Aspects of spin-dependent dark matter search

V.A. Bednyakov
Laboratory of Nuclear Problems, Joint Institute for Nuclear Research,
141980 Dubna, Russia; E-mail: Vadim.Bednyakov@jinr.ru

The Weakly Interacting Massive Particle (WIMP) is the main candidate for the relic dark matter. A set of exclusion curves currently obtained for cross sections of the spin-dependent WIMP-proton and WIMP-neutron interaction is given. A two-orders-of-magnitude improvement of the sensitivity of the dark matter experiment is needed to reach the SUSY predictions for relic neutralinos. It is noted that near-future experiments with the high-spin isotope ^{73}Ge can yield a new important constraint on the neutralino-neutron effective coupling and the SUSY parameter space.

A. Introduction

Nowadays the main efforts in the direct dark matter search experiments are concentrated in the field of so-called spin-independent (or scalar) interaction of a dark matter particle or the Weakly Interacting Massive Particle (WIMP), with a nucleus. The lightest supersymmetric (SUSY) particle (LSP) neutralino is assumed here as a best WIMP candidate. It is believed that this spin-independent (SI) interaction of dark matter (DM) particles with nuclei makes a dominant contribution to the expected event rate of detection of these particles. The reason is the strong (proportional to the squared mass of the target nucleus) enhancement of SI WIMP-nucleus interaction. The results currently obtained in the field are usually presented in the form of exclusion curves (see for example Fig. 1). For the fixed mass of the WIMP the values of the cross section due to scalar elastic WIMP-nucleon interaction located above these curves are already excluded experimentally. There is also the DAMA closed contour which corresponds to the first claim for evidence for the dark matter signal due to the positive annual modulation effect [5].

In the paper we consider some aspects of the spin-dependent (or axial-vector) interaction of the DM WIMP with nuclei. There are at least three reasons to think that this spin-dependent (SD) interaction could also be very important. First, contrary to the only one constraint for SUSY models available from scalar WIMP-nucleus interaction, the spin WIMP-nucleus interaction supplies us with two such constraints (see for example [6] and formulas below). Second, one can notice [1, 7] that even with a very accurate DM detector (say, with sensitivity 10^{-5} events/day/kg) which is sensitive only to the WIMP-nucleus scalar interaction (with spinless target nuclei) one can, in principle, miss a DM signal. To safely avoid such a situation one should have a spin-sensitive DM detector, i.e. a detector with spin-non-zero target nuclei. Finally, there is a complicated (and theoretically very interesting) nucleus spin structure, which possesses the so-called long q-tail form-factor behavior for heavy targets and heavy WIMP. Therefore, the SD efficiency to detect a DM signal is much higher than the SI efficiency, especially for the heavy target nucleus and WIMP masses [8].

B. Zero Momentum Transfer

A dark matter event is elastic scattering of a relic neutralino χ (or $\tilde{\chi}$) from a target nucleus A producing a nuclear recoil E_R which can be detected by a suitable detector. The differential event rate in respect to the recoil energy is the subject of experimental measurements. The rate depends on the distribution of the relic neutralinos in the solar vicinity $f(v)$ and the cross section of neutralino-nucleus elastic scattering...
The differential event rate per unit mass of the target material has the form

$$\frac{dR}{dE_R} = N \frac{\rho_N}{m_\chi} \int_{v_{\text{min}}}^{v_{\text{max}}} dv f(v) v \frac{d\sigma}{dq^2}(v, q^2).$$ \hspace{1cm} (1)$$

The nuclear recoil energy $E_R = q^2/(2M_A)$ is typically about $10^{-6}m_\chi$ and $N = N'/A$ is the number density of target nuclei, where N' is the Avogadro number and A is the atomic mass of the nuclei with mass M_A. The neutralino-nucleus elastic scattering cross section for spin-non-zero ($J \neq 0$) nuclei contains coherent (spin-independent, or SI) and axial (spin-dependent, or SD) terms [8, 15, 16]:

$$\frac{d\sigma^A}{dq^2}(v, q^2) = \frac{\sum |M|^2}{\pi v^2(2J+1)} = \frac{S^A_{\text{SD}}(q^2)}{v^2(2J+1)} + \frac{S^A_{\text{SI}}(q^2)}{v^2(2J+1)} = \frac{\sigma^A_{\text{SI}}(0)}{4\mu_A v^2} F^2_{\text{SD}}(q^2) + \frac{\sigma^A_{\text{SI}}(0)}{4\mu_A v^2} F^2_{\text{SI}}(q^2).$$ \hspace{1cm} (2)$$
The normalized non-zero-momentum-transfer nuclear form-factors

\[F_{SD,SI}^2(q^2) = \frac{S_{SD,SI}^2(q^2)}{S_{SD,SI}^2(0)} \quad (F_{SD,SI}^2(0) = 1), \]

are defined via nuclear structure functions.

\[S_{SI}^A(q) = \sum_{L\text{ even}} |\langle J||C_L(q)||J\rangle|^2 \approx |\langle J||C_0(q)||J\rangle|^2, \]

\[S_{SD}^A(q) = \sum_{L\text{ odd}} (|\langle N||T_{L}^{el5}(q)||N\rangle|^2 + |\langle N||L_5^5(q)||N\rangle|^2). \]

