A Review of Clinical Studies of Brand-name and Generic Drugs Used in Arrhythmia

Kaoru Ito¹, Shunya Ikeda¹², Masaki Muto²

Abstract
The objective of this study was to conduct a literature review comparing oral brand-name and generic drugs used for arrhythmia and to summarize the relevant clinical evidence. Using the PubMed and Ichushi databases, we searched for articles comparing brand-name and generic drugs and categorized them according to the Vaughan Williams classification. For assessment, we divided the articles into affirmative and unfavorable groups according to the authors’ positions concerning generic substitution. In addition, we evaluated the evidence levels of the articles.

Twenty articles were reviewed in this study, of which 14 were classified as affirmative and six as unfavorable. Of the affirmative articles, one was graded as evidence level I and six as evidence level II. Among the unfavorable articles, one was graded as evidence level II, four as evidence level V, and one as evidence level VI; no articles were graded as evidence level I. The affirmative articles included an evidence level I study report on drugs used for cardiovascular disease such as β-blockers; this evidence level demonstrates a significantly high level for articles pertaining to clinical efficacy and safety. Unfavorable articles tended to have lower evidence level than affirmative articles because many of these articles were case reports with a small number of subjects or descriptive studies, without details regarding the study methods and patients.

Keywords: Brand-name drugs, Generic drugs, Evidence level, Antiarrhythmic drugs

1. Introduction
In Japan, the national medical expenditure reached a record of 38.4 trillion yen in 2012 and is expected to greatly increase in the future (Ministry of Health, Labour and Welfare [MHLW], 2013). In October 2011, MHLW estimated the national health expenditure in 2025 to be approximately 52 trillion yen, which is far beyond the 30-trillion-yen level in previous years (MHLW, 2011). In comparison with brand-name drugs, generic drugs are less expensive and equally safe. In this era of aging and increasing medical costs, the use of generic drugs could help control drug costs and support our national healthcare system. However, as of March 2013, the volume-based share of generic drugs remained 29.4% according to the “Recent trends of medical prescription fees” (MHLW, 2013).

According to the research on the validation of
medical service fee reforms published by the Central Social Insurance Medical Council. "drugs with strong pharmacological action and a narrow therapeutic index" was cited as a reason for medical practitioners avoiding the use of generic drugs for inpatients (Central Social Insurance Medical Council, 2013). Filing of generic drugs does not require clinical trials involving patients, and the equivalency of these drugs to their brand-name counterparts is only demonstrated using bioequivalent data obtained from healthy subjects. Therefore, some concerns remain such that generic drugs may cause unexpected blood level changes because of differences in the active ingredients, impurities, manufacturing methods, additives, or other factors compared to brand-name drugs.

The 8th Generic Medicines Quality Information Review noted that the publication of a study on amiodarone hydrochloride that questioned the efficacies of generic drugs had provoked domestic clinical sites to express their mistrust in generic substitutions (Generic Medicines Quality Information Review, 2012). Subsequently, the review approved the quality of an amiodarone hydrochloride tablet following a dissolution test (Generic Medicines Quality Information Review, 2012). However, in Japan, no evidence has demonstrated the efficacy and safety of generic antiarrhythmic drugs, which results in on-site concerns regarding the use of generic drugs to remain.

The objective of this study was to conduct a literature review comparing oral brand-name and generic drugs used for arrhythmia and to summarize the relevant clinical evidences.

2. Methods

1) Eligibility criteria

In this study, we covered a wide range of articles comprising not only specific study designs such as randomized controlled trials but also brief reports for comprehensive evaluation. The target drugs were oral formulations identical to antiarrhythmic drugs listed in the Vaughan Williams classification (VW classification), which is commonly used for the classification of antiarrhythmic drugs in Japan (2008 Joint Research Report, 2009). Parenteral products were excluded from this research. β-blockers approved for arrhythmia treatment were included.

