THE \(\mathfrak{sl}_3 \) COLORED JONES POLYNOMIALS FOR 2-BRIDGE LINKS

WATARU YUASA

ABSTRACT. Kuperberg introduced web spaces for some Lie algebras which are generalizations of the Kauffman bracket skein module on a disk with marked points. We derive some formulas for \(A_1 \) and \(A_2 \) clasped web spaces by graphical calculus using skein theory. These formulas are colored version of skein relations, twist formulas and bubble skein expansion formulas. We calculate the \(\mathfrak{sl}_2 \) and \(\mathfrak{sl}_3 \) colored Jones polynomials of 2-bridge knots and links explicitly using twist formulas.

1. INTRODUCTION

After Kauffman [12] gave a reformulation of the Jones polynomial [10] of a link using the Kauffman bracket, the linear skein theory has developed in various directions. This theory is related to quantum representations and treats modules whose elements are diagrams in a disk such as graphs, tangles, webs and so on. Lickorish [20, 22, 21] introduced the linear skein theory based on quantum \(\mathfrak{sl}_2 \) representations. He constructed the quantum \(SU(2) \) invariants of closed 3-manifolds suggested by Witten [35], rigorously defined by Reshetikhin and Turaev [30]. This linear skein theory is developed based on the Kauffman bracket [12] and the Kauffman bracket skein module. The Kauffman bracket also gives polynomial invariants of knots and links called the colored Jones polynomials. (We call it the \(\mathfrak{sl}_2 \) colored Jones polynomials in this paper.) Through the linear skein theory for the Kauffman bracket, we can define and calculate quantum \(SU(2) \) invariants of closed 3-manifolds and links graphically (see details in [13], Chapter 13, 14 of [23]).

Many quantum invariants and corresponding skein theory have been constructed for other quantum groups. Kuperberg [17] defined brackets for Lie algebras \(A_2 \), \(G_2 \) and \(C_2 \) and corresponding quantum invariants of regular isotopy classes of link diagrams. He also introduced web spaces for simple Lie algebra of rank 2 in [18]. Web spaces are generalizations of the Kauffman bracket skein module. The Kauffman bracket skein module correspond to the \(A_1 \) web space. The linear skein theory associated with \(A_n \) was also introduced by Murakami, Ohtsuki and Yamada [26] and Sikora [32]. It gives a reformulation of the HOMFLY polynomial [3, 29]. The quantum invariant of 3-manifolds was also given by using these linear skein theories in a similar approach to Lickorish [20, 22] (see Ohtsuki and Yamada [28] for \(SU(3) \) and Yokota [38] for \(SU(n) \)).

We will treat the skein theory for \(A_1 \) and \(A_2 \). \(A_1 \) web spaces have particular elements called the Jones-Wenzl idempotents defined in [9, 34]. The Jones-Wenzl idempotents play an important role to construct the quantum \(SU(2) \) invariants of 3-manifolds and the \(\mathfrak{sl}_2 \) colored Jones polynomials of knots and links. These idempotents are generalized to the \(A_2 \) case (see [13] and [28]). We call them the \(A_2 \) clasps. The \(A_2 \) clasps also play an important role to construct quantum \(SU(3) \) invariants of 3-manifolds and the \(\mathfrak{sl}_3 \) colored Jones polynomials of knots and links. Many people have calculated clasped \(A_1 \) web spaces and gave explicit formulas of \(\mathfrak{sl}_2 \) colored Jones polynomials for some knots and links by graphical calculus. These explicit formulas are useful for case studies of conjectures.
related to quantum invariants of knots and links: the volume conjecture [11, 25], the AJ
conjecture [4], the slope conjecture [5] and so on.

On the other hand, there are few examples, see Kim [15, 16], of graphical calculus for
clasped A_2 web spaces. Only two explicit formulas of the sl_3 colored Jones polynomial
were obtained using the representation theory of quantum groups. The formula for trefoil
knot was given by Lawrence [19], more generally for the torus knot $T(2, k)$ was given by
Garoufalidis, Morton and Vuong [6]. As far as the author knows, there is no example of
graphical calculus of the sl_3 colored Jones polynomial for a non-trivial link.

In this paper, we will give some formulas for clasped A_1 and A_2 web spaces. These
formulas explicitly give the sl_2 colored Jones polynomials for a 2-bridge link and the sl_3
colored Jones polynomials of type $(n, 0)$ for it. We remark that the sl_3 colored Jones
polynomial treated in [19] and [6] is type (n, m).

The paper is organized as follows. We firstly introduce the A_1 and A_2 web spaces and clasps based on Kuperberg [18] in section 2. The colored skein relations and twist
formulas for A_1 and A_2 web spaces are given in section 3. The A_1 web space is the
Kauffman bracket skein module. In this case, Hajij gave the colored Kauffman bracket
skein relation in [8]. We will show it in another method using a lemma from the theory of
integer partitions. This method is used to show the colored A_2 bracket skein relations and
twist formulas. In section 4, we will give the A_2 bracket bubble skein expansion formula.
This formula is an A_2 version of the Kauffman bracket bubble skein expansion formula in
[7]. In section 5, we give an explicit formulas for the sl_2 and sl_3 colored Jones polynomials
for 2-bridge knots and links. In this paper, we only treat the sl_3 colored Jones polynomials
of type $(n, 0)$.

2. Preliminaries

In this section, we review definitions of two vector spaces, A_1 web spaces and A_2
web spaces, introduced by Kuperberg [18]. For each web space, we inductively define a
particular element called a clasp according to [18, 28].

2.1. Quantum integers and q-Pochhammer symbol. First, we organize notations of
quantum integers and the q-Pochhammer symbol which we use in this paper.

Let k be an integer and q an indeterminate. We denote q-integers
and q-Pochhammer symbol by $\{k\}$. A quantum
integer is defined by

$$\{k\} = \frac{\{k\}}{\{1\}}.$$

Let us denote $\{k\}! = \prod_{l=1}^{k} \{l\}$ and $[k]! = \prod_{l=1}^{k} [l]$. Let n be a non-negative integer. Then,
a version of q-binomial coefficient is defined by

$$\binom{n}{k} = \frac{[n]!}{[k]![n-k]!} = \frac{\{n\}}{\{k\}\{n-k\}}$$

for $k \leq n$. If $k > n$, we define it by 0.

A q-Pochhammer symbol is defined by

$$(q; q)_k = \prod_{l=1}^{k} (1 - q^l).$$
We sometimes abbreviate it as $(q)_k$. Another version of q-binomial coefficient is defined by
\[
\binom{n}{k}_q = \frac{(q; q)_n}{(q; q)_k(q; q)_{n-k}}
\]
for $k \leq n$. If $k > n$, we define it by 0. We also define a q-multinomial coefficient as
\[
\binom{n}{n_1, n_2, \ldots, n_m}_q = \frac{(q)_n}{(q)_{n_1}(q)_{n_2}\cdots(q)_{n_m}},
\]
where n_1, n_2, \ldots, n_m are non-negative integers such that $n_1 + n_2 + \cdots + n_m = n$.

It is easy to show the following transformation formulas:
- $\{k\}! = (-1)^k q^{-k(k+1)/4}(q)_k$,
- $\binom{n}{k}_q = q^{(n-k)/2}\binom{n}{k}_q$,
- $(q; q)_k = (-1)^k q^{-k(k+1)/2}(q')_k$,
- $\binom{n}{k}_q = q^{k^2-nk}\binom{n}{k}_q'$,

where $q' = q^{-1}$. We use the following formulas for quantum integers in this paper.

Lemma 2.1. For any integers a, b and c,

1. $\binom{a}{b} = \sum_{i=1}^a [a + b - (2i - 1)] = \sum_{i=1}^b [a + b - (2i - 1)],$
2. $\binom{a}{b} - [a - c] \binom{b}{c} = [a + b - c] [b - c],$
3. $\binom{a}{b} + [c] [a - b] = \binom{b}{a} [a - c].$

Proof. By easy calculation using the definition of quantum integers. \qed

2.2. The A_1 web spaces.

Let D_m denote the disk \{ $z \in \mathbb{C} \mid |z| \leq 1$ \} with the set $E_m = \{ \exp(2\pi \sqrt{-1}/m)^j \mid j = 1, 2, \ldots, m \}$ of marked points on the boundary.

An A_1 basis web on D_m is the boundary-fixing isotopy class of a proper embedding of arcs into D_m with no intersection points such that each endpoint lies in E_m. For any point p on the arcs, its neighborhood is either $\{ \}$ or $\{ \}$.

Let B_m be the set of A_1 basis webs on D_m. We consider B_0 has a single element \emptyset called the empty disk. For example, B_0 consists of the following A_1 basis webs:

$\$, $\$, $\$, $\$, $\$ and $\$.

The A_1 web space W_m is the $\mathbb{Q}(q^{1/2})$-vector space spanned by B_m, where $\mathbb{Q}(q^{1/2})$ is the field of rational functions in one variable $q^{1/2}$. We next define tangles in D_m and the A_1 bracket, also known as the Kauffman bracket. A tangle diagram in D_m is a proper immersion of 1-manifolds into D_m such that any intersection point is transverse double points with crossing data. For any point p on a tangle diagram, it has one of the following neighborhoods:

$\$, $\$, $\$ or $\$.
In particular, a tangle diagram in D_0 is a link diagram in the disk. A tangle diagram G is \textit{regularly isotopic} to G' if G is obtained from G' by a finite sequence of boundary-fixing isotopies of D_m and the following moves:

\begin{align*}
(R1') & : \\
(R2) & : \\
(R3) & : \\
\end{align*}

In the above pictures, the outside of the left tangle diagram is coincide with the outside of the right tangle diagram. A \textit{tangle} is the regular isotopy class of a tangle diagram and T_m denotes the set of tangles in D_m. The diagram below is an example of a tangle diagram in D_0:

\begin{center}
\includegraphics[width=0.2\textwidth]{tangle_example.png}
\end{center}

\textbf{Definition 2.2 (The Kauffman bracket).} We define a $\mathbb{Q}(q^\pm)$-linear map $\langle \cdot \rangle_2 : \mathbb{Q}(q^\pm)T_m \to W_m$ by the following.

\begin{itemize}
\item $\langle \overline{\text{tangle}} \rangle_2 = q^\pm \langle \text{tangle} \rangle_2 + q^{-\pm} \langle \overline{\text{tangle}} \rangle_2$,
\item $\langle G \sqcup \overline{\text{circle}} \rangle_2 = -[2] \langle G \rangle_2$,
\end{itemize}

where G is any tangle in T_m. We call this linear map the A_1 bracket or the Kauffman bracket.

For any tangle diagram, we can obtain a sum of tangles with no crossings by using the Kauffman bracket relation and eliminate trivial loops from these tangles. Therefore, we can define the map from the set of tangle diagrams to W_m. We can easily confirm that this map doesn’t change under the moves of regular isotopy.

We next define A_1 clasps which also called \textit{Jones-Wenzl projectors}, \textit{magic elements} etc. We consider an A_1 web space $W_{n+n} = W_{2n}$. We use a tangle diagram whose components are decorated with non-negative integers. A components decorated by n means n parallelization of it. A tangle diagram with decoration is defined by the following local pictures:

\begin{center}
\includegraphics[width=0.5\textwidth]{tangle_decoration.png}
\end{center}

We omit the boundary of the disk D_m from tangle diagrams in D_m later in the paper. For example, a tangle n is denoted by n.

We define an A_1 clasp \overline{n} $\in W_{n+n}$ inductively by the following.
Definition 2.3 (The A_1 clasps, The Jones-Wenzl idempotents etc.).

\[
\begin{align*}
\langle \begin{array}{c}
1
\end{array} \rangle_2 &= \frac{1}{n^{n+1}} \\
\langle \begin{array}{c}
n-1 \n-1
\end{array} + \frac{n-1}{n} \langle \begin{array}{c}
n-n-2 \n-1 \n-1
\end{array} \rangle_2 &\in W_{n+n}
\end{align*}
\]

(2.1)

The A_1 clasp has the following properties.

Lemma 2.4 (Kauffman-Lins [13] etc.). For any positive integer n,

- $\langle \begin{array}{c}
n \n-1
\end{array} \rangle_2 = n$,
- $\langle \begin{array}{c}
n-k
\end{array} \rangle_2 = 0$ \((k = 0, 1, \ldots, n - 2)\).

It is easy to calculate the following.

Lemma 2.5. For $k = 0, 1, \ldots, n$,

- $\langle \begin{array}{c}
n-k
\end{array} \rangle_2 = q^{\frac{k(n-k)}{4}} \langle \begin{array}{c}
n \n-1
\end{array} \rangle_2$,
- $\langle \begin{array}{c}
n-k
\end{array} \rangle_2 = (-1)^k \frac{n+1}{n-k+1} \langle \begin{array}{c}
n \n-1
\end{array} \rangle_2$,
- $\langle \begin{array}{c}
n-k
\end{array} \rangle_2 = (-1)^n q^{\frac{n+2n}{k}} \langle \begin{array}{c}
n \n-1
\end{array} \rangle_2$,
- $\langle \begin{array}{c}
n-k
\end{array} \rangle_2 = (-1)^n q^{-\frac{n+2n}{k}} \langle \begin{array}{c}
n \n-1
\end{array} \rangle_2$.

Let $N = (n_1, n_2, \ldots, n_k)$ be a k-tuple of positive integers.

Definition 2.6 (Clasped A_1 web spaces). We define a subspace W_N of $W_{n_1+n_2+\cdots+n_k}$ called a clasped A_1 web space as the following:

\[
W_N = \left\{ \langle \begin{array}{c}
n_1
\end{array} \langle \begin{array}{c}
n_2
\end{array} \langle \begin{array}{c}
n_3
\end{array} \ldots \langle \begin{array}{c}
n_k
\end{array} \rangle_2 \mid w \in W_{n_1+n_2+\cdots+n_k} \right\}.
\]

For example, if $k = 3, n_1 = 1, n_2 = 2, n_3 = 3$ and $w = \langle \begin{array}{c}
n-k
\end{array} \rangle_2 = q^{\frac{k}{4}} \langle \begin{array}{c}
n \n-1
\end{array} \rangle_2 + q^{-\frac{k}{4}} \langle \begin{array}{c}
n \n-1
\end{array} \rangle_2$.

2.3. The A_2 web spaces. We define the A_2 web spaces. Let $\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m)$ be a m-tuple of signs $+$ or $-$. Let D_ε denote D_m whose marked point $\exp(2\pi i/m)$ is decorated by ε_j for $j = 1, 2, \ldots, m$. A bipartite uni-trivalent graph G is a directed graph such that every vertex is either trivalent or univalent and these vertices are divided into sinks or sources. A sink (resp. source) is a vertex such that all edges adjoining to the
vertex point into (resp. away from) it. A bipartite trivalent graph \(G \) in \(D^ε \) is an embedding of a uni-trivalent graph into \(D^ε \) such that for any vertex \(v \) has the following neighborhoods:

- \(+v \) or \(-v \) if \(v \) is a sink,
- \(+v \) or \(-v \) if \(v \) is a source.

An \(A_2 \) basis web is the boundary-fixing isotopy class of a bipartite trivalent graph \(G \) in \(D^ε \), where any internal face of \(\partial^c G \) has at least six sides. Let us denote \(B^ε \) is the set of \(A_2 \) basis webs in \(D^ε \). For example, \(B^ε(+,−,+,-,+,-) \) has the following \(A_2 \) basis webs:

\[
\begin{align*}
&\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{example1.png}
\end{array}
\end{array},
\end{align*}
\]

The \(A_2 \) web space \(W^ε \) is the \(\mathbb{Q}(q^{1/6}) \)-vector space spanned by \(B^ε \). A tangled trivalent graph diagram in \(D^ε \) is an immersed bipartite uni-trivalent graph in \(D^ε \) whose intersection points are only transverse double points of edges with crossing data \(\includegraphics[width=0.05\textwidth]{crossing1.png} \) or \(\includegraphics[width=0.05\textwidth]{crossing2.png} \). Tangled trivalent graph diagrams \(G \) and \(G' \) are regularly isotopic if \(G \) is obtained from \(G' \) by a finite sequence of boundary-fixing isotopies and (R1’), (R2), (R3) and (R4) moves with some direction of edges.

(R4):

\[
\begin{align*}
&\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{example2.png}
\end{array}
\end{array},
\end{align*}
\]

Tangled trivalent graphs in \(D^ε \) are regular isotopy classes of tangled trivalent graph diagrams in \(D^ε \). We denote \(T^ε \) the set of tangled trivalent graphs in \(D^ε \). The diagram below is an example of a tangled trivalent graph diagram in \(D(++,−,+,-) \).

\[
\begin{align*}
&\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{example3.png}
\end{array}
\end{array},
\end{align*}
\]

Definition 2.7 (The \(A_2 \) bracket \(\langle \cdot \rangle_3 \)). We define a \(\mathbb{Q}(q^{1/6}) \)-linear map \(\langle \cdot \rangle_3 : \mathbb{Q}(q^{1/6})T^ε \to W^ε \) by the following.

\[
\begin{align*}
&\langle \includegraphics[width=0.2\textwidth]{example4.png} \rangle_3 = q^{\frac{1}{3}} \langle \includegraphics[width=0.2\textwidth]{example5.png} \rangle_3 - q^{-\frac{1}{3}} \langle \includegraphics[width=0.2\textwidth]{example6.png} \rangle_3,
&\langle \includegraphics[width=0.2\textwidth]{example7.png} \rangle_3 = q^{-\frac{1}{3}} \langle \includegraphics[width=0.2\textwidth]{example8.png} \rangle_3 - q^{\frac{1}{3}} \langle \includegraphics[width=0.2\textwidth]{example9.png} \rangle_3,
&\langle \includegraphics[width=0.2\textwidth]{example10.png} \rangle_3 = \langle \includegraphics[width=0.2\textwidth]{example11.png} \rangle_3 + \langle \includegraphics[width=0.2\textwidth]{example12.png} \rangle_3,
&\langle \includegraphics[width=0.2\textwidth]{example13.png} \rangle_3 = [2] \langle \includegraphics[width=0.2\textwidth]{example14.png} \rangle_3,
\end{align*}
\]
We can confirm that this map is well-defined as with the Kauffman bracket.

We next consider A_2 web space $W_{n^+ + n^-} = W_{(+, +, \ldots, +, -)}$ whose first n marked points are decorated with $+$ and next n marked points are decorated with $-$. We define A_2 claps $\begin{array}{c} n \end{array}$ in $W_{n^+ + n^-}$ inductively by the following.

Definition 2.8. (The A_2 claps)

\begin{align*}
\begin{array}{c} 1 \end{array} & = 1 \\
\begin{array}{c} n \end{array} & = \left\langle \begin{array}{c} n-1 \\
1 \end{array} \right\rangle_3 - \frac{(n-1)}{n} \left\langle \begin{array}{c} n-2 \\
1 \end{array} \right\rangle_3 \in W_{n^+ + n^-}
\end{align*}

A_2 claps have the following properties.

Lemma 2.9 (Properties of A_2 claps). For any positive integer n,

\begin{align*}
\left\langle \begin{array}{c} n \end{array} \right\rangle_3 & = - \begin{array}{c} n \end{array} \\
\left\langle \begin{array}{c} n \end{array} \right\rangle_3 & = 0 \quad (k = 0, 1, \ldots, n - 2)
\end{align*}

We can easily calculate the following.

Lemma 2.10. For $k = 0, 1, \ldots, n$,

\begin{align*}
\left\langle \begin{array}{c} n \\
\begin{array}{c} n-k \end{array} \end{array} \right\rangle_3 & = q^{\frac{k(k-1)}{2}} \left\langle \begin{array}{c} n \\
\begin{array}{c} n-k \end{array} \end{array} \right\rangle_3, \\
\left\langle \begin{array}{c} n \\
\begin{array}{c} k \end{array} \end{array} \right\rangle_3 & = \frac{[n+1][n+2]}{[n-k+1][n-k+2]} \left\langle \begin{array}{c} n-k \\
\begin{array}{c} k \end{array} \end{array} \right\rangle_3, \\
\left\langle \begin{array}{c} n \\
\begin{array}{c} 1 \end{array} \end{array} \right\rangle_3 & = q^{\frac{n^2 + n}{2}} \left\langle \begin{array}{c} n \end{array} \right\rangle_3, \\
\left\langle \begin{array}{c} n \\
\begin{array}{c} 1 \end{array} \end{array} \right\rangle_3 & = q^{\frac{n^2 + n}{2}} \left\langle \begin{array}{c} n \end{array} \right\rangle_3
\end{align*}

Let n^+ be an n-tuple of $+$ and n^- an n-tuple of $-$. For a k-tuple of signs $\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k)$, we define $N^\varepsilon = (n_1^{\varepsilon_1}, n_2^{\varepsilon_2}, \ldots, n_k^{\varepsilon_k})$. We use a notation $n_1^{\varepsilon_1} + n_2^{\varepsilon_2} + \cdots + n_k^{\varepsilon_k}$ to represent $(n_1 + n_2 + \cdots + n_k)$-tuple of signs. It is defined in the following manner: the first n_1 signs are ε_1, the next n_2 signs are ε_2, \ldots, and the last n_k signs are ε_k.

Definition 2.11 (A clapsed A_2 web space). We define a subspace W_{N^ε} of $W_{n_1^{\varepsilon_1} + n_2^{\varepsilon_2} + \cdots + n_k^{\varepsilon_k}}$ called the clapsed A_2 web space as follows:

$$W_{N^\varepsilon} = \left\{ \left\langle \begin{array}{c} w \\
\begin{array}{c} n_1^{\varepsilon_1} \\
\begin{array}{c} n_2^{\varepsilon_2} \\
\begin{array}{c} \ldots \\
\begin{array}{c} n_k^{\varepsilon_k} \end{array} \end{array} \end{array} \end{array} \right\rangle_2 \mid w \in W_{n_1^{\varepsilon_1} + n_2^{\varepsilon_2} + \cdots + n_k^{\varepsilon_k}} \right\}$$

3. Colored skein relations

In this section, we introduce colored skein relations for clapsed A_1 and A_2 web spaces. Although the formula for a clapsed A_1 web space is already known by Yamada\cite{5,6} and Hajij\cite{8}, we prove this formula by another method using the theory of integer partitions. We use the same method to prove colored skein relations for clapsed A_2 web spaces.
3.1. **Colored Kauffman bracket skein relations.** We review the colored Kauffman bracket skein relations and give another proof by using theory of integer partitions. Let us consider clasped A_1 web spaces.

Proposition 3.1. Let n be non-negative integers.

1. \[\langle \begin{array}{c} n \\ n \\ n \\ n \\ n \\ \end{array} \rangle_2 = \sum_{k=0}^{n} q^{-\frac{n^2+2k^2}{4}} \binom{n}{k} q^{\frac{n-k}{2}} \langle \begin{array}{c} \vspace{1cm} \vspace{1cm} \\ \vspace{1cm} \vspace{1cm} \vspace{1cm} \\ \vspace{1cm} \vspace{1cm} \vspace{1cm} \\ \vspace{1cm} \vspace{1cm} \vspace{1cm} \end{array} \rangle_2 \] (the colored Kauffman bracket skein relation by Hajij \[8\])

2. \[\langle \begin{array}{c} n \\ n \\ \end{array} \rangle_2 = (-1)^n [n+1] \emptyset \]

We prove the colored Kauffman bracket skein relation by using a well-known identity from the theory of integer partitions. Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_s)$ be a partition of an integer into s parts, that is, λ is the s-tuples of positive integers such that $\lambda_i \geq \lambda_i+1$ for $i = 1, 2, \ldots, s-1$, and $|\lambda|$ denotes $\lambda_1 + \lambda_2 + \cdots + \lambda_s$. For given non-negative integers k and l, $P(k, l)$ denotes the set of partitions λ such that $0 \leq s \leq k$ and $0 \leq \lambda_1 \leq l$.

Lemma 3.2 (Andrews and Eriksson \[1\] etc.).

\[\binom{k+l}{k} q = \sum_{\lambda \in P(k, l)} q^{\lambda}. \]

Proof of Proposition 3.1 (1).

\[\langle \begin{array}{c} n \\ n \\ \end{array} \rangle_2 = \langle \begin{array}{c} n-1 \\ n-1 \\ \end{array} \rangle_2 + q^{-\frac{1}{4}} \langle \begin{array}{c} n-1 \\ n-1 \\ \end{array} \rangle_2 \]

\[= q^{\frac{n}{4}} + q^{-\frac{1}{4}} \]

\[= q^{\frac{2n-1}{4}} + q^{-\frac{2n-1}{4}} \]

We used the Kauffman bracket skein relation in (3.1) and Lemma 2.5 in (3.2). We define a clasped A_1 web $\langle \sigma(k, l; n) \rangle_2$ as follows:

\[\langle \sigma(k, l; n) \rangle_2 = \langle \begin{array}{c} k \\ n \\ \end{array} \rangle_2 \]

By the above calculation,

\[\langle \sigma(k, l; n) \rangle_2 = q^{2(n-k-1)} \langle \sigma(k+1, l; n) \rangle_2 + q^{-2(n-k-1)} \langle \sigma(k, l+1; n) \rangle_2. \]

We make $\langle \sigma(k, l; n) \rangle_2$ correspond to a lattice point (k, l) in $\mathbb{Z} \times \mathbb{Z}$ for each non-negative integers k and l such that $0 \leq k + l \leq n$. We decorate vectors $(1, 0)$ and $(0, 1)$ from (k, l) with coefficients of $\langle \sigma(k+1, l; n) \rangle_2$ and $\langle \sigma(k, l+1; n) \rangle_2$ of (3.3), respectively. The left-hand side of the colored Kauffman bracket skein relation is $\langle \sigma(0, 0; n) \rangle_2$ and clasped
THE a_{13} COLORED JONES POLYNOMIALS FOR 2-BRIDGE LINKS

This Young diagram λ_1 corresponds to a partition $(2, 1)$.

This Young diagram λ_2 corresponds to a partition $(1, 1, 1)$.

Figure 3.1. Two examples for $n = 5$, $(k, l) = (2, 3)$

These diagrams illustrate the shift of a path.

These diagrams show the product of decorations for the top path.

A1 webs appear in the right-hand side are $\langle \sigma(k, l; n) \rangle_2$ such that $k + l = n$. Fix a pair of k and l such that $k + l = n$, then the coefficient of $\langle \sigma(k, l; n) \rangle_2$ of the right-hand side of the colored Kauffman bracket skein relation is determined as follows:

1. Take a lattice path from $(0, 0)$ to (k, l) constructed from vectors $(1, 0)$ and $(0, 1)$.
2. Product all decorations of vectors appearing in the path.
3. Sum up the product of decorations for all paths from $(0, 0)$ to (k, l).

A Young diagram is obtained by cutting out the upper side of a path from $(0, 0)$ to (k, l) from a rectangle $\{(x, y) \mid 0 \leq x \leq k, 0 \leq y \leq l \}$. The Young diagram corresponds to a partition of an integer (see two examples in Figure 3.1). If a path from $(0, 0)$ to (k, l) with $k + l = n$ shifts downward by a box, then the product of decorations is multiplied by q. In fact, a product of decorations of $(k, l) \rightarrow (k, l + 1) \rightarrow (k + 1, l + 1)$ is $q^{-\frac{1}{2}}$ and $(k, l) \rightarrow (k + 1, l) \rightarrow (k + 1, l + 1)$ is $q^{\frac{1}{2}}$ (see Figure 3.2). The product of decorations of the top path is $\prod_{i=0}^{l-1} q^{-\frac{2(n-i)-1}{4}} \prod_{j=0}^{k-1} q^{\frac{2(n-j)-1}{4}}$. Therefore, the coefficient of $\langle \sigma(k, l; n) \rangle_2$ with $k + l = n$ is

$$\prod_{i=0}^{l-1} q^{-\frac{2(n-i)-1}{4}} \prod_{j=0}^{k-1} q^{\frac{2(n-j)-1}{4}} \sum_{\lambda \in P(k, l)} q^{\lambda} = q^{-n^2+2k^2} \binom{n}{k}.$$
by Lemma 3.2.

The colored Kauffman bracket skein relation is the expansion of a half twist of two strands colored by n. We also give the expansion of a full twist of two strands colored by n.

Proposition 3.3 (The full twist formula [24, Lemma 4.1]).

$$\langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} n \\ 1 \\ n-1 \end{array} \rangle_2 = \sum_{k=0}^{n} (-1)^{n-k} q^{2k^2-n^2+k-n} \frac{(q)_n}{(q)_k} q^k \langle \begin{array}{c} n \\ n-k \\ n-k \end{array} \begin{array}{c} k \\ n-k \\ n-k \end{array} \rangle_2$$

Proof. We prove this formula by the same argument as the proof of Proposition 3.1. First, the following equation is obtained by using the Kauffman bracket skein relation and Lemma 2.5.

$$\langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} n \\ 1 \\ n-1 \end{array} \rangle_2 = q^\frac{i}{2} \langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} n \\ 1 \\ n-1 \end{array} \rangle_2 + q^{-\frac{i}{2}} \langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} n \\ 1 \\ n-1 \end{array} \rangle_2$$

$$= q^\frac{i}{2} \langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} n \\ 1 \\ n-1 \end{array} \rangle_2 + (1-q^{-1})q^{-\frac{i}{2}(n-1)} \langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} n \\ 1 \\ n-1 \end{array} \rangle_2.$$

This equation implies

(3.4)

$$q^{-\frac{i}{2}(n-i-1)} \langle \begin{array}{c} n \\ i+1 \\ n-i \end{array} \begin{array}{c} n \\ n-i \end{array} \rangle_2 - q^{-\frac{i}{2}(n-i)} \langle \begin{array}{c} n \\ i \\ n-i \end{array} \begin{array}{c} n \\ n-i \end{array} \rangle_2 = (1-q)q^{-n-\frac{i}{2}} q^i \langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} 1 \\ 1 \end{array} \rangle_2$$

for $i = 0, 1, \ldots, n-1$. Thus, we obtain

$$\langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} n \\ 1 \\ n-1 \end{array} \rangle_2 = q^\frac{i}{2} \langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} n \\ 1 \\ n-1 \end{array} \rangle_2 - (1-q^n)q^{-\frac{i}{2}} q^i \langle \begin{array}{c} n \\ 1 \\ n-1 \end{array} \begin{array}{c} 1 \\ 1 \end{array} \rangle_2$$

by taking the sum of both sides of (3.4) for $i = 0, 1, \ldots, n-1$. Also,

$$\langle \begin{array}{c} j \\ i+1 \\ j-i \end{array} \begin{array}{c} j \\ j-i \end{array} \rangle_2 = q^\frac{j}{2} \langle \begin{array}{c} j \\ i+1 \\ j-i \end{array} \begin{array}{c} j \\ j-i \end{array} \rangle_2 - (1-q^j)q^{-\frac{j}{2}} q^i \langle \begin{array}{c} j \\ j-i \\ j-i \end{array} \begin{array}{c} j \\ j-i \end{array} \rangle_2$$
THE s_{13} COLORED JONES POLYNOMIALS FOR 2-BRIDGE LINKS

for any non-negative integers i and j. We define a clamped A_1 web $\langle \sigma^2(k, l; n) \rangle_2$ as follows:

$$\langle \sigma^2(k, l; n) \rangle_2 = \left\langle \begin{array}{c} \cdots \vdots \cdots \cdots \cdots \\
_n \quad n-1 \quad n-k-1 \quad \cdots \\
_{k} \quad \cdots \quad \cdots \quad \cdots \\
n \end{array} \right\rangle_2.$$

Then, we obtain

$$(3.5) \quad \langle \sigma^2(k, l; n) \rangle_2 = q^{n-l} \langle \sigma^2(k+1, l; n) \rangle_2 - (1 - q^{n-l}) q^{-(n-i)} q^{-(n-l)} \langle \sigma^2(k, l+1; n) \rangle_2$$

for non-negative integers k and l such that $k + l \leq n$. In the same way as the proof of Proposition 3.1 (1), we make $\langle \sigma^2(k, l; n) \rangle_2$ correspond to a lattice point (k, l) and decorate edges with coefficients by using the resolution (3.5). If a path from $(0, 0)$ to (k, l) with $k + l = n$ shifts downward by a box, then the product of decorations is multiplied by q (see Figure 3.3). Therefore, the coefficient of $\langle \sigma^2(k, l; n) \rangle_2$ with $k + l = n$ for the expansion of a full twist is

$$= (-1)^{l} q^{\frac{2k^{2} - n^{2} + 2k - n}{2}} \left(\frac{q^{n} q_{n}}{q^{n-1} q_{n-l}} \right) \frac{n}{q},$$

□

We next give expansions of m half twists and m full twists of two strands colored by n.

Lemma 3.4 (Masbaum [24, Lemma 4.3]). For any non-negative integers $k \neq n$,

$$\langle \begin{array}{c} \cdots \vdots \cdots \cdots \\
_n \quad n-k \quad n-k \quad \cdots \\
_{n-k} \quad \cdots \quad \cdots \quad \cdots \\
n \end{array} \rangle_2 = (-1)^{n-k} q^{-\frac{n^2 - k^2 + 2nk - 2k}{2}} \langle \begin{array}{c} \cdots \vdots \cdots \cdots \\
_{n-k} \quad \cdots \quad \cdots \quad \cdots \\
_{n-k} \quad \cdots \quad \cdots \quad \cdots \\
n \end{array} \rangle_2$$

Proof. Slide two right-side A_1 clasps to the left and calculate resulting clamped A_1 web using Lemma 2.5 □

Let n, m be non-negative integers.
Proposition 3.5 (m half twists formula).

\[
\left\langle \overbrace{\mathcal{D}_n^{\mathcal{A}}}^m \quad \cdots \quad \mathcal{D}_n^{\mathcal{A}} \right\rangle = (-1)^{mn} q^{-\frac{mn}{2} (n^2 + 2n)}
\]

\[
\times \sum_{0 \leq k_m \leq \cdots \leq k_1 \leq n} (-1)^{n-k_m} q^{\frac{n-k_m}{2} (-1)^\sum_{i=1}^m k_i} q^{\frac{m}{2} \sum_{i=1}^m (k_i^2 + k_i)} \left(k_1' \ , k_2' \ , \ldots \ , k_m' \ , k_m \right) q^{\left\langle \mathcal{D}_n^{k_m} \mathcal{D}_n^{k_m-1} \cdots \mathcal{D}_n^{k_m-n} \right\rangle}.
\]

where k_i, k_i' are integers such that $k_0 = n, k_i' = k_i - k_{i+1}$ for $i = 0, 1, \ldots, m - 1$.

Proof. Let k_i, k_{i+1} as above. We define a clasped A_1 web $\langle \sigma^{m-i} (k_i; n) \rangle_2$ for any $k_i = 0, 1, \ldots, n$ as

\[
\langle \sigma^{m-i} (k_i; n) \rangle_2 = \left\langle \overbrace{\mathcal{D}_n^{n-k_i}}^m \quad \cdots \quad \mathcal{D}_n^{n-k_i} \right\rangle.
\]

We apply Proposition 3.1(1) to a rightmost half twist and use Lemma 3.2, $m - i - 1$ times. Thus, we obtain

\[
\langle \sigma^{m-i} (k_i; n) \rangle_2
\]

\[
= \sum_{k_{i+1} = 0}^{k_i} (-1)^{k_i - k_{i+1}} q^{\frac{m}{2} (k_i^2 + k_i)} q^{\frac{m}{2} (k_{i+1}^2 + k_{i+1})} \left(k_i \bigg/ k_{i+1} \right) \langle \sigma^{m-i} (k_i; n) \rangle_2.
\]

The right hand side of the m half twist formula is $\langle \sigma^m (k_0; n) \rangle_2$. Therefore, we can obtain the m half twist formula by using the above equation for $i = 0, 1, \ldots, m - 1$ in turn and calculation of the exponent sum of q.

Proposition 3.6 (m full twists formula [24]).

\[
\left\langle \overbrace{\mathcal{D}_n^{\mathcal{A}}}^m \quad \cdots \quad \mathcal{D}_n^{\mathcal{A}} \right\rangle = q^{-\frac{m}{2} (n^2 + 2n)} \sum_{0 \leq k_m \leq \cdots \leq k_1 \leq n} (-1)^{n-k_m} q^{\frac{n-k_m}{2} \sum_{i=1}^m (k_i^2 + k_i)}
\]

\[
\times \frac{(q)_n}{(q)_{k_m}} \left(k_1' \ , k_2' \ , \ldots \ , k_m' \ , k_m \right) q^{\left\langle \mathcal{D}_n^{k_m} \mathcal{D}_n^{k_m-1} \cdots \mathcal{D}_n^{k_m-n} \right\rangle}.
\]

Proof. We can prove this formula by the same way as the proof of Proposition 3.5. We only have to use Proposition 3.3 instead of Proposition 3.1(1).

Remark 3.7.

- Twist formulas in this section treat only right-handed twists. Left-handed versions of twist formulas can be obtained by substituting q^{-1} for q.

- We can easily calculate twist formulas for an n-colored strand and m-colored strand by using twist formulas for two n-colored strands.
3.2. Colored A_2 bracket skein relations. Let us consider clasped A_2 web spaces. We use the following graphical notations to represent certain A_2 webs.

Definition 3.8. For positive integers n and m, a colored 4-valent vertex

$$
\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array}
\end{array}
\in W_{n}^{+}+m^{+}+n^{-}+m^{-}
$$

is defined as follows: $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} \in W_{n+1}^{+}+n^{-}+1^{-}$ for $m = 1$, $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array}$ for $m > 1$. We also define $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} \in W_{n+m}^{+}+n^{-}+m^{-}$ in the same way.

Definition 3.9. For positive integer n, a colored trivalent vertex

$$
\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{n}
\end{array}
\end{array}
\in W_{n}^{+}+n^{+}+n^{+}
$$

is defined as follows: $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{n}
\end{array}
\end{array}$ for $n = 1$, $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{n}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{n}
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{n}
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{n}
\end{array}
\end{array}$ for $n > 1$. We also define $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{n}
\end{array}
\end{array} \in W_{n}^{-}+n^{-}+n^{-}$ in the same way.

We sometimes omit directions of edges of A_2 webs. Then we take compatible directions for colored tri-, 4-valent vertices and A_2 clasps.

Lemma 3.10.

1. $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array}$

2. $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{n}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{n}
\end{array}
\end{array}$

3. $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array}$

4. $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} + \sum_{i=0}^{n-1} \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{i}
\end{array}
\end{array}$

5. $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array}$

6. $\begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{n} \\
\text{m}
\end{array}
\end{array}$
Proof. (1) and (2) are obtained by definitions of colored tri- and 4-valent vertices. Let us show (3) by the induction on m. We can easily confirm in the case of $m = 1$. If $m > 1$, then

$$(3.6)$$

$$m^m = m^{m-1} = m^{m-1} = m,$$

We used the induction hypothesis in (3.6). We can show (4) by an easy calculation for $n = 1$. If $n > 1$, then

$$n^1 = n^{-1} + \sum_{i=0}^{n-2} \frac{1}{n-2} + \frac{1}{n-1}$$

by the induction on n. (5) is easily showed by the induction on m. In order to prove (6), we only have to show the following:

$$(3.10)$$

$$n^k = 0$$

for $k = 1, 2, \ldots, n-2$ through the recursive definition of A_2 clasps. Furthermore,

$$(3.10)$$

$$n^k = n^{k-1} = n^{k-1} = 0$$

by Lemma (3.10) (5).

$$(3.10)$$

$$n^k = n^{k-1} = n^{k-1} = 0$$

by Lemma (3.10) (4). □

Theorem 3.11. Let n be a positive integer.

$$(1) \left\langle \frac{n}{n} \right\rangle_3 = \sum_{k=0}^{n} (-1)^k q^{2n-k+3k-6k} \binom{n}{k} q^{n-k+3k-6k} \left\langle \frac{n}{n} \right\rangle_3$$
We can obtain the following by easy calculation.

Lemma 3.12. For $k = 0, 1, \ldots, n$,
\[
\langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle \langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle = \frac{[n+1][n+2]}{[n-k+1][n-k+2]} \langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle.
\]

This lemma gives Theorem 3.11 (5) when $k = n$. Theorem 3.11 (1) is obtained from a calculation of Theorem 3.11 (2) substituting q^{-1} with q. Thus, we only need to prove Theorem 3.11 (2)–(4). To prove Theorem 3.11 (2)–(4), we prepare lemmas.

Lemma 3.13. For any positive integer n,
\[
\langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle = \langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle - \frac{[n-1][n+2]}{[2]} \langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle.
\]

Proof. Colored trivalent vertices are constructed of colored 4-valent vertices by its definition. This description of colored trivalent vertices implies that we only have to prove in the case of $k = 1$.
\[
\langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle = \langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle - \langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle.
\]

and the second term vanishes by a property of A_2 clasp.

Lemma 3.14. For any positive integer n,
\[
\langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle = \langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle - \frac{[n-1]}{[n]} \langle \begin{array}{c}
\hspace{1cm} \\
\hspace{1cm}
\end{array} \rangle.
\]
Proof. By using the definition of an A_2 clasp and Lemma 3.10(6),

$$
\langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
- \frac{[n-1]}{[n]} \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3.
$$

The A_2 web of the second term is computed as follows:

$$
\langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3.
$$

We used Lemma 3.10(5) and (6) for the first three equalities, Lemma 3.10(4) for the last equality.

Proof of Theorem 3.11(2). We prove Theorem 3.11(2) in a similar way to the proof of the colored Kauffman bracket skein relation. By using skein relations the A_2 bracket and properties of A_2 clasps, we can easily calculate as follows:

$$
\langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3.
$$

We define clasped A_2 webs $\langle \sigma(k, l; n) \rangle_3$ as follows:

$$
\langle \sigma(k, l; n) \rangle_3
= \langle \begin{array}{c}
 n \\
 \hline
 1 \\
 \hline
 n-1 \\
 \end{array} \rangle_3.
$$
The above calculation and Lemma 3.13 imply
\[\langle \sigma(k, l; n) \rangle_3 = q^{-\frac{1}{3}(2(n-k-l)-1)} \langle \sigma(k, l+1; n) \rangle_3 - q^{-\frac{1}{3}(2(n-k-l)-1)} \langle \sigma(k+1, l; n) \rangle_3. \]

We can calculate the coefficient of \(\langle \sigma(k, l; n) \rangle_3 \) with \(k + l = n \):
\[\prod_{i=0}^{l-1} q^{-\frac{1}{3}(2(n-i)-1)} \prod_{j=0}^{k-1} (-q)^{\frac{1}{3}(2(n-j-l)-1)} (\sum_{\lambda \in \mathcal{P}(k,l)} q^{\lambda}) = (-1)^k q^{-\frac{2n^2+3k^2}{3} n \choose k q}, \]
in a similar way to the proof of Proposition 3.1 (1) (see Figure 3.4).

We also give a full twist and \(m \) full twists formula for the \(A_2 \) bracket.

Proposition 3.15 (a full twist formula).
\[\langle \begin{array}{ccc} n & \cdots & n \\ n & \cdots & n \end{array} \rangle_3 = q^{-\frac{1}{3}n^2} \sum_{k=0}^{n} q^{k^2+n-k-n \choose k q} \langle \begin{array}{ccc} n & \cdots & n \\ n & \cdots & n \end{array} \rangle_3. \]

Proof. We prove the above formula in a similar way to the proof of Proposition 3.3.

\[\langle \begin{array}{ccc} n & \cdots & n \\ n & \cdots & n \end{array} \rangle_3 = q^{-\frac{1}{3}n^2} \sum_{k=0}^{n} q^{k^2+n-k-n \choose k q} \langle \begin{array}{ccc} n & \cdots & n \\ n & \cdots & n \end{array} \rangle_3. \]
Then, we obtain
\[(3.7) \quad q^{-\frac{1}{2}(n-i)} \langle n \rangle_3 - q^{-\frac{1}{2}(n-i-1)} \langle n \rangle_3 = (1-q^{-n-1})q^i \langle 1 \rangle_3 \]
for \(i = 0, 1, \ldots, n-1\). By taking the sum of both sides of \((3.7)\) for \(i = 0, 1, \ldots, n-1\),
\[\langle n \rangle_3 = \langle n \rangle_3 + (1-q^2)q^{-\frac{2n}{q^2}-1} \langle 1 \rangle_3.\]
From the above equation,
\[\langle n \rangle_3 = q^\frac{n}{2} \langle n \rangle_3 + (1-q^2)q^{-\frac{2n}{q^2}-1} \langle 1 \rangle_3.\]
for any non-negative integers \(i\) and \(j\). We set a clasped \(A_2\) web \(\langle \sigma^2(k, l; n) \rangle_3\) as
\[\langle \sigma^2(k, l; n) \rangle_3 = \langle n \langle k \rangle_3 \langle l \rangle_3 \langle 1 \rangle_3 \langle 1 \rangle_3 \rangle_3,\]
and obtain
\[(3.8) \quad \langle \sigma^2(k, l; n) \rangle_3 = q^{\frac{n}{2}} (\langle \sigma^2(k+1, l; n) \rangle_3 + (1-q^{-n-1})q^{-\frac{1}{2}(n-l)}q^{\frac{2k}{q^{2n-1}}} (\langle \sigma^2(k, l+1; n) \rangle_3)\]
for non-negative integers \(k\) and \(l\) such that \(k + l \leq n\). We make \(\langle \sigma^2(k, l; n) \rangle_3\) correspond to lattice point \((k, l)\) in a similar way to the proof of Proposition 3.3. The coefficient of \(\langle \sigma^2(k, l; n) \rangle_3\) with \(k + l = n\) can be calculated by using the resolution \((3.8)\) and Figure 3.5:
\[\prod_{i=1}^{l-i} (1-q^{n-i})q^{-\frac{1}{n-1}(n-i)}q^{-\frac{1}{2}} \sum_{j=0}^{l-1} q^{\frac{n}{2}} q^{k_2-n^2+k-n} (q; q)_{n-k}(q; q)_{k} \langle n \rangle_3.\]
Lemma 3.16.
\[
\left\langle \frac{n}{n} \left\langle \frac{k}{n-k} \frac{1}{m-k} \right. \right\rangle^3 = q^{n^2-k^2+3n-3k} \left\langle \frac{n}{n-k} \frac{1}{m-k} \right. \right\rangle^3
\]

Proof. We can prove it in a similar way to the proof of Lemma 3.4.

Theorem 3.17 (m full twists formula for the A_2 bracket).
\[
\left\langle \frac{n}{n} \left\langle \frac{k}{n-k} \frac{1}{m-k} \right. \right\rangle^m = q^{-2m(n^2+3n)} \sum_{0 \leq k \leq \cdots \leq k_1 \leq n} (-1)^{n-k_m} q^{n-k_m} q^{2 \sum_{i=1}^{n} (k_i^2+k_i)}
\]
\[
\times \frac{(q)_n}{(q)_{k_m}} \left(k_1, k_2, \ldots, k_m, k_m \right)_q \left\langle \frac{n}{n-k_m} \frac{1}{m-k_m} \right. \right\rangle^3,
\]
where \(k_i, k_i' \) are integers such that \(k_0 = n, k_{i+1}' = k_i - k_{i+1} \) for \(i = 0, 1, \ldots, m-1 \).

Proof. We can prove it in the same way as proof of Proposition 3.5 by use of Proposition 3.15 and Lemma 3.16.

4. Bubble skein expansion formulas

In this section, we consider the bubble skein expansion formula. In the case of clasped A_1 web spaces, Hajij [7] proved the formula. First, we rewrite coefficients of the formula by using quantum binomial coefficients. Next, we give the bubble skein expansion formula for clasped A_2 web spaces.

4.1. The Kauffman bracket bubble skein expansion formula. Let \(\Delta_n \) denote the coefficients of \(\left\langle \frac{n}{n} \right\rangle^2 \), that is, \(\Delta_n = (-1)^n [n+1] \).

Theorem 4.1 (The Kauffman bracket bubble skein expansion formula by Hajij [7]). Let \(m, n \geq k, l \) be positive integers.
\[
\left\langle \frac{n}{n} \left\langle \frac{k}{n-k} \frac{1}{m-k} \right. \right\rangle^m = \min \{ k+l, n, m \} \sum_{t=\max \{ k, l \}} (-1)^{t-k-l} \frac{n_m}{k_l} \frac{n}{k} \frac{n}{k+t} \frac{n+k-1}{k+t-1} \left\langle \frac{n}{n-k} \frac{1}{m-k} \right. \right\rangle^2
\]

Proof. Hajij gave this formula in [7] as follows. Let \(M, N, M', N' \) be non-negative integers and \(k \geq l \geq 1 \) positive integers. Then,
\[
\left\langle \frac{N}{k} \frac{N'}{l} \right\rangle^M \left\langle \frac{M}{M'} \right. \right\rangle^2
\]
\[
= \sum_{i=0}^{\min \{ M, N \}} (-1)^{i(l-i)} \frac{\prod_{j=0}^{l-i-1} \Delta_{k-j-1} \Delta_{M+N+k-i-j}}{\prod_{j=0}^{l-1} \Delta_{N+k-t-1} \Delta_{M+k-t-1}} \frac{\prod_{j=0}^{l-1} \Delta_{N-j-1} \Delta_{M-j-1}}{\prod_{j=0}^{l-1} \Delta_{N+k-t-1} \Delta_{M+k-t-1}} \left\langle \frac{N}{M} \frac{1}{M'} \right. \right\rangle^{N-i} \left\langle \frac{M}{M'} \right. \right\rangle^{N'-i}.
\]

We can easily rewrite coefficients of the above formula and obtain our formula.

4.2. The A_2 bracket bubble skein expansion formula.

Theorem 4.2 (The A_2 bracket bubble skein expansion formula).

\[
\langle m-k, m, m-l \rangle_{k} = \sum_{t=\max\{k,l\}}^{\min\{k+l,n,m\}} \left\langle \frac{[n]}{\ell} \frac{[m]}{(k)} \frac{[t]}{(l)} \frac{[n+m-k-t+2]}{m-k} \right\rangle_{t}\]

Firstly, we calculate the A_2 web appearing in the right-hand side of Theorem 4.2, we call it an A_2 bubble skein element, when $k = 1$ or $l = 1$.

Lemma 4.3.

\[
(1) \left\langle \frac{n-1}{m-1} \frac{n}{m} \frac{n}{m-l} \right\rangle_{k} = \left\langle \frac{n-1}{n} \right\rangle_{l} + \left\langle \frac{n-l}{n} \right\rangle_{m} \]

\[
(2) \left\langle \frac{n-1}{m-1} \frac{n}{m} \frac{n}{m-l} \right\rangle_{k} = \left\langle \frac{n-k}{k} \right\rangle_{l} + \left\langle \frac{n-l}{n} \right\rangle_{m} \]

Proof. We only prove (1). For any integers k and l such that $1 \leq k, l \leq \min\{k, l\}$,

\[
\left\langle \frac{n-k}{m-k} \frac{n}{m} \frac{n}{m-l} \right\rangle_{k} = \left\langle \frac{n+1}{m} \right\rangle_{k} \left\langle \frac{n}{m} \right\rangle_{k} \left\langle \frac{n}{m-l} \right\rangle_{k} - \left\langle \frac{n-1}{n} \right\rangle_{k} \left\langle \frac{n}{m} \right\rangle_{k} \left\langle \frac{n-l}{m-l} \right\rangle_{k} \]

\[
= \left(\frac{[n]}{m} - [2 \frac{n-1}{n}] \right) \left\langle \frac{n-k}{n} \right\rangle_{k} \left\langle \frac{n}{m} \right\rangle_{k} \left\langle \frac{n-l}{m-l} \right\rangle_{k} \]

\[
+ \left\langle \frac{n-1}{n} \right\rangle_{k} \left\langle \frac{n}{m} \right\rangle_{k} \left\langle \frac{n-l}{m-l} \right\rangle_{k} \]

\[
= \left([n] \frac{[n+1]}{m} + [2 \frac{n-1}{m}] \frac{[n-1]}{m} + [n-1] \frac{[n-1]}{m} \right) \left\langle \frac{n-k}{n} \right\rangle_{k} \left\langle \frac{n}{m} \right\rangle_{k} \left\langle \frac{n-l}{m-l} \right\rangle_{k} \]

We use the definition of A_2 clasp and Lemma 2.10 in the first equality. By Lemma 2.10 (1) and (2), we obtain $[2 \frac{n}{m}] = [m+1] + [m-1]$ and $[n] \frac{[n+1]}{m} - [n-1] \frac{[n-1]}{m} =$
\[[n + m + 1]. \text{ Thus,} \]

(4.1)

\[
\begin{align*}
\langle n-k & \quad \overline{n-l} \\
\quad \overline{k-1} & \quad \overline{l-1} \\
\quad m-k & \quad \overline{m-1} \rangle_3 = \frac{[n+m+1]}{[n][m]} \left(\langle n-k \quad \overline{n-l} \\
\quad \overline{k-1} & \quad \overline{l-1} \\
\quad m-k & \quad \overline{m-1} \rangle_3 + [n-1][m-1] \langle n-k \quad \overline{n-l} \\
\quad \overline{k-1} & \quad \overline{l-1} \\
\quad m-k & \quad \overline{m-2} \rangle_3 \right).
\end{align*}
\]

We substitute \(k = 1 \) in (4.1). The \(A_2 \) web appearing in the second term of the right-hand side has only an \(A_2 \) bubble skein element decorated with 1 and \(l - 1 \). By using (4.1) of \(k = 1 \) repeatedly, we can obtain

\[
\begin{align*}
\langle n-k & \quad \overline{n-l} \\
\quad \overline{k-1} & \quad \overline{l-1} \\
\quad m-1 & \quad \overline{m-1} \rangle_3 = \frac{[n+m+1] + [n+m-1] + \cdots + [n+m - 2l + 3]}{[n][m]} \frac{[n-1][m-l]}{[n][m]} \left(\langle n-k \quad \overline{n-l} \\
\quad \overline{k-1} & \quad \overline{l-1} \\
\quad m-l & \quad \overline{m-l} \rangle_3 \right),
\end{align*}
\]

and confirm that \([n+m+1] + [n+m-1] + \cdots + [n+m - 2l + 3] = [n+m-l+2] \, [l]\) (see Lemma 2.1(1)). \(\square \)

Proof of Theorem 4.2 We assume that \(0 \leq k \leq l \leq \min \{ n, m \} \). By substituting Lemma 4.3 (1) for (4.1),

(4.2)

\[
\begin{align*}
\langle n-k & \quad \overline{n-l} \\
\quad \overline{k-1} & \quad \overline{l-1} \\
\quad m-k & \quad \overline{m-1} \rangle_3 = \frac{[n+m-l+2][l]}{[n][m]} \left(\langle n-k \quad \overline{n-l} \\
\quad \overline{k-1} & \quad \overline{l-1} \\
\quad m-k & \quad \overline{m-1} \rangle_3 \right),
\end{align*}
\]

We used

\[
[n+m+1] + [n+m-l+1][l-1] = [n+m+1][1] - [n+m+1-l][1-l] = [n+m-l+2][l] \]
in the above equation (see Lemma 2.1 (2)). We prove this theorem by the induction on max\{m, n\}. From (4.2) and the induction hypothesis,

\[
\binom{n}{k} \binom{n-l}{m} \binom{n-k}{m-l} \binom{n-t}{m} \binom{n-m-t+1}{m} = \binom{n+m-t+1}{m} \binom{n-m-k-l+2}{m}.
\]

We used

\[\binom{n+m-l+2}{m} [k - (t - l)] + [t - l] [n + m - l + 2 - k] = [k] [n + m + 2 - t]\]

in the third equality (see Lemma 2.1 (3)). If \(t = l\), then the coefficient of \(\binom{n}{k} \binom{n-l}{m} \binom{n-k}{m-l} \binom{n-t}{m} \binom{n-m-t+1}{m} \binom{n-m-k-l+2}{m}\) is

\[
\binom{n}{k} \binom{n-l}{m} \binom{n-k}{m-l} \binom{n-t}{m} \binom{n-m-t+1}{m} \binom{n-m-k-l+2}{m}.
\]
We can prove directly Theorem 4.1 in a similar way to the proof of Remark 4.4.

Let \(L \) be an oriented link diagram in \(\mathbb{R}^3 \). We denote by \(\langle \bigotimes \rangle \) the Kauffman bracket. We will give a more explicit formula of the knot Jones polynomial using twist formulas. An explicit formula for the \(\mathfrak{sl}_2 \) colored Jones polynomial of \(\mathfrak{sl}_3 \) colored Jones polynomials for 2-bridge links by the use of Lemma 4.3 (2) and (4.1).

Remark 4.4. We can prove directly Theorem 4.1 in a similar way to the proof of Theorem 4.2.

5. **Colored Jones polynomials of 2-bridge links**

In this section, we compute \(\mathfrak{sl}_2 \) and \(\mathfrak{sl}_3 \) colored Jones polynomials for 2-bridge links by using twist formulas. An explicit formula for the \(n + 1 \) dimensional \(\mathfrak{sl}_2 \) Jones polynomial of twist knots was given by Masbaum [24] and, more generally, for 2-bridge knots was given by Takata [53]. Both of these formulas were derived from the linear skein theory for the Kauffman bracket. We will give a more explicit formula of the \(\mathfrak{sl}_2 \) Jones polynomial for 2-bridge links in a similar way to [24].

5.1. **2-bridge knot and link diagrams.** We briefly recall link diagrams of the 2-bridge knots and links. You can find details on definitions of the 2-bridge knots and links and the classification by Schubert [51] in [2] and [27]. Let \(m \) be an integer. A boxed \(m \) implies \(m \) half twists (see Figure 5.1).

Lemma 5.1. The 2-bridge knots and links have the following standard presentation.

\[
\begin{align*}
\text{l is odd:} & \quad \includegraphics[width=0.3\textwidth]{2bridge_odd} \\
\text{l is even:} & \quad \includegraphics[width=0.3\textwidth]{2bridge_even}
\end{align*}
\]

The above \(a_1, a_2, \ldots, a_l \) are non-zero integers. We denote this link diagram by \([2a_1, 2a_2, \ldots, 2a_l] \).

Proof. See, for example, [14, Chapter 2].

5.2. **The \(\mathfrak{sl}_2 \) colored Jones polynomial.** We introduce the \(\mathfrak{sl}_2 \) colored Jones polynomial. Let \(L \) be an oriented link diagram in \(D_0 \) with ordered link components \((L_1, L_2, \ldots, L_r) \). We denote by \(\bar{L} = (\bar{L}_1, \bar{L}_2, \ldots, \bar{L}_r) \) an unoriented link diagram obtained by forgetting the orientation of \(L \). For each link component \(\bar{L}_i \) \((i = 1, 2, \ldots, r) \) of \(\bar{L} \), we cut away a short
Replace \bar{L}_i with \bar{L}^{n} for it. Thus, we obtain the unoriented link diagram colored by n. We denote it by $\bar{L}(n)$. (See Figure 5.2)

Definition 5.2. The \mathfrak{sl}_2 colored Jones polynomial $J_{n+1}^{\mathfrak{sl}_2}(L; q)$ of a link represented by L is defined by

$$J_{n+1}^{\mathfrak{sl}_2}(L; q) = ((-1)^n q^{\frac{a_j+1}{a_j}} - w(L)) \langle \bar{L}(n) \rangle_2 / \langle \bigcirc^{n} \rangle_2,$$

where $w(L)$ is the writhe of L.

Lemma 5.3.

$$\langle \bigcirc^{n-k} \rangle_2 = (-1)^{n-k} q^{\frac{a_j+1}{a_j}} \frac{1 - q^{n+1}}{1 - q^{k+1}} \langle \bigcirc^{n} \rangle_2$$

Theorem 5.4. Let a_1, a_2, \ldots, a_l be non-zero integers.

$$J_{n+1}^{\mathfrak{sl}_2}([2a_1, 2a_2, \ldots, 2a_l]; q)$$

$$= \prod_{j=0}^{l-1} \sum_{0 \leq k^{(j+1)}_{[a_j+1]} \leq \cdots \leq k^{(j+1)}_{a_j+1} \leq K_j} (-1)^{K_j - k^{(j+1)}_{[a_j+1]}} q^{a_j+1(n^2+2n)} q^{\frac{n+1}{n} (K_j - k^{(j+1)}_{[a_j+1]})}$$

$$\times q^{\varepsilon_{j+1}} \sum_{i=1}^{a_{j+1}} (k_{i}^{(j+1)} + k_{i}^{(j+1)}) \left(\frac{q^{\varepsilon_{j+1}} K_j}{q^{\varepsilon_{j+1}} k^{(j+1)}_{[a_j+1]}} \right) \left(k^{(j+1)}_{[a_j+1]} \right)^n \left(k^{(j+1)}_{[a_j+1]} \right)^n \left(k^{(j+1)}_{[a_j+1]} \right)^n$$

$$\times (-1)^{n-K_j} q^{\frac{K_j-n}{n}} \frac{1 - q^{n+1}}{1 - q^{K_j+1}},$$

where $\varepsilon_{j+1} = \frac{a_{j+1}}{a_{j+1}}, K_0 = n, K_j = n - k^{(j)}_{[a_j]}$ and $k^{(j)}_{0} = K_j, k^{(j+1)}_{[a_j]} = k^{(j)}_{[a_j+1]} - k^{(j)}_{[a_j+1]}$.
Proof. We calculate the following clasped A_1 web using Lemma 3.4 and Proposition 3.6.

\[
\begin{align*}
\left\langle \begin{array}{c}
N - K_j \\
N - K_j \\
K_j
\end{array} \right\rangle \\
\left\langle \begin{array}{c}
N - K_j \\
N - K_j \\
K_j
\end{array} \right\rangle
\end{align*}
\]

\[
= \delta_n(K_j; q^{\varepsilon_{j+1}})^2 \sum_{0 \leq k^{(j+1)}_{|a_{j+1}|} \leq \cdots \leq k^{(j+1)}_1 \leq K_j} \gamma_{K_j}(k^{(j+1)}_1, k^{(j+1)}_2, \ldots, k^{(j+1)}_{|a_{j+1}|}; q^{\varepsilon_{j+1}})_2
\]

\[
\times \left\langle \begin{array}{c}
N - K_{j+1} \\
N - K_{j+1} \\
K_{j+1}
\end{array} \right\rangle
\]

where

\[
\delta_n(K_j; q)_2 = (-1)^{n-K_j} q^{a_j - 2n - K^2 - 2K_j}
\]

and

\[
\gamma_{K_j}(k^{(j+1)}_1, k^{(j+1)}_2, \ldots, k^{(j+1)}_{|a_{j+1}|}; q)_2 = (-1)^{K_j-k^{(j+1)}_{|a_{j+1}|}} q^{\frac{|a_{j+1}|}{2}(k^{(j+1)}_{|a_{j+1}|}^2 + 2k^{(j+1)}_{|a_{j+1}|})}
\]

\[
\times \frac{(q)_K}{(q)_{k^{(j+1)}_{|a_{j+1}|}}} \left(k^{(j+1)}_1, k^{(j+1)}_2, \ldots, k^{(j+1)}_{|a_{j+1}|} \right)_{|a_{j+1}|}
\]

We also obtain the following in the same way.

\[
\left\langle \begin{array}{c}
K_j \\
K_j
\end{array} \right\rangle \\
\left\langle \begin{array}{c}
K_j \\
K_j
\end{array} \right\rangle
\]

\[
= \delta_n(K_j; q^{\varepsilon_{j+1}})^2 \sum_{0 \leq k^{(j+1)}_{|a_{j+1}|} \leq \cdots \leq k^{(j+1)}_1 \leq K_j} \gamma_{K_j}(k^{(j+1)}_1, k^{(j+1)}_2, \ldots, k^{(j+1)}_{|a_{j+1}|}; q^{\varepsilon_{j+1}})_2
\]

\[
\times \left\langle \begin{array}{c}
N - K_{j+1} \\
N - K_{j+1} \\
K_{j+1}
\end{array} \right\rangle
\]
Therefore,
\[
\langle \tilde{L}(n) \rangle_2 = \prod_{j=0}^{l-1} \sum_{0 \leq k \leq K_j} \delta_n(K_j; q^{r_{j+1}}) (q^{r_{j+1}})^{2k-1} \gamma_{K_j}(k^{(j+1)}_1, k^{(j+1)}_2, \ldots, k^{(j+1)}_{a_j+1}; q^{r_{j+1}})
\]

for \(L = [2a_1, 2a_2, \ldots, 2a_l] \). The writhe of \([2a_1, 2a_2, \ldots, 2a_l]\) is \(-2(a_1 + a_2 + \cdots + a_l)\). Lemma 5.3 and explicit calculation of the coefficient imply the formula in this theorem.

