Volume Sistólico Reduzido: Mecanismo Fisiopatológico Principal em Pacientes com Intolerância Ortostática?

Reduced Systolic Volume: Main Pathophysiological Mechanism in Patients with Orthostatic Intolerance?

Maria Zildany P. Távora-Mehta, Niraj Mehta, Adriano Magajewski, Larissa de Oliveira, Débora Lee Smith Maluf, Leticia Concato, Eduardo Doubrawa, Márcio Rogério Ortiz, Cláudio L. Pereira da Cunha

Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, PR – Brasil

Resumo

Fundamento: O mecanismo fisiopatológico de pacientes com intolerância ortostática ainda é obscuro, contribuindo para a dificuldade no manejo clínico desses pacientes.

Objetivo: Investigar as alterações hemodinâmicas durante teste de inclinação (tilt teste) em indivíduos com síntomas de intolerância ortostática, incluindo sincope ou pré-sincope.

Métodos: Sessenta e um pacientes, com tilt teste a 70º negativo na fase livre de vasodilatador, foram divididos em dois grupos. Para análise dos dados foram considerados apenas os primeiros 20 minutos de inclinação. Grupo I (33 pacientes) que tiveram elevação da resistência vascular periférica total (RVPT) durante posição ortostática e Grupo II (28 pacientes) com queda da RVPT (caracterizando insuficiência de resistência vascular periférica). O grupo controle consistia de indivíduos saudáveis e assintomáticos (24 indivíduos). Os parâmetros hemodinâmicos foram obtidos por um monitor hemodinâmico não invasivo em 3 momentos distintos (posição supina, tilt 10° e tilt 20°), ajustados para idade.

Resultados: Na posição supina, o volume sistólico (VS) foi significamente reduzido tanto no Grupo II quanto no I, quando comparado ao do Grupo controle, respectivamente (66,4 ±14,9 ml vs. 81,8±14,8 ml vs. 101,5±24,2 ml; p<0,05.) A RVPT, no entanto, foi mais elevada no Grupo II, quando comparada a do Grupo I e controle, respectivamente (1750,5± 442 dyne.s/cm5 vs.1424±404 dyne.s/cm5 vs. 974,4±230 dyne.s/cm5; p<0,05). Na posição ortostática, aos 10’, houve repetição dos achados, com valores absolutos inferiores de VS Comparado aos controles (64,1±14,0 ml vs 65,5±11,3 ml vs 82,8±15,6 ml; p<0,05). A RVPT, todavia, apresentou queda relativa no Grupo II comparado ao I.

Conclusão: Volume sistólico reduzido foi consistentemente observado nos grupos de pacientes com intolerância ortostática, quando comparado ao grupo controle. Foram observadas duas respostas distintas ao teste de inclinação: um grupo com elevação de RVPT e outro com queda relativa desta, indicando, possivelmente, falência mais acentuada dos mecanismos de compensação. (Arq Bras Cardiol. 2016; 107(4):354-364)

Palavras-chave: Intolerância Ortostática/fisiopatologia; Volume Sistólico; Resistência Vascular; Síndrome da Taquicardia Postural Ortostática/fisiopatologia.

Abstract

Background: Orthostatic intolerance patients’ pathophysiological mechanism is still obscure, contributing to the difficulty in their clinical management.

Objective: To investigate hemodynamic changes during tilt test in individuals with orthostatic intolerance symptoms, including syncope or near syncope.

Methods: Sixty-one patients who underwent tilt test at – 70° in the phase without vasodilators were divided into two groups. For data analysis, only the first 20 minutes of tilting were considered. Group I was made up of 33 patients who had an increase of total peripheral vascular resistance (TPVR) during orthostatic position; and Group II was made up of 28 patients with a decrease in TPVR (characterizing insufficient peripheral vascular resistance). The control group consisted of 24 healthy asymptomatic individuals. Hemodynamic parameters were obtained by a non-invasive hemodynamic monitor in three different moments (supine position, tilt 10° and tilt 20°) adjusted for age.

Results: In the supine position, systolic volume (SV) was significantly reduced in both Group II and I in comparison to the control group, respectively (66.4 ±14.9 ml vs. 81.8±14.8 ml vs. 101.5±24.2 ml; p<0.05). TPVR, however, was higher in Group II in comparison to Group I and controls, respectively (1750.5± 442 dyne.s/cm5 vs.1424±404 dyne.s/cm5 vs. 974.4±230 dyne.s/cm5; p<0.05). In the orthostatic position, at 10’, there was repetition of findings, with lower absolute values of SV (64.1±14.0 ml vs 65.5±11.3 ml vs 82.8±15.6 ml; p<0.05). TPVR, on the other hand, showed a relative drop in Group II.

