Screening of developmental dysplasia of the hip in the newborns

Bashar Sh. Mustafa, Mohamad Ah. Jasim
College of pharmacy, University of Mosul, Iraq

ABSTRACT

Background: Newborn babies are known to have risk for occurrence developmental dysplasia of the hip so early clinical screening test is very important to detect this problem and prevent further abnormal growth. The aim of this study is to find the rate of occurrence of developmental dysplasia of the hip (DDH) among newborn babies and establish good screening program.

Patients and methods: From August 2006 to March 2009 in AL-Khansaa Maternity and Children Teaching hospitals, 9594 newborn babies were examined clinically using Barlows and Ortolani tests for detecting DDH.

Results: Only 111 newborn babies out of 9594 examined babies had DDH and it was found more common among female and more on left side than right side. Female sex, rural residence, first born baby breach, caesarean section positive family history, multiple pregnancy post-mature babies, high birth weight ( > 3500 g).

Conclusion: The occurrence of neonatal DDH is still form a major problem among newborn babies causing a lot of morbidity need to follow up to avoid further complicating problem.

Keywords: DDH, newborn.

Developmental dysplasia of the hip (DDH) is an abnormal formation of the hip joint occurring between organogenesis and maturity as a result of instability. It occurs usually in the neonatal period, dislocations tend to occur after delivery, and thus are postnatal in origin, although the exact time when dislocations occur is controversial. The term DDH is now used instead of congenital dislocation.
of hip (CDH), since they are not truly congenital in origin. Developmental dysplasia of the hip is classified into two major groups: Typical in a neurologically normal infant Teratologic in which there is an underlying neuromuscular disorder, such as myelodysplasia, arthrogryposis multiplex congenita or a syndrome complex.

Teratologic dislocation occurs in utero and is therefore congenital, in which the hip is fixed in the dislocated position at birth.

A typical dislocation occurs in an otherwise healthy infant and may occur in utero, at birth or after birth. Developmental dysplasia of the hip includes hips that are unstable, malformed, subluxated or dislocated.

In 1978, an extensive programme of early diagnosis and treatment of DDH done, while in 1985 an extensive neonatal hip surveys were begun in USA, Sweden and Britain. Very early diagnosis in these centres has resulted in simple, safe and effective treatment, and led to excellent results.

The causes of DDH are multifactorial, which include genetic factors, physiological, mechanical, postnatal factors and other risk factors.

**Clinical screening**

The purpose of screening programs is to diagnose dislocation at early age when treatment is easy and the prognosis is excellent, also to prevent pain, limitation of function and disability due to dislocated or subluxated hips.

Ortolani/Barlow's maneuvers are the only currently acceptable non-traumatic procedures which do not unduly expose all children to routine irradiation. The Ortolani / Barlow's tests are 100% specific but only 6% sensitive in expert hands.

**Patients and methods**

Nine thousand five hundred and ninety two newborn babies out of were examined clinically (in patients) for the presence of any sign of DDH in Al-Khansaa Maternity and Children Teaching Hospitals during the period from the 1st of August to the March.

Detailed information were taken from their mothers or any near relative including:

1. General information: Sex, date of birth, residence, age.
2. Maternal information: Mother's age, birth order, parental consanguinity, intrauterine presentation and type of delivery.
3. Family history of DDH.
4. Neonatal information: Multiple pregnancy, gestational age and birth weight.
5. Presence of other congenital anomalies.
6. Presence of asymmetry in skin thigh creases and inguinal skin folds.

All these examined cases came from Mosul city and its vicinity.

Teratological and neuromuscular cases were excluded.
The clinical examination consisted of the following maneuver: Ortolani (reduction) test: to detect dislocated hip, with the newborn relaxed and content on a firm surface the hips and knees are flexed to $90^\circ$, the hips are examined once at a time, then grasping the newborn thigh with the middle finger over the greater trochanter and lifts the thigh to bring the femoral head from its dislocated posterior position to reducing the femoral head into the acetabulum. In a positive finding, examiner senses reduction by a palpable and nearly audible clunk (Figure 1).

