Valley hydrodynamics in graphene

Ryotaro Sano,1,∗ Daigo Oue,2,3 and Mamoru Matsuo3,4,5,6

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2The Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, Kensington, London SW7 2AZ, United Kingdom
3Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
5RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
6Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, 319-1195, Japan

(Dated: April 7, 2022)

Recent experiments have elucidated that novel nonequilibrium states consistent with the hydrodynamic description of electrons are realized in graphene, which hosts the valley degrees of freedom (DOF) at the corners of the Brillouin zone. Here, we formulate a theory of electron hydrodynamics with the valley DOF for noncentrosymmetric graphene and find that the effective theory has a close analogy with micropolar fluids. Our theory reveals nonlinear valley dynamics including a longitudinal valley current and a circular dichroic valley polarization induced by off-resonant light.

Introduction.— The investigation of internal quantum degrees of freedom (DOF) of electrons in solids has played the central role in condensed matter physics. The most-studied example is that of the electron spin, which gives rise to the vast field of spintronics with an eye on their potential for future electronics [1, 2]. The advent of novel 2D materials which support massive Dirac fermions, exemplified by gapped graphene and transition metal dichalcogenides, has triggered research on alternative future electronics [3–9]. In these systems, two inequivalent valleys K and $-K$ reside at the corners of the hexagonal Brillouin zone. Similar to the spin, the valley labeling constitutes a discrete DOF for low energy carriers. From this perspective, the valley DOF has a potential use for information carriers, giving rise to an active research field called valleytronics as a promising concept for the next-generation electronics [10–17]. Especially, the valley polarization, a nonequilibrium charge carrier imbalance between valleys, is the key to create valleytronic devices [18–31]. Therefore, a necessary requirement for valleytronic applications is the ability to generate and control the valley polarization.

Hydrodynamics composed of the evolution of conserved quantities well describes the nonequilibrium behavior of interacting systems close to equilibrium. Recent experiments on ultrapure graphene have provided clear evidence for a hydrodynamic behavior of charge carriers [32–45]. Graphene hosts a high-quality electron system with weak electron-phonon coupling such that electron-electron scatterings can become the dominant scattering process at elevated temperatures. In addition, the electronic structure of graphene inhibits Umklapp processes, which ensures that electron-electron scatterings are momentum conserving. These features lead to novel nonequilibrium states inherent in the hydrodynamic regime, with the momentum taking on the role of a conserved quantity that governs local equilibrium.

The phenomenon of angular momentum conversion between internal DOF of quantum particles and mechanical rotation have attracted great interest in various fields, ranging from nuclear physics to condensed matter physics. Specifically, the past decades have seen a profound growth of interest in the field of hydrodynamics which deals with the microstructures of the fluid elements so-called micropolar fluids [46–49] because of its many applications in liquid crystals [50, 51], ferrofluids [52–54], spintronics [55–58], quark-gluon plasma [59–61], and active matter [62–65]. The micropolar fluids have received special attention due to angular momentum conservation, which gives rise to an emergent equation for the microrotation: the internal angular momentum stems from the valley polarization P_v of fluid elements. The microrotation relaxes towards the vorticity due to the rotational viscosity.

![FIG. 1. Schematics of the microrotation in valley hydrodynamics. The non-uniform velocity $u(r)$ gives rise to the vorticity $\nabla \times u$. On the other hand, the microrotation ω is the internal angular momentum stems from the valley polarization P_v of fluid elements. The microrotation relaxes towards the vorticity due to the rotational viscosity.](image-url)
presence of the microrotation and the rotational viscosity affect the hydrodynamics. However, the role of the internal DOF in electron hydrodynamics has not been well investigated yet. This naturally motivates us to study electron hydrodynamics with the valley DOF, which can be regarded as an internal angular momentum in noncentrosymmetric systems [66]. Our study gives a new strategy for controlling the valley polarization in gapped graphene and may open up various avenues for research on valley hydrodynamics.

In this Letter, we derive the hydrodynamic equations for 2D honeycomb lattice systems with broken spatial inversion symmetry, which are correct up to the first order in the drift velocity and the microrotation. We uncover that our theory acquires an emergent conservation law for the microrotation, therefore, it has a close analogy to micropolar fluids owing to the valley-microrotation coupling. From a symmetry viewpoint, we find that this interaction can appear only in the systems without inversion symmetry. A key ingredient for valleytronics is a controllable way of population imbalance between the two valleys, thereby producing a valley polarization. Previous works showed that a valley polarization can be conserved in the drift velocity and the microrotation. We also predict nonlinear valley dynamics including a valley polarization induced by off-resonant light [Fig.3] and a circular dichroic longitudinal valley current [Fig.2].

