INTRODUCTION

Tucatinib belongs to a class of drugs known as kinase inhibitors [1, 2]. Tucatinib’s chemical name is N6-(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl)-N4-(3-methyl-4-[1,2,4]triazolo[1,5-a]pyridin-7-yloxyphenyl)quinazoline-4,6-diamine. Tucatinib’s molecular formula and molecular weight are C26H24N8O2 and 480.5212 μg/mol, respectively. Tucatinib, sold under the brand name Tukysa, is a small molecule inhibitor of HER2 for the treatment of HER2-positive breast cancer [3, 4]. It works by preventing the abnormal protein from signalling cancer cells to multiply. This aids in the prevention of signalling and cell proliferation, and has anti-tumor activity in HER2 expressing tumour cells. Tukysa is the brand name for tucatinib.

Tucatinib inhibits HER2 and HER3 phosphorylation [7, 8] in vitro, resulting in inhibition of downstream MAPK [9, 10] and AKT [11, 12] signalling and cell proliferation, and has anti-tumor activity in HER2 expressing tumour cells. Tukysa is the brand name for tucatinib.

Array BioPharma developed it. Patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer who progress after multiple HER2-targeted agents have few treatment options. Common side effects are diarrhea, palmar-plantar erythrodysesthesia [13, 14] (burning or tingling discomfort in the hands and feet), nausea, fatigue, hepatotoxicity [15] (liver damage), vomiting, stomatitis [16] (inflammation of the mouth and lips), decreased appetite [17], abdominal pain [18], headache, anemia and rash. Pregnant or breastfeeding women should not take Tucatinib because it may cause harm to a developing fetus or newborn baby.

There are only a few methods available for tucatinib. There are preclinical studies available, but no analytical methods are reported. The purpose of this research is to create, validate, and characterize forced degradation products using LC-MS/MS.

MATERIALS AND METHODS

Chemicals and reagents

Shree Icon Lab provided the pure Tucatinib standard (Vijayawada, India). Finar Chemicals supplied HPLC-grade acetonitrile and formic acid (Ahmedabad, India). Filtration through a Millipore MilliQ plus system produced HPLC grade water (Millipore, USA). Merck supplied analytical grade reagents of sodium hydroxide, hydrochloric acid, 30% hydrogen peroxide, and sodium bisulphate (Mumbai, India).

Instrumentation

HPLC

Waters alliance model e2695 liquid chromatography instrument, Waters (2998) Photodiode array Detector, Waters (2700) Auto sample injector, Solvent degasser, Quaternary pump, Temperature-controlled compartment. Using a sonicator, all of the solutions were sonicated for effective mixing and degassing (Unichrome associates 701). Weighing is done with an analytical balance (Denver). A hot air oven was used to conduct a thermal degradation study (KEMI).
An HPLC system (waters alliance e2695 model) connected with mass spectrometer QTRAP 5500 triple quadrupole instrument (sciex) was used [19-21].

Method optimization

Several parameters, including mobile phase, stationary phase, flow rate, and detector wavelength, were considered when developing and optimizing the chromatographic separation conditions. Isocratic elution with mobile phase 70:30v/v Acetonitrile and formic acid (0.1 percent) pumped from a solvent reservoir at a flow rate of 1.0 ml/min to the analytical column of the Inertsil ODS (250x4.6 mm,5m) using column back pressure of 1570-1620 at the maximum detector wavelength of 239 nm was used to obtain a chromatographic separation. Detector performance was evaluated using Empower-2 software to determine the height peak area and other device suitability parameters. The injection volume was set at 10μl, the ambient column temperature was maintained throughout the analysis.

Validation procedure

The developed method for estimation of Tucatinib was verified according to ICH regulations for system suitability, specificity, linearity, accuracy, precision, ruggedness, robustness, limit of detection, and limit of quantification [22-25].

Preparation of mobile phase

Acetonitrile and formic acid were mixed in a 70:30v/v ratio then filtered through 0.45μm filter paper and sonicated to remove any gas.

Chromatographic conditions

Tucatinib was separated chromatographically in an Inertsil ODS (250x4.6 mm, 5m) column. The mobile phase was composed of acetonitrile and formic acid (70:30v/v) and was pumped at room temperature at a flow rate of 1 ml/min with a UV detection wavelength of 239 nm and filtered through a 0.45 μ nylon membrane filter under vacuum filtration. The injection volume was ten μ litres. Tucatinib had a retention time of 3.734 min, while the run lasted 6 min.

Diluents

Mobile phase was used as diluents.

