IRREDUCIBLE COMPONENTS OF THE SPACE OF FOLIATIONS BY SURFACES

W. COSTA E SILVA

Abstract. Let \(\mathcal{F} \) be written as \(f^*(\mathcal{G}) \), where \(\mathcal{G} \) is a 1-dimensional foliation on \(\mathbb{P}^{n-1} \) and \(f: \mathbb{P}^n \to \mathbb{P}^{n-1} \) a non-linear generic rational map. We use local stability results of singular holomorphic foliations, to prove that: if \(n \geq 4 \), a foliation \(\mathcal{F} \) by complex surfaces on \(\mathbb{P}^n \) is globally stable under holomorphic deformations. As a consequence, we obtain irreducible components for the space of two-dimensional foliations in \(\mathbb{P}^n \). We present also a result which characterizes holomorphic foliations on \(\mathbb{P}^n, n \geq 4 \) which can be obtained as a pull back of 1-foliations in \(\mathbb{P}^{n-1} \) of degree \(d \geq 2 \).

Contents

1. Introduction
2. 1-dimensional foliations on \(\mathbb{P}^{n-1} \)
3. Rational maps
4. Generic pull-back components - Generic conditions
5. Description of generic pull-back foliations on \(\mathbb{P}^n \)
References

1. Introduction
A two singular foliation \(\mathcal{F} \) of a holomorphic manifold \(M, \dim_{\mathbb{C}} \geq 3 \), may be defined by:

1. A covering \(\mathcal{U} = (U_\alpha)_{\alpha \in A} \) of \(M \) by open sets.
2. A collection \((\eta_\alpha)_{\alpha \in A} \) of integrable \((n-2)\)-forms, \(\eta_\alpha \in \Omega^{n-2}(U_\alpha) \), where \(\eta_\alpha \neq 0 \) and defines a 2-dimensional foliation in \(U_\alpha \).
3. A multiplicative cocycle \(G := (g_{\alpha\beta})_{U_\alpha \cap U_\beta \neq \emptyset} \) such that \(\eta_\alpha = g_{\alpha\beta} \eta_\beta \).

If \(N_\mathcal{F} \) denotes the holomorphic line bundle represented by the cocycle \(G \), the family \((\eta_\alpha)_{\alpha \in A} \) defines a holomorphic section of the vector bundle \(\Omega^{n-2}(M) \otimes N_\mathcal{F} \) i.e. an element \(\eta \) of the cohomology vector space \(H^0(M, \Omega^{n-2}(M) \otimes N_\mathcal{F}) \). The analytic subset \(\text{Sing}(\eta) := \{ p \in M | \eta(p) = 0 \} \) is the singular set of \(\mathcal{F} \). In the case of \(M = \mathbb{P}^n \), n-dimensional complex projective space, we have a theorem of Chow-type. Denote by \(\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n \) the natural projection, and consider \(\pi^* \mathcal{F} \) of the foliation \(\mathcal{F} \) by \(\pi \); with the previous notations, \(\pi^* \mathcal{F} \) is defined by \((n-2)\)-forms, \(\pi^* \eta_\alpha \in \Omega^{n-2}[\pi^{-1}(U_\alpha)] \). Recall that for \(n \geq 2 \) we have \(H^1(\mathbb{C}^{n+1} \setminus \{0\}, \mathcal{O}^*) = \{ 1 \} \); it is a result from Cartan. As a consequence, there exists a global holomorphic \((n-2)\)-form \(\eta \) on \(\mathbb{C}^{n+1} \setminus \{0\} \) which defines \(\pi^* \mathcal{F} \) on \(\mathbb{C}^{n+1} \setminus \{0\} \). By Hartog’s extension
Theorem, \(\eta \) can be extended holomorphically at 0. By construction we have \(i_R \eta = 0 \), where \(R \) is the radial vector field. This fact and the integrability condition imply that each coefficient of \(\eta \) is a homogeneous polynomial of degree \(\text{deg}(F) + 1 \). Moreover, if we take a section by a generic immersion of hyperplane \(H := (i : \mathbb{P}^{n-1} \to \mathbb{P}^n) \), this procedure gives a foliation by curves \(\iota^*(F) \) on \(\mathbb{P}^{n-1} \). We then define the degree of \(F \), for short \(\text{deg}(F) \), as the degree of a generic section as before. From now on we will always assume that the singular set of \(F \) has codimension greater or equal than two.

The projectivisation of the set of \(n - 2 \)-forms which satisfies the previous conditions will be denoted by \(\mathfrak{F}(d; 2, n) \), the space of \(2 \)-dimensional foliations on \(\mathbb{P}^n \) of degree \(d \). Note that \(\mathfrak{F}(d; 2, n) \) can be considered as a quasi projective algebraic subset of \(\mathbb{P}H^0(\mathbb{P}^n, \Omega^{n-2}(\mathbb{P}^n) \otimes O_{\mathbb{P}^n}(d+n-1)) \). In this scenario we have the following:

Problem: Describe and classify the irreducible components of \(\mathfrak{F}(d; 2, n) \) on \(\mathbb{P}^n \), such that \(n \geq 3 \).

We observe that the classification of the irreducible components of \(\mathfrak{F}(0; 2, n) \) is given in [2] Th. 3.8 p. 46 and that the classification of the irreducible components of \(\mathfrak{F}(1; 2, n) \) is given in [17] Th. 6.2 and Cor. 6.3 p. 935-936. We refer the reader to [2] and [17] and references therein for a detailed description of them. In the case of foliations of codimension 1, the definitions of foliation and degree are analogous and we denote by \(\mathfrak{F}(k, n) \) the space of codimension 1 foliations of degree \(k \) on \(\mathbb{P}^n \), such that \(n \geq 3 \). The study of irreducible components of these spaces has been initiated by Jouanolou in [10], where the irreducible components of \(\mathfrak{F}(k, n) \) for \(k = 0 \) and \(k = 1 \) are described. In the case of codimension one foliations one can exhibit some kind of list of irreducible components in every degree, but this list is incomplete. In the paper [3], the authors proved that \(\mathfrak{F}(2, n) \) has six irreducible components, which can be described by geometric and dynamic properties of a generic element. We refer the reader to [3] and [11] for a detailed description of them. There are known families of irreducible components in which the typical element is a pull-back of a foliation on \(\mathbb{P}^2 \) by a rational map. Given a generic rational map \(f : \mathbb{P}^n \dashrightarrow \mathbb{P}^2 \) of degree \(\nu \geq 1 \), it can be written in homogeneous coordinates as \(f = (F_0, F_1, F_2) \) where \(F_0, F_1 \) and \(F_2 \) are homogeneous polynomials of degree \(\nu \). Now consider a foliation \(\mathcal{G} \) on \(\mathbb{P}^2 \) of degree \(\geq 2 \). We can associate to the pair \((f, \mathcal{G}) \) the pull-back foliation \(F = f^* \mathcal{G} \). The degree of the foliation \(F \) is \(\nu(d + 2) - 2 \) as proved in [4]. Denote by \(\mathcal{PB}(d, \nu; n) \) the closure in \(\mathfrak{F}(\nu(d + 2) - 2, n) \), \(n \geq 3 \) of the set of foliations \(\mathcal{F} \) of the form \(f^* \mathcal{G} \). Since \((f, \mathcal{G}) \to f^* \mathcal{G} \) is an algebraic parametrisation of \(\mathcal{PB}(d, \nu; n) \) it follows that \(\mathcal{PB}(d, \nu; n) \) is an unirational irreducible algebraic subset of \(\mathfrak{F}(\nu(d + 2) - 2, n) \), \(n \geq 3 \). We have the following result:

Theorem 1.1. \(\mathcal{PB}(d, \nu; n) \) is a unirational irreducible component of \(\mathfrak{F}(\nu(d + 2) - 2, n) \); \(n \geq 3, \nu \geq 1 \) and \(d \geq 2 \).

