Visual prognosis based staging for retinal capillary hemangioma

Gaurav Garg, Paul T. Finger

New York Eye Cancer Center, 115, East 61st Street, New York, NY 10065, USA
pfinger@eyecancer.com

Purpose. To analyze the literature to determine the visual prognosis of eyes affected by retinal angiomatosis of Von-Hippel Lindau disease (VHL).

Study Type. Retrospective literature analysis.

Methods. Medline and PubMed searches were performed for publications on retinal capillary hemangioma (CRH). Data was collected on patient age of presentation, CRH laterality, location, treatment, and progression. Statistical analyses using Pearson Chi-Square test, likelihood ratio, and Fischer’s exact tests were performed for the effect of these characteristics on visual acuity outcomes. Results. Vision outcomes need to be based on current technology to be clinically relevant. Therefore, only significant publications from 1960 to 2019 were included. Of these, 5 clinical case series included, a total of 427 cases. Of these 69.4 % (58–94.1 %) cases were unilateral CRH, 30.6 % (5.9–42 %) were bilateral, 18.1 % (10.9–23.5 %) were juxtapapillary in location. Major factors affecting visual acuity were age at onset (p = 0.03), location (p < 0.0001) and multifocality (p = 0.0005). Of interest, CRH-related vision loss was independent of the presence of VHL disease (p = 0.157).

Conclusion. In this study, age at onset, location, multifocality of CRH were the most important predictors of vision loss, which were used to create a vision-outcome based classification system. This information can be used to counsel patients and for informed consent.

Keywords: visual acuity; capillary; retina; vision; prognosis; VHL

Conflict of interests: there is no conflict of interests.

Financial disclosure: No author has a financial or property interest in any material or method mentioned.

For citation: Garg G., Finger P.T. Visual prognosis based staging for retinal capillary hemangioma. Russian ophthalmological journal. 2020; 13 (2): 12–7 (In Russian).
https://doi.org/10.21516/2072-0076-2020-13-2-12-17
Возникновение и мультифокальность. Эти факторы и были использованы для создания классификации, основанной на визуальном исходе. Данная информация может быть использована при консультировании пациентов и оформлении информированного согласия.

Ключевые слова: острота зрения; капилляр; сетчатка; зрение; прогноз; болезнь Гиппеля — Линдау

Конфликт интересов: отсутствует.

Прозрачность финансовой деятельности: никто из авторов не имеет финансовой заинтересованности в представленных материалах или методах.

Для цитирования: Гарг Г., Фингер П.Т. Классификация капиллярной гемангиомы сетчатки на основе визуального прогноза. Российский офтальмологический журнал. 2020; 13 (2): 12–7.

https://doi.org/10.21516/2072-0076-2020-13-2-12-17

Von Hippel — Lindau (VHL) disease has been found to be a progressive, familial, autosomal dominant, multi-systemic phacomatosis with retinal capillary hemangioblastoma (CRH) as the most common manifestation [1]. CRH are benign, well-circumscribed, vascular and progressive neoplasm arising from inner, mid-peripheral retina [2, 3]. These tumors are sporadic or found in association with systemic manifestations. Sporadic CRH are indistinguishable from those associated with VHL [4]. However, CRH associated with VHL tends to occur at an earlier age and is more likely to be multifocal [5]. They can remain stable without leakage, regress spontaneously, grow, induce high-flow state retinal angiopathy with exudation of vascular components [3, 6, 7]. CRH have been found to be unilateral or bilateral; solitary or multifocal; stable or progressive with new lesions appearing over time. While 46% of solitary CRH without systemic disease have been associated with VHL, 100% of multifocal CRH patients had VHL disease [8].

Various modalities have been used to treat CRH. Treatments typically included observation, laser, cryotherapy for CRH < 5 millimeters (mm) base whereas plaque brachytherapy and vitrectomy surgery for larger CRHs and their complications. With the advancement in knowledge about VHL protein and its relationship with vascular endothelial growth factor (VEGF), current research has focused on pharmaceutical intavitreal therapy.

