Global and Kinetic Profiles of Substrate Diffusion in *Candida antarctica* Lipase B: Molecular Dynamics with the Markov-State Model

Chenlin Lu, Xue Peng, Diannan Lu,* and Zheng Liu

ABSTRACT: Profiling substrate diffusion pathways with kinetic information, which accounts for the dynamic nature of enzyme–substrate interaction, can enable molecular reengineering of enzymes and process optimization of enzymatic catalysis. *Candida antarctica* lipase B (CALB) is extensively used for producing various chemicals because of its rich catalytic mechanisms, broad substrate spectrum, thermal stability, and tolerance to organic solvents. In this study, an all-atom molecular dynamics (MD) combined with Markov-state models (MSMs) implemented in pyEMMA was proposed to simulate diffusion pathways of 4-nitrophenyl ester (4NPE), a commonly used substrate, from the surface into the active site of CALB. Six important metastable conformations of CALB were identified in the diffusion process, including a closed state. An induced-fit mechanism incorporating multiple pathways with molecular information was proposed, which might find unprecedented applications for the rational design of lipase for green catalysis.

INTRODUCTION

Nature offers rich pathways for substrate diffusion toward active sites of enzymes, such as diffusion on the enzyme surface and migration through channels, tunnels, cavities, and so forth. The description of the substrate diffusion process, however, is challenging because, first, atomic-scale enzymatic thermal fluctuation results in the gate opening and closing of the active sites of enzymes. Numerous tunnels are transient, and only certain fluctuations or rearrangements in the enzyme structure make the subsequent travel of ligands possible. Second, the multiple substrate interaction is a function of substrate composition and concentration, thus contributing to the aforementioned fluctuations in enzyme conformation. To address this complexity, Plattner and Noé combined molecular dynamics (MD) with Markov-state models (MSMs) and studied the binding kinetics for serine protease trypsin and its inhibitor benzamidine, which exhibited features of both the conformational selection and induced-fit binding models. Ahalawat and Mondal also applied this strategy to probe the substrate recognition pathway of P450cam and showed that the metabolizing camphor needed a substrate-induced side-chain displacement coupled with a complex array of dynamic interconversions of multiple metastable substrate conformations. Kidera et al. applied multiscale simulation with enhanced sampling and showed the dominant pathway of glutamine, which was coupled with the conformational changes in the glutamine-binding protein.

Candida antarctica lipase B (CALB) is one of the most extensively applied enzymes for chemical production because of its multiple catalytic mechanisms and high tolerance to temperature and organic solvents. CALB is a globular α/β-type protein with 317 amino acid residues. The central β-sheet is composed of seven strands connected by an α helix forming a β−α−β motif. The catalytic triad is composed of SER105, ASP187, and HIS224, where helices α5, α6, and α10 make up most of the active site pocket for interfacial activation and substrate specificity. Significant efforts from molecular dynamics simulation have been made to elucidate interfacial activation catalytic mechanism, and enzyme immobilization. However, little is known about the substrate diffusion process toward the active site of CALB. Moreover, conformational transitions of CALB during substrate diffusion have never been addressed, particularly at an atomic level.

The present study targeted at the global and kinetic diffusion profile of 4-nitrophenyl ester (4NPE) as the substrate toward the active site of CALB. An all-atom MD simulation with 800 ns was conducted using 40 initial ligand–protein combinations as initial conformations. By combining with MSMs, MD...
simulations with an overlap in phase space were connected to each other, extending the original timescale to $\sim 10\ \mu s$.

Six important metastable conformations of CALB during the 4NPE diffusion process were identified. The diffusion dynamics exhibited an induced-fit mechanism with multiple pathways. The closed state of CALB was identified as being mainly controlled by helix α_{10}. This finding was different from previous observations. These results demonstrated the feasibility of the MD-MSM strategy for simulating enzymatic catalysis in a dynamic manner.

RESULTS AND DISCUSSION

Six Key Metastable States.