We outline how to derive the hydrodynamic equations for noncentrosymmetric graphene with a staggered sublattice potential. We start from the Boltzmann equation which governs the evolution of the electron distribution function \(f_{\alpha \tau} \) for band \(\alpha \) and valley \(\tau \),

\[
\frac{\partial f_{\alpha \tau}}{\partial t} + \mathbf{v}_{\alpha \tau} \cdot \frac{\partial f_{\alpha \tau}}{\partial \mathbf{r}} + \mathbf{\dot{k}}_{\alpha \tau} \cdot \frac{\partial f_{\alpha \tau}}{\partial \mathbf{k}} = -\frac{f_{\alpha \tau} - f_{\alpha \tau}^N}{\tau_N} - \frac{f_{\alpha \tau} - f_0}{\tau_R} - \frac{f_{\alpha \tau} - f_{\alpha - \tau}}{\tau_{\text{vf}}},
\]

where \(f_0 \) is the Fermi-Dirac (global equilibrium) distribution function. \(\tau_N, \tau_R \) and \(\tau_{\text{vf}} \) are the relaxation times for normal (N), resistive (R) and valley flipping processes. Here, N process conserves the linear momentum, while R process does not. If we construct an electron wave packet near the valley center, the semiclassical equations of motion read [67]

\[
\mathbf{\dot{v}}_{\alpha \tau} = \frac{1}{\hbar} \frac{\partial \epsilon_{\alpha \tau}}{\partial \mathbf{k}} - \mathbf{\dot{k}}_{\alpha \tau} \times \mathbf{\Omega}_{\alpha \tau}, \quad \mathbf{\dot{k}}_{\alpha \tau} = -\frac{e}{\hbar} \mathbf{E},
\]

where electric fields \(\mathbf{E} \) can be time-dependent. \(\epsilon_{\alpha \tau}(\mathbf{k}) \) and \(\mathbf{\Omega}_{\alpha \tau}(\mathbf{k}) \) are the band energy and the Berry curvature of the Bloch electrons respectively. Due to the lack of inversion symmetry, \(\mathbf{\Omega}_{\alpha \tau} \) is allowed to have nonzero values for any \(\mathbf{k} \).

Following the standard approach [68–73], the continuity equations for the carrier density and the linear momentum are obtained as follows:

\[
\frac{\partial n}{\partial t} + \nabla \cdot \mathbf{j} = 0,
\]

\[
\frac{\partial P_i}{\partial t} + \frac{\partial \Pi_{ij}}{\partial x_j} = -enE_i - \frac{P_i}{\tau_R},
\]

where \(n \) and \(P \) are the carrier and the linear momentum densities respectively, \(-en \mathbf{E} \) is the driving force due to external electric fields. In Eqs. (3) and (4), \(\mathbf{j} \) and \(\Pi_{ij} \) are the corresponding fluxes of each density.

A monolayer graphene with a staggered sublattice potential breaking the inversion symmetry is a concrete example for considering valley hydrodynamics. Staggered sublattice potential is generally expected in epitaxial graphene on SiC substrates [74–80]. The effective Hamiltonian describing electron states in the vicinity of the \(K \) and \(-K \) points is given by [3]

\[
H_{\tau} = at(\sigma_x \epsilon_{\tau \sigma} + k_y \sigma_y) + \frac{\Delta}{2} \sigma_z,
\]

where \(a \) and \(t \) are the lattice constant and the nearest-neighbor hopping parameter, \(\mathbf{k} = (k_x, k_y) \) are the two components of the wave vector measured from the valley center, \(\sigma's \) are the Pauli matrices representing a pseudospin from the sublattice DOF, and \(\tau = \pm 1 \) is the valley index labeling the two inequivalent valleys. Note that its band structure \(\epsilon_{\alpha \tau}(\mathbf{k}) \) has no dependence on the valley, while the Berry curvature \(\mathbf{\Omega}_{\alpha \tau}(\mathbf{k}) \) has a valley-contrasting property. Because of large separation of two valleys in the momentum space, intervalley scatterings are strongly suppressed [81–83], implying the potential for regarding the valley polarization as a conserved quantity. Therefore, the effective hydrodynamic theory acquires an emergent continuity equation for the valley polarization:

\[
\frac{\partial P_i}{\partial t} + \nabla \cdot \mathbf{j}_v = -\frac{P_i}{\tau_R} - \frac{2P_v}{\tau_{\text{vf}}},
\]

where \(P_v \) and \(\mathbf{j}_v \) are the valley polarization and the valley current. Here, we have defined the valley polarization \(P_v \equiv n_K - n_{-K} \) as a population imbalance between the two valleys in analogy to the spin polarization. We should note that not only valley flipping processes but also R process contribute to the relaxation of the valley polarization. This indicates that the valley DOF combines a linear momentum and an angular momentum.

In hydrodynamic regime, \(\tau_N \ll \tau_R, \tau_{\text{vf}} \), the system reaches local equilibrium via N electron-electron scatterings, which conserve both the linear momentum and the valley polarization of the electron system. For this reason, we assume that the distribution functions are described as

\[
f_{\alpha \tau}^N = \left[\exp \left(\frac{\epsilon_{\alpha \tau} - \hbar \mathbf{k} \cdot \mathbf{u} - \tau \hbar \omega_z - \mu}{k_B T} \right) + 1 \right]^{-1},
\]
which is referred to as the local equilibrium distribution function. Here, the drift velocity \(\mathbf{u} \) and the microrotation \(\omega_z \) are corresponding parameters for conserved quantities \(\mathbf{P} \) and \(\mathbf{P}_\nu \). From a symmetry viewpoint, the absence of inversion symmetry allows for the interplay between the valley DOF and an angular momentum; examples include the spin-valley coupling \([5, 84]\) and the valley-vorticity coupling \([85]\). Here, the microrotation is the internal angular momentum of the fluid elements and we referred to \(\tau \omega_z \) as the valley-microrotation coupling.