Close ocular surveillance and thus early CRH detection have led to earlier intervention and a better prognosis for eye and vision retention. Similarly, close VHL-related systemic surveillance has led to earlier treatment and life preservation [9]. The average life span of VHL patients is 40 to 50 years [10].

METHODS OF TREATMENT

Each institution used them as monotherapy, synergistically with others, sequentially or in combination as needed for local tumor control. In this study, we presumed the best possible care from each eye tumor specialist and thus, did not analyze the relative efficacy of each treatment.

Observation. Observation as treatment is typically used for peripheral CRH smaller than 0.5 mm or juxtapapillary CRH without any signs of progression, exudation or loss of visual function [15]. The risks of treatment are weighed against the risks of tumor-related vision loss. Observation is more preferred in juxtapapillary tumors, which are slightly more stable than extrapapillary CRH, 86% and 81% respectively [16].

Laser Photocoagulation. Laser photocoagulation is typically used for 1.5 to 4.5 mm thick CRH [16]. Success rates of 91–100% have been reported [17–19]. Dr. Finger suggests coagulation of the feeder vessels to scar, then the posterior 180 degrees are demarcated. Lastly, if the tumor vascular pattern persists, direct tumor laser can close any residual blood vessels [15]. A. Singh et al. noted peripheral CRH does better than Juxtapapillary CRH with laser treatment with a success rate of 74% [16].

Cryotherapy. Cryotherapy is used when CRH are larger than 3 mm and have significant sub-retinal fluid making laser photoagulation difficult or impossible. CRH in general, double freeze thaw cryotherapy is employed to cover the tumor as viewed by indirect ophthalmoscopy [20]. A. Singh et al. noted 74% of success rate with cryotherapy of less than 3.75 mm base CRH [16].

Radiation Therapy. Radiation therapy plaque and proton beam have been used for CRH [4]. Ocular morbidity and vision outcomes have been dependent on tumor location, the radiation dose and thus the incidence of radiation retinopathy and optic neuropathy. Siebel et al. noted that there were successful anatomic outcomes after proton beam radiation whereas there was a significant drop in vision from 20/100 to 20/125 (p = 0.071) [21]. K. Kreusel, et al. published their experience with ruthenium-106 plaque brachytherapy in 24 patients showing a slight improvement from 20/60 ± 20/60 to 20/50 ± 20/40 post-treatment [22].

Anti-Vascular Endothelial Growth Factor Therapy. Anti-VEGF treatment has been used to treat CRH with exudation [23]. In VHL, chromosome 3p25-26 is affected by germline mutations leading to inactivation of VHL protein [6, 24]. VHL protein is needed for normal retina vessels and ocular structures. In its absence or deficit, VEGF levels increase [25]. Drugs like bevacizumab, ranibizumab, and aflibercept are now commonly used for reducing VEGF produc-
In this review, the choice of CRH treatment modality depended on the size, amount of exudation, retinal detachment as well as the tumor’s proximity to optic disc and fovea. Though treatment can prevent vision loss, and 67 % of patients retain better than 20/200 vision, despite treatment 33 % become legally blind in the affected eye.

Our search revealed 5 studies that met our inclusion criteria (Table 1). Thus, we were able to study the visual acuity results of 427 treated patients. Of this 32 % had VHL and rest had spontaneous or new mutations. There was no significant patient-age difference among the studies (p = 0.929). Overall, there were 69.4 % (58–94.1 %) unilateral CRH, 30.6 % (5.9–42 %) bilateral and 18.1 % (10.9–23.5 %) juxtapapillary tumors. Tumor-related vision loss was noted at presentation in 38.6 % (n = 165/427) of patients. Censoring vision loss related to mortality; CRH-related vision loss was found in the younger age of manifestation (p = 0.03) and H. Dollfus, et al. also concluded that patients presenting with symptoms were in the younger age of manifestation (p = 0.03) and H. Dollfus, et al. noted that there was a loss of 7.6 ± 1.2 letters from baseline visual acuity from 20/40–20/500 pretreatment to 20/50–20/2000 after treatment with PDT. They are not commonly used widely due to their lack of efficacy [32].

