The trans-golgi compartment
A new distinct intracellular Ca2+ store

Paola Pizzo,* Valentina Lissandron and Tullio Pozzan
Dept Biomedical Sciences; University of Padova and CNR Institute of Neuroscience; Padova, Italy

The Golgi apparatus (GA) is an intracellular organelle that plays a central role in lipid and protein post-translational modification and sorting. In addition, the GA has been shown to be involved in Ca2+ signalling, as: (1) it accumulates Ca2+ within its lumen in an ATP-dependent process catalyzed by two enzymes, the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) and the secretory pathway Ca2+ ATPase (SPCA1), and (2) it releases Ca2+ during cell stimulation in response to inositol 1,4,5-trisphosphate (IP\textsubscript{3}) receptor activation. Therefore, on this aspect, the GA appears to behave similarly to the major intracellular Ca2+ store, the endoplasmic reticulum (ER). By using a new FRET-based Ca2+ probe, specifically targeted to the trans-compartment of the GA, we demonstrate that the organelle is heterogeneous in terms of Ca2+ handling, the trans-Golgi being insensitive to IP\textsubscript{3} and capable of accumulating Ca2+ solely through the activity of SPCA1. The SERCA and the IP\textsubscript{3} receptor appear to be restricted to the cis- and intermediate GA compartments. Moreover, selective reduction of Ca2+ concentration within the trans-Golgi, obtained by reducing the level of SPCA1 by RNAi, results in major alterations of protein trafficking within the secretory pathway and induces the collapse of the entire GA morphology.

The Golgi apparatus (GA) is a specialized membranous organelle involved in lipids and proteins modification during transport from their site of synthesis in the endoplasmic reticulum (ER) to other subcellular compartments, such as lysosomes, secretory vesicles and plasma membrane. Morphologically it is quite heterogeneous and, by EM analysis, it is possible to distinguish stacks of flat cisternae (cis- and medial Golgi), tubular-reticular networks and vesicles (trans-Golgi). These morphological differences parallel a distinct functionality: for example, glycosyltransferases enzymes, acting on newly synthesized proteins, have distinct distribution and complementary role in the various GA compartments: mannosidase I is primarily located and active in the cis- and medial Golgi, while sialyl-transferase, fucosyl-transferase or sulphatases are found within the trans-Golgi cisternae and its more distal tubular reticular membrane network (the trans-Golgi network, TGN).

In the last decade, it became clear that the GA also plays a key role as intracellular Ca2+ store: using the aequorin Ca2+ probe targeted to the organelle, it has been demonstrated that the compartment behaves similarly to the main intracellular Ca2+ store of non-excitable cells, the ER. It is indeed endowed, for Ca2+ uptake, with the sarcoplasmic-endoplasmic reticulum Ca2+ ATPase, SERCA (together with the secretory pathway Ca2+ ATPase, SPCA1) and with inositol-trisphosphate receptors, IP\textsubscript{3}Rs, as Ca2+ release channels. The GA, therefore, has been considered as another important dynamic Ca2+ store that participates in determining the spatio-temporal complexity of the Ca2+ signal within the cell (reviewed in ref. 9). A number of indirect evidence suggests that the luminal Ca2+ within the GA is fundamental in controlling some key processes occurring in the organelle (post-translational...
In addition, using brefeldin A to block the forward, but not the backward, flow of vesicles in the GA and so inducing the back flow of most trans-Golgi membrane and luminal content (including the \(\text{Ca}^{2+} \) probe) into the medial- and cis-Golgi and eventually into the ER, we obtained indications for the presence of a \(\text{Ca}^{2+} \) toolkit protein gradient within the GA: the SERCA and IP, Rs are excluded from the trans-Golgi; the sensitivity to SERCA inhibitors appears in a compartment still devoid of IP, sensitivity (medial-Golgi?); eventually, a compartment (presumably the cis-Golgi?), can be revealed where both IP, Rs and SERCA are highly expressed (Fig. 1).

