Photobiomodulation of human fibroblasts and keratinocytes with blue light: implications in wound healing

Francesca Rossi1, Giada Magni1,*, Francesca Tatini1, Martina Banchelli1,*, Federica Cherchi2, Michele Rossi3, Elisabetta Coppi2,*, Anna Maria Pugliese2,*, Duccio Rossi degli’Innocenti3, Domenico Alfieri3, Francesco S. Pavone4, 5, 6,*, Roberto Pini1, and Paolo Matteini1

1 Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche (CNR-IFAC), 50019, Florence, Italy; f.rossi@ifac.cnr.it
2 Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
3 EmoLED s.r.l, Sesto Fiorentino, 50019, Florence, Italy
4 Department of Physics, University of Florence, 50019, Florence, Italy
5 European Laboratory for NonLinear Spectroscopy (LENS), 50019, Florence, Italy
6 Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), 50125, Florence, Italy
* Correspondence: g.magni@ifac.cnr.it (G.M.); annamaria.pugliese.unifi.it (A.M.P.); m.banchelli@ifac.cnr.it (M.B.)

Abstract: In recent years, photobiomodulation (PBM) has been recognized as a physical therapy in wound management. Despite several published research papers, the mechanism underlying photobiomodulation is still not completely understood. The investigation about application of blue light to improve wound healing is a relatively new research area. Tests in selected patients evidenced a stimulation of the healing process in superficial and chronic wounds treated with a blue LED light emitting at 420 nm; a study in animal model pointed out a faster healing process in superficial wound, with an important role of fibroblasts and myofibroblasts. Here we present a study aiming at evidencing the effects of blue light on the proliferation and metabolism in fibroblasts and keratinocytes. Different light doses were used to treat the cells, evidencing inhibitory and stimulatory effects. Electrophysiology was used to investigate the effects on membrane currents, while Raman spectroscopy revealed the mitochondrial Cytochrome C (Cyt C) oxidase dependence on blue light irradiation. In conclusion, we observed that the blue LED light can be used to modulate the activity of human fibroblasts, and the effects in wound healing are particularly evident when studying the fibroblasts and keratinocytes co-cultures.

Keywords: photobiomodulation; blue light; LED; wound healing

1. Introduction

Photobiomodulation (PBM) has been recently recognized as a physical therapy for wound care treatment: a physical therapy is related to the interaction between the wound and a device that delivers energy to the wound; this interaction induces observable and measurable modifications in the wound [1]. The first evidences of photobiomodulation were published in the second half of 1960s [2]: since then, several applications of infrared (IR) or near infrared (NIR) lasers were studied. With the photonics technology development, new regions of the electromagnetic spectrum were investigated, and new light sources, such as the light emitting diodes (LEDs) gained interest for their reduced production costs, compactness and usability in respect to laser sources. In the last 20 years, the use of LED-based devices increased considerably the therapeutic application fields, including different dermatological conditions, brain injuries and spinal cord damages and encouraged the research and the use of other
wavelengths, such as the blue light [3–5]. Despite an increasing number of studies regarding the effect of blue light in tissues and cells, the reported information is often incomplete and it’s hard to have a clear and objective comparison of different approaches [5], therefore the underlying mechanism is not deeply understood. However, the primary and secondary effects of the light in the range 600-1000 nm were extensively investigated: mitochondria seem to be the principal cellular light photoacceptor and the Cytochrome C (Cyt C) oxidase looks like the main molecule involved. It is reported that the excitation of the Cyt C activates a cascade of cellular signaling which ends in the modulation of cellular metabolism, proliferation, migration and adenosine triphosphate (ATP) synthesis [5–7]. In our previous studies we reported the observations of an improved healing process when superficial wounds are treated with a blue LED light [8–11] emitting in the range 410-430 nm. Tests in selected patients [12,13] confirmed the results of the studies in animal models, showing a high closing rate in hard-to-heal wounds treated with a blue LED light. The main goal of the present study is to observe the effects at a cellular level of blue LED light emitting in the range 410-430 nm, in order to investigate if these effects can be ascribed to a PBM therapy with blue light. We focused in the experimental study on fibroblast derived from human healthy tissue, as we previously reported in vivo that the activity of fibroblasts is modulated by the blue LED light [14,15] and, moreover, they play an important role in the wound healing process and tissue morphology reconstruction. The simultaneous use of a well-known cellular model, HaCaT cells, and primary human cell cultures, gives us the opportunity to compare our result with the literature and at the same time to exploit the complexity of fresh, non-immortalized cell lines. The investigation of cultured keratinocytes cells and the co-culture of fibroblast and keratinocytes gives an overview on a more complex model, better mimicking tissue behaviour.

