Coordination chemistry of tris(azolyl)phosphines

Tazelaar, C.G.J.; Slootweg, J.C.; Lammertsma, K.

DOI
10.1016/j.ccr.2017.10.024

Publication date
2018

Document Version
Final published version

Published in
Coordination chemistry reviews

License
CC BY

Citation for published version (APA):
Tazelaar, C. G. J., Slootweg, J. C., & Lammertsma, K. (2018). Coordination chemistry of tris(azolyl)phosphines. Coordination chemistry reviews, 356, 115-126. https://doi.org/10.1016/j.ccr.2017.10.024
An overview is given of the chemistry of tris(azolyl)phosphines with focus on their preparation and application in coordination- and organometallic chemistry and catalysis. These systems share with the more abundant tris(pyrazolyl)borates and -methanes the ability to function as tridentate nitrogen ligands with hemilabile character, but the additional phosphine donor site grants them bifunctional potential. Applications of tris(azolyl)phosphine complexes range from enzyme models and medicinal leads to catalysts for organic transformations and polymerization reactions, which demonstrate their versatility.
1. General introduction

Tris(azolyl)phosphines consist of three azoles linked together by a central phosphorus apex. Several classes with this motive have been reported, mainly as ligands in coordination chemistry. Their topology resembles that of the tris(pyrazolyl)borates, also known as scorpionates [1–4]. These well-known ligands can bind a metal via two or three nitrogens, depending on the nature of the metal and ligands. The tris(azolyl)phosphines can play a similar role by coordinating a metal as either N2 or N3 donor, but they offer additional possibilities. The presence of the P-apex serves as a convenient NMR spectroscopic handle and this central phosphorus atom may also function as an alternative or additional coordination site. Moreover, these compounds are neutral instead of anionic like the scorpionates. Our interest in tris(azolyl)phosphines was sparked when working on tris(triazolyl)phosphines [5,6] and grew when uncovering some of the potential of tris(pyrazolyl)phosphines as ligands [6–8]. A significant number of contributions on tris(azolyl)phosphines have appeared, although the amount of literature reports stands in sharp contrast to the plethora of studies involving scorpionates. This review is intended to create an overview of the chemistry that has been reported on tris(azolyl)phosphines that function or can function as tridentate N ligands.

2. Tris(imidazolyl)phosphines

2.1. Preparation of tris(imidazolyl)phosphines

Preparation of imidazolylphosphines (P(Im)3) generally starts with the reaction of PCl3 with a deprotonated imidazole. The three methods typically used in the literature for deprotonation are (a) reaction with an organometallic base, (b) reaction with an amine, or (c) replacement of the proton with a SiMe3 group (Scheme 1). The exchange reaction of a halo-imidazole with EtMgBr is sometimes encountered as fourth method to prepare a deprotonated imidazole (Scheme 1).

Scheme 1. Different synthetic routes toward tris(imidazolyl)phosphines.

In the first report on imidazolylphosphines in 1980, Brown and co-workers used a dimethoxymethyl group to protect the imidazole N-1 and applied nBuLi as deprotonation agent [9]. P(2-Im4,5-R2)3 was obtained in moderate yields (R4,R5 =H2: 36%; Me2: 46%; iPr2: 55%). A crystal structure of the hemihydrate of the parent P(2-Im)3 was reported later [10]. Two years after Brown’s initial study, several azolylphosphines were prepared by lithiation and subsequent silylation of the azole, followed by reaction with Ph2P=Cl [11]. This included P(2-Im1-Me)3 (66%) of which a crystal structure determination was reported later [12]. Yurchenko and co-workers have introduced the use of a pyridine/Et3N mixture to deprotonate 1-alkylimidazoles [13]. Subsequent reaction with PCl3 yielded P(2-Im1-Me)3 (84%) and P(2-Im1-iPr)3 (71%). PBr3 was used as P precursor for tris(1-ethyl-benzimidazol-2-yl)phosphine (62%). A recent study of 1H,15 coupling constants includes ample data for different imidazolylphosphines [14]. The preparation of other P(Im)3 ligands will be discussed when their application is described.

2.2. Application as active site models of Zn enzymes: Zn and Co complexes

Following their introduction of the tris(imidazol-2-yl) phosphines [9], Brown and co-workers applied these compounds as ligands (Fig. 2a) in the study of active site models for Zn containing enzymes, in particular carbonic anhydrase. First, they employed homo-imidazolyl ligands (R,R =H2; Me2; iPr2) for complexation with Zn and Co [15,16] and found the steric requirements of the ligand to be important. Coordination could only be established unambiguously for R4,R5 = iPr2 and its Zn complex [Zn(P(2-Im14,5,iPr2)3)](CO3)2 was the only one showing moderate catalytic activity in the hydration of CO2. A crystal structure of [ZnCl(P(2-Im14,5,iPr2)3)]Cl was reported [17]. Brown and co-workers extended the range of ligands with R4,R5 = nPr2 (25%) [18] and with mixed imidazolyl versions P(2-Im4,5,iPr2)3 as ligands.
with \(\text{Im}^- \cdot \text{R}^\text{R} = \text{H}_2 (24\%) \) and \(\text{H}_2\text{C}_2\text{H}_5\text{OH} (21\%) \) [19]. These were obtained via reaction of the lithiated imidazoles with \(\text{PCl}_3 \), using a two-step sequence for the mixed ligands. Their Co and Zn complexes were explored for catalytic activity in the dehydration of \(\text{CO}_2\text{H}^- \). In a subsequent study, the rate of hydrolysis of \(p\)-nitrophenylpicolinate was shown to be moderately enhanced by replacing \(Zn \) for \(Cd \) [30]. From a comparison of the crystal structures, it was explained that the significantly lower activity of carbonic anhydrase on \(Zn \) relative to the metal is indicative for the activity of the metal in the proximity of the \(P \)-apex of tris(pyrazolyl)phosphine oxides (see Section 3.2) [7].

