THE TECHNIQUE OF THE EVALUATION OF AESTHETIC PROPERTIES OF FABRICS FOR THE JACKETS OF DIFFERENT PRICE GROUPS

Abstract: The paper presents the technique for evaluating the aesthetic properties of the fabric, taking into account the complex index. The technique allows to define conformity of fabric to given price group.

Key words: choice of fabric, price group, aesthetic properties, a complex index.

Language: English

Citation: Demskaya AA, Pischinskaya OV (2016) THE TECHNIQUE OF THE EVALUATION OF AESTHETIC PROPERTIES OF FABRICS FOR THE JACKETS OF DIFFERENT PRICE GROUPS. ISJ Theoretical & Applied Science, 02 (34): 49-53.

Introduction

Today the conditions of the market constantly change. Results of work of sewing enterprises depend on accuracy and correctness of choice of the segment of the market for apparel manufacturing. The structure of population needs becomes difficult. Therefore address approach to process of the clothes issue is the most important condition of the sales promotion of the production. The enterprises should reveal clearly determined market segment, his need and expectation for issued production.

To date the selection of materials for clothes is performed using methods for assessing its quality and properties. However, not enough studied the issue of science-based materials for the differentiation of products in different price categories [1, p. 290-292].

To identify the importance of groups of properties of fabric (for example, jackets) for different price categories, conducted expert interviews. The result revealed that the group of aesthetics is a key in selecting fabric into the package of the apparel. Features aesthetic properties partially or completely determined by the subjective perception of the person. The basis of this assessment are the physical properties of the fabrics to be measured [2, p. 128]. Therefore, to evaluate the aesthetic properties of the materials determined their nomenclature which includes: touch, texture, stiffness, drape, stability, and surface coloring material [3, p. 68]. Such properties of the materials must be assessed comprehensively. In connection with this technique complex evaluation of the aesthetic properties of the fabric is designed. The result of this evaluation is to determine the complex index of the aesthetic characteristics of the fabric Y_{ae}:

$$Y_{ae} = \gamma_1 a1 b1 + \gamma_2 a2 b2 + \gamma_3 a3 b3 + \gamma_4 a4 + \gamma_5 Y_T$$ \hspace{1cm} (1)

where γ_i - weighting factor of i-th aesthetic property of the fabric; Y_T - complex index of tactile properties of the fabric; a_i - weighting factor score i-th aesthetic property of the fabric; b_i - scores i-th aesthetic property of the fabric.

To determine the values of indicators of fabric properties that are part of the complex index of aesthetics, it is necessary to perform five steps (table1).

According to the developed method, the first step is to determine the source data - the thickness of the fabric, surface density of the fabric, the coefficient of tangential resistance, the interlacing of threads in fabric and Surface fabric filling.

Studies by ANOVA, depending installed between the thickness of the fabric, rigidity at material bend and drape coefficient (table 2):
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHHH (Russia)	0.179
PIIF (India)	1.940
GIF (Australia)	0.564
SJIF (Morocco)	2.031

\[
\bar{y} = ax + b, \tag{2}
\]

where \(a \) and \(b \) are defined by the formulas:

\[
a = \frac{n \sum \Sigma m_y x y - \Sigma m_x \Sigma m_y x y}{n \sum \Sigma m_x x^2 - (\Sigma m_x x)^2}, \tag{3}
\]

\[
b = \frac{\Sigma m_x y \Sigma m_y - \Sigma m_x \Sigma m_y x y}{n \sum \Sigma m_x x^2 - (\Sigma m_x x)^2}, \tag{4}
\]

The technique of the evaluation of aesthetic properties of fabric.

№	An action to perform	Received result
1	Definition of the values of initial data	Surface density of the fabric, g/m²
		The thickness of the fabric, mm
		The interlacing of threads in fabric
		Surface fabric filling, %
		The coefficient of tangential resistance of the fabric
		Rigidity at material bend, sN
		Drape coefficient, %
2	Definition of the stability of the fabric surface abrasion	Score of changes in the surface structure of the fabric
3	Determination of color fastness of the material	Score of color fastness of the fabric
4	Definition of fabric invoice	Score of fabric texture
5	Calculation of complex index properties of tactile (handle) of the fabric	Score of fabrics handle
6	Calculation of complex index of fabrics aesthetics	Score of complex index of fabrics aesthetics. Determining the price group of fabric

The empirical formula depending on the properties of the fabric.

