REVIEW

The potential of mesenchymal stem cells in the management of radiation enteropathy

P-Y Chang1,2, Y-Q Qu1, J Wang2 and L-H Dong*1

Although radiotherapy is effective in managing abdominal and pelvic malignant tumors, radiation enteropathy is still unavoidable. This disease severely affects the quality of life of cancer patients due to some refractory lesions, such as intestinal ischemia, mucositis, ulcer, necrosis or even perforation. Current drugs or prevailing therapies are committed to alleviating the symptoms induced by above lesions. But the efficacies achieved by these interventions are still not satisfactory, because the milieus for tissue regeneration are not distinctly improved. In recent years, regenerative therapy for radiation enteropathy by using mesenchymal stem cells is of public interests. Relevant results of preclinical and clinical studies suggest that this regenerative therapy will become an attractive tool in managing radiation enteropathy, because mesenchymal stem cells exhibit their pro-regenerative potentials for healing the injuries in both epithelium and endothelium, minimizing inflammation and protecting irradiated intestine against fibrogenesis through activating intrinsic repair actions. In spite of these encouraging results, whether mesenchymal stem cells promote tumor growth is still an issue of debate. On this basis, we will discuss the advances in anticancer therapy by using mesenchymal stem cells in this review after analyzing the pathogenesis of radiation enteropathy, introducing the advances in managing radiation enteropathy using regenerative therapy and exploring the putative actions by which mesenchymal stem cells repair intestinal injuries. At last, insights gained from the potential risks of mesenchymal stem cell-based therapy for radiation enteropathy patients may provide clinicians with an improved awareness in carrying out their studies.

Facts

- Radiation enteropathy severely affected the quality of life of cancer patients nowadays.
- Preclinical data suggest the pro-regenerative effects of mesenchymal stem cells on irradiated intestine.
- Epinal case report reveals the specific effectiveness of mesenchymal stem cells in managing pelvic radiotherapy-induced lesions in rectum and bladder lesions.

Open Questions

- Due to most of radiation enteropathy patients are cancer survivors, is really that mesenchymal stem cells will initiate or promote their tumor growth?
- How to carry out a clinical trial for evaluating the therapeutic potentials of mesenchymal stem cells for radiation enteropathy?
- Will the mesenchymal stem cell-based therapy be an attractive tool for clinicians in managing radiation enteropathy patients in the future?

Radiotherapy is powerful in treating malignant tumors. According to the published data, at least 50% of cancer patients need radiotherapy during their treatment course, and approximately 25% of solid tumors undergo complete remission after radiotherapy.1 However, damage to healthy tissue within the radiation field remains unavoidable. For abdominopelvic radiotherapy, the intestine is defined as an organ at risk (OAR). Herein, small intestine commonly presents acute injuries due to its high α/β ratio of >10 Gy according to linear-quadratic (L-Q) model. Besides, the estimated α/β ratio in rectum varies between 4.8 Gy and 5.4 Gy, commonly allowing for grade ≥2 toxicity happening.2,3 Radiation-induced intestinal injuries/toxicities are known as radiation enteropathy (RE), which can be classified into two phases. Early RE commonly occurs within 3 months of radiotherapy, with an incidence of ~50%.4 Late RE can be observed from 1 to 20 years post radiotherapy, with the incidence of 2–20%.5,6 Several factors are involved in the development of late RE, including progressive cell loss and vascular obliteration in irradiated intestine, which will result in emergent or even fatal complications, such as obstruction, perforation, intestinal necrosis or acute hemorrhage.6,7

1Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China and 2Electrochemical State Key Laboratory, Changchun Institute of Applied Chemistry Academy of Science, Changchun 130021, China
*Corresponding author: L-H Dong, Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China. Tel: +86 15843073216; Fax: +86 0431 88782468; E-mail: drhdong@163.com

Abbreviations: CBC, crypt base columnar; CGRP, calcitonin gene-related peptide; DC, dendritic cell; DSB, double-strand break; ECM, extracellular matrix; F1, focal; GVHD, graft versus host disease; HO-1, heme oxygenase-1; IBD, inflammatory bowel disease; LT, leukotriene; RE, radiation enteropathy; SLE, systemic lupus erythematosus; TLR, toll-like receptor; MMP, matrix metalloproteinase; MPO, myeloperoxidase; MSC, mesenchymal stem cell; MSD, manganese superoxide dismutase; NE, neutropenic enterocolitis; NF-κB, nuclear factor-kappa B; NOD-2, nucleotide-binding oligomerization-domain-containing protein 2; OAR, organ at risk; TIMP, tissue inhibitor of metalloproteinase; Treg, regulatory T cell; vWF, von Willebrand factor

Received 19.3.15; revised 02.6.15; accepted 08.6.15; Edited by D Aberdam

Citation: Cell Death and Disease (2015) 6, e1840; doi:10.1038/cddis.2015.189; published online 6 August 2015
Current clinical interventions for early RE mainly aim to relieve abdominal pain and diarrhea through spasmylosis and anti-edema drugs, maintaining electrolyte balance through conditional nutrient supplementation and alleviating inflammation or infection using antioxidants, glucocorticoids or antibiotics.8 However, resection of diseased intestine appears to be not very effective, because the fibrogenesis in irradiated intestine could not be inhibited. Additionally, intestinal adhesion following surgery and dystrophia induced by removing a large portion of intestine adversely affect patient quality of life.9 In recent years, the outcome from clinical studies exhibited the effectiveness of Pentoxifylline-Vitamin E in preventing intestinal fibrosis.10,11 Meanwhile, several preclinical studies proposed some available agents for organs.15 MSCs can secrete various types of growth factors, early ectoderm and can be harvested from various tissues and cells (MSCs) for RE.

Potential Factors Involved in Pathogenesis of RE

Refractory lesions in the irradiated intestine develop through a lengthy process comprising multiple steps and contributory factors, although the mechanisms involving in RE pathogenesis remain unclear. Radiation-induced injuries refer to the histopathological changes in the epithelium and endothelium, where the oxidative stress and extended inflammation played a predominant role in leading to lesions, including ischemia, ulcer, necrosis or fibrosis.24,25 In this section, current understanding on the pathogenesis of RE will be shared.

