End-resection at DNA double-strand breaks in the three domains of life

John K. Blackwood, Neil J. Rzechorzek, Sian M. Bray, Joseph D. Maman, Luca Pellegrini and Nicholas P. Robinson

Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.

Abstract
During DNA repair by HR (homologous recombination), the ends of a DNA DSB (double-strand break) must be resected to generate single-stranded tails, which are required for strand invasion and exchange with homologous chromosomes. This 5′-3′ end-resection of the DNA duplex is an essential process, conserved across all three domains of life: the bacteria, eukaryota and archaea. In the present review, we examine the numerous and redundant helicase and nuclease systems that function as the enzymatic analogues for this crucial process in the three major phylogenetic divisions.

HR (homologous recombination) and the repair of DNA DSBs (double-strand breaks)
In all organisms, the maintenance and propagation of genetic material is a prerequisite for life. Cells have evolved numerous and complex DNA-repair pathways to ensure that genomic integrity is preserved. Failure to detect and faithfully repair chromosomal damage leads to genomic instability and consequential loss of cellular viability. Indeed, in humans, defects in DNA-repair pathways have been associated with developmental, immunological or neurodegenerative diseases and predispositions to cancer.

Throughout the cell cycle, genomic DNA is damaged by a variety of exogenous and endogenous agents. Compounds such as ROS (reactive oxygen species), generated during normal cellular metabolism, and environment hazards, such as ionizing radiation or chemical mutagens, constantly challenge the chromosomal integrity of cells. However, because of the highly efficient nature of the multiple and overlapping DNA repair mechanisms available to cells, the vast majority of the resultant DNA lesions are accurately repaired and do not lead to mutation.

The DSB, when both strands of the DNA duplex are simultaneously broken, is an especially cytotoxic form of damage. The resultant free DNA ends may be subject to illegitimate recombination or ligation, and these processes can lead to chromosomal rearrangements. Cells have consequently evolved numerous and redundant DSB-repair mechanisms, to faithfully restore the genetic sequence at the breaks and maintain genomic stability. The two predominant and intensely studied DNA DSB-repair mechanisms are NHEJ (non-homologous end-joining) and HR. In NHEJ, the two ends of the break are joined together with minimal processing machinery, and is conserved across the majority of Gram-negative bacteria. A combination of biochemical, single-molecule, structural and genetic studies have provided insights into the mechanism of 3′ single-strand tail generation by this complex (reviewed in [4,5]). The DNA end-resection step is a conserved process, observed in all three domains of life, and is dependent on specialized helicases and nucleases, often functioning in multiple and redundant pathways. Although some DNA-resection enzymes are specialized within a particular phylogenetic division, other components are crucial in all forms of life.

Bacteria: the fundamentals of DNA end-resection
The tripartite RecBCD helicase–nuclease complex of Escherichia coli is the best experimentally characterized DNA end-processing machinery, and is conserved across the majority of Gram-negative bacteria. A combination of biochemical, single-molecule, structural and genetic studies have provided insights into the mechanism of 3′ single-strand tail generation by this complex (reviewed in [4,5]). The DNA-unwinding activity of the complex is driven by the RecB and RecD helicase subunits [6,7] that translocate on the opposite strands of the DNA duplex, but act with complementary polarities, ensuring that the components of the complex migrate in the same direction [6,7] (Figure 1A). The nuclease
Figure 1 | End-resection of DSBs in the three domains of life

