Sharpening the species boundaries in the **Cladonia mediterranea** complex (Cladoniaceae, Ascomycota)

R. Pino-Bodas¹, I. Pérez-Vargas², S. Stenroos¹, T. Ahti¹, A.R. Burgaz³

Abstract

The complex *Cladonia mediterranea* belongs to the section *Impeaxe* and is formed by *C. azorica*, *C. macaronesica* and *C. mediterranea*. These species are basically distributed in the Mediterranean and Macaronesian Regions. In the present work, the limits between the species of this complex are re-examined. To this end, the morphological characters were studied along with the secondary metabolites and the DNA sequences from three loci (ITS, rDNA, gus-A). Despite the major advances in methods used in species delimitation, it still constitutes a challenge, since there does not exist an effective method that allows identification of independent evolutionary lineages in all cases. The most used criteria for species delimitation in fungi have been the Genealogical Concordance Phylogenetic Species Recognition (Taylor et al. 2000), that uses several unlinked loci and reciprocal monophyly to identify species. In many cases this criterion has been very useful to distinguish divergent lineages (Kroken & Taylor 2001, Dettman et al. 2003, Ott et al. 2004, Fournier et al. 2005, Doyle et al. 2013, Morgado et al. 2013). Nevertheless, due to species divergence being a temporal process, this criterion can fail in cases of delimitation of closely related species that have diverged recently (Knowles & Carstens 2007). Some other facts such as hybridization, recombination and horizontal transfer can also cause the gene tree to be inconsistent with the species tree (Eckert & Carstens 2008). There are of course other procedures used for species delimitation in fungi (Wirtz et al. 2008, Gazis et al. 2011). One of them is Templeton’s (1989) cohesion species recognition, that does not require species monophyly (Weisrock & Larson 2006, Wirtz et al. 2008, 2012). This method evaluates two hypotheses for the evolutionary lineages to be considered as species. The first of them (H1) is that there is only one evolutionary lineage in the studied group; the second (H2) is that the evolutionary lineages are genetically or ecologically exchangeable. The rejection of both hypotheses along with the congruence of H2 with the lineages found in H1 permits to delimit the cohesion species (Templeton et al. 2000). Numerous methods based on coalescence have recently been combined with the species delimitation procedures (O’Meara et al. 2006, Pons et al. 2006, Liu et al. 2009, Ence & Carstens 2011, Yang & Rannala 2010). They have the advantage of taking into account the incomplete lineage sorting and not requiring the reciprocal monophyly (Carstens et al. 2013). These methods have been already applied in several works on species delimitation in lichenized fungi (Leavitt et al. 2011, 2012, 2013, Parmen et al. 2012).

An emergent approach that is gathering increasing approval is the one that uses diverse data and analysis types to trace the most significant evidence, which permits the establishing of boundaries among species (Padial & de la Riva 2010, Gazis et al. 2011, Gebiola et al. 2012). This is the procedure that some authors call ‘taxonomical integration’ (Wiens & Penkrot 2002, Dayrat 2005, Will et al. 2005, Padial et al. 2009). According to Carstens et al. (2013), several analytical methods must be used in order to delimit species within a group of organisms, since each of the extant methods takes prior assumptions that not always fit the available data or the speciation scenery under screening.

Cladonia comprises most species within the family Cladoniaceae. According to Stenroos et al. (2002), *Cladonia* is a monophyletic genus that encompasses all the species of the former genus *Cladina* (Ahti 1961, 1964, 2000), represented by about 36 species from all over the world (Ahti 2000). This group, commonly known as reindeer lichens, is characterized by a crustose evanescent primary thallus, densely branched podetia, ecoricated, arachnoid surface, and by the absence of scyphi lichen forming fungi Macaronesia molecular systematic species delimitation taxonomy

Key words
- coalescence
- Iberian Peninsula
- integrative taxonomy
- lichen forming fungi
- Macaronesia
- molecular systematic
- species delimitation
- taxonomy

INTRODUCTION

The development of molecular tools has brought about a more accurate species delimitation and a better understanding of the evolution of fungi. The definition of many species has changed. It is well-known that in many fungal groups a large number of morphological species hide cryptic species complexes (Bickford et al. 2007, Crespo & Lumbers 2010). Despite the major methodological advances in species delimitation, it still constitutes a challenge, since there does not exist a valid method that allows identification of independent evolutionary lineages in all the cases (Sites & Marshall 2003, Carstens et al. 2013). One of the most used criteria for species delimitation in fungi has been the Genealogical Concordance Phylogenetic Species Recognition (Taylor et al. 2000), that uses several unlinked loci and reciprocal monophyly to identify species. In many cases this criterion has been very useful to distinguish divergent lineages (Kroken & Taylor 2001, Dettman et al. 2003, Ott et al. 2004, Fournier et al. 2005, Doyle et al. 2013, Morgado et al. 2013). Nevertheless, due to species divergence being a temporal process, this criterion can fail in cases of delimitation of closely related species that have diverged recently (Knowles & Carstens 2007). Some other facts such as hybridization, recombination and horizontal transfer can also cause the gene tree to be inconsistent with the species tree (Eckert & Carstens 2008). There are of course other procedures used for species delimitation in fungi (Wirtz et al. 2008, Gazis et al. 2011). One of them is Templeton’s (1989) cohesion species recognition, that does not require species monophyly (Weisrock & Larson 2006, Wirtz et al. 2008, 2012). This method evaluates two hypotheses for the evolutionary lineages to be considered as species. The first of them (H1) is that there is only one evolutionary lineage in the studied group; the second (H2) is that the evolutionary lineages are genetically or ecologically exchangeable. The rejection of both hypotheses along with the congruence of H2 with the lineages found in H1 permits to delimit the cohesion species (Templeton et al. 2000). Numerous methods based on coalescence have recently been combined with the species delimitation procedures (O’Meara et al. 2006, Pons et al. 2006, Liu et al. 2009, Ence & Carstens 2011, Yang & Rannala 2010). They have the advantage of taking into account the incomplete lineage sorting and not requiring the reciprocal monophyly (Carstens et al. 2013). These methods have been already applied in several works on species delimitation in lichenized fungi (Leavitt et al. 2011, 2012, 2013, Parmen et al. 2012).