Epithelial event: Intestinal stem cell injury-induced de-epithelialization.

The intestinal epithelium has a rapid self-renewal capacity, with a complete turnover time of ~96 h due to rapid cycling of cells within the crypts of Liberkuhn.26 The crypt base columnar (CBC) stem cells are responsible for maintaining homeostasis of intestinal epithelium by their producing progeny: transit-amplifying cells, which are committed into mature epithelial cells after 4–5 divisions (Figure 1).27,28

The CBC stem cells are radiosensitive.29 It was reported that irradiation doses of at least 0.01 Gy are sufficient to result in apoptosis in 10% of CBC stem cells.30 The pro-apoptotic effects of ionizing irradiation on CBC stem cells are dependent on their cell-cycle stage.31 Ionizing irradiation will cause more DNA double-strand breaks (DSB) in G2/M phase than in G1/S phase.32 The average dividing time of CBC cells is reported to be 21.5 h, which classifies them as rapid cycling and radiosensitive cells thereby.32

Recent evidence suggested that the CBC stem cells are indispensable for epithelial regeneration upon being irradiated.33 If the intestine receives the doses between 6 Gy and 12 Gy, CBC stem cells can be replenished by another pool of intestinal stem cells at the 4+ position of crypts.34,35 Yet, if the irradiation doses are higher than 12 Gy, the CBC stem cells will rapidly die along with subsequent depletion of Paneth cells, who form the niches of CBC stem cells.33,36 Together with the following processes, such as vascular damage-induced ischemia, oxidative stress and extended inflammation in irradiated sites, the milieu feeding CBC stem cells are further deteriorated, which even results in crypt death.37 Ultimately, the barrier function of epithelium is lost thereby (Figure 2).

Vascular event: endothelial injury-induced ischemia.

The endothelial cells are primary targets of ionizing irradiation, and the apoptosis of endothelial cells accounts for the severity of lesions within irradiated intestine.38,39 Evidence lie in that during the first 4 h after lethal irradiation, the apoptotic cells, most of which are positive for CD31, are mainly located in the laminar propria of the villi rather than the epithelial layer.40 However, at 10 h post irradiation, numerous apoptotic cells are diffusely located in the epithelial layer from villi to crypt compartments rather than the laminar propria.40 This switch of apoptosis from endothelial cells to epithelial cells
indicates that injuries in irradiated intestinal cells are first occurred in endothelium. 39,40

After endothelial injury occurring, sub-endothelial extracellular matrix (ECM) components are exposed to platelets, which initiate hemostasis mechanisms by forming clots. 41 The coagulation cascade is hyperactivated by excessive secretion of von Willebrand factor (vWF) from injured endothelial cells, which results in vascular occlusion ultimately. 42 Then, vascular permeability will be increased, which leads to hyperemia or hemorrhage within injured sites. 43 As a result, the irradiated intestine has a poor blood supply (Figure 2).

Inflammatory event: increasing oxidative stress and extending inflammation. The chemical reactions that reduce cell viability in irradiated tissues have been identified as excessive production of ROS, such as superoxide radicals and hydrogen peroxide, which derive from intracellular water oxidized by radiation energy and from mitochondria. 44,45 Under this condition, ROS can activate the signaling pathways leading to cell death in irradiated sites. 46,47 Following these processes, leucocytes roll to the damaged intestine in a short time for eliminating dead cells (Figure 2). 48,49

Regarding the development of inflammation, current opinions believe that the molecular reactions in this process occur at sites extremely close to the vascular endothelium. 50 Upon endothelial apoptosis, pro-inflammatory effectors will be secreted for the recruitment of leucocytes recruitment to injured sites. 48,50 Herein, neutrophils are the first cells to adhere to endothelium and migrate to injured sites, where they eliminate dead cell debris for facilitating tissue repair. 41,48,49,51 However, the irradiated epithelium always leads to a reduced barrier function. 1 On this occasion, neutrophils also participate in eliminating large amounts of pathogens within the enteric cavity through secreting high levels of anti-pathogenic effectors, such as myeloperoxidase (MPO); 52 this process will increase the oxidative stress within injured intestine and reduce tissue regeneration thereby (Figure 2). Meanwhile, upon exposure of injured tissues to pathogens, the cytotoxic T lymphocytes will eliminate the cells infected by these foreign stimuli through secreting cytolytic substances, such as perforin and granzymes, and through Fas/Fas ligand binding-induced apoptosis (Figure 2). 53,54 Thus, the presence of pathogens promotes inflammation and induces a switch from an innate immune response to an adaptive immune response, 48,54 which has the inflammation extended in irradiated sites.
Neuroimmune event: interactions between mast cells and enteric neurons. The neuroimmune interactions between enteric neurons and mast cells formulate a network for controlling intestinal responses to ionizing irradiation, presenting the lesions of mucositis and fibrosis. But the mast cells distinguish their contributions to the pathogenesis of RE. Upon being irradiated, the mast cells within intestinal mucosa will be activated, presenting the release of some effectors, such as TNF-α and leukotriene (LT), for attracting neutrophils to clear bacteria-induced infection (Figure 3). Moreover, these activated mast cells will enhance TNF-α secretion by macrophages as well as macrophage-mediated fibrin deposition for coagulation (Figure 3). But for the mast cells in connective tissue, their contribution to RE is secreting some pro-fibrotic effectors, such as TGF-β1, IL-4 and TNF-α (Figure 3). Although the exact mechanism by which neuroimmune interactions regulate the development of RE remains unknown, it is clear that the mediators from enteric sensory neurons, such as substance P and calcitonin gene-related peptide (CGRP), are critical for regulating the activation of mast cells. Herein, substance P is capable of amplifying the pro-inflammatory and pro-fibrotic responses of mast cells to ionizing irradiation through enhancing the secretions of histamine, TNF-α and TGF-β1 by these cells, whereas the CGRP protects intestine against radiation-induced injuries (Figure 3). From this aspect, it is rational to propose that substance P is even important in deciding the severity of RE through activating mast cells.

