CD22 Associates with Protein Tyrosine Phosphatase 1C, Syk, and Phospholipase C-γ1 upon B Cell Activation

By Che-Leung Law,* Svetlana E Sidorenko,* Karen A. Chandran,* Zhizhuang Zhao,‡ Shi-Hsiang Shen,§ Edmond H. Fischer,‡ and Edward A. Clark*

From the Departments of *Microbiology and *Biochemistry, University of Washington, Seattle, Washington 98195; and § Biotechnology Research Institute, National Research Council of Canada, Montreal, Canada H4P 2R2

Summary

Cross-linking B cell antigen receptor (BCR) elicits early signal transduction events, including activation of protein tyrosine kinases, phosphorylation of receptor components, activation of phospholipase C-γ (PLC-γ), and increases in intracellular free Ca²⁺. In this article, we report that cross-linking the BCR led to a rapid translocation of cytosolic protein tyrosine phosphatase (PTP) 1C to the particulate fraction, where it became associated with a 140–150-kD tyrosyl-phosphorylated protein. Western blotting analysis identified this 140–150-kD protein to be CD22. The association of PTP-1C with CD22 was mediated by the NH₂-terminal Src-homology 2 (SH2) domain of PTP-1C. Complexes of either CD22/PTP-1C/Syk or CD22/PTP-1C/Syk/PLC-γ1 could be isolated from B cells stimulated by BCR engagement or a mixture of hydrogen peroxide and sodium orthovanadate, respectively. The binding of PLC-γ1 and Syk to tyrosyl-phosphorylated CD22 was mediated by the NH₂-terminal SH2 domain of PLC-γ1 and the COOH-terminal SH2 domain of Syk, respectively. These observations suggest that tyrosyl-phosphorylated CD22 may provide the scaffolding to ensure efficient interaction between Syk and PLC-γ1 and the activation of PLC-γ1 by Syk. The recruitment of PTP-1C to BCR-associated CD22 may downmodulate the activity of this complex by dephosphorylation of CD22, Syk, and/or PLC-γ1. Transient expression of CD22 and a null mutant of PTP-1C (PTP-1C M) in COS cells resulted in an increase in tyrosyl phosphorylation of CD22 and its interaction with PTP-1C M. By contrast, CD22 was not tyrosyl phosphorylated or associated with PTP-1C M in the presence of wild-type PTP-1C. These results suggest that tyrosyl-phosphorylated CD22 may be a substrate for PTP-1C or that PTP-1C regulates tyrosyl phosphorylation of CD22.
duction (5). It is a member of the Ig gene superfamily and is a sialic acid–binding animal lectin (12). A small portion of cell surface CD22 molecules is associated with the BCR, and cross-linking of the BCR induces rapid tyrosyl phosphorylation of CD22 at a rate similar to the activation of BCR-associated PTKs (13–15). Cross-linking CD22 on human B cells also potentiates BCR-induced increases in [Ca^{2+}]_i and cell proliferation (16, 17). These studies suggest that a functional relationship exists between CD22 and the BCR. However, how CD22 regulates BCR-mediated signal transduction remains to be defined.

Recent studies have shown that protein tyrosine phosphatases (PTPs) can downmodulate receptor-mediated signal transduction (18, 19). PTP-1C contains two SH2 domains in the NH_{2}-terminal half of the molecule and is expressed in multiple hematopoietic lineages (20–23). This enzyme is essential for the development and normal function of the hematopoietic system. Mutation in the Ptp-1c gene lead to hematopoietic abnormalities in mule mule mice (me/me) and mule mule viable (meV/meV) mice (24, 25), including elevated granulocyte and macrophage activities, erythrocytosis, and decreased NK and T cell activity (26). PTP-1C has been described as interacting functionally with multiple receptors in different hematopoietic lineages, including those for erythropoietin-1 (EPO-1) (27, 28), IL-3 (29), stem cell factor (30), and CSF-1 (31). The defects in the B cell lineage of the me/me and meV/meV mice are characterized by a severe reduction in conventional B cells compounded with profound systemic autoimmunity (32). These defects in the B cell compartment may be related to the functions of PTP-1C in regulating B cell activation, as PTP-1C can interact with both the FcγIIIB receptor (33) and components of the BCR complex (34, 35) and influences the threshold of antigen required for negative selection of B cells (36).

Herein, we report that CD22 plays a central role for the in vivo formation of a multicomponent complex with PTP-1C, Syk, and PLC-γ1. The binding of these enzymes to CD22 is mediated by their SH2 domains. Moreover, we also provide evidence suggesting that PTP-1C can dephosphorylate CD22. This would provide a potential mechanism to downmodulate the BCR-mediated Ca^{2+} signal.

Materials and Methods

Cells and Antibodies. The Burkitt’s lymphoma cell line Daudi was maintained in RPMI 1640 supplemented with 10% FCS, t-glutamine, nonessential amino acids, sodium pyruvate, and penicillin-streptomycin. COS cells were maintained in DMEM supplemented with the same additives. Hybridomas secreting the CD22 mAb HD39 and the CD19 mAb HD37 were kindly provided by Dr. Anthony Pezzutto (Universität Heidelberg, Germany). Anti-phosphotyrosine (PY) mAb PY-20, rabbit anti-Csk, rabbit anti-Lyn serum, and rabbit anti-Syk serum were purchased from Upstate Biotechnology, Inc. (Lake Placid, NY). Goat anti-mouse IgG F(ab')2, goat anti-human IgM F(ab')2, and normal goat IgG F(ab')2 were purchased from Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA). Rat anti-mouse CD22 mAb, NIM-R6 (37), and rabbit anti-human CD22 serum raised against a peptide corresponding to the cytoplasmic tail of human CD22 (14) have been described. Human PTP-1C was overexpressed in 293 cells by using an adenovirus expression system, purified to homogeneity, and used as the immunogen for the generation of the rabbit anti–PTP-1C serum (38). Anti-HA1 mAb 12CA5 was obtained from Berkeley Antibody Co. (Richmond, CA).

