Assessment of Communication AFI and Uterocervical Angle with Pregnancy Duration in Patients with Preterm Premature Rupture of Membranes 24-34 Weeks

Farzaneh Abedini1, Nooshin Eshraghi2*, Mahdis Mohammadian Amiri1, Mahsa Danaei1

1. Department of Obstetrics and Gynecology, Akbarabadi Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
2. Department of Perinatology, Shahid Akbarabadi Hospital, Iran University of Medical Sciences, Tehran, Iran

ABSTRACT

Background & Objective: Premature rupture of membranes (PROM) and preterm delivery are the most important problems observed in pregnancies that can cause many consequences. The present study investigated the relationship between amniotic fluid index (AFI) and uterocervical angle in patients with PROM between 24 and 34 weeks of gestation.

Materials & Methods: This study was a cohort study carried out on 50 pregnant women with PROM. Inclusion criteria were 24 to 34 weeks of gestation and singleton deliveries. Demographic characteristics and pregnancy history of the subjects were determined through interviews and examinations. Moreover, AFI and uterocervical angle were determined based on ultrasound results. Subjects were followed up until delivery.

Results: Mean age of the patients was 25.14±5.32 years; 23 patients (46%) had delivery latency less than 7 days. The mean uterocervical angle in the delivery latency group ≤7 was significantly higher than that in the group more than 7 days (P<0.001). Moreover, the mean AFI in the delivery latency group ≤7 was significantly higher (P<0.001). The uterocervical angle above 107.7 with a sensitivity of 87% and a specificity of 88.9% had a predictive power and its area under curve (AUC) was 0.912 (P<0.001). The mean AFI below 5.4 with a sensitivity of 81.5% and a specificity of 65.5% had a predictive power (AUC: 0.866, P<0.001).

Conclusion: Uterocervical angle and AFI can be good predictors for assessing delivery latency in women with PROM. Furthermore, the mean uterocervical angle in the delivery latency group ≤7 days is significantly higher than that in the group more than 7 days, but conversely AFI is less.

Keywords: Premature Rupture of Membranes, Pregnancy, AFI, Uterocervical Angle

Introduction

Premature rupture of membranes (PROM) refers to the occurrence of rupture of fetal membranes before the onset of labor symptoms and is one of the most important problems observed in pregnancy (1, 2). This complication has a prevalence of 6 to 10%, 80% of which occur after 37 weeks of gestation. If the rupture of the membranes occurs before 37 weeks, it is called PPROM, which is a more serious problem and occurs in 1 to 2% of pregnancies (3, 4). The etiology of PROM is complex and is influenced by a variety of factors. Two-thirds of cases occur spontaneously or for unknown reasons (5, 6). Some of the risk factors are bleeding in pregnancy, twin pregnancy, genitourinary tract infections, smoking, low maternal weight, mechanical injuries, low sexual intercourse rate, low economic and social status, malnutrition, amniocentesis, fetal defects, cervical dilatation, and so on, however the most important cause of PROM is its history in previous pregnancies (5, 7, 8). Fetal and neonatal complications associated with PROM include prematurity, neonatal sepsis, neonatal respiratory distress syndrome (NRDS), intraventricular hemorrhage, risk of fetal and neonatal mortality, and increased risk of infection in the fetus and neonate (8, 9). Prolonged delay between the rupture of the membranes and the onset of labor may reduce neonatal complications (10, 11). In the past, fetal mortality was high in PROM deliveries. Today, with the identification of these pregnancies and proper care of the mother and fetus, the fetal mortality rate in these
pregnancies has been reduced (12, 13). The gestational age of 22 to 32 weeks is a critical and important period. The increase of gestational age every week during this period will reduce mortality by 5 to 15% (14). If the membranes rupture occurs before 24 weeks, it can cause hypoplasia (15).

