The burden of road traffic crashes, injuries and deaths in Africa: a systematic review and meta-analysis

Davies Adeloye, a Jacqueline Y Thompson, b Moses A Akanbi, a Dominic Azuh, a Victoria Samuel, c Nicholas Omoregbe a & Charles K Ayo d

Objective To estimate the burden of road traffic injuries and deaths for all road users and among different road user groups in Africa.

Methods We searched MEDLINE, EMBASE, Global Health, Google Scholar, websites of African road safety agencies and organizations for registry- and population-based studies and reports on road traffic injury and death estimates in Africa, published between 1980 and 2015. Available data for all road users and by road user group were extracted and analysed. We conducted a random-effects meta-analysis and estimated pooled rates of road traffic injuries and deaths.

Findings We identified 39 studies from 15 African countries. The estimated pooled rate for road traffic injury was 65.2 per 100,000 population (95% confidence interval, CI: 60.8–69.5) and the death rate was 16.6 per 100,000 population (95% CI: 15.2–18.0). Road traffic injury rates increased from 40.7 per 100,000 population in the 1990s to 92.9 per 100,000 population between 2010 and 2015, while death rates decreased from 19.9 per 100,000 population in the 1990s to 9.3 per 100,000 population between 2010 and 2015. The highest road traffic death rate was among motorized four-wheeler occupants at 5.9 per 100,000 population (95% CI: 4.4–7.4), closely followed by pedestrians at 3.4 per 100,000 population (95% CI: 2.5–4.2).

Conclusion The burden of road traffic injury and death is high in Africa. Since registry-based reports underestimate the burden, a systematic collation of road traffic injury and death data is needed to determine the true burden.

Introduction

Road traffic injuries are among the leading causes of death and life-long disability globally. 1 The World Health Organization (WHO) reports that about 1.24 million people die annually on the world’s roads, with 20–50 million sustaining non-fatal injuries. 1,2 Globally, road traffic injuries are reported as the leading cause of death among young people aged 15–29 years and are among the top three causes of mortality among people aged 15–44 years. 1 The Institute for Health Metrics and Evaluation (IHME) estimated about 907,900, 1.3 million and 1.4 million deaths from road traffic injuries in 1990, 2010 and 2013, respectively. 3

In Africa, the number of road traffic injuries and deaths have been increasing over the last three decades. 4 According to the 2015 Global status report on road safety, the WHO African Region had the highest rate of fatalities from road traffic injuries worldwide at 26.6 per 100,000 population for the year 2013. 5–7 In 2013, over 85% of all deaths and 90% of disability adjusted life years (DALYs) lost from road traffic injuries occurred in low- and middle-income countries, which have only 47% of the world’s registered vehicles. 8 The increased burden from road traffic injuries and deaths is partly due to economic development, which has led to an increased number of vehicles on the road. 9 Given that air and rail transport are either expensive or unavailable in many African countries, the only widely available and affordable means of mobility in the region is road transport. 10,11 However, the road infrastructure has not improved to the same level to accommodate the increased number of commuters and ensure their safety and as such many people are exposed daily to an unsafe road environment. 12–14

The 2009 Global status report on road safety presented the first modelled regional estimate of a road traffic death rate, which was used to statistically address the underreporting of road traffic deaths by countries with an unreliable death registration system. 1 In the 2009 report, Africa had the highest modelled fatality rate at 32.2 per 100,000 population, in contrast to the reported fatality rate of 7.2 per 100,000 population. 2 The low reported death rate reflects the problem of missing data due to non-availability of road traffic data systems, which has a direct impact on health planning including prehospital and emergency care and other responses by government agencies.

This study aimed to review existing literature on published studies, registry-based reports and unpublished articles on the burden of road traffic injuries and deaths in the African continent to generate a continent-wide estimate of road traffic injuries and deaths for all road users and by road user type (pedestrians, motorized four-wheeler occupants, motorized two–three wheeler users and cyclists).

Methods

We searched MEDLINE, EMBASE, Global Health, Google Scholar, websites of road safety agencies and relevant organizations within Africa for articles published between 1980 and 2015 (Fig. 1). The search strategy and terms are presented in Box 1 (available at: http://www.who.int/bulletin/volumes/94/7/15-163121). There was no language restriction.

Eligibility criteria

We included a study in the review if it met the following criteria: (i) conducted between 1980 and 2015 and that the
study was done in an African country; (ii) clearly referred to road traffic crashes, injuries or deaths; (iii) referred data came from a population- or registry-based data system; (iv) registry-based hospital data with the underlying cause of death data coded in the International Classification of Disease and Related Health Problems, 10th revision (ICD-10), with codes V01–V89; (v) directly attempted to estimate the number or rate of road traffic crashes, injuries or deaths in a particular African country or the region as a whole; or (vi) provided any other information (e.g. response time, to severe injuries with lifelong disabilities.2 For non-fatal injuries, the case definition ranges from 30 days of the crash.2 For non-fatal injuries from a road traffic crash.5

Death is defined as a road traffic crash in which one or more persons involved in the crash died immediately or within 30 days of the crash.2 For non-fatal injuries, the case definition ranges from minor injuries with disabilities of short duration, to severe injuries with lifelong disabilities.

