Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data

Christopher Henderson

Department of Mathematics, Stanford University, Stanford, CA 94305, USA

E-mail: chris@math.stanford.edu

Received 29 May 2015, revised 14 June 2016
Accepted for publication 2 August 2016
Published 6 September 2016

Abstract

The Fisher-KPP equation is a model for population dynamics that has generated a huge amount of interest since its introduction in 1937. The speed with which a population spreads has been computed quite precisely when the initial data, \(u_0 \), decays exponentially. More recently, though, the case when the initial data decays more slowly has been studied. In Hamel F and Roques L (2010 J. Differ. Equ. 249 1726–45), the authors show that the level sets of height of \(m \) of \(u \) move super-linearly and may be bounded above and below by expressions of the form \(u_0^{-1}(c_m e^{-\gamma}) \) when \(u_0 \) decays algebraically of a small enough order. The constants \(c_m \) for the upper and lower bounds that they obtain are not explicit and do not match. In this paper, we improve their precision for a broader class of initial data and for a broader class of equations. In particular, our approach yields the explicit highest order term in the location of the level sets, which in the most basic setting is given by \(u_0^{-1}(me^{-\gamma}/(1-m)) \) as long as \(u_0 \) decays slower than \(e^{-\sqrt{t}} \). We generalize this to the previously unstudied setting when the nonlinearity is periodic in space. In addition, for large times, we characterize the profile of the solution in terms of a generalized logistic equation.

Keywords: Fisher-KPP equation, accelerating fronts, spreading rates, reaction-diffusion equations
Mathematics Subject Classification numbers: Primary: 35K57; Secondary: 35B30, 35B40
1. Introduction

In this article, we study the long time behavior of solutions to the Fisher-KPP equation

\[
\begin{align*}
 u_t &= u_{xx} + f(x, u), \quad t > 0, x \in \mathbb{R}, \\
 u(0, x) &= u_0(x), \quad x \in \mathbb{R},
\end{align*}
\]

(1.1)

where \(f \) is an \(L \)-periodic function in \(x \), for some \(L > 0 \), which vanishes when \(u \) is 0 and 1 and \(u_0 \) is a function taking values between 0 and 1 that decays slowly as \(x \) tends to infinity. This equation comes from adding a diffusive term to the logistic equation, and it was originally introduced, with \(f(x, u) = u(1 - u) \), as model for population dynamics in the first half of the twentieth century [18, 25]. In this interpretation, \(u \) stands for the local population density normalized by the carrying capacity, while \(f \) accounts for the effect of an inhomogeneous environment on the growth of this population up to the carrying capacity.

Fisher and Kolmogorov, Petrovskii, and Piskunov showed that if the initial data is localized then the population spreads at a constant rate, eventually converging to a traveling wave. This has been made more precise and succinct over time [12, 13, 19–23, 24, 29, 35, 37]. In these works, the highest order terms in the spreading rate are obtained by studying the linearized problem and understanding the balance between the diffusion \(u_{xx} \) and the growth term \(f(u) \). When \(u_0 \) is not localized, but decays exponentially, like \(\lambda e^{-x} \), the behavior is similar. Here, the population converges to a traveling wave, the speed of which is determined by the order of the exponential decay and is given again by the linearized problem [37]. It has been shown that when \(\lambda \) is below a critical value that is determined only by \(\int_0^1 f'(u) \), \(u \) converges to a shift of a super-critical traveling wave, where the shift is determined by a nonlinear parabolic equation [1]. We point out that many of the results above have been generalized to the periodic setting, i.e. with a diffusivity, an advection, and with a nonlinearity \(f \) which depend periodically on space and time (see e.g. [3, 6, 8, 9, 32, 33]).

Recently, the case when \(u_0 \) decays slower than any exponential and \(f \) is homogeneous was investigated by Hamel and Roques [21]. They show that \(u \) becomes asymptotically flat in time, which we will state precisely later. This is in contrast to classical results where the diffusion and the growth are balanced in such a way that any two level sets remain ‘close’. In particular, this implies that a traveling wave cannot give the limiting behavior of \(u \). As the main focus is in understanding the speed with which an initial population distribution spreads, they track the location of the level sets of \(u \). They show that, for each \(m \in (0, 1) \), the level sets satisfy

\[
\{ x \in \mathbb{R} : u(t, x) = m \} \subseteq [u_0^{-1}(C_m e^{-f(0)t}), u_0^{-1}(C_m e^{-f(0)t})],
\]

where \(c_m < C_m \) are constants depending on \(m \). We note that to the left of the level set above is where the species in question has reached at least a fraction \(m \) of the total carrying capacity of the environment. These results hold for only a small class of initial data; for more general data, they show that the location of any level set is bounded above and below by \(u_0^{-1}(\exp - (f'(0) \pm \varepsilon) t) \) for any \(\varepsilon > 0 \).

The main results of this paper are twofold: firstly, in the homogeneous setting, we explicitly characterize the constant in (1.2) for a broad class of the admissible initial data; secondly, we obtain equally precise results in the previously unstudied inhomogeneous setting. In particular, when \(f \) does not depend on \(x \) we obtain and characterize a constant \(c_{mf} \) depending only on \(m \) and \(f \) such that (for any \(\varepsilon > 0 \))

\[
\{ x \in \mathbb{R} : u(t, x) = m \} \subseteq [u_0^{-1}((c_{mf} + \varepsilon) e^{-f(0)t}), u_0^{-1}((c_{mf} - \varepsilon) e^{-f(0)t})],
\]

for any \(\varepsilon > 0 \).
when, roughly, \(u_0 \) decays slower than \(e^{-\sqrt{t}} \). When \(f \) is the classical Fisher-KPP nonlinearity \(u(1 - u) \) then \(c_{mf} = m/(1 - m) \). We point out that the above also shows exactly how flat the function \(u \) is as it quantifies how far apart any two level sets are in time. We obtain a similar result on the location of intervals of length \(L \) where \(u \) has average \(m \) in the case when \(f \) is \(L \)-periodic in \(x \), positive for \(u \in (0, 1) \), and \(f(0, x) = f(1, x) = 0 \) for all \(x \), along with some other technical assumptions.

In the proof, we see that the propagation is driven entirely by the nonlinearity and that the diffusion is negligible. In addition, we see that \(c_{mf} \) depends on all of \(f \). This is in contrast to the classical results discussed above where the propagation depends only on \(f'(0) \). These observations have recently been made in many of the cases where super-linear propagation is observed and appear to be a key feature of super-linear propagation (see discussion in the sequel). Further, in the inhomogeneous setting, we show that \(u \) grows at each point according to the solution to a generalized logistic equation. This provides an analogue to the asymptotic flatness result of Hamel and Roques in the inhomogeneous setting.

We now briefly comment on the strategy of the proof. We build sub- and super-solutions to \(u \) as a product of a solution to the logistic equation and a solution to the heat equation. As soon as the initial conditions for these two functions are well-chosen, one may use basic heat-kernel estimates to control the solution to the heat equation. This leaves only growth driven by the logistic equation, where we see the full effect of the nonlinearity. In contrast, in [21], the authors use sub- and super-solutions of the form \(u_0(x)e^{f'(0)x} \) and control the error terms in the equation directly. These approximations only ‘feel’ the effect of the linearized equation and require stronger conditions on the initial data.

Our work in the periodic setting follows a strategy similar strategy, creating sub- and super-solutions as a product of a solution to a linear parabolic equation and a solution to a periodic logistic equation. However, it requires us to construct a global-in-time solution to the periodic logistic equation in order to fully characterize the location of the level sets of \(u \).

2. Main results

We now state our results more precisely. First, we assume that there is a \(\delta > 0 \) such that \(f(x, u) \) is a \(C^{\delta} \) function with respect to \(u \) that satisfies

\[
\begin{align*}
\frac{f(x, u)}{u} & \text{ is decreasing in } u, \\
f(x, 0) = 0 &= f(x, 1), \\
f_u(x, 0) &> 0 \text{ and } \\
f_u(x, 1) &< 0.
\end{align*}
\]

We point out that the conditions above imply that \(f \) is positive for all \(x \) and for all \(u \in (0, 1) \). We note that some of the assumptions on the signs of \(f \) and its derivatives can be relaxed, but we use them here to simplify the arguments.

We assume that \(u_0 \) is a positive function that decays to zero slower than any exponential. By this we mean that, for any \(\epsilon \in (0, \infty) \)

\[
\lim_{x \to \infty} u_0(x) = 0, \text{ and } \lim_{x \to \infty} u_0(x)e^{\epsilon x} = \infty.
\]

For instance, functions which decay algebraically as \(x \) tends to infinity satisfy the conditions in (2.4). Though our technique can handle any functions of this type, the presentation is much
simpler if we restrict to initial data, \(u_0 \), which are eventually monotonic and which decay slower than \(e^{-\beta x} \) for any \(\beta \). Namely, we assume that there is a point \(x_0 > 0 \) such that
\[
\frac{u_0'(x)}{\log(u_0(x))} = 0.
\]
We will comment on the effect of this assumption later. In addition, since we are studying the effect of a slowly decaying tail at \(\infty \), we additionally assume that \(u_0 \) is front-like. In other words, we assume that
\[
\lim_{x \to -\infty} u_0(x) = 0.
\]
Again, we note that the positivity assumption on \(u_0 \) can be relaxed, but we use it here to simplify the presentation.