Summary. While each center employed what they considered the “best possible treatment” for each CRH. This study examines the published results from the literature to classify risk factors for vision loss related to CRH and their treatment.

RESULTS

In this review, the choice of CRH treatment modality depended on the size, amount of exudation, retinal detachment as well as the tumor’s proximity to optic disc and fovea. Though treatment can prevent vision loss, and 67 % of patients retain better than 20/200 vision, despite treatment 33 % become legally blind in the affected eye.

Our search revealed 5 studies that met our inclusion criteria (Table 1). Thus, we were able to study the visual acuity results of 427 treated patients. Of this 32 % had VHL and rest had spontaneous or new mutations. There was no sexual predilection for CRH (p = 0.47) in that 48.2 % (n = 206) were males, 51.8 % (n = 221) females with a mean follow up of 6.8 years.

There was no significant patient-age difference among the studies (p = 0.929). Overall, there were 69.4 % (58–94.1 %) unilateral CRH, 30.6 % (5.9–42 %) bilateral and 18.1 % (10.9–23.5 %) juxtapapillary tumors. Tumor-related vision loss was noted at presentation in 38.6 % (n = 165/427) of patients. Censoring vision loss related to mortality; CRH-related vision loss was found independent of the presence of VHL disease (p = 0.157).

Age at onset. Both K.-M. Kreusel, et al. and H. Dollfus, et al. noted an average of vision worsening during follow-up (p = 0.929). Overall, there were 69.4 % (58–94.1 %) unilateral CRH, 30.6 % (5.9–42 %) bilateral and 18.1 % (10.9–23.5 %) juxtapapillary tumors. Tumor-related vision loss was noted at presentation in 38.6 % (n = 165/427) of patients. Censoring vision loss related to mortality; CRH-related vision loss was found independent of the presence of VHL disease (p = 0.157).

Age at onset. Both K.-M. Kreusel, et al. and H. Dollfus, et al. found that younger age of onset is associated with poor visual prognosis. K.-M. Kreusel, et al. noted an average of vision 20/100 in the younger age of manifestation (p = 0.03) and H. Dollfus, et al. defined 15–25 years as a critical age group [13, 33]. Webster et al. also concluded that patients presenting with symptoms were younger (p = 0.02) [11].

CRH location. According to B. Toy, et al., using ETDRS noted that there was a loss of 7.6 ± 1.2 letters from baseline visual

Table 1. Visual function associated with retinal capillary hemangioma

Parameters	A. Webster, et al. [11]	M. Niemelä, et al. [10]	C. McCabe, et al. [12]	K.-M. Kreusel, et al. [13]	B. Toy, et al. [14]	Mean
Sample size	17	36	68 (72 eyes)	57	249	85.4
Age, years	30.9	40	36	20.3	33.3	32.1
Male: Female	1:2.4	1:2.6	1:0.9	N/A	1:1	1:1.07
Bilaterally	N/A	16.7 % (6)	5.9 % (4)	42 % (24)	33 % (82/249)	30.7 %
VHL disease	N/A	30.0 % (11)	33.9 % (23 eyes)	100 % (57)	100 %	32.0 %
Mean Follow up, years	8.7	5	5.4	7.3	7.7	6.8
Vision worsening during follow-up	N/A	74.1 % (20/27 eyes)	63.0 % (36/57)	16.1 % (80/498 eyes)	49.7 %	
Juxtapapillary angioma	N/A	63.6 % (11/17)	27.5 % (72 eyes)	N/A	49.5 %	
Vision worsening at the end of follow-up	N/A	25.0 % (18/72 eyes)	25.7 % (27 eyes of 21 patients)	N/A	49.5 %	
Painful blind eye	N/A	5.6 % (2/36)	4.4 % (3/68)	5.3 % (3/57)	6.5 %	

Note. N/A — data not applicable, N/M — Data not mentioned, VHL — Von-Hippel Lindau disease, a — A. Webster, et al. [11] were based on the unilateral sporadic CRH tumor with no VHL disease, b — for mean bilateral data, C. McCabe, et al. [12] was not considered. It was studied limited to juxtapapillary tumors which typically present unilaterally, c — for mean juxtapapillary tumor, C. McCabe, et al. [12] was not considered as it was 100 % juxtapapillary tumors.

Примечание. Н/А — нет данных, Н/М — не упомянуто, ГЛ — болезнь Гиппеля — Линдау, a — A. Webster, et al. [11] описывает одноностороннюю спорадическую КГС без болезни Гиппеля — Линдау, b — при расчете средних данных по юкстапапиллярным опухолям результаты работы C. McCabe, et al. [12] не учитывались, поскольку в ней рассматривались только юкстапапиллярные опухоли, которые обычно бывают одноносторонними, c — при расчете средних данных по юкстапапиллярным опухолям результаты работы C. McCabe, et al. [12] не учитывались, поскольку в ней рассматривались только (100 %) такие опухоли.
Individuals with VHL disease having no new CRH lost 6.6 ± 1.2 letters in comparison to eyes that developed new CRH had 21.6 ± 7.8 (p = 0.08). Patients with baseline juxtapapillary tumors with the development of new peripheral CRH had a maximum drop of 49.5 ± 30.5 letters. On comparing the patients having baseline VHL disease with no progression to severe progression there was 7.4 ± 1.2 and 26.1 ± 9.0 letters drop respectively (p = 0.05). They concluded that peripheral CRH that is non-exudative, distant from posterior pole and amenable to treatment can have stable visual acuity with least impact on central vision whereas Juxtapapillary CRHs which affects the central vision and are difficult to treat.

From this analysis, patients with progression (p = 0.05) are at the highest risk of losing vision [14].

Risk Factors. According to B. Toy, et al, risk factors for anatomical CRH progression include (1) age at presentation, (2) age of onset of VHL ocular manifestation and (3) involvement of fellow eye. Whereas loss of vision is dependent on (1) anatomical progression, (2) increase in peripheral extent or a number and (3) presence of exudation, retinal detachment, and macular involvement. They also found that the presence of extraocular VHL manifestations and anatomical progression are not correlated.

They also concluded gender, BMI and smoking status have no role in the visual prognosis of CRH [14]. While McCabe et al. defined age and peripheral tumors in one or both eyes as independent risk factors for poor visual acuity at initial presentation, while CRH growth pattern was not [12].

Garg-Finger CRH Classification. In order to be useful for the CRH specialist, this study's classification was based on anatomical presentation with a secondary focus on progression and its pathological effects. This data was derived from the multicenter, published data on visual acuity outcomes published in the studies seen in Table 2.

DISCUSSION

Both A. Webster, et al. and K.-M. Kreusel, et al. suggest that the cumulative probability of a permanent visual deficit in CRH is 60% [11, 13]. K.-M. Kreusel, et al. also proved that VHL patients who are symptomatic before 20 years of age are more likely to lose vision [13]. R. Toy, et al. published the largest cohort study providing the details on ocular manifestations, vision, and factors leading to the progression of the disease. They have inferred that with early treatment CRH can remain stable but in the long term, the impact of ocular manifestations and its complications were cumulative. They described visual function, its course and its dependency on anatomical phenotype, and progression over time [14].

CRH size and number. K.-M. Kreusel, et al. reported significant difference (p < 0.0001) in size of CRH 1.1 ± 0.2 mm in visually asymptomatic and 3.8 ± 0.3 mm in symptomatic with number of angiomas 2.6 ± 0.9 and 7.2 ± 0.9 respectively (p = 0.0005) [13]. R. Toy, et al. noted a drop in visual acuity of 3.6 ± 1.3 letters in patients with CRH ≤ 2 and 11.1 ± 3.9 letters drop in patients with CRH ≥ 3 in number (p = 0.07). They also found a drop of 4.4 ± 1.2 letters in patients with CRH involving ≤ 1 quadrant and 7.7 ± 2.6 letters drop in CRH involving ≥ 1 quadrant (p = 0.021) [14].