Conclusion: Reduced SV was consistently observed in the groups of patients with orthostatic intolerance in comparison to the control group. Two different responses to tilt test were observed: one group with elevated TPVR and another with a relative drop in TPVR, possibly suggesting a more severe failure of compensation mechanisms. (Arq Bras Cardiol. 2016; 107(4):354-364)

Keywords: Orthostatic Intolerance/physiopathology; Stroke Volume; Vascular Resistance; Postural Orthostatic Tachycardia Syndrome/physiopathology.
Introdução
A síndrome de intolerância ortostática corresponde a um grupo heterogêneo de desordens de regulação hemodinâmica e é definida pelo aparecimento de sintomas variados e inespecíficos que podem estar relacionados a hiperperfução cerebral ao assumir tal posição. Os pacientes desenvolvem sintomas frequentes de tontura, turvação visual, fadiga, náuseas, pré-síncope ou síncope durante posição ortostática prolongada. O gerenciamento clínico é complexo, devido, em grande parte, ao desconhecimento dos mecanismos fisiopatológicos. Estudos prévios têm mostrado que alterações neuro-humorais, descondicionamento e hipovolemia podem estar envolvidos.

Intolerância ortostática crônica ocorre em alguns indivíduos com as síndromes da taquicardia ortostática postural, síncope neuromediada e em algumas situações clínicas que cursam com hipotensão postural. A pressão arterial (PA) necessita ser adequadamente mantida não apenas durante o repouso, mas também durante diversas atividades diárias, tais como: exercício físico, estresse mental e digestão. A incapacidade de mantê-la, especialmente em posição ortostática, pode resultar em redução da perfusão sistêmica, em especial cerebral, por sua localização anatômica acima do coração.

Muitos pacientes não apresentam alterações da frequência cardíaca (FC) ou da PA na vigência de sintomas ortostáticos. Isso indica que pode haver alterações fisiopatológicas em graus variados de gravidade, refletindo na extensa gama de sintomas inespecíficos. Além disso, muitos pacientes com episódios frequentes de síncope neuromediada também apresentam sintomas ortostáticos entre os episódios de síncope. A falta de alterações evidentes das PA e FC podem representar mecanismos alterados da autorregulação da perfusão cerebral. Se não há alterações evidentes da pressão ou FC, pode, mesmo assim, haver alterações hemodinâmicas que antecedem a queda de pressão, tais como volume sistólico (VS) reduzido e resistência vascular periférica alterada. Dessa forma, há necessidade de se identificar diferentes padrões de resposta a tilt teste visando compreender possíveis mecanismos fisiopatológicos. O conhecimento do mecanismo fisiopatológico envolvido nesses pacientes pode ajudar a gerenciar-los clinicamente.

O propósito do presente estudo é avaliar os parâmetros hemodinâmicos, tais como a resposta da resistência vascular periférica e do VS, ao assumirem a posição ortostática em indivíduos com sintomas de intolerância ortostática, incluindo síncope ou pré-síncope de etiologia obscura (sem evidência de arritmia ou disfunção ventricular e sem taquicardia ortostática ou colapso hemodinâmico durante teste de inclinação a 70°, livre de drogas), comparando-os com um grupo controle de indivíduos saudáveis (assintomáticos).

Métodos

População estudada
Os pacientes foram recrutados do laboratório de síncope e desordens autonômicas do Hospital de Clínicas da Universidade Federal do Paraná e do Serviço de Eletrofisiologia Cardiaca do Paraná. Trata-se de um estudo retrospectivo, do tipo caso-controle. Foram incluídos 61 pacientes consecutivos, de um total de 117, encaminhados no período de fevereiro de 2013 a maio de 2014 para realização de teste de inclinação por sintomas de intolerância ortostática, incluindo síncope e/ou pré-síncope. Os sintomas de síncope ou pré-síncope eram recorrentes e relacionados à mudança de posição ou em posição vertical, sentado ou em pé. Na amostra estudada não havia pacientes com síncope situacional associada a trauma físico, acidente ou exercício físico. Todos apresentaram uma resposta negativa durante 20 minutos de inclinação na fase livre de drogas tanto para reação vaso-vagal, como para a síndrome da taquicardia ortostática postural (STOP).

Os pacientes encaminhados para realização do teste de inclinação já apresentavam alguma investigação prévia com Holter de 24 horas, ecocardiograma, cintilografia e/ou cateterismo. Desse total de 117 pacientes, 56 foram excluídos pelos seguintes motivos: idade inferior a 16 anos (2 pacientes) ou que apresentavam disfunção ventricular documentada (1); coronariopatia obstrutiva ou arritmia supraventricular ou ventricular sustentada documentadas (7); acidente vascular cerebral ou outra doença neurológica confirmada (44); doença sistêmica debilitante (2) ou com expectativa de vida reduzida (<1 ano) e indivíduos com insuficiência autonômica pura ou doença de Parkinson. A população estudada não apresentava outras comorbidades diagnosticadas, além de hipertensão e dois pacientes incluídos com diabetes, sem lesão em órgão-alvo.

Portanto, o presente estudo trata da avaliação de 61 pacientes com intolerância ortostática, tendo sido excluídos os diagnósticos diferenciais de síncope e pré-síncope.

