Magnetic moment manipulation by a Josephson current

F. KONSCHELLI and A. BUZDIN
Condensed Matter Theory Group, CPMOH, Université de Bordeaux and CNRS, F-33405 Talence, France
(Dated: January 9, 2009, Document published in Phys. Rev. Lett. 102, 017001 (2009).)

We consider a Josephson junction where the weak-link is formed by a non-centrosymmetric ferromagnet. In such a junction, the superconducting current acts as a direct driving force on the magnetic moment. We show that the a.c. Josephson effect generates a magnetic precession providing then a feedback to the current. Magnetic dynamics result in several anomalies of current-phase relations (second harmonic, dissipative current) which are strongly enhanced near the ferromagnetic resonance frequency.

Many interesting phenomena have been observed recently in the field of spintronics: the spin-dependent electric current and inversely the current-dependent magnetization orientation (see for example [1, 2]). Moreover, it is well known that spin-orbit interaction may be of primary importance for spintronic, namely for systems using a two-dimensional electron gas [3]. In the superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions, the spin-orbit interaction in a ferromagnet without inversion symmetry provides a mechanism for a direct (linear) coupling between the magnetic moment and the superconducting current [4]. Similar anomalous properties have been predicted for Josephson junctions with spin-polarized quantum point contact in a two-dimensional electron gas [5]. S/F/S junctions are known as S/F/S junctions including several F regions with different magnetization) [12, 13], while the junctions with composite regions (including several F regions with different magnetization) were discussed in [8, 9, 10, 11]. More recently, the dynamically induced superconducting phase difference (second harmonic, dissipative current) which are strongly enhanced near the ferromagnetic resonance frequency.

...
characteristic Josephson energy as $E_{JM} = \frac{\Phi_0 I_c}{S} \sim T_c k_F^2 \sin \ell/\ell$ with $\ell = 4hL/v_F$, where S, L, h are the section, the length and the exchange field of the F layer, respectively. The phase shift is

$$\varphi_0 = \frac{\ell}{v_F} M_y \frac{M_y}{M_0}$$

(2)

where the parameter v_{so}/v_F characterizes the relative strength of the spin-orbit interaction. Further on we assume that $v_{so}/v_F \sim 0.1$. If the temperature is well below the Curie temperature, $M_0 = |\mathbf{M}|$ can be considered as a constant equal to the saturation magnetization of the F layer. The magnetic energy contribution is reduced to the anisotropy energy

$$E_M = -\frac{K}{2}\left(\frac{M_y}{M_0}\right)^2,$$

(3)

where K is an anisotropy constant and \mathcal{V} is the volume of the F layer.

Naturally, we may expect that the most interesting situation corresponds to the case when the magnetic anisotropy energy does not exceed too much the Josephson energy. From the measurements [18] on permalloy with very weak anisotropy, we may estimate $K \sim 4.10^{-5} \text{K}\cdot\text{Å}^{-3}$. On the other hand, typical value of L in S/F/S junction is $L \sim 10 \text{nm}$ and $\sin \ell/\ell \sim 1$. Then, the ratio of the Josephson over magnetic energy would be $E_J/E_M \sim 100$ for $T_c \sim 10 \text{K}$. Naturally, in the more realistic case of stronger anisotropy this ratio would be smaller but it is plausible to expect a great variety of regimes from $E_J/E_M \ll 1$ to $E_J/E_M \gg 1$.

