Binary Particles Swarm Optimization for Power Plant Schedule by Considering “Take or Pay” Contract

T Wati1,* , I Masfufiah1, T Suheta1, S Muharom1, N E Setyawati1 and S Triwijaya2

1 Institut Teknologi Adhi Tama Surabaya , Indonesia
2 Politeknik Perkeretapian Indonesia
*trisnaw@itats.ac.id

Abstract. This study discuss 24-hours load scheduling to get the minimum generation cost. Fuel cost in load scheduling need to be considered, because fuel and power suppliers are bound by take or pay schedule. In addition load scheduling considering heat rate, start-up cost, minimum up time and minimum down time. Load scheduling calculate by priority list method that is completed using artificial intelligence, Binary Particle Swarm Optimization (BPSO). The data used in this study is IEEE 30 bus and Java-Bali 500 kV.

1. Introduction
PT PLN (Persero) is the largest electricity producer in Indonesia. PT PLN cooperates with private electricity producers, and is bound by a power purchase contract. In the power purchase contract, PT PLN bears a significant risk because it is bound by Take or Pay. The Take or Pay contract requires PLN to absorb electricity from private producers in a minimum amount of the total capacity of the power plant. For example, the capacity of 150 MW, 80% availability factor, the PLN must buy a minimum of 120 MW. If PLN is unable to absorb 120 MW, PLN must pay a Take or Pay penalty to the private electricity producer. In this case, it is necessary to schedule a generator in order to meet the load requirements and not be subject to a Take or Pay penalty.

Generator scheduling aims to obtain economical costs by considering various constraints such as rotating reserves, heat rates, minimum up / down time, and minimum operational costs. Generating scheduling is more complex when compared to economic dispatch so a method is needed to solve this problem if the system is used on a large scale. Based on the function of generating scheduling costs are divided into non-convex and convex costs. To schedule a generator can be solved mathematically or with artificial intelligence. The priority list and Lagrange can only complete the convex cost function [1]. Artificial intelligence or heuristic approach methods can solve non-convex cost functions and can solve in large systems[2]

Load scheduling can be mathematically solved by the Quadratic Programming and Unit Decommission (QPUD) method, this method can schedule generating units precisely and convergently and is able to complete scheduling by considering minimum up / down time, backup operations, and load balances [3]. Conventional methods such as the priority list are compared to the lagrange method [4]. With proper initialization, the lagrange method gets an economical scheduling value. However, when compared to the priority list method, the lagrange method has the disadvantage of having a limited state so that it can only schedule generators on small systems. To complete the scheduling of more complex plants and systems used on a large scale, the artificial intelligence method is one of the...
recommended methods such as the Artificial Bee Colony Algorithm (ABC) [5]. Load scheduling in addition to considering minimum up / down time, backup operations, and load balance, can also consider contingencies [6] Binary Particle Swarm Optimization (BPSO) [7]. Artificial intelligence is one of the methods most developed by researchers today. Artificial intelligence is divided into three namely neural networks, fuzzy systems, and evolutionary computing [8].

In this research, artificial intelligence used is Binary Particle Swarm Optimization (BPSO). In scheduling the generator using the priority list method and finished with BPSO. Load scheduling for 24 hours by considering take or pay as well as minimum up / down time limits, backup operations, and load balance. The system used is the Java-Bali 500 kV system. Figure 1 shows the workflow scheduling diagram using BPSO. Meanwhile, to determine Take or Pay using the gamma search method shown in Figure 2 [9].

The cost function in general generator scheduling can be written in the following equation:

\[
F_H = \sum_{h=1}^{H} \sum_{n=1}^{N} \left[F_{nh}(P_{nh}) + STC_{nh}(1 - U_{n(h-1)}) \right] U_{nh} + DC_{nh}(u_n(h - 1)^0)
\]

with

\[
F_{nh}(P_{nh}) = a_n(P_{nh})^2 + a_n(P_{nh}) + c_n \left| e_n \sin(f_n x(P_{nh} - P_n)) \right|
\]

\[STC_{nh} \text{ is} \]

\[HSC_n \text{ if } MDT_n \leq T_n^{off} \leq MDT_n + CSH_n\]

\[CSC_n \text{ if } T_n^{off} > MDT_n + CSH_n\]

with

\[
\sum_{n=1}^{N} P_{nh} = D_h
\]

\[
\sum_{n=1}^{N} P_{nh}(max) \geq D_h + R_h = D_h
\]

\[U_{nh}P_n(max) \geq P_n \geq U_{nh}P_n(min)\]

\[T_n^{off} \geq MDT_n\]

\[T_n^{on} \geq MUT_n\]

