Microscopic dynamics of superfluid \(^4\)He: a comprehensive study by inelastic neutron scattering

K. Beauvois,\(^1\),\(^2\) J. Dawidowski,\(^3\) B. Fåk,\(^1\) H. Godfrin,\(^2\) E. Krotscheck,\(^4\),\(^5\) J. Ollivier,\(^1\) and A. Sultan\(^2\)

\(^1\)Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
\(^2\)Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Nêel, 38000 Grenoble, France
\(^3\)Comisión Nacional de Energía Atómica and CONICET, Centro Atómico Bariloche, (8400) San Carlos de Bariloche, Río Negro, Argentina
\(^4\)Department of Physics, University at Buffalo, SUNY Buffalo NY 14260, USA
\(^5\)Institute for Theoretical Physics, Johannes Kepler University, A 4040 Linz, Austria

(Dated: May 4, 2018)

The dynamic structure factor of superfluid \(^4\)He has been investigated at very low temperatures by inelastic neutron scattering. The measurements combine different incoming energies resulting in an unprecedented large dynamic range with excellent energy resolution, covering wave vectors \(Q\) up to \(5\,\text{Å}^{-1}\) and energies \(\omega\) up to \(15\,\text{meV}\). A detailed description of the dynamics of superfluid \(^4\)He is obtained from saturated vapor pressure up to solidification. The single-excitation spectrum is substantially modified at high pressures, as the maxon energy exceeds the roton-roton decay threshold. A highly structured multi-excitation spectrum is observed at low energies, where clear thresholds and branches have been identified. Strong phonon emission branches are observed when the phonon or roton group velocities exceed the sound velocity. The spectrum is found to display strong multi-excitations whenever the single-excitations face disintegration following Pitaevskii’s type a or b criteria. At intermediate energies, an interesting pattern in the dynamic structure factor is observed in the vicinity of the recoil energy. All these features, which evolve significantly with pressure, are in very good agreement with the Dynamic Many-body calculations, even at the highest densities, where the correlations are strongest.

I. INTRODUCTION

Understanding the dynamics of correlated bosons is a subject of general interest in several fields of physics. Bose-Einstein condensation and superfluidity, first found in \(^4\)He, are fundamental phenomena that imprint remarkable signatures on the dynamics of these systems. Experimentally, superfluid \(^4\)He is the simplest example of strongly correlated bosons. The interaction potential is particularly well known, and substantial effort has been devoted to develop a coherent theoretical framework able to describe and explain the extraordinary properties of this quantum fluid.\(^{11}\) The theoretical methods can be generalized to other many-body problems, including for instance up-to-date approaches of the complex case of correlated fermions.\(^{12–15}\)

The prediction by Landau\(^3\) of the phonon-roton excitation spectrum of superfluid \(^4\)He and its direct observation in the dynamic structure factor \(S(Q,\omega)\) using neutron scattering techniques\(^{16–19}\) are cornerstones of modern physics, at the origin of the present microscopic descriptions of matter.\(^{20–23}\) The dynamics of superfluid \(^4\)He at very low temperatures, in the vicinity of the ground state, is dominated by the “phonon-maxon-roton” excitation branch. The corresponding excitations, extremely sharp, correspond essentially to poles of the dynamic density-density response function. They are referred to as “single-excitations” in the neutron scattering literature, and as “quasi-particles” in theoretical works. An effective description of the dynamics of such systems can be obtained in terms of these modes, allowing for instance a very accurate statistical evaluation of the low temperature thermodynamic properties.\(^{24–26}\)

Sharp excitations are absent above twice the roton energy,\(^{27–29}\) and the dynamics at intermediate energies is described in terms of broad excitations, named “multi-excitations” for reasons described below. Multi-excitations still have a significant statistical weight in the dynamic structure factor.\(^{30–32}\) Their spectrum is known to display some structure since the early measurements of Svensson, Martel, Sears and Wood.\(^{33}\) More recent investigations\(^{27–29}\) showed that some features could be ascribed to multi-excitations. These were related to pairs of high density-of-states roton (R) and maxon (M) modes (noted hereafter 2R, 2M, and MR). The broad ridges observed in \(S(Q,\omega)\) at SV (see Figure 1 of Ref. 24), and at 20 bars (see Figure 1 of Ref. 29) were consistent with the calculated energies of the main combinations (2R, 2M and MR).

A much finer structure in the dynamic response was observed in our recent work at zero pressure,\(^{30}\) including sharp thresholds, narrow branches, and a new two-phonon decay process, the “ghost phonon”. Explaining this rich dynamic response, observed from the continuum limit to subatomic distances, constitutes a challenge and an opportunity for microscopic theories.

Finally, at high energies, the dynamic structure factor gradually approaches a quasi-free-particle behavior,\(^{34}\) described by the impulse approximation.\(^{34–36}\)

Even though helium is one of the most intensively investigated physical substances, measurements covering a large kinetic range are scarce. The canonical results by Cowley and Woods\(^{37}\) Dietrich et al.\(^{38}\) or Svensson et al.\(^{33}\) have a low resolution by modern standards, while
later measurements specialize in specific range.\cite{22,29,31,34,35}
Our extensive high-resolution measurements, presented in Fig. 1, provide a detailed and complete map of the
dynamics of superfluid 4He. In addition to its aesthetic merits, the picture shows new features which are the ob-
ject of this manuscript.

Helium is highly compressible. Since the atomic corre-
lations depend on the density, it is interesting to investi-
gate the pressure dependence of the density excitations.

Much of the earlier work has been focused on the effect
of pressure on the single-excitation response, in order to
determine, for example, the Landau parameters charac-
terizing the dispersion curve. The multi-excitation spec-
trum has also been found experimentally,\cite{22,29,31,32,35} and theoretically,\cite{31,34,36,37} to be strongly modified by the
pressure. It was therefore desirable to extend our recent high
sensitivity measurements,\cite{30} to finite pressures, and more
particularly near solidification, where theory\cite{31} predicted
radical changes in the dynamics.

In this manuscript, we present a detailed investigation
of the effect of pressure on the dynamics of superfluid
4He. We cover a large energy and wave vector range while
preserving the resolution needed to observe the fine struc-
ture of the spectra. High resolution maps of the dynamic
structure factor $S(Q, \omega)$ have been obtained at saturated
vapor pressure (SVP) and at $P = 24$ bars, close to so-
lidification, as shown in Fig. 1. Additional measurements
have been made in a smaller dynamic range at the inter-
mediate pressures 5 and 10 bars. We finally compare our
data to microscopic calculations of $S(Q, \omega)$ within the
Dynamic Many-Body theory\cite{31} performed at the densities
Corresponding to the experimental pressure conditions.