O grupo controle consistiu de 24 indivíduos hígidos e assintomáticos, com idade entre 17 e 39 anos, com participação em caráter voluntário após assinatura do termo de consentimento livre e esclarecido.

O presente estudo foi devidamente aprovado pelo comitê de ética em pesquisa local.

Protocolo completo padrão do teste de inclinação:
Todos os pacientes incluídos (61) foram submetidos ao teste de inclinação a 70°, após 6 horas de jejum, no protocolo de 20 minutos livre de drogas (período analisado em nosso estudo), e quando negativo em tal período foram sensibilizados com nitroglicerina 0,4 mg sublingual e mantidos em inclinação por mais um período de até 15 minutos, exceto se apresentassem pressão arterial sistólica (PAS) inferior a 90 mmHg. Nesse caso, com PAS inferior a 90mmHg ao cabo de 20 minutos, esses pacientes seriam mantidos por mais 10 minutos de inclinação livre de drogas. O teste de inclinação foi interrompido, a qualquer momento do exame, em caso de reação vaso-vagal, caracterizada por queda da PA e/ou FC associada a sintomas de síncope e/ou pré-síncope. A temperatura da sala foi mantida entre 23 e 25°C. Drogas com ação beta-bloqueadora foram suspensas por, pelo menos, 5 meias vidas antes do exame. Diuréticos foram suspensos por, pelo menos, 72 horas anteriores ao exame.
Para realização do exame, foi utilizado um monitor hemodinâmico (Task Force Monitor® CNSystems Medizintchnik AG Austria, 2008) com medida contínua da PA, da FC e do VS pelo método de bioimpedância. São fixados no paciente um conjunto de eletrodos constituído de 4 eletrodos de eletrocardiograma, além de 3 eletrodos em banda e um eletrodo neutro desenvolvido especialmente para derivação de bioimpedância. A resistência vascular periférica (RVPT) foi calculada pelo aparelho utilizando-se a fórmula da PA, na qual PA = FC x VS x RVPT, sendo a RVPT = PA/VS x FC, e o débito cardíaco (DC) foi, também, calculado pelo aparelho de acordo com a seguinte fórmula: DC = FC x VS.

Durante a realização do exame, os valores médios dos parâmetros hemodinâmicos foram analisados em cinco períodos tradicionais programados pelo fabricante do equipamento: posição supina (S); 0 a 5 (tilt 5'); 5 a 10 (tilt 10'); 10 a 15 (tilt 15') e 15 a 20 (tilt 20') minutos de inclinação.

Análise dos parâmetros hemodinâmicos do presente estudo

Nos 61 pacientes do presente estudo, os parâmetros hemodinâmicos foram avaliados somente durante o período de inclinação basal – período de 20 minutos livre de drogas. Dos parâmetros hemodinâmicos medidos, fazem parte deste estudo apenas as análises dos dados em 3 tempos distintos, escolhidos por refletirem momentos relevantes do período de ortostase e para simplificação da descrição dos achados. Portanto, os grupos foram comparados em relação aos resultados em: posição supina (S), tilt 10’ e tilt 20’, ou seja, a média dos valores no período de repouso em posição supina, a média dos valores de 5 a 10 minutos (de inclinação) e a média de valores de 15 a 20 minutos (de inclinação). Além disso, foram analisadas, também, as diferenças ocorridas de um momento para outro (deltas entre a posição S, tilt 10’ e tilt 20’).

Num primeiro momento, observamos que havia duas respostas distintas ao período de inclinação: um grupo elevou a RVPT e o outro apresentou queda. Portanto, devido a tal resposta claramente divergente, a análise foi realizada separando-se esses dois grupos.

Assim, a totalidade dos pacientes foi dividida em dois grupos de acordo com a resposta da RVPT durante o teste de inclinação na fase livre de drogas: Grupo I (33 pacientes), corresponde aos pacientes que apresentaram elevação da RVPT ao assumir a posição ortostática (em comparação com a posição supina), com manutenção dessa elevação durante todo o período de 20 minutos de inclinação livre de drogas. O Grupo II (28 pacientes) corresponde aos que apresentaram, em um dos intervalos estudados durante o período de inclinação (tilt 10’ ou tilt 20’), média de valores inferiores aos observados em posição supina. Esses pacientes, por não serem capazes de elevar ou manter a elevação da RVPT no período de inclinação de 20 minutos livre de drogas, foram considerados como tendo uma insuficiência da RVPT (Figura 1). Ambos os grupos de pacientes foram comparados a um grupo controle de indivíduos saudáveis e assintomáticos.

Análise estatística

Inicialmente, os grupos foram comparados em relação aos resultados em cada momento de avaliação (S, tilt 10’ e tilt 20’) e em relação às diferenças ocorridas de um momento para outro (supina-10’, supina – 20’ e 10’ – 20’) - deltas. Para isso, testou-se a hipótese nula de que as médias são iguais nos três grupos, versus a hipótese alternativa de que pelo menos um grupo tem média diferente dos demais. Se houvesse diferença significativa entre os grupos, esses eram comparados dois a dois. Os resultados foram ajustados para idade. Foram utilizados o teste t de Student ou o teste de Mann-Whitney para amostras independentes (p<0,05).

