Meta analysis of aerobic exercise improving intelligence and cognitive function in patients with Alzheimer’s disease

Xin-Pei Zhou, BMa, Li-Mei Zhang, MMa, Guo-Qiang Chen, BMb, Shen-Wu Wang, BMb, Jin-Fen He, BMb, Zhuang Li, MMb, Ben-Si Zhang, MMb,*

Abstract

Objective: Alzheimer’s disease (AD) is a neurodegenerative disease. This study aims to explore the intervention and treatment effects of aerobic exercise and different exercise modes on AD through meta-analysis.

Methods: Using the set inclusion and exclusion criteria, retrieve the China national knowledge infrastructure (CNKI), Wanfang Data Knowledge Service Platform, China Science and Technology Journal Database, Cochrane Library, and PubMed were searched from January 1, 2012, to December 31, 2021. Cochrane risk bias assessment tool was used to evaluate the quality of the included articles, and ReMan5.4.1 was used for forest plot analysis of mini-mental state exam (MMSE) score indicators included in the included articles.

Results: Twelve randomized controlled trials and 795 samples were included. Meta analysis of all articles: \(I^2 = 91\% \), \(P = .000001 \). Meta analysis of five fit aerobic groups: \(I^2 = 4\% \), \(P = .02 \). Meta analysis of three spinning groups: \(I^2 = 3\% \), \(P = .36 \). Meta analysis of five spinner groups: \(I^2 = 4\% \), \(P = .38 \). Meta analysis of five fit anaerobic groups: \(I^2 = 3\% \), \(P = .09 \). Meta analysis of five mixed aerobic and anaerobic groups: \(I^2 = 3\% \), \(P = .02 \).

Conclusion: Aerobic exercise can effectively improve intellectual and cognitive impairment in AD patients, and for different forms of aerobic exercise, the therapeutic effect of spinning aerobic exercise is better than that of fit aerobic.

Abbreviations: AD = Alzheimer’s disease, CI = confidence interval, CNKI = China national knowledge infrastructure, MMSE = mini-mental state exam.

Keywords: aerobic exercise, Alzheimer’s disease, cognition, intelligence, meta-analysis

1. Introduction

Alzheimer’s disease (AD) is characterized by occult onset and progressive development. The clinical symptoms are mainly cognitive impairment and memory decline.[1] The pathological manifestations of AD mainly include the inflammation of nerve cells effects deposition of amyloid \(\beta \) protein (A\(\beta \)) and the neurofibrillary tangles caused by the hyperphosphorylation of tau protein.[2] However, the newly published articles believe that the onset of AD is related to poorly acidified autolysosomes.[3]

As many countries enter into an aging society, the proportion of patients with Alzheimer’s disease will increase in the future. If a unified diagnosis and treatment standard for Alzheimer’s disease can not be formulated, the treatment and care of dementia patients will cause a serious economic pressure on their families and society.[4] The number of patients with dementia in China accounts for approximately 5% of the total population and 25% of the total number of patients with dementia world.[5] Dementia is commonly referred to as Alzheimer’s disease. More than 50 million people suffering from Alzheimer’s disease in the world, and AD has become the fifth leading cause of death world.[6] However, most drugs for treating AD in clinics have only a single target, which can only relieve the disease, but can not be cured.[9,10] In view of this, many scholars have conducted extensive research on the intervention and improvement of clinical symptoms related to AD by aerobic exercise.[11-15] Many animal experiments in mice have also demonstrated the effect of aerobic exercise on the brains of AD mice A\(\beta \) deposition, neurological tangles and cognitive memory function have obvious therapeutic effects. This article aims to prove the effect of aerobic exercise in the clinical treatment of AD through the data analysis of the included literature to provide a theoretical basis for the clinical treatment of AD by aerobic exercise in the future.

