Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
controversial [7]. Therefore, albeit speculative, it may be assumed
necessary.
mechanism(s), experimental evaluation in the near future is now
involved in such PCT elevation. To clarify its underlying molecular
that some signal transduction under DKA conditions might be
A recent meta-analysis reported that a higher neutrophil-to-
lymphocyte ratio on severity of COVID-19
Keywords: Coronavirus disease 2019 COVID-19 MAFLD
Metabolic associated fatty liver disease

A recent meta-analysis reported that a higher neutrophil-to-
lymphocyte ratio (NLR), i.e. a well-known marker of systemic
inflammation integrating the detrimental effects of neutrophilia
and lymphopenia, is strongly associated with poorer in-hospital
outcomes in patients with coronavirus disease-2019 (COVID-19)
[1]. Previous studies also reported a significant association
between increased NLR and the histological severity of liver
inflammation integrating the detrimental effects of neutrophilia
and lymphopenia, is strongly associated with poorer in-hospital
outcomes in patients with coronavirus disease-2019 (COVID-19)
[1]. Previous studies also reported a significant association
between increased NLR and the histological severity of liver

Table 1
Clinical and laboratory parameters of type 1 (T1DM) and type 2 diabetes mellitus (T2DM) patients with diabetic ketoacidosis (DKA) and hyperosmolar hyperglycaemic syndrome (HHS).

Case	Gender, age (years)	Plasma glucose (mg/dL)	Diagnosis	HbA1c (%)	GA (%)	Urine ketone	Ketone bodies (μmol/L)	Acetoacetic acid (μmol/L)	3-HBA (μmol/L)	pH	Lactate (mEq/L)	WBCs (×10^9/L)	NTs (%)	CRP (mg/dL)	PCT (ng/mL)
1	F, 34	539	T1DM, DKA	17.4	56.5	2+	8607.5	1639.5	6968	6.910	2.1	21,800	87.9	0.06	12.40
2	F, 42	1177	T1DM, DKA	9.7	46.3	3+	1568.4	421.5	11469	6.944	4.6	19,910	92.0	0.31	30.47
3	F, 32	623	T1DM, DKA	20.8	70.2	3+	13,770	3350	10,420	6.798	1.6	26,510	76.7	0.25	8.81
4	F, 73	1044	T1DM, DKA	12.8	55.6	2+	26,020	7000	19,020	7.058	2.8	18,900	89.0	2.18	6.87
5	F, 56	792	T2DM, DKA	11.6	44.0	3+	10,505.6	3569.2	6936.4	7.059	1.9	17,040	95.0	0.53	0.16
6	F, 94	480	T2DM, HHS	8.5	32.6	–	N/A	N/A	N/A	N/A	N/A	N/A	4190	65.7	0.04
7	F, 93	566	T2DM, HHS	9.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9600	87.0
8	F, 76	1321	T2DM, HHS	8.8	35.9	–	N/A	N/A	N/A	N/A	2.8	9400	88.0	0.16	0.07
9	M, 76	409	T2DM, HHS	7.5	25.4	–	N/A	N/A	N/A	N/A	N/A	N/A	10,710	83.1	0.46

HbA1c: Glycated haemoglobin; GA: Glycoalbumin; 3-HBA: 3-hydroxybutyric acid; WBCs: White blood cells; NTs: Neutrophils; CRP: C-reactive protein; PCT: procalcitonin; F: Female; M: Male; N/A: Not applicable.

Disclosure of interest
The authors declare that they have no competing interest.

References
[1] Karavanaki K, Karanika E, Georga S, Bartzeliotou A, Tsouvalas M, Konstantopoulos I, et al. Cytokine response to diabetic ketoacidosis (DKA) in children with type 1 diabetes (T1DM). Endocr J 2011;58:1045–53.
[2] Wirz Y, Meier MA, Boudaud L, Luyt CE, Wolff M, Chastre J, et al. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: a patient-level meta-analysis of randomized trials. Crit Care 2018;22:191.
[3] Ivaska L, Elenius V, Mononen I, Ruuskanen O, Peitola V. Discrepancies between plasma procalcitonin and C-reactive protein levels are common in acute infection. J Intern Med 2010;268:87–97.
[4] Linscheid P, Seebold D, Nylen ES, Langer I, Schlatter M, Becker KL, et al. In vitro and in vivo calcitonin gene expression in parenchymal cells: a novel product of human adipose tissue. Endocrinology 2003;144:5578–84.
[5] Timper K, Grisouard J, Radimerski T, Dembinski K, Peterli R, Häring HU, et al. Glucose-dependent insulinotropic polypeptide (GIP) induces calcitonin gene-related peptide (CGRP)-I and procalcitonin (Pro-CT) production in human adipocytes. J Clin Endocrinol Metab 2011;96:E297–303.
[6] Ho J, Renner RA, Douilla M, Huang C. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials 2016;17:347.
[7] Pirat AS, Amiel J, Tardieu F, Bouadma L, Chastre J, et al. Procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: a patient-level meta-analysis of randomized trials. Crit Care 2018;22:191.
[8] Karavanaki K, Karanika E, Georga S, Bartzeliotou A, Tsouvalas M, Konstantopoulos I, et al. Cytokine response to diabetic ketoacidosis (DKA) in children with type 1 diabetes (T1DM). Endocr J 2011;58:1045–53.
[9] T. Anno a,*, R. Shigemoto a, F. Kawasaki a, S. Irie b, N. Miyashita b, K. Kaku a, H. Kaneto b
aDepartment of General Internal Medicine 1, Kawasaki Medical School, Okayama 700-8505, Japan
bDepartment of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki 701-0192, Japan
*Corresponding author at: Department of General Internal Medicine 1, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505, Japan
E-mail address: anno-tt@umin.ac.jp (T. Anno).
Received 16 April 2019
Received in revised form 20 May 2019
Accepted 26 May 2019
Available online 4 June 2019

