A superconducting quantum interference device (SQUID) comprising 0- and Ψ-Josephson junctions (JJs), called 0-π-SQUID, is studied by the resistively shunted junction model. The π-SQUID shows half-integer Shapiro-steps (SS) under microwave irradiation at the voltage V = (Δ/2e)Ωn/2, with angular frequency Ω and half-integer n/2 in addition to integer n. We show that the π-SQUID can be a π-qubit with spontaneous loop currents by which the half-integer SS are induced. Making the 0- and Ψ-JJs equivalent is a key for the half-integer SS and realizing the π-qubit.

In this letter, we show that the π-JS** Quinnuq juction, Eq. (2), the equation of motion for phase differences φa and φb are given by,**

\[
\frac{dφ_a}{dτ} + \sin φ_a + \frac{1}{β}(φ_a - φ_b) = \frac{1}{2} \left[ib - \frac{4π φ_π - φ_α}{β φ_0}. \right]
\]

\[
\frac{dφ_b}{dτ} + \sin φ_b - \frac{1}{αβ}(φ_a - φ_b) = \frac{1}{2α} \left[ib + \frac{4π φ_π - φ_α}{β φ_0}. \right]
\]

where R′ = R0/β, RL ≡ RL/φ0, τ ≡ ω0t, β ≡ 2π/Ω/φ0, i ≡ IJ/φ0, iL ≡ IJ/Λ, and I′ ≡ IJ/φ0. As we will discuss later, one of the key parameters is α ≡ Jα/β, which indicates the asymmetry of two JJs.

By numerically solving Eqs. (6) and (7) for φ0 = 0, I−V curves with step structures are obtained as shown in Figs. 2.
Fig. 1. (Color online) Schematic of π-SQUID (upper) and the RSJ (lower) models.

Fig. 2. (Color online) (a) I–V curves with $\Omega/\omega_0 = 0.1$, $\beta = 1.0$, and $i_{ac} = 0.5$, for $\alpha = 1.0$ (red upper triangles), $\alpha = 0.8$ (blue lower triangles), and $\alpha = 0.6$ (purple circles). For clarity, the latter two curves are vertically shifted by $i_{ac} = 0.2$ and 0.4, respectively. The half-integer SS are suppressed by decreasing α, which is controlled by changing the ratio of junction areas, W_a and W_c. Making both Josephson coupling and resistance of two JJs equivalent is a key to observe the half-integer SS. In Fig. 2 (b) for $\alpha = 1$, I–V curves are plotted for $i_{ac} = 0.2$ and $\beta = 1.0$ (green circles), $i_{ac} = 0.5$ and $\beta = 1.0$ (red upper triangles), and $i_{ac} = 0.5$ and $\beta = 0.2$ (black crosses). The height of half-integer SS is enhanced by increasing i_{ac}, whereas it is suppressed by decreasing β. When β is small by decreasing the SQUID loop, the half-integer Shapiro steps can be observed by increasing the i_{ac}. β is estimated as $\beta \sim 1$ for $2.5 \times 2.5 \mu m^2$ loop and $J_0 \sim 70 \mu A$, meaning $L \sim 4.7$ pH. It satisfies the criteria to overcome the thermal noise, i.e. L must be less than about 20 nH at 4.2 K.

The half-integer SS can be understood using the following approximation. In the first order of β, i_B is given by

$$i_b \sim 4 \frac{\alpha}{1+\alpha} \left[\cos \left(\frac{\Phi_q - \Phi_0}{\Phi_0} \right) \sin \phi \right. + \left. \frac{\beta}{2} \frac{\alpha}{1+\alpha} \sin \left(\frac{\Phi_q - \Phi_0}{\Phi_0} \right)^2 \sin 2\phi \right],$$

where $\phi \equiv (\phi_a + \phi_b)/2$. Notably, the second term in Eq. (8) including “$\sin 2\phi$” is the origin of the half-integer SS. By applying a voltage $V(t) = V + \Omega \cos \Omega t$, $\phi = \phi(0) + at + b \sin \Omega t$ with $a = 2\pi V/\Phi_0$ and $b = 2\pi V/(\Phi_0 \Omega)$, i_B becomes

