Search for vectorlike leptons in multilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 26 May 2019; published 6 September 2019)

A search for vectorlike leptons in multilepton final states is presented. The data sample corresponds to an integrated luminosity of 77.4 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2016 and 2017. Events are categorized by the multiplicity of electrons, muons, and hadronically decaying $\tau$ leptons. The missing transverse momentum and the scalar sum of the lepton transverse momenta are used to distinguish the signal from background. The observed results are consistent with the expectations from the standard model hypothesis. The existence of a vectorlike lepton doublet, coupling to the third-generation standard model leptons in the mass range of 120–790 GeV, is excluded at 95% confidence level. These are the most stringent limits yet on the production of a vectorlike lepton doublet, coupling to the third-generation standard model leptons.

DOI: 10.1103/PhysRevD.100.052003

I. INTRODUCTION

The standard model (SM) of particle physics is a quantum field theory that describes the known fundamental particles and their interactions. The predictions of the SM have been experimentally tested with great precision [1]. However, the SM does not explain several observations, such as the existence of dark matter and the baryon asymmetry in the Universe. In addition, there exist theoretical issues such as the hierarchy problem, that suggest that an extension of the SM, predicting new particles, is needed to provide a more complete description of nature.

In one class of new particles there are nonchiral color singlet fermions that couple to the SM leptons. The term nonchiral implies that the left- and right-handed components of these particles transform identically under gauge symmetries. These particles are thus referred to as vectorlike leptons (VLLs). They arise in a wide variety of models that an extension of the SM, predicting new particles, is needed to provide a more complete description of nature.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The inner tracker measures charged particles with $|\eta| < 2.5$ and provides an impact parameter resolution of $\approx 15 \mu m$ and a transverse momentum ($p_T$) resolution of about 1.5% for 100 GeV charged particles. Extensive forward calorimetry complements the barrel and end cap detectors by covering the pseudorapidity range $3.0 < |\eta| < 5.2$. Collision events of interest are selected using a two-tiered trigger system [9]. The first level, composed of custom hardware processors, selects events at a rate of around 100 kHz. The second level, based on an array of microprocessors running a version of the full event reconstruction software optimized for fast processing, reduces the event rate to around 1 kHz before data storage. A detailed description of the CMS detector, along with a definition of the coordinate system and relevant kinematic variables, can be found in Ref. [10].

### III. EVENT RECONSTRUCTION AND PARTICLE IDENTIFICATION

Events collected for this search are recorded using a combination of triggers requiring a single electron or a single muon. For events collected in 2016 (2017), the electron trigger requires an electron with $p_T > 27 \ (35)$ GeV, while the muon trigger requires a muon with $p_T > 24 \ (27)$ GeV. Information from all subdetectors is combined using the CMS particle-flow (PF) algorithm [11] to reconstruct and identify individual particles (charged hadrons, neutral hadrons, photons, electrons, and muons). Collectively these are referred to as PF objects.

For each event, PF objects originating from the same interaction vertex are clustered into jets using the infrared- and collinear-safe anti-$k_T$ algorithm [12,13], with a radius parameter of 0.4. The momenta of all PF objects in each jet are summed vectorially to determine the jet momentum. The reconstructed vertex with the largest value of summed
processes such as WZ and ZZ contain multiple prompt leptons and thus these backgrounds are classified as prompt backgrounds. A nonprompt lepton can arise in heavy flavor hadron decays within a jet, or from hadrons that punch through to the muon system, or from hadronic showers with large electromagnetic fractions. A small fraction of reconstructed leptons from nonprompt sources mimic leptons from prompt sources and are referred to as misidentified leptons. The background arising from such sources is referred to as the misidentified background (MisID). A conversion lepton is one which is produced when a radiated photon converts to a pair of leptons. The background arising from such processes is referred to as the conversion background.