Received: 6 June 2022 / Received in final form: 14 September 2022 / Accepted: 15 September 2022
http://dx.doi.org/10.1097/MD.0000000000031177
2. Methods

2.1. Literature retrieval

The China national knowledge infrastructure (CNKI), Wanfang Data Knowledge Service Platform, China Science and Technology Journal Database, Cochrane Library and PubMed database were searched. From January 1, 2012, to December 31, 2021, a total of 2774 related articles were collected (220 articles in the CNKI database, 214 articles in the Wanfang database, 14 articles in the China Science and Technology Journal Database, 234 articles in the Cochrane library, and 2092 articles in PubMed).

The following combinations of key terms were employed for literature search: “Alzheimer’s disease” and “aerobic exercise” or “intelligence”, “cognition” and “aerobic exercise”. According to the inclusion and exclusion criteria, the data were extracted by two authors independently. First, by reading the abstract, the articles were initially included, and then the full text of the articles that met the inclusion requirements was read, and the included articles were screened. If there were differences in opinions between both reviewers, the third author was consulted for resolving the discrepancy.

2.2. Inclusion criteria and exclusion criteria

Inclusion criteria: Participants meet the AD diagnostic criteria stipulated by the National Institute of Stroke Neurological Disorders and AD and Related Disorders Association of the United States[19] or have the risk of memory and cognitive decline; The ending indicator is the Mini-Mental State Exam (MMSE). Aerobic exercise was the intervention method for the experimental group. All the documents that meet these above conditions can be included.

Exclusion criteria: Repeatedly published literature; The subjects of this study were patients suffering from nervous system diseases, such as vascular dementia and mixed dementia with cognitive or memory disorders other than AD; Clinical interventions were not randomized controlled trials; On the basis of aerobic exercise, addition of drugs, music therapy and other therapeutic interventions; The original documents were incomplete, so it was impossible to analyze. Literature that met any of the above requirements were excluded.

2.3. Data extraction

Data were collected in the form of self-made Excel tables, including the title of the article, publication year, author information, sample size, age, MMES score, aerobic exercise form, intensity and frequency. It was estimated by drawing the scores of MMSE into the forest plot. In the process of literature inclusion and data collection, if there are differences, the third author will reach a consensus.

2.4. Literature quality evaluation

The quality of the included literature was evaluated using the evaluation criteria in the Cochrane Risk Assessment Tool for bias, which included seven evaluation items, random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting and other bias. The evaluation of literature quality is carried out by two authors independently, if there are different opinions, the third author will decide whether to include the article.

2.5. Detect the publication bias

We used ReMan 5.4.1 statistical software to make funnel plot to determine whether there was publication bias in the included literature. In the funnel plot, the log odds ratio was taken as the abscissa, and the ordinate was the standard error. Smaller samples had larger dispersion, so it was usually located at the

Figure 1. Literature screening process.
3.4. Funnel plot results analysis

The funnel plot was plotted from the included articles, and the results showed a symmetrical distribution. The presence of publication bias was generally judged by whether the funnel plot showed symmetry, the publication bias being small if the funnel plot was symmetrical and large if it was asymmetrical. The heterogeneity of the included literature was considered large if the funnel plot was located at the bottom, while smaller samples had smaller dispersion, so it was located at the top.

2.6. Statistical analysis

ReMan 5.4.1 statistical software was used to import the data and scale scores of randomized controlled trials in various studies into the software to create a forest plot for the meta-analysis. For continuous data, the standardized mean difference was used as the effect value. If standardized mean difference >0, the intervention is proved to be effective. The interval estimation used a 95% confidence interval (CI).

3.1. Literature retrieval results

The retrieval period was from January 1, 2012, to December 1, 2021. The retrieval databases included CNKI, Wanfang, China Science and Technology Journal Database, Cochrane Library, and PubMed, with 2774 retrieved articles. There were 448 articles in Chinese (220 in CNKI, 214 in Wanfang and 14 in China Science and Technology Journal Database), and 2326 articles in English (234 in The Cochrane Library and 2092 in PubMed).

3.2. Basic features of the included literature

A total of 12 articles were included and published between January 1, 2012, and December 1, 2021. All the intervention measures in the experimental group were aerobic exercises, and the subjects were diagnosed with Alzheimer's disease. MMSE scores were used to test the experimental results (Table 1).

