Glueballs and vector mesons at NICA

Denis Parganlija

Technische Universität Wien, Institut für Theoretische Physik, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria

16.10.2015 / Revised version: 07.01.2016

Abstract. Two interconnected fields of interest are suggested for NICA. Firstly, existence of glueballs is predicted by the theory of strong interaction but – even after decades of research – glueball identification in the physical spectrum is still unclear. NICA can help to ascertain experimental glueball candidates via J/ψ decays whose yield is expected to be large. Importance of glueballs is not limited to vacuum: since they couple to other meson states, glueballs can also be expected to influence signatures of chiral-symmetry restoration in the high-energy phase of strong dynamics. Mass shifting or in-medium broadening of vector and axial-vector mesons may occur there but the extent of such phenomena is still uncertain. Additionally, glueball properties could also be modified in medium. Exploration of these issues is the second suggested field of interest that can be pursued at NICA.

PACS. 12.39.Mk Glueball and nonstandard multi-quark/gluon states – 14.40.Be Light mesons

1 Introduction

Quantum Chromodynamics (QCD), the established theory of the strong interaction, is per construction of non-Abelian nature. As a consequence, gauge bosons of QCD – the gluons – are self-interacting. Since the strong coupling is large at sufficiently small energies \cite{1,2}, the expectation is that the non-perturbative region of strong dynamics enables gluons to build more complex objects denoted as glueballs \cite{3,4,5,6,7,8,9,10}. Theoretical studies have shown lively interest in glueballs using various methods to approach the non-perturbative regime of QCD:

– Ab-initio numerical calculations in lattice QCD have resulted in predictions of glueball spectra in quenched as well as unquenched approximations \cite{11,12,13,14,15,16,17,18,19,20,21}.

– The AdS/CFT correspondence has yielded results both on glueball spectra, \cite{22,23,24,25,26}, as well as decays of glueballs \cite{27,28,29,30}.

– Effective approaches to QCD have upon implementation of relevant symmetries of strong dynamics considered not only glueball decays but also various mixing mechanisms between glueball and non-glueball states obtaining a satisfactory overall agreement with experimental data \cite{31,32,33,34,35,36,37,38}; see also Refs. \cite{39,40,41}.

There are several reasons for interest in glueballs:

– Glueballs are unique since their mass is, at the leading order, generated solely via self-interaction of gluons (pure gluodynamics). Although at the level of full QCD current quark masses can contribute, their effects are currently unclear. This is particularly the case in lattice QCD where the inclusion of dynamical fermions leads to the emergence of states additional to those present in pure gluodynamics with consequences that, e.g., (i) states experience overlaps and (ii) the scalar glueball is no longer the lowest state of the spectrum. Then the identification of states is more complicated – and conclusions from lattice QCD in the scalar channel somewhat conflicting: Refs. \cite{16,19,20} do not observe large unquenching effects in simulations relying on staggered fermions while a different opinion (in line with the expectation of Ref. \cite{15}) is advocated by simulations with clover fermions \cite{18}.

– Leading-order mass generation of glueballs is in contrast to other strongly interacting particles (i.e., hadrons) whose masses are predominantly generated by quark dynamics and thus susceptible to, albeit very small, contribution of the Brout-Englert-Higgs mechanism (see examples for pions \cite{42}; kaons \cite{43}; $\omega-\rho$ splitting \cite{43,44}; nucleons \cite{45}).

Therefore glueballs represent a very important tool to explore strong dynamics.

– The spin of glueballs is integer since gluons are vector particles. Consequently the spectrum of mesons (i.e., hadrons of integer spin) would be incomplete if glueballs were omitted from experimental searches.

In Sect. 3 some of the issues on the experimental side of the glueball search are exemplified, together with suggestions for NICA in this regard.
The expectation is that a coupling of modified strength will remain at non-zero temperatures and densities. In that case, glueballs will influence \(\bar{q}q \) states and the underlying phenomena of their in-medium behaviour, such as the chiral-symmetry restoration. It is, however, unclear what this behaviour exactly entails since vector and axial-vector mesons may shift in mass or become broader in medium but clear experimental evidence for this is still outstanding. These issues together with further suggestions for NICA are discussed in Sect. 3. Conclusions are presented in Sect. 4.

