Effects of *Panax ginseng* on hyperglycemia, hypertension, and hyperlipidemia: A systematic review and meta-analysis

Soo Hyun Park, Sangwon Chung, Min-Yu Chung, Hyo-Kyoung Choi, Jin-Taek Hwang, Jae Ho Park.

A Research Group of Healthcare, Korea Food Research Institute, Republic of Korea

1. Introduction

The development of modern society has led to a convenient and affluent lifestyle for many that, combined with excessive nutrition, fast food consumption, reduced physical activity, and excessive stress, has become a major cause of various metabolic diseases. Typical metabolic diseases include diabetes, hypertension, and hyperlipidemia, which lead to serious conditions such as cardiovascular disease, atherosclerosis, cerebrovascular disease, and cancer, increasing mortality rates. Since metabolic diseases are usually caused by lifestyle, multiple diseases can develop simultaneously as age increases. In particular, metabolic syndrome is a combination of risk factors for various metabolic diseases showing abnormal levels. When various metabolic diseases are present, the incidence and mortality of severe diseases are remarkably increased [1–3]. The main cause of metabolic syndrome and metabolic diseases is insulin resistance [1,4,5]. Therefore, managing obesity, the main cause of insulin resistance, is as important as monitoring blood glucose, blood pressure, and blood lipid levels. The progression of various metabolic diseases, including metabolic syndrome, toward the onset of associated conditions can be mitigated by improving lifestyle habits. Therefore, many people are beginning to pay ample attention to correcting their eating habits and lifestyle to prevent diseases; in this vein, consumer demand for functional foods that support health also continues to increase.

Among the various functional foods, products made from ginseng are some of the most commonly consumed globally. Ginseng is a perennial plant of the Araliaceae family and a medicinal crop that has long been widely used in Asia. Ginseng includes various species such as *Panax ginseng*, *Panax quinquefolium*, and *Panax japonicas*. Of these, *P. ginseng*, mainly grown in Korea and China, accounts for the largest proportion of global ginseng production [6]. The main component of *P. ginseng* is ginsenoside, one of the saponins; to date, more than about 100 kinds of ginsenosides have been reported [7,8]. To maximize the pharmacological activities of ginseng by increasing the...
bioavailability of ginsenoside, red ginseng, black ginseng, and fermented ginseng, which have undergone steaming and fermentation processes, are also widely consumed [9–11]. The outstanding pharmacological activities of _P. ginseng_ have been reported by many papers and various reviews, systematic reviews, and meta-analyses have been conducted with the accumulation of numerous data. Most of these studies were on cancer [12–15], diabetes [16–19], cardiovascular disease [20–24], and neurodegenerative diseases [25–29]. Regarding metabolic diseases, review articles on blood glucose [16–19], blood lipids [30], and obesity [31,32] have been published, while systematic reviews and meta-analyses of randomized controlled trials (RCTs) have only covered blood glucose [18] and blood lipids [30] to date. In particular, in the case of the blood glucose study, only Korean Red ginseng was included as the investigational product, while the study population was limited to those patients with type 2 diabetes [18]. In addition, until now, no investigation has comprehensively and systemically reviewed the markers of _P. ginseng_ related to metabolic diseases such as blood glucose, blood pressure, body fat, and blood lipids.

Given the growing aging society with a high probability of being exposed to multiple diseases at the same time and since the risk of metabolic disease is constantly increasing, it is important to reveal the multitarget efficacy of functional ingredients on metabolic diseases. Therefore, in this study, we analyzed the clinical effects of _P. ginseng_ on metabolic parameters representing various metabolic diseases that are increasingly crucial factors to comprehend in terms of prevention and treatment. For this, a systematic review and meta-analysis were conducted by selecting RCTs that measured the effects of _P. ginseng_ on metabolic parameters in various study populations.

2. Methods

2.1. Study registration

The study protocol (CRD42020208191) was registered in the PROSPERO database (https://www.crd.york.ac.uk/PROSPERO/).

2.2. Criteria for considering studies

The studies included in this systematic review and meta-analysis were RCTs of _P. ginseng_ on metabolic parameters. Studies...

Fig. 1. Flow diagram of the included studies.
Table 1
Characteristics of included studies

