Additions to the genera Asterolibertia and Cirsosia (Asterinaceae, Asterinales), with particular reference to species from the Brazilian Cerrado

André Luiz Firmino¹, Carlos Antonio Inácio², Olinto Liparini Pereira¹, and José Carmine Dianese³

¹Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
²Departamento de Fitopatologia, Universidade Federal Rural do Rio de Janeiro, 23851-970, Rio de Janeiro, Brazil
³Departamento de Fitopatologia, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil; corresponding author e-mail: jcarmine@gmail.com

Abstract: Four new Asterolibertia species and a new variety of Cirsosia splendida, all found on native Cerrado plants, belonging to three host families are described, illustrated and named as: A. bahiensis sp. nov. on Erythroxylum sp. (Erythroxylaceae); A. bannhensis sp. nov. on Diospyros burchellii (Ebenaceae); A. campograndensis sp. nov. on Hirtella glandulosa (Chrysobalanaceae); A. parinaricola sp. nov. on Parinari obtusifolia (Chrysobalanaceae); and Cirsosia splendida var. laevigata var. nov., showing both sexual and asexual morphs, on H. glandulosa and H. gracilipes (Chrysobalanaceae). Finally, A. licaniae is reported on a new host, H. gracilipes. Keys to all the known species of Asterolibertia and Cirsosia are included.

Key words: biotrophic ascomycetes foliicolous fungi fungal taxonomy neotropical mycodiversity

INTRODUCTION

Molecular data are generally unavailable for members of Asterinaceae and the taxonomy of most genera in this family to date relies chiefly on morphological data. That is the case of Asterolibertia and Cirsosia. Overcoming this limitation will depend on recollecting the taxa described in the past and where appropriate epitypifying these after extracting and sequencing genomic DNA. There have been a few cases where this was performed successfully from old herbarium specimens (Telle & Thines 2008, O’Gorman et al. 2010, Hawksworth 2013, Guatimosim et al. 2015, Thomas et al. 2015).

The genera of Asterinaceae are presently segregated using well-defined morphological characters, such as the presence or absence of appressoria on the external mycelium, setae on ascomata and/or on the external mycelium, appressorium type (intercalary or lateral), and ascospore septation (Bezerra 2004, Hosagoudar 2012). Within the family, only three genera have intercalary appressorium: Asterolibertia, Cirsosia, and Bheemamycyes (Arnaud 1918, Bezerra 2004, Hosagoudar 2010, 2012). However, in Bheemamycyes the appressoria are both lateral and intercalary (Hosagoudar et al. 2010).

For almost a century, Asterolibertia was considered a well-supported genus, due to the presence of intercalary appressoria as originally established by Arnaud (1918), and this has been always regarded as a strong morphological character. However, Hongsanan et al. (2014), without any molecular basis and morphological justification, recombined species of Asterolibertia into Asterina, a genus with species showing only lateral appressoria. Such recombinations must be regarded as questionable, particularly in the absence of molecular data.

Currently, Asterolibertia includes 35 species (Tables 1–2) found only in the tropics and mainly on the host families Chrysobalanaceae, Malpighiaceae, and Rubiaceae (Hosagoudar 2010, Farr & Rossman 2015). The genus Cirsosia accommodates 15 species and one variety, all from the tropics (Tables 3–4), found mainly on Arecaceae, Chrysobalanaceae, Dipterocarpaceae, and Malpighiaceae (Hosagoudar 2010, Farr & Rossman 2015).

Asterolibertia couepiae, the type species of the genus, was collected in the Brazilian Cerrado by Ule in 1892, while C. manaosensis, the type species of Cirsosia, also from Brazil, was collected also by Ule in the Amazonian forest (Arnaud 1918). Asterolibertia species are characterized by having circular toovoidal ascoma opening by a central star-shape fissure, adhering to the host by superficial hyphae with intercalary appressoria, and showing 2-celled ascospores. Cirsosia species differ from Asterolibertia in the lirelliform or V–Y-shaped ascoma, opening by a longitudinal fissure. However, as in Asterolibertia, Cirsosia species have superficial hyphae with intercalary appressoria and 2-celled ascospores (Bezerra 2004, Hosagoudar 2010, 2012). The specimens studied here were collected from different areas of the Brazilian Cerrado (including a fragment of Cerrado vegetation inserted in an area of the Brazilian Atlantic Forest in the State of Bahia) and yielded what is here recognised as novel taxa and host-associations for Asterolibertia and Cirsosia.

This paper describes four new Asterolibertia species, a new variety of C. splendida, and illustrates A. licaniae in association with a new host.
Table 1. Morphometric characteristics of *Asterolibertia* species (µm), including five new ones described in this study.

