Acute effect of daily fine particulate matter pollution on cerebrovascular mortality in Shanghai, China: a population-based time series study

Khadija Akter Leepe 1 · Mei Li 2 · Xin Fang 3 · Ayako Hiyoshi 4,5 · Yang Cao 4

Received: 7 March 2019 / Accepted: 4 June 2019 / Published online: 1 July 2019
© The Author(s) 2019

Abstract
Numerous studies have investigated the impacts of ambient fine particulate matter (PM 2.5) on human health. In this study, we examined the association of daily PM 2.5 concentrations with the number of deaths for the cerebrovascular disease on the same day, using the generalized additive model (GAM) controlling for temporal trend and meteorological variables. We used the data between 2012 and 2014 from Shanghai, China, where the adverse health effects of PM 2.5 have been of particular concern. Three different approaches (principal component analysis, shrinkage smoothers, and the least absolute shrinkage and selection operator regularization) were used in GAM to handle multicollinear meteorological variables. Our results indicate that the average daily concentration of PM 2.5 in Shanghai was high, 55 μg/m³, with an average daily death for cerebrovascular disease (CVD) of 62. There was 1.7% raised cerebrovascular disease deaths per 10 μg/m³ increase in PM 2.5 concentration in the unadjusted model. However, PM 2.5 concentration was no longer associated with CVD deaths after controlling for meteorological variables. The results were consistent in the three modelling techniques that we used. As a large number of people are exposed to air pollution, further investigation with longer time period including individual-level information is needed to examine the association.

Keywords Fine particulate matter · Cerebrovascular mortality · Generalized additive model · Multicollinearity · Principal component analysis · Shrinkage smoother · Least absolute shrinkage and selection operator

Introduction
Air pollution represents the biggest environmental risk to health, and outdoor air pollution alone has been associated with an estimated three million premature deaths in a recent year (World Health Organization (WHO), 2016). Harmful substances, such as carbon monoxide, nitrogen dioxide, and heavy metals from natural and unnatural origins, including volcanoes to industrial activities, vehicle emission, and combustion of fossil fuel, can take the forms of solid particles, liquid droplets, or gasses (Fiordelisi et al. 2017). Fine particulate matter with a size less than or equal to 2.5 μm in...
PM$_{2.5}$ has been shown to have significant adverse effects on human health, including reduced lung function and increased risk of chronic bronchitis, heart disease, lung cancer, and various forms of cardiovascular and cerebrovascular diseases and mortality (Fiordelisi et al. 2017; Lu et al. 2015). Mechanisms linking PM$_{2.5}$ and human health outcomes have not been fully understood, but unlike larger particles, small particles like PM$_{2.5}$ can penetrate deep into the respiratory system or absorbed into the bloodstream and may increase systemic inflammation and alter autonomic nervous system activity (Fiordelisi et al. 2017; Shah et al. 2015).

Although air quality has been improved over the years, many cities and regions in European and Asian countries still suffer from PM$_{2.5}$ concentration higher than 10 μg/m3 on an annual average, above the limit recommended by the WHO (Thunis et al. 2017). An increase in PM$_{2.5}$ concentration by 10 μg/m3 was associated with 8–27% higher lung cancer risk (Pope et al. 2002; Turner et al. 2011) and 4% higher all-cause mortality risk (Pope et al. 2002), while a reduction by 10 μg/m3 expands life expectancy for 0.35 years (Correia et al. 2013). Emergency hospital admissions for cerebrovascular disease increased by 1.3% for every ≥10 μg/m3 increase in PM$_{2.5}$ concentration (Leiva et al. 2013).

The aim of our study was to evaluate the acute effect of PM$_{2.5}$ pollution on cerebrovascular disease (CVD) mortality using data from Shanghai, China, between 2012 and 2014. We focused on the influence of PM$_{2.5}$ concentration on death during the same day. As we adjusted for a number of meteorological variables and some of them show multicollinearity, the secondary aim was to examine the impact of the difference of adjustment techniques that are commonly used in the presence of collinearity: principal component analysis (PCA), shrinkage smoother, the least absolute shrinkage and selection operator (LASSO) methods.