The case \(\nu = 1 \), of linear pull-backs, was proven in [1], whereas the case \(\nu > 1 \), of nonlinear pull-backs, was proved in [4]. The search for new components of pull-back type for the space of codimension 1 foliations was considered in the Ph.D thesis of the author [6] and after in [7]. There we investigated branched rational maps and foliations with algebraic invariant sets of positive dimensions.

Recently, A.Lins Neto in [14] generalized the results contained in [12] about singularities of integrable 1-forms for the 2-dimensional case and he has obtained as a corollary components of linear pull-back type for the case of 2-dimensional
foliations on \mathbb{P}^n. In the present work we will explore the result contained in [14] and some ideas contained in [4] to show that, in fact, there exist families of irreducible components of non-linear pull-back type for the 2-dimensional case. We would like to mention that in [4] the authors have shown that linear pull-back components exist in all codimension. However, the techniques that they use to prove this fact can not be applied to the non-linear case.

1.1. The present work. Let us describe, briefly, the type of pull-back foliation that we shall consider.

Let us fix some homogeneous coordinates $Z = (z_0, \ldots, z_n)$ on \mathbb{C}^{n+1} and $X = (x_0, \ldots, x_{n-1})$ on \mathbb{C}^n. Let $f : \mathbb{P}^n \to \mathbb{P}^{n-1}$ be a rational map represented in the coordinates $Z \in \mathbb{C}^{n+1}$ and $X \in \mathbb{C}^n$ by $f = (F_0, F_1, \ldots, F_{n-1})$ where $F_i \in \mathbb{C}[X]$ are homogeneous polynomials without common factors of degree ν. Let \mathcal{G} be a foliation by curves on \mathbb{P}^{n-1}. This foliation can be represented in these coordinates by a homogenous polynomial $(n-2)$-form of the type

$$\Omega = (-1)^{i+k+1} \sum_{i,k} x_k F_i dx_0 \wedge \ldots \wedge dx_i \wedge \ldots \wedge dx_k \wedge \ldots \wedge dx_{n-1},$$

for all $i, k \in \{0, \ldots, n-1\}$ where each F_i is a homogeneous polynomial of degree d.

The pull back foliation $f^*(\mathcal{G})$ is then defined in homogeneous coordinates by the $(n-2)$-form

$$\tilde{\eta}_{[f, \mathcal{G}]}(Z) = \left[(-1)^{i+k+1} \sum_{i,k} F_k (P_i \circ f) dF_0 \wedge \ldots \wedge \widehat{dF_i} \wedge \ldots \wedge dF_k \wedge \ldots \wedge dF_{n-1} \right],$$

for all $i, k \in \{0, \ldots, n-1\}$ where each coefficient of $\tilde{\eta}_{[f, \mathcal{G}]}(W)$ has degree $\Theta(\nu, d, n) + 1 = [(d+n-1)\nu - 2]$. Let $PB(\Theta; 2, n)$ be the closure in $\text{Fol}(\Theta; 2, n)$ of the set $\{ \tilde{\eta}_{[f, \mathcal{G}]} \}$, where $\tilde{\eta}_{[f, \mathcal{G}]}$ is as before. The pull-back foliation’s degree is $\Theta(\nu, d, n) = [(d+n-1)\nu - 3]$ and for simplicity we will denote it by Θ. Let us state the main result of this work.

Theorem A. $PB(\Theta; 2, n)$ is a unirational irreducible component of $\text{Fol}(\Theta; 2, n)$ for all $n \geq 4$, $\nu \geq 2$ and $d \geq 2$.

It is worth pointing out that the case $n = 3$ is also true and it is contained in theorem [14]. So we can think this result as the $n \geq 4$-dimensional generalization of [4] for 2-dimiosal foliations in \mathbb{P}^n.

Acknowledgments: I am deeply grateful to D. Cerveau for the discussions, suggestions and comments. I would also like to thank E. Goulart for the corrections in the manuscript. This work was developed at IRMAR(Rennes, France) and was supported by Capes-Brasil, process number (9814-13-2).

2. 1-DIMENSIONAL FOLIATIONS ON \mathbb{P}^{n-1}

2.1. Basic facts. We recall the basic definitions and properties of foliations by curves on \mathbb{P}^{n-1} that we will use in this work. Proofs and details can be found in [16] and [14].

Let $R = \sum_{i=0}^{n-1} x_i \frac{\partial}{\partial x_i}$ be the radial vector field in \mathbb{C}^n. Denote by $\Sigma(R, d-1) = \{ Z \mid [R, Z] = (d-1)Z \}$, where $[R, Z]$ stands for the Lie’s bracket between the two vector fields R and Z. Observe that $\Sigma(R, d-1)$ is a finite dimensional vector space whose elements are homogeneous polynomials of degree d. Let us write $X = \ldots = X_{n-1} = 0$. Let $x_{n-1} = ... = x_0$ be homogeneous coordinates on \mathbb{P}^{n-1}.
Let $\mathcal{X}_0, \ldots, \mathcal{X}_n$ and $\nabla \mathcal{X} = \sum_{i=0}^{n-1} \frac{\partial \mathcal{X}}{\partial x_i}$. Let $\mathcal{E}(R, d-1) = \{ \mathcal{X} \in \Sigma(R, d-1) | \nabla \mathcal{X} = 0 \}$, and $\mathcal{K}(R, d-1) = \{ \mathcal{X} \in \mathcal{E}(R, d-1) \}$. It can be verified that $\mathcal{K}(R, d-1)$ is a Zariski open and dense subset of $\Sigma(R, d-1)$.

Observe that the restriction f can be verified that $\mathcal{K}(R, d-1)$ is a Zariski open and dense subset of $\Sigma(R, d-1)$ and for each $\mathcal{X} \in \mathcal{K}(R, d-1)$ then the $(n-2)$-form

$$\Omega = i_{H} d\sigma = (-1)^{i+k+1} \sum_{i,k} x_k P_i dx_0 \wedge \ldots \wedge \hat{d}x_i \wedge \ldots \wedge \hat{d}x_k \wedge \ldots \wedge dx_{n-1},$$

where $d\sigma = dx_0 \wedge \ldots \wedge dx_1 \wedge \ldots \wedge dx_k \wedge \ldots \wedge dx_{n-1}$ is the volume form in \mathbb{C}^n, $\mathcal{X} = \sum P_i \frac{\partial}{\partial x_i}$ and $0 \in \text{Sing}(\Omega)$ is a n.g.K singularity, with rotational $(d+n)\mathcal{X}$ (see section 5.2 and [14] for more details. Observe that if $\text{cod} \text{Sing}(\Omega) \geq 2$ then Ω defines a 1-dimensional foliation \mathcal{G} on \mathbb{P}^{n-1} of degree d.

Definition 2.1. Let us denote by $\mathcal{Fol}(d; 1, n-1)$ the set of 1-dimensional foliations on \mathbb{P}^{n-1}.

Theorem 2.2. [16] Given, $n \geq 3$, and $d \geq 2$ there exists a Zariski open subset $\mathcal{M}(d)$ of $\mathcal{Fol}(d; 1, n-1)$ such that any \mathcal{G} satisfies:

1. \mathcal{G} has exactly $N = \frac{d^2-1}{d-1}$ hyperbolic singularities and is regular on the complement.
2. \mathcal{G} has no invariant algebraic curve.

Let X be a germ of vector field at $0 \in \mathbb{C}^n$ with an isolated singularity at 0 and denote by $\lambda_1, \ldots, \lambda_{n-1} \in \mathbb{C}$ the spectrum of its linear part. We say that X is hyperbolic at 0 if none of the quotients $\frac{\lambda_k}{\lambda_i}$ are real. We have the following proposition:

Proposition 2.3. Let Q be a germ of vector field with a hyperbolic singularity at $0 \in \mathbb{C}^{n-1}$ and denote by $\lambda_1, \ldots, \lambda_{n-1} \in \mathbb{C}$ its spectrum. Then, there are exactly $n-1$ germs of irreducible invariant analytic invariant curves $\Gamma_1, \Gamma_2, \ldots, \Gamma_{n-1}$ at 0 where each Γ_i is smooth and tangent to the eigendirection corresponding to λ_i.

