Supplemental Information

Unravelling miRNA regulation in yield of rice (*Oryza sativa*)
based on differential network model

Jihong Hu¹,²#, Tao Zeng³#, Qiongmei Xia⁴, Qian Qian², Congdang Yang⁴, Yi Ding²*, Luonan Chen³*, Wen Wang¹,⁵*
Supplemental Materials and Methods

Plant materials, high-throughput sequencing and bioinformatics analysis

Small RNA and transcriptome sequencing were performed for the variety IR64 in Taoyuan (ultra-high yield) and Jinghong (natural yield) at three different stages (tiller, young panicle and flag leaf) for the yield of rice. Total RNA was extracted from three tissues (tillers, young panicles and flag leaves) of rice IR64 using the Trizol (Invitrogen). For each sample, 5 μg of total RNA was used as the input material for constructing the small RNA library. Sequencing libraries were generated using NEBNext Multiplex Small RNA Library Prep Set for Illumina (NEB, USA) according to the manufacturer’s recommendations. Briefly, the small RNAs were ligated with 3’ and 5’ adapters using T4 RNA ligase. The RNAs were subsequently transcribed to single-stranded cDNA using Super-Script II Reverse Transcriptase (RNase H-) (Invitrogen). Then, PCR amplification was performed using LongAmp Taq2X Master Mix and primers that anneal to adapters. PCR products were purified on an 8 % polyacrylamide gel (100V, 80 min). After quality assessment using DNA High Sensitivity Chips with the Agilent 2100 Bioanalyzer, DNA fragments 140–160 bps in length were recovered and dissolved in 8 μl of elution buffer for sequencing. Then, the libraries were sequenced using the Illumina HiSeq2500 platform with single-end (SE) 50 nt.

After Illumina sequencing, any low quality reads, adaptors, contaminating sequences and sequences shorter than 18 nt were discarded. Only the remaining high-quality sequences between 18 and 30 nt were further analyzed. All unique sequences were aligned to the rice genome (Nipponbare-Reference-IRGSP-1.0) and annotated based on MSU-v7.0 (http://rice.plantbiology.msu.edu/) using SOAP for mapping (Li et al., 2008). Reads that mapped to rice rRNA, tRNA, scRNA, snRNA, or snoRNA were removed based on the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) and Rfam RNA family databases (Gardner et al., 2009). Known miRNAs were identified using a BLAST search against the miRNA database miRBase release 21 (http://miRNA.org/)
(Kozomara and Griffiths-Jones, 2014). Reads that did not annotate to any category were used to predict novel miRNAs using the miRNA prediction program MIREAP (http://sourceforge.net/projects/mireap/) as described (Yan et al., 2015). Secondary structures of potential miRNA precursors were constructed using the MFOLD3.2 web server (http://mfold.rna.albany.edu/) (Zuker, 2003). To identify miRNAs with differential expression between Taoyuan and Jinghong in the three tissues, miRNA read counts were normalized to transcripts per million (TPM) using the following formula: normalized expression = (miRNA count / total count of clean reads) ×10^6 (Hu et al., 2016).

For RNA sequencing (RNA-seq) library construction, 3 μg of total RNA of each sample was used for library preparation using TruSeq Stranded Total RNA Sample Preparation kit (Illumina, San Diego, USA). RNA was fragmented into small pieces and then first-strand cDNA was synthesized with Super Script II reverse transcription (Invitrogen). After purifying, the second strand cDNA library was synthesized, following several rounds of PCR amplification. The clean reads of RNA-seq were mapped to the rice reference genome (Nipponbare-Reference-IRGSP-1.0) using Tophat 2 (version 2.0.13) (Trapnell et al., 2010). Transcript reconstruction was conducted by Cufflinks software (version 2.2.1) (Trapnell et al., 2012). And DESeq2 was used to make read counts and to identify differentially expressed genes (DEGs). A False Discovery Rate (FDR) was determined with threshold of 0.05 and |log2(fold change)| ≥1) to recognize the significance of the gene expression difference. All the small and RNA sequencing data were deposited in the NCBI Short Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under the accession number: SRP134071 and SRP144409.

Differential edge-like transformation (DET)

The differential co-expression analysis is to see if or not the expression correlation of a gene-pair (e.g. two genes or molecules) changes between control and case samples (Zeng et al., 2014; Yu et al., 2015). Thus, the Pearson correlation coefficient (PCC) between genes i and j in control or case samples can be calculated.

On one hand, to evaluate the correlation in one sample, the pseudo-correlation or correlation-like expression of such a gene-pair in a sample k can be defined as:
Pseudo-correlation in control condition: \[
\frac{x_{ik} - \mu_{xi}}{\sigma_{xi}} \cdot \frac{x_{jk} - \mu_{xj}}{\sigma_{xj}} = C(x_{ik})C(x_{jk}) \quad (1)
\]

Pseudo-correlation in case condition: \[
\frac{y_{ik} - \mu_{yi}}{\sigma_{yi}} \cdot \frac{y_{jk} - \mu_{yj}}{\sigma_{yj}} = C(y_{ik})C(y_{jk}) \quad (2)
\]

Where, \(C(\cdot) \) represents the Z-transform of one sample, i.e., sample k, by the mean and variance in such sample's group (e.g. a control sample and control group). Comparing (1) and (2), clearly for one gene-pair, the mean of its pseudo-correlation in all control (or case) samples just equals to the Pearson correlation coefficient on control (or case) group (Zeng et al., 2014; Zhang et al., 2015).

On the other hand, to evaluate the correlation change of one sample compared to multiple controls, the delta expression of a gene-pair can be computed as:

Pseudo-correlation in control condition: \[
\frac{y_{i} - \mu_{yi}}{\sigma_{yi}} \cdot \frac{y_{j} - \mu_{yj}}{\sigma_{yj}} = C'(y_{i})C'(y_{j}) \quad (3)
\]

Where, \(C(\cdot) \) represents the Z-transform of one sample by the mean and variance in such sample's group (e.g. a control sample against the control group); and \(C'(\cdot) \) represents the Z-transform of one sample by the mean and variance in another group (e.g. a case sample against the control group, or vice versa). According to the SSN theory (Liu et al., 2016), such delta-correlation would reflect the significance of correlation (network) change when one case sample mixed in a group of control samples (called reference samples in Liu et al., 2016).

Obviously, the first method (eqn. (2)) solves the weight representation of a gene-pair (e.g. an edge in network) in one sample but does not consider the unbalance of sample numbers between control and case samples. Meanwhile, the second method (eqn. (3)) gives a direct alteration representation for a case sample, however, such measurement for control and case samples would have different correlation meaning, i.e. the mean of delta correlation of a gene-pair in control samples would be the Pearson correlation coefficient on all control samples, but it is not on all case samples.

Thus, to provide a more comprehensive approach to evaluate the network, i.e. the edges / gene-pairs, in one sample, we here introduce a new differential edge-like transformation (DET) such as:

Edge-like correlation in control condition:
\[
\frac{x_{ik} - \mu_{xyi}}{\sigma_{xyi}}, \frac{x_{jk} - \mu_{xyj}}{\sigma_{xyj}}
\]
\[= \lambda_1 \cdot C(x_{ik})C(x_{jk}) + \lambda_2 \cdot C(x_{ik})C'(x_{jk}) + \lambda_3 \cdot C'(x_{ik})C(x_{jk}) + \lambda_4 \cdot C'(x_{ik})C'(x_{jk})
\]

Edge-like correlation in case condition:
\[
\frac{y_{ik} - \mu_{xyi}}{\sigma_{xyi}}, \frac{y_{jk} - \mu_{xyj}}{\sigma_{xyj}}
\]
\[= \lambda_1 \cdot C'(y_{ik})C'(y_{jk}) + \lambda_2 \cdot C'(y_{ik})C(y_{jk}) + \lambda_3 \cdot C(y_{ik})C'(y_{jk}) + \lambda_4 \cdot C(y_{ik})C(y_{jk})
\]

Where, \(\lambda_1 = \frac{\sigma_{xixi}}{4\sigma_{xyi}\sigma_{xyi}}, \lambda_2 = \frac{\sigma_{xixj}}{4\sigma_{xyi}\sigma_{xyj}}, \lambda_3 = \frac{\sigma_{yiyi}}{4\sigma_{xyj}\sigma_{xyj}}, \lambda_4 = \frac{\sigma_{yiyj}}{4\sigma_{xyj}\sigma_{xyj}} \), and there are similar numbers of control and case samples.

DET transforms the expression of genes to the edge-like correlation of gene-pairs in one sample, and the mean of edge-like correlation of a gene-pair in all control and case samples is just the Pearson correlation coefficient on all samples, so that this measurement has equivalent numerical meaning for any control or case sample. In addition, according to the following theory 1, such a transformation also has other two compatible features with previous methods (e.g. above pseudo-correlation and delta-correlation):

(i) When the sample numbers are extremely unbalance between control and case, the edge-like correlation will approach to delta correlation;

(ii) When the genes have the equivalent expression variances between control and case groups, the edge-like correlation will be a linear combination among pseudo-correlation and delta-correlation; otherwise, the edge-like correlation will have weighted variants for control and case samples, respectively.

