Morphology and Phylogeny Reveal Five Novel Species in the Genus Cordyceps (Cordycipitaceae, Hypocreales) From Yunnan, China

Quan-Ying Dong1,2, Yao Wang1,2, Zhi-Qin Wang1,2, De-Xiang Tang1,2, Zhi-Yuan Zhao1,2, Hui-Juan Wu1,2 and Hong Yu1,2*

1 Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China, 2 The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China

INTRODUCTION

Cordyceps Fr. is a well-known genus of arthropod-pathogenic fungi. It was shown that many species of Cordyceps played a significant role in the cycling of matter in an ecological system, had a high ecological and economic value for biocontrol and bioactive compounds, and served as a model system for research on fungal insect pathology (Zha et al., 2018; Chen W. H. et al., 2019). Complexes of some cordycipitoid fungal species and their natural host, such as C. militaris Fr., C. chanhua Z. Z. Li, F. G. Luan, Hywel-Jones, C. R. Li and S. L. Zhang, and C. kyusyuensis Kawam, have received significant attention in traditional medicine industry due to the detection of...
bioactive compounds with anti-aging, anti-tumor, antioxidant, anti-inflammatory, and immuno-modulatory effects (Castillo et al., 2018; Zhao et al., 2018; Lou et al., 2019; Li et al., 2021; Zhang et al., 2021). Cordyceps tenuipes (Peck) Kepler, B. Shrestha and Spatafora has been applied in a variety of functional foods in Japan and South Korea, possessing nutritional, immune-regulatory, antitumor, analgesic, antibacterial, and anti-malaria effects (Wang Y. et al., 2020). Cordyceps species reproduce via sexual (ascospores) or asexual (conidia) spores, or both (Mora et al., 2017). The host range of Cordyceps embraces 7 orders of Arthropoda, namely, Araneae, Coleopteran, Dermaptera, Hemiptera, Hymenoptera, Lepidoptera, and Orthoptera, where Coleoptera and Lepidoptera are the two significant orders to host beyond the estimated 200 Cordyceps spp. as recorded (Shrestha et al., 2016; Kepler et al., 2017; Mongkolsamrit et al., 2020; Wang Y. B. et al., 2020).

Fries (1818) was credited with coining Cordyceps as a genus in Pyrenomycetes from a hybrid of the Greek word cordyle and the Latin word caput, meaning a club and a head, respectively. However, this genus was then treated as a tribe level of Sphaeria and described as stroma erect, stipe simple or branching, a sterile stalk supporting the perithecia at the periphery, and projecting openings at the apex (Shrestha et al., 2014). Nearly 20 different genera have been accounted as synonyms of Cordyceps in various sources (Shrestha et al., 2014). Shrestha et al. (2014) provided a comprehensive review regarding the taxonomic history of Cordyceps and concluded that the genus is the oldest valid genus in Cordycipitaceae (Hypocreales, Ascomycota) and is typified by a sexual morph. Owing to the cylindrical shape of the stroma, C. militaris, the type species of Cordyceps, was already described in the 17th- and early 18th-century literature (Shrestha et al., 2014).

Species of Cordyceps species produce three types of ascospore, namely disarticulating ascospores (e.g., C. militaris), intact ascospores (e.g., Blackwollomyces cardialis (G. H. Sung and Spatafora) Spatafora and Luangsa-ard and Blackwollomyces pseudomilitaris Hywel-Jones and Sivichai), and bola-ascospores (e.g., C. bifusispora O. E. Eriksson), with superficial to partially immersed perithecia on fleshy stromata that are pallid and long segments, followed by surface sterilization with 30% H2O2.

Species of Cordyceps species produce three types of ascospore, namely disarticulating ascospores (e.g., C. militaris), intact ascospores (e.g., Blackwollomyces cardialis (G. H. Sung and Spatafora) Spatafora and Luangsa-ard and Blackwollomyces pseudomilitaris Hywel-Jones and Sivichai), and bola-ascospores (e.g., C. bifusispora O. E. Eriksson), with superficial to partially immersed perithecia on fleshy stromata that are pallid and bright pigmented. Currently, Cordyceps s. l., consisting of 5 novel species and 61 known taxa.

Materials and Methods

Sampling
Cordyceps samples were newly collected from Kunming, Weishan, Jinghong, and Pu’er of Yunnan, southwestern China. Voucher specimens were deposited in the YHH (Yunnan Herbal Herbarium) of Yunnan University. The isolated strains were deposited in YFCF (Yunnan Fungal Culture Collection) of Yunnan University.

Fungal materials, including the hosts, were photographed and recorded. Isolation of the fungi was achieved as per Wang Y. B. et al. (2020). The stromata or synnemata were cut into 5-mm-long segments, followed by surface sterilization with 30% H2O2.
for 30 s to 1 min, and then rinsed with sterile water five times, dried with sterilized filter paper. Then, a part of the insect body was cut off, and the resulting segments and insect body were inoculated onto potato dextrose agar (PDA: potato 200 g/L, dextrose 20 g/L, and agar 20 g/L) plates containing 0.1 g/L streptomycin and 0.05 g/L tetracycline.

Morphological Studies
Given the field notes, color images of the materials, and complementary literature data, macro-morphological characteristics, such as the host, fungi location, color, and shape of the stromata, and perithecial orientation (superficial, immersed, semi-immersed; ordinal or oblique) were examined under a dissecting microscope (Olympus SZ61), where the insect hosts were recognized with the support from professional entomologists.

The sexual characteristics, such as perithecia, ascii, and ascospores, were firstly mounted on glass slides with lactophenol cotton blue solution after removing from the stroma, whereas the asexual characteristics, such as phialides and conidia, were firstly inoculated on glass slides with a thin layer of PDA medium for a couple of days, and the colonies were photographed and measured every week.

Molecular Studies
DNA Extraction and PCR Amplification
Total DNA was extracted from the fungal mycelia on PDA plates or herbarium materials using the modified CTAB procedure (Doyle and Doyle, 1987). For DNA amplification, the primer pairs nrSSU-CoF and nrSSU-CoR (Wang Y. B. et al., 2015) and LR5 and LR0R (Vilgalys and Hester, 1990; Rehner and Samuels, 1994) were used for the nrSSU and nrLSU, EF1α-EF and EF1α-ER (Bischoff et al., 2006; Sung et al., 2007) were used to amplify the translation elongation factor 1α (tef-1α), and primers RBP1-5’F and RBP1-5’R, and RBPB2-5’F and RBPB2-5’R (Bischoff et al., 2006; Sung et al., 2007) were used to amplify the largest and second-largest subunits of RNA polymerase II (rpb1 and rpb2), respectively.

The polymerase chain reaction (PCR) matrix was composed of 2.5 μl of PCR 10 × Buffer (2 mmol/L Mg2+) (Transgen Biotech, Beijing, China), 0.25 μl of Taq DNA polymerase (Transgen Biotech, Beijing, China), 2 μl of dNTP (2.5 mmol/L), 1 μl of DNA template (500 ng/μl), 1 μl of forward primers (10 μmol/L), 1 μl of reverse primers (10 μmol/L), and 17.25 μl of sterile ddH2O. Amplification reactions were performed in a BIO-RAD T100TM thermal cycler (BIO-RAD Laboratories, Hercules, CA, United States). The PCR program was performed as described by Sung et al. (2007) and Wang Y. B. et al. (2020). Products of PCR were purified with the Gel Extraction and PCR Purification Combo Kit Beijing Genomics Institute (Shenzhen, China) and then sequenced on an automatic sequence analyzer (BGI Co., Ltd, Shenzhen, China) using the same primers as those used in amplification.

DNA Sequence Alignments
The samples’ nrSSU, nrLSU, tef-1α, rpb1, and rpb2 nucleotide sequences were compared with those deposited in the GenBank database. To understand the relationship of our sample with those in the GenBank, nrSSU, nrLSU, tef-1α, rpb1, and rpb2 sequences of the representative Cordyceps s. s. species available in GenBank were retrieved and combined with our sequences (Table 1). Five datasets, the nrSSU, nrLSU, tef-1α, rpb1, and rpb2 sequences, were aligned and manually checked on Bioedit v7.0.9 (Hall, 1999). In order to examine phylogenetic conflicts among these datasets, the partition homogeneity (PH) test was performed with 1,000 randomized replicates, using heuristic searches with simple addition of sequences in PAUP* 4.0b10 (Swofford, 2002); the phylogenetic signals in the five gene markers showed no conflict.

Phylogenetic Analyses
Phylogenetic trees were visualized with FigTree v1.4.0 (Rambaut, 2006) and edited in Microsoft PowerPoint, then saved as .PDF format and finally converted to .JPG format using Adobe Illustrator CS6 (Adobe Systems Inc., United States). The finalized alignments and trees were submitted in TreeBASE (Submission ID: 29339).

Molecular Analyses of the concatenated five-gene datasets were conducted using ML and BI methods. The GTR + I + G were chosen as the best models for nrSSU-nrLSU-tef-1α-rpb1-rpb2, using the Akaike Information Criterion (AIC) implemented in MrModeltest v 2.3 (Nylander, 2004), and then the partitioned analyses were separately conducted. For ML analyses, raxml v 8.2.7 was employed. All parameters were kept as default with an exception that the model was chosen as GTRGAMMAI. The statistic supports were calculated using 1,000 replicates of non-parametric bootstrapping. BI analysis was carried out with MrBayes v 3.2.6 using the selected models for 5 million generations with the value of stopval set to 0.01 via the stopval command. At the same time, other parameters were kept as default and trees were summarized. Statistic supports were obtained using sumt command complemented in MrBayes by discarding the first 25% generations as burn-ins. The Bayesian trees were sampled every 100 generations. The first 25% trees were discarded as burn-ins, and the remaining trees were employed to create a consensus tree using sumt command.

RESULTS
Sequence Alignment
The combined 101-taxon 5-gene dataset consisted of 4,627 base pairs of sequence data (nrSSU 1060 bp, nrLSU 877 bp, tef-1α 999 bp, rpb1 719 bp, and rpb2 972 bp). A total of 1,039 were parsimony-informative (nrSSU 45 bp, nrLSU 77 bp, tef-1α...
TABLE 1 | Names, voucher information, host, and corresponding GenBank accession numbers of the taxa used in this study.

