Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: prospects for therapeutic intervention

Maria Valente*, Víctor M. Castillo-Acosta*, Antonio E. Vidal* and Dolores González-Pacanowska

Instituto de Parasitología y Biomedicina ‘López-Neyra’, Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain

Abstract

Kinetoplastid parasites are responsible for serious diseases in humans and livestock such as Chagas disease and sleeping sickness (caused by Trypanosoma cruzi and Trypanosoma brucei, respectively), and the different forms of cutaneous, mucocutaneous and visceral leishmaniasis (produced by Leishmania spp). The limited number of antiparasitic drugs available together with the emergence of resistance underscores the need for new therapeutic agents with novel mechanisms of action. The use of agents binding to surface glycans has been recently suggested as a new approach to antitypanosomal design and a series of peptidic and non-peptidic carbohydrate-binding agents have been identified as antiparasitics showing efficacy in animal models of sleeping sickness. Here we provide an overview of the nature of surface glycans in three kinetoplastid parasites, T. cruzi, T. brucei and Leishmania. Their role in virulence and host cell invasion is highlighted with the aim of identifying specific glycan-lectin interactions and carbohydrate functions that may be the target of novel carbohydrate-binding agents with therapeutic applications.

Introduction

The occurrence of surface glycoconjugates in parasitic protozoa is of paramount importance since they are crucially involved in processes such as immune evasion, host cell invasion and endocytosis. Most parasitic protozoa undergo complex life cycles and must adapt to changing hosts and environments. Surface glycans constitute a protective barrier that contributes to adaptation and the establishment of infection by participating in the subversion of the immune response and in specific interactions with host surface molecules. Thus, specific sugar–lectin interactions are involved in the colonization of the gut of the insect vector as well as in mammalian host cell recognition and parasite internalization. In this latter process, specific glycan–lectin interactions mediate mammalian host cell recognition and parasite uptake. Pattern recognition receptors (PRRs) present on the surface of immune cells distinguish pathogen-associated molecular patterns (PAMPs). The receptors used for parasite infection vary and include complement receptors, scavenger receptors, Toll-like receptors (TLR) and mannose receptors. The understanding of these interactions will provide an insight into how protozoa implement infection and subvert the host immune response.

In relation to the immune response, several carbohydrate-binding proteins, either expressed on the surface of cells of the immune system or released, play an essential role in the control of innate and adaptive immunity. These include C-type lectin receptors, sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs) and galectins that interact with distinct glycan structures (van Kooyk and Rabinovich, 2008). DC-SIGN, a C-type lectin receptor found on the surface of dendritic cells specifically binds mannose and/or fucose-terminated glycans. Siglecs are included in the group of Ig-type (I-type) lectins and interact with a wide variety of structurally distinct carbohydrate ligands (Pillai et al., 2012). Galectins are a family of soluble lectins that bind β-galactose (β-Gal)-containing glycoconjugates such as glycans containing N-acetyllactosamine and are thought to be able to associate with host membrane glycans to form a cell-surface network for an optimal receptor spacing and signalling (Liu and Rabinovich, 2005; Nieminen et al., 2007). While they can act as effector factors, inhibiting pathogen adhesion and entry or stimulating phagocytosis, parasites can also make use of host galectins to facilitate host cell invasion. Furthermore, in the case of secreted glycoproteins, such as cytokines, chemokines and antibodies, the sugar portion has been described to perform important functions. This is the case of the N-glycans attached to the Fc portion of IgG, that when sialylated send an inhibitory signal to the immune system (Kaneko et al., 2006; Anthony et al., 2011). Glycans are also central to lymphocyte development (Stanley and Okajima, 2010) and leucocyte homing (Lowe, 2003; Mitoma et al., 2007). Finally, an additional immunomodulatory pathway in which surface glycans have a major role is the lectin pathway (LP) for complement activation, which requires the mannose-binding lectin and ficolins, rather than the standard components (Matsushita, 2010) necessary for the activation of the classical and alternative pathways (AP). The identification of singular aspects related to
glycan composition in kinetoplastids and their interaction with host lectins may unveil opportunities for drug design using agents that specifically bind to carbohydrate moieties important for parasite survival within the mammalian host.

The nature of surface glycans in Trypanosoma cruzi

As in the case of other protozoan parasites of medical and veterinary relevance, the surface of T. cruzi is heavily glycosylated. The dense glycoalkalix performs specific and significant functions such as protection against the host defence mechanisms and/or the interaction with changing environments (Noireau et al., 2009; Romano et al., 2012). The carbohydrate nature of the surface coat strongly depends on the life stage and differentiation involves unique changes in its composition (de Lederkremer and Agusti, 2009).

The most abundant components of the T. cruzi surface coat, especially in the epimastigote form, are glycosylphosphatidylinositol (GPI)-anchored glycoconjugates of varied nature (Ferguson, 1999). The structure of this coat has been described as a basal layer of glycoinositolphospholipids (GPIs) and phospholipid (Peviato et al., 1990; de Lederkremer et al., 1991; Carreira et al., 1996) from which other GPI-anchored molecules protrude (Peviato et al., 2004). The major species are mucin-like proteins (Pereira-Chioccola et al., 2000; Buscaglia et al., 2006), which are heavily O-glycosylated, while the least abundant include trans-sialidase (TS) (Peviato et al., 1985; Shenkman and Eichinger, 1993), mucin-associated proteins (MASPs) (dos Santos et al., 2012), Gp85 surface glycoproteins (Mattos et al., 2014), tryromastigote small surface antigen (TSSA) (Canepa et al., 2012) and Toll-T antigens (Quanquin et al., 1999). Recent studies support the idea that lipid-based domains, and particularly lipid rafts, are responsible for the fine organization of all these components (Mucci et al., 2017).

GPIs was the first glycoconjugate characterized in T. cruzi and can be found as a free entity or anchored to proteins. GPIs were originally defined as lipopeptidophosphoglycans (LPPGs) because of the amino acids present in the early preparations (De Lederkremer et al., 1976). However, with the solution of their structure, it was established that these LPPGs are typical GPIs (Peviato et al., 1990; de Lederkremer et al., 1991). The core of GPIs is constituted by Manα(1,2)-Manα(1,6)-Manβ(1,4)-GlcNAc(1,6)-myo-inositol-PO2-epimerase (McConvil and Ferguson, 1993). Galactofuranose (Gal') and aminosylphosphohexonic acid are substituents that can be found attached to different positions of the main core, conferring a certain microheterogeneity to the oligosaccharide structure (McConvil and Ferguson, 1993).

Mucins are the most abundant glycoproteins in the T. cruzi surface membrane. They are a complex and heterogeneous group of variable proteins constituted by a polypeptidic core of 50–200 amino acids, rich in serine and threonine residues many of which are O-glycosylated (Buscaglia et al., 2006). Mucins are O-glycosylated with N-acetylglucosamine (GlcNAc), which is rather unique since the glycosyltransferases that catalyse this transfer in other organisms usually use UDP-N-acetylgalactosamine as a precursor (Peviato et al., 1995, 1998). The O-linked GlcNAc residues can be further elongated or remain unsubstituted. Galactose is present in all mucin oligosaccharide elongations in either the pyranosic (Gal') or Galf configuration (Acosta-Serrano et al., 2001). Terminal β-Galp residues can be further branched with sialic acid acquired from the host through TSS present on the membrane surface (Peviato et al., 1994; Serrano et al., 1995).

TSSs are another group of GPI-anchored proteins found on the surface of T. cruzi, and their activity allows the parasite to bypass its lack of de novo synthesis of sialic acid, that is instead salvaged from the host (Peviato et al., 1985). TSSs catalyse the transfer of sialic acid from an α(2,3)-linkage in the donor to a terminal β-Galp acceptor of the parasite mucins (Schenkman et al., 1993). It has also been shown that T. cruzi TS (TcTS) can efficiently transfer α(2,3)-linked N-glycolylneuraminic acid (Neu5Gc) to terminal β-Galp groups (Agusti et al., 2007; Schrenow et al., 2007). This specific activity of TcTS is unique because of several aspects. First, TcTSs, unlike mammalian TSs, do not use cytidine monophospho (CMP)-sialic acid as the monosaccharide donor. Additionally, they appear to be located on the parasite surface and not in the Golgi apparatus, which is where they carry out their normal function in other organisms. Finally, unlike conventional sialidases, TcTSs are more efficient in transferring terminal sialic acids between glycoconjugates rather than hydrolysing them. Recent studies have also shown that sialylated mucins are present in membrane lipid-rafts far away from TS and that the sialylation process is performed by microvesicles associated with active TcTS (Lantos et al., 2016).

Other GPI-anchored proteins are the Gp85 surface glycoproteins, TSSAs and MASPs. Gp85 glycoproteins are usually included in the TS superfamily as TS-like proteins yet they lack TS activity (Buscaglia et al., 2006) and appear to be involved in host–parasite interactions (Alves and Colli, 2008). TSSAs are polymorphic mucin-like molecules with a conserved hydrophobic C-terminus compatible with the GPI-anchoring signal, and a variable central region responsible for their antigenicity (Di Noia et al., 2002). Finally, MASPs are GPI-anchored proteins that have been found predominantly in the proteome of trypomastigotes (Atwood et al., 2005). Like mucins, they contain highly conserved N- and C-terminal domains plus a variable central region (Bartholomeu et al., 2009) yet they appear to be N-glycosylated (Atwood et al., 2006).

