Meta-analysis of the use of sterilized mosquito net mesh for inguinal hernia repair in less economically developed countries

M. H. Ahmad¹, S. Pathak¹, K. D. Clement² and E. H. Aly³,⁴

¹University Hospitals of Leicester, Leicester, ²Queen Elizabeth University Hospital, Glasgow, and ³Department of General Surgery, Aberdeen Royal Infirmary and ⁴University of Aberdeen, Aberdeen, UK

Correspondence to: Mr E. H. Aly, Department of General Surgery, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB25 2ZN, UK
(e-mail: emad.aly@nhs.net; M. H. Ahmad @hashkey22, K. D. Clement @keirandavid)

Background: Inguinal hernias are common in less economically developed countries (LEDCs), and associated with significant morbidity and mortality. Tension-free mesh repair is the standard treatment worldwide. Lack of resources combined with the high cost of commercial synthetic mesh (CSM) have limited its use in LEDCs. Sterilized mosquito net mesh (MNM) has emerged as a low-cost, readily available alternative to CSM. The aim of this systematic review and meta-analysis was to evaluate the safety and efficacy of MNM for the use in hernia repair in LEDCs.

Methods: A systematic review and data meta-analysis of all published articles from inception to August 2018 was performed. Cochrane Central Register of Controlled Trials, MEDLINE and Embase databases were searched. The primary outcome measure was the overall postoperative complication rate of hernia repair using MNM. Secondary outcome measures were comparisons between MNM and CSM with regard to overall complication rate, wound infection, chronic pain and haematoma formation.

Results: A total of nine studies were considered relevant (3 RCTs, 1 non-randomized trial and 5 prospective studies), providing a total cohort of 1085 patients using MNM. The overall complication rate for hernia repair using MNM was 9.3 per cent. There was no significant difference between MNM and CSM regarding the overall postoperative complication rate (odds ratio 0.99, 95 per cent c.i. 0.65 to 1.53; P = 0.98), severe or chronic pain (OR 2.52, 0.36 to 17.42; P = 0.35), infection (OR 0.56, 0.19 to 1.61; P = 0.28) or haematoma (OR 1.05, 0.62 to 1.78; P = 0.86).

Conclusion: MNM has a low overall postoperative complication rate and is unlikely to be inferior to CSM in terms of safety and efficacy. MNM is a suitable low-cost alternative to CSM in the presence of financial constraint.

Funding information
No funding

Presented to the International Surgical Congress of the Association of Surgeons of Great Britain and Ireland, Glasgow, UK, May 2017; published in abstract form as Br J Surg 2017; 104(Suppl 6): 58

Paper accepted 18 January 2019
Published online 27 February 2019 in Wiley Online Library (www.bjsopen.com). DOI: 10.1002/bjs5.50147

Introduction

Hernia repair is one of the most commonly performed surgical operations worldwide¹. Less economically developed countries (LEDCs) often have a significant number of people with inguinal hernia, with an estimated prevalence of 3.2 (range 2.8–3.5) per cent in Ghana². The incidence of symptomatic hernia in Africa is reported to be approximately 200 per 100000 people³, and in Tanzania the incidence is as high as 5.4 per cent⁴. In both studies²,⁴ the prevalence of inguinal hernia was compared against the current rate of hernia repair, and it was determined that there would be a backlog of approximately 1 million patients over a 10-year period. This significant burden of surgical work has been recognized for more than 30 years⁵. Strangulated inguinal hernia has been
reported to have a mortality rate of as high as 40 per cent in low-income countries. The prevalence of symptomatic hernia may be associated with delayed repair, and thus higher morbidity and mortality. Beyond this, poor infrastructure, shortage of medical facilities and low numbers of surgeons per population are issues faced by many LEDCs.

In the mid 1980s, Lichtenstein tension-free repair was advocated to deal with inguinal hernia in a way that avoided reliance on sutures and associated suture tension. Lichtenstein hernia repair with a commercial synthetic mesh (CSM) is now the most common technique used in the developed world. A recent Cochrane review concluded that the use of mesh was associated with fewer recurrences, a shorter duration of surgery and a shorter length of hospital stay compared with non-mesh repair. However, the cost of CSM has remained prohibitive in LEDCs. Sterilized mosquito net mesh (MNM) may be a low-cost alternative in these countries as an easily accessible substitute.