Taxon	Voucher information	Host	GenBank Accession Number	References				
			nrSSU	nrLSU	tef-1α	rpb1	rpb2	
Cordyceps albocitrina	spat 07-174	Coleoptera	MF416575	MF416467	MF416629	Kepler et al., 2017		
Cordyceps amoene-rosea	CBS 107.73	Coleoptera; Nitidulidae	AY526464	MF416550	MF416494	Luangsar-ard et al., 2005		
Cordyceps amoene-rosea	CBS 729.73	Arachnida; Araneae	MF416604	MF416551	MF416495	Luangsar-ard et al., 2005		
Cordyceps araneae	BCC 85065	Arachnida; Araneae	MT003037	MT017850	MT017810	Mongkolsamrit et al., 2020		
Cordyceps araneae	BCC 85066	Arachnida; Araneae	MT003038	MT017851	MT017811	Mongkolsamrit et al., 2020		
Cordyceps araneae	BCC 88291	Arachnida; Araneae	MT003039	MT017852	MT017812	Mongkolsamrit et al., 2020		
Cordyceps bifusispora	spat 08-129		MF416576	MF416523	MF416468	Kepler et al., 2017		
Cordyceps bifusispora	spat 08-133.1		MF416577	MF416524	MF416469	Kepler et al., 2017		
Cordyceps blackwelliae	TBRC 7255	Coleoptera (larva)	MF140703	MF140823	MF140772	Mongkolsamrit et al., 2018		
Cordyceps blackwelliae	TBRC 7256	Coleoptera (larva)	MF140702	MF140822	MF140771	Mongkolsamrit et al., 2018		
Cordyceps brevispora	BCC 78209	Lepidoptera (larva)	MT003044	MT017855	MT017817	Mongkolsamrit et al., 2020		
Cordyceps brevispora	BCC 79252	Lepidoptera (larva)	MT003045	MT017856	MT017836	Mongkolsamrit et al., 2020		
Cordyceps bullispora	YFCC 8400	Lepidoptera (pupa)	OL468555	OL468575	OL473523	This study		
Cordyceps bullispora	YFCC 8401	Lepidoptera (pupa)	OL468556	OL468576	OL473524	This study		
Cordyceps caloceroides	MCA 2249	Araneae	MF416578	MF416525	MF416470	Kepler et al., 2017		
Cordyceps cateniannulata	CBS 152.83	Coleoptera (adult)	AY526465	MG665226	JQ425687	Luangsar-ard et al., 2004; Mongkolsamrit et al., 2018		
Cordyceps cateniobliqua	YFCC 3367	Coleopteran adult	MN576765	MN576821	MN576991	Wang Y. B. et al., 2020		
Cordyceps cateniobliqua	YFCC 5935		MN576766	MN576822	MN576992	Wang Y. B. et al., 2020		
Cordyceps cateniobliqua	YFCC 153.83	Adoxophytes privatana	AS26466	JQ425688	MG665236	Luangsar-ard et al., 2004; Mongkolsamrit et al., 2018		
Cordyceps cf. ochraceostromata	ARSEF 5691		EF468964	EF468819	EF468759	Kepler et al., 2012		
Cordyceps cf. pruinosa	spat 08-115		MF416586	MF416532	MF416476	Kepler et al., 2017		
Cordyceps cf. pruinosa	spat 09-021		MF416587	MF416533	MF416477	Kepler et al., 2017		
Cordyceps cf. pruinosa	NHJ 10627	Limacodid pupa (Lepidoptera)	EF468967	EF468822	EF468763	Sung et al., 2007		
Cordyceps cf. pruinosa	NHJ 10684	Limacodid pupa (Lepidoptera)	EF468968	EF468823	EF468761	Sung et al., 2007		
Cordyceps cf. pruinosa	EFCC 5693		EF468966	EF468821	EF468762	Sung et al., 2007		
Cordyceps cf. pruinosa	EFCC 5197		EF468965	EF468820	EF468760	Sung et al., 2007		
Cordyceps cf. takaoantana	NHJ 12623	Lepidoptera	EF468984	EF468838	EF468778	Sung et al., 2007		
Cordyceps chaetoclavata	YHH 15101		MN576722	MN576778	MN576948	Wang Y. B. et al., 2020		
Cordyceps chiangdaensis	BCC 68469	Coleoptera	MF140732	KT261403		Tasanathai et al., 2016; Mongkolsamrit et al., 2018		
Cordyceps chiangdaensis	YFCC 857	Coleoptera; Bateridaceae	MW181781	MW173993	MW168234	Zha et al., 2019		
Cordyceps cicadae	GACP 07071701	Hemiptera	MK761207	MK761212	MK770631			

(Continued)
Taxon	Voucher information	Host	GenBank Accession Number	References				
			nrSSU	nrLSU	tef-1α	rpb1	rpb2	
Cordyceps cicadae	RCEF HP090724-31	Hemiptera: Cicadidae	MF416005	MF416552	MF416496	MF416653	MF416653	Kepler et al., 2017
Cordyceps cocoonihabita	YFCC 3415		MNS576723	MNS576779	MNS576949	MNS576939	MNS576895	Wang Y. B. et al., 2020
Cordyceps cocoonihabita	YFCC 3416		MNS576724	MNS576780	MNS576950	MNS576840	MNS576896	Wang Y. B. et al., 2020
Cordyceps coleopterorum	CBS 110.73	Coleoptera (larva)	JF415985	JF415988	JF416028	JN049903	JF416006	Kepler et al., 2012
Cordyceps exasperata	MCA 2288	Lepidoptera (larva)	MF416962	MF416538	MF416482	MF416639		Kepler et al., 2017
Cordyceps farinosa	CBS 111113		AYS26474	AYS216554	AYS216499	AYS216656	AYS216566	Luangsa-ard et al., 2004; Kepler et al., 2017
Cordyceps fumosorosea	YFCC 4561	Lepidoptera	MNS576761	MNS576817	MNS576877	MNS576877	MNS576931	Wang Y. B. et al., 2020
Cordyceps fumosorosea	CBS 244.31	Butter	MF416609	MF416557	MF416503	MF416660	MF416454	Kepler et al., 2017
Cordyceps fumosorosea	CBS 375.70	Food	MF416450	MF416658			MF416452	Kepler et al., 2017
Cordyceps fumosorosea	CBS 107.10		MGS65227	HMG161735				Luangsa-ard et al., 2005
Cordyceps grylli	MFLU 17-1023		MK963048	MK963055	MK963093			Unpublished
Cordyceps grylli	MFLU 17-1024		MK963049	MK963056	MK963194			Unpublished
Cordyceps inthanonensis	BCC 7928	Lepidoptera (pupa)	MT017854	MT017853	–	MT017814	MT017831	Mongkolsamrit et al., 2020
Cordyceps inthanonensis	BCC 56302	Lepidoptera (pupa)	MT030040	MT017853	–	MT017814	MT017831	Mongkolsamrit et al., 2020
Cordyceps inthanonensis	BCC 55812	Lepidoptera (larva)	MT030041	–	–	MT017815	MT017832	Mongkolsamrit et al., 2020
Cordyceps jakajanicola	BCC 79816	Hemiptera	MNS275696	MNS338479	MNS338484	MNS338484	MNS338490	Crous et al., 2019
Cordyceps jakajanicola	BCC 79817	Hemiptera	MNS275697	MNS338480	MNS338485	MNS338485	MNS338490	Crous et al., 2019
Cordyceps lepidopterorum	TBRC 7263	Lepidoptera (larva)	MF140711	MF408031	MF407801			Mongkolsamrit et al., 2018
Cordyceps lepidopterorum	TBRC 7264	Lepidoptera (larva)	MF140700	MF408032	MF407801			Mongkolsamrit et al., 2018
Cordyceps longiphialis	YFCC 8402	Rotten wood	OL468557	OL468577	OL473525	OL739571	OL473536	This study
Cordyceps longiphialis	YFCC 8403	Rotten wood	OL468558	OL468578	OL473526	OL739572	OL473537	This study
Cordyceps militaris	YFCC 8657	Lepidoptera (pupa)	MNS76762	MNS76818	MNS76898	MNS76878	MNS76932	Wang Y. B. et al., 2020
Cordyceps militaris	YFCC 8640	Lepidoptera (pupa)	MNS76763	MNS76819	MNS76899	MNS76879	MNS76933	Wang Y. B. et al., 2020
Cordyceps morakotii	BCC 55820	Hymenoptera (ant pupa)	MF140730	KT261399				Tasanathai et al., 2016
Cordyceps morakotii	BCC 68938	Hymenoptera (ant pupa)	MF140731	KT261398				Tasanathai et al., 2016
Cordyceps nabanheensis	YFCC 8409	Lepidoptera	OL468564	OL468584	OL473532	OL739578	OL473543	This study
Cordyceps nabanheensis	YFCC 8410	Lepidoptera	OL468565	OL468585	OL473533	OL739579	OL473544	This study
Cordyceps neopruinosa	BCC 91361	Lepidoptera (pupa)	MT030047	MT017858				Mongkolsamrit et al., 2020
Cordyceps neopruinosa	BCC 91362	Lepidoptera (pupa)	MT030048	MT017859				Mongkolsamrit et al., 2020
Cordyceps nudus	HUA 186125	Araneae (Mygalomorphae)	KC810778	KC810752	KC810722			Chirix et al., 2017

(Continued)
TABLE 1 (Continued)

