First observations of $\bar{B}_s^0 \to D^+ D^-$, $D_s^+ D^-$ and $D^0 \bar{D}^0$ decays

The LHCb collaboration†

Abstract

First observations and measurements of the branching fractions of the $\bar{B}_s^0 \to D^+ D^-$, $\bar{B}_s^0 \to D_s^+ D^-$ and $\bar{B}_s^0 \to D^0 \bar{D}^0$ decays are presented using 1.0 fb$^{-1}$ of data collected by the LHCb experiment. These branching fractions are normalized to those of $B^0 \to D^+ D^-$, $B^0 \to D_s^+ D^-$ and $B^- \to D^0 D_s^-$, respectively. An excess of events consistent with the decay $\bar{B}^0 \to D^0 \bar{D}^0$ is also seen, and its branching fraction is measured relative to that of $B^- \to D^0 D_s^-$. Improved measurements of the branching fractions $B(\bar{B}_s^0 \to D^+ D^-)$ and $B(\bar{B}^- \to D^0 D_s^-)$ are reported, each relative to $B(B^0 \to D_s^+ D^-)$. The ratios of branching fractions are

$$\frac{B(\bar{B}^0 \to D^+ D^-)}{B(\bar{B}^0 \to D^+ D^-)} = 1.08 \pm 0.20 \pm 0.10,$$

$$\frac{B(\bar{B}^0 \to D_s^+ D^-)}{B(B^0 \to D_s^+ D^-)} = 0.050 \pm 0.008 \pm 0.004,$$

$$\frac{B(\bar{B}_s^0 \to D^0 \bar{D}^0)}{B(B^- \to D^0 D_s^-)} = 0.019 \pm 0.003 \pm 0.003,$$

$$\frac{B(\bar{B}^0 \to D^0 \bar{D}^0)}{B(B^- \to D^0 D_s^-)} = 0.0014 \pm 0.0006 \pm 0.0002,$$

$$\frac{B(\bar{B}_s^0 \to D_s^+ D_s^-)}{B(B^0 \to D_s^+ D^-)} = 0.56 \pm 0.03 \pm 0.04,$$

$$\frac{B(\bar{B}^- \to D^0 D_s^-)}{B(B^0 \to D_s^+ D^-)} = 1.22 \pm 0.02 \pm 0.07,$$

where the uncertainties are statistical and systematic, respectively.

Submitted to Physical Review D

© CERN on behalf of the LHCb collaboration, license [CC-BY-3.0]

†Authors are listed on the following pages.
LHCb collaboration

R. Aaij, C. Abellan Beteta, A. Adeva, M. Adinolfi, C. Adrover, A. Affolder, Z. Ajaltouni, J. Albrecht, F. Alessio, M. Alexander, S. Ali, G. Alkhazov, P. Alvarez Cartelle, A.A. Alves Jr, S. Amato, S. Amerio, Y. Amhis, L. Anderlini, J. Anderson, R. Andreassen, R.B. Appleby, O. Aquines Gutierrez, F. Archilli, A. Artamonov, M. Artuso, E. Aslanides, G. Auriemma, S. Bachmann, J.J. Back, C. Baesso, V. Balagurov, W. Baldini, R.J. Barlow, C. Barschei, S. Barsuk, W. Barter, Th. Bauser, A. Bay, J. Beddow, F. Bedesch, I. Bediaga, S. Belogurov, K. Belous, I. Belyaev, E. Ben-Haim, M. Benayoun, G. Bencivenni, S. Benson, J. Benton, A. Berezinov, R. Bernet, M.-O. Bettler, M. van Beuzekom, A. Bien, S. Bifani, T. Bird, A. Bizzeti, P.M. Bjornstad, T. Blake, F. Blance, J. Blouw, S. Blusk, V. Bocci, A. Bondar, N. Bondar, W. Bonivento, S. Borghi, A. Borgia, T.J.V. Bowcock, E. Bowen, C. Bozzi, T. Brambach, J. van den Brand, J. Bressieux, D. Brett, M. Britsch, T. Britton, N.H. Brook, H. Brown, I. Burducea, A. Bursche, G. Busetto, J. Buytaert, S. Cadeddu, O. Callot, M. Calvi, M. Calvo, A. Camboni, P. Campana, A. Carbone, G. Carboni, R. Cardinale, A. Cardini, H. Carranza-Meija, L. Carson, K. Carvalho Akiba, G. Casse, M. Cattaneo, Ch. Cauet, M. Charles, Ph. Charpentier, P. Chen, N. Chiapolini, M. Chrzaszcz, K. Ciba, X. Cid Vidal, G. Ciezarek, P.E.L. Clarke, M. Clemencic, H.V. Cliff, J. Closier, C. Coca, V. Coco, J. Cogani, E. Cogneras, P. Collins, A. Comerma-Montells, A. Contu, A. Cook, M. Coombes, S. Coqueret, G. Corti, B. Couturier, G.A. Cowan, D. Craik, S. Cunliffe, R. Currie, C. D’Ambrosio, P. David, P.N.Y. David, I. De Bonis, K. De Bruyn, S. De Capua, M. De Cian, J.M. De Miranda, M. De Oyanguren Campos, L. de Pauw, W. De Silva, P. De Simone, D. Decamp, M. Deckenhoff, L. Del Buono, D. Derkach, O. Deschamps, F. Dettori, A. Di Canto, H. Dijkstra, M. Dogaru, S. Douleavy, F. Dordei, A. Dosil Suárez, D. Dossett, A. Dovbnya, F. Dupertuis, R. Dzhelyadin, A. Dziurda, U. Egede, V. Egorychev, S. Eldelman, D. van Eijk, S. Eisenhardt, U. Eitscherberger, R. Ekelhof, L. Eklund, I. El Rifi, Ch. Elsasser, D. Elsbury, A. Falabella, C. Färber, G. Fardell, C. Farinelli, S. Farry, V. Fave, D. Ferguson, V. Fernandez Albor, F. Ferreira Rodrigues, M. Ferro-Luzzi, S. Filipov, C. Fitzpatrick, M. Fontana, F. Fontanelli, R. Forty, O. Francisco, M. Frank, C. Frei, M. Frosini, F. Furca, E. Furfaro, A. Gallas Torreira, D. Galli, M. Gandelman, P. Gaudini, Y. Gao, J. Garofoli, P. Garosi, J. Garra Tico, L. Garrido, R. Gaspar, R. Gauld, E. Gersabeck, M. Gersabeck, T. Gershon, Ph. Ghiez, V. Gibson, V.V. Gligorov, C. Gobét, D. Golubkov, A. Golutvin, M. Gomes, H. Gordon, M. Grabalosa Gándara, R. Graciani Díaz, L.A. Granado Cardoso, E. Graugès, G. Graziani, A. Greco, E. Greene, S. Gregson, O. Grünberg, B. Gui, E. Guschkin, Yu. Guz, T. Gys, C. Hadjijasiouli, G. Haefeli, C. Haen, S.C. Haines, S. Hall, T. Hampson, S. Hansmann-Menzemer, N. Harnew, S.T. Harnew, J. Harrison, T. Hartmann, J. He, V. Hejne, K. Hennessy, P. Heurard, J.A. Hernando Morata, E. van Herwijnen, E. Hicks, D. Hill, M. Hoballah, C. Hombach, P. Hopchev, W. Hulsbergen, P. Hunt, M. Huse, N. Hussain, D. Hutchcroft, D. Hynds, V. Iakovenko, M. Idzik, P. Ilten, R. Jacobsson, A. Jaeger, E. Jaus, P. Jaton, F. Jing, M. John, D. Johnson, C.R. Jones, B. Jost, M. Kaballo, S. Kandybei.
M. Szczekowski27, P. Szczypta38,37, T. Szumlak26, S. T’Jampens4, M. Teklishyn7, E. Teodoresci28, F. Teubert37, C. Thomas54, E. Thomas37, J. van Tilburg11, V. Tisserand4, M. Tobin39, S. Tolk41, D. Tonelli37, S. Topp-Joergensen54, N. Torr54, E. Tournefier4,52, S. Tourneur38, M.T. Tran38, M. Tresch39, A. Tsaregorodtsev6, P. Tsopelas40, N. Tuning40, M. Ubeda Garcia37, A. Ukleja27, D. Urner53, U. Uwer11, V. Vagnoni14, G. Valent14, R. Vazquez Gomez35, P. Vazquez Regueiro36, S. Vecchi16, J.J. Velthuis45, M. Velt17,9, G. Veneziano38, M. Vesterinen37, B. Vial5, D. Vieira2, X. Vilasis-Cardona35,n, A. Vollhardt39, D. Volyanskyy10, D. Voong45, A. Vorobyev29, V. Vorobyev33, C. Voss10, R. Waldi58, R. Wallace12, S. Wandernoth11, J. Wang56, D.R. Ward46, N.K. Watson44, A.D. Webber53, D. Webbsdale52, M. Whitehead47, J. Wicht37, J. Wiechczynski25, D. Wiedner11, L. Wiggers40, G. Wilkinson54, M.P. Williams47,48, M. Williams55, F.F. Wilson48, J. Wishahi19, M. Witek25, S.A. Wotton46, S. Wu3, K. Wyllie37, Y. Xie49,37, F. Xing54, Z. Xing56, Z. Yang3, R. Young40, X. Yuan3, O. Yushchenko34, M. Zangoli14, M. Zagoryayev10,a, F. Zhang3, L. Zhang56, W.C. Zhang12, Y. Zhang3, A. Zhelezov11, A. Zhokhov30, L. Zhong3, A. Zvyagin37.

