Guyatt, A. L., Burrows, K., Guthrie, P. A. I., Ring, S., McArdle, W., Day, I. N. M., Ascione, R., Lawlor, D. A., Gaunt, T. R., & Rodriguez, S. (2018). Cardiometabolic phenotypes and mitochondrial DNA copy number in two cohorts of UK women. Mitochondrion, 39, 9-19. https://doi.org/10.1016/j.mito.2017.08.007

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1016/j.mito.2017.08.007

Link to publication record in Explore Bristol Research

PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at https://www.sciencedirect.com/science/article/pii/S1567724917300685 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Cardiometabolic phenotypes and mitochondrial DNA copy number in two cohorts of UK women

Anna L. Guyatta,b,1, Kimberley Burrowsa,b,1, Philip A.I. Guthrieb, Sue Ringa,b, Wendy McArdlea,b, Ian N.M. Dayb, Raimondo Asionec, Debbie A. Lawlora,b, Tom R. Gaunta,b, Santiago Rodrigueza,b,⁎

a MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
b School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
c Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK

ARTICLE INFO

Keywords:
Mitochondrial DNA
Copy number
ALSPAC
Complex traits
Cardiovascular disease
Diabetes

ABSTRACT

The mitochondrial genome is present at variable copy number between individuals. Mitochondria are vulnerable to oxidative stress, and their dysfunction may be associated with cardiovascular disease.

The association of mitochondrial DNA copy number with cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N = 2278) and the second at 69.4 (5.5) years (N = 2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits.

Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were > 0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: −0.06, [−0.098, −0.022], p = 0.002), but this association did not replicate in the younger cohort.

Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women.

Author summary

Mitochondria are organelles that liberate adenosine triphosphate in order to provide energy for a cell's requirements. Mitochondria contain their own circular genome, which is present at variable copy number between individuals. A number of predominantly small studies have examined the relationship between mitochondrial DNA copy number (mtDNA CN) and cardiometabolic traits. In one of the largest studies of its kind, we have studied mtDNA CN in relation to a variety of cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N = 2278) and the second at 69.4 (5.5) years (N = 2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits.

Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were > 0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: −0.06, [−0.098, −0.022], p = 0.002), but this association did not replicate in the younger cohort.

Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women.

1. Introduction

Mitochondria are organelles responsible for the liberation of energy in the form of adenosine triphosphate (ATP), which is hydrolysed to meet a cell's energy requirements. Mitochondria contain a double-stranded genome of 16.6 kb that encodes 37 genes, including the complexes of the electron transport chain (Dimauro and Davidzon, 2005). The electron transport chain represents the end-point of cellular respiration that facilitates ATP synthesis (Jonckheere et al., 2012).

Each mitochondrion contains a relatively constant (Jonckheere et al., 2012; Ziegler et al., 2015) number of mitochondrial DNA (mtDNA) (Wiesner et al., 1992), yet mitochondria number varies consistently in previous literature. Whilst we cannot rule out associations between mtDNA CN and some cardiometabolic traits, our results do not suggest that variation in mtDNA CN has a major impact on cardio-metabolic risk factors in European origin women.

http://dx.doi.org/10.1016/j.mito.2017.08.007
Received 16 March 2017; Received in revised form 6 June 2017; Accepted 10 August 2017
Available online 15 August 2017
1567-7249/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
enormously according to cell lineage and function (Robin and Wong, 1998). This translates into considerable interindividual differences in mtDNA content, and overall mtDNA copy number (mtDNA CN) has been observed to decline with age (Short et al., 2005).

Hereditary mutations in nuclear DNA (nDNA) in genes controlling mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis or replication (reviewed elsewhere (El-Hattab and Scaglia, 2013)) may lead to the autosomal recessive mitochondrial depletion syndromes (MDS). Diseases resulting from mitochondrial depletion may be multisystem, with organs relying heavily on aerobic metabolism (e.g. skeletal/cardiac muscle, liver, brain, kidney) (El-Hattab and Scaglia, 2013) affected most (Chinnery, 2014). Age of onset varies, although symptoms and signs are often most severe in childhood disease (Mattman et al., n.d.).

Mitochondrial pathologies manifest clinically as the consequences of respiratory chain dysfunction (Chinnery, 2014). Mitochondria are the principal producers of reactive oxygen species (ROS), which may damage lipids, proteins and nucleic acids, and mtDNA is exquisitely vulnerable to ROS-induced damage (St John et al., 2007), which may lead to inefficiency of the electron transport chain, and further ROS production (Ziegler et al., 2015).

MtDNA CN has been associated with cardiovascular disease (Mosleh et al., 2012; Chen et al., 2014; Huang et al., 2016) and its risk factors, chronological age (Mengel-From et al., 2014), as well as markers and diseases associated with age, e.g. telomere length (Kim et al., 2012a; Kim et al., 2013; Qiu et al., 2015; Sahin et al., 2011), and frailty (Ashar et al., 2015). Cognitive phenotypes associated with decreased mtDNA CN include cognitive impairment (Lee et al., 2010), dementia (Coskun et al., 2004; Coskun et al., 2012; Gatt et al., 2013; Podlesny et al., 2013; Rice et al., 2014), and psychiatric morbidities (depression (Kim et al., 2011; Chang et al., 2015) bipolar disorder (Chang et al., 2014; De Sousa et al., 2014), and post-traumatic stress disorder (PTSD)) (Bersani et al., 2016). For detail, see Online Resource 1, Online Resource 2, and Online Resource 3.