2 Hallmarks of a glueball: an example

A glueball state can be distinguished from other hadrons by for example (i) strong suppression in two-photon decay channels \([16]\) and prominent presence in radiative decays \([21]\); (ii) decay patterns. Various approaches to glueball dynamics (mentioned in the previous section) have been applied in studies of glueball decays; in the following, a recent approach based on the AdS/CFT correspondence is briefly discussed and its results for glueball identification are presented.

The approach is based on the conjectured duality between weakly coupled string theory (i.e., supergravity) in an anti-de Sitter (AdS) space and a strongly coupled conformal field theory (CFT) in one dimension less \([47]\). The field theory possesses symmetries absent from QCD (supersymmetry in addition to conformality); these are removed by suitable compactifications in the full supergravity space \([48]\) and the emerging gravity space \([48]\) and the emerging AdS space \([48]\) with \(N_\text{c} \to \infty \) may be used to explore the Yang-Mills sector of QCD. Then (holographic) glueballs are obtained as graviton polarisations in the supergravity background. It was demonstrated in Ref. \([22]\) that such an approach leads to a glueball spectrum that is remarkably similar to the one obtained in lattice-QCD simulations.

Studying glueball decays into \(\bar{q}q \) states requires introduction of quark degrees of freedom. A method to include chiral quarks – the so-called Witten-Sakai-Sugimoto (WSS) Model – was proposed in Refs. \([49,50]\) by introducing \(N_f \) (number of flavours) probe D8- and anti-D8-branes in the supergravity space that extend along all dimensions in the space except for a (Kaluza-Klein) circle. D-branes introduce a \(U(N_f) \times U(N_f) \) symmetry in the theory; since D8- and anti-D8-branes merge at a certain point in the bulk space, the original \(U(N_f) \times U(N_f) \) symmetry is reduced to its diagonal subgroup. This is interpreted as a geometric realisation of chiral-symmetry breaking.

It was demonstrated already in Refs. \([49,50]\) that the WSS Model can describe phenomenology of \(\bar{q}q \) states at least in a semiquantitatively correct way. Decays of dilaton glueballs were in turn explored in Refs. \([28,29]\) where predictions for decays of the scalar and tensor glueballs in the \(2\pi, 4\pi, 6\pi, 2K \) and \(2\eta \) channels have been made, as presented in Tables 1 and 2.

However, irrespective of the lively theoretical interest in glueballs, the identification of these states in the physical spectrum is still outstanding.

3 Experimental ambiguities relevant for glueballs: an example, and a suggestion for NICA

Reasons for problems in experimental identification of glueballs are at least twofold:

- Glueballs are expected to emerge starting at energies between approximately 1.5 GeV and 1.8 GeV where the ground state, a scalar \([51]\), is predicted in numerical simulations of the spectrum \([11]\). Historically there has been a scarcity of precise experimental data exactly in the energy region where glueballs are expected to emerge \([52]\). Although there has been a notable change in data availability \([53,54,55]\), the amount of progress is still not sufficient for an unambiguous identification of these states.
- Glueball with a given set of quantum numbers will inevitably mix/interfere with non-glueball states (possessing \(\bar{q}q, \bar{q}qq \) and other valence degrees of freedom) that have the same quantum numbers. The effects of

Decay	\(M_{\text{exp.}} \) (MeV)	\(\Gamma_{\text{M}} \) (holography)	\(\Gamma_{\text{M}} \) (exp.)
\(f_0(1500) \) (total)	1505	0.072(5)	0.027...0.037
\(f_0(1500) \to 4\pi \)	1505	0.036(3)	0.003...0.005
\(f_0(1500) \to 2\pi \)	1505	0.025(2)	0.009...0.012
\(f_0(1500) \to 2K \)	1505	0.006(1)	0.012...0.016
\(f_0(1500) \to 2\eta \)	1505	0.004(1)	0.003...0.004

Table 1. Comparison of holographic scalar-glueball decays (the outer right column) obtained in Ref. \([29]\) with experimental data for the two prime candidates for the scalar glueball, the resonances \(f_0(1500) \) and \(f_0(1710) \). The ’t Hooft coupling (that is the only free quantity in the WSS Model, except for the Kaluza-Klein mass which sets the Model scale) was determined in two ways, by implementing the experimental value of the pion decay constant or the lattice-QCD value of the string tension. This allows for theoretical uncertainties to be estimated and hence holographic results are presented in intervals. All experimental data are from PDG \([52]\) except for those marked by a star that are from Ref. \([63]\) where the \(f_0(1710) \) decay channels were calculated assuming a negligible coupling of that resonance to \(4\pi \). All masses are in MeV. The \(f_0(1710) \) resonance is preferred to have a significant overlap with the scalar glueball but a conclusive statement in this regard is hampered by experimental uncertainties discussed in Sect. 3.