2) Study selection

We conducted our search using the MEDLINE/PubMed and Igaku Chuo Zasshi/Ichushi-WEB databases (last research: January 2014). We used a combination of medical subject headings and keywords, and focused on the terms "generic drug" and "antiarrhythmic." The search formulas were as followed:

MEDLINE (database: PubMed)
(1) “anti-arrhythmia agents” [MeSH Terms] OR (“anti-arrhythmia” [All Fields] AND “agents” [All Fields] OR “anti-ar-rhythmia agent” [All Fields] OR (“anti” [All Fields] AND “arrrhythmic [All Fields]”) OR “antiarrhythmic” [All Fields] OR “anti-ar-rhythmia agents” [Pharmacological Action]
(2) “drug, generic” [MeSH Terms] OR (“drug [All Fields] AND “generic” [All Fields]) OR “generic drug” [All Fields] OR “generic” [All Fields]
(3) (1) AND (2)
A Review of Clinical Studies of Brand-name and Generic Drugs Used in Arrhythmia

Igaku Chuo Zasshi (database: Ichushi-WEB)
(1) 心臓血管作用剤/TH
(2) 同種医薬品/TH OR 後発医薬品/AL
(3) (1) AND (2)

We only included studies published in Japanese and English.

3) Data collection
Two authors (KI and SI) independently reviewed all titles and abstracts for eligibility using pre-defined criteria. All papers were considered as potentially eligible by one or two reviewers. Data were extracted into a pre-designed, structured Microsoft Excel® (Microsoft Corp., Redmond, WA, USA) form by one reviewer and appraised for completeness and accuracy by a second reviewer. Disagreements were resolved by discussion and, if necessary, the involvement of a third reviewer (MM).

4) Review procedure
(1) Article extraction
To extract clinical research articles about generic drugs from the retrieved articles, we excluded articles with the following characteristics: in vitro study, animal study, study of drugs other than oral administration products, comparison between brand-name drugs, no description of the generic drug, no description of clinical research, focus on cost-effectiveness and malpractice without a description of clinical research, and healthy subject study. When articles containing the same data were published in different journals by the same authors, the article that described the study in greater detail was used. Case reports were not excluded.

(2) Grouping
Based on the contents of the articles extracted as described above, articles that met any of the following criteria listed below were classified into either affirmative article group or unfavorable article group.
(1) A difference in pharmacokinetics was found between brand-name and generic drugs.
(2) The brand-name drug was considered clinically more effective than the generic drug.
(3) The generic drug caused adverse events more frequently than the brand-name drug.

(3) Data summary
We summarized the following data in tabular form: first author, year of publication, country where authors were located, study design, target formulation (brand-name and generic drug), target patients, observation period (or dose frequency), major evaluation items, and results. Afterwards, the evidence level of each article was determined based on the classification of evidence levels in the Handbook of Making Clinical Guidelines by Minds 2007 (Fukui et al., 2007).
In addition, we investigated the distributions of affirmative and unfavorable articles and of evidence levels according to the authors’ location. The Wilcoxon rank-sum test was conducted to statistically analyze the evidence level distributions in the affirmative and unfavorable article groups. A two-tailed p-value <0.05 was
considered significant. Data were processed using IBM® SPSS® Statistics software version 21 (SPSS, Inc., Chicago, IL, USA).

As this was a review, no particular consideration was given to ethical aspects.

3. Results

1) Target articles (Figure 1)

Our keyword search identified a total of 509 articles. After applying the preset exclusion criteria, 20 articles were extracted. Based on the contents, 14 articles were considered affirmative and six were considered unfavorable.

2) Summary of articles (Figure 2, Tables 1 and 2)

(1) First author

Through our MEDLINE search, we ensured that no articles by the same authors were included in either the affirmative or unfavorable group. However, an article by Kesselheim et al. (2008) cited five articles by authors that had articles in the affirmative group.

Through our ICHUSHI search, we observed that although all affirmative articles were written by different authors, two articles shared a coauthor. All unfavorable articles were reported by different authors.

