Multicomponent fractional quantum Hall states with subband and spin degrees of freedom

Yang Liu, S. Hasdemir, J. Shabani, M. Shayegan, L.N. Pfeiffer, K.W. West, and K.W. Baldwin
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
(Dated: January 29, 2015)

In wide GaAs quantum wells where two electric subbands are occupied we apply a parallel magnetic field or increase the electron density to cause a crossing of the two \(N = 0 \) Landau levels of these subbands and with opposite spins. Near the crossing, the fractional quantum Hall states in the filling factor range \(1 < \nu < 3 \) exhibit a remarkable sequence of pseudospin polarization transitions resulting from the interplay between the spin and subband degrees of freedom. The field positions of the transitions yield a new and quantitative measure of the composite Fermions’ discrete energy level separations. Surprisingly, the separations are smaller when the electrons have higher spin-polarization.

An interacting two-dimensional electron system (2DES) exhibits numerous fractional quantum Hall states (FQHs) when it is subjected to a large perpendicular magnetic field \((B_\perp) \) and electrons occupy the lowest \((N = 0) \) Landau levels (LLs) \([1, 2]\). These incompressible many-body states can be explained by composite Fermions (CFs), quasiparticles formed by attaching an effective many-body states can be explained by composite Fermions (CFs), quasiparticles formed by attaching an even number \((2p)\) of quantized flux quanta to each electron \([2,4]\). When \(B_\perp \) deviates from half-integer fillings, the CFs formed their own discrete energy levels, the so-called \(\Lambda \) levels, and the Fourier transform of the Shubnikov-de Haas oscillations \(\nu \) are separated by \(\Delta_{\text{SAS}} \) or \(\Delta_{\text{SAS}} \) and \(\Delta_{\text{CF}} \) levels – are close in energy \((\epsilon_{\text{LL}} \approx 7\,\text{meV})\), so the lowest four LLs – the \(S_0^\uparrow \), \(S_0^\downarrow \), \(A_0^\uparrow \) and \(A_0^\downarrow \) levels – are close in energy \((\epsilon_{\text{LL}} = \sqrt{\hbar/eB_\perp}) \) is the magnetic length and \(\epsilon \) is the dielectric constant; \(\uparrow \) and \(\downarrow \) refer to up- and down-spin). When we apply \(B_\parallel \), \(\Delta_{\text{SAS}} \), which is now the energy separation between the \(S_0^\uparrow \) and \(A_0^\uparrow \) levels, is reduced while \(E_Z \) increases, and a crossing of the \(S_0^\downarrow \) and \(A_0^\uparrow \) levels occurs at \(\nu = 2 \) when \(\Delta_{\text{SAS}} = E_Z \); see Fig. 1(a). Near this crossing, we observe a remarkable pattern of appearing and disappearing FQHs in the filling range \(1 < \nu < 3 \), revealing the formation of FQHs with both spin and subband degrees of freedom simultaneously. We describe our results in a simplified two-component picture with SU(2) symmetry, where the two pseudospins are the \(S_0^\downarrow \) and \(A_0^\uparrow \) levels. The observed transitions allow us to quantitatively determine \(h\omega_{\text{CF}} \) in terms of \(\Delta_{\text{SAS}} - E_Z \). Our data reveal several puzzling features; e.g., we find that at a fixed \(\nu \), \(h\omega_{\text{CF}} \) is about twice larger when \(\Delta_{\text{SAS}} > E_Z \) compared to when \(\Delta_{\text{SAS}} < E_Z \), indicating that \(h\omega_{\text{CF}} \) for the 2DES is more spin-polarized.

