Current Trends and Future Perspectives of Hydrogen Sulfide Donors

Aya H Shabib¹, Mai E. M. Shoman¹, El-Shimaa M. N. Abdelhafez¹*, Gamal El-Din A Abuo-Rahma¹²
¹Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Minia, Egypt
²Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt

Received: June 14, 2021; revised: July 20, 2021; accepted: July 29, 2021

Abstract

Hydrogen sulfide (H₂S) gas is included to be the most critical endogenous gasotransmitters that has several pathophysiological effects in many human cells and organ tissues. The synthesis of endogenous H₂S in cells via several pathways. Variant biological effects of H₂S including ion channel regulation, redox regulation of protein, thiols, polysulfides, thiosulfate/sulfite, and anti-oxidant activities affecting many cellular and molecular reactions. Therefore, it is essential to review H₂S chemical biology, methods of detection of H₂S release and its effects on pathological and physiological functions along with their therapeutic uses, including cardiovascular protective activities, anti-inflammatory and anti-tumor activities of the H₂S donors.

Key words
Hydrogen sulfide (H₂S), gasotransmitters, donors, anticancer, hybrids.

Introduction

As nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H₂S) is considered one of the most important gasotransmitters [1–7]. Synthesis of endogenous H₂S in cells of mammalians through three enzymes: cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfur-transferase (MPST) (Figure 1), that also regulate H₂S levels in tissues [8–12]. H₂S has potent reducing properties and is scavenged by endogenous oxidizing molecules including hydrogen peroxide, superoxide and peroxynitrite [14, 15]. Also, H₂S is forming sulhemoglobin when reacts with methemoglobin [16] and causing protein S-sulfhydration (formation of -S-SH) [17–19]. H₂S can also interact with S-nitrosothiols forming thionitrous acid (HSNO) which is metabolized forming NO, NO-, and NO+ that are with several physiological activities [17–19].

Figure1. Endogenous Enzymatic Biosynthesis of H₂S [13].
H$_2$S exhibits various biological activities at concentrations between 10 and 300 µM [3]. Whereas, it can modulate many physiological responses including reducing oxidative stress [21], anti-inflammatory [20], vasoregulation [23], neuromodulation [22], inhibition of insulin resistance [25] and protection against myocardial ischemia injury [24]. H$_2$S at concentrations of <100 ppm causes several toxic effects in human such as nausea, dizziness, sore throat, eye irritation, chest tightness and short breath [26, 27], while severe adverse effects of high exposure to >1000 ppm hydrogen sulfide affecting the central nervous system causing loss of consciousness to death [28] and also affecting the respiratory system causing respiratory paralysis and pulmonary edema [29, 30].

1. Measurement of H$_2$S release:

Several methods for sulfide detection have been developed ranging from simple spectrophotometric and colorimetric methods to other advanced techniques and methods [31].

1.1. Ion-selective (Sulfide-specific) electrodes (ISEs)

ISEs is usually used for measuring H$_2$S levels in biological fluids with a range of 1–10 µM. ISEs method detects the sulfide S2 form in an alkaline condition. ISEs is a readily, available and easy method [32, 33].

1.2. Polarographic electrodes

H$_2$S detection using the polarographic H$_2$S electrodes for measuring H$_2$S gas in biological samples, in the nM detection range. However the polarographic H$_2$S sensor is a very sensitive and accurate method, it can’t detect other forms of sulfide [34].

1.3. Chromatographic methods

Chromatographic H$_2$S detection methods are versatile including ion-exchange chromatography, gas chromatography (GC), and HPLC that can measure volatile sulfur compounds and different sulfide forms in biological samples [35]. RP (reversed-phase)-HPLC is used for measuring methylene blue, zinc acetate that is used to trap H$_2$S in brain tissue in acidic conditions [36]. The thiol-sensitive fluorescent probe Monobromobimane (MBB) could measure bioavailable H$_2$S levels, whereas measuring the H$_2$S/HS$^-$ is by HPLC with fluorescence detection [37, 38].

1.4. Fluorescent probes based strategy for H$_2$S detection

In this strategy measuring H$_2$S in plasma via evaluating the fluorescence of the formed benzodithiolone [39] [40]. Moreover, a novel dansyl azide (DNS-Az), which is reduction-sensitive, nonfluorescent and upon reacting with sulfide becomes fluorescent [41].

1.5. Methylene blue formation method

It is the usually known chemical method in measuring H$_2$S as H$_2$S is firstly trapped with Zn(OAc)$_2$ forming ZnS. The trapped H$_2$S is released after Sample acidification, H$_2$S is reacted with N,N-dimethyl-1-p-phenylenediamine 1 in presence of FeCl$_3$ and forming methylene blue 2 (Figure 2). The absorbance of methylene blue is measured at 670 nm [31, 42].

![Figure 2. Methylene Blue (2) Formation Method for H$_2$S Detection.](image)

1.6. Chemical properties based methods

Due to H$_2$S physicochemical and reactive properties, it was developed new H$_2$S detection methods can be classified into three types: (1) 1.6.1. Chemical reduction method (2) Nucleophilic Attack method and (3) Methods depend on metal precipitation.

1.6.1. Chemical reduction method

Due to H$_2$S reducing properties it can reduce azide and nitro groups [14, 15] [43] and this is used for H$_2$S detection using different fluorescent probes (Figure 3) [44–46].

![Figure 3. H$_2$S Reducing Azide and Nitro Groups Forming Fluorescence.](image)

1.6.2. Nucleophilic Attack method

H$_2$S can go two sequential nucleophilic attacks, therefore upon reaction with two equivalents monobromobimane that trapping H$_2$S forming the fluorescent thioether product (Figure 4) followed by HPLC separation for detection of H$_2$S [47, 48].

![Figure 4. Formation of A Fluorescent Bimane Thioether for H$_2$S Detection.](image)

1.6.3. Methods depend on metal precipitation

H$_2$S can precipitate metals including copper, magnesium and zinc, therefore developing H$_2$S detection method using the Cu(II) gravimetric method in which precipitation of CuS by H$_2$S and using a fluorescein derivative (dipicolylamine) [49]. When the fluorescein compound is complexed with Cu (II) that causing quenching of the fluorescence. While the fluorescence is restored after precipitation of CuS by the released H$_2$S in the sample [49] (Figure 5).
2. Hydrogen sulfide releasing agents (H₂S donors)

However, the endogenous or the exogenous H₂S are showing different useful effects in many pathophysiological conditions [50, 51], H₂S gas can not be considered as an ideal source for H₂S as it is difficult to reach controlled concentrations and release of H₂S and the toxic effects of high H₂S concentrations [52]. Therefore, novel H₂S donors were established that releasing H₂S through different mechanisms such as:

2.1. Inorganic Salts Of Sulfide

Inorganic salts of sulfide are sodium hydrogen sulfide (NaHS) and sodium sulfide (Na₂S) and which are equivalents to H₂S. After the dealings of animal cells and tissues with inorganic salts of sulfide, it could protect against many diseases [20, 53–55]. Na₂S can also diminish ischemia-induced heart failure and decrease cardiac hypertrophy, and improving cardiac function [56]. Na₂S can also reduce oxidative stress-related heart failure [57, 58]. Furthermore, sulfide salts could protect against many diseases including inflammation [59]. Moreover, the release of H₂S release from sulfide salts is rapid but can lead to severe cell and tissue damages [60].