Totally, DET can provide a more general approach to evaluate the network, i.e. the edges / gene-pairs, in one sample, under more complex practical conditions, such as: the sample numbers are extremely unbalance, or the genes have differential variances / co-variances.

Theoretical Result: Assume that gene \(i \) and \(j \) have one-sample’s representative expressions \(x_i \) and \(x_j \) in control with \(m_x \) samples, and \(y_i \) and \(y_j \) in case with \(m_y \) samples, the edge-like correlation of a gene-pair between \(i \) and \(j \) in one sample can be obtained as a transformation:
\[\begin{align*}
&\frac{x_i - \mu_{xyi}}{\sigma_{xyi}} , \frac{x_j - \mu_{xyj}}{\sigma_{xyj}} \\
&\frac{y_i - \mu_{xyi}}{\sigma_{xyi}} , \frac{y_j - \mu_{xyj}}{\sigma_{xyj}}
\end{align*} \]

Then,

(i) when \(\frac{m_x}{m_y} \to \infty, \)

\[\begin{align*}
&\frac{x_i - \mu_{xyi}}{\sigma_{xyi}} , \frac{x_j - \mu_{xyj}}{\sigma_{xyj}} \to \frac{\sigma_{xi}\sigma_{sj}}{\sigma_{xyi}\sigma_{xyj}} \left(\frac{x_i - \mu_{xi}}{\sigma_{xi}} , \frac{x_j - \mu_{xj}}{\sigma_{xj}} \right)
\end{align*} \]

\[\begin{align*}
&\frac{y_i - \mu_{xyi}}{\sigma_{xyi}} , \frac{y_j - \mu_{xyj}}{\sigma_{xyj}} \to \frac{\sigma_{xi}\sigma_{sj}}{\sigma_{xyi}\sigma_{xyj}} \left(\frac{x_i - \mu_{xi}}{\sigma_{xi}} , \frac{x_j - \mu_{xj}}{\sigma_{xj}} \right)
\end{align*} \]

(ii) When \(\frac{m_x}{m_y} \to 1 \) and \(\sigma_{xi} \to \sigma_{yi} \) and \(\sigma_{xj} \to \sigma_{yj}, \)

\[\begin{align*}
&\frac{x_i - \mu_{xyi}}{\sigma_{xyi}} , \frac{x_j - \mu_{xyj}}{\sigma_{xyj}} \to \lambda \cdot [C(x_i)C(x_j) + C(x_i)C'(x_j) + C'(x_i)C(x_j) + C'(x_i)C'(x_j)]
\end{align*} \]

\[\begin{align*}
&\frac{y_i - \mu_{xyi}}{\sigma_{xyi}} , \frac{y_j - \mu_{xyj}}{\sigma_{xyj}} \to \lambda \cdot [C(y_i)C(y_j) + C(y_i)C'(y_j) + C'(y_i)C(y_j) + C'(y_i)C'(y_j)]
\end{align*} \]

Where, \(\lambda = \frac{\sigma_{xi}\sigma_{sj}}{4\sigma_{xyi}\sigma_{xyj}}; \) the expression average and variance for gene \(i \) (or gene \(j \)) on control samples are \(\mu_{xi} \) and \(\sigma_{xi} \) (or \(\mu_{xj} \) and \(\sigma_{xj} \)); and conveniently, the sample in case has these similar variables and annotations; and \(\mu_{xyi} \) and \(\sigma_{xyi} \)(or \(\mu_{xyj} \) and \(\sigma_{xyj} \)) are the mean and variance of gene \(i \) (or gene \(j \)) in all control and case samples.

Proof:

According to the relation between sample means in control, case and all, there are:

\[\mu_{xyi} = \frac{m_x}{m} \mu_{xi} + \frac{m_y}{m} \mu_{yi} \]
\[\mu_{xyj} = \frac{m_x}{m} \mu_{xj} + \frac{m_y}{m} \mu_{yj} \]

where \(m = m_x + m_y \), so,

\[\frac{x_i - \mu_{xyi}}{\sigma_{xyi}} , \frac{x_j - \mu_{xyj}}{\sigma_{xyj}} = \frac{\sigma_{xi}\sigma_{sj}}{\sigma_{xyi}\sigma_{xyj}} \left(\frac{x_i - \mu_{xi}}{\sigma_{xi}} , \frac{x_j - \mu_{xj}}{\sigma_{xj}} \right) \]

\[\frac{y_i - \mu_{xyi}}{\sigma_{xyi}} , \frac{y_j - \mu_{xyj}}{\sigma_{xyj}} = \frac{\sigma_{xi}\sigma_{sj}}{\sigma_{xyi}\sigma_{xyj}} \left(\frac{y_i - \mu_{yi}}{\sigma_{yi}} , \frac{y_j - \mu_{yj}}{\sigma_{yj}} \right) \]

Then following results hold,
(i) When \(\frac{m_x}{m_y} \to \infty \),

there will be \(\frac{m_x}{m} \to 1 \) and \(\frac{m_y}{m} \to 0 \), and

\[
\frac{x_i - \mu_{xyi}}{\sigma_{xyi}} \cdot \frac{x_j - \mu_{xyj}}{\sigma_{xyj}} \to \frac{\sigma_{xi} \sigma_{xi}}{\sigma_{xyi} \sigma_{xyj}} \cdot \left(\frac{x_i - \mu_{xi}}{\sigma_{xi}} \cdot \frac{x_j - \mu_{xj}}{\sigma_{xj}} \right)
\]

\[
\frac{y_i - \mu_{xyi}}{\sigma_{xyi}} \cdot \frac{y_j - \mu_{xyj}}{\sigma_{xyj}} \to \frac{\sigma_{yi} \sigma_{yi}}{\sigma_{xyi} \sigma_{xyj}} \cdot \left(\frac{y_i - \mu_{yi}}{\sigma_{yi}} \cdot \frac{y_j - \mu_{yj}}{\sigma_{yj}} \right)
\]

Under this condition, the edge-like correlation will approach to delta-correlation (with a scale).

Similarly, when \(\frac{m_x}{m_y} \to 0 \), it can be dealt as \(\frac{m_y}{m_x} \to \infty \).

(ii) When \(\frac{m_x}{m_y} \to 1 \),

there will be \(\frac{m_x}{m} \to \frac{1}{2} \) and \(\frac{m_y}{m} \to \frac{1}{2} \), and

\[
\frac{x_i - \mu_{xyi}}{\sigma_{xyi}} \cdot \frac{x_j - \mu_{xyj}}{\sigma_{xyj}} = \frac{\sigma_{xi} \sigma_{xi}}{\sigma_{xyi} \sigma_{xyj}} \cdot \frac{2x_i - \mu_{xi} - \mu_{yi}}{2\sigma_{xi}} \cdot \frac{2x_j - \mu_{xj} - \mu_{yj}}{2\sigma_{xj}}
\]

\[
= \frac{\sigma_{xi} \sigma_{xi}}{4\sigma_{xyi} \sigma_{xyj}} \cdot \left(\frac{x_i - \mu_{xi}}{\sigma_{xi}} + \frac{x_i - \mu_{yi}}{\sigma_{xi}} \right) \cdot \left(\frac{x_j - \mu_{xj}}{\sigma_{xj}} + \frac{x_j - \mu_{yj}}{\sigma_{xj}} \right)
\]

\[
= \frac{\sigma_{xi} \sigma_{xi}}{4\sigma_{xyi} \sigma_{xyj}} \cdot \left(\frac{x_i - \mu_{xi}}{\sigma_{xi}} \cdot \frac{x_j - \mu_{xj}}{\sigma_{xj}} \right) + \frac{\sigma_{yi} \sigma_{yi}}{\sigma_{xyi} \sigma_{xyj}} \cdot \left(\frac{x_i - \mu_{yi}}{\sigma_{yi}} \cdot \frac{x_j - \mu_{yj}}{\sigma_{yj}} \right)
\]

\[
= \lambda_1 \cdot C(x_i)C(x_j) + \lambda_2 \cdot C(x_i)C'(x_j) + \lambda_3 \cdot C'(x_i)C(x_j) + \lambda_4 \cdot C'(x_i)C'(x_j)
\]

Where, \(\lambda_1 = \frac{\sigma_{xi} \sigma_{xi}}{4\sigma_{xyi} \sigma_{xyj}} \), \(\lambda_2 = \frac{\sigma_{yi} \sigma_{yi}}{4\sigma_{xyi} \sigma_{xyj}} \), \(\lambda_3 = \frac{\sigma_{yi} \sigma_{yi}}{4\sigma_{xyi} \sigma_{xyj}} \), \(\lambda_4 = \frac{\sigma_{yi} \sigma_{yi}}{4\sigma_{xyi} \sigma_{xyj}} \)

Similarly, there is,

\[
\frac{y_i - \mu_{xyi}}{\sigma_{xyi}} \cdot \frac{y_j - \mu_{xyj}}{\sigma_{xyj}} = \frac{\sigma_{yi} \sigma_{yi}}{\sigma_{xyi} \sigma_{xyj}} \cdot \frac{2y_i - \mu_{xi} - \mu_{yi}}{2\sigma_{yi}} \cdot \frac{2y_j - \mu_{xj} - \mu_{yj}}{2\sigma_{yj}}
\]
correlations is proposed in this study (Fig. 1).

