Abstract:

Background: Sitobion miscanthi is an ideal model for studying host plant specificity, parthenogenesis-based phenotypic plasticity, and interactions between insects and other species of various trophic levels, such as viruses, bacteria, plants and natural enemies. However, the genome information for this species has not been published yet. Here, we analyzed the entire genome of a female aphid colony using long-read sequencing and Hi-C data to generate chromosome-length scaffolds and a highly contiguous genome assembly.

Results:
1. The final draft genome assembly from 33.88 Gb of raw data was approximately 397.90 Mb with a 2.05 Mb contig N50. Nine chromosomes were further assembled based on Hi-C data to a 377.19 Mb final size with a 36.26 Mb scaffold N50.
2. The identified repeat sequences accounted for 26.41% of the genome, and 16,006 protein-coding genes were annotated. According to the phylogenetic analysis, S. miscanthi is closely related to Acyrthosiphon pisum, with S. miscanthi diverging from their common ancestor approximately 25.0-44.9 million years ago.

Conclusions: We generated a high-quality draft of the Sitobion miscanthi genome. This genome assembly promotes research on the lifestyle and feeding specificity of aphids and their interactions with each other and species at other trophic levels. It can serve as a resource for accelerating genome-assisted improvements in chemical drug resistant management and environmentally friendly aphid management.
Dear editor,

Thank you for your email on July 19, 2019 regarding the decision of our manuscript entitled “A chromosome-level draft genome of the grain aphid Sitobion miscanthi” (Manuscript ID: GIGA-D-19-00137R1). I appreciate very much for your suggestions on the manuscript. I also acknowledge the two reviewers for their kind comments on this manuscript.

All the co-authors and I have carefully checked the manuscript and revised it according to your suggestions and the reviewers’ comments. In the revised manuscript, we have revised words (in lines 38 & 239 and lines 39 & 240) and sentence (current line 44-45) to improve them clearly presented. Please receive the revised manuscript.

Thank you for your consideration and your time.
Please let us know if you need any further information about our manuscript.
Sincerely yours,

Jia Fan
Dr. Jia Fan
State Key Laboratory for Biology of Plant Diseases and Insect Pests
Institute of Plant Protection
Chinese Academy of Agricultural Sciences
Beijing 100193, China
Email: jfan@ippcaas.cn

Reviewer 1:
1. L38 & 239: I assume the authors mean insecticide resistance management? Response: Yes, according to the reviewer's comments, “chemical drug” resistant management has been replaced by “insecticide” resistance management (Line38 and Line 237).

2. L39 & 240: replace friendly with safe
Response: Thank for the reviewer's correction, “friendly” has been replaced by “safe” (Line39 and Line 238).

3. L50-52: These two sentences make it seem like the authors published the genome because of the misidentification. Is this the rationale for the genome? Response: We thank for the reviewer’s suggestion. According to the reviewer’s comments, the sentence “This species was misidentified as Sitobion avenae in China [1],” was inserted into the first sentence as follows (Line44-45):
The grain aphid Sitobion miscanthi (Figure 1) widely mis-reported as Sitobion avenae in China [1], is a globally distributed sap-sucking specialist of cereal and a dominant species in wheat-growing regions across China.

Additional Information:

Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
--------------------------------------	-----
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends. Have you included all the information requested in your manuscript?	
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible. Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in publicly available repositories (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the “Availability of Data and Materials” section of your manuscript. Have you have met the above requirement as detailed in our Minimum Standards Reporting Checklist?	
A chromosome-level draft genome of the grain aphid *Sitobion miscanthi*

Xin Jiang*, Qian Zhang*, Yaoguo Qin*, Hang Yin, Siyu Zhang, Qian Li, Yong Zhang, Jia Fan†, Julian Chen†

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China.

Jia Fan, Tel: +86-01062815934, E-mail: jfan@ippcaas.cn; ORCID, 0000-0003-3487-2328.

