Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Interactome of human and SARS-CoV-2 proteins to identify human hub proteins associated with comorbidities

Nimisha Ghosh a,b,1, Indrajit Saha c,*1, Nikhil Sharma d

a Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
b Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
c Department of Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata, West Bengal, India
d Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

ARTICLE INFO

Keywords:
COVID-19
Comorbidities
Hub proteins
Protein-protein interaction
Repurposable drugs
SARS-CoV-2

ABSTRACT

SARS-CoV-2 has a higher chance of progression in adults of any age with certain underlying health conditions or comorbidities like cancer, neurological diseases and in certain cases may even lead to death. Like other viruses, SARS-CoV-2 also interacts with host proteins to pave its entry into host cells. Therefore, to understand the behaviour of SARS-CoV-2 and design of effective antiviral drugs, host-virus protein-protein interactions (PPIs) can be very useful. In this regard, we have initially created a human-SARS-CoV-2 PPI database from existing works in the literature which has resulted in 7085 unique PPIs. Subsequently, we have identified at most 10 proteins with highest degrees viz. hub proteins from interacting human proteins for individual virus protein. The identification of these hub proteins is important as they are connected to most of the other human proteins. Consequently, when they get affected, the potential diseases are triggered in the corresponding pathways, thereby leading to comorbidities. Furthermore, the biological significance of the identified hub proteins is shown using KEGG pathway and GO enrichment analysis. KEGG pathway analysis is also essential for identifying the pathways leading to comorbidities. Among others, SARS-CoV-2 proteins viz. NSP2, NSP5, Envelope and ORF10 interacting with human hub proteins like COX4I1, COX5A, COX5B, NDUFS1, CANX, HSP90AA1 and TP53 lead to comorbidities. Such comorbidities are Alzheimer, Parkinson, Huntington, HTLV-1 infection, prostate cancer and viral carcinogenesis. Subsequently, using Enrichr tool possible repurposable drugs which target the human hub proteins are reported in this paper as well. Therefore, this work provides a consolidated study for human-SARS-CoV-2 protein interactions to understand the relationship between comorbidity and hub proteins so that it may pave the way for the development of anti-viral drugs.

1. Introduction

SARS-CoV-2, the virus responsible for COVID-19 has disrupted our daily lives and even after almost two years, we are still struggling in our fight against the virus. Though it originated in China, in a short time COVID-19 cases were reported from all around the globe. By September 2021, more than 229 million people have been affected by this virus with more than 4 million deaths. The usual symptoms of COVID-19 range from common cough and cold, shortness of breath, fever to multiple organ failure which may eventually lead to death. Since this is a RNA virus, it shows high mutations and new strains of the virus are also in circulation right now. According to W.H.O, the strains of the virus declared as variants of concern are Alpha or B.1.1.7, Beta or B.1.351, Gamma or P.1 and Delta or B.1.617.2 [1–3].

SARS-CoV-2 encompasses four structural proteins, spike glycoprotein, envelope, membrane glycoprotein and nucleocapsid, apart from non-structural proteins (NSP1-NSP16) and accessory proteins like ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10 [4]. Viruses are incapable of living and reproducing outside a host body. Thus, they need to infiltrate a host for their survival. Protein-protein
interaction (PPI) is one such way by which a virus invades a host cell [5]; SARS-CoV-2 being no exception. For SARS-CoV-2, bats are supposed to be the primary hosts and pangolins are identified to be the possible intermediate hosts from which the virus got transmitted to humans resulting in COVID-19 disease [6–8]. Furthermore, knowledge of virus invasion and pathogenesis of SARS-CoV-2 is very important to understand the comorbidities in human host. In this regard, study of PPI is crucial and helpful in drug repurposing and discovery as well. These facts have motivated us to conduct this research.

Traditionally, the collection of PPI data is mainly done through laboratory-based methods such as protein-chips [9,10], correlated mRNA expression profile [11], TAP-tagging [12,13], yeast-two hybrid [14,15] and synthetic lethal analysis [16]. However, laboratory based methods are mostly time consuming and labour-intensive. Also, due to the voluminous nature of PPI data there is a chance that PPI data generated by laboratory-based methods may not be complete [17]. Furthermore, small proteins are difficult to recognise in lab set up although they have important functional roles in many biological processes [18]. Moreover, it has been frequently observed that high false positives and false negatives occur in the prediction results of laboratory-based methods [19–21]. To mitigate these problems, a large number of computational methods have been proposed in the literature to identify protein-protein interactions. In this regard, a very popular method to predict PPI is link prediction model where it is considered that proteins interact if they are similar [22]. However, the accuracy of such models are heavily dependent on the reliability of PPI networks which may be affected due to a huge number of false-negative and false-positive PPIs. Also, in scale-free property of PPI networks [23,24], some PPI are dense while others are mostly sparse (average degree of 7 or less [25]) and link predictive models are not very efficient for sparse networks. Thus, high throughput technologies which consider biological information of proteins can be used to predict PPIs [26]. In Ref. [27], the authors have used bioinformatics and machine learning approaches to identify potential drug targets and pathways in COVID-19. In this regard, they have identified 1520 and 1733 differentially expressed genes (DEGs) from GSE152418 and CRA002390 PBMC datasets and have considered hub gene signature based on module membership (MMhub) statistics and PPI networks. Furthermore, they have demonstrated the classification performance of hub genes with more than 90% accuracy, thereby suggesting the potential of the hub genes to be biomarkers. Gupta et al. [28] have also used machine learning for prediction of new small molecule modulators of PPI. In their work, they have concluded that Random Forest predicts general PPI Modulators independent of PPI network. For our work, initially we have prepared a consolidated human-SARS-CoV-2 PPI database taking into consideration the PPIs from the existing works in the literature which have thereafter resulted in 7085 unique PPIs, identified human hub proteins using such PPI networks and finally identified the list of repurposable drugs for such human hub proteins as well as comorbidity issues related to such hub proteins. To the best of our knowledge, these consolidated ideas have not been addressed previously in any article. Therefore, this study mitigates the gaps in the literature through the above mentioned contributions. It is to be noted that other works like [41,42] have analysed drug repurposibility and comorbidities by considering expression data as opposed to our work which directly considers PPI data for the above analysis.