Barlow (dislocation) test: to detect dislocatable hips. This test was also carried as the following: After placing the baby on his/her back with the leg pointing towards the examiner, the hips are flexed to a right angle and the knees are fully flexed. The finger applied to the greater trochanter and the thumb of each hand is applied to the inner side of the thigh opposite to the position of the lesser trochanter as shown in (Figure 2). Then the newborn thigh is adducted with a gentle downward pressure (posterior force). If the hip is dislocatable this usually readily felt as femoral head slips out of the acetabulum. After release of posterior pressure the hip will usually relocate spontaneously.
The results were analyzed statistically by using Chi-square ($\chi^2$) test, Odd's ratio and Confidence Interval (C.I.) for the Odd's ratio. $P$ value less than $0.05$ was considered significant.

**Results**

One hundred and sixty two newborn babies out of the examined 2,959 proved to have DDH in one or both hip joints during the first few hours after birth forming a rate of $61.9/1,000$ live births.

**Table 1.** Sex distribution of neonatal DDH cases and control

| Sex    | Cases | Control |
|--------|-------|---------|
|        | No.   | %       | No.   | %   |
| Female | 122   | 65      | 136   | 68  |
| Male   | 40    | 20      | 168   | 52  |
| Total  | 162   | 100     | 324   | 100 |

$\chi^2 = 23.5, df = 1, P \leq 0.01$, OR = 3.3, C.I = 2.91 – 4.57

$P$-Value is significant.

Table 1 shows that the majority of the cases were female ($\%$) with a female to male ratio of $3:1$. 

Figure 2. Barlow's test
Table 2. Residence of neonatal DDH cases and control

| Residence | Cases | Control |
|-----------|-------|---------|
|           | No.   | %       | No.   | %       |
| Rural     | 65    | 53      | 45    | 20      |
| Urban     | 160   | 60      | 260   | 80      |
| Total     | 162   | 100     | 324   | 100     |

\( \chi^2 = 21.7, df = 1, P \leq 0.100, OR = 2.1, C.I = 1.04 - 3.61 \)

Table 2 shows that a highly significant difference between cases and control in their residence (\( P \) value \( \leq 0.100 \)) were a good number of patients came from rural areas (\( OR = 2.1 \)).

Table 3. Distribution of neonatal DDH cases and control according to birth order

| Birth order | Cases | Control | P-value | OR | C.I of OR |
|-------------|-------|---------|---------|----|-----------|
|             | No.   | %       | No.     | %  |           |
| 1           | 57    | 35      | 72      | 19 | \( \leq 0.001 \) | 3.3 | 1.01 - 10.5 |
| 2           | 30    | 18.5    | 46      | 14 | N.S       | 1.3 | 0.87 - 1.87 |
| \( \geq 3 \) | 75    | 46.5    | 71      | 27 | \( \leq 0.001 \) | 0.43 | 0.29 - 0.63 |
| Total       | 162   | 100     | 324     | 100|           |

Overall \( \chi^2 = 20.36, df = 4, P \leq 0.001 \)

From Table 3, it is clear that the first born baby is affected more than the subsequent babies with a highly significant difference (\( P \)- value \( \leq 0.001 \)) and OR = 7.9 for the first born baby.

Table 4. Parental consanguinity in neonatal DDH cases and control

| Parental consanguinity | Cases | Control |
|------------------------|-------|---------|
|                        | No.   | %       | No.   | %       |
| Present                | 81    | 50      | 150   | 47.5    |
| Absent                 | 177   | 100     | 374   | 53.7    |
| Total                  | 162   | 100     | 324   | 100     |

\( \chi^2 = 5.5, df = 1, P = 0.018, OR = 1.76, C.I = 1.08 - 1.74 \)

Table 4 shows that consanguineous marriage is a risk for the occurrence of DDH (\( OR = 1.76 \)) although there is no significant difference between cases and control in the frequency of parental consanguinity.
Table 5. Intrauterine presentation of neonatal DDH cases and control

| Intrauterine presentation | Cases |  | Control |  |
|--------------------------|-------|---|---------|---|
|                          | No.   | % | No.     | % |
| Breech                   | 14    | 8 | 12      | 7.6 |
| Non-breech               | 149   | 92 | 312     | 96.3 |
| Total                    | 162   | 100 | 324     | 100 |

\[ \chi^2 = 2.31, df = 1, P = 0.13, OR = 1.24, C.I = 1.02 - 1.48 \]

Table 5 shows that breech presentation is a risk factor with a significant difference (P-value = 0.13, OR = 1.24) between cases and control.