2. Results

2.1. Blue LED light affects metabolism and proliferation in both HaCaT cells and human fibroblasts

Cultured HaCaT cells reduce their metabolism in a strictly dose-dependent manner 24 hours after the application of blue LED light and this trend remains steady at least for the following 24 hours. The reduction in cell metabolism reaches significant values when applying fluence doses in the range 20.6-41.2 J/cm² (Figure 1A, B). As regards proliferation rate, only the highest fluence dose induces a decrease in SRB absorbance 24 and 48 hours after the treatment (Figure 1C, D). The irradiated fibroblasts (Figure 2) show a dual response to blue light. Indeed, low doses (3.43 and 6.87 J/cm²) stimulate an increase in metabolic activity, while higher doses (30.9 and 41.2 J/cm²) reduce cell metabolism (Figure 2A). The same effect is more pronounced 48 hours after treatment (Figure 2B). Proliferation shows a reduction only at the highest dose, 24 hours from the application, while doses ranging from 20.6 to 41.2 J/cm² can affect fibroblasts proliferation 48 hours after the irradiation (Figure 2C, D).
Figure 1. Effects of blue LED light on metabolism and proliferation of HaCaT cells. A, B: cell metabolism 24 and 48 hours after treatment, respectively. C, D: proliferation 24 and 48 hours after treatment, respectively. Data are expressed as mean ± SEM. Each measure is repeated in triplicate. Statistical analysis: *p < 0.05; **p < 0.01; ****p < 0.0001 vs control (not irradiated cells), one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 2. Effects of blue LED light on metabolism and proliferation of fibroblasts cells. A, B: metabolism 24 and 48 hours after treatment, respectively. C, D: proliferation 24 and 48 hours treatment.

Data are expressed as mean ± SEM. Each measure is repeated in triplicate. Statistical analysis: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 vs control (not irradiated cells), one-way ANOVA followed by Dunnett’s multiple comparison test.

2.2. Blue LED light effects on cell viability

Trypan blue staining was performed both in fibroblasts and in keratinocytes after the application of 41.2 J/cm² fluence dose of blue LED light. In Table 1 are reported values of cell viability before and after irradiation; the hypothesis of normality was verified using the Kolmogorov-Smirnov test. Our results demonstrated that the highest fluence value of blue light significantly reduces the number of total HaCaT cells (observations at 24 and 48 hours after the treatment). We observed a significant reduction of cell viability in the fibroblasts cultures 24 hours after the treatment, while at 48 hours, no significant differences were found in respect to untreated samples. Qualitative DAPI staining performed in HaCaT cells (Figure 3, left panel) showed a marked reduction in the number of cells and some morphological differences, that will be further investigated, in the treated samples versus controls. On the other hand, fibroblasts (Figure 3, right panel) did not show any significant morphological variation in control and treated samples.

Table 1. Pooled data of cell viability in HaCaT and fibroblast cells at 24 and 48 hours after the application of 41.2 J/cm². Data are expressed as mean and SD (in brackets), two-sample two-tailed t-test.
Figure 3. DAPI staining performed on cultured human fibroblasts (right panel) and HaCaT cells (left panel) shows differences in treated and control samples. A, B: control HaCaT samples analyzed 24 and 48 hours after the beginning of the experiment. C, D: treated HaCaT cells analyzed at 24 and 48 hours after the application of blue light with 41.2 J/cm² fluence. E, F: control fibroblasts samples analyzed 24 and 48 hours after the beginning of the experiment. G, H: treated fibroblasts cells analyzed at 24 and 48 hours after treatment with a blue light dose of 41.2 J/cm², respectively.