2. Materials and methods

In this section, the data preparation is elaborated at first which is then followed by the discussion on the pipeline of the proposed work.

2.1. Data preparation

For our work, initially we have prepared a consolidated human-SARS-CoV-2 PPI database taking into consideration the PPIs from Refs. [4,5,43]. There are 332 PPIs in Ref. [4] whereas [5] has reported 6489 PPIs and Li et al. [43] have reported 295 PPIs. Considering all the PPIs between human and SARS-CoV-2, 7085 unique PPIs are identified among 2204 unique human proteins and 4 structural and 25 non-structural virus proteins which include NSP1-16, Spike glycoprotein, ORF3a, ORF3b, Envelope protein, Membrane glycoprotein, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c, Nucleocapsid and ORF10.

2.2. Pipeline of the work

The pipeline of the work is shown in Fig. 1(a). Initially, to create a consolidated human-virus PPI database, 7166 interactions are collected from the existing works in the literature which have thereafter resulted in 7085 unique PPIs. The distribution of the PPIs in the literature is shown in Fig. 1(b). Thereafter, all the human proteins for a particular virus protein are given as an input to the STRING database. STRING database returns all the human-virus human interaction pairs which are provided as inputs. It may also exclude some human proteins in the process as well. Next, for each SARS-CoV-2 protein, at most 10 human proteins viz. hub proteins are identified which have the highest degrees. It is important to note that based on their association with an individual SARS-CoV-2 protein, there are two levels of human proteins, Level 1 and Level 2 as shown in Fig. 1(c). Level 1 human proteins are those which are in the immediate vicinity or directly connected to the
SARS-CoV-2 protein while Level 2 are such human proteins which are indirectly connected to the virus protein through the Level 1 proteins. Among the 10 proteins as shown in the figure, A, C and G are considered to be the hub proteins as they have the highest degree among all the human proteins. Thus, a hub protein can either be a level 1 or a level 2 human protein. It is worth mentioning over here that a level 2 hub protein can be connected to the virus protein either through a hub protein or any directly connected human protein which may not be a hub protein. In this paper, the direct or level 1 hub proteins are marked in red while the indirect or level 2 hub proteins are marked in green and the rest of the human proteins are marked in yellow. SARS-CoV-2 proteins on the other hand are marked in blue throughout the paper. Once the hub proteins are identified, to understand the effects of these hub proteins on comorbidities, their pathways are explored and the

Virus Protein	Number of Unique Human Proteins directly interacting with SARS-CoV-2 proteins	Number of Unique Human Proteins present in Human PPI network	Number of Unique Human Hub Proteins (out of top 10) directly interacting with SARS-CoV-2 proteins	Number of Unique Human Hub Proteins (out of top 10) indirectly interacting with SARS-CoV-2 proteins	Number of Unique Human Proteins (other than hub proteins) directly connected to Hub Proteins
NSP1	7	4	4	0	0
NSP2	15	9	8	1	0
NSP3	85	72	10	0	32
NSP4	10	6	5	1	0
NSP5	100	87	10	0	35
NSP6	4	2	1	1	0
NSP7	830	788	9	1	469
NSP8	50	39	10	0	16
NSP9	19	13	9	1	1
NSP10	34	27	10	0	10
NSP11	1	11	1	9	1
NSP12	54	32	9	1	15
NSP13	42	29	10	0	11
NSP14	10	2	2	0	0
NSP15	29	11	8	2	1
NSP16	2	NA	NA	NA	NA
Spike	317	302	10	0	158
glycoprotein					
ORF3a	59	44	9	1	16
ORF3b	1	11	1	9	1
Envelope	1141	1086	10	0	673
Membrane	107	81	9	1	36
glycoprotein					
ORF6	1236	1194	9	1	677
ORF7a	148	133	9	1	55
ORF7b	987	951	9	1	611
ORF8	106	82	10	0	42
Nucleocapsid	28	23	10	0	7
ORF9a	534	513	9	1	331
ORF9c	26	10	9	1	0
ORF10	1103	1057	9	1	635
biological significance are demonstrated using KEGG pathway and GO enrichment analysis. KEGG pathway analysis is also important for identifying the pathways leading to comorbidities. Finally, identification of potential repurposable drugs targeting the human hub proteins to curb the effects of COVID-19 are carried out using Enrichr\(^5\) tool.

