The MIT2/4 complexes and MiDAC co-regulate H4K20ac to control a specific gene expression program

Xiaokang Wang1,2,*, Wojciech Rosikiewicz2,*, Yurii Sedkov1,*, Baisakhi Mondal1,*, Tanner Martinez1, Satish Kallappagoudar1, Andrey Tvardovskiy3, Richa Bajpai1, Beisi Xu2, Shondra M Pruett-Miller1, Robert Schneider3, Hans-Martin Herz1

The mitotic deacetylase complex MiDAC has recently been shown to play a vital physiological role in embryonic development and neurite outgrowth. However, how MiDAC functionally intersects with other chromatin-modifying regulators is poorly understood. Here, we describe a physical interaction between the histone H3K27 demethylase UTX, a complex-specific subunit of the enhancer-associated MIT2/4 complexes, and MiDAC. We demonstrate that UTX bridges the association of the MIT2/4 complexes and MiDAC by interacting with ELMSAN1, a scaffolding subunit of MiDAC. Our data suggest that MiDAC constitutes a negative genome-wide regulator of H4K20ac, an activity which is counteracted by the MIT2/4 complexes. MiDAC and the MIT2/4 complexes co-localize at many genomic regions, which are enriched for H4K20ac and the enhancer marks H3K4me1, H3K4me2, and H3K27ac. We find that MiDAC antagonizes the recruitment of UTX and MIT4 and negatively regulates H4K20ac, and to a lesser extent H3K4me2 and H3K27ac, resulting in transcriptional attenuation of associated genes. In summary, our findings provide a paradigm how the opposing roles of chromatin-modifying components, such as MiDAC and the MIT2/4 complexes, balance the transcriptional output of specific gene expression programs.

DOI 10.26508/lsa.202201572 | Received 21 June 2022 | Revised 24 June 2022 | Accepted 27 June 2022 | Published online 12 July 2022

Introduction

MIT2 (also known as KMT2C) and MIT4 (also known as KMT2D) are chromatin-modifying proteins that monomethylate histone H3K4 via their catalytic SET domains. MIT2 and MIT4 exist in two separate macromolecular complexes that belong to a total of six mammalian complexes of the compositionally and functionally highly conserved COMPASS family (Shilatifard, 2012; Herz, 2016; Cenik & Shilatifard, 2021). All complexes share identical core subunits but also contain complex-specific subunits that are conserved only within one of three metazoan branches. Each metazoan branch is represented by two mammalian complexes, namely, the SET1A/B complexes (branch one), the SET1/2 complexes (branch two), and the MIT2/4 complexes (branch three). UTX (also known as KDM6A) exists as a complex-specific subunit within the MIT2/4 complexes and acts as a histone H3K27 demethylase removing methyl groups from the inhibitory histone marks H3K27me3 and H3K27me2 via its Jumonji C domain (Hong et al, 2007; Lee et al, 2013). Our previous studies and the work of others have demonstrated that the MIT2/4 complexes function as major H3K4 monomethyltransferases on enhancers, providing a model in which prior removal of H3K27me3/2 via UTX is required on inactive or poised enhancers, before they can transition to an activated state via addition of H3K4me1 through MIT2/4 (Herz et al, 2010, 2012; Hu et al, 2013; Lee et al, 2013; Rickels et al, 2017). Despite our increasing understanding of UTX, MIT2, and MIT4 in regulating enhancer activity in development and disease, many functional aspects of the MIT2/4 complexes remain ill-defined.

Lysine residues on histones can also be acetylated by histone acetyltransferases (HATs) and deacetylated by histone deacetylases (HDACs) (Shahbazian & Grunstein, 2007). Histone acetylation has been found on all four core histones (H1–4) and can be deposited by specific writers and recognized by site-specific readers at multiple lysine residues on each core histone (Griff & Tsai, 2013; Marmorstein & Zhou, 2014; Barnes et al, 2019). The mammalian genome encodes multiple classes of histone deacetylases, among which the class I histone deacetylases (HDAC1-3, 8) are the most well studied (Milazzo et al, 2020). HDAC1-3 are assembled into large multi-subunit protein complexes to regulate the acetylation state of histones and other non-histone proteins. The integration of HDAC1-3 into these scaffolds both strongly enhances the enzymatic activities and also determines the specificity of these HDAC complexes (Bantscheff et al, 2011; Watson et al, 2012; Millard et al, 2013, 2016).
The mitotic deacetylase complex MiDAC, which comprises the scaffolding subunits DNTTIP1, ELMSAN1 (also known as MIDEAS), and the histone deacetylases HDAC1 or HDAC2, was initially identified in a chemoproteomic screen as being specifically enriched on a HDAC-inhibitor-bound resin in cells stalled in G2/ prophase of mitosis after nocodazole treatment (Bantscheff et al., 2011). TRERF1 and ZNF541 are paralogs of ELMSAN1 with a more tissue-specific expression pattern and have also been described as scaffolding subunits of MiDAC (Choi et al., 2008; Bantscheff et al., 2011; Hao et al., 2011). MiDAC exhibits a tetrameric architecture with each monomer consisting of DNTTIP1, ELMSAN1, and HDAC1 or HDAC2 thus resembling a three-dimensional X-shape with the MLL3/4 complexes including all core subunits, complex-specific subunits, and the H3K4 methyltransferases MLL3 and MLL4 (Fig 1A and Table S1). In addition, we also identified two novel UTX interactors: DNTTIP1 and ELMSAN1 (Fig 1A and Table S1). The association of UTX with DNTTIP1 and ELMSAN1 along with other subunits of the MLL3/4 complexes was confirmed by Western blotting (WB) (Fig 1B). Reciprocal immunoprecipitations (IPs) of ELMSAN1 and DNTTIP1 from nuclear extracts of HEK293 cells confirmed an interaction of these proteins with components of the MLL3/4 complexes including UTX, MLL3/4, and the core subunits RBBP5 and ASH2L (Figs 1C and S1). Consistent with previous studies showing that the histone deacetylases HDAC1 and HDAC2 interact with DNTTIP1 and ELMSAN1 to be integrated into the histone deacetylase complex MiDAC (Bantscheff et al., 2011; Mondal et al., 2020; Turnbull et al., 2020), both our ELMSAN1 and DNTTIP1 IPs also purified HDAC1 and HDAC2 (Figs 1C and S1). An association of HDAC1 and HDAC2 with UTX was also observed following UTX IP providing further evidence that UTX associates indeed with MiDAC (Fig 1B and Table S1). Glycero1 gradient fractionation of FLAG-affinity purified UTX from nuclear extracts of HEK293 cells confirmed that MiDAC co-migrates with the MLL3/4 complexes (Fig 1D, red box). A substantial amount of MiDAC also associated with UTX outside the MLL3/4 complexes indicating that not all overexpressed UTX is incorporated into the MLL3/4 complexes and that MiDAC might also directly interact with UTX (Fig 1D, blue box). The high number of ELMSAN1 peptides in our UTX IP, as assessed by MS analysis and the fact that after UTX IP a substantial amount of MiDAC co-migrated with UTX outside the MLL3/4 complexes, suggests that UTX might constitute a bridging component between MiDAC and the MLL3/4 complexes (Fig 1D and Table S1). Furthermore, UTX and DNTTIP1 IPs performed against the endogenous proteins in WT and MLL3/4 DKO mESCs showed that the UTX antibody used could immunoprecipitate UTX and the MiDAC subunits DNTTIP1, ELMSAN1, and HDAC1, whereas our DNTTIP1 IP identified DNTTIP1, ELMSAN1, and HDAC1 as members of MiDAC along with UTX (Fig S2). Thus, these results show the physical association between UTX and ELMSAN1/DNTTIP1 under endogenous conditions and make it unlikely that overexpressed UTX aberrantly associates with MiDAC. Both ELMSAN1 and its paralog TRERF1, but not the paralog ZNF541, are expressed in HEK293 cells (data not shown). Thus, because of a potential redundancy between ELMSAN1 and TRERF1 we generated an ELMSAN1 TRERF1 double knockout (DKO) HEK293 cell line to establish the interaction interface between