The transverse electric \(T_{L}^{el5}(q) \) and longitudinal \(L_5^5(q) \) multipole projections of the axial vector current operator, scalar function \(C_L(q) \) are given in the form

\[T_L^{el5}(q) = \frac{1}{\sqrt{2L+1}} \sum_i \frac{a_0^i + a_1^i \tau_3^i}{2} \left[-\sqrt{LM_L,L+1}(q\vec{r}_i) + \sqrt{M_L,L-1}(q\vec{r}_i) \right], \]

\[L_L^5(q) = \frac{1}{\sqrt{2L+1}} \sum_i \left(\frac{a_0^i + a_1^i m_q^i \tau_3^i}{2(q^2 + m_q^2)} \right) \left[\sqrt{LM_L,L+1}(q\vec{r}_i) + \sqrt{M_L,L-1}(q\vec{r}_i) \right], \]

\[C_L(q) = \sum_i c_0^i j_L^i(q\vec{r}_i) Y_L^i(\hat{r}_i), \quad C_0(q) = \sum_i c_0^i j_0(q\vec{r}_i) Y_0^i(\hat{r}_i). \]

where \(a_{0,1} = a_n \pm a_p \) (see (10)) and \(M_{L,L'}(q\vec{r}_i) = j_{L'}(q\vec{r}_i)|Y_{L'}(\hat{r}_i)\rangle \langle L|^L \). The nuclear SD and SI cross sections at \(q = 0 \) (in (4)) have the forms

\[\sigma_{SI}^A(0) = \frac{4\mu_A^2 S_{SI}(0)}{(2J+1)} = \frac{\mu_A^2}{\mu_p^2} A^2 \sigma_{SI}^0(0), \]

\[\sigma_{SD}^A(0) = \frac{4\mu_A^2 S_{SD}(0)}{(2J+1)} = \frac{4\mu_A^2}{\mu_p^2} \frac{(J+1)}{J} \left\{ a_p(|S_p^A|^2) + a_n(|S_n^A|^2) \right\}^2 \]

\[= \frac{\mu_A^2}{\mu_p^2} \frac{(J+1)}{3J} \left\{ \sqrt{\sigma_{SD}^0(0)}|S_p^A|^2 + \text{sign}(a_p) a_n \sqrt{\sigma_{SD}^0(0)}|S_n^A|^2 \right\}^2. \]

Here \(\mu_A = \frac{m_N M_A}{m_N + M_A} \) is the reduced neutralino-nucleus mass. The zero-momentum-transfer proton and neutron SI and SD cross sections

\[\sigma_{SI}^p(0) = 4\mu_p^2 \bar{c}_0^p, \quad c_0 = c_0^{(p,n)} = \sum_q c_q f_q^{(p,n)}, \]

\[\sigma_{SD}^{p,n}(0) = 12\mu_p^2 \bar{a}_p^{p,n} \quad a_n = \sum_q A_q \Delta_q^{(p)}, \quad a_p = \sum_q A_q \Delta_q^{(n)} \]

depend on the effective neutralino-quark scalar \(C_q \) and axial-vector \(A_q \) couplings from the effective Lagrangian

\[\mathcal{L}_{\text{eff}} = \sum_q (A_q \cdot \bar{\chi} \gamma_\mu \gamma_5 \chi \cdot \bar{q} \gamma^\mu \gamma_5 q + C_q \cdot \bar{\chi} \chi \cdot \bar{q} q) + ... \]

and on the spin \((\Delta_q^{(p,n)}) \) and mass \((f_q^{(p,n)}) \) structure of nucleons. The factors \(\Delta_q^{(p,n)} \) parametrize the quark spin content of the nucleon and are defined by the relation \(2\Delta_q^{(p,n)} s^\mu \equiv \langle p,s|\bar{\psi}_q \gamma^\mu \gamma_5 \psi_q|p,s\rangle_{(p,n)} \). The total nuclear spin (proton, neutron) operator is defined as follows

\[S_{p,n} = \sum_i S_{p,n}(i), \]

and as a function of spin and mass. The factors \(\Delta_q^{(p,n)} \) parametrize the quark spin content of the nucleon and are defined by the relation \(2\Delta_q^{(p,n)} s^\mu \equiv \langle p,s|\bar{\psi}_q \gamma^\mu \gamma_5 \psi_q|p,s\rangle_{(p,n)} \). The total nuclear spin (proton, neutron) operator is defined as follows

\[S_{p,n} = \sum_i S_{p,n}(i), \]
where \(i \) runs over all nucleons. Further the convention is used that all angular momentum operators are evaluated in their \(z \)-projection in the maximal \(M_J \) state, e.g.

\[
(S) \equiv \langle N | S | N \rangle \equiv \langle J, M_J = J | S_z | J, M_J = J \rangle.
\]

Therefore \(\langle S_p(n) \rangle \) is the spin of the proton (neutron) averaged over all nucleons in the nucleus \(A \). The cross sections at zero momentum transfer show strong dependence on the nuclear structure of the ground state.

