1. Introduction

The total mass-to-light ratio of a galaxy (M/L) is a key observable comprising information about the galaxy’s evolutionary status, its stellar initial mass function (IMF), and the relative masses of its stellar disk and dark matter halo. Hence, for a given galaxy, a peculiar M/L for the observed color index may indicate both unusual dynamical properties and/or a non-standard stellar IMF.

The universality of the IMF is a matter of hot debate. There is evidence both in favor and against its uniformity among galaxies and galaxy types. The current consensus shared among a number of studies is that the IMF remains the same for different galaxies (see Kroupa 2012 and references therein). This is inferred from star counts in the Milky Way and in nearby galaxies such as the LMC (Kroupa 2002; Gilmore 2001; Bastian et al. 2010). However, several authors argue against the universality of the IMF.

Meurer et al. (2009) present a correlation between the ratio of the $H_α$ line and far UV fluxes $F_{H_α}/F_{FUV}$ (corrected for the extinction) and the surface brightness in R-band. This ratio also appears to correlate with the rotation velocities, luminosities, and dynamical masses of galaxies. The observed range of $F_{H_α}/F_{FUV}$ could be explained in terms of a variation of either the high mass end or the slope of the IMF.

According to a study of ~ 300 galaxies with distances lower than 11 Mpc and star formation rates (SFRs) spanning an interval of five orders, the ratio $F_{H_α}/F_{FUV}$ is roughly constant only for normal spirals with a star formation rate of $SFR \sim 1M_\odot$/year, but for dwarf galaxies $F_{H_α}/F_{FUV}$ decreases with decreasing luminosity (Lee et al. 2009).

High dynamical M/Ls in the V-band for ultra-compact dwarf galaxies may also indicate the presence of non-universal IMFs with a large fraction of stellar remnants or low-mass stars (Dabringhausen et al. 2010).

By comparison of equivalent widths of the $H_α$ line for a large sample of galaxies, Hoversten & Glazebrook (2008) show that the IMF could change systematically with the luminosity of galaxies. Using the $H_α$ line width and the color to confine the IMF, they conclude that galaxies with lower luminosities contain a lower fraction of massive stars. Near-infrared observations of disky galaxies by Zackrisson et al. (2006) show that their stellar halos possess extremely red colors which could be explained by a non-standard stellar IMF with an excess in low mass stars. For a sample of ~ 33000 galaxies, Gunawardhana et al. (2011) show that the IMF depends on the SFR: galaxies with higher SFR tend to contain more massive stars. Finally, Goudrooj & Kruissjen (2012) find that the optical colors of metal-rich globular clusters associated with seven massive elliptical galaxies are bluer than those of parent galaxies at a given radius. They explain the observed color difference by the presence of a bottom-heavy IMF in the observed galaxies.

* FITS files of H I data cubes are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
The question whether the IMF is universal is highly relevant. Stellar population models, which connect star formation history and stellar mass with photometric or spectrophotometric data, are usually based on the assumption of the universality of the IMF (see, e.g., Bell & de Jong 2001, Bruzual & Charlot 2003, Into & Portinari 2013 and others).

In the following, we identify the standard IMF (and hence the standard IMF-based M/L – color relationship) with the scaled (bottom-light) Salpeter-like IMF (Bell & de Jong 2001). For evolutionary models with exponentially decaying star formation rates, this IMF leads to a M/L – color relationship which is practically identical to the relationship based on the Kroupa’ IMF (see Appendix B in Portinari et al. 2004). It is worth mentioning that the Salpeter-light IMF agrees with dynamical mass estimates of stellar populations obtained both from rotation curves (Bell & de Jong 2001) as well as from measurements of the stellar velocity dispersion of spiral disks with known color indices (Zasov et al. 2011). It is not the aim of the present paper to study the universal IMF applicable for most of spiral galaxies. Instead we try to find outliers, galaxies which may possess a non-typical M/L for their color, and to confirm their existence.

Low surface brightness galaxies (LSBs) may be a good example for a possibly peculiar IMF. Based on stellar population models with the standard IMF they are believed to be dark halo dominated systems. However, some independent estimates of their disk masses give evidence that LSB disks may have extremely high disk M/L (see, e.g., Saburova 2011, Fuchs 2003), which can be explained if their IMF is bottom-heavy and hence deviates from the standard IMF towards the excess of low-massive stars (see Lee et al. 2004). Alternatively, their disks may contain some fraction of dark matter in non-baryonic (Read et al. 2009) or baryonic form. We note that whereas the excess of massive stars may be revealed from H_α or UV data, the excess or deficit of low massive stars can be found using mass decompositions only.

In our previous studies we searched for high surface-brightness disk galaxies that may possess non-standard M/L, either too high or too low for the observed color indices (see Saburova et al. 2009), using catalog data, which might be contaminated by individual errors. Errors in rotation velocity or possibly in conjunction with errors in orientation angle(s), which may be responsible for the overestimation or underestimation of the galaxy’s mass cannot be excluded in that study and should be confirmed independently. The other aspect which should be taken into account is the presence of a dark matter halo. Within the optical radial extent of the disk, its contribution to the total mass of a galaxy can be comparable to that of its stellar components (Zasov et al. 2011). This means that M/L of the stellar population should always be lower than the total M/L of a galaxy within any radial distance. Hence, if the total M/L ratio is too low for the color of a galaxy, including the dark matter (DM) halo makes the stellar IMF even more peculiar. In the opposite case, if the total M/L is unusually high for the color index of a galaxy, the situation becomes ambiguous: either the galaxy possesses an extremely massive dark halo within the optical radius, or it possesses a bottom-heavy stellar IMF. A mass decomposition may solve the ambiguity, if some additional information, e.g., the radial scalelength of the disk, is known.