The group of Brown also studied the \(Zn(II) \) and \(Co(II) \) complexes [\(M\text{ClO}_4\text{[P(2-Im4,5-}\text{R}_2\text{3]} \text{Cl} \)] complexes were reported [28], whereas a less sterically demanding ligand resulted in octahedral \([\text{CoCl}2\text{[P(2-Im4,5-}\text{R}_2\text{3]}\text{Cl}] \)] complexes were calculated to follow similar reaction profiles, with the activation barriers for product release of all four studied complexes being the rate determining step. Although the \(\beta \)-N_2 bonding was found for the \(\text{ZnCl}_2 \) and \(\text{CoCl}_2 \) complexes and \(\kappa^2\text{-N}_2 \) coordination, involving the apex \(\text{P}^- \), for the \(\text{NiCl}_2 \) complex (Fig. 3) [36]. The \(\text{NiCl}_2 \) complex of the non-oxidized ligand, \(\text{Ni[P(4-Im2,3-}\text{Cl}_3]\text{Cl} \), as well as the related \(\text{Ni} \) and \(\text{Ni} \) nitrato complexes showed the common \(\kappa^2\text{-N}_2 \) coordination. While tris(2-isopropylimidazol-4-yl)phosphine remains bound as a tridentate ligand, the overall coordination number of these complexes is readily effected by temperature, solvent, and by \(N,O \)-bidentate ancillary ligands such as amino acids. [\(\text{Co[2-(OC(O))\text{OPy}[P(2-Im^\text{2,3-}\text{Cl}_3)]\text{NO}_3 \)](NO_3), featuring an \(\text{N}_2 \) bound picolinate ligand was reported [38].

Contrasting the results of Kunz [37], Chavez and co-workers have shown that for \(\text{Co[P(2-Im1,4,5-}\text{Et}_2\text{3}]\text{Cl} \)], the choice of counterion \(X \) can dictate the geometry also for the non-oxidized phosphine ligands [39]. Whereas weakly coordinating OTF anions led to tridentate coordination of the ligand, the overall coordination number of these complexes is readily effected by temperature, solvent, and by \(N,O \)-bidentate ancillary ligands such as amino acids. [\(\text{Co[2-(OC(O))\text{OPy}[P(2-Im^\text{2,3-}\text{Cl}_3)]\text{NO}_3 \)](NO_3), featuring an \(\text{N}_2 \) bound picolinate ligand was reported [38].

Contrasting the results of Kunz [37], Chavez and co-workers have shown that for \(\text{Co[P(2-Im1,4,5-}\text{Et}_2\text{3}]\text{Cl} \)], the choice of counterion \(X \) can dictate the geometry also for the non-oxidized phosphine ligands [39]. Whereas weakly coordinating OTF anions led to tridentate coordination of the ligand, the overall coordination number of these complexes is readily effected by temperature, solvent, and by \(N,O \)-bidentate ancillary ligands such as amino acids. [\(\text{Co[2-(OC(O))\text{OPy}[P(2-Im^\text{2,3-}\text{Cl}_3)]\text{NO}_3 \)](NO_3), featuring an \(\text{N}_2 \) bound picolinate ligand was reported [38].

2.3. Application as active site models of Fe enzymes

Tris(imidazolyl)phosphines have also been applied as active site models for non-heme iron proteins. Kurtz and co-workers reported on the structural and spectroscopic properties of the \(\mu\text{-xoxo}\text{bis[\(\mu\text{-carboxyloxy}\text{diiron}] \), and dimanganese complexes with two capping ligands, \(P(2-\text{Im}_2) \) or \(P(2-\text{Im}^\text{1,2-}\text{Me}_2) \), the \(\text{N}_2 \) substituted version being prepared from \(\text{PCl}_3 \) and lithiated 1-methylimidazolate (40%) [40]. Fig. 4a shows the diiron complex [\(\text{Fe}_2\text{O}_2\text{Ac}_2[\text{P(2-Im^\text{1,2-}\text{Me}_2)]_2[\text{Cl}]_2 \)], which was structurally elucidated. An isostructural complex was compared with other \(\mu\text{-xoxo}- \)bridged Fe dimers, where its intensive \(\nu \)-Fe-O-Fe stretch stood out, resembling Fe proteins [41]. Complexes of both \(P(2\text{-Im}^\text{1,2-}\text{Me}_2) \) and \(P(2\text{-Im}^\text{1,2-}\text{Me}_2) \) were included in an extensive \(^1\text{H} \) NMR study of Fe imidazolyl compounds [42]. 1,4-Dimethylimidazolate has been used in the \(nBuLi \) mediated synthesis of the \(P(2\text{-Im}^\text{1,2-}\text{Me}_2) \) ligand from which a structurally characterized hydroxy bridged iron trimer has been generated (Fig. 4b) [43].

Monomeric Fe complexes have also received ample attention. The crystal structure of [\(\text{Fe[P(2-Im^\text{1,2-}\text{Me}_2)]_2[\text{FeCl}_2]_2[\text{Cl}] \)] was
compared with that of the isomorphous HOC(2-Im 1-Me) 3 complex [44]. Reportedly, the complexes [M{P(2-Im 1-Et,4-Me)3}2](OTf)2 with M @ Fe and Mn have similar structural features and their electro-
chemical and magnetic properties have been studied [45]. Mono-
P(ImR)3 Fe complexes were shown to be accessible when the alpha positions relative to the coordinated nitrogens of the ligand carry
sterically more demanding groups. For instance, upon replacing
the 4-Me for 4-i Pr groups [46], mono-ligand Fe(II) complex [Fe
(OTf)2{P(2-Im1-Et,4-Me)3}] was obtained for which the reactivity
with NO was studied [47]. Both the starting complex and the NO
adduct (Fig. 4 d) were structurally characterized.