2.2. Garlic and Related Sulfur Compounds

Recent studies revealed that many of the biological effects of garlic were related to H₂S release from garlic active constituents such as Allyl perthiol (DADS) and baydiallyl trisulfide (DATS) and also in the presence of glutathione (GSH), H₂S is released (figure 6). (Lawesson’s reagent) is 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide and is considered as sulfurization substance used in synthesis [63]. Many biological activities are related to H₂S release including regulation of ion channels and anti-inflammation showing reduction of ulceration of the colon and reduced the severity of colitis [64].

![Not fluorescent](image1.png)

![Fluorescent](image2.png)

Figure 5. Complexation of Cu (II) With H₂S and Precipitation of CuS Releasing The Fluorescent Compound.

![GYY4137](image3.png)

Lawesson’s reagent

![Phosphorodithioate-based H₂S donors](image4.png)

Phosphorodithioate-based H₂S donors

Moreover, phosphorodithioates hydrolysis is under acidic conditions and releases H₂S [68]. O-aryl substituted phosphorodithioates donors exhibited protection against H₂O₂-induced oxidative damage and marked enhanced cell viability [69],[70]. Moreover, phosphorodithioate oligodeoxycytidine showed activities against the human immunodeficiency virus [71].
2.4. 1, 2-Dithiole-3-Thiones:

H₂S release from 1,2-Dithiole-3-Thiones (DTTs) is in aqueous solutions [72–74] (Figure 8), and is measured by a sulfide-sensitive electrode [75].

1,2-Dithiole-3-thiones (DTTs)

Figure 8. H₂S Release from DTTs.

2.5. Thiol activated H₂S donors:

The release of H₂S from H₂S donors must be slowly and in moderate amounts and stable compounds [76]. Therefore it is critical for developing new H₂S donors with the controlled H₂S release and production.

2.5.1. N-mercapto-based H₂S donors:

N-mercapto-based H₂S donors were the first thiol-activated donors of controlled release H₂S donors that were stable in aqueous solutions [77]. Many factors controlling H₂S release including pH, biomolecules and light. The thiol-activated N-mercapto (N-SH) H₂S donors is unstable, however the addition of acyl groups to N-mercapto (N-SH) for protection of SH groups could improve the stability [77].

N-SH-Based H₂S donors

In the presence of cysteine or GSH, the N-mercapto-based donors are decomposed releasing H₂S (Figure 9). Moreover, the structure-activity relationship studies revealed that adding of electron-withdrawing groups caused more and rapid release of H₂S while electron-donating groups showed slower release of H₂S [77].

2.5.2 Perthiol-based H₂S donors

Perthiol-based donors which in the presence of thiols (cysteine or GSH) showed H₂S release [78]. (Figure 10).

Primary perthiol-based donors exhibited a marked decrease in H₂S release. The tertiary perthiol-based compounds were more potent H₂S donors. [78] and H₂S release can be controlled as in N-SH-based donors by structural modifications, also steric effects exhibited slower or no H₂S release [78]. The perthiol-based donors exhibited H₂S-mediated cardiac protection in MI/R injury [79–81].

2.5.3 Dithioperoxyanhydrides

Dithioperoxyanhydrides release H₂S as perthiol-based donors and N-mercapto-based H₂S donors in both buffers and cellular lysates [82].

Figure 9. Release of H₂S from N-mercapto-based H₂S Donors in The Presence of Cysteine or GSH.
Additionally, CH$_3$C(O)SSC(O)CH$_3$ was reported to prompt vasorelaxation of pre-contraction rat aortic rings [82] (Figure 11).

![Figure 11. H$_2$S Release from Dithioperoxyanhydrides.](image)

2.5.4 Arylthioamides

The lead arylthioamide compound (p-hydroxybenzothioamide) was followed by more arylthioamide compounds by structural modifications [83] (Figure 12). However, arylthioamides release small amounts of H$_2$S but exhibit (3-21 mM) as maximum concentrations [83].

![Figure 12. Synthesis and Release of H$_2$S from p-hydroxybenzothioamide.](image)

In absence of cysteine release of H$_2$S is very weak in buffers, however When 4 mM cysteine or GSH (4 mM) with 1 mM of p-hydroxybenzothioamide showed complete inhibition of vasoconstriction and a decrease in blood pressure (89 ± 1%) [83]

2.5.5. S-Aroylthiooximes (SATOs)

S-Aroylthiooximes (SATOs) are also thiol-triggered donors [84]. Treatment of HCT116 colon cancer cells with 250 µM S-Aroylthiooximes showed a great reduction of colon cancer cell viability more than Na$_2$S and GYY4137 [85].

![S-Aroylthiooximes](image)

2.5.6. 1,2,4-thiadiazolidine-3,5-dione scaffold

1,2,4-thiadiazolidine-3,5-dione are novel thiol-based H$_2$S donors aiming to obtain with more controllable H$_2$S release and is detected by an amperometric method. (1 mM). THIA 3 could completely diminish any vasoconstriction (E_max > 94%) [86].

![THIA 3](image)

2.6. Dual Carbonyl Sulfide / H$_2$S Donors

Compounds releasing carbonyl sulfide (COS) can be used as an intermediate to generate H$_2$S through the action of carbonic anhydrase (CA) [87].

2.6.1. N-Thiocarboxyanhydrides

A carbonyl sulfide releasing compounds that in the presence of glycine and carbonic anhydrase CA, convert carbonyl sulfide COS into H$_2$S that evaluated by the methylene blue method [88].

![N-Thiocarboxyanhydrides](image)

2.6.2. Esterase Activated Carbonyl Sulfide/Hydrogen Sulfide (H$_2$S) Donors

These compounds are triggered by esterase and release carbonyl sulfide (COS) followed by carbonyl sulfide (COS) is hydrolyzed and release H$_2$S [89].

![Esterase Activated Carbonyl Sulfide/Hydrogen Sulfide (H$_2$S) Donors](image)

2.6.3. Cyclic Sulfenyl Thiocarbamates

These compounds in presence of cellular thiols generate carbonyl sulfide (COS) followed by the release of H$_2$S by carbonic anhydrase (CA) [90] (Figure 13).

![Figure 13. Cyclic Sulfenyl Thiocarbamates Releasing H$_2$S.](image)
2.7. Photo-Induced H$_2$S Donors:

2.7.1. Gem-dithiol-based H$_2$S Donors:

The stable-dithiol-based H$_2$S Donors are obtained by the addition of a photolabile 2-nitrobenzyl group for protection of SH group. Light irradiation liberates the free gem-dithiol derivatives that are hydrolyzed to release H$_2$S [91-93] (Figure 14).

