Nodal auxiliary space preconditioning for the surface de Rham complex

Yuwen Li

1 Introduction

Discretizations of partial differential equations (PDEs) typically yield sparse algebraic systems of linear equations with a huge number of unknowns. In order to achieve reasonable efficiency, those large-scale discrete linear systems
should be solved by fast linear solvers. In theory and practice, multilevel iterative solvers such as the geometric multigrid (cf. [13,7,29,55]) and algebraic multigrid (AMG) (cf. [14,50,53,8,60]) are the most efficient linear solvers for discretized PDEs on unstructured grids. Moreover, the convergence speed and robustness of these multilevel solvers could be improved when they are used in Krylov subspace methods, e.g., the preconditioned conjugate gradient (PCG) method, as preconditioners. On Euclidean domains, we refer to [29,12,59,60] for the classical theory of multilevel methods.

In recent decades, numerical methods for solving PDEs on surfaces has been a popular and important research area, see [20,25] and references therein for an introduction. To efficiently implement numerical PDE schemes on surfaces, fast surface linear solvers are indispensable. We refer to e.g., [35,1,38,11,40] for specific fast Poisson-type solvers on surfaces. Besides nodal discretizations of elliptic PDEs, there have been many works devoted to numerical analysis of saddle-point systems of PDEs on surfaces, see e.g., [36,19,10] for the surface mixed Hodge Laplacian, mixed elliptic, and Stokes equations. Those numerical PDEs are built upon discrete divergence and curl and utilize the edge and face finite elements on discrete surfaces. Due to large kernels of curl and divergence operators, the algebraic systems resulting from discretized PDEs involving curl or div could not be efficiently solved by the standard AMG.

To the best of our knowledge, optimal iterative solvers for surface PDEs discretized by edge and face finite elements are still missing in the literature. In contrast, on Euclidean domains, with solid theoretical foundation, the discrete H(curl) and H(div) systems could be efficiently solved by geometric multigrids [30,31,3,62,58,54], as well as Krylov subspace methods preconditioned by the popular Hiptmair–Xu (HX) preconditioner [34]. The HX framework precondition the inverse of discrete curl-curl and grad-div elliptic operators using the inverse of several nodal element discrete Laplacians, which could be further approximated by well-established fast Poisson solvers. Without using a grid hierarchy, HX preconditioners are user-friendly and important building blocks of complex systems in real-world numerical simulations (cf. [57]).

For the edge element discretization of curl-curl problems and face element discretization of grad-div problems on surfaces, we develop optimal preconditioners by generalizing nodal auxiliary space HX preconditioning [34]. The theoretical analysis is based on a discrete stable decomposition of edge and face finite element spaces on surfaces. For example, the edge element space on a two-dimensional surface could be stably split as the sum of a high-frequency space and four surface nodal element spaces with the help of simple auxiliary transfer operators. As a consequence, the corresponding curl-curl preconditioner makes use of the inverse of four discrete surface Laplacians on the 2-d surface. In contrast, the classical HX preconditioner on flat domains utilizes only three discrete inverse planar Laplacians in \(\mathbb{R}^2 \). Replacing the surface Laplacian with AMG cycles or parallel AMG preconditioners, the surface HX preconditioners could be independent of grid hierarchy and be easily implemented on any reasonable triangulated surfaces.
In finite element exterior calculus, the Hodge–Laplace equation is an important model problem under extensive investigation in recent years (cf. [4, 6, 36, 23, 39, 37]). When solving the discrete Hodge Laplacian on domains with nontrivial topology, it is crucial to capture its kernel, the space of discrete harmonic forms or harmonic vector fields. In addition, the discrete harmonic space has many applications in computational geometry, electromagnetism and computer graphics, see, e.g., [33, 26, 61, 49]. As far as we know, optimal solvers for computing harmonic fields have not been rigorously investigated in the existing literature. Our surface HX preconditioner yields a new optimal iterative method for computing harmonic tangential vector fields on discrete surfaces. In particular, a minimum residual (MINRES) method (cf. [18, 47]) is used to find a basis of the kernel of the surface Hodge Laplacian in mixed form. With the help of a block diagonal surface HX preconditioner, the convergence speed of the MINRES iteration is shown to be uniform with respect to the grid size.

1.1 Notation

In the rest of this section, we introduce the notation for abstract operator preconditioning. For a Hilbert space \(V \), let \(\langle \cdot , \cdot \rangle_V \) denote its inner product, \(\| \cdot \|_V \) the \(V \)-norm, \(V' \) the dual space of \(V \), \([V]^\ell \) the Cartesian product of \(\ell \) copies of \(V \), and \(\langle \cdot , \cdot \rangle = \langle \cdot , \cdot \rangle_{V' \times V} \) the action of \(V' \) on \(V \). Given a linear operator \(g : V_1 \to V_2 \), let \(R(g) \) denote its range, \(N(g) \) the kernel of \(g \), and \(g' : V_2' \to V_1' \) the adjoint of \(g \), i.e.,

\[
(g'r, v) = (r, gv), \quad \forall v \in V_1, \quad \forall r \in V_2'.
\]

For a bounded linear operator \(A : V \to V' \), we say it is symmetric and positive-definite (SPD) provided

\[
\forall v \in V, \quad (Av, v) \geq 0, \quad (Av, v) = 0 \implies v = 0, \quad \text{and}
\]

\[
(Av_1, v_2) = (Av_2, v_1), \quad \forall v_1, v_2 \in V.
\]

Similarly, we say a bounded linear operator \(B : V' \to V \) is SPD provided

\[
\forall r \in V', \quad (r, Br) \geq 0, \quad (r, Br) = 0 \implies r = 0, \quad \text{and}
\]

\[
(r_1, Br_2) = (r_2, Br_1), \quad \forall r_1, r_2 \in V'.
\]

The SPD operators \(A \) and \(B \) define inner products \(V \) and \(V' \) by

\[
(v_1, v_2)_A := (Av_1, v_2), \quad \forall v_1, v_2 \in V,
\]

\[
(r_1, r_2)_B := (r_1, Br_2), \quad \forall r_1, r_2 \in V'.
\]

Let \(\| \cdot \|_A \) denote the norm in \(V \) corresponding to \(\langle \cdot , \cdot \rangle_A \), and \(\| \cdot \|_B \) the norm in \(V' \) associated with \(\langle \cdot , \cdot \rangle_B \). Let

\[
\kappa(BA) := \| BA \|_{V' \to V} \|(BA)^{-1}\|_{V \to V} = \lambda_{\max}(BA)/\lambda_{\min}(BA)
\]

be the operator conditioner number, where \(\lambda_{\max}(BA) > 0, \lambda_{\min}(BA) > 0 \) are the maximum and minimum eigenvalues of \(BA \), respectively. The following fictitious space lemma [46] is useful for estimating the condition number and thus developing uniform preconditioners, see, e.g., [56, 34].
Lemma 1.1 (Fictitious space lemma) Let V, \bar{V} be Hilbert spaces and $A : V \to V'$, $\bar{A} : \bar{V} \to \bar{V}'$ be SPD operators. Assume $\pi : \bar{V} \to V$ is a surjective linear operator, and

- There exists a constant $c_1 > 0$ such that $\|\pi \bar{v}\|_A \leq c_1 \|\bar{v}\|_A$ for each $\bar{v} \in \bar{V}$;
- There exists a constant $c_2 > 0$ such that given any $v \in V$, some $\bar{v} \in \bar{V}$ satisfies
 \[
 \pi \bar{v} = v, \quad \|\bar{v}\|_A \leq c_2 \|v\|_A.
 \]

Then for $B := \pi \bar{A}^{-1} \pi' : V' \to V$ we have

\[
\kappa(BA) \leq (c_1 c_2)^2.
\]

The rest of this paper is organized as follows. In Section 2, we introduce continuous and finite element de Rham complexes on surfaces. Section 3 presents useful properties of interpolations on surfaces and Piola transformations between surfaces. In Section 4, we develop nodal auxiliary space preconditioners for the surface discrete $H(\text{curl})$ and $H(\text{div})$ problems. Section 5 is devoted to fast computation of tangential harmonic vector fields by iterative methods. The proposed preconditioners are tested in several numerical experiments in Section 6.

2 Surface de Rham complex

Let \mathcal{M} be a smooth surface without boundary ($\partial \mathcal{M} = \emptyset$) in \mathbb{R}^3. Naturally \mathcal{M} is endowed with a metric, which is the pullback of the Euclidean metric in \mathbb{R}^3 via the embedding $\mathcal{M} \hookrightarrow \mathbb{R}^3$. Let $\delta(x)$ be the signed distance function of \mathcal{M} such that $|\delta(x)|$ is the distance from the point $x \in \mathbb{R}^3$ to \mathcal{M}, $\delta(x) > 0$ if x is on the exterior side of \mathcal{M} and $\delta(x) < 0$ if x is on the interior side. Then $\nu := \bar{\nabla} \delta$ is a smooth unit outward normal vector field on \mathcal{M}, where $\bar{\nabla}$ is the gradient operator in \mathbb{R}^3.

2.1 Differential operators on surfaces

Let \mathcal{U} be a tubular neighborhood of \mathcal{M}. We assume that \mathcal{U} is sufficiently narrow such that $\delta(x)$, $\nu(x)$ and the projection $a : \mathcal{U} \to \mathcal{M}$

\[
a(x) := x - \delta(x) \nu(x)
\]

are well-defined at any point $x \in \mathcal{U}$, see [24]. A function v on \mathcal{M} could be extended in \mathcal{U} as

\[
v^\ell(x) := v(a(x)), \quad \forall x \in \mathcal{U}.
\]
Clearly v^ℓ is the constant extension of v along ν, the normal direction of M. Let v be a tangential vector field along M. The surface/tangential gradient, divergence, rotational gradient and curl along M are given by

$$
\nabla v = \nabla_M v := \bar{\nabla} v^\ell - (\nu \cdot \bar{\nabla} v^\ell) \nu,
$$

$$
\nabla \cdot v = \nabla_M \cdot v := \bar{\nabla} \cdot v^\ell - \nu \cdot (\bar{\nabla} v^\ell) \nu,
$$

$$
\nabla \perp v = \nabla_M \perp v := (\nabla_M v) \times \nu,
$$

$$
\nabla \times v = \nabla_M \times v := \nabla_M \cdot (v \times \nu),
$$

respectively. In fact, $\nabla_M \cdot$ is the $L^2(M)$-adjoint of $-\nabla_M$ and

$$
(\nabla_M \times) \circ \nabla_M = 0, \quad (\nabla_M \cdot) \circ \nabla_M = 0.
$$

The composite $\Delta_M = (\nabla_M \cdot) \circ \nabla_M$ is the Laplace–Beltrami operator (surface Laplacian) on M. On a surface M_α, we adopt the notation

$$
d^-_\alpha = \nabla_{M_\alpha} \perp, \quad d^\alpha = \nabla_{M_\alpha} \cdot \quad \text{or} \quad d^-_\alpha = \nabla_{M_\alpha} \times, \quad d^\alpha = \nabla_{M_\alpha} \times
$$

such that $d^\alpha \circ d^-_\alpha = 0$, where the subscript α might be suppressed or $\alpha=1, 2$ or h later. It is noted that d^-_α, d^α are defined a.e. if M_α is piecewise smooth.

