Supporting Information

The Aluminyl Anion: A New Generation of Aluminium Nucleophile
Jamie Hicks,* Petra Vasko, Jose M. Goicoechea, and Simon Aldridge

anie_202007530_sm_miscellaneous_information.pdf
Contents:

(i) Computational details
(ii) Xyz coordinates of optimised anions
(iii) References
Computational details

The geometry optimisations were performed with the Gaussian16 (Revision C.01) programme1 using the PBE1PBE hybrid exchange functional2 and Def2-TZVP basis set.3 In addition, Grimme’s empirical dispersion correction with Becke-Johnson damping (GD3BJ)4 was used as well as an ultrafine integration grid. Full analytical frequency calculations were performed for the optimized structures to ensure the nature of the stationary points found (minima, no imaginary frequencies).

![Figure S1](image-url)
Figure S1. Selected occupied molecular orbitals of anion 6 showing minimal N-to-Al π donation from the amido substituents. Isovalue is set at 0.05.

Xyz coordinates of optimised anions

Anion 6

113
scf done: -2253.989913

Atom	X	Y	Z
Al	-0.011538	1.479830	1.242919
O	-0.029509	-0.737596	1.103375
N	1.759614	0.909231	0.325167
N	-1.772485	0.960770	0.301041
C	1.141037	-1.324327	0.670880
C	2.121222	-0.401302	0.295241
C	3.342574	-0.967488	-0.099227
H	4.150001	-0.299044	-0.373173
C	3.504550	-2.349837	-0.214411
C	2.437943	-3.202069	0.061936
H	2.541807	-4.268445	-0.072453
C	1.218143	-2.681729	0.510478
H -2.702353 4.369724 -3.178386
H -0.954798 4.190372 -3.271322
H -1.677944 5.032371 -1.894538
C -3.714180 0.927204 2.473391
H -2.852410 0.279147 2.313469
C -4.943922 0.035925 2.612802
H -5.847063 0.624292 2.801852
H -4.818653 -0.658557 3.448605
H -5.102252 -0.551509 1.705972
C -3.446895 1.714151 3.753375
H -2.524105 2.290417 3.655756
H -3.338777 1.034492 4.604410
H -4.266350 -0.658557 3.448605

Anion 7
80
scf done: -2099.869794

C 3.479683 0.917155 -1.063158
C 2.755142 -0.097835 -0.401788
C 3.340367 -1.381127 -0.291006
C 4.604779 -1.613281 -0.814605
C 5.314694 -0.611600 -1.455731
C 4.743057 0.640576 -1.576180
N 1.462555 0.132920 0.109491
Si 1.317127 0.696545 1.725887
C 1.060508 2.550755 1.870815
C 2.571389 -2.511527 0.350984
C 1.825303 -3.312686 -0.712684
C 2.911482 2.306131 -1.238614
C 2.639848 2.616437 -2.706967
Al 0.000028 -0.000310 -1.173227
N -1.462570 -0.132938 0.109519
Si -1.317123 -0.696361 1.725974
C -2.814694 -0.255644 2.761689
C -2.755106 0.097834 -0.401844
C -3.479630 -0.917174 -1.063199
C -4.743034 -0.640641 -1.576173
C -5.314728 0.611503 -1.455676
C -4.604827 1.613208 -0.814570
C -3.340370 1.381109 -0.291052
C -2.911386 -2.306133 -1.238665
C -2.640117 -2.616591 -2.707053
C -2.571368 2.511547 0.350842
C -1.825444 3.312678 -0.712964
C 3.429729 -3.426165 1.214325
C 3.807283 3.368623 -0.609456
C -3.806954 -3.368608 -0.609142
C -3.429618 3.426195 1.214258
C 2.814617 0.255899 2.761731
O 0.000027 0.000066 2.425864
C -1.060601 -2.550568 -1.871066
H 5.044660 -2.601031 -0.723631
H 6.301363 -0.809094 -1.861229
H 5.288482 -3.766968 -1.290530
H 4.137463 -4.008867 0.617174
H 2.795451 -4.137975 1.750383
H 1.950704 2.321659 -0.721693
H 1.935563 1.891134 -3.120961
H 3.561800 2.580359 -3.296323
H 2.206809 3.616069 -2.815282
H 4.769624 3.436072 -1.126015
H 4.012688 3.143449 0.440026
H 3.332344 4.352989 -0.661897
H 0.784691 2.812578 2.896865
H 0.257738 2.882534 1.208685
H 1.962779 3.107981 1.608057
H 2.943588 -0.826567 2.829720
H 2.697038 0.649251 3.775886
H 3.728499 0.675033 2.332718
H -2.943400 0.826819 2.830214
H -2.697634 -0.649615 3.775661
H -3.728547 -0.674281 2.332106
H -0.257079 -2.882236 1.209780
H -1.962545 -3.107829 1.607283
H -0.785865 -2.812469 2.897388
H -5.288446 -1.429074 -2.086400
H -6.301429 0.808951 -1.861118
H -5.044743 2.600938 -0.723567
H -1.950466 -2.321537 -0.721999
H -1.935977 -1.891296 -3.121305
H -3.562223 -2.580639 -3.296174
H -2.207046 -3.616209 -2.815366
H -4.769434 -3.436154 -1.125429
Atom	X	Y	Z
H	-4.012083	-3.143335	0.440374
H	-3.331983	-4.352957	-0.661614
H	-1.821004	2.049452	0.995374
H	-2.531411	3.766850	-1.415252
H	-1.155706	2.666964	-1.290847
H	-1.229839	4.111722	-0.259545
H	-4.002785	2.857095	1.950437
H	-4.137428	4.008887	0.617190
H	-2.795277	4.138017	1.750227