Os resultados obtidos foram descritos por médias, medianas, valores mínimos, valores máximos e desvios-padrão. Para a comparação dos momentos de avaliação (supina, tilt10’ e tilt 20’), dentro de cada grupo, foi considerado o modelo de análise da variância com medidas repetidas. Para a comparação dos grupos em relação ao momento de avaliação e em relação às diferenças entre os momentos de avaliação (tilt 10’ – S, tilt 20’ – S e tilt 20’ – tilt 10’), foi considerado o modelo de análise de covariância (ANCOVA) incluindo-se a idade como co-variável. Para comparações múltiplas (post hoc) foi usado o teste LSD (least significant test). Em relação às variáveis idade, altura, peso e superfície corporal, os grupos foram comparados usando-se o modelo da análise da variância (ANOVA) com um fator. Valores de p <0,05 indicaram significância estatística.

Para cada grupo, em cada momento de avaliação, testou-se a hipótese nula de que não existe associação entre VS e RVPT, versus a hipótese alternativa de que existe associação. São apresentados, nas Tabelas e gráficos de correlação, os valores estimados do coeficiente de correlação de Pearson e os valores de p dos testes estatísticos. Os dados foram analisados com o programa computacional SPSS v.20.0.

Foi realizada avaliação da homogeneidade dos grupos em relação à idade, peso, altura, índice de massa corporal e superfície corporal (Tabela 1).

Resultados

Com relação aos parâmetros hemodinâmicos estudados, os dados obtidos em posição supina e durante inclinação (tilt 10’ e tilt 20’) são encontrados na Tabela 2.

Em posição supina, observou-se que o VS e o DC encontravam-se significativamente mais reduzidos nos pacientes do Grupo II em relação aos do Grupo I, e neste, por sua vez, encontravam-se mais reduzidos que nos indivíduos do grupo controle (Figura 2). O contrário foi observado em relação à RVPT, mais elevada no Grupo II em relação ao Grupo I, e, neste último, mais elevada que no grupo controle (Figura 3). Observou-se, assim, uma correlação inversa entre o VS e a RVPT nos três grupos estudados. Por outro lado, não se observou diferença significante entre os grupos com relação a PA média e a FC em posição supina (figura 4).

Em posição ortostática, ocorreu, no Grupo II, redução progressiva da RVPT, enquanto, no Grupo I, houve elevação dessa (Tabela 2). Observou-se que, entre esses dois grupos, não havia diferença no valor absoluto da RVPT no período...
Figura 1 - Registro pelo monitor hemodinâmico não invasivo. A) Paciente do Grupo I – observe a elevação compensatória do índice da RVPT durante a inclinação. B) Paciente do Grupo II – observe a queda inesperada do índice da RVPT durante a inclinação.
de 10' de inclinação. Nesse momento, não se observou, também, diferenças entre o Grupo I e o II em nenhum dos demais parâmetros estudados, vindo a se observar diferenças significativas com relação à RVPT, novamente, no período de 20'. Ao contrário do notado na posição supina, neste momento (aos 20' de inclinação), a RVPT se encontrou menor no Grupo II, (Figura 3), indicando falência mais acentuada dos mecanismos compensatórios da regulação hemodinâmica. Quando comparado ao grupo controle, tanto o Grupo I quanto o II apresentaram, em todos os momentos do exame, VS e DC significativamente inferior e RVPT significativamente mais elevada.

A PA não divergiu entre os grupos, exceto no período de 20' de inclinação, decorrente da redução progressiva da RVPT observada em posição ortostática no Grupo II (Figura 4-a). A FC, por sua vez, não apresentou, em nenhum dos momentos
Figura 2 – A e B) Médias e intervalos de confiança de 95% para as médias de VS e DC ajustados para a idade: comparação entre os grupos em cada momento de análise (supina, tilt 10’ tilt 20’). VS: volume sistólico; DC: débito cardíaco.

Figura 3 - Médias e intervalos de confiança de 95% para as médias de RVPT ajustado para idade: comparação entre os grupos em cada momento de análise (supina, tilt 10’ tilt 20’). RVPT: resistência vascular periférica total.
analizados, diferenças significantes entre os 3 grupos estudados (Figura 4-b).

Na análise das diferenças (Δ, delta), no período entre posição supina e tilt 10’, a RVPT, no Grupo I e nos controles, elevou-se, tornando o delta positivo (uma resposta natural compensatória). Por outro lado, no Grupo II, a RVPT se reduziu, resultando em um delta negativo, o que caracteriza a insuficiência de resistência vascular periférica do grupo. Como o VS no Grupo II era mais severamente reduzido já em posição supina, não houve queda muito acentuada deste em posição ortostática. Portanto, este grupo apresentou queda do VS significamente menor em relação ao Grupo I e ao grupo controle. Com relação à PA, observou-se que no último período avaliado (tilt 20’), a diferença das médias da PA em relação à posição supina no Grupo II tornou-se negativa (indicando falência dos mecanismos hemodinâmicos compensatórios) (Tabela 3). Na análise de correlação, entre o VS e a RVPT, observou-se uma correlação inversa significante nos três grupos em posição supina. Entretanto, no período de tilt 10’, a correlação negativa deixou de existir no Grupo II, pois a resistência vascular se reduziu em posição ortostática (Figura 5).

