Yuliya Fedorchenko* https://orcid.org/0000-0002-5042-1191
Olena Zimba https://orcid.org/0000-0002-4188-8486
1Department of Pathophysiology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
2Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine

*Corresponding author:
Fedorchenko Yuliya, Assistant Professor, Department of Pathophysiology, Faculty of Medicine, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine;
Twitter handle: @YuliyaFedoren; E-mail: juliakozubash@gmail.com

Abstract
The continual propagation of SARS-CoV-2 has changed health care systems globally. Ranging degrees of clinical severity in COVID-19 patients have been noted in numerous literature sources. Cytokines play a crucial role in the development of key immunological processes in COVID-19. SARS-CoV-2 causes imbalance of the immune system and might culminate in cytokine storm and multiple organ involvement. The prevailing role of some special cytokines might serve as indicators of disease severity. Further stratification of patients in the context of specific cytokines can be beneficial for diagnosing disease stages. It can prevent critical states owing to timely diagnosis and targeted therapy. Targeting peculiar cytokines can markedly reduce complications. The aim of this article is to comprehensively overview the role of the main cytokines in COVID-19 pathogenesis and distinguish prognostic factors. Insights into specific cytokine involvement in COVID-19 pathogenesis may open new avenues for diagnosing hyperinflammatory COVID-19, predicting its outcomes and providing individualized cytokine-targeted therapeutic approaches.

Keywords: COVID-19, Coronavirus, Cytokines, Cytokine release syndrome

How to cite: Fedorchenko Y, Zimba O. Cytokines as potential markers of COVID-19 severity and outcomes. Central Asian J Med Hypotheses Ethics 2022:3(1):10-20. https://doi.org/10.47316/cajmhe.2022.3.1.01

INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged and spread globally after the initial cases in Wuhan, China [1]. The World Health Organization termed the epidemic infection as Coronavirus Disease 2019 (COVID-19) [2].

Patients infected with SARS-CoV-2 suffer mostly from mild to moderate disease. However, severe respiratory failure (RF) and acute respiratory distress syndrome (ARDS) may also develop [3]. About 20% of patients infected with SARS-CoV-2 progress into ARDS and multiple organ damage (MOD) with cytokine release syndrome (CRS) involvement [4].

Any immune response is accompanied by intensive synthesis of proinflammatory (IL-1β, IL-6, IL-8, and TNF-α) and anti-inflammatory cytokines (IL-10) that play a pivotal role in the modulation of COVID-19 severity [5]. The uncontrolled production of proinflammatory cytokines may lead to cytokine storm manifesting as ARDS and MOD in COVID-19 [6]. COVID-19 is still a major health issue affecting the world population. The aim of this article is to comprehensively overview the role
of the main cytokines in COVID-19 pathogenesis and distinguish prognostic factors. The overview may shed light on potential markers of early diagnosis and monitoring of severe COVID-19.

SEARCH STRATEGY
Searches were performed through MEDLINE/PubMed, Scopus, and Web of Science in line with previously published recommendations [7]. Retrieval of relevant documents was completed on January 10, 2022. The following keywords were used: “COVID-19”, “coronavirus”, “cytokines”, and “cytokine release syndrome”. All retrieved abstracts were processed in view of their relevance to the topic. All original articles, reviews, and case reports were processed. Conference papers, book chapters, preprints, and editorials were filtered out.

SARS-CoV-2 BASIC CHARACTERISTICS
SARS-CoV-2 is one of the known RNA viruses characterized by large genomes (26.4-31.7 kb). The virus contains an N-terminal fragment along with a spike protein [8]. SARS-CoV-2 enters its target cells by interacting with angiotensin-converting enzyme-related carboxypeptidase (ACE2) receptor located on multiple organs such as the mucous layer of oral and nasal cavities, lungs, stomach, intestine, skin, spleen, liver, and endothelial cells [9,10]. SARS-CoV-2 entrance is enabled by the activation of Transmembrane Serine Protease (TMPRSS2) and the priming of the protease for S protein. The priming of the viral S proteins includes S protein cleavage at the S1/S2 and S20 sites. The viral spread depends on TMPRSS2 activity. Available data suggest that the viral entry can be blocked by inhibitors of the cellular serine protease TMPRSS2 [11].

IMMUNE RESPONSE IN COVID-19 PROGRESSION
In the course of infection, activated macrophages release multiple cytokines capable of enhancing inflammatory response and tissue damage. Viral danger-associated molecular patterns (DAMPs) sensed by pattern recognition receptors (PRRs) of immune cells mediate the inflammatory response. After the viral attack, Toll-like receptors activate and stimulate the release of proinflammatory cytokines [12]. Specific biological therapy targeting proinflammatory cytokines may regulate the immune response [13].

