Endothelial progenitor cells and coronary artery disease: Current concepts and future research directions

Sen-Tong Xiao, Chun-Yan Kuang

ORCID number: Sen-Tong Xiao 0000-0002-6499-2462; Chun-Yan Kuang 0000-0001-7245-6419.

Author contributions: Xiao ST wrote the manuscript; Kuang CY revised the article.

Supported by the Guizhou Science and Technology Department, No. Qian-Ke-He [2018]1097; the National Natural Science Foundation of China, No. 81560056; Program for Training Outstanding Young Scientific and Technological Talents of Guizhou Province, No. Qian Kehe Platform Talents [2019]5662; Program for the Scientific Activities of Selected Returned Overseas Professionals in Guizhou Province, No. Grant Qian-Ren [2018]0003; and Scientific and Technological Platform and Talent Team Project of Guizhou Province, No. Qian Kehe Platform Talents [2017]5405.

Conflict-of-interest statement: The authors report that they have no conflicting interests.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0).

Abstract

Vascular injury is a frequent pathology in coronary artery disease. To repair the vasculature, scientists have found that endothelial progenitor cells (EPCs) have excellent properties associated with angiogenesis. Over time, research on EPCs has made encouraging progress regardless of pathology or clinical technology. This review focuses on the origins and cell markers of EPCs, and the connection between EPCs and coronary artery disease. In addition, we summarized various studies of EPC-capturing stents and EPC infusion therapy, and aim to learn from past technology to predict the future.

Key Words: Endothelial progenitor cells; Coronary disease; Endothelial progenitor-cell capture stents; Endothelial progenitor-cell infusion; Clinical application

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The development of clinical applications of endothelial progenitor cells (EPCs) has progressed in recent decades. In this review, we summarize and discuss the origins and antibody markers of EPCs and the clinical effects of EPC stents and infusion. We hope to predict future clinical uses of EPCs.

Citation: Xiao ST, Kuang CY. Endothelial progenitor cells and coronary artery disease: Current concepts and future research directions. World J Clin Cases 2021; 9(30): 8953-8966
URL: https://www.wjgnet.com/2307-8960/full/v9/i30/8953.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i30.8953
INTRODUCTION

The development of clinical applications of endothelial progenitor cells (EPCs) has progressed over the years, with identification of antibody markers of EPCs and with clinical study of EPC stents and EPC infusion. The core application depends on the excellent properties associated with angiogenesis of EPCs. We mainly discuss the applications of EPCs in coronary artery disease and EPC application and summarized various studies of EPC-capturing stents and EPC infusion therapy, focusing on the mechanisms involved.

INTRODUCTION TO EPCS

Decades ago, scientists found that endothelial cells (ECs) could proliferate and migrate to ischemic tissues or tumors and promote angiogenesis. Identifying markers of circulating cells that promote new blood vessel development has been a research challenge in recent years. For example, Flamme et al.[1] and Weiss et al.[2] explored the origin and development of hematopoietic cells and ECs, and they found that hematopoietic cells and EPCs are derived from a common precursor and share some markers during embryonic development. In 1997, EPCs were first isolated and cultured from peripheral blood by Asahara et al.[3]. They are positive for both hematopoietic stem cell (HSC) markers like CD34 and CD133 and endothelial marker proteins like vascular endothelial growth factor receptor (VEGFR)2. CD34 is expressed on virtually all normal hematopoietic progenitor cells. Steen et al.[4] identified CD34 as an HSC marker on human peripheral blood monocytes in 1998. The researchers suggested that human peripheral blood mononuclear cells could be expanded in vitro as pluripotent stem cells and differentiate into cells of distinct lineages and transplantation candidates. Gehling et al.[5] found that CD133-positive cells formed new blood vessels in mice, which indicated that CD133-positive cells have the potential to differentiate into ECs. CD146, a transmembrane immunoglobulin mainly expressed at the intercellular junctions of ECs, by vascular smooth muscle cells (VSMCs), and pericytes,[6] is involved in cell-cell adhesion, angiogenesis, and monocyte transmigration, CD146 includes three forms, lgCD146, shCD146, and sCD146. Jouve et al.[7] found that CD146 expression reflected alteration of vascular permeability, and was significantly increased and accompanied by release of cell adhesion molecules when endothelial dysfunction was present. A reduction in permeability was observed in CD146-deficient mice.[7] In addition, CD146 is expressed in late EPCs[8-10], which enhances the angiogenic properties, endothelial function, and reduces neointimal formation by EPCs[8]. Factors that identify EPCs may reflect changes in not only cell number but also cell function. However, EPC nomenclature still lacks concordance in the biomedical field[11], and no single surface marker has been reported to specifically identify EPCs.

Studies have shown that EPCs come from various sources, and the most representative cells are HSCs from bone marrow. In recent years, Yang et al.[12] examined the importance of CD34 as a progenitor cell marker and studied the origin of progenitor cells. CD34 cells derived from mouse bone marrow had increased adhesion, homing capacity, and angiogenesis. Additional EPC characteristics have been identified, including angiogenesis that promotes blood vessel growth, differentiation to both hematopoietic and endothelial phenotypes, mobilization and adhesion to the walls of blood vessels, and survival and homing capacity.[13]. In recent years, scientists have found that vascular progenitor cells are derived from the vessel itself; human umbilical vein ECs (HUVECs) and human aortic ECs derived from vessel walls have high proliferative potential[14], and have become the basis for vascular transplantation technology. Transplanted EPCs are capable of enhancing neovascularization in different tissues and the vasculature[15]. In addition, EPCs found in the bone marrow and the adventitia of arteries, have provided new ideas for the treatment of cardiovascular diseases[16,17]. Progenitor cells from different sources have been shown to migrate into blood vessels and induce the proliferation of blood vessels in corresponding tissues[18], and increasing the number of EPCs enhances neovascularization[19]. From those we guess there might be some dissimilarities among various types of EPCs, and recent years transcriptome analysis has shown some evidence to confirm predictions. Abdelgawad et al.[20] reported that genes involved with angiogenic potential such as BMP2, 4, and ephrinB2 are highly expressed in EPCs. The expression of neuropilin-1 and vascular endothelial growth factor (VEGF)-C were significantly upregulated in EPCs and HUVECs. Other genes such as Notch1, MIR21
and platelet/endothelial cell adhesion molecule-1 (PECAM-1) were also differentially expressed in EPCs of various origins. Single-cell RNA sequencing also revealed interesting results. CD163 and CD115 are considered to be markers of early EPCs, and CD36 might be a marker of late EPCs. Two other EPC-related gene markers, PLAUR and NOTCH2 are highly regulated in EPCs and peripheral blood mononuclear-cell monocyte subcompartment. The genes influenced the hematopoietic activity and migration of cells[21,22]. The findings may help to identify novel EPC markers and increase the yield of EPCs thus promoting the clinical application of cell therapy.

