COFINITENESS OF LOCAL COHOMOLOGY MODULES IN THE CLASS OF MODULES IN DIMENSION LESS THAN A FIXED INTEGER

ALIREZA VAHIDI AND MAH DIEH PAPARI-ZAREI

Abstract. Let n be a non-negative integer, R a commutative Noetherian ring with $\dim(R) \leq n + 2$, a an ideal of R, and X an arbitrary R-module. In this paper, we first prove that X is an $(\text{FD}_{\leq n}, a)$-cofinite R-module if X is an a-torsion R-module such that $\text{Hom}_R \left(\frac{R}{a}, X \right)$ and $\text{Ext}^1_R \left(\frac{R}{a}, X \right)$ are $\text{FD}_{\leq n}$ R-modules. Then, we show that $H^i_a(X)$ is an $(\text{FD}_{\leq n}, a)$-cofinite R-module and $\{ p \in \text{Ass}_R(H^i_a(X)) : \dim \left(\frac{R}{p} \right) \geq n \}$ is a finite set for all i when $\text{Ext}^i_R \left(\frac{R}{a}, X \right)$ is an $\text{FD}_{\leq n}$ R-module for all $i \leq n + 2$. As a consequence, it follows that $\text{Ass}_R(H^i_a(X))$ is a finite set for all i whenever R is a semi-local ring with $\dim(R) \leq 3$ and X is an $\text{FD}_{\leq 1}$ R-module. Finally, we observe that the category of $(\text{FD}_{\leq n}, a)$-cofinite R-modules forms an Abelian subcategory of the category of R-modules.

1. Introduction

We adopt throughout the following notation: let R denote a commutative Noetherian ring with non-zero identity, a and b ideals of R, M a finite (i.e., finitely generated) R-module, X an arbitrary R-module which is not necessarily finite, and n a non-negative integer. We refer the reader to [7, 8, 23] for basic results, notations, and terminology not given in this paper.

Hartshorne, in [14], defined an a-torsion R-module X to be a-cofinite if the R-module $\text{Ext}^i_R \left(\frac{R}{a}, X \right)$ is finite for all i, and asked the following questions.

Question 1.1. Does the category of a-cofinite R-modules form an Abelian subcategory of the category of R-modules?

Question 1.2. Is $H^i_a(M)$ an a-cofinite R-module for all i?

The following question is also an important problem in local cohomology [16, Problem 4].

Question 1.3. Is $\text{Ass}_R(H^i_a(M))$ a finite set for all i?

2020 Mathematics Subject Classification. 13D07; 13D45.

Key words and phrases. Abelian subcategories; Associated prime ideals; Cofinite modules; Local cohomology modules.

The research of Alireza Vahidi was in part supported by a grant from Payame Noor University.
There have been many attempts in the literature to study the above questions. Hartshorne in [14] Proposition 7.6 and Corollary 7.7 showed that the answer to these questions is yes if R is a complete regular local ring and a is a prime ideal of R with $\dim \left(\frac{R}{a} \right) \leq 1$. Huneke and Koh in [17] Theorem 4.1 and Delfino in [10] Theorem 3] extended Hartshorne’s result [14] Corollary 7.7 and provided affirmative answers to Questions 1.2 and 1.3 in more general local rings R and one-dimensional ideals a. Delfino and Marley in [11] Theorems 1 and 2, Yoshida in [23] Theorem 1.1, Chiriacescu in [9] Theorem 1.4, and Kawasaki in [18] Theorems 1 and 8] showed that the answer to Questions 1.1, 1.3 is yes if R is an arbitrary local ring and a is an arbitrary ideal of R with $\dim \left(\frac{R}{a} \right) \leq 1$. In [24, Corollaries 3.3 and 7.10] and [22, Theorems 2.6 and 2.10], Melkersson provided affirmative answers to these questions for the case that R is an arbitrary ring and either $\dim(R) \leq 2$ or a is an arbitrary ideal of R with $\dim \left(\frac{R}{a} \right) \leq 1$.