![Figure 14](image)

Figure 14. Release of H$_2$S from gem-dithiol-based H$_2$S Donors.

2.7.2 Ketoprofen-caged H$_2$S donors

Lately to develop photolabile H$_2$S donors, ketoprofen-caged donors were synthesized and released H$_2$S after the irradiation at 300-350 nm [94, 95] (Figure 15).

![Figure 15](image)

Figure 15. H$_2$S Release from The Ketoprofen-Caged Donor.

2.8 Thioamino acids

Thioglycine and thiovaline are thioamino acids that can be converted to their corresponding amino acid N-carboxy anhydrides and releasing H$_2$S in the presence of bicarbonate [96] (Figure 16). Also, the pharmacological benefits showed a rise in cGMP levels (~ 10-fold increase) and vasorelaxation of precontracted aortic rings [96].

![Figure 16](image)

Figure 16. Release of H$_2$S from Thioamino Acids.

2.9. Other natural H$_2$S releasing compounds:

Erucin (1-isothiocyanato-4-(methylthio)butane) (ERU), a natural isothiocyanates H$_2$S-releasing compounds exhibited significant antiproliferative effects and at high concentrations (30–100 µM) could inhibit AsPC-1 cell viability. ERU could also inhibit cell migration and showed proapoptotic effects in pancreatic cancer [97].

Moreover, the hydrogen sulfide releasing evodiamine derivative compound I exhibited effective inhibition of human leukemia HL-60 and epithelial colorectal adenocarcinoma Caco-2 cells with IC$_{50}$ values of 0.58 and 2.02 mM, respectively. Also, Compound I showed mitochondrial dysfunction in HL-60 cells through induction of apoptosis and arrest the cell cycle at the G2/M phase [98].

3. Biological activities of Hydrogen sulfide:

H$_2$S exhibits various biological activities at concentrations between 10 and 300 µM [3]. Whereas, H$_2$S can modulate many physiological responses including reducing oxidative stress [21], anti-inflammatory [20], neuromodulation [22], protection against myocardial ischemia injury [24], vasoregulation [23] and inhibition of insulin resistance [25].

3.1. Vasodilation and anti-hypertensive effects

Studies reported that H$_2$S showed relaxation of blood vessels similar to NO by altering K$^+$ channel and increased cGMP levels of vascular smooth muscles [99, 100]. It also reported that the H$_2$S donor (NaHS) causing reduction of hypertension through rapid relaxation of aortic rings smooth muscles due to opening KATP channels [65]. The genetic deletion of cystathionine c-lyase (CSE) the H$_2$S generating enzyme cause hypertension [99].

3.2. Anti-inflammatory effects

As known that chronic and excessive administration of nonsteroidal anti-inflammatory drugs induce gastroenteropathy, and it was suggested that NSAIDs cause suppression of cystathionine c-lyase (CSE) expression lead to a decrease of endogenous H$_2$S synthesis in gastric injury [101–103]. Therefore, the administration of exogenous H$_2$S could reduce gastric injury [104]. Also, the short-term treatment with NaHS down-regulated expression of IL-6 and IL-8 and showed anti-inflammatory effects against osteoarthritis OA [59]. Moreover, GYY4137 could inhibit the production of pro-inflammatory mediators such as nitric oxide, TNF-α, IL-1β, IL-6 and PGE2 and rise the anti-inflammatory IL-10 chemokine levels [75].

3.3. Anti-oxidant effects

As known that H$_2$S has antioxidant properties via stimulation of glutathione metabolism [105] and increasing the activity of cysteine that increasing substrates for production of glutathione (GSH) [106]. Also, H$_2$S causes up-regulation of intracellular antioxidants and protection from ischemia-reperfusion (I/R) injury [107]. Moreover, H$_2$S could reduce mitochondrial ROS production through inhibition of cytochrome C oxidase [109].
3.4. Fibrinolytic activity

Essential oils of garlic showed a significant reduction in the rise in blood coagulation of hypercholesterolemic rabbits [110]. Furthermore, recent studies on garlic showed inhibition of platelet aggregation and increased fibrinolytic activity [111].

3.5. Anti-platelet activation and aggregation effects

Observations indicated that garlic H,S releasing compounds could be helpful in the prevention of thrombosis [112]. It was found that treatment of rabbits with garlic extract could block synthesis of thromboxane-B2 (TXB2) that protects from thrombocytopenia [112]. Moreover, garlic aqueous extract prevents platelet aggregation stimulated by collagen and epinephrine in vitro [113]. Moreover, diallyl disulfide and diallyl trisulfide in garlic could inhibit platelet thrombus formation in stenosed coronary arteries [114].

3.6. Pro-angiogenic effects

Angiogenesis is a microvascular growth that revascularizes ischemic tissues and has an important role in modifying and developing chronic inflammation and tumorigenesis [115, 116]. It was reported that low micromolar concentrations of NaHS or NaH,S could modulate angiogenesis by increasing endothelial cell growth and migration [115, 117, 118]. More studies showed that H,S could improve blood flow and microvascular growth in ischemic organs [119]. Additionally, H,S regulates angiogenesis with other molecules, such as NO and CO [120] by increasing cGMP in vascular smooth muscle cells that inhibiting phosphodiesterase action [121].

3.7. Cardioprotective effects (MI and I/R)

Many studies showed that H,S has a cardioprotective effect in vitro and in vivo [24, 57, 58, 122]. The CSE inhibitor DL-propargylglycine (PAG) inhibiting endogenous H,S production that inhibits the cardioprotective effect. It has been demonstrated that at elevated plasma H,S concentrations a decrease of infarct size and mortality after MI, while at decreased H,S levels in the plasma the infarct size and mortality are increased [123]. Also, H,S causes opening K-ATP channels that protect the heart during I/R injury [122], [24, 123, 124]. Moreover, H,S could block cytochrome c oxidase that inhibits cellular respiration and protect against myocardial ischemic injury [125, 126]. H,S could also suppress Na*/H* exchanger and prevent Ca²⁺ overload of the ischemic heart that explains the H,S cardioprotection effect [127].

3.8. Metabolic suppression

Literature reported that after administration of H,S the metabolic oxygen demand is reduced through inhibition of the cellular oxygen receptors [128–130]. Also, the metabolic rate is reduced reversibly with decreased cardiovascular function without affecting blood pressure in mice [131].

3.9. Anticancer activity

As reported that H,S could affect cell transporters [132] and ion channels causing down-regulation of cellular activities [133, 134]. Also after the treatment of HEK293 cells with NaHS caused inhibition of voltage-gated T-type Cav3.2 channels [135] and increased anticancer effects and enhanced sensitivity of cancer cells to drugs [136, 137]. Moreover, Das and DATS caused a decrease in tumor growth due to increased expressions of heme oxygenase-1 (HO-1) [140, 141]. Also, NaHS treatment enhances the release of NO and increased cytoprotective effects in L1210 leukemia cells [142].