Glycans and immunomodulation during T. cruzi infection

The complement is the first line of defence of the innate immune system against invading microbes. Trypanosoma cruzi invasion generates an immediate immune response due to the interaction of the parasite with complement molecules. It has been shown that the complement can be activated by all T. cruzi forms: amastigote (Iida et al., 1989), epimastigote (Nogueira et al., 1975) and trypomastigote (Kipnis et al., 1985), but only the non-infective epimastigotes are susceptible to complement lysis. During the first seconds after T. cruzi infection, signal glycoproteins on the parasite surface can interact with host PRRs such as mannose-binding lectins and ficolins and lead to the activation of the LP and AP (Fig. 1) (Cestari et al., 2013). However, T. cruzi parasites can undertake a series of strategies to escape the effects of both innate and adaptive immunity. There are at least three different mechanisms of complement system evasion by T. cruzi. One of such mechanisms is the translocation of calreticulin (TcCRT), a calcium binding protein normally expressed in the endoplasmic reticulum, to the surface membrane on the flagellar portion of the parasite (Ferreira et al., 2004a, 2004b; Gonzalez et al., 2015). This translocation allows TcCRT to interact with mannose-binding lectins and ficolins and this way interfere with the normal activation of the LP and classical pathway and enhance the rate of the internalization of parasites by host cells (Fig. 1) (Gonzalez et al., 2015). Another escape mechanism from the innate immune response is the release of plasma membrane microvesicles by T. cruzi parasites. Extracellular vesicles contain several signal factors including glycoproteins and enzymes involved in carbohydrate metabolism, which also interfere with the LP and classical pathway activation (Geiger et al., 2010; Ramirez et al., 2017).
One of the most important carbohydrates interfering with the immune response against *Trypanosoma cruzi* infection is sialic acid. *Trypanosoma cruzi* transfers sialic acid from the host to its own surface glycoproteins creating this way a perfect molecular camouflage that hinders an effective immune response (Fig. 1) (Argibay et al., 2002; Gao et al., 2002; Freire-de-Lima et al., 2010). In addition, sialylated mucins may interact with siglecs expressed on the T cell surface and inhibit cytokine production.

Host cell invasion

Trypanosoma cruzi has a quite complex life cycle that involves an obligate intracellular stage for parasite duplication. Cell invasion involves a strict and complex interaction between the parasite and the host cell. The first step of this process is the adhesion of the parasite to the target cell which involves the recognition of molecules present on the surface of both parasite and host cells. Several molecules of *T. cruzi* surface are involved, among them glycoproteins of the Gp85/TS family, and mucins are among the most important parasite surface glycoproteins which protrude and remain on the infected cells surface coat. One of the most important events of host cell invasion is the ‘escape’ from the parasitophorous vacuole. Also in this process surface glycoproteins have a major function (Andrews and Whitlow, 1989; Stecconi-Silva et al., 2003).

Surface glycans in Trypanosoma brucei

The *T. brucei* surface coat exhibits a dense layer of GPI-anchored glycoproteins, such as the variant surface glycoproteins (VSGs) or procyclin found in the bloodstream or procyclic forms of the parasite, respectively. In a minor amount, other glycosylated proteins are expressed in the surface membrane, such as the trans-membrane invariant surface glycoproteins (ISGs) (Ziegelbauer and Overath, 1992; Ziegelbauer et al., 1992), the transferrin receptor (TfR) (Grab et al., 1993) and the haptoglobin–haemoglobin receptor (Vanhollebeke et al., 2008) which are both GPI-anchored and located in the flagellar pocket. In addition, it has been reported that epimastigote forms found in the salivary glands of the tsetse fly present a stage-specific coat of a GPI-anchored protein named bloodstream stage alanine-rich protein or Brucei ala-nine-rich protein (BARP) (Nolan et al., 2000; Urwyler et al., 2007). The differentiation of epimastigotes to metacyclic trypomastigote forms is associated with the loss of BARP and to the expression of a new coat of metacyclic VSGs (Tetley et al., 1987; Ginger et al., 2002) and of a small family of metacyclic invariant surface glycoproteins which protrude and remain accessible for antibody recognition (Casas-Sánchez et al., 2018). All these glycoproteins are mainly N-glycosylated with different structures containing oligomannose, paucimannose and complex-type glycans (Bangs et al., 1988; Zamze et al., 1990; Strang et al., 1993; Treumann et al., 1997; Mehler et al., 1998a, 1998b, 2012; Acosta-Serrano et al., 2004).

Specifically, VSGs are homodimers susceptible to N-glycosylation with one, two or three N-linked oligosaccharides depending on the VSG class. Thus, in Class 1 VSGs only one asparagine is modified with triantennary oligomannose structures (Man₉GlcNAc₂); Class 2 VSGs have two N-glycosylation sites, one of them is
opsonization and lysis of parasites except for those expressing bodies against the predominant form of VSG, promotes efficient increases, and the complement system, mediated by specific anti-

 类型, which binds to the mannose-specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin-Related 1 (SIGN-R1) receptor and inhibits the host pro-inflammatory response.

 Likewise, during differentiation to stumpy forms a VSG shedding process takes place allowing for the release of soluble VSG portions into the bloodstream of the mammalian host. These fragmented VSGs containing glycosylinositolphosphate induce myeloid cell activation and thereby the expression of pro-inflammatory cytokines and the release of NO and TNF-α. Other parasite-released factors interfere with the pro-inflammatory response such as the Kinesin Heavy Chain 1 (TbKHC1), which binds to the mannose-specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin-Related 1 (SIGN-R1) receptor and inhibits the host pro-inflammatory response.

 TIR is a heterodimeric protein expressed in the bloodstream form that is encoded by expression site-associated genes (ESAGs) 6 and 7 exhibiting eight N-glycosylation sequons. Both ESAG6 and ESAG7 are heterogeneous N-glycosylated with puci-mannose and oligomannose moieties such as VSGs but not with complex N-glycans (Mehlert et al., 2012). In contrast to the glycoproteins described above, the N-glycosylation profile of the ISGs has not been characterized so far.

 On the other hand, the GPI structure built-up by NH₂CH₂CH₂-PO₄H-6-Manα(1,2)-Manα(1,6)-Manα(1,4)-Glcnα(1,6)-myo-inositol-1-PO₄H-3-(sn,1,2-dimyristoylglycerol) by which the aforementioned glycoproteins, except for ISGs, are anchored to the surface membrane is further modified by N-glycosylation (Holder, 1985; Ferguson et al., 1988; Redman et al., 1994).

 Glycans and interaction of T. brucei with the mammalian host

 Trypanosoma brucei parasites dwelling in the mammalian bloodstream are exposed to innate and adaptive responses by the immune system for which they have developed sophisticated evasion strategies. An essential mechanism for effective immune evasion is the antigenic variation of VSGs whereby parasites switch to a new, immunologically distinct VSG, selected from among a huge collection of silent VSG genes. At the initial stages of the humoral immune response, when antibody levels are still low, the VSG-antibody complexes are rapidly internalized at the flagellar pocket by clathrin-dependent endocytosis, to be further dissociated in isolated VSG which is recycled to the surface, and the Ig that is directed to the lysosome to be proteolyzed (O’Beirne et al., 1998; Pal et al., 2003; Engstler et al., 2004; Overath and Engstler, 2004). Antibody internalization becomes insufficient as the titre increases, and the complement system, mediated by specific antibodies against the predominant form of VSG, promotes efficient opsonization and lysis of parasites except for those expressing the new VSG that will spread again the infection, as they are able to escape the adaptive immune response. As the infection progresses, slender proliferative bloodstream parasites differentiate into a stumpy non-proliferative form that plays an important role in different ways. It contributes to avoid massive parasitemia and premature host death, allows for pre-adaptation to the tsetse fly and by reducing the VSG repertoire expression it restricts antibody generation by the host, thus extending the functionality of antigenic variation (MacGregor et al., 2011; Matthews, 2015).

 While trypanosomes mainly rely on antigenic variation to circumvent immune detection, VSG glycosylation modulates host-parasite interactions, contributing to the formation of an efficient surface barrier, with increased antigenic variability and protective properties (Blum et al., 1993). Supporting this notion, it has been shown that O-glycosylation of VSGs confers the parasite additional surface heterogeneity, impairs the functionality of the host immune response and enhances parasite virulence (Pinger et al., 2018). Furthermore, specific carbohydrate branches at the trypanosome surface are involved in the process of binding and uptake of host macromolecules. The conserved VSGs chitobiose-oligomannose (GlcnC2-Man5-9) moieties have been proposed to act as ligands for TNF-α, a cytokine with lectin-like properties inducing a pro-inflammatory response and parasite lysis (Fig. 2) (Magez et al., 2001) although the direct induction of trypanolysis by TNF-α has been recently questioned (Vanwalleghem et al., 2017).

 VSGs also act as immunomodulatory factors involved in the production of TNF-α and nitric oxide (NO). During the differentiation process, slender trypanosomes suffer a VSG shedding process releasing to the bloodstream of the mammalian host soluble VSG portions from the membrane (Gruszynski et al., 2003). These fragmented VSGs containing glycosylinositolphosphate induce myeloid cell activation and thereby the expression of pro-inflammatory cytokines (Fig. 2) (Leppert et al., 2007). This process is amplified by T cell activation and IFN-γ release, which promotes macrophages to achieve a whole activated/M1 polarization and consequently increases TNF-α and NO secretion to control the infection (Stijlemans et al., 2016).

