Some sharp Hardy inequalities on spherically symmetric domains

Francesco Chiacchio* and Tonia Ricciardi†
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy.

Abstract

We prove some sharp Hardy inequalities for domains with a spherical symmetry. In particular, we prove an inequality for domains of the unit n-dimensional sphere with a point singularity, and an inequality for functions defined on the half-space \(\mathbb{R}^{n+1}_+ \) vanishing on the hyperplane \(\{x_{n+1} = 0\} \), with singularity along the \(x_{n+1} \)-axis. The proofs rely on a one-dimensional Hardy inequality involving a weight function related to the volume element on the sphere, as well as on symmetrization arguments. The one-dimensional inequality is derived in a general form.

Key Words: sharp weighted Hardy inequalities, symmetrization.

MSC 2000 Subject Classification: 46E35 (26D10, 35J25).

1 Introduction and main results

Sharp Hardy inequalities have attracted a considerable attention in recent years, particularly in view of their applications to differential equations motivated by physics and geometry. Let \(1 < p < n \). The classical Hardy inequality states that

\[
\int_{\mathbb{R}^n} |Du|^p_n \geq \left(\frac{n - p}{p} \right)^p \int_{\mathbb{R}^n} \frac{|u|^p}{|x|^p_n}
\]

for all smooth functions \(u \) compactly supported on \(\mathbb{R}^n \), where we set \(|x|^2_n = x_1^2 + \ldots + x_n^2 \) for all \(x \in \mathbb{R}^n \).

A considerable effort has been devoted to extending this inequality to manifolds, to special weight functions as well as to domains exhibiting particular symmetries. See, e.g., [11] for an extensive...
review. Our aim in this note is to derive some sharp Hardy type inequalities specifically tailored for manifolds with a spherical symmetry. It should be mentioned that several recent inequalities have been concerned with the special case of the sphere, see, e.g., [3, 8]. Indeed, certain specific phenomena which do not occur on Euclidean space actually do occur on spheres. For example, in [3] it was shown that the Sobolev inequality admits minimizers on sufficiently large spherical caps.

In order to state our main results we introduce some notation. Let

$$\mathbb{S}^n = \{x = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : |x| = 1\}$$

denote the unit n-sphere, where we set $|x|^2 = |x|^2_{n+1} = x_1^2 + \ldots + x_{n+1}^2$ for all $x \in \mathbb{R}^{n+1}$. For $1 < p < n$ and for $a > 0$ we define the following weight function $\tilde{\eta}_a : (0, a) \rightarrow \mathbb{R}$, which is related to the volume element on \mathbb{S}^n, as follows:

$$\tilde{\eta}_a(t) = \frac{\sin t}{\int_0^t \sin s \, ds}.$$ (1.2)

Note that $\lim_{t \rightarrow 0^+} \tilde{\eta}_a(t) = \lim_{t \rightarrow a^-} \tilde{\eta}_a(t) = +\infty$, see (1.2) below. In Lemma 2.3 we will show that there exists $T \in (0, a)$ such that $\tilde{\eta}_a$ decreases in $(0, T)$ and increases in (T, a). Therefore, the following truncated function:

$$\tilde{\eta}_{aT}(t) = \begin{cases} \frac{\sin t}{\int_0^t \sin s \, ds} & \text{if } t \in (0, T) \\ \tilde{\eta}_a(T) & \text{if } x \in [T, a) \end{cases}$$ (1.3)

is decreasing in $(0, a)$. We denote by $\Theta = (\theta_1, \ldots, \theta_{n-1}, \theta_n)$ the angular variables on \mathbb{S}^n and to simplify notation we set $\theta = \theta_n$. The angle $\theta \in [0, \pi]$, satisfying $x_{n+1} = |x| \cos \theta$, will be the only relevant angular variable to our purposes. We denote by g the standard metric on \mathbb{S}^n and by dV the volume element on \mathbb{S}^n. For $\alpha \in (0, \pi]$ we denote by $B(\alpha)$ the geodesic ball (spherical cap) on \mathbb{S}^n with radius α centered at the “north pole” $N = (0, \ldots, 0, 1) \in \mathbb{R}^{n+1}$. Namely, we define

