Preferential Usage of the Fc Receptor γ Chain in the T Cell Antigen Receptor Complex by γ/δ T Cells Localized in Epithelia

By Hiroshi Ohno,* Satoru Ono,* Nakami Hirayama,† Shinji Shimada,§ and Takashi Saito*

From the *Division of Molecular Genetics, Center for Biomedical Science, Chiba University School of Medicine, Chiba 260; the †Department of Immunology, National Institute of Health, Tokyo 162; and the §Department of Dermatology, Tokyo University Branch Hospital, Tokyo 112, Japan

Summary

The ζ and η chains of the T cell antigen receptor (TCR) complex and the γ chain of Fc receptors (FcRγ) constitute a family of proteins important for the expression of, and signal transduction through, these receptors in hematopoietic cells. In ζ-deficient mice, TCR expression was reduced in most T cells. By contrast, CD8αα+ TCR-ζ/ζ+ intestinal intraepithelial lymphocytes in these mice expressed a normal level of TCR. Biochemical analysis of the TCR complex in these cells from ζ-deficient as well as normal mice revealed the predominant usage of FcRγ. Furthermore, γ/δ+ T cells in epithelia of the skin and female reproductive organs from ζ-deficient mice also showed relatively high TCR expression, indicating the usage of FcRγ. These observations demonstrate the preferential usage of FcRγ by γ/δ+ T cells localized in epithelia of normal mice.

T cells recognize antigen bound to the products of MHC on APC through TCR, and are activated to exert various effector functions (1, 2). The TCR complex is a multi-dimensional complex composed of three groups of proteins; the TCR-α/β (or -γ/δ) dimer, the CD3 complex, and the ζ family of disulfide-linked dimers (3). TCR dimers are responsible for antigen binding, whereas the other molecules are thought to be important for transmembrane signaling.

The ζ family has three known members, ζ, η, and FcRγ (4–6). In thymocytes and peripheral T cells, most of TCR complexes contain ζ homodimers, whereas 5–10% of TCRs associate with the ζ-η heterodimer. On the other hand, the TCR complex in a minor population of T cells has ζ and η as a form of heterodimers with FcRγ (4, 5). Moreover, it is reported that FcRγ was exclusively associated with TCR in vitro cultured large granular lymphocytes (6).

A considerable body of evidence shows the importance of ζ both in assembly and surface expression of the TCR complex and in receptor-mediated signal transduction (7–13). Cytoplasmic tails of ζ family as well as CD3 molecules have consensus motifs important for intracellular signal transduction (14, 15). Recent studies indicate that the TCR complex has two signal transduction modules, the ζ family dimer and the CD3 complex, and that the two modules could transduce distinct signals into the cells (15, 16). In addition, it has been reported that the TCR complex containing FcRγ has a different signaling capacity from those containing ζ (17–19). Consequently, differential usage of ζ family molecules by distinct subsets of T cells may reflect difference in lineage and/or function of these cells.

Recently, we and others demonstrated that ζ is critical for normal T cell development and function, using mice deficient in the expression of ζ (20, 21). We also showed that η is not so efficient in assembly and surface expression of TCR complexes as ζ (20). Biochemical analysis of T hybridoma cells revealed that this was caused by retention in the endoplasmic reticulum of η-containing TCR complexes (22). Taking advantage of the mice lacking ζ (ζ/ζ T mice) (20), we evaluated FcRγ usage by various subsets of T cells.

Materials and Methods

Mice. C57BL/6 and KSN nu/nu mice (23) were purchased from Japan SLC, Inc. (Hamamatsu, Japan). ζ T mice (20) were bred in our facility.