Our wafers, grown by molecular beam epitaxy, contain a 65- or 55-nm-wide GaAs QW bounded on each side by undoped \(\text{Al}_{0.23}\text{Ga}_{0.76}\text{As} \) spacer layers and Si \(\delta \)-doped layers. We cut 4 mm \(\times \) 4 mm square samples from the wafers, put alloyed InSn contacts at four corners, and then fit the samples with an evaporated Ti/Au front-gate and an In back-gate to change the 2DES density \(n \) while keeping the charge distribution symmetric [Fig. 1(b)]. We measure the transport coefficients in a dilution refrigerator with base temperature \(T \approx 30 \,\text{mK} \), using low-frequency \((< 30 \,\text{Hz})\) lock-in technique and a rotatable sample platform to induce \(B_\parallel \). At \(B_\parallel = 0 \), the Fourier transform of the Shubnikov-de Haas oscillations exhibits two peaks that correspond to the electron densities in the two subbands. The difference between these densities yields values for \(\Delta_{\text{SAS}} \) which are in excellent agreement with the results of our \(B = 0 \) self-consistent calculations. To calculate \(\Delta_{\text{SAS}} \) at finite \(B_\parallel \) and \(B_\perp \) [Fig. 1(a)], we employ a perturbative simulation introduced in Ref. \([3]\), where we assume \(B_\parallel \) only mixes LLs from different subbands but does not change the QW potential.
Figure 1 (c) shows longitudinal magnetoresistance R_{xx} traces for the 65-nm-wide QW sample for $1 < \nu < 3$, measured at $n = 2.12 \times 10^{11} \text{ cm}^{-2}$, $T \simeq 135 \text{ mK}$, and different tilt angles (θ). As we increase θ, the $\nu = 2$ R_{xx} plateau narrows near $\theta \simeq 37^\circ$ and then widens again at larger θ, suggesting a weakening of the integer QHE at $\nu = 2$. This weakening, but not disappearing, is similar to what is seen at certain LL crossings at other integral $\nu \gtrsim 3$ when the electron interaction preserves the energy gap through QHE ferromagnetism.

At $B_{||} = 0$, Δ_{SAS} is larger than E_Z. As we increase $B_{||}$, Δ_{SAS} decreases and E_Z increases, so that the $S_0\uparrow$ and $A_0\uparrow$ levels cross when $\Delta_{\text{SAS}} \simeq E_Z$. In Fig. 1(a), we show the calculated energies of the four $N = 0$ LLs relative to the $S_0\uparrow$ level as a function of $B_{||}$ at $\nu = 2$. We use a three-fold enhanced E_Z to match the experimental observation that the $\nu = 2$ crossing occurs near $\theta \simeq 37^\circ$ ($B_\parallel \simeq 3.5 \text{ T}$). This enhancement of E_Z is not surprising and has also been reported in previous studies; see, e.g., Ref. 28.

More interestingly, near $\theta \simeq 37^\circ$, the FQHSs on both sides of $\nu = 2$ show a rich series of transitions, which are marked with black arrows in Figs. 1(c)-(e). The $\nu = 4/3$ FQHS is strong at both small and large θ, but becomes weak at $\theta \simeq 30^\circ$ [Figs. 1(c) and (e)]. The $\nu = 8/3$ FQHS also experiences one transition, at $\theta \simeq 45^\circ$ [Figs. 1(c) and (d)]. Meanwhile, the $\nu = 5/3$ and $7/3$ FQHSs become weak twice: at $\theta \simeq 30^\circ$ and 40° for $\nu = 5/3$, and at $\theta \simeq 37^\circ$ and 45° for $\nu = 7/3$. Data taken at lower temperature $T \simeq 65 \text{ mK}$, shown in Figs. 1(d) and (e), reveal a more remarkable pattern of higher-order FQHS transitions. On the left side of $\nu = 2$ [Fig. 1(d)], the $\nu = 13/5$ FQHS weakens twice at $\theta \simeq 40.5^\circ$ and 46.1°. The $\nu = 12/5$ FQHS, on the other hand, becomes weak three times, at $\theta \simeq 36.9^\circ$, 42.4° and 46.1°. On the high-field side of $\nu = 2$, as seen in Fig. 1(e), the $\nu = 7/5$ FQHS weakens twice, at $\theta \simeq 27.5^\circ$ and 35°, and the $\nu = 8/5$ FQHS thrice, at $\theta \simeq 27.5^\circ$, 36.2° and 39.4°. We also observe in Fig. 2(e) three transitions at $\nu = 10/7$ and four transitions at $\nu = 11/7$, which can be better seen at $T \simeq 30 \text{ mK}$ (data not shown here). We summarize in Fig. 2(a) the values of $B_{||}$ and B_\perp where all the transitions are observed.