2.3. Effects of Blue LED light on voltage dependent currents in human fibroblasts and HaCaT cells

In order to evaluate the possible effects of blue LED light on voltage-dependent currents, we performed patch-clamp recordings on cultured human fibroblast cells. Electrophysiological recordings were performed on 7 cells showing, on average, a Cm of 54.33 ± 16.30 pF and a Rm of 416.5 ± 142.0 MΩ. In a typical cultured human fibroblasts, the application of blue LED light (20.6 J/cm²) did not modify the magnitude of currents evoked by a voltage ramp protocol (from −80 mV to +80 mV, Figure 4A, upper left inset). This protocol allowed to simultaneously monitor the possible modulation of inward (at −80 mV) and outward (at +80 mV) currents by light. No effects of blue LED light were observed on averaged current amplitude evoked by the ramp at +80 mV in 7 cells tested (Figure 4B). Similarly, no light effects were observed when the same dose was applied for a prolonged time (41.2 J/cm², n=4, data not shown). Pooled data in Figure 4C summarizes the panel of responses obtained before and 5 minutes after irradiation. Furthermore, light application did not modify membrane potential that was, on average, -62.69 ± 5.98 mV before and -61.3 ± 7.37 mV at 5 minutes from the end of irradiation (n=7). We further investigated the effects of the same dose of blue LED light (20.6 J/cm²) in HaCaT cells, the immortalized human keratinocytes, extensively used to study the epidermal homeostasis and its pathophysiology. HaCaT cells showed, on average, a Cm 24.13 ± 4.57 and a Rm of 777.4 ± 254.8 MΩ. Similarly to results obtained in human fibroblasts, no significant changes in the amplitude of voltage-activated currents, at the more depolarized potential achieved by the voltage ramp (+120 mV) were observed (Figure 4D). In line with above data, no changes in HaCaT membrane potential were noted. Indeed, Immediately before light application Vm was of -29.00 ± 8.24 mV and at 5 minutes from the end of irradiation, it was -26.92 ± 8.46 mV. Pooled data in Figure 4E summarizes the panel of responses obtained before and 5 minutes after irradiation in 6 HaCaT cells.
2.4. Raman microspectroscopy on irradiated healthy fibroblast and HaCaT cells revealed effects of the blue light on Cytochrome C molecule

The Raman spectrum of cultured fibroblasts and HaCaT cells was measured in three different conditions: before the light illumination, after the application of the blue light at 20.6 J/cm² and after the application of the blue light at 41.2 J/cm², as shown in Figure 5A. Upon treatment, changes in the Raman spectra of the cells are found and ascribed to molecular changes in Cyt C. These spectral variations are time-dependent, slightly arising soon after irradiation and becoming more visible 20 minutes after the irradiation. Figure 5A (blue and red curves) shows the effects of blue light on Raman spectrum, that are almost invariant with the applied doses both in fibroblasts and HaCaT cells. In order to inspect more accurately the spectral variations induced by blue light in the two cell types, the Raman spectrum acquired before the irradiation was subtracted from the spectrum acquired after the irradiation. Figure 5B shows the differential Raman spectrum of fibroblasts and HaCaT cells irradiated with 41.2 J/cm². The negative intensity of the differential signal at 750 cm⁻¹ for the fibroblasts reveals that the blue light induced a decrease in the Cyt C peak intensity. This variation has opposite sign respect to that one we recently observed on irradiated fibroblasts from keloid tissue, where the intensity of the Raman peaks associated to the heme group of Cyt C increased upon light treatment [16]. Since the intensity of the 750 cm⁻¹ Raman peak of Cyt C is strictly related to the redox state of the molecule,
the variation that we ascertain can be ascribed to a significant change in the ratio between the oxidised and reduced form of Cyt C. A change in the redox properties of Cyt C could trigger a cascade of events in the cell, for instance by activating or deactivating redox reactions within the electron transport chain and the respiratory complexes. On the other hand, as we can clearly see in Figure 5B, only minor variations in the Raman signals of HaCaT cells are revealed, indicating that this kind of cells are less sensitive to the blue light irradiation.

Figure 5. The Raman intensity of Cytochrome C peak at 750 cm$^{-1}$ undergoes significant variation in fibroblast cells and minor variation in HaCaT cells upon blue LED light irradiation A: averaged Raman spectra acquired on fibroblast and HaCaT cells before the treatment (black), after 20.6 J/cm2 (blue) and 41.2 J/cm2 (red) of blue LED light. B: differential Raman spectrum obtained by subtracting the spectrum acquired before the treatment with blue light from the spectrum acquired after the application of blue light at 41.2 J/cm2, both for cultured fibroblast and HaCaT cells.