PPROM is associated with preterm delivery in 30 to 40% of cases (3, 4). Premature birth is a very important problem in many countries, and despite many advances in prenatal care in the last four decades, including diagnostic and treatment technologies, not only the rate of preterm birth has not improved, but also the rate of preterm birth in the United States and Canada has increased by 20% (16). Premature infants have many complications such as functional disabilities, growth retardation, and seizures in infancy (17). The time interval between the rupture of the amniotic sac and the onset of labor pains is called the latent phase (18). This time is very important for the health of mother and fetus because 75% of perinatal deaths are related to infants died at the shorter latent phase of preterm labor (19). In order to prevent preterm labor, various treatment methods have been evaluated, all of which are aimed at delaying preterm labor and reducing fetal complications (20). Pharmacological inhibition of premature uterine contractions is one of the most widely available methods, however there is still disagreement about the best treatment and diagnosis (21-25). The main purpose of treatment and follow-up of patients with PROM is to maintain the health of mother and fetus (26, 27). In this regard, the use of non-invasive indices such as amniotic fluid index (AFI), cervical length, and uterocervical angle in some studies has shown good efficiency (9, 28) The benefits of using transvaginal ultrasound (TVU) to determine cervical length in order to predict the risk of preterm delivery with a healthy membrane in singleton and twin pregnancies have been demonstrated in previous studies (29-32). Several studies have reported that cervical length <2 cm may be associated with a shorter latent phase (33-35). Previous studies have also shown that low AFI (< 5) in patients with PPROM is associated with a shorter latent phase compared to the women with normal AFI (18, 36-39). Due to the importance of the subject, especially in PPROM patients, we decided to investigate the relationship between AFI and uterocervical angle in patients with PROM between 24 and 34 weeks of gestation.

Methods

This study was a cohort study performed on 50 pregnant women with PPROM referred to the hospitals affiliated to Iran University of Medical Sciences in 2019. According to a study by Mehr et al. (28), and using the following formula, 50 patients were selected.

\[n = \frac{(Z_1-\alpha/2+Z_1-\beta)^2 [(S_1)^2+(S_2)^2]}{(X_1-X_2)^2} \]

Inclusion criteria were gestational age between 24 and 34 weeks and singleton pregnancies. Exclusion criteria were fetuses with abnormal ultrasound and multiple cases and gestational age over 34 weeks, patients with cervical dilatation, patients with cervical insufficiency, patients with cerclage, patients with evidence of vaginal infection, people with high erythrocyte sedimentation rate (ESR) and positive C-reactive protein (CRP). All patients were treated with: azithromycin 1 gr orally until delivery single dose, ampicillin 2 gr intravenous (IV) every 6 hours up to 8 doses, then amoxicillin 500 mg every 8 hours orally up to 15 doses, and betamethasone 12 mg intramuscular (IM) every 24 hours up to two doses. Weekly examination with speculum, AFI, and differential complete blood cell count (CBC) were performed twice a week and participants were followed up until delivery and the interval between rupture of membranes and delivery was recorded for all individuals.

The first part of the data collection form included demographic characteristics such as age, parity, gravidity, height, and weight, and the second part included clinical information. The two AFI and uterocervical angle were determined and recorded based on the ultrasound results. The sensitivity and specificity were calculated by receiver operating characteristic (ROC) test for AFI and uterocervical angle.

Ethical Issues

This study was reviewed and approved by the Ethics Committee of Iran University of Medical Sciences (IR.IUMS.FMD.REC.1399.191). Before entering the study, written consent was obtained from all the patients and sufficient information about the objectives of the plan, how to implement it and review the consequences and benefits of the study for patients were provided to the patients.

Statistical Analysis

Descriptive results were presented as mean and standard deviation, frequency, and percentage. Independent t-test was used to compare the two means. Chi-square test was also used to evaluate the differences between the qualitative variables. ROC test was applied to determine the predictive power and cut point. P<0.05 was considered statistically significant. All data were analyzed using the SPSS software version 25.
Results

Mean age of the patients was 25.14 ± 5.32 years. Patients were divided into two groups of delivery latency ≤ 7 days and > 7 days. Twenty-three (46%) patients had delivery latency ≤ 7 days. Based on the results, there was no statistically significant difference between the two groups in terms of baseline characteristics ($P > 0.05$). Table 1 shows the basic characteristics of the patients studied in the two groups.

