Review

Photobiomodulation after Surgical Extraction of the Lower Third Molars: A Narrative Review

Daniele Pergolini, Alessandro Del Vecchio, Gaspare Palaia, Federica Rocchetti, Raffaele Cefalà, Riccardo De Angelis, Gianluca Tenore and Umberto Romeo

Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; daniele.pergolini@uniroma1.it (D.P.); alessandro.delvecchio@uniroma1.it (A.D.V.); gaspare.palaia@uniroma1.it (G.P.); raffaeleCEFAL@hotmaiil.it (R.C.); riccardodeangelis95@gmail.com (R.D.A.); gianluca.tenore@uniroma1.it (G.T.); umberto.romeo@uniroma1.it (U.R.)

* Correspondence: federica.rochetti@uniroma1.it

Abstract: The surgical extraction of the lower third molar is widely practiced in oral surgery. Inflammatory complications such as pain, swelling, and trismus can cause discomfort to the patients after third molar extraction. Several methods have been used to reduce these postoperative sequelae, including the use of corticosteroids, nonsteroidal anti-inflammatory drugs, analgesics, antibiotics, less traumatic surgical methods, and the use of photobiomodulation. This narrative review summarizes the current evidence on the effect of photobiomodulation on pain, facial swelling and trismus after third molar surgery. A literature search using MEDLINE (NCBI PubMed and PMC), EMBASE, Scopus, Cochrane library, Web of Science, and Google Scholar was undertaken up to October 2021. Forty-one articles met the inclusion criteria. Photobiomodulation can be considered an alternative and useful method for controlling pain following impacted wisdom tooth surgery. The effectiveness of PBM in reducing swelling and trismus is still controversial. This review highlights the lack of consensus in the literature on protocols used in PBM therapy.

Keywords: photobiomodulation; low level laser therapy; pain; swelling; trismus

1. Introduction

The surgical extraction of the third mandibular molar is the most frequent procedure in oral and maxillo-facial surgery [1].

An impacted third molar can cause different consequences such as pericoronitis, distal caries and periodontal pocket of the second molar, odontogenic abscesses, and the development of follicular cysts [2].

The healing period following the surgical extraction of an impacted third mandibular molar is associated with an intense inflammatory response. This process is responsible for postoperative pain, facial swelling, and trismus, which negatively affect the quality of life of the patients during 7–10 days after the surgery [3]. These signs and symptoms are a consequence of the surgical wound and the duration of the surgery itself [4], as the result of a direct trauma on the blood and lymphatic vessels [5]. After local anesthesia wears off, the pain usually reaches maximum intensity 3 to 5 h after surgery, continuing for 2 to 3 days, and gradually diminishing until the seventh day [6,7]. Swelling reaches peak intensity in 12 to 48 h, influencing facial esthetics and social interactions. It usually resolves between the fifth and seventh days. Trismus may be considered initially as having a protective function by encouraging the patient to rest the surgical site and permit healing. However, it may lead to difficulty in eating and functioning if it persists for more than a few days.

Piezoelectric devices, which can be used instead of conventional burs, may be beneficial for surgeries at complex anatomical sites because they can preferentially cut mineralized structure [8,9]; furthermore, some authors reported a reduction in postoperative sequelae using the piezoelectric surgical technique in third molar extraction [10,11].
The standard therapeutic approach to reduce the postoperative complications is the administration of medications such as nonsteroidal anti-inflammatories (FANS), corticosteroids (CS), and analgesics. However, even if they are effective, these drugs present some important adverse effects such as the tendency to systemic bleeding, gastrointestinal irritation, and allergic reactions. In addition, antibiotics reduce the risk of postoperative infection and alveolitis, but the possibility of developing bacterial resistance makes their administration indicated only in selected cases [12].

These considerations justify the effort to find alternative and innovative methods for the resolution of the symptomatology that follows the surgical extraction of the impacted mandibular third molars, possibly without adverse effects. Non-medication methods used to minimize the postoperative after third-molar extraction include cryotherapy, acupuncture, and photobiomodulation (PBM) [13–15]. PBM is the application of near-infrared (NIR) light for therapeutic purpose. The “optical window” in which the effective penetration of light into tissues is maximized is between approximately 600 and 1200 nm. Low-energy laser light produces photochemical effects whereby it penetrates the mucosa without overheating or producing other side effects [16].

PBM is described in the literature with different terminology starting from 1970: Low Level Laser Therapy (LLLT), Low Intensity Laser Therapy (LILT), and Low Power Laser Therapy (LPLT). Many studies have reported the efficacy of PBM in the wound healing process [17]. PBM could modulate the inflammatory activity and accelerate healing [18]. As primary effects, PBM promote vasodilatation, lymph drainage, and cellular biostimulation, which results in decreasing pain and edema and accelerating tissue regeneration. Secondary effects include the aggregation of many molecules, as endogenous endorphins and encephalins, resulting in the reduction of inflammation and immune response. PBM improves the reparative process and increases the inorganic matrix of the bone and mitotic osteoblastic index. PBM also increases the motility of human keratinocytes and promotes their increase of collagen type I and vascular endothelial growth factor (VEGF) gene expression [19,20]. Moreover, this therapy generally is a safe procedure [21].

PBM has been reported to manage pain, swelling, and trismus following the removal of impacted third molars since the 1980s. However, in the literature, the conclusions are controversial. The aim of this narrative review is to summarize the current evidence on the effect of PBM on pain, swelling, and trismus after third molar surgery.