In Saburova et al. (2009), making use of Hyperleda, we estimated total M/L ratios within the optical radius R_25 for a sample of ~ 1300 galaxies. The obtained total M/L ratios were correlated with $(B-V)_0$ color indices of the galaxies in our sample. Then we compared the positions of the galaxies on the $(M/L)_B - (B-V)_0$ diagram with the relation based on stellar population synthesis modeling by Bell & de Jong (2001) for the standard IMF. We select the galaxies which significantly deviate from the model relation, because peculiarly high M/L ratios (if they are not the result of observational errors) can either be the result of a very heavy disk with bottom heavy IMF (with a lack of massive stars) or reflect an unusually large contribution of dark matter in baryonic or non-baryonic form to the total mass of a galaxy. Peculiarly low dynamical M/L can indicate a non-universal IMF with a deficit of low massive stars.

In this work we present the detailed follow-up observations of the two galaxies NGC 6824 and UGC 11919, which were selected as extreme cases from the parent sample as described above. They were observed in the H_α emission line with the Westerbork Synthesis Radio Telescope (WSRT). In addition, multicolor surface photometry with the Apache-Point 0.5 m telescope was carried out. The data were used to construct a mass model of the galaxies and to estimate the masses of their stellar components. This allows us to check whether the peculiar values of M/L of the galaxies can be confirmed. The main properties of the galaxies, taken from the Hyperleda database and the accepted distances from NED are given in Table 1.

Table 1. Main properties of the observed galaxies based on Hyperleda. (1) Name; (2) morphological type; (3) accepted distance; (4) inclination angle; (5) rotational velocity; (6) H_α total flux; (7) $(B-V)_0$ color index corrected for the Galactic extinction; (8) apparent B-band stellar magnitude corrected for the Galactic extinction.

Galaxy	type	D, Mpc	i (°)	v_{rot} (km s$^{-1}$)	flux H_α (Jy km s$^{-1}$)	$(B-V)_0$	bte
UGC 11919	SABb	74.3	54.8	71.6	5.78	0.74	12.89
NGC 6824	Sab	50.5	46	359	3.24	0.65	12.19

2. Observations and data reduction

2.1. Radio observations

We conducted H_α observations of NGC 6824 and UGC 11919 with the WSRT in August and September 2011. The observational parameters are listed in Table 2. We used a bandwidth of 10 MHz, subdivided into 1024 channels observed in two parallel-handed polarization products. The linewidth of the observed channels is 2.06 km s$^{-1}$. We performed a standard data reduction with the Miriad software package (Sault et al. 1995).

After flagging bad data and a primary bandpass and gain calibration, a first continuum subtraction was performed using a polynomial spectral fit to the visibilities. To correct the frequency-independent gains, a self-calibration was applied to the resulting continuum data (the fitted continuum model). The resulting gains were then copied to the original data sets. For the final continuum subtraction, we first subtracted the continuum model resulting from the selfcal procedure directly from the visibilities, to then perform a second-order continuum subtraction,
again on the visibilities. The resulting continuum-subtracted vis-

ibilities were then inverted to obtain the data cubes. We pro-
duced data cubes with different weighting schemes. The cubes
that finally adopted were gridded and inverted using a robust
weighting of 0.4 and averaged over four channels, representing
the most suitable scheme for our aims (to obtain the rotation
curve). After the inversion we applied a Hanning smoothing. Fi-
nally, the obtained Hα data cubes were deconvolved, using the
Clean algorithm with clean masks centered on the emission, iter-
atively decreasing the clean cutoff and increasing the size of the
mask regions.

Employing our clean masks, we generated total intensity
maps and first-moment maps as shown in Fig. 1, which also
shows the optical images with overplotted Hα total-intensity
maps. From Fig. 1 it is evident that UGC 11919 possesses an ex-
tended Hα disk reaching beyond the optical body of the galaxy,
while for NGC 6824 the size of the gaseous disk is comparable
to that of the optical disk.

| Table 2. Hα observational parameters and description of data cubes used in this study (see Sect. 2). |
|--|--|
| NGC 6824 | UGC 11919 |
| Observing date | 11.08.2011 | 30.09.2011 |
| Array configuration | Maxi-short | Maxi-short |
| On-source integration time (h) | 12 | 12 |
| Scale (pix/″) | 3.5 | 3.5 |
| Channel width (km s⁻¹) | 8.24 | 8.24 |
| Velocity resolution FWHM (km s⁻¹) | 16.5 | 16.5 |
| Beam size (″) | 19.3 × 16.5 | 24.86 × 16.49 |
| Beam position angle (°) | -0.36 | 0.48 |
| Velocity range (cz, km s⁻¹) | 2400-4356 | 4367-6348 |

2.2. Photometric observations

Photometric observations of NGC 6824 and UGC 11919 were
made with the 0.5-m Apache Point Observatory telescope us-
ing the B, V, and R bands. The galaxies were observed un-
der photometric conditions in September 2011 and May 2012.
The photometric data reduction was conducted following a stan-
dard procedure using the MIDAS software package. The images
were mainly observed UGC 11919 reaching beyond the optical body of the galaxy,
while for NGC 6824 the size of the gaseous disk is comparable
to that of the optical disk.

| Table 3. Photometric observations: exposure times |
|---|---|
| NGC 6824 | UGC 11919 |
| Observing dates | 28.05.2012 | 27.09.2011 |
| | 30.05.2012 |
| Exposure time (s) B | 5400 | 3000 |
| Exposure time (s) V | 5400 | 1800 |
| Exposure time (s) R | 5400 | |

and low (UGC 11919) M/L ratios for their color indices. We use
the photometrical data and Hα data cubes to prove or disprove
the peculiarity of these objects.

3.1. Photometric results

Using the Midas software package we obtained the azimuthally
averaged profiles of isophotal flattening (b/a, Fig. 2) and radial
profiles of surface brightness and color indices for both galax-
ies (Fig. 3). The profiles are corrected for Galactic extinction
according to Schlegel et al. (1998), but are not corrected for in-
ternal extinction and disk orientation.