$$i_B \sim 4 \frac{\alpha}{1+\alpha} \text{Im} \left[\sum_k A e^{i\beta k} J_k(b) e^{i \left(a + k + 1 \right) \Omega t} \right. + \left. \frac{\beta}{2} \frac{\alpha}{1+\alpha} B^2 e^{2i\phi(0)} \sum_k J_k(2b) e^{i \left(2a + k + 1 \right) \Omega t} \right],$$

where $A \equiv \cos \left(\frac{\Phi_q - \Phi_0}{\Phi_0} \right)$, $B \equiv \sin \left(\frac{\Phi_q - \Phi_0}{\Phi_0} \right)$, and the kth order Bessel function $J_k(b)$. For the π-SQUID with $\Phi_c = 0$, the first term in Eq. (9) is zero because $\Phi_q/\Phi_0 = 1/2$. When V satisfies $V/(\Omega \Phi_0/2\pi) = k'/2$, the SS with a half-integer $k'/2$ and an integer $q(k' = 2q)$ appear with a DC-component, $2\beta [\alpha/(1+\alpha)]^2 J_2(b)$, for $\phi(0) = \pi/4$. Meanwhile, in the conventional SQUID with $\Phi_c = 0$, the second term in Eq. (9) is zero because $\Phi_q/\Phi_0 = 0$. Only integer SS appear at voltages of integer multiples of $V/(\Omega \Phi_0/2\pi) = k$ with a DC-component, $4[\alpha/(1+\alpha)] J_2(b)$, for $\phi(0) = \pi/2$.

The half-integer SS are explained by the onset of spontaneous current, leading to a flip-flop between two fluid states of the π-SQUID synchronized to the alternating field. It suggests that the present system can become a qubit. Equation (8) shows that the two potentials with ϕ and 2ϕ are convoluted similar to the ads-wave JJ. The half-integer SS and π-qubit are the two sides of the same coin. The potential energy of the π-SQUID $U(\phi_a, \phi_b)$ with Eq. (3) is given by
where $x \equiv \phi$, and $y \equiv (\pi/\Phi_0)\Phi$. The ground state is obtained by minimizing $f(x, y)$ with respect to y for a fixed x.

\[
\frac{\partial f(x, y)}{\partial y} \bigg|_{y=y_0} = -\cos(x + y_0) - \alpha \cos(x - y_0) + \frac{4}{\beta}y_0 = 0,
\]

by which y_0 is determined as a function of x, i.e., $y_0 = y_0(x)$. Equation (13) means that $f(x, y)$ is minimized with respect to Φ_{ex}, since we study the π-SQUID with two JJs shown in Fig. 1. To avoid Φ_{ex}, the minimization with respect to Φ_{ex} can be substituted by another Josephson phase including one more JJ in the π-SQUID, as discussed in the previous studies.\(^{28,31}\) Numerically solving Eq. (13), we find that $f(x, y_0(x))$ has the double minimum with respect to x as shown in Fig. 3. The right minimum corresponds to the current circulating state, whereas the left one has no circulating current. Similar to the previous case,\(^{30}\) the barrier height is suppressed by decreasing α, which coincides with the suppression of the half-integer SS. When the barrier height was zero, the stable state is $x = \pi/2$, which may be realized by setting the phase-lock to $\phi_b = \phi_0$ using Eqs. (3) and (4). In this case, the spontaneous loop current $I_a - I_b = 0$. Then, the SS appear at voltages with integer multiples. The two minima correspond to the clockwise and anticlockwise loop currents in addition to the π-shift because of the π-JJ, meaning that the spontaneous loop current is induced. Then, ϕ_b and ϕ_0 are not synchronized as discussed in Refs. 6 and 14 because the loop current means the time-evolution of the phase difference in each junction.

It is useful to compare the present model with the previous one, in which a metallic transport is assumed in the π-JJ.\(^{30}\) The Josephson current of the metallic junction assigned to the junction-b is given by

\[
J_b = \frac{\sin \phi_b}{\sqrt{1 - T \sin^2(\phi_b/2)}},
\]

with transmittance T ($0 \leq T \leq 1$).\(^{33-35}\) This case also shows the half-integer SS as shown in Fig. 4, although its magnitude becomes small when T approaches 1, where the magnitude of the metallic junction becomes large and dominates the current. Even in such a metallic case, the half-integer SS can be observed by increasing the I_{bc}.