Materials and methods

Study setting and data

The data used this study include daily observations on the number of CVD deaths, PM$_{2.5}$ concentrations, and meteorological conditions between 2012 and 2014 in Shanghai, China, with a total of 1091 observed days. During the study period, the population of Shanghai was approximately 24.0 million, and the life expectancy was around 83 years (Shanghai Statistics Bureau 2014). The detailed description of the data was published elsewhere (Fang et al. 2017). Briefly, daily average PM$_{2.5}$ concentrations between January 1, 2012, and December 31, 2014, were obtained from the air quality monitoring station of the US Consulate General in Shanghai and the Shanghai Meteorological Bureau. Only the measurements from a single air quality monitor station were available during the study period. The daily mortality data during the corresponding time period for all the 16 administrative districts in Shanghai were obtained from the Causes of Death Registry of Shanghai Municipal Centre for Disease Control and Prevention. The causes of death were coded according to the International Disease Classification Codes, version 10, and the codes for cerebrovascular diseases deaths were 160–169. Thirteen meteorological variables and the day of the week were used as potential confounding factors.

Statistical model

Mean, standard deviation (SD), median, the first quartile (Q1), and the third quartile (Q3) were calculated for daily CVD deaths, PM$_{2.5}$ concentrations, and meteorological variables. Univariate associations between CVD mortality and PM$_{2.5}$ and meteorological variables were evaluated using a generalized linear model with a log link function. Generalized additive model (GAM) was used for multivariate analysis. The GAM is a generalization of the generalized linear model and is widely used in time series studies on health effects of air pollution because it does not expect a particular functional form of a relationship, and is flexible for modelling nonlinear associations (Crawley 2013). It exploits the quantity of a response variable Y from a given distribution with different independent variables by estimating non-parametric functions of the independent variables, which are connected to the response variable through a link function. Because of the non-linear relationship between death counts and weather conditions, and exponential form of daily death counts within a fixed period of time, the effect of PM$_{2.5}$ on daily deaths in the present study was modelled as:

$$\log[E(Y)] = \log[\mu_t] = \beta_0 + \beta_1 X_t + \sum_{j=1}^6 f_j(Z_i) + \sum_{j=1}^6 D_j$$

where $E(Y)$ is the expected mean of deaths on day t, β_0 and β_1 are the intercept and slope term respectively, X_t is the PM$_{2.5}$ concentration on a day t, f is the smoothing function, Z_i is the confounding variables (i.e., time and weather conditions), and D_j is the dummy variables of the day of the week (DOW) and $j = 1, 2, \ldots, 6$.

The smoothing functions f_i are composed of non-parametric splines of confounding variables. Splines are polynomial curves that are connected at inner knots. The widely used splines in GAM are defined as the natural spline, cubic spline, or B-spline with a pre-specified number of knots. In our study, two types of smoothing splines, cubic regression spline (cr) and thin plate spline (tp), were used and compared.
To avoid over-fitting, for each of confounding variables of time and weather conditions, the optimal number of knots \((k)\) was selected based on Akaike’s information criterion values using iterative processes. We compared \(k = 4, 5, 6, 7,\) and \(8\) because most of the studies show that \(k = 3\) is sufficient, and often there was no notable improvement with more than \(8\) knots.

The coefficient of PM\(_{2.5}\) multiplying by 10 is interpreted as a percentage increase in cerebrovascular deaths per 10 \(\mu g/m^3\) increment in PM\(_{2.5}\) concentration.

Controlling for multicollinearity

Except for controlling for temporal trends in daily cerebrovascular deaths, meteorological variables were considered as potential confounding factors (Jimenez-Conde et al. 2008). Multicollinearity among 13 meteorological variables was examined using the Spearman correlation and variance inflation factor (VIF), and statistically significant multicollinearity was found among the variables. To deal with the multicollinearity and high dimensionality of these confounding variables, we used three different approaches. The first approach used the principal component analysis (PCA) method to convert the variables into mutually orthogonal principal components (PCs) (Yang et al. 2015). Because the reduction of the number of variables, or dimensionality, on the other hand, may lead to a loss of useful information about the original data, we also repeated the analysis using shrinkage smoothers as an alternative approach. Shrinkage is the procedure of compressing extreme values towards a central value (Tibshirani 1996). The benefit of using the shrinkage smoothers is to shrink less important variables into zero (Marra and Wood 2011). When using PCA and shrinkage techniques, we applied both \(cr\) and \(lp\) splines. The third approach used the least absolute shrinkage and selection operator (LASSO) regularization, which selected variables using a penalty \(\alpha = 1\) (Friedman et al. 2010).

