A surface with discontinuous isoperimetric profile and expander manifolds

Panos Papasoglu · Eric Swenson

Received: 24 August 2018 / Accepted: 26 July 2019 / Published online: 3 August 2019
© The Author(s) 2019

Abstract
We construct sequences of ‘expander manifolds’ and we use them to show that there is a complete connected 2-dimensional Riemannian manifold with discontinuous isoperimetric profile, answering a question of Nardulli and Pansu. Using expander manifolds in dimension 3 we show that for any \(\epsilon, M > 0 \) there is a Riemannian 3-sphere \(S \) of volume 1, such that any (not necessarily connected) surface separating \(S \) in two regions of volume greater than \(\epsilon \), has area greater than \(M \).

Keywords Isoperimetric profile · Expander · Isoperimetric inequality

Mathematics Subject Classification (1991) 53C20 · 49Q20 · 05C40

1 Introduction

Expander graphs have been studied widely and they have important applications both in pure mathematics and in computer science. One may construct expander-like Riemannian manifolds with interesting properties (see e.g. [3–5]). We will treat two instances of such manifolds in this paper. We think it might be useful to give a formal definition of ‘expander manifolds’:

Definition Let \(M_n^k \) be a sequence of closed \(k \)-dimensional Riemannian manifolds all of which have volume 1. We say that it is an expander sequence (or an expander manifold) if for any \(n \) any smooth hypersurface \(S_{n-1}^k \) separating \(M_n^k \) in two open sets both of which have volume at least \(1/n \), has \((k-1) \)-volume at least equal to \(n \).
Of course there are variations of this concept: e.g. one could allow manifolds with boundary or require that all M^n be homeomorphic to a given manifold or share a common geometric property.

If (M^n, g) is a Riemannian manifold the isoperimetric profile function of M^n is a function $I_M : (0, \text{vol}(M)) \rightarrow \mathbb{R}^+$ defined by:

$$I_M(t) = \inf_{\Omega} \{\text{vol}_{n-1}(\partial \Omega) : \Omega \subset M^n, \text{vol}_n(\Omega) = t\}$$

where Ω ranges over all open sets of M^n with smooth boundary. We note that we don’t require Ω to be connected.

It is easy to see that $I_M(t)$ is upper semi-continuous by adding or taking away a small ball with smooth boundary from a given region. More precisely to show upper continuity it suffices to show that for any $t_0 \in (0, \text{vol}(M))$ and $\delta > 0$, there is an $\epsilon > 0$ such that $I_M(t) < I_M(t_0) + \delta$ if $|t - t_0| < \epsilon$. Given some open set Ω with $\text{vol}_n(\Omega) = t_0$ and $\text{vol}_{n-1}(\partial \Omega) < I_M(t_0) + \frac{\delta}{2}$ we may pick ϵ small enough such that for any $\epsilon' < \epsilon$ there are 2 small open balls with smooth boundary B_1, B_2 with $B_1 \subset \Omega$ and B_2 contained in the complement of Ω with $\text{vol}_n(B_1) = \text{vol}_n(B_2) = \epsilon'$ and $\text{vol}_{n-1}(\partial B_1), \text{vol}_{n-1}(\partial B_2) < \delta/4$. Then by considering the open sets $\Omega \setminus B_1, \Omega \setminus B_2$ we see that $I_M(t) < I_M(t_0) + \delta$ if $|t - t_0| = \epsilon'$.

The continuity of the isoperimetric profile function is established in a number of cases: Gallot [9] showed that it is continuous for compact manifolds and Nardulli-Russo [16] showed that this holds also for manifolds of finite volume. Ritoré [21] showed that it is continuous for Hadamard manifolds and complete non-compact manifolds of strictly positive sectional curvature. We refer to [21] and [15] for a more complete exposition of the cases where the continuity of I_M is established and related questions.

Adams, Morgan and Nardulli observed that $I_M(t)$ is not necessarily continuous for manifolds with density (see Frank Morgan’s blog, [1]).

Nardulli and Pansu [15] constructed an example of a Riemannian 3-manifold with discontinuous $I_M(t)$ and asked whether there is such an example in dimension 2.

It turns out that all these constructions are based on the existence of expander manifolds, so we answer this question in Sect. 2 of this paper by constructing an appropriate sequence of ‘expander surfaces’ using expander graphs. We note that P. Buser [5] has used in the past expander graphs as ‘blueprints’ for constructing surfaces. Psaltis [20] used expander graphs to show that there are surfaces M with no restrictions on the growth rate of I_M.