Cell Preparation. Single cell suspensions of thymocytes and splenocytes were prepared in RPMI 1640 supplemented with 10% heat-inactivated FCS, 2 mM glutamine, 50 μM 2-ME, and 100 μg/ml kanamycin. Splenocytes were depleted of erythrocytes by lysis. For enrichment of CD4+8+ double-negative (DN) thymocytes, thymocytes were incubated with culture supernatant of anti-CD4 mAb (MT4), plated on plastic dishes precoated with rabbit anti-mouse immunoglobulin (Cappel Laboratories, Cochranville, PA), and nonadherent cells were collected as DN thymocytes-enriched population. Intestinal intraepithelial lymphocytes (i-IEL), hepatic lymphocytes, lymphocytes in mucosal epithelia of...
Figure 1. Expression of TCR-α/β and γ/δ dimers on thymocytes, splenocytes, and i-IEL from T/γT mice. (A) CD3ε and TCR-δ or TCR-α expression on the surface of thymocytes, splenocytes, and i-IEL were examined as described in Materials and Methods. (B) CD4, CD8, and TCR-δ expression on the surface of i-IEL were analyzed. CD4/CD8ε or CD8ε/CD8β were used to divide i-IEL into four subpopulations (top). The histograms shown below represent the fluorescence intensity for TCR-δ detected by the third fluorescence, within each quadrant.

Flow Cytometric Analysis. Cells from the thymus, spleen, peripheral blood, liver, i-IEL, DETC, and r-IEL were stained with mAbs recognizing CD3ε, TCR-α/β, TCR-γ/δ, CD4, CD8ε, CD8β, and IL-2Rβ, and the surface expression of these molecules was analyzed on a FACScan® flow cytometer (Becton Dickinson & Co., Mountain View, CA). The following mAbs were used: PE-conjugated anti-CD4 (GK1.5) and FITC-labeled anti-CD8ε (53-6.7), purchased from Becton Dickinson & Co., FITC-conjugated or biotinylated anti-CD3ε (145-2C11); biotinylated anti-TCR-β (H57-597), biotinylated anti-TCR-γ/δ (GL3); and PE-conjugated anti-CD45R/B220 (RA3-6B2) from PharMingen (San Diego, CA); biotinylated anti-IL-2Rβ (TM-β1) was kindly provided by Dr. M. Miyasaka (Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan). Biotinylated mAbs were developed with streptavidin-PE (Becton Dickinson & Co.) or streptavidin-Tri-Color® (CalTag Laboratories, San Francisco, CA). Dead cells were excluded by staining with propidium iodide. Cells in the lymphocyte gate defined by light scatter were collected.

Cell Surface Biotinylation, Immunoprecipitation, and Two-dimensional SDS-PAGE Analysis. Cell surface biotinylation was performed as previously described (28). Cells were then solubilized in lysis buffer (1% digitonin, 50 mM Tris-HCl, pH 7.6, 300 mM NaCl, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 mM PMSF, 10 mM iodoacetamide) at a concentration of 10⁶ cells/ml. Immunoprecipitation was performed with anti-TCR-α mAb (3A10), anti-TCR-β mAb (H57-597), anti-γ mAb (H146.698-A), and anti-FcR-γ antiserum, which were kindly provided by Drs. S. Tonegawa (Massachusetts Institute of Technology, Boston, MA), R. Kubo (Cytel Corporation, San Diego, CA), and C. Ra (Juntendo University, Tokyo, Japan), respectively. Immunoprecipitates were resolved by two-dimensional nonreducing-reducing SDS-PAGE (14% for the first dimension and 16% for the second dimension), transferred onto polyvinylidene fluoride membrane (Immobilion-P®; Millipore Corp., Bedford, MA). Membranes were soaked in skim-milk in PBS, and biotinylated proteins were detected using streptavidin-peroxidase (VECTASTAIN® Elite ABC kit; Vector Laboratories Inc., Burlingame, CA) and ECL® system (Amersham International, Buckinghamshire, England).

Results and Discussion

The expression levels of TCR on thymocytes and peripheral T cells were significantly reduced in T/γT mice (20).
This was observed in both α/β^+ and γ/δ^+ thymocytes as well as splenic T cells (Fig. 1 A). These data indicate that those cells predominantly express ξ as a component of the TCR complex, and extended to normal T cells the previous observation on in vitro cell lines that the expression of ξ is critical for a normal level of surface TCR expression (7-10).

