MAHARAM TRACES ON VON NEUMANN ALGEBRAS

VLADIMIR CHILIN AND BOTIR ZAKIROV

Abstract. Traces Φ on von Neumann algebras with values in complex order complete vector lattices are considered. The full description of these traces is given for the case when Φ is the Maharam trace. The version of Radon-Nikodym-type theorem for Maharam traces is established.

Mathematics Subject Classification (2000). 28B15, 46L50

Keywords: von Neumann algebra, measurable operator, vector-valued trace, order complete vector lattice, Radon-Nikodym-type theorem.

1. Introduction

The theory of integration for measures μ with values in order complete vector lattices has inspired the study of (bo)-complete lattice-normed spaces $L^p(\mu)$ (see, for example, [1], 6.1.8). The spaces $L^p(\mu)$ are the Banach-Kantorovich spaces if the measure μ possesses the Maharam property. In the proof of this fact, description of Maharam operators acting in order complete vector lattices plays an important role ([1], 3.4.3).

The existence of the center-valued traces in finite von Neumann algebras makes it natural to construct the theory of integration for traces with values in the complex order complete vector lattice $F_C = F \oplus iF$. If the von Neumann algebra is commutative, then construction of F_C-valued integration for it is the component part for the investigation of the properties of order continuous maps of vector lattices.

Let M be a non-commutative von Neumann algebra, let F_C be a von Neumann subalgebra in the center of M and let $\Phi : M \to F_C$ be a trace with modularity property: $\Phi(zx) = z\Phi(x)$ for all $z \in F_C$, $x \in M$. It is known that the non-commutative L^p-space $L^p(M, \Phi)$ is a Banach-Kantorovich space [2], [3]. In addition, Φ possesses the Maharam property: if $0 \leq z \leq \Phi(x)$, $z \in F_C$, $0 \leq x \in M$, then there exists $0 \leq y \leq x$ such that $\Phi(y) = z$ (compare with [1], 3.4.1).
In the present article, we will study the faithful normal traces \(\Phi \) on a von Neumann algebra \(M \) with values in an arbitrary complex order complete vector lattice. We give the full description of such traces in the case when \(\Phi \) is a Maharam trace. With the help of the locally measure topology in the algebra \(S(M) \) of all measurable operators we construct the Banach-Kantorovich space \(L^1(M, \Phi) \subset S(M) \). We also state the version of Radon-Nikodym-type theorem for Maharam traces.

We use the terminology and results of the von Neumann algebras theory (see [4], [5]), measurable operators theory (see [6], [7]) and order complete vector lattices and Banach-Kantorovich spaces theory (see [1]).

2. Preliminaries

Let \(H \) be a Hilbert space, let \(B(H) \) be the \(*\)-algebra of all bounded linear operators on \(H \), and \(1 \) be the identity operator on \(H \). Let \(M \) be a von Neumann algebra acting on \(H \), let \(Z(M) \) be the center of \(M \) and \(P(M) \) be the lattice of all projectors in \(M \). We denote by \(P_{fin}(M) \) the set of all finite projectors in \(M \).

A densely-defined closed linear operator \(x \) (possibly unbounded) affiliated with \(M \) is said to be measurable if there exists a sequence \(\{p_n\}_{n=1}^{\infty} \subset P(M) \) such that \(p_n \uparrow 1 \), \(p_n(H) \subset D(x) \) and \(p_n = 1 - p_n \in P_{fin}(M) \) for every \(n = 1, 2, \ldots \) (here \(D(x) \) is the domain of \(x \)). Let us denote by \(S(M) \) the set of all measurable operators.

Let \(x, y \) be measurable operators. Then \(x + y \), \(xy \) and \(x^* \) are densely-defined and preclosed. Moreover, the closures \(\overline{x+y} \) (strong sum), \(\overline{xy} \) (strong product) and \(\overline{x^*} \) are again measurable, and \(S(M) \) is a \(*\)-algebra with respect to the strong sum, strong product, and the adjoint operation (see [6]). It is clear that \(M \) is a \(*\)-subalgebra in \(S(M) \). For any subset \(A \subset S(M) \), let \(A_h = \{ x \in A : x = x^* \} \), \(A_+ = \{ x \in A : (x,\xi) \geq 0 \text{ for all } \xi \in D(x) \} \).

Let \(x \in S(M) \) and \(x = u|x| \) be the polar decomposition, where \(|x| = (x^*x)^{\frac{1}{2}} \), \(u \) is a partial isometry in \(B(H) \). Then \(u \in M \) and \(|x| \in S(M) \). If \(x \in S_h(M) \) and \(\{E_\lambda(x)\} \) are the spectral projections of \(x \), then \(\{E_\lambda(x)\} \subset P(M) \).

Let \(M \) be a commutative von Neumann algebra. Then \(M \) admits a faithful semi-finite normal trace \(\tau \), and \(M \) is \(*\)-isomorphic to the \(*\)-algebra \(L^\infty(\Omega, \Sigma, \mu) \) of all bounded complex measurable functions with the identification almost everywhere, where \((\Omega, \Sigma, \mu) \) is a measurable space. In addition, \(\mu(A) = \tau(\chi_A) \), \(A \in \Sigma \). Moreover, \(S(M) \cong L^0(\Omega, \Sigma, \mu) \), where \(L^0(\Omega, \Sigma, \mu) \) is the \(*\)-algebra of all complex measurable functions with the identification almost everywhere [6].
The locally measure topology \(t(M) \) on \(L^0(\Omega, \Sigma, \mu) \) is by definition the linear (Hausdorff) topology whose fundamental system of neighborhoods around 0 is given by

\[
W(B, \varepsilon, \delta) = \{ f \in L^0(\Omega, \Sigma, \mu) : \text{there exists a set } E \in \Sigma, \text{ such that } E \subseteq B, \mu(B \setminus E) \leq \delta, f\chi_E \in L^\infty(\Omega, \Sigma, \mu), \| f\chi_E \|_{L^\infty(\Omega, \Sigma, \mu)} \leq \varepsilon \}.
\]

Here \(\varepsilon, \delta \) run over all strictly positive numbers and \(B \in \Sigma, \mu(B) < \infty \).

It is known that \((S(M), t(M))\) is a complete topological *-algebra.

A net \(\{ f_\alpha \} \) converges to \(f \) locally in measure (notation: \(f_\alpha \xrightarrow{t(M)} f \)) if and only if \(f_\alpha \chi_B \) converges to \(f\chi_B \) in \(\mu \)-measure for each \(B \in \Sigma \) with \(\mu(B) < \infty \). Thus \(\{ f_\alpha \} \) remains convergent to \(f \) if \(\tau \) is replaced by another faithful semi-finite normal trace on \(M \). If \(M \) is \(\sigma \)-finite, i.e. any family of nonzero mutually orthogonal projectors from \(P(M) \) is at most countable, then there exists a faithful finite normal trace \(\tau \) on \(M \). In this case, the topology \(t(M) \) is metrizable, and convergence of a sequence \(f_n \xrightarrow{t(M)} f \) is equivalent to convergence of \(f_n \) to \(f \) in trace \(\tau \).

Let now \(M \) be an arbitrary finite von Neumann algebra, \(\Phi_M : M \rightarrow Z(M) \) be a center-valued trace on \(M \) ([4], 7.11). Let \(Z(M) \cong L^\infty(\Omega, \Sigma, \mu) \). The locally measure topology \(t(M) \) on \(S(M) \) is by definition the linear (Hausdorff) topology whose fundamental system of neighborhoods around 0 is given by

\[
V(B, \varepsilon, \delta) = \{ x \in S(M) : \text{there exists } p \in P(M), z \in P(Z(M)) \text{ such that } xp \in M, \| xp \|_M \leq \varepsilon, z^\perp \in W(B, \varepsilon, \delta), \Phi_M(zp^\perp) \leq \varepsilon \delta \},
\]

where \(\| \cdot \|_M \) is the \(C^* \)-norm in \(M \). It is known that, \((S(M), t(M))\) is a complete topological *-algebra [8].

