ANALYSIS OF DENGUE FEVER OUTBREAK BY GENERALIZED FRACTIONAL DERIVATIVE

PAUL BOSCH,∗ J. F. GÓMEZ-AGUILAR,†¶ JOSÉ M. RODRÍGUEZ,‡ and JOSÉ M. SIGARRETA§

∗Facultad de Ingeniería, Universidad del Desarrollo, Ave. La Plaza 680
San Carlos de Apoquindo, Las Condes, Santiago, Chile
†CONACyT, Tecnológico Nacional de México/CENIDET
Interior Internado Palmira S/N, Col. Palmira
C. P. 62490, Cuernavaca, Morelos, Mexico
‡Departamento de Matemáticas, Universidad Carlos III de Madrid
Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
§Universidad Autónoma de Guerrero, Centro Acapulco CP 39610
Acapulco de Juárez, Guerrero, Mexico

∗pbosch@udd.cl
¶jose.ga@cenidet.tecnm.mx

Received December 29, 2019
Accepted March 3, 2020
Published June 25, 2020

Abstract

In this paper, we use the generalized fractional derivative in order to study the fractional differential equation associated with a fractional Gaussian model. Moreover, we propose new properties of generalized differential and integral operators. As a practical application, we estimate the order of the derivative of the fractional Gaussian models by solving an inverse problem involving real data on the dengue fever outbreak.

Keywords: Fractional Derivatives; Fractional Integrals; Gaussian Fractional Model; Applications.

© The Author(s)
DOI: 10.1142/S0218348X20400381

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
P. Bosch et al.

1. INTRODUCTION

Fractional calculus was successfully used to model a broad range of phenomena that occur in physics, economy, and science. For example, it has been observed that the time or space evolution of many physical processes can be more precisely described when derivatives of fractional order are introduced. In practice, and in many occasions, all that needs to be done is replacing the ordinary derivative in an equation by a derivative of fractional order. Also, the most interesting part is that this is not the result of chance; on the contrary, there is a strong mathematical foundation for it and there are many applications, as several general studies show (cf. Refs. 11,12).

For a complementary study on the recent developments in the field of the fractional calculus as well as its applications, see Refs. 13,14. Fractional operators keep track of the history of the process being studied; this feature allows modeling the nonlocal and distributed responses that commonly appear in natural and physical phenomena. On the other hand, one has to recognize that these fractional derivatives D^α show some drawbacks. To overcome some of these and other difficulties, Khalil et al.13 came up with an interesting idea that generalizes the familiar limit definition of the derivative and allows to introduce successfully a conformable fractional derivative (see Definition 1 below); more recently, a nonconformable fractional derivative is introduced in Ref. 16. In this way, a new direction of the nonlocal and distributed responses that commonly appear in natural and physical phenomena.

Understanding the dynamics of vectors (mosquito $Aedes aegypti$) and the population infected with dengue has the potential to generate early warnings for the prevention and containment of the spread of the disease. Qureshi and Atangana15 present a comparative study of the dynamics of the dengue fever outbreak under three fractional order differential operators; Lionville-Caputo, Caputo-Fabrizio and Atangana– Baleanu. The true field data for the dengue fever outbreak was used. In this approach, the fractional derivative accomplishes a better fit for the curves of human and mosquito populations but they did not analyze the results associated with the solution of the inverse problems in the local or global approaches.

This paper has been organized as follows: In Sec. 2, we present some fundamental concepts from fractional calculus needed for the convenience of readers. Section 3 is devoted to develop the main fractional calculus needed for the convenience of readers. Section 2 is devoted to the applications, as several general studies show (cf. Refs. 11,12).

2. PRELIMINARIES

In Ref. 19 is defined the following generalized fractional derivative, which generalizes the conformable fractional derivative in Ref. 13 for the order $0 < \alpha \leq 1$.

Definition 1. Given an interval I, $f : I \to \mathbb{R}$, $\alpha \in \mathbb{R}^+$ and a positive continuous function $T(t,\alpha)$ on I, the derivative $G^\alpha_T f$ of f of order α at the point $t \in I$ is

$$G^\alpha_T f(t) = \lim_{h \to 0^+} \frac{1}{h^\alpha} \sum_{k=0}^{[\alpha]} (-1)^k \binom{\alpha}{k} f(t - khT(t,\alpha)), \tag{1}$$

where $[\cdot]$ represents the upper integer part function.

If $a = \min\{t \in I\}$ (respectively, $b = \max\{t \in I\}$), then $G^\alpha_T f(a)$ (respectively, $G^\alpha_T f(b)$) is defined with $h \to 0^-$ (respectively, $h \to 0^+$) instead of $h \to 0$ in the limit.

If $T(t,\alpha) = t^{\alpha-\alpha}$, then we obtain the following particular case of G^α_T, defined in Ref. 19. Note that $T(t,\alpha) = t^{\alpha-\alpha} = 1$ for every $\alpha \in \mathbb{N}$.
Definition 2. Let \(I \) be an interval \(I \subseteq (0, \infty) \), \(f : I \to \mathbb{R} \) and \(\alpha \in \mathbb{R}^+ \). The conformable derivative \(G^\alpha f \) of \(f \) of order \(\alpha \) at the point \(t \in I \) is defined by

\[
G^\alpha f(t) = \lim_{h \to 0} \frac{1}{h} \sum_{k=0}^{\lfloor \alpha \rfloor} (-1)^k \binom{\alpha}{k} f(t - k h^{\lfloor \alpha \rfloor - \alpha}).
\]

Therefore, if \(\alpha = n \in \mathbb{N} \) and \(f \) is smooth enough, then Definition 2 coincides with the classical definition of the \(n \)th derivative.

Definition 3. Given \(f : (0, \infty) \to \mathbb{R} \) and \(\alpha \in (0, 1] \), the derivative \(T_\alpha f \) at the point \(t \) is

\[
T_\alpha f(t) = \lim_{h \to 0} \frac{f(t) - f(t - h t^{1-\alpha})}{h}.
\]

\(T_\alpha \) is a particular case of \(G^\alpha \) when \(\alpha \in (0, 1] \) and \(T(t, \alpha) = t^{-\alpha} \). The conformable derivatives defined in Ref. 13 also are particular cases of \(G^\alpha \) when \(\alpha \in (0, 1] \) and \(T(t, \alpha) = (t - \alpha)^{-1-\alpha} \) and \(T(t, \alpha) = (b - t)^{1-\alpha} \). Note that if \(\alpha \in (0, 1] \) and \(T(t, \alpha) = k(t)^{-\alpha} \), then the general conformable fractional derivative defined in Ref. 13 is derived. Moreover, if \(\alpha \in (0, 1] \) and \(T(t, \alpha) = \omega^{-\alpha} \), then the nonconformable fractional derivative defined in Ref. 13 is obtained.

The following results in Refs. 13 and 14 contain some basic properties of the derivative \(G^\alpha \).

Theorem 4. Let \(I \) be an interval \(I \subseteq \mathbb{R} \), \(f : I \to \mathbb{R} \) and \(\alpha \in \mathbb{R}^+ \). We have the following:

1. If there exists \(D^{[\alpha]} f \) at the point \(t \) in \(I \), then \(f \) is \(G^\alpha \)-differentiable at \(t \) and \(G^\alpha f(t) = D^{[\alpha]} f(t) \).
2. If \(\alpha \in (0, 1] \), then \(f \) is \(G^\alpha \)-differentiable at \(t \) in \(I \) if and only if \(f \) is differentiable at \(t \); furthermore, if \(f \) is differentiable at \(t \) in the classical sense, then \(G^\alpha f(t) = f'(t) \).

Theorem 5. Let \(I \) be an interval \(I \subseteq \mathbb{R} \), \(f, g : I \to \mathbb{R} \) and \(\alpha \in \mathbb{R}^+ \). Assume that \(f, g \) are \(G^\alpha \)-differentiable functions at \(t \in I \). Then the following statements hold:

1. \(af + bg \) is \(G^\alpha \)-differentiable at \(t \) for every \(a, b \in \mathbb{R} \), and
 \[
 G^\alpha (af + bg)(t) = a G^\alpha f(t) + b G^\alpha g(t).
 \]
2. If \(\alpha \in (0, 1] \), then \(fg \) is \(G^\alpha \)-differentiable at \(t \) and
 \[
 G^\alpha (fg)(t) = f(t) G^\alpha g(t) + g(t) G^\alpha f(t).
 \]
3. If \(\alpha \in (0, 1] \) and \(g(t) \neq 0 \), then \(f/g \) is \(G^\alpha \)-differentiable at \(t \) and
 \[
 G^\alpha \left(\frac{f}{g} \right)(t) = \frac{g(t) G^\alpha f(t) - f(t) G^\alpha g(t)}{g(t)^2}.
 \]

4. \(G^\alpha(t) = 0 \), for every \(\lambda \in \mathbb{R} \).
5. \(G^\alpha(p^n) = \frac{\Gamma(n+\alpha)}{(\Gamma(\alpha) p^n + 1)^\alpha} T(t, \alpha)^n \) for every \(p \in \mathbb{R} \setminus \mathbb{Z}^+ \).
6. \(G^\alpha(t^-) = (-1)^n \frac{\Gamma(n+\alpha)}{(1 + t)^\alpha} T(t, \alpha)^n \) for every \(n \in \mathbb{Z}^+ \).

Theorem 6. Let \(\alpha \in (0, 1] \), \(g \) be a \(G^\alpha \)-differentiable function at \(t \) and \(f \) be a differentiable function at \(g(t) \). Then \(f/g \) is \(G^\alpha \)-differentiable at \(t \), and \(G^\alpha (f/g)(t) = f'(g)/g'(g(t)) G^\alpha g(t) \).

3. NEW RESULTS

The following result shows an advantage of our definition over some previous definitions of fractional derivatives: a general rule in order to compute iterated derivatives.