Since the relevant conduction and valence bands are well described by Eq.\((5)\) for low doping level, we use a quadratic dispersion \(\epsilon_{\alpha \tau} = \alpha [\Delta / 2 + \hbar^2 k^2 / 2m^*] \) with an effective mass \(m^* \equiv \hbar^2 \Delta / 2a^2 t^2 \) in the vicinity of the \(K \) and \(-K\) points in the following analysis. Under this assumption, we obtain the valley polarization and the valley current in terms of hydrodynamic variables:

\[
P_v = \hbar \omega_z \sum_{\alpha, \tau} \int [\mathbf{k}] \left(-\frac{\partial f_0}{\partial \epsilon} \right) \approx \hbar \omega_z D(\mu),
\]

\[
j_v = P_v \mathbf{u} + \frac{e}{\hbar} \mathbf{E} \times \sum_{\alpha, \tau} \int [\mathbf{k}] \Omega_{\alpha \tau} f_0,
\]

with the density of states \(D(\epsilon) \) and \(\int [\mathbf{k}] \equiv \int d\mathbf{k} / (2\pi)^2 \). These results indicate that the microrotation leads to a valley polarization. The second term in Eq. \((9)\) is the well-known valley Hall effect \([3]\), on the other hand, the valley polarization. The second term in Eq. \((9)\) is the well-known valley Hall effect \([3]\). In gapped graphene, the orbital magnetization consists of the orbital moment of carriers plus a correction from the Berry curvature \([86]\):

\[
M_{\text{orb}}^z = \sum_{\alpha, \tau} \int [\mathbf{k}] m_{\alpha \tau}^z f_0 + \frac{e}{\beta} \sum_{\alpha, \tau} \int [\mathbf{k}] \Omega_{\alpha \tau} \log [1 + e^{-(\epsilon_{\alpha \tau} - \hbar \mathbf{k} \cdot \mathbf{u} - \hbar \omega_z \tau \mathbf{r} - \mu)]].
\]

After straightforward calculation, we obtain the orbital magnetization,

\[
M_{\text{orb}}^z = \hbar \omega_z \sum_{\alpha, \tau} \int [\mathbf{k}] \left[m_{\alpha \tau}^z \left(-\frac{\partial f_0}{\partial \epsilon} \right) + \frac{e}{\hbar} \Omega_{\alpha \tau}^z f_0 \right].
\]

This result also supports that the microrotation has a meaning of an angular momentum. The spatial profile of the orbital magnetization can be detected with magneto-optical Kerr rotation microscopy \([29, 87-89]\). By using this experimental setup, a population difference in the two valleys can be also detected as a signal of the orbital magnetization [see Fig. 2b, as a demonstration].

Valley hydrodynamic generation. — The most significant consequences of our theory is that the interplay between the valley-microrotation coupling and the viscous effects gives rise to an unprecedented longitudinal nonlinear valley current in finite size systems, which has not been addressed so far. We consider the Poiseuille flow in gapped graphene with finite width \(w \) in the \(y \)-direction, which most clearly characterizes the hydrodynamic transport. When we apply DC electric fields in the \(x \)-direction and take no-slip boundary conditions \(u_x(\pm w/2) = 0 \), the electron fluids form the Poiseuille flow with the velocity profile given by

\[
u_x(y) = -\frac{en\tau_R}{\rho} \left[1 - \cosh(y/\ell) \right] E.
\]

The microrotation is also calculated as

\[
\omega_z(y) = -\frac{\tau_{\text{eff}}}{\tau_r} \frac{1}{2} \frac{\partial u_x}{\partial y} = -\frac{en\tau_R}{2\rho\ell} \tau_{\text{eff}} \sinh(y/\ell) E.
\]
FIG. 2. (a) Schematics of the valley hydrodynamic generation. In hydrodynamic regime, the valley polarization P_v is induced by the microrotation via the valley-microrotation coupling with non-uniform electron velocity $u(x)$, and the longitudinal valley current is generated as $j_v = P_v u$. Plot of (b) the valley polarization and (c) the valley current in the y-range $[-w/2, w/2]$ under DC electric fields for several rotational viscosities. We use the parameters: $w = 10 \, \mu m$, $E = 1 \times 10^6 \, \text{V/m}$, $\nu = 0.1 \, \text{m}^2/\text{s}$, $I = 10^{-12} \, \text{m}^2$, $\tau_r = \tau_{ct} = 1 \times 10^{-12} \, \text{s}$, $a = 2.46 \, \text{Å}$, $t = 2.82 \, \text{eV}$, $\Delta = 0.28 \, \text{eV}$, $\mu = 0.15 \, \text{eV}$, $n = 1.4 \times 10^{15} \, \text{m}^{-2}$, $\rho = 2.8 \times 10^{-17} \, \text{kg/m}^2$, and the valley Hall current $j_{vR} = 2.76 \times 10^{21} \, \text{m}^{-1}\text{s}^{-1}$.