The net \(\{ x_\alpha \} \subset S(M) \) converges to \(x \in S(M) \) in trace \(\Phi_M \) (notation: \(x_\alpha \xrightarrow{\Phi_M} x \)) if \(\Phi_M(E^\perp_\chi(|x_\alpha - x|)) \xrightarrow{t(Z(M))} 0 \) for all \(\lambda > 0 \).

Proposition 2.1. (see [7], §3.5) Let \(M \) be a finite von Neumann algebra, \(x_\alpha, x \in S(M) \). The following conditions are equivalent:

(i) \(x_\alpha \xrightarrow{t(M)} x \);
(ii) \(x_\alpha \xrightarrow{\Phi_M} x \);
(iii) \(E^\perp_\chi(|x_\alpha - x|) \xrightarrow{t(M)} 0 \) for all \(\lambda > 0 \).

Let \(\tau \) be a faithful semi-finite normal trace on \(M \). An operator \(x \in S(M) \) is said to be \(\tau \)-measurable if \(\tau(E^\perp_\chi(|x|)) < \infty \) for some \(\lambda > 0 \).
The set $S(M, \tau)$ of all τ-measurable operators is the $*$-subalgebra in $S(M)$, in addition $M \subset S(M, \tau)$. If $\tau(1) < \infty$, then $S(M, \tau) = S(M)$.

Denote by t_τ the locally measure topology in $S(M, \tau)$ generated by a trace τ (see, for example, [9]). If $x_\alpha, x \in S(M, \tau)$ and x_α converges to x in topology t_τ (notation: $x_\alpha \longrightarrow^\tau x$), then $x_\alpha t(M) x$ ([7], §3.5). If τ is finite, then topologies $t(M)$ and t_τ coincide ([7], §3.5). It is known that $x_\alpha \longrightarrow^\tau x$ if and only if $\tau(E_\lambda^+(|x_\alpha - x|)) \rightarrow 0$ for all $\lambda > 0$ [10].

Denote by $T(M)$ the set of all nonzero finite normal traces on the finite von Neumann algebra M.

Proposition 2.2. Let M be a finite von Neumann algebra, $x_\alpha, x \in S(M)$. Then

(i) if $x_\alpha \xrightarrow{t(M)} x$, then $|x_\alpha| \xrightarrow{t(M)} |x|$ and $\tau(E_\lambda^+(|x_\alpha - x|)) \rightarrow 0$ for all $\lambda > 0$ and $\tau \in T(M)$;

(ii) if $T_1(M)$ is a separating subset of $T(M)$ and $\tau(E_\lambda^+(|x_\alpha - x|)) \rightarrow 0$ for all $\lambda > 0$, $\tau \in T_1(M)$, then $x_\alpha \xrightarrow{t(M)} x$.

Proof. (i) Let $\tau \in T(M)$ and $s(\tau)$ be the support of a trace τ. Then $s(\tau) \in P(Z(M))$ and $\tau(x) = \tau(xs(\tau))$ for all $x \in M$ ([4], 5.15, 7.13). Since $x_\alpha \xrightarrow{t(M)} x$, $x_\alpha s(\tau) \xrightarrow{t(M)} xs(\tau)$. The restriction of τ on $Ms(\tau)$ is a faithful finite normal trace. Therefore $\tau(E_\lambda^+(|x_\alpha - x|)) = \tau(E_\lambda^+(|x_\alpha s(\tau) - xs(\tau)|)) \rightarrow 0$ for all $\lambda > 0$.

If $|x_\alpha| \xrightarrow{t(M)} |x|$, then there are $\lambda_0 > 0$, $\tau \in T(M)$ such that $\tau(E_{\lambda_0}^+(|x_\alpha| - |x|)) \rightarrow 0$. The restriction τ_0 of the trace τ on $Ms(\tau)$ is a faithful finite normal trace. Therefore convergence $x_\alpha s(\tau) \xrightarrow{t(M)} xs(\tau)$ implies $x_\alpha s(\tau) \xrightarrow{\tau_0} xs(\tau)$. Using continuity of the operator function $\sqrt{\tau}$, $y \in S_+(Ms(\tau))$ [11], we obtain

$$|x_\alpha|s(\tau) = \sqrt{(x_\alpha s(\tau))^*(x_\alpha s(\tau))} \xrightarrow{\tau_0} \sqrt{(xs(s(\tau)))s(\tau))} = |x|s(\tau).$$

Hence $\tau(E_{\lambda_0}^+(|x_\alpha| - |x|)) = \tau(E_{\lambda_0}^+(|x_\alpha s(\tau) - xs(\tau)|)) \rightarrow 0$, which is not the case.

(ii) Since $T_1(M)$ is the separating family traces on M, $\sup_{\tau \in T_1(M)} s(\tau) = 1$. Hence there is a family $\{z_i\}_{i \in I}$ of nonzero mutually orthogonal central projectors such that $\sup_{i \in I} z_i = 1$, and for any $i \in I$, there exists $\tau_i \in T_1(M)$ with $z_i \leq s(\tau_i)$ ([12], chapter III, §2). We defined the faithful semi-finite normal trace on M as $\tau(x) = \sum_{i \in I} \tau_i(xz_i)$, $x \in M$.

It is clear that restrictions τ and τ_i coincide on MZ_i. In addition, $\tau_i(E_\lambda^+(|x_\alpha z_i - xz_i|)) = \tau_i(E_\lambda^+(|x_\alpha - x|)) \rightarrow 0$ for all $\lambda > 0$, $i \in I$. Hence, $E_\lambda^+(|x_\alpha - x|)z_i \xrightarrow{t(M)} 0$, and therefore $E_\lambda^+(|x_\alpha - x|)z_i \xrightarrow{t(M)} 0$.

For any finite subset $\gamma \subseteq I$, let $u_\gamma = \sum_{i \in \gamma} z_i$. It is clear that $u_\gamma \uparrow 1$ and $\Phi_M(u_\gamma) \uparrow \Phi_M(1)$. Hence, $\Phi_M(u_\gamma) \xrightarrow{t(M)} 0$, i.e. $u_\gamma \xrightarrow{t(M)} 0$.

Let U be an arbitrary neighborhood of 0 in $(S(M), t(M))$. We choose $V(B, \varepsilon, \delta)$ such that $V(B, \varepsilon, \delta) + V(B, \varepsilon, \delta) \subseteq U$. Fix γ_0 with $(1 - u_{\gamma_0}) \in V(B, \frac{\varepsilon}{2}, \delta)$. Since $E^z_\lambda((|x_\alpha - x|)u_{\gamma_0}) \xrightarrow{t(M)} 0$, there is an α_0 such that $E^z_\lambda((|x_\alpha - x|)u_{\gamma_0}) \in V(B, \varepsilon, \delta)$ as $\alpha \geq \alpha_0$. We have $aV(B, \frac{\varepsilon}{2}, \delta)b \subseteq V(B, \varepsilon, \delta)$, where $a, b \in M$, $\|a\|_M \leq 1$, $\|b\|_M \leq 1$ (see, for example, [7], §3.5). Hence

$$E^z_\lambda(|x_\alpha - x|) = E^z_\lambda(|x_\alpha - x|)u_{\gamma_0} + E^z_\lambda(|x_\alpha - x|)(1 - u_{\gamma_0}) \in V(B, \varepsilon, \delta) + V(B, \varepsilon, \delta) \subseteq U$$

for all $\alpha \geq \alpha_0$. Therefore $E^z_\lambda(|x_\alpha - x|) \xrightarrow{t(M)} 0$ for all $\lambda > 0$. Proposition 2.1 implies that $x_\alpha \xrightarrow{t(M)} x$. \hfill \Box

3. **Vector lattice-valued traces**

Throughout this section, let M be a von Neumann algebra, let F be an order complete vector lattice, and let $F_C = F \oplus iF$ be a complexification of F. If $z = \alpha + i\beta \in F_C$, $\alpha, \beta \in F$, then $\tau := \alpha - i\beta$, and $|z| := \sup\{Re(e^{\theta}z) : 0 \leq \theta < 2\pi\}$ (see [4], 1.3.13).

