Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

D S Clark, C R Weber, D C Eder, S W Haan, B A Hammel, D E Hinkel, O S Jones, A L Kritcher, M M Marinak, J L Milovich, P K Patel, H F Robey, J D Salmonson and S M Sepke

Lawrence Livermore National Laboratory, Livermore, CA, USA

clark90@llnl.gov

Abstract. Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

1. Introduction

Substantial progress has been made in modeling and understanding ignition implosions on the National Ignition Facility (NIF) since the 2013 IFSA Conference. Since that time, hydrodynamic instability growth spectra have been measured for a range of perturbation mode numbers and for high foot as well as low foot implosion types [1]. These measurements have so far largely validated the simulation technique used to model NIF implosions, although measurements at higher convergence [2] and with better resolution are needed. In addition, the high foot implosion platform has been pushed to higher implosion velocities using higher laser powers and energies, and also thinner ablators, and appears to show evidence of a ceiling in performance. From the simulation perspective, detailed 3-D capsule-only simulations are showing increasing levels of agreement with NIF implosion measurements. In particular, these detailed simulations have now been compared for representative low foot [3] and high foot [4] implosion types, and show similar levels of agreement with the data for these quite different implosion types. This paper summarizes recent progress in 3-D simulations of...
NIF implosions using the radiation hydrodynamics code HYDRA [5]. The different implosion characteristics, as revealed in simulations of low as compared to high foot implosions, and their different failure modes are particularly important as these indicate where each implosion type may be improved and how a route to ignition on NIF might finally be achieved.

2. 3-D simulation results

3-D capsule-only simulations were run following the methodology described in Ref. [6]. Since the simulations in Ref. [6] were completed, however, further 2-D simulation work suggested that the perturbation seeded by the capsule support tent was even larger than assumed in those simulations. The understanding of the low-mode radiation flux asymmetries imprinted on the capsule from the hohlraum has also improved. For these reasons, the NIF implosion simulated in Ref. [6] (N120321, the highest compression implosion yet fired on NIF) was rerun with these updated inputs. Two additional implosion experiments have also been simulated: N120405, a higher power and energy companion to N120321 that “mixed” heavily with ~1 µg of ablator material believed to have entered the hot spot; and N130927, a high foot implosion that showed the first evidence of “fuel gain,” that is, a fusion neutron yield equal to or greater than the peak fuel kinetic energy. It is important to understand the behavior of N120405 as it clearly crossed a performance “cliff” compared to N120321, and understanding the origin of this cliff—the source of the hot spot mix mass in particular—is essential in avoiding this outcome in future implosions. It is equally important to contrast the results of the low foot implosions (N120321 and N120405) against the high foot to understand the different strengths, and weaknesses, of these quite different implosion types.

Figure 1 contrasts the results from 3-D simulations of each of these shots at their respective bang times (time of peak neutron production). In each case, the outer surface is the ablation front colored by the electron temperature, the left cutaway shows the ion temperature, and the right cutaway shows the density. The large “sombrero hat” features in both of the low foot implosions result from ablation front instability growth seeded by the capsule support tent. As is clear from the figure, the tent is the dominant perturbation in these low foot implosions. In fact, in the case of N120405, it can be seen that the tent perturbation has grown so extreme that it has entrained plastic ablator material into the center of the hot spot. This appears to explain the source of the hot spot mix mass observed for this shot: the stronger acceleration and hence ablation front instability growth of N120405 amplified the tent perturbation to such an extent that the already large perturbation on N120321 grew to the point of penetrating the hot spot on N120405. Note that the tent perturbation encircles the full azimuth of the capsule at each pole and hence gives a large area for ablator material to enter the hot spot suddenly once an amplitude threshold is passed. In contrast, the high foot implosion N130927 is clearly much less perturbed at the ablation front. While a small tent defect is evident in this simulation, it is much
reduced relative to the low foot, and the dominant perturbation source is now the hohlraum radiation asymmetry. This asymmetry results in the large spikes or jets entering the north and south poles of the hot spot in this simulation. Even so, a much larger and hotter hot spot results compared to the low foot, and hence this implosion gives a much higher yield.

To quantify the relative importance of the various perturbation sources in the low foot and high foot implosion types, Figures 2 and 3 show the results of 2-D simulations run with each perturbation source included separately, namely, the hohlraum flux asymmetries alone, the tent perturbation alone, all 2-D effects in combination, and finally the 3-D result from the simulations described above. The histogram shows the impact on the neutron yield with each effect, and the insets show the 2-D simulation results at bang time. Note that α-particle deposition is included in all simulations.