When we analyzed i-iEL, however, a striking difference was observed (Fig. 1 A) (20). Similar to thymocytes and peripheral T cells, surface TCR expression of α/β^+ i-iEL was impaired by the $\xi'T$ mutation. By contrast, surface TCR level of γ/δ^+ i-iEL from $\xi'T/\xi'T$ mice was comparable with that of γ/δ^+ i-iEL from wild type mice. In γ/δ^+ i-iEL, two distinct subpopulations are known: the major population of CD8α^+-bearing cells and the minor DN cells. The former is thought to differentiate extrathymically, whereas the latter is believed to derive from the thymus (29). Whether TCR expression of both γ/δ^+ i-iEL populations was resistant to the $\xi'T$ mutation was analyzed by three-color flow cytometry. As shown in Fig. 1 B, the expression level of surface TCR in CD8α^+ γ/δ^+ i-iEL from $\xi'T/\xi'T$ mice remained normal, but that in DN γ/δ^+ i-iEL was reduced. These observations suggest that, in CD8α^+ γ/δ^+ i-iEL, ξ family molecules other than ξ were predominantly associated with TCR.

To test this possibility, various preparations of T cells were analyzed for their composition of TCR complexes by a sensitive surface biotinylation (28) and two-dimensional non-reducing-reducing SDS-PAGE. TCR on α/β^+ and γ/δ^+ thymocytes as well as α/β^+ i-iEL from wild type mice was predominantly associated with $\xi'-\xi^+$ homodimers (Fig. 2, A-C). By contrast, analysis of TCR complexes on γ/δ^+ i-iEL revealed that, on these cells, both ξ and FeRγ contribute for TCR constitution (Fig. 2 D). Identification of ξ and FeRγ was confirmed by direct precipitation of these molecules with anti-ξ mAb (H146.968A) and anti-FeRγ antiserum, respectively (data not shown). Existence of two subpopulations in γ/δ^+ i-iEL from normal mice as mentioned above may complicate the analysis. To avoid this complexity, we utilized CD8α^+-bearing cells and the minor DN cells. The former is thought to differentiate extrathymically, whereas the latter is believed to derive from the thymus (29). Whether TCR expression of both γ/δ^+ i-iEL populations was resistant to the $\xi'T$ mutation was analyzed by three-color flow cytometry. As shown in Fig. 1 B, the expression level of surface TCR in CD8α^+ γ/δ^+ i-iEL from $\xi'T/\xi'T$ mice remained normal, but that in DN γ/δ^+ i-iEL was reduced. These observations suggest that, in CD8α^+ γ/δ^+ i-iEL, ξ family molecules other than ξ were predominantly associated with TCR.

To test this possibility, various preparations of T cells were analyzed for their composition of TCR complexes by a sensitive surface biotinylation (28) and two-dimensional non-reducing-reducing SDS-PAGE. TCR on α/β^+ and γ/δ^+ thymocytes as well as α/β^+ i-iEL from wild type mice was predominantly associated with $\xi'-\xi^+$ homodimers (Fig. 2, A-C). By contrast, analysis of TCR complexes on γ/δ^+ i-iEL revealed that, on these cells, both ξ and FeRγ contribute for TCR constitution (Fig. 2 D). Identification of ξ and FeRγ was confirmed by direct precipitation of these molecules with anti-ξ mAb (H146.968A) and anti-FeRγ antiserum, respectively (data not shown). Existence of two subpopulations in γ/δ^+ i-iEL from normal mice as mentioned above may complicate the analysis. To avoid this complexity, we utilized CD8α^+-bearing cells and the minor DN cells. The former is thought to differentiate extrathymically, whereas the latter is believed to derive from the thymus (29). Whether TCR expression of both γ/δ^+ i-iEL populations was resistant to the $\xi'T$ mutation was analyzed by three-color flow cytometry. As shown in Fig. 1 B, the expression level of surface TCR in CD8α^+ γ/δ^+ i-iEL from $\xi'T/\xi'T$ mice remained normal, but that in DN γ/δ^+ i-iEL was reduced. These observations suggest that, in CD8α^+ γ/δ^+ i-iEL, ξ family molecules other than ξ were predominantly associated with TCR.