All analyses were conducted in R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria) using packages `psych`, `mgcv`, and `glmnet`. Two-sided \(p\) values less than 0.05 are considered statistically significant.

Results

Descriptive statistics and univariate association

The descriptive statistics of daily mortality caused by cerebrovascular diseases, PM\(_{2.5}\) concentrations, and the meteorological variables are presented in Table 1. The mean of daily PM\(_{2.5}\) concentration is 55 \(\mu g/m^3\). The daily average deaths for the cerebrovascular diseases are 62 over the study period. The estimated coefficient with PM\(_{2.5}\) is \(1.653 \times 10^{-3}\), corresponding to a 1.653% increment in daily CVD deaths per 10

Variable	Mean	SD	Median	Q1	Q3	\(\beta\)	SE	\(p\) value
CVD deaths	62	14	60	51	71			
PM\(_{2.5}\) (\(\mu g/m^3\))	55	39	46	29	69	\(1.653 \times 10^{-3}\)	\(9.219 \times 10^{-5}\)	< 0.001
PreAvg (kPa)	101.61	0.88	101.51	100.82	102.26	0.1576	0.045	< 0.001
PreMax (kPa)	101.80	0.90	101.84	101.01	102.49	0.1586	0.044	< 0.001
PreMin (kPa)	101.34	0.87	101.35	100.58	103.67	0.1531	0.046	< 0.001
TemAvg (°C)	17	9	18	9	24	\(-0.0172\)	0.0004	< 0.001
TemMax (°C)	21	9	22	13	28	\(-0.0160\)	0.0004	< 0.001
TemMin (°C)	14	9	15	4	22	\(-0.0168\)	0.0004	< 0.001
HumAvg (%)	70	13	72	62	79	\(-0.0011\)	0.0003	< 0.001
HumMin (%)	51	18	51	38	63	\(-0.0011\)	0.0002	< 0.001
RainVol (mm)	33	104	0	0	11	\(-0.0002\)	4.055 \times 10^{-5}	< 0.001
Windspd (m/s)	2.8	1.0	2.7	2.1	3.4	\(-0.0187\)	0.0041	< 0.001
WindMax (m/s)	5.2	1.2	5.0	4.3	5.8	\(-0.0066\)	0.0032	0.0419
WindExt (m/s)	8.6	2.2	8.2	7.0	9.8	\(-0.0019\)	0.0017	0.278
Sunshine (h)	4.7	4.0	4.8	0	8.2	\(-0.0048\)	0.0010	< 0.001

CVD deaths stands for the deaths for cerebrovascular diseases. PreAvg, PreMax, and PreMin stand for the daily average, maximum, and minimum atmospheric pressure, respectively. TemAvg, TemMax, and TemMin stand for the daily average, maximum, and minimum temperature, respectively. HumAvg and HumMin stand for the daily average and minimum humidity measured as percentage. RainVol stands for the daily rain volume. Windspd, WindMax, and WindExt are daily average, maximum, and extreme wind speed, respectively. SD stands for standard deviation. Q1 and Q3 stand for the first and third quartiles. \(\beta\) stands for regression coefficient for the variable in generalized linear regression model, accompanied by SE (standard error) and \(p\) value.
μg/m³ increment in PM$_{2.5}$ concentration. All meteorological variables other than extreme wind speed showed a statistically significant association, and higher value tended to be associated with lower death risk apart from the daily atmospheric pressure variables.

There was multicollinearity among PM$_{2.5}$ and meteorological variables (Table 2). Most of the correlation coefficients are statistically significant. For example, daily average atmospheric pressure has a highly negative relationship with the average temperature ($r = -0.87$), average humidity is negatively correlated with the sunshine ($r = -0.67$), and volume of rain is negatively correlated with the sunshine ($r = -0.61$). According to the VIF values, daily average pressure, maximum pressure, minimum pressure, daily average temperature, maximum temperature, minimum temperature, daily average humidity, minimum humidity, maximum wind speed, and extreme wind speed are highly correlated to other variables and daily average rain volume, wind speed, and sunshine are moderately correlated to other variables (Table 3) (O’Brien 2007). For example, the VIF value of daily average pressure indicates that the variance of the estimated coefficient of the variable is inflated by a factor of 273.34 as it is highly correlated with at least one predictor variable. The correlations between PM$_{2.5}$ and meteorological variables are rather weak, and most of them have a Spearman’s $r < 0.30$ (Table 3).

