Investigation results of the anxiety impact of COVID-19 pandemic on individuals: A case from Turkey

Ahmet Erkasap (a), Murat Akşit (b), Ali Çoşkun (c)

(a) Istanbul Commerce University, Istanbul, Türkiye
(b) Big Cat Research, İstanbul, Turkey
(c) Faculty of Economics and Administrative Sciences, Boğaziçi University, Istanbul, Türkiye

ABSTRACT

In this study, 403 participants were asked questions to determine the preventive measures being taken and anxiety levels during COVID-19 Pandemic. Participants were almost equally divided between women (55%) and men (45%). The rate of most worried persons about the pandemic was 62%. The risk of anxiety of women compared to men has been calculated as 2.1 times higher (95% CI 1.20–3.84). The Cramer’s V value of the change in hand-washing habit before and after COVID-19 outbreak is 0.706, indicates the existence of a strong relationship. The data is analyzed by using SPSS 24.0. ODDS Ratio values are calculated to determine the impact levels, and Cramer’s V value is calculated to determine the relationship in behavior change in hand-washings habits.

© 2020 by the authors. Licensee SSBFNET, Istanbul, Turkey. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Introduction

The COVID-19 outbreak emerged from a sole source in the Wuhan region (China) in December 2019 and spread to all continents except Antarctica in less than three months. At this point, it influenced 193 countries. Hitherto, there have been more than 1,650,000 coronavirus cases worldwide (more than 500,000 in the US only) and more than 100,000 deaths (WHO, 2020). Depending on the age and immune system of each individual, clinical symptoms vary under three headings: mild, severe and life threatening (Xie & Chen, 2020). The most critical complications have been reported to be severe pneumonia, acute heart failure, septic shock, and the highest prevalence for people over 60 years of age (Lai, et al, 2020).

Coronavirus infection (COVID-19) is an internationally spread and ongoing public health emergency. Despite the fact that the outbreak is an unprecedented global threat (or possibly), there are significant gaps in our knowledge of COVID-19 epidemiology, transmission dynamics, research tools and management.

In this study, we ask questions to 403 participants. We determined the preventive measures being taken and anxiety levels during COVID-19 Pandemic. We analyzed the data by using SPSS 24.0. ODDS Ratio values are calculated to determine the impact levels, and Cramer’s V value is calculated to determine the relationship in behavior change in hand-washings habits.

The reminder of this study is organized as follows. The next section provides a review of extant literature. The third section introduces methodology and data. Finally, conclusions and implications of the study are presented in the final section.
Literature review

COVID-19

In the initial stages of the outbreak, public concern was alleviated by comparing the mortality rate of COVID-19 (3.3%), Ebola (50%) or SARS (10%) rather less threatening viral rates of outbreaks with a relatively low overall mortality rate such as seasonal flu. However, the situation that started to reveal a strong reason to worry is the rapid spread rate that occurred with mild symptomatic cases (R0 ~ 2.2) (Radulescu & Cavanagh, 2020).

Based on the latest findings, it was found that the current outbreak has a specific pattern. Firstly, it has a relatively long incubation period and then a long symptomatic infectious period (The average is about 5 days, and the estimated variations are between 2 and 27 days) (Lupia, et al., 2020). This situation, when combined with very limited test resources, prevents the detection of infectious individuals and contributes to pandemic spread by allowing them to travel.

Secondly, it shows significant age differences in symptom development and prediction. Children and young adults exposed to the virus are at risk of transmission as much as older age groups. However, mild symptoms can go undetected and their mild symptoms could make them contagious carriers move the virus more easily and could effectively spread it to others unlimitedly. On the other hand, the elderly population is more likely to develop severe symptoms and have higher risk of severe illness. Mortality rates vary considerably with age (Lupia, et al., 2020).

Thirdly, it has been stated that COVID-19 is able to reappear even in those who have had the disease (Shi, et al. 2020). This situation is clinically important because the chance of survival in reinfected patients has not yet been revealed. On a larger scale, the potential for re-transmission will not only increase the rate of spread, but also question the applicability of social measures such as herd immunity.

