Diagnostic accuracy of coronary opacification derived from coronary computed tomography angiography to detect ischemia: first validation versus single-photon emission computed tomography

Benz, Dominik C; Mikulicic, Fran; Gräni, Christoph; Grossmann, Marvin; Giannopoulos, Andreas A; Messerli, Michael; Gebhard, Catherine; Gaemperli, Oliver; Buechel, Ronny R; Kaufmann, Philipp A; Pazhenkottil, Aju P

DOI: https://doi.org/10.1186/s13550-017-0342-8

Originally published at:
Benz, Dominik C; Mikulicic, Fran; Gräni, Christoph; Grossmann, Marvin; Giannopoulos, Andreas A; Messerli, Michael; Gebhard, Catherine; Gaemperli, Oliver; Buechel, Ronny R; Kaufmann, Philipp A; Pazhenkottil, Aju P (2017). Diagnostic accuracy of coronary opacification derived from coronary computed tomography angiography to detect ischemia: first validation versus single-photon emission computed tomography. EJNMMI Research, 7(1):92. DOI: https://doi.org/10.1186/s13550-017-0342-8
Perioperative antibiotic prophylaxis has no effect on time to positivity and proportion of positive samples: a cohort study of 64 *Cutibacterium acnes* bone and joint infections.

Authors: Alexia Anagnostopoulos\(^a\), Daniel A. Bossard\(^a\), Bruno Ledergerber\(^a\), Patrick O. Zingg\(^b\), Annelies S. Zinkernagel\(^a\), Christian Gerber\(^b\), Yvonne Achermann\(^a\)

\(^a\)Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland

\(^b\)Department of Orthopedics, University Hospital Balgrist, University of Zurich, Zurich, Switzerland

Keywords: *Cutibacterium acnes*, perioperative antibiotic prophylaxis, osteomyelitis, joint infection, biofilm, intraoperative diagnostic

Running title: Antibiotic prophylaxis in bone and joint infections

Corresponding address:

Yvonne Achermann, MD
Division of Infectious Diseases and Hospital Epidemiology
University Hospital Zurich, University of Zurich
Raemistrasse 100
CH-8091 Zurich
Anagnostopoulos - JCM submission

24 Switzerland
25 Phone: + 41 44 255 21 73; Fax: + 41 44 255 44 99
26 Email: yvonne.achermann@usz.ch

28 Alternative corresponding address:
29 Alexia Anagnostopoulos
30 Division of Infectious Diseases and Hospital Epidemiology
31 University Hospital Zurich, University of Zurich
32 Raemistrasse 100
33 CH-8091 Zurich
34 Switzerland
35 Phone: + 41 44 255 99 07; Fax: + 41 44 255 44 99
36 Email: alexia.anagnostopoulos@usz.ch
ABSTRACT

If a bone or joint infection is suspected, perioperative antibiotic prophylaxis is frequently withheld until the intraoperative microbiological sampling has been performed. This practice builds upon the hypothesis that perioperative antibiotics could render culture results negative and thus impede tailored antibiotic treatment of infections. We aimed to assess the influence of antibiotic prophylaxis within 30 to 60 minutes before surgery on time to positivity of microbiological samples and proportion of positive samples in *Cutibacterium acnes* bone and joint infections. Patients with at least one positive *C. acnes* sample between January 2005 and December 2015 were included and classified as ‘infection’ if at least 2 samples were positive, otherwise they were considered a ‘contamination’. Kaplan-Meier curves were used to illustrate time to culture positivity. We found 64 cases with a *C. acnes* infection and 46 classified as a *C. acnes* contamination. Application of perioperative prophylaxis significantly differed between the ‘infection’ and ‘contamination’ group (72.8% versus 55.8%, p<0.001). Within the ‘infection’ group, we found no difference in time to positivity between those who had or had not received a perioperative prophylaxis (7.07 days (95% CI 6.4-7.7) vs. 7.11 days (95% CI 6.8-7.5), p=0.3). Also, there was no association between the proportion of sample positivity and the application of perioperative prophylaxis (71.6% versus 65.9%, p=0.39). Since perioperative prophylaxis did not negatively influence the microbiological yield in *C. acnes* infections, routine antibiotic prophylaxis can be routinely given to avoid surgical site infections.
INTRODUCTION

In orthopedic surgery, antimicrobial prophylaxis is routinely given to reduce the risk for surgical site infections and colonization of implanted orthopedic devices (1, 2). It is recommended to give an antibiotic agent with bactericidal effect within a window of 30 to 60 minutes prior to skin incision in order to target skin commensal bacteria, such as staphylococci, streptococci, or cutibacteria (2). Despite correctly applied antibiotic prophylaxis, orthopedic bone and joint infections still occur in about 1-10% of cases (3).

