3 = \rho_4 \theta \). Let us denote this enlarged group by \(\tilde{H} \). It has the direct product decomposition

\[
\tilde{H} = \langle H, \theta \rangle = H_1 \times \tilde{H}_2.
\]
where the second factor is itself direct product of two copies of the dihedral group D_8 of order 8:

$$\tilde{H}_2 = \langle \rho_3, \rho_4, \theta \rangle \times \langle \nu_3 \rho_3, \nu_4 \rho_4, \theta \sigma_2 \rangle.$$

The action of H on $BS(n+1, n)$ extends to \tilde{H} by letting θ act as the elementary transformation (T4).

Finally, we define G_{BS} as the semidirect product of \tilde{H} and the group of order 2 with generator α. By definition, α commutes with each ν_i and satisfies:

$$\alpha \rho_i \alpha = \rho_i \nu_i^n, \ i = 1, 2;$$
$$\alpha \rho_j \alpha = \rho_j \nu_j^{n-1}, \ j = 3, 4;$$
$$\alpha \theta \alpha = \theta \sigma_2^{n-1}.$$

The action of \tilde{H} on $BS(n+1, n)$ extends to G_{BS} by letting α act as the elementary transformation (T5), i.e., we have

$$\alpha S = (A^*; B^*; C^*; D^*).$$

We point out that the definition of the subgroup \tilde{H} is independent of n and its action on $BS(n+1, n)$ has a quad-wise character. By this we mean that the value of a particular quad, say p_i, of $S \in BS(n+1, n)$ and $h \in \tilde{H}$ determine uniquely the quad p_i of hS. In other words \tilde{H} acts on the Golay quads, the BS-quads and the set of central columns such that the encoding of hS is given by the symbol sequences

$$h(p_1)h(p_2)\ldots h(p_{m+1}) \text{ and } h(q_1)h(q_2)\ldots.$$

On the other hand the full group G_{BS} has neither of these two properties.

An important feature of the action of \tilde{H} on the BS-quads is that it preserves the symmetry type of the quads.

The following proposition follows immediately from the construction of G_{BS} and the description of its action on $BS(n+1, n)$.

Proposition 4.1. The orbits of G_{BS} in $BS(n+1, n)$ are the same as the equivalence classes.

The main tool that we use to enumerate the equivalence classes of $BS(n+1, n)$ is the following theorem.

Theorem 4.2. For each equivalence class $E \subseteq BS(n+1, n)$ there is a unique $S = (A; B; C; D) \in E$ having the canonical form.

Proof. In view of Proposition 3.2 we just have to prove the uniqueness assertion. Let

$$S^{(k)} = (A^{(k)}; B^{(k)}; C^{(k)}; D^{(k)}) \in E, \ (k = 1, 2)$$
be in the canonical form. We have to prove that in fact \(S^{(1)} = S^{(2)} \).

By Proposition 4.1, we have \(gS^{(1)} = S^{(2)} \) for some \(g \in G_{BS} \). We can write \(g \) as \(g = \alpha^s h \) where \(s \in \{0, 1\} \) and \(h \in \tilde{H} \). Let \(p^{(k)}_1, p^{(k)}_2 \ldots p^{(k)}_{n+1} \) be the encoding of the pair \((A^{(k)}; B^{(k)}) \) and \(q^{(k)}_1, q^{(k)}_2 \ldots q^{(k)}_n \) be the encoding of the pair \((C^{(k)}; D^{(k)}) \). The symbols (i-xi) will refer to the corresponding conditions of Definition 3.1. Observe that \(p^{(1)}_1 = p^{(2)}_1 = 3' \) by (i).

We prove first preliminary claims (a-c).

(a): \(q^{(1)}_1 = q^{(2)}_1 \).

For \(n \) even see (v). Let \(n \) be odd. When we apply the generator \(\alpha \) to any \(S \in BS(n + 1, n) \), we do not change the first quad of \((C; D) \). It follows that the quads \(q^{(1)}_1 \) and \(q^{(2)}_1 \) have the same symmetry type. The claim now follows from (v).

(b): \(g \in \tilde{H} \), i.e., \(s = 0 \).

Assume first that \(n \) is even. By (v), \(q^{(1)}_1 = q^{(2)}_1 = 1 \). For any \(S \in \mathcal{E} \) the first quad of \((C; D) \) in \(S \) and in \(\alpha S \) have different symmetry types. As the quad \(h(1) \) is symmetric, the equality \(\alpha^s hS^{(1)} = S^{(2)} \) forces \(s \) to be 0. Assume now that \(n \) is odd. Then for any \(S \in \mathcal{E} \) the second quad of \((A; B) \) in \(S \) and in \(\alpha S \) have different symmetry types. Recall that \(q^{(1)}_1 = q^{(2)}_1 = 1 \) for \(\alpha^s=1 \) and that (see (i)) \(p^{(1)}_2 \) and \(p^{(2)}_2 \) belong to \(\{1, 6\} \). From (2.1), with \(i = n - 1 \), we deduce that \(p^{(k)}_2 \neq q^{(k)}_1 \) for \(k = 1, 2 \). We conclude that \(p^{(1)}_2 = p^{(2)}_2 \). The claim now follows from the fact that \(h \) preserves while \(\alpha \) alters the symmetry type of the quad \(p_2 \).

As an immediate consequence of (b), we point out that a quad \(p^{(1)}_i \) is symmetric iff \(p^{(2)}_i \) is, and the same is true for the quads \(q^{(1)}_i \) and \(q^{(2)}_i \).

(c): \(p^{(1)}_2 = p^{(2)}_2 \).

This was already proved above in the case when \(n \) is odd. In general, the claim follows from (b) and the equality \(h(p^{(1)}_2) = p^{(2)}_2 \). Observe that each of the sets \(\{6, 8\} \) and \(\{1, 6\} \) consists of one symmetric and one skew quad and that \(h \) preserves the symmetry type of quads.

Recall that \(\tilde{H} = H_1 \times \tilde{H}_2 \). Since \(s = 0 \) we have \(g = h = h_1 h_2 \) with \(h_1 \in H_1 \) and \(h_2 \in \tilde{H}_2 \). Consequently, \(h_1(p^{(1)}_i) = p^{(2)}_i \) and \(h_2(q^{(1)}_i) = q^{(2)}_i \) for all \(i. \)

We shall now prove that \(A^{(1)} = A^{(2)} \) and \(B^{(1)} = B^{(2)} \). Since \(p^{(1)}_1 = p^{(2)}_1 = 3' \), the equality \(h_1(p^{(1)}_1) = p^{(2)}_1 \) implies that \(h_1(3') = 3' \). Thus \(h_1 = \rho^{e}_i (\nu_2 \rho_2)^{f} \) for some \(e, f \in \{0, 1\} \).