Results of the GAM-PCA approach

The first four principal components derived from PCA explained approximately 91% variation of the original data (Table 4). After adjusting for meteorological conditions and day of the week, there was no longer a statistically significant association between daily PM$_{2.5}$ concentration and CVD mortality in both cr and tp spline models. All the smoothing functions of the PCs are statistically significant except for the fourth PC.

Table 2 Spearman correlation coefficients between the meteorological variables

	PreAvg	PreMin	PreMax	TemAvg	TemMin	TemMax	HumAvg	HumMin	RainVol	Windspd	WindMax	WindExt	Sunshine
PM$_{2.5}$	0.24*	0.24*	0.23*	-0.33*	-0.37*	-0.26*	-0.08*	-0.23*	-0.15*	-0.34*	-0.21*	-0.22*	-0.01
PreAvg	0.98*	0.98*	-0.87*	-0.87*	0.85*	-0.25*	-0.25*	-0.2*	-0.2*	-0.37*	-0.1*	-0.1*	-0.04
PreMin	0.96*	-0.85*	-0.84*	-0.82*	-0.26*	-0.25*	-0.25*	-0.2*	-0.2*	-0.1*	-0.16*	-0.09*	0.001
PreMax	0.89*	0.89*	-0.84*	-0.84*	-0.24*	0.24*	-0.24*	-0.1*	0.08	-0.09*	0.01	0.04	
TemAvg	0.98*	0.98*	0.09*	0.12*	0.03	0.10*	0.09*	0.03	0.18*	0.03	0.18*	0.07	
TemMin	0.98*	0.18*	0.24*	0.11*	0.14*	0.09*	0.05	0.07	0.07	0.01	0.29*		
TemMax	0.007	8×10⁻⁴	0.04	0.07	0.09*	0.01	0.29*						
HumAvg	0.90*	0.61*	-0.09*	-0.12*	-0.12*	-0.10*	-0.67*						
HumMin	0.59*	0.05	-0.03	-0.005	-0.72*								
RainVol	0.06	0.10	0.14*	-0.61*									
Windspd	0.75*	0.71*	0.04										
WindMax	0.90*	0.08*											
WindExt		0.02											

PresAvg, PreMax, and PreMin stand for the daily average, maximum, and minimum atmospheric pressure, respectively. TemAvg, TemMax, and TemMin stand for the daily average, maximum, and minimum temperature, respectively. HumAvg and HumMin stand for the daily average and minimum humidity measured as a percentage. RainVol stands for the daily rain volume. Windspd, WindMax, and WindExt are daily average, maximum, and extreme wind speed, respectively. *$p < 0.05$

Table 3 Variance inflation factor (VIF) of meteorological conditions

Variable	VIF
PreAvg	273.34
PreMax	97.96
PreMin	82.04
TemAvg	308.86
TemMax	118.51
TemMin	89.96
HumAvg	7.66
HumMin	10.97
Rainvol	1.30
Windspd	3.04
WindMax	6.52
WindExt	5.43
Sunshine	2.78

PreAvg, PreMax, and PreMin stand for the daily average, maximum, and minimum atmospheric pressure, respectively. TemAvg, TemMax, and TemMin stand for the daily average, maximum, and minimum temperature, respectively. HumAvg and HumMin stand for the daily average and minimum humidity measured as a percentage. RainVol stands for the daily rain volume. Windspd, WindMax, and WindExt are daily average, maximum, and extreme wind speed, respectively.
Results of the GAM shrinkage smoothers approach

Both shrinkage smoothers (cr and tp) shrunk daily average atmospheric pressure, maximum atmospheric pressure, minimum atmospheric pressure, minimum temperature, average humidity, average rain volume, average wind speed, maximum wind speed, extreme wind speed, and sunshine to zero (Table 5). Again, no statistically significant association was found between daily PM$_{2.5}$ concentration and CVD mortality after adjusting for meteorological conditions and day of the week. The smoothing terms of average and maximum temperature and daily minimum humidity retained statistically significant.

Results of the GAM-LASSO approach

Daily average temperature and minimum temperature were selected using the LASSO procedure and included in the model (Table 6). The association between daily PM$_{2.5}$ concentration and cerebrovascular mortality became no longer statistically significant after adjustment, but the smoothing term of average temperature retained statistically significant.

