The loss value of multilinear regression

Helmut Kahl

Abstract. Determinant formulas are presented for: a certain positive semi-
definite, hermitian matrix; the loss value of multilinear regression; the mul-
ti-pile linear regression coefficient.

Mathematical Subject Classification (2010). 15A03, 15A15, 62H12.

Keywords. determinant; positive semidefinite hermitian matrix; loss value
of multilinear regression; multiple regression coefficient

1. Euclidean distance by help of determinants

Introduction. We consider the euclidean norm \(x \mapsto \|x\| := \sqrt{x^*x} \) of column
vectors \(x \in \mathbb{C}^m \). For a complex \(m \times n \)-matrix \(A \in \mathbb{C}^{m \times n} \) and a vector \(b \in \mathbb{C}^m \)
we denote by \((A|b) \) the \(m \times (n+1) \)-matrix \(A \) together with \(b \) as the last column.
The following theorem is well-known in the real case and can be shown by
help of a formula for the volume of an \(n \)-dimensional parallelepiped embedded
in \(\mathbb{R}^m \). Here we offer a less known proof via QR-decomposition of a complex
matrix.

Theorem 1. For the euclidean distance \(\text{dist}(A, b) \) between \(b \in \mathbb{C}^m \) and the
column space of \(A \in \mathbb{C}^{m \times n} \) it holds:

\[
\text{dist}(A, b) \sqrt{\det(A^*A)} = \sqrt{\det((A|b)^*(A|b))}
\]

Proof. For a unitary \(m \times m \)-matrix \(Q \) it holds \(\text{dist}(A, b) = \text{dist}(QA, Qb) \) due to [1], thm. 2.1.4(g). According to [1], thm. 2.1.14(d) there is a unitary \(Q \) s.t.
\((A|b) = Q(R|c) \) with \((R|c) \) upper right triangular. Hence \(\delta = \text{dist}(R, c) \) is the
absolute value of the \((n + 1) \)-th coordinate of \(c \). So we have

\[
\det((A|b)^*(A|b)) = \det((R|c)^*(R|c)) = \delta^2 \det(R^*R) = \delta^2 \det(A^*A).
\]

Since \(\det(A^*A) \geq 0 \) for arbitrary complex matrices \(A \), s. e.g. [1], thm. 4.1.5
& 7.2.7(a), the assertion follows. \(\square \)
Matrix equation for the distance. In case \(A \) has full column rank \(\operatorname{rk}(A) = n \) we have \(\det(A^*A) > 0 \). Then the formula yields \(\operatorname{dist}(A,b) \) as a quotient of the two square root values. And by plugging the minimum point \(x = (A^*A)^{-1}A^*b \) into \(\|Ax - b\|^2 \) we obtain
\[
\frac{\det((A|b)^*(A|b))}{\det(A^*A)} = \operatorname{dist}(A,b)^2 = b^*b - b^*A(A^*A)^{-1}A^*b.
\]

Special determinant equation. Now, for a matrix \(A \in \mathbb{C}^{(n+1)\times n} \) let \(A_i \) denote the matrix \(A \) without its \(i \)-th row. Via developing \(\det((A|a)_{ij}) = 0 \) by the last column for every column \(a_j \) of \(A \) we see that the vector \(b := \left((-1)^{n+1}\det(A_i) \right)_{i=1,...,n+1} \) is orthogonal to the column space of \(A \). Applying Theorem 1 to \(A \) and \(b \) we obtain

Corollary 2. For \(A \in \mathbb{C}^{(n+1)\times n} \) holds the identity of \(n \times n \)-determinants:
\[
\sum_{i=1}^{n+1} |\det(A_i)|^2 = \det(A^*A)
\]

2. Loss value and correlation

Introduction. The task of *multiple linear regression* is the computation of regression coefficients \(\alpha_0, \alpha_1, ..., \alpha_n \) of the fitting hyperplane (in \(\mathbb{R}^{n+1} \))
\[
y = \alpha_0 + \alpha_1 x_1 + ... + \alpha_n x_n
\]
as a function of variables \(x_1, ..., x_n \in \mathbb{R} \) from (empirical) data points \((x_{11}, ..., x_{1n}, y_1), ..., (x_{m1}, ..., x_{mn}, y_m) \in \mathbb{R}^{n+1}, m \in \mathbb{N} \) s.t. the loss value
\[
\delta := \left(\sum_{i=1}^{m} (\alpha_0 + \alpha_1 x_{i1} + ... + \alpha_n x_{in} - y_i)^2 \right)^{1/2}
\]
is at minimum. For \(a := (\alpha_0, \alpha_1, ..., \alpha_n)^t, \ y := (y_1, ..., y_m)^t \) and the matrix \((1|X) \) that we obtain from \(X := (x_{ij})_{i\in\mathbb{N},j\in\mathbb{N}} \) by prepending \((1, ..., 1)^t \in \mathbb{R}^m \) as an extra column (of index 0) we have \(\delta = \|(1|X)a - y\| \). So the minimal value of \(\delta \) is the euclidean distance between \(y \) and the column space of \((1|X) \).

Centering. In statistics it is common to express empirical values of expectation with help of the arithmetic mean \(\bar{y} := (y_1 + ... + y_m)/m \) of a (sample) vector like \(y \) above. A regression vector \(a \) like described above is defined by the normal equation system
\[
(1|X)^t(1|X)a = (1|X)^ty.
\] (2.1)
After division by \(m \) the equation of row index 0 of equation 2.1 ends in
\[
\bar{y} = \alpha_0 + \alpha_1 \bar{x}_1 + ... + \alpha_n \bar{x}_n
\] (2.2)
The loss value of multilinear regression

where \(x_j \) denotes the \(j \)-th column of \(X \). We denote by \(\hat{y} := (y_1 - \bar{y}, \ldots, y_m - \bar{y})^t \) the centering of \(y \) and by \(\hat{X} \) the \(m \times n \)-matrix obtained from \(X \) by centering all its columns. Then the normal equations of row indices 1 to \(n \) of equation 2.1 are transformed to

\[
\hat{X}^t \hat{X} a_1 = \hat{X}^t \hat{y}, \quad a_1 := (\alpha_1, \ldots, \alpha_n)^t
\]

(2.3)

by subtracting the \(\bar{x}_i \)-th multiple of equation 2.2 from the \(i \)-th normal equation for \(i = 1, \ldots, n \). This shows \(\text{rk}(1 \mid X) = \text{rk}(\hat{X}) + 1 \).

Theorem 3. In case \(\text{rk}(1 \mid X) = n + 1 \) the loss value of the sample matrix \((X \mid y)\) equals

\[
\sqrt{\det \left(\left(\hat{X} \mid \hat{y} \right)^t \left(\hat{X} \mid \hat{y} \right) \right) / \det \left(\left(\hat{X} \right)^t \hat{X} \right)}
\]

Proof. Expressing \(\alpha_0 \) in terms of the other regression coefficients by help of equation 2.2 gives us \(y - \alpha_0 - \alpha_1 x_1 - \ldots - \alpha_n x_n = \hat{y} - \alpha_1 \hat{x}_1 - \ldots - \alpha_n \hat{x}_n \). Hence the loss value is the euclidean distance between \(\hat{y} \) and the column space of \(\hat{X} \). Because \(\hat{X} \) has full rank the formula follows by Theorem 1. \(\square \)

Correlation. For the orthogonal projection \(p := (1 \mid X)a \) of \(y \) onto the column space of \((1 \mid X)\) it holds \(\hat{p} = \hat{X} a_1 \). So by equation 2.3 \(\hat{p} \) is the orthogonal projection of \(\hat{y} \) onto the column space of \(\hat{X} \). Hence in case \(\hat{y}, \hat{p} \neq 0 \) the angle between \(\hat{y} \) and \(\hat{p} \) is at most \(\pi/2 \). Therefore the multiple correlation coefficient

\[
\rho(X, y) := \hat{y}^t \hat{p} / \|\hat{p}\| / \|\hat{y}\|
\]

between \(y \) and \(X \) is non-negative. According to the Cauchy-Schwarz inequality it is at most 1. The latter theorem allows the computation of \(\rho(X, y) \) without the computation of \(p \), i.e. without performing the linear regression.

Corollary 4. For a sample vector \(y \in \mathbb{R}^m \) with \(\hat{y} \neq 0 \) and a sample matrix \(X \in \mathbb{R}^{m \times n} \) with \(\text{rk}(\hat{X}) = n \) it holds

\[
\rho(X, y) = \sqrt{1 - \det \left(\left(\hat{X} \mid \hat{y} \right)^t \left(\hat{X} \mid \hat{y} \right) \right) / \det \left(\left(\hat{X} \right)^t \hat{X} \right)} \left(\hat{y}^t \hat{y} \right) / (m - 1)
\]

Proof. The assertion follows from Theorem 3 by the Theorem of Pythagoras applied to \(\hat{y} / \|\hat{y}\| \) as the hypotenuse and \(\hat{p} / \|\hat{p}\| \) as a cathetus. \(\square \)

1. Then \((\hat{X}^t \hat{X}) / (m - 1) \) is the sample covariance matrix of the sample matrix \(X \). It serves as an estimator of the covariance matrix of the random vector \((X_1, \ldots, X_n)\) whose \(m \) samples are given by \(X \), row by row. With the additional random variable \(Y \) whose samples are represented by \(y \) the mean squared loss value \(\delta^2 / (m - 1) \) is an estimator of the expected value of the random variable \((Y - \alpha_0 - \alpha_1 X_1 - \ldots - \alpha_n X_n)^2\); s. e.g. [2], Kap. 3.8!

2. The condition \(\hat{y} \neq 0 \) means a non-zero sample variance \((\hat{y}^t \hat{y}) / (m - 1) \) of \(y \).
References

[1] R. A. Horn/C. R. Johnson, *Matrix Analysis*, 2nd ed. (2013) Cambr. Univ. Press
[2] F. E. Beichelt/D. C. Montgomery (Hrsg.), *Teubner-Taschenbuch der Stochastik* (2003) Teubner Verlag

Helmut Kahl
Munich University of Applied Sciences
Lothstr. 34
D-80335 München
Germany

e-mail: kahl@hm.edu