Hyperinflammatory response in subjects infected with SARS-CoV-2 merits special attention. Macrophage activation syndrome (MAS) and low expression of HLA-DR are believed to contribute to COVID-19 complicated with severe respiratory failure (SRF) [14]. The exhaustion of CD3+, CD4+, CD8+, and CD19+ lymphocytes confounds the complicated course of the disease [15]. The immune response leads to the production of IL-6 and CRP, reaching their peak level in critical conditions [16]. Severe COVID-19 is also characterized by the abundant production of IL-2, IL-6, IL-7, IL-10, and TNF-α in comparison with those who manifest mild and moderate disease [17,18].

IL-6 IN COVID-19
The course of COVID-19 is strongly dependent on IL-6 level [19]. The initial stages of COVID-19 are characterized by the overproduction of IL-6 by activated T-helper 17 (TH17) cells [20]. The role of IL-6 is critical in COVID-19 complicated with pneumonia and ARDS [21]. Overall, the disease progression from mild to severe forms coincides with a marked increase in IL-6 owing to the imbalance between CD4+ and CD8+ cells [22]. Interestingly, IL-6 correlated positively with IL-8 in severe COVID-19 [23].

A single-center prospective cohort study has demonstrated an association between high IL-6 and mortality from COVID-19 [24]. In a Receiver Operating Characteristic (ROC) curve analysis, IL-6 was found to be a specific predictor of mortality with high sensitivity (0.88) and specificity (0.89) [24]. IL-6 pretreatment levels may predict the development of post-COVID arthritis [25].

Several studies have explored the benefits of targeting IL-6 receptors (IL-6R) in COVID-19 [26]. Tocilizumab (TCZ) has proved particularly beneficial for COVID-19 patients requiring mechanical ventilation [27].

Patients with severe COVID-19 pneumonia who received TCZ therapy within the first 48 hours after admission had better prognosis [28].

Patients with severe COVID-19 who received TCZ therapy earlier than those with non-severe forms survived the disease [29]. Patients on mechanical ventilation treated with TCZ had a survival rate of 74% [30].

Elevated IL-6 may inhibit HLA-DR expression on the monocytes of patients infected with SARS-CoV-2 [31]. In fact, IL-6 is negatively correlated with HLA-DR expression [32] while TCZ therapy is accompanied by an
increased expression of HLA-DR on monocytes of COVID-19 patients [14].

A retrospective multicenter case-control study demonstrated that COVID-19 patients treated with TCZ are unlikely to get intubated (OR 0.37, 95% CI 0.18–0.78) [33]. Their course of disease on biological therapy can be monitored by levels of ferritin [33].

IL-1BETA

Interleukin 1 beta (IL-1B) is one of the proinflammatory cytokines that can be originated from monocytes, dendritic cells, tissue macrophages, NK cells, and B lymphocytes [34]. Increased activity of monocytes is believed to be the main source of elevated circulatory cytokines, particularly *IL-1B*, and related hyperinflammation in COVID-19 [35]. Specifically targeting *IL-1B* may avert the development of hyperinflammation [36]. Higher *IL-1B* levels were reported in severe COVID-19 patients compared with those with mild forms [37]. In a cohort study, the IL-1 inhibition in COVID-19 was associated with a significant mortality reduction [38].

sST2

The suppression of tumorigenicity-2 (ST2), particularly its secreted soluble isoform (sST2), has been examined in the course of COVID-19 progression [39]. High serum sST2 positively correlated with CRP and negatively correlated with CD4+ cells, contributing to the immune dysregulation [40]. Severe COVID-19 cases were characterized by persistently high sST2 that was predictive of critical illness [40].

IL-8

Elevated IL-8 has been reported in case-control studies of COVID-19 [41]. IL-8 was found to be the best predictive marker of COVID-19 with AUC 0.88 (95% CI 0.81–0.96) [37], although the level of elevation was similar across groups with mild, moderate, and severe COVID-19 [37].

When compared with IL-6 in the context of COVID-19, IL-8 demonstrated a higher predictive value in an ROC curve analysis: AUC 0.9776 vs 0.8417 [42].

Notably, IL-8 levels tend to increase during COVID-19 progression from mild to severe forms. Taken together, IL-6 may be a marker of severe COVID-19 whereas IL-8 may be a better marker for all forms of the disease and its predictor [42].

IL-32

Epithelial and immune cells are the main sources of IL-32. It regulates inflammatory response via TNF-α, IL-2, and IL-1b signaling [43]. In case of influenza, elevated IL-32 may prevent virus spread [44]. Significantly elevated IL-32 levels were reported in healthy controls compared with COVID-19 patients [37]. Moreover, IL-32 could be viewed as a marker distinguishing healthy subjects from those with COVID-19 (IL-32 AUC 0.71, 95% CI 0.64–0.77) [37].