Unlike prompt leptons, misidentified leptons are expected to have significant nearby hadronic activity. An isolation requirement that compares the $p_T$ sum of particles in its immediate neighborhood strongly reduces the backgrounds from misidentified leptons. We use relative isolation criteria for both electrons and muons. Relative isolation is defined as the scalar $p_T$ sum of photons, and charged and neutral hadrons, as reconstructed by the PF algorithm within a specified $\Delta R$ cone around the lepton candidate, normalized to the lepton candidate $p_T$. The $\Delta R$ between a particle and the lepton is defined as $\Delta R = \sqrt{\left(\Delta \eta \right)^2 + \left(\Delta \phi \right)^2}$, where $\Delta \eta$ is the difference in pseudorapidity and $\Delta \phi$ is the difference in the azimuthal angle (in radians). This relative isolation is required to be less than 7% or 8% within a cone of size $\Delta R = 0.3$ for electrons whose energy deposits are reconstructed in the ECAL barrel ($|\eta| < 1.48$) or in the end cap ($1.48 < |\eta| < 3.00$), respectively, and less than 15% within a cone of size $\Delta R = 0.4$ for muons. The $\tau_h$ candidates are required to pass an isolation requirement based on a multivariate analysis [20]. The isolation quantities are corrected for pileup by considering only those charged PF candidates that are consistent with having originated from the primary vertex and by subtracting a per-event average pileup contribution to the neutral PF components. We further reduce the MisID backgrounds by imposing requirements on the longitudinal ($d_z$) and transverse ($d_{xy}$) impact parameters of the leptons with respect to the primary vertex in the event. Electrons in the barrel (end cap) must satisfy $|d_z| < 0.1$ (0.2) cm and $|d_{xy}| < 0.05$ (0.1) cm. Muons must satisfy $|d_z| < 0.1$ cm and $|d_{xy}| < 0.05$ cm. For $\tau_h$ leptons, we require $|d_z| < 0.2$ cm.

IV. SIGNAL AND BACKGROUND SIMULATION

Simulated samples are used to estimate the contribution of all prompt and conversion background processes. The WZ and ZZ processes are generated at next-to-leading order (NLO) using POWHEG v2 [21–25]. The Z/$\gamma^*$, Z/\gamma* + $\gamma$, $\tau$, $\bar{\tau}$ + $\gamma$, and triboson processes are generated at NLO using MadGraph 5_AMC@NLO v5.2.2 [26] and processes with the Higgs boson are generated using POWHEG v2 [27,28] and the JHUGEN v6.2.8 generator [29–32]. Signal events are generated using MadGraph 5_AMC@NLO at leading order (LO) precision. For all simulation data, the parton showering, fragmentation, and hadronization steps are done using PYTHIA 8.230 [33] with tune CUETP8M1 [34] for 2016 samples and CP5 [35] for 2017 samples.

All 2016 samples are generated with the same order of the NNPDF3.0 parton distribution function (PDF) [36] as the order of the MC generator. All 2017 samples are generated with the NNPDF3.1 next-to-next-to-leading (NNLO) order PDF [37], irrespective of the order of the MC generator. The response of the CMS detector is simulated using dedicated software based on the GEANT4 toolkit [38]. Additional weights are applied to all simulated events to account for differences in the trigger and lepton identification efficiencies between data and simulation. For the simulated events, additional minimum bias interactions are superimposed on the primary collision, reweighted in such a way that the frequency distribution of the extra interactions matches that observed in data.

V. EVENT SELECTION CRITERIA

We collectively refer to electrons and muons as light leptons to distinguish them from $\tau_h$ leptons. Events are then categorized as those with four or more light leptons (4L), exactly three light leptons (3L), and exactly two light leptons along with at least one $\tau_h$ lepton (2L1T). In the 2L1T channel, we have a further division based on whether the two light leptons are of opposite sign (OS) or same sign (SS). In all categories, the leptons are ordered by decreasing transverse momenta and those with the largest $p_T$ are labeled as the leading leptons. The leading light lepton is required to satisfy $p_T > 38$ (28) GeV if it is an electron (muon). These thresholds are imposed so that the corresponding single lepton triggers are fully efficient for events that would subsequently satisfy the offline selection. All of the other leptons are required to satisfy $p_T > 20$ GeV.