$$B(\alpha) = \{x \in \mathbb{S}^n : 0 \leq \theta < \alpha\}.$$

Let $N \in \Omega \subset \mathbb{S}^n$ be an open set such that $|\Omega| < |\mathbb{S}^n|$ and let $a^* \in (0, \pi)$ be such that $|B(a^*)| = |\Omega|$. Here, for every measurable set $E \subset \mathbb{S}^n$, $|E|$ denotes the volume of E with respect to the standard Lebesgue measure induced by g on \mathbb{S}^n. In turn, we define the following weight function $\rho_a^* : \mathbb{S}^n \setminus \{N\} \rightarrow \mathbb{R}$

$$\rho_a^*(x) = \begin{cases} \frac{n-1}{\alpha-\beta} \tilde{\eta}_{a^*T}(\theta) & \text{if } x \in B(a^*) \setminus \{N\} \\ \frac{\alpha-\beta}{\alpha-\beta} \tilde{\eta}_{a^*T}(T) & \text{if } x \in \mathbb{S}^n \setminus B(a^*) \end{cases}$$ (1.4)

where $\tilde{\eta}_{a^*T}$ is the weight function defined in (1.3) with $a = a^*$. With this notation, our first result is the following.

Theorem 1.1. Let $n \geq 2$ and $1 < p < n$. Let $\Omega \subset \mathbb{S}^n$ be an open set such that $N \in \Omega$ and $|\Omega| < |\mathbb{S}^n|$. Let a^* be such that $|\Omega| = |B(a^*)|$. Then, for every $u \in W^{1,p}_0(\Omega)$, we have

$$\int_{\Omega} |\nabla u|^p \, dV \geq \left(\frac{n-p}{p} \right)^p \int_{\Omega} |u|^p \rho_{a^*}^p \, dV.$$ (1.5)
The constant $[(n-p)/p]^p$ is sharp.

Note that, since $\theta = d_\rho(x,N)$, we have

$$\lim_{x \to N} d_\rho(x,N) \rho_{\ast}(x) = 1,$$ \hspace{1cm} (1.6)

see (2.1) below, so that ρ_{\ast} is a natural extension of the classical singularity $|x|^{-p}$ appearing in (1.1).

Theorem 1.1 together with a Steiner symmetrization with respect to the angular variables, yields an inequality for functions defined on the half-space $\mathbb{R}^n_+ = \{ x \in \mathbb{R}^{n+1} : x_{n+1} > 0 \}$ with singularity along the x_{n+1}-axis. More precisely, for every $x \in \mathbb{R}^{n+1}$ let $x' = (x_1, \ldots, x_n, 0)$. We take $a^* = \pi/2$ in (1.2) - (1.4) and we define the singularity $\zeta : \mathbb{R}^n_+ \setminus \{x' = 0\} \rightarrow \mathbb{R}$ as follows:

$$\zeta(x) = \rho_{\pi/2} \left(\frac{x}{|x|} \right).$$

Note that ζ is singular on the x_{n+1}-axis. We have:

Theorem 1.2. For every $u \in W^{1,p}_{0}(\mathbb{R}^{n+1}_+)$, the following inequality holds:

$$\int_{\mathbb{R}^n_+} |D\phi u|^p \, dx \geq \left(\frac{n-p}{p} \right)^p \int_{\mathbb{R}^n_+} |u|^p \frac{\zeta^p(x)}{|x|^p} \, dx.$$ \hspace{1cm} (1.7)

Here, $D\phi u(x)$ denotes the projection of the gradient $Du(x)$ on the sphere $\partial B(0, |x|)$. The constant $\left(\frac{n-p}{p} \right)^p$ is sharp.

We observe that for special values of p and n the singularities appearing in (1.3) and (1.7) take particularly simple and explicit forms. More precisely, let $p = (n+1)/2$ and suppose that $\Omega \subset \mathbb{S}^n$ is such that $|\Omega| = |\mathbb{S}^n|/2$. Then, $a^* = \pi/2$, $(p-1)/(n-p) = 1$, $(n-1)/(p-1) = 2$ and therefore $\bar{\eta}_{\pi/2}(t) = \sin^{-2} t (\int_0^{\pi/2} \sin^{-2} \sigma \, d\sigma)^{-1} = (\sin t \cos t)^{-1}$. Consequently, $\bar{T} = \pi/4$ and

$$\rho_{\pi/2}(x) = \begin{cases} (\sin \theta \cos \theta)^{-1} & \text{if } x \in B(\pi/4) \setminus \{N\} \\ 2 & \text{if } x \in \mathbb{S}^n \setminus B(\pi/4) \end{cases}.$$