 Other parasite-released factors interfere with the pro-inflammatory response of activated macrophages thus contributing to
parasite infection. For instance, Kinesin Heavy Chain 1 (TbKHC1) is released in the blood by the parasite and interacts with the mannose-specific intercellular adhesion molecule 3-grabbing nonintegrin-related 1 (SIGN-R1) receptor, a C-type lectin expressed in the surface of immune cells to inhibit the host pro-inflammatory response and at the same time stimulates the production by the host of essential trypanosomal nutrients (Fig. 2). TbKHC1 reduces the conversion of L-arginine into NO by inducing arginase-1 activity via IL-10 of macrophages/myeloid cells. The modulation of arginase activity promotes the formation of L-ornithine and consequently of polyamines required for trypanosome growth (De Muylder et al., 2013).

Other glycoproteins that play major roles in host–parasite interaction are the trypanosome-derived lymphocyte-triggering factor, which is secreted by T. brucei parasites promoting early IFN-γ production by CD8+ T lymphocytes (Vaidya et al., 1997), the GPI-phospholipase C, a bloodstream stage-specific enzyme that is concentrated in the flagellar membrane and participates in VSG shedding during differentiation of bloodstream forms to procyclic forms (Grandgenett et al., 2007) and the TIR, which is located in the flagellar pocket and is involved in providing iron to the parasite (Steverding et al., 1994). The N-glycosylation of both TIR protein subunits has been proposed to provide a spatial localization in the plasma membrane together with the VSG coat that allows transferrin binding without significant exposure to the immune system (Mehlert et al., 2012).

Surface glycans in Leishmania

In the case of Leishmania, the surface coat is covered by a dense external glyocalyx harbouring different glycoconjugates with an important role in the parasite–host interaction. Its nature varies between species and different forms of the parasite during the life cycle. Promastigote cells contain a series of glycoconjugates, which include GPI-anchored proteins such as the metalloprotease leishmanolysin/GP63, the parasite surface antigen-2 complex (PSA-2/GP46) and the mucin-like proteophosphoglycan (PPG), a complex GPI-anchored lipophosphoglycan (LPG) and low molecular weight GPI-PLs which are not attached to either proteins or polycarbohydrates. Leishmania also secretes protein-linked phosphoglycans, such as the secreted proteophosphoglycan (sPPG) and secreted acid phosphatase (Sacks and Kamhawi, 2001).

LPG is the main cell-surface glycoconjugate in promastigotes covering the whole parasite including the flagellum. It is comprised of a 1-O-alkyl-2-2-hydroxyphosphatidyl(myo)inositol lipid anchor with a heptasaccharide glycan core, GalPβ(1,6)-GalPβ(1,3)-Galβ(1,3)-Galβ(1,3)-Glcβ(1,6)-Manβ(1,3)-Manβ(1,4)-GlcN, which is joined to a long polyglycosyl phosphate (PG) consisting of repeating units of a disaccharide and a phosphate (Galβ(1,4)-Manβ(1,4)-PO3−) and terminated by an oligosaccharide cap structure consisting of Manβ(1,2)-Manβ(1) or as Galβ(1,4) (Manβ(1,2))-Manβ(1). The PG units appear to be modified by carbohydrate chains that differ markedly between species and stage (McConville et al., 1995). In amastigotes, LPG expression is highly downregulated (Turco and Sacks, 1991).

PPG is the second major phosphoglycan but, unlike LPG, it contains a polypeptide backbone rich in serines to which phosphoglycans are linked via phosphodiester bonds. The PG molecules consist of three differently branched phosphosaccharides that end with a neutral capping structure (Ilg, 2000).

GP63 is the most abundant surface glycoprotein expressed on the Leishmania promastigote cell membrane. GP63 is N-glycosylated with paucimannose structures such as ManβGlcNAc2 and GlcManβGlcNAc2 (Funk et al., 1997), and ManβGlcN structure in the GPI-anchor (Cabezas et al., 2015). It is a zinc-dependent protease with a wide range of substrates including casein, haemoglobin, fibrinogen, etc. (Yao et al., 2003).

Differentiation to the amastigote form involves the thinning of the glyocalyx; in addition to LPG, the levels of GP63 are also dramatically decreased and GPI-PLs become the major surface glycoconjugate in this form (McConville and Blackwell, 1991; Schneider et al., 1992; Winter et al., 1994). GPI-PLs are composed of the Manα(1,4)-GlcNAc(1,6)-myo-inositol unit, which is substituted with either high mannose (type-1) or Galp-Galp (type-2) structures or with both forming a hybrid glycoside (McConville and Ferguson, 1993; Cabezas et al., 2015). Like in T. cruzi, Leishmania also presents its cell surface decorated with sialic acid–bearing glycoconjugates. Leishmania donovani promastigotes exhibit 9-O-acetylated sialic acid and distinct 9-O-acetylated sialoglycoproteins while the amastigote form harbours an unusual derivative of sialic acid, Neu5Gc, absent in promastigotes (Ghoshal and Mandal, 2011).

Role of Leishmania surface glycans in immunomodulation and parasite–host cell interactions

The presence of a cell surface glycoalyx has a critical role in host–parasite interaction and infectivity thanks to an array of well-defined epitopes of branched N-glycans that act as ligands for receptors on cells of the insect or the vertebrate host. In Leishmania promastigotes, the dense glycoalyx formed by LPG performs a number of functions for parasite survival within the insect and for macrophage infection within the mammalian host. LPGs confer physical protection against digestive hydrolytic enzymes of the sandfly and are involved in the attachment to the gut epithelium and migration of metacyclic parasites to the mouthparts of the insect (Ilg, 2000; Sacks and Kamhawi, 2001). In the blood stream, LPG prevents lysis by complement proteins and serves as a ligand for attachment and receptor-mediated phagocytosis by the macrophage. LPG triggers TLR signalling and interferes with pro-inflammatory and signalling pathways in host cells (Fig. 3) (Becker et al., 2003; Rojas-Bernabe et al., 2014). Once inside the macrophage, LPG delays the fusion of the parasitophorous vacuole with lysosomes and inhibits protein kinase C and the production of cytokines related to the microbial oxidative and nitrosative stress response (Fig. 3) (Descoteaux and Turco, 1993; Kavoosi et al., 2009; Franco et al., 2012).

Besides LPG, other glycoconjugates such as GPI-PLs and PPGs are involved in the first stages of macrophage infection (McConville and Blackwell, 1991; Piani et al., 1999). Mannose-terminating GPI-PLs interact with mannose receptors on the macrophage surface (Blackwell et al., 1985) and modulate many macrophage functions such as PKC activity (Chawla and Vishwakarma, 2003), cytokine production, release of NO and differentially activate MAPK (Fig. 3) (Assis et al., 2012). While the implication of GPI-PLs in Leishmania–macrophage interactions is well established, their role in intramacrophage development is still unclear. On the other hand, PPGs play important biological roles in the establishment of Leishmania infection and virulence (Capul et al., 2007; Gaur et al., 2009; Olivier et al., 2012). Filamentous PPGs are found in the promastigote secretory gel, a viscous mucin-like material which accumulates in sandfly gut and mouthparts and improves Leishmania transmission by promoting multiple insect bites and increasing the number of parasites per bite (Rogers et al., 2004; Rogers and Bates, 2007). PPGs regurgitated by Leishmania-infected sandflies favour macrophage recruitment to the bite site and target the L-arginine metabolism of host macrophages to promote establishment of the infection (Rogers et al., 2009). In a murine model, sPPG has been shown to inhibit TNF-α release to facilitate the establishment of the infection (Piani et al., 1999).
GPI-anchored glycoproteins that exhibit pivotal functions in the parasite–mammalian host interplay in *Leishmania* are GP63 and PSA-2. Metalloprotease GP63 is abundant in promastigotes but expressed to a lesser extent in amastigotes (Schneider et al., 1992). GP63 is an important virulence factor which modulates a wide range of host cell signalling pathways that regulate macrophage anti-microbial and inflammatory functions. GP63 facilitates parasite escape from lysis by the complement pathway and the movement through the extracellular matrix, favours promastigote internalization into macrophages, inhibits natural killer cell responses, promotes resistance to antimicrobial peptides and seems to play a key role in protecting intracellular parasites from the hostile environment of macrophages (Fig. 3) (Olivier et al., 2012; Yao et al., 2003, 2010). Likewise, the PSA-2 protein is involved in the binding and invasion of parasites on macrophages and resistance to complement lysis (Kedzierski et al., 2004; Lincoln et al., 2004).

Another type of interaction with host cells by which parasites can establish successful infection takes place through sialic acid-siglec binding. *Leishmania* utilizes sialic acids to bind these membrane-bound receptors present in the haematopoetic cell lineages promoting parasite entry within macrophages, NO-resistance, host immunomodulation and strain virulence (Fig. 3) (Ghoshal and Mandal, 2011; Roy and Mandal, 2016).

Carbohydrate-binding agents as antimicrobials

Several studies support the therapeutic potential of carbohydrate-binding agents (CBAs). Lectins are CBAs of peptidic nature that specifically bind diverse carbohydrate structures. By acting as recognition and adhesion molecules and as signal transducers they perform a wide variety of physiological functions. Cell membrane proteins and lipids in many pathogens exhibit specific glycosylation patterns different from the mammalian host and are potential binding sites for lectins of selected specificity. Thus, lectins naturally occurring in plants, microbes, animals and humans exhibit antimicrobial activity (Petrova et al., 2016; Zhang and Gallo, 2016) through the interaction with complex carbohydrates on microbial surfaces and there is growing interest in their applicability due to the possible interference with host cell–pathogen interactions and disease development (Breitenbach Barroso Coelho et al., 2018). Decreased capacity of invasion and infection, inhibition of proliferation and impairment of pathogen cell adhesion and migration has been reported to occur upon incubation with lectins from different sources (da Silva et al., 2019; Hasan and Ozeki, 2019; Li et al., 2019). In addition, lectins have been acknowledged as promising potential carrier molecules for directed drug delivery (Zurga et al., 2017) since by binding to membrane glycan moieties, they can elicit cell internalization of molecules of therapeutic interest.

Indeed with regards to their anti-infective potential, multiple studies have demonstrated the enormous antiviral capacities of CBAs (Francois and Balzarini, 2012; Gondim et al., 2019). The infectivity of several viruses requires surface glycoproteins and interference with host cell recognition has been the basis of the antiviral activity of lectins that specifically bind mannose-rich surface glycans (Dey et al., 2000; Hoorelbeke et al., 2010). Prolonged exposure to CBAs resulted in defects in the glycosylation status of surface glycoproteins giving rise to defective binding and increased exposure of underlying epitopes to the host immune response adding this way a new feature to their mode of action (Balzarini et al., 2005). In addition, non-peptidic CBAs have been successfully used in the treatment of fungal infections both *in vitro* and *in vivo* supporting the possible employment of this class of compounds in a clinical setting (Tomita et al., 1990; Walsh and Giri, 1997).

Therapeutic opportunities in kinetoplastids

In the case of kinetoplastid diseases, treatment often suffers from toxicity, side-effects and limited efficacy. New entities with novel modes of action are therefore needed to address the increasing demand for novel medicines. Despite extensive screening and *in vitro* and *in vivo* studies, only very few compounds have advanced to clinical trials. Taking into account the importance of protein glycosylation, the unique character of cell surface glycans during...
the infective stages of parasitic protozoa opens exciting possibilities for the use of CBAs as antiparasitics. A mode of action can be foreseen where these agents would act directly exerting toxicity by binding to the cell surface and inducing parasite lysis and/or additionally by preventing pathogen infection in the host by impairing crucial interactions involved in the attenuation of the immune response or parasite uptake. The direct cytototoxic activity upon incubation with CBAs has been demonstrated in *T. brucei* bloodstream forms where peptidic agents such as the amaryllis lectin *Hippeastrum* hybrid (HHA) and the stinging nettle lectin (UDA) from *Urtica dioica* perturb endocytosis (Castillo-Acosta et al., 2013, 2015). Likewise, a specific block in endocytosis was observed after exposure of *T. cruzi* to a Poly-LAcNAc binding lectin (Brosson et al., 2016). However, while many plant peptidic CBAs exist with a wide range of glycan specificities, including mannosse, galactose, glucose, fucose, sialic acid, GlcNAC and GalNAC oligomers, the approach involves major challenges. The toxicity of many peptidic lectins precludes their use as drugs and the identification of CBAs that exhibit selectivity towards parasite glycans and low toxicity towards mammalian cells are required.

Previous studies on the utility of CBAs in kinetoplastid diseases are limited. Certain plant lectins have demonstrated utility as adjuvants when studying the mouse humoral immune response to *T. cruzi* (Albuquerque et al., 1999). The cramone 1,4 lectin, is a protein that recognizes and interacts with specific glycans on the cell surface inducing mitogenic activity (Maciel et al., 2004) which in *T. cruzi*, induces changes in plasma membrane permeability, production of reactive oxygen species and defects in mitochondrial function (Fernandes et al., 2010). A protective effect of lectin administration in *Leishmania* infections has also been documented. Thus, lectins such as the ConBr from *Canavalia brasiliensis* and KM+ from *Artocarpus integrifolia* induce IFN-γ and IL-12 p40 production promoting a reversal of the Th2 cytokine pattern to Th1 pattern in BALB/c mice infected with *Leishmania amazoonensis* and *Leishmania major*, respectively (Barral-Netto et al., 1996; Panunto-Castelo et al., 2001). Pretreatment of murine inflammatory peritoneal macrophages with a D-galactose-binding lectin from *Synadenium carinatum* latex (ScLL) reduced by 65.5% the association index of macrophages and *L. amazoonensis* promastigotes (Afonso-Cardoso et al., 2011). ScLL also reduced the growth of *L. amazoonensis* amastigote intracellular forms, showing no *in vitro* cytotoxic effects in mammalian host cells (Afonso-Cardoso et al., 2011).

Remarkably, evidence has been recently presented showing that the use of CBAs could involve a completely novel approach to chemotherapy of protozoan-infectious diseases in the case of sleeping sickness. Thus products from natural sources of both peptidic and non-peptidic nature have demonstrated their antitrypanosomial potential in the case of *T. brucei* both *in vitro* and *in vivo* (Castillo-Acosta et al., 2013, 2016). Certain α(1,3)-α(1,6) Man-specific peptidic CBAs such as the HHA or the α(1,3) Man-specific snowdrop lectin from *Galanthus nivalis* (GNA) inhibit growth of bloodstream forms of *T. brucei* while exhibiting very low toxicity against mammalian cells *in vitro* (Castillo-Acosta et al., 2013) although as peptides their therapeutic potential was limited. In the case of non-peptidic glycan binding agents, the identification of low molecular weight, non-toxic compounds to date has been restricted mostly to the natural products from *Actinomycetes* namely pradimicin A (Walsh and Giri, 1997) and benaminicin A (Watanabe et al., 1996) and their synthetic analogues although several groups have aimed at the synthesis and characterization of synthetic CBAs that bind specific oligosaccharide structures (Striegel and Dittel, 2003; Mazik et al., 2005). Indeed treatment with the non-peptidic BCA pradimicin S procured parasitological cure in mouse models of acute sleeping sickness with no evidence of toxicity or side-effects further supporting the potential of the approach (Castillo-Acosta et al., 2016). Pradimicin A exhibits α(1,2)-Man specificity and binds tightly to the parasite VSGs presumably through specific interactions with oligomannose surface glycans that are highly abundant in the bloodstream form of the parasite. Binding of pradimicin to bloodstream form trypanosomes induced defects in endocytosis and parasite lysis. Interestingly induction of resistance to pradimicin *A in vitro* resulted in parasites with defective glycosylation and a reduction in the content of mannosse-rich glycans that exhibited reduced infectivity thus clearly supporting the proposed mechanism of action (Castillo-Acosta et al., 2016). Binding to mannosse-rich surface glycoproteins was also the basis for the potent activity of pradimicins against HIV by the interaction with the heavily mannosylated surface glycoprotein gp120 (Balzarini et al., 2005).

When understanding the antitrypanosomal activity of CBAs, as previously mentioned, the complement system, mediated by specific antibodies against VSGs, allows for efficient opsonization and lysis of parasites. Considering the capability of CBAs to interact with *T. brucei* membrane glycoproteins and in particular VSGs, we hypothesize that CBAs could act as osonins per se and therefore increase phagocytosis by macrophages. In addition, it is possible that the endocytosis block mediated by CBAs may also interfere with VSG recycling leading to a reduced clearance of surface coat antibodies and further promoting the opsonization process. On the other hand, CBAs may bind to specific carbohydrate branches at the trypanosome surface that are crucially involved in the process of binding of host macromolecules. Thus in *T. brucei* transferrin binding by the TIR could also be compromised (Mehlert et al., 2012). Furthermore, TbKHC1 interacts with the mannose-specific SIGN-R1 receptor and inhibits the pro-inflammatory response of the host (De Muylder et al., 2013). Again it is possible that CBAs interfere with these or other events that may be related to its mode of action *in vivo*.

In the case of *T. cruzi*, the core of GIPLs, a major surface constituent, is made up by Manα(1,2)-Manα(1,6)-Manα(1,4)-GlcNAc (1,6)-myo-inositol-P0-Lipid (McConvil and Ferguson, 1993) while galactose can be found attached to different positions. As previously mentioned TcCRT, which interacts with host PRRs mannose-binding lectins, increases host cell parasite internalization. Perturbation of this process through the use of mannose binding CBAs could reduce infection of new cells. The abundant mucins contain galactose in their oligosaccharide elongations and are O-glycosylated with GlcNAc. In addition, the exposure of free β(1,3)Gal residues and β-Gal residues has been suggested to mediate parasite attachment and entry in dendritic cells. Indeed, human galectin-3, a member of the lectin family with affinity to β-Gal and derivatives, plays a pivotal role in controlling *T. cruzi* infection. It has been recently proposed that galectin-3 deficiency during *T. cruzi* experimental infection resulted in increased *in vivo* systemic parasitaemia, and reduced leucocyte recruitment (da Silva et al., 2017). Since galactose-specific lectins are available, their possible interaction with infection mechanisms in the case of *T. cruzi* warrants investigation of the potential of this class of CBAs in the case of Chagas disease.

Finally, the use of treatment with CBAs in the case of infections caused by *Leishmania* spp. should also be further considered. *Leishmania* can target several macrophage membrane-bound receptors to subvert the inflammatory response. Mannose-terminating GIPLs interact with mannose receptors on the macrophage surface (Blackwell et al., 1985) modulating macrophage functions such as PKC activity (Chawla and Vishwakarma, 2003), cytokine levels and the production of NO. Sialic acids on the parasite surface interact with siglec receptors on macrophages to diminish the immune response (Roy and Mandal, 2016). Additionally, of interest is the observation that TLR-2 is involved in parasite survival in
macrophages upon activation by LPG and interactions between LPG and TLR-2 reduce anti-leishmanial responses via cytokine-mediated decrease of TLR-9 expression (Srivastava et al., 2013). All these important mechanisms of parasite survival may be perturbed upon treatment with mannos-specific CBAs.

