Nutritional Risk Index Predicts Survival in Patients With Breast Cancer Treated With Neoadjuvant Chemotherapy

Li Chen1,2†, Yihang Qi2†, Xiangyi Kong2, Zhaohui Su3, Zhongzhao Wang2, Xiangyu Wang2, Yaying Du1, Yi Fang*2, Xingrui Li1* and Jing Wang2*

1 Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China, 2 Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 3 Center on Smart and Connected Health Technologies, Mays Cancer Center, School of Nursing, University of Texas Health Science Center, San Antonio, TX, United States

Nutritional risk index (NRI) is an index based on ideal body weight that aims to present body weight and serum albumin levels. It has been utilized to discriminate patients at risk of postoperative complications and predict the postoperative outcome of major surgeries. However, this index remains limited for breast cancer patients treated with neoadjuvant chemotherapy (NACT). The research explores the clinical and prognostic significance of NRI in breast cancer patients. This study included 785 breast cancer patients (477 cases received NACT and 308 cases did not) were enrolled in this retrospective study. The optimal NRI cutoff value was evaluated by receiver operating characteristic (ROC) curve, then reclassified as low NRI group (<112) and high NRI group (≥112). The results demonstrated that NRI independently predicted survival on disease-free survival (DFS) and overall survival (OS) [P = 0.019, hazard ratio (HR): 1.521, 95% CI: 1.071–2.161 and P = 0.004, HR: 1.415, 95% CI: 1.119–1.789; and P = 0.026, HR:1.500, 95% CI: 1.051–2.143 and P < 0.001, HR: 1.547, 95% CI: 1.221–1.959]. According to the optimal cutoff value of NRI, the high NRI value patients had longer mean DFS and OS time in contrast to those with low NRI value patients (63.47 vs. 40.50 months; 71.50 vs. 56.39 months). Furthermore, the results demonstrated that the high NRI score patients had significantly longer mean DFS and OS time than those with low NRI score patients in early-stage breast cancer (χ² = 9.0510, P = 0.0026 and χ² = 9.2140, P = 0.0024). The mean DFS and OS values in patients with high NRI scores were significantly longer in contrast to those with low NRI scores in different molecular subtypes. The common toxicities after NACT were hematologic and gastrointestinal reactions, and the NRI had no statistically significant effects on toxicities, except in nausea (χ² = 9.2413, P = 0.0024), mouth ulcers (χ² = 4.8133, P = 0.0282), anemia (χ² = 8.5441, P = 0.0140), and leukopenia.
INTRODUCTION

Breast cancer is among the most frequently diagnosed cancers in women globally, and seriously endangers their health (1). Although breast cancer often yields relatively more satisfactory prognoses compared to other types of cancer (e.g., lung cancer), the survival outcomes of patients with aggressive pathological breast cancer or distant metastasis remain to be alarmingly poor—about 90% of breast cancer deaths are caused by the occurrence of distant metastasis (2). As scientific evidence accumulates, treatment strategies, such as surgery, hormone therapy, targeted therapy, and immunotherapy, have forged a comprehensive network of promising treatments with varying degrees of curative effects (3). Aside from the differences in disease conditions, nutritional status also plays an essential role in shaping patients’ prognosis as well as treatment efficacy and outcomes.

Decreased appetite with weight loss and cachexia, for instance, can be commonly found in cancer patients (4, 5). As a complicated and multifactorial syndrome, cachexia affects ∼50–80% of cancer patients, and is correlated with 20–40% of cancer deaths (6). It is important to note that poor nutritional status not only accelerates the progression of cancer, but also hinders the treatment of the disease, effectively creating a vicious circle that impacts both cancer care and treatment (7, 8). Previous studies found that malnutrition could cause patients’ poor response to antitumor therapy, increase the incidence of postoperative complications, and subsequently, result in unsatisfactory survival prognosis (9, 10). In addition, cachexia may be a direct cause of death for cancer patients (11). In one retrospective autopsy study, for instance, the results show that ∼1% of 486 patients with cancer died from no other cause but cachexia (11). While some emerging evidence suggests that response rates of chemotherapy were lower among weight-losing patients, limited research on this relationship in breast cancer patients is available (12). Hence, it is of vital significance to discover more convenient indicators to evaluate the effect of nutritional status on disease prognosis and treatment efficacy in breast cancer patients.

Currently known indicators that reflect patients’ nutritional status range from the assessment of patients’ total body weight (TBW), globulin (GLB), albumin to globulin ratio (AGR), body mass index (BMI), to the prognostic nutritional index (PNI). For instance, previous studies show that malnutrition was related to poor treatment outcomes among patients with various types of cancers (13–15). Nevertheless, people know little about the relationship between nutritional status, cancer prognosis, and treatment efficacy in breast cancer patients (16). Existing evidence often suggests that breast cancer might be related to overnutrition, as opposed to malnutrition (17), effectively contradicting what is known about the predictive role of nutritional status in cancer patients.

To further cloud the research field, research indicates that factors such as BMI might be an unstable indicator of breast cancer patients’ nutrition status—the relationship between BMI and the risk of women developing breast cancer differs by patients’ menopausal status: in premenopausal women, most studies found either no association or a weak inverse correlation (18); however, in postmenopausal women, greater levels of BMI often increase women’s likelihood of receiving a breast cancer diagnosis (19). One way to better shed light on the relationship between nutritional status, cancer prognosis, and treatment efficacy in breast cancer patients is via close examinations of less-studied factors such as the Nutritional Risk Index (NRI).

NRI is one of the most promising assessment tools in gauging the impact of nutritional status on cancer patients’ morbidity and mortality rates (20). It is a composite index that factors in changes in patients’ ideal body weight, present body weight, and serum albumin levels, and could serve as a convenient screening mechanism to predict the incidence rate of nutrition-related morbidity and mortality in cancer patients (21). For instance, current evidence suggests that low preoperative NRI was associated with poor prognosis and increased postoperative complications and can serve as an indicator in elderly colorectal cancer patients (22). However, this index remains limited for breast cancer patients treated with neoadjuvant chemotherapy. Therefore, to bridge the research gap, the current study aims to evaluate the clinical and prognostic significance of NRI in breast cancer patients, and the correlation between NRI and the treatment efficacy.

MATERIALS AND METHODS

Study Population

The retrospective study included a total of 785 participants—477 patients with breast cancer undergoing NACT (NACT group) and 308 breast cancer patients as control (non-NACT group). All patients received surgery at a large national hospital located in Beijing, China between January 1998 and December 2016. Anthracyclines-based and/or taxanes-based chemotherapy regimens were used for 477 breast cancer patients received NACT treatment. The detailed clinicopathological data were obtained from the patients’ electronic medical records. This study was covered under Institutional Review Board (IRB) approved of Cancer Hospital Chinese Academy of Medical Sciences and Tongji Hospital, and it adheres to the standards of the Declaration of Helsinki and its subsequent amendments. All patients’ baseline characteristics and clinicopathological factors were summarized in Table 1.
of the patients were provided written consent before participating in the study.

Participants were considered as eligible if they were breast cancer patients who had: (1) Confirmed by pathology; (2) Undergone primary tumor resection; (3) Performance Status (Zubrod-ECOG-WHO, ZPS) between 0 and 2 scores, and Karnofsky Performance Scores (KPS) ≥80 scores; (4) complete clinical record and follow-up data for all patients; (5) Expected to survive over 3 months; (6) Admission examination showed no obvious abnormalities in liver and renal function. Exclusion criteria were: (1) Patients received relevant anti-tumor therapy, such as chemotherapy, radiotherapy; (2) With serious complications, for instance, infection, pneumonia, skin ulcer; (3) Patients with chronic inflammatory diseases or autoimmune disease, for example, liver cirrhosis, systemic lupus erythematosus (SLE); (4) With distant organ metastasis; (5) Blood product transfusion within 1 month before treatment.

Pre-treatment Evaluation and TNM Classification
The 8th edition American Joint Committee on Cancer (AJCC) and the Union for International Cancer Control (UICC) were used to evaluate TNM stage classification (23, 24). The Response Evaluation Criteria in Solid Tumors (RECIST) guidelines were performed to evaluate the response rates of patients who received NACT (25). The Miller and Payne grade (MPG) framework was used to assess the histological response of the participants (26). The National Cancer Institute Common Toxicity Criteria (NCI-CTC) was used to assess the chemotherapy toxicity and adverse effects (27). Molecular classification of breast cancer was triple-negative type, HER2-enriched type, Luminal B HER2-negative type, Luminal B HER2-positive type, and Luminal A type, respectively (28).

Peripheral Venous Blood Parameters and Nutritional Factors
All of patients’ blood samples were taken within 7 days before treatment. NRI is calculated as follows: 1.519 × serum albumin level (g/l) + 41.7 × (present/ideal body weight). And the ideal weight (Wlo) was calculated using the following formula: Height-100-[(Height-150)/2.5].

Follow-Up
Follow-up modalities included clinical examination, laboratory tests (routine blood test and blood biochemical), imaging examination (ultrasonography, mammography, and computed tomography of the chest). Follow-up evaluations were performed: (1) every 3 months for the first to second year postoperatively, (2) every 6 months for the third to fifth year postoperatively, (3) then yearly thereafter. Disease-free survival (DFS) was the duration from date of surgery to tumor recurrence, distant metastases, the date of death from any cause or last follow-up. Overall survival (OS) was the duration from the date of surgery to the date of death from any cause or last follow-up. Follow-up data were obtained from medical records, both inpatients and outpatients.

Statistical Analysis
The optimal cutoff values of related variables were utilized receiver operating characteristic (ROC) curves. The qualitative data was presented as the number of cases (%), and with intergroup comparisons performed in Chi-square test or Fisher’s exact test. Survival curves, including DFS and OS, were generated using the Kaplan-Meier method coupled with the Log-rank test. The univariate and multivariate Cox proportional hazards regression model was used to discern potential prognostic factors. The association between patients’ NRI and prognosis was performed using hazard ratios (HRs) and 95% confidence intervals (CIs). All statistical analyses were carried out by SPSS 17.0 (SPSS Inc., Chicago, IL, USA) and GraphPad prism 8.0 (GraphPad Inc., La Jolla, CA, USA). Alpha was set at the 0.05 level, and a two-tailed P < 0.05 was interpreted to achieve statistically significant.

RESULTS

Demographic and Clinicopathologic Features
The ROC curve was used to confirm the optimal cutoff value of NRI, and the value was 112. Two NRI groups were formed by the optimal NRI cutoff value: low NRI group (NRI < 112) and high NRI group (NRI ≥ 112). Of all patients, in the results demonstrated that age (χ² = 4.2272, P = 0.0398), menopause (χ² = 12.6300, P = 0.0004), US-LNM (χ² = 6.6599, P = 0.0099), total lymph nodes (χ² = 8.7863, P = 0.0030), total axillary lymph nodes (χ² = 6.9193, P = 0.0085) were statistically significant differences between the two NRI groups. Other parameters were not statistically significant differences between the two NRI groups (P > 0.05) see Table 1.