The cost of importing CSM to low-income countries is commonly reported to be approximately €90. Following this, the mesh must be sterilized and packaged. Sterilization is most commonly carried out using an autoclave, which is cost-effective and used widely throughout sub-Saharan Africa. Even taking into consideration the cost of local sterilization and packing, MNM remains considerably cheaper than CSM.

CSM is commonly made from polypropylene, which is easily sterilized. MNM is usually made from a number of materials, including a co-polymer of polyethylene and polypropylene in varying proportions, reflecting manufacturer and country of origin. This variation can impact on the material properties of the mesh, related to the method of sterilization used.

The aims of the presented systematic review and meta-analysis were to evaluate current evidence investigating the safety and efficacy of MNM for groin hernia in LEDCs. The primary outcome measure was the overall postoperative complication rate of hernia repair using MNM. Secondary outcome measures were comparisons between MNM and CSM with regard to overall complication rates, wound infection, chronic pain and haematoma formation.
Methods

This systematic review and meta-analysis was conducted according to a predefined protocol and in accordance with the principles recommended in the PRISMA guidelines18 (Fig. 1).

Eligible studies were included provided they met the following criteria: RCT, non-randomized controlled trial or observational study relating to clinical studies on humans involving NMN for hernia repair, either in isolation or in comparison with CSM. Only original studies containing original data were included.

Animal studies, non-English-language studies, studies for which only an abstract was available, non-clinical studies, studies with duplicate data, and narrative reviews were all excluded.

Data sources

Eligible studies were identified by performing searches in the Cochrane Central Register of Controlled Trials, PubMed/MEDLINE and Embase, as resources to identify relevant manuscripts. Search term key words were ‘hernia’, ‘mesh’, ‘mosquito mesh’ and ‘hernia repair’. Databases were searched from inception to August 2018. Reference lists of relevant studies were also inspected for inclusion.

Studies retrieved from the searches were reviewed independently by two authors. Those that met the inclusion criteria were shortlisted for data extraction. Disagreements were resolved by discussion with a third author when necessary.

Data extraction

Two reviewers extracted the data from shortlisted studies on study type, setting, country, population, sample size, mesh type, cost, sterilization techniques, type of surgery, study population demographics, baseline characteristics, intervention and postoperative complications. Data were recorded in a standard form, and risk-of-bias assessments were completed contemporaneously.

The primary outcome measure was the overall postoperative complication rate of hernia repair using MNM, including haematoma, graft rejection, infection and pain. Secondary outcome measures were comparisons between MNM and CSM with regard to overall complication rates, infection, chronic pain and haematoma formation.

Risk of bias

Risk of bias was assessed independently by two authors using the Cochrane risk-of-bias checklist as published in the Cochrane Handbook for Systematic Reviews of Interventions version 5.1.019. This evaluated random sequence generation and allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other sources of bias. Each of...
Fig. 3 Forest plots comparing complications and pain after hernia repair with mosquito net versus commercial mesh. a Overall complications, b severe or chronic pain, c infection and d haematoma or swelling. A Mantel–Haenszel fixed-effect model was used for meta-analysis. Odds ratios are shown with 95 per cent confidence intervals.

Complications

Reference	Mosquito net	Commercial mesh	Weight (%)	Odds ratio	Odds ratio
Chauhan et al.	3 of 40	4 of 44	8·5	0·81 (0·17, 3·87)	
Freudenberg et al.	0 of 18	0 of 18	Not estimable		
Lötgren et al.	44 of 143	44 of 148	72·3	1·05 (0·64, 1·73)	
Tongaonkar et al.	26 of 359	5 of 60	19·2	0·86 (0·32, 2·33)	
Total	73 of 560	53 of 270	100·0	0·99 (0·65, 1·53)	

Heterogeneity: $\chi^2 = 0·19$, 2 d.f., $P = 0·91$; $I^2 = 0$

Test for overall effect: $Z = 0·03$, $P = 0·98$

Pain

Reference	Mosquito net	Commercial mesh	Weight (%)	Odds ratio	Odds ratio
Chauhan et al.	1 of 40	1 of 44	65·8	1·10 (0·07, 18·23)	
Freudenberg et al.	0 of 18	0 of 18	Not estimable		
Lötgren et al.	2 of 143	0 of 148	34·2	5·25 (0·25, 110·26)	
Tongaonkar et al.	0 of 359	0 of 60	Not estimable		
Total	3 of 560	1 of 270	100·0	2·52 (0·36, 17·42)	