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12School of Physics, University College Dublin, Dublin, Ireland
13Sezione INFN di Bari, Bari, Italy
14Sezione INFN di Bologna, Bologna, Italy
15Sezione INFN di Cagliari, Cagliari, Italy
16Sezione INFN di Ferrara, Ferrara, Italy
17Sezione INFN di Firenze, Firenze, Italy
18Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy
20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Padova, Padova, Italy
22Sezione INFN di Pisa, Pisa, Italy
23Sezione INFN di Roma Tor Vergata, Roma, Italy
24Sezione INFN di Roma La Sapienza, Roma, Italy
25Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
26AGH University of Science and Technology, Kraków, Poland
27National Center for Nuclear Research (NCBJ), Warsaw, Poland
28Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
29Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
30Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
31Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
32Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
33Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
34Institute for High Energy Physics (IHEP), Protvino, Russia
35Universitat de Barcelona, Barcelona, Spain
Universidad de Santiago de Compostela, Santiago de Compostela, Spain
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universität Zürich, Zürich, Switzerland
Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
Syracuse University, Syracuse, NY, United States
Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
Institut für Physik, Universität Rostock, Rostock, Germany, associated to
University of Cincinnati, Cincinnati, OH, United States, associated to
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Firenze, Firenze, Italy
Università di Urbino, Urbino, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
Università della Basilicata, Potenza, Italy
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
IFIC, Universitat de Valencia-CSIC, Valencia, Spain
Hanoi University of Science, Hanoi, Viet Nam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore, Pisa, Italy

a P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
b Università di Bari, Bari, Italy
cUniversità di Bologna, Bologna, Italy
dUniversità di Cagliari, Cagliari, Italy
eUniversità di Ferrara, Ferrara, Italy
f Università di Firenze, Firenze, Italy
g Università di Urbino, Urbino, Italy
hUniversità di Modena e Reggio Emilia, Modena, Italy
iUniversità di Genova, Genova, Italy
jUniversità di Milano Bicocca, Milano, Italy
kUniversità di Roma Tor Vergata, Roma, Italy
lUniversità di Roma La Sapienza, Roma, Italy
mUniversità della Basilicata, Potenza, Italy
nLIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
oIFIC, Universitat de Valencia-CSIC, Valencia, Spain
pHanoi University of Science, Hanoi, Viet Nam
qUniversità di Padova, Padova, Italy
rUniversità di Pisa, Pisa, Italy
sScuola Normale Superiore, Pisa, Italy
1 Introduction

Double-charm decays of B mesons can be used to probe the Cabibbo-Kobayashi-Maskawa matrix elements, and provide a laboratory to study final state interactions. The time-dependent CP asymmetry in the $B^0 \to D^{+}D^{-}$ decay provides a way to measure the B^0 mixing phase \cite{3,4}, where information from other double-charm final states can be used to account for loop (penguin) contributions and other non-factorizable effects \cite{5,6}.

Double-charm decays of B mesons can also be used to measure the weak phase γ, assuming U-spin symmetry \cite{10,11}. The purely CP-even $\overline{B}_s^0 \to D_s^+D_s^-$ decay is also of interest, as it can be used to measure the B^0_s mixing phase. Moreover, a lifetime measurement using the $\overline{B}_s^0 \to D_s^+D_s^-$ decay provides complementary information on $\Delta \Gamma$, \cite{11,13} to that obtained from direct measurements \cite{14}, or from lifetime measurements in other CP eigenstates \cite{15,16}.

The study of $B \to D\overline{D}'$ decays\footnote{Throughout this paper, the notation D is used to refer to a D^{\pm}, D^0 or D_s^{\pm} meson, and B represents either a B^0, B^- or B_s^0 meson.} can also provide a better theoretical understanding of the processes that contribute to B meson decay. Feynman diagrams contributing to the decays considered in this paper are shown in Fig. 1. The $\overline{B}_s^0 \to D^0\overline{D}^0$, $\overline{B}_s^0 \to D^+D^-$ and $B^0 \to D^0\overline{D}^0$ decays are mediated by the W-exchange amplitude, along with penguin-annihilation contributions and rescattering \cite{17}. The only other observed B meson decays of this type are $\overline{B}_s^0 \to D_s^+(s)K^{(*)-}$ and $\overline{B}_s^0 \to \pi^+\pi^-$, with branching fractions of the order of 10^{-5} \cite{18} and 10^{-6} \cite{19}, respectively. Predictions of the $\overline{B}_s^0 \to D^+D^-$ branching fraction using perturbative approaches yield 3.6×10^{-3} \cite{20}, while the use of non-perturbative approaches has led to a smaller value of 1×10^{-5} \cite{21}. More recent phenomenological studies, which assume a dominant contribution from rescattering, predict a significantly lower branching fraction of $B(\overline{B}_s^0 \to D^+D^-) = B(\overline{B}_s^0 \to D^0\overline{D}^0) = (7.8 \pm 4.7) \times 10^{-5}$ \cite{17}.

