Magnetic property and crystalline electric field effect in ThCr$_2$Si$_2$-type CeNi$_2$As$_2$

Yongkang Luo1, Jineo Bae1, Chenyi Shen1, Jieke Han1, Xiaojun Yang1, Chen Lv1, Yuke Li2, Wenhe Jiao1, Bingqi Si1, Chunmu Feng1, Jianhui Dai2, Guanghan Cao3, and Zhu-an Xu1,*

1Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China, and
2Department of Physics, Hangzhou Normal University, Hangzhou 310036, China.

(Dated: August 21, 2012)

Millimeter sized ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ single crystal was synthesized by NaAs flux method and its physical properties were investigated by magnetization, transport and specific heat measurements. In contrast to the previously reported CaBe$_2$Ge$_2$-type CeNi$_2$As$_2$, the ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ is a highly anisotropic uniaxial antiferromagnet with the transition temperature $T_N=4.8$ K. A field induced spin flop transition was seen below T_N when the applied B is parallel to the c-axis, the magnetic easy axis, together with a huge frustration parameter $f=\theta_W/T_N$. A pronounced Schottky-like anomaly in specific heat was also found around 160 K, which could be attributed to the crystalline electric field effect with the excitation energies being fitted to $\Delta_1=325$ K and $\Delta_2=520$ K, respectively. Moreover, the in-plane resistivity anisotropy and low temperature X-ray diffractions suggest that this compound is a rare example exhibiting a possible structure distortion induced by the 4f-electron magnetic frustration.

PACS numbers: 74.70.Dd, 75.30.Gw, 75.30.Kz, 75.10.Dg, 75.20.Hr

I. INTRODUCTION

The interest in the ThCr$_2$Si$_2$-type structure has been rekindled since the discovery of superconductivity (SC) in (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$. SC was also achieved when Ba is replaced by other alkaline earths like Ca and Sr or even the divalent rare earth Eu, either by chemical doping or pressure effect1,2. On the other hand, the nickel based pnictide, e.g. BaNi$_2$As$_2$, was reported to show SC too, although the nickels are non-magnetic and the T_c is much lower3. In these 122-compounds formulated with ATm_2As_2 ($A=$Ca, Sr, Ba or Eu, Tm=transition metals), two vertically reversed TmAs layers are sandwiched along c-axis, while the A atoms are embedded in between, following a sequence of $TmAs-A-TmAs$. This crystalline structure constitutes a platform for understanding the interplay between Kondo interaction and Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction if A is replaced by magnetic rare earths. Indeed, the research for the 4f-electron correlation in ThCr$_2$Si$_2$ structured compounds has been a long story, and a famous example is CeCu$_2$Si$_2$, the first heavy fermion superconductor10. Therefore it is very interest to study the Ce-based 122-nickel pnictides like CeNi$_2$As$_2$.

Remarkably, CeNi$_2$As$_2$ crystallizes in either ThCr$_2$Si$_2$ (I4/mmm, No.139) or CaBe$_2$Ge$_2$ (P4/mmm, No.129) structure, see Fig. 1(a). The main difference between them comes from the interchange of the Ni and As positions in one-half of the NiAs layers in the CaBe$_2$Ge$_2$-type CeNi$_2$As$_2$, which results in the loss of the inversion symmetry11. Previous studies on poly-crystalline samples have revealed that the ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ shows an antiferromagnetic (AFM) transition at around 5 K, while the CaBe$_2$Ge$_2$-type CeNi$_2$As$_2$ is a non-magnetic Kondo lattice compound12. Single crystalline samples are then highly desirable in order to further distinguish the properties of the two structures. However, since the occurrence of ThCr$_2$Si$_2$-type or CaBe$_2$Ge$_2$-type largely depends on the process of heat treatment12, and in many cases, a mixture of the two will be derived, the properties of ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ are still not well-understood.

In this article, we report the measurements on magnetic/transport/thermodynamic properties of the ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ based on millimeter sized single crystalline samples. Single crystalline sample of CeNi$_2$As$_2$ was successfully synthesized by the NaAs flux method. We find that CeNi$_2$As$_2$ is a highly anisotropic uniaxial antiferromagnet with the transition temperature $T_N=4.8$ K. The Ce$^{3+}$ moments are likely to align along c-axis. A field induced meta-magnetic transition (MMT) was seen below T_N. Pronounced crystalline electric field (CEF) effect was observed. These magnetic and thermodynamic properties can be well understood by the CEF calculation, showing that the $j=5/2$ multiplet of Ce$^{3+}$ splits into three Kramers doublets with the excitation energies $\Delta_1=325$ K and $\Delta_2=520$ K. In contrast to the CaBe$_2$Ge$_2$-type CeNi$_2$As$_2$, Kondo effect in the ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ is not strong, with a moderately enhanced Sommerfeld coefficient $\gamma_0=69$ mJ/mol/K^2 and a relatively low Kondo scale $T_K \sim 4$ K. On the other hand, a huge frustration parameter $f=\theta_W/T_N$ is obtained, and a frustration-distortion picture was then proposed. The latter highlights the important role of Ce-4f electrons in magnetic frustrations. Therefore, the ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ provides a new candidate for the research of frustration-induced magnetic and structure transitions and calls for more investigations.

