Optimal Universal Uncertainty Relations

Tao Li, Yunlong Xiao, Teng Ma, Shao-Ming Fei, Naihuan Jing, Xianqing Li-Jost & Zhi-Xi Wang

We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)].

Uncertainty relations are of profound significance in quantum mechanics and quantum information theory. Various important applications of uncertainty relations have been discovered such as entanglement detection, steering inequalities and quantum cryptography. The well-known form of the Heisenberg’s uncertainty relations, given by Robertson, says that the standard deviations of the observables \(\Delta A \) and \(\Delta B \) satisfy the following inequality,

\[
\Delta A \cdot \Delta B \geq \frac{1}{2} \left| \langle [A, B] | \psi \rangle \right|^2.
\]

As a consequence of the uncertainty relations, it is impossible to determine the exact values of the two incompatible observables simultaneously. However, the lower bound in the above uncertainty inequality may become trivial if the measured state \(|\psi\rangle \) belongs to the nullspace of the commutator \([A, B]\).

In fact, the uncertainty relations provide a limitation on how much information one can obtain by measuring a physical system, and can be characterized in terms of the probability distributions of the measurement outcomes. In order to overcome the drawback in the product form of variance base uncertainty relations, Deutsch introduced the entropic uncertainty relations, which were later improved by Maassen and Uffink: \(H(A) + H(B) \geq -2 \log c(A, B) \), where \(H \) is the Shannon entropy. \(c(A, B) = \max_{m, n} \{|a_m| |b_n| \} \) is maximum overlap between the basis elements \(|a_m\rangle\rangle\) and \(|b_n\rangle\rangle\) of the eigenbases of \(A \) and \(B \), respectively. Recently, the Maassen-Uffink bound has been surprisingly improved by Coles and Piani, Rudnicki, Puchał and Życzkowski, for a review on entropic uncertainty relations see refs 12 and 13.

Friedland, Gheorghiu and Gour proposed a new concept called “universal uncertainty relations” which are not limited to considering only the well-known entropic functions such as Shannon entropy, Renyi entropy and Tsallis entropy, but also any nonnegative Schur-concave functions. On the other hand, Puchał, Rudnicki and Życzkowski independently used majorization technique to establish entropic uncertainty relations similar to “universal uncertainty relations”. Let \(|a_{m, n}\rangle\rangle_{m, n=1}^d \text{ and } |b_{m, n}\rangle\rangle_{m, n=1}^d \) be orthonormal bases of a d-dimensional Hilbert space \(H \). Denote by \(p_\rho(\alpha) = \langle a_\alpha | \rho | a_\alpha \rangle \) and \(q_\rho(\beta) = \langle b_\beta | \rho | b_\beta \rangle \) the probability distributions obtained by measuring the state \(\rho \) with respect to these bases, which constitute two probability vectors \(p(\rho) = (p_1, p_2, \ldots, p_d) \) and \(q(\rho) = (q_1, q_2, \ldots, q_d) \), respectively. It has been shown that the tensor product of the two probability vectors \(p(\rho) \) and \(q(\rho) \) is majorized by a vector \(\omega \) independent from the state \(\rho \),

\[
p(\rho) \otimes q(\rho) \prec \omega, \quad \text{for any } \rho,
\]

\(^1\)School of Science, Beijing Technology and Business University, Beijing 100048, China. \(^2\)School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China. \(^3\)Max Planck Institute for Mathematics in the Sciences, Leipzig 04103, Germany. \(^4\)State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China. \(^5\)School of Mathematical Sciences, Capital Normal University, Beijing 100048, China. \(^6\)Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA. Correspondence and requests for materials should be addressed to T.L. (email: lt881122@sina.com) or Y.X. (email: mathxiaojia123@gmail.com)
where “-<” stands for “majorization”: \(\mathbf{x} \prec \mathbf{y} \) in \(\mathbb{R}^d \) if \(\sum_{j=k}^{d-k} x_j^k \leq \sum_{j=k}^{d-k} y_j^k \) for all \(1 \leq k \leq d-1 \) and \(\sum_{j=1}^{d} x_j^d = \sum_{j=1}^{d} y_j^d \). The down-arrow vector \(\mathbf{x}^\downarrow \) denotes that the components of \(\mathbf{x} \) are rearranged in descending order, \(x_1^\downarrow \geq x_2^\downarrow \geq \cdots \geq x_d^\downarrow \). The \(d^2 \)-dimensional vector \(\omega \) is given by

