Abstracts

Page 161

Bulk pharmaceutical research data management
H. B. Woodruft et al.

Modern analytical instrumentation can generate huge amounts of data in a short period of time. Usually the data are hand-transcribed onto an analytical form and filed away, often making sample tracking a very tedious and time-consuming operation. Computerizing the storage and retrieval of analytical results can eliminate some of these problems; however, it is crucial that the software employed is both friendly and tolerant of user errors. A package of computer programs which places top priority on human engineering and the human interface has been developed and implemented in the Analytical Research Department of Merck, Sharp & Dohme Research Laboratories. These programs have proven to constitute a convenient data management package that has been accepted well by laboratory personnel.

Page 165

Desk-top computer in the clinical laboratory linked to automatic multichannel biochemistry analysers
L. Funding and Y. Bergqvist

This paper describes an interactive desk-top microcomputer system connected on line to SMA II (Technicon) and G-300 (Greiner) analysers. The system contains various program modules, written in BASIC, to generate quality-control statistics, administrative statistics and retrieval of patients’ results. Self-adhesive labels are used by the system to tabulate patients’ results. The system is designed to be used by staff who are not familiar with computers.

Page 169

Sample and data random management in a medical laboratory equipped with automatic analysers
G. Barbaresi et al.

The authors describe a local information system which is based on a minicomputer on-line with automatic analysers. Positive identification of samples is performed by means of an automatic optical reader. Information exchange between the clinical laboratory and the hospital data-processing centre (DPC) is permitted by data transfer on floppy disc. The system allows ‘personalized’ clinical reports to be printed out in the laboratory using patient census data obtained from the DPC by means of a floppy disc. Online acquisition of analytical results from automatic analysers (an SMAC for plasma samples and a CLINILAB for urinalysis) are linked with their respective requests and patient data. The authors have achieved random management of samples arriving in their laboratory and automatic instrument analytical output. The system is shown to be cheap, versatile and easy to operate.
Les auteurs décrivent un système informatique décentralisé basé sur un minicomputer branché en 'on-line' avec des analyseurs automatisques. L'identification automatique des échantillons est obtenue aux moyens d'un lecteur optique. Les échanges d'informations entre le laboratoire et l'ordinateur central de l'hôpital sont réalisés à l'aide de transferts de floppy disc. Le système permet la sortie dans le laboratoire de compte rendus 'personnalisés', en utilisant les données d'identification du patient obtenues de l'ordinateur central à l'aide de transferts de floppy disc. Les résultats analytiques obtenus 'on-line' des différents analyseurs automatisques (un SMAC pour le laboratoire et CLINILAB pour les prélèvements de l'urine) sont associés aux demandes et identification du patient. Les auteurs ont ainsi mis en place un traitement d'organisation des échantillons arrivant dans le laboratoire et des résultats provenant des analyseurs automatiques. Le système ainsi décrit semble être bon marché, flexible et facile à utiliser.

Les auteurs ont ainsi mis en place un traitement d'organisation des échantillons arrivant dans le laboratoire et des résultats provenant des analyseurs automatiques. Le système ainsi décrit semble être bon marché, flexible et facile à utiliser.

Tischrechner als Interface und Terminal im klinischen Laboratorium J. I. Dydula et al.

Das klinische Labor verwendet viele verschiedene analytische Methoden und Geräte mit verschiedenem Mechanisationsgrad. Entsprechend sind die Analysegeräte mit Datenausgangsschaltungen verschiedenster Konfigurationen versehen, die selten auf die Eingangsschaltung eines vorhandenen Grossrechners passen. Ein Tischrechner stellt ein flexibles Interface dar, das die Zweikommunikationen zwischen Analysegeräte, Benutzer und Zentralrechner ermöglicht. Die Vorteile der Tischrechner sind Erfassung und Transfer verschiedener Arten von Daten, Übersichtlichkeit verschiedener Arten von Probenidentifikation, Korrektur von Fehlern in der Probenidentifikation und in den Resultaten, Qualitätssicherung während eines Ausfalls des Zentralrechners und Möglichkeit der Aenderung der Software durch den Benutzer. Eine Liste mit nützlichen Anforderungen an den Tischrechner wird vorgestellt, die Ein-/Ausgangsmöglichkeiten, Hardware-Eigenschaften, Speicher, Programmiersprache, Programm-Bibliothek, Instruktionen, Lieferant und Unterstützung, Erhaltlichkeit und Einheitlichkeit umfasst. Praktische Beispiele werden aufgeführt, die einen APPLE II als Interface benutzen.
public, are the subject of a repayment of alcohol excise duty. The spoiled samples are returned from the distribution network to the brewery of origin as unfit for consumption. The laboratory of the Government Chemist measures the extent of microbiological oxidation of the alcohol in the beer to acetic acid. A flow-injection system has been designed for automating the colorimetric titration of the acetic acid with sodium hydroxide solution. A circuit is described for initiating and terminating monitoring by a PET microcomputer of the real-time separation of the inflection points of the titration curves. The circuit employs both the first and second derivatives of the change of transmittance with time to control the output of an AND gate. A program written in BASIC is given for using the output from the AND gate and producing a simultaneous linear regression analysis of the results. The effects of sample viscosity and colour on colorimetric flow-injection titrations are also discussed.