Microbial event: dysbiosis post-irradiation. McLaughlin et al. reported that the germ-free mice present radiation resistance comparing with conventional mice, indicating a potential link between the microbiota and host response to ionizing irradiation. As we are aware, the healthy gut contains nearly 300–500 bacterial species. These commensal bacteria confer the intestine a barrier function, presenting persistent epithelial turnover and vigorous immunity. For example, the NF-κB signaling pathway in epithelial cells and some intestine-specific immune cells will be activated upon the interactions between their toll-like receptors and luminal bacteria, which stimulate the epithelial proliferation as well as lead to immune tolerance of intestine to foreign antigens. However, when the epithelium loses its integrity post-irradiation, the commensal bacteria will transmigrate into intestinal tissue, functioning as bioterrorists for even triggering sepsis. In this context, dysbiosis commonly occurs. Manichanh et al. reported that the bacterial constitution of feces is altered after the patients receiving pelvic radiotherapy, presenting the increased clusters of Bacilli and Actinobacteria, whereas decreasing in clostridial cluster. Besides, previous data indicated that the microbiota confer the intestinal endothelium and lymphocytes radiation sensitivity, which is linked to the suppression of fasting-induced adipose factor by luminal microbiota. To a certain extent, this finding corresponds to that endothelial injuries are the primary lesions of RE. In current opinions, the interactions between the microbiota and host regulate the intestinal responses to ionizing irradiation, and not all intestinal bacteria promote pathogenesis of RE. For example, the microbiota can induce epithelial expression of nucleotide-binding oligomerization domain-containing protein 2 (NOD-2) against ischemia/reperfusion-induced hypoxic stress and autophagy, indicating the bacteriotherapy for RE is also promising.

Fibrotic event: fibrogenesis after tissue injuries. Radiation-induced injuries in epithelium and endothelium have a central role in initiating intestinal fibrosis, which can be promoted by the extended inflammation within injured sites. Upon epithelial injuries, irradiated intestine will reduce its barrier functions. On this occasion, the innate immune cells, such as macrophages and dendritic cells (DCs), will be activated by pathogens in enteric cavity, leading to secretion of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-4 and IL-6. These cytokines activate some adaptive immune cells, such as Th2 and Th17 cell, which separately secrete IL-13 and IL-17 for promoting tissue remodeling (Figure 2). Upon endothelial injuries, the

Figure 3 The contribution of neuroimmune interactions to RE development. Upon being irradiated, the mast cells will be activated, presenting the release of pro-inflammatory and pro-fibrotic effectors, including TNF-α, histamine, LT, IL-4 and TGF-β1. These actions will be amplified by substance P, whereas be reversed by CGRP, LT, leukotriene; CGRP, calcitonin gene-related peptide.
blood vessels will increase their permeability, enabling recruitment of pro-inflammatory cells to injured sites. Among these infiltrated cells, the monocyte-macrophage system is reported to facilitate fibrosis through secreting PDGF, CTGF and TGF-β1, allowing for fibroblast-myofibroblast transition, myofibroblast proliferation and ECM deposition at injured sites (Figure 2).

Stem Cell-Based Regenerative Therapy for Rodent Models of RE

In the past decade, extensive efforts have been made in stem-cell based therapy for rodent models of RE (Table 1).

The therapeutic effects of MSCs on RE. To our knowledge, the first study was performed by Sémonet et al. Their data showed that human MSCs exhibited potentials for maintaining the integrity of irradiated intestine. After MSC intervention, the irradiated mice survived longer than controls, and the epithelium showed hypertrophic villi, comprising increased numbers of proliferative cells and fewer apoptotic cells in the crypts. In addition, the newborn villus maintained its absorptive function via normal levels of Na+-K+-ATPase expression. Similarly, Kudo et al. reported that MSCs could extend the life span of irradiated mice, which was distinct from their previous data by using embryonic stem cells (ESCs) transplantation. Regarding the repair actions by MSCs, Saha et al. reported that MSCs could protect irradiated intestine by increasing serum levels of R-spondin1, KGF, IL-10 and PGE2, which function as effectors for promoting proliferation and inhibiting both apoptosis and inflammation within irradiated intestine. Besides, MSCs were capable of promoting epithelial regeneration using their secretion of IL-6. Moreover, the MSC-conditioned medium also exhibited the pro-regenerative potentials for irradiated epithelium. Besides, we found that MSC infusion could accelerate neovascularization within irradiated sites by triggering the intrinsic repair action of MSC infusion (Table 1).

Putative Actions Involved in RE Resolution by MSC Infusion

At present, the mechanisms involved in the repair of irradiated intestine by MSCs are still not fully investigated. But according to recent advances, we suggest several putative actions of RE management achieved by MSCs. In our opinion, the putative actions by which MSCs repair RE can be summarized as follows (Figure 4). Primarily, the engrafted MSCs induce infiltrated immune cells to switch from pro-inflammatory to anti-inflammatory cytokine secretion, resulting in milieus that promote anti-inflammatory events. As a secondary effect, repair responses are boosted by systemic events, such as elevated levels of regenerative facilitators, despite the rapid disappearance of donor MSCs. Thus, benign cytokine milieus cause regeneration of the injured intestine to be accelerated.

Step 1: homing to injured sites. Homing of infused MSCs to injured sites can be regarded as a prerequisite. According to recent data, several events mediated this homing process, such as CXCR1/2-CXCL8, CXCR4-CXCL12, CX3CR1-fractalkine, CCR7-CCL21 and ICAM-1/VCAM-1. Upon these molecular bindings, MSCs first adhere to the endothelium, forming a defensive barrier against pathogens together with the pre-existing pericytes. The foreign MSCs then migrate to the laminar propria, where they perform pro-regenerative functions.

Step 2: interacting with immune cells and bacteria. Cytokines secreted by both immune cells and MSCs mediate crosstalk among these cell types through regulatory feedback mechanisms, termed as ‘Educational action’ of MSCs (Figure 5). The engrafted MSCs will alter the inflammatory milieu through interacting with infiltrated immune cells via secretion central immune mediators, including IL-10, PGE2, TGF-β, CTGF and TGF-β1. For example, in a co-culturing system, BM-MSC increases the therapeutic potentials of MSC for RE

P.Y. Chang et al.

