Magnetic ordering, Kondo effect and superconductivity in Ce$_{2-x}$(La, Y)$_x$RhSi$_3$

Kausik Sengupta, S. Rayaprol, and E.V. Sampathkumaran
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005

Abstract

The influence of positive and negative chemical pressure on the magnetic behavior of the compound, Ce$_2$RhSi$_3$, crystallizing in a AlB$_2$-derived hexagonal structure and ordering antiferromagnetically around ($T_N = 7$ K), is investigated by studying electrical resistivity (ρ) and magnetic susceptibility (χ) behavior of the solid solutions formed by gradual substitution of La/ Y for Ce. While typical features associated with a transformation from the Kondo-lattice to single-ion Kondo effect are seen in the low temperature ρ data of both the solid solutions, there are profound differences in their behavior at higher temperatures. In particular, Y is apparently more effective in enhancing the Kondo temperature. La$_2$RhSi$_3$ is found to be superconducting below 3 K.

INTRODUCTION

Cerium-based intermetallic compounds continue to attract a lot of attention, primarily due to the competition between different interactions: crystal-field effects, magnetic order and the on-site Kondo-effect. In this regard, very little attention has been paid to the compound, Ce$_2$RhSi$_3$, crystallizing in an AlB$_2$-derived hexagonal structure [1] and found to order antiferromagnetically at 7 K [2]. It is of interest to explore the role of chemical pressure effects on the magnetism of this compound. With this primary motivation, we have initiated investigations on the solid solutions, Ce$_{2-x}R_x$RhSi$_3$ (R= La, Y; 0 $\leq x \leq 2$). We report here the results of our initial investigations.

EXPERIMENTAL DETAILS

Polycrystalline samples of Ce$_{2-x}R_x$RhSi$_3$ (R = La, Y; x = 0, 0.3, 0.5, 1, 1.5, 1.7, 2) were synthesized by arc-melting high purity constituent elements in an inert atmosphere. The molten ingots were annealed at 800$^\circ$ C for 5 days in vacuum and characterized by x-ray diffraction. The dc electrical resistivity (ρ) behavior was obtained (1.5-300 K) using a standard four-probe method. Preliminary magnetization measurements were carried out employing a commercial magnetometer to augment our conclusions.

RESULTS AND DISCUSSION

The lattice parameters a and c and unit cell volume (V) for the alloys Ce$_{2-x}$La$_x$RhSi$_3$ and Ce$_{2-x}$Y$_x$RhSi$_3$ are depicted in figure 1. The lattice parameters change linearly with x, indicating the validity of Vegard’s law for both the solid solutions. It is obvious that, as expected, Y substitution compresses the lattice, whereas La substitution expands the lattice.

Fig. 1. Lattice parameters a, c and unit cell volume V.

The results of ρ measurements are shown in Fig. 2 (normalized to respective 300 K values). For $x = 0.0$, ρ is nearly constant above 150 K and there is a gradual fall below 150 K followed by an upturn below 15 K attributable to the Kondo effect. This kind of feature in ρ is typical of interplay between the Kondo effect and the crystal-field effect [3]. With further lowering of T, there is a fall at 7 K arising from the onset of long-range antiferromagnetic order. As La/Y is substituted for Ce, the drop due to magnetic
ordering gets gradually depressed towards lower temperatures and the upturn below 20 K gets more pronounced. For $x > 1.5$, this upturn only could be seen without any drop and therefore $\rho(T)$ is dominated by features attributable to single-ion Kondo effect only above 1.5 K. Thus, Kondo lattice to Kondo-impurity transformation is brought out by these substitutions. We would like to stress on a difference on the ρ behavior at high temperatures among these two solid solutions: There is a distinct broad maximum in the $\rho(T)$ plot around 150 K for $x > 0.5$ for the Y series, which is absent for the La series. We believe that the origin of this feature for the Y series lies in the enhanced Kondo effect induced by positive chemical pressure induced by Y substitution, as it is a well-known fact that the strength of the Kondo interaction increases with V.

In order to render support to the above conjecture, we have carefully analyzed the magnetic susceptibility (χ) data in the paramagnetic state (not shown here). The plot of inverse χ is found to be linear above 150 K for all values of $x (\leq 2)$. For $x = 0.0$, the negative sign with a large magnitude (-65 K) of the paramagnetic Curie temperature (θ_p) compared to the value of T_N indicates significant role of the Kondo effect. While the negative sign of θ_p is maintained for all Ce containing compositions, the magnitude decreases (increases) with increasing La (Y) concentration. Thus, for instance, for $x = 1.0$, in the case of La series, we get a value of about -35 K, whereas for the Y series, the corresponding value is about -180 K. These values clearly establish, from the knowledge of the direct relationship between θ_p and the Kondo temperature (T_K) in the field of the Kondo effect, that the Y substitution enhances T_K, whereas La does the reverse.

Another finding we have made in this investigation is that Y substitution is more effective in depressing T_N than La substitution. Thus, for instance, for $x = 0.5$, in the case of La series, the obtained value (5.5 K) of T_N nearly scales (even a bit higher!) with the concentration of Ce, whereas, in the case of Y series, one obtains a reduced value (4 K). This finding brings out the enhanced role of the Kondo effect (favoring non-magnetism) by Y substitution. This finding is in accordance with Doniach’s model [4] to describe the competition between magnetism and the Kondo effect in Ce compounds.

Finally, the present ρ data (as well as χ, not shown here) clearly reveal that La_2RhSi_3 is superconducting below 3 K, uncommon finding among the ternary rare earths with this structure. In Y analogue, there is a resistive drop below 3 K, however without attaining zero value, implying that this compound may not be a bulk superconductor.

![Fig. 2. Resistivity of Ce$_{2-x}$R$_x$RhSi$_3$ (R= La, Y).](image)

CONCLUSIONS

Kondo lattice to Kondo impurity transformation in Ce$_2$RhSi$_3$ is investigated by the substitution for Ce by La and Y. Y substitution is found to enhance the Kondo effect, resulting in pronounced differences in the ρ behavior at higher temperatures (above 50K) while compared with the data for the La series. The present studies also show the existence of a superconducting transition for La$_2$RhSi$_3$ below 3 K.

REFERENCES

1. B. Chevalier et al. Solid State Commun. 49 (1984) 753.
2. I. Das et al. J. Magn. Magn. Mater. 137 (1994) L239-L-242.
3. B. Cornut and B. Coqblin, Phys. Rev. B 5, 4541 (1972).
4. S. Doniach, Physica B 91, 231 (1977).