Isolation and Characterization of Cellulose from Underexploited Golden Melon Skin

Adewale Adewuyi
Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede 232101, Osun State, Nigeria, adewuyia@run.edu.ng

Fabiano Vargas Pereira
Department of Chemistry, Federal University of Minas Gerais, Av.Antônio Carlos 6627, Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil

Follow this and additional works at: https://scholarhub.ui.ac.id/science

Recommended Citation
Adewuyi, Adewale and Pereira, Fabiano Vargas (2018) "Isolation and Characterization of Cellulose from Underexploited Golden Melon Skin," Makara Journal of Science: Vol. 22 : Iss. 3 , Article 3.
DOI: 10.7454/mss.v22i3.7548
Available at: https://scholarhub.ui.ac.id/science/vol22/iss3/3

This Article is brought to you for free and open access by the Universitas Indonesia at UI Scholars Hub. It has been accepted for inclusion in Makara Journal of Science by an authorized editor of UI Scholars Hub.
Isolation and Characterization of Cellulose from Underexploited Golden Melon Skin

Cover Page Footnote
This research was supported by TWAS-CNPq. The authors are grateful to the Department of Chemistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil for providing laboratory space and equipment for this research.

This article is available in Makara Journal of Science: https://scholarhub.ui.ac.id/science/vol22/iss3/3
Isolation and Characterization of Cellulose from Underexploited Golden Melon Skin

Adewale Adewuyi\(^1\)\(^*\) and Fabiano Vargas Pereira\(^2\)

1. Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede 232101, Osun State, Nigeria
2. Department of Chemistry, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil

\(^*\)E-mail: adewuyia@run.edu.ng

Received April 4, 2017 | Accepted June 4, 2018

Abstract

Golden melon skin (GM) is an underexploited plant resource in Nigeria from which cellulose (GMC) was isolated and characterized. Characterization was achieved using Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis, and scanning electron microscopy. GMC was further evaluated for its water holding capacity (WC), oil holding capacity (OC), water swelling capacity (SC), and heavy metal adsorption capacity. FT-IR spectroscopy revealed peaks corresponding to GMC, while the XRD diffraction planes exhibited by GMC were typical of cellulose I crystals with a crystallinity index of 40%. The thermal degradation of GMC revealed a first mass loss at 190–295 °C, second loss at 305–410 °C, and third loss 285–430 °C. The WC was 11.62 g/g, OC was 2.75 mL/g, and SC was 9.32 mL/g. The heavy metal adsorption capacity of GMC toward Cu (II) was 34.52 mg/g, and it was 28.73 mg/g toward Pb (II) in an aqueous solution. These results show that GM is a potential source of cellulose, which might have useful applications.

Keywords: cellulose; cucurbitaceae; golden melon; SEM; XRD

Introduction

Lignocellulosic biomass is an underutilized source of renewable feedstock with the principal renewable biopolymer forms being lignin, hemicellulose, and cellulose [1-3]. Among the different forms of known biopolymers, cellulose is of great importance with its major sources being wood and cotton. Over the years, there have been searches for alternative sources of cellulose as a renewable resource to produce biodegradable and biocompatible materials [4].
Due to its abundant availability, low weight, renewability, degradability, and low abrasive property [5,6], cellulose has applications in the textile, cosmetic, construction, paper, and food industries [7-9]. As a result of the different possible applications of cellulose, there is an increasing demand for its supply but the major conventional sources are insufficient to meet the demand. Thus, there is need to identify other non-conventional renewable sources to produced cellulose to meet this increasing demand.

Attention has drifted toward unexploited or underexploited renewable materials [10,11] to identify non-conventional sources of cellulose. Some of these unexploited and underexploited renewable materials include agricultural waste. Among such agricultural wastes is golden melon skin (GM). Golden melon (Cucumis melo family Cucurbitaceae) is a bright-yellow melon with a pale green to white inner flesh [12]. It is a drooping herbaceous plant with alternating deep green leaves of about 7–15 cm diameter on long petioles with shallow lobes and some spiky margins [13]. The fruit is edible, and the outer skin of the fruit is thrown away as waste when the fruit is eaten. GM is unexploited in Nigeria as it has no specific use. The present study focused on finding applications for this discarded unexploited GM by isolating cellulose from GM.