We use the scalar $p_T$ sum of the leptons (denoted as $L_T$) to discriminate signal from SM backgrounds in all channels. The $L_T$ distribution is divided into 150 GeV bins, each of which is treated as a separate experiment. In the 2L1T and 4L categories that contain more than one $\tau_h$ and more than four light-lepton candidates, respectively, only the leading $\tau_h$ and the leading four light leptons are used in the calculation of $L_T$.

In order to improve sensitivity for the signal, in each of the 4L, 3L, and 2L1T (OS, SS) categories, the events are divided into low- and high-$p_T^{\text{miss}}$ regions. While the 4L category is divided into $p_T^{\text{miss}} < 50$ GeV and $> 50$ GeV regions, the 3L and 2L1T (OS, SS) categories are divided into $p_T^{\text{miss}} < 150$ GeV and $> 150$ GeV regions. These categories form the bases of signal regions (SRs) that would be sensitive to the presence of a VLL signal. They
TABLE I. The signal regions defined in this analysis. The on-Z mass window is defined as $76 < m_{\ell\ell} < 106$ GeV, while the below-Z condition is defined as $m_{\ell\ell} < 76$ GeV.

| Nleptons | $p_T^{\text{miss}}$ (GeV) | CR veto |
|----------|--------------------------|---------|
| $\geq 4e/\mu$ | <50/50 | Two OSSF on-Z pairs and $p_T^{\text{miss}} < 50$ GeV |
| 3e/μ | <150/150 | OSSF on-Z pair and $p_T^{\text{miss}} < 100$ GeV, or OSSF below-Z pair and $p_T^{\text{miss}} < 50$ GeV, or OSSF below-Z pair and on-Z $m_{\ell\ell}$ |
| 2e/μ OS (or SS) + $\geq 1\tau_h$ | <150/150 | $p_T^{\text{miss}} < 50$ GeV |

VI. BACKGROUND ESTIMATION

The WZ and ZZ background yields are normalized to data using dedicated CRs. For the WZ CR, we select events with exactly three light leptons, one OSSF pair invariant mass satisfying the $91 \pm 15$ GeV window (“on-Z”), and $50 < p_T^{\text{miss}} < 100$ GeV. The ratio of the expected WZ yield to data (after correcting for non-WZ events) is found to be $1.14 \pm 0.06$ ($1.07 \pm 0.05$) for the 2016 (2017) data analysis, where the uncertainty includes both statistical and systematic contributions. Similarly, for the ZZ background, we select events with exactly four leptons, two distinct OSSF pairs both satisfying the on-Z requirement, and $p_T^{\text{miss}} < 50$ GeV. The ratio of the expected ZZ yield to data is found to be $1.01 \pm 0.05$ ($0.98 \pm 0.05$) for the 2016 (2017) search.

The conversion background consists of events with photons from final-state radiation, where the photon converts asymmetrically to two additional leptons, only one of which is reconstructed in the detector. A selection of events with three light leptons with an OSSF pair below the Z boson mass ($<76$ GeV), $M_{3\ell}$ satisfying the on-Z window, and with $p_T^{\text{miss}} < 50$ GeV is used to calculate the ratio of the conversion background prediction in simulation to data. The quantity $m_{3\ell}$ is defined as the invariant mass of the three light leptons. The ratio is measured to be $0.95 \pm 0.11$ ($0.87 \pm 0.10$) for the 2016 (2017) data analysis. For the 2017 analysis, the Z/γ + γ and $t\bar{t} + \gamma$ simulation samples are used, while for the 2016 analysis, the Z/γ and $t\bar{t}$ simulation samples are used because of the unavailability of enhanced samples.