IL-10

In a study with healthy controls, severe COVID-19 patients had significantly lower levels of IL-10, suggesting the exhaustion of anti-inflammatory reserves with the progression of the disease [37]. In another case-control study, IL-10 was increased in COVID-19 patients while IL-10 positively correlated with CRP (r = 0.41, P < 0.01) [45].

Serum IL-10, along with IL-6 and TNFα, gradually increased in a study comparing non-survivors with survivors during their ICU stay [46]. Significant differences in IL-10 levels were noted on day 3 after ICU admission (P < 0.01) [46]. The elevated serum IL-10 in critically ill COVID-19 patients possibly restrain the area of SARS-CoV-2 damage and initiate restoration interrelated with both proinflammatory and anti-inflammatory processes throughout the disease progression [46].

IL-37

IL-37 is a newly discovered cytokine, a member of the IL-1 family, characterized by anti-inflammatory and immune suppressive properties [47]. Such properties are confounded by suppression of the production of proinflammatory cytokines and chemokines such as IL-1β, IL-1Ra, IL-6, IL-8, IL-23, and TNF-alpha [48]. High IL-37 is associated with low proinflammatory cytokines in COVID-19, possibly restricting the virus replication [49]. COVID-19 patients with high IL-37 had a significantly shorter hospitalization than those with low IL-37 (mean 14.8 vs 20.3 days, P < 0.001) [49].

INNATE IMMUNE RESPONSE IN COVID-19

T cells are intimately involved in the development of immune response in COVID-19. Patients with COVID-19 present with decreased T cells and increased levels of T cell-produced cytokines [50]. T cells are particularly dysfunctional over the course of the disease progression [51]. A marked imbalance of CD4+ and CD8+ cells is
evident in severe COVID-19, pointing to the exhaustion of innate immunity and the reduction in circulating T cells [52]. CD4+ T cells activate B cells to produce virus-specific antibodies. This pathway is particularly deficient in patients with depleted CD4+ T cells [53].

In a study of 123 patients with mild and severe COVID-19, markedly lower levels of lymphocytes, platelets, and hemoglobin were noted in patients with severe disease [22]. Both CD4+ and CD8+ T cell counts were markedly reduced in the severe group, and their survival prognosis was worse when compared to the mild group [22].

Interestingly, T cell counts reach their lowest levels in severe COVID-19 when IL-10, IL-2, IL-4, TNF-α, and IFN-γ reach their peaks [18]. Severe COVID-19 also leads to the lowering of CD3+, CD8+, and CD4+ T cell counts [18].

Combined analyses of complement anaphylatoxins along with inflammatory cytokines in COVID-19 pointed to the additive roles of both protein groups [54]. C5a and C3a proteins are proinflammatory mediators in COVID-19 that enable recruitment of neutrophils, activation of mast cells, and induction of cytokine production [55]. Severe COVID-19 tends to elevate both C3a and C5a levels, leading to systemic vascular affections and deterioration of the disease course [54].

THROMBOSIS IN COVID-19

Patients infected by SARS-CoV-2 present with enhanced prothrombotic features. Thromboses are described in numerous reports of COVID-19 [56,57]. Prothrombotic autoantibodies such as anticardiolipin IgG, IgM, and IgA; anti-β2 glycoprotein I IgG, IgM, and IgA; and anti-phosphatidylserine/prothrombin (aPS/PT) IgG and IgM have been detected in hospitalized COVID-19 patients [58]. Elevated D-dimer is characteristic of COVID-19 patients treated in the ICU [17].

Compared with COVID-19 survivors, non-survivors present with significantly higher prothrombin time (PT), international normalized ratio (INR), D-dimer, and fibrin/fibrinogen degradation products (FDP) [24]. The ROC curve analysis has revealed AUC 0.816 for D-dimer and 0.830 for FDP, suggesting that both markers could predict COVID-19 mortality [59].

Coagulation parameters in ICU patients correlated significantly with proinflammatory cytokines [60]. Also, disseminated intravascular coagulation (DIC) was more frequent in COVID-19 patients with ARDS [61]. Those with ARDS frequently presented with septic shock, DIC, and acute kidney and heart failure [62]. Critically ill COVID-19 patients tended to have higher D-dimer, lactate dehydrogenase (LDH), CRP, and ferritin as constituent components of hyperinflammatory response [53].

VASCULAR REMODELING IN COVID-19

Vascular remodeling in COVID-19 is associated with Platelet Derived Growth Factor-AA (PDGF-AA), Platelet Derived Growth Factor-AB-BB (PDGF-AB-BB), Fibroblast growth factor (FGF), and IFN-γ-inducible protein 10 (IP-10) [63]. Soluble CD40 ligand (sCD40L), which is abundantly produced by the platelets of COVID-19 patients, stimulates endotheliocytes, pericytes, and smooth muscle cells [64].

Thrombin-antithrombin complexes (TATc) and soluble tissue factor were significantly elevated in the BALF of COVID-19 patients and demonstrated predictive value in COVID-19 [65].