Table 6. Type of delivery of neonatal DDH cases and control

| Type of delivery     | Cases |  | Control |  |
|----------------------|-------|---|---------|---|
|                      | No.   | % | No.     | % |
| Caesarean section    | 31    | 19 | 42      | 13 |
| Vaginal delivery     | 131   | 81 | 282     | 87 |
| Total                | 162   | 100 | 324     | 100 |

\[ \chi^2 = 3.22, df = 1, P = 0.076, OR = 1.7, C.I = 1.59 - 1.87 \]

Table 6 shows no significant difference between cases and control, while the OR seems to be operational in the causation of DDH (OR = 1.7).

Table 7. Family history of neonatal DDH cases and control

| Family history | Cases |  | Control |  |
|----------------|-------|---|---------|---|
|                | No.   | % | No.     | % |
| Present        | 43    | 76 | 7        | 7 |
| Absent         | 119   | 74 | 304     | 94 |
| Total          | 162   | 100 | 324     | 100 |

\[ \chi^2 = 9.47, df = 1, P = 0.001, OR = 4.4, C.I = 2.92 - 6.4 \]

Table 7 shows that 76% of cases had a family history of DDH with a highly significant difference (P ≤ 0.001, OR = 4.4).
Table 8. The association of multiple pregnancy with DDH

| Multiple pregnancy | Cases | Control |
|--------------------|-------|---------|
|                    | No.   | %      | No. | %    |
| Present            | 9     | 5.5    | 2   | 0.6  |
| Absent             | 153   | 94.5   | 322 | 99.4 |
| Total              | 162   | 100    | 324 | 100  |

\[ \chi^2 = 11.609, \text{df} = 1, P = 0.001, \text{OR} = 3.1, \text{C.I} = 1.36 - 5.89 \]

Table 8 shows that multiple pregnancy is a risk factor for the occurrence of DDH (\( P = 0.001, \text{OR} = 3.1 \)).

Table 9. Distribution of neonatal DDH cases and control according to the gestational age

| Gestational age | Cases | Control |
|-----------------|-------|---------|
|                 | No.   | %      | No. | %    |
| Full-term       | 154   | 95     | 366 | 94.5 |
| Pre-term        | 3     | 1.8    | 14  | 3.3  |
| Post-term       | 0     | 0.2    | 4   | 1.3  |
| Total           | 162   | 100    | 334 | 100  |

Overall \( \chi^2 = 3.8, \text{df} = 2, P = 0.143 \) (N.S)

Table 9 shows no significant difference in the gestational age of DDH cases and control, but there is additional risk for post-term newborn to have DDH than that of pre-term (\( \text{OR} = 2.5 \)).

Table 10. Distribution of neonatal DDH cases and control according to birth weight

| Birth weight (gram) | Cases | Control |
|---------------------|-------|---------|
|                     | No.   | %      | No. | %    |
| \(< 2500\)          | 6     | 3.7    | 17  | 4.3  |
| \(2500 - 3500\)     | 91    | 59.3   | 268 | 82.7 |
| \(> 3500\)          | 7     | 4.4    | 41  | 11.4 |
| Total               | 164   | 100    | 334 | 100  |

Overall \( \chi^2 = 4.8, \text{df} = 2, P \leq 0.01 \)
Table 10 reveals that higher birth weight of the baby is effective in the causation of DDH (P-Value ≤ 0.100).