Discussion

In the current study, we evaluated the effect of daily PM$_{2.5}$ concentrations on the CVD deaths in Shanghai, China, using GAM analysis with three different approaches for controlling for collinear confounding variables while simultaneously taking into account the linear and nonlinear relationships between meteorological confounding variables and the number of deaths. The daily average PM$_{2.5}$ concentration level in our data was 55 μg/m3, and this was much higher than the recommended levels for PM$_{2.5}$ yearly average below 10 μg/m3 or 25 μg/m3 by the World Health Organization or the European Union, respectively (Thunis et al. 2017). There was a 1.7% elevated risk for CVD death per 10 μg/m3 PM$_{2.5}$ concentration in the unadjusted model, but after adjustment for meteorological variables and temporal trend, the exposure to PM$_{2.5}$ was no longer associated. The results were consistent in the three modelling techniques we used.

A body of research has shown that an increase in PM$_{2.5}$ was linked to an elevated risk of stroke (Franklin et al. 2008; Leiva et al. 2013; Lin et al. 2017; Lisabeth et al. 2008; Shah et al. 2015; Wellenius et al. 2012), ischemic heart disease (Pope et al. 2002), myocardial infarction (Peters et al. 2001), and cerebrovascular mortality (Gutierrez-Avila et al. 2018), and...
recent reviews showed that PM$_{2.5}$ was associated with approximately 1% elevated risk of cerebrovascular mortality by every 10 $\mu g/m^3$ increase (Shah et al. 2015; Wang et al. 2014). These studies revealed an increased risk of CVD associated with short-term exposure to PM$_{2.5}$ in Europe, the USA, Asia, Africa, and South America. The excessive risk per 10 $\mu g/m^3$ increase in PM$_{2.5}$ concentration ranged from 0.7% in mortality to 1.3% in hospital admission. In our data, the unadjusted association was similar but higher (1.7% excessive mortality per 10 $\mu g/m^3$ increase in PM$_{2.5}$ concentration). It has been proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not systematically monitored, and also because the toxic particles from various sources may vary (Tuomisto et al. 2008). The estimated effect of PM$_{2.5}$ on premature mortality largely depends on the toxicity regarding the inhaled particle components. In China, emissions from residential energy use such as heating and cooking have the largest contribution to PM$_{2.5}$, whereas in much of the USA and in a few other countries, emissions from traffic and power generation are important. In the eastern United States, Europe, Russia, and East Asia, agricultural emissions make the largest relative contribution to PM$_{2.5}$ (Lelieveld et al. 2015). It might partially explain the difference in the findings between our study and other studies. On the other hand, the difference might be in part due to the profoundly different demographic characteristics, socioeconomic status, or environmental conditions. For example, Shanghai is a megacity with a dense population and high temperature and humidity all the year round, and PM$_{2.5}$ may impact public health differently from other studied areas. Like the aforementioned studies, our study also controlled for the temporal trend of deaths and confounding from

Table 5: Summary of the GAM with shrinkage smoothers analysis for the risk of cerebrovascular disease mortality

Parametric coefficients	SE	p value
Intercept	4.1 4.1	0.012 0.012 < 0.001 < 0.001
PM$_{2.5}$	6.9×10^{-5} 1.5×10^{-4}	1.1×10^{-4} 1.2×10^{-4} 0.52 0.16
DOW1	1.0×10^{-2} 9.2×10^{-3}	1.44×10^{-2} 1.44×10^{-2} 0.47 0.52
DOW2	4.1×10^{-3} 3.1×10^{-3}	1.44×10^{-2} 1.44×10^{-2} 0.78 0.83
DOW3	1.9×10^{-2} 1.7×10^{-2}	1.44×10^{-2} 1.44×10^{-2} 0.20 0.23
DOW4	7.0×10^{-3} 6.1×10^{-3}	1.45×10^{-2} 1.44×10^{-2} 0.63 0.68
DOW5	5.6×10^{-3} 4.5×10^{-3}	1.44×10^{-2} 1.44×10^{-2} 0.70 0.75
DOW6	-1.4×10^{-3} -2.1×10^{-3}	1.44×10^{-2} 1.44×10^{-2} 0.92 0.88