*Electronic address: zhan@zju.edu.cn
II. EXPERIMENTAL

High purity single crystal of ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ was grown by NaAs flux method. CeAs, NiAs and NaAs were presynthesized as mentioned elsewhere. CeAs, NiAs, CeO$_2$ and Ni were weighted in the ratio of 1:1:1:1, thoroughly ground in an Argon filled glove box. The mixture was then put into a Ta tube, together with 15 molar times of NaAs. After sealing the Ta tube by an Arc-melter, the tube was then sealed into a quartz tube filled with 0.2 bar Argon gas. The quartz tube was heated up to 1493 K and kept at that temperature for 10 hours, followed by slowly cooling down to 873 K in 10 days. NaAs flux was dissolved by water in a fume hood, and shining single crystals of CeNi$_2$As$_2$ with a typical size of $3 \times 3 \times 0.2$ mm3 were picked out from the remaining dreg (see Fig. 1(b)).

The single crystalline CeNi$_2$As$_2$ samples were checked by X-ray diffraction (XRD), performed on a PANalytical X-ray diffractometer (Empyrean Series 2) with Cu-K$_\alpha$ radiation at room temperature. Only (0 0 2) peaks can be observed (Fig. 1(c)), confirming the ThCr$_2$Si$_2$-type crystalline structure. The full width at half maximum (FWHM) of (0 0 4) peak in the rocking scan is less than 0.08°, demonstrating the goodness of sample quality (Fig. 1(d)). We also performed Rietveld refinement on the powder XRD data (not shown). The structural parameters are listed in Tab. 1. The derived occupation of Ni site is 0.856, close to the result of 0.86 obtained from energy-dispersive X-ray microanalysis (EDX) measurement. It is also comparable with previous literature. The derived $a(b)$ and c are 4.0806(3) Å and 9.8843(7) Å, respectively. The small ratio $c/a=2.43$, compared to 2.80 for BaNi$_2$As$_2$, manifests a collapsed ThCr$_2$Si$_2$ structure.

Quantum Design (QD) magnetic property measurement system (MPMS-5) and physical property measurement system (PPMS-9) were used in the magnetization, transport and specific heat measurements. Ohmic contact was made with Epoxy silver paste (Part A+B), and annealed in Ar atmosphere at 573 K for 30 min. Resistivities of both in-plane (ρ_{ab}, I || ab) and out-of-plane (ρ_c, I || c) configurations were measured. Thermopower was measured by means of steady-state technique and a pair of differential type E thermocouples was used to measure the temperature gradient. Specific heat was measured by heat pulse relaxation method in PPMS-9.

III. RESULTS AND DISCUSSION

The temperature dependent magnetic susceptibility $\chi(T) = M/H$ and inverse magnetic susceptibility $1/\chi(T)$ along B || c and B || ab are displayed in Fig. 2(a) and (b), respectively. The magnitude of χ_c is almost the same as that of χ_{ab} at 400 K, but is 16 times larger at low temperature, indicative of increasing magnetic anisotropy. Both $\chi_c(T)$ and $\chi_{ab}(T)$ obey the Curie-Weiss’s law above 300 K. We fit the temperature dependent susceptibility to the formula $\chi(T) = \frac{C}{T - \theta_W}$, with θ_W being the so-called Weiss temperature. The fit on the polycrystalline averaged susceptibility, defined as $\chi_{avg} = (\chi_c + 2\chi_{ab})/3$, leads to the effective moment $\mu_{eff} = 2.44\mu_B$. This value is close to but slightly less than 2.54 μ_B, the effective moment of a free Ce$^{3+}$, manifesting the trivalent Ce ion and the non-magnetic nature of the Ni sublattice. The high magnetic anisotropy is also reflected in the derived Weiss temperature, $\theta_W = 32.2$ K and $\theta_W = 165.9$ K. An AFM transition is signified by χ_c, which shows a sharp peak around 5 K and extrapolates to a very small magnitude in the zero temperature limit. χ_{ab} also shows a peak at the same temperature, although the reduction of χ_{ab} after the formation of the AFM ordering is much weaker. The characteristic temperature of the AFM transition, $T_N = 4.8$ K, is then determined by the peak position in the $d\chi(T)/dT$ curves as shown in Fig. 2(c). We will find that this value

Atom	Occupation	x	y	z
Ce	1.000	0	0	0
Ni	0.856	0	0.5	0.25
As	1.000	0	0	0.3654(3)