Table 1

Author	Control/ experimental (sample)	Control/ experimental (age)	Intervention measures	Motion	Exercise time (min/time)	Exercise frequency (times/wk)	MMSE score	Control group baseline	Experimental group baseline	Results of control group	Results of experimental group
Wang Y[20]	2014 26/13	70.6/71.6	Spinning	12 wk	45	3	19.8 ± 3.8	20.3 ± 2.8	19.0 ± 5.0	21.4 ± 5.4	
Wang W[21]	2014 28/26	70.0/71.2	Spinning	3 mo	40	3	19.4 ± 4.1	20.2 ± 3.6	18.6 ± 4.1	21.3 ± 4.1	
Yan YL[22]	2015 18/18	70.6/72.1	Spinning	6 mo	40	3	20.5 ± 1.6	19.1 ± 3.1	18.3 ± 1.4	24.2 ± 1.8	
Wang W[23]	2015 21/21	unclear	Treadmill or spinning	12 wk	60–90	3	19.7 ± 3.3	18.4 ± 4.5	18.7 ± 3.1	19.1 ± 4.7	
Yang SY[24]	2016 25/25	72.4/70.7	Fit aerobics	3 mo	40	3	22.0 ± 2.9	22.4 ± 2.9	22.1 ± 4.1	24.2 ± 3.6	
Mu HY[25]	2016 39/39	73.7/72.9	Walk	16 wk	>60	≥3	18.3 ± 2.5	18.4 ± 2.4	17.9 ± 2.4	19.1 ± 12.1	
Liu Y[26]	2017 24/24	70.3/70.9	Fit aerobics	3 mo	30	3	22.6 ± 1.9	22.8 ± 2.7	23.3 ± 2.0	24.4 ± 3.2	
Qi MP[27]	2017 18/18	71.8/76.4	Fit aerobics	3 mo	35	3	23.0 ± 1.6	22.9 ± 3.0	23.7 ± 1.5	24.4 ± 3.5	
Wang W[28]	2019 18/18	71.1/68.7	Fit aerobics	3 mo	40	3	24 ± 2.5	24 ± 1.0	23 ± 3.0	26 ± 4.0	
He Q[29]	2020 30/30	74/70	Fit aerobics	6 mo	10–20	3	14.9 ± 3.5	14.9 ± 3.6	17.7 ± 2.9	23.8 ± 3.0	
Wang JJ[30]	2021 63/63	65.6666	Walking or fit aerobic	16 wk	60	3	24.1 ± 3.8	23.8 ± 3.4	23.9 ± 3.9	23.9 ± 3.4	

MMSE = mini-mental state exam.
the bottom of the plot, suggesting a large degree of dispersion in the included papers. There was asymmetry between the samples, suggesting high heterogeneity and possible publication bias. But there is not sufficient evidence of publication bias.

After removing two papers, Yan YL 2015 and Wang JJ 2021, the remaining ten papers were used to draw a funnel plot (Fig. 5). The samples were in the middle of the funnel plot, suggesting an average dispersion level. The funnel plot showed that the samples were more symmetrical than Figure 4. This may be caused by the long experimental protocol designed by Yan YL 2015 and Wang JJ 2021, which led to the final MMSE results being too different from other studies.

3.5. Meta-analysis results

3.5.1. Intervention analysis of aerobic exercise on intelligence and cognitive function in patients with Alzheimer’s disease Meta-analysis was conducted using ReMan5.4.1, $I^2 \geq 50\%$, and $P \leq .1$, so the forest plot of the random effect model was adopted (Fig. 6). From $I^2 = 91\%$, it can be seen that the 12 included articles have high heterogeneity, mainly from Yan YL 2015 and Wang JJ 2021. The reasons for this heterogeneity may be the publication year and experimental scheme design. MD = 2.95, indicating that aerobic exercise has significant effects on the intelligence and cognitive ability of patients with Alzheimer’s disease.