Since the new trans-Golgi \(\text{Ca}^{2+} \) probe utilized for this study has been constructed by including the trans-Golgi targeting sequence of the resident enzyme sialyl-transferase (the same used by Pinton et al. to targeted the aequorin \(\text{Ca}^{2+} \) sensor to the GA, Go-Aeq) at the N-terminus of a low \(\text{Ca}^{2+} \) affinity, FRET based indicator (Go-D1cpv), the question that arises is why Go-Aeq is retained in a different GA sub-compartment (not only in the trans-Golgi, but also in the cis/medial-GA) and why the signal of Go-Aeq is so dramatically biased towards reporting the \(\text{Ca}^{2+} \) changes from the compartment with the high sensitivity to IP, . As to the first question, the simplest explanation is that, because Go-Aeq is expressed at much higher levels than Go-D1cpv, its targeting is less accurate than that of the novel probe and, therefore, Go-Aeq is easily mis-targeted to the whole GA. Indeed, we found that the distribution of Go-Aeq in the Golgi overlaps not only with that of canonical trans-Golgi markers, but also with proteins typically located in the cis-GA compartment. In addition we often found cells with strong expression in which Go-Aeq was substantially retained also in the ER, while no mis-targeting of the Go-D1cpv in this compartment was ever observed. As to the second question, not only the signal of Go-Aeq is the mean of thousands of cells and of the different Golgi compartments, but, given the non-linear dependence of luminescence on the \(\text{Ca}^{2+} \), the overall signal of this probe is intrinsically dominated by the compartments with highest \(\text{Ca}^{2+} \) concentration.
A simple numerical example may explain this concept. Let’s assume for simplicity that the Golgi is composed of two compartments, each trapping the same amount of aequorin, one with a $[\text{Ca}^{2+}]$ of 450 μM and the other of 150 μM. The normalized rates of photon emission (counts/s, cps) from the two compartments would be ~100 cps from the first compartment and ~15 cps from the second. The mean luminescent signal would thus be dominated by the first compartment (average 55 cps). Most important, if only the first compartment is sensitive to IP$_3$, the average response would be again biased towards reporting this event and not the small increase of the second compartment (the first would drop from 100 to ~10 cps and the second would rise from ~10 to ~20 cps, on average a mean drop from 55 to 15 cps).

As to the importance of Ca^{2+} within the trans-Golgi, where the only Ca^{2+} uptake mechanism is based on SPCA1 activity, several authors showed that SPCA1 downregulation affects a number of cellular and Golgi specific functions.21,22 A SPCA1 knockout mouse is also available;23 in homozygote animals, the loss of SPCA1 knockout mouse is also available; in homozygote animals, the loss of SPCA1-dependent cellular defect comes about.24,25 These cells have been thoroughly investigated for their defects in protein sorting and other specific cell functions.26-28 On this aspect, we found that reduction of SPCA1 protein level, by impairing trans-Golgi Ca^{2+} homeostasis, resulted in disturbed trafficking of different classes of proteins as well as in marked morphological alterations of the entire Golgi structure.14 Thus, maintaining the correct luminal $[\text{Ca}^{2+}]$ within the trans-Golgi compartment is essential not only for its specific functions, but also for the entire GA architecture.

