Repetto, S. L., Costello, J. F., Butts, C. P., Lam, J. K. W., & Ratcliffe, N. M. (2016). The hydrolysis of geminal ethers: A kinetic appraisal of orthoesters and ketals. *Beilstein Journal of Organic Chemistry, 12*, 1467-1475. https://doi.org/10.3762/bjoc.12.143
Supporting Information
for
The hydrolysis of geminal ethers: a kinetic appraisal of orthoesters and ketals

Sonia L. Repetto¹, James F. Costello*¹, Craig P. Butts², Joseph K. W. Lam³ and Norman M. Ratcliffe¹

Address: ¹Faculty of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK, ²School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK and ³Airbus Operations Ltd., Filton, Bristol, BS34 7PA, UK

Email: James F. Costello - James.Costello@uwe.ac.uk

*Corresponding author

Analytical data
Indicative plot of ln(integral) for 6 ($k_{obs} = 7 \times 10^{-4}; R^2 = 0.9944$), and 2 ($k_{obs} = 1.46 \times 10^{-5}; R^2 = 0.9932$), versus time (s).
Indicative stacked plot of 6 and 2 versus time (300 MHz 1H NMR in D$_2$O/CD$_3$CN (1:4), 625 s intervals, $T= 25$ °C, [HCl] = 9.56 x 10$^{-5}$ M).
Table S1: The concentration of acid catalyst used to determine values of k_{H^+} for the following mixtures of reacting ortho esters.

Reacting substrates	$[H^+] \times 10^{-4}$ M
6:2	4.78
3:2	4.78
6:13	1.98
6:5	1.98
6:8	1.98
6:10:11:14	1.98
6:16	0.125
Table S2: Experimentally determined values of k_{H^+} for the reacting mixtures of geminal ethers: $[6 + 2]$, $[3 + 2]$, $[6 + 13]$, $[6 + 5]$, $[6 + 8]$, $[6 + 10 + 11 + 14]$, $[6 + 16]$.

The corresponding values of k_{H^+} (including standard deviations) in Figure 1 (main article) were calculated from an average of these experiments. Thus, k_{H^+} for 5 calculated using entries (x–xii). Also, k_{H^+} for 6 calculated from entries (i–iii), (vii–ix), and (x–xxi) respectively, along with data from Table 1 of main article.

	6	2
(i)	7.32	0.153
(ii)	6.74	0.145
(iii)	7.20	0.151

	3	2
(iv)	1.650	0.147
(v)	1.675	0.155
(vi)	1.730	0.143
	6	13
---	---------	----------
(vii)	6.91	19.44
(viii)	7.20	19.74
(ix)	6.89	21.18

	6	5
(x)	7.50	6.70
(xi)	6.70	6.30
(xii)	7.20	6.60

	6	8		
(xiii)	6.84	9.77		
(xiv)	6.99	10.00		
(xv)	6.52	9.57		
	6	10	11	14
-----	-----	-----	-----	-----
(xvi)	7.07	13.10	13.99	29.80
(xvii)	7.01	11.76	12.78	27.38
(xviii)	6.90	11.38	12.07	26.62

	6	16
(xix)	7.00	70.63
(xx)	7.20	73.10
(xxi)	6.74	84.00
Table S3: Corresponding values of \(k_{H^+} (\text{M}^{-1}\text{s}^{-1}) \) obtained from calibration of data obtained from different workers.

Ortho ester	Relative rate\(^a\)	\(k_{H^+} (\text{M}^{-1}\text{s}^{-1}) \)
1	1	\(4 \times 10^{-3b} \)
4	649	\(2.79^b \)
8	2270	\(9.78^c \)
15	11351	\(48.90^a \)

Ortho ester	\(k_{1H^+} \) ratios\(^a\)	\(k_{H^+} (\text{M}^{-1}\text{s}^{-1})\(^b\)	\(k_{H^+} (\text{M}^{-1}\text{s}^{-1})\(^c\)	\(k_{H^+} (\text{M}^{-1}\text{s}^{-1})\(^d\)
5	1	\(6.53 \)	\(– \)	\(6.5 \pm 0.2 \)
6	\(– \)	\(– \)	\(– \)	\(7.0 \pm 0.2 \)
7	2.0	\(\approx 13 \)	\(\approx 8 \)	\(– \)
9	2.6	\(\approx 17 \)	\(\approx 11 \)	\(– \)
12	3.4	\(\approx 22 \)	\(\approx 14 \)	\(– \)
16	18.8	\(\approx 123 \)	\(\approx 76 \)	\(75.9 \pm 7.1 \)
500 MHz 1H NMR spectrum of a mixture of 10, 11 and 14 in CD$_3$CN.
1D-NOESY 1H NMR spectrum of a mixture of 10, 11 and 14 (3:1:3.2, respectively) irradiated at 1.46 ppm.
1D-NOESY 1H NMR spectrum of a mixture of 10, 11 and 14 (3:1:3.2, respectively) irradiated at 1.44 ppm.
1D-NOESY 1H NMR spectrum of a mixture of 10, 11 and 14 (3:1:3.2, respectively) irradiated at 1.50 ppm.
MS(CI) spectrum of hydroxy ester the derived from 1,3-dioxolan-2-ylum cation 5^* and $H_2^{16/18}O$.
MS(Cl) spectrum of the hydroxy ester derived from 1,3-dioxolan-2-ylium cation 16* and H$_2^{16/18}$O.
Partial 13C NMR spectrum (125 MHz, CDCl$_3$) of hydroxy ester derived from 16 illustrating resonances associated with $^{13}C=^{18}O$ ($\delta_C = 172.76$ppm) and $^{13}C=^{16}O$ ($\delta_C = 172.80$ ppm \textit{i.e., } $\Delta\delta_C = 0.04$ ppm) nuclei.
Full literature reference for Gaussian 09

Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
Cartesian coordinates of conformer 16a

\[
\begin{array}{ccc}
C & -2.0318200 & -1.48965000 \\
C & -0.65026000 & 0.10995800 \\
C & -2.71696200 & -0.93745800 \\
H & -1.53976800 & -2.45194700 \\
H & -2.69624900 & -1.60348600 \\
H & -3.55058500 & -0.27027400 \\
H & -3.81079000 & -1.71225000 \\
O & -1.07539300 & -0.48067000 \\
O & -1.66994800 & -0.21260100 \\
C & 2.01132200 & -0.13827700 \\
C & -1.70594500 & 2.18082800 \\
C & 0.67229700 & 0.46586200 \\
H & 0.74833500 & -0.16286400 \\
H & 0.52920700 & -1.55318900 \\
C & 3.06375700 & -1.11795600 \\
H & 2.80847500 & -2.15785700 \\
H & 3.14739800 & -1.03077900 \\
H & 4.05146400 & -0.91215200 \\
C & 1.91375000 & 0.33679700 \\
H & 2.89471900 & -0.17794900 \\
H & 1.20598200 & 0.36262600 \\
H & 1.58261300 & -1.34987200 \\
C & 2.47793900 & 1.29981200 \\
H & 2.57498300 & 1.46087300 \\
H & 1.77454100 & 2.03795400 \\
H & 3.45981200 & 1.48242600 \\
O & -0.52029200 & 1.47759800 \\
H & -2.10822200 & 1.81140500 \\
H & -2.46727000 & 2.09899700 \\
H & -1.41375100 & 3.22613200
\end{array}
\]
Cartesian coordinates of conformer 16b

C	2.38968800	-1.37618000	-0.58742300
C	0.65369300	0.12175600	-0.27113300
C	2.27342700	-1.08285900	0.90637300
H	1.91707900	-2.33428600	-0.84817000
H	3.41693000	-1.37254000	-0.96145000
H	3.08183200	-0.42462900	1.25333400
H	2.25165200	-1.97980500	1.53181300
O	1.68860200	-0.28655300	-1.17061100
O	1.01185700	-0.42378900	1.00060800
C	-2.01088200	-0.13476500	0.00804900
C	1.76908600	2.17713900	0.20309800
C	-0.69264300	-0.42218600	-0.76409500
H	-0.56063700	-1.50891700	-0.83061300
H	-0.80096000	-0.05593000	-1.79119400
C	-1.93898400	-0.60490100	1.47351100
H	-1.67068700	-1.66512400	1.53981700
H	-1.19613600	-0.04224300	2.04237900
H	-2.91421100	-0.47521200	1.95722100
C	-3.11714400	-0.93625700	-0.71278700
H	-4.08823900	-0.77068900	-0.23356100
H	-3.20829200	-0.63589500	-1.76296700
H	-2.91244300	-2.01286900	-0.68825700
C	-2.38886300	1.35911000	-0.03438000
H	-1.66131100	1.97239700	0.49890100
H	-2.43886200	1.72540400	-1.06596300
H	-3.37390600	1.51031000	0.42230100
O	0.59430000	1.50544700	-0.24707400
H	2.63111000	1.93027200	-0.42475100
H	1.98820100	1.92961300	1.24752000
H	1.55567700	3.24418000	0.12297800
Cartesian coordinates of conformer 16c

Atom	X	Y	Z
C	1.89106600	-1.62860600	-0.60508300
C	0.70638100	0.24111600	-0.17460500
C	2.00325600	-1.31263500	0.90460600
H	1.68891600	-2.68057200	-0.81852900
H	2.78172900	-1.30766800	-1.15468900
H	3.02099100	-1.02455900	1.18911700
H	1.67908700	-2.14381600	1.53859600
O	0.75043600	-0.87067000	-1.01760200
O	1.09432100	-0.22422200	1.10544500
C	-1.95450000	0.02730500	0.03190700
C	2.00317400	2.26227600	0.12712600
C	-0.67408400	0.89747500	-0.11627700
H	-0.76624600	1.50331000	-1.0243600
H	-0.63111200	1.59724500	0.72578800
C	-3.10852700	0.99775800	0.36487900
H	-2.94503100	1.49856400	1.32609400
H	-3.21411600	1.77242400	-0.40361600
H	-4.06057800	0.45932900	0.42632800
C	-1.83563600	-1.00419600	1.16910700
H	-2.79635200	-1.51176700	1.31362500
H	-1.08407200	-1.76409400	0.94337400
H	-1.55599900	-0.52978700	2.11497200
C	-2.29071700	-0.69270300	-1.28985000
H	-2.42633500	0.02729200	-2.10541700
H	-1.49754600	-1.38314400	-1.58032100
H	-3.22472600	-1.25723200	-1.18760200
O	1.69011400	1.13564200	-0.68186000
H	2.18922200	1.97067500	1.16665100
H	1.20940700	3.02082400	0.10491700
H	2.91130600	2.70023100	-0.29357500