Does the Effect of PM$_{10}$ on Mortality Depend on PM Nickel and Vanadium Content? A Reanalysis of the NMMAPS Data

Francesca Dominici, Roger D. Peng, Keita Ebisu, Scott L. Zeger, Jonathan M. Samet, and Michelle L. Bell

1Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; 2School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA; 3Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

BACKGROUND: Lack of knowledge regarding particulate matter (PM) characteristics associated with toxicity is a crucial research gap. Short-term effects of PM can vary by location, possibly reflecting regional differences in mixtures. A report by Lippmann et al. [Lippmann et al., Environ Health Perspect 114:1662–1669 (2006)] analyzed mortality effect estimates from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) for 1987–1994. They found that average concentrations of nickel or vanadium in PM$_{2.5}$ (PM with aerodynamic diameter < 2.5 µm) positively modified the lag-1 day association between PM$_{10}$ and all-cause mortality.

OBJECTIVE: We reestimated the relationship between county-specific lag-1 PM$_{10}$ (PM with aerodynamic diameter < 10 µm) effects on mortality and county-specific nickel or vanadium PM$_{2.5}$ average concentrations using 1987–2000 effect estimates. We explored whether such modification is sensitive to outliers.

METHODS: We estimated long-term average county-level nickel and vanadium PM$_{2.5}$ concentrations for 2000–2005 for 72 U.S. counties representing 69 communities. We fitted Bayesian hierarchical regression models to investigate whether county-specific short-term effects of PM$_{10}$ on mortality are modified by long-term county-specific nickel or vanadium PM$_{2.5}$ concentrations. We conducted sensitivity analyses by excluding individual communities and considering log-transformed data.

RESULTS: Our results were consistent with those of Lippmann et al. However, we found that when counties included in the NMMAPS New York community were excluded from the sensitivity analysis, the evidence of effect modification of nickel or vanadium on the short-term effects of PM$_{10}$ mortality was much weaker and no longer statistically significant.

CONCLUSIONS: Our analysis does not contradict the hypothesis that nickel or vanadium may increase the risk of PM to human health, but it highlights the sensitivity of findings to particularly influential observations.

KEY WORDS: effect modification, mortality, Ni, particulate matter, PM$_{2.5}$, PM$_{10}$, V.

Environ Health Perspect 115:1701–1703 (2007). doi:10.1289/ehp.10737 available via http://dx.doi.org/ [Online 25 September 2007]
Each NMMAPS community is based on a single county or a set of contiguous counties. We have identified 72 U.S. counties that have both an NMMAPS PM$_{10}$ mortality effect estimate and data on PM$_{2.5}$ chemical composition data. These 72 counties are included in 69 NMMAPS communities. More specifically, all NMMAPS communities included in this analysis were based on single counties except two communities. The first is the New York, New York, NMMAPS community, which includes six counties (Bronx, Kings, New York, Richmond, Queens, and Westchester). These counties represent the New York metropolitan area, not the official designation of New York City. PM$_{2.5}$ chemical composition data were available for three counties in the New York community (Queens, New York, and Bronx counties). The second is the NMMAPS Minneapolis community, which includes two counties (Ramsey and Hennepin). PM$_{2.5}$ chemical composition data were available for both counties in the NMMAPS Minneapolis community. For the three counties within the NMMAPS New York community and for the two counties within the NMMAPS Minneapolis community, we used the same value of the NMMAPS effect estimates, respectively.