TABLE I: Lattice parameters of CeNi$_2$As$_2$ derived from Rietveld refinement based on space group $I4/mmm$. $a=b=4.0806(3)$ Å, $c=9.8843(7)$ Å, $\alpha=\beta=\gamma=90^\circ$.
A weak first order transition. Compared with the increasing rate of $B_{\parallel}I\rho$ in-plane (ab plane) correlation and Zeeman energy. This field induced MMT feature for $B_{\parallel}I\rho$ at around 2.4 T before a saturation trend. The deviation of $d\chi/T/dT$ is also consistent with the resistivity ($d\rho/dT$) and specific heat (C) measurements. Fig. 2(d) and (e) show the $\chi(T)$ and $\chi_{ab}(T)$ measured under various magnetic fields. It is interesting to notice that under increasing field the AFM peak shifts to lower temperatures much more faster for $B_{\parallel}c$ than $B_{\parallel}ab$. These observations suggest that the Ce$^{3+}$ moments align along the c-axis while within the ab-plane the correlation between the moments is much stronger. The deviation of $\chi(T)$ from Curie-Weiss law below 300 K is a sign of CEF effect and will be discussed later on.

Fig. 3 shows isothermal magnetization $M(B)$ curves along $B_{\parallel}c$ and $B_{\parallel}ab$ directions. The most fascinating feature for $B_{\parallel}c$ is that below T_N, $M(B)$ shows linear B dependence when $B < 2$ T, and undergoes a substantial increase at around 2.4 T before a saturation trend. $B_m = 2.36$ T is then defined at the magnetic field where the increasing rate of $M(B)$ reaches the maximum. A tiny hysteresis in $M(B)$ is observed near B_m, implying a weak first order transition. Compared with $B_{\parallel}c$, $M(B)$ for $B_{\parallel}ab$ is linear and much smaller, which again provides evidence for the strong anisotropy in the magnetic correlation among Ce moments. This field induced MMT may imply the competition between the in-plane correlation and Zeeman energy.

We now turn to the resistivity measurement. Both in-plane (ρ_{ab}) with $I_{\parallel}ab$ and out-of-plane (ρ_c with $I_{\parallel}c$) resistivities were measured, and the data are shown in Fig. 4(a). One should notice that the ratio ρ_c/ρ_{ab} at 400 K is 2.3, much smaller than that of the regular iron pnictide A-122 compounds, where the ratio is typically of the order of 10-100. It demonstrates more three-dimensional electronic property in CeNi$_2$As$_2$, and is consistent with the collapsed crystalline structure. For $T > 300$ K, ρ_{ab} shows weak metallic behavior, while in $T < 300$ K region, ρ_{ab} increases with decreasing T, and a broad peak centered around 110 K is observed. Similar behavior is also observed in ρ_c whereas the broad peak position is relatively higher. Such broad peak in resistivity is reminiscent of the CEF effect and is further confirmed by the thermopower (data are not shown here). The anisotropic response to the CEF in resistivities (see also in Fig. 9(a)) may reflect the anisotropic hybridization strength of electron scattering to the CEF. Another prominent feature is observed below 50 K, where both ρ_{ab} and ρ_c increase rapidly, developing the sharp peaks near T_N. The $-\log T$ behavior of low temperature resistivity for $5 K < T < 50 K$ is identified in the inset of Fig. 4(a), revealing that CeNi$_2$As$_2$ belongs to a Kondo system with a weak Kondo scale $T_K \lesssim T_N$. Fig. 4(b) and (c) show the isothermal in-plane resistivity ρ_{ab} versus the applied field perpendicular and parallel to the crystallography c-axis, respectively. In the case of $B_{\parallel}ab$, ρ_{ab} decreases slightly with B at $T = 10$ K $> T_N$. While at $T = 2$ K $< T_N$, a positive magnetoresistivity (MR, defined as $MR=(\rho(B)-\rho(0))/\rho(0)$) is clearly exhibited.
This behavior is likely associated with the suppression of AFM ordering under the external field. The \(\rho_{ab}(B) \) curves for \(B \parallel c \) are more intriguing: First, at \(T = 10 \) K, \(\rho_{ab} \) decreases much faster for \(B \parallel c \) than that for \(B \parallel ab \), providing further evidence that the magnetic easy axis to be \(c \)-axis. Second, at \(T = 2 \) K, \(\rho_{ab}(B) \) substantially increases to a maximum near \(B = 2.6 \) T, and then decreases drastically. The turning point of \(\rho_{ab}(B) \) is apparently associated with the MMT observed in magnetization measurement discussed previously.

In Fig. 5, we present the specific heat divided by \(T \) as a function of temperature. A \(\lambda \)-shape peak is clearly seen at the transition temperature \(T_N \), manifesting a second-order phase transition. Under the magnetic field, the specific heat peak is suppressed to lower temperatures for \(B < B_m \), indicating a fingerprint of the reduction of the AFM transition. When \(B > B_m \), the sharp peak evolves with increasing magnetic field into a broad round peak moving to higher temperature. This Schottky-like peak in \(C/T \) under a field signifies a crossover from AFM ordering to paramagnetic state via Brillouin-like saturation, and is consistent with the magnetic properties measurement. We also plot the \(C/T \) vs \(T^2 \) in the inset of Fig. 5. The Sommerfeld coefficient \(\gamma_0 \sim 69 \) mJ/mol-K\(^2\) is then estimated by linearly extrapolating to the zero temperature. This moderately enhanced Sommerfeld coefficient manifests the correlation effect contributed from the Ce-4f electrons. The slope of the linear extrapolation is \(\beta = 0.498 \) mJ/mol-K\(^2\), and this leads to the Debye temperature \(\Theta_D = 269 \) K.