2.5. Blue LED light increases fibroblasts and keratinocytes migration in in vitro scratch test

Preliminary scratch test performed in co-cultures of HaCaT cells and fibroblasts, demonstrated that a fluence of 20.6 J/cm2 can stimulate cellular migration in comparison to untreated sample (Figure 6A). Indeed, the scratch area is significantly reduced by almost 50% in both control and treatment, already 24 hours after the beginning of the experiment (0h). This reduction remains stable in the control sample until 72 hours (Figure 6B) while in the treated sample the scratch area is further reduced until it closes completely (Figure 6C). When the scratch test is performed in fibroblasts cultured alone, no significant differences between treated and control are reported (data not shown).
3. Discussion

At the beginning of 2010’s we proposed a photocoagulator device, based on the use of a blue LED light emitting in the range 410-420 nm, for the treatment of superficial bleeding wounds. The underlying mechanism of the photocoagulator is a photothermal effect, due to the selective absorption of the blue light by the hemoglobin (and in particular the heme group) in the bleeding wound. Indeed, hemoglobin shows narrow absorption peaks in the blue range, i.e. at 410 nm and 430 nm for oxygenated and non-oxygenated hemoglobin, respectively. These absorption peaks were used to ensure local temperature increase able to induce hemostasis through a photo-thermo-coagulation process [17]. The use of the proper irradiation settings in terms of dose or fluence, irradiation time, target spot area and emission pattern allows to induce a local temperature rise above the threshold for protein denaturation within the blood, resulting in fast coagulation effect [18]. In the experimental studies in animal models we used the following parameter: the illuminated area was a circle with 5 mm diameter, a power density of 1.27 W/cm² and a treatment time of 25 seconds (resulting in a fluence of 31.7 J/cm²). As a result a predominant thermal effect inducing coagulation of the bleeding wound, was measured. However, the follow up study pointed out an improvement of the healing process, with an apparent modulation of the fibroblast activity and better recovery of the collagen content in the wound area [15]. Further studies in murine model, enabled us to optimize treatment conditions to obtain a better healing process, testing lower fluences (21 J/cm², 680 mW/cm², 30 seconds treatment time) and thus reducing the photothermal effects. The results evidenced a modulation of the inflammatory infiltrate and of the cytokines release [14]. The first studies in selected human patients [12,13] pointed out effects in the healing of hard-to-heal wounds that can be ascribed to a photobiomodulation process, with a negligible photothermal effect (irradiation parameters in patients: 120 mW/cm², 60 seconds irradiation time, 7.2 J/cm² fluence). The main goal of the present study is thus to investigate the effects of the blue light in the range 410-430 nm at a cellular level, and at different doses. The selected cellular target are fibroblasts and keratinocytes, as from our studies in animal models their activity has been affected by the blue light treatment. Raman spectroscopy evidenced that the fibroblast Cyt C redox state is significantly affected by blue light irradiation. This is in accordance to the light absorption properties of the Cyt C (it contains the heme group, absorbing in the blue range of the spectrum) and to the hypothesis of PBM mechanism reported in the literature [5–7]. However, the effect on Cyt C in keratinocytes is less pronounced. Tests performed on cell metabolism and proliferation at
different doses evidenced a biphasic dose curve for fibroblasts: lower doses induce an enhancement in fibroblast activity, while higher doses are inhibitory. A similar effect is reported in the literature, and it is observed in cultured cells treated with different wavelength, but in a comparable dose range [5]. Keratinocytes seem to be more sensitive to higher doses, while the effects at low doses are negligible. This different behaviour of the two different cell types is particularly clear when we observe the range of viability in cultures treated with higher doses 41.2 J/cm² of light: keratinocytes are reduced in number within 24 hours after treatment, while there is no difference between treated and control in fibroblast cultures. Finally, a wound healing assay test was designed in order to further investigate potential harmful effects of blue light in cultured cells: we confirmed results from the literature [19], evidencing that the scratch test in a cultured fibroblast plate is not significantly different in treated and not treated samples. However, in the present study we evidenced that when fibroblasts are cultured with HaCaT cells, the healing process is improved and the scratch area is closed within 72 hours. Electrophysiology did not evidence a significant role of membrane currents, pointing out a different behaviour in respect to fibroblast from keloid tissues [20]. In conclusion, we can affirm that the blue light in the range 410-430 nm, delivered to cultured cells in a dose range 3.43-41.2 J/cm² is able to modulate cells activity in terms of metabolism and proliferation. The response is different depending on cell types and it is dose-dependent. However, the biphasic dose response of fibroblast and the induced changes in their redox state confirm the hypothesis that the blue light is able to induce PBM in wounds. Even if blue light does not propagate in the deep tissue, when used in superficial wounds it transfers the energy to the whole wound area, thus resulting in a predominant photochemical effect possibly stimulating fibroblast activity and promoting the wound healing process.