Preparation of standard solution

Tucatinib standard stock solution was prepared by dissolving 100 mg of Tucatinib in 100 ml of diluents in a 100 ml clean and dry volumetric flask, and the standard solution was filtered through a 0.45μm membrane filter and degassed with a sonicator to obtain a concentration of 1000g/ml of Tucatinib.

Selection of wavelength

A UV-Visible spectrophotometer was used to scan the maximum absorption wavelength of 50g/ml Tucatinib against a blank mobile phase in the wavelength range of 200-400 nm. As shown in fig. 2, the maximum wavelength was discovered to be 239 nm.

Forced degradation of tucatinib

Acid degradation

Tucatinib solution was treated with 1N HCl heated for 6 h, and refluxed for 5 h before adding 1 ml of 1N NaOH and diluting volume with diluents. Inject the solution into the HPLC system several times over the course of 6 h, 12 h, 18 h, and 24 h.

Alkali degradation

Tucatinib solution was treated with 1N NaOH for alkali degradation, heated for 6 h, and refluxed for 5 h before adding 1 ml of 1N HCl and diluting volume with diluents. Inject the solution into the HPLC system several times over the course of 6 h, 12 h, 18 h, and 24 h.

RESULTS AND DISCUSSION

Method development and optimization

Initially, the RP-HPLC system was optimized using an Inertsil ODS (250x4.6 mm, 5m) column. To satisfy the system suitability parameters, a mixture of acetonitrile and formic acid (70:30v/v) as the mobile phase (Flow rate 1.0 ml/min) was found to be more appropriate. Table 1 summarizes the optimized chromatographic conditions. At 3.734 min, Tucatinib eluted as a sharp peak fig. 3.
Table 1: Optimized chromatographic conditions

LC conditions	
Stationary phase	Inertsil ODS (250x4.6 mm, 5 µm)
Mobile Phase	Acetonitrile and 0.1% formic acid (70:30)
Elution mode	Isocratic A: B = 70:30 % v/v
Flow rate	1.0 ml/min,
Sample volume	10µl using Rheodyne 7725i injector
Oven Temperature	Ambient
MS conditions	
Interface	ESI
Operation mode	MRM
Polarity	Positive
Capillary voltage	4 KV
Fragmentor voltage	170 V
Skimmer voltage	65 V
Nebulizer Gas flow	40 psig
Drying gas	10 L/min
Gasoline temperature	325 °C
Detection	m/z: 0-800
Data station	ABSCIEX

Fig. 3: Chromatogram of standard

Method validation

The proposed method was validated using the ICH guidelines [26] for system suitability (table 2), linearity (table 3), precision (table 4), accuracy (table 5), and robustness (table 6). The calibration curve was created by plotting tucatinib concentrations on the X-axis and the corresponding mean peak area values on the Y-axis. Tucatinib follows Beer-law Lambert’s at concentrations ranging from 5 to 100 µg/ml, with the linear regression equation y = 35087x+2540.4 (correlation coefficient 0.999 fig. 4). The LOD and LOQ values are discovered to be 0.05 and 0.5, respectively. Using three different concentrations of tucatinib, the percentage relative standard deviation (RSD) was found to be 1.01 and 0.83, respectively (2.0 percent), demonstrating that the method is precise. The method’s accuracy [27] was demonstrated using the standard addition method, and the recovery values were calculated. The percentage RSD was found to be 0.5(2.0%), with a recovery rate of 98.4–101.3 percent. In the robustness study [28], the percentage RSD was found to be 0.2–1.21 (2.0 percent). The suitability of the system [29] and the stability of the solution was assessed, and the percentage RSD was 2%. The results are shown in table 2.

Table 2: Results of system suitability

System suitability parameter	Acceptance criteria	Tucatinib	Std Dev	% RSD
USP Plate Count	NLT 2000	5594	30.651	0.55
USP Tailing	NMT 2.0	1.10	0.015	1.34
USP Resolution	NLT 2.0	-	-	-
Retention time	NLT 2.0	3.735	0.003	0.09

Table 3: Results of linearity

S. No.	Conc (µg/ml)	Tucatinib area count
1	5.00	1194880
2	12.50	459113
3	25.00	896209
4	37.50	1206347
5	50.00	1834505
6	62.50	2178517
7	75.00	2455617
8	100.00	3502114
Correl coef	0.99912	
Slope	35086.91	
intercept	2540.47	
Fig. 4: Calibration curve for tucatinib at 239 nm