Fiedler and co-workers showed that also Ph groups in the Im-2
position, as in P(4-Im 2-Ph)3, provide sufficient steric hindrance to
obtain mono-ligand complexes. This was illustrated for a series
of [Fe(acac X){P(4-Im2-Ph)3}](OTf) complexes that were character-
ized by UV-Vis and NMR spectroscopy, cyclic voltammetry and
DFT calculations [48]. The complexes have been related to the
enzyme acetylacetone dioxygenase (Dke1) which features a tris-
histidine Fe active center. In contrast to the enzyme, the [Fe(acac X)
{P(4-Im2-Ph)3}](OTf) complexes were stable for days on exposure to
O2, while reacting instantaneously with NO, which indicates that
reaction with O2 should be sterically feasible [49]. The sharp
contrast between the enzyme and the model compounds in O2
reactivity was taken to suggest that a favorable second step,
supported by second-sphere effects, takes place in the enzyme.
P(2-Im1-Me,4,5-Ph2)3, prepared from the imidazole and PCl3 with
nBuLi as the base (24%), and P(4-Im2-Ph)3 both have been used as suitable scaffolds for Fe enzyme modeling [50]. The weaker
ligands, like solvent molecules or carboxylates, that complete the
coordination sphere in the initially formed precursor complexes
are readily replaced upon addition of a β-diketone or salicylic
acid, while the P(Im) 3 remains bound to the Fe center. This con-
trasts other neutral N3 ligands and demonstrates the suitability
of these complexes as enzyme models. A crystallographic, spectro-
scopic, and computational comparison of the products of [Fe
(NCMe)3{P(2-Im1-Me,4,5-Ph2)3}](OTf)2 and [Fe{HB(Pz 1,5,8-Ph2)3}](OC(O)
Ph)] with an aminophenol showed these complexes to have differ-
ent electronic structures based upon which different mechanistic
pathways were suggested for extradiol catechol dioxygenases
(ECDOs) and o-aminophenol dioxygenases [51]. A similar compre-
hensive study was conducted on the reaction of the same starting
complexes with 2-(1-methylbenzimidazol-2-yl)hydroquinonate to model another Fe non-heme enzyme [52]. Related complexes with either a catechol or diaminophenylene substrate, all characterized
by X-ray diffraction, have been studied for their reactivity toward
O2, showing up to a 105 rate difference that contrasts with modeled
enzymes, which was ascribed to a lack of control over proton trans-
ferral during the oxidation of the models (Scheme 2) [53].

2.4. Copper complexes of tris(imidazolyl)phosphines

The study of the Cu complexes of tris(imidazolyl)phosphine has
focused mainly on their reactivity toward O2 and isolation of
the oxo-products. The first reported Cu(I) complexes
[Cu(P(2-Im1-Et,4-R)3)]X and [Cu(NCMe)(P(2-Im1-Et,4-R)3)]X (X = PCl6, ClO4, OTf, Cl) reacted irreversibly with O2 at ambient
temperature via two intermediates to blue bis-ligand Cu(II)
complexes [46]. At low temperature, the reaction could be
stopped at purple O2-bridged Cu(I) dimers, which could be
reverted to the starting complex for the 4-i Pr ligand derivative. [CuCl(MeOH){P(2-Im1-Et,4-iPr)3}][Cl] has been the subject of a
comprehensive crystallographic, spectroscopic, and computational
study [54].

Increasing the bulk of the ligand substituents alters the O2 reac-
tivity of the Cu(I) complexes. Such ligands, P(2-Im1-Et,4-R)3 with R = iPr (47%) or tBu (38%), are accessible by reaction of the lithiated
imidazole with PCl3 [25]. [Cu(NCMe)(P(2-Im1-Et,4-R)3)][BF4]

Fig. 4. (a) Bis-iron complex. (b) Tris-iron complex. (c) Bis-ligand iron complex. (d) Mono-ligand iron complex.
Phosphine was obtained (29%) via the pyridine/Et₃N mediated appeared to be inert toward O₂, whereas the bis(iPr) derivative yielded a labile dimeric peroxide complex that was unable to oxidize 1-hexene and PPh₃, but reacted with water to [(Cu[P(2-Im₁-Me)₃])₂(OH)₂][BF₄]₂. This dimeric bis-hydroxide underwent intramolecular H-abstraction of one of the ligand iPr groups and gave in air a structurally characterized dimeric carbonate complex (Scheme 3) [55].

Severin and co-workers reported on P(Im)₃ containing polymers that, when complexed to Cu(II), act as efficient hydrolysis catalysts for phosphoesters [56]. The monomer tris(1-vinyl-imidazol-2-yl)phosphine was obtained (29%) via the pyridine/Et₃N mediated route [13], and could be incorporated into a homopolymer or a co-polymer with ethyleneglycol dimethacrylate. For the latter option, [Mo(n₂-allyl)(CO)₂{P(2-Im₁-vinyl)₃}], with the Mo atom functioning as template, was also applied. The coordination geometry and the Cu(II) loading differed for the three obtained polymers and their relative activity was dependent on the substrate.

2.5. Gold complexes of tris(imidazolyl)phosphines

The P-apex is the primary coordination site in gold complexes of tris(imidazolyl)phosphines. The first such complex was reported in 1998 as analogue of an anti-rheumatoid arthritis drug [57]. The P(5-Im₄,5-Me₂)₃ ligand was synthesized by reacting lithiated l-ethyl-2-isopropyl-5-bromoimidazole with PCl₃. The ethyl groups and tert-butylamine were removed by treatment with AgBF₄. Complex A was prepared by the method of Tolmachev [13], and provided molecular structures for the Li and Sc complexes (Fig. 6a and b, respectively). Deprotonation of the parent P(2-Im₃)₃ with NaClAuCl₄ to form tetranuclear [Au₂(μ-N,N,N’-(P(2-Im₁-C₁₄H₂₃)₃)AuCl₂]AuCl₂(AuCl₄). Both Au complexes were structurally characterized and shown to display unexpected Au···H-C interactions with benzylidene in the solid state (Fig. 5a).

Besides mono- and bis-imidazolylphosphines, P(2-Im₃) [13], P(2-Im₂-Me)₃, and P(4-Im₂-Me)₃ were studied as potential ligands for Au(I) catalysts [61]. The desired Au complexes were obtained from the ligands and (tht)AuCl, but in the case of P(4-Im₂-Me)₃ also Au₂, Au₃, and Au₄ complexes could be obtained by varying the Au ligand ratio (Fig. 5b and c). All monomeric Au complexes catalyzed the reaction between phenyl acetylene, benzaldehyde, and piperidine. Under homogeneous conditions, the catalysts with the P(2-Im₃) ligands performed best whereas those with bis(imidazolyl) ligands gave the better performance in a biphasic mixture. Only complexes of the mono(imidazolyl) ligands were able to hydrate 1-octyne to 2-octanone. Whereas the P(4-Im₃) complexes proved to be stable in H₂O and MeOH, the [AuCl{P(2-Im₃)₃}] complexes were not. Au(NHC)₃, imidazole and H₃PO₃ or P(OMe)₃ were found in a decomposition akin to that observed when P(2-Im₄,5-Me₂)₃ was reacted with HAuCl₄ [62].