The measured ratios are then applied to the WZ, ZZ, and conversion background estimates to correct for any residual differences in the efficiency and acceptance between data and simulation. The CRs are also used to verify the performance of the simulation in modeling the kinematic distributions of interest. Figure 2 shows the transverse mass $m_T$ and the $L_T$ distributions in the WZ CR and the $m_{3\ell}$ and $L_T$ distributions in the ZZ CR for data and simulation, in the combined 2016 and 2017 datasets. The quantity $m_{3\ell}$ is defined as the invariant mass of the leading four light leptons. The quantity $m_T$ is defined as $m_T = \sqrt{2p_T^{\text{miss}}p_T^Z[1 - \cos(\Delta \phi_{m_T})]}$, where $p_T^Z$ refers to the $p_T$ of the lepton that is not part of the OSSF pair closest to the Z boson mass and $\Delta \phi_{m_T}$ is the difference in azimuth between $wT^{\text{miss}}$ and $p_T^Z$. The prompt backgrounds from triboson and associated Higgs boson production are estimated from simulation using the calculated cross sections at NLO and are henceforth referred to as the VVV and the $H + X$ backgrounds, respectively. Similarly, the background from $t\bar{t} + t\bar{t}$ is estimated from simulation and is referred to as the $t\bar{t}V$ background.

The MisID background arises from processes such as $Z + \text{jets}$ and $t\bar{t} + \text{jets}$. This background is estimated using a three-dimensional implementation of a matrix method[39]. In this method, rates are measured in data CRs for leptons to pass the analysis lepton selections, given that these leptons pass looser offline selections. It is assumed that these rates for prompt and misidentified leptons behave similarly across the different CRs and SRs. We measure these rates in dedicated CRs: one with a dilepton selection for prompt rates and another with a trilepton signal-depleted selection with one OSSF on-Z pair and $p_T^{\text{miss}} < 50$ GeV for misidentification rates. The rates are parameterized as functions of lepton $p_T$ and $\eta$. An additional correction factor is applied as a function of the number of charged particles, to account for rate variations due to the hadronic activity in the event. For $\tau_h$ misidentification rates, an additional parameterization is needed, based on the $p_T$ of the jet matched to the $\tau_h$. This is required to account correctly for rate variations due to the boost of the lepton system. The rate measurements are dominated by $Z + \text{jets}$ events and are corrected using simulation to an average of the $Z + \text{jets}$ and $t\bar{t} + \text{jets}$ events. Figure 3 demonstrates the agreement between the expected background and the observed data yields, as a function of the dilepton mass and $L_T$, in a signal-depleted 2L1T (OS) selection.
VII. SYSTEMATIC UNCERTAINTIES

The primary sources of systematic uncertainty in the SM background arise from those in the MisID background and from those in the WZ and ZZ backgrounds. The systematic uncertainty in the MisID background contribution arises primarily via the uncertainties in the measurement of prompt and misidentified rates in the matrix method. In addition, the uncertainties in the $Z +\text{jets}$ and $t\bar{t} +\text{jets}$ rates contribute to the systematic uncertainty in this background.
We vary the rates within their respective uncertainties and observe the change in the background yield in all SRs. The final estimates vary by 20%–35% depending upon the year the data were collected and the SR. The WZ and ZZ background estimates have systematic uncertainties of 4%–5% arising from the normalization factor measurements in the dedicated CRs. The conversion background estimate has a systematic uncertainty of 11%.