Table 4: Results of method precision and Intermediate precision

S. No.	Method precision\(^a\)	Intermediate precision\(^b\)				
	Conc. (µg/ml)	Area counts	% assay as is	Conc. (µg/ml)	Area counts	% assay as is
1	50	1870847	98.9	50	1900654	100.5
2	1897995	1913999	101.2	1891351	1863262	98.5
3	1907151	1907151	100.8	1891671	1863262	101.4
4	1883482	1883482	99.6	1875031	1863262	99.2
5	1896710	1896710	100.3	1887356	1863262	99.8

\(%\) RSD 0.83
\(\text{mean}\) 100.2
\(\text{SD}\) 0.832
\(a, b\)-Mean+SD (n=6)

Table 5: Results of accuracy

S. No.	% Level	Tucatinib % recovery	Mean % recovery	Std dev
1	50	99.0	100.1	1.18
		100.1		
		101.3		
2	100	100.9	99.7	1.28
		100.0		
		98.4		
3	150	100.7	100.7	0.55
		100.2		
		101.3		

\(\text{Mean}+\text{SD} (n=3)\)

Table 6: Results of robustness

Parameter name	% RSD tucatinib
Flow minus (0.8 ml/min)	0.20
Flow plus (1.2 ml/min)	0.70
Organic minus (63:37)	0.61
Organic plus (77:23)	1.21

\(\text{RSD}-\text{Relative standard deviation}; \text{All the values are presented as mean}+\text{SD (n=3)}\)

Degradation studies

Tucatinib was subjected to a variety of stress conditions [30], including acidic, oxidative, and alkaline hydrolysis. Tucatinib was eluted at 3.734 min in acidic hydrolysis. Tucatinib was eluted at 3.638 min with some degradants observed at 1.503 and 3.351 while performing acidic hydrolysis, with approximately 26.7 percent degradation observed. Tucatinib was eluted at 3.619 min during alkaline hydrolysis, with the other degradant observed at 1.336 min (drug degradation 24.7 percent). Tucatinib was eluted at 3.606 min during reduction, with degradant observed at 1.165 min and 21.6 percent degraded results are shown in table 7. The tucatinib peak was well separated among the degradants [31, 32] in all of the degradation studies, indicating that the method is selective and specific. Fig. 5 depicts typical chromatograms obtained during a stress degradation study of tucatinib.
Table 7: Forced degradation results for tucatinib

Results: % degradation results at 24 h	Tucatinib	Mean area	% Assay	% Degradation
Control	1883286	99.6	0.4	
Acid	1378506	73.3	26.7	
Base	1424105	75.3	24.7	
Peroxide	1466598	77.6	22.4	
Reduction	1482593	78.4	21.6	
Thermal	1489956	78.8	21.2	
Photolytic	1492687	78.9	21.1	
Hydrolysis	1482593	79.1	20.9	

Data expressed as mean±SD (n=3)

![Degradation chromatogram](image)

Fig. 5: Degradation chromatogram of (a) Acidic (b) Alkaline (c) Oxidation (d) Reduction (e) Thermal (f) Photolytic (g) Hydrolysis
LC-MS/MS studies of forced degradation products

Four degradation products, DP1, DP2, DP3, and DP4 were identified and characterized by tandem mass spectrometric analysis (LC-MS/MS) and accurate mass measurement shown in table 4. DP1 and DP2 were degraded in acidic conditions, whereas DP3 was degraded in alkaline conditions, DP4 was degraded in reduction condition. The identification of active drug and its novel degradation product was studied on Agilent Q-TOF of Mass spectrometric (MS) technique with ABSCIEX. Mass measurements of Tucatinib was shown in table 8.

Table 8: Elemental composition and accurate mass measurements of Tucatinib and its degradation products

Molecular formula	Calculate mass	Observed mass	ppm Error	MS/MS fragment ions formed	
Tucatinib	C₂₆H₂₄N₈O₂	480.5230	480.5232	0.4162	130, 242, 347
DPI	C₂₀H₁₉N₅O₂	363.0523	363.0526	0.8263	257, 145, 114
DPII	C₁₃H₁₂N₂CIN₂O₂	321.0361	321.0364	0.9344	175, 148
DPIII	C₁₃H₁₀N₄O₃	270.0639	270.0641	0.7405	153, 119
DP IV	C₂₁H₁₇N₇O₅S	479.0649	479.0653	0.8349	362, 241, 145

Fig. 6: ESI–MS-MS spectrum of ions of (A) DP1 (B) DP2 (C) DP3 (D) DP4

Fig. 7: Degradation pathway of DP1
MS/MS of DP1
The LC-ESI-MS/MS spectrum of DP1 with m/z 363 (Rt= 1.503 min) was examined in the proposed fragmentation pathway (fig. 7). The degradation ions of m/z 257 (loss of C₇H₈O from the parent ion at m/z 363), m/z 145 (loss of C₅H₉N₂O from the parent ion at m/z 257), m/z 114 (loss of C₈H₇N₃ from the parent ion at m/z 257). Accordingly, data obtained from MS/MS, elemental composition, and precise mass measurements are shown in (fig. 7).

