This paper describes the development of a specialized lexical resource for a specialized domain, namely medicine. We highlight the specificities that such a lexicon should take into account, and we show that general resources lack a large part of the words needed to process specialized language. We describe an experiment to feed semi-automatically a medical lexicon and populate it with inflectional information, which increased its coverage from 14.1% to 25.7%.

1. Introduction

Processing specialized languages requires specialized resources. Therefore, in domains such as medicine, specialized lexicons are necessary to achieve typical Natural Language Processing (NLP) tasks, from POS-tagging to controlled indexing (Aronson, 2001) and information extraction (Rindflesch et al., 2005). In English, the UMLS Specialist Lexicon (McCray et al., 1994) is a large syntactic lexicon of biomedical and general English which gathers 490,558 base forms and 683,124 word forms. A “German Specialist Lexicon” (Weske-Heck et al., 2002) was prepared to cover the words present in the German version of the International Classification of Diseases. For the French language, the “Unified Medical Lexicon for French” (UMLF) (Zweigenbaum et al., 2005) aims at being a reference resource for NLP in the medical domain.

The InterSTIS project[1] develops a terminology server whose goal is to provide access to the major French-language medical terminologies, together with controlled indexing methods. To let these methods take advantage of lexical information, a sub-goal of the project is to obtain a suitable coverage of the UMLF lexicon[2]. This raises issues of how to determine the desired coverage and which lexical information is useful in this context. These are key issues, since they will set the target for evaluating progress and results, and they may influence the kinds of methods which will be needed. Actual needs must then be assessed with respect to the coverage of existing lexicons. Methods must finally be found to increase coverage toward the target objective.

1This work was partially funded by project InterSTIS (ANR-07-TECSAN-010).
2More details on the general approach and on the desired targeted information are provided in a paper currently under submission to Euralex2010.

2. Extending a specialized lexicon

2.1. Coverage and contents

2.1.1. How to determine coverage

A specialized lexicon for medical sub-language should typically be able to recognize (i.e. to analyze) all the terms of the domain. In such a domain, terms are usually made of lexical units that are not always part of the general language. Two kinds of sources can be used to determine the desired coverage of the lexicon: a corpus or a terminology, both being representative of the sub-language of interest. Project InterSTIS is focused on medical terminologies and on their use in controlled indexing of textual documents. Therefore, a set of terms of all French-language medical terminologies (thesauri, classifications, nomenclatures) is the core of our target. We thus compiled the list of terms (henceforth, the Term-Union) contained in the major French-language terminologies of interest to InterSTIS: MeSH, SNOMED v3.5, ICD-10, MedDRA, etc.

The Term-Union contains 311,518 distinct terms linked to 203,300 unique concepts. Each term is linked to a conceptual representation; a single concept can be expressed by more than one term. All the experiments described in this paper are based on this extended list of terms.

2.1.2. Target lexical information

When lexical resources are built for a specific purpose, it is important to have a clear idea of the kind of information (or lexical knowledge) that will be useful for the targeted task. A full lexical entry may include detailed information at each of the traditional levels of linguistics description: phonology, morphology, syntax, semantics, etc. But the needs of the target applications should be taken into account to determine which subset is really needed.

A study of the Term-Union highlights interesting characteristics. First, terms of medical language are frequently made of more than one lexeme (e.g. trouble congénital de la segmentation). Second, as previously mentioned, for one single conceptual meaning, it is frequent to have more than one term (or terminological variants). These variants can be of many kinds. A large proportion of medical NLP works target the recognition of these terms and their variants in indexing or information retrieval applications (Aronson, 2001). Three main variants are primarily addressed in this projects and are presented below. Others, such as semantic variation, will be considered later.
a. Graphemic variations
Spelling of highly specialised terms is sometimes flexible. *équilibre acido-basique* and its graphemic variant *acidobasique* [EN: acid-base balance] are found under the same ID in the French MeSH Thesaurus [INS, 2009]. In the Term-Union, 1,593 word-forms are recorded with and without a hyphen, and many other graphemic variations are observed, such as capitalisation. Term capitalisation can sometimes be meaningful, as in the name of animal species, but sometimes it is only a graphical convention of a particular terminological resource. The lexicon has to be able to address these variants, i.e. to recognise any graphemic variants of the same lexeme, whenever it is meaningful.