(2) Year of publication

The oldest article was published in 1976. Among the included articles, none were published between 1976 and 1986. Two affirmative articles and two unfavorable articles were published between 1986 and 1989. Of the articles published in the
A Review of Clinical Studies of Brand-name and Generic Drugs Used in Arrhythmia

1990s, three were in the affirmative group and 1 in the unfavorable group. Five affirmative and three unfavorable articles were published in the 2000s, and three affirmative articles and no unfavorable articles were published in the 2010s.

(3) Countries where first authors were located
The majority of articles (n=eight; five affirmative and three unfavorable) were reported from the USA and four (three affirmative and one unfavorable) were reported from Japan. Four articles were reported from Europe, including from Israel, of which one unfavorable article was reported from the UK. One article was reported from Taiwan, the only Asian country other than Japan.

(4) Target drugs
Amiodarone hydrochloride (class III) was the most commonly evaluated drug with four reports. This was followed by atenolol (class II) with three reports. Thirteen of the 20 articles studied class II or III drugs according to the VW classification. No reports of class Ib drugs were identified.

(5) Study subjects
Seven of the 20 articles targeted patients with arrhythmia (five affirmative and two unfavorable). Six studies targeted patients with hypertension (five affirmative and one unfavorable). One article that included a questionnaire survey of arrhythmia specialists was included in the unfavorable group.

(6) Observation period
In the affirmative group, the longest observation period was nine years and two months in a prospective cohort study. Four studies did not specify an observation period. In the unfavorable group, five out of six articles did not specify an observation or treatment period.

(7) Major evaluation items
In the affirmative group, three articles evaluated clinical conditions, including subjective symptoms, electrocardiogram, heart rate, and blood pressure; three articles evaluated safety, including adverse events after switching to a generic drug from a brand-name drug; six articles evaluated pharmacokinetics, including the area under the blood concentration-time
Table 1 Outline of the affirmative articles

1st Author	Published Year	Location	Study Design	Evidence Level	Target Formulation	Target Patient	Observation Period	Major Evaluation Item	Results
Aseyamagi H	2012	Japan	CS I	IVb	Amiodarone	17 arrhythmia patients	Unclear	Clinical Symptoms/Safety	After switching to GE, new adverse events or notable changes in subjective symptoms, electrocardiogram findings, chest X-rays, and hepatic function were not observed.
Tanaka M	2011	Canada	CS I	IVb	Amiodarone	60,220 arrhythmia patients with atrial fibrillation	8 years	Safety	Cohort study using claim data. In 60,220 arrhythmia patients with atrial fibrillation, 2,586 patients took BD and 0.25% took GE. The incidence of thyroid gland deficiency was not significant.
Kasnichlweim AS	2008	US	SRMA I		Metoprolol, Atentol, Propranolol, Verapamil, Diltiazem, Procainamide	Unclear	Unclear	Clinical Symptoms	Identified 47 articles regarding 9 subclasses of cardiovascular medication, including β-blockers, to summarize clinical evidence comparing BD and GE. The aggregate effect size was -0.02 (95% confidence interval, -0.15 to 0.10) and did not indicate the superiority of BD over GE.
Taschishita Y	2008	Japan	Case Report V		Disopyramide	10 outpatients	Unclear	PK	In a TDM, no differences in the average blood concentrations were observed between BD and GE and no arrhythmic events were noted.
Ahrens W	2007	Germany	CS IVb		Metoprolol	48,671 patients with stable angina (health insurance companies in Germany)	4 years	Safety	Claim database was used to compare hospitalization rates from stroke in BD and GE users via logistic regression analysis. The odds ratio of stroke (considering previous history of stroke and risk of thromboembolic disease) did not differ noticeably between the groups (North Germany OR: 1.04, Bremen: OR: 1.08). Compared the incidence rates of AF, hospitalization, and emergency hospitalization in 114 arrhythmia patients with atrial fibrillation who used a BD for more than 18 months but switched to a GE for economic reasons. Although the incidence of emergency room visitation was higher among BD users than GE users, no differences in the incidence of electrical cardioversion and/or pacemaker implantation were observed.
Amit G	2004	Israel	CS IVb		Propranolol	114 arrhythmia patients with atrial fibrillation	18 months	Safety	TDM revealed no significant difference in the average blood concentrations of amiodarone and desethylamiodarone between BD and GE users.
Saare AM	2002	UK	CS IVb		Amiodarone	138 arrhythmia patients	2 years	PK	No endpoints were clinical differences or new adverse events.
Sassen JJ	1997	UK	RCT II		Verapamil	16 hypertension patients aged 60 years	7-15 days	PK	No significant differences in blood pressure, heart rate, ECG-P-R interval, or PK (CL, Cmax, Tmax) between BD and GE.
Chiang HT	1995	Taiwan	RCT II		Atentol	23 hypertension patients	4 weeks	Clinical Symptoms	No noticeable differences in heart rate and blood pressure between BD and GE groups.
Rostock G	1992	Germany	RCT II		Atentol	12 hypertension patients	Single dose	PK	AUC did not differ significantly between BD and GE.
Carter BL	1989	US	RCT II		Propranolol	15 hypertension patients	12 weeks	Clinical Symptoms	No significant difference in blood pressure variation between BD and 2 types of GE.
Kammer RJ	1987	US	RCT II		Procainamide	10 arrhythmia patients	Single dose	PK	No significant difference in blood procainamide concentration between BD and GE.
Soeterbock AM	1976	Netherlands	RCT II		Quinidine	24 ME patients	Unclear	PK	No significant difference in blood quinidine concentration between BD and GE.

