R&D Trend and Outlook of Seismic Physical Modeling

Sungryul Shin, Chaehyeon Lim, Wookcheon Chung, Daechul Kim and Jiho Ha*

(Received 19 May 2016; Final version Received 13 March 2017; Accepted 20 April 2017)

Abstract : Seismic physical modeling has been used to test seismic survey technologies by analyzing the response of seismic amplitude. International studies on the R&D trend of seismic physical modeling have been performed. However, domestic studies on the R&D trend and prospect of seismic physical modeling have not been performed. Therefore, in this study, seismic physical modeling papers about 30years were investigated to understand the R&D trend of papers classified by theme, year, etc. According to the analysis results, the theme of domestic papers is limited than that of international papers. Also, the number of domestic papers published annually shows poor continuity. Prospecting the following seismic physical modeling with analysis results, the prospect will be expanded to various studies, such as the anisotropic characteristics using a complex anisotropic structural model, waveform inversion and migration for data processing of complex geological structure, various survey methods conducted seismic physical modeling.

Key words : Seismic survey, Seismic physical modeling, R&D trend

요 약 : 탄성파 축소모형 실험은 탄성파진폭 등의 반응을 분석함으로써 관련 기술에 대한 실험 및 검증에 이용되어 왔다. 국외의 경우 탄성파 축소모형 실험의 연구동향에 대한 연구가 수행되었지만 국내의 경우 탄성파 축소모형 실험의 연구동향 및 전망에 관한 연구는 수행되지 않았다. 따라서 본 연구에서는 약 30년간(1982~2015년) 수행된 국내외 탄성파 축소모형 실험을 다룬 연구논문을 조사하고 테마별, 연도별 등으로 분류하여 연구동향을 파악하였다. 분석결과, 국내의 경우 국내에서의 연구가 많지 않았으며, 연간 게재 수에 따른 연속성이 매우 떨어질 수 있었다. 분석결과에 따르면 향후 탄성파 축소모형 실험을 진행할 때 복잡한 이방성 구조를 가진 모델을 이용한 이방성 특성 연구, 복잡한 지질구조의 자료처리를 위한 구조보정과 파형역산, 다양한 탐사 방법에 관한 연구가 탄성파 축소모형과 접목되어 수행될 것으로 판단된다.

주요어 : 탄성파탐사, 탄성파 축소모형실험, 연구동향

서 론

탄성파 탐사는 인위적으로 발생시킨 탄성파가 지하 매질 내에서 반사 및 굴절하여 돌아오는 것을 수진기로 기록하여, 지하 지질구조나 암석의 물리적 특성을 규명함으로써 지하에 매장되어 있는 석유, 가스 등의 자원 탐사, 해저 파이프라인 및 케이블 설치 등의 엔지니어링 탐사 등 해양탐사에 널리 활용되고 있다. 이때 취득된 자료를 처리 및 해석하기 위해서는 지하 지질구조에 따른 특성 분석에 대한 연구가 먼저 진행되어야 한다. 하지만 탄성파 탐사를 현장에서 실시할 경우 시간 및 경제적으로 제한이 있기 때문에 탄성파 모형반응에 대한 실험을 하는 것이 시간 및 경제적으로 이익이다. 탄성파 모형반응에 대한 연구방법에는 수치모형 실험과 축소모형 실험이 있다. 탄성파 수치모형 실험은 지하 매질 내에서 일어나는 물리현상을 여러 가지 수학적인 모형으로 표현하여 다양한 변수에 대한 실험을 하는 것이 시간 및 경제적으로 이익하다. 탄성파 모형반응에 대한 연구방법에는 수치모형 실험과 축소모형 실험이 있다. 탄성파 수치모형실험은 지하 매질 내에서 일어나는 물리현상
을 여러 가지 수학적인 가정으로 단순화시켜 반응을 구하며 탄성파 축소모형 실험은 현장 탐사와 유사한 조건으로 측정대상과 측정기기 등을 축소, 단순화시켜 수학적인 가정 없이 실제적으로 물리적인 현상을 다룬 실험이다(Choi et al., 1995).