The first author asked in [17] whether there are expander manifolds M^n where each M^n is homeomorphic to the 3-sphere (or to the 3-ball). It turns out that such constructions were already given by Burago-Ivanov in [4].

Glynn-Adey and Zhu show in [10] that for any $\epsilon > 0, M > 0$ there is a Riemannian 3-ball B of volume 1 such that any smooth disk separating B in two regions of volume greater than ϵ has area greater than M. We prove the same result here both for the 3-ball and the 3-sphere for separations by arbitrary surfaces and not just disks. Glynn-Adey and Zhu assume further that the ball B has bounded diameter and boundary surface area but these are properties that are easy to arrange in general modifying slightly the ball B. Our construction is different from the one in [4], for example our sequence of manifolds converges to a point.

These results contrast with the situation in dimension 2. Liokumovich, Nabutovsky and Rotman showed in [13] that if D is a Riemannian 2-disc there is a simple arc of length less than $2\sqrt{3} \frac{\text{area}(D)}{4 - \delta}$ which cuts the disc into two regions of area greater than $\text{area}(D)/4 - \delta$, where δ is any positive real. A similar result was shown in [18] for the sphere. The results in [13] were prompted by a question of Gromov [11] and Frankel-Katz [8] concerning bounding the length of contracting homotopies of a 2-disk.
Balacheff-Sabourau [2] showed that there is some $c > 0$ such that any Riemannian surface M of genus g can be separated in two domains of equal area by a 1-cycle of length smaller than $c\sqrt{g + 1}$\sqrt{\text{area}(M)}$. Liokumovich [14] on the other hand showed that given $C > 0$ and a closed surface M there is a Riemannian metric of diameter 1 on M such that any 1-cycle splitting it into two regions of equal area has length greater than C.

We thank the referee for a careful reading of the paper and several suggestions that improved the exposition.

2 Surfaces with discontinuous profile

We follow the same method as [1,15]. Given some constants $a, b > 0$ it is enough to find a sequence of closed surfaces S_n with area($S_n) = a + \tau_n$ where $\tau_n \to 0$ such that $I_{S_n}(a) = I_{S_n}(\tau_n) > b$. Indeed we may join the surfaces S_n by tubes of negligible area to obtain a surface S such that $I_S(a + \tau_n) \to 0$ but $I_S(a) > b$.

We explain now how to construct S_n.

Our construction relies on the existence of expander graphs. We recall the definition of expanders. Let $\Gamma = (V, E)$ be a graph. For $S, T \subseteq V$ denote the set of all edges between S and T by

$$E(S, T) = \{(u, v) : u \in S, v \in T, (u, v) \in E\}.$$

Recall that a graph is called k-regular if every vertex is contained in exactly k distinct edges.

Definition The edge boundary of a set $S \subseteq V$, denoted ∂S is defined as $\partial S = E(S, S^c)$. A k-regular graph $\Gamma = (V, E)$ is called a c-expander graph if for all $S \subseteq V$ with $|S| \leq |V|/2$, $|\partial S| \geq c|S|$.

Pinsker [19] (see also [12], sec. 2.2) has shown that there is a $c > 0$ such that for any n large enough there is a 3-regular c-expander graph with n-vertices.

In the course of the proof that follows we will need to show several inequalities; as obtaining best constants is irrelevant for our construction we will always be using inequalities that are easy to state and verify, rather than optimal ones. Although we could use any family of k-regular expander graphs it is somewhat easier to describe our examples using 3-regular expander graphs.

Consider a 3-regular c-expander graph Γ_n with $n^2 + n$ vertices. We give a way to replace this graph by a Riemannian surface. For each vertex v we pick a Euclidean 3-sphere S_v of radius $1/n$. Recall that the area of this sphere is $4\pi(1/n)^2$. If l is a great circle of S_v we pick 3 equidistant points e_1, e_2, e_3 on l and we consider 3 spherical caps D^1_v, D^2_v, D^3_v on S_v with centers e_1, e_2, e_3 and heights equal to $\frac{1}{10n}$. Clearly these spherical caps are disjoint and it is easy to see that the distance between any two of them on the sphere is greater than $1/n$.

Indeed if D^i_v intersects l at x_i, x'_i and $\theta = \angle x_i O e_i$ (where O is the center of S_v) then $\cos \theta = 9/10 > \cos(\pi/6)$ so the angle $\angle x_i O x_j$ is greater than $\pi/3$ hence $d(x_i, x_j) > 1/n$ on the sphere (for $i \neq j$).

