Oncogenes and Tumor-Suppressor Genes in Mesothelioma—A Synopsis

John F. Lechner,1 Johannes Tesfaigzi,1 and Brenda I. Gerwin2

1Lovelace Respiratory Research Institute, Albuquerque, New Mexico; 2Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland

Invariably mesothelioma is diagnosed late in the development of the disease when treatment is no longer effective. Therefore, a key to reducing the mortality rate of this neoplasm is knowledge of the general sequence of genetic events between initiation of mesothelial cells and the emergence of the metastatic tumor cells. Unfortunately, relatively little is known about the early changes in the genesis of this disease. Of the known changes, the most frequent are in the tumor-suppressor genes p16INK4a and NF2 and possibly the SV40 virus large T-antigen onc gene. The molecular nature of the changes in these genes as well as other alterations are discussed in this overview. — Environ Health Perspect 105(Suppl 5):1061–1067 (1997)

Key words: oncogenes, tumor-suppressor genes, PDGF, p16INK4a, SV40 T-antigen, NF2, mesothelioma, human, fibers, cancer

Delineating the genetic changes that produce a cell with uncontrolled and often unlimited growth potential is important to the understanding of carcinogenesis mechanisms. Knowledge of these molecular processes also enhances the design of early detection and therapeutic protocols. Unfortunately, relatively minimal information is available on cancers associated with fiber exposure. This overview summarizes these observations, with primary emphasis on the alterations that have been described in human mesotheliomas.

Molecular Pathways of Growth Control

Progression of eukaryotic cells through their cell cycle is regulated by the sequential formation, activation, and inactivation of a series of cyclin/cyclin-dependent kinase (CDK) complexes. In addition to positive regulation by the activation of cyclin/CDK complexes, negative regulation of the cell cycle occurs through cyclin-dependent kinase inhibitors (CKIs) to prevent premature entry into the next phase of the cycle before completion of necessary macromolecular reactions (1–3).

Cell replication begins at the restriction point (R; Figure 1), where growth and arrest signals from the extracellular environment are integrated to determine whether the cell divides or remains quiescent (1–3). For example, elevated expression of platelet-derived growth factor (PDGF), which is a hallmark of mesothelioma, can elevate the concentration of c-myc in the nucleus. c-myc then induces the expression of cyclin Ds, and the balance between cyclin D/CDK4 and its CKI is tipped toward more rapid cell division (3). Owing to a growth-positive balance of these factors that has developed, the cell is committed to traverse the cell cycle.

In the first phase (G1), different species of cyclin D (D1, D2, D3) are expressed and form complexes with CDK4 and CDK6 (1,2,4). The activated cyclin/CDK complexes phosphorylate the retinoblastoma (RB) gene product and its related proteins (p107, p130). When these proteins are hypophosphorylated, they are complexes with transcription factors, e.g., E2F; hyperphosphorylation of the RB protein releases these transcription factors (1,2,4–6), which then stimulate the transcription of mRNAs that encode proteins required for the cell to progress further through the cell cycle (1,2,4,5). The next complex, cyclin E/CDK2, further phosphorylates RB family proteins, and the cell begins to synthesize DNA. Once the cell enters S phase, i.e., begins to synthesize DNA, a complex between cyclin A and CDK2 kinase forms. This complex, whose role is unclear, is degraded as the cell enters the G2 phase. Finally, the cyclin B/CDK2 complex phosphorylates proteins involved in chromosome condensation and the progression of the cell through mitosis, e.g., H1 histone, nuclear lamin, nucleolin, and intermediate filaments (1,2).

Two checkpoints in the cell cycle provide the cell with opportunities to govern its rate of cycling. The first, which is at the G1/S border, employs proteins denoted as CKIs. Currently, two structurally defined classes are known. The first, exemplified by p16INK4a and p15INK4b and including p19 and p18, primarily regulates CDK4 and CDK6 (7,8) by binding to the associated cyclins (9). The second family, characterized by p21CIP1 and including p27KIP1 and p57KIP2, regulates the activities of the CDK2 and CDK4/6 complexes (1,2,7). As will be discussed later, aberrations in the G1/S checkpoint function are associated with mesothelioma. Inhibitor proteins that prevent the activation of the cyclin B/CDK2 complex at the G2/M checkpoint also have been described (1,2), but no correlations between these proteins and fiber-caused carcinogenesis have been reported. However, because disruption of mitotic processes is a salient feature of cell–fiber interactions (10–14), examining mesothelioma cells for aberrations of the G2/M checkpoint genes may identify one or more that are highly correlated with mesothelioma.

Expression of CKI genes is stimulated by stress factors. For example, damaged DNA initiates events that cause the p53 gene product to accumulate within the cell nucleus (15,16). This protein induces the transcription of certain genes while inhibiting others. Two major regulatory proteins induced by the accumulation of p53 are the kinase inhibitor p21CIP1 and the protooncogene mdm2 (15). The ability of
This decrease of inhibitor falls (1). During the arrest period, the DNA damage is repaired. p53 also initiates transcription of the protooncogene mdm2, which then inactivates the p53 protein. This decrease in p53 activity leads to the fall in concentration of p21^{cip1} protein, and the cell resumes its progress through the cell cycle (17).