Studies have generally found an inverse correlation between mtDNA CN and cardio-metabolic risk factors and outcomes (Kim et al., 2012b; Huang et al., 2011; Antonetti et al., 1995; Chien et al., 2012; Kaaman et al., 2007; Lindinger et al., 2010; Ding et al., 2015), although a number of studies have also found null (Ding et al., 2015; Asmann et al., 2006; Mozhei et al., 2014), tissue-dependent (Hsieh et al., 2011), or results in the opposite direction (Lee et al., 2014; Malik et al., 2009; Weng et al., 2009). Elevated low-density lipoprotein cholesterol (LDLc) has also been associated with decreased mtDNA CN, with the inverse association reported for high-density lipoprotein cholesterol (HDLc) (Lee et al., 2014; Liu et al., 2005), and a recent case-control study found that mtDNA CN was generally lower in coronary heart disease (Chen et al., 2014). However, whilst mtDNA is heritable (Ding et al., 2015), and the majority of studies have conceptualised mtDNA CN as an exposure, reverse causation is possible: recently, an axis proposed between mitochondria, telomeres and p53 has been discussed (Sahin and DePinho, 2012), suggested that telomere dysfunction and attrition may be associated with impaired mitochondrial function (Kim et al., 2013).

The majority of studies relating mtDNA CN to cardiometabolic traits have been of small sample size (in the order of tens to hundreds of patients, with one recent larger study analysing 2077 patients) (Ding et al., 2015). We studied observational associations between mtDNA CN and cardiometabolic risk factors in two large, independent cohorts of European origin: mothers of the Avon Longitudinal Study of Parents and Children (ALSPAC) study, and participants of the British Women’s Heart and Health Study (BWHHS) cohort, a population-based cohort of post-menopausal women. Longitudinal associations were studied in ALSPAC, and cross-sectional associations were studied in BWHHS. We used these rich data sources to control for potential confounding variables. Since the relationship between mtDNA CN and leucocyte sub-types is well-documented, and may bias mtDNA CN analyses (Urata et al., 2008; Knez et al., 2016), we also examined the association between mtDNA CN and white cell traits (Pyle et al., 2010).

2. Methods

2.1. Cohort details

2.1.1. ALSPAC

The Avon Longitudinal Study of Parents and Children is a prospective cohort of mothers and children. Between 1991 and 1992, 14,541 women living in the former county of Avon, UK were recruited during pregnancy, of whom 13,761 were enrolled into the study. Antenatal blood samples were assayed for mtDNA CN in this study. Participants have been followed up longitudinally since recruitment. Outcome data are those measured at the Focus on Mothers Research Clinic, which took place between 2008 and 2011. Further details are available in the cohort profile paper (Fraser et al., 2013), and the study website contains details of available data through a fully searchable data dictionary: http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/.

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local National Health Service (NHS) Research Ethics Committees.

2.1.2. BWHHS

The British Women’s Heart and Health Study (BWHHS) recruited 4286 women between the ages of 60–79 from UK general practices [https://www.lshtm.ac.uk/eph/ncde/research/bwhhs/]. Blood was collected at baseline interview (1999–2001) after an overnight or minimum 6-h fast. Details of the sampling strategy and available data, including details of follow-up and data linkage, are described elsewhere (Lawlor et al., 2003). Data for the current analysis are those taken or derived at baseline, unless otherwise stated. Ethical approval for the BWHHS was obtained from NHS Research Ethics Committees of individual centres, in addition to the London Medical Research Ethics Committee.

2.2. Assay of mitochondrial DNA copy number

ALSPAC mothers’ DNA was extracted from whole blood or white cell pellet samples (anticoagulated with EDTA and heparin, respectively) using a phenol-chloroform method. For BWHHS a salting-out procedure was used to extract DNA from K-EDTA whole blood samples (Zabaneh et al., 2011).

MtDNA CN was measured using a quantitative PCR (qPCR) assay that relates the relative copy number of a mitochondrial DNA amplicon [bases 317–381 in the D-loop region] to a nuclear reference gene [B2M] (Malik et al., 2011). For details of the assay, see Online Resource 4.

MtDNA CN was calculated as the relative magnitude of the signal from the mitochondrial amplicon to the nuclear amplicon. PCR efficiency values were calculated from standard curves to adjust raw values, and ‘calibrator’ DNAs were amplified on each microplate, in order to generate a ‘calibration factor’ for each batch. This factor was applied to the previously calculated copy numbers, resulting in efficiency- and calibrator-adjusted value for mtDNA CNs.

2.3. Outcome variables

Unless otherwise stated, outcomes were measured at baseline in BWHHS, and at the Focus on Mothers Research Clinic (2008–2011) in ALSPAC.

2.3.1. Anthropometric variables

After measuring height and weight, BMI was calculated as weight (kg)/height (m²). Averages of two measures of waist and hip circumference were calculated, and waist-to-hip ratio was derived.
Table 1
Characteristics of BWHHS and ALSPAC cohorts.