In order to identify the Ce-4f electron contribution to the specific heat, we consider the quantity \(C_{mag} = C_{Ce} - C_{La} \) as shown in Fig. 6(a), where \(C_{La} \) is the specific heat of LaNi\(_2\)As\(_2\) (polycrystal). It is expected that the difference \(C_{mag} \) is mainly due to the magnetic contribution because LaNi\(_2\)As\(_2\) is non-magnetic and isostructural to CeNi\(_2\)As\(_2\). As expected, a sharp specific heat jump for \(C_{mag} \) appears at \(T_N \). The jump at \(T_N \) is \(\Delta C_{mag} |_{T=T_N} \sim 6 \) J/mol/K. From this value the Kondo scale could be roughly estimated as \(T_K \sim 4 \) K. The magnetic entropy gain \((S_m) \) was calculated by integrating \(C_{mag} \) over \(T \). We found that \(S_m \) reaches 65% of \(R \ln 2 \) at \(T_N \), and recovers this value at 19 K. This suggests that the observed anomaly in specific heat arises from the AFM ordering of Ce\(^{3+}\) moment in a two-degenerated ground state. Since \(T_K \) is low, the reduction of entropy gain at \(T_N \) should be mainly attributed to the short-range ordering or correlation of the Ce\(^{3+}\) moments above \(T_N \), rather than the
Kondo effect. The short-range ordering is also manifested by a noticeable broad tail in C_{mag} above T_N extending to about 20 K (see Fig. 6(a)). A broad peak centered at around 160 K can also be observed on $C_{\text{mag}}(T)$, which should be ascribed to the Schottky anomaly caused by the thermal population of CEF levels.

In Ce-contained compounds, the D_{4h} (I4/mmm) point symmetry requires a CEF Hamiltonian written as:

$$\mathcal{H}_{\text{CEF}} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_4^1 O_4^1,$$

where B_{lm}^n ($l = 2, 4$, $m = 0, 4$) are the CEF parameters, while O_{lm}^n are Steven’s operators. In addition, the Zeeman interaction and exchange interaction should also be taken into account,

$$\mathcal{H}_{\text{ex}} = -g\mu_B J \cdot B,$$

$$\mathcal{H}_{cex} = -\sum_{i,j} J_{cex}^i S_i^z S_j^z + J_{cex}^i S_i^z S_j^z,$$

in which x, y and z correspond to the crystallographic a, b and c, where $g = 6/7$ is the Lande factor of Ce$^{3+}$ ions, J_{cex}^i and J_{cex}^i are the components of the nearest-neighbor exchange interaction with Ce$^{3+}$ moment perpendicular and parallel to the c-axis, respectively. Combination of Eq. (1), (2) and (3) allows us to get the expressions of inverse susceptibility, i.e.,

$$\frac{1}{\chi_c} = \frac{1}{C(T + \frac{j(j + 1)}{3} J_{cex}^i + \frac{(2j - 1)(2j + 3)}{5} B_2^0)},$$

$$\frac{1}{\chi_{ab}} = \frac{1}{C(T + \frac{j(j + 1)}{3} J_{cex}^i - \frac{(2j - 1)(2j + 3)}{10} B_2^0)},$$

with $j = 5/2$ being the total angular momentum for Ce$^{3+}$. The experimental data of $1/\chi_c$ and $1/\chi_{ab}$ can be well reproduced by this model as shown in Fig. 6(b), with the best fitted CEF parameters B_{lm}^n as well as the CEF energy levels and eigenstates being listed in Tab. 2. The ground state has a two-fold degeneracy and takes the form $| \Gamma_7 \rangle = \alpha_1 | \pm \frac{3}{2} \rangle + \alpha_2 | \mp \frac{1}{2} \rangle$ with $\alpha_1^2 + \alpha_2^2 = 1$. The calculated exchange interactions are $J_{cex}^i = 0.18$ K and $J_{cex}^i = 3.1$ K, respectively, manifesting anisotropic magnetic couplings. The broad peak in $C_{\text{mag}}(T)$ can also be well described by Schottky anomaly formula with energy excitations $\Delta_1 = 325$ K and $\Delta_2 = 520$ K, and the result is shown in Fig. 6(a). A schematic sketch of the CEF split is presented in Fig. 6(d).