No.	First author (Year), Location	Study design	Types of interventions	Sample size	Duration (weeks)	Efficacy evaluation (metabolic marker)
			RCT, parallel	69 (23/group)	8	BMI, SBP, DBP
1	Kim (2012), South Korea		RG 300 mg or RG 600 mg or placebo			
2	Reay (2009), U.K.	crossover	Study 1: G115 200 mg or placebo Study 2: Cheong Kwan Jang 200 mg or placebo	Study 1: 23 Study 2: 14	8	HbA1c, FG, FI
3	Bang (2014), South Korea	parallel	RG 5 g or placebo	60 (30/group)	12	BMI, SBP, DBP, TG, TC, HDL-C, LDL-C, FG, PG, glucose AUC, HbA1c, FG, PI, PI, insulin AUC, TC, HDL-C, LDL-C, weight, BMI, WC, SBP, DBP
4	Choi (2018), South Korea	parallel	Ginseng berry 1 g or placebo	72 (34 in the ginseng berry group, 38 in the placebo group)	12	FG, FG, PI, HbA1c, TC, TG, HDL-C, LDL-C, TC, HbA1c
5	Kim (2011), South Korea	parallel	RG 780 mg or placebo	46 (23/group)	12	FG, FG, PI, HbA1c, TC, TG, HDL-C, LDL-C, weight, BMI, WC, SBP, DBP
6	Ma (2008), Hong Kong	crossover	Ginseng 2.214 g or placebo	20 (10/group)	4	FG, FG, PI, glucose AUC, insulin AUC
7	Oh (2014), South Korea	parallel	Fermented RG 2.7 g or placebo	42 (21/group)	4	FG, FG, glucose AUC, PI, TC, HDL-C, LDL-C, TG
8	Park (2020), South Korea	parallel	RG 3 g or placebo	70 (35/group)	24	BMI, SBP, DBP, HbA1c, FG, FI
9	Park (2020), South Korea	parallel	RG 3 g or placebo	70 (35/group)	24	BMI, SBP, DBP, HbA1c, FG, PI, TC, HDL-C, LDL-C
10	Park 2014, South Korea	parallel	Ginseng 960 mg or placebo	23 (12 in the ginseng group, 11 in the placebo group)	8	FG, FG, glucose AUC, PI, PI, insulin AUC
11	Reeds (2011), U.S.	parallel	RG 3 g for 2 wks and then 8 g for 2 wks, ginsenoside Re 250 mg for 2 wks and then 500 mg for 2 wks, or placebo	15 (5/group)	4	Weight, BMI, %BF, FG, glucose AUC, FG, PI, insulin AUC, HbA1c, TC, TG, HDL-C, LDL-C, HbA1c, FG, PI, glucose AUC, PI, PI, insulin AUC
12	Vuksan (2008), Canada	crossover	RG 6 g or placebo	39	12	
13	Yoon (2012), South Korea	parallel	Ginseng 1.5 g, 2 g, 3 g, or placebo	72 (18/group)	8	FG, FG, HbA1c
			RCT, parallel	68 (34/group)	12	BMI, %BF, FG, PI, TC, HDL-C, LDL-C, TG
16	Cho (2013), South Korea	parallel	RG 6 g or placebo	68 (34/group)	12	BMI, %BF, FG, PI, TC, HDL-C, LDL-C, TG
17	Kim (2002), South Korea	parallel	RG, exercise, exercise and RG, or placebo	28(7/group)	12	Weight, %BF, TC, HDL-C, LDL-C, TG
18	Kim (2002), South Korea	parallel	Exercise, RG, exercise + RG, or placebo	28(7/group)	12	TC, TG, HDL-C, LDL-C, weight, %BF
19	Delui (2013), Iran	parallel	Ginseng 500 mg or placebo	40 (20/group)	8	TC, TG, HDL-C, LDL-C, FG
20	Jung (2016), South Korea	parallel	RG 3 g or placebo	72 (36/group)	4	BMI, SBP, DBP, FG, TC, HDL-C, FI
21	Rhee (2011), South Korea	parallel	RG 3 g or placebo	80 (40/group)	12	FG, TC, LDL-C, TG, HDL-C, SBP, DBP
22	Cho (2013), South Korea	parallel	RG 6 g or placebo	68 (34/group)	12	BMI, %BF, FG, PI, TC, HDL-C, LDL-C, TG
23	Kim (2002), South Korea	parallel	RG, exercise, exercise and RG, or placebo	28(7/group)	12	Weight, %BF, TC, HDL-C, LDL-C, TG
24	Kim (2002), South Korea	parallel	Exercise, RG, exercise + RG, or placebo	28(7/group)	12	TC, TG, HDL-C, LDL-C, weight, %BF
25	Delui (2013), Iran	parallel	Ginseng 500 mg or placebo	40 (20/group)	8	TC, TG, HDL-C, LDL-C, FG
26	Jung (2016), South Korea	parallel	RG 3 g or placebo	72 (36/group)	4	BMI, SBP, DBP, FG, TC, HDL-C, FI

Healthy subjects

FGT or IGT or type 2 diabetic subjects

Prehypertensive or hypertensive subjects

Overweight or obese subjects

Hyperlipidemic subjects

Metabolic syndrome
with an intervention period lasting longer than four weeks were selected and there were no restrictions on the characteristics of the study subjects. Studies incorporating *Panax ginseng* as a part of a complex intervention were excluded from this investigation.

2.3. Outcome measures

The effects of *P. ginseng* supplementation on metabolic parameters were evaluated by focusing on the following items: glucose (glucose [fasting, 2-h postprandial, area under the curve (AUC)], insulin (fasting, 2-h postprandial, AUC), and hemoglobin A1c (HbA1c)), blood pressure [systolic blood pressure (SBP) and diastolic blood pressure (DBP)], body fat [body weight, body mass index (BMI), % body fat, and waist circumference (WC)], and lipid levels [total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)].