In addition, if

\[\frac{x_i - \mu_{xyi}}{\sigma_{xyi}}, \frac{x_j - \mu_{xyj}}{\sigma_{xyj}} \to \lambda \cdot \left[C(x_i)C(x_j) + C(x_i)C'(x_j) + C'(x_i)C(x_j) + C'(x_i)C'(x_j) \right] \]

\[\frac{y_i - \mu_{xyi}}{\sigma_{xyi}}, \frac{y_j - \mu_{xyj}}{\sigma_{xyj}} \to \lambda \cdot \left[C(y_i)C(y_j) + C(y_i)C'(y_j) + C'(y_i)C(y_j) + C'(y_i)C'(y_j) \right]. \]

Where, \(\lambda = \frac{\sigma_{xyi}\sigma_{xyj}}{4\sigma_{xyi}\sigma_{xyj}}. \)

Thus, under this condition, the edge-like correlation will be a linear combination among pseudo-correlation and delta-correlation and their combinations, similarly for control or case samples.

Gene regulatory networks with DET

Based on the theory of differential edge-like transformation (DET), a new differential network model by combining the miRNA-mRNA regulatory network and its edge-like correlationis proposed in this study (Fig. 1).

In one condition or in one tissue, there is usually only one sample, the conventional correlation-based approaches (e.g. WGCNA) will not be applicable. By contrast, we applied DET to capture the significant gene expression and correlation changes simultaneously in a dynamical and network manner. Assume that the (miRNA & mRNA) expression data

\[X = [x_1, x_2, \ldots, x_N] \]

with \(x_i = [x_{i1}, x_{i2}, \ldots, x_{iM}] \) are an expression profile of a miRNA or a mRNA across a group of tissues,

(i) the tissue-specific expression of molecule \(i \) on one tissue \(k \) can be obtained by:

\[\bar{x}_{i,k} = \frac{x_{ik} - \text{mean}(x_i)}{\text{std}(x_i)} \]

(ii) the tissue-specific edge-like correlation of molecules \(i \) and \(j \) on one tissue \(k \) can be obtained by (given molecule \(i \) is a miRNA and molecule \(j \) is a target mRNA):

\[\tilde{p}_{ij,k} = \frac{x_{ik} - \text{mean}(x_i)}{\text{std}(x_i)} \cdot \frac{x_{jk} - \text{mean}(x_j)}{\text{std}(x_j)} \]

Simply, the differential molecule or tissue-specific molecule on one tissue \(k \) can be selected by Mann–Whitney U test between \(\{\bar{x}_{i,k}\} \) and \(\{\bar{x}_{i,1}, \ldots, \bar{x}_{i,k-1}, \bar{x}_{i,k+1}, \ldots\} \). And the differential molecule-pairs or sample-specific molecule association on one sample \(k \) can be selected by
Mann–Whitney U test between $[\bar{p}_{ij,k}]$ and $[\bar{p}_{ij,1}, \ldots, \bar{p}_{ij,k-1}, \bar{p}_{ij,k+1}, \ldots]$. For any miRNA, its average PCC (i.e. the edge-like correlation) with other relevant miRNAs or mRNAs in control or case is defined as $\text{AP}_{\text{control}}$ and AP_{case}, then a factor as PCC-induced key-associated score for this miRNA is computed as $|\text{AP}_{\text{case}} - \text{AP}_{\text{control}}|$.

Supplemental References

Gardner, P.P. et al. Rfam: updates to the RNA families database. *Nucleic Acids Res.* **37**, 136-140 (2009).

Hu, J.H., Jin, J., Qian, Q., Huang, K.K. & Ding, Y. Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot *Nelumbo nucifera*. *BMC Genomics* **17**, 684 (2016).

Kozomara, A., & Griffiths, J.S. miRBase: integrating microRNA annotation and deep-sequencing data. *Nucleic Acids Res.* **42**, D68-D73 (2014).

Li, R.Q., Li, Y.R., Kristiansen, K, & Wang, J. SOAP: short oligonucleotide alignment program. *Bioinformatics* **24**, 713-714 (2008).

Liu, L. et al. An integrative bioinformatics framework for genome-scale multiple level network reconstruction of rice. *J. Inegr. Bioinformatics* **10**, 10.2390 (2013).

Liu, X., Wang, Y., Ji, H., Aihara, K., & Chen, L. Personalized characterization of diseases using sample-specific networks. *Nucleic Acids Res.* **44**(22), e164 (2016).

Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nature Protoc.* **7**, 562–578 (2012).

Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat. Biotechnol.* **28**, 511–515 (2010).

Yan, J.J., Zhang, H.Y., Zheng, Y.Z. & Ding, Y. Comparative expression progiling of miRNAs between the cytoplasmic male sterile line MeixiangA and its maintainer line MeixiangB during rice anther development. *Planta* **241**, 109-123 (2015).

Yu, X., Zeng, T., Wang, X., Li, G. & Chen L. Unravelling personalized dysfunctional gene network of complex diseases based on differential network model. *J. Transl. Med.* **13**, 189 (2015).

Zeng, T. et al. Edge biomarkers for classification and prediction of phenotypes. *Sci China Life Sci.* **57**(11), 1103-14 (2014).

Zhang, W., Zeng, T., Liu, X. & Chen, L. Diagnosing phenotypes of single-sample individuals by edge biomarkers. *J. Mol. Cell Biol.* **7**(3), 231-241 (2015).
Supplementary Fig. S1 Subnetwork of differentially expressed miRNAs in DAF10, DAF15, DAF21, DAF27 of 'xingfeng 2' rice. The thickness of lines represents the correlation extent of miRNAs and their targets and the thicker, the more negative correlation between them. Rectangles: miRNAs, circles: genes, triangles: TF. The color of them indicates differential expression (red, up-regulation; green, down-regulation).
Supplementary Fig. S2 Weighted gene co-expression network analysis (WGCNA) of differentially expressed miRNAs (DEmiRNAs) in superior and inferior spikelets of Xinfeng2 rice. (A) Hierarchical cluster tree showing nine modules of co-expressed miRNAs. (B) Module-grain filling correlations and corresponding P-values (left). Heatmaps of the miRNAs expression in “grey” and “yellow” with expression patterns of selected candidate miRNAs (right). (C) Networks of “grey” and “yellow” module. The miRNAs co-expression relationships are colored in “grey” and “yellow”, respectively.
Supplementary Fig. S3 Subnetwork of three miRNAs in tillers, young panicles and flag leaves of Taoyuan (L) and Jinghong (R) IR64 rice. (A) osa-miR396b-5p, (B) osa-miR171a, (C) osa-miR812m. The thickness of lines represents the correlation extent of miRNAs and their targets and the thicker, the more negative correlation between them. Rectangles: miRNAs, circles: genes, triangles: TF. red color, up-regulation and green, down-regulation.
ultra-high yield rice (C, tiller, D, panicle and E, flag leaf). Rectangles: miRNAs, circles: genes, triangles: TF.
Supplementary Fig. S4 Co-expression networks of candidate yield miRNAs identified by DET with reported yield miRNAs in Taoyuan ultra-high yield rice (A, tiller, B, panicle and C, flag leaf). Rectangles: miRNAs, circles: genes, triangles: TF.
Supplementary Fig. S5 GO enrichment of genes co-regulated with sample specific miRNAs (SmiRNAs) which are identified by differential edge-like transformation (DET) between Taoyuan and Jinghong samples.
Supplementary Table S1
Details of sample-specific miRNAs (SmiRNAs) in different tissues at the key yield stage analyzed using differential edge-like transformation (DET) analysis with their expression levels in each sample.