b. Inflectional variations
Inflectional knowledge is important to assign each lexical item categorical and morphosyntactic information, together with its lemma. Both plural and singular forms of the same term can be found in Term-Union, like in *adaptation de l’œil* and its variants *adaptation des yeux* [EN: eye adaptation]. This variation is also very frequent in corpus, and the lexicon has to be able to provide relevant information to recognise the plural form of a term recorded in singular form.

c. Derivational variations
Derivational knowledge is particularly useful in medical terminology, because one term can have many “morphosematic” variants, as in *intoxication à l’alcool* which recorded with the same CUI in Term-Union as *intoxication alcoolique* [EN: alcohol intoxication]. Automatically linking *alcoolique* and *alcool* [EN: alcoholic and alcohol] through morphological analysis is an important asset that can also be implemented in the lexicon.

To be able to process all these variants, the specialized lexicon should contain relevant information. The section below presents the organisation of the various lexical resources that are currently under construction.

2.1.3. Organization of the specialized lexicon
Following what was done for similar lexicons in other languages (cf. section 1), all this information is represented in specific relational tables that can be easily gathered in a database or compiled into a structured data file following appropriate guidelines. We present here the three types of relational tables that are targeted to cover the necessary descriptions at three different levels described above.

1. graphemic variation: since the spelling of highly specialized terms is sometimes flexible, the different spellings of a lexeme should be listed, and linked with the variant that is considered to be the ‘reference’ (i.e. for any hyphenated word also found without a hyphen, a specific resource should contain the two forms (e.g., laryngo-pharyngeal/laryngopharynge).

2. inflection: inflectional knowledge is important to assign to each lexical item categorical and morphosyntactic information together with the lemma, in order to recognized inflected forms of a term. Consequently, a full inflectional lexicon should provide necessary information for the full paradigm as in:

French	English
sérofibrineux	serofibrinous
sérofibrineux	serofibrinous
sérofibrineux	serofibrinous
sérofibrineux	serofibrinous

3. derivation: relational tables for derivation provide morphological information for constructed words. Each table represents a specific morphological link between a derived lexeme of a particular category and its base lexeme. For example, a relational table (shown below) provides information for relational adjectives and their base nouns.

French	English
abdominallabdomen	abdomen-labdomen
aplasialaplasie	aplasia
appendiculairesappendicule	appendiculare-appendicule
arachnéphobiarachnéphobie	arachnophobia
arachnoidiararachnoidé	arachnoid
argentiquelargent	argentique

All this information can be represented in a standard framework such as the Lexical Markup Framework (Francopoulo et al., 2009).

2.2. Coverage of the initial state of the UMLF lexicon
A first version of the UMLF was produced at the first stage of the UMLF project by gathering lexical entries from lexicons of the project partners, with a focus on the lexical database compiled at the Geneva University Hospital (Baud et al., 1998). This lexicon contained 17,192 lexical units (5,353 adjectives and 11,799 nouns), together with their complete inflectional paradigms (36,211 word forms). To evaluate its coverage, i.e. its lexical completeness, we confronted it with the Term-union. The confrontation was performed on single words after case folding.

2.3. Obtaining entries from general lexicons
In any specialized language, some of the terms may be composed of lexical units that are common to the general lexicon. Although these lexical units might have a special linguistic behavior, their morphosyntactic characteristics are generally identical in both specialized and general languages. Consequently, the first obvious step is to obtain inflectional knowledge from a general lexicon. To perform this task, we used the general, large-coverage French lexicon Morphalou http://www.cnrtl.fr/lexiques/morphalou which contains 67,376 lemmas and 524,725 word forms. |
2.4. Learning morphosyntactic information from existing lexicons

To minimize human work to acquire inflectional knowledge for the remaining word-forms, we tested automatic methods. The task we want to perform is three-fold: for any unknown word-form, the objective is (i) to get its morphosyntactic information (i.e., the POS and the gender and number information) (ii) to obtain its lemma and (iii) to complete its full inflectional paradigm (e.g., an adjective has to be recorded with its 4 forms (masculine-singular, feminine-singular, masculine-plural, feminine-plural).

