Semaphorin-3A promotes degradation of fragile X mental retardation protein in growth cones via the ubiquitin-proteasome pathway
1. 序

神経細胞は形態的に細胞体、樹状突起、軸索を大きく3つに分けられ、それぞれが神経細胞特有の機能に重要である。軸索の先端には成長円錐という構造体が存在し、軸索ガイダンス因子などの細胞外刺激に対し柔軟に形態を変化させる、軸索を投射先の標的に適切に導く役割を担っている。このような軸索ガイダンスの過程において、細胞体から遠く離れた成長円錐で、即座に形態変化に必要なタンパク質を外界の変化に応じて供給するため、局所タンパク質合成が重要な役割を果たしている。

このような局所翻訳遅延による、細胞体から遠く離れた成長円錐で、即座に形態変化に必要なタンパク質を外界の変化に応じて供給するため、局所タンパク質合成が重要な役割を果たしている。

RNA結合タンパク質のなかで、我々の研究グループでは、脆弱X症候群という遺伝性の神経疾患の原因遺伝子産物であるFragile X Mental Retardation Protein（FMRP）に着目している。

この疾患の原因がRNA結合タンパク質であるFMRP（Fig.1）の発現不全であることから、脆弱X症候群はFMRPの標的mRNAの翻訳異常によって引き起こされると考えられている。FMRP欠損マウスでは、Sema3A刺激による成長円錐の形態変化に関与することを報告した（Fig.2）。

Fig.1 | FMRPのドメインを模式的に示した図。

Age1,2ドメインは他のRNA結合タンパク質との相互作用に関与する。KH0,1,2はRNAを認識・結合するのに重要である。RGGはRNAのG rich領域を認識する。FMRPは脳内の約4%のmRNAと相互作用するとされ、non-coding RNAやモータータンパク質とも相互作用する。

近年我々の研究グループでは、FMRPが分泌型の反発性軸索ガイダンス因子であるSemaphorin 3A（Sema3A）による成長円錐の形態変化に関与することを報告した。野生型マウスの海馬神経細胞の成長円錐はSema3Aを添加すると細胞骨格の退縮応答がみられるが、FMRP欠損マウスではこの応答が抑制された。また、野生型マウスの海馬神経細胞において、Sema3A添加前にタンパク質合成阻害剤であるanisomycinを加えると、退縮応答が起こらなかった。これらのことから、Sema3Aによる退縮応答はFMRPが結合しているmRNAの翻訳が必要である可能性が示唆された（Fig.2）。しかし、FMRPが成長円錐内で局所翻訳を調節するメカニズムは全く不明である。そこで、Sema3A刺激により成長円錐内のFMRPがどのような挙動を示すのか、マウス海馬神経細胞を用いて、検索を進めていく予定である。
光免疫染色により検証した。

Fig. 2 | Sema3A 刺激により成長円錐で起こる現象の仮想モデル。
Sema3A 刺激により成長円錐で起こる現象の仮想モデル。

FMRP は、標的 mRNA のほか、Ago2 やマイクロ RNA (miRNA) などの翻訳抑制因子と複合体を形成して成長円錐へと運搬される。そこで、Sema3A シグナルの入力があると、標的 mRNA は遊離・翻訳が開始され、結果として細胞骨格の脱重合が起こる。

2. 実験方法
～海馬神経培養、Sema3A による神経刺激～
マウス胎生 16.5 日目の海馬から細胞を採取し、Neuron ball を 2 日かけて作製。ポリ-L-リシン臭化水素酸塩(poly-L-Lysin)でコーティングしたカバースリップを使用。ボール状になった神絨細胞を 1well につき 5 個置き、さらに 2 日間培養し、軸索を十分に伸展させた。その後、PYR-41（ユビキチン活性化酵素阻害剤）と MG132（プロテアソーム阻害剤）は最終濃度がそれぞれ 1 µM、15 µM になるよう希釈してから加え、10 分間培養した。次に Sema3A を最終濃度 1 units/µl または 3 units/µl になるよう希釈したものを加え、さらに 5 分間、または 10 分間培養した。4%PFA で固定後、膜透過処理、ブロッキングを行い、一次抗体に一晩かけて反応させた。二次抗体と細胞質を均一に染色できる 4-DTAF で同時染色し、洗浄後、マウント一剤で封入した。Phalloidin 染色の場合は、プロッキング後に CF488A Phalloidin で染色して洗浄後、封入した。