The cell cycle is permanently stopped by programmed cell death, e.g., apoptosis. Overabundance of the Bax protein promotes apoptosis; on the other hand, excess Bcl-2 protein can extend cell survival by preventing apoptosis. Excessive damage to DNA elevates the concentration of the p53 gene product, which transactivates expression of the Bax protein (18). This mechanism is responsible for apoptotic death of a potentially mutant cell. However, if p53 is dysfunctional or is inactivated by binding with excess mdm2 protein, Bax levels remain low and the mutated cell can survive. Alternatively, inappropriate expression of various growth factors or growth factor intermediates can cause overexpression of Bcl-2, which prevents programmed cell death (18), in part by inhibiting expression of p21^{cip1}. Consequently, mutated cells continue to replicate.

Tumor-Suppressor Genes in Mesotheliomas

Tumor-suppressor genes check and regulate cell division. In general, these genes can become aberrant by point mutation, partial deletion, inappropriate expression, epigenetic silencing, gene amplification, gene rearrangement, complete gene loss, or combinations of these mechanisms. All could be involved in the genesis of a mesothelioma from exposure to asbestos. However, a hallmark of human (10–14, 20–34) and rodent (35–37) mesotheliomas is the large number of their nonrandom cytogenetic alterations. For human tumors, these include monosomy or partial monosomy of chromosomes 1, 3, 4, 6, 9, 14, 15, 18, 19, and 22, and trisomies and polysomies of chromosomes 1, 5, 7, 11, 12, and 20. This array of nonrandom chromosome deletions in human mesotheliomas suggests that many tumor-suppressor genes and oncogenes are probably involved in the genesis of the disease. The tumor-suppressor genes located at bands 1p21–22, 3p21, 6q15–21, and 22q will be identified eventually because these cytogenetic regions are involved in the genesis of other human cancers (21, 26, 28, 30–34, 38). However, current information confirms the involvement of only the following five tumor suppressor genes, i.e., p16^{INK4a}, p15^{INK4b}, p53, NF2, and WT1.

Cytogenetic analyses have shown that chromosome bands 9p13 to p22 are deleted in 50% of mesotheliomas. Two known tumor suppressors have been mapped to this region: the CDK4,6 inhibitors p16^{INK4a} and p15^{INK4b} (39). Cheng et al. (40) showed that 85% of the mesothelial cell lines they investigated had a homozygous deletion of p16^{INK4a}. However, only 22% of the primary tumors showed this deletion. In contrast, Xiao and co-workers (39) reported that both of these genes were deleted in more than 70% of primary mesotheliomas. A similar loss of p16^{INK4a} was recently reported by Kratzke et al. (41).

In addition, these authors showed that when p16^{INK4a} was transfected into mesothelioma cell lines, their growth rates were inhibited 5- to 10-fold. In parallel, Spillare et al. (42) showed a 50% inhibition of colony-forming efficiency when p16^{INK4a} was transfected into cultured mesothelioma cells. Several primary mesotheliomas exhibit cell heterogeneity for expression of p16^{INK4a} and p15^{INK4b}, implying that the loss of these genes was a late event (41). On the other hand, a primary consequence of asbestos exposure is extensive chromosomal alterations (11,24). Thus, it is also possible that these genes were deleted as a direct result of a fiber interacting with chromatin or spindle proteins (43). In human lung tumor cells, loss of p16^{INK4a} is inversely related to retaining the Rb tumor-suppressor gene, and vice versa (41). Mesotheliomas follow this rule as well; three studies have shown that Rb is not deleted in these tumors (44–46).

The p53 tumor-suppressor gene, which resides in band p13 of chromosome 17, shows the most frequent rate of genetic alteration in human cancers, especially of the lung (15). In support of this statement, Cote et al. (47) found that three of four mesothelioma cell lines exhibited an abnormal p53 gene. Specifically, two had point mutations, and the third did not transcribe p53 mRNA. One of the cell lines with a point mutation, as well as the nontranscribing line, also showed loss of heterozygosity for 17p. However, Metcalf et al. (48) analyzed 20 mesothelioma cell lines and found that only 2 had point mutations, and 1 failed to transcribe p53. These latter data are in accord with the fact that mesotheliomas with deletions of chromosome 17p have been reported only occasionally (22,24). These data on human mesothelioma contrast with murine data where frequent (76%) rearrangement of the gene was found and p53 mRNA expression was frequently reduced or absent (49).

p53 overexpression in the nucleus often reflects abnormal p53 function (15). Metcalf et al. (48) reported that three of the lines without mutations exhibited strong staining of p53 protein, while most of the others showed some positive cells. Further, Mayall et al. (50), Kafiri et al. (51), and Segers et al. (52) reported strong immunostaining of p53 protein in tumor sections. As noted by Metcalf et al. (48), p53 expression without gene mutation suggests upregulation of p53 because of overexpression of c-myc, or perhaps the stabilization of the protein because of complexing with an
oncogene. The latter mechanism is supported by Segers et al. (52); 60% of the p53 immunopositive but nonmutated tumors they evaluated also overexpressed the p53-inactivating oncogene mdm2. However, Ungar et al. (53) recently reported that mdm2 was not overexpressed in the 17 mesothelioma cell lines they analyzed.

