Performance Evaluation of Fresh Agricultural Products Logistics Operation Mode

Chen-yang ZHAO\(^{1, a, *} \), Han-ping HOU\(^{2, b} \), Xue MENG\(^{3, c} \),
Jian-liang YANG\(^{4, d} \) and Jing-yan ZOU\(^{5, e} \)

\(^{1, 2} \)Beijing Jiaotong University, Beijing, China
\(^{3} \)North China University of Water Resources and Electric Power, Zhengzhou, Henan, China
\(^{5} \)Space Star Technology Co., LTD, Beijing, China

\(^{a} \)13298309693@163.com, \(^{d} \)yangjianliang6265@126.com, \(^{c} \)1838065515@qq.com,
\(^{e} \)Lixueb2141@163.com

*Corresponding author

Keywords: Fresh Agricultural Products Logistics, Logistics Operation Mode, Performance Evaluation, Fuzzy Comprehensive Evaluation

Abstract. Based on the actual situation of logistics operation modes of fresh produce, this paper first analyzes the needs and expectations of all participating parties. Secondly, combined with the supply chain operation process, this paper constructs the performance evaluation index system from four aspects: the level of logistics management, the level of information management, the cooperation between the two parties and the potential for future development. Finally, AHP and fuzzy comprehensive evaluation method were used to evaluate the performance of Xinfeng Supermarket. The empirical research shows that the index system established is comprehensive and reasonable, which can provide a scientific basis for the evaluation of the operation of fresh agricultural products.

Introduction

Fresh agricultural products are essential necessities of life in our daily life. At present, its research mainly focuses on the development status of fresh agricultural products logistics, the factors that affect fresh agricultural logistics, the evaluation of fresh agricultural products logistics capabilities, the operation mode of fresh agricultural products logistics and so on. However, there are few studies on the performance evaluation of fresh agricultural products logistics operation mode. But the performance evaluation of fresh agricultural products logistics operation mode is of great strategic importance for the improvement of fresh agricultural products logistics operation mode, the development of rural economy and the promotion of urban and rural co-ordination process.

Literature Review

In the field of performance evaluation of fresh agricultural products logistics operation mode, foreign scholars Rohit Joshi and DK Banwet (2011) selected the return on assets, quality and safety, service level, cost, traceability, innovation and customer relationship as an evaluation indicator [1]. Fu bin Pan and Da Song (2014) established an index system from three aspects: the internal structure of the agricultural super-docking system, the external environment of the system and the operational effects of the system[2]. Xiao li Song and Huan huan Yang (2016) chose to evaluate the performance system in the Internet era according to six aspects of logistics, transportation, informationization, storage management and corporate capital, customer management and service capabilities [3]. Jiaxing Shi and Ruoying Sun (2015) from the fresh electricity supplier agricultural products cold chain logistics information, logistics operations, financial status, customer satisfaction and future development of enterprises and other indicators evaluate their performance [4]. Xiao Yue Huang (2016) takes the community O2O as the background, carries on the performance appraisal from the
fresh agricultural product logistics operation hardware, the quality, the flexibility level and the customer service quality, the use intention level several indexes [5].

According to the existing research, this paper analyzes the main participants and their needs and expectations in the logistics activities of fresh produce and based on the needs and expectations of multiple participants establish performance evaluation index system.

Analysis of Participants' Needs and Expectations

Based on the actual situation and many articles reviewed, this paper proposes that the main bodies include farmers, logistics participants and sales participants.

Farmers’ needs and expectations

The main needs and expectations of farmers are: (1) Farmer households hope to expand and stabilize sales channels a. (2) Farmer households also hope to obtain accurate market information. (3) Farmers households hope that logistics participants can provide fast and professional cold chain logistics services and real-time logistics dynamics. (4) Farmers households hope other participants can provide the appropriate technical support.

Logistics participants' needs and expectations

Logistics participants' needs and expectations of the main participants are: (1) Logistics participants hope that the government can improve the rural road network and have a good software information environment. (2) Logistics participants hope to keep clear communication information.