Nutritional Parameters and Hematological Parameters
Of all enrolled patients, there were significant differences in weight (χ² = 165.5080, P < 0.0001), Body Mass Index (BMI) (χ² = 189.1500, P < 0.0001), Alanine aminotransferase (ALT) (χ² = 14.2711, P = 0.0002), Aspartate aminotransferase (AST) (χ² = 8.6402, P = 0.0033), Lactate dehydrogenase (LDH) (χ² = 19.1932, P < 0.0001), γ-glutamyl transpeptidase (GGT) (χ² = 22.926, P < 0.001), Alkaline phosphatase (ALP) (χ² = 12.861, P = 0.0003), Blood glucose (GLU) (χ² = 13.713, P < 0.001), Immunoglobulin G (IgG) (χ² = 15.8213, P < 0.0001), Albumin (ALB) (χ² = 135.2380, P < 0.0001), White blood cell (W) (χ² = 6.9193, P = 0.0085), Red blood cell (R) (χ² = 34.5983, P < 0.0001), Hemoglobin (Hb) (χ² = 30.5623, P < 0.001), Neutrophil (N) (χ² = 12.2538, P = 0.0005), Eosinophils (E) (χ² = 5.6190, P = 0.0178), Platelet (P) (χ² = 13.8379, P = 0.0002), respectively. The results were shown in Table 2.

Univariate and Multivariate Cox Regression Survival Analyses for Survival Analysis
The univariate and multivariate Cox proportional-hazards models with time-varying NRI were used to analyze the independent prognostic factors. Through univariate and
Parameters	NRI 785		NRI 477		NRI 308								
	Cases (n)	Low NRI 291	High NRI 494	χ²	P-value	Low NRI 174	High NRI 303	χ²	P-value	Low NRI 117	High NRI 191	χ²	P-value
Age (years)													
<47		157 (53.95%)	229 (46.96%)	4.2272	0.0398	98 (86.32%)	132 (43.56%)	7.2047	0.0073	59 (50.43%)	97 (50.79%)	0.0037	0.9514
≥47		134 (46.05%)	265 (53.64%)			76 (43.68%)	171 (56.44%)	58 (49.57%)	94 (49.21%)			1.4683	0.2259
Family history													
No		217 (74.57%)	380 (76.92%)	0.5565	0.4557	118 (67.82%)	229 (75.58%)	3.3583	0.0669	99 (84.62%)	151 (79.06%)	1.6833	0.2259
Yes		74 (25.43%)	114 (23.08%)			56 (32.18%)	74 (24.42%)	18 (15.38%)	40 (20.94%)				
Menopause													
No		206 (70.79%)	287 (58.10%)	12.6300	0.0004	117 (67.24%)	163 (53.80%)	8.2428	0.0041	89 (76.07%)	124 (64.92%)	4.2263	0.0398
Yes		85 (29.21%)	207 (41.90%)			57 (32.76%)	140 (46.20%)	28 (23.93%)	67 (35.08%)				
ABO blood type													
A		76 (26.12%)	138 (27.94%)	0.3976	0.9827	42 (24.14%)	90 (29.70%)	34 (29.06%)	48 (25.13%)			1.8269	0.7676
B		97 (33.33%)	165 (33.40%)			58 (33.33%)	87 (28.71%)	39 (33.33%)	78 (40.84%)				
O		89 (30.58%)	145 (29.35%)			54 (31.03%)	92 (30.36%)	35 (29.91%)	53 (27.75%)				
AB		29 (9.97%)	46 (9.31%)			20 (11.49%)	34 (11.22%)	9 (7.69%)	12 (6.28%)				
Tumor site													
Right		143 (49.14%)	226 (45.75%)	0.8458	0.3578	84 (48.28%)	149 (49.17%)	59 (50.43%)	77 (40.31%)			3.0094	0.0828
Left		148 (50.86%)	268 (54.25%)			90 (51.72%)	154 (50.83%)	58 (49.57%)	114 (59.69%)				
US-Primary tumor site													
Upper outer quadrant		190 (65.29%)	299 (60.53%)	5.1400	0.2732	116 (66.67%)	189 (62.38%)	74 (63.25%)	110 (57.59%)			3.3700	0.4979
Lower outer quadrant		21 (7.22%)	60 (12.15%)			9 (5.17%)	35 (11.55%)	12 (10.26%)	25 (13.09%)				
Lower inner quadrant		13 (4.47%)	24 (4.86%)			9 (5.17%)	9 (2.97%)	4 (3.42%)	15 (7.85%)				
Upper inner quadrant		46 (15.81%)	74 (14.98%)			23 (13.22%)	38 (12.54%)	23 (19.66%)	36 (18.85%)				
Central		21 (7.22%)	37 (7.49%)			17 (9.77%)	32 (10.56%)	4 (3.42%)	5 (2.62%)				
US-Tumor size (cm)													
≤2cm		105 (36.08%)	205 (41.50%)	3.5999	0.1653	44 (25.29%)	91 (30.03%)	61 (52.14%)	114 (59.69%)			1.7944	0.4077
>2 and ≤5 cm		153 (52.58%)	249 (50.40%)			99 (66.90%)	174 (57.43%)	54 (46.15%)	75 (39.27%)				
≥5 cm		33 (11.34%)	40 (8.10%)			31 (17.82%)	38 (12.54%)	2 (1.71%)	2 (1.05%)				
US-LNM													
No		230 (79.04%)	349 (70.65%)	6.6599	0.0099	125 (71.84%)	189 (62.38%)	105 (89.74%)	160 (83.77%)			2.1557	0.1421
Yes		61 (20.96%)	145 (29.35%)			49 (28.16%)	114 (37.62%)	12 (10.26%)	31 (16.23%)				
TABLE 1 | Continued

Parameters	NRI 785		NRI 477		NRI 308								
Cases (n)	Low NRI 291	High NRI 494	χ²	P-value	Low NRI 174	High NRI 303	χ²	P-value	Low NRI 117	High NRI 191	χ²	P-value	
US-BIRADS	4	27 (9.28%)	51 (10.32%)	0.2781	0.8702	18 (10.34%)	36 (11.88%)	0.7660	0.6818	9 (7.69%)	15 (7.85%)	0.2191	0.8963
	5	118 (40.55%)	202 (40.89%)	27 (12.87%)	119 (39.27%)	64 (36.78%)	110 (37.18%)	0.4359	0.5091	54 (46.15%)	83 (43.46%)	54 (46.15%)	93 (48.69%)
	6	146 (50.17%)	241 (48.79%)	1.1766	0.8819	92 (52.87%)	148 (48.84%)	0.7925	0.9095	54 (46.15%)	93 (48.69%)	2.3854	0.6653
T stage	Clinical T stage	1.1766	0.8819	0.7925	0.9095	2.3854	0.6653						
	1	59 (20.27%)	109 (22.06%)	25 (14.37%)	40 (23.10%)	16 (9.28%)	29 (15.51%)	0.9457	0.5046	94 (80.34%)	132 (69.11%)	4.8157	0.3067
	2	154 (52.92%)	259 (52.43%)	80 (45.98%)	146 (48.18%)	74 (63.25%)	113 (59.16%)	0.2473	0.6209	3 (2.56%)	6 (3.14%)	1 (0.85%)	1 (0.52%)
	3	53 (18.21%)	78 (15.79%)	45 (25.86%)	70 (23.10%)	8 (5.84%)	15 (7.85%)	0.8176	0.3674	1 (0.85%)	3 (1.57%)	1 (0.85%)	3 (1.57%)
	4	25 (8.59%)	48 (9.72%)	24 (13.79%)	47 (15.51%)	1 (0.85%)	1 (0.52%)	0.0001	1.0000	0.0001	1.0000	0.0001	1.0000
Clinical N stage	1.4040	0.1516	3.3131	0.0704	4.9157	0.3067							
	N0	125 (42.96%)	174 (35.22%)	31 (17.82%)	42 (13.86%)	94 (80.34%)	132 (69.11%)	0.5983	0.7415				
	N1	75 (25.77%)	158 (31.98%)	56 (32.18%)	108 (35.64%)	19 (16.24%)	50 (26.18%)	0.5629	0.4532				
	N2	53 (18.21%)	107 (21.66%)	50 (28.74%)	101 (33.33%)	3 (2.56%)	6 (3.14%)	0.1117	0.7394				
	N3	38 (13.06%)	55 (11.13%)	37 (21.26%)	52 (17.16%)	1 (0.85%)	3 (1.57%)	0.0001	1.0000				
Clinical TNM stage	1.0040	0.6053	0.6262	0.7312	0.5983	0.7415							
	I	34 (11.68%)	58 (11.74%)	6 (3.45%)	8 (2.64%)	28 (23.93%)	50 (26.18%)	0.0001	1.0000				
	II	148 (50.86%)	234 (47.37%)	64 (36.78%)	104 (34.32%)	84 (71.79%)	130 (68.06%)	0.0001	1.0000				
	III	109 (37.46%)	202 (40.89%)	104 (59.77%)	191 (63.04%)	5 (4.27%)	11 (5.76%)	0.0001	1.0000				
Neoadjuvant Chemotherapy (PRE)	3.9810	0.4085	3.9810	0.4085	3.9810	0.4085							
	AC/ACF	6 (3.45%)	22 (7.26%)	11 (6.32%)	16 (5.28%)	86 (49.43%)	137 (45.21%)	0.0439	0.8321				
	CT/ACT	11 (6.32%)	16 (5.28%)	86 (49.43%)	137 (45.21%)	11 (6.32%)	16 (5.28%)	0.0439	0.8321				
	AT	86 (49.43%)	137 (45.21%)	11 (6.32%)	16 (5.28%)	86 (49.43%)	137 (45.21%)	0.0439	0.8321				
	TP	48 (27.59%)	93 (30.69%)	86 (49.43%)	137 (45.21%)	48 (27.59%)	93 (30.69%)	0.0439	0.8321				
	Others	23 (13.22%)	35 (11.55%)	86 (49.43%)	137 (45.21%)	23 (13.22%)	35 (11.55%)	0.0439	0.8321				
Chemotherapy times (PRE)	0.4359	0.5091	0.4359	0.5091	0.4359	0.5091							
	<6	52 (29.89%)	82 (27.06%)	122 (70.11%)	221 (72.94%)	0.4359	0.5091						
	≥6	168 (61.72%)	232 (72.94%)	34 (18.21%)	51 (15.65%)	4 (2.56%)	6 (3.14%)	0.0439	0.8321				
Response	4.0382	0.4009	4.0382	0.4009	4.0382	0.4009							
CR	3 (1.72%)	4 (1.32%)	3 (1.72%)	4 (1.32%)	3 (1.72%)	4 (1.32%)	0.0439	0.8321					
PR	110 (63.22%)	202 (66.67%)	110 (63.22%)	202 (66.67%)	110 (63.22%)	202 (66.67%)	0.0439	0.8321					
SD	56 (32.18%)	95 (31.35%)	56 (32.18%)	95 (31.35%)	56 (32.18%)	95 (31.35%)	0.0439	0.8321					

(Continued)
TABLE 1 | Continued

Parameters	NRI 785	NRI 477	NRI 308													
	Low NRI 291	High NRI 494	NRI 174	High NRI 303	NRI 117	High NRI 191	NRI 174	High NRI 303	NRI 117	High NRI 191	NRI 174	High NRI 303	NRI 117	High NRI 191		
PD	5 (2.87%)	2 (0.66%)	5.3440	0.2538									9460.172	0.0022		
Miller and Payne grade																
1	7 (4.02%)	15 (4.95%)														
2	40 (22.99%)	86 (28.38%)														
3	63 (36.21%)	114 (37.62%)														
4	30 (17.24%)	32 (10.56%)														
5	34 (19.54%)	56 (18.48%)														
Pathological response															0.0382	0.8450
pCR	27 (15.52%)	45 (14.85%)														
non-pCR	147 (84.48%)	258 (85.15%)														
Post-chemotherapy regimen	0.9129	0.9693	2.5610	0.7673	2.9160	0.7129										
AC/ACF	47 (16.15%)	78 (15.79%)														
CT/ACT	48 (16.49%)	77 (15.59%)														
AT	36 (13.06%)	59 (11.94%)														
TP	24 (8.25%)	37 (7.49%)														
Others	37 (12.71%)	71 (14.37%)														
NO	97 (33.33%)	172 (34.82%)														
Operative time (min)	0.7026	0.4019	0.1904	0.6626	0.4766	0.4900										
<90	123 (42.27%)	224 (45.34%)														
≥90	168 (57.73%)	270 (54.66%)														
Type of surgery															0.5543	0.4566
Mastectomy	221 (75.95%)	385 (77.94%)														
Breast-conserving surgery	70 (24.05%)	109 (22.06%)														
Tumor size	0.6829	0.7108	1.4411	0.4865	8.8906	0.0117										
≤2 cm	157 (53.95%)	280 (56.68%)														
>2 and ≤5 cm	114 (39.18%)	185 (37.45%)														
>5 cm	20 (6.87%)	29 (5.87%)														
Histologic type	1.7407	0.4188	4.1249	0.1271	0.3858	0.8246										
Ductal	284 (97.59%)	474 (95.96%)														
Lobular	4 (1.37%)	9 (1.82%)														
Others	3 (1.03%)	11 (2.23%)														

