Note on universal algorithms for learning theory

Karol Dziedziul, Barbara Wolnik

November 26, 2018

Abstract

We propose the general way of study the universal estimator for the regression problem in learning theory considered in [1] and [2]. This new approach allows us, for example, to improve the results from [1].

Keywords: nonparametric regression, learning theory.
Mathematics Subject Classification: 68T05, 41A36, 41A45, 62G05.

1 Introduction

I am recalling this paper since it is somehow important. We wrote this paper to improve one of the results from [1]. It was written in [1] that “It has been communicated to us by Lucien Birgé that one can derive from one of his forthcoming papers (Birgé, 2004) [published in (2006)] that for any class Θ satisfying (5), (namely Θ ⊂ L^2(X, ρ_X) with a condition on the entropy number which is similar to the assumption (10)), there is an estimator f_z satisfying

\[E\|f_\theta - f_z\|^2 = O\left(\frac{1}{m}\right)^{\frac{2s}{1+2s}}. \]

whenever f_\theta ∈ Θ”. Our paper shows how to construct an estimator with straightforward reasoning and I can not find the mentioned proof so I recall the proof of the result.
S. Cucker and S. Smale in their paper [4] determined the scope of the learning theory. We would like to present a general approach which corresponds to the papers [1] and [2]. The problem is the following.

Let $X = [0, 1]^d$ and $Y = [-A, A]$. On a product space $Z = X \times Y$ it is unknown probability Borel measure ρ. We shall assume that the marginal probability measure $\rho_X(S) = \rho(S \times Y)$ on X is a Borel measure. We have

$$d\rho(x, y) = d\rho(y|x)d\rho_X(x).$$

We are given the data $z \subset Z$ of m independent random observation $z_j = (x_j, y_j), j = 1, 2, \ldots, m$ identically distributed according to ρ. We are interested in estimating the **regression function**

$$f_\rho(x) := \int_Y yd\rho(y|x)$$

in $L^2(X, \rho_X)$ norm which will be denoted by $\| \cdot \|$.

To do it let $\mathbf{M} = \{M_v\}_{v \in T}$ denote any family of measurable functions on X such that for all $v \in T$

$$0 \leq M_v(x) \leq 1, \quad x \in X \tag{1}$$

and

$$\sum_{v \in T} M_v(x) = 1, \quad x \in X. \tag{2}$$

One of examples of this kind of family \mathbf{M} is the family $\{\chi_I\}_{I \in T}$, where χ_I denotes the indicator function of I and $\{I : I \in T\}$ is any partition of the set X (in [1] the sets I are dyadic cubes). Another example we get if we conside the triangulation of X with the vertices $\{v\}_{v \in T}$.

To define piecewise linear and continuous function corresponding to every vertex $v \in T$ it is sufficient to define such function on vertices. We define basis

$$M_v(w) = \begin{cases} 1 & \text{for vertices } w = v \\ 0 & \text{for } w \neq v. \end{cases}$$

It is not hard to check that family $\{M_v\}_{v \in T}$ satisfies (1) and (2).

Now for a given family \mathbf{M} we define the operator

$$Q_M f(x) = \sum_{v \in T} c_v(f) M_v(x),$$

where $c_v(f)$
where
\[c_v(f) = \frac{\alpha_v(f)}{q_v}, \quad \alpha_v(f) = \int_X f M_v d\rho_X, \quad q_v = \int_X M_v d\rho_X \]
and the estimator
\[f_z(x) = \sum_{v \in T} c_v(z) M_v(x), \]
where
\[c_v(z) = \frac{\alpha_v(z)}{q_v(z)}, \quad \alpha_v(z) = \frac{1}{m} \sum_{j=1}^m y_j M_v(x_j), \quad q_v(z) = \frac{1}{m} \sum_{j=1}^m M_v(x_j). \]
If \(q_v = 0 \) then we define \(c_v = 0 \) and if \(q_v(z) = 0 \) then we put \(c_v(z) = 0 \). Note also that \(E\alpha_v(z) = \alpha_v \) (here and subsequently \(\alpha_v := \alpha_v(f_{\theta}) \), \(c_v := c_v(f_{\theta}) \)) and \(Eq_v(z) = q_v \). Moreover
\[\text{Var}(y M_v(x)) \leq \int_Z y^2 M_v^2(x) d\rho(x, y) \leq A^2 \int_X M_v^2(x) d\rho_X(x), \]