In this study, six metastable conformations were identified and denoted as MS1, MS2, MS3, MS4, MSS, and MS6. The sampling density plots are shown in Figure S3b. These six states distinguished only the conformational difference but did not differentiate the status of the substrate 4NPE. The obtained microstates from MSM were further split into interior and exterior states according to the distance between SER105 hydroxy oxygen atom and 4NPE ester bond oxygen, as described in the Methods section. This procedure yielded six interior metastable states (denoted as MS1-I, MS2-I, MS3-I, MS4-I, MS5-I, and MS6-I) and five exterior metastable states (MS1-E, MS2-E, MS3-E, MS5-E, and MS6-E).

Figure 1a shows the secondary structure analysis of each conformation using the algorithm Define Secondary Structure of Proteins. CALB was of great flexibility, especially α_5, α_{10}, and loops between the α-helix and β-sheet, as also reported by previous studies. The main differences in the structure of these six conformations were α_5 (residues 138–150), α_{10} (residues 268–292), loop 1 (residues 216–230), loop 2 (residues 66–76). Loop 1 had three, α_2 had four, and loop 2 had four different forms. These three parts controlled the orientation of SER105. The SER105 of MS1 and MS6 bent outward, while that of MSS bent inward.

![Figure 1](https://example.com/figure1.png)
23–32), loop 2 (residues 66–76), and loop 3 (residues 216–230). The partial three-helix property of the loop 1 region disappeared in MS1 and MS6, forming different arrangements of a hydrogen-bonded turn compared to those of MS3 whose structure was the same as the crystal structure of CALB (PDB: 1tca). The \(\alpha \)-helix of \(\alpha 2 \) unwound in MS2, MS5, and MS6. The hydrogen-bonded turn partially disappeared in MS1 and completely disappeared in MS5. The \(\alpha \)-helix of \(\alpha 2 \) partially unwound and showed different patterns in MS1, MS4, MS5, and MS6. The loop 3 of MS1, MS2, MS4, and MS5 partially changed into the hydrogen-bonded turn. Last but not least, \(\alpha 10 \) revealed the most complicated pattern in the secondary structure. The \(\alpha 10 \) of MS3, MS1, MS2, and MS5 partially unwound at the terminal (residues 280–292), whereas the \(\alpha \)-helix component expanded at the beginning (residues 268–275). Hydrogen-bonded turns were also present among \(\alpha \) helix structures in MS2, MS4, and MS5.

Figure 1b shows different structures of \(\alpha 5 \), \(\alpha 10 \), loop 3, and loop 4 in six key metastable states. According to the orientation of the deviation from the crystal structure, the structures were classified as closed (condensing the pocket size), semiopen (partially expanding the pocket size), and open (expanding the pocket size) states. The structure of MS3 was the same as the crystal structure of CALB. The other states exhibited different conformational features as shown in the secondary structure analysis (Figure 1a). The \(\alpha 5 \) of MS1, MS5, and MS6 unwound its \(\alpha \)-helix structure with three different open conformations. The \(\alpha 5 \) of MS2, MS4, and MS3 was semiopen, which was similar to the crystal structure. The \(\alpha 10 \) was open in MS1 and semiopen in other states except MS5, where the \(\alpha 10 \) structure was closed. The \(\alpha 5 \), \(\alpha 10 \), loop 1, and loop 2 of the CALB controlled its pocket size according to different combinations of these conformations. The open or semiopen forms of these four parts resulted in an open pocket just like MS1 and MS6. However, the closed \(\alpha 10 \) resulted in a closed pocket even if its other parts were open. The dynamic characteristics of these structures affected substrate diffusion, as detailed later.

The other three loops were also significantly different from each other (Figure 1c). Loop 1, \(\alpha 2 \), and loop 2 had three, four, and four different conformations, respectively. The loop 1 of MS1 and the loop 1 of MS6 had opposite orientations. Similarly, the loop 2 of MS5 and the loop 2 of MS2 also showed opposite orientations. Other conformations of these loops were slightly twisted from the crystal structure. It should be emphasized here that although these three parts (loop 1, \(\alpha 2 \), and loop 2) were away from the active site, they played key roles in adjusting the orientation of SER105 by pressing or releasing \(\beta 4 \), which contained SER105 in it. The SER105 of MS1 and MS6 showed outward orientation, while the SER105 of MS5 bent inward, as shown in Figure 1c.