Above CEF analysis also allows calculating the spatial distribution of the 4f-electron charge density (Fig. 7(a)), $\rho_4(r) \mid \Gamma_7 \rangle$. In Fig. 7(a), we display the iso-surface plot (namely the electron cloud) of the 4f-electron for an Ce$^{3+}$ ion surrounded by the CEF in the ThCr$_2$Si$_2$-type CeNi$_2$As$_2$. The calculation was done at $T = 0.1$ K. It is evident that the electron cloud has deformed severely from the spherical shape, and is highly accumulated on the four corners which are along the Ce-As bonds, manifesting the hybridization between Ce-4f and As-4p orbitals. Another profound feature is that the Ce-4f electron cloud is highly "squeezed" along the z-axis (Please note the dimensions of x-, y-, and z-axes). It is well known that the topology of charge density is closely associated with the magnetic anisotropy. Due to the spin-orbit coupling, the orientation of the magnetic moment is coupled to the orientation of the 4f charge. In the CEF theory, this anisotropy is mainly governed by the Stevens
the electron cloud is further "squeezed" along z axis. In contrast, an external field (Fig. 7(b)), and thus stabilizes the original magnetic easy electron cloud along the z-direction (see Fig. 7(c)), and consequently the magnetic moments will be rotated to the ab-plane.

However, we notice that the CEF model does not perfectly reproduce the isothermal magnetization measured at low temperatures, see in Fig. 6(c). For example, in the case of $\mathbf{B} \parallel c$, one expects a saturated magnetic moment $M_s=6/7\times5/2=2.14 \mu_B$/Ce, while the experimental value is about 1.36 μ_B/Ce for $T = 2$ K and $B = 9$ T. Meanwhile, we also notice that the amplitude of Weiss temperatures are much larger than the AFM transition temperature. Especially for the in-plane Weiss temperature θ_B^{ab}, we obtain a huge ratio $f_{ab} = \theta_B^{ab}/T_N=34.6$. Such a large value of f_{ab} reminds us of the magnetic frustration neglected in the previous CEF analysis. A schematic diagram of this magnetic frustration is shown in Fig. 8. Taking into account only the nearest neighbor exchange interactions for both intralayer and interlayer, the magnetic coupling between Ce$^{3+}$ moments are denoted by J_1 and J_2 respectively. From the CEF calculation we have a negative intralayer coupling which is dominating in magnitude. It means that the Ce$^{3+}$ moments should be antiferromagnetically ordered within the ab-plane, as shown in Fig. 8(a). In this situation, the magnetic frustration stems from the J_1-J_2 competition for the moments in the two adjacent layers as within the extended unit cell. We propose that a structural distortion from the high temperature tetragonal to low temperature orthorhombic phases may possibly take place to release this magnetic frustration, as shown in Fig. 8(b). The unit cell is then doubled and the lattice constants a and b are no longer equivalent. This frustration-induced distortion scenario is reminiscent to a similar scenario in the iron pnictides, where the structural distortion is possibility due to the J_1-J_2 magnetic frustration caused by the 3d-electron moments. What we need to emphasize here is that the proposed frustration-induced distortion in the present case is caused by the Ce-$4f$ electrons. With this consideration, the CEF Hamiltonian in the low temperature orthorhombic phase can be written as

$$\mathcal{H}_{CEF} = B_2^0 O_2^0 + B_2^1 O_2^1 + B_0^1 O_1^1 + B_2^1 O_2^4 + B_4^1 O_4^4.$$ (6)

Consequently, the ground state will change into a mixed state like $| \Gamma_0=\alpha_1 \pm \frac{1}{2} \alpha_2 + \alpha_2 | \pm \frac{1}{2} \alpha_3 \pm \frac{1}{2} \alpha_4 \rangle$ with $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$, and therefore a saturated magnetic moment smaller than but close to 2.14 μ_B/Ce will be expected under a moderate magnetic field. This situation is similar to the case in CeNi$_2$Ge$_3$ reported by Mun et al. However, it is hard to get the B^n_1’s for this new phase, since the information is very limited.

To obtain more evidences for the structural distortion, we seek for the possible resistivity anisotropy in the ab-plane by performing the ρ_{ab}-ρ_{ab} measurement using the Van der Pauw’s method. (Please note that here α' and β' stand for two perpendicular directions in the ab-plane, not necessarily the crystallographic a and b). The measurement was carried out on a piece of square plate-like single crystal, and $R_{\alpha'}$ and $R_{\beta'}$ were measured via switching the direction of electrical current. To compare their temperature dependences, the normalized resistivity $\rho' = R_0/R_{100K}$ is used, and the result is displayed in Fig. 9(a). Above 200 K, $\rho_{\alpha'}(T)$ and $\rho_{\beta'}(T)$ overlap well, while below 200 K, a discrepancy between them is observed. It should be pointed out that this result was reproduced for many times on different batches of single crystals. The discrepancy becomes more evident with decreasing temperature, exhibiting the increasing anisotropy in the ab-plane. It is worth emphasizing that this discrepancy between $\rho_{\alpha'}$ and $\rho_{\beta'}$ can be enlarged under a moderate magnetic field $\mathbf{B} \parallel c$ and reaches a maximum near B_{an} before it starts to decrease with further increased B (see the inset of Fig. 9(a)). Combined with the MMT observed in isothermal magnetization displayed in Fig. 3, we argue that such field dependent $\rho'_{\alpha'}-\rho'_{\beta'}$ may be related to the field induced spin-flop transition. As is elucidated in Fig. 8(c), under a moderate magnetic field

Energy levels and Eigenstates
E(K)
0
0
325
325
520
520

TABLE II: CEF parameters, energy levels and wave functions in CeNi$_2$As$_2$ at zero magnetic field.