The relic neutralinos in the halo of our Galaxy have a mean velocity of \(\langle v \rangle \approx 300 \text{ km/s} \approx 10^{-3}c \). When the product \(q_{\text{max}}R \ll 1 \), where \(R \) is the nuclear radius and \(q_{\text{max}} = 2\mu_Av \) is the maximum momentum transfer in the \(\chi A \) scattering, the matrix element for the spin-dependent \(\chi A \) scattering reduces to a very simple form (zero momentum transfer limit):

\[
\mathcal{M} = C\langle N | a_p S_p + a_n S_n | N \rangle \cdot s_\chi = CA\langle N | J | N \rangle \cdot s_\chi.
\]

Here \(s_\chi \) is the spin of the neutralino, and

\[
\Lambda = \frac{\langle N | a_p S_p + a_n S_n | N \rangle}{\langle N | J | N \rangle} = \frac{\langle N | (a_p S_p + a_n S_n) \cdot J | N \rangle}{J(J+1)}.
\]

It is seen that the \(\chi \) couples to the spin carried by the protons and the neutrons. The normalization \(C \) involves the coupling constants, masses of the exchanged bosons and various LSP mixing parameters that have no effect upon the nuclear matrix element.

In the limit of zero momentum transfer \(q = 0 \) the spin structure function reduces to

\[
S^A_{\text{SD}}(0) = \frac{2J+1}{\pi} \Lambda^2 J(J+1).
\]

Perhaps the first model to estimate the spin content in the nucleus for the dark matter search was the independent single-particle shell model (ISPSM) used originally by Goodman and Witten and later in. The ground state value of the nuclear total spin \(J \) can be described by those of one extra nucleon interacting with the effective potential of the nuclear core.

There are nuclear structure calculations (including non-zero-momentum approximation) for spin-dependent neutralino interaction with helium \(^3\text{He} \), fluorine \(^19\text{F} \), sodium \(^23\text{Na} \), aluminium \(^27\text{Al} \), silicon \(^28\text{Si} \), chlorine \(^35\text{Cl} \), potassium \(^39\text{K} \), germanium \(^73\text{Ge} \), niobium \(^93\text{Nb} \), iodine \(^127\text{I} \), xenon \(^129\text{Xe} \) and \(^131\text{Xe} \), tellurium \(^123\text{Te} \) and \(^125\text{Te} \), lead \(^{208}\text{Pb} \). The zero-momentum case is also investigated for Cd, Cs, Ba and La in.

There are several approaches (advocated by a few groups of researchers) to the more accurate calculation of the nuclear structure effects relevant to the dark matter detection. To the best of our knowledge an almost full list of the models includes the Odd Group Model (OGM) of Engel and Vogel, their extended OGM (EOGM) \cite{13, 34}; Interacting Boson Fermion Model (IBFM) of Iachello, Krauss, and Maino \cite{33}; Theory of Finite Fermi Systems (TFFS) of Nikolaev and Kl-ador-Kleingrothaus \cite{32}; Quasi Tamm-Dancoff Approximation (QTD A) of Engel \cite{8}; different shell model treatments (SM) by Pacheco and Strottman \cite{32}; by Engel, Pittel, Ormand and Vogel \cite{29} and Engel, Ressell, Towner and Ormand, \cite{21}, by Ressell et al. \cite{17} and Ressell and Dean \cite{20}; by Kosmas, Vergados et al. \cite{19, 24, 31}; so-called “hybrid” model of Dimitrov, Engel and Pittel \cite{28} and perturbation theory (PT) based on calculations of Engel et al. \cite{21}.

\section{Spin constraints}

For the spin-zero nuclear target the experimentally measured event rate \cite{11} of direct DM particle detection via formula \cite{2} is connected with zero-momentum WIMP-proton (for the neutron the cross section is the
same) cross section \(\sigma_{\text{SI}}^{p}(0) \). The zero momentum scalar WIMP-proton (neutron) cross section \(\sigma_{\text{SI}}^{p}(0) \) can be expressed through effective neutralino-quark couplings \(C_{q} \) by means of expression (9). These couplings \(C_{q} \) (as well as \(A_{q} \)) can be directly connected with the fundamental parameters of a SUSY model such as \(\tan \beta, M_{1,2}, \mu \), masses of sfermions and Higgs bosons, etc. Therefore experimental limitations on the spin-independent neutralino-nucleon cross section supply us with a constraint on the fundamental parameters of an underlying SUSY model.

\[
\sigma_{\text{SI}}^{p}(0) = \frac{4 \pi}{M_{\text{WIMP}}^{2}} \frac{1}{2} |C_{q}|^{2} (1 + \frac{\langle S_{A}^{A} \rangle}{M_{\text{WIMP}}^{2}})
\]

In the case of the spin-dependent WIMP-nucleus interaction from measured differential rate (1) one first extracts limitation for \(\sigma_{\text{SD}}^{A}(0) \) and therefore has in principle two constraints \(\sigma_{\text{SD}}^{A}(0) \) for the neutralino-proton \(a_{p} \) and neutralino-neutron \(a_{n} \) spin effective couplings as follows from relation (7). From (7) one can also see that contrary to spin-independent case (6) there is no factorization of the nuclear structure for \(\sigma_{\text{SD}}^{A}(0) \).

Both proton \(\langle S_{A}^{A} \rangle \) and neutron \(\langle S_{A}^{A} \rangle \) spin contributions simultaneously entering formula (7) for the SD WIMP-nuclear cross section \(\sigma_{\text{SD}}^{0}(0) \).

