Phylogenetic analysis of pbp genes in treponemes

Tejpreet Chadha, PhD¹* and Adão Alexandre Trindade, PhD, Associate Professor²

¹Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA; ²Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX, USA

Background: β-Lactamases are the main cause of bacterial resistance to penicillin, cephalosporins, and related β-lactam compounds. The presence of the novel penicillin-binding protein (pbp) Tp47 in Treponema pallidum has been reported to be a well-known mechanism for turnover of β-lactam antibiotics. Although, T. pallidum remains sensitive to penicillin, clinically significant resistance to macrolides has emerged in many developing countries. The genome sequence of T. pallidum has shown the presence of genes encoding pbp, but there are no current reports of the presence of mobile plasmids.

Methods: The phylogenetic analysis is used to study the diversity of chromosomal pbp genes and its relatedness to Tp47 in Treponema species.

Results: In our study, genes encoding penicillin-binding proteins that showed significant similarity to each other appeared in separate clusters.

Conclusion: Tp47 showed no substantial similarity to other β-lactamases in treponemes. The relatedness of Treponema denticola to other treponemes, including T. pallidum, and the reported presence of natural mobile antibiotic determinants highlight the importance of investigating the diversity of pbp genes in Treponema species. This will lead to a greater understanding of its potential to develop additional antibiotic resistance via horizontal gene transfer that could seriously compromise the treatment and control of syphilis.

Keywords: Treponema pallidum; penicillin-binding proteins (pbp); Tp47

Received: 27 April 2012; Revised: 8 October 2012; Accepted: 4 December 2012; Published: 15 January 2013
and benefit each other. The motility of spirochetes allows them to occupy unique ecological niches, such as the guts of certain arthropods and the rumen of cows and sheep (4, 10, 11).

During the past three decades, and especially since 2004, there have been many reports of antibiotic resistance in treponemes, especially T. pallidum. Research studies have confirmed antibiotic resistance associated with macrolides such as erythromycin and azithromycin (12–19). The oral treponemes, T. denticola, primarily associated with periodontitis, have shown resistance to tetracycline. The research has also shown that tetB and ermA genes are now extensively distributed in the T. denticola population (20). The most important observation was that three of the T. denticola isolates were able to transfer their ermA determinants to Enterococcus faecalis recipients (20–22). The presence of a natural mobile antibiotic resistance determinant in the genus Treponema is very alarming as it could move antibiotic resistant genes between different treponema species. In another study, with Treponema hyodysenteriae, intestinal treponemes, 4 of 32 isolates were found to be resistant to penicillin and produced β-lactamases (23). Mobashery et al. reported penicillin-binding protein Tp47 in T. pallidum with an ability of this protein to turn over β-lactam antibiotics. Tp47 is strongly inhibited by products of the β-lactamase reaction, and, therefore, T. pallidum remains sensitive to penicillin (24). As the number of cases increase, there could be a potential for mutations in Tp47 or the presence of a mobile element that can cause multidrug resistance. The present state of knowledge on the diversity of pbp genes among clinical and ecological groups of treponemes has not been studied. Examining the natural patterns of occurrence of pbp genes in treponemes is an important starting point in understanding how these genes are related to each other and will help to uncover the ecological and evolutionary relationships existing between them.