Cell Death and Disease

Educational action of MSCs

Therapeutic potentials of MSC for RE

P.Y. Chang et al.
Table 1 Advances in regenerative therapy for rodent models of RE

Year	Researcher (Ref.)	MSC/ESC (gene-modified), source and specie	Animal	Total dose (position)	Main findings
2006	Sémont et al.56	BM-MSC, human	NOD/SCID mice	3.5 Gy (WBI)+4.5 Gy (AI)	• Hypertrophic villus-crypt axis
• Maintaining the epithelial integrity					
2007	Kudo et al.69	ESC, 129/Sv cell line	ICR nu/nu mice	30 Gy (AI)	• ESCs are committed to epithelial cells
• Fail in prolong the lifespan of irradiated mice					
2008	Zhang et al.70	BM-MSC (CXCR4), β-Gal-transgenic mice	C57BL6/J mice	13 Gy (AI)	• Hypertrophic villus-crypt axis
• Reducing intestinal permeability					
2010	Kudo et al.68	BM-MSC, C57BL/6	ICR nu/nu mice	30 Gy (AI)	• Decreasing mortality rate
• Increasing body weight					
• Maintaining epithelial integrity					
2010	Sémont et al.57	BM-MSC, human	NOD/SCID mice	3.5 Gy (WBI)+7 Gy (AI)	• Decreasing mortality rate
• Maintaining absorptive function of epithelium					
• Restoring the integrity of epithelium					
• Increased number of proliferative cells in crypt					
• Decreased number of apoptotic cells in crypt					
2011	Saha et al.70	BM-MSC, C57BL/6	Dipeptidyl-peptidase-deficient mice; Lgr5-EGFP-RES-CreERT2 mice	10.4 Gy (WBI) 18 Gy (AI)	• Decreasing mortality
• Maintaining the integrity of epithelium					
• Mitigating inflammation					
2012	Francois et al.71	BM-MSC, C57BL/6 and IL-6−/− (B6. 129S2-Il6tm1J/K)	Barb/C mice	9 Gy (WBI)	• Protecting mice against radiation-induced death
• Hypertrophic villi					
• Stimulating epithelial regeneration mainly by MSC-derived IL-6					
2012	Gao et al.72	UC-MSC,6 human	Barb/C mice	7, 8.5, 10, 11.5 and 13 Gy (AI)	• Extending the life span of mice receiving 10 Gy
• Hypertrophic villi					
• Maintaining epithelial integrity					
2013	Chang et al.73	Ad-MSC, human	Sprague-Dawley rats	15 Gy (AI)	• Decreasing mortality rate
• Increasing body weight					
• Mitigating inflammation					
• Accelerating neovascularization					
• Restoring epithelial integrity					
2013	Linard et al.74	BM-MSC, Götingen pig	Götingen pigs	21–29 Gy (PI)	• Mitigating inflammation
• Inhibiting fibrosis in irradiated site					
• Facilitating angiogenesis in irradiated site					
2013	Yang et al.80	BM-MSC (MSD), human	NOD/SCID mice	4–6 Gy (AI)	• Decreasing mortality rate
• Reducing the number of apoptotic cells					
• Mitigating inflammation					
• Maintaining integrity of epithelium					
2013	Hu et al.81	UC-MSC (Trx-1), human	NOD/SCID mice	4.5 Gy (WBI)	• Maintaining epithelial integrity
• Reducing oxidative stress					
2014	Bessout et al.75	BM-MSC, Sprague-Dawley rats	Sprague-Dawley rats	Gy (PI)	• Reducing mucosal inflammation
• Promoting the proliferation of epithelial cells
• Inducing apoptosis of radiation-activated T cells
• Inhibiting infiltration and proliferation of T cells
• Elevating the local levels of corticosterone
• Upregulating the local expression of HSD11b1-steroidogenic enzyme |

Abbreviations: BM, bone marrow; Ad, adipose tissue; UC, umbilical cord; WBI, whole body irradiation; AI, abdominal irradiation; PI, Pelvic irradiation; HSD11b1, 11β-hydroxysteroid dehydrogenase type 1.

6Using conditioned medium of UC-MSCs.
Step 1: Homing to injured sites

MSCs → Irradiated intestine

Step 2: Interacting with immune cells and bacteria

Pro-inflammatory profile

MCSs → Educational action

Immune cells

Bacteria

Step 3: Amplification of intrinsic repair

Anti-inflammatory profile

MCSs → Autocrine/Paracrine

Growth factors ↑

Step 4: Post-regeneration reversion of tissue homeostasis

Reversion → Normal intestine

Irradiated Intestine

Therapeutic potentials of MSC for RE
P.Y. Chang et al

IL-10 secretion and decreases the TNF-α secretion in DCs; reduces IFN-γ secretion in Th1 cells and natural killer (NK) cells, and increases IL-4 secretion in Th2 cells. Under the same conditions, macrophages increase IL-10 and IL-12p40 secretion, while reducing TNF-α, IFN-γ, IL-6 and IL-12p70 secretion. These effects have also been observed in vivo: Németh et al. found that MSC infusion-induced elevation of host PGE2 has a central role in enhancing IL-10 synthesis by monocytes and macrophages from the lungs of septic mice, while reducing IL-12 secretion from these immune cells. These events inhibited neutrophil infiltration and IL-12-induced activations of both NK cells and cytotoxic T lymphocytes.

In addition to the antagonistic effects of MSCs on immune cell pro-inflammatory profiles, the MSCs can inhibit the proliferation of effective T lymphocytes through secreting iNOS or HLA-G5, inhibiting DC maturation using PGE2, and inhibiting NK-mediated cytolysis and NK proliferation using PGE2, HLA-G5 or IDO (Figure 5). In contrast to their anti-proliferative effects on such immune cells, MSCs will stimulate proliferation of regulatory T cells (Tregs) via secreting HLA-G5 and PGE2 (Figure 5). Recent in vivo data also confirmed that MSC infusion can increase the Treg number in mice with colitis; this increase is dependent on MSCs migrating to the spleen and interacting with splenic CD11b+ innate immune cells. But for radiation proctitis, current opinion on whether IL-10 and/or Tregs participate in suppressing mucosal inflammation seems to be contradictory. A previous study found that the antagonistic effect of MSCs on the inflammation in colorectal mucosa of rat exhibited the IL-10/Treg-independent manner, which is opposite to the finding by using a pig model. In spite of similar strategies in establishing animal models of radiation proctitis and carrying out autologous transplantation, the mechanism by which MSCs mitigate intestinal inflammation probably varies among species. In addition, the following issues, including delivery times and doses of MSCs, appear to affect the host responses in clearing systemic or local inflammation.

As described above, neuroimmune interactions and dysbiosis contribute to the pathogenesis of RE. Fortunately, recent data suggested that MSCs antagonized the activation of mast cells by secreting PGE2 and TGF-β1, leading to decreased degranulation, reduced ability of chemotaxis and reduced release of TNF-α by mast cells (Figure 5). Moreover, accumulative evidence suggest that human MSCs are powerful in protecting against Gram-negative bacteria-induced sepsis, relying on their secretions of LL-37, IDO and heme oxygenase-1 (HO-1), and strengthening the phagocytosis by neutrophils and macrophages as well (Figure 5).

Step 3: amplification of intrinsic repair. To date, it is still difficult to define the extent to which allogenic/heterogenic MSCs contribute to tissue regeneration, because immune rejection driven by recipient CD4+ and/or CD8+ T lymphocytes and oxidative stress within injured areas were reported to limit viability of infused MSCs. But relatively few ectopic MSCs can lead to excellent therapeutic effects on injured host tissues that have a lost a large number of functional cells. A previous study reported that enhanced tissue repair achieved despite donor MSCs being rapidly eliminated after transplantation. From this point, we conclude that MSCs act as facilitators via triggering and boosting systemic repair responses. In spite of no consensus on whether the anti-inflammatory effect of MSCs on irradiated rectum of IL-10 and/or Treg involvement, reduced inflammation is always achieved after infusion of MSCs. Combining with the actions of MSCs in clearing bacteria and minimizing the activation of mast cells, benign milieus for tissue regeneration are established, which will be beneficial to attract host bone marrow progenitors for reconstructing the niches of CBC stem cells and building on vasculature.

On this basis, by using the assistance from locally upregulated mitotic facilitators, re-epithelialization and angiogenesis/neovascularization in the injured intestine are accelerated thereby.

Step 4: post-regeneration reversion of tissue homeostasis. When the neo-formed epithelium or endothelium is restored to its normal size and structure, p53-mediated cell-cycle arrest halts cell proliferation and prevents tissue hypertrophy. Levels of cytokine or hormone secretion are altered in the host tissue to maintain physiological epithelial homeostasis. This process provides an adequate blood supply to the gut, eliminates inflammation and prevents fibrosis from developing in the irradiated intestine.
MSC and Cancer: A Latent Factor Affecting Security of MSCs for RE

The clinical responses of four Epinal patients to MSC-based therapy preliminarily revealed the specific roles of MSCs in treating pelvic radiotherapy-induced injuries in rectum and in bladder.6,23 Although no evidence indicating the relapses in their prostate cancers after MSC intervention,23 the debate over whether MSCs promote the growth and metastasis of cancer cells or initiate new cancers persists for a long time, because truth lies in that majority of RE patients are still cancer survivors.110

‘Negative effects’ of MSCs on tumor growth and their oncogenicity. Unrestricted cancer cell proliferation is largely driven by dysregulated growth signals originating from mutated genes.110 Some researchers believe that MSC-initiated immune suppression, immune cell dysfunction, cell division and angiogenesis could promote cancer progression.111,112 In addition, MSCs would undergo spontaneous malignant transformation during a culture period of 105 weeks.113-115 Genomic instability, such as spontaneous p53 mutation in aged or in p21-deficient MSCs, was related to fibrosarcoma formation in vivo.114-117 By contrast, the risk of genetic mutations or cell aging could be minimized, if MSCs are cultured for less than 16 weeks.118,119

‘Positive effects’ of MSCs on tumor growth and their anticancer potential. Recent data also suggested that MSCs exhibited potentials for inhibiting tumor growth through arresting cell cycling and activating signaling pathways related to cell death (Table 2).120-133 For example, human adipose MSCs could inhibit tumor cell expansion via secreting Dickkopf-related protein 1, a Wnt signaling antagonist.134-136 Another anticancer activity of MSCs involved the blockade of PI3K/Akt signaling pathway, leading to increased levels of cell-death related molecules, while decreased levels of cell survival-related molecules (Table 2).121,133,137

In addition, MSC-based gene therapy for various solid tumors improves host anticancer responses through releasing the foreign gene-encoded proteins, such as iNOS, IL-2 and IL-12.138-140 Optimistically, some clinical trials for evaluating the specific potentials of MSCs on treating cancer and cancer regimen-related disorders are being carried out (ClinicalTrials.gov data). Relevant results will be referred for anticipating the potential risks related to MSC-based therapy.