A few unconventional sources of cellulose have been identified; some of these sources are not sustainable while others serve other important purposes. To the best of our knowledge, no study has isolated cellulose from GM. As GM is presently waste in Nigeria, the concept of the present study was to convert this waste (GM) into a useful product. Therefore, the main objectives of this study was to isolate and characterize cellulose from GM.

Materials and Methods

Materials. Golden melon fruit was obtained from a local market in Belo Horizonte, Minas Gerais, Brazil. The fruit was later identified at the Department of Botany and Microbiology, University of Ibadan, Ibadan, Oyo state, Nigeria. Glacial acetic acid, sodium hydroxide, sodium chlorite, sulfuric acid, and all other chemicals used in this study were purchased from Sigma-Aldrich (Belo Horizonte, Brazil). The skin was separated from the fruit, air dried, and kept in a nylon bag before use.

Isolation of cellulose from GM. GM (150 g) was transferred to a 3 L beaker. An alkali solution (2 wt% NaOH) was added and heated at 80 °C for 5 h with continuous stirring using a Fisatom mechanical stirrer. The mixture was cooled, filtered, washed with deionized water several times until alkali free, and oven dried at 50 °C. The residue was bleached with a mixed solution made of equal volumes (1:1) of acetate buffer (27 g NaOH and 75 mL glacial acetic acid, diluted to 1 L of distilled water) and aqueous sodium chlorite (1.7 wt% NaClO₂ in deionized water) as described previously [14]. The mixture was stirred at 80 °C for another 5 h. The resulting fibers were washed repeatedly in deionized water until the pH of the fibers was neutral. The bleaching step was repeated twice until the fibers were completely white. The fibers were dried in an air-circulating oven at 50 °C for 24 h to produce cellulose with an estimated yield of about 23%.

Characterization. The functional groups in GMC were determined by Fourier transform-infrared (FT-IR) spectroscopy (Perkin Elmer, spectrum RXI 83303; Waltham, MA, USA). The GMC was blended with KBr, pressed into pellets, and analyzed in the range of 400–4,500 cm⁻¹. The X-ray diffraction (XRD) pattern was obtained using an X-ray diffractometer (XRD-7000X-Ray diffractometer, Shimadzu, Tokyo, Japan) with filtered Cu Kα radiation operated at 40 kV and 40 mA. The XRD pattern was recorded from 10 to 80 °C of 2θ with a scanning speed of 2.0000° of 2θ/min. Thermal stability and the fraction of GMC volatile components were monitored with a DTA-TG apparatus (Shimadzu, C30574600245) under a nitrogen atmosphere. Surface morphology was studied using FEI quanta 200 (model EDAX EDS; Hillsboro, OR, USA) operated using Genesis software, version 5.21. The powdered GMC was coated with gold using the sputtering technique to increase electrical conductivity and the quality of the micrographs.

Authentication of GMC. Isolation of cellulose was confirmed by comparing the FT-IR spectrum and XRD pattern of GMC with those of commercial cellulose (UFMG, Belo Horizonte, Brazil). The commercial cellulose was prepared from eucalyptus kraft wood pulp with high alpha-cellulose content (96–98%).

Water holding capacity. Water holding capacity (WC) was evaluated following the method described by Zhang et al. [15] Thus, 0.5 g (W₁) of GMC was dispersed in 10 mL distilled water in a pre-weighed, clean centrifuge tube (W), which was placed in a water bath at 37°C for 30 min. The tubes were centrifuged for 15 min at 4,000 rpm, the supernatant was removed, and the centrifuge tubes with distilled water-soaked GMC were weighed (W₂). WC was estimated as:

\[
WC\ (g g^{-1}) = \frac{(W_1 - (W + W_2))}{W_1}
\]

Oil holding capacity. Oil holding capacity (OC) was determined by weighing 0.2 g (W₁) of GMC into a calibrated centrifuge tube containing 5 mL (V₁) of Picralima nitida seed oil. The mixture was stirred for 10 min after which it was centrifuged for 30 min at 5,000 rpm. The supernatant oil (V₂) was gently removed, and
the absorbed oil was estimated as the difference between V_1 and V_2. OC was calculated as described by Lu et al. [16]:

Why is Picralima Nitida seed oil used?

\[OC \left(\frac{mL}{g^{-1}} \right) = \frac{V_1 - V_2}{w} \] \hspace{1cm} (2)

Swelling capacity. Swelling capacity (SC) was determined by placing 0.5 g (W) of GMC in a calibrated tube, measuring its initial bed volume (V_1), mixing it with 10 mL of distilled water, followed by vigorous shaking. The tube with its content was placed in a water bath at 25 °C for 24 h, the final volume (V_2) was measured, and SC was calculated using Eq. 4 [17].

\[SC \left(\frac{mL}{g^{-1}} \right) = \frac{V_2 - V_1}{w} \] \hspace{1cm} (3)

Heavy metal adsorption capacity. Lead nitrate (Pb(NO$_3$)$_2$) and copper sulfate (Cu(SO$_4$)$_2$·5H$_2$O) salts were used to prepare the salt solutions in de-ionized water. The metal adsorption study was carried out by separately shaking 0.1 g of GMC with a 50 mL solution (100 mg/L) of the metals in different beakers at 25 °C and 200 rpm for 3 h. This solution was later centrifuged for 10 min at 5,000 rpm, and the metal concentrations before and after adsorption were determined using an atomic absorption spectrometer (Varian AA240FS; Palo Alto, CA, USA). The Varian AA240FS was calibrated using a reference standard with a sensitivity of > 0.9 absorbance from 5 mg/L Cu, while the wavelength was maintained at a repeatability of ± 0.04 nm. The method was validated according to the method described by the European Union standards for foodstuff [18]. The parameters included selectivity, range of linearity, reproducibility, trueness according to a certified reference material, method detection limit, detection capacity, and quantification limit. The metal ions adsorption capacity of GMC was calculated using Eq. 4:

\[q_m = \frac{(C_0 - C_f)V}{M} \] \hspace{1cm} (4)

Where q_m is the adsorption capacity in mg/g, C_0 and C_f are the initial and final concentrations (mg/L) of adsorbate (Pb and Cu) in solution, respectively, and V and M are the volume (L) of the metal ion solution and weight (g) of the GMC used, respectively.

Statistical analyses. All data are expressed as mean ± standard error of the mean. Analysis were carried out in triplicate (n = 3). A p-value < 0.05 was considered significant.

Results and Discussion

Makara J. Sci.
higher than the values reported for standard flour [24] and dietary fiber [25]. GMC held water better than oil. This may be due to the ability of the hydroxyl groups in GMC to form hydrogen bonds with water molecules. This ability to hold water is an indication that GMC may find applications in areas where water retention is required. The tendency of GMC to adsorb heavy metals (Pb and Cu ions) was evaluated, and the results are presented in Figure 6. These metals are toxic and capable of causing diseases in humans [26]. They have been found in water, food, and some domestic products [27]. The validation results show that the Varian AA240FS instrument was precise, accurate, and followed excellent linearity. The adsorption capacity of the GMC toward

![Figure 3. Thermogravimetric Analysis of Golden Melon Skin (GMC)](image)

Cu (II) ions was 34.52 ± 0.01 mg/g and 28.73 ± 0.02 mg/g toward Pb (II) ions. These values are higher than those reported by Jiang et al. [28], Futalan et al. [29], and Putra et al. [30]. The tendency of GMC to adsorb these metals may be associated with the presence of hydroxyl functional groups; these hydroxyl groups have
Figure 6. Adsorption Capacity of Golden Melon Skin (GMC) Toward Pb2+ and Cu2+ Ions

the capacity to exchange their hydrogen atoms for metal ions via an ion-exchange mechanism or they also form a complex with these metal ions. It may be that both ion exchange and complexation were occurring at the same time on the GMC surface.