In a local coordinate system near the singularity for instance, $0 \in (\mathbb{C}^{n-1}, u)$ where $u = (u_1, \ldots, u_{n-1})$ the foliation can be written as

$$Q(u) = (\lambda_1 u_1) \frac{\partial}{\partial u_1} + \cdots + (\lambda_{n-1} u_{n-1}) \frac{\partial}{\partial u_{n-1}} + h.o.t,$$

where $h.o.t$ stands for higher order terms. Let us denote by $\mathcal{F}(R, d-1) = L(d)$ and let $A(d) := \mathcal{M}(d) \cap L(d)$ be their intersection. An element of the open and dense subset $A(d) \subset \mathcal{Fol}(d; 1, n-1)$ is the well-known generalized Joanoulou’s example, see [10] and [14].

3. **Rational maps**

Let $f : \mathbb{P}^n \dashrightarrow \mathbb{P}^{n-1}$ be a rational map and $\tilde{f} : \mathbb{C}^{n+1} \to \mathbb{C}^n$ its natural lifting in homogeneous coordinates. We are considering the same homogeneous coordinates used in the introduction.

The indeterminacy locus of f is, by definition, the set $I(f) = \Pi_n \left(\tilde{f}^{-1}(0) \right)$. Observe that the restriction $f|_{\mathbb{P}^n \setminus I(f)}$ is holomorphic. We characterize the set of rational maps used throughout this text as follows:

Definition 3.1. We denote by $\text{RM} (n, n-1, \nu)$ the set of maps $\{ f : \mathbb{P}^n \dashrightarrow \mathbb{P}^{n-1} \}$ of degree ν given by $f = (F_0 : F_1 : \ldots : F_{n-1})$ where the F_j, are homogeneous polynomials without common factors, with the same degree.
Let us note that the indeterminacy locus \(I(f) \) is the intersection of the hypersurfaces \(\Pi_n(F_i = 0) \) and \(\Pi_n(F_j = 0) \) for \(i \neq j \).

Definition 3.2. We say that \(f \in \text{RM} \,(n,n-1,\nu) \) is *generic* if for all \(p \in \tilde{f}^{-1}(0) \setminus \{0\} \) we have \(dF_0(p) \wedge dF_1(p) \wedge ... \wedge dF_{n-1}(p) \neq 0 \).

This is equivalent to saying that \(f \in \text{RM} \,(n,n-1,\nu) \) is *generic* if \(I(f) \) is the transverse intersection of the \(n \) hypersurfaces \(\Pi_n(F_i = 0) \) for \(i = 0,...,n-1 \).

Moreover if \(f \) is generic and \(\text{deg}(f) = \nu \), then by Bezout’s theorem \(I(f) \) consists of \(\nu^n \) distinct points.

Now let \(V(f) = \mathbb{P}^n \setminus I(f) \), \(P(f) \) the set of critical points of \(f \) in \(V(f) \) and \(C(f) = f(P(f)) \) the set of the critical values of \(f \). If \(f \) is generic, then \(\overline{P(f)} \cap I(f) = \emptyset \), so that \(\overline{P(f)} = P(f) \subset V(f) \) (where \(\overline{A} \) denotes the closure of \(A \subset \mathbb{P}^n \) in the usual topology). Since \(P(f) = \{ p \in V(f): \text{rank}(df(p) \leq (n-2)) \} \), it follows from Sard’s theorem that \(C(f) = f(P(f)) \) is a subset of Lebesgue’s measure 0 in \(\mathbb{P}^{n-1} \), in fact \(C(f) \) is an algebraic curve.

The set of generic maps will be denoted by \(\text{Gen} \,(n,n-1,\nu) \). We state the following result, whose proof is standard in algebraic geometry:

Proposition 3.3. \(\text{Gen} \,(n,n-1,\nu) \) is a Zariski dense subset of \(\text{RM} \,(n,n-1,\nu) \).

4. **Generic pull-back components - Generic conditions**

Definition 4.1. Let \(f \in \text{Gen} \,(n,n-1,\nu) \). We say that \(\mathcal{G} \in A(d) \) is in generic position with respect to \(f \) if \(\text{Sing}(\mathcal{G}) \cap C(f) = \emptyset \).

In this case we say that \((f,\mathcal{G}) \) is a generic pair. In particular, when we fix a map \(f \in \text{Gen} \,(n,n-1,\nu) \) the set \(A = \{ \mathcal{G} \in A(d) | \text{Sing}(\mathcal{G}) \cap C(f) = \emptyset \} \) is an open and dense subset in \(A(d) \) \([15]\), since \(C(f) \) is an algebraic curve in \(\mathbb{P}^{n-1} \). The set \(U_1 := \{ (f,\mathcal{G}) \in \text{Gen} \,(n,n-1,\nu) \times A(d) | \text{Sing}(\mathcal{G}) \cap C(f) = \emptyset \} \) is an open and dense subset of \(\text{Gen} \,(n,n-1,\nu) \times A(d) \). Hence the set \(\mathcal{W} := \{ \tilde{\eta}_{f,\mathcal{G}} \circ f | (f,\mathcal{G}) \in U_1 \} \) is an open and dense subset of \(\text{PB(} \Theta; 2, n) \).

Consider the set of foliations \(\text{Fol}(d;1,n-1), d \geq 2 \), and the following map:

\[
\Phi : \text{RM} \,(n,n-1,\nu) \times \text{Fol}(d;1,n-1) \rightarrow \text{Fol}(\Theta;2,n) \quad (f,\mathcal{G}) \mapsto f^*(\mathcal{G}) = \Phi (f,\mathcal{G}).
\]

The image of \(\Phi \) can be written as:

\[
(-1)^{i+k+1} \sum_{i,k} F_k(P_i \circ \tilde{f}) dF_0 \wedge ... \wedge d\overline{F}_i \wedge ... \wedge d\overline{F}_k \wedge ... \wedge dF_{n-1} \]

\(i, k \in \{0,...,n-1\} \). Recall that \(\Phi (f,\mathcal{G}) = \tilde{\eta}_{f,\mathcal{G}} \). More precisely, let \(\text{PB(} \Theta; 2, n) \) be the closure in \(\text{Fol}(\Theta;2,n) \) of the set of foliations \(\mathcal{F} \) of the form \(f^*(\mathcal{G}) \), where \(f \in \text{RM} \,(n,n-1,\nu) \) and \(\mathcal{G} \in \text{Fol}(d;1,n-1) \). Since \(\text{RM} \,(n,n-1,\nu) \) and \(\text{Fol}(d;1,n-1) \) are irreducible algebraic sets and the map \((f,\mathcal{G}) \rightarrow f^*(\mathcal{G}) \in \text{Fol}(\Theta;2,n) \) is an algebraic parametrization of \(\text{PB(} \Theta; 2, n) \), we have that \(\text{PB(} \Theta; 2, n) \) is an irreducible algebraic subset of \(\text{Fol}(\Theta;2,n) \). Moreover, the set of generic pull-back foliations \(\{ \mathcal{F}; \mathcal{F} = f^*(\mathcal{G}) \}, \) where \((f,\mathcal{G}) \) is a generic pair \(\} \) is an open (not Zariski) and dense subset of \(\text{PB(} \Theta; 2, n) \) for \(\nu \geq 2, d \geq 2 \).

Remark 4.2. We observe that if \(\nu = 1 \) the theorem is also true and, in this case, we re-obtain the result \([14]\ Cor. 1 p.7] and \([4]\ Cor. 5.1 p. 426] for the case of bi-dimensional foliations.
Remark 4.3. To visualize that the degree of a generic pull-back foliation is indeed
\(\Theta(v, d, n) = [(d + n - 1)v - 3]\), do the pull-back of a generic map of the Joanoulou’s
foliation on \(\mathbb{P}^{n-1}\) to obtain that the degree of this generic element coincides with
this number.