Table 1. Baseline data of the patients with delivery latency ≤ 7 days and > 7 days

Variable	Delivery	P-value		
	≤ 7, $n=23$	>7, $n=27$		
Age (year)	26.30 ± 6.16	23.96 ± 4.14	0.117	
BMI (kg/m²)	27.44 ± 3.33	28.15 ± 2.98	0.432	
BMI	0	13(44.8)	16(55.2)	
	1	8(47.1)	9(52.9)	1.000
	2	2(50.0)	2(50.0)	
	1	8(42.1)	11(57.9)	
	2	9(60.0)	6(40.0)	0.460
	3	6(37.5)	10(62.5)	

The mean uterocervical angle for the two groups of delivery latency ≤ 7 days and > 7 days was assessed using the independent t-test ($P < 0.001$). Table 2 displays the mean and standard deviation of the uterocervical angle for the two delivery latency groups.

Table 2. Eutroservical angle of the patients with delivery latency ≤ 7 days and > 7 days

Variable	Delivery	N	Mean	SD	P-value
Eutroservical angle	≤ 7	23	114.52	7.82	<0.001
	>7	27	97.11	7.98	

The mean AFI for the two groups was also assessed using the independent t-test ($P < 0.001$). Table 3 shows the mean and standard deviation of the AFI for the two delivery latency groups ≤ 7 days and > 7 days.

Table 3. Amniotic fluid index of the patients with delivery latency ≤ 7 days and > 7 days

Variable	Delivery	N	Mean	SD	P-value
Amniotic fluid index	≤ 7	23	4.54	1.97	<0.001
	>7	27	8.45	2.89	

The predictive power of uteroservical angle in the pregnant women with PPROM that were included in the two groups of delivery latency was evaluated using the ROC test. The results showed that uteroservical angle more than 107.5 had 87% sensitivity and 88.9% specificity, and the area under curve (AUC) was 0.912 ($P < 0.001$) (Figure 1).

The predictive power of AFI in the pregnant women with PPROM showed that AFI more than 5.4 had 81.5% sensitivity and 65.5% specificity. The AUC was 0.866 ($P < 0.001$) (Figure 2).
The mean gestational age for the two groups of delivery latency ≤7 days and >7 days was assessed using the independent t-test ($P=0.433$). Table 4 shows the mean and standard deviation of the gestational age for the two delivery latency groups.

Table 4. Gestational age of the patients with delivery latency ≤ 7 days and > 7 days

Variable	Delivery	N	Mean	SD	P-value
Gestational age	≤7	23	31.04	2.90	0.433
	>7	27	31.52	2.76	

Discussion

Considering that PROM is one of the most important problems observed in pregnancies that can cause consequences such as intrauterine infection and premature birth and its complications, this study aimed to investigate the relationship of AFI and uterocervical angle with gestational length in patients with PROM to use the two factors mentioned above for predicting the time of delivery. An analytical study in the United States was conducted to determine whether universal transvaginal cervical length (TVCL), AFI, or a combination of both can predict 7-day delivery latency in women with PROM. The results showed that in 48% of pregnant women with PROM, delivery occurred within 7 days after the rupture of the membranes, which was significantly associated with TVCL and AFI. AFI ≤5 with a probability of 7.4 times is more likely to give birth within 7 days after the rupture of the membranes, and TVCL >2 was associated with a 65% reduction in the rupture of the membranes. This study concluded that shorter TVCLs and AFI ≤5 cm independently predict labor in the next 7 days in women presenting with PROM. A combination of AFI >5 cm and TVCL >2 cm predicts the potential for non-delivery within the next 7 days. These findings may be useful for counseling and optimizing maternal and neonatal care in women with PPROM (30). The results of our study were consistent with the results of this study in that the mean AFI < 5.4 with a sensitivity of 81.5% and a specificity of 65.5% was a predictive factor. The AUC of AFI was 0.866, which is a good indicator to predict outcome. Today, delivery latency in women with PPROM can be predicted using the ultrasound parameters such as AFI, single deepest pocket (SDP) and TVCL. The combination of AFI and SDP was the most sensitive in this field and AFI was less than 7 and TVCL was less than 1.7. Therefore, AFI and SDP with TVCL can be useful parameters to predict the delay from PPROM to delivery time (34).