수치모형 실험은 현장 탐사 환경을 모사하기 어렵다는 약점이 있기 때문에 축소모형 실험은 실제 탄성파와 매질을 이용함으로써 수치모형 실험의 단점을 보완할 수 있다.

Advantage	Physical modeling	Numerical modeling
Source and receiver dimensions large compared to a wavelength	Approximating mathematical functions	Requiring mathematical understanding of the modeled phenomenon
Bandwidth limited by available transducers	Limiting parameter ranges for velocity and density to those materials that can be fabricated	Computational cost of fully 3-D elastic wave equation modeling

Disadvantage	Physical modeling data capturing similar with field by setting up field condition	Using various frequencies in the source signal
Cost effectiveness of computing 3-D geological model response	Effective to study on the seismic response of 2-D model	
No restriction on the material variability		

Table 1. Comparison of advantage and disadvantage between physical modeling and numerical modeling

![Fig. 1. A schematic of the data acquisition (a), seismogram of seismic physical modeling (b) and numerical modeling (c) (Ha and Shin, 2011).](image)
국내·외 탄성파 축소모형 실험의 연구동향과 전망

(Shin et al., 2006). 또한 시간, 속도, 거리에 해당하는 변수들의 축소를 통하여 현장 탐사 조건과 유사한 측정 환경을 설정함으로써 보다 물리적이고 실제적인 상황에 근접한 자료를 얻을 수 있다는 강점이 있다(Choi et al., 1995). 이러한 탄성파 축소 및 수치모형실험들의 비교를 위해 각 실험의 장·단점을 정리하였으며(Table 1), 각 실험의 탄성파 단면도를 첨부하였다(Fig. 1). Fig. 1(a)는 Fig. 1(b), (c)의 탄성파 단면도의 자료취득 방법이며, 탄성파 축소모형 실험의 단면도인 Fig. 1(b)를 수치모형 실험의 단면도인 Fig. 1(c)와 비교해 보면 탄성파 축소모형 실험의 경우 현장자료와 유사하게 direct wave, multiple이 나타났음을 확인할 수 있었다.

Table 2. Number of papers and journals used in researching about seismic physical modeling

Period	Journal	Number
domestic	KSEG Expanded abstract	2
	Geophysics and Geophysical Exploration	2
	Expanded abstract	11
	KSMER Journal of the Korean Society of Mineral and Energy Resources Engineers	11
	Total	28
1982~2015	SEG SEG Technical Program Expanded abstract	107
	GEOPHYSICS	36
international	EAGE Extended abstract	32
	Geophysical Prospecting	7
	Journal of Applied Geophysics	6
	Geophysical Journal International	6
	Total	194

Table 3. Analysis standard for research trend of seismic physical modeling

Classification standard	Contents
Theme	Anisotropy
	Survey method
	Migration
	Attribute
	Inversion
	Physical modeling system
Medium	Anisotropy
	Isotropy
	Others
Survey environment	Marine
	Land

Fig. 2. The diagram of physical modeling system.
탄성파 축소모형 실험은 음원과 수신기의 위치를 제어하는 위치제어 부분, 신호를 발생시키고 수신하는 음원제어 부분, 자료를 취득하는 자료취득 부분으로 구성된 시스템을 통해 수행된다 (Fig. 2). 국내에서는 Hilterman (1970)이 3차원 탄성파 축소모형 시스템을 개발하여 실험을 한 이후로 Rana et al. (1990), Koek et al. (1995), Wong et al. (2009) 등이 탄성파 축소모형 시스템 개발과 관련된 연구가 활발히 수행 침해이며, 탄성파 이방성 분석, 탄성파 탐사방법, 구조모형, 탄성파 속성 분석 등과 같은 다양한 테마와 접목되어 연구가 수행되었다고 있다. 하지만 국내의 경우 Kim et al. (1988)이 탄성파 축소모형 실험을 위한 시스템을 최초로 국내에 도입한 이후로 Choi et al. (1995), Shin et al. (2001) 등이 관련 연구를 수행했지만 탄성파 축소모형 시스템 개발, 탄성파 이방성 특성 분석, 탄성파 속성 분석 등과 같은 극히 제한적인 테마로 수행되었기 때문에 여전히 관련 연구가 부족한 실정이다. 또한, 밀래의 경우 Evans et al. (2007) 등이 탄성파 축소모형 실험의 과거 및 현재 현황을 분석함으로써 관련 연구 수행의 기조를 제공하고 연구의 질적 향상이 도모하였지만 국내에서는 탄성파 축소모형 실험 관련 연구동향에 관한 논문은 전무하였다.

