Development of a Cutting Force Prediction Model for Silica/Phenolic Composite in Mill-grinding

Zhang Chong*, Zhang Tingyu, Wang Qi, Ling Li and Zhao Yibo
Aerospace research institute of materials & processing technology, Beijing, China

*E-mail: Zhangchongbuaa@163.com

Abstract. A cutting force model was developed from silica/phenolic composites for mill-grinding process. The experimental was carried out on silica/phenolic material and found that the cutting force decreased significantly with the increase of cutting speed, whereas the same was found increased with the increase of feed rate and cutting depth. By comparison of the experimental and simulation data of the cutting force, it was found that the errors are below than 30 % in most of the sets of parameters. The variation found is due to the heterogeneity and other complex properties of silica/phenolic composites. The results were almost the same as previous experiments. So, the cutting force model developed in this paper is robust and it can be applied to predict the cutting force and optimization of the process.

1. Introduction
Silica/phenolic composite are attractive due their superior properties such as low density, low thermal conductivity, ultra high-adsorption ability, ablation resistant performance and thermal stability. Presently, Silica/phenolic composite are used in thermal protection systems[1]. Their applications are increasing in space, military, and aerospace industries day by day. In traditional machining processes, the cutting tools wear very quickly and the cutting tools like polycrystalline diamond (PCD) tools are very expensive. It is challenging to achieve desired accuracy, high efficiency, and cost-effective processing for such composites. Keeping in view of their special properties and critical engineering applications, there is a crucial need to research for machining of silica/phenolic composites in order to achieve economic and efficient processing with desired quality. Low efficiency, high processing costs, and quality issues are three main problems which hindered the applications of silica/phenolic materials. With mill-grinding, better results have been achieved as compared to conventional machining of composites materials. Jinguang Du developed a cutting force mathematical prediction model on the basis of the study on material removal mechanism of SiCp/Al. Based on the cutting force model, the distribution of chip deformation component force, friction component force and particle fracture with the change of machining parameters, such as cutting speed, feed rate and milling width, was calculated[2]. Li Wanqing studied the effects of cutting speed, feed rate, and cutting depth on mill-grinding force. The mill-grinding force has found increased with the increase of feed rate and cutting depth while it has decreased with the increase of cutting speed[3].

In this paper, the mechanistic model is developed to predict the cutting force for Silica/phenolic based on indentation fracture mechanics in mill-grinding. The mathematical relationship between cutting parameters (spindle speed, feed rate, and cutting depth) and cutting force is proposed. The parameter, k1, k2, k3, was obtained using response surface method. This paper is organized into five sections. After this introduction section, the predicted cutting force model is designed and developed
in Sect. 2. In Sect. 3, the experimental mill-grinding is carried out and the data acquired is reported. The results and discussion are mentioned in Sect. 4. Finally, the conclusions are presented in Sect. 5.

2. Modeling
The material removal mechanism in mill-grinding is based on indentation fracture theory. When the diamond abrasive grit penetrates into the surface of the workpiece material, there will be a plastic deformation. With the increase of penetration depth, the median crack will grow and also generate the lateral crack. The extended lateral cracks then induce and peeling off the workpiece material occurs as shown in ‘figure 1’[4]. The maximum penetration depth \((w)\) was used as an intermediate parameter to establish the relationships between the input parameters (spindle speed, feed rate, and cutting depth) and the output parameter, i.e., cutting force.

![Figure 1. Crack propagation](image)

Because of the randomness of distribution of wear debris, the abrasive angle is not a constant number. As shown in ‘figure 2’, while the value of penetration depth is \(w\), the maximum and the minimum of the sweep area are \(\Delta OBD\) and \(\Delta OEF\), the area can be expressed as[5]:

\[
S_{\text{max}} = \frac{1}{2} \cdot 2w \cdot w = w^2
\]

\[
S_{\text{min}} = \frac{1}{2} \cdot \sqrt{2}w \cdot w = \frac{\sqrt{2}}{2} \cdot w^2
\]

![Figure 2. The sweep area of the diamond grits](image)