Julian Chen, +86-01062813685, E-mail: chenjulian@caas.cn;

Xin Jiang, Tel: +86-01062815934, E-mail: 18911895763@163.com;

Qian Zhang, Tel: +86-01062815934, E-mail: zhangqianelaine@163.com;

Yaoguo Qin, Tel: +86-01062815934, E-mail: qinyg1018@163.com;

Hang Yin, Tel: +86-01062815934, E-mail: yhang01@163.com;

Siyu Zhang, Tel: +86-01062815934, E-mail: Zhangsiyu1567@163.com;

Qian Li, Tel: +86-01062815934, E-mail: liqian0927@yeah.net;

Yong Zhang, Tel: +86-01062815934, E-mail: zhangyongnk@163.com

†Corresponding authors: Jia Fan, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, P. R., China, 86-10-62815934, jfan@ippcaas.cn.

Julian Chen, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R., China, 86-10-62813685, chenjulian@caas.cn.

*Equal contribution
Abstract

Background: *Sitobion miscanthi* is an ideal model for studying host plant specificity, parthenogenesis-based phenotypic plasticity, and interactions between insects and other species of various trophic levels, such as viruses, bacteria, plants and natural enemies. However, the genome information for this species has yet to be sequenced and published. Here, we analyzed the entire genome of a female aphid colony using PacBio long-read sequencing and Hi-C data to generate chromosome-length scaffolds and a highly contiguous genome assembly.

Results:

The final draft genome assembly from 33.88 Gb of raw data was approximately 397.90 Mb in size, with a 2.05 Mb contig N50. Nine chromosomes were further assembled based on Hi-C data to a 377.19 Mb final size with a 36.26 Mb scaffold N50. The identified repeat sequences accounted for 26.41% of the genome, and 16,006 protein-coding genes were annotated. According to the phylogenetic analysis, *S. miscanthi* is closely related to *Acyrthosiphon pisum*, with *S. miscanthi* diverging from their common ancestor approximately 25.0-44.9 million years ago.

Conclusions: We generated a high-quality draft of the *Sitobion miscanthi* genome. This genome assembly should help promote research on the lifestyle and feeding specificity of aphids and their interactions with each other and species at other trophic levels. It can serve as a resource for accelerating genome-assisted improvements in insecticide resistant management and environmentally safe aphid management.

Keywords: aphid, *Sitobion miscanthi*, *Sitobion avenae*, annotation, genome, long-read sequencing, Hi-C assembly

Data Description

Background
The grain aphid *Sitobion miscanthi* (NCBI: txid44668, Figure 1) widely mis-reported as *Sitobion avenae* in China [1], is a globally distributed sap-sucking specialist of cereal and a dominant species in wheat-growing regions across China. It threatens wheat production in various ways such as pillaging nutrition from the host, transmitting pathogenic plant viruses, and defecating sticky honeydew that further obstructs photosynthesis and reduces wheat quality. Together with its highly specialized host range, its simple parasitic life cycle, pleomorphism, and alternation of complete and incomplete life cycles make *S. miscanthi* significant for both basic and applied research. Therefore, we sought to publish the genome information for *S. miscanthi*. Genomes with annotation information from a total of 8 aphid species, namely the pea aphid *Acyrthosiphon pisum* [2], peach aphid *Myzus persicae* [3], soybean aphid *Aphis glycines* [4], Russian wheat aphid *Diuraphis noxia* [5], cherry-oat aphid *Rhopalosiphum padi* [6], and black cherry aphid *Myzus cerasi* [6], the cotton aphid *Aphis gossypii* [7], and the corn leaf aphid *Rhopalosiphum maidis* [8] are available. However, no genome information for *S. miscanthi* has been published. Here, we report the chromosome-level genome sequence of the *S. miscanthi* isolate Langfang-1, which exhibits higher-quality assembly data indexes than other scaffold-level aphid genomes. Most of the sequences assembled into 9 scaffolds, which supported a 2n=18 karyotype for *S. miscanthi* [9,10]. The repeat sequences and phylogenetic relationship of *S. miscanthi* with other insects were further analyzed.