Results

The mitotic deacetylase complex MiDAC associates with the MLL3/4 complexes

To identify novel candidates that regulate the function of the MLL3/4 complexes, we immunoprecipitated UTX, a H3K27 demethylase and complex-specific subunit of the MLL3/4 complexes, from nuclear extracts of human embryonic kidney cells (HEK293 cells). Mass spectrometry (MS) analysis detected as expected all components of the MLL3/4 complexes including all core subunits, complex-specific subunits, and the H3K4 methyltransferases MLL3 and MLL4 (Fig 1A and Table S1). In addition, we also identified two novel UTX interactors: DNTTIP1 and ELMSAN1 (Fig 1A and Table S1). The association of UTX with DNTTIP1 and ELMSAN1 along with other subunits of the MLL3/4 complexes was confirmed by Western blotting (WB) (Fig 1B). Reciprocal immunoprecipitations (IPs) of ELMSAN1 and DNTTIP1 from nuclear extracts of HEK293 cells confirmed an interaction of these proteins with components of the MLL3/4 complexes including UTX, MLL3/4, and the core subunits RBBP5 and ASH2L (Figs 1C and S1). Consistent with previous studies showing that the histone deacetylases HDAC1 and HDAC2 interact with DNTTIP1 and ELMSAN1 to be integrated into the histone deacetylase complex MiDAC (Bantscheff et al., 2011; Mondal et al., 2020; Turnbull et al., 2020), both our ELMSAN1 and DNTTIP1 IPs also purified HDAC1 and HDAC2 (Figs 1C and S1). An association of HDAC1 and HDAC2 with UTX was also observed following UTX IP providing further evidence that UTX associates indeed with MiDAC (Fig 1B and Table S1). Glycero1 gradient fractionation of FLAG-affinity purified UTX from nuclear extracts of HEK293 cells confirmed that MiDAC co-migrates with the MLL3/4 complexes (Fig 1D, red box). A substantial amount of MiDAC also associated with UTX outside the MLL3/4 complexes indicating that not all overexpressed UTX is incorporated into the MLL3/4 complexes and that MiDAC might also directly interact with UTX (Fig 1D, blue box). The high number of ELMSAN1 peptides in our UTX IP, as assessed by MS analysis and the fact that after UTX IP a substantial amount of MiDAC co-migrated with UTX outside the MLL3/4 complexes, suggests that UTX might constitute a bridging component between MiDAC and the MLL3/4 complexes (Fig 1D and Table S1). Furthermore, UTX and DNTTIP1 IPs performed against the endogenous proteins in WT and MLL3/4 DKO mESCs showed that the UTX antibody used could immunoprecipitate UTX and the MiDAC subunits DNTTIP1, ELMSAN1, and HDAC1, whereas our DNTTIP1 IP identified DNTTIP1, ELMSAN1, and HDAC1 as members of MiDAC along with UTX (Fig S2). Thus, these results show the physical association between UTX and ELMSAN1/DNTTIP1 under endogenous conditions and make it unlikely that overexpressed UTX aberrantly associates with MiDAC. Both ELMSAN1 and its paralog TRERF1, but not the paralog ZNF541, are expressed in HEK293 cells (data not shown). Thus, because of a potential redundancy between ELMSAN1 and TRERF1 we generated an ELMSAN1 TRERF1 double knockout (DKO) HEK293 cell line to establish the interaction interface between
Figure 1. The MLL3/4 complexes associate with the mitotic deacetylase complex (MiDAC).

(A) FLAG-UTX immunoprecipitation (IP) followed by mass spectrometry (MS) identifies all known subunits of the MLL3/4 complexes along with ELMSAN1, and DNTTIP1. SC, spectral counts; TP, peptide counts; abundance = SC × 50 kD/protein size (kD).

(B) Western blot (WB) of FLAG-UTX IP from HEK293 cells confirming interaction of UTX with ELMSAN1, DNTTIP1, HDAC1, and HDAC2. UTX interacts with the H3K4 methyltransferases MLL3 and MLL4, RBBP5 a core component of the MLL3/4 complexes, ELMSAN1, DNTTIP1, HDAC1, and HDAC2, but does not interact with KAT2A a histone acetyltransferase. HEK293 cells with a FLAG-tag expressing plasmid were used as an IP control. Nuclear extracts were used as input. Actin was used as a loading control for the inputs.

(C) WB of FLAG-ELMSAN1 IP from HEK293 cells confirming interaction of ELMSAN1.

Table: FLAG-UTX Immunoprecipitation

Protein	SC	TP	SC	TP	Abundance	P-Value
UTX/KDM6A	0	0	584	62	464.37	1.69 × 10⁻³
NCAM6	0	0	21	8	9.11	1.23 × 10⁻⁴
PTPPi/Pkip1	0	0	39	16	16.08	3.67 × 10⁻¹³
PAI1/PGRH1	0	0	17	6	30.69	2.13 × 10⁻⁸
MLL3/KMT2G	0	0	152	58	32.21	2.06 × 10⁻⁸
MLL4/KMT2D	0	0	320	96	14.32	4.1 × 10⁻¹⁸
RBBP5	0	0	43	13	36.37	2.21 × 10⁻¹⁸
ASH2L	0	0	133	26	101.19	1.14 × 10⁻¹⁸
WDR5	2	2	16	6	24.61	4.3 × 10⁻⁴
DPY30	0	0	8	4	35.56	1.44 × 10⁻⁵
ELMSAN1	0	0	130	39	56.56	9.21 × 10⁻⁷
DNTTIP1	0	0	17	9	22.98	2.13 × 10⁻⁴

MidAC interacts with the MLL3/4 complexes

Wang et al.

https://doi.org/10.26508/lsa.202201572

vol 5 | no 11 | e202201572

3 of 16
MiDAC and MLL3/4 complexes in more detail (Figs 1E and S3). In ELMSAN1 TRERF1 DKO cells, DNTTIP1 protein is almost completely lost (Fig 1E). Interestingly, reexpression of either FLAG-ELMSAN1 or FLAG-TRERF1 in ELMSAN1 TRERF1 DKO cells resulted in stabilization of DNTTIP1, suggesting that MiDAC scaffolding subunits need to be co-expressed to retain each other’s stability (Fig 1E). Reexpression of FLAG-DNTTIP1, FLAG-ELMSAN1, or FLAG-TRERF1 in ELMSAN1 TRERF1 DKO cells followed by FLAG IPs, showed that only IPs from FLAG-ELMSAN1 expressing cells were able to purify UTX, whereas FLAG-DNTTIP1 and FLAG-TRERF1 expressing cells could not (Fig 1E). It should be noted, however, that FLAG-TRERF1 levels achieved by overexpression were significantly lower than FLAG-DNTTIP1 and FLAG-ELMSAN1 levels and thus might have prevented the detection of a potential interaction between TRERF1 and UTX (Fig 1E). To test whether UTX was able to interact with MiDAC outside of the MLL3/4 complexes, we used HCT116 colorectal carcinoma cells which contain a homozygous frameshift mutation in MLL3 (MLL3−/−MLL4+/+) (Watanabe et al, 2011). We used CRISPR/Cas9 genome editing to also obtain HCT116 cells that are wild-type (WT) for MLL3 (MLL3+/−MLL4+/+) or contain a promoter deletion within the MLL4 locus (MLL3−/−MLL4−/−) (Fig S4A and B). Transient transfection of FLAG-UTX into these HCT116 cell lines followed by FLAG IPs showed that UTX interaction with the MiDAC members DNTTIP1, ELMSAN1 and HDAC1 did not depend on MLL3/4 or core subunits of the MLL3/4 complexes such as RB5 and WD5 suggesting a direct interaction between UTX and MiDAC (Fig S4C). In conclusion, our data imply that UTX functions as a bridging factor within the MLL3/4 complexes to mediate their association with MiDAC via its scaffolding subunit ELMSAN1 (Fig 1F).

