Multiplicty Dependence of Hadron Spectra in Proton-Proton Collisions at LHC Energies and Super-Statistics

Karoly Urmossy

1 Institute for Particle and Nuclear Physics, Wigner RCP of the HAS
29-33 Konkoly–Thege Miklós Str., H-1121 Budapest, Hungary

Received: date / Accepted: date

Abstract In this paper, transverse momentum spectra of π^+, K^+ and p measured at fix event-multiplicities and $\sqrt{s} = 0.9$, 2.76 and 7 TeV collision energies by the CMS Collaboration are shown to fit the Tsallis-distribution. It is found that the power of the distribution shows a double-logarithmic dependence on the event-multiplicity N, while the T parameter depends linearly on N. A similar double-logarithmic dependence of the q parameter of π^0 spectra on the collision energy \sqrt{s} is found too.

It is also shown that event-by-event fluctuations of the multiplicity N and the total E_T energy going into the transverse region can be the reason for the emergence of the Tsallis distribution in high-energy proton-proton collisions.

Keywords hadron spectra · Tsallis-statistics · super-statistics · KNO scaling · multiplicity fluctuations · transverse energy fluctuations

1 Introduction

Cut-power law hadron distributions (sometimes referred to as Tsallis distribution) are observed in various high-energy collisions: in electron-positron e^+e^- [1] – [7], proton-(anti-)proton pp [8] – [15], elastic pp [19] and nucleus-nucleus AA [20] – [33] collisions. While the dependence of the parameters of this distribution on the collision energy \sqrt{s} [11,2,5,8,12,14,15,20,21,25,26,32], centrality [25,26,28,33], number of colliding nucleons N_{coll} [23], hadron species [6,10,11,24,25,27,30,31] and momentum transfer [19] is thoroughly discussed in the literature, the dependence of hadron spectra on the event-multiplicity measured in [44] has not been analysed yet. In Sec. 3 this task is fulfilled.

One explanation for the emergence of cut-power laws may be found in thermal hadronisation models. These models are based on the conjecture that in high-energy collisions, small thermal droplets of matter (often referred to as “fireballs” or “clusters”) are created and these droplets fragment into hadrons. The calculations are carried through either in the canonical [13,14,37,38,42,43] or microcanonical [4,16,17,34,35,36,41] framework, and describe measured data on hadron spectra, total hadron multiplicities as well as multiplicity distributions. The latter can be approximated by either the negative binomial or by Euler’s gamma-distribution.

Since each formed fireball is different, they may carry different four-momenta, fragment into different number of hadrons and - if one works in the canonical framework - they may have different temperature. It has been shown that, if a single cluster or fireball is described by the Boltzmann-Gibbs distribution, however, the temperature [1,2,20,21,22,23,29,33] or cluster volume [23,34] or the multiplicity of hadrons stemming from a cluster [5,15] fluctuates from cluster to cluster, the average hadron spectrum may become a cut-power law (or Tsallis) distribution. The case of volume [34] and multiplicity [5,6,15] fluctuations has also been generalised to the microcanonical ensemble. The latter has been applied to the fragmentation of jets produced in e^+e^- [5,6] and pp collisions [15].

It is worth noting that if we approximate very narrow jets with one-dimensional bunches of massless hadrons, the conservation of four-momentum reduces to the conservation of energy, and the clusters (jets) become massless too (for a discussion, see [15]). Thus, jet-fragmentation models [5,6,15] may be considered as an approximation of microcanonical statistical hadronisa-
tion models \[1-14, 17, 31-39, 41\] for very high hadron energies and jet-like, very narrow, one-dimensional clusters. The latter models are sensitive to the species of hadrons and multiplicity distributions are obtained from them as a consequence. In the previous models, the multiplicity distribution is put in by hand but, because of their simplicity, analytic calculations are possible.