Asterolibertia Species	Ascomata	Hyphae	Appressoria	Asci	Ascospores	Source and country
anisopterae (Syd. & P. Syd.) Hansf.	< 800 × 300−450	6−7	15−20 × 10−15	50−70 × 45−55	28−38 × 17−22	Hansford (1949), Philippines
bahiensis Firmino, Inácio & DiNane	175−235	4−5	14−17.5 × 9−10	35−52.5 × 30−42.5	32.5−37.5 × 10−14	Present study, Brazil
bakeri (Syd. & P. Syd.) Hansf.	< 350	3−5	10−15 × 5−8	50−70 × 30−40	26−36 × 12−14	Hansford (1949), Philippines
barrinensis Firmino & DiNane	105−167.5	4−5	9−15 × 7.5−10	30−42.5 diam	20−27.5 × 9−12.5	Present study, Brazil
bredemeyerae (Rehm) Arx	170−280	4−5.5	−	55−70 × 18−27	18−25 × 8−10	Müller & Arx (1962), Brazil
burchelliae (Doidge) Doidge	90−120	3−4	5.5−5.5 wide	27−37.5 × 16−20	13−17.5 × 5−6.5	Doidge (1942), South Africa
campograndensis Firmino & DiNane	75−160	5−7	9−14 × 7.5−12	30−40 × 20−32.5	22.5−30 × 9.5−10.5	Present study, Brazil
couepiae (Henn.) G. Arnaud	150−200	6−8	−	30−35 × 26−32	16−24 × 8−13	Amaud (1918), Brazil
crozetica (Ellis & Everh.) Hansf.	< 400	4.5−5.5	4.5−5.5 wide	100 × 20−25	25−28 × 8−14	Hansford (1955), Dominican Republic
cryptoareae (Cooke) Hansf.	< 300	4−5	−	100 × 35	25−32 × 11−13	Hansford (1954b), Australia
gibbsa (Gaillard) Hansf.	< 90	5−6	10−14 × 7−8	27−32 × 18−24	17−21 × 8−9	Hansford (1949), Brazil
hiiranensis (W. Yamam.) W. Yamam.	35−62	3−4.5	7−11 × 5.5−7	23−30 × 16−24	14−16 × 6.5−7	Yamamoto (1957), Taiwan
hydnocarpi Hosag. & T.K. Abraham	< 264	11−13.5	14−16 × 11−13.5	< 67 diam	49−51.5 × 26−32.5	Hosagoudar & Abraham (1997), India
inaequalis (Mont.) Toro	180−280	6−9	9−14 wide	100 diam	32−40 × 18−25	Toro (1933), French Guiana
licaniica (Cooke) Hansf.	< 450 × 300	6−9	7−13 × 9−13	−	−	−
licaniicola Hansf.	170	4−5	9−11 × 6−7	−	−	−
malpighii Bat. & H. Maia	120−185	4−8	13.5−21 × 4−8	37−43 × 27−32	29−35 × 15−16.5	Batista & Maia (1960a), Brazil
mangiferae Hansf. & Thirum.	250−300	7	12−15 × 10−11	< 70 diam	35−42 × 16−19	Hansford & Thirumalachar (1948), India
megathyria (Doidge) Doidge	140−200	5−6	7.5−10 wide	27−40 × 15−20	16−20 × 8−9	Doidge (1942), South Africa
nodulosa (Speg.) Hansf.	< 250	5−6	10−15 × 10−12	100 × 50	30−40 × 14−18	Hansford (1949), Costa Rica
nothopegiae Hosag. & T.K. Abraham	< 265	5−7	10−12 × 9.5−11	32−35 × 24−27	19−21 × 9−10	Hosagoudar & Abraham (1997), India
parinaricola Firmino, Inácio et al.	150−207.5	4.5−5.5	10−15 × 7−9	37.5−47.5 × 29−32.5	34−40 × 10−14	Present study, Brazil
parinarii (Syd.) Hansf.	130−160	3−4.5	6.5−7.5 × 5−6	30−38 × 25−35	18−22.5 × 5−6	Hansford (1947), Democratic Republic of the Congo
peruviana Hansf.	200	4−6	4−6 wide	−	17 × 8	Hansford (1954a), Peru
pogonophile Bat. & H. Maia.	125−175	4−6	10−12 × 6−8	43−55 × 33−35	33−35 × 10−12	Batista et al. (1961), Brazil
randiae (Doidge) Arx	75−100	2−4	20 × 5−8	−	15−18 × 5−6.5	Müller & Arx (1962), Southern Africa
santiriae (Syd. & P. Syd.) Hansf.	400 × 250−300	5−7	15−20 × 8−10	50−75 × 45−60	32−36 × 17−22	Hansford (1954a), Philippines
schroeteri (Rehm) Arx	220−300	6−8	10−13 wide	60−70 × 42−46	38−42 × 11−13	Müller & Arx (1962), Brazil
sporoboli E. Castell. & Graniti	60−110	6	6−16 × 7−10	−	16−22 × 7−9	Castellani & Graniti (1950), Ethiopia
thaxteri Hansf.	250	3−5	6−7 × 4−7	−	50−55 × 21−24	Hansford (1957), Grenada
ulei Hansf.	200	6−7	8−12 × 9−11	−	24−30 × 12−17	Hansford (1949), Brazil
vateriae Hosag.	300−400 × 150−250	11−13	10−15 × 2−14	< 35 diam	36−39 × 21−23	Hosagoudar et al. (2006), India
MATERIAL AND METHODS

Leaves bearing black colonies were collected and dried in a plant press before being processed and deposited in the Fungarium known as the UB Mycological Collection, a part of Herbarium UB (Universidade de Brasília). Colonies were initially examined using a Zeiss Discovery v.8 stereomicroscope. Entire colonies were removed from the leaves by applying small drops of nail polish. After these had solidified and fungal structures became embedded preventing the collapse of the colonies, these were peeled from the leaf surfaces. These colonies and small samples taken directly from the leaves were mounted on slides containing lacto-glycerol for light microscopic observations. Imaging and measurements were done using a Leica DM 2500 light microscope adapted with a DFC 490 Leica digital camera, operated by a Leica Qwin Plus digital image-processing software. For scanning electron microscopy (SEM), air-dried material was fixed to disks using carbon double-sided tape, and then treated with gold using a 25-mA current, at 1.10–2 mbar for 2 min and 30 s. Photographs were obtained using a JEOL Model JSM-701 F SEM.

RESULTS

A total of 35 species of Asterolibertia have previously been described on 19 different host families (Hosagoudar 2010, Farr & Rossman 2015). These have been described on the families: Chrysobalanaceae (9 species, including two new species described here), Rubiaceae (4); Anacardiaceae, Annonaceae, Dipterocarpaceae, Fabaceae, and Malpighiaceae (2 on each); and Achariaceae, Arecaceae, Bignoniaceae, Bromeliaceae, Burseraceae, Ebenaceae (described here), Erythroxylaceae (described here), Euphorbiaceae, Lauraceae, Melastomataceae, Myrtaceae, Poaceae, Polygalaceae, and Styracaceae (1 on each; Table 2). Asterolibertia bredemeyerae was reported from two different families (Polygalaceae and Fabaceae), as well as A. Schroeteri (Annonaceae and Chrysobalanaceae) and A. peruviana (Bignoniaceae and Chrysobalanaceae). However, A. peruviana apparently belongs to Microthyriaceae due to the well-defined circular ostiole present on the ascomata (Hansford 1955, Wu et al. 2011). As Asterolibertia species are usually host specific, a reevaluation of the three species that occur in two different host families is recommended.

A total of 15 species and one variety of Cirsosia have been described on six different host families (Hosagoudar 2010, Hofmann & Piepenbring 2014, Farr & Rossman 2015): Dipterocarpaceae (5 species); Arecaceae (4); Chrysobalanaceae (3, including the new variety described here); Malpighiaceae (2); and Burseraceae and Lauraceae (1 on each; Table 4). There is no record of the same Cirsosia species being found on two different host families (Hosagoudar 2010, Farr & Rossman 2015).

TAXONOMY

The data in Tables 1–4 that include the characteristics of the new taxa herein proposed were used to formulate the keys provided for the identification of Asterolibertia and Cirsosia species, thus simplifying the text.

Asterolibertia bahiensis Firmino, Inácio & Dianese, sp. nov.
MycoBank MB813315
(Fig. 1)

Etymology: Refers to the state of Bahia where the fungus was collected.

Diagnosis: Asterolibertia bahiensis is quite close to A. nodulifera but differs in having smaller paraphysate ascomata and larger appressoria.

Type: Brazil: Bahia: Una, Bolandeira Farm, on an enclosure of Cerrado vegetation in the Brazilian Atlantic Forest, close to the entrance to Comandatuba Island, 15° 21’ 12.7” S 39° 00’ 7.7” W, on leaves of Erythroxylum sp. (Erythroxylaceae), 26 Aug. 1995, M. Sanchez (UB-Myclol Col. 9882 – holotype).