To account for differences between the data and simulation, a number of different sources of systematic uncertainty are considered. Lepton energy (or momentum) scale uncertainties, as well as jet and lepton resolution uncertainties, are applied at the per-object level, where the corresponding object momenta are varied up and down by their corresponding uncertainties. This results in a 2%–10% impact on the background prediction, depending on $L_T$ and the SR. The uncertainty in the trigger efficiency results in a 2%–3% uncertainty in the background prediction. Additionally, an integrated luminosity measurement uncertainty of 2.5% (2.3%) is applied to the simulated rare background estimates for the 2016 [40] (2017 [41]) analysis. For the subdominant, rare background processes such as $t\bar{t}V$, triboson, or associated Higgs boson production, a 50% systematic uncertainty is applied to the theoretical cross sections to cover the PDF and the renormalization and factorization scale uncertainties. The pileup modeling uncertainty is evaluated by varying

---

**TABLE II.** The sources of systematic uncertainty and the typical variations (percent) observed in the affected background and signal yields in the analysis. All sources of uncertainty are considered as correlated between the 2016 and 2017 data analyses except for the lepton identification and isolation, the single lepton trigger, and the integrated luminosity. The label ALL is defined as WZ, ZZ, rare ($t\bar{t}V$, VVV, Higgs boson), and signal processes.

| Source of uncertainty                              | Typical variations (%) | Processes |
|---------------------------------------------------|------------------------|-----------|
| MisID background                                   | 20–35                  | ⋯         |
| Rare background normalization                      | 50                     | ⋯         |
| Conversion background normalization                 | 11                     | ⋯         |
| WZ background normalization                        | 5                      | ⋯         |
| ZZ background normalization                        | 4–5                    | ⋯         |
| Lepton identification and isolation                | 6–8                    | ALL       |
| Single lepton trigger                              | <3                     | ALL       |
| Electron energy scale and resolution               | 2–5                    | ALL       |
| Muon momentum scale and resolution                 | 2–10                   | ALL       |
| Hadronic $\tau$ lepton energy scale               | <5                     | ALL       |
| Jet energy scale                                   | 5–10                   | ALL       |
| Unclustered energy scale                           | 1–10                   | ALL       |
| Integrated luminosity                              | 2.3–2.5                | Rare/signal |
| Pileup modeling                                    | <4                     | ALL       |

---

We vary the rates within their respective uncertainties and observe the change in the background yield in all SRs. The final estimates vary by 20%–35% depending upon the year the data were collected and the SR. The WZ and ZZ background estimates have systematic uncertainties of 4%–5% arising from the normalization factor measurements in the dedicated CRs. The conversion background estimate has a systematic uncertainty of 11%.

To account for differences between the data and simulation, a number of different sources of systematic uncertainty are considered. Lepton energy (or momentum) scale uncertainties, as well as jet and lepton resolution uncertainties, are applied at the per-object level, where the corresponding object momenta are varied up and down by their corresponding uncertainties. This results in a 2%–10% impact on the background prediction, depending on $L_T$ and the SR. The uncertainty in the trigger efficiency results in a 2%–3% uncertainty in the background prediction. Additionally, an integrated luminosity measurement uncertainty of 2.5% (2.3%) is applied to the simulated rare background estimates for the 2016 [40] (2017 [41]) analysis. For the subdominant, rare background processes such as $t\bar{t}V$, triboson, or associated Higgs boson production, a 50% systematic uncertainty is applied to the theoretical cross sections to cover the PDF and the renormalization and factorization scale uncertainties. The pileup modeling uncertainty is evaluated by varying

---

**FIG. 3.** The dilepton mass (left) and the $L_T$ (right) distributions in data and simulation in a misidentified $\tau_h$ control region. This control region contains 2L1T (OS) events with $p_T^{\text{miss}} < 50$ GeV. The total SM background is shown as a stack of all contributing processes. The hatched gray bands in the upper panels represent the total uncertainty in the expected background. The lower panels show the ratios of observed data to the total expected background. In the lower panels, the light gray band represents the combined statistical and systematic uncertainty in the expected background, while the dark gray band represents the statistical uncertainty only. The rightmost bins include the overflow events.

---
the cross section used in the reweighting procedure up and down by 5%, which results in a 4% impact on background yields according to simulation. The typical variations for various sources of systematic uncertainty are provided in Table II.

VIII. RESULTS

The \( L_T \) distributions for the 4L and 3L SRs are shown in Fig. 4, while those for various 2L1T SRs are shown in Fig. 5. We do not observe any significant discrepancies between the background predictions and the observed data.