Assume first that \(p^{(1)}_2 \) is symmetric. By (ii), \(p^{(1)}_2 \in \{1, 8\} \). Then \(h_1(p^{(1)}_2) = p^{(2)}_2 = p^{(1)}_2 \) implies that \(f = 0 \). Hence, \(h_1 = \rho^{e}_1 \) and so \(B^{(1)} = B^{(2)} \). If all quads \(p^{(1)}_i, i \neq 1, \) are symmetric then also \(A^{(2)} = h_1 A^{(1)} = A^{(1)} \). Otherwise let \(i \) be the least index for which the quad...
$p_i^{(1)}$ is skew. Since $B^{(1)} = B^{(2)}$ and $p_i^{(1)}$ is 3 or 6 (see (iv)), we infer that $e = 0$. Hence $h_1 = 1$ and so $A^{(1)} = A^{(2)}$.

Now assume that $p_2^{(1)}$ is skew. By (ii), $p_2^{(1)} = 6$. Then $h_1(p_2^{(1)}) = p_2^{(2)} = p_2^{(1)}$ implies that $e = 0$. Thus $h_1 = (\nu_2\rho_2)^f$ and so $A^{(1)} = A^{(2)}$. If all quads $p_i^{(1)}$, $i \neq 1$, are skew then by invoking the condition (iii) we deduce that $f = 0$ and so $B^{(1)} = B^{(2)}$. Otherwise let i be the least index for which the quad $p_i^{(1)}$ is symmetric. Since $A^{(1)} = A^{(2)}$ and $p_i^{(1)}$ is 1 or 8 (see (ii)), we infer that $f = 0$. Hence $h_1 = 1$ and so $B^{(1)} = B^{(2)}$.

It remains to prove that $C^{(1)} = C^{(2)}$ and $D^{(1)} = D^{(2)}$. We set $Q = \{q_i^{(1)} : 1 \leq i \leq m\}$. By (v) and the claim (a) we have $q_i^{(1)} = q_i^{(2)} \in \{1, 6\}$.

We first consider the case $q_1^{(1)} = q_1^{(2)} = 6$ which occurs only for n odd. Then $h_2(6) = 6$ and so $h_2 \in \langle \nu_3\rho_3, \nu_4\rho_4, \theta, \sigma_2 \rangle$. It follows that $h_2(3) = 3$.

If some $q \in Q$ is symmetric, let i be the least index such that $q_i^{(1)}$ is symmetric. Then (vi) implies that $q_i^{(1)} = q_i^{(2)} = 1$. Thus h_2 must fix the quad 1. As the stabilizer of the quad 1 in $\langle \nu_3\rho_3, \nu_4\rho_4, \theta, \sigma_2 \rangle$ is $\langle \theta, \sigma_2 \rangle$, we infer that h_2 must also fix the quad 8. Similarly, if $2 \in Q$ then (viii) implies that h_2 fixes 2 and 7. If $4 \in Q$ then (ix) implies that h_2 fixes 4 and 5. These facts imply that h_2 fixes all quads in Q, i.e., $q_i^{(1)} = q_i^{(2)}$ for all $i \leq m$. It remains to show that, for odd n, $q_{m+1}^{(1)} = q_{m+1}^{(2)}$. If $Q \subseteq \{3, 4, 5, 6\}$, this follows from (xi). Otherwise Q contains a symmetric quad and so $h_2 \in \langle \theta, \sigma_2 \rangle$. If $Q \not\subseteq \{1, 3, 6, 8\}$ then Q contains one of the quads 2, 4, 5 or 7. Since h_2 fixes all quads in Q, we infer that $h_2 \in \langle \theta \rangle$, and so $q_{m+1}^{(1)} = q_{m+1}^{(2)}$. If $Q \subseteq \{1, 3, 6, 8\}$, the equality $q_{m+1}^{(1)} = q_{m+1}^{(2)}$ follows from (x).

Finally, we consider the case $q_1^{(1)} = q_1^{(2)} = 1$. Since $h_2(q_1^{(1)}) = q_1^{(2)}$, $h_2 \in \langle \rho_3, \rho_4, \theta, \sigma_2 \rangle$. Hence h_2 fixes the quads 1 and 8.

If some $q \in Q$ is skew, then (vii) implies that h_2 fixes the quads 3 and 6. If $2 \in Q$ then (viii) implies that h_2 fixes the quads 2 and 7. If $4 \in Q$ then (ix) implies that h_2 fixes the quads 4 and 5. These facts imply that h_2 fixes all quads in Q. If n is odd, then we invoke the conditions (x) and (xi) to conclude that h_2 also fixes the central column of $(C^{(1)}; D^{(1)})$. Hence $C^{(1)} = C^{(2)}$ and $D^{(1)} = D^{(2)}$ also in this case.

5. Representatives of the equivalence classes

We have computed a set of representatives for the equivalence classes of base sequences $BS(n+1, n)$ for all $n \leq 30$. Due to their excessive
size, we tabulate these sets only for \(n \leq 13 \). Each representative is given in the canonical form which is made compact by using our standard encoding. The encoding is explained in detail in Section 2.

As an example, the base sequences

\[
A = +, +, +, +, +, +, +, -; \\
B = +, +, +, +, +, +, +, -; \\
C = +, +, -; \\
D = +, +, +, +, +, -; \\
\]

are encoded as 3′6142; 1675. In the tables we write 0 instead of 3′. This convention was used in our previous papers on this and related topics.

This compact notation is used primarily in order to save space, but also to avoid introducing errors during decoding. For each \(n \), the representatives are listed in the lexicographic order of the symbol sequences (2.2) and (2.3).

In Table 2 we list the codes for the representatives of the equivalence classes of \(BS(n + 1, n) \) for \(n \leq 8 \). This table also records the values \(N_X(k) \) of the nonperiodic autocorrelation functions for \(X \in \{A, B, C, D\} \) and \(k \geq 0 \). For instance let us consider the first item in the list of base sequences \(BS(8, 7) \) given in Table 2. The base sequences are encoded in the first column as 0165; 6123. The first part 0165 encodes the pair \((A; B)\), and the second part 6123 the pair \((C; D)\). The function \(N_A \), at the points \(0, 1, \ldots, 7 \), takes the values \(8, -1, 2, -1, 0, 1, 2, 1 \) listed in the second column. Just below these values one finds the values of \(N_B \) at the same points. In the third column we list likewise the values of \(N_C \) and \(N_D \) at the points \(i = 0, 1, \ldots, 6 \).

Tables 3-7 contain only the list of codes for the representatives of the equivalence classes of \(BS(n + 1, n) \) for \(9 \leq n \leq 13 \).