In the earlier considerations based on the OGM \([18, 54] \), one assumed that the nuclear spin is carried by
FIG. 3: Full set of currently available exclusion curves for spin-dependent WIMP-neutron cross sections (σ_{n}^{SD} versus WIMP mass). The curves are obtained from [59, 60, 61, 62, 63, 64]. Note that the NAIAD curve corresponds to the sub-dominant contribution, extracted from the p-odd nucleus Na (compare with the relevant NAIAD curve in Fig. 2).

The “odd” unpaired group of protons or neutrons and only one of either $\langle S_{A}^{n} \rangle$ or $\langle S_{A}^{p} \rangle$ is non-zero (the same is true in the ISPSM [11, 23, 24, 25]). In this case all possible target nuclei can naturally be classified into n-odd and p-odd groups. The current experimental situation for the spin-dependent WIMP-proton cross section is given in Fig. 2. The data are taken from experiments BRS, (NaI, 1992) [36, 37], BPRS (CaF$_2$, 1993) [38], EDELWEISS (sapphire, 1996) [39], DAMA (NaI, 1996) [40], DAMA (CaF$_2$, 1999) [41, 42], UKDMS (NaI, 1996) [43, 44, 45, 46], ELEGANT (CaF$_2$, 1998) [47], ELEGANT (NaI, 1999) [48, 49], Tokio (LiF, 1999, 2002) [50, 51, 52, 53, 54], SIMPLE (C$_2$ClF$_5$, 2001) [55], CRESST (Al$_2$O$_3$, 2002) [56], PICASSO (C$_n$F$_m$, 2002) [57], ANAIS (NaI, 2002) [58] and NAIAD (NaI, 2003) [59]. The current experimental situation for the spin-dependent WIMP-neutron cross section is given in Fig. 3. The data are taken from the first experiments with natural Ge (1988, 1991) [60, 61], xenon (DAMA/Xe-0,2) [62, 63, 64] and sodium iodide (NAIAD) [59]. In the future one can also expect exclusion curves for the SD cross section, for example, from the EDELWEISS and CDMS experiments with natural germanium bolometric detectors.

From Fig. 4 one can conclude that an about two-orders-of-magnitude improvement of the current DM
FIG. 4: The same as in Fig. 2 but with the theoretical scatter plot from [2], obtained in the effMSSM with all coannihilation channels included (green circles) and with \(0.1 < \Omega h^2 < 0.3\) (black triangles). The triangle-like shaded area is taken from [3].
experiment sensitivities is needed to reach the SUSY predictions for the σ_{SD}^p provided the SUSY lightest neutralino (LSP) is the best WIMP particle candidate. There is the same situation for the σ_{SD}^n.

Further more accurate calculations of [8, 17, 19, 20, 21, 26, 28, 29, 31, 32, 33] demonstrate that contrary to the simplified odd-group approach both $\langle S_A^p \rangle$ and $\langle S_A^n \rangle$ differ from zero, but nevertheless one of these spin quantities always dominates ($\langle S_A^p \rangle \ll \langle S_A^n \rangle$, or $\langle S_A^n \rangle \ll \langle S_A^p \rangle$). If together with the dominance like $\langle S_A^p(n) \rangle \ll \langle S_A^n(p) \rangle$ one would have the WIMP-proton and WIMP-neutron couplings of the same order of magnitude (not $a_{n(p)} \ll a_{p(n)}$), the situation could look like that in the odd-group model. Nevertheless it was shown in [65] that in the general SUSY model one can meet a case when $a_{n(p)} \ll a_{p(n)}$. To solve the problem (to separate SD proton and neutron constraints) at least two new approaches were proposed. As the authors of [65] claimed, their method has the advantage that the limits on individual WIMP-proton and WIMP-neutron SD cross sections for a given WIMP mass can be combined to give a model-independent limit on the properties of WIMP scattering from both protons and neutrons in the target nucleus. The method relies on the assumption that the WIMP-nuclear SD cross section can be presented in the form $\sigma_{SD}^A(0) \equiv \left(\sqrt{\sigma_{SD}^p|_A} \pm \sqrt{\sigma_{SD}^n|_A} \right)^2$, where $\sigma_{SD}^p|_A$ and $\sigma_{SD}^n|_A$ are auxiliary quantities, not directly connected.

FIG. 5: The DAMA/NaI region from the WIMP annual modulation signature (57986 kg day) in the $(\xi \sigma_{SI}, \xi \sigma_{SD})$ space for $40 \text{ GeV} < m_{WIMP} < 110 \text{ GeV}$ covers all four particular couplings ($\theta = 0, \theta = \pi/4, \theta = \pi/2$ and $\theta = 2.435 \text{ rad}$) reported in [66]. Scatter plots give correlations between $\sigma_{SI}^p(0)$ and σ_{SD} in efMSSM ($\xi = 1$ is assumed) with the requirement for neutralino relic density $0.1 < \Omega h^2 < 0.3$ and all coannihilation channels included. Red stars correspond to an assumption that $m_{LSP} < 150 \text{ GeV}$.
with measurements. Furthermore, to extract, for example, a constraint on the sub-dominant WIMP-proton spin contribution one should assume the proton contribution dominance for a nucleus whose spin is almost completely determined by the neutron-odd group. It may seem useless, especially because these sub-dominant constraints are always much weaker than the relevant constraints obtained directly with a proton-odd group target.