Quality assessment

For each full text accessed, we checked if the study method had flaws in the design and execution. For the registry-based studies, we examined the study design, completeness, the appropriateness of statistical and analytical methods employed and if the limitations were explicitly stated. For each study, we assessed if the reported sample size or study population was appropriate to provide a representative estimate and if the heterogeneities within and between population groups were explicitly stated. For each study, we assessed if the reported sample size or study population was appropriate to provide a representative estimate and if the heterogeneities within and between population groups were under the burden and determinants of road traffic crashes and policy response in the African region.

We excluded studies if they: (i) referred to deaths by other means of transport including water, air and other unspecified transport means; (ii) were mainly reviews, viewpoints and commentaries; (iii) did not have a clearly defined study design, data capture and analysis method; and (iv) had not clearly defined and consistently applied a case definition of a road traffic crash, injury or fatality.

For this study, a crash is defined as a road traffic collision that resulted in an injury or fatality. Injury refers to non-fatal cases from a road traffic crash.5

Data collection process

Available data from all selected studies were extracted twice, compiled and stored in a spreadsheet. For each study, data on the country, study period, study design, sample size, mean age and case definitions were extracted (Table 1). Reported road traffic crash, injury and death data for the overall study population and for the various categories of road users were extracted. The data were grouped by study setting and year of study, with corresponding age and sex categories.

Data analysis

All extracted data on road traffic crashes, injuries and deaths were converted to rates per 100 000 population. Studies were subdivided into population- and registry-based studies and analysed separately for all road users and by road user category. A random effects meta-analysis was conducted on extracted road traffic crash, injury and death rates. To give a better understanding of the data distribution and comparisons with the pooled estimates and the confidence intervals, we further presented the range, median and data points within each data set. All statistical analyses were done in Excel 2010 (Microsoft, Redmond, United States of America) and Stata version 13.1 (StataCorp. LP, College Station, United States of America).

Results

The review identified 39 studies reporting on 15 African countries (Table 1). Six were population-based and the remaining 33 were registry-based studies. Two studies were from Ethiopia,12,13 six from Ghana,11–17 nine from Nigeria,18–24 seven from South Africa12–20 and five from the United Republic of Tanzania.15–17 The remaining 10 studies were from one of the following countries: Algeria,19 Cameroon,20 Cote d’Ivoire,21 Guinea,22 Kenya,12 Libya,20 Malawi,21 Mozambique,22 Rwanda and Uganda.14 More than half (22) of the studies were conducted after the year 2000. The study period ranged from one year to 12 years, with a mean of 4.5 years. The full data set is available from the corresponding author.

Reported rates

From all registry-based studies, Nigeria recorded the highest and lowest total crash rate at 716.57 per 100 000 population and 2.9 per 100 000 population, in 1990 and 2011, respectively.39,42 Ethiopia recorded the highest death rate at 81.6 per 100 000 population in 2011,13 while...
Table 1. Studies on burden of road traffic crashes, injuries and deaths in Africa, as identified through a systematic review of the literature, 1980–2015

Reference	Study period	Country, study setting	Study design	Study type	Source of data	Type of data	Case definition
Sobngwi-Tambekou8	2004–2007	Cameroon, Yaoundé-Douala	Retrospective study	Registry-based	Police records	Death	Deaths within 30 days of a crash
Twagirayezu9	2005	Rwanda, Kigali	Descriptive and cross-sectional	Registry-based	Hospital records	Death and injury	Deaths at the site of a road crash or injured patients presenting to a hospital
Abegaz10	2012–2013	Ethiopia, Addis-Ababa	Capture–recapture	Registry-based	Traffic reports	Death and injury	Injuries and deaths resulting from a road crash
Mekonnen11	2007–2011	Ethiopia, Amhara region	Retrospective and descriptive study	Registry-based	Police road crash records	Death and injury	Injuries and deaths resulting from a road crash
Bachani12	2004–2009	Kenya	Retrospective and observational	Registry-based	Police (Kenya traffic police); vital registration (National Vital Registration System)	Death	Deaths within 30 days of a crash
Ngallaba13	2009–2012	United Republic of Tanzania, Mwanza	Retrospective design	Registry-based	Hospital ward register and case notes, medical record; police records	Death	Deaths at the site of road crash or injured patients presenting to a hospital
Zimmerman14	2011–2012	United Republic of Tanzania	Cross-sectional	Population-based	Resident population	Death	Deaths within 30 days of a crash
Musuru15	1990–2000	United Republic of Tanzania	Retrospective and descriptive	Registry-based	Police records	Death	Deaths at crash scene and outside scene
Barengo16	1990–2001	United Republic of Tanzania, Dar es Salaam	Cross-sectional	Registry-based	Routine police record	Death and injury	Injuries and deaths resulting from a road crash
Kilale17	1995–1996	United Republic of Tanzania, Kilwa-Bwawani and Chalinze-Segera	Retrospective and descriptive	Registry-based	Police road traffic crash records from the Coast Region Traffic Office	Death	Death at crash scene and outside scene
Nakitto18	2004–2005	Uganda, Kawempe	Cohort	Population-based	35 primary schools followed for three academic school year terms	Death and injury	Road traffic accidents with injuries and deaths on the spot and within 30 days of a crash
Bezzaoucha19	1986	Algeria	Cohort	Population-based	Resident population	Death	Fatalities defined as deaths at crash scene or outside scene
Bodala20	2010–2011	Libya, Benghazi	Retrospective	Registry-based	Hospital records	Death and injury	Deaths at the site of road crash, injured patients presenting to hospital immediately, or delayed presentation of a previously stable patient with fresh complaints
Samuel21	2008–2009	Malawi	Capture–recapture	Registry-based	Police and hospital records	Death	Deaths within 30 days of crash