\[
\omega = \Omega_{\kappa_1} \Omega_{\kappa_2} \Omega_{\kappa_3} \cdots \Omega_{\kappa_n},
\]

where

\[
\Omega_{\kappa} = \max_{I_k} \max_{\rho} \sum_{(m,n) \in I_k} p_m(\rho) q_n(\rho)
\]

with \(I_k \subset [d] \times [d] \) being a subset of \(k \) distinct pairs of indices \((m,n) \) and \([d] \) is the set of the natural numbers from 1 to \(d \). The outer maximum is over all subsets \(I_k \) with cardinality \(k \) and the inner maximum runs over all density matrices.

Equation (2) is called a universal uncertainty relation, as for any uncertainty measure \(\Phi \), a nonnegative Schur-concave function, one has that

\[
\Phi(p(\rho) \otimes q(\rho)) \geq \Phi(\omega), \quad \text{for any } \rho.
\]

The universal uncertainty relation (UUR) (2) generates infinitely many uncertainty relations, for each \(\Phi \), in which the right hand side provides a single lower bound.

In relation (2), the state independent vector \(\omega \) decided by \(\Omega_k \) in Eq. (4) is too hard to evaluate explicitly in general, as it is involved with a highly nontrivial optimization problem. For this reason, only an approximation \(\tilde{\Omega}_k \) of \(\Omega_k \) has been presented\(^{14,15}\) to construct a weaker majorization vector \(\tilde{\omega} \). Naturally, how to find a stronger approximation than previous works becomes an interesting open question.

Results

We first introduce a scheme called "joint probability distribution diagram" (JPDD) to consider the optimization problem involved in calculating \(\Omega_k \). Next, we present a stronger approximation by proposing an analytical formula for \(\Omega_k \). To facilitate presentation, we denote our stronger approximation as \(\Omega_k \) without ambiguity. All uncertainty relations considered in the paper will be in the absence of quantum side information.

To construct the joint probability distribution diagram, we associate each summand \(p_i(\rho) q_j(\rho) \) in \(\Omega_k \) to a box located at the position \((i,j) \). Then the summation in \(\Omega_k \) corresponds to certain region of boxes (or rather lattice points) in the first quadrant. We configure the region in a combinatorial way. Suppose that \(p_1 \geq p_2 \geq \cdots \geq p_d, q_1 \geq q_2 \geq \cdots \geq q_d \). Consider the following \(d \times d \)-matrix

\[
\begin{pmatrix}
 p_1 q_1 & p_1 q_2 & \cdots & p_1 q_d \\
 p_2 q_1 & p_2 q_2 & \cdots & p_2 q_d \\
 \vdots & \vdots & \ddots & \vdots \\
 p_d q_1 & p_d q_2 & \cdots & p_d q_d
\end{pmatrix}
\]

where the entries descend along the rows and columns by assumption. Now, we use a box \(\square \) to represent an entry of the matrix. A shadow or grey box in the JPDD means the corresponding entry in the matrix. For example, the
top left shadow of the block box specifies the entry \(p_{ij} \), see Fig. 1. Thus the region corresponding to the summation in \(\Omega_k \) will be a special region of the rectangular matrix.

Our scheme, JPDD, provides a combinatorial method to compute the special region with respect to the \(\Omega_k \). First, it is easy to see that the top upper left box in JPDD is the maximal element, i.e. \(\Omega_k \), since \(p_{ij} - p_{ij} \geq p_{ij} - p_{ij} \geq 0 \). The main idea is that each exact solution of \(\Omega_k \) corresponds to a particular region in this matrix.

Suppose that the \(k \)-th region is found, i.e. \(\Omega_k \) is obtained, then the next \((k+1)\)-th region is obtained from the \(k \)-th region by adding a special box, which must be "connected" with certain boundary of the \(k \)-th region. This iterative procedure enables us to compute all \(\Omega_k \). Before proving the statement rigorously, we first introduce some terminologies.