Heterogeneity: $\chi^2 = 0·56$, 1 d.f., $P = 0·46$; $I^2 = 0$

Test for overall effect: $Z = 0·94$, $P = 0·35$

Infection

Reference	Mosquito net	Commercial mesh	Weight (%)	Odds ratio	Odds ratio
Chauhan et al.	1 of 40	2 of 44	20·0	0·54 (0·05, 6·18)	
Freudenberg et al.	0 of 18	0 of 18	Not estimable		
Lötgren et al.	4 of 143	6 of 148	61·6	0·68 (0·19, 2·47)	
Tongaonkar et al.	1 of 359	1 of 60	18·4	0·16 (0·01, 2·67)	
Total	6 of 560	9 of 270	100·0	0·56 (0·19, 1·61)	

Heterogeneity: $\chi^2 = 0·83$, 2 d.f., $P = 0·66$; $I^2 = 0$

Test for overall effect: $Z = 1·08$, $P = 0·28$

Haematoma

Reference	Mosquito net	Commercial mesh	Weight (%)	Odds ratio	Odds ratio
Chauhan et al.	1 of 40	1 of 44	3·5	1·10 (0·07, 18·23)	
Freudenberg et al.	0 of 18	0 of 18	Not estimable		
Lötgren et al.	35 of 143	35 of 148	96·5	1·05 (0·61, 1·79)	
Tongaonkar et al.	3 of 359	0 of 0	Not estimable		
Total	39 of 560	36 of 210	100·0	1·05 (0·62, 1·78)	

Heterogeneity: $\chi^2 = 0·00$, 1 d.f., $P = 0·97$; $I^2 = 0$

Test for overall effect: $Z = 0·17$, $P = 0·86$

Haematoma or swelling

© 2019 The Authors. BJS Open published by John Wiley & Sons Ltd on behalf of BJS Society Ltd
these domains was assessed to be at low, medium or high risk of bias.

Statistical analysis and data synthesis

Statistical analysis and data synthesis was conducted using Review Manager version 5.3.5 (The Cochrane Collaboration, The Nordic Cochrane Centre, Copenhagen, Denmark). Outcomes deemed relevant from the included studies were assessed for estimation of treatment effects. Odds ratios (ORs) and 95 per cent c.i. were calculated for dichotomous outcomes. The mean difference with 95 per cent c.i. was calculated for continuous outcomes. Meta-analyses were assessed for heterogeneity using the χ² test and I² statistic (considered significant if the χ² statistic had a P value of less than 0.100, or I² was greater than 50 per cent). Where heterogeneity was found to be significant, analyses were carried out using a random-effects model. For non-randomized trials, data were represented numerically and a cumulative analysis was performed. Where possible, statistical analysis and data synthesis were limited to studies reporting intention-to-treat protocols. Where data were missing, information was sought from the study authors. If this information remained unavailable, outcomes were inferred from existing data using statistical methods. No subgroup or metaregression analysis was performed.

Results

Description of studies

A total of 139 records were found through database searching. Following application of data exclusion criteria, nine studies were finally included (3 RCTs, 1 non-RCT, and 5 studies using prospectively developed databases). All studies took place in LEDCs, two in the Indian subcontinent and seven in Africa. All four controlled trials compared MNM with CSM; the remaining studies focused solely on MNM.

Participants

Data from the nine studies were extracted to form an aggregate quantitative synthesis including a total cohort of 1360 patients (1085 patients in the MNM intervention and 275 in the CSM control group). The mean age of participants in the studies ranged from 33 to 52 years, and the mean length of follow-up varied from 1 month to 5 years (Tables S1 and S2, supporting information).

Assessment of bias

Risk-of-bias assessments were conducted for the four comparative studies that underwent meta-analysis (Table 1). Two were found to be at low risk of bias and two had a high risk of selection and attrition bias.

Primary outcome

The overall postoperative complication rate was 9.3 per cent, with haematoma formation or swelling accounting for more than half of all complications. The incidence of graft rejection was 0 per cent, infection 1.9 per cent and impaired wound healing 0.4 per cent (Fig. 2). Individual postoperative outcomes for each study are summarized in Table S3 (supporting information).

Secondary outcomes

Owing to the limited number of RCTs, the single non-RCT was included in the meta-analysis. Four studies compared MNM and CSM with regard to overall complication rate, severe or chronic postoperative pain, postoperative infection and haematoma formation. A random-effects meta-analysis did not demonstrate a statistically significant difference between the two groups.