This paper reports the first observations of the $\overline{B}_s^0 \to D^+D^-$, $\overline{B}_s^0 \to D_s^+D_s^-$ and $B^0 \to D^0\overline{D}^0$ decays, and measurements of their branching fractions normalized relative to those of $\overline{B}_s^0 \to D^0\overline{D}^0$, $B^0 \to D^+D^-$ and $B^- \to D^0D_s^-$, respectively. An excess of events consistent with $B^0 \to D^0\overline{D}^0$ is also seen, and its branching fraction is reported. Improved measurements of the ratios of branching fractions $B(\overline{B}_s^0 \to D_s^+D_s^-)/B(B^0 \to D_s^+D^-)$ and $B(B^- \to D_s^-D^-)/B(B^0 \to D_s^+D^-)$ are also presented. All results are based upon an integrated luminosity of 1.0 fb$^{-1}$ of pp collision data at $\sqrt{s} = 7$ TeV recorded by the LHCb experiment in 2011. Inclusion of charge conjugate final states is implied throughout.

2 Data sample and candidate selection

The LHCb detector \cite{22} is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip...
Figure 1: Feynman diagrams contributing to the double-charm final states discussed in this paper. They include (a) tree, (b) W-exchange and (c) penguin diagrams.

detectors and straw drift tubes placed downstream. The combined tracking system has a momentum resolution ($\Delta p/p$) that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter (IP) resolution of 20 μm for tracks with high transverse momentum (p_T). The impact parameter is defined as the distance of closest approach of a given particle to the primary pp interaction vertex (PV). Charged hadrons are identified using two ring-imaging Cherenkov detectors [23]. Photons, electrons and charged particles are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

The trigger [24] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage that performs a partial event reconstruction (only tracks with $p_T > 0.5$ GeV/c are reconstructed and used). The software trigger requires a two-, three- or four-track secondary vertex with a large track p_T sum and a significant displacement from any of the reconstructed PVs. At least one track must have $p_T > 1.7$ GeV/c and IP χ^2 greater than 16 with respect to all PVs. The IP χ^2 is defined as the difference between the χ^2 of the PV reconstructed with and without the considered particle. A multivariate algorithm [25] is used to identify secondary vertices that originate from the decays of b hadrons.

For the ratios of branching fractions between modes with identical final states, no requirements are made on the hardware trigger decision. When the final states differ, a trigger selection is applied to facilitate the determination of the relative trigger efficiency. The selection requires that either (i) at least one of the tracks from the reconstructed signal decay is associated with energy depositions in the calorimeters that passed the hardware trigger requirements, or (ii) the event triggered independently of the signal decay.
particles, e.g., on the decay products of the other b hadron in the event. Events that do not fall into either of these two categories (\sim5\%) are discarded.

Signal efficiencies and specific backgrounds are studied using simulated events. Proton-proton collisions are generated using PYTHIA 6.4 \cite{26} with a specific LHCb configuration \cite{27}. Decays of hadronic particles are described by EVTGEN \cite{28} in which final state radiation is generated using PHOTOS \cite{29}. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit \cite{30} as described in Ref. \cite{31}. Efficiencies for identifying K^+ and π^+ mesons are determined using D^{*+} calibration data, with kinematic quantities reweighted to match those of the signal particles \cite{23}.

Signal B candidates are formed by combining pairs of D meson candidates reconstructed in the following decay modes: $D^0 \rightarrow K^−\pi^+$ or $K^-\pi^+\pi^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$ and $D_s^+ \rightarrow K^+K^-\pi^+$. The $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ decay is only used for $B^0 \rightarrow D^0 \bar{D}^0$ candidates, where a single $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ decay in the final state is allowed, which approximately doubles the total signal efficiency. A refit of signal candidates with D mass and vertex constraints is performed to improve the B mass resolution.

Due to similar kinematics of the $D^+ \rightarrow K^-\pi^+\pi^+$, $D_s^+ \rightarrow K^+K^-\pi^+$ and $\Lambda_c^+ \rightarrow pK^-\pi^+$ decays, there is cross-feed between various b-hadron decays that have two charm particles in the final state. Cross-feed between D^+ and D_s^+ occurs when the $K^-\pi^+h^+$ invariant mass is within 25 MeV/c2 (\sim 3 times the experimental resolution) of both the D^+ and D_s^+ masses under the $h^+ = \pi^+$ and $h^+ = K^+$ hypotheses, respectively. In such cases, an arbitration is performed as follows: if either $|M(K^+K^-) - m_0| < 10$ MeV/c2 or h^+ satisfies a stringent kaon particle identification (PID) requirement, the D candidate is assigned to be a D_s^+ meson. Conversely, if h^+ passes a stringent pion PID requirement, the D candidate is taken to be a D^+ meson. Candidates that do not pass either of these selections are rejected. A similar veto is applied to D^+ and D_s^+ decays that are consistent with the $\Lambda_c^+ \rightarrow pK^-\pi^+$ decay hypothesis if the proton is misidentified as a π^+ or K^+, respectively. The efficiencies of these D selections are determined using simulated signal decays to model the kinematics of the decay and $D^{*+} \rightarrow D^{0}\pi^{+}$ calibration data for the PID efficiencies. Their values are given in Table \cite{4}.

To suppress contributions from non-DD' final states, the reconstructed D decay vertex is required to be downstream of the reconstructed B decay vertex, and the B and D decay vertices are required to have a vertex separation (VS) χ^2 larger than two. Here, the VS χ^2 is the difference in χ^2 between the nominal vertex fit and a vertex fit where the D is assumed to have zero lifetime. The efficiencies of this set of requirements are obtained from simulation and are included in Table \cite{1}.

To further improve the purity of the $B \rightarrow DD'$ samples, a boosted decision tree (BDT) discriminator is used to distinguish signal D mesons from backgrounds \cite{32,33}. The BDT uses five variables for the D meson and 23 for each of its children. The variables include kinematic quantities, track quality, and vertex and PID information. The signal and background distributions used to train the BDT are obtained from $B^0 \rightarrow D^+\pi^-$, $B^- \rightarrow D^0\pi^−$ and $B^0_s \rightarrow D^{+}_{s}\pi^−$ decays from data. The signal distributions are background subtracted using weights \cite{34} obtained from a fit to the B candidate invariant mass.
Table 1: Individual contributions to the efficiency for selecting the various $B \to D\bar{D}$ final states. Shown are the efficiencies to reconstruct and trigger on the final state, and to pass the charm cross-feed veto, the VS χ^2 and BDT selection requirements. The total selection efficiency is the product of these four values. The relative uncertainty on the selection efficiency for each decay mode due to the finite simulation samples sizes is 2%. Entries with a dash indicate that the efficiency factor is not applicable.

	Efficiencies (%)	Rec. x Trig.	Cross-feed veto	VS χ^2	BDT
$\bar{B}_s^0 \to D_s^+ D_s^-$	0.140	88.4	75.4	97.5	
$B^0 \to D_s^+ D^-$ (loose selection)	0.130	77.8	82.9	100.0	
$\bar{B}_s^0 \to D^0 \bar{D}_s^0$, $(K^-\pi^+, K^+\pi^-)$	0.447	-	73.7	57.8	
$\bar{B}_s^0 \to D^0 \bar{D}_s^0$, $(K^-\pi^+, K^+\pi^-\pi^+\pi^-)$	0.128	-	74.6	63.6	
$B^- \to D^0 D_s^-$	0.238	92.5	75.0	99.2	

It is found that making a requirement on the product of the two D meson BDT responses provides better discrimination than applying one to each BDT response individually. The optimal BDT requirement in each decay is chosen by maximizing $N_S/\sqrt{N_S + N_B}$. The number of signal events, N_S, is computed using the known (or estimated, if unknown) branching fractions, selection efficiencies from simulated events, and the BDT efficiencies from the $\bar{B}_s^0 \to D^+\pi^-$, $B^- \to D^0\pi^-$ and $\bar{B}_s^0 \to D_s^+\pi^-$ calibration samples, reweighted to account for small differences in kinematics between the calibration and signal samples. The number, N_B, is the expected background yield for a given BDT requirement. The efficiencies associated with the optimal BDT cut values, determined from an independent subset of the $B \to D\pi^-$ data, are listed in Table [1]. Correlations between the BDT values for the two D mesons are taken into account.

