Identification of potential transcriptionally active Copia LTR retrotransposons in *Eucalyptus*

Helena Marcon1,2*, Douglas Domingues1*, Celso Marino1*

From IUFRO Tree Biotechnology Conference 2011: From Genomes to Integration and Delivery
Arraial d’Ajuda, Bahia, Brazil. 26 June - 2 July 2011

Background

Long Terminal Repeat retrotransposons (LTR-RTs) represent the most abundant genomic component in all plant genomes thus far investigated. They are transposable elements that replicate through a “copy/paste” mechanism that relies on reverse transcription and integration of a RNA intermediate. Plant LTR-RTs can be divided in two major superfamilies: *Copia* and *Gypsy* [1]. LTR-RTs have impact on genome size variation, as well as in the expression of adjacent genes in their host genomes, providing a “genomic plasticity” [2]. Their transcription was believed to be extremely repressed in plants. However, despite their potential mutagenic and deleterious effects, LTR-RTs were proven to be transcriptionally active in several plant species [3].

Eucalyptus is one of the most commercially important forest genus in the world, due to their superior growth, broad adaptability and multipurpose wood properties. Most molecular studies in *Eucalyptus* are focused on cellulose production and wood development, and there are few works on genome composition, structure and evolution. *Pinus* and *Populus*, the tree genera with most available genomic resources, have several works analyzing their repertoire of LTR-RTs [i.e 4, 5], but only one study characterized LTR-RTs in *Eucalyptus* [6], with no detailed manual checking or phylogenetic analysis. Here, we used FOREST database as a starting point to identify transcriptionally active *Copia* LTR-RTs in *Eucalyptus*, that were further analyzed regarding their *in silico* expression, evolutionary diversity, and distribution in public genomic databases.

Methods

A previous survey with 88 *Copia* LTR-RTs from diverse plants defined six major common evolutionary *Copia*-lineages [7]. The 22 *Arabidopsis thaliana* families analyzed in that study were used as queries to the identify *Eucalyptus* EST sequences related to *Copia* elements in FOREST database [8], by tBLASTx (e-value >1e-50). Sequences were then analyzed in RepBase [9] to confirm their similarity to *Copia* LTR-RTs. *Eucalyptus* ESTs with >200bp of copia-like retrotransposon fragments were used to identify complete copies in *Eucalyptusgrandis* genome v.1.0 in a BLASTn search (identity >80%; in a region >250bp). We picked up 10000bp surrounding the aligned region, that were analyzed using LTR-Finder [10] and LTR_STRUC [11]. Full-length LTR-RTs were then used as queries in GenBank to retrieve related *Eucalyptus* EST sequences (>200bp; >80% identity). Phylogenetic analyses using the reverse transcriptase of these elements (alignment in MUSCLE, Maximum Likelihood method, bootstrap 1000 replicates) were done using MEGA 5.01 [12].

Results

Stem, calli and seedlings were the cDNA libraries from FOREST database with most EST sequences, in this *Copia* LTR-RT search. We identified 20 consensus sequences (total: 36 ESTs) from 3 tissues, roots, leaves and flower-buds. We also identified 29 ESTs in GenBank from xylem, root apex and cold-stressed plants (Table 1). Using EST data, we identified six full-length retrotransposons families that had different copy number in the *Eucalyptus* genome, estimated by BLAST searches (cutoff 1e-50). Copy number ranged from 24 to 262 (Table 1). Phylogenetic analyses showed that they are members of the *Ale*, *Angela*, *GMR* and *Ivana* evolutionary lineages (figure 1). *Ale* was the evolutionary...
lineage encompassing families with highest and lowest copy number (Table 1).

Conclusion

In summary, the present data demonstrate the potential impact of future studies about functional and genomic analysis of LTR-RTs in *Eucalyptus*. This is the first characterization of full-length Copia LTR-RTs families in *Eucalyptus* genome with potential transcriptional activity, giving insights about phylogenetic diversity and copy number variation of retrotransposons in this tree.

Acknowledgements

HSM was supported by a fellowship from Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and CNPq.

Author details

1 Departamento de Genética, UNESP, Botucatu, São Paulo, Brazil. 2 IAPAR, Londrina, Paraná, Brazil.

Published: 13 September 2011

References

1. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Challoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH: A unified classification system for eukaryotic transposable elements. *Nat Rev* 2007, 8:973-982.
2. Du J, Tian Z, Hans CS, Latten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J: Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. *Plant J* 2010, 63:584-598.
3. Vicent CM, Jaaskelainen MJ, Kalendar R, Schulman AH: Active retrotransposons are a common feature of grass genomes. *Plant Phys* 2001, 125:1285-1292.
4. L’Homme Y, Séguin A, Tremblay FM: Different classes of retrotransposons in coniferous spruce species. *Genome* 2000, 43(6):1084-1089.
5. Zhou F, Xu Y: RepPop: a database for repetitive elements in *Populus trichocarpa*. *BMC Genomes* 2009, 10:14-23.
6. Bacc Júnior M, Soares RRS, Tajara E, Ambar G, Fischer CN, Guilherme IR, Costa EP, Miranda VFO: Identification and frequency of transposable elements in *Eucalyptus*. *Genet Mol Biol* 2005, 28(3):634-639.
7. Wicker T, Keller B: Genome-wide comparative analysis of retrotransposons in *Triticeae*, *rice*, and *Arabidopsis* reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. *Genome Research* 2007, 17:1072-1081.
8. Vicentini R, Sastaki FT, Gimenes MA, Maia IG, Menossi M: In silico evaluation of the *Eucalyptus* transcriptome. *Gen Mol Biol* 2005, 28:487-495.
9. Jurka J, Kapitonov VV, Pavlicek A, Kluczewski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements, *CytoGeneticcs and Genome Research* 2005, 110:462-467.
10. Xu Z, Wang H: *LTR_FINDER*: an efficient tool for the prediction of full-length LTR retrotransposons. *Nuc Acids Res* 2007, 35:265-268.

Table 1 Overall features of LTR-RTs analyzed.

Family	Lineage	Genomic copy number	FOREST cDNA libraries	GenBank cDNA libraries
RTE_copia_Eu_1	Ale	28	seedlings	xylem
RTE_copia_Eu_2	Ale	262	roots, leaves	xylem
RTE_copia_Eu_3	Ale	24	root	xylem, cold-stressed
RTE_copia_Eu_4	Angela	243	seedlings, calli	xylem
RTE_copia_Eu_5	Ivana	54	leaves, root, calli, wood	xylem
RTE_copia_Eu_6	GMR	63	leaves, seedlings	xylem

Figure 1 Phylogenetic tree of Copia LTR-RTs elements. Based on Du and collaborators (2010).
11. McCarthy EM, McDonald JF: LTR STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 2003, 19:362-367.
12. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, (submitted).

doi:10.1186/1753-6561-5-S7-P164
Cite this article as: Marcon et al.: Identification of potential transcriptionally active Copia LTR retrotransposons in Eucalyptus. BMC Proceedings 2011 5(Suppl 7):P164.