Sampling

Langfang-1, a grain aphid (*S. miscanthi*) isolate that was originally collected from wheat in Hebei province, was kept in our laboratory for genome sequencing. An isogenic colony was started from a single parthenogenetic female of *S. miscanthi* and was maintained on wheat (*Triticum aestivum*). Mother aphids were placed into culture dishes (diameter of 9 cm) with moist absorbent paper on the bottom for 12 h. No newborn nymphs
were fed during this period. Newborn nymphs within 12 h without feeding were collected for genome sequencing. In addition, 100 aphids of 1st and 2nd instars and 50 winged and wingless aphids at the 3rd instar, 4th instar and adult stages were collected for transcriptome sequencing.

Genome size estimation

High-quality genomic DNA for sequencing using the Illumina platform (Illumina Inc., San Diego, CA, USA) and PacBio Sequel sequencing (Pacific Biosciences of California, Menlo Park, CA, USA) was extracted from the newborn nymphs mentioned above. The whole-genome size of *S. miscanthi* was estimated by k-mer analysis ($k=19$) based on Illumina DNA sequencing technology [11,12]. A short-insert library (270 bp) was constructed, and a total of ~42 Gb of clean reads was obtained for de novo assembly to estimate the whole-genome size using the standard protocol provided by the Illumina HiSeq X Ten platform. All clean reads were subjected to 19-mer frequency distribution analysis. The peak of 19-mer peak was at a depth of 89, and the genome size of *S. miscanthi* was calculated to be 393.1 Mb (Figure 2, Table 1).

Genome assembly using PacBio long reads

The genomic DNA libraries were constructed and sequenced using the PacBio Sequel platform. Additionally, 4.35 million subreads (33.88 Gb in total) with an N50 read length of 12,697 bp were obtained after removing the adaptor (Figure S1). De novo genome assembly with long reads was performed using two pipelines, Canu (Canu, RRID:SCR_015880) and wtdbg (WTDBG, RRID:SCR_017225). Because of the high heterozygosity of *Sitobion miscanthi*, in the correction step, Canu first selects longer seed reads with the settings ‘genomeSize=400000000’ and ‘corOutCoverage=50’, then detects overlapping raw reads through the highly sensitive overapper MHAP (mhap-2.1.2, option ‘corMhapSensitivity=low/normal/high’), and finally performs an error correction with the
falcon_sense method (option ‘correctedErrorRate=0.025’). In the next step, with the default parameters, error-corrected reads are trimmed to remove unsupported bases and hairpin adapters to obtain the longest supported range. In the last step, Canu generates the draft assembly using the longest 80 coverage-trimmed reads with Canu v1.5 [13] to output more corrected reads and be more conservative at picking the error rate for the assembly to try to maintain haplotype separation.

Wtdbg is an SMS data assembler that constructs a fuzzy Brujin graph (available at https://github.com/ruanjue/wtdbg). Wtdbg first generates a draft assembly with the command

`wtdbg -i pbreads.fasta -t 64 -H -k 21 -S 1.02 -e 3 -o wtdbg`. The use of error-corrected reads from Canu results in better assembly performance. Then, a consensus assembly is obtained with the command `wtdbg-cns -t 64 -i wtdbg.ctg.lay -o wtdbg.ctg.lay.fa -k 15`.

To improve genome contiguity, two assemblies generated from the Canu and wtdbg pipelines were merged with three rounds of quickmerge [14]. Quickmerge uses contigs from wtdbg as query input and contigs from Canu as ref input. The two contigs are aligned through mummer (v4.0.0, available at https://github.com/mummer4/mummer) with the nucmer parameters ‘-b 500 -c 100 -l 200 -t 12’ and delta-filter parameters ‘-i 90 -r -q’, and then merged through quickmerge with the parameters ‘-hco 5.0 -c 1.5 -l 100000 -ml 5000’. The result was error corrected using Pilon (Pilon, RRID:SCR_014731) [15]. After all of the processing described above, the resulting genome assembly was further cleaned using Illumina NGS data, which were used in the 19-mer analysis above. The final draft genome assembly was 397.90 Mb, which reached a high level of continuity with a contig N50 length of 2.05 Mb (Table 2). The contig N50 of *S. miscanthi* was much higher than that of previous aphid genome assemblies constructed using DNA NGS sequencing technologies.