- Glueball with a given set of quantum numbers will inevitably mix/interfere with non-glueball states (possessing \(\bar{q}q, \bar{q}qq \) and other valence degrees of freedom) that have the same quantum numbers. The effects of
Table 2. Decays of the holographic tensor glueball predicted by the WSS Model for two different masses, \(M_T = 2000 \text{ MeV} \) and \(M_T = 2400 \text{ MeV} \). The former mass is chosen to approximately correspond to that of the \(f_2(1950) \) resonance, a possible candidate for the tensor glueball due to its mostly flavour-blind decay modes; for this state, \(\Gamma/M = 0.24(1) \) where \(\Gamma \) is the total decay width. The value \(M_T = 2400 \text{ MeV} \) is chosen exemplarily as an element of the interval for the tensor glueball mass predicted by lattice QCD \([11,16,17,24]\). Just as for results presented in Table 1 the ’t Hooft coupling was determined in two ways: by implementing the experimental value of the pion decay constant or the lattice-QCD value of the string tension. Holographic results are thus presented in intervals in order to estimate theoretical uncertainties.

Decay	\(M_T \) (MeV)	\(\Gamma/M \) (holography)
\(T \rightarrow 2\rho \rightarrow 4\pi \)	2000	0.135...0.178
\(T \rightarrow K^*K^* \rightarrow 2(K\pi) \)	2000	0.119...0.177
\(T \rightarrow 2\omega \rightarrow 6\pi \)	2000	0.045...0.059
\(T \rightarrow 2\pi \)	2000	0.014...0.018
\(T \rightarrow 2K \)	2000	0.010...0.013
\(T \rightarrow 2\eta \)	2000	0.0018...0.0024
\(T \) (total)	2000	\(\approx \) 0.32...0.45
\(T \rightarrow K^*K^* \rightarrow 2(K\pi) \)	2400	0.173...0.250
\(T \rightarrow 2\rho \rightarrow 4\pi \)	2400	0.159...0.211
\(T \rightarrow 2\omega \rightarrow 6\pi \)	2400	0.053...0.070
\(T \rightarrow 2\pi \)	2400	0.032...0.051
\(T \rightarrow 2K \)	2400	0.014...0.019
\(T \rightarrow 2\eta \)	2400	0.012...0.016
\(T \) (total)	2400	\(\approx \) 0.45...0.62

such interference in experimental data render the identification of resonances in general, and thus glueballs in particular, highly non-trivial \([56]\).

Existing issues in experimental glueball searches can be illustrated by the following example relevant for the scalar glueball. This state possesses quantum numbers \(IJ^{PC} = 00^{++} \) where \(I \), \(J \), \(P \) and \(C \) respectively denote the isospin, total spin, parity and charge conjugation. Particle Data Group (PDG) cites the existence of five \(IJ^{PC} = 00^{++} \) resonances in the energy region up to \(\sim 1.8 \) GeV: \(f_0(500) \), \(f_0(980) \), \(f_0(1370) \), \(f_0(1500) \) and \(f_0(1710) \). They are known as scalar isoscalar resonances \([52]\); for a brief review, see Refs. \([57,58]\). Claims have been made \([59,60,61,62]\) that a sixth such state exists, namely \(f_0(1790) \) – a state very close to \(f_0(1710) \) but with a different decay behaviour: \(f_0(1790) \) decays predominantly into pions whereas \(f_0(1710) \) decays predominantly into kaons.

There are four basic production mechanisms for \(f_0(1710) \) and \(f_0(1790) \) via \(J/\psi \) decays:

\(- (i) J/\psi \rightarrow \phi K^+ K^-; \)
\(- (ii) J/\psi \rightarrow \phi\pi^+\pi^-; \)
\(- (iii) J/\psi \rightarrow \omega K^+ K^-; \)
\(- (iv) J/\psi \rightarrow \omega\pi^+\pi^-.