Results and discussion
Treponemes are difficult to culture in vitro, a hindrance to experimental approaches such as mutational analysis to identify antibiotic resistance determinants. The report of azithromycin resistance in penicillin allergic patients has emerged as a clinical and public health challenge worldwide. T. pallidum continues to be one of the most penicillin-susceptible microorganisms, but mutation in Tp47 or presence of mobile plasmids with genes encoding β-lactamases could be one of the contributing factors leading to future penicillin resistance in T. pallidum. The genome of treponemes, Treponema azotonutricium ZAS-9 (25); Treponema brennaborense DD5/3, DSM 12168; T. denticola ATCC 35405 (26); T. pallidum (pallidum Nichols) (27); Treponema pallidum pallidum SS14 (28); Treponema paraluisnuciculari Cuniculi A (29); and T. primitia ZAS-2 (25), are analyzed for the presence of diversity of pbp genes. Phylogenetic calculations using maximum likelihood (ML) methods (30) are shown in Fig. 1. The novel penicillin-binding protein gene Tp47, Treponeme species (Gene ID 11850998, Gene ID 10884263), forms a separate cluster and does not show substantial similarity to any other pbp genes among the Treponema species used in this study. The analysis of genome sequence of T. pallidum suggests that it lacks genetic elements such as plasmids, bacteriophage, and transposons that are commonly associated with horizontal gene transfer mechanisms. The pbp gene for T. denticola ATTC 35405 (Gene ID 2739572) has shown 68% similarity to T. paraluisnuciculari cuniculi A (Gene ID 10884451) and 65% to T. brennaborense DD5/3, DSM 12168 (Gene ID 10580463). T. paraluisnuciculari is the causative agent of rabbit venereal spirochetosis (29). T. denticola, an oral spirochete associated with periodontal disease, has been reported for the presence of natural mobile antibiotic resistance determinant (20). T. brennaborense DD5/3, DSM 12168 (Gene ID 10580463) have shown 68% similarity to T. pallidum (pallidum Nichols) (Gene ID 2611355). T. brennaborense has been isolated from a cow suffering from digital dermatitis. T. denticola ATTC 35405 (Gene ID 2739453) has shown 66% similarity to T. primitia ZAS-2 (Gene ID 10681574) and T. paraluisnuciculari Cuniculi A (Gene ID 10884181). T. primitia has been isolated from termite hindguts. T. azotonutricium ZAS-9 does not show substantial similarity to any pbp genes among treponemes used in this study.

Experimental section
The list of pbp genes for treponemes with complete sequenced genomes was obtained from the NCBI (National Center for Biotechnology Information) database as listed in Tables 1 and 2. The Molecular Evolutionary Genetics Analysis version 5.05 (MEGA5) software program was used for the statistical analyses (30). The BLAST (basic local alignment search tool) algorithm was used to calculate the percentage of similarity between known sequences. The phylogenetic tree was constructed via the ML method, using the Kimura 2-parameter model and a discrete gamma distribution with five categories for capturing non-uniformity of evolutionary rates (K2+G). The K2+G model was selected by virtue of the fact that it had the lowest value of BIC (Bayesian information criterion) (30, 31). One thousand bootstrap trees were generated to determine bootstrap confidence levels (32). The resulting (bootstrap) consensus tree was condensed with values >50% as shown in Fig. 1. The gene sequences used in the study are available for electronic retrieval from the Gene Bank nucleotide sequence database (30).
Conclusions

The bifunctional pbp Tp47 had been known for the mechanism of turnover for β-lactam antibiotics in T. pallidum (24, 33, 34). Tp47 has showed no substantial similarity to other pbp genes in treponemes. Analysis of the T. pallidum genome sequence predicted the presence of pbp genes. Cha et al. (24) proposed that if a mutant variant of Tp47 emerges that overcomes the product inhibition of its β-lactamase activity, resistance to penicillin will emerge in T. pallidum. However, this requires a multistep mutational process, which is rarer than the single point mutations observed with macrolide resistance. There are no reports of the presence of mobile plasmids in T. pallidum although the emergence of a natural mobile antibiotic resistant in T. denticola provides no guarantee that it will not move to other Treponema species, including T. pallidum. The diversity among pbp genes across the phylogenetic tree is evident among treponemes that may be representative of their ecological niches. Interestingly, pbp gene for T. denticola (Gene ID 2739572) has shown relatedness to other treponemes, including T. paraluiscuniculi A (Gene ID 10884451); T. brennaborense DDS5/3, DSM 12168 (Gene ID 2739572); and T. pallidum (Gene ID 2611355); and T. primitia (Gene ID 10681574). Thus, the reported presence of a mobile element in T. denticola and the possibility of transfer of antibiotic resistant plasmid may be potentially dangerous, as it could provide a first step toward the acquisition of

Table 1. Summary of pathogenic and saprophytic Treponemes

Taxa and strain information	NCBI Taxon ID
Treponema azotonutricium ZAS-9	545695
Treponema brennaborense DDS5/3, DSM 12168	906968
Treponema denticola ATCC 35405	243275
Treponema pallidum pallidum Nichols	243276
Treponema pallidum pallidum SS14	455434
Treponema paraluiscuniculi Cuniculi A	545776
Treponema primitia ZAS-2	545694

Citation: Infection Ecology and Epidemiology 2013, 3: 18636 - http://dx.doi.org/10.3402/iee.v3i0.18636
multidrug resistance. The *php* genes for treponemes investigated here could be used for further studies as *Treponema* species are strongly implicated in disease progression. The phylogenetic data presented in this study demonstrate that this organism may possess the potential to acquire antibiotic resistance in the future.