Theorem 7. Let \(I \subseteq \mathbb{R} \) be an interval, \(t \in I \), \(f, g : I \to \mathbb{R} \), \(n \geq 2 \), and \(a_1, a_2, \ldots, a_n \in (0, 1] \). Assume that \(T^{(n-k)}(t, a_k) \) exists for \(1 \leq k \leq n-1 \). We define \(T_n = T(t, a_n) \) and \(T_{n-k} = T(t, a_{n-k}) \). Then \(G^\alpha f(t) = G^\alpha (G^\alpha f(t)) = G^\alpha (G^\alpha (G^\alpha f(t))) = \cdots = G^\alpha (f(t)) \), and we have in this case

\[
G^\alpha (f(t)) = Q_n(t) f^{(n)}(t) + P_n(t),
\]

where \(P_n = p_n(T_1, \ldots, T_n, f', \ldots, f^{(n-1)}) \), \(p_n \) is a polynomial on \((a^2 - 3a - 2)/2 \) variables which is homogeneous of degree \(n + 1 \), and \(Q_n(t) = T(t, a_n) T(t, a_{n-1}) \cdots T(t, a_1) T(t, a_1) \).

Proof. We will proceed by induction on \(n \). For \(n = 2 \), Theorem 4 gives \(G^\alpha f = T(t, a_1) f' \). If \(f^{(n)} \)
exists, since $T(t, \alpha)$ is differentiable, Theorems 3 and 4 give

\[G^n_T G^m_T f = T(t, \alpha_2) T(t, \alpha_1) f^{n+m}(t) + T(t, \alpha) f^n(t). \]

Note that in this case we have $P_2(t) = T(t, \alpha_2) T'(t, \alpha) f'(t)$ and $p_2(x_1, x_2, x_3, x_4) = x_2 x_4$ is a polynomial of four variables and homogeneous of degree 3.

If $G^n_T G^m_T f$ exists, since $\alpha_2 \in (0, 1]$, $G^n_T f = T(t, \alpha) f^n$ is differentiable by Theorem 5 and so, there exists

\[f^{n+m}(t) = \left(f'(t) \right)^n = \left(\frac{T(t, \alpha_2) T'(t, \alpha) f'(t)}{T(t, \alpha)} \right)^n, \]

since $T(t, \alpha_1) > 0$.

Assume now that the induction hypothesis holds for $n-1$ and let us prove it for n.

By induction hypothesis we have

\[G^{n-1}_T \cdots G^1_T f(t) = Q_{n-1}(t) f^{(n-1)}(t) + P_{n-1}(t), \]

where $P_{n-1} = p_{n-1}(T_1, \ldots, T_{n-1}, f, \ldots, f^{(n-2)}), \quad p_{n-1}$ is a polynomial of $(n^2 + n - 4)/2$ variables which is homogeneous of degree n,

\[T_k = (T(t, \alpha_1), T'(t, \alpha_1), T''(t, \alpha_1), \ldots, T^{(n-4)}(t, \alpha_1)), \]

if $1 \leq k \leq n-1$, and $T_1 = (T(t, \alpha_1)).$

Note that Q_{n-1} and P_{n-1} are differentiable, since there exist the derivatives of $T_1, \ldots, T_{n-1}, f, \ldots, f^{(n-2)}$ and p_{n-1} is a polynomial. Note also that $Q_{n-1}(t)$ and $P_{n-1}(t)$ are homogeneous polynomials of degrees $n-1$ and n, respectively. P_{n-1} has $(n^2 + 3n - 4)/2$ variables $(T_1, T_2, \ldots, T_{n-1}, f, \ldots, f^{(n-2)}, T^{(n-1)}(t, \alpha_1), T^{(n-2)}(t, \alpha_2), \ldots, T^{(n-1)}(t, \alpha_{n-1}), f^{(n-1)})) = (T_1, T_2, \ldots, T_{n-1}, f, \ldots, f^{(n-1)})$ and the set of variables of Q_{n-1} is a subset of the variables of P_{n-1}.

Then, we have

\[G^n_T G^{n-1}_T \cdots G^1_T f(t) = \left(Q_{n-1} f^{(n-1)} + P_{n-1} \right)(t). \]

Since $\alpha_1 \in (0, 1]$, then, by Theorems 3 and 5 we have that $G^n_T G^{n-1}_T \cdots G^1_T f(t)$ exists if and only if $(Q_{n-1} f^{(n-1)} + P_{n-1})(t)$ exists.

If $f^{(n)}$ exists, then $G^n_T G^{n-1}_T \cdots G^1_T f(t)$ exists since Q_{n-1} and P_{n-1} are differentiable. If $G^n_T f$ exists, then $G^n_T G^{n-1}_T \cdots G^1_T f(t)$ exists, then $(Q_{n-1}(t) f^{(n-1)}(t) + P_{n-1}(t))$ exists, and since Q_{n-1} and P_{n-1} are differentiable and $Q_{n-1} > 0$, there exists

\[f^{(n)}(t) = \left(Q_{n-1}(t) f^{(n-1)}(t) + P_{n-1}(t) - P_{n-1}(t) \right) / Q_{n-1}(t). \]

Hence, $G^n_T G^{n-1}_T \cdots G^1_T f(t)$ exists if and only if $f^{(n)}$ exists; in this case, we have

\[G^n_T (Q_{n-1} f^{(n-1)} + P_{n-1}) = T(t, \alpha) f^{(n)}(t) \]

\[= T(t, \alpha) Q_{n-1}(t) f^{(n-1)}(t) + T(t, \alpha) P_{n-1}(t). \]

Since Q_{n-1} and P_{n-1} are homogeneous polynomial of degrees $n-1$ and n, respectively, then

\[P_{n-1} = T(t, \alpha) Q_{n-1}(t) f^{(n-1)}(t) + T(t, \alpha) P_{n-1}(t) \]

is a homogeneous polynomial of degree $n+1$ on $(n^2 + 3n - 2)/2$ (the set of variables of P_{n-1} and $T(t, \alpha)$, and this finishes the proof. \hfill \Box

We now provide a more explicit formula for the previous result. Recall that we denote by D the usual derivative.

Theorem 8. Let I be an interval, $I \subseteq \mathbb{R}$, $t \in I$. $f : I \to \mathbb{R}$, $n \geq 1$ and $\alpha_1, \alpha_2, \ldots, \alpha_n \in (0, 1]$. If $f^{(m)}(t)$ and $T^{(m)}(t, \alpha_k)$ exist for $1 \leq i \leq n-1$, then

\[G^n_T G^{n-1}_T \cdots G^1_T f(t) = T(t, \alpha) b_{n-1,1}(t), \]

where

\[b_{m,k}(t) = f^{(m)}(t), \quad 1 \leq m \leq n, \]

\[b_{m,k}(t) = \sum_{j=0}^{m} \binom{m}{j} T^{(j)}(t, \alpha_k) \times b_{k-1,m-j}(t), \quad 1 \leq k \leq n-1, \]

\[1 \leq m \leq n-k. \]

Proof. First we show, by induction on k, that $b_{m,k}(t)$ exists for $1 \leq k \leq n-1$ and $1 \leq m \leq n-k$. \hfill \Box
By hypothesis, we have, for \(k = 1 \) and \(1 \leq m \leq n - 1 \),

\[
b_{k,m}(t) = \sum_{j=0}^{m} \binom{m}{j} T^j(t, \alpha) b_{n,m+1-j}(t) = \sum_{j=0}^{m} \binom{m}{j} T^j(t, \alpha_k) f^{(m+1-j)}(t).
\]

By hypothesis, \(T^j(t, \alpha_k) \) exists for \(1 \leq j \leq m \leq n - 1 \) and since \(m + 1 - j \leq m + 1 \leq n \) then \(f^{(m+1-j)}(t) \) exists too, and so \(b_{k,m}(t) \) exists for \(1 \leq m \leq n - 1 \).

Assume now that the induction hypothesis holds for \(k = 1 \) \(\geq 1 \), i.e. \(b_{k-1,m}(t) \) exists for \(1 \leq m \leq k - 1 \), and let us prove that \(b_{k,m}(t) \) exists for \(1 \leq m \leq n - k \). We have that

\[
b_{k,m}(t) = \sum_{j=0}^{m} \binom{m}{j} T^j(t, \alpha) b_{n-1,m+1-j}(t).
\]

By hypothesis, \(T^j(t, \alpha_k) \) exists for \(1 \leq j \leq m \leq n - k \) and since \(m \leq n - k < n - k + 1 \) then \(m + 1 - j \leq m + 1 \leq n - k + 1 \) and the induction hypothesis gives that \(b_{n-1,m+1-j}(t) \) exists for \(0 \leq j \leq m \).

Let us prove the formula \(D(b_{k,m}) = b_{k,m+1} \) for \(1 \leq m \leq n - k - 1 \), by induction on \(0 \leq k \leq n - 1 \).

The formula trivially holds for \(k = 0 \) and \(1 \leq m \leq n - 1 \).

Assume that \(D(b_{k,m}) = b_{k,m+1} \) for every \(0 \leq k \leq m \) \(\leq n - k - 1 \) with \(k < n - 1 \) and let us show that \(D(b_{k+1,m}) = b_{k+1,m+1} \) for \(1 \leq m \leq n - k - 2 \):

\[
D(b_{k+1,m}(t)) = \sum_{j=0}^{m} \binom{m}{j} T^j(t, \alpha) b_{n,m+1-j}(t) = \sum_{j=0}^{m} \binom{m}{j} T^j(t, \alpha) b_{n-1,m+1-j}(t) = \sum_{j=0}^{m} \binom{m}{j} T^j(t, \alpha_k) b_{n-1,m+1-j}(t) = \sum_{j=0}^{m+1} \binom{m+1}{j} T^j(t, \alpha_k) b_{n,m+2-j}(t) = \sum_{j=0}^{m+1} \binom{m+1}{j} T^j(t, \alpha_k) b_{n,m+2-j}(t) = b_{k+1,m+1}(t).
\]

since \(m + 1 - j \leq m + 1 \leq n - k - 1 \).

Let us prove now the theorem by induction on \(n \). If \(n = 1 \) then Theorem 4 gives \(G^1_T f(t) = T(t, \alpha) f(t) = T(t, \alpha) b_{1,1}(t) \), and the formula holds in this case.

Assume now that the induction hypothesis holds for \(n - 1 \geq 1 \) and let us prove it for \(n \). Induction hypothesis and Theorem 4 give

\[
G^n_T G_{n-1}^\alpha \cdots G^1_T f(t) = G^n_T \{T(t, \alpha_{n-1}) b_{n-2,1}(t)\} = T(t, \alpha_{n-1}) T(t, \alpha_{n-2}) \cdots T(t, \alpha_1) b_{1,1}(t) + T(t, \alpha_{n-1}) b_{n-2,1}(t) = T(t, \alpha_{n-1}) T(t, \alpha_{n-2}) \cdots T(t, \alpha_1) b_{n-2,1}(t) = T(t, \alpha_{n-1}) b_{n-1,1}(t),
\]

since \(1 \leq n - (n - 2) - 1 \), and the formula holds for \(n \).

As a particular case from the above results, and considering the kernel function \(T(t, \alpha) = t^{-\alpha} \) for \(\alpha \in (0, 1] \), the following corollary is immediately obtained.

Corollary 9. Let \(I \) be an interval \(I \subseteq \{0, \infty\} \), \(f : I \to \mathbb{R} \) and \(\alpha_1, \alpha_2, \ldots, \alpha_n \in (0, 1] \). If there exists \(D^n f(t) \) for some \(t \in I \), then

\[
G^n_T \cdots G^2_T G^1_T f(t) = t^{\alpha_1 - \alpha_2 - \cdots - \alpha_n} \sum_{k=1}^{n} b_{n,k} t^k f^{(k)}(t),
\]

with

\[
b_{n,k} = \begin{cases}
0 & \text{for } k = 0, n \geq 1, \\
1 & \text{for } k = n, n \geq 1, \\
\prod_{i=1}^{k-1} (1 - \alpha_1 - \cdots - \alpha_{i-1}) & \text{for } k = n, n \geq 1, \\
\prod_{i=1}^{k-1} (1 - \alpha_1 - \cdots - \alpha_{i-1}) \times b_{n-1,k} + b_{n-1,k-1} & \text{for } k < n.
\end{cases}
\]

Let \(I \) be an interval, \(a, t \in I \) and \(\alpha \in \mathbb{R} \). Following Ref. [12], the integral operator \(J_{a,T}^\alpha f \) is defined for every locally integrable function \(f \) on \(I \) as

\[
J_{a,T}^\alpha f(t) = \int_{a}^{t} f(s) T(s, \alpha) ds.
\]

Proposition 10. Let \(I \) be an interval, \(a, t \in I \), \(0 < \alpha \leq 1 \) and \(f \) a differentiable function on \(I \) with \(f' \)
Theorem 3.1 in Ref. 13 shows that for every continuous function \(f \) on \(I \), \(t \in I \) and \(\alpha \in (0, 1) \). Hence, Proposition 13 extends to any \(\alpha \) this important equality.

Proposition 11. Let \(I \) be an interval, \(a \in I \) and \(a \in (0, 1) \). Then

\[
G_\alpha^{}(J_I^{}(f))(t) = f(t)
\]

for every continuous function \(f \) on \(I \) and \(a,t \in I \).

Theorem 12 in the following contains some elementary facts on the integral operator \(J_I^{} \).

Theorem 12. Let \(I \) be an interval, \(a,b \in I \) and \(\alpha \in \mathbb{R} \). Let \(f,g \) be locally integrable functions on \(I \), and \(k_1,k_2 \in \mathbb{R} \). We have the following:

1. \(J_{a,b}^{}(k_1 f + k_2 g)(t) = k_1 J_{a,b}^{} f(t) + k_2 J_{a,b}^{} g(t) \);
2. \(f \geq g \) then \(J_{a,b} f(t) \geq J_{a,b} g(t) \) for every \(t \in I \) with \(t \geq a \);
3. \(J_{a,b} f(t) \leq J_{a,b}^{} f(t) \) for every \(t \in I \) with \(t \geq a \);
4. \(\int_a^b \frac{f(t)}{t(a)} dt = \int_a^b f(t) - J_{a,b}^{} f(t)(b) \) for every \(t \in I \).