Classical results address the case when \(u_0 \sim e^{-\lambda x} \) \([12, 13, 18, 25, 29, 37]\). In particular, when \(f(u) = u(1 - u) \), if \(\lambda > 1 \) then \(u \) converges to a traveling wave with speed 2 in the correct moving frame, while if \(\lambda < 1 \), \(u \) converges to a traveling wave with speed \(\lambda + 1/\lambda \) in the moving frame. Similar results may be obtained for more general \(f \) \([3]\). In short, this means that the level sets of \(u_0 \) move with a constant speed, which increases to infinity as \(\lambda \) decreases to zero, and that any two level sets travel at the same speed and remain a bounded distance from one another for all time. Hamel and Roques point out in \([21]\) that, using these as a family of sub-solutions, we can immediately see that the level sets of any solution with initial data like equation (2.4) will spread to the right super linearly in time. We now calculate the speed of these level sets explicitly.

2.1. The homogeneous case

Our first result concerns the spreading of the level sets in the homogeneous setting.

Theorem 2.1. Suppose that \(u \) solves equation (1.1) with \(f \) depending only on \(u \) and not on the space variable, \(x \). Suppose further that \(f \) satisfies condition (2.3) and that \(u_0 \) satisfies conditions (2.4) and (2.7). In addition, let \(u_0 \) satisfy conditions (2.5) and (2.6). Let \(\varphi \) be the unique (up to translation) global in time solution to
\[
\varphi_t = f(\varphi).
\]
Then, for each \(m \in (0, 1) \), define \(T_m \in \mathbb{R} \) to be the unique time so that \(\varphi(T_m) = m \). Then, for any \(r > 0 \), we have
\[
\lim_{T \to \infty} \sup_{T \geq u_0^{-1}(\varphi(T_m) - rT)} u(T, x) \leq m.
\]

and
\[
\lim_{T \to \infty} \inf_{T \leq u_0^{-1}(\varphi(T_m) + rT)} u(T, x) \geq m.
\]

In order to make this result clearer, we first consider a specific example. If \(f \) is the standard Fisher-KPP nonlinearity, i.e. \(f(u) = u(1 - u) \), then
\[
\varphi(T) = \frac{e^T}{1 + e^T}, \quad \text{implying that} \quad \varphi(T_m - T) = \frac{m}{1 - m} e^{-T} + O(e^{-2T}),
\]
where \(O(e^{-2T}) \) is bounded by a constant multiple of \(e^{-2T} \) for all \(T \). For a general nonlinearity, \(f \), one can easily see (by linearization) that, up to leading order, \(\varphi(T_m - T) = c_m \varphi(T_m - T) \), where \(c_m \) will depend on all of \(f \) and not simply on \(f'(0) \). In addition, defining the level set of \(u \) as

\[
\{ x : u(t, x) = m \},
\]

if we look at, e.g. initial data such that \(u_0(x) = x^{-\alpha} \) for large enough \(x \), theorem 2.1 implies that

\[
E_m(t) \sim \left(\frac{1 - m}{m} e^t \right)^{1/\alpha}.
\]

(2.10)

Notice that the nonlinearity affects the constant \(\frac{1 - m}{m} \), as the linearized equation would yield only \(1/m \). The fact that the full nonlinearity affects the highest order behavior is in contrast to the case when \(u_0 \) decays exponentially, where the linearized equation completely determines the highest order behavior.

An easy corollary of theorem 2.1 is the following.

Corollary 2.2. For any \(\varepsilon > 0 \), under the assumptions of theorem 2.1, there exists \(T_0 > 0 \) depending on all parameters such that if \(T > T_0 \) then

\[
E_m(T) \subset \left[u_0^{-1}(\varphi(T_m + \varepsilon - T)), u_0^{-1}(\varphi(T_m - \varepsilon - T)) \right].
\]

Again, it is instructive to look at the example that we considered above. Corollary 2.2 implies that, for any \(\varepsilon \) and any \(t \) large enough, we have

\[
E_m(t) \subset \left[\left(\frac{m}{1 - m} - \varepsilon \right)^{1/\alpha} e^{\varepsilon t}, \left(\frac{m}{1 - m} + \varepsilon \right)^{1/\alpha} e^{\varepsilon t} \right].
\]

Remark 2.3. We comment briefly on the assumption on the decay of the first derivative of \(u_0 \), equation (2.6). In practice, this means that \(u_0 \) decays slower than \(e^{-\sqrt{T}} \). We could remove this restriction, assuming only that \(u_0 \) satisfies equation (2.4). In this case, we would obtain a linear in time error term in equations (2.8) and (2.9) and in corollary 2.2. In other words, there is a constant \(r_1 > 0 \), which one may see explicitly in the proof, such that, for any \(m \in (0, 1) \) and \(\varepsilon > 0 \), we have

\[
E_m(T) \subset \left[u_0^{-1}(\varphi(T_m + \varepsilon - T)) - r_1 T, u_0^{-1}(\varphi(T_m - \varepsilon - T)) + r_1 T \right],
\]

for \(T \) large enough. We omit proving this here, in the interest of presenting a single, clear argument and result.

2.2. The inhomogeneous case

When the nonlinearity, \(f \), depends periodically on \(x \), the level sets fail to capture the spreading behavior. Intuitively this is because the function \(u_0 \) is very flat at infinity, so it will grow as if it were a solution to the periodic, inhomogeneous Fisher-KPP equation. In particular, \(u \) will oscillate in space enough that the width of the level sets will grow to infinity as \(t \) tends to infinity. In other words, the distance between the rightmost and leftmost points of the level set \(E_m(t) \) tends to infinity.
To circumvent this, we look instead at the locations of the intervals of length \(L \), the length of the period of \(f \), of a given mean. In other words, we seek to describe the location of the average-level

\[
\mathcal{E}_m(t) \overset{\text{def}}{=} \left\{ x \in \mathbb{R} : \int_x^{x+L} u(t, y) dy = m \right\},
\]

where we define, for any interval \([a, b]\) and any function \(\gamma(x) \),

\[
\int_a^b \gamma(x) dx \overset{\text{def}}{=} \frac{1}{|b-a|} \int_a^b \gamma(x) dx.
\]

Using \(\mathcal{E}_m(t) \), we find similar results to theorem 2.1 in the inhomogeneous setting.

As we alluded to above, instead of the logistic equation, the behavior of \(u \) on each interval of length \(L \) is captured by the global in time solution to

\[
\phi_t = \phi_{xx} + f(x, \phi), \quad \text{for all } (t, x) \in \mathbb{R} \times \mathbb{T},
\]

(2.11)

with periodic boundary conditions and where \(B(m, T) \) is an unknown number depending only on \(f \), \(m \), and \(T \). It is simple to check that the system equation (2.12) is well defined and is continuous in \(m \) and \(T \). It is also easy to check that \(B(m, T) \) is increasing in \(m \) and decreasing in \(T \).

We now formulate our results precisely.

Theorem 2.4. Suppose that \(u \) solves equation (1.1) and that \(f \) is an \(L \)-periodic function satisfying the conditions in equation (2.3). Suppose \(u_0 \) satisfies the conditions in equations (2.4)–(2.7). For any \(r > 0 \), we have that

\[
\limsup_{T \to \infty} \sup_{x \geq u_0^{-1}(B(m, T)) - rT} \int_x^{x+L} u(T, y) dy \leq m,
\]

(2.13)

and

\[
\liminf_{T \to \infty} \inf_{x \leq u_0^{-1}(B(m, T)) + rT} \int_x^{x+L} u(T, y) dy \geq m,
\]

(2.14)

where \(B(m, T) \) is defined in (2.12).
This result gives an analogous result to the theorem 2.1. Namely, that to find an interval \([nL, nL + L]\) such that \(u(t, x)\) take the value \(m\) on average, one has to choose \(n\) such that \(u_0(x)\) roughly looks like \(B(m, T)\) for \(x \in [nL, nL + L]\).

In theorem 2.4, the \(B(m, T)\) term is a bit mysterious. In the homogeneous case, we characterize the location of the level sets in terms of the global-in-time solution to the logistic equation, an ordinary differential equation. The following proposition does the same here, making rigorous the ODE-like behavior of \(u\) by characterizing \(B(m, T)\) in terms of the global-in-time solution to the analogue to the logistic equation.

Proposition 2.5. Let the conditions of theorem 2.4 be satisfied. Let \(\psi_0\) and \(f_0\) be the unique positive solutions to the eigenvalue problem

\[
\begin{align*}
(t\psi_0)_x + f_0(x, 0)\psi_0 &= f_0 \psi_0, \quad x \in \mathbb{T}, \\
\int \psi_0 dx &= 1.
\end{align*}
\]

Let \(T_m\) be the unique time that \(\int \varphi(T_m) dx = m\). Then

\[
\lim_{T \to \infty} \frac{B(m, T) \int \psi_0(x) dx}{\int \varphi(T_m - T, x) \psi_0(x) dx} = 1.
\]

Again we may obtain an easy corollary regarding the movement of the average-level sets \(\overline{E}_m(t)\).

Corollary 2.6. Let the hypotheses of proposition 2.5 be satisfied. For any \(\epsilon > 0\) and any \(m \in (0, 1)\), there is a time \(T_0\), depending on all parameters, such that if \(T \geq T_0\), then

\[
\overline{E}_m(t) \subset \left[u_0^{-1}(B(m + \epsilon, T)), u_0^{-1}(B(m - \epsilon, T)) \right].
\]

As a part of the proof, we will show that there is a positive constant \(\alpha > 0\) such that, for very large negative times, \(\varphi(t, x) \sim \alpha e^{\beta t}/\psi_0(x)\). Hence proposition 2.5 and corollary 2.6 imply that there is a constant \(c_m\), depending only on \(m\) and \(f\), such that

\[
\overline{E}_m(t) \sim u_0^{-1} \left(c_m e^{-\beta t} \right)
\]

holds for large times \(t\). The constant \(c_m\) is, in principal, computable given a specific nonlinearity \(f\) by solving the global in time periodic problem.