Recall that X is said to be an FD$_{< n}$ (or in dimension $< n$) R-module if there is a finite submodule Y of X such that $\dim_{R} \left(\frac{Y}{X} \right) < n$ [21]. From [26, Theorem 2.3], the class of FD$_{< n}$ R-modules is closed under taking submodules, quotients, and extensions. We say that X is an (FD$_{< n}$,a)-cofinite R-module if X is an a-torsion R-module and $\Ext_{R}^{i} \left(\frac{R}{a}, X \right)$ is an FD$_{< n}$ R-module for all i [3, Definition 4.1]. Note that X is an a-cofinite R-module if and only if X is an (FD$_{< 0}$,a)-cofinite R-module. Thus, as generalizations of Questions 1.1 and 1.3 we have the following questions (see [11, Question 1.4] and [24, Questions 1.5, 1.6, and 1.8]). Here, the set \{ $p \in \Ass_{R}(X) : \dim \left(\frac{X}{p} \right) \geq n$ \} is denoted by $\Ass_{R}(X)_{\geq n}$.

Question 1.4. Does the category of (FD$_{< n}$,a)-cofinite R-modules form an Abelian subcategory of the category of R-modules?

Question 1.5. Is $H^{i}_{a}(M)$ an (FD$_{< n}$,a)-cofinite R-module for all i?

Question 1.6. Is $\Ass_{R}(H^{i}_{a}(M))_{\geq n}$ a finite set for all i?

If R is a complete local ring with $\dim \left(\frac{R}{a} \right) \leq n + 1$, then the answer to Questions 1.5 and 1.6 is yes from [11, Theorems 2.5 and 2.10]. In [24, Corollaries 3.3 and 4.5], the first author and Morsali removed the complete local assumption on R and provided affirmative answers to Questions 1.4, 1.6 for the case that $\dim \left(\frac{R}{a} \right) \leq n + 1$, which are generalizations of Melkersson’s results [22, Theorems 2.6 and 2.10]. In this paper, as generalizations of Melkersson’s results [21, Theorems 7.4 and 7.10], we show that the answer to Questions 1.4, 1.6 is also yes if $\dim(R) \leq n + 2$. As a consequence, we provide an affirmative answer to Question 1.3 for the case that R is a semi-local ring with $\dim(R) \leq 3$. This result is a generalization of Marley’s result in [19] where he showed that the answer to Question 1.3 is yes if R is a local ring with $\dim(R) \leq 3$ (see [19, Proposition 1.1 and Corollary 2.5]).

In the main result of Section 2 we observe that if $\dim(R) \leq n + 2$ and X is an a-torsion R-module such that $\Hom_{R} \left(\frac{R}{a}, X \right)$ and $\Ext_{R}^{i} \left(\frac{R}{a}, X \right)$ are FD$_{< n}$ R-modules, then X is an (FD$_{< n}$,a)-cofinite R-module. Section 3 is devoted to the study of Questions 1.5 and 1.6. We show that $H^{i}_{a}(X)$ is an (FD$_{< n}$,a)-cofinite R-module and $\Ass_{R}(H^{i}_{a}(X))_{\geq n}$ is a finite set for all i whenever $\dim(R) \leq n + 2$ and $\Ext_{R}^{i} \left(\frac{R}{a}, X \right)$ is an FD$_{< n}$ R-module for all $i \leq n + 2$ (e.g., X is an FD$_{< n}$ R-module).
It follows that if R is a semi-local ring with $\dim(R) \leq 3$ and $\text{Ext}^i_R \left(\frac{R}{a}, X \right)$ is an $\text{FD}_{<1} R$-module for all $i \leq 3$ (e.g., X is an $\text{FD}_{<1} R$-module), then $H^i_a(X)$ is an α-weakly cofinite R-module and $\text{Ass}_R(H^i_a(X))$ is a finite set for all i. Recall that X is said to be an α-weakly cofinite R-module if X is an α-torsion R-module and the set of associated prime ideals of any quotient module of $\text{Ext}^i_R \left(\frac{R}{a}, X \right)$ is finite for all i (see [12, Definition 2.1] and [13, Definition 2.4]). In Section 4, with respect to Question 1.4, we prove that when $\dim(R) \leq n + 2$, the category of $(\text{FD}_{<n}, \alpha)$-cofinite R-modules forms an Abelian subcategory of the category of R-modules.