(Continued)
Parameters	NRI 785	NRI 477	NRI 308							
Cases (n)	Low NRI 291	High NRI 494	Low NRI 174	High NRI 303	χ²	P-value	Low NRI 117	High NRI 191	χ²	P-value
Histologic grade										
I	52 (17.87%)	81 (16.40%)	34 (19.54%)	74 (24.42%)	1.3423	0.5111			3.0411	0.2186
II	164 (56.36%)	267 (64.05%)	98 (56.32%)	146 (48.18%)	2.5200	0.6411			5.7720	0.2169
III	75 (25.77%)	146 (29.55%)	42 (24.14%)	83 (27.39%)						
Pathological T stage										
Tis/T0	35 (12.03%)	57 (11.54%)	32 (18.39%)	56 (18.48%)	2.5200	0.6411			5.7720	0.2169
T1	113 (38.83%)	189 (38.26%)	76 (43.68%)	114 (37.62%)						
T2	114 (39.18%)	212 (42.91%)	44 (25.29%)	105 (34.65%)						
T3	21 (7.22%)	24 (4.86%)	16 (9.20%)	18 (5.94%)						
T4	8 (2.75%)	12 (2.43%)	6 (3.45%)	10 (3.30%)						
Pathological N stage										
N0	124 (42.61%)	202 (40.89%)	67 (38.51%)	109 (35.97%)	3.2307	0.5200			2.0263	0.7309
N1	56 (19.24%)	119 (24.09%)	35 (20.11%)	66 (21.78%)						
N2	51 (17.53%)	71 (14.37%)	32 (18.39%)	45 (14.85%)						
N3	60 (20.62%)	102 (20.65%)	40 (22.99%)	83 (27.39%)						
Pathological TNM stage										
Tis/T0	28 (9.62%)	46 (9.31%)	26 (14.94%)	45 (14.85%)	2.8211	0.5882			5.8386	0.2115
I	64 (21.99%)	93 (18.83%)	39 (22.41%)	44 (14.52%)						
II	87 (29.90%)	175 (35.43%)	36 (20.69%)	82 (27.39%)						
III	112 (38.49%)	180 (36.44%)	73 (41.95%)	132 (43.56%)						
Total lymph nodes										
<21	165 (56.70%)	226 (45.75%)	84 (48.28%)	118 (38.94%)	8.7863	0.0030			3.9425	0.0471
≥21	126 (43.30%)	268 (54.25%)	90 (51.72%)	185 (61.06%)						
Positive lymph nodes										
<1	126 (43.30%)	203 (41.09%)	69 (39.66%)	110 (36.30%)	0.3660	0.5452			0.5296	0.4668
≥1	165 (56.70%)	291 (58.91%)	105 (60.34%)	193 (63.70%)						
Total axillary lymph nodes										

(Continued)
Parameters	NRI 785 Cases (n)		NRI 477 Cases (n)		NRI 308 Cases (n)							
	Low NRI 291	High NRI 494	χ²	P-value	Low NRI 174	High NRI 303	χ²	P-value	Low NRI 117	High NRI 191	χ²	P-value
<20	162 (55.67%)	227 (45.95%)	83 (47.70%)	112 (36.96%)	79 (67.52%)	115 (60.21%)	0.2612	0.6093	0.2575	0.6118		
≥20	129 (44.33%)	267 (54.05%)	91 (52.30%)	191 (63.04%)	38 (32.48%)	76 (39.79%)	0.0160	0.8993				
Positive axillary lymph nodes												
<1	128 (43.99%)	215 (43.52%)	69 (39.66%)	113 (37.29%)	59 (50.43%)	102 (53.40%)	0.7944	0.3728	0.6359	0.4252		
≥1	163 (56.01%)	279 (56.48%)	105 (60.34%)	190 (62.71%)	58 (49.57%)	89 (46.60%)	0.1792	0.6721				
Post-operative complications												
No	273 (93.81%)	455 (92.11%)	169 (97.13%)	280 (92.41%)	104 (88.89%)	175 (91.62%)	0.0100	0.9205	0.1177	0.7316		
Yes	18 (6.19%)	39 (7.89%)	13 (2.87%)	17 (7.59%)	13 (11.11%)	16 (8.38%)	0.0152	0.6959				
Post-operative chemotherapy												
No	97 (33.33%)	172 (34.82%)	87 (50.00%)	143 (47.19%)	107 (91.45%)	179 (83.72%)	0.1528	0.6959	0.1528	0.6959		
Yes	194 (66.67%)	322 (65.18%)	50 (28.74%)	87 (50.00%)	105 (89.74%)	169 (88.48%)	0.0034	0.9534	0.3244	0.5690		
Post-operative chemotherapy times												
<4	136 (48.74%)	238 (48.18%)	124 (71.26%)	216 (71.29%)	12 (10.26%)	22 (11.52%)	0.1528	0.6959	0.1528	0.6959		
≥4	155 (53.26%)	256 (51.82%)	50 (28.74%)	87 (50.00%)	105 (89.74%)	169 (88.48%)	0.0034	0.9534	0.3244	0.5690		
Post-operative radiotherapy												
No	73 (25.09%)	123 (24.90%)	46 (26.44%)	73 (24.09%)	27 (23.08%)	50 (26.18%)	0.0068	0.7557	0.0968	0.7557		
Yes	218 (74.91%)	371 (75.10%)	128 (73.56%)	230 (75.91%)	90 (76.92%)	141 (73.82%)	0.0068	0.7557	0.0968	0.7557		
Post-operative endocrine therapy												
No	114 (39.18%)	188 (38.06%)	79 (45.40%)	127 (41.91%)	35 (29.91%)	61 (31.94%)	0.5481	0.4591	0.1384	0.7099		
Yes	177 (60.82%)	306 (61.94%)	95 (54.60%)	176 (58.09%)	82 (70.09%)	130 (68.06%)	2.3758	0.1232	2.3758	0.1232		
Post-operative targeted therapy												
No	207 (71.13%)	376 (76.11%)	113 (64.94%)	219 (72.28%)	94 (80.34%)	157 (82.20%)	2.8104	0.0937	2.8104	0.0937		
Yes	84 (28.87%)	118 (23.89%)	61 (35.06%)	84 (27.72%)	23 (19.66%)	34 (17.80%)	0.0968	0.7557	0.0968	0.7557		
TABLE 2 | The correlation between nutritional parameters/blood parameters and NRI.

Parameters	NRI 785			NRI 477			NRI 308					
Cases (n)	Low NRI 291	High NRI 494	χ²	P-value	Low NRI 174	High NRI 303	χ²	P-value	Low NRI 117	High NRI 191	χ²	P-value
Weight (Kg)												
<62.00	291 (78.69%)	154 (31.17%)	165.50	<0.0001	114.64	<0.0001	52.30	<0.0001				
≥62.00	62 (21.31%)	340 (68.83%)	0.0191	0.8900	0.2239	0.6361	0.5970	0.4397				
Height (m)												
<1.60	124 (42.61%)	213 (43.12%)	0.0191	0.8900	0.2239	0.6361	0.5970	0.4397				
≥1.60	167 (57.39%)	281 (56.88%)	189.15	<0.0001	124.49	<0.0001	65.94	<0.0001				
BMI												
<24.00	238 (81.79%)	153 (30.97%)	14.27	0.0002	6.33	0.0118	8.09	0.0044				
≥24.00	53 (18.21%)	341 (69.03%)	0.0191	0.8900	0.2239	0.6361	0.5970	0.4397				
ALT (U/L)												
<15	163 (56.01%)	207 (41.90%)	14.27	0.0002	6.33	0.0118	8.09	0.0044				
≥15	129 (44.33%)	287 (58.10%)	0.0191	0.8900	0.2239	0.6361	0.5970	0.4397				
AST (U/L)												
<18	160 (54.98%)	218 (44.13%)	14.27	0.0002	6.33	0.0118	8.09	0.0044				
≥18	131 (45.02%)	276 (55.87%)	0.0191	0.8900	0.2239	0.6361	0.5970	0.4397				
LDH (U/L)												
<167	169 (58.08%)	207 (41.90%)	14.27	0.0002	6.33	0.0118	8.09	0.0044				
≥167	122 (41.92%)	287 (58.10%)	0.0191	0.8900	0.2239	0.6361	0.5970	0.4397				
GGT (U/L)												
<2.30	149 (51.20%)	239 (48.8%)	0.58	0.4450	0.58	0.4450	0.58	0.4450				
≥2.30	142 (48.8%)	255 (51.62%)	0.58	0.4450	0.58	0.4450	0.58	0.4450				
IgG (g/L)												
<1.10	170 (58.42%)	221 (44.74%)	13.71	0.0002	13.71	0.0002	13.71	0.0002				
≥1.10	121 (41.58%)	273 (55.26%)	0.58	0.4450	0.58	0.4450	0.58	0.4450				
(Continued)												
Parameters	NRI 785	NRI 477	NRI 308									
---	---	---	---	---	---	---						
	Low NRI 291	High NRI 494	Low NRI 174	High NRI 303	Low NRI 117	High NRI 191						
ALB (g/L)	135.2380	<0.0001	74.2045	<0.0001	61.3788	<0.0001						
<45.2	224 (76.98%)	168 (34.01%)	131 (75.29%)	104 (34.32%)	93 (79.49%)	64 (33.51%)						
≥45.2	67 (23.02%)	326 (65.99%)	43 (24.71%)	199 (65.68%)	24 (20.51%)	127 (66.49%)						
CRP (mg/dl)	0.6978	0.4035	0.0235	0.8783	1.0375	0.3084						
<0.02	148 (50.86%)	236 (47.77%)	69 (39.66%)	118 (38.94%)	79 (87.52%)	118 (61.78%)						
≥0.02	143 (49.14%)	258 (52.23%)	105 (60.34%)	185 (61.06%)	38 (32.48%)	73 (38.22%)						
CA125 (U/ml)	2.7964	0.0945	2.1107	0.1463	0.8742	0.3498						
<13.35	134 (46.05%)	258 (52.23%)	73 (41.95%)	148 (48.84%)	61 (52.14%)	110 (57.59%)						
≥13.35	157 (53.95%)	236 (47.77%)	101 (58.05%)	155 (51.16%)	56 (47.86%)	81 (42.41%)						
CA153 (U/ml)	0.0620	0.8033	0.3039	0.5814	0.9651	0.3259						
<11.63	147 (50.52%)	245 (49.60%)	73 (41.95%)	135 (44.55%)	74 (62.25%)	110 (57.59%)						
≥11.63	144 (49.48%)	249 (50.40%)	101 (58.05%)	168 (55.45%)	43 (38.75%)	81 (42.41%)						
CEA (ng/ml)	0.0378	0.8459	0.0651	0.7986	0.0081	0.9285						
<1.66	144 (49.48%)	248 (50.20%)	76 (43.88%)	136 (44.88%)	68 (58.12%)	112 (58.64%)						
≥1.66	147 (50.52%)	246 (49.80%)	98 (66.32%)	167 (55.12%)	49 (41.88%)	79 (41.36%)						
D-D (mg/L)	0.9341	0.3338	0.9454	0.3309	0.0537	0.8167						
<0.29	150 (51.55%)	237 (47.98%)	78 (44.83%)	122 (40.26%)	72 (61.54%)	115 (60.21%)						
≥0.29	141 (48.45%)	257 (52.02%)	96 (55.17%)	181 (59.74%)	45 (38.46%)	76 (39.79%)						
FIB (g/L)	1.8362	0.1754	1.6464	0.4214	1.2150	0.2704						
<2.85	153 (52.58%)	235 (47.57%)	83 (47.70%)	133 (43.89%)	70 (59.83%)	102 (53.40%)						
≥2.85	138 (47.42%)	259 (52.43%)	91 (52.30%)	170 (56.11%)	47 (40.17%)	89 (46.60%)						
INR	0.1167	0.7326	0.0951	0.7578	0.1161	0.7333						
<0.93	133 (45.70%)	232 (46.96%)	63 (36.21%)	114 (37.62%)	70 (59.83%)	118 (61.78%)						
≥0.93	158 (54.30%)	262 (53.04%)	111 (63.79%)	189 (62.38%)	47 (40.17%)	73 (38.22%)						
FDP (ug/ml)	0.2037	0.6518	1.5777	0.2091	0.1936	0.6599						
<1.40	133 (45.70%)	234 (47.37%)	44 (25.29%)	93 (30.69%)	89 (76.07%)	141 (73.82%)						
≥1.40	158 (54.30%)	260 (52.63%)	130 (74.71%)	210 (69.31%)	28 (23.93%)	50 (26.18%)						

