Disease-associated astrocytes in Alzheimer's disease and aging

Naomi Habib, Cristin McCabe, Sedi Medina, Miriam Varshavsky, Daniel Kitsberg, Raz Dvir-Szternfeld, Gilad Green, Danielle Dionne, Lan Nguyen, Jamie L. Marshall, Fei Chen, Feng Zhang, Tommy Kaplan, Aviv Regev and Michal Schwartz

The role of non-neuronal cells in Alzheimer's disease progression has not been fully elucidated. Using single-nucleus RNA sequencing, we identified a population of disease-associated astrocytes in an Alzheimer's disease mouse model. These disease-associated astrocytes appeared at early disease stages and increased in abundance with disease progression. We discovered that similar astrocytes appeared in aged wild-type mice and in aging human brains, suggesting their linkage to genetic and age-related factors.

Alzheimer's disease (AD) is a highly heterogeneous disease, and the most frequent cause of cognitive decline. Recent findings have attributed a major role to nonneuronal cells in disease onset and escalation (for example, see refs. 1,2). However, fully elucidating their function has been challenging, due to the heterogeneity of cells and disease dynamics. Some of this cellular diversity has recently been characterized by single-cell or single-nucleus RNA sequencing (sNuc-seq), highlighting disease-related states of microglia in mouse and human brains3,4. However, astrocytes, which have a wide range of activation states5,6, with variable effects on disease onset and progression7, have been less characterized. In particular, massive gliosis has been observed upon AD initiation8, to which a negative effect has been attributed7. Thus, higher-resolution characterization of astrocytes and other nonneuronal cells could help identify novel cellular components of AD pathogenesis9,10.

We used sNuc-seq11 to build a cellular-molecular map of the hippocampi of 7-month-old mice of either WT or a transgenic model of AD (5xFAD)10 (8 mice, 54,769 high-quality nuclei; Fig. 1a and Supplementary Table 1), using two different protocols to comprehensively capture nuclei across cell types (Extended Data Fig. 1a–c). We partitioned the cells into 23 clusters (Fig. 1b and Extended Data Figs. 1 and 2), revealing largely similar cellular landscapes in WT and AD, with differences in the proportions of several cell populations (P < 0.01; Fig. 1c). There were major differences in astrocyte states in AD relative to WT (Fig. 1c), as well as prominent differences in AD microglia, the frequency of which increased along disease progression (relative to all other cells; Fig. 1c), including the disease-associated microglia (DAM) population1 (Extended Data Fig. 2c). The frequency of pericyte/endothelial cells also increased in AD (P < 0.01; Fig. 1c), while that of recently activated pyramidal neurons decreased (P < 0.01; Fig. 1c and Extended Data Fig. 2d).

Several rare stromal populations also decreased in frequency (P < 0.01; Fig. 1c and Extended Data Fig. 2e).

A continuous range of astrocyte profiles (Extended Data Fig. 3a–c) were aligned on a diffusion map along trajectories between three transcriptional states (Fig. 1d and Extended Data Fig. 3d). The cells were partitioned into six transcriptional subclusters (Fig. 1d,e and Extended Data Fig. 3a), and their proportions in the various states differed between AD and WT (Fig. 1f and Extended Data Fig. 3e), with the appearance of a unique state observed only in AD. WT astrocytes spanned a trajectory between a homeostatic Gfap-low state (clusters 1 and 2) and a Gfap-high state (cluster 6), in line with previous observations11.

In AD, an additional astrocyte Gfap-high state was found, which we termed disease-associated astrocytes (DAAs; cluster 4; Fig. 1f). DAAs were observed in both male and female mice (Extended Data Fig. 4a–d), as well as in the cortex (in 7- and 10-month-old AD mice; Extended Data Fig. 4e–i), showing that DAAs are not restricted to the hippocampus. The appearance of DAAs was accompanied by a significant decrease in the homeostatic, Gfap-low astrocyte population, relative to WT mice (P < 0.01; see Methods). In addition, cluster 5 (in WT and AD) reflected a transitional-like intermediate state between the Gfap-low state and Gfap-high states (cluster 6), while cluster 3, which significantly increased in frequency in AD (Fig. 1f), reflected a transitional-like intermediate state between the Gfap-low state and the DAA (cluster 4; Fig. 1d,e).

The Gfap-high astrocyte population, observed in both WT and AD, and the DAA population, unique in AD, shared a significant number of upregulated genes compared with Gfap-low astrocytes (hypergeometric P < 10−10; Fig. 2a,b), with little downregulation of genes (Fig. 2a and Extended Data Fig. 4j); yet, each state had distinct expression features (Supplementary Table 2). Both Gfap-high and DAA populations upregulated genes involved in development and differentiation, metabolic pathways (lipid, cholesterol), response to toxic compounds and inflammatory signaling (false-discovery rate (FDR) < 0.05; Fig. 2b, Extended Data Fig. 5 and Supplementary Table 3). Cells in the intermediate states, clusters 3 and 5, upregulated a subset of the genes that were also upregulated in cluster 4 (DAAs) and cluster 6 (Gfap-high), respectively, supporting their definition as intermediate states (Fig. 2b and Extended Data Fig. 5). Notably, the Gfap-high astrocyte population, found in both AD and WT, specifically expressed markers of end-feet

See Methods for additional details.
and blood vessel-associated astrocytes, such as the Aqp4 (ref. 14). DAAs expressed a unique set of genes, including genes involved in endocytosis, complement cascade and aging (FDR < 0.05; see Methods and Fig. 2a,b). Among the DAA-upregulated genes were Serpina3n, encoding a serine protease inhibitor linked to increased amyloid accumulation15, and Ctsb (Cathepsin B), encoding a lysosomal cysteine protease involved in proteolytic processing of amyloid precursor protein16 (Figs. 1e and 2a and Extended Data Fig. 4j). Interestingly, DAAs (cluster 4) and the associated intermediate state cluster 3 cells also expressed Apoe and Cli16, along with other genes encoding proteins associated with amyloid metabolism and clearance17 (FDR < 0.05; Fig. 2b and Extended Data Fig. 5).

To relate DAAs to previously described astrocyte profiles, we examined the expression level of RNA signatures from bulk...
Fig. 2 | DAAs are associated with diverse molecular pathways and positioned in proximity to A1 plaques in AD. **a,** Multiple genes upregulated in DAAs and Gfap-high compared with Gfap-low astrocytes (total 7,345 astrocytes across states). Volcano plot showing differential expression of genes in each pair of states (n = 8 animals; 1,594, 478 and 457 cells in clusters 1, 4 and 6, respectively; negative binomial P value, FDR correction). All cluster pairs are in Extended Data Fig. 5a. AD risk factor genes from genome-wide association studies (GWAS) marked in orange. FC, fold change. **b,** Shared and distinct upregulated genes and pathways in cluster 4 (DAAs), 6 (Gfap-high) and 3 (intermediate) astrocytes compared with Gfap-low astrocytes. Left: heatmap showing the significance of upregulated pathways in the three clusters (n = 8 animals; 2,265 cells in cluster 3, other cell numbers as in a); hypergeometric P value (hP), FDR < 0.05; −log(FDR) values as color bar) Selected pathway names are highlighted (see full list in Extended Data Fig. 5b and Supplementary Table 3). Right: Venn diagrams of upregulated genes (hP FDR < 0.01). **c,** Signatures of reactive astrocytes found in AD. Violin plots showing the distribution of expression scores for previously defined signature genes for (left) pan-reactive, inflammation-associated (lipopolysaccharides, LPS) and ischemia-associated (middle cerebral artery occlusion, MCAO) reactive astrocytes (from ref. 11) across WT (3,831 cells, n = 4 animals) and AD (3,514 cells, n = 4 animals), and (right) pan-reactive and A1-reactive astrocytes (from ref. 11) across clusters (n = 8 mice, 10 samples; Extended Data Fig. 6a–c). **d,** Overlapping upregulated genes between DAM1 and DAA. Eighteen shared genes (nodes), connected by functional links (edges), weighted (edge width) proportionally to the confidence levels (see Methods). **e–h,** Astrocytes expressing DAA markers are found in AD brains, enriched in the subiculum and in proximity to A1 plaques. Representative immunofluorescence images in sagittal sections of 7–8-month-old mice. Subiculum, stained for GFAP (green), VIM (red) and serpinA3N (gray), in WT mice (e) and 5xFAD mice (f). Dentate gyrus (g, left) and subiculum (g, right), stained for GFAP (green), VIM (red) and A1 (gray), in 5xFAD mice. Subiculum, stained for GFAP (green), serpinA3N (red) and A1 (gray), in 5xFAD mice (h). Cell nuclei are shown in blue (Hoechst). Scale bar, 50 μm. Red arrows or red boxes, colocalization of three proteins. Experiments were repeated on four brain slices per animal on n = 4 AD and WT mice.
datasets and found that AD astrocytes overall had an increased expression of pan-reactive and inflammation/A1 astrocyte signatures compared with WT, but did not show an increase in ischemia/A2 astrocyte signatures (Fig. 2c and Extended Data Fig. 6a,b). While most of the inflammation/A1 signature genes were found to be expressed by DAAs, some were found to be expressed by the other astrocyte subtypes (Fig. 2c and Extended Data Fig. 6c), indicating that previously reported bulk signatures captured a mixed population. Notably, there were 18 shared genes (hypergeometric $P < 3 \times 10^{-4}$; Fig. 2d) between the 239 DAA signature genes and 213 signature genes previously described for DAM [1]. These included the AD risk gene Apoe and the Ctsb, Ctsd and Ctsf genes, encoding proteases (Cathepsins B, D and L) implicated in AD pathogenesis [16].

