Risk of Peripheral Arterial Occlusive Disease with Periodontitis and Dental Scaling: A Nationwide Population-Based Cohort Study

Ying-Ting Yeh 1,2,†, Yen-Shuo Tseng 3,†, Yi-Liang Wu 4,5, Shun-Fa Yang 6,7 ‡, Bo-Yuan Wang 4,6,8, Yu-Hsun Wang 7 ‡, Liang-Tsai Yeh 9,10, Ying-Tung Yeh 1,2,* and Chi-Ho Chan 7,11,*

1 School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan
2 Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
3 Department of Dermatology, Changhua Christian Hospital, Changhua 500, Taiwan
4 School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
5 Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
6 Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
7 Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
8 Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
9 Department of Anesthesiology, Changhua Christian Hospital, Changhua 500, Taiwan
10 Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
11 Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan

* Correspondence: yehtungtung@hotmail.com (Y.-T.Y.); chiho@csmu.edu.tw (C.-H.C.)
† These authors contributed equally to this work.

Abstract: Periodontitis (PD) is a common oral disease associated with various other diseases, particularly those affecting the cardiovascular system. This study explored whether peripheral artery occlusive disease (PAOD) is associated with PD and dental scaling. This study was a retrospective cohort study design from 2000 to 2018. The study population was newly diagnosed with periodontitis. The comparison group was defined as never diagnosed with periodontitis. The outcome variable was defined with the diagnosis of peripheral arterial occlusive disease (PAOD). The propensity score matching was performed by age, sex, comorbidities, and dental scaling between the two groups. Kaplan–Meier analysis was used to calculate the cumulative incidence of PAOD among the two groups. To perform the independent risk of the PAOD group, the multivariate Cox proportional hazard model was used to estimate the hazard ratios. First, 792,681 patients with PD and 458,521 patients with no history of PD were selected from Taiwan’s Longitudinal Health Insurance Database, which comprises the data of two million beneficiaries. After propensity score matching between the PD and non-PD groups for age, sex, comorbidities, and dental scaling, 357,106 patients in each group were analyzed for PAOD risk. The incidence density, relative risk, and cumulative incidence of PAOD were higher in the PD group than in the non-PD group. After adjusting for all variables, the risk of PAOD for the PD group was greater than for the non-PD group (adjusted hazard ratio = 1.03; 95% CI, 1.01–1.06). Undergoing at least one dental scaling procedure reduced the risk of PAOD. Age over 65 years was also a risk factor. In conclusion, patients with PD have an increased risk of PAOD. In addition, our results can lead to increased attention to oral hygiene, as dental scaling has a trend towards a lower risk of PAOD.

Keywords: periodontitis; peripheral arterial occlusive diseases; dental scaling

1. Introduction

Periodontitis (PD) is one of the most common and influential oral diseases in Taiwan. PD is classified into four stages on the basis of its (i) severity, (ii) complexity of management, (iii) extent, and (iv) distribution [1,2]. The severity of PD is evaluated with several
indices such as those for dental plaques, calculus, and pocket depth, bleeding on probing, attachment, and gum loss [3]. Chronic aggressive PD causes destruction of the periodontal ligament, alveolar bone reduction, and subsequent tooth loss [4]. Dozens of species of oral bacteria are associated with PD development. These bacteria have been classified into five complexes according to their relationship with and frequency of detection in PD in decreasing order: red, orange, yellow, green, blue, and purple [5,6]. Three species of bacteria, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, in the red complex are considered the main pathogens responsible for PD and are involved in disease progression and tissue destruction [7]. Other bacteria, such as Aggregatibacter actinomycetemcomitans, are the most likely causes of aggressive PD [8]. A retrospective nationwide population study indicated that the prevalence of PD significantly increased over a decade [9]. In addition, PD is common in middle-aged populations and highly prevalent among high school students aged 15 to 18 years [9].

Peripheral arterial occlusive disease (PAOD) is a blood circulation disturbance caused by arterial thrombosis [10]. For example, a recent study indicated that PAOD was associated with a higher risk of heart failure [11]. The pathogenesis of PAOD is similar to that of atherosclerosis, but PAOD always affects the lower limbs. The clinical signs of PAOD are not obvious; people do not notice the disease initially. One of the clinical signs of PAOD is intermittent claudication. Atherosclerosis severity can be determined through ultrasonic measurement of the ankle-brachial index, computed tomography, or magnetic resonance imaging [12–14]. PAOD can be divided into four stages based on the severity of symptoms. In stage IV, necrosis, ulcers, and gangrene always occur, even after minor trauma to the toes [15].