Variable	Units	Mean/Median	SD/IQR	N	P*			
mtDNA ratio		45.5±5	37.9–56.4	2278				
DNA conc. b	ng/μl	158±18	76–304	2278				
DNA source		39.6±5		2278				
Age (baseline) years		30±5	4.3	2278				
Education % ≥ GCSE		51.4±5		2278				
Occupation % manual		14±5		2278				
Smoking % current		20.5±5		2278				
Total cholesterol c mmol/L		4.83±0.83	4.32–5.4	2050	6.6	5.9–7.4	2854	< 1e-06
HDL cholesterol c mmol/L		1.44±0.24	1.2–1.7	2050	1.6	1.4–2	2850	< 1e-06
LDL cholesterol c mmol/L		2.9±0.43	2.41–3.43	2050	4.1	3.4–4.8	2793	< 1e-06
Triglycerides c mmol/L		0.88±0.18	0.68–1.17	2050	1.6	1.2–2.22	2854	< 1e-06
Fasting glucose c mmol/L		5.15±0.83	4.91–5.44	2050	5.8	5.4–6.2	2847	< 1e-06
Insulinc u/μl		4.57±0.83	3.23–6.75	2044	6.4	4.4–9.9	2859	< 1e-06
Interleukin-6c pg/mL		0.98±0.48	0.48–2.1	2050	1.92	0.94–4.13	2680	< 1e-06
C-reactive protein c mg/L		25.4±22.29	22.66		267.7	24.3–30.1	2841	< 1e-06
Body Mass index kg/m²		164±6.1	2269		159	6.1	2842	< 1e-06
Waist-Hip ratio cm		118±12	2214		147	25	2860	< 1e-06
Systolic BP mmHg		71.4±7.9	2214		79.4	12	2860	< 1e-06
Diastolic BP mmHg		118±12	2214		147	25	2860	< 1e-06
Lymphocytes c All proportion	0.261±0.091	491	2872	1.97	1.57–2.43	2872		
Granulocytes c All proportion	0.683±0.083	491	2872	4.14	3.36–5.14	2872		
Monocytes c All proportion	0.0782±0.022	491	2872	0.3	0.2–0.4	2872		
Platelets c ×10³/μl		4.83±0.83	3.23–6.75	2044	6.4	4.4–9.9	2859	< 1e-06

Other abbreviations: mtDNA = Z-scored, log-transformed mtDNA copy number; conc. = concentration; HDL, LDL = High-, low-density lipoprotein; BP = blood pressure; GCSE = General Certificate of Secondary Education (or ‘O’-level); Neut. = Neutrophils; Baso. = Basophils; Eos. = Eosinophils.

Variable skewed.

Only calculated using efficiency-adjusted crossing points (Cps) for the nuclear and mitochondrial amplicons, using the equation: mtDNA CN = (2^(nuclear DNA Cp - mtDNA conc. log-transformed mtDNA copy number); conc. = concentration; HDL, LDL = High-, low-density lipoprotein; BP = blood pressure; GCSE = General Certificate of Secondary Education (or ‘O’-level); Neut. = Neutrophils; Baso. = Basophils; Eos. = Eosinophils.

P values are for either Mann-Whitney U (Skewed continuous variables), independent t-tests (for continuous normal variables, assuming unequal variance for age), or chi-square test (categorical variables).

2.3.2. Blood pressure

Systolic and diastolic blood pressure (BP) was measured in both ALSPAC and BWHHS.

2.3.3. Biomarkers

Fasting lipids (total cholesterol, HDLc, LDLc, triglycerides, fasting glucose (all mmol/L), insulin (u/μl) and C-reactive protein (CRP) (mg/μl)) were measured in ALSPAC and BWHHS. Data on interleukin-6 (IL6) (pg/μl) were also available for BWHHS. Descriptive summaries are given in Table 1.

2.4. Confounding variables

2.4.1. Sociodemographic variables

Age, as well as smoking and socioeconomic factors are associated with cardiovascular disease (Lawlor et al., 2005), mtDNA has been observed to decline with age (Mengel-From et al., 2014), and may also be associated with smoking and socioeconomic position (Hosnijeh et al., 2014), and for these reasons, these variables were chosen as possible confounders.

For ALSPAC, age was recorded as age at delivery, which approximated age at DNA sampling. Age at baseline was available for BWHHS. Analyses were restricted to women of self-reported ‘white’ ethnicity.

In ALSPAC, smoking was quantified as the number of cigarettes smoked per day shortly pre-pregnancy, (0, 1–4, 5–9, 10–14, 15–19, 20–24, 25–29, > 30). Smoking was quantified at baseline in BWHHS (0 [never smoker], 0 [ex-smoker], 1–9, 10–19, 20–29, > 30). For descriptive analyses, smoking is recoded into smokers/non-smokers.

In ALSPAC, highest education level was divided into: Vocational, CSE (Certificate of Secondary Education, ‘O’ (Ordinary) Level, ‘A’ (Advanced) level, or degree. Four categories of the Standard Occupational Classification classified occupational class: I, II, III (non-manual), plus a collapsed category (III [manual]), IV, V, and Armed Forces (Office for National Statistics, E. L., et al., 2000). For BWHHS, continuous measures of employment and education score by neighbourhood were used (according to the Indices of Deprivation [2000]), where a higher score indicates greater deprivation, except in descriptive tables, wherein occupation was classified as for ALSPAC (with those missing occupational status data coded to ‘manual’) (Indices of Deprivation 2000, 2000).

2.4.2. DNA concentration and source

DNA sample concentration (ng/μl) was measured by a PicoGreen® fluorescence-based method. We have observed a negative correlation between the obtained mtDNA CN and initial stock DNA concentration, from which working concentrations were prepared (Malik et al., 2011), and so controlled for this in our analyses. Since we observed a lower mtDNA CN in whole blood samples, which may be due to differing cell proportions, we also adjusted for this covariate, as DNA was from either whole blood or white cell pellets in ALSPAC.