Where:

- \(F_H\) Operation cost every h
- \(N\) Number of each generating unit
- \(H\) Hourly number for each scheduling period
- \(n\) Generator index per unit
- \(h\) Hourly number
- \(STC_{nh}\) Start Up Cost unit n every hour h
- \(HSC_n\) Hot Start Up Cost unit n
- \(CSC_n\) Cold Start Up Cost unit n
- \(U_{nh}\) ON / OFF each unit n at h
- \(DC_{nh}\) Shut Down Cost unit n
- \(a_n, b_n, c_n, e_n, f_n\) Cost function of each unit n
- \(P_{nh}\) Generating each unit n at h hours
- \(P_n(max)\) Maximum generation each unit n
- \(P_n(min)\) Minimum pembangkit each unit n
- \(D_h\) Peak Load at h
\(R_h \)
Spinning reserve at h

\(T_{on}/T_{off} \)
On or Off time

\(MUT_n \)
Minimum Up Time each unit n

\(MDT_n \)
Minimum Down Time each unit n

BPSO is the development of Particle Swarm Optimization (PSO) [10], the difference of the two methods is the update and position speed. Following of the BPSO steps are:

1. **Population Initialization**

The parameters used for initialisation consist of, the number of particles represented as the number of generators, the number of iterations, constant variables and manipulation variables. Generating initial initial population in binary form. To determine the initial initialization can be written as follows [10]

 Initial Position \(X_i = (x_{i1}, x_{i2}, ..., x_{iD}) \) \((10)\)

 for \(i = 1,2,3 ..., m \) and velocity \(V_i \) for \(i = 1,2, ..., m \) with all particles randomly set.

2. **Update speed and position**

 For each article \(i \), with dimension \(d \),

 \[V_{id}(t) = w * V_{id}(t-1) + c_1 * r_1 * (\|pbest\|_i - x_{id}(t-1)) + c_2 * r_2 * (\|gbest\|_d - x_{d}(t-1)) \] \((11)\)

 \[X_{id}(t) = 1, \text{if } r_2 < \frac{1}{1 + \exp(-vid(t-1))} \] \((12)\)

 Where \(w \) is the weighting of inertia, \(c_1 \) and \(c_2 \) are constant speeds, \(r_1 \) and \(r_2 \) are generated randomly with a range \([0,1]\)

3. **Fitness function evaluation.**

 Evaluate the fitness function using equation (1). If it violates the limitation of the fitness function value, a penalty factor will be imposed so that the particle candidate will not be selected as a good solution candidate. After evaluating the fitness function, update the particle position:

 if \(f(x_i) > f(\|pbest\|_i) \) then update \(\|pbest\|_i = x_i \), for \(k \) is the area of \(x_i \) if \(f(x_k) > f(\|gbest\|_i) \), so the value \(\|gbest\|_i = x_k \), where \(f() \) is an evaluation of the fitness function

4. **Termination of iteration**

 Repeat steps 2 and 3, until you find the position and speed that has been determined by the fitness function evaluation
Read the data (Load, Particle, variable, maximum iteration)

Start

Initial population

Calculate Economic Dispatch and Take or Pay with Gamma Search

Evaluate Fitness Function

Value of G best and P best

Maximum Iteration

Scheduling Generator

Finish

Figure 1. Flow Chart of Load Scheduling Using BPSO

Determine the value of y randomly

For interval j with Load = Pload j, evaluate economic dispatch with:

\[\frac{\partial G_j}{\partial P_j} = \lambda_j, j = 1 \ldots N \]

\[\frac{\partial G_j}{\partial P_j} = \lambda_j \]

\[\varepsilon = \sum_{j=1}^{J_{max}} \eta_j q_{T_j} - q_{TOT} \]

\[\varepsilon \leq \text{Tolerance}? \]

Yes

Finish

Figure 2. Take or Pay Calculation Flow Chart with Gamma Search.