5. Description of generic pull-back foliations on \(\mathbb{P}^n\)

5.1. The Kupka set of \(\mathcal{F} = f^*(\mathcal{G})\). Let \(q_i\) be a singularity of \(\mathcal{G}\) and \(V_{q_i} = f^{-1}(q_i)\).
If \((f, \mathcal{G})\) is a generic pair then \(V_{q_i} \cap I(f)\) is contained in the Kupka set of \(\mathcal{F}\).

Fix \(p \in V_{q_i} \setminus I(f)\). Since \(f\) is a submersion at \(p\), there exist local analytic co-
ordinate systems \((U, y, t), y : U \to \mathbb{C}^{n-1}, t : U \to \mathbb{C}\), and \((V, u), u : V \to \mathbb{C}^{n-1},\)
at \(p\) and \(q_i = f(p)\) respectively, such that \(f(y_1, y_2, ..., y_{n-1}, t) = (y_1, y_2, ..., y_{n-1}), u(q_i) = 0\).
Suppose that \(\mathcal{G}\) is represented by the vector field \(Q = \sum_{j=1}^{n-1} Q_j(u) \frac{\partial}{\partial u_j}\)
in a neighborhood of \(q_i\). Then \(\mathcal{F}\) is represented by \(Y = \sum_{j=1}^{n-1} Y_j(y) \frac{\partial}{\partial y_j}\). It follows
that in \(U\), the foliation \(\mathcal{F}\) is equivalent to the product of two foliations of dimension
one: the singular foliation induced by the vector field \(Y\) in \((\mathbb{C}^{n-1}, 0)\) and the regular
foliation of dimension one given by the fibers of the first projection \(F(y, t) = y\).

Remark 5.1. Note that, \(\mathcal{F}\) has other singularities which are contained in
\(f^{-1}(\mathcal{G}(f))\). We remark that \(\mathcal{F}\) has local holomorphic first integral in a neighbor-
hood of each singularity of this type. In fact, this is the obstruction to try to
apply the results contained in [4] to prove theorem A since these pull-back foliations
do not have totally decomposable tangent sheaf.

Since \(\mathcal{G}\) has degree \(d\) and all of its singularities are non degenerate it has \(N = \frac{d^{n-1}}{(n-1)!}\)
singularities, say, \(q_1, ..., q_N\). We will denote the curves \(f^{-1}(q_1), ..., f^{-1}(q_N)\)
by \(V_{q_1}, ..., V_{q_N}\) respectively. We have the following:

Proposition 5.2. For each \(\{j = 1, ..., N\}, V_{q_j}\) is a complete intersection of \((n - 1)\)
transversal algebraic hypersurfaces. Furthermore, \(V_{q_j} \cap I(f)\) is contained in the
Kupka set of \(\mathcal{F} = f^*\mathcal{G}\).

5.2. Generalized Kupka singularities for 2-dimensional foliations. In this
section we will recall the generalized Kupka singularities of an integrable holomor-
phic \((n - 2)\)-form, for more detail we refer the reader to [14]. They appear in the
indeterminacy set of \(f\) and play a central role in great part of the proof of the main
theorem. Let \(\Omega\) be an holomorphic integrable \((n - 2)\)-form defined in a neighbor-
hood of \(p \in \mathbb{C}^n\). In particular, since \(d\Omega\) is a \((n - 1)\)-form, there exists a holomorphic
vector field \(Z\) defined in a neighborhood of \(p\) such that:
\[d\Omega = i_Z dw_0 \wedge \cdots \wedge dw_{n-1}\]

Definition 5.3. We say that \(p\) is a singularity of generalized Kupka type of \(\Omega\) if
\(Z(p) = 0\) and \(p\) is an isolated zero of \(Z\).

Definition 5.4. We say that \(p\) is a nilpotent generalized singularity, for short n.g.k
singularity, if the linear part of \(Z\), \(DZ(p)\) is nilpotent.

This definition is justified by the following result (that can be found in [14]).
Theorem 5.5. Assume that $0 \in \mathbb{C}^n$ is a n.g.k singularity of Ω. Then there exists two holomorphic vector fields S and Z and a holomorphic coordinate system $x = (x_0, ..., x_{n-1})$ around $0 \in \mathbb{C}^n$ where Ω has polynomial coefficients. More precisely, there exists two polynomial vector fields X and Y in \mathbb{C}^n such that:

(a) $Y = S + N$, where $S = \sum_{j=0}^{n-1} k_j w_j \frac{\partial}{\partial x_j}$ is linear semi-simple with eigenvalues $k_0, ..., k_{n-1} \in \mathbb{N}$, $DN(0)$ is linear nilpotent and $[S, N] = 0$.

(b) $[N, X] = 0$ and $[S, X] = kX$, where $k \in \mathbb{N}$. In other words, X is quasi-homogeneous with respect to S with weight k.

(c) In this coordinate system we have $\Omega = iv_{X}dx_0 \wedge \cdots \wedge dx_{n-1}$ and $L_Y(\Omega) = (k + tr(S))\Omega$.

In particular, the foliation given by $\Omega = 0$ can be defined by a local action of the affine group.

Definition 5.6. In the situation of the theorem 5.5, $S = \sum_{j=0}^{n-1} k_j x_j \frac{\partial}{\partial x_j}$ and $L_S(X) = kX$, we say that the n.g.K is of type $(k_0, ..., k_{n-1}; k)$.

Remark 5.7. We would like to observe that in many cases it can be proved that the vector field N of the statement of theorem 2 vanishes. In order to discuss this assertion it is convenient to introduce some objects. Given two germs of vector fields Z and W set $L_Z(W) := [Z, W]$. Recall that $\Sigma(S, \ell) = \{Z \in X | L_S(Z) = \ell Z\}$. Let X and $Y = S + N$ be as in theorem 5.5. Observe that:

- Jacobi’s identity implies that if $W \in \Sigma(S, k)$ and $Z \in \Sigma(S, \ell)$ then $[W, Z] \in \Sigma(S, k + \ell)$.
- For all $k \in \mathbb{Z}$ we have $\dim_{\mathbb{C}}(\Sigma(S, k)) < \infty$ (because $k_0, ..., k_{n-1} \in \mathbb{N}$).
- $N \in \Sigma(S(0), X) \in \Sigma(S, \ell)$ and $L_X(N) = 0$, so that $N \in ker(L_X^0)$, where $L_X^0 := LX : \Sigma(S, 0) \rightarrow \Sigma(S, \ell)$. In particular, the vector field $N \in \Sigma(S, 0)$ of theorem 5.5 necessarily vanishes $\iff ker(L_X^0) = \{0\}$.

In [14], § 3.2 it is shown that under a non-resonance condition, which depends only on X, then $ker(L_X^0) = \{0\}$. Let us mention some correlated facts.

(I) If S has no resonances of the type $< \sigma, k > - k_j = 0$, where $< \sigma, k > := \sum_j \sigma_j k_j$, $k = (k_0, ..., k_{n-1})$ and $\sigma = (\sigma_0, ..., \sigma_{n-1}) \in \mathbb{Z}_{>0}^n$, then $ker(L_X^0) = \{0\}$.

(II) When $n = 3$ and X has an isolated singularity at $0 \in \mathbb{C}^3$ then $ker(L_X^0) = \{0\}$ (c.f [12]).

(III) When $N \neq 0$ and $cod_{\mathbb{C}}(sing(N)) = 1$, or $sing(N)$ has an irreducible component of dimension one then it can be proved that X cannot have an isolated singularity at $0 \in \mathbb{C}^n$.

In fact, we think that whenever X has an isolated singularity at $0 \in \mathbb{C}^n$ and $\nabla X = 0$ then $ker(L_X^0) = \{0\}$.