These orthopedic bone and joint infections are typically caused by microorganisms growing in biofilms. Usually, these biofilms are heterogeneously distributed, which is challenging for an accurate localization of infection for diagnostic sampling (4). Biofilm microorganisms are in a metabolically inactive, non-replicating state which make them tolerant to our immune system and to antibiotics (5). Furthermore, biofilm bacteria are enclosed in a polymeric matrix, which protects them from antimicrobial agents and immune responses; biofilm bacteria are therefore difficult to reach, extract and cultivate (4, 6). All of these factors contribute to the challenge of diagnosing biofilm infections including bones and joint infections. Due to these difficulties, when a bone or joint infection is suspected, and surgical treatment is necessary, application of perioperative antibiotic prophylaxis is oftentimes withheld with the goal of increasing the microbiological yield of positive intraoperative biopsy cultures to identify the pathogen (7-10). Only knowing the causative microorganism of the infection allows a correct tailored longterm antimicrobial treatment.

However, recent studies (11-15) have shown that exposure to antibiotic agents as perioperative single-shot prophylaxis ahead of the intraoperative microbiological
sampling is not associated with an increase in culture-negative results. Furthermore, studies claim that perioperative antibiotic prophylaxis is needed in septic orthopedic surgeries since it significantly reduces infection rates (16-18). However, these studies were of small sample size, and the heterogeneity of the infections including both virulent and low-virulent pathogens are major concerns.

C. acnes is a slow growing pathogen, which is often involved in bone and joint infections (19) and is therefore qualified for studying the effect of preoperative antibiotic prophylaxis in orthopedic settings. Since previous studies primarily assessed the influence of preoperative prophylaxis on intraoperative culture results, studies examining the number of positive samples and the time to positivity or confirmation of the infection are lacking.

This study builds upon prior results from a large and homogenous cohort of patients with suspected C. acnes bone and joint infections (6). We aimed to assess the effect of preoperative antibiotic prophylaxis on time to positivity of C. acnes samples, which is a crucial factor for the physician with regard to further therapeutic management. Furthermore, we evaluated the number of positive samples and the time to confirmation of a C. acnes infection in patients with and without perioperative antibiotic prophylaxis.

METHODS

Study population

We retrospectively included patients from the University Hospital Balgrist in Zurich with at least one positive intraoperative sample for C. acnes, isolated between January 2005
Anagnostopoulos - JCM submission

and December 2015. We excluded patients with no available data on antibiotic prophylaxis at the time of surgery. Since antibiotic treatment might influence the time to positivity of *C. acnes* growth, we also excluded samples from patients who had taken antibiotics for ≥24 h within 14 days prior to sample acquisition. The University Hospital Balgrist in Zurich, Switzerland, is an orthopedic clinic specialized in bone and joint infections. Approximately 5000 surgical procedures are annually performed.

For clinical and demographic parameters at the time of diagnostic work-up, the patient clinical database of the orthopedic clinic and the prospective database of the infectious diseases consultation service were accessed. Microbiological data were collected using the database of the Institute of medical microbiology, University of Zurich, Zurich, Switzerland.

Within the same patient, same hospitalization period, same surgery and same infection site, all samples were clustered as one diagnostic set per patient case, regardless if the sample came back positive or negative. Patients were grouped into the following two groups: 'infection' group if *C. acnes* was detected in at least two different samples within the same patient case and 'contamination' group if there was only one positive sample with *C. acnes*. In order to ensure an accurate allocation to one of the two groups, only cases with three or more analyzable samples were included in this analysis (10, 20).