II. EXPERIMENTAL DETAILS

The measurements were performed on the IN5 time-
of-flight spectrometer at the high-flux reactor of Institut
Laue Langevin. Our previous work\cite{30} at low tempera-
tures and saturated vapor pressure used cold neutrons of
energy $E_i = 3.55$ meV. In the present work, we combine
data taken using four different incident neutron energies,
$E_i = 3.55, 5.11, 8.00$, and 20.45 meV, for which the en-
ergy resolution (FWHM) at elastic energy transfer was
0.070, 0.12, 0.23 and 0.92 meV, respectively. This allowed
us to obtain a complete map of the dynamic structure
factor at the most relevant pressures, i.e., saturated va-
or pressure (SVP) and near solidification ($P = 24$ bars).
We also investigated a few intermediate pressures using
$E_i = 3.55$ meV.

The cylindrical sample cell was made out of alu-
ninium 5083, with 1 mm wall thickness and 15 mm inner
diameter.\cite{30,32} Cadmium disks of 0.5 mm thickness were
placed inside the cell every centimeter to reduce multi-
ple scattering. The cell was thermally connected to the
mixing chamber of a very low temperature dilution re-
frigerator using massive OFHC copper pieces. Heat ex-
changers made out of sintered silver powder were used to
provide a good thermal contact with the helium sample.

Care was taken to thermally anchor the filling capillary
at several places along the dilution unit, in order to re-
duce heat leaks to the cell. The measurements were all
performed at very low temperatures, well below 100 mK,
i.e. essentially at zero temperature for the properties
under investigation.

High purity (99.999 \%) helium gas was condensed in
the cell at low temperatures, using a gas handling sys-
tem including a “dipstick” cold trap operated in a helium
storage dewar. The dipstick was used to condense the gas
and to pressurize the helium sample. The pressure in the
system was measured with a precision of 6 mbars with
a 0-60 bars DigiQuartz gauge located at the top of the
cryostat. The corresponding precision for the pressures
inside the cell is 20 mbars, after applying helium hydro-
static head corrections. The actual pressures in the cell
for the nominal 0, 5, 10 and 24 bars are essentially 0 (SVP
at 100 mK), 5.01(2), 10.01(2) and 24.08(2) bars.

III. DATA REDUCTION

Standard time-of-flight data-reduction\cite{22} was used to
obtain the dynamic structure factor $S(Q, \omega)$ from the
raw data. The contribution of the cell scattering was
subtracted, as well as that of double scattering events of
type “inelastic helium scattering plus elastic scattering
from the cell”. This type of double scattering is essen-
tially independent of wave vector.

The contribution of the multiple scattering within the
helium was corrected using Monte Carlo simula-
tions.\cite{30} Due to the small diameter of our sample cell and the
presence of several cadmium plates, multiple scattering
corrections are small (the ratio of double-scattered to
single-scattered neutrons is on the order one percent,\cite{30},
but may be comparable to the multi-excitation signal.
It is therefore essential to verify that multiple scattering is
not contaminating the spectra in the energy and wave
vector regions of interest, and perform the corrections
when necessary, in particular at low Q.

Since multiple scattering depends on the incident neu-
tron energy, as shown in figure 2, while multi-excitations
do not, Monte Carlo calculations can be used to select
the most appropriate incident neutron energy for the ex-
periments, and also to experimentally distinguish multi-
excitations from multiple scattering.

The only input needed by the Monte Carlo simulations\cite{30,31} in the present case is the initially measured
scattering function $S(Q, \omega)$ after corrections for multiple
scattering processes involving the cell, and the coherent
scattering cross section of 4He, $\sigma_c = 1.34$ barns. We first
calculate the total scattering cross section\cite{32,33,34,35}
$\sigma_s(E_i)$:

$$\sigma_s(E_i) = \frac{N \sigma_c}{2k_i^2} \int Q dq \int S(Q, \omega) d\omega,$$

(1)

where N is the number of scatterers and k_i the incident
neutron wave vector.

We find $\sigma_s(E_i = 3.55 \text{ meV}) = 0.64$ barns, about one half of the coherent scattering cross section σ_{coh}. The multiple scattering fraction is 0.8% for $E_i = 3.55 \text{ meV}$, increasing slightly with pressure from 0.79% at SVP to 1.06% at 24 bars. This agrees well with calculations using the semi-analytical method developed by Sears, which give values increasing from 0.93% to 1.09% for the same pressures. Multiple scattering can be seen in the experimental spectra at low wave vectors, thus providing a way to check the Monte Carlo calculations used to eliminate this effect. This is a crucial step in the data analysis, needed to ensure that all the features we report in $S(Q, \omega)$ do indeed correspond to multi-excitations.

The calculated contribution due to multiple scattering within the helium has been subtracted from the spectra measured using incident neutron energies $E_i = 3.55$ and 5.11 meV. This was found to be unnecessary for $E_i = 8.00$ and 20.45 meV, because multiple scattering processes are negligible in the corresponding regions of the “combined” spectra of Fig. 1.

An overall scale factor was applied to $S(Q, \omega)$ at SVP, so that the weight of the single excitation $Z(Q)$ agrees with that of Cowley and Woods near the roton, i.e., $Z(Q = 2 \text{ Å}^{-1}) = 0.93$ at SVP. At higher pressures, the same scaling factor was used, but corrected for the density ratio $\rho(P)/\rho(P = 0)$.

IV. EXPERIMENTAL RESULTS

A. Spectra at SVP and $P = 24$ bars in a large dynamic range

Our comprehensive results on the dynamic structure factor $S(Q, \omega)$ at SVP and $P = 24$ bars are shown in...
The spectrum measured at $E_i=3.55$ meV is represented; outside its useful kinetic range, the data at $E_i=5.11$ meV are added, then the data at $E_i=8.00$ meV and finally, the data at $E_i=20.45$ meV.

The constant wave vector scans presented in Fig. 3 obtained as particular “cuts” of Fig. 1 provide a complementary perspective on the data. The phonon-roton single-excitation mode is very narrow at the scale of Figs. 1 and 3 and the observed width is essentially a measure of the experimental energy resolution (with the remarkable exception of the maxon at high pressures, which is discussed in the next section). The influence of a finite energy resolution is clearly seen in Fig. 1 as a width discontinuity in the Pitaevskii plateau among different neutron energies. It is important to note, however, that the experimental broadening effects are negligible in all the multi-excitation region investigated in the present work (except at the end of the Pitaevskii plateau).