In this paper, I will focus on the effect of cluster energy fluctuations. Hadronic transverse momentum spectra in \(pp\) collisions are mixtures of particle yields coming from many clusters of different energy \(E_c\), four-velocity \(u_\mu\), and yielding different \(N\) number of hadrons. For the spectra published in \[14\] is soft, I will work in the canonical ensemble, supposing that each cluster produces hadrons according to an isotropic Boltzmann-Gibbs distribution in \(D = 3\) dimensions in the frame co-moving with the cluster:

\[
\frac{dN}{dp} \bigg|_{\text{cluster}} \sim \exp \left\{ -\beta(u_\mu p^\mu - m) \right\}, \tag{1}
\]

with \(\beta\) being the inverse temperature and \(p^\mu\) being the four-momentum of the hadron.

In Sec. 2 I show that an appropriate choice for fluctuations of the cluster energy result in cut-power law (or Tsallis) shaped hadron spectrum. As a first approximation, I will neglect the cluster velocities choosing \(u_\mu = (1, 0, 0, 0)\) and do calculations for massless \((m = 0)\) particles. This way, \(\beta = DN/E_c\) holds. Furthermore, I will assume that only one cluster is formed in one \(pp\) event.

In Sec. 3 I show that the Tsallis distribution obtained in Sec. 2 fits spectra of identified \(\pi^+\), \(K^+\) and \(p\) at fixed event multiplicity at LHC energies.

In Sec. 4 I show that multiplicity fluctuations of the Euler-gamma type superimposed over cluster energy fluctuations also result in an approximately Tsallis-shaped transverse \(\pi^+\) spectrum and fit measurements well. In addition, I also show that a double-logarithmic dependence of the \(q\) parameter of \(\pi^0\) spectra on the collision energy \(\sqrt{s}\) holds in the \(\sqrt{s} \in [0.2, 7]\) TeV range.

In Sec. 5 I make a prediction on the joint distribution of the event multiplicity \(N\) and total transverse energy \(E_T\) in an event, supposing that \(E_T \propto E_c\).

\section{Power-law Spectrum from Cluster Energy Fluctuations}

According to Eq. (1), let us conjecture that hadrons stemming from a cluster have an isotropic Boltzmann-Gibbs distribution in the frame co-moving with the cluster:

\[
\frac{dN}{dp} \bigg|_{\text{cluster}} = f_{N,E_c}(\epsilon) = A \exp \left\{ -\frac{DN}{E_c} \right\}, \tag{2}
\]

with \(E_c\) and \(N\) being the energy and multiplicity of the cluster and \(A = [DN/E_c]^D/\kappa_D \Gamma(D)\) comes from the normalisation condition

\[
\int d^D p f_{N,E_c}(\epsilon) = 1, \tag{3}
\]

where \(\kappa_D = \int d\Omega_D\) is the angular part of the \(D\) dimensional momentum space integral. The masses of the hadrons have been neglected, taking \(\epsilon = |p|\). Let us also conjecture cluster energy fluctuations of the form

\[
g_{N}(E_c) = \frac{1}{\Gamma(\alpha + 1)} \frac{\alpha E_0}{E_c^\alpha} \left(\frac{\alpha E_0}{E_c} \right)^\alpha e^{-\alpha E_0/E_c}. \tag{4}
\]

This way, the hadron distribution in a cluster of multiplicity \(N\), averaged over fluctuations of the cluster energy, becomes a cut-power law (or Tsallis) distribution:

\[
\frac{dN}{dp} \bigg|_{\text{cluster}} \bigg|_{E_c} = f_N(\epsilon) = \int dE_c g_{N}(E_c) f_{N,E_c}(\epsilon) = A_N \left(1 + \frac{q - 1}{T} \epsilon \right)^{-1/(q-1)} \tag{5}
\]

with

\[
q = 1 + \frac{1}{\alpha + D + 1}, \quad T = \frac{\alpha E_0}{DN(\alpha + D + 1)}. \tag{6}
\]

The parameters \(\alpha\) and \(E_0\) (and thus \(q\) and \(T\)) may depend on the hadron multiplicity \(N\) in the cluster.