An emergent approach that is gathering increasing approval is the one that uses diverse data and analysis types to trace the most significant evidence, which permits the establishing of boundaries among species (Padial & de la Riva 2010, Gazis et al. 2011, Gebiola et al. 2012). This is the procedure that some authors call ‘taxonomical integration’ (Wiens & Penkrot 2002, Dayrat 2005, Will et al. 2005, Padial et al. 2009). According to Carstens et al. (2013), several analytical methods must be used in order to delimit species within a group of organisms, since each of the extant methods takes prior assumptions that not always fit the available data or the speciation scenery under screening.
Table 1 Samples of Cladonia mediterranea complex used in this study with the GenBank accession numbers. The new sequences are in **bold**.

Taxa	Voucher specimen	Chemistry1	Code	GenBank numbers	
			IGS rDNA	ITS rDNA	rpb2
C. azorica	Azores Islands, São Miguel, Lago do Foco, Haikonen 26885 (H)	FUM, PERL, USN	1AZO	KP941478	KP941520
	Azores Islands, São Miguel, Serra de Aqua de Pau, Várez L1791 (H)	FUM, PERL, USN	2AZO	KP941535	
Madiera, Queimados, Pérez-Vargas (TFC)	FUM, PERL, USN	1894	KP941461	KP941516	KP941544
Canary Islands, La Palma, Los Sauces, Pérez-Vargas (TFC)	FUM, PERL, USN	1890	KP941511		
Madeira, Pico Ruivo, Pérez-Vargas (TFC)	FUM, PERL, USN	1888	KP941547		
	Azores Islands, Terceira, Sierra de Santa Bárbara, Pérez de Paz (TFC)	FUM, PERL, USN	1886	KP941463	KP941525
	Azores Islands, Pico, Pérez de Paz (TFC)	FUM, PERL, USN	1855	KP941474	KP941511
	Madeira, Queimados, Pérez-Vargas (TFC)	FUM, PERL, USN	1900	KP941475	KP941510
Madiera, Fidelidade, Pérez-Vargas (TFC)	FUM, PERL	1897	KP941476	KP941509	KP941548
C. boyi	USA, Massachusetts, Plymouth County, Burgaz (MACB)	USN, ZEO	1904	KP941495	KP941532
C. cenotea	Denmark, Vondrák 6965 (MACB)	SOQA	1CENO	KP941497	FN868996
C. confusa	Brazil, Minas Gerais, Serra de Pernambuco (TUR)	–	–	KP941492	AF458296
	Bolivia, Santa Cruz, Flakus & Rata 22088 (H)	–	–	KP941491	KP941536
C. delormi	USA, New Hampshire, Grafton County, Burgaz (MACB)	RHO, USN	1905	KP941496	KP941533
C. macaronesica	Canary Islands, La Gomera, Laguna Grande, Pérez-Vargas (TFC)	PERL, USN	1849	KP941470	KP941503
Canary Islands, La Gomera, Montaña de la Zarza, Pérez-Vargas (TFC)	PERL, USN	1848	KP941462	KP941502	
Canary Islands, Tenerife, Pico del Inglés, Pérez-Vargas (TFC)	PERL, USN	1847	KP941464	KP941501	
Canary Islands, Tenerife, El Pinaral, Pérez-Vargas (TFC)	PERL, USN	1846	KP941459	KP941500	
Canary Islands, Tenerife, El Batallado, Pérez-Vargas (TFC)	PERL, USN	1845	KP941458	KP941499	
Canary Islands, Tenerife, El Batallado, Pérez-Vargas (TFC)	PERL, USN	1852	KP941450	KP941556	
Canary Islands, La Gomera, Roque de la Zorita, Homemdez Padron & Pérez de Paz (MACB)	PERL, USN	1863	KP941460	KP941534	
Canary Islands, La Gomera, Cumbres de Tajaquí, Pérez-Vargas (TFC)	PERL, USN	1853	KP941465	KP941539	
Canary Islands, La Gomera, Laguna Grande, Pérez-Vargas (TFC)	PERL, USN	1854	KP941473	KP941504	
Canary Islands, Tenerife, El Batallado, Pérez-Vargas (TFC)	PERL, USN	1850	KP941471	KP941500	
C. mediterranea	Balearic Islands, Ibiza, Sant Josep de Sa Talaia, Pino-Bodas (MACB)	PERL, USN	1MED	KP941489	KP941504
	Portugal, Algarve, Maria Vinagre, Burgaz (MACB)	PERL, USN	1861	KP941498	KP941502
	Portugal, Beia Litoral, Figueira da Foz, Burgaz (MACB)	PERL, USN	1862	KP941483	KP941501
	Portugal, Beia Litoral, Vagos, Pino-Bodas (MACB)	PERL, USN	1871	KP941484	KP941552
	Portugal, Beia Litoral, Arealao, Pino-Bodas (MACB)	PERL, USN	1878	KP941523	KP941553
	Portugal, Beia Litoral, Mira, Pino-Bodas (MACB)	PERL, USN	1871	KP941485	KP941521
	Portugal, Beia Litoral, Mira, Pino-Bodas (MACB)	PERL, USN	1871	KP941486	KP941513
	Portugal, Beia Litoral, Mira, Pino-Bodas (MACB)	PERL, USN	1871	KP941487	KP941514
	Portugal, Beia Litoral, Mira, Pino-Bodas (MACB)	PERL, USN	1871	KP941488	KP941517
	Portugal, Beia Litoral, Mira, Pino-Bodas (MACB)	PERL, USN	1871	KP941489	KP941518
	Portugal, Beia Litoral, Mira, Pino-Bodas (MACB)	PERL, USN	1871	KP941490	KP941568
	Portugal, Beia Litoral, Mira, Pino-Bodas (MACB)	PERL, USN	1871	KP941491	KP941569
	Portugal, Beia Litoral, Mira, Pino-Bodas (MACB)	PERL, USN	1871	KP941492	KP941570
C. portentosa subsp. pacifica	USA, Alaska, Aleutian Islands, Talbot & Myers UNI 064-24 (H)	PERL, USN	CL308	KP941479	KP941528
	USA, Alaska, Aleutian Islands, Talbot&WOS 025-24 (H)	PERL, USN	CL340	KP941480	KP941529
C. portentosa subsp. portentosa	Madeira, Fidelidade, Pérez-Vargas (TFC)	PERL, USN	1902	KP941477	KP941519
	Madeira, Queimados, Pérez-Vargas (TFC)	PERL, USN	1893	KP941459	KP941549
	Portugal, Beia Litoral, Arealao, Pino-Bodas (MACB)	PERL, USN	1875	KP941466	KP941506
	Portugal, Beia Litoral, Arealao, Pino-Bodas (MACB)	PERL, USN	1875	KP941466	KP941506
	Portugal, Beia Litoral, Arealao, Pino-Bodas (MACB)	PERL, USN	1875	KP941507	KP941564
	Portugal, Beia Litoral, Camion, Pino-Bodas (MACB)	PERL, USN	1884	KP941469	KP941508
	United Kingdom, Scotland, Stenroos 6074 (H)	PERL, USN	CL92	KP941482	KP941530
	United Kingdom, Scotland, Stenroos 6094 (H)	PERL, USN	CL97	KP941481	KP941531
	United Kingdom, Scotland, Stenroos 5904 (H)	PERL, USN	CL97	KP941481	KP941531
	United Kingdom, Scotland, Sanderson 1/13 (MACB)	PERL, USN	CL308	KP941479	KP941528
	Spain, Valencia, Utiel, Burgaz (MACB)	PERL, USN	1/13	KP941465	KP941566
	Spain, Burgos, Pineda de la Sierra, Burgaz (MACB)	PERL, USN	9/13	KP941467	KP941526
C. pyroclada	Chile, Osorno, Feufer 60257 (TUR)	–	–	KP941484	AF458297
	Chile, Osorno, Feufer 60275 (TUR)	–	–	KP941493	AF458298

