B Chromosomes of *Aegilops speltoides* Are Enriched in Organelle Genome-Derived Sequences

Alevtina Ruban1,2, Jörg Fuchs2, André Marques3, Veit Schubert2, Alexander Soloviev1, Olga Raskina4, Ekaterina Badaeva5, Andreas Houben2*

1 Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Department of Genetics and Biotechnology, Moscow, Russia, 2 Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Chromosome Structure and Function Laboratory, Gatersleben, Germany, 3 Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Universidade Federal de Pernambuco, Recife, Brazil, 4 Institute of Evolution, University of Haifa, Laboratory of Plant Molecular Cytogenetics, Haifa, Israel, 5 Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Laboratory of Molecular Karyology, Moscow, Russia

Abstract

B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance. Chromosome counts and flow cytometric analysis of the grass species *Aegilops speltoides* revealed a tissue-type specific distribution of the roughly 570 Mbp large B chromosomes. To address the question whether organelle-to-nucleus DNA transfer is a mechanism that drives the evolution of Bs, *in situ* hybridization was performed with labelled organellar DNA. The observed B-specific accumulation of chloroplast- and mitochondria-derived sequences suggests a reduced selection against the insertion of organellar DNA in supernumerary chromosomes. The distribution of B-localised organellar-derived sequences and other sequences differs between genotypes of different geographical origins.

Introduction

B chromosomes (Bs) are optional additions to the basic set of standard A chromosomes (As), and occur in all eukaryotic groups. They differ from the As in inheritance, and Bs are not required for normal growth and development of the host organism. Due to the dispensable nature of Bs, they can be present or absent among individuals of the same population in a species. It is widely accepted that B chromosomes derived from the A chromosomes and/or from sex chromosomes. However, there is also evidence suggesting that Bs can be spontaneously generated in response to the new genome conditions following interspecific hybridisation (for reviews, see [1–3]).

Sequence characterisation of the B chromosome of rye provided a unique opportunity for the analysis of the origin and evolution of this enigmatic genome component [4,5]. In contrast to the prevalent view that Bs do not harbor genic sequences, analyses showed that rye Bs are rich in partly transcriptionally active gene-derived sequences [6]. This allowed us to trace their origin from duplicated fragments of multiple A chromosomes [4]. Beside the amplification of B-located satellite repeats [5], this selfish chromosome has accumulated significantly greater amounts of chloroplast- and of mitochondrial-derived sequences than the A chromosomes [4]. Almost all parts of the chloroplast and mitochondrial genomes are found on the Bs, indicating that all sequences are transferable. The higher amount of organelle-derived DNA inserts in B than in A chromosomes and an increased mutation frequency of B-located organellar DNA suggests a reduced selection against the insertion of organellar DNA in supernumerary chromosomes. To study whether the in rye observed B-specific accumulation of organelle-derived DNA can also be found in other species we analysed the B chromosomes of the grass *Aegilops speltoides*.

Aegilops speltoides Tausch (syn. *Triticum speltoides* (Tausch) Gren.) is an annual diploid species (2n = 2x = 14, genome type: S) which belongs to section *Sitopsis* (Triticeae, Poaceae). This species is mainly distributed in the Fertile Crescent and also occurs in south-eastern part of the Balkan peninsula [7]. The submetacentric Bs of *Ae. speltoides* are about 2/3 of the average length of the A chromosomes [8]. The Bs of this species are absent in the roots but stably present in the aerial tissue of the same individual [9], and a maximum number of eight Bs per cell was reported [10]. The maintenance of Bs in natural populations is possible by their transmission at higher than Mendelian frequencies. Accumulation of Bs occurs due to the non-disjunction of B chromatids and the preferential transport of both B chromatids into the generative nucleus during the first mitosis in the male gametophyte [9]. *Aegilops* Bs probably originated from the standard set of As as a consequence of interspecific hybridisation and/or chromosomal rearrangement events. Proposed potential donors of the Bs are the A chromosomes 1, 4 and 5 of the *Ae. speltoides* genome [11,12]. Consequently, the Bs are also characterized by a number of A chromosome-localised repeats like *Spel1*, pSc119.2 tandem repeats, 5S rDNA and Ty3-gypsy retroelements [11–14].
The plant material was provided by USDA, Aegean Agricultural in a garden (Gatersleben, Germany) under natural condition. Israel, (2.46 Mediterranean, 100–125 m, 32°83'9''(16 h light, 22°C)