From the isophotal flattening (Fig. 2) we derive an average
inclination \(i = \arccos(b/a) = 40° \pm 13° \) for NGC 6824 in the
radial range 30″ < R < 70″, which is close to the value obtained
after masking the spiral arms. For UGC 11919 we derive \(i = 58° \pm 4° \) for \(R > 15″ \), which changes substantially after masking
the prominent spiral arms in the innermost region. In that case
we derive \(i \geq 35° \). The values obtained from isophotal fitting
without correcting for the appearance of spiral structure are in
good agreement with those given in Hyperleda (see Table 1).
Errors for the surface brightness and colors (see Fig. 3) were
calculated following Vander & Chaboyer (1994)

\[
\delta I = \sqrt{N_{\text{tot}} + (\delta n_{\text{sky}})A^2}, \quad (1)
\]

where \(N_{\text{tot}} \) is the total flux in the aperture of size \(A \) and \(\delta n_{\text{sky}} \) is the standard deviation of sky background flux obtained in small
apertures in the vicinity of a galaxy.

For UGC 11919 the radial profile of the \((B-V)_0 \) color in-
dex is in good agreement with the total value of \((B-V)_0 \) given in
Hyperleda (see Fig. 3 and Table 1). This means that the tentative peculiar value of \(M/L \) of the galaxy is not a result of incorrect
photometrical data given in Hyperleda. For NGC 6824, we find the
total color index \((B-V)_0 = 0.74 \pm 0.08 \) (corrected for extinc-
tion) which differs by 0″.09 from the value given in Hyperleda
(see Table 1).

To construct dynamical models of the galaxies we require
the structural parameters of their bulges and disks. For that
purpose we decomposed the images into two components: a
disk with an exponential radial brightness distribution \(\mu_R(R) = \mu_0 + 1.086/(R/R_0)^{1/4} \) and a Sersic bulge \(\mu_e(R) = \mu_e + c_e(R/R_0)^{1/4} \). We
used BUDDA (de Souza et al. 2004, version 2.2.2), a dedicated
standalone software, to perform this bulge-disk decomposition.
The results are shown in Fig. 4. The model and the observed V-
band images are shown together with the residuals. The images
were generated using an identical scale and an identical contrast.

The residual images (Fig. 4) reveal the trace of spiral arms
for UGC 11919 and a clear manifestation of an asymmetric
structure for NGC 6824. The contrast residuals for NGC 6824 are mainly
due to a bright spiral arm (dark) together with a dust
lane (light) which could not be taken into account in the sym-
metric model created by BUDDA. The blue spiral arm is also
seen in the \(B-R \) color map of the galaxy (see Fig. 5). A red dust
lane is also recognizable to the north of the center of NGC 6824
at the top of the galaxy image.

Neglecting the obvious asymmetric features, we derive a de-
viation of the model from the observed surface brightness profile
which does not exceed 0″.15/1″. With the aid of BUDDA we are able to
drive structural models with sufficient quality, de-
spite neglecting local asymmetric features. In Table 4 we list the
obtained structural parameters of disk and bulge for the galaxies.

Table 4. Structural parameters of disk and bulge for NGC 6824 and UGC 11919

Parameter	NGC 6824	UGC 11919
Size (R)	86 ± 16	49 ± 8
Mass (M⊙)	5 × 10⁸	3 × 10⁸
Surface brightness (m)	16.5	16.5
Color index	(B-V)_0 = 0.74 ± 0.08	(B-V)_0 = 0.74 ± 0.08

3. Results

We study two galaxies, NGC 6824 and UGC 11919, which, ac-
cording to preliminary studies, have unusually high (NGC 6824)
and low (UGC 11919) M/L ratios for their color indices. We use
the photometrical data and Hα data cubes to prove or disprove
the peculiarity of these objects.
Fig. 1. Top: HI total intensity map and R-band optical image of NGC 6824 with overplotted HI total intensity contours: 7.0, 26, 45, 104 × 10^19 atoms cm\(^{-2}\) (left and middle panels respectively) and first-moment map of NGC 6824 (right panel). Bottom: the same for UGC 11919; contours: 5.4, 20, 35, 80 × 10^19 atoms cm\(^{-2}\).

Fig. 2. Radial profiles of isophotal flattening obtained in the B, V, and R bands. The horizontal lines correspond to the inclinations \(i = 58^\circ\) and \(i = 40^\circ\) for UGC 11919 and NGC 6824, respectively.

Table 4. Structural parameters of observed galaxies. (1) Name; (2) exponential disk radial scalelength \(R_d\); (3) central surface brightness of the disk; (4) effective radius of the bulge; (5) effective surface brightness of the bulge; (6) Sersic index of the bulge; (7) observing band.

Galaxy	\(R_d\) (′′)	\(\mu_0\) ("/\(\text{arcsec}^2\))	\(R_e\) (′′)	\(\mu_r\) ("/\(\text{arcsec}^2\))	\(n\)	Filter
NGC 6824	27.7	21.3	10.3	20.3	1.1	B
	27.1	20.6	10.5	19.8	1.1	V
	25.8	19.8	8.9	18.9	1.3	R
UGC 11919	20.6	21.6	9.6	22.3	2.3	B
	19.4	20.7	8.7	21.1	2.3	V

3.2. Kinematic results

To compare our photometrical mass estimates with dynamical models (from a mass-decomposition), rotation curves are obtained from our HI data, using tilted-ring modeling. For this purpose, we employ TiRiFiC (Józsa et al. 2007), a software allowing for a direct fit of modified tilted-ring models to data cubes. Figures 6 and 7 show a comparison of data and models for selected images of the HI data cubes. Blue and pink (green) (black and grey (light grey) in printed version) contours represent the 0.75, 1.5, and 3 mJy/beam levels of the observed and model data cubes, respectively. As described below, for UGC 11919 two alternative model data cubes were created. Selected images of the
data cubes demonstrating the difference between the two models are shown in Fig. 7.

The data cube of UGC 11919 indicates strong deviations from a flat disk with circular rotation. This is evident from the moment maps, which quite prominently show an inner kinematical twist (Fig. 1, right panel), as well as an outer ring, possibly an extension of the spiral arms of the galaxy (Fig. 1, middle panel). We consider two possibilities for this appearance. In a first attempt to explain this structure, a classical tilted-ring model is fitted where the inclination and the position angle vary with radius, hence representing a symmetric S-shaped warp (see the resulting radial variation of the model parameters in Fig. 8). Using this approach, it is assumed that the apparent deviation from cylindrical symmetry, best seen in the total-intensity map and the velocity field, is a projection effect. Comparing model and observed data cubes, we achieve a good fit. As expected, the model shows a
strong warp in the center (reflected by a strong radial change in the inclination and position angle). However, one of the consequences is that the position angle of the H\textsubscript{i} model deviates strongly from our isophotal fits. The position angle found from isophotal fitting after masking the spiral structure is $PA \approx 20^\circ$, whereas from kinematical modeling we obtain $PA > 40^\circ$ (see Fig. 8).