However, the supportive effect of EPCs on growth is not the only effect. For example, endothelial dysfunction is a crucial step in the pathology of atherosclerosis, and the secretion of reactive oxygen species (ROS) by dysfunctional ECs accelerates the progression of vascular inflammation[23]. In addition, inflammatory cytokines, such as interleukin (IL)-6, IL-8 and IL-1α, produced by cells induce inflammation, and inflammatory cytokines and the senescence-associated secretory phenotype contribute to cell aging[24]. On the other hand, the inflammatory environment promotes the migration and angiogenic functions of EPCs[25], and we must consider the influence of inflammation and immunity on EPC transplantation therapy. Studies have found that (1) EPCs suppress T cell proliferation and modulate T cell differentiation into less proinflammatory and active phenotypes; and (2) Tumor necrosis factor (TNF)α interacts with TNF receptor (TNFR)2 to enhance the immunosuppressive and anti-inflammatory effects of EPCs. TNFα is a proinflammatory cytokine that regulates both pro- and anti-angiogenic activity[26,27], and binding with the TNFR1/TNFR2 transmembrane receptors has different immunomodulatory effects of EPCs on T cell immunity[28]. A study has shown that endothelial colony-forming cells (ECFCs) reduced the production of T cell proinflammatory cytokines and the immunosuppressive effect depended on the TNF/TNFR2 axis. Other studies have shown that EPCs from cord blood or from adult peripheral blood have different influences on regulating the immunosuppression of T cells[29]. Co-culture of human aortic endothelial cells, and ECFCs isolated from umbilical cord blood (CB-ECFCs) and from adult peripheral blood (APB-ECFCs) were less susceptible to immune rejection. The TNFα-TNFR2 axis was found to be important in the ECFC immunomodulatory effect. TNFR2 agonists enhanced the anti-inflammatory activity ECFCs, but antagonists inhibited that function. Such different mechanisms could help to choose ideal EPCs to avoid immune rejection and tolerate allogenic responses.

Recent progress has been made in the therapeutic applications of EPCs. Tateishi-Yuyama et al[30] reported that the local transplantation of bone marrow cells improved limb ischemia[31]. In 2012, Donndorf et al[32] injected CD133-labeled bone marrow cells into the myocardium by to verify the ability of progenitor cells to regenerate ischemic tissues and induce angiogenesis. In recent years, bioscaffolds have been used for vascular repair. Human adventitial ECs can proliferate on pepsin-digested porcine adventitial and porcine small intestinal submucosal extracellular matrix (ECM) bioscaffolds in response to basic fibroblast growth factor (FGF)2[33]. Acellularized scaffolds can also induce angiogenesis by mediating the adhesion and chemotaxis of EPCs to growth factors such as platelet-derived growth factor (PDGF), VEGF and hypoxia-inducible factor[34]. In the heart, a cell-free engineered scaffold promoted revascularization in ischemic myocardial tissue, and expression of the S100 protein marker indicated nerve fiber regeneration[35]. Stem cell transplantation or scaffolds that capture stem cells, have great therapeutic potential to improve transplanted cell function and have applications in ischemic necrotic tissue and the myocardium in acute myocardial infarction (AMI). The effects are associated with activation of growth factors, and involve cell migration, transplanted cell proliferation, new matrix deposition, and the production of signaling molecules. The mechanisms will be discussed in detail.

EPCs and Coronary Artery Disease

Pathological processes in coronary atherosclerosis

Coronary artery disease (CAD) is a major public health issue and has been the leading cause of mortality and morbidity worldwide in recent years[36]. Study of coronary artery structure and cell physiology has led to considerable progress in the treatment of atherosclerosis. EC damage is an important step in the pathology of atherosclerosis [37]. Mechanical injury or inflammation, cause subendothelial VSMCs of the artery to proliferate and produce a large amount of ECM during the initial stage of intimal thickening[38]. Then, low-density lipoprotein and cholesterol combine in regions
prone to atherosclerosis, which are mainly located at vessel branches and curves disturbed by irregular low wall shear stress[39]. Inflammatory cells such as macrophages enter the arterial wall in response to stimulation and phagocytose oxidized lipids to form foam cells[40], which is a key step in the pathological process of coronary atherosclerosis.

Mechanisms of EPC proliferation and migration in CAD-associated angiogenesis
EPCs cause rapid healing by proliferation, migration, and adhesion to the sites of blood vessel damage in CAD[41]. The molecular mechanisms may include (1) VEGF-stimulated migration of EPCs from the bone marrow to the damaged vasculature[42]. The migration of EPCs was first discovered by Asahara et al[3], but the exact mechanism is still unclear. In recent years, scientists have shown that VEGF acts via the PI3K/AKT signaling pathway to promote EPC mobilization[43]. Differential gene expression analysis showed that high levels of PI3K and AKT increased VEGF expression and induced angiogenesis in EPCs[44,45]. The P38-MAPK pathway was also associated with the differentiation and mobilization EPCs from the bone marrow, which is the main source[46,47]. In terms of signal transmission, P38-MAPK is a downstream component of VEGFR2 signaling (the dominant component of the VEGF family that regulates angiogenesis)[44]. Through p38-MAPK, VEGF2 promotes the proliferation and migration of EPCs by regulating the expression of the activators urokinase plasminogen, serine protein kinases, and threonine protein kinases[48,49], thus strengthening angiogenesis. (2) Some noncoding small RNAs, such as microRNAs also have an important role in EPC mobilization. For example, microRNA-221 (miR-221), miR-222, and miR-206 are involved in EPC-mediated promotion of angiogenesis by influencing VEGF expression[50-52]. The molecular mechanism involves binding to the 3′-UTRs of downstream protein-coding mRNAs, thus modulating the growth and differentiation of EPCs[52]. (3) When hypoxia and ischemia injure blood vessels, endothelial nitric oxide synthase (eNOS) activates the release of proangiogenic factors and induces the migration and proliferation of EPCs[53,54]. The molecular mechanism involves the expression of NOX and high levels of ROS. Patients with upregulated NOX and ROS have decreased EPCs, and it was shown that the migration and adhesion of EPCs was reduced[63,64].

STUDIES OF EPCs IN AMI
AMI is one of the most dangerous events associated with coronary heart disease[36]. Because of massive ischemia and necrosis of the myocardium, it is difficult to resolve ischemia and revascularization except by surgery and percutaneous coronary intervention (PCI)[65,66]. However, there are some limitations. Not all patients are qualified for surgery, and poor prognosis and clinical events after surgery are still challenging for clinicians[67]. Therefore, we need an effective therapeutic strategy for conditions that surgery cannot address. EPCs can proliferate, migrate, and adhere to tissues. In ischemic tissue, EPCs can differentiate into corresponding ECs[1]. Vasculogenesis and myogenesis have been described in heart tissues after EPC infusion in a canine model of AMI [67]. In addition, the expression of VEGF was upregulated, and the EPCs differentiated into myocardial cells. The evidence suggests that EPC infusion could enhance neovascularization after AMI. In a mouse model of AMI, injecting EPCs enhanced myocardial healing after AMI and reduced the formation of lymphatic vessels, which may decrease inflammation and myocardial remodeling[68]. However, in an in vitro study, the results were not ideal, and the effects of EPCs on AMI patients were attenuated compared with those in the healthy group. Many factors, like lifestyle habits and drug treatment affect the process and impact treatment to different degrees[69]. Smoking and drinking may cause EC damage and angiotensin converting enzyme inhibitors or angiotensin receptor inhibitors can increase the activity of EPCs.
Therefore, clinical applications require additional clinical data to support safety and effectiveness.