BD: brand-name drug, CS: comparative study, GE: generic drug, SRMA: systematic review and meta-analysis, TDM: therapeutic drug monitoring, AF: atrial fibrillation, RCT: randomized controlled trial study, AUC: area under the (blood concentration-time) curve, CL: clearance, Cmax: maximum drug concentration, Tmax: maximum drug concentration time, ME: myocardial infarction, OR: odds ratio

The table shows a summary of studies comparing different cardiovascular medications, focusing on arrhythmia patients and clinical outcomes. The table highlights differences in clinical outcomes, safety, and adverse events between brand-name drugs and generics.

curves (AUC) and maximum blood concentration (Cmax) of the active ingredient and its biometabolites; and two articles evaluated both clinical conditions and safety. In the unfavorable group, there were no articles evaluating clinical conditions. However, three articles addressed pharmacokinetics and safety.
A Review of Clinical Studies of Brand-name and Generic Drugs Used in Arrhythmia

Table 2 Outline of the unfavorable articles

1st Author	Publication Year	Location	Study Design	Evidence Level	Target Formulation	Target Patient	Observation Period	Major Evaluation Item	Results
Yokoshima T	2004	Japan	Case Report	V	Atenolol	1 hypertrophic	3 months	Safety	Experienced drug-induced liver disease from the addition of GE after switching from BD to GE.
Pollak PT	2001	Canada	Case Report	V	Amiodarone	4 arrhythmia	Unclear	PK	Increased blood amiodarone concentration after switching from BD to GE in 4 cases.
Reiffel JA	2000	US	Expert Opinion	VI	Amiodarone	130 clinical	Unclear	Safety	Conducted questionnaire survey to obtain more information about frequencies of adverse effects from GE. Thirty-three of 66 clinicians experienced some types of adverse effects with GE.
Carter BL	1983	US	RCT	II	Verapamil	8 healthy patients and 8 aging patients with hypertension	Unclear	PK	Cmax and AUC levels were elevated in aging patient who took GE versus those using BD (p < 0.02).
Grebl BP	1989	US	Case Report	V	Procainamide	A 52 year-old patient with ventricular tachycardia (Caucasian man)	Unclear	PK	Reduced plasma procainamide and n-acetylprocainamide concentrations after switching from BD to GE.
Sanderson JH	1986	UK	Cross-sectional Study	IVb	Procainamide	1788 hypertension patients (66-79 years)	Unclear	Safety	Report of a part of a RCT implemented by the author’s group. The GE group had an elevated baseline relative to the BD group (p < 0.0001).