The study was approved by the institutional review board in Zurich, Switzerland (KEK Zurich number 2016-00145).

Analysis and statistical methods
For each sample of a patient diagnostic set, we collected details about the diagnostic method used for detection of *C. acnes*, such as tissue or bone samples, sonication fluid, synovial fluid or wound swab, and Gram staining. We calculated time to positivity of *C. acnes* growth for each positive sample as difference in days between start of microbiological culture and identification of *C. acnes*. Among the ‘infection’ group, time to positivity was referring to culture positivity of the second positive sample to confirm the infection and account for possible contamination.

We analyzed the proportion of positive microbiological samples (ratio of positive samples to the total of all samples taken for each patient) in order to account for the larger number of samples taken if an infection was suspected during surgery. We performed a sensitivity analysis to assess potential associations and systematic distortion of the results by the larger number of samples per patient required to be classified into the ‘infection’ group. We therefore conducted a Cox proportional hazards regression with robust standard errors, adjusted for the number of samples taken and allowing for clustering of samples within patients.

Statistical analysis was performed using Stata 15.0 SE (StataCorp, College Station, TX). We used parametric (Student’s t-test) and non-parametric tests (Wilcoxon rank-sum test for continuous variables, Fisher’s exact test for categorical variables) to compare variables both on a patient or on a sample level, whichever seemed appropriate. We used Kaplan-Meier curves to illustrate the number of days from the intraoperative sampling to culture positivity both the ‘infection’ and ‘contamination’
Differences between the times to positivity of both groups were analyzed by using log-rank tests.

Microbiological processing

Diagnostic cultures

All the applied preanalytic and cultivation processes, including the incubation times of 10 days, have been previously described in detail (6). Tissue samples were vortexed, homogenized, and incubated on agar plates and thioglycolate broth, yet, bone samples were inoculated in thioglycolate broth only. Explanted hardware was sonicated, and cultivated on agar based media and thioglycolate, as recently published (6). For the sonication samples, a threshold of 50 colony-forming units (CFU)/ml bacteria on agar plates was considered positive.

Time to positivity of C. acnes growth

As previously described (6), time to positivity was defined as the time (in days) between the start of microbiological culture and one of the following: 1) C. acnes - typical colonies on agar plates, 2) turbidity in thioglycolate broth, or 3) a positive signal in blood culture bottles for which C. acnes was subsequently identified on agar plates.

RESULTS

Clinical data and perioperative antibiotic prophylaxis

Patient level
A total of 110 patients, predominantly male (69.1%) and with a median age of 58.5 years (interquartile range (IQR) 50-68) contributed to overall 550 intraoperative samples, collected between January 2005 and December 2015. Among the most common sample sites were shoulder (N = 72) and hip (N = 25), followed by knee (N = 6). In 87.3% patients, a prosthesis (58/110) or another foreign body (38/110) was present. In 64 patients (58.2%), an infection with \textit{C. acnes} was diagnosed, defined as at least two positive samples, while identification of \textit{C. acnes} in only one sample of the remaining 46 patients (41.8%) did not fulfill the criteria of a proven infection and was therefore considered contamination.

We analyzed 550 samples, of these 484 (88%) were tissue biopsies (including wound swabs and fluids), 54 (9.8%) sonication fluid from removed implants, and 12 (2.2%) bone biopsies. This distribution did not significantly differ between the ‘infection’ group and the ‘contamination’ group (p=0.49). The mean number of samples taken per patient were 5.3 in the ‘infection’ group (IQR 4-8) and 4.5 in the ‘contamination’ group (IQR 3-6). In the ‘infection’ group, a median of three samples (IQR 2-5) were positive with \textit{C. acnes}. Patient characteristics and sample specifications are shown in Table 1.

Out of the 64 patients in the ‘infection’ group, 44 (68.8%) had not received perioperative prophylaxis until intraoperative biopsies for microbiology had been taken, compared to only 23 (50%) in the ‘contamination’ group (p=0.047). If antibiotic prophylaxis had been applied, it was mostly cefuroxime (83.7%), followed by cefazolin (9.3%) (Table 1). Distribution of infection and antibiotic prophylaxis status on a patient and sample level are illustrated in Fig. 1.
Time to sample positivity

A total of 274 out of 550 (49.8%) analyzed samples detected *C. acnes*. Among those, the mean time to culture positivity as defined for each group was significantly shorter in the 228 samples of the ‘infection’ group (6.04 days, 95% CI 5.71-6.37) as compared to the 46 samples of the ‘contamination’ group (8.37 days, 95% CI 7.69-9.05, p<0.001) (Fig. 2a).