Description: Colonies amphigenous, circular to irregular, single to confluent, black, 1–12 mm diam. Hyphae straight to flexuous, branching irregularly, pale brown, septate, hyphal cells cylindrical, 4–5 μm diam, smooth. Appressoria numerous, entire, sessile, intercalary, elongated with a lateral protuberance, unicellular, 14–17.5 × 9–10 μm, brown, penetration peg central on the appressorial cell. Ascomata superficial, thyrothecia, scutiform, on top of mycelial mat, circular, single to confluent, fringed at margins, randomly distributed in the colony, 175–235 μm diam, opening by a central star-shaped fissure, dark brown; wall of textura radiata, cells cylindrical. Pseudoparaphyses cylindrical, septate, branched, hyaline, to 1 μm wide. Asci bitunicate in structure, fissitunicate, disposed as an upright palisade layer, globose to ovoid, 8-spored, hyaline, 35–52.5 × 30–42.5 μm. Ascospores cylindrical, ends rounded, straight or slightly arched, 1-septate, constricted at the septum at the supramedian septum, hyaline, becoming brown at maturity, verruculose, 32.5–37.5 × 10–14 μm. Asexual morph not seen.

Other specimens examined: On leaves of Erythroxylum sp. (Erythroxylaceae). Brazil: Minas Gerais: Buritis, Pedra Grande Farm, 8 May 1993, J. C. Dianese 863 (UB-Myclol Col. 3934). Bahia: Una, on an enclosure of Cerrado vegetation in the Brazilian Atlantic Forest at Fazenda Bolandeira, near entrance to Comandatuba Island, J.C. Dianese (UB-Myclol Col. 9871).

Notes: The type material was collected in a rare small enclosure of Cerrado vegetation in the Brazilian Atlantic Forest. However another specimen (UB – Mycol Col. 3934) was found in a typical Cerrado natural landscape in Buritis, Minas Gerais. In addition, this is the first Asterolibertia species found on a member of Erythroxylaceae (Hosagoudar 2010, Farr & Rossman 2015).
Table 2. Summary of the main characteristics of *Asterolibertia* species indicating respective host family, host species, and morphology of colonies, appressoria, paraphyses, asci, and ascospores.

Species	Host	Families	Colonies	Appressoria	Pseudoparaphyses	Asci	Ascospores
anisopterae	Anisoptera thurifera	Dipterocarpaceae	epiphyllous	protuberance	absent	globose	constricted in the upper third, verruculose
				towards one side			
bahiensis sp.nov.	Erythroxylum sp.	Erythroxylaceae	amphigenous	protuberance	branched	globose to ovoid	constricted in the upper third, verruculose
				towards one side			
bakeri	Calamus sp.	Arecaceae	epiphyllous	barrel-shaped	absent	ovoid	constricted in the upper third, verruculose
				to subglobose			
barrinhensis sp.nov.	Diospyrus burchellii	Ebenaceae	epiphyllous	protuberance	unbranched	globose to ovoid	constricted in the upper third, verruculose
				towards one side			
brede Meyeriae	Bredemeyer lucida	Polygalaceae	amphigenous	subglobose	unbranched	ovoid to clavate-cylindrical	constricted at the central septum, smooth
	Sweetia nitens	Fabaceae					
burchelliae	Bertiera racemosa	Rubiaceae	epiphyllous	barrel-shaped	absent	ellipsoid-ovoid	constricted in the upper third, smooth
	Burchella babalina			to cylindrical			
	Crema sp. triliril						
	Tarenna pavettoides						
campogradensis sp.nov.	Hirtella glandulosa	Chrysobalanaceae	epiphyllous	protuberance	unbranched	globose to ovoid	constricted in the upper third, smooth
				towards one side			
couepiae	Couepia grandiflora	Chrysobalanaceae	epiphyllous	protuberance	absent	globose to subglobose	constricted in the upper third, smooth
				towards one side			
crustacea	Psidium guajava	Myrtaceae	epiphyllous	cylindrical	absent	clavate to cylindrical	constricted in the upper third, smooth
crypto caryae	Cryptocarya grandis	Lauraceae	amphigenous	-	absent	ellipsoid	constricted in the upper third, smooth
gibbosa	Basanacantha spinosa	Rubiaceae	amphigenous	barrel-shaped	absent	ovoid to globose	constricted in the upper third, smooth
				to cylindrical			
hiiranensis	Styrax hayataianus	Styraceae	epiphyllous	-	absent	obovoid to subglobose	constricted at the central septum, smooth
	Styrax suberilolius						
hydencarpri	Hydrococcus macrocarpa	Achariaceae	epiphyllous	globose	-	globose	constricted in the upper third, smooth
				to ovoid			
inaequalis	Melastomataceae	Melastomataceae	epiphyllous	barrel-shaped	absent	subglobose	constricted in the upper third, verruculose
	member			to subglobose			
licaniae	Licania sp.	Chrysobalanaceae	epiphyllous	barrel-shaped	absent	globose	constricted at the central septum, smooth
licanicola	Licania sp.	Chrysobalanaceae	epiphyllous	barrel-shaped	absent	-	constricted at the central septum, smooth
malpighii	Malpighiaeae member	Malpighiaeae	epiphyllous	protuberance	absent	ellipsoid to subglobose	constricted at the central septum, verruculose
				towards one side			
mangiferae	Mangifera indica	Anacardiaceae	epiphyllous	barrel-shaped	absent	globose	constricted in the upper third, smooth
Table 2. (Continued).

Species	Host	Families	Colonies	Appressoria	Pseudoparaphyses	Asci	Ascospores	
megathyria	Tricalysia capensis	Rubiaceae	amphigenous	barrel-shaped	−	ovoid to clavate-cylindrical	constricted in the upper third, smooth	
	T. lanceolata and T. sonderiana							
myocoproides	Guzmania plumieri	Bromeliaceae	amphigenous	−	branched	ovoid to cylindrical	constricted at the central septum, verruculose	
nodulifera	Angelesia splendens	Chrysobalanaceae	amphigenous	protuberance towards one side	absent	globose to ovoid	constricted in the upper third, verruculose	
nodulosa	Guatteria dolichopoda	Annonaceae	epiphyllous	barrel-shaped to subglobose	absent	ovoid to ellipsoid	constricted at the central septum, verruculose	
nothopegiae	Nothopegia aureofulva	Anacardiaceae	epiphyllous	globose	−	ovoid	constricted at the central septum, smooth	
parinaricola sp. nov.	Parinaria obtusifolia	Chrysobalanaceae	epiphyllous	protuberance towards one side	branched	globose to ovoid	constricted in the upper third, verruculose	
parinani	Parinaria subcordata	Chrysobalanaceae	epiphyllous	protuberance towards one side	unbranched	ellipsoid to subglobose	constricted in the upper third, smooth	
peruviana	Bignoniceae member	Licania macrophylla	Bignoniaceae	epiphyllous	cylindrical	−	−	constricted in the upper third, smooth
pogonophorae	Pogonophora schomburgkiana	Euphorbiaceae	epiphyllous	protuberance towards one side	absent	oblong to subglobose	constricted in the upper third, smooth	
randiae	Randia dumetorum, Keetia gueinzii, Canthium capensis	Rubiaceae	amphigenous	protuberance towards one side	−	ovoid to subclavate	constricted in the upper third, smooth	
santiriae	Santiria sp., Licania macrophylla	Burseraceae	amphigenous	globose	−	ovoid to ellipsoid	constricted in the upper third, smooth	
schroeteri	Annona sp., Chrysobalanus icaco	Annonaceae	epiphyllous	protuberance towards one side	absent	ovoid to ellipsoid	constricted in the upper third, smooth	
spatholobi	Spatholobus ferrugineus	Fabaceae	epiphyllous	barrel-shaped to cylindrical	absent	ovoid to globose	constricted in the upper third, smooth	
sporoboli	Sporobolus rupiolianus	Poaceae	epiphyllous	globose to ellipsoid	−	−	constricted in the upper third, verruculose	
thaxteri	unknown plant	−		hypophyllous	−	−	−	constricted in the upper third
ulei	Malpighiaeae member	Malpighiaceae	epiphyllous	subglobose	absent	ovoid to globose	constricted in the upper third, verruculose	
vateriae	Vateria indica	Dipterocarpaceae	amphigenous	oblong to ovoid	−	ovoid to globose	constricted at the central septum, smooth	
Fig. 1. A–H. Asterolibertia bahiensis (UB-Mycol. Col. 9882 – holotype): A. Colony showing thyriothecial ascomata on superficial mycelium. B. Central star-shape fissure in SEM. C. Intercalary appressoria with lateral protuberance. D. Immature ascus. E. Globose to ovoid mature ascus. F. Immature ascospores. G. Brown, verruculose, cylindrical ascospores. H. Verruculose ascospores in SEM. Bars: A = 100 μm; B = 50 μm, and all others = 10 μm.
Asterolibertia barrinhensis Firmino & Dianese, sp. nov.
MycoBank MB813316
(Fig. 2)