Merging data measured with different resolutions has been successfully achieved, judging from the remarkable continuity in intensity between the different regions represented in Fig. 1. This is essentially due to the fact that the sharpest multi-excitations are found in the low energy and low wave vector sector, adequately covered by our high resolution data at $E_i=3.55$ and 5.11 meV. Conversely, the spectra in the quasi-free particle region, at high energies and wave-vectors, are intrinsically broad, and adequately covered by our data at 8.00 and 20.45 meV, in spite of their lower resolution. Using optimized incident neutron energies reveals the complete evolution of the system, characterized by several multi-excitation branches merging progressively at high wave vectors to form a broad but rather intense feature. Intensity in this region was observed in early studies, but the data where either strongly truncated or measured with low resolution. This feature finally becomes, after a strong oscillation, a less intense branch progressively approaching the free particle parabolic dispersion.

B. High resolution spectra as a function of pressure

We present in this section the spectra obtained using an incident neutron energy of $E_i=3.55$ meV, for wave vectors up to $Q = 2.5$ Å$^{-1}$ and energies up to $\omega=2.22$ meV. The results are shown in Fig. 4(a), where we represent our earlier data at 5 and 10 bars, and the data at $P = 24$ bars discussed in the previous section. One can readily note that both the single-excitation and the multi-excitation components of the dynamic structure factor are modified by the pressure.

Our results for the single-excitations dispersion measured at several pressures, shown in Fig. 4a, are in excellent agreement with previous works. The roton parameters at each pressure have been obtained from fits of the single-excitations dispersion relation $\epsilon_Q(Q)$ to the expression

$$\epsilon_Q = \Delta_R + \frac{\hbar^2}{2m \mu_R} (Q - Q_R)^2 + b(Q - Q_R)^3 + c(Q - Q_R)^4,$$

where Δ_R is the roton energy gap, Q_R the wave vector at the roton minimum, and μ_R the roton effective mass; b and c are additional adjustable parameters. Fits were...
made over a total wave vector range ΔQ up to 0.47 Å$^{-1}$. Due to the large number of individual detectors and the high neutron rate of IN5, the statistical uncertainty of the fits is very good (see Table I). The roton mass determined in our work is lower than the one obtained by Andersen et al21,22 using a parabolic fit of the roton minimum, but it agrees well with earlier measurements19 where the parabolic fit was limited to a very narrow wave vector range.

A similar analysis can be performed in the maxon region. The corresponding maxon parameters Δ_M, Q_M and μ_M (d and e are additional adjustable parameters) have been calculated by fits of ϵ_Q in the maxon region, over a wave vector range ΔQ on the order of 0.8 Å$^{-1}$, to

FIG. 4. (a) $S(Q, \omega)$ of superfluid 4He measured as a function of wave vector and energy transfer, at $P = 0$, 5, 10 and 24 bars and temperature $T \leq 100$ mK. The incident neutron energy is $E_i=3.55$ meV. (b) Dynamic many-body theory calculation of $S(Q, \omega)$ at corresponding densities ($n=0.0215$, 0.0230, 0.0240 and 0.0255 Å$^{-3}$, see text). Note that the main features of the experimental data are well reproduced. The color-coded intensity scale is in units of meV$^{-1}$. The intensity is cut off at 1 meV$^{-1}$ in order to emphasize the multi-excitation region. The apparent width of the phonon-roton excitations in the experimental plot is due to an energy resolution of 0.07 meV, while the calculated phonon-roton dispersion curve has been highlighted by a thick red line.

FIG. 5. a) Dispersion relation $\epsilon_Q(Q)$ of the single-excitations measured at 0, 5, 10 and 24 bars. Note the flattening of the curve at the maxon at high pressures. b) The wave vector dependence of the measured width (FWHM) of the single-excitation peaks. The measured width reflects the shape of the experimental resolution ellipsoid cut by the dispersion relation curve at different angles. At 24 bars, however, a physical broadening of the maxon is clearly observed.

P (bars)	Δ_R (meV)	Q_R (Å$^{-1}$)	μ_R
0	0.7416(10)	1.9260(2)	0.1240(4)
5.01(2)	0.7143(10)	1.9655(2)	0.1096(4)
10.01(2)	0.6885(10)	1.9963(2)	0.1000(4)
24.08(2)	0.6254(10)	2.0579(2)	0.0879(4)

TABLE I. Roton energy gap Δ_R, wave vector of the roton minimum Q_R and roton effective mass μ_R: values in parenthesis are one standard deviation errors from least-squares fits described in the text.
the formula:

$$\epsilon_Q = \Delta_M - \frac{\hbar^2}{2m\mu_M} (Q - Q_M)^2 + d(Q - Q_M)^3 + e(Q - Q_M)^4.$$

(3)

The results are given in Table II.

P (bars)	Δ_M (meV)	Q_M (Å^{-1})	μ_M	2Δ_R
0	1.1966(10)	1.1073(2)	0.492(1)	1.483(20)
5.01(2)	1.2422(10)	1.1089(3)	0.541(1)	1.4286(20)
10.01(2)	1.2668(10)	1.1150(3)	0.614(2)	1.3777(20)
24.08(2)	1.2662(10)	1.1336(4)	0.915(3)	1.2508(20)

TABLE II. Maxon energy Δ_M, wave vector Q_M and effective mass μ_M; values in parenthesis are one standard deviation errors from least-squares fits described in the text. The last column gives twice the energy of the roton gap $2\Delta_R$, for comparison with the value of Δ_M.

As expected for a system approaching localization, the phonon and the maxon energies increase steadily with pressure, while the energy of the roton minimum decreases. The single-excitation data of Fig. 3 clearly show in addition a substantial flattening at the level of the maxon in the dispersion curve corresponding to a pressure of 24 bars. Earlier results at this pressure did not detect this effect, while more recent systematic results by Gibbs et al. were limited to pressures below 20 bars. The data at 24 bars are qualitatively different from those at low pressures because the maxon energy exceeds twice the roton energy. At high pressures, the maxon excitation can therefore decay by phonon emission, exactly as in the case of higher wave vectors, at the Pitaevskii’s plateau.

We also observe the corresponding broadening of the maxon single-excitation (Fig. 3): the measured maxon total width of 0.012 meV, obtained after subtraction of the instrumental resolution, is substantially compared to typical phonon and roton widths (see Ref. [42] and references therein). The excitations in the maxon region broaden until they become unobservable in confined helium, where very high pressures can be reached before solidification.