Let us say that the base sequences \(S = (A; B; C; D) \in BS(n + 1, n) \) are \textit{normal} respectively \textit{near-normal} if \(b_i = a_i \) respectively \(b_i = (-1)^i a_i \) for all \(i \leq n \). We denote by \(NS(n) \) respectively \(NN(n) \) the set of all normal respectively near-normal sequences in \(BS(n + 1, n) \). Let us say also that an equivalence class \(\mathcal{E} \subseteq BS(n + 1, n) \) is \textit{normal} respectively \textit{near-normal} if \(\mathcal{E} \cap NS(n) \) respectively \(\mathcal{E} \cap NN(n) \) is not void. Our canonical form has been designed so that if \(\mathcal{E} \) is normal then its canonical representative \(S \) belongs to \(NS(n) \). The analogous statement for near-normal classes is false. It is not hard to recognize which representatives \(S \) in our tables are normal sequences. Let (2.2) be the encoding of the pair \((A; B)\). Then \(S \in NS(n) \) iff all the quads
$p_i, i \neq 1$, belong to $\{1, 3, 6, 8\}$ and, in the case when $n = 2m$ is even, the central column symbol p_{m+1} is 0 or 3.

It is an interesting question to find the necessary and sufficient conditions for two binary sequences to have the same norm. The group of order four generated by the negation and reversal operations acts on binary sequences. We say that two binary sequences are equivalent if they belong to the same orbit. Note that the equivalent binary sequences have the same norm. However the converse is false. Here is a counter-example which occurs in Table 2 for the case $n = 8$. The base sequences 15 and 16 differ only in their first sequences, which we denote here by U and V respectively:

\[
U = + + - - - + - + , \quad V = + + - + + - - + .
\]

Their associated polynomials are

\[
U(x) = 1 + x - x^2 - x^3 - x^4 + x^5 - x^6 - x^7 + x^8 ,
\]
\[
V(x) = 1 + x - x^2 + x^3 + x^4 - x^5 - x^6 - x^7 + x^8 .
\]

It is obvious that U and V are not equivalent in the above sense. On the other hand, from the factorizations $U(x) = p(x)q(x)$ and $V(x) = p(x)r(x)$, where $p(x) = 1 + x - x^2$, $q(x) = 1 - x^3 - x^6$ and $r(x) = 1 + x^3 - x^6 = -x^6 q(x^{-1})$, we deduce immediately that $N_U(x) = N_V(x)$.

This counter-example can be easily generalized. Let us define binary polynomials as polynomials associated to binary sequences. If $f(x)$ is a polynomial of degree d with $f(0) \neq 0$, we define its dual polynomial f^* by $f^*(x) = x^d f(x^{-1})$. Then for any positive integer k we have $f^*(x^k) = f(x^k)^*$, i.e., $f^*(x^k) = g^*(x)$ where g^* is the dual of the polynomial $f(x^k)$. In general we can start with any number of binary sequences, but here we take only three of them: $A; B; C$ of lengths m, n, k respectively. From the associated binary polynomials $A(x), B(x), C(x)$ we can form several binary polynomials of degree $mnk - 1$. The basic one is $A(x)B(x^m)C(x^{mn})$. The other are obtained from this one by replacing one or more of the three factors by their duals. It is immediate that the binary sequences corresponding to these binary polynomials all have the same norm. In general many of these sequences will not be equivalent. However note that if we replace all three factors with their duals, we will obtain a binary sequence equivalent to the basic one.
6. Acknowledgments

The author has pleasure to thank the three anonymous referees for their valuable comments. The author is grateful to NSERC for the continuing support of his research. This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada.

References

[1] D.Ž. Đoković, Equivalence classes and representatives of Golay sequences, Discrete Mathematics, 189 (1998), 79–93.
[2] , Aperiodic complementary quadruples of binary sequences, JCMCC 27 (1998), 3–31. Correction: ibid 30 (1999), p. 254.
[3] , Classification of near-normal sequences, Discrete Mathematics, Algorithms and Applications, Vol. 1, No. 3 (2009), 389–399. Available as an e-print on arXiv:0903.4390v2 [math.CO] 1 Sep 2009.
[4] , On the base sequence conjecture, Discrete Mathematics, (to appear). Available as an e-print on arXiv:1002.1414v2 [math.CO] 12 Feb 2010.
[5] H. Kharaghani and C. Koukouvinos, Complementary, base and Turyn sequences, in C.J. Colbourn and J.H. Dinitz (Eds), Handbook of Combinatorial Designs, 2nd edition, CRC Press, Boca Raton, FL, 2007, pp. 317–321.
[6] S. Kounias and K. Sotirakoglou, Construction of orthogonal sequences, Proc. 14-th Greek Stat. Conf. 2001, 229–236 (in Greek).
[7] C. Koukouvinos, S. Kounias and K. Sotirakoglou, On base and Turyn sequences, Mathematics of Computation 55 (1990), 825–837.
[8] C. Koukouvinos, S. Kounias, J. Seberry, C.H. Yang and J. Yang, Multiplication of sequences with zero autocorrelation, Austral. J. Combin. 10 (1994), 5–15.
[9] J. Seberry and M. Yamada, Hadamard matrices, sequences and block designs, in Contemporary Design Theory: A Collection of Surveys, Eds. J.H. Dinitz and D.R. Stinson, J. Wiley, New York, 1992, pp. 431–560.
[10] C.H. Yang, On composition of four-symbol δ-codes and Hadamard matrices, Proc. Amer. Math. Soc. 107 (1989), 763–776.
Table 2: Equivalence classes of $BS(n+1, n)$, $n \leq 8$