2. Methods

This narrative review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines [22]. The focus question was: “Is photobiomodulation useful in reducing pain, swelling and trismus after third molar surgery?” A comprehensive search of MEDLINE (NCBI PubMed and PMC), EMBASE, Scopus, Cochrane library, Web of Science, and Google Scholar was conducted with the following search strategy: (“Low-Level Laser Therapy” OR “Low-Level Laser Irradiation” OR “Laser Biostimulation” OR “Photobiomodulation” OR “Laser Photobiomodulation” OR “Low-Power Laser Therapy” OR “Photobiomodulation Therapy” OR “Laser Phototherapy” OR “Low-Level Light Therapy”) AND “Third molar surgery” for original articles published until October 2021. All studies were selected based on titles and abstracts and all manuscripts that were considered suitable for the revision of the complete text were recovered. In addition, a manual search of references listed in each original article and a revision of each article, to avoid losing potential studies, were performed. Inclusion criteria were (1) studies in the English language; (2) studies involving humans; (3) studies with primary outcomes including pain, swelling, and trismus; and (4) studies in which the types of laser and the laser’s parameters were clearly stated. Exclusion criteria were (1) conference proceedings, letters to the editor, short communications; (2) in vitro or in vivo animal studies; and (3) studies with less than ten subjects. Two investigators (D.P. and F.R.) independently assessed each eligible article, extracted data using a pre-established
form, and collated all data into a Microsoft Excel spreadsheet (Microsoft Corp. Redmond, WA, USA).

3. Results
3.1. Description of the Studies

One hundred and thirty-six studies were obtained from the databases searched. After duplicates were removed, 91 articles were evaluated, of which 50 were excluded after title, abstract and full-text revision. Forty-one studies met the inclusion criteria. A detailed flow chart of the selection process is shown in Figure 1. Thirty-nine studies were RCTs; one was a case-series study. A total of 1833 subjects participated across the 41 studies.

Nine studies did not record participants’ gender; in the other studies, there were 727 female participants and 1106 male participants.

The characteristics of the included studies are presented in Tables 1 and 2.

Table 1. Characteristics of the studies included.

Authors and Year of Publication	Laser Properties (nm)	Laser Properties (mW)	Laser Properties (J/cm²)	Outcomes	Sample Size
Asutay et al. (2018)	810	300	4	pain, trismus, swelling	45
Hamid et al. (2017)	810	100	32, 86	pain	30
Landucci et al. (2016)	780	10	7, 5	pain, trismus, swelling	22
Sierra et al. (2015)	660, 808	100	106	pain	60
Sierra et al. (2016)	660, 808	100	106	pain	60
Pol et al. (2016)	650, 904	8–500, 70	no reported	pain, swelling	25
Abdel-Alim et al. (2015)	830	4	no reported	pain, trismus, swelling	80
Fabre et al. (2015)	660	35	5	pain, trismus, swelling	10
Merigo et al. (2015)	650, 910	no reported	480, 31	pain, swelling	59
Ferrante et al. (2013)	980	300	no reported	pain, trismus, swelling	30
Koparal et al. (2018)	810	300	4	pain, trismus, swelling	45
Raisessian et al. (2017)	980	300	18	pain, trismus, swelling	44
Petrini et al. (2017)	980	300	no reported	pain, trismus, swelling	45
Kahraman et al. (2017)	830	100	3	pain	53
Alan et al. (2016)	810	300	4	pain, trismus, swelling	15
Eroglu et al. (2016)	940	no reported	4	pain, trismus, swelling	35
Eshghpour et al. (2016)	660	200	85, 7	pain, swelling	40
Kazancioglu et al. (2014)	806	100	4	pain, trismus, swelling	60
Tuk et al. (2017)	660	198	67,5	pain	163
Table 1. Cont.

Authors and Year of Publication	Laser Properties (nm)	Laser Properties (mW)	Laser Properties (J/cm²)	Outcomes	Sample Size
Pedreira et al. (2016)	808	no reported	2	pain, trismus, swelling	24
Lopez Ramirez et al. (2012)	810	500	5	pain, trismus, swelling	20
Amarillas et al. (2010)	810	100	4	pain, trismus, swelling	30
Royesdal et al. (1993)	830	40	no reported	pain, trismus, swelling	25
Fernandez et al. (1993)	830	30	4	pain, swelling	52
Markovic et al. (2007)	637	50	5	swelling	120
Aras et al. (2009)	808	100	4	swelling, trismus	32
Aras et al. (2010)	808	100	4	swelling, trismus	48
Feslihan et al. (2019)	810	300	6	pain, trismus, swelling	30
Santos et al. (2020)	780	70	52, 5	pain	32
Lakshmi et al. (2021)	980	300	no reported	pain, trismus, swelling	100
El Saeed et al. (2020)	980	300	4	pain, trismus, swelling	20
Nejat et al. (2021)	660, 980	200	1, 6	pain	80
Kanal et al. (2021)	980	100	no reported	pain, trismus, swelling	24
Bianchi de Moraes et al. (2020)	660	30	10, 30	pain, trismus, swelling	57
Kumar Gulia et al. (2021)	940	500	10	pain, trismus, swelling	32
Scaranò et al. (2021)	1064	1000	1, 5, 6	pain, swelling	20
Momenti et al. (2021)	940	500	10	pain, trismus, swelling	25
Hadad et al. (2021)	810	100	212	pain, trismus, swelling	13
Fraça et al. (2020)	808	100	133	pain, swelling	40
Mohajerani et al. (2020)	810, 632	500	5, 2	pain, trismus, swelling	40

Table 2. Method of evaluation of the outcomes and main results of the included studies.