Accordingly, severe COVID-19 cases may need long-term monitoring after hospital discharge [63].

AUTOIMMUNITY IN COVID-19

Neutrophilic extracellular traps (NET) are believed to be the main sites for autoantibody production and accumulation in COVID-19 [66]. Complement activation and overly produced anti-nuclear antibodies, anti-52 kDa SSA/Ro, anti-60 kDa SSA/Ro, antiphospholipid antibodies, and anti-interferon antibodies have been reported in patients infected with SARS-CoV-2 [67,68]. All these factors may induce various autoimmune disorders [69].

COVID-19 manifestations are often viewed through the prism of autoimmunity and inflammatory rheumatic diseases. Also, COVID-19 may manifest with rheumatic symptoms and syndromes such as secondary hemophagocytic lymphohistiocytosis, arthralgias and myalgias, cytopenia, and acute interstitial pneumonia-like presentation [70,71,72]. Likewise, COVID-19 may develop cytokine release syndromes with complicated course owing to immunosuppression [73].

COMPLETE BLOOD COUNT IN COVID-19

A sizeable proportion of patients with COVID-19 present with a low white blood cells (WBC) count below 4×10^9/L and lymphopenia below 1.0×10^9/L. However, severe COVID-19 often result in higher WBC and neutrophil
counts and lower lymphocyte counts than moderate cases [74]. LDH and aspartate aminotransferase (AST) are often elevated in severe and critically ill COVID-19 patients [17, 53].

Overall, severe COVID-19 is characterized by elevated AST, alanine transaminase (ALT), LDH, creatine kinase, CRP, ferritin, and serum amyloid A (SAA) [18].

STRATIFICATION OF COVID-19 PATIENTS

Numerous studies have reported an association of proinflammatory cytokines with severe COVID-19, ARDS, and poor outcomes [62,76]. COVID-19 patients with ARDS had elevated IL-6, IL-8, IL-10, and TNF-α on days 1, 3, and 5 [62]. Comparing severe and mild COVID-19, IL1β, IL-6, IL-8, and TNF-α were significantly higher in critically ill patients [75]. Additionally, higher IL1β, IL-6, and IL-8 positively correlated with the number of critical COVID-19 cases and in-hospital deaths. All these factors may be used for patient stratification and mortality prediction [54].

One report demonstrated elevation of 16 soluble factors in patients infected with SARS-COV-2 [63]. The same report pointed to the lowering of 2 antibacterial factors such as macrophage-derived chemokine (MDC22) and hematopoietic growth factor FMS-like tyrosine kinase 3 ligand (FLT-3L). Some of these soluble factors (cytokines) may act as chemokines attracting immune cells to inflammation sites. Also, IL-10 and IL-1RA with potentially antimicrobial and anti-inflammatory properties were elevated in COVID-19 [63]. MDC22, FLT-3L, and IL-12 were markedly lowered in ARDS [63]. All these findings may help suggest stratification schemes.

CONCLUSION

A better understanding of the various involvements of cytokines in COVID-19 pathogenesis can be beneficial in identifying the stage of disease progression, predicting the disease course, and enabling personalized treatment approaches. Thus, clinical markers may serve as valuable indicators for monitoring the virus spread in humans with COVID-19.

AUTHOR CONTRIBUTIONS

YF drafted the initial version of the manuscript. OZ conceptualized and edited the initial version. Both authors significantly revised the manuscript. They take full responsibility for the integrity and accuracy of all aspects of the review.

FUNDING

None

CONFLICTS OF INTEREST

Both authors have completed the ICMJE Disclosure of Interest Form (http://www.icmje.org/disclosure-of-interest/; available from the corresponding author). Both authors declare no potential conflicts of interest.

Markers	Serum levels	Notes	Refs
IL-6	Elevated (↑)	↑ in the severe patient group (p=0.001); ↑ in mild-moderate severity group compared with healthy controls (p=0.001)	23
IL-1B	↑	↑ in severe group compared with mild group (p < 0.05)	37
sST2	↑	Positively correlated with CRP and negatively with CD4+ and CD8+ T cells	40
IL-8	↑	The best discriminatory marker for differentiation of COVID-19 patients from healthy controls (AUC=0.88, 95% CI 0.81–0.96).	37
IL-32	Reduced (↓)	Valuable discriminatory marker for distinction between COVID-19 and healthy control groups (AUC=0.71, 95%CI 0.64–0.77).	37
IL-10	↓	suggestion of exhaustion of anti-inflammatory properties in covid-19 patients	37
IL-37	↓ or ↑ depending on severity	Defining role in COVID-19 prognosis. Patients with elevated IL-37 had significantly shorter hospitalization (p<0.001)	49
Viral entry through ACE2 receptors on target cells surface