The next result is about the nature of the set $K(S, \ell) := \{X \in \Sigma(S, \ell) | ker(L_X^0) = \{0\} \text{ and } \nabla X = 0\}$.

Proposition 5.8. If $K(S, \ell) \neq \emptyset$ then $K(S, \ell)$ is a Zariski open and dense subset of $E(S, \ell)$. In particular, if there exists $X \in E(S, \ell)$ satisfying the non-resonance condition mentioned in remark 5.7 then $K(S, \ell)$ is a Zariski open and dense in $E(S, \ell)$. Proposition 5.8 is a straightforward consequence of the following facts:
we are considering \(\Omega \in A \)
\(\mathbb{R} \) is a n.g.K singularity of \(\Omega \) of type \((1, \ldots, n)\).

In the case of the radial vector field, the germ of \(\Pi^*_t \) is defined by \(L(X) = L^N_\mathbb{R} \) is linear.

As a consequence, the set \(L^{-1}(\mathcal{N}T) \) is an algebraic subset of \(\mathcal{E}(S, \ell) \).

We leave the details to the reader.

Remark 5.9. In the case of the radial vector field, \(R = \sum_{i=0}^{n-1} x_i \frac{\partial}{\partial x_i} \), we have \(K(R, d-1) \neq \emptyset \) for all \(d \geq 2 \). In fact, it is proved in [14], § 3.2 that \(J_d \in (R, d-1) \), where \(J_d \) is the generalized Jouanolou’s vector field.

Consider a holomorphic family of \((n-2)\)-forms, \((\Omega_t)_{t \in U}\), defined on a polydisc \(Q \) of \(\mathbb{C}^n \), where the space of parameters \(U \) is an open set of \(\mathbb{C}^k \) with \(0 \in U \). Let us assume that:

- For each \(t \in U \) the form \(\Omega_t \) defines a 2-dimensional foliation \(F_t \) on \(Q \).

 Let \((\mathcal{Z}_t)_{t \in U} \) be the family of holomorphic vector fields on \(Q \) such that \(d\Omega_t = i_{\mathcal{Z}_t}dx_0 \wedge \cdots \wedge dx_{n-1} \).

- \(F_0 \) has a n.g.K singularity at \(0 \in Q \).

We can now state the stability result, whose proof can be found in [14]:

Theorem 5.10. In the above situation there exists a neighborhood \(0 \in V \subset U \), a polydisc \(0 \in P \subset Q \), and a holomorphic map \(P : V \to P \subset \mathbb{C}^n \) such that \(P(0) = 0 \) and for any \(t \in V \) then \(P(t) \) is the unique singularity of \(F_t \) in \(P \). Moreover, \(P(t) \) is the same type as \(P(0) \) in the sense that: If \(0 \) is a n.g.K singularity of type \((k_0, \ldots, k_{n-1}, k)\) of \(F_0 \) then \(P(t) \) is a n.g.K singularity of type \((k_0, \ldots, k_{n-1}, k)\) of \(F_t, \forall t \in V \).

Let us now describe \(F = f^*(\mathcal{G}) \) in a neighborhood of a point \(p \in I(f) \).

Proposition 5.11. If \(p \in I(f) \) then \(p \) is a n.g.K singularity of \(\Omega \) of type \((1, \ldots, 1, n)\).

Proof. It is easy to show that there exists a local chart \((U, x = (x_0, \ldots, x_{n-1})) \in \mathbb{C}^n \) around \(p \) such that the lifting \(\tilde{f} \) of \(f \) is of the form \(\tilde{f}|_U = (x_0, \ldots, x_{n-1}) : U \to \mathbb{C}^n \).

In particular \(F|_{U(p)} \) is represented by the homogeneous \((n-2)\)-form

\[
\Omega = (-1)^{i+k+1} \sum_{i,k} x_k P_i dx_0 \wedge \cdots \wedge \hat{dx}_i \wedge \cdots \wedge \hat{dx}_k \wedge \cdots \wedge dx_{n-1}.
\]

Observe that \(L_\mathbb{R} \Omega = (d+n) \Omega, X = \sum_i P_i \frac{\partial}{\partial x_i}, Z = (d+n)X, [R, X] = dX \). Since we are considering \(\Omega \in \mathcal{A} \) we have that \(Y = R, N = 0 \) and hence we conclude that \(p \) is a n.g.K singularity of \(\Omega \) of type \((1, \ldots, 1, n)\). In particular the vector field \(S \) as in the Theorem [5.5] is the radial vector field.

It follows from theorem [5.10] that these singularities are stable under deformations. Proposition [5.11] says that the germ \(f^*\mathcal{G} \) of \(f^*\mathcal{G} \) at \(p \in I(f) \) is equivalent to the germ of \(\Pi^*_t \mathcal{G} \) at \(p \in I(f) \).
5.2.1. Deformations of the singular set of $\mathcal{F}_0 = f_0^* (\mathcal{G}_0)$. We have constructed an open and dense subset \mathcal{W} inside $PB(\Theta, 2, n)$ containing the generic pull-back foliations. We will show that for any rational foliation $\mathcal{F}_0 \in \mathcal{W}$ and any germ of a holomorphic family of foliations $(\mathcal{F}_t)_{t \in (\mathbb{C}, 0)}$ such that $\mathcal{F}_0 = \mathcal{F}_{t=0}$ we have $\mathcal{F}_t \in PB(\Theta, 2, n)$ for all $t \in (\mathbb{C}, 0)$.

Using the theorem. 5.10, with $\mathcal{V} = (\mathbb{C}, 0)$, it follows that for each $p_j \in I(f_0)$ there exists a deformation $p_j(t)$ of p_j and a deformation of $\mathcal{F}_{t,p_j(t)}$ of \mathcal{F}_{p_j} such that $p_j(t)$ is a n.g.K singularity of $\mathcal{F}_{t,p_j(t)} := \Omega_{p_j(t)}$ of type $(1, \ldots, 1, n)$ and $(\mathcal{F}_{t,p_j(t)})_{t \in (\mathbb{C}, 0)}$ defines a holomorphic family of foliations in \mathbb{P}^{n-1}. We will denote by $I(t) = \{p_1(t), \ldots, p_j(t), \ldots, p_{n+1}(t)\}$.

Remark 5.12. Since $I(t)$ is not connected we can not guarantee a priori that $\mathcal{F}_{t,p_i(t)} = \mathcal{F}_{t,p_j(t)}$, if $i \neq j$.

Lemma 5.13. There exist $\epsilon > 0$ and smooth isotopies $\phi_{q_i} : D_\epsilon \times V_{q_i} \rightarrow \mathbb{P}^n, q_i \in \text{Sing}(\mathcal{G}_0)$, such that $V_{q_i}(t) = \phi_t(\{t\} \times V_{q_i})$ satisfies:

(a) $V_{q_i}(t)$ is an algebraic subvariety of dimension 1 of \mathbb{P}^n and $V_{q_i}(0) = V_{q_i}$ for all $q_i \in \text{Sing}(\mathcal{G}_0)$ and for all $t \in D_\epsilon$.

(b) $I(t) \subset V_{q_i}(t)$ for all $q_i \in \text{Sing}(\mathcal{G}_0)$ and for all $t \in D_\epsilon$. Moreover, if $q_i \neq q_j$ and $q_i, q_j \in \text{Sing}(\mathcal{G}_0)$, we have $V_{q_i}(t) \cap V_{q_j}(t) = I(t)$ for all $t \in D_\epsilon$ and the intersection is transversal.

(c) $V_{q_i}(t) \setminus I(t)$ is contained in the Kapka-set of \mathcal{F}_t for all $q_i \in \text{Sing}(\mathcal{G}_0)$ and for all $t \in D_\epsilon$. In particular, the transversal type of \mathcal{F}_t is constant along $V_{q_i}(t) \setminus I(t)$.