1 FUM = fumarprotocetraric acid; PERL = perlactonic acid; RHO = rhodocladonic acid; SOQA = squamatic acid; USN = usnic acid; ZEO = zeorin.
and soredia (Ahti 1961, 1984). Furthermore, Stenroos et al. (2002) showed that Cladina is a monophyletic group (Group Cladinae) divided into two clades, one corresponding to the old section Impexae and the other to the sections Cladina and Tenues. However, some studies indicated that the Group Cladinae is not monophyletic (DePriest et al. 1999, 2000, Guo & Kashiwadani 2004) but the old section Impexae is monophyletic. The section Impexae is represented in Europe by C. azorica, C. macaronesica, C. mediterranea, C. portentosa and C. stellaris. The problematic C. mediterranea complex includes three of these species, viz. C. azorica, C. macaronesica and C. mediterranea. Cladonia azorica is reported to be widespread in Madeira, Azores, Ireland, England and Iceland (Ahti 1961, Ruoss 1989, James 2009, Ahti & Stenroos 2013), while C. macaronesica is known from the Canary Islands, Madeira and Azores (Ahti 1961). Cladonia mediterranea has the broadest distribution, from Portugal to Turkey, southwestern Britain and the Canary Islands (des Abbayes & Duvigneaud 1947, Ruoss 1989, James 2009, Hernández-Padrón & Pérez-Vargas 2009). It is still unclear whether C. azorica, C. macaronesica and C. mediterranea represent independent species or not. Ahti (1977) synonymized C. azorica with C. macaronesica; but later on, he again recognized C. azorica (Ahti 1984), whereas Ruoss (1989) concluded that C. mediterranea and C. macaronesica were conspecific. However, in many floristic works C. macaronesica and C. mediterranea are still treated as separate species (Haffellner 1995, Flores Rodrigues & Aptroot 2005, Carvalho et al. 2008, Hernández-Padrón & Pérez-Vargas 2009, Gabriel 2012). Sicilia et al. (2009) refer to C. mediterranea group because of the high morphological variation they found, while they pointed out the necessity of molecular studies for clarifying the taxonomy of this complex. To date, analyses using DNA sequence data have not been carried out.

The aim of the present work is to study the species delimitation in the Cladonia mediterranea complex using different approaches and several data sources: DNA sequences from three loci (ITS rDNA, IGS rDNA and rp2), morphological data and chemical data.

MATERIAL AND METHODS

Sampling

The specimens were collected during 2011 from the Canary Islands, Madeira, Azores and the coast of Portugal. To complete the sampling, specimens deposited at MACB and H were included. In all, 40 specimens of C. azorica, C. macaronesica, C. mediterranea and C. portentosa were selected (Table 1). We included C. portentosa, which is a common species in the Iberian Peninsula and Macaronesia, because of its morphological resemblance to the other three species (Ahti 1961, Ruoss 1989, Orange 1993, Burgaz & Ahti 2009, Sicilia et al. 2009, Ahti & Stenroos 2013). Two specimens of C. pycnoclada and two of C. confusa were also included, both South American members of the section Impexae; they have been considered by some authors to be close to C. azorica (des Abbayes 1946, Tavares 1952). Cladonia deformis, C. boryi and C. cenotea were chosen as outgroup species, according to the results of Stenroos et al. (2002).

Morphology and secondary metabolites

The morphological characters studied were selected on the basis of the original descriptions of the species (des Abbayes & Duvigneaud 1947, Ahti 1961, 1978) and other studies (Ruoss 1989, Burgaz & Ahti 2009). Fourteen quantitative morphological characters were measured (length of podetia, width of podetia, number of branches, dichotomous branches percentage, trichotomous branches percentage, tetrachotomous branches percentage, branching angles, length of internodes, length of last branch, thickness of podetia, thickness of medulla, thickness of stem, number of open axis, number of closed axes). For each specimen, the measures were taken in one to three podetia, according to the available material. All the macroscopic characters were measured by means of a digital slide gauge (0.01 mm precision) under a binocular stereomicroscope (Olympus SZX9). Transverse sections of the podetia were made free-hand, and the microscopical measures were taken at 400× magnification using an Olympus CX41 microscope, in distilled water. The matrix containing the fourteen characters previously mentioned was analyzed using principal component analysis (PCA). This analysis was performed with the Canoco 4.5 program (ter Braak & Šmilauer 2002). The variables were centered and standardized before the PCA. The values for the first two components were plotted (Fig. 1). In Fig. 1a the data were coded according to the morphological identification. Using the same matrix the discriminatory descriptors were inferred from the length of the vector and its correlation with the respective axes, so Fig. 1b represents the correlation of the different morphological variables with the components.

The secondary metabolites were studied in all the specimens using the solvents A (Toluene: dioxane: acetic acid) and B (Hexane: diethylther: formic acid) (White & James 1985).