Rank	miRNA	DAF10 FC (S/I)	DAF15 FC (S/I)	DAF21 FC (S/I)	DAF27 FC (S/I)	△PCC (S-I)
1	osa-miR2105	0.000	0.000	0.000	0.090	0.8933
2	osa-miR395n	0.000	0.000	0.000	0.090	0.8933
3	osa-miR2096-5p	0.000	0.000	0.090	0.090	0.7594
4	osa-miR1861c	0.140	0.080	0.000	0.000	0.7448
5	osa-miR1862g	0.070	0.080	0.000	0.000	0.7448
6	osa-miR444b	0.647	2.666	1.305	3.061	0.7290
7	osa-miR444c	0.647	2.666	1.305	3.061	0.7290
8	osa-miR812l	1.577	2.319	2.612	1.054	0.7247
9	osa-miR164b	0.607	0.743	0.287	0.337	0.7205
10	osa-miR164a	0.607	0.743	0.289	0.337	0.7200
11	osa-miR164f	0.608	0.743	0.2870	0.337	0.7205
12	osa-miR812a	2.712	3.160	5.092	1.047	0.7205
13	osa-miR812c	2.419	3.390	3.461	1.233	0.7110
14	osa-miR1432	0.385	0.643	0.231	0.171	0.6716
15	osa-miR812e	2.451	3.270	3.544	1.182	0.6605
16	osa-miR2102-5p	0.560	0.080	0.090	0.000	0.6459
17	osa-miR166l	0.700	0.685	0.265	0.355	0.5894
18	osa-miR166k	0.709	0.696	0.268	0.361	0.5741
19	osa-miR1846a-3p	0.539	0.150	0.948	2.000	0.5553
20	osa-miR169a	0.898	0.353	0.278	0.065	0.5124

Rank	miRNA	Taoyuan PCC (Taoyuan)	Jinghong PCC (Jinghong)	△PCC (Taoyuan-Jinghong)		
1	osa-miR1428c-3p	1.474	1.477	2.132		
2	osa-miR1861i	4.069	3.545	2.144		
3	osa-miR1861f	4.069	3.545	2.144		
4	osa-miR1861l	4.069	3.545	2.144		
5	osa-miR1861b	4.069	3.545	2.144		
6	osa-miR1676-3p	12.913	13.293	2.143		
7	osa-miR1671-3p	12.913	13.293	2.143		
8	osa-miR396b-5p	77.481	83.895	2.132		
9	osa-miR396a-5p	77.539	83.895	2.132		
10	osa-miR169m	7.194	6.499	2.145		
11	osa-miR169l	7.194	6.499	2.145		
12	osa-miR169k	7.194	6.499	2.145		
	Gene Symbol	Gene	Genes	Genes	Genes	
---	--------------	--------	---------	---------	---------	
		Mean	Min	Max	Mean	
13	osa-miR169j	7.194	6.499	2.145	0.056	2.091
14	osa-miR169i-5p	7.194	6.499	2.145	0.056	2.091
15	osa-miR396f-3p	24.641	25.240	2.156	0.075	2.081
16	osa-miR3979-3p	14.608	3.770	2.158	0.082	2.077
17	osa-miR1870-5p	92.864	151.110	2.140	0.066	2.074
18	osa-miR167d-3p	2.649	0.410	2.159	0.088	2.071
19	osa-miR396e-5p	10.514	4.015	2.117	0.047	2.070
20	osa-miR396f-5p	5813.221	1200.491	2.117	0.047	2.070
21	osa-miR5825	2.536	1.477	2.162	0.101	2.062
22	osa-miR169g	2.2407	3.2495	2.070	0.020	2.050
23	osa-miR169f.1	2.2407	3.2495	2.070	0.020	2.050
24	osa-miR396d	37.325	33.381	2.141	0.093	2.048
25	osa-miR396g	37.325	33.381	2.141	0.093	2.048
26	osa-miR396h	37.325	33.381	2.141	0.093	2.048
27	osa-miR818d	1.179	0.591	2.166	0.120	2.046
28	osa-miR3979-5p	182.557	231.598	2.107	0.063	2.043
29	osa-miR1871	14.152	20.678	2.108	0.075	2.033
30	osa-miR810b.1	6.84	3.5449	2.166	0.134	2.032
31	osa-miR529b	13.444	5.613	2.169	0.140	2.030
32	osa-miR390-3p	24.765	15.361	2.160	0.133	2.027
33	osa-miR169b	1.533	0.591	2.171	0.147	2.023
34	osa-miR171h	24.589	9.158	2.171	0.150	2.021
35	osa-miR167e-5p	220.589	176.062	2.150	0.131	2.018
36	osa-miR167i-5p	219.882	175.176	2.150	0.132	2.017
37	osa-miR1861m	13.562	4.727	2.172	0.156	2.016
38	osa-miR1861k	13.562	4.727	2.172	0.156	2.016
39	osa-miR1861e	13.562	4.727	2.172	0.156	2.016
40	osa-miR5145	3.007	2.068	2.144	0.132	2.012

Young panicles

	Gene Symbol	Gene	Genes	Genes	Genes	
		Mean	Min	Max	Mean	
1	osa-miR5834	2.105	0.483	1.529	0.034	1.495
2	osa-miR2863c	2.679	0.483	1.539	0.107	1.432
3	osa-miR160f-3p	1.340	0.241	1.539	0.107	1.432
4	osa-miR2879	1.531	0.483	1.506	0.094	1.412
5	osa-miR5528	1.531	0.241	1.543	0.140	1.403
6	osa-miR5488	1.723	0.241	1.546	0.166	1.380
7	osa-miR5499	1.914	0.242	1.547	0.186	1.361
8	osa-miR5143b	3.445	1.448	1.468	0.248	1.220
9	osa-miR5802	1.722	0.724	1.468	0.248	1.220
10	osa-miR172b	1.722	0.724	1.468	0.248	1.220
11	osa-miR2876-3p	2.295	0.01	1.555	0.367	1.188
12	osa-miR5518	1.340	0.01	1.555	0.367	1.188
13	osa-miR5514	3.253	1.448	1.458	0.283	1.174
14	osa-miR160f-5p	9.377	2.413	1.418	0.265	1.153
15	osa-miR171i-5p	3.827	3.137	1.446	0.298	1.148
	OSA-miR5836					
---	-------------	-------	-------	-------	-------	
16	8.803	4.102	1.448	0.313	1.135	
17	13.970	7.722	1.407	0.434	0.973	
18	3.445	1.448	1.079	0.137	0.941	
19	6.124	4.344	1.230	0.322	0.907	
20	43.631	30.888	1.343	0.488	0.855	
21	0.766	1.207	0.852	0.000	0.852	
22	44.014	31.370	1.338	0.502	0.830	
23	43.823	31.370	1.336	0.506	0.830	
24	2.296	1.448	1.366	0.537	0.829	
25	1.531	0.965	1.366	0.537	0.829	
26	55.496	40.057	1.349	0.526	0.823	
27	8.420	8.204	1.349	0.526	0.823	
28	2.488	1.690	1.339	0.599	0.739	
29	1.722	1.207	1.326	0.626	0.700	
30	14.544	11.100	0.915	0.315	0.600	
31	16.266	12.307	1.293	0.694	0.599	
32	3.827	2.896	0.838	0.259	0.548	
33	2036.889	1719.811	1.250	0.702	0.548	
34	2215.432	1904.654	1.244	0.727	0.517	
35	18.180	14.720	1.261	0.755	0.506	

Flag leaves

	OSA-miR1425-3p					
1	1.911	0.970	1.195	0.495	0.699	
2	1.528	0.776	1.195	0.495	0.699	
3	14.138	3.734	1.187	0.516	0.671	
4	18.150	11.450	1.061	0.451	0.611	
5	98.774	282.166	0.706	0.103	0.604	
6	18.150	11.450	1.033	0.466	0.567	
7	1.146	0.194	0.853	0.323	0.530	
8	12.418	23.676	0.531	0.004	0.527	
9	341.028	891.325	0.603	0.078	0.525	
10	13818.22	32552.27	0.516	0.014	0.502	
11	13818.22	32595.74	0.516	0.014	0.502	
12	2.866	1.941	1.021	0.578	0.444	
13	3.248	2.135	1.100	0.702	0.397	
14	7541.59	25320.18	0.574	0.188	0.285	
15	7548.08	25333.96	0.574	0.188	0.385	
16	7549.99	25341.53	0.574	0.188	0.385	
17	7549.80	25341.14	0.574	0.188	0.385	
18	1.720	1.164	1.086	0.728	0.359	
19	3.63	0.970	0.730	0.385	0.345	
20	20.824	15.525	0.853	0.534	0.320	
21	2.484	1.747	1.069	0.760	0.309	
22	2.866	4.075	0.338	0.032	0.305	
23	13.374	13.373	1.000	0.713	0.287	
	miRNA	FC	Expression	p-value	q-value	
---	----------------	------	--------------	---------	---------	
24	osa-miR1425-5p	1425.057	623.326	0.775	0.516	0.259
25	osa-miR395i	1.528	0.388	0.675	0.420	0.255
26	osa-miR395j	1.528	0.388	0.675	0.420	0.255
27	osa-miR395k	1.528	0.388	0.675	0.420	0.255
28	osa-miR1860-3p	2.866	1.358	0.575	0.325	0.250
29	osa-miR156c-3p	0.573	1.552	0.328	0.086	0.242
30	osa-miR156g-3p	0.573	1.552	0.328	0.086	0.242
31	osa-miR395h	1.528	0.388	0.634	0.394	0.240
32	osa-miR395m	1.528	0.388	0.634	0.394	0.240
33	osa-miR535-5p	15.475	33.573	0.668	0.437	0.230
34	osa-miR166j-5p	97.054	77.042	0.767	0.561	0.206