Concluding remarks
As highlighted in the present review, kinetoplastids interact with mammalian host cells by recognizing specific glycan ligands. Parasite surface carbohydrates are involved in parasite attachment and entry as well as in the modulation of the immune response and the progression of infection. Based on observations with lectins and non-peptidic antimicrobials in the case of sleeping sickness, the use of CBAs emerges as a promising antitypansomal strategy. Specificity of the interactions and the unique structure of kinetoplastid surface sugars may provide a basis for future drug design. Many bioactive natural carbohydrate-binding compounds are present in nature that often exhibit exquisite specificity for binding to carbohydrates, particularly carbohydrate sequences that occur on the surface of living cells. These molecules have the potential for treatment of kinetoplastid diseases. While specificity and toxicity may constitute important issues, the possibility of identifying agents that can be used to block the attachment of the parasite to cell surfaces (or interfere with the subversion of the immune response), and thus prevent or suppress infection is appealing. Future identification of new CBAs with improved pharmacological profiles and reduced side-effects may provide novel avenues for the exploitation of this innovative concept.

Acknowledgements. The authors thank Dr Santiago Castanys Cuello for critical reading of the manuscript.

Financial support. Financial support was received from the Junta de Andalucía (BIO-199 P12-BIO-2059); the Plan Nacional, Instituto de Salud Carlos III-Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET: RD16/0027/0014) and the Plan Nacional de Investigación Científica (SAF2016-79957-R) and the FEDER funds from the EU.

Conflict of interest. None.

Ethical standards. Not applicable.

References
Acosta-Serrano A, Almeida IC, Freitas-Junior LH, Yoshida N and Schenkm (2009) The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles. Molec. and Biochemical Parasitol. 114, 143–150.
Acosta-Serrano A, O’Rear J, Quellhorst G, Lee SH, Hwa KY, Krag SS and Englund PT (2004) Defects in the N-linked oligosaccharide biosynthetic pathway in a Trypanosoma brucei glycosylation mutant. Eukaryot Cell 3, 255–263.
Afonso-Cardoso SR, Silva CV, Ferreira MS and Souza MA (2011) Effect of the Synadenium carnitine latex lectin (ScLL) on Leishmania (leishmania) amazonensis infection in murine macrophages. Experimental Parasitology 128, 61–67.
Agusti R, Giorgi ME and de Lederkremer RM (2007) The trans-sialidase from Trypanosoma cruzi efficiently transfers alpha-(2→3)-linked N-glycolylneuraminic acid to terminal beta-galactosyl units. Carbohydrate Research 342, 2465–2469.
Albuquerque DA, Martins GA, Campos-Neto A and Silva JS (1999) The adjuvant effect of jacalin on the mouse humoral immune response to trinitrophenyl and Trypanosoma cruzi. Immunology Letters 68, 375–381.
Alves MJ and Colli W (2008) Role of the gp85/trans-sialidase superfamily of glycoproteins in the interaction of Trypanosoma cruzi with host structures. Subcellular Biochemistry 47, 58–69.
Andrews NW and Whitlow MB (1989) Secretion by Trypanosoma cruzi of a hemolysin active at low pH. Molecular and Biochemical Parasitology 33, 249–256.
Anthony RM, Kobayashi T, Wermeling F and Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel T (H2) pathway. Nature 475, 110–113.
Argibay PE, Di Noia JM, Hidalgo A, Mocetti E, Barbach M, Lorenti AS, Bustos D, Tambutti M, Hyon SH, Frasch AC and Sanchez DO (2002) Trypanosoma cruzi surface mucin TcMuc-e2 expressed on higher eukaryotic cells induces human T cell anergy, which is reversible. Glycobiology 12, 25–32.
Assis RR, Ibraim IC, Noronha FS, Turco SJ and Soares RP (2012) Glycosaminoglycanophospholipids from Leishmania braziliensis and L. infantum: modulation of innate immune system and Leishmania in carbohydrate structures. PLoS Neglected Tropical Diseases 6, e1543.
Atwood JA, Weatherly DB, Minning TA, Bundy C, Cavola C, Opperdoes FR, Orlando R and Tarleton RL (2005) The Trypanosoma cruzi proteome. Science 309, 473–476.
Atwood JA, Minning T, Ludolf F, Nuccio A, Weatherly DB, Alvarez-Manilla G, Tarleton R and Orlando R (2006) Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. Journal of Proteome Research 5, 3376–3384.
Balzarini J, Van Laethem K, Haste S, Frooyen M, Peumans W, Van Damme E and Schols D (2005) Carbohydrate-binding agents cause deletions of highly conserved glycosylation sites in HIV GP120: a new therapeutics concept to hit the Achilles heel of HIV. The Journal of Biological Chemistry 280, 41005–41014.
Bangs JD, Doering TL, Englund PT and Hart GW (1988) Biosynthesis of a variant surface glycoprotein of Trypanosoma brucei. Processing of the glycolipid membrane anchor and N-linked oligosaccharides. The Journal of Biological Chemistry 263, 17697–17705.
Barral-Netto M, Von Sohsten RL, Teixeira M, dos Santos WL, Pompeo ML, Moreira RA, Oliveira JT, Cavada BS, Falcoff E and Barral A (1996) In vivo protective effect of the lectin from Canavalia brasiliensis on BALB/c mice infected by Leishmania amazonensis. Acta Tropica 60, 237–250.
Barholomeu DC, Cerqueira GC, Leao AC, daRocha WD, Pais FS, Macedo C, Dijkeng A, Teixeira SM and El-Sayed NM (2009) Genomic organization and expression profile of the mucin-associated surface protein (MASP) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Research 37, 3407–3417.
Becker I, Salaiza N, Agraire M, Delgado J, Carrillo-Carrasco N, Kobeg L, Ruiz A, Cervantes R, Torres AP, Cabrera N, Gonzalez A, Maldonado C and Isibasi A (2003) Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Molecular and Biochemical Parasitology 130, 65–74.
Blackwell JM, Ezekowitz RA, Roberts MB, Channon JY, Sim RB and Gordon S (1985) Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. The Journal of Experimental Medicine 162, 324–331.
Blum ML, Down JA, Garnett AM, Carrington M, Turner MJ and Wiley DC (1993) A structural motif in the variant surface glycoprotein of Trypanosoma brucei. Nature 362, 603–609.
Breitenbach Barroso Coelho LC, Marcelino Dos Santos Silva P, Felix de Oliveira W, de Moura MC, Viana Pontual E, Soares Gomes F, Guedes Paiva PM, Napoleao TH and Dos Santos Correia MT (2018) Lectins as antimicrobial agents. Journal of Applied Microbiology 125, 1283–1252.
Brosson S, Fontaine F, Vermeersch M, Perez-Morga D, Pays E, Bousbata S and Salmon D (2016) Specific endocytosis blockage of Trypanosoma cruzi exposed to a poly-lacna binding lectin suggests that lectin–sugar interactions participate to receptor-mediated endocytosis. PLoS One 11, e0163302.
Buscaglia CA, Campo VA, Frasch AC and Di Noia JM (2006) Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nature Reviews Microbiology 4, 229–236.
Cabezas Y, Legentil L, Robert-Ganoux F, Daligault F, Belaz S, Nugier Chauvin C, Tranchimand S, Tellier C, Gangneux JP and Ferriere VS (2015) Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates. Organic & Biomolecular Chemistry 13, 8393–8404.
Canepa GE, Degese MS, Budu A, Garcia CR and Buscaglia CA (2012) Involvement of TSSA (trypomastigate small surface antigen) in
Trypanosoma cruzi invasion of mammalian cells. Biochemical Journal 444, 211–218.

Capul AA, Hickerson S, Barron T, Turco SJ and Beverley SM (2007) Comparisons of mutants lacking the Golgi UDP-galactose- or GDP-mannose transporters establish that phosphoglycans are important for promastigote but not amastigote virulence in Leishmania major. Infection and Immunity 75, 4628–4637.

Carreira JC, Jones C, Wait R, Prevati JO and Mendonca-Previoati I (1996) Structural variation in the glycoinositolphospholipids of different strains of Trypanosoma cruzi. Glycoconjugate Journal 13, 955–966.

Casas-Sánchez A, Perally S, Ramaswamy R, Haines MJ, Lealmeida IC, Boulanger MJ and Acosta-Serrano A (2018) The crystal structure and localization of Trypanosoma brucei variant surface glycoproteins suggest a more permissive VSG coat in the tsetse-transmitted metacyclic stage. bioRxiv. doi: 10.1101/477737.

Castillo-Acosta VM, Vidal AE, Ruiz-Perez LM, Van Damme EI, Igarashi Y, Balzarini J and Gonzalez-Pacowska D (2013) Carbohydrate-binding agents act as potent trypanocidals that elicit modifications in VSG glycosylation and reduced virulence in Trypanosoma brucei. Molecular Microbiology 90, 665–679.

Castillo-Acosta VM, Ruiz-Perez LM, Van Damme EI, Balzarini J and Gonzalez-Pacowska D (2015) Exposure of Trypanosoma brucei to an N-acetylglucosamine-binding lectin induces VSG switching and glycosylation defects resulting in reduced infectivity. PLoS Neglected Tropical Diseases 9, e0003612.

