Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration

Supporting Online Material: Text

S1. Radiative Forcing Function

The radiative forcing function F_{IPCC} is given by

$$F_{\text{IPCC}}(c) = 3.35(g(c) - g(c_0)), \quad (S1)$$

where c is the atmospheric CO$_2$ concentration in ppmv and F_{IPCC} has units W m$^{-2}$ [10]. The CMIP5 simulations assume $p_0 = 285$ ppmv. The function $g(c)$ is given by

$$g(c) = \log(1 + 1.2c + 0.005c^2 + 1.4 \times 10^{-6}c^3) \quad (S2)$$

As result, the change in radiative forcing due to the 4× increase is

$$F_{\text{IPCC}}(c_{4\times}) = 3.35(g(4 \times 285) - g(285)) = 8.5197 \text{ W m}^{-2}. \quad (S3)$$
Supporting Online Material: Tables

Table S1. Estimates for the climate sensitivity parameter (λ), adjusted radiative forcing ($F_{4}\times$), and equilibrium temperature change ($T_{4}\times$). For each of these parameters, the leftmost column is the estimate, Err is the standard error in the estimate, and the two right columns are the range of the 95% confidence interval for the parameter. The rightmost column presents best fits to the effective ocean vertical diffusivity (κ_v).

Model	λ (W m$^{-2}$ K$^{-1}$)	Err	95% CI	$F_{4}\times$ (W m$^{-2}$)	Err	95% CI	$T_{4}\times$ (K)	95% CI	$10^{4} \times \kappa_v$ (m$^{-2}$ s$^{-1}$)			
BCC-CSM1.1	1.146	0.027	1.093	1.198	6.66	0.11	6.43	6.88	5.81	5.74	5.89	0.355
BCC-CSM1.1(m)	1.225	0.041	1.144	1.306	7.23	0.19	6.86	7.60	5.90	5.80	6.01	0.295
CanESM2	1.029	0.025	0.980	1.079	7.63	0.13	7.37	7.90	7.41	7.31	7.53	0.338
CSIRO-Mk3.6.0	0.631	0.037	0.558	0.703	5.16	0.17	4.82	5.50	8.18	7.80	8.66	0.444
FGOALS-g2	0.729	0.018	0.694	0.764	5.37	0.09	5.19	5.55	7.36	7.24	7.49	0.430
FGOALS-s2	0.904	0.042	0.822	0.987	7.54	0.22	7.11	7.97	8.34	8.06	8.66	0.590
GFDL-CM3	0.756	0.027	0.703	0.808	5.99	0.13	5.73	6.26	7.93	7.73	8.17	0.417
GFDL-ESM2G	1.004	0.039	0.927	1.081	5.27	0.15	4.97	5.56	5.25	5.14	5.38	0.591
GFDL-ESM2M	1.063	0.033	0.998	1.127	5.70	0.13	5.45	5.95	5.36	5.27	5.46	0.689
INM-CM4	1.470	0.045	1.380	1.560	6.06	0.13	5.80	6.32	4.12	4.05	4.20	0.713
IPSL-CM5A-LR	0.785	0.018	0.750	0.819	6.37	0.10	6.18	6.57	8.12	8.01	8.25	0.464
IPSL-CM5A-MR	0.810	0.023	0.765	0.854	6.64	0.12	6.41	6.88	8.21	8.04	8.39	0.418
IPSL-CM5B-LR	1.040	0.051	0.939	1.142	5.40	0.20	5.02	5.79	5.19	5.06	5.36	0.332
MIROC5	1.546	0.050	1.447	1.646	8.38	0.20	7.99	8.77	5.42	5.32	5.53	0.692
MIROC-ESM	0.917	0.025	0.867	0.967	8.55	0.15	8.26	8.85	9.33	9.14	9.53	0.571
MPI-ESM-LR	1.127	0.035	1.057	1.197	8.20	0.19	7.83	8.57	7.28	7.15	7.42	0.395
MPI-ESM-MR	1.184	0.037	1.111	1.257	8.19	0.19	7.82	8.56	6.92	6.80	7.05	0.382
MPI-ESM-P	1.242	0.038	1.167	1.318	8.59	0.20	8.20	8.97	6.91	6.80	7.04	0.391
MRI-CGCM3	1.263	0.034	1.195	1.331	6.57	0.14	6.30	6.83	5.20	5.12	5.28	0.362
NorESM1-M	1.097	0.041	1.016	1.178	6.31	0.15	6.01	6.61	5.75	5.60	5.92	0.747
Median	**1.051**	**0.036**	**0.989**	**1.134**	**6.60**	**0.15**	**6.35**	**6.85**	**6.92**	**6.80**	**7.04**	**0.424**
Minimum	**0.631**	**0.018**	**0.558**	**0.703**	**5.16**	**0.09**	**4.82**	**5.50**	**4.12**	**4.05**	**4.20**	**0.295**
Maximum	**1.546**	**0.051**	**1.447**	**1.646**	**8.59**	**0.22**	**8.26**	**8.97**	**9.33**	**9.14**	**9.53**	**0.747**
Mean	**1.048**	**0.034**	**0.981**	**1.116**	**6.79**	**0.15**	**6.49**	**7.09**	**6.70**	**6.56**	**6.86**	**0.481**
Standard deviation	**0.241**	**0.010**	**0.230**	**0.254**	**1.17**	**0.04**	**1.14**	**1.21**	**1.41**	**1.37**	**1.47**	**0.143**
Table S2. Cumulative amount of climate change realized at 10 years, at 100 years, and at equilibrium (100% of temperature change). These data are plotted in Figure 3.