～蛍光輝度測定・算出～
蛍光染色像は CCD カメラを接続したニコン ECLIPSE Ti・E 蟻光顕微鏡で撮影した。画像解析は Image J を用いて、成長円錐の範囲の蛍光輝度および同程度の面積のバックグラウンドの蛍光輝度を測定し、その差を成長円錐の蛍光輝度とした。また、目的タンパク質の蛍光輝度を 4-DTAF の蛍光輝度で割ることで、Sema3A 刺激に伴う成長円錐の厚みの変化による目的タンパク質の蛍光輝度の変化を補正した。
3. 研究結果

i）成長円錐内 FMRP は Sema3A 刺激により活性化したユビキチン-プロテアソーム経路によって分解される。

はじめに、Sema3A と FMRP の関係を明らかにするために、Sema3A に応答した成長円錐内 FMRP の局在変化について蛍光免疫染色法により検証した。すると Sema3A 刺激により成長円錐の FMRP が 10 分で減少することがわかった。近年、ラット海馬および大脳皮質の樹状突起を用いた実験において、代谢型グルタミン酸受容体 (metabotropic glutamate receptor: mGluR) を介した刺激により、FMRP が短時間でユビキチン - プロテアソーム経路により分解されることが報告された(5)。そこで、Sema3A による刺激で成長円錐内の FMRP が同経路により分解される可能性を検証するために、ユビキチン - プロテアソーム経路の開始を担うユビキチン活化酵素の阻害剤である PYR-41、または、終了を担うプロテアソームの阻害剤である MG132 を Sema3A 添加の 10 分前に加えて蛍光免疫染色法により成長円錐内の FMRP 量を検証したところ、どちらの阻害剤でも FMRP の減少が抑制された（Fig. 3）。また、同様の手法で Sema3A 刺激による成長円錐内のユビキチン化タンパク質について検証した。その結果、Sema3A 添加から 5 分で成長円錐内のユビキチン化タンパク質の量が有意に増加し、MG132 処理によりその傾向が増大することがわかった（データ未掲載）。これらのことから、成長円錐内の FMRP は Sema3A 刺激により活性化されたユビキチン - プロテアソーム経路により分解されることが示唆された。

Fig. 3 | 成長円錐内 FMRP は Sema3A シグナルによるユビキチン - プロテアソーム経路の活性化により分解される。
(A) 抗 FMRP 抗体 (1C3) で染色した成長円錐の蛍光画像。Control では成長円錐内の FMRP の蛍光強度が減少するが、PYR-42 または MG132 添加により減少が抑制される。スケールバー：10 μm で成長円錐内の FMRP 量を測定し、グラフ化したもの PYR-41、MG132 添加により、FMRP の減少が抑制される。**：p<0.01、N.S.：no significance。

ii）Sema3A 刺激による成長円錐内の MAP1B 局所翻訳には、ユビキチン - プロテアソーム経路が関与する。
近年我々は、マウス海馬神経細胞において、Sema3A 刺激により軸索内で MAP1B の翻
訳が亢進し、FMRP 欠損神経ではそれが起きないことを報告した(3)。MAP1B は、微小管の構造に関与するタンパク質で、コードする mRNA (Map1b) が FMRP の標的 mRNA である。そこで、Sema3A 刺激による FMRP 分解によって、Map1b mRNA の翻訳が亢進するかどうか、成長円錐内 MAP1B の発現量を免疫染色法で定量することで検証した。その結果、Sema3A 刺激後 10 分で成長円錐内の MAP1B 量が有意に増加することが分かった。また、その増加が PYR-41 处理または MG132 处理により抑制されることが分かった（Fig. 4）。このことから、成長円錐内の MAP1B の局所翻訳には、Sema3A 刺激により活性化したユビキチン - プロテアソーム経路が関与していることが示唆された。