MiDAC is a genome-wide negative regulator of H4K20ac

We have previously shown by WB that a loss of MiDAC function in mESCs results in a bulk increase of H4K20ac (Mondal et al, 2020). To confirm these findings by an antibody-independent more quantitative method, we applied LC–MS/MS to measure the acetylation states of the N-terminal tails of H3 and H4 in WT and Dnttip1 KO mESCs (Fig 2A). H4K20ac was the histone acetylation mark that displayed by far the strongest increase in Dnttip1 KO compared with WT mESCs (Fig 2A–C). Except for H3K27ac and H4K16ac which both showed a decrease in acetylation across two independent Dnttip1 KO clones, all other acetylation marks were not or only mildly affected (Fig 2A and B). Because H4K20ac was the mark with the strongest acetylation increase and its role in transcription regulation or other processes has not been studied to date we chose to focus on H4K20ac. To investigate site-specific changes in H4K20ac profiles genome-wide, we used ChIP-seq to profile H4K20ac in WT and Dnttip1 KO mESCs. In addition, ChIP-seq was also carried out for H3K4me1/H3K4me2/H3K27ac and H3K27me3 UTX and MLL4 in the same cell lines. Reanalysis of our previously published DNTTIP1 ChIP-seq data set from WT and Dnttip1 KO mESCs (Mondal et al, 2020) identified a total of 38,572 DNTTIP1 binding sites (FC < 0.5, FDR < 0.05) (Fig 3A). Consistent with the bulk increase in H4K20ac in Dnttip1 KO mESCs (Fig 2) (Mondal et al, 2020), we observe higher levels of H4K20ac on most of the DNTTIP1-bound genomic regions in Dnttip1 KO compared with WT mESCs (Fig 3A and B). We also detect an enrichment of DNTTIP1 at nearly all H4K20ac sites in WT mESCs and this enrichment of DNTTIP1 is lost in Dnttip1 KO mESCs (Fig S5A). Furthermore, we also find that H4K20ac is increased at the majority of all H4K20ac sites in Dnttip1 KO compared with WT mESCs (Fig S5B). We also detected a milder increase of H3K4me2/H3K4me3 without considerable alterations of H3K4me1 on regions that are targeted by MiDAC (DNTTIP1-bound regions) in Dnttip1 KO versus WT mESCs (Fig 3C). Fig 3D depicts two enhancer regions and the promoter of the Spry4 locus as an individual example (Fig 3D, red boxes). All three regulatory elements are bound by MiDAC (DNTTIP1) in WT mESCs and display a strong increase of H4K20ac upon Dnttip1 KO, which is accompanied by higher enrichment of H3K4me2/me3 (Fig 3D, red boxes). In addition, we also observe a concomitant increase of H3K27ac and a tendency towards lower enrichment of the repressive H3K27me mark, whereas H3K4me1 is not significantly changed (Fig 3D, red boxes). In summary, our findings indicate that MiDAC constitutes a genome-wide negative regulator of H4K20ac by inhibiting the accumulation of H4K20ac on promoters and putative enhancers.

MiDAC antagonizes the function of the MLL3/4 complexes on chromatin

To further dissect the functional relationship between MiDAC and the MLL3/4 complexes, we wanted to know how the loss of MiDAC function would affect chromatin occupancy of members of the MLL3/4 complexes. We found that a much higher fraction of UTX-bound or MLL4-bound regions displayed increased rather than decreased binding of UTX or MLL4 in Dnttip1 KO compared with WT mESCs (Fig 4A). In total, we identified 4,826 peaks with higher UTX and 26,084 peaks with higher MLL4 occupancy in Dnttip1 KO mESCs (both FC > 2) (Fig 4A). Interestingly, the DNTTIP1 binding sites identified in Fig 3C also displayed increased UTX and MLL4 occupancy in Dnttip1 KO mESCs. Occupancy of UTX and MLL4 on putative enhancers and the promoter of the Spry4 locus was also elevated in Dnttip1 KO compared with WT mESCs (Fig 3D, red boxes). In addition, regions with up-regulated UTX binding (FC > 2) in Dnttip1 KO mESCs also showed an increase in MLL4, and a tendency towards increased H4K20ac, H3K4me2 and H3K27ac enrichment (Fig S5A). Similarly, regions with up-regulated MLL4 binding (FC > 2) in Dnttip1 KO mESCs displayed increased UTX, and a tendency towards increased H4K20ac, H3K4me2 and H3K27ac enrichment (Fig S5B). To assess the relationship between MiDAC and the MLL3/4 complexes more stringently, we subsequently only focused on the 1,283
regions that displayed both increased UTX and MLL4 occupancy (FC > 2) in Dnttip1 KO mESCs (Fig S6C). These UTX/MLL4 up-regulated regions also showed increased enrichment of H4K20ac, H3K4me2, and H3K27ac in Dnttip1 KO versus WT mESCs (Fig 4B). Although the MLL3/4 complexes have been shown to catalyze both H3K4me1 and H3K27ac along with a reduction in H3K4me1, H3K4me2, H3K4me3, and H3K27me3 in WT and Mll3/4 double knockout (DKO) mESCs (Fig S7) (Dorighi et al, 2017). Unexpectedly, most Dnttip1-bound sites displayed decreased Dnttip1 occupancy in Mll3/4 DKO mESCs (Fig 5A). Altogether, we identified 10,462 sites with reduced Dnttip1 occupancy (FC < 0.5, FDR < 0.05) in Mll3/4 DKO compared with WT mESCs (Fig 5A). Interestingly, however, we observed that most regions with detectable H4K20ac showed a significant decrease of H4K20ac enrichment (5,513 sites) (FC < 0.5, FDR < 0.05) in Mll3/4 DKO mESCs (Fig 5B). Likewise, this reduction in H4K20ac along with a reduction in H3K4me1, H3K4me2, H3K4me3, and H3K27ac was also detected at the 10,462 regions with reduced Dnttip1 occupancy in Mll3/4 DKO mESCs (Fig 5C). H3K27me3 seems to inversely correlate with the aforementioned histone marks showing an increase both at sites with decreased Dnttip1 occupancy and regions with lower H4K20ac enrichment in Mll3/4 DKO mESCs (Fig 5C). Thus, the detected changes in histone modification patterns between Mll3/4 DKO and Dnttip1 KO mESCs particularly as it pertains to H4K20ac, H3K4me2, H3K27ac, and H3K27me3 anti-correlate at regions that are co-regulated by MiDAC and the MLL3/4 complexes (Figs 3C and D, 4B and C, and 5C). This general finding is also obvious at putative enhancer regions and the promoter of the Spry4 gene locus where we found H4K20ac and H3K27ac to be increased in Dnttip1 KO mESCs but reduced in Mll3/4 DKO mESCs, whereas H3K27me3 was reduced in Dnttip1 KO mESCs but elevated in Mll3/4 DKO mESCs (Fig 5D). This anticorrelative behavior as exemplified on the Spry4 locus at the level of specific histone marks (Fig 5D) also aligned well with the gene expression changes we observed in Dnttip1 KO compared with Mll3/4 DKO mESCs. For example, promoters or putative enhancers with increased enrichment of H4K20ac in Mll3/4 DKO mESCs were preferentially associated with transcriptional repression (Fig 5B), whereas promoters and putative enhancers with increased H4K20ac in Dnttip1 KO mESCs displayed a significantly enhanced tendency for increased gene expression (Fig 4D). Furthermore, Spry4 transcription was increased in Dnttip1 KO but reduced in Mll3/4 DKO mESCs (Figs 6A and 9B). By transcriptome-wide analysis, we found a similar trend. Genes that were up-regulated in the absence of MiDAC function showed decreased expression in Mll3/4 DKO mESCs, whereas down-regulated genes in Dnttip1 KO mESCs displayed increased expression in Mll3/4 DKO mESCs (Fig 6B). Overall, this suggests that the MLL3/4 complexes and MiDAC act antagonistically as genome-wide regulators of H4K20ac to transcriptionally balance a jointly regulated gene expression program.