An F_C-valued trace on the von Neumann algebra M is a linear mapping $\Phi : M \to F_C$ given $\Phi(x^*x) = \Phi(xx^*) \geq 0$ for all $x \in M$. It is clear that $\Phi(M_0) \subseteq F$, $\Phi(M_+) \subseteq F_+ = \{a \in F : a \geq 0\}$. A trace Φ is said to be faithful if the equality $\Phi(x^*x) = 0$ implies $x = 0$, normal if $\Phi(x_\alpha) \uparrow \Phi(x)$ for every $x_\alpha, x \in M_0$, $x_\alpha \uparrow x$.

If M is a finite von Neumann algebra, then its center-valued trace $\Phi_M : M \to Z(M)$ is an example of a $Z(M)$-valued faithful normal trace.

Let Δ be a separating family of finite normal numerical traces on the von Neumann algebra M, $\mathbb{C}^\Delta = \prod_{\tau \in \Delta} \mathbb{C}_\tau$, where $\mathbb{C}_\tau = \mathbb{C}$ for all $\tau \in \Delta$.

Then $\Phi(x) = \{\tau(x)\}_{\tau \in \Delta}$ is also an example of an faithful normal \mathbb{C}^Δ-valued trace on M.

Let us list some properties of the trace $\Phi : M \to F_C$.

Proposition 3.1. (i) Let $x, y, a, b \in M$. Then

$$\Phi(x^*) = \overline{\Phi(x)}$$

$$\Phi(xy) = \Phi(yx)$$

$$\Phi(|x^*|) = \Phi(|x|)$$

$$|\Phi(axb)| \leq \|a\|_M \|b\|_M \Phi(|x|)$$

(ii) If Φ is a faithful trace, then M is finite;

(iii) If $x_\alpha, x \in M$ and $\|x_\alpha - x\|_M \to 0$, then $|\Phi(x_\alpha) - \Phi(x)|$ relative uniform converges to zero;
(iv) If M is a finite von Neumann algebra, then $\Phi(\Phi_M(x)) = \Phi(x)$ for all $x \in M$;

(v) $\Phi(|x + y|) \leq \Phi(|x|) + \Phi(|y|)$ for all $x, y \in M$.

Proof. The proof of (i) and (ii) is the same as for numerical traces (see, for example, [5], chapter V, §2).

The proof of (iii) follows from the inequality $|\Phi(x_n) - \Phi(x)| \leq \|x_n - x\| M\Phi(1)$.

(iv) Let $U(M)$ be the set of all unitary operators in M. Then $\Phi_M(x)$ belongs to the closure of the convex hull $\text{co}\{uxu^* : u \in U(M)\}$ ([1], 7.11). Since $\Phi(uxu^*) = \Phi(u^*ux) = \Phi(x)$, we get $\Phi(y) = \Phi(x)$ for any $y \in \text{co}\{uxu^* : u \in U(M)\}$. Therefore, because of (iii), we have $\Phi(x) = \Phi(\Phi_M(x))$.

(v) Since $|x + y| \leq u|x|u^* + v|y|v^*$ for some partial isometries u, v in M (see [13]), we have, by virtue of (i)

\[
\Phi(|x + y|) \leq \Phi(u|x|u^*) + \Phi(v|y|v^*) = \Phi(u^*u|x|) + \Phi(v^*v|y|) \\
\leq \Phi(|x|) + \Phi(|y|).
\]

\Box

The trace $\Phi : M \to F_\mathbb{C}$ possesses the Maharam property if for any $x \in M_+$, $0 \leq f \leq \Phi(x)$, $f \in F$, there exists a positive $y \leq x$ such that $\Phi(y) = f$. A faithful normal $F_\mathbb{C}$-valued trace Φ with the Maharam property is called a Maharam trace (compare with [1], III, 3.4.1). Obviously, any faithful finite numerical trace on M is a \mathbb{C}-valued Maharam trace.

Let us give another examples of Maharam traces. Let M be a finite von Neumann algebra, let A be a von Neumann subalgebra in $Z(M)$, and let $T : Z(M) \to A$ be an injective linear positive normal operator. If $f \in S(A)$ is a reversible positive element, then $\Phi(T,f)(x) = fT(\Phi_M(x))$ is an $S(A)$-valued faithful normal trace on M. In addition, if $T(ab) = aT(b)$ for all $a \in A, b \in Z(M)$, then $\Phi(T,f)$ is a Maharam trace on M.

Note that if τ is a faithful normal finite numerical trace on M and $\dim(Z(M)) > 1$, then $\Phi(x) = \tau(x)1$ is a $Z(M)$-valued faithful normal trace. In addition, Φ does not possess the Maharam property. In fact, if $p \in Z(M)$, $0 \neq p \neq 1$, then for all $y \in M_+$, $y \leq 1$ the relation $\Phi(y) = \tau(y)1 \neq \tau(y)p \leq \Phi(1)$ is valid.

Let F have an order unit 1_F. Denote by $B(F)$ the complete Boolean algebra of unitary elements with respect to 1_F, and by $s(a) := \sup\{1_F \wedge n\geq 1 n|a|\} \in B(F)$ the support of an element $a \in F$. Since $|\Phi(x)| \leq$

Theorem 3.2. Let Φ be an $F_\mathbb{C}$-valued Maharam trace on a von Neumann algebra M. Then there exists a von Neumann subalgebra A in $Z(M)$, a $*$-isomorphism ψ from A onto the $*$-algebra $C(Q)_C$, an injective positive linear normal operator E from $Z(M)$ onto A with $E(1) = 1$, $E^2 = E$, such that

1. $\Phi(x) = \Phi(1)\psi(E(\Phi_M(x)))$ for all $x \in M$;
2. $\Phi(zy) = \Phi(zE(y))$ for all $z, y \in Z(M)$;
3. $\Phi(z) = \psi(z)\Phi(y)$ for all $z \in A$, $y \in M$.

Proof. Since $s(\Phi(1)) = 1_F$, we get that $\Phi_1(x) = \Phi(1)^{-1}\Phi(x)$ is a $(C(Q))_C$-valued Maharam trace on M. In addition, $\Phi_1(1) = 1_F$.