In another study by Mubarak et al., women with PPROM were examined and found that 44.7% delivered within 7 days after rupture of the membranes, with a sensitivity of 52.6% for TCVL and 71.1% for AFI (40). In a study by Daskalakis et al., it was stated that the uterocervical angle with a cut-off of 95 or 105 degrees is useful in predicting the gestational length (41). Consistent with these results, the uterocervical angle above 107.7 with a sensitivity of 87.0% and a specificity of 88.9% was a predictive factor and its AUC was 0.912, which is a large number to show the predictive power. In our study, the predictive power of AFI was less than the uterocervical angle. A prospective study was conducted by Kathir et al. on a pregnant women with PROM at 34-38 weeks of gestation. This study concluded that posterior cervical angle assessment using vaginal ultrasound is a useful tool in assessing the delay in women with PPROM; so
it can be helpful in counseling and planning timely referral to centers (42).

Kansara et al., conducted a study in 2020 in India to evaluate the role of AFI and cervical length in predicting delivery latency in women with PROM. This study concluded that both cervical length and AFI independently predict the latency of labor following the PROM and the combination of both factors improves predictability (43). The results of this study were consistent with those of the present study. We know that fetal umbilical artery Doppler pulsatility index may be a valid tool to predict neonatal outcomes of women with PPROM showing that indices can be useful for predicting the outcome of interest (44).

In a similar study in the United States, Knight et al. surveyed 259 pregnant women and found that a uterocervical angle of more than 110 degrees with a sensitivity of 80% and a specificity of 82% could help predict gestational lengths of less than 32 weeks in twin pregnancies. Finally, this study concluded that uterocervical angles greater than 110 degrees were better than the cervical length in predicting preterm birth in twin pregnancies (45). Similar to our study, these studies indicate the possibility of using two indicators of uterocervical angle and AFI.

Tavassoli et al. compared the results of pregnancy in PROM with AFIs less than and more than 5. The results showed that in the group AFI < 5, the applied latency phase was significantly shorter ($P = 0.049$) and also the number of cesarean sections due to higher fetal distress ($P = 0.008$), first minute Apgar score ($P = 0.0127$), and neonatal mortality in the first week were higher ($P = 0.045$) (46). These results were consistent with the results of our study since the mean AFI was less than 5.4 in our study.

Limitations

Due to the COVID-19 pandemic, it was not possible to evaluate a larger number of patients. Most of the patients referred with PROM did not meet the inclusion criteria, including patients with cervical dilatation or age more than 34 weeks or less than 24 weeks, and so on. Moreover, in some patients, before the ultrasound, they had emergency conditions to be transferred to the operating room or labor.

Conclusion

Uterocervical angle and AFI can be helpful in diagnosing the time of delivery. Gravity, parity, body mass index, and age have no effect on the diagnosis of delivery latency. The mean uterocervical angle in the delivery latency group ≤7 was significantly higher than that in the group > 7 days; conversely, the mean AFI in the delivery latency group less than 7 was significantly lower than that in the group of more than 7 days. Further studies are required to determine the predictive power of the two indices of uterocervical angle and AFI.

Acknowledgments

The authors would like to thank the deputy research and vice chancellor of Iran University of Medical Sciences for supporting this study. This study was extracted from residential thesis of Farzaneh Abedini, at the department of gynecology of Iran University of Medical Sciences.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest

The authors declare that there is no conflict of interest in this study.