Fig. 4 | Sema3A シグナルにより惹起される MAP1B の局所翻訳はユビキチン - プロテアソーム経路が関与する。
(A) 抗 MAP1B 抗体 (AA6) で染色した成長円錐の蛍光画像。Control では Sema3A 刺激により成長円錐内の Map1b mRNA の発現が亢進するが、PYR-41 または MG132 添加により上昇が抑制される。スケールバー：10 μm
(B) 成長円錐内の MAP1B 量を測定し、グラフ化したもの。PYR-41 または MG132 添加により MAP1B の増加が抑制された。*：p<0.05、N.S. : no significance。

iii）Sema3A 刺激による退縮応答には、ユビキチン - プロテアソーム経路が関与する。
現在までの研究により、Sema3A による成長円錐の退縮応答に局所翻訳が重要である可能性が示されてきた(9)。この局所翻訳を伴った退縮応答に、ユビキチン - プロテアソーム経路を介した FMRP などの分解が関与しているかどうか明らかにするために、ユビキチン - プロテアソーム経路の阻害剤を用いて、Sema3A 刺激による退縮応答の割合の変化を算出した。その結果、Sema3A 添加により引き起こされる退縮応答が、PYR-41 または MG132 の添加により抑えられることがわかった（Fig. 5）。以上のことをまとめると、マウス海馬神経細胞において、成長円錐が Sema3A シグナルを受容すると成長円錐内の中の FMRP がユビキチン - プロテアソーム経路により分解される。その一方で、翻訳抑制状態が解除された FMRP 標的 mRNA は翻訳されることは細胞骨格の脱重合が促進し、退縮応答が引き起こされる可能性が示唆された（Fig. 6）。
Fig. 5 Sema3Aシグナルによる退縮応答にユビキチン-プロテアソーム経路が関与する。
(A) CF488A PhalloidinでF-actinを染色した成長円錐の蛍光画像。ControlではSema3A添加により成長円錐が退縮応答するが、阻害剤処理すると抑制される。スケールバー: 10 μm
(B) 成長円錐の退縮応答の割合を算出し、グラフ化したもの。PYR-41またはMG132添加により、退縮応答の割合が減少した。**: p<0.01, ***: p<0.001, N.S.: no significance.

4. 討論
RNA結合タンパク質であるFMRPの発現不全により、精神遅滞などの症状を呈する脆弱X症候群が発症することから、神経系におけるFMRPの機能に関する研究が今日まで盛んに行われてきた。主に樹状突起やスパイン、ポストシナプスでの働きに注目されてきたが、脆弱X症候群モデルマウスにおいて、軸索伸長や軸索ガイダンスの異常もみられることから、軸索でのFMRPの働きも重要であることがわかる。また近年、我々の研究グループはSema3Aによる軸索ガイダンスにFMRPが関与することを報告した。これらの報告を基に、成長円錐におけるSema3AシグナルとFMRPの関係をより詳細に調べるために、成長円錐内FMRPのSema3Aシグナルに対する局在変化を検証した。すると、Sema3A刺激により成長円錐内のFMRP量が減少することがわかった。さらに、ユビキチン-プロテアソーム経路阻害剤であるPYR-41またはMG132を用いてFMRPの量的変化を検証したところ、FMRPがSema3A刺激によりユビキチン化され、プロテアソームにより分解されることが示唆された。次に、Sema3AシグナルによるFMRP分解が局所翻訳に関与するかどうか、mRNAがFMRPの標的mRNAのひとつであるMAP1Bの発現量の変化を測定した。その結果、Sema3A添加により成長円錐内でのMAP1Bの量の上昇が認められた。そして、この上昇がユビキチン-プロテアソーム経路阻害剤により抑制されることがわかった。最後に、Sema3Aによる退縮応答にユビキチン-プロテアソーム経路の関与を検証した。その結果、阻害剤処理により、退縮応答の割合が有意に減少することが確認できた。これらのことより、標的mRNAを翻訳抑制状態に維持したまま成長円錐まで運搬してきたmRNA-FMRP複合体が、Sema3Aシグナルに伴う退縮応答を抑制する役割を果たしている可能性が示唆された。
体は、Sema3A 刺激により活性化したユビキチン-プロテアソーム経路により FMRP が分解され、その結果解離した mRNA が翻訳されるというモデルが構築された（Fig. 6）。

近年、マウス海馬神経の樹状突起において、Cdh1-APC が FMRP のユビキチンリガーゼ（E3）として働き、mGluR 依存性のシナプス可塑性に関与することが報告された。E3 は、ユビキチン化をする標的タンパク質（基質）を直接認識する酵素で、選択的なユビキチン化に重要な酵素である。この Cdh1-APC が、Sema3A 刺激による FMRP のユビキチン化に関与しているのか検証する必要がある。また、本論文では阻害剤を用いた検証のみで、FMRP のどのリシン残基がユビキチン化に重要であるか、どのドメインが E3 に認識されるか等の、より詳細なユビキチン化メカニズムの解明が待たれる。脆弱 X 症候群患者において、細胞内の FMRP 量と知能指数（IQ）に相関があることが報告された。この研究により、細胞内の FMRP 量を増加させると精神遅滞の程度を抑えられることが示唆された。今後の研究により FMRP の詳細な分解機構が明らかになると、細胞内 FMRP の量を調節し症状の軽減に繋がる可能性がある。