By $L^2(TM)$ we denote the space of L^2 tangential vector fields on M, where TM is the set of tangential fields on M. Consider the following spaces

$$
H(d^-) := \{ v \in L^2(M) : d^- v \in L^2(TM) \},
$$

$$
H(d) := \{ v \in L^2(TM) : d v \in L^2(M) \}.
$$

Here $H^1(M) = H(d^-)$ and we have the surface de Rham complex

$$
H(d^-) \xrightarrow{d^-} H(d) \xrightarrow{d} L^2(M).
$$

Let $(\cdot, \cdot)_M$ be the $L^2(M)$-inner product $(\cdot, \cdot)_M$. For a constant $c > 0$, our model variational problem is to find $u \in H(d)$ such that

$$
(du, dv)_M + c(u, v)_M = (g, v)_M, \quad v \in H(d),
$$

where $g \in L^2(TM)$. We assume that $c > c_0 > 0$ for some fixed c_0 such that the nearly singular case is excluded.

Let $\varphi : M_1 \to M_2$ be a diffeomorphism between two manifolds M_1 and M_2. Given a scalar-valued function v on M_1, the tangent map $D\varphi : L^2(TM_1) \to L^2(TM_2)$ satisfies

$$
\nabla_{M_1} v|_x = (D\varphi)^* \nabla_{M_2} (v \circ \varphi^{-1})|_{\varphi(x)}, \quad \forall x \in M_1.
$$

Here $(D\varphi)^* : L^2(TM_2) \to L^2(TM_1)$ is the adjoint linear mapping of $D\varphi$.

Let $d\sigma_1$ be the surface measure on \mathcal{M}_i, and $d\sigma_2(\varphi(x)) = \mu(x)d\sigma_1(x)$. We summarize Piola transforms on surfaces (cf. [19, 44]) as follows.

$$P_{\nabla} : L^2(M_1) \to L^2(M_2) \quad P_{\nabla} v = P_{\nabla}^i v := v \circ \varphi^{-1},$$

(2.6a)

$$P_{\nabla}^\tau : L^2(TM_1) \to L^2(TM_2) \quad P_{\nabla}^\tau v := \frac{1}{\mu}(D\varphi)v,$$

(2.6b)

$$P_{\nabla}^\times : L^2(TM_1) \to L^2(TM_2) \quad P_{\nabla}^\times v := [(D\varphi)^{-1}]^* v.$$

(2.6c)

Similarly to the Euclidean case, it holds that

$$P_{\rho}^{d-1} = (P_{\rho}^d)^{-1},$$

(2.7a)

$$P_{\rho}^{d} \circ d_1^{-1} = d_2^{-} \circ P_{\rho}^d.$$

(2.7b)

2.2 Finite element discretization

When devising numerical schemes for solving (2.4), we assume that \mathcal{M} is approximated by a polyhedral surface \mathcal{M}_h with triangular faces, and \mathcal{M}_h is sufficiently close to \mathcal{M} such that $\mathcal{M}_h \subset \mathcal{U}$. Let \mathcal{T}_h denote the collection of all 2-d faces of \mathcal{M}_h, and \mathcal{F}_h the set of 1-d faces/edges in \mathcal{T}_h.

Let ν_h be the piecewise constant unit normal vector field on \mathcal{M}_h such that $\nu \cdot \nu_h > 0$. Let ν_f^j be the outward unit conormal vector for the face $f \in \mathcal{F}_h$ of an element $\tau \in \mathcal{T}_h$. In other words, ν_f^j is orthogonal to both $\nu_h|_{\tau}$ and f and is pointing towards the exterior of τ. For each $f \in \mathcal{F}_h$, t_f is a unit tangent vector along f, and $\tau_f^+, \tau_f^- \in \mathcal{T}_h$ are the two elements sharing f, see Figure 1.

By $\mathbb{P}_r(U)$ we denote the space of polynomials of degree at most r on a flat surface U is denoted. Let \hat{x} be a reference triangle in \mathbb{R}^2, \hat{x} the coordinate

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{unit_normals_and_conormals.png}
\caption{Unit normals (solid vectors) and conormals (dashed vectors) on \mathcal{M}_h.}
\end{figure}
position vector in \mathbb{R}^2, and $\varphi_{\tau} : \tau \rightarrow \bar{\tau}$ be an affine mapping such that $\varphi_{\tau}(\bar{\tau}) = \tau$. We consider the following local shape function spaces

$$P_0^\tau (\tau) = P_0^\tau (\bar{\tau})^2 \ni \tilde{p} \in \tilde{P}_0^\tau (\bar{\tau}), \quad \bar{p} \cdot \hat{x} = 0,$$

$$P_0^\tau (\tau) = P_0^\tau (\bar{\tau})^2 + P_0^\tau (\bar{\tau})x.$$

Let $\nabla_h = \nabla_{M_h}$, $\nabla_h^\perp = \nabla_{M_h}^\perp$, $\nabla_h^\cdot = \nabla_{M_h}^\cdot$, $\nabla_h^\times = \nabla_{M_h}^\times$. The surface nodal element space is

$$H_h(\nabla_h) = H_h(\nabla_h^\cdot) = \{ v_h \in C^0(M_h) : v_h|_\tau \in \nabla \cap \tau \forall \tau \in T_h \}.$$

Lowest-order edge $(N_0 [45, 44])$ and face $(RT_0 [48])$ element spaces on M_h are

$$H_h(\nabla_h^\times) := \{ v_h \in L^2(TM_h) : v_h|_\tau \in \nabla^\times (\tau) \text{ for each } \tau \in T_h, \quad [v_h]_{t,f} = 0 \text{ for each } f \in F_h \},$$

$$H_h(\nabla_h^\cdot) := \{ v_h \in L^2(TM_h) : v_h|_\tau \in \nabla^\cdot (\tau) \text{ for each } \tau \in T_h, \quad [v_h]_{c,f} = 0 \text{ for each } f \in F_h \},$$

respectively. Here tangential and conormal jumps in (2.8), (2.9) are

$$[v_h]_{t,f} := v_h|_{r_f}^+ - (v_h|_{r_f}^+ \cdot \nu_f^+)^\tau^+ - [v_h|_{r_f}^- - (v_h|_{r_f}^- \cdot \nu_f^-)^\tau^-],$$

$$[v_h]_{c,f} := v_h|_{r_f}^+ \cdot \nu_f^+ + v_h|_{r_f}^- \cdot \nu_f^-.$$

Let $(\bullet, \bullet)_h = (\bullet, \bullet)_{M_h}$ be the L^2 inner product on M_h. The finite element discretization of (2.4) seeks $u_h \in H_h(d_h)$ such that

$$(d_h u_h, d_h v_h)_h + c(u_h, v_h)_h = (g_h, v_h)_h, \quad v_h \in H_h(d_h),$$

where $g_h \in L^2(TM_h)$ approximates g. The bilinear form in (2.10) induces a linear operator $A_h^N : H_h(d_h) \rightarrow H_h(d_h)'$ by

$$\langle A_h^N v_h, w_h \rangle := (d_h v_h, d_h w_h)_h + c(v_h, w_h)_h, \quad \forall v_h, w_h \in H_h(d_h).$$

We shall develop efficient preconditioners for the discrete operator A_h^N.

Let $N(d)^{\perp}$ (resp. $N(d_h)^{\perp}$) be the L^2-orthogonal complement of $N(d)$ (resp. $N(d_h)^{\perp}$) in $H(d)$ (resp. $H(d_h)$). We present the continuous and discrete Poincaré inequalities (cf. [4, 36]).

Lemma 2.1 (Poincaré inequality) Let $\| \cdot \| = \| \cdot \|_{L^2(M_h)}$. There exists constants $c_P > 0$, $c_{h,P} > 0$ such that

$$\| v \|_{L^2(M_h)} \leq c_P \| dv \|_{L^2(M)}, \quad \forall v \in N(d)^{\perp},$$

$$\| v_h \| \leq c_{h,P} \| d_h v_h \|, \quad \forall v_h \in N(d_h)^{\perp}.$$
It is possible that $c_{h,P}$ depends on the grid size h of \mathcal{M}_h. The work [36] shows that $c_{h,P}$ is an absolute constant provided there exists a uniformly bounded cochain projection on \mathcal{M}_h.

For $f \in \mathcal{F}_h$, $\tau \in \mathcal{T}_h$, let $h_f = \text{diam}(f)$, $h_{\tau} = \text{diam}(\tau)$, and h be the piecewise constant on \mathcal{M}_h such that $h|_{\tau} = h_{\tau}$. Let $h_{\max} := \max_{\tau \in \mathcal{T}_h} h_{\tau}$, $h_{\min} := \min_{\tau \in \mathcal{T}_h} h_{\tau}$ and $c_{\text{qu}} := h_{\max}/h_{\min}$. By $C_1 \lesssim C_2$ we mean $C_1 \leq CC_2$ with C being a generic constant dependent only on \mathcal{M}, the local mesh quality of \mathcal{T}_h, and $r, c_{h,P}, c_0, c_{\text{qu}}$. We say $C_1 \simeq C_2$ provided $C_1 \lesssim C_2$ and $C_2 \lesssim C_1$.

Let $\| \cdot \|$ denote the Euclidean norm. We make the following common assumption in surface finite element literature (cf. [22, 21, 19]):

\begin{align*}
|\delta(x)| \lesssim h_{\tau}, & \quad |\nu(x) - \nu_h(x)| \lesssim h_{\tau}, & \forall \tau \in \mathcal{T}_h, \forall x \in \tau. \quad (2.12)
\end{align*}

Given $f \in \mathcal{F}_h$, it follows that $|\nu|_{\tau^+} - \nu_h|_{\tau^+} = O(h_f)$ and

\begin{align*}
|\nu^\tau_f + \nu_f^\tau| \lesssim h_f. \quad (2.13)
\end{align*}

3 Interpolations and Piola transformations on surfaces

As a first step, we must present several estimates for interpolations and Piola transformations on surfaces.

3.1 Surface interpolations

Let $d\sigma$ (resp. $d\sigma_h$) denote the surface measure of \mathcal{M} (resp. \mathcal{M}_h), and Ω_z the union of elements in \mathcal{T}_h sharing the grid vertex z. The Clément interpolation I_h in the nodal element space $H_h(\nabla h)$ is given by

\begin{align*}
(I_h v)(z) := \frac{1}{\int_{\Omega_z} 1 d\sigma_h} \int_{\Omega_z} v d\sigma_h \quad \text{for each vertex } z \text{ in } \mathcal{T}_h.
\end{align*}

On each element $\tau \in \mathcal{T}_h$, let π^d_τ be the canonical interpolation onto $\mathbb{P}^d(\tau)$. By $H^1(TU), W^{k,p}(TU)$ we denote spaces of tangential vector fields with standard Sobolev regularity on a surface U. For $v \in H^1(T\tau)$, $\pi^\nabla v \in \mathbb{P}^\nabla(\tau)$ and $\pi^\tau v \in \mathbb{P}^\tau(\tau)$ are determined by

\begin{align*}
\int_f (\pi^\nabla v) \cdot t_f ds &= \int_f v \cdot t_f ds, \quad (3.1) \\
\int_f (\pi^\tau v) \cdot \nu^f q ds &= \int_f v \cdot \nu^f q ds, \quad \forall f \subset \partial \tau, f \in \mathcal{F}_h. \quad (3.2)
\end{align*}
Let \(\| \cdot \| = \| \cdot \|_{L^2(\tau)} \), and \(\Omega_\tau \) be the union of elements in \(T_h \) sharing a vertex with \(\tau \in T_h \). For \(v \in H^1(M_h) \), classical results (cf. \([24,19]\)) yield

\[
\| I_h v \|_\tau \lesssim \| v \|_{\Omega_\tau},
\]

\[
h_\tau^{-1} \| v - I_h v \|_\tau + \| I_h v \|_{H^1(\tau)} \lesssim \| v \|_{H^1(\Omega_\tau)},
\]

\[
\| v - \pi^d_h v \|_\tau \lesssim h_\tau \| v \|_{H^1(\tau)}.
\]

(3.3a) (3.3b) (3.3c)

Fig. 2 A tangential vector field on \(M_h \).