Titrage d’échantillons de bière gâtée par l’analyse par injection continue
J. G. Williams et al.

La bière qui se gâte lors de la production ou au cours de la distribution, donne droit à un remboursement des impôts sur l'alcool. Les échantillons gâtés sont renvoyés à la brasserie avec la remarque ‘imbuvable’. Le ‘Laboratory of the Government Chemist’ mesure l’oxydation microbiologique de l’alcool dans la bière en acide acétique. Un système à injection continue (Flow Injection Analysis) a été installé pour permettre le titrage colorimétrique de l’acide acétique avec la soude de façon automatique. Un circuit est décrit qui permet de contrôler la séparation des points d’inflexion des courbes de titrage avec un PET microcomputer. Le circuit utilise la première et la deuxième dérivée de la transmission par rapport au temps pour contrôler la sortie d’une porte AND. Un programme écrit en BASIC utilise la sortie de la porte AND et produit une analyse de régression linéaire simulée des résultats. L’influence de la viscosité de l’échantillon et de sa couleur sur le titrage colorimétrique par injection est également discutée.

Titrations of spoilt beer with the continuous Injections-Analyse
J. G. Williams et al.

Beer, which during the process or the distribution is considered adulterated, is returned to the brewery with the remark ‘unfit for consumption’. The ‘Laboratory of the Government Chemist’ measures the extent of microbiological oxidation of alcohol in the beer to acetic acid. A flow-injection system has been designed for automating the colorimetric titration of the acetic acid with sodium hydroxide solution. A circuit is described for initiating and terminating monitoring by a PET microcomputer of the real-time separation of the inflection points of the titration curves. The circuit employs both the first and second derivatives of the change of transmittance with time to control the output of an AND gate. A program written in BASIC is given for using the output from the AND gate and producing a simultaneous linear regression analysis of the results. The effects of sample viscosity and colour on colorimetric flow-injection titrations are also discussed.

The measurement of erythrocyte transketolase activity on a discrete analyser
C. R. Milner et al.

A manual kinetic method for erythrocyte transketolase (TK) was modified for automation on a discrete analyser (Gilford System 5), thus making it a simple, economical and convenient method.

The TK and thiamine-activated TK activities were measured by both methods on 51 specimens. For the manual and automated methods, the TK activities had a mean of 0.81 and 0.86 U/g Hb (S.D.s were 0.25 and 0.26) respectively, while for the activated-TK activities the mean values were 0.94 and 0.98 U/g Hb (S.D.s were 0.25 and 0.27) respectively. The two methods gave a correlation coefficient of 0.87 for the TK activity and 0.89 for the activated-TK activity. The within-day precision was good, with a C.V. of 7-4% at low activity and a C.V. of 5-0% at high activity.

Page 183

Measure de l’activité transcétolasique érythrocytaire à l’aide d’un analyseur discret
C. R. Milner et al.

Une méthode manuelle cinétique pour le dosage de la transcétolase érythrocytaire a été modifiée pour être automatisée sur un analyseur discret (Gilford System 5), le système analytique ainsi défini est simple et économique.

Les activités de transcétolase (TK) et de transcétolase activée à la thiamine sont mesurées par deux méthodes sur 51 spécimens. Pour les méthodes manuelles et automatisées, les activités TK ont une moyenne de 0.81 et 0.86 U/g Hb (S.D. à 0.25 et 0.26) respectivement, alors que les activités de TK activée ont des valeurs moyennes de 0.94 et 0.98 U/g Hb (S.D. 0.25 et 0.27) respectivement. Les deux méthodes donnent des coefficients de corrélation à 0.87 pour l’activité TK et de 0.89 pour l’activité TK activée. La répétabilité est bonne avec un coefficient de corrélation à 7-4% pour des activités basses et à 5% pour des activités élevées.

L’intervalle de référence pour notre méthode automatisée de TK est de 0-6 à 1-3 U/g Hb et l’activité par la thiamine pyrophosphate (TPP) augmente les valeurs de l’intervalle de référence jusqu’à 25%.

Die Bestimmung von Erythrozyten-transketoollasenaktivität mit einem diskreten Analysator
C. R. Milner et al.