Another approach of [66] is based on introduction of another auxiliary quantity $\sigma_{\text{SD}} = 12 \mu_p^2 (a_p^2 + a_n^2)$, where $\tan \theta = a_n/a_p$. With these definitions the SD WIMP-proton and WIMP-neutron cross section can be given in the form $\sigma_{\text{SD}}^{(p)}(0) = \sigma_{\text{SD}} \sin^2 \theta (\cos^2 \theta)$. In Fig. 3 the WIMP-nucleon spin-mixed and scalar couplings allowed by annual modulation signature from the 100-kg DAMA/NaI experiment (57986 kg day) are given by filled region. The region (at 3 σ C.L.) in the $(\xi_{\text{SI}}, \xi_{\text{SD}})$ space for 40 GeV $< m_{\text{WIMP}} < 110$ GeV covers all four particular couplings ($\theta = 0$, $\theta = \pi/4$, $\theta = \pi/2$ and $\theta = 2.435$ rad) reported in [66]. Scatter plots give $\sigma_{\text{SD}}^{\text{SI}}(0)$ versus σ_{SD} in effMSSM with $0.1 < \Omega h^2 < 0.3$ and all coannihilation channels included from [2] under the assumption of $\xi = 1$. Red stars correspond to the same calculations but with $m_{\text{LSP}} < 150$ GeV. In this mixed case the limits for the spin couplings depend on assumptions about the scalar coupling, and the relevant exclusion curve for the spin-dependent WIMP-proton cross section (not given in Fig. 2) can not be simply extracted from these mixed results of [67].

D. The role of the germanium-73 isotope

Comparing the number of exclusion curves in Fig. 2 and Fig. 4 one can easily see that there are many measurements with p-odd nuclei and there is a lack of data for n-odd nuclei, i.e. for σ_{SD}^{n}. Therefore measurements with n-odd nuclei are needed. From our point of view this lack of σ_{SD}^{n} measurements can be filled with new data expected from the HDMS experiment with the high-spin isotope 73Ge [68]. This isotope looks with a good accuracy like an almost pure n-odd group nucleus with $\langle S_n \rangle \gg \langle S_p \rangle$ (Table I). The variation of the $\langle S_p \rangle$ and $\langle S_n \rangle$ in the table reflects the level of inaccuracy and complexity of the current nuclear structure calculations.

TABLE I: Zero-momentum spin structure (and predicted magnetic moments μ) of the 73Ge nucleus in different nuclear models. The experimental value of the magnetic moment given in the brackets is used as input in the calculations.

73Ge $(L_J = G_{9/2})$	$\langle S_p \rangle$	$\langle S_n \rangle$	μ (in μ_N)
ISPSM, Ellis–Flores [24, 69]	0	0.5	−1.913
OGM, Engel–Vogel [34]	0	0.23	(−0.879)$_{\text{exp}}$
IBFM, Iachello at al. [33] and [17]	−0.009	0.469	−1.785
IBFM (quenched), Iachello at al. [33] and [17]	−0.005	0.245	(−0.879)$_{\text{exp}}$
TFFS, Nikolaev–Klapdor-Kleingrothaus, [35]	0	0.34	—
SM (small), Ressell at al. [17]	0.005	0.496	−1.468
SM (large), Ressell at al. [17]	0.011	0.468	−1.239
SM (large, quenched), Ressell at al. [17]	0.009	0.372	(−0.879)$_{\text{exp}}$
“Hybrid” SM, Dimitrov at al. [28]	0.030	0.378	−0.920

On the other hand, Fig. 4 shows that for the ratio of a_n to a_p one can have the bounds

$$0.55 < \left| \frac{a_n}{a_p} \right| < 0.8.$$
The scatter plots in Fig. 6 were obtained in effMSSM\cite{2} when all coannihilation channels were included. The blue squares (black points) were calculated with (without) the relic neutralino density constraint $0.1 < \Omega h^2 < 0.3$. Therefore in the model the couplings are almost the same and one can safely neglect the \(S^A_{01}\)-spin contribution in the analysis of the DM data with the \(^{73}\text{Ge}\) target (for which \(S^A_{p} \ll \langle S^A_n \rangle\)).

![Oh\(^2\) in (0.1, 0.3)](image)

FIG. 6: The scatter plot (dots) gives the ratio of the neutralino-neutron \(a_n\) and neutralino-proton \(a_p\) spin couplings in the effMSSM\cite{2}. Boxes correspond to the relic neutralino density constraint $0.1 < \Omega h^2 < 0.3$ in the same model.

We would like to advocate the old odd-group-like approach for experiments with germanium detectors. Of course, from measurements with \(^{73}\text{Ge}\) one can extract not only the dominant constraint for WIMP-nucleon coupling \(a_n\) (or \(\sigma_{SD}^{n}\)) but also the constraint for the sub-dominant WIMP-proton coupling \(a_p\) (or \(\sigma_{SD}^{p}\)) using the approach of \cite{65}. Nevertheless, the latter constraint will be much weaker in comparison with the constraints from p-odd group nuclear targets, like \(^{19}\text{F}\) or NaI. The fact illustrates the NAIAD (NaI, 2003) curve in Fig. 3, which corresponds to the sub-dominant WIMP-neutron spin contribution extracted from the p-odd nucleus Na.