For the purpose of measuring $\mathcal{B}(\bar{B}_s^0 \to D_s^+ D_s^-)/\mathcal{B}(B^0 \to D_s^+ D^-)$, only loose BDT requirements are imposed since the expected yields are relatively large. On the other hand, for $\mathcal{B}(\bar{B}_s^0 \to D_s^+ D^-)/\mathcal{B}(B^0 \to D_s^+ D^-)$, the expected signal yield of $\bar{B}_s^0 \to D_s^+ D^-$ decays is small; in this case both the signal and normalization modes are required to pass the same tighter BDT requirement. The different BDT selections applied to the $B^0 \to D_s^+ D^-$ decay are referred to as the “loose selection” and the “tight selection.” Since the final state is identical for the tight selection, the BDT efficiency cancels in the ratio of branching fractions, and is not included in Table [1].

For $\bar{B}_s^0 \to D^0 \bar{D}_s^0$ candidates, a peaking background from $B \to D^*+\pi^- \to (D^0\pi^+)^{\to} \pi^-$ decays, where the π^+ is misidentified as a K^+, is observed. This contribution is removed by requiring the mass difference, $M(K^-\pi^+\pi^-) - M(K^-\pi^+) > 150$ MeV/c^2, where the K^+ in the reconstructed decay is taken to be a π^+. After the final selection around 2% of
events in the $B^0_s \rightarrow D_s^+ D_s^-$ decay mode contain multiple candidates; for all other modes the multiple candidate rate is below 1%. All candidates are kept for the final analysis.

3 Signal and background shapes

The $B \rightarrow D \bar{D}'$ signal shapes are all similar after the D mass and vertex constraints. The signal shape is parameterized as the sum of two Crystal Ball (CB) functions [35], which account for non-Gaussian tails on both sides of the signal peak. The asymmetric shapes account for both non-Gaussian mass resolution effects (on both sides) and energy loss due to final state radiation. The two CB shapes are constrained to have equal area and a common mean. Separate sets of shape parameters are determined for $B^0 \rightarrow D_s^+ D^-$, $\bar{B}_s^0 \rightarrow D_s^+ D_s^-$ and $B^- \rightarrow D^0 D_s^-$ using simulated signal decays. In the fits to data, the signal shape parameters are fixed to the simulated values, except for a smearing factor that is added in quadrature to the widths from simulation. This number is allowed to vary independently in each fit, but is consistent with about 4.6 MeV/c2 across all modes, resulting in a mass resolution of about 9 MeV/c2. For the more rare $\bar{B}_s^0 \rightarrow D^0 \bar{D}^0$ and $\bar{B}_s^0 \rightarrow D^+ D^-$ decay modes, the $\bar{B}_s^0 \rightarrow D_s^+ D_s^-$ signal shape parameters are used. In determining the signal significances, the signal shape is fixed to that for $\bar{B}_s^0 \rightarrow D_s^+ D_s^-$, including an additional smearing of 4.6 MeV/c2. The impact of using the $B^0 \rightarrow D_s^+ D^-$ or $B^- \rightarrow D^0 D_s^-$ signal shapes on the signal significances is negligible.

Several specific backgrounds contribute to the $D \bar{D}'$ mass spectra. In particular, decays such as $B \rightarrow D^{(*)} \bar{D}^*$, where the D^* mesons decay through pion or photon emission, produce distinct structures in all decays under consideration. The shapes of these backgrounds are derived from simulation, which are corrected for known resolution differences between data and simulated events, and then fixed in fits to the data. The relative yield of the two peaks in the characteristic structure from the decay $D^* \rightarrow D^0 \pi$ is allowed to vary freely, to enable better modeling of the background in the low mass region. Since this mass region is significantly below the signal peaks, the impact on the signal yield determinations is negligible.

A source of peaking background that contributes to $B \rightarrow DD^+_s$ modes are the $B \rightarrow D \bar{K}^{*0} K^+ \rightarrow D K^- \pi^+ K^+$ decays, where the $\bar{K}^{*0} K^+$ is not produced in a D_s^+ decay. Although the branching fractions for these decays [36] are about twice as large as that of the $B \rightarrow DD^+_s \rightarrow D K^- K^- \pi^+$ decay channel, the 25 MeV/c2 mass window around the known D_s^+ mass and the VS $\chi^2 > 2$ requirement reduce this contribution to about 1% of the signal yield. This expectation is corroborated by studying the D_s^+ candidate mass sidebands. The shape of this background is obtained from simulation, and is described by a single Gaussian function which has a width about 2.5 times larger than that of the signal decay and peaks at the nominal B meson mass.

After the charm cross-feed vetoes (see Sect. 2), the cross-feed rate from $B^0 \rightarrow D_s^+ D^-$ decays into the $\bar{B}_s^0 \rightarrow D_s^+ D_s^-$ sample is $(0.7 \pm 0.2)\%$. The shape of this misidentification background is obtained from simulation. A similar cross-feed background contribution from $\Lambda_c^0 \rightarrow \Lambda_c^+ D_s^-$ decays is also expected due to events passing the Λ_c^+ veto. Taking
The invariant mass spectrum for $B^0 \rightarrow D^+ D^-$ decay. The exponential shape parameter is allowed to vary in the fit due to an insufficient number of wrong-sign $D^+ D^+$ candidates.

4 Fit results

Figure 2 shows the invariant mass spectra for $B^0 \rightarrow D^+_s D^-$ and $B^0 \rightarrow D^+_s D^-$ candidates. The results of unbinned extended maximum likelihood fits to the distributions are overlaid with the signal and background components indicated in the legends. The signal yields of $451 \pm 23 \mathrm{B}^0 \rightarrow D^+_s D^-_s$ and $5157 \pm 64 B^0 \rightarrow D^+_s D^-$ decays are observed.

Figure 3 shows the invariant mass spectrum for $B^0 \rightarrow D^+_s D^-$ and $B^0 \rightarrow D^+_s D^-$ candidates, where the tight BDT selection requirements have been applied as discussed previously. We observe $36 \pm 6 \mathrm{B}^0 \rightarrow D^+_s D^-$ signal decays, with 2832 ± 53 events in the fit due to an insufficient number of wrong-sign $D^+ D^+$ candidates. The statistical significance of the $B^0 \rightarrow D^+_s D^-$ signal corresponds to 10σ by computing $\sqrt{-2\ln(L_0/L_{\text{max}})}$, where L_{max} and L_0 are the fit likelihoods with the signal yields allowed to vary and fixed to zero, respectively. Variations in the signal and background model have only a marginal impact on the signal significance. The $B^0 \rightarrow D^- D^+_s$ decay is thus observed for the first time. The invariant mass spectrum for $B^0_{(s)} \rightarrow D^+ D^-$ candidates is shown in Fig. 4 (left).
Peaks are seen at both the B^0 and B_s^0 meson masses, with yields of 165±13 and 43±7 signal events, respectively. In the lower mass region, two prominent peaks from $\bar{B}^0 \to D^- D^-$ and $B^0 \to D^+ D^-$ decays are also evident. The significance of the $B_s^0 \to D^- D^-$ signal yield is computed as described above, and corresponds to 11σ, establishing the first observation of this decay mode.

