A SHORT PROOF OF KLEE’S THEOREM

JOHN ZANAZZI

Northern Arizona University
Dept. of Mathematics and Statistics
Flagstaff, AZ 86011

Penn State University Mathematics Dept.
University Park, State College, PA 16802

ABSTRACT. In 1959, Klee proved that a convex body K is a polyhedron if and only if all of its projections are polygons. In this paper, a new proof of this theorem is given for convex bodies in \mathbb{R}^3.

1. INTRODUCTION

This paper will begin by summarizing the relevant work of Mirkil [2] and Klee [1]. Let V be an n-dimensional real vector space and $C \subset V$. The set C is said to be a convex cone if and only if C is stable under both vector addition and multiplication, and polyhedral if and only if C is the intersection of a finite number of closed halfspaces. For a set K embedded in an n-dimensional affine space E and a point $p \in K$, define K to be polyhedral at p if and only if some neighborhood of p relative to K is polyhedral. For a set $K \subset E$ and a point $p \in E$, we will denote the smallest cone containing K with vertex p as cone(p,K). A j-flat is a j-dimensional affine subspace of E, and a hyperplane is a $(n-1)$-dimensional affine subspace of E.

In Mirkil [2], the following theorem is proven:

Theorem 1.1. If C is a closed convex cone, then C is polyhedral if and only if every 2-dimensional projection of C is closed.

Sketch of Proof. The forward direction of this statement follows from the fact that every projection of C is polyhedral. The main idea to prove the converse is as follows: If H is a hyperplane, then for all $x \in C \cap H$, there exists a neighborhood N which contains no extreme points except possibly x. □

Example 1.2. Let our vector space be \mathbb{R}^3 with the standard Cartesian coordinate system. Take C to be a circular cone supported by the (x,y) plane so that the infinite half-line of support lies on the x-axis, and let $\pi_{(y,z)}(C)$ be the horizontal projection of C into the (y,z) plane. We see that $\pi_{(y,z)}(C)$ may be expressed as

$$\pi_{(y,z)}(C) = \{(0,a,b) : a \in \mathbb{R}, b > 0\} \cup \{(0,0,0)\}$$

Note that $\pi_{(y,z)}(C)$ is not closed, in accordance with Theorem 1.1.
Motivated by Theorem 1.1 comes the extensive work of Klee [1], which includes the following theorem:

Theorem 1.3. If K is a n-dimensional convex subset of an affine space, $p \in K$, and $2 \leq j \leq n$, then K is polyhedral at p if and only if $\pi(K)$ is polyhedral at p whenever $\pi(K)$ is an affine projection of K into a j-flat through p.

Sketch of Proof. To prove the “only if” portion, the fact that a convex set K is polyhedral at point $p \in K$ if and only if $\text{cone}(p, K)$ is polyhedral is used repeatedly on K, $\text{cone}(p, K)$, and their affine projections.

To prove the converse, the fact that all j-dimensional projections of K are polyhedral follows directly from the statement. In particular, all 2-dimensional projections of K are polyhedral, thus all intersections with hyperplanes are polyhedral. Furthermore, Klee proves a cone is polyhedral if and only if its intersections with elements of a specific parameterized set of hyperplanes are polyhedral, thus $\text{cone}(p, K)$ is polyhedral. Using again that a convex set K is polyhedral at point $p \in K$ if and only if $\text{cone}(p, K)$ is polyhedral, Klee proves K is polyhedral at p. \square

From Theorem 1.3, Klee establishes a corollary:

Corollary 1.4. With $2 \leq j \leq n$, a n-dimensional bounded convex subset is polyhedral if and only if all its projections into j-flats are polyhedral.

The following statement follows from the previous corollary:

Theorem 1.5. If K is a convex body in \mathbb{R}^3 whose orthogonal projection into every plane is a polygon, then K is a polyhedron.

The proof of this theorem is simplified if instead of reformulating the problem in terms of closed projections of convex cones, one shows that all points $x \in K$ are located within a neighborhood which contain no extreme points except possibly x. The next sections explain this proof in detail.

2. DUAL REFORMULATION

For a plane P and sets X, Y embedded in \mathbb{R}^3, denote the orthogonal projection of X into P by $\pi_P(X)$, the union and intersection of X and Y by $X \cup Y$ and $X \cap Y$ respectively, the convex hull of X by $\text{conv}(X)$, and the boundary of X by ∂X. For points p, q, r in \mathbb{R}^3, denote the triangle with vertices p, q, r by $\triangle pqr$, and the line segment bounded by p and q by $[pq]$.