Taxon	Voucher information	Host	GenBank Accession Number	References
			nrSSU	
Cordyceps nidus	HUA 186186	Araneae (Mygalomorphae)	KY360301	Chirivi et al., 2017
Cordyceps ninchukispora	EGS 38.165	Plant (Beilschmiedia erythrophloia)	EF468991	Sung et al., 2007
Cordyceps ninchukispora	EGS 38.166	Plant (Beilschmiedia erythrophloia)	EF468992	Sung et al., 2007
Cordyceps ningxiaensis	HMJAU 25074		KF309671	Yan and Bau, 2015
Cordyceps ningxiaensis	HMJAU 25076		KF309673	Yan and Bau, 2015
Cordyceps pseudotenuipes	YFCC 8404	Lepidoptera	OL468559	This study
Cordyceps pseudotenuipes	YFCC 8405	Lepidoptera	OL468560	This study
Cordyceps oncoporae	ARSEF 4358	Lepidoptera; Oncoperaaintricate	AF339581	Sung et al., 2007
Cordyceps polyarthra	MCA 996	Lepidoptera	MF416597	Kepler et al., 2017
Cordyceps polyarthra	MCA 1009	Lepidoptera	MF416598	Kepler et al., 2017
Cordyceps prunosa	ARSEF 5413	Lepidoptera; Limacodidae	AY184979	Spatafora et al., 2007
Cordyceps qingchengensis	MFLU 17-1022	Lepidoptera; Bombycidae	MK761206	Zha et al., 2019
Cordyceps rosea	spat 09-053	Lepidoptera larva	MF416590	Sung et al., 2001
Cordyceps roseostromata	ARSEF 4871		AF339573	
Cordyceps shuifuluensis	YFCC 5230		MNS576721	Wang Y. B. et al., 2020
Cordyceps simaoensis	YFCC 8406	Lepidoptera	OL468551	This study
Cordyceps simaoensis	YFCC 8407	Lepidoptera	OL468552	This study
Cordyceps simaoensis	YFCC 8408	Lepidoptera	OL468553	This study
Cordyceps sp.	CBS 102184	Spider (Arachnida)	AF339613	Kepler et al., 2012
Cordyceps sp.	EFCC 2535		EF468980	Sung et al., 2007
Cordyceps sp.	YFCC 5833		MN576764	Torres et al., 2005
Cordyceps spegzazzinii	ARSF 7850		DQ196435	
Cordyceps subtenuipes	YFCC 6051		MN576719	Wang Y. B. et al., 2020
Cordyceps subtenuipes	YFCC 6064		MN576720	Wang Y. B. et al., 2020
Cordyceps succavus	MFLU 18-1890		MK086058	Unpublished
Cordyceps teniueps	TBRC 7265	Lepidopteran (pupa)	MF140707	Mongkolsumrit et al., 2018
Cordyceps teniueps	TBRC 7266	Lepidopteran (pupa)	MF140708	Mongkolsumrit et al., 2018
Cordyceps teniueps	ARSEF 5135	Lepidopteran (pupa)	MF416612	Kepler et al., 2012, 2017
Cordyceps teniueps	YFCC 4266		MN576774	Wang Y. B. et al., 2020
Cordyceps yinlangensis	YJ 06221	Ant	MT577003	Li et al., 2020
Liangia sinensis	YFCC 3103		MN576726	Wang Y. B. et al., 2020
Liangia sinensis	YFCC 3104		MN576727	Wang Y. B. et al., 2020

Boldface: data generated in this study.

References:

Chirivi et al., 2017
Sung et al., 2007
Yan and Bau, 2015
Kepler et al., 2017
Sung et al., 2007
Spatafora et al., 2007
Zha et al., 2019
Kepler et al., 2017
Sung et al., 2001
Wang Y. B. et al., 2020
Kepler et al., 2012
Sung et al., 2007
Wang Y. B. et al., 2020
Torres et al., 2005
Wang Y. B. et al., 2020
Wang Y. B. et al., 2020
Mongkolsumrit et al., 2018
Mongkolsumrit et al., 2018
Kepler et al., 2012, 2017
Wang Y. B. et al., 2020
Li et al., 2020
Wang Y. B. et al., 2020
Wang Y. B. et al., 2020
Wang Y. B. et al., 2020

Frontiers in Microbiology | www.frontiersin.org
April 2022 | Volume 13 | Article 846909

Dong et al.
370 bp, rpb1 234 bp, and rpb2 313 bp). A total of 101 taxa were complete for all five genes, and the number of taxa for each gene was as follows: nrSSU 71 taxa, nrLSU 97 taxa, tef-1a 95 taxa, rpb1 82 taxa, and rpb2 72 taxa (Table 1).

Molecular Phylogeny
In this study, we generated nrSSU, nrLSU, tef-1a, rpb1, and rpb2 sequences by ten living cultures and one wild material, and their accession numbers are shown in Table 1. Sequences of Liangia sinensis YFCC 3103 and YFCC 3104 in the Cordycipitaceae were chosen as outgroups in the phylogenetic analyses.

Five major (I–IV) clades and five new species could be recognized in Cordyceps s. s. (Figure 1); collections from southwestern China were grouped into five separate species (in boldface, see below) (C. bullispora, C. longipillalis, and C. nabanheensis in clade I, and C. pseudotenuipes and C. simaenois in clade III). Clade I included C. pruinose and 19 other species, with 98% bootstrap support and 1 Bayesian PP support (Figure 1). In clade II, C. militaris and eight other species were grouped together (BS = 70%, PP = 1) (Figure 1). Clade III harbored C. tenuipes and 18 other taxa (BS = 97%, PP = 1) (Figure 1). Clade IV included C. cf. takaomontana NHJ 12623, C. javanica, C. amoenerosea, and C. catenobioula (BS = 91%, PP = 1). Clade V included only two exemplars of the species, C. grylli (Figure 1).

TAXONOMY
The key morphological characteristics that distinguish current Cordyceps s. s. species are summarized in the literature (Tables 2, 3). Including the five new species, there are 66 species of Cordyceps s. s. involved in the current study, among which we have compared 51 species of the sexual morphs in Cordyceps s. s. in Table 2 and 38 species of the asexual morphs in Cordyceps s. s. in Table 3.

Cordyceps bullispora H. Yu, Q. Y. Dong and Z. Y. Zhao, sp. nov. (Figure 2)
MycoBank: MB 842328

Etymology: Referring to button-like structures on the spores.

Type: The Taiji Mountains Nature Reserve, Mizhi Town, Midu County, Yunnan, China. September 20, 2019, H. Yu (YH 20011, holotype; YFCC 8400, ex-holotype living culture).

Teleomorph: Stromata solitary, 10–20 mm long, unbranched, orange-yellow, cylindrical to enlarging apically. The host is covered by a white mycelial surface. Rhizoids flexuous, arising from the head region of host larva buried in soil, 7–10 mm deep under the ground. Stipes cylindrical, white to reddish-orange, 0.1–1.2 mm wide. Fertile parts clavate, orange to reddish-orange, 3.5–7.4 × 0.5–1.5 mm.

Anamorph: Two types of conidial arrangement. Acremonium-like conidia aggregated in heads at the apex of phialides; Mariannaea-like, conidia in imbricate chains, connected laterally.

Colonies on PDA are moderately fast-growing, attaining a diameter of 31–34 mm in 21 days at 25°C, pulvinate, with high mycelial density, Whitish to orange-yellow, reverse deep yellow. Hyphae smooth-walled, branched, septate, hyaline, 1.1–2.7 µm wide. Cultures readily produced phialides and conidia after 2 weeks on potato dextrose agar at room temperature. Phialides arising from aerial hyphae, solitary, 5.6–20.7 × 1.8–3.3 µm, cylindrical, tapering gradually or abruptly toward the apex. Conidia hyaline, one-celled, cylindrical or slightly allantoid, oblong-elliptical to ellipsoidal, 4.9–11.1 × 1.9–4.5 µm.

Habitat and known distribution: On larva of Lepidoptera buried below ground at elevation 2000 m in northwestern Yunnan, China.

Additional specimens examined: The Taiji Mountains Nature Reserve, Mizhi Town, Midu County, Yunnan, China. On pupae of Lepidoptera, September 20, 2019. YH 200112, YFCC 8401.

Comments: Cordyceps bullispora was characterized by unbranched stromata, with cylindrical or orange to reddish-orange fertile parts, Rhizoids flexuous, and the host was the lepidopteran larva. For timing reasons, the fertile part of the specimen was not yet mature at the time of collection in the field. The asexual morph of PDA culture produces cylindrical phialides, which are monothetic, oblong-elliptical to ellipsoidal conidia with a button-like shape.

Based on nrLSU, nrSSU, tef-1a, rpb1, and rpb2 multigene analyses, C. cocoonihabita was revealed to have a close relationship with C. pruinosa and C. ninchukispora (Wang Y. B. et al., 2020). Multigene analyses of ITS, nrLSU, rpb1, rpb2, and tef-1a revealed that C. neopruinosa had a close relationship with C. pruinosa and C. ninchukispora (Mongkolsamrit et al., 2020). C. cocoonihabita, C. neopruinosa, C. pruinosa, and C. ninchukispora all had close relationships, where they shared many similar morphological characteristics, such as they were all characterized by orange- to red-colored stromata and superficial perithecia. C. bullispora shared such features, and our phylogenetic analysis indeed indicated that C. bullispora was closely relevant to a previously undescribed taxon C. cf. pruinosa (spat 08-115, spat 09-221) and was separated from C. cocoonihabita, C. neopruinosa. C. pruinosa, and C. ninchukispora in this clade. However, the perithecia in C. neopruinosa were more prolonged and broader than those reported in Cordyceps pruinosa and C. ninchukispora (330–450 × 150–240 µm vs. 400 × 100 µm vs. 95–145 × 50–60 µm, respectively). C. cocoonihabita had a longer stroma. The micromorphological arrangement of conidia was Isaria-like characteristics and was significantly different from C. pruinosa and C. ninchukispora, which had respective morphology of Mariannaea G. Arnaud and Acremonium Link. C. bullispora had rhizoid stromata, superficial perithecia, wider phialides, and longer conidia 4.9–11.1 × 1.9–4.5 µm. The insect host of C. bullispora and C. neopruinosa all occurred on lepidopteran pupae, and the host of C. ninchukispora was the seed of Beilschmiedia Nees (Liang, 1983, 1991; Su and Wang, 1986; Mongkolsamrit et al., 2020).

Cordyceps yinjiangensis Li et al. (2020) was recently described from Guizhou. Morphologically, it differed from C. bullispora by cylindrical and orange to reddish-orange fertile parts, rhizoids several, flexuous, and the host was the lepidopteran larva. The asexual morph from PDA culture produced cylindrical phialides, which were monothetic and oblong-elliptical
FIGURE 1 | Both ML and BI analyses generate a phylogenetic tree from the concatenated nrSSU, nrLSU, tef-1α, rpb1, and rpb2 datasets. There were no discrepancies between the topology resulting from Bayesian and ML analysis for supported nodes. Bootstrap values ($\geq 60\%$) derived from ML analyses and posterior probabilities from Bayesian inference (≥ 0.50) are shown either above or beneath the branches of the nodes. Isolates in bold type are those analyzed in this study.