References

1. Cunningham F, Leveno K, Bloom S, Hauth J, Gilstrap L, Wenstrom D. Williams Obstetrics. New York: Mc Graw Hill 2010.

2. Lorthe E, Tchorchin H, Delorme P, Ancel P-Y, Marchand-Martin L, Foix-Hélies L, et al. Preterm premature rupture of membranes at 22-25 weeks' gestation: perinatal and 2-year outcomes within a national population-based study (EPitime). Am J Obstet Gynecol. 2018;219(3):298-e1. [DOI:10.1016/j.ajog.2018.05.029] [PMID] [PMCID]

3. Tsakiridis I, Mamopoulos A, Chalkia-Prapa E-M, Athanasiadis A, Dagklis T. Preterm premature rupture of membranes: a review of 3 national guidelines. Obstet Gynecol Surv. 2018;73(6):368-75. [PMID] [DOI:10.1097/OGS.0000000000000567]

4. Feng L, Allen TK, Marinello WP, Murtha AP. Infection-induced thrombin production: a potential novel mechanism for preterm premature rupture of membranes (PPROM). Am J Obstet Gynecol. 2018;219(1):101.e1-e12. [DOI:10.1016/j.ajog.2018.04.014] [PMID] [PMCID]

5. Gahwagi MMM, Busarira MO, Atia M. Premature rupture of membranes characteristics, determinants, and outcomes of in Benghazi, Libya. Open J Obstet Gynaecol.
6. Abdali F, Taghavi S, Vazifekhah S, Behzad MN, Attari MMA. Effect of progesterone on latent phase prolongation in patients with preterm premature rupture of membranes. Acta Medica Iranica. 2017;55(12):772-8.

7. Kuba K, Bernstein PS. ACOG Practice Bulletin No. 188: Prolabor Rupture of Membranes. Obstet Gynecol. 2018;131(6). [PMID] [DOI:10.1097/AOG.0000000000002663]

8. Boskabadi H, Maamouri G, Mafinejad S. Neonatal complications related with prolonged rupture of membranes. Maced J Med Sci. 2011;4(1):93-8.

9. Weissmann-Brenner A, O'Reilly-Green C Fau - Divon MY, Divon MY. Values of amniotic fluid index in cases of preterm premature rupture of membranes. J Perinat Med. 2009;37(3):232-5. [PMID] [DOI:10.1515/JPM.2009.078]

10. Boskabadi H, Saghaﬁ N, Najafi A. Comparing the efﬁcacy of cefotaxime and ampicillin on neonatal infection after premature rupture of membranes. Iran J Obstet Gynecol Infertil. 2014;17(93):1-9.

11. Bahasadi SH, Nateghi K. Antibiotic Therapy in Preterm Premature Rupture of Membrane. Razi J Med Sci. 2006;13(52):59-65.

12. Schleußner E. The prevention, diagnosis and treatment of premature labor. Dtsch Arztebl Int. 2013;110(13):227-36. [PMCID] [DOI:10.1007/s00404-011-2106-4]

13. Rabiepoor S, Khodaei A, Valizadeh R. Husbands’ participation in prenatal care and breastfeeding self-efficacy in Iranian women: A randomized clinical trial. Med J Islam Repub Iran. 2019;33:58. [DOI:10.47176/mjiri.33.58] [PMID] [PMCID]

14. Amirshahi M. The reasons for the lack of breast feeding in preterm infants admitted to Alzahra hospital in Tabriz [Thesis]. Iran: Nurs school Tabriz Univ Med Sci. 2008.

15. Workineh Y, Birhanu S, Kerie S, Ayalew E, Yihune M. Determinants of premature rupture of membrane in Southern Ethiopia, 2017: case control study design. BMC Res Notes. 2018;11(1):1-7. [DOI:10.1186/s13104-018-4035-9] [PMID] [PMCID]

16. Heaman MI, Sprague AE, Stewart PJ. Reducing the Preterm Birth Rate: A Population Health Strategy. J Obstet Gynecol Neonatal Nurs. 2001;30(1):20-9. [DOI:10.1111/j.1552-6909.2001.tb01518.x] [PMID] [PMCID]

17. Deng W, Pleasure J, Pleasure D. Progress in Periventricular Leukomalacia. Arch Neurol. 2008;65(10):1291-5. [PMCID] [DOI:10.1001/archneur.65.10.1291] [PMID]

