$m_t^{\text{exp}} = 174 \pm 16 \text{ GeV}$

$M_H = 100 \text{ GeV}$

Figure 1:
$m_t^{\exp} = 174 \pm 16 \text{ GeV}$

Figure 2:
A Remark on the $Z^0 \rightarrow b\bar{b}$ Width

D. Schildknecht
Department of Theoretical Physics
University of Bielefeld

Abstract

The $Z^0 \rightarrow b\bar{b}$ width, Γ_b, is analysed in conjunction with the total and hadronic Z^0 widths, Γ_T and Γ_h. Assuming, tentatively, that the present 2σ discrepancy in Γ_b will substantiate as time goes on, for large values of m_H it will be sufficient to modify the $Z^0b\bar{b}$ vertex only. In contrast, for small values of m_H, the theoretical predictions for both the Z^0 width into light quarks and leptons as well as the $Z^0 \rightarrow b\bar{b}$ vertex will have to be modified.
The precise agreement (e.g. ref. [1]) between the predictions of the $SU(2)_L \times U(1)_Y$ electroweak theory [2] and the experimental data [3] is remarkable indeed. The only evidence for a possible discrepancy between theory and experiment was found in the value of the $Z^0 \to b\bar{b}$ width, which deviates from the theoretical prediction by approximately two standard deviations. The data are consistent with the width predicted for $Z^0 \to d\bar{d}$, and accordingly, they do not show the effect expected from the presence of the mass of the heavy top quark in the $Z^0b\bar{b}$ vertex. As the discrepancy amounts to two standard deviations only, it may be wise to wait for further analysis of forthcoming data before reflecting too much on a possible theoretical explanation of it.

In the present note, nevertheless, we deal with the $Z^0 \to b\bar{b}$ width, restricting ourselves, however, to a few general comments on how the $Z^0 \to b\bar{b}$ “anomaly” could be accommodated in case it will substantiate and stand the test of time. We will briefly analyse the data on Γ_b in conjunction with the data on the total and hadronic Z^0 widths, Γ_T and Γ_h, respectively, in comparison with standard predictions. Our essential point consists of the observation that low and high values of the Higgs mass m_H, require different dominant modifications of the theory in order to accommodate the experimental value of Γ_b in conjunction with the experimental data for Γ_T and Γ_h.

Our analysis will be based on the experimental data presented at the Glasgow Conference [3],

\[
M_Z = 91.1888 \pm 0.0044 GeV, \\
\Gamma_T = 2497.4 \pm 3.8 MeV, \\
R = \Gamma_h/\Gamma_l = 20.795 \pm 0.040, \\
\sigma_h = \frac{12\pi\Gamma_l\Gamma_h}{M_Z^2\Gamma_T^2} = 41.49 \pm 0.12 nb
\]

(1)

From the values of R and σ_h one derives [1] *

\[
\Gamma_l = 83.96 \pm 0.18 \ MeV, \\
\Gamma_h = 1746 \pm 4 \ MeV
\]

(2)

* The correlation matrix between Γ_T, R and σ_h was taken into account.
and from the measured value of \(R_{bh} \)

\[
R_{bh} = \frac{\Gamma_b}{\Gamma_h} = 0.2192 \pm 0.0018, \tag{3}
\]

one then obtains

\[
\Gamma_b = 382.7 \pm 3.3 \text{ MeV}, \tag{4}
\]

In what follows, we will compare the data for \(\Gamma_b \) in conjunction with the ones for \(\Gamma_T \) and \(\Gamma_h \) with standard theoretical predictions. All three of these quantities can be simultaneously analysed in a unified manner by first of all extracting the \(Z^0 \to b\bar{b} \) width from the experimental total and hadronic widths, \(\Gamma_{T\exp} \) and \(\Gamma_{h\exp} \), respectively, via

\[
\Gamma_b(T) \equiv \Gamma_{T\exp} - 2 \left(\Gamma_{u\exp}^{th} + \Gamma_{d\exp}^{th} \right) - 3 \left(\Gamma_{e\exp}^{th} + \Gamma_{\nu\exp}^{th} \right) \tag{5}
\]

and

\[
\Gamma_b(h) \equiv \Gamma_{h\exp} - 2 \left(\Gamma_{u\exp}^{th} + \Gamma_{d\exp}^{th} \right). \tag{6}
\]