DNA extraction, PCR and sequencing

Genomic DNA was extracted using DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany), following the manufacturer’s instructions. The DNA was eluted in the final step in 200 ml of elution buffer provided by the manufacturer. The following three nuclear loci were sequenced: ITS rDNA, rp2 and IGS rDNA. The primers and PCR programs are described in Pino-Bodas et al. (2013). The amplifications were carried out with Ready-to-Go-PCR Beads (GE Healthcare Life Sciences, UK). PCR products were purified with ExoSAP-IT (USB Corporation, OH, USA). The sequencing was performed at Macrogen Europe service (www.macrogen.com), with the same primers used for the PCR.

Phylogenetic analyses

The consensus sequences from forward and reverse templates were assembled and edited in Sequencher™ 4.1.4 program (Gene Codes Corporation, Inc, Ann Arbor, Michigan, USA). The sequences of each locus were manually aligned in BIOEDIT 7.0 (Hall 1999). No ambiguous positions were found and all the positions of the alignments were included in the analyses. Each region was analyzed separately by Maximum Likelihood (ML) using RAxML 7.0.3 (Stamatakis et al. 2005), under the model GTR+GAMMA. Fast bootstrap was run with 500 pseudoreplicates. The congruence among the different topologies inferred from the loci was tested following Hillis & Bull (1993): each clade with more than 75 % bootstrap support was scanned for conflict among loci. We considered the existence of a conflict whenever a clade was supported with a bootstrap (more than 75 %) in one locus, while it was not supported in another locus, and the individual sequences of this clade were part of another clade with bootstrap support 75 %. In the combined datasets, only the specimens with sequences at least for 2 genes were included. The combined dataset was analyzed by Maximum Parsimony (MP), ML and Bayesian analyses. MP analyses were performed in PAUP* v. 4.0.b.10 (Swoford 2003) using the heuristic searches with 1 000 random taxon-addition replicates, with TBR branch swapping and MulTrees option in effect, equally weighted characters. Gaps were treated as missing data. For the confidence analysis, the bootstrap (Felsenstein 1985) was applied, with 1 000 replicates and heuristic searches.
The ML analysis was performed in the same conditions as the single gene datasets but considering 5 partitions: ITS rDNA, IGS rDNA and each codon position of rpb2. The best fit substitution model for each region was calculated using MrModeltest 2.3 (Nylander 2004), with Akaike information criterion. The models selected and used in the Bayesian analysis were: GTR+G for IGS rDNA, SYM+G for ITS rDNA and SYM+I for rpb2. The Bayesian analysis was carried out using MrBayes 3.2 (Ronquist et al. 2012). The posterior probabilities were approximated by sampling trees using Markov Chain Monte Carlo (MCMC). The posterior probabilities of each branch were calculated by counting the frequency of trees visited during the MCMC analysis. Two simultaneous runs with 10 000 000 generations, each starting with a random tree and employing 4 simultaneous chains, were executed. Every 1 000th tree was saved into a file. The convergence was assessed checking that the average standard deviation of split frequencies was < 0.01. In addition, the compare and slide commands in AWTY (Nylander et al. 2008) were used. Afterwards, the 50 % majority-rule consensus tree was calculated after removing the first 2 500 000 generations (i.e. the first 2 500 trees) using the ‘burn in’ command.

Tests of monophyly and genealogical sorting index
In order to assess the hypotheses that C. azorica, C. macaronesica and C. portentosa were monophyletic, constraint trees were constructed. These alternatives topologies were sup-plied to RAxML to search the ‘best’ ML tree. The GTR+G model was assigned to rpb2. The model GTR+G was assigned to ITS and IGS partitions, and GTR+I to rpb2 partition, selecting birth-death speciation process with an uncorrelated relaxed lognormal clock (Drummond et al. 2006) and a constant size population. For the remaining priors the defect values were kept. The analysis was run for 50 000 000 generations, sampling every 1 000. The convergence was calculated with TRACER 1.5 (Rambaut & Drummond 2007). After discarding the first 10 000 000 generations the effective sample size for all the parameters of the evolutionary model reached values > 200. The tree was summarized with TREANNOTATOR 1.7.5 (Rambaut & Drummond 2013) using maximum clade credibility tree option for the target tree type.

In the second method SpedeSTEM (Ence & Carstens 2011) was used to calculate the species tree. This method is based on coalescence that applies several loci gene trees to calculate the maximum likelihood species tree (Kubatko et al. 2009). This program allows not only to validate the species generated by other procedures, but also to delimit species with no a priori assignment of individuals. In this study only discovering analyses were made according to Satler et al. (2013). The ML gene trees were generated in PAUP (using the models estimated in MrModelfest), including C. mediterranea, C. macaronesica, C. portentosa, C. azorica and the outgroup. SpedeSTEM requires the specimens to be present in all the gene trees, and so only those can be studied for which it was possible to generate sequences for the three loci. SpedeSTEM needs a r value for scaling the
branch lengths in the species trees it produces. The \(\theta \) value for each locus was calculated in DnaSP v. 5 (Librado & Rozas 2009), being \(\theta = 0.04437 \) for ITS rDNA, \(\theta = 0.04073 \) for ITS and \(\theta = 0.02804 \) for rpb2. The analysis was repeated for several \(\theta \) values: the average value of the three loci (\(\theta = 0.03377 \)), \(\theta = 0.02 \), \(\theta = 0.03 \) and \(\theta = 0.04 \), to avoid the issues the program can have when calculating the likelihood for low \(\theta \) values (Giara et al. 2014).

Species delimitation by cohesion species recognition

Haplotypes networks under statistical parsimony with a confidential interval of 95 % were generated with TCS 1.21 (Clement et al. 2000) for each locus (ITS rDNA, IGS rDNA and rpb2). For the ITS rDNA analysis all the sequences of C. portentosa from GenBank (FR799166, FR799167, JQ695921, JQ695922, JQ695323) were included. Gaps were coded as missing data. The haplotypes were gathered manually in clades according to the rules of Templeton et al. (1987). This algorithm identifies clades united by mutational steps. The \(x \)-step clades are successively grouped in \(x+1 \)-step clades and the final level of nested clades includes the complete network. The loops were resolved following the three criteria (frequency, topology and geographical) proposed by Pfenninger & Posada (2002). Table of contingency and Kruskal-Wallis analyses were done to test the null hypothesis (H2) of no significant association between haplotype variation and phenotypical variation. The quantitative variables with more contribution to separate the groups in the haplotype variation and phenotypical variation. The quantitative analyses were performed in STATGRAPHICS 5.1 program. The clades 2-4 of ITS rDNA and 2-4 of analyses were performed in STATGRAPHICS 5.1 program. The PCA analysis were analyzed by Kruskal-Wallis. The statistical variables with more contribution to separate the groups in the haplotype variation and phenotypical variation. The quantitative of contingence and Kruskal-Wallis analyses were done to test resolved following the three criteria (frequency, topology and of nested clades includes the complete network. The loops were