FIG. 4. The \( L_T \) distributions for the 3L signal regions with \( \pT^{\text{miss}} < 150 \) GeV (upper left) and \( \pT^{\text{miss}} > 150 \) GeV (upper right) and for the 4L signal regions with \( \pT^{\text{miss}} < 50 \) GeV (lower left) and \( \pT^{\text{miss}} > 50 \) GeV (lower right). The total SM background is shown as a stack of all contributing processes. The predictions for VLL signal models (the sum of all production and decay modes) with \( m_{\tau^0} = \nu_0 = 200 \) and 500 GeV are shown as dashed lines. The hatched gray bands in the upper panels represent the total uncertainty in the expected background. The lower panels show the ratios of observed data to the total expected background. In the lower panels, the light gray band represents the combined statistical and systematic uncertainty in the expected background, while the dark gray band represents the statistical uncertainty only. The rightmost bins include the overflow events.
Limits are set on the combined cross section for associated $(\tau \nu)$ and pair $(\tau' \nu')$ production of VLLs. To obtain upper limits on the signal cross section at 95% confidence level (C.L.), we use a modified frequentist approach with a test statistic based on the profile likelihood in the asymptotic approximation and the $C_L$ criterion [42–44]. The upper limits are shown in Fig. 6. We use a linear interpolation of the expected event yields between the simulated signal samples in the limit calculations. Systematic uncertainties are incorporated into the likelihood as nuisance parameters with log-normal probability distributions, while statistical uncertainties are modeled
FIG. 6. The 95% confidence level upper limits on the total cross section for associated (ττν0) and pair (τ+τ−ν0) production of VLLs. Also shown is the theoretical prediction for the production cross section of a vectorlike lepton doublet coupling to the third-generation SM leptons. The observed (expected) exclusion limit on the masses of VLLs is in the range of 120–790 (120–680) GeV.

IX. SUMMARY

A search for vectorlike leptons coupled to the third-generation standard model leptons has been performed in several multilepton final states using 77.4 fb−1 of proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2016 and 2017. No significant deviations of the data from the standard model predictions are observed. These results exclude a vectorlike lepton doublet with a common mass in the range 120–790 GeV at 95% confidence level. These are the most stringent limits yet on the production of a vectorlike lepton doublet, coupling to the third-generation standard model leptons.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); ENERGYPOL (Egypt); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, Contract Nos. 75440, No. 752730, and No. 756710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science—EOS”—be.h Project No. 3082018; the Beijing Municipal Science and Technology Commission, No. Z18110004218003; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület ("Momentum") Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research Grants No. 123842, No. 123959, No. 124845, No. 124850, No. 125105, No. 128713, No. 128786, and No. 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish
Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/ 03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, Grant No. MDM-2015- 0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, Contract No. C-1845; and the Weston Havens Foundation (USA).

