ON THE NON-INNER AUTOMORPHISM CONJECTURE OF FINITE p-GROUPS

SANDEEP SINGH, HEMANT KALRA, AND ROHIT GARG

Abstract. A long-standing conjecture asserts that every finite non-abelian p-group has a non-inner automorphism of order p. In this paper, we settle the conjecture for a finite p-group ($p > 2$) of nilpotency class n with certain conditions.

1. Introduction

There is a famous conjecture known as the Non-inner Automorphism Conjecture, listed in the renowned book “Unsolved Problems in Group Theory: The Kourovka Notebook”, which states that Every finite non-abelian p-group admits an automorphism of order p which is not an inner. (see [10, Problem 4.13])

Some researchers showed interest in proving the sharpened version of the conjecture. They were interested in proving that every finite non-abelian p-group G has a non-inner automorphism of order p which fixes $\Phi(G)$ element-wise (for instance, see [4–8], and [9] for other references). The conjecture was first attacked by Liebeck [11]. He proved that for an odd prime p, every finite p-group G of nilpotency class 2 has a non-inner automorphism of order p fixing $\Phi(G)$ element-wise. In 2013, Abdollahi et al. [3] proved the validity of the conjecture for finite p-groups of nilpotency class 3. In particular, in Theorem 4.4, they proved that every finite p-group G of odd order and of nilpotency class 3 has a non-inner automorphism of order p that fixes $\Phi(G)$ element-wise. In 2014, Abdollahi et al. [2] showed that every finite p-group G of co-class 2 has a non-inner automorphism of order p leaving $Z(G)$ element-wise fixed. In 2017, Ruscitti et al. [13] confirmed the conjecture for finite p-groups of co-class 3, with $p \neq 3$.

If there is a maximal subgroup M of a finite p-group G with $|G| > p$ and $Z(M) \subseteq Z(G)$, then there exists a non-inner automorphism of G of order p (see, Rotman [12] Lemma 9.108). In 2002, Deaconescu and Silberberg [4] proved that if the conjecture is false for a finite p-group G, then $Z(G) < Z(M)$ for all maximal subgroups M of G. This raises the following natural question:

Question. Given a finite p-group G with $Z(G) < Z(M)$ for all maximal subgroups M of G, does the conjecture hold?

In Theorem 2.1, we prove that every finite p-group G, $(p > 2)$ of nilpotency class n such that $\exp(\gamma_n(G)) = p$, $|\gamma_n(G)| = p$ and $Z(C_G(x)) \leq \gamma_{n-1}(G)$ for all $x \in \gamma_{n-1}(G) \setminus Z(G)$, has a non-inner automorphism of order p which fixes $\Phi(G)$ element-wise. As a consequence, in Corollaries

Mathematics Subject Classification 2020. Primary 20D15; Secondary 20D45.
Key words and phrases. Finite p-group, Non-inner automorphism.
2.2 and 2.3, we give an affirmative answer to the above question under some conditions. In [13],
the authors proved the conjecture for all non-abelian finite p-groups of co-class 3, where p is
a prime number such that $p \neq 3$. We also validate the conjecture for some non-abelian finite
3-groups of co-class 3 in Corollary 2.4.

Throughout p denotes an odd prime number. For a group G, by $Z_m(G)$, $\gamma_m(G)$, $d(G)$ and
$\Phi(G)$, we denote, the mth term of the upper central series of G, the mth term of the lower
central series of G, the minimum number of generators of G and the Frattini subgroup of G,
respectively. The nilpotency class and the exponent of a finite group G are denoted by $\text{cl}(G)$
and $\exp(G)$, respectively. A finite p-group G of order p^n with $\text{cl}(G) = n - c$ is said to be of
class c. All other unexplained notations, if any, are standard.

2. Main results

Since the conjecture is true for all finite p-groups G having nilpotency class 2 and 3, we consider
only finite p-groups G with $\text{cl}(G) \geq 4$.

Theorem 2.1. Let G be a finite p-group ($p > 2$) of class n such that $|\gamma_n(G)| = \exp(\gamma_{n-1}(G)) = p$
and $Z(C_G(x)) \leq \gamma_{n-1}(G)$ for all $x \in \gamma_{n-1}(G) \setminus Z(G)$. Then G has a non-inner automorphism
of order p that fixes $\Phi(G)$ element-wise.