Anion 8

85

scf done: -2103.141938

C

-3.368196 -1.366148 -0.367426
-2.749505 -0.101248 -0.485055
-3.365195 0.873740 -1.301445
-4.563379 0.577610 -1.943115
-5.172103 -0.655920 -1.810360
-4.563661 -1.620732 -1.025918

N

-1.528778 0.156150 0.184066

Al

-0.000120 0.001008 -1.022088

Si

1.676692 0.867567 1.752186

85

scf done: -2103.141938

C

-3.368196 -1.366148 -0.367426
-2.749505 -0.101248 -0.485055
-3.365195 0.873740 -1.301445
-4.563379 0.577610 -1.943115
-5.172103 -0.655920 -1.810360
-4.563661 -1.620732 -1.025918

N

-1.528778 0.156150 0.184066

Al

-0.000120 0.001008 -1.022088

Si

1.676683 0.867567 1.752186
-1.039550 2.639884 1.799549
-0.761535 -0.054013 3.117708
-0.761334 0.057126 3.117569

Si

1.676683 0.865219 1.752676
-3.478974 -0.889402 2.303262
-3.478942 0.892619 2.302803
 1.040532 -2.637852 1.802197
Anion 10

61

scf done: -2033.350368

H 4.205744 2.022464 2.074687
H 2.991349 0.865670 2.655529
C 3.627613 1.132173 1.806714
H 4.330316 0.313144 1.638737
Si 2.544947 1.495015 0.306224
C 1.550058 3.040720 0.756383
H 1.081933 3.489773 -0.122326
H 0.771522 2.827696 1.495883
C 2.223162 3.789258 1.187730
C 3.667540 2.101862 -1.095536
H 4.150082 3.044245 -0.814924
H 4.447370 1.381938 -1.349402
H 3.077028 2.287689 -1.997911
C 1.467623 0.061456 -0.177576
Si 2.440608 -1.518879 -0.267543
C 2.613557 -2.395049 1.391167
H 1.637427 -2.694588 1.781381
H 3.234745 -3.291149 1.286127
H 3.069757 -1.745834 2.141593
C 4.211192 -1.342308 -0.937157
H 4.206580 -0.918797 -1.945726
H 4.677544 -2.332045 -0.992635
H 4.845773 -0.709502 -0.313232
C 1.707736 -2.772659 -1.481049
H 0.742911 -3.167592 -1.162669
H 1.578607 -2.334471 -2.474580
H 2.399169 -3.616311 -1.576374
C 0.687552 0.368628 -1.475783
H 0.535589 1.450605 -1.575045
H 1.231503 0.074548 -2.388481
C	-0.690499	-0.295719	-1.481038
H	-0.538535	-1.373226	-1.617927
H	-1.241932	0.026201	-2.380079
C	-1.464455	-0.028756	-0.168851
Si	-2.490783	-1.503471	0.306694
C	-1.456344	-2.971954	0.898480
H	-2.119466	-3.803995	1.158896
H	-0.878096	-2.708856	1.789961
H	-0.761545	-3.30298	0.137086
C	-3.488031	-2.199413	-1.146011
H	-4.239709	-1.493765	-1.504950
H	-3.997710	-3.123216	-0.852498
H	-2.826508	-2.436961	-1.984357
C	-3.690520	-1.168292	1.722990
H	-4.206791	-2.095274	1.993018
H	-4.448112	-0.420656	1.479018
H	-3.134785	-0.819407	2.597900
Si	-2.496502	1.512032	-0.257781
C	-4.191292	1.278915	-1.085804
H	-4.700180	2.245812	-1.163783
H	-4.845143	0.601140	-0.532568
H	-4.077687	0.879366	-2.098010
C	-1.713070	2.860100	-1.326423
H	-1.467782	2.493834	-2.326814
H	-0.803076	3.261502	-0.879604
H	-2.424538	3.685049	-1.437120
C	-2.836443	2.304281	1.417275
H	-3.354654	1.623551	2.095097
H	-3.453353	3.200738	1.291819
H	-1.901949	2.590570	1.907580
Al	-0.000433	0.048576	1.372767