[1] M. Tanabashi et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2018).
[2] S. P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81, 035004 (2010).
[3] M. Endo, K. Hamaguchi, S. Iwamoto, and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84, 075017 (2011).
[4] R. Dermisek and A. Raval, Explanation of the muon g-2 anomaly with vectorlike leptons and its implications for Higgs decays, Phys. Rev. D 88, 013017 (2013).
[5] J. Halverson, N. Orlofsky, and A. Pierce, Vectorlike leptons as the tip of the dark matter iceberg, Phys. Rev. D 90, 015002 (2014).
[6] N. Kumar and S. P. Martin, Vectorlike leptons at the large hadron collider, Phys. Rev. D 92, 115018 (2015).
[7] ATLAS Collaboration, Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector, J. High Energy Phys. 09 (2015) 108.
[8] P. Achard et al. (L3 Collaboration), Search for heavy neutral and charged leptons in e\(^+\)e\(^-\) annihilation at LEP, Phys. Lett. B 517, 75 (2001).
[9] CMS Collaboration, The CMS trigger system, J. Instrum. 12, P01020 (2017).
[10] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).
[11] CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector, J. Instrum. 12, P10003 (2017).
[12] M. Cacciari, G. P. Salam, and G. Soyez, The anti-\(k_T\) jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.
[13] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, Eur. Phys. J. C 72, 1896 (2012).
[14] M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659, 119 (2008).
[15] CMS Collaboration, Jet energy scale and resolution performance with 13 TeV data collected by CMS in 2016, CMS Detector Performance Report, CERN Report No. CMS-DP-2018-028, 2018, http://cds.cern.ch/record/2622157.
[16] W. Adam, R. Frühwirth, A. Stradling, and T. Todorov, Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC, J. Phys. G 31, N9 (2005).
[17] CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at \(\sqrt{s} = 8\) TeV, J. Instrum. 10, P06005 (2015).
[18] CMS Collaboration, Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at \(\sqrt{s} = 13\) TeV, J. Instrum. 13, P06015 (2018).
[19] CMS Collaboration, Reconstruction and identification of \(\tau\) lepton decays to hadrons and \(\nu_\tau\) at CMS, J. Instrum. 11, P01019 (2016).
[20] CMS Collaboration, Performance of reconstruction and identification of \(\tau\) leptons decaying to hadrons and \(\nu_\tau\) in pp collisions at \(\sqrt{s} = 13\) TeV, J. Instrum. 13, P10005 (2018).
[21] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 11 (2004) 040.
[22] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with Parton shower simulations: The POWHEG method, J. High Energy Phys. 11 (2007) 070.
[23] S. Alioli, P. Nason, C. Oleari, and Emanuele Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX, J. High Energy Phys. 06 (2010) 043.
[24] T. Melia, P. Nason, R. Rontsch, and G. Zanderighi, \(W^+W^-\), \(WZ\) and ZZ production in the POWHEG BOX, J. High Energy Phys. 11 (2011) 078.
[25] P. Nason and G. Zanderighi, \(W^+W^-\), \(WZ\), and ZZ production in the POWHEG-BOX-V2, Eur. Phys. J. C 74, 2702 (2014).
[26] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.
[27] E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, J. High Energy Phys. 02 (2012) 088.
[28] M. Klasen, K. Kovarik, P. Nason, and C. Weydert, Associated production of charged Higgs bosons and top quarks with POWHEG, Eur. Phys. J. C 72, 2088 (2012).
[29] Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, and N. V. Tran, Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81, 075022 (2010).
CMS Collaboration, Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements, Eur. Phys. J. C 76, 155 (2016).

CMS Collaboration, Event generator tunes obtained from underlying-event and multiparton scattering measurements, Eur. Phys. J. C 76, 155 (2016).

CMS Collaboration, Measurement of the $\rho$ production cross section in the dilepton channel in pp collisions at $\sqrt{s} = 7 $ TeV, J. High Energy Phys. 04 (2015) 040.

R. D. Ball et al. (NNPDF Collaboration), Parton distributions for the LHC Run II, J. High Energy Phys. 04 (2015) 040.

A. M. Sirunyan,1a A. Tumasyan,1 W. Adam,2 F. Ambrogi,2 T. Bergauer,2 J. Brandstetter,2 M. Dragicevic,2 J. Erö,2 A. Escalante Del Valle,2 M. Flechl,2 R. Frühwirth,2b M. Jeitler,2b N. Krammer,2 I. Krätschmer,2 D. Liko,2 T. Madlener,2 I. Mikulec,2 N. Rad,2 J. Schieck,2b R. Schöfbeck,2 M. Spanring,2 D. Spitzbart,2 W. Waltenberger,2 C.-E. Wulz,2b M. Zarucki,2 V. Drugakov,2 V. Mossolov,2 J. Suarez Gonzalez,3 M. R. Darwish,4 E. A. De Wolf,4 D. Di Croce,4 X. Janssen,4 M. Vidal Marono,8 P. Vischia,8 J. Zobec,8 052003-11

[30] S. Bolognesi, Y. Gao, A. V. Gritsan, K. Melnikov, M. Schulze, N. V. Tran, and A. Whitbeck, On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86, 095031 (2012).

