Broad-complex Z3 contributes to the ecdysone-mediated transcriptional regulation of the vitellogenin gene in Bombus lantschouensis

Congai Zhen, Huipeng Yang, Shudong Luo, Jiaxing Huang*, Jie Wu*

Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China

* apis@vip.sina.com (JW); huangjiaxing@caas.cn (JH)

Abstract

During reproduction, vitellogenin (Vg), as an egg yolk precursor, is critical in sexually mature females of oviparous species including some insects. The transcription of Vg is usually mediated by hormones such as juvenile hormone (JH), ecdysteroids and some neuropeptides. In this study, the structure of the Vg gene from the bumblebee Bombus lantschouensis, (BlVg) was determined by sequencing and assembly. BlVg was found to be expressed at higher levels in reproductive queens than in virgins by quantitative real-time PCR analysis. Tissue-specific expression analysis showed that BlVg was expressed at the highest levels in the fat bodies of both virgin and reproductive queens. Prediction of the BlVg promoter revealed the presence of ecdysteroid-responsive cis-regulatory elements (CREs) containing one Broad-Complex zinc-finger isoform 3 (BR-C Z3), and one ecdysone-induced protein 74A (E74A). In addition, luciferase reporter expression, driven by the 5' -regulatory region of the BlVg gene, from −1517 bp to +895 bp downstream of the start codon, was induced by treatment with 20-hydroxyecdysone (20-E). Moreover, the luciferase activity of the BlVg promoter was elevated by only BlBrC-Z3 when Sf9 cells were cotransfected with four BlBrC isoforms respectively. BlVg promoter-mediated luciferase activation was significantly reduced when the putative BrC-Z3 CRE in the promoter was mutated. In summary, this report describes the first study of vitellogenin gene regulation at the transcriptional level in bumblebees and demonstrates that the ecdysone-induced transcription of the BlVg gene is mediated by the binding of BlBrC-Z3 to the BrC-Z3 CRE in the BlVg promoter in bumblebees.

Introduction

Insect vitellogenin (Vg), a large phosphoglycolipoprotein, is the major yolk protein precursor synthesized mainly by the fat body in sexually mature females [1, 2]. Because of its association with fecundity and reproduction, Vg has been extensively studied in many insects, including Hymenoptera. In addition to its traditional role as a vitellin precursor in reproduction, Vg is
also known to involve in the development of honeybees, such as social behavior/organization [3–6], aging [7–10], and protection from various stress [11, 12]. As pollinator, bumblebees are important for agriculture and ecological systems. Meanwhile, Vg plays a crucial role in insect reproduction. Hence, it is necessary to decipher the transcriptional profiles and regulation mechanism of the Vg gene in Bombus lantschouensis.

Lockett et al. summarized the transcriptional expression patterns of hymenopterous Vg for various ages, castes and reproductive statuses [13]. The expression profiles of Vg were elucidated in some bumblebee species, including Bombus terrestris [14], Bombus ignitus [15, 16], and Bombus hypocrita [17]. For the queens and workers of B. ignitus and B. hypocrita, the expression of Vg was higher in adults than in pupae [15, 17]. Transcripts of Vg were also detected in drone pupae and adults [16, 17]. In conclusion, the mRNA levels of Vg were distinct in bumblebees of different castes, especially under different reproductive stages.

Transcriptional regulation of the Vg gene is regulated by hormones, including juvenile hormone (JH), ecdysteroids and some neuropeptides [2, 18]. In hymenopterans, a high JH titer and abdominal activation of JH signaling may induce neotenic reproduction in Reticulitermes speratus [19]. JH was shown to increase Vg synthesis in reproductive bumblebee females by simultaneously monitoring the transcripts of methylfarnesoateepoxide (MFE) and Vg [14]. There was also some evidence for the role of JH in reproduction, determined via manipulation of JH signaling by JH-I treatment [20] or treatment with allatostatin precocene-I [21], and a combination of allatectomy and JH-III replacement therapy, and the dependence of the ovarian development and Vg expression on JH [22]. In contrast, in some cases, Vg was uncoupled from or even negatively correlated with JH levels in Bombus species [23].

Vitellogenin transcription is hormonally regulated by transcription factors interacting with the upstream regulatory region of the Vg gene. Binding sites for multiple ecdysone-related transcription factors, such as the ecdysteroid receptor complex (EcR-USP), and the 20E early-response genes Broad-Complex (BrC), E74 and E75, were detected in the upstream region of the mosquito Aedes aegypti Vg.

BrC, as a critical member of the early ecdysone genes, is a kind of DNA-binding protein with N-terminal Bric-a-brac-Tramtrack-Broad (BTB) domains and C2H2-type zinc-finger. Four or more alternatively spliced isoforms of BrC (Z1–Z4, Z1–Z6) were identified in the tobacco hornworm Manduca sexta [24], honeybee Apis mellifera L. [25], German cockroach Blattella germanica [26], yellow-spotted longicorn beetle Psacothea hilaris [27], and silkworm Bombyx mori [28, 29]. In the mosquito A. aegypti, BrC Z1 and Z4 served as repressors, inhibiting the 20E-mediated activation of the Vg promoter via the ecdysone receptor (EcR-USP), while Z2 enhanced this activation [30, 31]. In the silkworm B. mori, BmBrC-Z2 was shown to regulate ecdysone-mediated BmVg transcription by directly binding to the cis-response elements (CREs) on the BmVg promoter [32]. Moreover, the POU homeodomain transcription factor BmPOUM2 was also found to regulate BmVg expression by collaboratively interacting with only BmBrC-Z2 [33].