Figure 4(right) shows the $D^0 \bar{D}^0$ invariant mass distribution and the results of the fit. Both $(K^- \pi^+, K^+ \pi^-)$ and $(K^- \pi^+, K^+ \pi^- \pi^+ \pi^-)$ combinations are included. A $\bar{B}^0_s \to D^0 \bar{D}^0$ signal is seen with a significance of 11σ, which establishes the first observation of this decay mode. The data also show an excess of events at the B^0 mass. The significance of that excess corresponds to 2.4σ, including both the statistical and systematic uncertainty. The fitted yields in the $\bar{B}^0_s \to D^0 \bar{D}^0$ and $\bar{B}^0 \to D^0 \bar{D}^0$ decay modes are 45±8 and 13±6 events, respectively. If both the $\bar{B}^0_s \to D^0 \bar{D}^0$ and $\bar{B}^0 \to D^0 \bar{D}^0$ decays proceed through W-exchange diagrams, one would expect the signal yield in $\bar{B}^0 \to D^0 \bar{D}^0$ to be $\sim (f_d/f_s) \times |V_{ud}/V_{cs}|^2 \approx 0.2$ of the yield in $\bar{B}^0_s \to D^0 \bar{D}^0$, where we have used $|V_{ud}/V_{cs}|^2 = 0.054$ [18] and $f_d/f_s = 0.256 \pm 0.020$ [37]. The fitted yields are consistent with this expectation. The decay $B^- \to D^0 D_s^-$ is used as the normalization channel for both the $\bar{B}^0_s \to D^0 \bar{D}^0$ and $\bar{B}^0 \to D^0 \bar{D}^0$ branching fraction measurements, where only the $D^0 \to K^- \pi^+$ decay mode is used. The fitted invariant mass distribution for $B^- \to D^0 D_s^-$ candidates is shown in Fig. 5. The fitted signal yield is 5152±73 events.

The measured yields, $N_{B \to D \bar{D}}$, relevant for the branching fraction measurements are
Figure 4: Invariant mass distributions for (left) $\bar{B}^0_{(s)} \rightarrow D^+D^-$ and (right) $\bar{B}^0_{(s)} \rightarrow D^0\bar{D}^0$ candidates in the data. Signal and background components are indicated in the legend.

Figure 5: Invariant mass distribution for $B^- \rightarrow D^0D_s^-$ candidates in the data. Signal and background components are indicated in the legend. The $B^- \rightarrow D^0K^-K^+\pi^-$ background components are too small to be seen, and are excluded from the legend.

summarized in Table 2. The branching fractions are related to the measured yields by

$$\mathcal{B}(\bar{B}^0_s \rightarrow D_s^+D_s^-) = \frac{f_d}{f_s} \cdot \epsilon_{rel} \cdot \kappa \cdot \frac{\mathcal{B}(D^+ \rightarrow K^-\pi^+\pi^-)}{\mathcal{B}(D_s^+ \rightarrow K^-K^+\pi^-)} \cdot \frac{N_{\bar{B}^0 \rightarrow D_s^+D_s^-}}{N_{\bar{B}^0 \rightarrow D_s^+D^-}},$$

(1)

$$\mathcal{B}(\bar{B}^0_s \rightarrow D_s^+D^-) = \frac{f_d}{f_s} \cdot \epsilon_{rel} \cdot \kappa \cdot \frac{N_{\bar{B}^0 \rightarrow D_s^+D^-}}{N_{\bar{B}^0 \rightarrow D_s^+D^-}},$$

(2)

$$\mathcal{B}(\bar{B}^0_s \rightarrow D^+D^-) = \frac{f_d}{f_s} \cdot \epsilon_{rel} \cdot \kappa \cdot \frac{N_{\bar{B}^0 \rightarrow D^+D^-}}{N_{\bar{B}^0 \rightarrow D^+D^-}},$$

(3)

$$\mathcal{B}(\bar{B}^0_s \rightarrow D^0\bar{B}^0) = \frac{f_d}{f_s} \cdot \epsilon'_{rel} \cdot \kappa \cdot \frac{N_{\bar{B}^0 \rightarrow D^0\bar{B}^0}}{N_{\bar{B}^0 \rightarrow D^0D_s^0}},$$

(4)

$$\mathcal{B}(\bar{B}^0_s \rightarrow D^0\bar{B}^0) = \frac{f_d}{f_s} \cdot \epsilon'_{rel} \cdot \kappa \cdot \frac{N_{\bar{B}^0 \rightarrow D^0\bar{B}^0}}{N_{\bar{B}^0 \rightarrow D^0D_s^0}},$$

(5)
Table 2: Summary of the observed signal and normalization mode yields and their relative efficiencies, as used in the measurements of the ratios of branching fractions. The quoted uncertainties are statistical only.

Measurement	Signal yield	Norm. yield	Rel. eff. $\epsilon_{\text{rel}}^{(i)}$
$\mathcal{B}(B^0 \to D_s^+ D_{s}^-)$	451 ± 23	5157 ± 64	0.928 ± 0.027
$\mathcal{B}(B^0 \to D_s^+ D^-)$	36 ± 6	2832 ± 53	1.0
$\mathcal{B}(B^0 \to D_s^+ D^-)$	43 ± 7	165 ± 13	1.0
$\mathcal{B}(B^0 \to D_s^+ D^-)$	45 ± 8	5152 ± 73	0.523 ± 0.016
$\mathcal{B}(B^0 \to D_s^+ D^-)$	13 ± 6	5152 ± 73	0.523 ± 0.016
$\mathcal{B}(B^0 \to D_s^+ D^-)$	5152 ± 73	5157 ± 64	0.508 ± 0.011

$$\frac{\mathcal{B}(B^- \to D^0 D^-_s)}{\mathcal{B}(B^0 \to D^+_s D^-)} = \epsilon_{\text{rel}} B^0 B^- \cdot \frac{\mathcal{B}(D^+ \to K^-\pi^+\pi^+)}{\mathcal{B}(D^0 \to K^-\pi^+)} \cdot \frac{N_{B^- \to D^0 D^-_s}}{N_{B^0 \to D^+_s D^-}}.$$ (6)