Let \(\pi^d_h \) be the canonical interpolation onto \(H_h(d_h) \) such that \((\pi^d_h v)|_\tau = \pi^d_h(v|_\tau)\), \(\forall \tau \in T_h \). The space of tangential and piecewise \(H^1 \)-fields on \(M_h \) is

\[
H^1_h(T.M_h) := \{ v_h \in L^2(T.M_h) : v_h|_\tau \in H^1(T\tau) \ \forall \tau \in T_h \},
\]

see Figure 2 for example. The next lemma presents sufficient conditions for the well-posedness of \(\pi^d_h \), which follows from the definitions \((2.8)\) and \((2.9)\) and a trace theorem.

Lemma 3.1 For \(v \in H^1_h(T.M_h) \), there exists a unique \(\pi^\nabla_h v \in H_h(\nabla_h) \) if \([v]_{\nu,f} = 0\) across each \(f \in F_h \); and \(\pi^\nabla_h v \in H_h(\nabla_h) \) is well-defined provided \([v]_{\ell,f} = 0\) for each \(f \in F_h \).

Let \(\pi^{d^-}_h \) be the linear nodal interpolation onto \(H_h(\nabla_h) \). It holds that

\[
d_h \circ \pi^{d^-}_h = \pi^{d}_h \circ d_h .
\]

(3.4)

Given a non-tangential \(H^1 \)-field \(v \) on \(M_h \), let \(v^\parallel \) (resp. \(v^\perp \)) denote its tangential (resp. normal) component, see Figure 3. We note that \(\pi_h \nabla \cdot v = \pi_h \nabla \cdot (v^\parallel) \) is well-defined. However, \(\pi_h \nabla : [H^1(M_h)]^3 \rightarrow H_h(\nabla_h) \) becomes ambiguous because \(v_h \in [H^1(M_h)]^3 \) has a discontinuous conormal component across each
face $f \in \mathcal{F}_h$ and $[v]_{\nu_f}$ does not vanish. To remedy this situation, we propose a modified $H(\text{div})$ interpolation $\tilde{\pi}^\nabla_h v$ for each $\tau \in \mathcal{T}_h$ and $v \in [H^1(\tau)]^3$ by

$$\int_f (\tilde{\pi}^\nabla_h v) \cdot \nu_f^+ \text{ds} = \delta_f \int_f v \cdot \nu_f^+ \text{ds}, \quad \forall f \subset \partial \tau, \ f \in \mathcal{F}_h, \quad (3.5)$$

where $\delta_f = 1$ if $\tau = \tau_f^+$ and $\delta_f = -1$ otherwise. Note that (3.2) uses the outward conormal element-wise while (3.5) depends on a pre-assigned conormal ν_f^+ for each face f. When the surface M_h is globally flat, we have $\nu_f^+ = -\nu_f^-$ and the two interpolations $\tilde{\pi}^\nabla_h$ and π^∇_h coincide. Let $\tilde{\pi}^\nabla_h v \in H_h(\nabla_h)$ be the global interpolant such that

$$\left. (\tilde{\pi}^\nabla_h v) \right|_\tau = \pi^\nabla_h (v|_\tau), \quad \forall \tau \in \mathcal{T}_h.$$

The trace theorem implies that the domain of $\tilde{\pi}^\nabla_h$ contains $[H^1(\mathcal{M}_h)]^3$. Moreover, $\tilde{\pi}^\nabla_h v$ is also well-defined for any discontinuous $v \in H^1_T(\mathcal{M}_h)$. For convenience, we may use the trivial notation $\tilde{\pi}^\nabla_h = \pi^\nabla_h$. The properties of $\tilde{\pi}^\nabla_h$ and π^∇_h are presented in the next lemma.

Lemma 3.2 Let $\tau \in \mathcal{T}_h$ and $v \in [H^1(\tau)]^3$. It holds that

$$\|v - \tilde{\pi}^\nabla_h v|_\tau \lesssim \|v^\perp\|_\tau + \|v^\parallel\|_{H^1(\tau)}, \quad (3.6a)$$

$$\|v - \pi^\nabla_h v|_\tau \lesssim \|v^\perp\|_\tau + h_\tau \|v^\parallel\|_{H^1(\tau)}. \quad (3.6b)$$

For $v_h \in [P_1(\tau)]^3$, it holds that

$$\|\tilde{\pi}^\nabla_h v_h|_\tau \lesssim \|v_h\|_\tau, \quad (3.7a)$$

$$\|d_h \tilde{\pi}^\nabla_h v_h|_\tau \lesssim \|v_h\|_\tau + \|d_h v_h^\parallel\|_\tau. \quad (3.7b)$$

![Fig. 3 Decomposition of a non-tangential vector field v.](image)

\[Fig. 3\] Decomposition of a non-tangential vector field v.\]
Proof Using \(v = v^\perp + v^\parallel \), \(\pi_h^\nabla v = \pi_h^\nabla (v^\parallel) \), and the triangle inequality, we have
\[
\|v - \pi_h^\nabla v\|_\tau \leq \|v^\perp\|_\tau + \|v^\parallel - \pi_h^\nabla v^\parallel\|_\tau + \|\pi_h^\nabla v - \pi_h^\nabla v\|_\tau. \tag{3.8}
\]
For each 1-d face \(f \subset \partial \tau \), it follows from the trace inequality
\[
\|v\|_{L^1(f)} \lesssim \|v\|_\tau + h\tau \|
abla v\|_\tau
\]
and \(\nu_\tau + f = O(h_f) \) on \(f \) that
\[
\|\pi_h^\nabla \nu - \bar{\pi}_h^\nabla \nu\|_\tau \lesssim h\tau \|
abla \nu\|_{H^1(\tau)} \tag{3.9}
\]
Therefore combining (3.8) with (3.3c) and (3.9) leads to (3.6a).

Similarly, using \(\pi_h^\otimes v = \pi_h^\otimes (v^\parallel) \), the triangle inequality
\[
\|v - \pi_h^\otimes v\|_\tau \leq \|v^\perp\|_\tau + \|v^\parallel - \pi_h^\otimes v^\parallel\|_\tau,
\]
and (3.3c), we obtain (3.6b). The bound (3.7a) follows from a scaling argument. Using \(\pi_h^d v_h = \pi_h^d v_h^\parallel \), an inverse inequality and (3.9), we have
\[
\|d_h \pi_h^d v_h\|_\tau \lesssim \|d_h \pi_h^d v_h\|_\tau + \|d_h (\pi_h^d - \pi_h^d) v_h\|_\tau
\]
and verify (3.7b). The proof is complete. \(\square \)

3.2 Surface Piola transformations

In the following, we describe the Piola transformation between the smooth surface \(\mathcal{M} \) and the discrete surface \(\mathcal{M}_h \). Define
\[
H := \nabla \nu, \quad P := I - \nu \otimes \nu, \quad P_h := I - \nu_h \otimes \nu_h,
\]
where \(I \) is the identity mapping. The restriction \(a|_{\mathcal{M}_h} : \mathcal{M}_h \to \mathcal{M} \) of the projection \(a : \mathcal{U} \to \mathcal{M} \) is bijective. With slight abuse of notation, we simply denote \(a = a|_{\mathcal{M}_h} \) such that the inverse \(a^{-1} : \mathcal{M} \to \mathcal{M}_h \) exists.

Let \(x \in \mathcal{M}_h \) and \(\mu_h \) be the density function on \(\mathcal{M}_h \) such that \(d\sigma(a(x)) = \mu_h(x) d\sigma(x) \). It is shown in [24] that surface gradients are related as
\[
\nabla_{\mathcal{M}_h} w_h(x) = P_h(x)[I - \delta H](x)P(a(x))\nabla_{\mathcal{M}} \bar{w}_h(a(x)),
\]
\[
\nabla_{\mathcal{M}} \bar{w}_h(a(x)) = [I - \delta H]^{-1}(x) \left(I - \frac{\nu_h \otimes \nu}{\nu_h \cdot \nu} \right) \nabla_{\mathcal{M}_h} w_h(x), \tag{3.10}
\]
where \(w_h \) is a function on \(M_h \), and \(\tilde{w}_h := w_h \circ a^{-1} \) is the lifting on \(M \). Let \(v_h \) and \(v \) be tangential vector fields on \(M_h \) and \(M \), respectively. Using (2.5), (2.6), (2.7a), (3.10), we obtain the following surface Piola transformation

\[
(P_a^\nabla \times v_h)(a(x)) = [I - \delta H]^{-1}(x) \left(I - \frac{\nu_h \otimes \nu}{\nu_h \cdot \nu} \right) v_h(x),
\]

(3.11a)

\[
(P_a^\nabla \cdot v)(x) = P_h(x)[I - \delta H](x)v(a(x)),
\]

(3.11b)

\[
(P_a^\nabla \cdot v_h)(a(x)) = \frac{1}{\mu_h(x)} P(a(x))[I - \delta H](x)v_h(x),
\]

(3.11c)

\[
(P_a^\nabla \cdot v)(x) = \mu_h(x) \left(I - \frac{\nu \otimes \nu_h}{\nu_h \cdot \nu} \right) [I - \delta H]^{-1}(x)v(a(x)),
\]

(3.11d)

see Figure 4 for the illustration. We next present properties of Piola transforms.

![Fig. 4 Piola transformation between \(M \) and \(M_h \).](image_url)

Lemma 3.3 Let \(v \in L^2(TM) \) be a tangential vector field on \(M \). We have

\[
|P^{\nabla}_{a^{-1}} v(x) - v^f(x)| \lesssim h_\tau |v(a(x))|, \quad \forall x \in \tau, \forall \tau \in T_h.
\]

(3.12)

In addition, for \(\tau \in T_h \), \(v_h \in L^2(T\tau) \), \(v \in H^1(T\tau(\tau)) \), \(x \in \tau \), we have

\[
|P^{\nabla}_{a^{-1}} v_h(a(x))| \lesssim |v_h(x)|, \quad |P^{\nabla}_{a^{-1}} v(x)| \lesssim |v(a(x))|,
\]

(3.13a)

\[
|\nabla \tau P^{\nabla}_{a^{-1}} v(x)| \lesssim |v(a(x))| + |\nabla v(a(x))|, \quad |\nabla P^{\nabla}_{a^{-1}} v_h(a(x))| \lesssim |v_h(x)| + |\nabla v_h(x)|.
\]

(3.13b)

(3.13c)

Proof In the case that \(d = \nabla \cdot \), (3.12) is derived in [19]. Given \(\tau \in T_h \) and a point \(x \in \tau \), using the formula (3.11b) and that \(v^f(x) \perp \nu(x) \), we have

\[
(P_a^{\nabla \cdot} v)(x) - v^f(x) = P_h(x)[I - \delta H](x)v(a(x)) - v(a(x))
\]

\[
= [P_h(x) - \delta(x)P_h(x)H(x) - P(x)]v(a(x))
\]

\[
= [\nu(x) \otimes \nu(x) - \nu_h(x) \otimes \nu_h(x) - \delta(x)P_h(x)H(x)]v(a(x)).
\]

(3.14)
Combining (3.14) with (2.12) yields

\[|(P_a^{\nabla \times} v)(x) - v^f(x)| \lesssim h_r |v(a(x))|. \]

(3.15)

The estimates (3.13) follows from the definitions (3.11a)–(3.11d).

