Optical and morphological properties of thermochromic V$_2$O$_5$ coatings
Sunil Kumar, Francis Maury, Naoufal Bahlawane

To cite this version:
Sunil Kumar, Francis Maury, Naoufal Bahlawane. Optical and morphological properties of thermochromic V$_2$O$_5$ coatings. Data in Brief, Elsevier, 2017, vol. 14, pp. 348-353. <10.1016/j.dib.2017.07.028>. <hal-01665067>

HAL Id: hal-01665067
https://hal.archives-ouvertes.fr/hal-01665067
Submitted on 15 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 19235

To link to this article: DOI: 10.1016/j.dib.2017.07.028
URL: http://dx.doi.org/10.1016/j.dib.2017.07.028

To cite this version: Kumar, Sunil and Maury, Francis and Bahlawane, Naoufal Optical and morphological properties of thermochromic V2O5 coatings. (2017) Data in Brief, vol. 14. pp. 348-353. ISSN 2352-3409

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Optical and morphological properties of thermochromic V$_2$O$_5$ coatings

Sunil Kumara, Francis Mauryb, Naoufal Bahlawanea,*

a Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg

b CIRIMAT, ENSIACET-4 allée E. Monso, 31030 Toulouse, France

ABSTRACT

We present optical and morphological characterizations performed on thermochromic V$_2$O$_5$ coatings. V$_2$O$_5$ coatings were obtained by oxidation of as-deposited VO$_x$ films. Comparisons were made among coatings oxidized at various temperatures. Photographic evidence is also shown to provide the reader a clear visual description of the color change that occurs during thermochromic process. Detailed study and analysis regarding this data can be found in Kumar et al. (2017, in press) [1,2].

Corresponding author.
E-mail address: naoufal.bahlawane@list.lu (N. Bahlawane).

Specifications Table

Subject area	Physics, Material science
More specific subject area	Thermochromic oxides, chemical vapor deposition
Type of data	Graph, figure
How data was acquired	1) Total hemispherical reflection (THR) measurements were carried out on LAMBDA 1050 UV/Vis/NIR spectrophotometer from Perkin Elmer with a 150 mm integration sphere in the reflection configuration.

DOI of original article: http://dx.doi.org/10.1016/j.mtphys.2017.06.005

* Corresponding author.
E-mail address: naoufal.bahlawane@list.lu (N. Bahlawane).
2. Experimental design, materials and methods

2.1. Preparation of V₂O₅ coatings

Thin films of vanadium oxide were deposited on silicon substrates by Direct Liquid Injection (DLI) Metal Organic Chemical Vapor Deposition (MOCVD), the details of which are reported elsewhere [1,2]. Argon was used as the carrier gas at a flow rate of 50 sccm while the chamber pressure was adjusted to 10 mbar. Substrates were maintained at a constant temperature of 500 °C during the four hours of deposition.

After deposition, samples were allowed to cool till room temperature in argon atmosphere at low pressure before withdrawing from the chamber. Further handling of the samples was carried out under ambient atmosphere. Post deposition annealing was performed under ambient...
air at 300–580 °C. The annealing time was adjusted to allow a complete oxidation from VO\textsubscript{x} to V\textsubscript{2}O\textsubscript{5}. While 10 min were sufficient for oxidation at 550 °C, significantly longer times were required at lower temperatures; this can be explained by simple temperature dependent oxidation kinetics.

To isolate V\textsubscript{2}O\textsubscript{5} coatings from atmospheric gas phase interactions, Atomic layer deposition (ALD) of Al\textsubscript{2}O\textsubscript{3} was performed using the sequential introduction of Trimethylaluminium (TMA) and water. The pulse times for each reactant were adjusted to 40 ms with a 15 s purge in between each pulse. The rather large pulse and purge times were chosen to achieve complete conformal coverage over the film.

2.2. Film characterization

Total hemispherical reflection (THR) measurements were carried out on LAMBDA 1050 UV/Vis/NIR spectrophotometer from Perkin Elmer with a 150 mm integration sphere in the reflection configuration. Measurements, which correspond to the sum of specular and diffuse reflections, were
Fig. 2. Brightness versus oxidation temperature curve indicates a maximum brightness at 450 °C. It is noteworthy that sample colour is bright yellow at this oxidation temperature.

Fig. 3. Temperature dependent optical spectra of coatings obtained by oxidation at (a) 350 °C, (b) 450 °C and (c) 550 °C respectively.
performed in the visible spectral range (400–800 nm). Temperature-dependent measurements were carried out with the help of a custom made sample holder with an integrated heating element. Temperature control was achieved by a Horst HT 60 temperature controller coupled to a K-type thermocouple. The film thickness and roughness were measured using an Alpha step d-500 Profilometer from KLA-Tencor.
Fig. 5. Photographs of V$_2$O$_5$ coatings on silicon wafer, obtained by oxidation at different temperatures. Thermochromic colour change for each film is shown upon heating the films from room temperature (1st row) till 300 °C (2nd row).

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.07.028.

References

[1] S. Kumar, A. Qadir, F. Maury, N. Bahlawane, Visible thermochromism in vanadium pentoxide coatings, ACS Appl. Mater. Interfaces 9 (25) (2017) 21447–21456.
[2] Kumar S, Maury F, Bahlawane N. Tunable thermochromic properties of V$_2$O$_5$ coatings. Mater. Today Phys.; 2:1-5 (2017).