Proof. See [11] lemma 2.3.3, p.83. □

5.3. End of the proof of Theorem [A]. We divide the end of the proof of Theorem [A] in two parts. In the first part we construct a family of rational maps $f_t : \mathbb{P}^n \rightarrow \mathbb{P}^n$, $f_t \in \text{Gen}(n, n-1, \nu)$, such that $(f_t)_{t \in D_\epsilon}$ is a deformation of f_0 and the subvarieties $V_{q_i}(t)$ are fibers of f_t for all t. In the second part we show that there exists a family of foliations $(\mathcal{G}_t)_{t \in D_\epsilon}, \mathcal{G}_t \in \mathcal{A}$ (see Section [I]) such that $\mathcal{F}_t = f_t^* (\mathcal{G}_t)$ for all $t \in D_\epsilon$.

5.3.1. Part 1. Once $d = \text{deg}(\mathcal{G}_0) \geq 2$, the number of singularities of \mathcal{G}_0 is $N = \frac{d^{n+1} - 1}{d - 1} > n$, so we can suppose that the singularities of \mathcal{G}_0 are $q_1 = [0 : 0 : \ldots : 1], \ldots, q_{n} = [1 : 0 : \ldots : 0], \ldots, q_N$.

Proposition 5.14. Let $(\mathcal{F}_t)_{t \in D_\epsilon}$ be a deformation of $\mathcal{F}_0 = f_0^* (\mathcal{G}_0)$, where (f_0, \mathcal{G}_0) is a generic pair, with $\mathcal{G}_0 \in \mathcal{A}$. $f_0 \in \text{Gen}(n, n-1, \nu)$ and $\text{deg}(f_0) = \nu \geq 2$. Then there exists a deformation $(f_t)_{t \in D_\epsilon}$ of f_0 in $\text{Gen}(n, n-1, \nu)$ such that:

(i) $V_{q_i}(t)$ are fibers of $(f_t)_{t \in D_\epsilon}$.

(ii) $I(t) = I(f_t), \forall t \in D_\epsilon$.

Proof. Let $f_0 = (F_0, \ldots, F_{n-1}) : \mathbb{C}^{n+1} \rightarrow \mathbb{C}^n$ be the homogeneous expression of f_0. Then $V_{q_1}, V_{q_2}, \ldots, V_{q_n}$ appear as the complete intersections $V_{q_i} = (F_0 = F_1 = \ldots = F_{i-1} = \ldots = 0)$. The remaining fibers, V_{q_i} for $i > n$ are obtained in the same way. With this convention we have that $I(f_0) = V_{q_i} \cap V_{q_j}$ if $i \neq j$. It follows from [19] (see section 4.6 pp 235-236) that each $V_{q_i}(t)$ is a smooth complete intersection generated by polynomials of the same degree. However we can not assure that the set of polynomials which define each $V_{q_i}(t)$ have a correlation among them. In
the next lines we will show this fact. For this let us work firstly with two curves. For instance, let us take \(V_{q_1}(t) \) and \(V_{q_2}(t) \) which are deformations of \(V_q \) and \(V_{q_2} \) respectively. We will see that this two curves are enough to construct the family of deformations \((f_i)_{i \in D_{\nu}}\). After that we will show that the remaining curves \(V_{q_i}(t) \) are also fibers of \((f_i)_{i \in D_{\nu}}\). We can write \(V_{q_1}(t) = (F_1(t) = F_2(t) = \ldots F_{n-1}(t) = 0) \), and \(V_{q_2}(t) = (\tilde{F}_0(t) = F_1(t) = \tilde{F}_2(t) = \ldots = \tilde{F}_{n-1}(t) = 0) \) where \((F_i(t))_{i \in D_{\nu}}\) and \((\tilde{F}_i(t))_{i \in D_{\nu}}\) are deformations of \(F_i \) and \(D_{\nu} \) is a possibly smaller neighborhood of \(0 \). Observe first that since the \(F_{is}(t) \) and \(\tilde{F}_{is}(t) \) are near \(F_{is} \), they meet as a complete intersection at:

\[
I(f_i) := (F_0(t) = 0) \cap V_i(t)
\]

On the other hand we also have

\[
I(t) = V_{q_1}(t) \cap V_{q_2}(t) = V_{q_1}(t) \cap \{(F_0(t) = 0) \cap \{\tilde{F}_2(t) = \ldots \tilde{F}_{n-1}(t) = 0\}\}.
\]

Let us write \(\{S(t) = 0\} = \{\tilde{F}_2(t) = \ldots \tilde{F}_{n-1}(t) = 0\} \). Hence \(I(f_i) \cap \{S(t) = 0\} = V_{q_1}(t) \cap V_{q_2}(t) = I(t) \), which implies that \(I(t) \subset I(f_i) \). Since \(I(f_i) \) and \(I(t) \) have \(\nu^n \) points, we have that \(I(t) = I(f_i) \) for all \(t \in D_{\nu} \). In particular, we obtain that \(I(t) \subset \{S(t) = 0\} \). We will use the following version of Noether’s Normalization Theorem (see [11] p 86):

Lemma 5.15. (Noether’s Theorem) Let \(G_0, \ldots, G_k \in \mathbb{C}[z_1, \ldots, z_m] \) be homogeneous polynomials where \(0 \leq k \leq m \) and \(m \geq 2 \), and \(X = (G_0, \ldots, G_k) = 0 \). Suppose that the set \(Y := \{p \in X | dG_0(p) \land \ldots \land dG_k(p) = 0\} \) is either \(0 \) or \(\emptyset \). If \(G \in \mathbb{C}[z_1, \ldots, z_m] \) satisfies \(G_X \equiv 0 \), then \(G \in <G_0, \ldots, G_k> \).

Take \(k = n - 1 \), \(G_0 = F_0(t) \), \(G_1 = F_1(t) \ldots G_{n-1} = F_{n-1}(t) \). Using Noether’s Theorem with \(Y = 0 \) and the fact that all polynomials involved are homogeneous of the same degree, we have \(\tilde{F}_1(t) \in <F_0(t), F_1(t), \ldots, F_{n-1}(t)> \). More precisely we conclude that each \(\tilde{F}_i(t) = \sum_{j=0}^{n-1} g_{i,j}(t) F_j(t), g_{i,j}(t) \in \mathbb{C} \) and when \(t = 0 \) for each \(i, \tilde{F}_i(0) = F_i(0) = F_i \). On the other hand, if \(V_{q_k}(t) \) is the deformation of another \(V_{q_k} \), then \(V_{q_k}(t) \) is also a complete intersection, say, \(V_{q_k}(t) = (P^k(t) = \ldots = P^k_{n-1} = 0) \) where each \(P^k_i(t) \) for \(i = 1, \ldots, n-1 \) is a homogeneous polynomial of degree \(\nu \).

Since \(I(t) \subset (P^k_i(t) = 0) \) for \(i = 1, \ldots, n-1 \), we have that each \(P^k_i(t) \) is a linear combination of the \(F_{is}(t) \), that is, \(P^k_i(t) \in <F_0(t), F_1(t), \ldots, F_{n-1}(t)> \). This implies that \(V_{q_k}(t) \) is also a fiber of \(f_i \), as the reader can check, say \(V_{q_k}(t) = f_t^{-1}(q_k(t)) \). Since \(q_k(t) = f_t(V_{q_k}(t)) \) and \(f_t \) and \(V_{q_k}(t) \) are deformations of \(f_0 \) and \(V_q \) we get that \(q_k(t) \) is a deformation of \(q_k \), so that for small \(t \), \(q_k(t) \) is a regular value of \(f_t \).