For \(f \in \mathcal{F}_h \), along the interface \(a(f) \subset M \) let \(\bullet_{t,a(f)} \), \(\bullet_{\nu,a(f)} \) be the tangential and conormal jumps defined in the same fashion as \(\bullet_{t,f} \), \(\bullet_{\nu,f} \), respectively. The Piola transformation preserves tangential and conormal continuity of vector fields across interfaces. Given \(v_h \in H^1_0(\mathcal{T}_M) \), we have

\[\|v_h\|_{t,f} = 0 \implies \|P_a^{\nabla \times} v_h\|_{t,a(f)} = 0, \quad \|v_h\|_{\nu,f} = 0 \implies \|P_a^{\nabla \times} v_h\|_{\nu,a(f)} = 0. \]

Combining this fact and Lemma 3.3 leads to

\[P_a^d(H_h(d_h)) \subset H(d). \]

(3.16)

Similarly, for \(v \in H^1(\mathcal{T}M) \) and \(f \in \mathcal{F}_h \) we have

\[P_{a^{-1}}^d v \in H^1_0(\mathcal{T}M_h), \quad [P_{a^{-1}}^{\nabla \times} v]_{t,f} = 0, \quad [P_{a^{-1}}^{\nabla \times} v]_{\nu,f} = 0. \]

(3.17)

4 Preconditioning in \(H(\text{curl}) \) and \(H(\text{div}) \) on surfaces

In this section, we develop efficient nodal auxiliary space preconditioners for the discrete operator \(A_h^d \), where the auxiliary space builds upon the surface nodal element space \(H^1_h(\nabla_h) \), equipped with the inner product

\[\langle A_h^{\nabla} v_h, w_h \rangle_h = (v_h, w_h)_{A_h^{\nabla}} = (\nabla_h v_h, \nabla_h w_h)_h + c(v_h, w_h)_h. \]

On a surface \(M_\alpha \) with \(\alpha \) being suppressed or \(\alpha = h \), let

\[\|\bullet\|^2_{H(d_a)} := \|\bullet\|^2_{L^2(M_a)} + \|d_a \bullet\|^2_{L^2(M_a)}. \]

We consider the space of harmonic tangential vector fields on \(M \)

\[\mathcal{H}(d) := \{ u \in L^2(\mathcal{T}M) : du = 0, \ (d^{-1})^* u = 0 \}, \]

where \(d^* \) is the \(L^2(\mathcal{M}) \)-adjoint of \(d \). The next lemma deals with the Hodge decomposition of vector fields on smooth surfaces.

Lemma 4.1 (Hodge decomposition) For any \(v \in H(d) \), there exist \(\phi \in H^1(\mathcal{T}M) \) and \(p \in H(d^-) \) such that

\[v = \phi + d^- p, \]

\[\|\phi\|_{L^2(\mathcal{M})} + \|p\|_{H(d^-)} \lesssim \|v\|_{L^2(\mathcal{M})}. \]

(4.1)

In addition, we have \(p \in C^0(\mathcal{M}) \) when \(v \in L^s(\mathcal{T}M) \) with \(s > 2 \).
Proof The $L^2(\mathcal{M})$-orthogonal Hodge decomposition (cf. [52, 4]) of v reads

$$v = q + d^* r + d^- p,$$

(4.2)

where $q \in \mathcal{H}(d)$, r is in the domain of d^*, and $p \in N(d^-) \subset H(d^-)$ with

$$\|p\|_{L^2(\mathcal{M})} \leq c_p \|d^- p\|_{L^2(\mathcal{M})}.$$

(4.3)

Let $\phi := q + d^* r$. The L^2-orthogonality of (4.2) implies

$$\|d^- p\|_{L^2(\mathcal{M})} + \|\phi\|_{L^2(\mathcal{M})} \leq 2\|v\|_{L^2(\mathcal{M})}.$$

(4.4)

Using $(d^-)^* \circ d^* = 0$, $d\phi = dv$ and the Gaffney inequality (cf. [52, 4, 27]) on \mathcal{M}, we have $\phi \in H^1(T\mathcal{M})$ and

$$\|\phi\|_{H^1(\mathcal{M})} \lesssim \|\phi\|_{L^2(\mathcal{M})} + \|d\phi\|_{L^2(\mathcal{M})} + \|(d^-)^* \phi\|_{L^2(\mathcal{M})}.$$

(4.5)

Collecting (4.2)–(4.5) finishes the proof of (4.1).

Due to the Sobolev embedding, it holds that $\phi \in H^1(T\mathcal{M}) \hookrightarrow L^s(T\mathcal{M})$ and $p \in H(d^-) = H^1(\mathcal{M}) \hookrightarrow L^s(\mathcal{M})$ with $s > 2$. Hence we have $d^- p = v - \phi \in L^s(T\mathcal{M})$ and thus $p \in W^{1,s}(\mathcal{M}) \hookrightarrow C^0(\mathcal{M})$. \square

On a non-smooth polygonal surface, Hodge decompositions of vector fields could be found in [15].

In a Euclidean space, the classical HX preconditioner [34] utilizes the space of globally continuous and piecewise linear vector fields. In differential geometry, Euclidean vector fields are intrinsically generalized as tangential vector fields on a smooth manifold. However, any vector field tangential to a triangulated surface \mathcal{M}_h cannot be continuous, see Figure 2. Therefore we relax the tangential condition and make use of the space $[H_h(\nabla_h)]^3$ of all continuous and non-tangential piecewise linear vector fields on \mathcal{M}_h as an auxiliary space. Now we are in a position to prove the main result for preconditioning.

Theorem 4.1 For any $v_h \in H_h(d_h)$, there exist $\tilde{v}_h \in H_h(d_h)$, $\phi_h \in [H_h(\nabla_h)]^3$ and $p_h \in H_h(d_h)$ such that

$$v_h = \tilde{v}_h + \nabla^a \phi_h + d^- p_h,$$

$$\|h^{-1} \tilde{v}_h\|^2 + \|\phi_h\|^2_{A_h^s} + c\|p_h\|^2_{H(d_h)} \lesssim \|v_h\|^2_{A_h^s}.$$

Proof Given $v_h \in H_h(d_h)$, we have $\mathcal{P}_h^a v_h \in H(d)$ by (3.16). The Hodge decomposition of $\mathcal{P}_h^a v_h \in H(d)$ on the smooth \mathcal{M} in Lemma 4.1 reads

$$\mathcal{P}_h^a v_h = \phi + d^- p,$$

(4.6)

where $\phi \in H^1(T\mathcal{M}), p \in C^0(\mathcal{M})$. It follows from (4.1), (3.13) and (2.7b) that

$$\|\phi\|_{L^2(\mathcal{M})} + \|d^- p\|_{L^2(\mathcal{M})} \lesssim \|\mathcal{P}_h^a v_h\|_{L^2(\mathcal{M})} \lesssim \|v_h\|,$$

$$\|\phi\|_{H^1(\mathcal{M})} \lesssim \|\mathcal{P}_h^a v_h\|_{H(d)} \lesssim \|v_h\| + \|d_h v_h\|.$$

(4.7)
Applying \mathcal{P}_a^{-1} to (4.6) and using the commuting property (2.7b), we obtain

$$\nu_h = \mathcal{P}_a^{-1}\phi + d_h^{-}\mathcal{P}_a^{-1}p. \quad (4.8)$$

It follows from the property (3.17) with $\nu = \phi$ and Lemma 3.1 that $\pi_h^d \mathcal{P}_a^{-1}\phi$ is well-defined. In addition, $\mathcal{P}_a^{-1}p = p \circ a^{-1}$ is continuous and the nodal interpolant $\pi_h^d \mathcal{P}_a^{-1}p$ exists. Now applying the canonical interpolation π_h^d to (4.8) and using (3.4) and $\pi_h^d \mathcal{P}_a^{-1}\phi = \tilde{\pi}_h^d \mathcal{P}_a^{-1}\phi$, we have

$$\nu_h = \pi_h^d \mathcal{P}_a^{-1}\phi + \pi_h^d d_h^{-} \mathcal{P}_a^{-1}p$$

$$= \tilde{\pi}_h^d (\mathcal{P}_a^{-1}\phi - \mathcal{I}_h \phi^f) + \pi_h^d (\mathcal{I}_h \phi^f) + d_h^{-} \pi_h^d \mathcal{P}_a^{-1}p. \quad (4.9)$$

There exists $p_h \in N(d_h^{-})$ such that

$$d_h^{-} p_h = d_h^{-} \pi_h^d \mathcal{P}_a^{-1}p = \pi_h^d d_h^{-} \mathcal{P}_a^{-1}p. \quad (4.10)$$

Then using the discrete Poincaré inequality (2.11b), $d_h^{-} \mathcal{P}_a^{-1}p = \nu_h - \mathcal{P}_a^{-1}\phi$, $(I - \pi_h^d)\nu_h = 0$, and (2.7b), we have

$$\|p_h\|_{H(d_h^{-})} \leq \|\pi_h^d d_h^{-} \mathcal{P}_a^{-1}p\| \leq \|(I - \pi_h^d)d_h^{-} \mathcal{P}_a^{-1}p\| + \|d_h^{-} \mathcal{P}_a^{-1}p\|$$

$$\leq \|(I - \pi_h^d)\mathcal{P}_a^{-1}\phi\| + \|\mathcal{P}_a^{-1}d_h^{-}p\|.$$

It then follows from the above estimate and (3.3c), (3.13), (4.7) that

$$\|p_h\|_{H(d_h^{-})} \leq \left(\sum_{\tau \in T_h} h_{\tau}^2 \|\mathcal{P}_a^{-1}\phi\|^2_{H^1(\tau)} \right)^{\frac{1}{2}} + \|\nu_h\|$$

$$\lesssim h_{\max}(\|\nu_h\| + \|d_h\nu_h\|) + \|\nu_h\| \lesssim \|\nu_h\|. \quad (4.11)$$

The other two components in the decomposition of ν_h are set to be

$$\tilde{\nu}_h = \pi_h^d (\mathcal{P}_a^{-1}\phi - \mathcal{I}_h \phi^f), \quad \phi_h = \mathcal{I}_h \phi^f.$$

It is easy to see that for $\tau \in T_h$,

$$\|\phi^f\|_\tau \simeq \|\phi\|_{L^2(\sigma(\tau))}, \quad \|\phi^f\|_{H^1(\tau)} \simeq \|\phi\|_{H^1(\sigma(\tau))}. \quad (4.12)$$