2.6. Other applications

In 2004, Enders et al. [63] reported on the LiCl, ScCl₃, CuBF₄ and AgBF₄ complexes with N₃-coordinating ligands of the type P(2-Im₃-N₃R)₃ and P(2-Im₂-C₁₄H₂₃)₃, which were obtained (~70%) by the method of Tolmachev [13], and provided molecular structures for the Li and Sc complexes (Fig. 6a and b, respectively). Deprotonation of the parent P(2-Im₃)₃ with 3 eq. of nBuLi generated the tri-anion of the ligand (Fig. 6c) that was structurally characterized as well.

As polymerization catalyst, complex [CrCl₃{P(2-Im₁-η^5-C₅H₅)₃}] was found to give low activity, but high selectivity, which was attributed to the steric protection of its metal center that hampers beta-hydride elimination [64]. The ligands P(2-Im₃)₃, P(2-Im₂-Me)₃,
and P(4-Im 2-iPr)3, together with the oxide and sulfide of the latter, have also been complexed to Mn(CO)3 and Re(CO)3 of which the Mn complexes were evaluated as CO-releasing agents for medical applications (Fig. 7) [65].

In this study, Kunz et al. showed that the imidazol-2-ylphosphine complexes release nearly 2 eq. of CO under UV irradiation and the imidazol-4-yl complex half of that, which was subsequently ascribed to the steric bulk of the ligands [66]. The ligand of the used [Mn(CO)3{P(4-Im)3}] was generated (33%) from the reaction of the Grignard reagent of 4-iodo-1-(methoxymethyl) imidazole with PCl3, followed by acidic workup that also removed the N-methoxymethyl protecting group (Scheme 4).

Ru complexes of P(2-Im)3 have been explored as alkyne hydration catalysts [67]. In the reaction with CpRuCl(PPh3)2 at 70 °C one PPh3 ligand remained attached to the metal. Upon heating to 110 °C the final products [Ru(Cp)(P(2-Im)3)] and [Ru(Cp)(P(2-Im-Me)3)] were obtained with the P(2-Im)3 ligands binding as tridentate N donors (Fig. 8a). The lack of catalytic activity in the hydration of 1-octyne was attributed to the fact that the complexes are coordinatively saturated. Kunz and co-workers also synthesized Ru(II) piano-stool (κ3-N3)-complexes based on P(2-Im)3 and P(2-Im-Me)3 (Fig. 8b) as potential anti-cancer drugs, with neither showing cytotoxic activity against selected cell lines [68].

Ru complexes of P(2-Im)3 have been explored as alkyne hydration catalysts [67]. In the reaction with CpRuCl[PPh3]2 at 70 °C one PPh3 ligand remained attached to the metal. Upon heating to 110 °C the final products [Ru(Cp)(P(2-Im)3)] and [Ru(Cp)(P(2-Im-Me)3)] were obtained with the P(2-Im)3 ligands binding as tridentate N donors (Fig. 8a). The lack of catalytic activity in the hydration of 1-octyne was attributed to the fact that the complexes are coordinatively saturated. Kunz and co-workers also synthesized Ru(II) piano-stool (κ3-N3)-complexes based on P(2-Im)3 and P(2-Im-Me)3 (Fig. 8b) as potential anti-cancer drugs, with neither showing cytotoxic activity against selected cell lines [68].

3. Tris(pyrazolyl)phosphines

3.1. Preparation and initial coordination complexes of tris(pyrazolyl)phosphines

In a pioneering study on azoles N-bound to phosphorus, the group of Peterson reported on the synthesis of the first tris(pyrazolyl)phosphines, P(Pz)3 (98%) and P(Pz3,5-Me2)3 (98%), by reacting PCl3 with an excess of PzSiMe3 (Scheme 5) [71]; a crystal structure of P(Pz)3 has been reported separately [72]. P(Pz)3 was also shown to result (85%) from the reaction of potassium pyrazolide with PCl3, but P(Pz3,5-Me2)3 could not be generated in this fashion. Combining PCl3 with potassium pyrazolide gave both phosphine oxide analogues OP(Pz)3 (91%) and OP(Pz3,5-Me2)3 (65%) [73] and using SPCl3 provided SP(Pz)3 (75%), which is not accessible via PzSiMe3. In a study on the reaction with small molecules, P(Pz)3 was found to form an adduct with BF3, give chloride-pyrazolyl exchange with BCl3, and proved to be inert toward Mel and Cs2. The transition metal complexes containing the ligand system: [Mn(CO)3{P(Pz3,5-Me2)3}]Cl, [Re(CO)3{P(Pz)3}]Br, [Re(CO)3{P(Pz3,5-Me2)3}]Br, [Mo(CO)3{P(Pz3,5-Me2)3}] and [W(CO)3{P(Pz3,5-Me2)3}], were all shown to have κ3-N3 coordination, based on analysis of IR, NMR, and mass spectra [74,75].

In a study on catalytic allylation, [Mo(CO)3(OP(Pz3,5-Me2)3)] (Fig. 10a) proved inert toward allyl halides [76]. The phosphine oxide ligand was synthesized (59%) from Pz3,5-Me2H and PCl3 with Et3N as a base. When the allyl functionality was introduced via allyl substituted Mo precursors, OP(Pz3,5-Me2)3 hydrolyzed partly to the anionic [O2P(Pz3,5-Me2)2]0 ligand (Fig. 10b). The same result was obtained with Mo precursors carrying different allyl ligands [77] and the same ligand decomposition was reported for the reaction with Cu(ClO4)2·6H2O [78,79].

The attempted formation of lead complexes by reacting HB(Pz3,5-Me2)3 and OP(Pz3,5-Me2)3 with Pb(NO3)2 resulted in decomposition of OP(Pz3,5-Me2)3 to give [Pb{HB(Pz3,5-Me2)3}(Pz3,5-Me2H)2] (NO3) where the pyrazoles stem from the phosphine oxide ligand [80]. More successful was the formation of Mg complexes of
P(Pz)₃ by interaction with Mg₂[Et₂O]₂ in acetonitrile to generate [Mg₂(NCMe)₃][P(Pz)₃]₂ or homoleptic [Mg₂(P(Pz)₃)₂]₂, depending on whether a 1:1 or 2:1 ratio of the ligand was used, respectively; X-ray structures of both compounds were provided [81].