Table 11. The association of congenital anomalies with neonatal DDH cases and control

| Associated anomalies | Cases | Control |   |
|----------------------|-------|---------|---|
|                      | No.   | %       | No. | %  |
| Present              | 19    | 9.2     | 4   | 1.2 |
| Absent               | 147   | 90.8    | 320 | 98.8|
| Total                | 166   | 100     | 324 | 100 |

$\chi^2 = 8.15, df = 1, P \leq 0.100, OR = 8.1, C.I = 3.21 - 21.10$

Table 11 demonstrates a highly significant (P-Value ≤ 0.100, OR = 8.1) association between DDH and other congenital anomalies such as congenital torticollis, metatarsus adductus, talipes calcaneovalgus and other congenital anomalies.

Table 12. Results of Ortolani test

| Ortolani test | No. | %  |
|---------------|-----|----|
| Total Positive cases | 66 | 4.0 |
| Total negative cases | 96 | 6.0 |
| Total cases | 162 | 100 |

Table 12 shows that Ortolani test was positive in 4.0% of cases.

Table 13. Results of Barlow's test

| Barlow's test | No.   | %   |
|---------------|-------|-----|
| Total Positive cases | 116 | 71.7 |
| Total negative cases | 46 | 28.3 |
| Total cases | 162 | 100 |

Table 13 shows that Barlow's test was positive in 71.7% of cases.
Table 14. The laterality distribution of neonatal DDH cases

| Laterality  | Cases | %   |
|-------------|-------|-----|
| Left        | 67    | 24.4|
| Right       | 36    | 14.2|
| Bilateral   | 59    | 36.4|
| Total cases | 162   | 100 |

Table 14 shows that the left hip is more commonly involved than right hip, and bilateral involvement of the hips is also common.

Table 15. Skin thigh creases for neonatal DDH cases and controls

| Skin thigh creases | Cases  | Control | P-value | OR   | C.I   |
|--------------------|--------|---------|---------|------|-------|
|                    | No.    | %       | No.     | %    |       |
| Equal              | 107    | 60      | 256     | 79   | \leq 0.01 | 0.5 | 0.33 - 0.77 |
| Unequal            | 50     | 30      | 38      | 11.7 | \leq 0.01 | 3.3 | 2.07 - 5.28 |
| Inapparent         | 7      | 5       | 3       | 9.3  | \leq 0.01 | 0.4 | 0.17 - 1.01 |
| Total              | 162    | 100     | 324     | 100  |       |

\( \chi^2 = 26.87, \text{ df} = 2, P \leq 0.001 \)

Table 15 demonstrates that unequal skin thigh creases were more common in the cases than in the control group (P-value \( \leq 0.001 \)). Also an evident difference is observed among those with equal and inapparent creases.

Table 16. Inguinal skin fold for neonatal DDH cases and control

| Inguinal skin folds | Cases  | Control |       |
|---------------------|--------|---------|-------|
|                     | No.    | %       | No.   | %    |
| Equal               | 168    | 76.2    | 294   | 90.7 |
| Unequal             | 53     | 32.8    | 30    | 9.3  |
| Total               | 162    | 100     | 324   | 100  |

\( \chi^2 = 41.9, \text{ df} = 1, P \leq 0.001, \text{ OR} = 4.8, \text{ C.I} = 2.99 - 7.77 \)
Table 61 shows that unequal inguinal skin folds were more common in DDH cases than in the control group (P-value ≤ 0.1). One hundred forty babies (68.4%) out of 261 came for follow-up every two weeks and at the end of one month of their age (86%) of them, their hips were completely stabilized following our instructions of using double or triple nappies together with the avoidance of heavy wrapping and rolling bed. The other remaining 3 cases (1.5%) were asked to come back for other follow-up for every two weeks.

Discussion
In this study, the rate of occurrence of neonatal DDH was 61.9/1000 live birth, and this number are nearly similar to that reported by other studies 31-51. Female sex was more affected than male sex as evident by the high OR = 3.3, which means that a female sex is an effective risk factor. Female to male ratio, in this study, was 3:1 similar to that found by other studies 3-4, but Apley's 14 found a higher ratio of 7:1.

DDH was more common in cases who came from rural areas than in the control group, a difference of highly significant value (P ≤ 0.1) with additional risk for rural residence among DDH cases OR = 2, and this is because the incidence of DDH is influenced by geographic and ethnic factors as stated by other studies 1-2, however Al-Kattan 15 found no additional risk for rural residence among DDH cases.