The following estimate is a consequence of (3.3), (4.7) and (4.12)

$$\|\phi_h\|_\tau \lesssim \|\nu_h\|, \quad \|\phi_h\|_{H^1(M_h)} \lesssim \|\nu_h\| + \|d_h\nu_h\|.$$

As a result, we obtain

$$\|\phi_h\|_{A_h^d} \lesssim \|\nu_h\|_{A_h^d}. \quad (4.13)$$

On each $\tau \in T_h$, it follows from Lemma 3.2 that

$$\|\tilde{\phi}_h\|_\tau \leq \|(I - \pi_h^d)(\mathcal{P}_a^{-1}\phi - \mathcal{I}_h \phi^f)\|_\tau + \|\mathcal{P}_a^{-1}\phi - \mathcal{I}_h \phi^f\|_\tau$$

$$\lesssim \|(\mathcal{P}_a^{-1}\phi - \mathcal{I}_h \phi^f)^{\perp}\|_\tau + h_\tau \|\mathcal{P}_a^{-1}\phi - \mathcal{I}_h \phi^f\|_{H^1(\tau)}$$

$$\lesssim \|\mathcal{P}_a^{-1}\phi - \mathcal{I}_h \phi^f\|_\tau + h_\tau \|\mathcal{P}_a^{-1}\phi - \mathcal{I}_h \phi^f\|_{H^1(\tau)}. \quad (4.14)$$
Using (3.3b) and (3.12) and a triangle inequality, we obtain
\[
\|P_h^d \phi - \mathcal{T}_h \phi^f \|_{\tau} \\
\leq \|P_h^d \phi - \phi^f \|_{\tau} + \|\phi^f - \mathcal{T}_h \phi^f \|_{\tau} \lesssim h_r \|\phi^f\|_{H^1(\Omega_r)}.
\] (4.15)

Using (3.3b), (3.13b), (4.7), we obtain
\[
|P_h^d \phi - \mathcal{T}_h \phi^f|_{H^1(\tau)} \lesssim \|\phi^f\|_{H^1(\Omega_r)}.
\] (4.16)

Combining (4.14)–(4.16) and (4.12), (4.7) yields
\[
\|h^{-1} \tilde{v}_h\| \lesssim \left(\sum_{\tau \in \mathcal{T}_h} \|\phi^f\|^2_{H^1(\Omega_r)} \right)^{\frac{1}{2}} \approx \|\phi\|_{H^1(M)} \lesssim \|v_h\| + \|d_h v_h\|.
\] (4.17)

Finally we complete the proof with (4.9), (4.11), (4.13), (4.17).

Let $S_h^d : H_h(d_h) \to H_h(d_h)$ be an SPD operator such that
\[
\|v_h\|_{(S_h^d)^{-1}} \simeq c_\tau \|v_h\| + \|h^{-1} v_h\|, \quad \forall v_h \in H_h(d_h).
\]

In the multigrid literature, S_h^d is known as a smoother, which could be any classical local relaxation such as the Jacobi and symmetrized Gauss–Seidel iteration. In the following, we simply set S_h^d to be the operator corresponding to the inverse diagonal of the matrix for A_h^d, i.e., the Jacobi iteration. Recall the transfer operators $\tilde{\pi}_h^d : [H_h(\nabla h)]^3 \to H_h(d_h)$ and $d_h^- : H_h(d_h^-) \to H_h(d_h)$.

We define the preconditioner $B_h^d : H_h(d_h)^{\prime} \to H_h(d_h)$ for A_h^d as
\[
B_h^d := S_h^d + \bar{\pi}_h^d [(A_h^d)^{-1}]^3 (\tilde{\pi}_h^d)^{\prime} + c^{-1} d_h^-(A_h^{d^-})^{-1} (d_h^-)^{\prime}.
\]

Using (3.7) and Theorem 4.1, it is straightforward to verify the assumptions in Lemma 1.1 with
\[
V = H_h(d_h), \quad A = A_h^d,
\]
\[
\tilde{V} = H_h(d_h) \times [H_h(\nabla h)]^3 \times H_h(d_h^-),
\]
\[
\tilde{A} = (S_h^d)^{-1} \times [A_h^d]^3 \times c A_h^{d^-}, \quad \pi = (I, \bar{\pi}_h^d, d_h^-).
\]

As a consequence of Lemma 1.1, we then obtain the following spectral equivalence and the condition number estimate
\[
(A_h^d)^{-1} \lesssim B_h^d \lesssim (A_h^d)^{-1}, \quad \kappa(B_h^d A_h^d) \lesssim 1.
\] (4.18)

In particular, when $d = \nabla \times$ or $d = \nabla \cdot$, we have
\[
B_h^{\nabla \times} := S_h^{\nabla \times} + \bar{\pi}_h^{\nabla \times} [(A_h^{\nabla \times})^{-1}]^3 (\tilde{\pi}_h^{\nabla \times})^{\prime} + c^{-1} \nabla_h (A_h^{\nabla \times})^{-1} \nabla_h^{\prime},
\] (4.19a)
\[
B_h^{\nabla \cdot} := S_h^{\nabla \cdot} + \bar{\pi}_h^{\nabla \cdot} [(A_h^{\nabla \cdot})^{-1}]^3 (\tilde{\pi}_h^{\nabla \cdot})^{\prime} + c^{-1} \nabla_h^l (A_h^{\nabla \cdot})^{-1} \nabla_h^{l\prime}.
\] (4.19b)

Let $\{\phi_j\}_{j=1}^J$ be a finite element basis of $H_h(d_h)$ and $\{\phi^f_j\}_{j=1}^J$ the dual basis of $H_h(d_h)^{\prime}$ such that $\langle \phi^f_j, \phi_j \rangle = \delta_{ij}$. Under the basis $\{\phi_j\}_{j=1}^J$, let \tilde{A}_h^d (resp. \tilde{B}_h^d)
denote the matrix representing A_h^4 (resp. B_h^d), \tilde{D}_h^d the diagonal of \tilde{A}_h^d, \tilde{P}_h^d the matrix for $\tilde{\pi}_h^d$, \tilde{G}_h the matrix for ∇_h, and \tilde{C}_h the matrix representing ∇_h^\top. Let $\tilde{A}_h = \tilde{A}_h^N$ be the matrix representation of A_h^N, i.e., the surface nodal element stiffness matrix corresponding to the bilinear form $(\nabla_h\cdot, \nabla_h\cdot)_h + c(\cdot, \cdot)_h$ on $H_h(\nabla_h)$. By \tilde{A}_h we denote the block diagonal matrix with 3 copies of \tilde{A}_h as its block diagonal. In matrix notation, (4.18), (4.19) translate into

\[
\begin{align*}
\tilde{B}_h^{\nabla} &= (\tilde{D}_h^{\nabla})^{-1} + \tilde{P}_h^{\nabla} \tilde{A}_h^{-1} (\tilde{P}_h^{\nabla})^\top + \kappa \tilde{G}_h \tilde{A}_h^{-1} \tilde{C}_h^\top, \\
\tilde{B}_h^\nabla &= (\tilde{D}_h^\nabla)^{-1} + \tilde{P}_h^\nabla \tilde{A}_h^{-1} (\tilde{P}_h^\nabla)^\top + \kappa \tilde{G}_h \tilde{A}_h^{-1} \tilde{C}_h^\top,
\end{align*}
\]

(4.20)\hspace{1cm}\begin{align*}
(\tilde{A}_h^d)^{-1} &\preceq \tilde{B}_h^d \preceq (\tilde{A}_h^d)^{-1}, & \kappa(\tilde{B}_h^d \tilde{A}_h^d) &\preceq 1.
\end{align*}

Due to the condition number estimate given above, PCG for (2.10) preconditioned by \tilde{B}_h^d converges within uniformly bounded number of iterations (cf. [55]). In practice, the matrix inverses \tilde{A}_h^{-1}, \tilde{A}_h^{-4} could be approximated by any well-established fast Poisson solver on surfaces. For example, at the presence of a grid hierarchy, we are allowed to evaluate \tilde{A}_h^{-1}, \tilde{A}_h^{-4} using surface geometric multigrid methods in e.g., [38,11,40]. On unstructured triangulated surfaces, replacing \tilde{A}_h^{-1}, \tilde{A}_h^{-4} with AMG V- or W-cycle or BPX preconditioner in \tilde{B}_h^d still yields a quite efficient preconditioner.

Remark 4.1 The results in Sections 2-4 could be generalized to hypersurfaces without boundary. For a 3-dimensional hypersurface $M \subset \mathbb{R}^4$, we briefly explain preconditioners for the discrete problem (2.10). Given tangential vector fields $v = (v_1, v_2, v_3, v_4)^\top$, $w = (w_1, w_2, w_3, w_4)^\top$ along M, we define the wedge product and 3-d surface curl as

\[
v \wedge w := \begin{vmatrix} e_1 & e_2 & e_3 & e_4 \\
1 & v_1 & v_2 & v_3 \\
v_1 & v_2 & v_3 & v_4 \\
w_1 & w_2 & w_3 & w_4 \end{vmatrix}, \quad \nabla_M \times v := \tilde{\nabla} \wedge v,
\]

where $\nu = (v_1, v_2, v_3, v_4)^\top$ is the outward unit normal to M, $\{e_i\}_{i=1}^4$ are the standard basis vectors in \mathbb{R}^4, and $\tilde{\nabla}$ is the gradient in \mathbb{R}^4. The de Rham complex on M reads

\[
H(\nabla) \xrightarrow{\nabla_M} H(\nabla \times) \xrightarrow{\nabla_M \times} H(\nabla) \xrightarrow{\nabla_M} L^2(M).
\]

The wedge product and 4-d curl of vector fields are given in [28] and are used for HX preconditioning on 4-d Euclidean regions.