Sumariamente, destacamos três pontos:

1. Os pacientes estudados, com sintomas de intolerância ortostática, incluindo síncope e/ou pré-síncope, apresentaram VS e DC significamente inferior e RVPT significantemente mais elevada, tanto em posição supina quanto em posição ortostática, em relação ao grupo controle, sem diferença em relação a PA ou FC em ambas as posições.

2. Entre os pacientes estudados, 46% apresentaram insuficiência de RVPT durante o tilt teste. Em posição supina, apresentaram VS e DC mais reduzidos e RVPT ainda mais elevada em relação aos demais pacientes estudados.

3. Aos 10 minutos de inclinação, por sua vez, observou-se, no Grupo II, perda da correlação inversa entre VS e RVPT, devido à falência dos mecanismos compensatórios representada pela queda da RVPT.

Discussão

O principal achado deste estudo foi a observação de VS reduzido no grupo de pacientes com sintomas de intolerância ortostática em relação ao grupo controle, tanto em posição supina como ortostática.

Tem sido postulado que todas as formas de intolerância ortostática podem ser resultado de hipovolemia central, mesmo sem taquicardia. Hipovolemia central, assim como VS reduzido têm sido achados consistentes em pacientes com STOP em posição ortostática. Em estudo preliminar, Mehta et al. observaram que pacientes com sintomas de intolerância ortostática, mesmo sem STOP, apresentam valores similarmente reduzidos de VS, quando este foi corrigido para a superfície corporal. No presente estudo, a comparação com o grupo controle confere robustez aos achados prévios. Portanto, VS reduzido em indivíduos com sintomas de intolerância ortostática é um achado que parece ser consistente, mesmo naqueles que não desenvolvem taquicardia ortostática ou colapso hemodinâmico durante o teste de inclinação.

Em indivíduos normais relatados na literatura, os principais achados após aproximadamente 5 minutos de posição ortostática (comparado à posição supina) são a redução de aproximadamente 30% do volume sanguíneo torácico e do VS, aumento da FC em 15 a 30%, acompanhados de redução no DC em torno de 20%. Semelhantes ao que se observou no grupo controle do presente estudo, exceto em relação ao DC. No presente estudo, a redução do VS observada ao assumir a posição ortostática se mostrou adequadamente compensada pelo aumento da FC, de modo que não houve redução do DC.
Tabela 3 - Diferença dos parâmetros hemodinâmicos (média ± DP) entre o período de tilt 10’ e a posição S (∆ 10’-S) e entre o período de tilt 20’ e a posição S (∆ 20’-S)

	Grupo I	Grupo II	Controle (C)	(I x II) p	(I x C) p	(II x C) p
FC (bpm) (∆ 10’-S)*	8,8±7,2	10,3±7,8	16,8±6,6	NS	NS	NS
(∆ 20’-S)*	12,1±7,6	14,7±5,4	22,8±3,3	0,38	<0,001	0,0001
VS (ml) (∆ 10’-S)*	-16,3±12,1	-2,2±11,2	-18,8±18,4	<0,001	0,50	<0,001
(∆ 20’-S)*	-20,4±10,1	-4,0±11,2	-22,0±18,2	<0,001	0,66	<0,001
RVPT (dyne.s/cm²) (∆ 10’-S)*	301±218	-174±328	180±260	<0,001	0,09	<0,001
(∆ 20’-S)	260±176	-268±266	115±190	<0,001	0,005	<0,001
PAM (mmHg) (∆ 10’-S)*	9,1±8,6	1,7±15,4	18,19,4	0,010	0,003	<0,001
(∆ 20’-S)*	6,8±10,6	-3,0±39,9	14,9±4,9	0,001	0,008	<0,001

* Valor de p ajustado para a idade (ANCOVA). △ RVPT em dyne.seg/cm²
FC: frequência cardíaca; VS: volume sistólico; RVPT: resistência vascular periférica total; PAM: pressão arterial média.

Figura 5 – A: (Grupo I), B: (Grupo II) e C: (Grupo controle). Diagramas de dispersão para VS e RVPT em 10’ durante tilt teste; r: coeficiente de correlação de Pearson. VS: volume sistólico; RVPT: resistência vascular periférica total.
Com o propósito de manter a PA e a perfusão cerebral independente dos efeitos da gravidade, uma série de mecanismos cardiovasculares regulatórios ou reflexos são ativados. Para atingir esse objetivo, a FC, o VS (consequentemente o DC) e a RVPT são modulados, tendo a PA como variável controlada.