2.4.1. Guessing the tag

To achieve the first objective, we used the algorithm of Tanguy and Hathout, 2007, p. 295) to acquire the full tag of a word form (POS + gender and number info) in a reference lexicon, and then to guess the possible tag(s) of each unknown word. The learning phase of program is based on the ending (from the longest to the smallest) of the different entries of the reference lexicon. For each final characters string, the program calculates the most frequent tag. For the longest finale character string (8 or more), all the possible tags are recorded. Otherwise, only the most frequent tag is kept (except if the POS guessed is an adjective - adjective being fully inflected in French).

To enhance the quality of the output, two different reference lexicons were used. The first one is the general lexicon Morphalou (c.f. section 2.3 above) and the second one is the UMLF itself (in its initial version). The learning program is run on the two lexicons, and only the lexical units that have been guessed the same way are kept.

2.4.2. Acquisition of the full paradigm

Once the full tags have been guessed, the next step is to acquire the complete paradigm (i.e., the four forms and the lemma). Based on a pattern model (as shown in Table 1) the algorithm tries to cluster together word-forms of the same pattern. If one of the members of the paradigm is missing, it tries to generate it, based on the pattern model. When one of the members of the pair is the canonical form (masculine singular for adjectives and singular for nouns), the lemma can be automatically generated. Otherwise, it can be inferred by means of the pattern, but this later case requires human evaluation.

3. Results

3.1. Initial coverage and acquisition from a general lexicon

81,595 out of the 94,964 distinct word forms in the Term-Union were not found in the initial version of the UMLF. These 81,595 word-forms were further processed as described above to add entries to the UMLF. As shown in Table 2, 6,617 out of the 81,595 remaining word forms were known from Morphalou. These forms were consequently added to the UMLF, together with the rest of their inflectional paradigms.

Interestingly, the 74,978 forms that remain unknown from Morphalou are specific to the medical domain. They represent 79% of the number of lexical units within the Term-Union, which shows the specificity of the vocabulary in the terminologies included in Term-Union.

3.2. Acquisition and consensus guessing

Among the 74,978 unknown forms, 34,612 received one or more tags from the guessing based on Morphalou, and 30,579 from the guessing based on UMLF. But since the guessing program allows more than one tag, there are actually 44,515 analyses provided by the Morphalou-based program, and 35,438 analyses provided by the UMLF-based program. Amongst all these possible tagged lexical units, 30,137 were analyzed the same way with the two reference lexicons. This consensus guessing ensures an interesting validation of the output.

We evaluated a sample of 1,000 entries, and found that only 82 were wrongly labelled (8.2%; see Table 3). An error analysis shows that only 12 were “real” labelling errors (e.g., “accidentellement”, an adverb, was labeled as a noun—since there is no adverb in the two reference lexicons—or “kascher” labeled as a noun instead of an adjective). Proper names are the main source of mistakes since their endings are not predictable. They represent 59.7% of the errors, and could be excluded easily in a preprocessing step (e.g., by using a special resource Bodenreider and Zweigenbaum, 2000). Other errors are Latin words, which should also be addressed in a preprocessing step by using dedicated resources. We can assume that 5Due to space restrictions, we postpone examples to the full version of the paper.

Table 1: Example adjective inflectional paradigms
m.s.
(.*)l
(.*)x

Table 2: Coverage: initial version and first extension of the lexicon
lexicon

Term-Union
Initial UMLF
Morphalou

Table 3: Evaluation of a sample of 1000 guessed entries and classification of errors
Error Type

Correct
Errors
Wrong label
Proper names
Latin words
English words
Spelling/segmentation
Other
with appropriate preprocessing to exclude lexical units that are resistant to “ending guessing”, the process is efficient enough.

3.3. Acquisition of the full paradigm

Out of the 30,137 word forms, the algorithm captured 4,453 paradigms (incomplete or not), grouping 9,352 word-forms. 3,308 paradigms were found for adjectives (Table 4). Table 4 provides detailed information about the captured adjectival paradigms—with 2, 3 or 4 members—and the number of forms they contain) and 514 complete paradigms were found for nouns. Moreover, 621 adjectival paradigms were found with 2 or 3 members, but without the canonical forms (i.e. masculine singular). For now, only the adjectival paradigms which contained a canonical form were automatically extended. In total, we automatically completed 3,212 adjectival paradigms (12,848 word-forms).