Figure 5 The interactions between MSCs and immune cells/Bacteria. Upon co-culturing with MSCs, the pro-inflammatory profiles of immune cells, including macrophages, dendritic cells, T effector cells, NK cells and mast cells, will be altered into the anti-inflammatory ones. By contrast, the proliferation of Tregs will be promoted by MSCs. Besides, MSCs have the anti-bacterial potentials, and the phagocytosis by neutrophils and macrophages will be strengthened by MSCs.
Researcher (Ref.)	Study type	Tumor/cell line	MSC source/species	Gene modification (yes/no)	Molecular alteration in tumor cells	Main findings
Khakoo et al.121	Ex/In vivo	Kaposi's sarcoma (KS)	BM human	No	Akt activity↓	Reducing KS cell growth ex vivo
Li et al.122	Ex/In vivo	Multiple myeloma (MM)/H929	Placenta human	No	Unknown	Dose-dependent inhibition of MSCs on MM growth in vivo
Ahn et al.123	Ex/In vivo	Melanoma/AS375SM and A375P	Ad human	No	G0/G1 arrest	Inducing the apoptosis in AS375SM and A375P cells ex vivo
Nasuno et al.124	Ex/In vivo	Azoxymethane-induced colonic carcinoma/IEC-6	BM rat	No	G1 arrest pSmad2, IκBα and p21↑; 79 genes of WNT signaling pathway↓	Reducing the number of aberrant crypt foci in vivo
Katsuno et al.125	Ex/In vivo	1,2-dimethylhydrazine and dextran sulfate sodium-induced colorectal tumor/ACL15	BM rat	No	TGF-β1↑	Reducing the number of aberrant crypt foci in vivo
Lu et al.126	Ex/In vivo	Hepatoma/H22 Lymphoma/YAC-1 and EL-4 Insulinoma/INS-1	BM mouse	No	p21 and Caspase-3↓ G0/G1 arrest	Dose-dependent inhibition of MSCs on tumor cell growth ex vivo
Qiao et al.127	Ex/In vivo	Hepatoma/H7402 and HepG2	DT human	No	β-Catenin, Bcl-2, PCNA and survivin↓	Inhibiting hepatoma growth in vivo
Abd-Allah et al.128	Ex/In vivo	Hepatoma/Hepa 1-6	BM mouse	No	Caspase-3, p21 and p531 Bcl-2 and survivin↓	Inhibiting growth of Hepa 1–6 ex vivo
Abdel Aziz et al.129	In vivo	Experimental hepatocellular carcinoma	BM rat	No	β-Catenin, PCNA, cyclin D and survivin↓	Reducing liver damage
Ahn et al.129	Ex/In vivo	T-cell lymphoma/EL4	Ad human	No	G0/G1 arrest	Decreasing the serum ALT, AST and α-fetoprotein levels
Chien et al.130	In vivo	Glioma/U87MG	BM human	No	Unknown	Reducing apoptosis of EL4 cells ex vivo

Table 2: Typical cases indicating the antagonistic effects of MSCs on tumor growth

Therapeutic potentials of MSC for RE

PY Chang et al.
Researcher (Ref.)	Study type	Tumor/cell line	MSC source/species	Gene modification (yes/no)	Molecular alteration in tumor cells	Main findings
Vegh et al.131	In vivo	Mammary tumor	Placenta human	No	Unknown	- Inhibiting the growth of primary mammary tumor
 - Inhibiting the development of new tumors |
| Ma et al.133 | Ex/In vivo | Mammary tumor/MDA-MB-231 and MCF-7 | UC human | No | PI3K/Akt↓, G0/G1 arrest | - Decreasing proliferation of MDA-MB-231 and MCF-7 cells ex vivo
 - Inducing apoptosis of MDA-MB-231 and MCF-7 cells ex vivo
 - Inhibiting the growth of mammary tumor in vivo |
| Zhu et al.134 | Ex vivo | Leukemia/K562 and HL60 and Mammary tumor/MCF-7 | Ad/Human | No | G0/G1 arrest; β-catenin, c-Myc and Cyclin D2↓, p21CIP1 and p27KIP1↓ | - Inhibiting proliferation of tumor cells |
| Han et al.137 | Ex/In vivo | Prostate cancer/PC-3 | UC human | No | Cleaved caspase 3/9, PARP, JNK and Bax↑, PI3K/Akt, ERK↓, Bcl-2, Bcl-xl, survivin Mcl-1 and clAP-1↓ | - Inducing apoptosis of PC-3 cells ex vivo
 - Inducing PC-3 cell-death in vivo |
| Xiang et al.138 | Ex vivo | Fibrosarcoma/Rif-1 | BM rat | Yes (iNOS) | Unknown | - Inhibiting Rif-1 tumor growth in vivo
 - Inducing apoptosis of Rif-1 cells ex vivo |
| Nakamura et al.139| Ex/In vivo | Glioma/9 L | BM rat | Yes (IL-2) | Unknown | - Inhibiting proliferation of 9 L cells ex vivo
 - Inhibiting the growth of glioma in vivo
 - Prolonging the survival time of glioma bearing mice in vivo |
| Gao et al.140 | In vivo | Renal cell carcinoma (RCC)/786-0 | BM human | Yes (IL-12) | Unknown | - Reducing the growth of 786-0 RCC ex vivo
 - Prolonging the survival time of RCC bearing mice in vivo |

Abbreviations: Ad, adipose; BM, bone marrow; UC, umbilical cord; DT, dermal tissue.
Future Efforts into MSC-Based Therapy for RE Patients
Because of the success in treating Epinal patients by using MSCs, a new protocol for treating late severe damages of abdominal radiotherapy has been performed in Epinal Medical Center since 2013.141 Specifically, the ‘Epinal experiences’ will deserve being referred worldwide in the future. If so, then MSC-based therapy is merely an attractive tool in managing RE patients. And clinical use of MSCs should focus on the following rules: (i) Ensuring the quality control of MSCs, including the processes for generating MSCs, identifying MSCs, detecting pathogens and endotoxin, and removing residual supplements.142 A detailed protocol for generating clinical grade human MSCs can be consulted,143 if using autologous MSCs. If using allogenic MSCs, then some FDA-approved products are available nowadays. But when allogenic MSCs are poorly tolerated, MSC exosomes are preferable to MSCs for the following reasons: (ii) MSC exosomes are capable of hydrolyzing AMP into adenosine, an activator of G-protein coupled receptors.144 (iii) Making countermeasure against possible complications or emergencies related to MSC infusion, such as fever, allergy or even shock.145 (iv) Establishing the criteria for evaluating the effectiveness achieved by MSC infusion in RE resolution, which somewhat guarantees the researchers avoid overstating the positive outcomes.146-150

Conclusions
Overall, data from preclinical study and Epinal case report highlight the essentiality of futuristic use of MSCs in RE management. MSC-based therapy is expected to have beneficial effects on the quality of life of RE patients.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements.
This study was funded by the National Natural Science Funds of China (Grant: 81372929).