In order to investigate the influence of perioperative prophylaxis on cultivation time of *C. acnes* within a comparable group of patients, we assessed the time to sample positivity in the ‘infection’ group only. Of all 342 samples of the 64 patients in the ‘infection’ group, 72.8% (249/342) were collected in patients who had not been exposed to perioperative prophylaxis as compared to the low percentage of 27.2% (93/342) with prophylaxis exposure (Fig. 1). However, the time to positivity within the ‘infection’ group did not significantly differ between those samples collected from patients exposed to perioperative prophylaxis (mean 7.07, 95% CI 6.4-7.7) and those not exposed to perioperative prophylaxis (mean 7.11, 95% CI 6.8-7.5) (p=0.3) (Fig. 2b). The sensitivity analysis confirmed that this finding was not affected by the total number of samples taken per patient (adjusted Hazard Ratio 0.84 (0.60-1.18), p=0.31).

Proportion of sample positivity

Perioperative antibiotic prophylaxis could also have an influence on the number of positive samples within a case. Overall, the proportion of sample positivity among all 110 patients (‘infection’ and ‘contamination’ group combined) was 50.9% (95% CI 45.4-56.5). In the 67/110 patients (60.9%), in which no perioperative prophylaxis had been
applied, the proportion of sample positivity was 54.5% (95% CI 46.8-62.1), while the remaining 43 patients (39.1%) with perioperative prophylaxis had a proportion of sample positivity of 45.5%. There was no significant difference in the proportion of sample positivity between the patients with and without perioperative prophylaxis (p=0.12).

Among the 64 patients with a proven *C. acnes* infection, the proportion of sample positivity was 69.8% (95% CI 63.8-75.8). Of these 64 patients, 44 (68.8%) had not received perioperative prophylaxis; their proportion of sample positivity was 71.6% (95% CI 64.1-79.1). The remaining 20 patients (31.2%) with perioperative prophylaxis had a proportion of sample positivity of 65.9% (95% CI 55.3-76.5). Hence, in the ‘infection’ group only, there was no significant difference in the proportion of sample positivity between infection patients with perioperative prophylaxis and those without application of antibiotics before or during surgery (p=0.39).

DISCUSSION

This is the first study analyzing the influence of perioperative prophylaxis on time to diagnosis and proportion of positive samples in a homogenous group of bone and joint infections caused by the same pathogen, *C. acnes*. As bone and joint infections are causing significant morbidity for the individual and account for large health care expenses (21), the combination of surgical interventions and targeted biofilm-active antibiotic treatment against the causative pathogen is crucial in order to regain functionality (8). Therefore, the timely microbiological identification is one of the mainstays in treating orthopedic infections. We showed that administering perioperative antibiotic prophylaxis did not affect the time to diagnosis of *C. acnes* infection and
therefore will not prolong the timely identification of pathogen in bone and joint infections. Our findings support the routine administration of perioperative prophylaxis, which has previously shown to significantly lower surgical site infection rates (1, 2, 22). One systematic review (18) found a relative risk reduction of 81% of developing postsurgical wound infections among patients with total hip and knee replacements, if perioperative prophylaxis had been administered correctly. Since hip and knee were also the most common surgical sites in our population, a risk reduction of wound infections to this extent would have major implications on the morbidity of our patients and thus our findings.

Proportion of positive samples within a diagnostic set in our study population of *C. acnes* infections did not differ between patients with and without perioperative prophylaxis (65.9% versus 68.8%). Bone and joint infections are typically biofilm-associated infections, in which bacteria are protected from antibiotic agents (8). In order to kill biofilm bacteria in the stationary phase, bactericidal antimicrobial substances (23) with a good ability to penetrate the biofilm, such as rifampin are required (8).