3.2. Copper complexes of tris(pyrazolyl)phosphines

The group of Tolman explored the use of chiral derivatives of the pyrazolyl group (Fig. 11) to obtain chiral ligands, including C₃-symmetric tris(pyrazolyl)phosphine oxides [82–86]. The OP-centered ligands were all prepared (~60%) in refluxing benzene using stoichiometric amounts of Pz and POCl₃ and an excess of Et₃N as base. Camphosphor-pyrazole was used in this manner to generate OP(Camphpz)₃ that was complexed to copper (Cu(NCMe)(BF₄)₂, CuOTf, CuCl) [82,83]. [ZnCl₂(OP(Camphpz)₃)] was structurally elucidated to display κ²-N₃ coordination. Catalytic cyclopropanations using [Cu(NCMe)(OP(Camphpz)₃)][BF₄] gave products with ee's of 30 to 60%; [Cu(NCMe)(OP(Pz₃,5-Me₂)₃)][BF₄] was found to be an efficient achiral catalyst for this reaction. The analogous syntheses and spectroscopic details of tris(menthyl-pyrazolyl)phosphine oxide [84] (62%) and tris(menthyl-pyrazolyl)phosphine oxide [85] (60%, see Fig. 11) were also reported. The scope of chiral tris(pyrazolyl)phosphines was further extended with methyl and phenyl substituted 4,5,6,7-tetrahydro-2H-indazoles [86]. Catalytic cyclopropanations using in situ generated Cu(I) complexes showed as best result a disappointing ee of 36%, whereas the analogous borate centered ligand gave an ee of 85%.

Tris[pyrazolyl]phosphine sulfide with pyridyl substituted pyrazoles has been synthesized (82%) from 3-(2-pyridyl)pyrazole and SPCl₃ with Et₃N as a base [87], but complexation to either Cu(I) or Cu(II) proceeded with partial hydrolysis, resulting in bis[pyridyl(pyrazolyl)]thiophosphinate complexes, e.g. [[Cu(O(S)P(Pz₂-Py)₂)]₂[Pz₂-Py]₂].

The group of Lammertsma reported a set of tris(pyrazolyl)phosphine oxides with different steric demand [7]. All ligands were prepared by reacting PCl₃ with 3 equivalents of the corresponding pyrazole in the presence of Et₃N as base [87], but complexation to either Cu(I) or Cu(II) proceeded with partial hydrolysis, resulting in bis[pyridyl(pyrazolyl)]thiophosphinate complexes, e.g. [[Cu(O(S)P(Pz₂-Py)₂)]₂[Pz₂-Py]₂].

3.3. Application of tris(pyrazolyl)phosphines as synthon

In a comparative study, the tris(pyrazolyl) derivative P(Pz)₃ was found to be the least effective of various tris(azolyl)phosphines in forming oligoribonucleotides from their constituents [88], while tris(3,5-dimethylpyrazolyl)phosphine has been used effectively as a phosphorylating agent to obtain the 1,2,4-phosphite of D-xylene [89].

Weigand and co-workers used tris(pyrazolyl)phosphines as a building block in their phosphorus chemistry [90–95]. They synthesized on large scale (60 g, 97%) P₃(Pz₃,5-Me₂)₃(OOTf) (Scheme 7a), which can be viewed as a P₃⁺ cation supported by a N₃ coordinated tris(pyrazolyl)phosphine [90]. This P₃-building block hydrolyzed to a P₃O₆ dication or a P₃O₆ neutral species depending on the amount of water added (Scheme 7b). It converted R₂PO into [R₃PPz₃,5-Me₂]⁺ that could be further derivatized (Scheme 7c) [91]. The carbonyl oxygens in 2- and 4-pyridones and cyclic urea were also replaced by a pyrazolyl group upon exposure to the stabilized P trication, further demonstrating its use as a deoxygenation agent (Scheme 7d) [92]. Furthermore, P₃(Pz₃,5-Me₂)₃(OOTf) proved useful as a P₃-source to obtain polyphosphorus cations, giving access to different P frameworks with secondary phosphines (Cy₃PH and Ph₃PH; Scheme 7e) [93].

P(Pz₃,5-Me₂)₃ was also shown to react with Cy₃PH via protolysis and exchange of P-H for P-P bonds to form, depending on the ratio used, P₃ or P₄ frameworks that can be used as ligands for Fe(CO)₅ [94]. When treating P(Pz₃,5-Me₂)₃ with 1,2-bis(phenylphosphanyl)ethane, protolytic P-P bond formations and P-N/P-P bond metatheses occurred to form a hexaphosphane with two linked C₈P₈ rings (Scheme 8) that can serve as a bridging ligand for two Fe(CO)₅ fragments [95].
4. Tris(1,2,3-triazolyl)phosphines

4.1. Preparation of tris(1,2,3-triazolyl)phosphines

In 2008, the group of Lammertsma reported on tris(triazolyl)phosphine and its oxide and their first transition metal complexes \[5\]. They synthesized \(\text{OP}(\text{1,2,3Tz}_1\text{-Ph})_3 \) by means of a triple Cu catalyzed Huisgen \([2+3]\)-cycloaddition of \(\text{PhN}_3 \) to \(\text{OP}(\text{C}_2\text{H})_3 \) and the reduced form \(\text{P}(\text{1,2,3Tz}_1\text{-Ph})_3 \) by treatment with \(\text{PhSiH}_3 \) (40%; Scheme 9). Subsequently, Bräse and co-workers reported an alternative route toward \(\text{P}(\text{1,2,3Tz})_3 \), starting with the \([2+3]\) azide cycloaddition to alkynyl Grignard reagents, followed by reaction of the formed triazolyl Grignard with \(\text{PCl}_3 \) (Scheme 9) \[96\]. This one-pot procedure has the advantage that a broader range of alkynes can be used to introduce different substituents at the 5-position, as exemplified by \(\text{P}(\text{1,2,3Tz}_1\text{-Ph,5-Ph})_3 \) (64%) and \(\text{P}(\text{1,2,3Tz}_1\text{-Ph,5-nBu})_3 \) (63%). A similar methodology was also used to prepare two diastereomers of a \([2,2]\)-para-cyclophane substituted tris(triazolyl)phosphine \[97\]. In this case a neutral triazole was prepared first, which was deproto-nated with \(\text{LiN}_i\text{Pr}_2 \) prior to reaction with \(\text{PCl}_3 \).