Before chemotherapy

White blood cell (W) (×10^9/L)

<6.01 162 (55.67%) 227 (45.95%) 95 (54.60%) 144 (47.52%) 67 (57.26%) 83 (43.46%)
≥6.01 129 (44.33%) 267 (54.05%) 79 (45.40%) 159 (52.48%) 50 (42.74%) 108 (56.54%)

(Continued)
Parameters	NRI 785	NRI 477	NRI 308									
Cases (n)	Low NRI 291	High NRI 494	Low NRI 174	High NRI 303	Low NRI 117	High NRI 191	\(\chi^2 \)	\(P \)-value	\(\chi^2 \)	\(P \)-value	\(\chi^2 \)	\(P \)-value
Red blood cell (R) \((\times 10^{12}/L)\)	34.5983	<0.0001	24.9932	<0.0001	10.0475	0.0015						
\(<4.40\)	184 (63.23\%)	205 (41.50\%)	112 (64.37\%)	123 (40.59\%)	72 (61.54\%)	82 (42.93\%)						
\(\geq 4.40\)	107 (36.77\%)	289 (58.50\%)	62 (35.63\%)	180 (59.41\%)	46 (38.46\%)	109 (57.07\%)						
Hemoglobin (Hb) \((\times 10^9/L)\)	30.5623	<0.0001	15.0049	0.0001	16.4623	<0.0001						
\(<132\)	179 (61.51\%)	203 (41.09\%)	109 (62.64\%)	134 (44.22\%)	70 (59.83\%)	69 (36.13\%)						
\(\geq 132\)	112 (38.49\%)	291 (58.91\%)	65 (37.38\%)	169 (55.78\%)	47 (40.17\%)	122 (63.87\%)						
Neutrophil (N) \((\times 10^9/L)\)	12.2538	0.0005	5.6323	0.0176	6.7928	0.0092						
\(<3.68\)	169 (58.08\%)	223 (45.14\%)	96 (55.17\%)	133 (43.89\%)	73 (62.39\%)	90 (47.12\%)						
\(\geq 3.68\)	122 (41.92\%)	271 (54.86\%)	78 (44.83\%)	170 (56.11\%)	44 (37.61\%)	101 (52.88\%)						
Lymphocyte (L) \((\times 10^9/L)\)	0.0043	0.9477	0.3036	0.5816	0.3575	0.5499						
\(<1.76\)	145 (49.83\%)	246 (49.80\%)	97 (55.75\%)	161 (53.14\%)	48 (41.03\%)	85 (44.50\%)						
\(\geq 1.76\)	146 (50.17\%)	248 (50.20\%)	77 (44.25\%)	142 (46.86\%)	69 (58.97\%)	106 (55.50\%)						
Monocyte (M) \((\times 10^9/L)\)	0.1913	0.6619	0.0532	0.8175	0.1483	0.7002						
\(<0.35\)	139 (47.77\%)	228 (46.15\%)	80 (45.98\%)	136 (44.88\%)	59 (50.43\%)	92 (48.17\%)						
\(\geq 0.35\)	152 (52.23\%)	266 (53.85\%)	94 (54.02\%)	167 (55.12\%)	58 (49.57\%)	99 (51.83\%)						
Eosinophils (E) \((\times 10^9/L)\)	5.6190	0.0178	1.2650	0.2607	5.5256	0.0187						
\(<0.06\)	116 (39.86\%)	240 (48.58\%)	82 (47.13\%)	159 (52.48\%)	34 (29.06\%)	81 (42.41\%)						
\(\geq 0.06\)	175 (60.14\%)	254 (51.42\%)	92 (52.87\%)	144 (47.52\%)	83 (70.94\%)	110 (57.59\%)						
Basophils (B) \((\times 10^9/L)\)	2.6581	0.1030	3.1246	0.0771	0.1668	0.6830						
\(<0.02\)	93 (31.96\%)	131 (26.52\%)	58 (33.33\%)	78 (25.74\%)	35 (29.91\%)	53 (27.75\%)						
\(\geq 0.02\)	198 (68.04\%)	363 (73.48\%)	116 (66.67\%)	225 (74.26\%)	82 (70.09\%)	138 (72.25\%)						
Platelet (P) \((\times 10^9/L)\)	13.8379	0.0002	9.6383	0.0019	4.1917	0.0406						
\(<243\)	169 (58.08\%)	219 (44.33\%)	98 (56.32\%)	126 (41.58\%)	71 (60.68\%)	93 (48.69\%)						
\(\geq 243\)	122 (41.92\%)	275 (55.67\%)	76 (43.68\%)	177 (58.42\%)	46 (39.32\%)	98 (51.31\%)						
TABLE 3 | Univariate and multivariate cox regression survival analyses of the NRI for the prediction of DFS and OS in the participants.

Parameters	Univariate analysis	DFS	Multivariate analysis	Univariate analysis	OS	Multivariate analysis		
	Hazard ratio (95% CI)	P-value						
Cases (n)								
Age (years)	0.6653		0.9316					
<47	1 (reference)							
≥47	0.926 (0.654–1.311)	1	1.015 (0.717–1.437)	0.3594				
Weight (Kg)	0.3371							
<62.00	1 (reference)							
≥62.00	1.212 (0.819–1.793)	1.015	1.209 (0.806–1.814)	0.5458				
Height (m)	0.5863							
<1.60	1 (reference)							
≥1.60	0.926 (0.700–1.223)	0.915	0.687–1.220					
BMI	0.0696							
<24.00	1 (reference)							
≥24.00	0.690 (0.462–1.030)	0.754	0.500–1.136	0.7330				
Family history	0.3081							
No	1 (reference)							
Yes	0.855 (0.633–1.155)	0.948	0.700–1.285					
Menopause	0.0210	0.0037						
No	1 (reference)							
Yes	1.531 (1.066–2.199)	1.412	1.119–1.782	1.274 (1.082–1.841)	0.4137			
ALT (U/L)	0.9828							
<15	1 (reference)							
≥15	1.003 (0.740–1.361)	0.880	0.648–1.196					
AST (U/L)	0.3652							
<18	1 (reference)							
≥18	0.867 (0.636–1.181)	0.955	0.696–1.309	0.7735				
LDH (U/L)	0.2055							
<167	1 (reference)							
≥167	1.198 (0.906–1.586)	1.131	0.853–1.499	0.3921				
GGT (U/L)	0.8440							
<17	1 (reference)							
≥17	1.029 (0.773–1.370)	1.006	0.751–1.347	0.9701				
ALP (U/L)	0.0780							
<64	1 (reference)							
≥64	1.293 (0.972–1.721)	1.306	0.977–1.745	0.0714				
GLU (mmol/L)	0.0022	0.0032						
<5.33	1 (reference)							
≥5.33	0.647 (0.490–0.855)	0.713	0.569–0.893	0.694 (0.519–0.930)	0.863 (0.536–0.869)	0.0142	1 (reference)	0.0019
IgA	0.5811							
<2.30	1 (reference)							
≥2.30	1.074 (0.834–1.384)	1.146	0.885–1.483	0.3024				
IgG	0.7248							
<11.70	1 (reference)							
≥11.70	0.956 (0.745–1.227)	0.962	0.748–1.237	0.7598				
IgM	0.6205							
<1.10	1 (reference)							
≥1.10	0.939 (0.732–1.205)	0.966	0.748–1.249	0.7928				
ALB	0.2803							
<45.2	1 (reference)							
≥45.2	1.172 (0.879–1.564)	0.949	0.707–1.273					
TABLE 3

Parameters	DFS Univariate analysis	DFS Multivariate analysis	OS Univariate analysis	OS Multivariate analysis
	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value
CRP	0.1714	0.4541		
<0.02	1 (reference)	0.4541	1 (reference)	0.894 (0.666–1.199)
≥0.02	0.822 (0.620–1.089)	0.894 (0.666–1.199)	0.1714	0.4541
CA125	0.0174	0.1988		
<13.35	1 (reference)	1 (reference)	1 (reference)	1 (reference)
≥13.35	1.372 (1.057–1.781)	1.188 (0.914–1.543)	0.0174	0.1988
CA153	0.0040	0.0042		0.0033
<11.63	1 (reference)	1 (reference)	1 (reference)	1 (reference)
≥11.63	1.516 (1.143–2.012)	1.390 (1.116–1.732)	0.0180	0.0042
CEA	0.4982	0.8598		
<1.66	1 (reference)	1 (reference)	1 (reference)	1 (reference)
≥1.66	0.914 (0.705–1.186)	1.024 (0.786–1.334)	0.1937	0.2868
D-D (mg/L)	0.1937	1.166 (0.879–1.548)		
<0.29	1 (reference)	1 (reference)	1.200 (0.911–1.581)	0.8146
≥0.29	1.302 (1.046–1.620)	1.390 (1.116–1.732)	0.0180	0.0042
FIB (g/L)	0.8146	0.2548		
<2.85	1 (reference)	1 (reference)	0.969 (0.745–1.261)	0.6036
≥2.85	1.167 (0.895–1.522)	1.390 (1.116–1.732)	0.0180	0.0042
INR	0.6036	0.0107		
<0.93	1 (reference)	1 (reference)	0.936 (0.728–1.203)	0.0448
≥0.93	1.296 (1.006–1.671)	1.390 (1.069–1.667)	0.936 (0.728–1.203)	0.0448
FDP (ug/ml)	0.5275	0.3305		
<1.40	1 (reference)	1 (reference)	1.102 (0.815–1.492)	0.059 (0.633–1.166)
≥1.40	0.859 (0.633–1.166)	0.1258	0.5275	0.3305
ABO blood type	0.0874	0.1258		
A	1 (reference)	1 (reference)	0.950 (0.695–1.299)	0.1258
B	0.718 (0.517–0.997)	0.989 (0.649–1.243)	0.950 (0.695–1.299)	0.1258
O	0.718 (0.517–0.997)	0.745 (0.531–1.044)	0.718 (0.517–0.997)	0.1258
AB	1.175 (0.746–1.850)	1.238 (0.770–1.992)	0.950 (0.695–1.299)	0.1258
White blood cell (W)	0.0901	0.2279		
<6.01	1 (reference)	1 (reference)	1.012 (0.815–1.492)	0.0901
≥6.01	1.102 (0.815–1.492)	0.3908	1.012 (0.815–1.492)	0.0901
Red blood cell (R)	0.8669	0.7343		
<4.40	1 (reference)	1 (reference)	0.974 (0.716–1.325)	0.8669
≥4.40	1.055 (0.774–1.438)	0.7343	0.974 (0.716–1.325)	0.8669
Hemoglobin (Hb)	0.6310	0.3908		
<132	1 (reference)	1 (reference)	0.928 (0.683–1.261)	0.6310
≥132	0.877 (0.649–1.184)	0.8474	0.928 (0.683–1.261)	0.6310
Neutrophil (N)	0.8081	0.8474		
<3.68	1 (reference)	1 (reference)	0.956 (0.667–1.371)	0.8081
≥3.68	0.964 (0.661–1.405)	0.7082	0.956 (0.667–1.371)	0.8081
Lymphocyte (L)	0.1995	0.7082		
<1.76	1 (reference)	1 (reference)	0.828 (0.620–1.105)	0.3330
≥1.76	0.946 (0.707–1.265)	0.3330	0.828 (0.620–1.105)	0.3330
Monocyte (M)	0.3330	0.3330		
<0.35	1 (reference)	1 (reference)	0.3330	0.3330
≥0.35	0.657 (0.497–0.868)	0.701 (0.556–0.884)	0.3330	0.3330