The second modeling approach is to consider that the galaxy possesses a prominent spiral structure and a bar in the center as can be seen from the optical image (see middle panel in Fig. 1). In that picture, one can also see the apparent extension of the optical spiral structure in H\textsubscript{i}. We tested whether the galaxy can also be modeled as a flat disk in the presence of i) noncircular motions or bar streaming and ii) morphological deviations from cylindric symmetry. Because we have a limited number of data points to compare our model to, we require a simplified approach. For the kinematics we use a model representing the effects of a bisymmetric potential distortion on the kinematics as introduced by Spekkens & Sellwood (2007) (see also Schoenmakers et al. 1997 and Franx et al. 1994 for more general implementations). In TiRiFiC we reproduce this model by introducing second order harmonic terms in radial and tangential velocity with amplitudes $RO2A$ and $RA2A$ and phases $RA2P = RO2P + 45^\circ$, respectively. Other than Spekkens & Sellwood (2007), we allow the orientation angle of the bisymmetric distortion to vary with the radius. In addition, to introduce azimuthal surface-brightness variations we include a Gaussian surface density distortion with a radially dependent amplitude and
a radially dependent phase (see Fig. 8). The dispersion of this distortion was kept constant at 8''. We use this possibility to approximate the H\textsc{i} spiral arms. The phases of the density distortion related to the spiral structure (describing the azimuthal angle of the maximum of the distortion) were found by iteration. They agree well enough with the orientation of the optical spirals (see Fig. 9, left panel).

In Fig. 10 we show the PV-diagrams along the major and minor kinematical axes with overplotted contours of H\textsc{i} intensity of observed (blue in online edition, black for printed version) and model (pink and green in online version, grey and light grey for printed version) data cubes. The left and right panels correspond to the warped model and the bisymmetric model, respectively. As can be seen from a direct comparison of data cube and models in Fig. 7, a flat disk model provides a better agreement with the observed data cube. The same conclusion may be reached from the comparison of PV-diagrams: a flat disk model gives a better representation of the observed data along the minor axis. Finally, in Fig. 9 we show a comparison of the observed moment maps with the corresponding moment maps for the bisymmetric model to show the good agreement.

We point out that both models provide at least a reasonable fit to the data, such that a final decision which of these very different physical interpretations to adopt is not straightforward. For our analysis we adopt the rotation curve corresponding to the model using the bisymmetric distortion, because of a better correspondence of the data with the model (as concluded by visual inspection), and a more consistent physical picture, since streaming motions are expected in the presence of a bar and strong spiral arms, and also surface density variations following the spiral pattern are expected not to be the result of projection effects only.

A comparison of the warped and bisymmetric model parameters demonstrated in Fig. 8 shows that, as expected, some model parameters are quite different: the central inclination and position angle of the warped disk model are higher than the uniform parameters of the bisymmetric model (inclination $i_{\text{bi}} = 30^\circ \pm 0.5^\circ$, position angle $PA_{\text{bi}} = 45^\circ \pm 4^\circ$). Nevertheless, the resulting rotation curves, the most important derived quantity used in our further analysis, are comparable within the errors (see Fig. 8), such that we conclude that our following analysis is surprisingly not heavily affected by the tilted-ring-model assumptions.

Since in this work we concentrate on the interpretation of the rotation curve only, and fit noncircular motions to disentangle their kinematical signatures rather than using the fitting results to further constrain the dynamics, we refrain from an interpretation of the corresponding coefficients.

Errors were derived by fitting all parameters for the receding and the approaching side independently and calculating their deviation from the best-fit model. Final errors were estimated by averaging the deviations of three neighboring data points.

The inclination angle of UGC 11919 found from the H\textsc{i} data cube modeling ($i = 30^\circ \pm 0.5^\circ$) differs significantly from the angle obtained from the isophotal fitting to the optical image ($i = 58^\circ \pm 4^\circ$). The agreement becomes better when the optical spiral structure is masked ($i \geq 35^\circ$). The position angle from the
Hi modeling (bisymmetric model) is found to be $PA = 45^\circ \pm 4^\circ$. The Uppsala General Catalog of Galaxies (Nilson 1973) gives $PA = 35^\circ$; our isophotal fitting after masking spiral arms gives an even lower value of $PA \approx 20^\circ$. From the velocity field and the optical image shown in Fig. 1, it can be seen that indeed the kinematical position angle differs from that based on the photometry (even if a judgment based on visual inspection can be misguided by the signatures of noncircular motion). Given that for the optical estimates for the orientation of the galaxy a large fraction of the data has to be masked, we trust the values derived from the Hi to be the more reliable. In the following we use position angle PA and inclination i based on the Hi analysis for the quantities derived from the Hi data cube (Hi surface density profile and rotation curve), but the optically derived in-
For NGC 6824 we model the H\textsc{i} surface brightness of the receding and the approaching side independently. To restrict the number of free parameters, we assume both position angle and inclination to be constant with radius. The galaxy is close to edge-on, and does not show any obvious variation in position angle by visual inspection of the H\textsc{i} data, such that such an assumption should not affect our derived rotation curve by a significant factor. The rotation velocity and an $m=2$ azimuthal distortion in the line-of-sight velocity (corresponding to the TiRiFiC parameter VM2A, see Fig. 11), which we included to achieve a good fit of the H\textsc{i} cube, were fitted at independent radii for two sides simultaneously. The $m=2$ azimuthal distortion in the line-of-sight velocity is indicative of non-circular motions and basically corresponds to a lopsided rotation curve. With the introduction of a harmonic term, we attempt to disentangle the asymmetric contribution from the rotation curve representing the (cylindrically symmetric part of the) potential.