3. Results

This work is executed according to the pipeline as shown in Fig. 1(a). In this work, the primary motivations are to create a human-virus PPI interacting database and identifying the human hub proteins to understand their effects in comorbidities. In this regard, we have collected 7085 unique PPIs from the existing works in the literature, the details of which are provided in the Supplementary. Subsequently, with all the human-human interaction networks collected for each virus protein, the degree of each human protein with respect to a SARS-CoV-2 protein in the PPI network is identified. The degrees of the human proteins are provided in the Supplementary. Once the degree of each human protein for the corresponding SARS-CoV-2 protein is computed, at most top 10 human proteins are selected with the highest degrees which are then considered to be the hub proteins for each virus protein. The details of the top 10 human proteins for each virus protein are reported in Table 1. This table shows the number of unique human proteins directly interacting with SARS-CoV-2 proteins, number of unique human proteins present in human PPI network considering proteins directly interacting with SARS-CoV-2 proteins, number of unique human hub proteins (out of top 10) directly interacting with SARS-CoV-2 proteins, number of unique human hub proteins (out of top 10) indirectly interacting with SARS-CoV-2 proteins and number of unique human proteins apart from the hub proteins directly connected to the hub proteins. As has been mentioned earlier, not all human proteins directly interacting with the SARS-CoV-2 proteins may be a part of the PPI network. This can be inferred from Table 1 as well. For example, for NSP1, 4 human proteins are present in the PPI network while 7 human proteins are directly interacting with SARS-CoV-2 proteins. The corresponding graph for the number of human proteins directly interacting with the SARS-CoV-2 proteins is shown in Fig. 1(d). The sum of interactions or the total degree of the human proteins in human PPI interactome with respect to the virus protein is shown in Fig. 1(e). For example, NSP7 has a total of 53448 human PPI interactions. It can be seen from the figure that out of the 29 virus proteins, 28 has corresponding human-human interaction networks while NSP16 does not have any associated human-human protein interactions.

All the identified human hub proteins may not be directly interacting with the SARS-CoV-2 proteins, rather they may be connected indirectly. For example, for NSP7, out of the 10 hub proteins, 9 such proteins are directly interacting with the SARS-CoV-2 protein while 1 human hub protein is indirectly interacting with the virus protein through some other human proteins. It is to be noted that for SARS-CoV-2 proteins like NSP1, NSP2, NSP4, NSP6 and NSP14 which have corresponding interacting human proteins equal to 7, 15, 10, 4 and 10 respectively have number of hub proteins equal to 4, 9, 6, 2 and 2, less than 10. The details of the human hub proteins for each protein of SARS-CoV-2 are provided in the Supplementary.

Table 1 as well. For example, for NSP1, 4 human proteins are present in the PPI network while 7 human proteins are directly interacting with SARS-CoV-2 proteins. The corresponding graph for the number of human proteins directly interacting with the SARS-CoV-2 proteins is shown in Fig. 1(d). The sum of interactions or the total degree of the human proteins in human PPI interactome with respect to the virus protein is shown in Fig. 1(e). For example, NSP7 has a total of 53448 human PPI interactions. It can be seen from the figure that out of the 29 virus proteins, 28 has corresponding human-human interaction networks while NSP16 does not have any associated human-human protein interactions.

Thus, no more than 30 human proteins (≤10 hub proteins and ≤20 other proteins) are considered for visualization purpose in Fig. 3. The details of all the human-SARS-CoV-2 PPI corresponding to only the hub proteins for each virus protein along with the details of all such interactions for each virus protein irrespective of the hub proteins are provided in the Supplementary.

4. Discussion

4.1. KEGG pathway analysis

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis reveals the potential diseases that can develop in humans due to SARS-CoV-2. Hub proteins are the ones which are connected to most of the other human proteins in the PPI network. Thus, instead of considering all the human proteins that have been returned by the STRING database, for the KEGG pathway analysis only the hub proteins and those human proteins which are directly connected to the hub proteins are considered. Table 3 reports such maximum 5 significant KEGG pathways (if there are any) with the corresponding hub proteins related to them and their FDR corrected p-values. The detailed pathways are provided in the Supplementary. These results are collected from STRING database. Fig. 4 shows the KEGG pathways for NSP2, NSP5, Envelope protein and ORF10. For better visualization, maximum top 30 pathways are shown in the figures. The size of the bubbles in the figures are based on the corresponding number of human hub proteins associated with each pathway; lesser the number of hub proteins, smaller are the size of the bubbles while their colours are based on the FDR-corrected p-values. It can be seen from Fig. 4 that the most significant pathways corresponding to hub proteins for a SARS-CoV-2 protein are involved in various diseases. For example, for the human hub proteins targeted by NSP2 are enriched in pathways relating to hsa05010: Alzheimer’s disease, hsa05012: Parkinson’s disease and hsa05016: Huntington’s disease with the respective FDR corrected p-value being 4.51E-06 for all the three pathways while the corresponding hub proteins targeted by NSP2 are COX4I1, COXSA, COX5B and NDUF51. SARS-CoV-2 can aggravate cancer pathways as well. For example, human hub protein CANX targeted by NSP5 is enriched in pathway for hsa05166: HTLV-I infection (FDR-corrected p-value 3.20E-03) which is associated with aggressive adult T-cell lymphoma, GAPDH targeted by Envelope protein is enriched in pathway for hsa04662: HIV-1 signaling pathway (FDR-corrected p-value 2.50E-04) while HSP90AA1 is enriched in pathways for hsa04151: PI3K-Akt signaling pathway (FDR-corrected p-value 1.30E-03), hsa05215: Prostate cancer (FDR-corrected p-value 1.24E-02), hsa05200: Pathways in cancer (FDR-corrected p-value 1.26E-02) and EEF2 is responsible for hsa04010: AMPK signaling pathway (FDR-corrected p-value 4.80E-04). Furthermore, RPN1, SEC61A1, CANX and HSP90B1 all targeted by NSP5 are enriched in the pathway for hsa01414: Protein processing in endoplasmic reticulum (FDR-corrected p-value 2.37E-07) and there are studies [47,48] which show that prolonged endoplasmic reticulum stress is responsible for the development and progression of many diseases like atherosclerosis, neurodegeneration, liver disease, type 2 diabetes and cancer. Moreover, TP53 targeted by ORF10 is enriched in the...
A pathway relating to \textit{hsa05203: Viral carcinogenesis} (FDR-corrected p-value 1.70E-04). Other significant pathways found for the human proteins with FDR corrected p-values within 5% statistical significance are \textit{Influenza A}, \textit{Measles, Epstein-Barr Virus infection} and \textit{Vibrio cholerae infection}.

