Coupling of \(\alpha,\alpha\)-difluoro-substituted organozinc reagents with 1-bromoalkynes

Artem A. Zemtsov\(^1\), Alexander D. Volodin\(^1,2\), Vitalij V. Levin\(^1\), Marina I. Struchkova\(^1\) and Alexander D. Dilman\(^*1\)

Abstract

\(\alpha,\alpha\)-Difluoro-substituted organozinc reagents generated from conventional organozinc compounds and difluorocarbene couple with 1-bromoalkynes affording gem-difluorinated alkynes. The cross-coupling proceeds in the presence of catalytic amounts of copper iodide in dimethylformamide under ligand-free conditions.

Introduction

\(\text{gem-Difluorinated organic compounds have attracted increasing attention nowadays due to their applicability in medicinal chemistry [1,2] and other fields. Indeed, unique stereoelectronic properties of the CF}_2\text{-unit may be exploited in conformational analysis [3-5], carbohydrate and peptide research [6,7], and reaction engineering [8,9].}

Typically, the difluoromethylene fragment is created by deoxyfluorination, which requires harsh or hazardous conditions [10,11]. Alternatively, functional group manipulations starting from available CF\(_2\)-containing building blocks can be considered, but multistep sequences render this approach laborious [12-14]. Difluoro-substituted cyclopropanes and cyclopropenes constitute a specific class of compounds accessible by difluorocarbene addition to multiple bonds [15].

Recently, we proposed a general method for assembling \(\text{gem-difluorinated structures from organozinc reagents I, difluorocarbene, and a terminating electrophile [16-21] (Scheme 1). (Bromodifluoromethyl)trimethylsilane [16-18] or potassium bromodifluoroacetate [19] can be used as precursors of difluorocarbene. In this process, the use of C-electrophiles is particularly important since it allows for the formation of two C–C bonds within one experimental run. Previously, as C-elec-
trophiles in this methodology, only allylic substrates [17] and nitrostryrenes (with the NO₂ serving as a leaving group) [20], were employed. Herein, we report that 1-bromoalkynes, which are known to be involved in reactions with various organometallic compounds [22-27], can be used as suitable coupling partners for difluorinated organozinc compounds 2. This reaction provides straightforward access to α,α-difluorinated alkynes [13,14,28-31]. Our method is based on facile zinc/copper exchange allowing for versatile couplings described for non-fluorinated organozinc compounds [32-37].

Results and Discussion

Organozinc compound 2a generated from benzylzinc bromide was first evaluated in a reaction with haloalkynes derived from phenylacetylene (Table 1). First, most reactive iodo-substituted alkyne 3a-I (X = I) was evaluated in the presence of copper iodide (10 mol %). Expected product 4a was formed in 12% yield, but its yield was tripled simply by adding 2 equiv of DMF additive (Table 1, entries 1 and 2). However, in these experiments, the reaction mixtures contained about 40% of (2,2-difluoro-2-iodoethyl)benzene (PhCH₂CF₂I) arising from zinc/iodine exchange between 2a and the iodoalkyne. Chloroalkyne 3a-Cl was markedly less reactive, likely because of the strong carbon–chlorine bond. Fortunately, bromoalkyne 3a-Br provided the best results, with the optimal conditions involving the use of DMF as a solvent and only 5 mol % of copper iodide at 0 °C to room temperature, which afforded the coupling product in 79% isolated yield (Table 1, entry 5). The addition of various ligands, as well as the use of other copper salts, did not have a beneficial effect.

Under the optimized conditions, a series of organozinc compounds 2 were coupled with bromoalkynes 3 (Table 2). Good yields of coupling products 4 were typically achieved. The reaction tolerates ester groups or TBS-protected hydroxy groups. Aromatic iodide also remains unaffected (Table 2, entry 2).

As for the mechanism, we believe that the reaction starts with the zinc/copper exchange resulting in the formation of fluorinated organocopper species 5 (Scheme 2). Compound 5 inter-

Table 1: Optimization studies.

Entry	X	2a (equiv)	Conditions	Solvent	Cul (equiv)	Additive (equiv)	Yield of 4a, %^a
1	I	2	-50 °C → rt; 4 h at rt	MeCN	0.1	-	12
2	I	1.3	-50 °C → rt; 4 h at rt	MeCN	0.1	DMF (2)	35
3	Cl	2	0 °C → rt; 16 h at rt	MeCN	0.1	DMF (2)	32
4	Br	1.5	0 °C → rt; 16 h at rt	MeCN	0.1	DMF (2)	60
5	Br	1.5	0 °C → rt; 16 h at rt	DMF	0.05	-	79^b

^aDetermined by ¹⁹F NMR with internal standard. ^bIsolated yield.
Table 2: Reaction of organozinc compounds 2 with bromoalkynes 3.

Entry	2	3	4	Yield of 4, %^a
1	PhZnBr_{2a}	Br₃CO₂Me_{2b}	Ph_{4b}	84
2	2a	3c	Ph_{4c}	82
3	2a	Br₃F_{3d}	Ph_{4d}	70
4	2a	Br₃CO₂Et_{3e}	Ph_{4e}	84
5	2a	Br₃OBz_{3f}	Ph_{4f}	67
6^b	2a	Br₃OTBS_{3g}	Ph_{4g}	80
7^b	2a	Br₃OTBS_{3h}	Ph_{4h}	75
8	MeO₂C_{2b}	Br₃Ph_{3a-Br}	MeO₂C_{4i}	80
9	EtO_{2e}	Br₃Ph_{3a-Br}	EtO_{4j}	81
acts with bromoalkyne 3 either by oxidative addition generating copper(III) intermediate 6 or by triple bond carbometallation [38] generating copper(I) intermediate 7. Subsequent reductive elimination (from 6) or β-elimination (from 7) leads to the product and regenerates the copper(I) catalyst.