Fig. 6 | 実験結果から考えられるモデル
これまでの実験から、Sema3A 刺激により成長円錐内で起こると推測される現象のモデル図。FMRP と結合していた mRNA は Sema3A 刺激により遊離し、翻訳される。一方、FMRP はユビキチン化され、プロテアソームにより分解される。

5. まとめ
i) マウス海馬神経細胞の成長円錐の FMRP は、Sema3A シグナルによってユビキチン-プロテアソーム経路によって分解されることが示唆された。

ii) Sema3A 刺激による成長円錐での MAP1B 局所翻訳に、ユビキチン-プロテアソーム経路が関与することがわかった。

iii) Sema3A 添加による成長円錐の退縮応答には、ユビキチン-プロテアソーム経路が重要であることが示唆された。

7
6. 論文リスト
Masaru Takabatake, Yoshio Goshima and Yukio Sasaki; Semaphorin-3A promotes degradation of fragile X mental retardation protein in growth cones via the ubiquitin-proteasome pathway. Front Neural Circuits. 5 (2020)

7. その他（参考論文等）
(1) Hosung Jung, Catherine M O'Hare, Christine E Holt; Translational regulation in growth cones. Curr Opin Genet Dev. 4 458-464 (2011)
(2) Gary J. Bassell, Stephen T. Warren; Fragile X Syndrome: Loss of Local mRNA Regulation Alters Synaptic Development and Function. Neuron. 2 201-214 (2008)
(3) Chanxia Li, Gary J. Bassell, Yukio Sasaki; Fragile X Mental Retardation Protein is Involved in Protein Synthesis-Dependent Collapse of Growth Cones Induced by Semaphorin-3A. Front Neural Circuits. 11 (2009)
(4) Yukio Sasaki, Christina Gross, Lei Xing, Yoshio Goshima, Gary J. Bassell; Identification of Axon-Enriched MicroRNAs Localized to Growth Cones of Cortical Neurons. Dev Neurobiol. 3 397-406 (2013)
(5) Vijayalaxmi C. Nalavadi, Ravi S. Muddashetty, Christina Gross, Gary J. Bassell; Deposphorylation-induced ubiquitination and degradation of FMRP in dendrites: a role in immediate early mGluR-stimulated translation. J Neurosci. 8 2582-2587 (2012)
(6) Ju Huang, Yoshiho Ikeuchi, Marcos Malumbres, Azad Bonni; A Cdh1-APC/FMRP Ubiquitin Signaling Link Drives mGluR-Dependent Synaptic Plasticity in the Mammalian Brain. Neuron 3726-739 (2015)
(7) Martin Lessard, Ahlem Chouiiali, Regen Drouin, Guillaume Sebire, Francois Corbin; Quantitative measurement of FMRP in blood platelets as a new screening test for fragile X syndrome. Clin Genet. 5 427-477 (2012)

8. 用語集
・軸索ガイダンス因子
神経軸索を正しい標的細胞へと誘導する機能をもつ。誘因性と反発性のものがあり、それぞれがさらに、拡散して濃度勾配により作用する分泌型と細胞膜に発現することで狭い範囲に作用する接着型が存在する。軸索ガイダンス因子に対する成長円錐の反応は、細胞骨格制御分子やエンドサイトーシスなどの膜トラフィッキング、局所でのタンパク質合成が関与する。本研究で使用したSemaphorin 3A（Sema3A）は、分泌型の反発性因子である。
・ユビキチン-プロテアソーム経路
ユビキチン化は翻訳後修飾のひとつで、標的タンパク質のリシン残基に、76 アミノ酸から成るユビキチンが結合する反応を指す。ユビキチンには7つのリシン残基があり、別のユビキチンのC末端にあるグリシンと結合する。また、N末端のメチオニンとC末端のグリシンが結合して、直鎖状になる場合もある。プロテアソームにより分解されるのは、48番目のリシン（K48）を介したポリユビキチン鎖が形成されたときである。