Dong et al. Five Novel Cordyceps Species
TABLE 2 | Comparison between the sexual morphs in *Cordyceps*.

Species	Stromata (mm)	Fertile part (mm)	Perithecia (µm)	Asci (µm)	Ascospores (µm)	Part-spores (µm)	References	
Cordyceps araneae	Solitary or gregarious, 4–8 × 0.5	Clavate, elliptical to fusiform, 2.5–5 × 1–2	Semi-immersed, 450–500 × 150–200	Cylindrical, 8-spored, (60)145–220(250) × 2–2.5	Bola-shaped, (250)280–340(400), central part filiform, 0.3 µm broad, 3 or 4-septate	Mongkolsamrit et al., 2020		
Cordyceps belizensis	100			Immersed, 480–570 × 260–300	Cylindrical, 260–300 × 6	Filiform	4–8 × 1.5	Mains, 1940
Cordyceps bifusispora	Simple, 13 × 0.5–0.7	Cylindrical, 6 × 1.3		Immersed, 300 × 150–170	Cylindrical, 8-spored, 200–300 × 3–4.5	Bifusiform, 3-septate, 145–220 × 0.4–1.6	Eriksson, 1982	
Cordyceps blackwelliae	Gregarious, cylindrical to clavate, 8–10 × 1–1.5	4–6 × 1.5–2	Superficial, (300–302–332 (350) × (150–155–189 (200)	Cylindrical, 8-spored, 300 × 2.5–3	Cylindrical, 8-spored, 300 × 1.5–3	Bola-shaped, 3- or 4-septa, (250–259–283.5 (290) × 1	Mongkolsamrit et al., 2018	
Cordyceps brasiliensis	Sub-solitary or branch, 60–73 × 1.5–2	15–20 × 3–5	Immersed, 350–700 × 175–315	Worm-form, 70–333 × 3.5–5	Filiform	3.5–7 × 0.7	Fang et al., 1995	
Cordyceps brevistroma	Solitary or gregarious, 2.5–10 × 0.5	Clavate, subglobose, 2–5 × 1–1.5	Semi-immersed, ovoid, 250–330(350) × 130–185(200)	Cylindrical, 8-spored, (110)140–220(250) × 2–5	Whole, bola-shaped, 150–200 × 0.5	This study	Mongkolsamrit et al., 2020	
Cordyceps bullispora	Solitary, 10–20, rhizoids flexuous, 3.5–7.4 × 0.5–1.5	Clavate, 5.6 × 0.7–1.1	Superficial, 402–610 × 280–427	Cylindrical, 8-spored, 274–385 × 3.7–4.8	Filiform	127–260 × 0.9–1.2	Wang Y. B. et al., 2020	
Cordyceps chaetoclavata	Solitary, 23 × 0.8	Clavate, 5.6 × 0.7–1.1	Superficial, 402–610 × 280–427	Cylindrical, 8-spored, 274–385 × 3.7–4.8	Filiform	127–260 × 0.9–1.2	Wang Y. B. et al., 2020	
Cordyceps chanhua	Solitary, simple			Partly immersed, 475–602 × 222–319	Cylindrical, 8-spored, 235–280 × 2.1–3	Filiform	246–360 × 1.5–1.8	Li et al., 2021
Cordyceps chiangdaciensis	Solitary to gregarious, 2–7 × 1–1.5		Superficial, 200–450 × 70–170	Cylindrical, 175–315 × 2–3	Filiform	200–300 × 1	Tasanathai et al., 2016	
Cordyceps chichibuënsis	Solitary, 13–15 × 1–1.5	Semi-immersed, 400 × 230–260	5.5 µm wide	Clavate, 165 × 6			Kobayasi and Shimizu, 1980	
Cordyceps chihiuenis	Solitary or 2–3, 10–20 × 1–2	Elliptical, 5–6 × 3–4	Superficial, 340–440 × 200–240	Immersed, 350 × 100			Liang et al., 2002; Zha et al., 2021	
Cordyceps cocccina	Gregarious, 4–35 × 0.3–0.5	Cylindrical or clavate, 3–4 × 1.25–1.75	Cylindrical, 8-spored, 205–330 × 2.1–3.3	Filiform, 140–269 × 1.4–2.1			Petch, 1924; Shrestha, 2011	
Cordyceps cocoonhabita	Two or gregarious, 15.2–57.8	Clavate, 3.5–7.4 × 0.5–1.5	Superficial, 346–435 × 125–199	Cylindrical, 8-spored, 205–330 × 2.1–3.3	Filiform, 3–septate, 340–375–414 × 1.5–2		Wang Y. B. et al., 2020	
Cordyceps cuncuncinae	Solitary, rarely two, 59–92–105 × 7–8–10	Ovals to subglobose, 15–18–21 × 12–15–18	Immersed, 772–793–820 × 257–279–314	Cylindrical, porentous, 8-spored, 364–391–422 × 6–7–8	Filiform, 3–septate, 340–375–414 × 1.5–2		Palfner et al., 2012	
Cordyceps cylindrica	Single, 36 × 2–2.6	Cylindrical, clavate with obtuse top, 13 × 3.7–4	Immersed, fusiform to elliptical or flask-shaped, 850–1000 × 200–225	4.5–5.5 µm wide			Kobayasi and Shimizu, 1977	
Cordyceps dermapteoigena	Solitary, simple, 15 × 1	Cylindrical, 7 × 1.5, sterile apex 5 mm long	Embedded, 405–450 × 180–230	6–7.2 µm wide	Filiform, multi-septate, (4.8–9–15 × 2–3		Kobayasi and Shimizu, 1977	
Cordyceps doiana	Solitary, simple, 30 × 0.3–0.4	Cylindrical, 9 × 0.7–0.8	Semi-superficial, 2/3 embedded, 250 × 170	125–135–6 × 7	4–5 × 1		Liang et al., 2003	

(Continued)
Species	Stromata (mm)	Fertile part (mm)	Perithecia (µm)	Asci (µm)	Ascospores (µm)	Part-spores (µm)	References
Cordyceps formosana	Cylindrical or branched, 8.7–21.6	5.3–8.0 x 1.5–4.0	Semi-immersed, 360–520 x 230–330	Linear, 230–335 x 6.0–7.2	5.0–9.8 x 1.4–2.0	Cylindrical, 3–4 x 1–1.5	Olatunji et al., 2018
Cordyceps inthanonensis	Multiple, 6–25 mm long	Cylindrical to clavate, half of stroma, 3–5 mm wide	Semi-immersed, ovoid, 600–720 x 220–420	Cylindrical, 450–600 x 4–6	Cylindrical, 3–4 x 1–1.5	Mongkolsumrith et al., 2020	
Cordyceps ishikariensis	Gregarious, 45–65 x 1.5–2	Fertile part is slightly wider than stipe	Semi-immersed, 500–670 x 240–300	250–360 x 4	Shrestha, 2011		
Cordyceps jakajanicola	Gregarious, simple, 32–45	On the terminal end c. 1/3 of the stroma	Semi-immersed, 400–600 x 300–400	Cylindrical, 265–360 x 4–5	Bola-shaped, 250–310 x 1	Crous et al., 2019	
Cordyceps kuburiensis	Solitary, 8 x 1–1.5, rhizoids flexuous	Cavate to subglobose, 1.5–5 x 1–2.5	Pseudo-immersed, obpyriform, (350–370–460–550) x (120–140–190–240)	Cylindrical, 280 x 3–5	Filiform, 250 x 1	Crous et al., 2019	
Cordyceps kyusyuensis	Multiple, 15–20 mm long	Cylindrical, 10–12 mm long	Semi-superficial, ovoid, 410–580 x 210–330	4 µm wide	4–5 x 1	Kobayasi, 1981	
Cordyceps longiphialis	Two, 13–25	Clavate, 4–15 x 2.0–2.5	Superficial, 380–612 x 167.5–268.3	Fusiform to cylindrical, 113–200 x 1.1–2.7	Bola-shaped, 110–184 x 0.8–1.3	This study	
Cordyceps militaris	Solitary or gregarious, 8–70 mm long	Clavate, half of stroma	Immersed to semi-immersed, 500–720 x 300–480	Cylindrical, 300–510 x 3.5–5	Filiform, multi-septate	2–4.5 x 1–1.5	Mains, 1958; Liang et al., 2007
Cordyceps morakotii	Simple or compound, 3–7 x 0.5–1	Cylindrical to ovoid	Superficial, 200–300 x 70–120	Cylindrical, 150–200 x 3–5	Bola-shaped, 200–250 x 1, 3-septate	Tasanathai et al., 2016	
Cordyceps nabanheensis	Solitary or gregarious, 14–23, rhizoids flexuous, 2.0–6.5 x 0.7–1.5	Clavate	Superficial, 224–322.6 x 71.2–317.3	Filiform, 100–120 x 1.0	(4–6)–10 x 1	Chirivi et al., 2017	
Cordyceps nidus	Gregarious, simple, 10–42 x 0.5–2	Subcylindrical, 2.5–18 x 0.5–3	Pseudodissomes, 300–500 x (630) x 110–190 x (205)	Cylindrical, (145–) 190–360 x 2–4	Filiform, multi-septate	3–6.8–7 x 1.0–1.4	Su and Wang, 1986
Cordyceps ninchukispora	1–6 branches, 13.8–22.4 x 0.3–0.9	5.7–14.2 x 0.8–0.9	Superficial, 95–145 x 50–60	Long cylindrical, 75–105 x 2.1–3.1	Ninchukiform, 90–110 x 1.2, 3–4 septate	Wright, 1993	
Cordyceps ningxiaensis	1–2 branches, 5–15 x 0.3–1.2	Spherical to ovoid, 1.2–3 x 1.2–2.8	Immersed, 288–400 x 103–240	Cylindrical, 8-spored, 168–205 x (3.7–) x (1.5–) x (6.6)	Filiform, multi-septate	3.6–7.8–7 x 1.0–1.4	Yan and Bau, 2015
Cordyceps oncoperae	1–4 branches, 35 mm long, Acute apex, 4–10 x 2–3	Ovoid, (350–410 x 180–230–380)	Cylindrical, 8-spored, (188–200–224 x (256) x (5–6)–6.5	Filiform, 104–139 x 1.5–2	Cylindrical, 400–500 x 5–6	8–10 x 1	Mains, 1959
Cordyceps parvula	Solitary, 5 mm long	Subglobose, clavate, 4–10 x 2–3	Superficial, ovoid, (320/330–390/410) x (175/180–270/350)	Filiform, 150–175–260/300 x 2–2.5	Bola-shaped, (180/210–225/250) x 0.5	Mongkolsumrith et al., 2020	
Cordyceps parvistroma	Solitary, 5 mm long	Subglobose, clavate, 4–10 x 2–3	Superficial, ovoid, (320/330–390/410) x (175/180–270/350)	Filiform, 150–175–260/300 x 2–2.5	Bola-shaped, (180/210–225/250) x 0.5	Mongkolsumrith et al., 2020	