References

1. Keller P, Simons K. Post-Golgi biosynthetic trafficking. J Cell Biol 1997; 139:301-9.
2. Mellman I, Simons K. The Golgi complex: in vitro versus? Cell 1992; 68:829-40.
3. Polischuk RS, Mironov AA. Structural aspects of Golgi function. Cell Mol Life Sci 2004; 61:146-58.
4. Rambourg A, Clermont Y. Three-dimensional electron microscopy: structure of the Golgi apparatus. Eur J Cell Biol 1990; 51:189-200.
5. Bertron C, Mucha J, Jeanneau C. Structural and functional features of glycosyltransferases. Biochimie 2001; 83:13-8.
6. Van Baelen K, Dode L, Vanoevelen J, Callewaert G, De Smedt H, Missiaen L, et al. The Ca$^{2+}$/Mg$^{2+}$ pumps in the Golgi apparatus. Biochim Biophys Acta 2004; 1742:103-12.
7. Pinton P, Pozzan T, Rizzuto R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca^{2+} store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 1998; 17:5298-308.
8. Missiaen L, Van Acker K, Van Baelen K, Raeymaekers L, Wuytack F, Parys JB, et al. Calcium release from the Golgi apparatus and the endoplasmic reticulum in HeLa cells stably expressing targeted aequorin to these compartments. Cell Calcium 2004; 36:479-87.
9. Rizzuto R, Pozzan T. Microdomains of intracellular Ca^{2+}: molecular determinants and functional consequences. Physiol Rev 2006; 86:369-408.
10. Carrell D, Moore HP. Transport via the regulated secretory pathway in semi-intact PC12 cells: role of intra-cisternal calcium and pH in the transport and sorting of secretogranin II. J Cell Biol 1994; 127:693-705.
11. Austin CD, Shields D. Prosuraminostatin processing in permeabilized cells. Calcium is required for probronnuclease cleavage but not formation of nascent secretory vesicles. J Biol Chem 1996; 271:1194-9.
12. Duncan JS, Burgoyne RD. Characterization of the effects of Ca^{2+} depletion on the synthesis, phosphorylation and secretion of caseins in lactating mammary epithelial cells. Biochem J 1996; 317:487-93.
13. Vanoevelen J, Raeymaekers L, Parys JB, De Smedt H, Van Baelen K, Callewaert G, et al. Inositol triphosphate producing agonists do not mobilize the thapsigargin-insensitive part of the endoplasmic reticulum and Golgi Ca$^{2+}$ store. Cell Calcium 2004; 35:115-21.
14. Lisandraon V, Podini P, Pizzo P, Pozzan T. Unique characteristics of Ca$^{2+}$ homeostasis of the trans-Golgi compartment. Proc Natl Acad Sci USA 2001; 107:9198-203.
15. Montero M, Brini M, Marsaul R, Alvarez J, Soria R, Pozzan T, et al. Monitoring dynamic changes in free Ca^{2+} concentration in the endoplasmic reticulum of intact cells. EMBO J 1995; 14:5467-75.
16. Montero M, Alvarez J, Scheenen WJ, Rizzuto R, Meldolesi J, Pozzan T. Ca$^{2+}$ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca$^{2+}$] subcompartments in intact HeLa cells. J Cell Biol 1997; 139:601-11.
17. Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainosow EK, Pozzan T, et al. Dense core secretory vesicles revealed as a dynamic Ca$^{2+}$ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimera. J Cell Biol 2001; 155:41-51.
18. Doms RW, Russ G, Yewdell JW. Brefeldin A redistributes resident and moiitigol Golgi proteins to the endoplasmic reticulum. J Cell Biol 1989; 109:61-72.
19. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, et al. Ca$^{2+}$ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 2006; 13:521-30.
20. Montero M, Barreto MJ, Alvarez J. [Ca$^{2+}$] microdomains control agonist-induced Ca$^{2+}$ release in intact HeLa cells. FASEB J 1997; 11:881-5.
21. Durr G, Straley J, Plumper R, Els B, Skee SK, Cary P, et al. The medial-Golgi ion pump Pmeln supplies the yeast secretory pathway with Ca$^{2+}$ and Msn4 required for glycosylation, sorting and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 1998; 9:1149-62.
22. Ramos-Castaneda J, Park YN, Liu M, Hauser K, Rudolph H, Shull GE, et al. Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum ER-associated degradation and sensitivity to ER stress. J Biol Chem 2005; 280:9467-73.
23. Okunade GW, Miller ML, Ashar M, Andringa A, Sanford LP, Doetschman T, et al. Loss of the Atp2c1 secretory pathway Ca$^{2+}$-ATPase (SPCA1) in mice causes Golgi stress, apoptosis and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J Biol Chem 2007; 282:26517-27.
24. Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet 2000; 24:61-5.
25. Behne MJ, Tu CL, Aronchik I, Epstein E, Bench G, Bilde DD, et al. Human keratinocyte ATP2C1 localizes to the Golgi and controls Golgi Ca$^{2+}$ stores. J Invest Dermatol 2003; 121:688-94.
26. Foggia L, Hovnanian A. Calcium pump disorders of the skin. Am J Med Genet C Semin Med Genet 2004; 131:20-31.
27. Missiaen L, Dode L, Vanoevelen J, Raeymaekers L, Wuytack F. Calcium in the Golgi apparatus. Cell Calcium 2007; 41:405-16.
28. Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, Van Baelen K, Parys JB, et al. SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 2004; 322:1204-13.