4. Materials and Methods

4.1. The device

The blue LED device is based on the use of a commercially available LED, emitting at around 420 nanometers (nm), 1 Watt (W) optical emission power and 1.2 W/cm² power density, and it has been previously described [16]. The light intensity distribution at the tissue surface is homogeneous [10]. This device was originally developed as a photocoagulator, i.e. a device able to induce hemostasis in superficial and bleeding abrasions thanks to the energy transfer from the light source into a thermal effect [15,17]. During irradiation the fiber tip was put at a constant distance from the cultured cells plate [16]. Different light doses were used to irradiate the cells, by keeping the same power density (680 mW/cm²), and varying irradiation times from 5 seconds up to 60 seconds. The resulting fluences used in this study are 3.43, 6.87, 13.7, 20.6, 30.9 and 41.2 J/cm². The fluence values were calculated taking into account the dimension of the well and the irradiation spot, at the maximum energy provided by the device. All the irradiation parameters were measured using a photodiode energy sensor (Ophir, Darmstadt, Germany).

4.2. Human keratinocytes cell line

Spontaneously transformed non-tumorigenic human keratinocyte cell line (HaCaT) was purchased from Elabscience (Houston, Texas, USA). Cells were cultivated in T75 flask (Greiner Bio-One, GmbH, Germany) in Dulbecco Modified Eagle Medium (DMEM) high glucose (4.5 g/L) supplemented with 10% Fetal Bovine Serum (FBS) (Pan-React Applichem, Milan, Italy), 1% Glutamine and 1% Penicillin-Streptomycin (pen/strep) (EuroClone, Milan, Italy). Cells were kept at 37°C and 5% CO₂ – 95% air in humidified atmosphere. The medium was refreshed every 48 hours and the cells were split upon reaching 75% confluence.

4.3. Human healthy skin samples and fibroblasts primary cultures

The healthy human skin samples were obtained from 7 healthy patients subjected to mole removal. Surgeries were performed at the Azienda Ospedaliera Università degli Studi di Perugia (Italy). The
study was approved by the Hospital Ethical Board (16806/19/AV, 07/17/2019). All the experiments were performed in accordance with the Helsinki declaration and in conformity with Good Clinical Practice (GPC). After the biopsy, healthy skin tissues were immediately freeze-dried at −80°C in DMEM. To prepare primary cultures, the samples were thawed at 37°C and fragmented into small pieces. Each specimen was collected in a scratched-plated (Greiner Bio-One, GmbH) and kept under laminar flow carefully avoiding the dehydration until the adhesion to the plate occurred [21]. After this procedure, DMEM low glucose (1.5 g/L) medium (Pan-React Applichem, Milan, Italy), supplemented with 10% FBS, 1% of Glutamine and 1% pen/strep (EuroClone, Milan, Italy), was added and cells maintained at (37°C and 5% CO₂). Within three weeks from the preparation, fibroblasts migrated out of the tissue. When fibroblasts reached confluence, the cells were detached using Trypsin-EDTA solution (Sigma-Aldrich, Milan, Italy), collected in a centrifuge tube, centrifuged and the pellet was seeded in T25 flask (Greiner Bio-One, GmbH). Fibroblasts were maintained under standard culture conditions ((37°C and 5% CO₂)) in T75 flask (Greiner Bio-One, GmbH) and the medium was refreshed every 48 hours. Cells were split when reaching about 80% of confluence.

4.4. Cell Counting Kit-8 and Sulforhodamine B based assays

Cell Counting Kit-8 (CCK-8) was used to measure cellular metabolic activity, [22, 23] while Sulforhodamine B based assay (SRB) was used to evaluate cell proliferation [24–26]. Both CCK-8 and SRB were purchased from Sigma-Aldrich (Milan, Italy) and used in accordance to manufacturer instructions. Fibroblasts and HaCaT cells were counted by using Neubauer chamber (Hecht Assistent, GmbH) and 5x10⁵ or 8x10⁵ cells, respectively, were seeded in appropriate DMEM in distinct 96-multiwell plates (Greiner Bio-One, GmbH, Germany). Before the experiments, cells were maintained for 24 hours in incubator upon standard culture conditions (37°C and 5% CO₂). Prior light irradiation, DMEM low or high glucose was replaced with DMEM without FBS and phenol red and the cells were irradiated at different blue LED light doses: 3.43, 6.87, 13.7, 20.6, 30.9 and 41.2 J/cm². In each experiment, each dose of blue LED light was applied in three separate wells, while other three wells were left not irradiated and used as a control. The absorbance was evaluated using an automatic microplate absorbance reader (LT-4000 Labtech, Heathfield, East Sussex, England), processing the values with specific commercial software (GraphPad Prism, San Diego, CA, USA). Each experiment was performed at least in triplicate.