CRH Location. CRH are more frequently located in the peripheral retina. The prevalence of juxtapapillary CRH has been found to be 11–15% among VHL patients with a higher incidence of 3.6 ± 1.3 letters in patients with CRH ≤ 2 and 11.1 ± 3.9 letters drop in patients with CRH ≥ 3 in number (p = 0.07). They also found a drop of 4.4 ± 1.2 letters in patients with CRH involving ≤ 1 quadrant and 7.7 ± 2.6 letters drop in CRH involving ≥ 1 quadrant (p = 0.021) [14].

Table 2. Visual prognosis based staging system for retinal angiomatosis

Stage	Retinal angiomatosis
I a	Peripheral CRH with age of onset > 20 years old with no progression*
I b	Peripheral CRH with either age of onset < 20 years or progression*
I c	Peripheral CRH with age of onset < 20 years and progression*
II a	Juxtapapillary CRH with age of onset > 20 years with no progression*
II b	Juxtapapillary CRH with either age of onset < 20 years or progression*
II c	Juxtapapillary CRH with age of onset < 20 years and progression*
III a	Juxtapapillary CRH and peripheral CRH with age of onset > 20 years with no progression*
III b	Juxtapapillary CRH and peripheral CRH with either age of onset < 20 years or progression*
III c	Juxtapapillary CRH and peripheral CRH with age of onset < 20 years and progression*

Note. * — progression: 1) increase in number of Peripheral CRH (> 2); 2) increase in the extent of Peripheral CRH (> 1 quadrant); 3) involvement of fellow eye; 4) presence or development of retinal detachment, exudation, vitreous hemorrhage or neovascularization.

Примечание. * — прогрессирование: 1) увеличение числа периферических КГС (> 2); 2) увеличение зоны периферической КГС (> 1 квадранта); 3) вовлечение парного глаза; 4) наличие или прогрессирование отслойки сетчатки, экссудации, витреального кровоизлияния или неоваскуляризации.
in younger patients [12, 34]. In our meta-analysis, it was higher at 18.1%. Juxtapapillary CRH were more commonly associated with VHL disease [25]. Because of their location and less clearly defined efferent and afferent feeder vessels, they are more difficult to treat leading to a poor prognosis for vision. Typically presenting early, as small tumors, they gradually enlarge over time, with vascular leakage leading to loss of vision as a result of retinal edema, epiretinal membranes, hard exudates, and retinal detachment. McCabe et al. reported a general decline in visual acuity over the follow up of ≥ 6 months from 43 eyes (61 %) having vision ≥ 20/40 to only 21 eyes (35 %) retaining vision ≥ 20/40 [12].

VHL disease Association. In this study, we found that there was no significant difference in the risk of CRH-related vision loss if suffering from spontaneous versus VHL-related tumors, similar to webster et al. [11]. Though this finding contrasts with that of M. Niemelä, et al. where vision outcomes were better in cases of patients with no VHL [10]. Our review found that VHL disease was present in 32 % of patients presenting with CRH and this was not associated with age, gender or laterality of CRH. Overall, 42 % of CRHs presented as unilateral whereas 58 % presented bilaterally [35]. Various systems have been used in the past to classify CRH are described in Table 3.

**Effects of CRH are (1) exudative (25 %) or (2) tractional (9 %). The exudation can present as either intraretinal fluid (10 %) or subretinal fluid (16 %) [3, 36]. D. Vail [37] has classified based on the development of complications (Table 4). Whereas J. Sigelman [38] has classified the CRH based on their presentation (Table 5).