H,S Cancer suppressing activities:

3.9.1. H,S donor regulates immune responses

Treatment of glomerulus cells with NaHS could protect against antibody-induced cell lysis and reducing antibody binding ability lead to a reduction of apoptosis [143].

3.9.2. H,S donors regulating many transcription factors

H,S can affect various transcription factors including STAT-3 [139], NF-kB [144] and Nrf-2 [145] which are included in apoptosis and inflammation. NaHS and GYY4137 showed protection from inflammatory and apoptotic reactions through sulforaphing the p65 subunit of NF-κB at Cys-38 in monocyte/macrophage [146, 147]. Moreover, the treatment with NaHS, GYY4137 or DATS could enhance Nrf-2 antioxidant pathway that improves antioxidant status [148].

3.9.3. H,S donor blocks cell cycle

It was reported that GYY4137 could induce arrest of cell cycle at G1/S in HCC cells [139], and S-G2/M phases in colorectal cancer [149] and breast cancer cells [66]. Also, NaHS could trigger G0/G1 arrest that prevents cell cycle progression in breast cancer [150]. Moreover, DATS could induce DNA damage and arrest G2/M phase in thyroid and bladder cancer [151, 152], and in prostate cancer[153]. Also, DATS enhanced the intercellular cyclins (A2 and B1) expression, and increased levels of apoptotic markers (Bax, p53, cleaved caspase 8, 9, and cytochrome c) and phosphorylation of histone 3 in gastric cancer [154, 155]. Additionally, DADS could induce arrest of G2/M phase in pancreatic [156] and ovarian cancer [157].

3.9.4. H,S donor modulating cell proliferation and viability

H,S could interact with the cell cycle regulators that control cell proliferation and viability by [155, 158]. As GYY4137 could enhance cell cycle arrest and apoptosis that showed pro-proliferation activities in colon and breast cancer [66, 149]. Moreover, DATS could decrease cell proliferation and viability in gastric cancer [155], osteosarcoma [158]. Also, NaHS could inhibit the growth of HepG2 cells [159] and breast cancer MCF-7 cells [150].

3.9.5. H,S donor inhibiting cell migration and invasion

NaHS (600-1000 μM) could inhibit migration and invasion of tumor cells due to regulation of EGFR/ERK/MMP-2 and PTEN/AKT pathways in HCC cells [160]. Moreover, 200 μM NaHS caused deactivation of the MAPK and P38/AKT/mTOR pathways that inhibited migration activities in thyroid cancer cells [161]. However, treatment of colon cancer HT29 cells with DATS could decrease vascular endothelial growth factor, focal adhesion kinase and inhibiting p38, MAPK and JNK signaling cascades that prevented angiogenesis and migration [162].
3.9.6. H₂S donor induces apoptosis

H₂S could interact with numerous apoptosis-inducing pathways that cause the regulation of apoptosis [149, 163]. GYY4137 could increase the apoptotic markers caspase-9 expressions in breast cancer MCF-7 cells, colorectal cancer Caco-2 cells [149], and ovarian cancer A2780 cells [164], without affecting normal cell lines [66]. Moreover, GYY4137 showed a significant increase in apoptotic activities in HCC cells through the prevention of phosphorylation of STAT-3 prompted by interleukin-6 and JAK-2 [139]. In addition, NaHS causes upregulation of apoptosis- genes caspase-3 expressions and suppression of anti-apoptotic marker Bcl-2 through modulation of p38, MAPK and p53 pathways [165]. Also, DATS could induce apoptosis by enhancing mitochondria-mediated DNA damage [151]. Moreover, DADS could suppress cancer progression by enhancing DNA damage [156]. Furthermore, DADS could suppress injection of colorectal cancer patients through elevation of the mRNA and MT2A protein levels [168]. Moreover, treatment of osteosarcoma cells with DATS could suppress multidrug resistance protein 1 (P-gp1) and reduce drug resistance [169]. In addition, NaHS could decrease the methotrexate (MTX) induced hepatotoxicity [171].

3.9.7. H₂S donor increase the sensitivity of cancer cells to anticancer drug

In addition to H₂S exhibited anti-cancer activities even in drug-resistant cancer cells including cisplatin-resistant cells [167], H₂S donors could also increase the sensitivity and decrease the resistance of cancer cells to anti-cancer agents [155, 168]. Treatment with DATS could improve the sensitivity of cancer cells to docetaxel (anticancer drug) the anti-cancer drug and increased the survival of gastric cancer patients through elevation of the mRNA and MT2A protein levels [168]. Moreover, treatment of osteosarcoma cells with DATS could suppress multidrug resistance protein 1 (P-gp1) and reduce drug resistance [169]. Furthermore, treatment of breast cancer cells with NaHS could increase tumor oxygen levels and enhance radiosensitivity [170]. In addition, NaHS could decrease the methotrexate (MTX) induced hepatotoxicity [171].

3.9.8. H₂S donor decreasing in vivo tumor growth

The treatment of leukemia model with 100-300 mg/kg GYY4137 showed a decrease in cancer growth and size [66]. It was reported that (50 mg/kg/day) GYY4137 decreased subcutaneous HepG2 cancer growth and size through regulation of STAT-3 pathway [139]. Moreover, DADS/DATs cause inhibition of cancer growth, size and weight [172]. Similarly, treatment of HCC mice model with NaHS(0.8-1 mM) leads to suppression of cancer growth and development [160].

4. H₂S donors hybrids:

As known that molecular hybridization is commonly used in drug design and development depending on binding two or more pharmacophoric groups having more biological activities to obtain a novel hybrid with enhanced affinity, efficacy and/or decreased side effects compared to the parent drugs[173]. Such a strategy was used in many studies gathering an H₂S donor pharmacophore with another pharmacologically active moiety. NSAIDs were the most used drug moieties in the design of such hybrids.

4.1. HS/NSAIDs

NSAIDs were coupled with 1,2-Dithiole-3-thiones DTTs giving HS-hybrid NSAIDs (HS-NSAIDs) exhibited a decrease of gastrointestinal injury caused by the corresponding NSAIDs [74, 174, 175] (Table 1). In addition, HS-SUL, HS-IBU, HSA and HS-NAP showed significant inhibition of several human cancer cell growth such as leukemia, colon, breast, lung, prostate and pancreas cancer cells [176].

ATB-346 a naproxen-hydroxybenzothioamide hybrid that exhibited to promot apoptosis in melanoma cells [177]. ATB-346 when compared to naproxen showed a decrease in gastrointestinal tract damage with anticancer activity against colorectal cancer [178]. ATB-346 could also induce cell death through suppression of AKT and NF-κB signaling and reduction of cyclooxygenase-2 (COX-2) effects in human melanoma cells [177].