(Continued)
TABLE 3 | Continued

Parameters	Univariate analysis	DFS	Hazard ratio (95% CI)	P-value	Multivariate analysis	OS	Hazard ratio (95% CI)	P-value
Eosinophils (E)								
<0.06	1 (reference)			0.0141	1 (reference)		1 (reference)	0.0005
≥0.06	0.715 (0.546–0.934)	0.766 (0.613–0.958)	0.613 (0.466–0.807)	0.775 (0.622–0.966)	0.00234			
Basophils (B)	0.3230							
<0.02	1 (reference)							
≥0.02	1.156 (0.867–1.543)	1.172 (0.873–1.572)	0.2915					
Platelet (P)	0.1400							
<243	1 (reference)							
≥243	0.829 (0.646–1.064)	0.847 (0.667–1.094)	0.0003					
Nutritional risk index (NRI)	0.0191							
<112	1 (reference)			0.0038	1 (reference)		1 (reference)	0.00257
≥112	1.521 (1.071–2.161)	1.415 (1.119–1.789)	1.500 (1.051–2.143)	1.547 (1.221–1.959)	0.2737			
Tumor site	0.1413							
Right	1 (reference)							
Left	1.298 (0.949–1.553)	1.218 (0.942–1.575)	0.1316					
US-Primary tumor site	0.2583							
Upper outer quadrant	1 (reference)							
Lower outer quadrant	1.267 (0.852–1.885)	1.256 (0.832–1.995)	0.0003					
Lower inner quadrant	1.399 (0.809–2.420)	1.747 (1.011–3.017)	0.00234					
Upper inner quadrant	1.351 (0.964–1.891)	1.190 (0.841–1.688)	0.8227					
Central	1.397 (0.798–2.447)	1.216 (0.692–2.137)	0.4328					
US-Tumor size	0.5810							
≤2 cm	1 (reference)			0.8227	1 (reference)		1 (reference)	0.5340
>2 and ≤5 cm	0.899 (0.657–1.228)	0.980 (0.713–1.348)	0.827 (0.445–1.537)	0.837 (0.494–1.149)	0.4248			
>5 cm	1.131 (0.616–2.077)	0.827 (0.445–1.537)						
US-LNM	0.9629							
No	1 (reference)			0.4328	1 (reference)		1 (reference)	0.4248
Yes	0.992 (0.699–1.406)	1.152 (0.809–1.640)	0.5340					
US-BIRADS 4 (4a 4b 4c)	0.7120							
4 (4a 4b 4c)	1 (reference)			0.5340	1 (reference)		1 (reference)	0.4248
5	0.828 (0.517–1.325)	0.766 (0.459–1.279)						
6	0.875 (0.540–1.419)	0.837 (0.494–1.149)						
Clinical stage								
Clinical T stage	0.0810			0.0403	1 (reference)		1 (reference)	0.0200
T1	1 (reference)			0.0403	1 (reference)		1 (reference)	0.0200
T2	2.060 (1.190–3.568)	2.218 (1.241–3.964)	2.102 (1.181–3.740)	0.4248				
T3	2.040 (1.026–4.055)	2.619 (1.285–5.341)	2.496 (1.227–5.079)					
T4	2.006 (0.901–4.464)	2.730 (1.177–6.332)	2.693 (1.167–6.212)					
Clinical N stage	0.1683							
N0	1 (reference)			0.4248	1 (reference)		1 (reference)	0.4248
N1	0.957 (0.637–1.440)	1.051 (0.679–1.629)						
N2	0.976 (0.488–1.951)	0.998 (0.490–2.031)						
N3	1.676 (0.784–3.585)	1.552 (0.693–3.477)						
Parameters	Univariate analysis DFS	Multivariate analysis	Univariate analysis OS	Multivariate analysis				
----------------------------------	-------------------------	-----------------------	------------------------	-----------------------				
	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value				
Clinical TNM stage	0.1995	0.3053						
I	1 (reference)	1 (reference)						
II	0.581 (0.310–1.091)	0.601 (0.308–1.172)						
III	0.693 (0.287–1.677)	0.662 (0.260–1.685)						
Operative time (min)	0.2776	0.0618						
<90	1 (reference)	1 (reference)						
≥90	0.855 (0.645–1.134)	0.760 (0.569–1.014)						
Type of surgery	0.1932							
Mastectomy	1 (reference)							
Breast-conserving surgery	0.788 (0.550–1.128)	1.144 (0.790–1.656)						
Histologic type	0.0200	0.0083	0.0060					
Ductal	1 (reference)	1 (reference)						
Lobular	2.682 (1.175–6.119)	2.638 (1.099–6.334)	2.562 (1.229–5.341)					
Others	2.230 (1.067–4.660)	2.552 (1.149–5.672)	2.162 (1.050–4.448)					
Histologic grade	0.1184		0.1867					
I	1 (reference)							
II	0.784 (0.490–1.255)	0.811 (0.502–1.310)						
III	0.625 (0.379–1.030)	0.655 (0.391–1.097)						
Pathological T stage	0.0100	0.0099	0.0184	0.0380				
Tis/T0	1 (reference)	1 (reference)	1 (reference)	1 (reference)				
T1	1.573 (0.897–2.758)	1.573 (0.897–2.758)	0.625 (0.204–1.916)	0.605 (0.197–1.854)				
T2	1.981 (1.126–3.486)	1.981 (1.126–3.486)	0.512 (0.161–1.629)	0.498 (0.158–1.572)				
T3	1.485 (0.732–3.014)	1.485 (0.732–3.014)	0.420 (0.117–1.505)	0.397 (0.111–1.426)				
T4	3.324 (1.557–7.096)	3.324 (1.557–7.096)	1.537 (0.392–6.027)	1.320 (0.334–5.221)				
Pathological N stage	0.0103	0.0140	<0.0001	<0.0001				
N0	1 (reference)	1 (reference)	1 (reference)	1 (reference)				
N1	2.592 (0.865–7.767)	2.550 (0.841–7.734)	1.818 (0.619–5.344)	1.400 (1.047–1.872)				
N2	3.603 (0.923–14.063)	3.726 (0.947–14.660)	4.966 (1.444–17.085)	1.685 (1.192–2.381)				
N3	5.998 (1.535–23.435)	6.016 (1.527–23.694)	9.131 (2.615–31.877)	2.384 (1.717–3.311)				
Pathological TNM stage	0.0030	0.0170	0.0110	0.0005				
Tis/T0	1 (reference)	1 (reference)	1 (reference)	1 (reference)				
T1	1.998 (0.584–6.839)	1.322 (0.658–2.655)	2.671 (0.738–9.663)	2.849 (0.786–10.320)				
T2	2.282 (0.634–8.210)	1.558 (0.778–3.121)	3.727 (0.969–14.331)	3.963 (1.044–15.048)				
T3	2.025 (0.420–9.706)	0.631 (0.261–1.526)	1.258 (0.274–5.771)	1.215 (0.265–5.575)				
Total lymph nodes	0.8118		0.6789					
<21	1 (reference)		1 (reference)					
≥21	0.935 (0.536–1.629)	0.882 (0.487–1.598)						
Positive lymph nodes	0.3806		0.6448					
<1	1 (reference)		1 (reference)					
≥1	0.564 (0.157–2.028)	0.742 (0.209–2.638)						
Total axillary lymph nodes	0.2165		0.3777					
<20	1 (reference)		1 (reference)					
≥20	0.704 (0.404–1.228)	0.767 (0.425–1.383)						
Parameters	Univariate analysis	DFS	Multivariate analysis	Univariate analysis	OS	Multivariate analysis		
------------------------------------	---------------------	-----	-----------------------	---------------------	----	-----------------------		
Parameters Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value	
Positive axillary lymph nodes <1	0.6622	1 (reference)	1 (reference)	0.6196				
≥1	0.822 (0.342–1.978)	0.788 (0.307–2.020)	0.0581					
Molecular subtype								
Luminal A	1 (reference)	1 (reference)	1 (reference)	0.2301	0.9455			
Luminal B HER2+	0.264 (0.097–0.720)	0.226 (0.080–0.638)	0.1166					
Luminal B HER2−	0.630 (0.366–1.082)	0.514 (0.296–0.893)						
HER2 enriched	0.187 (0.063–0.558)	0.247 (0.081–0.753)						
Triple negative	0.581 (0.286–1.177)	0.547 (0.266–1.124)						
ER status								
Negative	1 (reference)	1 (reference)	1 (reference)	0.0321	0.0011			
Positive	1.237 (0.835–1.833)	1.269 (0.875–1.839)						
PR status								
Negative	0.735 (0.444–1.215)	1.018 (0.616–1.680)						
Positive	1 (reference)	1 (reference)	1 (reference)	0.2885	0.2090			
HER2 status								
Negative (0—++)	1 (reference)	1 (reference)	1 (reference)	0.1047	0.1166			
Positive (+++)	2.109 (0.856–5.196)	2.041 (0.837–4.975)						
Ki-67 status								
Negative (≤14%)	1 (reference)	1 (reference)	1 (reference)	0.0020	0.0041	0.0380		
Positive (>14%)	1.731 (1.223–2.450)	1.332 (1.018–1.742)	1.664 (1.175–2.357)	1.329 (1.016–1.738)				
AR status								
Negative	0.835 (0.534–1.307)	0.991 (0.607–1.618)						
Positive	0.0170	0.0007	0.0238	0.0002				
CK5/6 status								
Negative	1.275 (1.103–2.699)	1.756 (1.271–2.428)	1.713 (1.074–2.732)	1.870 (1.349–2.593)				
Positive	0.1380	0.1380	<0.0001	<0.0001				
E-cad status								
Negative	1.297 (0.920–1.830)	2.566 (1.765–3.728)	2.667 (2.002–3.553)	0.9685				
Positive	0.2977	0.2977	0.9685					
EGFR status								
Negative	0.805 (0.535–1.211)	1.009 (0.655–1.554)						
Positive	0.0840	0.0840	0.0729					
PS3 status								
Negative	0.783 (0.593–1.033)	0.774 (0.585–1.024)						
Positive	0.4136	0.4136	0.3998					
TOP2A status								
Negative	1.159 (0.814–1.651)	1.173 (0.809–1.700)						
Positive	0.0329	0.0002	0.0321	0.0011				
Lymph vessel invasion								
Negative	1.423 (1.029–1.966)	1.585 (1.245–2.018)	1.429 (1.031–1.981)	1.523 (1.182–1.962)				
Neural invasion	0.7620	0.5040						
Negative	0.937 (0.613–1.432)	1.152 (0.761–1.742)						