To date, little is known about the regulation of Vg transcription in bumblebees. In this paper, we describe the gene structure, expression pattern and transcriptional regulation of the Vg gene from the bumblebee B. lantschouensis (BlVg). The mRNA expression patterns of BlVg were elucidated for various tissues and reproductive stages of the queen. The mechanism by which the transcriptional factor BlBrC-Z3 is involved in the transcriptional regulation of BlVg under 20E was elucidated using luciferase reporter expression.
Materials and methods

Samples

B. lantschouensis bumblebees were reared with sugar syrup (50:50, v:v) and pollen pellets under standard conditions (29 ± 0.5°C temperature; 55 ± 5% relative humidity; continuous darkness) in the laboratory at the Institute of Apicultural Research, Chinese Academy of Agricultural Sciences.

Various tissues (head, flight muscle, fat body, ovary) were dissected from virgin and reproductive queens respectively, frozen in liquid nitrogen, and then stored at -80°C until RNA isolation.

Isolation of genomic DNA and total RNA

Genomic DNA was extracted with the Wizard Genomic DNA Purification Kit (Promega, USA). Total RNA was prepared using TRIzol reagent (Invitrogen, USA) according to the manufacturer’s instructions. The quality and concentration of the DNA and RNA extracts were assessed with gel electrophoresis and a Micro-Volume UV-VIS spectrophotometer (NanoDrop-2000, USA). First-strand cDNA was synthesized using PrimeScript RT Reagent Kit with gDNA Eraser (Takara, China). The cDNA was stored at -20°C until further use.

Cloning of putative *BlVg* and *BlBrC* isoforms

PCR amplification was carried out using cDNA and genomic DNA as templates. Primers used for amplification of the putative *BlVg* and *BlBrC* isoforms (Z1–Z4) were designed based on the *Vg* sequence of *B. hypocrita* (GenBank accession no. GQ340749) and the BrC isoform mRNA sequence of *B. terrestris* (GenBank accession no. NM_001280921) (Table 1). The PCR conditions were as follows: 94°C for 2 min; 30 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 2 min; and a final extension period of 72°C for 10 min. The PCR product was subcloned into a pEASY-blunt cloning vector (TransGen Biotech, China) and sequenced with a 3730XL sequencer (ABI, USA).

Bioinformatics analysis

Conserved domains were predicted by search the NCBI Conserved Domain Database [34]. The gene structure was displayed with GSDS (version 2.0) [35]. The potential transcription factor binding sites in the *BlVg* gene promoter were predicted by the MatInspector program (http://www.genomatix.de/). A phylogenetic tree based on the deduced amino acid sequences was constructed using Mega 7.0 software with the neighbor-joining method [36]. The reliability of branching was tested using bootstrap resampling with 1000 pseudoreplicates.

Real-time quantitative PCR

The qRT-PCR data was normalized to the levels of the reference gene β-actin, and the amplification was performed on an Mx3000p qPCR system (Stratagene, Agilent, USA) with the SYBR Premix Ex Taq II kit (Takara, China) in a total volume of 20 μl. The thermocycling program was as follows: 95°C for 30 s, followed by 40 amplification cycles of 95°C for 5 s and 65°C for 30 s and a melting cycle from 65°C to 95°C. All biological samples were technically repeated in triplicate. Analysis of the qRT-PCR data was carried out using the 2^−ΔΔCt method of relative quantification [37]. The primers used are shown in Table 1.
Cloning and plasmid construction of the 5'-flanking region of the BlVg gene

The 5'-flanking region of the BlVg gene was obtained using the Genome Walking Kit (Takara, China) with bumblebee genomic DNA as the template. Different lengths of the upstream regulatory region were amplified by PCR (with primers containing NheI and HindIII restriction sites) and cloned into the pGL4.11 [luc2P] vector (Promega, USA) for sequencing. The recombinant vectors were designated pGL4-Vg2.4K Luc, pGL4-Vg2.3K Luc, pGL4-Vg1.9K Luc, pGL4-Vg1.4K Luc, pGL4-Vg1K Luc, and pGL4-Vg0.9K Luc. All the plasmids were verified by automated sequencing analysis.

To analyze the functionality of the putative BrC-Z3 element within the BlVg promoter, specific mutations were introduced into pGL4-Vg1.9K Luc using overlap PCR. The core site of BrC-Z3 CRE, namely, “AAAC”, was changed to “GGGT”. The mutagenesis primers are shown in Table 1.

The open reading frames (ORFs) of BlBrC-Z (1–4) were amplified with whole body cDNA from an adult queen and cloned into the pBmFlag stable expression vector (stored in our

Table 1. Primers used in this study. Restriction enzyme sites are shown in red color and underlined.