따라서 국외에 비해 미흡한 국내의 탄성파 축소모형 실험 관련 연구의 현황을 파악하고 탄성파 탐사 관련 연구 중 앞으로 탄성파 축소모형 실험에 적용할 수 있는 연구를 찾기 위한 필요가 있다. 이를 통해 본 논문에서는 과거 국내·외 학회지에 게재된 연구논문 및 발표논문을 연도, 테마, 매질,
탐사환경으로 나누어 연구동향을 분석하고 이를 통해 향후 탄성파 축소모형 실험 관련 연구분야의 전망을 파악하고자 한다.

연구내용 및 방법

본 연구는 탄성파 축소모형의 연구동향을 분석하고 이를 통해 향후 탄성파 축소모형 실험의 전망을 파악하고자 한다. 본 연구는 탄성파 축소모형의 연구동향을 분석하고 이를 통해 향후 탄성파 축소모형 실험 관련 연구분야의 전망을 파악하고자 한다.

연구내용 및 방법

본 연구는 탄성파 축소모형의 연구동향을 분석하고 이를 통해 향후 탄성파 축소모형 실험 관련 연구분야의 전망을 파악하고자 한다. 본 연구는 탄성파 축소모형의 연구동향을 분석하고 이를 통해 향후 탄성파 축소모형 실험 관련 연구분야의 전망을 파악하고자 한다.

국외 탄성파 축소모형 실험 연구동향

테마별 연구동향

탄성파 축소모형 실험 관련 연구에서 수행된 테마는 탄성파 이방성 특성 분석, 탄성파 탐사방법, 구조보정, 탄성파 속성분석 등으로 나눌 수 있다. 테마별로 국외 탄성파 축소모형 실험 관련 연구동향을 분석한 결과, 탄성파 이방성 특성 분석 분야가 전체 연구중 74편으로 전체 194편의 논문 중 38%를 점유하며 가장 많은 연구가 이루어진 것으로 나타났다. 또한, 탄성파 이방성 특성 분석 분야의 연구는 1982~1999년과 2000~2009년은 비슷한 연간게재수를 계속적으로 증가하는 것으로 나타났으며 이러한 추세는 계속될 것으로 전망된다. 탄성파 이방성 특성 분석, 탄성파 속성분석와 관련된 연구가 2010년대부터 지속적으로 수행되었다는 것을 나타낸다. 이는 탄성파 이방성 특성 분석, 탄성파 속성분석, 구조보정와 관련된 연구를 주로 수행하는 China University of Petroleum이 이러한 분야에서 활발하게 연구를 진행하였기 때문이다.
의 연구가 활발하게 이루어지고 있다고 판단된다(Fig. 4).
연대에 따라 연구 흐름을 파악하기 위해 1982~2015년의 분석기간을 3개의 연대(1982~1999년, 2000~2009년, 2010~2015년)로 나누어 연구에 따른 상위 5개의 테마를 분석하였으며, 추가적으로 각 연대에서 가장 많이 수행된 테마에 대해서 복합적으로 접근해 분석하였다.
1982~1999년 사이에 게재된 탄성파 축소모형 실험 관련 논문들 중 상위 5개의 테마 분석 결과는 Table 4(a)과 같다. 분석 결과, 탄성파 이방성 분석 분석 분야의 논문이 가장 많이 게재된 것으로 분석되었으며, 탄성파 이방성 특성 분석 관련 논문들의 복합적으로 접근해 분석한 결과 (Table 4(b)) 암석 물성에 따른 탄성파 속도 영향 분석이 가장 많이 접근된 것으로 나타났다.
2000~2009년 사이에 게재된 탄성파 축소모형 실험 관련

