Membranous Nephropathy With Crescents

Rasha Alawieh¹, Sergey V. Brodsky², Anjali A. Satoskar², Tibor Nadasdy², Samir V. Parikh¹, Brad Rovin¹ and Clarissa A. Cassol²

¹Department of Internal Medicine, Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; and ²Department of Pathology, Division of Renal Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA

Correspondence: Clarissa A. Cassol, The Ohio State University, 320 W. 10th Avenue, M364A Starling Loving Hall, Columbus, Ohio 43210, USA. E-mail: Clarissa.Cassol@osumc.edu; or Brad Rovin, Division of Nephrology, The Ohio State University, Wexner Medical Center, 395 West 12th Avenue, Ground Floor, Columbus, Ohio 43210, USA. E-mail: rovin.1@osu.edu

Received 14 December 2019; revised 14 January 2020; accepted 20 January 2020; published online 30 January 2020

Kidney Int Rep (2020) 5, 537–541; https://doi.org/10.1016/j.ekir.2020.01.010
© 2020 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults and can be primary or secondary. Primary MN is most commonly associated with anti-M-type phospholipase A2 receptor (PLA2R) antibodies and is usually IgG4 dominant, whereas secondary MN can be seen in the setting of malignancies, infections, autoimmune diseases, or as a side effect of certain medications or...
Case	Sex	Age (yr)	Ethnicity	Baseline Cr (mg/dl)	Cr at biopsy (mg/dl)	GFR at diagnosis (ml/min per 1.73 m²)	Proteinuria at biopsy	Follow-up proteinuria	Albumin (g/dl)	Edema	Lung symptoms	Medical comorbidities	Antibodies	Other relevant labs	Treatment	Dialysis	Transplant	Cr at last follow-up (mg/dl)	GFR at follow-up (ml/min per 1.73 m²)	Follow-up duration (mo)		
1	F	68	White	1.6	9	4	3+	4 g/24 h	NA	2.5	Yes	SOB	Rheumatoid arthritis, NSAID use	MPO	NA	Cyclophosphamide, prednisone complicating aspergillus pneumonia	Yes	Yes	NA	NA	NA	12
2	F	21	White	NA	15	3	Anuric	ESRD	NA	NA	NA	DAH, acute respiratory failure	NA	Anti-GBM	PLEX, prednisone, and cyclophosphamide	Yes	No	ESRD	ESRD	98	13	
3	M	65	White	0.9	2.2	30	>100 RBCs/HPF	2.88 g/24 h	ESRD	3.7	No	Hemoptysis	Raynaud syndrome	pANCA, MPO	ANA 1:80	Yes	Yes	Yes	ESRD (5.38)	after transplant nephrectomy	ESRD	12
4	F	64	AA	2	2.5	24	Moderate, 20–29 RBCs/HPF	1.6 g/24 h	1.1 g UPC	2.2	Yes	Hemoptysis, DAH	Diabetes, hep C cirrhosis, HCC	pANCA, MPO	PR3	Prednisone and cyclophosphamide then MMF	No	None	4.33	Deceased	13	41
5	F	62	Asian	NA	1.09	51	NA	16.9 g/24 h	NA	0.6	Yes	Liver dysfunction	Pulmonary nodule	NA	NA	None	NA	NA	1.14	49	79	10
6	F	61	AA	0.8	9	5	Few RBCs	8 g UPC	1.6 g/24 h	1.4	Yes	HTN, CKD, heavy smoker	NA	NA	Prednisone and cyclophosphamide	No	No	1.32	49	10	14	
7	F	66	AA	1.3	2.9	20	NA	3.5 g UPC	NA	NA	NA	Bladder cancer, MGUS	NA	NA	NA	NA	NA	NA	NA	NA	14	
8	M	70	White	1.3	2.35	28	>20 RBCs/HPF	2 g/24 h	1.3 g UPC	3.4	No	Cough	Previous MN with crescents, MGUS, resected pancreatic neoplasm, metastatic sarcomatoid carcinoma, HTN, DM	pANCA, MPO	PR3	Prednisone and cyclophosphamide	No	No	1.99	33	14	11
9	M	79	White	1.5	3	21	21–30 RBCs/HPF	1 g UPC	0.2 g UPC	4.5	No	None	HTN, MGUS, diabetes	pANCA, MPO	None	Cyclophosphamide, prednisone, then MMF	No	No	2.02	32	46 mo	12
10	M	56	AA	1.07	1.07	>60	Large	4.7 g/24 h	0.7 g/24 h	2.7	Yes	None	Diabetes, HTN	NA	None	Cyclophosphamide	No	No	0.83	>60	49 mo	10
11	F	42	NA	1	1.8	NA	>60 RBCs/HPF	1.8 g UPC	0.2 g UPC	1.7	NA	NA	Prior MPO-ANCA cutaneous vasculitis, history of cocaine abuse, positive MISA skin culture	MPO	Positive ANA and anti-SSB	Prednisone, MMF	NA	NA	0.8	>60	41 mo	14
12	M	26	White	NA	18.6	3	Large	2.8 g/24 h	0.07 g UPC	3.6	None	Hemoptysis	Obesity	Anti-GBM >8	PLEX, steroids, cyclophosphamide	Yes	Yes	2.01	39	38 mo	11	