1. Hauer-Jensen M, Denham JW, Andreyev HJ. Radiation enteropathy—pathogenesis, treatment and prevention. Nat Rev Gastroenterol Hepatol 2014; 11: 470–479.
2. Tucker SL, Thames HD, Michalski JM, Bosch WR, Mohan R, Winter K et al. Estimation of α/β for late rectal toxicity based on RTOG 94-06. Int J Radiat Oncol Biol Phys 2011; 81: 600–605.
3. Brenner DJ. Fractionation and late rectal toxicity. Int J Radiat Oncol Biol Phys 2004; 60: 1013–1015.
4. Kennedy GD, Heise CP. Radiation colitis and proctitis. Clin Colon Rectal Surg 2007; 20: 64–72.
5. Andreyev HJ, Davidson SE, Gillespie C, Alum WH, Swarbrick E. Practice guidance on the management of acute gastrointestinal problems arising as a result of treatment for cancer. Gut 2012; 61: 179–192.
6. Chaplin A, Francois S, Douay L, Bendettner M, Voswinkel J. New insights for pelvic radiation disease treatment: multipotent stromal cell is a promising candidate for the treatment of abdominal pelvic severe chronic damages induced by radiotherapy. World J Stem Cells 2013; 5: 106–111.
7. Gilbert JD, Byard RW. Fatal ischemic enteritis with hemorrhage—a late complication of treated Wilms tumor. J Forensic Sci 2013; 58: 234–236.
8. Sarin A, Safar B. Management of radiation proctitis. Gastroenterol Clin North Am 2013; 42: 913–925.
9. Spinelli A, Correale C, Szabo H, Montori M. Intestinal fibrosis in Crohn’s disease: medical treatment or surgery? Curr Drug Targets 2010; 11: 242–248.
10. Goforth L, Cornes P, Brooker S, Earl J, Gilees J, Hall E et al. Phase II study of vitamin E and pentoxifylline in patients with late side effects of pelvic radiotherapy. Radiother Oncol 2009; 89: 172–176.
31. Frankenberg-Schwager, M. Gebauer, A. Koppe, C. Wolf, H. Pralle, E. Frankenberg, D. Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell-cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation. Radiat Res 2009; 171: 265–273.

32. Schepers AG, Vries R, van den Born M, van de Wetering M, Clevers H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J 2011; 30: 1104–1119.

33. Metcalfe C, Kijewski VM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensible for radiation-induced intestinal regeneration. Cell Stem Cell 2014; 14: 149–159.

34. Sawkat S, Capacci MR. BM1 is expressed in vivo in intestinal stem cells. Nat Genet 2008; 40: 915–922.

35. Montgomery RK, Carlone DL, Richmond CA, Farila L, Kranendonk ME, Henderson DE et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA 2011; 108: 179–184.

36. Saito T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al. Paneth cells constitute the niche for Lgr5+ stem cells in intestinal crypts. Nature 2011; 469: 415–418.

37. Gilbert S, Nivarthi H, Mayew CN, Lo YH, Noah TK, Valance J et al. Activated STAT5 confers resistance to intestinal injury by increasing intestinal stem cell proliferation and regeneration. Stem Cell Reports 2015; 4: 209–225.

38. Mitalipov SP, Capaky A, Stoszowska D, Tucke Z, Toth P, Devak F et al. Ionizing radiation promotes the acquisition of a senescence-associated-secretory phenotype and impairs angiogenic capacity in cerebrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity. J Gerontol A Biol Sci Med Sci 2013; 68: 1443–1457.

39. Abderrahmany R, Francois A, Buard V, Tarlet G, Bilardo K, Hsein M et al. PPAR-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury. PLoS One 2012; 7: e36740.

40. Paris F, Fuku Z, Kang A, Capacci P, Juan G, Ehleiter D et al. Endothelial apoptosis is the primary lesion initiating intestinal radiation damage in mice. Science 2001; 293: 293–297.

41. Wym TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med 2011; 208: 1339–1350.

42. Giblin JP, Hewlett LJ, Hannah MJ. Basal secretion of von Willebrand factor from human endothelial cells. Blood 2002; 108: 957–964.

43. Kopanski MM, Isekiieku AC, Movet HZ. Kinetics of acute inflammation induced by E coli in rabbit. Quantitation of blood flow, enhanced vascular permeability, hemorrhage, and leukocyte accumulation. Am J Pathol 1980; 89: 485–498.

44. Nikjoo H, O’Halloran TA, Liao SY, Liu S, Wu W, Furth EE et al. Role of apoptosis in radiation-induced intestinal injury. Br J Radiol 2008; 81: 604–611.

45. Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: A new role for the endoplasmic reticulum. J Exp Med 2009; 206: 1865–1884.

46. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. J Radiat Res 2006; 47: 315–329.

47. Hwang SJ, Lee YH, Kim JS, Iljum K, Kim JH, Jang Y et al. Induction and measurement of cytotoxic T lymphocyte responses of mice to whole-body irradiation. Radiat Res 1964; 23: 143–157.

48. Mittal M, Siddigui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in radiation-induced intestinal regeneration. Cell Death Differ 2010; 17: 962–975.

49. Kudo K, Liu Y, Takahashi K, Taruawa K, Osanai M. Mesenchymal stem cells from human adipose tissue promote healing of segments of the colon. Stem Cells 2009; 27: 2874–2881.

50. Bessout R, Sémont A, Demarguay C, Charcosset A, Benderllerr M, Mathieu N. Mesenchymal stem cell-conditioned medium prevents radiation-induced small intestine injury in mice. J Cell Physiol 2014; 229: 1517–1523.

51. Chang Q, Qu Y, Liu C, Liu S, Zhu D, Wang H et al. Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis 2013; 4: e855.

52. Lannert C, Bussoen E, Holler V, Strup-Peronc L, Cacre-Lapalun JV, Lhomme B et al. Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Transl Med 2013; 2: 916–927.