(continues . .)
Reference	Study period	Country, study setting	Study design	Study type	Source of data	Type of data	Case definition
Romão22	1990–2000	Mozambique	Retrospective	Registry-based	Transport records (National Institute for Road Safety)	Death and injury	Injuries and deaths at the site of road crash
Olukoga23	2003	South Africa	Retrospective and descriptive	Registry-based	Transport records (Department of Transport, Pretoria)	Death	Deaths within 30 days of crash
Olukoga24	2002–2003	South Africa	Retrospective and descriptive	Registry-based	National Statistics Office (Durban municipality)	Death	Deaths within 30 days of crash
Meel25	1993–1999	South Africa	Retrospective	Registry-based	Mortuary (medico-legal autopsy records)	Death	Deaths within 30 days of crash
Lehohla26	2001–2006	South Africa	Retrospective	Registry-based	National Statistics Office	Death and injury	Injuries and deaths resulting from road crash
Hobday27	2007	South Africa, eThekwini	Retrospective	Registry-based	Transport records (eThekwini transport authority database)	Death and injury	Child pedestrian injuries and deaths resulting from road crash
Kyei28	2004–2008	South Africa, Limpopo	Retrospective	Registry-based	Transport management cooperation records	Death and injury	Injuries and deaths resulting from road crash
Meel29	1993–2004	South Africa, Mthatha	Retrospective	Registry-based	Mortuary (death records and autopsies from Mthatha and Ngqeleni magisterial districts)	Death	Deaths within 30 days of crash
Amonkou30	2001–2011	Cote d’Ivoire, Abidjan	Retrospective	Registry-based	Hospital records	Death and injury	Injuries and deaths resulting from road crash
Ackaah31	2005–2007	Ghana	Retrospective and descriptive	Registry-based	Traffic reports, hospital records	Death	Fatalities where one or more persons are killed as a result of a crash and where the death occurs within 30 days of the crash
Afukaar32	1994–1998	Ghana	Retrospective and descriptive	Registry-based	Reported traffic crash data	Death and injury	Death within 30 days, serious injuries (hospitalization for > 24hrs), slight injuries (hospitalization for < 24hrs)
Guerrero33	2009	Ghana	Population-based	Resident population	Death and injury	Fatalities within 30 days of crash	
Mock34	1999	Ghana	Survey	Population-based	Death and injury	Road crash with injuries and deaths	
Aidoo35	2004–2010	Ghana	Registry-based	Traffic reports	Death and injury	Pedestrian deaths and injuries from hit-and-run cases	
Kudebong36	2004–2008	Ghana, Bolgatanga	Retrospective	Registry-based	Traffic reports	Death and injury	Deaths and injuries resulting from motorcycle road crash
Mamady37	2011	Guinea	Retrospective	Registry-based	Health ministry information	Death	Deaths as recorded in the country’s death notification form and coded using International Classification of Diseases, ninth revision (ICD-9)
Ezenwa38	1980–1983	Nigeria	Retrospective	Registry-based	Police records from federal police headquarters	Death	Death at scene of accident and outside scene
the lowest death rate was recorded in Nigeria at 1.64 per 100,000 population in 2007.43

From the available population-based studies, Nigeria reported the highest number of road traffic injury and death rates at 4120 per 100,000 population and 160 per 100,000 population, respectively. The road traffic injury rate is the highest recorded in any single study in Africa. Algeria and Ghana also reported high road traffic injury rates at 700 and 938 per 100,000 population, respectively.19,34 Only six studies reported male and female road traffic crash estimates,14,19,21,22,29,31 with Algeria and South Africa recording the highest number of casualties.

Pooled rates

Table 2 presents the estimated pooled rates for the African continent. For total crashes, the pooled rate was 52.8 per 100,000 population, with the median at 39.7 per 100,000 population. The pooled fatal crash rate was estimated at 9.6 per 100,000 population with a median at 4.8 per 100,000 population. Pooled crash injury and death rates were estimated at 65.2 injuries and 16.6 deaths with medians of 38.9 injuries and 7.9 deaths per 100,000 population, respectively (Fig. 2 and Fig. 3). From 1990 to 2015, road traffic injury rates increased from 40.7 to 92.9 per 100,000 population (Table 3). In contrast, death rates decreased from 19.9 to 9.27 per 100,000 population (Fig. 4 and Fig. 5). Applying these figures and using the United Nations (UN) population estimates47 for the region, the pooled estimate came to 106,000 road traffic deaths and 1.1 million injuries in 2015, compared with 126,000 deaths and 260,000 injuries in 1990.