Plasmid Constructs. The full-length cDNA encoding human PTP-1C (PTP-1CwT) (20) was cloned into the expression vector pRC-CMV (Invitrogen, San Diego, CA). Site-directed mutagenesis of the full-length PTP-1C cDNA replacing Cys455 in the phosphatase domain by a Ser yielded the null mutant (PTP-1CM). A maltose-binding protein (MBP) fusion protein plasmid containing the double SH2 domains of PTP-1C has been described (20). To express an MBP fusion protein containing the NH_{2}-terminal SH2 domain of PTP-1C, an EcoRI/SpeI fragment containing the first 109 amino acids of PTP-1C was used to replace the double SH2 domain of this plasmid. For the generation of the COOH-terminal SH2 domain of PTP-1C, a fragment of cDNA encoding the COOH-terminal SH2 domain of PTP-1C was amplified using a full-length cDNA clone of PTP-1C as the template and the following primers: 5' primer, 5' GCC GGA TCC GAT CCC ACT ACT AGT GAG 3'; 3' primer, 5' GCC GGA TCC GAT AAA ATG CAT TCT CCG 3'; GST-SykSH2(N): 5' primer, 5' GCC GGA TCC GAT GAA AGG AAA TAG CAG 3', and a 3' primer, 5' GCC GGA TCC GAT GAA AGG AAA TAG CAG 3'. The underlined nucleotides represent BamHI and HindIII sites in the 5' and 3' primers, respectively. The PCR product was then cut with these enzymes and ligated into BamHI/HindIII-cut pMAL-c2 (New England Biolabs, Beverly, MA).

For the generation of glutathione S-transferase (GST) fusion proteins containing the SH2 domains of Syk, PCR was used to amplify cDNAs encoding either one or both SH2 domains of Syk using phSyk-1 (39) as template and the following primer pairs: GST-SykSH2(N): 5' primer, 5' GCC GGA TCC AGC GCC AGC AAC CAC CRG CCC 3'; 3' primer, 5' GCC GGA TCC GAT GAA AGG AAA TAG CAG 3'; GST-SykSH2(C): 5' primer, 5' GCC GGA TCC GAT GAA AGG AAA TAG CAG 3'; 3' primer, 5' GCC GGA TCC GAT CAT TCT CCG 3'; GST-SykSH2(NC): 5' primer, 5' GCC GGA TCC GAT GAA AGG AAA TAG CAG 3'; 3' primer, 5' GCC GGA TCC GAT CAT TCT CCG 3'. Underlined nucleotides represent BamHI and EcoRI sites in the 5' and 3' primers, respectively. PCR products were cut with these enzymes and ligated into BamHI/EcoRI-cut pMAL-c2 (Pharmacia LKB Biotechnology, Inc., Piscataway, NJ).

Plasmid encoding GST fusion proteins containing either one or both SH2 domains of PLC-γ1 have been described (11). All fusion protein constructs were transformed into Escherichia coli strain BL21(DE3) for protein production.

The full-length mCD22 cDNA clone, pmCD22-2, has been reported (35). To detect transiently expressed mCD22 by Western blot analysis, mCD22 was epitope tagged with the influenza hemagglutinin peptide HA1 (40). The complete coding region of mCD22, without the stop codon, was amplified by PCR using the template pmCD22-2, a 5' primer of 5' GAT CGG ATC CGC GGC CTG GAG GAA TAG CAG 3', and a 3' primer of 5' GCC GAA TTC GTG CAT CTT ATG GCT TCT CAG 3'. The PCR product was cut with BamHI and EcoRI. The purified PCR product was then ligated into-frame with a double-stranded oligonucleotide containing the HA1 sequence with a 5' EcoRI overhang, a 3' stop codon, and a 3' XhoI overhang, and cloned into BamHI/XhoI-cut pcDNA3 (Invitrogen).
COS Cell Transfection. The DEAE–dextran method was used to transiently express cDNAs in COS cells. Briefly, COS cells were seeded at $\sim 3 \times 10^6$ cells per 150-mm plate 16 h before transfection. Cells were washed twice with serum-free DMEM before transfection medium containing 400 μg/ml DEAE–dextran, 0.1 mM chloroquine, and 3 μg/ml each of the cDNA constructs was added. After a 3–4-h incubation at 37°C, cells were pulsed with 10% DMSO in PBS at room temperature for 2 min and then returned to full medium. After 24 h, the medium was replaced with fresh DMEM containing 5% FCS. Cells were analyzed 72 h after transfection.

B Cell Stimulation. Daudi cells were pelleted and resuspended at 10×10^6/ml in fully supplemented RPMI 1640. Cells were equilibrated at 37°C for 10–15 min and then stimulated by F(ab')$_2$ fragments of goat anti-human IgM (final concentration 10 μg/ml) or a mixture of H$_2$O$_2$ (2.5 mM) and sodium orthovanadate (100 μM) (referred to as peroxovanadate). Controls for F(ab')$_2$ fragments of goat anti-human IgM were either F(ab')$_2$ fragments of normal goat IgG or F(ab')$_2$ fragments of goat anti–mouse IgM, and the control for peroxovanadate was medium only. Stimulation was stopped at various time points by dilution of the cell suspensions into >10 vol of ice-cold PBS containing 0.02% NaN$_3$. Cells were pelleted and washed again with ice-cold PBS before lysis in 0.5% NP-40 buffer (see below).