Priming of viral S spike protein by TMPRSS2

Activation of endosome through Toll-like receptors

cytokine storm, multiple organ damage

massive release of proinflammatory cytokines: IL-1β, IL-6, sST2, IL-8

CD4+T cells reduction:

T cells dependent B cells activation and stimulation of virus-specific antibody production

*low IL-10 levels: exhaustion of anti-inflammatory properties

*high IL-10 levels: limitation area of damage and initiation of restoration

Figure 1. Pathogenetic mechanisms of cytokines involvement in COVID-19

REFERENCES

1. WHO Novel Coronavirus-China. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf (Accessed 7 Feb 2022).
2. Diagnosis and Treatment Protocol for COVID-19 (Trial Version 7) Available from: http://en.nhc.gov.cn/2020-03/29/c_78469.htm (Accessed 7 Feb 2022).
3. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382(8):727–733.
4. Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis 2020;39(6):1011–1019.
5. Loisa P, Rinne T, Laine S, Kaukinen S. Anti-inflammatory cytokine response and the development of multiple organ failure in severe sepsis. Acta Anaesthesiol Scand 2003;47(3):319–325.
6. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med 2020;8(6):e46–e47.
7. Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD. Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 2011;31(11):1409–1417.
8. Woo PC, Huang Y, Lau SK, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses 2010;2(8):1804–1820.
9. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect 2021;54(2):159–163.
10. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020;368(6490):473–474.
11. Hoffmann M, Klein-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–280.e8.
12. Moradian N, Gouravani M, Salehi MA, Heidari A, Shafeghat M, Hamblin MR, et al. Cytokine release syndrome: inhibition of pro-inflammatory cytokines as a solution for reducing COVID-19 mortality. Eur Cytokine Netw 2020;31(3):81–93.
13. Price CC, Altice FL, Shyr Y, Koff A, Pischel L, Goshua G, et al. Tocilizumab treatment for cytokine release syndrome in hospitalized COVID-19 patients: survival and clinical outcomes. Chest 2020;158(4):1397–1408.
14. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020;27(6):992–1000.e3.
15. Bobcakova A, Petriskova J, Vysehradsky R, Kocan I, Kapustova L, Barnova M, et al. Immune profile in patients with COVID-19: Lymphocytes exhaustion markers in relationship to clinical outcome. Front Cell Infect Microbiol 2021;11:646688.
16. Lavillegrand JR, Garnier M, Spaeth A, Mario N, Hariri G, Pilon A, et al. Elevated plasma IL-6 and CRP levels are associated with adverse clinical outcomes and death in critically ill SARS-CoV-2 patients: inflammatory response of SARS-CoV-2 patients. Ann Intensive Care 2021;11(1):9.
17. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506.
18. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020;55:102763.
19. Coomes EA, Haghibayan H. Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev Med Virol 2020;30(6):1-9.
20. McGonagle D, Sharif K, O'Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 2020;19:102537.
21. Buonaguro FM, Puzanov I, Ascierto PA. Anti-IL6R role in treatment of COVID-19-related ARDS. J Transl Med 2020;18:165.
22. Wan S, Yi Q, Fan S, Jingleong L, Zhang X, Guo L, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol 2020;189(3):428-37.
23. Kesmez Can F, Özkurt Z, Öztürk N, Sezen S. Effect of IL-6, IL-8/CXCL8, IP-10/CXCL10 levels on the severity in COVID 19 infection. Int J Clin Pract 2021;75(12):e14970.
24. Laguna-Goya R, Ultrero-Rico A, Talayero P, Lasa-Lazaro M, Ramirez-Fernandez A, Naranjo L, et al. IL-6-based mortality risk model for hospitalized patients with COVID-19. J Allergy Clin Immunol 2020;146(4):799-807.e9.
25. Taha SI, Samaan SF, Ibrahim RA, El-Sehsham EM, Youssef MK. Post-COVID-19 arthritis: is it hyperinflammation or autoimmunity? Eur Cytokine Netw 2021;32(4):83–88.
26. Du P, Geng J, Wang F, Chen X, Huang Z, Wang Y. Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome. Int J Med Sci. 2021;18(6):1356–1362.
27. Klopfenstein T, Zayet S, Lohse A, Selles P, Zahra H, Kadiane-Oussou NJ, et al. HNF Hospital Tocilizumab multidisciplinary team. Impact of tocilizumab on mortality and/or invasive mechanical ventilation requirement in a cohort of 206 COVID-19 patients. Int J Infect Dis 2020;99:491–495.
28. San-Juan R, Fernández-Ruiz M, López-Medrano F, Carretero O, Lalueza A, de la Calle GM, et al. H12O Immunomodulation Therapy for COVID-19 Group, the Spanish Network for Research in Infectious Diseases (REIPI). Analysis of the factors predicting clinical response to tocilizumab therapy in patients with severe COVID-19. Int J Infect Dis 2022;117:56–64.
29. Sánchez-Rovira P, Pérez-Chica G, Ortega-Granados AL, Aguilar-García J, Díaz-Beltrán L, Gálvez-Montosa F, et al. Early use of tocilizumab in patients with severe pneumonia secondary to severe acute respiratory syndrome
coronavirus 2 infection and poor prognostic criteria: Impact on mortality rate and intensive care unit admission. Medicine (Baltimore) 2021;100(29):e26533.