Method of Evaluation	Comparison	Pain	Results	Swelling	Trismus
[23] VAS, MO, 3dMD FP vs. placebo	Reduction	Not statistically significant	Not statistically significant		
[24] VAS vs. placebo	Reduction	Reduction	Reduction		
[25] VAS, NRS vs. placebo	Not statistically significant	Reduction	Reduction		
[26] VAS, FDM, MO vs. placebo	Reduction	Reduction	Reduction		
[27] FDM, MO 808 nm vs. 660 nm	Reduction	808 Reduction	808 Reduction		
[28] VAS, FDM vs. placebo	Reduction	Reduction	Reduction		
[29] MO, Bella’s FSA vs. delayed PBM	Reduction	Reduction	Reduction		
[30] VAS, FDM, MO vs. placebo	Reduction	Reduction	Reduction		
[31] VAS, FDM vs. placebo	Reduction	Reduction	Reduction		
[32] VAS, FDM, MO vs. placebo	Reduction	Reduction	Reduction		
[33] VAS, MO, 3dMD FP vs. placebo	Reduction	Not statistically significant	Not statistically significant		
[34] VAS, FDM, MO vs. drug therapy	Reduction	Not statistically significant	Not statistically significant		
[35] VAS, FDM, MO vs. drug therapy	Reduction	Not statistically significant	Not statistically significant		
[36] VAS intraoral vs. extraoral	Reduction	Not statistically significant	Not statistically significant		
[37] VAS, MO, 3dMD FP vs. placebo	Reduction	Not statistically significant	Not statistically significant		
[38] VAS, FDM, MO vs. placebo	Reduction	Not statistically significant	Not statistically significant		
[39] VAS, ECE vs. placebo	Reduction	Reduction	Reduction		
[40] VAS, FDM, MO vs. ozone therapy	Reduction	Reduction	Reduction		
[41] HR, SR, Questionnaire vs. placebo	Not statistically significant	Reduction	Reduction		
[42] VAS, FDM, MO vs. placebo	Not statistically significant	Not statistically significant	Not statistically significant		
[43] VAS, FDM, MO vs. placebo	Not statistically significant	Not statistically significant	Not statistically significant		
[44] VAS, FDM, MO vs. placebo	Not statistically significant	Not statistically significant	Not statistically significant		
[45] VAS, FDM, MO vs. placebo	Not statistically significant	Not statistically significant	Not statistically significant		
[46] VAS, FS, MO vs. placebo	Not statistically significant	Not statistically significant	Not statistically significant		
[47] VAS, Swelling scale vs. placebo	Not statistically significant	Not statistically significant	Reduction		
[48] VAS, FS, MO intraoral vs. extraoral	Reduction	Reduction	Reduction		
[49] VAS, FDM, MO vs. methylprednisolone	Not statistically significant	Not statistically significant	Not statistically significant		
[50] VAS, ECE vs. placebo	Reduction	Reduction	Reduction		
[51] VAS, FDM, MO vs. placebo	Reduction	Not statistically significant	Not statistically significant		
[52] FDM vs. placebo	Reduction	Reduction	Reduction		
[53] Amin Laskin FS, MO vs. placebo	Reduction	Reduction	Reduction		
[54] VAS, FDM, MO vs. placebo	Reduction	Reduction	Reduction		
[55] VAS, FS, MO vs. placebo	Reduction	Reduction	Reduction		
[56] VAS, FS, MO vs. placebo	Reduction	Reduction	Reduction		
[57] VAS, MO, 3dMD FP 101/1/cm² vs. 30 J/cm²	Not statistically significant	Not statistically significant	Not statistically significant		
[58] VAS, FDM, MO vs. placebo	Reduction	Not statistically significant	Reduction		
[59] VAS, ECE vs. placebo	Reduction	Not statistically significant	Not statistically significant		
[60] VAS, FS, MO vs. placebo	Reduction	Not statistically significant	Not statistically significant		
[61] VAS, FS, MO vs. placebo	Reduction	Not statistically significant	Not statistically significant		
[62] VAS, FS, MO LLLT + aPDT vs. placebo	Not statistically significant	Not statistically significant	Not statistically significant		
[63] VAS, FS, MO vs. split mouth	Reduction	Reduction	Reduction		

Legend: aPDT, antimicrobial photodynamic therapy; FDM, facial distance measuring; FS, facial swelling; MO, maximum mouth opening; NRS, numeric rating scale; PRS, pain rating scale; VAS, visual analog scale; 3dMD FP, 3dMD face photogrammetric.
3.2. Efficacy of PBM

3.2.1. Pain

Twenty-five studies reported a reduction of pain when compared to placebo [23,24,26,28–37,39,40,52,54–56,58–63]. In these studies, lasers were used both intraorally and extraorally, and the laser’s parameters were as follows: wavelengths ranged from 632 to 1064 nm; powers were between 4 and 1000 mW; energy densities were between 3 and 212 J/cm². Eleven articles reported no statistically significant difference of PBM on reducing pain in comparison with placebo [25,38,41–47,51,57]. The lasers used in these studies were diode lasers with wavelengths of 660 nm, 810 nm, and 980 nm, different powers (30–500 mW) and energy densities (2–60 J/cm²). The most successful wavelengths in reducing pain were 810 and 980 nm (Figure 2).

3.2.2. Facial Swelling

Facial swelling was assessed in 36 studies [23,25,28–35,42–51,53,54,56–63]. Nineteen articles reported significant decrease in facial swelling after PBM application when compared with placebo [25,27–32,39,40,48–50,53,54,56,59,61,63]. The laser’s parameters of the included articles were as follows: wavelengths ranged from 650 to 1064 nm; powers were between 4 and 1000 mW; energy densities were between 2 and 480 J/cm². The wavelength of 810 nm induced the smallest facial swelling reduction (Figure 3).