Subcellular Fractionation. Cells were resuspended at 20×10^6/ml in PBS containing 1.5 mM MgCl$_2$, 1 mM EGTA, protease inhibitors (2 mM PMSF, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 μg/ml pepstatin, 100 μg/ml soybean trypsin inhibitor), and phosphatase inhibitors (10 mM NaF, 1 mM Na$_3$VO$_4$, and 5 mM Na$_4$P$_2$O$_7$). Cells were disrupted by nitrogen cavitation, 350 psi for 20 min at 4°C. The nuclei were isolated by centrifugation at 1,000 g for 20 min. Postnuclear supernatants were then centrifuged at 100,000 g for 45 min. Supernatants after this spin (S100) were considered to represent the cytosolic fraction. The pellets (P100) containing cell organelles and plasma membrane were washed once in PBS containing protease inhibitors and then solubilized for 30 min at 4°C in 0.5% NP-40 lysis buffer containing 150 mM NaCl, 50 mM Tris, pH 8.0, 5 mM EDTA plus protease and phosphatase inhibitors as described above. Debris was removed by centrifugation at 14,000 g for 30 min. The supernatants constituted the solubilized P100 fraction used for protein immunoprecipitation.

Immunoprecipitation and Western Blotting. Immunoprecipitation, SDS-PAGE, and Western blotting were conducted as described (41). Binding of primary antibodies to blots was detected with either horseradish peroxidase–conjugated goat anti–rabbit IgG (Jackson ImmunoResearch Laboratories, Inc.) or horseradish peroxidase–conjugated goat anti–mouse IgG (Jackson ImmunoResearch Laboratories, Inc.) and an enhanced chemiluminescence kit (Amersham Corp., Arlington Heights, IL). In Western blotting using fusion proteins, blots were incubated with 200 nM of fusion proteins in Tris-buffered saline (10 mM Tris, pH 8.0, 150 mM NaCl) with 0.01% Tween 20 and 5% BSA for 2 h at room temperature. Binding of GST and MBP fusion protein was detected by a monoclonal anti-GST (Santa Cruz Biotechnology) or a rabbit anti-MBP serum (New England Biolabs) plus the appropriate horseradish–conjugated second-step goat antibody and enhanced chemiluminescence.

Results

Cross-Linking of the BCR Induces Recruitment of PTP-1C to the Particulate Fraction of B Cells. To understand the potential function of PTP-1C in regulating BCR-mediated signal transduction, we examined the effect of cross-linking the BCR on the subcellular localization of PTP-1C. Resting and activated B cells were fractionated into S100 (cytosolic) and detergent solubilized P100 (membrane) fractions. The presence of cytosol–associated Csk only in the cytosolic fraction and membrane–associated Lyn only in the membrane fraction confirmed the purity of the subcellular fractions obtained (Fig. 1 A). The majority of PTP-1C re-
sided in the cytosol of unstimulated Daudi B cells (Fig. 1 B, left). Detectable, albeit relatively limited, amounts of PTP-1C were also found associated with the membrane. Stimulation of the BCR with anti-human IgM induced a rapid recruitment of additional PTP-1C to the membrane detectable within 20 s; this increased level remained steady for at least 10 min of stimulation. Anti-PY blot of the PTP-1C immunoprecipitates (IP) from the membrane fractions revealed the presence of two groups of proteins, ~140–150 and 64 kD, specifically phosphorylated on tyrosine (Fig. 1 B, right).

Cross-Linking the BCR and CD22 Induces a Specific Interaction between PTP-1C and CD22. Stimulation of the BCR induces a rapid tyrosyl phosphorylation of CD22 (140–150 kD) (12, 13). Therefore, we examined whether the 140–150-kD protein coimmunoprecipitating with PTP-1C was indeed CD22. Anti-PY blotting of CD22 IP showed a low

![Image](image-url)

Figure 2. Anti-IgM- and anti-CD22-induced association between PTP-1C and CD22 in B cells. Daudi B cells were stimulated with goat anti-human IgM F(ab')2 (10 μg/ml) for the indicated lengths of time, lysed in NP-40 lysis buffer, and immunoprecipitated with the CD22 mAb HD39 (A), an anti-PTP-1C serum (B), or the CD19 mAb HD37 (C). IgG1 control myeloma protein (MOPC) or normal rabbit serum (NRS) was used as control for HD39 and HD37 or anti-PTP-1C, respectively. IPs were resolved by SDS-PAGE on replicate gels and Western blotted onto membranes. Membranes containing CD22 and PTP-1C IP were probed with either an anti-CD22 serum, 4G10 (anti-PY), or an anti-PTP-1C serum. Controls were unstimulated B cell lysates immunoprecipitated with MOPC.
basal level of tyrosyl phosphorylation before stimulation. Upon BCR stimulation, CD22 became heavily tyrosyl phosphorylated and associated with a 72-kD phosphoprotein (Fig. 2 A, middle). Probing of the replicate blots with a rabbit anti-PTP-1C serum showed that the enzyme was induced to interact with CD22 (Fig. 2 A, right). Conversely, when PTP-1C was immunoprecipitated from the same cells, anti-PY blot revealed the presence of a 140–150-kD phosphoprotein that could be recognized by anti-CD22, confirming the BCR-induced interaction between CD22 and PTP-1C (Fig. 2 B, middle and right). CD19 is another B cell accessory molecule that becomes tyrosyl phosphorylated and associates with PI3K upon BCR stimulation (42, 43, and Fig. 2 C, left and middle); no association between CD19 and PTP-1C could be detected after BCR ligation (Fig. 2 C, right), suggesting that the BCR-induced association between CD22 and PTP-1C was specific. Moreover, cross-linking of CD22 alone on Daudi cells also induced tyrosyl phosphorylation of CD22 and the recruitment of PTP-1C to CD22 (Fig. 2 D).