A satisfactory model corresponds to a constant inclination $i = 59^\circ \pm 0.5^\circ$ and a constant position angle $PA = 45^\circ \pm 2.5^\circ$, respectively. Errors in inclination, position angles, and rotation velocity were obtained by fitting all these parameters for two sides independently and calculating their deviation from the best-fit model. The resulting rotation curve appears to be in good agreement with that obtained by the GHASP project (Epinat et al. ...)
2008) when corrected for the same inclination angle (see Fig. 12, right).

The inclination found from data cube modeling differs from that obtained from (optical) isophotal flattening for NGC 6824 ($i = 59^\circ \pm 0.5^\circ$ and $i = 40^\circ \pm 13^\circ$, respectively), which may result from strong antisymmetric optical features in the galaxy. We note that the inclination $i = 59^\circ$ is in better agreement with the Tully-Fisher relation (see Fig. 14) and the photometric model of the rotation curve. Again, we therefore tend to assign a larger credibility to the inclination derived in our kinematical model.

3.3. Mass decomposition

Employing our rotation curves and photometrical data we constructed mass models for UGC 11919 and NGC 6824. For UGC 11919, the stellar M/L of bulge and disk varies with radius, following the variation of their color indices. To fit the data, it is necessary to scale down the surface densities of stellar disk and bulge, because the photometric data together with the standard M/L-color relation do not agree with the observed rotation curve (see below).

The parameters describing the dark matter halo (radial scale and asymptotic velocity) of UGC 11919 were scaled to achieve the minimal deviation of the resulting model rotation curve from the observed curve. In this paper, we present our results employing a pseudo-isothermal dark halo. The situation does not change when using as an alternative a cored profile obtained by Navarro et al. 1996 (NFW). Indeed, the difference between the shapes of rotation curves for pseudo-isothermal and NFW halos is significant only in the innermost parts of optical disks (see, e.g., models by de Blok et al. 2008, based on the THINGS H I survey), so the total masses of these two halo types which fit the rotation velocities far from the center, are very close. The accuracy of our derived rotation curve does not allow us to distinguish between the cases of pseudo-isothermal and NFW halos. The density profile of the H I disk was taken from the observations and scaled by 1.3 to take into account helium in both models.

For UGC 11919 no additional kinematical information is available from the literature. The best-fit model of our rotation curve is consistent with a mass of the stellar disk that is three times lower (see Table 5) and a bulge mass that is five times less massive than expected from the photometry for the given color (the mean stellar mass-to-light ratio of the bulge is $(M/L)_\text{bulge, dyn} = 0.4$ in our model, while $(M/L)_\text{bulge, phot} = 2$ is deduced from the photometry). The best-fit model is shown in Fig. 12 (left). The dynamically (1) and photometrically (2) determined mass-to-light ratios of the disk $(M/L)_\text{disk, 1}$ $(M/L)_\text{disk, 2}$ are given in Table 5.

The maximum rotational velocity of the disk component of the rotation curve of UGC 11919 estimated from the photometric disk mass and the disk scalelength can be calculated via $v_{\text{max, disk}} \approx 0.623(GM_d/R_d)^{1/2}$, where $M_d = 2\pi G \sigma_0 R_d^2$ denotes the total disk mass and σ_0 is the disk central surface density. If we assume σ_0 and R_d from our photometry, the expected value of the rotation velocity $v_{\text{max, disk}} \approx 159 \pm 22$ at $R \approx 2R_d$ is significantly higher than the maximum rotation amplitude $v = 102 \pm 18$ (see Fig. 8). Therefore, the result does not depend on the used dark halo density profile, because it would persist even if no dark matter were present in the galaxy. The result is also robust against possible errors in the decomposition of the image into bulge and disk components, because the total (disk + bulge) stellar surface density expected for a normal stellar M/L corresponds to a higher rotation velocity than is observed. The situation also does not change if we neglect the innermost two points of the rotation curve, where the kinematics may be dominated by non-circular motions, because the radius at which the disk com-

![Fig. 11. Radial variation of parameters resulting from the H I data cube modeling for NGC 6824. VM2A is the amplitude of the adopted second order azimuthal harmonics of the line-of-sight velocity for NGC 6824. Surface gas density and velocity curves are corrected for inclination by construction.](image-url)
ponent with an exponential surface density profile reaches its maximum rotation velocity ($R \approx 10$ kpc) is beyond this region. Furthermore, as elaborated above, we show that even under the assumption of a strong warp instead of a bisymmetric distortion the rotation curve stays the same within the errors (see Fig. 8). Hence, a standard photometric approach strongly overestimates the rotation curve. The squares correspond to the H$_{\alpha}$ rotation curve found in this work and the triangles show the H_{α} rotation curve obtained in the GHASP project by Epinat et al. (2008). From the model it follows that the mass distribution of NGC 6824 is dominated by the visible matter inside a radius of $R = 12$ kpc. Within a radius of $R = 2R_e$, the rotation curve of this galaxy can be explained solely by baryonic matter without the contribution of a DM halo (see Fig. 12).

The total dynamical M/L for this galaxy as derived from the mass-decomposition is $(M/L)_h = 3.4$ within the optical radius R_{25}. This is based on our measurements in which we determined the apparent B-band magnitude within R_{25} (corrected for Galactic extinction) to be $m_B = 12.1$. The model rotation curve of NGC 6824, shown in Fig. 12, corresponds to the stellar mass-to-light ratios of the bulge $(M/L)_\text{bulge dyn.} = 2.5$ and $(M/L)_\text{bulge phot.} = 3.3$, in good agreement with the values obtained from the color indices $(B - R)_0$ and $(B - V)_0$ of the bulge and a standard M/L – color model relation $(M/L)_\text{bulge phot.} = 2.6$ and $(M/L)_\text{bulge phot.} = 3.6$, respectively. The same conclusion is valid for the stellar disk (see Table 5).

There are two main sources of systematic errors for dynamically determined masses. These are non-circular gas motion and disk asymmetries, which in turn lead to an uncertainty in the measurement of the inclination, and with that of the rotation velocity and surface-brightness profiles. However, we explicitly include kinematical asymmetries in our models, such that we can assume to minimize errors of this kind. Another source of uncertainties could be related to the correction for the internal extinction. However, the extinction affects the M/L – color index diagram only slightly, because it increases M/L and the color index simultaneously, and these shifts nearly compensate each other (see, e.g., Bell & de Jong 2001).