In addition to MS3 having the same structure as the crystal structure of CALB (PDB: 1tca), the aforementioned metastable states agreed well with published reports. MS6 and MS2 captured in the present study were identified by Luan and Zhou as the two most probable structures after their MD simulations at a timescale of 3.3 \(\mu \)s. MS3 and MS2 also reproduced the “open” and “closed” states of CALB, described by Ganjalikhany et al. Moreover, the present study was novel in identifying three brand new structures, including MS1, MS4, and MS5, which play important roles in CALB−4NPE interaction. Among them, MS5 was identified as a closed state of CALB when it interacts with the substrate 4NPE.

These three new structures provided a better understanding of the substrate diffusion dynamics and catalytic mechanism.

Conformational Transitions of CALB during Substrate Diffusion. As mentioned previously, the substrate 4NPE appeared in the interior and exterior of five of the six conformations of CALB. This study analyzed the conformational transitions and affinity to substrates, as shown in Figure 2. The overall free energy of diffusion \(\Delta G \) was calculated from the stationary \(\pi_j \) model obtained from the MSM transition matrix, as detailed in the Methods section. The area of the disk represents the equilibrium distribution of metastable states, and the thickness of arrows shows the transition probability among these states.
Figure 2 shows that these six metastable states of CALB had different substrate affinities. The free energies of diffusion ΔG_{diff} were -6.2, -1.3, and -0.7 kJ/mol for MS1, MS2, and MS6, respectively, indicating that these conformations favored the interior state of the substrate. MS3 and MS5 had ΔG_{diff} of 0.01 and 4.4 kJ/mol, respectively, indicating that they were unfavorable for 4NPE diffusion. In addition, MS4 only had a substrate-binding state and could change to MS3 and MS2. Further analysis of the state of α_{5} and α_{10} showed that the free energy of binding was related mainly to the open and closed states of α_{10} but less affected by those of α_{5}. This suggested that the open state of α_{10} was vital for the CALB to capture the substrate into its active site. These results supported the assumption on the function of α_{5} and α_{10} described previously.11,22

MS3 played a vital role in the conformational transition during the dynamic binding process. It was referred to as a transition hub state, which was introduced by Bowman and Pande.23 for the first time. The binding free energy of MS3 to 4NPE was near zero, indicating that the interior and exterior states had almost equal probability. Therefore, MS3 was a bridge to connect different metastable states because both α_{10} and α_{5} of this state were semiopen.

Induced-Fit Mechanism with Multiple Pathways. A global kinetic induced-fit mechanism was proposed (Figure 3) using the aforementioned simulations for the diffusion of 4NPE to the active site of CALB. The most stable exterior states were MS3-E, MS5-E, and MS6-E. The most stable interior states were MS1-I, MS3-I, and MS6-I. The cluster centers of 4NPE for each conformation were shown in the conformational structure. The red sphere stands for centers in exterior states, and the green ones stand for centers in interior states. For all of the metastable states, the interior centers of 4NPE were located at the bottom of the pocket near the active site. Nevertheless, the centers of 4NPE in exterior states were on the surface of CALB and had many possibilities to migrate into the active site. For MS1, the exterior centers were located in the unwound part of α_{5} and the middle part of α_{10}. For MS2 and MS6, the exterior centers were located in the middle between α_{5} and α_{10}, which were also accessible for MS3.
Further, MS3 had other three exterior centers in the terminal part of α5, close to the terminal part of α10 and the right side of loop 2. As for MS5, the exterior center of 4NPE was located near the right part of α10 above loop 1.

CALB underwent conformational transitions in both exterior and interior states. It could transit to other states because both the exterior and interior states of MS3 were metastable. This explained why gray state acted as a transition hub state. 4NPE separately diffused inside CALB along the tunnel and cavity of each conformation. When a 4NPE in stable exterior state diffused into CALB, a conformation transition occurred simultaneously. The diffusion proceeded, accompanied by CALB conformation transition. This could be described as an induced-fit mechanism.