Funding
This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Disclosure of interest
The authors declare that they have no competing interest.

ARTICLE INFO
Keywords: Coronavirus disease 2019 COVID-19 MAFLD
Metabolic associated fatty liver disease

Detrimental effects of metabolic dysfunction-associated fatty liver disease and increased neutrophil-to-lymphocyte ratio on severity of COVID-19

https://doi.org/10.1016/j.diabet.2019.05.006
1262-3636/© 2019 Elsevier Masson SAS. All rights reserved.
fibrosis in non-alcoholic fatty liver disease (recently renamed metabolic dysfunction-associated fatty liver disease (MAFLD)) [3,4]. We therefore postulated that MAFLD might contribute to the COVID-19-induced inflammatory "storm", and that patients with MAFLD and increased NLR at hospital admission are at greater risk for severe COVID-19 illness.

We studied a multicentre cohort of 310 patients with laboratory-confirmed COVID-19, who were consecutively hospitalised at four sites in Whenzou, Zhejiang Province (China), between January and February 2020. These patients have been included in a prior study examining the relationship between MAFLD with increased non-invasive fibrosis scores and risk of COVID-19 severity [5]. Patients with viral hepatitis, excessive alcohol consumption, active cancers or chronic pulmonary diseases were excluded. Clinical and laboratory data were collected in all patients at hospital admission, including NLR that was calculated by dividing the absolute number of neutrophils by the absolute number of lymphocytes. Obesity was defined as self-reported history of disease or use of glucose-lowering medications. All patients were screened for hepatic steatosis by body mass index > 25 kg/m². Pre-existing diabetes was defined as self-reported history of disease or use of glucose-lowering medications. All patients were screened for hepatic steatosis by computed tomography and subsequently diagnosed as MAFLD, according to the recently proposed diagnostic criteria [2]. The severity of COVID-19 was assessed during hospitalisation and classified as severe and non-severe based on the current management guideline [6]. The study protocol was approved by the local ethics committees of the four hospitals. The requirement for written informed consent was waived due to the retrospective and anonymous nature of the study design.

In our cohort of 310 (48.1% men; mean age 47 years) consecutive cases of COVID-19, the median values of NLR were 2.53 (inter-quartile range: 1.7–3.8), and 94 (30.3%) patients had imaging-defined MAFLD. We stratified our cohort of patients by both presence/absence of MAFLD and high/low values of NLR; we adopted a cut-point value of 2.80 that was found to be the optimal cut-point value of NLR in hospitalised patients with COVID-19, using the Youden's index, for predicting severe COVID-19 in the patient cohort.

After stratifying patients by both presence/absence of MAFLD and high/low NLR values at hospital admission, those with MAFLD and increased NLR were older and more likely to have diabetes, obesity and hypertension, and had higher serum liver enzymes, higher leucocyte and neutrophil counts, higher C-reactive protein, longer prothrombin time and higher D-dimer levels, as well as lower lymphocyte counts and lower high-density lipoprotein-cholesterol concentrations compared with their counterparts without MAFLD and normal NLR. Notably, as shown in Fig. 1, the severity of COVID-19 illness markedly increased across the four groups of patients. Almost identical results were found when we used a different cut-off value of NLR for stratifying the COVID-19 cases, i.e., 3.2 that corresponds to the upper tertile of distribution of NLR values in the entire cohort of patients (data not shown).