Sales participants' needs and expectations

Sales participants' needs and expectations are: (1) Sales participants hope to achieve higher customer satisfaction and customer repeat purchase rate. (2) Sales participants also hope that fresh produce can speed up circulation, reduce purchase volume and shorten their purchase cycle. (3) Sales participants want to be able to interface with other participants.

Performance Evaluation Index System

Based on the analysis of the needs and expectations of the participants and combined with the process of supply chain operation on fresh agricultural products logistics activities refinement, this paper has established a total of 10 three indicators and 24 four indicators.

Performance evaluation index design principles

Evaluation criteria design principles are as follows: (1) Scientific principle, performance evaluation index system should first of all be able to scientifically reflect the basic characteristics and operation rules of fresh agricultural product logistics operation mode. (2) Systematic principles, performance evaluation index should be as comprehensive as possible to reflect the overall situation of fresh agricultural products logistics operation mode. (3) Operability principle, in the selection of performance evaluation indicators, we need to fully take into account the data required for indicators to facilitate collection, collection of reliable channels.

Performance evaluation index selection

This paper set up the performance of fresh produce logistics activities as the target level. Then this paper combined the supply chain operation reference model to divide the business process, and set "logistics management level" and "information management level" as the guideline layer. At the same time, this article also fully considered the needs and expectations of all participants in the logistics activities of fresh agricultural products, and set the "cooperation status of both parties" and "future development potential" as the guideline layer. The specific performance evaluation index system is shown in Figure 1.
Performance Evaluation

In this paper, the analytic hierarchy process (AHP) and fuzzy comprehensive evaluation are used to evaluate the performance. The empirical research shows that the index system established is comprehensive and reasonable.

Data acquisition instructions

Xinfeng supermarket has 13 supermarket chains. In this paper, seven supermarket chains are selected, in which the demand for fresh produce in supermarket chains is relatively large, and the heads of their operations are surveyed. This paper uses yaahp V6.0 software to further process and analyze the data. Finally, this paper carries on the second questionnaire survey to the expert, and processes the result with the Excel software, draws the performance level of the new peak supermarket "farmer base + supermarket" mode of operation.

AHP - based index weight calculation

This paper first construct the comparison judgment matrix based on the hierarchical structure model. Then this paper ask seven operational supervisors to do the questionnaire according to the 1-9 judgment method to score the judgment matrix. Finally, this paper uses yaahp V6.0 software to get the consistency test results as shown in Table 1. If CI <0.1 in the result of consistency test, it indicates that the judgment matrix has a good consistency, otherwise, it indicates that the judgment matrix is not qualified and the judgment matrix needs further correction and adjustment.
Table 1. Consistency test results.

Target level	Consistency check index CIA	Guidelines layer	Consistency check index CIB	Sub-criteria layer	Consistency check index CIC
A	0.0574	B1 0.0943	C1	0.0000	
			C2	0.0825	
			C3	0.0000	
			C4	0.0516	
			C5	0.0176	
		B2 0.0000	C6	0.0516	
			C7	0.0370	
			C8	0.0707	
			C9	0.0176	
		B3 0.0000	C10	0.0516	
			C11	0.7500	
			C12	0.6370	
			C13	0.6144	
B4	0.0000		D1	0.6667	
			D2	0.3333	
			D3	0.2797	
			D4	0.6267	
			D5	0.0636	
			D6	0.5000	
			D7	0.5000	
			D8	0.1571	
			D9	0.5936	
			D10	0.2493	
			D11	0.6250	
			D12	0.2385-C3	
				0.2176-C6	
			D13	0.1365-C3	
				0.0606-C6	
			D14	0.0914	
			D15	0.6370-C7	
				0.1172-C8	
			D16	0.1047	
			D17	0.2583-C7	
				0.6144-C8	
			D18	0.2684	
				D19	
				D20	
				D21	
				D22	
				D23	
				D24	

The consistency of each index in Table 1 shows that CI <0.1, indicating that the above judgment matrix has good consistency. The selection of indicators and the weights are acceptable.

