This may be the author's version of a work that was submitted/accepted for publication in the following source:

Ginsel, Bastiaan, Taher, Ahmad, Ottley, Michael, Jayamaha, Sepalika, Pulle, Chrys, & Crawford, Ross (2014) Hospital mortality after arthroplasty using a cemented stem for displaced femoral neck fractures. *Journal of Orthopaedic Surgery, 22*(3), pp. 279-281.

This file was downloaded from: https://eprints.qut.edu.au/107911/

© 2017 Asian Pacific Orthopaedic Association

This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial 4.0

Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Submitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appearance. If there is any doubt, please refer to the published source.

https://doi.org/10.1177/230949901402200302
ABSTRACT

Purpose. To review hospital mortality after hemiarthroplasty or total hip arthroplasty (THA) using a cemented stem for displaced femoral neck fractures.

Methods. Medical records of 284 hips in 70 men and 209 women aged 45 to 106 (mean, 81.3) years who underwent hemiarthroplasty (n=232) or THA (n=52) with a cemented stem using third-generation cementing techniques (including use of a plug, lavage, and cement pressurisation) for displaced femoral neck fractures were retrospectively reviewed. According to the American Society of Anesthesiologists (ASA) grading, 6 patients were classified preoperatively as grade 1, 77 as grade 2, 148 as grade 3, 47 as grade 4, and one as grade 5. Patients were operated on within 48 hours. Patients were rehabilitated in the hospital until discharge. The primary outcome measure was hospital mortality, including the cause of death.

Results. The mean length of hospital stay was 9.2 (standard deviation, 4.1) days. The hospital mortality was 5.7% (n=16). Of the 16 patients who died, 3 were classified preoperatively as ASA grade 2, 6 as grade 3, and 7 as grade 4. One patient died during the operation. One patient died in the recovery room within 6 hours. Both died from a cardiac arrest and were classified as ASA grade 4. Six patients died within the first 5 days. The causes of death were aspiration pneumonia (n=5), cardiac arrest (n=3), bowel perforation (n=2), multiple organ failure (n=3), type 2 respiratory failure (n=1), heart failure (n=1), and subarachnoid bleeding after a hospital fall (n=1).

Conclusion. Hemiarthroplasty or THA using a cemented stem resulted in low hospital mortality in our hospital dedicated to the treatment of geriatric hip fractures. Hospital mortality was higher in patients with ASA grade 3 or higher.

Key words: arthroplasty; femoral neck fractures; hospital mortality
INTRODUCTION

Femoral neck fractures in the elderly are associated with high morbidity and mortality. The optimal treatment remains controversial. For displaced femoral neck fractures, hemiarthroplasty and total hip arthroplasty (THA) achieve better functional outcome and fewer revision surgeries than internal fixation. Nonetheless, there is no consensus for the use of a cemented or uncemented femoral stem. Cemented femoral stems result in a better functional outcome and less pain than uncemented femoral stems, with no increased mortality at one month or one year. Historically, fixation with acrylic bone cement has been associated with increased mortality. However, most relevant studies had bias in patient selection, as cemented stems were not used in patients with severe cardiac or pulmonary comorbidities. Furthermore, patients with severe cardiopulmonary illness were excluded from fixation with a cemented stem. In our hospital dedicated to the treatment of geriatric hip fractures, only cemented stems are used for hemiarthroplasty and THA. This study reviewed hospital mortality after hemiarthroplasty or THA using a cemented stem for displaced femoral neck fractures in 279 patients.

MATERIALS AND METHODS

This study was approved by the Human Research Ethics Committee of our hospital. Medical records of 284 hips in 70 men and 209 women aged 45 to 106 (mean, 81.3) years who underwent hemiarthroplasty (n=232) or THA (n=52) with a cemented stem using third-generation cementing techniques (including use of a plug, lavage, and cement pressurisation) for displaced femoral neck fractures between April 2010 and December 2011 were retrospectively reviewed. According to the American Society of Anesthesiologists (ASA) grading, 6 patients were classified preoperatively as grade 1, 77 as grade 2, 148 as grade 3, 47 as grade 4, and one as grade 5. Patients were operated on within 48 hours by a consultant surgeon or registrars under the supervision of a consultant. Patients were rehabilitated in the hospital until discharge. The primary outcome measure was hospital mortality, including the cause of death.

RESULTS

The mean length of hospital stay was 9.2 (standard deviation, 4.1) days. The hospital mortality was 5.7% (n=16). Of the 16 patients who died, 3 were classified preoperatively as ASA grade 2, 6 as grade 3, and 7 as grade 4. One patient died during the operation. One patient died in the recovery room within 6 hours. Both died from a cardiac arrest and were classified as ASA grade 4. Six patients died within the first 5 days. The causes of death were aspiration pneumonia (n=5), cardiac arrest (n=3), bowel perforation (n=2), multiple organ failure (n=3), type 2 respiratory failure (n=1), heart failure (n=1), and subarachnoid bleeding after a hospital fall (n=1).