In these formulae, \(\Gamma_{u\exp}^{th}, \Gamma_{d\exp}^{th} \), etc. denote the (radiatively corrected) theoretical partial \(Z^0 \) widths for the \(Z^0 \to u\bar{u}, Z^0 \to d\bar{d}, \) etc. decays, while \(\Gamma_b(T) \) and \(\Gamma_b(h) \) refer to the partial widths for the \(Z^0 \to b\bar{b} \) decay extracted from the total and hadronic \(Z^0 \) widths, \(\Gamma_T \) and \(\Gamma_h \), respectively. It is evident that \(\Gamma_b(T) \) and \(\Gamma_b(h) \) in (5), (6), are “semi-experimental” quantities. They depend on the experimental data on the total and hadronic \(Z^0 \) widths, \(\Gamma_{T\exp} \) and \(\Gamma_{h\exp} \), as well as the theoretical predictions for the other partial \(Z^0 \) widths which are subtracted on the right-hand-sides in (5), (6). Due to the strong dependence on the mass of the top quark, \(m_t \) (via the leading \(m_t^2 \) dependence), also \(\Gamma_b(T) \) and \(\Gamma_b(h) \) will be decreasing functions of \(m_t \). In addition, \(\Gamma_b(T) \) and \(\Gamma_b(h) \) will depend on the Higgs mass, \(m_H \), via \(\ln m_H \).

Upon inserting the necessary theoretical partial widths into (5) and (6), we will compare \(\Gamma_b(T) \) and \(\Gamma_b(h) \) with the theoretical prediction for the \(Z^0 \to b\bar{b} \) width, \(\Gamma_{b\exp}^{th} \), and with the experimental one, \(\Gamma_{b\exp}^{th} \), and draw our conclusions.

** This value of \(R_{bh} \) is obtained \([3]\) upon fixing \(R_c \equiv \Gamma_c/\Gamma_h \) to its Standard Model value of \(R_c = 0.171 \).
The theoretical values for partial decay widths of the Z^0 into leptons and quarks are taken from our recent analysis of the electroweak precision data [1], based on

$$\alpha (M_Z^2)^{-1} = 128.87 \pm 0.12,$$

$$G_\mu = 1.16639(2) \cdot 10^{-5} \text{GeV}$$

as well as M_Z from (1) and

$$\alpha_s = 0.118 \pm 0.007,$$

$$m_b = 4.5 \text{GeV}$$

as input parameters.

The results of the present analysis are presented in figs. 1, 2 for the two cases of a low value of $m_H = 100 \text{GeV}$ and a high value of $m_H = 1000 \text{GeV}$, respectively.

We first of all consider the case of $m_H = 100 \text{GeV}$ shown in fig. 1. From this figure one finds rough agreement of the $Z^0 \rightarrow b\bar{b}$ width extracted from the total and hadronic widths with the theoretical prediction, Γ_b^{th}, i.e.

$$\Gamma_b (T) \approx \Gamma_b (h) \approx \Gamma_b^{th}$$

for

$$m_t \approx 175 \ \text{GeV},$$

$$m_H \approx 100 \ \text{GeV}.$$

Obviously, the result (9), (10) is nothing else but the (known) consistency between theory and experiment in the total Z^0 width and in the hadronic Z^0 width, expressed, however, in terms of the $Z^0 \rightarrow b\bar{b}$ partial width. This consistency holds for values of $m_t \approx 175 \ \text{GeV}$, the value favored by the results of the direct searches for the top quark [4.]. To remove the (indication of a small) discrepancy with Γ_b^{exp} in fig. 1, both, the theoretical prediction for $Z^0 \rightarrow b\bar{b}$ decay, Γ_b^{th}, as well as $\Gamma_b (T)$ and $\Gamma_b (h)$ will have to be modified, in order to keep the validity of (9). According to (5) and (6), this implies that the theoretical predictions for the Z^0 widths into light leptons and quarks will have to decrease. In summary, for small values of m_H, the data — always assuming that the minor discrepancy between theory and experiment visible at present will substantiate — require a modification of the theory which enlarges Γ_b^{th} and diminishes $\Gamma_u^{th}, \Gamma_d^{th}$, etc.