We now concentrate on the multi-excitation region, shown in Fig. 1(a), which displays highly structured spectra for all pressures. The data for the pressures 5 and 10 bars are qualitatively similar to our previous results at saturated vapor pressure [29]. The high resolution spectra display very clearly a threshold in energy at about 1.5 meV. This feature, which corresponds to the decay of an excitation into a pair of rotons, depends on pressure, since the roton energy depends on pressure. In addition, we observe several well-defined multi-excitation branches displaying substantial dispersion. Their gradual evolution reflects, as will be shown in section VI, the change with pressure of the single-excitation dispersion.

We also observe important qualitative changes at high pressures. We examine first the multi-excitation region of the “ghost-phonon”. This multi-phonon excitation, observed in our previous work, appears as a linear extension of the phonon branch [29]. We observe in the present work that the ghost-phonon intensity strongly decreases with pressure until it disappears at some pressure below 24 bars.

We also see very clearly in Fig. 1(a) a multi-phonon region just above the roton branch for wave vectors of the order of 2.2 to 2.4 Å^{-1}. The high resolution spectra at $E_i=3.55$ meV only show part of this multi-excitation region, but the results have been completed by spectra taken at $E_i=5.11$ meV at SVP and 24 bars, shown in Fig. 1. The intensity of these multi-excitations, described in detail in Section VI C, decreases strongly with pressure, behaving similarly as the ghost-phonon.

The multi-excitation spectra are strongly modified at high pressures, as the maxon enters the multi-excitations continuum. Fig. 4 shows that substantial intensity develops at this pressure for energies just above the maxon. Similar effects were also observed by Graf et al. [32], Talbot et al. [33], and by Gibbs et al. [27] at a lower pressure (20 bars). The present data benefit from a sharper resolution, as can be seen by directly comparing spectra at $Q \approx 1 \text{Å}^{-1}$ around the maxon peak.

All these effects will discussed in detail in section VI in the context of a comparison with theoretical calculations.

V. CALCULATIONS WITH THE DYNAMIC MANY-BODY THEORY

We present in this section our calculations of the dynamic structure factor of superfluid 4He at zero temperature obtained within the Dynamic Many-Body theory [36].

A. State of the art of Theory

Theoretical studies of the dynamic structure function in 4He began with the work of Feynman [47] and Feynman and Cohen [48]. The Feynman theory of elementary excitations was developed in a systematic Brillouin-Wigner perturbation theory by Jackson and Feenberg [49]. An important contribution was the identification of classes of theories for the dynamic structure function [44] that satisfy the ω^0 and ω^1 sum rules exactly.

The most complete evaluation of the phonon-roton dispersion relation in terms of Brillouin-Wigner perturbation theory was carried out by Lee and Lee [45] who obtained an impressive agreement with the experimental phonon-roton spectrum up the wave vector of 2.5 Å^{-1}. The major drawback with these early calculations was that the required input, pair and three-body distribution functions, were poorly known.

Manousakis and Pandharipande [50,51] used input states of the Brillouin-Wigner perturbation theory including “backflow” correlations in the spirit of Feynman and Cohen. Through the gradient operator acting on the wave...
function, specific dynamic correlations are introduced to all orders. The “backflow-function” is, however, chosen per physical intuition rather than by fundamental principles, and the evaluation of the perturbative series becomes very complicated. Topologically, diagrams similar to those of Lee and Lee were included. While the accuracy of the theoretical roton energy is comparable to that of Lee and Lee, one can clearly see an inconsistency since the energy of the Pitaevskii plateau lies below twice the energy of the roton gap.

The first theoretical descriptions of the multi-excitation were qualitatively in agreement with the early multi-excitation data. The simplest version of Correlated Basis Functions theory produces phonon, maxon and roton modes, as well as multiphonons. In this approximation, the calculated multi-excitation decay into Feynman modes instead of the correct single-excitations; large gaps are found in the spectrum, and many predicted features are not seen in the experiments. Other features calculated in the multi-excitation region do indeed survive in recent theories, like the presence of intensity above the phonon branch and that of a well-defined 2-roton threshold (these effects are described below). These calculations, as well as many others addressing specific aspects of the multi-excitation dynamics, could not be quantitatively compared to the experimental results, but they motivated further investigations on multi-particle dynamics. Reviews can be found in Refs. 4 and 5.

More recent calculations used a hybrid approach of Brillouin-Wigner perturbation theory and equations of motion for time-dependent multi-particle correlation functions to derive a self-consistent theory of the dynamic density-density response of 4He. The self-consistency of this semi-analytic method allows the identification of mode-mode coupling processes that lead to observable features in the dynamic structure function. The underlying physical mechanisms, their relationship to the ground state structure, and the consequences on the analytic properties of the dynamic structure function, emerge directly from the theory.

A very different approach involves novel numerical methods that give access to dynamic properties of quantum fluids. These important algorithmic developments will reproduce, extend and complete the experimental data with the future development of computing power; their present accuracy and consistency, however, are still limited in the multi-excitations region investigated here.

B. Dynamic Many-Body Theory calculation

In order to calculate quantitatively both the single-excitation and the multi-excitation response, our calculations include up to three-body dynamic fluctuations in the correlation functions of the equations of motion. We derive the self-consistent density-density response of 4He $\chi(Q,\omega)$, expressed as

$$\chi(Q,\omega) = \frac{S(Q)}{\omega - \Sigma(Q,\omega)} + \frac{S(-Q)}{-\omega - \Sigma(-Q,-\omega)}$$

where $S(Q)$ is the static structure factor, and the self-energy $\Sigma(Q,\omega)$ is determined by the integral equation

$$\Sigma(Q,\omega) = \epsilon_0(Q) + \frac{1}{2} \int \frac{d^3p d^3k}{(2\pi)^3} \delta(Q - \vec{p} - \vec{k}) \left(|V^{(3)}(\vec{Q},\vec{p},\vec{k})|^2 \frac{1}{\omega - \Sigma(p,\omega - \epsilon_0(\vec{k})) - \Sigma(\vec{k},\omega - \epsilon_0(\vec{p}))} \right).$$

In this expression, $\epsilon_0(Q)$ is the Feynman dispersion relation, and $V^{(3)}$ the three-body coupling matrix element. The simplest approximation for $V^{(3)}$, the so-called convolution approximation including static ground state triplet correlation, improves the density-dependence of the roton minimum visibly. The most advanced calculation which is taken here and in Ref. 9 sums an infinite series of diagrams, the so-called “fan-diagrams” which is the minimum set of diagrams that must be included to reproduce exact features of $V^{(3)}$ for both, long wavelength and short distances.