(A) The bacterial RecBCD pathway (E. coli). (i) DNA end recognition by the RecBCD helicase–nuclease complex. (ii) The two DNA strands are translocated separately by the helicases RecD (green, 5′-3′ polarity) and RecB (orange, 3′-5′ polarity). The nuclease domain is located at the C-terminus of RecB. Before encountering a Chi site, the 3′ strand is cleaved more frequently than the 5′ strand. A loop of single-stranded DNA accumulates ahead of RecB, as a result of the higher translocation rate of RecD. (iii) After Chi recognition by the RecC subunit (blue), the nuclease activity of the complex is stimulated on the 5′ strand and suppressed on the 3′ strand. RecB mediates RecA loading on to the resulting 3′ single-stranded DNA tail. (B) The eukaryotic Dna2–Sgs1 complex pathway (S. cerevisiae). (i) DNA end recognition and limited processing by the MRX complex (Mre11, green; Rad50, red; Xrs1, orange; Sae2, purple). (ii) MRX recruits the Sgs1 helicase (light green, in complex with Top3-Rmi1) to the DSB end. Extensive end-resection is performed by the Dna2 exonuclease (blue) in association with the Sgs1 helicase, or is alternatively processed by the Exo1 nuclease (not shown). RPA bound to the unwound single-strands stimulates Dna2 activity on the 5′ strand, and inhibits 3′ strand degradation (inset). (iii) RPA is subsequently replaced by the Rad51 recombinase on the 3′ tail. (C) The archaeal HerA–NurA helicase–nuclease pathway (S. solfataricus). (i) Operon encoding the herA, mre11, rad50 and nurA genes. (ii) Either one or two strands of the duplex can pass through the core of the complex, resulting in either the single-stranded resection (right), or wholesale destruction of both strands (left). NurA dimer (blue), HerA hexamer (green). Mre11 and Rad50 may be involved in the initial processing of the break and the recruitment of HerA–NurA.
which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2010 The Author(s)

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

has been identified in mycobacterial species, which lack separately by these two distinct modules [22].

that, unlike RecBCD, the two DNA strands are processed independent nuclease domains within the enzyme suggests responsible for Chi site recognition. The presence of two resemblance to RecC, and is therefore thought to be the AddB subunit also displays some predicted structural domain is located at the C-terminus of AddB. Interestingly, and C-termini respectively, whereas a second nuclease harbours both helicase and nuclease domains at the N- and a RecB-like C-terminal nuclease domain. In contrast with the RecBCD and AddAB enzymes, both the AdnA and AdnB motor domains appear to track on the same DNA strand together in a 3′→5′-direction, alongside the AdnB nuclease domain [24]. In contrast, the AdnA nuclease domain travels on the opposite strand and is responsible for 5′→3′ end-resection [24]. This has led to speculation that the motor domain in AdnA may act as the Chi site-detection module, in a role analogous to that of AddB [24,25].

Genetic studies of RecBCD mutants in *E. coli* have also led to the discovery of an auxiliary bacterial DNA end-resection pathway dependent on the RecQ helicase and RecJ exonuclease [26–31]. In this pathway, the RecJ exonuclease resists the 3′ strand, after the RecQ helicase unwinds the duplex template. The mechanism is dependent on the RecFOR recombination mediator complex, which loads the RecA recombinase on to the 3′ tail, generating the nucleofilament for strand invasion. Interestingly, multiple RecQ homologues are observed in the eukaryotic domain, where they play key roles in DNA-end resection and Holliday junction resolution. Indeed, mutations in the human RecQ homologues are associated with genomic instability and genetic diseases, such as Bloom’s and Rothmund–Thomson syndromes (reviewed in [32]).

Eukaryotes: complex variations on the basic theme

The DNA end-resection process is also crucial for HR in the eukaryotic domain, and there are clear mechanistic similarities to the bacterial systems. A series of recent studies have significantly advanced our understanding of how the multiple and redundant eukaryotic pathways function to facilitate this fundamental process [33–43].

A key regulator in the eukaryotic end-resection pathway is the MRX/N complex (see Figure 1B). The core of this complex comprises a dimer of the highly conserved Mre11 nuclease, which associates tightly with a dimer of the Rad50 protein, a member of the SMC (structural maintenance of chromosomes) superfamily (reviewed in [44–46]). Rad50 is a split ABC (ATP-binding cassette)-type ATPase with a long coiled-coil insert nearing a zinc hook motif at its tip. Intermolecular binding between Rad50 molecules is possible via the zinc hook region, allowing Rad50 complexes to tether homologous chromosomes, facilitating HR [47].