Scientists have conducted several clinical trials to demonstrate the efficacy of EPCs in the treatment of ischemic cardiac tissue[70-80] (Table 1). First, scientists performed several imaging evaluations to assess the migratory and regenerative capacities of EPCs in the ischemic myocardium after progenitor cell therapy[70-72]. The efficacy of progenitor cell therapy reduced infarct size and improved left ventricle function. In addition, the cellular mechanisms associated with EPC therapy were initially explored. The migratory capacity of EPCs toward the target tissue relied on their homing capacity, and some chemoattractants, such as SDF and VEGF, were involved in the homing signaling pathway that recruited circulating EPCs and enhanced repair mechanisms after ischemia[71,72]. However, the scientific community awaits the results of clinical trials to assess safety and efficacy. A few years later, a study that used EPC infusion to treat idiopathic pulmonary arterial hypertension and reported the EPC therapy had patient benefits[73]. Cell infusion increased the distance walked in 6 min by 42.5 m (95% confidence interval 28.7-56.3, \(P = 0.001 \)) compared with conventional therapy, and improved in pulmonary artery pressure and cardiac output, with no adverse events, suggesting feasibility and safety. A study of EPC treatment of AMI focused on bone marrow-derived CD34+ cells and showed that a 3% improvement in ejection fraction (EF) occurred in the treatment group after the infusion of EPCs[74]. CD34+ cell homing was observed. Another clinical trial showed that a certain number of CD4 cells may increase the EF and reduce the infarct size in AMI[75]. In the study, an overall improvement in LVEF of approximately 5.0% was reported. Angina and heart failure improved at the 12-mo follow-up (all \(P < 0.001 \)), and the survival rate at the 18.5-mo follow-up was 94.7% (\(n = 36 \)). The evidence supports the safety and efficacy of EPC therapy. PECAM-1, also called CD31, is a vascular cell adhesion and signaling molecule that is expressed on the surface of human granulocytes, monocytes, and platelets[76]. In experimental animal models, CD31+ EPCs therapy enhanced perfusion and reduced apoptosis in the healing myocardium[78], and immune system stimulation of increased anti-inflammatory cytokine may predict fewer adverse events[79]. In another mouse model, abnormal proliferation was not observed after EPC transplantation[80]. Whether various types of EPCs are available for intravenous therapy remains unclear. Long-term prognosis and safety also need further investigation.

EPC-CAPTURE STENTS

Clinical applications of EPC-capture stents

EPC-capture stents are stainless steel devices that are coated with monoclonal antibodies such as CD133, CD34 and CD146 and are associated with a decreased incidence of restenosis and thrombosis[81-83]. Monoclonal CD34 antibodies bind to EPCs in the peripheral blood and promote healing[84], by migration and proliferation. The promotion of EPC colonization in the stent accelerates re-endothelialization and revascularization of the stented segment[85], which leads to decreased rates of restenosis and thrombosis after PCI. Studies of EPC stents coated with different types of antibodies are shown in Table 2, and described below.

The advantage of EPC stents coated with monoclonal CD34 antibodies is that CD34 enhances stent endothelialization, thus enhancing the adhesion and proliferation of EPCs. Studies of endothelialization in different stents has shown that CD34 antibodies stents increased endothelial coverage, 97 ± 3% in anti-CD34 antibody stents, 95 ± 4% in hyaluronan-chitosan-anti-CD34 antibody and sirolimus-eluting stents, and 74 ± 8% in sirolimus-eluting stents[86]. A clinical study of CD34 antibody-coated stents in a group of 100 patients reported major adverse cardiac events (MACE), a composite of cardiac death, myocardial infarction, and emergency cardiac surgery, in 15.6% of patients at 12 mo and 16.6% at 24 mo. The target vessel failure rate, a composite of revascularization, recurrent infarction, or cardiac death of the target vessel was 14.6% at 12 mo and 24 mo[87]. In another study, 2279 patients were treated with EPC stents and grouped into low bleeding risk (LBR) and intermediate-to-high bleeding risk (IHBFR) groups. The rate of 1-year target lesion failure (TLF) was 4.1% in the IHBFR and 2.6% in the LBR groups. The AMI rates were 1.8% in the IHBFR and 1.1% in the LBR groups, and the incidence of stent thrombosis was 1.2% in the IHBFR and 0.6% in the LBR groups[88], which showed a higher 1-year TLF rates. Animal studies of CD133 combination stents mainly investigated restenosis and endothelialization, and two compared CD133 with CD34. Wu et al[89] reported that the time of cell adhesion was longer and EPC capture

Table 1

Antibody Type	Efficacy	Safety
CD34	Increased endothelial coverage	97±3%
CD34	Hyaluronan-chitosan-anti-CD34 antibody	95±4%
CD34	Sirolimus-eluting stents	74±8%

Table 2

Antibody Type	Efficacy	Safety
CD34	Increased endothelial coverage	97±3%
CD34	Hyaluronan-chitosan-anti-CD34 antibody	95±4%
CD34	Sirolimus-eluting stents	74±8%
The safety and homing ability of EPCs are improved in the heart. The EPCs therapy could increase myocardial viability. Infusion of EPCs seemed to be feasible and safe, and might have beneficially affect to AMI patients. The safety and homing ability of EPCs are proved in both acute and chronic conditions. The EPCs therapy had improved the heart function of patients. CD34+ cell therapy was safe and efficacious in improving heart function. CD34+ cell therapy might contribute to improving left ventricular function, heart failure, and amelioration of left ventricular remodeling. EPC therapy may reduce the effect of cardiomyocyte apoptosis and cardiac dysfunction. Dogs with EPC transplantation have reduced platelets, increased VEGF, and increased IL-10. Not significant effect was observed in this experiment. EPC therapy seemed to be feasible and safe, and might have beneficially affect to AMI patients. The EPC therapy could increase myocardial viability. The progenitor cell therapy could rescue dysfunctional myocardium early after AMI.

Table 1 Clinical studies of endothelial progenitor cell therapy

Ref.	Article	Species	EPCs category	Result
Britten et al[71], 2003	Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): Mechanistic insights from serial contrast-enhanced magnetic resonance imaging	Human	CD34, CD45, CD133	The progenitor cell therapy could rescue dysfunctional myocardium early after AMI
Döbert et al[72], 2004	Transplantation of progenitor cells after reperfused acute myocardial infarction: Evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT	Human	BMCs and EPCs	The EPC therapy could increase myocardial viability
Wang et al[73], 2007	Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: A pilot randomized controlled trial	Human	Peripheral blood EPCs	Infusion of EPCs seemed to be feasible and safe, and might have beneficially affect to AMI patients
Dedobbeleer et al[74], 2004	Myocardial homing and coronary endothelial function after autologous blood CD34+ progenitor cells intracoronary injection in the chronic phase of myocardial infarction	Human	CD34	The safety and homing ability of EPCs are proved in both acute and chronic conditions
Flores-Ramirez et al[77], 2010	Intracoronary infusion of CD133+ endothelial progenitor cells improves heart function and quality of life in patients with chronic post-infarct heart insufficiency	Human	CD133	The EPCs therapy had improved the heart function of patients
Dubois et al[78], 2010	Differential effects of progenitor cell populations on left ventricular remodeling and myocardial neovascularization after myocardial infarction	Pig	CD31, CD90, CD29, CD44, CD45	Infusion of late-outgrowth EPCs could improve myocardial infarction remodeling
Lee et al[79], 2015	Intracoronary transfusion of circulation-derived CD34+ cells improves left ventricular function in patients with end-stage diffuse coronary artery disease unsuitable for coronary intervention	Human	CD34	CD34+ cell therapy was safe and efficacious in improving heart function
Sung et al[80], 2018	Five-year clinical and angiographic follow-up outcomes of intracoronary transfusion of circulation-derived CD34+ cells for patients with end-stage diffuse coronary artery disease unsuitable for coronary intervention-phase 1 clinical trial	Human	CD34	CD34+ cell therapy might contribute to improving left ventricular function, heart failure, and amelioration of left ventricular remodeling
Shen et al[81], 2018	Induced pluripotent stem cell-derived endothelial progenitor cells attenuate ischemic acute kidney injury and cardiac dysfunction	Mouse	CD31	EPC therapy may reduce the effect of cardiomyocyte apoptosis and cardiac dysfunction
Lee et al[82], 2019	Clinical assessment of intravenous endothelial progenitor cell transplantation in dogs. cell transplant	Dog	CD105, CD31 and CD144	Dogs with EPC transplantation have reduced platelets, increased VEGF, and increased IL-10
Angulski et al[83], 2019	Systemic infusion of expanded CD133+ cells and expanded CD133+ cell-derived EVs for the treatment of ischemic cardiomyopathy in a rat model of AMI	Rat	CD133	Not significant effect was observed in this experiment

AMI: Acute myocardial infarction; BMCs: Blood mononuclear cells; EPCs: Endothelial progenitor cells; EV: Extracellular vesicle; SPECT: Single photon emission computed tomography; TOPCARE-AMI: Transplantation of Progenitor Cells and Regeneration Enhancement in AMI; VEGF: Vascular endothelial growth factor.
antibody stents are commonly used in the clinic, but studies have shown that CD133 and CD146 have a better potential to stimulate angiogenesis and prevent restenosis, which may reduce the incidence of clinical events. Larg multicenter randomized controlled trials are needed to standardize and verify the therapeutic applications before clinical application is feasible.