3.6. Effect of different aerobic exercise forms on intelligence and cognitive function of patients with Alzheimer’s disease

Eight articles had the same intervention time, or the difference in intervention days was <10 days. They were divided into the fit aerobic group and the spinning group.

Five articles were included in the fit aerobic group: He Q 2020, Liu Y 2017, Yang SY 2016, Wang W 2019, and QI M 2017. The total sample size was 230, and the average exercise time was 23.84 ± 2.92 hours. Through ReMan5.4.1 analysis of
the fit aerobics group, $I^2 = 4\%$, $P = .38$, indicating that there was no heterogeneity, the forest plot of the fixed effect model (Fig. 7) was adopted. Showing $95\% \text{CI} (0.72, 2.33)$, $\text{MD} = 1.53$, $P = .0002$, the results show that aerobic exercise in the form of fit aerobics can effectively improve the intellectual and cognitive dysfunction of AD patients.

Three articles were included in the spinning group, Wang Y 2014, Wang W 2014, Wang W 2015. The total sample size was 135, and the average exercise time was 32.57 ± 10.79 hours. Through ReMan5.4.1 analysis of the spinning group, $I^2 = 3\%$, $P = .36$, indicated that there was no heterogeneity. Therefore, the forest plot of the fixed effect model was adopted (Fig. 8). Showing $95\% \text{CI} (0.29, 3.29)$, $\text{MD} = 1.79$, $P = .02$. The results showed that aerobic exercise in the form of spinning can effectively improve intellectual and cognitive dysfunction of AD patients.

By analyzing the forest plot of the two groups, the therapeutic effect of aerobic exercise in the form of spinning was better than that of aerobic exercise in the form of fit aerobics for AD patients.
4. Discussion

The clinical symptoms of Alzheimer’s disease are mainly Aβ amyloid plaque deposition in the brain and neurological tangles caused by hyper phosphorylation of tau protein.[29] Many researchers treat AD with Aβ as the target, but eventually the drug research and development have failed.[30] Therefore, researchers suspect that Aβ amyloid plaques are only an accompanying phenomenon in the process of AD, rather than the cause of AD. Therefore, researchers started from the perspectives of Tau protein, ferroptosis and exercise[31–37] in order to find the original target for the treatment of AD.

Compared with previous meta-analyses,[18,19] this meta-analysis included three new articles published in 2019 by Wang Wei, 2020 by He Qing and 2021 by Wang Junjun, and compared the therapeutic effects of different forms of exercise. Studies have shown that aerobic exercise can improve the intelligence and cognitive impairment of AD patients. The advantages of aerobic exercise in the prevention and treatment of AD include: First, high feasibility, and it can be carried out anytime and anywhere; Second, the cost is low, and the therapeutic effect can be achieved by simple running or gymnastics without purchasing equipment; Third, high flexibility. Different forms of aerobic exercise therapy can be designed according to different patient conditions. However, aerobic exercise has many limitations in the treatment of AD. For example, there is no unified standard for the form, spinning, time, frequency and exercise intensity of aerobic exercise, and different AD patients have different tolerances to exercise, which increases the difficulty of clinical treatment of AD. At the same time, some scholars have studied the mechanism by which aerobic exercise improves AD symptoms,[40–44] but the specific mechanism is not clear. In the future, a large number of experiments and studies will be needed to determine the aerobic exercise treatment scheme and mechanism of AD.

Acknowledgments

We thank the anonymous reviewers for patient review and excellent criticism of the article.

Author contributions

X-PZ proposed the theme of the article and completed the editing and writing of the paper; L-MZ sorted and screened the data of the paper; G-QC, S-WW and J-FH have strictly revised the important knowledge content; B-SZ and Z-L decided the controversial issues in the paper; All authors contributed to the editorial changes of the manuscript. All authors have read and approved the final manuscript.