The mean area was used to simplify the calculation. The average area can be calculated as follows:
The microscopic contact length of abrasive and materials is shown in ‘figure 3’. The contact angle θ can be expressed as:

$$\theta = \arccos \left(1 - \frac{2w}{D}\right)$$

(4)

As $w<<D/2$, θ can be expressed as follows:

$$\theta = 2\sqrt{\frac{w}{D}}$$

(5)

The value of microscopic contact length can be expressed as:

$$l_c = \frac{D}{2} \cdot \theta = \sqrt{w \cdot D}$$

(6)

Figure 3. The microscopic contact length of abrasive and materials (l_c)

From a rather macroscopic perspective, the value of macroscopic contact length can be expressed as:

$$l_a = \frac{D}{2} \cdot \arccos \frac{D - 2a_e}{D}$$

(7)

Diamond abrasive concentration is the mass of abrasive per unit volume within working layer. Concentration is generally defined as follows: per cubic centimeter volume of abrasive grains containing 4.4 karats (1 karat diamond is equal to 0.2 g) is defined as 100. Each has an increase or decrease of 1.1 karats of abrasive, and then the concentration is increased or decreased by 25 %, respectively. According to this definition, the total number of active diamond abrasive grains involved in cutting, N_α, can be expressed as

$$N_\alpha = \left\{ \frac{0.88 \times 10^{-3} \cdot C_a}{\sqrt{2 \times S_a^3}} \cdot \frac{100}{\rho} \right\} \cdot A_0 = 0.03 \cdot \frac{C_a^{2/3}}{S_a} \cdot l_a \cdot a_p$$

(8)

Material removal rate MRR is the summary of the material removed by all the effective abrasive particles during one period and can be expressed as follows:

$$MRR = N_\alpha \cdot V_c \cdot S$$

(9)

MRR can also be expressed as the volume swept by the cutting tool during one period:

$$MRR = a_e \cdot a_p \cdot f$$

(10)
By solving both Eqs. (9) and (10), the relationship between maximum penetration depth and cutting parameters can be obtained as follows:

\[
w = \left(\frac{4 \times a_w \cdot f_r \cdot S_a^2}{0.03 \times (2 + \sqrt{2}) \cdot C_{\alpha} \cdot D / 2 \cdot \arccos \left(\frac{D - 2a_w}{D} \right) \cdot \sqrt{D} \cdot S} \right)^{2/5} \tag{11}
\]

The cutting of mill-grinding can be expressed as three components: \(F_x, F_y\). \(F_x \) is caused by cutting materials of abrasive particles directly, can be expressed as follows:

\[
F_x = N_a \cdot F_a = k_1 \cdot N_a \cdot w^2 \cdot \sigma_b \tag{12}
\]

Where \(F_a \) is the cutting force caused by one diamond abrasive, \(\sigma_b \) is the yield strength of the silica/phenolic composite, \(k_1 \) is a constant number which demarcated by experiment.

\(F_y \) is proportional to the cutting area per unit time, which can be express as follows:

\[
F_y = k_2 \cdot 0.03 \times \frac{L^2 / 3}{S_a^2} \cdot a_w \cdot a_p \cdot w^2 \cdot \sigma_b \tag{13}
\]

Where \(k_2 \) is a constant number which demarcated by experiment.

3. Experimental setup

The schematic and the actual experimental setup is shown in ‘figure 4’, respectively. The setup is composed of three parts: three-axis milling machine (VMC0850B, Shenyang, China), diamond abrasive tool, and dynamometer (9257B, Kistler, Switzerland).

Silica/phenolic composite were used as the workpiece sample materials. The mechanical properties of Silica/phenolic composite are shown in Table 1. The parameters of diamond abrasive tool are shown in Table 2.

![Experimental setup](image)

Figure 4. Experimental setup

| Table 1. Mechanical properties of Silica/phenolic composite workpiece material |
|-------------------------------|---|
| Density (g/cm\(^3\)) | 1.6 |
| Tensile strength(MPa) | 20 |
| Compression strength (MPa) | 100 |
| Bending strength(MPa) | 50 |
| Elongation at break(%) | 0.35|

Table 2. The properties of diamond abrasive tool
Abrasive
Bond type
Grain size
Concentration $C_\alpha=100$
Radius $R=16\text{mm}$

The experimental design is shown in Table 3. Three groups of input parameters such as spindle speed, cutting depth, and feed rate were used in this research. These parameters were found significant on the basis of random experiments and the findings of previous research work. These cutting parameters were designed by response surface method with three factors.