Let C^1_v, C^2_v, C^3_v be the boundary curves of D^1_v, D^2_v, D^3_v respectively. We note that

$$\text{length}(C^i_v) \geq 1/n.$$
We remove the open spherical caps D_1^v, D_2^v, D_3^v from S_v and we still denote this sphere with holes by S_v to keep notation simple. We note that

$$\text{area}(S_v) = \frac{4\pi}{n^2} - \frac{2\pi}{10n^2} = \frac{17\pi}{5n^2}.$$

We set $a = \frac{17\pi}{5}$, so $\text{area}(S_v) = a/n^2$.

Now to each edge E_i ($i = 1, 2, 3$) in Γ leaving v we associate the boundary curve C_i^v. If an edge e joins the vertices v, w of Γ we identify the corresponding boundary curves of the spheres with holes S_v, S_w by an isometry. This gluing produces a closed surface S_n with

$$\text{area}(S_n) = \frac{a(n^2 + n)}{n^2} = a + \frac{a}{n}.$$

We set $\tau_n = \frac{a}{n}$.

We note that S_n is not a smooth manifold but it is easy to slightly modify the metric to make it smooth and this modification with have a negligible effect on the following calculations, so we will pretend for the moment that S_n is a smooth manifold. We set $b = \min\left(\frac{1}{10}, \frac{c}{4}\right)$.

Proposition 2.1 Let Ω be an open set with smooth boundary in S_n with area$(\Omega) = \tau_n$. Then

$$\text{length}(\partial \Omega) \geq b.$$

Proof We distinguish two types of spheres with holes S_v.

Type 1: $\text{length}(\Omega \cap (C_1^v \cup C_2^v \cup C_3^v)) \geq \frac{5}{2}\text{length}(C_1^v)$ and

Type 2: where the opposite inequality holds.

Let’s denote by Ω_1 the intersection of Ω with all type 1 spheres and Ω_2 its intersection with type 2 spheres.

Lemma 2.2 Let S_v be a type 2 sphere and let $\Omega_v = \Omega \cap S_v$ and $\delta \Omega_v = \partial \Omega \cap S_v$. We have then

$$\text{area}(\Omega_v) \leq \frac{8\pi}{n} \text{length}(\delta \Omega_v).$$

Proof Note that area$(\Omega_v) \leq \text{area} S_v = a/n^2$. We note also that $\delta \Omega_v$ is in fact the boundary of Ω_v if we consider it to be a subset of S_v rather than S for consistency’s sake and to avoid ambiguity we will always consider our domains to be subsets of S.

We remark that our definition ensures that $\delta \Omega_v \subseteq \partial \Omega$ which is convenient in what follows.

Clearly it suffices to prove the inequality for all connected components U of Ω_v, namely it suffices to show:

$$\text{area}(U) \leq \frac{8\pi}{n} \text{length}(\delta \Omega_v \cap \partial U). \quad (*)$$

We consider the connected components of $\delta \Omega_v$. If there is a connected component α that is an arc with endpoints in two distinct C_i^v, C_j^v then $\text{length}(\alpha) \geq 1/n$ so the lemma holds as

$$\frac{a}{n^2} \leq \frac{8\pi}{n} \frac{1}{n}.$$

Similarly if there is a connected component α that is a simple closed curve such that for some $i \neq j$ C_i^v, C_j^v lie in the closures of distinct connected components of $S_v \setminus \alpha$ then
length(\(\alpha\)) \(\geq 1/n\) and the lemma holds. So we may assume that \(\delta \Omega_v\) contains no such simple closed curve \(\alpha\).

Note also that if there is a connected component of \(\delta \Omega_v\), \(\alpha\), which is a simple closed curve that bounds a disc \(D\) in \(S_v\) which is not contained entirely in \(\Omega_v\) then we may delete \(\alpha\). This will increase area(\(\Omega_v\)) and decrease length(\(\delta \Omega_v\)). So it suffices to prove the lemma for regions \(\Omega_v\) such that \(\delta \Omega_v\) contains no such simple closed curves.

Similarly suppose that there is a connected component \(U\) of \(\Omega_v\) such that \(\partial U \cap \delta \Omega_v\) contains an arc \(\alpha\) with its endpoints on some \(C^i_v\) so that if \(\beta\) is the arc with the same endpoints on \(C^i_v\), \(\alpha \cup \beta\) bounds a disc on \(S_v\) which contains \(U\). In this case if we erase all arcs in \(\partial U \cap \delta \Omega_v\) except \(\alpha\) the area of \(U\) increases while the boundary length decreases (see Fig. 1). So we may assume for the purposes of showing (\(\ast\)) that if a region \(U\) intersects exactly one of the \(C^i_v\) then \(\partial U \cap \delta \Omega_v\) is a single arc.