hence
\[\text{Var}(y M_v(x)) \leq A^2 \int_X M_v(x) d\rho_X(x) = A^2 q_v, \quad (3) \]
\[\text{Var}(M_v(x)) \leq E(M_v(x))^2 \leq E(M_v(x)) = q_v. \quad (4) \]
Therefore by Bernstein’s inequality, see for instance [1] we have for any \(\epsilon > 0 \)
\[\text{Prob}\{ |\alpha_v - \alpha_v(z)| \geq \epsilon \} \leq 2e^{-\frac{3m^2}{6m^2 q_v + 4\epsilon^2}}, \quad (5) \]
\[\text{Prob}\{ |q_v - q_v(z)| \geq \epsilon \} \leq 2e^{-\frac{3m^2}{6q_v + 4\epsilon^2}}. \quad (6) \]

The main result of this paper is

Theorem 1.1 For any family \(M \)
\[E\|Q_M f_{\theta} - f_z\|^2 = O\left(\frac{N}{m}\right), \]
where \(N = |T| \).
The new idea of the proof presented below allows us to improve the result from [1] (in Corollary 2.2 [1] the above expectation is bounded by $O(N/m \cdot \log N)$).

Proof. By (1), (2) and the convexity of the square functions we have

$$E\|QMf_\nu - f_x\|^2 \leq \int_X \sum_{\nu \in T} E|c_\nu - c_\nu(z)|^2 M_\nu(x) d\rho_X(x)$$

$$= \sum_{\nu \in T} E|c_\nu - c_\nu(z)|^2 \rho_\nu.$$

Note that if $\rho_\nu = 0$ then $E\rho_\nu(z) = 0$ hence $\rho_\nu(z) = 0 \rho_\nu$ a.e. Consequently

$$E\|QMf_\nu - f_x\|^2 \leq \sum_{\nu \in T, \rho_\nu > 0} E|c_\nu - c_\nu(z)|^2 \rho_\nu.$$

Let us fix ν such that $\rho_\nu > 0$. We can write

$$E|c_\nu - c_\nu(z)|^2 = \int_{\rho_\nu(z) > 0} |c_\nu - c_\nu(z)|^2 + \int_{\rho_\nu(z) = 0} |c_\nu|^2.$$

Note that if $\rho_\nu(z) = 0$ ρ_ν a.e. then for all $j M_\nu(x_j) = 0$, hence $\alpha_\nu(z) = 0 \rho_\nu$ a.e. Thus

$$E|c_\nu - c_\nu(z)|^2 = \int_{\rho_\nu(z) > 0} |c_\nu - c_\nu(z)|^2 + \int_{\rho_\nu(z) = 0} \frac{\alpha_\nu - \alpha_\nu(z)}{\rho_\nu} |c_\nu|^2.$$

For $b \neq 0$ and $t \neq 0$ we use the simple inequality

$$\left| \frac{a}{b} - \frac{s}{t} \right| \leq \frac{1}{|b|} |a - s| + \frac{|s|}{|bt|} |t - b| \quad (7)$$

to get

$$\left| \frac{a}{b} - \frac{s}{t} \right|^2 \leq 2 \frac{|a - s|^2}{b^2} + 2 \frac{1}{b^2 t^2} |t - b|^2, \quad (8)$$

which gives in particular that

$$\left| \frac{a_\nu}{\rho_\nu} - \frac{a_\nu(z)}{\rho_\nu(z)} \right|^2 \leq 2 \left| \frac{a_\nu - a_\nu(z)}{\rho_\nu^2} \right|^2 + 2 \left(\frac{a_\nu(z)}{\rho_\nu(z)} \right)^2 \left| \frac{\rho_\nu - \rho_\nu(z)}{\rho_\nu^2} \right|^2.$$