We adopt the same notation used in Sections 2-4 with obvious generalized meanings in an ambient space \mathbb{R}^4 unless confusion arises. For example,

\[
d^- = \nabla_M, \quad d = \nabla_M \times \quad \text{or} \quad d^- = \nabla_M \times, \quad d = \nabla_M^\top,
\]

and $H_h(d_h)$ in (2.10) is the lowest-order 3-dimensional edge or face element space based on a triangulated hypersurface M_h with tetrahedral elements.
Let $(d^- u, v)_M = 0$ be the mixed variational formulation of $(d^- u, v)_M = 0$, \forall v \in H(d)$.}

In fact, $H(d) = N(d^- (d^-)^* + d^* d)$ is the kernel of the Hodge Laplacian, and (5.1) is the mixed variational formulation of

$$(d^- (d^-)^* + d^* d) u = 0.$$

In the discrete level, we consider the space of discrete harmonic vector fields

$$\mathcal{H}_h(d_h) := \{ v_h \in H_h(d_h) : d_h v_h = 0, (d^- \tau_h, v_h)_h = 0 \ \forall \tau_h \in H_h(d^-) \}.$$

Let $(d_h^-)^*$ be the $L^2(M_h)$-adjoint of $d_h^- : H_h(d^-) \to H_h(d^-)$ and $\sigma_h = -(d_h^-)^* u_h$. Then $u_h \in \mathcal{H}_h(d_h)$ if and only if σ_h and u_h satisfy

$$(\sigma_h, \tau_h)_h + (d_h^- \tau_h, u_h)_h = 0, \ \forall \tau_h \in H_h(d_h^-),$$

$$(d_h^- \sigma_h, v_h)_h - (d_h^- u_h, d_h^- v_h)_h = 0, \ \forall v_h \in H_h(d_h).$$

Let $X_h := H_h(d_h^+) \times H_h(d_h)$ and consider the discrete operator $A_h : X_h \to X'_h$

$$(A_h(\sigma_h, u_h), (\tau_h, v_h)) := (\sigma_h, \tau_h)_h + (d_h^- \tau_h, u_h)_h + (d_h^- \sigma_h, v_h)_h - (d_h^- u_h, d_h^- v_h)_h.$$

In a compact block form, A_h reads

$$A_h = \begin{pmatrix} I & d_h^- \\ d_h^- & d_h^- d_h \end{pmatrix}.$$
It is clear that
\[\mathcal{H}_h(d_h) = \{ u_h \in H_h(d_h) : (-d_h^{-1})^* u_h, u_h \}^\top \in N(A_h) \}. \]
(5.3)
Therefore computing the discrete harmonic space is equivalent to finding a basis for the kernel of \(A_h \). The dimensions of \(\mathcal{H}_h(\nabla_h \times) \) and \(\mathcal{H}_h(\nabla_h \cdot) \) are equal to the 1st Betti number of \(M_h \). The operator \(A_h \) is singular when \(M_h \) has nontrivial cohomology groups.

5.1 MINRES for singular problems

We shall construct a SPD preconditioner \(B_h : X'_h \to X_h \) for \(A_h \) such that the condition number of \(B_h A_h \) is uniformly bounded in certain sense even though \(A_h \) is singular. Let \(\{ \psi_i \}_{i=1}^K \) be a finite element basis of \(X_h \), \(\{ \psi'_i \}_{i=1}^K \) the dual basis of \(X'_h \) such that \(\langle \psi'_i, \psi_j \rangle = \delta_{ij} \). Let \(\tilde{A}_h \) and \(\tilde{B}_h \) denote the matrix representations for \(A_h \) and \(B_h \) under these basis, respectively. We choose a random vector \(b \in \mathbb{R}^K \) and the consider the algebraic system
\[\tilde{B}_h \tilde{A}_h x = \tilde{B}_h b. \]
(5.4)
In our case of interest, \(\tilde{A}_h \) is rank-deficient and \(b \) is almost surely not contained in the range of \(\tilde{A}_h \). In other words, (5.4) is not compatible provided \(\tilde{A}_h \) has a nontrivial kernel. Nevertheless, the classical preconditioned MINRES method \cite{47} minimizes the residual \(\| b - \tilde{A}_h x \|_{\tilde{B}_h} \) and returns an iterative solution \(x_k \) approximating the least-squares solution \(x^\dagger \) for the singular problem (5.4), see \cite{18,17}. Here \(x^\dagger \) may not be the minimum length least-squares solution.

Due to the minimum residual or least-squares property
\[\| b - \tilde{A}_h x^\dagger \|_{\tilde{B}_h} = \min_{y \in \mathbb{R}^K} \| b - \tilde{A}_h y \|_{\tilde{B}_h}, \]
we have
\[(b - \tilde{A}_h x^\dagger, y)_{\tilde{B}_h} = 0, \quad \forall y \in R(\tilde{A}_h), \]
which implies that
\[\tilde{B}_h (b - \tilde{A}_h x^\dagger) \in R(\tilde{A}_h)^\perp = N(\tilde{A}_h). \]
(5.5)
Combining it with (5.3), we have that the \(u_h \)-part of the vector \(\tilde{B}_h (b - \tilde{A}_h x^\dagger) \) represents a discrete tangential harmonic vector field on \(M_h \).

Let \(\{ \lambda_i \}_{i=1}^K \) be the set of eigenvalues of \(\tilde{B}_h \tilde{A}_h \), arranged according to their absolute values in ascending order, that is,
\[0 = |\lambda_1| = \cdots = |\lambda_{m-1}| < |\lambda_m| \leq \cdots \leq |\lambda_K|. \]
The next theorem shows that the convergence speed of MINRES for (5.4) is determined by the effective condition number
\[\hat{\kappa}(\tilde{B}_h, \tilde{A}_h) := |\lambda_K/\lambda_m|. \]
Theorem 5.1 Let b_R be the orthogonal projection of b onto $R(\tilde{A}_h)$ with respect to the inner product $(\mathbf{ullet},\mathbf{ullet})_{\tilde{B}_h}$. Let x_0 be the initial guess, x_k the MINRES iterative solution at the k-th step, and $r_k = b_R - \tilde{A}_h x_k$ for $k = 0, 1, \ldots$ Then we have

$$
\|r_k\|_{\tilde{B}_h} \leq 2 \left(\frac{\hat{\kappa}(\tilde{B}_h,\tilde{A}_h) - 1}{\hat{\kappa}(\tilde{B}_h,\tilde{A}_h) + 1} \right)^{\frac{k}{2}} \|r_0\|_{\tilde{B}_h}.
$$

Proof Let b_N be the orthogonal projection of b onto $N(\tilde{A}_h)$ with respect to the inner product $(\mathbf{ullet},\mathbf{ullet})_{\tilde{B}_h}$. Without loss of generality, we assume $x_0 = 0$. Let $\mathcal{K}(\tilde{A}_h, b, \ell) := \text{span}\{b, \tilde{A}_h b, \ldots, \tilde{A}_h^{\ell-1} b\}$ be the Krylov subspace. The property of MINRES implies

$$
\|b - \tilde{A}_h x_k\|_{\tilde{B}_h} = \min_{y \in \mathcal{K}(\tilde{A}_h, b, k)} \|b - \tilde{A}_h y\|_{\tilde{B}_h}.
$$

It then follows from $\|b_R - \tilde{A}_h x_k\|_{\tilde{B}_h}^2 = \|b - \tilde{A}_h x_k\|_{\tilde{B}_h}^2 - \|b_N\|_{\tilde{B}_h}^2$ that

$$
\|b_R - \tilde{A}_h x_k\|_{\tilde{B}_h} = \min_{y \in \mathcal{K}(\tilde{A}_h, b, k)} \|b_R - \tilde{A}_h y\|_{\tilde{B}_h} = \min_{y \in b_N + \mathcal{K}(\tilde{A}_h, b_N, k)} \|b_R - \tilde{A}_h y\|_{\tilde{B}_h},
$$

a minimum residual property of the consistent system $\tilde{A}_h x = b_R$. Therefore applying the standard error analysis of Krylov subspace methods (cf. [42,51]) to MINRES for the consistent system $\tilde{A}_h x = b_R$ yields

$$
\|r_k\|_{\tilde{B}_h} \leq 2 \left(\frac{\kappa(\tilde{B}_h,\tilde{A}_h)_{|R(\tilde{A}_h)}}{\kappa(\tilde{B}_h,\tilde{A}_h)_{|R(\tilde{A}_h)} + 1} \right)^{\frac{k}{2}} \|r_0\|_{\tilde{B}_h}.
$$

Due to $R(\tilde{A}_h) = N(\tilde{A}_h)^\perp$, we have $\kappa(\tilde{B}_h,\tilde{A}_h)_{|R(\tilde{A}_h)} = |\lambda_K/\lambda_m| = \hat{\kappa}(\tilde{B}_h,\tilde{A}_h)$. The proof is complete. \hfill \Box

It follows from Theorem 5.1 that $\|\tilde{B}_h r_k\|_{\tilde{B}_h} := \|r_k\|_{\tilde{B}_h} \rightarrow 0$ and

$$
\tilde{B}_h (b - \tilde{A}_h x_k) = \tilde{B}_h (b - b_R) + \tilde{B}_h r_k \xrightarrow{k \to \infty} \tilde{B}_h (b - b_R) \in N(\tilde{A}_h).
$$

When applying MINRES to (5.4), the stopping criterion could no longer be the norm of $b - \tilde{A}_h x_k$ because (5.4) has no solution and $b - \tilde{A}_h x^! \neq 0$. In view of (5.5) and $\tilde{A}_h \tilde{B}_h (b - \tilde{A}_h x^!) = 0$, the norm of $\tilde{A}_h \tilde{B}_h (b - \tilde{A}_h x_k)$ is a viable stopping criterion, see [18]. When that quantity is reduced below the given error tolerance at step k, we accept $\tilde{B}_h (b - \tilde{A}_h x_k)$ as a null vector of \tilde{A}_h and the u_h-part of $\tilde{B}_h (b - \tilde{A}_h x_k)$ as a representation of a discrete tangential harmonic field. Besides the classical MINRES, other Krylov subspace methods for singular least-squares problems could be found in e.g., [18].
5.2 Block diagonal HX preconditioning

Natural bounds of the extreme eigenvalues λ_m, λ_K of $\tilde{B}_h\tilde{A}_h$ are hidden in the analytical property of B_hA_h with a carefully chosen preconditioner B_h. Following the preconditioning framework for saddle-point systems in [41, 43], we let $B_h^{\text{ex}}: X'_h \to X_h$ be the Riesz representation of X'_h. In matrix notation, B_h^{ex} is a block operator

$$B_h^{\text{ex}} := \begin{pmatrix} (A_h^{-})^{-1} & O \\ O & (A_h^{2})^{-1} \end{pmatrix}. $$

First we note that $B_h^{\text{ex}}A_h : X_h \to X_h$ is bounded, i.e.,

$$(B_h^{\text{ex}}A_h)(\sigma_h, u_h), (\tau_h, v_h) \rangle X_h = \langle A_h(\sigma_h, u_h), (\tau_h, v_h) \rangle X_h \leq (\|A_h^{-}\|_{H'(d_h^{4})}^2 + \|u_h\|_{H(d_h)}^2)^{\frac{1}{2}}(\|\tau_h\|_{H(d_h^{4})}^2 + \|v_h\|_{H(d_h)}^2)^{\frac{1}{2}}. $$

When $B_h = B_h^{\text{ex}}$, the maximum absolute eigenvalue is bounded by

$$|\lambda_K| \leq 1. \quad (5.6) $$

To estimate the condition number $\tilde{\kappa}(B_h^{\text{ex}}, A_h)$, we need the next lemma.

Lemma 5.1 Let $V_h = N(d_h^{4}) \oplus R(d_h^{4}).$ For any $\hat{v}_h \in V_h$ and $\hat{\tau}_h \in H_h(d_h^{4}),$ there exist $\mathbf{u}_h \in V_h$ and $\hat{\sigma}_h \in H_h(d_h^{4})$ such that

$$\langle A_h(\hat{\sigma}_h, \mathbf{u}_h), (\hat{\tau}_h, \hat{v}_h) \rangle \geq \beta(\|\hat{\sigma}_h\|_{X_h}, \|\hat{\tau}_h\|_{X_h}) \times \beta(\|\hat{\sigma}_h\|_{X_h}, \|\hat{\tau}_h\|_{X_h}),$$

where $\beta > 0$ depends only on the discrete Poincaré constant $c_{h,P}$.