The set $Z_h(M)$ is an order complete vector lattice with a strong unit 1 with respect to algebraic operations, and the partial order induced from M. Moreover, the Boolean algebra of all unitary elements in $Z_h(M)$ with respect to 1 coincides with $P(Z(M))$. Let T be a restriction of Φ_1 on $Z_h(M)$. Since $|\Phi_1(x)| \leq \|x\|_M$, $T(Z_h(M)) \subset C(Q)$. It is clear that T is an injective positive order continuous linear operator. If $x \in Z_+(M)$, $0 \leq a \leq Tx = \Phi_1(x)$, $a \in C(Q)$, then there exists $y \in M_+$ such that $y \leq x$ and $\Phi_1(y) = a$. By Proposition 3.1 (iv), we have $a = \Phi_1(y) = \Phi_1(\Phi_M(y)) = T(\Phi_M(y))$, moreover, $0 \leq \Phi_M(y) \leq \Phi_M(x) = x$. Hence, $T : Z_h(M) \to C(Q)$ is a Maharam operator ([1], 3.4.1). Theorem 3.4.3 from [1] guarantees the existence of a Boolean isomorphism φ from $B(F)$ onto a regular Boolean subalgebra B in $P(Z(M))$ such that $gT(x) = T(\varphi(g)x)$ for all $g \in B(F)$ and $x \in Z_h(M)$. We denote by A a commutative von Neumann subalgebra in $Z(M)$ generated by B, i.e. A coincides with the bicommutant of B. It is known that $A_h = \{x \in Z_h(M) : E_\lambda(x) \in B$ for all $\lambda\}$ where $\{E_\lambda(x)\}$ are the spectral projections of x. The Boolean isomorphism φ is extended to the $*$-isomorphism $\tilde{\varphi}$ from the $*$-algebra $C(Q)_C$ onto the von Neumann algebra A. If $a = \sum_{i=1}^n \lambda_i e_i$ is a simple element, $\lambda_i \in \mathbb{R}$,
$e_i \in B(F), i = 1, \ldots, n$, then

$$T(\tilde{\varphi}(a)x) = \sum_{i=1}^{n} \lambda_i T(\varphi(e_i)x) = aT(x)$$

for all $x \in A_h$. Furthermore, we note $T(\tilde{\varphi}(a)x) = aT(x)$ for any $a \in C(Q), x \in A_h$. This is obtained by approximating the elements from $C(Q)$ by simple elements. Therefore, $\Phi_1(\tilde{\varphi}(a)x) = a\Phi_1(x)$ for all $a \in C(Q)_C, x \in A$, in particular,

$$\Phi_1(\tilde{\varphi}(a)) = a \quad (1)$$

Hence the restriction T_0 of the operator T on A_h is a lattice isomorphism from A_h onto $C(Q)$. Therefore T_0 is a Maharam operator.

By Theorem 4.2.9 from [14], there exists an operator of conditionally mathematical expectation $E: Z_h(M) \to A_h$ satisfying the following conditions:

(E1) E is an injective positive order continuous linear operator, $E^2 = E$ and $E(1) = 1$;

(E2) $T(xy) = T(xE(y))$ for all $x, y \in Z_h(M)$;

(E3) $E(zy) = zE(y)$ for all $z \in A_h, y \in Z_h(M)$.

The operator E is extended to the operator $\tilde{E}: Z(M) \to A$. It is clear that the condition (E1) is satisfied for \tilde{E}, the condition (E2) has the form $\Phi_1(xy) = \Phi_1(x\tilde{E}(y))$ for all $x, y \in Z(M)$, and the condition (E3) is valid for all $z \in A, y \in Z(M)$. The condition (E2) implies that

$$\Phi_1(y) = \Phi_1(\tilde{E}(y)) \quad \text{for all } y \in Z(M). \quad (2)$$

Using equalities (1), (2) and Proposition 3.1 (iv), we get

$$\Phi_1(x) = \Phi_1(\Phi_M(x)) = \Phi_1(\tilde{E}(\Phi_M(x))) = \tilde{\varphi}^{-1}(\tilde{E}(\Phi_M(x))) \quad (3)$$

for any $x \in M$.

Taking in (3) $\psi = \tilde{\varphi}^{-1}$ and letting \tilde{E} as E, we obtain the statement of Theorem 3.2. \square

Due to Theorem 3.2, the $*$-algebra $B = C(Q)_C$ is $*$-isomorphic to a von Neumann subalgebra in $Z(M)$. Therefore B is a commutative von Neumann algebra, and $*$-algebra $C_\infty(Q)_C$ is identified with $*$-algebra $S(B)$. In particular, there exists a separating family of completely additive scalar-valued measures on $B(F)$, and therefore F is a Kantorovich-Pinsker space ($[11], 1.4.10$).

We claim that a version of Radon-Nikodym-type theorem is valid for a Maharam trace Φ. For this, we need the space $L^1(M, \Phi)$ of operators from $S(M)$ to be integrable with respect to Φ.
Let F be a Kantorovich-Pinsker space and let Φ be an $F_\mathbb{C}$-valued Maharam trace on the von Neumann algebra M. The net $\{x_n\} \subset S(M)$ converges to $x \in S(M)$ with respect to the trace Φ (notation: $x_n \xrightarrow{\Phi} x$) if $\Phi(E_\lambda^+(|x_n - x|)) \xrightarrow{t(B)} 0$ for all $\lambda > 0$.

Proposition 3.3. $x_n \xrightarrow{\Phi} x$ iff $x_n \xrightarrow{t(M)} x$.

Proof. Let ν be a faithful normal semi-finite numerical trace on B. Choose $\{e_i\}_{i \in I}$ to be a set of nonzero mutually orthogonal projections from $P(B)$ with $\sup_{i \in I} e_i = 1_F$ and $\nu(e_i) < \infty, i \in I$. Set $\tau_i(x) = \nu(\Phi(x)\Phi(1)^{-1}e_i), x \in M, i \in I$. It is clear that $\{\tau_i\}_{i \in I}$ is a separating family of finite traces on M. Due to Proposition 2.2, $x_n \xrightarrow{t(M)} x$ if and only if $\tau_i(E_\lambda^+(|x_n - x|)) \rightarrow 0$ for all $\lambda > 0, i \in I$. The last convergence is equivalent to convergence $\Phi(E_\lambda^+(|x_n - x|)) \xrightarrow{t(B)} 0$. □

For each $x \in M$, let $\|x\|_\Phi = \Phi(|x|)$. Proposition 3.1 implies that $\| \cdot \|_\Phi$ is an F-valued norm on M. In addition, $\|x\|_\Phi = \|x^*\|_\Phi = \| |x| \|_\Phi$ and $\|ab\|_\Phi \leq \|a\|_M \|b\|_M \|x\|_\Phi$ for all $x, a, b \in M$.

We have $\Phi(E_\lambda^+(|x_n - x|)) \leq \frac{1}{\lambda} \Phi(|x_n - x|)$, $\lambda > 0, x_n, x \in M$. Hence $\|x_n - x\|_\Phi \xrightarrow{t(B)} 0$ implies $x_n \xrightarrow{\Phi} x$, and therefore $x_n \xrightarrow{t(M)} x$ (Proposition 3.3).

An operator $x \in S(M)$ is said to be Φ-integrable if there exists a sequence $\{x_n\} \subset M$ such that $x_n \xrightarrow{\Phi} x$ and $\|x_n - x_m\|_\Phi \xrightarrow{t(B)} 0$ as $n, m \rightarrow \infty$. Denote by $L^1(M, \Phi)$ the set of all Φ-integrable operators from $S(M)$. It is clear that $M \subset L^1(M, \Phi)$ and $L^1(M, \Phi)$ is a linear subset of $S(M)$. It follows from Proposition 3.1 and 3.3 that $ML^1(M, \Phi)M \subset L^1(M, \Phi)$ and $x^* \in L^1(M, \Phi)$ for all $x \in L^1(M, \Phi)$.

We now define an $S_h(B)$-valued L^1-norm on $L^1(M, \Phi)$.

Proposition 3.4. If $x_n \in M$, $x_n \xrightarrow{\Phi} 0$, $\|x_n - x_m\|_\Phi \xrightarrow{t(B)} 0$, then $\Phi(|x_n|) \xrightarrow{t(B)} 0$.