where

$$\ell \equiv \sqrt{(\nu + \nu_r) \frac{\tau_r}{\tau_r + \tau_{\text{inter}}}} \, \tau_R,$$

is a characteristic length that determines the scale of viscous effects. Here, $\tau_r^{-1} \equiv 4\nu_r / I$ and $\tau_{\text{eff}} \equiv (1/\tau_{\text{inter}} + 1/\tau_r)^{-1}$ are the rotational and effective relaxation times. From Eq.(9), we obtain the longitudinal valley current profile as [Fig.2c]

$$j_{v,||}^{\text{DC}}(y) = \left(\frac{e\nu_r}{\rho} \frac{E}{\ell} \right)^2 \frac{\hbar D(\mu)}{2\ell} \frac{\tau_r}{\tau_{\text{eff}}} \times \frac{\sinh(y/\ell)}{\cosh(y/\ell)^2} \left[1 - \frac{\cosh(y/\ell)}{\cosh(\ell/2)} \right].$$

We should note that the rotational viscosity ν_r is necessary for realizing a longitudinal nonlinear valley current under DC electric fields. Similar to DC electric fields, an AC electric field along the x-direction $E_x(t) = R[\dot{E} e^{-\alpha t}]$ also induces the Poiseuille flow and leads to the same solutions:

$$\tilde{u}_x(y, \Omega) = \frac{u_x(y)}{1 - i\Omega \tau_R}, \quad \tilde{\omega}_z(y, \Omega) = \frac{\omega_z(y)}{(1 - i\Omega \tau_{\text{eff}})(1 - i\Omega \tau_R)},$$

except for the replacement of ℓ by

$$\tilde{\ell}(\Omega) = \sqrt{(\nu + \nu_r) \frac{\tau_r}{\tau_r + \tau_{\text{inter}} - i\Omega \tau_{\text{inter}}} \frac{1}{1 - i\Omega \tau_R}}.$$

Because of the intrinsic nonlinearity of the longitudinal valley current, $j_{v,||}$ is composed of the valley counterparts of the rectification and the second harmonic generation:

$$j_{v,||}^{\text{AC}}(y, t) = j_{v,||}^0(y) + j_{v,||}^{2\text{D}}(y, t).$$

Circular photovalley generation. The rotational viscosity-induced valley transport discussed above can be interpreted as a phenomenon of angular momentum conversion between the fluid vorticity and the valley DOF. From this viewpoint, we consider a different scenario for generating a valley polarization by circularly polarized light (CPL). CPL with the electric component $E(t) = E_0(\cos \Omega t, \sin \Omega t)$ induces a circular motion of electrons, which in turn generates a DC orbital magnetization:

$$M_{\text{orb}} = -\frac{ne^3}{4m^2\gamma^3} \xi E_0^2.\quad (24)$$

This phenomenon is known as the inverse Faraday effect [90–93] owing to the fact that CPL has a spin angular momentum proportional to ξE_0^2 [94–98]. Here, the different chirality indices $\xi = \pm 1$ correspond to the clockwise/counterclockwise circular polarizations. In our hydrodynamic formulation, the orbital magnetization is described as Eq. (16), therefore, the inverse Faraday effect can be regarded as a direct transfer mechanism of angular momentum from CPL to the microrotation.

We are now ready to discuss the generation of a valley polarization by CPL dubbed circular photovalley generation [Fig.3]. In contrast to the above discussion, we consider bulk systems with normally-incident CPL. We start from the hydrodynamic equations:

$$\frac{D\mathbf{u}}{Dt} = (\nu + \nu_r) \Delta \mathbf{u} + 2\nu_r \nabla \times \mathbf{u} - \frac{en \mathbf{E}}{\rho} \frac{\mathbf{u}}{\tau_R},$$

$$\frac{D\mathbf{\omega}_z}{Dt} = \frac{1}{\tau_r} \left[(\nabla \times \mathbf{u})_z - \omega_z\right] - \frac{\omega_z}{\tau_{\text{inter}}} + g \xi E_0^2,$$

where an external angular momentum pumping term stems from the inverse Faraday effect is introduced. By solving Eqs. (25) and (26), the DC component of the microrotation in the second order in electric fields is obtained as

$$\omega_z^0 = \tau_{\text{eff}} g \xi E_0^2.$$

(27)
FIG. 3. Schematics of circular photovalley generation. The microrotation is directly induced by irradiating CPL via the inverse Faraday effect. As a result, a DC valley polarization is generated.

giving rise to a nonlinear DC valley polarization:

\[P_\nu^0 = \hbar D(\mu) \tau_{\text{eff}} g \xi E_0^2. \]

(28)

Here, the coefficient of \(g \) is estimated as

\[\tau_{\text{eff}} g = \text{sgn}(\mu) \frac{\Delta^2}{4}\hbar (\Omega \mu)^3 \frac{a^2 t^2}{\Delta^2/4}, \]

(29)

in consistent with Eqs.(16) and (24). In stark contrast to the previous works [18–23], we do not rely on inter-band transition processes, therefore, on-resonant light is not required. This suggests that our hydrodynamic approach broadens the frequency range of CPL and also allows ultrafast manipulation of the valley polarization. This can be achieved by combining the valley DOF with the concept of micropolar fluids. Furthermore, the sign of the valley polarization can be tuned by the chirality \(\xi \) of CPL, and hence circular dichroism appears in the valley polarization.

Discussion.—We propose an experimental setup how to determine \(\nu_r \) below. In order to estimate the rotational viscosity experimentally, valley injection provides a reasonable measure. When we inject valley current from the proximity valley Hall materials into valley hydrodynamic materials, the induced valley polarization leads to the non-uniform microrotation profile \(\omega(\mathbf{r}) \) due to the valley-microrotation coupling. Then, the fluid velocity \(\mathbf{u} \) is generated by the term \(\nu_r \nabla \times \omega \) in Eq.(12). Therefore, we can estimate the rotational viscosity from the observed velocity profile.

