Assessing Infrastructure Projects Under Public-Private Partnerships

Alabed Alkader Naief Mohamad¹, M S Gordienko², Mohammad Tariq Jassim Mohammad³

¹Postgraduate student at the Department of Financial Management of Plekhanov Russian University of Economics. Address: Plekhanov Russian University of Economics. Moscow, Russia, Stremyanny Lane, 36, 117997, Russian Federation.
²Ph.D., Associate Professor of the Department of Financial Management of Plekhanov Russian University of Economics. Address: Plekhanov Russian University of Economics. Moscow, Russia, Stremyanny Lane, 36, 117997, Russian Federation.
³Postgraduate Student of the Department Basic Department of Financial Control, analysis and audit of the Main Control Department of the city of Moscow. Address: Plekhanov Russian University of Economics. Moscow, Russia, Stremyanny Lane, 36, 117997, Russian Federation.

E-mail: alabedalkader123@gmail.com, Gordienko.MS@rea.rum, tariq198344@yahoo.com

Abstract. This paper discusses a methodological framework for assessing infrastructure projects on the base of public private partnership, which can help investors to take the decision of investment. The financing schemes associated with infrastructure projects have been considered and analyzed in this article and the FUZZY – AHP technique was applied to get the optimal financial scheme for financing infrastructure projects on the base of public private partnership. To get the optimal solution, the membership functions and the weights of the variables in every financial scheme in infrastructure projects on the base of private public partnership have been calculated. At the end, a case study was applied to demonstrate the application of analytical hierarchy process module. The results of the study can be used in theoretical and practical researches to develop the financial mechanism of infrastructure projects, as well as can help to predict new schemes to improve the infrastructure projects based on private public partnership.
1. Introduction

1.1. Research questions
In general, there are no effective methods and modules for assessing the financial schemes in infrastructure projects based on public-private partnerships. According to that, many problems appear when the infrastructure projects will be implemented. This will ultimately affect the productivity and effectiveness of financial mechanism in infrastructure projects. The problems of assessing the schemes of financing infrastructure projects were discussed in the works of: Zou W., Shash N., Borodin A.I., Gordienko M.S., Voskanyan R.O., Liu T., Wilkinson S., Shen L.Y, Platten A.X, Hardcastle C., Radziszewski P., Kowalski KJ, Król J.B, Sarnowski M., Piła T.J.

1.2. Research objectives
This article aims to select the optimal financial scheme for infrastructure projects based on public-private partnerships. Based on this aim, the following objectives have been identified:
1- Develop a module for assessing schemes of financing infrastructure projects based on PPP;
2- Choose the most optimal financing scheme for infrastructure projects based on PPP.

1.3. Significance of the research
Scientific novelty in this article included in the development of proposals for improving financing schemes in infrastructure projects based on public-private partnerships. The most significant results characterizing the scientific novelty:
1- A developed model for evaluating schemes of financing in infrastructure projects based on PPP;
2- Optimized financial scheme for infrastructure projects based on PPP.
In recent years, with the development of financing methods in infrastructure project based on PPP, various financing schemes have been applied, such as: BOT, BLTM, BOOT, DBOOT, and each scheme had its own advantages and disadvantages. To choose the optimal scheme for financing infrastructure projects based on PPP, a FUZI-AHP module has been chosen [1]. According to this module, it is necessary to divide each financial scheme into three parts or indexes and also divide each index into sub-indexes [8], and calculate the weight of each part according to their impact on the financial decision. After that the optimal solution formula should be applied as follows [9]:

\[D = \text{MAXFUZI} - \text{AHP} \] \hspace{1cm} (1)

\[\text{FUZI} - \text{AHP} = (d s)^{1/2} \] \hspace{1cm} (2)

\[ds = \sum d \omega \ast d s i \] \hspace{1cm} (3)

\[d s i = \sum Q \ast W \] \hspace{1cm} (4)

Where: ds: membership function level 3 of the financial scheme,
D: optimal financial scheme solution,
\(\omega \): index weight,
dsi: membership function level 2 of the financial scheme,
W: sub index weight,
Q: is the membership function of level 1.