Etymology: Epithet refers to the type locality in Brazil, Barrinha.

Diagnosis: *Asterolibertia barrinhensis* is quite close to *A. campograndensis* but differs in having opposite hyphal branching, loose ascomatal fringes and verrucose ascospores.

Type: Brazil: Minas Gerais: Divinópolis, Barrinha Farm, right side of Highway from Divinópolis to Formiga, 20° 13' 54.9" S 45° 06' 33.7" W, on leaves of *Diospyros burchellii* (Ebenaceae), 16 Feb. 1994, J. C. Dianese (UB-Mycol Col. 5890 – holotype).

Description: Colonies epiphyllous, circular to irregular, single to confluent, black, 1–6 mm diam. *Hyphae* straight to flexuous, mostly showing opposite seldom irregular branches, ferruginous to brown, septate, hyphal cells cylindrical, 5–7 μm diam, smooth. *Appressoria* numerous, entire, intercalary, elongated with a lateral protuberance, unicellular, 9–14 × 7.5–12 μm, ferruginous to brown, penetration peg central on the appressorial cells. *Ascomata* superficial, thyriothecia, scutiform, on top of mycelial mat, circular, single to confluent, fringed at margins, massed in the centre of the colony, 75–160 μm diam, opening by a central star-shaped fissure, dark brown; wall of *textura radiata* to *irregulata*, cells cylindrical to irregular. *Pseudoparaphyses* cylindrical, septate, unbranched, hyaline, to 1 μm wide. *Asci* bitunicate in structure, fissitunicate, disposed as an upright pulvinate layer, globose to ovoid, 8-spored, hyaline, 30–40 × 20–32.5 μm. *Ascospores* oblong-clavate, rounded ends, straight, 1–septate, septum supramedian, constricted at septum, hyaline, becoming brown at maturity, smooth, 22.5–30 × 9.5–10.5 μm. Asexual morph not seen.

Other specimens examined: On leaves of *Diospyros burchellii* (Ebenaceae). Brazil: Minas Gerais: Divinópolis, Barrinha, 16 Feb. 1994, J. C. Dianese (UB-Mycol Col. 5891, and 5901); Goiás: Mineiros, Parque Nacional das Emas, Água Ruim, 18° 8' 12.04" S 52° 58' 44.06" W, 7 Apr. 1997, J. C. Dianese (UB-Mycol Col. 13844).

Notes: This new *Asterolibertia* species is the first reported on a member of *Ebenaceae* (Hosagoudar 2010, Farr & Rossman 2015). It shows characteristics in common with several species (Table 1–2), including the one described below, but clear differences persist as shown in the discussion that follows the description of *A. campograndensis*.

Asterolibertia campograndensis Firmino & Dianese, sp. nov.
MycoBank MB813317
(Fig. 3)

Etymology: Epithet refers to the city where the fungus was collected, Campo Grande.

Diagnosis: *Asterolibertia campograndensis* differs from *A. parinarii* in having larger hyphae, appressoria and ascospores, and globose to ovoid asci.

Type: Brazil: Mato Grosso do Sul: Campo Grande, left lane of BR-163 Highway, 200 m from the roundabout turn to São Paulo, behind Cerealista Juliana, 20° 35' 8.58" S 54° 34' 49.51" W, on leaves of *Hirtella glandulosa* (*Chrysobalanaceae*), 22 Aug. 1996, M. Sanchez (UB-Mycol Col. 12712a – holotype).

Description: Colonies epiphyllous, circular to irregular, single to confluent, black, 1–6 mm diam. *Hyphae* straight to flexuous, mostly showing opposite seldom irregular branches, ferruginous to brown, septate, hyphal cells cylindrical, 5–7 μm diam, smooth. *Appressoria* numerous, entire, intercalary, elongated with a lateral protuberance, unicellular, 9–14 × 7.5–12 μm, ferruginous to brown, penetration peg central on the appressorial cells. *Ascomata* superficial, thyriothecia, scutiform, on top of mycelial mat, circular, single to confluent, fringed at margins, massed in the centre of the colony, 75–160 μm diam, opening by a central star-shaped fissure, dark brown; wall of *textura radiata* to *irregulata*, cells cylindrical to irregular. *Pseudoparaphyses* cylindrical, septate, unbranched, hyaline, to 1 μm wide. *Asci* bitunicate in structure, fissitunicate, disposed as an upright pulvinate layer, globose to ovoid, 8-spored, hyaline, 30–40 × 20–32.5 μm. * Ascospores* oblong-clavate, rounded ends, straight, 1–septate, septum supramedian, constricted at septum, hyaline, becoming brown at maturity, smooth, 22.5–30 × 9.5–10.5 μm. Asexual morph not seen.

Notes: Seven species of *Asterolibertia* have been reported previously in association with living leaves of *chrysobalanaceous* hosts. Four of these were recorded from Brazil: *A. couepiae* on *Couepia grandiflora*, *A. licaniae* and *A. licanicola* on *Licania* sp., and *A. peruviana* on *Licania macrophylla*. Additionally, *A. nodulifera* was recorded on *Angelesia splendens* from the Philippines, *A. parinarii* on *Parinari subcordata* from the Democratic Republic of the Congo, and *A. Schroeteri* on *Chrysobalanus icaco* from India (Arnaud 1918, Hansford 1947, 1949, 1955, Müller & von Arx 1962, Hosagoudar 2010, Hofmann & Piepenbring 2014, Farr & Rossman 2015).