18. Melamed N, Hadar E, Ben-Haroush A, Kaplan B, YogeY. Factors affecting the duration of the latency period in preterm premature rupture of membranes. J Matern-Fetal Neonatal Med 2009;22(11):1051-6. [DOI:10.3109/1476705090319650] [PMID]

19. Butt FT, Ahmed B. The role of antepartum transabdominal amnioinfusion in the management of oligohydramnios in pregnancy. J Matern-Fetal Neonatal Med. 2011;24(3):453-7. [DOI:10.3109/14767058.2010.497574] [PMID]

20. Burstein E, Sheiner E, Mazor M, Carmel E, Levy A, Hershkovitz R. Identifying risk factors for premature rupture of membranes in small for gestational age neonates: a population-based study. J Matern-Fetal Neonatal Med. 2008;21(11):816-20. [DOI:10.1080/14767050802385756] [PMID]

21. Zhou Q, Zhang W, Xu H, Liang H, Ruan Y, Zhou S, et al. Risk factors for preterm premature rupture of membranes in Chinese women from urban cities. Int J Gynaecol Obstet. 2014;127(3):254-9. [DOI:10.1016/j.ijgo.2014.06.020] [PMID]

22. Alijani L, Mosadegh H, Saremi AT, Mashhadi khan M. Maternal Risk Factors of Premature Rupture of Membrane (PROM) after 37 Weeks of Pregnancy. SJMR. 2017;2(4):9-12. [DOI:10.29252/sjrm.2.1.9]

23. Yh YU. Risk factors of premature rupture of membranes with neonatal infection: a single-center study. J South Med Univ. 2011;31(3):465-8.
27. Azria E, Anselem O, Schmitz T, Tsatsaris V, Senat MV, Goiffinet F. Comparison of perinatal outcome after pre-viable preterm prelabour rupture of membranes in two centres with different rates of termination of pregnancy. BJOG Int J Obstet Gynecol. 2012;119(4):449-57. [DOI:10.1111/j.1471-0528.2011.03265.x] [PMID]

28. Mehra S, Amon E, Hopkins S, Gavard JA, Shyken J. Transvaginal cervical length and amniotic fluid index: can it predict delivery latency following preterm premature rupture of membranes? Am J Obstet Gynecol. 2015;212(3):400.e1-e9. [DOI:10.1016/j.ajog.2015.01.022] [PMID]

29. Conde-Agudele A, Romero R, Hassan SS, Yeo L. Transvaginal sonographic cervical length for the prediction of spontaneous preterm birth in twin pregnancies: a systematic review and metaanalysis. Am J Obstet Gynecol. 2010;203(2):128-e1. [DOI:10.1016/j.ajog.2010.02.064] [PMCID]

30. Esplin MS, Elovitz MA, Iams JD, Parker CB, Wapner RJ, Grobman WA, et al. Predictive accuracy of serial transvaginal cervical lengths and quantitative vaginal fetal fibronectin levels for spontaneous preterm birth among nulliparous women. Jama. 2017;317(10):1047-56. [DOI:10.1001/jama.2017.1373] [PMID]

31. Conde-Agudele A, Romero R. Predictive accuracy of changes in transvaginal sonographic cervical length over time for preterm birth: a systematic review and metaanalysis. Am J Obstet Gynecol. 2015;213(6):789-801. [DOI:10.1016/j.ajog.2015.06.015] [PMCID]

32. Crane JMG, Hutchens D. Transvaginal sonographic measurement of cervical length to predict preterm birth in asymptomatic women at increased risk: a systematic review. Ultrasound in Obstetrics and Gynecology. 2008;31(5):579-87. [DOI:10.1002/uog.5323] [PMID]

33. Sousa CRMd, Linhares JJ, Arcanjo FCN, Andrade RN, Vieira MF. Cervical length as a predictor of the latent period and infection in preterm premature membranes rupture. Rev Bras de Ginecol e Obstet. 2012;34:158-63.