RESULTS

Morphological analysis and secondary metabolites

Fig. 1 shows the results of PCA. The first two principal components PC1 and PC2 summarize 51.44 % of the total variance (29.93 % and 21.51 %, respectively). The analysis distinguished two groups (Fig. 1a). The first group contains all the species of Cladonia mediterranea (on the upper left area of the scatter-plot) and the other group is formed by the rest of the species analyzed, C. azorica, C. macaronesica and C. portentosa (on the center of the scatterplot). The analysis shows a continuous morphological variation in the second group with a high degree of overlapping between the three species. The characters that most contribute to separate C. mediterranea from the other group were the dichotomous branching percentage and the number of closed axes (Fig. 1b).

The secondary metabolites found in each specimen are listed in Table 1. All the specimens of C. mediterranea and C. macaronesica contained perlatolic and usnic acids. One specimen of C. azorica lacked usnic acid, containing only fumarprotocetraric and perlatolic acids. The other specimens contained fumarprotocetraric, perlatolic and usnic acids. Three specimens of C. portentosa lacked usnic acid (C. portentosa subsp. portentosa f. subimpexae). The other specimens contained perlatolic and usnic acids.

Datasets and phylogenetic analyses

In this study 113 new sequences (39 from ITS rDNA, 40 from IGS rDNA and 34 from rpb2) have been generated, the GenBank accession numbers are listed in Table 1. The concate-
the third clade. One of them was constituted by some samples of *C. macaronesica* and *C. azorica* and the other was formed by all the specimens of *C. portentosa*, some specimens of *C. macaronesica* and some specimens of *C. azorica*.

Species trees

The results of the *BEAST* analysis are shown in Fig. 3a. *Cladonia mediterranea* was well supported, *C. azorica* and *C. portentosa* form a clade but the node was not significantly supported with posterior probability. The clade clustering *C. azorica*, *C. macaronesica* and *C. portentosa* was significantly supported. The results from SpedeSTEM analyses were similar for different *q* values. In all the cases the model that obtained most support was *wi* = 0.0.

Hypotheses and GSI

The SH and ELW significantly rejected the three hypotheses:

a. the monophyly of *C. azorica* (SH, *P*-values = 0.0090 and ELW *P*-value = 0.0009);
b. the monophyly of *C. macaronesica* (SH, *P*-values = 0.0290 and ELW *P*-value = 0.0423); and
c. the monophyly of *C. portentosa* (SH, *P*-value = 0.0270 and ELW *P*-value = 0.0142).

The GSI test results are shown in the Table 2. The GSI values for *C. azorica* were similar among the different loci and the P-values rejected the monophyly in all the loci. The GSI values for *C. macaronesica* were low in ITS rDNA and *rpb2*, and not significant. However, the GSI value of IGS rDNA was 0.5806 and significant. The GSI of *C. mediterranea* and *C. macaronesica* appeared together in the 3-2 clade of ITS rDNA, 2-1 clade of IGS rDNA and 3-1 clade of *rpb2*. The specimens grouped together in the 2-1 clade of IGS rDNA, 3-2 clade of ITS rDNA and 3-1 clade of *rpb2* are from Macaronesia, North America and Europe while the specimens of the clades 2-2 of ITS rDNA and 3-2 of *rpb2* are from the Canary Islands and the Iberian Peninsula.

Networks and nested clade analyses

A total of fifteen haplotypes of ITS rDNA were identified, connected in a single network (Fig 4a). Two haplotypes were unique for *C. mediterranea*, two were unique for *C. macaronesica*, two were unique for *C. azorica* and five were unique for *C. portentosa*. The other four haplotypes were shared by samples of different species (*C. macaronesica*, *C. portentosa* and *C. azorica*). The IGS rDNA network analysis yielded a total of six haplotypes connected into a single network (Fig. 4b). All the samples of *C. mediterranea* were represented in one unique haplotype, one haplotype was unique for *C. azorica*, and one was unique for *C. portentosa*. The other three haplotypes were shared by samples of *C. macaronesica* and *C. azorica*. The *rpb2* network analysis yielded nine haplotypes connected into a single network (Fig. 4c), four of them were unique for *C. mediterranea*, one for *C. macaronesica* and one was unique for *C. azorica*. The other three haplotypes were shared by samples of different species. The nested clade analyses generated five 1-step clades, four 2-step clades and two 3-step clades for ITS rDNA; for IGS rDNA, three 1-step clades and two 2-step clades were generated; and for *rpb2* six 1-step clades, four 2-step clades and two 3-step clades were generated. All the specimens of 2-2 clade from IGS rDNA and 3-1 clade from ITS were identified as *C. mediterranea*, while the 3-2 clade of *rpb2* contained all the specimens of *C. mediterranea* and one of *C. macaronesica*. The specimens of *C. macaronesica*, *C. portentosa* and *C. azorica* appeared together in the 3-2 clade of ITS rDNA, 2-1 clade of IGS rDNA and 3-1 clade of *rpb2*. The specimens grouped together in the 2-1 clade of IGS rDNA, 3-2 clade of ITS rDNA and 3-1 clade of *rpb2* are from Macaronesia, North America and Europe while the specimens of the clades 2-2 of ITS rDNA and 3-2 of *rpb2* are from the Canary Islands and the Iberian Peninsula.

Table 2 Genealogical sorting index and probability values under the null hypothesis that the samples labeled as putative species are monophyletic.

Species	ITS rDNA	IGS rDNA	*rpb2*	GSI*				
	GSI	*P*-value	GSI	*P*-value	GSI	*P*-value		
C. azorica	0.1429	0.1798	0.2114	0.0659	0.2614	0.0463	0.1429	0.1782
C. macaronesica	0.1556	0.1376	0.5806	1e-04*	0.1795	0.3308	0.1556	0.1343

* denotes significant result.
were detected among the 2-3 clade and the other clades; and in IGS rDNA significant differences were detected among the 1-3 clade and the other clades.