DOW, the day of the week; SE, standard error; cr, cubic regression; tp, thin plate; s(t), smoothing function; Edf, effective degrees of freedom; Ref.df, reference degrees of freedom; REML, restricted maximum likelihood; N, the total number of observations. Parameter coefficients are adjusted estimates
The approximate significance of smoothing terms

Smoothing Term	Edf	Ref.df	Chi-square	p value
s(PressMax)	2.39	3.09	3.98	0.26
s(TemAvg)	4.17	5.28	34.25	< 0.001
s(TemMin)	1.02	1.03	0.32	0.59
s(t)	17.18	17.89	464.62	< 0.001

DOW, the day of the week; SE, standard error; s(), smoothing function; Edf, effective degrees of freedom; Ref.df, reference degrees of freedom

 meteorological variables. However, we notice that when we adjusted for quite a few meteorological variables, the association became no longer statistically significant. The results were consistent across different modelling strategies, while the nonlinear association of CVD mortality with the meteorological variables retained. The observed PM2.5 concentrations in Shanghai were substantially higher than those in Europe or the USA where most of the current studies have been conducted and conclusions derived. The high ambient PM2.5 concentration level in itself might mask triggering effect of exposure, and the meteorological factors were only contributing to exacerbation of a PM2.5 exposure effect, which might be a potential reason that no statistically significant effect was observed for PM2.5 and deserves further investigation in the comparative studies using data from regions with low PM2.5 pollution..

The strengths of our study include, first, the adjustment using the rich information of meteorological variables enabled us for detailed control for weather conditions. Weather conditions and time-varying risk factors such as days of the week may cause a significant modification on PM2.5 levels and cerebrovascular events (Zhang et al. 2014). Second, multicollinearity among meteorological variables was handled using different approaches of PCA, shrinkage smoothers, and LASSO regularization, and the results were consistent in all the methods. Third, the use of two types of smoothing splines for the GAM model allowed us to compare results to minimize the bias from spline selection, and the results were, again, consistent regardless of types of smoothing splines. In the multicollinearity context, shrinkage methods, such as ridge regression, may reduce the dimensionality of the data by shrinking some coefficient estimates towards zero but not exactly to zero. While in LASSO, one of the correlated coefficients is usually zeroed and the other is assigned the entire impact. Because of this, ridge regression is expected to work better if there are many large parameters of about the same value. LASSO, on the other hand, is expected to come on top when only a few factors actually have impacts (James et al. 2013).

However, our study also has limitations. First, the relatively shorter time period for the analysis limited us to fully assess the long-term time trend in both PM2.5 pollution levels and cerebrovascular disease mortality. Second, only city-level PM2.5 concentrations from one air monitoring station were available in our study, but the concentration of PM2.5 may differ within the city and change during the day, and people’s location would also not be constant. As a megacity with a population of about 24 million and an area of 6,340 km², Shanghai has vastly different PM2.5 concentrations and meteorological conditions across the city. Although deaths from 16 administrative districts in Shanghai were available, only aggregated deaths of the whole city and the PM2.5 concentrations, as well as meteorological variables, from a single monitoring station were available in the study. It may mask and obscure the spatial and temporal variability of PM2.5 effects at particular exposure hotspots, such as the heat island effect in some parts of the city may exacerbate the effects of PM2.5 due to high temperatures that may also affect the outcomes. To overcome the lack of spatial variability in PM2.5 concentrations and/or meteorological data, a land use regression approach could be incorporated in the future (Liu et al. 2016). Of course, air pollution and mortality data from multisite would be more helpful for adjusting for the confounding from the spatiotemporal variability in PM2.5 concentrations and mortalities. Although many studies relied on air pollution information assuming a constant location of people, for example, their residential addresses, the quantification of exposure using time and activity patterns of individuals will also enhance the understanding (Reis et al. 2018).