Table 3. Systems used to classify retinal capillary hemangioma

Basis Основа	Classification Классификация
1 Retinal Distribution Расположение на сетчатке	Peripheral Периферическое Juxtapapillary Юкстапапиллярное
2 Morphology Морфология	Endophytic Эндофитная Sessile Сессил
3 Effects on Retina Реакция сетчатки	Exudative Экссудативная Vitreoretinal Traction Витреоретинальная тракция
4 Systemic Features Системные особенности	Without VHL Болезни ГЛ нет With VHL Болезнь ГЛ есть

Table 4. D. Vail’s Classification [37]

Stages Стадия	Complications Осложнения
I Early stage with dilatation of feeding artery and draining vein and angioma formation Ранняя стадия с расширением питательной артерии и дренирующей вены и формированием ангиомы	
II Development of hemorrhages and exudation Развитие кровоизлияний и экссудации	
III Massive exudation and retinal detachment (RD) Массивная экссудация и отслойка сетчатки	
IV Uveitis, absolute glaucoma, and loss of the eye Увеит, абсолютная глаукома и потеря глаза	

It is quite evident that both D. Vail’s and Sigelman’s classification were based on the anatomical presentation of CRH instead of its effect on the visual functions of an individual.

Screening should be mandated in VHL patients as CRH can be treated at an early stage and prevent the progression [29–41]. Present screening guidelines are based on prevalence data and initial presentation with no mention of progression and its effects [34, 42–45].

Herein, we have performed a meta-analysis for the risk factors associated with vision loss at diagnosis. Patient age at onset (p = 0.03), CRH location (p < 0.0001), and multifocality (p = 0.0005) were the strongest predictors for vision loss. Additional factors included the involvement of fellow eye, progression, and macular involvement. The current study provides an overview of visual prognosis, factors affecting and a new staging system to prognosticate visual system. This information provides medical evidence for both patients and ophthalmologists to decide on timing of treatment and likely outcomes. However, in our review, we found a lack of large studies and no multicentric prospective data collection to describe the visual prognosis in CRH and VHL patients. This paper encourages such studies on visual function and offers a vision–outcome based classification to assess its inapplicability in follow up, prognostication and treatment of retinal angiomasis (Table 2).

References/Литература

1. Maher E.R., Yates J.R., Harries R., et al. Clinical features and natural history of von Hippel – Lindau disease. Q. J. Med. 1990 Nov; 77 (283): 1151–63.
2. Retinal hemangioblastoma. A histologic, immunohistochemical, and ultrastructural evaluation. Available at: https://www.ncbi.nlm.nih.gov/pubmed/1741127
3. Webster A.R., Maher E.R., Moore A.T. Clinical characteristics of ocular angiomatisis in von Hippel-Lindau disease and correlation with germline mutation. Arch. Ophthalmol. Chic. 1999 Mar; 117 (3): 371–8. doi:10.1001/archophth.117.3.371
4. Singh A.D., Shields C.L., Shields J.A. Von Hippel – Lindau Disease. Ophthalmology. 2001 Oct. 1; 108 (10): 1907–11. doi:10.1016/s0161-6420(01)00758-8
5. Singh A.D., Nouri M., Shields C.L., Shields J.A., Smith A.F. Retinal capillary hemangioma: a comparison of sporadic cases and cases associated with von Hippel – Lindau disease. Ophthalmology. 2001 Oct. 1; 108 (10): 1097–110. doi:10.1016/s0161-6420(01)00758-8
6. Wittebol-Post D., Hes F.J., Lips C.J. The eye in von Hippel – Lindau disease. Long-term follow-up of screening and treatment: recommendations. J. Intern Med. 1998 Jun; 243 (6): 555–61. doi:10.1046/j.1365-2796.1998.00338.x
7. von Hippel – Lindau disease: case report of a patient with spontaneous regression of a retinal angioma. Available at: https://www.ncbi.nlm.nih.gov/pubmed/3554423
8. Singh A.D., Shields C.L., Shields J.A. Solitary retinal capillary hemangioma: hereditary (von Hippel-Lindau disease) or nonhereditary? Arch Ophthalmol. 2001 Feb 1; 119 (2): 232–4.
9. Melmon K.L., Rosen S.W. Lindau’s disease: Review of the literature and study of a large kindred. Am. J. Med. 1964 Apr; 36 (4): 595–617. doi:10.1016/002-
Intravitreal bevacizumab for retinal capillary hemangioblastoma: A case series and literature review.