2.4. Search methods

The present study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. PubMed/Medline, the Web of Science, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) were chosen as databases for literature searches and were reviewed for eligible studies published until September 2020. Key search terms included the following: [(Korean ginseng) OR *(Panax ginseng* Meyer) OR (red ginseng)] AND [(glucose) OR (blood sugar) OR (glucose intolerance) OR (insulin resistance) OR (insulin sensitivity) OR (hyperglycemia) OR (hyperinsulinemia) OR (diabetes) OR (T2DM) OR (lipid) OR (lipid*) OR (cholesterol) OR (triglyceride) OR (hypertension) OR (blood pressure) OR (obesity) OR (overweight) OR (body weight) OR (body mass index) OR (body fat) OR (waist circumference) OR (waist-hip ratio)] AND [[clinical trial] OR [clinical study] OR (human study) OR (intervention)]. To locate additional studies, all reference lists of the selected articles were reviewed (Supplementary Table 1).

2.5. Selection of studies and data extraction

For the selection of eligible studies for inclusion, two reviewers independently screened the search results, the first focusing on titles and/or abstracts and the second focusing on the full text. Any disagreements were resolved by consensus; when a consensus was not reached, a decision was made involving a third reviewer. Two reviewers independently extracted the following data using a standardized data extraction format, with inconsistent results solved through confirmation and discussion of the original paper: first author, publication year, study design, subjects’ characteristics, types of interventions, and results of outcomes. Multiple supplement groups within one study were considered as individual data.

2.6. Assessment of the risk of bias

Two reviewers independently assessed the risk of bias among the included studies using the Cochrane risk of bias tool, which assesses the risk of bias in studies according to random sequence generation, allocation concealment, blinding of the subjects and personnel, blinding of the outcomes assessment, incomplete outcomes data, selective reporting, and other biases.

2.7. Statistical analyses

A meta-analysis was performed using Review Manager version 5.4 (Cochrane Collaboration, London, England) and R software version 4.1.0 (R Foundation for Statistical Computing, Vienna, Austria). The units of all evaluation markers were properly standardized. We used the mean change and standard deviation (SD) values of the markers to investigate the effect size of the collected data. For studies that presented only standard error (SE), SE was converted into SD by multiplying the square root of the sample size. Pooled data was analyzed using a fixed-effects model and the data were expressed as weighted mean difference (WMD) with 95% confidence interval (CI) values for continuous outcomes. Moreover, subgroup analysis was performed based on clinical conditions of the subjects. The I² statistic test was used to estimate the percentage of heterogeneity between studies; heterogeneity was confirmed if the I² value was 50% or more and, if heterogeneity was confirmed, data was analyzed by applying a random-effects model. A sensitivity analysis was conducted to estimate the effects of omission for each study. Publication bias was evaluated using funnel plot and Egger’s weighted regression test, and when it was judged to be statistically significant, the effect was adjusted using the “trim and fill” method [33]. A p-value of less than 0.05 was considered to be statistically significant.

3. Results

As a result of searching the literature databases to select RCTs that evaluated the effects of *P. ginseng* on metabolic parameters, a total of 1334 studies were collected after excluding duplicates. Of these, 1276 papers were further excluded following the title and/or

Table 1

No.	First author (Year), Location	Study design	Types of interventions	Sample size	Duration (weeks)	Efficacy evaluation (metabolic marker)
21	Park (2012), South Korea	RCT, parallel	RG 3 g or placebo	60 (30/group)	12	WC, SBP, DBP, TC, HDL-C, TG, FG, FI
22	Shin (2012), South Korea	RCT, parallel	RG 4.5 g or placebo	60 (29 in the KRG group, 31 in the placebo group)	12	SBP

Postmenopausal subjects

No.	First author (Year), Location	Study design	Types of interventions	Sample size	Duration (weeks)	Efficacy evaluation (metabolic marker)
23	Kim (2012), South Korea	RCT, parallel	RG 3 g or placebo	72 (36/group)	12	TC, LDL-C, HDL-C, TG

AUC, area under the curve; FG, fasting glucose; FI, fasting insulin; %BF, percent body fat; PG, postprandial glucose; PI, postprandial insulin; TC, total cholesterol; TG, triglyceride; WC, waist circumference
Fig. 2. Forest plot, sensitivity analysis, and publication bias of changes in glucose AUC: (A) forest plot, (B) sensitivity analysis, (C) publication bias.
Fig. 3. Forest plot, sensitivity analysis, and publication bias of changes in insulin AUC: (A) forest plot, (B) sensitivity analysis, (C) publication bias.
Fig. 4. Forest plot, sensitivity analysis, and publication bias of changes in SBP: (A) forest plot, (B) sensitivity analysis, (C) trim and fill publication bias.
abstract review and 35 papers were additionally following the full-text review; finally, 23 articles were included in this systematic review and meta-analysis (Fig. 1). A total of 27 *P. ginseng* group datasets were included given the approval for the inclusion of multiple supplement groups from a single study.