Finally, we prove a result which is analogous to the asymptotic flatness result of [21]. This final result shows that \(u\) grows exactly as the global in time solution of the periodic problem.

Theorem 2.7. Let the conditions of theorem 2.4 be satisfied. Let \(\psi_0\) be as in proposition 2.5. Define

\[
S_n = \left(\int \psi_0(x) dx \right)^2 u_0(nL).
\]

Then

\[
\lim_{T \to \infty} \max_{n \in \mathbb{Z}} \| u(T, \cdot) - \varphi(T_n + T, \cdot) \|_{L^\infty([nL, nL + L])} = 0.
\]

2.2.1. Related work. We will now briefly describe related work. In general, over the past decade, there has been growing interest in understanding the propagation of solutions of
reaction-diffusion equations in settings where traveling waves do not exist [5, 7] or where the initial data is outside the range where the traveling waves are stable as in this paper. Historically showing the existence and stability of traveling waves was the standard method of understand spreading in reaction-diffusion equations. Hence, in these settings, new methods are required.

As we have mentioned above, the most closely related work is that of Hamel and Roques [21]. In this novel article, the authors present three main results regarding the solutions to the homogeneous Fisher-KPP equation (i.e. (1.1) with \(f \) depending only on \(u \)). First, they show that \(\|u_t\|_{L^\infty(\mathbb{R})} \to 0 \) as \(t \) tends to infinity. Further, they show that if the initial data decays slower than \(x^{-\alpha_f} \), for some \(\alpha_f \) depending only on the smoothness of \(f \), there are constants \(C_m \) and \(C \) such that, for \(t \) large enough,

\[
E_m(t) \subset [u_0^{-1}(C_m \exp -f'(0)t), u_0^{-1}(Cm \exp -f'(0)t)].
\]

We note that \(\alpha_f = 2 \) when \(f(u) = u(1-u) \). Lastly, for more general initial data, they obtain the exponential order. Precisely, they show that, for any \(\epsilon \),

\[
E_m(t) \subset [u_0^{-1}(\exp -(f'(0) - \epsilon)t), u_0^{-1}(\exp -(f'(0) + \epsilon)t)],
\]

holds for any \(t \) large enough.

Hamel and Roques obtain their bounds on \(E_m(t) \) by carefully building sub- and super-solutions using the function, \(u_0(x) e^{f'(0)x} \), and using the fact that we may bound \(f \) below by a second order Taylor approximation at zero. Our method involves quite different sub- and super-solutions, and the difference in precision between the constant in their bounds and our bounds, in equation (2.10), can be attributed to the fact that our sub- and super-solutions feel the full affect of the nonlinearity, \(f \).

Beyond the work of Hamel and Roques, there has been recent interest in super-linear in time propagation phenomena, or accelerating fronts. In a series of articles [14–16, 31, 36], a number of authors have investigated the phenomenon of exponential spreading of level sets of solutions to the Fisher-KPP with the same Laplacian. In both cases, the mechanism is the same: when the data is spread out, \(u(\cdot, x) \) evolves according to the logistic equation for every \(x \). In this model, the fat tails of the fractional Laplacian are responsible for spreading \(u \) out in finite time. We note that our techniques can be adapted to yield analogous results when \(u_0 \) decays slower than the critical cases investigated by Cabré, Coulon, and Roquejoffre. These accelerating fronts have also been observed in biological models with a non-local dispersal operator with fat tails [20, 26, 30] and in a kinetic reaction-transport equation [10]. Finally, they have been conjectured to occur in a reaction-diffusion-mutation model with variable motility [11].

2.2.2. Plan of the paper. The results of theorem 2.1 are a special case of theorem 2.4, and, hence, we only prove theorem 2.4. We do so in section 3 by creating sub- and super-solutions using the heat equation and equation (2.12), with carefully chosen initial data for both. Then we prove proposition 2.5 in section 4 through an eigenfunction decomposition. This characterizes the location of the level sets in terms of the global in time problem equation (2.11). In section 5, we prove theorem 2.7, showing that at large times \(u \) locally looks like the global in time solution to equation (2.11). Finally, we show that equation (2.11) admits a unique global in time solution in section 6.

2.2.3. Notation. In order to make the discussion clearer, we adopt the following notation. The constant, \(C \), denotes an arbitrary constant independent of time which may change line-by-line.
In addition, we occasionally use $o(1)$ to mean a constant that tends to zero along with some quantity which we will specify. We will make clear, in each usage, the dependencies of C and $o(1)$.

3. Spreading of the level-average sets

In this section, we prove theorem 2.4 by creating sub- and super-solutions by decomposing u into a product of purely diffusive and purely reactive terms. We utilize the Feynman–Kac formula along with our condition on the oscillations, equation (2.6), in order to control the diffusive term.

In addition, we state a lemma which will allow us to translate the simple condition on the decay of u_0, equation (2.6), to a more useful condition on the oscillations of u_0 very far to the right.

Lemma 3.1. Suppose that $u_0 \in C^1$ is strictly decreasing and satisfies

$$\lim_{x \to \infty} \frac{(u_0)_x(x)}{u_0(x)/\log(u_0(x))} = 0.$$\n
Let λ, be some quantity for which there exist constants $c_1, c_2 > 0$ such that $\lambda_x \leq c_1 e^{-c_2 x}$. Then, for any choice of c_3, we have that

$$\lim_{t \to \infty} \frac{u_0(u_0^{-1}(\lambda_x) \pm c_3 t)}{\lambda_x} = 1.$$\n
The limit may be taken uniformly for any c_1 which is bounded above.

We will use this with the choice $\lambda_x = B(m, t)$. To this end, we need the following lemma that guarantees the exponential decay of $B(m, t)$ in time, which will be useful in its own right.

Lemma 3.2. Let $B(m, T)$ be defined as in equation (2.12). Let f_0 be the largest eigenvalue of $\Delta + f_0(x, 0)$. Then $f_0 > 0$ and there exists positive constants C, independent of m, and C_m, depending on m, such that

$$\frac{m}{C} e^{-f_0 T} \leq B(m, T) \leq C_m e^{-f_0 T}.$$\n
Moreover, there exists $\delta_0 > 0$ such that if $m \leq \delta_0$, then

$$B(m, T) \leq C m e^{-f_0 T}.$$\n
We prove these lemmas in section 3.3.

3.1. An upper bound

To begin, we define

$$x_m(T) = u_0^{-1}(B(m, T)),$$\n
and we define a super-solution as $v = \varphi^{T, m} w$ where $\varphi^{T, m}$ satisfies equation (2.12) and w satisfies
Indeed, we notice that \(\overline{w}(0, x) \geq u_0(x) \) for every \(x \) and that

\[
\overline{w} - \overline{w}_t - f(x, \overline{w}) = \varphi_x^{T, m} \overline{w} + \varphi_x^{T, m} \overline{w} - \varphi_x^{T, m} \overline{w} - 2 \varphi_x^{T, m} \overline{w}_x - \varphi_x^{T, m} \overline{w}_x - f(x, \varphi_x^{T, m} \overline{w})
\]

\[
= \left[\varphi_x^{T, m} + f(x, \varphi_x^{T, m}) \right] \overline{w} + \varphi_x^{T, m} \left[\overline{w}_x + 2 \frac{\varphi_x^{T, m}}{\varphi_x^{T, m} \overline{w}} - \varphi_x^{T, m} \overline{w}_x \right] - \varphi_x^{T, m} \overline{w} - 2 \varphi_x^{T, m} \overline{w}_x - \varphi_x^{T, m} \overline{w}_x
\]

\[
= \overline{w} \varphi_x^{T, m} \left[\frac{f(x, \varphi_x^{T, m})}{\varphi_x^{T, m} \overline{w}} - \frac{f(x, \varphi_x^{T, m} \overline{w})}{\varphi_x^{T, m} \overline{w}} \right] \geq 0.
\]

(3.19)

The inequality in the last line follows from the fact that \(\overline{w} \geq 1 \), by the maximum principal, and from the fact that \(f(x, s) / s \) is decreasing in \(s \) by equation (2.3).

As a result of the above decomposition, we need only show that \(\overline{w} \) does not deviate much from 1 near \(x_m(T) \). To this end, we will use the Feynman–Kac representation of \(\overline{w} \), see e.g. \([2]\).

First, it follows from the standard parabolic regularity theory that

\[
\| \varphi_x^{T, m} / \varphi_x^{T, m} \|_{\infty} \leq C_0.
\]

(3.20)

where \(C_0 \) is a constant independent of \(t \), \(T \), and \(m \), see e.g. \([27, 28]\). We define a random process \(X_t \) as the solution to

\[
\begin{aligned}
\frac{dX_t}{dt} &= 2 \varphi_x^{T, m}(T - t, X_t) \frac{\varphi_x^{T, m}(T - t, X_t)}{\varphi_x^{T, m}(T - t, X_t)} dt + \sqrt{2} dB_t, \\
X_0 &= x,
\end{aligned}
\]

(3.21)

where \(B_t \) is a standard Brownian motion. We may then represent \(\overline{w} \) as

\[
\overline{w}(t, x) = \mathbb{E}^x \left[\overline{w}(0, X_T) \right].
\]

Fix \(r_1 > 0 \), to be determined later, and any positive \(r \). For \(x \geq x_m(T) - rT \), we estimate this at time \(T \) as

\[
\overline{w}(T, x) = \mathbb{E}^x \left[\overline{w}(0, X_T) \mathbbm{1}_{[X_T \leq x - r_1 T]} + \mathbb{E}^x \left[(\overline{w}(0, X_T) - 1) \mathbbm{1}_{[X_T > x - r_1 T]} \right] + \mathbb{E}^x \left[\mathbbm{1}_{[X_T > x - r_1 T]} \right] \right].
\]

(3.22)

First, we may use lemma 3.2 to find a constant \(C \) with which we may bound \(\| \overline{w}(0) \|_{\infty} \leq Ce^{kT} \).