The third, more divergent, component known as Xrs2 in yeast, or Nbs1 in vertebrates, is monomeric and possesses a FHA (forkhead-associated) domain that mediates the interaction of the MRX/N complex with other DNA-repair proteins following their DNA-damage-dependent phosphorylation (reviewed in [44,48]) (Figure 1B). The MRX/N complex is one of the first recruits to sites of DNA damage, where it is found in association with the eukaryotic DNA-repair protein Sae2/CtIP [CtBP (C-terminal-binding

relative to the 5′ strand. However, upon encountering a Chi site, the complex stops digesting the 3′ strand, while the frequency of cutting on the 5′ strand increases [11]. In addition, after Chi site recognition, the nuclease module of RecB also facilitates loading of the RecA recombinase on to the 3′ strand, concurrent with the 5′ strand resection, thus aiding the formation of the nucleoprotein filament [5,12–14]. Interestingly, under different experimental conditions the RecBCD complex appears to act primarily as DNA translocase, only introducing an endonuclease cut when encountering a Chi site [4]. The complex then continues along the template loading RecA on to the cut strand to generate a 3′ nucleoprotein filament. There is current debate as to which of the two observed mechanisms is relevant in vivo. Although the first model, involving significant DNA resection is favoured, the second model of DNA translocation, nicking and unwinding has been shown to be consistent with some genetic data [4]. However, further support for the resection model has been provided by a recent analysis, which reveals insights into how Chi sites regulate the activity of the RecBCD complex. An α-helix located within the RecC subunit, which mediates the sequence-specific recognition of Chi elements, appears to allosterically regulate the positioning of a molecular ‘latch’, formed from other structural elements within RecC. Upon interaction with Chi, movement of the recognition helix alters the conformation of this latch to an ‘open’ arrangement, allowing the 3′ DNA strand to bypass the RecB nuclease domain, and exit undigested from the complex to permit the formation of the 3′ single-strand tail [15].

In Gram-positive bacterial species, alternative helicase–nuclease complexes, analogous to RecBCD, have been identified. In *Bacillus subtilis*, the AddAB heterodimer fulfils the end-resection role, switching from a double-stranded DNA destruction mode, to a single-strand resection mode at Chi sequences specific to the *B. subtilis* genome [16–18]. Indeed, RecBCD-null mutants in *E. coli* can be functionally complemented by *B. subtilis* AddAB, restoring cell fitness, reversing the reduction in the rates of HR, and abating sensitivity to DNA-damaging agents of the mutants [19,20]. Homologues of AddAB, known as RexAB have also been observed experimentally in *Lactococcus lactis* and *Streptococcus pneumoniae* [20,21]. The AddA subunit of the complex displays some sequence homology with RecB, and harbours both helicase and nuclease domains at the N- and C-termini respectively, whereas a second nuclease domain is located at the C-terminus of AddB. Interestingly, the AddB subunit also displays some predicted structural resemblance to RecC, and is therefore thought to be responsible for Chi site recognition. The presence of two independent nuclease domains within the enzyme suggests that, unlike RecBCD, the two DNA strands are processed separately by these two distinct modules [22].

Another DNA end-resection complex, known as AdnAB, has been identified in mycobacterial species, which lack RecBCD or AddAB/RexAB homologues [23]. In a further variation on the theme of the RecBCD and AddAB end-resection assemblies, it was revealed that both the AdnA and AdnB components contain an N-terminal helicase domain, and a RecB-like C-terminal nuclease domain. In contrast with the RecBCD and AddAB enzymes, both the AdnA and AdnB motor domains appear to track on the same DNA strand together in a 3′→5′-direction, alongside the AdnB nuclease domain [24]. In contrast, the AdnA nuclease domain travels on the opposite strand and is responsible for 5′→3′ end-resection [24]. This has led to speculation that the motor domain in AdnA may act as the Chi site-detection module, in a role analogous to that of AddB [24,25].
which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2010 The Author(s)

...to modulate the nuclease activity of Dna2, stimulating the strand-binding protein RPA (replication protein A) appears ExoI resection activity is dramatically stimulated by a phys-

...terial RecQ [33–43] (Figure 1B). Whereas the Exo1 nuclease (Bloom’s syndrome protein) helicase, a homologue of bac-

...or alternatively is reliant on the action of the Dna2 helicase–nuclease, working in conjunction with the Sgs1/BLM (Bloom’s syndrome protein) helicase, a homologue of bacter-

...recombination mediated-strand exchange. This second stage of end-resection is dependent upon the Exo1 5′–3′ exonuclease, or alternatively is reliant on the action of the Dna2 helicase–nuclease, working in conjunction with the Sgs1/BLM (Bloom’s syndrome protein) helicase, a homologue of bacter-

...role in the DNA end-resection process [69]. It therefore seems plausible that the regulation of the MRX/N nuclease activity by the CDK-dependent phosphorylation of Sae2/CtIP, may be central to controlling the cell-cycle-dependent switch from NHEJ to HR.

