Rickettsia and Vector Biodiversity of Spotted Fever Focus, Atlantic Rain Forest Biome, Brazil

To the Editor: Rickettsia rickettsii, R. felis, and R. parkeri, strain Atlantic rainforest, have been characterized after being found in areas to which Brazilian spotted fever (BSF) is endemic (1,2), which indicates the complexity of their epidemic and enzootic cycles. The Atlantic rain forest is one of the largest and richest biomes of Brazil, and antropic action has intensely influenced its transformation. Most BSF cases and all BSF-related deaths are recorded in this biome area.

Many BSF cases were recorded in Pará (Figure 1) and analyzed ticks from Rio de Janeiro state, Atlantic rain forest biome. Among the species: Amblyomma cajennense (1,723 ticks), Rhizophalus sanguineus (109), Anocentor nitens (63), Boophilus microplus (33), Amblyomma aureolatum (2), and Amblyomma dubitatum (2). We collected and analyzed Ctenocephalides felis (143 fleas) and C. canis (1 fleas).

PCR analysis showed Rickettsia DNA in 11 individual or pooled samples. This finding indicated minimal infection rates of 0.2% (4/1,723) for A. cajennense ticks, 50% (2/4) for A. dubitatum ticks, 3.0% (1/33) for B. microplus ticks, 100% (1/1) for C. canis fleas, and 2.8% (4/143) for C. felis fleas. Expected amplicon size, determined by using the gltA 401-bp primer set, was observed for all positive samples. Two were also positive by PCR.
for gltA 834 bp and 4 for ompA primer set (online Technical Appendix Figure, wwwnc.cdc.gov/EID/article/20/3/13-1013-Techapp1.pdf). The sequences were deposited in GenBank; BLASTn analysis (http://blast.ncbi.nlm.nih.gov/blast.cgi) indicates that these sequences belong to AG (ancestral) or SFG rickettsiae (Figure).

In phylogenetic inferences, 8 samples were grouped with SFG *R. rickettsii*, supported by bootstrap value >62%. In addition, 3 samples were closely related to SFG *R. felis*, strongly supported by bootstrap values >99%; *Rickettsia* sp. LIC2937Ac was closely related to AG *R. bellii* under a bootstrap support >99% (Figure).

Epidemic manifestations of rickettsial diseases vary by ecotope characteristics, human activity, and vector bioecology in natural foci. BSF is a clinically distinct rickettsial infection in foci to which it is endemic. BSF-related illness and death vary by the *Rickettsia* species that can coexist in a given area and

Figure. Phylogenetic inferences by neighbor-joining method from 1,000 replicated trees based on partial sequence of the *Rickettsia gltA* gene (CS2 401 bp). Evolutionary distances were estimated by the Kimura 2-parameter model. Bootstrap values >60% are shown (neighbor-joining/maximum-parsimony). Sequences obtained are in boldface, and GenBank accession numbers are in parentheses, followed by the similarity percentage (BLAST, http://blast.ncbi.nlm.nih.gov), the locality acronym (PO, Portucalula; RP, São José do Vale do Rio Preto; TM, Trajano de Moraes; IP, Itaperuna; VR, Volta Redonda; PI, Pirai), the arthropod vector species, the composition of the sample (L, larvae; N, nymph; F, female; M, male), and the host. Scale bar indicates nucleotide substitutions per site.
that can share or not share epidemiologic elements.

Molecular identification of *R. rickettsii* in *A. cajennense* ticks was recorded only in the Paraíba do Sul River basin of southeastern Brazil (8), as confirmed in our study. This eco-epidemiologic aspect, its great anthropophily, and its presence in all municipalities surveyed, with absolute frequency greater than other species, demonstrates the possible effect of this tick on epidemic cycle development for the analyzed region, which does not seem to occur in other regions.

R. rickettsii infection of *A. dubitatum* ticks in the 1 focus analyzed might indicate its relevance in specific epidemiologic scenarios. We detected highly similar sequences of different species of *Rickettsia* (LIC2937A) in the same *A. dubitatum* tick specimen (Figure). Other studies have recorded multiple *Rickettsia* infections in 1 tick specimen (9,10).

Our finding of *C. felis* fleas in 6 of the 7 outbreaks investigated highlights the possible role of this flea in maintaining *Rickettsia* in Rio de Janeiro state. *C. felis* and *C. canis* fleas infected with *R. rickettsii* seem to confirm this potential. Nevertheless, the real epidemiologic value of this report in the BSF cycle deserves to be further investigated.

Our results indicate that dogs and horses are the primary vertebrates in the *Rickettsia* enzootic cycle in the investigated focus, and, considering their common presence in human environments, they must be important in maintaining possible rickettsial vectors to humans. These results contribute to the mapping of BSF-endemic areas and to the understanding of the circulation and epidemiology of *Rickettsia* sp. in an area with one of the highest fatal concentrations of BSF.

Acknowledgments

We thank the Secretaria de Saúde do Estado do Rio de Janeiro for its help in the focus area and for notifying us about the BSF cases.

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (grant nos. 2010/03554-9 and 2010/52485-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (grant no. 131700/2010-3).