Proof Consider the decomposition

$$\hat{v}_h = w_h + d_h^{-}\rho_h$$

with $w_h \in N(d_h^{4}) \oplus R(d_h^{4})$. The inequality (2.11b) implies

$$\|w_h\| \leq c_{h,P}\|d_h^{-}w_h\| = c_{h,P}\|d_h^{-}\hat{v}_h\|, \quad (5.7a)$$

$$\|\rho_h\| \leq c_{h,P}\|d_h^{-}\rho_h\|. \quad (5.7b)$$

Let $s = 1/c_{h,P}^2$ and define

$$\hat{\sigma}_h := \hat{\tau}_h + sp_h \in H_h(d_h^{4})$$

$$\hat{\rho}_h := -\hat{\tau}_h + d_h^{-}\hat{\tau}_h \in V_h.$$
Using the above estimate and (5.7a), (5.7b) leads to
\[
\langle \mathcal{A}_h(\tilde{\sigma}_h, \tilde{u}_h), (\tilde{\tau}_h, \tilde{v}_h) \rangle \\
\geq \frac{1}{2} ||\tilde{\tau}_h||^2 + ||d_{h}^{-1} \tilde{\tau}_h||^2 + \frac{1}{2c_{h,p}^2} ||d_{h}^{-1} \rho_h||^2 + ||d_{h} \tilde{v}_h||^2 \\
\gtrsim ||\tilde{\tau}_h||_{H(d_h^{-1})} + ||\tilde{v}_h||_{H(d_h)}.
\]
(5.8)
On the other hand, it follows from the definitions of \(\tilde{\sigma}_h, \tilde{u}_h\) that
\[
||\tilde{\sigma}_h||_{H(d_h^{-1})} + ||\tilde{u}_h||_{H(d_h)} \lesssim ||\tilde{\tau}_h||_{H(d_h^{-1})} + ||\tilde{v}_h||_{H(d_h)}.
\]
(5.9)
Combining (5.8) and (5.9) completes the proof. \(\square\)

In finite element exterior calculus, the discrete Hodge decomposition reads
\[
H_h(d_h) = N(d_h) \oplus R(d_h) \oplus H_h(d_h).
\]
Hence \(V_h = H_h(d_h) \ominus\) is the orthogonal complement of \(H_h(d_h)\) in \(H_h(d_h)\). In the case \(H_h(d_h) = \{0\}\), Lemma 5.1 is the inf-sup condition of the mixed method for the Hodge Laplacian proved in [4,6]. In general, a direct consequence of Lemma 5.1 is the following partial inf-sup condition modulo \(H_h(d_h)\)
\[
\inf_{0 \neq (\sigma_h, u_h) \in H_h(d_h) \times V_h} \sup_{0 \neq (\tau_h, v_h) \in H_h(d_h) \times V_h} \frac{\langle B^{cx}_h \mathcal{A}_h(\sigma_h, u_h), (\tau_h, v_h) \rangle_{X_h}}{||\sigma_h||_{X_h}||\tau_h||_{X_h}} \geq \beta.
\]
(5.10)
We next show that \(B^{cx}_h\) is a uniform preconditioner for computing \(N(\mathcal{A}_h)\).

Theorem 5.2 When \(B_h = B^{cx}_h\), we have
\[
\hat{\kappa}(\tilde{B}^{cx}_h \tilde{A}_h) = \hat{\kappa}(B^{cx}_h \mathcal{A}_h) \leq \beta^{-1}.
\]

Proof Let \(0 \neq (\sigma_h, u_h) \in H_h(d_h) \times H_h(d_h)\) be an eigenfunction associated with the extreme eigenvalue \(\lambda_m\), i.e., \(B^{cx}_h \mathcal{A}_h(\sigma_h, u_h) = \lambda_m (\sigma_h, u_h)\). Let \(\tilde{u}_h \in V_h\) be the orthogonal projection of \(u_h\) onto \(V_h\) with respect to \((\cdot, \cdot)_{H(d_h)}\). Due to \((0, u_h - \tilde{u}_h) \in N(\mathcal{A}_h)\), we obtain that
\[
(B^{cx}_h \mathcal{A}_h(\sigma_h, u_h), (\tilde{\tau}_h, \tilde{v}_h))_{X_h} = \lambda_m ((\sigma_h, u_h), (\tilde{\tau}_h, \tilde{v}_h))_{X_h}
\]
(5.11)
for all \(\tilde{\tau}_h \in H_h(d_h^{-1})\) and \(\tilde{v}_h \in V_h\). It then follows from (5.11) and (5.10) with \(\tilde{\sigma}_h = \sigma_h\) that
\[
|\lambda_m| \geq \beta.
\]
(5.12)
Combining (5.12) and (5.6) finishes the proof. \(\square\)
In practice, we replace the diagonal block \((A_d^h)^{-1}\) in \(B_h^{\text{HX}}\) with the surface HX preconditioners proposed in Section 4 and obtain

\[
B_h^{\text{HX}} := \begin{pmatrix}
 (A_d^h)^{-1} & O \\
 O & B_d^h
\end{pmatrix}.
\] (5.13)

Using Theorem 5.2 and (4.18), we obtain the condition number estimate

\[
\tilde{\kappa}(\tilde{B}_h^{\text{HX}}, \tilde{A}_h) = \tilde{\kappa}(B_h^{\text{HX}} A_h) \leq \beta^{-1} \kappa(B_d^h A_d^h) \lesssim 1.
\]

It then follows from the above estimate and Theorem 5.1 that MINRES for (5.4) with \(B_h = B_h^{\text{HX}}\) uniformly converges with respect to the mesh size \(h\).

Fig. 5 (a) An initial mesh \(T^2_0\), 192 elements; (b) A mesh with vertices on \(T^2\), 768 elements.

Table 1 PCG iterations for the \(N_0\) and \(RT_0\) element on \(T^2\) with \(c = 1\).

\(N\)	\(B_{N_0}\)	\(E_{N_0}\)	\(B_{RT_0}\)	\(E_{RT_0}\)
192	15	3.990e-7	24	9.164e-7
768	16	8.952e-7	27	5.092e-7
3072	17	3.211e-7	28	3.176e-7
12288	17	3.684e-7	28	5.586e-7
49152	16	9.776e-7	28	8.382e-7
196608	16	5.936e-7	29	4.350e-7
786432	16	4.447e-7	29	5.264e-7

6 Numerical experiments

This section is devoted to test the performance of the surface HX preconditioners for the lowest-order edge \(N_0\) element and face \(RT_0\) element on 2-
Table 2 PCG iterations for the N_0 and RT_0 element on T^2 with $c = 10000$.

N	E_{N_0}	E_{RT_0}
192	6.216e-7	21.928e-7
768	6.942e-7	23.672e-7
1228	6.397e-7	21.721e-7
19952	8.559e-7	18.845e-7
786432	8.348e-7	10.8304e-7

Table 3 Convergence history of discretization errors with $c = 1$ on S^3.

N	$\|\textbf{u} - \textbf{u}_h(N_0)\|$	order	$\|\textbf{u} - \textbf{u}_h(\text{RT}_0)\|$	order
128	2.056		2.575	
1024	6.460e-1	0.742	1.176	1.131
8192	3.280e-1	0.978	2.393e-1	1.091
65536	1.648e-1	0.993	1.175e-1	1.026
4194304	8.248e-2	0.996	5.845e-2	1.007

Table 4 PCG iterations for the N_0 and RT_0 element on S^3 with $c = 1$.

N	E_{N_0}	E_{RT_0}
128	3.227e-7	15.9754e-7
1024	6.385e-7	18.3382e-7
8192	4.564e-7	18.8321e-7
65536	8.714e-7	21.9625e-7
524288	8.735e-7	28.8996e-7
4194304	7.356e-7	36.8731e-7

Table 5 PCG iterations for the N_0 and RT_0 element on S^3 with $c = 10000$.

N	E_{N_0}	E_{RT_0}
128	9.790e-7	15.6657e-7
1024	8.223e-7	16.7961e-7
8192	6.976e-7	16.7470e-7
65536	9.711e-7	15.8524e-7
524288	8.470e-7	14.5353e-7
4194304	6.780e-7	12.5922e-7

3-dimensional hypersurfaces. In particular, we set \mathcal{M} to be the 2-d torus

$$T^2 = \left\{ x \in \mathbb{R}^3 : \delta_{T^2}(x) := \sqrt{(x_1^2 + x_2^2)^{1/2} - R}^2 + x_3^2 - r = 0 \right\}$$

with $R = 2$, $r = 0.5$, and the unit 3-d sphere

$$S^3 = \left\{ x \in \mathbb{R}^4 : \delta_{S^3}(x) := (x_1^2 + x_2^2 + x_3^2 + x_4^2)^{1/2} - 1 = 0 \right\}.$$

We remark that the signed distance function $\delta = \delta_{T^2}$ or δ_{S^3} is used for refining meshes and is not required in the implementation of preconditioners. In each table, let B_{N_0} (resp. B_{RT_0}) denote the surface HX preconditioner $\tilde{B}_{N_0}^{\bar{\nabla}}$ (resp. $\tilde{B}_{RT_0}^{\bar{\nabla}}$) for (2.10). Let $\textbf{u}_h(N_0)$ (resp. $\textbf{u}_h(\text{RT}_0)$) denote the solution for
Fig. 6 (a) Harmonic vector field I; (b) Harmonic vector field II.

Table 6 MINRES iterations for computing harmonic vector fields on T^2.

N	E_{P,N_0}	E_{P,RT_0}
192	44	5.388e-7
768	46	6.210e-7
3072	47	8.589e-7
12288	46	9.159e-7
49152	46	6.378e-7
196608	46	8.330e-7

(2.10) based on the edge (resp. face) element. By N we denote the number of grid elements. The iterative error of PCG method based on B_{N_0} or B_{RT_0} is denoted by E_{N_0} or E_{RT_0}, respectively.

Here we explain the basis used in numerical implementation. Let $\{z_i\}^i$ be the set of grid vertices on \mathcal{M}_h, and λ_i the continuous and piecewise linear hat function at z_i. We use

$$\{\lambda_i d^-_h \lambda_j - \lambda_j d^-_h \lambda_i\}_{z_i, z_j} \text{ form an edge}$$

as a basis for $H_h(\nabla \times)$ (resp. $H_h(\nabla \cdot)$ with dim $\mathcal{M}_h = 2$) where $d^-_h = \nabla_h$ (resp. $d^-_h = \nabla^-_h$). When dim $\mathcal{M}_h = 3$, a basis for $H_h(\nabla \cdot)$ is

$$\{\lambda_i \nabla_h \lambda_j \wedge_h \nabla_h \lambda_k + \lambda_j \nabla_h \lambda_k \wedge_h \nabla_h \lambda_i + \lambda_k \nabla_h \lambda_i \wedge_h \nabla_h \lambda_j\}_{z_i, z_j, z_k} \text{ form a 2-d face},$$

where \wedge_h is the wedge product on \mathcal{M}_h (see \wedge on \mathcal{M} in Remark 4.1).

6.1 Preconditioning on a 2-d torus

In this example, we consider the problem (2.4) with f being the tangential component of the constant vector field $(1, 1, 1)$ on $\mathcal{M} = T^2$. The initial triangulation of T^2 is T^2_0 shown in Figure 5a. The initial surface T^2_0 is uniformly
quad-refined (dividing each triangle into four subtriangles by connecting midpoints of all edges) to obtain a sequence of meshes on T^2_0. Then the actual triangulated surface M_h is constructed by mapping grid vertices of meshes on T^2_0 to T^2 via a, see Figure 5b.