The fact that these transitions occur near the crossing of the $S_0\downarrow$ and $A_0\downarrow$ levels when $\Delta_{\text{SAS}} \simeq E_Z$, suggests that both spin and subband degrees of freedom are playing a role. Since the other two energy levels, $S_0\uparrow$ and $A_0\downarrow$, are reasonably far in energy, we neglect them.
FQHS which has \(2(b)\). By invoking particle-hole symmetry, which links |\(\nu\)| = 3 and four configurations [Fig. 2(b)], also in agreement with Fig. 2(a), data. Using similar logic, we can explain our data in a simple picture where the electron S0↑ levels at \(\nu = 5/3\), on the other hand, has two filled \(\Lambda\) levels (\(\nu_{\text{CF}} = 2\)), three pseudospin configurations [(\(\nu_{\text{CF}1}, \nu_{\text{CF}2}\)) = (2,0), (1,1) and (0,2)], and two transitions when \(\nu_{\text{CF}} = 3\) and four configurations [Fig. 2(b)]. By invoking particle-hole symmetry, which links the FQHSs at \(\nu = 4/3\) to its system (e.g., 4/3 to 8/3), and also utilizing negative CF fillings, e.g., \(\nu_{\text{CF}} = -2\) for the \(\nu = 5/3\) state, we can explain all the transitions summarized in Fig. 2(a). In general, a FQHS with \(\nu_{\text{CF}}\) has \(|\nu_{\text{CF}}| + 1\) types of pseudospin configurations, and \(|\nu_{\text{CF}}|\) pseudospin polarization transitions which occur whenever \(|\Delta|\) equals a multiple integer of \(\hbar \omega_{\text{CF}}\) [see Fig. 2(b)].

Next we proceed to quantitatively determine the energies for pseudospin polarization energies. Note in Fig. 2(a) that, when \(\nu_{\text{CF}}\) is odd, one transition occurs exactly at \(\Delta = 0\). In Fig. 2(a), we first fit the dashed blue line through these transition points. We then focus on a particular \(\nu\), e.g. 8/5, and calculate \(\Delta_{\text{SAS}}\) as a function of \(B_{\parallel}\) at this filling, as shown in Fig. 3(a). Using the value of \(B_{\parallel}\) at which the \(\Delta = 0\) transition for \(\nu = 8/5\) occurs (\(B_{\parallel} = 3.96 \, \text{T}\)), we determine a value for \(g^*\) (\(\approx 0.134\)) so that \(\Delta_{\text{SAS}} = E_Z\) at \(B_{\parallel} = 3.96 \, \text{T}\). We then plot \(E_Z\) (= \(g^* \mu_B B\)) at \(\nu = 8/5\) as a function of \(B_{\parallel}\) in Fig. 3(a), and determine \(\Delta\) for the other two 8/5 transitions. Since these transitions are expected to occur when \(\Delta = \pm 2\hbar \omega_{\text{CF}}\) [see Fig. 2(b)], we find \(\hbar \omega_{\text{CF}} = 5.5\) K for \(\Delta > 0\) and \(\hbar \omega_{\text{CF}} = 2.5\) K for \(\Delta < 0\). Using this procedure we can deduce \(\hbar \omega_{\text{CF}}\) for FQHSs at \(\nu = 8/5, 12/5,\) and 10/7 which have a \(\Delta = 0\) transition on the blue line in Fig. 3(a). For the FQHSs at \(\nu = 13/5, 7/3, 5/3\) and 7/5, we assume \(\Delta = 0\) at the intersection of the blue line and the vertical lines that mark these fillings in Fig. 3(a) and, following a similar procedure, find \(\hbar \omega_{\text{CF}}\) from the transitions’ \(B_{\parallel}\) values.