(Continued)
TABLE 3 | Continued

Parameters	Univariate analysis	DFS	P-value	Multivariate analysis	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value	Univariate analysis	OS	Multivariate analysis	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value	
Post-operative chemotherapy																
No	1 (reference)	1	<0.0001		0.0001	1 (reference)	1	0.0001	0.0006							
Yes	0.458 (0.314–0.670)	0.523 (0.376–0.725)	0.2115		0.475 (0.324–0.697)	0.575 (0.420–0.789)	0.1298									
Post-operative radiotherapy																
No	1 (reference)	1														
Yes	1.236 (0.886–1.723)	1.303 (0.925–1.834)	0.0105		0.0300	0.0210	0.0280									
Post-operative endocrine therapy																
No	1 (reference)	1														
Yes	0.631 (0.444–0.898)	0.771 (0.609–0.975)	0.0105		0.0300	0.0210	0.0280									
Post-operative targeted therapy																
No	1 (reference)	1	<0.0001		0.0001	1 (reference)	1	<0.0001	<0.0001							
Yes	0.507 (0.390–0.658)	0.457 (0.356–0.587)	0.0507		0.0026	0.0261	0.0036									

multivariate Cox regression analysis, menopause, GLU, Cancer antigen 125 (CA125), Cancer antigen 153 (CA153), eosinophils, NRI, histologic type, pathological T/N/TNM stage, Ki-67 status, Cytokeratin 5/6 (CK5/6) status, lymph vessel invasion (LVI), post-operative chemotherapy, post-operative endocrine therapy, post-operative targeted therapy were the significant prognostic factors for DFS. Moreover, GLU, CA153, International normalized ratio (INR), monocyte, eosinophils, NRI, clinical T stage, histologic type, pathological T/N/TNM stage, Ki-67 status, CK5/6 status, E-cadherin (E-cad) status, LVI, post-operative chemotherapy, post-operative endocrine therapy, post-operative targeted therapy were the significant prognostic factors for OS (see Table 3).

DFS and OS by NRI

As seen in Table 3, the NRI was the important prognostic factors DFS and OS using the cutoff value of 112. The results performed that high NRI was associated with prolonged DFS and OS (P = 0.019, HR: 1.521, 95% CI: 1.071–2.161 and P = 0.004, HR: 1.415, 95% CI: 1.119–1.789; and P = 0.026, HR: 1.500, 95% CI: 1.051–2.143 and P < 0.001, HR: 1.547, 95% CI: 1.221–1.959, respectively), on both univariate and multivariate analyses.

Of all breast cancer patients, patients with low NRI scores had mean DFS and OS time of 40.50 and 63.47 months, while patients with high NRI scores were 56.39 and 71.50 months, respectively. Furthermore, the mean DFS and OS survive time of NRI in the high group were remarkably longer in contrast to those of NRI in the low group (χ² = 8.3230, P = 0.0039 and χ² = 7.9940, P = 0.0047, respectively; Figures 1C,D). In the non-NACT group, the mean DFS and OS survive time of NRI in the high group were remarkably longer in contrast to those of NRI in the low group (χ² = 8.3230, P = 0.0039 and χ² = 7.9940, P = 0.0047, respectively; Figures 1E,F).

The Association Between Pathologic Stage and NRI in Breast Cancer Patients

The results shown that pathologic TNM stage was the significant predictor via the univariate and multivariate analyses (see Table 3). In order to further study the efficiency of prediction of NRI, and the NRI was analyzed by the pathologic TNM stage. Of all breast cancer patients, the results shown that patients with high NRI scores had notably longer DFS and OS survive time than those with low NRI scores in early-stage breast cancer (included pathologic Tis/T0 and pathologic I stage) (χ² = 9.0510, P = 0.0026 and χ² = 9.2140, P = 0.0067). Similarly, patients with high NRI scores had remarkably longer DFS and OS survive time than those with low NRI scores in advanced stage breast cancer (pathologic II and pathologic III stage) (χ² = 6.2500, P = 0.0124 and χ² = 5.8880, P = 0.0152). In the NACT group, the results also indicated that patients with high NRI scores had longer DFS and OS than those with low NRI scores in early-stage breast cancer (included pathologic I stage) (χ² = 9.0510, P = 0.0026 and χ² = 9.2140, P = 0.0067). In the non-NACT group, the results demonstrated that patients with high NRI scores had remarkably longer DFS and OS survive time than those with low NRI scores in early-stage breast cancer (χ² = 7.3580, P = 0.0067 and χ² = 5.1700, P = 0.0230). Furthermore, patients with high NRI scores had longer DFS and OS than...
FIGURE 1 | DFS and OS of patients with breast cancer. (A) Kaplan-Meier analysis of DFS for the NRI of all breast cancer patients. (B) Kaplan-Meier analysis of OS for the NRI of all breast cancer patients. (C) Kaplan-Meier analysis of DFS for the NRI of breast cancer patients in NACT group. (D) Kaplan-Meier analysis of OS for the NRI of breast cancer patients in NACT group. (E) Kaplan-Meier analysis of DFS for the NRI of breast cancer patients in non-NACT group. (F) Kaplan-Meier analysis of OS for the NRI of breast cancer patients in non-NACT group.

those with low NRI scores in advanced stage breast cancer ($\chi^2 = 3.7450$, $P = 0.0530$ and $\chi^2 = 3.7570$, $P = 0.0526$). See in Figure 2.

The Association Between Pathology Parameters and NRI in Patients With Breast Cancer

The results performed that statistically significant differences were found in TOP2A status ($\chi^2 = 4.0108$, $P = 0.0452$), and no statistically significant differences were observed in the other pathology parameters in all cases ($P > 0.05$). These findings were shown in Table 4. We also analyzed the different molecular subtypes by NRI. Of all enrolled patients, the mean DFS and OS survive time for patients with high NRI by the log-rank test were longer than in those with low NRI in Luminal A subtype ($\chi^2 = 0.0496$, $P = 0.8238$ and $\chi^2 = 0.1107$, $P = 0.7394$), Luminal B HER2-positive subtype ($\chi^2 = 0.4465$, $P = 0.5040$ and $\chi^2 = 0.2313$, $P = 0.6305$), Luminal B HER2-negative subtype ($\chi^2 = 3.4830$, $P = 0.0620$ and $\chi^2 = 3.8280$, $P = 0.0504$), HER2-enriched subtype ($\chi^2 = 6.1510$, $P = 0.0131$ and $\chi^2 = 5.6560$, $P = 0.0174$), triple-negative subtype ($\chi^2 = 5.8120$, $P = 0.0159$ and $\chi^2 = 6.9300$, $P = 0.0085$; Figure 3A). Moreover, we also analyzed the molecular subtypes by NRI in the NACT group and the non-NACT group (Figures 3B,C).

The Association Between LVI and NRI in Breast Cancer Patients

Through univariate and multivariate analyses, LVI was the significant predictor (Table 3). The ability of NRI to determine breast cancer prognosis was further assessed by examining the relationship between LVI and NRI. Among the patients without LVI, patients who had high NRI scores had remarkably longer DFS and OS survive time than those had low NRI scores ($\chi^2 = 13.6600$, $P = 0.0002$ and $\chi^2 = 12.1500$, $P = 0.0005$). Among the patients with LVI, patients who had high NRI scores had longer DFS and OS survive time than those had low NRI scores ($\chi^2 = 0.8332$, $P = 0.3613$ and $\chi^2 = 1.4780$, $P = 0.2241$). In the NACT group, patients who had high NRI scores had notably longer DFS and OS survive time than those had low NRI scores without LVI ($\chi^2 = 6.4450$, $P = 0.0111$ and $\chi^2 = 6.9200$, $P = 0.0085$). Furthermore, patients who had high NRI scores had longer DFS and OS survive time than those had low NRI scores with LVI ($\chi^2 = 0.07560$, $P = 0.7833$ and $\chi^2 = 0.1831$, $P = 0.6687$). In the non-NACT group, patients who had high NRI values had remarkably longer DFS and OS survive time than those had low NRI values.
without LVI ($\chi^2 = 6.4910, P = 0.0108$ and $\chi^2 = 5.8110, P = 0.0159$). At the same time, patients who had high NRI values had longer DFS and OS survive time than those had low NRI values with LVI ($\chi^2 = 1.3370, P = 0.2476$ and $\chi^2 = 2.5280, P = 0.1118$; Figure 4).

The Association Between NRI and Response in Breast Cancer Patients Received NACT

In the NACT group, all enrolled received neoadjuvant chemotherapy, and the effect of chemotherapy was evaluated after two chemotherapy cycles. After surgery, the degree of pathological remission was evaluated by MPG. So, we analyzed the MPG by NRI, and the results indicated that there was no difference in MPG grade 1 ($\chi^2 = 0.5520, P = 0.4575$ and $\chi^2 = 0.0136, P = 0.9071$), MPG grade 3 ($\chi^2 = 0.7815, P = 0.4193$), and SD ($\chi^2 = 3.1730, P = 0.0749$), except in PD ($\chi^2 = 3.8460, P = 0.0499$ and $\chi^2 = 2.7400, P = 0.0979$; Figure 6).
FIGURE 3 | DFS and OS for the NRI of breast cancer patients in different molecular subtypes. (A) DFS and OS for the NRI of breast cancer patients in different molecular subtypes in all patients; (B) DFS and OS for the NRI of breast cancer patients in different molecular subtypes in NACT group; (C) DFS and OS for the NRI of breast cancer patients in different molecular subtypes in non-NACT group.
TABLE 4 | The association between molecular subtype and NRI in patients with breast cancer.