Table 4. The top 5 result by the number of international papers in themes and the analysis of research trend by the highest number of international papers in themes of seismic physical modeling

Year	The top 5 result by the number of international papers in themes	The analysis of research trend by the highest number of international papers in themes
1982-1999	![Diagram](a)	![Diagram](b)
2000-2009	![Diagram](c)	![Diagram](d)
2010-2015	![Diagram](e)	![Diagram](f)

한국자원공학회지
논문들 중 상위 5개의 테마 분석 결과는 Table 4(c)와 같다. 분석 결과, 이전 연대와 마찬가지로 탄성파 이방성 특성 분석이 가장 많이 게재된 것으로 분석되었으며, 탄성파 이방성 특성 관련 논문들에서 복합적으로 접목된 테마를 분석한 결과(Table 4(d)) 탄성파 속성 분석이 가장 많이 접목해서 수행된 것으로 분석되었다.

2010~2015년 사이에 게재된 탄성파 축소모형 실험 관련 논문들 중 상위 5개의 테마 분석 결과는 Table 4(e)와 같다. 분석 결과, 앞서 분석한 2개의 연대와 마찬가지로 탄성파 이방성 특성 분석이 가장 많이 게재된 것으로 분석되었으며, 탄성파 이방성 특성 분석 관련 논문들에서 복합적으로 접목된 테마를 분석한 결과(Table 4(f)) 암석 물성에 따른 탄성파 속성 영향 분석이 가장 많이 접목해서 수행된 것으로 나타났다.

매질별 연구동향
탄성파 축소모형 실험 관련 연구에서 사용된 매질은 이방성 매질(e, isotropy), 다공성(porous) 매질 등이 사용되었다. 매질별로 연구동향을 분석한 결과(Fig. 5) 이방성 매질이 가장 많은 연구에서 사용된 것으로 분석되었다.

다음으로 각각의 매질에 따라 연도별로 분석하였습니다(Fig. 6). 이방성 매질을 연도별로 분석한 결과 1982~1999년에는 연간 1.8편이던 것이 2000~2009년에는 연간 3.1편으로 증가하였으며 2010~2015년에는 연간 6.8편으로 계속적으로 증가하는 것으로 나타났고 앞으로도 이러한 추세는 계속될 것으로 예상한다.

Fig. 5. The analysis of research trend in international papers of seismic physical modeling by mediums.

Fig. 6. The number of international papers in seismic physical modeling by the year in mediums.

Fig. 7. The analysis of research trend in international papers of seismic physical modeling by anisotropy medium (a) from 1982–1999 (b), 2000–2009 (c), 2010–2015 (d).
것으로 판단된다. 등방성 매질은 1982~1999년에는 연간 2.3편이던 것이 2000~2009년에는 연간 1.4편으로 약간 낮아졌으나 2010~2015년에는 연간 4.0편으로 다시 증가하는 것으로 나타났다.

매질 중 가장 많이 수행되고 있는 이방성 매질에 대해 세부적으로 분석하기 위해 VTI, HTI 등으로 분류하여 연구동향을 분석하였다(Fig. 7). 이방성 매질을 세부적으로 분류하여 분석한 결과, 이방성 매질 중에서 VTI 매질이 가장 많이 연구가 수행되는 것으로 분석되었다(Fig. 7(a)).

탄성파 축소모형 실험 중 이방성 매질 관련 연구의 흐름을 파악하기 위해 1982~2015년의 분석기간을 3개의 연대 (1982~1999년, 2000~2009년, 2010~2015년)로 나누어 분석하였다. 각 연대별로 분석한 결과 1982~1999년과 2000~2009년에는 VTI 매질이 가장 많이 연구에 사용된 것으로 분석되었고(Fig. 7(b), (c)) 2010~2015년에는 HTI 매질이 가장 많이 사용된 것으로 분석되었다(Fig. 7(d)).

