A 34-year-old male patient with abdominal pain and weight loss, without any known chronic disease, was referred to our clinic for Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scan for malignant etiology due to the detection of a mass lesion in abdominal computed tomography (CT). Sedimentation: 34 mm/hour, CRP: 8.3 mg/dl, PPD test and sputum ARB test were negative. Abdominal CT showed a mass lesion with soft tissue density extending from the infrarenal level of bilateral iliac artery bifurcation, surrounding the aorta, inferior vena cava, bilateral common iliac veins and ureters, and bilateral Grade 1 hydronephrosis was observed. (18F-FDG PET/CT imaging showed intense hypermetabolism with the heterogeneous character in the mass lesion with soft tissue density, which was measured approximately $83 \times 61 \times 39$ mm in size on CT sections of the abdomen (SUVmax: 8.7). The appearance was considered in favor of malignancy and histopathological examination was recommended. However, the histopathological examination could not be performed because the patient’s consent could not be obtained. Idiopathic retroperitoneal fibrosis (RF) were considered considering the clinical, laboratory, and imaging findings of the case. Methylprednisolone was started at 64 mg/day, the dose was decreased according to the clinical response and discontinued during the sixth month. In the fourth month, 50 mg of Azathioprine was added, and patient follow-up continued. After six months of treatment, the patient’s clinical and laboratory findings improved. (18F-FDG PET/CT examination was performed in terms of control and response to treatment. (18F-FDG PET/CT showed that the hypermetabolic mass lesion in the retroperitoneal area of the abdomen was metabolically and morphologically completely regressed (Fig. 1).

Idiopathic RF is a rare disease also known as Ormond’s disease [1, 2]. RF causes inflammation and fibrosis by surround-
ing retroperitoneal organs such as the abdominal aorta, vena cava, and ureters [1–5]. Although it is generally seen as idiopathic, it can also develop secondary to malignant diseases, infections, radiotherapy, after major surgical procedures, trauma, asbestos exposure, and after the use of some drugs [1, 2, 4, 5]. Some cases of RF can be associated with Immunoglobulin G4-related disease [1, 2, 5]. In this case, we investigated the usefulness of (18)F-FDG PET/CT in the diagnosis of RF and the evaluation of response to treatment. (18)F-FDG PET/CT can visualize inflammatory tissue noninvasively. (18)F-FDG PET/CT is a functional imaging method that has an important role in the diagnosis and follow-up of the response to RF. Also, the selection of the biopsy site, different organ involvement, and evaluation of the response to treatment in the interval make important contributions.

Conflict of Interest

The authors declare that they have no conflict of interest.

Authors

Mehmet Tarik Tatoglu, Hatice Uslu, Ebru Ibisoglu
Nuclear Medicine, Medeniyet University Goztepe Training and Research Hospital, Istanbul, Turkey

Correspondence

Dr. Mehmet Tarik Tatoglu
Nuclear Medicine, Medeniyet University
Goztepe Training and Research Hospital
Ressam Salih Erimez cad
34722 Istanbul
Turkey
tariktatoglu@gmail.com

References

[1] Peisen F, Thaiss WM, Ekert K et al. Retroperitoneal Fibrosis and its Differential Diagnoses: The Role of Radiological Imaging. Roof 2020; 192 (10): 929–936. doi:10.1055/a-1181-9205. Epub 2020 Jul 22

[2] Treglia G, Mattoli MV, Bertagna F et al. Emerging role of Fluorine-18-fluorodeoxyglucose positron emission tomography in patients with retroperitoneal fibrosis: a systematic review. Rheumatol Int 2013; 33 (3): 549–555. doi:10.1007/s00296-012-2576-0. Epub 2012 Nov 5

[3] Yilmaz S, Tan YZ, Ozhan M et al. FDG PET/CT in monitoring treatment of retroperitoneal fibrosis. Rev Esp Med Nucl Imagen Mol 2012; 31 (6): 338–339. doi:10.1016/j.remn.2012.04.001. Epub 2012 May 22

[4] Morin G, Mageau A, Benali K et al. Persistent FDG/PET CT uptake in idiopathic retroperitoneal fibrosis helps identifying patients at a higher risk for relapse. Eur J Intern Med 2019; 62: 67–71. doi:10.1016/j.ejim.2019.01.019. Epub 2019 Jan 31

[5] Moreau A, Giraudet AL, Moggetti T et al. Retroperitoneal fibrosis in on-going anti-PD-1 immunotherapy detected with [18 F]-FDG PET/CT. Eur J Nucl Med Mol Imaging 2019; 46 (8): 1758–1759. doi:10.1007/s00259-019-04352-1. Epub 2019 May 15

Bibliography

Nuklearmedizin 2021; 60: 381–382
Published online: April 9, 2021
DOI 10.1055/a-1429-2237
ISSN 0029-5566
© 2021, Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany