Research Paper

The Effect of an 8-Week Endurance Training Program on the Content of FOXO3a and Beclin-1 Proteins in Heart Muscle of Rats With Type 2 Diabetes

Masoud Jokar1, *Mohammad Sherafati Moghadam2, Farhad Daryanoosh3

1. Department Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran.
2. Department of Pure and Basic Science, Hashtgerd Branch, Islamic Azad University, Alborz, Iran.
3. Department of Exercise Physiology, School of Education and Psychology, University of Shiraz, Shiraz, Iran.

Abstract

Background: The FOXO3a/Beclin-1 pathway is an important pathway in autophagy that can be impaired in diabetic patients who are prone to cardiomyopathy.

Objective: The aim of this study was to investigate the effect of an 8-week endurance training program on the content of FOXO3a and Beclin-1 proteins in the heart muscle tissue of rats with type 2 diabetes.

Method: This experimental study was conducted on 12 male two-month-old Sprague Dawley rats with a mean weight of 270±20 g. After diabetic induction by streptozotocin and nicotinamide, rats were randomly assigned into two groups of diabetic-exercise (n=6) and diabetic-control (n=6). The diabetic-exercise group received intervention 4 days per week, each session for 42 minutes at a speed of 10-30 m/min for 8 weeks, while the control group received no any training program. The rats did not receive any insulin treatment during the study. Collected data were analyzed using independent t-test at a significance level of P≤0.05.

Findings: No significant changes were observed in the content of FOXO3a (P=0.12) and Beclin-1 (P=0.34) proteins in the training group compared to the control group after intervention.

Conclusion: The endurance training can not affect the content of FOXO3a and Beclin-1 proteins. Therefore, it seems that endurance training may not affect autophagy signaling in the heart muscle of type 2 diabetic patients.

Keywords: Endurance training, Cardiac muscle, beclin-1, FOXO3a, Type 2 diabetes

Extended Abstract

1. Introduction

Diabetic cardiomyopathy is one of the most important complications of type 2 diabetes, which is known as a specific disease of the heart muscle [5]. Diabetic cardiomyopathy predisposes cardiac muscle cells to cell death and eventually causes muscle contraction [6]. Autophagy is a process to maintain cellular survival through which cytoplasmic components are destroyed. Autophagy is responsible for recycling macromolecules to generate energy and renewal within the cell [8]. Defects in autophagy process can cause numerous diseases, including diabetes, cancer, neurological problems, infection, and aging [9]. Forkhead Box class O (FOXO) family member proteins such as FOXO3a are involved in autophagy promotion. FOXO3a, by activating proteins such as Beclin-1, can cause autophagy and apoptosis. Thus, this interaction may be an important mechanism in regulation of both autophagy and apoptosis [11].

* Corresponding Author:
Mohammad Sherafati Moghadam
Address: Department of Pure and Basic Science, Hashtgerd Branch, Islamic Azad University, Alborz, Iran.
Tel: +98 (916) 6729271
E-Mail: m.sherafati@hiau.ac.ir
regulating autophagy and apoptosis, Beclin-1 protein plays an important role as a "cell death pathway" [13].

Exercise is one of the important ways for the prevention and treatment of heart disease. It has a positive effect on the physiology and morphology of the heart tissue [14]. Cellular adaptation to physical activity can be related to cellular and molecular factors and cause cardiac growth by inducing hypertrophy and cardiomyocyte remodeling [15]. Autophagy during exercise can limit tissue damage, restore tissue integrity, terminate inflammatory responses, and generate direct signals for adaptation [16]. There are limited number of studies on the cellular mechanism, autophagy, especially the FOXO3a and Beclin-1 proteins pathway, in patients with type 2 diabetic who are susceptible to cardiomyopathy and myocyte necrosis. The aim of this study was to investigate the effect of a 8-week endurance training program on the content of FOXO3a and Beclin-1 proteins in heart muscle tissue of Sprague-Dawley rats with type 2 diabetes.

2. Materials and Methods

The present study is an experimental/fundamental research conducted on twelve male 2-month-old Sprague Dawley rats with a mean weight of 270±20 g. To induce the type 2 diabetes in rats, streptozotocin was injected intraperitoneally once at a dose of 60 mg/kg body weight, after 15 minutes of nicotinamide injection at a dose of 110 mg/kg body weight [19]. To ensure that the animals were diabetic, their blood glucose level was measured 72 hours after injection, and the glucose level of 130-260 mg/dl was considered as diagnostic criterion for type 2 diabetes [20]. One week after induction of diabetes, the rats were randomly divided into two groups of diabetic-exercise (n=6) and diabetic control (n=6).

The exercise group received intervention for 8 weeks, 4 sessions per week. Each session, they ran for 42 minutes on a treadmill, which included 6-min warm up (at a speed of 10-12 m/min), 30-min endurance training (at an intensity of about 50-70% of maximum heart rate and a speed of 10-30 m/min) and 6-min cooling down (at a speed of 10-12 m/min). The treadmill incline was at zero degree and did not change for 8 weeks [21]. During this period, the control group received no any training program. The study rats did not have any insulin therapy during the study period. To eliminate the acute effects of exercise and the uncontrollable stressors in subjects during the exercise intervention, they were anesthetized based on ethical principles 24 hours after the last training session by intraperitoneal injection of Ketamine/Xylazine combination. Then, the heart muscle tissue was removed from the body, washed in physiological saline, and immediately frozen with nitrogen and kept at 80°C for future analysis.

The variables of research were measured using western blot method. Proteins were measured by a chemical reaction (Chemiluminescence) and visualized using x-ray film. Densitometric analysis was conducted in ImageJ v.112.0.8.1 software, and the results were normalized to intrinsic control protein (β-actin) in multiples control groups [24]. For statistical analysis in SPSS V. 19 software, first the Kolmogorov-Smirnov test (KS) was used to determine the normality of data distribution. Since the distribution was normal, independent t-test was used for comparing the study groups. The significance level was set as P≤0.05.

3. Results

The results showed that after 8 weeks of endurance training, there was no significant change in FOXO3a protein content between study groups (P=0.12) (Figure 1, A and B). The endurance training intervention could not significantly decrease the Beclin-1 protein content in cardiac muscle tissue (P=0.34) among study groups (Figure 2, A and B).

4. Discussion

Marfe et al. (2012) showed a decrease in FOXO3a transcription after a prolonged period of physical activity, leading to helplessness in heart and skeletal muscle tissue rats [17]. Brandt et al. (2018) showed that moderate-intensity cycling training significantly increased Beclin-1 protein content immediately and after exercise compared its content before exercise [18]. These are consistent with our results. Overall, the results of this study showed that endurance training can not significantly change the content of FOXO3a and Beclin-1 proteins. Therefore, it seems that endurance training may not affect autophagy in the heart muscle of type 2 diabetic subjects. It is necessary to pay attention to the characteristics of exercise (such as intensity, duration and type) to optimally modify the autophagy signaling in the heart muscle. Further studies should be conducted in this area.

Ethical Considerations

Compliance with ethical guidelines

This study was obtained an ethical approval from Shiraz University of Medical Sciences (Code: IR.SUMS.REC.1396.S1062).
Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions

Writing: All authors; Resources & validation: Masoud Jokar; Editing and project administration: Mohammad Sharafati Moghadam; Data analysis and Methodology: Farhad Daryanoosh.

Conflicts of interest

The authors declared no conflict of interest.
تأثیر هشت هفته تمرين استقامتي بر محتوی پروتئين های FOXO3a و Beclin-1 در بافت عضله قلب موس های صحراي نر مبتلا به دیابت نوع 2

مسعود جوکار 1، محمد شرافتي مقدم 2، فرهاد دريانوش 3

1. گروه فیزیولوژی ورزشی، دانشگاه علوم پزشکی شيراز، شیراز، ایران
2. گروه فیزیولوژی ورزشی، موسسه مطالعاتی و برنامه ریزی دانشگاه آزاد اسلامی ورزشیان
3. گروه فیزیولوژی ورزشی، موسسه مطالعاتی و برنامه ریزی دانشگاه آزاد اسلامی ورزشیان

مقدمه
دیابت نوع 2، یکی از بیماری‌های قلبی عروقی می‌باشد که مهم‌ترین علل مرگ و میر در افراد با دیابت است. ۶۰ درصد افراد با دیابت نوع 2، بیماری‌های قلبی عروقی داشته‌اند.

یيمیرهای قلبی عفونی شده نگرانی کاربران مربوط به مصرف‌کننده می‌باشد.

یيمیرهای قلبی عفونی شده نگرانی کاربران مربوط به مصرف‌کننده می‌باشد.

کلیدواژه‌ها: تمرين استقامتي، عضله قلب، پروتئين Beclin-1، پروتئین FOXO3a

متأسفانه، پژوهش دریافت نشده است.
در و مردان کاریومیوپاتی‌های دیابتی تا مخصوصا که اتوفاژی قلبی نمایش داده می‌شود. در محققان در جهت انسان، این اتوفاژی به همراه با عوامل خطرزای قلبی مانند بیماری‌های قلبی شناسی می‌باشد. به هدف تحقیق در این مقاله، این عوامل و عوامل خطرزای قلبی مورد بررسی قرار گرفته است.

Beclin-1 بیماری‌های قلبی‌یاری به همراه با عوامل شناسی و بیماری‌های قلبی‌یاری در جامعه بیماری‌های قلبی-عروقی می‌باشد. در این مقاله، تأکید شده است که عوامل خطرزای قلبی‌یاری به همراه با عوامل شناسی و بیماری‌های قلبی-عروقی در جامعه بیماری‌های قلبی-عروقی می‌باشد.

Beclin-1 و FOXO3a در تنظیم سیر اتوفاژی لازم می‌باشد این تأکید شده است که عوامل خطرزای قلبی‌یاری به همراه با عوامل شناسی و بیماری‌های قلبی-عروقی در جامعه بیماری‌های قلبی-عروقی می‌باشد.

Beclin-1 و FOXO3a در تنظیم سیر اتوفاژی لازم می‌باشد این تأکید شده است که عوامل خطرزای قلبی‌یاری به همراه با عوامل شناسی و بیماری‌های قلبی-عروقی در جامعه بیماری‌های قلبی-عروقی می‌باشد.

Beclin-1 و FOXO3a در تنظیم سیر اتوفاژی لازم می‌باشد این تأکید شده است که عوامل خطرزای قلبی‌یاری به همراه با عوامل شناسی و بیماری‌های قلبی-عروقی در جامعه بیماری‌های قلبی-عروقی می‌باشد.

Beclin-1 و FOXO3a در تنظیم سیر اتوفاژی لازم می‌باشد این تأکید شده است که عوامل خطرزای قلبی‌یاری به همراه با عوامل شناسی و بیماری‌های قلبی-عروقی در جامعه بیماری‌های قلبی-عروقی می‌باشد.

Beclin-1 و FOXO3a در تنظیم سیر اتوفاژی لازم می‌باشد این تأکید شده است که عوامل خطرزای قلبی‌یاری به همراه با عوامل شناسی و بیماری‌های قلبی-عروقی در جامعه بیماری‌های قلبی-عروقی می‌باشد.
برای تعیین نرمالیتی توزیع (شرکت سانتاکروز ساخت کشور آمریکا) مورد استفاده به مدت یک ساعت در دمای اتاق در چهار درصد گلیسرول، پنج درصد بتا سری به مقدار 500 میلی گرم و در دمای یخچال در یک سانتریفیوژ و یک روش آزمایشگاهی وسترن بلات متغیرهای پژوهش 14، 13، 12، 9، 8، 7، 6 و 5 به مدت یک ساعت در پنج درصد سرم آلبومین گاوی رadioimmunoprecipitation Assay Buffer مایع ازت منجمد شد و برای سنجش های بعدی با دمای منهای 2 درجه سانتی گراد گذاشته شد. سپس در روش پژوهش 11 درجه سانتی گراد فاتحه 12 و 13 درجه سانتی گراد به مدت 10 دقیقه سانتریفیوژ شده سپس معده سوخت و با بافت عضله قلب موش های صحرایی نر مبتلا به دیابت نوع 12 از آنتی بادی اولیه نرمی رابطه ترمیم اصلی شعل دویدند (sprayed رادیو ایمپریم سالین) با سرعت پنج متر در دقیقه بود. سپس اندازه گیری حداکثر سرعت با سرعت پنج متر در دقیقه شروع و هر سه دقیقه سرعت تردمیل پنج متر در دقیقه افزایش کرد. آزمون اندازه‌گیری حداکثر سرعت با سرعت پنج متر در دقیقه شروع و هر سه دقیقه سرعت تردمیل پنج متر در دقیقه فاصله پلی پاکسین (میمون) نسبت به گروه کنترل بلافاصله پس از القای دیابت، موش های صحرایی به روش تصادفی به دو گروه مانند تفاوت در دمای تلفیق (رگ های شکر شور) می‌گوید. سپس به روش مطالعه مصوب دانشگاه علوم پزشکی شیراز مورد کار با حیوانات آزمایشگاهی مصوب دانشگاه علوم پزشکی شیراز مورد توجه قرار گرفت.
پژوهش

به هنگام هشته هفته تمرین استقامتی، تغییر معنی‌داری در محصول پروتئین‌های FOXO3a و Beclin-1 بین گروه‌های اصلی و مرجع مشاهده گردید که در نتایج آزمایش SPSS به فاصله 0.05 تفاوت معنی‌داری مشاهده گردید.

نتایج تحقیق

به یاد داشته که تمرین استقامتی موجب تغییر معنی‌داری در محصول پروتئین‌های FOXO3a و Beclin-1 بین گروه‌های اصلی و مرجع مشاهده گردید که دارای مقیاسهای تغییر معنی‌داری بودند.

نتایج تحقیق

نتایج تحقیق حاضر در یک راستاست؛ زیرا در هر دو تحقیق محتوای پروتئین FOXO3a در یک راستاست و در مقابل کنترل داخلی (بتا-اکتین) که به صورت چند برابر شده در گروه در مقابل کنترل داخلی (بتا-اکتین) که به صورت چند برابر شده در گروه شاهد ارائه شده است.

نتایج تحقیق

نتایج تحقیق حاضر در یک راستاست؛ زیرا در هر دو تحقیق محتوای پروتئین FOXO3a در یک راستاست و در مقابل کنترل داخلی (بتا-اکتین) که به صورت چند برابر شده در گروه شاهد ارائه شده است.

نتایج تحقیق

نتایج تحقیق حاضر در یک راستاست؛ زیرا در هر دو تحقیق محتوای پروتئین FOXO3a در یک راستاست و در مقابل کنترل داخلی (بتا-اکتین) که به صورت چند برابر شده در گروه شاهد ارائه شده است.

نتایج تحقیق

نتایج تحقیق حاضر در یک راستاست؛ زیرا در هر دو تحقیق محتوای پروتئین FOXO3a در یک راستاست و در مقابل کنترل داخلی (بتا-اکتین) که به صورت چند برابر شده در گروه شاهد ارائه شده است.

نتایج تحقیق

نتایج تحقیق حاضر در یک راستاست؛ زیرا در هر دو تحقیق محتوای پروتئین FOXO3a در یک راستاست و در مقابل کنترل داخلی (بتا-اکتین) که به صورت چند برابر شده در گروه شاهد ارائه شده است.

نتایج تحقیق

نتایج تحقیق حاضر در یک راستاست؛ زیرا در هر دو تحقیق محتوای پروتئین FOXO3a در یک راستاست و در مقابل کنترل داخلی (بتا-اکتین) که به صورت چند برابر شده در گروه شاهد ارائه شده است.

نتایج تحقیق

نتایج تحقیق حاضر در یک راستاست؛ زیرا در هر دو تحقیق محتوای پروتئین FOXO3a در یک راستاست و در مقابل کنترل داخلی (بتا-اکتین) که به صورت چند برابر شده در گروه شاهد ارائه شده است.
میوسته‌ها قابل توجهی پایانده‌ای در زمینه مکانیسم‌های میتوفاژی و آنوفاژی بی‌کاری و نگرانی در زمینه استقلالیتی لیو می‌شود که این اتفاقات به صورت کلی از نظر زیست‌پزشکی و نیز به دلیل وجود غیریابی در تغییرات آنوفاژی در میوه و یا آتوفاژی در میتهای پیشینی در سیستمیک‌های میتوفاژی در حالت قلبی، زیرا برای محققان در مورد موارد می‌تواند یکی از مواردی است که باید به سطح بی‌بیانه‌ای در مورد منجر به مداخله به مراحل میتوفاژی قلبی در زمینه استقلالیتی لیو می‌شود که این اتفاقات به صورت کلی از نظر زیست‌پزشکی و نیز به دلیل وجود غیریابی در تغییرات آنوفاژی در میوه و یا آتوفاژی در میتهای پیشینی در سیستمیک‌های میتوفاژی در حالت قلبی، زیرا برای محققان در مورد موارد می‌تواند یکی از مواردی است که باید به سطح بی‌بیانه‌ای در مورد منجر به مداخله به مراحل میتوفاژی قلبی در زمینه استقلالیتی لیو می‌شود که این اتفاقات به صورت کلی از نظر زیست‌پزشکی و نیز به دلیل وجود غیریابی در تغییرات آنوفاژی در میوه و یا آتوفاژی در میتهای پیشینی در سیستمیک‌های میتوفاژی در حالت قلبی، زیرا برای محققان در مورد موارد می‌تواند یکی از مواردی است که باید به سطح بی‌بیانه‌ای در مورد منجر به مداخله به مراحل میتوفاژی قلبی در زمینه استقلالیتی لیو می‌شود که این اتفاقات به صورت کلی از نظر زیست‌پزشکی و نیز به دلیل وجود غیریابی در تغییرات آنوفاژی در میوه و یا آتوفاژی در میتهای پیشینی در سیستمیک‌های میتوفاژی در حالت قلبی، زیرا برای محققان در مورد موارد می‌تواند یکی از مواردی است که باید به سطح بی‌بیانه‌ای در مورد منجر به مداخله به مراحل میتوفاژی قلبی در زمینه استقلالیتی لیو می‌شود که این اتفاقات به صورت کلی از نظر زیست‌پزشکی و نیز به دلیل وجود غیریابی در تغییرات آنوفاژی در میوه و یا آتوفاژی در میتهای پیشینی در سیستمیک‌های میتوفاژی در حالت قلبی، زیرا برای محققان در مورد موارد می‌تواند یکی از مواردی است که باید به سطح بی‌بیانه‌ای در مورد منجر به مداخله به مراحل میتوفاژی قلبی در زمینه استقلالیتی لیو می‌شود که این اتفاقات به صورت کلی از نظر زیست‌پزشکی و نیز به دلیل وجود غیریابی در تغییرات آنوفاژی در میوه و یا آتوفاژی در میتهای پیشینی در سیستمیک‌های میتوفاژی در حالت قلبی، زیرا برای محققان در مورد موارد می‌تواند یکی از مواردی است که باید به سطح بی‌بیانه‌ای در مورد منجر به مداخله به مراحل میتوفاژی قلبی در زمینه استقلالیتی لیو می‌شود که این اتفاقات به صورت کلی از نظر زیست‌پزشکی و نیز به دلیل وجود غیریابی در تغییرات آنوفاژی در میوه و یا آتوفاژی در میتهای پیشینی در سیستمیک‌های میتوفاژی در حالت قلبی، زیرا برای محققان در مورد موارد می‌تواند یکی از مواردی است که باید به سطح بی‌بیانه‌ای در مورد منجر به مداخله به مراحل میتوفاژی قلبی در زمینه استقلالیتی لیو می‌شود که این اتفاقات به صورت کلی از نظر زیست‌پزشکی و نیز به دلیل وجود غیریابی در تغییرات آنوفاژی در میوه و یا آتوفاژی در میتهای پیشینی در سیستمیک‌های میتوفاژی در حالت قلبی، زیرا برای محققان در مورد موارد می‌تواند یکی از مواردی است که باید به سطح بی‌بیانه‌ای در مورد منجر به مداخله به مراحل میتوفاژی قلبی در زمینه استقلالیتی لیو می‌شود که این اتفاقات به صورت کلی از نظر زیست‌پزشکی و نیز به دلیل وجود غیریابی در تغییرات آن.
References

[1] Yang JS, Lu CC, Kuo SC, Hsu YM, Tsai SC, Chen SY, et al. Autophagy and its link to type II diabetes mellitus. Biomedicine. 2017; 7(2):8. [DOI:10.1051/bmdcn/2017070201] [PMID] [PMCID]

[2] Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013; 93(1):137-88. [DOI:10.1152/physrev.00045.2011] [PMID]