Third, cerebrovascular mortality risk may vary by age, sex, and socioeconomic factors, but these characteristics were not controlled for in the current study. However, these characteristics tend to be stable within the city given our relatively short study period, thus confounding is unlikely (Pope et al. 2002). Fourth, we focused on the same day’s effect of a single pollutant and did not include multiple pollutants (Wang et al. 2014) or lagged effects (Gutierrez-Avila et al. 2018). Although it is possible that air pollution may cause death after a certain period of time, a systematic review indicates that the risk appeared hardly different by the inclusion of lags (Shah et al. 2015).
Conclusion

In this study, we aimed to evaluate the effect of PM$_{2.5}$ pollution on CVD mortality using GAM with three different approaches for controlling for confounding factors. The initially statistically significant 1.65% elevated risk of CVD death was no longer observed after adjusting for a number of meteorological variables. As a large number of people are exposed to air pollution, further analysis using data with various measurement times, periods, and detailed pollutant and exposure profiles would contribute to enhancing the understanding of the impact of PM$_{2.5}$ on human health and its mechanism.

Acknowledgments We thank Bo Fang, Chunfang Wang, and Tian Xia from the Shanghai Municipal Center for Disease Control and Prevention for their cooperation in data retrieving and cleaning.

Author contributions Conceptualization: Yang Cao, Khadija Akter Leepe, and Xin Fang. Funding acquisition: Yang Cao. Data curation: Xin Fang. Formal analysis: Khadija Akter Leepe and Yang Cao. Methodology: Yang Cao, Xin Fang, Mei Li, and Khadija Akter Leepe. Project administration: Yang Cao. Resources: Yang Cao. Supervision: Yang Cao. Validation: Yang Cao, Xin Fang, and Mei Li. Writing—original draft: Khadija Akter Leepe, and Yang Cao. Writing—review and editing: Ayako Hiyoshi, Xin Fang, Yang Cao, and Mei Li.

Funding information This work was financially supported by the Strategic Grant, Karolinska Institutet, Sweden (Project No. C62400032), the Junior Faculty Grant of the Institute of Environmental Medicine, Karolinska Institutet (Project No. C62412022), and the Joint China-Sweden Mobility Grant of the Swedish Foundation for International Cooperation Research and Education (Grant No. CH2015-6145).

Compliance with ethical standards

Ethics approval The study was approved by the Ethical Review Committee of the Shanghai Municipal Center for Disease Control and Prevention (SCDC), China (approval number: SCDC2016-08).

Competing interests The authors declare no that they have no competing interests.

Disclaimer The funding bodies were not involved in the design of the study, data collection and analysis, interpretation of results, and writing the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Correia AW, Pope CA 3rd, Dockery DW, Wang Y, Ezzati M, Dominici F (2013) Effect of air pollution control on life expectancy in the United States: an analysis of 545 U.S. counties for the period from 2000 to 2007. Epidemiology 24(1):23–31. https://doi.org/10.1097/EDE.0b013e3182770237

Crawley M (2013) The R book, 2nd edn. John Wiley & Sons, West Sussex

Fang X, Fang B, Wang CF, Xia T, Bottai M, Fang F, Cao Y (2017) Relationship between fine particulate matter, weather condition and daily non-accidental mortality in Shanghai, China: a Bayesian approach. PLoS One 12(11):e0187933

Fiodelisi A, Piscitelli P, Trimarco B, Coscioni E, Iaccarino G, Sorrentino D (2017) The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail Rev 22(3):337–347. https://doi.org/10.1007/s10741-017-9606-7

Franklin M, Koutrakis P, Schwartz J (2008) The role of particle composition on the association between PM$_{2.5}$ and mortality. Epidemiology 19(5):680–689. https://doi.org/10.1097/EDE.0b013e31818126b7

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

Gutierrez-Avila I, Rojas-Bracho L, Riojas-Rodriguez H, Kloog I, Just AC, Rothenberg SJ (2018) Cardiovascular and cerebrovascular mortality associated with acute exposure to PM$_{2.5}$ in Mexico City. Stroke 49(7):1734–1736. https://doi.org/10.1161/Strokeaha.118.021034

James G, Witten H, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. S pringer

Jimenez-Conde J, Ois A, Gomis M, Rodriguez-Campello A, Cuadrado-Godia E, Subirana I, Roquer J (2008) Weather as a trigger of stroke: daily meteorological factors and incidence of stroke subtypes. Cerebrovasc Dis 26(4):348–354. https://doi.org/10.1159/000151637

Leiva MA, Santibanez DA, Ibarra S, Matus P, Seguel R (2013) A five-year study of particulate matter (PM$_{2.5}$) and cerebrovascular diseases. Environ Pollut 181:1–6. https://doi.org/10.1016/j.envpol.2013.05.057

Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569):367–371. https://doi.org/10.1038/nature15371