BD: brand-name drug; GE: generic drug; RCT: randomized controlled trial study

(8) Results

Eleven of 14 affirmative articles reported that there were no statistically significant differences between brand-name and generic drugs. The other three articles concluded that there were no significant differences between the products based on their evaluation results, although no statistical analyses were performed. Two of the six unfavorable articles concluded that there were statistically significant differences between the brand-name and generic drugs.

3) Classification of the evidence levels in clinical studies (Table 3)

Twenty target articles were classified based on evidence levels from clinical studies. In the affirmative group, one article was classified as level I, and six articles were classified as level II. In the unfavorable group, no article was classified as level I, whereas one article was classified as level II, three were IVb, one was V, and one was VI. As a result, the evidence levels were significantly higher in the affirmative group than in the unfavorable group (p = 0.026). The affirmative article by Kesselheim et al. (2008) received the highest evidence level classification in this study. Although Kesselheim et al. (2008) was included in both an affirmative and unfavorable article, we considered it an affirmative article based on the final results. The authors reported the results of a meta-analysis of the clinical equivalency of collected articles in which clinical efficacies were compared between brand-name and generic drugs used to treat cardiovascular diseases. In their report, effect sizes were calculated using data from 47 collected articles. Although their analysis included β-blockers, which are used as antiarrhythmic agents, the aggregate effect size was −0.03 (95% confidence interval, −0.15 to 0.08) for eight drug classes, demonstrating clinical equivalency between brand-name and generic drugs.

Five of the seven articles classified as level II...
included pharmacokinetics evaluations. Four articles from the USA were classified as level I or II, whereas all Japanese articles were classified as level V or VI.

4. Discussion

In this study, we conducted a systematic literature review to collect a broad range of articles describing clinical studies on generic antiarrhythmic drugs and subsequently evaluated the scientific basis of each article in terms of the evidence level. Among the collected articles, affirmative articles included studies that analyzed sufficiently large panels of patients, including a meta-analysis conducted using integrating data from multiple randomized controlled studies comparing brand-name and generic drugs for cardiovascular diseases as well as case-control studies using receipt databases. Case reports on only a few patients and descriptive studies comprised majority of the identified unfavorable articles; these reports generally lacked detailed descriptions of study methods and patient information. A comparison of the evidence levels of the two article groups indicated a lower level for the unfavorable article group than for the affirmative article group.

Based on their contents, the 20 analyzed articles were divided according to clinical symptoms, pharmacokinetics, and safety. As a result, nine and eight articles were categorized as pharmacokinetics (of which two also evaluated clinical symptoms in parallel) and safety, respectively. However, only five articles were categorized as clinical symptoms (of which two also evaluated pharmacokinetics in parallel). One likely reason for this imbalance is that a large proportion of the collected articles concerned amiodarone. Antiarrhythmic drugs have narrow blood concentration ranges and often require the use of an optimal blood level with large modifications to the standard administration method depending on individual patient conditions. Particularly for amiodarone, adverse and occasionally fatal reactions occur frequently during long-term oral treatment. Therefore, generic forms of amiodarone, which are manufactured differently, might have drawn attention. In addition, the comparison of a smaller number of articles categorized as clinical symptoms versus those categorized as pharmacokinetics or safety suggests that clinicians are most concerned about the “safety” of generic drugs.

Of the articles investigated in this study, the majority was published between 2000 and 2004, another finding that was attributed to amiodarone. In the USA, the first generic version of amiodarone was released in 1998 (FDA orange book). Two years thereafter, Reiffel and Kowey (2000) reported the results of a questionnaire survey of 130 arrhythmia specialists in the USA, which included questions regarding adverse events with amiodarone. This paper did not contain detailed information about the questionnaire.