In the case of Ce$^{3+}$ ions, the negative $\alpha_j = -5.74 \times 10^{-2}$ favors the magnetic easy axis to be parallel along the "squeezed" direction. This result reinforces the previous statement that the Ce$^{3+}$ moments are aligned along the c-axis. Under a magnetic field $\mathbf{B} \parallel c$, the electron cloud is further "squeezed" along z-axis (see Fig. 7(b)), and thus stabilizes the original magnetic easy axis. In contrast, an external field $\mathbf{B} \parallel ab$ elongates the electron cloud along the z-direction (see Fig. 7(c)), and consequently the magnetic moments will be rotated to the ab-plane.
FIG. 7: (Color online) Iso-surface plot of 4f-charge density for an Ce$^{3+}$ ion surrounded by CEF in CeNi$_2$As$_2$. Calculated at $T=0.1$ K, (a), $B=0$, (b), $B=40$ T, $B \parallel c$, and (c), $B=40$ T,$B \parallel ab$. The lower diagrams are the projections to the xz-plane.

FIG. 8: (Color online) Schematic diagram of the magnetic structure of Ce$^{3+}$ sublattice. The adjacent Ce$^{3+}$ layers are denoted by colors, red and blue, while the orientations of a Ce$^{3+}$ moment, up and down, are signified by “\bullet” and “×”. The thick lines characterize the unit cell. (a) Geometry frustration stems from the $J_1 - J_2$ competition in the tetragonal phase, and tiny structure distortion may take place, which will lead to an orthorhombic phase as shown in (b). (c) Spin-flop transition happens when a field $B \parallel c$ is applied, which enhances the structure distortion. The arrows display the projection of the Ce$^{3+}$ moment in the ab-plane. (d) Geometry frustration reduces when Ce$^{3+}$ moments are well polarized in the high field limit.

$B \parallel c$, the balance between the Zeeman energy and the AFM intralayer coupling requires that the Ce$^{3+}$ magnetic moments gradually lie down to the ab-plane. This will then further enhance the structural distortion as well as the resistivity anisotropy in the ab-plane. When the external field is large enough, all the magnetic moments tend to be polarized, and thus the frustration decays with the increasing field.

The frustration-distortion scenario can be further tested by the low temperature X-ray diffraction (LTXRD) experiment on the CeNi$_2$As$_2$ powder samples. We were focused on the angular range $64^\circ \leq 2\theta \leq 66^\circ$, where only the (2 2 0) and (1 1 6) peaks can be observed. The data were collected at different temperatures down to 12 K, the lowest temperature of our equipment. All the collected LTXRD patterns are displayed in Fig. 9(b). We find that both (2 2 0) and (1 1 6) peaks shift to the right-hand-side when cooling down, suggesting a shrinkage of the crystalline lattice, although for $T < 100$ K, this shrinkage becomes very weak. We fit all these LTXRD patterns to a combination of two Gaussian functions, through which the FWHM of (2 2 0) peak is derived as shown in Fig. 9(c). The initial reduction of the FWHM with decreasing temperature should be attributed to the slowing down of crystalline lattice oscillation. To our interest, an upturn of the FWHM is clearly seen when $T < 100$ K, and especially for $T < 20$ K, the FWHM increases rapidly with decreasing temperature, although we are not able to see the split of (2 2 0) peak directly. Such steep increase of the FWHM signals a tiny structural distortion or a precursor to that happened below T_N. In order to confirm the relevance of this behav-
ior to the 4f-electron magnetism, we also measured the FWHM of the LaNi$_2$As$_2$ compound, see in Fig. 9(c). We find that the FWHM of LaNi$_2$As$_2$ drops monotonically with T down to the lowest temperature, in striking contrast to CeNi$_2$As$_2$. The significant distinction between the two cases again reinforces the frustration-distortion possibility driven by the 4f-electrons.

![Graph](image)

FIG. 9: (Color online) (a), Anisotropic in-plane resistivity of CeNi$_2$As$_2$, measured in Van der Pauw’s method. Inset displays this anisotropy under various field. (b) LTXRD patterns of CeNi$_2$As$_2$ powders. The two observed peaks are indexed as (2 2 0) and (1 1 6). (c) Temperature dependence of FWHM of (2 2 0) peak. For comparison, the result of LaNi$_2$As$_2$ is also shown.