Parameters	NRI 785				NRI 477					NRI 308			
Core needle biopsy (N = 477)													
Molecular subtype													
Luminal A	12 (6.90%)	13 (4.29%)											
Luminal B HER2+	23 (13.22%)	44 (14.52%)											
Luminal B HER2-	62 (35.63%)	124 (40.92%)											
HER2 enriched	39 (22.41%)	52 (17.16%)											
Triple negative	38 (21.84%)	70 (23.10%)											
ER status													
Negative	72 (41.38%)	119 (39.27%)	4.0360	0.4012									
Positive	102 (58.62%)	184 (60.73%)											
PR status													
Negative	68 (39.08%)	121 (39.93%)	0.0337	0.8544									
Positive	106 (60.92%)	182 (60.07%)											
HER2 status													
Negative (0—++)	110 (63.22%)	203 (67.00%)	0.6994	0.4030									
Positive (+ + +)	64 (36.78%)	100 (33.00%)											
Ki-67 status													
Negative (<14%)	33 (18.97%)	51 (16.83%)	0.3469	0.5559									
Positive (>14%)	141 (81.03%)	252 (83.17%)											
Postoperative pathology (IHC)													
Molecular subtype	2.9300	0.5696			5.1830	0.2690			2.9020	0.5743			
Luminal A	26 (8.93%)	36 (7.29%)	17 (9.77%)	24 (7.92%)	9 (7.69%)	12 (6.28%)							
Luminal B HER2+	41 (14.09%)	57 (11.54%)	24 (13.79%)	37 (12.21%)	17 (14.53%)	20 (10.47%)							
Luminal B HER2-	111 (38.14%)	214 (43.32%)	50 (28.74%)	116 (38.28%)	61 (52.14%)	98 (51.31%)							
HER2 enriched	50 (17.18%)	79 (15.99%)	41 (23.56%)	55 (18.15%)	9 (7.69%)	24 (12.57%)							
Triple negative	63 (21.65%)	108 (21.86%)	42 (24.14%)	71 (23.43%)	21 (17.95%)	37 (19.37%)							
ER status													
Negative	107 (36.77%)	189 (38.26%)	76 (43.68%)	119 (39.27%)	31 (26.50%)	70 (36.65%)							
Positive	184 (63.23%)	305 (61.74%)	98 (56.32%)	184 (60.73%)	86 (73.50%)	121 (63.35%)							
PR status													
Negative	111 (38.14%)	204 (41.30%)	77 (44.25%)	133 (43.89%)	34 (29.06%)	71 (37.17%)							
Positive	180 (61.86%)	290 (58.70%)	97 (55.75%)	170 (56.11%)	83 (70.94%)	120 (62.83%)							

(Continued)
Parameters	NRI 785			NRI 477			NRI 308			NRI 308			
	Low NRI 291			Low NRI 174			Low NRI 117			Low NRI 191			
	High NRI 494			High NRI 303			High NRI 191						
	n	χ²	P-value										
HER2 status													
Negative (0---++)	201 (69.07%)	0.7958	0.3724	111 (63.79%)	1.3451	0.2461	90 (76.92%)	0.0172	0.8956				
Positive (+++)	90 (30.93%)	3.7906	0.0515	63 (66.21%)	2.7846	0.0952	27 (23.08%)	1.2634	0.2610				
Ki-67 status													
Negative (<14%)	93 (31.96%)	0.0005	0.9831	64 (65.72%)	0.1598	0.6894	71 (60.68%)	0.1258	0.7228				
Positive (>14%)	198 (68.04%)	2.1484	0.1427	138 (79.31%)	0.9965	0.3182	116 (99.15%)	1.1764	0.2781				
AR status													
Negative	254 (87.29%)	0.2902	0.5901	148 (85.06%)	0.0007	0.9786	108 (92.31%)	0.9001	0.3428				
Positive	37 (12.71%)	256 (87.97%)	0.0005	66 (13.36%)	0.9666	0.3182	17 (14.53%)	0.2816	0.5957				
CK5/6 status													
Negative	256 (87.97%)	0.2789	0.5974	148 (85.06%)	0.0668	0.7960	60 (61.28%)	0.9699	9.6194	0.0019			
Positive	35 (12.03%)	258 (85.15%)	0.0005	45 (14.85%)	0.0014	0.9699	20 (21.76%)	99 (51.83%)	0.2816	0.5957			
E-cad status													
Negative	131 (45.02%)	2.1847	0.1394	60 (34.48%)	0.9965	0.3182	71 (60.68%)	0.1258	0.7228				
Positive	160 (54.98%)	114 (65.52%)	0.0005	190 (63.70%)	116 (99.15%)	1.1764	0.2781	99 (51.83%)	0.2816	0.5957			
EGFR status													
Negative	227 (78.01%)	0.0014	0.9699	127 (72.99%)	0.0014	0.9699	71 (60.68%)	0.9699	9.6194	0.0019			
Positive	64 (21.99%)	206 (66.65%)	0.0005	45 (14.85%)	0.0014	0.9699	20 (21.76%)	99 (51.83%)	0.2816	0.5957			
PS3 status													
Negative	150 (51.55%)	0.2789	0.5974	90 (61.72%)	0.0668	0.7960	60 (61.28%)	0.9699	9.6194	0.0019			
Positive	141 (48.45%)	153 (50.50%)	0.0005	150 (49.50%)	0.0005	0.9699	20 (21.76%)	99 (51.83%)	0.2816	0.5957			
TOP2A status													
Negative	167 (57.39%)	4.0108	0.0452	60 (34.48%)	0.0014	0.9699	64 (54.70%)	20 (21.76%)	99 (51.83%)	0.2816	0.5957		
Positive	175 (35.43%)	105 (34.65%)	0.0005	198 (65.35%)	116 (99.15%)	1.1764	0.2781	99 (51.83%)	0.2816	0.5957			
Lymph vessel invasion													
Negative	202 (69.76%)	0.3940	0.5302	115 (66.09%)	0.1226	0.7263	88 (75.21%)	0.4555	0.4998				
Positive	88 (30.24%)	205 (67.66%)	0.0014	59 (33.91%)	0.2483	0.6183	70 (60.68%)	2.7576	0.0968				
Neural invasion													
Negative	427 (86.44%)	1.2591	0.2618	138 (79.31%)	0.2483	0.6183	105 (89.74%)	2.7576	0.0968				
Positive	67 (13.56%)	246 (81.19%)	0.0014	57 (18.81%)	12 (10.26%)	0.4555	70 (60.68%)	2.7576	0.0968	0.4555	0.4998	2.7576	0.0968
The Relationship Between NRI and Toxicity and Adverse Effects

In the NACT group, the common toxicities after NACT were hematologic and gastrointestinal reactions. The results shown that the nausea ($\chi^2 = 9.2413$, $P = 0.0024$), mouth ulcers ($\chi^2 = 4.8133$, $P = 0.0282$), anemia ($\chi^2 = 8.5441$, $P = 0.0140$), and leukopenia ($\chi^2 = 11.0951$, $P = 0.0039$) were statistically different between the two groups (see Table 5).

DISCUSSION

Breast cancer is a major public health threat globally (29). In women around the world, breast cancer is a very common female malignant tumor and the leading cause of cancer-related deaths (2). Although promising treatment options are emerging, recurrence and metastasis are still the driving causes for breast cancer fatality (30). Evidence shows that approximately 30%-40% of patients who suffer from invasive breast cancer will eventually progress to metastatic breast cancer, whose 5-year survival rate could be poorer than 30% (31, 32). Additionally, research also suggests that probabilities of recurrence and progression could occur in some breast cancer patients even after radical resection and neoadjuvant/adjuvant therapy (33). Therefore, to address these issues, there is an urgent need to develop assessment strategies based on non-invasive, reproducible, and convenient biomarkers to estimate the curative effects and the prognosis of breast cancer, as well as to better pair treatment options with patient characteristics (e.g., ascertain those breast cancer patients who get a profit from neoadjuvant chemotherapy).

Prior studies have identified a limited number of screening tools to evaluate nutritional risks that have the potential to...
predict prognosis in cancer patients, ranging from Subjective Global Assessment (SGA), Nutritional Risk Screening 2002 (NRS 2002), Mini Nutritional Assessment-Screening Form (MNA-SF), and Malnutrition Universal Screening Tool (MUST), as well as several nutritional status markers such as the neutrophil-to-lymphocyte ratio, prognostic nutritional index, BMI, serum albumin, total lymphocyte count, and indicators such as patients’ cholesterol levels. Among them, BMI and serum albumin level are usually used as makers of patients’ nutritional status in routine clinical practice, largely due to their abilities to predict cancer patients’ survival rates, as indicated in recent studies. While these tools play an important role in...
TABLE 5 | The correlation between NRI and toxicity assessment.

Parameters	NRI 477			χ²	P-value
Cases (n)	Low NRI 174	High NRI 303			
Decreased appetite	20 (11.49%)	50 (16.50%)		2.2133	0.1368
No	154 (88.51%)	253 (83.50%)		9.2413	0.0024
Nausea	11 (6.32%)	48 (15.84%)		4.1672	0.0411
No	163 (93.68%)	255 (84.16%)		2.5293	0.1118
Vomiting	77 (44.25%)	157 (51.82%)		0.5410	0.4620
No	97 (55.75%)	146 (48.18%)		0.1828	0.6690
Diarrhea	160 (91.95%)	284 (93.73%)		4.8133	0.0282
No	14 (8.05%)	19 (6.27%)		5.54	0.0180
Mouth ulcers	165 (94.83%)	296 (98.35%)		8.5441	0.0140
No	9 (5.17%)	5 (1.65%)		0.0350	0.8516
Alopecia	80 (45.98%)	142 (46.86%)		0.1828	0.6690
No	94 (54.02%)	161 (53.14%)		1.0921	0.3401
Peripheral neurotoxicity	144 (82.76%)	246 (81.19%)		0.1828	0.6690
No	30 (17.24%)	57 (18.81%)		0.0010	0.9819
Anemia	79 (45.40%)	178 (58.75%)		1.0921	0.3401
Grade 0	92 (52.87%)	123 (40.59%)		11.0951	0.0010
Grade 1–2	3 (1.72%)	2 (0.66%)		0.0010	0.9819
Leukopenia	35 (20.11%)	103 (33.99%)		5.3754	0.0680
Grade 0	92 (52.87%)	141 (46.53%)		3.8748	0.1441
Grade 1–2	47 (27.01%)	59 (19.47%)		5.3754	0.0680
Neutropenia	41 (23.56%)	102 (33.66%)		3.8748	0.1441
Grade 0	71 (40.80%)	108 (35.64%)		1.9021	0.1675
Grade 1–2	126 (73.56%)	244 (80.53%)		3.8748	0.1441
Grade 3–4	44 (25.29%)	54 (17.82%)		1.9021	0.1675
Thrombocytopenia	2 (1.15%)	5 (1.65%)		0.0010	0.9819
Grade 0	8 (4.60%)	30 (9.90%)		4.2926	0.1169
Grade 1–2	164 (94.25%)	269 (88.78%)		2.2843	0.1319
Grade 3–4	2 (1.15%)	4 (1.32%)		2.2843	0.1319
Gastrointestinal reaction	129 (74.14%)	242 (79.87%)		2.8849	0.2364
Grade 0	45 (25.86%)	60 (19.80%)		2.8849	0.2364
Grade 1–2	0 (0.00%)	1 (0.33%)		2.8849	0.2364

nutritional assessment, the fact that they rely on subjective assessments that could be easily varied and swayed by individual examiners makes these screening mechanisms incomparable and unsatisfactory. Additionally, some non-nutritional factors such as inflammation, fluid status, renal dysfunction, and hepatic congestion also exert diverse effects on indicators like serum albumin and BMI (43, 44), effectively exposing these tools to additional noises. Thus, it is neither sufficient nor precise to evaluate patients' nutritional risk with regard to their cancer prognosis and treatment efficacy only by their BMI or albumin status.

Fortunately, NRI values measured by a combination of factors such as ideal body weight, serum albumin, and present body weight may overcome the shortcomings of individual indicators. In other words, creating patients' NRI score as a combined index of their ideal body weight, present body weight, and serum albumin levels has the potential to minimize the effects of fluid status, and in turn, distinguish nutritional risk better than individual indexes. As demonstrated in previous studies, one of the indexes under the NRI umbrella that could appraise forecasting risk of malnutrition-related incidence rate and mortality in advanced-age patients was the Geriatric Nutritional Risk Index (GNRI) (45). GNRI has been associated with poor treatment outcomes in many diseases, including cancer (46–50). Moreover, previous research also illustrated that in patients with new metastatic gastric adenocarcinoma and esophageal adenocarcinoma, pretreatment NRI and change of NRI in that were significant prognostic factors for OS.

