Supplemental Information

Flexible and digestible wood caused by

viral-induced alteration of cell wall composition

Holly Allen, Leo Zeef, Kris Morreel, Geert Goeminne, Manoj Kumar, Leonardo D. Gomez, Andrew P. Dean, Axel Eckmann, Cinzia Casiraghi, Simon J. McQueen-Mason, Wout Boerjan, and Simon R. Turner
Figure S1 Symptom distribution in ARWV-infected branches and cell wall composition. Related to Figure 1. (A) Uninfected (UN) and ARW-infected (ARW) apple tree grafts. The ARW graft has been bent to demonstrate the stem flexibility. (B) 4 year old symptomatic branch from ARW-infected apple tree grafts growing unaided (left hand side) and bent to demonstrate the stem flexibility (right hand side) (C) Representative apple xylem cross-sections stained with 0.05% Toluidine blue taken from uninfected branches and ARWV-infected branches exhibiting variable or severe symptoms. Asymptomatic regions of infected material resemble the uninfected, while cell walls of symptomatic fibres stain a purple colour. Arrow indicates the growth ring. While year 1 growth exhibits clear symptoms, symptoms are only apparent at the end of year 2 and absent from year 3. Scale bars = 50 µm (D) Transmission electron microscopy of apple xylem. Scale bars = 5 µm (left panel) and 3 µm (right panel). Fibres (f), ray cells (r), vessels (v), secondary cell wall (scw), mid lamellae (m) and cell lumen (l) are indicated. (E) Monosaccharide composition of xylem from uninfected (white bars) and symptomatic xylem (grey bars). (F) Normalized spectra of solid-state 13C NMR analysis from uninfected (black) and symptomatic (blue) cell walls.
Figure S2 Expression of lignin biosynthetic genes and proteins in apple xylem. Related to Table 1. Each square represents the expression of a different gene (regular font) or protein (bold). Log fold change (FC) in gene expression and FC in protein abundance is expressed in terms of symptomatic xylem relative to uninfected xylem. All genes exhibit significantly altered expression with an FDR-adjusted p-value ≤ 0.01 and logFC ± 2. All proteins exhibit significantly altered abundance with a p-value ≤ 0.05 and FC ± 2.
Figure S3 Disruption in the late stages of lignin biosynthesis in symptomatic xylem. Related to Figure 2. Arrows represent enzymatic steps during the late stages of lignin biosynthesis. Dashed arrows indicate steps that are uncharacterised. Graphs show mean metabolites abundance. Asterisks indicate significance based on a T-test (*, p ≤ 0.05, **, p ≤ 0.01). Table shows metabolites that have a fold-change with a p-value < 0.05. Abbreviations: CCR = cinnamoyl-CoA reductase, CAD = cinnamyl alcohol dehydrogenase, FSH = ferulate 5-hydroxylase and COMT = caffeic acid 3-O-methyltransferase.

Metabolite ID	Putative name	Type	FC	UN	SYM
2.74_359.0981m/z	syringic acid 4-O-hexoside	P	0.57	1907.56	1093.77
3.52_359.0980m/z	syringoyl hexose	P	0.37	469.20	171.49
9.99_207.0666m/z	sinapaldehyde	P	0.06	48.06	2.83
Table S3 Differentially abundant phenolic metabolites in symptomatic xylem. Related to Figure 2. Fold change (FC) is expressed in terms of symptomatic xylem (SYM) relative to uninfected (UN) xylem. Compounds in bold are annotated with high confidence based on MS/MS spectral library identity matching, and compounds not in bold are putative structures based on MS/MS spectral similarity to library spectra and structural elucidation. The upper table shows metabolites that have a greater than two-fold change in abundance and a minimum abundance of 100 in either symptomatic or uninfected xylem with a p-value ≤ 0.001, while in the lower table the metabolites have a p-value < 0.01. Abbreviations: P = phenylpropanoid, F = flavonoids, O = oligolignols and U = unassigned.					
sRNA sequence	ARW-1	ARW-2	ARW-3	ARW-4	Total
---------------------------------------	-------	-------	-------	-------	-------
CTCTGACTGGTCTCTCACAATG	1718	2008	710	170	4606
ATAGTCTACCTGCACGATTAA	290	616	485	175	1566
CATCACCATCTTTCTCTACAAA	260	473	243	89	1065
CCACCCGGTTCTTTGCATTCTT	137	632	196	37	1002
ATAGTCTACCTGCACGATTAA	142	359	222	77	800
CTCATGGCTGAAGGAAATTTTC	187	386	191	36	800
CTAGAGGGAACATCGAGAGG	73	360	152	47	632
CCACCCGGTTCTTTGCATTCTT	95	387	126	22	630
GCCACCCGGTTCTTTGCATTCTT	140	192	104	51	487
GCTTGTGGCCACCCGGTTTTG	58	234	141	52	485
CTTAACATGTCAGGATCGCAA	180	168	117	11	476
CATCACAGCTTGTTGGCCACCG	111	182	124	21	438
TAGAGGGAACATCGAGAGGA	39	273	92	26	430
TCATCACCATCTTTCTCTAACA	70	181	112	63	426
CCTGGCATCTAACTCAACTT	92	235	50	19	396
ACGACTATAGAAAAACTGCAAT	123	151	88	11	373
CTTAACATGTCAGGATCGCAA	107	124	91	28	350
GCCACCCGGTTCTTTGCATTCTT	67	160	81	34	342
CACCGGTTCCTTGCACTTCTAG	61	205	48	18	332
CTTTGCAGAGAGTGCGATTAG	96	155	49	12	312
CATCACCATCTTTCTCTATTGAAAC	49	153	57	50	309
TCATCACATCTTTTCATAACCAA	42	133	55	64	294
TCATGCCTAGGATCTGAAG	74	121	56	11	262
CAGCTGTGGGCGACCGGGTTTCT	26	95	85	18	224
TCACGCATGCTGGTCTCACAAC	36	112	46	11	205
TTTCGTGCAACTACTTCAAAGC	47	73	56	18	194
CTGTTGCCACCGGGTTCTTGC	26	85	62	18	191
TAGAGGGAACATCTCGAGAGGA	14	110	33	13	170
TCAAGATAAGTAGCGAGCTTA	31	82	42	11	166
TTGGCCCACGGCTTCTGGATT	22	70	49	25	166
TCACCATCTTTCTCTAACACA	43	67	15	28	153
GAAGTTAAGCCACCGAGATTAA	25	66	33	19	143
GGGGATTCTCTGAGACGACTA	32	80	19	12	143
CTTAACATGCAGGAGTGACCA	27	70	30	14	141
TTCAGCCTGAGGGATCTGCC	29	57	40	11	137
ATGCTTTTCTACCCTTCTTTC	21	45	46	23	135
CATCACATCTTTTCATAACAA	44	35	37	10	126
TTAATCGATTAGAGTAGGACG	17	61	28	10	116
GCAATTTGACTGTGCAGAGT	32	35	36	12	115
AGCTTGTGGCCACCGGTTCTTG	24	51	19	20	114
TAAGTCATGAGTCGCAA	19	61	20	12	112
sRNA sequence	ARW-1	ARW-2	ARW-3	ARW-4	Total
---	-------	-------	-------	-------	-------
GCAATTCAGGTAGTGCAGAGTG	18	56	18	14	106
TCAACCATCTTTTCTAACA	23	32	19	26	100
TTCATCACCATCTTTCTAACAAA	13	45	18	12	88
TTCATCACCATCTTTCTAACA	10	38	17	20	85
TTCATCACCATCTTTCTAACA	16	23	29	14	82
TTCATCACCATCTTTCTAACA	21	26	16	10	73
CTGGGCAACCCGATTTCCTGCA	10	31	15	12	68
TTCATCACCATCTTTCTAAC	11	15	13	16	55
TAATCAAGATAAGTGGCAGC	11	21	10	10	52

Table S4 sRNAs mapping to the ARWV. Related to Table 2. All sRNA sequences were found in each ARWV-infected wood sample with more than 10 reads per samples. No reads were detected in UN samples.