Anion 11

58

scf done: -1620.483194

C	-3.976482	1.769490	1.576770
Si	-2.937965	1.600792	0.010424
C	-1.708147	3.033394	0.003924
C	-2.027837	-0.000077	-0.130364
Si	-2.938424	-1.600672	0.010539
C	-4.109455	-1.918344	-1.445598
Al	-0.543531	-0.000369	1.400062
N	0.705286	-0.000112	-0.066153
C	2.155642	-0.000086	-0.044344
C 2.734961 -1.249004 -0.732758
C 4.261330 -1.248767 -0.687776
C 4.791608 -0.000152 -1.391037
C 4.261286 1.248566 -0.687776
C 2.734915 1.248729 -0.732986
C 4.724087 -1.245044 0.767092
C 4.180484 0.000099 1.464196
C 2.655137 0.000072 1.401551
C 4.724049 1.245132 0.766870
C 0.103592 -0.000037 -1.304211
C -3.976449 -1.768890 1.577235
C -1.709013 -3.033608 0.003219
C -4.108456 1.918806 -1.446068
H -1.700549 0.000031 -2.392681
H 0.724284 -0.000027 -2.201145
H -3.380646 -1.503348 2.454858
H -4.319732 -2.802310 1.692686
H -4.857022 -1.122506 1.557837
H -0.982601 -2.892197 -0.801967
H -2.209989 -3.996190 -0.142704
H -1.157935 -3.072193 0.947515
H -4.928432 -1.194012 -1.462879
H -4.545444 -2.921432 -1.387266
H -3.573539 -1.838170 -2.395570
H -3.572513 1.837712 -2.395943
H -4.543688 2.922249 -1.388291
H -4.927996 1.95093 -1.463044
H -4.857413 1.123603 1.557196
H -4.319214 2.803120 1.692022
H -3.381084 1.503725 2.454605
H -1.157980 3.071931 0.948755
H -2.208800 3.996069 -0.142521
H -0.980993 2.891802 -0.800552
H 2.329954 -2.133149 -0.228974
H 2.392684 -1.289911 -1.771445
H 2.392667 1.289438 -1.771686
H 2.329864 2.132951 -0.229369
H 2.245282 -0.872980 1.920396
H 2.245258 0.873231 1.920202
H 4.643399 -2.143833 -1.193403
H 4.474788 -0.000246 -2.440537
H 5.888790 -0.000136 -1.383182
H 4.643306 2.143557 -1.193788

S11
Atom	X	Y	Z
H	4.361388	2.145408	1.275080
H	5.820312	1.260800	0.816837
H	4.495778	0.000192	2.513876
H	5.820350	-1.260666	0.817067
H	4.361452	-2.145236	1.275467
References

[1] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

[2] a) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868; b) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396; c) C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158-6169.

[3] a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305; b) F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.

[4] S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456-1465.