2. A CRITERION FOR COFINITENESS

The following two lemmas will be useful in the proof of the main result of this section. Note that when $bX = 0$, X is an $\text{FD}_{<n} R$-module if and only if X is an $\text{FD}_{<n} \frac{R}{b}$-module.

Lemma 2.1. Let t be a non-negative integer and let X be an R-module such that $bX = 0$ and $\text{Ext}^i_R \left(\frac{R}{a+b}, X \right)$ is an $\text{FD}_{<n} R$-module for all $i \leq t$. Then $\text{Ext}^i_R \left(\frac{R}{a+b}, X \right)$ is an $\text{FD}_{<n} \frac{R}{b}$-module for all $i \leq t$.

Proof. We prove this by using induction on t. The case $t = 0$ is clear from the isomorphisms

$$
\text{Hom}_R \left(\frac{R}{a+b}, X \right) \cong \left(0 :_X \frac{a+b}{b} \right) \cong (0 :_X a + b) \cong \text{Hom}_R \left(\frac{R}{a+b}, X \right).
$$

Suppose that $t > 0$ and that $t-1$ is settled. It is enough to show that $\text{Ext}^t_R \left(\frac{R}{a+b}, X \right)$ is an $\text{FD}_{<n} \frac{R}{b}$-module, since $\text{Ext}^i_R \left(\frac{R}{a+b}, X \right)$ is an $\text{FD}_{<n} \frac{R}{b}$-module for all $i \leq t-1$ by the induction hypothesis on $t-1$. From [23, Theorem 11.65], there is a spectral sequence

$$
\text{Ext}^{p,q}_R \left(\frac{R}{a+b}, X \right) \Rightarrow \text{Ext}^{p+q}_R \left(\frac{R}{a+b}, X \right).
$$

Let $r \geq 2$ and set $B^{t,0}_r := \text{Im}(E^{t-r,r-1}_r \to E^{t,0}_r)$. Then $B^{t,0}_r$ is an $\text{FD}_{<n} \frac{R}{b}$-module because $E^{t-r,r-1}_r$ is a subquotient of $E^{t-r,r-1}_r$ that is an $\text{FD}_{<n} \frac{R}{b}$-module by the induction hypothesis and [15, Proposition 3.4]. Thus, from the short exact sequence

$$
0 \rightarrow B^{t,0}_r \rightarrow E^{t,0}_r \rightarrow E^{t,0}_{r+1} \rightarrow 0,
$$

$E^{t,0}_r$ is an $\text{FD}_{<n} \frac{R}{b}$-module whenever $E^{t,0}_{r+1}$ is an $\text{FD}_{<n} \frac{R}{b}$-module. There exists a finite filtration

$$
0 = \phi^{t+1} H^t \subseteq \phi^t H^t \subseteq \cdots \subseteq \phi^1 H^t \subseteq \phi^0 H^t = \text{Ext}^t_R \left(\frac{R}{a+b}, X \right)
$$

such that $E^{t-i}_i \cong \frac{\phi^{t-i} H^t}{\phi^{t-i+1} H^t}$ for all $i, 0 \leq i \leq t$. By assumption, $\text{Ext}^t_R \left(\frac{R}{a+b}, X \right)$ is an R-module. Thus, as we noted at the beginning of this section, $\text{Ext}^t_R \left(\frac{R}{a+b}, X \right)$ is an $\text{FD}_{<n} \frac{R}{b}$-module and hence $\phi^t H^t$ is an $\text{FD}_{<n} \frac{R}{b}$-module. Therefore $E^{t,0}_\infty \cong \phi^t H^t$ is an $\text{FD}_{<n} \frac{R}{b}$-module and so $E^{t,0}_{t+2}$ is an $\text{FD}_{<n} \frac{R}{b}$-module, because $E^{t,0}_\infty = E^{t,0}_{t+2}$ as

}\text{Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)}
$E^t_{j-j-1} = 0 = E^t_{j+j-1}$ for all $j \geq t + 2$. Thus $E^{t,0}_j = \text{Ext}^t_{R_a}(R_{\bar{a}+\bar{b}}, X)$ is an FD$_n$ \bar{b}-module.