Given \(a,b \in I \) \((b > a)\), let us denote by \(F_{a,b} \) the usual inner product in \(L^2[a,b] \),

\[
F_{a,b}(f,g) = \int_a^b f(t)g(t)dt.
\]

Proposition 13. Let \(I \) be an interval, \(a,b \in I \) with \(a < b \) and \(\alpha \in \mathbb{R} \). The adjoint of \(F_{a,b}^{} \) in \(L^2[a,b] \) with respect to the inner product \(F_{a,b} \) is the operator

\[
A_{a,b}^{}(f)(t) = \frac{1}{T(t,\alpha)} \int_a^b f(s)ds.
\]

Proof. We obtain, by using integration by parts,

\[
F_{a,b}(J_{a,b}^{}(f),g) = \int_a^b g(t)J_{a,b}^{} f(t)dt = [-J_{a,b}^{} f(t)]_a^b g(s)ds
dt.
\]
in applied research. Using the previous propositions one can check that.

Let \(I \) be an interval with \([t_0, \infty) \subseteq I\) and \(\alpha \in (0, 1]\). Let \(p \) be a continuous function on \([t_0, \infty)\).
Then the initial value problem
\[
G^\alpha_I y + p(t)y = 0, \quad y(t_0) = y_0,
\]
has a unique solution
\[
y(t) = y_0 e^{-\int_{t_0}^{t} p(s) \, ds}.
\]

Proposition 16. Let \(I \) be an interval with \([t_0, \infty) \subseteq I\) and \(\alpha \in (0, 1]\). Let \(p \) be a continuous function on \([t_0, \infty)\), and consider the linear equation
\[
G^\alpha_I y + p(t)y = 0.
\]
We have the following:
(1) If \(\lim_{t \to -\infty} J^\alpha_{I,t} p(t) > -\infty \), then the trivial solution \(y(t) \equiv 0 \) is stable.
(2) If \(\lim_{t \to -\infty} J^\alpha_{I,t} p(t) = \infty \), then \(y(t) \equiv 0 \) is asymptotically stable.

Proof. The initial value problem \([\text{5}]\) with \(y(t_0) \equiv y_0 \) has a unique solution
\[
y(t) = y_0 e^{-\int_{t_0}^{t} p(s) \, ds}.
\]
Since \(J^\alpha_{I,t} p(t) \) is a continuous function, if \(\lim_{t \to -\infty} J^\alpha_{I,t} p(t) > -\infty \), then there exists a constant \(M \) with \(J^\alpha_{I,t} p(t) \geq M \) for every \(t \in [t_0, \infty) \). Hence, \(|y(t)| \leq |y_0| e^{Mt} \) for every \(t \in [t_0, \infty) \). Therefore, for any \(\varepsilon > 0 \), if we choose \(y_0 \) with \(|y_0| < \varepsilon e^{-Mt} \), then \(|y(t)| < \varepsilon \) for every \(t \in [t_0, \infty) \), and so, the solution is stable.
If \(\lim_{t \to -\infty} J^\alpha_{I,t} p(t) = \infty \), then \([\text{5}]\) gives \(\lim_{t \to -\infty} y(t) = 0 \), and so, \(y(t) \equiv 0 \) is asymptotically stable. \(\square \)

4. THE GAUSSIAN MODEL INVOLVING THE GENERALIZED FRACTIONAL DERIVATIVE

This section is framed in the context of the fractional Gaussian model presented in the following, with \(b, c \in \mathbb{R}^+ \) and \(\alpha \in (0, 1]\):
\[
G^\alpha_I f(t) + \frac{t - b}{c^2} f(t) = 0.
\]
A broad range of dynamic systems arising in physical problems are depicted by this model.

For a more complete study of the Gaussian model, we will consider some particular cases of interest, in the kernel of definition of the derivative \(G \). Thus, we can consider (among others) the following cases:

Case (a): \(T(t, \alpha) = e^{(1-\alpha)t} \).

The solution of the system \([\text{10}]\) is
\[
f(t) = ae^{\frac{1}{\alpha}(\frac{b}{1-\alpha}(t-1)))},
\]
(11)
Case (b): \(T(t, \alpha) = t^{1-\alpha} \).

The solution of the system \([\text{11}]\) is
\[
f(t) = a \cdot e^{\frac{t^{1-\alpha}}{2}}.
\]
(12)
Note that if \(\alpha \to 1 \) in \([\text{11}]\) and \([\text{12}]\), then the solution
\[
f(t) = a \cdot \exp\left(\frac{-(t-b)^2}{2c^2}\right)
\]
(13)
of the ordinary differential equation \(f'(t) + \frac{t - b}{c^2} f(t) = 0 \) is obtained.

The fractional Gaussian model is studied by using Caputo fractional derivative, through its numerical relation with Grunwald-Leibniz fractional derivative (see Ref. \([\text{13}]\)).

The solution of the observation equation can be related to the model:
\[
y_i = g(f(t_i)) + \varepsilon_i, \quad i = 1, \ldots, n,
\]
where each \(y_i \) corresponds to the \(i \)th observed value under uncertainty from a solution of \([\text{11}]\).
at the discrete time \(t_i \in [0; T], i = 1, 2, \ldots, n \); \(g \) is the observation function; and \(\varepsilon_i \) are measurement errors, which are considered as independent and identically distributed (i.i.d.) random variables from a normal distribution, with mean zero and constant variance \(\sigma^2 \), denoted by \(\varepsilon_i \sim N(0, \sigma^2) \).