Acknowledgements

The sequence data were obtained from National Center for Biotechnology Information database website (http://www.ncbi.nlm.nih.gov/).

Conflict of interest and funding

The authors have not received any funding or benefits from industry or elsewhere to conduct this study.

Table 2. Strains with accession numbers used in this study

GenBank, accession no.	Bacterial strain
Gene ID: 2611355	Treponema pallidum pallidum Nichols
Gene ID: 6333587	Treponema pallidum pallidum SS14
Gene ID: 10884451	Treponema paraluiscuniculi Cuniculi A
Gene ID: 2739572	Treponema denticola ATTC 35405
Gene ID: 10681574	Treponema primitia ZAS-2
Gene ID: 10580463	Treponema brennaborense DDS/2, DSM 12168
Gene ID: 10678178	Treponema azotonutricium ZAS-9
Gene ID: 10581047	Treponema brennaborense DDS/2, DSM 12168
Gene ID: 10681574	Treponema primitia ZAS-2
Gene ID: 2739453	Treponema denticola ATTC 35405
Gene ID: 6333710	Treponema pallidum pallidum SS14
Gene ID: 10884263	Treponema paraluiscuniculi Cuniculi A
Gene ID: 11850998	Treponema pallidum pallidum DAL-1
Gene ID: 2739199	Treponema denticola ATTC 35405
Gene ID: 10580253	Treponema brennaborense DDS/2, DSM 12168
Gene ID: 10681344	Treponema primitia ZAS-2
Gene ID: 10884397	Treponema paraluiscuniculi Cuniculi A
Gene ID: 2610950	Treponema pallidum pallidum Nichols
Gene ID: 6333660	Treponema pallidum pallidum SS14
Gene ID: 2739129	Treponema denticola ATTC 35405
Gene ID: 10681355	Treponema primitia ZAS-2
Gene ID: 10675593	Treponema azotonutricium ZAS-9
Gene ID: 10677805	Treponema azotonutricium ZAS-9
Gene ID: 10579770	Treponema brennaborense DDS/2, DSM 12168
Gene ID: 10677463	Treponema azotonutricium ZAS-9
Gene ID: 2740551	Treponema denticola ATTC 35405

