Correction to: Molecular characterization of multidrug-resistant *Mycobacterium tuberculosis* (MDR-TB) isolates identifies local transmission of infection in Kuwait, a country with a low incidence of TB and MDR-TB

Noura M. Al-Mutairi, Suhail Ahmad* and Eiman M. Mokaddas

The original publication of this article [1] contained few erroneous paragraphs and errors in Table 1 and Table 2. The first four paragraphs are in the ‘Results’ section while the last four paragraphs are in the ‘Discussion’ section. The errors in Table 1 involve the number of isolates tested for pyrazinamide and pyrazinamide susceptible isolates, ethambutol-susceptible isolates with a mutation and number of resistant isolates with a mutation for streptomycin. The error in Table 2 involves wrong codon number for a mutation in isolate KM17-01 in Cluster XII for *gidB* gene. The updated informations have been indicated in **bold** and also refer corrected Tables 1 and 2.

Incorrect: Although all 93 MDR-TB isolates were tested for susceptibility to pyrazinamide, only 47 isolates yielded interpretable results; 11 isolates were susceptible and 36 were resistant to this drug including 15 isolates that were resistant to all five drugs. The remaining 46 MDR-TB strains failed to grow at the reduced pH in the absence of the drug.

Correct: Although all 93 MDR-TB isolates were tested for susceptibility to pyrazinamide, only **46 isolates** yielded interpretable results; **10 isolates** were susceptible and 36 were resistant to this drug including 15 isolates that were resistant to all five drugs. The remaining **47 MDR-TB strains** failed to grow at the reduced pH in the absence of the drug.

Incorrect: The proportion of MDR-TB isolates exhibiting resistance conferring mutations in target genes varied for different anti-TB drugs, being highest for rifampicin and lowest for streptomycin (Table 1).

Correct: The proportion of MDR-TB isolates exhibiting resistance conferring mutations in target genes varied for different anti-TB drugs, being highest for rifampicin and lowest for streptomycin **among SIRE drugs** (Table 1).

Incorrect: PCR-sequencing of *pncA* identified mutations in 30 of 36 MDR-TB strains phenotypically resistant to pyrazinamide and 23 of 46 isolates for which phenotypic DST data for pyrazinamide was not available while all 11 isolates phenotypically susceptible to pyrazinamide contained wild-type sequence for *pncA*.

Correct: PCR-sequencing of *pncA* identified mutations in 30 of 36 MDR-TB strains phenotypically resistant to pyrazinamide and 23 of **47** isolates for which phenotypic DST data for pyrazinamide was not available while all **10** isolates phenotypically susceptible to pyrazinamide contained wild-type sequence for *pncA*.
Table 1 Phenotypic resistance by MGIT 960 system to anti-TB drugs among 93 multidrug-resistant *M. tuberculosis* isolates and number of susceptible and resistant isolates with mutations in target genes for each drug

Anti-tuberculosis drug	No. of isolates tested	No. of susceptible isolates	No. of susceptible isolates with mutation	No. of resistant isolates	No. (%) of resistant isolates with mutation
Rifampicin	93	0	0	93	93 (100)
Isoniazid	93	0	0	93	92 (98.9)
Pyrazinamide	46	10	0	36	30 (83.3)
Ethambutol	93	52	39	41	38 (92.7)
Streptomycin	93	34	0	59	51 (86.4)
Isoniazid	93	0	0	93	92 (98.9)
Streptomycin	93	34	0	59	51 (86.4)

Anti-tuberculosis drug	No. of isolates tested	No. of susceptible isolates	No. of susceptible isolates with mutation	No. of resistant isolates	No. (%) of resistant isolates with mutation
Rifampicin	93	0	0	93	93 (100)
Isoniazid	93	0	0	93	92 (98.9)
Pyrazinamide	46	10	0	36	30 (83.3)
Ethambutol	93	52	39	41	38 (92.7)
Streptomycin	93	34	0	59	51 (86.4)

a: Resistance conferring mutations were detected in rpoB for rifampicin, katG + inhA for isoniazid, pncA for pyrazinamide, embB for ethambutol, and rpsL + rrs for streptomycin

Incorrect: Fifty isolates contained mutations at embB306 (M306V, n=28; M306I, n=19 and M306L, n=3), 15 isolates contained a mutated embB406 (G406D, n=8; G406A, n=4; G406C, n=2 and G406S, n=1), 10 isolates contained a mutated embB497 (Q497R, n=6; Q497K, n=3 and Q497H, n=1) and one isolate contained a mutation (Y319S) at embB319.

Correct: Fifty isolates contained mutations at embB306 (M306V, n=28; M306I, n=19 and M306L, n=3), 16 isolates contained a mutated embB406 (G406D, n=8; G406A, n=5; G406C, n=2 and G406S, n=1), 10 isolates contained a mutated embB497 (Q497R, n=6; Q497K, n=3 and Q497H, n=1) and one isolate contained a mutation (Y319S) at embB319.