The overall complication rate revealed a pooled OR of 0.99 (95 per cent c.i. 0.65 to 1.53; P=0.98), with no evidence of heterogeneity (I² = 0 per cent, P=0.91) (Fig. 3a). For severe or chronic pain, the pooled OR was 2.52 (0.36 to 17.42; P=0.35), with no heterogeneity (I² = 0 per cent, P=0.46) (Fig. 3b). For infection the pooled OR was 0.56 (0.19 to 1.61; P=0.28), with no heterogeneity (I² = 0 per cent, P=0.66) (Fig. 3c), and for haematoma the pooled OR was 1.05 (0.62 to 1.78; P=0.86), with no heterogeneity (I² = 0 per cent, P=0.97) (Fig. 3d).

Discussion

The results of the present meta-analysis support those of a previous review and confirm the overall low rate of complications using MNM. This meta-analysis combined individual data from different international centres with an overall cohort of 1085 patients, and demonstrated that patients undergoing inguinal hernia repair with MNM had a low rate of postoperative complications, comparable to that with CSM. Analysis of secondary outcome measures was not able to demonstrate a statistically significant difference in overall complication rates, infection rates, incidence of chronic pain and haematoma formation between MNM and CSM.
Sterilized MNM is a low-cost alternative to CSM and has the potential to overcome some of the barriers to prompt surgical treatment. Data in the individual RCTs demonstrated that MNM can cost as little as €0.02 for a 15×15-cm strip that can be used in place of traditional CSM.

Issues surrounding the sterilization of MNM are important. Previous research has suggested that not all MNMs will be suitable for autoclave sterilization. One study showed that exposure of meshes to temperatures of 121°C caused some meshes to shrink by 30–50 per cent, with degradation of physical material properties. Further work should aim to create a standard protocol for the sterilization of MNM with no detrimental impact on its material properties.

The main limitation of the present study was that it included all trials published from inception to August 2018. Change in clinical practice over this interval, as well as surgical innovation and population change in LEDCs, may be important. Design and methodological limitations in the studies included in the quantitative synthesis may also have influenced the results. One of the four studies in the meta-analysis was non-randomized, and this would have introduced a degree of both selection bias and information bias secondary to potential confounders. Of the three RCTs included, one was deemed to have a high risk of selection and attrition bias. The remaining five studies were classified as prospective observational studies, all of which had significant design and methodological limitations.

The primary outcome measure of complication rates after mesh insertion may be less useful than the rate of hernia recurrence after repair, but this could not be considered owing to the lack of long-term data provided. No study included long-term follow-up of patients, so long-term safety and efficacy remain uncertain. Traditional CSMs undergo rigorous quality control testing, accounting for their significantly higher cost compared with MNM, but they are known to be durable. This highlights an important knowledge gap in the long-term performance of MNM and demonstrates the need for a larger body of evidence before definitive recommendations can be made.

Disclosure

The authors declare no conflict of interest.

References

1. Kingsnorth AN, Clarke MG, Shillecutt SD. Public health and policy issues of hernia surgery in Africa. World J Surg 2009; 33: 1188–1193.

2. Beard JH, Oresanya LB, Ohene-Yeboah M, Dicker RA, Harris HW. Characterizing the global burden of surgical disease: a method to estimate inguinal hernia epidemiology in Ghana. World J Surg 2013; 37: 498–503.

3. Ohene-Yeboah M, Abantanga FA. Inguinal hernia disease in Africa: a common but neglected surgical condition. West Afr J Med 2011; 30: 77–83.

4. Beard JH, Oresanya LB, Akoko L, Mwanga A, Dicker RA, Harris HW. An estimation of inguinal hernia epidemiology adjusted for population age structure in Tanzania. Hernia 2014; 18: 289–295.

5. Nordberg EM. Incidence and estimated need of caesarean section, inguinal hernia repair, and operation for strangulated hernia in rural Africa. Br Med J (Clin Res Ed) 1984; 289: 92–93.

6. Bickler SN, Weiser TG, Kassebaum N, Higashi H, Chang DC, Barendregt JJ et al. Global burden of surgical conditions. In Essential Surgery: Disease Control Priorities (3rd edn), Debas HTT, Donkor P, Gawande A, Jamison DT, Kruk ME, Mock CN (eds), vol. 1. World Bank Publications: Washington, 2015; 19–40.

7. Gul M, Aliosmanoglu I, Kapan M, Onder A, Taskesen F, Arikanoglu Z et al. Factors affecting morbidity and mortality in patients who underwent emergency operation for incarcerated abdominal wall hernia. Int Surg 2012; 97: 305–309.