4.2. Coordination complexes of tris(1,2,3-triazolyl)phosphines

In their study of \(\text{P}(\text{1,2,3Tz}_1\text{-Ph})_3 \), the group of Lammertsma showed the P apex being the donor in \([\text{W(CO)}_5\{\text{P}(\text{1,2,3Tz}_1\text{-Ph})_3\}] \) \[5\]. Both coordination modes were combined by reacting the W complex with \(\text{C}_2\text{H}_5\text{Mo(CO)}_3 \) to obtain bimetallic \([(\text{OC})_5\text{W}\{\text{OP}(\text{1,2,3Tz}_1\text{-Ph})_3\}\text{Mo(CO)}_3]\) (Fig. 12a). Crystal structures were reported for all metal complexes. The group compared computationally the ligating properties of tris(triazolyl)phosphine oxide with the more abundant tris(pyrazolyl)phosphine oxide (Section 3.2) and both CH centered analogues \[6\]. They found the Cu(I) complexation energetics to be slightly more favorable for the triazolyl containing ligands, whereas the effect of the apex seemed negligible. Experimentally, complexation of \(\text{OP}(\text{1,2,3Tz}_1\text{-Ph})_3 \) to Cu(I) yielded dimeric \([\text{Cu}(\text{OP}(\text{1,2,3Tz}_1\text{-Ph})_3)]_2\text{X}_2 \) (X = \(\text{PF}_6 \), \(\text{B(C}_6\text{H}_3\text{(CF}_3)_2}\text{)}_4 \) in which the N-2 nitrogen of one of the triazolyl rings of each ligand coordinates to the opposite Cu center (Fig. 12b).

Bräse and co-workers have shown \([\text{Zn}\{\text{P}(\text{1,2,3Tz}_1\text{-Ph,5-nBu})_3\}]_2 \) (Zn$_2$Br$_6$) to be a bis(\(\text{N}_3^2 \))-ligand complex, whereas the ligand coordinates in a \(\text{N}_2^2 \)-fashion in \([\text{ZnI}_2\{\text{P}(\text{1,2,3Tz}_1\text{-Ph,5-Ph})_3\}] \) \[96\].

In their studies on the reactivity of unsaturated complexes, Templeton and co-workers applied tris(triazolyl)phosphine oxides as hemilabile nitrogen ligands for Pt dimethyl and diphenyl complexes \([\text{PtR}_2\{\text{OP}(\text{1,2,3Tz}_1\text{-X})_3\}] \) (R = Me, Ph; X = Ph, Cy) \[98\]. They showed interconversions to take place at lower energy relative to the well-studied tris(pyrazolyl)borate ligand, due to facile \(\text{N}_2^2/\text{N}_3^3 \) isomerization of the complexes (Scheme 10). This hemilabile nature of the ancillary ligand was further explored in platinum phenyl olefin complexes, like \([\text{PtPh}(\text{C}_2\text{H}_4)\{\text{OP}(\text{1,2,3Tz}_1\text{-X})_3\}]\text{[BF}_4] \) \[99\].

5. Tris(1,2,4-triazolyl)phosphines

5.1. Preparation of tris(1,2,4-triazolyl)phosphines

Tris(1,2,4-triazolyl)phosphine and its derivatives have hardly been applied as coordinating ligand and instead have been used mostly as synthons to introduce either a phosphorus or triazolyl group. The first syntheses of tris(triazolyl)phosphines \(\text{P}(\text{1,2,4Tz})_3 \)
(81%) and OP(1,2,4Tz)3 (66%) employed the reaction of 1,2,4TzSiMe3 with PCl3 and POCl3, respectively (Scheme 11) [100]. Both tend to decompose in air into the bis(triazolium)phosphite and -phosphonate. OP(1,2,4Tz)3 (47%) has also been prepared from POCl3 and 1,2,4TzH in MeCN with an excess of the triazole functioning as base [101]. The use of Et3N as base is more common (see below) and, starting from PCl3, has also yielded (in situ) P(1,2,4Tz)3 [88].

5.2. Complexation of tris(1,2,4-triazolyl)phosphines

OP(1,2,4Tz)3 was used as an O-donor ligand for Sn(IV) complexation using SnMe2Cl2 to give cis- and trans-[SnCl2{OP(1,2,4Tz)3}2] (Fig. 13) [102], which have been characterized by NMR, IR and DFT studies.

5.3. Phosphorylation by tris(1,2,4-triazolyl)phosphines

Kraszewski and Stawiński used OP(1,2,4Tz)3 in a phosphorylating reaction of a nucleoside with addition of two different alcohols to obtain phosphate tri-esters (60–70%; Scheme 12) in a far more effective manner than on using POCl3 (5–10%) [103]. This procedure was adopted in several other studies [104–106], including a change in solvent from dioxane to CH2Cl2 [107,108], using N-methylmorpholine as base, and to THF [109] and MeCN [110–112]. A triphosphate was obtained upon treatment of the phosphorylated product with pyrophosphate [113].

Reacting OP(1,2,4Tz)3, with 4-aminopyridine afforded di(1,2,4-triazol-1-yl)-{N-(pyridin-4-yl)}phosphoramidate, which is also a phosphorylating agent [114]. The method has the advantage that pyridyl-amines with pKₐ > 7 can be used where other phosphorylation reactions fail. The products have been applied in the synthesis of potential anti-viral drugs [115]. With appropriate precursors, the phosphorylation can also give access to cyclic products. Reaction of OP(1,2,4Tz)3 with ethanolamine in the presence of DMAP formed 2-triazolyl-1,3,2-oxazaphospholane, which is a synthon for the introduction of a phosphatidylethanolamine group [116]. OP(1,2,4Tz)3 has also been used to convert N-acetylated beta-amino alcohols into 2-oxazolines [117]. Whereas most studies employed OP(1,2,4Tz)3 for phosphorylations, the corresponding sulfide can also be used [118,119]. SP(1,2,4Tz)3 has been prepared in THF, using either Et3N [118] or pyridine [119] as a base. Reportedly, this sulfide gave higher yields than the oxide, but phosphorylation agents with P substituents other than 1,2,4-triazoles led to products that were easier to purify [118].