Genome quality evaluation

To assess the completeness of the assembled *S. miscanthi* genome, we subjected the
assembled sequences to Benchmarking Universal Single-Copy Orthologs (BUSCO) version 2 (BUSCO, RRID:SCR_015008) [16]. Overall, 1496 and 19 of the 1658 expected Insecta genes (insect_odb9) were identified in the assembled genome as having complete and partial BUSCO profiles, respectively. Approximately 143 genes were considered missing in our assembly. Among the expected complete Insecta genes, 1401 and 95 were identified as single-copy and duplicated BUSCOs, respectively (Figure S4).

Hi-C library construction and chromosome assembly

In this work, we used Hi-C to further assemble the genome of *S. miscanthi* at the chromosome level. Genomic DNA was extracted for the Hi-C library from the whole aphids of *S. miscanthi* mentioned above. Samples were extracted and sequenced following a standard procedure. Hi-C fragment libraries were constructed with insert sizes of 300-700bp and sequenced on the Illumina platform. Adapter sequences of raw reads were trimmed, and low-quality PE reads were removed for clean data. The clean Hi-C reads were first truncated at the putative Hi-C junctions, and then the resulting trimmed reads were aligned to the assembly results with BWA software (BWA, RRID:SCR_010910) [17]. Only uniquely alignable pairs reads whose mapping quality was more than 20 remained for further analysis. Invalid read pairs, including Dangling-End and Self-cycle, Re-ligation and Dumped products, were filtered by HiC-Pro (v2.8.1) [18].

In total, 38.44% of unique mapped read pairs were valid interaction pairs for scaffold correction and were used to cluster, order and orient scaffolds onto chromosomes by LACHESIS [19].

Before chromosome assembly, we first performed a preassembly for the error correction of scaffolds, which required the splitting of scaffolds into segments of 50 kb on average. The Hi-C data were mapped to these segments using BWA (version 0.7.10-r789) software. The uniquely mapped data were retained to perform assembly by using LACHESIS software. Any
two segments that showed inconsistent connection with information from the raw scaffold were checked manually. These corrected scaffolds were then assembled with LACHESIS. Parameters for running LACHESIS included CLUSTER_MIN_RE_SITES, 70; CLUSTER_MAX_LINK_DENSITY, 1; ORDER_MIN_N_RES_IN_TRUN, 19; ORDER_MIN_N_RES_IN_SHREDS, 19. After this step, placement and orientation errors exhibiting obvious discrete chromatin interaction patterns were manually adjusted. Finally, 774 scaffolds (representing 97.48% of the total length) were anchored to 9 chromosomes (Figure 3, Table S1). A genome with a final size of 377.19 Mb and a scaffold N50 of 36.26 Mb was assembled, which showed a high level of continuity with a contig N50 of 2.05 Mb using 1,167 contigs. The contig N50 of the genome assembled using PacBio long reads and Hi-C assembly was much higher than that of the 7 previously published aphid genome assemblies constructed using DNA NGS technologies (Table 3).

Repeat sequences within the S. miscanthi genome assembly

To identify tandem repeats, we utilized 4 software, namely LTR_FINDER (v1.0.5; LTR_Finder, RRID:SCR_015247) [20], MITE-Hunter (v1.0.0)[21], RepeatScout (v1.0.5; RepeatScout, RRID:SCR_014653) [22], and PILER-DF (v1.0) [23] to build a de novo repeat library based on our assembly with the default settings. Subsequently, the predicted repeats were classified using PASTEClassifier (v1.0) [24] and merged with Repbase (19.06) [25]. Finally, using the resulting repeat database as the final repeat library, RepeatMasker v4.0.5 (RepeatMasker, RRID: SCR 012954) [26] was used to identify repetitive sequences in the A. nanus genome with the following parameters: “-nolow -no -norma -engine wublast.” The repeat sequences accounted for 31.15% of the S. miscanthi genome, including identified repeat sequences (26.42% of the genome), based on the de novo repeat library (Table 4).