Here, it is assumed that B^- and \bar{B}^0 mesons are produced in equal numbers. The relative efficiencies, ϵ_{rel}, are given in Table 2. They account for geometric acceptance, detection and trigger efficiencies, and the additional VS χ^2, BDT, and charm cross-feed veto requirements. The first four of these relative efficiencies are obtained from simulation, and the last two are data-driven. The indicated uncertainties on the relative efficiencies are due only to the finite sizes of the simulated signal decays. The average selection efficiency for $B^- \to D^0 D^-_s$ relative to $\bar{B}^0 (\epsilon_s) \to D^0 D^0$ is

$$\epsilon'_{\text{rel}} = \frac{\epsilon_{B^- \to D^0 D^-_s} B(D^+ \to K^+ K^-\pi^+) B(D^0 \to K^-\pi^+)}{\epsilon_{K^+, K^+} [B(D^0 \to K^-\pi^+)]^2 + 2 \epsilon_{K^+, K^+} \mathcal{B}(D^0 \to K^-\pi^+) \mathcal{B}(D^0 \to K^-\pi^+\pi^-)}.$$ (7)

where the quantities $\epsilon_{B^- \to D^0 D^-_s} = (0.166 \pm 0.003)\%$, $\epsilon_{K^+, K^+} = (0.190 \pm 0.003)\%$ and $\epsilon_{K^+, K^+} = (0.061 \pm 0.002)\%$ are the selection efficiencies for the $B^- \to D^0 D^-_s$, $\bar{B}^0 \to (D^0 \to K^-\pi^+, \bar{D}^0 \to K^-\pi^-)$ and $\bar{B}^0_s \to (D^0 \to K^-\pi^+, \bar{D}^0 \to K^+\pi^-\pi^+\pi^-)$ decays, respectively. The D branching fractions, $\mathcal{B}(D^0 \to K^-\pi^+) = (3.88 \pm 0.05)\%$, $\mathcal{B}(D^0 \to K^-\pi^+\pi^-\pi^+) = (8.07 \pm 0.20)\%$, $\mathcal{B}(D^+ \to K^+ K^-\pi^+) = (5.49 \pm 0.27)\%$, and $\mathcal{B}(D^+ \to K^-\pi^+\pi^-\pi^+) = (9.13 \pm 0.19)\%$ are taken from Ref. [18].

The factor κ is a correction that accounts for the lower selection efficiency associated with the shorter-lifetime CP-even eigenstates of the B^0_s system compared to flavor-specific final states [14]. The impact on the B^0_s acceptance is estimated by convolving an exponential distribution that has a 10% smaller lifetime than that in flavor-specific decays with the
The measured ratios of branching fractions are computed to be

\[
\frac{\mathcal{B}(\bar{B}_s^0 \to D^+ D^-)}{\mathcal{B}(\bar{B}_s^0 \to D^+ D^-)} = 1.08 \pm 0.20 \text{(stat) } \pm 0.10 \text{(syst)},
\]
\[
\frac{\mathcal{B}(\bar{B}_s^0 \to D^+_s D^-)}{\mathcal{B}(\bar{B}_s^0 \to D^+_s D^-)} = 0.505 \pm 0.008 \text{ (stat) } \pm 0.004 \text{ (syst)},
\]
\[
\frac{\mathcal{B}(\bar{B}_s^0 \to D^0 \bar{D}^0)}{\mathcal{B}(B^- \to D^0 D^-_s)} = 0.019 \pm 0.003 \text{ (stat) } \pm 0.003 \text{ (syst)},
\]
\[
\frac{\mathcal{B}(\bar{B}_s^0 \to D^0 \bar{D}^0)}{\mathcal{B}(B^- \to D^0 D^-_s)} = 0.0014 \pm 0.0006 \text{ (stat) } \pm 0.0002 \text{ (syst)}.
\]

For \(\mathcal{B}(\bar{B}_s^0 \to D^0 \bar{D}^0)/\mathcal{B}(B^- \to D^0 D^-_s) \), the results obtained using the \(D^0(K^-\pi^+)\bar{D}^0(K^+\pi^-\pi^+)\) and \(D^0(K^-\pi^+)\bar{D}^0(K^+\pi^-)\) final states differ by less than one standard deviation. For the \(\bar{B}_s^0 \to D^0 \bar{D}^0 \) decay, we provide both the central value and the 90% confidence level (CL) upper limit. The upper limit is obtained by convolving the fitted likelihood with a Gaussian function whose width is the total systematic error, and integrating over the physical region.

5 Systematic uncertainties

A number of systematic uncertainties contribute to the measurements of the ratios of branching fractions. The sources and their values are summarized in Table 3. The dominant source of uncertainty on the branching fraction ratios comes from the \(b \) fragmentation fraction ratio, \(f_d/f_s \), which has a total uncertainty of 7.8% \[^{[37]}\], of which 5.3% is from the ratio of branching fractions \(\mathcal{B}(D^+_s \to K^+ K^- \pi^+)/\mathcal{B}(D^+ \to K^- \pi^+ \pi^+) \). For clarity, we have removed that portion of the uncertainty from \(f_d/f_s \), and included its contribution in the row labeled \(\mathcal{B}(D) \) in Table 3. For \(\mathcal{B}(\bar{B}_s^0 \to D^+_s D^-)/\mathcal{B}(B^0 \to D^+_s D^-) \), the above \(D^+_s/D^+ \) branching fraction ratio from \(f_d/f_s \) cancels with the corresponding inverted ratio in Eq. 1. On the other hand, in the ratio \(\mathcal{B}(\bar{B}_s^0 \to D^0 \bar{D}^0)/\mathcal{B}(B^- \to D^0 D^-_s) \), the \(D^+_s \) cancels the \(D^0 \) branching fraction enters as the square, after considering the \(D \) branching fractions used in computing \(f_d/f_s \) (see Eq. 1). As a result, the uncertainty from \(\mathcal{B}(D^+_s \to K^+ K^- \pi^+) \) contributes 9.8% to the total uncertainty on \(\mathcal{B}(\bar{B}_s^0 \to D^0 \bar{D}^0)/\mathcal{B}(B^- \to D^0 D^-_s) \); smaller...
contributions from the limited knowledge of $\mathcal{B}(D^0 \rightarrow K^-\pi^+)$ [1.3%], $\mathcal{B}(D^0 \rightarrow K^-\pi^-\pi^+$) [2.5%] and $\mathcal{B}(D^+ \rightarrow K^-\pi^+\pi^-)$ [2.1%] are also included in the $\mathcal{B}(D)$ uncertainties.

Another significant uncertainty results from the precision on b-hadron lifetimes and decays of B^0 and B_s to CP eigenstates. Using the measured value of the width difference, $\Delta\Gamma_s = 0.116 \pm 0.018 \pm 0.006$ ps$^{-1}$ [30], we conservatively assume the CP-even lifetime to be in the range from 0.85 to 0.95 times the flavor-specific decay lifetime. With this allowed range a 2.9% uncertainty on the efficiencies for B^0_s decays to CP eigenstates is found. The average B^0_s lifetime is known only to a precision of 3%, which leads to a 1.5% uncertainty on the selection efficiencies for B^0_s decays to flavor-specific final states. The B^0 and B^- lifetimes are known with sufficient precision that the associated uncertainty is negligible.