2. Discussion
The FUZI-AHP module has been applied on an infrastructure projects in Russia (Creation of an indoor sports complex with artificial iceland for 5,000 seats (Ulyanovsk region)) [2]. To calculate the membership function in the financial scheme in this project, it is necessary to construct a FUZI matrix for each sub index and obtain weights for all indexes [13] (table 1).
Table 1. The weight of every index in financial scheme BOOT (Creation of an indoor sports complex with artificial ice for 5,000 seats (Ulyanovsk region)) [14].

	P11	P12	P13	P14	\(W_{1i}\)
P11	0.5	0.4	0.3	0.7	25% = \(W_{1,1}\)
P12	0.6	0.5	0.7	0.4	28% = \(W_{1,2}\)
P13	0.4	0.3	0.5	0.7	25% = \(W_{1,3}\)
P14	0.6	0.3	0.6	0.5	26% = \(W_{1,4}\)

\[
P = \frac{1}{n(n-1)(n-2)} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{n} \frac{ij \cdot (rlk + rkJ - \frac{1}{2})}{|\sum_{ij}kij \cdot \sum_{ij}kij|} , n > 2 \quad [15], \ldots (5)
\]

In the same way can also calculate \(W_{2,i}\) and \(W_{3,i}\).

Table 2. Weights \(W_{2,i}\) and \(W_{3,i}\) (Creation of an indoor sports complex with artificial ice for 5,000 seats (Ulyanovsk region)) [16].

	\(W_{2,i}\)	\(W_{3,i}\)
P11	29%	27%
P12	31%	26%
P13	23%	22%
P14	21%	29%

After calculating the weight of each sub index in the system, the optimal solution can be calculated by the dsi (membership function level 2 of the financial scheme). Table 3. Illustrates the calculation of (dsi) for financial scheme BOOT [19].

Table 3. Weights and membership function level 2 in financial scheme BOOT.

Sub index 1,2,3.	Weight of each sub index	Q	dsi
1 Form of interaction between the public and private sectors	25%	(0.04, 0.11, 0.44, 0.41, 0.00) = (0.0385, 0.1735, 0.4796, 0.3012, 0.0072)	
2 Complexity of the financing process	28%	(0.07, 0.41, 0.48, 0.04, 0.00)	
3 Und Capital Structure	25%	(0.00, 0.11, 0.56, 0.30, 0.03)	
4	26%	(0.04, 0.04, 0.44, 0.48, 0.00)	
1 Financial expenses	29%	(0.00, 0.11, 0.41, 0.44, 0.00) = (0.0298, 0.1124, 0.3812, 0.4444, 0.0322)	
2 Payback period	31%	(0.07, 0.04, 0.26, 0.56, 0.07)	
3 Degree of off-balance sheet financing	23%	(0.04, 0.18, 0.52, 0.26, 0.00)	
4 Average Ratio	21%	(0.00, 0.15, 0.37, 0.48, 0.00)	
1	27%	(0.04, 0.04, 0.30, 0.55, 0.00) = (0.0204, 0.0335, 0.0308, 0.0322, 0.0072)	
the level of the demand
0.07)
(0.04, 0.00, 0.44, 0.44, 0.08)
2.
he level of risk
26%
(0.00, 0.11, 0.26, 0.59, 0.04)
3.
strategic atmosphere
22%
(0.00, 0.11, 0.26, 0.59, 0.04)
4.
the structure of the investment
29%
(0.00, 0.00, 0.48, 0.48, 0.04)

Table 4. Weight and membership function level 3 of the financial scheme BOOT.

C BOOT	ω	dsi BOOT	ds	BOOT
C1: Characteristics of the financial method	Wc1=0.46	(0.0385, 0.1735, 0.4796, 0.3012)	0.032016, 0.125515	1.9
C2: The priorities of the investor	Wc2=0.35	(0.0298, 0.1124, 0.3812, 0.4444, 0.00)	0.391239, 0.025564	1.9
C3: Characteristics of the project	Wc3=0.19	(0.0204, 0.0335, 0.377, 0.5113, 0.0578)	0.032016, 0.125515	1.9

FUZI – AHP BOOT
= (((0.032016 * 1) + (0.125515 * 2) + (0.425666 * 3) + (0.391239 * 4) + (0.025564))^{1/2} = 1.9

After calculating FUZI – AHP for BOOT, it is possible to use FUSI-AIP to calculate the optimal financial solutions for other schemes and determine the max FUSI-AIP (Tab. 5) [17].