Incorrect: Forty-nine of 59 MDR-TB strains addition ally resistant to streptomycin contained a mutation in the target genes analysed (Table 1), many of which have been described previously [23, 28]. These included 44 isolates with a mutation in rpsL. (K43R, n=33; K43T, n=1; K88R, n=5; K88T, n=4; K88M, n=1), four isolates with a mutation in rrs 500 or 900 region (A514C, n=1; C517T, n=1; G878A, n=1 and A906G, n=1) and one isolate with rpsL K88R + rrs C602A double mutation.

Correct: Fifty-one of 59 MDR-TB strains additionally resistant to streptomycin contained a mutation in the target genes analysed (Table 1), many of which have been described previously [23, 28]. These included 44 isolates with a mutation in rpsL. (K43R, n=33; K43T, n=1; K88R, n=5; K88T, n=4; K88M, n=1), four isolates with a mutation in rrs 500 or 900 region (A514C, n=1; C517T, n=1; G878A, n=1 and A906G, n=1) and three isolates with double mutation in rpsL and rrs genes (rpsL K43R + rrs C527T, n=1; rpsL K88T + rrs C517T, n=1; rpsL K88R + rrs C602A, n=1).

Incorrect: Resistance conferring mutations in rpsL and/or rrs gene were detected in majority (49 of 59, 83%) of streptomycin-resistant but not in any streptomycin-susceptible MDR-TB strain while mutations in embB gene were detected in both ethambutol-resistant and -susceptible MDR-TB strains, as described in our previous studies [23, 28].

Correct: Resistance conferring mutations in rpsL and/or rrs gene were detected in majority (51 of 59, 86.4%) of streptomycin-resistant but not in any streptomycin-susceptible MDR-TB strain while mutations in embB gene were detected in both ethambutol-resistant and -susceptible MDR-TB strains, as described in our previous studies [23, 28].
Table 2 Detailed clinical, demographic and molecular characteristics of 42 *M. tuberculosis* isolates in 16 (Cluster I to Cluster XVI) clusters