Reactions \((i) \) and \((iii) \) allow for reconstruction of \(f_0(1710) \) – see Ref. \([63]\) – whereas \(f_0(1790) \) is reconstructed from reactions \((ii) \) and \((iv) \). Importantly, assuming \(f_0(1710) \) and \(f_0(1790) \) to be the same resonance leads to a contradiction: such a resonance would have to possess a pion-to-kaon-decay ratio of \(1.82 \pm 0.33 \) according to reactions \((i) \) and \((ii) \) and a pion-to-kaon-decay ratio \(< 0.11 \) according to reactions \((iii) \) and \((iv) \). Decay ratios must be independent of the production mechanism for a single resonance. The assumption that \(f_0(1710) \) and \(f_0(1790) \) represent a single resonance clearly leads to a contradiction in the value of the mentioned decay ratio; consequently, the employed data – obtained by the BES Collaboration – prefer \(f_0(1790) \) as a resonance distinct from \(f_0(1710) \). Nonetheless, additional inspection of this claim is by all means needed in further experiments.

If the existence of the \(f_0(1790) \) resonance is confirmed, it will most certainly have implications for glueball search since its mass is within the interval in which the scalar glueball is expected to appear according to lattice QCD.

Comparison of SPD with other running or planned programs is in order. Given the above data on \(f_0(1790) \), two sorts of production mechanisms are particularly relevant: \((i) e^+e^- \) (as at BES) and \((ii) pp \) (since planned at SPD).

Firstly, \(e^+e^- \) collisions at the VEPP-4M Collider have produced \(\sim 7 \) million \(J/\Psi \) events, as reported by the KEDR Collaboration \([65]\). This could in principle enable the reconstruction of \(f_0(1790) \) but an even larger \(J/\Psi \) yield is expected at SPD.

Additionally, CMD-3 and SND Collaborations at VEPP-2000 can use \(e^+e^- \) collisions for scans of the energy region from hadron-production threshold up to 2 GeV but their focus is currently on vector mesons only \([66]\), and SPD could fill this gap.

Note further that, although the primary focus of Belle-II \([70]\) is on precision measurements beyond the Standard Model, discoveries in non-perturbative QCD can be expected also from that source given the large expected luminosity (larger than at SPD). Belle-II will rely on reconstruction of resonances from \(T'(4S) \) rather than \(J/\Psi \) decays; particles below 2 GeV may be nonetheless recon-
It has to be noted here that the mentioned expectation is based on experimental data in vacuum that suffer from uncertainties discussed in Sect. 3. For this reason, improved measurements in vacuum physics would enable more precise theoretical predictions of in-medium meson properties.
Two of the planned experiments at NICA appear to be relevant here: (i) MultiPurpose Detector (MPD) program intended to study hot and dense baryonic matter in heavy-ion collisions at a centre-of-mass energy up to 11 GeV [110] and (ii) Baryonic Matter at Nuclotron (BM@N), focused on production of strange matter in heavy-ion collisions at beam energies between 2 AGeV and 6 AGeV [112,113]. My suggestion is that NICA Collaboration perform a careful study of in-medium spectral functions for vector and axial-vector mesons listed at the beginning of this section – in this way information can be obtained on the mass shifts, decay properties and other phenomena that can improve theoretical studies of chiral-symmetry restoration.

A range of measurements has already been performed at RHIC [114] and LHC [115] exploring high temperatures and low baryon densities and at HADES [116] exploring lower temperatures and moderate densities. The main interest of NICA/MPD and BM@N is in the region of QCD phase diagram intermediate to the mentioned two, building on the results obtained at SPS [117]. Hence future measurements at NICA appear to open a unique possibility to study in particular (axial-)vector mesons at high densities and moderate temperatures. The Collaboration also estimates that collider experiments at MPD will have a nearly constant acceptance and occupancy, unlike the future FAIR/CBM experiment [118] that will rely on a fixed target. Exploration of (axial-)vectors under these conditions is obviously highly desirable.