PD is associated with cardiovascular diseases. Untreated PD is associated with early atherosclerotic carotid lesions (i.e., increased carotid artery intima-media wall thickness) and higher levels of inflammatory markers (i.e., C-reactive protein and leucocytes) [16]. Male patients with chronic PD have a higher risk of carotid atherosclerosis [17]. Periodontal pathogens may promote atherosclerosis by promoting inflammation and metabolism-related molecular mechanisms [18].

In this study, we enrolled patients with and without PD from the Longitudinal Health Insurance Database 2000 (LHID 2000) and investigated (i) the association between PD and PAOD and (ii) the relationship between dental scaling and PAOD.

2. Materials and Methods
2.1. Data Source

The LHID is regulated by the Health and Welfare Data Science Center of Taiwan. The database contains 2 million beneficiaries randomly selected from the population of the 2000 beneficiary registry. The database contains all outpatient and inpatient medical claims, including medications, medical operations, procedures, and fees from 2000 to 2018. This study was approved by the Ethics Review Board of Chung Shan Medical University Hospital (CS1-20056).

2.2. Study Group and Outcome

This study employed a retrospective cohort study design. Supplementary Table S1 lists the diseases corresponding to the code (International Classification of Diseases, Clinical Modification [ICD-CM]) numbers that define periodontal disease, peripheral arterial occlusive disease, and comorbidities. The study population comprised patients with newly diagnosed PD from 2002 to 2017. Two or more outpatient visits or one or more hospitalizations were necessary to ensure the accuracy of the diagnoses. The index date was considered the first date of a PD code. We excluded patients with PAOD diagnoses from before the index date to confirm new onset. Participants without a PD diagnosis between 2000 and 2018 were also analyzed.
2.3. Covariates and Matching

The baseline characteristics considered were age, sex, and hypertension, hyperlipidemia, chronic liver disease, chronic kidney disease, diabetes, chronic obstructive pulmonary disease, rheumatoid arthritis, ankylosing spondylitis, hepatitis B, hepatitis C, herpes zoster, and psoriasis. Two outpatient visits or one hospitalization for the comorbidities were required within 1 year before the index date. In addition, the frequency of dental scaling 1 year before the index date was recorded. In Taiwan, the 65-year-old was defined as the elderly population. We used the cutoff at 65 years.

Age and sex matching in a 1:4 ratio was used to provide an index date for participants with the same starting point. Then, a propensity score matching (PSM) for age, sex, comorbidities, and dental scaling between the 2 groups was performed. The propensity scores were estimated through logistic regression, with the binary variable being PAOD status. PSM helped to account for the heterogeneity of the 2 groups.

2.4. Statistical Analysis

PD and non-PD groups were compared using absolute standardized differences. The groups were considered to have similar characteristics when the absolute standardized difference was less than 0.1 [19]. The relative risk (RR) and 95% CIs were calculated using a Poisson regression model. Kaplan–Meier analysis was used to calculate the cumulative incidence of PAOD in the 2 groups. A log-rank test was used to test significance. A Cox proportional hazards model was used to estimate hazard ratios (HRs) for the independent risk of PAOD. The statistical software employed was SAS version 9.4 (SAS Institute, Cary, NC, USA).

3. Results

3.1. Characteristics of the Participants

In total, 792,681 patients with PD and 458,521 patients without PD were selected from the LHID. After patients with PAOD before the index date were excluded, 783,716 patients remained in the PD cohort. To evaluate the risk of PAOD by age, sex, comorbidities, and dental scaling in both cohorts, a 1:1 PSM was employed. Finally, 357,106 patients in the PD cohort and the same number of patients without PD in a matched cohort were analyzed for PAOD risk (Figure 1). The demographic characteristics of both study cohorts are presented in Table 1. The mean age in the PD and non-PD groups was 37.56 and 37.78 years, respectively. The majority of patients were male (57%). After PSM, all absolute standardized differences were less than 0.1, suggesting that the age, sex, comorbidities, and frequencies of dental scaling in the groups were similar (Table 1).

![Figure 1. Flowchart of patient selection.](image-url)
Table 1. Demographic characteristics of periodontitis and non-periodontitis.