Lemma 2.2. Let t be a non-negative integer and let X be an R-module such that $bX = 0$ and $\text{Ext}^t_{R_b}(R_{\bar{a}+\bar{b}}, X)$ is an FD$_n$ \bar{b}-module for all $i \leq t$. Then $\text{Ext}^t_{R_a}(R_{\bar{a}}, X)$ is an FD$_n$ R-module for all $i \leq t$.

Proof. From [23, Theorem 11.65], there is a spectral sequence

$$E^{p,q}_2 := \text{Ext}^p_{\bar{b}}\left(\text{Tor}^R_q\left(\frac{R}{\bar{b}}, \frac{R}{\bar{a}}\right), X\right) \Rightarrow \text{Ext}^{p+q}_{R}(\frac{R}{\bar{a}}, X).$$

Let $0 \leq j \leq i \leq t$. By [15, Proposition 3.4], $E^{i-j,j}_2$ is an FD$_n$ \bar{b}-module. Hence $E^{i-j,j}_\infty$ is an FD$_n$ \bar{b}-module as $E^{i-j,j}_\infty = E^{i+j,j}_\infty$ and $E^{i-j,j}_i$ is a subquotient of $E^{i,j}_2$. There exists a finite filtration

$$0 = \phi^{i+1}H^i \subseteq \phi^iH^i \subseteq \cdots \subseteq \phi^1H^i \subseteq \phi^0H^i = \text{Ext}_R^i\left(\frac{R}{\bar{a}}, X\right)$$

such that $E^{i-j,j}_i \cong \frac{\phi^{i+j}H^i}{\phi^{i+j+1}H^i}$ for all $j, 0 \leq j \leq i$. Now, from the short exact sequences

$$0 \rightarrow \phi^{i+j+1}H^i \rightarrow \phi^{i+j}H^i \rightarrow E^{i-j,j}_\infty \rightarrow 0,$$

for all $j, 0 \leq j \leq i$, Ext$_R^i\left(\frac{R}{\bar{a}}, X\right)$ is an FD$_n$ \bar{b}-module. Therefore Ext$_R^i\left(\frac{R}{\bar{a}}, X\right)$ is an FD$_n$ R-module. □

We are now ready to state and prove the main result of this section, which plays an important role in Sections 3 and 4 to study Questions 1.4–1.6.

Theorem 2.3. Suppose that dim$(R) \leq n + 2$ and X is an a-torsion R-module such that Hom$_R\left(\frac{R}{\bar{a}}, X\right)$ and Ext$_R^i\left(\frac{R}{\bar{a}}, X\right)$ are FD$_n$ R-modules. Then X is an (FD$_n$, a)-cofinite R-module.

Proof. Assume that a is nilpotent. Then $a^t = 0$ for some integer t. By [15, Proposition 3.4], Hom$_R\left(\frac{R}{\bar{a}}, X\right)$ is an FD$_n$ R-module and hence $X = (0 :_X a^t)$ is an (FD$_n$, a)-cofinite R-module. Now, assume that a is not nilpotent. Since $\Gamma_a(R)$ is finite, there is an integer t such that $(0 :_R a^t) = \Gamma_a(R)$. Set $b := (0 :_R a^t)$ and $Y := \frac{X}{(0 :_X a^t)}$. It is easy to see that $bY = 0$, Y is an $(a + b)$-torsion R-module, and dim$(\frac{R}{a+b}) \leq n + 1$. Since $(0 :_X a^t)$, Hom$_R\left(\frac{R}{a+b}, X\right)$, and Ext$_R^i\left(\frac{R}{a+b}, X\right)$ are FD$_n$ R-modules from [15, Proposition 3.4], Hom$_R\left(\frac{R}{a+b}, Y\right)$ and Ext$_R^i\left(\frac{R}{a+b}, Y\right)$ are FD$_n$ R-modules by the short exact sequence

$$0 \rightarrow (0 :_X a^t) \rightarrow X \rightarrow Y \rightarrow 0.$$

Thus, from [21 Corollary 2.3], Ext$_R^i\left(\frac{R}{a+b}, Y\right)$ is an FD$_n$ R-module for all i. Hence Ext$_R^i\left(\frac{R}{a+b}, Y\right)$ is an FD$_n$ R-module for all i by Lemmas 2.1 and 2.2. Therefore X is an (FD$_n$, a)-cofinite R-module from the above short exact sequence. □