We note that the evolutionary models recently created by Into & Portinari (2013) where the Thermally Pulsing AGB phase is taken into account, provide optical M/L – color relationships which are nearly identical to those obtained earlier by Bell & de Jong (2001).

Table 5 presents the results of the mass decomposition within the optical radius R_{25} for the galaxies. For UGC 11919 we also give the masses of the components up to the last measured point of the rotation curve.

4. Environment

For the targeted galaxies we construct H$_{\text{i}}$ total-intensity maps of the environment using the data cubes with a robust weighting of 0.4, a tapering of 30 arcsec, and averaging four channels.

From Fig. 13 (left) a rather dense environment within the bounds of our data cube becomes evident. We derive the main integral parameters, position, systemic velocity, total H$_{\text{i}}$ flux, H$_{\text{i}}$ mass, and H$_{\text{i}}$ mass-to-light ratio (B-band where available) of all objects detected in this cube, shown in Table 6. Because our data cube is limited to a minimum velocity of $4367\,km\,s^{-1}$, we do not cover the complete velocity range of this group. In Table 6 we mark galaxies, for which the H$_{\text{i}}$ lies partly outside of the (velocity) bounds of our data cube with an asterisk. Velocities of these objects denote only the averaged velocity of the detected H$_{\text{i}}$ and hence do not reflect the systemic velocity.

Table 6 and Fig. 13 (left) reveal a rich group of galaxies around object 8 (NGC 7223, see Crook et al. 2007) to the southeast of UGC 11919. A simple comparison of velocities shows that UGC 11919 probably does not belong to this group. From Table 6 it is evident that the systemic velocities of detected objects in the data cube cluster in two ranges (objects 1-15 and objects 16-22). The average velocity (cz) in range 1 (objects 1-15) is $4558 \pm 112\,km\,s^{-1}$, while in range 2 (objects 16-22) it is $5550 \pm 130\,km\,s^{-1}$. The systemic velocity of UGC 11919 differs by $800\,km\,s^{-1}$ from the average velocity in range 1, which is seven times larger than the standard deviation of the measured velocities in range 1 (which may be used as a proxy for the velocity dispersion in the group, despite the fact that we are not measuring the velocities of each group member correctly, see below) and two times larger than the linking velocity of $350\,km\,s^{-1}$ that acts as one selection criterion to identify two galaxies as a coupled pair in Crook et al. 2007, (see also Ramella et al. 1997). Selecting by this typical linking velocity (Crook et al. 2007, Ramella et al. 1997) alone, none of the galaxies 1-15 would be identified as belonging to the same group as UGC 11919. We point out that our table does not give a full account of all objects in the group, since it is at the edges of our velocity bounds. However, this result will probably still hold if we were able to take the systemic velocities of objects 1-5 properly into account, since they are currently biased towards velocities that are too high (closer to UGC 11919).

The galaxy UGC 11919 possesses two companions, object 20 (CGCG 530-011) and object 21 at the projected distances of $r < 100$ kpc. The velocity differences from UGC 11919 are $355\,km\,s^{-1}$ (20) and $252\,km\,s^{-1}$ (21). The galaxy CGCG 530-011 has a peculiar H$_{\text{i}}$ structure which might originate from an interaction. While our target galaxy is not a member of a rich group, it is also not necessarily an isolated galaxy. The H$_{\text{i}}$ ring found for UGC 11919 could hence also be a result of gravitational interaction.

The galaxy NGC 6824 is a member of a group with mean velocity $V_{L_s} = 4065\,km\,s^{-1}$. The asymmetric structure and the m=2 distortion in the line-of-sight velocity of this galaxy could be due to the gravitational interaction with the members of the group (see Fig. 13, right, and Table 6).

We therefore conclude that neither UGC 11919 nor NGC 6824 is a particularly isolated galaxy. Both show irregular velocity structure, possibly as a result of a recent interaction. Whether this interaction might have led to the peculiar M/L for UGC 11919 is questionable. The interaction with neighbor galaxies has already experienced a significant part of all existing galaxies possessing the standard IMF, so by itself it cannot explain the paucity of low-mass stars. It is worth mentioning
that the bulk of galactic stars have formed in the past, and so the cause of the existence of abnormally light-weighted disks lays in the properties of cold star-forming gas which existed in the epoch of disk formation, and which are poorly understood now.

5. Conclusions

We carried out HI observations together with multicolor surface photometry for two galaxies, UGC 11919 and NGC 6824, for which in a catalog search we found earlier indications of a peculiar M/L for a given color index (B − V)0. We model the HI data cubes in the scope of an extended tilted-ring model. Using this model we constructed the rotation curves of the galaxies with the aim of deriving their kinematically-based mass distributions.

Both galaxies have some disk asymmetries and rather complex gas kinematics. The main problem in estimating the rotational velocity of NGC 6824 is the ambiguity of its disk inclination angle i. An optical isophotal fit gives \(i = 40° \pm 13° \), whereas the kinematical fit to the radio data favors \(i = 59° \pm 0.5° \). We prefer the kinematical fit, because this galaxy is far from being optically axisymmetric having two open spiral arms and a dust lane. However, if one assumes the lower value for inclination, the rotation velocity would become, under standard assumptions, too high for its luminosity, which in turn could give evidence of a massive dark matter component in the galaxy, provided that the M/L ratios of the stellar components correspond to their observed color. However, our trusted value for the inclination, \(i = 59° \), agrees with the M/L expected from the photometry. And there is no firm evidence of any peculiarity of the stellar IMF in this galaxy.

Evidently NGC 6824 is dynamically dominated by visible matter. It possesses an extended pseudobulge and quite normal mass-to-light ratios of disk and bulge. The photometrically determined contributions of stellar disk and bulge are in good agreement with the observed rotation curve. To get a good fit of the HI data cube for NGC 6824 we include an m=2 distortion in the line-of-sight velocity.