No presente estudo, ao assumir a posição ortostática, observou-se, em todos os pacientes, elevação da PA nos primeiros 10 minutos, exceto para o Grupo II. Neste último, observou-se PA média inferior à posição supina somente no tilt 20°, quando esta se tornou significativamente inferior em relação aos demais grupos, indicando falência dos mecanismos compensatórios de elevação natural da resistência periáfrica.

No grupo controle, o VS era bem mais elevado. Por outro lado, no grupo de pacientes a RVPT era mais elevada. Considerando a seguinte fórmula: PA = DC x RVPT, em que DC = FC x VS, tendo a observação de uma FC similar entre controle e pacientes, a PA passa a ser mais dependente de volume no grupo controle de indivíduos saudáveis.

No grupo de pacientes com sintomas ortostáticos, no entanto, a manutenção da PA foi mais dependente da resistência vascular. Desse modo, não bastaria reduzir a RVPT na posição supina para tratar tais pacientes, mas, concomitantemente, proporcionar elevação do VS. Qi Fu et al. demonstraram que a atividade física é um dos meios de elevar VS em pacientes com STOP que sabidamente apresentam-no reduzido. Recentemente, hidratação intravenosa (com 1 a 2 litros/dia por 3 a 7 dias na semana) demonstrou melhora clínica em pacientes com intolerância ortostática refratária.

Os sistemas responsáveis pelo controle da regulação cardiovascular incluem: o sistema neurocardiovacular, o humoral (renina-angiotensina e vasopressina), o capilar e o sistema de fluxo renal (aldosterona e hormônio antidiurético). A estabilidade hemodinâmica da PA, na fase inicial da posição ortostática (30 segundos a 2 minutos), é obtida, principalmente, pelo sistema neurocardiovacular. A atividade do nervo simpático muscular aumenta com a mudança de posição, resultando em vasoconstrição mediada pelo baroreflexo. A sensibilidade baroreflexa simpática aumenta durante mudança da postura, mas continua inalterada enquanto persiste a posição ortostática. Assim, existe uma relação positiva entre a RVPT e a atividade do nervo simpático muscular, indicando que o controle do nervo simpático vasomotor está ainda importante em pelo menos 45 minutos de posição ortostática. Também tem sido observado que o aumento da atividade do nervo simpático muscular está associado a uma redução do VS, havendo uma relação inversa entre os dois.

Em posição supina, no presente estudo, observou-se, em todos os grupos, uma correlação inversa significante entre RVPT e VS. No Grupo II, tal relação torna-se ainda mais evidente.

Em posição ortostática, no grupo da insuficiência de resistência vascular periáfrica (Grupo II), houve perda dessa relação inversa entre VS e RVPT já nos primeiros 10 minutos de inclinação, porque a RVPT não teve o aumento proporcional esperado à redução do VS, revelando que este grupo, além de apresentar VS reduzido, não apresentou a capacidade de compensá-lo adequadamente pela RVPT. Os dados encontrados sugerem que a RVPT mais elevada em posição supina, no Grupo II em relação aos demais pacientes, pode funcionar como um dos mecanismos de compensação para permitir maior tolerância à posição ortostática.

Na literatura, estudos em pacientes com disautonomia que apresentam grave repercussão hemodinâmica ao assumir a posição ereta, manifestam, além da insuficiência em elevar a RVPT, redução exagerada no débito cardíaco, comparado a indivíduos saudáveis, em decorrência de um aumento da capacidade venosa e resposta cronotrópica inapropriada. Entretanto, os pacientes do presente estudo não apresentaram repercussão hemodinâmica apesar da presença de insuficiência de resistência vascular periáfrica em ortostase. Observou-se redução discreta do VS ao assumir a posição ortostática, de modo que o delta do VS, neste grupo, foi significativamente menor do que nos demais.

Complacência venosa reduzida, neste grupo, foi outro fator que influenciou para a estabilidade hemodinâmica, uma vez que a elevação da FC foi suficiente para manter a PA, apesar da redução da RVPT durante a posição ortostática. Como parte da protocolo para realização do teste de inclinação, é necessária a retirada do uso de betabloqueadores por pelo menos 5 meia-vidas. É possível que na vigência de betabloqueador, muitos desses pacientes apresentem mais repercussão hemodinâmica devido ao mecanismo de compensação de elevar a FC estar bloqueado.

Com as limitações que foram mencionadas, percebeu-se a capacidade de elevar a resistência vascular ao assumir a posição ortostática causada por anormalidades no sistema nervoso autônomo e a principal causa de hipotensão postural ou síncope em paciente com diversos distúrbios primários (insuficiência autonômica pura, doença de Parkinson) e secundários (diabetes mellitus, uremia). Em tais pacientes com insuficiência adrenérgica, observou-se, durante o teste de inclinação, redução progressiva da PA e da pressão de pulso, podendo a resposta da FC ser atenuada ou aumentada quando a inervação cardíaca se encontra preservada. Aumento nas oscilações da PA e PA, apesar de aumento da RVPT, redução exagerada no débito cardíaco, comparada a indivíduos saudáveis, em decorrência de um aumento da capacidade venosa e resposta cronotrópica inapropriada. A redução da sensibilidade alfa-adrenérgica vascular tem sido observada em pacientes com sintomas de intolerância ortostática, sendo a resposta mais comprometida nos pacientes portadores de STOP, nos quais se observou incapacidade maior de elevação da RVPT durante estresse ortostático. A redução da sensibilidade dos receptores vasculares alfa-adrenérgicos durante o estresse ortostático pode ser uma das hipóteses para as alterações da resposta da RVPT observada nos pacientes do Grupo II do presente estudo.