3.2.3. Trismus

Twenty-eight studies assessed the impact of PBM on postoperative trismus. Eleven studies reported reducing of trismus with PBM [26,27,29,30,32,40,49,50,53,54,56]. In the included studies, wavelengths ranged between 660 and 980 nm, power ranged between 4 and 500 mW, and energy densities were between 2 and 212 J/cm². As for swelling, the wavelength of 810 nm was the one that induced the worst outcome. Instead, the wavelength of 980 nm determined the better reduction of trismus (Figure 4).

Figure 2. Histograms showing the pain outcome according to the wavelengths of the included studies. Legend: NR, no reduction, NSSR, no statistically significant results.
3.2.3. Trismus

Twenty-eight studies assessed the impact of PBM on postoperative trismus. Eleven studies reported reducing of trismus with PBM [26, 27, 29, 30, 32, 40, 49, 50, 53, 54, 56]. In the included studies, wavelengths ranged between 660 and 980 nm, power ranged between 4 and 500 mW, and energy densities were between 4 and 212 J/cm². As for swelling, the wavelength of 810 nm was the one that induced the worst outcome. Instead, the wavelength of 980 nm determined the better reduction of trismus (Figure 4).

4. Discussion

The present narrative review evaluates the role of PBM in the management of pain, facial swelling, and trismus that accompany the postoperative period after the extraction of the third molars. Since the duration of surgeries correlates significantly with trismus and swelling, most surgery protocol was performed by a single oral surgeon, and the duration of the extractions was also recorded. All investigations reported that the duration of surgery was similar between groups, without statistically significant differences. On the other hand, individual pain intensity can vary between operations. In the split-mouth design, both lower third molars of one patient were extracted in two separate operations. Between the two operations, the individual’s pain threshold may change due to the pain-related suffering experienced in the last extraction surgery.

The controversial results from the studies included in our review on the analgesic and anti-inflammatory effects of PBM after the surgical removal of third molars calls into question its efficacy. So far, the parameters of ideal PBM have not been determined due
to the great diversity of variables such as the type of laser wavelength, power, time, and mode of application.

With reference to the effect of the PBM on postoperative inflammation, Marković and Todorović [48] wanted to compare the effect of the PBM used alone or in combination with topical and systemic corticosteroids after the extraction of third molars. In their study, 120 patients were divided into four groups. Group 1 received PBM immediately after the surgery (energy output 4 J/cm² with constant power density of 50 mW, wavelength 637 nm); group 2 also received i.m. injection of 4 mg dexamethasone into the internal pterygoid muscle; group 3 received PBM supplemented by systemic dexamethasone (4 mg i.m. in the deltoid region) followed by 4 mg of dexamethasone intraorally 6 h postoperatively; and group 4 (control) received only the usual postoperative recommendations such as cold packs, soft diet, etc. The best anti-inflammatory effect was obtained with the combination of PBM and local intramuscular (medial pterygoid) dexamethasone (group 2); the authors suggested that this effect was obtained through a summation effect of both procedures. However, with the use of PBM and systemic administration of dexamethasone (group 3), there was a higher anti-edematous effect than with the use of the PBM alone (group 1), although without statistically significant differences between the groups. For this reason, the authors did not justify the use of corticosteroids in case of using PBM.

The choice for intraoral or extraoral application varied between studies, pointing out more beneficial outcomes for intraoral use or associating the two methods of application.

Kahraman et al. [36] in their study on 60 patients used different groups (intraoral LLLT, extraoral LLLT, and control) to compare the two approaches in reducing postoperative pain. They observed statistically significant results for the intraoral group, while the extraoral did not differ from the control. On the contrary, Aras et al. [50] demonstrated that extraoral LLLT is more effective than intraoral LLLT for the reduction of postoperative trismus and swelling after extraction of the lower third molar.

The number and timing of PBM treatments varied greatly among the included studies. Some studies administered the treatment once, whereas others administered it several times. Some treatments were delivered before the surgery, whereas others were delivered at the suture or at different days after surgery. Petrini et al. [35] in their retrospective study on 45 patients demonstrated that a double dose of LLLT, one immediately before and another after the surgery, was effective in reducing pain and edema at 24 h. Although the authors have found no statistically significant differences between the group irradiated also in the pre-surgery phase (group 2) with respect to that irradiated only after the extraction (group 1), for pain and edema, the results gained clinical importance if we considered that the need of Ketoprofen assumption in the first 24 h was statistically significantly lower in group 2 with respect to the controls and group 1.

Abdel-Alim et al. [29] in their study on 80 patients treated one group with PBM therapy immediately after surgery and on the 3rd day postoperatively, and one group on the 2nd and 4th days postoperatively. Statistical results showed a significant reduction in pain, swelling, and trismus in the immediate PBM therapy group compared with the delayed PBM therapy group. In the split-mouth study conducted by Kumar Gulia et al. [58], PBM was applied immediately after the sutures on the test side. The results revealed that pain, swelling, and trismus following surgery were lower on the test side compared to the control side, but only the pain reduction was statistically significant.

The effect of PBM on pain was evaluated in most of the studies included. Most of them showed a positive effect especially in the first days, whereas only some investigations reported no statistically significant results.

López-Ramirez et al. in their study on 20 patients demonstrated that the intraoral application of an 810 nm diode laser did not significantly reduce pain after a surgical extraction of impacted lower third molars. On the contrary, Asutay et al. [23] reported that the pain level in the PBM group was significantly lower than that in the control and placebo groups.
While statistical significance indicates the reliability of the study results, clinical significance reflects its impact on clinical practice. For example, in the study by Amarillas-Escobar on 30 patients, the intensity of pain was lower in the laser group than in the control group, but without statistically significant differences [45].