탐사환경별 연구동향

탐사환경별로 연구동향을 분석한 결과 해상환경에서 연구를 수행한 논문이 육상환경에서 연구를 수행한 논문보다 많이 수행된 것으로 분석되었다(Fig. 8). 그리고 각각의 탐사환경에 따라 연도별로 분석하였다(Fig. 9). 해상환경일 때 연도별로 분석한 결과 1982~1999년에는 연간 2.2편이던 것이 2000~2009년에는 연간 2.6편으로 증가하였으며 2010~2015년에는 연간 6.7편으로 계속적으로 증가하는 것으로 나타났다. 육상환경일 때 연도별로 분석한 결과 1982~1999년에는 연간 2.3편이던 것이 2000~2009년에는 연간 2.3편으로 증가하였으며 2010~2015년에는 연간 4.5편으로 해상환경과 마찬가지로 계속적으로 증가하는 것으로 나타났다.

국내 탄성파 축소모형 실험 연구동향

Fig. 10은 국내의 탄성파 축소모형 실험 관련 논문들을 기관에 따라 분석한 결과이다. 우리나라 탄성파 축소모형 실험에 관한 초기 연구는 한국지질자원연구소(현 한국지질자원연구원)가 독일의 Ruhr university Bochum과 공동으로 탄성파 축소모형 실험을 이용한 파형재생법에 관한 연구로 Kim et al. (1988)이 최초로 소개 하였다. 최근 탄성파 축소모형 실험 논문으로는 Lee et al. (2013)이 물성 측정을 위한 탄성파 축소모형 시스템을 구축하고 탄성파 실험 시험을 통하여 엔지니어링 플라스틱 코어의 P파 및 S파 속도를 측정하였고 이를 초음파속도법에 의한 초음파속도와 비교함으로써 두 방법이 갖는 특성과 한계를 비교하는 연구를 수행한 논문이 있다. 이를 포함하여 한국지질자원연구원(KIGAM)에서 총 11편(39%)이 게재되었다(Table 5).

한국해양대학교(KMOU)에서 3차원 해양환경 탄성파 축소모형 시스템 개발과 관련된 연구(Shin et al., 2001)를 시작으로 3차원 탄성파 축소모형 시스템을 이용하여 물성 측정과 더불어 실제 탄성파 탐사 환경을 모사하여 가스 하이드레이트의 지구물리학적 특성 연구를 수행하였으며 (Shin et al., 2006), 국외에서 탄성파 축소모형 실험에 가장

Fig. 8. The analysis of research trend in international papers of seismic physical modeling by survey environments.

Fig. 9. The number of international papers in seismic physical modeling by the year in survey environments.

Fig. 10. The analysis of research trend in domestic papers of seismic physical modeling by institutions.
많이 수행된 탄성파 이방성 특성을 분석하는 연구 (Ha and Shin, 2011)를 수행하는 등 총 15편(54%)을 한국 해양대학교에서 게재하였다(Table 5). 서울대학교에서 2 차원 탄성파 축소모형 시스템을 개발과 관련된 연구(Choi et al., 1995)가 수행되었으며, 전남대학교에서는 유체유동 감시시스템 개발을 위한 탄성파 축소모형 시스템 개발에

Table 5. List of domestic papers relating with seismic physical modeling experiment by KIGAM and KMOU