[Definition 1] (Different boxes) Two boxes (matrix elements) \(p_{ij} \) and \(p_{kl} \) are said to be different if they occupy different positions in JPDD, namely, \(i \neq k \) or \(j \neq l \). The Fig. 2 shows three examples of different boxes. Note that it may happen that even if the numerical values of \(p_{ij} \) and \(p_{kl} \) are the same, but graphically they are treated as different boxes. "different" and "same" do not imply their quantitative relation. For example, \(p_{ij} \equiv p_{ij} \) in general.

[Definition 2] (Connectedness). Two boxes \(p_{ij} \) and \(p_{kl} \) in JPDD are connected if there does not exist any box \(p_{mn} \), different from both \(p_{ij} \) and \(p_{kl} \) such that \(min[p_{ij}, p_{kl}] < p_{mn} < max[p_{ij}, p_{kl}] \). For example, different boxes \(p_{ij} \) and \(p_{kl} \) are connected if \(p_{ij} = p_{kl} \). For \(d = 4 \), if \(p_1 > p_2 > p_3 > p_4 \), \(q_1 > q_2 > q_3 > q_4 \), then \(p_{ij} = p_{kl} \) if \(p_{ij} = p_{kl} \), \(p_{ij} = p_{kl} \), \(p_{ij} = p_{kl} \), for any \(i, j, k, l \in \{1, 2, 3, 4\} \), then \(p_{ij} \) and \(p_{kl} \) are not connected while \(p_{ij} \) and \(p_{kl} \) are connected, see Fig. 3.

[Definition 3] (Connected region). A set of different boxes is called a region, denoted by \(\mathfrak{A} \). A region \(\mathfrak{A} \) is connected if \forall \(p_{ij} \in \mathfrak{A} \), then either \(p_{ij} \in \mathfrak{A} \) or \(p_{ij} \in \mathfrak{A} \), where \(\max \mathfrak{A} \) is the maximal value of all the elements in \(\mathfrak{A} \). Note that the region of boxes corresponding to a \(\Omega_k \) must contain the top-left element \(p_{ij} \) in JPDD as its largest element.

For any probability vector \(\rho \) on a \(d \)-dimensional Hilbert space with \(p_i = |a_i| \rho |a_i \rangle \), let \(p_i' = \max_{j=1}^{d} \rho_j |a_j \rangle \). Similarly, \(q_i' \) are defined similarly for another probability vector \(\rho \) on the same Hilbert space. For any sequence \(k_1, \ldots, k_n, 1 \leq n \leq d \), we define

\[
\Omega^d_{k_1, k_2, \ldots, k_n} = p_1' (q_1' + q_2' + \cdots + q_{k_1}') + p_2' (q_1' + q_2' + \cdots + q_{k_2}') + \cdots + p_{k_1}' (q_1' + q_2' + \cdots + q_{k_2}') + \cdots + p_1' (q_1' + q_2' + \cdots + q_{k_n}) + p_2' (q_1' + q_2' + \cdots + q_{k_2}) + \cdots + p_n' (q_1' + q_2' + \cdots + q_{k_n}).
\]

In particular, if \(p_1 > \cdots > p_d \), \(q_1 > \cdots > q_d \), then \(\Omega^d_{k_1, k_2, \ldots, k_n} = p_1 (q_1 + q_2 + \cdots + q_{k_1}) + p_2 (q_1 + q_2 + \cdots + q_{k_2}) + \cdots + p_n (q_1 + q_2 + \cdots + q_{k_n}) \), which can be configured by the Fig. 4. In a JPDD when the first \(k \) boxes are chosen, the next
(maximal) $(k+1)$-th box must appear at the top left corner in the unoccupied region, we give this as follow lemma:

[Lemma]: The maximal k boxes for Ω_k in the JPDD can be selected to form a connected region. Lemma gives a way to get Ω_{k+1} from Ω_k in a JPDD. As an example, we show how to get Ω_3 from Ω_2. Set $c_{11} = \max \{c_{m,n} \}$, $c_{21} = \max \{c_{m,n} \}$, $c_{22} = \max \{c_{m,n} \}$, $c_{31} = \max \{c_{m,n} \}$, and $c_{32} = \max \{c_{m,n} \}$. If $c_{21} \geq c_{22}$, then $\Omega_3 = \Omega_{21}$; if $c_{21} \leq c_{22}$, then $\Omega_3 = \max \{c_{m,n} \}$. That is, if $\Omega_2 = \Omega_{21}$, then $\Omega_3 = \Omega_{31}$. Thus Ω_3 is determined by Ω_2.