Conclusion.—In summary, we have developed a basic framework of valley hydrodynamics in noncentrosymmetric graphene with a staggered sublattice potential, which is composed of the Euler equation Eq.(10) and the balance equation for the microrotation Eq.(11). In addition, we have investigated the interplay between the valley DOF and the microrotation, and elucidated that the valley polarization can be controlled by the microrotation. Our hydrodynamic theory also reveals nonlinear valley dynamics. For example, the rotational viscosity \(\nu_r \) provides a longitudinal nonlinear valley current, which gives rise to the valley counterparts of the rectification and the second harmonic generation. As discussed, \(\nu_r \) can be measured by valley-induced hydrodynamic flow generation. Furthermore, the concept of micropolar fluids sheds light on a rich physics of angular momentum conversion, exemplified by a circular dichroic valley polarization induced by off-resonant light. These results are summarized in Table I.

The conventional strategy for designing electronic devices in spintronics or valleytronics has been creating confined nanostructure in order to achieve functionality. On the other hand, in hydrodynamic regime, the flow of electrons can become spatially non-uniform due to the viscosities even when the material structure is homogeneous. This suggests a new design guideline for innovative device functionality without nanostructure. Therefore, we believe that the present results provide a building block for future electronics and will pave the way to valleytronic applications of electron hydrodynamics.

The authors are grateful to Yuya Ominato, Shin Kaneshiro, Riki Toshio, Koki Shinada, Hideaki Nishikawa and Hisao Hayakawa for valuable discussions. R.S. thanks Satoshi Kusaba, Kohei Nagai and Kento Uchida for providing helpful comments from an experimental point of view. This work was supported by the Priority Program of Chinese Academy of Sciences under Grant No. XDB28000000, and by JSPS KAKENHI for Grants (Nos. 20H01863 and 21H04565) from MEXT, Japan.

* sano.ryotaro.52v@st.kyoto-u.ac.jp

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).

[2] S. Maekawa, S.O. Valenzuela, T. Kimura, and E. Saitoh, Spin Current, Oxford science publications (Oxford University Press, 2017).
[3] Di Xiao, Wang Yao, and Qian Niu, “Valley-contrasting transports in graphene: Magnetic moment and topological physics,” Phys. Rev. Lett. 99, 236809 (2007).

[4] Wang Yao, Di Xiao, and Qian Niu, “Valley-dependent optoelectronics from inversion symmetry breaking,” Phys. Rev. B 77, 235406 (2008).

[5] Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao, “Coupled spin and valley physics in monolayers of mso2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).

[6] Sheneve Z. Butler et al., “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7, 2898–2926 (2013).

[7] Bich Ha Nguyen and Van Hieu Nguyen, “Two-dimensional hexagonal semiconductors beyond graphene,” Advances in Natural Sciences: Nanoscience and Nanotechnology 7, 043001 (2016).

[8] Fucai Liu, Jiadong Zhou, Chao Zhu, and Zheng Liu, “Electric field effect in two-dimensional transition metal dichalcogenides,” Advanced Functional Materials 27, 1602404 (2017).

[9] Wobong Choi, Nitin Choudhary, Gang Hee Han, Juhong Hong, Deji Akinwande, and Young Hee Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Materials Today 20, 116–130 (2017).

[10] A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, “Valley filter and valley valve in graphene,” Nature Physics 3, 172–175 (2007).

[11] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer mos2 transistors,” Nature Nanotechnology 6, 147–150 (2011).

[12] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S. Strano, “Electric field effect in two-dimensional transition metal dichalcogenides,” Nature Nanotechnology 7, 699–712 (2012).

[13] Xiaodong Xu, Wang Yao, Di Xiao, and Tony F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nature Physics 10, 343–350 (2014).

[14] Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, “Electrically switchable chiral light-emitting transistor,” Science 344, 725–728 (2014).

[15] John R. Schaibley, Hongyi Yu, Genevieve Clark, Pasqual Rivera, Jason S. Ross, Kyle L. Seyler, Wang Yao, and Xiaodong Xu, “Valleytronics in 2D materials,” Nature Reviews Materials 1, 16055 (2016).

[16] Steven A. Vitale, Daniel Nezich, Joseph O. Varghese, Philip Kim, Nuh Gedik, Pablo Jarillo-Herrero, Di Xiao, and Mordechai Rothyschild, “Valleytronics: Opportunities, challenges, and paths forward,” Small 14, 1801483 (2018).

[17] Yanping Liu, Yuanji Gao, Siyu Zhang, Jun He, Juan Yu, and Zongwen Liu, “Valleytronics in transition metal dichalcogenides materials,” Nano Research 12, 2695–2711 (2019).

[18] Ting Cao, Gang Wang, Wengpeng Han, Huiqi Ye, Chuanrui Zhu, Junren Shi, Qian Niu, Pingheng Tan, Enge Wang, Baoli Liu, and Ji Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nature Communications 3, 887 (2012).

[19] Huaqing Zeng, Junfeng Dai, Wang Yao, Di Xiao, and Xiaodong Cui, “Valley polarization in mso2 monolayers by optical pumping,” Nature Nanotechnology 7, 490–493 (2012).