Proof. Since $\|x_n\|_\Phi - \|x_m\|_\Phi \leq \|x_n - x_m\|_\Phi, \Phi(|x_n|) = \|x_n\|_\Phi$ is a Cauchy sequence in $(S(B), t(B))$. Because of the completeness of \ast-algebra $(S(B), t(B))$, there exists $f \in S_+(B)$ such that $\Phi(|x_n|) \xrightarrow{t(B)} f$. We claim that $f = 0$. First, we assume that algebra B is σ-finite. Then there exists a faithful normal finite numerical trace ν on B. We have $\Phi(|x_n|) \xrightarrow{\nu} f$ and the sequence $\{\Phi(|x_n|)\}$ has an (σ)-convergent subsequence. Therefore, as usual, we may and do assume that the sequence $\{\Phi(|x_n|)\}$ (σ)-converges to f in $S_h(B)$ (notation: $\Phi(|x_n|) \xrightarrow{\sigma}$).
\(f \). Hence, there exists \(g = \sup_{n \geq 1} \Phi(|x_n|) \) in \(S_h(\mathcal{B}) \). It is clear that
\[
\tau(x) = \nu(\Phi(x)(1_F + g + \Phi(1))^{-1})
\]
is a faithful normal finite numerical trace on \(M \). Since topologies \(t_\nu \) and \(t(\mathcal{B}) \) coincide, \(\Phi(|x_n - x_m|) \xrightarrow{\nu} 0 \). Therefore inequalities \(0 \leq \Phi(|x_n - x_m|) \leq 2g \), imply \(\tau(|x_n - x_m|) \xrightarrow{\nu} 0 \). It is known that \((L^1(M, \tau), \| \cdot \|_{1,\tau}) \) is complete, where \(\| x \|_{1,\tau} = \tau(|x|) \). Hence there exists \(x \in L^1(M, \tau) \subset S(M) \) such that \(\| x - x_n \|_{1,\tau} \xrightarrow{\nu} 0 \) and therefore, \(x_n \xrightarrow{t} x \). Because of the equality of topologies \(t_\tau \) and \(t(M) \), we have \(x = 0 \). This means that \(\tau(|x_n|) \xrightarrow{\nu} 0 \), i.e. \(\Phi(|x_n|) \xrightarrow{\nu} 0 \).

Now let \(\mathcal{B} \) be a general (not necessarily \(\sigma \)-finite) von Neumann algebra. For each \(0 \neq e \in P(\mathcal{B}) \), we set \(\Phi_e(x) = \Phi(x)e, \ x \in M \). It is clear that \(\Phi_e \) is a normal \(S_h(\mathcal{B}e) \)-valued trace on \(M \), which does not have, generally speaking, the faithfulness property. A projection \(s(\Phi_e) = 1 - \sup\{ p \in P(M) : \Phi_e(p) = 0 \} \) is called the support trace of \(\Phi_e \). As well as in the case of numerical traces (see, for example, [4], 5.15, 7.13), one can establish that \(s(\Phi_e) \in P(Z(M)) \) and \(\Phi_e(x) = \Phi_e(xs(\Phi_e)) \) is a faithful normal \(S_h(e\mathcal{B}) \)-valued trace on \(Ms(\Phi_e) \).

If \(\Phi(|x_n|) \xrightarrow{t(\mathcal{B})} 0 \), then there is a nonzero \(\sigma \)-finite projection \(e \in P(\mathcal{B}) \) such that \(\Phi(|x_n|)e \not\xrightarrow{\nu} 0 \) where \(\nu \) is a faithful normal finite numerical trace on \(\mathcal{B}e \). The last contradicts to what we proved above. \(\square \)

Let \(x \in L^1(M, \Phi) \), \(x_n \in M \), \(x_n \xrightarrow{\Phi} x \) and \(\| x_n - x_m \|_\Phi \xrightarrow{t(\mathcal{B})} 0 \). The inequality \(\| \Phi(x_n) - \Phi(x_m) \| \leq \Phi(|x_n - x_m|) \) and completeness of the *-algebra \((S(\mathcal{B}), t(\mathcal{B})) \) guarantees the existence of \(\Phi(x) \in S(\mathcal{B}) \) such that \(\Phi(x_n) \xrightarrow{t(\mathcal{B})} \Phi(x) \). Due to Proposition 3.4, \(\Phi(x) \) does not depend on the choice of a sequence \(\{ x_n \} \subset M \), for which \(x_n \xrightarrow{\Phi} x \) and \(\| x_n - x_m \|_\Phi \xrightarrow{t(\mathcal{B})} 0 \), in particular, \(\Phi(x) = \Phi(x) \) for all \(x \in M \). The element \(\Phi(x) \) is called an \(S(\mathcal{B}) \)-valued integral of \(x \in L^1(M, \Phi) \) by a trace \(\Phi \).

It follows immediately from the definition of \(\Phi \) and Proposition 3.1 that \(\Phi \) is a linear mapping from \(L^1(M, \Phi) \) into \(S(\mathcal{B}) \) and \(\Phi(xy) = \Phi(yx) \) for any \(x \in M, y \in L^1(M, \Phi) \). For each \(x \in L^1(M, \Phi) \), we set \(\| x \|_\Phi = \Phi(|x|) \).

Theorem 3.5. (i) The mapping \(\| \cdot \|_\Phi \) is an \(S_h(\mathcal{B}) \)-valued norm on \(L^1(M, \Phi) \).

(ii) \((L^1(M, \Phi), \| \cdot \|_\Phi) \) is a Banach-Kantorovich space.
Proof. (i) Let $x \in L^1(M, \Phi)$, $x_n \in M$, $x_n \xrightarrow{\Phi} x$ and $\|x_n - x_m\|_{\Phi} \xrightarrow{t(B)} 0$. It follows from Propositions 2.2(i) and 3.3 that $|x_n| \xrightarrow{\Phi} |x|$. We claim that $\|x_n| - |x_m|\|_{\Phi} \xrightarrow{t(B)} 0$.

First, we assume that algebra B is σ-finite. Using the same trick as in the proof of Proposition 3.4, we can show that $\Phi(x_n) \xrightarrow{(o) \Phi} \hat{\Phi}(x)$ in $S_h(B)$. Therefore there exists $g = \sup_{n \geq 1} |\Phi(x_n)|$ in $S_h(B)$. Consider a faithful normal finite numerical trace τ on M defined by (4). Since $\tau(|x_n - x_m|) \to 0$ as $n, m \to \infty$ (see the proof of Proposition 3.4), there exists $y \in L^1(M, \tau)$ such that $\|y - x_n\|_{1, \tau} \to 0$. Then $x_n \xrightarrow{\tau} y$, and therefore $x = y$. Moreover, $|x_n| \xrightarrow{\tau} |x|$ (Proposition 2.2(i)) and $\|x_n\|_{1, \tau} = \|x_n\|_{1, \tau} \to \|x\|_{1, \tau}$. It follows from (10), Theorem 3.7 that $\|x| - |x_n|\|_{1, \tau} \to 0$, in particular, $\tau(|x_n| - |x_m|) \to 0$ as $n, m \to \infty$.

Convergence $\hat{\Phi}(\|x_n| - |x_m|)(1_F + g + \Phi(1))^{-1} \xrightarrow{[]} 0$ implies $\|x_n| - |x_m|\|_{\Phi} \xrightarrow{t(B)} 0$.