Note also that $(\sin \theta \cos \theta)^{-1} > \theta^{-1}$ for any $\theta \in (0, \pi/4)$ and $2 > \theta^{-1}$ for any $\theta \in (\pi/4, \pi)$. Therefore, inequality (1.3) implies that

$$\int_{\Omega} |\nabla u|^p \, dV \geq \left(\frac{n-p}{p} \right)^p \int_{\Omega} |u|^p \left[\frac{1}{d_\rho(x,N)^p} + h \right] \, dV,$$

where h is a positive quantity, thus showing that (1.1) is improved on the sphere in this case. When $p = (n+1)/2$ the same arguments also yield a simple form for (1.7). Indeed, in this case (1.7) may be written in the form

$$\int_{\mathbb{R}^n_+} |D\phi u|^p \, dx \geq \left(\frac{p-1}{p} \right)^p \left(\int_{\mathbb{R}^n_+ \cap \{\theta < \pi/4\}} |u|^p \frac{1}{|x|^p (\cos \theta)^p} \, dx + 2p \int_{\mathbb{R}^n_+ \cap \{\pi/4 < \theta < \pi/2\}} |u|^p \frac{1}{|x|^p} \, dx \right).$$

This special case was also shown to be of interest in [5].
An outline of the proofs may be as follows. Our starting point is the following one-dimensional Hardy inequality:

\[
\int_0^a |u'|^p \sin^{n-1}(t) \, dt \geq \left(\frac{p-1}{p} \right)^p \int_0^a |u|^p \tilde{\eta}_{aT}^p \sin^{n-1}(t) \, dt,
\]

for all \(u \) such that \(u(a) = 0 \), where \(\tilde{\eta}_{aT} \) is the function defined in (1.3). In fact, in Section 2 we shall prove some sharp weighted one-dimensional Hardy inequalities involving a general weight \(\phi \) which reduces to (1.8) when \(\phi(t) = \sin^{n-1}(t) \), see Proposition 2.1 and Proposition 2.2 below. To this end, we extend a method described in [9], see also [13], for the special case \(\phi(t) = 1 \). In fact, one of our efforts is to determine very general conditions on \(\phi \) such that this method is applicable.

This technique was also employed in [7] in the special case \(\phi(t) = (2\pi)^{-1/2} \exp\{-t^2/2\} \) in the context of symmetrization with respect to Gaussian measure. On the other hand, our sharpness considerations as in Proposition 2.2 are new even in these special cases. In Section 3 we employ spherical symmetrization in order to reduce Theorem 1.1 to (1.8). In turn, Theorem 1.1 together with a Steiner symmetrization with respect to the angular variables concludes the proof of Theorem 1.2.

2 Some Hardy inequalities on intervals

Our aim in this section is to prove some weighted one-dimensional Hardy inequalities as stated in Proposition 2.1 and Proposition 2.2 below. To this end, as already mentioned in Section 1, we exploit a technique from [9], Theorem 253 p. 175, see also [7, 13]. Let \(a > 0 \), \(p > 1 \) and let \(\phi \in C^1(0, a] \cap C^0([0, a]) \) be such that

\[
\phi(0) = 0, \quad \phi(t) > 0 \text{ in } (0, a], \quad c_1 t^{p-1+\delta} \leq \phi(t) \leq c_2 t^{p-1+\delta},
\]

for some \(c_1, c_2, \delta > 0 \). We denote

\[
W^{1,p}(0, a; \phi) = \left\{ u : [0, a] \to \mathbb{R}; \ u \in L^1_{\text{loc}}[0, a] \text{ and } \int_0^a |u'|^p \phi \, dt < +\infty \right\},
\]

where \(u' \) denotes the distributional derivative of \(u \). We consider the following subspace of \(W^{1,p}(0, a; \phi) \)

\[
\mathcal{E} = \left\{ u \in W^{1,p}(0, a; \phi) : u(a) = 0 \right\},
\]

endowed with the norm \(\|u\| = \left(\int_0^a |u'|^p \phi \right)^{\frac{1}{p}} \). We note that if \(u \in \mathcal{E} \), then \(u \) is absolutely continuous in \([\epsilon, a]\) for all \(\epsilon \in (0, a) \). On the other hand, \(u \) is in general unbounded near the origin. Nevertheless, \(u \) may be approximated in \(\mathcal{E} \) by functions which vanish in 0. More precisely we have the following.

Lemma 2.1. \(C_0^1[0, a] \) is dense in \(\mathcal{E} \).

Proof. Let \(u \in \mathcal{E} \). By standard properties of Sobolev spaces we may assume that \(u \in C^1[\epsilon, a] \) for all \(\epsilon \in (0, a) \). We first show that \(C_0^1[0, a] \) is dense in \(\mathcal{E} \cap L^\infty(0, a) \). Let \(u \in \mathcal{E} \cap L^\infty(0, a) \). We consider
the sequence:

\[
\begin{array}{ll}
u_k(t) = \\
\quad \\u(t) & \text{if } t \in [k^{-1}, a],
\end{array}
\]

where \(k \in \mathbb{N} \). By the elementary inequality \(|\alpha + \beta|^p \leq 2^{p-1} (|\alpha|^p + |\beta|^p)\), for all \(\alpha, \beta \in \mathbb{R} \), we have

\[
\int_0^a |u' - u_k'|^p \phi \, dt = \int_0^{k^{-1}} |u' - u(k^{-1})|^p \phi \, dt \leq 2^{p-1} \left\{ \int_0^{k^{-1}} |u'|^p \phi \, dt + ||u||_\infty^p k^p \int_0^{k^{-1}} \phi \, dt \right\}.
\]

(2.2)

Since \(u' \in L^p(0, a; \phi) \), the absolute continuity of the Lebesgue integral implies that

\[
\int_0^{k^{-1}} |u'|^p \phi \, dt = o(1), \quad \text{as } k \to +\infty.
\]

(2.3)

In view of (2.1), we have

\[
\max_{t \in [0, k^{-1}]} \phi \leq c_2 \max_{t \in [0, k^{-1}]} t^{p-1+\delta} = c_2 k^{-p+1-\delta}.
\]

Consequently,

\[
k^p \int_0^{k^{-1}} \phi \, dt \leq k^{p-1} \max_{t \in [0, k^{-1}]} \phi \leq c_2 k^{-\delta} = o(1), \quad \text{as } k \to +\infty.
\]

(2.4)

In view of (2.2)–(2.3)–(2.4) it follows that

\[
\int_0^a |u' - u_k'|^p \phi \, dt = o(1), \quad \text{as } k \to +\infty.
\]

We conclude by a standard regularization argument. Now suppose that \(u \in \mathcal{E} \). The following sequence of bounded functions

\[
\tilde{u}_k(t) = \begin{cases}
\quad \\
u(k^{-1}) & \text{if } t \in [0, k^{-1}] \\
u(t) & \text{if } t \in [k^{-1}, a],
\end{cases}
\]

satisfies

\[
\int_0^a |u' - \tilde{u}_k'|^p \phi \, dt = \int_0^{k^{-1}} |u'|^p \phi \, dt = o(1), \quad \text{as } k \to +\infty.
\]

Hence, we are reduced to the case where \(u \) is bounded, and the claim is established. \(\blacksquare\)

Fix \(a > 0 \). Let

\[
\eta_a(t) = \frac{\phi(t)^{\frac{1}{p-1}}}{\int_t^a \phi(\sigma)^{\frac{1}{p-1}} \, d\sigma}, \quad t \in (0, a).
\]

(2.5)

We note that \(\eta_a > 0 \) and furthermore the following holds.
Lemma 2.2. The function η_a defined by (2.5) satisfies:

$$
\left(\begin{array}{c}
\frac{c_1}{c_2} \\
\frac{\delta}{p-1} \\
\frac{\delta}{t (c_1^p - c_2^p - \phi) - t^p - \phi}
\end{array} \right) \leq \eta_a(t) \leq \left(\begin{array}{c}
\frac{c_2}{c_1} \\
\frac{\delta}{p-1} \\
\frac{\delta}{t (c_1^p - c_2^p - \phi) - t^p - \phi}
\end{array} \right)
$$

for all $t \in (0, a)$, where $c_1, c_2, \delta > 0$ are the constants defined in (2.4).