Discussion

MiDAC is the least studied class I histone deacetylase complex and its important physiological role in neurogenesis and embryonic development has only very recently been described (Mondal et al.,
How MiDAC functionally intersects with other epigenetic regulators to elicit changes in chromatin state and effect transcriptional responses is currently unknown. Here, we report for the first time a functional link between MiDAC and the MLL3/4 complexes. We show that UTX, a complex-specific subunit of the MLL3/4 complexes, acts as an important hub to ensure the
Figure 4. MiDAC negatively regulates the occupancy of the MLL3/4 complexes at regulatory elements genome-wide.
(A) MA plots displaying the log2 fold change of UTX (left) and MLL4 (right) occupancy in Dnttip1 KO compared with WT mESCs. A significantly higher number of UTX and MLL4 up-regulated peaks (FC > 2) than down-regulated peaks (FC > 2) is detected in Dnttip1 KO versus WT mESCs.
(B, C) Heat maps centered on (B) 1,283 UTX/MLL4 up-regulated peaks (both FC > 2) or (C) 2,396 regions with up-regulated H3K4me2 (FC > 2) in Dnttip1 KO compared with WT mESCs. Occupancy of DNTTIP1, UTX, MLL4, H4K20ac, H3K4me1, H3K4me2, H3K4me3, and H3K27ac in WT and Dnttip1 KO mESCs is displayed. The mean signal of each ChIP-seq peak was determined, and a two-sided Wilcoxon rank sum test was performed between WT and Dnttip1 KO mESCs for each histone mark and protein ChIP sample for which a significant change is claimed.
(D) Gene set enrichment analysis showing transcriptional up-regulation of genes associated with regions of increased H4K20ac (left), UTX/MLL4 up-regulated peaks (middle), and regions of increased H3K4me2 (right) in Dnttip1 KO versus WT mESCs.
Figure 5. MiDAC and the MLL3/4 complexes act antagonistically as genome-wide regulators of H4K20ac. (A, B) Volcano plots (left) and heat maps (right) showing the genome-wide reduction of DNTTIP1 (A) and genome-wide decrease of H4K20ac (B) in Mll3/4 DKO compared with WT mESCs. Heat maps in (A) and (B) are centered on 10,462 DNTTIP1 peaks with a FC > 2 in Mll3/4 DKO versus WT mESCs. (C) Heat maps centered either on 10,462 DNTTIP1 down-regulated peaks (FC > 2) (upper) or on 5,513 regions with decreased H4K20ac (FC > 2) (lower) in Mll3/4 DKO compared with WT mESCs. Occupancy of DNTTIP1, H4K20ac, H3K4me1, H3K4me2, H3K4me3, H3K27ac, and H3K27me3 in WT and Mll3/4 DKO mESCs is displayed. (D) Genome browser tracks depicting the ChIP-seq profiles of DNTTIP1, H4K20ac, H3K4me1, H3K4me2, H3K4me3, H3K27ac, and H3K27me3 in WT and Dnttip1 KO mESCs, and WT and Mll3/4 DKO mESCs at the promoter and two enhancer regions of the Spry4 locus.
MiDAC interacts with the MLL3/4 complexes Wang et al. https://doi.org/10.26508/lsa.202201572 vol 5 | no 11 | e202201572 9 of 16

physical association with MiDAC via its scaffolding subunit ELMSAN1 (Fig 1). Our FLAG-affinity UTX purification identified two different MiDAC-containing UTX complexes, one in which UTX is a part of the MLL3/4 complexes (Fig 1D, red box) and another UTX-MiDAC complex that does not contain subunits of the MLL3/4 complexes (Fig 1D, blue box). These findings are puzzling as they might suggest that UTX can form a complex with MiDAC independent of the MLL3/4 complexes. However, the association of UTX with MiDAC outside the MLL3/4 complexes (Fig 1D, blue box) could be the result of UTX overexpression. The overabundance of UTX due to overexpression might not permit incorporation of a significant portion of UTX into the MLL3/4 complexes because of the limited endogenous amounts of other subunits of the MLL3/4 complexes (particularly MLL3/4). Because UTX most likely constitutes the bridging factor between MiDAC and the MLL3/4 complexes, this UTX “surplus” (outside the MLL3/4 complexes) is still able to interact with MiDAC so that the UTX-MiDAC interaction independent of the MLL3/4 complexes (Fig 1D, blue box) would not represent a physiologically relevant complex. We favor the possibility that UTX associates with MiDAC only within the context of the MLL3/4 complexes because UTX is highly unstable in the absence of MLL3/4 (Figs S2, S4B, and S7). This dependency of UTX on MLL3/4 makes it likely that most if not all functions of UTX are carried out through the MLL3/4 complexes and that the observed interaction of overexpressed UTX with MiDAC outside the MLL3/4 complexes does not represent a physiologically relevant complex. Indeed, apart from mediating the interaction with MiDAC, UTX might generally function as a unique docking site within the MLL3/4 complexes to recruit other chromatin-associated protein complexes, including the previously reported TOP (TET2, OGT, and PROSER1) complex (Wang et al, 2022).

