Design and Analysis of Optical Amplifiers for 5G Applications: A Survey

Isha Choudhary¹, Amit Kumar Garg²
¹(Electronics and Communication Engineering Department, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
Email: ishakanyan@gmail.com)
²(Electronics and Communication Engineering Department, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
Email: garg_amit03@yahoo.co.in)

Abstract:

Optical amplifier is the foundational optoelectronic component required for perceiving prolong optical fiber communication links as well as networks. In long haul transmission attenuation and distortion occur and to resolve this problem need of optical amplifiers arises. This paper critically reviewed and analyzed both single and hybrid fiber amplifier for DWDM system. The design is imitated using Optisystem software to attain least BER, output power and large Q-factor. The survey has revealed that hybrid amplifiers performed better compared to existing single amplifier. It is concluded that various combination of hybrid amplifiers enhance the performance of optical networks and reduce issues related to an individual amplifier.

Keywords - Optical fiber amplifiers, WDM, Q-factor, BER, Output power.

I. INTRODUCTION

In recent years, there is increase in transmission of high capacity signals over prolong distances using optical transmission networks and systems. To increase high speed communication, DWDM system prefer in which bandwidth is divided into distinct channels with single information signal at different wavelengths. The transmission of high speed data over telecommunication networks in absence of repeaters will continue to grow exponentially and optical amplifiers will be great preference. Thus to increase efficiency of DWDM system several type of optical fiber amplifiers has been used.

Simply optical amplifiers is a fiber laser with no positive feedback and classified into two different categories such as linear optical fiber amplifiers (Er+ doped fiber amplifier) and non-linear optical fiber amplifier (Brillouin and Raman amplifiers). Most popular linear OFA is EDFA because of low loss in conventional communication band. While RFA is one of the common nonlinear FA due to small size, high coupling losses and noise figure, generation of cross talk with wide amplification bandwidth.

Optical amplifier provides data over large distances without any conversion from optical domain to electronic domain. Following are the types of various optical amplifiers:

A. SOA
It is the small size amplifier which uses semiconductor to amplify signals. An antireflection coat is used at the input along with output faces which leads to the reduction in end-face reflection. The multiple wavelengths get amplified result in quick response provided with crosstalk effects.

B. RAMAN
The amplification results from the signal and pump laser non-linear interactions which require an extreme pump power. It uses raman effect.

C. EDFA
It is widely used for large distance communication. It is formed by doping Er ions which can be efficiently pumped to provide large gain. It gives flat gain characteristics, low noise.

D. HYBRID
The adequate use of bandwidth using combination of optical amplifiers with different wavelengths connected either in series or in parallel results in hybrid amplifier. The various hybrid configurations are EDFAs and EDFAs, EDFAs and SOAs, EDFAs and RAs, TDFAs and FRAs, TDFAs and EDFAs etc. Till now we are dealing with two stage hybrid amplifiers. In future, scope of three stage amplifier may be discovered.
II. LITERATURE SURVEY

In literature survey, numerous WDM configurations using optical amplifiers have been proposed to get improved Q-factor, BER, noise figure, output power, OSNR, eye diagram. A.k.Abass et al. [1] investigated EDFA and RFA for different amplifier length, optimum pump power and get improved gain, noise figure, and 3dB bandwidth. N Saidin et al. [2] reviewed the performance of Raman-EDFA hybrid amplifiers using flat gain bandwidth, flat gain wavelength, flat gain. Anil Agarwal et al. [3] compared various single and hybrid RAMAN and EDFA to get improved output power, least BER, Q-factor where EDFA-EDFA performs better. Jyoti Gujral et al. [4] study WDM system with and without EDFA to get improved Q-factor, BER, Jitter, output power. M.M.Ismail et al. [5] demonstrated 16-channel WDM system with 8m fiber length consist of EDFA with improved output power and noise figure. Inderpreet Kaur et al. [6] presented that T DFA-EDFA gives improved Q-factor for more number of channels than EDFA-T DFA. Priyanka Sharma et al. [7] analyzed 64 channel DWDM system for distance 60km to get improved Q-factor and BER. Mehtab Singh et al. [8] proposed review on hybrid amplifiers in which EDFA-SOA are not generally realized in long-haul communication. Md. Moshiur Rahman et al. [9] proposed 16 and 32 channel DW DDM system with distance 150km to 450km to get improved gain, Q-factor, BER. Bars Altiner et al. [10] investigated 250 channel spacing 15GHz get improved gain, gain flatness for different optimum pump power and fiber length. Banaz O.Rashid et al. [11] demonstrated EDFA at 10Gbps and obtained different variations in gain and noise figure which are the function of fiber length, pump power, Erbium ion density which do not change when bit rate increased. B.Suneetha et al. [12] demonstrated 4channel WDM system with channel spacing 0.3nm in which intraband cross talk result in increase BER with increase number of channels. Seraji FE et al. [13] investigate different amplifier for different distance to get improved performance and Q-factor using different modulation techniques. Simranjit Singh et al. [14] demonstrated Raman-EDFA amplifier with more number of channels to get improved gain without using gain-flattening technique. Yukihiro Tsuchida et al. [15] presented 7-multicore EDFA for Full C-band and get improved gain and low noise figure. Annapurna Kumari et al. [16] proposed WDM system with low number of channels at different data rate and wavelength to get maximum Q-factor and improved flat gain. Prabhdeep Kaur et al. [17] demonstrate 32 channel*10Gbps with wavelength 1550nm using EDFA and NRZ modulation to achieve BER and Q-factor. Navneet Dayal et al. [18] demonstrated performance analysis of WDM system gives better SNR, reliability using optical amplifier after MUX and DEMUX. Deepti Ahlawat et al. [19] compared WDM system having EDFA and FBG combination using RZ and NRZ at different fiber length to get improved Q-factor. Kulwinder Singh et al. [20] compared pumping schemes in Raman amplifier to achieve high OSNR and Q-factor.
It is found that with increase in fiber span, the gain decreases, noise figure increases, BER increases but by using suited hybrid configuration according to the need of the user, improved results has been obtained like improved gain, flat-gain bandwidth, Q-factor and output power, low noise figure and BER for long haul communication.