(Continued)
Species	Stromata (mm)	Fertile part (mm)	Perithecia (μm)	Asci (μm)	Ascospores (μm)	Part-spores (μm)	References
Cordyceps polyarthra	Gregarious, 30–44	Cylindrical to narrowly clavate, 12–14	Semi-immersed, 220–300 x 180–200	Cylindrical, 167–217.5 x 3.5–4.5	Filiform, multi-septate	Cylindrical, 4.5–11 x 0.5–1.0	Catania et al., 2018
Cordyceps polystromata	Gregarious, 11–37 x 3.0–9.8	Cylindrical to clavate, 5–17 x 2.3–8.6	Superficial, 522.3–663.4 x 296.4–576.7 (583.5 x 142.2)	Cylindrical, 34.2–172.8 x 4.1–6.5 (68.4 x 1.7)	Linear, 34.2–172.8 x 0.9–2.6 (2.1 x 1.6)	Cylindrical, 1.3–3.0 x 1.1–2.2	Duan, 2019
Cordyceps pruinosa	Solitary, 15–47.5	Narrow-clavate or subcylindrical, 7 x 1.5	Superficial, narrow-oval or ovoid-cylindrical, 400 x 100	Cylindrical, 1.3–4 x 2.3–8.6	Filiform and filiform, 4–6 x 0.5–1.0	Cylindrical, 6 x 1	Petch, 1924; Liang, 1983; Liang et al., 2007
Cordyceps pseudomilitaris	1-3, simple, 12–25 x 1–2	2.5–9(–10) x 1.5–2.5	Semi-immersed, 320–500 x 225–350	Cylindrical, 210–395 x 5–6	Filiform, multi-septate, 200–380 x 1	Cylindrical, 1.3–2.5 x 1.2–2.2	Catania et al., 2018; Olariu et al., 2018
Cordyceps qingchengensis	1-3 branches, 25 mm long	7–9 x 2.0–2.5	Partially immersed, sharply pointed, 335–490 x 145–240	Cylindrical, 8–spored, 180–200 x 2.4–4	Filiform, partly bifiform, 180–220 x 0.45–0.65	Cylindrical, 6 x 1	Zha et al., 2019
Cordyceps rosea	Solitary, 11 mm long	Cavate	Immersed, ovoid, 330–380 x 160–230	Cylindrical, 10 x 3–4	Whole, multi-septate	Cylindrical, (3.6–) 4.8–6 (7.2) x (1.2–)1.5–2	Kobayasi and Shimizu, 1982
Cordyceps rostrata	Solitary, simple, 35 mm long	Cylindrical, 10 x 2	Superficial, subglobose, 420–525 x 255–375	Cylindrical, 6 x 0.5–1.0	Filiform, multi-septate, 100–250 x 0.5–1	Cylindrical, (3.6–) 4.8–6 (7.2) x (1.2–)1.5–2	Liang, 2003
Cordyceps simaoensis	Solitary or gregarious, 7–25.1	Elliptical to fusiform, 1–4 x 1.5–3	Immersed, 638.4–757.6 x 371–531.1	Clavate to nearly cylindrical, 8–spored, 66.9–126.1 x 1.9–2.7	Filiform, multi-septate, 3.0–4.0 x 1.0	This study	
Cordyceps singeri	1–2, simple, 10–20 x 0.5–1.5	Cylindrical to clavate, 1 x 3–4	Embedded, 325–520 x 220–475	Cylindrical, (187–)425–475 x 3–4(–4.5)	Filiform, multi-septate, 3.0–4.0 x 1.0	Cylindrical, (3.6–) 4.8–6 (7.2) x (1.2–)1.5–2	Catania et al., 2018
Cordyceps spegazzinii	Solitary, simple, 7–9 mm long	Cylindrical to clavate, 1 x 3–4	Superficial to partially immersed, 400–460 x 200–240	Cylindrical, 8–spored, 200–250 x 2.5–3	Filiform, multi-septate, 100–250 x 0.5–1	Cylindrical, (3.6–) 4.8–6 (7.2) x (1.2–)1.5–2	Torres et al., 2005
Cordyceps submilitaris	20–30 x 1–1.5	10–25 x 2	Embedded, 450–620 x 300–430	Cylindrical, 300–420 x 3–4	Filiform	Cylindrical, 3.6–4.5 µm long	Mains, 1940
Cordyceps subulifera	Solitary, 25 mm long	Clavate, 4 x 1.5	Pseudomissed, 250–650 x 300–430	Cylindrical, 275–510 x 3.5–5.2	Filiform, multi-septate, 180–410 x 1.2–1.7	Cylindrical, 2.8–6.5 µm long	Wang Y. B. et al., 2020
Cordyceps succavus	Solitary, 40–50 x 3–6	Cylindrical, 15–20 x 4–5	Semi-immersed, 534–655 x 179–278	Cylindrical, 8–spored, 486–600 x 3.6–4.9	Filiform, 466–594 x 0.9–1.2	Cylindrical, (8–)19–12 x 1.8–2.0	Hyde et al., 2019
Cordyceps suoniensis	Gregarious (2–4), 15 x 2–3	Cylindrical, 7 x 3	Pseudomissed, 400–500 x 280–300	Cylindrical, 8–spored, 3.6–4.8 µm wide	Filiform	Cylindrical, 6–8 x 0.5–0.8	Liang et al., 2003, 2007
Cordyceps takaomontana	Solitary or gregarious, 8–10 mm	Cylindrical, 8–10 x 1.5–2	Superficial, 375–450 x 145–195	Filiform, 1200 x 2.4–3	Filiform	Cylindrical, 6 x 1	Zha et al., 2019
Cordyceps translucens	10 x 1	Globose or ovoid, 2.5 x 2	Superficial, 0.5 x 0.3	Cylindrical, 8–spored	Cylindrical, 6 x 1	Petch, 1924	

Boldface: data generated in this study.
TABLE 3 | Comparison between the asexual morphs in Cordyceps.

Species	Conidiophores (µm)	Phialides	Phialides size (µm)	Conidia (µm)	Other key characteristics	References
Cordyceps albocitrinus	3.8–10.4 × 1.1–1.4		3.3–11.3 × 0.9–1.2	3.7 × 1.1	In chains 1–5, ellipsoidal or cylindrical, 0.7–3.5 × 0.6–1.8 Synnemata up to 8–10 × 0.3–0.8 mm	Duan, 2019
Cordyceps amoene-rosea	90–150 × 2.0–2.5	Verteclate	4.0–7.5 × 1.5–3.0		Subglobose to ellipsoidal, irregularly cylindrical, 2.9–3.5 × 1.7–2.2	Samson, 1974
Cordyceps araneae		Solitary	5–8 × 1.5–2, basal		Fusoid to ovoid, 3–6 × 1–2	Mongkolsamrit et al., 2020
Cordyceps bifusispora		Solitary	9–50 × 1.5–2, flask		Globose, ovoid or cylindrical, 1- to 8-celled, 2.5–3.5 × 2.4–4.5	Liang et al., 2007
Cordyceps blackwelliae		Verticile	(6–)6.5–8(–9) ×		Cylindrical to ellipsoidal or reniform, (3–)5–7(8) × 2–3.5 Synnemata numerous, up to	Mongkolsamrit et al., 2018
Cordyceps brevistroma		Solitary	6–9(12) × 1.5–2, basal		Ovoid to fusiform, 3–4 × 1–2	Mongkolsamrit et al., 2020
Cordycepsbullispora	Solitary		5.6–20.7 × 1.8–3.3		Cylindrical or slightly allantoid, oblong-ellipsoidal to ellipsoidal, 4.9–11.1 × 1.9–4.5	This study
Cordyceps cateniannulata		Verteclate	3–8 × 1.5–3, basal		In chain, ovate to ellipsoidal, 2.3–5 × 1–1.5	Liang, 1981
Cordyceps cateniobliqua	90–150 × 1–1.5	Verteclate	8.5–12 × 1–1.5 and 5–8 × 2–2.5, basal portion ellipsoidal		Synnemata unbranched, red	Liang, 1981
Cordyceps chanhua		Verteclate	4.2–7(–13.5) × 2.3–3.5–(5.2)		Chlamydospores 13–26.5 × 3–12 µm	Li et al., 2021
Cordyceps chiangdaoensis			5–22.5 × 1–2		Ovoid to cylindrical, 4–10 × 1.5–2	Tasanathtai et al., 2016
Cordyceps cocoonhabita	5.9–9.3 × 1.4–2.0	Solitary,	4.0–16.7 µm long, basophil portion 1.5–2,7, neck 0.5–1.2		In chains or solitary, ovate to fusiform, 1.6–3.0 × 0.7–1.5	Wang Y. B. et al., 2020
Cordyceps farinosa	60–150(300) × 1–1.5	Verteclate	5.7–8 × 1–2		In chains, fusiform, 3–4 × 1–2	Liang et al., 2007
Cordyceps formosana	6–22.5 × 1.5–2.6	Solitary	4.0–16.7 µm long, basophil portion 1.5–2,7, neck 0.5–1.2		In chains or solitary, ovate to fusiform, 1.6–3.0 × 0.7–1.5	Liang et al., 2007
Cordyceps ghanensis	100 × 1.5–2	Verteclate	5.7–8 × 1–2		In chains, fusiform, 3–4 × 1–2	Liang et al., 2018
Cordyceps inthanonensis	90–180 × 2.5–3.5	Verteclate	5.5–8 × 2–3.5, basal portion ellipsoidal, neck 0.5–0.75		Synnemata branched, up to 30 × 0.4 mm, powdery	Mongkolsamrit et al., 2020
Cordyceps jakajanicola	Solitary	Verteclate	(12)14–18.5(20) × 1.5–3, basal portion cylindrical		Synnemata branched, powdery and floccose	Crous et al., 2019
Cordyceps javanica	Verteclate	4–5.3(–6) × 2–3.5(–4), basal portion globose, oval or occasionally conical, neck 0.5			Synnemata branched, powdery and floccose	Mongkolsamrit et al., 2018
Cordyceps kuiburiensis	Verteclate	6–19(–10) × 2–2.5, basal portion cylindrical, neck 1–3 × 3–4 × 0.5			Synnemata branched, powdery and floccose	Crous et al., 2018
Cordyceps lacustrini	Verteclate	3–4 × 1.5–2, basal portion ellipsoidal, necks 1–3 × 1			Synnemata branched, powdery and floccose	Crous et al., 2018