A second p53-inactivating mechanism could be the expression of the T-antigen (T-ag) of the SV40 virus. In cells that have been infected, the p53 protein apparently is overexpressed because it is complexed with large T-ag. This virus causes mesotheliomas when injected into the pleural space of hamsters (54). Further, Carbone et al. (55) recovered fragments of SV40-like DNA sequences from 60% of the mesotheliomas they examined by polymerase chain reaction (PCR). In addition, 79% of the tumors exhibited SV40 T-ag when assessed using immunohistochemistry, and there was a high correlation between T-ag immunoreactivity and the presence of SV40 sequences. Subsequently, Cristaudo et al. (56) found the same SV40-like DNA sequences in 72% of the mesotheliomas they investigated. In contrast, Metcalf et al. (48) found no evidence of SV40 T-ag in any of the 20 mesothelioma cell lines they investigated using immunohistochemistry. Further conflicting information, however, is in the recent report by Galateau-Salle et al. (57). These authors showed that SV40-like sequences are found not only in some mesotheliomas but also in pleural plaques, lung tumors, parenchyma distal to the tumors, and in parenchyma of individuals without cancer.

The Nf2 autosomal dominant tumor-suppressor gene resides on chromosome 22 (58). As noted above, this chromosome frequently is abnormal in mesotheliomas (24). Consequently, this gene has been evaluated in several cell lines. The results show that frameshift and nonsense mutations, and deletions of small portions of the Nf2 gene were often present in cell lines (58,59). These alterations also have been found frequently in primary mesotheliomas (59), but they are rare in human lung carcinomas (59). Nf2 codes for a protein called merlin, which may play a role in cell surface dynamics and structure by linking the cytoskeleton to the plasma membrane (58). Asbestos fibers are known to be more efficient in deforming the cytoskeleton in mesothelial cells than in airway epithelial cells (70). Thus, loss of stabilizing function supplied by a normal Nf2 gene product may be involved in the mechanism of fiber-caused transformation of the mesothelial cell.

A small percentage of mesotheliomas exhibit a cytogenic aberration—an interstitial deletion of bands 11p11 to 11p13 (24), where the transcription factor tumor suppressor gene WT1 resides (60). For example, Park et al. (61) reported a homozygous mutation of this gene in a peritoneal mesothelioma. Normal mesothelial tissue of both humans and rats abundantly expresses this gene (60–63). Amin et al. (62) found that WT1 mRNA was undetectable in 3 of 19 mesothelioma cell lines and in 3 of 8 mesothelioma tumors. In contrast, Walker et al. (63) reported that the WT1 was ubiquitously expressed by the human and rat mesothelioma cell lines they studied, although there was a relatively lower expression of the gene in the lines that gave rise to sarcomatous tumors in nude mice. This latter relationship could not be confirmed by Langerak et al. (60). It is possible, however, that an aberration in WT1 expression could stabilize and sequester p53 protein (64), thereby explaining the frequent immunohistochemical detection of p53 in mesotheliomas.

Oncogenes in Mesotheliomas

Protooncogenes are genes that promote cell division, and alterations in protooncogenes may contribute to uncontrolled cell growth. As noted above, nonrandom rearrangements and polynucleosomes of chromosomes 1, 7, and 22 are also hallmark, in human mesotheliomas. These structural aberrations can generate growth-promoting oncoproteins by rearrangements and amplification. Using Southern blot analyses, Tiainen et al. (65) examined 23 mesotheliomas and found no rearrangement and amplifications of several oncogenes located on these chromosomes, i.e., N-ras, epidermal growth factor receptor (EGFR), Met, and PDGF-B chain. Further, Kishimoto (66) could find no immunohistochemical evidence of overexpression of EGFR. On the other hand, Ramael et al. (67) detected amplifications or rearrangements of EGFR in all three of the mesotheliomas they examined using a more sensitive PCR assay. Thus, reevaluation of the known oncogenes on chromosomes 1, 7, and 22 using PCR approaches may reveal additional loci that are frequently rearranged or amplified in mesotheliomas.

Metcalf et al. (48) found no activating mutations of the K-ras oncogene in the 20 mesothelioma cell lines they examined. Further, Lee et al. (68) reported that overexpression of ras protein is a rare event for mesotheliomas. More recently, however, Kishimoto (66) did find frequent immunostaining of N-ras, and Ramael et al. (69) found that more than 50% of the cells within 78% of the mesotheliomas they evaluated had immunoreactivity to N-ras antibody. Notably, N-ras is located on chromosome 1 which is often polyomasic in mesotheliomas. Finally, sustained expressions of c-jun and c-fos is induced by fibers (70), and c-myc, along with c-neu were found to be overexpressed in the majority of the mesotheliomas of Japanese patients (66).