According to Bayesian statistical inversion theory, and provided that all information available has been assimilated into the model, the solution to an inverse problem is given by the subsequent distribution of the quantity of interest. For the model defined in (10), the parameter of interest is \(\theta = (a, b, c, \alpha) \). Next, some prior distributions are proposed,

\[
\begin{align*}
 a &\sim \mathcal{G}(r_a, \lambda_a), \\
 b &\sim \mathcal{G}(r_b, \lambda_b), \\
 c &\sim \mathcal{G}(r_c, \lambda_c), \\
 \alpha &\sim U(0, 1),
\end{align*}
\]

where \(\mathcal{G}(r, \lambda) \) denotes the Gamma distribution with shape parameter \(r \) and rate parameter \(\lambda \), \(U \) is the continuous uniform distribution on the interval \((0, 1)\). The parameters introduced in the prior distributions are called hyperparameters. As mentioned before, the prior distributions have been defined in order to reflect the information already known about the possible values of the parameters of interest. In the model (10), \(a, b \) and \(c \) are positive and \(\alpha \in [0, 1] \).

Taking for granted the prior independence of the parameters, the joint prior distribution can be written as

\[
p(\theta \mid \text{hyperparameters}) = p(a \mid r_a, \lambda_a)p(b \mid r_b, \lambda_b)
\times p(c \mid r_c, \lambda_c)p(\alpha),
\]

(21)

where \(p(a \mid r_a, \lambda_a), p(b \mid r_b, \lambda_b), p(c \mid r_c, \lambda_c) \) are \(p(\alpha) \) are defined in (17)–(20), respectively. Let \(y' = (y_1, y_2, \ldots, y_n) \) denote the i.i.d. observed data at times \((t_1, t_2, \ldots, t_n)\) from the model defined by (10) and (16), the likelihood function is given by

\[
L(y \mid \theta) = \prod_{i=1}^{n} f_y(y_i)
= \frac{1}{(\sigma \sqrt{2\pi})^n} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - g(f(t_i)))^2 \right\},
\]

(22)

where \(f(t_i), i = 1, \ldots, n \), is a solution of (10).

Then, applying Bayes’ theorem, the posterior distribution of the parameters of interest is given by

\[
p(\theta \mid y) = \frac{L(y \mid \theta)p(\theta)}{\int L(y \mid \theta)p(\theta)d\theta}.
\]

(23)
where \odot denotes the parameter space of θ. Obviously,

$$p(\theta \mid y) \propto L(y \mid \theta)p(\theta)$$

$$= \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - g(f(t_i)))^2 \right\}$$

$$\cdot \left\{ a^{a-1} \exp(-a/\lambda_a) \frac{1}{\Gamma(r_a)\lambda_a^{r_a}} \right\}$$

$$\cdot \left\{ b^{b-1} \exp(-b/\lambda_b) \frac{1}{\Gamma(r_b)\lambda_b^{r_b}} \right\}$$

Adopting a loss quadratic function, the Bayesian point estimation is the posterior mean of $\hat{\theta}_B$, which is given by

$$\hat{\theta}_B = E(\theta \mid y).$$

(25)

Markov chain Monte Carlo (MCMC) simulations are employed to work with (24). Among the most

Fig. 3 Trace and estimated posterior densities of a, α and b.

2040038-9
popular MCMC techniques are the Gibbs sampling and the Metropolis–Hastings algorithm. WinBUGS, JAGS, Stan and t-walk are some computer programs that implement the MCMC algorithms.

Now we show two applications to real problems of the Gaussian model by different approaches namely Khalil et al. (blue), conformable derivative with \(T(t, \alpha) = e^{(1-\alpha)t} \) (red), Caputo (green) and ordinary (black).

For this study, we used data on the dengue fever from the work by Quereshi and Atangana and the kernel function used to define the conformable derivative was \(T(t, \alpha) = e^{(1-\alpha)t} \). Figure 2 shows the adjustments corresponding to the observations (black points) associated with dengue fever, according to the different fractional approaches.

The errors in the adjustments according to the different approaches are the following: Khalil et al. (0.02534277), conformable derivative with \(T(t, \alpha) = e^{(1-\alpha)t} \) (0.02194562), Caputo (0.14031743) and ordinary (0.03062900).

Figures 3 and 4 (dengue fever) show the trace and estimated posterior distributions of the parameters of interest for \(G^{\alpha}_{T} \) with \(T(t, \alpha) = e^{(1-\alpha)t} \).