30. Price CC, Altice FL, Shyr Y, Koff A, Pischel L, Goshua G, et al. Tocilizumab treatment for cytokine release syndrome in hospitalized patients with coronavirus disease 2019: Survival and clinical outcomes. Chest 2020;158(4):1397–1408.

31. Bonnet B, Cosme J, Dupuis C, Coupez E, Adda M, Calvet L, et al. Severe COVID-19 is characterized by the co-occurrence of moderate cytokine inflammation and severe monocyte dysregulation. EBioMedicine 2021;73:103622.

32. Qin S, Jiang Y, Wei X, Liu X, Guan J, Chen Y, et al. Dynamic changes in monocytes subsets in COVID-19 patients. Hum Immunol 2021;82(3):170–176.

33. Mert A, Vahaboglu H, Arslan F, Batirel A, Saracoğlu KT, Bastug A, et al. Tocilizumab treatment in severe COVID-19: a multicenter retrospective study with matched controls. Rheumatol Int 2022;42(3):457–467.

34. Mardi A, Meidaninikjeh S, Nikfarjam S, Majidi Zolbanin N, Jafari R. Interleukin-1 in COVID-19 infection: Immunopathogenesis and possible therapeutic perspective. Viral Immunol 2021;34(10):679–688.

35. Vanderbeke L, Van Mol P, Van Herck Y, De Smet F, Humblet-Baron S, Martinod K, et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nat Commun 2021;12(1):4117.

36. Kahn R, Schmidt T, Golestani K, Mossberg A, Gullstrand B, Bengtsson AA, et al. Mismatch between circulating cytokines and spontaneous cytokine production by leukocytes in hyperinflammatory COVID-19. J Leukoc Biol 2021;109(1):115–120.

37. Bergantini L, d’Alessandro M, Cameli P, Otranto A, Luzzi S, Bianchi F, et al. Cytokine profiles in the detection of severe lung involvement in hospitalized patients with COVID-19: The IL-8/IL-32 axis. Cytokine 2022;151:155804.

38. Cavalli G, Larcher A, Tomelleri A, Campochiaro C, Della-Torre E, De Luca G, et al. Interleukin-1 and interleukin-6 inhibition compared with standard management in patients with COVID-19 and hyperinflammation: A cohort study. Lancet Rheumatol 2021;3:e253–e261.

39. Ragusa R, Basta G, Del Turco S, Caselli C. A possible role for ST2 as prognostic biomarker for COVID-19. Vascul Pharmacol 2021;138:106857.

40. Zeng Z, Hong XY, Li Y, Chen W, Ye G, Li Y, et al. Serum-soluble ST2 as a novel biomarker reflecting inflammatory status and illness severity in patients with COVID-19. Biomark Med 2020;14(17):1619–1629.

41. Hu H, Pan H, Li R, He K, Zhang H, Liu L. Increased circulating cytokines have a role in COVID-19 severity and death with a more pronounced effect in males: A systematic review and meta-analysis. Front Pharmacol 2022;13:80228.

42. Li L, Li J, Gao M, Fan H, Wang Y, Xu X, et al. Interleukin-8 as a Biomarker for Disease Prognosis of Coronavirus Disease-2019 Patients. Front Immunol 2021;11:602395.

43. Khawar B, Abbasi MH, Sheikh N. A panoramic spectrum of complex interplay between the immune system and IL-32 during pathogenesis of various systemic infections and inflammation. Eur J Med Res 2015;20(1):7.

44. Li W, Sun W, Liu L, Yang F, Li Y, Chen Y, et al. IL-32: a host proinflammatory factor against influenza viral replication is upregulated by aberrant epigenetic modifications during influenza A virus infection. J Immunol 2010;185(9):5056–5065.

45. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, Zhang P, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 2020;9(1):1123–1130.

46. Li J, Rong L, Cui R, Feng J, Jin Y, Chen X, et al. Dynamic changes in serum IL-6, IL-8, and IL-10 predict the outcome of ICU patients with severe COVID-19. Ann Palliat Med 2021;10(4):3706–3714.

47. Abushouk A, Nasr A, Masuadi E, Allam G, Siddig EE, Fahal AH. The Role of Interleukin-1 cytokine family (IL-1β, IL-37) and interleukin-12 cytokine family (IL-12, IL-35) in eumycetoma infection pathogenesis. PLoS Negl Trop Dis 2019;13(4):e0007098.