Proof. We have:

$$
\int_t^a (\sigma^{p-1+\delta})^{p-1} d\sigma = \int_t^a \sigma^{1-\delta/(p-1)} d\sigma = \frac{p-1}{\delta} \left(t^{-\delta/(p-1)} - a^{-\delta/(p-1)} \right).
$$

Consequently,

$$
\frac{(p-1+\delta)^{p-1}}{\int_t^a (\sigma^{p-1+\delta})^{p-1} d\sigma} = \frac{\delta}{p-1} \frac{p}{t (c_1^p - c_2^p - \phi) - t^p - \phi}.
$$

On the other hand, in view of the assumption (2.1) on ϕ, we have

$$
\left(\begin{array}{c}
\frac{c_1}{c_2} \\
\frac{\delta}{p-1} \\
\frac{\delta}{t (c_1^p - c_2^p - \phi) - t^p - \phi}
\end{array} \right) \leq \eta_a(t) \leq \left(\begin{array}{c}
\frac{c_2}{c_1} \\
\frac{\delta}{p-1} \\
\frac{\delta}{t (c_1^p - c_2^p - \phi) - t^p - \phi}
\end{array} \right)
$$

and the asserted estimate follows.

For later use, we also note that η_a satisfies a Riccati equation:

$$
\eta_a \phi' + (p-1)\eta_a = (p-1)\eta_a^2 \quad \text{in } (0, a).
$$

(2.7)

The following Hardy inequality holds.

Proposition 2.1. Let $a > 0$, $p > 1$ and suppose that ϕ satisfies (2.1). Let η_a be correspondingly defined by (2.5). Then, for every $u \in C\cap (0, a)$, the following inequality holds:

$$
\int_0^a |u|^p \phi dt \geq \left(\frac{p-1}{p} \right)^p \int_0^a |u|^p \eta_a^p \phi dt.
$$

(2.8)

The constant $\left(\frac{p-1}{p} \right)^p$ is sharp.

Proof. In view of Lemma 2.1, we may assume that $u \in C\cap (0, a)$. We recall the elementary convexity inequality $|\alpha|^p \geq |\beta|^p + p|\beta|^{p-2} \beta(\alpha - \beta)$ for all $\alpha, \beta \in \mathbb{R}$. Taking $\alpha = u'$ and $\beta = -\frac{p-1}{p} \eta_a$, we derive:

$$
|u'|^p \geq |\frac{p-1}{p} \eta_a| p - |\frac{p-1}{p} \eta_a|^{p-2} \frac{p-1}{p} \eta_a \left(u' + \frac{p-1}{p} \eta_a \right).
$$

(2.9)

Multiplying by ϕ and integrating over $[0, a]$, we obtain:

$$
\int_0^a |u'|^p \phi dt \geq \left(\frac{p-1}{p} \right)^p (1-p) \int_0^a |u|^p \eta_a^p \phi dt - p \left(\frac{p-1}{p} \right)^{p-1} \int_0^a |u|^{p-2} uu' \eta_a^{p-1} \phi dt.
$$
Integration by parts yields
\[
\int_0^a |u'|^p \phi \, dt \geq \left(\frac{p-1}{p} \right)^p (1-p) \int_0^a |u|^p \eta_p^p \phi \, dt + \left(\frac{p-1}{p} \right)^{p-1} \int_0^a |u|^p \left(\eta_p^{p-1} \phi \right)' \, dt \\
- \left(\frac{p-1}{p} \right)^{p-1} \left[|u|^p \eta_p^{p-1} \phi \right]_0^a.
\]

Now we observe that by (2.6) and the fact that \(u \in C_0^1 ([0,a]) \), we have \(u \eta_p \in L^\infty (0,a) \). Therefore, the boundary terms vanish and we obtain
\[
\int_0^a |u'|^p \phi \, dt \geq (1-p) \left(\frac{p-1}{p} \right)^p \int_0^a |u|^p \eta_p^p \phi \, dt + \left(\frac{p-1}{p} \right)^{p-1} \int_0^a |u|^p \left(\eta_p^{p-1} \phi' + (p-1) \eta_p^{p-2} \phi \right) \, dt \\
= (1-p) \left(\frac{p-1}{p} \right)^p \int_0^a |u|^p \eta_p^p \phi \, dt + \left(\frac{p-1}{p} \right)^{p-1} \int_0^a |u|^p \eta_p^{p-2} \left(\eta_p \phi' + (p-1) \eta_p \phi \right) \, dt.
\]

In view of (2.6), we have
\[
\int_0^a |u|^p \eta_p^{p-2} \left(\eta_p \phi' + (p-1) \eta_p \phi \right) \, dt = (p-1) \int_0^a |u|^p \eta_p^p \phi \, dt.
\]

It follows that
\[
\int_0^a |u'|^p \phi \, dt \geq \left[\left(\frac{p-1}{p} \right)^p - \frac{(p-1)^p}{p^{p-1}} \right] \int_0^a |u|^p \eta_p^p \phi \, dt + \frac{(p-1)^p}{p^{p-1}} \int_0^a |u|^p \eta_p^p \phi \, dt = \left(\frac{p-1}{p} \right)^p \int_0^a |u|^p \eta_p^p \phi \, dt.
\]

Hence, (2.8) is satisfied.