4.5. DAPI and Trypan Blue analysis

The 4,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, Milan, Italy) was used to label the cellular nuclei to perform an estimation of the nuclear fragmentation induced by the application of 41.2 J/cm², the maximum dose used in our experiments [27, 28]. HaCaT and fibroblast cells were seeded in µ-dish 35 mm with a polymer coverslip bottom glass (Ibidi, GMBH, Martinsried, Germany) to ensure the following confocal analysis. From 24 and 48 hours after the irradiation, DMEM was replaced with phosphate buffer saline (PBS) and two washes were performed. Then, cells were fixed for 6 minutes with a 3.6% solution of paraformaldehyde diluted in PBS. After two washes, one drop of DAPI was added on each sample and coverslips were mounted. The images were acquired with SP8 confocal microscope (Leica Microsystems, Mannheim, Germany), using a 40X water-immersion objective (NA 0.75 Plan). The dye exclusion test were used to label necrotic cells and at the same time, to estimate the number of cells before and after treatment with 41.2 J/cm² of fluence. In the experiments performed using Trypan Blue solution 0.4%, [29, 30] cells were seeded in 35 mm petri dishes. Both the presence of necrotic cells and the number of total cells in treated (41.2 J/cm²) and untreated samples were evaluated. After 24 and 48 hours, two washes with PBS were performed before the staining. Trypan blue was applied for 6 minutes and after several washes in PBS, ten random images were immediately acquired under an inverted microscope (INV100T) using a 5-megapixel photo-camera (both purchased from Eurotek Orma, Milan, Italy). The collected images were analyzed with open-source software (ImageJ, version 1.49v National Institutes of Health, Bethesda, MD, USA) by two trained operators.
In both cases, the treatments were performed in DMEM high or low glucose, without FBS and red phenol, to rule out both experimental bias and interference during the irradiation. Data are expressed as mean ± SEM (standard error of the mean). Student’s paired two-tailed t-tests was performed, as appropriate, in order to determine statistical significance. Data were analyzed using software package GraphPad Prism (GraphPad Software, San Diego, CA, USA).

4.6. Electrophysiological recordings

Whole-cell patch-clamp recordings were performed in -60 mV clamped-cells as described [16,31]. The following solutions were used: extracellular solution (mM): NaCl 147; KCl 4; MgCl₂ 1; CaCl₂ 2; HEPES (4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid) 10; D-glucose 10 (pH 7.4 with NaOH). Standard K⁺-based pipette solution (mM): K-gluconate 130; NaCl 4.8; KCl 10; MgCl₂ 2; CaCl₂ 1; Na₂-ATP 2; Na₂-GTP 0.3; EGTA 3; HEPES 10 (pH 7.4 with KOH). Cells were plated into 13mm diameter coverslips and allowed to adhere before starting the recordings. Each sample was transferred to a 1 ml recording chamber mounted on the platform of an inverted microscope (Olympus CKX41, Milan, Italy) superfused at a flow rate of 1.5 ml/min by a three-way perfusion valve controller (Harvard Apparatus). Borosilicate glass electrodes (Harvard Apparatus, Holliston, MA) were pulled with a Sutter Instruments puller (model P-87) to a final tip resistance of 3–5 MΩ. Data were acquired with an Axopatch 200B amplifier (Axon Instruments, CA), low-pass filtered at 10 kHz, stored and analysed with pClamp 9.2 software (Axon Instruments, CA). A depolarizing voltage ramp protocol (800 ms depolarization from −80 to +80 mV, for HF, and from −80 to +120 mV, for HaCat) was used to activate overall voltage-dependent currents in these cells. Pilot experiments performed by us revealed that a voltage ramp to +80 mV is able to activate the majority of voltage-dependent conductances in human fibroblasts whereas, in HaCaT cells, a +120 mV is needed to achieve similar levels of current amplitudes. In fact, at +80 mV, the steepest tract of the ramp traces in HaCaT cells is still to be evoked. repeated every 15 seconds to evoke overall voltage-dependent currents before, during, and after the application of 20.6 J/cm² of blue LED light. Total outward currents evoked by the voltage ramp were quantified by measuring current amplitude at +80 mV for HF and at +120 mV for HaCat. Control values were obtained by averaging the last 4 traces (1 minute) of baseline and were compared to those measured during the fifth minute after irradiation. In averaged results, current amplitude (in pA) was normalized to cell capacitance (in pF) and expressed as pA/pF.