Cephalosporins, commonly used for perioperative prophylaxis, do not have these characteristics. Since the application of a preoperative single-shot antibiotic prophylaxis is primarily active against planktonic bacteria in the bloodstream and tissue, but is unable to penetrate the biofilm, antibiotic prophylaxis has no effect on culture positivity of intraoperative microbiological samples (13, 15, 24).
We recommend the routine administration of antibiotic prophylaxis, even when an
C. acnes infection is suspected, as the administration of a single shot antibiotic
prophylaxis did not affect the intraoperative diagnostic yield. Our recommendation is in
line with the American Academy of Orthopedic Surgeons (AAOS) guidelines from 2011
(15) as well as with a recently published systematic review (24) assessing the influence
of perioperative prophylaxis on culture yield among patients with prosthetic joint
infections. The authors of both studies (15, 24) did not find a significant difference
between the prophylaxis and the non-prophylaxis group, which would outweigh the risk
of a postoperative infectious complication if perioperative prophylaxis was withheld. The
recommendation of our study, the AAOS guidelines (15), and the systematic review (24)
to routinely apply perioperative prophylaxis is not yet included in the French guidelines
for bone and joint infections (9) nor in the IDSA guidelines (10) from 2013, which
recommend to withhold antimicrobial prophylaxis when the preoperative risk of a
prosthetic joint infection is high based on the results of the history, exams,
sedimentation rate, CRP level, and preoperative aspiration.

The strength of our study is the large homogenous cohort of 64 cases with a
proven *C. acnes* bone or joint infection. This is to our knowledge, the largest cohort
study to date that is focusing exclusively on this low-virulent and yet very relevant
pathogen within the orthopedic context. For our study, we did explicitly not choose a
virulent pathogen, such as *Staphylococcus aureus*, since identification of virulent
pathogens is often less challenging, even if a short course of antibiotic treatment had
been given prior to surgery. A further strength of our study is the novel aspect of our
analysis, including the comparison of time to positivity between different patient groups as well as analysis of the proportion of positive samples within the patient clusters. The long-running microbiological protocols for all bone and joint samples in our cohort secured the comparability of the culture results. A limitation of our study is the retrospective study design, which set certain restrictions in terms of availability of information and comparison to control groups.

In conclusion, based on our results in patients with *C. acnes* bone and joint infections, perioperative antibiotic prophylaxis did not influence the intraoperative diagnostic yield of microbiological cultures. We therefore recommend that perioperative antibiotic prophylaxis in elective orthopedic infection operations should be routinely given and not be withheld until all intraoperative biopsies were taken. This will minimize on the one hand the risk of bacterial infection of the surgical field and on the other hand this will protect the newly implanted hardware.

Funding

Yvonne Achermann is supported by the academic career program “Filling the gap” of the Medical Faculty of the University of Zurich.

Financial disclosure: None reported. No conflicts of interests.

Acknowledgment

We thank Mazda Farshad and Reinhard Zbinden for the critical reading of the paper and the technicians of the Institute of Medical Microbiology of the University of Zurich for their expert help and assistance.
REFERENCES

1. Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, Fish DN, Napolitano LM, Sawyer RG, Slain D, Steinberg JP, Weinstein RA. 2013. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect (Larchmt) 14:73-156.

2. Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP. 1992. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med 326:281-286.

3. Darouiche RO. 2001. Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33:1567-1572.

4. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. 2010. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322-332.

5. Stewart PS. 2015. Antimicrobial Tolerance in Biofilms. Microbiol Spectr 3.

6. Bossard DA, Ledergerber B, Zingg PO, Gerber C, Zinkernagel AS, Zbinden R, Achermann Y. 2016. Optimal Length of Cultivation Time for Isolation of Propionibacterium acnes in Suspected Bone and Joint Infections Is More than 7 Days. J Clin Microbiol 54:3043-3049.

7. Al-Mayahi M, Cian A, Lipsky BA, Suva D, Muller C, Landelle C, Miozzari HH, Uckay I. 2015. Administration of antibiotic agents before intraoperative sampling in orthopedic infections alters culture results. J Infect 71:518-525.