Model	% of Equilibrium Temperature Change	Amount of Temperature Change (K)			
	0 to 10 yr	0 to 100 yr			
		0 to 10 yr	0 to 100 yr	Total	
BCC-CSM1.1	54.7	79.2	3.18	4.60	5.81
BCC-CSM1.1(m)	55.7	86.0	3.29	5.07	5.90
CanESM2	54.3	77.4	4.03	5.74	7.41
CSIRO-Mk3.6.0	37.8	60.4	3.09	4.94	8.18
FGOALS-g2	43.4	67.3	3.20	4.95	7.36
FGOALS-s2	51.8	67.3	4.32	5.61	8.34
GFDL-CM3	41.2	67.6	3.27	5.36	7.93
GFDL-ESM2G	56.5	69.1	2.96	3.62	5.25
GFDL-ESM2M	55.4	70.0	2.97	3.75	5.36
INM-CM4	59.4	73.0	2.45	3.01	4.12
IPSL-CM5A-LR	44.0	69.7	3.58	5.67	8.12
IPSL-CM5A-MR	44.8	69.8	3.68	5.73	8.21
IPSL-CM5B-LR	53.1	79.4	2.76	4.12	5.19
MIROC5	56.7	75.7	3.07	4.10	5.42
MIROC-ESM	45.5	65.4	4.25	6.10	9.33
MPI-ESM-LR	53.3	78.4	3.88	5.70	7.28
MPI-ESM-MR	55.6	77.9	3.84	5.39	6.92
MPI-ESM-P	60.8	79.2	4.21	5.48	6.91
MRI-CGCM3	55.5	80.6	2.89	4.19	5.20
NorESM1-M	51.7	69.7	2.97	4.01	5.75
Median	**53.8**	**71.5**	**3.23**	**5.01**	**6.92**
Minimum	**37.8**	**60.4**	**2.45**	**3.01**	**4.12**
Maximum	**60.8**	**86.0**	**4.32**	**6.10**	**9.33**
Mean	**51.6**	**73.2**	**3.39**	**4.86**	**6.70**
Standard deviation	6.4	6.5	0.54	0.87	1.41
Table S3. Fit parameters for single exponential curves \(I-exp\) described by equation (4) in the main text.

Model	\(\tau_0\) (yr)
BCC-CSM1.1	38.8
BCC-CSM1.1(m)	30.7
CanESM2	42.7
CSIRO-Mk3.6.0	83.0
FGOALS-g2	92.6
FGOALS-s2	69.3
GFDL-CM3	67.6
GFDL-ESM2G	85.4
GFDL-ESM2M	87.5
INM-CM4	44.4
IPSL-CM5A-LR	89.2
IPSL-CM5A-MR	61.1
IPSL-CM5B-LR	43.0
MIROC5	40.9
MIROC-ESM	66.1
MPI-ESM-LR	42.6
MPI-ESM-MR	39.0
MPI-ESM-P	37.2
MRI-CGCM3	33.6
NorESM1-M	63.3

Median 52.8
Minimum 30.7
Maximum 92.6

Mean 57.9
Standard deviation 21.0
Table S4. Fit parameters for two-exponential curves (2-exp) described by equation (5) in the main text.

Model	θ_0	θ_1	τ_0 (yr)	τ_1 (yr)
BCC-CSM1.1	0.566	0.434	3.15	130.1
BCC-CSM1.1(m)	0.587	0.413	3.00	109.2
CanESM2	0.577	0.423	3.52	160.8
CSIRO-Mk3.6.0	0.386	0.614	3.38	191.9
FGOALS-g2	0.482	0.518	4.54	245.9
FGOALS-s2	0.525	0.475	3.53	287.6
GFDL-CM3	0.446	0.554	3.71	174.0
GFDL-ESM2G	0.560	0.440	2.39	291.9
GFDL-ESM2M	0.542	0.458	2.85	272.2
INM-CM4	0.668	0.332	3.50	462.9
IPSL-CM5A-LR	0.569	0.431	7.38	363.0
IPSL-CM5A-MR	0.529	0.471	5.36	237.4
IPSL-CM5B-LR	0.567	0.433	3.05	149.7
MIROC5	0.631	0.369	2.59	232.1
MIROC-ESM	0.541	0.459	4.92	290.1
MPI-ESM-LR	0.571	0.429	3.05	153.8
MPI-ESM-MR	0.590	0.410	3.07	151.2
MPI-ESM-P	0.588	0.412	2.66	141.8
MRI-CGCM3	0.602	0.398	3.67	132.1
NorESM1-M	0.499	0.501	3.12	201.6

Median

θ_0	θ_1	τ_0 (yr)	τ_1 (yr)
0.566	0.434	3.27	196.8

Minimum

θ_0	θ_1	τ_0 (yr)	τ_1 (yr)
0.386	0.332	2.39	109.2

Maximum

θ_0	θ_1	τ_0 (yr)	τ_1 (yr)
0.668	0.614	7.38	462.9

Mean

θ_0	θ_1	τ_0 (yr)	τ_1 (yr)
0.551	0.449	3.62	219.0

Standard deviation

θ_0	θ_1	τ_0 (yr)	τ_1 (yr)
0.063	0.063	1.16	89.7
Table S5. Fit parameters for three-exponential curves (3-exp) described by equation (6) in the main text.

Model	\(\theta_0 \)	\(\theta_1 \)	\(\theta_2 \)	\(\tau_0 \) (yr)	\(\tau_1 \) (yr)	\(\tau_2 \) (yr)
BCC-CSM1.1	0.235	0.352	0.412	0.691	6.19	140.7
BCC-CSM1.1(m)	0.303	0.334	0.363	0.596	8.63	130.2
CanESM2	0.458	0.245	0.298	2.130	26.98	322.3
CSIRO-Mk3.6.0	0.197	0.212	0.591	0.801	8.83	208.0
FGOALS-g2	0.333	0.227	0.440	1.611	27.56	322.2
FGOALS-s2	0.079	0.453	0.468	0.194	4.71	297.7
GFDL-CM3	0.181	0.284	0.535	0.745	7.22	185.7
GFDL-ESM2G	0.130	0.432	0.438	0.295	3.17	294.6
GFDL-ESM2M	0.160	0.385	0.455	0.372	4.13	275.6
INM-CM4	0.197	0.481	0.322	0.322	5.31	543.1
IPSL-CM5A-LR	0.216	0.394	0.390	0.000	16.23	461.3
IPSL-CM5A-MR	0.185	0.379	0.436	0.442	10.27	294.5
IPSL-CM5B-LR	0.292	0.316	0.393	0.482	8.81	176.3
MIROC5	0.259	0.384	0.356	0.639	4.71	253.7
MIROC-ESM	0.204	0.364	0.432	0.690	9.34	348.8
MPI-ESM-LR	0.278	0.315	0.407	0.904	6.70	169.0
MPI-ESM-MR	0.230	0.380	0.390	0.406	5.83	165.0
MPI-ESM-P	0.302	0.317	0.380	0.577	7.07	162.1
MRI-CGCM3	0.305	0.356	0.339	0.679	10.55	170.0
NorESM1-M	0.223	0.297	0.480	0.515	6.88	221.6

Median	0.226	0.354	0.409	0.586	7.15	237.7
Minimum	0.079	0.212	0.298	0.000	3.17	130.2
Maximum	0.458	0.481	0.591	2.130	27.56	543.1

| Mean | 0.238 | 0.345 | 0.416 | 0.655 | 9.46 | 257.1 |
| Standard deviation | 0.083 | 0.071 | 0.070 | 0.476 | 6.74 | 108.3 |
Table S6. Ranking of equations by goodness of fit to the abrupt4xCO2 simulations according to the corrected Akaike information criterion (AICc). Labels 1-exp, 2-exp, and 3-exp refer to equations (4), (5), and (6), respectively, in the main text. Label 1-D refers to the model described by equations (8), (9), and (10). By definition, ΔAICc for the best-fit equation is zero.

Model	Best-fit Equation	2nd-best fit Equation	ΔAICc	3rd-best fit Equation	ΔAICc	4th-best fit Equation	ΔAICc
BCC-CSM1.1	3-exp	2-exp	82.3	1-D	115	1-exp	738.4
BCC-CSM1.1(m)	3-exp	1-D	7.3	2-exp	77.52	1-exp	587.2
CanESM2	3-exp	1-D	82.3	2-exp	119.02	1-exp	729.6
CSIRO-Mk3.6.0	3-exp	2-exp	48.9	1-D	103	1-exp	616.5
FGOALS-g2	3-exp	1-D	239.0	2-exp	308.00	1-exp	1331.4
FGOALS-s2	3-exp	2-exp	15.3	1-D	287	1-exp	679.5
GFDL-CM3	3-exp	2-exp	60.9	1-D	103	1-exp	709.4
GFDL-ESM2G	3-exp	2-exp	9.6	1-D	415	1-exp	1210.7
GFDL-ESM2M	3-exp	2-exp	30.8	1-D	456	1-exp	1286.1
INM-CM4	3-exp	2-exp	72.7	1-D	372	1-exp	740.0
IPSL-CM5A-LR	3-exp	1-D	213.9	2-exp	226.12	1-exp	1198.7
IPSL-CM5A-MR	3-exp	2-exp	137.1	1-D	181	1-exp	707.4
IPSL-CM5B-LR	3-exp	1-D	38.1	2-exp	82.74	1-exp	627.2
MIROC5	3-exp	2-exp	13.4	1-D	148	1-exp	553.9
MIROC-ESM	3-exp	2-exp	190.0	2-exp	390	1-exp	872.0
MPI-ESM-LR	3-exp	2-exp	50.9	1-D	107	1-exp	660.4
MPI-ESM-MR	3-exp	2-exp	71.4	2-exp	96	1-exp	661.8
MPI-ESM-P	3-exp	2-exp	63.4	1-D	68	1-exp	617.1
MRI-CGCM3	3-exp	1-D	15.8	2-exp	128.37	1-exp	646.6
NorESM1-M	3-exp	2-exp	77.9	1-D	209	1-exp	706.0
Table S7. Ranking of equations by goodness of fit to the 1pctCO2 simulations according to the corrected Akaike information criterion (AICc). Labels 1-exp, 2-exp, and 3-exp refer to equations (4), (5), and (6), respectively, in the main text. Label 1-D refers to the model described by equations (8), (9), and (10). By definition, ΔAICc for the best-fit equation is zero. Models FGOALS-g2, GFDL-ESM2G, and GFDL-ESM2M are not included on this table because the CO2 concentrations in their submitted simulations apparently did not continue rising at 1% per year.

Model	Best-fit Equation	2nd-best fit Equation	3rd-best fit Equation	4th-best fit Equation
BCC-CSM1.1	1-D	3-exp 22.50	2-exp 29.50	1-exp 309.77
BCC-CSM1.1(m)	1-D	3-exp 14.10	2-exp 17.12	1-exp 117.88
CanESM2	3-exp	2-exp 7.38	1-D 13.67	1-exp 294.73
CSIRO-Mk3.6.0	2-exp	1-D 10.07	3-exp 12.08	1-exp 235.05
FGOALS-s2	2-exp	3-exp 4.00	1-D 77.46	1-exp 331.44
GFDL-CM3	3-exp	1-D 2.22	2-exp 4.29	1-exp 379.14
INM-CM4	3-exp	2-exp 5.07	1-D 51.90	1-exp 275.47
IPSL-CM5A-LR	2-exp	1-D 95.64	3-exp 622.55	1-exp 579.48
IPSL-CM5A-MR	1-D	2-exp 38.54	3-exp 55.21	1-exp 368.33
IPSL-CM5B-LR	2-exp	1-D 2.53	3-exp 7.92	1-exp 243.50
MIROC5	1-D	1-exp 19.85	3-exp 41.06	2-exp 35.63
MIROC-ESM	1-D	2-exp 73.33	3-exp 8.75	1-exp 206.47
MPI-ESM-LR	1-D	2-exp 8.75	3-exp 14.92	1-exp 192.12
MPI-ESM-MR	2-exp	3-exp 9.82	1-D 10.43	1-exp 240.14
MPI-ESM-P	2-exp	1-D 4.70	3-exp 9.61	1-exp 133.22
MRI-CGCM3	1-D	3-exp 11.56	2-exp 23.50	1-exp 177.00
NorESM1-M	1-D	2-exp 44.50	3-exp 54.33	1-exp 349.76
Table S8. Root-mean-square error (K) of prediction in annual mean temperature values in the 1pctCO2 simulations based on fits to the abrupt4xCO2 simulations. Labels 1-exp, 2-exp, and 3-exp refer to equations (4), (5), and (6), respectively, in the main text. Models FGOALS-g2, GFDL-ESM2G, and GFDL-ESM2M are not included on this table because the CO₂ concentrations in their submitted simulations apparently did not continue rising at 1% per year. Mean RMS error for the 3-exp fit with IPSL-CM5A-LR removed is 0.16 K.