To test this possibility, various preparations of T cells were analyzed for their composition of TCR complexes by a sensitive surface biotinylation (28) and two-dimensional non-reducing-reducing SDS-PAGE. TCR on α/β^+ and γ/δ^+ thymocytes as well as α/β^+ i-iEL from wild type mice was predominantly associated with $\xi'-\xi^+$ homodimers (Fig. 2, A-C). By contrast, analysis of TCR complexes on γ/δ^+ i-iEL revealed that, on these cells, both ξ and FeRγ contribute for TCR constitution (Fig. 2 D). Identification of ξ and FeRγ was confirmed by direct precipitation of these molecules with anti-ξ mAb (H146.968A) and anti-FeRγ antiserum, respectively (data not shown). Existence of two subpopulations in γ/δ^+ i-iEL from normal mice as mentioned above may complicate the analysis. To avoid this complexity, we utilized CD8α^+-bearing cells and the minor DN cells. The former is thought to differentiate extrathymically, whereas the latter is believed to derive from the thymus (29). Whether TCR expression of both γ/δ^+ i-iEL populations was resistant to the $\xi'T$ mutation was analyzed by three-color flow cytometry. As shown in Fig. 1 B, the expression level of surface TCR in CD8α^+ γ/δ^+ i-iEL from $\xi'T/\xi'T$ mice remained normal, but that in DN γ/δ^+ i-iEL was reduced. These observations suggest that, in CD8α^+ γ/δ^+ i-iEL, ξ family molecules other than ξ were predominantly associated with TCR.

To test this possibility, various preparations of T cells were analyzed for their composition of TCR complexes by a sensitive surface biotinylation (28) and two-dimensional non-reducing-reducing SDS-PAGE. TCR on α/β^+ and γ/δ^+ thymocytes as well as α/β^+ i-iEL from wild type mice was predominantly associated with $\xi'-\xi^+$ homodimers (Fig. 2, A-C). By contrast, analysis of TCR complexes on γ/δ^+ i-iEL revealed that, on these cells, both ξ and FeRγ contribute for TCR constitution (Fig. 2 D). Identification of ξ and FeRγ was confirmed by direct precipitation of these molecules with anti-ξ mAb (H146.968A) and anti-FeRγ antiserum, respectively (data not shown). Existence of two subpopulations in γ/δ^+ i-iEL from normal mice as mentioned above may complicate the analysis. To avoid this complexity, we utilized CD8α^+-bearing cells and the minor DN cells. The former is thought to differentiate extrathymically, whereas the latter is believed to derive from the thymus (29). Whether TCR expression of both γ/δ^+ i-iEL populations was resistant to the $\xi'T$ mutation was analyzed by three-color flow cytometry. As shown in Fig. 1 B, the expression level of surface TCR in CD8α^+ γ/δ^+ i-iEL from $\xi'T/\xi'T$ mice remained normal, but that in DN γ/δ^+ i-iEL was reduced. These observations suggest that, in CD8α^+ γ/δ^+ i-iEL, ξ family molecules other than ξ were predominantly associated with TCR.
Figure 3. Expression of TCR on hepatic lymphocytes, r-IEL, and DETC from T/T mice. (A) CD3ε and IL-2Rβ expression on hepatic lymphocytes was analyzed as described in Materials and Methods. CD3ε-IL-2Rβ cells, which are thought to develop extrathythymically in the liver (30), are indicated with squares. (B) CD3ε and TCRδ expression on peripheral blood cells, r-IEL, and DETC were examined as described in Materials and Methods.

