Definable Orthogonality Classes in Accessible Categories are Small

Carles Casacuberta, Universitat de Barcelona
Joint work with J. Bagaria, A. R. D. Mathias and J. Rosický

Mülheim an der Ruhr, May 31, 2011

Herzliche Glückwünsche und vielen Dank
an Professor Rüdiger Göbel!
Summary

The assumptions needed to infer \textit{reflectivity} or \textit{smallness} of \textit{orthogonality classes} in \textit{accessible categories} may depend on the \textit{complexity} of the formulas in the language of set theory defining those classes.
Summary

The assumptions needed to infer reflectivity or smallness of orthogonality classes in accessible categories may depend on the complexity of the formulas in the language of set theory defining those classes.

Complexity

Complexity is meant in the sense of the Lévy hierarchy:
Summary

The assumptions needed to infer \textit{reflectivity} or \textit{smallness} of \textit{orthogonality classes} in \textit{accessible categories} may depend on the \textit{complexity} of the formulas in the language of set theory defining those classes.

Complexity

Complexity is meant in the sense of the \textit{Lévy hierarchy}:

- \textit{Π₀-formulas} are the same as \textit{Σ₀-formulas}, namely those in which all quantifiers are bounded (\(∀x ∈ a, ∃x ∈ a\)).
Summary

The assumptions needed to infer **reflectivity** or **smallness** of **orthogonality classes** in **accessible categories** may depend on the **complexity** of the formulas in the language of set theory defining those classes.

Complexity

Complexity is meant in the sense of the **Lévy hierarchy**:

- **Π₀-formulas** are the same as **Σ₀-formulas**, namely those in which all quantifiers are bounded ($\forall x \in a, \exists x \in a$). Such formulas are **absolute** for transitive models of set theory.
Summary

The assumptions needed to infer reflectivity or smallness of orthogonality classes in accessible categories may depend on the complexity of the formulas in the language of set theory defining those classes.

Complexity

Complexity is meant in the sense of the Lévy hierarchy:

- **Π₀-formulas** are the same as **Σ₀-formulas**, namely those in which all quantifiers are bounded ($\forall x \in a, \exists x \in a$). Such formulas are **absolute** for transitive models of set theory.
- **Σₙ₊₁-formulas** are those of the form $\exists x \varphi$ where φ is $\Piₙ$.
Summary

The assumptions needed to infer **reflectivity** or **smallness** of **orthogonality classes** in **accessible categories** may depend on the **complexity** of the formulas in the language of set theory defining those classes.

Complexity

Complexity is meant in the sense of the **Lévy hierarchy**:

- **Π₀-formulas** are the same as **Σ₀-formulas**, namely those in which all quantifiers are bounded (∀x ∈ a, ∃x ∈ a). Such formulas are **absolute** for transitive models of set theory.
- **Σ_{n+1}-formulas** are those of the form ∃x φ where φ is Πₙ.
- **Π_{n+1}-formulas** are those of the form ∀x ψ where ψ is Σₙ.
Accessible and Locally Presentable Categories

Let λ denote a regular cardinal and let \mathcal{C} be a category.

- An object X in \mathcal{C} is λ-presentable if the functor $\mathcal{C}(X, -)$ preserves λ-filtered colimits.

\mathcal{C} is λ-accessible if λ-filtered colimits exist in \mathcal{C} and there is a set X of λ-presentable objects in \mathcal{C} such that every object of \mathcal{C} is a λ-filtered colimit of objects from X.

A category is accessible if it is λ-accessible for some λ.

A cocomplete accessible category is locally presentable.

For every theory T with any signature Σ, the category of models of T (i.e., Σ-structures satisfying all sentences of T) is accessible.

Conversely, every accessible category is a category of models of some theory [Adámek–Rosický, 1994].

Accessible categories are definable with absolute formulas.
Accessible and Locally Presentable Categories

Let λ denote a regular cardinal and let \mathcal{C} be a category.

- An object X in \mathcal{C} is λ-presentable if the functor $\mathcal{C}(X, -)$ preserves λ-filtered colimits.
- \mathcal{C} is λ-accessible if λ-filtered colimits exist in \mathcal{C} and there is a set \mathcal{X} of λ-presentable objects in \mathcal{C} such that every object of \mathcal{C} is a λ-filtered colimit of objects from \mathcal{X}.

A category is accessible if it is λ-accessible for some λ.

A cocomplete accessible category is locally presentable.

For every theory T with any signature Σ, the category of models of T (i.e., Σ-structures satisfying all sentences of T) is accessible.

Conversely, every accessible category is a category of models of some theory [Adámek–Rosický, 1994].

Accessible categories are definable with absolute formulas.
Accessible and Locally Presentable Categories

Let λ denote a regular cardinal and let \mathcal{C} be a category.

- An object X in \mathcal{C} is λ-presentable if the functor $\mathcal{C}(X, -)$ preserves λ-filtered colimits.

- \mathcal{C} is λ-accessible if λ-filtered colimits exist in \mathcal{C} and there is a set \mathcal{X} of λ-presentable objects in \mathcal{C} such that every object of \mathcal{C} is a λ-filtered colimit of objects from \mathcal{X}.

A category is accessible if it is λ-accessible for some λ.

A cocomplete accessible category is locally presentable.

For every theory T with any signature Σ, the category of models of T (i.e., Σ-structures satisfying all sentences of T) is accessible.

Conversely, every accessible category is a category of models of some theory [Adámek–Rosický, 1994].

Accessible categories are definable with absolute formulas.
Accessible and Locally Presentable Categories

Let λ denote a regular cardinal and let \mathcal{C} be a category.

- An object X in \mathcal{C} is λ-presentable if the functor $\mathcal{C}(X, -)$ preserves λ-filtered colimits.
- \mathcal{C} is λ-accessible if λ-filtered colimits exist in \mathcal{C} and there is a set \mathcal{X} of λ-presentable objects in \mathcal{C} such that every object of \mathcal{C} is a λ-filtered colimit of objects from \mathcal{X}.

A category is accessible if it is λ-accessible for some λ. A cocomplete accessible category is locally presentable.
Accessible and Locally Presentable Categories

Let λ denote a regular cardinal and let \mathcal{C} be a category.

- An object X in \mathcal{C} is **λ-presentable** if the functor $\mathcal{C}(X, -)$ preserves λ-filtered colimits.
- \mathcal{C} is **λ-accessible** if λ-filtered colimits exist in \mathcal{C} and there is a set \mathcal{X} of λ-presentable objects in \mathcal{C} such that every object of \mathcal{C} is a λ-filtered colimit of objects from \mathcal{X}.

A category is **accessible** if it is λ-accessible for some λ. A cocomplete accessible category is **locally presentable**.

For every theory T with any signature Σ, the category of models of T (i.e., Σ-structures satisfying all sentences of T) is accessible.
Accessible and Locally Presentable Categories

Let λ denote a regular cardinal and let \mathcal{C} be a category.

- An object X in \mathcal{C} is **λ-presentable** if the functor $\mathcal{C}(X, -)$ preserves λ-filtered colimits.

- \mathcal{C} is **λ-accessible** if λ-filtered colimits exist in \mathcal{C} and there is a set \mathcal{X} of λ-presentable objects in \mathcal{C} such that every object of \mathcal{C} is a λ-filtered colimit of objects from \mathcal{X}.

A category is **accessible** if it is λ-accessible for some λ. A cocomplete accessible category is **locally presentable**.

For every **theory** T with any **signature** Σ, the category of **models of T** (i.e., Σ-structures satisfying all sentences of T) is accessible. Conversely, every accessible category is a category of models of some theory [Adámek–Rosický, 1994].
Accessible and Locally Presentable Categories

Let λ denote a regular cardinal and let \mathcal{C} be a category.

- An object X in \mathcal{C} is λ-presentable if the functor $\mathcal{C}(X, -)$ preserves λ-filtered colimits.
- \mathcal{C} is λ-accessible if λ-filtered colimits exist in \mathcal{C} and there is a set \mathcal{X} of λ-presentable objects in \mathcal{C} such that every object of \mathcal{C} is a λ-filtered colimit of objects from \mathcal{X}.

A category is accessible if it is λ-accessible for some λ. A cocomplete accessible category is locally presentable.

For every theory T with any signature Σ, the category of models of T (i.e., Σ-structures satisfying all sentences of T) is accessible. Conversely, every accessible category is a category of models of some theory [Adámek–Rosický, 1994].

Accessible categories are definable with absolute formulas.
Orthogonality Classes

For a class \mathcal{M} of morphisms in a category \mathcal{C}, the **orthogonal class** \mathcal{M}^\perp consists of those objects X such that $\mathcal{C}(f, X): \mathcal{C}(B, X) \cong \mathcal{C}(A, X)$ for all $f: A \to B$ in \mathcal{M}.

\[
\begin{array}{c}
A \\
\downarrow \forall g \\
X \\
\uparrow \exists ! h \\
B
\end{array}
\xrightarrow{\forall f \in \mathcal{M}}
\]
Orthogonality Classes

For a class \mathcal{M} of morphisms in a category \mathcal{C}, the **orthogonal class** \mathcal{M}^\perp consists of those objects X such that $\mathcal{C}(f, X) \circ \mathcal{C}(B, X) \cong \mathcal{C}(A, X)$ for all $f : A \to B$ in \mathcal{M}.

We say that a class \mathcal{X} of objects is

- **an orthogonality class** if $\mathcal{X} = \mathcal{M}^\perp$ for some class of morphisms \mathcal{M};
Orthogonality Classes

For a class \mathcal{M} of morphisms in a category \mathcal{C}, the **orthogonal class** \mathcal{M}^\perp consists of those objects X such that $\mathcal{C}(f, X) : \mathcal{C}(B, X) \cong \mathcal{C}(A, X)$ for all $f : A \to B$ in \mathcal{M}.

![Diagram](attachment:orthogonality_classes_diagram.png)

We say that a class \mathcal{X} of objects is

- an **orthogonality class** if $\mathcal{X} = \mathcal{M}^\perp$ for some class of morphisms \mathcal{M};
- a **small-orthogonality class** if $\mathcal{X} = \mathcal{M}^\perp$ for some set of morphisms \mathcal{M}.
Orthogonality Subcategory Problem

Under which assumptions on a category \(\mathcal{C} \) and a class of morphisms \(\mathcal{M} \) does it follow that the orthogonal class \(\mathcal{M}^\perp \) is reflective? [Freyd–Kelly, 1972]
Orthogonality Subcategory Problem

Under which assumptions on a category \mathcal{C} and a class of morphisms \mathcal{M} does it follow that the orthogonal class \mathcal{M}^\perp is reflective? [Freyd–Kelly, 1972]

A full subcategory \mathcal{L} in \mathcal{C} is **reflective** if the inclusion $J: \mathcal{L} \hookrightarrow \mathcal{C}$ has a left adjoint $K: \mathcal{C} \rightarrow \mathcal{L}$.
Orthogonality Subcategory Problem

Under which assumptions on a category \(\mathcal{C} \) and a class of morphisms \(\mathcal{M} \) does it follow that the orthogonal class \(\mathcal{M}^\perp \) is \textit{reflective}? [Freyd–Kelly, 1972]

A full subcategory \(\mathcal{L} \) in \(\mathcal{C} \) is \textit{reflective} if the inclusion \(J: \mathcal{L} \hookrightarrow \mathcal{C} \) has a left adjoint \(K: \mathcal{C} \rightarrow \mathcal{L} \). Then the composite \(L = J \circ K \) is called a \textit{reflection} or a \textit{localization} onto \(\mathcal{L} \).
Orthogonality Subcategory Problem

Under which assumptions on a category \(\mathcal{C}\) and a class of morphisms \(\mathcal{M}\) does it follow that the orthogonal class \(\mathcal{M}^\perp\) is reflective? [Freyd–Kelly, 1972]

A full subcategory \(\mathcal{L}\) in \(\mathcal{C}\) is **reflective** if the inclusion \(J: \mathcal{L} \hookrightarrow \mathcal{C}\) has a left adjoint \(K: \mathcal{C} \rightarrow \mathcal{L}\). Then the composite \(L = J \circ K\) is called a **reflection** or a **localization** onto \(\mathcal{L}\).

- If \(\mathcal{C}\) is locally presentable, then every small-orthogonality class is reflective in \(\mathcal{C}\).
Orthogonality Subcategory Problem

Under which assumptions on a category \mathcal{C} and a class of morphisms \mathcal{M} does it follow that the orthogonal class \mathcal{M}^\perp is **reflective**? [Freyd–Kelly, 1972]

A full subcategory \mathcal{L} in \mathcal{C} is **reflective** if the inclusion $J: \mathcal{L} \hookrightarrow \mathcal{C}$ has a left adjoint $K: \mathcal{C} \rightarrow \mathcal{L}$. Then the composite $L = J \circ K$ is called a **reflection** or a **localization** onto \mathcal{L}.

- If \mathcal{C} is locally presentable, then every small-orthogonality class is reflective in \mathcal{C}.

Vopěnka’s Principle is equivalent to the statement that all orthogonality classes in locally presentable categories are small-orthogonality classes. (This cannot be proved in ZFC.)
Vopěnka’s Principle

Vopěnka’s Principle states that, for every proper class of structures with the same signature, there exists a nontrivial elementary embedding between two of them.
Vopěnka’s Principle

Vopěnka’s Principle states that, for every proper class of structures with the same signature, there exists a nontrivial elementary embedding between two of them.

This is in fact an axiom schema, since it is a statement about classes. In the language of set theory, it is formulated as follows, for all formulas $\varphi(x, y)$ of the language of set theory with two free variables:

$$\forall x [(\forall y \forall z (\varphi(x, y) \land \varphi(x, z) \rightarrow y \text{ and } z \text{ are } \Sigma\text{-structures for some } \Sigma) \land \forall \alpha \in \text{Ord } \exists y (\text{rank}(y) > \alpha \land \varphi(x, y))) \rightarrow \exists y \exists z (\varphi(x, y) \land \varphi(x, z) \land y \neq z \land \exists e (e: y \rightarrow z \text{ is elementary}))].$$
Some well-known consequences of Vopěnka’s Principle (VP):

- If VP holds, then all torsion theories of abelian groups are singly generated. [Dugas–Göbel, 1985]
Some well-known consequences of Vopěnka’s Principle (VP):

- If VP holds, then **all torsion theories of abelian groups are singly generated.** [Dugas–Göbel, 1985]

- If VP holds, then **every full subcategory of an accessible category has a small dense full subcategory.** [Adámek–Rosický, 1994]
Some well-known consequences of Vopěnka’s Principle (VP):

- If VP holds, then all torsion theories of abelian groups are singly generated. [Dugas–Göbel, 1985]

- If VP holds, then every full subcategory of an accessible category has a small dense full subcategory. [Adámek–Rosický, 1994]

- If VP holds, then every full limit-closed subcategory of a locally presentable category is reflective and every full colimit-closed subcategory is coreflective. [Adámek–Rosický, 1994]
More consequences of Vopěnka’s Principle (VP):

- If VP holds, then for every homotopical localization L on simplicial sets there is a map f such that $L \simeq L_f$. [C–Scevenels–Smith, 2005]
- If VP holds, then cohomological localizations of simplicial sets exist. [C–Scevenels–Smith, 2005]
- If VP holds, then every localizing subcategory of a triangulated category with combinatorial models is coreflective, and every colocalizing subcategory is reflective. [C–Gutiérrez–Rosický, 2011]

Interesting symmetry break: VP implies that localizing subcategories are singly generated, yet we have been unable to prove this for colocalizing subcategories.
More consequences of Vopěnka’s Principle (VP):

- If VP holds, then for every homotopical localization L on simplicial sets there is a map f such that $L \simeq L_f$. [C–Scevenels–Smith, 2005]

- If VP holds, then cohomological localizations of simplicial sets exist. [C–Scevenels–Smith, 2005]
More consequences of Vopěnka’s Principle (VP):

- If VP holds, then for every homotopical localization L on simplicial sets there is a map f such that $L \simeq L_f$. [C–Scevenels–Smith, 2005]

- If VP holds, then cohomological localizations of simplicial sets exist. [C–Scevenels–Smith, 2005]

- If VP holds, then every localizing subcategory of a triangulated category with combinatorial models is coreflective, and every colocalizing subcategory is reflective. [C–Gutiérrez–Rosický, 2011]
More consequences of Vopěnka’s Principle (VP):

- If VP holds, then for every homotopical localization L on simplicial sets there is a map f such that $L \simeq L_f$. [C–Scevenels–Smith, 2005]

- If VP holds, then cohomological localizations of simplicial sets exist. [C–Scevenels–Smith, 2005]

- If VP holds, then every localizing subcategory of a triangulated category with combinatorial models is coreflective, and every colocalizing subcategory is reflective. [C–Gutiérrez–Rosický, 2011]

Interesting symmetry break: VP implies that localizing subcategories are singly generated, yet we have been unable to prove this for colocalizing subcategories.
Recall

The assumptions needed to infer **reflectivity** or **smallness** of **orthogonality classes** in **accessible categories** may depend on the **complexity** of the formulas in the language of set theory defining those classes.
Recall

The assumptions needed to infer \textit{reflectivity} or \textit{smallness} of \textbf{orthogonality classes} in \textbf{accessible categories} may depend on the \textbf{complexity} of the formulas in the language of set theory defining those classes.

More precisely, we define, for each $n < \omega$, what we call \textit{C(n)-extendible cardinals}, with the following properties:

- If there is a proper class of $C(n)$-extendible cardinals, where $n \geq 1$, then each Σ_{n+1} orthogonality class in an accessible category is a small-orthogonality class.
Recall

The assumptions needed to infer reflectivity or smallness of orthogonality classes in accessible categories may depend on the complexity of the formulas in the language of set theory defining those classes.

More precisely, we define, for each $n < \omega$, what we call $C(n)$-extendible cardinals, with the following properties:

- If there is a proper class of $C(n)$-extendible cardinals, where $n \geq 1$, then each Σ_{n+1} orthogonality class in an accessible category is a small-orthogonality class.
- Vopěnka’s Principle is equivalent to the claim that there is a proper class of $C(n)$-extendible cardinals for each $n < \omega$.
C(n)-Extendible Cardinals

Let $C(n)$ denote the class of cardinals α such that V_α is a Σ_n-elementary submodel of the universe V. A cardinal $\kappa \in C(n)$ is **C(n)-extendible** if, for all $\lambda > \kappa$ in $C(n)$, there is an elementary embedding $j: V_\lambda \rightarrow V_\mu$ for some $\mu \in C(n)$ with critical point κ, such that $j(\kappa) \in C(n)$ and $j(\kappa) > \lambda$.
\textbf{C(n)-Extendible Cardinals}

Let $C(n)$ denote the class of cardinals α such that V_α is a Σ_n-elementary submodel of the universe V. A cardinal $\kappa \in C(n)$ is \textbf{C(n)-extendible} if, for all $\lambda > \kappa$ in $C(n)$, there is an elementary embedding $j : V_\lambda \rightarrow V_\mu$ for some $\mu \in C(n)$ with critical point κ, such that $j(\kappa) \in C(n)$ and $j(\kappa) > \lambda$.