Model	1-exp	2-exp	3-exp	1-D
BCC-CSM1.1	0.27	0.10	0.10	0.09
BCC-CSM1.1(m)	0.49	0.34	0.34	0.32
CanESM2	0.45	0.16	0.16	0.17
CSIRO-Mk3.6.0	0.39	0.17	0.17	0.18
FGOALS-s2	0.72	0.22	0.22	0.29
GFDL-CM3	0.51	0.13	0.13	0.13
INM-CM4	0.30	0.11	0.11	0.13
IPSL-CM5A-LR	0.87	0.11	0.11	0.16
IPSL-CM5A-MR	0.39	0.12	0.13	0.11
IPSL-CM5B-LR	0.23	0.10	0.11	0.11
MIROC5	0.21	0.22	0.22	0.20
MIROC-ESM	0.40	0.25	0.26	0.19
MPI-ESM-LR	0.29	0.15	0.16	0.15
MPI-ESM-MR	0.28	0.13	0.13	0.13
MPI-ESM-P	0.26	0.16	0.17	0.17
MRI-CGCM3	0.22	0.13	0.12	0.12
NorESM1-M	0.31	0.10	0.11	0.09
Median	0.31	0.13	0.16	0.15
Minimum	0.21	0.10	0.10	0.09
Maximum	0.87	0.34	1.00	0.32
Mean	0.39	0.16	0.21	0.16
Standard deviation	0.18	0.06	0.21	0.06
Modeling Center (or Group)	Institute ID	Model Name		
--	--------------	--		
Commonwealth Scientific and Industrial Research, Organization (CSIRO) and Bureau of Meteorology, (BOM), Australia	CSIRO-BOM	ACCESS1.0, ACCESS1.3		
Beijing Climate Center, China Meteorological, Administration	BCC	BCC-CSM1.1, BCC-CSM1.1(m)		
Instituto Nacional de Pesquisas Espaciais (National Institute for Space Research)	INPE	BESM OA 2.3		
College of Global Change and Earth System, Science, Beijing Normal University	GCESS	BNU-ESM		
Canadian Centre for Climate Modeling and Analysis	CCCMA	CanESM2, CanCM4, CanAM4		
University of Miami – RSMAS	RSMAS	RSMAS, CCSM4(RSMAS)		
National Center for Atmospheric Research	NCAR	CCSM4		
Community Earth System Model Contributors	NSF-DOE-NCAR	CESM1(BGC), CESM1(CAM5), CESM1(CAM5.1,FV2), CESM1(FASTCHEM), CESM1(WACCM)		
Center for Ocean-Land-Atmosphere Studies and National Centers for Environmental Prediction	COLA and NCEP	CFSv2-2011		
Centro Euro-Mediterraneo per I Cambiamenti, Climatici	CMCC	CMCC-CESM, CMCC-CM, CMCC-CMS		
Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation, Avancée en Calcul Scientifique	CNRM-CERFACS	CNRM-CM5		
Organization	Code	Model Name		
--	------------	--		
Commonwealth Scientific and Industrial Research, Organization in collaboration with Queensland, Climate Change Centre of Excellence	CSIRO-QCCCE	CSIRO-Mk3.6.0		
EC-EARTH consortium	EC-EARTH	EC-EARTH		
LASG, Institute of Atmospheric Physics, Chinese, Academy of Sciences and CESS, Tsinghua University	LASG-CESS	FGOALS-g2		
LASG, Institute of Atmospheric Physics, Chinese, Academy of Sciences	LASG-IAP	FGOALS-g1, FGOALS-s2		
The First Institute of Oceanography, SOA, China	FIO	FIO-ESM		
NASA Global Modeling and Assimilation Office	NASA GMAO	GEOS-5		
NOAA Geophysical Fluid Dynamics Laboratory	NOAA GFDL	GFDL-CM2.1, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GFDL-HIRAM-C180, GFDL-HIRAM-C360		
NASA Goddard Institute for Space Studies	NASA GISS	GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-CC, GISS-E2CS-H, GISS-E2CS-R		
National Institute of Meteorological Research/Korea Meteorological Administration	NIMR/KMA	HadGEM2-AO		
Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais)	MOHC (additional realizations by INPE)	HadCM3, HadCM3Q, HadGEM2-CC, HadGEM2-ES, HadGEM2-A		
Natural and Environmental Research Council/Met Office Hadley Centre	undeclared	HiGEM1.2		
Institute for Numerical Mathematics	INM	INM-CM4		
Institute	Model	Models		
--	-------	--		
Institut Pierre-Simon Laplace	IPSL	IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR		
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies	MIROC	MIROC-ESM, MIROC-ESM-CHEM		
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology	MIROC	MIROC4h, MIROC4m, MIROC5		
Max Planck Institute for Meteorology	MPI-M	MPI-ESM-HR, MPI-ESM-MR, MPI-ESM-LR, MPI-ESM-P		
Meteorological Research Institute	MRI	MRI-AGCM3.2H, MRI-AGCM3.2S, MRI-CGCM3, MRI-ESM1		
Nonhydrostatic Icosahedral Atmospheric Model Group	NICAM	NICAM.09		
Norwegian Climate Centre	NCC	NorESM1-M, NorESM1-ME		
Supporting Online Material: Figures

Figure S1. Linear fits to change in top-of-atmosphere energy balance as a function of change in global mean air temperatures near Earth’s surface. The intercept with the vertical axis is the estimate of the adjusted radiative forcing from a quadrupling of atmospheric CO₂ content (\(F_{4\times}\)), the intercept with the horizontal axis (\(\Delta T_{4\times}\)) is the estimate of equilibrium warming resulting from a this change in atmospheric CO₂ content, and the slope of the line is the estimate of the climate feedback parameter (\(\lambda\)).
Figure S2. Temperature results for CMIP5 models that have performed the *abrupt4xCO2* simulations (*black dots*). Also shown are 1-exp (*purple*), 2-exp (*brown*), 3-exp (*blue*), simple log (*green*), and 1-D (*θκ, red*) model fits to this data.
Figure S3. Temperature results for CMIP5 models that have performed the 1pctCO2 simulations (black dots). Also shown are predictions made by the 2-exp (brown), 3-exp (blue), simple log (green), and 1-D (θκ, red) models fit to this data.