2.4.3. Cell counts

Different white cell lineages may contain different numbers of mitochondria, and hence mtDNA: (Pyle et al., 2010) e.g., neutrophils contain a relative paucity of mitochondria compared to lymphocytes. Platelets, which are anucleate, and yet mitochondria-rich, may also contain a relative paucity of mitochondria compared to lymphocytes.
cardiometabolic risk factors independent of cellular heterogeneity, latter models adjusted for cell populations. Cell counts were not directly assayed in ALSPAC. However, the ‘ARIES’ subset (Belton et al., 2015) of the cohort have been assayed using the Illumina Infinium HumanMethylation450 BeadChip (Illumina 450 K) array. DNA methylation profiles may be used in order to infer proportions of various cellular populations in samples assayed on high dimension methylation arrays, such as the Illumina 450 K array. The most popular algorithm to achieve this goal is the ‘Housman’ method (Housman et al., 2012), which uses individual ‘methylation signatures’ of samples as a proxy for the distribution of white cells in combination with a training set of samples of purified white cells. This method has been applied previously to individuals belonging to the ARIES subset of ALSPAC (Richmond et al., 2015), implemented using the ‘estimateCellCounts’ function of the R package ‘minfi’ (Jaffe and Irizarry, 2014). Proportions of CD4+ and CD8 + T lymphocytes (CD4T, CD8T), B lymphocytes, Natural Killer (NK) cells, Monocytes, and Granulocytes were estimated. One variable for lymphocyte proportion was derived by adding CD8T, CD4T, and B-lymphocyte proportions (NK cells were not included so as to avoid perfect prediction) and we used this to adjust for cell type.

In BWHHS, absolute count of platelets, basophils, eosinophils, neutrophils, lymphocytes and monocytes were assayed at baseline.

2.5. Missing data

MtDNA CN data from 8158 ALSPAC and 3673 BWHHS women were available. 2278 ALSPAC and 2872 BWHHS participants also had data on age at DNA sampling, DNA concentration, occupational class, education level, smoking, plus ≥ 1 outcome variable. In addition, all 2872 BWHHS women had cell count data. Cell proportion data were only available for a subset of the 2278 ALSPAC women [max N = 491].

Four ALSPAC and four BWHHS participants were removed from the analysis as they had severely outlying values, either considered implausible and/or as biasing regression estimates by excessive leverage.

2.6. Statistical analysis

Table 1 shows descriptive data. Means (standard deviations, SD) are presented for normally distributed data. In the case of non-normality, medians (interquartile ranges, IQR) are shown. Means are compared with independent sample t-tests (assuming unequal variance for ‘age’, given the uniform sampling in BWHHS); medians are compared with the Mann-Whitney U test. Categorical variables were compared using a chi-squared test (1 degree of freedom). Haematological variables were not comparable, as ALSPAC data were estimated cell proportions, whereas BWHHS data were cell counts.

To assess relationships between mtDNA CN and covariates in each cohort, independent sample t-tests were performed for binary covariates, and Pearson's correlation coefficients were computed for continuous (log-transformed variables were used in cases of positive skew) outcomes. With the exception of mtDNA CN (which was logged to facilitate Z-scoring, with z-scores for mtDNA CN being calculated before merging

Table 2	Comparison of mean log-transformed, z-scored mtDNA (SD) between possible confounding variables in ALSPAC and BWHHS.						
Statistic	ALSPAC	BWHHS	Effect size	95%CI	95%CI	P	N
DNA concn.a	Pearson correlation	0.033	0.018	0.004	0.074	0.121	2872
DNA source Mean difference	GCSE vs. > GCSE	0.016	−0.064	0.095	0.701	2278	
Age at sampling Pearson correlation	0.033	0.004	0.067	0.701	2278		
Education Mean difference	Manual vs. non-manual	0.123	0.106	0.886	2278		
Smoking Mean difference	Smoker vs. non-smoker	0.287	0.133	0.194	< 2e-16	2872	

Abbreviations: concn.= Concentration; WC = white cell; GCSE = General Certificate of Secondary Education; 95% LCI/UCI = Lower and upper 95% confidence interval bounds.

The main analyses, positively skewed outcomes were log-transformed where this led to a better approximation of normality. Outcomes were then z-scored to yield standardised regression coefficients. Waist-hip ratio, height, and BP were not transformed as their distributions were approximately normal.

Regression analyses of Z-scored outcomes on Z log mtDNA are presented for ALSPAC and BWHHS. M1 was unadjusted, and M2 was adjusted for age at DNA sampling (continuous), education (categorical for ALSPAC, continuous for BWHHS), smoking status (assuming linearity over categories), occupational class (categorical), DNA concentration (continuous) and DNA source (categorical, ALSPAC only). M3 additionally adjusted for cell counts (as estimated proportions [ALSPAC], and counts [BWHHS] — see Table 3).
with phenotype data), none of the other independent variables in Tables 2–3 were log-transformed for the purpose of regression models. Residual-versus-fitted values plots and quantile-quantile plots were examined, in order to check assumptions of normally distributed residuals, homoscedasticity, and linearity.

Sensitivity analyses were carried out for ALSPAC, which fitted models M1–M3 separately for those ALSPAC Mothers with DNA extracted from white cells and whole blood.

Both fixed- and random-effects meta-analyses of the ALSPAC and BWHHS results were performed using the R package ‘meta’.

Analyses were undertaken using R 3.2.4.

2.7. Multiple testing

Nyholt’s method of spectral decomposition was used to calculate the effective number of independent tests from correlation matrices of outcomes (calculated separately for ALSPAC and BWHHS) (Nyholt, 2004). The p values presented are not corrected for multiple testing, but the number of independent tests are reported for reference.

3. Results

3.1. Descriptives

Descriptive statistics for ALSPAC and BWHHS are shown in Table 1. The mean (SD) age of participants was 69.4 (5.5) years in BWHHS, and 30.0 (4.3) years in ALSPAC. ALSPAC women were more likely to smoke (yet 32.7% of BWHHS women were ex-smokers). Fewer in ALSPAC had a manual occupation, and ALSPAC mothers were educated to a higher level. ALSPAC participants had healthier levels of cardiovascular risk factors (including lower total cholesterol, LDLc, fasting glucose and insulin); they were also taller and leaner, with lower blood pressure.