Primer name	5'-3' sequence	Target	Amplicon (bp)
Vg-1-FP	TGATGTCCACGGGTTCACAC	BlVg CDS/ gene	1466/3110
Vg-1-RP	GTCTTGGTCTGGATTTTCCAG	BlVg CDS/ gene	1530/1860
Vg-2-FP	TCGATAAAGCAGTAGCTCTC	BlVg CDS/ gene	1270/1270
Vg-2-RP	AGCTCATTCTTTCCTGAAATC	BlVg CDS/ gene	1301/1931
Vg-3-FP	GACGCGAAGAATCCTAAAGAC	BlVg promoter	2418
Vg-3-RP	CGACCTTAAGATCGAGTAAC	BlVg promoter	2297
Vg-4-FP	TCCAACTCGGAGATCTTGCT	BlVg promoter	1899
Vg-4-RP	TTAGGCCCTTGAGCAAGGAG	BlVg promoter	1371
Pro-first-RP	AGGTATTCTCAGATTTGATGAC	BlVg promoter	1008
Pro-second-RP	TAGAACCTGAAATTTCAATTTCGAG	BlVg promoter	919
Pro-third-RP	AGAGATCTGAGAATGAAGATGAG	BlVg promoter	2418
Pro-Fp-1	CGGCTAGCAATATTACGAGTCAAGT	BlVg promoter	2418
Pro-Fp-2	CGGCTAGCAATATTACGAGTCAAGT	BlVg promoter	2297
Pro-Fp-3	CGGCTAGCAATATTACGAGTCAAGT	BlVg promoter	1899
Pro-Fp-4	CGGCTAGCAATATTACGAGTCAAGT	BlVg promoter	1371
Pro-Fp-5	CTGACTACGGAGATCTTGCT	BlVg promoter	1008
Pro-Fp-6	CTGACTACGGAGATCTTGCT	BlVg promoter	919
Pro-rp	CCCAAGCTTATTTACGACCGTGTC	BlVg promoter	2418
Pro-mut-FP	TGCCCTGATTTTAAAGATCATCGAGTGAATAGT	BrC-Z3 CRE mutation	2297
Pro-mut-RP	GTGAATCTTAAAACTACAGGGGACAGTACATCTAC	BrC-Z3 CRE mutation	1899
VgS	GAAGAATCATGCGACAGATG	BlVg qPCR	109
VgAS	GATGCTGACATGGTTTTGTTTGT	Reference gene qPCR	104
β-actin-S	CCCGAGAAAGAATACTATGCT	Protein expression	1491
β-actin-AS	GGTCCAGACATGCTGCTAATC	Protein expression	1293
BIBRC-Z-FP	CTCGTAGAGTAGGGGTTGAGCCACACAT	Protein expression	1257
BIBRC-Z1-RP	GGGTTAGGATTTGAGAGAATTTTACGATG	Protein expression	1239
BIBRC-Z2-RP	GGGTACCTTATTTAATACATTACATCGAGT	Protein expression	1257
BIBRC-Z3-RP	GGGTACCTTATTTAATACATTACATCGAGT	Protein expression	1239
BIBRC-Z4-RP	GGGTACCTTATTTAATACATTACATCGAGT	Protein expression	1239

https://doi.org/10.1371/journal.pone.0207275.t001
laboratory; detailed information available in reference [38] with XhoI and KpnI sites for gene overexpression. The primers for the BlVg promoter, and BlBrC-Z (1–4) are shown in Table 1.

Cell culture, transfection, and dual-luciferase assay

Spodoptera frugiperda 9 (Sf9) cell line was plated in 25-cm² T-flasks (Corning) and maintained with TC-100 medium (Gibco) containing 10% heat-inactivated fetal bovine serum (FBS; Gibco) and streptomycin-penicillin solution (100 IU/mL penicillin and 100 mg/mL streptomycin, Amresco) at 27°C.

For transfection, cells were seeded in 96-well cell culture plates and transfected with pGL4-Vg Luc reporter and pRL-TK expression vector (the ratio of the two vectors (w/w) was 10:1) using X-treme GENE HP DNA Transfection Reagent (Roche, USA) following the manufacturer’s instructions. For cotransfection of the BlBrC-Z protein (1–4), the ratio (w/w) of the reporter vector with the BlVg promoter, pBmFlag-BIBRC-Z (1–4) and the pRL-TK expression vector was 10:10:1. At 6 h after transfection, the culture medium was replaced with fresh medium containing FBS. After 24 h of transfection, the cells were treated with 0.2 μg/ml 20-hydroxyecdysone (20E) (Sigma, USA) or JH-III, which were dissolved in dimethyl sulfoxide (DMSO) at a stock concentration of 1 mg/ml and stored at -20°C. Controls were treated with 0.1% DMSO only. Cells were cultured for an additional 24 h and then lysed to detect luciferase activity with the Dual-Luciferase Reporter Assay Kit (Promega, USA) using a GloMax 20/20 Luminometer (Promega, USA) according to the manufacturer’s instructions. All assays were performed in triplicate.