5.3.2. Part 2. Let us now define a family of foliations \((G_i)_{i \in D_{\nu}}\), \(G_i \in \mathcal{A} \) (see Section 3) such that \(\tilde{F}_i = f^*_t(G_i) \) for all \(t \in D_{\nu} \). Let \(M(t) \) be the family of “rational varieties” obtained from \(\mathbb{P}^n \) by blowing-up at the \(\nu^n \) points \(p_1(t), \ldots, p_{\nu^n}(t) \) corresponding to \(I(t) \) of \(\mathcal{F}_i \); and denote by

\[
\pi(t) : M(t) \to \mathbb{P}^n
\]

the blowing-up map. The exceptional divisor of \(\pi(t) \) consists of \(\nu^n \) submanifolds \(E_j(t) = \pi(t)^{-1}(p_j(t)) \), \(1 \leq j \leq \nu^n \), which are projective spaces \(\mathbb{P}^{n-1} \). More precisely, if we blow-up \(\mathcal{F}_i \) at the point \(p_i(t) \), then the restriction of the strict transform \(\pi^*\mathcal{F}_i \) to the exceptional divisor \(E_j(t) = \mathbb{P}^{n-1} \) is up to a linear automorphism of \(\mathbb{P}^{n-1} \), the homogeneous \((n-2)\)-form that defines \(\mathcal{F}_i \) at the point \(p_j(t) \). With
this process we produce a family of bidimensional holomorphic foliations in \(A \).

This family is the “holomorphic path” of candidates to be a deformation of \(G_0 \).

In fact, since \(A \) is an open set we can suppose that this family is inside \(A \). We fix the exceptional divisor \(E_1(t) \) to work with and we denote by \(\hat{G}_t \) the restriction of \(\pi^*\mathcal{F}_t \) to \(E_1(t) \). Consider the family of mappings \(f_t: \mathbb{P}^n \rightarrow \mathbb{P}^{n-1}, t \in D_\epsilon \), defined in Proposition \[6.14\]. We will consider the family \((f_t)_{t \in D_\epsilon} \) as a family of rational maps \(f_t: \mathbb{P}^n \rightarrow E_1(t) \); we decrease \(\epsilon \) if necessary. We would like to observe that the mapping \(f_t \circ \pi(t): M(t) \setminus \cup_j E_j(t) \rightarrow \mathbb{P}^{n-1} \) extends as holomorphic mapping \(\hat{f}_t: M(t) \rightarrow \mathbb{P}^{n-1} \) if \(|t| < \epsilon \). This follows from the fact that \(dF_0(t)(p_j(t)) \wedge dF_1(t)(p_j(t)) \wedge \ldots \wedge dF_{n-1}(t)(p_j(t)) \neq 0 \), \(1 \leq j \leq n^n \), if \(|t| < \epsilon \).

The mapping \(f_t \) can be interpreted as follows. Each fiber of \(f_t \) meets \(p_j(t) \) once, which implies that each fiber of \(\hat{f}_t \) cuts \(E_1(t) \) only one time. Since \(M(t) \setminus \cup_j E_j(t) \) is biholomorphic to \(\mathbb{P}^n \setminus I(t) \), after identifying \(E_1(t) \) with \(\mathbb{P}^{n-1} \), we can imagine that if \(q \in M(t) \setminus \cup_j E_j(t) \) then \(\hat{f}_t(q) \) is the intersection point of the fiber \(\hat{f}_t^{-1}(\hat{f}_t(q)) \) with \(E_1(t) \).

We obtain a mapping

\[
\hat{f}_t: M(t) \rightarrow \mathbb{P}^{n-1}.
\]

With all these ingredients we can define the foliation \(\hat{F}_t = f_t^* (\hat{G}_t) \in \mathbb{P} \Theta(2, n) \).

This foliation is a deformation of \(G_0 \). Based on the previous discussion let us denote \(F_1(t) = \pi(t)^*(\mathcal{F}_t) \) and \(\hat{F}_1(t) = \pi(t)^*(\hat{G}_t) \).

Lemma 5.16. If \(\mathcal{F}_1(t) \) and \(\hat{F}_1(t) \) are the foliations defined previously, we have that

\[
\mathcal{F}_1(t)|_{E_1(t) \cap \mathbb{P}^{n-1}} = \hat{G}_t = \hat{F}_1(t)|_{E_1(t) \cap \mathbb{P}^{n-1}}
\]

where \(\hat{G}_t \) is the foliation induced on \(E_1(t) \) by the homogeneous \((n-2)\)-form \(\Omega_{p_1(t)} \).

Proof. In a neighborhood of \(p_1(t) \in I(t) \), \(\mathcal{F}_t \) is represented by the homogeneous \((n-2)\)-form \(\Omega_{p_1(t)} \). This \((n-2)\)-form satisfies \(\iota_{R(t)} \Omega_{p_1(t)} = 0 \) and therefore naturally defines a foliation on \(\mathbb{P}^{n-1} \). This proves the first equality. The second equality follows from the geometrical interpretation of the mapping \(\hat{f}_t: M(t) \rightarrow \mathbb{P}^{n-1} \), since \(\hat{F}_1(t) = f_t^*(\hat{G}_t) \). \(\square \)

Let \(q_1(t) \) be a singularity of \(\hat{G}_t \). Since the map \(t \rightarrow q_1(t) \in \mathbb{P}^{n-1} \) is holomorphic, there exists a holomorphic family of automorphisms of \(\mathbb{P}^{n-1}, t \rightarrow H(t) \) such that \(q_1(t) = [0: \ldots : 1] \in E_1(t) \) is kept fixed. Observe that such a singularity has \((n-1)\) non algebraic separatrices at this point. Fix a local analytic coordinate system \((U_t = u_0(t), \ldots, u_n(t))\) at \(q_1(t) \) such that the local separatrices are tangents to \(u_i(t) = 0 \) for each \(i \). Observe that the local smooth hypersurfaces along \(\hat{V}_{q_1(t)} = \hat{f}_t^{-1}(q_1(t)) \) defined by \(\hat{U}_i(t) := (u_i(t) \circ \hat{f}_t = 0) \) are invariant for \(\hat{F}_1(t) \). Furthermore, they meet transversely along \(\hat{V}_{q_1(t)} \). On the other hand, \(\hat{V}_{q_1(t)} \) is also contained in the Kupka set of \(\mathcal{F}_1(t) \). Therefore there are \((n-1)\) local smooth hypersurfaces \(U_i(t) := (u_i(t) \circ \hat{f}_t = 0) \) invariant for \(\mathcal{F}_1(t) \) such that:

1. All the \(U_i(t) \) meet transversely along \(\hat{V}_{q_1(t)} \).
2. \(U_i(t) \cap \pi(t)^{-1}(p_1(t)) = (U_i(t) = 0) = \hat{U}_i(t) \cap \pi(t)^{-1}(p_1(t)) \) (because \(\mathcal{F}_1(t) \) and \(\hat{F}_1(t) \) coincide on \(E_1(t) \simeq \mathbb{P}^{n-1} \)).
3. Each \(U_i(t) \) is a deformation of \(U_i(0) = \hat{U}_i(0) \).
We have proved that the foliations F_U contains a small neighborhood \tilde{E} that is, F_U algebraic surface must have that \hat{I}.

Consider the following properties:

- $d \geq 2$
- Theorem B.
- In the conditions above, if properties P_1, P_2, P_3 and P_4 hold then F_i is a pull back foliation, $F = f^*(G)$, where G is a 1-dimensional foliation of degree $d \geq 2$ on \mathbb{P}^{n-1}.