Median (IQR) mtDNA CN was higher in ALSPAC women: 45.5 (37.9–56.4) compared to 25.8 (20.4–31.7) in BWHHS (Mann Whitney U p = 0.007). However, DNA extraction method differed between the two cohorts (phenol for ALSPAC, salting-out for BWHHS) and so these differences may partially be attributable to laboratory factors.

3.2. Confounding variables and laboratory covariates

Relationships between potential confounding variables, laboratory covariates and mtDNA CN (all subsequent analyses use Z-scores of logged mtDNA) are shown in Table 2. DNA concentration was inversely associated with mtDNA in both cohorts (mean difference: −0.170 [−0.209, −0.130], p = 3.28e-16 [ALSPAC]; −0.229 [−0.263, −0.194], p ≤ 2e-16 [BWHHS]). In ALSPAC, mtDNA CN was lower in those women from whom DNA was extracted from whole blood (mean difference: −0.367 [−0.447, −0.287], p < 2e-16).

Whilst mtDNA CN was lower in BWHHS (see Table 1, p < 1e-06 for independent t-test assuming unequal variance), there was no evidence of an association between mtDNA count and age within ALSPAC or BWHHS, nor with and smoking. There was a negative association between socioeconomic status and mtDNA CN in BWHHS (Pearson’s R: −0.097 [95%CI: −0.133, −0.061], p = 1.77e-07 for education score, where a higher score indicates lower level of education; mean difference: −0.102 [95%CI: −0.175, −0.029], p = 0.006 for manual occupation), but not in ALSPAC.

The correlations of mtDNA CN with haematological parameters varied by cell type (see Table 3); positive associations were observed for proportions (in ALSPAC) and counts (in BWHHS) of lymphocytes and monocytes (although monocytes had considerably stronger evidence of association in BWHHS), and for additional counts assayed only in BWHHS (platelet, basophil and eosinophil count). Negative associations were observed between mtDNA and granulocyte proportion in ALSPAC, and neutrophil count in BWHHS (notably, neutrophils make up the majority of circulating granulocytes). Although cell data were proportions for ALSPAC and counts for BWHHS, effect sizes were similar in both cohorts (see Table 3).

3.3. Regression models

The spectral decomposition method of Nyholt (2004) estimated that 10 and 11 independent tests were carried out in ALSPAC and BWHHS, respectively.

Out of a total of 12 outcomes assessed in both cohorts, mtDNA showed little or no association with the majority (point estimates were close to zero, or attenuated after adjustment).

3.3.1. ALSPAC

Before adjustment for cell counts, there was weak evidence of a positive association with waist-hip ratio and mtDNA CN (standardised beta: [95% CI]: 0.060 [0.017, 0.104], p = 0.007). After adjusting for cell counts (M3) there was very weak evidence of a positive association between mtDNA CN and total cholesterol (standardised beta: [95% CI]: 0.098 [−0.008, 0.204], p = 0.070) (see Table 4). However, this association was also consistent with the null effect, and it did not replicate in BWHHS.

Sensitivity analyses for ALSPAC repeated models M1–M3, but were stratified by whether women had DNA extracted from white cells, or whole blood (see Online Resource 5 for results). After stratification, the results were broadly consistent with the combined analyses in Table 4. After restricting the analysis to whole blood samples, mtDNA CN was weakly associated with total cholesterol, LDLc and triglycerides. Although this association did not survive cell-proportion adjustment, this is likely to be a function of power. Whilst these effect sizes were directionally concordant in the (larger) white cell analysis, they were also consistent with the null.

Table 3

Cell type	ALSPAC	BWHHS												
Subtype	Units	r	95% LCI	95% UCI	P	N	Units	r	95% LCI	95% UCI	P	N		
Lymphocytes	All	Proportion	0.279	0.195	0.359	3.18e-10	491	All	×10^3/ml	0.159	0.123	0.195	9.90e-18	2872
Granulocytes	All	Proportion	−0.362	−0.436	−0.282	1.22e-16	491	Neutrophils**	×10^3/ml	−0.072	−0.108	−0.035	1.14e-04	2872
								Basophil**	×10^3/ml	0.055	0.018	0.091	3.24e-03	2872
								Eosinophils**	×10^3/ml	0.047	0.010	0.083	1.25e-02	2872
Monocytes	All	Proportion	0.125	0.037	0.212	5.39e-03	491	×10^3/ml	0.087	0.051	0.123	2.98e-06	2872	
Platelets								×10^3/ml	0.062	0.026	0.098	8.77e-04	2872	

Abbreviations: r = Correlation coefficient, 95% LCI/UCI = Lower and upper 95% confidence interval bounds.

* Cell count data are estimated from Illumina 450 k Methylation data for ALSPAC, and for BWHHS, data are from actual full blood count assays. In ALSPAC, DNA is extracted from white cells or whole blood, whereas all BWHHS DNA is extracted from whole blood.

+ log-transformed.

* log-transformed in BWHHS only.

Table 3

Pearson’s correlation coefficients between haematological parameters and log z-scored mtDNA CN in ALSPAC and BWHHS.
3.3.3. Meta-analysis

In BWHHS, the most consistent relationship that survived adjustment in the final model, M3, was a negative association between mtDNA and insulin (standardised beta [95% CI]: −0.060 (−0.098, −0.022), p = 0.002) (see Table 5), but again, there was no evidence of this association in ALSPAC.