The price group of fabric	Regression equations	
	Test sample by lobar thread	Test sample by weft
1	2	3

Dependence stiffness parameters (\(y \)) of the fabric thickness (\(x \))

- High: \(y = 0.2x + 0.7 \)
- Middle: \(y = 3.4x - 0.4 \)
- Low: \(y = 1.8x + 0.1 \)

The dependence of the values of the drape (\(y \)) from the hardness of the fabric (\(x \))

- High: \(y = -107.1x + 148.9 \)
- Middle: \(y = -31.5x + 95.0 \)
- Low: \(y = -84.9x + 134.1 \)

At the second stage evaluation of changing the structure of the fabrics surface. Tests produced according to the requirements [5, p.8]. In accordance with the results, given score for fabric (table 3).
Impact Factor:

	ISRA (India)	SIS (USA)	ICV (Poland)	PII (Russia)	PII (KZ)	ESJI (KZ)	SIS (USA)	RIJN (Russia)	SJIF (Morocco)
	1.344	0.912	6.630	0.179	1.042	0.912	0.560	0.179	2.031
	ISI (Dubai, UAE)	0.829							
	GIF (Australia)	0.564							
JIF	1.500								

Table 3

Score changes in the fabrics structure.

Score	Changes in the fabrics structure		
	The appearance of fluffiness after 100 cycles	Pilling after 300 cycles	Change in the fabrics structure
3 points	-	-	-
- matching 0	-	-	-
positions			
2 points	-	+	+
- matching 1	-	+	+
positions			
1 points	+	-	+
- matching 2			
positions			
0 points	+	+	+
- matching 3			
positions			

In the third stage material discoloration evaluation by comparing the test sample with a standard. For this test is carried out in accordance with [6, p.7]. Group of color fastness is determined in accordance with a variety of fabrics and assigned scores (table 4).

Table 4

Score in accordance with the regulatory performance of color fastness of fabric (GOST 9733.0-83).

The assortment fabrics	Score	Weighting factor score, ai		
	Ordinary color fastness	Fast	Very fasts	ai
Wool	1	2	3	0,33
Cotton	-	1	2	0,50
Silk	1	2	3	0,50
Line	-	1	2	0,33

In the fourth stage, the texture of the fabric assessment (table 5). During the research the incidence of types of textures is determined for each price category fabrics [7, p. 34-38].

Table 5

Score of fabric texture.

Fabric invoice	Low price group	Middle price group	High price group
	Score		
	Low	Middle	High
Plain thick	1	3	2
Plain sparsity	1	2	3
Glare	1	2	3
Granular	3	2	1
Fine fabrics relief	1	3	2
Patterned smooth	2	3	1
Patterned-relief	1	2	3

In the fifth stage of the complex calculation of index of tactile properties of the fabric produced. Tactile properties - a comprehensive description of the fabric, which was offered to evaluate, taking into account the thickness (mm); surface density of fabric (g/m²); the coefficient of tangential resistance of the fabric; rigidity (mkN·cm²); surface fabric filling (%). The weight of the individual unit properties and their performance largely differ from each other for the products of different price categories.

Calculation of the complex index of tactile properties of the fabric Y_{ik} produced by the formula:

$$
Y_{ik} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{i} + \frac{\gamma_{2}}{a_{2}} + \frac{\gamma_{3}}{a_{3}} + \frac{\gamma_{4}}{a_{4}} + \frac{\gamma_{5}}{a_{5}} + \frac{\gamma_{6}}{a_{6}}
$$
Impact Factor:

Journal	IF
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHHH (Russia)	0.179
ESJI (KZ)	1.042
ICV (Poland)	6.630
PIF (India)	1.940
SJIF (Morocco)	2.031
GIF (Australia)	0.56
ESJI (KZ)	1.042

where \(n \) - number of objective characteristics, included in the complex index;

\(\gamma_i \) - weighting factor of \(i \)-th impersonal property of the fabric;

\[\alpha_i = \text{the arithmetic mean of the expert evaluation of the degree of conformity of} \ i\text{-th impersonal property of the fabric to purpose products (price range).} \quad [8, \text{p. 74-75}]. \]

The results determined in accordance with the scale of assessment of complex tactile indicators fabric (table 6).