For the low foot implosion N120321, the tent is quantitatively the largest impact resulting in a 15× yield degradation relative to 1-D. This is nearly twice the impact of the flux asymmetries that result in an 8× degradation. As shown in Figure 2, these roles reverse for the high foot. The better ablation front stability of the high foot reduces the impact of the tent to a 5× reduction in yield relative to 1-D, while the hohlraum asymmetries result in a 20× degradation. Thus, while the tent is the largest source of yield degradation for the low foot implosions, the hohlraum asymmetries are the largest degradation in this high foot implosion. Note that the high foot implosion achieves a higher symmetric yield than the low foot cases, despite its higher adiabat, due to its higher laser power and energy and hence higher implosion velocity. Interestingly, for the high foot, the 2-D simulation with all effects included is fairly close to the measured yield data and the 3-D simulation actually under-predicts the yield. By contrast, for the low foot, the 2-D simulation including all effects over-predicts the yield by more than a factor of two, while only the 3-D simulation is fairly close to the measured yield. This is indicative of the generally larger perturbation levels in low foot implosions that can only be accurately captured in a fully 3-D simulation.

Quantitative comparisons of the 3-D simulation results against the data for the three shots simulated are summarized in Table 1. The first column lists a number of the principle experimental observables and pairs of subsequent columns compare the simulation results against the data for each successive shot. The agreement is generally good for all three shots, although many quantities are not matched within the experimental error bars. In these cases, the simulation results are generally within two error bars of the data, however. In comparing the primary neutron image size (PNI P0), down scattered neutron image size (DSNI P0), burn-averaged ion temperature (T_{ion}), and neutron down scattered ratio (DSR), an important caveat should be pointed out. Given the scale of these 3-D simulations, current computing capabilities do not allow running the simulations with inline Monte Carlo neutronics, as is routinely done in 2-D. The simulation values listed in the table are hence taken...
from instantaneous post-processing of the simulations at bang time. As such, they represent snapshots of the state of the simulation at bang time and omit the time averaging over the duration of the burn that is inherent in the measurement and would be included if these quantities could be computed inline. This limitation in the current simulations may account for the noticeable discrepancies in the simulated DSR for N120321 and also in the ion temperatures for N120321 and N130927. It is, of course, possible that these discrepancies point to inadequacies in the physical models used in the simulations or are the result of imperfect knowledge of the initial and boundary conditions for these shots. At this time, it is not possible to resolve which of these possibilities is responsible. Nevertheless, the overall agreement between the simulations and the data is reasonably good. This is notable given that three quite different shots have been simulated, and each appears to agree equally well with the experimental results.

Table 1. Comparison of simulation and experimental results for N120321, N120405, and N130927.

	N120321	N120405	N130927			
	sim.	expt.	sim.	expt.	sim.	expt.
bang time (ns)	22.85	22.91±0.04	22.53	22.70±0.08	16.53	16.59±0.03
burn width (ps)	167	158±40	130	161±40	143.5	188±30
x-ray P₀ (µm)	21.9	20.1±1.4	23.9	23.4±0.85	31.4	35.3±3.0
x-ray M₀ (µm)	19.8	22.7±2.7	24.1	26.5±4.0	45.7	49.8±1.5
PNI P₀ (µm)	24.4	26±3	25.4	27±3	27.7	32±4
DSNI P₀ (µm)	38.4	35±3	31.7	43±6	51.1	55±4
Tᵢₘₑ (keV)	2.6	3.1±0.4	1.7	1.69±0.13	3.9	4.43±0.15
DSR (%)	5.0	6.2±0.6	5.5	5.14±0.29	3.5	3.48±0.17
Y₁₃₋₁₅ MeV	6.0×10¹⁴	4.2±0.1×10¹⁴	1.4×10¹⁴	1.3±0.1×10¹⁴	3.1×10¹⁵	4.5±0.1×10¹⁵

3. Conclusions

Three ignition implosion experiments from the NIF database have been simulated following the most up-to-date 3-D simulation methodology. All three show reasonably good, though not perfect, agreement with the experimental data. Given that these three shots explored quite different regions of implosion parameter space, the agreement suggests that a fairly robust simulation capability is developing for modeling NIF implosions. This validated simulation capability is clearly essential for assessing what design modifications can lead to further gains in implosion performance.

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

[1] Smalyuk V A, et al. 2014 Phys. Plasmas 21 056301
[2] Hammel B A, et al. 2015, Bull. Am. Phys. Soc. 60 164
[3] Edwards M J, et al. 2013 Phys. Plasmas 20 070501
[4] Hurricane O A, et al. 2014 Phys. Plasmas 21 056314
[5] Marinak M M, et al. 2001 Phys. Plasmas 8 2275
[6] Clark D S, et al. 2015 Phys. Plasmas 22 022703