Let us now consider the case when a constant current $I < I_c$ is applied to the φ_0-junction. The total energy is (see, e.g. [16]):

$$E_{\text{tot}} = -\frac{\Phi_0}{2\pi} \varphi I + E_s (\varphi, \varphi_0) + E_M (\varphi_0),$$

(4)

and both the superconducting phase shift difference φ and the rotation of the magnetic moment $M_y = M_0 \sin \theta$ (where θ is the angle between the z-axis and the direction of \mathbf{M}) are determined from the energy minimum conditions $\partial_\varphi E_{\text{tot}} = \partial_{\varphi_0} E_{\text{tot}} = 0$. It results in

$$\sin \theta = \frac{I}{I_c} \Gamma$$

(5)

with $\Gamma = \frac{E_J}{K \mathcal{V} v_{so}}$, which signifies that a superconducting current provokes the rotation of the magnetic moment M_y in the (yz) plane. Therefore, for small values of the rotation, $\theta (I)$ dependence is linear. In principle, the parameter Γ can be larger than one. In that case, when the condition $I/I_c \geq 1/\Gamma$ is fulfilled, the magnetic moment will be oriented along the y-axis. Therefore, applying a d.c. superconducting current switches the direction of the magnetization, whereas applying an a.c. current on a φ_0-junction could generate the precession of the magnetic moment.

We briefly comment on the situation when the direction of the gradient of the spin-orbit potential is perpendicular (along y) to the easy axis z. To consider this case we simply need to take $\varphi_0 = \ell (v_{so}/v_F) \cos \theta$. The total energy [14] has two minima $\theta = (0, \pi)$, while applying the current removes the degeneracy between them. However, the energy barrier exists for the switch from one minimum into another. This barrier may disappear if $\Gamma > 1$ and the current is large enough $I > I_c/\Gamma$. In this regime the superconducting current would provoke the switching of the magnetization between one stable configuration $\theta = 0$ and another $\theta = \pi$. This corresponds to the transitions of the junction between $+\varphi_0$ and $-\varphi_0$ states. The read-out of the state of the φ_0-junction may be easily performed if it is a part of some SQUID-like circuit (the φ_0-junction induces a shift of the diffraction pattern by φ_0).

In fact, the voltage-biased Josephson junction, and thus the a.c. Josephson effect provides an ideal tool to study magnetic dynamics in a φ_0-junction. In such a case, the superconducting phase varies with time like $\varphi (t) = \omega_J t$ [19]. If $h\omega_J \ll T_c$, one can use the static value for the energy of the junction [14] considering $\varphi (t)$ as an external potential. The magnetization dynamics are described by the Landau-Lifshitz-Gilbert equation (LLG) [20]

$$\frac{d\mathbf{M}}{dt} = \gamma \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_0} \left(\mathbf{M} \times \frac{d\mathbf{M}}{dt}\right),$$

(6)

where $\mathbf{H}_{\text{eff}} = -\delta F/\mathcal{V} \mathbf{M}$ is the effective magnetic field applied to the compound, γ the gyromagnetic ratio, and α a phenomenological damping constant. The corresponding free energy $F = E_s + E_M$ yields

$$\mathbf{H}_{\text{eff}} = \frac{K}{M_0} \left[\Gamma \sin \left(\omega_J t - r \frac{M_0}{M_0}\right) \hat{y} + \frac{M_z}{M_0} \hat{z}\right],$$

(7)

where $r = \ell (v_{so}/v_F)$. Introducing $m_i = M_i/M_0$, $\tau = \omega_J t$.
(ω_F = γK/M_0^2) is the frequency of the ferromagnetic resonance) in LLG equation (3) leads to

\[
\begin{aligned}
 \dot{m}_x &= m_z(\tau) m_y(\tau) - \Gamma m_z(\tau) \sin(\omega \tau - r m_y) \\
 \dot{m}_y &= -m_z(\tau) m_x(\tau) \\
 \dot{m}_z &= \Gamma m_x(\tau) \sin(\omega \tau - r m_y)
\end{aligned}
\]

where ω = ω_J/ω_F. The generalization of Eq. (8) for α ≠ 0 is straightforward. One considers first the “weak coupling” regime Γ ≪ 1 when the Josephson energy E_J is small in comparison with the magnetic energy E_M. In this case, the magnetic moment precess around the z-axis. If the other components verify (m_x, m_y) ≪ 1, then the equations (8) may be linearized, and the corresponding solutions are

\[
m_x(t) = \frac{\Gamma \omega \cos \omega t}{1 - \omega^2} \quad \text{and} \quad m_y(t) = -\frac{\Gamma \sin \omega t}{1 - \omega^2}. \tag{9}
\]