Final consideration should be given to the tight compaction of the eukaryotic DNA duplex around the core histones, as this wrapping introduces a significant barrier to DNA end-resection. Addressing this issue, three independent studies have identified the Fun30 nucleosome-remodelling complex as the agent responsible for co-ordinating the long-range DNA end-resection with the remodelling of chromatin [70–72].

Archaea: common mechanisms and novel factors

It has been established that the archaeal proteins and complexes responsible for the fundamental processes of DNA replication, transcription, translation and recombination display clear homology with eukaryotic counterparts. This similarity is presumably indicative of a shared evolutionary derivation of these components in the two domains of life [73–75]. HR appears to be the prominent mechanism for DSB in the archaea, mediated by the Rad51 recombinase orthologue RadA [76]. Indeed, no archaeal homologues, or even functional analogues, of the NHEJ machinery have been identified to date.

Unusually, RecQ homologues are found in only a few archaeal species, and are largely absent from the crenarchaeal kingdom. It has been proposed that the Hel308 helicase, displaying homology with the metazoan PolQ/Mus308, may fulfil an function analogous to that of RecQ [77,78]. Hel308 has been implicated in the rescue of stalled replication forks, and the branch migration of recombination intermediates such as Holliday junctions, but it is currently unknown whether this helicase plays any role in the DNA end-resection process in archaea.

Mre11, Rad50 and Rad51 orthologues are represented in all archaeal genomes examined to date. In contrast, homologues of the helicases and nucleases responsible for end-resection in the eukaryotic and bacterial domains of life have not yet been identified in archaea. However, the discovery of a conserved DNA-repair-associated operon in the thermophilic archaea provided the first clues as to how archaea solve the end-resection problem. This operon, in addition to encoding the Mre11 and Rad50 proteins, harboured the genes for two novel proteins: HerA, a hexameric helicase of the FtsK superfamily, and NurA, a 5′–3′ exonuclease [79–82] (Figure 1C). It was therefore predicted that all four proteins would act together to generate the 3′ tails required for HR. This archaeal 5′ end-resection hypothesis was verified experimentally by an in vitro reconstitution of the proteins encoded in the Pyrococcus furiosus operon [83]. The study suggested that the archaeal Mre11–Rad50 complex generates...
short 3’ tails, by limited endonucleolytic digestion of the 5’ strand, which then appear to be extended by the HerA–NurA complex.

Further insights into the mechanisms of the HerA–NurA interaction, and DNA end-resection, have been provided by two recent studies, which determined the crystal structures of NurA from Sulfolobus solfataricus [84], and *P. furiosus* [85]. These structures revealed that NurA forms an obligate dimeric ring of RNase-H like domains, with an active site contained in each subunit. It was also demonstrated that the dimer interacts with the HerA hexamer, with a stoichiometry of 2:6, presumably to form a closed-ring assembly [84]. Interestingly, the central cavity of the NurA dimer is too narrow to accommodate a B-form DNA dimer, but, following unwinding, there is sufficient space for the two single strands to be passed along the inside of each subunit. Furthermore, in vitro biochemical analyses demonstrated that the enzymatic activities of both HerA and NurA were dramatically stimulated upon complex formation [84]. It was also observed that the nature of the DNA end appeared to modulate the outcome of HerA–NurA processing. On blunt duplex DNA ends, both strands were encircled and translocated by the complex, whereas on substrates that possessed a 5’ single-stranded overhang, only one strand was threaded through the core of the complex [84] (Figure 1C). Thus it seems that HerA–NurA processing can result in either the double-stranded destruction or single-strand resection of duplex DNA, in a manner analogous to the action of bacterial RecBCD [84]. It still remains to be determined how the switch between the two modes might be regulated, and which mechanism is most significant in vitro. It is also currently unclear how the Mre11–Rad50 and HerA–NurA complexes co-operate to generate the 3’ single-stranded tails required for end-resection. A potential physical association between Mre11–Rad50 complex and HerA has been reported previously [86], but the molecular basis for this interaction has yet to be elucidated.