34. Lee Y-J, Kim S-C, Joo J-K, Lee D-H, Kim K-H, Lee K-S. Amniotic fluid index, single deepest pocket and transvaginal cervical length: Parameter of predictive delivery latency in preterm premature rupture of membranes. Taiwan J Obstet Gynecol. 2018;57(3):374-8. [DOI:10.1016/j.tjog.2018.04.008] [PMID]

35. Tsoi E, Fuchs I, Henrich W, Dudenhause JW, Nicolaides KH. Sonographic measurement of cervical length in preterm prelabor amniorrhaxis. Ultrasound Obstet Gynecol. 2004;24(5):550-3. [DOI:10.1002/uog.1122] [PMID]

36. Mercer BM, Rabello YA, Thurnau GR, Miodovnik M, Goldenberg RL, Das AF, et al. The NICHD-MFMU antibiotic treatment of preterm PROM study: impact of initial amniotic fluid volume on pregnancy outcome. Am J Obstet Gynecol. 2006;194(2):438-45. [DOI:10.1016/j.ajog.2005.07.097] [PMID]

37. Goya M, Bernabeu A, Garcia N, Plata J, Gonzalez F, Merced C, et al. Premature rupture of membranes before 34 weeks managed expectantly: maternal and perinatal outcomes in singletons. J Matern-Fetal Neonatal Med. 2013;26(3):290-3. [DOI:10.3109/14767058.2012.733779] [PMID]

38. Piazza J, Anceschi MM, Cerekja A, Brunelli R, Meloni P, Marzano S, et al. Validity of amniotic fluid index in preterm rupture of membranes. J Perinat Med. 2007;35(5):394-8. [DOI:10.1515/JPM.2007.077] [PMID]

39. Cannie MM, Dobrescu O, Gucciaro L, Strizek B, Ziane S, Sakkas E, et al. Arabin cervical pessary in women at high risk of preterm birth: a magnetic resonance imaging observational follow-up study. Ultrasound Obstet Gynecol. 2013;42(4):426-33. [DOI:10.1002/uog.12507] [PMID]

40. Mubarak AM. Transvaginal cervical length and amniotic fluid index: Can it predict delivery latency following preterm premature rupture of membrane? Med J Babylon. 2018;15(1):78. [DOI:10.4103/MJBL.MJBL_20_18]

41. Daskalakis G, Theodora M, Antsaklis P, Sindos M, Grigoridiadis T, Antsaklis A, et al. Assessment of uterocervical angle width as a predictive factor of preterm birth: a systematic review of the literature. Biomed Res Int. 2018;2018. [DOI:10.1155/2018/1837478] [PMID] [PMCID]

42. Kathir V, Maurya D, Keepanasseril A. Transvaginal sonographic assessment of cervix in prediction of admission to delivery interval in preterm premature rupture of membranes. J Matern-Fetal Neonatal Med. 2018;31(20):2717-20. [DOI:10.1080/14767058.2017.1353971] [PMID]

43. Kansara M, Yadav R. Role of Ultrasonic Assessment of Cervical Length and Amniotic Fluid Index in Predicting Delivery Latency Period Following Preterm Premature Rupture of Membranes. International Journal of Science and Research. 2020;9:856-60.

44. Borna S, Ghaemi M, Golshahi F, Shariat M, Shirazi M, Sahebdel B. Comparing Fetal
45. Knight JC, Tenbrink E, Onslow M, Patil AS. Uterocervical angle measurement improves prediction of preterm birth in twin gestation. Am J Perinatol. 2018;35(07):648-54. [DOI:10.1055/s-0037-1608877] [PMID]

46. Tavassoli F, Ghasemi M, Mohammad Zadeh A, Sharifian J, Tavasooli S. Comparative Study of Pregnancy Outcome in Premature Rupture of Membranes With Amniotic Fluid Indices of less and more than 5. J Shahid Sadoughi Univ Med Science. 2010;17(5):343-52.

How to Cite This Article:
Abedini F, Eshraghi N, Mohammadian Amiri M, Danaei M. Assessment of Communication AFI and Uterocervical Angle with Pregnancy Duration in Patients with Preterm Premature Rupture of Membrans 24-34 Weeks. J Obstet Gynecol Cancer Res. 2022; 7(6):489-96.