FUZI BLTM = ((0.026064 * 1) + (0.426066 * 2) + (0.34239 * 3) + (0.124815 * 4) + (0.031016 * 5))^{1/2} = 1.7
FUZI DBOOT = ((0.391239 * 1) + (0.025564 * 2) + (0.032016 * 3) + (0.125515 * 4) + (0.425666 * 5))^{1/2} = 1.80
FUZI BOT = ((0.125515 * 1) + (0.025564 * 2) + (0.032016 * 3) + (0.391239 * 4) + (0.425666 * 5))^{1/2} = 2

3. Results
The analysis showed that the BOT financing scheme is the most optimal financing scheme (FUZI -AHP for = 2) (see table 5).
Table 5. Optimal financial solutions for infrastructure projects based on PPP.

BOT	BLTM	DBOOT	BOOT
FUZI-AHP	2	1.7	1.9
\(D = \max \)	max 1.99		

4. Conclusions

To implement infrastructure projects based on PPP we need to get the most effective financing schemes. The choice of financing scheme depends on many factors, such as: the characteristics of the financial method, the investor's priorities, and the characteristics of the project. The goal of the FUZI-AHP module is to choose the most optimal financial solution for the project and minimize the cost of capital. The analysis showed that in infrastructure projects based on PPP using FUZI-AHP module and in comparison with other schemes, BOT, (construction, operation / management, transfer) represents the optimal financial solution. Thus, in the project (Creation of an indoor sports complex with artificial iceland for 5,000 seats (Ulyanovsk region)) the BOT financing scheme is the most optimal scheme for financing infrastructure projects based on PPP and can be used for the application of infrastructure projects.

5. References

[1] Bureau of labor statistics (bls), fatal occupational injuries by industry and event or exposure all United States 2017 https://www.bls.gov/iif/oshwc/cfoi/cftb0286.pdf last accessed 2020/8/21
[2] Information portal dedicated to new financial technologies http://www.ppp-pf.ru last accessed 2020/09/03
[3] Information portal of the InfraNews research Agency http://infranews.ru last accessed 2020/08/28
[4] Liu T, Wilkinson S 2017 Large-scale public venue development and the application of public-private partnerships (PPPS) International journal of project management 32 88–100
[5] Public-private partnership in Russia http://www.ppp-russia.ru last accessed 2020/8/29
[6] Radziszewski P, Kowalski K J, Król J B, Sarnowski M, PiłaT J 2018 Quality assessment of bituminous binders based on the viscoelastic properties: polish experience journal of civil engineering and management 20(1) 111–120
[7] Shen L Y, Platten A X 2016 Role of public private partnerships to manage risks in public sector projects in Hong Kong International journal of project management 24(7) 587–594
[8] The PPP development center http://www.pppcenter.ru last accessed 2020/8/29
[9] Zou W, Kumaraswamy 2018 M.: Identifying the critical success factors for relationship management in ppp projects International journal of project management vol 32 2 265–274
[10] Baulin M S 2017 Implementation of projects involving the mechanism of public-private partnership. theory and practice Department of Strategic and Investment Consulting of CJSC MKD PARTNER (M) 17 p 2
[11] Brailey R 2018 Principles of corporate finance (M .: CJSC "Olymp-Business") 1008 p 3
[12] Voskanyan R O 2017 Financial support for the formation of an innovative infrastructure: Analysis of international practice Research and Development. Economy T 5 3 pp 27-30
[13] Gordaneko M S 2018 State financial management - Factor of efficiency of the corporate governance model economics and Management 5 pp 110-111
[14] Delmon D 2018 Public-private partnership in infrastructure A Practical Guide for Public Authorities 261 p complex of urban public transport 6 (M .: EKON-INFORM) 265 p
[16] Uvarova A A 2016 World experience and prospects of using PPP in Russia CJSC AKG RBS (M.) 27 p
[17] Ulitskaya N M 2011 Market technologies of property management (M.: Econ-Inform) 265 p (Bibliography) pp 246-265
[18] Khalturin R A 2016 Transport and logistics support for the functioning of the SEZ Public-private partnership: theory, methodology, practice (Moscow: IE RAS) pp 139-143
[19] Cherkasov V V 2018 Problems of risk in management activity: monograph (M.: Refl-book, Kiev: Valer) 89 p
[20] Shash N N, Borodin A I 2016 Problems in the development and financial support of state programs Finance 1 pp 19-24