Many exogenous peptides increase the growth rate of mesothelial cells (71–74), and mesothelioma cells produce several growth factors and cytokines (71,75–79). Oncogenes often cause inappropriate expression of growth factors and/or their receptors. As a consequence, normal growth control mechanisms are abrogated. Oncogenes causing the production of growth factors that simulate autoreplication are referred to as autocrine (80). Autocrine activity, shown not to be PDGF, TGF-β, or EGF, has been detected in the conditioned medium of a mesothelioma cell line; however, the actual factor has not been identified (81). Nonetheless, repeatedly observed alterations in the expression of PDGF proteins and the associated PDGF receptors by mesotheliomas have suggested that this ligand and receptor produce an autocrine loop in many mesotheliomas (77,82). Several laboratories have examined this possibility, with somewhat conflicting and puzzling results.

PDGF-A protein and PDGF-B protein chains dimerize to form three species of PDGF that are each mitogenic for mesothelioma cells. One is A-chain homodimers and one is B-chain homodimers; the third is an A/B-chain heterodimer. The PDGF-A and PDGF-B chains are coded by separate genes, as are the two receptor proteins, α and β (83). The A/B-chain heterodimer and the B-chain homodimer are recognized by the β receptor. All three forms of PDGF bind the α receptor, although with differing affinities. Therefore, alterations in any of four different genes could affect growth of mesothelial cells. Normal mesothelial cells express the α and β receptors (82–89). Mesotheliomas often overproduce PDGF A-chain and B-chain proteins and low levels, if any, of the β receptor. Therefore, the PDGF-B-chain protein produced by the mesotheliomas may serve as an autocrine for continuous
replication of the tumor cells (82,85,89). However, mesothelioma cells also express the PDGF-A-chain growth factor, and the α receptor has been detected using RNase protection assays and recently by run-off analyses (83). In addition, transfection experiments with the immortal but nontumorigenic human mesothelial cell MeT-5A have shown that overexpression of the PDGF-A chain will transform these cells to the tumorigenic phenotype (90,91). Further, it has been shown using antisense oligonucleotides that the PDGF-A chain, but not the PDGF-B chain, will inhibit the growth of mesothelioma cell lines but not the MeT-5A cells (84). Thus, even though the PDGF growth factors and their receptors are differentially expressed in human mesothelioma cells compared to their normal cell counterparts, the role of these changes in the transformation of mesothelial cells is unclear. Parenthetically, rat mesotheliomas do not produce any form of PDGF, which suggests that fiber exposures can produce dissimilar results in different species (92,93).

The other growth factors and cytokines that are produced by at least some human mesothelioma cells include TGF-α, TGF-β1, TGF-β2, IGF-1, IL-1α, IL-1β, G-CSF, GM-CSF, M-CSF, IL-8, MCP-1, LIF, TNF-α, IL-6, and IL-8 (71,75,78). Both normal mesothelial cells and mesotheliomas produce IGF-1 and express the receptor for this growth factor (94). Further, a hamster mesothelioma cell line that was transfected with an IGF-1 receptor antisense plasmid exhibited both decreased growth in vitro and tumorigenicity (95). These observations suggest that IGF-1 may function as an autocrine for both the normal and transformed cells. Peritoneal mesothelial cells secrete detectable amounts of IL-1 and express the IL-1 receptor. However, an in vivo role for IL-1 as an autocrine for these cells is unclear because exogenously added IL-1 is required for long-term growth of the cells in culture (79). IL-6 has been shown to be an autocrine for normal human mesothelial cells (76,80); it remains to be determined if IL-6 is an autocrine factor for mesotheliomas, as well. IL-8, on the other hand, is only produced by mesothelioma cells (75); it is not known whether the receptor for this factor resides on the surface of mesothelioma cells. However, because IL-8 is a major angiogenesis factor (75), it may play an important role in the growth of the mesothelioma tumor.

Figure 2. Possible steps in the genesis of a mesothelioma.

Conclusions

Although information is minimal on the molecular changes that produce fiber-associated malignant mesotheliomas, the available data do show that point mutations, partial deletions, inappropriate expression, gene rearrangement and complete gene loss, and possibly epigenetic silencing and gene amplification probably are all involved. Many of these aberrations occur in the genes regulating the initiation of cell division, checking cell division rate, maintaining the cytoskeleton, regulating transcription, and inducing angiogenesis. It is also known that these aberrations are attributed to carcinogens other than asbestos fibers. Thus, the molecular biology underlying the genesis of these tumors is not significantly different from other neoplasms attributed to nonfibrous carcinogens; only the actual battery of genetic alterations seems to differ. The observations of Meloni et al. (33) and Knuttila et al. (24) along with the recent report from Hansteen et al. (23) do, however, permit a hypothesized ordering of genetic changes in the genesis of human mesothelioma (Figure 2). Their models disagree, but in general, they propose that losses of chromosomes 6q, 1p, and 22q may be among the earliest events. Other areas of data inconsistency include the specific form of PDGF and PDGF receptor, the status of p53 and WTI, and the possible role of SV40 viral infection. Plausible reasons for these discrepancies include inherent species differences, dissimilar routes of fiber exposure, and the creation of new alterations that manifested themselves during the development of cell lines. Some discrepancies might be resolved by the exchange of tumor specimens and cell lines as well as protocols and reagents.