Lin HL, Guo YF, Di Q, Zheng Y, Kowal P, Xiao JP et al (2017) Ambient PM$_{2.5}$ and stroke effect modifiers and population attributable risk in six low- and middle-income countries. Stroke 48(5):1191–1197. https://doi.org/10.1161/Strokeaha.116.015739

Lin YL, Zou JL, Yang W, Li CQ (2018) A review of recent advances in research on PM$_{2.5}$ in China. Int J Environ Res Public Health 15(3):438

Lisabeth LD, Escohur JD, Dvosche JT, Sanchez BN, Majerski JH, Brown DJ, et al (2008) Ambient air pollution and risk for ischemic stroke and transient ischemic attack. Ann Neurol 64(1):53–59. https://doi.org/10.1002/ana.21403

Liu C, Henderson BH, Wang DF, Yang XY, Peng ZR (2016) A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM$_{2.5}$) and nitrogen dioxide (NO$_2$) concentrations in City of Shanghai, China. Sci Total Environ 565:607–615. https://doi.org/10.1016/j.scitotenv.2016.03.189

Lu F, Xu D, Cheng Y, Dong S, Guo C, Jiang X, Zheng X (2015) Systematic review and meta-analysis of the adverse health effects of ambient PM$_{2.5}$ and PM$_{10}$ pollution in the Chinese population. Environ Res 136:196–204. https://doi.org/10.1016/j.envres.2014.06.029

Marra G, Wood SN (2011) Practical variable selection for generalized additive models. Computational Statistics & Data Analysis 55(7):2372–2387. https://doi.org/10.1016/j.csda.2011.02.004

O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690. https://doi.org/10.1007/s11135-006-9018-6

Peters A, Dockery DW, Muller JE, Mittleman MA (2001) Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103(23):2810–2815
Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9):1132–1141

Reis S, Liska T, Vieno M, Carvell EJ, Beck R, Clemens T et al (2018) The influence of residential and workday population mobility on exposure to air pollution in the UK. Environ Int 121:803–813. https://doi.org/10.1016/j.envint.2018.10.005

Shah ASV, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W et al (2015) Short-term exposure to air pollution and stroke: systematic review and meta-analysis. Br Med J 350:h1295

Shanghai Statistics Bureau (2014) Shanghai Statistical Yearbook. Retrieved from http://www.stats-sh.gov.cn/html/sjfb/tjnj/

Thunis P, Degraeuwe B, Pisoni E, Trombetti M, Peduzzi E, Belis CA, ... Vignati E (2017) Urban PM2.5 atlas - air quality in European cities. Retrieved from Luxembourg.

Tibshirani R (1996) Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B-Methodological 58(1):267–288

Tuomisto JT, Wilson A, Evans JS, Tainio M (2008) Uncertainty in mortality response to airborne fine particulate matter: combining European air pollution experts. Reliab Eng Syst Saf 93(5):732–744. https://doi.org/10.1016/j.ress.2007.03.002

Turner MC, Krewski D, Pope CA 3rd, Chen Y, Gapstur SM, Thun MJ (2011) Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am J Respir Crit Care Med 184(12):1374–1381. https://doi.org/10.1164/rccm.201106-1011OC

Wang Y, Eliot MN, Wellenius GA (2014) Short-term changes in ambient particulate matter and risk of stroke: a systematic review and meta-analysis. J Am Heart Assoc 3(4):e000983

Wellenius GA, Burger MR, Coull BA, Schwartz J, Suh HH, Koutrakis P et al (2012) Ambient air pollution and the risk of acute ischemic stroke. Arch Intern Med 172(3):229–234. https://doi.org/10.1001/archinternmed.2011.732

WHO (2016) Ambient air pollution: a global assessment of exposure and burden of disease. WHO Press, Geneva

Yang Y, Cao Y, Li WJ, Li RK, Wang M, Wu ZL, Xu Q (2015) Multi-site time series analysis of acute effects of multiple air pollutants on respiratory mortality: a population-based study in Beijing, China. Sci Total Environ 508:178–187. https://doi.org/10.1016/j.scitotenv.2014.11.070

Zhang YS, Li SS, Pan XC, Tong SL, Jaakkola JJK, Gasparini A et al (2014) The effects of ambient temperature on cerebrovascular mortality: an epidemiologic study in four climatic zones in China. Environ Health 13(1):24

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.