(Continued)
Species	Conidiophores (µm)	Phialides	Phialides size (µm)	Conidia (µm)	Other key characteristics	References
Cordyceps lepidopterorum	Solitary, cylindrical, 4.6–11.5 x 1.6–3.2	Solitary or verticillate with whorls of 2 to 3	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps longijohialis	Solitary	Verticillate with whorls of 2–3	5.5–8 x 4–5, basal portion globose to flask shaped, neck 2–3 x 1	In chains, ellipsoidal or elliptical, 6(8–9.5)x3–4	Apical conidia more prominent than other conidia, 4.6–10.0 x 1.4–2.3 µm	This study
Cordyceps militaris	Solitary or verticillate	Paeonlomyces-type: cylindrical, (0.5)x0.8–1.5 x 6.15(–20), Verticillium-type: 0.8–1.2 x (8–14)x20(–25)	5.0–6.5 x 2.0–3.0	Cylindrical, 2.1–6.0 x 0.8–2.5		Mongkolsamrit et al., 2018
Cordyceps nabanheensis	Solitary, cylindrical, 4.6–11.5 x 1.6–3.2	Solitary or verticillate with whorls of 2–3	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps neopruinosa	Solitary or verticillate with whorls of 2–4	Solitary or verticillate	5.0–6.5 x 2.0–3.0	Cylindrical, 2.1–6.0 x 0.8–2.5		Liang et al., 2007
Cordyceps ninchukispora	Solitary or verticillate	Solitary or verticillate	5.0–6.5 x 2.0–3.0	Cylindrical, 2.1–6.0 x 0.8–2.5		Mongkolsamrit et al., 2020
Cordyceps parvistroma	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps polystromata	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps poprawskii	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps pruinosa	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps pseudotenuipes	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps shuifuensis	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps simaoensis	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps subtenuipes	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps tenuipes	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps yinjiangensis	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020
Cordyceps zhujiangensis	Solitary or verticillate	Solitary or verticillate	6.0–19.1 x 1.3–3.5	Elliptical to oblong, 2.1–4.3 x 1.1–2.7	Synnemata awl-shaped, 2–10 x 1 mm	Mongkolsamrit et al., 2020

Boldface: data generated in this study.
ellipsoidal conidia with a button-like character. Tasanathai et al. (2016) reported an anti-pathogenic species, *C. morakotii*. *C. yinjiangensis* had a close relationship with *C. morakotii* with ant host and conidia formed in an imbricate chain. However, *C. yinjiangensis* was distinct from *C. morakotii*, which had longer phialides (16–20 × 2–3 µm) and bigger aseptate conidia (4–12 × 1–2 µm) (Li et al., 2020).

Cordyceps longiphialis H. Yu, Q. Y. Dong and D. X Tang, sp. nov. (Figure 3)

MycoBank: MB 842329

Etymology: Referring to its longer phialide than close relationship species in this genus.

Type: Xinfang Reservoir, Simao District, Pu’er City, Yunnan, China. September 28, 2020, H. Yu (YHH 20013, holotype; YFCC 8402, ex-holotype living culture).

Teleomorph: Stromata (Figures 3A,B) arising from rotten wood, two, unbranched, 13–25 mm long. Stipe cylindrical, 4–10 mm long, 1.5–2 mm in diameter, orange-red to crimson, fleshy, glabrous, smooth. Fertile part single, clavate, covered by a spinous surface, 4–15 mm long, 2.0–2.5 mm in diameter, reddish-orange. Perithecia (Figure 3D) crowded or sparse, crimson-yellowish, superficial, vase-form to oblong, 380–612 × 167.5–268.3 µm. Asci (Figure 3E) 8-spored, fusiform to cylindrical, 113–200 × 1.1–2.7 µm when mature; Ascus caps hemispherical, 1.6–3.6 µm in height, 1.7–3.3 µm in width. Ascospores hyaline, bola-shaped, septate, 110–184 × 0.8–1.3 µm, central region filiform, terminal region narrowly fusiform, do not disarticulate into part-spores.

Anamorph: Conidial arrangement *Mariannaea*-like. Colonies on PDA are fast-growing, attaining a diameter of 35–37 mm in 14 days at 25°C, white to pale yellow, cottony, with high mycelial density at the centrum, reverse white to pale yellow. Hyphae smooth-walled, septate, hyaline, 0.8–2.5 µm wide. Cultures readily produced phialides and conidia after 2 weeks on potato dextrose agar at room temperature. Phialides usually solitary on hyphae, basal portion cylindrical to clavate, tapering gradually toward the apex; 7.0–7.08 µm long, 0.6–2.1 µm wide at the base, 0.9–2.1 µm at the middle, and 0.6–1.8 µm wide at the

FIGURE 2 | Cordyceps bullispora. (A) Fungus on the pupa of Lepidoptera. (B,C) Colony obverse (B) and reverse (C) on PDA at 21 days. (D–G,I–L) Phialides. (H) Conidia. Scale bars: (A) = 10 mm; (B,C) = 10 mm; (D) = 25 µm; (E) = 50 µm; (F,G) = 15 µm; (H) = 3 µm; (I) = 5 µm; (J) = 15 µm; (K,L) = 10 µm.
apex. Conidia one-celled, smooth-walled, hyaline, cylindrical, 2.1–6.0 × 0.8–2.5 µm, often formed in an imbricate chain, the size of apical conidia significantly more prominent than other conidia in the chain, 4.6–10.0 × 1.4–2.3 µm.

Habitat and known distribution: Buried in rotten logs below ground, in northwestern Yunnan, China.

Additional specimens examined: Xinfang Reservoir, Simao District, Pu’er City, Yunnan, China, isolated from stromata of rotten wood at elevation 1,350 m. September 28, 2020, H. Yu (YFCC 8403, ex-holotype living culture).

Comments: Phylogenetic analyses showed that *C. longiphialis* was closely related to *C. bullispora*; however, the independent phylogenetic position and different physiological characteristics could distinguish *C. longiphialis* from its sister species, *C. bullispora* (as mentioned above). The distinctive characteristics of *Cordyceps longiphialis* were the cylindrical stromata with a spinous surface, superficial perithecia, much shorter ascospores (110–184 × 0.8–1.3 µm), and much longer phialides (7.0–70.8 µm long). Ascospores of *C. longiphialis* were shorter than *C. neopruinosa* (135–275 × 0.5 µm) and *C. pruinose*
Cordyceps nabanheensis H. Yu and Q. Y. Dong, sp. nov. (Figure 4)

MycoBank: MB 842341

Etymology: The location in Nabanhe National Nature Reserve where the species was collected.

Type: Manlv village, Nabanhe National Nature Reserve, Jinghong City, Yunnan, China. August 16, 2020, H. Yu (YHH 20019, holotype; YFCC 8409, ex-holotype living culture).

Teleomorph: Stromata arising from the pupa of Lepidoptera buried in soil, the host covered by a white mycelial surface, solitary or gregarious, cylindrical to enlarging apically, reddish-orange to crimson, 1.4–2.3 cm long. Rhizoids flexuous, arising from the head region of host larva buried in soil, 7–12 mm deep under the ground. Stipes cylindrical, 12.0–20.9 × 0.6–1.3 mm, fertile parts clavate, 2.0–6.5 × 0.7–1.5 mm. Perithecia superficial, oblong-ovate, 224–322.6 × 71.2–317.3 µm. Ascii and ascospores were not observed.

Anamorph: Conidial arrangement Evlachovaea-like. Colonies on PDA moderately fast-growing, 48–51 mm diameter in 14 days at 25°C, floccose, with high mycelium density; white to orange pinkish, reverse orange-brown. Hyphae smooth-walled, branched, septate, hyaline, septate, 3.5–9.3 µm wide. Cultures readily produced phialides and conidia after 1 week on potato dextrose agar at room temperature showing a powdery appearance due to profuse conidiation. Conidiophores smooth-walled, solitary, cylindrical, 4.6–11.5 × 1.6–3.2 µm. Phialides arising from aerial hyphae, cylindrical or clavate, solitary or in whorls of two to three, tapering abruptly into a narrow neck, 5.6–19.1 × 1.3–3.5 µm. Conidia one-celled, smooth-walled, hyaline, elliptical to oblong, 2.1–4.3 × 1.1–2.7 µm, often formed in an imbricate chain.

Habitat and known distribution: On larvae of Lepidoptera buried below ground at elevation 600 m in northeastern Yunnan, China.

Additional specimens examined: Manlv village, Nabanhe National Nature Reserve, Jinghong City, Yunnan, China, on larvae of Lepidoptera. August 16, 2020 (YHH 20020, paratype; YFCC 8410 ex-paratype living culture).

Comments: Cordyceps araneae was firstly reported from Khon Kaen Province, northeastern Thailand by Mongkolsamrit et al. (2020); C. araneae was a spider cocoon pathogenic fungus producing pale orangestromata, perithecia semi-immersed, narrowly ovoid, 450–500 × 150–200 µm with whole bola-shaped ascospores breaking into part-spores 30–65 × 0.5 µm, and developed the Evlachovaea-like anamorph, phialides solitary or in whorls of two to three, 5–8 × 1.5–2 µm, conidia fusoid to ovoid, 3–5 × 1–2 µm (Mongkolsamrit et al., 2020).