Then, if \(r_1 > 2C_0 + 2 \sqrt{T_0} \), with \(C_0 \) as in equation (3.20), the first term in equation (3.22) may be bounded as

\[
\mathbb{E}^x \left[\overline{w}(0, X_T) \mathbbm{1}_{[X_T \leq x - r_1 T]} \right] \leq C e^{kT} \mathbb{P} [X_T \leq x - r_1 T] \leq C e^{kT} \mathbb{P} \left\{ \sqrt{2} B_T - 2C_0T \leq -r_1 T \right\}
\]

\[
\leq C e^{kT} \mathbb{P} \left\{ \sqrt{2} B_T - 2\sqrt{T_0} \leq -2\sqrt{T_0} T \right\} \leq \frac{C}{\sqrt{T}}.
\]
The last inequality follows from a standard estimate on the tail of a Gaussian. Thus, the first
term tends to zero as \(T \) tends to infinity. The third term in equation (3.22) can be shown to
converge to 1 in the exact same manner as above. Notice that these limits did not depend on \(m \).

Hence, we need only show that the second term converges to zero. To this end we bound
the second term as

\[
\mathbb{E}[(\xi(0, X_T) - 1)\mathbb{I}_{|X_{2s} - rT|}] \leq \mathbb{E} \left[\frac{u_0(x - r_1 T) - u_0(x_m(T))}{B(m, T)} \right] = \mathbb{E} \left[\frac{u_0(x_m(T) - (r_1 + r) T) - u_0(x_m(T))}{B(m, T)} \right].
\]

Using the definition of \(x_m(T) \), equation (3.18), this tends to zero as a consequence of lemmas
3.1 and 3.2. We notice that this limit can be taken independent of \(m \) if \(m \) is bounded away from
1 as a consequence of tracking the dependence on \(m \) through lemmas 3.1 and 3.2.

Hence we obtain that if \(x \geq x_m(T) - rT \), then \(\xi(T, x) \leq 1 + o(1) \), where \(o(1) \) tends to zero
as \(T \) tends to infinity. This yields, for all \(y \in [x, x + L] \), that

\[
u(T, y) \leq \varphi^{T, m}(T, y) [1 + o(1)]. \tag{3.23}
\]

By construction, \(\int \varphi^{T, m}(T, y) dy = m \). Hence, averaging over \([x, x + L]\) gives us the upper
bound equation (2.13).

We note that, to take the limits above, we used only estimates on the Gaussian and lemmas
3.1 and 3.2. Hence, these limits can be taken independent of \(m \) as long as \(m \) is uniformly
bounded away from 0 and 1.

3.2. A lower bound

The argument here is similar to the argument in section 3.1, above. As before we fix \(T > 0 \)
and \(m \in (0, 1) \), define \(x_m(T) \) as in equation (3.18), and we \(\psi(t, x) = \varphi^{T, m}(t, x) \psi(t, x) \) where
\(\varphi^{T, m}(t, x) \) is defined in equation (2.12). Here, we instead define \(\psi \) as the solution to

\[
\begin{align*}
\psi_t &= \psi_{xx} + 2 \frac{\varphi^{T, m}}{\varphi^{T, m}} \psi_x, \\
\psi(0, x) &= \min \left\{ \frac{u_0(x)}{B(m, T)} , 1 \right\}.
\end{align*}
\]

Notice that \(\psi(0, x) \leq u_0(x) \) for all \(x \). The computation above, equation (3.19), shows that

\[
\psi_t - \psi_{xx} = f(x, y) = \psi^{T, m} \left[\frac{f(x, \varphi^{T, m})}{\varphi^{T, m}} - \frac{f(x, \varphi^{T, m} \psi)}{\varphi^{T, m} \psi} \right] \leq 0,
\]

where the last inequality follows since \(\psi \leq 1 \), as a consequence of the maximum principal, and
since \(f(x, s)/s \) is decreasing for \(s \in [0, 1] \).

Again, defining \(X_t \) by equation (3.21), we obtain that

\[
\psi(t, x) = \mathbb{E}^x [\psi(0, X_t)].
\]

Fix \(r_1 > 0 \), to be determined below, and any \(r \). For any \(x \leq x_m(T) + rT \), we decompose
\(w(T, x) \) as
\(w(T, x) = E'(u(0, X_T)1_{\{X_t \geq x + r_T\}} + E'(u(0, X_T) - 1)1_{\{X_t < x + r_T\}} + E'[1_{\{X_t < x + r_T\}}]. \)

For \(x \leq x_m(T) + r_T \), we may again choose \(r_1 \) large enough that the first term on the right hand side tends to zero as \(T \) tends to infinity and that the last term on the right tends to one as \(T \) tends to infinity. In addition, lemmas 3.1 and 3.2 imply that the second term on the right tends to zero as \(T \) tends to infinity. Hence, we obtain, for any \(x \leq x_m(T) + r_T \),

\[
\phi(T, x) \geq \varphi_0(T, x)w(T, x) \geq \varphi_0(T, x)(1 - o(1)).
\]

Using that, by construction, \(\int \varphi_0(T, y)dy = m \), integrating over \([x - L, x]\) yields the lower bound in equation (2.14) for any \(x \leq x_m(T) + r_T \). Again, we note that the limit in equation (3.24) may be taken uniformly for \(m \) bounded away from 1.

3.3. Controlling the oscillations

In this section we prove lemmas 3.1 and 3.2. We first prove lemma 3.1, by using an ODE argument to compare \(u_0 \) to a sequence of equations which decay at the critical order but with increasingly slower rates.

Proof of theorem 3.1. We will prove this lemma for \(\lambda < -c_1 t \), though the proof is exactly analogous in the case of \(\lambda > c_1 t \). Fix \(\epsilon > 0 \), and define

\[
\epsilon = -\frac{\log(h)}{2}.
\]

Define

\[
x_0 = u_0^{-1}(\lambda_{c_1}) \quad \text{and} \quad y_0 = h^{-1}(\lambda_{c_1}).
\]

We may then shift \(h \) to obtain \(g(x) = h(x - x_0 + y_0) \). Notice that \(g(x_0) = u_0(x_0) \). The condition on the decay of \(\lambda_{c_1} \) and the fact that \(u_0 \) decays slower than any exponential implies that \(u_0^{-1}(\lambda_{c_1}) - c_1 t \) tends to infinity. Hence we may choose \(t \) large enough, uniformly in \(c_1 \) if \(c_1 \) is bounded above, such that if \(x \geq x_0 - c_1 t \), then

\[
0 \geq u_0(x) \geq -\frac{\epsilon}{2} \frac{u_0(x)}{\log(u_0(x))}.
\]

We note that \(u_0 \) is a supersolution to equation (3.25) as a consequence of equation (3.26). Hence \(u_0(x) \leq g(x) \) for all \(x_0 - c_1 t \leq x \leq x_0 \). Using this, along with the fact that \(u_0(x_0) = g(x_0) \), we obtain

\[
0 \leq u_0(x_0 - c_1 t) - u_0(x_0) \leq u_0(x_0 - c_1 t) - g(x_0) \leq g(x_0 - c_1 t) - g(x_0).
\]

To conclude, we estimate the last term, \(g(x_0 - c_1 t) - g(x_0) \). Returning to our function \(h \) and manipulating the equation, we obtain

\[
g(x_0 - c_1 t) - g(x_0) = h(y_0 - c_1 t) - h(y_0) \]

\[
= \exp[-\sqrt{\epsilon(y_0 - c_1 t)}] - \exp[-\sqrt{\epsilon y_0}] \]

\[
= \exp[-\sqrt{\epsilon y_0}] \left[\exp\left(\sqrt{\epsilon y_0} \left(1 - \sqrt{1 - (c_1 t/y_0)}\right)\right) - 1 \right].
\]
It is a simple consequence of Taylor’s theorem that there is a constant C such that

$$1 - \sqrt{1 - (c_1 t)} \leq C(c_1 t).$$

Applying this in the equation above, and using that, by construction, $e^{\sqrt{c_1}} = \lambda$, we obtain

$$g(x_0 - c_1 t) - g(x_0) \leq \lambda \left[\exp \left(\frac{C \sqrt{c_1 t}}{\sqrt{x_0}} \right) - 1 \right].$$

Then using that $\lambda \leq c_1 e^{-c_1 t}$, we may solve for y_0 to obtain

$$y_0 \geq \frac{1}{c_1} (c_2 t - \log(c_1))^2.$$
\(B(m, T) \frac{\|\psi_0\|_\infty}{\min_x \psi_0(x)} e^{\delta T} = \alpha \|\psi_0\|_\infty e^{\delta T} \geq \int \psi(T, x)dx \geq \int \psi^T m(T, x)dx = m. \)

Rearranging this inequality yields the lower bound on \(B(m, T) \).