[20] Kin Fai Mak, Keliang He, Jie Shan, and Tony F. Heinz, “Control of valley polarization in monolayer mso2 by optical helicity,” Nature Nanotechnology 7, 494–498 (2012).

[21] Kin Fai Mak and Jie Shan, “Photonics and optoelectronics of 2d semiconductor transition metal dichalcogenides,” Nature Photonics 10, 216–226 (2016).

[22] Ziliang Ye, Dezheng Sun, and Tony F. Heinz, “Optical manipulation of valley pseudospin,” Nature Physics 13, 26–29 (2017).

[23] Kin Fai Mak, Di Xiao, and Jie Shan, “Light–valley interactions in 2D semiconductors,” Nature Photonics 12, 451–460 (2018).

[24] Yi Lei Li, Jonathan Ludwig, Tony Low, Alexey Chernikov, Xu Cui, Ghiawdon Arefe, Young Duck Kim, Arend M. van der Zande, Albert Rigosi, Heather M. Hill, Suk Hyun Kim, James Hone, Zhiqiang Li, Dmitry Smirnov, and Tony F. Heinz, “Valley splitting and polarization by the zeeman effect in monolayer mso2,” Phys. Rev. Lett. 113, 266804 (2014).

[25] David MacNeill, Colin Heikes, Kin Fai Mak, Zachary Anderson, Andor Kormányos, Viktor Zólyomi, Jiwoong Park, and Daniel C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer mso2,” Phys. Rev. Lett. 114, 037401 (2015).

[26] Ajit Srivastava, Meinrad Sidler, Adrien V. Allain, Dominik S. Lembke, Andras Kis, and A. Imamoğlu, “Valley zeeman effect in elementary optical excitations of monolayer wse2,” Nature Physics 11, 141–147 (2015).

[27] G. Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, J. Yan, D. G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, and X. Xu, “Magnetic control of valley pseudospin in monolayer wse2,” Nature Physics 11, 148–152 (2015).

[28] Patrick Back, Meinrad Sidler, Ovidiu Cotlet, Ajit Srivastava, Naotomo Takemura, Martin Kroner, and Atac Imamoglu, “Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer mso2,” Phys. Rev. Lett. 118, 237404 (2017).

[29] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley hall effect in mos2 transistors,” Science 344, 1489–1492 (2014).

[30] R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kretinin, F. Withers, Y. Cao, A. Mishchenko, I. V. Grigorieva, K. S. Novoselov, I. V. Grigoriev, A. K. Geim, and M. Polini, “Detecting topological currents in graphene superlattices,” Science 346, 448–451 (2014).

[31] Yu Ye, Jun Xiao, Hailong Wang, Ziliang Ye, Hanyu Zhu, Mervin Zhao, Yuan Wang, Jianhua Zhao, Xiaobo Yin, and Xiang Zhang, “Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide,” Nature Nanotechnology 11, 598–602 (2016).

[32] Jesse Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, Achim Harzheim, Andrew Lucas, Subir Sachdev, Philip Kim, Takashi Taniguchi, Kenji Watanabe, Thomas A. Ohki, and Kin Chung Fong, “Observation of the dirac fluid and the breakdown of the wiedemann-franz law in graphene,” Science 351, 1058–1061 (2016).

[33] D. A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim, and M. Polini, “Negative local resistance caused by viscous electron backflow in...
graphene,” Science 351, 1055–1058 (2016).

[34] Denis A. Bandurin, Andrey V. Shytov, Leonid S. Levitov, Roshan Krishna Kumar, Alexey I. Berdyugin, Moshe Ben Shalom, Irina V. Grigorieva, Andre K. Geim, and Gregory Falkovich, “Fluidity onset in graphene,” Nature Communications 9, 4533 (2018).

[35] R. Krishna Kumar, D. A. Bandurin, F. M. D. Pellegrino, Y. Cao, A. Principi, H. Guo, G. H. Auton, M. Ben Shalom, L. A. Ponomarenko, G. Falkovich, K. Watanabe, T. Taniguchi, I. V. Grigorieva, L. S. Levitov, M. Polini, and A. K. Geim, “Superballistic flow of viscous electron fluid through graphene constrictions,” Nature Physics 13, 1182–1185 (2017).

[36] Francesco M. D. Pellegrino, Iacopo Torre, and Marco Polini, “Nonlocal transport and the hall viscosity of two-dimensional hydrodynamic electron liquids,” Phys. Rev. B 96, 195401 (2017).

[37] A. I. Berdyugin, S. G. Xu, F. M. D. Pellegrino, R. Krishna Kumar, A. Principi, I. Torre, M. Ben Shalom, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, A. K. Geim, and D. A. Bandurin, “Measuring hall viscosity of graphene&esh; electron fluid,” Science 364, 162–165 (2019).

[38] Joseph A. Sulpizio, Lior Ella, Assaf Rozen, John Birkbeck, David J. Perello, Debarghya Dutta, Moshe Ben Shalom, Takashi Taniguchi, Kenji Watanabe, Tobias Holder, Raquel Queiroz, Alessandro Principi, Ady Stern, Thomas Scaffidi, Andre K. Geim, and Shahal Ilani, “Visualizing poiseuille flow of hydrodynamic electrons,” Nature 576, 75–79 (2019).