Conceptualization: Xin-Pei Zhou, Ben-si Zhang.
Data curation: Xin-Pei Zhou, Li-Mei Zhang, Shen-Wu Wang.
Formal analysis: Xin-Pei Zhou.
Funding acquisition: Xin-Pei Zhou, Ben-si Zhang.
Investigation: Xin-Pei Zhou, Guo-Qiang Chen, Jin-Fen He.
Methodology: Xin-Pei Zhou.
Project administration: Xin-Pei Zhou, Zhiang Li.
Resources: Xin-Pei Zhou.
Software: Xin-Pei Zhou.
Supervision: Xin-Pei Zhou, Zhiang Li, Ben-si Zhang.
Validation: Xin-Pei Zhou.
Visualization: Xin-Pei Zhou.
Writing – original draft: Xin-Pei Zhou.
Writing – review & editing: Xin-Pei Zhou, Ben-si Zhang.

References

[1] Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12:292–323.

[2] Hue JY, Frost GR, Wu XZ, et al. The innate immunity protein IFTT3 modulates γ-secretase in Alzheimer’s disease. Nature. 2020;586:735–40.

[3] Lee V, Goedert M, Trojanowski J. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121–59.

[4] Grundke-Iqbal I, Iqbal K, Quinlan M, et al. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084–9.

[5] Lee JH, Yang DS, Goullourne CN, et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nature Neurosci. 2004;7:688–701.

[6] Corriveau RA, Koroshetz WJ, Gladman JT, et al. Alzheimer’s disease-related dementias summit 2016: national research priorities. Neurology. 2017;89:2381–91.

[7] Jia JP, Wang F, Wei CB, et al. The prevalence of dementia in urban and rural areas of China. Alzheimers Dement. 2014;10:1–9.

[8] Hodson R. Alzheimer’s disease. Nature. 2018;559:51.

[9] Li WL, Song X, Ye L, et al. Progress on pathogenesis and drug therapy of Alzheimer’s disease. Chin J Clin Neurosci. 2021;29:581–589 + 596.

[10] Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–555.

[11] Xiong CW, Zhang XL. Research progress of exercise regulating PI3K/ Akt signaling pathway in improving Alzheimer’s disease. Chin J Rehabilitation Med. 2021;36:1322–1326.

[12] Stojanovic M, Jin XY, Fagan AM, et al. Physical exercise and longitudinal trajectories in Alzheimer disease biomarkers and cognitive functioning. Alzheimer Dis Assoc Disord. 2020;34:212–9.

[13] Liang KY, Mintun MA, Fagan AM, et al. Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Alzheimers Dementa. 2010;68:31–8.

[14] Bernardo TC, Marques-Alexio I, Relea J, et al. Physical exercise and brain mitochondrial fitness: the possible role against Alzheimer’s disease. Brain Pathol. 2016;26:648–63.

[15] Morris JK, Vidoni ED, Johnson DK, et al. Aerobic exercise for Alzheimer’s disease: a randomized controlled pilot trial. PLoS One. 2017;12:e0170547.

[16] Nouchi R, Toki Y, Takesuchi H, et al. Beneficial effects of short-term combination exercise training on diverse cognitive functions in healthy older people: study protocol for a randomized controlled trial. Trials. 2012;13:200.

[17] Hindin SB, Zelinski EM. Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: a meta-analysis. J Am Geriatr Soc. 2012;60:136–41.

[18] Maliszewska-Cyna E, Lynch M, Oore JJ, et al. The benefits of exercise and metabolic interventions for the prevention and early treatment of Alzheimer’s disease. Curr Alzheimer Res. 2017;14:47–60.

[19] McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology. 1984;34:939–44.

[20] Wang Y, Shen FF, Zhu Y, et al. Clinical effects of aerobic exercises training with moderate and high intensity in Alzheimer’s disease treatment. Chin J Clin Neurosci. 2014;22:504–9.

[21] Wang W, Zhu Y, Yang SY, et al. Effects of aerobic exercise on cognitive function of Alzheimer’s disease patients. Chin J Rehabilitation Med. 2014;29:1151–5.

[22] Yan YL, Wang W, Shen FF, et al. A clinical research of aerobic exercises with different training time in the treatment of mild to moderate Alzheimer’s disease. Chin J Rehabilitation Med. 2015;30:771–6.