Proof. Let us consider the projection $\hat{f}_i : M(t) \to \mathbb{P}^{n-1}$ on a neighborhood of the regular fibre $\tilde{V}_{\nu(t)}$, and fix local coordinates $(\tilde{U}_t = u_0(t), \ldots, u_{n-1}(t))$ on \mathbb{P}^{n-1} such that $U_1(t) := (u_1(t) \circ \hat{f}_t = 0)$. For small ϵ, let $H_\epsilon = (u_1(t) \circ \hat{f}_t = \epsilon)$. Thus $\Sigma_\epsilon = \tilde{U}_0(t) \cap H_\epsilon$ are (vertical) compact curves, deformations of $\Sigma_0 = \tilde{V}_{\nu(t)}$. Set $\Sigma_\epsilon = U_0(t) \cap H_\epsilon$. The Σ_ϵ's, as the $\tilde{\Sigma}_\epsilon$'s, are compact curves (for t and ϵ small), since $U_0(t)$ and $\tilde{U}_0(t)$ are both deformations of the same U_0. Thus for small t, $U_0(t)$ is close to $\tilde{U}_0(t)$. It follows that $\hat{f}_t(\Sigma_\epsilon)$ is an analytic curve contained in a small neighborhood \tilde{U}_t of $q_1(t)$, for small ϵ. By the maximum principle, we must have that $\hat{f}_t(\Sigma_\epsilon)$ is a point, so that $\hat{f}_t(U_0(t)) = \hat{f}_t(\cup_\epsilon \Sigma_\epsilon)$ is a curve $C \subset \tilde{U}_t$, that is, $U_0(t) = \hat{f}_t(C)$. But $U_0(t)$ and $\tilde{U}_0(t)$ intersect the exceptional divisor $E_1(t) \simeq \mathbb{P}^{n-1}$ along the separatrix $(u_0(t) = 0)$ of G_t through $q_1(t)$. This implies that $U_0(t) = \hat{f}_t^{-1}(C) = \hat{f}_t^{-1}(u_0(t) = 0) = \tilde{U}_0(t)$.

We have proved that the foliations F_i and \tilde{F}_i have a common local leaf: the leaf that contains $\pi(t)\left(\tilde{U}_0(t)\backslash \tilde{V}_{\nu(t)}\right)$ which is not algebraic. Let $D(t) := Tang(F_i, \tilde{F}_i)$ be the set of tangencies between $F(t)$ and $\tilde{F}(t)$. This set can be defined by $D(t) = \{Z \in \mathbb{C}^{n+1}; \Omega(t) \wedge \Omega(t) = 0\}$, where $\Omega(t)$ and $\Omega(t)$ define $F(t)$ and $\tilde{F}(t)$, respectively. Hence it is an algebraic set. Since this set contains an immersed non-algebraic surface $U_0(t)$, we necessarily have that $D(t) = \mathbb{P}^n$. It follows that $\tilde{F}_i = F_i$.

Recall from Definition 5.12 the concept of a generic map. Let $f \in RM((n, n-1, \nu)$, $I(f)$ its indeterminacy locus and F a foliation by complex surfaces on \mathbb{P}^n, $n \geq 4$. Consider the following properties:

- P_1 : Any point $p_j \in I(f)$ F has the following local structure: there exists an analytic coordinate system (U^p_j, x^p_j) around p_j such that $x^p_j(p_j) = 0 \in (\mathbb{C}^n, 0)$ and $F|_{U^p_j} = x^p_j$ can be represented by a homogeneous $(n-2)$-form Ω_{p_j} (as described in the Lemma 5.11) such that
 - (a) $Sing(\mathcal{Z}_{p_j}) = 0$, where \mathcal{Z}_{p_j} is the rotational of Ω_{p_j}.
 - (b) 0 is a n.g.K singularity of the type $(1, \ldots, 1, n)$

- P_2 : There exists a fibre $f^{-1}(q) = V(q)$ such that $V(q) = f^{-1}(q)\backslash I(f)$ is contained in the Kupka-Set of F.

- P_3 : $V(q)$ has transversal type Q, where Q is a germ of vector field on $(\mathbb{C}_{n-1}, 0)$ with at least a non algebraic separatrix and such that the Camacho-Sad index of G with respect to this separatrix is non-real.

- P_4 : F has no algebraic hypersurface.

Lemma 5.17 allows us to prove the following result:

Theorem B. In the conditions above, if properties P_1, P_2, P_3 and P_4 hold then F is a pull back foliation, $F = f^*(G)$, where G is a 1-dimensional foliation of degree $d \geq 2$ on \mathbb{P}^{n-1}.

Choosing $i = 0$ we shall prove that $U_0(t) = \tilde{U}_0(t)$ for small t. For our analysis this will be sufficient to finish the proof of Theorem A.
Note that the situation \(n = 3 \) is proved in [4, Th. B p. 709]. So we can think this result as \(n \geq 4 \)-dimensional generalization of [4] for bi-dimensional foliations in \(\mathbb{P}^n \).

References

[1] C. Camacho, A. Lins Neto. “The topology of integrable differential forms near a singularity”; Inst. Hautes Études Sci. Publ. Math. 55 (1982) 5-35.
[2] D. Cerveau, J. Déserti. “Feuilletages et actions de groupes sur les espaces projectifs”; Mém. Soc. Math. Fr. 103, 2005.
[3] D. Cerveau, A. Lins-Neto. “Irreducible components of the space of holomorphic foliations of degree two in \(\mathbb{P}^n \)”; Annals of Mathematics 143, no.2 (1996) 577-612.
[4] D. Cerveau, A. Lins-Neto, S.J. Edixhoven. “Pull-back components of the space of holomorphic foliations on \(\mathbb{C}P^n \), \(n \geq 3 \)”; J. Algebraic Geom. 10, no. 4 (2001) 695-711.
[4] F. Cukierman, J. V. Pereira. “Stability of holomorphic foliations with split tangent sheaf”; Amer. J. Math. 130, (2008) 413-439.
[5] F. Cukierman, J. V. Pereira, I. Vainsencher. “Stability of foliations induced by rational maps”; Ann. Fac. Sci. Toulouse Math. Vol. 18, Issue 4 (2009) 685-715.
[6] W. Costa e Silva, “Branched pull-back components of the space of holomorphic foliations on \(\mathbb{C}P^n \)”; Submitted
[7] W. Costa e Silva, “Stability of branched pull-back projective foliations”; Submitted
[8] Morris W. Hirsch. “Differential Topology”; Springer-Verlag, New York, (1976). Graduate Texts in Mathematics, No. 33.
[9] I. Kupka; “The singularities of integrable structurally stable Pfaffian forms”; Proc. Nat. Acad. Sci. U.S.A., 52 no.6 (1964) 1431-1432.
[10] J.-P. Jouanolou; “Équations de Pfaff algébriques”; Lecture Notes in Mathematics 708 (1979).
[11] A. Lins Neto; “Componentes Irreduzíveis dos Espaços de Folheações”; 26 Colóquio Brasileiro de Matemática, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, (2007).
[12] A. Lins Neto, “Finite determinacy of germs of integrable 1-forms in dimension 3 (a special case)”; Geometric Dynamics, Springer Lect. Notes in Math. 1007 no. 6 (1981) 480-497.
[13] A. Lins Neto. “Algebraic solutions of polynomial differential equations and foliations in dimension two”; Holomorphic Dynam., Springer Lect. Notes in Math. 1345 (1988) 192-232.
[14] A. Lins Neto. “Germes de complex 2-dimensional foliations”; http://preprint.impa.br/visualizar?id=6119
[15] A. Lins Neto, B.A. Scárdua. “Folheações Algébricas Complexas”; 21ºColóquio Brasileiro de Matemática, IMPA (1997).
[16] A. Lins Neto, M.G. Soares. “Algebraic solutions of one-dimensional foliations”; J. Differential Geom. 43, no.3 (1996) 652-673.
[17] F. Loray, J.Pereira, F. Touzet “Foliations with trivial canonical bundle on Fano 3-folds.”; Mathematische Nachrichten (6) 9 (2013), Volume 286, Issue 8-9, 921-940.
[18] A. de Medeiros “Singular foliations and differential p-forms”; Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no.3, 451-466.
[19] E.Sernesi. “Deformations of Algebraic Schemes”; Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 334. Springer-Verlag, 2006.

IRMAR, UNIVERSITÉ RENNES 1, CAMPUS DE BEAULIEU, 35042 RENNES CEDEX FRANCE
Current address: IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex France
E-mail address: wancossil@gmail.com