Author contributions: Dr. Gaurav Garg received a fellowship grant from The Eye Cancer Foundation while performing this research. This research was supported by The Eye Cancer Foundation, Inc. (http://eyecancercure.com)

INFORMATION ABOUT THE AUTHORS /ИНФОРМАЦИЯ ОБ АВТОРАХ

1. Nigerian M., Leema S., Sainio M., et al. Hemangioblastomas of the retina: impact of von Hippel – Lindau disease. Invest Ophthalmol Vis Sci. 2000 Jun.; 41 (7): 1909–15.
2. Webster A.R., Maher E.R., Bird A.C., Gregory Z.J., Moore A.T. A clinical and molecular genetic analysis of solitary ocular angioma. Ophthalmology. 1999 Mar; 106 (3): 623–9. doi: 10.1016/s0161-6420(99)0127-6
3. McCabe C.M., Flynn H.W., Shields C.L., et al. Juxtafoveal capillary hemangiomas. Clinical features and visual acuity outcomes. Ophthalmology. 2000 Dec; 107 (12): 2240–8. doi: 10.1016/s0161-6420(00)00422-x
4. Kreusel K-M., Beichholtz N.E., Krause L., Neumann H.P.M., Foerster M. Retinal angiogenesis in von Hippel–Lindau disease: a longitudinal ophthalmologic study. Ophthalmology. 2006 Aug; 113 (8): 1418–24. doi: 10.1016/j.ophtha.2006.02.059
5. Toy B.C., Agrin E., Nigam D., Chew E.Y., Wong W.T. Longitudinal analysis of retinal hemangioblastomatosis and visual function in ocular von Hippel – Lindau disease. Ophthalmology. 2012 Dec.; 119 (12): 2622–30. doi: 10.1016/j.ophtha.2012.06.026
6. Maheshwari A., Newman H., Finger P.T. Ocular Von Hippel – Lindau Disease. In: Khetan V, editor. Intraocular Tumors:145–51. Available at: https://doi.org/10.978-981-15-0395-5. 10
7. Singh A.D., Nouri M., Shields C.L., Shields J.A., Perez N. Treatment of retinal capillary hemangioma. Ophthalmology. 2002 Oct.; 109 (10): 1799–806. doi: 10.1016/s0161-6420(02)177-6
8. Lane C.M., Turner G., Gregory Z.J., Bird A.C. Laser A. C. Laser treatment of retinal angiomas. Eye Lond. Engl. 1989; 3 (Pt 1): 33–8. doi: 10.1038/eye.1989.5
9. Bonnet M., Garmier G. [Treatment of retinal capillary angiomas of von Hippel’s disease]. J. Fr. Ophtalmol. 1984; 7 (8-9): 545–55.
10. Huang C., Tian Z., Lai K., et al. Long-Term therapeutic outcomes of photodynamic therapy-based or photocoagulation-based treatments on retinal capillary angiomas. Photomed. Laser Surg. 2018 Jan.; 36 (1): 10–7. doi: 10.1089/pho.2017.4298
11. Magee M.A., Kroll A.J., Lou P.L., Ryan E.A. histopathology and visual function of von Hippel – Lindau disease. Ophthalmology. 2008 Jan.; 115 (1): 181–8. doi: 10.1016/j.ophtha.2007.03.009
12. De Laey J.J., Hanssens M. Retinal angiogenesis – von Hippel – Lindau’s Disease. In: De Laey J.J., Hanssens M., eds. Vascular tumors and malformations of the ocular fundus. Available at: https://doi.org/10.1007/978-94-009-0584-9_2
13. Vail D. Angiomatosis retinae, eleven years after diathermy coagulation. Am. J. Ophthalmol. 1958 Oct.; 46 (4): 525–34. doi: 10.1016/0002-9394(58)91132-2
14. Sigelman J. Retinal diseases. Pathogenesis, laser therapy and surgery. Boston: Little, Brown and Company; 1984.
15. Active-Surveillance-Guidelines. Available at: https://www.vhl.org/wp-content/uploads/2017/07/Active-Surveillance-Guidelines.pdf
16. Ruppert M.D., Gavin M., Mitchell K.T., Peiris A.N. Ocular manifestations of von Hippel-Lindau disease. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776162/
17. Binderup M.L.M., Stendell A.S., Galanakis M., et al. Retinal hemangioblastomas: prevalence, incidence and frequency of under-diagnosing von Hippel–Lindau disease. Br. J. Ophthalmol. 2018; 102 (7): 942–7. doi: 10.1136/bjophthalmol-2017-310884
18. Lamell J.M., Salazar F.G., Hsia Y.E. von Hippel – Lindau disease affecting 43 members of a single kindred. Medicine (Baltimore). 1989 Jan; 68 (1): 1–29. doi: 10.1097/00005792-198901000-00001
19. Ridley M., Green J., Johnson G. Retinal angiogenesis: the ocular manifestations of von Hippel – Lindau disease. Can. J. Ophthalmol. 1986 Dec; 21 (7): 276–83.
20. Garcia-Arumi J., Sararols L.H., Caverlo L., Escalada F., Corocioegui B.F. Therapeutic options for papillary capillary hemangiomas. Ophthalmology. 2000 Jan.; 107 (1): 48–54. doi: 10.1016/s0161-6420(99)00018-4
21. McDonald H.R., Schatz H., Johnson R.N., et al. Vitreoretinal surgery in eyes with peripheral retinal angiomas associated with traction macular detachment. Ophthalmology. 1996 Feb.; 103 (2): 329–35. doi: 10.1016/s0161-6420(96)30506-9