Diffusion Pathways with Different Timescales. Applying the transition path theory (TPT) analysis implemented in PyEMMA, the dominant diffusion pathways from stable exterior states (MS5-E, MS3-E, and MS6-E) to stable interior states (MS1-I, MS3-I, and MS6-I) were calculated. The detailed pathways are shown in Figure S4, which also shows the pathway fluxes. As shown in Figure 4, the fastest pathway started from MS5-E and ended at MS3-I, with a mean first passage time of 0.36 μs. It is noteworthy that, except direct diffusion from MS6-E to MS6-I, all of the diffusion processes were achieved by MS3 from exterior to interior, indicating the existence of this central state again. The average timescale of the diffusion process was about tens of microseconds. The conformational transition from low-affinity MS5 (ΔG = 4.4 kJ/mol) to moderate-affinity MS3 (ΔG = 0.01 kJ/mol) reduced the energy barrier of whole diffusion.

MS4 was assigned as a misbound structure because it had only an interior state, and the equilibrium distribution was smaller (0.032) compared to other interior states. The present study investigated rediffusion from MS4-I to the most stable states. The results in Figure 5 show that preferable pathways were MS4-I > MS3-I > MS2-I, MS4-I > MS3-I > MS1-I and MS4-I > MS3-I > MS3-E > MS6-I > MS6-E.

![Figure 5](image1.png) Rediffusion pathway from the MS4 interior to stable interior states (MS1-I, MS3-I, and MS6-I) obtained from the TPT analysis implemented in PyEMMA.

CONCLUSIONS

In this study, the molecular dynamics simulation was combined with MSM to simulate the substrate diffusion kinetics into CALB, taking the CALB conformation transition into consideration. The application of MSM yielded a global and kinetic profile of substrate diffusion into CALB with hundred nanoseconds to tens of microseconds from 800 ns of molecular dynamics simulation. Six metastable states of CALB were identified, including those experimentally observed ones reported in published reports. This was the first study in which the closed state of CALB was captured and was controlled by α10. The conformational transition of CALB was displaced during 4NPE transport, suggesting an induced-fit mechanism of diffusion. MS3 acted as the hub of substrate 4NPE diffusion along nine dominant diffusion pathways. The established global and kinetic profile, generated from an atomic-level MD simulation, was helpful for reengineering enzyme molecules for a given enzymatic catalysis.

METHODS

Models. The input model was based on the crystallographic structure of *C. antarctica* lipase B (PDB ID: 1tca) and the ligand structure of 4-nitrophenyl acetate on Automated Topology Builder Web server24 (https://atb.uq.edu.au/). The Gromos 54a7 force field was applied to both CALB and substrate. Molecular dynamics simulations were performed on the GROMACS package (version 5.1.4). Forty different initial structures with different substrate positions outside the active sites of CALB were randomly generated. All of these complexes were then solvated with 10173 SPC/E water molecules. The simulation system was neutralized by adding one Na+ ion. The simulation systems contained 33,470 atoms in a simulation box of initial dimensions 72 × 67 × 73 Å³.

Molecular Dynamics Simulation. Each system was energy-minimized and equilibrated under NVT conditions at 300 K for 100 ps. Then, the system was further equilibrated under NPT conditions at 1 atm and 300 K for 100 ps. During energy minimization until the maximum force was less than 1000.0 kJ/(mol-nm) and equilibration, the heavy protein...
atoms were restrained by 1 kcal/(mol·Å²) spring constant. Subsequently, the volume was allowed to relax for 20 ns under NPT conditions for each initial structure. Finally, 800 ns MD data were collected.

Markov-State Model. The MSM was performed using the MD simulation data by combining functionalities of the program PyEMMA (http://pyemma.org). The minimum distance between the adjacent two residues separated by one residue was input as a feature with a dimension of 315. The slow linear subspace of these input coordinates was then estimated by computing a time-lagged independent component analysis (TICA), and a dimension reduction was achieved by projecting on the five slowest TICA components. The \(K \) means clustering algorithm was used to obtain 200 initial microstates. Further, these microstates were split into interior and exterior states based on the distance between the SER105 hydroxy oxygen atom and ester bond oxygen of the substrate with a cutoff of 14 Å. This yielded a new set of 372 microstates. The cutoff was determined on the basis of the frequency statistics of the SER105—substrate distance of all trajectories (Figure S1). The transition matrix was calculated using the maximum likelihood reversible transition matrix with the quadratic optimizer implemented in the PyEMMA package.