3.1. Study description

Eligible studies’ characteristics are detailed in Table 1. The selected 23 studies were all RCTs, including 20 that were parallel-design studies and three that were crossover-design studies. The characteristics of the subjects of each study are as follows: two studies included healthy subjects [34,35]; 11 studies included impaired glucose tolerance, or diabetic subjects [36–46]; two studies included prehypertensive or hypertensive subjects [47,48]; three studies included overweight or obese subjects [49–51]; one study included hyperlipidemic subjects [52]; three studies included subjects with metabolic syndrome [53–55]; and one study included postmenopausal subjects [56]. Of the 23 studies, five used *P. ginseng* [35,39,43,46,52], 17 used Korean Red Ginseng [34,36,38,40–42,44,45,47–51,53–56], and one used *P. ginseng* berry [37] as investigational products, respectively. All studies measured metabolic disease-related markers such as blood glucose, blood pressure, body fat, and blood lipid levels. The mean dosage of the investigational products was 2.85 ± 2.00 g (range: 200 mg–8 g), and the mean study period was 10.78 ± 5.18 weeks (range: 4–24 weeks).

3.2. Changes in blood glucose–related markers

Of the 27 *P. ginseng* group datasets, a total of 20 datasets were measured for blood glucose–related markers, with the resultant details as follows: 19 included fasting glucose (FG, n = 872) [35–48,52,54], 18 included fasting insulin (FI, n = 750) [35–47,53,54], nine included 2-h postprandial glucose (PG, n = 375) [36,37,39,40,42,43,46], six included 2-h postprandial insulin (PI, n = 267) [36,37,39,40,42,43], five included glucose AUC (n = 224) [36,37,39,40,45], four included insulin AUC (n = 182) [36,37,39,45], and 12 included HbA1c (n = 476) [36–38,41–43,46,54].

In all cases, the heterogeneity was judged to be low (I² values of 13 %, 0 %, 0 %, 4 %, 0 %, and 18 % for FG, FI, 2-h PG, 2-h PI, glucose AUC, glucose insulin, and HbA1c, respectively), so it was analyzed using a fixed-effects model. Upon analyzing the effects size of *P. ginseng* supplementation, as compared with the placebo, it was revealed that the glucose AUC was decreased by 1.77 mmol/L*hr* (95 % CI: 2.97 to 0.57) and the insulin AUC was decreased by 101.11 pmol/L*hr* (95 % CI: 160.85 to 41.38), showing a statistically significant difference (*p* = 0.0004 and *p* = 0.0009). However, there was no statistically significant difference in FG, FI, 2-h PG, 2-h PI, or HbA1c between the *P. ginseng* and placebo supplementation groups (data not shown). In subgroup analysis, the effects of *P. ginseng* supplementation on glucose AUC and insulin AUC were stronger in diabetic subjects than in prediabetic subjects (Figs. 2A, 3A). Glucose AUC was robust in the sensitivity analysis but insulin AUC decreased by 8.77 when one study was omitted, resulting in a loss of significance (*p* = 0.200) (Figs. 2B, 3B) [45]. Funnel plot and Egger’s test revealed that there were no publication bias for glucose AUC and insulin AUC. Funnel plots of glucose AUC and insulin AUC are shown in Figs. 2C and 3C.

3.3. Changes in blood pressure–related markers

Of the 27 *P. ginseng* group datasets, a total of 15 datasets were measured for blood pressure–related markers, with the resultant details as follows: 15 included SBP (n = 702) [35–48,52,54], 18 included diastolic pressure (DBP, n = 750) [35–47,53,54], nine included systolic pressure (SBP, n = 375) [36,37,39,40,42,43,46], six included diastolic pressure (DBP, n = 267) [36,37,39,40,42,43], five included SBP AUC (n = 224) [36,37,39,40,45], four included DBP AUC (n = 182) [36,37,39,45], and 12 included SBP/DBP ratio (n = 476) [36–38,41–43,46,54].
Fig. 5. Forest plot, sensitivity analysis, and publication bias of changes in DBP: (A) forest plot, (B) sensitivity analysis, (C) trim and fill publication bias.
SBP with low heterogeneity was analyzed using a fixed-effects model ($I^2 = 33\%$), and DBP with high heterogeneity was analyzed using a random-effects model ($I^2 = 51\%$). Upon analyzing the effects size of *P. ginseng* supplementation, as compared with the placebo, it was revealed that the SBP was decreased by 3.23 mmHg (95% CI: -4.19 to -2.27), showing a statistically significant difference ($p < 0.00001$). In subgroup analysis, the effects of *P. ginseng* supplementation on SBP was stronger in prehypertension, hypertension, and metabolic syndrome subjects (Fig. 4A). Meanwhile, the DBP decreased by 1.48 mmHg (95% CI: -3.18 to 0.21) in the *P. ginseng* supplementation group as compared with in the placebo group, but this result was not statistically significant ($p = 0.09$) (Fig. 5A). As a result of the sensitivity analysis, SBP decreased by 0.88 when one study omitted, resulting in a loss of significance ($p = 0.400$) (Fig. 5B). DBP obtained significance by decreasing by -1.94, -2.05, and -2.06 when the three studies were omitted ($p = 0.03$, $p = 0.01$, $p = 0.01$) (Fig. 5B). Egger's test revealed that there were publication bias for SBP and DBP ($p = 0.021$, $p = 0.002$). Six studies had to be trimmed and filled by trim and fill analysis to adjust the publication bias of SBP. As a result, the effect size increased and the direction of effect did not changed (MD = -3.76, 95% CI: -4.67, -2.84). In DBP, seven studies had to be trimmed and filled, resulting in an increase in effect size and no change in effect direction (MD: -3.783, 95% CI: -5.380, -2.187). Trim and fill funnel plots of SBP and DBP are shown in Figs. 4C–5C.