\section{3 Hadron Spectra at Fixed Multiplicity}

In this section, I show that Eq. (5) (in \(D = 3\) dimensions) fits transverse momentum spectra of various identified hadrons if the kinetic energy, \(\epsilon \rightarrow m_T - m\), is used as scaling variable:

\[
\frac{dN}{dp_T dy}_{|y=0}^{N=\text{fix}} = \frac{A p_T m_T}{\left[1 + \frac{q - 1}{T} (m_T - m) \right]^{1/(q-1)}}. \tag{7}
\]
The analysed data are: transverse momentum spectra of π^+ (Fig. 11) K^+ (Fig. 3) and p (Fig. 4) stemming from pp collision events of fixed multiplicities (indicated as N_{tracks} in the figures) at $\sqrt{s} = 0.9$, 2.76 and 7 TeV collision energies and from the rapidity range $|y| \leq 1$. Figs. 2, 4, 6 and 7 show that a

$$q = 1 + \mu \ln(N/N_q),$$

$$T = T_0(1 + N/N_T)$$

dependence of the q and T parameters on the event-multiplicity N is consistent with measurements. The parameters μ, N_q, T_0, and N_T take different values for each particle species, but do not seem to change significantly (within errors) as the collision energy \sqrt{s} varies. It is interesting that while the T parameters of K^+ and p grow with N, the T of π^+ is approximately independent of the event-multiplicity. Since the dominant part of the produced hadrons is pions, we may use Eq. (8) to estimate the dependence of the q and T parameters of pions on the pion-multiplicity N_π, by substituting $N \rightarrow N_\pi$. However, it is perhaps not true for kaons and protons.

4 The Effect of Multiplicity Fluctuations

It has been known for a time that multiplicity distributions of charged hadrons in high-energy collisions may be approximated by the negative binomial (NBD) or Euler’s Gamma distribution [4,5,16,18,34,35,38,39,40]. Fig. 8 shows fits of Euler’s Gamma distribution [4,5,16,18,34,35,38,39,40]. The hadron distribution in a cluster, averaged over the fluctuations of both the cluster energy E_c and the cluster multiplicity N, is

$$p(N) = \frac{1}{\Gamma(a)} \frac{a}{N_0} \left(\frac{aN}{N_0} \right)^{a-1} e^{-aN/N_0}$$

(9)

to multiplicity distributions measured by the ALICE Collaboration [4,5,16,18,34,35,38,39,40]. Fig. 8 shows fits of Euler’s Gamma-distribution

Fig. 9 shows measured and calculated multiplicity-averaged π^+ spectra. In the evaluation of Eq. (10), the discrete sum was approximated by an integral with a lower bound $N_c = eN_q$ in order to ensure that $q \geq 1$. For the a parameter of the multiplicity distribution Eq. (9), I used values obtained from fits to experimental data shown in Fig. 8. For the mean multiplicity parameter N_0, values higher then the ones obtained from fits to measured multiplicity distributions turned out to give best agreement with measured spectra (see the caption of Fig. 9).

It is also worth to note that the q parameter of the transverse momentum spectra of neutral pions (which is also an E_c and N averaged observable) also show double-logarithmic dependence on the collision energy for $\sqrt{s} \in [0.2, 7]$ TeV

$$q(s) = 1 + q_1 \ln(\sqrt{s}/Q_0).$$

(11)

In the meanwhile, the T parameter is not affected significantly (within errors) by the grows of s. Fig. 10 shows fit results. Similar functional forms for $q(s)$ have also been proposed in [13,14,21,22].

From the observation that in pp collisions at $\sqrt{s} = 900$ GeV the q parameter of various hadron species coincide within errors [10,39], we may infer that Eq. (11) might hold for other hadrons too.

