Machine Translation

Philipp Koehn

27 August 2024
What is This?

• A class on machine translation

• Taught at Johns Hopkins University, Fall 2023

• Class web site: http://www.mt-class.org/jhu/

• Tuesdays and Thursdays, 1:30-2:45, Hodson 210

• Instructor: Philipp Koehn

• TA: Bismarck Odoom

• Grading
 – five programming assignments (12% each)
 – final project (30%)
 – in-class presentation: language in ten minutes (10%)
Why Take This Class?

• Close look at an artificial intelligence problem

• Practical introduction to natural language processing

• Introduction to deep learning for structured prediction
Textbooks

Statistical Machine Translation

Neural Machine Translation
some history
An Old Idea

Warren Weaver on translation as code breaking (1947):

When I look at an article in Russian, I say: “This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode”.
Early Efforts and Disappointment

- Excited research in 1950s and 1960s

 1954
 Georgetown experiment
 Machine could translate
 250 words and
 6 grammar rules

- 1966 ALPAC report:
 - only $20 million spent on translation in the US per year
 - no point in machine translation
Rule-Based Systems

- Rule-based systems
 - build dictionaries
 - write transformation rules
 - refine, refine, refine

- Météo system for weather forecasts (1976)

- Systran (1968), Logos and Metal (1980s)

"have" :=

if
 subject(animate)
 and object(owned-by-subject)
then
 translate to "kade... aahe"
if
 subject(animate)
 and object(kinship-with-subject)
then
 translate to "laa... aahe"
if
 subject(inanimate)
then
 translate to "madhye... aahe"
Statistical Machine Translation

- 1980s: IBM
- 1990s: increased research
- Mid 2000s: Phrase-Based MT (Moses, Google)
- Around 2010: commercial viability
Neural Machine Translation

• Late 2000s: neural models for computer vision

• Since mid 2010s: neural models for machine translation

• 2016: Neural machine translation the new state of the art
how good is machine translation?
记者从环保部了解到，《水十条》要求今年年底前直辖市、省会城市、计划单列市建成区基本解决黑臭水体。截至目前，全国224个地级及以上城市共排查确认黑臭水体2082个，其中34.9%完成整治，28.4%正在整治，22.8%正在开展项目前期。

Reporters learned from the Ministry of Environmental Protection, "Water 10" requirements before the end of this year before the municipality, the provincial capital city, plans to build a separate city to solve the basic black and black water. Up to now, the country's 224 prefecture-level and above cities were identified to confirm the black and white water 2082, of which 34.9% to complete the renovation, 28.4% is remediation, 22.8% is carrying out the project early.
A l’orée de ce débat télévisé inédit dans l’histoire de la Ve République, on attendait une forme de «Tous sur Macron» mais c’est la candidate du Front national qui s’est retrouvée au cœur des premières attaques de ses quatre adversaires d’un soir, favorisées par le premier thème abordé, les questions de société et donc de sécurité, d’immigration et de laïcité.

At the beginning of this televised debate, which was unheard of in the history of the Fifth Republic, a "Tous sur Macron" was expected, but it was the candidate of the National Front who found itself at the heart of the first attacks of its four Opponents of one evening, favored by the first theme tackled, the issues of society and thus security, immigration and secularism.
A l’orée de ce débat télévisé inédit dans l’histoire de la Ve République, on attendait une forme de «Tous sur Macron» mais c’est la candidate du Front national qui s’est retrouvée au cœur des premières attaques de ses quatre adversaires d’un soir, favorisées par le premier thème abordé, les questions de société et donc de sécurité, d’immigration et de laïcité.

At the start of this unprecedented televised debate in the history of the Vé République, we expected a form of "All on Macron" but it was the Candidate of the National Front who found herself at the heart of the first attacks of her four adversaries for one evening, favored by the first theme addressed, questions of society and therefore of security, immigration and secularism.
A Clear Plan

Interlingua

Lexical Transfer

Source Target

Philipp Koehn Machine Translation 27 August 2024
A Clear Plan

Interlingua

Source Target

Lexical Transfer
Syntactic Transfer

Analysis
Generation
A Clear Plan

Interlingua

Semantic Transfer

Syntactic Transfer

Lexical Transfer

Source

Analysis

Target

Generation

Philipp Koehn
Machine Translation
27 August 2024
A Clear Plan

Interlingua

Lexical Transfer
Syntactic Transfer
Semantic Transfer

Source Target

Analysis
Generation

Philipp Koehn
Machine Translation
27 August 2024
Learning from Data

Training

- Training Data
- Linguistic Tools
 - parallel corpora
 - monolingual corpora
 - dictionaries

Using

- Source Text

Statistical Machine Translation System

Translation
why is that a good plan?
Word Translation Problems

- Words are ambiguous

He deposited money in a bank account with a high interest rate.

Sitting on the bank of the Mississippi, a passing ship piqued his interest.

- How do we find the right meaning, and thus translation?

- Context should be helpful
Syntactic Translation Problems

- Languages have different sentence structure

 \[\text{das} \quad \text{behaupten} \quad \text{sie} \quad \text{wenigstens} \]
 \[\text{this} \quad \text{claim} \quad \text{they} \quad \text{at least} \]
 \[\text{the} \quad \text{she} \]

- Convert from object-verb-subject (OVS) to subject-verb-object (SVO)

- Ambiguities can be resolved through syntactic analysis
 - the meaning \textit{the} of \textit{das} not possible (not a noun phrase)
 - the meaning \textit{she} of \textit{sie} not possible (subject-verb agreement)
Semantic Translation Problems

• Pronominal anaphora

I saw the movie and it is good.