Linear response theory provides the relation between the experimental dynamic structure factor and the dynamic susceptibility calculated by the theory described above: the dynamic structure factor $S(Q,\omega)$ is proportional to the imaginary part of the dynamic susceptibility $\chi(Q,\omega)$, the linear response of the system to a density fluctuation.

Full maps of $S(Q,\omega)$ have been calculated for different atomic densities, see Fig. 10 in Ref. 9. The data shown in Figs. 1 and 2 correspond to $n = 0.0215, 0.0230, 0.0240$ and 0.0255 A^{-3}, values which provide the best overall agreement with the experiment. They turn out to be very close to the experimental results for $P = 0, 5, 10$ and 24 bars, $n_{\text{exp}}=0.0218, 0.0230, 0.0239$ and 0.0258 A^{-3}. The small shift in density is within the expected accuracy of the theoretical calculations.

The calculations presented here have been performed using only the most relevant diagrams. This approximation is sufficient to provide an excellent description of the dynamics, but minor discrepancies can still be seen. The most salient effect is that the roton energy is overestimated; at zero pressure, for instance, the calculated value is 0.83 meV while the measured value is 0.7416(10) meV. This discrepancy could be resolved by including additional diagrams, but it does not seem necessary to perform such a tedious calculation given the quality of the agreement already achieved at this stage.

The calculation provides absolute values for the structure factor. In our previous work the calculated values were multiplied by an overall normalization factor of 1.28 in order to have $Z(Q = 2 \text{ A}^{-1}) = 0.93$ near the roton. Here, this normalization has not been applied. Given the finite number of diagrams involved in the calculations, a
factor of this order is within their estimated absolute accuracy.

C. Mode-mode coupling

Multi-excitations arise from the enhanced response of the system at particular energies and wave vectors corresponding to two or more single-excitations into which they can decay. The theory considers (see equation 5) the most relevant processes where a density fluctuation \(\vec{Q}, \omega \) of wave vector \(\vec{Q} \) and energy \(\omega \) decays into a pair of single-excitations with corresponding values \((\vec{p}, \omega_p) \) and \((\vec{k}, \omega_k) \). The calculations have been shown to be in excellent agreement with experiment at saturated vapor pressure. Here we investigate the general pressure dependence of the dynamics, and several particularly intense mode-mode couplings. The latter were examined theoretically in Ref. 9, and additional calculations specialized to the main mode-mode couplings (phonon-phonon, phonon-roton, roton-roton, maxon-roton) can be found in Ref. 58. The next section provides a detailed comparison between the theory and the experimental data.

VI. IDENTIFICATION OF THE MULTI-EXCITATIONS

Above the sharp and intense phonon-maxon-roton dispersion curve, we observe a highly-structured multi-excitation region. Multi-excitations are relatively strong if they can decay into a pair of high intensity single-excitation modes. The energy and momentum of these pair combinations is directly related, by the conservation of energy and momentum, to those of the underlying elementary excitations. It is possible to determine the position of the main multi-excitation resonances in the dynamic structure factor map (2-Phonons, 2-Rotons, 2-Maxons and Maxon-Roton) from pure kinematic considerations, i.e. energy and momentum conservation. The challenge for microscopic theories is to predict the intensity of the multi-excitation spectrum, if possible in a large dynamic range. Obtaining the fine structure we observe requires a quantitative calculation of mode couplings.

We first present in this Section a brief description of the kinematic constraints for different pair-excitations, setting the framework for their identification. The following subsections concentrate on new features observed in the multi-excitation spectrum, that we named “ghost-phonon” and “ghost-roton”. We then describe a different type of multi-excitations, associated to roton-roton coupling, which we observed in particular “above the maxon” and “beyond the roton”. We conclude this Section by a discussion on higher order multi-excitations, and the progressive evolution to the high energy regime.

A. Kinematic constraints for pair-excitations

The kinematic constraints calculated for the main low energy multi-excitations are shown in Fig. 6. We use below the notation R− and R+ to distinguish rotons on each side of the roton minimum.

The allowed regions are necessarily located above the single-excitations dispersion curve. The P-P region is found at low wave vectors. Beyond the maxon, P-R− excitations are allowed in a large region delimited by the dispersion curve and two lines starting at the maxon maximum and at the roton minimum, with slopes equal to \(-c\) and \(+c\), respectively, where \(c\) is the speed of sound. P-R+ excitations occupy a region delimited by the dispersion curve and a line starting from the roton minimum with slope \(-c\). There is a large overlap with the P-R− region.

The case of 2R, not shown, is particularly simple, with a threshold at twice the roton energy, \(2\Delta_R\). The situation for 2M processes is similar, with an upper limit equal to \(2\Delta_M\). M-R combinations of excitations may lead to branches with substantial dispersion. The kinematic constraints are sufficient to determine unambiguously which are the dominant processes in some multi-excitations regions, in particular at low Q above the phonon dispersion, and inside the roton parabolic dispersion curve.

The evolution of the observed multi-excitations in a large energy range, for different pressures, is illustrated in Figs. 1 and 4. We can distinguish different types of multi-excitations. Several narrow branches are easily identified, as indicated in Fig. 4 as corresponding to 2P, 2R, 2M and M-R processes. The 2R feature is observed in Fig. 4 as a clear threshold, both in the theoretical and experimental data.
FIG. 7. Map of $S(Q, \omega)$ at SVP identifying remarkable mode-mode coupling regions: phonon-phonon (2P, with an ellipse around the “ghost-phonon”), phonon-roton (P+R, a region marked by a triangle, which includes an ellipse indicating more specifically a high-intensity “ghost-roton” region), roton-roton (2R, marked by a rectangle around 1.5 meV), and at higher energies the roton-maxon (R+M) and maxon-maxon (2M) regions. The description of the different lines is given in Fig. 4.

B. Phonon-phonon coupling: the ghost-phonon

The ghost-phonon [9,30] (see Section IV B and Fig. 7) corresponds to a process where a high energy multi-excitation decays into a pair of phonons of lower energy. In the case of phonon single-excitations, anomalous dispersion opens the phase space needed for such processes. The anomalous character of the phonon dispersion strongly decreases with increasing pressure, and normal dispersion is recovered at high pressures [4,17,59,60]. The ghost-phonon intensity follows this trend: the pressure dependence is strong, and the ghost-phonon is clearly suppressed at $P = 24$ bars, as shown in the experimental and theoretical results in Fig. 4, and in more detail in Fig. 8.