The present study demonstrates that in mice, certain subsets of T cells preferentially utilize FcRγ, of family molecules, as a component of the TCR complex. Similar to thymocytes and peripheral T cells, TCR on CD3ε-IL-2Rβ hepatic lymphocytes (30) were reduced in T/T mice (Fig. 3 A). By contrast, surface TCR expression of r-IEL and DETC from T/T mice remained higher than that of peripheral T cells, indicating the predominant usage of FcRγ in these cells (Fig. 3 B).

The present study demonstrates that in mice, certain subsets of T cells preferentially utilize FcRγ, of family molecules, as a component of the TCR complex. These include CD8αε+ γδ+i-IEL, r-IEL, and DETC. It is of note that all these T cells express the TCR-γδ dimer and are localized in epithelia. In addition, these cells express a higher level of TCR compared with peripheral T cells. These three subsets of γδ+ T cells are thought to be phylogenetically old and to play a part in the surveillance of body surfaces that are exposed to the environment (26, 31, 32). In this respect, it is of particular interest that these T cells commonly utilize FcRγ as a component of their TCR complexes. FcRγ has one signaling motif in the cytoplasmic portion, whereas ζ has three motifs, which are supposed to be generated by intramolecular duplication. Furthermore, FcRγ is also expressed in NK cells, which are proposed to be the ancestor of T cells (33). Taken together, FcRγ may be a prototype of ζ family molecules.

Differential usage of ζ and FcRγ by distinct T cell subsets likely represents differences in lineage and/or function of these cells. Recently, evidence supporting the idea that TCR with FcRγ is functionally distinct from TCR with ζ is increasing. First, in vitro kinase assay on immunoprecipitates of TCR complexes containing FcRγ displayed a distinct phosphorylation pattern from that of TCR complexes containing ζ in T hybridoma cells (17). Second, the cytoplasmic tail of ζ but not FcRγ can transduce signals mediated through Thy-1 molecules (18). Third, ζ is replaced by FcRγ in T cells from tumor-bearing mice as well as cancer patients, and the change is accompanied with immune incompetence including an impaired antitumor response (19). Concerning the functional difference between distinct T cell subsets, an interesting result was reported in mucosal immunity (34); γδ+i-IEL from mice orally immunized with antigen abrogates tolerance induced in recipient mice by oral administration of the same antigen when transferred, while αβ+i-IEL provides helper function for antibody production in vitro. These functional differences may reflect differential usage of ζ family molecules by γδ+ and αβ+i-IEL. Further study should shed light on the physiological role of T cell subsets bearing TCR with different ζ family molecules.

We are grateful to Drs. R. Kubo, S. Tonegawa, C. Ra and M. Miyasaka for providing antibodies. We thank Dr. R. N. Germain, and Dr. Y. Ishida for critical reading of the manuscript, Ms. C. Ogata for technical assistance, and Ms. H. Ohno for secretarial assistance. T/T mice were established under collaboration with Dr. K. Rajewsky.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture and the Life Science Research Project of Physical and Chemical Research (RIKEN).

Address correspondence to Takashi Saito, Division of Molecular Genetics, Center for Biomedical Science, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba 260, Japan.

Received for publication 25 October 1993.

Note Added in Proof: After submitting this paper, Malissen et al. (36) reported a similar observation that TCR complexes of i-IEL contain FcRγ homodimers.

References
1. Saito, T., A. Weiss, J. Miller, M.A. Norcross, and R.N. Germain. 1987. Specific antigen-Ia activation of transfected human T cells expressing murine T αβ-human receptor complexes. Nature (Lond.). 325:125.
2. Davis, M.M., and P.J. Bjorkman. 1988. T-cell antigen receptor genes and T-cell recognition. Nature (Lond.). 334:395.
3. Klausner, R.D., J. Lippincott-Schwartz, and J.S. Bonifacino. 1990. The T cell antigen receptor: insights into organelle biology. *Annu. Rev. Cell Biol.* 6:403.