Asterolibertia campograndensis differs from the species previously reported on *Chrysobalanaceae* (Table 1) (Arnaud 1918, Hansford 1947, 1949, 1955, Müller & von Arx 1962, Hosagoudar 2010, Hofmann & Piepenbring 2014, Farr & Rossman 2015). It is closest to *A. parinarii*, which has smaller appressoria and ascospores, narrower hyphae, and ellipsoid to subglobose asci. *Asterolibertia couepiae* is distinct from the new species in having black hyphae, larger thyriothelial ascomata, lacking pseudoparaphyses, 4–6-spored asci, and ovoid ascospores. *Asterolibertia nodulifera* has amphiogenous colonies, no pseudoparaphyses, larger ascomata and larger, echinulate ascospores. *Asterolibertia licaniae* differs from *A. campograndensis* in the dark brown hyphae, barrel-shaped and larger appressoria, ascomatal dehiscence by an irregular fissure, a lack of fringes at the margins of the ascomata, the absence of pseudoparaphyses, and finally larger, ellipsoidal, dark brown ascospores with a central septum. *Asterolibertia*
Fig. 2. A–H. *Asterolibertia barrinhensis* (UB-Mycol. Col. 5890 – holotype): A. Colony showing thyriothecial ascomata on superficial mycelium. B. Ascomata showing central star-shape fissure in SEM. C. Superficial mycelium showing intercalary appressoria. D. Intercalary appressoria with lateral protuberance. E. Globose to ovoid mature ascus. F. Immature ascospores. G. Brown smooth cylindrical to oblong-clavate ascospores. H. Smooth ascospores in SEM. Bars: A = 100 μm; B = 50 μm, and all others = 10 μm.
Fig. 3. A–H. *Asterolibertia campograndensis* (UB-Mycol. Col. 12712a – holotype): A. Colony showing thyriothecial ascomata on superficial mycelium. B. Ascomata showing central star-shape fissure in SEM. C. Superficial mycelium with intercalary appressoria. D. Intercalary appressoria with lateral protuberance. E. Immature ascus. F. Globose to ovoid mature ascus. G. Light brown immature ascospores. H. Brown, smooth, oblong-clavate ascospores, constricted at septum on its upper third. Bars: A = 100 μm; B, C = 50 μm, and all others = 10 μm.
licanicola differs from A. campograndensis in the wider hyphae, barrel-shaped appressoria, larger ascocoma, absence of pseudoparaphyses, and dark brown ascospores with a central septum. Asteroilibertia peruviana has narrower appressoria, larger ascocoma that are not fringed at the margins, and smaller appressoria and ascospores. Asteroilibertia Schroeteri differs in the larger ascocoma with an irregular fissure, the absence of pseudoparaphyses, and larger asci and ascospores (Tables 1–2) (Arnaud 1918, Hansford 1947, 1949, 1955, Müller & von Arx 1962, Hofmann & Piepenbring 2014).

Asteroilibertia campograndensis is morphologically rather similar to A. barrinensis. However, these species differ in important morphological details such as ascospore ornamentation, the shape of the ascocoma fringes (loosely set in A. barrinensis), and hyphal branching patterns (opposite in A. barrinensis, and irregular in A. campograndensis).

Asteroilibertia campograndensis is the fifth species of Asteroilibertia reported on hosts belonging to Chrysobalanaceae in Brazil, and the first on Hirtella.

Asteroilibertia parinaricola Firmino, Inácio & Dianeese, sp. nov.
MycoBank MB813319 (Fig. 4)

Etymology: Refers to the host genus, Parinari.

Diagnosis: Asteroilibertia parinaricola differs from A. licanicola in having conspicuous lateral protuberance of the appressoria, presence of pseudoparaphyses, and much larger, verruculose ascospores constricted at a supramedian septum.

Type: Brazil: Distrito Federal: Brasília, PAD-DF, on leaves of Parinari obtusifolia (Chrysobalanaceae), 10 Nov. 1992, C. Furlanetto (UB-Mycol Col. 2567 – holotype).

Description: Colonies epiphyllous, circular or irregular, single or confluent, black, 3–10 mm diam. Hyphae straight, with opposite branches, brown, septate, hyphal cells cylindrical, 4.5–5.5 μm diam, smooth. Appressoria numerous, entire, intercalary, elliptical or with a lateral protuberance, unicellular, 10–15 × 7–9 μm, brown, penetration peg central on the appressorial cells. Ascomata superficial, thryotheca, scutiform, on top of a mycelial mat, circular, single to confluent, fringed at the margins, randomly distributed in the colony, 150–207 μm diam, opening by a central star-shaped fissure, dark brown; wall texture radiata, with isodiametrical cells. Pseudoparaphyses cylindrical, septate, branched, hyaline, 1–1.5 μm wide. Asci bitunicate in structure, fissitunicate, disposed as an upright palisade layer, globose to ovoid, 8-spored, hyaline, 37.5–47.5 × 29–32.5 μm. Ascospores oblong to oblong-clavate, ends rounded, straight to slightly arched, 1-septate, constricted at the supramedian septum, hyaline, becoming pale brown to brown at maturity, verruculose, 34–40 × 10–14 μm. Asexual morph not seen.

Other specimens examined: On leaves of Parinari obtusifolia (Chrysobalanaceae). Brazil: Maranhão: Nogueiras, 60 km North of Balsas, 6° 57' 52.47" S 46° 10' 13.19" W, 11 Apr. 1995, M. A. de Freitas (UB-Mycol Col. 8020). Distrito Federal: Brasília, PAD-DF; 04 Nov. 1993, C. Furlanetto (UB-Mycol Col. 2568 and 2569). Notes: Seven species of Asteroilibertia have been reported previously in association with living leaves of chrysobalanaceous hosts. Asteroilibertia couepiae on Couepia grandiflora from Brazil, A. nodulifera on Angelesia splendens from the Philippines, A. licaniae and A. licanicola on Licania sp. from Brazil, A. parinarii on Parinari subcordata from the Democratic Republic of the Congo, A. peruviana on Licania macrophylla from Brazil, and A. Schroeteri on Chrysobalanus icaco from India (Arnaud 1918, Hansford 1947, 1949, 1955, Müller & von Arx 1962, Hosagoudar 2010, Hofmann & Piepenbring 2014, Farr & Rossman 2015).

Asteroilibertia parinaricola differs from the species previously reported on Chrysobalanaceae (Table 1) (Arnaud 1918, Hansford 1947, 1949, 1955, Müller & von Arx 1962, Hosagoudar 2010, Hofmann & Piepenbring 2014, Farr & Rossman 2015), and is most similar to A. licanicola. However, the latter has barrel-shaped appressoria, no pseudoparaphyses, and much smaller, smooth ascospores constricted at the central septum. Asteroilibertia couepiae differs from the new species in the wider hyphae, lack of pseudoparaphyses, smaller asci and ascospores, and smooth ascospores. Asteroilibertia nodulifera differs in the larger thyrothecia, asci bitunicate in structure, and represents the sixth species of Asteroilibertia reported on this host family in Brazil. This is the second species of Asteroilibertia described on Parinari, and the first species found on P. obtusifolia.
Asterolibertia and Cirsosia from the Cerrado