Cuts of $S(Q, \omega)$ at several wave vectors at the ghost-phonon level are presented for $P=0$, 5 and 10 bars in Fig. 9. The ghost-phonon peaks for the different wave vectors are clearly located on the extension of the linear part of the phonon branch. According to the calculations [see Eq. (6.4) of Ref. 9], the ghost-phonon remains visible until twice the wave vector up to which the dispersion relation is to a good approximation linear. Indeed, Fig. 9 shows that the energy, strength and shape of the calculated ghost-phonon are in excellent quantitative agreement with the experiment at all pressures.

FIG. 8. Left: measured dynamic structure factor $S(Q, \omega)$ in the ghost-phonon region at $P = 0$, 5, 10 and 24 bars. The dashed straight lines correspond to the sound dispersion curve at each pressure, taken from direct measurements of the sound velocity [61]. Right: calculated dynamic structure factor at corresponding densities, $n = 0.0215$, 0.0230, 0.0240 and 0.0255 Å$^{-3}$, respectively (see text). The dashed straight lines correspond to the calculated sound velocities. The color-coded intensity scale is in units of meV$^{-1}$.

C. Phonon-roton coupling and the emergence of the ghost-roton

One notes in Fig. 4 for all pressures, the presence of substantial intensity in the region within the roton parabola. Near the roton minimum, where P-R processes are expected to dominate, we observe that the intensity is not symmetric with respect to the roton minimum wave vector Q_R: a faint branch, clearly related to the kinematic limitation for P-R$^+$ processes (see Fig. 6) is seen
for $Q < Q_R$, while a strong branch is formed just above the dispersion curve for $Q > Q_R$. These new features, and in particular the one for $Q > Q_R$, provide a significant contribution to the multi-excitations weight at low pressures (Fig. 10). They appear as an extension of the roton parabolic dispersion towards higher energies, and by analogy with the ghost-phonon, we call these multi-excitations “ghost-rotons”.

It is remarkable that the intensity in this region of the P-R multi-excitations, as was the case for the ghost-phonon, is high at $P = 0$, but is suppressed in the 24 bars data, as shown in Figs. 10, 11 and 12. The origin of these effects is discussed below.

Spectra for several wave vectors in the region of the ghost-roton are shown in Fig. 12 at $P = 0$ and 24 bars (experiment), and in Fig. 13 for the corresponding densities $n = 0.0215$ and 0.0255 Å$^{-3}$ (theory). We observe a good agreement between theory and experiment, even at the highest densities, near solidification. Studies of mode-mode couplings can therefore be most conveniently performed in the ghost phonon and the ghost-roton regions, rather than looking for a very small broadening of single excitations.

Pitaevskii described the decay of single-excitations when their group velocity reaches the velocity of sound. He named this mechanism of single-excitation broadening “type a”. The process considered here, however, is the emission of phonons by multi-excitations in the vicinity of nearly supersonic single-excitations. The generation of multi-excitations by neutron scattering in the R$^+$ rotons region by this mechanism was qualitatively predicted by Burkova. Here we show that the ghost-roton corresponds to this effect, that the ghost-phonon is a similar effect, involving supersonic phonons, and that both are correctly predicted by the Dynamic Many-Body Theory.

It has been observed by Dietrich et al. and confirmed by several groups (see and references therein) that the R$^+$ rotons group velocity reaches the sound velocity for $Q \approx 2.2$ Å$^{-1}$ at low pressures, but remains below the speed of sound near the melting pressure. We show in Figs. 14 and 15 our measured and calculated curves for the group velocity of the single-excitations, for different pressures. Two regions of interest are clearly seen: the first one, at low wave vectors, corresponds to the anomalous dispersion region and gives rise to the ghost-phonon, while the second occurs for wave vectors somewhat above that of the roton minimum (and slightly below the roton

FIG. 9. Dynamic structure factor $S(Q, \omega)$ in the ghost-phonon region: spectra for different wave vectors Q at (a) $P = 0$ bar, (b) $P = 5$ bars and (c) $P = 10$ bars. Filled circles: Experimental $S(Q, \omega)$. Theoretical dynamic structure factor spectra shown as solid lines at densities $n = 0.0215$, 0.0230 and 0.0240 Å$^{-3}$. Dashed lines: Intensity of the phonon-roton mode (cut off) calculated directly from the self energy and convolved with the instrumental resolution of 0.07 meV. The blue lines represent the linear phonon dispersion $\epsilon_Q(P)/\hbar Q = C_0(P)$, where $C_0(P)$ is the sound velocity at a given pressure.

FIG. 10. Theoretical and experimental results for $S(Q, \omega)$ at saturated vapor pressure displaying enhanced multi-excitations (“ghost-rotons”) above the R$^+$ roton branch, in the supersonic rotons region. The dashed lines represent the limits of different neutron kinetic ranges, see Fig. 1. The small oscillations observed along some contours should be disregarded, they result from numerical discretization.
FIG. 11. Theoretical and experimental results for $S(Q, \omega)$ at $P = 24$ bars. A comparison with Fig. 10 shows that at high pressures, ghost-roton multi-excitations are strongly suppressed. They are masked by the finite energy resolution in the experimental graph, but still visible in the calculation.

minimum, but with a much smaller intensity), producing the ghost-roton.

According to the analytic calculations by Burkova, the neutron-scattering spectrum which corresponds to the production of one roton should have a linear wing on the high-energy side, with a slope which depends on the wave vector. This is not really observed, neither in the experimental data, nor in the Dynamic Many-Body calculation: the linear part, if any, is probably not visible at the scale of the graphs (see Figs. 10, 11, 12 and 13), or is buried inside a broadened single-excitations branch.

Several effects are thus observed when the roton single-excitations approach the speed of sound: a broadening of the roton branch, a downward bending of the dispersion curve, and the appearance of a multi-phonon region just above the distorted dispersion curve. These effects are large at low pressures; the rapid increase of the sound velocity with pressure is responsible for the suppression of the ghost-roton multi-excitations at 24 bars.

D. Roton-roton coupling

We discuss now a different type of multi-excitations, related to Pitaevskii’s “type b” single-excitations decay processes where the disintegration of a single-excitation occurs as its energy exceeds twice the roton gap.

At high pressures, the maxon energy exceeds twice the roton gap, and a maxon can decay into two rotons. We described in Section IV B the broadening of the maxon as it enters the continuum. At 24 bars, the maxon is in the continuum of the multi-excitations for wave vectors...
between \(Q = 0.8 \) and \(Q = 1.5 \ \text{Å}^{-1} \). Under these conditions, a strong multi-excitation intensity is observed above the maxon (Figs. 16 and 17). The very characteristic “rainbow-like” measured spectrum is in very good agreement with the theoretical calculation, showing in particular that the weight of the maxon is transferred to the two-roton excitations.