The upper bound is similar, but requires slightly more work. We first obtain a bound for small \(m \) by using a modulation technique found in [22, 23]. Notice that our conditions on \(f \) guarantee the existence of \(M \) such that

\[
\psi(t, x) = \alpha(t) \psi_0(x) e^{\delta t}.
\]

We find conditions on \(\alpha \) to make \(\varphi \) a sub-solution of \(\varphi \). To this end, we compute

\[
\varphi_t - \varphi_{xx} - f(x, \varphi) = \frac{\alpha'}{\alpha} \varphi + f_0 \varphi - \alpha(\psi_0) e^{\delta t} - f(x, \varphi) = \varphi + f_0 \varphi - \alpha f_0(\psi_0 - f_0 e^{\delta t}) - f(x, \varphi) = \varphi + f_0 \varphi - f_0 \varphi + f_0(\psi_0 - f_0 e^{\delta t}) - f(x, \varphi) \leq \alpha' \varphi + M \varphi^{1+\delta}
\]

Hence \(\varphi \) is a sub-solution if we choose

\[
\frac{\alpha'}{\alpha^{1+\delta}} = -Me^{\delta t} \|\psi_0\|^{1+\delta}_\infty \quad \text{and} \quad \alpha(0) = \frac{B(m, T)}{\|\psi_0\|_\infty}
\]

In other words, we may let

\[
\alpha(t) = \frac{B(m, T)}{\|\psi_0\|_\infty} \left[\frac{f_0 \delta}{B(m, T)^t e^{\delta t} - 1 + f_0 \delta} \right]^{1/6}
\]

Hence at time \(t = T \), we may average \(\varphi \) and use that \(\varphi \) sits below \(\varphi^T m \) to obtain

\[
\left(\frac{B(m, T)}{\|\psi_0\|_\infty} \right)^{1/6} \left[\frac{f_0 \delta}{B(m, T)^t e^{\delta t} - 1 + f_0 \delta} \right] \left[B(m, T)^t e^{\delta t} M + f_0 \delta \right] \geq \int \varphi(T, x)dx \leq \int \varphi^T m(T, x)dx = m.
\]

Re-arranging this we see that

\[
f_0 \delta B(m, T)^t e^{\delta t} \leq m^\delta \|\psi_0\|^{1+\delta}_\infty \left[B(m, T)^t e^{\delta t} M + f_0 \delta \right].
\]

If \(m^tM \|\psi_0\|^{1+\delta}_\infty \leq f_0 \delta /2 \), then we may rearrange the above to obtain

\[
B(m, T)^t \leq 2m^t \|\psi_0\|^{1+\delta}_\infty e^{-\delta t},
\]

finishing the claim for small \(m \).
The argument is somewhat more complicated for general m. We prove it in two steps. First, we show that there is R_1, which is uniformly bounded if m is uniformly bounded away from 0 and 1, such that $B(m/2, T - R_1) \supseteq B(m, T)$. To see this, we take $C_{f,m}$ to be a positive constant, arising from parabolic regularity and the smoothness and positivity of f, such that $f(x, \varphi^{T,m}(t, x)) \geq C_{f,m}$ if the average of φ is between $m/2$ and m. Then we choose $R_1 = m/(2C_{f,m})$ and we will show by contradiction that this is the correct choice of R_1. If not, and instead $B(m/2, T - R_1) < B(m, T)$ holds, then the maximum principal gives that

$$
\frac{m}{2} = \int \varphi^{T-R_1m/2}(T - R_1, x)dx < \int \varphi^{T,m}(T - R_1, x)dx.
$$

(3.30)

Using our choice of $C_{f,m}$ above, we may integrate the equation for $\varphi^{T,m}$ in space for any $t \in [T - R_1, T]$ to obtain

$$
\partial_t \int \varphi^{T,m}(t, x)dx = \int f(x, \varphi^{T,m})dx \geq C_{f,m}.
$$

Integrating this in time from $T - R_1$ to T, using the bound in equation (3.30), and using our choice of R_1 yields

$$
m = \int \varphi^{T,m}(T, x)dx \geq C_{f,m}R_1 + \int \varphi^{T,m}(T - R_1, x)dx > \frac{m}{2} + \frac{m}{2},
$$

which is clearly a contradiction.

Having proven this fact, we now bootstrap the result for small m to obtain the statement for general m. For any m, we may find N such that $m/2N$ is small enough to apply the work above and obtain equation (3.29). Indeed, we choose N large enough that

$$
\psi_\delta \leq \delta|\psi_\delta|_\infty < \delta_0 \delta/2,
$$

and as a result obtain that, for any $T > 0$,

$$
B\left(\frac{m}{2N}, \frac{T}{N}\right) \leq C \left(\frac{m}{2N}\right)e^{-\delta_0 \delta t}.
$$

(3.31)

In addition to this, we may iterate the procedure above to find R_1, R_2, \ldots, R_N such that

$$
B\left(\frac{m}{2}, T - (R_1 + \cdots + R_i)\right) \leq B\left(\frac{m}{2N}, T - (R_1 + \cdots + R_{i+1})\right)
$$

holds for any i, and hence,

$$
B(m, T) \leq B\left(\frac{m}{2N}, T - (R_1 + \cdots + R_N)\right).
$$

(3.32)

Combining equations (3.31) and (3.32) and defining $C_m = Cm2^{-N}\delta_0^{-1}(R_1 + \cdots + R_N)$, we obtain

$$
B(m, T) \leq C \left(\frac{m}{2N}\right)e^{-\delta_0 \delta(T - R_1 - R_2 - \cdots - R_N)} = C_me^{-\delta_0 T},
$$

where we have defined $C_m = Cm2^{-N}\delta_0^{-1}(R_1 + \cdots + R_N)$. This concludes the proof.

□
4. Characterization of the speed

In this section, we will show how to characterize $B(m, T)$ in terms of the the global-in-time solution φ of equation (2.11). In the homogeneous case, there is nothing to prove since φ and $\varphi^{T, m}$ are equal up to a translation in time, by the uniqueness of solutions of ordinary differential equations. In the inhomogeneous setting, we need to deal with the fact that φ is not necessarily flat, while $\varphi^{T, m}(0, x) \equiv B(m, T)$. The idea of the proof is to run the system for time $T/2$ and use spectral estimates to show that the $\varphi(Tm - T/2 + t)$ and $\varphi^{T, m}(T/2 + t)$ will be close. From then on, they must remain close.

Before we begin, we will need one fact about the global in time solution. We delay the proof of this lemma until section 6 as it will be crucial in the proof of the well-posedness of equation (2.11).

Lemma 4.1. Let φ be any solution of equation (2.11). Then there exist positive constants α and ω such that

$$\lim_{t \to -\infty} \frac{\varphi(t, x)}{\psi_0(x)e^{\alpha t}} = \alpha, \quad \text{and} \quad \lim_{t \to \infty} \frac{1 - \varphi(t, x)}{\psi_1(x)e^{\omega t}} = \omega$$

where ψ_0 and f_0, defined in proposition 2.5, are the normalized eigenfunction and principal eigenvalue of $\Delta + f_0(x, 0)$, and where ψ_1 and f_1 are the normalized eigenfunction and principal eigenvalue of $\Delta - f_0(x, 1)$.

Now, our first step is to prove the following lemma.

Lemma 4.2. Suppose that γ_0 is a $C^\infty(T)$ function such that $\|\gamma_0\|_\infty \leq C e^{-\rho T}$ for some $C > 0$.

\[\begin{cases} \gamma = \gamma_0 + f(x, \gamma), \\ \gamma(0, x) = \gamma_0(x). \end{cases} \]

Fix $\epsilon > 0$. Then there is $T_0 > 0$, which can be chosen uniformly if C is bounded above, such that if $T \geq T_0$ we have that

$$\|\gamma(T/2) - \psi_0 \left(\int \gamma_0 \psi_0 \right) e^{\rho T/2} \|_2 \leq \epsilon e^{-\rho T/2}.$$

Proof. Define

$$\Gamma(t, x) = \gamma(t, x) e^{\rho t},$$

and we can easily see that Γ satisfies

$$\Gamma_t - \gamma_{xx} + f_0 \Gamma = f(x, \gamma) e^{\rho (T - t)} = \left(\frac{f(x, \gamma)}{\gamma} \right) \Gamma.$$

Letting $\Gamma_0(t) = \int \Gamma(t, x) \psi_0(x) dx$, we notice that

$$\Gamma_1 = e^{\rho(T - t)} \int (f(x, \gamma) - f_0(x, 0) \gamma) \psi_0(x) dx.$$

First, we notice that $\Gamma_1 \leq 0$. In addition, since ψ_0 multiplied by a large constant is a supersolution of Γ, it follows that Γ is uniformly bounded. We utilize this, along with equation (3.28), to obtain
0 \geq \Gamma_1 \geq -MCe^{\delta(T-t)} \int \gamma(x)^1 + \psi_0(x)dx \geq -MC\int e^{\delta(T-t)} \int \gamma(x)\psi_0(x)dx

\geq -MC\int e^{\delta(T-t)} \Gamma_1.