A class S is \textit{definable with sufficiently low complexity} if

- it is Σ_1, or
- there is a proper class of \textbf{supercompact cardinals} and S is Σ_2, or
- there is a proper class of $C(n)$-extendible cardinals and S is Σ_{n+2}, with $n \geq 1$.
Main Results

- Every full subcategory of an accessible category definable with sufficiently low complexity is bounded.

- If L is a reflection on an accessible category with coproducts, and the class of L-equivalences is definable with sufficiently low complexity, then $L \cong L_f$ for some f.

- In a locally presentable category, every full limit-closed subcategory definable with sufficiently low complexity is reflective, and every full colimit-closed subcategory definable with sufficiently low complexity is coreflective.

Recall: A class S is **definable with sufficiently low complexity** if
 - it is Σ_1, or
 - there is a proper class of supercompact cardinals and S is Σ_2, or
 - there is a proper class of $C(n)$-extendible cardinals and S is Σ_{n+2}, with $n \geq 1$.
Implications in Algebraic Topology

For a spectrum E, the class of E_\ast-acyclic simplicial sets is Σ_1, while the class of E^\ast-acyclic simplicial sets is Σ_2.

A simplicial set X is E^\ast-acyclic if and only if the following formula is true:

$$X \in \mathsf{sSets}_\ast \land (\forall n < \omega) \exists M \ [M \in \mathsf{sSets}_\ast$$

$$\land (\forall k < \omega) \ [(\forall f \in M_k) \ f \in \mathsf{sSets}_\ast(X \land \Delta[k]_+, E_n)$$

$$\land \forall g \ (g \in \mathsf{sSets}_\ast(X \land \Delta[k]_+, E_n) \rightarrow g \in M_k)]$$

$$\land M \text{ is weakly contractible}].$$

The formula states that the mapping space $\text{Map}(X, E_n)$ is weakly contractible for all n, where the (fibrant) spectrum $E = \{E_n\}_{n \geq 0}$ is treated as a parameter.
Thus, it follows from our results that the existence of E^*-localizations can be proved in ZFC —this was known since [Bousfield, 1975]— and that the existence of E^*-localizations follows from the existence of a proper class of supercompact cardinals.
Thus, it follows from our results that the existence of E^*-localizations can be proved in ZFC —this was known since [Bousfield, 1975]— and that the existence of E^*-localizations follows from the existence of a proper class of supercompact cardinals.

- The latter improves [C–Scevenels–Smith, 2005], where the existence of E^*-localizations was inferred from VP.
Thus, it follows from our results that the existence of E^*-localizations can be proved in ZFC — this was known since [Bousfield, 1975] — and that the existence of E^*-localizations follows from the existence of a proper class of supercompact cardinals.

- The latter improves [C–Scevenels–Smith, 2005], where the existence of E^*-localizations was inferred from VP.
- More generally, if S is any (possibly proper) class of maps between simplicial sets, then an S-localization exists if S is definable with sufficiently low complexity.

Recall: A class S is **definable with sufficiently low complexity** if
- it is Σ_1, or
- there is a proper class of supercompact cardinals and S is Σ_2, or
- there is a proper class of $C(n)$-extendible cardinals and S is Σ_{n+2}, with $n \geq 1$.
Please come to:

Large-Cardinal Methods in Homotopy

Advanced Course and Workshop

Institut de Matemàtica, Universitat de Barcelona

1–8 September 2011

Organizing Committee:

J. Bagaria, C. Casacuberta, R. Göbel, A. R. D. Mathias, J. L. Rodríguez, J. Rosický

www.imub.ub.es/hocard11