5.3. The \(sl_3 \) colored Jones polynomials. We introduce the \(sl_3 \) colored Jones polynomial of type \((n, 0)\). Let \(L \) be an oriented link diagram in \(D_0 \) with ordered link components \((L_1, L_2, \ldots, L_r)\). We replace a part of \(L_i \) with \(\begin{array} {c}
\n
\end{array} \) for \(i = 1, 2, \ldots, r \) (see Figure 5.3). We denote this oriented link diagram decorated with white boxes by \(L(n, 0) \).

Definition 5.5. The colored \(sl_3 \) Jones polynomial \(J_{(n, 0)}^{sl_3}(L; q) \) of a link represented by a link diagram \(L \) is defined by
\[
J_{(n, 0)}^{sl_3}(L; q) = (q^{\frac{n^2+3n}{3}} - w(L) \langle L(n, 0) \rangle_3 / \langle \begin{array} {c}
\n
\end{array} \rangle_3)
\]
where \(w(L) \) is the writhe of \(L \).

Lemma 5.6.
\[
\langle \begin{array} {c}
\n
\end{array} \rangle_3 = q^{-(n-k)} \frac{(1 - q^{n+1})(1 - q^{n+2})}{(1 - q^{k+1})(1 - q^{k+2})} \langle \begin{array} {c}
\n
\end{array} \rangle_3
\]

Proof. Use Lemma 2.10
\textbf{Theorem 5.7.}

\[
J_{n,0}^{sl_3}(2a_1, 2a_2, \ldots, 2a_l; q) = \prod_{j=0}^{l-1} \sum_{0 \leq k_{j+1}^{(j+1)} \leq \cdots \leq k_{j+1}^{(j+1)} \leq K_j} (-1)^{j_0 - j_{j+1}} q_{j+1}^{-2j+1} \sum_{i=1}^{j_{j+1} + 1} (k_i^{(j+1)^2} + k_i^{(j+1)}) \times \left(\frac{(q^{z_{j+1}})}{q^{z_{j+1}} + 1} \right)_{k_{j+1}^{(j+1)}} \left(k_1^{(j+1)}, k_2^{(j+1)}, \ldots, k_{j_{j+1} + 1}^{(j+1)} \right) q_j^{\sum_{i=1}^{j_{j+1} + 1} (k_i^{(j+1)^2} + k_i^{(j+1)})} \times q^{-nK_j} (1 - q^{n+1})(1 - q^{n+2})/(1 - q^{K_j + 1})(1 - q^{K_j + 2})
\]

where \(\varepsilon_{j+1} = \frac{a_{j+1}}{|a_{j+1}|}, K_0 = n, K_j = n - k_j^{(j)} \) and \(k_{j+1}^{(j)} = K_j; k_{j_{j+1} + 1}^{(j)} = k_{j+1}^{(j)} - k_j^{(j)} \).

\textbf{Proof.} It is proved in the same way as the proof of Theorem 5.4 using Proposition 3.17 and Lemma 5.5. Instead of \(\delta_n(K_j; q)_3 \) and \(\gamma_n(K_j^{(j+1)}, k_1^{(j+1)}, k_2^{(j+1)}, \ldots, k_{j_{j+1} + 1}^{(j+1)}; q)_3 \), we use

\[
\delta_n(K_j; q)_3 = q^{-n^2 + 3n - 2K_j^2 - 3K_j} \quad \text{and} \quad \gamma_n(K_j^{(j+1)}, k_1^{(j+1)}, k_2^{(j+1)}, \ldots, k_{j_{j+1} + 1}^{(j+1)}; q)_3 = (-1)^{j_0 - j_{j+1}} q_{j+1}^{-2j+1} \sum_{i=1}^{j_{j+1} + 1} (k_i^{(j+1)^2} + k_i^{(j+1)}) \times q^{-nK_j} (1 - q^{n+1} - q^{n+2})/(1 - q^{K_j + 1})(1 - q^{K_j + 2})
\]

respectively.

\textbf{Acknowledgment.} The author would like to express his gratitude to his adviser, Professor Hisaaki Endo, for his encouragement.

\textbf{References}

1. George E. Andrews and Kimmo Eriksson, \textit{Integer partitions}, Cambridge University Press, Cambridge, 2004.
2. Gerhard Burde and Heiner Zieschang, \textit{Knots}, second ed., de Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 2003.
3. P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, \textit{A new polynomial invariant of knots and links}, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111.
4. Stavros Garoufalidis, \textit{On the characteristic and deformation varieties of a knot}, Proceedings of the Cas- son Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 291–309 (electronic).
5. Stavros Garoufalidis, Hugh Morton, and Thao Vuong, \textit{The \(sl_3 \) colored Jones polynomial of the trefoil}, Proc. Amer. Math. Soc. 141 (2013), no. 6, 2209–2220.
6. Mustafa Hajij, \textit{The Bubble skein relation and applications}, J. Knot Theory Ramifications 23 (2014), no. 14, 1450076, 30.
7. Mustafa Hajij, \textit{The colored Kauffman skein relation and the head and tail of the colored Jones polynomial}, arXiv:1401.4537 (2014).
8. V. F. R. Jones, \textit{Index for subfactors}, Invent. Math. 72 (1983), no. 1, 1–25.
9. V. F. R. Jones, \textit{A polynomial invariant for knots via von Neumann algebras}, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111.
10. R. M. Kashaev, \textit{The hyperbolic volume of knots from the quantum dilogarithm}, Lett. Math. Phys. 39 (1997), no. 3, 269–275.
12. Louis H. Kauffman, *State models and the Jones polynomial*, Topology **26** (1987), no. 3, 395–407. MR 899057
13. Louis H. Kauffman and Sóstenes L. Lins, *Temperley-Lieb recoupling theory and invariants of 3-manifolds*, Annals of Mathematics Studies, vol. 134, Princeton University Press, Princeton, NJ, 1994. MR 1280463 (95c:57027)
14. Akio Kawauchi, *A survey of knot theory*, Birkhäuser Verlag, Basel, 1996, Translated and revised from the 1990 Japanese original by the author. MR 1417494
15. Dongseok Kim, *Tribedron coefficients for \(U_q(sl(3,\mathbb{C})) \)*, J. Knot Theory Ramifications **15** (2006), no. 4, 453–469. MR 2221529
16. *Jones-Wenzl idempotents for rank 2 simple Lie algebras*, Osaka J. Math. **44** (2007), no. 3, 691–722. MR 2360947
17. Greg Kuperberg, *The quantum \(G_2 \) link invariant*, Internat. J. Math. **5** (1994), no. 1, 61–85. MR 1265145
18. *Spiders for rank 2 Lie algebras*, Comm. Math. Phys. **180** (1996), no. 1, 109–151. MR 1403861
19. Ruth Lawrence, *The \(PSU(3) \) invariant of the Poincaré homology sphere*, Proceedings of the Pacific Institute for the Mathematical Sciences Workshop “Invariants of Three-Manifolds” (Calgary, AB, 1999), vol. 127, 2003, pp. 153–168. MR 1953324
20. W. B. R. Lickorish, *Three-manifolds and the Temperley-Lieb algebra*, Math. Ann. **290** (1991), no. 4, 657–670. MR 1119944
21. *Calculations with the Temperley-Lieb algebra*, Comment. Math. Helv. **67** (1992), no. 4, 571–591. MR 1185809
22. *The skein method for three-manifold invariants*, J. Knot Theory Ramifications **2** (1993), no. 2, 171–194. MR 1227009
23. *An introduction to knot theory*, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997. MR 1472978
24. Gregor Masbaum, *Skein-theoretical derivation of some formulas of Habiro*, Algebr. Geom. Topol. **3** (2003), 537–556 (electronic). MR 1997328
25. Hitoshi Murakami and Jun Murakami, *The colored Jones polynomials and the simplicial volume of a knot*, Acta Math. **186** (2001), no. 1, 85–104. MR 1828373
26. Hitoshi Murakami, Tomotada Ohtsuki, and Shuji Yamada, *Quantum \(SU(3) \) invariant of 3-manifolds via linear skein theory*, J. Knot Theory Ramifications **6** (1997), no. 3, 373–404. MR 1457194
27. Horst Schubert, *Knoten mit zwei Brücken*, Math. Z. **65** (1956), 133–170. MR 0082104
28. Adam S. Sikora, *Skein theory for \(SU(2) \)-quantum invariants*, Algebr. Geom. Topol. **5** (2005), 865–897. MR 2171796
29. Toshie Takata, *A formula for the colored Jones polynomial of 2-bridge knots*, Kyungpook Math. J. **48** (2008), no. 2, 255–280. MR 2429313
30. Hans Wenzl, *On sequences of projections*, C. R. Math. Rep. Acad. Sci. Canada **9** (1987), no. 1, 5–9. MR 873400
31. Edward Witten, *Quantum field theory and the Jones polynomial*, Comm. Math. Phys. **121** (1989), no. 3, 351–399. MR 990772
32. Shuji Yamada, *An invariant of spatial graphs*, J. Graph Theory **13** (1989), no. 5, 537–551. MR 1016274
33. *A topological invariant of spatial regular graphs*, Knots 90 (Osaka, 1990), de Gruyter, Berlin, 1992, pp. 447–454. MR 1177441
34. Yoshiyuki Yokota, *Skeins and quantum \(SU(N) \) invariants of 3-manifolds*, Math. Ann. **307** (1997), no. 1, 109–138. MR 1427678

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, 2-12-1 OOKAYAMA, MEGURO-KU, TOKYO 152-8551, JAPAN