Table 3 Evidence levels of clinical studies

	I	II	III	IVa	IVb	V	VI	Total
Affirmative group	1	6	0	1	5	1	0	14
Unfavorable group	0	1	0	0	1	3	1	6
Total	1	7	0	1	6	4	1	20

\(p = 0.026; \text{Wilcoxon rank-sum test}\)
A Review of Clinical Studies of Brand-name and Generic Drugs Used in Arrhythmia

survey method or patient information pertinent to the adverse events. During the following year, Pollak (2001) reported that the blood levels of amiodarone and des-amiodarone (active metabolite of amiodarone) clearly varied among four patients who switched from a brand-name to a generic form of amiodarone. However, the article also failed to describe certain details, such as the study method and patient background, and did not give useful information about the relationship between generic drugs and patient background factors.

The articles on safety included affirmative articles that reported comparative studies with brand-name drugs and unfavorable articles comprising case reports. Tsadok et al. (2011) and Ahrens et al. (2007) comparatively assessed the incidence of adverse effects using claims databases from their respective countries. These observation studies might have been conducted in response to specific concerns of medical staff on generic drugs.

In the evidence level evaluation, the affirmative articles were found to have a significantly higher evidence level compared to the unfavorable articles (p = 0.026). Kesselheim et al. (2008), whose article achieved the highest evidence level among the articles evaluated in this study, conducted a meta-analysis on the clinical effects of brand-name and generic drugs used to treat cardiovascular diseases (e.g., β-blockers and calcium blockers) that had been reported in articles published between 1984 and 2008, and demonstrated the clinical equivalence of brand-name and generic drugs. On the other hand, three out of six unfavorable articles were case reports or expert opinions with evidence levels only as high as V. The cases found in the case reports included those in which the disease itself was uncommon, those where the disease was not uncommon but featured a rare symptom or course, cases in which special, uncommonly performed therapies were effective, and reports of adverse events. Meanwhile, case reports may involve information bias (i.e., the reported treatment might work only for a specific type of patient) and “chance” factors (i.e., the impact of an accidental treatment or event). Therefore, it is difficult to judge whether the therapeutic effects of the reported treatment are superior compared to existing treatments based on case reports.

Of the 20 articles analyzed in the present study, four were case reports. These included three unfavorable reports of adverse effects due to additives not found in brand-name drugs (Yokoshima et al., 2004) and changes in the blood drug concentration that were not observed with brand-name drugs (Reiffel and Kowey, 2000; Grubb, 1989). These case reports were likely published with the intent to report events that have never been encountered with brand-name drugs. Regardless of the evidence level, such safety-related information is beneficial when, for example, a medical professional selects and uses a particular product from among many generic drugs or dispenses a generic drug as an alternative to the brand-name drug.

However, the magnitude and causality of risk cannot be evaluated from the results of a single study. Fact-based and evidence-based information should be collected and examined to remove concerns and suspicions that medical professionals and patients have and to allow informed use of generic drugs. To achieve this,
surveys and studies that use claims database information (e.g., disease name, diagnosis period, sex, age, and prescription) to evaluate the efficacy and safety of generic drugs will be very beneficial. In Canada, Tsadok et al. (2011) conducted a cohort study of claims data that contained information from 60,220 patients and reported no significant difference between brand-name drugs and generic drugs in terms of the incidence of thyroid dysfunction due to amiodarone (hazard ratio, 0.97; 95% confidence interval, 0.87-1.08). In Germany, Ahrens et al. (2007) assessed the rate of hospitalization due to cerebral infarction among patients using brand-name and generic drugs. In addition, they conducted analyses that considered the history of cerebral embolism and risk of embolism onset using claims databases from three German medical insurance companies and subsequently reported a lack of differences between brand-name drugs and generic drugs. Similar evaluations of generic drugs using receipt databases are being conducted in overseas countries and these epidemiological studies might also be necessary in Japan.

Study limitations

In this study, the articles were categorized based on content as affirmative or unfavorable according to our independently developed criteria and were evaluated in terms of the evidence level according to the study design. The classification method used for the affirmative and unfavorable articles in this study was not generalized and/or unambiguous. In addition, we did not distinguish articles by indication because only active ingredients belonging to the VW classification were of interest in this study. For example, articles on studies of hypertensive patients were included in studies of antiarrhythmic drugs such as atenolol and the evaluation was therefore not limited to antiarrhythmic drugs.