In general, $\Omega_{k+1} = \Omega_{k1, \ldots, k_k, \ldots, k_n}$ subjecting to $\sum_{i=1}^{n} k_i = k - 1$. By Lemma it follows that

$$
\Omega_k = \max \left\{ \Omega_{1d_1, \ldots, d_n}^{d_{k+1, \ldots, k_k}} \right\} + \Omega_{k-1}
$$

which gives an iterative formula of Ω_k in terms of Ω_{k+1}'s.

We list in Figs 5 and 6 all the possible Ω_k for $k = 1, 2, \ldots, 4$. The above example to get Ω_3 from Ω_2 corresponds to move from the second row to the third. Now we are ready to show the main result.

[Theorem] The quantities Ω_k are given by
\[\Omega_k = \frac{1}{4} \sum_{T: |T| = 2k} \left[\max_{P_{\infty}} \sum_{n \in T} |n\rangle \langle n| - \max_{P_{K \infty}} \sum_{n \in T} |n\rangle \langle n| \right] \]

Figure 6. The tree diagrams to get the JPDDs in the \(k \)-th row by adding one shadow box to the JPDDs in the \(k - 1 \) row.

The solution given in Eq. (8) can be explained as follows. First, for \(k = 1, 2 \), they are solved simply as

\[\Omega_1 = \frac{1}{4} \left[1 + c^2 \right], \quad \Omega_2 = \frac{1}{4} \left[1 + c^2 \right]^2, \]

where \(c = \max \{|\langle a_n |p_k \rangle|^2\} = \max \{\langle a_n | P_k \rangle \} \), the maximum is taken over all indices \(m \approx m', n \approx n' \), and over all \(n = n', m = m' \). Then, for \(k = 3 \) in JPDD, \(\Omega_3 = \max \sum_{M, N, \rho} \mathbb{P}_{M, \rho} \langle \rho \rangle = \max \{|\langle a_n | P_k \rangle \} \). Furthermore,

\[\Omega_4 = \max \sum_{M, N, \rho} \mathbb{P}_{M, \rho} \langle \rho \rangle \]

We have shown how to calculate \(\Omega_1, \Omega_2, \Omega_3 \). For the cases \(k \geq 4 \), interested readers can calculate \(\Omega_k \) using a similar method and we sketch the details in the Methods.

The above theory enables us to formulate a series of \(\Omega_k \), based on all quantities we obtain a tighter majorization vector \(\omega \). Note that our method is valid when all the maximums are taken over the same quantum state, otherwise our bounds will fail to hold. Even so, our results can outperform \(B_{\text{avg}} \) to some extent.

Our results enable us to strengthen the bounds on the sum of two Shannon entropies by \(B_{\text{PDD}} = H(\omega) \), where \(\omega \) is given by the improved \(\Omega_k \) in Eq. (8) and \(H \) is the Shannon entropy. To see this phenomenon, let us first consider a 4-dimensional system with incompatible observables \(\{|a_n\}, |b_n\rangle \). Let

\[U \left(U_{mn} = \langle a_m | b_n \rangle \right) \]

and the unitary transformation \(U \) between them

\[\begin{pmatrix}
0.63 \cos \theta + 0.54 \sin \theta & 0.67 \cos \theta - 0.62 \sin \theta & 0.67 \cos \theta - 0.62 \sin \theta & 0.67 \cos \theta - 0.62 \sin \theta \\
0.67 \cos \theta - 0.62 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta \\
0.67 \cos \theta - 0.62 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta \\
0.67 \cos \theta - 0.62 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta \\
\end{pmatrix} \]