4.7. Micro Raman measurements on single cell

Raman experiments were carried out on a micro-Horiba Xplora coupled to a 532 nm wavelength laser for the excitation. The spectrograph used 1200 grooves mm⁻¹ grating with a confocal microscope in backscattering geometry and a 2D-CCD camera. The backscattered light was collected by a 50X microscope objective with 0.80 NA, which generated a ≈ 2 μm large laser beam waist. An integration time of 5 seconds and a laser power value of ~ 1 mW on the sample were employed for Raman measurements on fibroblast and HaCaT cells. Pellets were prepared by two centrifugations in PBS at 1000 rpm for 6 minutes and removal of the supernatant. Typically, for a single Raman measurement, a volume of 2 μl of the pellet was drop-casted onto a gold mirror support (ME1S-M01; Thorlabs, Inc., Newton, NJ) and Raman spectra were immediately recorded on samples before the blue LED light irradiation (n=3) and after the application of 20.6 J/cm² (n=3) and 41.2 J/cm² (n=3) of blue LED irradiation treatment. For each sample at least 20 individual cells were inspected while carefully avoiding cell dehydration. All data were baseline corrected when needed and normalized to the peak of Phenylalanine. As a reference, the Raman spectrum of an aqueous solution of Cyt C at 0.1 mM concentration was measured before and after the irradiation with blue LED light. Power laser intensity and integration time in the Raman experiment were optimised to avoid any possible photoreduction or photooxidation of Cyt C during the laser excitation.
4.8. In vitro co-culture scratch assay

The scratch test assay or wound healing assay is an in vitro procedure used to evaluate the effects of different stimuli on cell migration. In this work, co-culture of HaCat cells and dermal fibroblasts were used to assess if blue LED light can modulate cell migration through this simple preclinical model of wound healing [32,33]. An equal number of HaCaT and fibroblast cells were cultivated in T75 flask (Greiner Bio-One, GmbH) before the experiments. To perform the scratches, cells were plated in 35 mm dishes and scratch wound was made mechanically with a sterile 200 µL tip when complete confluence was reached. After that, plate was kept in incubator with humidified atmosphere (37°C and 5% CO2). At different time point (t0, t24, t48 and t72, 2 images at inverted optical microscope (INV100T, Eurotek Orma, Milan, Italy) using 4x objective, were acquired. The scratch closure was calculated used the "area method". The scratch area was measure as the ratio between the scratch area at different time point (t24, t48 and t72) and t0, its initial area, multiplied by 100 [32].

Author Contributions: conceptualization, F.R., D.A., D.R.I., F.S.P., R.P.; methodology, F.R., F.T., A.M.P. and P.M.; validation, G.M., E.C., M.B. and F.C.; formal analysis, M.R.; investigation, G.M., F.R. and F.T.; resources, P.M., F.R.; data curation, F.R.; writing–original draft preparation, F.R., G.M.; writing–review and editing, F.T.

Funding: This research was funded by EmoLED s.r.l.

Acknowledgments: The authors wish to thank Dr. Cristina Pelliccia and Prof. Angelo Sidoni from the University of Perugia for their valuable contribution in recruiting healthy skin donors used in this study for fibroblast primary cell culture. We also thank Dr. Paola Faraoni from the Dept. of Experimental and Clinic Biomedical Sciences “Mario Serio”, University of Florence, for providing cultured Hacat cells and Dr. Martina Venturini from the Dept. of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, for the contribution in the electrophysiological recordings data analysis.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study and in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

- **PBM**: Photobiomodulation
- **IR**: InfraRed
- **NIR**: Near InfraRed
- **LED**: Light Emitting Diode
- **Cyt C**: Cytochrome C
- **GPC**: Good Clinical Practice
- **DMEM**: Dulbecco Modified Eagle Medium
- **HaCaT**: Spontaneously transformed non-tumorigenic human keratinocyte cell line
- **FBS**: Fetal Serum Bovine
- **pen/strep**: Penicillin/streptomycin
- **CCK-8**: Cell Counting Kit-8
- **SRB**: Sulforhodamine B based assay
- **DAPI**: 4,6-diamidino-2-phenylindole
- **PBS**: phosphate buffer saline