In Fig. 3(c) we plot as a function of \(1/(2\nu_{\text{CF}} + 1)\) all the deduced values of \(\hbar \omega_{\text{CF}}\), normalized to the Coulomb interaction \(V_C\), for different FQHSs. Figure 3(b) data allow us to make a quantitative comparison of the deduced \(\hbar \omega_{\text{CF}}/V_C\) to the theoretically expected values. Concentrating on \(\Delta > 0\) and \(1 < \nu < 2\), we find that \(\hbar \omega_{\text{CF}}/V_C \approx 0.11/(2\nu_{\text{CF}} + 1)\). This is in very good agreement with the results of theoretical calculations which predict \(\hbar \omega_{\text{CF}}/V_C \approx 0.10/(2\nu_{\text{CF}} + 1)\) for an ideal 2DES with zero layer-thickness [2, 4]. Such good agreement is likely fortuitous as we expect \(\hbar \omega_{\text{CF}}/V_C\) to be somewhat reduced (by \(\approx 2\) times) compared to its ideal value because of the finite layer thickness of the 2DES in our samples [2, 20, 31]. It is possible that the \(\hbar \omega_{\text{CF}}\) values we report are exaggerated because of the inaccuracy of the perturbative calculations we use to determine the \(B_{\parallel}\)-dependence of \(\Delta_{\text{SAS}}\). In Fig. 3(b) we also include data (open squares) taken in a symmetric, 55-nm-wide GaAs QW in which we measured \(\hbar \omega_{\text{CF}}\) at \(B_{\parallel} = 0\). In this sample, instead of applying \(B_{\parallel}\), we induced the crossing of the S0↑ and A0↑ levels at \(1 < \nu < 3\) by increasing the density to reduce \(\Delta_{\text{SAS}}\) and increase \(E_Z\) [10]. As seen in Fig. 3(c), the measured \(\hbar \omega_{\text{CF}}\) are indeed smaller than those deduced for the 65-nm-wide QW from the \(B_{\parallel}\)-dependent measurements. However, they are still larger than the values measured in 2DESs with only spin degree of freedom; e.g., \(\hbar \omega_{\text{CF}}/V_C \approx 0.005\) at \(\nu = 7/5\) in a 65-nm-wide QW [20]. We conclude that \(\hbar \omega_{\text{CF}}\) in our 2DES with both spin and subband degrees of freedom is larger than in a 2DES with a spin degree of freedom, even though it might be somewhat exaggerated because of the inaccu-
FIG. 3. (color online) (a) Calculated Δ_{SAS} and E_Z as a function of B_T at $\nu = 8/5$. (b) Λ level diagram showing the four different pseudospin configurations for $\nu = 8/5$ ($\nu_{CF} = -3$) in our two-component picture. The pseudospin polarization transitions are expected when $\Delta = 0, \pm 2\hbar \omega_{CF}$ [see Fig. 2(b)]. (c) The Λ level separation in units of $V_C = e^2/(4\pi\epsilon d)$ as a function of $1/(2\nu_{CF} + 1)$, deduced from Δ at which the FQHS transitions are observed in Fig. 2(a). Data are shown both $1 < \nu < 2$ (solid black squares) and $2 < \nu < 3$ (solid red circles). The open back squares are $\hbar \omega_{CF}$ measured for $1 < \nu < 2$ in a symmetric 55-nm-wide GaAs QW at purely perpendicular field (see text).

racy of our perturbative calculations. We hope that our data will stimulate more precise future calculations [32].

Finally, we highlight several additional noteworthy features of Fig. 3(c) [33]. First, the results for $1 < \nu < 2$ (black solid symbols) approximately match those for $2 < \nu < 3$ (red symbols), suggesting the particle-hole symmetry [$\nu \leftrightarrow (4 - \nu)$] is preserved. This is surprising because previous studies report broken particle-hole symmetry in systems with only spin or valley degrees of freedom [20–23]. Second, for $\Delta > 0$ (or $\nu < 2$), $\hbar \omega_{CF}$ for the FQHSs at $\nu = 5/3$ and $7/3$ are similar. This suggests that $\hbar \omega_{CF}$ does not depend on which LL (S_0 or $A0\uparrow$) hosts the CFs. However, when the system is subband-polarized ($\Delta > 0$), $\hbar \omega_{CF}/V_C$ is about twice larger compared to the case when the system is spin-polarized ($\Delta < 0$). This asymmetry is surprising, but it is qualitatively consistent with the experimental observation that $\hbar \omega_{CF}/V_C$ in GaAs 2DEGs are larger than in AlAs 2DEGs in which the electrons are always fully spin-polarized [23].

We acknowledge support through the NSF (Grants DMR-1305691 and MRSEC DMR-1420541), the Gordon and Betty Moore Foundation (Grant GBMF4420), and Keck Foundation for sample fabrication and characterization, and the DOE BES (DE-FG02-00-ER45841) for measurements. A portion of this work was performed at the NHMFL, which is supported by the NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the DOE. We thank S. Hamahs, G. E. Jones, T. P. Murphy, E. Palm, A. Suslov, and J. H. Park for technical assistance, and J. K. Jain for illuminating discussions.