$ABCD$	$N_A & N_B$	$N_C & N_D$
$n = 1$		
1 0	2, 1	1
0 1	2, −1	1
$n = 2$		
1 03	3, −2, 1	2, 1
1 07	3, 0, −1	2, 1
$n = 3$		
1 06	4, −1, 0, 1	3, 2, 1
11 06	4, 1, −2, −1	3, −2, 1
$n = 4$		
1 060	5, 0, 1, 0, 1	4, −1, 0, 1
16 08	5, 2, −1, −2, −1	4, −1, 0, 1
2 082	5, 0, −1, −2, 1	4, 3, 2, 1
12 083	5, −2, 1, 0, −1	4, −1, −2, 1
$n = 5$		
1 016	6, 1, 0, 1, 2, 1	5, 2, −1, −2, −1
640 016	6, −1, 2, −1, 0, −1	5, −2, −1, 2, −1
2 017	6, 1, −4, −1, 2, 1	5, −2, 1, 0, −1
613 017	6, 3, 2, 1, 0, −1	5, −2, 1, 0, −1
3 064	6, 1, −2, −1, 0, 1	5, 0, 1, 0, 1
160 064	6, −1, 0, 1, −2, −1	5, 0, 1, 0, 1
$n = 6$		
1 061	7, −2, 3, −2, 1, 0, 1	6, 1, −4, −1, 2, 1
127 061	7, 4, 1, 0, −1, −2, −1	6, −3, 0, 3, −2, 1
2 0820	7, −2, 1, 0, 3, −2, 1	6, 1, 0, −1, −2, 1
188 0820	7, 0, −1, 2, 1, 0, −1	6, 1, 0, −1, −2, 1
3 0861	7, −2, −3, 2, 1, −2, 1	6, 1, 2, 1, 0, 1
162 0861	7, 0, 3, 0, −1, 0, −1	6, 1, −2, −3, 0, 1
$n = 7$		
4 0872	7, 2, 1, 0, −1, −2, 1	6, 1, 0, 1, 2, 1
126 0872	7, 0, −1, −2, 1, 0, −1	6, −3, 0, 1, −2, 1
5 0882	7, 2, 1, 0, −1, −2, 1	6, 1, −2, −1, 0, 1
164 0882	7, 0, −1, 2, 1, 0, −1	6, −3, 2, −1, 0, 1
$n = 8$		
1 0165	8, −1, 2, −1, 0, 1, 2, 1	7, 0, −1, 2, 1, 0, −1
6123 0165	8, 1, 0, 1, −2, −1, 0, −1	7, 0, −1, −2, 1, 0, −1
2 0165	8, −1, 2, −1, 0, 1, 2, 1	7, 0, 3, 0, −1, 0, −1
6141 0165	8, 1, 0, 1, −2, −1, 0, −1	7, 0, −5, 0, 3, 0, −1
$ABCD$	N_A & N_B	N_C & N_D
$n = 7$		
3 0166	8, 3, −2, −1, 0, 1, 2, 1	7, 0, −1, 2, 1, 0, −1
6122	8, 1, 0, 1, −2, −1, 0, −1	7, −4, 3, −2, 1, 0, −1
4 0173	8, −1, −2, 1, −2, −1, 2, 1	7, 0, 3, 0, −1, 0, −1
6161	8, 1, 0, −1, 4, 1, 0, −1	7, 0, −1, 0, −1, 0, −1
5 0173	8, −1, −2, 1, −2, −1, 2, 1	7, 4, 1, 0, −1, −2, −1
6411	8, 1, 0, −1, 4, 1, 0, −1	7, −4, 1, 0, −1, 2, −1
6 0183	8, −1, −2, 1, −2, −1, 2, 1	7, 4, 3, 2, 1, 0, −1
6121	8, −3, 0, −1, 0, 1, 0, −1	7, 0, −1, −2, 1, 0, −1
7 0613	8, −1, 0, 3, 0, 1, 0, 1	7, −2, 3, −2, 1, 0, 1
1623	8, 1, −2, 1, 2, −1, −2, −1	7, 2, −1, −2, −3, 0, 1
8 0614	8, −1, 4, −1, 0, 1, 0, 1	7, 2, −1, 0, −1, 0, 1
1641	8, 1, −2, 1, 2, −1, −2, −1	7, −2, −1, 0, −1, 0, 1
9 0615	8, −1, 0, 3, 0, 1, 0, 1	7, 2, −3, −2, 1, 2, 1
1263	8, 1, 2, 1, −2, −1, −2, −1	7, −2, 1, −2, −1, −2, 1
10 0615	8, −1, 0, 3, 0, 1, 0, 1	7, 2, −3, −4, −1, 2, 1
1272	8, 1, 2, 1, −2, −1, −2, −1	7, −2, 1, 0, 3, −2, 1
11 0616	8, −1, 4, −1, 0, 1, 0, 1	7, 2, −3, −2, 1, 2, 1
1262	8, 1, 2, 1, −2, −1, −2, −1	7, −2, −3, 2, 1, −2, 1
12 0618	8, −1, 0, −1, −2, 1, 0, 1	7, 2, 1, 2, 1, 2, 1
1261	8, −2, 1, 0, −1, −2, −1	7, −2, 1, −2, 1, −2, 1
13 0635	8, −1, −4, 1, 2, −1, 0, 1	7, 2, 3, 2, 1, 0, 1
1621	8, −3, 2, −1, 0, 1, −2, −1	7, 2, −1, −2, −3, 0, 1
14 0638	8, −1, 0, −3, 0, −1, 0, 1	7, 2, 3, 2, 1, 0, 1
1620	8, 1, −2, −1, 2, 1, −2, −1	7, −2, −1, 2, −3, 0, 1
15 0641	8, 3, 0, 1, 0, −1, 0, 1	7, −2, 3, −2, 1, 0, 1
1622	8, 1, −2, −1, 2, 1, −2, −1	7, −2, −1, 2, −3, 0, 1
16 0646	8, 3, 0, −3, −2, −1, 0, 1	7, 2, 1, 0, 3, 2, 1
1222	8, −3, 2, −1, 0, 1, −2, −1	7, −2, −3, 4, −1, −2, 1
17 0648	8, 3, 0, −3, −2, −1, 0, 1	7, 2, 1, 2, 1, 2, 1
1260	8, −3, 2, −1, 0, 1, −2, −1	7, −2, −3, 2, 1, −2, 1

$n = 8$

1 06113	9, 0, 1, 4, −1, 2, 1, 0, 1	8, −1, 0, −3, 0, −1, 0, 1
1638	9, 2, −1, 2, 1, 0, −1, −2, −1	8, −1, 0, −3, 0, −1, 0, 1
2 06122	9, 0, 1, 4, −1, 2, 1, 0, 1	8, 3, 0, −3, −2, 1, 0, 1
1644	9, −2, 3, −2, 1, 0, −1, −2, −1	8, −1, −4, 1, 2, 1, 0, 1
3 06141	9, 0, 5, 0, 1, 0, 1, 0, 1	8, −1, 0, 1, −2, 1, 0, 1
1663	9, 2, −5, −2, 3, 2, −1, −2, −1	8, −1, 0, 1, −2, −1, 0, 1
4 06142	9, 0, 1, 0, −3, 0, 1, 0, 1	8, −1, −4, 3, 0, −3, 0, 1
1624	9, 2, −1, −2, 3, 2, −1, −2, −1	8, −1, −4, 3, 0, −3, 0, 1
Table 2 (continued)