3.3.3. Meta-analysis

Results of random-effects analyses for ALSPAC Mothers and BWHHS are shown in Figs. 1 and 2 (and additionally tabulated in Online Resource 6). Fig. 2 only combines those with mtDNA CN assayed from whole blood (all of BWHHS and a subset of ALSPAC Mothers). After meta-analysing all participants in model 3, there was weak evidence of a negative association between systolic and diastolic blood pressure and mtDNA CN in fixed-effects analyses (I² = 0%) (see Fig. 1). On restricting the analysis to just those ALSPAC Mothers with mtDNA CN assayed from whole blood, heterogeneity was generally reduced, but associations were broadly similar. In this analysis (see Fig. 2), there was still some evidence for an association of mtDNA CN with diastolic blood pressure, and additionally, more evidence for a negative association with insulin (beta: [95% CI]: −0.057 (−0.094, 0.020), p = 0.003, I² = 0%). However, it should be noted that an even smaller number of ALSPAC women contributed to this analysis, so the associations were primarily driven by BWHHS.

4. Discussion

This is one of the largest studies to examine the association of mitochondrial copy number (as measured by a quantitative qPCR assay) with a range of cardiometabolic traits in general population samples. In addition, it was amongst a relatively small number of studies to have controlled for haematological parameters (Knez et al., 2016; Tin et al., 2016).

We observed little evidence for associations of cardiometabolic traits with mtDNA CN. A negative association between mtDNA CN and insulin was unique to BWHHS. The trend observed for the association with lipids in ALSPAC (a positive relationship between mtDNA and total cholesterol) is at odds with the direction of association reported in the literature (Huang et al., 2011). There was also a trend towards an inverse association between mtDNA CN and BMI (observed in ALSPAC only). The association between high insulin and low mtDNA is concordant with previous observations that diabetes and insulin resistance are generally associated with lower mtDNA CN (Chien et al., 2012; Hsieh et al., 2011; Rolo and Palmeira, 2006). Although we did not observe this same association in the ALSPAC mothers, the cohorts are of different ages; it is therefore possible that a lower prevalence of insulin

Outcome	M1	M2	M3												
B	LCI	UCI	P	B	LCI	UCI	P	B	LCI	UCI	P	N			
Cholesterol	0.031	−0.006	0.067	0.102	2854	0.031	−0.006	0.069	0.102	2854	0.013	−0.025	0.051	0.510	2854
HDLc	−0.055	−0.092	−0.018	0.003	2850	−0.058	−0.095	−0.021	0.002	2850	−0.020	−0.058	0.017	0.284	2850
LDLc	0.055	0.018	0.092	0.004	2793	0.041	0.003	0.079	0.033	2793	0.024	−0.014	0.063	0.214	2793
Triglycerides	−0.005	−0.042	0.031	0.774	2854	0.028	−0.009	0.065	0.136	2854	−0.019	−0.056	0.018	0.316	2854
Glucose	−0.028	−0.065	0.009	0.132	2847	−0.019	−0.056	0.019	0.330	2847	−0.023	−0.062	0.015	0.234	2847
Insulin	−0.058	−0.095	−0.021	0.002	2859	−0.034	−0.072	0.003	0.073	2859	−0.060	−0.098	−0.022	0.002	2859
Interleukin-6	−0.022	−0.059	0.015	0.240	2796	0.013	−0.024	0.050	0.484	2796	−0.001	−0.037	0.034	0.938	2796
C-reactive protein	−0.024	−0.062	0.014	0.212	2680	0.003	−0.036	0.042	0.876	2680	−0.006	−0.043	0.032	0.771	2680
Body Mass Index	0.027	−0.010	0.064	0.147	2841	0.046	0.008	0.083	0.017	2841	0.016	−0.022	0.054	0.421	2841
Waist-Hip Ratio	−0.016	−0.053	0.021	0.386	2827	0.004	−0.034	0.041	0.854	2827	−0.021	−0.060	0.017	0.271	2827
Height	−0.011	−0.048	0.025	0.546	2842	−0.032	−0.069	0.004	0.085	2842	−0.028	−0.065	0.009	0.144	2842
Systolic BP	−0.036	−0.073	0.000	0.051	2860	−0.019	−0.055	0.017	0.297	2860	−0.033	−0.070	0.004	0.079	2860
Diastolic BP	−0.042	−0.078	0.005	0.026	2860	−0.033	−0.070	0.004	0.082	2860	−0.041	−0.079	−0.003	0.036	2860

Abbreviations: M1 = Model 1 (unadjusted); M2 = Model 2 (adjusted for age at DNA sampling, education level, smoking status, occupational class, DNA concentration); M3 = Model 3 (as M2, plus adjustment for cell counts as described in Table 3); B = Standardised beta coefficient; LCI = 95% confidence interval (lower bound); UCI = 95% confidence interval (upper bound); HDL, LDL = High-, Low-density lipoprotein cholesterol; BP = blood pressure. * log-transformed.
resistance amongst the younger population is the reason that we did not observe the association in these individuals. We additionally saw weak evidence of an association between higher mtDNA CN and lower blood pressure after meta-analysis, but this did not survive multiple testing correction. Overall, the small number of associations that we see do not replicate within our cohorts or with published literature and suggest that beyond chance there is little evidence that mtDNA CN is an important determinant or predictor of cardio-metabolic risk in European origin women. Despite this, some studies have observed that mtDNA is related to sex (Ashar et al., 2015; Purdue et al., 2012), and ethnicity (Purdue et al., 2012). Whilst our cohorts are comparable to one another in terms of these characteristics, it is possible that our results may not necessarily be generalisable to other populations, for example, if there are interactions between mtDNA CN and cardiometabolic risk factors according to these characteristics.