To summarize if a connected component \(U\) of \(\Omega_v\) has a simple closed curve \(\alpha\) in its boundary then we may assume that \(U\) is a disc with boundary \(\alpha\). Also if some connected component \(U\) of \(\Omega_v\) intersects only one \(C^i_v\) then we may assume (for the purpose of showing (\(\ast\))) that \(\partial U \cap \delta \Omega_v\) is a single arc. Finally if some connected component \(U\) of \(\Omega_v\) intersects two \(C^i_v\)'s then it intersects all \(C^1_v, C^2_v, C^3_v\).

From these observations we conclude that it is enough to show (\(\ast\)) assuming that the connected components \(U\) of \(\Omega_v\) fall in the following 3 cases (see Fig. 2):

1. Regions \(U\) homeomorphic to a disc with \(\partial U \subseteq \delta \Omega_v\). By the isoperimetric inequality of the sphere the minimal boundary length for such regions is for spherical caps. However the corresponding spherical cap has area less than the sphere with holes \(S_v\) so it has height \(h\) less than \(19/10n\). Recall that the area of a spherical cap is \(2\pi rh\) where \(r\) is the radius of the sphere and \(h\) the height. It follows that the length of the boundary of the spherical cap is greater or equal to \(h/2\) so

\[
\text{area } U \leq \frac{2\pi h}{n} \leq \frac{4\pi \text{ length}(\partial U)}{n}
\]

and the inequality holds.

2. Regions \(U\) homeomorphic to a disc with \(\partial U = \alpha \cup \beta\) where \(\alpha, \beta\) are arcs with the same endpoints and \(\alpha \subseteq \delta \Omega_v, \beta \subseteq C^i_v\) for some \(i\). Then clearly length(\(\alpha\)) > length(\(\beta\)) and
Fig. 2 The three cases

applying the isoperimetric inequality of the sphere again we have
\[
\text{area}(U) \leq \frac{8\pi \text{length}(\partial U)}{n}
\]
and the inequality holds.

3. Regions U homeomorphic to a sphere with 3 holes and $\partial U = \alpha \cup \beta$ where α is a union of arcs in $\delta \Omega_v$ with endpoints on the C^i_v’s and β is a union of arcs contained in the C^i_v’s. Since S_v is of type 2 $\text{length}(\alpha) \geq \frac{1}{2n}$ while

\[
\text{area}(U) \leq \text{area}(S_v) = \frac{a}{n^2}
\]
and the inequality holds in this case too. \(\square\)

We note that at least one of $\text{area}(\Omega_1)$, $\text{area}(\Omega_2)$ is greater than or equal to $\tau_n/2$. We will show that in both cases the proposition holds.

Let’s say that $\text{area}(\Omega_2) \geq \tau_n/2$. If a_v is the area of $S_v \cap \Omega_1$ and ℓ_v is the length of $\partial \Omega_1 \cap S_v$ then

\[
\frac{\tau_n}{2} \leq \sum a_v \leq \frac{8\pi}{n} \sum \ell_v
\]

so

\[
\text{length}(\partial \Omega) \geq \sum \ell_v > \frac{1}{10} \geq b.
\]
Let’s say now that \(\text{area}(\Omega_1) \geq \tau_n/2 \). Let \(T \) be the set of vertices of \(\Gamma_n \) that correspond to spheres with holes of type 1. Clearly \(T \) contains at least \(n/2 \) vertices.

Claim \(T \) contains less than \(\frac{n^2 + n}{2} \) vertices.

Proof Indeed if \(T \) contains more than \(\frac{n^2 + n}{2} \) vertices then there are at least \(n^2/10 \) vertices \(v \) of type 1 such that \(\text{area}(S_v \cap \Omega_1) < \text{area}(S_v)/2 \), otherwise we would have \(\text{area}(\Omega_1) > \tau_n \) which is impossible. We show now that for each sphere \(S_v \) in \(T \) for which \(\text{area}(S_v \cap \Omega_1) < \text{area}(S_v)/2 \) we have that \(\text{length}(\partial \Omega_1 \cap S_v) \geq 1/n \). Indeed if \(\partial \Omega_1 \cap S_v \) contains an arc with endpoints in distinct \(C_i \)'s this is obvious. We note also that none of the \(C_i \)'s is entirely contained in the complement of \(\Omega_1 \) as \(S_v \) is of type 1. So \(\partial \Omega_1 \cap S_v \) consists of some arcs \(\alpha_j \) \((j \in J)\) such that both endpoints of the \(\alpha_j \) lie in a single \(C_i \). If we denote by \(\beta_j \) the shorter of the two arcs on \(C_i \) with the same endpoints as \(\alpha_j \) then we note that \(\alpha_j \cup \beta_j \) bounds a region of \(S_v \) homeomorphic to a disc. If this is not contained in some hemisphere then \(\text{length}(\alpha_j) \geq 1/n \) so \(\text{length}(\partial \Omega_1 \cap S_v) \geq 1/n \). It follows by the soperimetric inequality of the sphere that \(\text{length}(\alpha_j) + \text{length}(\beta_j) \) is greater than the boundary length of the spherical cap bounding the same area. We note that the union