3.4. Changes in body fat–related markers

Of the 27 *P. ginseng* group datasets, a total of 16 datasets were measured for body fat–related markers, with the resultant details as follows: four included body weight (n = 76) [38,44,50,51], 12 included BMI (n = 491) [34,36,38,41,42,44,46,47,52,56], four included % body fat (n = 106) [44,49–51], and five included WC (n = 194) [38,46,54].

In all cases, the heterogeneity was judged to be low (all I^2 values were 0%), so it was analyzed using a fixed-effects model. Upon analyzing the effects size of *P. ginseng* supplementation, as compared with the placebo, it was revealed that the % body fat was decreased by 2.11% (95% CI: -3.98 to -0.23), showing a statistically significant difference ($p = 0.03$). Conversely, there were no statistically significant differences in body weight, BMI, or WC between the *P. ginseng* and placebo supplementation groups (data not shown). In subgroup analysis, the effect on % body fat was stronger in studies that enrolled obese subjects based on % body fat rather than BMI (Fig. 4) (Fig. 6A). As a result of the sensitivity analysis, % body fat decreased by 1.25 when one study omitted, resulting in a loss of significance ($p = 0.28$) (Fig. 6B). Funnel plot and Egger’s test manifested that there was no publication bias. The funnel plot of % body fat are shown in Fig. 6C.

3.5. Changes in blood lipid–related markers

Of the 27 *P. ginseng* group datasets, a total of 18 datasets were assessed for blood lipid–related markers, with the resultant details
Fig. 6. Forest plot, sensitivity analysis, and publication bias of changes in % body fat: (A) forest plot, (B) sensitivity analysis, (C) publication bias.
Fig. 7. Forest plot, sensitivity analysis, and publication bias of changes in TC: (A) forest plot, (B) sensitivity analysis, (C) publication bias.
as follows: 18 included TC (n = 803) [36–38,40,42,44,46–54,56], 17 included TG (n = 741) [36–38,40,42,44,46–52,54,56], 16 included HDL-C (n = 753) [36–38,40,42,44,46,47,49,50,52–54,56], and 15 included LDL-C (n = 657) [36–38,44,46–52,54,56].

In all cases, the heterogeneity was judged to be low (all I^2 values were 0%), so the data were analyzed using a fixed-effects model. Upon analyzing the effect size of *P. ginseng* supplementation, as compared with the placebo, it was revealed that the TC was decreased by 0.17 mmol/L (95 % CI: −0.28 to −0.05), the TG was decreased by 0.11 mmol/L (95 % CI: −0.21 to −0.01), and the LDL-C was decreased by 0.24 mmol/L (95 % CI: −0.36 to −0.13), showing a statistically significant difference ($p = 0.005$, $p = 0.030$, and $p < 0.0001$). There was no statistically significant difference in HDL-C between the *P. ginseng* and placebo supplementation groups (data not shown). In subgroup analysis, the effect of *P. ginseng* supplementation on TC was stronger in prediabetic or diabetic subjects. The effect on TG was more significant in overweight or obese subjects, and LDL-C was more significant in metabolic syndrome or postmenopausal women; overweight or obese subjects; prediabetic or diabetic subjects (Figs. 7A, 8A and 9A). Total cholesterol and LDL cholesterol were robust in the sensitivity analysis but TG decreased by 0.10, 0.09, 0.08, and 0.11 when the four studies were omitted, resulting in a loss of significance ($p = 0.06$, $p = 0.08$, $p = 0.17$, $p = 0.06$) (Figs. 7B, 8B and 9B) [50–52,56]. Funnel plot and Egger’s test manifested that there were no publication bias for TC, TG, and LDL-C. Funnel plots of TC, TG, and LDL-C are shown in Figs. 7C, 8C and 9C.

4. Discussion

The present systematic review and meta-analysis were conducted to verify the effects of *P. ginseng* supplementation on metabolic disease—related markers. For this, 23 RCT papers were collected and the changes in markers related to blood glucose, blood pressure, body fat, and blood lipids, which are major markers of metabolic diseases, were compared with those following placebo treatment using data from 27 ginseng supplement groups. As a result of this analysis, it was found that glucose AUC, insulin AUC, SBP, DBP, % body fat, TC, TG, and LDL-C were significantly decreased by *P. ginseng* supplementation.