For the second galaxy, UGC 11919, the situation is different. The analysis of our photometric and kinematic data indicates that the disk of this galaxy, under standard assumptions, is unusually light for its luminosity, independent of the mass of the dark matter halo. Determining the mass of its disk using its HI kinematics, corrected for non-circular motions, yields a disk mass-to-light ratio of \((M/L)_\text{HI}\text{disk} = 0.5 \) in the best-fit model. In this model the rotation curve corresponds to a disk which is three times lighter, and a bulge lighter by a factor of five than is expected from the photometric data. This galaxy may therefore possess a bottom-light stellar mass function. If we assume an inclination found from isophotal flattening (\(i = 58° \)) instead of the kinematically determined one of \(i = 30° \), we obtain an even lower \(M/L \) for the galaxy and its components. The employment of an alternative kinematical model reproducing the observations by means of a regularly rotating but heavily warped HI disk also results in a similar rotation curve (with a slightly decreased rotation velocity) and does not, therefore, alter our main conclusion. We also found that this galaxy has an outer H I ring. It is possible that this structure originated from the gravitational interaction with two companions.

Since we determine a luminosity and rotation velocity of our target systems, we are also able to highlight our findings in the context of the classical Tully-Fisher relation (TFR). The term was introduced by Tully & Fisher (1977) and follow-ups. The TFR appears to hold for a large variety of galactic systems. Any galaxy with an unusual IMF should also be an outlier on this relation. Figure 14 shows that while NGC 6824, for which we found the photometric and dynamically determined masses to be consistent, lies on the upper edges of the relation, UGC 11919 is a clear outlier.

Table 5. Modeling results. (1) Name; (2) radius R for the mass estimate (kpc); (3) disk mass inside \(R(10^{10} M_\odot) \); (4) dark matter halo mass inside \(R(10^{10} M_\odot) \); (5) bulge mass inside \(R(10^{10} M_\odot) \); (6) gaseous disk mass inside \(R(10^{10} M_\odot) \); (7) total mass inside \(R(10^{10} M_\odot) \); (8) disk \(M/L \) obtained from the observed \((B − V) \) color of the disk, according to Bell & de Jong (2001); (9) disk \(M/L \) corresponding to the best-fit model of the rotation curve.

Name	R	\(M_{\text{disk}} \)	\(M_{\text{halo}} \)	\(M_{\text{bulge}} \)	\(M_{\text{gas}} \)	\(M_{\text{tot}} \)	\((M/L)_\text{HI}\text{disk} \)	\((M/L)_\text{HI}\text{bulge} \)
NGC 6824	14	8.0	0.0	0.0	11.2	19.5	1.0	1.9
UGC 11919	15	2.0	0.5	0.7	0.4	3.6	1.7	1.7
UGC 11919	29	2.4	2.9	0.7	0.9	6.9	1.7	1.7
Fig. 13. H_i intensity maps of the environment of UGC 11919 (left) and NGC 6824 (right), obtained from the data cube with robust weighting of 0.4, tapering of 30”, and averaged by four channels with the labeled objects.

Table 6. Environmental characteristics of UGC 11919 and NGC 6824. (1) Number of detected object, as labeled in Fig. 13; (2) Name of object if known; (3) Right ascension J2000; (4) Declination J2000; (5) Optical recession velocity; (6) Total H_i flux F in $Jy \ km \ s^{-1}$; (7) Velocity corrected to the centroid of the Local Group using the formula following Yahil et al. (1977); (8) H_i total mass calculated from the total flux via $M = 2.36 \cdot 10^7 (V_L/(75 km/s))^2$; (9) H_i mass-to-light ratio, the B-band magnitudes were taken from Hyperleda. Galaxies with the velocities lying at the edge of the observed data cube (so the systemic velocity is uncertain for them) are marked by asterisks.

#	Object designation	RA	Dec	cz (5)	H_i flux ($Jy \ km \ s^{-1}$)	V_L (7)	M_{HI} ($10^9 M_\odot$)	M_{HI}/L_B (9)
1	UGC 11927	22:09:27.86	+40:59:56.7	4501	7.46	4800	7.21	0.43
2	2MASX J22094543+4112200	22:09:43.18	+41:12:38.5	4536	4.78	4836	4.69	
3	CGCG 530-014	22:10:34.14	+40:54:37.7	4525	18.03	4824	17.6	0.81
4	UGC 11925	22:09:10.35	+41:24:41.1	4548	0.97	4848	0.96	0.16
5	NGC 7223	22:10:08.31	+41:01:12.0	4697	18.4	4997	19.3	0.3
6	2MASX J22090972+4115259	22:09:43.18	+41:12:38.5	4536	4.78	4836	4.69	
7	LEDA 214725	22:09:10.35	+41:24:41.1	4548	0.97	4848	0.96	0.16
8	UGC 11919	22:10:34.14	+40:54:37.7	4525	18.03	4824	17.6	0.81
9	NGC 7223	22:10:08.31	+41:01:12.0	4697	18.4	4997	19.3	0.3
10	2MASX J22094543+4112200	22:09:43.18	+41:12:38.5	4536	4.78	4836	4.69	
11	LEDA 214725	22:09:10.35	+41:24:41.1	4548	0.97	4848	0.96	0.16
12	UGC 11919	22:10:34.14	+40:54:37.7	4525	18.03	4824	17.6	0.81
13	LEDA 214725	22:10:08.31	+41:01:12.0	4697	18.4	4997	19.3	0.3
14	2MASX J22090972+4115259	22:09:43.18	+41:12:38.5	4536	4.78	4836	4.69	
15	LEDA 214725	22:10:08.31	+41:01:12.0	4697	18.4	4997	19.3	0.3
16	UGC 11919	22:10:34.14	+40:54:37.7	4525	18.03	4824	17.6	0.81
17	LEDA 214725	22:10:08.31	+41:01:12.0	4697	18.4	4997	19.3	0.3
18	CGCG 530-011	22:09:10.35	+41:24:41.1	4548	0.97	4848	0.96	0.16
19	UGC 11919	22:10:34.14	+40:54:37.7	4525	18.03	4824	17.6	0.81
20	LEDA 214725	22:10:08.31	+41:01:12.0	4697	18.4	4997	19.3	0.3
21	UGC 11919	22:10:34.14	+40:54:37.7	4525	18.03	4824	17.6	0.81
22	LEDA 214725	22:10:08.31	+41:01:12.0	4697	18.4	4997	19.3	0.3