\[
\bigcup_{j \in J} (\alpha_j \cup \beta_j)
\]

bounds a region of area greater than \(\text{area}(S_v)/2 \). It follows that

\[
\sum_{j \in J} (\text{length}(\alpha_j) + \text{length}(\beta_j)) \geq 2 \text{length}(C_i^1).
\]

Since \(S_v \) is of type 1

\[
\sum_{j \in J} \text{length}(\beta_j) \leq \text{length}(C_i^1)/2.
\]

Hence

\[
\sum_{j \in J} \text{length}(\alpha_j) \geq \text{length}(C_i^1) \geq 1/n
\]

So

\[
\text{length}(\partial(\Omega_1)) \geq n/10.
\]

This proves the claim, from which the proposition clearly follows. \(\square \)

By our hypothesis that \(\Gamma_n \) is a sequence of \(c \)-expander graphs there are at least \(\frac{cn}{2} \) edges in the boundary of \(T \). If \((v, w) \) is such an edge, with \(v \in T \), then for some \(i \in \{1, 2, 3\} \) \(C_i^v \) is identified to \(C_i^w \) for some \(j \in \{1, 2, 3\} \) and \(S_v \) is of type 1 while \(S_w \) is of type 2. Since \(S_v \) is of type 1

\[
\text{length}(C_i^v \cap \Omega) \geq \frac{1}{2} \text{length}(C_i^v)
\]

so as \(C_i^v \) is identified to \(C_i^w \)

\[
\text{length}(C_i^j \cap \Omega) \geq \text{length}(C_i^j)/2.
\]
On the other hand since S_w is of type 2
\[
\sum_{i=1}^{3} \text{length}(C^i_w \setminus \Omega) \geq \text{length}(C^j_w) / 2.
\]
If we set
\[
A = C^j_w \cap \Omega
\]
and $B = (\bigcup_{i=1}^{3} C^i_w) \setminus \Omega$ we have that $\partial \Omega \cap S_w$ separates A from B.

We claim now that $\partial \Omega \cap S_w$ has length at least $1/2n$.

If $\partial \Omega \cap S_w$ contains some simple closed curve α such that each region of $S_w \setminus \alpha$ contains some C^i_w then clearly $\partial \Omega \cap S_w$ has length more than $1/2n$. The same holds if $\partial \Omega \cap S_w$ contains some arc with endpoints in distinct C^i_w’s so in these cases the claim is proven.

Otherwise since $\partial \Omega$ separates A, B at least one of the following two holds:

1. There is a set of arcs β_j ($j \in J$) on $\partial \Omega$ with endpoints on C^j_w such that there are arcs α_j on C^j_w where α_j has the same endpoints as β_j,

 \[
 A \subseteq \bigcup_{j \in J} \alpha_j
 \]

 and for each $j \in J$ $\alpha_j \cup \beta_j$ bounds a disc in S_w.

2. There is a set of arcs β_j ($j \in J$) on $\partial \Omega$ with endpoints on $\bigcup_{i=1}^{3} C^i_w$ such that there are arcs α_j on $\bigcup_{i=1}^{3} C^i_w$ where α_j has the same endpoints as β_j,

 \[
 B \subseteq \bigcup_{j \in J} \alpha_j
 \]

 and for each $j \in J$ $\alpha_j \cup \beta_j$ bounds a disc in S_w.

In both cases
\[
\sum_{j \in J} \text{length} \beta_j \geq \sum_{j \in J} \text{length} \alpha_j \geq \min(\text{length} A, \text{length} B) \geq 1/2n.
\]

It follows that in all cases $\partial \Omega \cap S_w$ has length at least $1/2n$. Hence
\[
\text{length}(\partial \Omega) \geq \frac{c}{4} \geq b
\]
from which the proposition follows. \hfill \Box

3 A sphere hard to cut

Definition Let B be a Riemannian 3-ball. If $F \subset B$ is a smoothly embedded orientable surface with boundary we say that F separates B if $F \cap \partial B = \partial F$.