Then, this paper uses yaahp V6.0 software to calculate the weight result of the influence degree of the lower level index to the upper level index in the performance evaluation index system, as shown in Table 2.

Table 2. The weight result of the influence degree of the lower level index to the upper level index.

Target level	Guidelines layer	Sub-criteria layer	Indicator layer
A	B1 (0.0943)	C1 (0.5456)	D1 (0.6667)
		C2 (0.0860)	D2 (0.3333)
		C3 (0.0704)	D3 (0.2797)
		C4 (0.2979)	D4 (0.6267)
		C5 (0.5000)	D5 (0.0636)
		C6 (0.5000)	D6 (0.5000)
		C7 (0.5000)	D7 (0.5000)
		C8 (0.5000)	D8 (0.1571)
		C9 (0.5000)	D9 (0.5936)
		C10 (0.5000)	D10 (0.2493)

Performance evaluation based on fuzzy comprehensive evaluation

Combining the weighting result of each index in the table 2 with the result of the second round of expert questionnaire, the performance of Xinfeng supermarket "farmer base + supermarket" is evaluated by fuzzy comprehensive evaluation. This paper invites seven operations supervisors and independently evaluate scores based on their professionalism and anonymously without any
interference from other experts. Scores were based on a 5-point scale (excellent, good, fair, poor and poor), and the 5-point scale was given specific values (90, 80, 70, 60, 50). The final total performance evaluation score is the score of the expert and the weight of the indicator. Fuzzy comprehensive evaluation of seven experts scoring fuzzy relationship matrix as shown in Table 3, in which the indicators at all levels with the code marked in Table 2.

Table 3. Fuzzy relation matrix of expert scoring.

Target level	Guideline s layer	Sub-criteria layer	Indicator layer	Evaluation set				
				90	80	70	60	50
A				0.00	0.43	0.43	0.14	0.00
B1 W=0.2461				0.00	0.14	0.57	0.29	0.00
				0.00	0.00	0.57	0.43	0.00
				0.00	0.00	0.71	0.29	0.00
				0.00	0.43	0.43	0.14	0.00
B2 W=0.1464				0.00	0.29	0.29	0.43	0.00
				0.00	0.29	0.29	0.00	0.00
				0.00	0.29	0.57	0.14	0.00
B3 W=0.1005				0.00	0.00	0.71	0.29	0.00
				0.00	0.29	0.57	0.14	0.00
				0.00	0.00	0.71	0.29	0.00
B4 W=0.5070				0.00	0.43	0.43	0.14	0.00
				0.00	0.29	0.29	0.00	0.00
				0.00	0.29	0.57	0.14	0.00
				0.00	0.00	0.71	0.29	0.00
				0.00	0.43	0.43	0.14	0.00
				0.00	0.29	0.29	0.00	0.00
				0.00	0.29	0.57	0.14	0.00
				0.00	0.00	0.71	0.29	0.00
				0.00	0.43	0.43	0.14	0.00
				0.00	0.29	0.29	0.00	0.00
				0.00	0.29	0.57	0.14	0.00
				0.00	0.00	0.71	0.29	0.00
				0.00	0.43	0.43	0.14	0.00
				0.00	0.29	0.29	0.00	0.00
				0.00	0.29	0.57	0.14	0.00
				0.00	0.00	0.71	0.29	0.00
				0.00	0.43	0.43	0.14	0.00
				0.00	0.29	0.29	0.00	0.00
				0.00	0.29	0.57	0.14	0.00

The specific algorithm is as follows: Single factorial evaluation of C1:

$$
C1 = (0.6667, 0.3333) \times \begin{bmatrix} 0.00 & 0.43 & 0.43 & 0.14 & 0.00 \\ 0.00 & 0.14 & 0.57 & 0.29 & 0.00 \end{bmatrix} = (0.0000, 0.3333, 0.4762, 0.1905, 0.0000)
$$

(1)

Empathy:

- C2 = (0.0000, 0.00237, 0.6347, 0.3080, 0.0000);
- C3 = (0.0000, 0.3571, 0.3571, 0.2857, 0.0000);
- C4 = (0.1560, 0.5265, 0.2950, 0.0224, 0.0000);
- C5 = (0.1786, 0.2750, 0.3247, 0.1217, 0.0000);
- C6 = (0.0000, 0.0795, 0.1621, 0.1280, 0.0000);
- C7 = (0.1187, 0.3376, 0.3618, 0.1820, 0.0000);
- C8 = (0.1755, 0.4502, 0.3408, 0.0335, 0.0000);
C9 = (0.0000, 0.0000, 0.3198, 0.4481, 0.2321);
C10 = (0.1153, 0.6943, 0.1903, 0.0000, 0.0000).

Single factor evaluation for B2:

\[
\text{B2} = \begin{bmatrix}
0.1786 & 0.3750 & 0.3247 & 0.1217 & 0.0000 \\
0.0000 & 0.0795 & 0.1621 & 0.1280 & 0.0000
\end{bmatrix} =
\begin{bmatrix}
0.0893 & 0.2273 & 0.2434 & 0.1249 & 0.0000
\end{bmatrix}
\]

Empathy:

B1 = (0.0465, 0.3662, 0.4274, 0.1572, 0.0000);
B3 = (0.1329, 0.3658, 0.3566, 0.1449, 0.0000);
B4 = (0.0577, 0.3472, 0.2551, 0.2241, 0.1161);

Calculation method principle Ibid, you can get the total goal A performance evaluation score:

\[
A = (0.0671, 0.3362, 0.3060, 0.1852, 0.0589)
\]

The performance evaluation results and the valuation of the 5-point scale Multiply sum can be obtained:

\[
90 \times 0.0671 + 80 \times 0.3362 + 70 \times 0.3060 + 60 \times 0.1852 + 50 \times 0.0589 = 68.41
\]

This shows that the new peak supermarket "farmer base + supermarket" model of performance level close to normal. Combined with the score of the evaluation set in the fuzzy relation matrix scored by experts in Table 3, it can be seen that Xinfeng supermarket has poor performance in terms of delivery cost, inventory loss rate, policy environment, relevant personnel training and infrastructure, and needs to be carried out the corresponding improvement, in order to improve the Xinfeng supermarket fresh produce "farmer base + supermarket" mode performance.

Conclusion

Through the study, this paper draws some conclusions. Firstly, this paper has established a total of 10 three indicators and 24 four indicators. The empirical research shows that the index system established is comprehensive and reasonable. Secondly, the performance of fresh agricultural products logistics activities is not only affected by the operation of the whole fresh agricultural products logistics supply chain, but also affected by the external environment. Finally, this paper use the small see the big way. The results show that the fresh agricultural products logistics activities there is still a big shortage. The government, society and all participating parties should pay enough attention, especially for the standards of service provided by each participating subject, the infrastructure of urban and rural areas, the introduction of related talents, the government's investment in technology and the preferential policies of taxation and other related policies concerns.

References

[1] Rohit Joshi, D. K. Banwet, Ravi Shankar. A Delphi-AHP-TOPSIS based benchmarking framework for improvement of a cold chain [J]. Expert Systems with Applications, 2011, 38(8):10170-10182.

[2] Fubin Pan, Da Song. The research of agricultural product logistics system performance evaluation system of agricultural super docking [J]. China circulation economy, 2014, (2): 46-53.

[3] Xiaoli Song, Huanhuan Yang. Performance Evaluation of Fresh Agricultural Products Logistics System in the Internet Age [J].Business Economics Research, 2016, (17): 98-100.

[4] Jia-xing Shi, Ruo-ying Sun. Analysis of Cold Chain Logistics Performance Based on ANP [J]. Beijing University of Information Science and Technology, 2015, 6 (3): 48-52.

[5] Xiao-Yue Huang. Study on Logistics Performance Evaluation of Fresh Agricultural Products under Community O2O Condition [J]. Logistics Engineering and Management, 2016, 38 (7): 27-29.