The estimates of the parameters \(\alpha, a, b, c \) and \(\tau \) related to dengue fever data, according to the different approaches, are as follows:

Fractional Derivative	\(\alpha \)	\(\alpha \)	\(b \)	\(c \)	\(\tau \)
Ordinary	—	0.95701376	4.89718951	1.18583780	0.07703328
\(G^{\alpha}_{T} \) with \(T(t, \alpha) = e^{(1-\alpha)t} \)	0.75981801	0.97828067	4.75902783	0.66649858	0.07056143
Khalil et al.	0.42466034	0.96194346	4.82362832	0.7765147	0.07170003
Caputo	0.6965704	0.6965704	4.96568985	1.6013685	0.1292984

Fig. 4 Trace and estimated posterior densities of \(c \) and \(\sigma \).
5. CONCLUSIONS

Fractional calculus is successfully used to model a broad range of problems, since the evolution of many physical processes can be more precisely described with fractional derivatives. We study some general properties of fractional Gaussian model with the conformable fractional derivative. In particular, we used a generalized conformable fractional derivative \(G^\alpha_T\) with \(G(t,\alpha) = e^{t^{1-\alpha}}\) in order to study a Gaussian model. Taking into account an experimental dataset, we solve an inverse problem to estimate the order of the involved fractional derivative. From the above results, it is inferred that the conformable approach proposed by us minimizes the error in the adjustments in relation to the other models studied.

ACKNOWLEDGMENTS

José Francisco Gómez-Aguilar acknowledges the support provided by CONACyT; Cátedras CONACyT para jóvenes investigadores 2014. José Francisco Gómez-Aguilar and José M. Sigarreta acknowledge the support provided by SNI-CONACyT.

REFERENCES

1. A. Atangana, D. Baleanu and A. Alsaedi, New properties of conformable derivative, Open Math. 13 (2015) 889–898.
2. D. Baleanu, A. Jajarmi and J. H. Asad, Classical and fractional aspects of two coupled pendulums, Rom. Rep. Phys. 71 (2019) 103.
3. D. Baleanu, S. Sadat Sajjadi, A. Jajarmi and J. H. Asad, New features of the fractional Euler–Lagrange equations for a physical system within non-singular derivative operator, Eur. Phys. J. Plus 134 (2019) 181.
4. D. Baleanu, J. H. Asad and A. Jajarmi, The fractional model of spring pendulum: New features within different kernels, Proc. Rom. Acad. A 19 (2018) 447–454.
5. M. A. Hammad and R. Khalil, Abel’s formula and Wronskian for conformable fractional differential equation, Int. J. Differ. Equ. Appl. 13 (2014) 177–181.
6. M. A. Hammad and R. Khalil, Total fractional differentials with applications to exact fractional differential equations, Int. J. Comput. Math. 95 (2018) 1443–1452.
7. V. N. Katugampola, A new fractional derivative with classical properties, preprint (2014), arXiv:1410.6535 [math.CA].
8. V. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011) 860–865.
9. M. Ilie, J. Biazar and Z. Ayati, The first integral method for solving some conformable fractional differential equations, Opt. Quantum Electron. 50 (2018) 55.
10. K. S. Miller, An Introduction to Fractional Calculus and Fractional Differential Equations (John Wiley & Sons, New York, 1993).
11. A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel. Theory and application to heat transfer model, Therm. Sci. 20 (2016) 763–769.
12. A. Fernandez, M. Ozarslan and D. Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput. 354 (2019) 248–265.
13. R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65–70.
14. P. M. Guzman, G. Langton, L. M. Lugo, J. Medina and J. E. Nápoles Valdés, A new definition of a fractional derivative of local type, J. Math. Anal. 9 (2018) 88–98.
15. S. Quereshi and A. Atangana, Mathematical analysis of dengue fever outbreak by novel fractional operators with field data, Physica A 536 (2019) 121–127.
16. A. Fleitas, J. E. Nápoles Valdés, J. M. Rodríguez and J. M. Sigarreta, On the generalized fractional derivative, submitted.
17. T. Abdejawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015) 57–66.
18. R. Almeida, M. Guzowska and T. Odzijewicz, A remark on local fractional calculus and ordinary derivatives, Open Math. 14 (2016) 1122–1124.
19. A. Fleitas, J. F. Gómez, J. E. Nápoles, J. M. Rodríguez and J. M. Sigarreta, Analysis of the local Drude model involving the generalized fractional derivative, Optik 193 (2019) 163008.
20. R. Scherer, S. L. Kalla, Y. Tang and J. Huang, The Grunwald–Letnikov method for fractional differential equations, Comput. Math. Appl. 62 (2011) 902–917.
21. A. E. Gelfand and A. F. M. Smith, Sampling-based approaches to calculating marginal densities, J. Am. Stat. Ass. 85 (1990) 398–409.
22. C. Siddharta and E. Greenberg, Understanding the Metropolis–Hastings algorithm, Ann. Stat. 49 (1995) 327–335.
23. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087–1092.
24. D. Baleanu, J. H. Asad and A. Jajarmi, New aspects of the motion of a particle in a circular cavity, Proc. Rom. Acad. A 19 (2018) 143–149.
25. K. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order (Academic Press, USA, 1974).

26. A. Ortega and J. J. Rosales, Newton’s law of cooling with fractional conformable derivative, Rev. Mex. Fis. 64 (2018) 172–175.

27. O. Özkan and A. Kurt, The analytical solutions for conformable integral equations and integro-differential equations by conformable Laplace transform, Opt. Quantum Electron. 50 (2018) 1007.