We estimated the association between the true lag-1 day PM$_{10}$ mortality effect ($\hat{\beta}'$) and county-level averages of Ni and V (x') using the following Bayesian hierarchical regression model:

$$\hat{\beta}' | \alpha_0, \alpha_1, \tau^2 \sim \mathcal{N}(\alpha_0 + \alpha_1(x' - \bar{x}), \tau^2),$$ \hspace{1cm} [2]

where $\hat{\beta}'$ is the NMMAPS community-specific estimate of the effect of lag-1 PM$_{10}$ on mortality, and ν' its statistical variance (Peng 2007; Peng et al. 2005). The parameter α_0 denotes the true lag-1 effect of PM$_{10}$ on mortality for a county with $x' = \bar{x}$. The parameter α_1 quantifies the effect modification—that is, the change in the true PM$_{10}$ effect estimate associated with a unit change in county-level averages of Ni or V PM$_{2.5}$ (x') with respect to their averages across the counties \bar{x}. The parameter τ^2 denotes the between-county variability of the true lag-1 day effects of PM$_{10}$ on mortality ($\hat{\beta}'$), unexplained by x'.

We fitted the above Bayesian hierarchical regression model using two-level normal independent sampling estimation (TLNiSe) (Everson and Morris 2000) with noninformative priors. We also performed a weighted regression with weights based on the inverse of the variance, $1/\nu'$. A weighted regression approach was used in the statistical analysis conducted by Lippmann et al. (2006).

Results

As in Lippmann et al. (2006), we also found strong evidence of effect modification: Counties with high Ni or V average concentrations have higher effects of PM$_{10}$ on mortality at lag 1. We then conducted sensitivity analyses to investigate whether one or a few counties were contributing more than others toward the strength of the evidence of effect modification.

Figure 1 shows the county-specific average concentrations of Ni PM$_{2.5}$ (x-axis) plotted against the county-specific maximum likelihood estimates of the lag-1 effects of PM$_{10}$ on mortality (y-axis). The size of the circle corresponds to the inverse of the standard error of the county's maximum likelihood estimate.

The red and blue lines denote the fitted linear regression lines of the second-stage regression $\hat{\beta}' = \alpha_0 + \alpha_1(x' - \bar{x}) + N(0, \tau^2)$ with the three counties that belong to the NMMAPS New York community included in the analysis (red) and excluded from the analysis (blue). Figure 2 shows an analogous figure with county-specific average concentrations of V used as independent variables.

When all 72 counties were included in the analyses, we found strong evidence of effect modification by either Ni or V. The posterior probability that the parameter α_1 is positive is 0.99 for Ni and 1.0 for V. The p-values corresponding to the statistical significance of α_1 obtained from the weighted regression are equal to 0.004 and 0.002 for Ni and V, respectively.
When the three counties that belong to the NMMAPS New York community were excluded, evidence of effect modification became much weaker, with loose statistical significance. The posterior probability that the effect modification parameter \(\alpha_1\) is positive is 0.76 for Ni and 0.89 for V. The \(p\)-values corresponding to the statistical significance of \(\alpha_1\) obtained from the weighted regression are 0.38 for Ni and 0.14 for V.

To further investigate the sensitivity of the estimated effect modification parameter to outliers, we reestimated \(\alpha_1\) by excluding a single county at a time, for each of the 72 counties. Figures 3 and 4 show the posterior means and 95% posterior intervals of the effect modification parameter \(\alpha_1\) obtained by excluding one county at a time for Ni and for V as independent variables, respectively. Again, when the three counties corresponding to the New York community were omitted (shown in red in Figures 3 and 4), we found no evidence of effect modification. However, when any other single county was excluded, strong evidence of effect modification remained.

We reached the same conclusions when we (a) used the lag-1 NMMAPS estimates of the effects of PM\(_{10}\) on mortality for 1987–1994 [the same data used by Lippmann et al. (2006)]; (b) estimated the effect modification parameter using a weighted linear regression instead of Bayesian hierarchical models; and (c) used log-transformed data for the microcharacteristics of PM\(_{2.5}\) in residual oil fly ash by analytical transmission electron microscopy. Environ Sci Technol 38:6533–6540.

Conclusions

This analysis demonstrates that when the three counties in the NMMAPS New York community are excluded from the analysis, the evidence of effect modification of Ni or V PM\(_{2.5}\) on the short-term effects of PM\(_{10}\) mortality is much weaker. Setting aside the three counties that belong to the New York community, the between-community variance of Ni is reduced by 68%. Therefore, the statistical power for estimating the slope of the regression line also diminishes substantially.