Moreover, the dual nitric oxide and hydrogen sulfide-releasing hybrid NOSH-aspirin (NBS-1120), showed significant anticancer activity with IC₅₀ of 45.5 ± 2.5, 19.7 ± 3.3, and 7.7 ± 2.2 nM at 24, 48, and 72 h, respectively against HT-29 colon cancer cells. Also, NOSH–aspirin could block could G0/G1 cell cycle, induced apoptosis and inhibit cell proliferation, [179]. NOSH–aspirin exhibited anti-inflammatory by the decrease of the interleukin-1 beta (IL-1b) production in carrageenan-induced paw inflammation and reduced prostaglandin E₂-induced hyperalgesia and more potency than aspirin and reduced inflammatory pain [180].
Table 1. Structures of HS-NSAIDs and Their Corresponding NSAIDs.

NSAIDs	HS/NSAIDs Hybrid
diclofenac	ATB-337
sulindac	HS-SUL
ibuprofen	HS-IBU
aspirin	HS-ASA
naproxen	HS-NAP
4.2. Other synthetic H$_2$S hybrids

![Diagram of synthetic H$_2$S hybrids](image)

Figure 17. Structures of Some Synthetic H$_2$S Hybrids.
The novel hydrogen sulfide-nitric oxide donor hybrid ZYZ-803 could stimulate STAT3/CaMKII pathway in angiogenesis through H$_2$S/NO-mediated mechanisms [181]. Moreover, HA-ADT is a novel hydrogen sulfide-releasing donor caused inhibition of the Ras/Raf/MEK/ERK and PI3K/Akt/mTOR pathways that decreased the breast cancer cells growth. Results showed that HA-ADT could suppress breast cancer cells growth, migration and invasion. Also, HA-ADT increased the apoptotic index of breast cancer cells [166].

Compounds (II and III) are H$_2$S-Releasing Glycoconjugates showed anticancer activities of pancreas adenocarcinoma metastasis AsPC-1 and are effective in decreasing cell viability. These compounds (II and III) produce H$_2$S inside the AsPC-1 cells that modify the basal cell cycle [182].

A new series of hydrogen sulfide donating ent-kaurane and spirolactone-type 6,7-seco-ent-kaurane derivatives with anticancer activity against four human cancer cell lines (K562, Bel-7402, SGC-7901 and A549) and two normal cell lines (L-02 and PBMC) specially compound IV was the most potent with IC$_{50}$ values of 1.01, 0.88, 4.36 and 5.21 mM, respectively [183]. The antiproliferative activity of IV was through Bel-7402 cell cycle arrest at G1 phase and induction of apoptosis by enhancing the Bax, cleaved caspase-3 and cytochrome c expression and inhibition of procaspase-3, Bcl-2 and PARP [184]. Furthermore, compound V one of enmein-diterpenoid H$_2$S releasing hybrids showed the most potent antiproliferative activity and release of hydrogen sulfide due to α-thiotic acid moiety and could induce apoptosis through mitochondria-related pathways with anticancer activities against Bel-7402, SGC-7901 and A549 cancer cells with IC$_{50}$ of 2.16, 5.07 and 6.98 μM respectively. However, having little activity on normal cell lines L-02 and PBMC with IC$_{50}$ of 15.81 μM and 14.15 μM respectively [185].

Ammonium tetrathiomolybdate (ATTM) is releasing H$_2$S and is commonly used for chelation of copper. As high levels of copper stimulate tumor and cancer growth, it was found that at high concentrations of ATT M cell growth was inhibited while at low concentrations cell growth is enhanced in three lung adenocarcinoma cell lines (A549, HCC827, and PC9). Conversely, triethylenetetramine another chelator of copper not producing H$_2$S does not promote cell growth [186]. Furthermore, Platinum(II) dithiocarbamate H$_2$S releasing compound [Pt(S$_2$CNR$_2$)(Cl(PAr$_3$)$_2$)] VI showed potent anticancer activities which could cleave DNA double-helicel structure that inhibits tumor cells replication and growth [187].

The hydrogen sulfide donor oleic acid/ursolic acid/glyceryrhetic acid- and their 25-pentacyclic triterpene hybrids showed anti-tumor activity especially VII and VIII hybrids that revealed anticancer activity against K562 cell line. [188].

The novel nitric oxide-hydrogen sulfide donor Chalcone hybrids especially compound IX and X exhibited vasorelaxation in Isolated Rat Aorta with pEC$_{50}$ of 3.716 and 3.789 M, respectively and produced significant activation and release of cGMP [189].

Conclusion:

H$_2$S releasing agents showing several biological activities with many physiological effects. Besides the anti-inflammatory and anti-cancer activities, H$_2$S releasing agents also showed anti-oxidant effects and regulation of cardiovascular functions via ion channel alteration. Inorganic salts of sulfide are helpful to study H$_2$S biological importance, but the acute and rapid rate of H$_2$S release makes them not ideal H$_2$S donors. Natural H$_2$S releasing agents are potent antioxidant, anti-inflammatory and anti-tumor compounds. Based on the scope of H$_2$S donors, several new synthetic H$_2$S releasing compounds with effective moieties such as polysulfide, thioamide, disulfide and anethole trithione have been evaluated for different pathophysiological effects. These agents can be combined with specific scaffolds for targeted therapy. Finally, it is critical for developing novel H$_2$S releasing drugs with a slow and consistent rate of H$_2$S and improved efficacy and decreased undesired side or toxic effects. In addition, the solubility of these agents must be controlled to obtain a good pharmacokinetic profile and the donor must be with good aqueous stability. Finally, the importance of the synthesis and development of H$_2$S releasing agents with enhanced properties will support moving these agents in the direction of clinical trials.

Funding statement: no funding.

Author contributions: All authors are equal in contribution.