DISCUSSION

In a British registry study of 16 496 patients who underwent hemiarthroplasty or THA, hospital mortality was 8.4% and 5.8% when uncemented and cemented stems were used, respectively. However, baseline characteristics of patients differed between the 2 groups, as the cemented stems were reserved for younger and more active patients. In a Norwegian registry study comparing the use of cemented versus uncemented stems in patients aged >70 years, one-year mortality was 25.6% and 26.5%, respectively. Compared with cemented hips, uncemented hips had an increased risk of revision of 2.1 times, but had lower rates of intra-operative death (0.3% vs. 0.04%) and peri-operative complications (4.6% vs. 3.5%). In an Australian registry study of 25 739 hemiarthroplasties, compared with uncemented stems, cemented stems had an increased hazard ratio for risk of death on postoperative day 1, but this trend was reversed after one week (p=0.02), one month (p=0.028), and one year (p<0.0001). Respectively for cemented and uncemented stems, mortality was 2.6% and 3.0% after one week, 6.6% and 9.1% after one month, 20.7% and 29.6% after one year. Cemented hemiarthroplasty was the safer treatment option at all time points after the day of surgery. However, there may have been bias in patient selection for these treatments, and comorbidities were not recorded. Systematic reviews have reported comparable outcomes between cemented and uncemented hemiarthroplasty in terms of
mortality, complications, pain, and function.4,7,17 In a randomised trial comparing cemented and un cemented hemiarthroplasties, implant-related complications were significantly higher after un cemented hemiarthroplasty among elderly patients without any cardiovascular comorbidity.3 There was a trend to better mobility and function after cemented hemiarthroplasty.3 However, almost 50\% of eligible patients were excluded because they were considered unfit by the anaesthetist to undergo cementation.3

A limitation of this study in terms of the generalisability was that all patients were treated in a dedicated geriatric hip fracture unit and thus mortality was low. Patients generally stayed in hospital longer for rehabilitation and were not discharged early to other rehabilitation facilities, and thus more hospital mortality may have been captured.

CONCLUSION

Hemiarthroplasty or THA using a cemented stem resulted in low hospital mortality in our hospital dedicated to the treatment of geriatric hip fractures. Hospital mortality was higher in patients with ASA grade 3 or higher.

DISCLOSURE

No conflicts of interest were declared by the authors.

REFERENCES

1. Handoll HH, Cameron ID, Mak JC, Finnegan TP. Multidisciplinary rehabilitation for older people with hip fractures. Cochrane Database Syst Rev 2009;4:CD007125.
2. Al-Najjim M. The outcome of displaced intracapsular hip fractures treated with cemented compared to un cemented hemiarthroplasty. Systematic review. Injury Extra 2011;42:105.
3. Taylor F, Wright M, Zhu M. Hemiarthroplasty of the hip with and without cement: a randomized clinical trial. J Bone Joint Surg Am 2012;999:577–83.
4. Luo X, He S, Li Z, Huang D. Systematic review of cemented versus un cemented hemiarthroplasty for displaced femoral neck fractures in older patients. Arch Orthop Trauma Surg 2012;132:455–63.
5. Parker MJ, Gurusamy K. Internal fixation versus arthroplasty for intracapsular proximal femoral fractures in adults. Cochrane Database Syst Rev 2006;4:CD001708.
6. Keating JF, Grant A, Mason M, Scott NW, Forbes JF. Randomized comparison of reduction and fixation, bipolar hemiarthroplasty, and total hip arthroplasty. Treatment of displaced intracapsular hip fractures in healthy older patients. J Bone Joint Surg Am 2006;88:249–60.
7. Parker MJ, Gurusamy KS, Azegami S. Arthroplasties (with and without bone cement) for proximal femoral fractures in adults. Cochrane Database Syst Rev 2010;6:CD001706.
8. Parker MI, Pryor G, Gurusamy K. Cemented versus un cemented hemiarthroplasty for intracapsular hip fractures: a randomised controlled trial in 400 patients. J Bone Joint Surg Br 2010;92:116–22.
9. Figved W, Opland V, Frihagen F, Jervidal T, Madsen JE, Nordsletten L. Cemented versus un cemented hemiarthroplasty for displaced femoral neck fractures. Clin Orthop Relat Res 2009;467:2426–35.
10. Gjertsen JE, Lie SA, Vinje T, Engesaeter LB, Hallan G, Matre K, et al. More re-operations after un cemented than cemented hemiarthroplasty used in the treatment of displaced fractures of the femoral neck: An observational study of 11,116 hemiarthroplasties from a national register. J Bone Joint Surg Br 2012;94:1113–9.
11. Parvizi J, Ereth MH, Lewallen DG. Thirty-day mortality following hip arthroplasty for acute fracture. J Bone Joint Surg Am 2004;86:1983–8.
12. Holt C, Smith R, Duncan K, Finlayson DF, Gregori A. Early mortality after surgical fixation of hip fractures in the elderly: an analysis of data from the Scottish hip fracture audit. J Bone Joint Surg Br 2008;90:1357–63.
13. Costain DJ, Whitehouse SL, Pratt NL, Graves SE, Ryan P, Crawford RW. Perioperative mortality after hemiarthroplasty related to fixation method. Acta Orthop 2011;82:275–81.
14. Costa ML, Griffin XL, Pendleton N, Pearson M, Parsons N. Does cementing the femoral component increase the risk of peri-operative mortality for patients having replacement surgery for a fracture of the neck of femur? Data from the National Hip Fracture Database. J Bone Joint Surg Br 2011;93:1405–10.
15. Parvizi J, Holiday AD, Ereth MH, Lewallen DG. The Frank Stinchfield Award. Sudden death during primary hip arthroplasty. Clin Orthop Relat Res 1999;369:39–48.
16. Wheelwright EF, Byrick RJ, Wigglesworth DF, Kay JC, Wong PY, Mullen JB, et al. Hypotension during cemented arthroplasty. Relationship to cardiac output and fat embolism. J Bone Joint Surg Br 1993;75:715–23.
17. Ahn J, Man LX, Park S, Sodl JF, Esterhai JL. Systematic review of cemented and un cemented hemiarthroplasty outcomes for femoral neck fractures. Clin Orthop Relat Res 2008;466:2513–8.