By road user category

From individual studies, road traffic death rates among pedestrians ranged from 0.26 per 100,000 population in Nigeria in 2007 to 13 per 100,000 population in South Africa in 2003.43,24 The death rate among motorized four-wheeler occupants was lowest in Nigeria in 2007 and highest in South Africa in 1999 at 0.74 and 6.3 per 100,000 population, respectively.43,25 A 2007 study from Cameroon reported the lowest road traffic death rate for motorized two–three-wheeler occupants and cyclists and a 2012

Table 2 presents the estimated pooled rates for the African continent. For total crashes, the pooled rate was 52.8 per 100,000 population, with the median at 39.7 per 100,000 population. The pooled fatal crash rate was estimated at 9.6 per 100,000 population with a median at 4.8 per 100,000 population. Pooled crash injury and death rates were estimated at 65.2 injuries and 16.6 deaths with medians of 38.9 injuries and 7.9 deaths per 100,000 population, respectively (Fig. 2 and Fig. 3). From 1990 to 2015, road traffic injury rates increased from 40.7 to 92.9 per 100,000 population (Table 3). In contrast, death rates decreased from 19.9 to 9.27 per 100,000 population (Fig. 4 and Fig. 5). Applying these figures and using the United Nations (UN) population estimates47 for the region, the pooled estimate came to 106,000 road traffic deaths and 1.1 million injuries in 2015, compared with 126,000 deaths and 260,000 injuries in 1990.
study from the United Republic of Tanzania reported the highest, at 0.12 and 3.12 per 100,000 population, respectively.8,13 The pooled rates showed that motorized four-wheeler occupants had the highest road traffic death rate, closely followed by pedestrians. The pooled road traffic injury and death rates among pedestrians were 10.8 and 3.4 per 100,000 population, respectively. Among motorized four-wheeler occupants, the pooled road traffic injury and death rates were 37.2 and 5.9 per 100,000 population, respectively. Among motorized two–three wheeler occupants and cyclists, the pooled injury and death rates were 16.1 and 1.3 per 100,000 population, respectively (Table 2).

Discussion

Our study reflects the difficulties that many experts have noted in describing the extent of road traffic crashes, injuries and deaths in Africa, for which modeling based on scarce and variable information, may not necessarily provide a reliable estimate.8,13,15 Moreover, registry-based reports may grossly underestimate the burden of road traffic crashes. Population-based studies consistently report a higher fatality rate.3,14,29 For example, a population-based survey conducted in Ghana in 1998 reported an injury rate of 940 per 100,000 population,34 while another registry-based study in the same country for the same year estimated 32 per 100,000 population.31 The Nigerian Federal Road Safety Corps estimated 3.7 deaths per 100,000 population for Nigeria in 2009.39 In contrast, a popu-

Table 2. Pooled road traffic crash, injury and death estimates by road user type, African, 1980–2015

Road user type	Total crash rate	Fatal crash rate	Injury rate	Death rate
All road users				
Pooled rate (95% CI)	52.8 (49.0–56.6)	9.6 (8.6–10.7)	65.2 (60.8–69.5)	16.6 (15.2–18.0)
Median (range of estimates)	39.7 (2.7–716.6)	4.8 (0.7–186.1)	38.9 (8.1–491.8)	7.9 (1.6–8.1)
No. of data points	49	30	59	95
Pedestrians				
Pooled rate (95% CI)				
Median (range of estimates)				
No. of data points				
Four-wheelers				
Pooled rate (95% CI)				
Median (range of estimates)				
No. of data points				
Two–three wheelers/cyclists				
Pooled rate (95% CI)				
Median (range of estimates)				
No. of data points				

CI: confidence interval.

- Defined as number of all road traffic crashes (fatal and non-fatal) per 100,000 population.
- Defined as number of fatal road traffic crashes per 100,000 population.
- Defined as number of non-fatal road traffic injuries per 100,000 population.
- Defined as number of fatal road traffic injuries per 100,000 population.

Note: There were no studies with crash rate and fatal crash rate to estimate for pedestrians, four-wheelers and two–three wheelers/cyclists.
Fig. 3. Pooled fatal road traffic crash rate, Africa, 1980–2015

Note: In the box plot, the boxes represent the interquartile range of road traffic injury rates where the middle 50% (25–75%) of data are distributed; the bars represent road traffic injury rates outside the middle 50% (<25% or >75%); the dots represent specific road traffic injury rates which were a lot higher than normally observed over the study period (outliers) and the lower, middle and upper horizontal lines represent the minimum, median and maximum road traffic injury rates (excluding outliers), respectively.

Table 3. Ten year pooled road traffic injury and death rate estimate, Africa, 1980–2015

Ten year range	Injury rate^a (95% CI)	Death rate^b (95% CI)
1980–1989	48.4 (44.5–52.2)	12.6 (11.7–13.6)
1990–1999	40.7 (35.8–45.6)	19.9 (14.8–25.0)
2000–2009	75.6 (70.0–83.1)	16.5 (14.5–18.6)
2010–2015^c	92.9 (84.8–101.0)	9.3 (8.2–10.3)

CI: confidence interval.
^a Defined as number of non-fatal road traffic injuries per 100 000 population.
^b Defined as number of fatal road traffic injuries per 100 000 population.
^c Covers only five years.
In Ghana, South Africa and Zambia, 52, are passengers of commercial vehicles these motorized four-wheeler occupants are involved in road traffic crashes.51, as noted a relatively improving prehospital and emergency response system,51 as noted in Ghana, South Africa and Zambia.52,53 It is important to note that many deaths may be missed or not recorded, while pedestrian crashes may be missed.4,35 However, death figures may be decreasing due to a relatively improving prehospital and emergency response system.49,50 Underreporting especially of vulnerable road users, poor or absent links between reporting agencies, exemptions from reporting, poor sampling techniques and varying case definitions have been indicated as limitations of reported data. The different rates of road traffic crash, injury and death reported in this study may be mostly related to surveillance system reporting errors and biases. In many African countries, there are no effective vital registration and active surveillance systems to capture the outcome of a road traffic crash and police data is the main source of traffic crash data.1,2 However, data from police sources tend to under-report injuries and deaths due to poor traffic police response and follow up on injured victims and varying traffic fatality definitions for real-time and chronologic data capture.1