Table 5 shows the Kruskal-Wallis results. Significant differences were obtained for all of the characters among the 3-step clades in ITS rDNA and rpb2 and the 2-step clades in IGS rDNA. However, there were not significant differences among all the 2-step clades (see Tukey test, Table 6). No significant differences were found among the 2-step clades in rpb2 for dichotomous branching rate and trichotomous branching rate.

The F_{st} values between the 3-step clades of ITS rDNA and rpb2 and the 2-step clades of IGS rDNA are shown in Table 7. In all the comparisons the values were high. The lowest value was between the clades appearing in rpb2.

DISCUSSION

This work addresses the species delimitation in the *C. mediterranea* complex using two data sources: phenotypical data (morphological and chemical) and DNA sequences from three nuclear genes. The DNA data were analyzed by different methods often used for species delimitation (gene trees, species trees, haplotype networks) and they were highly congruent. When the analyses performed with different type of data show congruent results (as in this case), the concordant inferred boundaries likely correspond to existing biological entities. According to our results, the most probable scenario is the one that comprises two species.

The analyses of the morphological data reveal that *C. mediterranea* is different from the remaining species. The genealogical
phylogenetic species recognition (GPSR) was congruent with the results of the analysis of the morphological data (Fig. 2). *Cladonia mediterrana* formed a monophyletic clade well supported in MP and ML analyses, but not in the Bayesian analysis. The hypotheses tests (SH and EWL) significantly rejected the alternative topologies, in which *C. azorica, C. macaronesica* and *C. portentosa* were divided into independent monophyletic groups. Since the incomplete lineage sorting could be responsible for the lack of monophyly of *C. azorica, C. macaronesica* and *C. portentosa*, we applied the GSI test to evaluate the degree of genealogic divergence. The monophyly of *C. azorica* and *C. macaronesica* was not supported by this test. The species trees generated by means of *BEAST* and SpedeSTEM gave rise to two well-supported species (Fig. 3). These analyses are congruent with the gene trees and the morphological analysis, as a result of the congruence happens at 3-step clade level in ITS rDNA and at 2-step clade level in *rpb2*.

Table 3
Contingency test results for association of haplotype clades and phenotypical characters at highest step clade level for each locus.

Comparation level	Character	P-value
ITS rDNA	3-step Presence / lack of fumarprotocetrac acid	0.193
	2-step Compact / loose medulla	0.000*
	2-step Continuous / discontinuous algal layer	0.000*
	1-step Compact / loose medulla	0.001*
	1-step Continuous / discontinuous algal layer	0.007*
rpb2	3-step Presence / lack of fumarprotocetrac acid	0.111
	3-step Compact / loose medulla	0.004*
	3-step Continuous / discontinuous algal layer	0.000*

* denotes significant result.

Table 4
Contingency test results for association of haplotype clades and phenotypical characters.

Comparation level	Character	P-value
ITS rDNA	2-1 to 2-2 Presence / lack of fumarprotocetrac acid	0.429
	2-1 to 2-3 Compact / loose medulla	0.001*
	2-1 to 2-3 Continuous / discontinuous algal layer	0.000*
	1-1 to 1-2 Compact / loose medulla	0.002*
	1-1 to 1-3 Continuous / discontinuous algal layer	0.007*
IGS rDNA	1-1 to 1-2 Presence / lack of fumarprotocetrac acid	0.179
	1-1 to 1-3 Compact / loose medulla	0.004*
	1-2 to 1-3 Compact / loose medulla	0.007*
	2-1 to 2-3 Continuous / discontinuous algal layer	0.487
	2-1 to 1-2 Continuous / discontinuous algal layer	0.296
	2-2 to 1-3 Continuous / discontinuous algal layer	0.001*
	2-2 to 1-2 Continuous / discontinuous algal layer	0.002*
	2-2 to 2-3 Continuous / discontinuous algal layer	0.406

* denotes significant result.

Table 5
Kruskal-Wallis results for association of haplotype clades and phenotypical characters.

Comparation level	Character	E-statistic	P-value
ITS rDNA	3-step Dichotomous branching rate (%)	5.53597	0.0186*
	3-step Trichotomous branching rate (%)	3.90411	0.0481*
	3-step Closed axis rate (%)	12.4813	0.0004*
	2-step Dichotomous branching rate (%)	8.26747	0.0407*
	2-step Continuous / discontinuous algal layer	0.006*	
	2-step Closed axis rate (%)	12.5187	0.0058*
IGS rDNA	2-step Dichotomous branching rate (%)	10.6712	0.0010*
	2-step Trichotomous branching rate (%)	7.5518	0.0059*
	2-step Closed axis rate (%)	11.8636	0.0057*
	2-step Dichotomous branching rate (%)	10.9286	0.0042*
	1-step Continuous / discontinuous algal layer	0.0219*	
	1-step Closed axis rate (%)	13.5391	0.0011*

* denotes significant result.

Table 6
Tukey’s multiple comparison test for significant results of the Kruskal-Wallis analyses.

Locus	Comparisons	3-1 to 3-2 step clade	2-1 to 2-3 step clade	1-1 to 1-3 step clade	2-1 to 3-2 step clade	2-2 to 2-3 step clade	2-2 to 2-4 step clade
ITS rDNA	3-1 to 3-2	0.87659	ns	ns	ns	ns	ns
IGS rDNA	2-1 to 3-2	0.93114	0.69796	ns	ns	ns	ns

ns = not significant; * = significant with 95 % of probability.

Table 7
Pairwise Fst for each clade defined in the networks.

Locus	Comparisons	Fst
ITS rDNA	3-1 to 3-2 step clade	0.87659
IGS rDNA	2-1 to 2-3 step clade	0.93114
rpb2	2-1 to 3-2 step clade	0.69796

C. portentosa, we applied the GSI test to evaluate the degree of genealogic divergence. The monophyly of *C. azorica* and *C. macaronesica* was not supported by this test. The species trees generated by means of *BEAST* and SpedeSTEM gave rise to two well-supported species (Fig. 3). These analyses are congruent with the gene trees and the morphological analysis, leading to consider *C. azorica, C. macaronesica* and *C. portentosa* as a unique species, and *C. mediterrana* as a different one. The cohesion species recognition requires, in addition to rejecting the two null hypothesis, that the groups delimited during the evaluation of H1 be congruent with H2 hypothesis (Templeton et al. 2000). This congruence happens at 3-step clade level in ITS rDNA and *rpb2* and at 2-step clade level in
IGS, since at an inferior level (2-step clade level in ITS and rb2 and 1-step clade level in IGS) significant results were obtained, but not among all the clades. The morphological differences occur between the clades that contain samples of *C. mediterranea* and the remaining clades, while there are no significant differences between the clades that contain the samples of *C. azorica*, *C. macaronesica* and *C. portentosa* (2-2, 2-3 and 2-4 in ITS rDNA, 2-1, 2-2, 2-4 in rb2 and 1-1 and 1-2 in IGS rDNA). Strong evidence for the fact that *C. mediterranea* is a different species from *C. macaronesica*, is that all the samples of *C. mediterranea* are confined to a unique clade in all the haplotype networks. In addition, *C. mediterranea* shows high levels of genetic differentiation, according with the F_{st} values.