Table 3. Experimental design

Factor	Level 1	Level 2	Level 3
Spindle Speed (rev/min)	1000	3500	6000
Feedrate (mm/min)	150	325	500
Cutting Depth (mm)	0.2	1.1	2

4. Experimental results and discussion

Table 4 shows the results of cutting force tests of cutting force. It was found that the simulation values are closest to measurement values, when $\Sigma (F - k^*F_S)^2$ got the minimum value. Here, k_1 has obtained as 1.44, k_2 has obtained as 5.38. The comparative analysis of measured values and simulated values of cutting force was carried out, and finally, the percentage error was found for each set of experiments. It was found that in most of the cases, the error is below 30 % expt 16 (77 %). Such variations are mainly due to the heterogeneity of silica/phenolic.

Table 4. Comparative analysis of measured values and simulated values of F_x

Spindle Speed (rev/min)	Feedrate (mm/min)	Cutting Depth (mm)	F_x N	Simulation F_x, N	Error F_x, %	F_y N	Simulation F_y, N	Error F_y, %	
1	3500	500	2	164	173	5	250	265	6
2	3500	325	1.1	69	68	-2	97	103	6
3	3500	325	1.1	70	68	-3	100	103	3
4	1000	150	1.1	134	99	-26	215	151	-30
5	6000	325	2	86	79	-8	122	124	2
6	3500	325	1.1	63	68	7	92	103	12
7	6000	500	1.1	79	62	-22	111	92	-17
8	3500	325	1.1	70	68	-3	106	103	-3
9	1000	325	2	286	333	16	479	508	6
10	1000	325	0.2	37	33	-10	38	49	28
11	3500	325	1.1	68	68	0	98	103	5
12	1000	500	1.1	300	259	-14	412	394	-4
13	3500	150	2	78	66	-15	109	103	-6
14	6000	150	1.1	29	23	-21	50	36	-28
15	3500	150	0.2	8	7	-10	9	10	14
16	6000	325	0.2	11	9	-21	7	12	77
17	3500	500	0.2	17	17	2	22	26	20

5. Summary

In this research, mill-grinding was carried out on silica/phenolic composite. The following conclusions...
can be drawn:

1. The cutting force model was developed and then validated by experimental machining of
silica/phenolic using mill-grinding. It was found that percentage difference/error between the
measured and simulated (from model) values of cutting force is less than 30 % in the most set of
values. However, in few cases, this difference was recorded more than 30 %. The cause of this
difference is due to the heterogeneity and some other factors related to silica/phenolic composites. So,
this model is robust and can be applied for finding cutting forces.

2. The cutting force has found increased with the increase of feed rate and cutting depth while it
has decreased with the increase of spindle speed.

References
[1] Loomis M P, Prabhu D K, Gorbunov S, et al. Results and Analysis of Large Scale Article
Testing in the Ames 60 MW Interaction Heating Arc Jet Facility[C]. 48th AIAA Aerospace
Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Florida:
Orlando, 2010-445.
[2] Jinguang Du, Jianliang Li, Yingxue Yao, Zhaopeng Hao. Prediction of cutting forces in mill-
grinding SiCp/Al composites[J]. Materials and Manufacturing Processes, 2014, 29(3): 314-320.
[3] Li Wanqing. Optimizing selection of processing parameters of millgrinding sic/al composites[D].
Harbin: Harbin Institute of Technology, 2011.
[4] Lawn B R, Evans A G, Marshall D B. Elastic/plastic indentation damage in ceramics: the
median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9-10): 574-
581.
[5] Songmei Yuan, Huitao Fan, Muhammad Amin, Chong Zhang, & Meng Guo. A cutting force
prediction dynamic model for side milling of ceramic matrix composites C/SiC based on rotary
ultrasonic machining[J]. Int J Adv Manuf Technol (2016) 86:37–48.