Several of the efficiency factors are estimated from simulation. Most, but not all, of the associated systematic uncertainties cancel due to the similar or identical final states for the signal and normalization modes. For modes with an unequal number of tracks in the final state, a 1% uncertainty due to small differences in the IP resolution between data and simulation is assigned. The efficiency of the VS χ^2 requirement is checked using the large $B^0 \rightarrow D_s^+D_s^-$ signal in data, and the agreement to within 1% with the efficiency from simulation is the assigned uncertainty. For $\mathcal{B}(B^- \rightarrow D^0D_s^-)/\mathcal{B}(B^0 \rightarrow D_s^+D^-)$, a 1% uncertainty is attributed to the efficiency of track reconstruction. For $\mathcal{B}(B^- \rightarrow D_s^0D_s^+)/\mathcal{B}(\bar{B}^- \rightarrow D_s^0\bar{D}_s^0)$, the one fewer track in the $D^0(K\pi)\bar{D}^0(K\pi)$ final state is offset by the one extra track in $D^0(K\pi)\bar{D}^0(K\pi\pi\pi)$, relative to $D^0(K\pi)\bar{D}^0(K\pi\pi)$, leading to a negligible tracking uncertainty. The mass resolution in data is slightly larger than in simulation, resulting in slightly different efficiencies for the reconstructed D^0, D^+ and D_s^+ invariant masses to lie within 25 MeV/c^2 of their known masses. This introduces a maximum of 1% uncertainty on the relative branching fractions. To estimate the uncertainty on the trigger efficiencies determined from simulation, the hadron trigger efficiency ratios were also determined using data. These efficiencies were measured using trigger-unbiased samples of kaons and pions identified in $D^{*+} \rightarrow D^0\pi^+$ decays. Using this alternative procedure, we find that the simulated trigger efficiency ratios have an uncertainty of 2%. The combined systematic uncertainties in the efficiencies obtained from simulation are given in Table 3.

The limited sizes of the $\bar{B} \rightarrow D\pi^-$ calibration samples lead to uncertainties in the BDT efficiencies. The uncertainties on the ratios vary from 1.0% to 2.0%. The uncertainty on the efficiency of the $D_{(s)}$ and Λ^+_c vetoes is dominated by the PID efficiencies, but they only apply to the subset of D candidates that fall within the mass window of two charm hadrons, e.g., both the D^+ and D_s^+ mesons, which occurs about 20% of the time for D_s^+ decays. Taking this fraction and the uncertainty in the PID efficiency into account, the veto efficiencies are estimated to have uncertainties of 1.0% for the D^+ veto, 0.5% for the D_s^+ veto, and 0.3% for the Λ^+_c veto.

The fit model is validated using simulated experiments, and is found to be unbiased. To assess the uncertainty due to the imperfect knowledge of the various parameters used in the fit model, a number of variations are investigated. The only non-negligible uncertainties are due to the $B \rightarrow DK^-K^+\pi^-$ background contribution, which is varied from 0% to 2%, and the cross-feed from $\bar{B}^0_s \rightarrow D_s^+D^-\pi_0$ decays into the $\bar{B}^0_s \rightarrow D_s^+D_s^-$ sample.
The uncertainty varies from 1.7% to 2.1%. For $B(B_s^0 \to D_s^+ D_s^-)/B(B^0 \to D_s^+ D_s^-)$ and $B(B_s^0 \to D_s^+ D_s^-)/B(B^0 \to D^+ D^-)$, we assign an uncertainty of 0.5%, which accounts for potentially small differences in the signal shape for B^0 and B_s^0 decays (due to the B^0-B_s^0 mass difference). Lastly, the finite size of the samples of simulated decays contributes 3% uncertainty to all the measurements. In total, the systematic uncertainties on the branching fraction ratios range from 5.5% to 13.0%, as indicated in Table 3.

6 Discussion and summary

First observations and measurements of the relative branching fractions for the decays $B(B_s^0 \to D_s^+ D_s^-)$ and $B(B_s^0 \to D_s^+ D_s^-)$ have been presented, along with measurements of $B(B_s^0 \to D_s^+ D_s^-)$ and $B(B^0 \to D^+ D^-)$. Taking the world average values for $B(B^0 \to D_s^+ D_s^-) = (7.2 \pm 0.8) \times 10^{-3}$ [18], the absolute branching fractions are

$$B(B^0 \to D^0 D^-) = (8.6 \pm 0.2 \text{ (stat)} \pm 0.4 \text{ (syst)} \pm 1.0 \text{ (norm)}) \times 10^{-3},$$

$$B(B_s^0 \to D_s^+ D_s^-) = (4.0 \pm 0.2 \text{ (stat)} \pm 0.3 \text{ (syst)} \pm 0.4 \text{ (norm)}) \times 10^{-3}.$$

The third uncertainty reflects the precision of the branching fraction for the normalization mode. These measurements are consistent with, and more precise than, both the current world average measurements [18] as well as the more recent measurement of $B(B_s^0 \to D_s^+ D_s^-)$ [40].

The measured value of $B(B_s^0 \to D_s^+ D_s^-)/B(B^0 \to D_s^+ D_s^-) = 0.55 \pm 0.06$ is significantly lower than the naive expectation of unity for the case that both decays are dominated by tree amplitudes (see Fig. 1a), assuming small non-factorizable effects and...
comparable magnitudes of the $B(s) \to D(s)_s$ form factors \cite{41}. Unlike $B^0 \to D^+_s D^-$, the $\bar{B}^0_s \to D^+_s D^-_s$ decay receives a contribution from the W-exchange process (see Fig. 1(b)), suggesting that this amplitude may not be negligible. Interestingly, when comparing the $\bar{B}^0_s \to D^+_s D^-_s$ and $B^0 \to D^+ D^-$ decays, which have the same set of amplitudes, one finds $|V_{cd}/V_{cs}|^2 \cdot \mathcal{B}(\bar{B}^0_s \to D^+_s D^-_s)/\mathcal{B}(\bar{B}^0 \to D^+ D^-) \sim 1$.

Using $\mathcal{B}(\bar{B}^0 \to D^+ D^-) = (2.11 \pm 0.31) \times 10^{-4}$ and $\mathcal{B}(B^- \to D^0 D^-_s) = (10.0 \pm 1.7) \times 10^{-3}$ \cite{18}, the following values for the branching fractions are obtained

\[
\begin{align*}
\mathcal{B}(\bar{B}^0_s \to D^+_s D^-_s) &= (2.2 \pm 0.4 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.3 \text{ (norm)}) \times 10^{-4}, \\
\mathcal{B}(\bar{B}^0_s \to D^0 D^-_s) &= (1.9 \pm 0.3 \text{ (stat)} \pm 0.3 \text{ (syst)} \pm 0.3 \text{ (norm)}) \times 10^{-4}, \\
\mathcal{B}(\bar{B}^0 \to D^0 D^-_s) &= (1.4 \pm 0.6 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.2 \text{ (norm)}) \times 10^{-5}.
\end{align*}
\]

The first of these results disfavors the predicted values for $\mathcal{B}(\bar{B}^0_s \to D^+_s D^-)$ in Refs. \cite{20,21}, which are about 5–15 times larger than our measured value. The measured branching fractions are about a factor of 2–3 larger than the predictions obtained by assuming that these decay amplitudes are dominated by rescattering \cite{17}. As discussed above for the $\mathcal{B}(\bar{B}^0_s \to D^+_s D^-_s)$ measurement, this may also suggest that the W-exchange amplitude contribution is not negligible in $B \to D \bar{D}$ decays. For precise quantitative comparisons of these B^0_s branching fraction measurements to theoretical predictions, one should account for the different total widths of the CP-even and CP-odd final states \cite{12}.

The Cabibbo suppressed $\bar{B}^0_s \to D^+_s D^-$ decay is also observed for the first time. Its absolute branching fraction is

\[
\mathcal{B}(\bar{B}^0_s \to D^+_s D^-) = (3.6 \pm 0.6 \text{ (stat)} \pm 0.3 \text{ (syst)} \pm 0.4 \text{ (norm)} \times 10^{-4}.
\]

This value is consistent with the expected suppression of $|V_{cd}/V_{cs}|^2$.