First order baby is more prone to have DDH where the OR=3.5 in contrast to the third or more orders in the family where the OR is 0.4. These findings are consistent with other studies 3,12.

Parental consanguinity was not significant between the cases and control although OR of 1.1 which means that probably consanguineous marriage is a risk factor similar to that found by Al-Kattan 15.

Breech presentation was a risk factor in the causation of DDH (OR=2.2). These result are in agreement with other studies also found that breech presentation and positive family history were the two most common risk factors associated with DDH. Caesarean section seems to be a risk factor for DDH where OR is 2.5 similar to that found by Al-Kattan 15.

Family history was positive in 15 cases and OR was 5.4 which means a high risk factor and this is probably explained by the presence of genetic factor this in agreement with other studies showed strong family history in their studies.

Multiple pregnancy was a risk factor for DDH where OR was 2.1, probably due to the effect of crowding phenomenon within the intrauterine cavity, A similar association was found by Al-Kattan 15. Post-maturity was a risk factor to have DDH (OR=2.5) while preterm delivery does not appear to predispose to DDH (OR=0.4) as Apley's 15 claimed that high level of maternal hormones in the last few weeks of pregnancy might aggravate ligamentous laxity in the infant, and this could account for the rarity of hip instability in premature babies born before the hormones reach their peak. All these findings are consistent with those previously reported 12,22.

High birth weight > 3.3 kg seems to be effective in the causation of DDH where OR=1.7, while babies with low birth weigh < 2.4 kg were protected from having DDH (OR=1.7).
This is similar to the study done by Bower et al who supported the hypothesis of intrauterine constriction as a cause of neonatal DDH. Also Beaty reported a low incidence of DDH in babies with low birth weight which was probably due to their premature delivery excluding them from the joint relaxing effects of maternal hormones in the last few weeks of pregnancy.

The presence of associated congenital anomalies was more common in DDH cases than in the control group where the OR was $\times A$, which means an increase risk of DDH among cases with associated anomalies. Beaty found a strong association between DDH and other musculoskeletal anomalies such as congenital torticollis, metatarsus adductus and talipes calcaneovalgus, but Al-Kattan found no significant association between DDH and other anomalies.

Ortolani test was positive in $4.3\%$ of patients and Barlow's test positive in $71.7\%$ of them, this is in agreement with other workers. Left-sided and bilateral hip involvement were found in $41.4\%$ and $75.4\%$ of patients respectively, and right hip involvement in $74.4\%$ of patients, similar to that reported by other studies. On the other hand Bower C found that bilateral involvement was twice as common in the neonatal cases and left hip involvement more than right hip involvement in the post-neonatal cases.

Unequal skin thigh creases ($3.9\%$) were more common in the cases than in the control group ($1.4\%$), a difference of a highly significant value ($P \leq 0.001$). Asymmetry of the skin folds is a common clinical finding of DDH.

Unequal inguinal folds was found in $77.8\%$ of the cases compared to $5.3\%$ of the control group ($P$ value $\leq 0.001$). Beaty noticed that most of his DDH patients had abnormal inguinal folds and recommended that inguinal fold assessment is useful in screening methods and suggested that babies with asymmetrical inguinal folds need further evaluation.

One hundred ten babies ($78\%$) had clinical stabilization of the hip joint at the age of four weeks, and this is consistent with other results.

Conclusions
Developmental dysplasia of the hip is still a major problem among newborn babies causing a lot of morbidity to them. Female sex, rural residence, first born baby, parental consanguinity, breech presentation, caesarean section, positive family history, multiple pregnancy, post-mature babies, high birth weight ($>4000$ g) and other associated congenital anomalies are all risk factors for DDH. Left hip dysplasia was more common than bilateral hip dysplasia which was more common than right hip dysplasia. The majority of the babies ($78\%$) improved nicely at the age of one month by adoption of double or triple nappies and following our instructions.