The following corollary is an immediate application of the above theorem.
Corollary 2.4. Suppose that \(\dim(R) \leq n + 2 \) and \(X \) is an arbitrary \(R \)-module such that \(\text{Hom}_R \left(\frac{R}{a}, X \right) \) and \(\text{Ext}^1_R \left(\frac{R}{a}, X \right) \) are \(\text{FD}_{< n} \) \(R \)-modules. Then \(\Gamma_a(X) \) is an \((\text{FD}_{< n}, a) \)-cofinite \(R \)-module.

Proof. By the short exact sequence

\[
0 \longrightarrow \Gamma_a(X) \longrightarrow X \longrightarrow \frac{X}{\Gamma_a(X)} \longrightarrow 0,
\]

\(\text{Hom}_R \left(\frac{R}{a}, \Gamma_a(X) \right) \) and \(\text{Ext}^1_R \left(\frac{R}{a}, \Gamma_a(X) \right) \) are \(\text{FD}_{< n} \) \(R \)-modules. Thus the assertion follows from Theorem 2.3.

By putting \(n = 0 \) in Theorem 2.3 and Corollary 2.4, we have the following results.

Corollary 2.5. Suppose that \(\dim(R) \leq 2 \) and \(X \) is an \(a \)-torsion \(R \)-module such that \(\text{Hom}_R \left(\frac{R}{a}, X \right) \) and \(\text{Ext}^1_R \left(\frac{R}{a}, X \right) \) are finite \(R \)-modules. Then \(X \) is an \(a \)-cofinite \(R \)-module.

Corollary 2.6. Suppose that \(\dim(R) \leq 2 \) and \(X \) is an arbitrary \(R \)-module such that \(\text{Hom}_R \left(\frac{R}{a}, X \right) \) and \(\text{Ext}^1_R \left(\frac{R}{a}, X \right) \) are finite \(R \)-modules. Then \(\Gamma_a(X) \) is an \(a \)-cofinite \(R \)-module.

3. Cofiniteness and associated primes of local cohomology modules

The following is the main result of this section; it shows that the answer to Questions 1.5 and 1.6 is yes if \(\dim(R) \leq n + 2 \).

Theorem 3.1. Suppose that \(\dim(R) \leq n + 2 \) and \(X \) is an arbitrary \(R \)-module. Then the following statements are equivalent:

\(i \) \(H^i_a(X) \) is an \((\text{FD}_{< n}, a) \)-cofinite \(R \)-module for all \(i \);

\(ii \) \(\text{Ext}^i_R \left(\frac{R}{a}, X \right) \) is an \(\text{FD}_{< n} \) \(R \)-module for all \(i \);

\(iii \) \(\text{Ext}^i_R \left(\frac{R}{a}, X \right) \) is an \(\text{FD}_{< n} \) \(R \)-module for all \(i \leq n + 2 \).

Proof. \((i) \Rightarrow (ii) \). This follows by Theorem 2.1.