Institution	Year	Title	Author
KIGAM	1988	Signal reconstruction technique in physical modeling	Kim et al.
KIGAM	1988	New operating system for physical seismic-modeling	Kim et al.
KIGAM	1989	Directivity of P-radiation caused by a seismic source array	Kim
KIGAM	1994	Study of oil trap structure by seismic physical modeling	Kim et al.
KIGAM	1995	Quality test of synthetic seismograms by physical modeling	Kim et al.
KIGAM	1998	Investigation on a perforated model by seismic physical modeling	Kim et al.
KIGAM	2003	Seismic depth migration by velocity model	Kim et al.
KIGAM	2010	Characteristics of rock samples from seokmo island using an automated-continuous seismic velocity measuring system	Lee et al.
KIGAM	2011	A study on the factors affected on the P- and S-wave velocity measurement of the acrylic and stainless steel core	Lee and Lee
KIGAM	2011	A effect of seismic velocity measurement with the adhesion between core-transducer	Lee and Lee
KIGAM	2013	Ultrasonic velocity measurement of engineering plastic core by pulse-echo-overlap using cross-correlation	Lee et al.
KIGAM	2001	Development of 3-D seismic physical modeling system	Shin et al.
KIGAM	2006	A properties study of gas hydrate in deep sea using 3-D seismic physical modeling experiment	Shin et al.
KIGAM	2006	Geophysical characteristics of gas hydrate using seismic physical modeling experiment	Shin et al.
KIGAM	2010	Seismic anisotropy physical modeling with vertical transversely isotropic media	Ha and Shin
KIGAM	2010	Seismic anisotropy physical modeling with vertical transversely isotropic media using physical modeling	Ha and Shin
KIGAM	2010	A study on seismic anisotropy characteristics in transversely isotropic media using physical modeling	Ha and Shin
KIGAM	2011	Seismic scattering characteristics in fractured media using physical modeling	Shin and Ha
KIGAM	2012	A study on characteristics of seismic attenuation with principal stress direction of anisotropy media	Lee et al.
KIGAM	2014	A study on characteristics of seismic attenuation by using spectral ratio method	Lee et al.
KIGAM	2014	Selection of the optimal linear range for the automated Q-factor calculation	Kim et al.
KIGAM	2014	A development of physical modeling DAQ and analysis system based on LabVIEW	Kim et al.
KIGAM	2014	Multi component RVSP experiment for Q-factor estimation	Ko et al.
KIGAM	2014	The automated Q-factor calculation program using the optimal linear range selection algorithm based on LabVIEW	Kim et al.
KIGAM	2015	A study on characteristics of seismic traveltme by a number of inhomogeneity in media	Ko et al.
대한 연구(Cho et al., 2013)가 수행되었다. 분석 결과, 국내에서 탄성파 축소형 실험 관련 연구는 한국해양대학교에서 가장 많이 수행되었으며, 한국지질자원연구원, 서울대학교, 전남대학교 순으로 수행되었다. 또한, 탄성파 축소형 실험 관련 연구가 다양한 기관에서 수행된 것이 아닌 일부 기관에서 수행된 것으로 나타났다.

국내 탄성파 축소형 실험 실험의 흐름을 파악하기 위해 연도별로 분석하였다(Fig. 11). 1982~1999년에는 연간 0.38편이던 것이 2000~2009년에는 연간 0.40편으로 약간 증가하였고 2010~2015년에는 연간 2.83편으로 약간 증가하였다. 한국해양대학교에서 가장 많이 수행되었으며, 한국지질자원연구원, 울산대학교, 전남대학교 순으로 수행되었다. 또한, 탄성파 축소형 실험 관련 연구가 다양한 기관에서 수행된 것이 아닌 일부 기관에서 수행되는 것으로 나타났다.

Fig. 12는 탄성파 축소형 실험 실험 연구의 흐름을 파악하기 위해 연도별로 분석하였다(Cho et al., 2013). 분석 결과, 국내에서 탄성파 축소형 실험 실험 관련 연구는 한국해양대학교에서 가장 많이 수행되었으며, 한국지질자원연구원, 울산대학교, 전남대학교 순으로 수행되었다. 또한, 탄성파 축소형 실험 실험 관련 연구는 국가과학기술연구원, 한국해양대학교, 전남대학교 순으로 수행되었다. 또한, 탄성파 축소형 실험 실험 관련 연구는 국내에서 탄성파 축소형 실험 실험 관련 연구의 흐름을 파악하기 위해 연도별로 분석하였다(Cho et al., 2013).

전망

탄성파 축소형 실험 실험 연구 중 탄성파 탐사와 관련된 연구가 주를 이루고 있다. 따라서 탄성파 탐사와 관련된 연구의 주제가 탄성파 축소형 실험 실험 관련 연구가 주제가 연간이 없음을 알 수 있다. 하지만 탄성파 탐사에서개발된 기술의 검증 및 분석을 제외하고 탄성파 축소형 실험 실험 탄성파 이방성 특성, 3-D 지질 모델에 대한 반응 등 많은 연구에 필요하다고 판단되었다. 앞서 탄성파 축소형 실험 실험 연구의 흐름을 파악하기 위해 연도별로 분석하였다(Cho et al., 2013).