Variables	Before PSM Matching	After PSM Matching
	Non-Periodontitis	Periodontitis
	(N = 376,187)	(N = 376,187)
	n %	n %
Age	1 0	1 0
<20	89,406 23.8	89,406 23.8
20–39	114,868 30.5	114,868 30.5
40–64	125,667 33.4	125,667 33.4
≥65	46,246 12.3	46,246 12.3
Mean ± SD	38.27 ± 19.63	38.27 ± 19.63
Sex	1 0	1 0
Female	159,735 42.5	159,735 42.5
Male	216,452 57.5	216,452 57.5
Hypertension	35,598 9.5	41,973 11.2
Hyperlipidemia	12,091 3.2	18,269 4.9
Chronic liver disease	9221 2.5	12,203 3.2
Chronic kidney disease	2381 0.6	1657 0.4
Diabetes	17,654 4.7	17,941 4.8
Rheumatoid arthritis	6740 1.8	7230 1.9
Ankylosing spondylitis	829 0.2	950 0.3
Hepatitis B	315 0.1	503 0.1
Hepatitis C	1775 0.5	2940 0.8
Herpes zoster	1164 0.3	1384 0.4
Psoriasis	1272 0.3	1654 0.4
Dental scaling	682 0.2	895 0.2
None	353,026 93.8	339,245 90.2
<2	20,572 5.5	333,945 93.5
≥2	2589 0.7	334,071 93.5

COPD: Chronic obstructive pulmonary disease.
3.2. Risk of PAOD between PD and Non-PD Group

Poisson regression was employed to compare the RR of PAOD in the PD and non-PD groups. The PD group had a higher PAOD incidence density (3.39) than the non-PD group (ID = 3.09). The RR was 1.11 (95% CI, 1.08–1.13; Table 2). The cumulative incidence of PAOD revealed that the risk of PAOD was higher in the PD group than in the non-PD group (log-rank test, p < 0.001; Figure 2).

Table 2. Poisson regression of relative risk of PAOD between periodontitis and non-periodontitis.

Variables	Non-Periodontitis	Periodontitis
N	357,106	357,106
Person-years	3,733,623	3,994,111
No. of PAOD	11,450	13,540
ID (95% C.I.)	3.07 (3.01–3.12)	3.39 (3.33–3.45)
Relative risk (95% C.I.)	Reference	1.11 (1.08–1.13)

ID: incidence density (per 1000 person-years).

Figure 2. Kaplan–Meier curves of the cumulative proportions of PAOD in periodontitis and non-periodontitis patients.

After adjusting for all variables, the Cox proportional hazards model indicated that the PD group had a higher risk of PAOD than the non-PD group (HR = 1.03; 95% CI, 1.01–1.06) had. The risk of PAOD was also higher among patients 65 years of age (HR = 3.17; 95% CI, 3.07–3.27). Furthermore, comorbidities such as hypertension, hyperlipidemia, chronic liver disease, chronic kidney disease, diabetes, chronic obstructive pulmonary disease, rheumatoid arthritis, ankylosing spondylitis, hepatitis B, hepatitis C, herpes zoster, and psoriasis were risk factors for PAOD. Undergoing one dental scaling procedure was associated with a reduced risk of PAOD (Table 3).
Table 3. Cox proportional hazard model analysis for risk of PAOD.

Variables	Univariable HR (95% C.I.)	p Value	Multivariable HR (95% C.I.)	p Value
Group				
Non-periodontitis	Reference		Reference	
Periodontitis	1.10 (1.08–1.13)	<0.001	1.03 (1.01–1.06)	0.015
Age				
<65	Reference		Reference	
≥65	5.33 (5.20–5.47)	<0.001	3.17 (3.07–3.27)	<0.001
Sex				
Female	Reference		Reference	
Male	0.78 (0.76–0.80)	<0.001	0.87 (0.85–0.89)	<0.001
Hypertension	4.78 (4.65–4.91)	<0.001	1.91 (1.84–1.97)	<0.001
Hyperlipidemia	3.79 (3.64–3.95)	<0.001	1.14 (1.09–1.19)	<0.001
Chronic liver disease	2.49 (2.36–2.62)	<0.001	1.42 (1.34–1.50)	<0.001
Chronic kidney disease	9.73 (8.97–10.55)	<0.001	3.30 (3.04–3.58)	<0.001
Diabetes	5.65 (5.47–5.84)	<0.001	2.22 (2.14–2.31)	<0.001
COPD	3.64 (3.44–3.86)	<0.001	1.40 (1.32–1.48)	<0.001
Rheumatoid arthritis	3.49 (3.01–4.04)	<0.001	1.79 (1.54–2.07)	<0.001
Ankylosing spondylitis	1.86 (1.36–2.55)	<0.001	1.56 (1.14–2.14)	0.005
Hepatitis B	1.65 (1.43–1.91)	<0.001	1.21 (1.04–1.40)	0.011
Hepatitis C	2.93 (2.52–3.40)	<0.001	1.21 (1.04–1.41)	0.015
Herpes zoster	2.51 (2.19–2.88)	<0.001	1.34 (1.17–1.54)	<0.001
Psoriasis	1.82 (1.47–2.25)	<0.001	1.37 (1.11–1.70)	0.004
Dental scaling				
None	Reference		Reference	
1	0.68 (0.64–0.73)	<0.001	0.84 (0.78–0.89)	<0.001
≥2	0.69 (0.57–0.84)	<0.001	0.83 (0.68–1.00)	0.055