Castillo-Acosta VM, Ruiz-Perez LM, Ettebarria J, Reichardt NC, Navarro M, Igarashi Y, Liekens S, Balzarini J and Gonzalez-Pacowska D (2016) Carbohydrate-binding non-peptidic primidomics for the treatment of acute sleeping sickness in murine models. PLoS Pathogens 12, e1005851.

Cestari I, Evans-Osses I, Schlapbach JI, de Muylder G, Daulouede S, Lecordier L, Uzureau P, Morias Y, Van Den Bossche W, Schwaeble W and Ferreira S (2013) Potent antiviral activity of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. Journal of Cell Science 112(Pt 17), 2799–2809.

Chawla M and Vishwakarma RA (2003) Alkylacylglycerolipid domain of GPI molecules of Leishmania is responsible for inhibition of PKC-mediated c-fos expression. Molecular Immunology 33, 328–334.

Chawla M and Vishwakarma RA (2003) Alkylacylglycerolipid domain of GPI molecules of Leishmania is responsible for inhibition of PKC-mediated c-fos expression. Molecular Immunology 33, 328–334.

Cavada BS, Sadler PJ and Balzarini J (2012) Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Medicinal Research Reviews 32, 349–387.

Freire-de-Lima L, Alisson-Silva F, Carvalho ST, Takiya CM, Rodrigues MM, DosReis GA, Mendonca-Previoati I, Previoati JO and Todeschini AR (2010) Trypanosoma cruzi subverts host cell sialylation and may compromise antigen-specific CD8+ T cell responses. The Journal of Biological Chemistry 285, 13388–13396.

Gonçalves MC, Almeida IC, Boulanger MJ and Acosta-Serrano A (1991) Complete structure of the glycan of lipopeptido-mannoprotein from Trypanosoma cruzi epimastigotes. The Journal of Biological Chemistry 266, 23670–23675.

Gonçalves MC, Almeida IC, Boulanger MJ and Acosta-Serrano A (1991) Complete structure of the glycan of lipopeptido-mannoprotein from Trypanosoma cruzi epimastigotes. The Journal of Biological Chemistry 266, 23670–23675.

Gonzalez-Pacanowska D (2007) The lipophosphoglycan of Trypanosoma cruzi, in The glycoconjugate book, pages 456–4569. Di Noia JM, Buscaglia CA, De Marchi CR, Almeida IC and Frasch AC (2002) A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas’ disease is due to a single parasite lineage. The Journal of Experimental Medicine 195, 401–413.

dos Santos SL, Freitas LM, Lobo FP, Rodrigues-Luiz GF, Mendes TA, Oliveira AC, Andrade LO, Chiarri E, Gazzinelli RT, Teixeira SM, Fujimoto RT and Bartholomeu DC (2012) The MASp family of Trypanosoma cruzi changes in gene expression and antigenic profile during the acute phase of experimental infection. PLoS Neglected Tropical Diseases 6, e1779.

Engstler M, Thilo L, Weise F, Grunfelder CG, Schwarz H, Boshart M and Overath P (2004) Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. Journal of Cell Science 117(Pt 7), 1105–1115.

Ferguson MA (1999) The stolone, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. Journal of Cell Science 112(Pt 17), 2799–2809.

Ferguson MA, Homans SW, Dwek RA and Rademacher TW (1988) Glycosyl-phosphatidylinositol moity that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239(Pt 5), 753–759.

Fernandes MP, Inada NM, Chiariotti MR, Araujo FF, Meirelles VF, Correia MT, Coelho LC, Alves MJ, Gadela FR and Vercesi AE (2010) Molecular and phenotypic variation of Trypanosoma cruzi death induced by Crithidia mollii seed lectin. Journal of Bioenergetics and Biomembranes 42, 69–78.

Ferreira V, Molina MC, Valck C, Rojas A, Aguilar L, Ramirez G, Schweabe W and Ferreira A (2004a) Role of calreticulin from parasites in its interaction with vertebrate hosts. Molecular Immunology 40, 1279–1291.

Ferreira V, Valck C, Sanchez G, Ginzgas A, Tzima S, Molina MC, Sim R, Schweabe W and Ferreira A (2004b) The classical activation pathway of the human complement system is specifically inhibited by calreticulin from Trypanosoma cruzi. The Journal of Immunology 172, 3042–3050.

Franco LH, Beverley SM and Zamboni DS (2012) Innate immune activation and subversion of Mammalian functions by Leishmania lipophosphogycan. Journal of Parasitology Research 2012, 165126.

Fonseca HO and Balzarini J (2012) Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Medicinal Research Reviews 32, 349–387.

Freire-de-Lima L, Alisson-Silva F, Carvalho ST, Takiya CM, Rodrigues MM, DosReis GA, Mendonca-Previoati I, Previoati JO and Todeschini AR (2010) Trypanosoma cruzi subverts host cell sialylation and may compromise antigen-specific CD8+ T cell responses. The Journal of Biological Chemistry 285, 13388–13396.

Gao W, Wortsis HH and Pereira MA (2002) The Trypanosoma cruzi trans-sialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion. International Immunology 14, 299–308.

Gaur U, Showalter M, Hickerson S, Dalvi R, Turco SJ, Wilson ME and Beverley SM (2009) Leishmania donovani lacking the Golgi GDP-Man transporter LPG2 exhibit attenuated virulence in mammalian hosts. Experimental Parasitology 122, 182–191.

Geiger A, Hirtz C, Becue T, Bellard E, Centeno D, Gargani D, Rossignol M, Cuny G and Peltier JB (2010) Exocytosis and protein secretion in Trypanosoma. BMC Microbiology 10, 20.

Ghoshal A and Mandal C (2011) A perspective on the emergence of sialic acids as potent determinants affecting Leishmania biology. Molecular Biology International 2011, 532106.

Ginger ML, Blundell PA, Lewis AM, Bowitt A, Gunal A and Barry JD (2002) Ex vivo and in vivo identification of a consensus promoter for VSG genes expressed by metacyclic-stage trypanosomes in the tsetse fly. Eukaryotic Cell 1, 1000–1009.

Gondim ACS, Roberto da Silva S, Mathys L, Noppen S, Liekens S, Holanda Sampaio A, Nagano CS, Renata Costa Rocha C, Nascimento KS, Cavada BS, Sadler PJ and Balzarini J (2019) Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. MedChemComm 10, 390–398.

https://doi.org/10.1017/S0031182019001355 Published online by Cambridge University Press
Bibliography

Gonzalez A, Valck C, Sanchez G, Hartel S, Mansilla J, Ramirez G, Fernandez MS, Arias JL, Galanti N and Ferreira A (2015) Trypanosoma cruzi carotenoids: topographical variations in parasites infecting murine macrophages. The American Journal of Tropical Medicine and Hygiene 92, 887–897.

Grab DJ, Shi Q, Lewicki MK, Wells CW, Verjee Y, Russo DC, Webster P, Naessens J and Fish WR (1993) The transferrin receptor in African trypanosomes: identification, partial characterization and subcellular localization. European Journal of Cell Biology 62, 114–126.

Grandgenett PM, Otsu K, Wilson HR, Wilson ME and Donelson JE (2007) A function for a specific zinc metalloprotease of African trypanosomes. PLoS Pathogens 3, 1432–1445.

Gruzinsky AE, DeMaster A, Hooper NM and Bangs JD (2003) Surface coat remodeling during differentiation of Trypanosoma brucei. The Journal of Biological Chemistry 278, 24665–24672.

Hasan I and Ozeki Y (2019) Histochemical localization of N-acetylhexosaminine binding lectin HOL-18 in Halichondria okadaei (Japanese black sponge), and its antimicrobial and cytotoxic anticancer effects. International Journal of Biological Macromolecules 124, 819–827.

Holder AA (1985) Glycosylation of the variant surface antigens of Trypanosoma brucei. Current Topics in Microbiology and Immunology 117, 57–71.

Husken, B, Husken D, Feitir G, Francois KO, Takahashi A, Van Laethem K, Schols D, Tanaka H and Balzarini J (2010) Actinohavin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope. Antimicrobial Agents and Chemotherapy 54, 3287–3301.

Iida K, Whitlow MB and Nussenzweig V (1989) Amastigotes of Trypanosoma cruzi escape destruction by the terminal complement components. The Journal of Experimental Medicine 169, 881–891.

Ilg T (2000) Proteophosphoglycans of Leishmania. Parasitology Today 16, 409–497.

Kaneko Y, Nimmerjahn F and Ravetch JV (1989) Amastigotes of Trypanosoma cruzi surface, a nanoscale patchwork quilt. The Journal of Experimental Medicine 172, 4902–4906.

Kipnis TL, Kretti AU and Dias da Silva W (1985) Transformation of trypanostatic forms of Trypanosoma cruzi into activators of alternative complement pathway by immune IgG fragments. Scandinavian Journal of Immunology 21, 217–226.

Kleshchenko YY, Moody TN, Furtak VA, Nimmerjahn F and Ravetch JV (1985) Transformation of Trypanosoma cruzi into activators of alternative complement pathway by immune IgG fragments. Scandinavian Journal of Immunology 21, 217–226.

Kleshchenko YY, Moody TN, Furtak VA, Ochieng J, Lima MF and Villalta F (2003) Human galectin-3 promotes Trypanosoma cruzi adhesion to human coronary artery smooth muscle cells. Infection and Immunity 71, 6717–6721.