References

1. Piaggesi, A.; Läuchli, S.; Bassetto, F.; Biedermann, T.; Marques, A.; Najafi, B.; Palla, I.; Scarpa, C.; Seimetz, D.; Triulzi, I.; others. Advanced therapies in wound management: cell and tissue based therapies, physical and bio-physical therapies smart and IT based technologies. *Journal of wound care* 2018, 27, S1–S137.
2. Mester, E.; Szende, B.; Gärtner, P. The effect of laser beams on the growth of hair in mice. *Radiobiologia, radiotherapia* 1968, 9, 621.
3. Heiskanen, V.; Hamblin, M.R. Photobiomodulation: lasers vs. light emitting diodes? *Photochemical & Photobiological Sciences* 2018, 17, 1003–1017.
4. Dompe, C.; Moncrieff, I.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Domianiak, M.; Mozdzia, P.; Skiba, T.H.I.; others. Photobiomodulation—Underlying Mechanism and Clinical Applications. Journal of Clinical Medicine 2020, 9, 1724.

5. Serrage, H.; Heiskanen, V.; Palin, W.M.; Cooper, P.R.; Milward, M.R.; Hadis, M.; Hamblin, M.R. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. Photochemical & Photobiological Sciences 2019, 18, 1877–1909.

6. Karu, T. Is it time to consider photobiomodulation as a drug equivalent?, 2013.

7. Hamblin, M.R. Introduction to experimental and clinical studies using low-level laser (light) therapy (LLLT). Lasers in surgery and medicine 2010, 42, 447.

8. Rossi, F.; Cicchi, R.; Tatini, F.; Pini, R.; Bacci, S.; De Siena, G.; Cicchi, R.; Pavone, F.; Alfieri, D. Improved wound healing in blue LED treated superficial abrasions. European Conference on Biomedical Optics. Optical Society of America, 2013, p. 88030S.

9. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

10. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

11. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

12. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

13. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

14. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

15. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

16. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

17. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

18. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

19. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

20. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

21. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.

22. Magni, G.; Tatini, F.; Cavigli, L.; Pini, R.; Cicchi, R.; Bacci, S.; Paroli, G.; DeSiena, G.; Alfieri, D.; Tripodi, C.; others. Blue LED treatment of superficial abradions in vivo: experimental evidence of wound healing improvement. Biophotonics: Photonic Solutions for Better Health Care VI. International Society for Optics and Photonics, 2017, Vol. 10066, p. 100660B.
23. Jo, H.Y.; Kim, Y.; Park, H.W.; Moon, H.E.; Bae, S.; Kim, J.; Kim, D.G.; Paek, S.H. The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells. *Experimental neurobiology* 2015, 24, 235–245.

24. Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. *JNCI: Journal of the National Cancer Institute* 1990, 82, 1107–1112.

25. Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. *Nature protocols* 2006, 1, 1112–1116.

26. Orellana, E.A.; Kasinski, A.L. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. *Bio-protocol* 2016, 6.

27. Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. *Bratislava Medical Journal* 2017, 118, 123–128.

28. Kang, S.; Park, H.; Ban, J.; Chung, J.; Chun, G.; Cho, J. Effects of nicotine on apoptosis in human gingival fibroblasts. *Archives of oral biology* 2011, 56, 1091–1097.

29. Strober, W. Trypan blue exclusion test of cell viability. *Current protocols in immunology* 1997, 21, A–3B.

30. Ayuk, S.M.; Houreld, N.N.; Abrahamse, H. Collagen production in diabetic wounded fibroblasts in response to low-intensity laser irradiation at 660 nm. *Diabetes technology & therapeutics* 2012, 14, 1110–1117.

31. Coppi, E.; Cherchi, F.; Fusco, I.; Dettori, I.; Gaviano, L.; Magni, G.; Catarzi, D.; Colotta, V.; Varano, F.; Rossi, F.; others. Adenosine A2B receptors inhibit K+ currents and cell differentiation in cultured oligodendrocyte precursor cells and modulate sphingosine-1-phosphate signaling pathway. *Biochemical Pharmacology* 2020, p. 113956.

32. Bobadilla, A.V.; Arévalo, J.; Sarró, E.; Byrne, H.M.; Maini, P.K.; Carraro, T.; Balocco, S.; Meseguer, A.; Alarcón, T. In vitro cell migration quantification method for scratch assays. *Journal of the Royal Society Interface* 2019, 16, 20180709.

33. Gnerucci, A.; Faraoni, P.; Sereni, E.; Ranaldi, F. Scratch assay microscopy: A reaction–diffusion equation approach for common instruments and data. *Mathematical Biosciences* 2020, p. 108482.