It should be noted that generic drug promotion policies were not considered in the present study. We omitted this consideration out of an expectation that these policies were unlikely to have any appreciable effect on clinical studies of generic drugs because systems and regulations, based on the Drug Price Competition and Patent Term Restoration Act (informally known as the Hatch-Waxman Act) (USA) and the Action Program for the Promotion of Safe Use of Generic Drugs (Japan), were mainly for the early introduction of generic drugs or environmental improvements for quality, supply systems, and information provision systems.

In general, an “unfavorable result” is less likely to be published compared to a “positive result,” which is often referred to as “publication bias” (Easterbrook et al., 1991). In the case of generic drugs, “unfavorable results” or reports of “no significant difference” from brand-name drugs appear more likely to be published compared to a “non-significant difference.” In addition, this study included a case report describing a rare condition never encountered with brand-name drugs. Therefore, it is possible that a simple comparison of the evidence levels of all study designs leads to an evaluation that is unfavorable for brand-name drugs.

In the future to minimize the effect of bias, analyses should include, for example, the scoring of a target number of patients and the presence or absence of randomization in observational studies. It should also include observational studies comparing the efficacy and safety of generic
A Review of Clinical Studies of Brand-name and Generic Drugs Used in Arrhythmia

of the authors only.

Reference
Ahrens W, Hagemeier C, Mühlbauer B et al. (2007) "Hospitalization Rates of Generic Metoprolol Compared with the Original Beta-blocker in an Epidemiological Database Study," *Pharmacoepidemiology and Drug Safety*, 16 (12) : 1298-1307.

Amit G, Rosen A, Wagshal AB et al. (2004) "Efficacy of Substituting Innovator Propafenone for Its Generic Formulation Inpatients with Atrial Fibrillation," *The American Journal of cardiology*. 93 (12) : 1558-1560.

Aoyanagi H, Okishige K, Miwa N et al. (2012) "The Evaluation of Efficacy and Safety after Switched from Brand Name Drug to Generic Drug of Amiodarone Hydrochloride Tablet," *Therapeutic Research*. 33 (1) : 103-108, in Japanese.

Carter BL, Gersema LM, Williams GO et al. (1989) "Once-daily Propranolol for Hypertension: A Comparison of Regular-release, Long-acting, and generic formulations," *Pharmacotherapy*. 9 (1) : 17-22.

Carter BL, Noyes MA and Demmler RW (1993) "Differences in Serum Concentrations of and Responses to Generic Verapamil in the Elderly," *Pharmacotherapy*. 13 (4) : 359-368.

Central Social Insurance Medical Council (2013) "Summarize the Results of Investigation Usage Survey of Generic Drug after Revised the Medical and Technical Service Payment," in Japanese (http://www.mhlw.go.jp/file/06-Seisakujouhou-10800000-Iseikyoku/0000058316.pdf) Accessed 2013/11/11.

Chiang HT, Hou ZY, Lee DK et al. (1995) "A Comparison of Antihypertensive Effects between Two Formulations of Atenolol: Tenolol and Tenormin," *Chinese Medical Journal (Taipei)*. 55 (5) : 366-370.

Easterbrook PJ, Berlin JA, Gopalan R et al. (1991) "Publication Bias in Clinical Research," *Lancet*. 337 (8746) : 867-872.

Fukui T, Yoshida M and Yamaguchi N (2007) "Handbook of Making Clinical Guideline by Minds 2007," Igakushoin Co., Ltd., in Japanese.

Generic Medicines Quality Information Review (2012) "The Summary of Meeting Minutes of the 8th Generic Medicines Quality Information Review meeting in February 22, 2012," in Japanese (http://www.info.pmda.go.jp/generic/generic_20120222.html) Accessed 2013/4/26.