The multi-excitations discussed above, observed above the maxon at high pressure, are a special case of roton-roton decay. In fact, a sharp roton-roton threshold is observed at all wave vectors (Figs. 11 and 13), in regions located far from single-excitations. The roton-roton threshold is, in particular, observed at low \(Q \) in the present work. It is also clear, in fact, that the intensity of the RR threshold is enhanced in the vicinity of single-excitations, as was the case above the maxon at 24 bars, but also in the region above the Pitaevskii plateau. Theory and experiment display a similar shape of the spectra and intensity pattern around the roton-roton threshold, at all pressures (see Figs. 11 and 13).

E. Higher order multi-excitations

The sharp “branches” described above correspond to decay mechanisms into 2-excitations. Phase-space arguments show that the signal of higher order processes will be distributed in a rather featureless way in the energy-wave vector space, due to the vector addition of momenta. However, the data of Fig. 14 show that the multi-excitations region at wave vectors on the order of 1.5 \(\text{Å}^{-1} \) extends to rather high energies, on the order of 4 meV. This last value constitutes a clear experimental demonstration that multi-excitations of higher order, related to 3 and 4 single-excitations (the energy of rotons and maxons is on the order of 1 meV), play a significant role in the dynamics of superfluid \(^4\text{He}\).

One can also examine the corresponding effect on the wave vector axis, beyond the end-point of the Pitaevskii plateau. The plateau could be expected to end at \(2Q_R \), for a multi-excitation of energy \(2\Delta_R \) decaying into two rotons of colinear wave vectors. Previous measurements have found that the plateau intensity vanishes at \(Q = 3.6 \ \text{Å}^{-1} \), considerably below \(2Q_R = 3.84 \ \text{Å}^{-1} \). This is also observed in the present work, as seen in Figs. 11 and 13. This effect has been attributed to the decay into two rotons with an attractive
R-R interaction[25], but other possible interpretations of the data are presently debated. We also note that the intensity does not extend to higher Q-values at higher energies as expected for decays into 3- and 4-excitations processes, an effect which is probably related to the small phase-space available for colinear combinations of wave vectors. As discussed above, the energy, a scalar, is a better probe for detecting high order multi-excitation processes. The data at 24 bars display similar effects with a simple shift towards higher wave vectors, due to the larger value of $Q_R=2.06 \text{Å}^{-1}$ at this pressure.

We now concentrate on the multi-excitations region located slightly below the free-particle dispersion curve, around 2.5Å^{-1} (see Fig. 1). Earlier studies[22,35,67] observed a rather intense broad feature extending to higher energies. We find here a much finer structure than previously believed, and also that it depends rather strongly on the pressure. Multi-excitations in this region can only decay into 3 or more single-excitations, which is therefore of interest for mode-mode coupling theories. The fact that we observe a high intensity peak is probably related, at these relatively high energies, to an enhanced system response in the vicinity of the free-particle dispersion curve, which is the asymptotic behavior at higher energies. The peak at 24 bars is less intense than the corresponding one at SVP, suggesting that the maxon, strongly reduced at this pressure, is involved in the corresponding decay processes.

Finally, at the highest energies explored here, $S(Q, \omega)$ progressively converges towards the free-particle parabola, remaining below it (see Fig. 1). The so-called "glory" oscillations seen as a function of Q, both in the peak position and the width, are well documented in the
VII. CONCLUSION

A comprehensive understanding of the dynamics of interacting Bose systems, going from the Landau quasiparticles and multi-excitations regimes, up to the high-energy limit where the independent particle dynamics is recovered, emerges from our combined experimental and theoretical work. The up-to-now largely unexplored multi-excitations regime has been systematically investigated. Ghost-phonon and ghost-roton regimes have been observed, associated to phonon emission in the region of nearly supersonic multi-excitations, by a Cherenkov-like process qualitatively predicted by Burkova’s extension of Pitaevskii’s theory. Several other multi-excitation branches or thresholds have been observed and identified in the low energy sector, where an excellent quantitative agreement is found with the predictions of the Dynamic Many-Body theory. This agreement extends even to high pressures, near solidification, as shown for example for the remarkable case of the maxon disintegration into two rotons. The calculations including specific multiparticle fluctuations to all orders provide a good description of the dynamics for energies as high as 2 meV. Above this value, higher order processes dominate the dynamics. Our high energy/wave vector data call for further theoretical developments able to describe quantitatively the behavior observed at higher energies, above the simple multi-excitations region but still substantially below the quasi-free particle (impulse-approximation) sector.

VIII. ACKNOWLEDGEMENTS

We are grateful to X. Tonon for his help with the experiments. This work was supported, in part, by the Austrian Science Fund FWF grant 1602, the French grant ANR-2010-INTB-403-01, the European Community Research Infrastructures under the FP7 Capacities Specific Programme, Microkelvin project number 228464, and the European Microkelvin Platform.