References

[1] Olson KR. A Practical Look at the Chemistry and Biology of Hydrogen Sulfide. Antioxid Redox Signal 2012; 17: 32–44.
[2] Olson KR, Donald JA, Dombkowski RA, et al. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir Physiol Neurobiol 2012; 184: 117–129.
[3] Lu L, Rose P, Moore PK. Hydrogen Sulfide and Cell Signaling. Annu Rev Pharmacol Toxicol 2011; 51: 169–187.
[4] Koll武 WK, Chen X, Bir SC, et al. Hydrogen sulfide chemical biology: Pathophysiological roles and detection. Nitric Oxide 2013; 35: 5–20.
[5] VANDIVER MS, Snyder SH. Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med 2012; 90: 255–263.
[6] Szabo C. Hydrogen sulfide and its therapeutic potential. Nat Rev Drug Discov 2007; 6: 917–935.
[7] Fukuto JM, Carrington SJ, Tantillo DJ, et al. Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen, Hydrogen Sulfide, and Their Derived Species. Chem Rev 2012; 25: 769–793.
[8] Bruce King S. Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides. Free Radic Biol Med 2013; 55: 1–7.
[9] Martelli A, Testai L, Breschi MC, et al. Hydrogen sulphide: novel opportunity for drug discovery: HYDROGEN SULPHIDE: NOVEL OPPORTUNITY. Med Res Rev 2012; 32: 1093–1130.
[10] Szabo C. Roles of Hydrogen Sulfide in the Pathogenesis of Diabetes Mellitus and Its Complications. Antioxid Redox Signal 2012; 17: 68–80.
[11] Paul BD, Snyder SH. The conversion of H2S to sulfane sulfur: authors’ response. Nat Rev Mol Cell Biol 2012; 13: 803–803.
[12] Hu L-F, Lu M, Wong PTH, et al. Hydrogen Sulfide: Neurophysiology and Neuropathology. National library of medicine in 2011; 15: 405-419.
[13] Shibuya N, Koike S, Tanaka M, et al. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 2013; 4: 1366.
[14] Mios R, Filipovic, I., Mlijkovic, M., Arand Allgäuer, A. Biochemical insight into physiological effects of H2S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfynil nitrite. Biochem J (2012) 441 (2): 609–621.
[15] Jones CM, Lawrence A, Wardman P, et al. Electron paramagnetic resonance spin trapping investigation into the kinetics of glutathione oxidation by the superoxide radical: re-evaluation of the rate constant. Free Radic Biol Med 2002; 32: 982–990.
[16] Haozu P, Bell H, Philmon M. Hydrogen sulfide oxidation and the arterial chemoreflex: Effect of methemoglobin. Respir Physiol Neurobiol 2011; 177: 273–283.
[17] Candice E. Paulsen and Kate S. Carroll. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery . Chem. Rev. 2013, 113, 7, 4633–4679.
[18] Jia Pan and Kate S. Carroll*. Persulfide Reactivity in the Detection of Protein S-Sulfhydration . ACS Chem. Biol. 2013, 8, 6, 1110–1116.
[19] Zhang D, Macinkovic L, et al. Detection of Protein S-Sulfhydrylation by a Tag-Switch Technique. Angew. Chem. Int. Ed. 2014; 53: 575–581.
[20] Zanardo R., Brancalone V., Distriti E., et al. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. The FASEB Journal 2006, 20, 12, 2118-2120.

Shabib et al.
The possible role of hydrogen sulfide as an endogenous gaseous mediator of cardiovascular functions. J. Mol. Cell. Cardiol. 2013, 5(5), 689–703.

[52]Collman JP, Ghosh S, Dey A, et al. Using a functional enzyme model to understand the chemistry behind hydrogen sulfide induced hibernation. Proc Natl Acad Sci USA. 2009; 106:1508–1509.

[53]Zhang, Q., Fu, H., Zhang, H., Xu, F., Zou, Z., Liu, M., ... Shi, X. (2013). Hydrogen Sulfide Preconditioning Protects Rats Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting Mitochondrial Permeability Transition. PLoS ONE, 8(9), e74422.

[54]Zhao W., Zhang J., Lu Y., Wang R. (2001). The vasorelaxant effect of H2S is a novel gaseous endogenous KATP channel opener | The EMBO Journal. 20, 6008–6016.

[55]Liu L., Liu H., Sun D., et al. Effects of H2S on Myogenic Responses in Rat Cerebral Arterioles. Circ J. 2012; 76: 1012–1019.

[56]Calvert, J. W., Elston, M. Nicholson, C. R., Gundewar, S., Jha, S., Elrod, J. W., ... Lefer, D. J. Genetic and Pharmacologic Hydrogen Sulfide Therapy Attenuates Ischemia-Induced Heart Failure in Mice. Circulation. 2010,122(1), 11–19.

[57]Calvert, J. W., Jha, S., Gundewar, S., Elrod, J. W., Ramachandran, A., Pattillo, C. B., ... Lefer, D. J. (2009). Hydrogen Sulfide Mediates Cardioprotection Through Nrf2 Signaling. Circulation. 105(4), 365–374.

[58]Sodha NR, Clements RT, Feng J, et al. The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury. Eur J Cardiothoracic Surg 2008; 33: 906–913.

[59]Kloesch B, Lissz M, Steiner G, et al. Inhibitors of p38 and ERK1/2 MAPlakin and hydrogen sulfide block constitutive and IL-1β-induced IL-6 and IL-8 expression in the human chondrocyte cell line C-82/02. Rheumatol Int 2012; 32: 729–736.

[60]DeLeon ER, Stoy GF, Olson KR. Passive loss of hydrogen sulfide in biological experiments. Anal Biochem 2012; 421: 203–207.

[61]Amagase H. Clarifying the Real Bioactive Constituents of Garlic. The Journal of Nutrition 2006, 136(3), 7165–725S.

[62]Benavides G. A., Squadrato G. L., Mills R. W., Patel H. D., Patel R. P., Kraus D. W. Hydrogen sulfide mediates the vasoreactivity of garlic. Proceedings of the National Academy of Sciences 2007, 104(46), 17977–17982.

[63]Ozturk T., Ertas, E., & Mert O. Use of Lawesson’s Reagent in Organic Syntheses. Chemicals Reviews 2007, 107(11), 5210–5278.

[64]Wallace JL, von G, McKnight W, et al. Endogenous and Exogenous Hydrogen Sulfide Promotes Resolution of Colitis in Rats. Gastroenterology 2009; 137: 569–586.

[65]Li L, Whitman M, Guan YY, et al. Characterization of a Novel, Water-Soluble Hydrogen Sulfide–Releasing Molecule (GYY4137): New Insights Into the Biochemistry of Hydrogen Sulfide. Circulation. 2008; 117: 2351–2360.

[66]Lee Z. W., Zhou J., Chen C. S., Zhao Y., Tan C. H., Li L., Deng L. W. The Sulfide–Releasing Hydrogen Peroxide Donor, GYY4137, Exhibits Novel Anti-Cancer Effects In Vivo and In Vivo. PLoS ONE 2011, 6(6), e21077.

[67]Park C-M, Zhao Y, Zhu Z, et al. Synthesis and evaluation of phosphorodithioate-based hydrogen sulfide donors. Mol Biosyst 2013; 9: 2430–2434.

[68]Szabó G, Veres G, Radovits T, et al. Cardioprotective effects of hydrogen sulfide. Nitric Oxide 2011; 25: 201–210.

[69]Marshall WS, Caruthers MH. Phosphorodithioate DNA as a potential therapeutic drug. Science 1993; 259: 1564–1570.

[70]Nielsen J, Brill WK-D, Caruthers MH. Synthesis and characterization of dinucleoside phosphorothioates. Tetrahedron Lett 1988; 29: 991–994.

[71]Marshall WS, Beaton G, Stein CA, et al. Inhibition of human immunodeficiency virus type 1 by phosphorodithioate oligodeoxynucleotides. Proc Natl Acad Sci USA 1989; 82: 6626–6629.