If F is a surface separating a Riemannian 3-ball B we say that F cuts an ϵ-piece of B if $B - F$ can be written as a union of two disjoint open sets U, V both of which have volume greater than ϵ.

We define similarly what it means for a closed surface to cut an ϵ-piece of a Riemannian 3-sphere.
Consider a 3-regular c-expander graph Γ_n with n^3 vertices. We give a way to ‘thicken’ this graph, i.e. replace it by a Riemannian handlebody. For each vertex we pick a Euclidean 3-ball B_v of radius $1/n$. Recall that the volume of this ball is $4\pi/3 \cdot (1/n)^3$. Let S_v be the boundary sphere of B_v. If l is an equator S_v, we pick 3 equidistant points e_1, e_2, e_3 on l and we consider 3 disjoint (spherical) discs on S_v with centers e_1, e_2, e_3 and radii equal to $1/n$. Clearly these discs are disjoint. Now to each edge E_i in Γ leaving v we associate the disc with center e_i. If an edge e joins the vertices v, w of Γ we identify the discs of the balls B_v, B_w corresponding to this edge.

In this way we obtain a handlebody Σ_n. Note that $\partial \Sigma_n \cap B_v$ is a pair of pants. We will refer to B_v later on as a filled in pair of pants and we will call the discs with centers e_1, e_2, e_3 on S_v the holes of this pair of pants. We note that the area of S_v is $4\pi (1/n)^2$ and the area of S_v minus the 3 spherical discs is

$$4\pi(1/n)^2 - 6\pi(1/n)^2(1 - \sin 0.5) = \pi(1/n)^2(6\sin 0.5 - 2).$$

By changing the metric of Σ_n slightly we get a smooth handlebody, denoted still by Σ_n, of volume $4\pi/3$. Finally by gluing appropriately thickened discs to this handlebody we obtain a ball B_n. We may assume that this gluing operation changes the volume of B_n and the area of its boundary by a negligible amount. We may pick a simple curve γ on ∂B_n such that every point of ∂B_n is at distance at most $1/n$ from γ. By gluing a thickened disk of diameter $1/n$ and negligible volume to ∂B_n along γ we obtain a new ball of arbitrarily small diameter. We still denote this 3-ball by B_n. In fact it follows also directly by the properties of expander graphs that the diameter of B_n is bounded.

We double B_n along its boundary to obtain a 3-sphere. By changing the metric slightly along the doubling loci we may ensure that we obtain a smooth sphere S_n of volume $8\pi/3$.

Theorem 3.1 Given $\epsilon, M > 0$ there is some n such that any surface that cuts an ϵ-piece of B_n (or S_n) has area greater than M.

Proof We may (and will) assume that $\epsilon < 1/100$. Let F be a (not necessarily connected) surface cutting an ϵ-piece of B_n. So $B_n - F = U_1 \cup U_2$ with U_1, U_2 open of volume greater than ϵ. We denote by Q_1, Q_2 the closures of U_1, U_2 respectively. Without loss of generality we assume that $\text{vol}(U_2) \geq \text{vol}(U_1)$.

We note that B_n contains a handlebody Σ_n which is a union of filled in pairs of pants B_v-one for each vertex of the graph Γ_n. Clearly $S_v \cap \partial \Sigma_n$ is a pair of pants with 3 holes.

Let B_v be one such (filled in) pair of pants. Its volume is $4\pi/3 n^3$. By the solution of the isoperimetric problem for a ball [22] if a surface cuts an $\epsilon 4\pi/3 n^3$ piece of B_v then its area is greater than $(4\pi \epsilon/3 n^3)^2/3 \geq \epsilon/n^2$.

Let’s say that for n_1 filled in pairs of pants F cuts an ϵ/n^3 piece and that for n_2 filled in pairs of pants more than $\frac{4\pi(1 - \epsilon)}{3n^3}$ of their volume is contained in U_1. Since $\text{vol}(U_1) \leq \text{vol}(U_2)$

$$n_2 \leq 2\epsilon n^3 \leq n^3/2$$

We distinguish two cases.

Case 1 $n_1 \geq \epsilon n^3/2$. Since the area of intersection of F with each one of these n_1 filled in pants is greater than ϵ/n^2 the area of F is greater than $\epsilon^2 n/2$ which clearly tends to infinity as $n \to \infty$.