1 D. Pines and P. Nozières, The Theory of Quantum Liquids (Addison-Wesley, Redwood City, CA, 1990).
2 A. J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford University Press, 2006).
3 L. Landau, J. Phys. (Moscow) 11, 91 (1947).
4 H. Glyde, Excitations in Liquid and Solid Helium, Oxford Series on Neutron Scatt (Clarendon Press, 1994).
5 A. Fabrocini, S. Fantoni, and E. Krotscheck, eds., Introduction to Modern Methods of Quantum Many-Body Theory and their Applications, Advances in Quantum Many-Body Theory, Vol. 7 (World Scientific, Singapore, 2002).
6 C. E. Campbell and E. Krotscheck, Phys. Rev. B 80, 174501 (2009).
7 E. Vitali, M. Rossi, L. Reatto, and D. E. Galli, Phys. Rev. B 82, 174510 (2010).
8 A. Roggero, F. Pederiva, and G. Orlandini, Phys. Rev. B 88, 094302 (2013).
9 C. E. Campbell, E. Krotscheck, and T. Lichtenegger, Phys. Rev. B 91, 184510 (2015).
10 G. Ferré and J. Boronat, Phys. Rev. B 93, 104510 (2016).
11 W. Dmowski, S. Diallo, K. Lokshin, G. Ehlers, G. Ferré Porta, J. Boronat, and T. Egami, Nature Comm. 8, 1 (2017).
12 E. Krotscheck, J. Low Temp. Phys. 119, 103 (2000).
13 H. M. Böhm, R. Höller, E. Krotscheck, and M. Panholzer, Phys. Rev. B 82, 224505 (2010).
14 H. Godfrin, M. Meschke, H.-J. Lauter, A. Sultan, H. M. Böhm, E. Krotscheck, and M. Panholzer, Nature 483, 576 (2012).
15 M. Nava, D. E. Galli, S. Moroni, and E. Vitali, Phys. Rev. B 87, 144506 (2013).
16 M. C. Gordillo and J. Boronat, Phys. Rev. Lett. 116, 145301 (2016).
17 H. R. Glyde, Rep. Prog. Phys. 81, 014501 (2018).
18 P. W. Anderson, Concepts in Solids: Lectures on the Theory of Solids, Vol. 58 (World Scientific, 1997).
19 A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Courier Corporation, 2012).
20 R. Donnelly, J. Donnelly, and R. Hills, J. Low Temp. Phys. 44, 471 (1981).
21 P. Pitaevskii, Sov. Phys. JETP 9, 830 (1959).
22 R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).
23 E. C. Svensson, P. Martel, V. F. Sears, and A. D. B. Woods, Can. J. Phys. 54, 76 (1976).
24 K. Andersen, W. Stirling, R. Scherm, A. Stunault, B. Fåk, H. Godfrin, and A. Dianoux, Physica B: Condensed Matter 180, 851 (1992).
25 K. Andersen, W. Stirling, R. Scherm, A. Stunault, B. Fåk, H. Godfrin, and A. Dianoux, Journal of Physics: Condensed Matter 6, 821 (1994).
26 R. Crevecoeur, H. Smorenburg, I. deSchepper, W. Montfrooij, and E. Svensson, Czechoslovak Journal of Physics 46, 257 (1996).
27 M. R. Gibbs, The Collective Excitations of Superfluid 4 He: the Dependence on Pressure and the Effect of Restricted Geometry, Ph.D. Thesis (Keele University, 1996).
M. R. Gibbs, K. H. Andersen, W. G. Stirling, and H. Schober, Journal of Physics: Condensed Matter 11, 603 (1999).

M. R. Gibbs, W. G. Stirling, K. H. Andersen, and H. Schober, J. Low Temp. Phys. 120, 55 (2000).

K. Beauvois, C. E. Campbell, J. Dawidowski, B. Fäk, H. Godfrin, E. Krotscheck, H.-J. Lauter, T. Lichtenegger, J. Ollivier, and A. Sultan, Phys. Rev. B 94, 024504 (2016).

T. R. Prisk, M. S. Bryan, P. E. Sokol, G. E. Granroth, S. Moroni, and M. Boninsegni, J. Low Temp. Phys. 189, 158 (2017).

O. W. Dietrich, E. H. Graf, C. H. Huang, and L. Passell, Phys. Rev. A 5, 1377 (1972).

E. H. Graf, V. J. Minkiewicz, H. B. Møller, and L. Passell, Phys. Rev. A 10, 1748 (1974).

W. G. Stirling, in Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids edited by A. F. G. Wyatt and H. J. Lauter (Springer US, 1991) pp. 25–46.

J. V. Pearce, R. T. Azuah, B. Fäk, A. R. Sakhel, H. R. Glyde, and W. G. Stirling, Journal of Physics: Condensed Matter 13, 4421 (2001).

E. Manousakis and V. R. Pandharipande, Phys. Rev. B 30, 5062 (1984).

LAMP, http://www.ill.fr/data_treat/lamp/lamp.html.

J. Dawidowski, F. J. Bermejo, and J. R. Granada, Phys. Rev. B 58, 706 (1998).

J. Dawidowski, J. Santisteban, and J. Granada, Physica B: Condensed Matter 271, 212 (1999).

V. F. Sears, Adv. Phys. 24, 1 (1975).

A. Woods, P. Hilton, R. Scherm, and W. Stirling, Journal of Physics C: Solid State Physics 10, L45 (1977).

T. Keller, K. Habicht, R. Golab, and F. Mezei, EPL (Europhysics Letters) 67, 773 (2004).

P. Nozières, J. Low Temp. Phys. 137, 45 (2004).

J. V. Pearce, J. Bossy, H. Schober, H. R. Glyde, D. R. Daughton, and N. Mulders, Phys. Rev. Lett. 93, 145303 (2004).

J. Bossy, J. V. Pearce, H. Schober, and H. R. Glyde, Phys. Rev. Lett. 101, 025301 (2008).

E. F. Talbot, H. R. Glyde, W. G. Stirling, and E. C. Svensson, Phys. Rev. B 38, 11229 (1988).

R. P. Feynman, Phys. Rev. 94, 262 (1954).

R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).

H. W. Jackson and E. Feenberg, Rev. Mod. Phys. 34, 686 (1962).

H. W. Jackson, Phys. Rev. 185, 186 (1969).

H. W. Jackson, Phys. Rev. A 8, 1529 (1973).

H. W. Jackson, Phys. Rev. A 9, 964 (1974).

D. K. Lee and F. J. Lee, Phys. Rev. B 11, 4318 (1975).

E. Manousakis and V. R. Pandharipande, Phys. Rev. B 33, 150 (1986).

W. Götte and M. Lücke, Phys. Rev. B 13, 3825 (1976).

M. Boninsegni and D. M. Ceperley, J. Low Temp. Phys. 104, 339 (1996).

C. C. Chang and C. E. Campbell, Phys. Rev. B 13, 3779 (1976).

See Supplemental Material on mode-mode couplings at http://link.aps.org/supplemental/10.1103/PhysRevB.91.184510.

H. J. Maris and W. E. Massey, Phys. Rev. Lett. 25, 220 (1970).

H. J. Maris, Rev. Mod. Phys. 49, 341 (1977).

B. M. Abraham, Y. Eckstein, J. B. Keterson, M. Kuchnir, and P. R. Roach, Phys. Rev. A 1, 250 (1970).

B. Fäk, T. Keller, M. E. Zhitomirsky, and A. L. Chernyshev, Phys. Rev. Lett. 109, 155305 (2012).

A. Burkova, Sov. Phys. - JETP (Engl. Transl.); (United States) 54(2), 320 (1981).

B. Fäk and J. Bossy, J. Low Temp. Phys. 112 (1998).

H. R. Glyde, M. R. Gibbs, W. G. Stirling, and M. A. Adams, EPL (Europhysics Letters) 43, 422 (1998).

F. Pistolesi, Phys. Rev. Lett. 81, 397 (1998).

B. Fäk and K. Andersen, Physics Letters A 160, 468 (1991).

K. H. Andersen, W. G. Stirling, and H. R. Glyde, Phys. Rev. B 56, 8978 (1997) and references therein.