Proof. Since $n = \text{cl}(G) \geq 4$ and $\exp(\gamma_{n-1}(G)) = p$, there exists an element $x \in \gamma_{n-1}(G) \setminus Z(G)$
of order p. Thus $[x, G] \subseteq \gamma_n(G)$, and therefore the order of conjugacy class of x in G is p. It
follows that $M = C_G(x)$ is a maximal subgroup of G. Let $g \in G \setminus M$. Then
\[(gx)^p = g^p x^p [x, g]^{p(p-1)/2} = g^p.\]

Consider the map β of G defined as $\beta(g) = gx$ and $\beta(m) = m$ for all $m \in M$. The map β
can be extended to an automorphism of G fixing $\Phi(G)$ element-wise and of order p. We claim
that β is a non-inner automorphism of G. For a contradiction, assume that $\beta = \theta_y$, the inner
automorphism of G induced by some $y \in G$, which implies that $y \in C_G(M)$. If $y \notin M$, then
$G = M \langle y \rangle$. It follows that $y \in Z(G)$, which is a contradiction. Therefore $y \in Z(M)$. Since
$\beta = \theta_y$, we have $g^{-1} \theta_y(g) = [g, y] = x$. Now, by the given hypothesis $Z(C_G(x)) \leq \gamma_{n-1}(G)$
for all $x \in \gamma_{n-1}(G) \setminus Z(G)$, we have $y \in \gamma_{n-1}(G)$. Therefore
\[x = [g, y] \in \gamma_n(G) \leq Z(G),\]
which contradicts our choice of x in G. Hence G has a non-inner automorphism of order p that
fixes $\Phi(G)$ element-wise. \qed

Let G be a finite p-group such that $|Z(G)| = p$. Let M be any maximal subgroup of G. Since
$Z(M)$ is a characteristic subgroup of M and M is a normal subgroup of G, we have $Z(M)$ is
a normal subgroup of G. Thus $Z(G) \leq Z(M)$ for all maximal subgroups M of G. Hence, we
obtain the following Corollary from Theorem 2.1:

Corollary 2.2. Let G be a finite p-group ($p > 2$) of class n such that $|Z(G)| = \exp(\gamma_{n-1}(G)) = p$
and $Z(C_G(x)) \leq \gamma_{n-1}(G)$ for all $x \in \gamma_{n-1}(G) \setminus Z(G)$. Then G has a non-inner automorphism
of order p that fixes $\Phi(G)$ element-wise.
Corollary 2.3. Let G be a finite p-group ($p > 2$) of class n such that $|Z(G)| = p$ and $Z(M) = \gamma_{n-1}(G)$ is of exponent p for all maximal subgroups M of G. Then G has a non-inner automorphism of order p that fixes $\Phi(G)$ element-wise.

Proof. Given that $d(G) = n$. It follows that $\gamma_n(G) \leq Z(G)$. Consequently, $|\gamma_n(G)| = p$.

Considering the provided hypothesis $Z(M) = \gamma_{n-1}(G)$ is of exponent p for all maximal subgroups M of G and the proof of Theorem 2.1, we deduce that $Z(C_G(x)) \leq \gamma_{n-1}(G)$ for all $x \in \gamma_{n-1}(G) \setminus Z(G)$. Hence, by Theorem 2.1, G possesses a non-inner automorphism of order p that fixes $\Phi(G)$ element-wise. \hfill \Box

Corollary 2.4. Let G be a finite 3-group of order 3^n and of co-class 3 such that $Z(M) = \gamma_{n-4}(G)$ is of exponent 3 for all maximal subgroups M of G. Then G has a non-inner automorphism of order 3.

Proof. Assume that G does not possess any non-inner automorphism of order 3. Then, it follows from [11 Corollary 2.3] that

$$d(Z_2(G)/Z(G)) = d(Z(G)) d(G).$$

(1)

Since G is of co-class 3, we have $p^i \leq |Z_i(G)| \leq p^{i+2}$ and $\gamma_{n-i-2}(G) \leq Z_i(G)$ for all $1 \leq i \leq n-4$. Thus, by equation (1), $d(Z(G)) = 1$. Now, if $|Z(G)| = p^3$, then $|Z_2(G)| = p^4$, which contradicts equation (1). Furthermore, $|Z(G)|$ cannot be p^2 according to [13 Theorem 4.3]. Finally, assume that $|Z(G)| = p$. In this case, the conclusion follows from Corollary 2.3. \hfill \Box

We conclude the paper by giving an example of a 3-group of order 3^7 which supports Theorem 2.1.