III. DEMONSTRATION OF EXISTING DESIGNS

There are various proposed models for WDM system integrated with both single and hybrid optical fiber amplifiers. The simulates model consist of DWDM transmitter which includes data source pseudorandom bit sequence generator, NRZ pulse generator, CW laser source, Mach-Zehnder modulator, DWDM multiplexer, single as well as hybrid optical fiber amplifiers, DWDM de-multiplexer, DWDM receiver which include PIN photodetector, BER. The performance of model is analyzed using BER analyzer, Dualport WDM analyzer and Optical spectrum analyzer used for measuring BER, signal power ad spectrum at distinct level. Designs have different number of channel, data rate, channel spacing, input signal power, pump wavelength, fiber span, modulation format. The single and hybrid amplifiers lead us to various designs which is reviewed and critically analyzed below.

Design no.	Specifications of amplifiers	Configuration
1.	Single EDFA configuration[1,2,3,4,5,7,9,10,11,13,15,17,19]	![Design 1 Configuration](image1)
	• Frequency= 1530nm	
	• Frequency spacing=5 nm	
	• Power= -26 dBm	
	• Er ion density=1100 ppm	
	• EDFA length= 4m	
2.	Single RFA configuration[1,3,13,20]	![Design 2 Configuration](image2)
	• Frequency= 1520 nm	
	• Frequency spacing= 10nm	
	• Power= -40dBm	
	• Raman length= 45 km	
3.	Hybrid EDFA-EDFA configuration[3]	![Design 3 Configuration](image3)
	• Frequency= 193.1 THz	
	• Frequency spacing= 100 GHz	
	• EDFA length= 5m	
IV. RESULT AND DISCUSSION

The configurations of distinct single as well as hybrid optical fiber amplifiers such as EDFA, Raman, EDFA-RAMAN, EDFA-EDFA, RAMAN-RAMAN, RAMAN-EDFA are analyzed and compared for 160 channels*10Gbps DWDM system using high Q-factor, output power, low BER at various distances from 50 to 250km using space of 50km. Irrespective of the design studied EDFA-EDFA perform better than any other configurations having 9.38 Q-factor, -20.90 BER, -20dBm output power at 150km distance.

V. CONCLUSION & FUTURE SCOPE

The performance of different single and hybrid amplifiers has been analyzed. Hybrid optical fiber amplifiers proved to be best suited for high transmission capacity telecommunication networks. Based on the above results and its analysis, it is concluded that DWDM system integrate with hybrid configurations for very large distances with refined bandwidth in addition to nonlinear effects and control impairment. In future WDM system performance can be enhanced using illustration of various parameters like BER, gain, output power, Q-factor with the hybrid EDFA-TDFA, EDFA- PDFA and various advanced optical technology configurations having
high performance at lower cost will be an appealing solution for advance telecommunications networks.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deep and sincere gratitude to my guide Dr. Amit Kumar Garg, Professor of ECE Dept., DCRUST, Murthal for giving me the opportunity to do research and providing invaluable guidance throughout this research. I am obliging to my parents and faculty members for their support and co-operation.

REFERENCES

1. A. k. Abass, Mohammed J. Abdul-Razak, Haneen H. Mohammed, Suad M. Kadhim, Mohammed A. Salih, “Optical Fiber Amplifiers: Optimization and Performance Evaluation,” Journal of Engineering Sciences, vol. 12, no. 01, pp.66-72, 2019.

2. N Saidin N I A Taib, M S W Abidin, N F Hasbullah, A A M Ralib, “Performance Configuration of Raman-EDFA Hybrid Optical Amplifier for WDM Applications,” IOP Conference Series: Materials Science and Engineering, vol. 210, no. 1, pp. 012033, 2017.