Transcriptome sequencing to aid in gene prediction

Transcriptome sequencing (Illumina RNA-Seq and PacBio Iso-Seq) of cDNA libraries
prepared from the whole newborn nymphs of *S. miscanthi* was conducted to aid in gene prediction. High-quality RNA was extracted using an SV Total RNA isolation kit (Promega, Madison, WI, USA). Reverse transcription was completed using a Clontech SMARTer cDNA synthesis kit (Clontech Laboratories, Palo Alto, CA, USA). A paired-end library was then prepared following the Paired-End Sample Preparation Kit manual (Illumina Inc., San Diego, CA, USA). Finally, a library with an insert length of 300 bp was sequenced by an Illumina HiSeq X Ten in 150PE mode (Illumina Inc., San Diego, CA, USA). As a result, we obtained ~8.707 Gb of transcriptome data from RNA-seq. The quality of the transcripts was assessed by the proportion of gene regions covered by these transcripts, the higher being better. In this case, the proportion was 85.66%. The assembled transcripts were used to improve predictions of protein-coding genes in the *S. miscanthi* genome.

Gene annotation

Gene prediction of the *S. miscanthi* genome was performed using de novo, homology-based and transcriptome sequencing-based predictions. For de novo prediction, we employed Augustus v2.4 (Augustus, RRID:SCR_008417) [27], GlimmerHMM v3.0.4 (GlimmerHMM, RRID:SCR_002654) [28], SNAP (version 2006-07-28; SNAP, RRID:SCR_007936) [29], GeneID v1.4 [30] and GENSCAN (GENSCAN, RRID:SCR_012902) [31] software to predict protein-coding genes in the *S. miscanthi* genome assembly. For homology-based prediction, protein sequences of closely related aphid species, namely, *Sipha flava*, *D. noxia*, *Ac. pisum* and *M. persicae*, were aligned against the *S. miscanthi* genome to predict potential gene structures using GeMoMa v1.3.1 [32]. For transcriptome sequencing-based prediction, we assembled the NGS transcriptome short reads into unigenes without a reference genome and then predicted genes based on unigenes using PASA v2.0.2 (PASA, RRID:SCR_014656) [33]. All of the above gene models were then integrated using EVM v1.1.1 [34] to obtain a consensus gene set. The final total gene set for the *S. miscanthi* genome was composed of
16,006 genes with an average of 6.74 exons per gene. The gene number, gene length distribution, and exon length distribution were all comparable to those of other aphid species (Table 2). Moreover, the indexes such as contig count and scaffold count were much improved.

To obtain further functional annotation of the protein-coding genes in the *S. miscanthi* genome, we employed the BLAST v2.2.31 [35] program to align the predicted genes with functional databases such as the nonredundant protein (NR) [36], EuKaryotic Orthologous Groups (KOG) [37], Gene Ontology (GO) [38], Kyoto Encyclopedia of Genes and Genomes (KEGG) [39], and Translation of European Molecular Biology Laboratory (TrEMBL) [40] databases (e-value ≤1e−5) (Figures S2 and S3). Ultimately, 99.35% (15,902 genes) of the 16,006 genes were annotated based on at least one database (Table S2).

