Information Entropy Initialized Concrete Autoencoder for Optimal Sensor Placement and Reconstruction of Geophysical Fields

Nikita A. Turko1, Alexander A. Lobashev2, Konstantim V. Ushakov3,1, Maxim N. Kaurkin3, and Rashit A. Ibrayev3,4

1Moscow Institute of Physics and Technology
2Skolkovo Institute of Science and Technology
3Shirshov Institute of Oceanology, Russian Academy of Sciences
4Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

RuSCDays22
Overview

1. Introduction

2. Motivation

3. Statistical approach

4. Baselines

5. Data

6. Results

7. Conclusion
Introduction
Introduction

Operational ocean forecasting based on:

▶ Observation data
▶ Ocean circulation model
▶ Large CPU cluster

Figure: Example of ocean speed forecast
Figure: Locations of ARGO drifters, measuring temperature and salinity profiles
Motivation
Motivation

- Optimize ocean forecast operational systems
- Find locations to place new sensors
 - To select $k \in [k_{\text{min}}, k_{\text{max}}]$ sensors from n grid nodes search space grows exponentially as $\sum_{k=k_{\text{min}}}^{k_{\text{max}}} C_n^k$
 - Direct combinatorial search is impossible

- Most of common approximate methods use the singular value decomposition (SVD) which scales as $O(n^3)$ or $O(n^2)$ in different implementations.
- They cannot be applied to large grids of size 1440x720 $\approx 10^6$ ($0.25^\circ \times 0.25^\circ$)

Nikita A. Turko, et al model.ocean.ru RuSCDays22
Statistical approach
Statistical approach

1. Physical field as random variable realization
2. Informational entropy calculation
3. Proposition of optimal sensor locations
4. Sensor coordinates optimisation
Estimating uncertainty of a physical field

Idea:
- Place sensors in locations where a physical field has high uncertainty

Figure: Example of patches extracted from sea the surface temperature anomaly field. Indices 1, 2, ..., n correspond to patches taken in the same spatial location at different time moments
Informational entropy

Uncertainty of a physical field could be estimated using the information entropy.

The informational entropy of the physical field as a function of spatial coordinates x, y can be estimated as:

$$H(x, y) = - \int \mathbb{P}(\xi|x, y) \log \mathbb{P}(\xi|x, y) d\xi$$

$$= - \frac{1}{N} \sum_{i=1}^{N} \log \mathbb{P}(\xi_i|x, y), \quad \xi_i \sim \mathbb{P}(\xi_i|x, y)$$

(1)

ξ - values of the physical field, taken along the temporal dimension.
Density estimation via autoregressive generative modeling

Conditional PixelCNN

Suppose our set of physical fields is encoded as a set of $L \times L$ images or patches s_i cropped from the domain of interest \mathcal{D}, each of which is labeled with spatial coordinates of the patch center $\mathbf{r} = \{r_1, \ldots, r_K\} \in \mathcal{D}$

$$
\mathcal{S}(\mathbf{r} \in \mathcal{D}) = \{s_{r_1}^1, \ldots, s_{r_N}^N\}. \quad (2)
$$

Joint density of all pixels could be expanded as a product of conditional densities

$$
\mathbb{P}(s^\mathbf{r}|\mathbf{r}) = \prod_{i=1}^{L \times L} \mathbb{P}([s^\mathbf{r}]_i|[s^\mathbf{r}]_1, \ldots, [s^\mathbf{r}]_{i-1}, \mathbf{r}), \quad (3)
$$

where $[s^\mathbf{r}]_i$ stands for the i-th pixel of the image $s^\mathbf{r}$ with respect to the chosen ordering
Conditional PixelCNN

The network is trained on the dataset $S(\mathbf{r}_i \in \mathcal{D})$ maximizing probability of observed physical fields or equivalently by minimizing negative log-likelihood

$$L(\theta) = - \sum_{i=1}^{N} \log \mathbb{P}_\theta(s_i^r | \mathbf{r}_i), \quad (4)$$

where θ is the vector of parameters of Conditional PixelCNN.

Then we compute entropy as

$$H(\mathbf{r}) = - \mathbb{E}_s \log \mathbb{P}_\theta(s | \mathbf{r}) = - \frac{1}{\# \{ \mathbf{r}^i : |\mathbf{r}^i - \mathbf{r}| < \varepsilon \}} \sum_{|\mathbf{r}^i - \mathbf{r}| < \varepsilon} \log \mathbb{P}_\theta(s_i^r | \mathbf{r}) \quad (5)$$
Proposed optimal sensor locations

Computed information entropy field can be used to propose optimal sensor locations by sampling from the distribution

\[P(r) = \frac{e^{\frac{1}{\tau}H(r)}}{\int_{\mathcal{D}} e^{\frac{1}{\tau}H(r)} dr} \]

(6)

where we set hyperparameter \(\tau = 0.2 \) for the entropy field measured in nats per computational grid cell.
Concrete Autoencoder

Minimizing the loss function

\[\mathcal{L}_G = \mathbb{E}_{S_{\text{full}}} \left\| G(S_{\text{full}} \cdot \text{mask}, w) - S_{\text{full}} \right\|_{L^2} + \lambda \cdot \mathbb{E} \left| \text{mask} \right| \]

(7)

where the function \(G \) takes as input the physical field \(S_{\text{full}} \) in the entire simulation area, multiplies it component by the binary mask and tries to restore the original field.
Concrete Autoencoder with Least Square GAN loss

\[\mathcal{L}_G = \lambda_1 \mathcal{L}_{\text{LSGAN}} + \lambda_2 \mathcal{L}_{\text{pixel-wise}} + \lambda_3 \mathcal{L}_{\text{sensors}} \]

where we use \(\lambda_1 = 10^{-4} \), \(\lambda_2 = 1 \) and \(\lambda_3 \) dynamically changes during training from 0 to 1.