The literature studying mtDNA and components of the metabolic syndrome has been reported in such a way that suggests inconsistency: in those papers studying metabolic syndrome, hyperlipidaemia (of LDLc) or adiposity, most reported an inverse association (Kim et al., 2012b; Huang et al., 2011; Kaaman et al., 2007; Lindinger et al., 2010; 2012).
Mozhei et al., 2014; Lee et al., 2014), with some reporting the opposing
direction (Lindinger et al., 2010; Lee et al., 2014). Results are more
equivocal in the diabetes literature, with positive (Malik et al., 2009;
Weng et al., 2009), inverse (Antonetti et al., 1995; Chien et al., 2012;
Hsieh et al., 2011) and no associations (Lindinger et al., 2010) reported.
Notably, the literature contains cross-sectional, longitudinal, and tissue-
specific studies, and both clinical (such as patients with diabetes) and
general population samples (e.g. studying hyperglycaemia in a popu-
lation sample); it is plausible that the results from clinical samples are
not generalisable to the associations observed at the population level.

Finally, the sample sizes of the majority of papers are small, it is dif-
ficult to discern whether the variation reported in the literature re-
presents true heterogeneity of effect, or chance variation around a null
effect.

Since mitochondrial load varies by leucocyte subtype, we assessed
the relationship between mtDNA count and blood cell data. Platelets
contain no nDNA, yet an abundance of mitochondria, and thus may
artificially inflate mtDNA CN, as reported previously (Urata et al.,
2008). Neutrophils reportedly contain up to 10–15 times fewer mito-
chondria than peripheral blood mononuclear cells (PBMCs) (Maianski

Fig. 2. Random-effects meta-analysis of model M3 (sensitivity). Forest plot showing random-effects meta-analyses of fully-adjusted model (M3) of associations observed in ALSPAC (whole blood samples only) and BWHHS. For reference, the effect sizes of the individual associations between mtDNA and outcome variables in ALSPAC and BWHHS are also shown on the forest plots, with meta-analysis summary estimates shown as diamonds. Abbreviations: Chol = total cholesterol; HDL = High-density LDL cholesterol; LDL = Low-density lipoprotein cholesterol; TG = triglycerides; Gluc = Fasting glucose; Ins = Insulin; CRP = C-reactive protein; BMI = Body Mass Index; WHR = Waist-Hip Ratio; Ht = height; SBP = systolic blood pressure; DBP = Diastolic blood pressure. 95%LCI/UCI = lower and upper bounds of 95% confidence interval. N = Sample size, I^2 = I^2 statistic for heterogeneity.
et al., 2004), and accordingly, they exhibited a negative relationship with mtDNA count. PBMCs are mitochondria rich, with ‘granulocyte mtDNA CN observed as lower than lymphocyte and monocyte copy number’ (Pyle et al., 2010). Importantly, despite having absolute counts in BWHHS but only estimated proportions in ALSPAC, the direction and magnitude of the associations between cell types and mtDNA CN were comparable.

Whilst these results demonstrate how important it may be to control for cell populations when performing mtDNA association analyses, cell counts could also mediate an association between mtDNA and cardiovascular disease, via inflammation (white cells, in particular macrophages, have a causal role in atherosclerosis) (Yu et al., 2013). In this case, controlling for these variables may be overly conservative.

There are several limitations to this work. Whilst the mtDNA assay was undertaken by one individual using identical protocols in both studies, DNA extraction was undertaken with different methods; by a phenol-chloroform method in ALSPAC and by ‘salting out’ in BWHHS. We computed Z-scores so that the magnitude of effect sizes between the two cohorts were comparable, yet nonetheless, if extraction method has an effect on the precision or linearity of the mtDNA assay, this could introduce bias, though the consistent null associations for the vast majority of results between the two studies suggests major bias from this source is unlikely. Furthermore, mtDNA CN was assayed from either whole blood or white cell DNA samples in ALSPAC. Whilst we controlled for sample type as a covariate in models M2 and M3, it is possible that this could bias our results, since we were not able to control for other cell populations in the ALSPAC whole blood sample, such as platelets. Nevertheless, we did not observe major differences between the directions of associations observed in a sensitivity analysis that stratified the ALSPAC sample by whether mtDNA CN was assayed from whole blood or white cells, although the heterogeneity (quantified by the I²-statistic) (Higgins et al., 2003) in our meta-analytic estimates did decrease for some variables in this analysis, and the weak lipid association in ALSPAC was primarily driven by the whole blood samples. In addition, the sample size for ALSPAC was comparatively small, and the cell proportion measures only estimated, albeit by a previously validated method with an accuracy ‘within 10%, and often less than 5%’ (Houseman et al., 2012) To minimise measurement error in the mtDNA CN, a calibrator was used to control for between-plate effects. Moreover, we controlled for a wide array of variables (laboratory covariates, sociodemographic confounders, and haematological parameters) which may have explained the observed associations. Nonetheless, it is possible that the association with total cholesterol in ALSPAC may be due to residual confounding, for example, due to measurement error in the estimated cell proportions.

It is important to note that we studied peripheral blood mtDNA CN, and cannot necessarily extrapolate our findings to those which we might have observed, had we studied target tissues of interest (e.g. cardiomyocytes, endothelial cells). In animal studies, some correlation has been found between mtDNA CN assayed in the blood, adipose tissue, liver and mammary gland of dairy cows, suggesting that in this case, blood mtDNA CN is an appropriate proxy for other tissues (Laubenthal et al., 2016). However, clearly these results may not necessarily apply to human subjects. Nevertheless, human studies have successfully used peripheral assayed mtDNA CN to proxy for a tissue of interest; Pyle et al. found concordant depletion of mtDNA CN in peripheral white blood cells, as well as substantia nigra tissue from patients with Parkinson’s disease (Pyle et al., 2016). Moreover, Huang et al. observed depletion of mtDNA CN in a case-control study of cardiac failure, and noted a strong (Pearson’s r = 0.718) correlation between mtDNA CN assayed in blood and in cardiomyocytes, although their sample was small (Huang et al., 2016). From these studies, we might therefore speculate that our results should be applicable to tissues of relevance to cardiovascular disease, although we cannot state this with certainty.