Dividing by \Gamma_1, integrating in time, and exponentiating yields

\begin{align*}
1 \geq \frac{\Gamma_1(T/2)}{\Gamma_1(0)} & \geq \exp \left\{ -\frac{\delta T}{2} C\left(1 - e^{-\frac{\delta T}{2}} \right) \right\},
\end{align*}

Defining \(\gamma(t) = \int \gamma(t,x)\psi_0(x)dx\), we may rewrite this inequality as

\begin{equation}
|\gamma(T/2) - e^{\delta T/2}\gamma(0)| \leq o(1)e^{-\delta T/2}.
\end{equation}

Now we let \(\Gamma_2(t,x) = \Gamma(t,x) - \Gamma_1(t)\psi_0(x)\), and we bound \(\Gamma_2\). Notice that \(\Gamma_2\) satisfies the equation

\begin{align*}
(\Gamma_2)_t - (\Gamma_2)_{xx} - (f_0(x,0) - f_0)\Gamma_2
& = \left[f(x,\gamma)e^{\delta(T-t)} - f_0(x,0)\Gamma \right] - \psi_0(x)e^{\delta(T-t)} \int (f(y,\gamma) - f_0(y,0)\gamma(y))\psi_0(y)dy \\
& \leq MCe^{\delta(T-t)} \int \Gamma^{1+\delta/2} |\Gamma_2| \Gamma_1 dT
\end{align*}

Because \(\Gamma_2\) is orthogonal to the the eigenspace for eigenvalue \(f_0\) of \(\Delta + f_0(x,0)\), then there is \(\alpha\) such that

\begin{align*}
\int [(\Gamma_2)_{xx} + (f_0(x,0) - f_0)\Gamma_2] dx & \leq -\alpha \|\Gamma_2\|^2.
\end{align*}

Hence, multiplying equation (4.34) by \(\Gamma_2\) and, again, using that \(\Gamma_2\) and \(\psi_0\) are perpendicular yields

\begin{align*}
\frac{1}{2} \frac{d}{dt} \|\Gamma_2\|^2 + \alpha \|\Gamma_2\|^2 & \leq \int \left[f(x,\gamma) - f_0(x,0)\gamma \right] \Gamma_2 dx \\
& \leq MCe^{\delta(T-t)} \int \Gamma^{1+\delta/2} |\Gamma_2| dx.
\end{align*}

As we noted above, \(\|\Gamma_2\|^2\) is uniformly bounded in time. Hence, we may write this as

\begin{align*}
\frac{d}{dt} \|\Gamma_2\|^2 + 2\alpha \|\Gamma_2\|^2 \leq C e^{\delta(T-t)} \|\Gamma_2\|^2
\end{align*}

where \(C\) is a new constant independent of \(t\) and \(T\). Solving this differential inequality and using that \(\|\Gamma_2(0)\| \leq C\) for some constant \(C\), yields constants \(C > 0\) and \(\theta > 0\) such that

\begin{align*}
\|\Gamma_2(T/2)\|^2 \leq C e^{-\theta T}.
\end{align*}

The combination of this inequality with equation (4.33) yields that

\begin{align*}
\|\gamma(T/2) - e^{\delta T/2}\gamma(0)\| \leq C \|\gamma(T/2) - e^{\delta T/2}\gamma(0)\| + e^{-\delta T/2} \|\Gamma_2\|^2 \leq o(1)e^{-\delta T/2},
\end{align*}

finishing the proof. □
We now show how to use this lemma to conclude proposition 2.5. Fix \(m \in (0, 1) \) and define the starting time \(S(m, T) \) as the time such that
\[
\int \varphi(S(m, T), x)\psi_0(x)dx = B(m, T) \int \psi_0.
\] (4.35)

We first show that \(\int \varphi(S(m, T) + T, x)dx \to m \) as \(T \) tends to infinity. Then, defining \(T_m \) as the unique time such that
\[
\int \varphi(T_m, x)dx = m,
\]
we will leverage this to show that
\[
\lim_{T \to \infty} \frac{\int \varphi(T_m - T, x)\psi_0(x)dx}{B(m, T) \int \psi_0} = 1,
\] (4.36)
finishing the proof.

By parabolic regularity, lemmas 4.2 and 3.2, we have that
\[
\|\varphi(S(m, T) + T/2) - \varphi^{T,m}(T/2)\|_2 \leq o(1)e^{-hT/2},
\]
where \(o(1) \) tends to zero as \(T \) tends to infinity (uniformly for \(m \) bounded away from 1). By parabolic regularity this may be strengthened to
\[
\|\varphi(S(m, T) + T/2) - \varphi^{T,m}(T/2)\|_\infty \leq o(1)e^{-hT/2}.
\]
Define \(\eta(t, x) = \varphi(S(m, T) + T/2 + t, x) - \varphi^{T,m}(T/2 + t, x) \) and notice that \(\eta \) solves
\[
\eta_t - \eta_{xx} = c(t, x)\eta,
\]
where \(c(t, x) = (f(x, \varphi^1) - f(x, \varphi^2))/((\varphi^1 - \varphi^2) \leq f_\rho(x, 0) \). Hence, \(o(1)\psi_0e^{h(t-T/2)} \) is a supersolution to the equation above with initial data larger than \(\eta(0, x) \). This implies that
\[
|\eta(T/2, x)| \leq o(1)\psi(x) \leq o(1),
\]
holds for every \(x \). Using the definition of \(\eta \), this implies that
\[
\|\varphi(S(m, T) + T, \cdot) - \varphi^{T,m}(T, \cdot)\|_\infty \leq o(1).
\]
By our definition of \(\varphi^{T,m} \), this implies that
\[
\lim_{T \to \infty} \int \varphi(S(m, T) + T, x)dx = m,
\]
holds, where the limit may be taken uniformly in \(m \) if \(m \) is bounded away from 1.

Now we will show equation (4.36). Suppose this does not hold. Let \(\theta > 1 \), without loss of generality, be such that there is a sequence \(T_1, T_2, T_3, \ldots \) such that
\[
\lim_{n \to \infty} \frac{\int \varphi(T_m - T_n, x) \psi(x) dx}{B(m, T_n) \int \psi_0} > \theta.
\]

We note that the proof is similar for \(\theta < 1 \) and the limit above is less than \(\theta \). Using lemma 4.1 and the definition of \(S(m, T) \), we can choose \(N_0 \) be such that if \(n \geq N_0 \) then

\[
\frac{\varphi(T_n - T_m)}{S(m, T_n)} > \theta,
\]

and hence,

\[
T_m - T_n - S(m, T_n) > \log(\theta) > 0.
\]

By parabolic regularity, along with the smoothness and positivity of \(f \), we may find \(\epsilon \) depending only on \(m \) and \(\theta \) such that \(f(x, \varphi(t, x)) > \epsilon \) for all \(t \in [T_n + S(m, T_n), T_m] \). This holds because \(\varphi \) is bounded away from 0 and 1 on this interval. Integrating the equation for \(\varphi \) on this time interval yields

\[
\varphi(T_m) - \varphi(T_n + S(m, T_n)) = \int_{T_n + S(m, T_n)}^{T_m} f(x, \varphi) dx \geq \epsilon \log(\theta).
\]

The average of the first term is \(m \), and the average of the second term converges to \(m \) for large \(n \). This implies that the left hand side tends to zero, which is a contradiction. This finishes the proof.

5. Convergence to the global in time problem

In this section, we prove theorem 2.7. We will do this in two steps. First we will prove the closeness of \(u \) and \(\varphi^{T,m} \). Then we will show that \(\varphi^{T,m} \) and \(\varphi \) are close when suitably translated in time. To this end, we state two lemmas.

Lemma 5.1. Define \(\varphi^{T,m} \) as in equation (2.12), and define \(I_{m,T} \) to be the interval \([nL, nL + L]\). Define \(T_{m,T} \) as the unique time such that \(\int_{T_{m,T}}^{T_m} \varphi(x) dx = B(m, T_m) \psi_0 \). Then, we have

\[
\lim_{T \to \infty} \max_{m \in (0,1]} \| \varphi(T, \cdot) - \varphi^{T,m}(T, \cdot) \|_{L^\infty([T,T+1])} = 0.
\]

Lemma 5.2. Define \(S(m, T) \) as in equation (4.35). Then,

\[
\lim_{T \to \infty} \max_{t \in [T/2, \infty]} \| \varphi(S(m, T) + t, \cdot) - \varphi^{T,m}(t, \cdot) \|_{L^\infty([0,1])} = 0.
\]

This limit can be taken uniformly for \(m \) which is bounded away from 1.

We will prove equation (5.37) at the end of this section. The proof of lemma 5.2 follows from our choice of \(S(m, T) \) and from work in lemma 4.2. Hence, we omit it. We now show how to conclude theorem 2.7 using these two lemmas.

Proof of theorem 2.7. First, denote \(I_{m,T} \) as \([nL, nL + L]\). Define \(T_n \) as the unique time such that

\[
\int \varphi(T_n, x) dx = S_n.
\]
where S_n is as in equation (2.15). We show that if T (or equivalently n) is large enough, then T_{S_n} and $S(m, T)$ are close, and that we can obtain this in a uniform way for m bounded away from 1. To this end, notice that, by the definition of $I_{m,T}$,

$$u_0(nL) \geq B(m, T) \geq u_0(nL + L).$$

In addition, by lemmas 3.1 and 3.2, we have that

$$\int_\mathbb{T} \varphi(T_{S_n}, x) dx = \int_\mathbb{T} \varphi(S(m, T), x) dx + o(1),$$

where $o(1)$ tends to zero uniformly as long as m is bounded away from 1. This yields the claim that $u_0(nL) \geq B(1, T) \geq u_0(nL + L)$.

Using lemma 4.1, we then compute that

$$\int_\mathbb{T} \varphi(T_{S_n}, x) dx = \int_\mathbb{T} \varphi(S(m, T), x) dx + o(1).$$

Again, the constant $o(1)$ tends to zero uniformly as long as m is bounded away from 1. This yields the claim that $T_{S_n} - S(m, T)$ tends to zero as T tends to infinity.