Note: FC, fold change.
Supplementary Table S2 The differentially expressed miRNAs (DEmiRNAs) in tillers, young panicles and flag leaves of IR64 rice planted at Taoyuan and Jinghong.

miRNA	Taoyuan	Jinghong	Fold-change	P-value
Tillers				
osa-miR159a.1	69.9919	184.3334	1.397058	0.0000
osa-miR159b	70.0508	184.3334	1.395844	0.0000
osa-miR160a-3p	2.0048	0.2954	-2.76272	0.0234
osa-miR160b-3p	2.0048	0.2954	-2.76272	0.0234
osa-miR164c	0.059	1.477	4.645811	0.0003
osa-miR166e-3p	5.6017	2.3632	-1.24512	0.0127
osa-miR169c	7.5476	1.477	-2.35335	0.0000
osa-miR169e	1.651	0.01	-7.3672	0.0102
osa-miR169i-5p.2	0.5897	6.4989	3.462142	0.0000
osa-miR169n	1.8279	0.2954	-2.62945	0.0374
osa-miR169o	1.8279	0.2954	-2.62945	0.0374
osa-miR169r-3p	1.0614	5.6127	2.402727	0.0000
osa-miR169r-5p	0.7665	5.6127	2.872337	0.0000
osa-miR171h	24.5885	9.1576	-1.42494	0.0000
osa-miR171i-3p	2.0638	4.1357	1.002828	0.0273
osa-miR172d-3p	0.3538	1.1816	1.739736	0.0487
osa-miR172d-5p	0.2948	1.477	2.324861	0.0091
osa-miR1846e	0.2948	1.1816	2.002933	0.0307
osa-miR1861e	13.562	4.7265	-1.52073	0.0000
osa-miR1861h	22.4068	3.2495	-2.78565	0.0000
osa-miR1861j	22.4068	3.2495	-2.78565	0.0000
osa-miR1861k	13.562	4.7265	-1.52073	0.0000
osa-miR1861m	13.562	4.7265	-1.52073	0.0000
osa-miR1868	13.4441	48.1512	1.840599	0.0000
osa-miR1883a	18.1024	7.976	-1.18244	0.0000
osa-miR2880	14.4465	2.3632	-2.61191	0.0000
osa-miR319a-3p	6.722	20.6784	1.621162	0.0000
osa-miR393a	4.8352	0.5908	-3.03283	0.0001
osa-miR393b-5p	3.8917	1.1816	-1.71966	0.0103
osa-miR395b	0.4717	2.6587	2.494779	0.0004
osa-miR395d	0.3538	2.9541	3.061713	0.0000
osa-miR395e	0.4128	2.6587	2.687206	0.0002
osa-miR395g	0.3538	2.6587	2.909715	0.0001
osa-miR395h	0.2948	2.3632	3.002933	0.0002
osa-miR395i	0.2948	2.6587	3.172913	0.0000
osa-miR395j	0.2948	2.6587	3.172913	0.0000
miRNA	Fold Change	p-value	q-value	Log2 Fold Change
------------	-------------	----------	---------	-----------------
osa-miR395k	0.2948	3.172913	0.0000	
osa-miR395l	0.2948	3.172913	0.0000	
osa-miR395m	0.2948	3.172913	0.0000	
osa-miR395n	0.2948	3.172913	0.0000	
osa-miR395p	0.2948	3.172913	0.0000	
osa-miR395q	0.2948	3.172913	0.0000	
osa-miR395r	0.2948	3.172913	0.0000	
osa-miR395s	0.3538	2.90715	0.0001	
osa-miR395t	0.3538	2.90715	0.0001	
osa-miR395u	0.3538	2.90715	0.0001	
osa-miR395v	0.3538	2.90715	0.0001	
osa-miR397a	34.5537	904.829	0.0000	
osa-miR397b	361.5755	904.829	0.0000	
osa-miR397c	1.8279	-7.51404	0.0059	
osa-miR397d	2.8893	10.6346	0.0000	
osa-miR397e	7.4296	-1.33057	0.0022	
osa-miR397f	0.5897	2.324666	0.0004	
osa-miR397g	0.4717	4.369224	0.0000	
osa-miR397h	0.4128	3.604718	0.0000	
osa-miR397i	13.4441	-1.26021	0.0001	
osa-miR397j	5.8965	-1.51176	0.0030	
osa-miR397k	5.8965	-1.51176	0.0030	
osa-miR397l	5.8965	-1.51176	0.0030	
osa-miR397m	0.3538	2.547091	0.0014	
osa-miR397n	0.3538	2.547091	0.0014	
osa-miR397o	5.7786	-1.96805	0.0005	
osa-miR397p	2.9483	-1.73418	0.0287	
osa-miR397q	7.5476	-1.86792	0.0001	
osa-miR397r	3.3021	-1.48264	0.0362	

Young panicles

miRNA	Fold Change	p-value	q-value	Log2 Fold Change
osa-miR160f-5p	9.3769	-1.95822	0.0000	
osa-miR167a-3p	2.105	1.197067	0.0241	
osa-miR171c-5p	4.4014	1.020439	0.0068	
osa-miR171d-5p	5.9323	1.080805	0.0008	
osa-miR1850.1	3.2532	1.334556	0.0013	
osa-miR1880	1.3396	1.775088	0.0033	
osa-miR2106	1.7223	1.971982	0.0001	
osa-miR2863c	2.6791	-2.47285	0.0098	
osa-miR2871a-3p	7.6546	-1.28694	0.0035	
osa-miR2871a-5p	24.4947	-1.53616	0.0000	
osa-miR2871b	7.6546	-1.28694	0.0035	
osa-miR2876-3p	2.2964	-7.84323	0.0010	
osa-miR2878-5p	4.21	-1.80299	0.0065	
osa-miR396c-3p	2.4877	1.093573	0.0277	
osa-miR408-5p	0.01	6.914684	0.0150	
osa-miR444d.3	1.7223	-2.83544	0.0316	
miRNA	Log2 Fold Change	p-value	LogFC	p-value
----------	-----------------	----------	----------	----------
osa-miR528-5p	5.3582	13.5133	1.33456	0.0000
osa-miR529a	20.4761	81.3212	1.989691	0.0000
osa-miR531a	1.1482	4.1023	1.837059	0.0044
osa-miR531b	1.1482	4.1023	1.837059	0.0044
osa-miR531c	1.1482	4.1023	1.837059	0.0044
osa-miR5486	0.3827	2.1718	2.504605	0.0136
osa-miR5488	1.7223	0.2413	-2.83544	0.0316
osa-miR5499	1.9136	0.2413	-2.98739	0.0190
osa-miR5505	1.1482	4.1023	1.837059	0.0044
osa-miR5513	1.1482	0.01	-6.84323	0.0336
osa-miR5518	1.3396	0.01	-7.06566	0.0187
osa-miR5519	0.7655	3.8609	2.334463	0.0013
osa-miR5834	2.105	0.4826	-2.12492	0.0391
osa-miR5836	8.8028	4.1023	-1.10153	0.0055
osa-miR815b	0.01	1.2065	6.914684	0.0150