The NH2-terminal SH2 Domain of PTP-1C Mediates Direct Interaction between PTP-1C and Tyrosyl-phosphorylated CD22. We next examined if the SH2 domains of PTP-1C could bind to tyrosyl-phosphorylated CD22. Daudi cells were stimulated with either goat anti-human IgM or peroxovanadate, which has been shown to elicit proximal signal transduction events in lymphocytes similar to those elicited by the Ag receptors (44, 45). The NH2-terminal SH2 domain (MBP-1CSH2[N]) and the double SH2 domains (MBP-1CSH2[NC]), but not the COOH-terminal SH2 domain (MBP-1CSH2[C]), of PTP-1C specifically precipitated tyrosyl-phosphorylated 140–150-kD proteins from either anti-IgM– or peroxovanadate-activated Daudi cells (Fig. 3 A, left). Western blotting with an anti-CD22 serum identified the 140–150-kD phosphoprotein precipitated by MBP-1CSH2[NC] as CD22 (Fig. 3 A, right). When these fusion proteins were used to probe Western blots containing CD22, both MBP-1CSH2[N] and MBP-1CSH2[NC] bound to tyrosyl-phosphorylated CD22 isolated from Daudi cells after anti-IgM stimulation (Fig. 3 B). By contrast, MBP-1CSH2[C] did not bind to CD22 isolated from either resting or anti-IgM-stimulated B cells. Hence, the NH2-terminal SH2 domain of PTP-1C apparently is essential for CD22 binding. Although MBP-1CSH2[N] could detect tyrosyl-phosphorylated CD22 on Western blot, CD22 was not detected in the MBP-1CSH2[NC] precipi-
Fig. 4. In vivo complexes of CD22/PTP-1C/Syk and CD22/PTP-1C/Syk/PLC-γ1. Daudi B cells were stimulated with either goat anti-IgM (A) or peroxynitrate (B) as described in Fig. 3. CD22 was immunoprecipitated from NP-40 lysates, resolved by SDS-PAGE on replicate gels, and immunoblotted with the indicated antibodies. Arrows indicate the mobilities of proteins detected by the different antibodies.

In Vivo Complex of CD22, PTP-1C, Syk, and PLC-γ1. Since CD22 was the major membrane protein with which PTP-1C could interact upon BCR stimulation of Daudi B cells (Figs. 1-3), we hypothesized that this recruitment might be a way by which B cells could direct PTP-1C to its substrate(s), particularly phosphoproteins associating with CD22. Low basal levels of tyrosyl phosphorylation were detected on CD22 isolated from unstimulated Daudi cells, whereas heavily tyrosyl-phosphorylated proteins of 130-150 and 72 kD were detected after either anti-IgM (Figs. 2 A and 4 B) or peroxynitrate (Fig. 4 A) stimulation. Probing of replicate blots with anti-Syk serum revealed that the 72-kD protein was Syk; a small amount of unphosphorylated Syk was also associated with CD22 in unstimulated cells. PLC-γ1 was detected in CD22 IP from peroxynitrate-stimulated cells and coinigrated with CD22 (Fig. 4 A), but not from anti-IgM-stimulated cells (Fig. 4 B). PTP-1C was detected in the CD22 IP from stimulated cells, as shown in Figs. 1-3. The absence of detectable PLC-γ1 in anti-IgM-stimulated cells might be due to the stronger stimulation delivered by peroxynitrate. Collectively, stimulation of B cells through their antigen receptors or using peroxynitrate could indeed induce the in vivo formation of complexes consisting of either CD22/PTP-1C/Syk or CD22/PTP-1C/Syk/PLC-γ1.

The COOH-terminal SH2 Domain of Syk Binds Directly to Tyrosyl-phosphorylated CD22. The molecular basis for the interaction between Syk and CD22 was examined using GST fusion proteins containing either one or both SH2 domains of Syk. A 140-150-kD tyrosyl-phosphorylated protein was the major protein that GST-SykSH2(C) or (NC) precipitated from either anti-IgM- or peroxynitrate-activated B cells (Fig. 5 A, left). The NH2-terminal SH2 domain of Syk also weakly precipitated a 140-150-kD phosphoprotein from peroxynitrate-stimulated Daudi cells (Fig. 5 A, left). Western blotting of the fusion protein precipitates obtained from lysates of peroxynitrate- (Fig. 5 A, right) or anti-IgM- (data not shown) activated B cells with an anti-CD22 serum revealed that GST-SykSH2(C) or GST-SykSH2(NC)
could precipitate CD22. Western blotting using the GST SH2 fusion proteins showed GST-SykSH2(NC) could bind directly to tyrosyl-phosphorylated CD22 isolated from anti-IgM-stimulated Daudi cells (Fig. 5 B). Taken together, these results suggest that Syk can directly interact with tyrosyl-phosphorylated CD22 via its COOH-terminal SH2 domain.

The NH2-terminal SH2 Domain of PLC-γ1 Binds Directly to Tyrosyl-Phosphorylated CD22. The SH2 domains of PLC-γ1 can bind to Syk (10, 11). We have located the Syk-binding region of PLC-γ1 to its SH2(C) domain (11). In addition to Syk, the individual SH2 domains of PLC-γ1 also precipitated a number of tyrosyl-phosphorylated proteins from stimulated B cell lysates (Fig. 6 A, left). Thus, GST-γ1SH2(N) precipitated tyrosyl-phosphorylated proteins of 140, 59, and 52 kD, whereas GST-γ1SH2(C) precipitated tyrosyl-phosphorylated proteins of 84, 72, 59, and 52 kD. The double (NC) SH2 domains precipitated a combination of the proteins recognized by the individual SH2 domains. Sequential Western blotting of these precipitates with an anti-Syk followed by an anti-CD22 serum showed that, indeed, the 72-kD protein was Syk whereas the 140 kD protein was CD22 (Fig. 6 A, right). Although other undefined tyrosyl-phosphorylated proteins also coprecipitated, the interaction between the SH2(N) of PLC-γ1 was probably direct, since GST-γ1SH2(NC) could bind directly to tyrosyl-phosphorylated CD22 isolated from anti-IgM-stimulated Daudi cells on Western blots (Fig. 6 B).