Fig. 4. A–H. *Asterolibertia parinaricola* (UB-Mycol. Col. 2567 – holotype): A. Colony showing thyriothecal ascomata on superficial mycelium. B. Ascomata showing central star-shape fissure in SEM. C. Superficial mycelium with intercalary appressoria. D. Intercalary elliptic appressoria showing a lateral protuberance. E. Globose to ovoid immature ascus. F. Mature ascus. G. Pale brown to brown, ascospores, constricted at septum on its upper third. H. Verrucolose ascospores on SEM. Bars: A, B = 100 μm; C = 50 μm, and all others = 10 μm.
Fig. 5. A–H. *Asterolibertia licaniae* (UB-Mycol. Col. 9715): A. Colony showing thyriothecial ascomata on superficial mycelium. B. Ascomata showing central to irregular fissure in SEM. C. Superficial mycelium with intercalary appressoria. D. Intercalary, elliptical appressoria. E–F. Globose immature asci. G. Immature ascospores. H. Brown to ferruginous smooth ascospores constricted at middle septum. Bars: A, B = 100 μm; C = 50 μm, and all others = 10 μm.
Specimen examined: Brazil: Rondônia: RO-494 Highway, 82 km from Pimenta Bueno towards Parecis, 11° 45’ 16.43” S 61° 18’ 54.45” W, on leaves of *Hirtella gracilipes* (Chrysobalanaceae), 13 Jul. 1995, M. Sanchez (UB-Mycol Col. 9715).

Description: Colonies epiphyllous, circular to irregular, single to confluent, dark brown to black, 3–5 mm diam. Hyphae straight or flexuous, branching irregularly, pale brown to brown, septate, hyphal cells cylindrical, 5–8 μm diam, smooth. *Appressoria* numerous, entire, intercalary, elliptical, unicellular, 9–15 × 7.5–10 μm, pale brown, penetration peg central on the appressorial cell. *Ascomata*, superficial, thyriothecial, scutiform, radiate, arising on top of a mycelial mat, circular, single to confluent, fringed at the margins, randomly distributed in the colony, 180–410 μm diam, opening by a central star-shaped fissure, dark brown; wall *textura radiata*, cells cylindrical. *Pseudoparaphyses* cylindrical, septate, branched, hyaline, 1–1.5 μm wide. *Asci* bitunicate in structure, fissitunicate, disposed as an upright palisade layer, globose, 8-spored, hyaline, 57.5–65 μm diam. *Ascospores* oblong, ends rounded, straight, 1-septate, constricted at the median septum, hyaline, becoming brown to ferruginous at maturity, smooth, 30–35 × 19–22.5 μm. Asexual morph not seen.

Notes: The specimen described above was collected in the state of Rondônia on living leaves of *Hirtella gracilipes*, a new host for *A. licaniae*. This species was originally described by Hansford (1949) based on material from Brazil collected on leaves of *Licania* sp.

Key to the known *Asterolibertia* species

See Tables 1–2 for further information on the characters of the species keyed out here.

1. Colonies amphigenous or epiphyllous ... 2
 Colonies hypiphyllous ... A. thaxteri

2 (1) Ascospores smooth ... 3
 Ascospores verruculose ... 24

3 (2) Ascospores medianly constricted ... 4
 Ascospores constricted supramedianly ... 9

4 (3) Ascomata with fringed margin .. 5
 Ascomata with uniform margin .. A. licaniae

5 (4) Ascomata opening by a stellar fissure ... 6
 Ascomata opening by an irregular fissure .. A. vateriae

6 (5) Colonies epiphyllous .. 7
 Colonies amphigenous ... A. bredemeyerae

7 (6) Ascospores more than 16 μm in length ... 8
 Ascospores 14–16 × 6.5–7 μm .. A. hiiranensis

8 (7) Ascospores 19–21 × 9–10 μm ... A. nothopegiae
 Ascospores 24–28 × 12–15 μm ... A. licaniicola

9 (3) Colonies amphigenous ... 10
 Colonies epiphyllous ... 14

10 (9) Ascomata with a fringed margin .. 11
 Ascomata with a uniform margin ... 12

11 (10) Ascospores 15–18 × 5–6.5 μm ... A. randiae
 Ascospores 32–36 × 17–22 μm ... A. santiriae

12 (10) Ascomata over 90 μm diam ... A. gibbosa

13 (12) Ascospores 16–20 × 8–9 μm ... A. megathyria
 Ascospores 25–32 × 11–13 μm ... A. cryptocaryae

14 (9) Ascomata opening by stellar or irregular fissure A. peruviana
Step	Description	Outcome
15 (14)	Pseudoparaphyses present	16 A. campograndensis
	Pseudoparaphyses absent	17 A. parinaricii
16 (15)	Ascospores 22.5–30 × 9.5–10.5 µm	18 A. hydnocarpi
	Ascospores 18–22.5 × 5–6 µm	19 A. crustacea
17 (15)	Ascomata with a fringed margin	20 A. Schroetleri
	Ascomata with a uniform margin	21 A. coueipiai
18 (17)	No leaf discoloration under the colonies	22 A. pogonophorae
	Conspicuous leaf discoloration under the colonies	23 A. burchelliae
19 (18)	Ascomata opening by a stellar fissure	24 A. patholobi
	Ascomata opening by an irregular fissure	25 A. sporoboli
20 (19)	Appressoria showing a lateral protuberance	26 A. mycoporoides
	Appressoria barrel-shaped to cylindrical	27 A. malpighii
21 (20)	Ascospores 16–24 × 8–13 µm	28 A. nodulosa
	Ascospores 33–35 × 10–12 µm	29 A. mangiferae
22 (20)	Ascospores less than 30 µm in length	30 A. burchelliae
	Ascospores 35–42 × 16–19 µm	31 A. patholobi
23 (22)	Ascospores 13–17.5 × 5–6.5 µm	32 A. sporoboli
	Ascospores 18–20 × 7.5–8.5 µm	33 A. mycoporoides
24 (2)	Ascomata with a fringed margin	34 A. parinaricii
	Ascomata with a uniform margin	35 A. barrinhensis
25 (24)	Pseudoparaphyses absent	36 A. anisopterae
	Pseudoparaphyses present	37 A. bahiensis
26 (25)	Ascospores medially constricted	38 A. nodulifera
	Ascospores constricted supramedianly	39 A. unaeqale
27 (26)	Appressoria with a lateral protuberance	40 A. bahiensis
	Appressoria barrel-shape to subglobose without a lateral protuberance	41 A. nodulifera
28 (25)	Colonies epiphyllous	42 A. bahiensis
	Colonies amphigenous	43 A. nodulifera
29 (28)	Pseudoparaphyses present	44 A. bahiensis
	Pseudoparaphyses absent	45 A. nodulifera
30 (29)	Pseudoparaphyses branched	46 A. bahiensis
	Pseudoparaphyses unbranched	47 A. bahiensis
31 (29)	Appressoria showing a lateral protuberance	48 A. bahiensis
	Appressoria barrel-shaped to subglobose without a lateral protuberance	49 A. bahiensis
32 (31)	Hyphae 3–5 µm wide	50 A. bahiensis
	Hyphae more than 5 µm wide	51 A. bahiensis
33 (32)	Ascospores 24–30 × 12–17 µm	52 A. bahiensis
	Ascospores 32–40 × 18–25 µm	53 A. bahiensis
34 (28)	Pseudoparaphyses present	54 A. bahiensis
	Pseudoparaphyses absent	55 A. bahiensis
Cirsosia splendida var. laevigata Firmino & Dianese, var. nov.
MycoBank MB813320 (Figs 6–7)

Etymology: Refers to the smooth ascospores.