The analyses of the morphological data and also numerous analyses based on the DNA sequences are consistent, indicating that *C. mediterranea* is an independent evolutionary lineage and *C. azorica*, *C. macaronesica* and *C. portentosa* are conspecific. Thus our results reject the taxonomical proposal that *C. mediterranea* and *C. macaronesica* are conspecific (Ruoss 1989). This author studied the branching pattern and the characteristics of the algal layer and concluded that *C. macaronesica* and *C. mediterranea* were the same species. The diagnostic characters used to distinguish these species were the following: length of the internodes are longer in *C. mediterranea* than in *C. macaronesica*: the algal layer is continuous in *C. mediterranea* and discontinuous in *C. macaronesica*: a compact medulla present in *C. mediterranea* and a lax medulla in *C. macaronesica*: the axes are frequently closed in *C. mediterranea* and generally open in *C. macaronesica* (Ahti 1961). The PCA analyses carried out in this work show that the most relevant variables to distinguish *C. mediterranea* from the remaining species are the percentage of dichotomous branching and the number of closed axes. According to Ruoss (1989) *C. mediterranea* had more closed axes than *C. macaronesica*. However, we think that the internodal length does not contribute to the separation of *C. mediterranea* from the remaining samples, since *C. portentosa* has internodes of similar length or even with greater variation (Burgaz & Ahti 2009). Burgaz & Martínez (2008) found that the podetial wall is thicker in *C. mediterranea* than in *C. portentosa*: however, in our analysis this character had a scant contribution to distinguish *C. mediterranea* from the other species. The morphological characters that distinguish *C. mediterranea* are: the presence of a continuous algal layer, the presence of a compact medulla, the prevalence of isometry, with dichotomous branching and closed axes. These characters are the originally used ones to describe the species (des Abbayes & Duvigneaud 1947).

The boundaries among *C. azorica*, *C. macaronesica* and *C. portentosa* were not supported by any of the analyses carried out in this work. *Cladonia azorica* was distinguished from *C. macaronesica* mainly by the presence of fumarprotocetraric acid and by having a greater number of trichotomous branching, although the dichotomous pattern is also prevailing in this species (Ahti 1961). But our analyses did not show a correlation between the presence of fumarprotocetraric acid and a greater number of trichotomous branching. In previous works based on the study of the morphological variation, the species status of *C. azorica* and *C. macaronesica* had already been questioned (Ahti 1977). Although no previous study has suggested that *C. portentosa* is conspecific with the latter, Orange (1993) pointed out that in Britain it was impossible to distinguish *C. azorica* from *C. portentosa* only by means of morphological characters. The morphological similarities of *C. macaronesica* and *C. azorica* with *C. portentosa* are clear, even with *C. mediterranea* (Fig. 5), and the identification keys and floristic works usually point out the possible confusion of *C. portentosa* with these other species (James 2009, Sicilia et al. 2009). But *C. portentosa* is generally distinguished by the prevailing trichotomous branching and an anisotomous pattern, where a main axis is clear. Nonetheless, *C. portentosa* is a very variable species, either morphologically or chemically (des Abbayes 1939, Ahti 1961, 1978, Burgaz & Martínez 2008). Within this taxon several forms and subspecies have been described. *Cladonia portentosa* subsp. *pacificas* growing in western North America, is more slender and deflexed than *C. portentosa* subsp. *pacificas* and shows a greater number of dichotomous branches (Ahti 1978, Brodo & Ahti 1996). *Cladonia portentosa* subsp. *pacificas* f. *subimpexas* also lacks usnic acid (Ahti 1978). The ITS rDNA sequences of *C. portentosa* subsp. *pacificas* and *C. portentosa* subsp. *portentosa* were recently compared and it was found that there was no genetic difference between them (Smith et al. 2012). Our analyses confirm these results. The two specimens of *C. portentosa* subsp. *pacificas* here included share a haplotype with some of *C. portentosa* subsp. *pacificas* samples in each of the 3 loci.

In other species of the Group Cladinae (Stenroos et al. 2002) similar results have been found. This is the case of *C. arbuscula*, for which several subspecies were defined on the basis of the morphological and chemical variation. However, much of this variation is not correlated with the genetic variation (Piercey-Normore et al. 2010). The authors attribute the high variation within this species to environmental agents such as lighting, humidity, nutrients and thallus age. The warm temperatures throughout the year in Macaronesia, which causes a continuous development of the podetia, could be the environmental agent that determines *C. portentosa* to develop a prevailing dichotomous branching, instead of trichotomous. Ahti (1961) had already pointed out that in southern Europe (Portugal) *C. portentosa* tends to produce dichotomous branching, being easily mistaken for *C. mediterranea*, with which it often coexists (Burgaz & Ahti 2009).

Our results indicate that *C. confusa* and *C. pycnoclada* are related, while in the phylogeny submitted by Stenroos et al. (2002) *C. confusa* appeared closely related to *C. terranova* and *C. portentosa*. However, in our analyses *C. confusa* is not monophyletic, which could reveal a lack of genetic homogeneity of this species. Further studies, based on a wide range of sampling, should be made to confirm this observation.

TAXONOMY

In this section we present formally the taxonomical changes.

Cladonia portentosa (Dufour) Coem., Bull. Acad. Roy. Sci. Belgique, ser. 2, 19: 49. 1865.

-Basionym.- *Cenomyce portentosa* Dufour, Ann. Gen. Sci. Phys. 8: 69. 1821. Type. FRANCE. Landes, Saint-Serv-en-Adour, 1818, J.-M. Dufour (PC-Herb. Desmazières lectotype, Ahti, Ann. Bot. Fenn. 15: 8. 1978).