As an example, the degeneration of the chiral partners ρ and a_1 can be used as an order parameter for the chiral transition (see Refs. [80,119,120,121] and refs. therein). Then there are three possible scenarios for the mass shifts of ρ and a_1 in medium: (i) both masses decrease and become degenerate; (ii) both masses increase and become degenerate; (iii) m_{ρ} increases and m_{a_1} decreases leading to the degeneration of the two masses. Currently it is unclear which of these options is realised in strong dynamics and MPD/BM@N data could provide valuable information in this direction.

Note, however, that the physical ρ meson has also been suggested to represent a superposition of states whose chiral partners are, respectively, an axial-vector and a pseudovector [122,123]. Patterns of chiral-symmetry restoration may be more complicated in this case. Nonetheless, all these theoretical calculations may be refined by experimental data resulting in a significantly deeper understanding of high-energy QCD.

5 Conclusions

There are many open questions in strong dynamics at present, out of which I have discussed two that appear to be relevant for NICA: glueballs and (axial-)vector mesons in vacuum and in medium. Glueballs, although theoretically expected to emerge as bound states of gluons in the low-energy region of QCD, have remained elusive even after decades of research. One of the main reasons is a lack of precise experimental data. Glueball search would be aided greatly if SPD @ NICA were to measure 2π, $2K$ and 4π (and other) final states in the energy region where glueballs are expected to start emerging, i.e., above ~ 1.5 GeV. These measurements regarding vacuum strong dynamics would have wider implications: since glueballs couple to qq states already in vacuum they can be expected to influence qq-in-medium dynamics as well. Consequently, clearer data on glueballs in vacuum will permit a more precise prediction of dynamics at non-zero temperatures and densities – including chiral-symmetry restoration – where additional ambiguities are present, particularly regarding the behaviour of vector and axial-vector mesons such as mass shifts and in-medium broadening. Currently the possible in-medium modifications of glueballs are also unclear. Resolution of these questions can be aided by precise measurements at MPD and BM@N. Thus the entire NICA project appears to have a large potential to decisively increase our understanding of strong dynamics.

Acknowledgments. I am grateful to F. Brüninger, D. Bugg, F. Giacosa and A. Rebhan for extensive discussions. This work is supported by the Austrian Science Fund FWF, project no. P26366.

References

1. D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
2. H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
3. H. Fritzsch and M. Gehl-Mann, eConf C 720906V2, 135 (1972) [hep-ph/0208010].
4. H. Fritzsch and P. Minkowski, Nuovo Cim. A 30, 393 (1975).
5. R. L. Jaffe and K. Johnson, Phys. Lett. B 60, 201 (1976).
6. R. Konoplich and M. Schepkinu, Nuovo Cim. A 67, 211 (1982).
7. M. Strohmeier-Presicek, T. Gutsche, R. Vinh Mau and A. Faessler, Phys. Rev. D 60, 054010 (1999) [arXiv:hep-ph/9904401].
8. C. Amsler and N. A. Tornqvist, Phys. Rept. 389, 61 (2004).
9. E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007) [arXiv:0708.4016 [hep-ph]].
10. V. Mathieu, N. Kochelev and V. Vento, Int. J. Mod. Phys. E 18, 1 (2009) [arXiv:0810.4453 [hep-ph]].
11. C. J. Morningstar and M. J. Peardon, Phys. Rev. D 60, 034509 (1999) [hep-lat/9901004].
12. W. J. Lee and D. Weingarten, Phys. Rev. D 61, 045015 (2000) [hep-lat/9910008].
13. G. S. Bali et al. [TXL and T(X)L Collaborations], Phys. Rev. D 62, 054503 (2000) [hep-lat/0003012].
14. A. Hart et al. [UKQCD Collaboration], Phys. Rev. D 65, 034502 (2002) [hep-lat/0108022].
15. M. Loan, X. Q. Luo and Z. H. Luo, Int. J. Mod. Phys. A 21, 2905 (2006) [arXiv:hep-lat/0503039].
16. E. B. Gregory, A. C. Irving, C. C. McNeile, S. Miller and Z. Sroczynski, PoS LAT2005, 027 (2006) [arXiv:hep-lat/0501066].
Denis Parganlija: Glueballs and vector mesons at NICA