Mesothelioma invariably is diagnosed late in the development of the disease when treatment is no longer effective (24). Therefore, a key to reducing the mortality rate of this disease is knowledge of the general sequence of genetic events that transpire between initiation of mesothelial cells and the emergence of the metastatic tumor cells. As with all tumor systems, but especially for mesothelioma, considerable work remains to be done to clarify which genetic changes are the most important in transformation of the normal cell. The ultimate resolution of these changes will permit the designing of anti-tumor treatment approaches that could reverse the effects of the altered genes. Future work will require confirmation of the proposed model (Figure 2), clarifying the role of the above discussed genetic changes, and elucidating the importance of as yet uninvestigated mechanisms, e.g., the induction of genomic instability (96,97), reduced DNA repair capacity (96), disruption of programmed cell death (98), and inherent susceptibility (99).

REFERENCES

1. Dorée M, Galas S. The cyclin-dependent protein kinases and the control of cell division. FASEB J 8:1114–1121 (1994).
2. Pines J. Cyclins, CDKs and cancer. Semin Cancer Biol 6:63–72 (1995).
3. Hunter T, Pines J. Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell 79:573–582 (1994).
1. Sánchez I, Dynlacht BD. Transcriptional control of the cell cycle. Curr Opin Cell Biol 8:318–324 (1996).

2. Whyte P. The retinoblastoma protein and its relatives. Semin Cancer Biol 6:83–90 (1995).

3. Adams DP, Kaelin WG Jr. Transcriptional control by E2F: Semin Cancer Biol 6:99–108 (1995).

4. Roberts JM, Koff A, Poljak E, Collins S, Ohrubu M, Massagué J. Cyclins, CDKs, and cyclin kinase inhibitors. In: The Molecular Genetics of Cancer. Vol 59. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994:31–38.

5. Hirai H, Roussel MF, Kato Y-J, Ashmun RA, Sherr CJ. Novel INK4 proteins, p19 and p16, are specific inhibitors of cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 15:2672–2681 (1995).

6. Hall M, Bates S, Peters G. Evidence of different modes of action of cyclin-dependent kinase inhibitors: p15 and p16 bind to kinases, p21 and p27 bind to cyclins. Oncogene 11:1581–1588 (1995).

7. Lechner JF, Tokiwa T, LaVeck M, Benedict WF, Banks-Schlegel S, Yeager H Jr, Banerjee A, Harris CC. Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad USA 82:3884–3888 (1985).

8. Jaarud M-C, Barrett JC. Neoplastic transformation of mesothelial cells. In: Lung Biology in Health and Disease. Vol 78: The Mesothelial Cell and Mesotheiloma (Jaarud MC, Peterson J, New York: Marcel Dekker, 1994:207–221).

9. Pelin K, Hirvonen A, Taavitsainen M, Linna-Ainmaa K. Cyrogentic response to asbestos fibers in cultured human primary mesothelial cells from 10 different donors. Mutat Res 334:225–233 (1995).

10. Olafsson K, Mark J. Specificity of asbestos-induced chromosomal alterations in short-term cultured human mesothelial cells. Cancer Genet Cytogenet 41:33–39 (1989).

11. Dopp E, Saedler, Stroper H, Weiss DG, Schifflmann D. Mitotic disturbances and micronuclear induction in Syrian hamster embryo fibroblast cells caused by asbestos fibers. Environ Health Perspect 103:268–271 (1995).

12. Harris CC. p53 tumor suppressor gene: From the basic research laboratory to the clinic—an abridged historical perspective. Carcinogenesis 17:1187–1198 (1996).

13. Enoch T, Norbury C. Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Soc 20:426–430 (1995).

14. Lane DP. p53: Guardian of the genome. Nature 353:15–16 (1992).

15. White E. Life, death and the pursuit of apoptosis. Genes Dev 10:1–15 (1996).

16. Upadhaya S, Li G, Liu H, Chen YQ, Sarkar FH, Kim H-RC. bel-2 suppresses expression of p21WAF1/CIP1 in breast epithelial cells. Cancer Res 55:4520–4524 (1995).

17. Cheng QJ, Jhanwar SC, Lu YY, Testa JR. Homozygous deletions within 9p21p22 identify a small critical region of chromosomal loss in human malignant mesotheliomas. Cancer Res 53:4761–4763 (1993).

18. Flejter WL, Li FP, Antman H, Testa JR. Recurring loss involving chromosomes 1, 3, and 22 in malignant mesotheloma: possible targets of tumor. Genes Chromosomes Cancer 1:148–154 (1989).