E. Finite Momentum Transfer

As \(m_\tilde{\chi}\) becomes larger, the product \(qR\) ceases to be negligible and the finite momentum transfer limit must be considered for heavier nuclei. With the isoscalar coupling constant \(a_0 = a_n + a_p\) and the corresponding isovector coupling constant \(a_1 = a_p - a_n\) one splits \(S^A_{SD}(q)\) into a pure isoscalar, \(S^A_{00}\), a pure isovector, \(S^A_{11}\), and an interference term, \(S^A_{01}\):\cite{17,20}:

\[
S^A_{SD}(q) = a_0^2 S^A_{00}(q) + a_1^2 S^A_{11}(q) + a_0 a_1 S^A_{01}(q). \tag{17}
\]
The differential SD event rate has the form

$$\frac{dR_{SD}^A}{dq^2} = \frac{\rho}{m_A m_A} \int v dv f(v) \frac{8G_F^2}{(2J + 1)v^2} S_{SD}(q).$$ \hspace{1cm} (18)$$

Comparing the differential rate (18) together with the spin structure functions of (17) with the observed recoil spectra for different targets (Ge, Xe, F, NaI, etc) one can directly and simultaneously restrict both isoscalar and isovector neutralino-nucleon effective couplings $a_{0,1}$. These constraints will impose most model-independent restrictions on the MSSM parameter space free from any assumption of [65, 66]. Perhaps, it would be the best to fit all data directly [65] in terms of neutralino proton and neutron effective spin couplings $a_{0,1}$ or $a_{p,n}$ (see for example analysis of [54]) and not to use such spin quantities as $\sigma_{p,n}^{SD}$ and σ_{SD}.

Another attractive feature of the spin-dependent WIMP-nucleus interaction is the q^2-dependence of SD structure function (17). One knows that the ratio of SD to SI rate in the 73Ge detector grows with the WIMP mass [1, 7]. The growth is much greater for heavy target isotopes like xenon. The reason is the different behavior of the spin and scalar structure functions with increasing momentum transfer. For example, the xenon SI structure function vanishes for $q^2 \approx 0.02$ GeV, but the SD structure function is a non-zero constant in the region (Fig. 7).

![Figure 7: The 131Xe structure function for a pure bino. The single-particle structure function has been normalized to $S(0) = 1$. From [20].](image)

As noted by Engel in [8], the relatively long tail of the SD structure function is caused by nucleons near the Fermi surface, which do the bulk of the scattering. The core nucleons, which dominate the SI nuclear coupling, contribute much less at large q. Therefore the SD efficiency for detection of a DM signal is higher than the SI efficiency, especially for very heavy neutralinos.
F. Conclusion

The idea of this review paper is to attract attention to the role of the spin-dependent WIMP-nucleus interaction in the dark matter search experiments. The importance of this interaction is discussed. The fullest possible set of currently available exclusion curves for spin-dependent WIMP-proton and WIMP-neutron cross sections is given in Fig. 2 and Fig. 3. Nowadays about two-orders-of-magnitude improvement of the current DM experiment sensitivities is needed to reach the SUSY predictions for the $\sigma_{SD}^{p,n}$. It is noted that a near-future experiment like HDMS with the high-spin isotope 73Ge being an almost pure n-odd nucleus can fill in this gap and can supply us with new important constraints for SUSY models.

The author thanks Prof. H.V. Klapdor-Kleingrothaus for permanent collaboration and interest in the work, Drs. V.A. Kuzmin and F. Simkovic for helpful discussions and the RFBR (Grant 02–02–04009) for the support.

[1] V. A. Bednyakov and H. V. Klapdor-Kleingrothaus, “Update of the direct detection of dark matter and the role of the nuclear spin”, Phys. Rev. D63 (2001) 095005, hep-ph/0011233.
[2] V. A. Bednyakov, H. V. Klapdor-Kleingrothaus, and V. Gronewold, “Squark-, slepton- and neutralino-chargino coannihilation effects in the low-energy effective MSSM”, hep-ph/0208178.
[3] J. R. Ellis, A. Ferstl, and K. A. Olive, “Re-evaluation of the elastic scattering of supersymmetric dark matter”, Phys. Lett. B481 (2000) 304–314, hep-ph/0001005.
[4] I. V. Krivosheina, “Search for cold dark matter and solar neutrinos with GENIUS and GENIUS-TF”, Phys. Atom. Nucl. 65 (2002) 2165–2170.
[5] R. Bernabei et al., “Search for WIMP annual modulation signature: Results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis”, Phys. Lett. B480 (2000) 23–31.
[6] V. A. Bednyakov, H. V. Klapdor-Kleingrothaus, and S. G. Kovalenko, “Possible constraints on SUSY model parameters from direct dark matter search”, Phys. Lett. B329 (1994) 5–9, hep-ph/9401271.
[7] V. A. Bednyakov, “On possible lower bounds for the direct detection rate of SUSY dark matter”, Phys. Atom. Nucl. 66 (2003) 490–493, hep-ph/0201046.
[8] J. Engel, “Nuclear form-factors for the scattering of weakly interacting massive particles”, Phys. Lett. B264 (1991) 114–119.
[9] G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter”, Phys. Rept. 267 (1996) 195–373, hep-ph/9506380.
[10] J. D. Lewin and P. F. Smith, “Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil”, Astropart. Phys. 6 (1996) 87–112.
[11] P. F. Smith and J. D. Lewin, “Dark matter detection”, Phys. Rept. 187 (1990) 203.
[12] V. A. Bednyakov and H. V. Klapdor-Kleingrothaus, “Possibilities of directly detecting dark-matter particles in the next-to-minimal supersymmetric standard model”, Phys. Atom. Nucl. 62 (1999) 966–974.
[13] V. A. Bednyakov, S. G. Kovalenko, and H. V. Klapdor-Kleingrothaus, “Prospects in searches for cosmic dark matter in underground experiments”, Phys. Atom. Nucl. 59 (1996) 1718–1727.
[14] V. A. Bednyakov, H. V. Klapdor-Kleingrothaus, and S. G. Kovalenko, “Superlight neutralino as a dark matter particle candidate”, Phys. Rev. D55 (1997) 503–514, hep-ph/9608241.
[15] V. A. Bednyakov, S. G. Kovalenko, H. V. Klapdor-Kleingrothaus, and Y. Ramachers, “Is SUSY accessible by direct dark matter detection?”, Z. Phys. A357 (1997) 339–347, hep-ph/9606261.
[16] V. A. Bednyakov, H. V. Klapdor-Kleingrothaus, and S. Kovalenko, “On SUSY dark matter detection with spinless nuclei”, Phys. Rev. D50 (1994) 7128–7143, hep-ph/9401262.
[17] M. T. Ressell et al., “Nuclear shell model calculations of neutralino - nucleus cross-sections for Si-29 and Ge-73”, Phys. Rev. D48 (1993) 5519–5535.
13 J. Engel, S. Pittel, and P. Vogel, “Nuclear physics of dark matter detection”, Int. J. Mod. Phys. E1 (1992) 1–37.

19 P. C. Divari, T. S. Kosmas, J. D. Vergados, and L. D. Skouras, “Shell model calculations for light supersymmetric particle scattering off light nuclei”, Phys. Rev. C61 (2000) 054612.

20 M. T. Ressell and D. J. Dean, “Spin-dependent neutralino nucleus scattering for A ≈ 127 nuclei”, Phys. Rev. C56 (1997) 535–546, hep-ph/9702290.

21 J. Engel, M. T. Ressell, I. S. Towner, and W. E. Ormand, “Response of mica to weakly interacting massive particles”, Phys. Rev. C52 (1995) 2216–2221, hep-ph/9504322.

22 K. Griest, “Cross sections, relic abundance, and detection rates for neutralino dark matter”, Phys. Rev. D38 (1988) 2357.

23 M. W. Goodman and E. Witten, “Detectability of certain dark-matter candidates”, Phys. Rev. D31 (1985) 3059.

24 J. R. Ellis and R. A. Flores, “Realistic predictions for the detection of supersymmetric dark matter”, Nucl. Phys. B307 (1988) 883.

25 A. K. Drukier, K. Freese, and D. N. Spergel, “Detecting cold dark matter candidates”, Phys. Rev. D33 (1986) 3495–3508.

26 J. D. Vergados, “Searching for cold dark matter”, J. Phys. G22 (1996) 253–272, hep-ph/9504320.

27 J. D. Vergados, “SUSY dark matter in the universe: Theoretical direct detection rates”, Phys. Atom. Nucl. 66 (2003) 481–489, hep-ph/0201014.

28 V. Dimitrov, J. Engel, and S. Pittel, “Scattering of weakly interacting massive particles from Ge-73”, Phys. Rev. D51 (1995) 291–295, hep-ph/9408246.

29 J. Engel, S. Pittel, E. Ormand, and P. Vogel, “Scattering of neutralinos from niobium”, Phys. Lett. B275 (1992) 119–123.

30 M. A. Nikolaev and H. V. Klapdor-Kleingrothaus, “Effects of nuclear structure in the spin dependent scattering of weakly interacting massive particles”, Z. Phys. A345 (1993) 183–186.

31 T. S. Kosmas and J. D. Vergados, “Cold dark matter in SUSY theories. The role of nuclear form factors and the folding with the LSP velocity”, Phys. Rev. D55 (1997) 1752–1764, hep-ph/9701205.

32 A. F. Pacheco and D. Strottman, “Nuclear structure corrections to estimates of the spin dependent WIMP nucleus cross-section”, Phys. Rev. D40 (1989) 2131–2133.

33 F. Iachello, L. M. Krauss, and G. Maino, “Spin dependent scattering of weakly interacting massive particles in heavy nuclei”, Phys. Lett. B254 (1991) 220–224.

34 J. Engel and P. Vogel, “Spin dependent cross-sections of weakly interacting massive particles on nuclei”, Phys. Rev. D40 (1989) 3132–3135.

35 M. A. Nikolaev and H. V. Klapdor-Kleingrothaus, “Quenching of the spin dependent scattering of weakly interacting massive particles on heavy nuclei”, Z. Phys. A345 (1993) 373–376.

36 C. Bacci et al., “Dark matter search with calcium fluoride crystals”, Nucl. Phys. Proc. Suppl. 35 (1994) 159–161.

37 C. Bacci et al., “WIMPs search with low activity NaI crystals: Preliminary results”, Phys. Lett. B293 (1992) 460–464.

38 C. Bacci et al., “Dark matter search with calcium fluoride crystals”, Astropart. Phys. 2 (1994) 117–126.

39 A. de Bellefon et al., “Dark matter search with a low temperature sodium tellurate bolometer”, Astropart. Phys. 6 (1996) 35–44.