The New York community has particularly high levels of Ni and V. The three New York counties have the highest Ni concentrations across all the 72 counties. The Ni and V concentrations in the three New York counties were 8.9 and 3.4 times higher than the other counties, respectively.

Elevated levels of Ni and V PM\(_{2.5}\) chemical components in New York are likely attributed to oil-fired power plants and emissions from ships using oil, as noted by Lippmann et al. (2006). Ni and V can result from oil combustion and are often used as tracer components for these sources (Chen et al. 2004; Galbreath et al. 2008; Juichang et al. 1995; Thurston et al. 2005; U.S. EPA 2007). Analysis of the sources of PM\(_{2.5}\) in New York City identified Ni and V as indicators of oil combustion (Li et al. 2004; Zheng et al. 2004), including ships burning oil as a source (Qin et al. 2006).

Although scientific evidence on the human health impact of PM\(_{2.5}\) chemical constituents is limited, several studies have investigated the impacts of Ni or V on health, including an animal study in which V was recovered from lung tissues of rats exposed to concentrated air particles (Morishita et al. 2004). In addition to the analysis of NMMAPS data, Lippmann et al. (2006) found a significant association between exposure to Ni and acute cardiac function changes in mice. Ni and V were associated with urinary 8-OHdG levels, a marker of oxidative DNA damage and repair, and with lower fractional concentration of expired nitric oxide (\(F_{E}\)_NO), a marker of airway responses, in studies of boilermaker workers (Kim et al. 2003, 2004).

Although the original work of Lippmann et al. (2006) indicates strong evidence that the short-term effects of PM\(_{10}\) on mortality are modified by long-term averages of Ni and V, our subsequent analysis reveals that this evidence is driven largely by the influence of a few data points (the three New York counties). Our analysis does not contradict the hypothesis that Ni or V may in fact be harmful to human health, but it highlights the sensitivity of findings on effect modification to particularly influential observations.

References

- Bell ML, Dominici F, Ebiu K, Zeger SL, Samet JM. 2007. Spatial and temporal variation in PM\(_{2.5}\) chemical composition in the United States for health effects studies. Environ Health Perspect 115:899–905.
- Chen Y, Shah N, Huggins FE, Huffman GP. 2004. Investigation of the microcharacteristics of PM\(_{2.5}\) in residual oil fly ash by analytical transmission electron microscopy. Environ Sci Technol 38:6533–6540.
- Dominici F, McDermott A, Daniels M, Zeger SL, Samet JM. 2003. Mortality among residents of 90 cities. In: Revised Analyses of Time-Series Studies of Air Pollution and Health. Cambridge, MA:Health Effects Institute, 9–23.
- Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, et al. 2006. Fine particulate matter and hospital admission for cardiovascular and respiratory diseases. JAMA 295:1127–1134.
- Dominici F, Peng RD, Zeger SL, White RH, Samet JM. 2007. Particulate air pollution and mortality in the United States: did the risks change from 1987 to 2000? Am J Epidemiol 166(6):880–888; doi:10.1093/aje/kvm222 [Online 28 August 2007].
- Everson P, Morris C. 2008. Influence for multivariate normal hierarchical models. J R Stat Soc Series B 62:399–412.
- Galbreath KC, Tolman DL, Zygaričke C, Huggins FE, Huffman GP, Wong JL. 2008. Nickel speciation of residual oil fly ash and ambient particulate matter using X-ray absorption spectroscopy. J Air Waste Manag Assoc 50:1876–1886.
- IAPPS (Internet-based Health & Air Pollution Surveillance System). 2001. Home page. Available: http://www.iapps.jhsp.hhs.gov [accessed 31 August 2007].
- Juichang R, Freedman B, Coles C, Zwickler B, Holzbecker J, Chatt Z. 1995. V contamination of lichens and tree foliage in the vicinity of three oil-fired power plants in eastern Canada. J Air Waste Manag Assoc 45:641–646.
- Kim JY, Hauser R, Wang MP, Herrick RF, Amarsiervandadja C, Christiani DC. 2003. The association of expired nitric oxide with occupational particulate metal exposure. Environ Res 93:158–166.
- Kim JY, Mukherjee S, Ng LC, Christiani DC. 2004. Urinary 8-hydroxy-2-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. Environ Health Perspect 112:666–671.
- Li Z, Hoke PK, Husain L, Gureishi S, Dutkiewicz VA, Schwab JJ, et al. 2004. Sources of fine particle composition in New York City. Atmos Environ 38:6527–6529.
- Lippmann M, Io K, Hwang JS, Maciejczyk P, Chen LC. 2006. Cardiovascular effects of Ni in ambient air. Environ Health Perspect 114:1663–1669.
- Morishita M, Keesler D, Wagner J, Marsik F, Timm E, Dvornch J, et al. 2004. Pulmonary retention of particulate matter is associated with airway inflammation in allergic rats exposed to air pollution in urban Detroit, Inhal Toxicol 16:663–674.
- Peng RD. 2007. “Compendium for “Seasonal analyses of air pollution and mortality in 100 U.S. cities” by Peng et al. (2005). Available: http://www.biostat.jhsp.hhs.gov/~peng/RN/seasonal [accessed 21 July 2007].
- Peng RD, Dominici F, Pastor-Barruiss R, Zeger SL, Samet SM. 2005. Seasonal analyses of air pollution and mortality in 100 US cities. Am J Epidemiol 161:585–594.
- Pope CA III, Dockery DW. 2006. Health effects of fine particulate air pollution: Lines that connect. J Air Waste Manag Assoc 56:709–742.
- Qin Y, Kim E, Hoppel PK. 2006. The concentrations and sources of PM\(_{2.5}\) in the metropolitan New York City. Atmos Environ 40(suppl 3):312–322.
- Samet JM, Dominici F, Zeger SL, Schwartz J, Dockery DW. 2000a. The National Morbidity, Mortality, and Air Pollution Study, Part II: Methods and Methodologic Issues. Research Report 94. Cambridge, MA:Health Effects Institute.
- Samet JM, Zeger SL, Dominici F, Curriero F, Couric S, Dockery DW, et al. 2000b. The National Morbidity, Mortality, and Air Pollution Study, Part I: Morbidity and Mortality from Air Pollution in the United States. Research Report 94. Cambridge, MA:Health Effects Institute.
- Thong OD, Ho K, Mar T, Christiansen WF, Estough DJ, Henny RC, et al. 2008. Workshop report: Workshop on source apportionment of particulate matter health effects—intercomparison of results and implications. Environ Health Perspect 113:1768–1774.
- U.S. EPA (U.S. Environmental Protection Agency). 2003. Technology Transfer Network Air Quality System. Download Detailed AQS Data. Available: http://www.epa.gov/air/aqs/aqs/pdata/downloadaqsdata.htm [accessed 10 June 2004 by Lippmann et al. 2006].
- U.S. EPA. 2004. Air Quality Criteria for Particulate Matter. EPA/600/P-99/002a/4-bf. Research Triangle Park, NC:U.S. Environmental Protection Agency Office of Research and Development.
- U.S. EPA (U.S. Environmental Protection Agency). 2007. SPECIATE Version 4.0. Available: http://www.epa.gov/ttn/chief/software/speciate/index.html [accessed 1 March 2007].
- Zeger SL, McDermott A, Dominici F, Peng D, Samet J. 2006. Internet-Based Health and Air Pollution Surveillance System. Cambridge, MA:Health Effects Institute.
- Zheng L, Hoke PK, Husain L, Gureishi S, Dutkiewicz VA, Schwab JJ, et al. 2004. Sources of fine composition in New York City. Atmos Environ 38:6527–6529.