Concluding remarks

The general mechanism of DNA end-resection is essential to the process of HR-mediated repair, and is conserved in all three domains of life. Studies using experimentally tractable model organisms have helped to build a picture of how these crucial mechanisms operate to maintain genomic stability. Archaeal models have already provided valuable insights into the workings of the highly conserved Mre11–Rad50 complex [47, 87–91]. Given the involvement of the Mre11–Rad50 complex in the archaeal HR-mediated DSB repair pathway, it is likely that further insights into the conserved DNA end-resection processes will be gained from forthcoming studies using archaeal and other model systems.

Funding

Research in the N.P.R. laboratory is funded by the Medical Research Council [Career Development Award G0701443]. Research in the L.P. laboratory is funded by a Wellcome Trust Senior Fellowship Award in Basic Biomedical Sciences [grant number 08279/2/07/2]. Funding for open access charge: the Medical Research Council [grant number G0701443 (to N.P.R.)], the Wellcome Trust [grant number 08279/2/07/2 (to L.P.)] and the Department of Biochemistry, University of Cambridge.

References

1. Lieber, M.R. (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211
2. Chapman, J.R., Taylor, M.R. and Boulton, S.J. (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510
3. Mitmitou, E.P. and Symington, L.S. (2009) Nucleases and helicases take center stage in homologous recombination. Trends Biochem. Sci. 34, 264–272
4. Smith, G.R. (2012) How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist’s view. Microbiol. Mol. Biol. Rev. 76, 217–228
5. Dillingham, M.S. and Kowalczykowski, S.C. (2008) RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72, 642–671
6. Dillingham, M.S., Spies, M. and Kowalczykowski, S.C. (2003) RecBCD enzyme is a bipolar DNA helicase. Nature 423, 893–897
7. Taylor, F. and Smith, G.R. (2003) RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423, 889–893
8. Lam, S.T., Stahl, M.M., McMilin, K.D. and Stahl, F.W. (1974) Rec-mediated DNA strand exchange. Proc. Natl. Acad. Sci. U.S.A. 71, 1673–193
9. Handa, N., Yang, L., Dillingham, M.S., Kobayashi, I., Wigley, D.B. and Kowalczykowski, S.C. (2012) Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, χ, by RecBCD enzyme. Proc. Natl. Acad. Sci. U.S.A. 109, 8901–8906
10. Spies, M., Bianco, P.R., Dillingham, M.S., Handa, N., Baskin, R.J. and Kowalczykowski, S.C. (2003) A molecular Thrille: the recombination hotspot χ controls DNA translocation by the RecBCD helicase. Cell 114, 647–654
11. Churchill, J.J. and Kowalczykowski, S.C. (2000) Identification of the RecA protein-loading domain of RecBCD enzyme. J. Mol. Biol. 297, 537–542
12. Spies, M. and Kowalczykowski, S.C. (2006) The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol. Cell 21, 573–580
13. Anderson, D.G. and Kowalczykowski, S.C. (1997) The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a χ-regulated manner. Cell 90, 77–86
14. Yang, L., Handa, N., Liu, B., Dillingham, M.S., Wigley, D.B. and Kowalczykowski, S.C. (2012) Alteration of χ recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control. Proc. Natl. Acad. Sci. U.S.A. 109, 8907–8912
15. Chédin, F., Handa, N., Dillingham, M.S. and Kowalczykowski, S.C. (2006) The AddAB helicase/nuclease forms a stable complex with its cognate χ sequence during translocation. J. Biol. Chem. 281, 18610–18617
16. Chédin, F., Ehrlich, S.D. and Kowalczykowski, S.C. (2000) The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate χ sequence in vitro. J. Mol. Biol. 298, 7–20
17. Yeeles, J.T., Gwynn, E.J., Webb, M.R. and Dillingham, M.S. (2011) The AddAB helicase/nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain. Nucleic Acids Res. 39, 2271–2285