Western blotting

The cells transfected with the pBmFlag-BIBRC-Z (1–4) plasmid for 48 h were then lysed with RAPI buffer (Beyotime, China) containing one tablet of complete protease inhibitor (Roche, USA) per 100 ml at 4°C on a rocker for 30 min and then scraped. The recombinant proteins were electrophoresed on a 12% SDS-polyacrylamide gel, and then electrotransferred onto a PVDF membrane. After being washed for 5 min in PBST (pH 7.4), the membrane was blocked with blocking solution (5% skim milk, 17 ml of PBST) overnight at 4°C. Subsequently, the membrane was incubated with anti-Flag mouse monoclonal antibodies which were diluted 1:2000 with blocking solution at 37°C. After washing three times with PBST (pH 7.4), the membrane was incubated in horseradish peroxidase (HRP) conjugated goat anti-mouse IgG secondary antibodies diluted 1:2000 with blocking solution at 37°C for 2 h. Finally, the membrane was washed three times with PBST, and the bands were detected by the DAB Horseradish Peroxidase Color Development Kit (Solarbio) according to the manufacturer’s instructions.

Statistical analysis

The results were plotted using the Prism graphing program (GraphPad software, version 5.0, USA). The bars represent the mean ± SEM. The results were evaluated by one-way ANOVA with Tukey’s multiple comparison posthoc test (P < 0.05).

Results

Molecular characterization and phylogenetic analysis of the *B. lantschouensis* vitellogenin gene

The full length ORF of Vg was amplified using RT-PCR with specific primers. The *B. lantschouensis* vitellogenin cDNA (GenBank accession no. MF632303) contained 5319 bp
nucleotides, encoding a 1772-amino-acids protein with a theoretical isoelectric point (pI) of 6.21 and a calculated molecular weight (MW) of 201.5 kDa. The BlVg gene (GenBank accession no. MF632304) comprised seven exons and six introns, with a length of 7927 bp nucleotides (Fig 1A). The intron/exon rule (5'-donor GT...3'-acceptor AG) was conserved in the BlVg gene. The characteristic vitellogenin motifs are also shown in Fig 1A.

The similarity of BlVg with other hymenopteran Vg proteins is shown in S1 Table. The percentage of similarity ranged from 31 to 99%. The highest identity shared with B. hypocrita (99%), while the lowest similarity was observed with Camponotus floridanus Vg (31%).

Phylogenetic tree construction revealed that Vgs are evolutionarily conserved in Hymenoptera. In Apidae family, it is divided into two branches: honeybees and bumblebees, respectively. For the Bombus group, the BlVg protein is most closely related to B. hypocrita Vg, with which this protein formed a clade (Fig 1B).

Expression profiles of BlVg
To explore the spatial expression patterns of BlVg transcripts, various tissues, including head, flight muscle, fat body, and ovarian tissue, of B. lantschouensis queens were analyzed under different reproductive statuses (virgin vs reproductive). BlVg transcripts were expressed in all the tissues tested (Fig 2). As expected, the highest expression of BlVg transcripts was observed in the fat bodies (383.9-fold for virgin and 3357.07-fold for reproductive queens), followed by flight muscle, head, and ovaries (Fig 2). Additionally, reproductive queens exhibited a significantly higher level than virgins in each tissue (Fig 2).

Regulation of BlVg by 20E and JH-III
To investigate the mechanism underlying the regulation of BlVg transcription, the 5'-upstream sequence of the BlVg gene from −1517 bp upstream of the translation start codon ATG to +895 bp of the BlVg intron (GenBank accession no. MF632305) was isolated using Genome Walking, and then analyzed using MatInspector software (http://www.genomatix.de/).

There were 89 CREs for transcription factor binding predicted on the BlVg promoter (S2 Table). For instance, the TATA box consensus sequence (ATAAA) was in close proximity upstream of the ATG translation start codon between −61 and −57. A conserved element (TTACTT) conforming to the arthropod promoter initiator (Inr) consensus sequence YYANTY was also located between −28 and −32 upstream of the ATG translation start codon. In the Inr conserved sequence, adenine is thought to be the transcription start site. Two CREs associated with ecdysone early-response genes were predicted to be DBRC-Z3 and DE74, respectively.

To determine whether activation of the BlVg promoter was enhanced by ecdysone or JH-III, a luciferase assay of promoter with different lengths was conducted in transfected Sf9 cells. The promoter activity of distal 2.4 Kb, 2.3 Kb, and 1.9 Kb fragments, which contained the two putative ecdysone-related binding sites (DBRC-Z3 and DE74), was significantly enhanced by the addition of 20E but not JH-III (Fig 3). The promoter activity of the 1.4 Kb fragment harboring the DBRC-Z3 binding site was also considerably enhanced by only 20E (Fig 3). The promoter activities of both the Vg1.0K-Luc and Vg0.9K-Luc deletion clones, lacking ecdysone-related binding sites, did not change under ecdysone treatment. These results indicated that the regulation of BlVg transcription can be induced by ecdysone.