40 R. Bernabei et al., “New limits on WIMP search with large-mass low-radioactivity NaI(Tl) set-up at Gran Sasso”, Phys. Lett. B389 (1996) 757–766.

41 R. Bernabei et al., “Improved limits on WIMP F-19 elastic scattering and first limit on the 2EC 2nu Ca-40 decay by using a low radioactive CaF-2(Eu) scintillator”, Astropart. Phys. 7 (1997) 73–76.

42 P. Belli et al., “New limits on spin-dependent coupled WIMPs and on 2beta processes in Ca-40 and Ca-46 by using low radioactive CaF-2 (Eu) crystal scintillators”, Nucl. Phys. B563 (1999) 97–106.

43 M. L. Sarsa et al., “Searching for annual modulations of WIMPs with NaI scintillators”, Phys. Lett. B386 (1996) 458–462.
[44] P. F. Smith et al., “Improved dark matter limits from pulse shape discrimination in a low background sodium iodide detector at the Boulby mine”, Phys. Lett. B379 (1996) 299–308.

[45] T. J. Sumner et al., “Current limits on the cold dark matter interaction cross section obtained by the UK collaboration”, Nucl. Phys. Proc. Suppl. 70 (1999) 74–78.

[46] N. J. C. Spooner et al., “NaI dark matter limits and the NAIAD array - a detector with improved sensitivity to WIMPs using unencapsulated NaI”, Phys. Lett. B473 (2000) 330–336.

[47] I. Ogawa et al., “Dark matter search with CaF-2 scintillators in Osaka”, Nucl. Phys. A663 (2000) 869–872.

[48] K. Fushimi et al., “Limits on the annual modulation of WIMPs nucleus scattering with large-volume NaI(Tl) scintillators”, Astropart. Phys. 12 (1999) 185–192.

[49] S. Yoshida et al., “Search for WIMPs with the large NaI(Tl) scintillator of ELEGANT V”, Nucl. Phys. Proc. Suppl. 87 (2000) 58–60.

[50] W. Ootani et al., “Performance of a lithium fluoride bolometer for Tokyo dark matter search experiment”, Astropart. Phys. 9 (1998) 325–329.

[51] M. Minowa, “Cryogenic dark-matter and solar-axion searches at the University of Tokyo”, Phys. Atom. Nucl. 61 (1998) 1117–1119.

[52] W. Ootani et al., “First results from dark matter search experiment in the Nokogiriyama underground cell”, Phys. Lett. B461 (1999) 371–375, hep-ex/9904034.

[53] W. Ootani et al., “Tokyo dark matter search experiment with lithium fluoride bolometer”, Nucl. Instrum. Meth. A436 (1999) 233–237.

[54] K. Miuchi et al., “First results from dark matter search experiment with LiF bolometer at Kamioka underground laboratory”, Astropart. Phys. 19 (2003) 135–144, astro-ph/0204411.

[55] J. I. Collar et al., “WIMP searches with superheated droplet detectors: Status and prospects”, astro-ph/0101176.

[56] G. Angloher et al., “Limits on WIMP dark matter using sapphire cryogenic detectors”, Astropart. Phys. 18 (2002) 43–55.

[57] N. Boukhira et al., “Search for dark matter with the PICASSO experiment”, Nucl. Phys. Proc. Suppl. 110 (2002) 103–105.

[58] S. Cebrian et al., “Status of the ANAIS experiment at Canfranc”, Nucl. Phys. Proc. Suppl. 114 (2003) 111–115, hep-ex/0211050.

[59] B. Ahmed et al., “The NAIAD experiment for WIMP searches at Boulby mine and recent results”, hep-ex/0301039.

[60] D. O. Caldwell et al., “Laboratory limits on galactic cold dark matter”, Phys. Rev. Lett. 61 (1988) 510.

[61] D. Reusser et al., “Limits on cold dark matter from the Gotthard Ge experiment”, Phys. Lett. B255 (1991) 143–145.

[62] P. Belli et al., “Search for WIMPs with enriched xenon at Gran Sasso”, Nuovo Cim. C19 (1996) 537–544.

[63] P. Belli et al., “WIMP search with enriched xenon”, Nucl. Phys. Proc. Suppl. 48 (1996) 62–63.

[64] R. Bernabei et al., “New limits on particle dark matter search with a liquid Xenon target-scintillator”, Phys. Lett. B436 (1998) 379–388.

[65] D. R. Tovey, R. J. Gaitskell, P. Gondolo, Y. Ramachers, and L. Roszkowski, “A new model-independent method for extracting spin- dependent cross section limits from dark matter searches”, Phys. Lett. B488 (2000) 17–26, hep-ph/0005041.

[66] R. Bernabei et al., “Investigating the DAMA annual modulation data in a mixed coupling framework”, Phys. Lett. B509 (2001) 197–203.

[67] R. Bernabei et al., “DAMA results”, astro-ph/0305542.

[68] H. V. Klapdor-Kleingrothaus et al., “First results from the HDMS experiment in the final setup”, Astropart. Phys. 18 (2003) 525–530, hep-ph/0206151.

[69] J. R. Ellis and R. A. Flores, “Elastic supersymmetric relic - nucleus scattering revisited”, Phys. Lett. B263 (1991) 259–266.