48. Jia H, Liu J, Han B. Reviews of interleukin-37: Functions, receptors, and roles in diseases. Biomed Res Int 2018;2018:3058640.

49. Li A, Ling Y, Song Z, Cheng X, Ding L, Jiang R, et al. Correlation between early plasma interleukin 37 responses with low inflammatory cytokine levels and benign clinical outcomes in severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis 2021;223(4):568–580.

50. Chau AS, Weber AG, Maria NJ, Narain S, Liu A, Hajizadeh N, et al. The longitudinal immune response to coronavirus disease 2019: Chasing the cytokine storm. Arthritis Rheumatol 2021;73(1):23–35.
51. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020;71(15):762–768.
52. Wen XS, Jiang D, Gao L, Zhou JZ, Xiao J, Cheng XC, et al. Clinical characteristics and predictive value of lower CD4+ T cell level in patients with moderate and severe COVID-19: a multicenter retrospective study. BMC Infect Dis 2021;21(1):57.
53. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang T, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130(5):2620–2629.
54. Alosaimi B, Mubarak A, Hamed ME, Almutairi AZ, Alrashed AA, AlJuryyan A, et al. Complement anaphylatoxins and inflammatory cytokines as prognostic markers for COVID-19 severity and In-hospital mortality. Front Immunol 2021;12:668725.
55. Henry BM, Szergyuk I, de Oliveira MHS, Lippi G, Benoit JL, Vikse J, et al. Complement levels at admission as a reflection of coronavirus disease 2019 (COVID-19) severity state. J Med Virol 2021;93(9):5515–5522.
56. Gómez-Mesa JE, Galindo-Coral S, Montes MC, Muñoz Martin AJ. Thrombosis and coagulopathy in COVID-19. Curr Probl Cardiol 2021;46(3):100742.
57. Ali MAM, Spinler SA. COVID-19 and thrombosis: From bench to bedside. Trends Cardiovasc Med 2021;31(3):143–160.
58. Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020;12(570):eabd3876.
59. Luo HC, You CY, Lu SW, Fu YQ. Characteristics of coagulation alteration in patients with COVID-19. Ann Hematol 2021;100(1):45–52.
60. Liu Y, Gao W, Guo W, Guo Y, Shi M, Dong G, et al. Prominent coagulation disorder is closely related to inflammatory response and could be as a prognostic indicator for ICU patients with COVID-19. J Thromb Thrombolysis 2020;50(4):825–832.
61. Robba C, Battaglini D, Ball L, Valbusa A, Porto I, Della Bona R, et al. Coagulative disorders in critically ill COVID-19 patients with acute distress respiratory syndrome: A critical review. J Clin Med 2021;10(1):140.
62. Wang J, Yang X, Li Y, Huang JA, Jiang J, Su N. Specific cytokines in the inflammatory response and could be as a prognostic indicator for ICU patients with COVID-19. J Thromb Thrombolysis 2020;50(4):825–832.
63. Petrey AC, Qeadan F, Middleton EA, Pinchuk IV, Campbell RA, Beswick EJ. Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J Leukoc Biol 2021;109(1):55–66.
64. Patterson BK, Guevara-Coto J, Yogendra R, Francisco EB, Long E, Pise A, et al. Immune-based prediction of COVID-19 severity and chronically decoded using machine learning. Front Immunol 2021;12:700782.
65. Nossent EJ, Schuurman AR, Reijnders TDY, Saris A, Jongerius J van, Blok SG, et al. Pulmonary procoagulant and innate immune responses in critically ill COVID-19 patients. Front Immunol 2021;12:664209.
66. Sánchez D, Hernández-Gilsoul T, Tapia-Rodríguez M, Gómez-Martín D. Neutrophil extracellular traps contribute to COVID-19 hyperinflammation and humoral autoimmunity. Cells 2021;10(10):2545.
67. Zhou Y, Han T, Chen J, Hou C, Hua L, He S, et al. Clinical and autoimmune characteristics of severe and critical cases of COVID-19. Clin Transl Sci 2020;13:1077–1086.
68. Xiao M, Zhang Y, Zhang S, Qin X, Xia P, Cao W, et al. Antiphospholipid antibodies in critically ill patients with COVID19. Arthritis Rheumatol 2020;72(12):1998–2004.
69. Ahmed S, Zimba O, Gasparyan AY. COVID-19 and the clinical course of rheumatic manifestations. Clin Rheumatol 2021;40(7):2611–2619.
70. Report of the WHO-China Joint Mission on Coronavirus Disease 19 (COVID-19). Available from: https://www.who.int/publications/i/item/report-of-the-who-china-joinmission-on-coronavirus-disease-2019-covid-19 (Accessed 7 Feb 2022).
71. Núñez-Torrón C, Ferrer-Gómez A, Moreno Moreno E, Pérez-Mies B, Villarrubia J, Chamorro S, et al. Secondary haemophagocytic lymphohistiocytosis in COVID-19: correlation of the autopsy findings of bone marrow haemophagocytosis with HScore. J Clin Pathol 2021;jclinpath-2020-207337.
72. Goel N, Goyal N, Kumar R. Long COVID mimicking interstitial lung disease: A case series. Curr Health Sci J 2021;47(3):469–473.
73. Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists' perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol 2020;39(7):2055–2062.
74. Sukrisman L, Sinto R, Priantono D. Hematologic profiles and correlation between absolute lymphocyte count and neutrophil/lymphocyte ratio with markers of inflammation of COVID-19 in an Indonesian National Referral Hospital. Int J Gen Med 2021;14:6919–6924.