[72]Qandil AM. Prodrugs of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), More Than Meets the Eye: A Critical Review. Int J Mol Sci 2012; 13: 17244–17274.

[73]Zanatta SD, Jarrott B, Williams SJ. Synthesis and Preliminary Cancer Effects In Vitro and In Vivo. PLoS ONE 2011, 6(6), e21077.

[74]Caliento G, Cirino G, Santagada V, et al. Synthesis and Biological Effects of Hydrogen Sulfide (H2S): Development of H2S Donors. J. Med Chem 2007; 32: 501–505.

[75]Wallace JL, Vong L, McKnight W, et al. Hydrogen sulfide mediates the vasoactivity of garlic. ACS Chem. Biol. 2013, 8, 6, 1283–1288.

[76]Peng H. et al. Fluorescent Probe for Fast and Quantitative Detection of Hydrogen Sulfide in Blood. Angewandte Chemie 2011, 123, 41,9864–9849.

[77]Chen C, Pan J, Zhang M, Zhao Y, et al. Determination of Hydrogen Sulfide by a Fluorescent Probe. Angew Chem 2011; 123: 10511–10513.

[78]Shahib et al. J. Adv. Biomed. & Pharm. Sci.
Oxygen Sulfide Donor NaHS

Ueuous extracts of onion, garlic and ginger inhibit neiotic vascular effects. Atherosclerosis 1977, 26(3), 379–386.

Borbia A., Verma S. K., Vyas A. K., Khayba B. L., Rathore A. S. B., Bhu N., & Bedi H. K. Effect of essential oil of onion and garlic on experimental atherosclerosis in rabbits. Atherosclerosis 1977, 26(3), 379–386.

Banerjee S. K., & Malki, S. K. Effect of garlic on cardiovascular disorders: a review. Nutrition Journal 2002, 1(11)-14.

Roger T, Raynaud F, Bouillaud F, et al. Antithrombotic activity of garlic: its inhibition of the synthesis of thromboxane-B2 during infusion of arachidonic acid and collagen in rabbits. Prostaglandins Leukot Essent Fatty Acids 1990; 41: 95–99.

Snivstava KC. Aequous extracts of onion, garlic and ginger inhibit platelet aggregation and alter arachidonic acid metabolism. Biomed Biochem Acta 1984; 43: S35-36.

DeBoer LW, Folts JD. Garlic extract prevents acute platelet thrombus formation in stenosed canine coronary arteries, Am Heart J 1989; 117: 973–975.

Bir, S. C., Kolluru, G. K., McCarthy, P., Shen, X., Pardue, S., Pattillo, C. B., & Kevl, C. G. (2012). Hydrogen Sulfide Stimulates Ischemic Vascular Remodeling Through Nitric Oxide Synthase and Nitrite Reduction Activity. Creating Hypoxia-Inducible Factor-1 and Vascular Endothelial Growth Factor-Dependent Angiogenesis. Journal of the American Heart Association, 153, e004093-e004093.

Br SC, Kolluru KG, Fan G, et al. Redox balance dynamically regulates vascular cell death and remodeling. Semin Cell Dev Biol 2012; 23: 745–757.

Cai WJ, Wang M-J, Moore PK, et al. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 2007; 76: 29–40.

Zanardo, R. C. O., Brancalione, V., Distrutt, E., Fiorucci, S., Cirino, G., & Wallace, J. L. (2012). Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. The FASEB Journal, 20(12), 2118–2120.

Wang M-J, Cai W-J, Li N, et al. The Hydrogen Sulfide Donor NaHS Promotes Angiogenesis in a Rat Model of Hind Limb Ischemia. Antioxid Redox Signal 2009; 12: 1065–1077.

Wang M-J, Cai W-J, Zhu Y-C. Mechanisms of angiogenesis: Role of hydrogen sulfide. Clin Exp Pharmacol Physiol 2010; 37: 764–771.

Bucci M., Papapetropoulos A., Velleco V., Zhou, Y., Piriyochou A., Roussos, C., Cirino G. Hydrogen Sulfide Is an Endogenous Inhibitor of Phosphodiesterase Activity. Arteriosclerosis, Thrombosis, and Vascular Biology 2010; 1(10), 1998–2005.

Zheng Z, Zhang Y, et al. Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening KATP channels. Canadian Journal of Physiology and Pharmacology 2008, 85(12), 1248–1253.

Zhu YZ, Wang ZJ, Ho P, et al. Hydrogen sulfide and its possible roles in myocardial ischemia-reperfusion injury: a review. Biochim Biophys Acta 2009; 1788: 587–598.

Zhu H, Inoue E, et al. Antiproliferative hydrogen sulfide releasing eosinophilic and other apoptosis inducing properties. Eur J Med Chem 2018; 151: 376–388.

Yang G., Wu L., Liang, J., Tang, Y., Xie, J., Cao, K., Wang R. H2S as a Physiologic Vasorelaxant: Hypertension in Mice with Deletion of Cystathionine θ γ Reductase and Repair A Window of Opportunity for Cytoxygenase-Inhibiting Nitric Oxide Donors. Canadian Journal of Physiology 2004; 18: 229–236.

Fiorucci, S. and Briere, A. Inhibitors of Protein Kinases. In General Antithrombotic Strategies. J. Adv. Biomed. & Pharm. Sci. 2012. 17: 45–57.

Fiorucci S, Antonelli E, Distruiti E, et al. Inhibition of Hydrogen Sulfide Generation Contributes to Gastric Injury Caused by Inflammation and Reparative Regeneration. Gastroenterology 2005; 129: 1210–1224.

Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J 2004; 18: 1165–1167.

