HBeAg Seroconversion in HBeAg-Positive Chronic Hepatitis B Patients Receiving Long-Term Nucleos(t)ide Analog Treatment: A Systematic Review and Network Meta-Analysis

Tongjing Xing*, Hongtao Xu, Lin Cao, Maocong Ye
Department of Infectious Diseases, Taizhou People’s Hospital, Taizhou, Jiangsu Province, China

* xingtj518@sina.com

Abstract

Background
HBeAg seroconversion is an important intermediate outcome in HBeAg-positive chronic hepatitis B (CHB) patients. This study aimed to compare the effect of nucleos(t)ide analogs (NA) on HBeAg seroconversion in treating CHB with lamivudine, adefovir, telbivudine, entecavir, and tenofovir.

Methods
Network meta-analysis of NA treatment-induced HBeAg seroconversion after 1–2 years of treatment was performed. In addition, NA treatment-induced HBeAg seroconversion after 3–5 years of treatment was systematically evaluated.

Results
A total of 31 articles were included in this study. Nine and five studies respectively reporting on 1- and 2-year treatment were included in our network meta-analysis. In addition, 6, 5, and 5 studies, respectively reporting on 3-, 4-, and 5-year treatment were included in our systematic evaluation. Telbivudine showed a significantly higher HBeAg seroconversion rate after a 1-year treatment period compared to the other NAs (odds ratio (OR) = 3.99, 95% CI 0.68–23.6). This was followed by tenofovir (OR = 3.36, 95% CI 0.70–16.75). Telbivudine also showed a higher seroconversion rate compared to the other NAs after a 2-year treatment period, (OR = 1.38, 95% CI 0.92–2.22). This was followed by entecavir (OR = 1.14, 95% CI 0.72–1.72). No significant difference was observed between spontaneous induction and long-term telbivudine treatment-induced HBeAg seroconversion. However, entecavir and tenofovir treatment-induced HBeAg seroconversions were significantly lower than spontaneous seroconversion.
Conclusion
Long-term treatment with potent anti-HBV drugs, especially tenofovir and entecavir, may reduce HBeAg seroconversion compared with spontaneous HBeAg seroconversion rate. Telbivudine treatment, whether short term or long term, is associated with higher HBeAg seroconversion compared with the other NAs. However, the high rates of drug resistance likely limit the application of telbivudine.

Introduction
Chronic hepatitis B (CHB) naturally involves an alternating process of repeated hepatitis occurrence and disease remission. Interaction and mutual influences between the virus and immune system determines the progression and clinical outcome of CHB [1]. HBeAg, an important antigen expressed by hepatitis B virus (HBV), has been suggested to inhibit the immune function of the host [2]. CHB progression involves either spontaneous or treatment-induced HBeAg seroconversion, with the latter often associated with clinical remission to achieve the inactive virus carrier state. Therefore, HBeAg seroconversion is not only a hallmark of HBeAg-positive CHB patients but also speculated as an important indicator for anti-HBV therapy [3].

Nucleos(t)ide analogs (NAs) are common anti-HBV drugs. Five NAs, namely, lamivudine, adefovir, telbivudine, entecavir, and tenofovir, are currently used to treat CHB [4]. The mechanism of action of NAs involves inhibition of viral replication through direct inhibition of DNA polymerase activity, reducing the reuse of covalently closed circular DNA (cccDNA) and transcription of pregenomic RNA, as well as through indirect effect on HBeAg synthesis. Short-term treatment of HBeAg-positive CHB patients can increase the rate of HBeAg seroconversion. By contrast, long-term treatment increases the histological improvement and regression of fibrosis thus improves the prognosis of CHB patients [5]. However, inhibition of viral replication can disrupt the homeostasis between the virus and immune system of the host, affecting the immune response and probably producing negative effects on HBeAg seroconversion [6].

Entecavir and tenofovir are the most effective anti-HBV drugs, followed by telbivudine and lamivudine, whereas adefovir dipivoxil is the least effective of the five drugs. Entecavir and tenofovir are recommended as first-line therapy for adults with immune-active CHB by the American Association for the Study of Liver Disease, European Association for the Study of the Liver and Asian Pacific Association for the Study of the Liver [4, 7, 8]. However, HBeAg seroconversion rates are different in patients with treatment-naive HBeAg-positive CHB after 1–2 year of oral NA therapy. The meta-analysis performed by Dakin et al. showed that administering more effective anti-HBV drugs does not increase the HBeAg seroconversion rate [9]. The meta-analysis by Wiens et al. showed that tenofovir exerts the strongest inducing effect on HBeAg seroconversion after 1 year of treatment [10]. Moreover, no study has systematically evaluated the effect of long-term treatment on HBeAg seroconversion thus far. Herein, we performed a meta-analysis on NA treatment-induced HBeAg seroconversion after 1–2 years of treatment. In addition, NA treatment-induced HBeAg seroconversion after 3–5 years of treatment was systematically evaluated.

Methods
Search strategy
The data used in this research were obtained from PubMed (MEDLINE), EMBASE, and Cochrane Library. The following search terms were used: HBeAg-positive CHB and Entecavir
(ETV) or lamivudine (LAM) or Telbivudine (LDT) or Tenofovir (TDF) or Adefovir (ADF), HBeAg seroconversion, and randomized controlled trial (RCT). Studies involving special population groups (see below in inclusion and exclusion criteria) and drugs used in combination were not included. All analyses were based on previous published studies, no ethical approval and patient consent are required.

Studies published from 2000 to 2015 were included. Recent publications were also searched manually. Only randomized controlled trials (RCTs) with durations of approximately 1–2 years were included. In addition, open-label and prospective cohort studies with a duration of approximately 3–5 years were included. One year is defined as 48 or 52 weeks. In addition, spontaneous HBeAg seroconversion of long term follow-up was conducted from manual search results.

Data collection

Data were extracted and evaluated by two independent reviewers. Reviewers resolved discrepancies through discussion. Studies with a Jadad score [11] of lower than 3 points were excluded. HBeAg seroconversion was the unique index evaluated in this study. We extracted data on study characteristics, patient characteristics, intervention details, and HBeAg seroconversion rate.

Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) HBeAg-positive adult CHB patients; (2) NA-naive patients; (3) NA monotherapy; and (4) drug dosages were those generally recommended by international guidelines. The exclusion criteria were as follows: (1) drug resistance at the beginning of treatment with NAs; (2) other special population groups, such as children, pregnant, and breast-feeding women, and those receiving immune inhibitor therapy; and (3) patients with decompensated liver cirrhosis.

Statistical analysis

Analyses were performed using Addis software version 1.16.5 (Drug IS.org, Amsterdam, The Netherlands). Network meta-analysis was conducted to compare the odds ratios (ORs) of the treatments and to rank the therapeutic regimens to determine their HBeAg seroconversion rate. In the absence of significant inconsistency, the relative effects of the interventions were analyzed using a consistency model based on a random-effects Bayesian model provided by the ADDIS software. The analysis results are presented as ORs with associated 95% confidence intervals, as well as estimated probabilities for the interventions in descending order. This meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement (S1 PRISMA Checklist) [12].

Results

Search results and summary of studies

In our preliminary search for relevant literature, we identified 196 articles, which included 64 articles from MEDLINE, 120 from EMBASE, and 12 from Cochrane Library. A total of 138 articles were excluded after screening their titles and abstracts. A total of 29 articles were excluded after reading their full text (including conference abstracts from the EMBASE database). Two recently published articles found through manual search were included. Fig 1 describes the details of the selection process. Finally, 31 articles were included in this meta-analysis [13–43]. Nine and six articles respectively reporting on 1- and 2-year treatments were
included in our network meta-analysis. In addition, 6, 5, and 5 articles respectively reporting on 3-, 4-, and 5-year treatments were systematically evaluated.

Characteristics of the included studies

Nine studies involving 3,569 patients and reporting on 1-year treatment met the inclusion criteria for this systematic review and meta-analysis [13–21]. Eight studies were multi-center RCTs, and one study is single-center RCT. Six and three studies were performed within 48 and 52 weeks, respectively (Table 1). Six studies involving 2,417 patients and reporting on 2-year treatment met the inclusion criteria for this systematic review and meta-analysis [22–27]. Five studies were multi-center RCTs, and one was an open-label study (Table 2). Most of the 3–5-year long studies were open-label studies in addition to one RCT and four prospective cohort studies (Tables 3–5) [28–43]. The range of alanine aminotransferase (ALT) was more than 1.0–1.3 upper limit of normal (ULN) and lower than 10 ULN. The lower limit of quantification (LLOQ) of HBV DNA was 20 IU/ml (~100 copies/ml) to 400 copies/ml, whereas that reported in several early studies was 1.6–3.78 pg/ml.

Network meta-analysis of HBeAg-positive CHB patients after 1-year treatment with NAs

Fig 2 shows the network of evidence indicating that 12 possible comparisons could be made, five of which were examined directly in one or more trials. Table 6 shows the ORs of HBeAg seroconversion after 1-year treatment as revealed by network meta-analysis. With regard to HBeAg seroconversion after 1-year treatment, telbivudine achieved a significantly higher rate than the other NAs (OR = 3.99, 95% CI 0.68–23.6) followed by tenofovir (OR = 3.36, 95% CI
Authors, Year	Country (area)	Patients (N)	Male (N)	Age (Years)	MeanALT (U/L)	MeanHBV DNA (copies/ml)	Treatment	Treatment duration (w)	Study design	Lower and Upper of ALT
Chang, et al. 2006 [13]	Taiwan	354	274	35	13.1 ± 11.4	9.62 ± 11.99	Entecavir (0.5 mg)	48 w	RCT	<300 copies/ml
Yao, et al. 2006 [14]	China	225	165	30	8.64	9.62 ± 2.01	Lamivudine (100 mg)	48 w	RCT	<300 copies/ml
Hou, et al. 2008 [15]	China	147	118	30	8.48	9.42 ± 2.01	Entecavir (0.5 mg)	48 w	RCT	<300 copies/ml
Marcellin, et al. 2007 [16]	France	176	130	34	8.25 ± 0.90	8.67 ± 0.77	Adefovir (10 mg)	48 w	RCT	<200 copies/ml
Sriprayoon, et al. 2012 [18]	Thailand	54	42	34	8.7 ± 0.7	8.6 ± 0.7	Adefovir (10 mg)	48 w	RCT	<300 copies/ml
Zeng, et al. 2006 [21]	China	240	201	31	8.5 ± 1.0	8.5 ± 1.0	Placebo	48 w	RCT	<300 copies/ml
Authors, Year	Country (area)	Patients (N)	Male (N)	Age (Year)	Mean ALT (UL)	Mean HBV DNA (Dosage/Day)	Treatment duration	HBVDNA LLQ	Lower and Upper of ALT	Study design
------------------	----------------	--------------	----------	------------	---------------	---------------------------	--------------------	------------	------------------------	--------------
Gish, et al. 2007 [22]	Taiwan	354	-	-	9.8	Entecavir (0.5 mg)	96 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
		355	-	-	9.4	Lamivudine (100 mg)	96 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
Yao, et al. 2008 [23]	China	225	185	30	195	Entecavir (0.5 mg)	96 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
		221	184	30	197	Lamivudine (100 mg)	96 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
Jia, et al. 2014 [24]	China	147	118	28.1	156.3	Telbivudine (800 mg)	104 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
		143	107	28.9	156.6	Lamivudine (100 mg)	104 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
Liaw, et al. 2009 [25]	Taiwan	458	333	32	146.2	Telbivudine (600 mg)	104 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
		463	351	33	158.9	Lamivudine (100 mg)	104 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
Chen, et al. 2011 [26]	China	32	23	36.8	208.7	Entecavir (0.5 mg)	96 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
		33	24	34.2	174.7	Adefovir (10 mg)	96 w	<300 copies/ml	1.3<ALT<10 ULN	RCT
Heathcote, et al. 2008 [27]	Canada	176	125	34	142	Tenofovir (300 mg)	96 w	<400 copies/ml	1.0<ALT<10 ULN	Open-label study

doi:10.1371/journal.pone.0169444.t002
Table 3. Characteristics of HBeAg positive chronic hepatitis B patients following 3-year treatment with NAs.

Authors, Year	Country (area)	Patients (N)	Male (N)	Age (Year)	Mean ALT (U/L)	Mean HBV DNA (U/L)	Treatment (Dosage/Day)	Treatment duration	HBVDNA LLQ	Lower and Upper of ALT	Study design
Leung, et al. 2001[28]	Hong Kong	58	42	31	1.7ULN	59.2pg/ml	lamivudine (100 mg)	144 w	1.6 pg/ml	1.0<ALT<10 ULN	Open-label
Lin, et al. 2007[29]	China	48	38	27.3	3.0 ULN	8.7	Adefovir (10 mg)	144 w	<300 copies/ml	1.0<ALT<10 ULN	Open-label
Gane, et al. 2011[30]	New Zealand	213	155	30	112	9.4	Telbivudine (600 mg)	156 w	<300 copies/ml	1.3<ALT<10 ULN	Open-label
Yao, et al. 2010[31]	China	160	135	30±9	179±117	8.83±0.86	Entecavir (1.0 mg)	156 w	<300 copies/ml	1.3<ALT<10 ULN	Open-label
Sriprayoon, et al. 2015[32]	Thailand	200 (95E+/-)	-	41.6	68.1	5.91	Entecavir (0.5 mg)	144 w	<20 IU/ml	2.0<ALT<10 ULN	RCT
Heathcote, et al. 2011[33]	Canada	214	183	32.4	117.8	8.86	Tenofovir (300 mg)	144 w	<400 copies/ml	1.0<ALT<10 ULN	Open-label

doi:10.1371/journal.pone.0169444.t003
Authors, Year	Country (area)	Patients (N)	Male (N)	Age (Year)	Mean ALT (U/L)	Mean HBV DNA (copies/ml)	Treatment (Dosage/Day)	Duration HBV DNA LLQ	Lower and Upper of ALT	Study design	
Chang, et al. 2004 [34]	Taiwan	58	42	31	1.86	<1000	lamivudine (100 mg)	192 w	<3.78 pg/ml	1.0-ALT<10 10 U/L	Open-label
Liang, et al. 2011 [35]	China	95	72	34.7	138.8	<1000 copies/ml	Adefovir (10 mg)	192 w	<1000 copies/ml	1.5-ALT<12.5 U/L	Prospective cohort study
Wang, et al. 2013 [36]	China	293	221	29.0	116	<300 copies/ml	Telbivudine (600 mg)	208 w	<300 copies/ml	1.3-ALT<10 U/L	Open-label
Chen, et al. 2013 [37]	China	30	24	39.0	266.7±94.2	<5000 copies/ml	Telbivudine (600 mg)	192 w	<500 copies/ml	-	Prospective cohort study
Heathcote, et al. 2011 [38]	Canada	130	95	35	138	<4000 copies/ml	Tenofovir (300 mg)	192 w	<400 copies/ml	2.0-ALT<10 U/L	Open-label
											doi:10.1371/journal.pone.0169444.t004
Table 5. Characteristics of HBeAg positive chronic hepatitis B patients following 5-year treatment with NAs.

Authors, Year	Country (area)	Patients (N)	Male (N)	Age (Year)	MeanALT (U/L)	MeanHBV DNA Treatment (Dosage/Day)	Treatment duration	HBVDNALLQ	Lower and Upper of ALT	Study design
Yao, et al.2009[39]	China	227	-	-	-	lamivudine (100 mg)	240 w	1.6 pg/ml	1.0<ALT<10 ULN	Open-label
Zeng, et al.2012[40]	China	240	201	31±9	3.9±3.8ULN	Adefovir (10 mg)	240 w	<300 copies/ml	1.0<ALT<10 ULN	Open-label
Zhang, et al.2015[41]	China	97	74	33	171	Telbivudine (600 mg)	240 w	<500 copies/ml	ALT>2 ULN	Prospective cohort study
Chang, et al.2010[42]	Taiwan	146	117	36	121.8	Entecavir (0.5 mg)	240 w	<500 copies/ml	ALT>2 ULN	Open-label
Marcellin, et al.2013[43]	France	164	-	-	6.7±1.0	Tenofovir (300 mg)	240 w	<400 copies/ml	ALT>1 ULN	Open-label

doi:10.1371/journal.pone.0169444.t005
0.70–16.75). Placebo achieved the lowest. Fig 3 shows the probabilities of each drug ranked as the choice drug for HBeAg seroconversion.

Network meta-analysis of HBeAg-positive CHB patients after a 2-year treatment with NAs

Fig 4 shows the network of evidence indicating that six possible comparisons could be made, four of which were studied directly in one or more trials. Table 7 shows the ORs of HBeAg seroconversion after 2-year treatment as revealed by network meta-analysis. Regarding HBeAg seroconversion after a 2-year treatment, telbivudine achieved a significantly higher rate than the other NAs (OR = 1.38, 95% CI 0.92–2.22) followed by entecavir (OR = 1.14, 95% CI 0.72–1.72). Fig 5 shows the probabilities of each drug to be ranked as the choice drug for HBeAg seroconversion.

HBeAg seroconversion of HBeAg-positive CHB patients after 3-, 4-, and 5-year treatments with NAs

Most of the studies were open-label and prospective cohort studies. Table 8 shows the HBeAg seroconversion in HBeAg-positive CHB patients after 3-, 4-, and 5-year treatments with lamivudine, adefovir, telbivudine, entecavir, and tenofovir. Telbivudine was the most effective among the five drugs. In addition, no significant differences were observed between spontaneous seroconversion and telbivudine-induced HBeAg seroconversion. However, HBeAg

Table 6. Odds ratios of HBeAg seroconversion after 1-year treatment obtained through network meta-analysis.

Network Meta-Analysis (Consistency Model)	adefovir	entecavir	lamivudine	telbivudine	tenofovir
placebo	0.64(0.16,2.57)	0.64(0.16,2.57)	0.30(0.06,1.43)	1.03(0.29,3.84)	1.03(0.29,3.84)
adefovir	1.35(0.35,6.82)	0.98(0.58,1.72)	1.19(0.72,2.13)	3.31(0.61,17.83)	3.31(0.61,17.83)
entecavir	0.97(0.26,3.64)	0.30(0.06,1.64)	0.97(0.26,3.64)	0.30(0.06,1.64)	0.30(0.06,1.64)
lamivudine	2.15(1.01,4.82)	3.36(0.70,16.75)	1.12(0.04,1.46)	3.36(0.70,16.75)	3.36(0.70,16.75)
telbivudine	3.31(0.61,17.83)	3.31(0.61,17.83)	0.25(0.04,1.46)	0.25(0.04,1.46)	0.25(0.04,1.46)
tenofovir	0.32(0.11,0.86)	0.32(0.11,0.86)	0.81(0.19,3.15)	0.81(0.19,3.15)	0.81(0.19,3.15)
placebo	3.99(0.68,23.60)	3.99(0.68,23.60)	0.54(0.11,2.60)	0.54(0.11,2.60)	0.54(0.11,2.60)
adefovir	1.56(0.39,6.20)	1.56(0.39,6.20)	1.46(0.74,3.00)	1.46(0.74,3.00)	1.46(0.74,3.00)
entecavir	1.53(0.35,6.82)	1.53(0.35,6.82)	1.84(0.38,9.08)	1.84(0.38,9.08)	1.84(0.38,9.08)
lamivudine	0.47(0.21,0.99)	0.47(0.21,0.99)	0.47(0.21,0.99)	0.47(0.21,0.99)	0.47(0.21,0.99)
telbivudine	1.84(0.38,9.08)	1.84(0.38,9.08)	1.84(0.38,9.08)	1.84(0.38,9.08)	1.84(0.38,9.08)
tenofovir	1.46(0.74,3.00)	1.46(0.74,3.00)	1.46(0.74,3.00)	1.46(0.74,3.00)	1.46(0.74,3.00)
placebo	3.15(1.16,9.26)	3.15(1.16,9.26)	3.15(1.16,9.26)	3.15(1.16,9.26)	3.15(1.16,9.26)
adefovir	0.64(0.16,2.57)	0.64(0.16,2.57)	0.64(0.16,2.57)	0.64(0.16,2.57)	0.64(0.16,2.57)
entecavir	0.98(0.58,1.72)	0.98(0.58,1.72)	0.98(0.58,1.72)	0.98(0.58,1.72)	0.98(0.58,1.72)
lamivudine	0.30(0.06,1.43)	0.30(0.06,1.43)	0.30(0.06,1.43)	0.30(0.06,1.43)	0.30(0.06,1.43)
telbivudine	1.05(0.32,3.46)	1.05(0.32,3.46)	1.05(0.32,3.46)	1.05(0.32,3.46)	1.05(0.32,3.46)
tenofovir	1.03(0.29,3.84)	1.03(0.29,3.84)	1.03(0.29,3.84)	1.03(0.29,3.84)	1.03(0.29,3.84)

0.68(0.33,1.34) | 0.68(0.33,1.34) | 0.68(0.33,1.34) | 0.68(0.33,1.34) | 0.68(0.33,1.34) | 0.68(0.33,1.34)

Table 7. Odds ratios of HBeAg seroconversion after 2-year treatment as revealed by network meta-analysis.

ORs	95% CI
1.38	0.92–2.22
1.14	0.72–1.72

Fig 2. Overview of treatment strategies. Lines represent direct (head-to-head) comparisons.

doi:10.1371/journal.pone.0169444.g002

doi:10.1371/journal.pone.0169444.t006
seroconversion induced by entecavir and tenofovir treatment was significantly lower than spontaneous HBeAg seroconversion.

Discussion

Although several studies have shown that short-term NA treatment in CHB patients may improve HBV-specific T cell response [44, 45], NA by itself generally does not exert immune regulation function. Recently, Li et al. [46] reported that NA-mediated HBV suppression can downregulate the production of negative regulators of host immunity during the first 24 weeks of therapy and can partially restore the ability of CD8 T cells to secrete pro-inflammatory cytokines. This immune-modulating response may be correlated with the levels of both HBV DNA and HBeAg, but not with NAs. The results of our network meta-analysis suggested that HBeAg seroconversion rates were highest with telbivudine treatment followed by tenofovir therapy. This result is consistent with those from previous studies [47, 48]. The study by Wilens et al. showed that tenofovir was the most effective in inducing HBeAg seroconversion; however, patients receiving combination treatment and who were resistant to drugs were included in that study possibly influencing the accuracy of the results [10]. Given the lack of head-to-head research, the clinical baseline characteristics (e.g., HBV DNA, ALT level, and age) for NA treatment in CHB patients may affect the relative efficacy of drugs. Mealing et al. [49] found that when no adjustment was made to account for the differences in baseline viral load among trials, tenofovir was significantly better than entecavir in terms of achieving undetectable viral load after 1-year treatment. However, when they accounted for the impact of baseline viral load, the difference between the two treatments was not significant. ALT levels are positively correlated with the possibility of HBeAg seroconversion. Yuen et al. [50] found that the cumulative HBeAg seroconversion rate significantly increased with ALT levels and suggested that high rate of spontaneous HBeAg seroconversion should be considered when treatment for patients with very high ALT levels is initiated.

The effects of long-term NA treatment on immune function of CHB patients remain unclear. Boni et al. [51] showed that T cell activity could be restored in patients with suppressed
Fig 4. Overview of treatment strategies. Lines represent direct (head-to-head) comparisons.

doi:10.1371/journal.pone.0169444.g004

Table 7. Odds ratios of HBeAg seroconversion after 2-year treatment as revealed by network meta-analysis.

Network Meta-Analysis (Consistency Model)	adefovir	entecavir	lamivudine	telbivudine
adefovir	1.03(0.29, 3.56)	0.90(0.25, 3.52)	1.25(0.32, 5.30)	
0.97(0.28, 3.41)	entecavir	0.88(0.58, 1.39)	1.22(0.68, 2.36)	
1.11(0.28, 4.08)	1.14(0.72, 1.72)	lamivudine	1.38(0.92, 2.22)	
0.80(0.19, 3.11)	0.82(0.42, 1.46)	0.73(0.45, 1.09)	telbivudine	

doi:10.1371/journal.pone.0169444.t007
HBV infection following long-term NA treatment \textit{in vitro} despite prolonged exposure to high antigen loads. In this report, when compared with spontaneous induction, HBeAg seroconversion rate was lower in patients who received long-term NA treatment, especially tenofovir and entecavir (40% and 44% after 5-year treatment, respectively). A real world study on the use of lamivudine, adefovir, entecavir, and telbivudine to treat HBeAg-positive CHB patients for 6 years showed that the HBeAg seroconversion rate was 20.0% to 31.6%, although their difference was not statistically significant ($X^2 = 5.81, P = 0.214$) [52]. These results were significantly lower (41.3%, 47.6%, and 53.5%, after 3-, 4-, and 5-year treatments, respectively) than the reported results for spontaneous induction [50]. Long-term NA treatment is speculated to negatively affect the recovery of immune function among CHB patients. Our results show that the rate of the long-term telbivudine treatment-induced HBeAg seroconversion is relatively higher than the other four NAs. However, the drug resistance rate of telbivudine increases with prolonged treatment time, thereby limiting its application [53]. Kranidioti \textit{et al}. [54] reported that HBV reactivation after withdrawal of NA treatment may contribute to the clearance of HBV associated with disappearance of HBsAg. Most patients who receive anti-HBV NA therapy require more than 10 years to be HBsAg-free, supporting the opposite point of view presented above.

Table 8. Spontaneous and 3-, 4-, and 5-year NA treatment-induced HBeAg seroconversion in HBeAg-positive CHB patients.

Treatment drugs/time	3 years	4 years	5 years	Ref.
Lamivudine	40	47	50	[28, 34, 39]
Adefovir	23.8	41.1	48	[29, 35, 40]
Telbivudine	45.5	53.2	53	[30, 36, 37, 41]
Entecavir	27	30	44	[31, 32, 37, 42]
Tenofovir	26	31	40	[33, 38, 43]
Spontaneous	51.7	59.1	65.2	[50]

doi:10.1371/journal.pone.0169444.t008
The persistence of HBeAg seroconversion is important for long-term remission of the disease. Spontaneous HBeAg seroconversion may be more stable. The duration of NA treatment-induced HBeAg seroconversion was shorter than that induced by interferon-α [55]. Reijnders et al. [56] found that in 132 cases of NA-treated HBeAg-positive CHB patients, the median duration of treatment was 26 months, and 42 cases displayed HBeAg seroconversion. After a median follow-up of 59 months, 13/42 (31%) cases displayed lasting HBeAg seroconversion. Therefore, these results suggested that most HBeAg seroconversion induced by NA therapy is temporary. Long-term treatment regardless of HBeAg seroconversion is necessary. The functionality of T cells with chronic HBV infection is inhibited by the presence of a large number of viral antigens [57]. Application of antiviral drugs to reduce the viral load may thus increase the reactivity of HBV-specific T cells. However, these drugs may also reduce the amount of viral antigens to stimulate immune responses and influence the recovery of immune response function. For instance, in early lamivudine treatment, HBV-specific T cells could be detected, but the recovery of T cell activity was partial and transient, and generally disappeared within approximately 6 months and could not increase the HBeAg seroconversion rate [58]. Long-term NA treatment-induced HBeAg seroconversion rate decreased in this study. Hence, premature intervention with NAs is apparently not conducive for HBeAg seroconversion, and affects the efficiency of treatment to a certain degree for HBeAg-positive CHB patients. This issue needs to be considered during the clinical practice of HBeAg-positive CHB treatment with NAs, especially for CHB patients with mild disease.

Although this study included RCTs with 1 or 2 years of treatment, long-term effects of these treatments were evaluated with open-label study and cohort studies due to the unethical and infeasibility of withholding long-term treatment in the control group. In the selected RCT, the difference in detection method and lower limits of quantification of HBV DNA may affect the results. The dosages and routes of administration described in specific clinical protocols are different, such as the dosage of entecavir used at the 5 year was 1.0 mg (frequently used 0.5 mg). In addition, the rate of viral resistance was higher in lamivudine and telbivudine used in earlier treatment periods, especially during long-term treatment. This factor may impact the rate of HBeAg seroconversion to a certain extent. HBeAg seroconversion were influenced by the level of ALT, age etc. [59]. Spontaneous HBeAg seroconversion rate was from the a large natural population [50]. The ranges of ALT and age are 1ULN to 6820U/L and 1 to 85 year, respectively. However, the ranges of ALT and age in most of clinical trials are 1.3 ULN to 10ULN and 15 to 65 year, respectively. These differences might affect the comparability of the HBeAg seroconversion rate between the real world study and cilinical trials.

In conclusion, long-term treatment with potent anti-HBV drugs, especially tenofovir and entecavir, may reduce HBeAg seroconversion compared with spontaneous HBeAg seroconversion rate. Telbivudine is associated with higher HBeAg seroconversion compared with the other NAs in both short- or long-term treatment. However, the high rate of drug resistance potentially limits the application of telbivudine.

Supporting Information

S1 PRISMA Checklist.

(DOC)

Author Contributions

Conceptualization: TX.

Data curation: LC MY.
Formal analysis: TX LC.
Funding acquisition: TX.
Investigation: LC MY.
Methodology: LC MY.
Project administration: HX.
Resources: LC MY.
Software: MY LC.
Supervision: HX.
Validation: TX LC.
Visualization: MY LC.
Writing – original draft: TX.
Writing – review & editing: HX.

References
1. Yim HJ, Lok AS (2006) Natural history of chronic hepatitis B virus infection: what we knew in 1981 and what we know in 2005. Hepatology 43:S173–181. doi: 10.1002/hep.20956 PMID: 16447285
2. Lang T, Lo C, Skinner N, Locarnini S, Visvanathan K, Mansell A. (2011) The hepatitis B e antigen (HBeAg) targets and suppress activation of the toll-like receptor signaling pathway. J Hepatol 55: 762–769. doi: 10.1016/j.jhep.2010.12.042 PMID: 21334391
3. Liaw YF (2009) HBeAg seroconversion as an important end point in the treatment of chronic hepatitis B. Hepatol Int 3:425–433. doi: 10.1007/s12072-009-9140-3 PMID: 19669245
4. European Association For The Study Of The Liver (2012) EASL clinical practice guidelines: Management of chronic hepatitis B virus infection. J Hepatol 57:167–185. doi: 10.1016/j.jhep.2012.02.010 PMID: 22436845
5. Su TH, Kao JH (2015) Improving clinical outcomes of chronic hepatitis B virus infection. Expert Rev Gastroenterol Hepatol 9:141–154. doi: 10.1586/17474124.2015.960398 PMID: 25241970
6. Zhang Z, Zhang JY, Wang LF, Wang FS (2012) Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection. J Gastroenterol Hepatol 27:223–230. doi: 10.1111/j.1440-1746.2011.06940.x PMID: 22004062
7. Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH. (2016) AASLD guideline for treatment of chronic hepatitis B. Hepatology 63: 261–283. doi: 10.1002/28156 PMID: 26566064
8. Asian-Pacific Association for the Study of the Liver (2016) Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update Hepatol Int 10:1–98.
9. Dakin H, Fidler C, Harper C (2010) Mixed treatment comparison meta-analysis evaluating the relative efficacy of nucleos(t)ides for treatment of nucleos(t)ide-naive patients with chronic hepatitis B. Value Health 3:934–945.
10. Wiens A, Lenzi L, Venson R, Correr CJ, Rotta I, Pedroso ML, et al. (2013) Comparative efficacy of oral nucleoside or nucleotide analog monotherapy used in chronic hepatitis B: a mixed-treatment comparison meta-analysis. Pharmacotherapy 33:144–151. doi: 10.1002/phar.1188 PMID: 23359454
11. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12. PMID: 8721797
12. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. doi: 10.1371/journal.pmed.1000097 PMID: 19621072
13. Chang TT, Gish RG, de Man R, Gadano A, Sollano J, Chao YC, et al. (2006) A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N Engl J Med 354: 1001–1010. doi: 10.1056/NEJMoa051285 PMID: 16525137
14. Yao GB, Zhu M, Wang YM, Xu DZ, Tan DM, Chen CW, et al. (2006) A double-blind, double-dummy, randomized, controlled study of entecavir versus lamivudine for treatment of chronic hepatitis B. Zhonghua Nei Ke Za Zhi 45:891–895. PMID: 17313873

15. Hou J, Yin YK, Xu D, Tan D, Niu J, Zhou X, et al. (2008) Telbivudine versus lamivudine in Chinese patients with chronic hepatitis B: Results at 1 year of a randomized, double-blind trial. Hepatology 47:447–454. doi: 10.1002/hep.22075 PMID: 18080339

16. Lai CL, Gane E, Liaw YF, Hsu CW, Thongsawat S, Wang Y, et al. (2007) Telbivudine versus lamivudine in patients with chronic hepatitis B. N Engl J Med 359:2442–2455. doi: 10.1056/NEJMoa066622 PMID: 18094378

17. Marcellin P, Heathcote EJ, Buti M, Gane E, de Man RA, Krastev Z, et al. (2008) Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. N Engl J Med 359:2442–2455. doi: 10.1056/NEJMoa0802878 PMID: 19052126

18. Sriprayoon T, Lueanarun S, Suwanwelada C, Pattaranutaporn P, Tanwandee T (2012) Efficacy and safety of entecavir versus tenofovir in treatment of chronic hepatitis B: A randomized controlled trial. Gastroenterology 142: S695.

19. Hou JL, Gao ZL, Xie Q, Zhang JM, Sheng JF, Cheng J, et al. (2015) Tenofovir disoproxil fumarate vs adefovir dipivoxil in Chinese patients with chronic hepatitis B after 48 weeks: a randomized controlled trial. J Viral Hepat 22:85–93. doi: 10.1111/j.1365-2813.2012.01871.x PMID: 23243325

20. Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML, et al. (2003) Adefovir dipivoxil for treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med 348:808–816. doi: 10.1056/NEJMoa020681 PMID: 12606735

21. Zeng MD, Mao YM, Yang GB, Zhou XQ, Wang H, Xu DZ, et al. (2006) Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med 348:808–816. doi: 10.1056/NEJMoa020681 PMID: 12606735

22. Gish RG, Lok AS, Chang TT, de Man RA, Gadano A, Sollano J, et al. (2007) Entecavir therapy for up to 96 weeks in patients with HBsAg-positive chronic hepatitis B. Gastroenterology 133:1437–1444. doi: 10.1053/j.gastro.2007.08.025 PMID: 17983800

23. Yao GB, Chen CW, Lu WL, Ren H, Tan D, Wang Y, et al. (2008) Virologic, serologic, and biochemical outcomes through 2 years of treatment with entecavir and lamivudine in nucleoside-naive Chinese patients with chronic hepatitis B: A randomized, multicenter study. Hepatology International 2:486–493. doi: 10.1007/s12072-008-0086-8 PMID: 19669324

24. Jia JD, Hou J, Yin YK, Tan DM, Xu D, Niu JQ, et al. (2014) Two-year results of a randomized, phase III comparative trial of telbivudine versus lamivudine in Chinese patients. Hepatology International 8: 72–82. doi: 10.1007/s12072-013-9488-2 PMID: 26202408

25. Liaw YF, Gane E, Leung N, Zeuzem S, Wang Y, Lai CL, et al. (2009) 2-Year GLOBE trial results: telbivudine is superior to lamivudine in nucleoside-naive patients with chronic hepatitis B. Gastroenterology 136:486–495. doi: 10.1053/j.gastro.2008.10.026 PMID: 19027013

26. Chen EQ, Zhou TY, Liu L, Liu C, Lei M, Tang H. (2011) A comparison of treatment with adefovir and entecavir for chronic hepatitis b in china: the 2-year results of a prospective study: adefovir versus entecavir for chronic hepatitis b. Hepat Mon 11:27–31. PMID: 22087113

27. Heathcote EJ, Gane E, deMan R (2008) Two year tenofovir disoproxil fumarate (TDF) treatment and adefovir dipivoxil (ADV) switch data in HBsAg-positive patients with chronic hepatitis B(study 103), preliminary analysis. Hepatology 48: 376A.

28. Leung NW, Lai CL, Chang TT, Guan R, Lee CM, Ng KY, et al. (2001) Extended lamivudine treatment in patients with chronic hepatitis B enhances hepatitis B e antigen seroconversion rates: results after 3 years of therapy. Hepatology 33: 1527–1532. doi: 10.1053/j.gastro.2001.05.042 PMID: 11391543

29. Ling N, Zhou Z, Zhang DZ, Ren H (2007) Three year adefovir dipivoxil treatment for hepatitis b e antigen-positive chronic hepatitis b patients. Zhonghua Gan Zang Bing Za Zhi 15:346–349. PMID: 17524266

30. Gane EJ, Wang Y, Liaw YF, Hou J, Thongsawat S, Wan M, et al. (2011) Efficacy and safety of prolonged 3-year telbivudine treatment in patients with chronic hepatitis B. Liver Int 31:677–684. doi: 10.1111/j.1478-3231.2010.01917.x PMID: 21457439

31. Yao GB, Ren H, Xu DZ, Zhou XQ, Jia JD, Wang YM, et al. (2010) Virological, serological and biochemical outcomes through 3 years of entecavir treatment in nucleoside-naive Chinese chronic hepatitis B patients. Journal of Viral Hepatitis 17:51–58.

32. Sriprayoon T (2015) A randomized controlled trials to compare the efficacy and safety of entecavir versus tenofovir treatment in naïve chronic hepatitis b patients. Gastroenterology 148: SS02.

33. Heathcote EJ, Marcellin P, Buti M, Gane E, De Man RA, Krastev Z, et al. (2011) Three-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B. Gastroenterology 140:132–143. doi: 10.1053/j.gastro.2010.10.011 PMID: 20955704
34. Chang TT, Lai CL, Chien RN, Guan R, Lim SG, Lee CM, et al. (2004) Four years of lamivudine treatment in Chinese patients with chronic hepatitis B. J Gastroenterol Hepatol 19:1276–1282. doi: 10.1111/j.1440-1746.2004.03428.x PMID: 15482535

35. Liang JY, Yang XA, Zhang K, Chen LB, Shu X, Xu QH. (2011) A clinical study on the efficacy of HBeAg-positive chronic hepatitis B patients treated with adefovir dipivoxil for 4 years. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 25:385–386. PMID: 22383232

36. Wang Y, Thongsawat S, Gane EJ, Liaw YF, Jia J, Hou J, et al. (2013) Efficacy and safety of continuous 4-year telbivudine treatment in patients with chronic hepatitis B. J Viral Hepat 20:e37–46. doi: 10.1111/jvh.12025 PMID: 23490388

37. Chen X (2013) Effect of telbivudine and entecavir on HBeAg positive chronic hepatitis B: A 4-year follow-up. Hepatol Internation 7:S195–196.

38. Heathcote EJ, Gane E, deMan R, Chan S, George J, Tsai NC, et al. (2010) Long Term (4 Year) Efficacy and Safety of Tenofovir Disoproxil Fumarate (TDF) Treatment in HBeAg-Positive Patients (HBeAg+) with Chronic Hepatitis B 52:556A.

39. Yao GB, Zhu M, Cui ZY, Wang BE, Yao JL, Zeng MD. (2009) A 7-year study of lamivudine therapy for hepatitis B virus e antigen-positive chronic hepatitis B patients in China. Journal of Digestive Diseases 10: 131–137. doi: 10.1111/j.1751-2980.2009.00375.x PMID: 19426396

40. Minde Z, Yimin M, Guangbi Y, JinLin H, Hao W, Hong R, et al. (2012) Five years of treatment with adefovir dipivoxil in Chinese patients with HBeAg-positive chronic hepatitis B. Liver International 32: 137–146. doi: 10.1111/j.1478-3231.2011.02641.x PMID: 22097972

41. Zhang Y, Hu P, Qi X, Ren H, Mao RC, Zhang JM. (2016) A comparison of telbivudine and entecavir in the treatment of hepatitis B e antigen-positive patients: a prospective cohort study in China. Clin Microbiol Infect 22: 287.e1–9.

42. Chang TT, Lai CL, Kew Yoon S, Lee SS, Coelho HS, Carrilho FJ, et al. (2010) Entecavir treatment for up to 5 years in patients with hepatitis B e antigen-positive chronic hepatitis B. Hepatol 51:422–430. doi: 10.1002/hep.23327 PMID: 20049753

43. Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobsen IM, et al. (2013) Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 381:468–475. PMID: 23234725

44. Chen Y, Li X, Ye B, Yang X, Wu W, Chen B, et al. (2011) Effect of telbivudine therapy on the cellular immune response in chronic hepatitis B. Antiviral Res 91:23–31. doi: 10.1016/j.antiviral.2011.04.008 PMID: 21549152

45. Bertoletti A, Ferrari C(2012) Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut 61:1754–1764. doi: 10.1136/gutjnl-2011-301073 PMID: 22157327

46. Li CZ, Hu JJ, Xue JY, Yin W, Liu YY, Fan WH, et al. (2014) Viral infection parameters not nucleoside analogue itself correlates with host immunity in nucleoside analogue therapy for chronic hepatitis B. World J Gastroenterol 20: 9486–9496. PMID: 25071343

47. Wang GQ, Ding YP, Dong YH(2013) Telbivudine treatment is associated with high hepatitis B e antigen seroconversion and immune modulatory effects in chronic hepatitis B patients. J Viral Hepat 20:9–17. doi: 10.1111/jvh.12059 PMID: 23458520

48. Liu H, Wang X, Wan G, Yang Z, Zeng H (2014) Telbivudine versus entecavir for nucleos(t)ide-naive HBeAg-positive chronic hepatitis B: a meta-analysis. Am J Med Sci 347:131–138. doi: 10.1097/MAJ.0b013e318286878d PMID: 23533077

49. Mealing S, Ghement I, Hawkins N, Scott DA, Lescrauwet B, Watt M, et al. (2014) The importance of baseline viral load when assessing relative efficacy in treatment-naive HBeAg-positive chronic hepatitis B: a systematic review and network meta-analysis. Syst Rev 3:21. doi: 10.1186/2046-4053-3-21 PMID: 24602249

50. Yuen MF, Yuan HJ, Hui CK, Wong DK, Wong WM, Chan AO, et al. (2003) A large population study of spontaneous HBeAg seroconversion and acute exacerbation of chronic hepatitis B infection: implications for antiviral therapy. Gut 52: 416–419. PMID: 12584226

51. Boni C, Laccabue D, Lampertico P, Giuberti T, Viganò M, Schivazappa S, et al. (2012) Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology 143: 963–973. doi: 10.1053/j.gastro.2012.07.014 PMID: 22796241

52. Wu YK, Lin GL, Li XY, Chen SR, Yang FJ, Ao YL, et al. (2014) 6 years retrospective and prospective real world research on efficacy and safety of initial treatment with nucleos(t)ide analogues in patients with chronic HBV infection. The Thirteenth National infectious disease academic conference proceedings. Guangzhou, China.
53. Tsai MC, Chen CH, Tseng PL, Hung CH, Chiu KW, Wang JH, et al. (2016) Comparison of renal safety and efficacy of telbivudine, entecavir and tenofovir treatment in chronic hepatitis B patients: real world experience. Clin Microbiol Infect 22: 95.e1–7.

54. Kranidioti H, Manolakopoulos S, Khakoo SI (2015) Outcome after discontinuation of nucleot(s)ide analogues in chronic hepatitis B: relapse rate and associated factors. Ann Gastroenterol 28:173–181. PMID: 25831071

55. van Nunen AB, Hansen BE, Suh DJ, Löhr HF, Chemello L, Fontaine H, et al. (2003) Durability of HBeAg seroconversion following antiviral therapy for chronic hepatitis B: relation to type of therapy and pretreatment serum hepatitis B virus DNA and alanine aminotransferase. Gut 52: 420–424. PMID: 12584227

56. Reijnders JG, Perquin MJ, Zhang N, Hansen BE, Janssen HL (2010) Nucleos(t)ide analogues only induce temporary hepatitis Be antigen seroconversion in most patients with chronic hepatitis B. Gastroenterology 139:491–498. doi: 10.1053/j.gastro.2010.03.059 PMID: 20381492

57. Ferrari C (2015) HBV and the immune response. Liver Int 35:121–128. doi: 10.1111/liv.12749 PMID: 25529097

58. Boni C, Penna A, Bertoletti A, Lamonaca V, Rapti I, Missale G, et al. (2003) Transient restoration of anti-viral T cell responses induced by lamivudine therapy in chronic hepatitis B. J Hepatol 39:595–605. PMID: 12971971

59. Evans AA, Fine M, London WT (1997) Spontaneous seroconversion in hepatitis B e Antigen-positive chronic hepatitis B: implications for interferon therapy. The Journal of Infectious Disease 176: 845–850.