Cotransfection of CD22 with PTP-1C^M, but Not PTP-1C^{WT}, in COS Cells Results in the Formation of a Stable Complex between CD22 and PTP-1C^{CM}. The complex consisting of tyrosyl-phosphorylated CD22, Syk, and PLC-γ1 with PTP-1C in stimulated B cells (Fig. 4) suggested that PTP-1C might use one or more of these phosphoproteins as substrates. In an attempt to study the interaction between CD22 and PTP-1C, we transfected COS cells with a cDNA encoding a null mutant PTP-1C (PTP-1C^M) that lacked phosphatase activity and a cDNA encoding mCD22. To facilitate the detection of mCD22 by Western blotting, an HA tag was added in-frame before the stop codon of mCD22 (mCD22HA). mCD22HA was not tyrosine phosphorylated when transfected alone (Fig. 7 A). Cotransfection of mCD22HA with PTP-1C^M resulted in an association between the two, accompanied by a dramatic increase in tyrosyl phosphorylation of mCD22HA (Fig. 7 A, middle and bottom; Fig. 7 B, top and middle). On the other hand, PTP-1C associating with mCD22HA was not tyrosine phosphorylated, indicating that the enzyme need not be active or tyrosyl phosphorylated to bind to mCD22HA in...
vivo (Fig. 7, A and B, middle). When increasing quantities of wild-type PTP-1C (PTP-1CWT) were mixed with decreasing quantities of PTP-1CM and cotransfected with the mCD22HA, both the levels of tyrosyl phosphorylation in mCD22HA and the association between mCD22HA and PTP-1C decreased in a dose-dependent manner. The amount of immunoprecipitable mCD22HA and PTP-1C (mixture of PTP-1CWT and PTP-1CM) were comparable in the different transfectants (Fig. 7, A, top, and B, bottom). Therefore, the absence of the phosphatase activity in PTP-1C facilitated the association of PTP-1C with mCD22HA; expression of PTP-1CWT alone with mCD22HA resulted in low levels of mCD22HA tyrosyl phosphorylation and some association with mCD22HA. Although the HA tag contained several tyrosyl residues, it was unlikely that this association was due to these tyrosyl residues, because identical results were observed using the native, nontagged, mCD22 cDNA (data not shown).

Overexpression of Either PTP-1CM or PTP-1CMWT Does Not Alter the Overall Levels of Tyrosyl Phosphorylation of Cellular Proteins in COS Cells. The tyrosyl phosphorylation of mCD22HA and its association with PTP-1CM may be occurring because (a) endogenous PTP activities, including the low but detectable amount of PTP-1C (Fig. 7 B, bottom), negatively regulate the overall PTK activities in COS cells. In this case, transfection of PTP-1CM would dominantly suppress the activity of endogenous PTP-1C or other PTP and release the PTKs from negative regulation, leading in turn to an elevated tyrosyl phosphorylation of cellular proteins including mCD22HA; or alternatively (b) certain PTKs (e.g., Src-family kinases) might phosphorylate mCD22 constitutively, whereas endogenous PTP-1C would specifically dephosphorylate mCD22 to reduce its level of tyrosyl phosphorylation. In this case, transfection of PTP-1CM would specifically dephosphorylate mCD22 to reduce its level of tyrosyl phosphorylation. In the first instance, transfection of PTP-1CM should increase the level of tyrosyl phosphorylation of other cellular proteins. In contrast, in the second case, transfection of PTP-1CM would have no major effect on the level of tyrosyl phosphorylation of cellular proteins other than CD22. To distinguish between these two possibilities, we transfected COS cells with PTP-1CMWT/PTP-1CM in different proportions. The level of tyrosyl phosphorylation of cellular proteins in general remained similar to the mock-trans-
Figure 7. Cotransfection of CD22 with PTP-1C\textastisk} in COS cells results in the formation of a complex between CD22 and PTP-1C\textastisk}. COS cells were transiently transfected with mCD22\textsubscript{HA} cDNA (3 μg/ml) and a mixture of cDNAs (total of 3 μg/ml) encoding for both the wild-type PTP-1C (PTP-1\textsuperscript{C\textsubscript{WT}}) and a phosphatase-negative variant (PTP-1\textsuperscript{CM}) at the ratios indicated in the figure. Details of transfection and construction of cDNAs are described in Materials and Methods. 72 h after transfection, cells were lysed in 0.5% NP-40 lysis buffer, mCD22\textsubscript{HA} (A) and PTP-1C (B) were immunoprecipitated, resolved by reducing SDS-PAGE on replicate gels, and immunoblotted with an anti-HA tag mAb, 4G10 (anti-PY), or an anti-PTP-1C serum. Control precipitations were done using MOPC or normal rabbit serum (NRS) with lysates from COS cells transfected with 3 μg/ml of mCD22\textsubscript{HA} and PTP-1\textsuperscript{C\textsubscript{WT}} cDNAs.

Discussion

In this report, we describe the association of CD22 with key regulatory enzymes, including Syk, PLC-\textgamma{}1, and PTP-1C in B lymphocytes. The fact that tyrosyl phosphorylation of Syk and PLC-\textgamma{}1 correlates with their enzymatic activation suggests that PTP-1C may function to downregulate the BCR-mediated signal transduction cascade by catalyzing their dephosphorylation.