19. Hagemeier A, Versnel MA, Van Drunen E, Moret M, Bouts MJ, van der Kwast TH, Hoogsteden HC. Cyrogentic analysis of malignant mesothelioma. Cancer Genet Cytogenet 47:1–28 (1990).

20. Hasselt I-L, Hilt B, Lien JT, Skaug V, Haugen A. Carotypic changes in the preclinical and subsequent stages of malignant mesothelioma: a case report. Cancer Genet Cytogenet 70:94–98 (1993).

21. Knutsen S, Mattson K, Tammilehto L. Chromosomal abnormalities in human malignant mesothelioma. In: Lung Biology in Health Disease. Vol 78: The Mesothelial Cell and Mesotheiloma (Jaarud MC, Bignon J, eds). New York: Marcel Dekker, 1994:245–252.
Workshop on Mechanisms in Fibre Carcinogenesis, 22-25 October 1990, Albuquerque, New Mexico (Brown RC, Hoskins JA Johnson NF, eds). NATO ASI Series. New York: Plenum, 1991:481-490.

44. Kraske RA, Oerttson GA, Lincol NE, Ewing S, Oie H, Geradts J, Kaye FJ. Immunohistochemical analysis of the p16INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. J Natl Cancer Inst 87:1870-1875 (1995).

45. Van der Meeran A, Seddon MB, Kispert J, Harris CC, Gerwin BI. Lack of expression of the retinoblastoma gene is not frequently involved in the genesis of human mesothelioma. Eur Respir Rev 3:177-179 (1993).

46. Remel M, Segers K, Van Marck E. Differential immunohistochemical staining for retinoblastoma protein with antibodies C15 and I98 in malignant mesothelioma. Pathol Pract Res 190:138-141 (1994).

47. Core RJ, Jhanwar SC, Novick S, Pellicer A. Genetic alterations of the p53 gene are a feature of malignant mesotheliomas. Cancer Res 51:5410-5416 (1991).

48. Metcalf RA, Welsh JA, Bennett WP, Seddon MB, Lehman TA, Pelin K, Linnaemaa K, Tammilehto L, Mattsson K, Gerwin BI, Harris CC. p53 and Kirsten-ras mutations in human mesothelioma cell lines. Cancer Res 52:2610-2615 (1992).

49. Core EM, Fleury-Feith A. Alterations in tumour suppressor gene, p53, in mouse mesothelium induced by crocidolite asbestos. Eur Respir Rev 3:148-150 (1993).

50. Mayall FG, Goddard H, Gibbs AR. p53 immunostaining in the distinction between benign and malignant mesothelial proliferations using formalin-fixed paraffin sections. J Pathol 168:377-381 (1992).

51. Kafrit G, Thomas DM, Shepherd NA, Krautz T, Lane DP, Hall PA. p53 expression is common in malignant mesotheliomas. Histopathology 21:331-334 (1992).

52. Segers K, Backhoven H, Singh SK, De Voecht J, Ramael M, Van Broeckhoven C, Van Marck E. Immunoreactivity for p53 and mdm2 and the detection of p53 mutations in human malignant mesothelioma. Virchows Arch 427:431-436 (1995).

53. Ungar S, Van de Meeran A, Tammilehto L, Linnainmaa K, Mattson K, Gerwin BI. High levels of MDM2 are not correlated with the presence of wild-type p53 in human malignant mesothelial cell lines. Br J Cancer 74:1534-1540 (1996).

54. Cicala C, Pompeetti F, Carbonio M. SV40 induces mesotheliomas in hamsters. Am J Pathol 142:1524-1534 (1993).

55. Carbone M, Pas HI, Riss L, Marinett RI, DiMuzio M, Mew DJY, Levine AS, Propicio AO. Semian virus 40-like sequences in human pleural mesothelioma. Oncogene 9:1781-1790 (1994).

56. Cristaudo A, Vivaldi A, Sansalles G, Guglielmi G, Ciancia E, Else R, Ottino F. Molecular biology studies of mesothelial tumor samples: preliminary data on H-ras, p21, and SV40. J Environ Pathol Toxicol Oncol 14:29-34 (1995).

57. Galateau-Salle F, Bidet P, Martel B, Letourneux M, Jaurand MC, Fleury-Feith J, Rousselot P, Freymuth F. Detection of sequence of virus SV40-like by PCR: estudi realise a partir de is liprelvements pleuro-plaumonaires mesothelomes malins, cancers bronchopulmonaires, et autres pathoses. Revue Francaise des Maladies respiratoires (in press).

58. Bianchi AB, Mitsuuna S-I, Cheng QJ, Klein WM, Jhanwar SC, Seizinger B, Kley N, Klein-Szanto AJP, Testa JR. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci USA 92:10854-10858 (1995).

59. Sekido Y, Past HI, Bader S, Mew DJY, Christman MF, Gazdar AF, Minna JD. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res 55:1227-1231 (1995).

60. Langerak AW, Williamson KA, Miyagawa K, Hagemeijer A, Veelken MA, van Snick H. Expression of the Wilms’ tumor gene (WT1) in human malignant mesothelioma cell lines and relationship to platelet-derived growth factor A and insulin-like growth factor 2 expression. Genes Chromosom Cancer 12:87-96 (1995).