Transcription factor BlBrC-Z3 enhanced BlVg promoter activity
To determine whether BlBrC-Z3 directly activated the transcription of BlVg, four alternatively spliced BrC isoforms (Z1, Z2, Z3 and Z4) were identified and the CDS domain structures of
Vitellogenin transcription in bumblebee is mediated by Broad-Complex Z3

(A) Gene:

Gene ATG

778 845 121 209 313 324 (bp)

TAA

Domain:

28-750 783-1042 1450-1620 (aa)

Vitellogenin_N DUF1943 VWD

(B)

Bombyx lantschouensis

Bombus hypocrita

Bombus terrestris

Bombus ignitus

Bombus impatiens

Apis mellifera

Apis cerana

Osmia cornifrons

Megachile rotundata

Vespula vulgaris

Encarsia formosa

Pteromalus puparum

Pimpla nipponica

Athalia rosae

Acromyrmex echinatior

Camponotus floridanus

0.1
these isoforms are shown in Fig 4A. BlBR-C proteins have a common core region, including the BTB domain, and one of four isoform-specific C2H2 zinc finger domains (Z1, Z2, Z3, and Z4) generated by alternative splicing.

Luciferase assays were performed using Sf9 cells co-transfected with pGL4-Vg1.9K Luc and pBmFlag-BlBrC isoforms (Z1, Z2, Z3 and Z4). Based on western-blot analysis, the four isoforms BlBrC-Z1, BlBrC-Z2, BlBrC-Z3 and BlBrC-Z4 were successfully expressed in the Sf9 cell

Fig 2. Analysis of relative BlVg expression in different tissues (ovary, fat body, flight muscle, head) of the bumblebee, B. lantschouensis under different reproductive statuses (virgin vs reproductive). The lowercase letters above the error bars show that the expression levels were significantly different (p<0.05) in the same tissue under different reproductive statuses.

https://doi.org/10.1371/journal.pone.0207275.g002
The BlVg promoter activity was markedly increased only upon coexpression with the BlBrC-Z3 isoform (Fig 4C).

The putative conserved sequence of the BrC-Z3 CRE within the BlVg promoter is shown in Fig 5A. To characterize the function of the putative BrC-Z3 CRE on the BlVg promoter, reporter assays were performed in Sf9 cells using the pGL4-Vg1.9K Luc vector with or without mutation. The BlVg promoter activity was strongly enhanced by 20E, while mutation in the BlBrC-Z3 CRE abolished this 20E-mediated activation (Fig 5B).

Discussion

The Vg gene plays a crucial role in embryonic development, serving as the main source of nutrients for oocyte growth and development, and has been identified in many insects [1]. In this study, the genomic structure of the Vg from Bl. lantschouensis was identified and characterized. Analysis using the NCBI Conserved Domain Database showed that BlVg contained all the
typical vitellogenin domains, including Vitellogenin_N, DUF1943, and VWD at the C-terminus (Fig 1A). There was little amino acid difference between the protein from *B. lantschouensis* and those from other *Bombus* species (e.g. *B. ignitus*, *B. hypocrita*, and *B. terrestris*), which was consistent with the phylogenetic analysis (Fig 1B).

Vitellogenin is predominantly expressed in the fat bodies of insects [39] and mainly serves as storage for yolk protein. The fat body is considered as the main location of Vg synthesis [40]. The tissue expression profiles of *BlVg*, with ubiquitous expression observed in virtually all tissues and strongest expression observed in the abdominal fat bodies, were similar to those found in *B. terrestris* [14]. *BlVg* transcripts were found in a variety of tissues, including head and flight muscle, suggesting that these transcripts might have novel functions, such as anti-
Vitellogenin transcription in bumblebee is mediated by Broad-Complex Z3.
inflammatory and antioxidative defense functions, as observed in other honeybee species [41, 42].

The transcriptional regulation of insect Vg is a complex process that is determined by the promoter region, and requires multiple transcription factors. To elucidate the putative molecular mechanism of the transcriptional regulation of BlVg, a 2418-bp 5'-flanking region was isolated and many putative binding sites for transcription factors were predicted. These transcription factors, such as Drosophila heat shock factor (HSF), DE74A, DBrC-Z3, and C/EBP factors, are involved in development and in the response to environmental stress. In addition, numerous homeobox transcription factors, such as the OneCut transcription factor POU, were correlated with tissue segmentation [43].

Many studies have showed that Vg transcription is regulated by various transcription factors. For example, in the mosquito A. aegypti, Vg transcription is regulated by multiple transcription factors including the Forkhead box (Fox), GATA, BrC, E74, and E75 [31, 44–47]. In the silkworm B. mori, transcriptional regulation of BmVg is mediated by the binding of BmBrC-Z2 to the corresponding CRE in the BmVg promoter under the induction of 20E [32]. Lin et al verified that BmPOUM2 interacts with only BmBrC-Z2 to collaboratively regulate BmVg expression [33].

Ecdysone response transcription factors usually include the ecdysone receptor, the EcR/USP complex, and other early-response factors such as E74, E75, and BrC. For instance, the involvement of the EcR/USP complex in the induction of yolk protein genes has been elucidated in mosquito [48]. In addition, the mosquito Vg transcription is also regulated by E74 and E75 [49, 50]. In this study, only two early-response factors CREs E74 and BrC3 were predicted in the BlVg promoter. Interestingly, a putative BR-C was also identified in the promoter of the Apis cerana cerana Vg gene [51]. These predicted results indicated that the transcription of BlVg and AcVg might be regulated by the same transcription factor, namely, BrC.