8. Lichtenstein IL, Shulman AG, Amid PK, Montllor MM. The tension-free hernioplasty. Am J Surg 1989; 157: 188–193.

9. Amid PK, Shulman AG, Lichtenstein IL. The Lichtenstein open ‘tension-free’ mesh repair of inguinal hernias. Surg Today 1995; 25: 619–625.

10. HerniaSurge Group. International guidelines for groin hernia management. Hernia 2018; 22: 1–165.

11. Scott NW, McCormack K, Graham P, Go PM, Ross SJ, Grant AM. Open mesh versus non-mesh for groin hernia repair. Cochrane Database Syst Rev 2002; (4):CD0021971.

12. Adesunkanmi AR, Badmus TA, Ogunyodeyin O. Determinants of outcome of inguinal herniorrhaphy in Nigerian patients. Ann Coll Surg Hong Kong 2004; 8: 14–21.

13. Freudenberg S, Sano D, Ouangré E, Weiss C, Wilhelm TJ. Commercial mesh versus nylon mosquito net for hernia repair. A randomized double-blind study in Burkina Faso. World J Surg 2006; 30: 1784–1789.

14. Tongaonkar RR, Reddy BV, Mehta VK, Singh NS, Shivade S. Preliminary multicentric trial of cheap indigenous mosquito-net cloth for tension-free hernia repair. Indian J Surg 2003; 65: 89–95.

15. Shillecutt SD, Clarke MG, Kingsnorth AN. Cost-effectiveness of groin hernia surgery in the western region of Ghana. Arch Surg 2010; 145: 954–961.

16. Linden AF, Sekidde FS, Galukande M, Knowlton LM, Chackungal S, McQueen KA. Challenges of surgery in developing countries: a survey of surgical and anesthesia capacity in Uganda’s public hospitals. World J Surg 2012; 36: 1056–1065.
Sterilized mosquito net mesh for inguinal hernia repair

17. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 2009; 339: b2535.

18. Mitura K, Kozieł S. The influence of different sterilization types on mosquito net mesh characteristics in groin hernia repair. *Hernia* 2018; 22: 483–490.

19. Lundh A, Gøtzsche PC. Recommendations by Cochrane Review Groups for assessment of the risk of bias in studies. *BMC Med Res Methodol* 2008; 8: 22.

20. Löfgren J, Nordin P, Ilbinga C, Matovu A, Galiwango E, Wladis A. A randomized trial of low-cost mesh in groin hernia repair. *N Engl J Med* 2016; 374: 146–153.

21. Chauhan A, Tiwari S, Gupta A. Study of efficacy of bilayer mesh device versus conventional polypropylene hernia system in inguinal hernia repair: early results. *World J Surg* 2007; 31: 1356–1359.

22. Oribabor FO, Amao OA, Akanni SO, Fatidinu SO. The use of nontreated mosquito-net mesh cloth for a tension free inguinal hernia repair: our experience. *Niger J Surg* 2015; 21: 48–51.

23. Stephenson BM, Kingsnorth AN. Safety and sterilization of mosquito net mesh for humanitarian inguinal hernioplasty. *World J Surg* 2011; 35: 1957–1960.

24. Clarke MG, Oppong C, Simmermacher R, Park K, Kurzer M, Vanotoo L et al. The use of sterilised polyester mosquito net mesh for inguinal hernia repair in Ghana. *Hernia* 2009; 13: 155–159.

25. Yenli EMT, Ahanga J, Tabiri S, Kpangkpari S, Tigwii A, Nsor A et al. Our experience with the use of low cost mesh in tension-free inguinal hernioplasty in northern Ghana. *Ghana Med J* 2017; 51: 78–82.

26. Rouet J, Bwelle G, Cauchy F, Messo-Misse P, Gaujoux S, Dousset B. Polyester mosquito net mesh for inguinal hernia repair: a feasible option in resource limited settings in Cameroon? *J Visc Surg* 2018; 155: 111–116.

27. Patterson T, Currie P, Patterson S, Patterson P, Meek C, McMaster R. A systematic review and meta-analysis of the post-operative adverse effects associated with mosquito net mesh in comparison to commercial hernia mesh for inguinal hernia repair in low income countries. *Hernia* 2017; 21: 397–405.

Supporting information

Additional supporting information can be found online in the Supporting Information section at the end of the article.