and

\[\begin{pmatrix}
0.63 \cos \theta + 0.54 \sin \theta & 0.67 \cos \theta - 0.62 \sin \theta & 0.67 \cos \theta - 0.62 \sin \theta & 0.67 \cos \theta - 0.62 \sin \theta \\
0.67 \cos \theta - 0.62 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta \\
0.67 \cos \theta - 0.62 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta \\
0.67 \cos \theta - 0.62 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta & 0.63 \cos \theta + 0.43 \sin \theta \\
\end{pmatrix} \]
In Fig. 7, we plot the difference between BJPDD and BMaj^2, i.e. $\text{BJPDD} - \text{BMaj}^2$ (the red line). Clearly, our bound BJPDD is tighter than BMaj^2 to some extent. Note that, the entropies are defined with base 2 in general. But in our figures, in order to make them more readable, we take the natural logarithm instead.

To appreciate the stronger vector ω in the improved UUR, we can consider Shannon entropy in the uncertainty relations to obtain a tighter bound than the previous work\cite{16}. Namely if we Φ in Eq. (5) as the Shannon entropy H, then we have

$$H(A) + H(B) \geq \begin{cases} -2 \log c, & \text{if } 0 < c \leq 1/\sqrt{T} , \\ H_1(c), & \text{if } 1/\sqrt{T} \leq c \leq c' , \\ G(c), & \text{if } c' \leq c \leq 1 , \end{cases}$$

(9)

where $c' \approx 0.834$, the bound $H_1(c)$ is the same as the one given in Vincente and Ruiz’s work\cite{16}, and $G(c) = H(\omega)$ with ω given by our formula Eq. (3). The bound $G(c)$ outperforms the Vincente and Ruiz’s bound $F(c)$\cite{16} in the interval $[c', 1]$. For further details, see Fig. 8.

Conclusion

In conclusion, we have presented a method called joint probability distribution diagram to strengthen the bounds for the universal uncertainty relations. As an example, we consider the bounds on the sum of the Shannon entropies. As the universal uncertainty relations capture the essence of uncertainty in quantum theory, it is unnecessary to quantify them by particular measures of uncertainty such as Shannon or Renyi entropies. Our results give a way to resolve some important cases in this direction, and is shown to offer a better bound for any uncertainty relations given by the nonnegative Schur-concave functions. Furthermore, how to extend this method to the case of multiple measurements are interesting, which requires further studies.

Methods

Proof of the Lamma. The case of $k = 1$ is obvious since the maximal element is $p_i q_j$. Assume that the statement holds for the case of $k - 1$: $\Omega_{k-1} = \{p_{i_1} q_{j_1} \ldots p_{i_{k-1}} q_{j_{k-1}}\}$ is connected with $k_1 > \ldots > k_{k-1} > 0$. Suppose on the contrary that the next maximum $\Omega_k = \Omega_{k-1} + p_i q_j$ is not connected. Then there are two possibilities: (i) $i > n$ or $j > k_1$, thus we can replace $p_i q_j$ by $p_i q_j$ or $p_i q_j$ and move further to $p_{i+1} q_{j_1} q_{j_{k-1}}$ to get a possible bigger value for Ω_{k_1}. (ii) $i \leq n$ and $j > k_n$, in this case we can also replace the box $p_i q_j$ by a connected box $p_{i'} q_{j'}$, to the region of Ω_{k-1} by sliding it leftward or upward. Hence the statement is true by induction.

Proof of the Theorem. To calculate $\Omega_k = \{p_{i_1} q_{j_1} \ldots p_{i_k} q_{j_k} \ldots p_{i_{k-1}} q_{j_{k-1}} + p_i q_j \}$, we note that...
\[\Omega_i = \frac{1}{2} \max \sum_{a, b \in R} (a \sigma_i + b \bar{\sigma_i}) \left| \sum_{a, b \in S} (a \sigma_i + b \bar{\sigma_i}) \right| \]

\[\Omega_{k_2, k_3} = \frac{1}{2} \max \sum_{a, b \in R} (a \sigma_i + b \bar{\sigma_i}) \left| \sum_{a, b \in S} (a \sigma_i + b \bar{\sigma_i}) \right| \]