Our study has the following limitations. Population-based studies on road traffic crashes in Africa, which would have been more reliable than registry-based studies, were not available. Population-based studies may have given insights on the extent of road users’ exposure to traffic risk, mode and frequency of road travel, distance travelled, number of road commuters and the conditions of the road. In the absence of such information, we have not based our estimates on an appropriate travel exposure denominator, thus limiting an understanding of the reasons behind the reported road traffic crash, injury and death rates and trends.

The available registry-based studies varied in their quality. They reported questionable values and trends and provided uncertain estimates. Lack of appropriate case definition for road traffic fatalities and incomplete breakdown of road traffic crash estimates by road user type were major limitations. Additionally, the non-fatal injury figures reported by the different studies varied with respect to severity and outcome. These variations could have affected our meta-analyses.

While we applied the UN population data for Africa to estimate rates where relevant national reference population data were unavailable, there were no comparable data to use for subnational studies. In addition, the data employed for this analysis were generated only from 15 countries, which is relatively small to accurately reflect the overall situation in the region. Hence, our estimates should be interpreted against these limitations.

In conclusion, our study suggests that the burden of road traffic injuries in Africa is high and there is an underestimation of road traffic fatalities. Improved road traffic injury surveillance across African countries may be useful in identifying relevant data gaps and developing contextually feasible prevention strategies in these settings.

Competing interests: None declared.
南非道路交通事故、伤害和死亡负担：系统评价和元分析

目的
旨在为非洲所有的道路用户以及不同道路用户人群评估道路交通伤害和死亡负担。

方法
我们检索了联机医学文献分析和检索系统（MEDLINE）、荷兰医学文摘数据库（EMBASE）、全球健康（Global Health）、谷歌学术（Google Scholar）和非洲道路安全机构和组织的网站，收集了1980年至2015年期间发布的关于非洲道路交通事故、伤害和死亡估计的基于记录信息和人群的研究和报告。同时，摘取了针对所有道路用户以及道路用户人群提供的现有数据，并对其进行了分析。我们开展了随机效应元分析，并且评估了道路交通伤害和死亡的总发生率。

结果
我们从15个非洲国家确定了39项研究。道路交通伤害的总发生率估计为每10万人中65.2例（95% 置信区间，CI：60.8–69.5）死亡率为每10万人中16.6例（95% CI：15.2–18.0）。与20世纪90年代相比，在2010年至2015年期间，道路交通伤害率从每10万人中40.7例上升到每10万人中92.9例，同期，死亡率从每10万人中19.9例减少到每10万人中9.3例。道路交通死亡发生率最高的人群是四轮机动车车主，为每10万人中5.9例（95% CI：4.4–7.4），紧随其后的是行人，为每10万人中3.4例（95% CI：2.5–4.2）。

结论
非洲道路交通事故和伤害负担很重。由于基于登记信息的报告会低估负担程度，因此需要对道路交通伤害和死亡数据进行系统整理，以确定真实的负担程度。
Le taux le plus élevé de tués sur les routes correspond aux occupants de véhicules motorisés à quatre roues, avec 5,9 victimes de la route pour 100 000 habitants (IC de 95%: 4,4–7,4), suivis de près par les piétons, avec 3,4 décès pour 100 000 habitants (IC de 95%: 2,5–4,2).

Conclusion L’incidence des traumatismes et des décès dus à des accidents de la route est élevée en Afrique. Étant donné que les rapports fondés sur des registres sous-estimant les chiffres réels, il est nécessaire de procéder à un enregistrement systématique des données sur les traumatismes et les décès dus à des accidents de la route pour pouvoir déterminer leur véritable incidence.

Résumé

Bремя дорожно-транспортных происшествий, травматизма и смертности в результате таких происшествий в Африке: систематический обзор и метаанализ

Цель Оценить бремя травматизма и смертности в результате дорожно-транспортных происшествий для всех участников дорожного движения и для различных групп участников дорожного движения в Африке.

Методы Был выполнен поиск в базах данных MEDLINE, EMBASE, Global Health, системе Google Scholar, на веб-сайтах африканских учреждений по обеспечению безопасности дорожного движения и организации на предмет реестровых и популяционных исследований травматизма и смертности в результате дорожно-транспортных происшествий в Африке и отчетов по ним, опубликованных в период между 1980 и 2015 годами. Доступные данные по всем участникам дорожного движения и по их отдельным группам были извлечены и прозаанализированы. С помощью метаанализа с использованием модели случайных эффектов были рассчитаны объединенные показатели травматизма и смертности в результате дорожно-транспортных происшествий.