Acknowledgments: Ankkit Singh Tomar, Anthony Fam

Competing Interests & Funding: Dr. Gaurav Garg received a fellowship grant from The Eye Cancer Foundation while performing this research. This research was supported by The Eye Cancer Foundation, Inc. (http://eye cancercure.com)

Author contributions: Paul T. Finger — study conception and design, drafting of manuscript; Gaurav Garg — acquisition and processing of data, statistical analysis.

Original received: 10.02.2020
Final revision: 28.02.2020
Accepted: 06.03.2020

INFORMATION ABOUT THE AUTHORS /ИНФОРМАЦИЯ ОБ АВТОРАХ

New York Eye Cancer Center, 115, East 6th Street, New York, NY 10065, USA

Paul T. Finger — Professor of Ophthalmology at the New York University School of Medicine and Director of Ocular Oncology, The New York Eye Cancer Center, New York, USA

Gaurav Garg — Fellow, Dept. of Ocular Tumor, Orbital Disease, Ophthalmic Radiation

Contact information: Paul T. Finger, pfinger@eye cancercure.com

Поступила: 10.02.2020
Переработана: 28.02.2020
Принята к печати: 06.03.2020

INFORMATION ABOUT THE AUTHORS /ИНФОРМАЦИЯ ОБ АВТОРАХ

New York Eye Cancer Center, 115, East 6th Street, New York, NY 10065, USA

Paul T. Finger — Professor of Ophthalmology at the New York University School of Medicine and Director of Ocular Oncology, The New York Eye Cancer Center, New York, USA

Gaurav Garg — Fellow, Dept. of Ocular Tumor, Orbital Disease, Ophthalmic Radiation

Contact information: Paul T. Finger, pfinger@eye cancercure.com

Нью-Йоркский глазной онкологический центр, 115, 6-я улица, Нью-Йорк, 10065, США

Поль Т. Фингер — доктор медицины, профессор офтальмологии школы медицины университета Нью-Йорка и директор службы офтальмологической нейроонкологии

Гаравр Гарг — аспирант отдела глазных опухолей, заболеваний орбиты и офтальмоморфологии

Для контактов: Поль Т. Фингер, pfinger@eye cancercure.com

Российский офтальмологический журнал, 2020; 13(2): 12-7. Классификация капиллярной гемангиомы сетчатки на основе визуального прогноза. 17