Scheme 2: Proposed mechanism.

Conclusion

In summary, a method for the copper-catalyzed coupling of α,α-difluoro-substituted organozinc compounds with 1-bromoalkynes has been developed. The reaction is performed under mild conditions affording gem-difluoro-substituted alkynes in good yields.
9. Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R. J. Am. Chem. Soc. 2008, 130, 11486–11493. doi:10.1021/ja080386r

10. Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619–8683. doi:10.1016/0040-4020(96)00311-0

11. Al-Mahatik, N.; O’Hagan, D. Aldrichimica Acta 2011, 44, 65–75.

12. Qin, F.-L.; Zheng, F. Synlett 2011, 1052–1072. doi:10.1055/s-0030-1259947

13. Belhomme, M.-C.; Besset, T.; Poisson, T.; Panneconque, X. Chem. – Eur. J. 2015, 21, 12836–12865. doi:10.1002/chem.201501475

14. Gao, B.; Ni, C.; Hu, J. Chimia 2014, 68, 414–418. doi:10.2533/chimia.2014.414

15. Dublier, W. R., Jr.; Battiste, M. A. Chem. Rev. 2003, 103, 1071–1098. doi:10.1021/cr010023b

16. Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2013, 15, 917–919. doi:10.1021/ol400122k

17. Zemtsov, A. A.; Kondratyev, N. S.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. J. Fluorine Chem. 2014, 179, 818–822. doi:10.1016/j.jfluchem.2014.06.001

18. Smirnov, V. O.; Struchkova, M. I.; Arkhipov, D. E.; Koryukov, A. A.; Dilman, A. D. J. Org. Chem. 2014, 79, 11819–11823. doi:10.1021/jo5023537

19. Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. J. Fluorine Chem. 2015, 171, 97–101. doi:10.1016/j.jfluchem.2014.08.021

20. Kondratyev, N. S.; Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. J. Fluorine Chem. 2015, 176, 89–92. doi:10.1016/j.jfluchem.2015.06.001

21. Smirnov, V. O.; Maslov, A. S.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Russ. Chem. Bull. 2014, 63, 2564–2566. doi:10.1007/s11172-014-0778-1

22. Thaler, T.; Guo, L.-N.; Mayer, P.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 2174–2177. doi:10.1002/anie.201006879

23. Corpet, M.; Bai, X.-Z.; Gosmini, C. Adv. Synth. Catal. 2014, 356, 2937–2942. doi:10.1002/adsc.201400369

24. Cornelissen, L.; Lefrançoi, M.; Riant, O. Org. Lett. 2014, 16, 3024–3027. doi:10.1021/ol501140p

25. Wang, S.; Wang, M.; Wang, L.; Wang, B.; Li, P.; Yang, J. Tetrahedron 2011, 67, 4800–4806. doi:10.1016/j.tet.2011.05.031

26. Castagnolo, D.; Botta, M. Eur. J. Org. Chem. 2010, 3224–3228. doi:10.1002/epjc.201000393

27. Brand, J. P.; Waser, J. Chem. Soc. Rev. 2012, 41, 4165–4179. doi:10.1039/c2cs35034c

28. Besset, T.; Poisson, T.; Panneconque, X. Eur. J. Org. Chem. 2014, 7220–7225. doi:10.1002/epjc.201402937

29. Arimitsu, S.; Fernández, B.; del Pozo, C.; Fusteri, S.; Hammond, G. B. J. Org. Chem. 2008, 73, 2656–2661. doi:10.1021/jo7025965

30. Hammond, G. B. J. Fluorine Chem. 2006, 127, 476–488. doi:10.1016/j.jfluchem.2005.12.024

31. Xu, B.; Mae, M.; Hong, J. A.; Li, Y.; Hammond, G. B. Synthesis 2006, 803–806. doi:10.1055/s-2006-928334

32. Malosh, C. F.; Ready, J. M. J. Am. Chem. Soc. 2004, 126, 10240–10241. doi:10.1021/ja0467768

33. Thapa, S.; Kaffe, A.; Gurung, S. K.; Montoya, A.; Riedel, P.; Giri, R. Angew. Chem., Int. Ed. 2015, 54, 8236–8240. doi:10.1002/anie.201502379

34. Karstens, W. F. J.; Moolenaar, M. J.; Rutjes, F. P. J. T.; Grabowska, U.; Speckamp, W. N.; Hiemstra, H. Tetrahedron Lett. 1999, 40, 8629–8632. doi:10.1016/S0040-4039(99)01808-0

35. Knochel, P. Organomagnesium and Organozinc Chemistry. In Organometallics in Synthesis; Schlosser, M., Ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2013; pp 223–372. doi:10.1002/9781118484722.ch2

36. Knochel, P. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; pp 387–419.

37. Geurts, K.; Fletcher, S. P.; van Zijl, A. W.; Minnaard, A. J.; Feringa, B. L. Pure Appl. Chem. 2008, 80, 1025–1037. doi:10.1351/pac200808051025

38. Cahiez, G.; Gager, O.; Buendia, J. Angew. Chem., Int. Ed. 2010, 49, 1278–1281. doi:10.1002/anie.200905816

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.11.231