The situation (for $m_t \approx 175 \ \text{GeV}$) is different in the case of the other extreme, a large mass of the Higgs boson of e.g. $m_H = 1000 \ \text{GeV}$, as shown in fig. 2. In contrast to (9)
we now have
\[\Gamma_b(T) \approx \Gamma_b(h) \approx \Gamma_b^{exp} \]
(11)
for
\[m_t \approx 175 \text{ GeV}, \]
\[m_H \approx 1000 \text{ GeV}. \]
(12)
For large values of \(m_H \) the (theoretical) values for the \(Z^0 \) widths into light quarks and leptons in (5), (6) are sufficiently suppressed to accommodate the present enhanced experimental value of \(\Gamma_b^{exp} \) within the total and hadronic widths, \(\Gamma_T^{exp} \) and \(\Gamma_h^{exp} \). Accordingly, in this case, it will be sufficient to modify the \(Z^0 \to b \bar{b} \) vertex to obtain consistency with the data for \(\Gamma_b^{exp} \) as well as \(\Gamma_T^{exp} \) and \(\Gamma_h^{exp} \).

In conclusion, the presentation of the data given in figs. 1, 2 clearly illustrates the delicate interplay of the different experimental results and the parameters \(m_t \) and \(m_H \). If the 2\(\sigma \) effect in \(\Gamma_b \) will stand the test of time, its theoretical explanation will have to discriminate between the low-\(m_H \) and the high-\(m_H \) options (always assuming \(m_t \approx 175 \text{ GeV} \)). For low values of \(m_H \) the theoretical predictions for the \(Z^0 \) widths into the light quarks and leptons as well as the \(Z^0 \to b \bar{b} \) width will have to be modified. On the other hand, in the limit of large values of \(m_H \), it will dominantly only be the theoretical prediction for the \(Z^0 \to b \bar{b} \) vertex which must be changed.

Acknowledgement

The author would like to thank Stefan Dittmaier for fruitful collaboration on electroweak interactions and help in the presentation of the results in figures 1, 2.
References

[1] S. Dittmaier, D. Schildknecht, M. Kuroda, Bielefeld-preprint
 BI-TP 94/62, hep-ph/9501404.
[2] S.L. Glashow, Nucl.Phys.B 22 (1961) 579;
 S. Weinberg, Phys.Rev.Lett. 19 (1967) 1264;
 A. Salam, in: Elementary Particle Theory ed. N. Svartholm (Almquist and Wiksell, 1968), p. 367.
[3] D. Schaile, plenary talk given at the 27th International Conference of High Energy Physics, Glasgow, July 1994,
 LEP collaborations, preprint CERN/PPE/94-187.
[4] F. Abe et al., CDF Collaboration, Phys.Rev. D50 (1995) 2966.

Fig. 1:

In addition to \(\Gamma_b^{exp} \), the figure shows \(\Gamma_b^{th} \) as a function of the mass of the top quark, \(m_t \), as well as the “semi-experimental” quantities \(\Gamma_b(T) \) and \(\Gamma_b(h) \) obtained from the total and hadronic Z\(^0\) widths, \(\Gamma_T \) and \(\Gamma_h \), by subtracting the theoretical predictions for the Z\(^0\) decay widths into light quarks and leptons. The value of \(m_t = 174 \pm 16 \ GeV \) preferred by the CDF searches is also indicated. For the theoretical prediction for \(\Gamma_b^{th} \) and for \(\Gamma_b(T) \) and \(\Gamma_b(h) \) a Higgs-boson of mass of \(m_H = 100 \ GeV \) was adopted. The error in \(\Gamma_b^{th} \) is due to the experimental error in \(\alpha_s \). This error is also taken into account in \(\Gamma_b(T) \) and \(\Gamma_b(h) \).

Fig 2.:

As fig 1, but for \(m_H = 1000 \ GeV \).