References

1. Charon NW, Goldstein SF. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 2002; 36: 47–73.
2. Antal GM, Lukehart SA, Meheus AZ. The endemic treponematoses. Microbes Infect 2002; 4: 83–94.
3. Nordhoff M, Taras D, Macha M, Tedin K, Busse HJ, Wieler LH. Treponema berlinskiense sp. nov., and Treponema porcinum sp. nov., novel spirochaetes isolated from porcine faeces. Int J Syst Evol Microbiol 2005; 55: 1675–80.
4. Berlanga M, Paster BJ, Guerrero R. Coevolution of symbiotic spirochete diversity in lower termites. Int Microbiol 2007; 10: 133–9.
5. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004; 101: 11030–5.
6. Levy D, Yoshida R, Pachter L. Beyond pairwise distances: neighbor-joining with phylogenetic diversity estimates. Mol Biol Evol 2006; 23: 491–8.
7. de Melo FL, de Mello JC, Fraga AM, Nunes K, Eggers S. Syphilis at the crossroad of phylogenetics and paleopathology. PLoS Negl Trop Dis 2010; 4: e575.
8. Lieburn TG, Schmidt TM, Breznak JA. Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1999; 1: 331–45.
9. Lieburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA. Nitrogen fixation by symbiotic and free-living spirochetes. Science 2001; 292: 2495–9.
10. Lo N, Evans TA. Phylogenetic diversity of the intracellular symbiont Wolbachia in termites. Mol Phylogenet Evol 2007; 44: 461–6.
11. Lafort RE, Lukehart SA. Biological basis for syphilis. Clin Microbiol Rev 2006; 19: 29–49.
12. (CDC) CIDC/Sp. Azithromycin treatment failures in syphilis infections—San Francisco, California, 2002–2003. MMWR Morb Mortal Wkly Rep 2004; 53: 197–8.
13. Lukehart SA, Godornes C, Molini BJ, Sonnett P, Hopkins S, Mulcahy F, et al. Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med 2004; 351: 154–8.
14. Pandori MW, Gordon A, Castro L, Engelman J, Siedner M, Lukehart S, et al. Detection of azithromycin resistance in Treponema pallidum by real-time PCR. Antimicrob Agents Chemother 2007; 51: 3425–30.
15. Katz KA, Klausner JD. Azithromycin resistance in Treponema pallidum. Curr Opin Infect Dis 2008; 21: 83–91.
16. Mabey D. Azithromycin resistance in Treponema pallidum. Sex Transm Dis 2009; 36: 777–8.
17. Van Damme K, Behets F, Ravelomanana N, Godornes C, Khan M, Randrianasolo B, et al. Evaluation of azithromycin resistance in Treponema pallidum specimens from Madagascar. Sex Transm Dis 2009; 36: 775–6.
18. Zhou P, Li K, Lu H, Qian Y, Gu X, Gong W, et al. Azithromycin treatment failure among primary and secondary syphilis patients in Shanghai. Sex Transm Dis 2010; 37: 726–9.
19. Ison CA. Antimicrobial resistance in sexually transmitted infections in the developed world: implications for rational treatment. Curr Opin Infect Dis 2012; 25: 73–8.
20. Roberts MC, Chung WO, Roe DE. Characterization of tetracycline and erythromycin resistance determinants in *Treponema denticola*. Antimicrob Agents Chemother 1996; 40: 1690–4.
21. Simonson LG, Goodman CH, Bial JJ, Morten HE. Quantitative relationship of Treponema denticola to severity of periodontal disease. Infect Immun 1988; 56: 726–8.
22. Feno JC. Treponema denticola interactions with host proteins. Oral Microbiol 2012; 4: 9929.
23. Tompkins DS, Millar MR, Heritage J, West AP. Beta-lactamase production by intestinal spirochaetes. J Gen Microbiol 1987; 133: 761–5.
24. Cha JY, Ishiwata A, Mobashery S. A novel beta-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. J Biol Chem 2004; 279: 14917–21.
25. Rosenthal AZ, Matson EG, Eldar A, Leadbetter JR. RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME J 2011; 5: 1133–42.
26. Seshadri R, Myers GS, Tettelin H, Eisen JA, Heidelberg JF, Dodson RJ, et al. Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A 2004; 101: 5646–51.
27. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281: 375–88.
28. Matejková P, Streuhal M, Smajs D, Norris SJ, Palzkill T, Petrošino JF, et al. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol 2008; 8: 76.
29. Smajs D, Zobaníková M, Streuhal M, Čejková D, Dugan-Rocha S, Pospíšilová P, et al. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay. PLoS One 2011; 6: 20415.
30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731–9.
31. Nei M, Kumar S. Molecular evolution and phylogenetics. New york: Oxford University Press; 2000, pp. 333.
32. Trindade A, Chadha T. Phylogenetic Analysis of Genetic Diversity of Hemolysins in Leptospira. J Proteomics Bioinform 2012; 5(7): 152–4.
33. Houston S, Hof R, Francescutti T, Hawkes A, Boulanger MJ, Cameron CE. Bifunctional role of the Treponema pallidum extracellular matrix-binding adhesin Tp0751. Infect Immun 2011; 79: 1386–98.
34. Zhang W, Fisher JF, Mobashery S. The bifunctional enzymes of antibiotic resistance. Curr Opin Microbiol 2009; 12: 505–11.

*Tejpreet Chadha
Department of Biological Sciences
Texas Tech University
Lubbock, TX, USA
Email: preeti.chadha@ttu.edu