Lu M, Hu L-F, Hu G, et al. Hydrogen sulfide protects astocytes against H2O2-induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 2008; 45: 1705–1713.
Hydrogen sulfide promotes autophagy [133]. q-Protein Sulfide 2014; 107/543. Wang H, Su N, Li X, et al. Diallyl trisulfide induces osteosarcoma cell apoptosis through reactive oxygen species-mediated downregulation of the PI3K/Akt signaling pathway. Oncol Rep 2016; 35: 3648–3658. (159) Wang SS, Chen YH, Chen N, et al. Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis 2017; 8: e2688. (160) Wu D, Li M, Tian W, et al. Hydrogen sulfide acts as a double-edged sword in human hepatocellular carcinoma cells through EGFR/ERK/MMP-2 and PI3K/AKT signaling pathways. Sci Rep 2017; 7: 5134. (161) Wu D, Li J, Zhang Q, Tian W, Zhong P, Liu Z, Li Y. Exogenous Hydrogen Sulfide Regulates the Growth of Human Thyroid Carcinoma Cells. Oxidative Medicine and Cellular Longevity, 2019, 1–18. (162) Li K-C, Huo S-C, Yang J-S, et al. Diallyl trisulfide inhibits migration, invasion and angiogenesis of human colon cancer HT-29 cells and umbilical vein endothelial cells, and suppresses murine xenograft tumour growth. J Cell Mol Med 2015; 19: 474–484. (163) Kang JH, Jiang YS, Lee HJ, Lee CY, Shin DY, Oh SH, 2019. Inhibition of STAT3 signaling induces apoptosis and suppresses growth of lung cancer: good and bad. Europe PMC. 35:30. (164) Szwedziuk P, Hudecova S, Chovancova B, et al. Sodium/calcium exchanger is involved in apoptosis induced by H2S in tumor cells through decreased levels of intracellular pH. Nitric Oxide Biomed Sci 2019; 87: 1–9. (165) Zhao L, Wang Y, Yan Q, et al. Exogenous hydrogen sulfide exhibits anti-cancer effects through p38 MAPK signaling pathway in C6 glioma cells. Biomed. Pharmacother 2015; 39: 1247–1255. (166) Dong Q, Yang B, Han J, Zhang M, Liu W, Zhang X, Hu Y, Liu Z, Zhang S, Li T, Wu D, Ji X, Duan S. A novel hydrogen sulfide-releasing donor, HA-ADT, suppresses the growth of human breast cancer cells through inhibiting the PI3K/AKT/mTOR and Ras/MAPK/ERK signaling pathways Cancer Letters 2017. (167) Ma Y, Yan Z, Deng X, et al. Anticancer effect of exogenous hydrogen sulfide in cisplatin-resistant A549/DDP cells. Oncol Rep 2018; 39: 2969–2977. (168) Pan Y, Lin S, Xing R, et al. Epigenetic Upregulation of Metallothionein 2A by Diallyl Trisulfide Enhances Chemosensitivity of Human Gastric Cancer Cells to Docetaxel Through Attenuating NF-κB Activation. Anti oxid Redox Signal 2016; 24: 839–854. (169) Wang Z., Xia C., Qui J., Diao Y., & Li J. Reversion of P-glycoprotein-mediated multidrug resistance by diallyl trisulfide in a human osteosarcoma cell line. Oncology Research. 2014, 31(6), 2720–2726. (170) Peter D., Dierremacker C., Danlier P., Brisson L., Cao Pham T., Gross, K., Gallez B., Mazereeuw-Hautier J. Hydrogen Sulfide-Releasing Donor Increases the Tumor Response to Radiotherapy, Molecular Cancer Therapeutics, 2015, 15(4), 161. (171) Fouad AA, Hafez HM, Hamouda A. Hydrogen sulfide modulates IL- 6 and TNF-alpha pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate-induced liver injury. Hum Exp Toxicol 2020; 39: 77–85. (172) Tao Q, Wu C, Xu R, Niu L, Qin J, Liu N, Zhang P, Wang C. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of glioma cells by inactivating Wnt/β-catenin signalling. Cell and Tissue Research 2017, 370, 379–390. (173) Claudio Viegas-Junior, Amanda Danuello, Vanderlan da Silva Bolzan, et al. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Carr Med Chem 2007; 14: 1829–1852. (174) Sostres C, Gargallo CJ, Lana S. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res Ther 2013; 15: 419. (175) Chan MV, Wallace JL. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments. Am J Physiol-Gastrointest Liver Physiol 2013; 305: G467–G473. (176) Chattopadhyay M, Kodeila R, Nath N, et al. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: A general property and evidence of a tissue type independent effect. Biochem Pharmacol 2012; 83: 715–722. (177) De Cicco P, Panza E, Ercolano G, et al. ATB-346, a novel hydrogen sulfide-releasing anti-inflammatory drug, induces apoptosis of human melanoma cells and inhibits melanoma development in vivo. Pharmacol Res 2016; 114: 57–58. (178) Elsheikh W, Blackler RW, Flannigan KL, et al. Enhanced chemopreventive effects of a hydrogen sulfide-releasing anti-inflammatory drug (ATB-346) in experimental colorectal cancer. Nitric Oxide Biomed Sci 2014; 41: 131–137.
Chattopadhyay M, Kodela R, Olson KR, et al. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model. *Biochem Biophys Res Commun* 2012; 419: 523–528.

Fonseca M. D., Cunha F. Q., Kashfi K., & Cunha T. M. (2015). NOSH-aspirin (NBS-1120), a dual nitric oxide and hydrogen sulfide-releasing hybrid, reduces inflammatory pain. *Pharmacology Research & Perspectives* 2015, 3(3), e00133.

Xiong Y., Chang L., Tran B., Dai T., Zhong R., Mao Y., & Zhu Y. ZYZ-803, a novel hydrogen sulfide-nitric oxide conjugated donor, promotes angiogenesis via cross-talk between STAT3 and CaMKII. *Acta Pharmacologica Sinica* 2019, 0:1–11.

Fortunato S., Lenzi C., Granchi C., Citi V., Martelli A., Calderone V., Minutolo F. First examples of H2S-releasing glycoconjugates: stereoselective synthesis and anticancer activities. *Bioconjugate Chemistry* 2019, 30, 614–620.

Li H, Gao X, Huang X, et al. Hydrogen sulfide donating ent-kaurane and spiro lactone-type 6,7-sec-ent-kaurane derivatives: Design, synthesis and antiproliferative properties. *Eur J Med Chem* 2019; 178: 446–457.

Li H, Mu J, Sun J, et al. Hydrogen sulfide releasing oridonin derivatives induce apoptosis through extrinsic and intrinsic pathways. *Eur J Med Chem* 2020; 187: 111978.

Xu F, Gao X, Li H, et al. Hydrogen sulfide releasing enmein-type diterpenoid derivatives as apoptosis inducers through mitochondria-related pathways. *Bioorganic Chem* 2019; 82: 192–203.

Li X, Li N, Huang L, et al. Is Hydrogen Sulfide a Concern During Treatment of Lung Adenocarcinoma With Ammonium Tetrathiomolybdate? *Front Oncol*; 10. Epub ahead of print 2020. DOI: 10.3389/fonc.2020.00234.

Kashif Amir M, Hogarth G, Khan Z, et al. Platinum(II) dithiocarbamate complexes [Pt(S2CNR2)Cl(PAr3)] as anticancer and DNA-damaging agents. *Inorganica Chim Acta* 2020; 512: 119853.

Sheng L, Huang J, Liu C, et al. Synthesis of oleanolic acid/ursolic acid/glycyrrhetinic acid-hydrogen sulfide donor hybrids and their antitumor activity. *Med Chem Res* 2019; 28: 1212–1222.

Sherikar* A, Bhatia RD and M. Vasorelaxant Effect of Novel Nitric Oxide-Hydrogen Sulfide Donor Chalcone in Isolated Rat Aorta: Involvement of cGMP Mediated sGC and Potassium Channel Activation. *Current Molecular Pharmacology* 2020; 13: 126–136.