Eine manuelle kinetische Methode für Erythrozyten-Transketoollasen (TK) wurde für Automation auf einem diskreten arbeitenden Analysator (Gilford System 5) modifiziert. Damit entstand daraus eine einfache, ökonomische und bequeme Methode.

TK und Thiamin aktivierte TK-Aktivitäten wurden mit beiden Methoden an 51 Proben bestimmt. Für die manuelle und automatische Methode betrugen die Mittelwerte der TK-Aktivitäten 0,81 bzw. 0,86 U/g (Standardabweichung 0,25 bzw. 0,26), während für die aktivierten TK-Aktivitäten die Mittelwerte 0,94 bzw. 0,98 U/g (Standardabweichung 0,25 bzw. 0,27) betrugen. Die beiden Methoden ergaben einen Korrelationskoeffizienten von 0,87 für die TK-Aktivität und 0,89 für die aktivierte TK-Aktivität. Die Präzision innerhalb eines Tages war gut, mit einem C.V. von 7,4% bei niedriger Aktivität und einem C.V. von 5,0% bei hoher Aktivität.
Page 186

An improved flow-through phototransducer
T. J. Sly et al.

An improved flow-through photometric detector has been developed, based on the design of Betteridge et al. The new unit is easier to construct and is more reliable and robust than the original design, whilst offering superior resolution. A revised flowcell has also been developed, with an effective volume of ca. 0.8 μl and a path length of 1 mm. Output from the unit is in the form of an analogue voltage which is linear with absorbance.

Un capteur optique perfectionné pour la mesure de flux
T. J. Sly et al.

Un capteur optique perfectionné pour la mesure de flux a été développé suivant le prototype de Betteridge et collaborateurs. La nouvelle unité est plus simple à construire, plus sûre et plus robuste que le prototype original, tout en offrant une résolution supérieure. Une cuve à circulation a aussi été développée, avec un volume efficace de 0,8 μl et un trajet optique de 1 mm. Le signal sortant de cette unité est analogique et linéaire avec l’absorbance.

Verbesserte Durchflusszelle für photometrische Detektion
T. J. Sly et al.

Eine verbesserte Durchflusszelle für photometrische Detektion wird vorgestellt, die von der Konstruktion von Betteridge et al. ausgeht. Die neue Einheit ist viel einfacher zu bauen und ist bei überlegener Auflösung zudem zuverlässiger und robuster als die ursprüngliche Konstruktion. Ferner wurde eine Durchflusszelle auf ein effektives Volumen von ca. 0,8 μl und eine Weglänge von 1 mm modifiziert. Das Ausgangssignal der Einheit ist eine Analogspannung, die linear zur Absorption ist.

Notes for Authors

Journal of Automatic Chemistry covers all aspects of automation and mechanization in analytical, clinical and industrial environments. The Journal publishes original research papers; short communications on innovations, techniques and instrumentation, or current research in progress; reports on recent commercial developments; and meeting reports, book reviews and information on forthcoming events. All research papers are refereed.

Manuscripts

Two copies of articles should be submitted to the Editor. All articles should be typed in double spacing with ample margins, on one side of the paper only. The following items should be sent: (1) a title-page including a brief and informative title, avoiding the word ‘new’ and its synonyms; a full list of authors with their affiliations and full addresses; (2) an abstract of about 250 words—this should succinctly describe the scope of the contribution and highlight significant findings or innovations; it should be written in a style which can easily be translated into French and German; (3) the main text with sections and subsections numbered; (4) appendices (if any); (5) references; (6) tables, each table on a separate sheet and accompanied by a caption; (7) illustrations (diagrams, drawings and photographs) numbered in a single sequence from 1 upwards and with the author’s name on the back of every illustration; captions to illustrations should be typed on a separate sheet.

References

References should be indicated in the text by numbers following the author’s name, i.e. Skeggs [6]. In the reference section they should be arranged thus:

to a journal

Manka, D. P., Journal of Automatic Chemistry, 3 (1981), 119.

to a book

Malmstadt, H. V., in Topics in Automatic Chemistry, Ed. Stockwell, P. B. and Foreman, J. K. (Horwood, Chichester, 1978), p. 68.

Illustrations

Line diagrams are preferred to photographs. Original copies of diagrams and drawings should be supplied and should be drawn to be suitable for reduction to the page or column width of the Journal, i.e. 85 mm or 179 mm, with special attention to lettering size. Photographs may be sent as glossy prints or as negatives.

Proofs and offprints

The principal or corresponding author will be sent galley proofs for checking and will receive 50 offprints free of charge. Additional offprints may be ordered on a form which accompanies the proofs.

Manuscripts should be sent to the Editor: Dr Peter B. Stockwell, Plasma-Therm Ltd, Unit 3, 2/3 Kangley Bridge Road, Lower Sydenham, London SE26 5AR.