Contrasting the broad applicability of OP(1,2,4Tz)3, the reduced form, P(1,2,4Tz)3, is not as effective in forming phosphate bridges as was illustrated by the reaction with uridine (low temperature, followed by I₂-oxidation) that gave monomers instead of the desired oligoribonucleosides, supposedly due to the lability of the ligand [88]. Finally, penta(1,2,4-triazolyl)phosphine has been explored as P precursor to generate a tricyclic tetra(amino)phosphonium salt, but with disappointing results [120].

5.4. Triazolylation by tris(1,2,4-triazolyl)phosphines

In 1982, in situ generated OP(1,2,4Tz)3 in acetonitrile with Et3N as base was used for the first time to replace a carbonyl site by other functional groups.

![Scheme 13. The “triazolylation” reaction that is used to replace a carbonyl site by other functional groups.](image-url)
oxime, alkylo or thiol functionality, respectively. Sulfur precursors like thiolactec acid \([138-140]\), \(\text{H}_2\text{S}\) \([137]\), or \(\text{NaSH}\) \([140]\) have been used to generate a thioamide group (Scheme 13).

The triazololation also worked in dichloromethane with N-methyl morpholine as base \([141]\). There are several reports on the use of pyridine as solvent and base \([142-145]\). In one case only a pyridinium salt was isolated, presumed to result from a secondary reaction with pyridine \([142]\). In other instances, the triazolyl-substituted products were successfully used in situ \([143,144]\) or isolated in up to 60% yield \([145]\).

6. Tris(thiazolyl)phosphines and tris(thiadiazolyl)phosphines

6.1. Tris(thiazolyl)phosphines

Moore and Whitesides connected besides imidazoles also thiazoles to phosphorus by reacting \(\text{PCl}_3\) with the lithiated heterocycles (47–64%) \([11]\). The parent and the benzannulated derivative, accessible only from (benzothiazol-2-yl)trimethylsilane and \(\text{PCl}_3\) (83%), both formed bis-ligand dimethyl platinum complexes, with metal bonding at the \(\text{P}\)-apex, as derived from NMR spectra (Scheme 14). Reaction of the tris(thiazolyl)phosphines with aryl lithium or heteroaryl lithium reagents resulted in \(\text{P}\)-substituent exchange, whereas coupling reactions dominated for the benzothiazolyl derivative \([146]\). Abstraction of one benzothiazolyl group from tris(benzothiazolyl)phosphine gave access to the corresponding phosphanide ligand \([147]\). In a study previously mentioned in Section 2.5, \(\text{AuCl}\) complexes of tris(4,5-R2-thiazol-2-yl)phosphines (with \(R_2 = \text{H},\text{H}; \text{Me},\text{Me}\)) were studied \([58]\). Crystal structure determinations showed the tris(thiazolyl)phosphines to bind to the metal exclusively via the phosphine apex, while a variety of Au-Au and Au-Cl interactions was found in the solid state.

6.2. Tris(thiadiazolyl)phosphines

The only reported tris(thiadiazolyl)phosphine was obtained from the reaction of \(\text{N,N-dimethyl-N'(2-thiadiazolyl)formamidine and PCl}_3\) with \(\text{Et}_3\text{N}\) in pyridine (72%; Scheme 15) \([148]\). It was prepared by a synthetic route involving formation of the phosphorus apex via carbon-phosphorus bonds, making them more stable than most other tris(azolyl)phosphines under diverse conditions. However, they typically suffer from more complex and lower yielding syntheses that often involve functional group protection schemes. Wheresas all tris(azolyl)phosphines have the potential to serve as multi-site ligands, there are very few examples in which both coordination sites are used at the same time, despite their potentially interesting applications. An avenue to explore is to tune the electronic influence on one metal by varying the opposite one, whereas the second binding site might also be used for ligand fixation on a metal surface.

7. Concluding remarks

The literature on tris(azolyl)phosphines has been dominated by tris(imidazolyl)phosphines, which have been used mainly to model enzymes with histidine residues at the active site. In recent years, also more non-enzyme inspired metal complexes have been studied. For the other tris(azolyl)phosphines, no biomimetic applications have been reported, while they do display interesting coordination chemistry, with some complexes being applied in catalysis. Tris(1,2,4-triazolyl)phosphine forms an exception as its coordination chemistry has almost exclusively been applied as synthon in heterocyclic chemistry.

The tris(imidazolyl)phosphines have their azolyl substituents connected to the phosphorus apex via carbon-phosphorus bonds, making them more stable than most other tris(azolyl)phosphines under diverse conditions. However, they typically suffer from more complex and lower yielding syntheses that often involve functional group protection schemes. Wheresas all tris(azolyl)phosphines have the potential to serve as multi-site ligands, there are very few examples in which both coordination sites are used at the same time, despite their potentially interesting applications. An avenue to explore is to tune the electronic influence on one metal by varying the opposite one, whereas the second binding site might also be used for ligand fixation on a metal surface.