=* Cladonia azorica* Ahti, Ann. Bot. Soc. Zool.-Bot. Fenn. Vanamo 32, 1: 36. 1961. Type. PORTUGAL, Azores, Teno, 25 Sept. 1961, A. G. da Cunha & L. Sobrinho (LISU holotype).

=* Cladonia macaronesica* Ahti, Ann. Bot. Soc. Zool.-Bot. Fenn. Vanamo 32, 1: 37. 1961. Type. PORTUGAL, Madeira, Entre as Queimadas e o Caldeirão Verde, 1951, J.-M. Desmazières & A. Dufour (PC-Herb. Desmazières lectotype, Ahti, Ann. Bot. Fenn. 15: 8. 1978).

Acknowledgements This study was supported by Caja Canarias-Bancacitiva project 31195/2011. R. P-B was funded by Marie Curie IEF-program (PIEF-GA-2013-625653). A.R. B. thanks the project CGL2013-41839-P (Ministry of Economy & Competitiveness, Spain).
Fig. 5 Photographs of the four species studied, showing the general configurations of podetia a. *Cladonia azorica* (Haikonen 26865, H); b. *C. macaronesica* (Pérez-Vargas s.n., TFC 10602); c. *C. mediterranea* (Burgaz s.n., MACB 61559); d. *C. portentosa* (Stenroos 6074, H).

REFERENCES

Abbayes H des. 1939. Revision monographique des *Cladonia* du sous-genre *Cladina* (Lichen). Bulletin de la Société Scientifique de Bretagne 16 (hors sér. 2): 1–156.

Abbayes H des. 1946. Les *Cladonia* (Lichens) des îles Açores. Portugaliae Acta Biologica 1: 243–254.

Abbayes H des, Duvigneaud P. 1947. Un nouveau lichen méditerranéo-atlantique: *Cladonia mediterranea* Duvign. et des Abb. Revue Bryologique et Lichénologique 16: 95–104.

Ahti T. 1961. Taxonomic studies on reindeer lichens (*Cladonia*, subgenus *Cladina*). Annales Botanici Societatis Zoologicae Botanicae Fennicae Vanamo 32: 1–160.

Ahti T. 1977. *Cladonia* Wigg. subg. *Cladina* (Nyl) Leight. In: Poelt J, Vezda A (eds), Bestimmungsschlüssel europäischer Flechten. Ergänzungsheft 1: 45–59. Cramer, Germany.

Ahti T. 1978. Nomenclatural and taxonomic remarks on European species of *Cladonia*. Annales Botanici Fennici 15: 7–14.

Ahti T. 1984. The status of *Cladina* as a genus segregated from *Cladonia*. Nova Hedwigia 79: 25–61.

Ahti T. 2000. *Cladoniaceae*. Flora Neotropica Monograph 78: 1–363.

Bickford D, Lohman DJ, Sodhi NS, et al. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22: 148–155.
Piercey-Normore MD, Ahit T, Goward T. 2010. Phylogenetic and haplotype analyses of four segregates within Cladonia arbuscula sl. Botany 88: 397–408.
Pino-Bodas R, Ahit T, Stenroos S, et al. 2013. Multilocus approach to species recognition in the Cladonia humilis complex (Cladoniaceae, Ascomycota). American Journal of Botany 100: 684–678.
Pons J, Barraclough TG, Gomez-Zuniga J, et al. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609.
Rambaut A, Drummond A. 2007. Tracer v1.5. http://beast.bio.ed.ac.uk/Tracer.
Rambaut A, Drummond AJ. 2013. TreeAnnotator v1.7.0. Available from: http://beast.bio.ed.ac.uk.
Ronquist F, Teslenko M, Mark P, et al. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.
Ruoss E. 1989. Verzweigung als Unterscheidungsmerkmal bei Rentierflechten (Cladonia subg. Cladina). Herzogia 8: 125–136.
Satler JD, Carstens BC, Hedin M. 2013. Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Alatypus). Systematic Biology 62: 805–823.
Schmidt HA, Strimmer K, Vingron M, et al. 2002. TREE­PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.
Shimodaira H, Hasegawa M. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116.
Sicilia D, Hernández-Padrón C, Burgaz AR. 2009. The genus Cladonia in Garajonay National Park, La Gomera, Canary Islands. Cryptogamie, Mycologie 30: 305–316.
Sites J straw, Marshall JC. 2003. Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology & Evolution 18: 462–470.
Smith RJ, Arvidson R, Bono G, et al. 2012. Rare inland reindeer lichens at Mima Mounds in southwest Washington State. North American Fungi 7: 1–25.
Stamatakis A, Ludwig T, Meier H. 2005. RAxML-III: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463.
Stenroos S, Hyvönen J, Myllys L, et al. 2002. Phylogeny of the genus Cladonia s.lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18: 237–278.
Strimmer K, Rambaut A. 2002. Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society B 269: 137–142.
Swoford DL. 2003. PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer, Sunderland, Massachusetts, USA.
Tavares CN. 1952. Contributions to the lichen flora of Macaronesia I. Lichens from Madeira. Portugalete Acta Biologica 3: 308–391.
Taylor JW, Jacobson DJ, Kroken S, et al. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21–32.
Templeton AR. 1989. The meaning of species and speciation: A genetic perspective. In: Otte D, Endler JA (eds), Speciation and its consequences: 3–27. Sunderland, Sinauer Associates, USA.
Templeton AR, Maskas SD, Cruzan MB. 2000. Gene trees: A powerful tool for exploring the evolutionary biology of species and speciation. Plant Species Biology 15: 211–222.
Weir BS, Cockearham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.
Weisrock DW, Larson A. 2006. Testing hypotheses of speciation in the Plethodon jordani species complex with allozymes and mitochondrial DNA sequences. Biological Journal of the Linnean Society 89: 25–51.
White FJ, James PW. 1985. A new guide to microchemical techniques for the identification of lichen substances. British Lichen Society Bulletin 75 (supplement): 1–41.
Wiens JJ, Penkrot TA. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51: 69–91.
Will KG, Mishler BD, Wheeler QD. 2005. The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54: 844–851.
Wirtz N, Printzen C, Lumbsch HT. 2008. The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research 112: 472–484.
Wirtz N, Printzen C, Lumbsch HT. 2012. Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae). Organisms Diversity & Evolution 12: 17–37.
Yang Z, Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences, USA 107: 9264–9269.