Example 2.5. Consider the following group:

$$G = \langle f_1, f_2, f_3, f_4, f_5, f_6, f_7 \rangle,$$

with relations: $f_5 = [f_2, f_1], f_4 = f_1^3, f_3 = [f_3, f_1], f_6 = [f_3, f_2], f_7 = [f_5, f_1], f_5^3 = [f_4, f_2], f_3^3 = f_5^3 = f_6^3 = f_5^3 = [f_4, f_1] = [f_6, f_1] = [f_7, f_1] = [f_5, f_2] = [f_6, f_2] = [f_7, f_2] = [f_4, f_3] = [f_5, f_3] = [f_6, f_3] = [f_7, f_3] = [f_5, f_4] = [f_6, f_4] = [f_7, f_4] = [f_5, f_6] = [f_7, f_5] = [f_7, f_6] = 1$. Then

- $|G| = 3^7$.
- The nilpotency class of G is 4.
- $Z(G) = \langle f_6, f_7 \rangle$.
- $\Phi(G) = \langle f_3, f_4, f_5, f_6, f_7 \rangle$.
- $\gamma_3(G) = \langle f_5, f_6, f_7 \rangle$.
- $\gamma_4(G) = \langle f_7 \rangle$.

Let $x = f_5$ and $M = C_G(x)$. Then $x \in \gamma_3(G) \setminus Z(G)$ is of order 3 and $Z(M) = \langle f_5, f_6, f_7 \rangle = \gamma_3(G)$. Consider the following automorphism:

$$\alpha(f_1f_2f_3f_4f_5f_6f_7) = f_1f_2f_3f_4f_5f_6f_7, \quad \alpha(f_1f_3f_5f_6) = f_1f_3f_5f_6, \quad \alpha(f_1f_2f_3f_4f_5f_6) = f_1f_2f_3f_4f_5f_6f_7.$$
Now, by using the relators of G, we have $\alpha(f_i) = f_i$ for all $i \in \{2, 3, 4, 5, 6, 7\}$ and $\alpha(f_1) = f_1f_5$. It is easy to verify that α is a non-inner automorphism of order 3 which fixes $\Phi(G)$ element-wise.

3. Acknowledgement

The research of the first author is supported by SERB, Department of Science and Technology, under grant MTR/2022/000331. The third author expresses deep thanks to the National Institute of Science Education and Research, Bhubaneswar, India for supporting the post-doctoral research.

4. Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] A. Abdollahi, Powerful p-groups have non-inner automorphisms of order p and some cohomology, J. Algebra, 323(3) (2010) 779-789.
[2] A. Abdollahi, S.M. Ghoraiishi, Y. Guerboussa, M. Reguiat and B. Wilkens, Noninner automorphisms of order p for finite p-groups of coclass 2, J. Group Theory, 17(2) (2014) 267-272.
[3] A. Abdollahi, M. Ghoraiishi and B. Wilkens, Finite p-groups of class 3 have noninner automorphisms of order p, Beitr. Algebra Geom., 54(1) (2013) 363-381.
[4] M. Deaconescu and G. Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra, 250(1) (2002) 283-287.
[5] R. Garg and M. Singh, Finite p-groups with non-cyclic center have a non-inner automorphism of order p, Arch. Math. (Basel), 117(2) (2021) 129-132.
[6] S.M. Ghoraiishi, A note on automorphisms of finite p-groups, Bull. Aust. Math. Soc., 87(1) (2013) 24-26.
[7] S.M. Ghoraiishi, On noninner automorphisms of finite nonabelian p-groups, Bull. Aust. Math. Soc., 89(2) (2014) 202-209.
[8] S.M. Ghoraiishi, On noninner automorphisms of finite p-groups that fix the Frattini subgroup elementwise, J. Algebra Appl., 17(1) (2018) 1850137.
[9] S.M. Ghoraiishi, Noninner automorphisms of order p for finite p-groups of restricted coclass, Arch. Math. (Basel), 117(4) (2021) 361-368.
[10] E.I. Khukhro and V.D. Mazurov, Unsolved Problems in Group Theory: The Kourovka Notebook, No. 20, Russian Academy of Sciences, Siberian Branch, Sobolev Institute of Mathematics, Novosibirsk (2022).
[11] H. Liebeck, Outer automorphisms in nilpotent p-groups of class 2, J. London Math. Soc., 40(1) (1965) 268-275.
[12] J.J. Rotman, An Introduction to Homological Algebra, 2d edn., Universitext, Springer, New York (2009).
[13] M. Ruscitti, L. Legarreta and M.K. Yadav, Non-inner automorphisms of order p in finite p-groups of coclass 3, Monatsh. Math., 183(4) (2017) 679-697.
Department of Mathematics, Akal University, Talwandi Sabo, Punjab 151302, India.
Email address: sandeepinsan86@gmail.com

Department of Mathematics, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
Email address: happykalra26@gmail.com

School of Mathematical Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, P.O. Jatni, Khurda, Odisha 752050, India.
Email address: rohitgarg289@gmail.com, rohitgarg289@niser.ac.in