Hence, $|x| \in L^1(M, \Phi)$ and $\Phi(|x_n|) \xrightarrow{t(B)} \hat{\Phi}(|x|)$. In particular, $\|x\|_{\Phi} = \hat{\Phi}(|x|) \geq 0$ for all $x \in L^1(M, \Phi)$. If $\hat{\Phi}(|x|) = 0$, then $0 \leq |x_n|_{\Phi} = \Phi(|x_n|) \xrightarrow{t(B)} 0$. Hence, $x_n \xrightarrow{\Phi} 0$, and therefore $x = 0$.

Let now B be not a σ-finite algebra. Let $\{e_i\}_{i \in I}$ be a family of nonzero mutually orthogonal σ-finite projections in B with $\sup_{i \in I} e_i = 1_F$. Since

$$\sup_{i \in I} s(\Phi_{e_i}) = 1$$ and $\hat{\Phi}(|x|)e_i = \hat{\Phi}_{e_i}(|x|s(\Phi_{e_i})) \geq 0$ for all $i \in I$, we get $\hat{\Phi}(|x|) \geq 0$. Similarly, the equality $\Phi(|x|) = 0$ implies $\hat{\Phi}_{e_i}(|x|s(\Phi_{e_i})) = 0$, and therefore $|x|s(\Phi_{e_i}) = 0$ for all $i \in I$. Hence, $x = 0$.

Finally, we have

$$\|x + y\|_{\Phi} \leq \|x\|_{\Phi} + \|y\|_{\Phi}, \ x, y \in L^1(M, \Phi),$$

due to the inequality $|x + y| \leq u|x|u^* + v|y|v^*$, $x, y \in S(M)$ (see [7], §2.4) and the trick in Proposition 3.1(v).

(ii) Let $x \in L^1(M, \Phi)$, $x_n \in M$, $x_n \xrightarrow{\Phi} x$ and $\|x_n - x_m\|_{\Phi} \xrightarrow{t(B)} 0$. Fix m and set $y_{nm} = x_n - x_m$ for $n \geq m$. We have $y_{nm} \xrightarrow{\Phi} x - x_m$ and $\|y_{nm} - y_{km}\|_{\Phi} \xrightarrow{t(B)} 0$ as $n, k \to \infty$. It follows from the proof of (i) that $\Phi(|y_{nm}|) \xrightarrow{t(B)} \hat{\Phi}(|x - x_m|) = \|x - x_m\|_{\Phi}$. Since $\Phi(|y_{nm}|) \xrightarrow{t(B)} 0$ as $n, m \to \infty$, $\|x - x_m\|_{\Phi} \xrightarrow{t(B)} 0$.

Let us now show that any (bo)-Cauchy sequence in $(L^1(M, \Phi), \|\cdot\|_{\Phi})$ (bo)-converges.
First, we assume that \(\mathcal{B} \) is a \(\sigma \)-finite von Neumann algebra. Let \(\{x_n\} \subset L^1(M, \Phi) \) and \(\|x_n - x_m\|_\Phi \overset{(o)}{\to} 0 \). Since \(\widehat{\Phi} \) is a positive mapping (see the proof of item (i)), the inequality \(\widehat{\Phi}(E^1_{\lambda}(|x_n - x_m|)) \leq \frac{1}{\lambda}\Phi(|x_n - x_m|), \lambda > 0 \) is valid. Hence, \(\{x_n\} \) is a Cauchy sequence in \((S(M), t(M))\) and therefore there exists \(x \in S(M) \) such that \(x_n \overset{t(M)}{\to} x \). Choose a system \(\{U_n\} \) of closed neighborhoods of 0 in \((S(\mathcal{B}), t(\mathcal{B}))\) with \(U_{n+1} + U_{n+1} \subset U_n \), \(n = 1, 2, \ldots \). Due to what we proved above, for any \(x_n \in L^1(M, \Phi) \), there exists \(y_n \in M \) such that \(\|x_n - y_n\|_\Phi \in U_n \). Since
\[
\sum_{n=k+1}^\infty \|x_n - y_n\|_\Phi \in U_k \text{ for all } m \geq k + 1,
\]
the series \(\sum_{n=k+1}^\infty \|x_n - y_n\|_\Phi \) converges in \((S(\mathcal{B}), t(\mathcal{B}))\). Hence, \(\|x_n - y_n\|_\Phi \overset{(o)}{\to} 0 \), and therefore \(\|y_n - y_m\|_\Phi \overset{(o)}{\to} 0 \). Also, by Proposition 3.3, we get \(x_n - y_n \overset{t(\mathcal{B})}{\to} 0 \), and consequently \(y_n \overset{\Phi}{\to} x \). This means that \(x \in L^1(M, \Phi) \), in addition,
\[
\|x - y_n\|_\Phi \overset{t(\mathcal{B})}{\to} 0 \text{ and } \|y_n - y_m\|_\Phi \overset{t(\mathcal{B})}{\to} \|x - y_m\|_\Phi \text{ as } n \to \infty.
\]
Since \(\|x - y_m\|_\Phi \leq \sup_{n \geq m} \|y_n - y_m\|_\Phi \downarrow 0 \), we get \(\|x - y_m\|_\Phi \overset{(o)}{\to} 0 \) and therefore \(\|x - x_n\|_\Phi \overset{(o)}{\to} 0 \).

Now let \(\{x_\alpha\}_{\alpha \in A} \) be an arbitrary \((bo)\)-Cauchy net in \(L^1(M, \Phi) \), i.e. \(\sup_{\alpha, \beta \geq \gamma} \|x_\alpha - x_\beta\|_\Phi \downarrow 0 \). We choose a sequence of indices \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n \leq \ldots \) in \(A \) such that \(\sup_{n, m \geq k} \|x_\alpha - x_\beta\|_\Phi \in U_k \). Then \(\sup_{\beta \geq \alpha_n} \|x_\alpha - x_\beta\|_\Phi \in U_k \), and therefore \(\{x_\alpha\} \) is a \((bo)\)-Cauchy sequence in \(L^1(M, \Phi) \). It follows from what we proved above that there exists \(x \in L^1(M, \Phi) \) such that \(\|x - x_\alpha\|_\Phi \overset{(o)}{\to} 0 \). Let us claim that \(\|x - x_\alpha\|_\Phi \overset{(o)}{\to} 0 \), i.e. \(\sup_{\alpha \geq \beta} \|x - x_\alpha\|_\Phi \downarrow 0 \). Fix \(\beta \in A \) and consider the net \(\{x_\alpha\}_{\alpha \geq \beta} \). We construct a sequence of indices \(\beta \leq \alpha_1 \leq \alpha_2 \leq \ldots \) such that \(\alpha_n \leq \beta_n \). Then \(\|x_\beta_n - x_\alpha_n\|_\Phi \in U_n \), and therefore \(\|x_\beta_n - x_\alpha_n\|_\Phi \overset{(o)}{\to} 0 \). Hence,
\[
\|x - x_\beta_n\|_\Phi \overset{(o)}{\to} 0 \text{ and } \|x_\beta_n - x_\beta\|_\Phi \overset{(o)}{\to} \|x - x_\beta\|_\Phi \text{ as } n \to \infty.
\]
Thus,
\[
\|x - x_\beta\|_\Phi \leq \sup_{n \geq 1} \|x_\beta_n - x_\beta\|_\Phi \leq \sup_{\alpha \geq \beta} \|x_\alpha - x_\beta\|_\Phi \|x - x_\beta\|_\Phi \overset{(o)}{\to} 0.
\]

Let now \(\mathcal{B} \) be not a \(\sigma \)-finite algebra and let \(\{x_\alpha\} \) be a \((bo)\)-Cauchy net in \(L^1(M, \Phi) \). Due to the completeness of \((S(M), t(M))\), there is \(x \in S(M) \) such that \(x_\alpha \overset{\Phi}{\to} x \). Let \(\{e_i\}_{i \in I} \) be the same family of projections in \(\mathcal{B} \), as in the proof of (i). It is clear that \(\{x_\alpha s(\Phi_{e_i})\} \) is a \((bo)\)-Cauchy net in \(L^1(M s(\Phi_{e_i}), \Phi_{e_i}) \), and therefore, by virtue of what we proved above, there exists \(x_i \in L^1(M s(\Phi_{e_i}), \Phi_{e_i}) \) such that \(\|x_i -
$x_{α}s(Φ_{ε_i})∥Φ_{ε_i} \xrightarrow{(o)} 0$. Convergence $x_{α}s(Φ_{ε_i}) \xrightarrow{Φ} x_{α}s(Φ_{ε_i})$ implies $x_i = x_{α}s(Φ_{ε_i})$ for all $i ∈ I$. Thus, $\hat{Φ}|x - x_{α}|e_i = \hat{Φ}|x - x_{α}|s(Φ_{ε_i})e_i \xrightarrow{(o)} 0$ and $∥x - x_{α}∥_Φ \xrightarrow{(o)} 0$.