53. Bessout R, Sémont A, Demarguay C, Charcosset A, Benderller M, Mathieu N. Mesenchymal stem cell therapy induces glucocorticoid synthesis in colonic mucosa and supresses radiation-induced activation of T cells. New insights into MSC immunomodulation. Mucosal Immunol 2014; 7: 656–669.

54. Zong ZW, Cheng TM, Su YP, Ran XZ, Shen Y, Liu L et al. Recruitment of transplanted dermal multipotent stem cells to sites of injury in rats with combined radiation and wound injury by interaction of SDF-1 and CXCR4. Radiat Res 2008; 179: 444–450.

55. Liu JF, He BP, Qian ST, Tan SS. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 2004; 22: 415–427.

56. Francisco S, Bensidhoum M, Mounsedine M, Mazurier C, Allenet B, Sémont A et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 2006; 24: 1020–1029.

57. Zhang J, Gong JF, Zhao X, Zhang J, Zhang L, Li JS. Effects of transplanted bone marrow mesenchymal stem cells on the irradiated intestine of mice. J Biomed Sci 2008; 15: 585–594.

58. Yang C, Chen HK, Zhou Y, Liu MX, Wang JX, Ren SP et al. Manganese superoxide dismutase gene therapy protects against irradiation-induced intestinal injury. Curr Gene Ther 2013; 13: 305–314.

59. Hu J, Zhang W, Wang J, Yang T, Liu H, Zhang B et al. Inhibition of Tnf-α overexpressing huc MSC prolongs the survival of acutely irradiated NOD/SCID mice by decreasing excessive inflammatory injury. PLoS One 2013; 8: e72327.

60. Zhang L, Margott R, Reich-Zeliger S, Bachar-Lustig E, Belhach A, Negrin R et al. Direct imaging of immune rejection and memory induction by microchipped irradiated stem cells. Stem Cells 2009; 27: 2865–2874.

61. Hu C, Yong X, Li C, Li M, Li D, Chen L et al. CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. J Surg Res 2013; 183: 427–434.

62. Ren G, Zhao X, Zhang L, Zhang J, LHullier A, Ling W et al. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 2010; 184: 2321–2329.

63. Ring D, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR et al. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 2007; 101: 135–146.

64. Pague-Filipei S, Schőnner H, Li A, Atken T, Gangratnar P, Blashki D et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Invest 2009; 119: 2795–2806.

65. Liner I, Chapparo O. Paracrine effect of mesenchymal stem cells from human adipose tissue in bone regeneration. PLoS One 2014; 9: e107001.

Therapeutic potentials of MSC for RE

P-Y Chang et al

Cell Death and Disease
111. Kuhn NZ, B. et al. Regulation of stemness and stem cell niche of mesenchymal stem cells. Biochem Pharmacol 2010; 80: e9292.

106. Brittan M, Chance V, Elia G, Poulsom R, Alison MR, MacDonald TT. Stem Cell Rev 2006; 128: 117–126.

115. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Loyd AC et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 5605–5609.

114. Burns JS, Abdallah BM, Guldberg P, Roygard J, Schroder HD, Kassebaum M. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 2005; 65: 3126–3135.

110. Krasnodembskaya A, Samarani G, Song Y, Zhou H, Su X, Lee JW et al. Suppressing tumorigenesis in mice by human mesenchymal stem cells. J Clin Invest 2007; 117: 357–369.

113. Burns JS, Abdallah BM, Guldberg P, Roygard J, Schroder HD, Kassebaum M. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 2005; 65: 3126–3135.

112. Krasnodembskaya A, Samarani G, Song Y, Zhou H, Su X, Lee JW et al. Suppressing tumorigenesis in mice by human mesenchymal stem cells. J Clin Invest 2007; 117: 357–369.

105. Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, Eggert K, Gehling UM, Rudolph C et al. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 2010; 222: 268–277.

104. Hsu WT, Lin CH, Chiang BL, Liu YH, Wu KK, Lee CM. Prostaglandin E2 potentiates mesenchymal stem cell-mediated IL-10 secretion from CD4+CD25+ regulatory T cells. Stem Cells 2008; 26: 212–222.

103. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 2229–2238.

102. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 2229–2238.

91. Pils MC, Pisano F, Fasnacht N, Heinrich JM, Groebe L, Schippers A et al. Mesenchymal stem cells as a therapeutic tool to treat sepsis. J Immunol 2008; 181: 3528–3534.

90. Németh K, Leelahavanichkul A, Yu C, Mayer B, Parmelee A, Doi K et al. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice. Stem Cells 2010; 28: 2122–2132.

88. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

87. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

86. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

85. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

84. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

83. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

82. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

81. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

80. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

79. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

78. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

77. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

76. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

75. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

74. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

73. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

72. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

71. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

70. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

69. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

68. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.
141. Chapel A, Francois S, Douay L, Benderitter M, Voswinkel J. Fifteen years of preclinical and clinical experiences about biotherapy treatment of lesions induced by accidental irradiation and radiotherapy. World J Stem Cells 2013; 5: 68–72.
142. Bernardo ME, Fibbe WE. Safety and efficacy of mesenchymal stromal cell therapy in autoimmune disorders. Ann NY Acad Sci 2012; 1266: 107–117.
143. Robey PG, Kuznetsov SA, Pen J, Klein HG, Sabatino M, Stroscio DF. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration. Bone 2015; 70: 87–92.
144. Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015; 40: 82–88.
145. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 2011; 87: 146–150.
146. Berardis S, Dwisiti Sattwika P, Najimi M, Sokal EM. Use of mesenchymal stem cells to treat liver fibrosis: Current situation and future prospects. World J Gastroenterol 2015; 21: 742–758.
147. Omori K, Masuda K, DeBoer DJ, Sakaguchi M, Tsujimoto H. Immunoblot analysis for IgE-reactive components of fetal calf serum in dogs that developed allergic reactions after non-rabies vaccination. Vet Immunol Immunopathol 2007; 115: 166–171.
148. Abbott A. Leaked files slam stem-cell therapy. Nature 2014; 505: 139–140.
149. Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28: 585–596.
150. Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 2011; 30: 9.