- We add adversarial term with a discriminator \(D \) which tries to distinguish real and reconstructed physical fields:

\[\mathcal{L}_{\text{LSGAN}} = \text{MSE}(D(G(\hat{M})), \mathbb{I}) \equiv \|D(G(\hat{M})) - \mathbb{I}\|_{L_2} \]

\[\mathcal{L}_{\text{pixel-wise}} = \mathbb{E}|S_{\text{full}} ||G(S_{\text{full}} \cdot \text{mask}, w) - S_{\text{full}}|_{L_2} \]

\[\mathcal{L}_{\text{sensors}} = \mathbb{E}|\text{mask}| \]
Baselines
Baselines

Climate

$$S^{climate}(i, j, d) = \frac{1}{N^{years}} \sum_{y=1}^{N^{years}} S(i, j, y, d)$$ \hspace{1cm} (9)

where \(S(i, j, y, d)\) - the value of physical field with coordinates \((i, j)\) at day number \(d = \{1, 2, ..., 365\}\) in year \(y\) from train set, \(N^{years}\) - number of years with day \(d\) in train set

PCA-QR

Principal Component Analysis (Proper Orthogonal Decomposition or the method of Empirical Orthogonal Functions) with pivoted QR decomposition
Data
Experimental data

Global coupled ocean-ice model INMIO Compass-CICE-ERA5 with resolution 0.25 x 0.25, 17 model years from 2004 to 2020

Figure: Temperature at 3 m
Results
Approximation of informational entropy

Figure: Smoothed ensemble mean information entropy of geophysical fields: temperature at (a) 3 meter and (b) 45 m depth; salinity at (c) 3 meter and (d) 45 m depth
Initialised mask

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth
Optimizing the mask, 30 epochs

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth, after 30 epochs
Optimizing the mask, 60 epochs

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth, after 60 epochs
Optimizing the mask, 90 epochs

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth, after 90 epochs
Optimizing the mask, 180 epochs

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth, after 180 epochs
Reconstructed field

Figure: Temperature at 45.0 m depth, 2017-08-07
Spatial distribution of reconstruction error

\[\text{Bias}(i,j) = \frac{1}{\#\{\tau \in \text{TestSet}\}} \sum_{\tau \in \text{TestSet}} (S_{\text{recon}}(i,j,\tau) - S_{\text{ref}}(i,j,\tau)) \] (10)

\[\text{RMSE}(i,j) = \sqrt{\frac{1}{\#\{\tau \in \text{TestSet}\}} \sum_{\tau \in \text{TestSet}} (S_{\text{recon}}(i,j,\tau) - S_{\text{ref}}(i,j,\tau))^2} \] (11)
Spatial distribution of reconstruction error

(a) Baselines

(b) Concrete Autoencoder

Figure: Bias/RMSE temperature reconstruction at depth 45m
Error on all test set

\[\text{Bias}(\tau) = \frac{1}{N^i} \frac{1}{N^i} \sum_{i=1}^{N^i} \sum_{j=1}^{N^j} (S_{\text{recon}}(i,j,\tau) - S_{\text{ref}}(i,j,\tau)) \]

(12)

\[\text{RMSE}(\tau) = \sqrt{\frac{1}{N^i} \frac{1}{N^i} \sum_{i=1}^{N^i} \sum_{j=1}^{N^j} (S_{\text{recon}}(i,j,\tau) - S_{\text{ref}}(i,j,\tau))^2} \]

(13)
Error on all test set

Figure: Temperature field reconstruction accuracy against original model data
Test set reconstruction errors

Method	Number of sensors	MED(Bias)	MED(RMSE)
Temperature 3m			
Climate	0	-0.19	0.98
PCA with QR	77	0.13	1.03
Concrete Autoencoder	77	-0.07	**0.73**
Temperature 45m			
Climate	0	-0.09	0.88
PCA with QR	72	0.11	1.10
Concrete Autoencoder	72	-0.05	0.83
Concrete Autoencoder LSGAN	42	0.07	**0.73**
Salinity 3m			
Climate	0	0.58	0.84
PCA with QR	57	-0.03	0.66
Concrete Autoencoder	57	0.05	**0.53**
Salinity 45m			
Climate	0	0.59	0.72
PCA with QR	61	0.02	**0.30**
Concrete Autoencoder	61	0.26	0.41
Conclusion
Conclusion

▶ Proposed a method for optimal sensor placement and reconstruction of geophysical fields
▶ Proposed method outperforms baselines
▶ The addition of LSGAN loss improves reconstruction accuracy
Thank you for attention!