Near the resonance ω_J ≈ ω_F, the conditions of linearization are violated and it is necessary to take the damping into account. The precessing magnetic moment influences the current through the φ_0-junction like

\[
I(t) = I_c \sin \omega_J t + \frac{\Gamma r}{2} \frac{1}{\omega^2 - 1} \sin 2 \omega_J t + \ldots. \tag{10}
\]

i.e., in addition to the first harmonic oscillations, the current reveals higher harmonics contributions. The amplitude of the harmonics increases near the resonance and changes its sign when ω_J = ω_F. Thus, monitoring the second harmonic oscillations of the current would reveal the dynamics of the magnetic system.

The damping plays an important role in the dynamics of the considered system. It results in a d.c. contribution to the Josephson current. Indeed, the corresponding expression for m_y(t) in the presence of damping becomes

\[
m_y(t) = \frac{\omega_+ - \omega_-}{r} \sin \omega_J t + \frac{\omega_+ - \omega_-}{r} \cos \omega_J t, \tag{11}
\]

where \(\omega_\pm = \frac{\Gamma r}{2} \frac{\omega \pm 1}{\Omega_\pm} \) and α± = \(\frac{\Gamma r}{2} \frac{\alpha}{\Omega_\pm} \). \tag{12}

with \(\Omega_\pm = (\omega \pm 1)^2 + \alpha_\pm^2 \). It thus exhibits a damped resonance as the Josephson frequency is tuned to the ferromagnetic one ω → 1. Moreover, the damping leads to the appearance of out of phase oscillations of m_y(t) (term proportional to cos ω_J t in Eq. (11)). In the result the current

\[
I(t) \approx I_c \sin \omega_J t + I_c \frac{\omega_+ - \omega_-}{2} \sin 2 \omega_J t + \frac{I_c}{2} \cos 2 \omega_J t + I_0(\alpha) \tag{13}
\]
acquires a d.c. component

$$I_0(\alpha) = \frac{\alpha \Gamma r}{4} \left(\frac{1}{\Omega_-} - \frac{1}{\Omega_+} \right). \tag{14}$$

This d.c. current in the presence of a constant voltage V applied to the junction means a dissipative regime which can be easily detected. In some aspect, the peak of d.c. current near the resonance is reminiscent of the Shapiro steps effect in Josephson junctions under external r.f. fields. Note that the presence of the second harmonic in $I(t)$ Eq. (13) should also lead to half-integer Shapiro steps in φ_0-junctions \[21\].

The limit of the ”strong coupling” $\Gamma \gg 1$ (but $r \ll 1$) can also be treated analytically. In this case, $m_y \approx 0$ and solutions of Eq. (5) yields

$$\begin{align*}
m_x(t) &= \sin \left[\frac{\Gamma}{\omega} (1 - \cos \omega t) \right], \\
m_z(t) &= \cos \left[\frac{\Gamma}{\omega} (1 - \cos \omega t) \right], \tag{15}
\end{align*}$$

which are the equations of the magnetization reversal, a complete reversal being induced by $\Gamma/\omega > \pi/2$. Strictly speaking, these solutions are not exact oscillatory functions in the sense that $m_z(t)$ turns around the sphere center counterclockwise before reversing its rotation, and returns to the position $m_z(t = 0) = 1$ clockwise, like a pendulum in a spherical potential (see Fig. 2c).

Finally, we have performed numerical studies of the non-linear LLG Eq. (6) for some choices of the parameters when the analytical approaches fail. To check the consistency of our numerical and analytical approaches, we present in Fig. 2a the corresponding $m_z(t)$ dependencies for low-damping regimes. They clearly demonstrate the possibility of the magnetization reversal. In Figs. 2b-d, some trajectories of the magnetization vectors are presented for general coupling regimes. These results demonstrate that the magnetic dynamics of S/F/S φ_0-junctions may be pretty complicated and strongly non-harmonic.