Результаты Было выявлено 39 исследований из 15 стран Африки. Объединенный расчетный показатель дорожно-транспортного травматизма составил 65,2 случая на 100 000 жителей (95%-й доверительный интервал, ДИ: 60,8–69,5), а показатель смертности составил 16,6 случая на 100 000 жителей (95%-й ДИ: 15,2–18,0). Показатели травматизма в результате дорожно-транспортных происшествий увеличился с 40,7 случая на 100 000 жителей в 1990-х годах до 92,9 случая на 100 000 жителей в период с 2010 по 2015 год, а показатели смертности снизились с 19,9 случая на 100 000 жителей в 1990-х годах до 9,3 случая на 100 000 жителей в период с 2010 по 2015 год. Наибольший показатель смертности в результате дорожно-транспортных происшествий наблюдался среди пассажиров моторных четырехколесных транспортных средств и составлял 5,9 случая на 100 000 жителей (95%-й ДИ: 4,4–7,4); ненамного меньший показатель наблюдался среди пешеходов и составлял 3,4 случая на 100 000 жителей (95%-й ДИ: 2,5–4,2).

Вывод В Африке существует высокое бремя травматизма и смертности в результате дорожно-транспортных происшествий. Поскольку показатели бремени, полученные в результате реестровых исследований, занижены, для определения истинного бремени требуется систематизация данных по травматизму и смертности в результате дорожно-транспортных происшествий.

Resumen

La tasa de colisiones, traumatismos y muertes en las carreteras africanas: una revisión sistemática y un metaanálisis

Objetivo Estimar la tasa de traumatismos y muertes por accidentes de tráfico para todos los usuarios de las carreteras y entre los distintos grupos de usuarios de las carreteras en África.

Métodos Se realizaron búsquedas en MEDLINE, EMBASE, Global Health, Google Scholar y sitios web de agencias y organizaciones de seguridad vial africanas para encontrar estudios e informes basados en la población y en los registros sobre estimaciones de traumatismos y muertes por accidentes de tráfico en África publicados entre 1980 y 2015. Se extrajeron y analizaron los datos disponibles para todos los usuarios de las carreteras y por grupo de usuarios de las carreteras. Se realizó un metaanálisis de efectos aleatorios y se estimaron tasas agrupadas de traumatismos y muertes por accidentes de tráfico.

Resultados Se identificaron 39 estudios de 15 países africanos. La tasa agrupada estimada de traumatismos por accidentes de tráfico fue de 65,2 por cada 100 000 habitantes (intervalo de confianza, IC, del 95%: 60,8–69,5) y la tasa de muertes fue de 16,6 por cada 100 000 habitantes (IC del 95%: 15,2–18,0). Las tasas de traumatismos por accidentes de tráfico aumentaron de 40,7 por cada 100 000 habitantes en la década de 1990 a 1992,9 por cada 100 000 habitantes en 2010 y 2015, mientras que las tasas de muertes se redujeron de 19,9 por cada 100 000 habitantes en la década de 1990 a 9,3 por cada 100 000 habitantes entre 2010 y 2015. La mayor tasa de muertes por accidentes de tráfico se encontró entre los ocupantes de vehículos motorizados de cuatro ruedas, con un 5,9 por cada 100 000 habitantes (IC del 95%: 4,4–7,4), seguida muy de cerca por los peatones, con un 3,4 por cada 100 000 habitantes (IC del 95%: 2,5–4,2).

Conclusión En África, la tasa de traumatismos y muertes por accidentes de tráfico es alta. Puesto que los informes basados en registros infravaloran dicha tasa, es necesario un cotejo sistemático de datos de traumatismos y muertes por accidentes de tráfico para determinar la tasa real.