(Continued on next page)
The occurrence of crescents in MN is extremely rare, with a prevalence estimated between 0.39% and 0.26%. Crescents can be seen in both primary and secondary MN or in association with a superimposed disease process, such as anti–neutrophil cytoplasmic antibody (ANCA)–associated glomerulonephritis or anti–glomerular basement membrane (GBM) disease. Previous series in the United States have either focused on cases of MN with crescents in the absence of ANCA or anti–GBM antibodies, or in association with ANCA. In light of the recently published series of MN with crescents from the United Kingdom, and given the rarity of this entity, we analyzed its prevalence and its clinical and pathological characteristics in biopsy findings reviewed at our institution.

A total of 14,800 native and transplant renal biopsy specimens were received at the Ohio State University from 2010 to 2019. Of these, 15 cases (0.1%) showed MN with crescents (fibrous crescents only; 3; diffuse crescents [in >50% of glomeruli]; 3; focal crescents [in <50% of glomeruli], 9). In addition, 3 cases had only segmental subepithelial deposits (segmental MN).

Cases of lupus nephritis were excluded. PLA2R staining was performed retrospectively in 7 cases.

There were 8 female and 7 male patients. Two had anti–GBM antibodies (Figure 1a–d). 9 had ANCA (8 MPO, 2 both MPO and PR3), and 4 showed anti–PLA2R–positive deposits in the biopsy specimen (Figure 1e–g), including 1 with positive serum anti–PLA2R. Of note, not all of these antibodies were checked in all patients. Clinical features are summarized in Table 1 and pathological features in Table 2. One patient had prior ANCA–associated cutaneous vasculitis, and 1 patient had prior biopsy–proven infection–related glomerulonephritis; both had a history of cocaine use. Potential secondary causes of MN included solid organ malignancies (n = 3), hepatitis C (n = 2), and rheumatoid arthritis (n = 1). Three patients had a monoclonal gammapathy of undetermined significance, and 5 patients had positive autoantibodies (4 anti–nuclear antibodies, 2 anticytoplasmic antibodies, and rheumatoid arthritis). Eight patients had pulmonary symptoms, including hemoptysis in 3 and documented diffuse alveolar hemorrhage in 2. Twelve patients had hematuria, which was usually significant, and 14 had proteinuria (1 patient was anuric). Proteinuria was measured by spot urine protein–to–creatinine ratio or 24-hour collection and was >3 g in 7 of the 14 patients. Median creatinine at presentation was 2.9 mg/dl (1.07–18.6). Two patients had normal renal function on presentation (1 patient had a single fibrous and the other a single cellular crescent). The remaining 13 patients had estimated glomerular filtration rate of <60 ml/min per 1.73 m². Eleven patients...
Table 2. Pathological characteristics