80. S. Strüber and D. H. Rischke, Phys. Rev. D 77, 085004 (2008) [arXiv:0708.2389 [hep-th]].
81. G. E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991).
82. J. R. Pelaez and G. Rios, Phys. Rev. Lett. 97, 242002 (2006) [hep-ph/0613097].
83. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier and B. Petersson, Nucl. Phys. B 469, 419 (1996) [hep-lat/9602007].
84. G. Boyd and D. E. Miller, hep-ph/9608482.
85. D. E. Miller, hep-ph/0008031.
86. D. E. Miller, Phys. Rept. 443, 55 (2007) [hep-ph/0608234].
87. J. Sollfrank and U. W. Heinz, Z. Phys. C 65, 111 (1995) [nucl-th/9406014].
88. N. O. Agasian, D. Ebert and E. M. Ilgenfritz, Nucl. Phys. A 637, 135 (1998) [hep-ph/9712341].
89. C. Sasaki and I. Mishustin, Phys. Rev. C 85, 025202 (2012) [arXiv:1110.3498 [hep-ph]].
90. N. O. Agasian, JETP Lett. 57, 208 (1993) [Pisma Zh. Eksp. Teor. Fiz. 57, 200 (1993)].
91. M. K. Volkov, Theor. Math. Phys. 101, 1473 (1994) [Teor. Mat. Fiz. 101, 442 (1994)].
92. B. J. Schaefer, O. Bohr and J. Wambach, Phys. Rev. D 65, 105008 (2002) [hep-th/0112087].
93. D. Trnka et al. [CBELSA/TAPS Collaboration], Phys. Rev. Lett. 94, 192303 (2005) [nucl-ex/0504010].
94. M. Naruki et al., Phys. Rev. Lett. 96, 092301 (2006) [nucl-ex/0504016].
95. M. Naruki et al. [E325 Collaboration], J. Phys. G 34, S1059 (2007).
96. M. H. Wood et al. [CLAS Collaboration], Phys. Rev. C 78, 015201 (2008) [arXiv:0803.0492 [nucl-ex]].
97. Y. Tsuchimoto [PHENIX Collaboration], Nucl. Phys. A 830, 487C (2009) [arXiv:0907.5049 [hep-ex]].
98. A. Polyanskiy et al., Phys. Lett. B 695, 74 (2011) [arXiv:1008.0232 [nucl-ex]].
99. M. Thiel et al., Eur. Phys. J. A 49, 132 (2013).
100. L. McLerran and B. Schenke, Nucl. Phys. A 929, 71 (2014) [arXiv:1403.7462 [hep-ph]].
101. Y. Akiba et al., arXiv:1502.02730 [nucl-ex].
102. F. Buisseret, Eur. Phys. J. C 68, 473 (2010) [arXiv:0912.0678 [hep-ph]].
103. L. Y. Glozman, Phys. Lett. B 587, 69 (2004) [hep-ph/0312354].
104. L. Y. Glozman, Phys. Rept. 444, 1 (2007) [hep-ph/0701081].
105. L. Y. Glozman, Phys. Rept. 444, 1 (2007) [hep-ph/0701081].
106. N. Ishii, H. Suganuma and H. Matsufuru, Phys. Rev. D 66, 094506 (2002) [hep-lat/0206020].
107. X. F. Meng, G. Li, Y. Chen, C. Liu, Y. B. Liu, J. P. Ma and J. B. Zhang, Phys. Rev. D 80, 114502 (2009) [arXiv:0903.1991 [hep-lat]].
108. G. Lacroix, C. Semay, D. Cabrera and F. Buisseret, Phys. Rev. D 87, no. 5, 054025 (2013) [arXiv:1210.1716 [hep-ph]].
109. N. Kochelev, Phys. Part. Nucl. Lett. 13, no. 2, 149 (2016) [arXiv:1501.07002 [hep-ph]].
110. V. Vento, Phys. Rev. D 75, 055012 (2007) [hep-ph/0609219].
111. N. Kochelev and D. P. Min, Phys. Lett. B 650, 239 (2007) [hep-ph/0611250].
112. V. D. Kekelidze et al. [NICA and MPD Collaborations], Phys. Atom. Nucl. 75, 542 (2012).
113. V. Galovatuyk, V. Kekelidze, V. Kolesnikov, O. Rogachevsky and A. Sorin, Eur. Phys. J. A 52, no. 8, 212 (2016); see also ”The MultiPurpose Detector – MPD to study Heavy Ion Collisions at NICA (Conceptual Design Report)” (JINR, Dubna, Version 1.4).