EPC-mediated reduction in thrombus formation may be an advantage of EPC-capture stents

The incidence of clinical events can be reduced by EPC capture, but there are still no significant differences between EPC-capture and traditional drug-eluting stents (DES). That may be related to the characteristics of EPCs, which can promote the repair of the vascular endothelium and also influence thrombus propagation\[92,93\]. Platelets can bind to bone marrow-derived CD34+ cells and recruit the cells to the vascular wall during vascular injury; the chemokine SDF-1α and GPIIb integrin mediate the process. Platelets also adhere to the vessel wall, forming a thrombus. SDF-1 and VEGF recruit EPCs, resulting in vascular repair and remodeling\[94\]. EPCs participate in the resolution of thrombosis together with multiple chemokines. VEGF, SDF1, and PDGF are involved in EPC migration\[95-97\]. EPCs integrate into the damaged endothelium and repair injured vessels. New vessels are formed, and vascular endothelial monolayers are integrated. In that way, EPCs significantly drive the development of new vascular channels in thrombi\[98\], and neovascularization is a significant marker to indicate thrombus resolution and recanalization\[99\]. Second, NO affects the activation, adhesion, and aggregation of platelets, ultimately preventing thrombosis\[100\]. Finally, the integrity of vascular ECs can prevent thrombosis\[101\]. When new damage occurs to the lining of blood vessels, ECs are recruited to accelerate repair of the damage, thus significantly reducing the incidence of thrombosis.

The curative effect of EPC-capture stents leads a better result than that of bare metal stents or DESs containing antiproliferative drugs, such as sirolimus, which confirms the original hypothesis that stents that reduce the rates of clinical events such as LST, MI and thrombosis extend survival\[102,103\]. The clinical trial results may have been slightly skewed by the interference of age, medication use and implantation time\[104,105\]. Age may be associated with increased rates of heart failure and AMI. The risk of late stent thrombosis increases with time, and patients who are treated with drugs under a physician’s guidance may have decreased risks of clinical events. However, those factors did not have absolute statistical significance. Clinical outcomes are affected by clinical and technical factors, mental health, and ethnic origin. Long-term

Table 2 Clinical outcomes with endothelial progenitor cell stents

Ref.	Article	Patients, n	Inclusion criteria	Major clinical outcomes
Sung et al[75], 2018	Five-yr clinical and angiographic follow-up outcomes of intracoronary transfection of circulation-derived CD34+ cells for patients with end-stage diffuse coronary artery disease unsuitable for coronary intervention phase 1 clinical trial	38	Death from any cause/major adverse cardiac and cerebrovascular event/target vessel revascularization/newly onset atrial fibrillation	Five-yr clinical outcomes: Noncardiovascular death: 13.2%; Cardiovascular death: 7.9%. Acute myocardial infarction: 7.9%. Newly onset atrial fibrillation: 2.6%
Sarno et al[85], 2017	Real-life clinical outcomes with everolimus eluting platinum chromium stent with an abluminal biodegradable polymer in patients from the Swedish coronary angiography and angioplasty registry (SCAAR)	42357		One-yr outcomes: Restenosis: 1.1%; Restenotic lesion: 3.8%; Death: 5.2%
den Dekker et al [87], 2011	Final results of the HEALING IIB trial to evaluate a bio-engineered CD34 antibody-coated stent (Genous stent) designed to promote vascular healing by capture of circulating endothelial progenitor cells in CAD patients	100	Angiographic features/ MACCE rate	Two-yr clinical outcomes: MACCE: 16.6%; MI: 5.2%, TLR clinically driven: 11.5%, TVF: 14.6%, Stent thrombosis: 3.1%
Chandrasekhar et al[88], 2020	1-year COMBO stent outcomes stratified by the PARIS bleeding prediction score: From the MASCOT registry	2279	One-yr TLF/target lesion revascularization/ST/major adverse cardiac events	One-yr outcomes: TLF: 6.7%, Cardiac death: 2.4%; MI: 2.9%, TLR: 3.1%, Stent thrombosis: 1.8%

MACCE: Major adverse cardiac and cerebrovascular events; MI: Myocardial infarction; TLR: Target lesion revascularization; TVF: Target vessel failure; TLF: Target lesion failure.
follow-up to show the impact of clinical events and the associated risk factors is also lacking.

CONCLUSION

The results of recent EPC studies have been encouraging, regardless of the CAD pathology or vascular repair technology. Clinical manipulation of EPCs still needs to be practiced, and the possibility of using drugs to promote vascular repair needs to be further explored. Antibody-coated stents have also been successfully used, and it is unclear whether additional antibodies can be used for treatment. Various antibodies, including CD34, CD133 and CD146 have had unique results in animal experiments, but it is unclear which has the best potential for EPC capture efficiency. Can the stent structure be improved to reduce the incidence of acute thrombosis and late clinical events? In basic research, we found high adhesion, homing capacity, and angiogenic abilities of EPCs, and more study of the mechanisms are needed to understand and improve the understanding of EPCs. All the challenges need to be solved. The optimal patients for EPC-capture stents and relevant risk assessments also need to be established, and perhaps we need a large clinical study to study that.

REFERENCES

1. Flammé I, Risau W. Induction of vasculogenesis and hematopoiesis in vitro. Development 1992; 116: 435-439 [PMID: 1286617 DOI: 10.1242/dev.116.2.435]
2. Weiss MJ, Orkin SH. In vitro differentiation of marine embryonic stem cells. New approaches to old problems. J Clin Invest 1996; 97: 591-595 [PMID: 8609212 DOI: 10.1172/JCI11854]
3. Asahara T, Maruhashi T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schattenman G, Issner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967 [PMID: 9020076 DOI: 10.126/science.275.5302.964]
4. Steen R, Egeland T. CD34 molecule epitope distribution on cells of haematopoietic origin. Leuk Lymphoma 2009; 30: 23-30 [PMID: 9669673 DOI: 10.3109/10428190909950926]
5. Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge B, Schäfer D, Buehler K. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95: 3106-3112 [PMID: 10807776 DOI: 10.1182/blood.V95.10.3106]
6. Crisan M, Yap S, Castella L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugor R, Deasy BM, Badyak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Puel A. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301-313 [PMID: 18786417 DOI: 10.1016/j.stem.2008.07.003]
7. Jouve N, Bachelier R, Despoix N, Blin MG, Matinzadeh MK, Poitevin S, Aurrand-Lions M, Jouve N, Bachelier R, Trimboli P, Garraud O, Randi AM, Chan JKY, Yamaguchi T, Van Hinsbergh VWM, Orkin SH. In vitro differentiation of murine embryonic stem cells. New approaches to old problems. J Clin Invest 1996; 97: 591-595 [PMID: 8609212 DOI: 10.1172/JCI11854]
8. Asahara T, Maruhashi T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schattenman G, Issner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967 [PMID: 9020076 DOI: 10.126/science.275.5302.964]
9. Steen R, Egeland T. CD34 molecule epitope distribution on cells of haematopoietic origin. Leuk Lymphoma 2009; 30: 23-30 [PMID: 9669673 DOI: 10.3109/10428190909950926]
10. Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 2004; 287: C572-C579 [PMID: 15308462 DOI: 10.1152/ajpcell.00330.2003]
11. Medina RJ, Barber CL, Sabatier F, Dignat-George F, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schattenman G, Issner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967 [PMID: 9020076 DOI: 10.126/science.275.5302.964]
12. Yang J, Li M, Kamei N, Alev C, Kwon SM, Kawamoto A, Akimaru H, Masuda H, Sawa Y, Asahara T. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. PLoS One 2011; 6: e20219 [PMID: 21655289 DOI: 10.1371/journal.pone.0020219]
13. Walter DH, Dimmler S. Endothelial progenitor cells: regulation and contribution to adult neovascularization. Herz 2002; 27: 579-588 [PMID: 12439630 DOI: 10.1006/s0005-9002-2427-5]
14. Ingaramo DA, Moad LE, Moore DB, Woodward W, Fingelio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 2005; 105: 2783-2786 [PMID: 15585655 DOI: 10.1182/blood.V105.14.2783-2786]
15 **Huang XT**, Zhang YQ, Li SJ, Li SH, Tang Q, Wang ZT, Dong JF, Zhang JN. Intracerebroventricular transplantation of *ex vivo* expanded endothelial colony-forming cells restores blood-brain barrier integrity and promotes angiogenesis of mice with traumatic brain injury. *J Neurotrauma* 2013; 30: 2080-2088 [PMID: 23957220 DOI: 10.1089/neu.2013.2998]