3. Anil Agarwal, Sudhir Kumar Sharma, “Performance Comparison of Single &Hybrid Optical Amplifiers DWDM System Using Optisystem,” IOSR Journal of Electronics and Communication Engineering, vol. 9, no. 1, ver. VI, pp. 28-33, 2014.

4. Jyoti Gujral, Maninder Singh, “Performance Analysis of 4-Channel WDM System with and without EDFA,” International Journal of Electronics & Communication Technology, vol.4, no. 3, 2013.

5. M. M, Ismail, M.A.Othman, Z.Zakaria, M.H.Misran, M.A.Meer Salib, H.A.Sulaiman, M.N.Shah Zainudin, M.A.Mutalib, “EDFA-WDM Optical Network Design System,” Malaysian Technical Universities Conference on Engineering & Technology, vol. 53, pp. 294-302, 2013.

6. Inderpreet Kaur, Neena Gupta, “Comparative Analysis of Hybrid TDFA-EDFA and Hybrid EDFA-TDFA Configurations for 96 Channels DWDM System for S+C Bands,” 16th International Conference on Transparent Optical Networks, Graz, Austria, 2014 IEEE.

7. Priyanka Sharma, Arun Kumar, V.K. Sharma, “Performance Analysis of High Speed Optical Networks based on DWDM,” Internation Conference on Issues and Challenges in Intelligent Computing Techniques, 2014 IEEE.

8. Mehtab Singh, “A Review on Hybrid Optical Amplifiers,” Journal of Optical Communication, vol. 39, no. 3, 2017.

9. Md. Moshir Rahman, MD Shahrukh Adnan Khan, Md. Rejwanul Hossain, S M Raihan, Manobendu Sarker, “Simulation Analysis of EDFA in Optical Fiber with WDM System in the Perspective of Bangladesh,” International RF and Microwave Conference, 2018 IEEE.

10. Baris Altiner, N. Ozlem UNVERDI, “Modelling – Simulation and Gain Flattening Improvements for an EDFA,” International Symposium on Optomechatronic Technologies, 2009 IEEE.

11. Banaz O. Rashid, Perykhan. M. Jaff, “Gain and Noise Figure Performance of EDFA at 10Gbps,” 2008.

12. B. Suneetha, J. Mrudula, “BER Analysis of an Optical Cross-Connect due to Cross-talk in DWDM System,” Proceedings of 3rd National Conference on Latest Trends in Signal Processing.ISBN 2014.

13. Seraji FE, Kiaee MS, “Comparison of EDFA and Raman Amplifiers Effects on RZ nad NRZ Encoding Techniques in DWDM Optical Network with Bit Rate of 80 Gbps,” Physics & Astronomy International Journal, vol. 2, no. 1, pp. 116-121, 2018.

14. Simranjit Singh, R. S. Kaler, “Flat-Gain L-Band Raman-EDFA Hybrid Optical Amplifier for Dense Wavelength Division Multiplexed System,” IEEE Photonics Technology Letters, vol.25, no. 3, pp.250-252, February 1,2013.

15. Yukihiro Tsuchida,, Koichi Maeda, Kengo Watanabe, Toshiharu Ito, Kiyoshi Fukuchi, Masato Yoshida, Yu Mimura, Ryuichi Sugizaki, Masataka Nakazawa, “Multicore EDFA for DWDM Transmission in Fill C-band,” Optical Fiber Communication/National Fiber Optic Engineers Conference Technical Digest, 2013.

16. Annapurna Kumari, Pankaj Srivastava, “Performance Analysis of 16-Channel CWDM System with EDFA and SOA Amplifiers,” 3rd International Conference on Microwave and Photonics, pp. 9-11, February, 2018.

17. Prabhdeep Kaur, Amit Gupta, Jaskaran Kaur, “Simulative Analysis of DWDM Systems Using Loop
Control in Inter Satellite Optical wireless Communication Channel for 10,000 km Long Distance Transmission,” Springer India 2016, Emerging Research in Computing, Information, Communication and Applications, pp. 131-142, DOI 10.1007/978-81-322-2553-9_13.

18. Navneet Dayal, Preeti Singh, Pardeep Kaur, “Performance Enhancement in WDM-FSO System Using Optical Amplifiers Under Different Rain Conditions,” Springer Science + Business Media Singapore 2017, Proceeding of International Conference on Intelligent Communication, Control and Devices, Advances in Intelligent Systems and Computing 479, pp. 293-298, DOI 10.1007/978-981-10-1708-7_34.

19. Deepti Ahlawat, Payal Arora, Suresh Kumar, “Performance Evaluation of Proposed WDM Optical Link Using EDFA and FBG Combination,” Journal of Optical Communications, vol. 40, no. 2, pp. 101-107, 2019.

20. Kulwinder Singh, Manjeet Singh Patterh, Manjit Singh Bhamrah, “A Comparative Analysis of Dual-Order Bidirectional Pumping Schemes in Optical Fiber Raman Amplification,” Journal of Optical Communications, vol. 40, no. 1, pp. 1-6, 2019.

21. www.optcore.net accessed on 25/1/2020.