2. Results And Discussion

Table 1. 500 kV Java-Bali generator data

Unit	Generator Cost Coefficient (Rp/hour)	P min (MW)	P max (MW)	Fuel Cost (Rp/MBtu)		
	a	b	c			
Suralaya	-0.0015	34.2155	275.1741	1600	3400	0.41
Muaratawar	-0.0512	178.862	624.9346	600	1400	1.25
Tanjung Jati	-0.0019	27.2541	348.5491	1200	2100	0.85
Gresik	-0.0003	52.8313	538.3751	900	2100	0.26
Paiton	-0.0083	151.780	-212.5033	1800	4300	1.74
Grati	-0.0061	45.6393	-119.3939	290	800	0.38

Java-Bali electricity generation daily load data on April 20, 2016, and made into 4 periods [11]. The Heat Rate value is obtained from the factory specifications. The Java-Bali plant's Heat Rate data is shown in Table 2. PT PLN is bound by a contract with a private power plant of 206,000 MW per day, so the load scheduling is carried out taking into account the Take or Pay contract which must fulfill the contract within a day so as not to be subject to penalties or fine. Optimal load scheduling aims to reduce fuel costs to a minimum. The results of the Java-Bali power plant scheduling simulation using Lagrange are shown in Table 3 while using BPSO are shown in Table 4. The simulation results using lagrange are obtained by generating power by meeting the needs with a total power of 228,319 MW and a total cost of Rp 379,318,526,529.78 while BPSO generates a total power of 205,860 MW and a total cost of Rp 1,192,518,224,448.21 to a difference of Rp 260,066,704,081.57, making it cheaper to
use the BPSO method compared to the lagrange method. If using a Lagrange the total power exceeds the Take or Pay contract that has been specified. While the total power using the BPSO method the total power is less than the Take or Pay contract with an error of 0.068%.

Table 2. Heat Rate of the Java-Bali generator 500 kV

Unit	Power Generated (MW)	Heat Rate (Btu/kWh)						
	1	2	3	4	1	2	3	4
Suralaya	1703	2221	2561	3247	76492.24	7493.38	73454.29	71796.5
Muara Tawar	666	826	993	1140	112582.8	112253.6	100783.9	98182.3
Tanjung Jati	1227	1525	1812.8	1982.8	28800.93	28483.89	28186.52	27978.62
Gresik	1141	1382	1649	1973	191161.2	189915.8	189237.6	188630.8
Paiton	2071.5	2792.5	3358.75	4005	76161.72	73013.27	70840.3	68897.35
Grati	320	400	560	795.6	124583.9	111932.4	108890.5	106665.5

Table 3. 500 kV Java-Bali Power Plant Scheduling Simulation Results by Using Lagrange

Hour (MW)	Power (MW)	Suralaya	Muara tawar	Tanjung Jati	Gresik	Paiton	Grati	Cost (Rp/hour)
1	8350	8553	2090	0	1980	789	2928	0
2	8197	8263	2068	0	1980	621	2928	0
3	8138	8318	2063	0	1980	582	2928	0
4	8132	8318	2063	0	1980	582	2928	0
5	8304	8494	2087	0	1980	738	2928	0
6	8218	8405	2075	0	1980	657	2928	0
7	8138	8319	2063	0	1980	582	2928	0
8	9256	9551	2236	0	1980	945	2928	697
9	9237	9543	2252	0	1980	945	2928	673
10	9337	9475	2090	1324	1980	238	2928	150
11	9320	9459	2098	1308	1980	238	2928	150
12	9318	9457	2098	1306	1980	238	2928	150
13	10361	10508	2158	1980	1980	697	2928	0
14	10454	10609	2171	1980	1980	785	2928	0
15	10401	10552	2164	1980	1980	735	2928	0
16	10401	10552	2164	1980	1980	735	2928	0
17	10454	10609	2171	1980	1980	785	2928	0
18	11292	11526	2299	1980	1980	945	2928	629
19	11301	11536	2300	1980	1980	945	2928	638
20	10734	10912	2211	1980	1980	898	2928	150
21	10454	10609	2171	1980	1980	785	2928	0
22	8885	9142	2183	0	1980	945	2928	341
23	7997	8167	2044	0	1980	449	2928	0
24	7196	7338	1665	0	1980	0	2928	0