Gene family identification and phylogenetic tree construction

We employed the OrthoMCL program [41] with an e-value threshold of 1e-5 to identify gene families based on the protein alignments of each gene from *S. miscanthi* and those of other insect species, which included *R. padi*, *D. noxia*, *Ac. pisum*, *M. persicae*, *Ap. glycines*, *M. cerasi*, *Rhopalosiphum maidis*, *Ap. gossypii*, *S. flava* (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/268/045/GCF_003268045.1_YSA_version1/GCF_003268045.1_YSA_version1_genomic.fna.gz), *Apis mellifera* (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/254/395/GCF_003254395.2_Amel_HAv3.1/GCF_003254395.2_Amel_HAv3.1_genomic.fna.gz), *D. pulex* (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/187/875/GCA_000187875.1_V1.0/GCA_000187875.1_V1.0_genomic.fna.gz), *Drosophila melanogaster* (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/215/GCF_000001215.4_Release_6_plus_ISO1_MT/GCF_000001215.4_Release_6_plus_ISO1_MT_genomic.fna.gz) and *Tribolium castaneum* (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/335/GCF_000002335.3_Tcas5.2/GCF_000002335.3_Tcas5.2_genomic.fna.gz).
A total of 14,722 genes were identified by clustering the homologous gene sequences from 10,918 gene families (Figure S4). One hundred thirty-eight gene families were specific to *S. miscanthi*. Subsequently, we selected 2,605 single-copy orthogroups from the abovementioned species to reconstruct the phylogenetic relationships between *S. miscanthi* and other arthropod species. A phylogenetic tree was constructed with the maximum-likelihood method implemented in the PhyML package [42]. We used the MCMCTree program to estimate divergence times among species based on the approximate likelihood method [43] and with molecular clock data for the divergence time of medaka from the TimeTree database [44]. According to the phylogenetic analysis, *S. miscanthi* clustered with *Ac. pisum*. The divergence time between *S. miscanthi* and its common ancestor shared with *Ac. pisum* was approximately 76.8-88.4 million years (Figure 4).

Conclusions

1. We successfully assembled the chromosome-level genome of *S. miscanthi* based on long reads from the third-generation PacBio Sequel sequencing platform. The size of the final draft genome assembly was approximately 397.91 Mb, which was slightly larger than the estimated genome size (393.12 Mb) based on k-mer analysis. The contigs were scaffolded onto chromosomes using Hi-C data with a contig N50 of 2.05 Mb and a scaffold N50 of 36.26 Mb. We also predicted 16,006 protein-coding genes from the generated assembly, and 99.35 (15,902 genes) of all protein-coding genes were annotated.

2. We found that the divergence time between *S. miscanthi* and its common ancestor shared with *Ac. pisum* was approximately 76.8-88.4 million years. The assembly of this genome will help promote research on the lifestyle and feeding specificity of aphids as well as their interactions with each other and other trophic levels and can serve as a resource for accelerating genome-assisted improvements in insecticide resistant management as well as environmentally safe aphid management.
Data availability

Data supporting the results of this article have been deposited at DDBJ/ENA/GenBank under Bioproject PRJNA532495 and the accession SSSL00000000. The version described in this paper is version SSSL01000000. Other supporting data and materials including annotations and phylogenetic trees are available in the *GigaScience* GigaDB database [45].

Declarations

List of abbreviations

BUSCO: Benchmarking Universal Single-Copy Orthologs; CDS: Coding sequence; CLR: Continuous long reads; GO: Gene Ontology; KOG: EuKaryotic Orthologous Groups; KEGG: Kyoto Encyclopedia of Genes and Genomes; LINE: Long interspersed nuclear element; LTR: Long terminal repeat; NGS: Next-generation sequencing; NR: Nonredundant protein; NT: Nonredundant nucleotide; TrEMBL: Translation of European Molecular Biology Laboratory.

Author contributions

JF and JLC conceived the project; XJ and QZ raised the aphids; XJ and YGQ collected the samples for both genome and transcriptome sequencing; QZ, XJ and JF isolated the genomic DNA for both the 19-mer analysis and genome sequencing; JF, QZ and SYZ isolated the total RNA for transcriptome sequencing; JF and HY performed the genome as well as transcriptome assembly, annotated the genome and conducted other data analysis; QL and YZ took the photographs of *S. miscanthi*; and JF and HY wrote the manuscript.

Acknowledgements

We thank Mr. Song Li and Huaigen Xin from Biomarker Technologies for bioinformatics training.

Competing interests

The authors declare that they have no competing interests.

Funding
This research was sponsored by the National Key R & D Plan of China (nos. 2017YFD0200900, 2016YFD0300700 and 2017YFD0201700), the National Natural Science Foundation of China (nos. 31871966 and 31371946), the State Modern Agricultural Industry Technology System (CARS-22-G-18), and the China Scholarship Council (201703250048).