61. Park S, Schalling M, Bernard A, Maheswaran S, Shipleym GC, Roberts D, Fletcher J, Shipman R, Reinwald J, Demetri G, Griffin J, Minden M, Houman DE, Haber DA. The Wilms’ tumor gene WT1 is expressed in murine mesodermin-derived tissues and mutated in a human mesothelioma. Nat Genet 4:415-420 (1993).

62. Amin KM, Litzky LA, Smythe WR, Mooney AM, Morris JM, Mews DJY, Past HI, Kari C, Rodeck U, Rauscher III FJ, Kaiser LR, Albelda SM. Wilms’ tumor susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. J Pathol 164:344 (1995).

63. Walker C, Rutten F, Yuan X, Past H, Mew DM, Everitt J. Wilms’ tumor suppressor gene expression in rat and human mesothelioma. Cancer Res 54:3101-3106 (1994).

64. Maheswaran S, Englert C, Bennett P, Heinrich G, Haber DA. The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev 9:2142-2156 (1995).

65. Triainen M, Kere J, Tammilehto L, Mattsson K, Knuuttila S. Abnormalities of chromosomes 7 and 22 in human malignant pleural mesothelioma: correlation between southern blot and cytogenetic analyses. Genes Chromosomes Cancer 4:176-182 (1992).

66. Kishimoto T. The distribution of various type of oncogene products in the tumor tissue of malignant mesothelioma. Nippon Kyobu Shikkan Gakkai Zasshi 29:1168-1173 (1991).

67. Ramael M, Stinissen P, Segers K, Van Broeckhoven C, Van Marck E. Structural and quantitative aberrations in the epidermal growth factor receptor (EGF-R) gene in human malignant mesothelioma of the pleura. Eur Respir Rev 3:161-162 (1993).

68. Lee I, Gould VE, Radoshevich JA, Thor A, Ma Y, Schjom L, Rosen ST. Immunohistochemical evaluation of ras oncogene expression in pulmonary and pleural neoplasms. Virchows Arch B 53:146-152 (1987).

69. Ramael M, Deblieker I, Eerdeken C, Lemmens G, Jacobs W, Van Marck E. Immunohistochemical staining of ras oncogene product in neoplastic and non-neoplastic mesothelial tissues: Immunoreactivity for N-ras and lack of immunohistochemical staining for Ha-ras and K-ras. J Pathol 169:421-424 (1993).

70. Janssen YMW, Heiznt NH, Marsh JP, Borm PJA, Mossman BT. Induction of c-fos and c-jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers. Am J Respir Cell Mol Biol 11:522-530 (1994).

71. Gerwin BI. Mesothelial carcinogenesis: possible avenues of growth factor promotion. In: Lung Biology in Health and Disease. Vol 78:The Mesothelial Cell and Mesothelioma (Jaurand MC, Bignon J, eds). New York:Marcel Dekker, 1994:223-243.

72. Lechner JF, LaVeck MA, Gerwin BI, Matsis EA. Differential responses to growth factors by normal human mesothelial cultures from individual donors. J Cell Physiol 139:295-300 (1989).

73. LaVeck MA, Somers ANA, Moore, LL, Gerwin BI, Lechner JF. Dissimilar peptide growth factors can induce normal human mesothelial cell multiplication. In Vitro 24:1077-1084 (1988).

74. Gabrielson EW, Gerwin BI, Harris CC, Roberts AB, Sporn, MB, Lechner JF. Stimulation of DNA synthesis in cultured primary human mesothelial cells by specific growth factors. FASEB J 2:2717-2722 (1988).

75. Antony VB, Hort JW, Goddewy SW, Holm K. Angiogenesis in mesothelomas: role of mesothelial cell derived IL-8. Chest 102:215-225 (1992).

76. Fujino S, Yokoyama A, Kohno N, Hiwada K. Interleukin 6 is an autocrine growth factor for normal human pleural mesothelial cells. Am J Respir Cell Mol Biol 14:508-515 (1996).

77. Gerwin BI, Lechner JF, Reddel RR, Roberts AB, Robins KC, Gabrielson EW, Harris CC. Comparison of properties of transforming growth factor beta and platelet-derived growth factor by normal human mesothelial cells and mesothelioma cell lines. Cancer Res 47:6180-6184 (1987).

78. Pas HI, Stevens EJ, Oie H, Tskos MG, Abati AD, Fetsch PA, Mew DJY, Pogrebniaik HW, Matthews WJ. Characteristics of
nine newly derived mesothelioma cell lines. Ann Thorac Surg 59:835–844 (1995).

79. Lanfrancone L, Boraschi D, Ghia P, Falini B, Grignani F, Peri G, Mantovani A, Pelicci PG. Human peritoneal mesothelial cells produce many cytokines (granulocyte colony-stimulating factor [CSF], granulocyte-monocyte-CSF, macrophage-CSF, interleukin-1 [IL-1], and IL-6) and are activated and stimulated to grow by IL-1. Blood 80:2835–2842 (1992).