Conclusion

This study focused on isolating cellulose from GM as an alternative source of cellulose. GMC was characterized using FT-IR spectroscopy, XRD, TGA, and SEM. GMC was further analyzed for WC, OC, SC, and metal adsorption capacity. The results revealed that GMC exhibited properties typical of the cellulose I crystalline form. The WC, OC, SC, and adsorption capacities toward Cu (II) and Pb (II) in aqueous solution showed that the GM is a potential source of cellulose with useful applications.

Acknowledgments

This research was supported by TWAS-CNPq. The authors are grateful to the Department of Chemistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil for providing laboratory space and equipment for this research.

References

[1] Konur, O. 2012. The scientometric evaluation of the research on the production of bioenergy from biomass. Biom. Bioener. 47: 504-515, DOI: 10.1016/j.biombioe.2012.09.047.
[2] Huang, Y.B., Fu, Y. 2013. Hydrolysis of cellulose to glucose by solid acid catalysts. Green. Chem. 15(5): 1095-1111, DOI: 10.1039/c3gc40136g.
[3] Lim, H.K., Song, H.Y., Kim, D.R., Ko, J.H., Lee, S.A., Lee, K.I., Hwang, I.T. 2015. An alternative path for the preparation of triacyctelulose from unrefined biomass. Adv. Chem. Eng. Sci. 5: 33-42, ISSN Print: 21600392, ISSN Online: 2160-0406.
[4] Jawaid, M., Abdul Khalil, H.P.S. 2011. Effect of layering pattern on the dynamic mechanical properties and thermal degradation of oil palm-jute fibers reinforced epoxy hybrid composite. BioRes. 6(3): 2309-2322, DOI: 10.15376/biores.6.3.2309-2322.
[5] Dungani, R., Karina, M., Sulaeman, A., Hermawan, D., Hadiyane, A. 2016. Agricultural waste fibers towards sustainability and advanced utilization: A Review. Asian J. Plant Sci. 15(1-2): 42-55, DOI: 10.3923/ajps.2016.42.55.
[6] Karim, M.S., Seal, H.P., Rouf, M.A., Rahman, M.I., Talukder, M.H.R., Karmaker, P.G. 2010. Acetic acid pulp from jute stick, rice-straw and bagasse. J. Agrofor. Environ. 3(2): 171-174, ISSN 1995-6983.

[7] Yuhazri, Y.M., Sihoibong, H., Jeeferie, A.R., Mujahid, A.Z.A., Balamurugan, A.G., Norazman, M.N., Shohaimi, A. 2011. Optimization of coconut fibers toward heat insulator applications. Global Eng. Technol. Rev. 1: 35-40, ISSN 2231-9700.
[8] Domke, P.V. 2012. Improvement in the strength of concrete by using industrial and agricultural waste. IOSR J. Eng. 2: 755-759, ISSN: 2250-3021.
[9] Reddy, J.P., Rhim, J.W. 2014. Isolation and characterization of cellulose nanocrystals from garlic skin. Mat. Lett. 129: 20-23, DOI: 10.1016/j.matlet.2014.05.019.
[10] Eichhorn, S.J. 2011. Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter. 7: 303-315, DOI: 10.1039/C0SM00142B.
[11] Giri, J., Adhikari, R. 2013. A brief review on extraction of nanocellulose and its application. Bibecheana. 9: 81-87, DOI: 10.3126/bibecheana.v9i0.7179.
[12] Raji, O.H., Orelaja, O.T. 2014. Nutritional composition and oil characteristics of golden melon (Cucumis melo) seeds. Food Sci. Qual. Manag. 27: 18-21, ISSN 2225-0557.
[13] Ajuru, M.G., Okoli, B.E. 2013. The morphological characterization of the melon species in the family Cucurbitaceae Juss and their utilization in Nigeria. Int. J. Mod. Bot. 3: 15-19, DOI: 10.5923/j.ijmmb.20130302.01.
[14] Flauzino Neto, W.P., Silvério, H.A., Dantas, N.O., Pasquini, D. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-soy hulls. Ind. Crops Prod. 42: 480-488, DOI: 10.1016/j.indcrop.2012.06.041.
[15] Zhang, M., Zhang, C.J., Shrestha, S. 2005. Study on the preparation technology of superfine ground powder of Agrocybe chaxingu Huang. J. Food Eng. 67: 333-337, DOI: 10.1016/j.jfoodeng.2004.04.036.
[16] Lu, H., Gui, Y., Zheng, L., Liu, X. 2013. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res. Int. 50(1): 121-128, DOI: 10.1016/j.foodres.2012.10.013.
[17] Pandey, K.K., Pitman, A.J. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodet. Biodeg. 52(3): 151-160, DOI: 10.1016/S0964-8305(03)00520-0.
[18] Lu, P., Hsieh, Y.L. 2010. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydr. Polym. 82(2): 329-336, DOI: 10.1016/j.carbpol.2010.04.073.
[19] Lecumberri, E., Mateos, R., Izquierdo-Pulido, M., Rupérez, P., Goya, L., Bravo, L. 2007. Dietary fibre composition, antioxidant capacity and physicochemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chem. 104: 948-954, DOI: 10.1016/j.foodchem.2006.12.054.
[20] Chauhan, G.S., Bhatt, S.S., Kaur, I., Singh, A.S., Kaith, B.S. 1999. Modification of natural polymers: graft copolymers of methyl methacrylate onto ray-