References

1. Global status report on road safety 2015. Geneva: World Health Organization; 2015.
2. Global status report on road safety 2013: supporting a decade of action. Geneva: World Health Organization; 2013.
3. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117–71. doi: http://dx.doi.org/10.1016/S0140-6736(14)61682-2 PMID: 25530442
4. Status report on road safety in countries of the WHO African Region 2009. Brazzaville: WHO Regional Office for Africa, 2010.
5. Global status report on road safety: time for action. Geneva: World Health Organization; 2009.
6. Ntombela MF, Botha MR. The neglected epidemic: road traffic injuries in developing countries. BMJ. 2002 May;324(7346):1139–41. doi: http://dx.doi.org/10.1136/bmj.324.7346.1139 PMID: 12003888
7. Juillard C, Labinjo O, Hyder AA. Socioeconomic impact of road traffic injuries in West Africa: exploratory data from Nigeria. Inj Prev. 2010 Dec;16(6):389–92. doi: http://dx.doi.org/10.1136/ip.2009.025825
8. Solongwe-Tambuwo J, Bhatti J, Younga G, Salimi LR, Lagarde E. Road traffic crashes on the Yaoundé–Douala road section, Cameroon. Accid Anal Prev. 2010 Mar;42(2):422–6. doi: http://dx.doi.org/10.1016/j.aap.2009.09.003 PMID: 20195062
9. Twagirayezu E, Teteli R, Bonane A, Rugwizangoga E. Road traffic injuries at Kilifi University Central Teaching Hospital, Kenya. East and Central African Journal of Medicine. 2008;13(1):73-6.
10. Abegar T, Berhanve Y, Woruk A, Assrat A, Asfssa A. Road traffic deaths and injuries are under-reported in Ethiopia: a capture-recapture method. PLoS ONE. 2014;9(10):e103001. doi: http://dx.doi.org/10.1371/journal.pone.0103001 PMID: 25054440
11. Melkonnen FH, Tesghier S. Road traffic accident: the neglected health problem in Amhara National Regional State, Ethiopia. Ethi J Health Dev. 2014;28(1):3–10. Available from: http://www.ajol.info/index.php/ehj/article/view/115405/104979 [cited 2016 Mar 8].
12. Bachani AM, Korada P, Herbert HK, Mogere S, Akungah D, Nyamari J, et al. Road traffic injuries in Kenya: the health burden and risk factors in two districts. Traffic Inj Prev. 2012;13(sup1) Suppl 1:24–30. doi: http://dx.doi.org/10.1080/15389588.2011.633073
13. Ngalla Be S, Majinge C, Glymoma J, Mabereki DJ, Charles E. A retrospective study on the unseen epidemic of road traffic injuries and deaths due to accidents in Mwanza City, Tanzania. East Afr J Public Health. 2013 Jun;10(2):487–92. PMID: 25130029
14. Zimmermann K, Mozee AA, Kibata MA, Museru LM. Guererro A. Road traffic injury impact and crash characteristics in Dar es Salaam: a population based study. Accid Anal Prev. 2012 Mar;45:204–10. doi: http://dx.doi.org/10.1016/j.aap.2011.06.018 PMID: 22269502
15. Museru LM, Mcharo CN, Leshabari MT. Road traffic accidents in Tanzania: a ten year epidemiological appraisal. East Cent Afr J Surg. 2002;7(1):23–6. Available from: http://www.bioline.org.br/abstract/jp0303 [cited 2016 Mar 8].
16. Barongo NC, Mkamba M, Mihima SN, Mntottol J. Road traffic accidents in Dar es Salaam, Tanzania during 1999 and 2001. Int J Inj Contr Saf Promot. 2006 Mar;13(1):15–2. doi: http://dx.doi.org/10.1080/17480233.2006.11633136 PMID: 16537226
17. Kilalle AM, Lema LA, Kunda J, Musilimu F, Mihima SN, Mukungu VMT, Barona M, et al. Host, vehicular and environmental factors responsible for road traffic accidents in the Kigali University Central Teaching Hospital, Rwanda. East and Central African Journal of Medicine. 2012;10(2):487–92. PMID: 25130029
18. Kudumbong M, Wurupa F, Nonvungov N, Johansson L, Kewan-Williams JK, Akinyi M. Economic burden of motorcycle accidents in Northern Ghana. Ghana Med J. 2011 Dec;45(4):135–42. PMID: 22359418
19. Ezenwa AO. Trends and characteristics of road traffic accidents in Nigeria. J R Soc Health. 1986 Feb;106(1):27–30. doi: http://dx.doi.org/10.1177/1466424086010400410 PMID: 30884229
20. Aido AO, Amoh-Gyimah R, Ackah W. The effect of road and environmental characteristics on pedestrian hit-and-run accidents in Ghana. Accid Anal Prev. 2013 Apr;51:43–7. doi: http://dx.doi.org/10.1016/j.aap.2012.12.021 PMID: 23570370
21. Zou B, Mafoule S, Qin J, Hawa K, Lamine KF, et al. Fatality from road traffic accident in Guinea: a retrospective descriptive analysis. Open J Prev Med. 2014;4(11):809–21. doi: http://dx.doi.org/10.4236/ojpm.2014.110101
22. Araganyi E, Ihe. Age distribution of road traffic accident: a retrospective descriptive analysis of cases in a Nigerian teaching hospital between 1987 and 1990. J Trop Med Hyg. 1992 Jun;15(3):157–62. doi: http://dx.doi.org/10.1136/ip.2008.020255 PMID: 19494094
23. Agoswa SE. Road traffic accidents in Nigeria: a review and a reappraisal. Accid Anal Prev. 1992 Apr;24(2):149–55. doi: http://dx.doi.org/10.1016/0001-4575(92)90031-D PMID: 1585622
24. Balougan JA, Abenebo OK. Pattern of road traffic accident cases in a Nigerian university teaching hospital between 1987 and 1990. J Trop Med Hyg. 1992 Feb;95(1):23–9. PMID: 17408165
25. Adeoye PO, Kadiri DM, Bello JO, Ofogbocku B, Abdur-Rahman LO, Adekanye AD, et al. Host, vehicular and environmental factors responsible for road traffic crashes in a Nigerian city: identifiable issues for road traffic injury control. Pan Afr Med J. 2014;19:159. doi: http://dx.doi.org/10.11604/pamj.2014.19.159.5017 PMID: 25780490
26. Adewole OA, Fadayibi IO, Kadeye MO, Giwa SO, Shoega MO, Adejumo AO, et al. Ambulance services of Lagos State, Nigeria: a six-year (2001–2006) audit. West Afr J Med. 2012 Jan-Mar;31(1):3–7. PMID: 23150888
27. Jinadu MK. Epidemiology of motor vehicle accidents in a developing country–a case of Oyo State of Nigeria. J R Soc Health. 1986 Feb;106(1):27–9. doi: http://dx.doi.org/10.1177/146642408601003003 PMID: 6433021
28. Aganga AOUJ, Umoh JU, Abichi SA. Epidemiology of road traffic accidents in Zaria, Nigeria. J R Soc Health. 1983 Aug;103(4):127–9. doi: http://dx.doi.org/10.1177/14664240830100400010 PMID: 6620293
29. World population prospects: 2015 revision. New York: United Nations; 2015. Available from: http://worldbank.org/en/development/desa/population/events/other/10/index.shtml [cited 2016 Mar 8].
48. Rudan I, Campbell H, Marusic A, Sridhar D, Nair H, Adeloye D, et al. Assembling GHERG: Could "academic crowd-sourcing" address gaps in global health estimates? J Glob Health. 2015 Jun;5(1):010101. doi: http://dx.doi.org/10.7189/jogh.05.010101 PMID: 26445671