Case	Final diagnosis	Total glomeruli	Crescents/FN	GS	% Active lesions^a	IFTA%	Immunofluorescence^b	lgG1	lgG2	lgG3	lgG4	PLA2R	EM stage	Mesangial deposits	TRIs	Extraglomerular deposits
1	ANCA-associated crescentic and necrotizing GN; membranous GN	16	4	8	25	25	lgG, IgA, C3, kappa, lambda GBM	1	0	1.5	0.5	Negative	NA	NA	NA	0
2	Diffuse crescentic and necrotizing anti-GBM disease; segmental MN	21	18	0	85	0	Linear GBM IgG, kappa, lambda GBM and IgG, kappa, lambda TBM	2.5	1.5 Linear	0	3 Linear	Negative	1	0	0	0
3	Focal crescentic GN with MN	30	1	10	3	35	lgG, IgA, C3, kappa, lambda GBM and IgG, kappa, lambda TBM	1.5	1	0	0.5	Negative	0 to 2	1	0	TBM deposits by IF
4	MN with fibrous crescents; underlying diabetic glomerulosclerosis	24	4 (Fibrous)	10	0	60-70	IgG, IgA, C3, kappa, lambda GBM and IgG, kappa, lambda GBM	1.5	0.5	0.5	2	Positive	3 to 4	0	0	TBM deposits by IF
5	MN with fibrous crescents	34	1 (Fibrous)	9	0	20	IgG, C3, kappa, lambda GBM	3	2	0	2	Negative	2	0	0	0
6	MN with focal crescents	13	3	0	23	20-25	IgG, IgA, IgM, C3, kappa, lambda GBM	2	1	2	3	Weak and segmental	2 to 3	0	0	0
7	ANCA-associated crescentic and necrotizing GN with MN	33	8	12	24	60	IgG, IgM, C3, kappa, lambda GBM	2	1	0.5	3	Positive	2 to 3	0	0	0
8	ANCA-associated crescentic and necrotizing GN; membranous GN	12	6	0	50	30	IgG, C3, kappa, lambda GBM	1.5	0.5	1	0	Negative	0 to 4	0	0	0
9	ANCA-associated necrotizing and crescentic GN with MN and TBM deposits	5	1	0	20	35	lgG, kappa, lambda GBM and IgG, C1q, kappa, lambda TBM (focal)	1	0.5	0	2	Negative	1 to 3	0	0	TBM deposits by IF and EM
10	MN with focal crescents	12	1	2	8	5	IgG, C3, kappa and lambda	3	1	2	3	Positive	2	0	0	0
11	Immune-complex GN with segmental MN and focal necrotizing lesions	13	2	0	15	10	IgG, IgM, C3, kappa and lambda GBM and segmented mesangial	2	0.5	0.5	0	Negative	2	Rare	1	0
12	Diffuse crescentic and necrotizing anti-GBM disease; segmental MN	23	18	0	78	25	Linear IgG, IgA, C3, kappa and lambda	2	Linear	1 Linear	1 Linear	Negative	1 to 2	0	0	0
13	MN with focal crescents	42	1	7	2	20	IgG, C3, kappa and lambda GBM	2	1	0.5	2	Negative	1 to 2	0	0	0
14	Advanced chronic renal injury with underlying MN; acute TMA	32	5 (Fibrous)	29	0	90	IgG, IgM, C3, kappa and lambda GBM and segmented mesangial	1	0.5	0.5	0	Negative	2	1	0	0
15	MN with focal crescents	9	3	0	33	20	IgG, C3, kappa and lambda GBM and mesangial	3	1	2	3	Positive	2 to 4	1	1	1

^aActive lesions include cellular or fibrous – cellular crescents and areas of glomerular segmental fibrinoid necrosis.

^bDeposits are granular unless otherwise specified.

ANCA, anti-neutrophil cytoplasmic antibodies; C3, complement factor 3; C4, complement factor 4; Ig, immunoglobulin; EM, electron microscopy; FN, fibrinoid necrosis; GBM, glomerular basement membrane; GN, glomerulonephritis; GS, globally sclerotic glomeruli; IFTA, interstitial fibrosis and tubular atrophy; MN, membranous nephropathy; PLA2R, M-type phospholipase A2 receptor; NA, not available; TBM, tubular basement membrane; TMA, thrombotic microangiopathy; TRIs, tubuloreticular inclusions.
presented with severe kidney dysfunction (eGFR ≤30 ml/min per 1.73 m²), 4 of whom required dialysis (2 with anti-GBM and 2 with MPO). Twelve patients received immunosuppression, 2 did not (1 had end-stage renal disease [ESRD]), and the other had a single fibrous crescent on biopsy); treatment data were not available for 1 patient. The most common drugs used were corticosteroids (n = 11) and cyclophosphamide (n = 10), followed by mycophenolate mofetil (MMF) (n = 4), azathioprine (n = 1), and rituximab (n = 1). Plasmapheresis was performed in 3 patients: 2 with anti-GBM and 1 with myeloperoxidase (MPO) antibodies and hemoptysis. Follow-up data were available for 13 patients, with a median follow-up of 38 months (4–98 months). Of these 13 patients, 5 reached ESRD (3 MPO, 2 anti-GBM), of whom 3 received a kidney transplant. Of the patients who reached ESRD, 2 had >50% crescents on biopsy, and 1 patient had >90% interstitial fibrosis and tubular atrophy (IFTA); the other 2 patients had up to 25% crescents and 25% to 35% IFTA (Table 2). Five patients developed chronic kidney disease, 2 died (both had solid organ malignancies), and only 3 (20%) had eGFR >60 ml/min 1.73 m² (all of these patients had only focal crescents and mild IFTA on biopsy). Conversely, renal survival in MN without crescents is estimated to be between 70% and 90%.6