As previously reported, there were no significant changes in FG, PG, or HbA1c among the blood glucose—related markers [18]. FG, PG, and HbA1c have traditionally been used as key markers to determine whether blood glucose is well-regulated, but there are limitations in providing accurate information about blood glucose responses and changes after meals by presenting values only at a specific point in time [57]. On the other hand, glucose and insulin AUC have the advantage of being able to determine whether blood glucose and insulin are normally regulated by observing the pattern of changes in blood glucose and insulin for a certain period of time, not a specific time point after oral glucose tolerance test (OGTT); these parameters have therefore been considered key measurements in efforts to determine glucose intolerance in recent years [58]. It has already been found in preclinical studies that ginseng administration improves insulin sensitivity by enhancing insulin
Fig. 8. Forest plot, sensitivity analysis, and publication bias of changes in TG: (A) forest plot, (B) sensitivity analysis, (C) publication bias.
mass, the use of WC or % body fat is considered more appropriate and % body fat. Because weight and BMI are also affected by muscle due to excess body fat [1,2,4]. Obesity is judged by weight, BMI, WC, and insulin resistance, which is derived from obesity clinical studies on this subject should be continued in the future. The importance of AUC measurement is increasingly emerging, the overall study population are still relatively limited, and since the range of study types and the size of effect was stronger in diabetic patients than in prediabetic subjects. However, it is a concern that the range of study types and the size of the major markers of metabolic syndrome and metabolic diseases were significantly improved when P. ginseng products were consumed for a long period lasting four weeks or longer. Based on this result, it can be expected that the intake of P. ginseng can play a sufficient role as an adjuvant for the prevention and improvement of metabolic diseases. To our knowledge, this is the first systematic review and meta-analysis to simultaneously evaluate the effects of P. ginseng on several markers related to metabolic diseases. However, the study subjects surveyed in this study were varied, ranging from healthy individuals to menopausal women and patients with obesity, diabetes, hypertension, and hyperlipidemia, so, while it is good to generalize these results, there was a limit to obtaining more specific results. Therefore, more clinical trials on metabolic syndrome should be accumulated in the future for further investigation.

5. Conclusions

A systematic review and meta-analysis were conducted by collecting studies that evaluated changes in metabolic disease–related markers driven by the long-term use of P. ginseng in various study populations. Significant changes were found in markers related to blood glucose, insulin resistance, blood pressure, and blood lipids. Based on these findings, supplementation with P. ginseng could be adopted as adjuvant therapy for diabetes, hypertension, and
Fig. 9. Forest plot, sensitivity analysis, and publication bias of changes in LDL-C: (A) forest plot, (B) sensitivity analysis, (C) publication bias.
hyperlipidemia. Through this study, *P. ginseng* supplementation has established an academic basis that it can be used as adjuvant therapy for diabetes, hypertension, and hyperlipidemia.

Declaration of competing interest

All contributing authors declare no conflicts of interest exist.

Acknowledgments

This study was supported by the Main Research Program from the Korea Food Research Institute (KFRI), funded by the Ministry of Science, ICT and Future Planning (E0210601-01).

Author contribution

Conception and design of the study: S. H. P., S. W. C., H. K. C., M. Y. C., J. T. H., and J. H. P.; acquisition of data or analysis and interpretation of data: S. H. P. and S. W. C.; drafting of the article or revising it critically for important intellectual content: S. H. P. and S. W. C.; and final approval of the version to be published: S. H. P., S. W. C., H. K. C., M. Y. C., J. T. H., and J. H. P.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jgr.2021.10.002.

References

[1] Doyle SL, Donohoe CL, Lysaght J, Reynolds JV. Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc 2012;71(1):181–9.
[2] Hess PT, Al-Khalidi HR, Friedman DJ, Mulder H, Kucharska-Newton A, Rosamond WR, Lopes RD, Gersh BJ, Mark DB, Curtis LH, et al. The metabolic syndrome and risk of sudden cardiac death: the atherosclerosis risk in communities study. J Am Heart Assoc 2017;6(8).
[3] Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res 2017;183:57–70.
[4] Bagry HS, Raghavendra S, Carli F. Metabolic syndrome and insulin resistance: perioperative considerations. Anesthesiology 2008;108(3):506–23.
[5] Gallagher EJ, LeRoith D, Karnieli E. The metabolic syndrome—from insulin resistance to obesity and diabetes. Endocr Metab Clin N Am 2008;37(3):559–79 (mil).
[6] Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37(1):1–7.
[7] Hong HD, Choi SY, Kim YC, Cho CW, Rapid determination of ginsenosides Rb1, Rf, and Rg1 in Korean ginseng using HPLC. J Ginseng Res 2009;33(1):8–12.
[8] Kim JH, Yi YS, Kim MY, Cho JY, Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41(4):435–43.
[9] Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;38(4):384–91.
[10] Mertzwal AM, Lianliao Z, Luqi H, Deqiang D. Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects. Molecules 2019;24(10).
[11] Ryu JS, Lee HJ, Bae SH, Kim SY, Park Y, Suh HJ, Jeong YH. The bioavailability of red ginseng extract fermented by Phellinus linteus. J Ginseng Res 2013;37(1):108–16.
[12] Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, et al. Anticancer property of ginsenoside Rb2 from ginseng. Eur J Med Chem 2020;203:112627.
[13] Ahuja A, Kim JH, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2018;42(3):248–54.
[14] Guo YH, Kuruganti R, Gao Y. Recent advances in ginsenosides as potential therapeutics against breast cancer. Curr Top Med Chem 2019;19(25):2334–47.
[15] Wang CZ, Anderson S, Du W, He TC, Yuan CS. Red ginseng and cancer treatment. Chin J Nat Med 2016;14(1):7–16.
[16] Zhou P, Xie W, He S, Sun Y, Meng X, Sun G, Sun X. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 2019;8(3).
[17] Ng TB, Yeung HW. Hypoglycemic constituents of Panax ginseng. Gen Pharmacol 1985;16(6):549–52.
[18] Kim S, Shin BC, Lee MS, Lee H, Ernst E. Red ginseng for type 2 diabetes mellitus: a systematic review of randomized controlled trials. Chin J Integr Med 2011;17(12):937–44.
[19] Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol 2018;9:423.
[20] Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020;44(1):24–32.
[21] Chen X. Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin Exp Pharmacol Physiol 1996;23(8):728–32.
[22] Luo BY, Jiang JL, Fang YF, Yang F, Yin MD, Zhang BC, Zhao RR, Shao JW. The effects of ginsenosides on platelet aggregation and vascular intima in the treatment of cardiovascular diseases: from molecular mechanisms to clinical applications. Pharmacol Res 2020;159:105031.
[23] Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42(3):264–9.
[24] Zheng SD, Wu HJ, Wu DL. Roles and mechanisms of ginseng in protecting heart. Chin J Integr Med 2012;18(7):548–55.
Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future opportunities. J Ginseng Res 2018;42(3):239–47.