18. Kooistra, J., Hajjema, B.J. and Venema, G. (1993) The Bacillus subtilis addAB genes are fully functional in *Escherichia coli*. Mol. Microbiol. 7, 915–923
19. el Karoui, M., Ehrlich, D. and Gruss, A. (1998) Identification of the lactococcal exonuclease/recombinase and its modulation by the putative χ sequence. Proc. Natl. Acad. Sci. U.S.A. 95, 626–631
20. Halpern, D., Gruss, A., Claveyrs, J.P. and E-Karou, M. (2004) RecA/B mutants in *Streptococcus pneumoniae*. Microbiology 150, 2409–2414
42 Shim, E.Y., Chung, W.H., Nicolette, M.L., Zhang, Y., Davis, M., Zhu, Z., Liao, S., Guay, C., Toczylowski, T. and Yan, H. (2012) Analysis of MRE11’s Nimonkar, V., Genschel, J., Kinoshita, E., Polaczek, P., Campbell, J.L., Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E. and Ira, G. (2008) Sgs1 helicase function in the 5′ processing of DNA double-strand breaks. Nucleic Acids Res. 40, 4496-4506
43 Stracker, T.H. and Petriti, J.H. (2011) The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12, 90-103
44 Williams, R.S., Williams, J.S. and Tainer, J.A. (2007) Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem. Cell Biol. 85, 509-520
45 D’Amours, D. and Jackson, S.P. (2002) The Mecl complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3, 517-327
46 Hopfner, K.P., Craig, L., Moncalian, G., Zinkel, R.A., Usu, T., Owen, B.A., Keach, A., Henderson, B., Borchert, J.L., McMurry, C.T. et al. (2002) The Rad50-zinc hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418, 562-566
47 Kobayashi, J., Antoccia, A., Tauchi, H., Matsuura, S. and Komatsus, K. (2004) NBS1 and its functional role in the DNA damage response: DNA Repair 3, 855-861
48 Bung, J., Stoneham, T., Spehelshki, E. and Ferguson, D.O. (2012) Mre11 regulates Ctp1-dependent double-strand break repair by interaction with CDK2. Nat. Struct. Mol. Biol. 19, 246-252
49 Williams, R.S., Dodson, G.E., Limbo, O., Yamada, Y., Williams, J.S., Guenther, G., Glassen, T., Glover, J.N., Iwasaki, H., Russell, P. and Tainer, J.A. (2009) Nbs1 flexibly lethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139, 87-99
50 Dodson, G.E., Limbo, O., Nieto, D. and Russell, P. (2010) Phosphorylation-regulated binding of Ctp1 to Nbs1 is critical for repair of DNA double-strand breaks. Cell 9, 1516-1522
51 Chapman, J.R. and Jackson, S.P. (2008) Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO J. 27, 765-769
52 Nicolette, M.L., Lee, C., Wollam, T., Chao, J., Mow, J.T., Lee, S.E. and Paull, T.T. (2010) Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat. Struct. Mol. Biol. 17, 1478-1485
53 Sartori, A.A., Lukas, C., Cotes, J., Mistrik, M., Fu, S., Bartek, J., Baer, R., Lukas, J. and Jackson, S.P. (2007) Human Ctp1 promotes DNA end resection. Nature 450, 599-614
54 Lloyd, B.G. and Buckman, C. (1985) Identification and genetic analysis of sbc mutations in commonly used RecB/Bc strains of Escherichia coli K-12. J. Bacteriol. 164, 836-844
55 Gibson, F.P., Leach, D.R. and Lloyd, R.G. (1992) Identification of sbcD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. Mol. Cell. Biol. 80, 285-292
56 Dever, S.C. (2008) DNA end resection machineries for human DNA break repair. Genes Dev. 22, 2310-2324
69 Langerak, P., Mejia-Ramirez, E., Limbo, O. and Russell, P. (2011) Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks. PLoS Genet. 7, e1002271.

70 Epen, V.Y., Sugawara, N., Tsobar, M., Wu, W.H. and Haber, J.E. (2012) The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end-resection and checkpoint deactivation. Mol. Cell. Biol. 32, 4727-4740.

71 Costelloe, T., Louge, R., Tomimatsu, N., Mukherjee, B., Martini, E., Khadaroo, B., Dubs, K., Wiegant, W.W., Thierry, A., Burma, S. et al. (2012) The yeast Fun30 and human SMARCAD1 chromatin remodelers promote DNA end resection. Nature 489, 581-584.