4.2. Gene ontology (GO) enrichment analysis

GO enrichment analysis is performed to understand the significance of the roles that the different interacting human proteins play in biological activities. Similar to KEGG pathways, the GO enrichment results are collected from STRING database as well and considered only for the hub proteins and their direct connections. The result of the analysis for Table 2 Details of Human Hub Proteins for each SARS-CoV-2 Protein.

Virus	Human hub proteins (out of top 10)	Degree of Human hub proteins directly interacting with SARS-CoV-2 proteins	Human hub proteins (out of top 10) indirectly interacting with SARS-CoV-2 proteins	Degree of Human hub proteins indirectly interacting with SARS-CoV-2 proteins
		3, 3, 3, 3, 1, 1, 1, 1, 1, 1	NA	KIAA01033
		30, 29, 28, 27, 27, 27, 26, 26, 26	NA	NA
		3, 3, 3, 1, 1	NA	C19orf52
		16, 16, 15, 15, 14, 13, 12, 12, 12	NA	NA
		1	ATP5L	1
		259, 251, 243, 236, 232, 231, 222, 221, 219	NHP2L1	238
		13, 10, 9, 8, 8, 7, 7, 7, 7	NA	NA
		6, 6, 6, 5, 4, 2, 1, 1	NUP1L	4
		8, 4, 4, 3, 2, 2, 2, 2, 2	NA	NA
		10	TBCD, TBCE, TUBA1A, TUBA4A, TUBB1, TUBA26, TUBB28, TUBB4A, TUBB4B KH4orf166	10, 10, 10, 10, 10, 10, 10, 10, 10, 10
		11, 10, 10, 8, 7, 7, 7, 5, 5	NA	4
		17, 17, 14, 12, 12, 11, 11, 10, 10	NA	NA
		3, 3, 2, 1, 1, 1, 1, 1	NA	KIAA0020, TCEB3
		NA	NA	NA
		14, 13, 10, 10, 8, 8, 8, 7, 7	NA	7
		10	PHB2, YME1L1, PARL, PHB, SMATDL, ATPS1A, MRPL40, HSPA1A, HSPA1L	6, 6, 5, 5, 4, 3, 2
		301, 286, 279, 268, 260, 256, 254, 253, 251, 248	NA	NA
		12, 12, 10, 10, 10, 9, 8, 8	ATP5O	7
		320, 312, 307, 306, 305, 302, 302, 299, 299	NHP2L1	7
		32, 29, 28, 22, 21, 21, 21, 20	SKIV2L	22
		284, 273, 273, 264, 258, 248, 248, 245, 244	NHP2L1	262
		24, 23, 21, 20, 19, 19, 19, 18, 18	NA	NA
		10, 9, 8, 8, 5, 5, 5, 5, 4	NA	NA
		185, 177, 177, 176, 175, 173	GNR2L1	171
		4, 3, 3, 2, 2, 2, 2, 2, 2, 1	FAM134C	1
		282, 272, 269, 264, 260, 256, 252, 251, 251	NHP2L1	265
biological processes for NSP2, NSP5, Envelope protein and ORF10 considering at least one hub protein are reported in Fig. 5. For better readability, only the top 30 pathways are shown in the figures. The detailed analysis for all the GO pathways (biological, molecular and cellular) are provided in the Supplementary. Some significant biological pathways for human hub proteins COX5B, COX5A and COX4I1 targeted by NSP2 are: GO:0006123: mitochondrial electron transport, cytochrome c to oxygen (FDR-corrected p-value 1.11E-05), hub proteins HSP90B1, P5MC6 and PSMD14 targeted by NSP5: GO:0030163: protein catabolic process (FDR-corrected p-value 1.34E-06), HSPA8, RPS27A, HNRNPA1, EIF4A3, RPL4 and RPS3 targeted by Envelope protein: GO:0016071: mRNA metabolic process (FDR-corrected p-value 4.13E-123) and HSPA8, RPS27A, NHP2L1, EIF4A3, HNRNPA1, RPL4, RPS20, RPS3 and TP53 targeted by ORF10: GO:0016071: mRNA metabolic process (FDR-corrected p-value 6.46E-132).

4.3. Repurposable drugs

Till now, no efficacious drug has been discovered to combat SARS-CoV-2. The traditional mechanism of drug development is expensive and time-consuming, thereby making drug repurposing a viable option for effective drug identification for COVID-19. In this regard, human hub proteins corresponding to each SARS-CoV-2 protein can be considered to be good candidates as targets for drug repurposing. Such drugs that interact with the hub proteins are identified using DSigDB in Enrichr tool. For each virus protein, the results for at most top 5 drugs (if any) along with their Drug Bank ID as collected from Drug Bank, their FDR corrected p-values and the possible treatments are reported in Table 4.