References

1. Zhang G. Aphids in agriculture and forestry of northwest China. 1st ed. Beijing: China Environmental Science. 1999.
2. The International Aphid Genomics Consortium. Genome sequence of the pea aphid *Acyrthosiphon pisum*. PLoS Biol. 2010;8:e1000313.
3. Mathers TC, Chen Y, Kaithakottil G, Legeai F, Mugford ST, Baa-Puyoulet P, et al. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol. 2017;18:27.
4. Wenger JA, Cassone BJ, Legeai F, Johnston JS, Bansal R, Yates AD, et al. Whole genome sequence of the soybean aphid, *Aphis glycines*. Insect Biochem Mol Biol. 2017. doi: 10.1016/j.ibmb.2017.01.005.
5. Burger NFV, Botha AM. Genome of Russian wheat aphid an economically important cereal aphid. Stand Genomic Sci. 2017;12:90. Published 2017 Dec 28. doi:10.1186/s40793-017-0307-6
6. Thorpe P, Escudero-Martinez CM, Cock PJA, Eves-van den Akker S, Bos JIB. Shared transcriptional control and disparate gain and loss of *Aphid parasitism* genes. Genome Biol Evol. 2018;10:2716-33.
7. Quan Q, Hu X, Pan B, Zeng B, Wu N, Fang G, et al. Draft genome of the cotton *Aphid Aphis gossypii*. Insect Biochem Mol Biol. 2019;105:25-32.
8. Chen W, Shakir S, Bigham M, Fei Z, Jander G. Genome sequence of the corn leaf aphid (*Rhopalosiphum maidis* Fitch). GigaScience. 2019 Apr 1;8(4). doi:
9. Kuznesova VG, Shaposhnikoy GKH. The chromosome numbers of the aphids (Homoptera, Aphidinea) of the world fauna. Entomological Review. 1973;52:78-96.

10. Chen X, Zhang G. The chromosome numbers of the aphids in Beijing region. Acta Zoologica Sinica. 1985;31(1):12-9.

11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990;215:403-10.

12. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24:713-4.

13. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722-36.

14. Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res. 2016;44:e147.

15. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050-4.

16. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210-2.

17. Li H, Richard D. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754-60.

18. Servant, Nicolas, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biology, 2015.16(1):1-11.
19. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013 Dec;31(12):1119-25. doi: 10.1038/nbt.2727.

20. Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265-8.

21. Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 2010;38:e199.

22. Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21:i351-8.

23. Edgar RC, Myers EW. PILER: identification and classification of genomic repeats. Bioinformatics. 2005;21:i152-8.

24. Hoede C, Arnoux S, Moisset M, et al. PASTEC: an automatic transposable element classification tool. PLoS One 2014;9:e91929.

25. Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 2015;6:11.

26. Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009;Chapter 4:Unit 4.10.

27. Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19:ii215-25.

28. Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20:2878-9.

29. Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59.

30. Blanco E, Parra G, Guigo R. Using geneid to identify genes. Curr Protoc Bioinformatics. 2007;Chapter 4:Unit 4.3.

31. Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol
348 32. Keilwagen J, Wenk M, Erickson JL, Schattat MH, Grau J, Hartung F. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 2016;44:e89.
349 33. Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics. 2006;7:327.
350
351 34. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9:R7.
352
353 35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403-10.
354
355 36. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225-9.
356
357 37. Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 2004;5:R7.
358
359 38. Dimmer EC, Huntley RP, Alam-Faruque Y, Sawford T, O'Donovan C, Martin MJ, et al. The UniProt-GO annotation database in 2011. Nucleic Acids Res. 2012;40:D565-70.
360
361 39. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27-30.
362
363 40. Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger E, et al. Phan I: the SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003;31:365-70.
364
365 41. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic
373 genomes. Genome Res. 2003;13:2178-89.
374 42. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms
375 and methods to estimate maximum-likelihood phylogenies: assessing the performance of
376 PhyML 3.0. Syst Biol. 2010;59:307-21.
377 43. Yang Z, Rannala B. Bayesian estimation of species divergence times under a molecular
378 clock using multiple fossil calibrations with soft bounds. Mol Biol Evol. 2006;23:212-26.
379 44. Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. Tree of life reveals clock-like
380 speciation and diversification. Mol Biol Evol. 2015;32:835-45.
381 45. Jiang X; Zhang Q; Qi Y; Yin H; Zhang S; Li Q; Zhang Y; Fan J; Chen J (2019):
382 Supporting data for "A chromosome-level draft genome of the grain aphid Sitobion
383 miscanthi" GigaScience Database. http://dx.doi.org/10.5524/100635.
Figure legends