\((iii) \Rightarrow (i) \). We first show that if \(t \) is a non-negative integer such that \(\text{Ext}^i_R \left(\frac{R}{a}, X \right) \) is an \(\text{FD}_{< n} \) \(R \)-module for all \(i \leq t+1 \), then \(H^i_a(X) \) is an \((\text{FD}_{< n}, a) \)-cofinite \(R \)-module for all \(i \leq t \). We prove this by using induction on \(t \). The case \(t = 0 \) follows from Corollary 2.4. Suppose that \(t > 0 \) and that \(t-1 \) is settled. It is enough to show that \(H^t_a(X) \) is an \((\text{FD}_{< n}, a) \)-cofinite \(R \)-module, because \(H^i_a(X) \) is an \((\text{FD}_{< n}, a) \)-cofinite \(R \)-module for all \(i \leq t - 1 \) from the induction hypothesis on \(t - 1 \). By Theorem 2.3, \(\text{Hom}_R \left(\frac{R}{a}, H^0_a(X) \right) \) and \(\text{Ext}^1_R \left(\frac{R}{a}, H^0_a(X) \right) \) are \(\text{FD}_{< n} \) \(R \)-modules. Therefore \(H^t_a(X) \) is an \((\text{FD}_{< n}, a) \)-cofinite \(R \)-module from Theorem 2.3. This terminates the induction argument. Thus \(H^i_a(X) \) is an \((\text{FD}_{< n}, a) \)-cofinite \(R \)-module for all \(i \neq n+2 \) from Theorem 6.1.2. By Theorem 2.3, \(\text{Hom}_R \left(\frac{R}{a}, H^{n+2}_a(X) \right) \) is an \(\text{FD}_{< n} \) \(R \)-module. Also, from Exercise 7.1.7, \(\text{Supp}_R(H^{n+2}_a(X)) \subseteq \text{Max}(R) \), because each \(R \)-module can be viewed as the direct limit of its finite submodules. Thus \(H^{n+2}_a(X) \) is an \((\text{FD}_{< n}, a) \)-cofinite \(R \)-module by Lemma 2.1. \(\square \)
Corollary 3.2. Suppose that \(\dim(R) \leq n + 2 \), \(X \) is an arbitrary \(R \)-module, and \(t \) is a non-negative integer such that \(\text{Ext}_R^i \left(\frac{R}{a}, X \right) \) is an \(\text{FD}_{<n} \) \(R \)-module for all \(i \leq t + 1 \) (resp. for all \(i \leq n + 2 \)). Then \(H^i_a(X) \) is an \(\text{(FD}_{<n}, a) \)-cofinite \(R \)-module for all \(i \leq t \) (resp. for all \(i \)). In particular, \(\text{Ass}_R(H^i_a(X)) \geq_n \) is a finite set for all \(i \leq t \) (resp. for all \(i \)).

Proof. The first assertion follows from the proof of Theorem 3.1. The last assertion follows by the first one and [8, Exercise 1.2.28].

We have the following corollaries by taking \(n = 0 \) in Theorem 3.1 and Corollary 3.2.

Corollary 3.3 (see [21, Theorem 7.10]). Suppose that \(\dim(R) \leq 2 \) and \(X \) is an arbitrary \(R \)-module. Then the following statements are equivalent:

(i) \(H^i_a(X) \) is an \(a \)-cofinite \(R \)-module for all \(i \);
(ii) \(\text{Ext}_R^i \left(\frac{R}{a}, X \right) \) is a finite \(R \)-module for all \(i \);
(iii) \(\text{Ext}_R^i \left(\frac{R}{a}, X \right) \) is a finite \(R \)-module for all \(i \leq 2 \).

Corollary 3.4. Suppose that \(\dim(R) \leq 2 \) and \(X \) is an arbitrary \(R \)-module such that \(\text{Ext}_R^i \left(\frac{R}{a}, X \right) \) is a finite \(R \)-module for all \(i \leq 2 \). Then \(\text{Ass}_R(H^i_a(X)) \) is a finite set for all \(i \).

If \(R \) is a local ring with \(\dim \left(\frac{R}{a} \right) \leq 2 \), then the answer to Question 1.3 is yes by Bahmanpour–Naghipour’s result [3, Theorem 3.1] (see also [21, Theorem 3.3(c)]). In [24, Corollary 5.6], the first author and Morsali generalized this result to arbitrary semi-local rings. In the next result, by putting \(n = 1 \) in Corollary 3.2 we provide an affirmative answer to Question 1.3 for the case that \(R \) is a semi-local ring with \(\dim(R) \leq 3 \). Note that our result is a generalization of Marley’s result in [19], where he showed that if \(R \) is a local ring with \(\dim(R) \leq 3 \) and \(M \) is a finite \(R \)-module, then \(\text{Ass}_R(H^i_a(M)) \) is a finite set for all \(i \) (see [19, Proposition 1.1 and Corollary 2.5]). Note also that, if \(R \) is a semi-local ring and \(X \) is an \(\text{(FD}_{<1}, a) \)-cofinite \(R \)-module, then \(X \) is an \(a \)-weakly cofinite \(R \)-module by [5, Theorem 3.3].