[39] Patrick Gallagher, Chan-Shan Yang, Tairu Lyu, Fanglin Tian, Rai Kou, Hai Zhang, Kenji Watanabe, Takashi Taniguchi, and Feng Wang, “Quantum-critical conductivity of the dirac fluid in graphene,” Science 364, 158–162 (2019).

[40] Marco Polini and Andre K. Geim, “Viscous electron fluids,” Physics Today 73, 28–34 (2020).

[41] Mark J. H. Ku, Tony X. Zhou, Qing Li, Young J. Shin, Jing K. Shi, Claire Burch, Laurel E. Anderson, Andrew T. Pierce, Yonglong Xie, Assaf Hamo, Uri Vool, Huiliang Zhang, Francesco Casola, Takashi Taniguchi, Kenji Watanabe, Michael M. Fogler, Philip Kim, Amir Yacoby, and Ronald L. Walsworth, “Imaging viscous flow of the dirac fluid in graphene,” Science 583, 537–541 (2020).

[42] A. Jenkins, S. Baumann, H. Zhou, S. A. Meynell, D. Yang, K. Watanabe, T. Taniguchi, A. Lucas, A. F. Young, and A. C. Bleszynski Jayich, “Imaging the breakdown of ohmic transport in graphene,” (2020), arXiv:2002.05065 [cond-mat.mes-hall].

[43] Johannes Geurs, Youngwook Kim, Kenji Watanabe, Takashi Taniguchi, Pilkyung Moon, and Jurgen H. Smet, “Rectification by hydrodynamic flow in an encapsulated graphene tesla valve,” (2020), arXiv:2008.04862 [cond-mat.mes-hall].

[44] Sayanti Samaddar, Jeff Strasdas, Kevin Jansen, Sven Just, Tjorven Johnsen, Zhenxing Wang, Burkay Uzlu, Sha Li, Daniel Neumaier, Marcus Liebmann, and Markus Morgenstern, “Evidence for local spots of viscous electron flow in graphene at moderate mobility,” Nano Letters 21, 9365–9373 (2021).

[45] Chandan Kumar, John Birkbeck, Joseph A. Sulpizio, David J. Perello, Takashi Taniguchi, Kenji Watanabe, Oren Reuven, Thomas Scaffidi, Ady Stern, Andre K. Geim, and Shahal Ilani, “Imaging hydrodynamic electrons flowing without landauer-sharvin resistance,” (2021), arXiv:2111.06412 [cond-mat.mes-hall].

[46] A. CEMAL ERINGER, “Theory of micropolar fluids,” Journal of Mathematics and Mechanics 16, 1–18 (1966).

[47] A. Cemal Eringen, Microcontinuum Field Theories (Springer New York, 1999).

[48] A.C. Eringen, Microcontinuum Field Theories: II. Fluent Media, Microcontinuum Field Theories (Springer New York, 2001).

[49] Grzegorz Łukaszewicz, Micropolar Fluids (Birkhäuser Boston, 1999).

[50] S. Chandrasekhar, P. Morton D Hull Distinguished Service Professor S Chandrasekhar, and Cambridge University Press, Liquid Crystals, Cambridge monographs on physics (Cambridge University Press, 1992).

[51] P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, International Series of Monographs on Physics (Clarendon Press, 1993).

[52] Stefan Odenbach, ed., Ferrofluids (Springer Berlin Heidelberg, 2002).

[53] Mark Shliomis, “Effective viscosity of magnetic suspensions,” Sov. Phys. JETP 34, 1291–1294 (1972).

[54] R.E. Rosenweig, Ferrohydrodynamics, Dover books on physics (Dover Publications, Incorporated, 2013).

[55] Mamoru Matsuo, Jun’ichi Ieda, Kazuya Harii, Eiji Saitoh, and Sadamichi Maekawa, “Mechanical generation of spin current by spin-rotation coupling,” Phys. Rev. B 87, 180402 (2013).

[56] R. Takahashi, M. Matsuo, M. Ono, K. Harii, H. Cludo, S. Okayasu, J. Ieda, S. Takahashi, S. Maekawa, and E. Saitoh, “Spin hydrodynamic generation,” Nature Physics 12, 52–56 (2016).

[57] M. Matsuo, Y. Ohnuma, and S. Maekawa, “Theory of spin hydrodynamic generation,” Phys. Rev. B 96, 020401 (2017).

[58] D. Kobayashi, T. Yoshihawa, M. Matsuo, R. Iguchi, S. Maekawa, E. Saitoh, and Y. Nozaki, “Spin current generation using a surface acoustic wave generated via spin-rotation coupling,” Phys. Rev. Lett. 119, 077202 (2017).

[59] L. Adamczyk et al., “Global λ hyperon polarization in nuclear collisions,” Nature 548, 62–65 (2017).

[60] Wojciech Florkowski, Bengt Friman, Amaresh Jaiswal, and Enrico Speranza, “Relativistic fluid dynamics with spin,” Phys. Rev. C 97, 041901 (2018).

[61] Koichi Hattori, Masaru Hongo, Xu-Guang Huang, Mamoru Matsuo, and Hidetoshi Taya, “Fate of spin polarization in a relativistic fluid: An entropy-current analysis,” Physics Letters B 795, 100–106 (2019).

[62] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, Madan Rao, and R. Aditi Simha, “Hydrodynamics of soft active matter,” Rev. Mod. Phys. 85, 1143–1189 (2013).