COPD: Chronic obstructive pulmonary disease. † Adjusted for all variables.

Subgroup analysis revealed that patients aged ≥ 65 had a greater risk of PAOD than those aged < 65 years (p = 0.0034) in the PD group. In the PD group, men had a higher risk of PAOD than women had (p = 0.0108; Table 4). However, dental scaling was not associated with the risk of PAOD in the PD group (Table 5).

Table 4. Subgroup of Cox proportional hazard model analysis.

Variables	Non-Periodontitis	Periodontitis	N	No. of PAOD	HR (95% C.I.)	p Value	
Age			<65	312,330	7296	1.00 (0.97–1.04)	0.792
			≥65	44,776	4154	1.04 (1.00–1.08)	0.065
p for interaction					0.0034		
Female				153,011	5885	1.00 (0.95–1.02)	0.527
Male				204,095	5565	1.04 (1.00–1.08)	0.042
p for interaction				0.0108			
Hypertension			No	322,790	7992	1.08 (1.05–1.11)	<0.001
			Yes	34,316	3458	0.88 (0.85–0.93)	<0.001
p for interaction				<0.001			
Hyperlipidemia			No	345,118	10,157	1.05 (1.02–1.08)	<0.001
			Yes	11,988	1293	0.75 (0.69–0.81)	<0.001
p for interaction				<0.001			
Table 4. Cont.

Variables	Non-Periodontitis	Periodontitis	HR (95% C.I.)	p Value
	N No. of PAOD	N No. of PAOD		
Chronic liver disease	1			
No	348,020 10,762	346,981 12,751	1.03 (1.00–1.06)	0.028
Yes	9086 688	10,125 789	0.78 (0.70–0.87)	<0.001
p for interaction < 0.001				
Chronic kidney disease	1			
No	355,474 11,156	355,483 13,236	1.03 (1.00–1.05)	0.057
Yes	1632 294	1623 304	0.68 (0.58–0.81)	<0.001
p for interaction < 0.001				
Diabetes 1				
No	341,183 9319	340,884 11,396	1.09 (1.06–1.12)	<0.001
Yes	15,923 2131	16,222 2144	0.72 (0.68–0.76)	<0.001
p for interaction < 0.001				
Diabetes 1				
COPD 1				
No	350,770 10,931	350,572 12,812	1.02 (0.99–1.04)	0.176
Yes	6336 519	6534 728	0.94 (0.84–1.06)	0.318
p for interaction = 0.1053				
Rheumatoid arthritis 1				
No	356,312 11,357	356,308 13,456	1.02 (0.99–1.04)	0.199
Yes	794 93	798 84	0.75 (0.56–1.01)	0.059
p for interaction = 0.0192				
Ankylosing spondylitis 2				
No	356,791 11,431	356,812 13,520	1.02 (0.99–1.04)	0.153
Yes	315 19	294 20	0.89 (0.47–1.69)	0.713
p for interaction = 0.7961				
Hepatitis B 1				
No	355,334 11,364	355,161 13,442	1.02 (0.99–1.04)	0.217
Yes	1772 86	1945 98	0.83 (0.62–1.12)	0.218
p for interaction = 0.1435				
Hepatitis C 3				
No	355,991 11,371	355,924 13,448	1.02 (0.99–1.04)	0.233
Yes	1115 79	1182 92	0.82 (0.61–1.11)	0.202
p for interaction = 0.2372				
Herpes zoster 4				
No	355,841 11,364	355,688 13,421	1.01 (0.99–1.04)	0.269
Yes	1265 86	1418 119	1.04 (0.78–1.37)	0.804
p for interaction = 0.9721				
Psoriasis 3				
No	356,431 11,407	356,328 13,497	1.02 (0.99–1.04)	0.227
Yes	675 43	778 43	0.73 (0.47–1.11)	0.138
p for interaction = 0.081				
Dental scaling 5				
None	333,945 11,024	334,071 12,958	1.01 (0.99–1.04)	0.279
1	20,572 379	20,702 526	1.05 (0.92–1.20)	0.454
≥2	2589 47	2333 56	0.78 (0.52–1.16)	0.224
p for interaction = 0.296				