For $\rho_\nu(z) > 0$ we have

$$\frac{\alpha_\nu(z)^2}{\rho_\nu(z)^2} \leq A^2.$$
thus

\[E|c_v - c_v(z)|^2 \leq \frac{3}{mg_v^2} \text{Var}(yM_v(x)) + \frac{2A^2}{mg_v^2} \text{Var}(M_v(x)). \]

Consequently

\[E\|Q_T f_\theta - f_z\|^2 \leq C \sum_{v \in T} \frac{1}{mg_v^2} (\text{Var}(yM_v(x)) + \text{Var}(M_v(x))) \varphi_v. \]

By (3) and (4) we get

\[E\|Q_T f_\theta - f_z\|^2 \leq O\left(\sum_{v \in T} \frac{1}{m} \right) = O\left(\frac{N}{m} \right) \]

and this finishes the proof.

Let us note that if we take \(N = m^{\frac{1}{1+2s}} \) for fixed \(s > 0 \) then

\[E\|Q_M f_\theta - f_z\|^2 = O\left(\frac{1}{m} \right)^{\frac{2s}{1+2s}}. \] (9)

To unify approach to linear and nonlinear approach in estimation let us introduce the sets \(A^s \) similar to definition given in [1]. We have that \(f \in A^s \), \(0 < s \) (in fact it makes sense to consider \(0 < s \leq 2 \)) if \(f \in L^2(\varphi_X) \) and there is \(C \) such that for all \(N \) there is a family \(M = \{M_v\}_{v \in T} \) with properties (1) and (2) such that \(N = |T| \) and

\[\| f - Q_M f \| \leq CN^{-s}. \] (10)

By Theorem 1.2, (9) and (10) and since

\[E\|f_\theta - f_z\|^2 \leq 2E\|f_\theta - Q_M f_\theta\|^2 + 2E\|Q_M f_\theta - f_z\|^2 \]

we get the optimal rate of estimation (see [5]). This approach improves the rate of estimation in [(1)].

Theorem 1.2 Let \(f_\theta \in A^s \) and let \(M \) be the family from definition of space \(A^s \) such that \(N = |T| = [m^{\frac{1}{1+2s}}] \). Then

\[E\|f_\theta - f_z\|^2 = O\left(\frac{1}{m} \right)^{\frac{2s}{1+2s}}. \]
Finally, we will show the general version of the Theorem 2.1 in [1]. Our proof is very analogous but partially simplified, so we present it for the sake of completeness. We improve the constant in estimation.

Theorem 1.3 For any family \(M \) and any \(\eta > 0 \)

\[
Prob\{\|Q_M f_\theta - f_x\| > \eta\} \leq 4Ne^{-\frac{c\eta^2}{N}},
\]

where \(N := |T| \) and \(c \) depends only on \(A \).

Proof. By the convexity of the square function we have that

\[
\|Q_M f_\theta - f_x\|^2 \leq \int_X \sum_{v \in T} |c_v - c_v(z)|^2 M_v(x) d\mu_X(x) = \sum_{v \in T} |c_v - c_v(z)|^2 \varrho_v.
\]

This gives

\[
Prob\{\|Q_M f_\theta - f_x\| > \eta\} \leq Prob\{\sum_{v \in T} |c_v - c_v(z)|^2 \varrho_v > \eta^2\}
\]

\[
\leq \sum_{v \in T} Prob\{|c_v - c_v(z)| > \frac{\eta}{\sqrt{N} \varrho_v}\}.
\]

Let us note that

\[
Prob\{|c_v - c_v(z)| > \frac{\eta}{\sqrt{N} \varrho_v}\} = 0
\]

provided \(\varrho_v \leq \frac{\eta^2}{24A^2N} \). To see this it is enough to transform this assumption to the form \(\frac{\eta}{\sqrt{N} \varrho_v} \geq 2A \) and recall that \(|c_v| \) and \(|c_v(z)| \) are less than \(A \).