16 **Aicher A**, Zeiler AM, Dimmeler S. Mobilizing endothelial progenitor cells. *Hypertension* 2005; 45: 321-325 [PMID: 15655116 DOI: 10.1161/01.HYP.0000154789.26955.ca]

17 **Hu Y**, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xiu Q. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. *J Clin Invest 2004; 113: 1258-1265* [PMID: 15124016 DOI: 10.1172/JCI19628]

18 Erratum for the Report "Generation of influenza A viruses as live but replication-incompetent virus vaccines" by L. Si, H. Xu, X. Zhou, Z. Zhang, Z. Tian, Y. Wang, Y. Wu, B. Zhang, Z. Niu, C. Zhang, G. Fu, S. Xiao, Q. Xia, L. Zhang, D. Zhou. *Science* 2020; 369 [PMID: 32883835 DOI: 10.1126/science.abe5323]

19 **Vaes B**, Van Houtven E, Caluwé E, Luttun A. Multipotent adult progenitor cells grown under xenobiote-free conditions support vasculization during wound healing. *Stem Cell Res Ther* 2020; 11: 389 [PMID: 32894199 DOI: 10.1186/s13287-020-01912-3]

20 **Abdelgawad ME**, Desterke C, Uzan G, Naserian S. Single-cell transcriptomic profiling and characterization of endothelial progenitor cells: new approach for finding novel markers. *Stem Cell Res Ther* 2021; 12: 145 [PMID: 33627177 DOI: 10.1186/s13287-021-02185-0]

21 **Smadja DM**, Béché I, Silvestre JS, Germain S, Cornet A, Laurendeau I, Duong-Van-Huyen JP, Emmerich J, Vidaud M, Aiach M, Gauzem S. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neangiogenesis. *Arterioscler Thromb Vasc Biol* 2008; 28: 2137-2143 [PMID: 18814109 DOI: 10.1161/ATVBAHA.108.166815]

22 **Lee JB**, Werbowetski-Ogilvie TE, Lee JH, McIntyre BA, Schnerr A, Hong SH, Park IH, Daley GQ, Bernstein ID, Bhatia M. Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. *Cell Commun Signal* 2016; 14: 2373337 [PMID: 10.1182/blood-2012-12-471469]

23 **Caja S**, Enríquez JA. Mitochondria in endothelial cells: Sensors and integrators of environmental cues. *Redox Biol* 2017; 12: 821-827 [PMID: 28448943 DOI: 10.1016/j.redox.2017.04.021]

24 **Salazar G**. NADPH Oxidases and Mitochondria in Vascular Senescence. *Int J Mol Sci* 2018; 19 [PMID: 29708400 DOI: 10.3390/ijms19051327]

25 **Prisco AR**, Hoffmann BR, Kaczorowski CC, McDermott-Roe C, Stodola TJ, Exner EC, Greene AS. Tumor Necrosis Factor α Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB. *Stem Cells* 2016; 34: 1922-1933 [PMID: 26867147 DOI: 10.1002/stem.2339]

26 **Fráter-Schröder M**, Risau W, Hallmann R, Gautschi P, Böhler P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. *Proc Natl Acad Sci USA* 1987; 84: 5277-5281 [PMID: 2440047 DOI: 10.1073/pnas.84.15.5277]

27 **Fajardo LF**, Kwan HH, Kowalski J, Prionas SD, Allison AC. Dual role of tumor necrosis factor-alpha in angiogenesis. *Am J Pathol* 1992; 140: 539-544 [PMID: 1372154]

28 **Naserian S**, Abdelgawad ME, Afshar Bakshloo M, Ha G, Arouche N, Cohen JL, Salomon BL, Uzan G. The TNF/TNFRII signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. *Cell Commun Signal* 2020; 18: 94 [PMID: 32546175 DOI: 10.1186/s12964-020-00954-3]

29 **Nouri Barkestani M**, Shamdani S, Afshar Bakshloo M, Arouche N, Bambai B, Uzan G, Naserian S. TGFβ priming through its interaction with TNFRII enhances endothelial progenitor cell immunosuppressive effect: new hope for their widespread clinical application. *Cell Commun Signal* 2021; 19: 1 [PMID: 33397378 DOI: 10.1186/s12964-020-00683-x]

30 **Tateishi-Yamada E**, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaiumi T; Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. *Lancet* 2002; 360: 427-435 [PMID: 12241713 DOI: 10.1016/S0140-6736(02)09670-5]

31 **Meluzin J**, Mayer J, Groch L, Janousek S, Hornacek I, Hlinomaz O, Kala P, Panovský R, Prásek J, Aicher A, Mayer J, Groch L, Janousek S, Hornacek I, Hlinomaz O, Kala P, Panovský R, Prásek J, Kamínek M, Janousek S, Hornacek I, Klabusay M, Kowalski J, Prionas SD, Allison AC. Dual role of tumor necrosis factor-α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. *Proc Natl Acad Sci USA* 1987; 84: 5277-5281 [PMID: 2440047 DOI: 10.1073/pnas.84.15.5277]

32 **Dondrup P**, Kaminski A, Tiedemann G, Kowalski J, Prionas SD, Allison AC. Dual role of tumor necrosis factor-alpha in angiogenesis. *Am J Pathol* 1992; 140: 539-544 [PMID: 1372154]

33 **Ferrana GR**, Yermeni S, Billaud M, Hill JC, VanRyzin P, Richards TD, Sicari BM, Johnson SA, Afshar Bakshloo M, Ha G, Arouche N, Cohen JL, Salomon BL, Uzan G. The TNF/TNFRII signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. *Cell Commun Signal* 2020; 18: 94 [PMID: 32546175 DOI: 10.1186/s12964-020-00954-3]

34 **Wang X**, Yu Y, Li M, Alkhawaji A, Chen C, Liu X, Jiang J, Zhang J, Wang Z, Li T, Zhang W, Mei J. EPCs enhance angiogenesis in renal regeneration. *Oncotarget* 2016; 7: 44941-44949 [PMID: 2733337 [DOI: 10.1186/s13287-012-03284-7]]
Xiao ST et al. Minireview of EPCs

27384488 DOI: 10.18632/oncotarget.10377

Gálvez-Montón C, Fernandez-Figuera MT, Martí M, Soler- Botija C, Roura S, Perea-Gil I, Pratt- Vidal C, Llucía-Valdepeñas A, Raya A, Bayes-Genis A. Neoinnervation and neovascularization of acellular pericardial- derived scaffolds in myocardial infarcts. *Cell Res* 2015; 6: 108 [PMID: 26205795 DOI: 10.1186/s13287-015-0101-6]

Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsiey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, OFlaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, Van Wagner LB, Wilkins JT, Wong SS, Virani SS; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2015 Update: A Report From the American Heart Association. *Circulation* 2019; 139: e56-528 [PMID: 30700139 DOI: 10.1161/CIR.0000000000005659]

Kaperonis EA, Liapits CD, Kakisis JD, Dimitroulis D, Papavassiliou VG. Inflammation and atherosclerosis. *Eur J Clin Endovasc Surg* 2006; 31: 386-393 [PMID: 16359887 DOI: 10.1016/j.ejv.2005.11.001]

Subbotin VM. Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. *Drug Discov Today* 2016; 21: 1578-1595 [PMID: 27265770 DOI: 10.1016/j.drudis.2016.05.017]

Chiu JF, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. *Physiol Rev* 2011; 91: 327-387 [PMID: 21248169 DOI: 10.1152/physrev.00047.2009]

Gencer S, Evans BR, van der Vorst EPC, Döring Y, Weber C. Inflammatory Chemokines in Atherosclerosis. *Cells* 2021; 10 [PMID: 33503867 DOI: 10.3390/cells10020226]

Wang C, Wang Q, Gao W, Zhang Z, Lou Y, Jin H, Chen X, Lei B, Xu H, Mao C. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing. *Acta Biomater* 2018; 69: 156-169 [PMID: 29397318 DOI: 10.1016/j.actbio.2018.01.019]

O’Neill CL, McLoughlin KJ, Chambers SEJ, Guduric-Fuchs J, Stitt AW, Medina RJ. The Vascular Reparative Potential of Endothelial Colony Forming Cells: A Journey Through Pre-clinical Studies. *Front Med (Lausanne)* 2018; 5: 273 [PMID: 30460233 DOI: 10.3389/fmed.2018.00273]

Padfield GJ, Tura- Ceide O, Freyer E, Barclay GR, Turner M, Newby DE, Mills NL. Percutaneous coronary intervention causes a rapid but transient mobilisation of CD34+CD45- cells. *Open Heart* 2014; 1: e000476 [PMID: 25332796 DOI: 10.1136/openhrt-2014-000476]

Icli B, Wu W, Ozdenir D, Li H, Haemming S, Liu X, Giatsidis G, Cheng HS, Aeci SN, Kart M, Lee N, Guimaraes RB, Manica A, Marchini JF, Rynning SE, Risnes I, Hollan I, Croce K, Orgill DP, Feinberg MW. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells. *FASEB J* 2019; 33: 5599-5614 [PMID: 30868922 DOI: 10.1096/fj.201802063RR]

Abraham S, Sanjay G, Majiyd NA, Chinniaiah A. Encapsulated VEGF

40-50-PLA microparticles promote angiogenesis in human endometrium stromal cells. *J Genet Eng Biotechnol* 2021; 19: 23 [PMID: 33523322 DOI: 10.1186/s43141-021-00118-1]

Xu C, Liu H, He Y, Li Y, He X. Endothelial progenitor cells promote osteogenic differentiation in co-cultured with mesenchymal stem cells via the MAPK-dependent pathway. *Stem Cell Res Ther* 2020; 11: 537 [PMID: 33038089 DOI: 10.1186/s13287-020-02056-0]

Sun L, Zhang Y, Zhang J, Wang J, Xing S. Atpovastatin improves the proliferation and migration of endothelial progenitor cells via the mR-221/VEGFA axis. *Biosci Rep* 2020; 40 [PMID: 32936287 DOI: 10.1042/BSR20191053]

Yoshizuka N, Chen RM, Xu Z, Liao R, Hong L, Hu WY, Yu G, Han J, Chen L, Sun P. A novel function of p38-regulated/activated kinase in endothelial cell migration and tumor angiogenesis. *Mol Cell Biol* 2012; 32: 606-618 [PMID: 22124154 DOI: 10.1128/MCB.06301-11]

Yu J, Bian D, Mahanivong C, Cheng RK, Zhou H, Huang S. p38 Mitogen-activated protein kinase regulation of endothelial cell migration depends on urokinase plasminogen activator expression. *J Biol Chem* 2006; 281: 50446-50455 [PMID: 16571451 DOI: 10.1074/jbc.M402221200]

Wang M, Li Y, Cai S, Ding W. MiR-206 Suppresses the Progression of Coronary Artery Disease by Modulating Vascular Endothelial Growth Factor (VEGF) Expression. *Med Sci Monit* 2016; 22: 5011-5020 [PMID: 27994218 DOI: 10.12659/msm.988883]

Zhang Q, Kandic I, Kutyk MJ. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. *Biochem Biophys Res Commun* 2011; 405: 42-46 [PMID: 21950502 DOI: 10.1016/j.bbrc.2010.12.119]

He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. *Nat Rev Genet* 2004; 5: 522-531 [PMID: 15211354 DOI: 10.1038/nrg1379]

Bai YY, Peng XG, Wang LS, Li ZH, Wang YC, Lu CQ, Ding J, Li PC, Zhao Z, Ju SH. Bone Marrow Endothelial Progenitor Cell Transplantation After Ischemic Stroke: An Investigation Into Its Possible Mechanism. *CNS Neuosci Ther* 2015; 21: 877-886 [PMID: 26384586 DOI: 10.1111/cns.12447]

Gao W, Jiang T, Liu YH, Ding WG, Guo CC, Cui XG. Endothelial progenitor cells attenuate the
lung ischemia/reperfusion injury following lung transplantation via the endothelial nitric oxide synthase pathway. J Thorac Cardiovasc Surg 2019; 157: 803-814 [PMID: 30691008 DOI: 10.1016/j.jvtcs.2018.08.092]

55 Qiao W, Niu L, Liu Z, Qiao T, Liu C. Endothelial nitric oxide synthase as a marker for human endothelial progenitor cells. Tohoku J Exp Med 2010; 221: 19-27 [PMID: 20448437 DOI: 10.1620/tjem.221.19]

Zheng H, Fu G, Dai T, Huang H. Migration of endothelial progenitor cells mediated by stomal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J Cardiov Pharmaco 2007; 50: 274-280 [PMID: 17878755 DOI: 10.1097/FJC.0b013e318093ec8f]

56 Hamed S, Brenner B, Abassi Z, Aharon A, Daoud D, Roguin A. Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res 2010; 126: 166-174 [PMID: 20347119 DOI: 10.1016/j.thromres.2010.03.002]

Li H, Förstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol 2013; 13: 161-167 [PMID: 23395155 DOI: 10.1016/j.coph.2013.01.006]

57 Bettaga N, Jäger R, Dünnès S, Groneberg D, Friebe A. Cell-specific impact of nitric oxide-dependent guanylyl cyclase on arteriogenesis and angiogenesis in mice. Angiogenesis 2015; 18: 245-254 [PMID: 25795218 DOI: 10.1007/s10455-015-9463-8]

58 Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest 2007; 117: 1249-1259 [PMID: 17476357 DOI: 10.1172/JCI27910]

59 Xiao W, Wang RS, Handy DE, Loscalzo J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid Redox Signal 2018; 28: 251-272 [PMID: 28648096 DOI: 10.1089/ars.2017.7216]

60 Zhang J, Wang M, Li Z, Bi X, Song J, Weng S, Fu G. NADPH oxidase activation played a critical role in the oxidative stress process in stable coronary artery disease. Am J Transl Res 2016; 8: 5199-5210 [PMID: 28077995]

61 Li TB, Zhang YZ, Liu WQ, Zhang JJ, Peng J, Luo XJ, Ma QL. Correlation between NADPH oxidase-mediated oxidative stress and dysfunction of endothelial progenitor cell in hyperlipidemic patients. Korean J Intern Med 2018; 33: 313-322 [PMID: 28899085 DOI: 10.3904/kjim.2016.140]