1 Adjusted for all variables. 2 Adjusted for all variables, excluding chronic kidney disease, rheumatoid arthritis, hepatitis C, herpes zoster, and psoriasis. 3 Adjusted for all variables, excluding ankylosing spondylitis, and herpes zoster. 4 Adjusted for all variables, excluding ankylosing spondylitis, hepatitis C, and psoriasis. 5 Adjusted for all variables, excluding rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
Table 5. Cox proportional hazard model analysis for risk of PAOD with and without dental scaling.

Variables	Univariable	Multivariable †				
	N	No. of PAOD	HR (95% C.I.)	p Value	HR (95% C.I.)	p Value
Group						
Non PD Non DS	333,945	11,024	Reference	Reference		
Non PD 1	20,572	379	0.63 (0.57–0.70)	<0.001	0.95 (0.86–1.06)	0.344
Non PD ≥ 2	2589	47	0.70 (0.53–0.94)	0.016	1.13 (0.85–1.51)	0.400
PD Non DS	334,071	12,958	1.10 (1.07–1.13)	<0.001	1.01 (0.99–1.04)	0.300
PD 1	20,702	526	0.79 (0.73–0.87)	<0.001	1.01 (0.93–1.11)	0.777
PD ≥ 2	2333	56	0.75 (0.58–0.98)	0.032	0.88 (0.67–1.14)	0.319

Group						
Non PD Non DS	333,945	11,024	Reference	Reference		
Non PD DS	23,161	426	0.64 (0.58–0.70)	<0.001	0.97 (0.88–1.07)	0.519
PD Non DS	334,071	12,958	1.10 (1.07–1.13)	<0.001	1.01 (0.99–1.04)	0.299
PD DS	23,035	582	0.79 (0.73–0.86)	<0.001	1.00 (0.92–1.09)	0.956

† Adjusted for all variables. Non PD: non-periodontitis. Non DS: non-dental scaling.

4. Discussion

This study analyzed 357,106 patients with PD and an equal number of patients without PD and evaluated the risk of PAOD in both groups after PSM. The PD group had a higher risk of PAOD than the non-PD group. Male patients in the PD group and patients with PD aged older than 65 years had increased risks of PAOD.

The association between PD and the risk of PAOD has been discussed since 1998. Two recent systematic reviews and a prospective population-based cross-sectional cohort study have investigated this association [20–22]. Their results indicated that PD could increase the risk of PAOD. The mechanism was considered to be oral bacteria causing thrombosis in the lower limb arteries and provoking an inflammatory response. However, all of these studies lacked information on whether dental scaling could reduce the risk of PAOD in patients with PD. Our study indicated that patients who underwent at least one dental scaling procedure had a lower risk of PAOD.

In the subgroup analysis, patients older than 65 years had a higher risk of PAOD than those younger than 65 years in the PD group. In one cross-sectional analysis, age was demonstrated to be a risk factor, especially for asymptomatic PAOD; other factors such as smoking status, hypertension, and diabetes were strongly associated with PAOD [23]. In addition, a 15% to 20% prevalence of PAOD among individuals aged over 70 years was reported in the United States [15]. Our results are consistent with those of the aforementioned studies.

Despite age, sex disparity was also a risk factor for PAOD. In the subgroup analysis, our results showed that men had a higher risk of PAOD than women had in the PD group. By contrast, a study in the United States demonstrated that women have a higher risk of PAOD [24]. A similar result was also discovered in patients with type 2 diabetes and symptomatic PAOD [25]. These results are probably due to the higher blood concentrations of the C-reactive protein in women than in men. In addition, women have more favorable long-term outcomes than men after percutaneous endovascular revascularization for PAOD treatment [26].