As can be seen from Table 4, several drugs are identified which can be used for treating cancer. For example, Tanespimycin (FDR corrected p-value 4.44E-03 and Drug Bank ID DB05134) which targets human hub protein like HSP90AA1 corresponding to Envelope protein is used for treating several types of cancer, solid tumors or chronic myelogenous leukemia. As previously discussed, HSP90AA1 which is targeted by SARS-CoV-2 Envelope protein triggers PI3K-Akt signaling pathway whose aberrant activation promotes the survival and growth of tumor cells in many human cancers. Other drugs like Phenethyl isothiocyanate, 4-Hydroxytamoxifen, Daunorubicin, Camptothecin, Vorinostat, Diindolylmethane etc. are also used for the treatment of various types of cancer. It is worth noting that identified drugs like Resveratrol known for the treatment of high cholesterol, cancer and heart disease and Niclosamide used for treating tapeworm infection are under trials for the treatment of COVID-19 [49,50]. Please note that all the hub proteins involved for KEGG pathway analysis may not have corresponding drugs with FDR corrected p-value less than 5%. Thus, only those hub proteins are reported in Table 4 for which there are corresponding relevant drugs. For example, for NSP2, the hub proteins with corresponding KEGG pathways having FDR corrected p-value less than 5% are NDUFS1, COX4I1, COX5A and COX5B while the hub proteins with relevant drugs having FDR corrected p-values less than 5% are NDUFS1, COX5A and COX5B. Fig. 6 provides a glimpse of the common hub proteins and drugs among multiple SARS-CoV-2 proteins. For example, RPSA is a hub protein common to NSP3, NSP7 and Spike glycoprotein and the corresponding drug that targets RPSA is Disodium Selenite. Please note that though RPSA is also targeted by ORF9b as shown in Table 4, it is not shown in the figure as Disodium Selenite is not a relevant drug for RPSA in ORF9b as the corresponding FDR corrected p-value of Disodium Selenite is not less than 5% in this case. Other drugs like Desipramine, Clindamycin and Vorinostat used as antidepressants,
Fig. 3. A glance into human-SARS-CoV-2 PPI network for (a) NSP1 (b) NSP2 (c) NSP3 (d) NSP4 (e) NSP5 (f) NSP6 (g) NSP7 (h) NSP8 (i) NSP9 (j) NSP10 (k) NSP11 (l) NSP12 (m) NSP13 (n) NSP14 (o) NSP15 (p) Spike glycoprotein (q) ORF3a (r) ORF3a (s) Envelope protein (t) Membrane glycoprotein (u) ORF6 (v) ORF7a (w) ORF7b (x) ORF8 (y) Nucleocapsid (z) ORF9b and (aa) ORF9c and (bb) ORF10. In these figures, nodes marked in blue represent the SARS-CoV-2 proteins, nodes marked in red represent the human hub proteins directly connected to SARS-CoV-2 proteins, green represents the human hub proteins indirectly connected to SARS-CoV-2 proteins and yellow represents other human proteins directly connected to hub proteins.
Table 3
Details of KEGG Pathways corresponding to Human Hub Proteins for each SARS-CoV-2 Protein.

Virus	Human hub proteins	KEGG Pathways related to Comorbidities	FDR corrected p-value	Virus	Human hub proteins	KEGG Pathways related to Comorbidities	FDR corrected p-value	
NSP1	POLA1, POLA2, PRIM1, PRIM2	DNA replication	5.98E-11	Spike glycoprotein	NSP1	POLA1, POLA2, PRIM1, PRIM2	Ribosome	7.36E-30
		Pyrimidine metabolism	1.51E-09			HSPA1, HSPA1L	Protein processing in endoplasmic reticulum	1.96E-17
		Purine metabolism	8.63E-09			HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPL0	RNA transport	1.03E-09
		Metabolic pathways	1.68E-05			HYO1U, P4HB, POIA6, POIA4, EDREM3, ERO1L, TXND5	Epstein-Barr virus infection	1.06E-09
NSP2	NDUF5S1, COX41, COX5A, COX5B	Alzheimer’s disease	4.51E-06	ORF3a	NSP1	POLA1, POLA2, PRIM1, PRIM2	Parkinon’s disease	1.50E-04
		Huntingtons disease	4.51E-06			HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPL0	Protein processing in endoplasmic reticulum	4.96E-12
		Non-alcoholic fatty liver disease (NAFLD)	4.51E-06			HYO1U, P4HB, POIA6, POIA4, EDREM3, ERO1L, TXND5	Ribosome	7.36E-30
		Oxidative phosphorylation	4.51E-06			HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPL0	RNA transport	1.03E-09
		Parkinson’s disease	4.51E-06			HYO1U, P4HB, POIA6, POIA4, EDREM3, ERO1L, TXND5	Legionellosis	1.06E-09
NSP3	RPL8, RPSA, RPL12, EEFA1, RPL6, RPL15, RPS11, RPS16, RPL11, RPS15A	Ribosome	1.72E-26	ORF3b	NSP1	POLA1, POLA2, PRIM1, PRIM2	Prostate cancer	1.24E-02
		RNA transport	5.20E-03			HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPL0	Measles	9.10E-03
		Nucleotide excision repair	1.80E-04	Envelope protein	NSP1	POLA1, POLA2, PRIM1, PRIM2	Influenza A	9.10E-03
			1.80E-04	GAPDH, EEF2, HSP90AA1		HSPA1, HSPA1L	Epstein-Barr virus infection	9.80E-03
			1.80E-04			HSPA1, HSPA1L	MAPK signaling pathway	1.80E-02
			1.80E-04			HSPA1, HSPA1L	Ampk signaling pathway	2.50E-04
			1.80E-04			HSPA1, HSPA1L	PKR-Akt signaling pathway	4.80E-04
			1.80E-04			HSPA1, HSPA1L	Prostate cancer	1.30E-03
			1.80E-04			HSPA1, HSPA1L	Pathways in cancer	1.26E-02
			1.80E-04			HSPA1, HSPA1L	RNA transport	1.10E-02
			1.80E-04			HSPA1, HSPA1L	RNA degradation	3.03E-02
NSP5	RN1, SEC61A1, CANX, HSP90B1, PSMD6, PSMD14	Protein processing in endoplasmic reticulum	2.37E-07	Membrane glycoprotein	NSP5	RN1, SEC61A1, CANX, HSP90B1, PSMD6, PSMD14	mRNA surveillance pathway	3.03E-02
		Proteasome	1.10E-04			HSPA1, HSPA1L	Epstein-Barr virus infection	8.05E-18
		Epstein-Barr virus infection	1.10E-04			HSPA1, HSPA1L	mRNA surveillance pathway	1.51E-16
		HTLV1 infection	3.20E-03			HSPA1, HSPA1L	Influenza A	3.30E-04
		Vibri cholaerae infection	3.39E-02			HSPA1, HSPA1L	Legionellosis	1.09E-02
NSP6	ATP5L, ATP6AP1	Oxidative phosphorylation	4.60E-04	ORF6	NSP6	ATP5L, ATP6AP1	Spliceosome	1.48E-05
		Metabolic pathways	2.05E-02			HSPA1, HSPA1L	mRNA surveillance pathway	3.03E-02
NSP7	HNRNPA1, EIF4A3, NHP2L1, HSP90B1, PSMD6, PSMD14	Ribosome	1.08E-104	ORF7a	NSP7	HNRNPA1, EIF4A3, NHP2L1, HSP90B1, PSMD6, PSMD14	mRNA surveillance pathway	3.03E-02
		Spliceosome	1.00E-02			HSPA1, HSPA1L	Epstein-Barr virus infection	6.52E-21
		Epstein-Barr virus infection	1.18E-07			HSPA1, HSPA1L	mRNA surveillance pathway	3.03E-02
		Influenza A	1.39E-05			HSPA1, HSPA1L	Influenza A	3.35E-05
		Legionellosis	3.60E-04			HSPA1, HSPA1L	Legionellosis	1.70E-03
NSP8	NOP58, MPPSOP110, EXOS8C1, XP01, EXOS8C2, EXOS8C5, SRPS4	RNA degradation	4.54E-05	ORF7b	NSP8	NOP58, MPPSOP110, EXOS8C1, XP01, EXOS8C2, EXOS8C5, SRPS4	Longevity regulating pathway - multiple species	1.16E-02
		Protein export	4.54E-05			HSPA1, HSPA1L	HIV-1 signaling pathway	3.92E-02
		Ribosome biogenesis in eukaryotes	6.10E-04			HSPA1, HSPA1L	Protein processing in endoplasmic reticulum	3.18E-15
NSP9	NUP214, NUP54, NUP62, NUP88, HSPA1A, NUP11	RNA transport	2.24E-07	ORF8	NSP9	NUP214, NUP54, NUP62, NUP88, HSPA1A, NUP11	Phagosome	3.03E-05