The Markov model was validated in two steps. First, the implied timescales were calculated as a function of the lag time \(\tau \). Moving block bootstrapping with block size \(\tau \) was employed to calculate statistical uncertainties. Figure S2b shows the expectation value and the 1σ confidence interval of \(\tau \)-dependent timescales. Timescales became constant within the statistical error at a lag time of 15–25 time steps (\(df = 0.01 \) ns). Here, \(t = 0.2 \) ns was chosen to estimate the final MSM. Second, a Chapman–Kolmogorov test of MSM implemented in PyEMMA was conducted. The MSM estimated at 0.2 ns was consistent with simulation data at all lag times up to 1 ns (Figure S2c).

Metastable States. The PCCA+ method implemented in PyEMMA was used to capture the metastable sets of microstates. Given that a gap was found after the sixth eigenvalue in Figure S3a, six metastable sets were identified. Because the substrate diffusion was faster compared to the conformational changes in CALB, the metastable states of the substrate could be classified into interior and exterior states, thus resulting in five exterior metastable states and six interior metastable states.

Calculation of Gibbs Free Energy of Diffusion. For each metastable set of microstates, the overall free energy of diffusion was computed based on the stationary probability \(\pi_i \) of the interior and exterior states.

\[
\Delta G = -RT \ln \sum \pi_i + RT \ln \sum \pi_i \quad (1)
\]

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.9b04432.

Frequency statistics of the distance between SER105 hydroxy oxygen atom and 4NPE ester bond oxygen atom of all trajectories (Figure S1); \(K \) means clusters on K slowest TICA components. The means clusters on the sampling density plots of the six metastable states identified using the PCCA+ algorithm (Figure S3); and transition pathway theory analysis of the diffusion pathways from the stable exterior states to the stable interior states (Figure S4) (PDF)

AUTHOR INFORMATION

Corresponding Author

Diannan Lu — Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Engineering, Ministry of Education, Beijing 100084, China; orcid.org/0000-0001-5993-5626; Email: ludiannan@tsinghua.edu.cn

Authors

Chenlin Lu — Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Engineering, Ministry of Education, Beijing 100084, China

Xue Peng — Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Engineering, Ministry of Education, Beijing 100084, China

Zheng Liu — Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; orcid.org/0000-0002-0240-2121

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.9b04432

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was financially supported by the National Key Research and Development Program of China under Grant No. 2018YFA0902200 and the Chinese National Natural Science Foundation under Grant No. 21878175.

REFERENCES

(1) Nerukh, D.; Okimoto, N.; Suegana, A.; Tajii, M. Ligand diffusion on protein surface observed in molecular dynamics simulation. J. Phys. Biol. 2012, 3, 3476–3479.

(2) Einolghozati, A.; Sardari, M.; Fekri, F. In Capacity of Diffusion-Based Molecular Communication with Ligand Receptors, 2011 IEEE Information Theory Workshop, IEEE, 2011; pp 85–89.

(3) Gora, A.; Brezovsky, J.; Damborsky, J. Gates of enzymes. Chem. Rev. 2013, 113, S571–S593.

(4) Rydlewski, J.; Nowak, W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys. Life Rev. 2017, 22–23, S8–74.

(5) Plattner, N.; Noé, F. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and markov models. Nat. Commun. 2015, 6, No. 7653.

(6) Ahalwat, N.; Mondal, J. Mapping the substrate recognition pathway in cytochrome p450. J. Am. Chem. Soc. 2018, 140, 17743–17752.

(7) Muritsugu, K.; Terada, T.; Kidera, A. Free-energy landscape of protein-ligand interactions coupled with protein structural changes. J. Phys. Chem. B 2017, 121, 731–740.

(8) Anderson, E. M.; Larsson, K. M.; Kirk, O. One biocatalyst—many applications: the use of candida antarctica b-lipase in organic synthesis. Biocatal. Biotransform. 1998, 16, 181–204.

(9) Gotor-Fernández, V.; Busto, E.; Gotor, V. Candida antarctica lipase b: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv. Synth. Catal. 2006, 348, 797–812.
(10) Chen, B.; Hu, J.; Miller, E. M.; Xie, W.; Cai, M.; Gross, R. A. *Candida antarctica* lipase b chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis. *Biomacromolecules* **2008**, *4*, 463–471.