Hence, $(L^1(M, Φ), ∥ · ∥_Φ)$ is a (bo)-complete lattice-normed space.

Now let us show that $(L^1(M, Φ), ∥ · ∥_Φ)$ is a Banach-Kantorovich space, i.e. for any element $x ∈ L^1(M, Φ)$ and any decomposition $∥x∥_Φ = f_1 + f_2$, $f_1, f_2 ∈ S_+(B)$, $f_1 ∧ f_2 = 0$, there exist $x_1, x_2 ∈ L^1(M, Φ)$ such that $x = x_1 + x_2$ and $∥x_i∥_Φ = f_i$, $i = 1, 2$.

Set $e_i = s(f_i)$. It is clear that $e_i ∈ P(B)$, $e_1 + e_2 = 0$, $e_1 + e_2 = s(∥x∥_Φ)$. Since $Φ$ is a Maharam trace, we have $Φ\left(\left| \sum_{i} s(Φ_{ε_i}) e_i \right| \right) = Φ\left(\left| \sum_{i} s(Φ_{ε_i}) e_i \right| \right)$ (see Theorem 3.2).

Let $p_i = Ψ^{-1}(e_i)$, $x_i = xp_i$. Since $p_i ∈ P(\mathcal{A}) ⊂ P(Z(M))$, $∥x_i∥ = |x|p_i ∈ L^1(M, Φ)$. We choose $y_n ∈ M$ such that $y_n \xrightarrow{Φ} x$ and $∥y_n - y_m∥_Φ \xrightarrow{t(B)} 0$. Then $|y_n| \xrightarrow{Φ} |x|$, $∥y_n - |y_m∥_Φ \xrightarrow{t(B)} 0$ and $Φ(|y_n|) \xrightarrow{t(B)} Φ(|x|)$ (see the proof of (i)). Set $y_n^{(i)} = y_np_i$, $i = 1, 2$. We have $|y_n^{(i)}| \xrightarrow{Φ} |x_i|$ and $∥|y_n^{(i)}| - |y_m^{(i)}∥_Φ \leq ∥|y_n| - |y_m∥_Φ$. Hence, $Φ(|y_n^{(i)}|) \xrightarrow{t(B)} Φ(|x_i|)$. Due to the property 3) from Theorem 3.2, we have $Φ(|y_n^{(i)}|) = Φ(p_i)Φ(|y_n|) = e_iΦ(|y_n|)$.

Thus, $∥x_i∥_Φ = Φ(|x_i|) = e_iΦ(|x|) = f_i$, in addition $x_1 + x_2 = x(p_1 + p_2) = xψ^{-1}(s(∥x∥_Φ))$. As well as above, one can establish that $qΦ(|x|) = Φ(|x|ψ^{-1}(q))$ for all $q ∈ P(B)$. Taking $q = 1_F - s(∥x∥_Φ)$, we get $Φ(|x|)(1 - ψ^{-1}(s(∥x∥_Φ))) = 0$. Hence, $|x| = |x|ψ^{-1}(s(∥x∥_Φ))$. Using the polar decomposition $x = u|x|$, we obtain $x = xψ^{-1}(s(∥x∥_Φ)) = x_1 + x_2$.

Note another useful properties of mapping $\hat{Φ}$.

Let $Φ, M, Q, Φ_M, A, Ψ$ be the same as in Theorem 3.2. $B = C(Q)_C$. It is clear that the $*$-isomorphism $Ψ$ from A onto B can be extended to the $*$-isomorphism from $S(A)$ onto $S(B)$. We denote this mapping also by $Ψ$.

Proposition 3.6. $S(A)L^1(M, Φ) ⊂ L^1(M, Φ)$, in particular, $S(A) ⊂ L^1(M, Φ)$, in addition, $\hat{Φ}(zx) = ψ(z)\hat{Φ}(x)$ and $\hat{Φ}(Φ_M(zx)) = Φ(zx)$ for all $z ∈ S(A), x ∈ L^1(M, Φ)$.

Proof. It is sufficient to show that $x ∈ L^1_+(M, Φ), z ∈ S_+(A)$ implies $zx ∈ L^1_+(M, Φ)$ and $\hat{Φ}(zx) = ψ(z)\hat{Φ}(x), \hat{Φ}(Φ_M(zx)) = Φ(zx)$.

Let $z_n = E_n(z)n$. It is clear that $z_n ∈ A_+, z_n ↑ z, z_n x ∈ L^1_+(M, Φ)$. Since $z_n x = \sqrt{x}z_n \sqrt{x} ↑ \sqrt{x}z \sqrt{x} = zx$, we get $ψ(z_n)\hat{Φ}(x) = \hat{Φ}(z_n x) ≤ \hat{Φ}(z_{n+1} x) = ψ(z_{n+1})\hat{Φ}(x) ↑ ψ(z)\hat{Φ}(x)$.
In addition, \(\psi \) all

Hence,

\[
\sup_{n \geq m} \| z_n x - z_m x \|_\Phi = \sup_{n \geq m} | \hat{\Phi}(z_n x) - \hat{\Phi}(z_m x) | \downarrow 0,
\]

i.e. \(\{ z_n x \} \) is a \((bo)\)-Cauchy sequence. By Theorem 3.5 there exists \(y \in L^1(M, \Phi) \) such that \(\| z_n x - y \|_\Phi \xrightarrow{\omega} 0 \). The inequality \(\Phi(E^+_{\lambda}(|z_n x - y|)) \leq \frac{1}{\Delta} \Phi(|z_n x - y|) \) implies \(z_n x \xrightarrow{\Phi} y \). Therefore \(y = zx \), i.e. \(zx \in L^1(M, \Phi) \).

In addition, \(\psi(z_n) \hat{\Phi}(x) = \hat{\Phi}(z_n x) = \| z_n x \|_\Phi \xrightarrow{\text{loc}} \| zx \| = \hat{\Phi}(zx) \). Hence, \(\hat{\Phi}(zx) = \psi(z) \hat{\Phi}(x) \).

Set \(x_k = E_k(x)x \). Then \(0 \leq x_k \uparrow x \), \(x_k \in M \). By virtue of Proposition 3.1(ii), \(\Phi(z_n x_k) = \Phi(\Phi_M(z_n x_k)) = \Phi(z_n \Phi_M(x_k)) \). Since \((z_n x_k) \uparrow (z_n x) \) as \(k \to \infty \), we have \(\Phi(z_n x_k) \uparrow \hat{\Phi}(z_n x) \) and \(\Phi(\Phi_M(z_n x_k)) \uparrow \hat{\Phi}(\Phi_M(z_n x)) \).