5 Joint Distribution of the Multiplicity and the Total Transverse Energy in an Event

In the model presented above, the joint distribution of cluster energy E_c and cluster multiplicity N is

$$p(N, E_c) = p(N) g_N(E_c),$$

(12)

where $p(N)$ is the E_c - averaged multiplicity distribution

$$p(N) = \int dE_c p(N, E_c)$$

(13)

shown in Fig. 8 and $g_N(E_c)$ is the normalised distribution of E_c at fix multiplicity. From Eqs. (10) and (11), the parameters of $g_N(E_c)$ depend on N as
\[\alpha = \frac{1}{\mu \ln(N/N_q)} - D - 1, \]
\[E_0 = \frac{D N T_0 (1 + N/N_T)}{1 - (D + 1) \mu \ln(N/N_q)}. \]

Since the hadron distribution in a cluster is assumed to be isotropic, the \(E_T \) energy going into the transverse region \((|y| \leq 1)\) in a single \(pp \) event is proportional to the energy of the cluster formed in the event: \(E_T \sim E_c \). Thus, the distributions of \(E_T \) and \(E_c \) have the same form. Fig. 11 shows the joint distribution \(p(N, E_T) \) with its projections, using parameters obtained from data on \(\pi^+ \) spectra measured at \(\sqrt{s} = 7 \) TeV and in the rapidity range \(|y| \leq 1\).

6 Conclusions

Cut-power law hadron distributions (sometimes referred to as Tsallis distribution) are observed in various high-energy collisions (from electron–positron to nucleus–nucleus reactions [1 - 33]). One possible explanation for this phenomena can be found in thermal hadronisation models. According to these models, in high-energy collisions, small thermal “fireballs” or “clusters” are formed and fragment into hadrons. Hadrons stemming from a single cluster inherit the thermal (canonical [37-38,12,43] or microcanonical [16,17,31,35,36,11]) distribution of the fireball. However, since the four-momentum (or four-velocity) and cluster mass [11,16,17,31,35,36,41], or the temperature [12,20,21,22,23,29,33] or cluster volume [23,34] or the hadron multiplicity [5,13] fluctuates from cluster to cluster, the average hadron spectrum may become a cut-power law (or Tsallis) distribution.

The measurement of transverse spectra of a few types of hadrons stemming from proton–proton collisions for some fixed event multiplicities [14] made it possible to get rid of the effect of event-by-event multiplicity fluctuations on hadron spectra. In Sec. 3 it is shown that transverse spectra of \(\pi^+, K^+ \) and \(p \) take a cut-power law shape (Eq. 7) even in fixed multiplicity proton–proton events. It is also found that the \(q \) parameter of the spectra follows a double-logarithmic dependence on the event-multiplicity \(N \), while the \(T \) parameter is independent of \(N \) (within errors) for pions, but grows linearly with \(N \) for kaons and protons (see Eq. 8 and Figs. 1 - 7).

In Sec. 2 it is shown that cluster energy fluctuations of the form of Eq. 3 result in cut-power law shaped hadron spectrum at fixed cluster multiplicity, if hadrons in a cluster are distributed according to the Boltzmann-Gibbs distribution. Averaging this spectrum over multiplicity fluctuations Eq. 9, using the weak multiplicity dependence of the \(q \) and \(T \) parameters of pion spectra found in Sec. 3 also results in an approximately cut-power law spectrum that describes transverse \(\pi^+ \) spectrum (see Sec. 4 and Fig. 9). This is consistent with the observation that multiplicity averaged transverse spectra (usually simply called “transverse spectra”) of hadrons stemming from \(pp \) collisions fit the Tsallis distribution. In addition, I have also shown that the \(q \) parameter of the transverse spectrum of \(\pi^0 \) shows a double-logarithmic dependence on the collision energy \(\sqrt{s} \) in the range \(\sqrt{s} \in [0, 7] \) TeV (see Fig. 10). Similar functional forms for \(q(s) \) have also been proposed in [13,14,12,22].

In order to be able to perform analytic calculations, I conjectured that only one cluster is formed in a single proton–proton event; hadrons stemming from the cluster have an isotropic Boltzmann-Gibbs distribution in the frame co-moving with the cluster; finally, I neglected particle masses and cluster velocities. In this “first approximation”, the \(E_c \) energy of the cluster formed in a single proton–proton event is proportional to the \(E_T \) energy that reaches the transverse region \((|y| \leq 1)\), \(E_c \sim E_T \). Thus, the joint distribution \(p(N, E_T) \) of the event multiplicity and the transverse energy in an event can be predicted (see Sec. 5 and Fig. 11).

Though, it is to be emphasized that there are rough approximations in the above presented calculations (the case of multiple cluster production in a proton–proton event as well as non-zero cluster velocities and finite hadron masses are to be taken into account in future works), it is clearly pointed out that event-by-event fluctuation of the hadron multiplicity as well as that of the energy reaching the transverse range may result in cut-power law (or Tsallis) shaped hadron spectra. Even if hadrons had Boltzmann-Gibbs distribution in a single event or cluster.

Acknowledgements This work was supported by the Hungarian OTKA Grant K104260. The author thanks Tamas S. Biró, Gergely G. Barnaföldi and Ferenc Siklér for fruitful discussions.

References

1. C. Beck, Superstatistics in high energy physics: Application to cosmic ray energy spectra and e+e- annihilation, Eur. Phys. J. A: 40, 267, (2009)
2. C. Beck, Non-extensive statistical mechanics and particle spectra in elementary interactions, Physica A: 286, 164-180, (2000)
3. I. Bediaga, E. M. F. Curado, J. M. Miranda, A nonextensive thermodynamical equilibrium approach in e+e- -> hadrons, Physica A: 286, 156-163, (2000)
Fig. 1 Transverse momentum spectra of π^+s stemming from pp collisions of fixed multiplicities, measured at $\sqrt{s} = 0.9$ TeV (top), 2.76 TeV (middle) and 7 TeV (bottom) collision energies. Rapidity range: $|y| \leq 1$. Data of graphs were published in [44]. Curves are fits of Eq. (7).

Fig. 2 Dependence of the q parameter of Eq. (7) on the event-multiplicity obtained from fits to π^+ spectra shown in Fig. 1. Top: $\sqrt{s} = 0.9$ TeV, middle: $\sqrt{s} = 2.76$ TeV bottom: $\sqrt{s} = 7$ TeV. Curves are fits of Eq. (8).
Fig. 3 Transverse momentum spectra of K^+-s stemming from pp collisions of fix multiplicities, measured at $\sqrt{s} = 0.9$ TeV (top), 2.76 TeV (middle) and 7 TeV (bottom) collision energies. Rapidity range: $|y| \leq 1$. Data of graphs were published in [44]. Curves are fits of Eq. (7).

Fig. 4 Dependence of the q parameter of Eq. (7) on the event-multiplicity obtained from fits to K^+ spectra shown in Fig. 3. Top: $\sqrt{s} = 0.9$ TeV, middle: $\sqrt{s} = 2.76$ TeV bottom: $\sqrt{s} = 7$ TeV. Curves are fits of Eq. (8).
Fig. 5 Transverse momentum spectra of p-s stemming from pp collisions of fixed multiplicities, measured at \(\sqrt{s} = 0.9 \) TeV (top), 2.76 TeV (middle) and 7 TeV (bottom) collision energies. Rapidity range: \(|y| \leq 1 \). Data of graphs were published in [44]. Curves are fits of Eq. (7).

Fig. 6 Dependence of the \(q \) parameter of Eq. (7) on the event-multiplicity obtained from fits to p spectra shown in Fig. 5. Top: \(\sqrt{s} = 0.9 \) TeV, middle: \(\sqrt{s} = 2.76 \) TeV bottom: \(\sqrt{s} = 7 \) TeV. Curves are fits of Eq. (8).
Fig. 7 Dependence of the T parameter of Eq. (7) on the event-multiplicity obtained from fits to π^+, K^+ and p spectra shown in Figs. 1, 3, and 5. Top: $\sqrt{s} = 0.9$ TeV, middle: $\sqrt{s} = 2.76$ TeV, bottom: $\sqrt{s} = 7$ TeV. Curves are fits of Eq. (8).