Flag leaves

miRNA	Log2 Fold Change	p-value	LogFC	p-value
osa-miR1425-5p	1425.057	623.3257	-1.19296	0.0000
osa-miR1432-5p	83.4897	195.42	1.226908	3.85E-54
osa-miR159c	2.1016	4.6575	1.148068	0.0256
osa-miR159d	2.1016	4.6575	1.148068	0.0256
osa-miR159e	2.1016	4.6575	1.148068	0.0256
osa-miR160e-5p	2.2926	4.6575	1.022571	0.0420
osa-miR164d	0.5732	2.9109	2.344355	0.0040
osa-miR166a-3p	7549.801	25341.14	1.746971	0.0000
osa-miR166b-3p	7541.585	25320.18	1.747348	0.0000
osa-miR166c-3p	13836.37	32595.74	1.236219	0.0000
osa-miR166d-3p	7549.992	25341.53	1.746957	0.0000
osa-miR166e-3p	1.1463	3.105	1.437609	0.0316
osa-miR166f	7548.081	25333.96	1.746891	0.0000
osa-miR166g-3p	1694.249	6291.864	1.892842	0.0000
osa-miR166h-3p	341.0278	891.3247	1.386062	0.0000
osa-miR166i-3p	36.682	84.4168	1.202458	0.0000
osa-miR166j-3p	13818.22	32552.27	1.236187	0.0000
osa-miR166k-3p	118.0701	245.6819	1.057148	0.0000
osa-miR166l-3p	132.208	298.6607	1.175698	0.0000
osa-miR166m	98.7739	282.1655	1.51434	0.0000
osa-miR167a-3p	3.63	0.9703	-1.90347	0.0046
osa-miR168a-3p	2994.931	6580.822	1.135745	0.0000
osa-miR1846d-3p	1.7195	4.4634	1.376154	0.0119
osa-miR1846d-5p	0.5732	2.1347	1.896923	0.0326
osa-miR1865-3p	2.8658	0.5822	-2.29935	0.0049
osa-miR2871a-5p	58.653	29.3033	-1.00114	0.0000
osa-miR2878-5p	3.2479	0.5822	-2.47992	0.0017
osa-miR2880	1.1463	3.8812	1.759518	0.0052
Gene	Value1	Value2	Value3	Value4
------------	--------	----------	--------	--------
osa-miR397a	148.4474	782.2622	2.3977	0.0000
osa-miR397b	1499.185	8553.069	2.512264	0.0000
osa-miR398a	3.63	0.3881	-3.22547	0.0001
osa-miR398b	134.8827	1467.3	3.443386	0.0000
osa-miR408-3p	265.1801	2552.298	3.266752	0.0000
osa-miR408-5p	4.2031	26.7805	2.671657	0.0000
osa-miR5083	0.1911	1.3584	2.829509	0.00369
osa-miR528-3p	61.7098	291.0923	2.237905	0.0000
osa-miR528-5p	52.1572	218.5133	2.066783	0.0000
osa-miR535-5p	15.4752	33.5727	1.117331	0.0000
osa-miR7694-5p	1.3374	0.1941	-2.78456	0.0413
Supplementary Table S3

A set of 150 sequencing screened yield related miRNAs from literatures.