[23] Wang W, Wang W, Yang SY, et al. Role of ALFF in evaluation of aerobic training in patients with Alzheimer’s disease. Jiangsu Med J. 2015;41:1156–9.

[24] Yang SY. The intervention of aerobic exercise on cognitive function of early Alzheimer’s disease. Nanjing Med Univ. 2016;02:610–4.

[25] Mu HY, Lv JH, Hao ZH, et al. Effect of aerobic exercise in patients with Alzheimer’s disease. J Neurology. 2017;89:2381–91.

[26] Liu Y, Wang T, Zhu Y, et al. Aerobic exercise improves cognitive function in patients with Alzheimer disease. Chin J Rehabilitation. 2017;32:386–9.

[27] Qi M, Zhang L. Resting-state function MRI study on the effectiveness of aerobic exercise in patients with Alzheimer’s disease. J China Clin Med Imag. 2015;22:6761–3.

[28] Wang W, Wang T, Sha LJ, et al. The event-related potential P300 and cognition changes in patients with Alzheimer’s disease before and after specially designed aerobic. Chin J Rehabilitation Med. 2019;34:371–7.

[29] He Q, Xie Y, Wang T, et al. Analysis of the effect and individual differences of aerobic exercise on Alzheimer’s disease. Chin J Trauma Disability Med. 2020;28:16–20.
[30] Wang JJ, Qian AM, Gao LJ. Effects of aerobic exercise on cognitive behavioral function and neurotransmitters in patients with Alzheimer's disease. Capital Med. 2021;28:118–9.

[31] Hoffmann K, Sobol NA, Frederiksen KS, et al. Moderate-to-high intensity physical exercise in patients with Alzheimer's disease: a randomized controlled trial. J Alzheimers Disease. 2016;50:443–53.

[32] Yi QR, Hao JB, Lu HL, et al. Study on the cognitive relationship between blood p-Tau181, Aβ 1-42 and elderly Alzheimer patients. Pract Geriatrics. 2021;35:741–3.

[33] Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–39.

[34] Jouini N, Saied Z, Sassi SB, et al. Impacts of iron metabolism dysregulation on Alzheimer's disease. J Alzheimers Disease. 2021;80:1–12.

[35] Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10:9–17.

[36] Yu F, Mathiason MA, Han S, et al. Mechanistic effects of aerobic exercise in Alzheimer's disease: imaging findings from the Pilot FIT-AD Trial. Front Aging Neurosci. 2021;13:703691.

[37] Thomas BP, Tarumi T, Sheng M, et al. Brain perfusion change in patients with mild cognitive impairment after 12 months of aerobic exercise training. J Alzheimers Disease. 2020;75:617–31.

[38] Liu J, Liu RY, Ye X. Meta-analysis on the effect of exercise on the cognitive function of patients with Alzheimer's disease. J Shanghai Univ Sport. 2020;44:58–67.

[39] Xu Q, Zhao J, Wang X. Meta analysis of the effect of aerobic exercise on cognitive function in patients with Alzheimer's disease. Chin J Rehabilitation Med. 2019;34:824–30.

[40] Qiu X. The neuroprotective effect of estrogen regulated by aerobic exercise on Alzheimer's disease. Chin J Gerontol. 2021;41:1784–8.

[41] Lin JY, Kuo WW, Baskaran R, et al. Swimming exercise stimulates FGF1/PI3K/Akt and AMPK/SIRT1/PGC1alpha survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging (Albany NY). 2020;12:6852–64.

[42] Lin YY, Chen JS, Wu XB, et al. Combined effects of 17beta-estradiol and exercise training on cardiac apoptosis in ovariectomized rats. PLoS One. 2018;13:e0208633e208633.

[43] Du Y, Du Y, Zhang Y, et al. MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer's disease models. Signal Transduction Targeted Ther. 2019;4:58.

[44] Kim DY, Jung SY, Kim K, et al. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats. J Exercise Rehabilitation. 2016;12:276–83.