Lantos AB, Carlevaro G, Arazo B, Ruiz Diaz P, Camara Mde L, Buscaglia CA, Bossi M, Yu H, Chen X, Bertozzi CR, MacEwan J and Campetella O (2016) Sialic acid glycobiology unveils Trypanosoma cruzi trypanomastigate membrane physiology. PLoS Pathogens 12, e1005559.

Leppert BJ, Mansfield JM and Paulnock DM (2007) The soluble variant surface glycoprotein of African trypanosomes is recognized by a macrophage face glycoprotein from Trypanosoma brucei. The Journal of Biological Chemistry 282, 24665–24672.

MacGregor P, Savill NJ, Hall D and Matthews KR (2011) Transmission stages dominate trypanosome within-host dynamics during chronic infections. Cell Host & Microbe 9, 310–318.

Maciel EV, Araujo-Filho VS, Nakawara M, Gomes YM, Coelho LC and Correia MT (2004) Mitogenic activity of Cratylium mollis lectin on human lymphocytes. Biologicals 32, 57–60.

Mager S, Radwanska M, Stijlemans B, Xong HV, Pays E and De Baetselier P (2001) A conserved flagellar pocket exposed high mannose moiety is used by African trypanosomes as a host cytokine binding molecule. The Journal of Biological Chemistry 276, 33458–33464.

Matsushita M (2010) Ficolins: complement-activating lectins involved in innate immunity. Journal of Innate Immunity 2, 24–32.

Matthews KR (2015) 25 years of African trypanosome research: from description to molecular dissection and new drug discovery. Molecular and Biochemical Parasitology 200, 30–40.

Mattos EC, Tonelli RR, Colli W and Alves MJ (2014) The Gp85 surface glycoprotein from Trypanosoma cruzi. Subcellular Biochemistry 74, 151–180.

Mazik MG, Avaya H and Jelinek PG (2005) Molecular recognition of carbohydrates with artificial receptors: mimicking the binding motifs found in the crystal structures of protein–carbohydrate complexes. Journal of the American Chemical Society 127, 9045–9052.

McConville MJ and Blackwell JM (1991) Developmental changes in the glycosylated phosphatidylinositol-4-phosphate. Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. The Journal of Biological Chemistry 266, 15170–15179.

McConville MJ and Ferguson MA (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the protozoan parasites and higher eukaryotes. Biochemical Journal 294(Pt 2), 305–324.

McConville MJ, Schnurr LF, Jaffe C and Schneider P (1995) Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in Old World species. Biochemical Journal 310(Pt 3), 807–818.

Mehlert A, Richardson JM and Ferguson MA (1998a) Structure of the glycosylphosphatidylinositol membrane anchor glycan of a class-2 variant surface glycoprotein from Trypanosoma brucei. Journal of Molecular Biology 287, 379–392.

Mehlert A, Zitzmann N, Richardson JM, Treumann A and Ferguson MA (1998b) Glycosylation of the variant surface glycoconjugates and procydlic acylic repetitive proteins of Trypanosoma brucei. Molecular and Biochemical Parasitology 91, 145–152.

Mehlert A, Wormald MR and Ferguson MA (2012) Modeling of the N-glycosylated transferrin receptor suggests how transferrin binding can occur within the surface coat of Trypanosoma brucei. PLoS Pathogens 8, e1002618.

Mitaoma J, Bao X, Petryanik B, Schaerli P, Gauguet JM, Yu SY, Kawashima H, Saito H, Ohtsubo K, Marth JD, Khoo KH, van Andrihan UH, Lowe JB and Fukuda M (2007) Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nature Immunology 8, 409–418.

Mucci J, Lantos AB, Buscaglia CA, Leguzamón MS and Campetella O (2017) The Trypanosoma cruzi surface, a nanoscale patchwork quilt. Trends in Parasitology 33, 102–112.

Nieminen J, Kuno A, Hiraibayashi J and Sato S (2007) Visualization of galectin-3 oligomerization on the surface of neutrophils and endothelial cells using fluorescence resonance energy transfer. The Journal of Biological Chemistry 282, 1374–1383.

Nogueira N, Bianco C and Cohn Z (2017) Studies on the selective lysis and purification of Trypanosoma brucei. The Journal of Experimental Medicine 142, 224–229.

Noireau F, Dissoque P and Jansen AM (2009) Trypanosoma cruzi: adaptation to its vectors and its hosts, Veterinary Research 40, 26.

Nolan DP, Jackson DG, Biggs MJ, Brabazon ED, Pais A, Van Laethem F, Paturiaux-Hanaocq F, Elliott JE, Voorhees CM and Pays E (2000) Characterization of a new alamine-rich protein located in surface microdomains in Trypanosoma brucei. The Journal of Biological Chemistry 275, 4072–4080.

Nunes MP, Fortes B, Silva-Filho JL, Terra-Granado E, Santos L, Conde L, de Araujo Oliveira I, Freire-de-Lima L, Martins MV, Pinheiro AA, Takvian CM, Freire-de-Lima CG, Todeschini AR, Dosreis GA and Morrot A (2013) Inhibitory effects of Trypanosoma cruzi sialoglycoproteins on CD4+ T cells are associated with increased susceptibility to infection. PLoS One 8, e77568.

O’Beirne C, Lowry CM and Voorhees HP (1998) Both IgM and IgG anti-VSG antibodies initiate a cycle of aggregation-disaggregation of bloodstream forms of Trypanosoma brucei without damage to the parasite. Molecular and Biochemical Parasitology 91, 165–193.
Olivier M, Atayde VS, Isnard A, Hassan K and Shio MT (2012) Leishmania virulence factors: focus on the metalloprotease GP63. Microbes and Infection 14, 1377–1389.

Overath P and Engstler M (2004) Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Molecular Microbiology 53, 735–744.

Pal A, Hall BS, Jeffries TW and Field MC (2003) Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochemical Journal 374(Pt 2), 443–451.

Panunto-Castelo A, Souza MA, Roque-Barreira MC and Silva JS (2001) KM (+), a lectin from Artocarpus integrifolia, induces IL-12 p40 production by macrophages and switches from type 2 to type 1 cell-mediated immunity against Leishmania major antigens, resulting in BALB/c mice resistance to infection. Glycobiology 11, 1035–1042.

Penning K, White JT, Cross EW, Cheney EE, Tamburini BA and Kedi RM (2013) T cell responses: naive to memory and everything in between. Advances in Physiology Education 37, 273–283.

Pereira-Chioccola VI, Acosta-Serrano A, Correia de Almeida I, Ferguson MA, Souto-Padron T, Rodrigues MM, Travassos LR and Schenkman S (2000) Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alpha-galactosyl antibodies. Journal of Cell Science 113(Pt 7), 1299–1307.

Petrović M, Imholz NC, Verhoeven TL, Balzarini J, Van Damme J, Schols D, Vanderleyden J and Lebeer S (2016) Lectin-like molecules of Lactobacillus rhamnosus GG inhibit pathogenic Escherichia coli and Salmonella biofilm formation. PLoS One 11, e0161337.

Piani A, Ilg T, Elefanty AG, Curtis J and Handman E (1999) Leishmania major proteophosphoglycan is expressed by amastigotes and has an immunomodulatory effect on macrophage function. Microbes and Infection 1, 589–599.

Pillai S, Netravali IA, Cariappa A and Mattoo H (2012) Siglecs and immune regulation. Annual Review of Immunology 30, 357–392.

Pinger J, Nesic D, Ali L, Aresta-Branco F, Lilic M, Chowdhury S, Kim HS, Verdi J, Raper J, Ferguson MAJ, Papavasiliou FN and Stebbins CE (2018) African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat. Nature Microbiology 3, 932–938.

Previato JO, Andrade AF, Pessolano MC and Mendonça-Previato L (1985) Incorporation of sialic acid into Trypanosoma cruzi macromolecules. A proposal for a new metabolic route. Molecular and Biochemical Parasitology 16, 85–96.

Previato JO, Gorin PA, Mazurek M, Xavier MT, Fournet B, Wieruszeski JM and Mendonca-Previato L (1990) Primary structure of the oligosaccharide chain of lipopeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi. The Journal of Biological Chemistry 265, 2518–2526.

Previato JO, Jones C, Goncalves LP, Wait R, Travassos LR and Mendonca-Previato L (1994) O-glycosidically linked N-acetylgalactosamine-bound oligosaccharides from glycoproteins of Trypanosoma cruzi. Biochemical Journal 301(Pt 1), 151–159.

Previato JO, Jones C, Xavier MT, Wait R, Travassos LR, Parodi AJ and Mendonca-Previato L (1995) Structural characterization of the major glycosylphosphatidylinositol membrane-anchored glycoprotein from epimastigote forms of Trypanosoma cruzi Y-strain. The Journal of Biological Chemistry 270, 7241–7250.

Previato JO, Sola-Penna M, Agyro S, Jones C, Oeltmann T, Travassos LR and Mendonca-Previato L (1998) Biosynthesis of O-N-acetylgalactosamine-linked glycans in Trypanosoma cruzi. Characterization of the novel uridine dipospho-N-acetylgalactosamine-polyolypeptide N-acetylgalactosaminyltransferase catalyzing formation of N-acetylgalactosamine alpha1→O-threonine. The Journal of Biological Chemistry 273, 14982–14988.

Previato JO, Wait R, Jones C, DosReis GA, Todeschini AR, Heise N and Previato LM (2004) Glycoinositolphospholipid from Trypanosoma cruzi: structure, biosynthesis and immunobiology, Advances in Parasitology 56, 1–122.