[63] Tomer Markovich, Eilen Tjhung, and Michael E Cates, “Chiral active matter: microscopic ‘torque dipoles’ have more than one hydrodynamic description,” New Journal of Physics 21, 112001 (2019).

[64] Tomer Markovich and Tom C. Lubensky, “Odd viscosity in active matter: Microscopic origin and 3d effects,” Phys. Rev. Lett. 127, 048001 (2021).

[65] Vaseem A Shaik and Gwynn J Elfring, “On the hydrodynamics of active particles in viscosity gradients,” (2021), arXiv:2107.03518 [physics.flu-dyn].
Sayantika Bhowal and Giovanni Vignale, “Orbital hall effect as an alternative to valley hall effect in gapped graphene,” Phys. Rev. B 103, 195309 (2021).

Di Xiao, Ming-Che Chang, and Qian Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1959–2007 (2010).

E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics: Physical Kinetics (Pergamon, New York, 1981).

Andrew Lucas and Kin Chung Fong, “Hydrodynamics of electrons in graphene,” Journal of Physics: Condensed Matter 30, 053001 (2018).

Boris N. Narozhny, “Electronic hydrodynamics in graphene,” Annals of Physics 411, 167979 (2019).

B. N. Narozhny and M. Schütt, “Magnetohydrodynamics in graphene: Shear and hall viscosities,” Phys. Rev. B 100, 035125 (2019).

B. N. Narozhny and I. V. Gornyi, “Hydrodynamic approach to electronic transport in graphene: Energy relaxation.,” Frontiers in Physics 9, 108 (2021).

Egor I. Kiselev and Jörg Schmalian, “Nonlocal hydrodynamic transport and collective excitations in dirac fluids,” Phys. Rev. B 102, 245434 (2020).

Claire Berger, Zhimin Song, Tianbo Li, Xuebin Li, Asgerom Y. Ogbagzhi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer, “Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphene-based nanoelectronics,” The Journal of Physical Chemistry B 108, 19902–19916 (2004).

S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, “Substrate-induced bandgap opening in epitaxial graphene,” Nature Materials 11, 421–425 (2016).

Jieun Lee, Kin Fai Mak, and Jie Shan, “Electrical control of the valley hall effect in bilayer mos2 transistors,” Nature Nanotechnology 11, 2725 (2016).

Jieun Lee, Zefang Wang, Hongchao Xie, Kin Fai Mak, and Jie Shan, “Valley magnetoelectricity in single-layer mos2,” Nature Materials 16, 887–891 (2017).

R. V. Gorbachev, F. V. Tikhonenko, A. S. Mayorov, D. W. Horsell, and A. K. Savchenko, “Weak localization in bilayer graphene,” Phys. Rev. Lett. 98, 176805 (2007).

Oriol Lopez Sanchez, Dmitry Ovchinnikov, Shikhar Misra, Adrien Allain, and Andras Kis, “Valley polarization by spin injection in a light-emitting van der waals heterojunction,” Nano Letters 16, 5792–5797 (2016).

Yuya Ominato, Daigo Oue, and Mamoru Matsuo, “Valley transport driven by dynamic lattice distortion,” (2021), arXiv:2110.09724 [cond-mat.mes-hall].

T. Thonhauser, “Theory of orbital magnetization in solids,” International Journal of Modern Physics B 25, 1429–1458 (2011).

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin hall effect in semiconductors,” Science 306, 1910–1913 (2004).

Jieun Lee, Kin Fai Mak, and Jie Shan, “Electrical control of the valley hall effect in bilayer mos2 transistors,” Nature Nanotechnology 11, 421–425 (2016).

Jieun Lee, Zefang Wang, Hongchao Xie, Kin Fai Mak, and Jie Shan, “Valley magnetoelectricity in single-layer mos2,” Nature Materials 16, 887–891 (2017).

Riccardo Hertel, “Theory of the inverse faraday effect in metals,” Journal of Magnetism and Magnetic Materials 303, L1–L4 (2006).

Hui-Liang Zhang, Yan-Zhong Wang, and Xiang-Jun Chen, “A simple explanation for the inverse faraday effect in metals,” Journal of Magnetism and Magnetic Materials 321, L73–L74 (2009).

M. Battistato, G. Barbalinardo, and P. M. Oppeneer, “Quantum theory of the inverse faraday effect,” Phys. Rev. B 89, 014413 (2014).

S. O. Potashin, V. Yu. Kachorovskii, and M. S. Shur, “Hydrodynamic inverse faraday effect in a two-dimensional electron liquid,” Phys. Rev. B 102, 085402 (2020).

Stephen M. Barnett and Rodney Loudon, “The enigma of optical momentum in a medium,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 927–939 (2010).

Robert P Cameron, Stephen M Barnett, and Alison M Yao, “Optical helicity, optical spin and related quantities in electromagnetic theory,” New Journal of Physics 14, 053050 (2012).

Konstantin Y Blokh, Aleksandr Y Bekshaev, and Franco Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New Journal of Physics 15, 033026 (2013).

Konstantin Y Blokh, Justin Dressel, and Franco Nori, “Conservation of the spin and orbital angular momenta in electromagnetism,” New Journal of Physics 16, 093037 (2014).

Konstantin Y Blokh and Franco Nori, “Transverse and longitudinal angular momenta of light,” Physics Reports 592, 1–38 (2015).