(continued on next page)
antibiotic and for treating Cutaneous T-cell lymphoma (CTCL) respectively are also relevant drugs for the human hub proteins targeted by multiple SARS-CoV-2 proteins. Apart from the discussed hub proteins, it is to be noted that as per https://cancer.sanger.ac.uk/cosmic/, other identified hub proteins like XPC in NSP4, RPN1 in NSP5, XPO1 in NSP8, NUP214 in NSP9, PABPC1 and PABPC4 in NSP12, PRKACA in NSP13, SRSF3 and FIP1L1 in ORF7a and CALR in ORF8 are also cancer related human proteins.

5. Conclusion

Comorbidity in COVID-19 patients is one of the primary reasons which have led to so many deaths around the globe. SARS-CoV-2, the virus causing COVID-19, sneaks its way into human body by interacting with the human proteins. In this work, we have identified human and SARS-CoV-2 protein-protein interactions to identify human hub proteins associated with comorbidities. In this regard, we have initially collected 7116 human-SARS-CoV-2 PPI from different works in the literature resulting in identifying 7085 unique PPIs. This can be considered to be a novel and significant contribution of our work. Thereafter, we have considered at most top 10 human hub proteins based on their degrees. Moreover, biological significance of the identified human proteins is demonstrated using KEGG which is essential for identifying the pathways related to diseases or comorbidities. Also, GO Enrichment analysis is performed as well. SARS-CoV-2 proteins like NSP2, NSP5, Envelope and ORF10 interacting with human hub proteins COX4I1, COX5A, COX5B, NDUF5, CANX, HSP90AA1 and TP53 can lead to comorbidities like Alzheimer, Parkinson, Huntington’s, HTLV-1 infection, prostate cancer and viral carcinogenesis. Furthermore, possible repurposable drugs like Disodium Selenite, Desipramine, Clindamycin and Vorinostat targeting the human hub proteins are reported in this paper for future reference for researchers. Also, reported drugs like Resveratrol and Niclosamide are under trials for the treatment of COVID-19. This work provides a consolidated study for human-SARS-CoV-2 protein interactions to understand the association between comorbidity and human hub proteins and we hope it will also be helpful in drug repurposing and discovery as well. To summarise, we have prepared human-SARS-CoV-2 PPI database by curating such PPIs from different works in the literature resulting in 7085 unique PPIs, identified human hub proteins using such PPI networks and identified a list of repurposable drugs for such human hub proteins as well as comorbidity issues related to such hub proteins.