Apesar de os pacientes terem se mantido estáveis hemodinamicamente por um período de 20 minutos de posição ortostática observou-se, nos pacientes do Grupo...
II, PA média e RVPT significativamente inferior em relação aos do Grupo I no tilt 20’. Essa queda, se persistente por períodos prolongados de posição ortostática, pode se refletir em redução maior da PA. É possível, inclusive, que haja comprometimento da perfusão periférica e cerebral, mesmo em vigência de estabilidade hemodinâmica (com PA baixa no limite inferior para sincope iminente).

Limitações do estudo

Neste estudo, por seu caráter retrospectivo, a quantificação de sintomas de sincope e pré-sincope foi prejudicada. Não foram realizadas dosagens de catecolaminas séricas, uma vez que o objetivo principal era avaliar as alterações hemodinâmicas. A monitorização dos parâmetros hemodinâmicos foi realizada com método não invasivo, já validado em estudos prévios.27

O número de pacientes foi limitado e as medidas dos parâmetros hemodinâmicos não foram corrigidas para a superfície corporal, uma vez que esta era semelhante entre os grupos.

Outro ponto a ser considerado é a diferença de faixa etária entre os grupos estudados e os controles. Pelo fato de os indivíduos jovens poderem apresentar uma resposta hemodinâmica diferente, tomamos o cuidado de ajustar os dados para a idade (ANCOVA, com idade como covariável).

Quatro pacientes usavam drogas com potencial efeito vasodilatador (inibidores da ECA e bloqueador de canais de cálcio). Essas drogas não foram suspensas, tais pacientes, porém, fazem parte do Grupo I, ou seja, com resposta esperada de elevação da RVPT.

Conclusões

Volume sistólico reduzido foi consistentemente observado nos grupos de pacientes com intolerância ortostática, comparados aos controles.

Entre os pacientes estudados, 46% apresentaram insuficiência de resistência vascular periférica em ortostase durante o tilt teste. Nestes, em posição supina, verificamos VS e DC mais reduzidos e RVPT ainda mais elevada em relação aos demais pacientes estudados. Aos 10 minutos de inclinação, neste grupo, foi observada a perda da correlação inversa entre VS e RVPT, enquanto, nos demais pacientes, foi mantida em todo o exame.

Implicações clínicas

Pacientes com sintomas inespecíficos de tontura, dispneia e desconforto torácico podem ser portadores de intolerância ortostática, sem apresentarem a sincope vaso-vagal clássica ou hipotensão ortostática mensurável. A identificação de que o VS pode ser participante importante desse quadro indica que medidas não farmacológicas para aumentá-lo (como aumento da ingesta hídrica, exercícios físicos regulares) podem ajudar a tratar esses pacientes.

Contribuição dos autores

Concepcão e desenho da pesquisa: Távora-Mehta MZP, Mehta N, Magajevski A, Maluf DLS, Concato L, Ortiz MR, Cunha CLP; Obtenção de dados: Távora-Mehta MZP, Mehta N, Magajevski A, Maluf DLS, Concolato L, Doubrava E, Ortiz MR, Cunha CLP; Análise e interpretação dos dados: Távora-Mehta MZP, Magajevski A, Doubrava E; Análise estatística: Távora-Mehta MZP, Magajevski A, Oliveira L; Redação do manuscrito: Távora-Mehta MZP, Mehta N, Magajevski A, Oliveira L; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Mehta N, Oliveira L, Cunha CLP.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Este artigo é parte de Dissertação de Mestrado de Adriano Magajevski pela Universidade Federal do Paraná.