Figure 1. Winged and wingless *S. miscanthi*. a. Winged adult. b. Wingless adult.

Figure 2. 19-mer distribution for the genome size prediction of *S. miscanthi*.

Figure 3. Hi-C contact heatmap of the *S. miscanthi* genome.

Figure 4. The phylogenetic relationships of *S. miscanthi* with other arthropods.
Tables

Table 1. Assessment results based on two strategies.

Genome feature/assessment strategy	19-mer analysis	PacBio
Genome size (Mb)	393.12	397.90
GC content (%)	31.70	30.25
Repeat sequence content (%)	35.07	24.14
Heterozygosity (%)	0.98	0.57

Table 2. Assembly statistics of the *S. miscanthi* genome and 7 other aphid genomes based mainly on NGS.

Genome assembly/species	*S. miscanthi*	*R. padi*	*D. noxia*	*Ac. pisum*	*Ap. glycines*	*M. persicae*	*M. cerasi*	*Ap. gossypii*
Assembly size (Mb)	397.9	319.4	393.0	541.6	302.9	347.3	405.7	294.0
Contig count	1,148	16,689	49,357	60,623	66,000	8,249	56,508	22,569
Contig N50 (bp)	1,638,329	96,831	12,578	28,192	15,844	71,400	17,908	45,572
Scaffold count	656	15,587	5,641	23,924	8,397	4,018	49,286	4,724
Scaffold N50 (bp)	36,263,045	116,185	397,774	518,546	174,505	435,781	23,273	437,960
Genome annotation								
Gene count	16,006	26,286	19,097	36,195	18,529	28,688	24,920	14,694
Mean gene length (kb)	7.805	1,543	1,316	1,964	1,520	1,839	1,222	1,964
Mean exon count per gene	6.7	5.20	3.0	5.0	6.2	6.1	3.7	10.1
Mean exon length (bp)	288	162	249.0	394.7/429	246	299	178	218

Table 3. Summary of *S. miscanthi* genome assembly.

Statistics	Draft scaffolds	Corrected by HI-C
Contig number	1,039	1,167
Contig length	397,907,165	397,907,165
Contig N50 (bp)	2,049,770	1,565,814
Contig N90 (bp)	256,083	185,510
Contig max (bp)	11,219,273	10,100,000
Table 4. Detailed classification of repeats in the *S. miscanthi* genome assembly.

Type	Number	Length (bp)	Rate (%)	
Class I				
DIRS	1,289	695,762	0.17	
LINE	40,230	10,832,765	2.72	
LTR/Copia	2,438	742,051	0.19	
LTR/Gypsy	18,807	6,949,790	1.75	
LTR/Unknown	7,534	3,195,404	0.8	
PLE	LARD	115,765	28,920,417	7.27
SINE	6,665	1,075,456	0.27	
SINE	TRIM	15	5,478	0
TRIM	1,116	1,281,655	0.32	
Class I Unknown	234	26,384	0.01	
Class II				
Crypton	299	20,282	0.01	
Helitron	5,688	1,871,785	0.47	
MITE	7,972	1,434,924	0.36	
Maverick	7,888	3,289,168	0.83	
TIR	89,268	22,913,523	5.76	
Class II Unknown	77,705	15,793,696	3.97	
Potential Host Gene	926	251,812	0.06	
SSR	2,611	381,142	0.1	
Unknown	74,204	18,832,522	4.73	
Identified	386,450	105,110,753	26.42	
Total	460,654	123,943,275	31.15	
Click here to access/download

Supplementary Material

Supplementary materials0624.docx