Fix $\delta > 0$. Using lemma 5.1, choose T_1 large enough that if $T \geq T_1$, then

$$\int_\mathbb{T} \varphi(T_{S_n}, x) dx \leq \int_\mathbb{T} \varphi(S(m, T), x) dx + \delta.$$

In addition, choose $m_1 < 1$, depending only on f and δ, such that if $m \geq m_1$, then

$$\varphi(T_{S_n}, x) \geq 1 - \delta.$$
Thus, $B(m, T) \leq B(m_1, T)$, implying that $m \leq m_1$. Hence we may find T_2, depending only on m_1, f, and ϵ, such that if $T \geq T_2$ then T_0 is close enough to $S(m, T)$ that

$$\|\varphi(T_0 + T, \cdot) - \varphi(S(m, T) + T, \cdot)\|_{L^\infty} \leq \epsilon/8.$$

In addition, increasing T_2 if necessary, we may apply lemma 5.2 to get that if $T \geq T_2$ then

$$\|\varphi(S(m, T) + T, \cdot) - \varphi^{T,m}(T, \cdot)\|_{L^\infty} \leq \epsilon/16.$$

The combination of these two inequalities with equation (5.39) implies that if $T \geq T_1 + T_2$, then

$$\|\varphi(T_0 + T, \cdot) - u(T, \cdot)\|_{L^\infty([0,L+L])} \leq \epsilon.$$

Finally, we handle the case when neither of these is true. That both of these conditions do not hold, along with parabolic regularity, implies that we may find a positive constant $\theta < 1$, which depends only on m_1 and f, such that

$$\theta \int \varphi(T_0, x)dx \leq B(m_1, T)\left(\int \psi_0\right)^2.$$

Using lemma 3.2 we may find $t_0 > 0$, depending only on f and m_1, such that

$$\int \varphi(T_0, x)dx \leq B(m_1, T - t_0)\left(\int \psi_0\right)^2.$$

Following the work above, we then have that $B(m, T) \leq B(m_1, T - t_0)$. Hence we obtain

$$(1 - m) = \int (1 - \varphi^{T,m}(T, x))dx \geq \int (1 - \varphi^{T-t_0,m}(T, x))dx \geq C e^{t_0}.$$

The constant C depends only on m_1 and f, and the last inequality comes from considering a constant multiple of ψe^{t_0} as a sub-solution to $1 - \varphi^{T-t_0}$ on the interval $[T - t_0, T]$. This shows that m is bounded away from 1 independent of T. Hence we may argue exactly as in the last paragraph, finishing the proof.

We will now show how to conclude lemma 5.1. The main idea is largely the same: when m is large enough, both u and $\varphi^{T,m}$ are near 1, and when m is bounded from 1, we may take the limit in T uniformly in m.

Proof of theorem 5.1. Fix $\epsilon > 0$, and we will choose T, independent of m, such that

$$\|u(T) - \varphi^{T,m}(T)\|_{L^\infty([0,L])} \leq \epsilon.$$

To this end, we utilize the work from section 3.

First, we may use parabolic regularity to find $m_1 < 1$ depending only on f and ϵ such that $1 - \varphi^{T,m}(T, x) \leq \epsilon/2$. We may now consider, separately, the cases when $m \leq m_1$ and when $m \geq m_1$.

3235
If \(m \geq m_1 \), using a sub-solution, \(v = \varphi^{T, m_1} \), as in section 3.2, we may choose \(T \), depending only on \(\epsilon \) and \(f \), such that
\[
\varphi(T, x) \geq (1 - \epsilon)/(1 - \epsilon/2),
\]
for any \(x \leq \max I_{m_1, T} \). Hence, we have that
\[
1 \geq u(T, x) \geq v(T, x) \geq \varphi^{T, m}(T, x)w \geq (1 - \epsilon/2)\left(1 - \epsilon/2\right) = 1 - \epsilon.
\]
for any \(x \leq \max I_{m_1, T} \). By the maximum principal, we can see that \(\varphi^{T, m} \geq \varphi^{T, m_1} \) if \(m \geq m_1 \). Hence we have that, if \(m \geq m_1 \)
\[
\|u(T) - \varphi^{T, m}\|_{L^\infty(I_{m, T})} \leq \epsilon.
\]

The case when \(m \leq m_1 \) follows from our work above. Indeed, since \(m \) is bounded away from 1, we may choose \(T \) such that \(\varphi \) and \(\varphi \) from sections 3.1 and 3.2, respectively, satisfy
\[
1 - \epsilon/2 \leq \varphi(T, x), \quad \text{and} \quad \varphi(T, x) \leq 1 + \epsilon/2,
\]
for any \(x \in I_{m, T} \). Hence we have that, for any \(x \in I_{m, T} \).
\[
\left(1 - \frac{\epsilon}{2}\right)\varphi^{T, m}(T, x) \leq \varphi^{T, m}(T, x) \leq u(T, x) \leq \varphi^{T, m}(T, x) \leq \left(1 + \frac{\epsilon}{2}\right)\varphi^{T, m}(T, x),
\]
which finishes the proof. \(\square \)

6. Well-posedness of the global in time solution

In this section, we establish the existence and uniqueness (up to translation) of the solution to equation (2.11). In other words, we prove the following proposition.

Proposition 6.1. There exists a unique global in time solution of equation (2.11).

We will prove this in a series of three lemmas. First, we will exhibit the existence of a solution. Afterwards, we show that any solution to equation (2.11) must look grow and decay exponentially as \(t \) tends to \(-\infty \) and \(\infty \), respectively. Finally, we will use this qualitative property and the sliding method to establish uniqueness.

Lemma 6.2. There exists a solution of equation (2.11).

Proof. We establish existence by considering the limit of family of initial value problems. Define \(\varphi^n \) to be the solution to the parabolic equation on \([T_0, \infty) \times \mathbb{T}\)
\[
\begin{align*}
\varphi^n_t &= \varphi^n_{xx} + f(x, \varphi^n), \\
\int \varphi^n(0, x)dx &= 1/2, \\
\varphi^n(T_0, x) &\equiv 1/n,
\end{align*}
\]
where \(T_n \leq 0 \) is an unknown. It is easy to check that \((n \min \psi_0)^{-1}(\psi_0(x)e^{f_0(x)T}) \) is a super-solution, where \(\psi_0 \) and \(f_0 \) are the principal eigenfunction and eigenvalue of \(\Delta + f_0(x,0) \). Thus, we obtain

\[
\frac{1}{2} = \int \varphi^n(0,x)dx \leq \frac{\|\psi_0\|_{\infty}}{n \min \psi_0} e^{-f_0T_n}.
\]

This implies that \(T_n \leq C \log(n) \), for some constant \(C \). Hence we may use parabolic regularity, along with the compactness of Hölder spaces to obtain convergence along a subsequence to a global in time function \(\varphi \) which satisfies

\[
\begin{cases}
\varphi_t = \varphi_{xx} + f(x, \varphi), \\
\int \varphi(0,x)dx = 1/2,
\end{cases}
\]

finishing the proof.

Now we establish that the asymptotics of any solution \(\varphi \) to equation (2.11) look like the solutions to the linearized problems around 0 and 1. This amounts to proving lemma 4.1, as stated in section 4.

Proof of theorem 4.1. We will prove the claim for \(t \) tending to \(-\infty\). The result for \(t \) tending to infinity follows by looking at \(\Phi(t,x) = 1 - \varphi(-t,x) \) and arguing similarly. Our strategy is to first show that \(\varphi \) is bounded above and below by a multiple of \(e^{f_0t} \). Then we will appeal to parabolic regularity to obtain the result.

To this end, we first assume, by contradiction, that \(e^{-f_0t}\varphi(t,x) \) tends to zero along some sequence \(t_n \) tending to \(-\infty \), for some choice of \(x_n \). By the parabolic Harnack inequality, it must converge to zero uniformly in space. Hence, we may assume that, for any \(\epsilon \), there exists \(N \) such that if \(n \geq N \) then \(\|e^{-f_0t_n}\varphi(t_n)\|_{\infty} \leq \epsilon \). In this case, we may apply lemma 3.2 to find \(t_n \) large enough that \(\varphi^{-t_n,1/4}(t-t_n,x) \) is a super-solution to \(\varphi \) on \([-t_n,0] \times T\). Using this inequality at time \(t = 0 \), we have that

\[
\frac{1}{4} = \int \varphi^{-t_n,1/4}(-t_n,x)dx \geq \int \varphi(0,x)dx = \frac{1}{2}.
\]

This is clearly a contradiction, finishing the lower bound.

Now we will show that there is some \(C \) such that \(e^{-f_0t}\varphi(t,x) \leq C \) for \(t \leq 0 \). To this end, suppose that there is some sequence \(t_n \) tending to \(-\infty \) such that \(e^{-f_0t_n}\varphi(t_n,x_n) \to \infty \) for some sequence \(x_n \). Again, by the parabolic Harnack inequality, this implies that \(\min e^{-f_0t_\ast}\varphi(t_\ast) \to \infty \). Hence, we may apply lemma 3.2 and take \(n \) large enough that \(\varphi^{-t_n,3/4}(t-t_n,x) \) is a sub-solution of \(\varphi \) on \([-t_n,0] \times T\). Using this inequality at time \(t = 0 \) yields

\[
\frac{3}{4} = \int \varphi^{-t_n,3/4}(-t_n,x)dx \leq \int \varphi(0,x)dx = \frac{1}{2}.
\]

This is a contradiction, giving us the desired upper bound.

Now, letting \(\Phi(t,x) = e^{-f_0t}\varphi(t,x) \), we will show that \(\Phi \) converges to \(\alpha \psi_0 \). To this end, we may write \(\Phi_1 = \int \Phi(t,x)\psi_0(x)dx \) and \(\Phi_2 = \Phi - \psi_0\Phi_1 \). Then as in our work in lemma 4.2, we may see that there are positive constants \(C \) and \(\theta \), independent of time such that
Solving these differential inequalities and using that Φ is bounded for all time gives us that, as t tends to $-\infty$, $\Phi(t) \to \alpha$, for some α, and that $\Phi_2(t) \to 0$. Since Φ is bounded away from zero, we get that $\alpha > 0$. This gives us the desired result.

Finally, we use this qualitative information, along with the sliding method, to prove uniqueness of any solution to equation (2.11).