Recall that a *convex body* is a closed bounded convex set with nonempty interior. Fix a convex body K in \mathbb{R}^3 so that the origin of \mathbb{R}^3 belongs to the interior of K. The *polar dual* of K will be denoted as K^*; i.e.,

$$K^* = \{ y \mid x \cdot y \leq 1 \text{ for every } x \in K \}$$

Clearly K^* is a convex body and the origin is an interior point of K^*. Moreover K^* is a convex polyhedron if and only if so is K.

The following statement follows directly from the definition of polar dual.

Proposition 2.1. If P is a plane passing through the origin, then

$$K^* \cap P = \pi_P(K)^* \cap P.$$

Note that $\pi_P(K)^* \cap P$ is a polygon if and only if so is $\pi_P(K)$. Using the above proposition, Theorem 1.5 can be reformulated the following way:
Theorem 2.2. Suppose K^* is a convex body in \mathbb{R}^3 containing the origin in its interior. If for every plane P passing through the origin, the intersection $P \cap K^*$ is a polygon, then K^* is a polyhedron.

3. Proof of Theorem 2.2

Lemma 3.1. Let K^* be a convex body in \mathbb{R}^3 and $p, q, x, y \in K^*$. If x lies between p and q, and the line segment $[xy]$ lies completely in ∂K^*, then the triangle $\triangle pqy$ lies completely in ∂K^*.

Proof. Suppose to the contrary that the point $r \in \triangle pqy$ belongs to the interior of K^*. This implies the existence of a line segment $L \subset K^*$ containing r such that the convex hull $\text{conv}(L \cup \triangle pqy)$ is a bipyramid in \mathbb{R}^3, and the interior of $\triangle pqy$ lies in the interior of $\text{conv}(L \cup \triangle pqy)$.

Therefore, all the interior points of $\triangle pqy$ belong to the interior of K^*. Because the midpoint of $[xy]$ lies in the interior of $\triangle pqy$, the result follows. \square

Proposition 3.2. Suppose K^* satisfies the conditions of Theorem 2.2. For all points $p, q \in K^*$, there exists an $\varepsilon > 0$ such that for $r \in K^*$, if $0 < |p - r| < \varepsilon$ and $\angle rpq < \varepsilon$, then r is not extreme.

Proof. The statement is evident if the line segment $[pq]$ passes through the interior of K^*, so we can assume that $[pq] \subset \partial K^*$.

Let x denote the midpoint of $[pq]$. Choose a plane P through the origin which intersects $[pq]$ transversely at x. The intersection $K^* \cap P$ is a polygon, where the sides extending from x are denoted by the line segments $[xy]$ and $[xz]$. We refer to Figure 1 for clarity.

By Lemma 3.1, the triangles $\triangle pyq$ and $\triangle pzq$ lie completely in ∂K^*. Choose a point s in the interior of K^*. Clearly there exists an $\varepsilon > 0$ such that for any point $r \in K^*$, if $|p - r| < \varepsilon$ and $\angle rpq < \varepsilon$, then r lies in the convex hull $\text{conv}(\triangle pyq, \triangle pzq, s)$. Hence the result follows. \square

Proof of Theorem 2.2. Suppose to the contrary that $\{q_n\}$ is an infinite set of distinct extreme points contained within K^*. Pass $\{q_n\}$ to a convergent subsequence $\{q_{n_k}\}$, and let $p \in \partial K^*$ be the point such that $q_{n_k} \rightarrow p$ as $n_k \rightarrow \infty$. Choose the convergent subsequence $\{q_{n_k}\}$ so that the unit vectors $v_{n_k} = \frac{q_{n_k} - p}{|q_{n_k} - p|}$ also converge, say $v_{n_k} \rightarrow u$.

Consider the plane P which passes through p, u and the origin. Since the intersection $P \cap K^*$ is a polygon, there is a line segment $[pq] \subset \partial K^*$ pointing from p in the direction of u.

Applying Proposition 3.2 we arrive at a contradiction. \square

4. Acknowledgments

I am greatly indebted to Anton Petrunin, Greg Kuperberg, and Sergei Tabachnikov for suggestions and editing drafts. This paper would not have been possible without them. I would like to thank Branko Grunbaum for suggestions, as well as Pennsylvania State University and the National
Science Foundation for funding this research through a Mathematics Advanced Study Semesters (MASS) Fellowship.

REFERENCES

[1] V. Klee. Some characterizations of convex polyhedra. *Acta Mathematica*, 102 (1959), 79-107.
[2] H. Mirkil. New characterizations of polyhedral cones. *Canadian Journal of Mathematics*, 9 (1957), 1-4.