Table 6

Significance	Valuation
0÷0,75	Excellent
0,75÷0,5	Good
0,5÷0,25	Satisfactorily
0,25÷0	Bad

At the sixth stage, the complex index calculation aesthetic properties of the fabric according to the formula 1, based on scores aesthetic properties of the material and their weighting coefficients (table 7).

Table 7

Aesthetic properties of the fabric	Score \(i \)-th aesthetic property, \(b_i \)	Weighting factor score, \(a_i \)
Drape	1÷3	0.25
Pilling	1÷3	0.25
Texture	1÷3	0.25
Restructuring	1÷3	0.25
Discoloration	It depends on the variety of fabric	-
Tactile properties	\(3T \), 0÷1	-

Establishing a price group of tissue for aesthetic properties, is produced in accordance with the scale of values (table 8).

Table 8

Significance	Estimation
5.0÷3,4	High
3.3÷1,7	Middle
1.6÷0	Low

It is assumed that the fabric sample №1 refers to the average price group, the sample №2 - to high. It is necessary to substantiate the alleged price groups fabrics. The results of testing methods for determining the complex index of the aesthetic properties of the fabricl presented in table 9.
The results of evaluation of test fabrics.

Fabrics properties	Finding	The complex index of the aesthetic characteristics of the fabric, Y_{ae}
Designation	Value	Designation Value Score
Surface density of fabric $Ms, g/m^2$	215 handle	0,80 0,80
The coefficient of tangential resistance of the fabric	0,5 texture	glare 0,33
Surface fabric filling, %	89,80 resistant fabric surface	not detected 1
Rigidity at material bend, sN	0,90 drape	57,7 0,66
The thickness of the fabric, mm	0,4 color fastness of the fabric	strong coloring 0,66
The interfacing of threads in fabric	satin	

The fabric sample №1

Surface density of fabric $Ms, g/m^2$: 215 handle
The coefficient of tangential resistance of the fabric: 0,5 texture
Surface fabric filling, %: 89,80 resistant fabric surface
Rigidity at material bend, sN: 0,90 drape
The thickness of the fabric, mm: 0,4 color fastness of the fabric
The interfacing of threads in fabric: satin

The fabric sample №2

Surface density of fabric $Ms, g/m^2$: 215 handle
The coefficient of tangential resistance of the fabric: 0,45 texture
Surface fabric filling, %: 91,12 Устойчивость поверхности материала
Rigidity at material bend, sN: 0,979 drape
The thickness of the fabric, mm: 0,4 color fastness of the fabric
The interfacing of threads in fabric: satin

Assessing the complex indexes, we can say the conclusion that the tested samples correspond to the stated price group for aesthetic properties.
Thus, the developed method allows to determine how this fabric meets the requirements of a given consumer price segment. The developed technique allows evaluation of the fabric to create a database in which the selection of the fabric can be carried out in an automated way. This will allow us to carry out technical training of production for each of the selected prices categories of apparel.

References:

1. Mokeeva NS (2009) Noviy podhod k proektirovaniyu tekhologicheskikh processov izgotovleniya muzhskikh koctyumov / Molodie uchenie – razvitiyu tekstilnyi i legkoi promishlennosti (Poisk - 2009). Part 1. Ivanovo: IGTA, pp. 316.
2. Buzov BA (2004) Materiali v legkoi promishlennosti (shveinyaya promishlennost). Moscow: pp. 448.
3. Buzov BA (2010) Materiali dlya odezdi. Moscow: Publishing Center "Academy", pp.160.
4. (2015) Least-squares method. Available: https://ru.wikipedia.org/wiki (Accessed: 26.12.2015).
5. (2012) GOST R ISO 12945-2-2012. Textile materials. Determination of textile capacity to the formation of hairiness and pilling.
6. (1999) GOST R ISO 105-A01-99. Textile materials. Determination of color fastness.
7. Buzov BA (2012) Materiali dlya odezdi. Tkani – Moscow: Publishing House «Forum». –pp. 224.
8. Sklyannikov VP (1983) Stroenie I kachestvo tkaney. - Moscow: Light & Food Industry. pp.232.