$ABCD$	N_A & N_B	N_C & N_D	
$n = 8$			
5	06151	$9, 0, 1, 0, 5, 0, 1, 0, 1$	$8, -1, 0, -1, -2, 1, 0, 1$
	1618	$9, 2, -1, 2, -1, -2, -1, -2, -1$	$8, -1, 0, -1, -2, 1, 0, 1$
6	06152	$9, 0, -3, 0, 1, 0, 1, 0, 1$	$8, 3, -2, -1, 0, 1, 2, 1$
	1264	$9, 2, 3, 2, -1, -2, -1, -2, -1$	$8, -5, 2, -1, 0, 1, -2, 1$
7	06183	$9, 0, 1, -4, -1, -2, 1, 0, 1$	$8, -1, -2, 5, 0, -1, 2, 1$
	1271	$9, 2, -1, -2, 1, 0, -1, -2, -1$	$8, -1, 2, 1, 0, 3, -2, 1$
8	06183	$9, 0, 1, -4, -1, -2, 1, 0, 1$	$8, -1, 0, 3, 0, 1, 0, 1$
	1613	$9, 2, -1, -2, 1, 0, -1, -2, -1$	$8, -1, 0, 3, 0, 1, 0, 1$
9	06310	$9, 0, 1, 2, 1, 4, -1, 0, 1$	$8, -1, 0, 1, -3, 0, 1, 0$
	1686	$9, 2, -1, 0, -1, 2, 1, -2, -1$	$8, -1, 0, -1, -3, 0, 1, 0$
10	06380	$9, -4, 1, -2, 1, 0, -1, 0, 1$	$8, 3, 0, 1, 0, -1, 0, 1$
	1661	$9, -2, -1, 0, -1, 2, 1, -2, -1$	$8, 3, 0, 1, 0, -1, 0, 1$
11	06382	$9, 0, 1, -2, -3, 0, -1, 0, 1$	$8, 3, 0, 1, 0, -1, 0, 1$
	1641	$9, -2, -1, 0, -1, 2, 1, -2, -1$	$8, -1, 0, 1, 4, -1, 0, 1$
12	06412	$9, 0, 1, 2, -3, 0, -1, 0, 1$	$8, -1, 0, 1, 4, -1, 0, 1$
	1632	$9, 2, -1, 0, -1, 2, 1, -2, -1$	$8, -1, 0, -3, 0, -1, 0, 1$
13	06580	$9, -4, 1, -2, 1, 0, -1, 0, 1$	$8, 3, -2, -3, 0, 3, 2, 1$
	1127	$9, 2, 3, 0, -1, -2, -3, -2, -1$	$8, -1, -2, 5, 0, -1, 2, 1$
14	06633	$9, 0, -3, 2, -1, -2, -1, 0, 1$	$8, -1, 2, -1, 0, 1, 2, 1$
	1163	$9, 2, -1, 0, 1, 0, -3, -2, -1$	$8, -1, -2, -1, 0, 1, 2, 1$
15	06852	$9, 0, -3, 0, 1, 0, -3, 0, 1$	$8, -1, 2, -1, 0, 1, 2, 1$
	1163	$9, 2, -1, 2, -1, -2, -1, -2, -1$	$8, -1, -2, -1, 0, 1, 2, 1$
16	06860	$9, 0, -3, 0, 1, 0, -3, 0, 1$	$8, -1, 2, -1, 0, 1, 2, 1$
	1163	$9, 2, -1, 2, -1, -2, -1, -2, -1$	$8, -1, -2, -1, 0, 1, 2, 1$
17	08110	$9, 0, 3, 2, 1, 0, 3, -2, 1$	$8, -1, -2, -1, 0, 1, -2, 1$
	1866	$9, 2, 1, 0, -1, -2, 1, 0, -1$	$8, -1, -2, -1, 0, 1, -2, 1$
18	08350	$9, 0, -1, -4, 1, 0, 1, -2, 1$	$8, -1, 2, 1, 0, 3, -2, 1$
	1822	$9, -2, -3, 2, -1, -2, 3, 0, -1$	$8, 3, 2, 1, 0, -1, -2, 1$
19	08383	$9, 0, 3, 0, -1, -2, 1, -2, 1$	$8, -1, -2, -1, 0, 1, -2, 1$
	1866	$9, 2, 1, 2, 1, 0, 3, 0, -1$	$8, -1, -2, -1, 0, 1, -2, 1$
20	08630	$9, -4, -1, 0, 1, 0, 1, -2, 1$	$8, 3, 0, 1, 0, -1, 0, 1$
	1661	$9, -2, 1, -1, -2, 1, -1, 0, -1$	$8, 3, 0, 1, 0, -1, 0, 1$
21	08640	$9, 0, -1, -4, 1, 0, 1, -2, 1$	$8, -1, -2, 5, 0, -1, 2, 1$
	1282	$9, -2, 1, -2, -1, 2, -1, 0, -1$	$8, 3, 2, 1, 0, -1, -2, 1$
22	08642	$9, 0, -1, 0, -3, 0, 1, -2, 1$	$8, 3, 0, 1, 0, -1, 0, 1$
	1641	$9, -2, 1, -2, -1, 2, -1, 0, -1$	$8, -1, 0, 1, 4, -1, 0, 1$
Table 2 (continued)

\[
\begin{array}{cccc}
\text{ABCD} & N_A & N_B & N_C & N_D \\
n = 8 & & & & \\
23 & 08660 & 9, 0, -1, -4, 1, 0, 1, -2, 1 & 8, -1, -2, 5, 0, -1, 2, 1 \\
1271 & 9, 2, 1, -2, -1, -2, -1, 0, -1 & 8, -1, 2, 1, 0, 3, -2, 1 \\
24 & 08660 & 9, 0, -1, -4, 1, 0, 1, -2, 1 & 8, -1, 0, 3, 0, 1, 0, 1 \\
1613 & 9, 2, 1, -2, -1, -2, -1, 0, -1 & 8, -1, 0, 3, 0, 1, 0, 1 \\
25 & 08833 & 9, 0, -1, 2, -1, 2, -1, -2, 1 & 8, -1, 0, -1, 0, -3, 0, 1 \\
1686 & 9, 2, 1, 0, 1, 4, 1, 0, -1 & 8, -1, 0, -1, 0, -3, 0, 1 \\
26 & 08862 & 9, 0, -1, 2, -1, 2, -1, -2, 1 & 8, -1, 4, -1, 0, 1, 0, 1 \\
1626 & 9, 2, -3, 0, 1, 0, 1, 0, -1 & 8, -1, 0, -1, 0, -3, 0, 1 \\
27 & 08863 & 9, 0, -1, 2, -1, 2, -1, -2, 1 & 8, -1, 0, -3, 0, -1, 0, 1 \\
1638 & 9, 2, 1, 4, 1, 0, 1, 0, -1 & 8, -1, 0, -3, 0, -1, 0, 1 \\
\end{array}
\]

Table 3: Equivalence classes of \(BS(10, 9) \)

\[
\begin{array}{cccc}
\text{AB} & \text{CD} & \text{AB} & \text{CD} & \text{AB} & \text{CD} & \text{AB} & \text{CD} \\
1 & 01235 66450 & 2 & 01324 66181 & 3 & 01618 64150 & 4 & 01624 64183 \\
5 & 01627 64130 & 6 & 01633 64140 & 7 & 01642 64560 & 8 & 01652 61453 \\
9 & 01652 64313 & 10 & 01654 61163 & 11 & 01655 61180 & 12 & 01672 61281 \\
13 & 01675 61430 & 14 & 01682 61180 & 15 & 01684 61122 & 16 & 01734 64160 \\
17 & 01735 61640 & 18 & 01764 61821 & 19 & 01765 61281 & 20 & 01767 61831 \\
21 & 01783 61411 & 22 & 01867 61311 & 23 & 06124 16282 & 24 & 06136 16640 \\
25 & 06147 16450 & 26 & 06152 12763 & 27 & 06164 16133 & 28 & 06172 12681 \\
29 & 06175 12670 & 30 & 06175 16143 & 31 & 06187 16131 & 32 & 06351 16460 \\
33 & 06382 16460 & 34 & 06388 16340 & 35 & 06412 16273 & 36 & 06412 16381 \\
37 & 06413 16460 & 38 & 06451 16163 & 39 & 06458 12612 & 40 & 06481 12623 \\
41 & 06481 16161 & 42 & 06581 11622 & 43 & 06583 11631 & 44 & 06875 11622 \\
\end{array}
\]
Table 4: Equivalence classes of $BS(11, 10)$