where \(R \) and \(S \) are subsets of distinct indices from \([d] \), \(|R| \) is the cardinality of \(R \), and \(\| \cdot \|_\infty \) is the infinity operator norm which coincides with the maximum eigenvalue of the positive operator. For a given \(k \), there exist sets of \(k_1 \geq \ldots \geq k_n \) such that \(\sum_{i=1}^n k_i = k \) for some \(n \). For any such given \(k_1 \geq \ldots \geq k_n \), the quantity in \([.] \) in Eq. (8) can be calculated. The outer max picks up the largest quantity for all such possible \(k_1, \ldots, k_n \). Then \(\Omega_{k_2, k_3} = \Omega_{k_2, k_3}^{d} + \Omega_{k_2, k_3}^{a} \) and \(\Omega_{k_2, k_3}^{d} = \Omega_{k_2, k_3}^{d} + \Omega_{k_2, k_3}^{d} \). Continuing in this way we have

\[\frac{\rho_{k_i}}{2} - \alpha_k = \frac{\rho_{k_i-1}}{2} + \frac{\rho_{k_i}}{2} - \frac{\rho_{k_i-1}}{2} + \rho_{k_i-1} \]

\[\frac{\rho_{k_i}}{2} - \alpha_k = \frac{\rho_{k_i-1}}{2} + \frac{\rho_{k_i}}{2} - \frac{\rho_{k_i-1}}{2} + \rho_{k_i-1} \]

which gives the improved values of \(\Omega_k = \max \Omega_{k_1, k_2, \ldots, k_n} \) where \(n \) is taken over \(\sum_{i=1}^n k_i = k \) with \(k_1 \geq \ldots \geq k_n \), and hence \(\omega = (\Omega_1, \Omega_2 - \Omega_1, \ldots, \Omega_d - \Omega_{d-1}, 0, \ldots, 0) \) for any \(\rho \).

References
1. Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik 43(3–4), 172–198 (1927).
2. Gühne, O. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92(11), 117903 (2004).
3. Schneeloch, J., Broadbent, C. J. & Howell, J. C. Cryptography from Noisy Storage. Phys. Lett. A 378, 766 (2014).
4. Koashi, M. Simple security proof of quantum key distribution based on complementarity. Phys. Rev. A 63(11), 042335 (2001).
5. Renes, J. M. & Boileau, J. C. Physical underpinnings of privacy. Phys. Rev. A 78(3), 032315 (2008).
6. Tomamichel, M., Lim, C. W. & Gisin, N. et al. Tight finite-key analysis for quantum cryptography. Nature commun. 3, 634 (2012).
7. Robertson, H. P. The uncertainty principle. Phys. Rev. 34(1), 163 (1929).
8. Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 50(9), 631 (1983).
9. Maassen, H. & Uffink, J. B. M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 60(12), 1103 (1988).
10. Coles, P. J. & Piani, M. Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A 89(2), 022112 (2014).
11. Rudnicki, L. Puchała, Z. & Życzkowski, K. Strong majorization entropic uncertainty relations. Phys. Rev. A 89(5), 052115 (2014).
12. Wehner, S. & Winter, A. Entropic uncertainty relations – a survey. New J. Phys. 12(2), 025009 (2010).
13. Coles, P. J., Berta, M. & Tomamichel, M. et al. Entropic Uncertainty Relations and their Applications. arXiv, 1511.04857 (2015)
14. Friedland, S., Gheorghiu, V. & Gour, G. Universal uncertainty relations. Phys. Rev. Lett. 111(23), 230401 (2013).
15. Puchała, Z., Rudnicki, L. & Życzkowski, K. Majorization entropic uncertainty relations. J. Phys. A: Math. and Theor. 46(27), 272002 (2013).
16. de Vicente, J. I. & Sánchez-Ruiz, J. Improved bounds on entropic uncertainty relations. Phys. Rev. A 77(4), 042110 (2008).

Acknowledgements
Supported by the Research Foundation for Youth Scholars of Beijing Technology and Business University QNJ[2017-03. The work is supported by NSFC (11275131, 11271138, 11305105, 11675113).

Author Contributions
T.L., Y.X., T.M., S.-M.F, N.J., X.L.-J. and Z.-X.W. wrote the main manuscript. All authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, T. et al. Optimal Universal Uncertainty Relations. Sci. Rep. 6, 35735; doi: 10.1038/srep35735 (2016).