Hou W, Wang Y, Zheng P, Cui R. Effects of ginseng on neurological disorders. Front Cell Neurosci 2020;14:55.

Huang X, Lin N, Pu Y, Zhang W. Neuroprotective effects of ginseng phytochemicals: recent perspectives. Molecules 2019;24(16).

Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J Ginseng Res 2018;42(4):401–11.

Razgonova MF, Veselov VV, Zakharenkov AM, Golokhvat KS,Nosyreva AV, Cravotto G, Tsatsakis A, Spandidos DA. Panax ginseng components and the pathogenesis of Alzheimer’s disease (Review). Mol Med Rep 2019;19(4):2975–98.

Hernandez-Garcia D, Granado-Serrano AB, Martin-Gari M, Naudi A, Serrano JC. Efficacy of Panax ginseng supplementation on blood lipid profile. A meta-analysis and systematic review of clinical randomized trials. J Ethnopharmacol 2019;243:112625.

Park HS, Cho JH, Kim KW, Chung WS, Song MY. Effects of Panax ginseng on obesity in animal models: a systematic review and meta-analysis. Evid Based Complement Alternat Med 2018;2018:7219794.

Zhang L, Virgous C, Si H. Ginseng and obesity: observations and underestimation in cultured cells, animals and humans. J Nutr Biochem 2017;44:1–10.

Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000;56(2):456–64.

Kim JY, Park JY, Kang HJ, Kim OY, Lee JH. Beneficial effects of Korean red ginseng on lymphocyte DNA damage, antioxidant enzyme activity, and LDL oxidation in healthy participants: a randomized, double-blind, placebo-controlled trial. Nutr J 2012;11:47.

Reay JL, Scholery AB, Milne A, Fenwick J, Kennedy DO. Panax ginseng has no effect on indices of glucose regulation following acute or chronic ingestion in healthy volunteers. Br J Nutr 2009;101(1):1673–8.

Bang H, Kwak JH, Ahn HY, Shin SY, Lee JH. Korean red ginseng improves glucose control in subjects with impaired fasting glucose, impaired glucose tolerance, or newly diagnosed type 2 diabetes mellitus. J Med Food 2014;17(1):128–34.

Choi KS, Kim S, Kim MJ, Kim MS, Kim J, Park CW, Seo D, Shin SS, Oh SW. Efficacy and safety of Panax ginseng berry extract on glycemic control: a 12-wk randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res 2018;42(1):50–7.

Kim HO, Park MJ, Han JS. Effects of fermented red ginseng supplementation on blood glucose and insulin resistance in type 2 diabetic patients. J Korean Soc Food Sci Nutr 2011;40(5):696–703.

Ma SW, Benzie IF, Choi TT, Fok BS, Tomlinson B, Critchley LA. Effect of Panax ginseng supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. Diabetes Obes Metab 2008;10(11):1125–7.

Oh MR, Park SH, Kim SY, Back HI, Kim MG, Jeon JY, Ha KC, Na WT, Cha YS, Park BH, et al. Postprandial glucose-lowering effects of fermented red ginseng in subjects with impaired fasting glucose or type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. BMC Compl Alternative Med 2014:237.

Park K, Ahn CW, Kim Y, Nam JS. The effect of Korean red ginseng on sarcopenia biomarkers in type 2 diabetes patients. Arch Gerontol Geriatr 2020;90:104108.

Park K, Kim Y, Kim J, Kang S, Park JS, Ahn CW, Nam JS. Supplementation with Korean red ginseng improves current perception threshold in Korean type 2 diabetes patients: a randomized, double-blind, placebo-controlled trial. Diabetes Res 2020;2020:5259328.

Park SH, Oh MR, Choi EK, Kim MG, Ha KC, Lee SK, Kim YG, Park BH, Kim DS, Chae SW. An 8-wk, randomized, double-blind, placebo-controlled clinical trial for the antidiabetic effects of hydrolyzed ginseng extract. J Ginseng Res 2014;38(4):239–43.