Description: Cirsosia splendida var. laevigata differs from C. splendida var. splendida in having smaller ascomata, pseudoparaphyses, and the smooth ascospores.

Type: Brazil: Mato Grosso do Sul: Campo Grande, BR-163 Highway left lane, 200 m from the roundabout turn to São Paulo, behind Cerealista Juliana, 20° 35' 8.58" S, 54° 34' 49.51" W, on leaves of Hirtella glandulosa (Chrysobalanaceae), 22 Aug. 1996, M. Sanchez (UB-Mycol Col. 12712b – holotype).

Cirsosia splendida var. laevigata

Species	Origin	Colony	Ascomata	Hyphae	Appressoria	Ascii	Ascospores	
australiacum	Australia	amphigenous	circular	straight or flexuous	intercalary	5–7	5–8	5–10 μm, smooth
laevigata	Brazil	hypophyllous	circular	straight or flexuous	intercalary	5–7	5–8	5–10 μm, smooth

Other specimen examined: Brazil: Rondônia: RO494 Highway, 82 km from Pimenta Bueno towards Parecis, on leaves of Hirtella gracilipes (Chrysobalanaceae), 13 Jul. 1995, M. Sanchez (UB-Mycol Col. 23245).
Table 4. Summary of the main characteristics of Cirsosia species indicating respective host family and species, and morphology of colonies, appressoria, paraphyses, asci, and ascospores.

Species	Host	Host Family	Colonies	Appressoria	Pseudoparaphyses	Asci	Ascospore
arecacearum	Calamus thwaitesii	Arecaceae	epiphyllous	globose	–	ovoid	constricted at the central septum, smooth
dipterocarpi	Dipterocarpus grandiflorus	Dipterocarpaceae	epiphyllous	protuberance towards one side	branched	globoso to ovoid	constricted at the central septum, verruculose
flabellariae	Flabellaria pedunculata	Malpighiaceae	epiphyllous	barrel-shaped	unbranched	subgloboso to ovoid	constricted at the central septum, verruculose
globulifera	Calamus sp.	Arecaceae	epiphyllous	globose	–	globoso to ovoid	constricted at the central septum, smooth
hoplei	Hopea ponga	Dipterocarpaceae	epiphyllous	globose to barrel-shaped	–	globoso	constricted at the central septum, verruculose
hughesi	Ancistrophyllum sp.	Arecaceae	epiphyllous	globose	unbranched	subgloboso to ovoid	constricted at the central septum, smooth
irregularis	Vatica obtusifolia	Dipterocarpaceae	hypophyllous	–	absent	globoso to ovoid	constricted at the central septum, verruculose
litsea	Litsea travancorica	Lauraceae	hypophyllous	barrel-shaped	–	globoso to ovoid	constricted at the central septum, smooth
manaosensis	Malpighiaceae member	Malpighiaceae	epiphyllous	globose to barrel-shaped	present	ovoid	constricted at the central septum, verruculose
moquileae	Licania tomentosa	Chrysobalanaceae	amphigenous	protuberance towards one side	branched	subgloboso	constricted in the upper third, smooth
mouleinenensis	Dipterocarpus sp.	Dipterocarpaceae	epiphyllous	protuberance towards one side	absent	globoso to ovoid	constricted in the upper third, smooth
santiriae	Santiria nitida	Burseraceae	amphigenous	globose to barrel-shaped	branched	subgloboso to ellipsoid	constricted at the central septum, smooth
splendidia	Hirtella americana	Chrysobalanaceae	hypophyllous	globose	unbranched	subgloboso	constricted in the upper third, verruculose
splendidia var. laevigata	Hirtella glandulosa	Chrysobalanaceae	hypophyllous	protuberance towards one side	branched	globoso to subclavate	constricted in the upper third, smooth
transversalis	Arecaceae member	Arecaceae	epiphyllous	protuberance towards one side	branched	subgloboso to ellipsoid	constricted at the central septum, verruculose
vateriae	Vateria indica	Dipterocarpaceae	amphigenous	globose	–	globoso	constricted at the central septum, smooth
Fig. 6. A–H. *Cirsosia splendida* var. *laevigata*, sexual morph (UB-Mycol. Col. 12712b): A. Colony showing opened lirelliform ascomata on superficial mycelium. B–C. Ascomata opened by a longitudinal fissure seen in SEM and light microscopy, respectively. D. Intercalary elliptic appressoria showing a lateral protuberance. E–F. Globose to subclavate asci. G. Immature ascospores. H. Brown to ferruginous, smooth, cylindrical to subclavate ascospores, showing slight constriction at septum. Bars: A = 100 μm; B = 50 μm; C = 20 μm; G, H = 5 μm, and all others = 10 μm.
Fig. 7. A–H. Cirrosia splendida var. laevigata, asexual morph (UB-Mycol. Col. 12712b): A. Colony showing opened pycnothyrial condidiomata on superficial mycelium. B–C. Ostiolate pycnothyrium. D. Surface mycelium with intercalary appressoria. E. Intercalary appressorium showing lateral protuberance. F. Immature conidia. G. Brown to ferruginous, smooth, ellipsoidal germinating conidia. H. Smooth-walled conidium seen in SEM. Bars: A, B = 50 μm; D = 20 μm; E = 5 μm, and all others =10 μm.
Notes: Two species of Cirsosia have been reported previously in association with living leaves of chrysobalanaceous hosts: C. moquileae on Licania tomentosa from Brazil, and C. splendida on Hirtella americana, Chrysobalanus icaco, and H. triandra from Brazil, Panama, and Puerto Rico, respectively (Batista & Maia 1960b, Hofmann & Piepenbring 2014, Farr & Rosman 2015).

Cirsosia splendida var. laevigata, the first Asterinaceae reported on H. glandulosa and H. gracilipes, is almost identical to C. splendida, except for the smaller ascomata, presence of pseudoparaphyses, and smooth ascospores (Batista & Maia 1960b, Hofmann & Piepenbring 2014). Such differences are here considered enough to recognize the specimen studied as a new variety of C. splendida. Furthermore, both occur on the same host genus in Brazil, but on different species.

Finally, Cirsosia moquileae differs from the new variety by dehiscence through a central star-shaped fissure (instead of the longitudinal fissure normally shown in Cirsosia species), and narrower ascospores (Batista & Maia 1960b). Indeed, such a form of dehiscence and the shape of the ascomata in C. moquileae indicate that that species could be better accommodated in Asterolibertia (Batista & Maia 1960b).

Key to the known Cirsosia species

See Tables 3–4 for further information on the characters of the species keyed out here.