We should remark that the structural distortion induced by the magnetic frustration of 4f-electrons is in general small or even tiny. One reason is that the energy scale for magnetic couplings is smaller than that in the iron pnictides. Another reason is that the next-nearest-neighbor coupling J_3 between the Ce-moments within the same layer of the Ce-sublattice as denoted in Ref. 27, which is neglected in the previous discussions, may also play some role. Though being small, J_3 usually competes with both J_1 and J_2 and may lead to incommensurate magnetic fluctuations. Since a precise magnetic structure in CeNi$_2$As$_2$ is not easy to be determined by static magnetization and transport measurements, more investigations such as neutron scattering experiment are required to settle this issue.

Finally, we note that CeNi$_2$P$_2$, the counterpart compound to CeNi$_2$As$_2$, behaves as a typical Kondo lattice metal. This fact demonstrates that the chemical "pressure", induced by replacing As with smaller isovalent P, promises as an effective controlling parameter to tune the competition between the RKKY interaction and Kondo coupling. For the rare earth iron pnictides, such competition is much involved and complicated, however, mainly due to the emergent magnetic order of the iron 3d-electrons. Owing to the absence of magnetism in the Ni sub-lattice, the Ce-Ni based compounds have shown great advantage in studying the Ce-4f electron correlation. This also accounts to the fact that the CaBe$_2$Ge$_2$-type CeNi$_2$As$_2$ is a non-magnetic Kondo lattice, because the Kondo coupling is largely enhanced by one of the inverted NiAs layer. Compared with all these cases, the ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ has a relatively small Kondo coupling but a moderately strong magnetic frustration. The role played by strong magnetic frustration on the quantum phase transition, in Kondo lattice in particular, remains an interesting issue. Therefore, the ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ may provide a new material for the research of quantum phase transitions mediated by the 4f-electron magnetic frustration.

IV. CONCLUSION

To conclude, we performed a systematic investigation on the magnetic properties and the CEF effect in the ThCr$_2$Si$_2$-type CeNi$_2$As$_2$ single crystals. We find that this CeNi$_2$As$_2$ compound is a highly anisotropic uniaxial antiferromagnet with $T_N=4.8$ K. The Kondo effect is estimated to be not strong in this system, while the magnetic frustration of the Ce-4f moments plays an important role. Pronounced CEF effect is observed in magnetic, transport and thermodynamic measurements. Detailed calculations based on the CEF theory allows capturing the electronic and magnetic properties of CeNi$_2$As$_2$. A possible frustration-induced structural distortion due to the Ce-4f electrons is suggested, which is in agreement with the in-plane resistivity anisotropy and low-temperature XRD measurements. While this issue is reminiscent of the frustration-induced distortion emerging in the iron pnictide superconductors due to the d-electron correlation, the origin of the structural distortion and its relationship with the magnetic frustration in the 4f-electron systems still need to be clarified in the future.

Acknowledgments

Y. Luo would like to show gratitude to Hui Xing and Chao Cao for helpful discussions. This work was supported by the National Science Foundation of China (Grant Nos. 11190023 and 11174247), the National Basic Research Program of China (Grant Nos. 2011CBA00103 and 2010CB923003), and the Fundamental Research Funds for the Central Universities of China. J. Dai was
also supported by the Natural Science Foundation of Zhejiang Province (Grant No. Z6110033).