ID	miRNA	Target
1	osa-miR1320-3p	LOC_Os03g13800; LOC_Os05g38590; LOC_Os08g19610; LOC_Os05g31230;
		LOC_Os11g02464; LOC_Os12g02390; LOC_Os06g16919; LOC_Os06g03600;
		LOC_Os01g48250; LOC_Os06g09170; LOC_Os03g37920
2	osa-miR1432-3p	LOC_Os10g30540; LOC_Os04g08350; LOC_Os06g40940
3	osa-miR1435	LOC_Os03g42280; LOC_Os04g44354; LOC_Os04g42444; LOC_Os08g29260;
		LOC_Os07g13020; LOC_Os04g41238; LOC_Os05g22910; LOC_Os04g50204;
		LOC_Os09g07200; LOC_Os06g43910; LOC_Os12g16060; LOC_Os03g48320;
		LOC_Os07g36080
4	osa-miR156a	LOC_Os11g30370; LOC_Os09g32944; LOC_Os09g31438; LOC_Os06g45310;
		LOC_Os02g07780; LOC_Os08g41940; LOC_Os07g32170; LOC_Os02g04680;
		LOC_Os09g03670; LOC_Os09g33820
5	osa-miR156b-3p	LOC_Os03g26650
6	osa-miR156b-5p	LOC_Os11g30370; LOC_Os09g32944; LOC_Os09g31438; LOC_Os06g45310;
		LOC_Os02g07780; LOC_Os08g41940; LOC_Os08g39890; LOC_Os01g69830;
		LOC_Os07g32170; LOC_Os02g04680; LOC_Os09g03670; LOC_Os09g33820
7	osa-miR156c-3p	LOC_Os07g04390; LOC_Os07g15370
		LOC_Os08g04180; LOC_Os02g04490; LOC_Os04g37670
8	osa-miR156c-5p	LOC_Os11g30370; LOC_Os09g32944; LOC_Os09g31438; LOC_Os06g45310;
		LOC_Os02g07780; LOC_Os08g41940; LOC_Os08g39890; LOC_Os01g69830;
		LOC_Os07g32170; LOC_Os02g04680; LOC_Os02g04680; LOC_Os09g03670
9	osa-miR156d	LOC_Os11g30370; LOC_Os09g32944; LOC_Os09g31438; LOC_Os06g45310;
		LOC_Os02g07780; LOC_Os08g41940; LOC_Os08g39890; LOC_Os01g69830;
		LOC_Os07g32170; LOC_Os02g04680; LOC_Os09g03670; LOC_Os09g33820
10	osa-miR156f-3p	LOC_Os07g37580; LOC_Os07g13140; LOC_Os01g03170; LOC_Os09g36670
		LOC_Os07g04390; LOC_Os05g25210; LOC_Os07g49270
11	osa-miR156f-5p	LOC_Os11g30370; LOC_Os09g32944; LOC_Os09g31438; LOC_Os06g45310;
		LOC_Os02g07780; LOC_Os08g41940; LOC_Os08g39890; LOC_Os01g69830;
		LOC_Os07g32170; LOC_Os02g04680; LOC_Os09g03670; LOC_Os09g33820
12	osa-miR156g-3p	LOC_Os07g04390; LOC_Os07g15370
		LOC_Os08g04180; LOC_Os02g04490; LOC_Os04g37670
13	osa-miR156g-5p	LOC_Os11g30370; LOC_Os09g32944; LOC_Os09g31438; LOC_Os06g45310;
		LOC_Os02g07780; LOC_Os08g41940; LOC_Os08g39890; LOC_Os01g69830;
		LOC_Os07g32170; LOC_Os02g04680; LOC_Os09g03670; LOC_Os09g33820
14	osa-miR156h-3p	LOC_Os07g04390; LOC_Os07g15370
		LOC_Os07g37580; LOC_Os05g25210; LOC_Os07g49270
15	osa-miR156h-5p	LOC_Os11g30370; LOC_Os09g32944; LOC_Os09g31438; LOC_Os06g45310;
		LOC_Os02g07780; LOC_Os08g41940; LOC_Os08g39890; LOC_Os01g69830;
		LOC_Os02g07780; LOC_Os07g32170; LOC_Os02g04680; LOC_Os09g03670
16 osa-miR156i LOC_Os09g33820; LOC_Os11g30370; LOC_Os02g07780; LOC_Os02g07780; LOC_Os09g33820		
LOC_Os10g30940; LOC_Os04g34890; LOC_Os09g31438; LOC_Os06g45310; LOC_Os08g43980; LOC_Os01g69830; LOC_Os08g41940; LOC_Os07g32170; LOC_Os02g04680; LOC_Os09g03670;		
17 osa-miR156j-3p LOC_Os05g13940; LOC_Os04g34890		
18 osa-miR156j-5p LOC_Os11g30370; LOC_Os09g32944; LOC_Os09g31438; LOC_Os06g45310; LOC_Os02g07780; LOC_Os08g41940; LOC_Os08g39890; LOC_Os01g69830; LOC_Os08g41940; LOC_Os07g32170; LOC_Os02g04680; LOC_Os09g03670; LOC_Os09g33820		
19 osa-miR159a.1 LOC_Os01g12700; LOC_Os05g41166; LOC_Os09g36650; LOC_Os06g40330; LOC_Os03g47949; LOC_Os05g42240; LOC_Os01g11430; LOC_Os03g21380; LOC_Os05g04630; LOC_Os01g59660; LOC_Os01g11430; LOC_Os03g47949;		
20 osa-miR159a.2 LOC_Os03g02240; LOC_Os10g40920; LOC_Os03g28310; LOC_Os08g10800; LOC_Os02g05720; LOC_Os12g24550		
21 osa-miR160a-3p LOC_Os02g56000; LOC_Os02g49240; LOC_Os08g43570; LOC_Os11g38140; LOC_Os07g37130		
22 osa-miR160a-5p LOC_Os10g33940; LOC_Os04g43910; LOC_Os09g29160; LOC_Os04g59430; LOC_Os02g44760		
23 osa-miR160b-3p LOC_Os02g56000; LOC_Os02g49240; LOC_Os08g43570; LOC_Os11g38140; LOC_Os07g37130		
24 osa-miR160b-5p LOC_Os10g33940; LOC_Os04g43910; LOC_Os09g29160; LOC_Os04g59430; LOC_Os02g44760		
25 osa-miR160c-5p LOC_Os10g33940; LOC_Os04g43910; LOC_Os09g29160; LOC_Os04g59430; LOC_Os02g44760		
26 osa-miR160d-3p LOC_Os05g18840; LOC_Os10g29020		
27 osa-miR160d-5p LOC_Os10g33940; LOC_Os04g43910; LOC_Os09g29160; LOC_Os04g59430; LOC_Os02g44760		
28 osa-miR160e-3p LOC_Os06g37480; LOC_Os09g39430		
29 osa-miR160e-5p LOC_Os10g33940; LOC_Os04g43910; LOC_Os09g29160; LOC_Os04g59430; LOC_Os02g44760		
30 osa-miR160f-3p LOC_Os03g01890; LOC_Os10g33960; LOC_Os12g41860; LOC_Os03g35380; LOC_Os03g01890; LOC_Os10g29020; LOC_Os03g44835; LOC_Os01g33740; LOC_Os03g01890; LOC_Os10g33960; LOC_Os03g35380; LOC_Os07g08900; LOC_Os08g34740		
31 osa-miR160f-5p LOC_Os04g59430; LOC_Os10g33940; LOC_Os04g43910; LOC_Os09g29160; LOC_Os09g29160; LOC_Os09g29160; LOC_Os02g49930; LOC_Os09g29160; LOC_Os02g49930; LOC_Os09g29160; LOC_Os02g49930; LOC_Os02g49930		
32 osa-miR164e LOC_Os03g47310; LOC_Os06g23650; LOC_Os06g46270; LOC_Os12g41680; LOC_Os07g12620; LOC_Os06g05760; LOC_Os09g32960; LOC_Os10g24200; LOC_Os03g01890; LOC_Os03g44835; LOC_Os04g23200; LOC_Os01g33740; LOC_Os03g01890; LOC_Os03g44835; LOC_Os04g23200; LOC_Os01g33740; LOC_Os03g35380; LOC_Os07g08900; LOC_Os08g34740		
33 osa-miR166a-3p LOC_Os10g33960; LOC_Os12g41860; LOC_Os03g43930; LOC_Os03g01890; LOC_Os03g44835; LOC_Os04g23200; LOC_Os01g33740; LOC_Os03g35380; LOC_Os07g08900; LOC_Os08g34740		
34 osa-miR166a-5p LOC_Os09g08440; LOC_Os12g24410; LOC_Os09g25520; LOC_Os06g36960; LOC_Os12g24410; LOC_Os09g25520; LOC_Os06g36960; LOC_Os12g24410; LOC_Os09g25520; LOC_Os06g36960;		
54 osa-miR169h LOC_Os02g53620; LOC_Os03g48970; LOC_Os12g42400; LOC_Os05g07880; LOC_Os03g07880; LOC_Os07g41720; LOC_Os03g29760; LOC_Os06g13920		
55 osa-miR169i-3p LOC_Os07g16360; LOC_Os11g38610; LOC_Os02g51260		
56 osa-miR169i-5p.1 LOC_Os02g53620; LOC_Os03g48970; LOC_Os12g42400; LOC_Os05g07880; LOC_Os03g07880; LOC_Os07g41720; LOC_Os03g29760; LOC_Os06g13920		
57 osa-miR169i-5p.2 LOC_Os11g34110; LOC_Os02g03220; LOC_Os02g57370; LOC_Os05g40720		
58 osa-miR169j LOC_Os02g53620; LOC_Os03g48970; LOC_Os12g42400; LOC_Os05g07880; LOC_Os03g07880; LOC_Os07g41720; LOC_Os03g29760; LOC_Os06g13920		
59 osa-miR169k LOC_Os02g53620; LOC_Os03g48970; LOC_Os12g42400; LOC_Os05g07880; LOC_Os03g07880; LOC_Os07g41720; LOC_Os03g29760; LOC_Os06g13920		
60 osa-miR169l LOC_Os02g53620; LOC_Os03g48970; LOC_Os12g42400; LOC_Os05g07880; LOC_Os03g07880; LOC_Os07g41720; LOC_Os03g29760; LOC_Os06g13920		
61 osa-miR169m LOC_Os02g53620; LOC_Os03g48970; LOC_Os12g42400; LOC_Os05g07880; LOC_Os03g07880; LOC_Os07g41720; LOC_Os03g29760; LOC_Os06g13920		
62 osa-miR171a LOC_Os02g44360; LOC_Os06g01620; LOC_Os02g19990		
63 osa-miR171b LOC_Os06g01620; LOC_Os02g44360; LOC_Os09g38330; LOC_Os05g34460; LOC_Os06g02304		
64 osa-miR171i-3p LOC_Os02g44360; LOC_Os06g01620; LOC_Os12g18080; LOC_Os01g60000; LOC_Os11g27440; LOC_Os02g19990		
65 osa-miR171i-5p LOC_Os10g27480; LOC_Os03g06890; LOC_Os07g06770		
66 osa-miR172a LOC_Os05g03040; LOC_Os07g13170; LOC_Os05g03040; LOC_Os04g55560; LOC_Os02g56320; LOC_Os03g57070; LOC_Os12g37780; LOC_Os04g58720; LOC_Os01g52120; LOC_Os02g55290; LOC_Os03g47650; LOC_Os12g09570; LOC_Os10g36250; LOC_Os10g41030		
67 osa-miR172b LOC_Os05g03040; LOC_Os07g13170; LOC_Os05g03040; LOC_Os04g55560; LOC_Os01g39810; LOC_Os05g45980; LOC_Os04g36054; LOC_Os05g07070; LOC_Os05g07070; LOC_Os05g26926; LOC_Os05g26902; LOC_Os03g44420; LOC_Os02g56320; LOC_Os12g07800; LOC_Os11g40120; LOC_Os04g54190; LOC_Os10g31240		
68 osa-miR172c LOC_Os05g03040; LOC_Os07g13170; LOC_Os05g03040; LOC_Os05g03040; LOC_Os05g03040; LOC_Os04g55560; LOC_Os04g39630; LOC_Os08g26870; LOC_Os11g23110; LOC_Os04g02230; LOC_Os04g28750; LOC_Os06g49700; LOC_Os01g67970		
69 osa-miR172d-3p LOC_Os05g03040; LOC_Os07g13170; LOC_Os05g03040; LOC_Os04g55560; LOC_Os02g56320; LOC_Os03g57070; LOC_Os03g13370; LOC_Os05g23720; LOC_Os12g37780; LOC_Os04g58720; LOC_Os01g52120; LOC_Os02g55290; LOC_Os03g47650; LOC_Os12g09570; LOC_Os10g36250; LOC_Os10g41030		
70 osa-miR172d-5p LOC_Os01g39810; LOC_Os07g04860; LOC_Os06g06050; LOC_Os03g51030; LOC_Os03g19590; LOC_Os05g03174; LOC_Os03g06410; LOC_Os05g32430; LOC_Os01g59180; LOC_Os05g32430		
71 osa-miR1850.1 LOC_Os10g36650; LOC_Os03g46440; LOC_Os09g24820; LOC_Os04g33510;		
Gene ID	LOC_Os04g47410	LOC_Os03g01216
-----------------	----------------	----------------
osa-miR1850.2	LOC_Os07g07530	LOC_Os04g39160
osa-miR1850.3	LOC_Os12g06610	LOC_Os03g39690
osa-miR1861b	LOC_Os01g63810	LOC_Os05g51790
osa-miR1861e	LOC_Os06g44970	LOC_Os03g18710
osa-miR1861f	LOC_Os05g51790	
osa-miR1861g	LOC_Os08g32060	
osa-miR1861i	LOC_Os01g63810	LOC_Os01g63810
osa-miR1861k	LOC_Os06g44970	LOC_Os03g18710
osa-miR1861l	LOC_Os05g51790	
osa-miR1861m	LOC_Os01g63810	LOC_Os06g44970
osa-miR1862d	LOC_Os02g30730	LOC_Os02g39070
osa-miR1862e	LOC_Os06g41930	LOC_Os01g09330
osa-miR1874-3p	LOC_Os02g0950	
osa-miR1874-5p	LOC_Os05g18774	LOC_Os01g09330
osa-miR1881	LOC_Os01g63810	LOC_Os06g10130
osa-miR2055	LOC_Os01g53900	LOC_Os01g53900
osa-miR2863b	LOC_Os09g17560	LOC_Os04g58580
osa-miR2871b	LOC_Os04g53830	
osa-miR2875b	LOC_Os03g51040	LOC_Os04g29990
osa-miR390-5p	LOC_Os03g36080	LOC_Os03g01216
osa-miR393a	LOC_Os03g36080	LOC_Os03g01216
osa-miR396a-3p	LOC_Os03g41010	
osa-miR396a-5p	LOC_Os03g41010	
osa-miR396b-3p	LOC_Os08g06478	LOC_Os02g05244
osa-miR396b-5p	LOC_Os07g03100	LOC_Os03g25110
ID	Name	LOC_Os02g27674
------	-----------------	----------------
127	osa-miR2864.1	LOC_Os09g07154
		LOC_Os03g11734
		LOC_Os02g50040
		LOC_Os07g03040
		LOC_Os02g05930
		LOC_Os05g31920
		LOC_Os12g36440
		LOC_Os02g47150
		LOC_Os02g46990
128	osa-miR2864.2	LOC_Os02g16270
		LOC_Os02g36770
		LOC_Os01g56900
		LOC_Os09g34847
		LOC_Os03g64030
129	osa-miR2880	LOC_Os08g37360
130	osa-miR2907a	LOC_Os05g18660
131	osa-miR2923	LOC_Os01g72290
		LOC_Os01g48210
		LOC_Os01g70790
		LOC_Os04g54970
132	osa-miR2926	LOC_Os01g13350
		LOC_Os01g16460
		LOC_Os04g56580
		LOC_Os11g18660
		LOC_Os08g20570
133	osa-miR2930	LOC_Os06g14780
		LOC_Os11g35720
		LOC_Os02g49970
134	osa-miR395m	LOC_Os03g09940
		LOC_Os11g44580
135	osa-miR395n	LOC_Os03g09940
		LOC_Os11g44580
136	osa-miR395o	LOC_Os03g53230
		LOC_Os03g09930
		LOC_Os07g38300
137	osa-miR395p	LOC_Os03g09940
		LOC_Os11g44580
138	osa-miR395q	LOC_Os03g09940
		LOC_Os06g46480
139	osa-miR395r	LOC_Os03g09940
		LOC_Os11g44580
140	osa-miR395s	LOC_Os03g09940
		LOC_Os11g44580
141	osa-miR398a	LOC_Os07g46990; LOC_Os01g68770; LOC_Os11g27220
142	osa-miR415	LOC_Os12g42280; LOC_Os05g02520; LOC_Os02g18320; LOC_Os03g02514; LOC_Os03g61990; LOC_Os02g26810; LOC_Os03g61990; LOC_Os03g10290; LOC_Os04g38630; LOC_Os02g01560; LOC_Os02g56540; LOC_Os01g72490; LOC_Os06g51240; LOC_Os07g12810; LOC_Os10g35690; LOC_Os12g40890; LOC_Os12g40560; LOC_Os05g37330
143	osa-miR439a	LOC_Os12g11340
144	osa-miR439c	LOC_Os12g11340
145	osa-miR439e	LOC_Os12g11340
146	osa-miR810b.1	LOC_Os01g65986; LOC_Os02g03930
147	osa-miR818a	LOC_Os07g40450; LOC_Os06g11500; LOC_Os03g63370; LOC_Os11g47160; LOC_Os06g05530; LOC_Os01g12820; LOC_Os03g49126; LOC_Os08g29760; LOC_Os01g18850; LOC_Os06g38210; LOC_Os01g51890; LOC_Os02g43560; LOC_Os09g37020; LOC_Os06g48060; LOC_Os03g47960; LOC_Os06g4690; LOC_Os09g07320; LOC_Os06g17950; LOC_Os01g72370; LOC_Os01g57630; LOC_Os07g48370; LOC_Os03g53600; LOC_Os05g39540; LOC_Os01g01720; LOC_Os11g12060; LOC_Os06g45890; LOC_Os03g25945
148	osa-miR820b	LOC_Os03g02010; LOC_Os01g13650; LOC_Os11g03310; LOC_Os05g00996; LOC_Os10g42196
149	osa-miR821a	LOC_Os12g16350; LOC_Os02g38340; LOC_Os12g14840; LOC_Os10g27274; LOC_Os02g32110; LOC_Os05g34750; LOC_Os06g48510; LOC_Os04g40860
150	osa-miR821b	LOC_Os12g16350; LOC_Os02g38340; LOC_Os12g14840; LOC_Os10g27274; LOC_Os02g32110; LOC_Os05g34750; LOC_Os06g48510; LOC_Os04g40860

Note: The underline one was confirmed by degradome sequencing (Zhou et al., 2010; Li et al., 2010), while the bold one was validated by both degradome sequencing and experiment.

Zhou, M., Gu, L.F., Li, P.C., Song, X.W., Wei, L.Y., Chen, Z.Y. (2010). Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front. Biol. 5(1): 67-90.

Li, Y.F., Zheng, Y., Quaye, C.A., Zhang, L., Saini, A., Jagadeeswaran, G., Axtell, M.J., Zhang, W.X., Sunkar, R. (2010). Transcriptome wide identification of microRNA targets in rice. Plant J. 62, 742-759.
Supplementary Table S4 Details of reported miRNAs and their targets that is crucial for yield in rice.

miRNA	targets	Annotation	Strategy	effect	Reference
osa-miR156	LOC_Os08g39890	OsSPL14	Point mutation in OsSPL14	Reduce tiller, increase panicle branches	Jiao et al., 2010
osa-miR393a	LOC_Os05g05800	OsTIR1	Overexpression of miR393	Promote tillering	Miura et al., 2010
	LOC_Os04g32460	OsAFB2		Promote tillering	Xie et al., 2012
osa-miR397	LOC_Os05g38420	Laccase	Overexpression of miR397	Promote panicle branches, increase grain size	Zhang et al., 2013
osa-miR396b	LOC_Os03g51970	GRF4/6	Overexpression and MIM396	Modulate auxiliary branches, grain size	Gao et al., 2015
osa-miR172	LOC_Os05g03040	OsTIR1	Overexpression	Panicle	Wang et al., 2015
	LOC_Os07g13170	OsAFB2	and MIM172	Panicle	Wang et al., 2015
osa-miR444a	LOC_Os02g49840	OsMADS57	Overexpression of miR444a	Suppressed tillering	Guo et al., 2013
osa-miR159a	LOC_Os01g59660	MYB		Panicle	Peng et al., 2014
osa-miR164e	LOC_Os03g47310	NAC		Grain filling	Peng et al., 2014
osa-miR186l	LOC_Os01g63810			Grain filling	Peng et al., 2014
osa-miR160a	LOC_Os06g47150		Northern blot	Grain filling	Lan et al., 2012
osa-miR167a	LOC_Os04g57610	ARF		Flag leaf	Xu et al., 2014
osa-miR171a	LOC_Os04g46860		Northern blot	Grain filling	Lan et al., 2012

Jiao, Y.Q., Wang, Y.H., Xue, D.W., Wang, J., Yan, M.X., Liu, G.F., Dong, G.J., Zeng, D.L., Lu, Z.F., Zhu, X.D., Qian, Q., Li, J.Y. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 6(42) : 541-544.

Zhang, Y.C., Yu, Y., Wang C.Y., Li, Z.Y., Liu, Q., Xu, J., Liao, J.Y., Wang, X.J., Qu, L.H., Chen, F., et al. (2013). Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotech. 31: 848-852.
Guo, S., Xu, Y., Liu, H., Mao Z., Zhang, C., Ma, Y., Zhang, Q., Meng, Z., Chong, K. (2013). The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun. 4: 1566.

Gao, F., Wang, K., Liu, Y., Chen, Y.P., Chen, P., Shi, Z.Y., Luo, J., Jiang, D.Q., Fan, F.F., Zhu, Y.G., Li, S.Q. (2015). Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants 2: 15196.

Duan, P.G., Ni, S., Wang, J.M., Zhang, B.L., Xu, R., Wang, Y.X., Chen, H.Q., Zhu, X.D., Li, Y.H. (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2: 15203.

Miura, K., Ikeda,M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., Ashikari, M. (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 42: 545-549.

Xie, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., Wang, Y., Zhang, M. (2012). OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PloS ONE 7: e30039.

Wang, L., Sun, S.Y., Jin, J.Y., Fu, D.B., Yang, X.F., Weng, X.Y., Xu, C.G., Li, X.H., Xiao, J.H., and Zhang, Q.F. (2015). Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci USA. 112: 15504-15509.

Lan, Y., Su, N., Shen, Y., Zhang, R.Z., Wu, F.Q., Cheng, Z.J., Wang, J.L., Zhang, X., Guo, X.P., Lei, C.L., et al. (2012). Identification of novel miRNAs and miRNA expression profiling during grain development in indica rice. BMC Genomics 13: 264.

Peng, T., Sun, H., Qiao, M., Zhao, Y., Du, Y., Zhang, J., Li, J., Tang, G., Zhao, Q. (2014). Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biol. 14:196.

Xu, X., Bai, H., Liu, C., Chen, E., Chen, Q., Zhuang, J., Shen, B. (2014). Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PloS one 9(12): e114313.
Supplementary Table S5 Primers for qRT-PCR used in this study.

Gene	Sequences (5’-3’)
miR393a-F	GTCGCTCCAAAGGGATCGC
miR393a-RT	GTCGTATCCAGTGCGGGGTCCAGGTATTCCGACTGGATACGACGATCAA
miR171a-F	GCTCTCTGATTGAGCCGCG
miR171a-RT	GTCGTATCCAGTGCGGGGTCCAGGTATTCCGACTGGATACGACGATATT
Universal-R	GTGCCAGGGGTCCAGGGT
U6-F	CAACGGATATCTCGGCTCT
U6-R	CAACCTTGCGTTCAAAAGACTC