1 Ascospores smooth .. 2
 Ascospores verruculose ... 10

2 (1) Ascospores medianly constricted ... 3
 Ascospores supramedianly constricted .. 7

3 (2) Colonies amphigenous ... 4
 Colonies hypophyllous or epiphyllous .. 5

4 (3) Ascospores 28–32 × 15–18 μm .. C. vateriae
 Ascospores 32.5–35 × 19–21.5 μm ... C. santiriae

5 (3) Colonies epiphyllous ... 6
 Colonies hypophyllous .. C. litseae

6 (5) Asci 4-spored ... C. arecacearum
 Asci 8-spored ... C. globulifera

7 (2) Ascomata opening by a longitudinal fissure ... 8
 Ascomata opening by a stellar fissure ... C. moquileae

8 (7) Appressoria having a lateral protuberance .. 9
 Appressoria globose ... C. hughesi

9 (8) Ascospores 17.5–27.5 × 6–9.5 μm ... C. splendida var. laevigata
 Ascospores 26–33.5 × 15–20.5 μm ... C. moulmeinensis

10 (1) Ascospores medianly constricted .. 11
 Ascospores supramedianly constricted ... C. splendida var. splendida

11 (10) Colonies epiphyllous ... 12
 Colonies hypophyllous .. C. irregularis

12 (11) Appressoria with a lateral protuberance .. 13
 Appressoria barrel-shaped to globose .. 14

13 (12) Appressoria 8–10 × 13.5–15 μm .. C. dipterocarpi
 Appressoria 11–14 × 7–9 μm ... C. transversalis

14 (12) Hosts in Malpighiaceae ... 15
 Hosts in Dipterocarpaceae ... C. hopeae

15 (14) Asci 27–29.5 × 19–24 μm .. C. flabellariae
 Asci 55–65 × 45–50 μm ... C. manaosensis
ACKNOWLEDGEMENTS

We dedicate this publication to the memory of Mariza Sanchez recently deceased, UB Mycol. Col. Curator for over 24 years. We thank CNPq for fellowships, and acknowledge the financial support from PPBIO/CNPq/MCTI- Projeto Fungos do Cerrado.

REFERENCES

Arnaud G (1918) Les Astérinées. Annales de l'École Nationale d'Agriculture de Montpellier 16: 1–288.

Batista AC, Maia H (1960a) Fungos Astérinaceae, dos gêneros Arnaudia Bat., Asterinopeltis Bat. & Maia e Asteroilibertia Arn. Publicações do Instituto de Micologia da Universidade do Recife 226: 1–26.

Batista AC, Maia H (1960b) Cirsosia Arnaud e Cirsosina Bat. – novas espécies. Revista de Biologia Lisboa 2: 115–136.

Batista AC, Gamier R, Maia H (1961) Astérinaceae. Brotéria, Série Trimestral: Ciências Naturais 30: 41–48.

Bezzerra JL (2004) Taxonomia de ascomicetos: revisão da ordem Astérinales. Beiträgezur Kryptogamenflora der Schweiz 48: 116–153.

Batista AC, Garnier R, Maia H (1961) Asterinaceae. Brotéria, Série Trimestral: Ciências Naturais 30: 41–48.

Boidge EM (1942) A revision of South African Microthyriales. Bothalia 4: 273–420.

Farr DF, Rossman AY (2015) Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungalDatabases/.

Guatimosim E, Firmino AL, Bezerra JZ, Pereira OL, Barreto RW, et al. (2015) Towards a phylogenetic reappraisal of Parmulariales and Astérinaceae (Dothideomycetes). Persoonia 35: 230–241.

Hansford CG (1947) New tropical fungi. II. Proceedings of the Linnean Society of London 159: 21–42.

Hansford CG, Thirumalachar MJ (1946) Fungi of south India. Farlowia 3: 285–314.

Hansford CG (1949) Tropical fungi. III. New species and revisions. Proceedings of the Linnean Society of London 160: 116–153.

Hansford CG (1954a) Some Microthyriales and other fungi from Indonesia. Reinwardtia 3: 113–144.

Hansford CG (1954b) Australian Fungi II. New records and revisions. Proceedings of the Linnean Society of New South Wales 79: 97–141.

Hansford CG (1955) Tropical fungi. V. New species and revisions. Sydowia 9: 1–88.

Hansford CG (1957) Tropical fungi. VIII. Sydowia 11: 44–69.

Hawksworth DL (2013) The oldest sequenced fungal specimen. Lichenologist 45: 131–132.

Hofmann TA, Piepenbring M (2014) New records of plant parasitic Astérinaceae (Dothideomycetes, Ascomycota) with intercalary appressoria from Central America and Panama. Tropical Plant Pathology 39: 419–427.

Hongsanan S, Li YM, Liu JK, Hofmann T, Piepenbring M, et al. (2014) Revision of genera in Asterinales. Fungal Diversity 68: 1–68.

Hosagoudar VB (2010) Notes on the genera Asteroilibertia and Cirsosia (Fungi: Ascomycota). Journal of Threatened Taxa 2: 1153–1157.

Hosagoudar VB. (2012) Asterinales of India. Mycosphere 2: 617–852.

Hosagoudar VB, Abraham TK (1997) A new species of Asteroilibertia from Kerala, India. Journal of Mycopathological Research 35: 55–56.

Hosagoudar VB, Pillai M (1994) Two interesting Cirsosia species on Calamus from India. Mycological Research 98: 127–128.

Hosagoudar VB, Biju M, Anu Appaiah KA (2006) Studies on foliicolous fungi – XX. Microfungi of Coorg, Karnataka. Journal of Mycopathological Research 44: 1–25.

Hosagoudar VB, Sabeena A, Riju MC (2010) Bheemamycetes, a new genus of the family Astérinaceae. Journal of Threatened Taxa 2: 1309–1312.

Hosagoudar VB, Thomas J, Agarwal DK (2011) Four new asteroicine members from Kerala, India. Taprobana 3: 15–17.

Hughes SJ (1952) Fungi from the Gold Coast. I. Mycological Papers 48: 1–91.

Müller E, von Arx JA (1962) Die Gattungen der didymosporen Pyrenomyceten. Beiträgezur Kryptogamenflora der Schweiz 11 (2): 1–922.

O’Gorman DT, Sholberg PL, Stokes SC, Ginns J (2008) DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. Mycologia 100: 227–235.

Sothers C, Alves FM, Prance GT (2015) Chrysobalanaceae. Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB16859.

Telle S, Thines M (2008) Amplification of cox2 (~620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS ONE 3: 1–8. DOI: 10.1371/journal.pone.0003884

Thaug MM (1976) Some ascomycetes from Burma. Transactions of the British Mycological Society 67: 435–441.

Thomas S, Gunn MS, Halvor BG, Amby DB, Ørstad K, et al. (2015) A revision of the history of the Colletotrichum acutatum species complex in the Nordic countries based on herbarium specimens. FEMS Microbiology Letters 362: fnv130.

Toro RA (1933) Especies de Astérina Lév. en las Melastomáceas. Boletín de la Sociedad Española de Historia Natural 32: 187–199.

Yamamoto W (1957) The Formosan species of the Microthyriaceae - II. Science Reports of the Hyogo University of Agriculture 3: 23–31.

Wu HK, Schoch CL, Boonmee S, Bahkali AH, Chomnunti P, et al. (2011) A reappraisal of Microthyriaceae. Fungal Diversity 51: 189–248.