8. Zimmerli W, Trampuz A, Ochsner PE. 2004. Prosthetic-joint infections. N Engl J Med 351:1645-1654.
9. Anonymous. 2010. Recommendations for bone and joint prosthetic device infections in clinical practice (prosthesis, implants, osteosynthesis). Societe de Pathologie Infectieuse de Langue Francaise. Med Mal Infect 40:185-211.

10. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR, America IDSo. 2013. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56:e1-e25.

11. Burnett RS, Aggarwal A, Givens SA, McClure JT, Morgan PM, Barrack RL. 2010. Prophylactic antibiotics do not affect cultures in the treatment of an infected TKA: a prospective trial. Clin Orthop Relat Res 468:127-134.

12. Ghanem E, Parvizi J, Clohisy J, Burnett S, Sharkey PF, Barrack R. 2007. Perioperative antibiotics should not be withheld in proven cases of periprosthetic infection. Clin Orthop Relat Res 461:44-47.

13. Perez-Prieto D, Portillo ME, Puig-Verdie L, Alier A, Gamba C, Guirro P, Martinez-Diaz S, Horcajada JP, Trampuz A, Monllau JC. 2016. Preoperative antibiotic prophylaxis in prosthetic joint infections: not a concern for intraoperative cultures. Diagn Microbiol Infect Dis 86:442-445.

14. Tetreault MW, Wetters NG, Aggarwal V, Mont M, Parvizi J, Della Valle CJ. 2014. The Chitranjan Ranawat Award: Should prophylactic antibiotics be withheld before revision surgery to obtain appropriate cultures? Clin Orthop Relat Res 472:52-56.

15. Della Valle C, Parvizi J, Bauer TW, DiCesare PE, Evans RP, Segreti J, Spangehl M, Watters WC, 3rd, Keith M, Turkelson CM, Wies JL, Sluka P,
Hitchcock K. 2011. American Academy of Orthopaedic Surgeons clinical practice guideline on: the diagnosis of periprosthetic joint infections of the hip and knee. J Bone Joint Surg Am 93:1355-1357.

Trampuz A, Zimmerli W. 2006. Antimicrobial agents in orthopaedic surgery: Prophylaxis and treatment. Drugs 66:1089-1105.

Oishi CS, Carrion WV, Hoaglund FT. 1993. Use of parenteral prophylactic antibiotics in clean orthopaedic surgery. A review of the literature. Clin Orthop Relat Res:249-255.

AlBuhairan B, Hind D, Hutchinson A. 2008. Antibiotic prophylaxis for wound infections in total joint arthroplasty: a systematic review. J Bone Joint Surg Br 90:915-919.

Achermann Y, Tran B, Kang M, Harro JM, Shirtliff ME. 2015. Immunoproteomic Identification of In Vivo-Produced Propionibacterium acnes Proteins in a Rabbit Biofilm Infection Model. Clin Vaccine Immunol 22:467-476.

Atkins BL, Athanasou N, Deeks JJ, Crook DW, Simpson H, Peto TE, McLardy-Smith P, Berendt AR. 1998. Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. The OSIRIS Collaborative Study Group. J Clin Microbiol 36:2932-2939.

Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. 2012. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27:61-65.e61.

Uğkay I, Harbarth S, Peter R, Lew D, Hoffmeyer P, Pittet D. 2010. Preventing surgical site infections. Expert Review of Anti-infective Therapy 8:657-670.
23. Baldoni D, Haschke M, Rajacic Z, Zimmerli W, Trampuz A. 2009. Linezolid alone or combined with rifampin against methicillin-resistant *Staphylococcus aureus* in experimental foreign-body infection. Antimicrob Agents Chemother 53:1142-1148.

24. Wouthuyzen-Bakker M, Benito N, Soriano A. 2017. The effect of preoperative antimicrobial prophylaxis on intraoperative culture results in patients with a suspected or confirmed prosthetic joint infection. A systematic review. J Clin Microbiol 55:2765-2774.
Table 1. Clinical characteristics of 64 patients with bone and joint infections caused by *C. acnes* (≥ 2 positive *C. acnes* samples) and 46 cases with no infection (1 positive *C. acnes* sample).