Whilst this paper only studied mtDNA CN, an extension of our work could be to examine associations between mtDNA sequence variation (e.g. single-nucleotide polymorphisms, [SNPs], and structural variants) in relation to cardiometabolic risk factors. MtDNA haplogroups have also been analysed in relation to coronary artery disease (Kofer et al., 2009; Chinnery et al., 2010), diabetes (Chinnery et al., 2007), lipid profiles (Hulgan et al., 2011), blood pressure (Rea et al., 2013), obesity (Nardelli et al., 2013), CRP (Kofer et al., 2009), and many others (Samuels et al., 2006), but consensus amongst findings is limited, and well-powered studies are needed to detect these effects (Samuels et al., 2006). Accordingly, very large studies have had success in replicating certain associations between mtDNA SNPs (and haplogroups) and age-related disease (Hudson et al., 2014). The 4977 bp deletion (Cortopassi and Arnheim, 1990) has been related to cardiac endpoints (Corral-Debrinski et al., 1992) (although conclusions vary (Arai et al., 2003)), but whilst this variant is common in post-mitotic tissue, its prevalence may be lower in peripheral blood (Zabihi Diba et al., 2016), and so age-related associations may be harder to detect (Mohamed et al., 2006). Despite this, studies examining this deletion (assayed in blood) and cardiometabolic risk factors exist (Bott et al., 2005), but larger, well-powered studies are warranted.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.mito.2017.08.007.

Acknowledgements

We are extremely grateful to all the families who took part in ALSPAC, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. The UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC.

We are equally grateful to BWHHS participants and for the support and advice of the staff who manage the study, and for the hard work of those responsible for recruitment, data collection and curation. The British Women’s Heart and Health Study is supported by the British Heart Foundation (PG/13/66/30442).

This publication is the work of the authors, who will serve as guarantors for the contents of this paper.

This research was specifically funded by a Medical Research Council (MRC) grant awarded to SR (MR/K002767/1). AG is funded by a Wellcome Trust PhD studentship (102433/Z/13/Z). Work was carried out in the MRC Integrative Epidemiology Unit at the University of Bristol (MC_UU_12013/8).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/ or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Data availability statement

ALSPAC data are accessible to bona fide researchers, and the study website details conditions of use and access procedures: http://www.bristol.ac.uk/alspac/researchers/data-access/policy/.

Conflict of interest statement

The authors declare that they have no conflicts of interest.
Rice, A.C., et al., 2014. Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer’s disease hippocampi. J. Alzheimers Dis. 40, 319–330.

Richmond, R.C., et al., 2015. Prenatal exposure to maternal smoking and offspring DNA methylation across the life course: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum. Mol. Genet. 24, 2201–2217.

Robin, E.D., Wong, R., 1988. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol. 136, 507–513.

Rolo, A.P., Palmeira, C.M., 2006. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 212, 167–178.

Sahin, E., De Pinho, R., 2012. A. axis of ageing: telomeres, p53 and mitochondria. Nat. Rev. Mol. Cell Biol. 13, 397–404.

Sahin, E., et al., 2011. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365.

Samuels, D.C., Carothers, A.D., Horton, R., Chinnery, P.F., 2006. The power to detect disease associations with mitochondrial DNA haplogroups. Am. J. Hum. Genet. 78, 713–720.

Short, K.R., et al., 2005. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci. U. S. A. 102, 5618–5623.

St John, J.C., Ott, M., Gogvadze, V., Orenizus, S., Zhivotovsky, B., 2007. Mitochondria, oxidative stress and cell death. Cell Death Differ. 12, 913–922.

Tin, A., et al., 2016. Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the atherosclerosis risk in communities study. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015060661.

Uraia, M., Koga-Wada, Y., Kayanori, V., Kang, D., 2008. Platelet contamination causes large variation as well as overestimation of mitochondrial DNA content of peripheral blood mononuclear cells. Ann. Clin. Biochem. 45, 513–514.

Weng, S.W., et al., 2009. Peripheral blood mitochondrial DNA content and dysregulation of glucose metabolism. Diabetes Res. Clin. Pr. 83, 94–99.

Wiesner, R.J., Rüegg, J.C., Morano, I., 1992. Counting target molecules by exponential polymerase chain reaction: copy number of mitochondrial DNA in rat tissues. Biochem. Biophys. Res. Commun. 183, 553–559.

Yu, X.-H., Fu, Y.-C., Zhang, D.-W., Yin, K., Tang, C.-K., 2013. Foam cells in atherosclerosis. Clin. Chim. Acta 424, 245–252.

Zabaneh, D., et al., 2011. Genetic variants associated with Von Willebrand factor levels in healthy men and women identified using the HumanCVD BeadChip. Ann. Hum. Genet. 75, 456–467.

Zabihi Diba, L., Mohaddes Ardebili, S.M., Gharesouran, J., Houshmand, M., 2016. Age-related decrease in mtDNA content as a consequence of mtDNA 4977bp deletion. Mitochondrial DNA. Part A. DNA mapping. Seq. Anal. 27, 3008–3012.

Ziegler, D.V., Wiley, C.D., Velarde, M.C., 2015. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 14, 1–7.