Priatel JJ, Chui D, Hiraoka N, Simmons CJ, Richardson KB, Page DM, Pillai S, Netravali IA, Cariappa A and Mattoo H (2012) Trypanosoma brucei cosylphosphatidylinositol membrane-anchored glycoprotein from epimastigotes: reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma brucei. IUBMB Life 64, 1498–1504.

Ramirez MI, Deolindo P, de Messias-Reason JJ, Arigi EA, Choi H, Almeida IC and Evans-Osses I (2017) Dynamic flux of microvesicles modulate parasite–host cell interaction of Trypanosoma cruzi in eukaryotic cells. Cell Microbiology 19, 1–15.

Redman CA, Green BN, Thomas-Oates JE, Reinhold VN and Ferguson MA (1994) Analysis of glycosylphosphatidylinositol membrane anchors by electro spray ionization-mass spectrometry and collision induced dissociation. Glycoconjugate Journal 11, 187–193.

Rogers ME and Bates PA (2007) Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathogens 3, e91.

Rogers ME, Ilg T, Nikolaev AV, Ferguson MA and Bates PA (2004) Transmission of cutaneous leishmaniasis by sand flies is enhanced by regulation of DPGP. Nature 430, 463–467.

Rogers M, Kropf P, Choi BS, Dillon R, Podinovskaia M, Bates P and Muller I (2009) Proteophosphoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathogens 5, e1000555.

Rojas-Bernabe A, Garcia-Hernandez O, Maldonado-Bernal C, Delegado-Dominguez J, Ortega E, Gutierrez-Kobeh L, Becker I and Aguirre-Garcia M (2014) Leishmania mexicana lipophosphoglycan activates ERK and p38 MAP kinase and induces production of proinflammatory cytokines in human macrophages through TLR2 and TLR4. Parasitology 141, 788–800.

Romano PS, Cuato JA, Cassassa AF, Vanrell MC, Gottlieb RA and Colombo MI (2012) Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life 64, 387–396.

Roy S and Mandal C (2016) Leishmania donovani utilize sialic acids for binding and phagocytosis in the macrophages through selective utilization of siglecs and impair the innate immune arm. PLoS Neglected Tropical Diseases 10, e004904.

Sacks D and Kamhawi S (2001) Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annual Review of Microbiology 55, 453–483.

Schenkman S and Mortara RA (1992) Hela cells extend and internalize pseudopodia during active invasion by Trypanosoma cruzi trypomastigotes. Journal of Cell Science 101(Pt 4), 895–905.

Schenkman S and Eichinger D (1993) Trypanosoma cruzi trans-sialidase and cell invasion. Parasitology Today 9, 218–222.

Schenkman S, Ferguson MA, Heise N, de Almeida ML, Mortara RA and Yoshida N (1993) Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Molecular and Biochemical Parasitology 59, 293–303.

Schneider P, Rosat JP, Bouvier J, Louis J and Bordier C (1992) Leishmania major: differential regulation of the surface metalloprotease in amastigote and promastigote stages. Experimental Parasitology 75, 196–206.

Schroen A, Meinke S, Ziegelmuller P and Thiem J (2007) Transsialidase from Trypanosoma cruzi: for regio- and stereoselective synthesis of N-acyl-modified sialylated oligosaccharides and measurement of transfer rates. Chemistry 13, 9012–9021.

Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM and Ferguson MA (1995) The lipid structure of the glycosylphosphatidylinositol anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. The Journal of Biological Chemistry 270, 37244–37253.

Srivastava S, Pandey SP, Jha MK, Chandel HS and Saha B (2010) Roles of glycosylation in Notch signaling. Current Topics in Developmental Biology 92, 131–164.

Stecconi-Silva RB, Andreoli WK and Mortara RA (2003) Parameters affecting cellular invasion and escape from the parasitophorous vacuole by differential infective forms of Trypanosoma cruzi. The Memorias do Instituto Oswaldo Cruz 98, 953–958.

Steverding D, Stierhof YD, Chaudhri M, Ligenberg M, Schell D, Beck-Sickingler AG and Overath P (1994) ESAG 6 and 7 products of Trypanosoma cruzi: a transferin binding protein complex. European Journal of Cell Biology 64, 78–87.

Stijlemans B, Caljon G, Van Den Abbeele J, Van Ginnerchacter JA, Magez S and De Teyl C (2016) Immune evasion strategies of Trypanosoma brucei.
within the mammalian host: progression to pathogenicity. *Frontiers in Immunology* 7, 233.

Strang AM, Allen AK, Holder AA and van Halbeck H (1993) The carbohydrate structures of *Trypanosoma brucei brucei* MfTat 1.6 variant surface glycoprotein. A re-investigation of the C-terminal glycan. *Biochemical and Biophysical Research Communications* 196, 1430–1439.

Striegel S and Dittel M (2003) A sugar discriminating binuclear copper(II) complex. *Journal of the American Chemical Society* 125, 11518–11524.

Tetley L, Turner CM, Barry JD, Crowe JS and Vickersman K (1987) Onset of expression of the variant surface glycoproteins of *Trypanosoma brucei* in the tsetse fly studied using immunoelectron microscopy. *Journal of Cell Science* 87(Pt 2), 363–372.

Tomita K, Nishio M, Saitoh K, Yamamoto H, Hoshino Y, Ohkuma H, Turco SJ and Sacks DL Urwyler S, Studer E, Renggli CK and Roditi I (1991) Expression of a stage-specific lipophosphoglycan in *Leishmania major* major amastigotes. *Molecular and Biochemical Parasitology* 45, 91–99.

Turco SJ and Sacks DL (1991) Expression of a stage-specific lipophosphoglycan in *Leishmania major* amastigotes. *Molecular and Biochemical Parasitology* 45, 91–99.

Vaidya T, Bakheit M, Hill KL, Olsson T, Kristensson K and Donelson JE (1997) The gene for a T lymphocyte triggering factor from African trypanosomes. *The Journal of Experimental Medicine* 186, 433–438.

van Kooyk Y and Rabinovich GA (2008) Protein–glycan interactions in the control of innate and adaptive immune responses. *Nature Immunology* 9, 593–601.

Vanhollebeke B, De Muylder G, Nielsen MJ, Pays A, Tebabi P, Dieu M, Raes M, Moestrup SK and Pays E (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to *Trypanosoma brucei* in humans. *Science* 320, 677–681.

Vanvalleghem G, Morias Y, Beschin A, Szymkowski DE and Pays E (2017) *Trypanosoma brucei* growth control by TNF in mammalian host is independent of the soluble form of the cytokine. *Scientific Reports* 7, 6165.

Veire M, Dutra JM, Carvalho TM, Cunha-e-Silva NL, Souto-Padron T and Souza W (2002) Cellular signaling during the macrophage invasion by *Trypanosoma cruzi*. *Histochemistry and Cell Biology* 118, 491–500.

Vray B, Camby I, Vercruyssse V, Mijatovic T, Bovin NV, Ricciardi-Castagnoli P, Kalnter H, Salmon I, Gabius HJ and Kiss R (2004) Up-regulation of galectin-3 and its ligands by *Trypanosoma cruzi* infection with modulation of adhesion and migration of murine dendritic cells. *Glycobiology* 14, 647–657.

Walsh TJ and Giri N (1997) Pradimicins: a novel class of broad-spectrum antifungal compounds. *European Journal of Clinical Microbiology & Infectious Diseases* 16, 93–97.

Watanabe M, Hiratani T, Uchida K, Ohtsuka K, Watabe H, Inouye S, Kondo S, Takeuchi T and Yamaguchi H (1996) The in-vitro activity of an antifungal antibiotic benanomicin A in comparison with amphotericin B. *Journal of Antimicrobial Chemotherapy* 38, 1073–1077.

Winter G, Fuchs M, McConville MJ, Stierhof YD and Overath P (1994) Surface antigens of *Leishmania mexicana* amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. *Journal of Cell Science* 107(Pt 9), 2471–2482.

Yao C, Donelson JE and Wilson ME (2003) The major surface protease (MSP or GP63) of *Leishmania* sp. Biosynthesis, regulation of expression, and function. *Molecular and Biochemical Parasitology* 132, 1–16.

Yao C, Li Y, Donelson JE and Wilson ME (2010) Proteomic examination of *Leishmania chagasi* plasma membrane proteins: Contrast between avirulent and virulent (metacyclic) parasite forms. *Proteomics – Clinical Applications* 4, 4–16.

Zamze SE, Wooten EW, Ashford DA, Ferguson MA, Dwek RA and Rademacher TW (1999) Characterisation of the asparagine-linked oligosaccharides from *Trypanosoma brucei* type II variant surface glycoproteins. *European Journal of Biochemistry* 187, 657–663.

Zamze SE, Ashford DA, Wooten EW, Rademacher TW and Dwek RA (1991) Structural characterization of the asparagine-linked oligosaccharides from *Trypanosoma brucei* type II and type III variant surface glycoproteins. *The Journal of Biological Chemistry* 266, 20244–20261.

Zhang LJ and Gallo RL (2010) Antimicrobial peptides. *Current Biology* 26, R14–R19.

Ziegelbauer K and Overath P (1992) Identification of invariant surface glycoproteins in the bloodstream stage of *Trypanosoma brucei*. *The Journal of Biological Chemistry* 267, 10791–10796.

Ziegelbauer K, Multhaup G and Overath P (1992) Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of *Trypanosoma brucei*. *The Journal of Biological Chemistry* 267, 10797–10803.

Žurga S, Nanut MP, Kos J and Sabotic J (2017) Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. *Oncotarget* 8, 26896–26910.