In binary logistic regression analysis, compared to those without MAFLD and NLR < 2.8 at hospital admission, patients with MAFLD and NLR < 2.8 (adjusted-odds ratio [OR] 5.32, 95% confidence intervals [CI] 0.98–29.9, P = 0.053), those without MAFLD and NLR > 2.8 (adjusted-OR 17.7, 95%CI 3.89–80.6, P < 0.001), and those with MAFLD and NLR > 2.8 (adjusted-OR 25.9, 95%CI 5.32–127, P < 0.001) were associated with greater severity of COVID-19 illness, even after adjustment for age, sex, pre-existing diabetes, obesity and hypertension. In this multivariable regression model, older age (adjusted-OR 1.03, 95%CI 1.01–1.06, P < 0.05), male sex (adjusted-OR 2.63, 95%CI 1.22–5.01, P < 0.01) and hypertension (adjusted-OR 2.68, 95%CI 1.20–5.98, P < 0.01) were also independently associated with greater risk of having severe COVID-19.

Our study has some limitations, including the relatively modest sample size, the Asian ancestry of the cohort, and the lack of any data on lymphocyte subsets (by flow cytometry) and serial monitoring of NLR during the hospital stay. Despite these limitations, our study is the first to examine the differential effects of MAFLD and increased NLR on severity of COVID-19. It has been shown that increased NLR (and T lymphopenia) is strongly associated with poorer in-hospital outcomes amongst patients with COVID-19 [1,7], and also predicts with reasonable accuracy the fibrosis stage and other histological features of MAFLD [3,4].

Our multicentre preliminary analysis confirms the prognostic value of NLR in hospitalised patients with COVID-19, and shows for the first time that patients with imaging-defined MAFLD and increased NLR values on admission are at substantially higher risk of severe illness from COVID-19, irrespective of age, sex and metabolic comorbidities. It is possible that the presence of MAFLD

![Fig. 1. Proportion of severe COVID-19 illness among patients, stratified by presence/absence of metabolic dysfunction-associated fatty liver disease (MAFLD) and values of neutrophil-to-lymphocyte ratio (NLR) at hospital admission.](image-url)
with increased NLR exacerbates the virus-induced inflammatory "storm", possibly through the hepatic release of several proinflammatory cytokines, thereby contributing mechanistically to severe COVID-19 illness. However, further studies in larger Asian and non-Asian cohorts of COVID-19 patients are needed to better elucidate the link between MAFLD and COVID-19 severity.

Funding Sources

MHZ is supported by grants from the National Natural Science Foundation of China (81500665). CDB is supported in part by the Southampton NIHR Biomedical Research Centre (IS-BRC-20004), UK. GT is supported in part by grants from the School of Medicine, University of Verona, Verona, Italy.

Author contributions

Ming-Hua Zheng contributed to the study concept, design and study supervision; Xiao-Bo Wang, Hua-Dong Yan, Qing-Feng Sun, Ke-Hua Pan, Kenneth I. Zheng, and Yong-Ping Chen all focused on the acquisition of data; Giovanni Targher contributed to the analysis and understanding of data, and drafting of the manuscript; Alessandro Mantovani focused on both the analysis and interpretation of data and critical revision of the manuscript for important intellectual content, while Christopher D. Byrne, Mohammed Eslam, and Jacob George all contributed to the latter only.

Disclosure of interest

The authors declare that they have no competing interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.diabet.2020.06.001.

References

[1] Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J Med Virol 2020. http://dx.doi.org/10.1002/jmv.25819 [Epub ahead of print].
[2] Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020. http://dx.doi.org/10.1016/j.jhep.2020.03.039 [Epub ahead of print; pii: S0168-8278(20)30201-4].
[3] Akbari N, Norris-Stoff G, Campbell C, Lopez R, Tamimi TA, Yerian L, et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with non-alcoholic fatty liver disease. Liver Int 2012;32:297–302.
[4] Peng Y, Li Y, He Y, Wei Q, Xie Q, Zhang L, et al. The role of neutrophil to lymphocyte ratio for the assessment of liver fibrosis and cirrhosis: a systematic review. Expert Rev Gastroenterol Hepatol 2018;12:503–13.
[5] Targher G, Mantovani A, Byrne CD, Wang XB, Yan HD, Pan K-H, Pan J, Zheng Y, Chen Z, Eslam M, George J, Zheng H. Gestational diabetes

G. Targher*, 1, A. Mantovani, 2, C.D. Byrne, 1, X.-B. Wang, 1, H.-D. Yan, 2, Q.-F. Sun, 1, K.-H. Pan, 1, K.I. Zheng, 1, Y.-P. Chen, 1, M. Eslam, 1, J. George, 1, M.-H. Zheng, 1, 3, 4, 5, 6

Letters to the editor / Diabetes & Metabolism 46 (2020) 504–510

Three alternative ways to screen for hyperglycaemia in pregnancy during the COVID-19 pandemic

A R T I C L E I N F O

Keywords:
Hyperglycaemia in pregnancy
COVID-19 pandemic
Gestational diabetes

In 2010, the French-speaking Society of Diabetes (SFD; Société Francophone du Diabète) and French National College of Obstetricians and Gynaecologists (CN戈P) proposed an expert consensus on screening and caring for hyperglycaemia in pregnancy (HIP) in France. They recommended selective screening based on fasting