The potential energy corresponding to Eq. (12) is given by

\[
g(x, y) = -\sin(x + y) + \frac{4\alpha}{T} \times \sqrt{1 - \frac{T}{2} [1 + \sin(x - y)]} + \frac{2}{\beta}y_0^2.
\]

The ground state is obtained by minimizing $g(x, y)$ with respect to y for a fixed x.

\[
\frac{\partial g(x, y)}{\partial y} \bigg|_{y=y_0} = -\cos(x + y_0) - \frac{\alpha \cos(x - y_0)}{\sqrt{1 + \frac{2}{\beta} [1 + \sin(x - y_0)]}} + \frac{4}{\beta}y_0 = 0.
\]

Numerically solving Eq. (16), we find that $g(x, y_0(x))$ exhibits the double minimum with respect to x as shown in Fig. 5. Because the magnitude of potential highly depends on T, $g(x, y_0(x)) \times T$ is plotted instead of $g(x, y_0(x))$ for clarity. The rather insulating case with $\alpha = 0.6$, which corresponds to the black circles in Fig. 3, shows the shallow minimum, whereas the double minimum becomes clear by increasing T; this would contradict to the suppression of the half-integer SS in Fig. 4, i.e., red upper triangles and blue lower triangles. However, it is caused by a large magnitude of potential in the

Fig. 3. (Color online) The potential energy for $\beta = 1.0$ with $\alpha = 1.0$ (red upper triangles), $\alpha = 0.8$ (blue lower triangles), and $\alpha = 0.6$ (black circles).
metallic junction. In fact, the half-integer SS are revived by increasing i_{ac}.

In this paper, we assumed that the Josephson critical current densities $j_i \ (i = a, b)$ defined by $j_i = J_i / A_i$ with junction area A_i are common between junctions-a and b, i.e. $j_a / j_b = 1$. Even in the case of $j_a / j_b \neq 1$, the half-integer SSs can remain for $0.7 \leq j_a / j_b \leq 1.3$. We can consider another type of SQUID including two 0-JJs and one π-JJ, which is experimentally realized. In this case, the π-JJ is used as a π-phase shifter. The condition is quite similar to the SQUID with an external flux studied by Vanneste et al. We can expect the half-integer SSs in such a geometry as well.

So far, we have focused on the overdamped JJs to clarify the close relation between the half-integer SSs and the π-qubit. From a viewpoint of qubit application and/or operation, on the other hand, we need to include the capacitance in Eq. (1) and should estimate the coherence time of qubit. In fact, Kato et al., discussed a long coherence time in a π-qubit. Although the coherence time of qubit is a crucial factor, it goes beyond our aim in this paper. We will examine the coherence time of π-SQUID by considering a capacitance and thermal fluctuations in the near future.

In summary, the half-integer SS in π-SQUID comprising 0- and π-JJs have been studied using the RSJ model. We have shown that the π-SQUID can be a π-qubit with spontaneous loop currents, by which the half-integer SSs are induced, meaning that the half-integer SS and the π-qubit are the two sides of the same coin. Making the 0- and π-JJs equivalent is a key for the half-integer Shapiro steps and realizing the π-qubit.

Acknowledgments We thank Wei Han and Yunyan Yao for their useful discussions. This work was supported by JSPS Grant Nos. JP20K03810 and JP21H04987, and the inter-university cooperative research program (No. 202 012-CNKKXX-0008) of the Center of Neutron Science for Advanced Materials, Institute for Materials Research, Tohoku University. A part of the computations was performed on supercomputers at the Japan Atomic Energy Agency. S.M. is supported by JST CREST Grant (Nos. JPMJCR1934, JPMJCR1874, and JPMJCR20C1) and JSPS KAKENHI (nos. 17H02927 and 20H01865) from NEXT, Japan.

ORCID IDs Michiyasu Mori https://orcid.org/0000-0003-2065-0150 Sadamichi Maekawa https://orcid.org/0000-0002-4257-7741

Fig. 5. (Color online) Potential energy for $\alpha = 0.6$ and $\beta = 1.0$ with $T = 0.8$ (black circles), $T = 0.5$ (blue lower triangles), and $T = 0.2$ (red upper triangles).