AB	CD	AB	CD	AB	CD
1	061173 16456	2	061253 16246	3	061350 16645
4	061450 16267	5	061450 16443	6	061460 16434
7	061463 12826	8	061463 16271	9	061553 12716
10	061563 16134	11	061582 12631	12	061633 12671
13	061740 12684	14	061870 12286	15	061870 16144
16	063140 16862	17	063413 16822	18	063510 16382
19	063513 16441	20	063550 16414	21	063583 16341
22	063810 16616	23	063821 16445	24	063833 16613
25	063840 16262	26	063842 16242	27	063870 16322
28	063873 16217	29	063881 16342	30	064122 16277
31	064130 16465	32	064141 16423	33	064141 16452
34	064170 16344	35	064313 16282	36	064413 12826
37	064413 16271	38	064480 16213	39	064480 16321
40	064510 12638	41	064510 12676	42	064870 12616
43	065843 11276	44	068110 11863	45	068383 11863
46	068560 11263	47	068571 11632	48	068580 11627
49	068580 11643	50	068611 11634	51	068632 11632
52	068641 11634	53	068752 11276	54	068771 11645
55	082661 18642	56	083110 18863	57	083383 18863
58	083510 18226	59	083521 18642	60	083850 18622
61	086231 16248	62	086243 16277	63	086263 16332
64	086310 16613	65	086333 16616	66	086343 16228
67	086421 16427	68	086432 16242	69	086463 16217
70	086473 16217	71	086483 16344	72	086532 16142
73	086640 12631	74	086643 16134	75	086740 12642
76	086840 12682	77	086860 12671	78	086870 12671
79	087110 12863	80	087110 16273	81	087120 16461
82	087130 16461	83	087131 16262	84	087221 16284
85	087323 16282	86	087343 16282	87	087361 16422
88	087372 12864	89	087383 16382	90	087663 16146
91	087683 12637	92	087732 12684	93	088651 16264
94	088651 16424	95	088673 16434	96	088762 16246
97	088771 16264	98	088771 16424		
Table 5: Equivalence classes of $BS(12, 11)$

	AB	CD		AB	CD		AB	CD
1	011823	661422	2	012356	661422	3	013682	663120
4	013753	663120	5	016426	641272	6	016445	616230
7	016472	645121	8	016525	614232	9	016525	643511
10	016535	612770	11	016542	612463	12	016542	612843
13	016542	614242	14	016546	612440	15	016572	614320
16	016634	614123	17	016634	614231	18	016643	612271
19	016653	612313	20	016724	643121	21	016727	612440
22	016756	611280	23	016774	612363	24	016817	614320
25	017262	641243	26	017356	616123	27	017374	616242
28	017375	641243	29	017632	614620	30	017646	612640
31	017664	614520	32	017674	612462	33	017674	614272
34	018265	612772	35	018342	614620	36	018382	612770
37	018767	613123	38	018767	613230	39	061186	164231
40	061246	166323	41	061256	164341	42	061264	162273
43	061264	162433	44	061284	164231	45	061462	162452
46	061462	164322	47	061463	162262	48	061472	126861
49	061473	164251	50	061476	162431	51	061476	164320
52	061547	127621	53	061575	126232	54	061618	126232
55	061624	126332	56	061644	126341	57	061764	126242
58	061774	126343	59	063144	168281	60	063412	168481
61	063512	162642	62	063515	162441	63	063515	164321
64	063541	162660	65	063541	164420	66	063551	163241
67	063811	164261	68	063824	162660	69	063824	164420
70	063825	162772	71	063828	162273	72	063828	162433
73	063842	164261	74	063858	163320	75	063877	128160
76	063882	163423	77	063884	163421	78	064143	164251
79	064146	162431	80	064146	164320	81	064615	122632
82	064826	126262	83	064838	126451	84	064842	126451
Classification of Base Sequences $BS(n+1,n)$

Table 6: Equivalence classes of $BS(13,12)$

AB	CD	AB	CD	AB	CD			
1	0611863 164521	2	0611871 166143	3	0612360 164844			
4	0612573 164215	5	0612760 162827	6	0612760 162443			
7	0612870 162424	8	0614230 164864	9	0614553 164226			
10	0614670 162327	11	0614671 128266	12	0614830 162624			
13	0615230 162867	14	0615230 161883	15	0615643 161234			
16	0615733 126452	17	0616433 126452	18	0616533 126143			
19	0616733 126143	20	0617212 126847	21	0617220 126876			
22	0617220 126883	23	0617230 126813	24	0617651 122818			
25	0617811 126428	26	0617820 126428	27	0618333 126413			
28	0631412 168644	29	0634170 168382	30	0635120 164558			
31	0635152 164341	32	0635340 164621	33	0635440 164242			
34	0635483 162246	35	0635483 162432	36	0635513 164132			
37	0635500 163214	38	0635810 163422	39	0635810 164142			
40	0635872 162134	41	0638112 163822	42	0638121 164423			
43	0638212 164242	44	0638222 164278	45	0638241 164423			
46	0638781 162167	47	0641282 162424	48	0641363 164522			
49	0641370 164265	50	0641470 162732	51	0641471 128642			
52	0641471 126143	53	0641481 164215	54	0643513 164242			
55	0643822 164522	56	0643880 162424	57	0644833 163214			
58	0646430 126143	59	0648112 162623	60	0648212 161624			
61	0648213 161644	62	0648363 162461	63	0648821 126716			
64	0648433 126452	65	0658112 116273	66	0658363 116342			
67	0658463 112645	68	0661363 116245	69	0661453 112634			
70	0663640 116342	71	0663853 116324	72	0663880 116245			
73	0664360 112645	74	0685733 116245	75	0685860 116245			
76	0685871 112766	77	0686130 116245	78	0686230 116636			
79	0686240 116273	80	0686433 116245	81	0687623 116245			
82	0688613 116245	83	0688671 112764	84	0811283 182788			
85	0812661 182668	86	0812883 182647	87	0816621 181128			
88	0817883 181128	89	0826620 182647	90	0826782 182266			
91	0826783 182641	92	0826851 186444	93	0835382 182266			
94	0836121 186621	95	0837383 182278	96	0837383 182771			
97	0838521 186627	98	0838652 182777	99	0838673 182668			
100	0838751 182777	101	0838871 186644	102	0862230 164278			
103	0862270 164413	104	0862312 164226	105	0862322 166128			
106	0862383 162748	107	0862441 164265	108	0862483 128674			
109	0862650 163341	110	0862651 162138	111	0863220 164287			
112	0863353 162642	113	0863353 164612	114	0863482 166144			
115	0864121 164324	116	0864311 164226	117	0864343 164226			
118	0864382 164413	119	0864463 162451	120	0864781 162167			
	AB	CD		AB	CD		AB	CD
---	--------	--------	---	--------	--------	---	--------	--------
121	0865261	126237	122	0865310	126452	123	0865343	161642
124	0865382	126238	125	0865382	161267	126	0866310	126413
127	0866443	126314	128	0867740	126174	129	0868761	126238
130	0868761	161267	131	0871130	162747	132	0871332	162624
133	0872231	162838	134	0872833	164432	135	0873111	166361
136	0873470	162842	137	0873470	166413	138	0873481	162862
139	0873581	164413	140	0873583	162445	141	0873670	162248
142	0873681	162268	143	0873711	164226	144	0873750	164413
145	0876221	127763	146	0876510	126342	147	0876510	126451
148	0876570	122864	149	0876570	161247	150	0876581	126238
151	0876581	161267	152	0876612	126341	153	0876663	126314
154	0876750	126238	155	0876750	161267	156	0877382	126876
157	0877382	161883	158	0877871	126748	159	0878631	127778
160	0878663	127647	161	0878861	161886	162	0878870	161884
163	0881211	168382	164	0882762	168242	165	0883571	168242
166	0883671	168422	167	0886261	162874	168	0886280	162867
169	0886471	162842	170	0886471	166413	171	0886560	164215
172	0886613	164521	173	0886671	162741	174	0886760	164215
175	0887780	162748						
Table 7: Equivalence classes of $BS(14, 13)$