Anxiety

While results are emerging at the social level, anxiety level is tried to be measured at the individual level. Individuals’ health anxiety arises when perceived physical sensations or changes are interpreted as signs of being ill (Asmundson, et al., 2010; Taylor, 2004). Nearly everyone has some degree of health anxiety and has a preventative approach such as being careful about potential health threats. This preventative approach helps to understand the early symptoms of health problems leading to health promoting behavior. However, a high level of health anxiety is increasingly widespread as Kosic et al. (2020) puts it. It is known that high level of health anxiety occur following exposure to disease-related popular media (Asmundson et al., 2010). It would not be wrong to say that this situation will increase with COVID-19.

It is known that psychological factors play a vital role in the success of public health strategies that are used to manage epidemics and pandemics such as risk communication, vaccination and antiviral therapy, hygiene practices and social withdrawal. Health anxiety is important in influencing the success or failure of each of these strategies (Taylor, 2019).

People with high level of health anxiety tend to misinterpret benign bodily sensations and changes as dangerous. In the case of viral outbreaks, depending on previous experience and information about the current outbreak, a person with high health anxiety may misinterpret benign muscle pain or cough as a symptom that they are ill (Taylor, 2004; Wheaton et al., 2012). This situation will increase their anxiety level and affect their ability as well as their behavior to make rational decisions.

Research and Methodology

The research was conducted with 403 participants by using the questionnaire technique, which is the quantitative research method in the period of 20 March - 27 March 2020. Questions were asked to determine the measures and anxiety levels of the participants during COVID-19 outbreak.

Data Analysis

SPSS 24.0 program was used for statistical analysis. While analyzing the research data, beside descriptive statistical methods such as Frequency, Rate, Minimum, Maximum, the Pearson Chi-Square test was used to analyze the qualitative data. ODDS Ratio values were calculated to determine the impact levels. Cramer’s V value is calculated to determine the relationship in behavior change in hand-washings habits. Cramer’s V values range from 0-1, values between 0-0.3 indicate weak, values between 0.3-0.6 indicate medium, values between 0.6-1 indicate a strong relationship. Significance was evaluated at p <0.01 and p <0.05 levels.
Results

Table 1: Demographic information

Age	n	%
18-24	188	47,0
25-34	141	35,0
35-44	44	10,0
>45	30	8,0

Gender	n	%
Male	182	45,0
Female	221	55,0

55.0% of our participants are women and 45.0% are men. Among them, 47.0% is aged 12-24 years old, 35.0% is 25-34 years old, 10.0% is 35-44 years old and the rest is above 45 years old.

Table 2: Research questions

Did COVID-19 (Coronavirus) affect your normal life?	n	%
Yes	273	68,0
No	16	4,0
Moderate	114	28,0

How many times a day did you wash your hands before COVID-19 (Coronavirus) outbreak?

1-3	62	15,0
3-5	89	22,0
5-7	96	24,0
7-9	66	16,0
9+	90	22,0

How many times a day do you wash your hands after COVID-19 (Coronavirus) has spread?

3-5	24	6,0
5-7	63	16,0
7-9	69	17,0
9+	247	61,0

How concerned are you about COVID-19 (Coronavirus)?

Mild & Moderate	n	%
Severe	248	62,0

When do you think that COVID-19 (Coronavirus) will lose its effect?

Within 1 month	n	%
1-3 months later	150	37,0
3-5 months later	120	30,0
5-7 months later	41	10,0
Over 7 months	66	16,0

While 68.0% of the participants think that the COVID-19 pandemic affects their life, 4.0% of them think that it does not affect, and 28.0% of them think that it affects partially. Before COVID-19 outbreak, participants have said that 15.0% of them would wash their hands 1-3 times, 22.0% of them 3-5 times, 24% of them 5-7 times, 16.0% of them 7-9 times and 22% of them 9 times or more. After COVID-19 outbreak, participants have mentioned that 6.0% of them wash their hands 3-5 times, 16.0% of them 5-7 times, 17.0% of them 7-9 times and 61.0% of them 9 or more times. While COVID-19 makes 62.0% of the participants worry, 38.0% of them are not worried. 6.0% of the participants think that the COVID-19 virus will lose its effect within 1 month, 37.0% think after 1-3 months, 30.0% think after 3-5 months, 10.0% think after 5-7 months, 16.0% think that it will lose its impact more than 7 months later.