Makara J. Sci. September 2018 | Vol. 22 | No. 3
on fibre initiated by ceric ions - A study in the swelling and thermal properties. J. Polym. Mat. 16: 245-252.

[21] Chauhan, G.S., Bhatt, S.S., Kaur, I., Kaith, B.S., Singha, A.S. 2000. Evaluation of optimum grafting parameters and the effect of ceric ion initiated grafting of methyl methacrylate onto jute fibre on the kinetics of thermal degradation and swelling behavior. Polym. Degr. Stabil. 69(3): 261-265, DOI: 10.1016/S0141-3910(00)00063-X.

[22] Sharma, R.K. 2012. A study in thermal properties of graft copolymers of cellulose and methacrylates. Adv. Appl. Sci. Res. 3(6): 3961-3969, ISSN: 0976-8610.

[23] Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.M., Ham-Pichavant, F., Cansell, F., Aymonier, C. 2011. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biom. Bioener. 35(1): 298-307, DOI: 10.1016/j.biombioe.2010.08.067.

[24] Babiker, M.E., Aziz, A.R.A., Heikal, M., Yusup, S., Abakar, M. 2013. Pyrolysis characteristics of phoenix dactylifera date palm seeds using thermogravimetric analysis (TGA). Int. J. Env. Sci. Dev. 4(5): 521-524, DOI: 10.7763/IJESD.2013.V4.406.

[25] Menon, L., Majumdar, S.D., Ravi, U. 2014. Mango (Mangifera indica L.) kernel flour as a potential ingredient in the development of composite flour Bread. Ind J Nat prod Res. 5(1):75-82.

[26] Daou, C., Zhang, H. 2011. Physico-chemical properties and antioxidant activities of dietary fiber derived from defatted rice bran. Adv. J. Food Sci. Technol. 3(5): 339-347, ISSN: 2042-4876.

[27] Islam, M.S., Ahmed, M.K., Raknuzzaman, M., Mamun, M.H., Islam, M.K. 2015. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 48: 282-291, DOI: 10.1016/j.ecolind.2014.08.016.

[28] Su, S., Xiao, R., Mi, X., Xu, X., Zhang, Z., Wu, J. 2013. Spatial determinants of hazardous chemicals in surface water of Qiantang river, China. Ecol. Indic. 24: 375-381, DOI: 10.1016/j.ecolind.2012.07.015.

[29] Jiang, M., Jin, X., Lu, X., Chen, Z. 2010. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 252(1-3): 33-39, DOI: 10.1016/j.desal.2009.11.005.

[30] Futalan, C.M., Tsai, W., Lin, S., Dalida, M.L., Wan, M. 2012. Copper, nickel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in a ternary system. Sustain. Environ. Res. 22(6): 345-355.

[31] Putra, W.P., Kamari, A., Yusoff, S.N.M., Ishak, C.F., Mohamed, A., Hashim, N., Md Isa, I. 2014. Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. J. Encapsulation Adsorpt. Sci. 4(1): 25-35, DOI: 10.4236/jeas.2014.41004.