References
1. Novacheck TF. Common orthopedic problems: Developmental dysplasia of the hip. Pediat. Clin North America. 1981; 34(4): 928-848.
2. Thompson GH, Scoles PV. Bone and Joint Disorders. In: Nelson Textbook of Pediatrics. Behrman RE, Kliegman RM, Jenson HB. (eds.) 6th ed., Philadelphia, WB. Saunders Co., 2002: 770-9.
3. Committee on Quality Improvement, subcommittee on Developmental Dysplasia of the Hip. Clinical practice guideline:
early detection of developmental dysplasia of the hip. Pediatrics 1999;164 (5 pt 1):A99-9.*.

4. Linda M, Frederick R. Screening for Developmental Dysplasia of the Hip. American Family Physician. 1999;165.

5. Adams JC. Articular Disorders of the Hip. In: Outline of Orthopedics 4th ed., Churchill Livingstone, 1981;336-34.

6. Aronsson DD, Goldberg JM, Kling JRTF, et al. Developmental dysplasia of the hip. Pediatrics 1991;49:492-493.

7. Catteral A. The early diagnosis of congenital dislocation of the hip. J Bone Joint Surg 1991;67 (4):515–616.

8. Barr DG, Crofton PM, Goel KM. Disorders of bone, joints and connective tissue. In: Forfar and Arneil's Textbook of pediatrics. Campbell AG, Neil McIntosh (eds.), 5th ed., Churchill Livingstone, 1991:941–1551.

9. Dezateux C., Godward S. A national survey of screening for congenital dislocation of the hip. Arch Dis Child 1991;66 (2):430-43.

10. Paton RW. Topic for debate, at the crossroads - neonatal detection of developmental dysplasia of the hip. J Bone Joint Surg 1991;136-B (3):176.

11. Kessel L, Boundy U. A colour atlas of clinical orthopaedic, Regional section.Wolf Medical Publications Ltd. UK., 1988;134

12. Eilert R.E., Georgopoulous G.: Orthopedics. In: Current pediatric diagnosis and treatment. William W. Hay, Anthony R., Myron J., Judith M. (eds.), 14th ed., Asimon and Schuster Company, 1991;396-397.

13. Danielsson LG. Instability of the hip in neonates, an ethnic and geographical study in 1991;31.

newborn infants in Malmo. J Bone Joint Surg 1991;84-A (6):459-44.

14. Bialik V, Bialik G.M, Blazers, et al. Developmental dysplasia of the hip: A new approach to incidence. Pediatrics 1991;115(1):92-9.

15. Hanson G. Congenital dislocation of the hip joint: Problems in diagnosis and treatment. Current Orthopedics 1989;2:1-4-11.

16. Lopez MJ, Navarro M.S., Martinez E. M. Echographic instability, a new concept in developmental dysplasia of the hip. J Bone Joint Surg 1991;77-B: 199.

17. Al-Kattan H. Risk factors for Developmental Dysplasia of the Hip. A thesis submitted for Postgraduate study, Mosul University, 1991;1-2.

18. Al-Jumaily MA. The early diagnosis of the congenital dislocation of the hip: (The need for infant screening). A thesis submitted for post graduate study, Baghdad University, 1991;2.

19. Apley's GA. Regional orthopedic's hip. Apley's system of orthopedic and fractures. 7th ed., Butter Worth - Heinemann, UK., 1991:1-34.

20. Beaty JH. Congenital and developmental anomalies of hip and pelvis. In: Canale ST., Campbells Operative Surgery. 4th ed., Mosby - Year Book, St. Louis, USA, 1991:1-23.

21. Chan A, Mc Caul KA, Cundy PJ, et al. Perinatal risk factors for developmental dysplasia of the hip. Archives for Disease in childhood 1997;72 (2):F49–F100.

22. Bower C, Stanley FJ, Krickfer A. Congenital dislocation of the hip in Western Australia, a comparison of neonatally and postneonatally diagnosed cases. Clin Orthop Rel. Res 1987;224:24-44.

23. Omeroglu H, Koparal S. The role of clinical examination and risk
factors in the diagnosis of developmental dysplasia of the hip: a prospective study in referred young infants. Arch Orthop Trauma Surg 2001;121(1-2):7-11.

24. Darmonov AV, Zagora S. Clinical screening for congenital dislocation of the hip. J Bone Joint Surg 1991;73-A (3):383-7.