Table 3: Evaluation of anxiety level according to gender

Anxiety Level	Severe	Mild & Moderate	p		
n					
%					
Female	154	70,0	67	30,0	0,001**
Male	94	52,0	88	48,0	

*Pearson Chi-Square **p<0.01

The level of anxiety in women was higher than in men (p = 0.001; p <0.01). The risk of anxiety of women compared to men has been calculated as 2.1 times higher (95% CI 1.20–3.84).
Table 4: Comparison of hand-washing frequency before and after Covid-19 outbreak

Hand-Washing Before COVID-19	1-3	3-5	5-7	7-9	>9	p
n	1	15	21	8	17	0.001**
%	1.6	24.2	33.9	12.9	27.4	

A Pearson Chi-Square **p<0.01

The change in the frequency of hand-washing habit after COVID-19 is statistically significant compared to before COVID-19 hand-washing habit frequency (p = 0.001; p <0.01). Cramer’s V coefficient was calculated to examine the relationship between before and after COVID-19 imposed. Cramer’s V: 0.706, indicating the existence of a strong relationship.

Table 5: Time assessment of Covid-19 losing its effect according to concern

Duration of COVID-19 Losing its Effect	1-3 months later	3-5 months later	5-7 months later	Longer than 7 months	p
Anxiety Level					
Mild & Moderate					0.070
n	11	68	45	9	22
%	7.1	43.9	29.0	5.8	14.2
Severe					
n	15	82	75	32	44
%	6.0	33.1	30.2	12.9	17.7

A Pearson Chi-Square

Depending on the level of anxiety, the duration that COVID-19 lososes its effect and its expectations do not differ statistically (p>0.05). Regardless of anxiety situation, the majority thinks that within 3-5 months the COVID-19 virus will lose its effect.

Table 6: Assessment of covid-19 losing its effect according to gender

Duration of COVID-19 Losing its Effect	1-3 months later	3-5 months later	5-7 months later	Longer than 7 months	p
Gender					
Female					0.016*
n	14	83	56	32	36
%	53.8	55.3	46.7	78.0	54.5
Male					
n	12	67	64	9	30
%	46.2	44.7	53.3	22.0	45.5

A Pearson Chi-Square *p<0.05

According to gender classification, the duration that COVID-19 loses its effect and their expectations differ statistically (p = 0.016; p <0.05). The proportion of women who think that COVID-19 virus will lose its effect after 5-7 months is higher than men.

Conclusions

The women examined in this study have higher prevalence rates of anxiety disorders in the pandemic period compared to men was calculated as 2.1 times higher (95% CI 1.20–3.84). In the study of Wang et al. (2020), it was revealed that women had 3 times higher prevalence rates of anxiety disorders than men (95% CI 1.39–6.52).
In our study, the rate of those who were quite anxious during the pandemic period was 62%. These people stated their beliefs as COVID-19 virus losing its effect within the next 3 to 5 months. COVID-19 pandemic has affected 68% of people’s lives. In the study of Pan et al. (2020), while the rate of those who defined anxiety level average and above was 28.8%, more than 70% of the participants stated that they were worried about their family members would catch the COVID-19 disease. Cao et al. (2020) in their study on COVID-19’ psychological impact among university students in China, it was concluded that 75% of them had normal levels of anxiety and 21.3% had higher levels of anxiety.

In our study, 25-34 years old and over 45 years old were found to have a high level of anxiety. Qiu et al. (2020) revealed that 35% of the general sample had psychological distress during the COVID-19 outbreak, those between the ages of 18-30 and over 60 years old had the highest level of stress and anxiety, and women had higher levels of anxiety than men.