References

[1] S. Trofimenko, J. Am. Chem. Soc. 88 (1966) 1842–1844.
[2] S. Trofimenko, Chem. Rev. 93 (1993) 943–980.
[3] S. Trofimenko, Scorpionates: The Coordination Chemistry of Polyaza-heterocyclic Ligands, Imperial College Press, London, 1999.
[4] C. Pettinari, Scorpionates II: Chelating Borate Ligands, Imperial College Press, London, 2008.
[5] S.G.A. van Assema, C.G.J. Tazelaar, C. Bas de Jong, J.H. van Maarseveen, M. Lutz, P. Schröder, J.C. Slootweg, K. Lammertsma, Organometallics 27 (2008) 3210–3215.
[6] C.G.J. Tazelaar, V. Lyaskovskyy, L.M. van Doorn, X. Schaapkens, M. Lutz, A.W. Ehlers, J.C. Slootweg, K. Lammertsma, Eur. J. Inorg. Chem. (2014) 1836–1842.
[7] C.G.J. Tazelaar, V. Lyaskovskyy, T. van Dijk, D.L.J. Broere, L.A. Kolfschoten, R.O. D. Khiar, M. Lutz, J.C. Slootweg, K. Lammertsma, Organometallics 31 (2012) 3308–3315.
[8] C.G.J. Tazelaar, E. Nicolas, T. van Dijk, D.L.J. Broere, M. Cardol, M. Lutz, D. Guétat, J.C. Slootweg, K. Lammertsma, Dalton Trans. 45 (2016) 2237–2249.
[9] N.J. Curtis, R.S. Brown, J. Org. Chem. 45 (1980) 4038–4040.
[10] D. Copping, C.S. Frampton, H.E. Howard-Lock, C.J.L. Lock, Acta Crystallogr., C 48 (1992) 675–677.
[11] S.S. Moore, G.M. Whitesides, J. Org. Chem. 47 (1982) 1489–1493.
[12] C.E. Strasser, W.F. Gabrielli, O. Schuster, S.D. Nogai, S. Cronje, H.G. Raubenheimer, J.C. Slootweg, K. Lammertsma, J. Chem. Crystallogr. 39 (2009) 478–483.
[13] A.A. Tolmachév, A.A. Yurchenko, A.C. Merculov, M.G. Semenova, E.V. Zarudnitskii, V.V. Ivanov, A.M. Pinchuk, Heteroat. Chem. 10 (1999) 585–597.
[14] U. Beckmann, D. Sugiyama, P.C. Kunz, Phosphorus, Silicon Carbon. Relat. Elem. 186 (2011) 2061–2070.
[15] J. Huguet, R.S. Brown, J. Am. Chem. Soc. 102 (1980) 7571–7572.
[16] R.S. Brown, N.J. Curtis, J. Huguet, J. Am. Chem. Soc. 103 (1981) 6953–6959.
[17] R.J. Reid, M.N.G. James, J. Am. Chem. Soc. 103 (1981) 6947–6952.
[18] Brown et al. have also explored tris(4,5-dimethyl-2-imidazolinyl)methyl phosphine oxide. This ligand features methylene groups bridging the imidazolyl rings and the \(\text{P}\)-apex, thereby placing it out of the scope of this review: R.S. Brown, D. Salmon, N.J. Curtis, S. Kusuma J. Am. Chem. Soc. 104 (1982) 3188–3194.
[19] H. Sibbeck-Tilk, J.L. Cocho, Z. Frackman, R.S. Brown, J. Am. Chem. Soc. 106 (1984) 2421–2431.
[20] R.S. Brown, M. Zamkanei, J.L. Cocho, J. Am. Chem. Soc. 106 (1984) 5222–5228.
[21] R.S. Brown, M. Zamkanei, Inorg. Chim. Acta 108 (1985) 201–207.
[22] R.G. Ball, R.S. Brown, J.L. Cocho, Inorg. Chem. 23 (1984) 2315–2318.
[23] W. Kläui, C. Piefer, G. Rheinwald, H. Lang, Eur. J. Inorg. Chem. (2000) 1549–1555.
[24] T.B. Koerner, R.S. Brown, Can. J. Chem. 80 (2002) 183–191.
[25] T.N. Sorrell, W.E. Allen, P.S. White, Inorg. Chem. 34 (1995) 952–960.
[128] Z. Tocik, I. Dvorakova, R. Liboska, M. Budesinsky, M. Masojidkova, I. Rosenberg, Tetrahedron 63 (2007) 4516–4534.
[129] M.A. Ivanov, G.S. Ludva, A.V. Mukovnya, S.N. Kochetkov, V.L. Tunitskaya, L.A. Alexandrova, Russ. J. Bioorg. Chem. 36 (2010) 488–496.
[130] C.R. Tanty, L. López-Canovas, A.L. Brauet, M.R. Paredes, D.H. Clarke, H.V. Castro, R.A.M. Rojas, A.M. Cabrera, Nucleosides Nucleotides 14 (1995) 219–228.
[131] J. Robles, A. Grandas, E. Pedroso, Tetrahedron 57 (2001) 179–194.
[132] Y. Gao, P. Zhang, L. Wu, T. Matsuura, J.B. Meng, Synth. Commun. 33 (2003) 2635–2641.
[133] F.K.T. Lin, D.M. Brown, Nucleic Acids Res. 17 (1989) 10373–10383.
[134] C.B. Reese, P.A. Skone, J. Chem. Soc., Perkin Trans. 1 (1984) 1263–1271.
[135] Y.Z. Xu, P.F. Swann, Nucleic Acids Res. 18 (1990) 4061–4065.
[136] H.C.P.F. Roelen, H.F. Brugghe, H. Van den Elst, G.A. Van der Marel, J.H. Van Boom, Recl. Trav. Chim. Pays-Bas 111 (1992) 99–104.
[137] A. Miah, C.B. Reese, Q.L. Song, Nucleosides Nucleotides 16 (1997) 53–65.
[138] Y.Z. Xu, Q.G. Zheng, P.F. Swann, Tetrahedron Lett. 32 (1991) 2817–2820.
[139] K. Shah, H.Y. Wu, T.M. Rana, Bioconjugate Chem. 5 (1994) 508–512.
[140] A. Avino, R.G. Garcia, R. Eritja, Nucleosides Nucleotides Nucleic Acids 23 (2004) 1767–1777.
[141] T.R. Webb, M.D. Matteucci, Nucleic Acids Res. 14 (1986) 7661–7674.
[142] R.W. Adamiak, E. Biala, B. Skalski, Nucleic Acids Res. 13 (1985) 2989–3003.
[143] P. Wigerinck, C. Pannecoque, R. Snoeck, P. Claes, E. Declercq, P. Herdewijn, J. Med. Chem. 34 (1991) 2383–2389.
[144] H. Wamhoff, R. Berressem, M. Nierer, J. Org. Chem. 59 (1994) 1912–1917.
[145] H. Wamhoff, A. Bamberg, P. Sohar, Nucleosides Nucleotides Nucleic Acids 20 (2001) 229–241.
[146] Y. Uchida, Y. Takaya, S. Oae, Heterocycles 30 (1990) 347–351.
[147] T. Stey, M. Pfeiffer, J. Henn, S.K. Pandey, D. Stalke, Chem.-Eur. J. 13 (2007) 3636–3642.
[148] G.V. Oshovskii, F.F. Tolmachev, A.S. Merkulov, A.M. Pinchuk, Chem. Heterocycl. Compd. (N. Y.) 33 (1998) 1242–1243.