Table 3 (continued)

Virus Human hub proteins	KEGG Pathways related to Comorbidities	FDR corrected p-value	Virus Human hub proteins	KEGG Pathways related to Comorbidities	FDR corrected p-value
Epstein-Barr virus infection	0.0336		Antigen processing and presentation	5.80E-03	
NSP10 ALDH18A1, ALDH7A1, AP2A2, GALK1	Arginine and proline metabolism	2.00E-02	N-Glycan biosynthesis	4.66E-02	
	Biosynthesis of amino acids	2.00E-02	Vibrio cholerae infection	4.66E-02	
	Endocrine and other factor-regulated calcium reabsorption	2.00E-02	mRNA surveillance pathway	6.50E-04	
	Synaptic vesicle cycle	2.00E-02	RNA transport	1.70E-03	
	Metabolic pathways	3.70E-02	RNA degradation	7.00E-03	
NSP11 TUBA1A, TUBA4A, TUBB1, TUBB2A, TUBB4A, TUBB4B	Pathogenic Escherichia coli infection	4.51E-18	ORF9b	3.33E-81	
	Gap junction	9.27E-17	RPS2O, RPS2O, RPSA	4.51E-03	
	Phagosome	3.12E-15	Insulin signaling pathway	2.72E-02	
	Apoptosis	3.20E-03	Protein processing in endoplasmic reticulum	2.23E-02	
	Tight junction	3.90E-03	Pathogenic Escherichia coli infection	2.23E-02	
NSP12 PABPC1, HSPA8, NCL, PCBP1, RBMIX	Spliceosome	9.50E-04	ORF9c	3.12E-06	
	RNA transport	2.23E-02	NDUF4F1, NDUF4B,	3.12E-02	
	Protein processing in endoplasmic reticulum	2.23E-02	GPAA1, PIGG, PIGS	1.94E-02	
	Pathogenic Escherichia coli infection	2.23E-02		1.94E-02	
NSP13 PRKAR2B, PRKACA	Insulin signaling pathway	2.72E-02	ORF10	2.07E-20	
			HSP8A, TP53	2.07E-20	
			Herpes simplex infection	4.58E-05	
			Herpes simplex infection	4.58E-05	
			Viral carcinogenesis	1.70E-03	
			Huntington’s disease	8.80E-03	
			Influenza A	2.21E-02	
Fig. 4. Significant KEGG pathways corresponding to Hub Proteins for (a) NSP2 (b) NSP5 (c) Envelope protein and (d) ORF10.
Fig. 5. Significant GO Biological Processes corresponding to Hub Proteins for (a) NSP2 (b) NSP5 (c) Envelope protein and (d) ORF10.
Table 4
Details of Drugs corresponding to Human Hub Proteins for each SARS-CoV-2 Protein.

Virus Protein	Human hub proteins	Drugs	FDR corrected p-value	Drug Bank ID	Treatment	Virus Protein	Human hub proteins	Drugs	FDR corrected p-value	Drug Bank ID	Treatment
NSP1	POLA1, POLA2, PRM1, PRM2	Dasatinib	3.96E-05	DB01254	Lymphoblastic or chronic myeloid leukemia	ORF3b	HSPA1A, HSPA1L	≥-Penicillamine	1.89E-02	DB00859	Wilson’s disease
		Resveratrol	1.38E-03	DB02709	High cholesterol, cancer, heart disease						
		Demecolcine	4.67E-03	DB12318	Chemotherapy	ORF3b	HSPA1A, HSPA1L	≥-Penicillamine	1.89E-02	DB00859	Wilson’s disease
		Fluorouracil	8.35E-03	DB00544	Cancer	ORF3b	HSPA1A, HSPA1L	≥-Penicillamine	1.89E-02	DB00859	Wilson’s disease
		Troglitazone	3.41E-02	DB00197	Type 2 Diabetes	ORF3b	HSPA1A, HSPA1L	≥-Penicillamine	1.89E-02	DB00859	Wilson’s disease
NSP2	NDUF51, COX5A, COX5B	Vitinoin	1.31E-02	DB00755	Eczema and certain types of promyelocytic leukemia	Envelope Protein	GAPDH, EEF2, HSP90AA1	Idebenone	3.38E-03	DB09081	Alzheimer’s disease and Leber’s disease
		3’-Azido-3’-deoxythymidine	2.00E-02	DB00495	HIV						
		Artesunate	8.35E-03	DB09274	Malaria	NUP133, POLR2B	Calcitrol	1.64E-02	DB00136	Treat hyperparathyroidism	
		Vorinostat	2.43E-02	DB02546	Cutaneous T-cell lymphoma (CTCL) Antibiotic	NUP133, POLR2B	Calcitrol	1.64E-02	DB00136	Treat hyperparathyroidism	
NSP3	RPL8, RPSA, RPL12, EEF1A1, RPL6, RPL15, RPS16, RPS15A	Disodium selenite	2.00E-03	DB11127	Prevents Cancer	Membrane glycoprotein	NUP133, POLR2B	Calcitrol	1.64E-02	DB00136	Treat hyperparathyroidism
		Artesunate	8.35E-03	DB09274	Malaria	NUP133, POLR2B	Calcitrol	1.64E-02	DB00136	Treat hyperparathyroidism	
		Vorinostat	2.43E-02	DB02546	Cutaneous T-cell lymphoma (CTCL) Antibiotic	NUP133, POLR2B	Calcitrol	1.64E-02	DB00136	Treat hyperparathyroidism	
NSP5	SEC61A1, CANX, HSP90B1, PSMD14	Clindamycin	9.20E-03	DB01190	Tapeworm infection	ORF7a	CPSF1, SRSF3, PRPF8	Clindamycin	8.97E-03	DB01190	Antibiotic
		Niclosamide	5.24E-04	DB06803	Tapeworm infection	ORF7a	CPSF1, SRSF3, PRPF8	Clindamycin	8.97E-03	DB01190	Antibiotic
		Vanadium	5.24E-04	DB13971	Diabetes, low blood sugar, high cholesterol, heart disease, tuberculosis, syphilis, preventing cancer	ORF7a	CPSF1, SRSF3, PRPF8	Clindamycin	8.97E-03	DB01190	Antibiotic
NSP7	NHP2L1, HSP48, RPL4, RPSA, RPS3, RPL8	Disodium selenite	8.28E-05	DB11127	Prevents Cancer	ORF7b	HSP48, GAPDH	Loxapine	1.74E-04	DB00408	Schizophrenia
		Phenethyl isothiocyanate	3.37E-02	DB12695	Leukemia, Lung Cancer	ORF7b	HSP48, GAPDH	Loxapine	1.74E-04	DB00408	Schizophrenia
NSP8	MPHOSPH10, XP01, EXOSC2, EXOSC5	4-Hydroxytamoxifen	8.13E-03	DB04468	Breast cancer	ORF8	CANX, HSP90B1, CALR, P0A6, Loxapine	1.74E-04	DB00408	Schizophrenia	