The role of PBM on swelling was evaluated in 35 of the studies included. Nineteen studies demonstrated swelling reduction with PBM. The measurement of swelling differed across the studies. Most swelling measurements were taken as the distance between two facial points. In the study of Asutay et al., a three-dimensional photogrammetric system was used to measure volumetric postoperative swelling. The results of their study revealed that PBM reduced facial swelling but without significant differences among the three groups (control group, PBM group, and placebo group) [23].

From the twenty-eight studies on trismus, eleven demonstrated a statistically significant reduction in trismus with PBM. For example, in the study conducted by Ferrante et al. [32] on 30 patients, trismus in the LLLT group was significantly less than in the control group at the second and seventh postoperative days ($p < 0.05$). By contrast, the results of the study by Koparal et al. [33] on 45 patients demonstrated no statistically significant difference in the trismus occurring subsequent to surgery in Groups 1 (control group), 2 (single dose of PBM immediately after surgery), or 3 (two doses of PBM, immediately following surgery and on postoperative day 2) when compared with the interincisal opening prior to surgery.

There are some limitations that should be considered regarding the present review. Firstly, the patients in the included studies often used medications, such as analgesics and anti-inflammatories. Therefore, PBM was evaluated as an adjuvant modality, making it impossible to analyze its efficacy in reducing postoperative complications as the only therapy of choice. Secondly, as previously mentioned, pain experience is partly influenced by previous experiences; this is difficult to account for in an investigation and reduces the reliability of the results.

5. Conclusions

Despite the limitations, this narrative review provides a comprehensive synthesis of the topic. PBM is a safe procedure that may not cause adverse effects and shows reduction in pain in patients undergoing the surgical removal of the lower third molar. However, the administration of PBM presents a negligible benefit in reducing swelling and trismus after surgery compared with placebo or no treatment. There is still a need for future studies with a better methodological description to provide a greater quality of evidence.

Author Contributions: Writing—Review and editing: D.P., F.R. and G.P.; Data curation: A.D.V.; Methodology: G.P. and F.R.; Formal analysis: R.D.A. and G.T.; Investigation: R.C.; Validation: U.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chiapasco, M.; De Cicco, L.; Marrone, G. Side effects and complications associated with third molar surgery. Oral Surg. Oral. Med. Oral Pathol. Oral Radiol. Endod. 1993, 76, 412–420. [CrossRef]
2. Srivastava, N.; Shetty, A.; Goswami, R.D.; Apparaju, V.; Bagga, V.; Kale, S. Incidence of distal caries in mandibular second molars due to impacted third molars: Nonintervention strategy of asymptomatic third molars causes harm? A retrospective study. Int. J. Appl. Basic Med. Res. 2017, 7, 15–19. [PubMed]
3. Singh, V.; Garg, A.; Bhagol, A.; Savarna, S.; Agarwal, S.K. Photobiomodulation Alleviates Postoperative Discomfort After Mandibular Third Molar Surgery. J. Oral Maxillofac Surg. 2019, 77, 2412–2421. [CrossRef]
4. Oikarinen, K. Postoperative pain after mandibular third-molar surgery. Acta Odontol. Scand. 1991, 49, 7–13. [CrossRef] [PubMed]
5. Beech, A.N.; Haworth, S.; Knepl, G.J. Measurement of generic compared with disease-specific quality of life after removal of mandibular third molars: A patient-centred evaluation. Br. J. Oral Maxillofac. Surg. 2017, 55, 274–280. [CrossRef]

6. Lago-Méndez, L.; Diniz-Freitas, M.; Senra-Rivera, C.; Gade-Sampedro, F.; Gándara Rey, J.M.; Garcia-García, A. Relationships between surgical difficulty and postoperative pain in lower third molar extractions. J. Oral Maxillofac. Surg. 2007, 65, 979–983. [CrossRef]

7. He, W.L.; Yu, F.Y.; Li, C.J.; Pan, J.; Zhuang, R.; Duan, P.J. A systematic review and meta-analysis on the efficacy of low-level laser therapy in the management of complication after mandibular third molar surgery. Lasers Med. Sci. 2015, 30, 1779–1788. [CrossRef]

8. Rullo, R.; Addabbo, F.; Papaccio, G.; D’Aquino, R.; Festa, V.M. Piezoelectric device vs. conventional rotative instruments in impacted third molar surgery: Relationships between surgical difficulty and postoperative pain with histological evaluations. J. Cranio maxillofac. Surg. 2013, 41, e33–e38. [CrossRef]

9. Lo Giudice, R.; Pulio, E.; Rizzo, D.; Aliibrandi, A.; Lo Giudice, G.; Centofanti, A.; Fiorillo, L.; Di Mauro, D.; Nicita, F. Comparative investigation of cutting devices on bone blocks: An SEM morphological analysis. Appl. Sci. 2019, 9, 351. [CrossRef]

10. Al-Moraissi, E.A.; Elmans, Y.A.; Al-Sharee, Y.A.; Alrmali, A.E.; Alkhuwari, A.S. Does the piezoelectric surgical technique produce fewer postoperative sequelae after lower third molar surgery than conventional rotary instruments? A systematic review and meta-analysis. J. Oral Maxillofac. Surg. 2016, 45, 383–391. [CrossRef]

11. Sortino, F.; Pedullà, E.; Masoli, V. The piezoelectric and rotatory osteotomy technique in impacted third molar surgery: Comparison of postoperative recovery. J. Oral Maxillofac. Surg. 2008, 66, 2444–2448. [CrossRef] [PubMed]