Therefore we can write

\[
Prob\{\|Q_M f_\theta - f_x\| > \eta\} \leq \sum_{v: \varrho_v > \frac{\eta^2}{4A^2N}} Prob\{|c_v - c_v(z)| > \frac{\eta}{\sqrt{N} \varrho_v}\}.
\]

To estimate the last sum let us note that if

\[
|\alpha_v(z) - \alpha_v| \leq \frac{\varrho_v \eta}{4\sqrt{N} \varrho_v}
\]

and

\[
|\varrho_v(z) - \varrho_v| \leq \frac{\varrho_v \eta}{4A \sqrt{N} \varrho_v}
\]
then (we know that \(\varrho_v > \frac{\eta^2}{4A^2N} \))

\[
|\varrho_v(z) - \varrho_v| \leq \frac{\varrho_v \eta}{4A \sqrt{N} \frac{\eta^2}{4A^2N}} = \frac{1}{2} \varrho_v
\]

(this gives in particular that \(|\varrho_v(z)| \geq \frac{1}{2} \varrho_v \)) and using (7) we get

\[
|c_v(z) - c_v| = \left| \frac{\alpha_v(z)}{\varrho_v(z)} - \frac{\alpha_v}{\varrho_v} \right|
\leq \frac{1}{2} \frac{\varrho_v |\alpha_v(z) - \alpha_v|}{|\varrho_v(z)|} + \frac{|\alpha_v|}{|\varrho_v(z)|} |\varrho_v(z) - \varrho_v|
\leq \frac{1}{2} \frac{\varrho_v \eta}{4N \varrho_v} + \frac{A}{2} \frac{\varrho_v \eta}{4A \sqrt{N} \varrho_v} = \frac{\eta}{\sqrt{N} \varrho_v}.
\]

Therefore

\[
\text{Prob}\left\{ |c_v - c_v(z)| > \frac{\eta}{\sqrt{N} \varrho_v} \right\}
\leq \text{Prob}\left\{ |\alpha_v(z) - \alpha_v| > \frac{\varrho_v \eta}{4 \sqrt{N} \varrho_v} \right\} + \text{Prob}\left\{ |\varrho_v(z) - \varrho_v| > \frac{\varrho_v \eta}{4A \sqrt{N} \varrho_v} \right\}.
\]

If we first use (5), (6) and then the fact that \(\frac{\eta}{\sqrt{N} \varrho_v} \leq 2A \) we get finally

\[
\text{Prob}\{\|Q_M f_\varrho - f_z\| > \eta\} \leq \sum_{v: \varrho_v > \frac{\eta^2}{4A^2N}} \left(2e^{-\frac{3\eta^2}{16N(6A^2 + 4A \sqrt{N} \varrho_v)}} + 2e^{-\frac{3\varrho_v \eta^2}{16A^2N(6 + 2A \sqrt{N} \varrho_v)}} \right)
\leq \sum_{v: \varrho_v > \frac{\eta^2}{4A^2N}} 2 \left(e^{-\frac{3\eta^2}{16N A^2}} + e^{-\frac{3\eta^2}{16A^2N}} \right) \leq 4Ne^{-\frac{3\eta^2}{128A^2}}.
\]

which complete the proof of (11) with \(c = \frac{3}{128A^2} \).

References

[1] Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V. (2005) Universal algorithms for learning theory Part I: piecewise constant functions Journal of Machine Learning Research 6 (2005), 1297-1321.
[2] Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V. (2005) *Universal algorithms for learning theory Part II: piecewise constant functions* Constr. Approx. 26 (2007), no. 2, 127-152.

[3] Birgé, L. *Model selection via testing: an alternative to (penalized) maximum likelihood estimators*. Ann. Inst. H. Poincar Probab. Statist. 42 (2006), no. 3, 273 -325.

[4] Cucker, S. and Smale, S. (2001) *On the mathematical foundations of learning*, Bulletin of AMS 39, 1-49.

[5] DeVore, R., Kerkyacharian G., Picard, D., Temlyakov, V. (2006) *Approximation methods for supervised learning*, Found. Comput. Math. 1, 3-58

Karol Dziedziul,
karol.dziedziul@pg.edu.pl

Barbara Wolnik,
barbara.wolnik@mat.ug.edu.pl