References
1) S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).
2) A. Barone and G. Paternó, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).
3) M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004) 2nd ed.
4) C. A. Hamilton, Rev. Sci. Instrum. 71, 3611 (2000).
5) J. Kohlmann, R. Behr, and T. Funck, Meas. Sci. Technol. 14, 1216 (2003).
6) C. Vanneste, C. Ch., Chi, W. J. Gallagher, A. W. Kleinmasser, S. I. Raider, and R. L. Sandstrom, J. Appl. Phys. 64, 242 (1988).
7) N. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, JETP Lett. 25, 290 (1977).
8) A. I. Buzdin, L. N. Bulaevskii, and S. V. Panyukov, JETP Lett. 35, 178 (1982).
9) A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
10) F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
11) S. Hikino, M. Mori, S. Takahashi, and S. Maekawa, J. Phys. Soc. Jpn. 77, 053707 (2008).
12) S. Hikino, M. Mori, W. Koshibae, and S. Maekawa, Appl. Phys. Lett. 100, 152402 (2012).
13) M. Mori, W. Koshibae, S. Hikino, and S. Maekawa, J. Phys.: Condens. Matter. 26, 253702 (2014).
14) S. M. Prolov, D. J. Van Harlingen, V. V. Bolgovin, V. A. Obnozov, and V. V. Ryazanov, Phys. Rev. B 74, 020503(R) (2006).
15) M. Weides, M. Kemmler, H. Kohstede, R. Waser, D. Koelle, R. Kleiner, and E. Goldobin, Phys. Rev. Lett. 97, 247001 (2006).
16) J. Pfeiffer, M. Kemmler, D. Koelle, R. Kleiner, E. Goldobin, M. Weides, A. K. Feofanov, J. Lisenfeld, and A. V. Ustinov, Phys. Rev. B 77, 214506 (2008).
17) E. Goldobin, K. Vogel, W. P. Schleich, D. Koelle, R. Kleiner, Phys. Rev. B 81, 054514 (2010).
18) E. A. Early, A. F. Clark, and K. Char, Appl. Phys. Lett. 62, 3357 (1993).
19) R. De Luca, Phys. Lett. A 280, 209 (2001).
20) F. Romeo and R. De Luca, Phys. Lett. A 329, 330 (2004).
21) F. Romeo and R. De Luca, Physica C 421, 35 (2005).
22) R. R. Schulz, B. Chesca, B. Goetz, C. W. Schneider, A. Schmehl, H. Bielefeldt, H. Hilgenkamp, J. Mannhart, and C. C. Tsuei, Appl. Phys. Lett. 76, 912 (2000).
23) T. Lindström, A. A. C. Charlobois, A. Y. Tsalenchuk, Z. Ivanov, M. H. S. Amin, and A. M. Zagorskin, Phys. Rev. Lett. 90, 117002 (2003).
24) Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 736 (1999).
25) J. E. Mooij, T. P. Orlando, L. Levitov, L. Tsan, C. H. van der Wal, and S. Lloyd, Science 285, 1036 (1999).
26) Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Phys. Rev. Lett. 87, 246601 (2001).
27) I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).
28) L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L. Fuenschle, and G. Blatter, Nature 398, 679 (1999).
29) G. Blatter, V. B. Geshkenbein, and L. B. Ioffe, Phys. Rev. B 63, 174511 (2001).
30) T. Yamashita, K. Tanikawa, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 95, 097001 (2005).
31) T. Yamashita, S. Takahashi, and S. Maekawa, Appl. Phys. Lett. 88, 132501 (2006).
32) A. K. Feofanov et al., Nat. Phys. 6, 593 (2010).
33) I. O. Kulik, JETP 30, 994 (1970).
34) J. Bardeen and J. L. Johnson, Phys. Rev. B 8, 72 (1972).
35) A. Furusaki, Superlattices Microstruct. 25, 809 (1999).
36) T. Kato, A. A. Golovin, and Y. Nakamura, Phys. Rev. B 76, 172502 (2007).