(continued on next page)
Virus Protein	Human hub proteins	Drugs	FDR corrected p-value	Drug Bank ID	Treatment	Virus Protein	Human hub proteins	Drugs	FDR corrected p-value	Drug Bank ID	Treatment
Pergolide	Daunorubicin		1.53E-02 3.99E-02	DB01186		Parkinson’s Disease Acute myeloid leukemia(AML)	Desipramine	Chlorprothixene	2.54E-04 2.54E-04	DB01151 DB01239	Antidepressant Schizophrenia
Camptothecin			4.70E-02	DB04690		Leukemia	Clindamycin	Nilutamide	1.55E-03 3.19E-03	DB01190 DB00665	Antibiotic Prostate cancer Antibiotic
NSP9	NUP62, HSPA1A	Gefitinib	4.25E-02 4.25E-02	DB00317	Lung cancer. Cancer	Nucleocapsid	UPF1				
NSP11	TUBA1A, TUBA4A, TUBB1, TUBB2A, TUBB2B, TUBB4A, TUBB4B	Vinblastine	6.18E-18	DB00570	Cancer Tapeworm infection	ORf9b	HSP8A, RPSA, EEF1A1, HNRNPA1	Emetine	1.24E-02	DB13393	
NSP12	PABPC1, HSPA8, NG2, PCBP1	Docetaxel	6.80E-18	DB01248	Cancer	Vorinostat	2.80E-02	DB02546	Cutaneous T-cell lymphoma (CTCL) Autism Spectrum Disorder Chemotherapy		
NSP12	Fincristine sulfate Sulforaphane	Paclitaxel	1.34E-16 1.84E-07	DB01229	Cancer	Sulforaphane	3.10E-02	DB12422			
Spike glycoprotein	HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPLP0	Vincristine sulfate Sulforaphane	1.34E-16 1.84E-07	DB00541	Cancer Prevention of prostate cancer and other types of cancer Prevents Cancer	ORf9c	NDUF88, NDUF89	Metformin	2.31E-02	DB0031	Type 2 Diabetes
ORF3a	HYOU1, PDIA6, PDIA4, ERO1L, TXNDC5	Disodium selenite	3.42E-02	DB11127							
Spike glycoprotein	HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPLP0	Fulvestrant	3.42E-02 3.42E-02	DB00947	Breast Cancer Brain Tumour	ORf10	HSP8A, NH23L1, HNRNPA1, RPL4, RPS3, TP53	Disodium selenite	9.07E-03	DB11127	Prevents Cancer
ORF3a	HYOU1, PDIA6, PDIA4, ERO1L, TXNDC5	Diindolylmethane	3.89E-02	DB02424							
Spike glycoprotein	HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPLP0	Vorinostat	3.89E-02	DB02546	Cutaneous T-cell lymphoma (CTCL) Breast, uterine, and colorectal cancer	Diindolylmethane	3.89E-02	DB11875			
ORF3a	HYOU1, PDIA6, PDIA4, ERO1L, TXNDC5	Geldanamycin	2.37E-04	DB05134							
Spike glycoprotein	HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPLP0	Tanespimycin	4.19E-04	DB01151							
Spike glycoprotein	HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPLP0	Emetine	1.37E-03 7.67E-03	DB13393	Several types of cancer, solid tumors or chronic myelogenous leukemia.	Tanespimycin	4.19E-04	DB05134	Several types of cancer, solid tumors or chronic myelogenous leukemia.		
Spike glycoprotein	HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPLP0	Desipramine	7.67E-03 7.67E-03	DB13466							
Spike glycoprotein	HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPLP0	Desipramine	7.67E-03	DB01151							
Spike glycoprotein	HSPA8, RPL8, RPS3, RPSA, EEF1A1, RPLP0	Tanespimycin	4.19E-04	DB05134							
Ethics approval and consent to participate

The ethical approval or individual consent was not applicable.

Availability of data and materials

The supplementary of this work is available at “http://www.nittrkol.ac.in/indrajit/projects/COVID-PPI/”.

Consent for publication

Not applicable.

Funding

This work has been partially supported by CRG short term research grant on COVID-19 (CVD/2020/000991) from Science and Engineering Research Board (SERB), Department of Science and Technology, Govt. of India.

Author contributions

Nimisha Ghosh: Formal analysis; Methodology, Coding; Visualization; Writing - original draft & editing, Indrajit Saha: Conceptualization; Data curation; Supervision; Funding acquisition; Formal analysis; Investigation; Methodology; Project administration; Resources; Validation; Visualization; Writing - review & editing, Nikhil Sharma: Methodology; Visualization; Writing - review & editing.

Declaration of competing interest

The authors declare that they have no conflict of interest.

Acknowledgment

We are thankful to the reviewers for improving the quality of the paper by providing constructive comments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compbiomed.2021.104889.