Fig. 11. The number of domestic papers of seismic physical modeling by the year.

Fig. 12. The analysis of research trend in domestic papers of seismic physical modeling by themes.

한국자원공학회지
얻을 수 있는 다양한 방위각 배열 탐사(azimuth configuration survey)와 여러 개의 음원을 동시에 사용하여 탐사하여 기존의 탐사 방법 보다 탐사시간을 단축시키고 한번의 탐사에 담은 지역을 탐사할 수 있는 simultaneous source acquisition 과 연계하여 다양한 연구가 수행될 것으로 사료된다.

마지막으로, 탄성파 축소모형 실험의 탄성파 축소모형 실험과 관련 논문들의 연구동향을 분석함으로써 앞으로도 지속적으로 증가할 것으로 판단된다.

참고문헌

Achenbach, J.D., 1984, Wave propagation in elastic solids, Elsevier Science Publishing, Amsterdam, Netherlands

Alterman, Z., and Karal, F.C., 1968, “Propagation of Elastic Waves in Layered Media by Finite Difference Methods,” Bulletin of Seismological Society of America, Vol. 58, No. 1, pp. 367-398.

Ass’ad, J.M., Tatham, R.M. and McDonald, J.A., 1992, “A Physical Model Study of Microcrack-induced Anisotropy,” GEOPHYSICS, Vol. 57, No. 12, pp. 1562-1570.