4. Orloff, D.G., C. Ra, S.J. Frank, R.D. Klausner, and J.-P. Kinet. 1990. Family of disulfide-linked dimers containing the ζ and γ chains of the T-cell receptor and the γ chain of Fc receptors. *Nature (Lond.)*. 347:189.

5. Vivier, E., N. Rochet, J.P. Kochan, D.H. Presky, S.T. Schlossman, and P. Anderson. 1991. Structural similarity between Fc receptors and T cell receptors: expression of the γ subunit of FeR in human T cells, natural killer cells and thymocytes. *J. Immunol.* 146:4263.

6. Koyasu, S., L. D’Adamo, A.R.N. Arulanandam, S. Abraham, L.K. Clayton, and E.L. Reinherz. 1992. T cell receptor complexes containing FcεRI homodimers in lieu of CD3ζ and CD3η components: a novel isoform expressed on large granular lymphocytes. *J. Exp. Med.* 175:203.

7. Minami, Y., A.M. Weissman, L.E. Samelson, and R.D. Klausner. 1987. Building a multichain receptor: synthesis, degradation, and assembly of the T-cell antigen receptor. *Proc. Natl. Acad. Sci. USA.* 84:2688.

8. Sussman, J.J., J.S. Bonifacino, J. Lippincott-Schwartz, A.M. Weissman, T. Saito, R.D. Klausner, and J.D. Ashwell. 1988. Failure to synthesize the T cell CD3-ζ chain: structure and function of a partial T cell receptor complex. *Cell.* 52:85.

9. Weissman, A.M., S.J. Frank, D.G. Orloff, M. Mercep, J.D. Ashwell, and R.D. Klausner. 1989. Role of the zeta chain in the expression of the T cell antigen receptor: genetic reconstitution studies. *EMBO (Eur. Mol. Biol. Organ.) J.* 8:3651.

10. Ashwell, J.D., and R.D. Klausner. 1990. Genetic and functional analysis of the T-cell antigen receptor. *Annu. Rev. Immunol.* 8:139.

11. Irving, B.A., and A. Weiss. 1991. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. *Cell.* 64:891.

12. Romeo, C., and B. Seed. 1991. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. *Cell.* 64:1037.

13. Weiss, A. 1993. T cell antigen receptor signaling transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. *Cell.* 73:209.

14. Reth, M. 1989. Antigen receptor tail clue. *Nature (Lond.)*. 338:383.

15. Wegener, A.-M., F. Letourneur, A. Hoeveler, T. Brocker, F. Lutton, and B. Malissen. 1992. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. *Cell.* 68:83.

16. Letourneur, F., and R.D. Klausner. 1992. Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3ζ. *Science (Wash. DC).* 255:79.

17. Ohno, H., T. Aoe, C. Ra, T. Yamamoto, and T. Saito. 1993. TCR isoform containing the Fc receptor chain exhibit structural and functional differences from isoform containing CD3ζ. *Int. Immunol.* 5:1403.

18. Letourneur, F., and R.D. Klausner. 1991. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor family proteins. *Proc. Natl. Acad. Sci. USA.* 88:8905.

19. Mizoguchi, H., J.J. O’Shea, D.L. Longo, C.M. Loeffler, D.W. McVicar, and A.C. Ocha. 1992. Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. *Science (Wash. DC).* 258:1795.

20. Ohno, H., T. Aoe, S. Taki, D. Kitamura, Y. Ishida, K. Rajewsky, and T. Saito. 1993. Developmental and functional impairment of T cells in mice lacking CD3ζ chains. *EMBO (Eur. Mol. Biol. Organ.) J.* 12:4357.