12. Lodi, G.; Figini, L.; Sardella, A.; Carrassi, D.; Del Fabbro, M.; Furness, S. Antibiotics to prevent complications following tooth extractions. Cochrane Database Syst. Rev. 2012, 14, CD003811. [CrossRef] [PubMed]

13. do Nascimento-Júnior, E.M.; Dos Santos, G.M.S.; Tavares Mendes, M.L.; Cenci, M.; Correa, M.B.; Pereira-Cenci, T.; Martins-Filho, P.R.S. Cryotherapy in reducing pain, trismus, and facial swelling after third-molar surgery: Systematic review and meta-analysis of randomized clinical trials. J. Am. Dent. Assoc. 2019, 150, 269–277. [CrossRef]

14. Armond, A.C.V.; Glória, J.C.R.; dos Santos, C.R.R.; Galo, R.; Falcí, S.G.M. Acupuncture on anxiety and inflammatory events following surgery of mandibular third molars: A splitmouth, randomized, triple-blind clinical trial. Int. J. Oral Maxillofac. Surg. 2019, 48, 274–281. [CrossRef]

15. Isolan, C.; Kinalski, M.D.; Leão, O.A.; Post, L.K.; Isolan, T.M.; Dos Santos, M.B. Photobiomodulation therapy reduces postoperative pain after third molar extractions: A randomized clinical trial. Med. Oral Patol Oral Cir. Bucal. 2021, 26, e341–e348. [CrossRef]

16. Del Vecchio, A.; Tenore, G.; Luzzi, M.C.; Palma, G.; Mohsen, A.; Pergolini, D.; Romeo, U. Laser Photobiomodulation (PBM)-A Possible New Frontier for the Treatment of Oral Cancer: A Review of In Vitro and In Vivo Studies. Healthcare 2021, 29, 134. [CrossRef]

17. Saracino, S.; Mozzati, M.; Martinasso, G.; Pol, R.; Canuto, R.A.; Muzio, G. Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors. Lasers Surg. Med. 2009, 41, 298–304. [CrossRef]

18. Suter, V.G.A.; Sjölund, S.; Bornstein, M.M. Effect of laser on pain relief and wound healing of recurrent aphthous stomatitis: A systematic review. Lasers Med. Sci. 2017, 32, 953–963. [CrossRef]

19. Tenore, G.; Zimbalatti, A.; Rocchetti, F.; Graniero, F.; Gaglioti, D.; Mohsen, A.; Caputo, M.; Lollobrigida, M.; Lamazza, L.; De Biase, A.; et al. Management of Medication-Related Osteonecrosis of the Jaw (MRON) Using Leukocyte- and Platelet-Rich Fibrin (L-PRF) and Photobiomodulation: A Retrospective Study. J. Clin. Med. 2020, 9, 3505. [CrossRef]

20. Basso, F.G.; Oliveira, C.F.; Kurachi, C.; Hebling, J.; Costa, C.A. Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med. Sci. 2013, 28, 367–374. [CrossRef]

21. Ross, G.; Ross, A. Low level lasers in dentistry. Gen. Dent. 2008, 56, 629–634.

22. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339:b2535.

23. Asutay, F.; Ozcan-Kucuk, A.; Alan, H.; Koparal, M. Three dimensional evaluation of the effect of low-level laser therapy on facial swelling after lower mandibular molar surgery: A randomized, placebo controlled study. Niger. J. Clin. Pract. 2018, 21, 1107–1113.

24. Hamid, M.A. Low-level laser therapy on postoperative pain after mandibular third molar surgery. Ann. Maxillofac. Surg. 2017, 7, 207–216. [CrossRef]

25. Landucci, A.; Wosny, A.; Uetanabaro, L.; Moro, A.; Araujo, M. Efficacy of a single dose of low-level laser therapy in reducing pain, swelling, and trismus following third molar extraction surgery. Int. J. Oral Maxillofac. Surg. 2016, 45, 392–398. [CrossRef]

26. Sierra, S.O.; Deana, A.M.; Bussadori, S.K.; da Mota, A.C.; Motta, L.J.; Ferrari, R.A.; Schalch, T.D.; Fernandes, K.P. Effect of low-intensity laser treatment on pain after extraction of impacted mandibular third molars: A randomised, controlled clinical trial. Br. J. Oral Maxillofac. Surg. 2015, 53, 996–1000. [CrossRef]

27. Sierra, S.O.; Deana, A.M.; Bussadori, S.K.; da Mota, A.C.; Ferrari, R.A.; do Vale, K.L.; Fernandes, K.P. Choosing between intraoral or extraoral, red or infrared laser irradiation after impacted third molar extraction. Lasers Surg. Med. 2016, 48, 511–518. [CrossRef]

28. Pol, R.; Ruggiero, T.; Gallesio, G.; Riso, M.; Bergamasco, L.; Mortellaro, C.; Mozzati, M. Efficacy of anti-inflammatory and analgesic of superpulsed low level laser therapy after impacted mandibular third molars extractions. J. Craniofac. Surg. 2016, 27, 685–690. [CrossRef]

29. Abdel-Alim, H.M.; Abdel-Dayem, H.; Mustafa, Z.A.; Bayoumi, A.; Jan, A.; Jado, F. A comparative study of the effectiveness of immediate versus delayed photobiomodulation therapy in reducing the severity of postoperative inflammatory complications. Photomed. Laser Surg. 2015, 33, 447–451. [CrossRef]
30. Fabre, H.S.; Navarro, R.L.; Oltramari-Navarro, P.V.; Oliveira, R.F.; Pires-Oliveira, D.A.; Andraus, R.A.; Fuirini, N.; Fernandes, K.B. Anti-inflammatory and analgesic effects of low-level laser therapy on the postoperative healing process. *J. Phys. Sci.* 2015, 27, 1645–1648. [CrossRef]