The Cox proportional hazards model revealed that dental scaling reduced the risk of PAOD. However, in the subgroup analysis, the interaction between dental scaling and PAOD in the PD group was not statistically significant, implying that dental scaling might reduce the risk of PAOD in the general population. Dental scaling is a process for dental plaque and calculus removal, but it is not a prescribed therapeutic intervention for PD. However, we did not analyze root planning, periodontal flap surgery, guided tissue
regeneration, or other procedures. These therapeutic procedures are typically applied for more severe PD when dental scaling is not completely curative.

Associations between PD and atherosclerotic conditions other than PAOD have been observed over the past decade. For example, the carotid artery intima-media walls were thicker in untreated patients with PD than in patients with PD who received standard treatment [16]. In a nationwide population-based cohort study, male patients with chronic PD had a higher risk of carotid atherosclerosis [17]. Furthermore, PD was also associated with transient ischemic attack and minor ischemic stroke in juveniles [27]. Therefore, a close relationship between PD and PAOD is expected.

The increased risk of PAOD might be due to multiple or indirect mechanisms. In addition to the formation of atherosclerotic lesions in the peripheral arteries due to cholesterol and low-density lipoproteins, other factors promote PAOD. First, patients with PD have long-term inflammation [28]. Several studies have revealed that the blood levels of the C-reactive protein and other inflammatory mediators are strongly associated with PAOD [29,30]. Second, oral bacteremia may be a risk factor for PAOD [18]. Recent studies have identified periodontal pathogen DNA in the atherosclerotic plaques of patients with PAOD [31–33]. *P. gingivalis* and *A. actinomycetemcomitans* are the most prevalent periodontal pathogens in atherosclerotic plaques [34].

This study has some limitations. First, the LHID does not provide information about the severity of PD, which could affect the risk of PAOD. Second, data on smoking, alcohol consumption, physical activity, and diet were not obtained from the database; such personal behaviors are potential confounders. However, we included related comorbidities and performed PSM to address these factors. Third, the study was a retrospective cohort study; therefore, we could not infer causality.

5. Conclusions

Our study demonstrates that PD is associated with PAOD risk, especially in patients older than 65 years. Although no specific interaction of dental scaling with PD affected PAOD risk in the subgroup analysis, dental scaling may generally reduce the risk of PAOD.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijerph191610057/s1, Table S1: Disease with relative ICD codes correspond.

Author Contributions: Conceptualization, Y.-T.Y. (Ying-Ting Yeh), Y.-S.T., Y.-T.Y. (Ying-Tung Yeh) and C.-H.C.; formal analysis, Y.-L.W., S.-F.Y., B.-Y.W., Y.-H.W. and L.-T.Y.; writing—original draft preparation, Y.-T.Y. (Ying-Ting Yeh), Y.-S.T., Y.-T.Y. (Ying-Tung Yeh) and C.-H.C.; writing—review and editing, Y.-T.Y. (Ying-Ting Yeh), Y.-S.T., Y.-T.Y. (Ying-Tung Yeh) and C.-H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethical Review Board of the Chung Shan Medical University Hospital (CSI-20056).

Informed Consent Statement: Patient consent was waived by both the National Health Insurance Administration and the Institutional Review Board of Chung Shan Medical University Hospital due to the database-processing nature of the current study.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained from National Health Insurance database and are available from the authors with the permission of National Health Insurance Administration of Taiwan.