Buddensiek, M.L., Krawczyk, C.M., Kukowski, N. and
of Inhomogeneity in Media,” 2015 KSEG Conference, KSEG, Seoul, Korea, May 14-15, pp. 111-112.
Koek, A.E., Faber, G. and Berkhout, A.J., 1995, “3-D Data Acquisition Research with the Delft Physical Modeling Facility,” SEG Technical Program Expanded Abstracts 1995, SEG, Houston, Texas, USA, October 8-13, pp. 747-748.
Kwak, N.E., Min, D.J. and Bae, H.S., 2011, “Reverse-time Migration for VTI and TTI Media,” Geophysics and Geophysical Exploration, Vol. 14, No. 3, pp. 191-202.
Kwak, N.E., Min, D.J. and Bae, H.S., 2011, “Reverse-time Migration for VTI and TTI media,” Geophysics and Geophysical Exploration, Vol. 14, No. 3, pp. 191-202.
Lee, J.W., Ha, J.H. and Shin, S.R, 2012, “A Study on Characteristics of Seismic Attenuation with Principal Stress Direction of Anisotropy Media,” 98th Spring Conference of the Korean Society for Geosystem Engineering, KSEG, Jeju, Korea, May 3-4, pp. 404-405.
Lee, J.W., Ha, J.H., Ko, H.K., Chung, W.K. and Shin, S.R, 2014, “A Study on Characteristics of Seismic Attenuation by Using Spectral Ratio Method,” J. of Mineral and Energy Resources, Vol. 51, No.5, pp. 687-695.
Lee, S.G. and Lee, T.J., 2011, “A Effect of Seismic Velocity Measurement with the Adhesion between Core-transducer,” 96th Spring Conference of the Korean Society for Geosystem Engineering, KSEG, Jeonju, Korea, April 21-22, pp. 138-139.
Lee, S.G. and Lee, T.J., 2011, “A Study on the Factors Affected on the P- and S-wave Velocity Measurement of the Acrylic and Stainless Steel Core,” Geophysics and Geophysical Exploration, Vol. 14, No. 4, pp. 305-315.
Lee, S.G., Lee, T.J. and Kim, H.C., 2013, “Ultrasonic Velocity Measurement of Engineering Plastic Core by Pulse-echo-overlap Using Cross-correlation,” 100th Spring Conference of the Korean Society of Mineral and Energy Resources Engineers, KSMER, Seoul, Korea, May 2, p. 205
Lee, S.G., Lee, T.J. and Sung, N.H., 2010, “Characteristics of Rock Samples from Seokmo Island Using an Automated-continuous Seismic Velocity Measuring System,” J. the Korean Society for Geosystem Engineering, Vol. 47, No. 5, pp. 756-770.
Luo, M. and Evans, B.J., 2001, “Mapping Fractures Using Conventional 3-D Marine Seismic; A Physical Modeling Study for Multi-boat Multi-streamer Survey,” SEG Int’l Exposition and Annual Meeting, SEG, San Antonio, Texas, September 9-14, pp. 280-283.
Rana, A.I. and Sekharan, K.K., 1990, “New Developments in Physical Modeling at the Seismic Acoustics Lab,” SEG Technical Program Expanded Abstracts 2009, SEG, San Francisco, California, USA, September 23-27, pp. 1066-1068.
Shin, S.R. and Ha, J.H., 2010, “Seismic Scattering Characteristics in Fractured Media Using Physical Modeling,” 2010 KSEG Conference, KSEG, Kangwon, Korea, October 7-8, pp. 195-198.
Shin, S.R., Shin, C.S., Jang, W.I. and Lim, J.S., 2001, “Development of 3-D Seismic Physical Modeling System,” J. of the Korean Society of Mineral and Energy Resource Engineers, Vol. 38, No. 6, pp. 424-431.
Shin, S.R., Yeo, E.M., Kim, C.S., Park, K.P., Lee, H.Y. and Kim, Y.J., 2006, “A Properties Study of Gas Hydrate in Deep Sea Using 3-D Seismic Physical Modeling Experiment,” 96th Spring Conference of the Korean Society for Geosystem Engineering, KSEG, Jeonju, Korea, April 13, pp. 90-95.
Shin, S.R., Yeo, E.M., Kim, C.S., Park, K.P., Lee, H.Y. and Kim, Y.J., 2006, “Geophysical Characteristics of Gas Hydrate Using 3-D Seismic Physical Modeling Experiment,” J. of Korean Society for Geosystem Engineering, Vol. 43, No. 3, pp. 181-193.
University of Houston, Allied Geophysics Laboratory, 2016.04. 18., http://www.agl.uh.edu/index.php
Virieux, J., 1984, “SH-wave Propagation in Heterogeneous Media: Velocity-stress Finitie-difference Method,” GEOPHYSICS, Vol. 49, No. 11, pp. 1933-1957.
Wong, J., Hall, K.W., Gallant, E.V., Bertram, M.B. and Lawton, D.C., 2009, “Seismic Physical Modeling at the University of Calgary,” SEG Technical Program Expanded Abstracts 2009, SEG, Houston, Texas, USA, October 25-30, pp. 2642-2646.
Xu, C., Di, B. and Wei, J., 2014, “A Seismic Physical Modeling Study of Cavernous Carbonate Reservoirs at Seismic Scale,” SEG Denver 2014 Annual meeting. SEG, Denver, USA, October 26-31, pp. 3579-3583.
이름	학력 및 경력	E-mail
신성렬	1987년 서울대학교 공과대학 자원공학과 공학사 1990년 서울대학교 대학원 자원공학과 공학석사 1994년 서울대학교 대학원 자원공학과 공학박사	srshin@hhu.ac.kr
임채현	2015년 한국해양대학교 에너지자원공학과 공학사 2017년 한국해양대학교 해양에너지자원공학과 석사과정	leh89@kmou.ac.kr
정우근	2006년 서울대학교 지구환경시스템공학부 공학사 2008년 서울대학교 에너지시스템공학부 공학석사 2011년 서울대학교 에너지시스템공학부 공학박사	wkchung@hhu.ac.kr
하지호	2007년 한국해양대학교 해양개발공학부 공학사 2011년 한국해양대학교 에너지자원공학과 공학석사	jihoha@kigam.re.kr
김대철	2017년 한국해양대학교 에너지자원공학과 공학사	dckim@kmou.ac.kr