31. Mergio, E.; Vescovi, P.; Margalit, M.; Ricotti, E.; Stea, S.; Meleti, M.; Manfredi, M.; Fornaini, C. Efficacy of LLLT in swelling and pain control after the extraction of impacted third molars. *Laser Med. Sci.* 2015, 24, 39–46. [CrossRef]

32. Ferrante, M.; Petriti, M.; Trentini, P.; Perfetti, G.; Spoto, G. Effect of low-level laser therapy after extraction of impacted lower third molars. *Lasers Med. Sci.* 2013, 28, 845–849. [CrossRef]

33. Koparal, M.; Ozcan Kucuk, A.; Alan, H.; Asutay, F.; Avci, M. Effects of low-level laser therapy following surgical extraction of the lower third molar with objective measurement of swelling using a three-dimensional system. *Exp. Med.* 2018, 15, 3820–3826. [CrossRef]

34. Raisian, S.; Khani, M.; Khiabani, K.; Hemmati, E.; PourrezaZad, M. Assessment of low-level laser therapy effects after extraction of impacted third molar surgery. *J. Laser Med. Sci.* 2017, 8, 42–45. [CrossRef]

35. Petrini, M.; Ferrante, M.; Trentini, P.; Perfetti, G.; Spoto, G. Effect of pre-operative low-level laser therapy on pain, swelling, and trismus associated with third-molar surgery. *Med. Oral Patol. Oral Cir. Bucal* 2017, 22, e467–e472. [CrossRef]

36. Kahraman, S.A.; Cetiner, S.; Strauss, R.A. The effects of transcuscent and intraoral low-level laser therapy after extraction of lower third molars: A randomized single blind, placebo controlled dual-center study. *Photomed. Laser Surg.* 2017, 35, 401–407. [CrossRef]

37. Alan, H.; Yolcu, Ü.; Koparal, M.; Öztürk, M.; Özgür, C.; Öztürk, S.A.; Malkoç, S. Evaluation of the effects of the low-level laser therapy on swelling, pain, and trismus after removal of impacted lower third molar. *Head Face Med.* 2016, 12, 12–25. [CrossRef]

38. Eroglu, C.N.; Keskin Tunc, S. Effectiveness of single session of low-level laser therapy with a 940 nm wavelength diode laser on swelling, pain, and trismus after impacted third molar surgery. *Photomed. Laser Surg.* 2016, 34, 406–410. [CrossRef]

39. Eshghpour, M.; Ahrari, F.; Takallu, M. Is low-level laser therapy effective in the management of pain and swelling after mandibular third molar? *J. Oral Maxillofac. Surg.* 2016, 74, 1321–1322. [CrossRef]

40. Kazancioglu, H.O.; Ezirganli, S.; Demirtas, N. Comparison of the influence of ozone and laser therapies on pain, swelling, and trismus following impacted third-molar surgery. *Lasers Med. Sci.* 2014, 29, 1313–1319. [CrossRef]

41. Tuk, J.G.C.; van Wijk, A.J.; Mertens, I.C.; Keles, Z.; Lindeboom, J.A.H.; Milstein, D.M.J. Analgesic effects of preinjection low-level laser/ light therapy (LLLT)—intraoral and extraoral—on trismus and facial swelling following surgical extraction of the lower third molar. *Lasers Med. Sci.* 2009, 24, 21–24. [CrossRef]

42. Farhadi, F.; Eslami, H.; Majidi, A.; Fakhrzadeh, V.; GhaniZadeh, M.; KhademNghad, S. Evaluation of adjunctive effect of low-level laser Therapy on pain, swelling and trismus after surgical removal of impacted lower third molar: A double blind randomized clinical trial. *Laser 2017, 26, 181–187. [CrossRef] [PubMed]

43. Pedreira, A.A.; Wanderley, F.G.; Sa, M.F.; Viena, C.S.; Perez, A.; Hoshi, R.; Leite, M.P.; Reis, S.R.; Medrado, A.P. Thermographic and clinical evaluation of 808-nm laser photobiomodulation effects after third molar extraction. *Minerva Stomatol.* 2016, 65, 213–222. [PubMed]

44. Lopez-Ramirez, M.; Vilchez-Perez, M.A.; Gargallo-Albiol, J.; Arnabat-Domínguez, J.; Gay-Escoda, C. Efficacy of low-level laser therapy in the management of pain, facial swelling, and postoperative trismus after a lower third molar extraction. A preliminary study. *Lasers Med. Sci.* 2012, 27, 559–566. [CrossRef]

45. Amarillas-Escobar, E.D.; Toranzo-Fernández, J.M.; Martínez-Rider, R.; Noyola-Frias, M.A.; Hidalgo-Hurtado, J.A.; Serna, V.M.; Gordillo-Moscoso, A.; Pozos-Guillén, A.J. Use of therapeutic laser after surgical removal of impacted lower third molars. *J. Oral Maxillofac. Surg.* 2010, 68, 319–324. [CrossRef] [PubMed]

46. Royndesal, A.; Björnland, T.; Barkvoll, P.; Haanaes, H. The effect of soft-laser application on postoperative pain and swelling: A double-blind, crossover study. *Int. J. Oral Maxillofac. Surg.* 1993, 22, 242–245. [CrossRef]

47. Fernando, S.; Hill, C.; Walker, R. A randomised double blind comparative study of low level laser therapy following surgical extraction of lower third molar teeth. *Br. J. Oral Maxillofac. Surg.* 1993, 31, 170–172. [CrossRef]