Washing hand is one of the most effective method to prevent the spread of COVID-19 virus. In our study, the Cramer’s V value of the change in hand-washing habit of the participants in before and after COVID-19 outbreak is 0.706, indicates the existence of a strong relationship.

References

Asmundson, G. J. G., Abramowitz, J., Richter, A. A., & Whedon, M. (2010). Health anxiety: Current perspectives and future directions. Current Psychiatry Reports, 12, 306–312. https://doi.org/10.1007/s11920-010-0123-9

Cao, W., Fang, Z., Hou, G., Han, M., Xu, X., Dong, J., Zheng, J. (2020). The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Research, 287, 1-13. https://doi.org/10.1016/j.psychres.2020.112934

Kosic, A., Lindholm, P., Jarvholm, K., Hedman-Lagerlof, E., & Axelsson, E. (2020). Three decades of increase in health anxiety: Systematic review and meta-analysis of birth cohort changes in university student samples from 1985 to 2017. Journal of Anxiety Disorders, 71, 1-12. https://doi.org/10.1016/j.janxdis.2020.102208

Lai, C., Shih, T., Ko, W., Tang, H., & Hsueh, P. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55, 1-9. https://doi.org/10.1016/j.ijantimicag.2020.105924

Lupia, T., Scabini, S., Pinna Mornese, S., Di Perri, G., De Rosa, F. G., & Corcione, S. (2020). 2019 novel coronavirus (2019-nCoV) outbreak: A new challenge. Journal of Global Antimicrobial Resistance, 21, 22-27. https://doi.org/10.1016/j.jgar.2020.02.021

Pan, R., Wang, C., Wan, X., Tan, Y., Xu, L., Ho, C. S., & Ho, R. C. (2020). Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. International Journal of Environmental Research and Public Health, 17(5), 1729. https://doi.org/10.3390/ijerph17051729

Qiu J, Shen B, Zhao M, (2020) A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: implications and policy recommendations. General Psychiatry, 33, 2-3. https://doi.org/10.1136/gpsych-2020-100213

Radulescu, A., & Cavanagh, K. (2020). Management strategies in a SEIR model of COVID 19 community spread. arXiv:2003.11550v2 [physics.soc-ph], 1-13.

Shi, Y., Wang, Y., Shao, C. (2020) COVID-19 infection: the perspectives on immune responses. Cell Death & Differentiation, 2, 1451 – 1454. https://doi.org/10.1038/s41418-020-0530-3

Taylor, S. (2004). Understanding and treating health anxiety: A cognitive-behavioral approach. Cognitive and Behavioral Practice, 11, 112-123. https://doi.org/10.1016/S1077-7229(04)80015-4

Taylor, S. (2019). The psychology of pandemics: Preparing for the next global outbreak of infectious disease. Cambridge Scholars Publishing, 1st Edition.

WHO. (2020, April 10th). Coronavirus disease (COVID-19) Pandemic. Retrieved from World Health Organization - WHO: https://www.who.int/emergencies/diseases/novel-coronavirus-2019

Wheaton, M. G., Abramowitz, J. S., Berman, N. C., Fabricant, L. E., & Olatunji, B. O. (2012). Psychological predictors of anxiety in response to the H1N1 (swine flu) pandemic. Cognitive Therapy and Research, 36(3), 210–218. https://psycnet.apa.org/doi/10.1007/s10608-011-9353-3

Xie, M., & Chen, Q. (2020). Insight into 2019 novel coronavirus — an updated intrim review and lessons from SARS-CoV and MERS-CoV. International Journal of Infectious Diseases, 94, 1-21. https://doi.org/10.1016/j.ijid.2020.03.071

Wang Y., Yu D., Junjie Y., & Wenbin W. (2020) Study on the public psychological states and its related factors during the outbreak of coronavirus disease 2019 (COVID-19) in some regions of China, Psychology, Health & Medicine, 1-10. https://doi.org/10.1080/13548506.2020.1746817