Acknowledgments: This study was partly based on data from the NHIRD provided by the NHI Administration, Ministry of Health and Welfare, and managed by the Health and Welfare Data Science Center (HWDC) in Taiwan. The interpretation and conclusions contained herein do not represent those of the NHI Administration, Ministry of Health and Welfare, or National Health Research Institutes.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. *J. Periodontol.* 2018, 89 (Suppl. S1), S159–S172. [CrossRef]
2. Pappapanou, P.N.; Sanz, M.; Baduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. *J. Periodontol.* 2018, 89 (Suppl. S1), S173–S182. [CrossRef]
3. Van der Velden, U.; Abbas, F.; Armand, S.; Loos, B.G.; Timmerman, M.F.; Van der Weijden, G.A.; Van Winkelhoff, A.J.; Winkel, E.G. Java project on periodontal diseases. The natural development of periodontitis: Risk factors, risk predictors and risk determinants. *J. Clin. Periodontol.* 2006, 33, 540–548. [CrossRef]
4. Ramseier, C.A.; Anerud, A.; Dulac, M.; Lulic, M.; Cullinan, M.P.; Seymourn, G.J.; Faddy, M.J.; Bürgin, W.; Schättle, M.; Lang, N.P. Natural history of periodontitis: Disease progression and tooth loss over 40 years. *J. Periodontal. 2017, 44, 1182–1191. [CrossRef]
5. Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L., Jr. Microbial complexes in subgingival plaque. *J. Clin. Periodontol.* 1998, 25, 134–144. [CrossRef]
6. Scapoli, L.; Girardi, A.; Palmieri, A.; Testori, T.; Zuffetti, F.; Monguzzi, R.; Lauritano, D.; Carinci, F. Microflora and periodontal disease. *Dent. Res. J.* 2012, 9, S202–S206.
7. Mohanty, R.; Asopa, S.J.; Joseph, M.D.; Singh, B.; Rajguru, J.P.; Saidath, K.; Sharma, U. Red complex: Polymicrobial conglomerate in oral flora: A review. *J. Fam. Med. Prim. Care 2019, 8, 5480–5486.
8. Könönen, E.; Müller, H.P. Microbiology of aggressive periodontitis. *Periodontol. 2000 2014, 65, 46–78. [CrossRef]
9. Yu, H.C.; Su, N.Y.; Huang, J.Y.; Lee, S.S.; Chang, Y.C. Trends in the prevalence of periodontitis in taiwan from 1997 to 2013: A nationwide population-based retrospective study. *Medicine 2017, 96, 68585. [CrossRef]
10. Becker, F.; Robert-Ebadi, H.; Ricco, J.B.; Setacci, C.; Cao, P.; de Donato, G.; Eckstein, H.H.; De Rango, P.; Diehm, N.; Schmidl, J.; et al. Chapter I: Definitions, epidemiology, clinical presentation and prognosis. *Eur. J. Vasc. Endovasc. Surg. 2011, 42 (Suppl. S2), S4–S12. [CrossRef]
11. Wang, W.H.; Mar, G.Y.; Wei, K.C.; Cheng, C.C.; Huang, W.C. Risk factors and outcomes of heart failure following first-episode of acute myocardial infarction—A case series study of 161,384 cases. *Healthcare 2021, 9, 1382. [CrossRef] [PubMed]
12. Napoli, A.; Anzidei, M.; Baduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. *J. Periodontol. 2018, 89 (Suppl. S1), S173–S182. [CrossRef]
13. Van der Velden, U.; Abbas, F.; Armand, S.; Loos, B.G.; Timmerman, M.F.; Van der Weijden, G.A.; Van Winkelhoff, A.J.; Winkel, E.G. Java project on periodontal diseases. The natural development of periodontitis: Risk factors, risk predictors and risk determinants. *J. Clin. Periodontol.* 2006, 33, 540–548. [CrossRef]
14. Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. *Stat. Med. 2022, 38, 3083–3107. [CrossRef] [PubMed]
15. Dissemond, J. Periodicular Oclusive Arterial Disease; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–10.
16. López, N.J.; Chamorro, A.; Llancaqueo, M. Association between atherosclerosis and periodontitis. *Rev. Med. Chil. 2011, 139, 717–724. [CrossRef] [PubMed]
17. Tong, C.; Wang, Y.H.; Chang, Y.C. Increased risk of carotid atherosclerosis in male patients with chronic periodontitis: A nationwide population-based retrospective cohort study. *Int. J. Environ. Res. Public Health 2019, 16, 2635. [CrossRef] [PubMed]
18. Shen, D.N.; Wu, Y.F.; Zhao, L. Roles of periodontal pathogenes in the pathogenesis of atherosclerosis. *Zhonghua Kou Qiang Yi Xue Za Zhi 2021, 56, 584–590. [CrossRef] [PubMed]
19. Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. *Stat. Med. 2022, 38, 3083–3107. [CrossRef] [PubMed]
20. Yang, S.; Zhao, L.S.; Cai, C.; Shi, Q.; Wen, N.; Xu, J. Association between periodontitis and peripheral artery disease: A systematic review and meta-analysis. *BMC Cardiovasc. Disord. 2018, 18, 141. [CrossRef]
21. Kaschwich, M.; Behrendt, C.A.; Heydecke, G.; Bayer, A.; Debus, E.S.; Seedorf, U.; Aarabi, G. The association of periodontitis and peripheral arterial occlusive disease: A systematic review. *Int. J. Mol. Sci. 2019, 20, 2936. [CrossRef] [PubMed]
22. Jacobi, N.; Walther, C.; Borof, K.; Heydecke, G.; Seedorf, U.; Lamprecht, R.; Beikler, T.; Debus, S.E.; Waldeyer, C.; Blankenberg, S.; et al. The association of periodontitis and peripheral arterial occlusive disease in a prospective population-based cross-sectional cohort study. *J. Clin. Med. 2021, 10, 2048. [CrossRef]
23. Hooi, J.D.; Stoffers, H.E.; Kester, A.D.; Rinkens, P.E.; Kaiser, V.; van Ree, J.W.; Knottnerus, J.A. Risk factors and cardiovascular diseases associated with asymptomatic peripheral arterial occlusive disease. The limburg paod study. Peripheral arterial occlusive disease. *Scand. J. Prim. Health Care 1998, 16, 177–182. [PubMed]
24. Hiramoto, J.S.; Katz, R.; Weisman, S.; Conte, M. Gender-specific risk factors for peripheral artery disease in a voluntary screening population. *J. Am. Heart Assoc. 2014, 3, e000651. [CrossRef] [PubMed]
25. Al-Zoubi, N.A.; Shatnawi, N.J. Gender variation in symptomatic peripheral arterial disease among type-2 diabetic patients. *SAGE Open Med. 2019, 7, 205031219840198. [CrossRef] [PubMed]
26. Heidemann, F.; Kuchenbecker, J.; Peters, F.; Kotov, A.; Marschall, U.; L’Hoest, H.; Acar, L.; Ramkumar, N.; Goodney, P.; Debus, E.S.; et al. A health insurance claims analysis on the effect of female sex on long-term outcomes after peripheral endovascular interventions for symptomatic peripheral arterial occlusive disease. J. Vasc. Surg. 2021, 74, 780–787.e787. [CrossRef]