Case 2 $n_1 < \epsilon n^3/2$. Since $\text{vol}(U_1) > \epsilon$ we have that $n_2 \geq \epsilon n^3/2$. Let’s denote this set of n_2-filled pairs of pants by A. Let B_v be in A, and let $U_v = B_v \cap U_1$. Since

$$\text{vol}(U_v) \geq \frac{4\pi(1 - \epsilon)}{3n^3}$$
by the Euclidean isoperimetric inequality the boundary of U_v has area at least

$$\frac{4\pi (1 - \epsilon)^{2/3}}{n^2}.$$

Since $\epsilon < 1/100$ it follows that if the area of $F \cap B_v$ is less than $\epsilon/2n^2$ then U_1 intersects non-trivially all 3 holes of the filled-in pair of pants.

In fact since the area of a spherical cap is given by $2\pi rh$ where r is the radius and h the height, the area of the intersection of F that is smaller than $\epsilon/2n^2$ is greater than 1. We claim that the area of F is greater than $\epsilon^2 n/8$ which clearly tends to infinity as $n \to \infty$. Otherwise $k_2 \geq \epsilon n^3/4$. By the expander property (and since $k_2 \leq n^3/2$) the (not necessarily connected) union of filled in pairs of pants in A_2, Σ, has a boundary that consists of at least

$$ck_2 \geq \frac{c\epsilon n^3}{4}$$

holes. Let B_v be a filled-in pair of pants adjacent to one of these holes. Clearly B_v intersects U_1. We claim that the area of $B_v \cap F$ is at least ϵ/n^2. This is clear if F cuts an $4\pi \epsilon/3n^3$ piece of B_v or if B_v lies in A_1. If this is not the case then more than $(1 - \epsilon)4\pi/n^3$ of the volume of B_v is contained in U_2. Let O_v be the center of B_v. Let’s denote by C_r the sphere with radius r and center O_v. Let l_r be the length of the intersection of F with C_r. If $l_r > 1/10n$ for all r with $1/n > r > 9/10n$ then by the co-area formula [6, 3.2.22] the area of $F \cap B_v$ is greater than $1/100n^2 > \epsilon/n^2$. Otherwise we consider an $r_0 \in (9/10n, 1/n)$ for which l_{r_0} is smaller than $1/10n$. We consider the portion F_1 of F between C_{r_0} and the boundary of B_v and we fill the holes of F_1 lying on C_{r_0} by minimal area discs. The total area of these disks is smaller than $\pi 100n^2$. Let’s call the surface obtained this way by F_2. Note that F_2 separates $U_1 \cap B_v$ from O_v. Let f be the radial projection from O_v to $C_1 = S_v$. Clearly $f(F_2)$ contains $S_v \cap U_1$ and by inequality (*) the area of $S_v \cap U_1$ is greater than $1/n^2$. Also f is Lipschitz with Lipschitz constant less than 2. So the area of $f(F_2 - F_1)$ is less than $\frac{\pi}{50n^2}$. It follows that the area of F_1 is greater than

$$\frac{1}{4n^2}$$

so the area of $F \cap B_v$ is greater than ϵ/n^2 in this case too.

It follows as before that the area of F is at least

$$\frac{c\epsilon n^3}{4} \cdot \frac{\epsilon}{n^2} = \frac{c\epsilon^2 n}{4},$$

which clearly tends to infinity as $n \to \infty$.

\textcopyright Springer
The result for the 3-sphere S_n follows immediately from B_n as S_n is a union of two copies of B_n and if a surface cuts an ϵ-piece of S_n is cuts an $\epsilon/2$ piece in one of these two copies of B_n. Finally clearly we may normalize the volume of S_n, B_n to 1. □

Remark 1 In [10] it is assumed additionally that the surface area and the diameter of the ball B_n is bounded. However both these properties are easy to arrange. As for the surface area one may excise a small ball from the 3-sphere S_n in the proof above and obtain a ball B such that the area of ∂B is arbitrarily small. By construction B_n, S_n have diameter less than 1. In fact given any ball (in any dimension ≥ 3) one can easily decrease its diameter by surgery: one may cut out a thickened simple curve and glue back in a ball with small diameter. This has no effect on the volume- or separation properties of the ball. Even though we stated our result only for dimension 3 the same construction applies for spheres (balls) of any dimension $n \geq 3$.