• How to translate it into German (or French)?
 – it refers to movie
 – movie translates to Film
 – Film has masculine gender
 – ergo: it must be translated into masculine pronoun er

• We are not handling this very well [Le Nagard and Koehn, 2010]
Semantic Translation Problems

• Coreference

Whenever I visit my uncle and his daughters, I can’t decide who is my favorite cousin.

• How to translate *cousin* into German? Male or female?

• Complex inference required
Semantic Translation Problems

• Discourse

Since you brought it up, I do not agree with you.

Since you brought it up, we have been working on it.

• How to translated since? Temporal or conditional?

• Analysis of discourse structure — a hard problem
• What is the best translation?

Sicherheit \rightarrow security
Sicherheit \rightarrow safety
Sicherheit \rightarrow certainty
Learning from Data

• What is the best translation?

 Sicherheit → security 14,516
 Sicherheit → safety 10,015
 Sicherheit → certainty 334

• Counts in European Parliament corpus
Learning from Data

• What is the best translation?

 Sicherheit → security 14,516
 Sicherheit → safety 10,015
 Sicherheit → certainty 334

• Phrasal rules

 Sicherheitspolitik → security policy 1580
 Sicherheitspolitik → safety policy 13
 Sicherheitspolitik → certainty policy 0
 Lebensmittelsicherheit → food security 51
 Lebensmittelsicherheit → food safety 1084
 Lebensmittelsicherheit → food certainty 0
 Rechtssicherheit → legal security 156
 Rechtssicherheit → legal safety 5
 Rechtssicherheit → legal certainty 723
Learning from Data

• What is most fluent?

a problem for translation
a problem of translation
a problem in translation
What is most fluent?

- a problem for translation 13,000
- a problem of translation 61,600
- a problem in translation 81,700

Hits on Google
Learning from Data

- What is most fluent?

 a problem for translation 13,000
 a problem of translation 61,600
 a problem in translation 81,700
 a translation problem 235,000
Learning from Data

- What is most fluent?

 police disrupted the demonstration
 police broke up the demonstration
 police dispersed the demonstration
 police ended the demonstration
 police dissolved the demonstration
 police stopped the demonstration
 police suppressed the demonstration
 police shut down the demonstration
Learning from Data

- What is most fluent?

 police disrupted the demonstration 2,140
 police broke up the demonstration 66,600
 police dispersed the demonstration 25,800
 police ended the demonstration 762
 police dissolved the demonstration 2,030
 police stopped the demonstration 722,000
 police suppressed the demonstration 1,400
 police shut down the demonstration 2,040
where are we now?
Word Alignment

michael
assumes
that
he
will
stay
in
the	house

michael geht davon aus dass er im haus bleibt.
Phrase-Based Model

- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

- Workhorse of today’s statistical machine translation
Sie will trinken eine Tasse Kaffee.

she wants to drink a cup of coffee.
Semantic Translation

• Abstract meaning representation [Knight et al., ongoing]

\((w / \text{want-01})\)
\[\begin{align*}
 &:\text{agent} (b / \text{boy}) \\
 &:\text{theme} (l / \text{love}) \\
 &:\text{agent} (g / \text{girl}) \\
 &:\text{patient} b)
\]

• Generalizes over equivalent syntactic constructs (e.g., active and passive)

• Defines semantic relationships
 – semantic roles
 – co-reference
 – discourse relations
• State-of-the-art model for machine translation: Transformer

• Transformer model was also adopted for language modeling

• Currently, large language models being built by major IT companies (GPT4, Llama, Gemini, ...)

• Latest approach: fine-tuning large language models for machine translation
what is it good for?
what is it good enough for?
Why Machine Translation?

Assimilation — reader initiates translation, wants to know content

- user is tolerant of inferior quality
- focus of majority of research (GALE program, etc.)

Communication — participants don’t speak same language, rely on translation

- users can ask questions, when something is unclear
- chat room translations, hand-held devices
- often combined with speech recognition, IWSLT campaign

Dissemination — publisher wants to make content available in other languages

- high demands for quality
- currently almost exclusively done by human translators
Problem: No Single Right Answer

Israeli officials are responsible for airport security.
Israel is in charge of the security at this airport.
The security work for this airport is the responsibility of the Israel government.
Israeli side was in charge of the security of this airport.
Israel is responsible for the airport’s security.
Israel is responsible for safety work at this airport.
Israel presides over the security of the airport.
Israel took charge of the airport security.
The safety of this airport is taken charge of by Israel.
This airport’s security is the responsibility of the Israeli security officials.
Quality

HTER assessment	Percentage
publishable	0%
editable	10%
gistable	20%
triagable	30%
triagable	40%
triagable	50%

(scale developed in preparation of DARPA GALE programme)
Applications

HTER assessment	application examples
0% publishable	Seamless bridging of language divide
	Automatic publication of official announcements
10% editable	Increased productivity of human translators
20%	Access to official publications
	Multi-lingual communication (chat, social networks)
30% gistable	Information gathering
	Trend spotting
40% triagable	Identifying relevant documents
50%	
Current State of the Art

HTER assessment	language pairs and domains
0% publishable	French-English restricted domain
10% editable	French-English news stories
20%	German-English news stories
30% gistable	Chinese-English news stories
40% triagable	Swahili–English news stories
50%	Uyghur–English news stories

(informal rough estimates by presenter)
Thank You

questions?