Emerging evidence further suggests that evaluate NRI at baseline and during treatment can not only indicate patients' nutrition status but also provide useful prognostic information (51). Nevertheless, while meaningful insights are procurable, little is known about the association between NRI, prognosis, and treatment efficacy in breast cancer patients. To bridge the research gap, by analyzing the clinical and demographic attributes of 785 participants, our study demonstrated the clinical significance of using NRI to assess nutritional risk assessment in breast cancer patients. Our results indicated that high levels of NRI were significantly associated with more indicative clinicopathologic characteristics (age, menopause, US-LNM, total lymph nodes, and total axillary lymph nodes), nutritional parameters, and blood parameters (weight, BMI, ALT, AST, LDH, GGT, ALP, GLU, IgG, W, ALB, Hb, R, N, E, and P) of all breast cancer patients.

Through the univariate and multivariate Cox regression survival analyses, the preoperative NRI was an independent predictor of DFS and OS survive time. And the average DFS and OS survive time for patients who had high NRI scores were longer than for those who had low NRI scores by the log-rank analysis in the NACT group and the non-NACT group. Similar conclusions have been reached in many published studies focusing on other malignancies (52, 53). For instance, 143 patients with localized esophageal cancer treated with definitive concurrent chemoradiotherapy in a retrospective study conducted by Clavier and associates, multivariable analyses indicated that the NRI was an independent predictor for patients' overall survival (52). Moreover, Cox and colleagues retrospectively analyzed patients
with esophageal cancer included chemoradiotherapy with or without cetuximab in the SCOPE1 clinical trial, reporting that NRI<100 in a baseline was significantly related to decreased overall survival in cancer patients (53).

Previous studies suggest that patients’ NRI values were prognostic in a range of localized as well as metastatic tumors like esophageal cancer (54, 55). However, there is a dearth of research on the effects of NRI on prognosis and treatment efficacy in breast cancer patients. To bridge the research gap, we analyzed the relationship between pathologic stage and NRI in patients with breast cancer, and observed that patients who had high NRI scores had longer DFS and OS survive time than those who had low NRI values in both patients with early-stage breast cancer and advanced stage breast cancer. Furthermore, patients who had high NRI levels had longer DFS and OS survive time in contrast to those who had low NRI scores in molecular subtypes of breast cancer. Moreover, the results also performed the mean DFS and OS survive time in breast cancer patients who had high NRI scores were longer than in those patients who had low NRI scores with LVI status. Furthermore, we also analyzed the relationship between NRI and MPG/Response, and the results also shown that patients who had high NRI scores had longer DFS and OS survive time than those who had low NRI scores in different MPG grades, especially in MPG grade 2; and patients who had high NRI values had longer DFS and OS survive time in contrast to those who had low NRI scores in different responses.

All breast cancer patients could tolerate the neoadjuvant chemotherapy toxicities and adverse effects. The hematologic and gastrointestinal reactions were the common toxicities and adverse effects, and the results shown that there was no difference using the optimal NRI cutoff value of 112 in toxicity assessment, except in nausea, mouth ulcers, anemia, leukopenia, which should get doctors’ as well as patients’ attention. Using NRI as a prognostic marker and monitoring response to treatment make it possible to start timely interventions to reduce the risk of these complications.

As far as we know, this study is the first to illustrate the clinical and prognostic significance of NRI in a large cohort of breast cancer patients. Additionally, we also demonstrate that the change of NRI during treatment is a predictor for DFS and OS in different molecular subtypes and different lymph vessel invasion levels, as well as the relationship between NRI status and neoadjuvant chemotherapy toxicities.

However, the presented study is not without limitations. Firstly, our study evaluated the research topic from a retrospective perspective and was underway in a single-center with a relatively restricted number of breast cancer patients. To further enrich the literature, multicenter-based research that draws insights from large study populations should be encouraged. Secondly, as common in studies that adopt similar research methods (e.g., utilize eligibility criteria to screen patients), selection bias in our study could be difficult to eliminate. Thirdly, as NRI is a non-specific tumor marker, additional validation of the association between NRI, cancer prognosis, and treatment efficacy in large prospective studies should be conducted in the future.

CONCLUSION

NRI is described as the significant predictor for breast cancer patients, and may forecast the survival and prognosis for breast cancer. The minimally invasive, easily accessible and convenient indicators should be help doctors in terms of selecting measures, evaluating the curative effect, and estimating the prognosis of breast cancer.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

This study was approved by the Ethics Committee of Cancer Hospital Chinese Academy of Medical Sciences and Tongji Hospital. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

LC and YQ: writing—original draft and writing—review & editing. XK and ZS: formal analysis. ZW, XW, and YD: data curation and investigation. YF and XL: methodology and supervision. XL and JW: resources, funding acquisition, and project administration. All authors contributed to the article and approved the submitted version.

FUNDING

The work is partly supported by research grants from National Nature Science Foundation of China (Nos. 81872160, 82072940, 82103047, 82102887, and 81802676), Beijing Nature Science Foundation of China (Nos. 7191009 and 7204293), National Key Research and Development Program of China (No. 2018YFC1312100), China National Key Research and Development Program (Nos. 2020AAA0105000 and 2020AAA0105004), Special Research Fund for Central Universities, Peking Union Medical College (No. 3332019053), Beijing Hope Run Special Fund of Cancer Foundation of China (Nos. LC2020L01, LC2019B03, and LC2019L07), Wuhan Youth Cadre Project (Nos. 2017zqnxr01 and 2017zqnxr02), Clinical Research Physician Program of Tongji Medical College HUST (No. 5001540018), Golden Bridge Project Seed Fund of Beijing Association for Science and Technology (No. ZZ20004), Chinese Young Breast Experts Research project (No. CYBER-2021-005), 2021 Chaoyang District Social Development Science and Technology Plan Project (No. CYSF2115), Beijing Xisike Clinical Oncology Research Foundation (No. Y-Young2021-0017), and XianSheng Clinical Research Special Fund of China International Medical Foundation (No. Z-2014-06-2103).
36. Zhang M, Ye S, Huang X, Sun L, Liu Z, Liao C, et al. Comparing the prognostic significance of nutritional screening tools and ESPEN-DCM on 3-month and 12-month outcomes in stroke patients. Clin Nutr. (2021) 40:3346–53. doi: 10.1016/j.clinu.2020.11.001

37. Neal CP, Cairns V, Jones MJ, Nana GR, Mann CD, et al. Prognostic performance of inflammation-based prognostic indices in patients with resectable colorectal liver metastases. Med Oncol. (2015) 32:144. doi: 10.1007/s12032-015-0590-2

38. Lv Y, Ji ML, Feng QY, Zhu DX, Lin SB, Mao YH, et al. Combined test of third lumbar skeletal muscle index and prognostic nutrition index improve prognosis prediction power in resected colorectal cancer liver metastasis. Aging. (2019) 11:10301–15. doi: 10.18632/aging.102457

39. Almutawa DA, Almuammar M, Alshafie MM, Alnafisah A, Aljuraiban GS, Chen et al. NRI Predicts Survival in Breast Cancer

40. Guo ZQ, Yu JM, Li W, Fu ZM, Lin Y, Shi YY, et al. Survey and analysis of

41. Gul B, Metintas S, Ak G, Yilmaz S, Metintas M. The relationship between nutritional status and prognosis in patients with locally advanced and advanced stage lung cancer. Support Care Cancer. (2021) 29:3557–65. doi: 10.1007/s00520-020-03586-5

42. Lima MTM, Maruyama TC, Custódio IDD, Marinho EDC, Ferreira IB, Crispim CA, et al. The impact of a higher eating frequency on the diet quality and nutritional status of women with breast cancer undergoing chemotherapy. Br J Nutr. (2020) 123:410–8. doi: 10.1017/S0007114519002952

43. Morais JG, Pecoits-Filho R, Canziani MEF, Peli-de-Figueiredo CE, Cuvello Neto AL, Barra AB, et al. Fluid overload is associated with use of a higher number of antihypertensive drugs in hemodialysis patients. Hemodial Int. (2020) 24:397–405. doi: 10.1111/hdi.12829

44. Bassoli C, Oreni L, Ballone E, Perotti A, Mainini A, et al. Role of serum albumin and proteinuria in patients with SARS-CoV-2 pneumonia. Int J Clin Pract. (2021) 75:e13946. doi: 10.1111/itcp.13946

45. Jia Z, El Mohed M, Nordestgaard A, Lee JM, Meier K, Kongkaewpaisan N, et al. The geriatric nutritional risk index is a powerful predictor of adverse outcome in the elderly emergency surgery patient. J Trauma Acute Care Surg. (2020) 89:397–404. doi: 10.1097/TA.0000000000002741

46. Lee GW, Go SI, Kim DW, Kim HG, Kim JH, An HJ, et al. Geriatric nutritional risk index as a prognostic marker in patients with extensive-stage disease small cell lung cancer: results from a randomized controlled trial. Thorac Cancer. (2020) 11:62–71. doi: 10.1111/1759-7714.13229

47. Kang HW, Seo SP, Kim WT, Yun SJ, Lee SC, Kim WJ, et al. A low geriatric nutritional risk index is associated with aggressive pathologic characteristics and poor survival after nephrectomy in clear renal cell carcinoma: a multicenter retrospective study. Nutr Cancer. (2020) 72:88–97. doi: 10.1080/01635581.2019.1621357

48. Hirohara N, Matsubara T, Fujii Y, Kaji S, Hyakudomi R, Yamamoto T, et al. Preoperative geriatric nutritional risk index is a useful prognostic indicator in elderly patients with gastric cancer. Oncotarget. (2020) 11:2345–56. doi: 10.18632/oncotarget.27635

49. Shoji F, Miura N, Matsubara T, Akamine T, Kozuma Y, Haratake N, et al. Prognostic significance of immune-nutritional parameters for surgically resected elderly lung cancer patients: a multicentre retrospective study. Interact Cardiovasc Thorac Surg. (2018) 26:389–94. doi: 10.1093/icvts/ivy337

50. Kushiyama S, Sakurai K, Kubo N, Tamamori Y, Nishii T, Tachimori A, et al. The preoperative geriatric nutritional risk index predicts postoperative complications in elderly patients with gastric cancer undergoing gastrectomy. In Vivo. (2018) 32:1667–72. doi: 10.21873/invivo.11430

51. Ma LX, Taylor K, Espin-Garcia O, Anconina R, Suzuki C, Allen MJ, et al. Prognostic significance of nutritional markers in metastatic gastric and esophageal adenocarcinoma. Cancer Med. (2021) 10:199–207. doi: 10.1002/cam4.3604

52. Clavier JR, Antoni D, Allani D, Ben Abdelghani M, Schumacher C, Dufour P, et al. Baseline nutritional status is prognostic factor after definitive radiochemotherapy for esophageal cancer. Dis Esophagus. (2014) 27:560–7. doi: 10.1111/j.1442-2050.2012.01441.x

53. Cox S, Powell C, Carter B, Hurt C, Mukherjee S, Crosby TD. Role of nutritional status and intervention in oesophageal cancer treated with definitive chemoradiotherapy: outcomes from SCOPE1. Br J Cancer. (2016) 115:172–7. doi: 10.1038/bjc.2016.129

54. Bo Y, Wang K, Liu Y, You J, Cui H, Zhu Y, et al. The geriatric nutritional risk index predicts survival in elderly esophageal squamous cell carcinoma patients with radiotherapy. PLoS ONE. (2016) 11:e0155903. doi: 10.1371/journal.pone.0155903

55. Wang Y, Wang L, Fang M, Li J, Song T, Zhan W, et al. Prognostic value of the geriatric nutritional risk index in patients exceeding 70 years old with esophageal squamous cell carcinoma. Nutr Cancer. (2020) 72:620–6. doi: 10.1080/01635581.2019.1650189a

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Chen, Qi, Kong, Su, Wang, Wang, Du, Fang, Li and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.