The results reported here are based on an integrated luminosity of 1.0 fb$^{-1}$. A data sample with approximately 2.5 times larger yields in these modes has already been collected in 2012, and larger samples are anticipated in the next few years. These samples give good prospects for CP-violation measurements, lifetime studies, and obtaining a deeper understanding of the decay mechanisms that contribute to b-hadron decays.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS/IFA (Romania); MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC
under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.

References

[1] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531.
[2] M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652.
[3] BaBar collaboration, B. Aubert et al., Measurements of time-dependent CP asymmetries in $B^0 \rightarrow D^{(*)+}D^{(*)-}$ decays, Phys. Rev. D79 (2009) 032002, arXiv:0808.1866.
[4] Belle collaboration, S. Fratina et al., Evidence for CP violation in $B^0 \rightarrow D^+D^-$ decays, Phys. Rev. Lett. 98 (2007) 221802, arXiv:hep-ex/0702031.
[5] R. Aleksan et al., The decay $B \rightarrow D^0D^0$ in the heavy quark limit and tests of CP violation, Phys. Lett. B317 (1993) 173.
[6] A. I. Sanda and Z. Z. Xing, Towards determining ϕ_1 with $B \rightarrow D^{(*)}\bar{D}^{(*)}$, Phys. Rev. D56 (1997) 341, arXiv:hep-ph/9702297.
[7] Z. Z. Xing, Measuring CP violation and testing factorization in $B_d \rightarrow D^+D^*$ and $B_s \rightarrow D_s^+D_s^*$ decays, Phys. Lett. B443 (1998) 365, arXiv:hep-ph/9809496.
[8] Z. Z. Xing, CP violation in $B_d \rightarrow D^{*+}D^{*-}$, $D^{*+}D^{*-}$, and $D^{*+}D^{*-}$ decays, Phys. Rev. D61 (2000) 014010, arXiv:hep-ph/9907455.
[9] X. Y. Pham and Z. Z. Xing, CP asymmetries in $B_d \rightarrow D^{*+}D^{*-}$ and $B_s \rightarrow D_s^{*+}D_s^{*-}$ decays: P wave dilution, penguin and rescattering effects, Phys. Lett. B458 (1999) 375, arXiv:hep-ph/9904360.
[10] A. Datta and D. London, Extracting γ from $B^0_d(t) \rightarrow D^{(*)+}D^{(*)-}$ and $B^0_d \rightarrow D^{(*)+}D^{(*)-}$ decays, Phys. Lett. B584 (2004) 81, arXiv:hep-ph/0310252.
[11] R. Fleischer, Exploring CP violation and penguin effects through $B^0_d \rightarrow D^+D^-$ and $B^0_s \rightarrow D_s^+D_s^-$, Eur. Phys. J. C51 (2007) 849, arXiv:0705.4421.
[12] K. De Bruyn et al., Branching ratio measurements of B_s decays, Phys. Rev. D86 (2012) 014027, arXiv:1204.1735.
[13] R. Fleischer and R. Knegjens, Effective lifetimes of B_s decays and their constraints on the B^0_s-\bar{B}^0_s mixing parameters, Eur. Phys. J. C71 (2011) 1789, arXiv:1109.5115.
Y. Amhis et al., Averages of b-hadron, c-hadron, and tau-lepton properties as of early 2012, arXiv:1207.1158. More information is available at www.slac.stanford.edu/xorg/hfag.

LHCb collaboration, R. Aaij et al., Measurement of the effective $B^0 \rightarrow K^+ K^-$ lifetime, Phys. Lett. B716 (2012) 393 arXiv:1207.5993.

LHCb collaboration, R. Aaij et al., Measurement of the B^0 effective lifetime in the $J/\psi f_0(980)$ final state, Phys. Rev. Lett. 109 (2012) 152002 arXiv:1207.0878.

M. Gronau, D. London, and J. Rosner, Rescattering contributions to rare B meson decays, arXiv:1211.5785.

Particle Data Group, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D86 (2012) 010001.

LHCb collaboration, R. Aaij et al., Measurement of b-hadron branching fractions for two-body decays into charmless charged hadrons, JHEP 10 (2012) 037 arXiv:1206.2794.

Y. Li, C.-D. Lu, and Z.-J. Xiao, Rare decays $B^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ and $B^0_s \rightarrow D^{(*)+} D^{(*)-}$ in perturbative QCD approach, J. Phys. G31 (2005) 273, arXiv:hep-ph/0308243.

J. Eeg, S. Fajfer, and A. Hiorth, On the color suppressed decay modes $B^0 \rightarrow D_s^+ D_s^-$ and $\bar{B}^0_s \rightarrow D^+ D^-$, Phys. Lett. B570 (2003) 46, arXiv:hep-ph/0304112.

LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, arXiv:1211.6759 (submitted to Eur. Phys. J. C).

R. Aaij et al., The LHCb trigger and its performance, arXiv:1211.3055 (submitted to JINST).

V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, arXiv:1210.6861 (submitted to JINST).

T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics and manual, JHEP 05 (2006) 026 arXiv:hep-ph/0603175.

I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) 2010 IEEE (2010) 1155.

D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.
[29] P. Golonka and Z. Was, *PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays*, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

[30] GEANT4 collaboration, J. Allison et al., *GEANT4 developments and applications*, IEEE Trans. Nucl. Sci. 53 (2006) 270; GEANT4 collaboration, S. Agostinelli et al., *GEANT4: A simulation toolkit*, Nucl. Instrum. Meth. A506 (2003) 250.

[31] M. Clemencic et al., *The LHCb simulation application, GAUSS: design, evolution and experience*, J. of Phys.: Conf. Ser. 331 (2011) 032023.

[32] I. Narsky, *Optimization of signal significance by bagging decision trees*, arXiv:physics/0507157.

[33] I. Narsky, *StatPatternRecognition: a C++ package for statistical analysis of high energy physics data*, arXiv:physics/0507143.

[34] M. Pivk and F. R. Le Diberder, *sPlot: a statistical tool to unfold data distributions*, Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083.

[35] T. Skwarnicki, *A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances*, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.

[36] Belle Collaboration, A. Drutskoy et al., *Observation of B → D(∗)K−K0(∗) decays*, Phys. Lett. B542 (2002) 171, arXiv:hep-ex/0207041.

[37] LHCb collaboration, R. Aaij et al., *Measurement of the ratio of fragmentation fractions f_s/f_d and dependence on B meson kinematics*, arXiv:1301.5286 (submitted to JHEP).

[38] A. Lenz and U. Nierste, *Numerical updates of lifetimes and mixing parameters of B mesons*, arXiv:1102.4274, proceedings of the 6th International Workshop in the CKM Unitarity Triangle, Warwick, U.K., Sept. 6-10, 2010.

[39] LHCb collaboration, *Tagged time-dependent angular analysis of B^0_s → J/ψφ decays at LHCb*, LHCb-CONF-2012-002.

[40] Belle collaboration, S. Esen et al., *Precise measurement of the branching fractions for B_s → D^{(*)+}D^{(*)-} and first measurement of the D^{*+}D_{s}^{*-} polarization using e^+e^- collisions*, arXiv:1208.0323.

[41] J. A. Bailey et al., *B_s → D_s/B → D semileptonic form-factor ratios and their application to B(B^0_s → μ^+μ^-)*, Phys. Rev. D85 (2012) 114502, arXiv:1202.6346.