NGC 6824

#	Object designation	RA	Dec	cz (5)	H_i flux ($Jy \ km \ s^{-1}$)	V_L (7)	M_{HI} ($10^9 M_\odot$)	M_{HI}/L_B (9)
1	NGC 6824	19:43:41.27	+56:06:34.0	3563	1.88	3835	1.16	0.02
2	LEDA 214725	19:44:04.82	+56:29:03.9	3493	0.74	3766	0.44	
3	LEDA 214725	19:43:57.39	+56:04:33.9	3949	0.16	4221	0.12	0.16
4	LEDA 214725	19:43:29.69	+55:50:22.7	4164	0.18	4436	0.15	
Fig. 14. Position of NGC 6824 (for two values of inclination) and UGC 11919 on the Tully-Fisher diagram (McGaugh 2005). The dashed lines correspond to the formal uncertainties.

In accordance with our earlier conclusions (Saburova et al. 2011), we claim that spiral galaxies of high brightness with a strongly bottom heavy or bottom light stellar IMF should occur rarely. In the present paper we confirm the existence of a galaxy which has a very low M/L for its old (red) stellar population apparently being depleted of low mass stars. These systems deserve a more detailed investigation.

Acknowledgements. We thank the referee, Albert Bosma for his important remarks, which allowed us to improve the paper. We thank Alexei Moiseev for his useful comments.

We acknowledge the possibility of using the HyperLeda database (http://leda.univ-lyon1.fr/).

The photometric data is based on observations obtained with the Apache Point Observatory 0.5-meter telescope, which is owned and operated by the Astrophysical Research Consortium.

Anna Saburova thanks ASTRON (Netherlands) for the possibility of visiting it and for help with the HI data reduction.

The Westerbork Synthesis Radio Telescope is operated by the ASTRON (Netherlands Foundation for Research in Astronomy) with support from the Netherlands Foundation for Scientific Research (NWO).

This work was partly supported by Russian Foundation for Basic Research, grants 11-02-12247 and 12-02-31452, and the Dynasty fund.

TiRiFiC is publicly available from http://www.astron.nl/tirific/.

References

 Bastian, N., Covey, K. R., & Meyer, M. R. 2010, ARA&A, 48, 339
 Bell, E. F. & de Jong, R. S. 2001, ApJ, 550, 212
 Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000
 Crook, A. C., Huchra, J. P., Martincheau, N., et al. 2007, ApJ, 655, 790
 Dabringhausen, J., Fellhauer, M., & Kroupa, P. 2010, MNRAS, 403, 1054
 de Blok, W. J. G., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2648
 de Souza, R. E., Gadotti, D. A., & dos Anjos, S. 2004, ApJS, 153, 411
 Epinat, B., Amram, P., Marcelin, M., et al. 2008, MNRAS, 388, 500
 Franx, M., van Gorkom, J. H., & de Zeeuw, P. T. 1997, MNRAS, 292, 349
 Fuchs, B. 2003, Ap&SS, 284, 719
 Gilmore, G. 2001, in Starburst Galaxies: Near and Far, ed. L. Tacconi & D. Lutz, 34
 Goudriaoui, P. & Kroupa, J. M. D. 2012, ArXiv e-prints
 Gunawardhana, M. L. P., Hopkins, A. M., Sharp, R. G., et al. 2011, MNRAS, 415, 1647
 Hoversten, E. A. & Glazebrook, K. 2008, ApJ, 675, 163
 Into, T. & Portinari, L. 2013, ArXiv e-prints 1301.2178
 Józsa, G. I. G., Kenn, F., Klein, U., & Oosterloo, T. A. 2007, A&A, 468, 731
 Kroupa, P. 2002, Science, 295, 82
 Kroupa, P. 2012, ArXiv e-prints 1210.1211
 Landolt, A. U. 1992, AJ, 104, 340
 Landolt, A. U. 2009, AJ, 137, 4186
 Lee, H.-c., Gibson, B. K., Flynn, C., Kawata, D., & Beasley, M. A. 2004, MNRAS, 353, 113
 Lee, J. C., Gil de Paz, A., Tremonti, C., et al. 2009, ApJ, 706, 599
 McGaugh, S. S. 2005, ApJ, 632, 859
 Meurer, G. R., Wong, O. I., Kim, J. H., et al. 2009, ApJ, 695, 765
 Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563
 Nilson, P. 1973, Nova Acta Regiae Soc. Sci. Upsaliensis Ser. V 0
 Portinari, L., Sommer-Larsen, J., & Tantalo, R. 2004, MNRAS, 347, 691
 Ramella, M., Psaro, A., & Geller, M. J. 1997, AJ, 113, 483
 Read, J. I., Mayer, L., Brooks, A. M., Governato, F., & Lake, G. 2009, MNRAS, 397, 44
 Saburova, A. S. 2011, Astronomy Reports, 55, 409
 Saburova, A. S., Bizyaev, D. V., & Zasov, A. V. 2011, Astronomy Letters, 37, 751
 Saburova, A. S., Shaldenkova, E. S., & Zasov, A. V. 2009, Astronomy Reports, 53, 801
 Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in Astronomical Society of the Pacific Conference Series, Vol. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes, 433
 Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
 Schoenmakers, R. H. M., Franz, X., & de Zeeuw, P. T. 1997, MNRAS, 292, 349
 Spekkens, K. & Sellwood, J. A. 2007, ApJ, 664, 204
 Tully, R. B. & Fisher, J. R. 1977, A&A, 54, 661
 Vader, J. P. & Chaboyer, B. 1994, AJ, 108, 1209
 Yahil, A., Tamman, G. A., & Sandage, A. 1977, ApJ, 217, 903
 Zackrisson, E., Bergvall, N., Ostrik, G., Micheva, G., & Leksell, M. 2006, ApJ, 650, 812
 Zasov, A. V., Khoperskov, A. V., & Saburova, A. S. 2011, Astronomy Letters, 37, 374