1 M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
2 T. Park, E. Park, H. Lee, T. Klimczuk, E. D. Bauer, F. Ronning, and J. D. Thompson, J. Phys.: Condens. Matter 20, 322204 (2008).
3 P. L. Alireza, Y. T. Chris Ko, J. Gillett, C. M. Petrone, J. M. Cole, S. E. Sebastian, and G. Lonzarich, J. Phys.: Condens. Matter 21, 012208 (2008).
4 A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett., 101, 117004 (2008).
5 L. J. Li, Y. K. Luo, Q. B. Wang, H. Chen, Z. Ren, Q. Tao, Y. K. Li, X. Lin, M. He, Z. W. Zhu, G. H. Cao, and Z. A. Xu, New. J. Phys. 11, 025008 (2009).
6 Z. Ren, Q. Tao, S. Jiang, C. Feng, C. Wang, J. Dai, G. Cao, and Z. Xu, Phys. Rev. Lett. 102, 137002 (2009).
7 J. J. Ying, T. Wu, Q. J. Zheng, Y. He, G. Wu, Q. J. Li, Y. J. Yan, Y. L. Xie, R. H. Liu, X. F. Wang, and X. H. Chen, Phys. Rev. B 81, 052503 (2010).
8 W. H. Jiao, Q. Tao, J. K. Bao, Y. L. Sun, C. M. Feng, Z. A. Xu, I. Nowik, I. Felner, and G. H. Cao, EPL 85, 67007 (2011).
9 A. S. Sefat, M. A. McGuire, R. Jin, B. C. Sales, D. Mandrus, F. Ronning, E. D. Bauer, and Y. Mozharivskyj, Phys. Rev. B 79, 094508 (2009).
10 F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, Phys. Rev. Lett. 43, 1892 (1979).
11 W. Jeltschko, W. K. Hofmannat, and L. J. Terbuchte, J. Less-Common Met. 137, 133 (1988).
12 H. Suzuki, H. Abe, H. Kitazawa, and D. Schmitt, J. Alloys Compd. 323-324, 520 (2001).
13 E.H. El Ghadraoui, J.Y. Pivan, R. Guérin, O. Pena, J. Padiou, and M. Sergent, Mat. Res. Bull. 23, 1345 (1988).
14 Y. Luo, H. Han, H. Tan, X. Lin, Y. Li, S. Jiang, C. Feng, J. Dai, G. Cao, Z. Xu, and S. Li, J. Phys.: Condens. Matter 23, 175701 (2010).
15 J.-Q. Yan, S. Nandi, J. L. Zarestky, W. Tian, A. Kreyssig, B. Jensen, A. Kracher, K. W. Dennis, R. J. McQueeney, A. I. Goldman, R. W. McCallum, and T. A. Lograsso, Appl. Phys. Lett. 95, 222504 (2009).
16 The actual role of CeO$_2$ here is still unknown. We have tried this synthesis without CeO$_2$, but the product turns out to be of CaBe$_2$Ge$_2$ type CeNi$_2$As$_2$.
17 F. Izumi, and T. Ikeda, Mater. Sci. Forum 198, 321 (2000).
18 X. F. Wang, T. Wu, G. Wu, H. Chen, Y. L. Xie, J. J. Ying, Y. J. Yan, R. H. Liu, and X. H. Chen, Phys. Rev. Lett. 102, 117005 (2009).
19 D. Wu, N. Barisič , N. Drichko, S. Kaiser, A. Faridian, M. Dressel, S. Jiang, Z. Ren, L. J. Li, G. H. Cao, Z. A. Xu, H. S. Jeevan, and P. Gegenwart, Phys. Rev. B 79, 155103 (2009).
20 G. Wu, H. Chen, T. Wu, Y. L. Xie, Y. J. Yan, R. H. Liu, X. F. Wang, J. J. Ying, and X. H. Chen, J. Phys.: Condens. Matter 20, 422201 (2008).
21 Y. Tomioka, S. Ishida, M. Nakajima, T. Ito, H. Kito, A. Iyo, H. Eisaki, and S. Uchida, Phys. Rev. B 79, 132506 (2009).
22 M. J. Besnus, A. Braghta, N. Hamdaoui, and A. Meyer, J. Magn. Magn. Mater. 104-107, 1385 (1992).
23 K. W. H. Stevens, Proc. Phys. Soc., London, Sect. A 65, 209 (1952).
24 M. T. Hutchings, Solid State Physics: Advances in Research and Applications, edited by F. Seitz and D. Turnbull (Academic, New York), 16, 227 (1964).
25 B. K. Cho, B. N. Harmon, D. C. Johnston, and P. C. Canfield, Phys. Rev. B 53, 2217 (1996).
26 Bauer, E. and Rotter, M., ChemInform Abstract: Magnetism of Complex Metallic Alloys: Crystalline Electric Field Effects. ChemInform, 41 (2010).
27 J. Dai, J. X. Zhu, and Q. Si, Phys. Rev. B(R) 80, 020505 (2009).
28 C. Fang, H. Yao, W.-F. Tsai, J.P. Hu, and S.A. Kivelson, Phys. Rev. B 77, 224509 (2008).
29 C. Xu, M. Muller, and S. Sachdev, Phys. Rev. B(R) 78, 020501(2008).
30 J. Dai, Q. Si, J. X. Zhu, and E. Abrahams, Proc. Natl. Acad. Sci. USA 106, 4118 (2009).
31 E. D. Mun, S. L. Bud’ko, A. Kreyssig, and P. C. Canfield, Phys. Rev. B 82, 054424 (2010).
32 L. J. van der Pauw, Philips Res. Rep. 13, 1 (1958).
33 Y. Luo, Y. Li, S. Jiang, J. Dai, G. Cao, and Z. A. Xu, Phys. Rev. B 81, 134422 (2010).
34 S. Doniach, Physica B 91, (1977) 231.
35 Y. Luo et al, ”Pressure driven quantum critical point in CeNiAsO”, unpublished.
36 A. P. Pikul, U. Stockert, A. Steppke, T. Cichorek, S. Hartmann, N. Caroca-Canales, N. Oeschler, M. Brando, C. Geibel, and F. Steglich, Phys. Rev. Lett. 108, 066405 (2012).
37 Q. Si, Phys. Stat. Solidi B 247, 476 (2010).
38 P. Coleman and A.H. Nevidomskyy, J. Low Temp. Phys. 161, 182 (2010).
39 S.J. Yamamoto and Q. Si, J. Low Temp. Phys. 161, 233 (2010).