	AB	CD		AB	CD		AB	CD
1	0116455	6616380	2	0116536	6645183	3	0116546	6645153
4	0116734	6641822	5	0117653	6618273	6	0117653	6618422
7	0117663	6618450	8	0118176	6618441	9	0118323	6618222
10	0118324	6618241	11	0118327	6612712	12	0118327	6614122
13	0118345	6614121	14	0123628	6645153	15	0123644	6641450
16	0123672	6614413	17	0123827	6611811	18	0131554	6618272
19	0131657	6618273	20	0131657	6618422	21	0131676	6612763
22	0131755	6614185	23	0131743	6644513	24	0131745	6645560
25	0131842	6618222	26	0132157	6641822	27	0132284	6614580
28	0132354	6614153	29	0132427	6641810	30	0132463	6618843
31	0133154	6612743	32	0133414	6618451	33	0133425	6611813
34	0134174	6614185	35	0134174	6644513	36	0134234	6641513
37	0134246	6645113	38	0134273	6621412	39	0134274	6612280
40	0134314	6641851	41	0134416	6614182	42	0136167	6636440
43	0136764	6634111	44	0137536	6631223	45	0138324	6631411
46	0161327	6418636	47	0161533	6418643	48	0161633	6414853
49	0161655	6456330	50	0161742	6418643	51	0161755	6412743
52	0161762	6418430	53	0162173	6162842	54	0162283	6415680
55	0162328	6418650	56	0162556	6451340	57	0162582	6451343
58	0162617	6451282	59	0162766	6413151	60	0163157	6618433
61	0163174	6168441	62	0163255	6164143	63	0163287	6162131
64	0163325	6168241	65	0163532	6162760	66	0163372	6141416
67	0163375	6412612	68	0163417	6414653	69	0163462	6412681
70	0163562	6451883	71	0163822	6455630	72	0163844	6451220
73	0164133	6456613	74	0164143	6168242	75	0164156	6456550
76	0164234	6164450	77	0164314	6162862	78	0164317	6162871
79	0164327	6142623	80	0164367	6164311	81	0164471	6418541
82	0164481	6141811	83	0164624	6451133	84	0165173	6124832
85	0165174	6142582	86	0165243	6141643	87	0165274	6122463
88	0165327	6142412	89	0165347	6141622	90	0165367	6142312
91	0165413	6144831	92	0165428	6142152	93	0165523	6143513
94	0165716	6143581	95	0165816	6114424	96	0165826	6114531
97	0165826	6123142	98	0166137	6128182	99	0166153	6127433
100	0166173	6128371	101	0166317	6127481	102	0166324	6124841
103	0166413	6127832	104	0166423	6141830	105	0166543	6112471
106	0167125	6142682	107	0167134	6148463	108	0167156	6434350
109	0167162	6127643	110	0167162	6142763	111	0167238	6128222
112	0167286	6122162	113	0167345	6144161	114	0167356	6141461
115	0167356	6183881	116	0167365	6144311	117	0167385	6116270
118	0167416	6144581	119	0167426	6142280	120	0167455	6431311
\(AB \)	\(CD \)	\(AB \)	\(CD \)					
---	---	---	---					
121	0167457	6435150	122	0167465	6141272			
123	0167466	6124512	124	0167583	6123240			
125	0167584	6123240	126	0167585	6112740			
127	0167586	6112740	128	0167817	6118282			
129	0168171	6143841	130	0168171	6143841			
131	0168276	6114521	132	0168286	6114531			
133	0168425	6143411	134	0168465	6112422			
135	0168476	6123420	136	0171655	6416273			
137	0171656	6416851	138	0171831	6416481			
139	0172647	6411422	140	0172656	6415223			
141	0173413	6441863	142	0173474	6445160			
143	0173523	6411422	144	0173524	6414151			
145	0173554	6161242	146	0173557	6164880			
147	0173612	6414863	148	0173612	6414863			
149	0173612	6414863	150	0173612	6414863			
151	0173843	6412141	152	0173843	6412781			
153	0173843	6412781	154	0173843	6412781			
155	0173843	6412781	156	0173843	6412781			
157	0176164	6416273	158	0176164	6416273			
159	0176164	6416273	160	0176164	6416273			
161	0176164	6416273	162	0176164	6416273			
163	0176164	6416273	164	0176164	6416273			
165	0176164	6416273	166	0176164	6416273			
167	0176164	6416273	168	0176164	6416273			
169	0176164	6416273	170	0176164	6416273			
171	0176164	6416273	172	0176164	6416273			
173	0176164	6416273	174	0176164	6416273			
175	0176164	6416273	176	0176164	6416273			
177	0176164	6416273	178	0176164	6416273			
179	0176164	6416273	180	0176164	6416273			
181	0176164	6416273	182	0176164	6416273			
183	0176164	6416273	184	0176164	6416273			
185	0176164	6416273	186	0176164	6416273			
187	0176164	6416273	188	0176164	6416273			
189	0176164	6416273	190	0176164	6416273			
191	0176164	6416273	192	0176164	6416273			
193	0176164	6416273	194	0176164	6416273			
195	0176164	6416273	196	0176164	6416273			
197	0176164	6416273	198	0176164	6416273			
199	0176164	6416273	200	0176164	6416273			
201	0176164	6416273	202	0176164	6416273			
203	0176164	6416273	204	0176164	6416273			
205	0176164	6416273	206	0176164	6416273			
207	0176164	6416273	208	0176164	6416273			
209	0176164	6416273	210	0176164	6416273			
211	0176164	6416273	212	0176164	6416273			
213	0176164	6416273	214	0176164	6416273			
215	0176164	6416273	216	0176164	6416273			
217	0176164	6416273	218	0176164	6416273			
219	0176164	6416273	220	0176164	6416273			
221	0176164	6416273	222	0176164	6416273			
223	0176164	6416273	224	0176164	6416273			
225	0176164	6416273	226	0176164	6416273			
227	0176164	6416273	228	0176164	6416273			
229	0176164	6416273	230	0176164	6416273			
231	0176164	6416273	232	0176164	6416273			
233	0176164	6416273	234	0176164	6416273			
235	0176164	6416273	236	0176164	6416273			
237	0176164	6416273	238	0176164	6416273			
Table 7: (continued)