21. Love, P.E., E.W. Shores, M.D. Johnson, M.L. Tremblay, E.J. Lee, A. Grinberg, S.P. Huang, A. Singer, and H. Westphal. 1993. T cell development in mice that lack the ζ chain of the T cell antigen receptor complex. *Science (Wash. DC).* 263:918.

22. Clayton, L.K., A. Diener, A. Lerner, A.G.D. Tse, S. Koyasu, and E.L. Reinherz. 1992. Differential regulation of T-cell receptor processing and surface expression affected by CD3η, an alternatively spliced product of the CD3ζ/η gene locus. *J. Biol. Chem.* 267:26023.

23. Sudo, K., and K. Suzuki. 1987. Establishment of a new inbred nude strain, KSN. *Mice News Lett.* 79:13.

24. Ishikawa, H., Y. Li, A. Abeliovich, S. Yamamoto, S.H.E. Kaufmann, and S. Tonegawa. 1993. Cytotoxic and idiotypic γ-producing activities of γδ T cells in the mouse intestinal epithelium are strain dependent. *Proc. Natl. Acad. Sci. USA.* 90:8204.

25. Watanabe, H., K. Ohtsuka, M. Kiumura, Y. Ikarashi, K. Ohmori, A. Kusumi, T. Ohteki, S. Seki, and T. Abo. 1992. Details of an isolation method for hepatic lymphocytes in mice. *J. Immunol. Methods.* 146:145.

26. Itohara, S., A.G. Farr, J.J. Lafaille, M. Bonneville, Y. Takagi, W. Haas, and S. Tonegawa. 1990. Homing of a γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. *Nature (Lond.)*. 343:754.

27. Ota, Y., T. Kobata, M. Seki, Y. Yagita, S. Shimada, Y.Y. Huang, Y. Takagi, Y., and K. Ohmura. 1992. Extrathymic origin of Vγ1/Vδ6 T cells in the skin. *Eur. J. Immunol.* 22:3958.

28. Miyake, K., I.L. Weissman, J.S. Greenberger, and P.W. Kindcade. 1991. Evidence for a role of the integrin VLA-4 in lymphohemopoiesis. *J. Exp. Med.* 173:599.

29. Lefrancois, L. 1991. Extrathymic differentiation of intraepithelial lymphocytes: generation of a separate and unequal T-cell repertoire? *Immunol. Today.* 12:436.

30. Abo, T. 1993. Extrathymic pathways of T-cell differentiation: a primitive and fundamental immune system. *Microbiol. Immunol.* 37:247.

31. Janeway, C.A., Jr. 1988. Frontiers of the immune system. *Nature (Lond.)*. 333:804.

32. Janeway, C.A., Jr., B. Jones, and A. Hayday. 1988. Specificity and function of T cells bearing γδ receptors. *Immunol. Today.* 9:73.

33. Rodewald, H.-R., P. Moningeon, J.L. Lucich, C. Dosiou, P. Lopez, and E.L. Reinherz. 1992. A population of early fetal thymocytes in mice lacking CD3ζ chains. *Nature (Lond.)*. 353:719.

34. Fujihashi, K., T. Taguchi, W.K. Aicher, J.R. McGhee, J.A. Bliedone, J.H. Eldridge, and H. Kiyono. 1992. Immunoregulatory functions for murine intraepithelial lymphocytes: γδ T cell receptor-positive (TCR γδ) T cells abrogate oral tolerance, while αβ TCR T cells provide B cell help. *J. Exp. Med.* 175:695.

35. Aoe, T., H. Ohno, S. Sonta, and T. Saito. 1993. Functional inactivation of the CD3ζ chain in a T cell hybridoma by in vitro gene targeting. *Int. Immunol.* 5:725.

36. Malissen, M., A. Gillet, B. Rocha, J. Trucy, E. Vivier, C. Beyer, F. Krontgen, N. Brun, G. Mazza, E. Spanopoulou, et al. 1993. T cell development in mice lacking the CD3-ζ/η gene. *EMBO (Eur. Mol. Biol. Organ.) J.* 12:4347.