48. Markovic, A.; Todorovic, L. Effectiveness of dexamethasone and low-power laser in minimizing oedema after third molar surgery: A clinical trial. *Int. J. Oral Maxillofac. Surg.* 2007, 36, 226–229. [CrossRef]

49. Aras, M.H.; Güngörmüş, M. The effect of low-level laser therapy on trismus and facial swelling following surgical extraction of a lower third molar. *Photomed. Laser Surg.* 2009, 27, 21–24. [CrossRef]

50. Aras, M.H.; Güngörmüş, M. Placebo-controlled randomized clinical trial of the effect two different low-level laser therapies (LLLT)—intraoral and extraoral—on trismus and facial swelling following surgical extraction of the lower third molar. *Lasers Med. Sci.* 2010, 25, 641–645. [CrossRef]

51. Feslihan, E.; Eroglu, C.N. Can Photobiomodulation Therapy Be an Alternative to Methylprednisolone in Reducing Pain, Swelling, and Trismus After Removal of Impacted Third Molars? *Photobiomodulation Photomed. Laser Surg.* 2019, 37, 700–705. [CrossRef] [PubMed]

52. Santos, P.L.; Marotto, A.P.; Zatta da Silva, T.; Bottura, M.P.; Valencise, M.; Marques, D.O.; Queiroz, T.P. Is Low-Level Laser Therapy Effective for Pain Control After the Surgical Removal of Unerupted Third Molars? A Randomized Trial. *J. Oral Maxillofac. Surg.* 2020, 78, 184–189. [CrossRef] [PubMed]

53. Lakshmi, K.P.; Ali Baig, S.; Walia, S.; Priyadharshini, V.; Vigneswaran, T.; Mazgaonkar, F.S.; Tiwari, R.V.C. Evaluation of effect of low level laser therapy post third molar surgery: An original research. *Terk. J. Physiother. Rehabil.* 2016, 32, 15240–15243.
54. El Saeed, A.M.; Al-Fakharany, A.H. Effect of single dose low-level laser therapy on some sequelae after impacted lower third molar surgery. *Al-Azhar J. Dent. Sci.* 2020, 23, 41–47.
55. Nejat, A.H.; Eshghpour, M.; Danaeiifar, N.; Abrishami, M.; Valadjatinia, F.; Fekrazad, R. Effect of Photobiomodulation on the Incidence of Alveolar Osteitis and Postoperative Pain following Mandibular Third Molar Surgery: A Double-Blind Randomized Clinical Trial. *Photochem. Photobiol.* 2021, 97, 1129–1135. [CrossRef] [PubMed]
56. Girgis, M.; Elsharrawy, E.; Hassan, M. Effect of single session of low-level laser therapy on pain, swelling, and trismus after surgical extraction of impacted lower third molar: A clinical study. *Dent. Sci. Updates* 2021, 2, 55–60. [CrossRef]
57. Bianchi de Moraes, M.; Gomes de Oliveira, R.; Raldi, F.V.; Nascimento, R.D.; Santamaria, M.P.; Loureiro Sato, F.R. Does the Low-Intensity Laser Protocol Affect Tissue Healing After Third Molar Removal? *Ann. Assoc. Oral Maxillofac. Surg.* 2020, 78, e1920.e1–e1920.e9. [CrossRef]
58. Gulia, S.K.; Kumar, a.; Singh, M.; Thakker, R.; Goya, P.; Tiwari, H.; Tiwari, R.V.C. Effectiveness of Low-Level Lasers Subsequent to Third Molar Surgery: An Original Research. *Ann. Rom. Soc. Cell Biol.* 2021, 25, 2048–2053.
59. Scarano, A.; Lorusso, F.; Postiglione, F.; Mastrangelo, F.; Petrini, M. Photobiomodulation Enhances the Healing of Postextraction Alveolar Sockets: A Randomized Clinical Trial with Histomorphometric Analysis and Immunohistochemistry. *J. Oral Maxillofac. Surg.* 2021, 79, 57.e1–57.e12. [CrossRef]
60. Moment, E.; Barati, H.; Arbabi, M.R.; Jalali, B.; Moosavi, M.S. Low-level laser therapy using laser diode 940 nm in the mandibular impacted third molar surgery: Double-blind randomized clinical trial. *BMC Oral Health* 2021, 77. [CrossRef]
61. Hadad, H.; Santos, A.; de Jesus, L.K.; Poli, P.P.; Mariano, R.C.; Theodoro, L.H.; Maiorana, C.; Souza, F.A. Photobiomodulation Therapy Improves Postoperative Pain and Edema in Third Molar Surgeries: A Randomized, Comparative, Double-Blind, and Prospective Clinical Trial. *J. Oral Maxillofac. Surg.* 2021, 80, 37.e1–37.e12. [CrossRef] [PubMed]
62. Fraga, R.S.; Antunes, L.; Fialho, W.; Valente, M.I.; Gomes, C.C.; Fontes, K.; Antunes, L.S. Do Antimicrobial Photodynamic Therapy and Low-Level Laser Therapy Minimize Postoperative Pain and Edema After Molar Extraction? *Ann. Assoc. Oral Maxillofac. Surg.* 2020, 78, 2155.e1–2155.e10. [CrossRef] [PubMed]
63. Mohajerani, H.; Tabiei, F.; Alirezaei, A.; Keyvani, G.; Bemanali, M. Does Combined Low-Level Laser and Light-Emitting Diode Light Irradiation Reduce Pain, Swelling, and Trismus After Surgical Extraction of Mandibular Third Molars? A Randomized Double-Blinded Crossover Study. *Ann. Assoc. Oral Maxillofac. Surg.* 2021, 79, 1621–1628. [CrossRef] [PubMed]