Fig. 8 Top: fits of Eq. (9) to multiplicity distributions of charged hadrons stemming from pp collisions at $\sqrt{s} = 0.9, 2.76$ and 7 TeV [45,49]. Middle and bottom: dependence of the distribution’s parameters on the collision energy.
Fig. 9 Transverse momentum spectra of $\pi^+\pi^-$ stemming from pp collisions and averaged over multiplicity fluctuations. Measured data are published in [44]. Dashed lines show Eq. (10) with different parametrisations of the multiplicity distribution Eq. (9). For collision energies $\sqrt{s} = 0.9, 2.76$, and 7 TeV, $a = 1.38, 1.4, 1.12$ and $N_0 = 15.3, 24, 32$ were used respectively (see text below Eq. (10)).

4. C. Bignamini, F. Becattini, F. Piccinini, A Monte-Carlo generator for statistical hadronization in high energy e^+e^- collisions, *Eur. Phys. J. C*, 72, 2176, (2012)
5. K. Urmossy, G. G. Barnaföldi, T. S. Biró, Generalised Tsallis Statistics in Electron-Positron Collisions, *Phys. Lett. B*, 701, 111-116, (2011), arXiv:1101.3923
6. K. Urmossy, T. S. Biró, G. G. Barnaföldi, Generalised Microcanonical Statistics and Fragmentation in Electron-Positron Collisions, *Acta Physica Polonica B*, 5,(2), pp. 363-368, (2012)
7. T.S. Biró, K. Urmossy, P. Ván, G.G. Barnaföldi, Z. Schram, Non-extensive statistical model for strange and non-strange hadron spectra at RHIC and LHC energies, *Acta Physica Polonica B*, 43,(4), pp. 811-820, (2012)
8. Cheuk-Yin Wong, G. Wilk, Tsallis Fits to p_T Spectra for pp Collisions at LHC, *Acta Physica Polonica B*, 42, 2047, (2012), arXiv:1210.3601
9. J. Cleymans, The Tsallis Distribution at the LHC, Proceedings of the 1st International Conference on New Frontiers in Physics ICFP, (2012), arXiv:1210.7264
10. J. Cleymans, D. Worku, The Tsallis distribution in proton-proton collisions at $\sqrt{s} = 0.9$ TeV at the LHC, *J. Phys. G: Nucl. Part. Phys.*, 39, 025006, (2012)
11. J. Cleymans, D. Worku, Relativistic Thermodynamics: Transverse Momentum Distributions in High-Energy Physics, *Eur. Phys. J. A*, 48, 11, 160, (2012) arXiv:1203.4343
12. G.G. Barnaföldi et al., Tsallis-Pareto like distributions in hadron-hadron collisions, *J. Phys. Conf. Ser.*, 270, 012008, (2011)
13. T. Wibig, I. Kurp, Large Transverse Momenta in Statistical Models of High Energy Interactions, *JHEP*, 0312, 039, (2003);
14. T. Wibig, The non-extensivity parameter of a thermodynamical model of hadronic interactions at LHC energies, *J. Phys. G: Nucl. Part. Phys.*, 37, 115009, (2010)

Fig. 10 Transverse momentum spectra of π^0-s stemming from pp collisions at various collision energies and fits of Eq. (7) (top). \sqrt{s} dependence of the q parameter and fit of Eq. (11) (middle). \sqrt{s} dependence of the T parameter (bottom). Data of graphs were published in [15][10][17].
The plots of Eq. (12) show the joint distribution \(p(N, E_T) \) of the event-multiplicity \(N \) and total transverse energy \(E_T \) (bottom) and its projections (top and middle). The parameters used were obtained from fits to the multiplicity distribution of charged hadrons and transverse \(\pi^+ \) spectra measured in pp collisions at \(\sqrt{s} = 7 \) TeV collision energy. Used parameters are:

- \(a = 1.11 \)
- \(N_0 = 12 \)
- \(\mu = 0.14 \)
- \(N_T = 1.2 \)
- \(T_0 = 70 \) MeV
- \(N_T = 5000 \)