Corollary 3.5. Suppose that \(R \) is a semi-local ring with \(\dim(R) \leq 3 \), \(X \) is an arbitrary \(R \)-module, and \(t \) is a non-negative integer such that \(\text{Ext}_R^i \left(\frac{R}{a}, X \right) \) is an \(\text{FD}_{<1} \) \(R \)-module for all \(i \leq t + 1 \) (resp. for all \(i \leq 3 \)). Then \(H^i_a(X) \) is an \(a \)-weakly cofinite \(R \)-module for all \(i \leq t \) (resp. for all \(i \)). In particular, \(\text{Ass}_R(H^i_a(X)) \) is a finite set for all \(i \leq t \) (resp. for all \(i \)).

4. Abelianness of the category of cofinite modules

The following theorem is the main result of this section; it shows that the answer to Question 1.4 is also yes if \(\dim(R) \leq n + 2 \).

Theorem 4.1. If \(\dim(R) \leq n+2 \), then the category of \(\text{(FD}_{<n}, a) \)-cofinite \(R \)-modules forms an Abelian subcategory of the category of \(R \)-modules.
Proof. The proof is similar to that of [24, Theorem 3.1]. We bring it here for the sake of completeness. Assume that \(X \) and \(Y \) are \((\text{FD}_{<n}, \alpha)\)-cofinite \(R \)-modules and \(f : X \rightarrow Y \) is an \(R \)-homomorphism. We show that \(\ker f \), \(\text{im} f \), and \(\text{coker} f \) are \((\text{FD}_{<n}, \alpha)\)-cofinite \(R \)-modules. From the short exact sequence

\[
0 \longrightarrow \text{im} f \longrightarrow Y \longrightarrow \text{coker} f \longrightarrow 0,
\]

\(\text{Hom}_R \left(R^\alpha, \text{im} f \right) \) is an \(\text{FD}_{<n} R \)-module. Hence \(\text{Hom}_R \left(R^\alpha, \ker f \right) \) and \(\text{Ext}^1_R \left(R^\alpha, \ker f \right) \) are \(\text{FD}_{<n} R \)-modules by the short exact sequence

\[
0 \longrightarrow \ker f \longrightarrow X \longrightarrow \text{im} f \longrightarrow 0.
\]

Therefore \(\ker f \) is an \((\text{FD}_{<n}, \alpha)\)-cofinite \(R \)-module by Theorem 2.3. Thus \(\text{im} f \) and \(\text{coker} f \) are \((\text{FD}_{<n}, \alpha)\)-cofinite \(R \)-modules from the above short exact sequences. \(\square \)

As an immediate application of the above theorem, we have the following corollary.

Corollary 4.2. Suppose that \(\dim(R) \leq n + 2 \), \(N \) is a finite \(R \)-module, and \(X \) is an \((\text{FD}_{<n}, \alpha)\)-cofinite \(R \)-module. Then \(\text{Ext}^j_R(N, X) \) and \(\text{Tor}^j_R(N, X) \) are \((\text{FD}_{<n}, \alpha)\)-cofinite \(R \)-modules for all \(j \).

We have the following results by taking \(n = 0 \) in Theorem 4.1 and Corollary 4.2.

Corollary 4.3 (see [21, Theorem 7.4]). If \(\dim(R) \leq 2 \), then the category of \(\alpha \)-cofinite \(R \)-modules forms an Abelian subcategory of the category of \(R \)-modules.

Corollary 4.4. Suppose that \(\dim(R) \leq 2 \), \(N \) is a finite \(R \)-module, and \(X \) is an \(\alpha \)-cofinite \(R \)-module. Then \(\text{Ext}^j_R(N, X) \) and \(\text{Tor}^j_R(N, X) \) are \(\alpha \)-cofinite \(R \)-modules for all \(j \).

ACKNOWLEDGEMENTS

The authors would like to thank the referee for the invaluable comments on the manuscript.