27. Lee, Y.T.; Tsai, C.F.; Yen, Y.C.; Huang, I.K.; Chao, S.P.; Hu, L.Y.; Shen, C.C.; Lee, H.C. Periodontitis is a potential risk factor for transient ischemic attack and minor ischemic stroke in young adults: A nationwide population-based cohort study. J. Periodontol. 2022. [CrossRef]

28. Ramich, T.; Asendorf, A.; Nickles, K.; Oremek, G.M.; Schubert, R.; Nibali, L.; Wohlfeil, M.; Eickholz, P. Inflammatory serum markers up to 5 years after comprehensive periodontal therapy of aggressive and chronic periodontitis. Clin. Oral Investig. 2018, 22, 3079–3089. [CrossRef] [PubMed]

29. Tsai, H.J.; Huang, J.C.; Tsai, Y.C.; Chen, L.I.; Chen, S.C.; Chang, J.M.; Chen, H.C. Association between albumin and c-reactive protein and ankle-brachial index in haemodialysis. Nephrology 2018, 23 (Suppl. S4), 5–10. [CrossRef]

30. Guan, X.; Yang, X.; Wang, C.; Bi, R. In silico analysis of the molecular regulatory networks in peripheral arterial occlusive disease. Medicine 2020, 99, e20404. [CrossRef]

31. Armingohar, Z.; Jørgensen, J.J.; Kristoffersen, A.K.; Abesha-Belay, E.; Olsen, I. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J. Oral Microbiol. 2014, 6, 32408. [CrossRef] [PubMed]

32. Atarbashi-Moghadam, F.; Havaei, S.R.; Havaei, S.A.; Hosseini, N.S.; Behdadmehr, G.; Atarbashi-Moghadam, S. Periopathogens in atherosclerotic plaques of patients with both cardiovascular disease and chronic periodontitis. ARYA Atheroscler. 2018, 14, 53–57. [PubMed]

33. Gode, S.; Sarp, T.Z.; Saribas, S.; Ergin, S.; Kasnak, G.; Dinc, H.O.; Caliskan, R.; Akkus, S.; Tokman, H.B.; Kocak, B.T.; et al. The prevalence of periodontal pathogenic bacteria in atherosclerotic cardiovascular disease. Clin. Lab 2020, 66, 893–900. [CrossRef] [PubMed]

34. Joshi, C.; Bapat, R.; Anderson, W.; Dawson, D.; Hijazi, K.; Cherukara, G. Detection of periodontal microorganisms in coronary atheromatous plaque specimens of myocardial infarction patients: A systematic review and meta-analysis. Trends Cardiovasc. Med. 2021, 31, 69–82. [CrossRef]