72 Chen, X., Cui, D., Papusha, A., Zhang, X., Chu, C.D., Tang, J., Chen, K., Pan, X. and Ita, G. (2012) The Fun30 nucleosome remodeler promotes resection of DNA double-strand break ends. Nature 489, 576-580.

73 Barry, R. and Bell, S.D. (2006) DNA replication in the archaea. Microbiol. Mol. Biol. Rev. 70, 876-887.

74 Bell, S.D. and Jackson, S.P. (1998) Transcription and translation in archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol. 6, 222-228.

75 Kelman, Z. and White, M.F. (2005) Archaeal DNA replication and repair. Curr. Opin. Microbiol. 8, 669-676.

76 White, M.F. (1991) Homologous recombination in the archaea: the means justify the ends. Biochem. Soc. Trans. 39, 15-19.

77 Fujikane, R., Komori, K., Shingawa, H. and Ishino, Y. (2005) Identification of a novel helicase activity unwinding branched DNAs from the hyperthermophilic archaeon, Pyrococcus furiosus. J. Biol. Chem. 280, 12351-12358.

78 Guy, P. and Bolt, E.L. (2005) Archaeal HelB08 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res. 33, 3678-3690.

79 Constantinesco, P., Forterre, P. and Elie, C. (2002) NurA, a novel 5‘-3’ nuclease gene linked to rad50 and mre11 homologs of thermophilic archaea. Nucleic Acids Res. 30, 537-542.

80 Constantinesco, P., Forterre, P., Koonin, E.V., Aravind, L. and Elie, C. (2004) A bipolar DNA nuclease gene, heaA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res. 32, 1439-1447.

81 Manaval, A., Pfeiffer, G., Heffler, M.I., Lang, C.E., Carney, J.P. and Hopfner, K.P. (2004) MlaA, a hexameric ATPase linked to the mre11 complex in archaeal genomes. EMBO Rep. 5, 54-59.

82 Iyer, L.M., Makarova, K.S., Koonin, E.V. and Aravind, L. (2004) Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res. 32, 5260-5279.

83 Hopkins, B.B. and Pauli, T.T. (2008) The P. furiosus mre11/rad50 complex promotes 5‘ strand resection at a DNA double-strand break. Cell 135, 250-260.

84 Blackwood, J.K., Rzeczorzek, N.J., Abrams, A.S., Maman, J.D., Pellegrini, L. and Robinson, N.P. (2012) Structural and functional insights into DNA end processing by the archaean HerA helicase-NurA nuclease complex. Nucleic Acids Res. 40, 3183-3196.

85 Chae, J., Kim, Y.C. and Cho, Y. (2012) Crystal structure of the NurA-dAMP-Mn2+ complex. Nucleic Acids Res. 40, 2258-2270.

86 Quaiser, A., Constantinesco, F., White, M.F., Forterre, P. and Elie, C. (2008) The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius. BMC Mol. Biol. 9, 45.

87 Hopfner, K.P., Karcher, A., Craig, L., Woo, T.T., Camey, J.P. and Tainer, J.A. (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nucleosome and Rad50-ATPase. Cell 105, 473-485.

88 Williams, R.S., Moncalian, G., Williams, J.S., Yamada, Y., Limbo, O., Shin, D.S., Grocock, L.M., Cahill, D., Hitomi, C., Guenther, G. et al. (2008) Mre11 dimers coordinate DNA end bridging and nucleosome processing in double-strand-break repair. Cell 135, 97-109.

89 Lammens, K., Bemeleit, D.J., Möckel, C., Clasung, E., Schele, A., Hartung, S., Schiller, C.B., Lucas, M., Angermüller, C., Söding, J. et al. (2011) The Mre11-Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair. Cell 145, 54-66.

90 Williams, J., Williams, R.S., Williams, J.S., Moncalian, G., Arvai, A.S., Limbo, O., Guenther, G., Söld, S., Hammel, M., Russell, P. and Tainer, J.A. (2011) ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat. Struct. Mol. Biol. 18, 423-431.

91 Lim, S., Kim, J.S., Park, Y.B., Gwon, G.H. and Cho, Y. (2011) Crystal structure of the Mre11-Rad50-ATP5 complex: understanding the interplay between Mre11 and Rad50. Genes Dev. 25, 1091-1104.

Received 1 November 2012
doi:10.1042/BST201220397