		AB	CD			AB	CD	
241	0612356	1648241	242	0612457	1662171	243	0612517	1642753
244	0612528	1638242	245	0612536	1287762	246	0612547	1624820
247	0612548	1644511	248	0612556	1286422	249	0612585	1623820
250	0612586	1286420	251	0612645	1286441	252	0612646	1624730
253	0612744	1642280	254	0612752	1624282	255	0612752	1624670
256	0612753	1644131	257	0612753	1661181	258	0612758	1624250
259	0612764	1286420	260	0612844	1661271	261	0612853	1626142
262	0613515	1663843	263	0613554	1628243	264	0613647	1628323
265	0613753	1628263	266	0614236	1664450	267	0614274	1628213
268	0614271	1663481	269	0614274	1662142	270	0614475	1628213
271	0614527	1622843	272	0614571	1286372	273	0614571	1268462
274	0614577	1634513	275	0614638	1286321	276	0614642	1268341
277	0614675	1623412	278	0614681	1236233	279	0614773	1643450
280	0614774	1643270	281	0614784	1264250	282	0614873	1643211
283	0614884	1645130	284	0615118	1268632	285	0615146	1628462
286	0615147	1268452	287	0615471	1276443	288	0615487	1628111
289	0615627	1612342	290	0615741	1263482	291	0615743	1616242
292	0615783	1228631	293	0615784	1263621	294	0615785	1614350
295	0615874	1612341	296	0615883	1262333	297	0616234	1624760
298	0616237	1264280	299	0616281	1228632	300	0616358	1267113
301	0616472	1614551	302	0616481	1262343	303	0616481	1614232
304	0616534	1261732	305	0616841	1611822	306	0617413	1618861
307	0617426	1268423	308	0617526	1616431	309	0617556	1271642
310	0617556	1612741	311	0617572	1614651	312	0617586	1271660
313	0617625	1624333	314	0617626	1262343	315	0617626	1614232
316	0617655	1613422	317	0617682	1613640	318	0617786	1271642
319	0617786	1612741	320	0617824	1264620	321	0617824	1616231
322	0617844	1616450	323	0617845	1266212	324	0617853	1612461
325	0617854	1614222	326	0617874	1271662	327	0617884	1262450
328	0618516	1262443	329	0618517	1262433	330	0618527	1612441
331	0618557	1613450	332	0618616	1613441	333	0618625	1613441
334	0618714	1612662	335	0618748	1228631	336	0618824	1264142
337	0618825	1263172	338	0618847	1612361	339	0618874	1613241
340	0618883	1613451	341	06191147	1686422	342	0631352	1686222
343	0631458	1682421	344	0631557	1681411	345	0631778	1681411
346	0634135	1682202	347	0634187	1682321	348	0635124	1644340
349	0635132	1644270	350	0635137	1638220	351	0635138	1626240
352	0635152	1624740	353	0635311	1645860	354	0635381	1626710
355	0635441	1646161	356	0635857	1621341	357	0636178	1634410
358	0636178	1641321	359	0636882	1631443	360	0638171	1644131
Table 7: (continued)

361	0638171	1661181	362	0638177	1286420	363	0638188	1286620
364	0638221	1645681	365	0638237	1642620	366	0638248	1642470
367	0638281	1644141	368	0638285	1643440	369	0638372	1624821
370	0638384	1661242	371	0638427	1638221	372	0638428	1638421
373	0638457	1624420	374	0638487	1626132	375	0638522	1633822
376	0638744	1632281	377	0638747	1641272	378	0641147	1638422
379	0641163	1286372	380	0641163	1286671	381	0641264	1643430
382	0641278	1624260	383	0641361	1624842	384	0641361	1643833
385	0641451	1286372	386	0641451	1286671	387	0641457	1622453
388	0641517	1632482	389	0641712	1632783	390	0641754	1621662
391	0641867	1621370	392	0643113	1648422	393	0643412	1662713
394	0643536	1286881	395	0643545	1661421	396	0643611	1624573
397	0643814	1638221	398	0643836	1661222	399	0643842	1661271
400	0643843	1646150	401	0644124	1624570	402	0644134	1627611
403	0644145	1286240	404	0644381	1626122	405	0644813	1621263
406	0644813	1634121	407	0644823	1634141	408	0645172	1616441
409	0645387	1263821	410	0645651	1226343	411	0645857	1261243
412	0645871	1261623	413	0646123	1261373	414	0646138	1261622
415	0646387	1261232	416	0648121	1264760	417	0648175	1262282
418	0648176	1614430	419	0648225	1263482	420	0648272	1612662
421	0648275	1614460	422	0648276	1262282	423	0648376	1624620
424	0648376	1616231	425	0648412	1264523	426	0648426	1623323
427	0648472	1264141	428	0648481	1264161	429	0648586	1226480
430	0648587	1226380	431	0648635	1226481	432	0648863	1226453
433	0655416	1126471	434	0655416	1162182	435	0655417	1126371
436	0658125	1164341	437	0658135	1166450	438	0658146	1162461
439	0658147	1162451	440	0658173	1127621	441	0658275	1126760
442	0658364	1126461	443	0658463	1127762	444	0658487	1127631
445	0661274	1127641	446	0663582	1164522	447	0663614	1163441
448	0663875	1163241	449	0663885	1163422	450	0682412	1186822
451	0685236	1128263	452	0685424	1128623	453	0685536	1162740
454	0685637	1126370	455	0685724	1162323	456	0685753	1126341
457	0685827	1162742	458	0685846	1162762	459	0685863	1126432
460	0686142	1163422	461	0686154	1122671	462	0686213	1162471
463	0686215	1163322	464	0686253	1126452	465	0686273	1126760
466	0686357	1163222	467	0686374	1164650	468	0686413	1164560
469	0686424	1162731	470	0686451	1126341	471	0687515	1162451
472	0687525	1162631	473	0687561	1126361	474	0687645	1126760
475	0688763	1164561						
CLASSIFICATION OF BASE SEQUENCES $BS(n + 1, n)$

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, N2L 3G1, CANADA

E-mail address: djokovic@uwaterloo.ca