Interestingly, UTX is often mutated in the same cancer types as MLL3 and/or MLL4 linking the function of the MLL3/4 complexes directly to carcinogenesis via UTX (Martinez-jimenez et al, 2020). Thus, gaining mechanistic insight into the role of UTX-interacting chromatin-modifying complexes such as MiDAC and the TOP complex might open an avenue to specifically target these cancers. The results of our study implicate MiDAC and the MLL3/4 complexes as antagonistic co-regulators of a specific gene expression program (Fig 7). This relationship is clearly evident at the level of histone modifications. We previously identified MiDAC as a major negative regulator of H4K20ac (Mondal et al, 2020) and here provide evidence that this function of MiDAC towards H4K20ac extends to many gene regulatory elements genome-wide (Fig 3). Although our data suggest that MiDAC directly deacetylates H4K20ac, we cannot exclude the possibility that the observed changes in H4K20ac are indirect and might be controlled by other histone deacetylase complexes or histone acetyltransferases whose catalytic activities and/or recruitment might be altered as a result of lost MiDAC function. Conversely, the MLL3/4 complexes function to promote H4K20ac deposition on many loci that are co-regulated by the MLL3/4 complexes and MiDAC (Fig 5). These findings imply that the degree of H4K20ac enrichment on promoters and putative enhancers might be used as an indicator to predict the transcriptional response of a gene expression program that is balanced by the opposing action of MiDAC and the MLL3/4 complexes. To date our understanding of H4K20ac is extremely limited. Thus, future work is required to further elucidate the role of H4K20ac in transcription and potentially other processes. One possible mechanism by which the MLL3/4 complexes might regulate H4K20ac could be through direct binding to acetylated histones. For example, previous studies have shown that the PHD6 domain of MLL4 is able to recognize and bind H4K16ac (Zhang et al, 2019). Therefore, it is possible that other PHD domains or regions within MLL3 and/or MLL4 or domains/regions within UTX might recognize H4K20ac and thus protect H4K20ac from being deacetylated by MiDAC. Alternatively, the MLL3/4 complexes might promote the activity or recruitment of a histone acetyltransferase that is able to target H4K20ac. CBP/p300 are histone acetyltransferases that have been known to collaborate with the MLL3/4 complexes in enhancer activation both in Drosophila and mammals and thus might be potential candidates in catalyzing H4K20ac (Tie et al, 2012; Wang et al, 2016, 2017; Lai et al, 2017).

Unexpectedly, we found that the decrease of H4K20ac on gene regulatory elements in MLL3/4 DKO mESCs did not coincide with higher MiDAC occupancy on these loci but rather a decrease in MiDAC enrichment. As the protein levels of MiDAC components are unchanged in MLL3/4 DKO mESCs (Fig S7), this suggests that the genomic localization of MiDAC is dependent on the MLL3/4 complexes and that in the absence of the MLL3/4 complexes, the
inhibitory role of MiDAC towards H4K20ac is suppressed. It is possible that the MLL3/4 complexes are directly involved in the recruitment of MiDAC to its target loci or that an unknown MiDAC recruiting factor is reduced in Mll3/4 DKO mESCs. The decrease of H3K4me1 in Mll3/4 DKO mESCs could also cause the reduction in MiDAC occupancy, as MiDAC deposition may be dependent on direct binding to H3K4me1. Interestingly, however, we observed higher enrichment of the repressive histone mark H3K27me3 at loci with reduced MiDAC occupancy or decreased H4K20ac enrichment in Mll3/4 DKO mESCs. Thus, the formation of a repressive chromatin state (via H3K27me3) may prevent MiDAC and potential histone acetyltransferases that target H4K20ac from accessing those regions. Furthermore, we cannot exclude that one or multiple H4K20 deacetylase(s) is/are activated and/or target H4K20ac more effectively in Mll3/4 DKO mESCs. A potential model of the interplay between MiDAC and the MLL3/4 complexes is described in Fig 7. Besides H4K20ac, other histone marks such as H3K4me2 and to some degree H3K27ac are also antagonistically regulated by MiDAC and the MLL3/4 complexes (Figs 3–5). It has previously been shown that MLL3/4 can catalyze both H3K4me1 and H3K4me2 on enhancers (Hu et al., 2013; Lee et al., 2013). However, the increased occupancy of UTX and MLL4 we observed in Dnttip1 KO mESCs on regulatory elements that are also targeted by MiDAC did not result in higher H3K4me1 enrichment, but selectively appeared to be confined to increased H3K4me2 and H3K27ac enrichment (Figs 3 and 4). One potential reason why we observed no significant
changes of H3K4me1 in Dnttip1 KO mESCs may be due to an increased propensity of the MLL3/4 complexes to catalyze H3K4me2 rather than H3K4me1 in the presence of H4K20ac. Finally, our transcriptome-wide analysis clearly confirms the antagonistic relationship between MiDAC and the MLL3/4 complexes and aligns well with our observations on the level of histone modifications as discussed above (Fig 6). Future studies will be required to further interrogate the role of MiDAC and the MLL3/4 complexes in development and disease.

Materials and Methods

Cell lines

Dnttip1 KO (clone 1-D1E6) and their wild-type control mESCs were previously described by our laboratory (Mondal et al, 2020). MLL3/4 DKO, MLL3/4 DCD, and their wild-type control mESCs were kindly provided by the Wysocka laboratory (Dorighi et al, 2017). All mESCs were cultured under chemically defined naïve culture conditions (2iL) in 0.1% gelatin-coated flasks or plates. ELMSAN1 TRERF1 DKO HEK293 cells were generated from wild-type Flp-In T-REx HEK293 cells (R78007; Invitrogen) by the Center for Advanced Genome Engineering (CAGE) at St. Jude Children’s Research Hospital using CRISPR/Cas9 technology (Mondal et al, 2020). MLL4+/+ clones and MLL4−/− clones from HCT116 cells were generated using ELMSAN1 TRERF1 DKO HEK293 cells and MLL3/4−/− HEK293 cells by the CAGE at St. Jude Children’s Research Hospital using CRISPR/Cas9-mediated gene editing (Fig S5). Isogenic tetracycline-inducible FLAG-UTX and FLAG control HEK293 cells were previously described by our laboratory (Wang et al, 2022). Isogenic tetracycline-inducible FLAG-DNTTIP1, FLAG-ELMSAN1, FLAG-TRERF1, and FLAG control HEK293 cells were generated by using Flp recombinase-mediated integration in ELMSAN1 TRERF1 DKO HEK293 cells. HEK293 and HCT116 cells were cultured in Dulbecco’s Modified Eagle Medium (11995065; Gibco) with 10% FBS (10098037; Gibco). mESC identity was authenticated by various methods including alkaline phosphatase staining and staining and cytometry analysis of the pluripotency marker FUT4 (SSEA-1). All HEK293 and HCT116 cell lines were authenticated using STR profiling and tested negative for mycoplasma contamination.

Antibodies

For Western blotting

Mouse α-Actin (Developmental Studies Hybridoma Bank, JLA20 supernatant) at 1:1,000; rabbit α-ASH2L (5019S; Cell Signaling Technology) at 1:2,000; rabbit α-DNTTIP1 (A304-048A; Bethyl Laboratories) at 1:2,000; rabbit α-ELMSAN1 (A303-157A; Bethyl Laboratories) at 1:5,000; rabbit α-ELMSAN1 (34421; Herzer Lab) at 1:5,000; mouse α-FLAG (F3165; Sigma-Aldrich) at 1:2,000; rabbit α-HDAC1 (34589S; Cell Signaling Technology) at 1:2,000; rabbit α-HDAC2 (S7165; Cell Signaling Technology) at 1:2,000; rabbit α-KAT2A (33055S; Cell Signaling Technology) at 1:2,000; rabbit α-MLL3/KMT2C (#31865 and #31866 [both human aa 581–850]; Herzer Lab) at 1:5,000; rabbit α-MLL4/KMT2D (#31863 [human aa 1–181]) and #32757 [human aa 281–506]; Herzer Lab at 1:5,000; rabbit α-RBBP5 (13171S; Cell Signaling Technology) at 1:2,000; rabbit α-TRERF1 (HPA051273; Sigma-Aldrich) at 1:2,000; rabbit α-UTX/KDM6A (33510S; Cell Signaling Technology) at 1:2,000; α-WDR5 (13105S; Cell Signaling Technology) at 1:2,000.