Tartus, Syria (PI 487238 Mediterranean, 600 m, 35°80'7''N, 233–250 m, 32°82'9''N) were cultivated first under greenhouse conditions during storage. The basal parts of shoots were excised and the shoot meristem was fragmented in 7 μl of 60% freshly prepared acetic acid into smaller pieces with the help of a needle on a slide. After, another 7 μl of 60% acetic acid was added the specimen was kept for 2 min at room temperature. Next, a homogenization step was performed with an additional 7 μl of 60% acetic acid and the slide was placed on a 50°C hot plate for 2 min. The material was spread by hovering a needle over the drop without touching the hot slide. After spreading of cells, the drop was surrounded by 200 μl of ice-cold, freshly prepared 3:1 fixative. More fixative was added and the slide was shortly washed in fixative, then dipped in 60% acetic acid for 10 min and rinsed 5 times in 96% ethanol. A quality check of the air dried slides was performed by phase contrast microscopy. The slides were stored until use in 96% ethanol at 4°C.

Fluorescence in situ hybridisation (FISH) and microscopy

The following probes were used: barley BACs encoding chloroplast DNA (BAC clone ChHB 100G01) and mitochondrial DNA (BAC clone MnHB 0205G01) [4,5] and the Arabidopsis-type telomere repeat [16]. Amplions for the 5S ribosomal DNA, which include the coding as well as the flanking spacer region, were generated by PCR as described by Fukui et al. [17]. The Spelt-1 tandem repeat probe was generated by PCR according to Salina et al. [18]. FISH probes were labelled with ChromaTide Texas Red-12-dUTP or Alexa Fluor 488-5-dUTP [http://www.invitrogen.com] by nick translation. FISH was performed as described by Ma et al. [16]. Fluorescence signals were observed by standard epiluminescence microscope or to achieve a resolution of ~100 nm by structure illumination microscopy (SIM) using an Elvra super resolution microscope (Zeiss). All images were collected in grey scale and pseudocoloured.

Results and Discussion

Tissue type-specific distribution of B chromosomes

Since B chromosomes of Ae. speltoides are known to possess 5S rDNA sites, plants carrying B chromosomes were screened based on additional hybridisation signals after FISH on interphase nuclei of leaf tissue using a corresponding hybridisation probe. This allowed an unambiguous identification of B-positive plants at an early stage of development as the Bs of this species are absent in roots (Figure S1). The tissue-type specific distribution pattern of Bs was confirmed by flow cytometric analysis of 0B, 2B, 3B and 4B plants from the Katzir (Israel) population (Table S1). The average size of a single unreplicated B chromosome was estimated to be ~570 Mbp, ranging from 550 to 600 Mbp, for (1C). Hence, one B equals ~10% of the genome size of a 0B plants (5,400 Mbp). The genome size of nuclei isolated from roots was similar in all analysed plants, while it increased in leaf nuclei depending on the number of Bs (Figure 1). An analysis of Bs in differentiated tissues has not been reported before. A comparable situation of tissue-type specific B chromosome distribution is also known for species as, Agropyron cristatum [19], Poa alpina [20], or Aegilops mutica [21]. The absence of Bs in some organs or tissues could be caused by a specific elimination process of Bs during an early stage of embryo differentiation.

The Bs are polymorphic and enriched in organellar-derived DNA sequences

To determine whether the Bs of Ae. speltoides from Katzir accumulated mitochondria- and plastid-derived sequences as demonstrated for the Bs of rye [4], we hybridised labelled BACs encoding barley plastid and mitochondrial DNA with Ae. speltoides

![Figure 1. Size determination of the B chromosome. Boxplot representing the genome size distribution in plants without and with B chromosomes of Ae. speltoides from Katzir (Israel) measured by flow cytometry in plants without Bs no difference was found between nuclei isolated from leaf (green boxes) and root (brown line) tissues, while it differed remarkably in plants with Bs. The box boundaries indicate the 75th and 25th percentiles and the error bars the 90th and 10th percentiles of the five replicates. doi:10.1371/journal.pone.0090214.g001](image-url)
mitotic chromosomes. Both types of probes revealed B-enriched hybridisation signals (Figure 2A). Multiple mitochondria-derived DNA insertions were found along both arms of the B chromosomes except at the pericentromere. The global distribution of plastid DNA-specific signals was similar but of less amount, likely due to a lower abundance. The A chromosomes revealed only minor insertions of mitochondrial origin mainly (Figure S2).

To address whether Bs present in geographically distinct population of Ae. speltoides are polymorphic we analysed the chromosomal distribution patterns of organellar DNA in Bs derived from different accessions. As B chromosomes are dispensable, it is expected to observe polymorphisms among populations. The distribution of B-localised organellar-derived signals differed between the tested genotypes. Bs from Tartus showed less organellar-derived signals, although exhibiting a similar distribution as for the Bs from Katzir (Figure 2B). In contrast, Bs from the Technion population displayed a strong accumulation in the subtelomeric region of the long arm for both types of probes (Figure 2C). A partial colocalisation of both mitochondria and plastid DNA-specific signals was found in all Bs independently of their geographical origin. In contrast, a comparative analysis of rye Bs coming from geographically distinct populations did not identify polymorphisms regarding the distribution of accumulated organellar DNA and different B-specific repeats [22]. We conclude that the Bs of Ae. speltoides accumulated a significant amount of organellar DNA and that differences of the molecular composition exist between the Bs of different geographical origin. These differences between populations are also reflected by the distribution of FISH signals in interphase nuclei (Figure S3).

The observed polymorphism was further tested by applying the Triticeae-specific tandem repeat Spelt-1, which is a dynamic component of the Ae. speltoides genome [11,18], as well as of the 5S rDNA. Bs of the Technion and Katzir population revealed 5S rDNA signals localised in the terminal part of short arm and in the long arm near the Spelt-1 cluster. In some plants of the Katzir population the 5S rDNA locus in the short arm is absent (Figure 3). Ae. speltoides Bs are submetacentric, but in one plant from the Katzir population we found a metacentric type of Bs. Likely due to terminal deletion in the long arm, former interstitial 5S rDNA and Spelt-1 clusters became terminal (Figure 3). Apparently, the repeat clusters of the B are hot spots of chromosomal rearrangements. Comparable intraspecific differences in the patterns of repeat clusters were reported previously for the A chromosomes of Ae.
speltoides [13]. The localisation of Arabidopsis-type telomeric repeats is identical on the A- and B-chromosomes of all populations analysed (Figure S4).

What mechanism could account for the accumulation of organellar DNA on the Bs of Ae. speltoides? The first possibility is that insertion into B chromosome DNA has fewer deleterious genetic consequences than their counterparts on As. Insertions into A chromosomes may disrupt gene function with lethal consequences. In contrast, Bs which are not required for growth and development can tolerate more mutations. The second possibility is that the nuclear integration of organellar sequences may be dependent on the formation of double strand breaks and if Bs are particularly prone to double strand breaks, this could facilitate the preferred integration of promiscuous DNA in Bs.

Plastid DNA fragments are very numerous in some tissues such as the developing pollen gametophyte [23] or after stress [24]. Hence, uncontrolled insertion would be expected to result in the accumulation of plastid- and, by analogy, mitochondria-derived sequences. Alternatively, the mechanisms that prevent nuclear genome expansion may be impaired on the Bs. Transfer of organellar DNA to the nucleus is very frequent [25], but much of the promiscuous DNA also is rapidly lost again within one generation [26]. If this elimination mechanism (e.g. illegitimate recombination) is impaired in Bs, the high turnover rates that prevent such sequences from accumulating on the A chromosomes would be absent. Thus, the dynamic equilibrium between frequent integration and rapid elimination of organellar DNA could be impaired for B chromosomes. Alternatively, a B-specific amplification process increased the copy number of integrated organellar DNA.

The observed partial overlapping of plastid and mitochondria DNA-specific hybridisation patterns suggests that both types of promiscuous DNA are chromosomally inserted under similar DNA-specific hybridisation patterns to suggest that both types of organellar DNA. Amplification process increased the copy number of integrated frequent integration and rapid elimination of organellar DNA. Some would be absent. Thus, the dynamic equilibrium between recombination is impaired in Bs, the high turnover rates that prevent such sequences from accumulating on the A chromosomes would be absent. Thus, the dynamic equilibrium between frequent integration and rapid elimination of organellar DNA could be impaired for B chromosomes. Alternatively, a B-specific amplification process increased the copy number of integrated organellar DNA.

The observed partial overlapping of plastid and mitochondria DNA-specific hybridisation patterns suggests that both types of promiscuous DNA are chromosomally inserted under similar constraints in Ae. speltoides Bs. Future analyses of other B-bearing species such as maize will be needed to address the question whether organelle-to-nucleus DNA transfer is an important mechanism that drives the evolution of B chromosomes [27].

Supporting Information

Figure S1 FISH of isolated Ae. speltoides nuclei labelled with SS rDNA. (A) Nucleus of a plant without Bs and (B) with Bs (arrowed). (B) The large 5S rDNA signals are of A chromosome origin, while the arrowed minor signals are B chromosome derived. Scale bar equals 10 μm. (TIF)

Figure S2 Localisation of mitochondrial- and plastid- derived sequences on Ae. speltoides metaphase chromosomes of a plant without Bs from the Ramat Hanadiv population. Scale bar equals 10 μm. (TIF)

Figure S3 Localisation of mitochondria (in red)- and plastid (in green) derived sequences on Ae. speltoides interphase nuclei. (A) Nucleus of a plant with 2Bs from Katizir. (B) Nucleus of a plant with 3Bs from the Technion population. Scale bar equals 10 μm. (TIF)

Figure S4 Localisation of Spelt-1 tandem repeat (in green) and Arabidopsis-type telomeric repeat (in red) sequences on Ae. speltoides metaphase chromosomes. The Bs are marked with arrows. Scale bar equals 10 μm. (TIF)

Table S1 Genome size determination of Ae. speltoides plants with and without Bs. Flow cytometry was used to determine the genome size of nuclei isolated from leaf tissue. (DOCX)

Acknowledgments

We are grateful to Katrin Kumke and Joachim Bruder for technical support.

Author Contributions

Conceived and designed the experiments: EB AH. Performed the experiments: AR JF AM VS. Analyzed the data: AR JF AH. Contributed reagents/materials/analysis tools: AS OR. Wrote the paper: AR EB AH.

References

1. Jones N, Houben A (2003) B chromosomes in plants: escapes from the A chromosome genome? Trends Plant Sci 8: 417–423.
2. Houben A, Banaei-Moghaddam AM, Klemme S (2013) Biology and Evolution of B Chromosomes. In: Greilhuber J, Delzeel J, Wendel JF, editors. Plant Genome Diversity Volume 2: Springer Vienna. pp. 149–165.
3. Jones RN, Rees H (1982) B-Chromosomes. New York: Academic Press. viii + 266 p.
4. Martin MM, Klemme S, Banaei-Moghaddam AM, Blattner FR, Macar J, et al. (2012) Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proceedings of the National Academy of Sciences of the United States of America 109: 13343–13346.
5. Klemme S, Banaei-Moghaddam AM, Macar J, Wicker T, Novák P, et al. (2013) High-copy sequences reveal distinct evolution of the rye B-chromosome. New Phytologist 199: 550–558.
6. Banaei-Moghaddam AM, Meier K, Karimi-Ashtiyani R, Houben A (2013) Formation and expression of pseudogenes on the B chromosome of rye. Plant Cell (In press).
7. Van Slageren MW (1994) Wild Wheats: a monograph of Aegilops L. and Amblyopyrum [Jaub. et Spach] Ehr. (Poaceae). Wageningen: Wageningen Agricultural University and ICARDA, Aleppo, Syria. 514 p.
8. Sinchen G, Zurchi V, Hiltl J (1971) Supernumerary chromosomes in second outbreeding species of wheat group. Chromosoma 33: 63–69.
9. Mendelson D, Zohary D (1972) Behavior and transmission of supernumerary chromosomes in Aegilops speltoides. Heredity 29: 329–339.
10. Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proceedings of the National Academy of Sciences of the United States of America 101: 14018–14023.
11. Belyayev A, Raskina O (2013) Chromosome evolution in marginal populations of Aegilops speltoides: causes and consequences. Annals of Botany 111: 531–538.
12. Friebe B, Jiang J, Gill R (1995) Detection of 5S rDNA and other repeated DNA on supernumerary B-chromosomes of Triticum species (Poaceae). Plant Systematics and Evolution 196: 131–139.
13. Raskina O, Brodsky I, Belyayev A (2011) Tandem repeats on an eukaryotical scale: outcomes from the genome of Aegilops speltoides. Chromosome Research 19: 607–623.
14. Hvidt E, Brodsky I, Kalendar R, Raskina O, Belyayev A (2012) Diversity of long terminal repeat retrotransposon genome distribution in natural populations of the wild diploid wheat Aegilops speltoides. Genetics 190: 263–274.
15. Doležel J, Greilhuber J, Lucaerti S, Meister A, Lysek MA, et al. (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany 82: 17–26.
16. Ma L, Vu GTH, Schubert V, Watanabe K, Stein N, et al. (2010) Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Research 18: 841–850.
17. Fuku K, Kamisugi Y, Sakai F (1994) Physical mapping of 35S rDNA loci by direct-cloned biotinylated probes in barley chromosomes. Genome 37: 105–111.
18. Salina EA, Pestsova EG, Adonina IG, Vershinin AV (1998) Identification of a new family of tandem repeats in Triticum genomes. Euphytica 100: 231–237.
19. Barmziger H (1962) Supernumerary chromosomes in diploid and tetraploid forms of crested wheatgrass. Canadian Journal of Botany 40: 549–561.
20. Munzinger A (1948) Accessory chromosomes in Poa alpina. Heredity 2: 49–61.
21. Ohla S (1995) Distinct numerical variation of B-chromosomes among different tissues in Aegilops nuda His. Japanese Journal of Genetics 70: 93–101.

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e90214
22. Marques A, Banaei-Moghaddam AM, Klemme S, Blattner FR, Niwa K, et al. (2013) B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Annals of Botany 112: 527–534.
23. Sheppard AE, Ayliffe MA, Blatch L, Day A, Delaney SK, et al. (2008) Transfer of plastid DNA to the nucleus is elevated during male gametogenesis in tobacco. Plant Physiology 146: 328–336.
24. Wang D, Lloyd AH, Timmis JN (2012) Environmental stress increases the entry of cytoplasmic organellar DNA into the nucleus in plants. Proc Natl Acad Sci U S A 109: 2444–2448.
25. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: Organellar genomes forge eukaryotic chromosomes. Nature Reviews Genetics 5: 123–135.
26. Sheppard AE, Timmis JN (2009) Instability of plastid DNA in the nuclear genome. PLoS Genet 5: e1000323.
27. Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN (2013) Evolution and biology of supernumerary B chromosomes. Cellular and Molecular Life Sciences: 1–12.