(11) Uppenberg, J.; Hansen, M. T.; Patkar, S.; Jones, T. A. The sequence, crystal structure determination and refinement of two crystal forms of lipase b from *candida antarctica*. *Structure* **1994**, *2*, 293–308.

(12) Zisis, T.; Freeddolino, P. L.; Turunen, P.; Van Teeseling, M. C. F.; Rowan, A. E.; Blank, K. G. Interfacial activation of *candida antarctica* lipase b: combined evidence from experiment and simulation. *Biochemistry* **2015**, *54*, 5969–5979.

(13) Wu, Q.; Soni, P.; Reetz, M. T. Laboratory evolution of enantiocomplementary *candida antarctica* lipase b mutants with broad substrate scope. *J. Am. Chem. Soc.* **2013**, *135*, 1872–1881.

(14) Baum, I.; Elsaesser, B.; Schwab, L. W.; Loos, K.; Fels, G. Atomistic model for the polyamide formation from β-lactam catalyzed by *Candida antarctica* lipase b. *ACS Catal.* **2011**, *1*, 323–336.

(15) Stauch, B.; Fisher, S. J.; Cianci, M. Open and closed states of *Candida antarctica* lipase b: protonation and the mechanism of interfacial activation. *J. Lipid Res.* **2015**, *56*, 2348–2358.

(16) Ganjalikhany, M. R.; Ranjbar, B.; Taghavi, A. H.; Tohidi Moghadam, T. Functional motions of *candida antarctica* lipase b: a survey through open-close conformations. *PLoS One* **2012**, *7*, No. e40327.

(17) Poh, S. C.; Chew, S. E. Routine follow up of patients with treated pulmonary tuberculosis. *Singapore Med. J.* **1975**, *16*, 200–203.

(18) Gruber, C. C.; Pleiss, J. Lipase b from *candida antarctica* binds to hydrophobic substrate-water interfaces via hydrophobic anchors surrounding the active site entrance. *J. Mol. Catal. B: Enzym.* **2012**, *84*, 48–54.

(19) Kumaresan, J.; Kothai, T.; Lakshmi, B. S. In silico approaches towards understanding calb using molecular dynamics simulation and docking. *Mol. Simul.* **2011**, *37*, 1053–1061.

(20) Ryde, U.; Larsen, M. W.; Genheden, S.; Hatti-Kaul, R.; Irani, M.; Törnvall, U. Amino acid oxidation of *candida antarctica* lipase b studied by molecular dynamics simulations and site-directed mutagenesis. *Biochemistry* **2013**, *52*, 1280–1289.

(21) Luan, B.; Zhou, R. A novel self-activation mechanism of *candida antarctica* lipase b. *Phys. Chem. Chem. Phys.* **2017**, *19*, 15709–15714.

(22) Skjøt, M.; de Maria, L.; Chatterjee, R.; Svendsen, A.; Patkar, S. A.; Østergaard, P. R.; Brask, J. Understanding the plasticity of the α/β hydrolase fold: lid swapping on the *candida antarctica* lipase b results in chimeras with interesting biocatalytic properties. *ChemBioChem* **2009**, *10*, 520–527.

(23) Bowman, G. R.; Pande, V. S. Protein folded states are kinetic hubs. *Proc. Natl. Acad. Sci. U.S.A.* **2010**, *107*, 10890–10895.

(24) Kozhina, K. B.; Stroet, M.; Malde, A. K.; Mark, A. E. Testing and validation of the automated topology builder (atb) version 2.0: prediction of hydration free enthalpies. *J. Comput.-Aided Mol. Des.* **2014**, *28*, 221–233.

(25) Scherer, M. K.; Trendelkamp-Schroer, B.; Paul, F.; Pérez-Hernández, G.; Hoffmann, M.; Plattner, N.; Wehmeyer, C.; Prinz, J. H.; Noé, F. PyEMMA 2: a software package for estimation, validation, and analysis of markov models. *J. Chem. Theory Comput.* **2015**, *11*, 5525–5542.