3.4. Improvement of the coverage of the lexicon

After this extension, 17,828 forms from the Morphalou lexicon were added to UMLF, and 8,088 from the semi-automated acquisition explained above. In total, UMLF now contains 62,127 forms, together with their full inflectional paradigms. But this figure does not reflect the improvement of the coverage of the lexicon for the targeted domain. To compute this improvement, a comparison was performed at each step with the reference word-forms from the Term-Union. As shown in Table 5, coverage improvement with the simple method of acquisition is very encouraging.

Table 5: Summary extensions to the UMLF lexicon. Coverage is measured as a percentage of the 94,964 forms in Term-union

Source	Forms added	Still unknown in Term-union	Coverage
UMLF-v1	36,211	81,595	14,1%
Morphalou	17,828	74,978	21,0%
Acquisition	8,088	70,602	25,7%

4. Discussion and Conclusion

In this article, we presented the state of development of a specialized French lexicon for the medical domain, and we described the needed specific information. Based on the fact that acquisition of specialized lexical knowledge requires appropriate data, we showed how a large terminological database coming from various sources can be a very useful resource to characterize the phenomena that need to be described and to focus the acquisition of inflectional information. The important amount of data helped to get enough examples of inflected items, which allowed us to acquire quickly some of the needed information to feed the lexicon. We are currently investigating other machine-learning techniques (such as Conditional Random Field), to learn from the data found in Term-Union and to improve the coverage of the lexicon.

5. References

Alan R. Aronson. 2001. Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program. *Journal of the American Medical Informatics Association*, 8(suppl):17–21.

Robert H. Baud, Christian Lovis, Anne-Marie Rassinoux, Pierre-André Michel, and Jean-Raoul Scherrer. 1998. Automatic extraction of linguistic knowledge from an international classification. In Branko Cesnik, Charles Safran, and Patrice Degoulet, editors, *Proceedings of the 9th World Congress on Medical Informatics*, pages 581–585, Seoul.

Olivier Bodenreider and Pierre Zweigenbaum. 2000. Stratégies d’identification de noms propres à partir de nomenclatures médicales parallèles. *Traitement automa- tique des langues*, 41(3):727–757.

Gil Francopoulo, Nuria Bel, Monte George, Nicoletta Calzolari, Monica Monachini, Mandy Pet, and Claudia Sorria. 2009. Multilingual resources for NLP in the lexical markup framework (LMF). *Language Resources and Evaluation*, 43(1):57–70, March.

Institut National de la Santé et de la Recherche Médicale, Paris. 2009. *Thésaurus Biomédical Français/Anglais*. Alexis T. McCray, S. Srinivasan, and A. C. Browne. 1994. Lexical methods for managing variation in biomedical terminologies. In *Proceedings of the 18th Annual SCAMC*, pages 235–239, Washington. Mc Graw Hill.

Thomas C. Rindflesch, Marcelo Fiszman, and B. Libbus. 2005. Semantic interpretation for the biomedical literature. In H Chen, S Fuller, WR Hersh, and C Friedman, editors, *Medical informatics: Advances in knowledge management and data mining in biomedicine*, pages 399–422, Berlin / Heidelberg. Springer.

Ludovic Tanguy and Nabil Hathout. 2007. *Perl pour les linguistes*. Hermes-Sciences Lavoisier, Paris.

G. Weske-Heck, Albrecht Zaiß, M. Zabel, Stefan Schulz, Wolfgang Giere, M. Schopen, and Rudiger Klar. 2002. The German Specialist Lexicon. *Journal of the American Medical Informatics Association*, 8(suppl).

Pierre Zweigenbaum, Robert H. Baud, Anita Burgun, Fi- ammetta Namer, Éric Jarrousse, Natalia Grabar, Patrick Ruch, Franck Le Duff, Jean-François Forget, Magaly Douyère, and Stéfan Darmoni. 2005. A unified medical lexicon for French. *International Journal of Medical Informatics*, 74(2–4):119–124, March.