Therefore \(\hat{\Phi}(z_n x) = \hat{\Phi}(\Phi_M(z_n x)) \) for all \(n = 1, 2, \ldots \). After switching to the limit as \(n \to \infty \), we obtain \(\hat{\Phi}(zx) = \hat{\Phi}(\Phi_M(zx)) \).

Let \(\Phi \) be an \(F_C \)-valued Maharam trace on \(M \) and let \(\Psi \) be a normal \(F_C \)-valued trace on \(M \). A trace \(\Psi \) is called absolutely continuous with respect to \(\Phi \) (notation \(\Psi \ll \Phi \)) if \(s(\Psi(p)) \leq s(\Phi(p)) \) for all \(p \in P(M) \). The last condition is equivalent to inclusion \(\Psi(p) \in \{ \Phi(p) \}^{\downarrow \downarrow} = s(\Phi(p))S_h(B), p \in P(M) \) where \(B^\perp := \{ x \in S_h(B) : (\forall y \in B)|x| \wedge |y| = 0 \} \) for a nonempty subset \(B \subset S_h(B) \) (compare with [1], 6.1.11).

The next theorem is a non-commutative version of the Radon-Nikodym-type theorem for Maharam traces.

Theorem 3.7. Let \(\Phi \) be an \(F_C \)-valued Maharam trace on the von Neumann algebra \(M \). If \(\Psi \) is a normal \(F_C \)-valued trace on \(M \) absolutely continuous with respect to \(\Phi \), then there exists an operator \(y \in L^1_{+}(M, \Phi) \cap S(Z(M)) \) such that

\[
\Psi(x) = \hat{\Phi}(yx)
\]

for all \(x \in M \).

Proof. Let \(l \) be the restriction of \(\Psi \) on the complete Boolean algebra \(P(Z(M)) \), and let \(m \) be the restriction of \(\Phi \) on \(P(Z(M)) \). Obviously, \(l \) and \(m \) are \(S_h(B) \)-valued completely additive measures on \(P(Z(M)) \). In addition, \(m(ze) = \psi(z)m(e) \) for all \(z \in P(A), e \in P(Z(M)) \) (see Theorem 3.2). Hence, \(m \) is a \(\psi \)-modular measure on \(P(Z(M)) \) (see [1], 6.1.9). Since the measure \(l \) is absolutely continuous with respect to \(m \), by the Radon-Nikodym-type theorem from (1], 6.1.11), there exists \(y \in L^1_{+}(Z(M), m) = L^1_{+}(Z(M), \Phi) \) such that \(l(e) = \hat{\Phi}(ye) \) for all \(e \in P(Z(M)) \).
If \(a = \sum_{i=1}^{n} \lambda_i e_i \) is a simple element from \(Z(M) \), where \(\lambda_i \in \mathbb{C} \), \(e_i \in P(Z(M)) \), \(i = 1, \ldots, n \), then \(\Psi(a) = \sum_{i=1}^{n} \lambda_i \Psi(e_i) = \sum_{i=1}^{n} \lambda_i \Phi(ye_i) = \Phi(ya) \). Let \(a \in Z_+(M) \) and \(\{a_n\} \) be a sequence of simple elements from \(Z_+(M) \) with \(a_n \uparrow a \). Then \(\Psi(a_n) \uparrow \Psi(a) \), \(ya_n \uparrow ya \), and \(\Phi(ya_n) \uparrow \Phi(ya) \) (see the proof of Proposition \(\ref{prop:Maharam property} \)). Hence, \(\Psi(a) = \Phi(ya) \) for all \(a \in Z_+(M) \). Now using the linearity of traces \(\Psi \) and \(\Phi \), we obtain \(\Psi(a) = \Phi(ya) \) for all \(a \in M \).

Furthermore, due to Propositions \(\ref{prop:Properties of traces} \)(iv) and \(\ref{prop:Maharam property} \) we get
\[
\Psi(x) = \Psi(\Phi_M(x)) = \Phi(y\Phi_M(x)) = \Phi(\Phi_M(yx)) = \Phi(yx)
\]
for all \(x \in M \).

\(\square \)

Remark 3.8. If \(\Psi \) is a normal \(F_\mathbb{C} \)-valued trace on \(M \) and \(\Psi \ll \Phi \), then \(\Psi \) possesses the Maharam property.

In fact, by Theorem \(\ref{thm:Maharam property} \), \(\Psi(x) = \Phi(yx) \) for all \(x \in M \) where \(y \in L_1^+(M, \Phi) \cap S(Z(M)) \). Let \(0 \neq x \in M_+ \), \(f \leq \Psi(x) \), \(f \in S_+(\mathcal{B}) \), \(g \in S_+(\mathcal{B}) \), \(g\Psi(x) = s(\Psi(x)) \). Set \(h = gf \), \(z = \psi^{-1}(h) \), \(a = zx \). Then
\[
0 \leq h \leq g\Psi(x) = s(\Psi(x)) \leq 1_F, \quad 0 \leq z \leq 1, \quad 0 \leq a \leq x
\]
and
\[
\Psi(a) = \Phi(ya) = \Phi(zyx) = \psi(z)\Phi(yx) = h\Psi(x) = fs(\Psi(x)) = f.
\]

References

[1] Kusraev A.G., Dominated Operators, Mathematics and its Applications, 519, Kluwer Academic Publishers, Dordrecht, 2000. 446 p.
[2] Ganiev I.G., Chilin V.I. Measurable bundles of non-commutative \(L^p \)-spaces associated with center-valued trace // Mat. Trudy, 4(2001) No 2. p. 27–41. (Russian).
[3] Chilin V.I., Katz A.A. On abstract characterization of non-commutative \(L^p \)-spaces associated with center-valued trace // MFAT 2005. v. 11., No 4. p. 346–355.
[4] Stratila S., Zsido L. Lectures on von Neumann algebras, England Abacus Press, 1975. 477 p.
[5] Takesaki M. Theory of operator algebras I. New York: Springer, 1979. 415 p.
[6] Segal I.E. A non-commutative extension of abstract integration // Ann. Math. 1953. No 57. p. 401–457.
[7] Muratov M.A., Chilin V.I. Algebras of measurable and locally measurable operators. Kyiv, Pratsi In-ty matematiki NAN Ukraini. 2007. V. 69. 390 p. (Russian).
[8] Yeadon F.J. Convergence of measurable operators // Proc. Camb. Phil. Soc. 1974. v. 74. p. 257–268.
[9] Nelson E. Notes on non commutative integration // J. Funct. Anal. 1974. No 15. p. 103–116.
[10] Fack T., Kosaki H. Generalised s-numbers of τ-measurable operators // Pacif. J. Math. 1986, v. 123, p. 269–300.

[11] Tikhonov O.Y. Continuity of operator functions on a von Neumann algebra with respect to topology of convergence in measure. // Izv. VUZov. Matematika. 1987. No 1. p. 77-79. (Russian).

[12] Vladimirov D.A., Boolean Algebras, Nauka, Moscow, 1969. 319 p. (Russian).

[13] Akemann C.A., Andersen T., Pedersen G.K. Triangle inequalities in operator algebras // Linear and Multilinear Algebra, 1982, v. 11,2 p. 167-178.

[14] Kusraev A.G., Vector Duality and its Applications, Nauka, Novosibirsk, 1985. 256 p. (Russian).

Vladimir Chilin, Department of Mathematics, National University of Uzbekistan, Vuzgorodok, 100174 Tashkent, Uzbekistan
E-mail address: chilin@ucd.uz

Botir Zakirov, Tashkent Railway Engineering Institute, Odilalodjaev str. 1, 100167 Tashkent, Uzbekistan
E-mail address: botirzakirov@list.ru