BrC is an important ecdysone responsive early gene and plays a crucial role in the development and metamorphosis of insects [32]. In the present study, BlBrC isoforms (Z1, Z2, Z3, and Z4) were obtained and expressed successfully in Sf9 cell line. The genomic BlBrC structure was different from that of the protein from A. mellifera L.. The order of the zinc-fingers within the BlBrC gene was Z4, Z3, Z2, and Z1, while in A. mellifera L., the order was Z1, Z4, Z2, and Z3 [25]. The arrangement of zinc-finger domain might be associated with protein function and warrants further study. In the transcriptional regulation of mosquito Vg, BrC-Z2, served as an enhancer, while Z1 and Z4 were repressors [31]. BmBrC-Z2 regulated BmVg transcription under the ecdysone signal [32]. In the present study, the reporter assays indicated that the transcription factor BlBrC-Z3 participates in the regulation of BlVg transcription by directly binding with the BrC-Z3 CRE under the induced ecdysone signal.

Other transcriptional factors could also be involved in transcriptional regulation of Vg. For instance, in the shrimp Metapenaeus ensis, Hsc70 acts as a molecular chaperone to negatively regulate MeVg2 gene expression by binding to the HSF-response element of the MeVg2 promoter [53].

These findings suggest that the transcriptional regulation of Vg is complex, and may be influenced by BrC, E74, the homeodomain and/or GATA transcription factors. Hence, the roles of the homeodomain and other transcription factors in the transcriptional regulation of BlVg needs to be further determined.
Conclusion
In this study, we reported the molecular cloning and characterization of the Vg gene of the bumblebee *B. lantschouensis*. The *BlVg* genomic structure contained seven exons and six introns with a length of 7927 bp nucleotides. *BlVg* possessed all the typical vitellogenin domains, including Vitellogenin N, DUF1943, and VWD at the C-terminus. The *BlVg* transcript levels were higher in the fat bodies of queens than in other tissues, which was consistent with the results for other known bumblebee Vgs. Isoforms of the transcription factor *BlBrC* (Z1, Z2, Z3, and Z4) were obtained and expressed successfully in *Sf9* cell line. In addition, *BlVg* transcription was seen to be regulated by *BlBrC-Z3* via binding to the *BlBrC-Z3* response element within the *BlVg* promoter under 20E induction.

Supporting information
S1 Table. Sequence alignment of *BlVg* with other hymenopteran Vg amino acid sequences.
(DOCX)

S2 Table. Predicted response elements of the *BlVg* promoter. The A of the *BlVg* start codon (ATG) is at the +1 position.
(DOCX)

Acknowledgments
We are grateful to Fen Li for providing the pGL4.11 [luc2P] vector.

Author Contributions
Conceptualization: Congai Zhen.
Data curation: Congai Zhen.
Formal analysis: Huipeng Yang, Shudong Luo.
Funding acquisition: Jie Wu.
Resources: Huipeng Yang, Shudong Luo, Jiaxing Huang, Jie Wu.
Supervision: Jiaxing Huang, Jie Wu.
Validation: Congai Zhen.
Visualization: Congai Zhen.
Writing – original draft: Congai Zhen.
Writing – review & editing: Huipeng Yang, Shudong Luo, Jiaxing Huang, Jie Wu.

References
1. Tufail M, Takeda M. Molecular characteristics of insect vitellogenins. J. Insect Physiol. 2008; 54: 1447–1458. https://doi.org/10.1016/j.jinsphys.2008.08.007 PMID: 18789336
2. Tufail M, Nagaba Y, Elgendy AM, Takeda M. Regulation of vitellogenin genes in insects. Entomol. Sci. 2014; 17: 269–282. https://doi.org/10.1111/ens.12086
3. Guidugli KR, Nascimento AM, Amdam GV, Barchuk AR, Omholt S, Paulino Simões ZL, et al. Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett. 2005; 579: 4961–4965. https://doi.org/10.1016/j.febslet.2005.07.085 PMID: 16122739
4. Marco Antonio DS, Guidugli-Lazzarini KR, do Nascimento AM, Paulino Simões ZL, Hartfelder K. RNAi-mediated silencing of vitellogenin gene function turns honeybee (*Apis mellifera*) workers into extremely
Amsalem E, Malka O, Grozinger C, Hefetz A. Exploring the role of juvenile hormone and vitellogenin in bumblebee workers. J. Insect Physiol. 1977; 23, 985–992.

Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV. The gene vitellogenin has multiple coordinating effects on social organization. Plos Biol. 2007; 5: 673–677. 10.1371/journal.pbio.0050062 PMID: 17341131

Nunes FMF, Ihle KE, Mutti NS, Paulino Simões ZL, Amdam GV. The gene vitellogenin affects micro-RNA regulation in honey bee (Apis mellifera) fat body and brain. J. Exp. Biol. 2013; 216: 3724–3732. 10.1242/jeb.089243 PMID: 23788711

Salmela H, Stark T, Stucki D, Fuchs S, Freitak D, Dey A, et al. Ancient duplications have led to functional divergence of vitellogenin-like genes potentially involved in inflammation and oxidative stress in honey bees. Genome Biol. Evol. 2016; 8: 495–506. 10.1093/gbe/evw122

Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. U S A. 2007; 104: 7128–7133. 10.1073/pnas.0701909104 PMID: 17438290

Ihle KE, Fondrk MK, Page RE, Amdam GV. Genotype effect on lifespan following vitellogenin knockdown. Exp. Gerontol. 2015; 61: 113–122. 10.1016/j.exger.2014.12.007 PMID: 25497555

Amdam GV, Aase A, Seehuus SC, Norberg K, Hartfelder K. Social reversal of immunosenescence in honey bee workers. Exp. Gerontol. 2005; 40: 939–947. 10.1016/j.exger.2005.08.004 PMID: 16169181

Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. U S A. 2006; 103: 962–967. 10.1073/pnas.0502681103 PMID: 16418279

Antunez K, Mendoza Y, Santos E, Invernizzi C. Differential expression of vitellogenin in honey bees (Apis mellifera) with different degrees of Nosema ceranae infection. J. Apicult. Res. 2013; 52.

Lockett GA, Almond EJ, Huggins TJ, Parker JD, Bourke AFG. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp. Gerontol. 2016; 77: 52–61. 10.1016/j.exger.2016.02.007 PMID: 26883339

Jedlička P, Ernst UR, Votavaova A, Hanus R, Valterova I. Gene expression dynamics in major endocrine regulatory pathways along the transition from solitary to social life in a bumblebee, Bombus terrestris. Front. Physiol. 2016; 7:574. 10.3389/fphys.2016.00574 PMID: 27932998

Lee KY, Yoon HJ, Lee SB, Park IG, Sohn HD, Jin BR. Molecular cloning and characterization of a vitellogenin of the bumblebee (Bombus ignitus). Int. J. Indus. Entomol. 2012; 49: 1132–1139.

Li JL, Wu J, Cai WZ, Peng WJ. The expression of the mRNA and cloning for the vitellogenin cDNA in the bumblebee, Bombus ignitus. Chin. J. Appl. Entomol. 2012; 49: 1132–1139.

Li JL, Huang JX, Cai WZ, Zhao ZW, Peng WJ, Wu J. The vitellogenin of the bumble bee, Apis mellifera. J. Comp. Physiol. B. 2010; 180: 161–170. 10.1007/s00360-009-0434-5 PMID: 20012056

Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018; 63, 489–511. 10.1146/annurev-ento-020117-043258 PMID: 29058980

Saiki R, Gotoh H, Toga K, Miura T, Maekawa K. High juvenile hormone titre and abdominal activation of JH signalling may induce reproduction of termite neotenics. Insect Mol. Biol. 2015; 24: 432–441. 10.1111/imb.12169 PMID: 25847681

Röseler PF. Juvenile hormone control of oogenesis in bumblebee workers, Bombus terrestris. J. Insect Physiol. 1977; 23, 985–992.

Amsalem E, Teal P, Grozinger CM, Hefetz A. Precocene-I inhibits juvenile hormone biosynthesis, ovarian activation, aggression and alters steroid profile formation in bumble bee (Bombus terrestris) workers. J. Exp. Biol. 2014; 217: 3178–3185. 10.1242/jeb.072750 PMID: 25013106

Shipigler H, Amsalem E, Huang ZY, Cohen M, Siegel AJ, Hefetz A, et al. Gonadotropic and physiological functions of juvenile hormone in bumblebee (Bombus terrestris) workers. Plos One 2014; 9. 10.1371/journal.pone.0100650 PMID: 24959888

Amsalem E, Malka O, Grozinger C, Hefetz A. Exploring the role of juvenile hormone and vitellogenin in reproduction and social behavior in bumble bees. BMC Evol. Biol. 2014; 14. 10.1186/1471-2148-14-45 PMID: 24618396

Zhou BH, Hiruma K, Shinoda T, Riddiford LM. Juvenile hormone prevents ecdysteroid-induced expression of broad complex RNAs in the epidermis of the tobacco hornworm, Manduca sexta. Dev. Biol. 1998; 203: 233–244. 10.1006/dbio.1998.9059 PMID: 9808776
25. Paul RK, Takeuchi H, Kubo T. Expression of two ecdysteroid-regulated genes, Broad-Complex and E75, in the brain and ovary of the honeybee (Apis mellifera L.). Zool. Sci. 2006; 23: 1085–1092. https://doi.org/10.2108/zsj.23.1085 PMID: 17621922

26. Piuilachs MD, Pagone V, Belles X. Key roles of the Broad-Complex gene in insect embryogenesis. Insect Biochem. Mol. Biol. 2010; 40: 468–475. https://doi.org/10.1016/j.ibmb.2010.04.006 PMID: 20403438

27. Nagamine K, Koyukawa T, Hoshizaki S, Matsuo T, Shinoda T, Ishikawa Y. Cloning, phylogeny, and expression analysis of the Broad-Complex gene in the longicorn beetle Psacothea hilaris. Springerplus 2014; 3. https://doi.org/10.1186/2193-1801-3-359 PMID: 25279330

28. Reza AMS, Kanamori Y, Shinoda T, Shimura S, Mita K, Nakahara Y, et al. Hormonal control of a meta-morphosis-specific transcriptional factor Broad-Complex in silkworm. Comp. Biochem. Phys. B. 2004; 139: 753–761. https://doi.org/10.1016/j.cbpc.2004.09.009 PMID: 15581808