62 Ji KT, Qian L, Nan JL, Xue YJ, Zhang SQ, Wang GQ, Yin RP, Zhu YJ, Wang LP, Ma J, Liao LM, Tang JF. Ox-LDL induces dysfunction of endothelial progenitor cells via activation of NF-κB. Biomed Res Int 2015; 2015: 175291 [PMID: 25821786 DOI: 10.1155/2015/175291]

63 Watson TJ, Ong PJL, Tscheng JE, eds. Primary Angioplasty: A Practical Guide [Internet]. Singapore: Springer; 2018 [PMID: 25134231]

64 Green KD, Lynch DR Jr, Chen TP, Zhao D. Combining PCI and CABG: the role of hybrid revascularization. Curr Cardiol Rep 2013; 15: 351 [PMID: 23420447 DOI: 10.1007/s11886-013-0351-9]

65 Abd El Aziz MT, Abd El Nabi EA, Abd El Hamid M, Sabry D, Atta HM, Rahed LA, Shamaa A, Mahfouz S, Taha FM, Elrefaay S, Gharib DM, Elsetohy KA. Endothelial progenitor cells regenerate infarcted myocardium with neovascularisation development. J Adv Res 2015; 6: 133-144 [PMID: 25750747 DOI: 10.1016/j.jare.2013.12.006]

66 Park JH, Yoon JY, Ko JM, Kim JA, Cho CH, Kim JM, Lee JH, Choi SW, Seong IW, Jeong HO. Endothelial progenitor cell transplantation decreases lymphangiogenesis and adverse myocardial remodeling in a mouse model of acute myocardial infarction. Exp Mol Med 2011; 43: 479-485 [PMID: 21694495 DOI: 10.3858/emm.2011.43.8.054]

67 Xu DY, Davis BB, Wang ZH, Zhao SP, Wasti B, Liu ZL, Li N, Morisseau C, Chiamvimonvat N, Hammond BD. A potent soluble epoxide hydrolase inhibitor, t-AUCB, acts through PPARγ to modulate the function of endothelial progenitor cells from patients with acute myocardial infarction. Int J Cardiol 2013; 167: 1298-1304 [PMID: 22525341 DOI: 10.1016/j.ijcard.2012.03.167]

68 Lee FY, Chen YL, Sung PH, Ma MC, Pei SN, Wu CJ, Yang CH, Fu M, Ko SF, Lu S, Yip HK. Intracoronary Transfusion of Circulation-Derived CD34+ Cells Improves Left Ventricular Function in Patients With End-Stage Diffuse Coronary-Artery Disease Unsuitable for Coronary Intervention. Crit Care Med 2015; 43: 2117-2123 [PMID: 25154836 DOI: 10.1097/CCM.0000000000001138]

69 Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schächinger V, Dimmeler S, Zeiher AM. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003; 108: 2212-2218 [PMID: 14557356 DOI: 10.1161/01.01.0000095788.78169.AF]

70 Döbert N, Britten M, Assmus B, Berner U, Menzel C, Lehmann R, Hamschon N, Schächinger V, Dimmeler S, Zeiher AM, Grünwald F. Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT. Eur J Nucl Med Mol Imaging 2004; 31: 1146-1151 [PMID: 15064873 DOI: 10.1007/s00259-004-1490-4]

71 Wang XX, Zhang FR, Shang YP, Zou JH, Xie XD, Tao QM, Chen JZ. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol 2007; 49: 1566-1571 [PMID: 17418297 DOI: 10.1016/j.jacc.2006.12.037]
Xiao ST et al. Minireview of EPCs

74 Dedobbeleer C, Blocklet D, Toungouz M, Lambermont M, Unger P, Degauque JP, Goldman S, Berkenboom G. Myocardial homing and coronary endothelial function after autologous blood CD34+ progenitor cells intravenous injection in the chronic phase of myocardial infarction. J Cardiovasc Pharmacol 2009; 53: 480-485 [PMID: 19433985 DOI: 10.1097/FJC.0b013e3181a7b572]

75 Sung PH, Lee FY, Tong MS, Chiang JY, Pei SN, Ma MC, Li YC, Chen YL, Wu CJ, Sheu JJ, Lee MS, Yip HK. The Five-Year Clinical and Angiographic Follow-Up Outcomes of Intracoronary Transfusion of Circulation-Derived CD34+ Cells for Patients With End-Stage Diffuse Coronary Artery Disease Unsuitable for Coronary Intervention-Phase I Clinical Trial. Crit Care Med 2018; 46: e411-e418 [PMID: 29465434 DOI: 10.1097/CCM.0000000000003501]

76 Lertkiammongkol P, Liao D, Mei H, Hu Y, Newman PJ. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol 2016; 23: 253-259 [PMID: 27055047 DOI: 10.1097/MOH.0000000000000239]

77 Flores-Ramirez R, Uribe-Longoria A, Rangel-Fuentes MM, Gutierrez-Fajardo P, Salazar-Rojas R, Cervantes-Garcia D, Treviño-Ortiz JH, Benavides-Chereti GJ, Espinosa-Oliveros LP, Limón-Rodriguez RH, Monreal-Puente R, González-Treviño JL, Rojas-Martínez A. Intracoronary infusion of CD133+ endothelial progenitor cells improves heart function and quality of life in patients with chronic post-infarct heart insufficiency. Cardiovasc Revasc Med 2010; 11: 72-78 [PMID: 20347795 DOI: 10.1016/j.carrev.2009.04.001]

78 Drobis C, Liu X, Claus P, Marsboom G, Pokreisz P, Vandenwijngaert S, Dépeleheau T, Streb W, Chaoathawee L, Males F, Ghysen S, Debzyer Z, Gillijns H, Pellenis M, Vandendriessche T, Chuah M, Collen D, Verbeke E, Belmans A, De Weer F, Bogagat J, Janssens S. Differential effects of progenitor cell populations on left ventricular remodeling and myocardial neovascularization after myocardial infarction. J Am Coll Cardiol 2010; 55: 2232-2243 [PMID: 20466204 DOI: 10.1016/j.jacc.2009.10.081]

79 Lee SH, Ra JC, Oh HJ, Kim MJ, Setyawan EMN, Choi YB, Yang JW, Kang SK, Han SH, Kim GA, Lee BC. Clinical Assessment of Intravenous Endothelial Progenitor Cell Transplantation in Dogs. Cell Transplant 2019; 28: 943-954 [PMID: 31018670 DOI: 10.1177/0963697718821686]

80 Shen WC, Chou YH, Huang HP, Sheen JF, Hung SC, Chen HF. Induced pluripotent stem cell-derived endothelial progenitor cells attenuate ischemic acute kidney injury and cardiac dysfunction. Stem Cell Res Ther 2018; 9: 344 [PMID: 30526689 DOI: 10.1186/s13287-018-1092-x]

81 Angulski ABB, Caprilignone LGA, Barchiki F, Brofman P, Stimamiglio MA, Senegaglia AC, Correa A. Systemic Infusion of Expanded CD133+ Cells and Expanded CD133+ Cell-Derived EVs for the Treatment of Ischemic Cardiomyopathy in a Rat Model of AMI. Stem Cells Int 2019; 2019: 4802578 [PMID: 31885610 DOI: 10.1155/2019/4802578]

82 Werner N, Kosiol S, Schiegel T, Ahlers P, Walenta K, Link A, Böhm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353: 999-1007 [PMID: 16148285 DOI: 10.1056/NEJMoa043418]

83 Park KS, Kang SN, Kim HB, Kim HB, Park W, Hong YJ, Han DK, Joun YK. Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomater 2020; 111: 91-101 [PMID: 32434081 DOI: 10.1016/j.actbio.2020.05.011]