MS/MS of DP2
The LC-ESI-MS/MS spectrum of DP2 with m/z 321 (Rt= 3.351 min) was examined in the proposed fragmentation pathway (fig. 8). The degradation ions of m/z 175 (loss of C₅H₉ClNO₂ from the parent ion at m/z 321), m/z 148 (loss of C₈H₅N₃O₂ from the parent ion at m/z 321). Accordingly, data obtained from MS/MS, elemental composition, and precise mass measurements are shown in (fig. 8).

MS/MS of DP3
The LC-ESI-MS/MS spectrum of DP3 with m/z 270 (Rt= 1.336 min) was examined in the proposed fragmentation pathway (fig. 9). The degradation ions of m/z 153 (loss of C₆H₅N₃ from the parent ion at m/z 270), m/z 119 (loss of C₇H₇NO₃ from the parent ion at m/z 270). Accordingly, data obtained from MS/MS, elemental composition, and precise mass measurements are shown in (fig. 9).
The LC-ESI-MS/MS spectrum of DP4 with m/z 479 (Rt= 1.165 min) was examined in the proposed fragmentation pathway (fig. 10). The degradation ions of m/z 362 (loss of C₆H₅N₃ from the parent ion at m/z 479), m/z 241 (loss of C₆H₅NO from the parent ion at m/z 362), m/z 145 (loss of H₂S from the parent ion at m/z 241). Accordingly, data obtained from MS/MS, elemental composition, and precise mass measurements are shown in (fig. 10).

CONCLUSION

The validated stability indicating method developed for the determination of novel kinase inhibitors is specific and selective and the validated stability indicating method developed for the MS/MS, elemental composition, and precise mass measurements are shown in (fig. 10).

ACKNOWLEDGEMENT

The authors are grateful to the management of Shree Icon Pharmaceutical Laboratory, Labbipeta, Vijayawada, Andhra Pradesh, India, for providing the necessary facilities and assistance in carrying out this study.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICTS OF INTERESTS

Declared none

REFERENCES

1. Gross Stefan, Rahal Rami, Stransky Nicolas, Lengauer Christoph, Hoeﬄik Klaus P. Targeting cancer with kinase inhibitors. J Clin Invest 2015;125(5):1780-9. doi: 10.1172/JCI76094, PMID 25932675.

2. Jannè Pasi A, Gray Nathanael, Settlemen Jeff. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov. 2009;8(9):709-23. doi: 10.1038/nrd2871, PMID 19629074.

3. Mjøs André, Siedel Anne, Ståhlheden Anna, Gjöransson Lennart, Ubold Thorbjörn, et al. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;2012:743193. doi: 10.1155/2012/743193.

4. Roy Vivek, Perez Edith A. Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer. Oncologist. 2009;14(11):1061-9. doi: 10.1634/theoncologist.2009-0142, PMID 19887469.

5. Seguin Laëtitia, Kato Shumei, Franovic Aleksandar, Camargo M Fernanda, Lesperance Jacqueline, Elliot Kathryn C, Yebra Mayra, Chen Zahi, Constantine Tina, O'Regan Ruth. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;2012:743193. doi: 10.1155/2012/743193.

6. Roy Vivek, Perez Edith A. Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer. Oncologist. 2009;14(11):1061-9. doi: 10.1634/theoncologist.2009-0142, PMID 19887469.

7. Seguin Laëtitia, Kato Shumei, Franovic Aleksandar, Camargo M Fernanda, Lesperance Jacqueline, Elliot Kathryn C, Yebra Mayra, Chen Zahi, Constantine Tina, O'Regan Ruth. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;2012:743193. doi: 10.1155/2012/743193.

8. Roy Vivek, Perez Edith A. Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer. Oncologist. 2009;14(11):1061-9. doi: 10.1634/theoncologist.2009-0142, PMID 19887469.