Fig. 11

15. G. G. Barnaföldi, G. Kalmár, K. Urmossy, T. S. Biró, Tsallis-Pareto like distributions in hadron-hadron collisions, *Gribov 80 - Memorial Volume*, (ISBN: 978-981-4350-18-1), p. 357., World Scientific, Singapore, (2011)

16. F. Becattini, G. Passaleva, Statistical hadronisation model and transverse momentum spectra of hadrons in high energy collisions, *Eur. Phys. J. C*, 23, 553-563, (2002)

17. F. M. Liu, K. Werner, J. Aichelin, M. Bielicher, H. Stoecker, A Microcanonical Description of Hadron Production in Proton-Proton Collisions, *J. Phys. G*, 30, 589-594, (2004)

18. K. Urmossy, G. G. Barnaföldi, T. S. Biró, Microcanonical Jet-fragmentation in proton-proton collisions at LHC Energy, *Phys. Lett. B*, 718, 125-129, (2012), arXiv:1204.1508

19. D. A. Fagundes, M. J. Menon, P. V. R. G. Silva, Preliminary Results on the Empirical Applicability of the Tsallis Distribution in Elastic Hadron Scattering, arXiv:1204.5646 (2012)

20. M. Rybczynski, Z. Wlodarczyk, G. Wilk, On the possibility of \(q \)-scaling in high energy production processes, *J. Phys. G: Nucl. Part. Phys.*, 39, 095004, (2012)

21. G. Wilk, Z. Wlodarczyk, Consequences of temperature fluctuations in observables measured in high energy collisions, arXiv:1203.4452 (2012)

22. G. Wilk, Z. Wodarczyk, The imprints of superstatistics in multiparticle production processes, *Central European Journal of Physics*, 10, Issue 3, pp.568-575, (2011)

23. G. Wilk, Z. Wlodarczyk, Equivalence of volume and temperature fluctuations in power-law ensembles, *J. Phys. G*, 38, 065101, (2011)

24. Z. Tang, L. Yi, L. Ruan, et al., Statistical Origin of Constituent-Quark Scaling in the QGP hadronization, arXiv:1101.1912 (2011)

25. M. Shao, L. Yi, Z. Tang, et al., Examine the species and beam-energy dependence of particle spectra using Tsallis Statistics, *J. Phys. G*, 37, 085104, (2010), arXiv:0912.0905

26. D. D. Chinellato, J. Takahashi, I. Bediaga, A Nonextensive Equilibrium analysis of \(\pi^+ + p \) Spectra at RHIC, *J. Phys. G*: 37, 094042, (2010), arXiv:1001.3136

27. K. Urmossy, T. S. Biro, Cooper-Frye Formula and Nonextensive Coalescence at RHIC Energy, *Phys. Lett. B*: 689, 14-17, (2010), arXiv:0911.1411

28. B. De, G. Sau, S. K. Biswas, S. Bhattacharyya, P. Gupta, Analyzing Non-Extensivity of -spectra in Relativistic Heavy Ion Collisions at \(\sqrt{s_{NN}} = 200 \) GeV, *J. Mod. Phys. A*: 25, 1239-1251, (2010)

29. G. Wilk, Z. Wlodarczyk, Power laws in elementary and heavy-ion collisions - A story of fluctuations and nonextensivity?, *Eur. Phys. J. A*: 40, 299-312, (2009)

30. Z. Tang, Y. Xu, L. Ruan, G. Buren, F. Wang, Z. Xu, Spectra and radial flow in relativistic heavy-ion collisions with Tsallis statistics in a blast-wave description, *Phys. Rev. C*: 79, 051901 (R), (2009)

31. J. Cleymans, G. Hamar, P. Levai, S. Wheaton, Near-equilibrium with Tsallis distributions in heavy ion collisions, *J. Phys. G*: 36, 064 018, (2009)