To solve the SPD systems (2.10), we run the MATLAB function `pcg` with preconditioners B_{N_0} and B_{RT_0}, where discrete Laplacians used in B_{N_0} and B_{RT_0} are solved by the operation ‘\’. The stopping criterion for `pcg` is $|\tilde{b}^d_k|/|b| \leq 1e-6$, where r_k is the PCG residual at the k-th step and b is the right hand side of the algebraic system.

It is observed from Tables 1 and 2 that the HX preconditioners lead to uniformly convergent PCG method on T^2. In addition, the number of PCG iterations is independent of the magnitude of $c \gg 1$.

6.2 Preconditioning on a 3-d sphere

Let $p_1 = (1, 0, 0, 0)$, $p_2 = (0, 1, 0, 0)$, $p_3 = (-1, 0, 0, 0)$, $p_4 = (0, -1, 0, 0)$, $p_5 = (0, 0, 1, 0)$, $p_6 = (0, 0, -1, 0)$, $p_7 = (0, 0, 0, 1)$, $p_8 = (0, 0, 0, -1)$, and $[p_1p_2p_3p_4]$ denote the simplex in R^4 with vertices p_1, p_2, p_3, p_4. The initial surface S^3_0 consists of the following 3-dimensional simplexes $[p_1p_2p_3p_4]$, $[p_3p_5p_6p_7]$, $[p_1p_2p_3p_5]$, $[p_3p_1p_4p_7]$, $[p_1p_2p_4p_7]$, $[p_3p_5p_6p_1]$, $[p_1p_3p_5p_7]$, $[p_3p_1p_4p_5]$, $[p_1p_3p_5p_4]$, $[p_3p_5p_6p_3]$, $[p_1p_3p_5p_2]$, $[p_3p_5p_6p_2]$, $[p_3p_5p_6p_2]$, $[p_3p_5p_6p_3]$ in R^4.

The initial surface S^3_0 is uniformly refined by the red-refinement algorithm in [9] to generate a grid sequence on S^3_0. We use a to map the grid vertices of refinement of S^3_0 to construct the true triangulation M_h. Let $\varphi = x_1 + x_2 + x_3 + x_4$. We use $u = \nabla S^3 \varphi$ as the exact solution of (2.4) with $d = \nabla \times$ and $d = \nabla \cdot$. In Table 3, we record the discretization error of (2.10) with $d_h = \nabla_h \times$ and $d_h = \nabla_h \cdot$, which clearly exhibits first-order convergence.

The discrete problem in (2.10) is solved by the MATLAB function `pcg` with the same setup in Subsection 6.1. We use the classical AMG V-cycle in the iFEM package [16] as the discrete Poisson solver in B_{N_0} and B_{RT_0}.

It can be observed from Tables 4 and 5 that the HX-preconditioned PCG method uniformly converges on S^3. Moreover, the convergence rate of MINRES iteration is robust with respect to the large parameter c.

6.3 Harmonic vector fields on a 2-d torus

In the third experiment, we compute the space of harmonic vector fields $H_h(\nabla_h \times)$ on a triangulated torus. The torus, initial mesh, and mesh refinement are the same as Subsection 6.1. The HX-preconditioned MINRES method in Section 5 is applied to solve the kernel of the system (5.2) with $d_h = \nabla_h$, $d_h = \nabla_h \times$. The right hand side b in (5.4) is randomly produced by the MATLAB function `rand`. The preconditioner $B_{H^X}^b = B_{P_1N_0}$ is given in (5.13) with $d = \nabla \times$, where all discrete Laplacians A^N_k used in $B_{P_1N_0}$ are inverted by ‘\’.
The stopping criterion is
\[\left| \tilde{\mathbf{A}}_h^{B^{\text{HIX}}}(b - \tilde{\mathbf{A}}_h x_k) \right| / |b| \leq 10^{-6}. \]

In Table 6, $E_{P_1N_0}$ is the iterative error of MINRES preconditioned by $B_{P_1N_0}$.

On discrete tori in this experiment, the dimension of $H_h(\nabla_h \times)$ is 2. We use MINRES to solve (5.4) twice with two different randomly generated b. It is shown in Table 6 that the number of MINRES iterations is uniformly bounded. The Gram–Schmidt process is applied to the two output vector fields from MINRES with respect to the $H_h(\nabla_h \times)$-norm. The resulting two orthonormal harmonic vector fields are shown in Figure 6.

References

1. Aksoylu, B., Khodakovsky, A., Schröder, P.: Multilevel solvers for unstructured surface meshes. SIAM J. Sci. Comput. 26(4), 1146–1165 (2005). DOI 10.1137/S1064827503430138
2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)
3. Arnold, D.N., Falk, R.S., Winther, R.: Multigrid in $H(\text{div})$ and $H(\text{curl})$. Numer. Math. 85(2), 197–217 (2000)
4. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006). DOI 10.1017/S09624929062010018
5. Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Engrg. 198(21-26), 1660–1672 (2009). DOI 10.1016/j.cma.2008.12.017
6. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47(2), 281–354 (2010). DOI 10.1090/S0273-0979-10-01278-4
7. Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comp. 36(153), 27–42 (1981). DOI 10.2307/2007724
8. Bank, R.E., Smith, R.K.: An algebraic multilevel multigraph algorithm. SIAM J. Sci. Comput. 23(5), 1572–1592 (2002). DOI 10.1137/S1064827500381045
9. Bey, J.: Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85(1), 1–29 (2000)
10. Bonito, A., Demlow, A., Licht, M.: A divergence-conforming finite element method for the surface Stokes equation. SIAM J. Numer. Anal. 58(5), 2764–2798 (2020). DOI 10.1137/19M1284592
11. Bonito, A., Pasciak, J.E.: Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator. Math. Comp. 81(279), 1263–1288 (2012). DOI 10.1090/S0025-5718-2011-02551-2
12. Bramble, J.H., Pasciak, J.E., Wang, J.P., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comp. 57(195), 23–45 (1991). DOI 10.2307/2938661
13. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31(138), 333–390 (1977). DOI 10.2307/2006422
14. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations. In: Sparsity and its applications (Loughborough, 1983), pp. 257–284. Cambridge Univ. Press, Cambridge (1985)
15. Buffa, A., Claeys Jr., P.: On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24(1), 31–48 (2001). DOI 10.1002/1099-1476(20010110)24:1(9::AID-MMA191)3.0.CO;2-2.
16. Chen, L.: iFEM: an innovative finite element method package in Matlab (2009). University of California Irvine, Technical report

17. Choi, S.C.T.: Iterative methods for singular linear equations and least-squares problems. ProQuest LLC, Ann Arbor, MI (2007). Thesis (Ph.D.)–Stanford University

18. Choi, S.C.T., Poise, C.C., Saumiers, M.A.: MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems. SIAM J. Sci. Comput. 33(4), 1810–1836 (2011). DOI 10.1137/100787921

19. Cockburn, B., Demlow, A.: Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces. Math. Comp. 85(302), 2609–2638 (2016)

20. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005). DOI 10.1017/S0962492904000224

21. Dedner, A., Madhavan, P., Stinner, B.: Analysis of the discontinuous Galerkin method for elliptic problems on surfaces. IMA J. Numer. Anal. 33(3), 952–973 (2013). DOI 10.1093/imanum/drt033

22. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–827 (2009)

23. Demlow, A.: Convergence and quasi-optimality of adaptive finite element methods for harmonic forms. Numer. Math. 136(4), 941–971 (2017)

24. Demlow, A., Dziuk, G.: An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45(1), 421–442 (2007). DOI 10.1137/050642873

25. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013). DOI 10.1017/S0962492913000056

26. Fisher, M., Schröder, P., Desbrun, M., Hoppe, H.: Design of tangent vector fields. ACM Trans. Graph. 26, 56:1–56:9 (2007)

27. Gaffney, M.P.: The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. U.S.A. 37, 48–50 (1951). DOI 10.1073/pnas.37.1.48

28. Gopalakrishnan, J., Neumüller, M., Vassilevski, P.S.: The auxiliary space preconditioner for the de Rham complex. SIAM J. Numer. Anal. 56(6), 3196–3218 (2018). DOI 10.1137/17M115376

29. Hackbusch, W.: Multigrid methods and applications, Springer Series in Computational Mathematics, vol. 4. Springer-Verlag, Berlin (1985). DOI 10.1007/978-3-662-02427-0

30. Hiptmair, R.: Multigrid method for Maxwell’s equations. Electron. Trans. Numer. Anal. 6(Dec.), 133–152 (1997). Special issue on multilevel methods (Copper Mountain, CO, 1997)

31. Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999). DOI 10.1137/S0036142997326203

32. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002). DOI 10.1017/S0962492902000041

33. Hiptmair, R., Ostrowski, J.: Generators of $H^1(\mathcal{I}_h, Z)$ for triangulated surfaces: construction and classification. SIAM J. Comput. 31(5), 1405–1423 (2002). DOI 10.1137/S0097539701386526

34. Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in $H(\text{curl})$ and $H(\text{div})$ spaces. SIAM J. Numer. Anal. 45(6), 2483–2509 (2007). DOI 10.1137/060660588

35. Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15(1–4), 139–191 (2002) (2001). DOI 10.1023/A:1014246117321

36. Holst, M., Stern, A.: Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. Found. Comput. Math. 12(3), 263–293 (2012)

37. Hong, Q., Li, Y., Xu, J.: An extended Galerkin analysis in finite element exterior calculus. Math. Comp. 91(335), 1077–1106 (2022)

38. Kornmüller, R., Yuertenant, H.: Multigrid methods for discrete elliptic problems on triangular surfaces. Comput. Vis. Sci. 11(4-6), 251–257 (2008). DOI 10.1007/s00791-008-0102-4

39. Li, Y.: Some convergence and optimality results of adaptive mixed methods in finite element exterior calculus. SIAM J. Numer. Anal. 57(4), 2019–2042 (2019). DOI 10.1137/18M1226080
40. Li, Y.: Fast auxiliary space preconditioners on surfaces. arXiv e-prints, arXiv:2011.13502 (2021)
41. Loghin, D., Wathen, A.J.: Analysis of preconditioners for saddle-point problems. SIAM J. Sci. Comput. 25(6), 2029–2049 (2004). DOI 10.1137/S1064827504418203
42. Mardal, K.A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18(1), 1–40 (2011). DOI 10.1002/nla.716
43. Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)
44. Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)
45. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992). DOI 10.1007/BF01385872
46. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Amer. Math. Soc. 15(3), 573–597 (2002). DOI 10.1090/S0894-0347-02-00396-3
47. Xu, J., Zikatanov, L.: Algebraic multigrid methods. Acta Numer. 26, 591–721 (2017). DOI 10.1017/S0962492917000083
48. Xu, K., Zhang, H., Cohen-Or, D., Xiong, Y.: Dynamic harmonic fields for surface processing. Comput. Graph. 33, 391–398 (2009)
49. Xu, J., Zikatanov, L.: Two-sided bounds on the convergence rate of two-level methods. Numer. Linear Algebra Appl. 15(5), 439–454 (2008). DOI 10.1002/nla.556