49. Safe roads for all: a post-2015 agenda for health and development. London: Commission for Global Road Safety; 2015. Available from: http://www.fiafoundation.org/media/44210/mrs-safe-roads-for-all-2013.pdf [cited 2016 Mar 8].

50. Chen G. Road traffic safety in African countries - status, trend, contributing factors, countermeasures and challenges. Int J Inj Contr Saf Promot. 2010 Dec;17(4):247–55. doi: http://dx.doi.org/10.1080/17457300.2010.490920 PMID: 20544461

51. Adeloye D. Prehospital trauma care systems: potential role toward reducing morbidities and mortalities from road traffic injuries in Nigeria. Prehosp Disaster Med. 2012 Dec;27(6):536–42. doi: http://dx.doi.org/10.1017/S1049023X12001379 PMID: 23031534

52. Mock C, Arreola-Risa C, Quansah R. Strengthening care for injured persons in less developed countries: a case study of Ghana and Mexico. Inj Control Saf Promot. 2003 Mar-Jun;10(1–2):45–51. doi: http://dx.doi.org/10.1017/icsp.10.1.45.14114 PMID: 12772485

53. Goosen J, Bowley DM, Degiannis E, Fani F. Trauma care systems in South Africa. Injury. 2003 Sep;34(9):704–8. doi: http://dx.doi.org/10.1016/S0020-1383(03)00153-0 PMID: 12951297

54. Speciality Emergency Services. Lusaka: Zambia Speciality Emergency Services, 2010. Available from: http://www.ses-zambia.com/ [cited 2010 May 20].

55. Hyder AA, Muzaffar SSF, Bachani AM. Road traffic injuries in urban Africa and Asia: a policy gap in child and adolescent health. Public Health. 2008 Oct;122(10):1104–10. doi: http://dx.doi.org/10.1016/j.puhe.2007.12.014 PMID: 18597800

56. Odero W, Khayesi M, Heda PM. Road traffic injuries in Kenya: magnitude, causes and status of intervention. Inj Control Saf Promot. 2003 Mar-Jun;10(1–2):53–61. doi: http://dx.doi.org/10.1017/icsp.10.1.53.14103 PMID: 12772486

57. Chokotho LC, Matzopoulos R, Myers J. Assessing quality of existing data sources on road traffic injuries (RTIs) and their utility in informing injury prevention in the Western Cape Province, South Africa. Traffic Inj Prev. 2013;14(3):267–73. doi: http://dx.doi.org/10.1080/15389588.2012.706760 PMID: 23441945
Box 1. Search strategy of published studies on the burden of road traffic crashes, injuries and deaths in Africa.

1. africa/ or exp africa, northern/ or exp algeria/ or exp egypt/ or exp libya/ or exp morocco/ or exp tunisia/ or exp “africa south of the sahara”/ or exp africa, central/ or exp cameroon/ or exp central african republic/ or exp chad/ or exp congo/ or exp “democratic republic of the congo”/ or exp equatorial guinea/ or exp gabon/ or exp africa, eastern/ or exp burundi/ or exp djibouti/ or exp eritrea/ or exp ethiopia/ or exp kenya/ or exp rwanda/ or exp somalia/ or exp sudan/ or exp tanzania/ or exp uganda/ or exp africa, southern/ or exp angola/ or exp botswana/ or exp lesotho/ or exp malawi/ or exp mozambique/ or exp namibia/ or exp south africa/ or exp swaziland/ or exp zimbabwe/ or exp africa, western/ or exp benin/ or exp burkina faso/ or exp cape verde/ or exp cote d’ivoire/ or exp gambia/ or exp ghana/ or exp guinea/ or exp guinea-bissau/ or exp gambia/ or exp liberia/ or exp malawi/ or exp mauritania/ or exp liberia/ or exp nigeria/ or exp senegal/ or exp sierra leone/ or exp togo/

2. exp vital statistics/ or exp incidence

3. (incidence* or prevalence* or morbidity or mortality).tw.

4. (disease adj3 burden).tw.

5. exp “cost of illness”/

6. exp disability-adjusted life years/

7. QALY.tw.

8. Disability adjusted life years.mp.

9. (initial adj2 burden).tw.

10. exp risk factors/

11. 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10

12. road traffic accident*.mp. [mp = title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]

13. RTAs.mp. [mp = title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]

14. road traffic injur*.mp. [mp = title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]

15. traffic crash*.mp. [mp = title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]

16. exp Accidents, Traffic/

17. exp air bags/ or exp child restraint systems/ or exp seat belts/

18. exp motor vehicles/ or exp automobiles/ or exp motorcycles/

19. 12 or 13 or 14 or 15 or 16 or 17 or 18

20. 1 and 11 and 19

21. limit 20 to (yr = “1980 – Current)