The NH\textsubscript{2}-terminal SH2 domain of PTP-1C binds to tyrosyl-phosphorylated CD22 (Fig. 3). Since MBP-1CSH2(C) did not precipitate any detectable tyrosyl-phosphorylated proteins from B cell lysates, it is possible that the COOH-terminal SH2 domain of PTP-1C alone does not possess high binding affinity toward phosphorylated tyrosyl residues. Alternatively, SH2(C) of PTP-1C might not be folded to its optimal conformation when expressed as an MBP fusion protein by bacteria. However, the presence of SH2(C) of PTP-1C might not be necessary for its high binding affinity toward phosphorylated tyrosyl residues of CD22. Taken together, our results confirm and extend recently published
Figure 8. Expression of either PTP-1C WT or PTP-1C M in COS cells does not alter tyrosyl phosphorylation of cellular proteins. COS cells were transfected with a mixture of cDNAs (total of 3 μg/ml) at the ratios indicated in the figure. 72 h after transfection, cells were lysed in 0.5% NP-40 lysis buffer. Cellular tyrosyl-phosphorylated proteins and PTP-1C were immunoprecipitated by PY20 (anti-PY) and an anti-PTP-1C serum, respectively, resolved by reducing SDS-PAGE, and Western blotted. The level of tyrosyl phosphorylation on cellular proteins was determined by blotting with 4G10, and the expression of PTP-1C was determined by blotting with an anti-PTP-1C serum.

findings using mouse B cells (34, 35). SH2(N) of PTP-1C also mediates the interactions between PTP-1C and c-kit (30) or the EPO-1 receptor (27). On the other hand, the specificity of the binding of PTP-1C to the FcγRII receptor is determined by its SH2(C) domain (33). In all cases, the presence of the second SH2 domain considerably improves the overall ability of PTP-1C to interact with its ligands.

The interaction between CD22 and PTP-1C may serve multiple functions. First, the SH2 domains of PTP-1C have been shown to inhibit its phosphatase activity, presumably via an intramolecular interaction (46, 47); binding of the SH2(N) domain to CD22 may release this inhibition. In fact, synthetic phosphopeptides corresponding to the immunoreceptor tyrosine–based inhibitory motifs (ITIM) of both FcγRII (33) and CD22 (35) increase the phosphatase activity of PTP-1C. Second, anionic phospholipids are potent activators of this enzyme (48); therefore, relocating PTP-1C to the plasma membrane may provide a rich source of anionic phospholipids to enhance its activity. Third, our data show that in addition to PTP-1C, both Syk and PLC-γ1 can physically interact with CD22 (Figs. 4–6), and complexes of CD22/PTP-1C/Syk or CD22/PTP-1C/PLC-γ1 assemble in stimulated B cells (Fig. 4). Hence, the interaction between CD22 and PTP-1C may juxtapose PTP-1C to its substrates, including CD22, Syk, and PLC-γ1. Fourth, the anti-CD22–induced tyrosyl phosphorylation of CD22 and recruitment of PTP-1C (Fig. 2 D) may sequester the phosphatase from other signal transduction pathways. This is supported by the earlier findings that anti-CD22 can potentiate the increase in [Ca2+]i and B cell proliferation induced by anti-IgM (16, 17).

Doody et al. (35) have identified pY783AIL, pY843SEL, and pY863VTL to be three PTP-1C-binding sites in the cytoplasmic tail of mouse CD22. Despite the relatively low overall sequence identity between the cytoplasmic tails of mouse and human CD22 (65%), all six tyrosyl residues are conserved between human and mouse (37) and the two known mCD22 alleles (49). Therefore, it is very likely that the corresponding tyrosyl residues in the cytoplasmic tail of human CD22 are the targets for human PTP-1C. Our observation that human PTP-1C M can bind to mouse CD22 in COS cells supports this possibility (Fig. 7).

Syk associates with the BCR in both mouse (50) and human (14, 39) B cells. However, the exact nature of this interaction is not clear. In this study, we have provided evidence that the COOH-terminal SH2 domain of Syk can specifically precipitate and immunoblot tyrosyl-phosphory-
lated CD22 obtained from either anti-slgM- or perox-

evante-stimulated B cells (Fig. 5). Similar to the SH2(C)

domain of PTP-1C, the SH2(N) domain of Syk may not

possess high binding affinity toward phosphorylated tyrosyl

residues, or it may not fold to its optimal conformation for

ligand recognition when expressed as a bacterial GST fu-

sion protein. Nevertheless, the association between the

SH2(N) domain of Syk and CD22 may provide a physical

link between Syk and the BCR. It is also possible that Syk

may interact directly with the Iga/Igb heterodimer, since

this association has been found to occur under detergent

conditions in which CD22 is dissociated from the Iga/Igb

complex (50; Law, C.-L., K.A. Chandran, S.P. Sidorenko,

and E.A. Clark, manuscript in preparation).

The interaction between PLC-γ1 and CD22 is mediated
directly by the NH2-terminal SH2 domain of PLC-γ1 (Fig.

6). The COOH-terminal domain, on the other hand, me-

diates the binding of PLC-γ1 to tyrosyl-phosphorylated Syk

(Fig. 6 A) (11). The function of this latter interaction was

revealed by the finding that Syk can phosphorylate a key

regulatory tyrosyl residue, Y783, in PLC-γ1 in vitro (11).

However, when an enzymatically active mCD8-Syk chi-

mera is expressed in COS cells, the basal [Ca2+]i of these

cells remains the same as mock transfectants (Law, C.-L.,

K.A. Chandran, and E.A. Clark, unpublished observations).

This suggests that additional factors are needed to permit

the efficient hydrolysis of phosphoinositides. Therefore,

the presence of tyrosyl-phosphorylated cytoplasmic tails of

CD22 to which both Syk and PLC-γ1 can bind during B

cell activation may provide the essential scaffolding needed

for (a) efficient tyrosyl phosphorylation of PLC-γ1 by Syk

and (b) to localize and stabilize tyrosyl-phosphorylated

PLC-γ1 in the plasma membrane, where its phosphoinosi-

tide substrates are present.