Based on the ITS, ribosomal large subunit, rpbl, rpb2, and tef-1α genes, multigene analyses revealed that C. araneae had a close relationship with C. kuiburiensis, C. brevistroma, and C. nidus, and they were all characterized by orange to reddish-orange, cylindrical to enlarging apically stromata and a conidial arrangement Evlachovaea-like (Chirivi et al., 2017; Crous et al., 2019; Mongkolsamrit et al., 2020). Interestingly, C. nabanheensis shared such features, and our phylogenetic analysis indeed indicated that C. nabanheensis had a close relationship to C. araneae and C. brevistroma. However, C. nabanheensis and C. brevistroma differed from C. araneae and C. kuiburiensis regarding their hosts. Both C. nabanheensis and C. brevistroma occur on Lepidoptera larvae, whereas both C. araneae and C. kuiburiensis occurred on spiders. C. brevistroma had bola-shaped whole ascospores, which was the same shape but shorter than C. araneae reported (150–200 µm vs. 250–400 µm). In the natural specimen, C. kuiburiensis developed the anamorph.

Cordyceps pseudotenuipes H. Yu, Q. Y. Dong, and Y. Wang, sp. nov. (Figure 5)

MycoBank: MB 842330

Etymology: Referring to morphological resemblance of Cordyceps tenuipes and Cordyceps subtenuipes but phylogenetically distinct, “not” C. tenuipes.

Type: Wild Duck Lake Forest Park, Shuanglong Town, Panlong District, Kunming City, Yunnan, China. September 10, 2019, H. Yu and Y. Wang (YHH 20014, holotype; YFCC 8404, ex-holotype living culture).

Teleomorph: Undetermined.

Anamorph: Conidial arrangement Isaria-like. Synnemata arising from the pupae of Lepidoptera buried in soil, synnemata erect, solitary, flexuous, white, up to 0.5 cm long. Stipes cylindrical, 0.5 mm wide, producing a mass of conidia at the branches of synnemata, powdery.

Colonies on PDA attaining a diameter of 53–55 mm in 14 days at 25°C, white to cream-colored, soft cottony aerial mycelium, reverse pale yellow. Hyphae smooth-walled, branched, septate, hyaline. Synnemata arising from the entire body of larvae were irregularly branched, 0.2–1.0 cm long, 0.1–0.3 mm wide; cylindrical or clavate stipes with powdery white heads. Cultures readily produced phialides and conidia after 2 weeks on potato dextrose agar at room temperature showing a granular appearance due to profuse conidiation. Conidiophores cylindrical, hyaline, smooth-walled, 17.9–25.9 × 1.7–2.1 µm. Phialides from aerial mycelium straight to slightly flexuose, solitary or in whorls of two to five on each branch, cylindrical, usually with a slightly swollen basal part, tapering into the apex, 6.8–31.8 × 1.2–3.3 µm. Conidia hyaline, ovoid to ellipsoidal, smooth, one-celled, 3.4–6.5 × 2.2–4.0 µm. Chlamydospores present, one-celled, solitary, eggplant shape or oval to pyriform, 9.2–18.5 × 3.4–7.5 µm, hyaline becoming brown, thick and smooth-walled.

Habitat and known distribution: On the pupa of Lepidoptera buried in the soil. Kunming City, China.

Additional specimens examined: Wild Duck Lake Forest Park, Shuanglong Town, Panlong District, Kunming City, Yunnan, China. September 10, 2019, H. Yu (YHH 20015, paratype; YFCC 8405, ex-paratype living culture).

Comments: Phylogenetically, C. pseudotenuipes formed a separate subclade from the other species of Cordyceps with high credible support (100%). C. pseudotenuipes was similar to C.
FIGURE 4 | Cordyceps nabanheensis. (A–C) Fungus on the pupa of Lepidoptera. (D) Fertile part. (E) Perithecia. (F,G) Colony obverse (F) and reverse (G) on PDA at 14 days. (H) Solitary phialide on hyphae. (I,J–N) Opposite conidiophore and verticillate phialides. (O) Conidia. Scale bars: (A–C) = 10 mm; (D) = 1 mm; (E) = 100 µm; (F,G) = 10 mm; (H,J,K) = 20 µm; (I) = 10 µm; (L–O) = 5 µm.
Cordyceps pseudotenuipes (Peck) Kepler et al. (2017) based on its conspicuous synnemata and Isaria-like asexual conidiogenous structure forming phialides with a swollen basal portion. It differed from C. tenuipes by its unbranched synnemata, white color, phialides with a globose basal part, and smaller ovoid to ellipsoidal wider conidia measuring 3.4–6.5 × 2.2–4.0 μm. C. tenuipes had multiple synnemata, more giant cylindrical to botuliform conidia with a size of 2.0–7.0 × 1.2–2.5 μm (Samson, 1974). The sexual morph of C. tenuipes was proposed as C. takaomontana Yakush and Kumaz, with yellowish stromata and being often concurrent with its asexual morph (Liang et al., 2007). However, the sexual morph of C. pseudotenuipes was not found in the field.
FIGURE 6 | *Cordyceps simaoensis*. (A–C) Fungus on the host of Lepidoptera. (D) Fertile part. (E,F) Perithecia. (G–J) Asci. (K,L) Colony obverse (K) and reverse (L) on PDA at 21 days. (M–S) Conidiophore and phialide. Scale bars: (A,B) = 10 mm; (C) = 5 mm; (D) = 2 mm; (E) = 400 µm; (F) = 100 µm; (G–J) = 10 µm; (K,L) = 10 mm; (M–S) = 20 µm.
Cordyceps simaoensis H. Yu, Q. Y. Dong and Z. Q. Wang, sp. nov. (Figure 6)

MycoBank: MB 842331

Etymology: The location in Simao District where the species was collected.

Type: Xinfang Reservoir, Simao District, Pu’er City, Yunnan, China. September 28, 2020. H. Yu (YHH 20016, holotype; YFCC 8406, ex-holotype living culture).

Teleomorph: Stroma arising from the host’s head, solitary or gregarious, mace-shaped, unbranched, 7–25.1 mm in height. Stipe cylindrical, 22 mm long, 1.1–1.2 mm in diameter, bright yellow, fleshy, glabrous, smooth, enlarging abruptly at fertile portion. Fertile portion single, elliptical to fusiform, 1–3 mm long, 1.5–3 mm in diameter, bright yellow, fleshy, glabrous, smooth, enlarging abruptly at fertile portion. Perithecia crowded, nearly fully immersed, vase-form, oval to oblong, 638.4–757.6 × 371–531.1 μm, ostioles protruding. Ascii (Figures 6G–J) 8-spored, narrowly clavate to nearly cylindrical, 66.9–126.1 × 1.9–2.7 μm; cap 1.2–2.3 μm in height, 2.1–3.5 μm in width. Ascospores not observed.

Anamorph: Conidial arrangement Isaria-like. Colonies on PDA are fast-growing, attaining a diameter of 40–43 mm at 25°C in 21 days, white to bright yellow, cottony, with high mycelial density at the center, forming concentric rings around the inoculum, reverse pale yellow to deep yellow. Hyphae smooth-walled, branched, septate, hyaline, 2.1–2.9 μm wide. Cultures produced phialides and conidia after 45 days on potato dextrose agar at room temperature. Conidiophores are smooth-walled, cylindrical, solitary, or verticillate, 17.1–25.2 × 1.4–1.6 μm. Phialides solitary or verticillate, in whorls of two to three, usually solitary on hyphae, basal portion cylindrical to narrow lageniform, gradually or abruptly tapering toward the apex; 11.7–50.2 μm long, 1.5–3.1 μm wide at the base, 3.4–4.0 μm at the middle, and 0.9–2.0 μm wide at the apex. Conidia is one-celled, hyaline, smooth-walled, fusiform or oval, 2.0–4.9 × 2.0–3.3 μm, often in chains.

Habitat and known distribution: On the pupa of Lepidoptera buried in soil.

Additional specimens examined: Xinfang Reservoir, Simao District, Pu’er City, Yunnan, China. October 6, 2019, H. Yu (YHH 20017 paratype, YFCC 8407 ex-paratype living culture; YHH 20018 paratype, YFCC 8408 ex-paratype living culture).

Comments: Our phylogenetic results demonstrated that the isolated position of this collection was within the Cordyceps species except for their host (see Cordyceps cicadae in Figure 1). The rest of the species could easily disarticulate into part-spores. It was found that all the members in clade III had Isaria-like anamorphs and all four species in clade IV were described as conidiophores verticillate with phialides in whors of 2 to 4 or 5, conidia in chains (Table 3). Clade V consisted solely of Cordyceps grylli, characterized as pathogenic on Gryllidae adults and relatively larger perithecia (up to 650–810 × 270–370 μm) (Teng, 1963; Liang et al., 2007).

Phylogenetic classifications of cordycepitoid fungi showed that most diagnostic characteristics used in current classifications of Cordyceps species (e.g., host, arrangement of perithecia, ascospore fragmentation, conidigenous structures, conidial shape and size) were not phylogenetically informative (Sung et al., 2007; Kepler et al., 2017; Mongkolsamrit et al., 2018; Wang Y. B. et al., 2020). Cordyceps lepidopterorum Mongkolsamrit, Noisiproom, Thanakitipipattana, Spataporn, and Luangsaaard was firstly reported from Chiang Mai Province Thailand by Mongkolsamrit et al. (2018). Cordyceps chanhua, which had long been mistaken as Isaria (Paecilomyces) cicadae of a Brazilian specimen, was recently reported as a new species in the genus Cordyceps s. s., for the discovery of its teleomorph in Mt. Jinggang, Jiangxi, China and analyses of both morphological and phylogenetical evidence (Li et al., 2021). Our phylogenetic trees suggested that C. chanhua (see Cordyceps cicadae in Figure 1) could not be distinguished from C. lepidopterorum (Figure 1). Regarding the morphology, there were no significant differences in the morphological characteristics of anamorph between the two species except for their host (Table 3). Because C. lepidopterorum

DISCUSSION

Considerable changes to the taxonomy of Cordyceps have occurred since the research on entomogenous fungi entered the molecular era. At present, multi-locus phylogenetic analyses have gained importance in delimiting Cordyceps species (Tasanathai et al., 2016; Zha et al., 2019; Li et al., 2020, 2021; Wang Y. B. et al., 2020). In this study, most species of the newly circumscribed genus Cordyceps were analyzed based on phylogenetic inferences of five nuclear molecular markers (nrSSU, nrLSU, tef-1a, rpb1, and rpb2). Both ML and BI analyses produced trees with similar topologies that resolved most Cordyceps lineages in separate terminal branches. Cordyceps s. s. was recognized by five statistically well-supported clades, designated as clade I, clade II, clade III, clade IV, and clade V (Figure 1). There were 20 species in clade I. Morphologically, the 20 species shared relatively complicated host, such as spider, Coleoptera, Lepidoptera, Limacodidae, ant, and even plants. They were also complex and varied in shape (ascosporas bolas-shaped, filiform, ninchukiform, or bifusiform). Clade II was made up of C. militaris and other closely related species. With the exception of C. kyusyuensis and C. rosea, all other species had filamentous ascospores; in addition, unlike C. ancomerae and C. rosea, the rest of the species could easily disarticulate into part-spores. It was found that all the members in clade III had Isaria-like anamorphs and all four species in clade IV were described as conidiophores verticillate with phialides in whors of 2 to 4 or 5, conidia in chains (Table 3). Clade V consisted solely of Cordyceps grylli, characterized as pathogenic on Gryllidae adults and relatively larger perithecia (up to 650–810 × 270–370 μm) (Teng, 1963; Liang et al., 2007).