[3] Konduracka E, Cieslik G, Galicka-Latala D, Rostoff P, Pietrucha A, Latacz P, et al. Myocardial dysfunction and chronic heart failure in patients with long-lasting type 1 diabetes: A 7-year prospective cohort study. Acta Diabetol. 2013; 50(4):597-606. [DOI:10.1007/s00592-013-0455-0] [PMID] [PMCID]

[4] Gilbert RE, Krum H. Heart failure in diabetes: Effects of anti-hyperglycaemic drug therapy. Lancet. 2015; 385(9982):2107-17. [DOI:10.1016/S0140-6736(15)61402-1]

[5] Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Fail Rev. 2013; 18(2):149-66. [DOI:10.1007/s10741-012-9313-3] [PMID] [PMCID]

[6] Kanter M, Aksu F, Takir M, Kostek O, Kanter B, Oymagil A. Effects of low intensity exercise against apoptosis and oxidative stress in Streptozotocin-induced diabetic rat heart. Exp Clin Endocrinol Diabetes. 2017; 125(09):583-91. [DOI:10.1055/s-0035-1569332]

[7] Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis. 2017; 1865(2):252-61. [DOI:10.1016/j.bbadis.2016.11.023] [PMID]

[8] Sinha RA, Singh BK, Yen PM. Reciprocal crosstalk between autophagic and endocrine signaling in metabolic homeostasis. Endocr Rev. 2017; 38(1):69-102. [DOI:10.1210/er.2016-1103] [PMID]

[9] Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: From pathophysiology to treatment. J Hematol Oncol. 2017; 10:67. [DOI:10.1186/s13045-017-0436-9] [PMID] [PMCID]

[10] Ward ML, Crossman DJ. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World J Cardiol. 2014; 6(7):577-84. [DOI:10.4330/wjc.v6.i7.577] [PMID] [PMCID]

[11] Munasinghe PE, Katare R. Maladaptive autophagy in diabetic heart disease. Int J Clin Exp Physiol. 2016; 3(4):155-65. [DOI:10.4101/2348-8832.196893]

[12] Xin Z, Ma Z, Jiang S, Wang D, Fan C, Di S, et al. FOXOs in the impaired heart: New therapeutic targets for cardiac diseases. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(2):486-98. [DOI:10.1016/j.bbadis.2016.11.023] [PMID]

[13] Wirawan E, Lippens S, Vanden Bergh T, Romagnoli A, Finia GM, Piacentini M, et al. Beclin1: A role in membrane dynamics and beyond. Autophagy. 2012; 8(1):6-17. [DOI:10.4161/auto.8.1.16645] [PMID]

[14] Gigliafranca A, Acampa W, Ricci F, Vitteli A, Torella G, Lucci R, et al. Exercise training early after acute myocardial infarction reduces stress-induced hyperperfusion and improves left ventricular function. Eur J Nucl Med Mol Imaging. 2013; 40(3):315-24. [DOI:10.1007/s00259-012-2302-x] [PMID] [PMCID]

[15] Tao L, Bei Y, Zhang H, Xiao J, Li X. Exercise for the heart: Signaling pathways. Oncotarget. 2015; 6(25):20773-84. [DOI:10.18632/oncotarget.4770]

[16] Moeren FC, Krüger K. Exercise, autophagy, and apoptosis. In: Bouchard C, editor. Molecular and Cellular Regulation of Adaptation to Exercise, Progress in Molecular Biology and Translational Science. Vol 135. Amsterdam: Elsevier; 2015. p. 407-22. [DOI:10.1016/bsmbs.2015.07.023]

[17] Marfe G, Manzi V, Tafani M, Pucci B, Gambacurta A, Russo MA, et al. The modulation of sirtuins and apoptotic proteins in rats after exhaustive exercise. J Mol Integ Physiol. 2012;2(3):65-74. [DOI:10.4236/jmip.2012.23010]

[18] Brandt N, Gunnarsson TP, Bangsbo J, Pilegaard H. Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Physiol Rep. 2018; 6(7):e13651. [DOI:10.14814/phy2.13651] [PMID] [PMCID]

[19] Sahni MM, Anwer T, Khan G, Siddiqui R, Moni Sivakumar S, Alam MF. The combination of canagliflozin and omega-3 fatty acid ameliorates insulin resistance and cardiac biomarkers via modulation of inflammatory cytokines in type 2 diabetic rats. Korean J Physiol Pharmacol. 2018; 22(5):493-501. [DOI:10.4196/kjpp.2018.22.5.493] [PMID] [PMCID]