Overall, our series findings are similar to those recently reported by Nikolopoulou et al., with approximately 40% of patients reaching ESRD. We had a greater number of anti-PLA2R-ppositive cases (26% vs. 13%), whereas they had a greater number of anti-GBM−positive patients (33% vs. 13%). Interestingly, however, outcomes were similar, which may be due to the fact that the prognosis of anti-GBM disease tends to be better in cases with associated MN,7 with close to 40% of patients recovering renal function in contrast to only 15% in pure anti-GBM disease.51 Potential explanations for that could be overall lower levels of anti-GBM antibodies in patients with concomitant MN as well as a narrower antigen reactivity spectrum of the anti-GBM antibodies present.7

In contrast to MN without crescents, in which case >90% of patients have normal renal function at presentation, and hematuria is generally microscopic and low-grade,52 most of our patients had significant hematuria, and approximately 75% presented with severe kidney dysfunction. In addition, although approximately 80% of cases of MN without crescents are considered primary, in our series only 26% of cases were PLA2R positive, and 40% were IgG4 dominant/co-dominant. Therefore, it appears that crescents occur more often in cases of secondary MN.

In conclusion, MN with crescents is a rare and heterogeneous entity that can be associated with ANCA, anti-GBM, PLA2R, and potentially other auto-antibodies. It presents more often with significant hematuria and renal dysfunction than MN without crescents and progresses more often to ESRD. Whether these cases represent a coincidental occurrence of 2 separate disease entities or whether they are pathogenically related remains to be determined,8 although the latter is conceivable. For example, subepithelial deposits may facilitate GBM damage, leading to anti-GBM antibody production. Conversely, GBM damage caused by anti-GBM (or other) antibodies could expose epitopes that lead to immune-complex deposition along the subepithelial aspect of the GBM.

DISCLOSURE
All the authors declared no competing interests.

SUPPLEMENTARY MATERIAL
Supplementary File (Word)
Supplementary References.

REFERENCES
1. Couser WG. Primary membranous nephropathy. Clin J Am Soc Nephrol. 2017;12:983–997.
2. Hemminger J, Nadasdy G, Satoskar A, et al. IgG subclass staining in routine renal biopsy material. Am J Surg Pathol. 2016;40:617–626.
3. Rodriguez EF, Nasr SH, Larsen CP, et al. Membranous glomerulonephritis with crescents. Am J Kidney Dis. 2014;64:66–73.
4. Nikolopoulou A, Huang-Doran I, McAdoo SP, et al. Membranous glomerulonephritis with crescents: a series of 19 cases. Am J Kidney Dis. 2019;4:1577–1584.
5. Nasr SH, Said SM, Valeri AM, et al. Membranous glomerulonephritis with crescents. Kidney Int Rep. 2019;4:1577–1584.
6. Cattran DC, Pei Y, Greenwood C. Predicting progression in membranous glomerulonephritis. Nephrol Dial Transplant. 1992;7(suppl 1):48–52.
7. Jia XY, Hu SY, Chen JL, et al. The clinical and immunological features of patients with combined anti-glomerular basement membrane disease and membranous nephropathy. Kidney Int. 2014;85:945–952.
8. Basford AW, Lewis J, Dwyer JP, Fogo AB. Membranous nephropathy with crescents. J Am Soc Nephrol. 2011;22:1804–1808.