It is still unknown which tyrosyl residues in the cytoplas-

mic tail of CD22 are recognized by the SH2 domains of

Syk or PLC-γ1. Since PTP-1C binds to pY783, 843, and

863 (35), Syk and PLC-γ1 may bind to other tyrosyl resi-

dues by analogy to the EPO-1 receptor, which has distinct

domains for JAK2 and PTP-1C binding (27). Based on the

prediction by Songyang et al. (51, 52), Y817SVI and

its phosphatase activity. PTP-1C can be tyrosyl phosphory-

lated by Src and Lck on Tyr538 (54, 55); tyrosyl phosphor-

ylation of PTP-1C has been reported in CSF-1--stimulated

macrophages (31), stem cell factor--stimulated Mo7e cells

(30), and insulin-stimulated IM9 cells (56). Tyrosyl phos-

phorylation of PTP-1C (56) and its homologue PTP-2C

(57) increases their phosphatase activities. Little, if any,

tyrosyl phosphorylation can be detected in the CD22-associ-

ated PTP-1C after BCR ligation (Figs. 2 and 4). It is possi-

ble that an early phase of B cell activation when PTKs

are active, PTP-1C remains dormant because it is not ty-

rosyl phosphorylated. Experiments are now in progress to

define the relationship between the activity of PTP-1C and

its state of phosphorylation in B lymphocytes.

What are the substrates for PTP-1C? The data shown in

Figs. 7 and 8 may shed some light on this question. Trans-

fection of different ratios of wild-type to null mutated

PTP-1C into COS cells did not affect the overall levels of

tyrosyl phosphorylation of cellular proteins, whereas trans-

fection of PTP-1CM, but not PTP-1CWT, brought about a

high stoichiometry tyrosyl phosphorylation of mCD22HA

and increased the association between the two proteins.

Both responses could be abolished by increasing the pro-

portion of PTP-1CWT that was cotransfected with PTP-

1C. These data suggest that phosphorylated CD22 is a

substrate for PTP-1C. The ability for PTP-1C to dephos-

phorylate the same protein that it binds to is not unique to

CD22, since PTP-1C has been shown to bind to and de-
phosphorylation of the IL-3 receptor (29). Functionally, dephosphorylation of CD22 by PTP-1C may result in the dissociation of the CD22/Syk/PLC-γ1 complex and the termination of the activation of PLC-γ1. This would be consistent with recent observations that Ag triggers a more elevated Ca²⁺ flux in PTP-1C-deficient cells (36).

We thank Drs. Stephen J. Klaus and Friederike Siebelt for their critical review of this manuscript.

This work was supported by National Institutes of Health grants GM42508, GM37905, DK07902, and the International Human Frontier Sciences Programs. C.-L. Law is a Special Fellow of the Leukemia Society of America. S. Sidorenko is on leave from the Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Ukrainian Academy of Sciences, Kiev, Ukraine.

Address correspondence to Che-Leung Law, University of Washington, Department of Microbiology, Box 357242, Seattle, WA 98195-7242.

Received for publication 14 August 1995 and in revised form 17 October 1995.

References

1. Cambier, J.C., C.M. Pleiman, and M.R. Clark. 1994. Signal transduction by the B cell antigen receptor and its coreceptors. Ann. Rev. Immunol. 12:457–486.
2. Pleiman, C.M., D. D’Ambrosio, and J.C. Cambier. 1994. The B-cell antigen receptor complex: structure and signal transduction. Immunol. Today. 15:393–399.
3. Justement, L.B., V.K. Brown, and J. Lin. 1994. Regulation of B-cell activation by CD45: a question of mechanism. Immunol. Today. 15:399–406.
4. Fearon, D.T., and R.H. Carter. 1995. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Ann. Rev. Immunol. 13:127–149.
5. Law, C.-L., S.P. Sidorenko, and E.A. Clark. 1994. Regulation of lymphocyte activation by the cell-surface molecule CD22. Immunol. Today. 15:442–449.
6. Kolanus, W., C. Romero, and B. Seed. 1993. T cell activation by clustered tyrosine kinases. Cell. 74:171–183.
7. Rivera, V.M., and J.S. Brugge. 1995. Clustering of Syk is sufficient to induce tyrosine phosphorylation and release of allogenic mediators from rat basophilic leukemia cells. Mol. Cell. Biol. 15:1852–1859.
8. Takata, M., H. Sabe, A. Hata, T. Inazu, Y. Homma, T. Nukada, H. Yamamura, and T. Kurosaki. 1994. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca²⁺ mobilization through distinct pathways. EMBO (Eur. Mol. Biol. Organ.) J. 13:1341–1349.
9. Sidorenko, S.P., C.L. Law, K.A. Chandran, and E.A. Clark. 1995. Human spleen tyrosine kinase p72Syk associates with the Src-family kinase p53/56Lyn and a 120-kDa phosphoprotein. Proc. Natl. Acad. Sci. USA. 92:359–363.
10. Sillman, A.L., and J.G. Monroe. 1995. Association of p72Syk with the src homology-2 (SH2) domains of PLC-γ1 in B lymphocytes. J. Biol. Chem. 270:11806–11811.
11. Law, C.-L., K.A. Chandran, S.P. Sidorenko, and E.A. Clark. 1996. Phospholipase C-γ1 associates with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Mol. Cell. Biol. In press.
12. Powell, L.D., and A. Varki. 1995. I-type lectins. J. Biol. Chem. 270:14243–14246.
13. Schulte, R.J., M.A. Campbell, W.H. Fischer, and B.M. Sefton. 1992. Tyrosine phosphorylation of CD22 during B cell activation. Science (Wash. DC). 258:1001–1004.
14. Leprince, C., K.E. Draves, R.L. Geahlen, J.A. Ledbetter, and E.A. Clark. 1993. CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proc. Natl. Acad. Sci. USA. 90:3236–3240.
15. Peaker, C.J., and M.S. Neuberger. 1993. Association of CD22 with the B cell antigen receptor. Eur. J. Immunol. 23:1358–1363.
16. Pezzutto, A., B. Dörken, G. Moldenhauer, and E.A. Clark. 1987. Amplification of human B cell activation by a monoclonal antibody to the B-cell-specific antigen CD22, Bp 130/140. J. Immunol. 138:98–103.
17. Pezzutto, A., P.S. Rabinovitch, B. Dörken, G. Moldenhauer, and E.A. Clark. 1988. Role of the CD22 human B cell antigen in B cell triggering by anti-immunoglobulin. J. Immunol. 140:1791–1795.
18. Sun, H., and N.K. Tonks. 1994. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem. Sci. 19:480–485.
19. Hunter, T. 1995. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 80:225–236.
20. Shen, S.H., I. Bastien, B.I. Posner, and P. Chrétien. 1991. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature (Lond.). 352:736–739.
21. Matthews, R.J., D.B. Bowne, E. Flores, and M.L. Thomas. 1992. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol. Cell. Biol. 12:2396–2405.
22. Plattky, J., B.G. Neel, and R.D. Rosenberg. 1992. Isolation of a src homology 2-containing tyrosine phosphatase. Proc. Natl. Acad. Sci. USA. 89:1123–1127.
23. Yi, T.L., J.L. Cleveland, and J.N. Ihle. 1992. Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13. Mol. Cell. Biol. 12:836–846.
24. Shultz, L.D., P.A. Schweitzer, T.V. Rajan, T. Yi, J.N. Ihle, R.J. Matthews, M.L. Thomas, and D.R. Beier. 1993. Mutu-
tions at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell. 73:1445–1454.