Cluster no.	Clinical specimen	Isolate no.	Year of isolation	Patient's nationality	Spoligotyping data	Genetic alteration detected in SIT Mtb family
I Sputum	KM06-153	2006	Indian	255 Beijing	TCG456TTG	ACG315ACC WT
	KM09-22	2009	Indian	255 Beijing	TCG456TTG	ACG315ACC WT
	KM13-37	2013	Indian	1 Beijing	TCG456TTG	ACG315ACC WT
	KM16-06	2016	Nepalese	1 Beijing	TCG456TTG	ACG315ACC WT
	KM17-03	2017	Indian	1 Beijing	TCG456TTG	ACG315ACC WT
II Sputum	KM14-58	2014	Nepalese	1 Beijing	TCG456TTG	ACG315ACC WT
	KM14-69	2014	Indian	1 Beijing	TCG456TTG	ACG315ACC WT
III Sputum	KM08-501	2008	Kuwait	1 Beijing	TCG456TTG	ACG315ACC WT
	KM08-502	2008	Kuwait	1 Beijing	TCG456TTG	ACG315ACC WT
	KM09-207	2009	Indian	1 Beijing	TCG456TTG	ACG315ACC WT
IV Sputum	KM12-05	2012	Ethiopian	21 CAS1-Kili	TCG456TTG	ACG315ACC WT
	KM12-17	2012	Ethiopian	1144 T1	TCG456TTG	ACG315ACC WT
	KM15-08	2015	Ethiopian	21 CAS1-Kili	TCG456TTG	ACG315ACC WT
V Sputum	KM07-333	2007	Indonesian	Orphan N. A.	TCG456TTG	ACG315ACC WT
	KM10-23	2010	Filipino	355 EA3-INID	TCG456TTG	ACG315ACC WT
	KM07-293	2007	Filipino	194 LAM2	TCG456TTG	ACG315ACC WT
	KM12-01	2012	Filipino	25 CAS1-Delhi	TCG456TTG	ACG315ACC WT
VI Sputum	KM09-202	2009	Ethiopian	47 H1	TCG456TTG	ACG315ACC WT
	KM15-17	2015	Indian	47 H1	TCG456TTG	ACG315ACC WT
VII Sputum	KM14-67	2014	Bhutanese	149 T3-ETH	TCG456TTG	ACG315ACC WT
	KM15-23	2015	Bhutanese	149 T3-ETH	TCG456TTG	ACG315ACC WT
VIII Sputum	KM07-283	2007	Filipino	26 CAS1-Delhi	TCG456TTG	ACG315ACC WT
	KM14-68	2014	Indian	Orphan N. A.	TCG456TTG	ACG315ACC WT
	KM17-20	2017	Kuwait	1 Beijing	TCG456TTG	ACG315ACC WT
IX Sputum	KM17-22	2017	Kuwait	1 Beijing	TCG456TTG	ACG315ACC WT
	KM17-73	2017	Indian	1 Beijing	TCG456TTG	ACG315ACC WT
	KM11-503	2011	Kuwait	1 Beijing	TCG456TTG	ACG315ACC WT
X Sputum	KM14-56	2014	Kuwait	1 Beijing	TCG456TTG	ACG315ACC WT
Cluster no.	Clinica specimen	Isolate no.	Year of isolation	Patient's nationality	Spoligotyping data	Genetic alteration detected in
-------------	-----------------	-------------	-------------------	----------------------	-------------------	------------------------------
XI	Sputum KM15-33	2015	Kuwaiti	Beijing	TCG346TTG ACG315ACC WT	-11 A/G GCC406GAC AAG434AC WT GAA395AC + GGA205CG CGA212GC
	Sputum KM15-26	2015	Kuwaiti	Beijing	TCG346TTG ACG315ACC WT	-11 A/G GCC406GAC AAG434AC WT GAA395AC + GGA205CG CGA212GC
	Sputum KM17-02	2015	Kuwaiti	Beijing	TCG346TTG ACG315ACC WT	-11 A/G GCC406GAC AAG434AC WT GAA395AC + GGA205CG CGA212GC
	Sputum KM17-69	2017	Kuwaiti	Beijing	TCG346TTG ACG315ACC WT	-11 A/G GCC406GAC AAG434AC WT GAA395AC + GGA205CG CGA212GC
XII	Sputum KM16-32	2016	Egyptian	19	EAI2-Manila CAC451TAC ACG315ACC WT -15 C/T GAA37AAA CTC355CTA + GAG378GCC WT WT GGC100GCG CTG100GCG CGA212GC	
	Sputum KM17-01	2017	Filipino	19	EAI2-Manila CAC451TAC ACG315ACC WT -15 C/T GAA37AAA CTC355CTA + GAG378GCC WT WT GGC100GCG CTG100GCG CGA212GC	
XIII	Pus KM07-297	2007	Indian	Orphan	CAC451GAC WT	-15 C/T TCC355CTA + Ins 45 ST (FS) ARG306CTG WT WT N.D. N.D.
	FNA KM11-502	2015	Indian	3361	T1 CAC451GAC WT	-15 C/T TCC355CTA + Ins 45 ST (FS) ARG306CTG WT WT N.D. N.D.
XIV	Sputum KM06-48	2006	Egyptian	53	T1 TCG346TTG WT	-15 C/T WT WT WT WT N.D. N.D.
	Tissue KM06-277	2006	Filipino	19	EAI2-Manila TCG346TTG WT	-15 C/T WT WT WT WT N.D. N.D.
XV	Sputum KM16-33	2016	Indian	8	EAI3/EAI5 CAC451TAC ACG315ACC WT CTG355CCG ATG306GTG + GAG378GCC WT WT GGC100GCG CTG100GCG CGA212GC	
	Sputum KM17-06	2017	Filipino	8	EAI3/EAI5 CAC451TAC ACG315ACC WT CTG355CCG ATG306GTG + GAG378GCC WT WT GGC100GCG CTG100GCG CGA212GC	
XVI	Sputum KM07-231	2007	Indian	Orphan	CAS1-Delhi ATG440ATA + GAC441TAC	-15 C/T TCC355CTA GCC406GCC WT WT GCC100GCC + Del 350G WT
	Sputum KM07-252	2007	Syrian	Orphan	CAS1-Delhi ATG440ATA + GAC441TAC	-15 C/T TCC355CTA GCC406GCC WT WT GCC100GCC + Del 350G WT

Clusters containing MDR-TB strains with identical patterns and isolated within a period of nearly 2 years are shown as underlined. Synonymous mutations are italicized.

N. A., not applicable; N. D., not done; CSF, cerebrospinal fluid; FNA, fine needle aspirate; SIT, shared international type; Mtb family, M. tuberculosis family; WT, wild-type sequence; Ins, insertion mutation; (FS), frame shift mutation, fine needle aspirate

* Both isolates displayed identical spoligotyping pattern
gidB which is considered as a hot-spot for mutations in the *M. tuberculosis* genome [21, 57].

Published online: 21 April 2020

Reference
1. Al-Mutairi NM, Ahmad S, Mokaddas EM. Molecular characterization of multidrug-resistant *Mycobacterium tuberculosis* (MDR-TB) isolates identifies local transmission of infection in Kuwait, a country with a low incidence of TB and MDR-TB. Eur J Med Res. 2019;24:38. https://doi.org/10.1186/s40001-019-0397-2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.