32. M. Biyajima, T. Mizoguchi, N. Nakajima, N. Suzuki, G. Wilk, Modified Hagedorn formula including temperature fluctuation - Estimation of temperatures at RHIC experiments, *Eur. Phys. J. C*: 48, 597-603, (2006)

33. V. V. Begun, M. Ga´zdzicki, M. I. Gorenstein, Power Law in Micro-Canonical Ensemble with Scaling Volume Fluctuations, *Phys. Rev. C*: 78, 024904, (2008), arXiv:0804.0075

34. F. Becattini, L. Ferroni, Statistical hadronization and hadronic microcanonical ensemble I, *Eur. Phys. J. C*: 35, 243-258, (2004)
36. F. Becattini, L. Ferroni, Statistical hadronization and hadronic microcanonical ensemble II, *Eur. Phys. J. C*, **38**, 225-246, (2004)

37. R. Hagedorn, *Suppl. Nuovo Cim.*, **3**, 147, (1965); M. Szczekowski, G. Wilk, *Phys. Lett. B*, **374**, 225, (1996); K. Redlich, A. Andronic, F. Beutler, P. Braun-Munzinger, J. Stachel, *J. Phys. G*, **36**, 064021, (2009)

38. F. Becattini, A. Giovannini, S. Lupia, Multiplicity distributions in a thermodynamical model of hadron production in e^+e^- collisions, *Z. Phys. C*, **72**, 491, (1996)

39. P. Ghosh, Negative binomial multiplicity distribution in proton-proton collisions in limited pseudorapidity intervals at LHC up to $\sqrt{s} = 7$ TeV and the clan model, *Phys. Rev.*, **D85**, 054017, (2012)

40. A. Dumitru, Y. Nara, KNO scaling of fluctuations in pp and pA, and eccentricities in heavy-ion collisions, *Phys. Rev. C*, **85**, 034907, (2012)

41. F. M. Liu, K. Werner, Micro-canonical pentaquark production in ee annihilations, *Phys. Rev. D*, **74**, 034024, (2006)

42. F. Becattini, U. W. Heinz, Thermal hadron production in pp and p anti-p collisions, *Z. Phys. C*, **76**, 269, (1997)

43. F. Becattini, J. Cleymans, A. Keranen, E. Suhonen, K. Redlich, Features of particle multiplicities and strangeness production in central heavy-ion collisions between 1.7A-GeV/c and 158A-GeV/c, *Phys. Rev. C*, **64**, 024901, (2001)

44. The CMS Collaboration, Study of the inclusive production of charged pions, kaons, and protons in pp collisions at $\sqrt{s} =$ 0.9, 2.76, and 7 TeV, Submitted to the *Eur. Phys. J. C* (2012), arXiv:1207.4724

45. Abelev et.al. [The ALICE Collaboration], Neutral pion and η meson production in proton-proton collisions at $\sqrt{s} = 0.9$ TeV and $\sqrt{s} = 7$ TeV, *Phys. Lett. B*, **717**, 162, (2012), arXiv:1205.5724

46. The PHENIX Collaboration, Inclusive cross section and double helicity asymmetry for $p\bar{p}$ production in p+p collisions at \sqrt{s}=62.4GeV, *Phys. Rev. D*, **79**, 012003 (2009), arXiv:0810.0701

47. The PHENIX Collaboration, Midrapidity Neutral Pion Production in Proton-Proton Collisions at \sqrt{s} = 200 GeV, *Phys. Rev. Lett.*, **91**, 241803 (2003), hep-ex/0304038

48. The ALICE Collaboration, Charged-particle multiplicity measurement in proton-proton collisions at $\sqrt{s} = 7$ TeV with ALICE at LHC, *Eur. Phys. J. C*, **68**, 345-354, (2010), arXiv:1004.3514

49. The ALICE Collaboration, Charged-particle multiplicity measurement in proton-proton collisions at $\sqrt{s} = 0.9$ and 2.36 TeV with ALICE at LHC, *Eur. Phys. J. C*, **68**, 89-108, (2010)