REFERENCES

[1] N. Abazari and K. Bahmanpour, Extension functors of local cohomology modules and Serre categories of modules, *Taiwanese J. Math.* 19 (2015), no. 1, 211–220. MR 3313413

[2] M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, *Bull. Math. Soc. Sci. Math. Roumanie (N.S.)* 57(105) (2014), no. 4, 347–356. MR 3288929

[3] M. Aghapournahr, A. J. Taherizadeh and A. Vahidi, Extension functors of local cohomology modules, *Bull. Iranian Math. Soc.* 37 (2011), no. 3, 117–134. MR 2901589

[4] D. Asadollahi and R. Naghipour, Faltings’ local-global principle for the finiteness of local cohomology modules, *Comm. Algebra* 43 (2015), no. 3, 953–958. MR 3298115

[5] K. Bahmanpour, On the category of weakly Laskerian cofinite modules, *Math. Scand.* 115 (2014), no. 1, 62–68. MR 3250048

[6] K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, *J. Algebra* 321 (2009), no. 7, 1997–2011. MR 2494753

[7] M. P. Brodmann and R. Y. Sharp, *Local Cohomology: An Algebraic Introduction with Geometric Applications*, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998. MR 1613627
[8] W. Bruns and J. Herzog, *Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993. MR 1251956

[9] G. Chiriacescu, Cofiniteness of local cohomology modules over regular local rings, *Bull. London Math. Soc.* **32** (2000), no. 1, 1–7. MR 1718769

[10] D. Delfino, On the cofiniteness of local cohomology modules, *Math. Proc. Cambridge Philos. Soc.* **115** (1994), no. 1, 79–84. MR 1253283

[11] D. Delfino and T. Marley, Cofinite modules and local cohomology, *J. Pure Appl. Algebra* **121** (1997), no. 1, 45–52. MR 1471123

[12] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, *Proc. Amer. Math. Soc.* **133** (2005), no. 3, 655–660. MR 2113911

[13] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules of weakly Laskerian modules, *Comm. Algebra* **34** (2006), no. 2, 681–690. MR 2211948

[14] R. Hartshorne, Affine duality and cofiniteness, *Invent. Math.* **9** (1969/70), 145–164. MR 0257096

[15] S. H. Hassanzadeh and A. Vahidi, On vanishing and cofiniteness of generalized local cohomology modules, *Comm. Algebra* **37** (2009), no. 7, 2290–2299. MR 2536919

[16] C. Huneke, Problems on local cohomology, in *Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990)*, 93–108, Res. Notes Math., 2, Jones and Bartlett, Boston, MA. MR 1165320

[17] C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, *Math. Proc. Cambridge Philos. Soc.* **110** (1991), no. 3, 421–429. MR 1120477

[18] K. Kawasaki, On a category of cofinite modules which is Abelian, *Math. Z.* **269** (2011), no. 1-2, 587–608. MR 2836085

[19] T. Marley, The associated primes of local cohomology modules over rings of small dimension, *Manuscripta Math.* **104** (2001), no. 4, 519–525. MR 1836111

[20] T. Marley and J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules, *J. Algebra* **256** (2002), no. 1, 180–193. MR 1936885

[21] L. Melkersson, Modules cofinite with respect to an ideal, *J. Algebra* **285** (2005), no. 2, 649–668. MR 2125457

[22] L. Melkersson, Cofiniteness with respect to ideals of dimension one, *J. Algebra* **372** (2012), 459–462. MR 2990020

[23] J. J. Rotman, *An Introduction to Homological Algebra*, Pure and Applied Mathematics, 85, Academic Press, New York, 1979. MR 0538169

[24] A. Vahidi and S. Morsali, Cofiniteness with respect to the class of modules in dimension less than a fixed integer, *Taiwanese J. Math.* **24** (2020), no. 4, 825–840. MR 4124548

[25] K.-I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, *Nagoya Math. J.* **147** (1997), 179–191. MR 1475172

[26] T. Yoshizawa, Subcategories of extension modules by Serre subcategories, *Proc. Amer. Math. Soc.* **140** (2012), no. 7, 2293–2305. MR 2898693

Alireza Vahidi
Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697 Tehran, Iran
vahidi.ar@pnu.ac.ir

Mahdieh Papari-Zarei
Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697 Tehran, Iran
m.p.zarei@gmail.com

Received: October 15, 2019
Accepted: March 19, 2020

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)