25. Tsui, H.W., K.A. Siminovich, L. de Souza, and F.W. Tsui. 1993. Motheaten and viable motheaten mice have mutations in the hematopoietic cell phosphatase gene. Nat. Genet. 4: 124–129.

26. Shultz, L.D., and C.L. Sidman. 1987. Genetically determined murine models of immunodeficiency. Annu. Rev. Immunol. 5: 367–403.

27. Klingmuller, U., U. Lorenz, L.C. Cantley, B.G. Neel, and H.F. Lodish. 1995. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 80:729–738.

28. Yi, T., J. Zhang, O. Miura, and J.N. Ihle. 1995. Hematopoietic cell phosphatase associates with erythropoietin (Epo) receptor after Epo-induced receptor tyrosine phosphorylation: identification of potential binding sites. Blood. 85:87–95.

29. Yi, T., A.L. Mui, G. Krystal, and J.N. Ihle. 1993. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol. Cell. Biol. 13: 7577–7586.

30. Yi, T., and J.N. Ihle. 1993. Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand. Mol. Cell. Biol. 13:3350–3358.

31. Yeung, Y.G., K.L. Berg, F.J. Pixley, R.H. Angeletti, and E.R. Stanley. 1992. Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1. J. Biol. Chem. 267:23447–23450.

32. Tsui, F.W., and H.W. Tsui. 1994. Molecular basis of the motheaten phenotype. Immunol. Rev. 138:185–206.

33. D’Ambrosio, D., K.L. Hippen, S.A. Minskoff, I. Mellman, G. Pani, K.A. Siminovich, and J.C. Camber. 1995. Recruitment and activation of PTPC in negative regulation of antigen receptor signaling by Fc gamma RIIB1. Science (Wash. DC). 268:293–297.

34. Campbell, M.-A., and N.R. Klinman. 1995. Phosphorylation-dependent association between CD22 and protein tyrosine phosphatase-1C. Eur. J. Immunol. 25:1573–1579.

35. Doody, G.M., L.B. Justement, C.C. Delibrias, R.J. Matthews, J. Lin, M.L. Thomas, and D.T. Fearon. 1995. Restriction of B lymphocyte activation by CD22 and the protein tyrosine phosphatase SHP. Science (Wash. DC). 269:242–245.

36. Cyster, J.G., and C.C. Goodnow. 1995. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity. 2:13–24.

37. Torres, R.M., C.L. Law, A.L. Santos, P.A. Kirkham, K. Grabstein, R.M. Parkhouse, and E.A. Clark. 1992. Identification and characterization of the murine homologue of CD22, a B lymphocyte-restricted adhesion molecule. J. Immunol. 149:2641–2649.

38. Zhao, Z., P. Bouchard, C.D. Diltz, S.H. Shen, and E.H. Fischer. 1993. Purification and characterization of a protein tyrosine phosphatase containing SH2 domains. J. Biol. Chem. 268:2816–2820.

39. Law, C.L., S.P. Sidorenko, K.A. Chandran, K.E. Draves, A.C. Chan, A. Weiss, S. Edelholf, C.M. Disteche, and E.A. Clark. 1994. Molecular cloning of human Syk. A B cell protein-tyrosine kinase associated with the surface immunoglobulin M-B cell receptor complex. J. Biol. Chem. 269:12310–12319.
kahara, Y. Tanaka, Y. Takagi, R. Kikkawa, Y. Shigeta, and A. Kashiwagi. 1993. Src homology 2 domains of protein tyrosine phosphatase are phosphorylated by insulin receptor kinase and bind to the COOH-terminus of insulin receptors in vitro. Biochem. Biophys. Res. Commun. 194:208–214.

55. Lorenz, U., K.S. Ravichandran, D. Pei, C.T. Walsh, S.J. Burakoff, and B.G. Neel. 1994. Lck-dependent tyrosyl phosphorylation of the phosphotyrosine phosphatase SH-PTP1 in murine T cells. Mol. Cell. Biol. 14:1824–1834.

56. Uchida, T., T. Matozaki, T. Noguchi, T. Yamao, K. Horita, T. Suzuki, Y. Fujioka, C. Sakamoto, and M. Kasuga. 1994. Insulin stimulates the phosphorylation of Tyr538 and the catalytic activity of PTP1C, a protein tyrosine phosphatase with Src homology-2 domains. J. Biol. Chem. 269:12220–12228.

57. Vogel, W., R. Lammers, J. Huang, and A. Ullrich. 1993. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science (Wash. DC). 259:1611–1614.