[20] Khalili A, Neekoeian AA, Khasravi MB. Oleanu® improves glucose tolerance and lipid profile in rats with simultaneous renovascular hypertension and type 2 diabetes. J Asian Nat Prod Res. 2017; 19(10):1011-21. [DOI:10.1080/20986020.2017.1307834] [PMID]

[21] Shadmehr S, Sherafati Moghadam M, Daryanoosh F, Aghaei Bahmanbeglou N. The effect of endurance exercise on mTORC1 marker pathway in diabetic rats. Korean J Physiol Pharmacol. 2018; 50(4):597-606. [DOI:10.4196/kjpp.2018.22.5.493] [PMID] [PMCID]

[22] Garcia NF, Sponton ACS, Delbin MA, Parente JM, Castro MM, Zanesco A, et al. Metabolic parameters and responsiveness of isolated iliac artery in LDR-/- mice: Role of aerobic exercise training. Am J Cardiovasc Dis. 2017; 7(2):64-71. [PMID] [PMCID]

[23] Shabani M, Daryanoosh F, Salemi M, Koosholi Jahromi M, Fallahi AA. Effect of continuous training on the level of PPAR-γ and PRDM16 proteins in adipose tissue in overweight diabetest rats. J Qazvin Univ Med Sci. 2018; 22(3):4-12. [In Persian] [DOI:10.29252/qums.22.3.4]

[24] Sherafati Moghadam M, Salemi M, Daryanoosh F, Hemati Naifar M, Fallahi A. The effect of 4 weeks of high intensity interval training on the content of AKT1, mTOR, P70S6K1 and 4E-BP1 in soleus skeletal muscle of rats with type 2 diabetes: An experimental study. J Rafsanjan Univ Med Sci. 2018; 17(9):843-54. [In Persian] http://journal.rums.ac.ir/article-1-4269-en.html

[25] Ascensão A, Ferreira R, Magalhaes J. Exercise-induced cardioprotection-biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol. 2007; 117(1):16-30. [DOI:10.1016/j.ijcard.2006.04.076] [PMID]
[26] Powers SK, Quindry JC, Kavazis AN. Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic Biol Med. 2008; 44(2):193-201. [DOI:10.1016/j.freeradbiomed.2007.02.006] [PMID]

[27] McMillan EM, Paré MF, Baechler BL, Graham DA, Rush JWE, Quadrilatero J. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. PLoS One. 2015; 10(3):e0119382. [DOI:10.1371/journal.pone.0119382] [PMID] [PMCID]

[28] Lee Y, Kwon I, Jang Y, Song W, Cosio-Lima LM, Roltsch MH. Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. J Physiol Sci. 2017; 67(6):639-54. [DOI:10.1007/s12576-017-0555-7] [PMID] [PMCID]

[29] Wu CA, Huang DY, Lin WW. Beclin-1-independent autophagy positively regulates internal ribosomal entry site-dependent translation of hypoxia-inducible factor 1alpha under nutrient deprivation. Oncotarget. 2014; 5(17):7525-39. [DOI:10.18632/oncotarget.2265]

[30] Lee Y, Kang EB, Kwon I, Cosio-Lima L, Cavnar P, Javan GT. Cardiac kinetophagy coincides with activation of anabolic signaling. Med Sci Sports Exerc. 2016; 48(2):219-26. [DOI:10.1249/MSS.0000000000000774] [PMID] [PMCID]

[31] Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012; 149(2):274-93. [DOI:10.1016/j.cell.2012.03.017] [PMID] [PMCID]

[32] Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009; 122(20):3589-94. [DOI:10.1242/jcs.051011] [PMID] [PMCID]

[33] Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett. 2010; 584(7):1287-95. [DOI:10.1016/j.febslet.2010.01.017] [PMID] [PMCID]

[34] Tian XF, Cui MX, Yang SW, Zhou YJ, Hu DX. Cell death, dysglycemia and myocardial infarction (review). Biomed Rep. 2013; 1(3):341-6. [DOI:10.3892/br.2013.67] [PMID] [PMCID]