80. Gerwin BI. Cytokine signaling in mesothelial cells: Receptor expression closes the autocrine loop. Am J Respir Cell Mol Biol 14:505–507 (1996).

81. Lauber B, Leuthold M, Schmitter D, Cano-Santos J, Waibel R, Stahel RA. An autocrine mitogenic activity produced by a pleural human mesothelioma cell line. Int J Cancer 50:943–950 (1992).

82. Versnel MA, Hagemeijer A, Bouts MJ, van der Kwast TH, Hoogsteden HC. Expression of c-sis (PDGF B-chain) and PDGF A-chain genes in ten human malignant mesothelioma cell lines derived from primary and metastatic tumors. Oncogene 2:601–605 (1988).

83. Garlepp MJ, Christmas TJ, Mutsaers SE, Manning LS, Davis MR, Robinson BW3. Platelet-derived growth factor as an autocrine factor in murine malignant mesothelioma. Eur Respir Rev 3:192–194 (1993).

84. Garlepp MJ, Leong CC. Biological and immunological aspects of malignant mesothelioma. Eur Respir J 8:643–650 (1995).

85. Versnel MA, Claesson-Welsh L, Hammersch A, Bouts MJ, van der Kwast TH, Eriksson A, Willemsen R, Weima SM, Hoogsteden HC, Hagemeijer A et al. Human malignant mesothelioma cell lines express PDGF b-receptors whereas cultured normal mesothelial cells express predominantly PDGF a-receptors. Oncogene 6:2005–2011 (1991).

86. Versnel MA, Langerak AW, van der Kwast TH, Hoogsteden HC, Hagemeijer A. Expression of PDGF chains and PDGF receptors in human malignant and normal mesothelial cell lines. Eur Respir Rev 3:186–188 (1993).

87. Langerak AW, Dirks RPH, Versnel MA. Splicing of the platelet-derived growth-factor A-chain mRNA in human malignant mesothelioma cell lines and regulation of its expression. Eur J Biochem 208:589–596 (1992).

88. Langerak AW, van der Linden-van Beurden CAJ, Versnel MA. Regulation of differential expression of platelet-derived growth factor a- and b-receptor mRNA in normal and malignant human mesothelial cell lines. Biochim Biophys Acta 1305:63–70 (1996).

89. Langerak AW, Vietsch H, Bouts MJ, Hagemeijer A, Versnel MA. A spontaneously in vitro transformed mesothelial cell line has a similar pattern of PDGF chain and PDGF receptor expression to malignant mesothelioma cell lines. Eur Respir Rev 3:170–174 (1993).

90. Van der Meer A, Seddon MB, Betscholz CA, Lechner JF, Gerwin BI. Tumorigenic conversion of human mesothelial cells as a consequence of platelet-derived growth factor-A chain overexpression. Am J Respir Cell Mol Biol 8:214–221 (1993).

91. Van der Meer A, Seddon MB, Betscholz CA, Lechner JF, Gerwin BI. Platelet-derived growth factor A-chain overexpression is associated with tumourigenic conversion of human mesothelioma cells. Eur Respir Rev 3:180–185 (1993).

92. Walker C, Bermudez E, Bonner J, Everitt J. Species-specific PDGF expression in mesothelioma. Eur Respir Rev 3:153–155 (1993).

93. Walker C, Bermudez E, Stewart W, Bonner, J, Molloy CJ, Everitt J. Characterization of platelet-derived growth factor and platelet-derived growth factor receptor expression in asbestos-induced rat mesothelioma. Cancer Res 52:301–306 (1992).

94. Lee TC, Zhang Y, Aston C, Hintz R, Jagirdar J, Perle MA, Burt M, Rom WN. Normal human mesothelial cells and mesothelioma cell lines express insulin-like growth factor I and associated molecules. Cancer Res 53:2585–2564 (1993).

95. Pass HI, Mew D, Carbone M, Matthews WA, Donington JS, Baserga R, Walker CL, Resnicoff M, Seeinberg SM. Inhibition of hamster mesothelioma tumorigenesis by an antisense expression plasmid to the insulin-like growth factor-1 receptor. Cancer Res 56:4044–4048 (1996).

96. Coleman WB, Tsongalis GJ. Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation. Clin Chem 41:644–657 (1995).

97. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability induced by ionizing radiation. Radiat Res 146:247–258 (1996).

98. BéruBé KA, Quinlan TR, Fung H, Magie J, Vacek P, Taatjes DJ, Mossman BT. Apoptosis is observed in mesothelial cells after exposure to crocidolite asbestos. Am J Respir Cell Mol Biol 15:141–147 (1996).

99. Lynch HT, Anton-Culver H, Kuroski T. Is there a genetic predisposition to malignant mesothelioma? In: Lung Biology in Health and Disease. Vol 78: The Mesothelial Cell and Mesothelioma (Jaurand MC, Bignon J, eds). New York: Marcel Dekker, 1994:47–69.