Nicole O. Moura-Martinoiano, Erik Machado-Ferreira, Karen M. Cardoso, Flávia S. Gehrke, Marinete Amorim, Andréa C. Fogaça, Carlos A.G. Soares, Gilberto S. Gazêta,1 and Teresinha T.S. Schumaker

Author affiliations: Universidade de São Paulo, São Paulo, Brazil (N.O. Moura-Martinoiano, K.M. Cardoso, F.S. Gehrke, A.C. Fogaça, T.T.S. Schumaker); Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (E. Machado-Ferreira, C.A.G. Soares); and Fundação Oswaldo Cruz, Rio de Janeiro (M. Amorim, G.S. Gazêta)

DOI: http://dx.doi.org/10.3201/eid2003.131013

References

1. Horta MC, Labruna MB, Pinter A, Linardi PM, Schumaker TTS. *Rickettsia* infection in five areas of the state of São Paulo, Brazil. Mem Inst Oswaldo Cruz. 2007;102:793–801. http://dx.doi.org/10.1590/S0070-42762007000700003
2. Silveira I, Pacheco RC, Szabó MPJ, Ramos HGC, Labruna MB. *Rickettsia parkeri* in Brazil. Emerg Infect Dis. 2007;13:1111–3. http://dx.doi.org/10.3201/eid1307.061397
3. Arajão H, da Fonseca F. Ixodological notes. VIII. List and key to the representatives of the Brazilian ixodological fauna [in Portuguese]. Mem Inst Oswaldo Cruz. 1961;59:115–29. http://dx.doi.org/10.1590/S0070-42761961000200001
4. Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997;25:4692–3. http://dx.doi.org/10.1093/nar/25.22.4692
5. Labruna MB, Whitworth T, Horta MC, Bouyer DH, Mibrude JW, Camargo LM, et al. *Rickettsia bellii* and *Rickettsia amblyommii* in Amblyomma ticks from the State of Rondônia, Western Amazon, Brazil. J Med Entomol. 2004;41:1073–81. http://dx.doi.org/10.1603/0022-2585-41.6.1073
6. Labruna MB, Mbrude JW, Bouyer DH, Camargo LMA, Camargo EP, Walker DH. Molecular evidence for a spotted fever group *Rickettsia* species in the tick *Amblyomma longirostre* in Brazil. J Med Entomol. 2004;41:533–7. http://dx.doi.org/10.1603/0022-2585-41.3.533
7. Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991;173:1576–89.
8. Guedes E, Leite RC, Prata MCA, Pacheco RC, Walker DH, Labruna MB. Detection of *Rickettsia rickettsii* in the tick *Amblyomma cajennense* in a new Brazilian spotted fever–endemic area in the state of Minas Gerais. Mem Inst Oswaldo Cruz. 2005;100:841–5. http://dx.doi.org/10.1590/S0070-42762005000800004
9. Ferrari FAG, Goddard J, Paddock CD, Varela-Stokes A. *Rickettsia parkeri* and *Candidatus Rickettsia andeanae* in Gulf Coast ticks, Mississippi, USA. Emerg Infect Dis. 2012;18:1705–7. http://dx.doi.org/10.3201/eid1810.120250
10. Varela-Stokes AS, Paddock CD, Engber B, Toliver M. *Rickettsia parkeri* in *Amblyomma maculatum* ticks, North Carolina, USA, 2009–2010. Emerg Infect Dis. 2011;17:2350–3. http://dx.doi.org/10.3201/eid1712.110789

Address for correspondence: Nicole O. Moura-Martinoiano. Lab. de Referência Nacional em Vetores das Riquietosises, Instituto Oswaldo Cruz–Fiocruz, Av. Brasil 4365, Pav. Lauro Travassos, anexo posterior/sala 08, Manguinhos, Rio de Janeiro, Rio de Janeiro, CEP: 21.045-900, Brazil; email: nmoura@ioe.fiocruz.br

Atypical Streptococcus suis in Man, Argentina, 2013

To the Editor: *Streptococcus suis* is a major swine pathogen and an emerging zoonotic agent that causes mainly meningitis and septic shock (1,2). Among the 35 described
Rickettsial and Vector Biodiversity of Spotted Fever Focus, Atlantic Rain Forest Biome, Brazil
Technical Appendix

Technical Appendix Figure. A) Phylogenetic inferences by neighbor-joining method from 1,000 replicated trees based on partial sequence of the *gltA* gene (CS4 834 bp). Evolutionary distances were estimated by Kimura 2-parameter model. Bootstrap values >60% are shown (neighbor-joining/maximum parsimony). Sequences obtained are in bold, and the GenBank accession numbers are in parentheses, followed by the similarity percentage (BLAST, http://blast.ncbi.nlm.nih.gov), the locality acronym (PO, Porciúncula; PI, Piraí), the arthropod vector species, the composition of the sample (F, female) and the host. B) Phylogenetic inferences by neighbor-joining method from 1,000 replicated trees based on partial sequence of the *ompA* gene. Evolutionary distances were estimated by using the Kimura 2-parameter model. Bootstrap values >60% are shown (neighbor-joining/maximum-parsimony). Sequences obtained are presented in bold, and the GenBank accession numbers are in parentheses, followed by the similarity percentage (BLAST), the locality acronym (PO, Porciúncula; RP, São José do Vale do Rio Preto; PI, Piraí), the arthropod vector species, the composition of the sample (F, female), and the host. Scale bar indicates nucleotide substitutions per site.