Phylogenetic classifications of cordycepitoid fungi showed that most diagnostic characteristics used in current classifications of Cordyceps species (e.g., host, arrangement of perithecia, ascospore fragmentation, conidigenous structures, conidial shape and size) were not phylogenetically informative (Sung et al., 2007; Kepler et al., 2017; Mongkolsamrit et al., 2018; Wang Y. B. et al., 2020). Cordyceps lepidopterorum Mongkolsamrit, Noisiproom, Thanakitipipattana, Spataporn, and Luangsaaard was firstly reported from Chiang Mai Province Thailand by Mongkolsamrit et al. (2018). Cordyceps chanhua, which had long been mistaken as Isaria (Paecilomyces) cicadae of a Brazilian specimen, was recently reported as a new species in the genus Cordyceps s. s., for the discovery of its teleomorph in Mt. Jinggang, Jiangxi, China and analyses of both morphological and phylogenetical evidence (Li et al., 2021). Our phylogenetic trees suggested that C. chanhua (see Cordyceps cicadae in Figure 1) could not be distinguished from C. lepidopterorum (Figure 1). Regarding the morphology, there were no significant differences in the morphological characteristics of anamorph between the two species except for their host (Table 3). Because C. lepidopterorum

record also indicated that the C. tenuipes was widely distributed and significantly ecologically diverse in China, with small bright yellow fleshy stromata as teleomorph and Isaria-like anamorph.
was described earlier than *C. chanhua*, *C. lepidopterorum* should be recommended as the scientific name for this species.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

AUTHOR CONTRIBUTIONS

Q-YD and HY: conceptualization. Q-YD: methodology, writing—original draft preparation, and formal analysis. Q-YD and YW: software and resources. Z-QW and H-JW: validation. Q-YD, YW, Z-QW, D-XT, Z-YZ, H-JW, and HY: investigation.

REFERENCES

Bischoff, J. F., Rehner, S. A., and Humber, R. A. (2006). *Metarhizium frigidum* sp. nov.: a cryptic species of *M. anisopliae* and a member of the *M. flavoviride* Complex. *Mycologia* 98, 737–745. doi: 10.3852/mycologia.98.5.737

Cabanillas, H. E., De Leon, J. H., Murray, K. D., and Jones, W. A. (2013). *Isaria poprawskii* sp. nov. (Hypocreales: Cordycipitaceae), a new entomopathogenic fungus from Texas affecting sweet potato whitefly. *MycoKeys* 54, 158–168. doi: 10.1016/j.myc.2012.09.009

Castillo, L. P., Osorio, A., Vargas, N., Sanjuan, T., Grajales, A., and Restrepo, S. (2018). Genetic diversity of the entomopathogenic fungus *Cordyceps tenuipes* in forests and butterfly gardens in Quindio, Colombia. *Fungal Biol.* 122, 891–899. doi: 10.1016/j.funbio.2018.05.003

Catania, M., del, V., Sanjuan, T. I., and Robledo, G. L. (2018). South American *Cordyceps* s. l. (Hypocreales, Ascomycota): first assessment of species diversity in Argentina. *Nova Hedwig* 106, 261–281. doi: 10.1127/nova_hedwigia/2017/0434

Chen, Z. H., Wang, Y. B., Dai, Y. D., Chen, K., Xu, L., and He, Q. C. (2019). *Species* and accession number(s) can be found in the article/supplementary material.

ACKNOWLEDGMENTS

We are very grateful to Yuan-Bing Wang and Nian-Kai Zeng (College of Pharmacy, Hainan Medical University, Haikou, China) for help in naming the new fungal species. Special thanks are due to the reviewers for constructive comments and suggestions for improving our work.

FUNDING

This work was supported by the National Natural Science Foundation of China (Nos. 31870017 and 32060007) and the Department of Science and Technology of Yunnan Province [No. 2018FY001(-006)].
Li, Z. Q., Liu, A. Y., and Liu, Z. Y. (2007). Cordyceps. In: Flora Fungorum Sinicorum. Beijing: Science Press.

Lou, H. W., Lin, J., F., Guo, L. Q., Wang, X. W., Tian, S. Q., Liu, C. X., et al. (2019). Advances in research on Cordyceps militaris degeneration. Appl. Microbiol. Biotechnol. 103, 7393–7411. doi: 10.1007/s00253-019-10074-2

Luangsa-ard, J. J., Hywel-Jones, N. L., and White, J. F. (2007). Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 16, 1701–1711. x doi:1110.1111/j.1365-294X.2007.03225

Sung, H. G., Hywel-Jones, N. L., White, J. F. (2007). Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 16, 1701–1711. x doi:1110.1111/j.1365-294X.2007.03225

Sung, H. G., Hywel-Jones, N. L., White, J. F. (2007). Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 16, 1701–1711. x doi:1110.1111/j.1365-294X.2007.03225

Dong et al. Five Novel Cordyceps Species

Tasnakthi, K., Thanakitpittaphan, D., Noirsripoom, W., Khonsanit, A., Kumsao, J., and Luangsa-ard, J. J. (2016). Two new Cordyceps species from a community forest in Thailand. Mycol. Prog. 15:28. doi:10.1007/s11557-016-1170-3

Teng, S. C. (1963). Fungi of China. Beijing: Science Press.

Torres, M. S., White, J., and Bischoff, J. F. (2005). Cordyceps sp. www.novascience.com.novascience.com. A new species of the C. militaris group. Mycotaxon 94, 253–263.

Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172, 4328–4346. doi: 10.1128/jb.172.8.4328-4346.1990

Wang, Y., Liu, Y. F., Fan, Q., Wang, Y. B., and Yu, H. (2020). Cordycepsoid fungi powders promote mycelial growth and bioactive-etabolite production in liquid cultures of the Stuart camptom medicinal mushroom Taiwanfungus camphoratus (Agaricomycetes). Int. J. Med. Mushrooms 22, 615–626. doi: 10.1615/IntJMedMushrooms.v2020035440

Wang, Y. B., Wang, Y., Fan, Q., Duan, D. E., Zhang, G. D., Dai, R. Q., et al. (2020). Multigene phylogeny of the family Cordycepaceae (Hypocreales): new taxa and the new systematic position of the Chinese cordycepid fungus Paecilomyces hepialii. Fungal Divers. 103, 1–46. doi: 10.1007/s11325-020-0457-3

Wang, Y. B., Yu, H., Dai, D. Y., Wu, C. K., Zeng, W. B., Yuan, F., et al. (2015). Polyphagalleiphagum armicrus, a new hyperparasite of Ophiocordyceps sp. infecting melolonthid larvae in southwestern China. Mycol. Prog. 14:70. doi: 10.1007/s11557-015-1090-7

Wright, P. J. (1993). Cordyceps orceae sp. nov. (Ascomycota) Infecting oncocerca spp. (Lepidoptera: Hepialidae). J. Invertebr. Pathol. 61, 211–213. doi: 10.1006/jipa.1993.1038

Yan, J. Q., and Bau, T. (2015). Cordyceps ningxiaensis sp. nov., a new species from dipteran pupae in Ningxia Hui Autonomous Region of China. Nova hedwigia 100, 251–258. doi:10.1127/nova_hedwigia/2014/0222

Zang, M., and Kinjo, N. (1998). Notes on the alpine Cordyceps of China and near-by nations. Mycotaxon 66, 215–229.

Zha, L. S., Huang, S. K., Xiao, Y. P., Boonmee, S., Eungwanchayapant, P. D., McKenzie, E. H., et al. (2018). An evaluation of common Cordyceps (Ascomycetes) species found in Chinese markets. Int. J. Med. Mushrooms 20, 1149–1162. x doi:10.1615/IntJMedMushrooms.v2018027330

Zha, L. S., Kryukov, Y. V., Ding, J. H., Jeeewon, R., and Chomnunti, P. (2011). Novel taxa and species diversity of Cordyceps sensu lato (Hypocreales, Ascomycota) developing on wireworms (Elateroidea and Tenebrionoidea, Coleoptera). MycoKeys 78, 79–117. doi:10.3897/mycokeys.78.61836

Zha, L. S., Wen, T. C., Huang, S. K., Boonmee, S., and Eungwanchayapant, P. D. (2019). Taxonomy and biology of Cordyceps qinghengensis sp. nov. and its allies. Phytotaxa 416, 14–24. doi:10.11646/phytotaxa.416.1.2

Zhang, J. Y., Juan, T. T., Zhang, Y., Zhang, G. Y., and Ling, J. Y. (2021). Dynamic content changes of cordycepin and adenosine and transcriptome in Cordyceps kyushuensis Kob at different fermentation stages. Bioprocess Biosyst. Eng. 44, 1793–1803. doi:10.1007/s00449-021-02561-3

Zhao, X., Yu, X. H., Zhang, G. Y., Zhang, H. Y., Liu, W. W., Zhang, C. K., et al. (2018). Aqueous extracts of Cordyceps kyushuensis Kob induce apoptosis to exert anticanicer activity. BioMed Res. Int. 2018, 1–8. doi:10.1155/2018/4124098

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.