29. Iijjo T, Urakawa H, Yasukochi Y, Takeda M, Fujiwara Y. cDNA cloning, gene structure, and expression of Broad-Complex (BR-C) genes in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2004; 34: 963–969. https://doi.org/10.1016/j.ibmb.2004.06.005 PMID: 15350615

30. Chen L, Zhu J, Sun G, Raikhel AS. The early gene Broad is involved in the ecdysteroid hierarchy governing vitellogenesis of the mosquito Aedes aegypti. J. Mol. Endocrinol. 2004; 33: 743–761. https://doi.org/10.1677/jme.1.01531 PMID: 15591032

31. Zhu JS, Chen L, Raikhel AS. Distinct roles of Broad isoforms in regulation of the 20-hydroxyecdysone effector gene, vitellogenin, in the mosquito Aedes aegypti. Mol. Cell. Endocrinol. 2007; 267: 97–105. https://doi.org/10.1016/j.mce.2007.05.008 PMID: 17681238

32. Yang CW, Lin Y, Liu HL, Shen GW, Luo J, Zhang HY, et al. The Broad Complex transcription in the silkworm. Insect Mol. Biol. 2014; 139: 753–761. https://doi.org/10.1016/j.ibmb.2013.08.011 PMID: 24018109

33. Sappington TW, Raikhel AS. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem. Mol. Biol. 1998; 28: 277–300. PMID: 9692232

34. Arrese EL, Soulages JL. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 2010; 55: 207–225. https://doi.org/10.1146/annurev-ento-112008-085356 PMID: 19725772

35. Amdam GV, Norberg K, Fondrk MK, Page RE. Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bee. Proc. Natl. Acad. Sci. U S A 2004; 101: 11350–11355. https://doi.org/10.1073/pnas.0403073101 PMID: 15277665

36. Havukainen H, Muench D, Baumann A, Zhong S, Halskau Ø, Krogsgaard M, et al. Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J. Biol. Chem. 2013; 288: 28369–28381. https://doi.org/10.1074/jbc.M113.465021 PMID: 23897804

37. Mcginnis W, Krumsaaf R. Homeobox genes and axial patterning. Cell 1992; 68: 283–302. PMID: 1346368

38. Hansen IA, Sieglaff DH, Munro JB, Shiao SH, Cruz J, Lee IW, et al. Forkhead transcription factors regulate mosquito reproduction. Insect Biochem. Mol. Biol. 2007; 37: 985–997. https://doi.org/10.1016/j.ibmb.2007.05.008 PMID: 17681238
45. Park JH, Attardo GM, Hansen IA, Raikhel AS. GATA factor translation is the final downstream step in the amino acid/target-of-rapamycin-mediated vitellogenin gene expression in the anautogenous mosquito Aedes aegypti. J. Biol. Chem. 2006; 281: 11167–11176. https://doi.org/10.1074/jbc.M601517200 PMID: 16490782

46. Sun GQ, Zhu JS, Li C, Tu ZJ, Raikhel AS. Two isoforms of the early E74 gene, an Ets transcription factor homologue, are implicated in the ecdysteroid hierarchy governing vitellogenesis of the mosquito, Aedes aegypti. Mol. Cell. Endocrinol. 2002; 190: 147–157. PMID: 11997188

47. Cruz J, Mané-Padrós D, Zou Z, Raikhel AS. Distinct roles of isoforms of the heme-ligated nuclear receptor E75, an insect ortholog of the vertebrate Rev-erb, in mosquito reproduction. Mol. Cell. Endocrinol. 2012; 349: 262–271. https://doi.org/10.1016/j.mce.2011.11.006 PMID: 22115961

48. Miura K, Wang SF, Raikhel AS. Two distinct subpopulations of ecdysone receptor complex in the female mosquito during vitellogenesis. Mol. Cell. Endocrinol. 1999; 156: 111–120. PMID: 10612429

49. Attardo GM, Hansen IA, Raikhel AS. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem. Mol. Biol. 2005; 35: 661–675. https://doi.org/10.1016/j.ibmb.2005.02.013 PMID: 15894184

50. Raikhel AS, Kokoza VA, Zhu JS, Martin D, Wang SF, Li C, et al. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem. Mol. Biol. 2002; 32: 1275–1286. PMID: 12225918

51. Zhang WX, Liu ZG, Zhu M, Ma LT, Wang Y, Wang HF, et al. Molecular cloning, expression and oxidative stress response of the vitellogenin Gene (AccVg) from Apis cerana cerana. Apidologie 2017; 48: 599–611.

52. Uhlirova M, Foy BD, Beaty BJ, Olson KE, Riddiford LM, Jindra M. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc. Natl. Acad. Sci. U S A. 2003; 100: 15607–15612. https://doi.org/10.1073/pnas.2136837100 PMID: 14668449

53. Chan SF, He JG, Chu KH, Sun CB. The shrimp heat shock cognate 70 functions as a negative regulator in vitellogenin gene expression. Biol. Reprod. 2014; 91: 288–295. https://doi.org/10.1095/biolreprod.113.117200 PMID: 24790159