For immunoprecipitations (IPs)

Rabbit α-DNTTIP1 (A304-048A; Bethyl Laboratories), 5 μg per IP; rabbit IgG (011-000-003; Jackson ImmunoResearch), 5 μg per IP; rabbit α-UTX/KDM6A (A302-374A; Bethyl Laboratories), 5 μg per IP.

For ChIP-seq

Rabbit α-H3K4me1 (31-1046-00; RevMab), 10 μg per ChIP; mouse α-H3K4me2 (39679; Active Motif), 10 μg per ChIP; rabbit α-H3K4me3 (31-1039-00; RevMab), 10 μg per ChIP; rabbit α-H3K27ac (31-1056-00; RevMab), 10 μg per ChIP; rabbit α-H3K27me3 (9733S; Cell Signaling Technology), 30 μl per ChIP; rabbit α-H4K20ac (31-1084-00; RevMab), 10 μg per ChIP; rabbit α-ASH2L (5019S; Cell Signaling Technology), 30 μl per ChIP; rabbit α-MLL4/KMT2D (#3; Ge Lab), 10 μg per ChIP.

CRISPR/Cas9 gene editing

ELMSAN1 TRERF1 DKO clones from Flp-In T-REx HEK293 and MLL3/4−/− clones and MLL3/4+/− clones from HCT116 cells were generated using CRISPR/Cas9 technology. Briefly, 400,000 Flp-In T-REx HEK293 cells (R78007; Thermo Fisher Scientific) were transiently transfected with precomplexed RNPs consisting of 100 pmol of each chemically modified sgRNA (Synthego), 70 pmol of Cas9 protein (St. Jude Protein Production Core), and 200 ng of pMaxGFP (Lonza) via nucleofection (4D-Nucleofector X-unit; Lonza). mESC identity was authenticated by various methods including alkaline phosphatase staining and staining and cytometry analysis of the pluripotency marker FUT4 (SSEA-1). All HEK293 and HCT116 cell lines were authenticated using STR profiling and tested negative for mycoplasma contamination.

Immunoprecipitation (IP)

Large scale IPs from ten 150-mm plates and small scale IPs from one 150-mm plate were carried out as previously reported (Wang et al, 2022).
Glycerol gradient fractionation

Glycerol gradient fractionation was conducted as previously described (Wang et al, 2022). 34 fractions of ~325 μl each were collected and analyzed by WB for UTX, MLL3, MLL4, RBBP5, ELMSAN1, DNTTIP1, HDAC1, and HDAC2.

ChIP-seq

ChIP-seq was performed as previously described (Mondal et al, 2020; Wang et al, 2022).

MS

Protein identification by liquid chromatography coupled with tandem MS

Sample preparation

Protein samples were briefly run into a 4–20% PAGE gradient gel as described in a previously published protocol (Xu et al, 2009). The gel bands were destained, reduced with DTT, alkylated by iodoacetamide (IAA), washed, dried down, and rehydrated with a buffer containing trypsin. After overnight proteolysis at 37°C, peptides were extracted, dried down in a speed vacuum and reconstituted in 5% formic acid.

MS

The peptide mixture from each gel band was separated on a nanoscale capillary reverse phase C18 column (75 μm id, 10 cm) by a HPLC system (Thermo EASY-nLC 1000). Buffer A was 0.2% formic acid and Buffer B was 0.2% formic acid in 70% acetonitrile. The peptides were eluted by increasing Buffer B from 12% to 70% over a 60–90-min gradient. The peptides were ionized by electrospray ionization and detected by a Thermo LTQ Orbitrap Elite mass spectrometer. The mass spectrometer was operated in data-dependent mode. For each duty cycle, a high-resolution survey scan in the Orbitrap and 20 low-resolution MS/MS scans were acquired in the ion trap.

Database search and analysis

The MS data were searched against the human UniProt database using Sequest (version 28, rev. 12) (Eng et al, 1994). The database was concatenated with a reversed decoy database for evaluating false discovery rate (FDR) (Peng et al, 2003). Mass tolerance of 15 ppm for precursor ions and 0.5 D for product ions were used. Two missed cleavages with a maximum of three modifications were allowed and assignment of b and y ions were used for identification. Carbamidomethylation of cysteine (+57.02146 D) for static modification and oxidation of Methionine (+15.99492 D) for dynamic modification were considered. Mass accuracy and matching score filters were used for MS/MS spectra to reduce the protein FDR to <1%. Spectral counts of each protein may reflect their relative abundance in the samples after normalizing for protein molecular weight. The spectral counts between the samples for a given protein were used to calculate the P-value which was derived by the G-test (Bai et al, 2013).

Relative quantification of histone post translational modification abundances using LC–MS/MS

Sample preparation

Histones were acid extracted as described previously (Shechter et al, 2007). In brief, mESCs were lysed in 10X cell pellet volumes of ice-cold hypotonic lysis buffer (15 mM Tris–HCl [pH 7.5], 60 mM KCl, 11 mM CaCl2, 5 mM NaCl, 5 mM MgCl2, 250 mM sucrose, 1 mM DTT, and 10 mM sodium butyrate) supplemented with 0.1% NP-40 on ice for 5 min. Nuclei were pelleted by centrifugation (1,000g, 2 min, 4°C) and washed twice in ice-cold hypotonic lysis buffer w/o NP-40. Nuclei were resuspended in 5X nuclei pellet volumes of ice-cold 0.2 M sulfuric acid and mixed on a rotation wheel for 120 min at 4°C. Insolubilized nuclear debris was pelleted by centrifugation (16,000g, 10 min, 4°C). Supernatant was transferred to a fresh low-protein binding Eppendorf tube and histone proteins were precipitated by adding ice-cold trichloroacetic acid (TCA) to the final concentration of 20% (vol/vol) followed by a 60-min incubation on ice. Precipitated histone proteins were pelleted by centrifugation (16,000g, 10 min, 4°C), washed three times with acetone (–20°C), and resuspended in MS-grade water.

MS

Extracted histones were prepared for LC–MS/MS analysis using the hybrid chemical derivatization method as described previously (Maile et al, 2015). In brief, 4 μg aliquots of purified histones were diluted with MS grade water to a total volume of 18 μl and buffered to pH 8.5 by addition of 2 μl of 1 M triethylammonium bicarbonate buffer (TEAB). Propionic anhydride was mixed with MS grade water in a ratio of 1:100 and 2 μl of the anhydride-mixture was added immediately to the histone sample, with vortexing, and the resulting mixture was incubated for 5 min at room temperature. The reaction was quenched by adding 2 μl of 80 mM hydroxylamine followed by a 20-min incubation at room temperature. Tryptic digestion was performed overnight with 0.5 μg trypsin per sample at 37°C. A 1% vol/vol solution of phenyl isocyanate (PIC) in acetonitrile was freshly prepared and 6 μl added to each sample and incubated for 60 min at 37°C. Samples were acidified by adding TFA to a final concentration of 1%. Peptides were de–salted with C18 spin columns (Pierce) following the manufacturer’s protocol. Peptides were eluted from C18 spin columns with 70% acetonitrile, partially dried in a speedvac and resuspended in 30 μl 0.1% TFA.

The resulting peptide mixtures were analyzed using nano-flow liquid chromatography tandem mass spectrometry (LC–MS/MS) on a Q-Exactive HF mass spectrometer coupled to an Ultimate 3000 nano-UPLC (Ultimate 3000; Dionex) in data-dependent acquisition mode. A ~200 ng peptide aliquot was used per one sample per one injection. Peptides were loaded automatically on a trap column (300 μm inner diameter × 5 mm, Acclaim PepMap100 C18, 5 μm, 100 Å; LC Packings) before C18 reversed-phase chromatography on the analytical column (nanoEase MZ HSS T3 Column, 100 Å, 1.8 μm, 75 μm × 250 mm; Waters). Peptides were separated at a flowrate of 0.250 μl per minute by a linear gradient from 1% buffer B (0.1% [vol/vol] formic acid, 98% [vol/vol] acetonitrile) to 25% buffer B over 40 min followed by a linear gradient to 40% B in 20 min, then to 85% B in 5 min. After 5 min at 85% buffer B, the gradient was reduced to 1% buffer B over 2 min and then allowed to equilibrate for 8 min. Full mass range spectra were at 60,000 resolution (at m/z 400), and product ions spectra were collected in a “top 15” data-dependent scan cycle at 15,000 resolution.

Data analysis

RAW MS data were analyzed using EpiProfile 2.0 software (Yuan et al, 2018). The reported relative abundances of histone modifications were validated manually using an open-source Skyline software.
ChiP-seq data processing

Following the procedure described before (Wang et al., 2022), raw sequencing reads were pre-processed with the Trim-Galore tool (v0.4.4, https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) (Krueger et al., 2012) and cutadapt (DOI: 10.14806/ej.17.1.200), to remove low quality reads, remove potential adapters and quality trim reads’ 3’ ends. Quality score cutoff was set to Q20. Next, the remaining reads were mapped to the mouse reference genome (mm10) with bwa aln, followed by bwa samse (Li & Durbin, 2009) (v0.7.12-r1039) with -K flag set to 10,000,000. The output was then converted to binary alignment map format with SAMtools (Li et al., 2009) (v1.2). Next, the bam2ormadup tool from bioambamb2 (v2.0.87, DOI: 10.1186/1751-0473-9-13) was used to identify duplicated reads, and the SPP tool (Kharchenko et al., 2008) (v1.11) was used to conduct the Cross-Correlation analysis and estimate the fragment size. Subsequently, SAMtools was used again to extract uniquely mapped reads, and bedtools (Quinlan & Hall, 2010) (v2.24.0) was then used to extend the reads with the previously estimated fragment size. The intermediate files containing the extended fragments, were converted to bigwig track files by University of California, Santa Cruz (UCSC) tools (Kuhn et al., 2015) (v4), and signal intensity was corrected for sequencing depth, normalizing them to 15 million uniquely mapped non-duplicated fragments. For visualization purposes, for the experiments that per condition consisted of more than one replicate, the bigwig files from individual replicates were merged calculating average per bin signal between replicates. Subsequently, MACS2 (Zhang et al., 2008) was used to call peaks in narrow mode, with --nomodel --q 0.05 flags (high confidence peaks). Separately, narrow peaks were also called with more relaxed criteria, setting the -q flag to 0.5, which are here referred to as FDR50 peaks. Next, for experiments with more than one replicate, reproducible peaks (e.g., for H4K20ac in Dnttip1 KO mESCs) were identified as those with overlapping FDR50 peaks present in all replicates at a given genomic region. Otherwise, for ChiP-seq targets without replicates, only the high confidence peaks were considered. Finally, the reproducible peaks from the same immunoprecipitation target (e.g., H4K20ac) were merged into the collection of reference peaks, here further referred to as all reproducible peaks.

Differential binding peak identification

To perform statistical testing between experimental groups, the number of fragments for each reference peak was counted with intersect command from pybedtools (Quinlan & Hall, 2010; Dale et al., 2011) (v0.8.1). Next, the number of raw fragments mapping per peak was converted to FPKM units (Fragment Per Kilo base per Million mapped reads), and then TMM (trimmed mean of M-values) from edgeR (Robinson et al., 2010), followed by the limma-voom approach (Ritchie et al., 2015) was used to assess the significance of differential peak binding. For the contrasts, for which based on previously published independent work (Dorighi et al., 2017; Mondal et al., 2020), a genome-wide change (either gain or loss) was expected, and for which no spike-in was available, an additional pre-processing step was introduced to calculate the scaling factors. The contrasts for this step included Dnttip1, H4K20ac, UTX, and MLL4 in Dnttip1 KO mESCs and H4K20ac, H3K4me1 and DNTTIP1 in MII3/4 DKO mESCs. Those scaling factors were computed by first calculating the median of single base-pair resolution enrichment signal from the bigwig track files, corrected previously for sequencing depth (see above), which was accomplished with the pybigwig tool (available online at: https://github.com/deep-tools/pyBigWig), over all reproducible peaks. Next, the median signal from each sample was multiplied by 1/1,000,000, and converted to integer, which value imitated the spike-in read counts for the purpose of the scaling factor calculation and is further referred to as pseudo-spike reads. Next, similar to the approach used by the authors of DESeq2 and edgeR (Robinson et al., 2010; Love et al., 2014) the scaling factors were calculated normalizing individual pseudo-spike reads to the maximum pseudo-spike read counts across samples, and then dividing these values by their geometric mean. Scaling factors calculated this way, were further supplied to the norm.factor parameter of the DGEList function of edgeR for differential peak calling. For the contrasts with replicates, the region was considered as differentially binding, when the FDR was lower than 0.05 and the log2(fold-change) > 1, for increased binding, or log2(fold-change) < −1 for decreased binding. For some experiments without available biological replicates (including UTX and MLL4 for Dnttip1 KO mESCs and H3K4me1, H3K4me3, and H3K27Ac for MII3/4 DKO mESCs), the identification of differentially bound peaks was based on the fold-change value, using a log2(fold-change) > 1 threshold to identify increased binding and log2(fold-change) < −1 for decreased binding.

Annotation of genomic regions

Following the approach used previously (Wang et al., 2022), genomic regions were assigned to their genomic contexts with an in-house script based on pybedtools (Dale et al., 2011) (v0.8.1), such that each region could only be assigned to one feature. For this purpose, genomic regions were successively overlapped with predefined genomic contexts in the following prioritization order: (1) Promoter.Up: region up to 2 kbp upstream from TSS; (2) Promoter.Down: region up to 2 kbp downstream from TSS; (3) Exons; (4) Introns; (5) TSS: transcription end sites; (6) 5’ Distal: region up to 50 kbp upstream from TSS, excluding promoter region; (7) 3’ Distal: region up to 50 kbp downstream from TSS, excluding promoter region; (8) Intergenic. The reference annotation for TSS, and all subsequent genomic contexts, was based on the Gencode vM14 (Frankish et al., 2019) reference annotation and included all isoforms. In parallel, the genomic regions were annotated with genes, via putative promoter-related association. For that purpose, genomic regions were overlapped with promoter regions with bedtools (Quinlan & Hall, 2010) (v2.24.0); one region could be assigned to multiple genes. The promoter region was defined as TSS ± 2 kbp. Next, regions not assigned to any gene as promoter-associated, were assigned to a gene as putative enhancer-related regions, if their distance to the gene’s TSS was within a threshold of ± 50 kbp, excluding the promoter region.

RNA-seq data processing

Sequenced RNA-seq reads were quality-filtered using TrimGalore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/),
and then aligned to the mouse reference genome (mm10) using STAR (Dobin et al, 2013). Next, RSEM was used to quantify read counts per gene (Dobin et al, 2013). Subsequently, differentially expressed genes were identified using the limma-voom approach (Law et al, 2014; Ritchie et al, 2015), as previously described (Wang et al, 2022).