Generic Medicines Quality Information Review (2012) "The Summary of Meeting Minutes of the 9th Generic Medicines Quality Information Review meet-
Grubb BP (1989) "Recurrence of Ventricular Tachycardia after Conversion from Proprietary to Generic Procainamide," The American Journal Cardiology. 63 (20): 1532-1533.

Kasmer RJ, Nara AR, Green JA et al. (1987) "Comparable Steady-state Bioavailability between Two Preparations of Conventional-release Procainamide Hydrochloride." Drug Intelligence and Clinical Pharmacy. 21 (2): 183-186.

Kesselheim AS, Misono AS, Lee JL et al. (2008) "Comparison of Plasma Concentrations for Two Amiodarone Products." The Annals of Pharmacotherapy. 36 (11): 1682-1685.

Kasmer RJ, Nara AR, Green JA et al. (1987) "Comparable Steady-state Bioavailability between Two Preparations of Conventional-release Procainamide Hydrochloride." Drug Intelligence and Clinical Pharmacy. 21 (2): 183-186.

Tsadok MA, Jackevicius CA, Rahme E et al. (2011) "Amiodarone-induced Thyroid Dysfunction: Brand-name Versus Generic Formulations." Medical Association Journal. 183 (12): E817-E823.

Soeterboek AM, Van Thiel M and Eng C (1976) "Serum Quinidine levels after Chronic Administration of Four Different Quinidine Formulations." Journal of International Medical Research. 4 (6) : 393-401.

Tanaka M, Miyake S and Kurata A (2011) "The Evaluation of Efficacy and Safety after Switched from Brand Name Drug to Generic Drug of Amiodarone Hydrochloride Tablet." Medical Consultation and New Remedies. 48 (9) : 978-983, in Japanese.

Tsuchishita Y, Nunokawa S, Ito R et al. (2008) "Clinical Evaluations of Generic Drug: Comparison of Blood Levels of Disopyramide." Japanese Journal of Generic Medicines. 2 (Suppl. 6) : 2, in Japanese.

Yokoshima T, Tokunaga Y, Sato M et al. (2004) "A Case Report of Drug Hepatopathy was Caused by An Additive in Generic Drug ALCENOL." Journal of Iwate Prefectural Hospital Association. 43 (2) : 167-171, in Japanese.

(Received October 29, 2014, Accepted November 11, 2015)

Correspondence: Kaoru Ito
kaoruito1@gmail.com
A Review of Clinical Studies of Brand-name and Generic Drugs Used in Arrhythmia

経口抗不整脈薬の先発医薬品とジェネリック医薬品の臨床比較研究の文献レビュー

伊藤かおる 1)，池田 俊也 1)2)，武藤 正樹 2)

経口抗不整脈薬の先発医薬品とジェネリック医薬品を比較した臨床試験を網羅的に把握し、その内容のレビューと研究デザインをもとにエビデンスレベルについて評価した。文献は、PubMedと医学中央雑誌を検索し、Vaughan Williamsの抗不整脈薬の分類表に表記されている薬剤を対象とした。また、ジェネリック医薬品に対する著者の記載内容から肯定的文献と否定的文献に分けて評価を行った。さらに収集した文献のエビデンスレベルを評価した。結果、20文献が今回の調査対象となった。肯定的文献が14文献、否定的文献が6文献だった。肯定的文献にはβブロッカーを含む循環器領域の治療薬を対象にしたエビデンスレベルIに評価される研究があるなど、臨床効果や安全性を評価した文献のエビデンスレベルが高いことが明らかになった。否定的文献は、少数症例を対象にした症例報告や記述研究による報告が多く、研究方法や患者の詳細な情報について記述がないものもあったことから、ジェネリック医薬品に対して否定的な文献の方が肯定的な文献よりもエビデンスレベルが低いく判断された。

キーワード 先発薬品、ジェネリック薬品、臨床的同等性、エビデンスレベル、抗不整脈薬

1) 国際医療福祉大学大学院薬学研究科
2) 国際医療福祉大学大学院医療福祉学研究科