We verified the presence of DAAs at the protein level and characterized their spatial distribution by co-staining the hippocampus of WT and 5xFAD animals for the GFAP and DAA markers SERPINA3N and VIM (markers of reactive astrocytes and NSCs, respectively; Fig. 2e,f). GFAP$^+$SERPINA3N$^+$VIM$^+$ astrocytes were observed in 5xFAD but not WT mice, in line with the sNuc-seq profiles, and were most highly concentrated in the subiculum, where disease is known to be most prominent. While in WT mice VIM$^+$ cells were found in the dentate gyrus, consistent with their known association with the neurogenic niche, in AD, VIM$^+$GFAP$^+$ astrocytes were prevalent throughout the hippocampus and especially in the subiculum. SERPINA3N$^+$ and VIM$^+$ astrocytes were found adjacent to stained amyloid beta plaques (Fig. 2g,h and Extended Data Fig. 6d). Notably, SERPINA3N, a secreted protein, was also detected embedded in plaques (Fig. 2g,h and Extended Data Fig. 6d), and thus may be expressed by other cells within the diseased brain.

To determine how changes occur along disease progression, we profiled cells by sNuc-seq from AD and WT mice at different ages (1.5–2, 4–5, 7–8, 10, 13–14 and 20 months old, 28 mice, 23,863 astrocyte nuclei; Fig. 3a). As reported, microglial frequencies were higher in AD than WT brains at all time points tested, from 4 months, and increased with age (Fig. 3b). Astrocytes mapped along the same continuous trajectories, spanning from Gfap-low to Gfap-high states in WT mice (aged 1.5–10 months) and young AD mice (1.5–2 months old; Fig. 3c and Extended Data Fig. 7). In AD, however, from 4 months of age, before manifestation of cognitive decline, there was a consistent reduction in GFAP-low astrocytes and a corresponding increase in DAAs (Fig. 3d). The results suggest that DAAs arise in the AD mouse model before cognitive decline and increase along disease progression.

Examining the diffusion map (Figs. 1d and 3c and Extended Data Fig. 7) suggested that Gfap-low astrocytes are the potential source population of both Gfap-high astrocytes and DAAs (Fig. 3c).

To explore this possibility, we devised a computational procedure to infer transitions between cell states. We constructed a cell–cell nearest neighbors graph, and found the optimal global assignment to match each AD astrocyte, at a given time point, to a nearest neighbor, termed an origin cell, chosen either among all AD astrocytes outside its cluster (see Methods and Fig. 3e), or among all astrocytes from the preceding measured time point (Fig. 3f and see Methods). Calculating for each cluster the frequency of origin cells within all other clusters revealed that the Gfap-low cells are the main origins for the cells within cluster 3, and that cells in clusters 3 and 5 are the main origins for the DAAs between consecutive time points (cluster 4; Fig. 3g). This is consistent with a model suggesting cluster 3 as an intermediate stage, and Gfap-low astrocytes as the major source of AD-specific cell states. Notably, these results were robust with respect to the source of origin cells (WT versus AD), the measured time point and the algorithm used (Extended Data Fig. 8). Next, we extracted the top genes that are most strongly associated with each transition between clusters across time points, by correlating genes with the average movement from the assigned origin cells to the true positions. These top significant genes reveal a set of unique DAA markers (Fig. 3h), which is consistent with our differential expression analysis (Fig. 2a and Supplementary Table 4), and define a set of genes that are activated or repressed during the transition from one state to the other.

Finally, we searched for evidence of DAA or DAA-like cells in aged brains of both WT mice and humans (Fig. 3c,d,i). In WT mice, DAA-like cells began to emerge at 13–14 months and increased in abundance in 20-month-old mice (up to 2% Fig. 3d), suggesting that a similar phenotypic state switch also occurs in normal aging, in line with published results. Moreover, comparing mouse astrocyte states with aging human astrocytes (see Methods), we identified astrocyte populations similar to the three mouse states in aging postmortem human brains, including DAA-like cells that appeared at a higher frequency in individuals with AD (Fig. 3i and Extended Data Fig. 9), suggesting that our findings could be relevant to human physiology and disease.

Fig. 3 | DAAs are derived from homeostatic Gfap-low astrocytes and increase with age. a, sNuc-seq time-course experiment in WT and 5xFAD mice across six age groups (n = 28 mice, detailed in Supplementary Table 1). b, Relative increase of microglial frequency with age, in AD compared with WT. Log ratio frequency of microglial cells in AD versus WT, by age, in animal pairs matched by batch and age. c, Continuous trajectory across three major astrocyte states in AD and WT brains across ages. Embedding of 23,863 astrocytes in diffusion map (as in Fig. 1d), highlighting cells per age and condition (top, WT; bottom, AD), colored by inferred cluster identity from (Fig. 1d, consistent with independent clustering and diffusion map embedding of time-course data in Extended Data Fig. 7). Bottom right: schematic of astrocyte states and predicted transitions. d, An increase in the frequency of DAAs and a decrease in homeostatic Gfap-low astrocytes with age. Fraction of Gfap-low, DAA and Gfap-high cells out of all astrocytes across ages, in AD (red) and WT (blue). Lines show linear regression, with confidence intervals. R and P values of the linear fit. Inset: fraction of DAAs in WT (n = 23,863 cells across ages; n = 28 mice as detailed in Supplementary Table 1). e,f, DAAs are predicted to mainly derive from the population of Gfap-low astrocytes. Diffusion map (as in c) with directions of transition (directed arrows; see Methods) of AD astrocytes (n = 12 animals, 10,226 cells) from their optimal nearest neighbor (cell of origin) among all other AD astrocytes outside the cluster (e) or among all AD astrocytes from preceding (measured) time points (f). Additional clusters and mappings are in Extended Data Fig. 8. g, DAAs are predicted to emerge from Gfap-low astrocytes according to the proportion of cells of origin per cluster. Top: for each pair of consecutive time points, the proportion (color bar) of astrocytes (rows) predicted to be derived from cells in each of the clusters in the preceding time point (columns). Bottom: graph connecting (arrows) pairs of clusters (nodes) between consecutive time points. Edges between clusters are only shown when the proportion of cells of origin is at least 14%. Arrow color, proportion. h, Genes correlated with transitions to DAAs across clusters and ages. Top: expression across clusters of genes significantly correlated (n = 12 animals; Pearson correlation coefficient, FDR < 10$^{-5}$) with the transition to cluster 4 (DAAs), from each cluster in a preceding time point. Dot color, expression level; dot radius, proportion of cells expressing the gene. Bottom: assignment of each gene (column) to the transition from a cluster (row) and time point (color bar): upregulated, purple; downregulated, orange. i, DAA-like cells found in aging human cortex. Right: t-SNE of 3,392 sNuc-seq profiles of cortical postmortem human astrocytes from aging brains of healthy individuals and people with AD, taken from Mathys et al., colored by de novo cluster ID. Left, proportions (color bar, scaled per column) of human astrocyte cluster IDs (rows) mapped to mouse astrocyte cluster IDs (columns). Bottom, proportion of human astrocytes from healthy individuals and people with AD per the predicted mouse astrocyte cluster ID (n = 48 individuals). Box, 75% and 25% quantiles. Line, median. Dots, individuals.
Overall, using sNuc-seq profiles from 34 WT and 5xFAD mice across ages, we identified a disease-specific state in astrocytes (DAA) that appeared early and increased with disease progression. The DAA-like population also appeared with aging in WT mice and was found in aging human brains. Consistent with previous reports regarding activation of astrocytes by amyloid plaques, astrocytes expressing DAA markers were found adjacent to amyloid plaques in the hippocampus and in the subiculum, where disease manifestations...
are severe12. The continuous expression spectrum between DAAs and the intermediate cluster 3 astrocytes suggests a dynamic activation process in AD. Moreover, the wide range of activities found in DAAs might reflect changes occurring along disease progression. These dynamics might begin with gliosis as an attempt to contain the damage by demarcating the accumulated misfolded proteins from the still-healthy neurons, and become destructive along disease progression, due to expression of an inflammatory and neurotoxic profile, including SerpinA3N, which might interfere with plaque degradation31. Notably, the dynamic astrocyte response probably involves environmental factors30 and a cross-talk between various cells present in the microenvironment, including microglia32. Intriguingly, our analysis highlighted a shared signature of multiple genes upregulated in both DAAs and DAMs (relative to their respective homeostatic states), suggesting a general transcriptional program in response to the pathological state, shared across cell types under disease conditions. Taken together, the extent and nature of astrocyte alterations that we found, and the early stage at which these changes emerge, support their role, at least in part, at the initial stages of disease pathogenesis. Further studies are required to fully understand their role and to determine whether this astrocyte state is universal or amyloid-associated. Deciphering the different activities of DAAs, along disease progression, may suggest a novel therapeutic target, enhancing their beneficial effects, while dampening the negative properties of these cells, with the potential for disease modification.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41593-020-0624-8.

Received: 24 April 2019; Accepted: 18 March 2020; Published online: 27 April 2020

References
1. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).
2. Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. Cell 164, 603–615 (2016).
3. Baruch, K. et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat. Med. 22, 135–137 (2016).
4. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).
5. Liddelow, S. A. et al. Neurototoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).
6. Zamanian, J. L. et al. Genomic analysis of reactive astroglia. J. Neurosci. 32, 6391–6410 (2012).
7. Matias, I., Morgado, J. & Gomes, F. Astrocyte heterogeneity: impact to brain aging and disease. Front. Aging Neurosci. 11, 59 (2019).
8. Rodríguez-Arellano, J., Parpura, V., Zorec, R. & Verkhratsky, A. Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 323, 170–182 (2016).
9. Bates, K., Fonte, J., Robertson, T., Martins, R. & Harvey, A. Chronic gliosis triggers Alzheimer’s disease-like processing of amyloid precursor protein. Neuroscience 113, 785–796 (2002).
10. Liao, M.-C. et al. Single-cell detection of secreted Aβ and sAPPα from human iPSC-derived neurons and astrocytes. J. Neurosci. 36, 1730–1746 (2016).
11. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).
12. Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).
13. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).
14. Leito, R. et al. Aquaporin-4 as a new target against methamphetamine-induced brain alterations: focus on the neurogliovascular unit and motivational behavior. Mol. Neurobiol. 55, 2056–2069 (2018).
15. Mucke, L. et al. Astroglial expression of human α1-antichymotrypsin enhances Alzheimer-like pathology in amyloid protein precursor transgenic mice. Am. J. Pathol. 157, 2003–2010 (2000).
16. Wang, C., Sun, B., Zhou, Y., Grubb, A. & Gan, L. Cathepsin B degrades amyloid-β in mice expressing wild-type human amyloid precursor protein. J. Biol. Chem. 287, 39834–39841 (2012).
17. Roussotte, F. F. et al. Combined effects of Alzheimer risk variants in the CLU and ApoE genes on ventricular expansion patterns in the elderly. J. Neurosci. 34, 6537–6545 (2014).
18. von und Halbach, O. Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res. 345, 1–19 (2011).
19. Clarke, L. E. et al. Normal aging induces A1-like astrocyte reactivity. Proc. Natl Acad. Sci. USA 115, E1896–E1905 (2018).
20. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
Methods

Experimental design. Heterozygous 5xFAD transgenic mice (Tg6799; on a C57/B6J-SJL background) co-overexpress mutant forms of human amyloid precursor protein associated with familial AD, the Swedish mutation (K670N/M671L), the Florida mutation (I171V), and the London mutation (V717I). The study included nNuc-seq profiles of samples from WT and 5xFAD male mouse hippocampus across 6 different age groups: 1.5–2 (n = 6 mice), 4–5 (n = 4), 7–8 (n = 10, 12 samples), 10 (n = 2), 13–14 (n = 6) and 20 (n = 2, WT only) months, as well as 5xFAD and WT 7-month-old female mouse hippocampi (n = 2), and WT and 5xFAD male mouse prefrontal cortex (7 months, n = 2; 10 months, n = 2; same mice used for profiling the hippocampus) (see Supplementary Table 1). Throughout the study, WT controls in each experiment were nontransgenic littermates from the same mouse colony. Additional 5xFAD and WT 7-month-old mice were used for immunohistochemistry validations.

Animal care and tissue dissection. Animals were bred and maintained by the Animal Breeding Center of the Weizmann Institute of Science. Animal handling complied with the regulations formulated by the Institutional Animal Care and Use Committee of the Weizmann Institute of Science. Mice were anesthetized by intraperitoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg) and tissue dissection was performed immediately. Tissue was frozen after dissection and kept at −80 °C until further processing.

Nuclear isolation and nNuc-seq library preparation. Working on ice throughout, hippocampal tissue was transferred into a Dounce homogenizer (Sigma Cat N016920) with ice-cold PBS (for EZ lysis) or Tris buffer (for NP40 lysis, 10 mM Tris, 146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, plus 0.04% BSA (NEB B9000S) and 40 U ml −1 RNase inhibitor). Tissue was carefully Dounced while on ice 22 times with pestle A followed by 22 times with pestle B, then transferred to a 15 ml conical tube. Next, 3 ml of lysis buffer was added to the Dounce homogenate, to rinse residual nuclei, and the suspension was transferred to a 15 ml tube at a final volume of 5 ml. When using EZ, the lysis homogenate was incubated on ice for 5 min; for NP40 buffer no incubation was done. The samples were centrifuged with a swinging bucket rotor at 5000 g for 5 min at 4 °C. Supernatant was removed and the pellet was resuspended in 100 μl of ice-cold PBS. Nuclei were then pelleted by centrifugation (for NP40 lysis, 10 min Tris, 146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, plus 0.04% BSA (NEB B9000S) and 40 U ml −1 RNase inhibitor. Then, 40-μm FlowMi cell strainers were pre-wetted with 200 μl of ice-cold PBS and the resuspended nuclei were gently filtered through the FlowMi cellstrainers into 1.5-ml Eppendorf tubes. Nuclei were counted using Nexcelom Cellometer Vision and a DAPI stain. DAPI was diluted to 2.5 μg ml −1 in PBS and 20 μl of the DAPI was pipette-mixed with 20 μl of the filtered nucleis suspension, then 20 μl of the stained nuclei were pipetted into the Cellometer cell-counting chamber (Nexelom CHT4 SD100-002). Nuclei were counted using a custom program with dilution factor set to 2. Finally, 10,000 nuclei were used as input to 10X Genomics single-cell 3′ Gene Expression v2 assay (22 samples) or v3 assay (10 samples) (Supplementary Table 1).

Libraries were prepared following the manufacturer’s protocol. Briefly, single nuclei were partitioned into Gel Beads in Emulsion in the GemCode (Chromium, cell and position index) library preparation. 4-nucleotide barcode reverse transcription of RNA, followed by amplification, shearing and 5′ adaptor and sample index amplification. Complementary DNA was amplified for 12 cycles, and the resulting adaptor and sample index were amplified on the Chromium instrument with cell lysis and barcoded reverse transcription of nuclei. Nuclei were counted using a custom program with dilution factor set to 2. Finally, 10,000 nuclei were used as input to 10X Genomics single-cell 3′ Gene Expression v2 assay (22 samples) or v3 assay (10 samples) (Supplementary Table 1).

Preprocessing of nNuc-seq data. De-multiplexing, alignment to the mm10 transcriptome and unique molecular identifier (UMI)-collapsing were performed using the Cellranger toolkit (v2.1.1, chemistry V2, or v3.0.2, chemistry V3) provided by 10X Genomics (with the Single Cell 3′ chemistry parameter), and run using cloud computing on the Terra platform (https://Terra.bio). Since nuclear RNA is expected to include roughly equal proportions of intronic and exonic reads, we built and aligned reads to genome references with pre-processor RNA annotations which account for both exons and introns. For every nucleus, we quantified the number of genes for which at least one read was mapped, and then excluded all nuclei with fewer than 400 detected genes. Genes that were detected in fewer than ten nuclei were excluded. Expression values Ei for gene i in cell j were calculated by dividing the UMI counts for gene i by the sum of all UMIs counts in cell j, which normalize for differences in coverage, and then multiplying by 10,000 to create TP10K (transcript per 10,000 values), and finally computing log(TP10K + 1) (using the NormalizeData function from the Seurat22 package v2.3.4).

Identifying variable genes. Selection of variable genes was performed as previously described by Haber et al.17. Briefly, we fit a logistic regression to the nuclear detection fraction, using the total number of UMIs per nucleus as a predictor. Outlier genes expressed in a lower fraction of nuclei than expected were chosen as the variable genes, using a threshold of P value of 0.05. To minimize batch effect, variable genes were found for each batch independently, and their interaction was used as an additional variable for downstream analysis. We restricted the expression matrix to this subset of variable genes, which was used for batch correction and scaling. For the integrated analysis of the time-course data, brain regions and sex comparisons, we used the integrated workflow of Seurat22 v3, including finding variable genes by using the function FindVariableFeatures (setting the selection method to vst and the number of features to 2,000).

Batch correction and scaling data matrix. For the 7-month-old mouse dataset, batch correction was done using ComBat (ComBat24 function from the sva package in R) on the normalized dataset. The batch-corrected data were scaled using the ScaleData function from Seurat22 with default parameters (v.2.3.4), yielding the relative expression of each gene by scaling and centering. The scaled data matrix was then used for dimensionality reduction and clustering. To rule out the possibility that the resulting clusters were driven by batch or other technical effects, we examined the distribution of samples within each cluster and the distribution of the number of genes detected across clusters (as a measure of nuclear quality). Overall, the nuclei separated into distinct point clouds in 3-distributed stochastic neighbor embedding (t-SNE) space that were not driven by batch; each cluster/cloud was an admixture of nuclei from all technical and biological replicates, with variable numbers of genes. Related to the number of genes, we note that there was a distinct biological difference in the number of transcripts (and expected RNA content) between neuronal and glial cells in the brain.

Dimensionality reduction, clustering and visualization. We used the scaled expression matrix restricted to the variable genes for principal component analysis (PCA), using the runPCA method in Seurat (a wrapper for the irace function), computing the top 30 principal components. Related to the number of genes, we note that there was a distinct biological difference in the number of transcripts (and expected RNA content) between neuronal and glial cells in the brain.

Subclustering of astrocytes and diffusion map embedding. To identify subtypes of cells within the astrocyte populations, the same analyses described in the “Dimensionality reduction, clustering and visualization” section were performed, but limited to nuclei classified by their cluster identity as astrocytes. Astrocytes were identified by marker gene expression, including high expression of Slc1a3, Gap43, Aldolc and Gfap, and low/no expression of Krox24 and Slc6a13. As shown in Extended Data Fig. 2, the expression of known marker genes in 5xFAD brain regions in the 7-month-old mouse dataset or on the aligned canonical correlation analysis (CCA) subspace for the entire time-course data, using the DiffusionMap function from the destiny28 package (using a local sigma). Cells were hierarchically clustered and re-ordered (using BuildClusterTree method from the Seurat package, given the same set of variable genes as input to the PCA), providing the cluster ordering described throughout this study.

For visualization, the dimensionality of the datasets was further reduced by using pre-processing principal component analysis (sPCA) using the top significant principal components as input to a graph-based clustering algorithm, as previously described17, with small modifications and improvements. Briefly, in the first step, we computed a k-NN graph, connected each nucleus to its k-NNs (based on Euclidean distance), then used the k-NN graph as an input to the Louvain algorithm, which decomposes an input graph into communities. We used k = 40 for clustering of all datasets, with varying resolutions from 0.9 to 1.2. For the full dataset across all cell types, at the final stage, cells were hierarchically clustered and re-ordered (using BuildClusterTree method from the Seurat package, given the same set of variable genes as input to the PCA), providing the cluster ordering described throughout this study.

To model continuous transitions in astrocyte states, we calculated the diffusion component scores on the 7-month-old dataset or on the combined time-course datasets. The diffusion component scores were calculated using the cell embedding values in the top 15 principal components (generated either on the scaled expression matrix restricted to the variable genes in the 7-month-old mouse dataset or on the aligned canonical correlation analysis (CCA) subspace for the entire time-course data), using the DiffusionMap function from the destiny28 package (using a local sigma). We then calculated the diffusion component scores for data visualization (other combinations of components revealed similar continuous trajectories, as shown in Extended Data Fig. 3d).
Doublet detection and removal. For doublet detection and elimination, we used the \textit{Scrublet} method over a random subset of 30,000 nuclei to identify clusters of doublets. Scrublet identifies heterotypic doublets comprising two different cell types by simulating doublets. In our analysis, building a nearest neighbor classifier in the bCell package in R, and corrected for multiple hypotheses by FDR. Results with \(P < 0.01 \) were reported as significant.

Differential expression, pathway analysis and scoring gene signatures. Differentially expressed signatures were calculated using a negative binomial test and controlled false-discovery rates (FDRs) using the Benjamini–Hochberg method to vst and nfeatures to 2,000. We then searched for integration anchors, which are pairwise correspondences between individual cells, with the underlying assumption that cells originating from the same biological state will be matched (using the function FindIntegrationAnchors, over the first 20 dimensions). We then performed an overlapping set of enrichment analyses, using the functions FindTransferringAnchors and TransferData (in Seurat v3). Each cluster in the integrated dataset was matched to one (or two) of the astrocyte states (homeostatic Gfap-low, Gfap-high, DAA state, intermediate-sate DAA and Gfap-high intermediate state) by a majority vote within all cells in the cluster, while ambiguous results were not matched with any state. Finally, the fraction of astrocytes across clusters/states was calculated for each mouse, comparing the relative frequencies of the DAA, homeostatic Gfap-low and Gfap-high clusters in matching pairs of WT and 5xFAD mice.

Immunohistochemistry. Immunohistochemistry was performed on mouse brain sections. Mice were perfused with PBS before brain tissue fixation, followed by tissue processing to form 30-μm-thick floating sections. The following primary antibodies were used: rabbit anti-GFAP (1:150; Dako no. 30103, lot 200656262), chicken anti-VIM (1:150; Abcam no. 24525, lot GR321660015), goat anti-GFAP, chicken anti-VIM and mouse anti-AF-16 (1:150; Biocat no. B247600). Secondary antibodies were Cy2/Cy3/Cy5 donkey anti-rabbit/chicken/goat/mouse antibodies, respectively (1:150; Jackson Immunoresearch). Staining with secondary antibody alone was used to rule out nonspecific staining. The following secondary antibodies were used: Cy2/Cy3/Cy5 donkey anti-rabbit/chicken/goat/mouse antibodies, respectively (1:150; Jackson Immunoresearch).

Comparison across brain regions and sex by CCA integrated analysis. Comparison of astrocyte profiles across two groups (that is, sex, in Extended Data Fig. 4a–d, or brain regions, in Extended Data Fig. 4e–i) was done by integrated clustering of cells from the two groups (that is, males and females or hippocampus and cortex samples), and annotating the de novo clusters by projecting the astrocyte clusters defined for the hippocampus of 7-month-old male mice (from Fig. 1a).

To compare the astrocyte cell states across regions and sex, we combined the astrocyte cell states (from females and males) with the 7-month-old male hippocampus samples from four 7-month-old male hippocampi (Supplementary Table 1). Datasets were combined and batch corrected by anchor-based joint CCA. Using Seurat v3, we first normalized each dataset separately (log-transform) and found variable genes (using the function FindVariableFeatures, and setting the parameters: method to vst and nfeatures to 2,000). We then searched for integration anchors, which are pairwise correspondences between individual cells, with the underlying assumption that cells originating from the same biological state will be matched (using the function FindIntegrationAnchors, over the first 20 dimensions). We then performed an overlapping set of enrichment analyses, using the functions FindTransferringAnchors and TransferData (in Seurat v3). Each cluster in the integrated dataset was matched to one (or two) of the astrocyte states (homeostatic Gfap-low, Gfap-high, DAA state, intermediate-sate DAA and Gfap-high intermediate state) by a majority vote within all cells in the cluster, while ambiguous results were not matched with any state. Finally, the fraction of astrocytes across clusters/states was calculated for each mouse, comparing the relative frequencies of the DAA, homeostatic Gfap-low and Gfap-high clusters in matching pairs of WT and 5xFAD mice.

Immunohistochemistry. Immunohistochemistry was performed on mouse brain sections. Mice were perfused with PBS before brain tissue fixation, followed by tissue processing to form 30-μm-thick floating sections. The following primary antibodies were used: rabbit anti-GFAP (1:150; Dako no. Z0330, lot 200656262), chicken anti-VIM (1:150; Abcam no. 24525, lot GR321660015), goat anti-GFAP, chicken anti-VIM and mouse anti-Af-16 (1:150; Biocat no. B247600). Secondary antibodies were Cy2/Cy3/Cy5 donkey anti-rabbit/chicken/goat/mouse antibodies, respectively (1:150; Jackson Immunoresearch). Staining with secondary antibody alone was used to rule out nonspecific staining. The following secondary antibodies were used: Cy2/Cy3/Cy5 donkey anti-rabbit/chicken/goat/mouse antibodies, respectively (1:150; Jackson Immunoresearch).

Comparison across brain regions and sex by CCA integrated analysis. Comparison of astrocyte profiles across two groups (that is, sex, in Extended Data Fig. 4a–d, or brain regions, in Extended Data Fig. 4e–i) was done by integrated
Time-course dataset preprocessing and integration. The time-course dataset consisted of four datasets (or batches), a 7-month-old mouse dataset (including four 5xFAD and WT mice from the dataset in Figs. 1 and 2 of samples prepared with EZ lysis buffer) and matching normalized datasets and additional datasets from 5xFAD and WT mice ranging in age from 1.5 to 20-months (Supplementary Table 1). Each dataset in the time course was analyzed separately, repeating the analysis steps described for the 7-month-old mice. Clusters of astrocytes or microglia were selected from each batch for further analysis. For microglia, we calculated for each cell sample out of the total number of cells, and compared across ages and conditions, matching pairs of littermate AD and WT mice that were processed in the same sequencing batch. For astrocytes, data across all four batches were combined and batch corrected by anchor-based joint CCA\(^2\), using Seurat v.3, as described in the section "Subclustering of astrocytes and diffusion map embedding." Following microarray data integration, the integrated expression matrix was analyzed by repeating the standard analysis steps: data scaling, PCA, clustering and two-dimensional t-SNE embedding for visualization, as well as diffusion map modeling (using the top 15 principal components for the clustering, t-SNE and diffusion map steps). The diffusion map embedding of the time-course dataset aligned cells along two continuous trajectories, a Gfap-low to Gfap-high trajectory and a homeostatic-DAAs trajectory (shown in Extended Data Fig. 7), which matched the trajectories found for the 7-month-old mice (Fig. 1d). Notably, for consistency and clarity in Fig. 3 we show the embedding of the time-course datasets in the diffusion map of the 7-month-old mice (as in Fig. 1d, which was done as described in the next section, "Dynamic modeling, k-NN embedding and gene expression dynamics").

Dynamic modeling, k-NN embedding and gene expression dynamics. We devised a computational approach to computationally model dynamic transitions between astrocyte cell states along disease progression by assigning a unique 'origin' cell for each astrocyte in AD. This was done using the Hungarian algorithm\(^3\), as described in the section "Subclustering of astrocytes and diffusion map embedding." Following microarray data integration, the integrated expression matrix was analyzed by repeating the standard analysis steps: data scaling, PCA, clustering and two-dimensional t-SNE embedding for visualization, as well as diffusion map modeling (using the top 15 principal components for the clustering, t-SNE and diffusion map steps). The diffusion map embedding of the time-course dataset aligned cells along two continuous trajectories, a Gfap-low to Gfap-high trajectory and a homeostatic-DAAs trajectory (shown in Extended Data Fig. 7), which matched the trajectories found for the 7-month-old mice (Fig. 1d). Notably, for consistency and clarity in Fig. 3 we show the embedding of the time-course datasets in the diffusion map of the 7-month-old mice (as in Fig. 1d, which was done as described in the next section, "Dynamic modeling, k-NN embedding and gene expression dynamics").

Comparison with aging human astrocytes. The count matrix of sNuc-seq data from human astrocytes was obtained from Mathys et al.\(^4\), using the published cluster annotations to select all astrocyte cells. To compare the human and the mouse astrocytes, mouse genes were first mapped to human genes, using annotations from the UCSC genome browser (for mouse mm10 genome). The human data were re-analyzed following all steps described for the mouse data, including normalizing variable gene detection, scaling, clustering and visualization (all using Seurat v.3). Finally, cluster identity was assigned to the human clusters using the CCA approach (Seurat v.3), using the data and cluster IDs of 7-month-old male mice as reference (as in Fig. 1d and Supplementary Table 1; following the steps detailed in the section "Comparison across brain regions and sex by CCA integrated analysis."). The cluster of human astrocytes with the highest fraction of cells mapped to the mouse DAAs cluster was termed DAA-like. The fraction of astrocytes assigned to each of the mouse clusters (out of the total number of human astrocytes) was calculated for each individual, and split to show the distributions in healthy individuals and individuals with AD. For comparison of human and mouse expression signatures, we chose top marker genes from the matching transgenic Alzheimer’s model 5xFAD animals with WT nontransgenic littermates from the same mouse colony and of the same age. Notably, the clustering analysis, and specifically the identification of the different astrocyte populations, was done blinded to the animal strain, sex, brain region and age.

Statistics. Several statistical tests were used throughout this work, as mentioned in each relevant section. These tests can be divided into the following tasks: (1) Finding statistically significant changes in fractions of cellular populations between WT and 5xFAD mice: we first performed the Shapiro–Wilk test for normality. For normally distributed cellular populations we used the two-sided paired t-test, and for nonnormally distributed samples we used the paired, nonparametric, two-sided Wilcoxon test (matching mice per experimental batch and littermate). Notably, while in both cases, tests were applied to n=8 animals (10 samples), and cellular populations with P<0.01 were reported. The number of cells per population varied (as shown in Fig. 1 and Extended Data Fig. 1). (2) Identifying differentially expressed genes between clusters: negative binomial test and controlled FDRs using the Benjamini–Hochberg procedure, between pairs of clusters. For Fig. 2a Supplementary Table 2: n=8 animals, FDR<1% and genes were required to be expressed in at least 10% of nuclei in the given cluster, and at least 0.3-fold less in all other cells, as routinely done. Data distribution was estimated to be negative binomial, although this assumption might not fit every gene. (3) Finding enriched pathways: done by calculating the hypergeometric P value and controlled FDRs using the Benjamini–Hochberg procedure (all gene sets used are reported in the section "Differential expression, pathway analysis and scoring gene signatures"). For Fig. 2b and Supplementary Table 3: n=8 animals and a threshold of FDR<5%. (4) Testing for consistent changes in cell frequency across ages we used linear regression, computing a confidence interval per time point. Calculated with: n=12 5xFAD animals ages 16 WT animals, for each antibody age (using the R and P value). (5) Identifying the genes associated with the transitions in astrocyte states: we used our computational approach described in section "Dynamic modeling, k-NN embedding and gene expression dynamics." Briefly, we find genes that are statistically significantly (P value controlled for FDRs using the Benjamini–Hochberg procedure <0.001) correlated with the direction of average trajectory by calculating the Pearson correlation coefficient. This was done using n=12 animals, and 10,226 cells from 5xFAD mice across ages.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability Raw and processed mouse sequencing data that support the findings of this study have been deposited in the Gene Expression Omnibus database under accession number GSE143758 and are also available at https://singlecell.broadinstitute.org/single_cell/study/SCP302/mouse-alzheimers-and-disease-astrocytes. Source data
for Fig. 1 are presented with the paper. Code is available at: https://github.com/nao mihabiblab/5xFAD-sNucSeq.

References
21. Gaulinomme, J. T. et al. Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nat. Commun. 10, 2907–2908 (2019).
22. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
23. Haber, L. A. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).
24. Johnson, E. W., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).
25. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. Preprint available at arXiv https:// arxiv.org/abs/1802.03426 (2018).
26. Lancichinetti, A. & Fortunato, S. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80, 016118 (2009).
27. Habib, N. et al. Div-Seq: single-nucleus RNA-seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).
28. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).
29. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).
30. Liberez, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
31. Smilie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).
32. Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
33. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
34. Munkres, J. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5, 32–38 (1957).
35. Baruch, K. et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun. 6, 7967–12 (2015).

Acknowledgements
We thank R. Herbst, I. Avraham-Davidi and members of the Habib laboratory for helpful and suggested suggestions, and L. Gaffney for graphics and J. Rood for editing. We thank I. Shif and M. Bronstein for help with library preparation and sequencing. This work was supported by the NIH BRAIN Initiative grant (grant no. U10MH114821 for A.R.), the Klarman Incubator and Klarman Cell Observatory (A.R.), the HHMI (A.R.) and a MOST-IL flagship grant (for N.H.). M.S. holds the Maurice and Ise Katz Professorial Chair in Neuroimmunology, and N.H. holds the Goren-Khazzam Chair in Neurobiology. The work was supported in part by Advanced European Research Council grant no. 232835 (M.S.); Israel Science Foundation (ISF) research grants no. 991/16 (M.S.), no. 913/15 (T.K.) and no. 1250/18 (T.K.); ISF-Legacy Heritage Biomedical Science Partnership research grant no. 1354/15 (M.S.); the Adelis Foundation and the Thompson Foundation (M.S.); the MOST-IL-China research grant no. 3-15687 (N.H.); and the Alon Fellowship (N.H.).

Author contributions
N.H., M.S., A.R. and F.Z. conceived the study. M.S., N.H. and S.M. designed the experiments. C.M. and D.K. isolated nuclei and generated libraries with assistance from D.D. and L.N. S.M., I.L.M. and F.C. conducted the imaging experiments and S.M. analyzed the imaging data. S.M. and R.D.-S. conducted the animal work. N.H., A.R. and T.K. devised the data analysis. N.H., M.V., G.G. and T.K. conducted the data analysis. T.K. and N.H. developed a new algorithmic approach. M.S., N.H., T.K. and A.R. wrote the paper with input from all of the authors.

Competing interests
A.R. is a founder and equity holder of Celsius Therapeutics, an equity holder in Immunitas Therapeutics and an SAB member of Syros Pharmaceuticals, Thermo Fisher Scientific, Neogene Therapeutics and Asimov. The other authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41593-020-0624-8. Supplementary information is available for this paper at https://doi.org/10.1038/ s41593-020-0624-8.

Correspondence and requests for materials should be addressed to N.H., A.R. or M.S.

Peer review information Nature Neuroscience thanks Valentina Fossati and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | A cellular map of the mouse hippocampus of WT and 5xFAD mice and quality controls. a, Doublet detection and elimination. 2-D tSNE embedding of 60,818 single nuclei RNA profiles from hippocampus of four WT and four 5xFAD 7-month old mice, before filtration. Top: Color coded by cluster assignment. Bottom: Color coded by doublet score assigned per cell by the Scrublet software, used to infer doublet cells and clusters to exclude from the analysis. b, Number of genes and transcripts across clusters. Violin plots showing the distribution of number of genes (top) and transcripts (unique UMIs, bottom) detected in each cluster (n=8 mice, 10 samples). Cluster numbers as in Fig. 1b. c, 2-D tSNE embedding of single nuclei RNA profiles from hippocampus of WT and 5xFAD mice (as in Fig. 1b), colored by (from left to right): batch, mouse strain (WT or AD) and sample. d, Similar distribution of samples and batches across clusters. The percent of cells per cluster, in WT and 5xFAD mice. Middle: Colored by batch/lysis buffer (red= EZ lysis. Blue = NP40 lysis, Methods). Right: Colored by sample (blue color scale, 4 animals and 5 samples per mouse strain, AD or WT). Left: The hierarchical cluster tree and annotations of clusters, as in Fig. 1b.
Extended Data Fig. 2 | Cell type marker genes and assignments. a, Expression of marker genes across clusters. 2-D tSNE embedding of single nuclei RNA profiles from hippocampi of WT and 5xFAD mice (as in Fig. 1b), colored by expression levels of marker genes: Grin2b (neurons), Gad2 (GABAergic neurons), Vcan (Oligodendrocytes precursor cells, OPCs), Hmha1 (microglia), Flt1 (endothelial), Vtn (pericytes), Plp1 (oligodendrocytes), Slc1a3 (astrocytes), Gfap (astrocytes), Rarres2 (ependymal/NPCs), Slc6a13 (fibroblasts), Homer1 (immediate early gene, IEGs). b, Clusters and marker genes. Dot plot showing the expression level (color scale) and the percent of cells expressing (dot size) marker genes across all clusters (rows). Cluster numbers as in Fig. 1b. c, Disease associated microglia (DAM) signature enriched in AD. Violin plots showing the distribution in WT (n = 8 animals, 896 cells) and AD (n = 8 animals, 1,540 cells) of microglia expression scores for signatures of genes up-regulated in DAM compared to homeostatic microglia (from Keren-Shaul et al.,1 Methods). Expression score per cell is the geometric mean normalized expression level (TPMs) across all signature genes, corrected by subtraction of the geometric mean expression of a random set of genes of similar expression levels (Methods). d, Recently activated pyramidal neurons. Left: Dot plot as in (b) showing the expression of immediate early genes (IEGs) across all clusters (as in Fig. 1b), showing cluster 23, capturing pyramidal neurons expressing IEGs. Right: tSNE plot of all cells, color coded by the expression level of the Egr4 gene in CA3/CA1/Subiculum (cluster 23), and DG excitatory neurons (part of cluster 12). e, Cell type specific markers. Dot plots as in (b) showing the expression level, across all clusters (rows, as in Fig. 1b), of markers found to be specific to cells classified as (from left to right): ependymal/NPCs, fibroblasts and pericytes.
Extended Data Fig. 3 | Diversity of astrocyte states in WT and 5xFAD mice. a, 2-D Umap embedding of 7,345 single nuclei RNA profiles of astrocytes (as in Fig. 1d) from hippocampus of 4 WT (left) and 4 5xFAD (AD, right) 7-month old mice. Colored by cluster, all other cells in light yellow in the background. b, 2-D Umap embedding as in (a), colored by sample (left), or batch (right). c, Number of genes and transcripts across clusters. Violin plots showing the distribution of number of genes (top) and transcripts (unique UMIs, bottom) detected per cluster (n=8 animals, total of 7,345 cells). Cluster numbers as in (a). d, Diffusion maps of 7,345 single nuclei RNA profiles of astrocytes in the hippocampus of WT and 5xFAD mice, showing 2-D embedding of cells in combinations of the top four diffusion components (DC), colored by mouse strain, WT (blue) and 5xFAD (AD, red). e, Distribution of astrocyte states in WT and AD brains. Box plots showing the fraction of each astrocyte cluster (compared to total number of astrocyte cells, clusters as in Fig. 1d, n=8 animals, 10 samples), in WT and 5xFAD mice. Displaying the median (thick lines), 25% and 75% quantiles (box), and individual samples (dots).
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | DAAs found in female 5xFAD mice and in the cortex. a, tSNE embedding of single nuclei RNA profiles of astrocytes from hippocampus of 7-month old female (1,500 nuclei, 2 mice, left) and male (5,183 nuclei, 4 mice, right) of three WT and three 5xFAD (AD) mice. Colored by cluster assignment. The three astrocyte end states are marked on the graph (annotated by projection from Fig. 1d, Methods). b, tSNE embedding as in (a), colored by cluster 4 (DAA) and cluster 6 (Gfap-low) cluster IDs of male mice as in Fig. 1d (other cells in grey). c, Expression levels (color scale) and the percent of cells expressing (dot size) of marker genes across clusters, split by sex: for DAA (Ggta1, Gsn, Osmr, Vim, Serpina3n, Ctsb, Gfap), Gfap-low (Fabp7, Slc38a1, Myoc, Aqp4, Id1, Id3, Gfap) and Gfap-low (Mfge8, Slc7a10, Luzp2). d, The proportion of astrocytes classified as Gfap-low (clusters 1,2,5,6 in (a)), DAAs (cluster 3 in (a)) and Gfap-high (cluster 4 in (a)) in male and female mice. Bar: individual mice, colored by strain and sex. e, DAAs in 5xFAD mice cortex at age 7 and 10 months. tSNE embedding of single nuclei RNA profiles of astrocytes from WT and AD mice, from the cortex of 7 and 10 month old mice (6,062 nuclei, 4 mice) and hippocampus of 7-month old mice (5,344 nuclei, 4 mice). Colored by cluster. f, Similar astrocytes marker genes in the hippocampus and cortex. Dot plot showing the expression level (as color scale) and the percent of cells expressing (as dot size) marker genes for DAA, Gfap-high and Gfap-low across clusters (as in (e)), split by brain region to hippocampus and cortex. g, ISNE embedding as in (e), colored by predicted cluster ID of hippocampal astrocytes from 7-month old male mice (inferred by CCA projections, as in Fig. 1d, Methods). h, Cortical astrocyte populations match astrocyte states identified in the hippocampus. Dot plot showing the correspondence between the de novo cluster IDs (rows, from (e)) of the cross regional dataset, and the predicted cluster IDs (columns) using the hippocampal astrocytes cluster IDs as reference (as from Fig. 1d). Color scale based on the proportion of predicted IDs per de novo cross-regional cluster. i, DAAs appear in the cortex of 5xFAD (AD) mice. The proportion of astrocytes, per sample, across clusters, including clusters of Gfap-low, DAAs, and Gfap-high astrocytes. Bars: Individual mice, color annotated by region: cortex or hippocampus (Hip), age: 7 or 10 months (m), and strain: AD or WT. j, Astrocyte marker genes. Left: Average expression level (color scale) and the percent of cells expressing (dot size) marker genes for Gfap-low (Slc7a10; Trpm3), DAA (Ctsb16; Csmd1, associated with cognitive functions; C4b, encoding complement factor 4; Vim, a marker of adult neurogenesis/NSCs), common to DAA and Gfap-high (Cd9, expressed by neural stem cells like astrocytes), and Gfap-high (Sparcl1/Hevin, encoding astrocytes pro-synaptic protein; Aqp4, an endfeet marker) (cells clusters as in Fig. 1e). Right: Violin plots (n=8 animals, 10 samples, 7,345 cells), showing the expression level distributions of Csmd1 and Ctsb in WT and AD astrocytes.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | Shared and distinct transcriptional programs of DAAs and physiological Gfap-high astrocytes. a, Differential expression across astrocyte states. Volcano plots showing differentially expressed genes in each pair of states (n=8 animals, 10 samples. y-axis: -log adjusted hypergeometric p-value, following FDR multiple hypothesis correction, x-axis: average log fold change). AD risk factor genes from GWAS marked in orange (as in Fig. 2a). b, DAAs, Gfap-high astrocytes, and cluster 3 astrocytes share multiple upregulated genes and pathways compared to the homeostatic Gfap-low astrocyte population, but also have distinct expression programs. Pathway (rows) enrichment for upregulated genes in cluster 4 (C4, DAAs, n=478 cells), cluster 6 (C6, Gfap-high, n=457), or cluster 3 (C3, intermediate state, n=1,666 cells), compared to Gfap-low astrocytes (n=1,594 cells). Enriched pathways (hypergeometric p-value with FDR<0.05. n=8 animals, 10 samples), colored by -log FDR values (as in Fig. 2b, with full list of pathway annotations and no scaling).
Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | DAAs express signatures of reactive astrocytes and are found across brain regions. a–b, Signatures of inflammatory reactive astrocytes found in AD. Ridge plots showing the distribution of expression scores across each astrocyte cluster, for signature genes of: pan-reactive, A1, and A2 (from Liddelow et al.5, left), or of: pan-reactive, inflammation (LPS-induced), and ischemia (MCAO-induced) (from Zamanian et al.6, right). Expression score per cell is the geometric mean normalized expression level (TPMs) across all signature genes, corrected by subtraction of the geometric mean expression of a random set of genes of similar expression levels. b, Violin plots showing the distribution of expression scores across WT (3,831 cells, n=4 animals) and AD (3,514 cells, n=4 animals), for signature genes for: A1 and A2 astrocytes (as defined in Liddelow et al.5). Scores computed as in (a). c, Expression of genes from reactive, A1, and A2 signatures, showing diversity of gene patterns across astrocyte clusters. 2-D umap24 embedding of 7,345 single nuclei RNA profiles of astrocytes in the hippocampus of WT and 5xFAD mice (as in Supplementary Fig. 3a), colored by the gene expression level. Dotted black lines: areas of highest expression. Gene name: on top of each graph. The associated gene (pan reactive, A1 or A2) on the right side of each panel. d, Astrocytes expressing DAA markers are present in AD brains, enriched in the subiculum and in proximity to Aβ plaques. Representative immunofluorescence images (staining repeated over n=4 AD and WT mice, with 4 brain slices per animal) in sagittal sections of 7-8-month old 5xFAD mice (with Fig. 2f-h). From top to Bottom: Subiculum, stained for GFAP (green), VIM (red), and serpinA3N (gray), (as in Fig. 2f). Dentate gyrus (in Fig. 2g, left) and subiculum (in Fig. 2g, right), stained for GFAP (green), VIM (red), and Aβ (gray). Subiculum, stained for GFAP (green), serpinA3N (red), and Aβ (gray) (as in Fig. 2h). Cell nuclei are shown in blue (Hoechst). Scale bar, 50μm.
Extended Data Fig. 7 | Clustering of astrocyte cells from WT and 5xFAD mice across ages.

(a-b) tSNE embedding of sNuc-Seq profiles of astrocytes in WT and 5xFAD (AD) mice across 6 different age groups (in months): 1.5-2 (n=6 mice), 4-5 (n=4), 7-8 (n=8), 10 (n=2), 13-14 (n=6), and 20 (n=2, WT only). (23,863 cells, integrated across four batches22,33, Methods). Colored by: cluster IDs (in (a)), or predicted cluster IDs (using reference cluster IDs of astrocytes of 7-month old mice as in Fig. 1d, in (b)).

c. The correspondence between the de novo cluster IDs (columns) of the time course data, and the predicted cluster IDs (rows) from astrocytes of 7-month old mice (as in Fig. 1d). Color scale = proportion of predicted IDs per de novo cluster.

d-g, 2-D tSNE embedding of astrocytes across ages as in (a), colored by: age (d), mouse strain, AD/WT (e), batch (f), or sample (g).

h, Continuous trajectory of astrocyte states across ages in WT and AD. Diffusion map embedding of astrocytes across ages. Colored by de novo clusters: Gfap-low (1), Gfap-low/intermediate (2), Gfap-high (3), and DAAs (4). 15,113 astrocyte cells, down sampled randomly from 23,863 cells to capture 2,500 cells of each age group (or the maximum number of cells available if less than 2,500).

i, Diffusion map embedding (as in (h)), colored by predicted cluster IDs (as in (b)).

j, 2-D embedding of the 15,113 astrocytes of AD (left) and WT (right) cells across ages, projected onto the diffusion map of 7-month old mice (by the weighted average position of the K-NN from Fig. 1d, Methods). Colored by the de novo clusters (as in (a)).

k, The expression level (as color scale) and the percent of cells expressing (as dot size) of marker genes for DAAs (Ggtal, Gsn, Osmr, Serpina3n, Ctsb, and Gfap), Gfap-high (Fabp7, Slc38a1, Myoc, Aqp4, Id1, Id3, and Gfap) and Gfap-low (Mfge8, Slc7a10, Luzp2), across de novo clusters of astrocytes across ages.
Extended Data Fig. 8 | DAAs are largely derived from Gfap-low astrocytes. a-b, Direction of transition of AD astrocytes from their global optimal nearest neighbor (origin) cell (predicted by the Hungarian algorithm34, Methods) to their given position in the diffusion map. For each cluster, force field (black arrows) marking the directionality of transitions along the diffusion map28 (as in Fig. 1d), cells colored by cluster ID. Showing transitions from the predicted cell of origin among all WT cells or AD cells outside the cluster (a), or among all WT cells only (b) (transitions among AD cells only are shown in Fig. 3). c, Proportion of cells of origin per cluster (dot size and color) for each AD cluster (rows), from all WT cells (left) or from AD cells from all other clusters (right). d, Scheme of predicted transitions, shown as a graph with arrows between pairs of clusters with high proportion of origin cells (>15%) when mapping AD to all WT cells. Color and width of edge reflects the proportion. Diffusion map as in (a) in the background. e, Genes correlated with predicted transitions from WT cells to DAA in AD. The expression level across clusters (dot color) and the percent of cells expressing (dot size) significant (Pearson Correlation coefficient, FDR q-value <0.001, n=28 mice, 25,076 cells, Supplementary Table 1) genes that correlated with the transition to cluster 3 (intermediate) or cluster 4 (DAAs) from WT cells. Bottom: Assignment of each gene to a transition between pairs of clusters. f, Direction of transition on the diffusion space of AD astrocytes in each cluster from their weighted K-nearest neighbor position among all other WT cells. Force field showing the directionality of transitions between the expected position in the diffusion map (weighted average position of K-NN among all WT cells, k=10) to the true position along the diffusion map (as in Fig. 1d) for each cell. Colored by cluster IDs. Cluster numbers on top of each graph.
Extended Data Fig. 9 | DAA-like astrocytes found in aging human cortex. **a-b.** Diversity of human astrocytes. De novo tSNE embedding of 3,392 sNuc-Seq profiles of cortical human astrocytes from post-mortem aging brains of AD and non-AD individuals (n=48, from Mathys et al.⁴), colored by de novo human cluster ID (a) or by the predicted mouse cluster IDs (b) (predicted by CCA²²,³³ projections from the mouse clusters as in Fig. 1d). **c.** The average prediction scores (as color scale) and the percent of cells with score above 0 (as dot size) for the three major end-states mouse clusters (from Fig. 1d), across the human astrocyte clusters (as in a, Mathys et al.⁴). From left to right: Gfap-low (mouse cluster 1), DAAs (mouse cluster 4), and Gfap-high (mouse cluster 6). **d.** Dot plot showing the expression level (as color scale) and the percent of cells expressing (as dot size) marker genes for mouse astrocyte states: DAA (OSMR, VIM, GFAP), Gfap-high (ID1, ID3, SLC38A1, GFAP) and homeostatic Gfap-low (MFGE8), across clusters of the human cortical astrocytes (from Mathys et al.⁴).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a	Confirmed
☐ | The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
☐ | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
☐ | The statistical test(s) used AND whether they are one- or two-sided

 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
☐ | A description of all covariates tested
☐ | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
☐ | A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
☐ | For null hypothesis testing, the test statistic (e.g. F, t, χ²) with confidence intervals, effect sizes, degrees of freedom and P value noted

 Give P values as exact values whenever suitable.
☐ | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
☐ | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
☐ | Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Nuclei were counted and imaged using the Neucelom Cellometer Vision with provided software (version 2.1.7.6 Running in Standard Mode). Single nucleus RNA-seq libraries were made using 10X Genomics single-cell 3’ Gene Expression assay (v2 or v3, as indicated per sample in supplementary table 1), sequenced on Illumina HiSeq using the provided software (Control Software - Version 3.5.0.7, Real Time Analysis - version 2.7.7, Chemistry - v2.0420) or NextSeq500 (control software version 2.2.0, chemistry v2), and quality controlled using Agilent Technologies 2100 BioAnalyzer with the provided software (2100 Expert version B.02.08.51648(SR3)).

Data analysis

Data analysis was done using the commercial software Cellranger (version 2.1.1, chemistry V2, 10x Genomics) and downstream analysis was done in R using code written by us (available on github), publicly available R packages (version 3.6.1) for statistics, machine learning, visualizations, and vector manipulations, including packages for analysis of scRNA-seq data: Seurat (V2.3.4), ComBat (Version 0.0.4) and Destiny (through BioConductor Release 3.10). Doublet detection was done using the Scrublet software (version 0.2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

 - Accession codes, unique identifiers, or web links for publicly available datasets
 - A list of figures that have associated raw data
 - A description of any restrictions on data availability

Data And Software Availability. Raw and processed mouse sequencing data is available at https://singlecell.broadinstitute.org/single_cell/study/SCP302/mouse-alzheimers-and-disease-astrocytes and at the Gene Expression Omnibus (GEO) database accession GSE143758, and the code at: https://github.com/naomihabiblab/SxFAD-sNuSeq
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
The main dataset consisted of 4 WT and 4 transgenic 5xFAD mice, based on published results by us and other groups, showing high consistency in single nucleus RNA-seq libraries between mice, but due to technical variability it is recommended to have at least 3 animals per group. The time course data had additional 6 WT and 6 5xFAD animals across time points. Number of nuclei per animal was determined to enable detection of rare populations around 2% of all cells (calculated based on our previous data in the mouse brain).

Data exclusions
No animal or sample was excluded from the analysis. As routinely done, specific single nucleus RNA-seq libraries were excluded based on low technical quality (low number of transcripts and genes captured) or after identification of these libraries as doublets.

Replication
Biological replicates (different mice) and technical replicates (left and right brain hemispheres from the same mouse) of the single nuclei RNA-seq libraries were made, and used as validations. Replication were successful and we report differences between WT and 5xFAD mice which are confirmed by all samples (animals and technical replicates). For the time course data, since not all time points had technical replicates, we report differences between WT and 5xFAD mice that consistently increase or decrease across all time points.

Randomization
In each experimental batch, animals were chosen randomly based on their age. However, we matched transgenic Alzheimer's model 5xFAD animals with WT non-transgenic litter-mate from the same mouse colony and age.

Blinding
Multiple analysis steps of the single cell RNA-seq data was done blindly to the mouse strain, including: clustering, detection of differentially expressed genes and marker genes, cell type identification and frequency assessments.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☑	Antibodies
	Eukaryotic cell lines
	Palaeontology
☑	Animals and other organisms
☑	Human research participants
	Clinical data

Methods

n/a	Involved in the study
☑	ChIP-seq
	Flow cytometry
	MRI-based neuroimaging

Antibodies

Antibodies used
The following primary antibodies were used: rabbit anti-GFAP (1:150; Dako #Z0334 #LOT 20056262), chicken anti-VIM (1:150; Abcam #24525, # LOT GR3216660-15), goat anti-serpinA3N (1:200; R&D systems #AF4709-SP, # LOT CBKW318051), mouse anti-Aβ 1-16 (1:150; Biolegend #803001, #LOT B247600). Secondary antibodies were Cy2/Cy3/Cy5 donkey anti-rabbit/chicken/mouse antibodies, respectively (1:150; Jackson ImmunoResearch, 711-225-152, cy2 Donky anti Rabbit, lot 142845; 715-225-150, Cy2-AffiniPure Donkey Anti-Mouse, lot 122781; 711-165-152, Cy3 Donkey anti Rabbit, lot 143202; 715-165-151, Cy3-AffiniPure Donkey Anti-Mouse IgG, lot 143017; 705-165-147, Cy3 Donkey Anti-Goat, lot 143201; 715-175-151, Cy5-AffiniPure Donkey Anti-Mouse IgG, lot 144119; 711-175-152, Cy5-AffiniPure Donkey Anti-Rabbit IgG, lot 144221; 705-175-147, Cy5-AffiniPure Donkey Anti-Goat, lot 134531; 703-485-155, DyLight 488 AffiniPure Donkey Anti-Chicken IgG, lot153002).

Validation
Full validations were done and staining with secondary antibody alone was used as a negative control, to rule out nonspecific staining. The Rabbit anti-GFAP Polyclonal antibody directed to bovine GFAP, was shown to be specific and functional in mouse brain in the following publications: Rosenzweig et al., 2019.
Animals and other organisms

Policy information about studies involving animals: ARRIVE guidelines recommended for reporting animal research

Laboratory animals	In this study, the following mouse strains and ages were used: male heterozygous 5XFAD transgenic mice (Tg6799 strain on a C57/BL6-SJL strain background) and WT strain C57/BL6-SJL mice, at ages: 1.5, 2, 4, 7, 10, and 13 months old. The study included multiple male mice and two female mice. All information regarding the age, sex and strain is provided per sample in Supplementary Table 1.
Wild animals	The study did not include any wild animals
Field-collected samples	The study did not include any samples collected at the field
Ethics oversight	All experiments detailed herein complied with the regulations formulated by the Institutional Animal Care and Use Committee (IACUC) of the Weizmann Institute of Science.

Note that full information on the approval of the study protocol must also be provided in the manuscript.