Reeds DN, Patterson BW, Okunade A, Holloszy JO, Polonsky KS, Klein S. Ginsenoside and ginsenoside Re do not improve beta-cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes. Diabetes Care 2011;34(5):1071–6.

Vuksan V, Sung MK, Sievenpiper JI, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Amaison JT, et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metabol Cardiovasc Dis 2008;18(1):46–56.

Yoon JW, Kang SM, Vassy JL, Shin H, Lee YH, Ahn HY, Choi SH, Park KS, Jang HC, Lim S. Efficacy and safety of ginsan, a vinegar extract from Panax ginseng, in type 2 diabetic patients: results of a double-blind, placebo-controlled study. J Diabetes Invest 2012;3(3):309–17.

Cha TW, Lee MW, Kim J, Jeong YM, Baek MJ. Blood pressure-lowering effect of Korean red ginseng associated with decreased circulating lip-PLA2 activity and hypophosphatidylcholines and increased dihydrobiopterin level in prehypertensive subjects. Hypertens Res 2016;39(6):449–56.

Rhee SM, Kim YS, Baek MJ, Lee JH, Nam K. Effect of Korean red ginseng on arterial stiffness in subjects with hypertension. J Alternative Compl Med 2011;17(1):45–9.

Cho YH, Ahn SC, Lee YI, Jeong DW, Choi EJ, Kim YJ, Lee JG, Lee YH, Shin BC. Effect of Korean red ginseng on insulin sensitivity in non-diabetic healthy overweight and obese adults. Asia Pac J Clin Nutr 2012;22(3):365–71.

Kim SS, Kim JD, Kim H, Shin MS, Park CK, Park MH, Yang JW. The effects of red ginseng product and combined exercise on blood lipids and body composition of obese women in their twenties. J Ginseng Res 2002;26(2):59–66.

Kim SS, Park HY, Byun YH, Hwang BG, Lee JH, Shim YJ, Park CK, Yang JW. The effects on the blood lipid profiles and body fat by long term administration of red ginseng product. J Ginseng Res 2002;26(2):67–70.

Delui MT, Fatehi H, Manaviifar M, Amini M, Ghaour-Mobarhan M, Zahedi M, Ferns G. The effects of Panax ginseng on lipid profile, pro-oxidant: antioxidant status and high-sensitivity C reactive protein levels in hyperlipidemic patients in Iran. Int J Prev Med 2013;4(5):1045–51.

Jung DH, Lee YJ, Kim CB, Kim JY, Shin SH, Park JK. Effects of Panax ginseng on peripheral blood mitochondrial DNA copy number and hormones in men with metabolic syndrome: a randomized clinical and pilot study. Compl Ther Med 2009;17(4):294–6.

Park BJ, Lee YJ, Lee HR, Jung DH, Na HY, Kim HB, Shim JY. Effects of Korean red ginseng on cardiovascular risks in subjects with metabolic syndrome: a double-blind randomized controlled study. Korean J Fam Med 2012;33(4):237–43.

Shin SY. Korean red ginseng and metabolic syndrome. In: Clinical Trials.Gov; 2012.

Kim SY, Seo SK, Choi YM, Jeon YE, Lim RY, Cho S, Choi YS, Lee BS. Effects of red ginseng supplementation on menopausal symptoms and cardiovascular risk factors in postmenopausal women: a double-blind randomized controlled trial. Menopause 2012;19(4):461–6.

Kuzuya T, Nakagawa S, Satoh T, Kanazawa Y, Iwamoto Y, Kobayashi M, Nonjo K, Sasaki A, Seno Y, Ito C, et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract 2002;55(1):65–85.

Sakaguchi K, Takeda K, Maeda M, Ogawa W, Sato T, Okada S, Ohnishi Y, Nakajima H, Kashikawa A. Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance. Diabetol Int 2016;7(1):53–8.

Lee HJ, Lee YH, Park SK, Kang ES, Kim HJ, Lee YC, Choi CS, Park SE, Ahn CW, Cha BS, et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats. Metabolism 2009;58(8):1170–7.

Lee SH, Lee HJ, Lee YH, Lee BW, Cha KS, Kang ES, Ahn CW, Park JS, Kim HJ, Lee EY, et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague-Dawley rats. Phytother Res 2012;26(1):142–7.

Joseph L, Wasir JS, Misra A, Vikram NK, Goel K, Pandey RM, Chandra M, Poddar P, Kondal D. Appropriate values of adiposity and lean body mass indices to detect cardiovascular risk factors in Asian Indians. Diabetes Technol Therapeut 2011;13(9):783–90.

Prentice AM, Jebb SA. Beyond body mass index. Obes Rev 2001;2(3):141–7.

Pi-Sunyer FX. Obesity: criteria and classification. Proc Nutr Soc 2000;59(4):435–5.

Chen G, Li H, Zhao Y, Zhu C, Cai E, Gao Y, Liu S, Yang H, Zhang L. Saponins from Panax notoginseng for the treatment and prevention of neurodegenerative diseases: past findings and future opportunities. J Ginseng Res 2018;42(3):239–47.