yuyang02@gmail.com

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
[2] J. K. Jain, Composite Fermions (Cambridge University Press, Cambridge, UK, 2007).
[3] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[4] B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).
[5] F. Fang and P. Stiles, Phys. Rev. 174, 823 (1968).
[6] E. P. de Poortere, E. Tutuc, S. J. Papadakis, and M. Shayegan, Science 290, 1546 (2000).
[7] K. Muraki, T. Saku, and Y. Hirayama, Phys. Rev. Lett. 87, 196801 (2001).
[8] N. Kumada, K. Iwata, K. Tagashira, Y. Shimoda, K. Muraki, Y. Hirayama, and A. Sawada, Phys. Rev. B 77, 155324 (2008).
[9] J. Shabani, Y. Liu, and M. Shayegan, Phys. Rev. Lett. 105, 246805 (2010).
[10] Y. Liu, D. Kamburov, M. Shayegan, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. Lett. 107, 176805 (2011).
[11] Y. Liu, J. Shabani, D. Kamburov, M. Shayegan, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. Lett. 107, 266802 (2011).
[12] J. Faison, D. Maryenko, B. Friess, D. Zhang, Y. Kozuka, A. Tsukazaki, J. Smet, and M. Kawasaki, unpublished (2015).
[13] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. de Poortere, and M. Shayegan, Phys. Rev. Lett. 95, 066809 (2005).
[14] O. Gunawan, Y. P. Shkolnikov, K. Vakili, T. Gokmen, E. P. de Poortere, and M. Shayegan, Phys. Rev. Lett. 97, 186404 (2006).
[15] J. P. Eisenstein, H. L. Stormer, L. Pfeiffer, and K. W. West, Phys. Rev. Lett. 62, 1540 (1989).
[16] R. G. Clark, S. R. Haynes, A. M. Suckling, J. R. Mallett, P. A. Wright, J. J. Harris, and C. T. Foxon, Phys. Rev. Lett. 62, 1536 (1989).
[17] L. W. Engel, S. W. Hwang, T. Sajoto, D. C. Tsui, and M. Shayegan, Phys. Rev. B 45, 3418 (1992).
[18] R. R. Du, A. S. Yeh, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 75, 3926 (1995).
[19] L. V. Kukushkin, K. v. Klitzing, and K. Eberl, Phys. Rev. Lett. 82, 3665 (1999).
[20] Y. Liu, S. Hasdemir, A. Wöls, J. K. Jain, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and M. Shayegan, Phys. Rev. B 90, 085301 (2014).
[21] N. C. Bishop, M. Padmanabhan, K. Vakili, Y. P. Shkolnikov, E. P. De Poortere, and M. Shayegan, Phys. Rev. Lett. 98, 266404 (2007).

[22] M. Padmanabhan, T. Gokmen, and M. Shayegan, Phys. Rev. B 80, 035423 (2009).

[23] M. Padmanabhan, T. Gokmen, and M. Shayegan, Phys. Rev. B 81, 113301 (2010).

[24] M. Padmanabhan, T. Gokmen, and M. Shayegan, Phys. Rev. Lett. 104, 016805 (2010).

[25] T. M. Kott, B. Hu, S. H. Brown, and B. E. Kane, Phys. Rev. B 89, 041107 (2014).

[26] C. Dean, A. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. Shepard, Nature Physics 7, 693 (2011).

[27] B. E. Feldman, A. J. Levin, B. Krauss, D. A. Abanin, B. I. Halperin, J. H. Smet, and A. Yacoby, Phys. Rev. Lett. 111, 076802 (2013).

[28] Y. Liu, J. Shabani, and M. Shayegan, Phys. Rev. B 84, 195303 (2011).

[29] At very large $B_\parallel \gtrsim 5$ T, which we do not reach here, the separation between the S0↑ and A0↑ levels becomes very small and the electrons in the QW split into a bilayer system which supports other FQHS configurations, e.g., a $\nu = 4/3$ FQHS which is composed of FQHSs at 2/3 layer filling. In the B_\parallel range of our study, the 2DES exhibits the normal sequence of FQHSs seen in single-layer systems.

[30] Note that, because in our system the lowest (S0↑) level is always fully occupied in the range of interest here, a FQHS at ν is equivalent to the $\nu' = \nu - 1$ FQHS in a system such as 2D electrons in an AlAs QW where the crossing levels are the lowest two (valley) LLs; see, e.g., Refs. [21–24].

[31] M. Shayegan, J. Jo, Y. W. Suen, M. Santos, and V. J. Goldman, Phys. Rev. Lett. 65, 2916 (1990).

[32] See, e.g., W. Pan, T. Jungwirth, H. L. Stormer, D. C. Tsui, A. H. MacDonald, S. M. Girvin, L. Smrčka, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 85, 3257 (2000).

[33] It is very unlikely that these features are caused by inaccuracies in our calculations, as they are also observed for the 55-nm-wide QW sample.