If the φ_0-junction is exposed to a microwave radiation at angular frequency ω_1, the physics that emerge are very rich. First, in addition to the Shapiro steps at $\omega = n \omega_1$, half-integer steps will appear. Secondly, the microwave magnetic field may also generate an additional magnetic precession with ω_1 frequency. Depending on the parameters of φ_0-junction and the amplitude of the microwave radiation the main precession mechanism may be related either to the Josephson current or the microwave radiation. In the last case the magnetic spin-orbit coupling may substantially contribute to the amplitude of the Shapiro steps. Therefore, we could expect a dramatic increase of this amplitude at frequencies near the ferromagnetic resonance. When the influence of the microwave radiation and Josephson current on the precession is comparable, a very complicated regime may be observed.

In the present work we considered the case of the easy-axis magnetic anisotropy. If the ferromagnet presents an easy-plane anisotropy than qualitatively the main conclusions of this article remain the same because the coupling between magnetism and superconductivity depends only on the M_y component. However, the detailed dynamics would be strongly affected by a weak in-plane anisotropy.

To summarize, we have demonstrated that S/F/S φ_0-junctions provide the possibility to generate magnetic moment precession via Josephson current. In the regime of strong coupling between magnetization and current, magnetic reversal may also occur. These effects have been studied analytically and numerically. We believe that the discussed properties of the φ_0-junctions could open interesting perspectives for its applications in spintronics.

The authors are grateful to Z. Nussinov, J. Cayssol, M. Houzet, D. Gusakova, M. Roche and D. Braithwaite for useful discussions and comments. This work was supported by the French ANR Grant N° ANR-07-NANO-011: ELEC-EPR.

\[\text{[8]}\] J.-X. Zhu, and A. V. Balatsky. Phys. Rev. B \textbf{67}, 174505 (2003).

\[\text{[9]}\] L. Bulaevskii \textit{et al.} Phys. Rev. Lett. \textbf{92}, 177001 (2004).

\[\text{[10]}\] J.-X. Zhu \textit{et al.} Phys. Rev. Lett. \textbf{92}, 107001 (2004).

\[\text{[11]}\] Z. Nussinov \textit{et al.} Phys. Rev. B \textbf{71}, 214520 (2005).

\[\text{[12]}\] S. Takahashi \textit{et al.} Phys. Rev. Lett. \textbf{99}, 057003 (2007).

\[\text{[13]}\] M. Houzet. Phys. Rev. Lett. \textbf{101}, 057009 (2008).

\[\text{[14]}\] X. Waintal, and P. W. Brouwer. Phys. Rev. B \textbf{65}, 054407 (2002).

\[\text{[15]}\] V. Braude, and Y. M. Blanter. Phys. Rev. Lett. \textbf{100}, 207001 (2008).

\[\text{[16]}\] K. K. Likharev. \textit{Dynamics of Josephson junctions and circuits} (Gordon and Beach Science Publishers, 1986).

\[\text{[17]}\] S. Hikino \textit{et al.} J. Phys. Soc. Jap. \textbf{77}, 053707 (2008).

\[\text{[18]}\] A. Y. Rusanov \textit{et al.} Phys. Rev. Lett. \textbf{93}, 057002 (2004).

\[\text{[19]}\] B. D. Josephson. \textit{Superconductivity (in two volumes), vol. 1}, chapter 9, Weakly coupled superconductors (R.D Parks, Marcel Dekker, Inc., 1968).
[20] E. M. Lifshitz, and L. P. Pitaevskii. *Course of theoretical physics, Volume 9: Theory of the condensed state* (Butterworth Heinemann, 1991).

[21] H. Sellier et al. Phys. Rev. Lett. **92**, 257005 (2004).