4 Discussion and further questions

A general question is what geometric properties might prevent a sequence of k-manifolds M^k_n from being an expander. For example it is easy to see that if M^k_n have Ricci curvature bounded from below then M^k_n cannot be an expander sequence. Glyn-Adey and Zhu showed [10, thm 1.6] that M^3_n is not an expander sequence if the diameters and the homological filling function of the manifolds M^3_n are bounded. It is not clear however whether the bound on the diameter is necessary. We recall that the 1st homological filling function of a manifold is defined by $H F_1(\ell)$ is defined to be the supremum of all the filling areas of cycles of length ℓ. One may ask:

Question 4.1 Let M^3_n be a sequence of 3-manifolds homeomorphic to the 3-sphere such that for all M^3_n $H F_1(\ell) \leq c \ell^2$ for a fixed $c > 0$. Is it true that M^3_n is not an expander sequence?

It is clear that a sequence of expander manifolds can not ‘converge’ (in the Gromov-Hausdorff sense) to a manifold. Could one make precise how these manifolds ‘collapse’?

Even though a lower bound on Ricci curvature rules out expanders, interestingly the question whether such manifolds have continuous isoperimetric profile is still open (see [15], question 3 and [7]).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Adams, C., Morgan, F., Nardulli, S.: Blog-post (2013). http://sites.williams.edu/morgan/2013/07/26/isoperimetric-profile-continuous/. Accessed 26 July 2013
2. Balacheff, F., Sabourau, S.: Diastolic and isoperimetric inequalities on surfaces. Ann. Sci. Ecole Norm. Sup. 43, 579–605 (2010)
3. Brooks, R.: The spectral geometry of towers of coverings. J. Differ. Geom. 23(1), 97–107 (1986)
4. Burago, D., Ivanov, S.: On asymptotic isoperimetric constant of tori. Geom. Funct. Anal. 8(5), 783–787 (1998)
5. Buser, P.: On the bipartition of graphs. Discrete Appl. Math. 9(1), 105–109 (1984)
6. Federer, H.: Geometric Measure Theory. Springer, New York (1969)
7. Flores, A.M., Nardulli, S.: Continuity and differentiability properties of the isoperimetric profile in complete noncompact riemannian manifolds with bounded geometry (2015). arXiv:1404.3245
8. Frankel, S., Katz, M.: The Morse landscape of a Riemannian disc. Ann. Inst. Fourier 43(2), 503–507 (1993)
9. Gallot, S.: Inégalités isopérimétriques et analytiques sur les variétés riemanniennes. Astérisque, (163–164): 5–6, 31–91, 281 (1989), 1988. On the geometry of differentiable manifolds (Rome, 1986)
10. Glynn-Adey, P., Zhu, Z.: Subdividing 3-dimensional Riemannian disks (2015). arXiv preprint arXiv:1508.03746
11. Gromov, M.: Asymptotic invariants of infinite groups. In: Niblo, G.A., Roller, M.A. (eds.) Geometric Group Theory, v. 2, 1-295, London Mathematical Society Lecture Note Series, vol. 182. Cambridge University Press, Cambridge (1993)
12. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bul. Am. Math. Soc. 43(4), 439–561 (2006)
13. Liokumovich, Y., Nabutovsky, A., Rotman, R.: Contracting the boundary of a Riemannian 2-disc (2012). arXiv preprint arXiv:1205.5474
14. Liokumovich, Y.: Surfaces of small diameter with large width. J. Topol. Anal. 06, 383 (2014)
15. Nardulli, S., Pansu, P.: A discontinuous isoperimetric profile for a complete Riemannian manifold (2015). arXiv:1506.04892. (to appear in Annali della Scuola Normale Superiore di Pisa)
16. Nardulli, S., Russo, F.: On the Hamilton’s isoperimetric ratio in complete Riemannian manifolds of finite volume (2015). arXiv:1502.05903
17. Papasoglu, P.: Contracting thin disks (2013). arXiv preprint arXiv:1309.2967
18. Papasoglu, P.: Cheeger constants of surfaces and isoperimetric inequalities. Trans. Am. Math. Soc 361(10), 5139–5162 (2009)
19. Pinsker, M.: On the complexity of a concentrator. In: 7th International Teletraffic Conference, Stockholm, 318/1–318/4 June 1973
20. Psaltis, P.: The isoperimetric profile of infinite genus surfaces. Geom. Dedic. 149(1), 95–102 (2010)
21. Ritoré, M.: Continuity of the isoperimetric profile of a complete Riemannian manifold under sectional curvature conditions. Rev. Mat. Iberoam. 33, no. 1 (2017), arXiv:1503.07014, 2015
22. Ros, A.: The Isoperimetric Problem in Global Theory of Minimal Surfaces, Volume 2 of Clay Math Proc, pp. 175–209. American Mathematical Society, Providence, RI (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.