doi:10.1088/1757-899X/1010/1/012013

Hour	Load (MW)	Power (MW)	Suralaya	Muara Tawar	Tanjung Jati	Gresik	Paiton	Grati	Cost (Rp/hour)
1	8350	8553	2095	0	1816	980	3089	0	2,334,714
2	8197	8263	2072	0	1972	986	3098	0	2,400,216
3	8138	8318	2072	0	1937	933	2468	0	2,211,709
4	8138	8318	2082	0	1367	764	3578	0	2,211,709
5	8304	8494	2090	0	1346	874	3209	0	2,186,323
6	8218	8405	2077	0	1904	846	3289	0	2,186,323
7	8138	8319	2069	0	1368	978	3227	0	2,110,332
8	9256	9551	2240	0	1579	864	3213	897	3,120,032
9	9237	9543	2261	0	1487	987	3097	978	4,128,128
10	9337	9475	2190	1355	1478	892	2487	638	7,110,138
11	9320	9459	2198	1209	1238	792	3198	293	6,139,198
12	9318	9457	2198	1431	1323	927	3221	348	6,019,109
13	10361	10508	2160	1978	1083	872	3218	983	8,135,418
14	10454	10609	2215	1967	1479	928	3098	0	10,193,56
15	10401	10552	2181	987	1585	627	3218	0	7,921,202
16	10401	10552	2176	923	1974	821	3127	0	9,013,202
17	10454	10609	2341	977	1390	921	3189	0	9,013,202
18	11292	11526	2344	1815	789	917	3812	782	8,019,691
19	11301	11536	2211	1753	987	934	2341	812	8,139,560
20	10734	10912	2173	1920	908	819	3109	267	9,060,50
21	10454	10609	2191	1867	907	712	3179	0	5,418,139
22	8885	9142	2051	0	1139	983	3109	539	6,920,161
23	7997	8167	1670	0	1940	791	3501	0	2,371,277
24	7196	7338	651	0	1497	0	3417	0	1,552,123

3. Conclusion

With the BPSO method the total cost of generation is more minimum compared to the lagrange method. But in the BPSO method it still has a big error when considering Take or Pay. While the lagrange method, the total power compared to Take or Pay results exceeds the specified contract. So in this case the BPSO method is better when compared with the lagrange method. For further research it is expected that the Take or Pay error is close to 0% so as not to harm the PLN.
4. References

[1] Raj VM, Chanana S. Analysis of Unit Commitment Problem Through Lagrange Relaxation and Priority Listing Method. 6.

[2] Wati T, Suheta T, Masfufiah I. Pengoptimalan Pembehanan Ekonomis dengan Mempertimbangkan Emission Constraint menggunakan Hybrid CPSO. Jurnal EECCIS 2019; 13: 46–50.

[3] Sawa T, Furukawa K. Unit commitment using quadratic programming and unit decommitment. In: 2012 IEEE Power and Energy Society General Meeting. San Diego, CA: IEEE, pp. 1–6.

[4] Govardhan M, Roy R. Profit based unit commitment using Gbest Artificial Bee Colony algorithm. In: 2013 3rd International Conference on Electric Power and Energy Conversion Systems. Istanbul, Turkey: IEEE, pp. 1–6.

[5] Sartika N, Abdullah AG, Hakim DL. Scheduling Economical Thermal Power Plant 500 KV Java-Bali System Using Lagrange Multiplier. IOP Conf Ser: Mater Sci Eng 2017; 180: 012073.

[6] Bigdeli M, Karimpour A. Optimal reserve requirements and units schedule in contingency Constrained Unit Commitment. In: 2014 14th International Conference on Environment and Electrical Engineering. Krakow: IEEE, pp. 443–448.

[7] Wibowo RS, Utama FF, Putra DFU, et al. Unit commitment with non-smooth generation cost function using binary particle swarm optimization. In: 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2016, pp. 571–576.

[8] Nath RP, Balaji VN. Artificial Intelligence in Power Systems. 7.

[9] Wood AJ, Wollenberg BF, Sheblé, et al. Power Generation, Operation and Control. 658.

[10] Chakraborty B. Binary Particle Swarm Optimization Based Algorithm for Feature Subset Selection. In: 2009 Seventh International Conference on Advances in Pattern Recognition. 2009, pp. 145–148.

[11] Sartika N, Abdullah AG, Hakim DL. Scheduling Economical Thermal Power Plant 500 KV Java-Bali System Using Lagrange Multiplier. IOP Conf Ser: Mater Sci Eng 2017; 180: 012073.