Referências

1. Kanjuwal K, Sheikh M, Karabin B, Kanjwal Y, Grubb BP. Neurocardiogenic syncope coexisting with postural orthostatic syndrome in patients suffering from orthostatic intolerance: a combined form of autonomic dysfunction. Pacing Clin Electrophysiol. 2011;34(5):549-54.
2. Medow MS, Stewart JM. The postural tachycardia syndrome. Cardiol Rev. 2007;15(2):67-75.
3. Fucà G, Dinelli M, Sazzani P, Scarfo S, Tossiniari F, Alboni P. The venous system is the main determinant of hypotension in patients with vasovagal syncope. Europace. 2006;8(10):839-45.
4. Nilsson D, Sutton R, Tas W, Burri P, Melgardar U, Fedorovski A. Orthostatic changes in hemodynamics in dysautonomic patients. Plos One. 2015;10(6):e0128962.
5. Parsaik A, Allison TG, Singer W, Sletten DM, Joynes MJ, Benaroch EE, et al. Deconditioning in patients with orthostatic intolerance. Neurology. 2012;79(14):1435-9.
6. Lambert E, Lambert GW. Sympathetic dysfunction in vasovagal syncope and the postural orthostatic tachycardia syndrome. Front Physiol. 2014;5:280.
7. Brignole M, Benditt DG. Syncope: an evidence-based approach. London:Springer;2011.p.180-96.
8. Grubb BP, Kosinski DJ. Syncope resulting from autonomic insufficiency syndromes associated with orthostatic intolerance. Med Clin North Am. 2001;85(2):457-72.
9. Stewart JM, Montgomery LD. Regional blood volume and peripheral blood flow in postural orthostatic tachycardia. Am J Physiol Heart Circ Physiol. 2004;287(3):H1319-27.

10. Raj SR, Robertson D. Blood volume perturbation in the postural tachycardia syndrome. Am J Med Sci 2007;334(1):57-60.

11. Raj SR, Biaggioni I, Yamhure P, Black B, Paranjape SY, Bime OW, et al. Renin-Aldosterone Paradox and Perturbed blood volume regulation underlying postural tachycardia syndrome. Circulation. 2005;111(13):1574-82.

12. Sandroni P, Opfer-Gehrking, TL, Bernarroch EE, Shen WK, Low PA. Certain cardiovascular indices predict syncope in the postural tachycardia syndrome. Clin Auton Res. 1996;6(4):225-31.

13. Fu Q, Vangundy TB, Galbreath MM, Shibata S, Jain M, Hastings JL, et al. Cardiac origin of the postural orthostatic tachycardia syndrome. J Am Coll Cardiol. 2010;55(25):2850-68.

14. Mehta MZP, Mehta N, Guzman JC, Morillo CA. New insights into the mechanisms of postural orthostatic tachycardia syndrome. In: 33rd Heart Rhythm Heart - Annual Scientific Sessions, Boston (MA), 2012. Heart Rhythm. 2012;9(5):S85.

15. Blomqvist CG, Stone HL. Cardiovascular adjustments to gravitational stress. In: Shepherd JT, Abboud FM. Handbook of physiology. Bethesda: American Physiological Society; 2011.p.1025-63.

16. Harms HP, Colier WN, Wieling W, Orthostatic Intolerance, cerebral oxygenation, and blood velocity in human sympathetic failure. Stroke. 2000;31(7):1608-14.

17. Rowell LB. Human cardiovascular control. Oxford: Oxford University Press; 1993.

18. Smit AA, Halliwell JR, Low PA, Wieling W. Topical review: pathophysiological basis of orthostatic hypotension in autonomic failure. J Physiol. 1999;519(Pt1):1-10.

19. Wieling W, Karemaker JM. Measurement of heart rate and blood pressure to evaluate disturbance in neurocardiovascular control. In: Mathias CJ, Bannister R, eds. Autonomic failure: a textbook of clinical disorders of autonomic nervous system. 4th ed. Oxford: Oxford University Press; 2007.

20. Moak JP, Leong D, Fabian R, Freedenberg V, Jarosz, Toney C, et al. Intravenous hydration for management of medication-resistant orthostatic intolerance in the adolescent and young adult. Pediatr Cardiol. 2016;37(2):278-82.

21. Fu Q, Witkowski S, Levine BD. Vasoconstrictor reserve and sympathetic neural control of orthostasis. Circulation. 2004;110(18):2931-7.

22. Fu Q, Shook RP, Okazaki K, Hastings JL, Shibata S, Conner CL, et al. Vasomotor sympathetic neural control is maintained during sustained upright posture in humans. J Physiol. 2006;577(Pt2):679-87.

23. Mathias CJ. Orthostatic hypotension: causes, mechanisms and influencing factors. Neurology. 1995;45(Suppl 5):S6-11.

24. Wieling W, Lieshout JLV. Maintenance of postural normotension in humans. In: Low PA, Benarroch EE. Clinical autonomic disorders. 3rd ed Philadelphia: Lippincott Williams & Wilkins; 2008.p.69-77.

25. Low PA, Stetten DM. Laboratory evaluation of autonomic failure. In: Low PA, Benarroch EE. Clinical autonomic disorders. 3rd ed Philadelphia: Lippincott Williams & Wilkins; 2008.p.169-95.

26. Mehta N, Mehta MJT, Guzman CA, Morillo CA. Reduced alpha-adrenergic vascular response: the physiological link between postural orthostatic tachycardia syndrome and neurally mediated syncope. In: 23rd International Symposium on the nervous system, Paradise Island, Bahamas, 2012. Clin Auton Res. 2012;12(4):207-330.

27. Bayram M, Yancy CW. Transthoracic impedance cardiography: A noninvasive method of hemodynamic assessment. Heart Failure Clin. 2009; 5(2):161-8.