Gene set enrichment analysis (GSEA)

GSEA was conducted with GSEApy (Mootha et al, 2003; Dale et al, 2011) (v0.10.4, available on-line at https://gseapy.readthedocs.io/en/latest/), using the pre-ranked list of genes, where the per gene metric was an equivalent of the log(fold-change) values, derived from differential gene expression analyses. GSEApy’s prerank function was used with standard parameters, except –min-size and –max-size flags, whose values were set to 5 and 5,000, respectively. The GSEA analysis was run with the collection of gene sets from the KEGG database (Kanehisa & Goto, 2000), downloaded from the Enrichr portal (Kuleshov et al, 2016). The abovementioned gene sets collection was additionally expanded with in-house gene sets, representing genes annotated with various genomic regions, for example, regions with increased H4K20ac, or genomic regions displaying both an increase in UTX and MLL4 occupancy. Following previous approaches (Subramanian et al, 2005) (Bayá et al, 2007), we considered the gene sets that are significantly associated with positive or negative phenotype as the ones whose FDR was lower than 25% and whose P-value was lower than 0.05.

Data Availability

RNA-seq data from WT and Dnttip1 KO mESCs were obtained from GSEV131062. RNA-seq data from WT and Mll3/4 DKO mESCs were obtained from GSE98063. DNTTIP1 ChIP-seq data in WT and Dnttip1 KO mESCs were used from GSE131062. The accession number for the remaining ChIP-seq datasets reported in this article is GEO: GSE190323.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.202201572.

Acknowledgements

We thank the Wyssacka lab for providing Mll3/4 DKO mESCs and their WT controls. We gratefully acknowledge the following research resources at St. Jude Children’s Research Hospital for their services: the Hartwell Center for ChIP-seq library preparation and sequencing, the center for Proteomics and Metabolomics for conducting mass spectrometry analysis, and Center for Applied Bioinformatics for bioinformatic analysis. The mouse α-Actin monoclonal hybridoma antibody (JLA20) developed by the University of Iowa was obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242. We thank W Rosikiewicz and everyone in the Schneider and Herz labs for their helpful comments and critical reading of the manuscript. This work was funded by a transition to independence grant from the National Institutes of Health/National Cancer Institute (R00CA181506 to H-M Herz, P30CA021765 to SM Pruett-Miller); and the American Lebanese Syrian Associated Charities (ALSAC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author Contributions

X Wang: conceptualization, formal analysis, validation, investigation, visualization, methodology, project administration, and writing—original draft, review, and editing.

W Rosikiewicz: formal analysis, validation, investigation, visualization, methodology, and writing—review and editing.

Y Sedkov: formal analysis, validation, investigation, visualization, and methodology.

B Mondal: formal analysis, validation, investigation, visualization, methodology, and writing—review and editing.

S Caliappagoudar: formal analysis, validation, investigation, visualization, methodology, and writing—review and editing.

T Martinez: formal analysis, validation, investigation, visualization, and methodology.

R Najd: formal analysis, validation, investigation, visualization, and methodology.

R Bajpai: formal analysis, validation, investigation, visualization, and methodology.

SM Pruett-Miller: formal analysis, supervision, validation, investigation, visualization, and methodology.

R Schneider: formal analysis, validation, investigation, visualization, methodology, and writing—review and editing.

H-M Herz: conceptualization, formal analysis, supervision, funding acquisition, validation, investigation, visualization, methodology, project administration, and writing—original draft, review, and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

Bayá AE, Larese MG, Granito PM, Goméz JC, Tapia E (2007) Gene set enrichment analysis using non-parametric scores. In Advances in Bioinformatics and Computational Biology. BSB 2007. Lecture Notes in Computer Science, Sagot MF, Walter MEMT (eds), Vol. 4643. Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-73731-5_2

Bai B, Hales CM, Chen PC, Goaz Y, Dammer EB, Fritz JJ, Wang X, Xia Q, Duong DM, Street C, et al (2013) U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci USA 110: 16562–16567. doi:10.1073/pnas.1310249110

Banks CA, Zhang Y, Miah S, Hao Y, Adams MK, Wen Z, Thornton JL, Florens L, Washburn MP (2020) Integrative modeling of a sin3/hdac complex sub-structure. Cell Rep 31: 107516. doi:10.1016/j.celrep.2020.03.080

Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, Schiegl J, Abraham Y, Becher I, Bergamini G, et al (2011) Chemoproteomics profiling of hdac inhibitors reveals selective targeting of hdac complexes. Nat Biotechnol 29: 255–265. doi:10.1038/nbt.1759

Barnes CE, English DM, Cowley SM (2019) Acetylation & co: An expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 63: 97–107. doi:10.1042/EBC20180061
CIDB interacts with the MLL3/4 complexes

Kanehisa M, Goto S (2000) Kegg: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 28: 27–30. doi:10.1093/nar/28.1.27

Kruchenko PV, Tolstosurov MV, Park PJ (2008) Design and analysis of chip- seq experiments for DNA-binding proteins.
Nat Biotechnol 26: 1351–1359. doi:10.1038/nbt.1508

Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data.
Nat Methods 9: 145–151. doi:10.1038/nmeth.1828

Kuhn RM, Haussler D, Kent WJ (2013) The ucsc genome browser and associated tools.
Brief Bioinform 14: 144–161. doi:10.1093/bib/bbs038

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, et al (2016) Enrichr: A comprehensive gene set enrichment analysis web server 2016 update.
Nucleic Acids Res 44: W90–W97. doi:10.1093/nar/gkw377

Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the msi3 corepressor mediate mitotic transcriptional repression.
Cell 89: 349–356. doi:10.1016/s0092-8674(00)80215-9

Lai R, Lee JE, Jang Y, Wang L, Peng W, Ge K (2017) Mll3/mll4 are required for ccb/p300 binding on enhancers and super-enhancer formation in brown adipogenesis.
Nucleic Acids Res 45: 6388–6403. doi:10.1093/nar/gkx234

Law CW, Chen Y, Shi W, Smyth GK (2014) Voom: Precision weights unique linear model analysis tools for rna-seq read counts.
Genome Biol 15: R29. doi:10.1186/gb-2014-15-2-r29

Lee JE, Wang C, Xu S, Cho KY, Wang L, Feng X, Baldrige A, Sartorelli V, Zhuang L, Peng W, et al (2013) H3K4 mono- and di-methyltransferase mll4 is required for enhancer activation during cell differentiation.
Elife 2: e01503. doi:10.7554/eLife.01503

Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform.
Bioinformatics 25: 1754–1760. doi:10.1093/bioinformatics/btp324

Li H, Handsaker B, Wysoker A, Nussbaum R,2008}100486. doi:10.1021/bi080158p

Maile TM, Israel-Tomasevic A, Cheung T, Guler GD, Tindell C, Masselot A, Liang J, Zhao F, Trojer P, Classon M, et al (2015) Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method.
Mol Cell Proteomics 14: 1148–1158. doi:10.1074/mcp.M114.046573

Marmorstein R, Zhou MM (2014) Writers and readers of histone acetylation: Structure, mechanism, and inhibition.
Cold Spring Harb Perspect Biol 6: a018762. doi:10.1101/cshperspect.a018762

Martinez-Jimenez F, Muinos F, Sentis I, Deu-Pons J, Reyes-Salazar I, Arnedo-Martinez J, El-Mezgueldi M, Martino F, et al (2015) Structural and functional characterization of a cell cycle associated histadec1/2 complex reveals the structural basis for complex assembly and nucleosome targeting.
Nucleic Acids Res 43: 2033–2044. doi:10.1093/nar/gkv068

https://doi.org/10.26508/lsa.202201572 vol 5 | no 11 | e202201572
MidAC interacts with the ML3/4 complexes

Wang et al.