	Overall	Infection	No infection	*p value*
	N=110 (%)	N=64 (%)	N=46 (%)	
Patient characteristics				
Male gender (%)	76 (69.1)	45 (70.3)	31 (67.4)	0.84
Age [years], median (IQR)	58.5 (50-68)	58.5 (47.5-68)	58.5 (51-69)	0.48
Sample site				0.06
Shoulder	72 (65.5)	47 (73.4)	25 (54.4)	
Hip	25 (22.7)	12 (18.8)	13 (28.3)	
Spine	5 (4.6)	4 (6.2)	1 (2.2)	
Knee	6 (5.5)	1 (1.6)	5 (10.9)	
Other	2 (1.7)	0 (0.0)	2 (4.2)	
Sample type				0.38
Tissue and/or bone	79 (71.8)	48 (75.0%)	31 (67.4%)	
Sonication fluid	32 (28.2)	16 (25.0%)	15 (32.6%)	
Number samples, mean (IQR)	5 (3-6)	5.3 (4-8)	4.5 (3-6)	<0.001
Total positive samples per case, median (IQR)	2 (1-4)	3 (2-5)	1	
Presence of foreign body				0.28
Prosthesis	58 (52.7)	31 (48.4)	27 (58.7)	
Other foreign body	38 (34.5)	27 (42.2)	11 (23.9)	
	Overall	Infection	No infection	p value
---------------------	--------------------	--------------------	--------------------	---------
	N=110 (%)	N=64 (%)	N=46 (%)	
Perioperative prophylaxis				
Yes	43 (39.1)	20 (31.2%)	23 (50.0%)	0.05
Prophylaxis agent				0.14
Cefuroxime	36 (32.7)	17 (26.6%)	19 (41.3%)	
Cefazolin	4 (3.6)	2 (3.1)	2 (4.4)	
Clindamycin	2 (1.8)	0 (0.0)	2 (4.4)	
Vancomycin	1 (0.9)	1 (1.6)	0 (0.0)	
Fig. 1. Distribution of infection and preoperative prophylaxis status on a patient and sample level. 68.8% of the patients in the ‘infection’ group did not receive antibiotic prophylaxis, compared to 50% of patients in the ‘contamination’ group. Abbreviations: AB, antibiotic.
Fig. 2a. Kaplan-Meier curve illustrating the proportion of sample positivity with *C. acnes* in all 274 positive samples, stratified by infection status (228 in the 'infection' group vs. 46 in the 'contamination' group). The median time to positivity was 6 days for the 'infection' group and 9 days for the 'contamination' group (log rank p<0.001). The colored areas represent the 95% confidence interval.
Fig. 2b. Kaplan-Meier curve illustrating the proportion of sample positivity with *C. acnes* in the 342 samples of the ‘infection’ group, stratified by preoperative prophylaxis (93 in the ‘prophylaxis’ group vs. 249 in the ‘no prophylaxis’ group). The median time to positivity was 8 days for the ‘prophylaxis’ group and 7 days for the ‘no prophylaxis’ group (log rank p=0.3). The colored areas represent the 95% confidence interval.
FIGURE LEGENDS

Fig. 1. Distribution of infection and preoperative prophylaxis status on a patient and sample level. 68.8% of the patients in the ‘infection’ group did not receive antibiotic prophylaxis, compared to 50% of patients in the ‘contamination’ group.

Abbreviations: AB, antibiotic

Fig. 2a. Kaplan-Meier curve illustrating the proportion of sample positivity with *C. acnes* in all 274 positive samples, stratified by infection status (228 in the ‘infection’ group vs. 46 in the ‘contamination’ group). The median time to positivity was 6 days for the ‘infection’ group and 9 days for the ‘contamination’ group (log rank p<0.001). The colored areas represent the 95% confidence interval.

Fig. 2b. Kaplan-Meier curve illustrating the proportion of sample positivity with *C. acnes* in the 342 samples of the ‘infection’ group, stratified by preoperative prophylaxis (93 in the ‘prophylaxis’ group vs. 249 in the ‘no prophylaxis’ group). The median time to positivity was 8 days for the ‘prophylaxis’ group and 7 days for the ‘no prophylaxis’ group (log rank p=0.3). The colored areas represent the 95% confidence interval.