75. Bülow Andéberg S, Luther T, Berglund M, Larsson R, Rubertsson S, Lipcsey M, et al. Increased levels of plasma cytokines and correlations to organ failure and 30-day mortality in critically ill Covid-19 patients. Cytokine 2021;138:155389.

76. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; What we know so far. Front Immunol 2020;11:1446.
ЦИТОКИНДЕР COVID-19 АУЫРЛЫГЫНЫҢ ЖӘНЕ НӘТИЖЕЛЕРІНІҢ ӘЛЕЮЕТТІ МАРКЕРЛЕРІ
Түйіндеме
SARS-CoV-2-нің таралуы бұқіл алемдегі денсаулық сақтау жұысінің өзгерті. Көптеген әдеби өкіншіздерде COVID-19 шалдықтан науқастарда клиникалық ауырлықтың әртұрлі денгейі байқылды.

Цитокиндер COVID-19 кезінде негізін генетикалық процестердің дамуында шешуші роль атқарады. SARS-CoV-2 иммунды жүйенін төнгерімсіздігін тудырады және цитокиндік дәуылға, көптеген органдардың зақымдалуына алып келуі мүмкін. Кейбір арнайы цитокиндердің басым рөлі аурудан ауырлығының индикаторы бола алады. Нәкты цитокиндер тұрғысына науқастардың басым әрі стратификациялау аурулық кезіндерін диагностикалау үшін пайдалы бұлға мүмкін.

Бұл ұактылы диагноз қою және мәсілетті терапия арқылы сыны жағдайлардың алынуы алуға мүмкіндік береді. Ұағаш сілді аурулар мен жаңа аурулардың ерекшелікті сәйкесінің жаңа және кеңінен колдонылған COVID-19 диагнозының қолға, оның нәтижелерін болғауға және цитокиндерге бағытталған жеke терапевтик тәсілдерді ұсынуға жақа мүмкіндіктер ашуы мүмкін.

Түйін сөздер: COVID-19, коронавирус, цитокиндер, цитокиндерді бөсіту сілді
Дайындық үшін: Федорченко Ю., Зимба О. Цитокиндер COVID-19 ауырлығының және нәтижелерінің әлеуетті маркеры. Медициналық гипотеза мен этикалық тсыну 2022:3(1):10-20. https://doi.org/10.47316/cajmhe.2022.3.1.01

ЦИТОКИНЫ КАК ПОТЕНЦИАЛЬНЫЕ МАРКЕРЫ ТЯЖЕСТИ И ИСХОДОВ COVID-19

Резюме
Распространение SARS-CoV-2 изменило системы здравоохранения во всем мире. В многочисленных литературных источниках отмечена различная степень клинической тяжести течения COVID-19 у пациентов. Цитокины играют решающую роль в развитии ключевых иммунологических процессов при COVID-19. SARS-CoV-2 вызывает дисбаланс иммунной системы и может привести к цитокиновому шторму, поражению многих органов. Преобладающая роль некоторых особых цитокинов может служить индикатором тяжести заболевания. Дальнейшая стратификация пациентов в разрезе конкретных цитокинов может быть полезной для диагностики стадий заболевания. Это позволяет предотвратить критические состояния благодаря своевременной диагностике и целенаправленной терапии. Ориентация на специфические цитокины может заметно уменьшить количество осложнений. Цель этой статьи — всесторонне рассмотреть роль основных цитокинов в патогенезе COVID-19 и выделить прогностические факторы. Понимание участия специфических цитокинов в патогенезе COVID-19 может открыть новые возможности для диагностики гипервоспалительного COVID-19, прогнозирования его исходов и предоставления индивидуальных терапевтических подходов, нацеленных на цитокины.

Ключевые слова: COVID-19, коронавирус, цитокины, синдром высокого кровяного давления цитокинов
Для цитирования: Федорченко Ю., Зимба О. Цитокины как потенциальные маркеры тяжести и исходов COVID-19. Центральноазиатский журнал медицинских гипотез и этики 2022:3(1):10-20. https://doi.org/10.47316/cajmhe.2022.3.1.01