9. Al-Bathish AA, Malak Y, Anargyros Vlastaridis, Papakyriakou Athanasios, Chaliotis Konstantinos, Stratikos Efstratios, Oliver Stephen G, Amoutzias George, Martschick Anja, Richter Heike, El-Jamal. Rp-hplc and its applications to pharmacokinetic studies in Rabbit plasma by using LC/MS/MS. IJRPS 2020;11(4):7854-62. doi: 10.26452/ijrps.v11i4.4670.

10. Lawton CL. Obesity: a disorder of appetite. Pract Diab Int. 1993;10(10):1-2. http://doi:10.1002/pdi.1960100105, doi: 10.1002/pdd.1960100105.

11. Vinili Anuika, Keenecne Christian, Biroga Tobias, Stadje Rebekka, Dornrieden Katharina, Bösner Stefan, Donner Banzhof Norbert, Haussmayer Jorg, Becker Annette. Studies of the symptom abdominal pain - a systematic review and meta-analysis. Fam Pract. 2014;31(5):517-29. doi: 10.1093/fampra/cmu036, PMID 24987023.

12. Potturi Ramadevi, Kantipudi Rambabu. Bio analytical method development and validation for Ezetimibe and Pitavastain and its applications to pharmacokinetic studies in Rabbit plasma by using LC/MS/MS. IJRPS 2020;11(4):7854-62. doi: 10.26452/ijrps.v11i4.4670.

13. Eluru Asha. Surendra Babu K. Bio analytical method development and validation for Aplidine in rat plasma and their pharmacokinetic studies by LC/MS. World J Pharm Pharm Sci. 2019;8:2101-9.

14. Ramchandran D, Kethipalli Anita, Krishnamurthy Mannam. Bioanalytical method development and validation of daunorubicin and cytarabine in rat plasma by LC-MS/MS and its application in pharmacokinetic studies. J Pharm Sci Res. 2020;12:391-6.

15. Shalini K, Ilango K. Development, evaluation and RP-HPLC method for simultaneous estimation of quercetin, ellagic acid and kaempferol in a polyherbal formulation. Int J App Pharm, Vol 14, Issue 1, 2022, 58-66.
24. Girija KS, Kasimala BB, Anna VR. A new high-performance liquid chromatography method for the separation and simultaneous quantification of epirubicin and its impurities in pharmaceutical injection formulation. Int J Appl Pharm. 2021;13:165-72. doi: 10.22159/ijap.2021v13i2.39895.

25. Balaji Gupta VLN T, Venkateswara Rao B, Kishore Babu B. RP-HPLC (stability-indicating) based assay method for the simultaneous estimation of doravirine, tenofovir disoproxil fumarate and lamivudine. Int J Appl Pharm. 2021;13:153-9.

26. International conference on harmonization. ICH harmonized tripartite guideline. Validation of analytical procedures: text and methodology. Vol. Q2(R1); 2005.

27. Manoranjani M. A study of method development, validation and forced degradation for simultaneous quantification of cisplatin and fluorouracil in bulk and pharmaceutical dosage form by RP-HPLC. J Pharm Sci Res. 2021;13:155-61.

28. Hemanth Kumar AK, Sudha V, Vijayakumar A, Padmapriyadarsini C. Simultaneous method for the estimation of bidaquiline and delamanid in human plasma using high-performance liquid chromatography. Int J Pharm Pharm Sci. 2021;13:36-40.

29. Shanmugasundaram P, Kamarapu SK. RP-HPLC method for the simultaneous estimation and validation of amiodipine besylate and atenolol in bulk and tablet dosage form in biorelevant dissolution medium (Fassif). Res J Pharm Technol. 2017;10(10):3379-85. doi: 10.5958/0974-360X.2017.00601.1.

30. Sruthi A, Uttam Prasad P. Stability indicating method development and validation of finmasartan by reverse-phase high-performance liquid chromatography in bulk and pharmaceutical dosage form. Asian J Pharm Clin Res. 2021;14:138-46.

31. Lakka Narasimha S, Kuppan Chandrasekar, Srinivas Kona S, Yarra Raviteja. Separation and characterization of new forced degradation products of dasatinib in tablet dosage formulation using LC-MS and stability-indicating HPLC methods. Chromatographia. 2020;83(8):947-62. doi: 10.1007/s10337-020-03920-0.

32. Chavan Balasaheb B, Vijaya Jyothi P, Kalariya PD, Srinivas R, Talluri MVNK, Pradipbhai D Kalariya. Alcaftadine: selective separation and characterization of degradation products by LC-QTOF-MS/MS. Chromatographia. 2018;81(4):631-8. doi: 10.1007/s10337-018-3489-1.