[31] I. Anderson, S. Bolognesi, F. Caola, Y. Gao, A. V. Gritsan, C. B. Martin, K. Melnikov, M. Schulze, N. V. Tran, A. Whitbeck, and Y. Zhou, Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89, 035007 (2014).

[32] A. V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao, Constraining anomalous Higgs boson couplings to the heavy fermion mirror using matrix element techniques, Phys. Rev. D 94, 055023 (2016).

[33] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015).

[34] CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76, 155 (2016).

[35] CMS Collaboration, Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements, arXiv:1903.12179 [Eur. Phys. J. C (to be published)].

[36] R. D. Ball et al. (NNPDF Collaboration), Parton distributions for the LHC Run II, J. High Energy Phys. 04 (2015) 040.

[37] R. D. Ball et al. (NNPDF Collaboration), Parton distributions from high-precision collider data, Eur. Phys. J. C 77, 663 (2017).

[38] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4—A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[39] CMS Collaboration, Measurement of the $t\bar{t}$ production cross section in the dilepton channel in pp collisions at $\sqrt{s} = 7 $ TeV, J. High Energy Phys. 11 (2012) 067.

[40] CMS Collaboration, CMS luminosity measurements for the 2016 data taking period, CMS physics analysis summary, CERN Report No. CMS-PAS-LUM-17-001, 2017, https://cds.cern.ch/record/2257069.

[41] CMS Collaboration, CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13 $ TeV, CMS physics analysis summary, CERN Report No. CMS-PAS-LUM-17-004, 2018, https://cds.cern.ch/record/2621960.

[42] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[43] A. L. Read, Presentation of search results: The $CL_s$, technique, J. Phys. G 28, 2693 (2002).

[44] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011); Erratum, Eur. Phys. J. C 73, 2501(E) (2013).
SEARCH FOR VECTORLIKE LEPTONS IN MULTILEPTON …

PHYS. REV. D 100, 052003 (2019)
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

University of Sofia, Sofia, Bulgaria

Beihang University, Beijing, China

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Tsinghua University, Beijing, China

Universidad de Los Andes, Bogota, Colombia

Universidad de Antioquia, Medellin, Colombia

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

University of Split, Faculty of Science, Split, Croatia

Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic

Escuela Politecnica Nacional, Quito, Ecuador

Universidad San Francisco de Quito, Quito, Ecuador

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia

Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

National and Kapodistrian University of Athens, Athens, Greece

National Technical University of Athens, Athens, Greece

University of Ioannina, Ioannina, Greece

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

Wigner Research Centre for Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

Institute of Physics, University of Debrecen, Debrecen, Hungary

Exzterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary

Indian Institute of Science (IISc), Bangalore, India

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

University College Dublin, Dublin, Ireland
Search for Vectorlike Leptons in Multilepton ... Phys. Rev. D 100, 052003 (2019)

Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
Kansas State University, Manhattan, Kansas, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Northwest, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, WI, Wisconsin, USA

Deceased.
Also at Vienna University of Technology, Vienna, Austria.
Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Also at UFMS.
Also at Universidade Federal de Pelotas, Pelotas, Brazil.
Also at Université Libre de Bruxelles, Bruxelles, Belgium.
Also at University of Chinese Academy of Sciences.
Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at British University in Egypt, Cairo, Egypt.
Also at Suez University, Suez, Egypt.
Also at Purdue University, West Lafayette, Indiana, USA.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Tbilisi State University, Tbilisi, Georgia.
Also at Erzincan Binali Yildirim University, Erzincan, Turkey.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at IIT Bhubaneswar, Bhubaneswar, India.
Also at Institute of Physics, Bhubaneswar, India.
Also at Shoolini University, Solan, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT, Bologna, Italy.