84 Aoki J, Serruys PW, van Beusekom H, Ong AT, McFadden EP, Sianos G, van der Giessen WJ, Regar E, de Feyter PJ, Davis HR, Rowland S, Kutyk MJ. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALTHING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol 2005; 45: 1574-1579 [PMID: 15893169 DOI: 10.1016/j.jacc.2005.01.048]

85 Sarno G, Lagerqvist B, Olivercona G, Varenhorst C, Danielewicz M, Hambraeus K, Lindholm D, Råmunddal T, Liu X, Claus P, Marsboom G, Pokreisz P, Vandenwijngaert S, Dépelteau H, Streb W, Unlin WE, Blocklet D, Toungouz M, Lambermont M, Unger P, Degaute JP, Goldman S. Inflammation Mediates Neointimal Formation After Intracoronary Injection of CD133+ Stem Cells in a Porcine Model. Stem Cells Transl Med 2017; 6: 2854-2863 [PMID: 28108670 DOI: 10.1002/stem.15893]

86 Yang F, Feng SC, Pang NJ, Li WX, Bi YH, Zhao Q, Zhang SX, Wang Y, Feng B. Combination coating of chitosan and anti-CD34 antibody applied on sirolimus-eluting stents can promote endothelialization while reducing neointimal formation. BMC Cardiovasc Disord 2012; 12: 96 [PMID: 22908083 DOI: 10.1186/1471-2261-12-96]

87 den Dekker WK, Houtgraaf JH, Onuma Y, Benit E, de Winter RJ, Wijns W, Grisold M, Verheyse S, Silber S, Teiger E, Rowland SM, Ligtenberg E, Hill J, Wiemer M, den Heijer P, Rensing BJ, Chanon KM, Serruys PW, Ducks HJ. Final results of the HEALING IIb stent trial to evaluate a bioengineered CD34 antibody coated stent (GenousSTMStent) designed to promote vascular healing by capture of circulating endothelial progenitor cells in CAD patients. Atherosclerosis 2011; 219: 245-252 [PMID: 21763563 DOI: 10.1016/j.atherosclerosis.2011.06.032]

88 Chandrasenkar J, Baber U, Sartori S, Aquino MB, Hájek P, Atzev B, Hudec M, Kian Ong T, Mates M, Borisov B, Warda HM, den Heijer P, Wójcik J, Iniguez A, Coufal Z, Khashaba A, Munawar M, Gerber RT, Yan BP, Tejedor P, Kala P, Bang Liew H, Lee M, Kalkman DN, Dangas GD, de Winter RJ, Colombo A, Mehran R; MASCOT investigators. 1-Year COMBO stent outcomes stratified by the PARIS bleeding prediction score: From the MASCOT registry. Int J Cardiol Heart Vasc 2020; 31: 100605 [PMID: 32953969 DOI: 10.1016/j.ijchy.2020.100605]

89 Wu X, Yin T, Tian J, Tang C, Huang J, Zhao Y, Zhang X, Deng X, Fan Y, Yu D, Wang G.
Distinctive effects of CD34- and CD133-specific antibody-coated stents on re-endothelialization and in-stent restenosis at the early phase of vascular injury. Regen Biomater 2015; 2: 87-96 [PMID: 26813006 DOI: 10.1093/rb/rbv007]

90 Li J, Li D, Gong F, Jiang S, Yu H, An Y. Anti-CD133 antibody immobilized on the surface of stents enhances endothelialization. Biomed Res Int 2014; 2014: 902782 [PMID: 24734251 DOI: 10.1155/2014/902782]

91 Wawrzyńska M, Duda M, Wysokińska E, Strządala L, Biály D, Ułatowska-Jarzą A, Kalas W, Kraszewski S, Pasławski R, Biernat P, Pasławski U, Zielonka A, Podbielska H, Kopaczynańska M. Functionalized CD133 antibody coated stent surface simultaneously promotes EPCs adhesion and inhibits smooth muscle cell proliferation-A novel approach to prevent in-stent restenosis. Colloids Surf B Biointerfaces 2019; 174: 587-597 [PMID: 30504039 DOI: 10.1016/j.colsurfb.2018.11.061]

92 Chandrasekar J, Zeebregts D, Kalkman DN, Sartori S, Roumeliotis A, Aquino MB, de Wilde P, de Winter VC, Baber U, Woudstra P, Beijik MA, Hąpek P, Atzev B, Hudec M, Ong TK, Mates M, Borisov B, Warda HM, den Heijer P, Wojcik J, Iniguz A, Lee M, Tijssen JG, Koch KT, Dangas GD, Colombo A, Mehran R, de Winter RJ; MASCOT and REMEDEE Investigators. 1-Year Outcomes with COMBO Stents in Small-Vessel Coronary Disease: Subgroup Analysis From the COMBO Collaboration. Cardiovasc Revasc Med 2020; 21: 1542-1547 [PMID: 32507695 DOI: 10.1016/j.carrev.2020.05.002]

93 Massberg S, Konrad I, Schürzing K, Lorenz M, Schneider S, Zohlinhoefer D, Hoppe K, Schiemann M, Kennerknecht E, Sauer S, Schulz C, Kerstan S, Radelius M, Seidl S, Sorge F, Langer H, Peluso M, Goyal P, Vestweber D, Emanbokos NR, Basch D, Frampton J, Gawaz M. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 2006; 203: 1221-1233 [PMID: 16618794 DOI: 10.1084/jem.20051772]

94 Sun LL, Lei FR, Jiang XD, Du XL, Xiao L, Li WD, Li XQ. LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FG2 and MMP2/9 through the miR-223-3p/FOXO1/Akt pathway. Aging (Albany NY) 2020; 12: 4506-4526 [PMID: 32156832 DOI: 10.18632/aging.102904]

95 Poole TJ, Finkelstein EB, Cox CM. The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 2001; 220: 1-17 [PMID: 11146503 DOI: 10.1002/1097-0177(2000)9999-9999<::AID-DVDY1087>3.0.CO;2-2]

96 Li X, Tjwa M, Moons L, Fons P, Noel A, Ny A, Zhou JM, Lennartsson J, Li H, Luttun A, Pontén A, DeVy L, Bouché A, Oh H, Manderveld A, Blacher S, Communi D, Savi P, Bono F, Dewerchin M, Li XQ, Du XL, Xiao L, Lei FR, Jiang XD, Li WD. LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FG2 and MMP2/9 through the mir-223-3p/FOXO1/Akt pathway. Aging (Albany NY) 2020; 12: 4506-4526 [PMID: 32156832 DOI: 10.18632/aging.102904]

97 De Falco E, Porcelli D, Torrella AR, Straino S, Iachininoto MG, Orlandi A, Troffa S, Biglioli P, Fogari E, Frigo M, Pignatti A, Napolitano M, Capogrossi MC, Pesce M. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 2004; 104: 3472-3482 [PMID: 15284120 DOI: 10.1182/blood-2003-12-4423]

98 Meng Q, Li X, Yu X, Lei F, Jiang K, Li C. Transplantation of ex vivo expanded bone marrow-derived endothelial progenitor cells enhances chronic venous thrombus resolution and recanalization. Clin Appl Thromb Hemost 2011; 17: E196-E201 [PMID: 21406415 DOI: 10.1097/THA.0b013e3181f9a8df]

99 Northeast AD, Burnand KG. The response of the vessel wall to thrombosis: the in vivo study of venous thrombolysis. Ann N Y Acad Sci 1992; 667: 127-140 [PMID: 1309031 DOI: 10.1111/j.1749-6632.1992.tb15065.x]

100 Losalzo J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 2001; 88: 756-762 [PMID: 11325866 DOI: 10.1161/01.RES.88.5.756]
(PARIS): 2 year results from a prospective observational study. *Lancet* 2013; **382**: 1714-1722
[PMID: 24004642 DOI: 10.1016/S0140-6736(13)61720-1]