Lemma 6.3. Any solution to equation (2.11) is unique.

Proof. Suppose that φ^1 and φ^2 are both solutions to equation (2.11) with $\int \varphi'(0, x) dx = 1/2$. Using lemma 4.1, we may choose h large enough such that $\varphi^1(t, x) \leq \varphi^2(t + h, x)$, holds for all t and all x. Then we define

$$h_0 = \inf \{ h : \varphi^1(t, x) < \varphi^2(t + h, x) \}. \quad (6.40)$$

Since φ^1 and φ^2 have the same spatial average at $t = 0$, then $h_0 \geq 0$. We wish to show that $h_0 = 0$. To this end, let us assume that $h_0 > 0$. There are two cases. Using lemma 3.2, we can find α_1 and α_2 such that $\varphi^1(t, x) \sim e^{\alpha_1 t} \psi_0$ as t tends to $-\infty$ that $\varphi^2(t, x) \sim e^{\alpha_2 t} \psi_0$ as t tends to $-\infty$. The first case is that $\alpha_1 = \alpha_2$. In other words, φ^1 and φ^2 touch at time $t = -\infty$. Define $\eta(t, x) = \varphi^2(t + h_0, x) - \varphi^1(t, x)$ and η satisfies

$$\eta_t = \eta_{xx} + \frac{f(x, \varphi^2(t + h_0, x)) - f(x, \varphi^1(t, x))}{\varphi^2(t + h_0, x) - \varphi^1(t + h, x)} \eta.$$

Fix $T < 0$ to be determined later. Since $\varphi^1 \sim e^{\alpha_1 t} \psi_0$ and since $\alpha_1 = e^{h_0 \alpha_2}$, we notice that $\eta(T, x) \leq o(1) e^{h_0 T}$ where $o(1)$ tends to zero as T tends to $-\infty$. From this it is easy to see that $e^{h_0 \alpha_2} \psi_0$ is a super-solution to equation for η starting from any time T. This implies that $\eta(0, x) \leq o(1)$. Since this holds independent of our choice of T, we get that that $\eta(0, x) = 0$.

On the other hand, φ^2 is bounded away from 0 and 1 on the time interval $[0, h_0]$. Hence, there exists $\theta > 0$ such that $f(x, \varphi^2) \geq \theta$ on the time interval $[0, h_0]$. Integrating the equation for φ^2 in time and space, along with this fact and the fact that $\eta(0, x) = 0$, yields

$$0 = \int \eta(0, x) dx = \int \varphi^2(0, x) dx - \int \varphi^1(0, x) dx = \int \varphi^2(h_0, x) dx - \int \varphi^1(h_0, x) dx - m$$

$$= \int \varphi^2(h_0, x) dx - \int \varphi^2(0, x) dx = \int_0^{h_0} \int f(x, \varphi^2(s, x)) dx ds \geq \int_0^{h_0} \theta ds = h_0 \theta > 0.$$
\[\varphi^1(t, x) \leq A_1 \exp(\varepsilon t) \]
and
\[\varphi^2(t + h_0) \geq A_2 \exp(\varepsilon (t + h_0 - \epsilon)) \psi_0(x). \]

Notice then that \(\varphi^1(t + h_0 - \epsilon, x) > \varphi^1(t, x) \) for all \(t < t_0 \). In addition, the comparison principle assures us that \(\varphi^2(t + h_0 - \epsilon, x) > \varphi^1(t, x) \) for all \(t \geq t_0 \) as well. This contradicts our choice of \(h_0 \) in equation (6.40).

Hence we may conclude that \(h_0 \) must be zero. This implies that \(\varphi^1(t, x) \leq \varphi^2(t, x) \) for all \(t \) and all \(x \). The proof may be applied just as easily to show that \(\varphi^1 \leq \varphi^2 \) as well. Hence we conclude that \(\varphi^1 \equiv \varphi^2 \), concluding the proof. □

Acknowledgments

The author wishes to thank Jun Gao, Yu Gu, and Lenya Ryzhik for many helpful discussions.

References

[1] Bages M, Martinez P and Roquejoffre J-M 2012 How travelling waves attract the solutions of KPP-type equations Trans. Am. Math. Soc. 364 5415–68
[2] Bass R F 1998 Diffusions and Elliptic Operators (Probability and its Applications) (New York: Springer)
[3] Berestycki H and Hamel F 2002 Front propagation in periodic excitable media Commun. Pure Appl. Math. 55 949–1032
[4] Berestycki H and Nirenberg L 1992 Travelling fronts in cylinders Ann. Inst. Henri Poincare Anal. Non Lineaire 9 497–572
[5] Berestycki H, Hamel F and Nadin G 2008 Asymptotic spreading in heterogeneous diffusive excitable media J. Funct. Anal. 255 2146–89
[6] Berestycki H, Hamel F and Nadirashvili N 2005 The speed of propagation for KPP type problems. I. Periodic framework J. Eur. Math. Soc. 7 173–213
[7] Berestycki H, Hamel F and Nadirashvili N 2010 The speed of propagation for KPP type problems. II. General domains J. Am. Math. Soc. 23 1–34
[8] Berestycki H, Hamel F and Roques L 2005a Analysis of the periodically fragmented environment model. I. Species persistence J. Math. Biol. 51 75–113
[9] Berestycki H, Hamel F and Roques L 2005b Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts J. Math. Pure Appl. 84 1101–46
[10] Bouin E, Calvez V and Nadir G 2015 Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts Arch. Ration. Mech. Anal. 217 571–617
[11] Bouin E, Calvez V, Meunier N, Mirrahimi S, Perthame B, Raoul G and Voituriez R 2012 Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration C. R. Math. Acad. Sci., Paris 350 761–6
[12] Bramson M 1978 Maximal displacement of branching Brownian motion Commun. Pure Appl. Math. 31 531–81
[13] Bramson M 1983 Convergence of solutions of the Kolmogorov equation to travelling waves Mem. Am. Math. Soc. 44 285
[14] Cabré X and Roquejoffre J-M 2013 The influence of fractional diffusion in Fisher-KPP equations Commun. Math. Phys. 320 679–722
[15] Cabré X, Coulon A-C and Roquejoffre J-M 2012 Propagation in Fisher-KPP type equations with fractional diffusion in periodic media C. R. Math. Acad. Sci., Paris 350 885–90
[16] Coulon A-C and Roquejoffre J-M 2012 Transition between linear and exponential propagation in Fisher-KPP type reaction-diffusion equations Commun. PDE 37 2029–49
[17] Dautray R and Lions J-L. 1990 *Mathematical Analysis and Numerical Methods for Science and Technology* vol 3 (Berlin: Springer) (Spectral theory and applications, with the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C Amson)

[18] Fisher R 1937 The wave of advance of advantageous genes *Ann. Eugenics* 7 355–69

[19] Gärtnert J 1982 Location of wave fronts for the multidimensional KPP equation and Brownian first exit densities *Math. Nachr.* 105 317–51

[20] Garnier J 2011 Accelerating solutions in integro-differential equations *SIAM J. Math. Anal.* 43 1955–74

[21] Hamel F and Roques L 2010 Fast propagation for KPP equations with slowly decaying initial conditions *J. Differ. Equ.* 249 1726–45

[22] Hamel F, Nolen J, Roquejoffre J-M and Ryzhik L 2013 A short proof of the logarithmic Bramson correction in Fisher-KPP equations *Netw. Heterog. Media* 8 275–89

[23] Hamel F, Nolen J, Roquejoffre J-M and Ryzhik L 2016 The logarithmic delay of KPP fronts in a periodic medium *J. Eur. Math. Soc.* 18 465–505

[24] Henderson C 2016 Population stabilization in branching Brownian motion with absorption and drift *Commun. Math. Sci.* 14 973–85

[25] Kolmogorov A N, Petrovskii I G and Piskunov N S 1937 Étude de l’équation de la chaleur et son application à un problème biologique *Bull. Moskov. Gos. Univ. Mat. Mekh.* 1 1–25 (see [34] pp 105–30 for an english translation)

[26] Kot M, Lewis M and Van den Driessche P 1996 Dispersal data and the spread of invading organisms *Ecology* 77 2027–42

[27] Krylov N V 1996 *Lectures on Elliptic and Parabolic Equations in Hölder Spaces* (Graduate Studies in Mathematics vol 12) (Providence, RI: American Mathematical Society)

[28] Krylov N V 2008 *Lectures on Elliptic and Parabolic Equations in Sobolev Spaces* (Graduate Studies in Mathematics vol 96) (Providence, RI: American Mathematical Society)

[29] Lau K-S 1985 *On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov* *J. Differ. Equ.* 59 44–70

[30] Medlock J and Kot M 2003 Spreading disease: integro-differential equations old and new *Math. Biosci.* 184 201–22

[31] Méléard S and Mirrahimi S 2015 Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity *Commun. PDE* 40 957–93

[32] Nadig G 2009 Traveling fronts in space-time periodic media *J. Math. Pure Appl.* 92 232–62

[33] Nadig G 2011 Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation *Eur. J. Appl. Math.* 22 169–85

[34] Pelé P (ed) 1988 *Dynamics of Curved Fronts* (Perspectives in Physics) (Boston, MA: Academic)

[35] Roberts M I 2013 A simple path to asymptotics for the frontier of a branching Brownian motion *Ann. Probab.* 41 3518–41

[36] Roquejoffre J-M and Tarfulea A 2015 Gradient estimates and symmetrization for Fisher-KPP front propagation with fractional diffusion (arXiv:1502.06304)

[37] Uchiyama K 1978 The behavior of solutions of some nonlinear diffusion equations for large time *J. Math. Kyoto Univ.* 18 453–508