Now we verify sharpness. To this end, we consider the sequence of functions \(\{ U_k \}_{k \in \mathbb{N}} \subset E \) defined by
\[
U_k(t) = \begin{cases}
\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^{\frac{p-1}{p}} & \text{if } t \in \left[0, \frac{1}{k} \right) \\
\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^{\frac{p-1}{p}} & \text{if } t \in \left[\frac{1}{k}, a \right].
\end{cases}
\]

Then,
\[
U_k(t) = \begin{cases}
0 & \text{if } t \in \left[0, \frac{1}{k} \right) \\
- \frac{p-1}{p} \left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^{- \frac{1}{p}} \phi^{- \frac{1}{p-1}} (t) & \text{if } t \in \left[\frac{1}{k}, a \right].
\end{cases}
\]

We claim that
\[
\lim_{k \to +\infty} \int_0^a |U_k'|^p \phi \, dt = \left(\frac{p-1}{p} \right)^p \int_0^a U_k^p \eta_p \phi \, dt.
\]

Indeed, we note that
\[
(n_p \phi)(t) = \left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^{\frac{p-1}{p}}.
\]
for all $t \in (0, a)$. Therefore, we may write
\[
\int_0^a U_k^p \eta_0^p \phi \, dt = A_k + B_k,
\]
where
\[
A_k \equiv \int_0^1 U_k^p \eta_0^p \phi \, dt = \left(\int_0^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^{p-1} \int_0^1 \frac{\phi^{- \frac{1}{p-1}}(t)}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt \quad (2.11)
\]
and
\[
B_k \equiv \int_1^a U_k^p \eta_0^p \phi \, dt = \int_1^a \left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^{p-1} \frac{\phi^{- \frac{1}{p-1}}(t)}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt = \int_1^a \frac{\phi^{- \frac{1}{p-1}}(t)}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt. \quad (2.12)
\]
We claim that
\[
\lim_{k \to +\infty} A_k = \frac{1}{p-1}. \quad (2.13)
\]
Indeed, we first observe that in view of (2.11) we have
\[
\int_1^a \frac{\phi^{- \frac{1}{p-1}}(t)}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt \to +\infty \quad (2.14)
\]
as $k \to \infty$. Hence, by L'Hospital's rule,
\[
\lim_{k \to +\infty} A_k = \lim_{k \to +\infty} \frac{\int_0^1 \frac{\phi^{- \frac{1}{p-1}}}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt}{\int_0^a \frac{\phi^{- \frac{1}{p-1}}}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt} = \frac{1}{p-1},
\]
and (2.13) follows. We conclude that
\[
\int_0^a U_k^p \eta_0^p \phi \, dt = \int_0^a \frac{\phi^{- \frac{1}{p-1}}(t)}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt + \frac{1}{p-1} + o(1).
\]
On the other hand, we have
\[
\int_0^a |U_k'|^p \phi \, dt = \left(\frac{p-1}{p} \right)^p \int_0^a \frac{\phi^{- \frac{1}{p-1}}(t)}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt.
\]
Hence, recalling (2.14), we obtain
\[
\lim_{k \to +\infty} \frac{\int_0^a |U_k'|^p \phi \, dt}{\int_0^a U_k^p \eta_0^p \phi \, dt} = \left(\frac{p-1}{p} \right)^p \lim_{k \to +\infty} \frac{\int_0^a \frac{\phi^{- \frac{1}{p-1}}}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt}{\int_0^a \frac{\phi^{- \frac{1}{p-1}}}{\left(\int_t^a \phi^{- \frac{1}{p-1}} \, d\sigma \right)^p} \, dt} = \left(\frac{p-1}{p} \right)^p.
\]
Hence, the sharpness is also established.
Now we show that under an extra simple assumption for \(\phi \), the corresponding function \(\eta_a \) defined by (2.5) has exactly one critical point, corresponding to the absolute minimum of \(\eta_a \) in \((0,a)\).

Lemma 2.3. Suppose that \(\phi : [0,a] \to \mathbb{R} \) satisfies (2.1). Furthermore, suppose that \(\phi \) is twice differentiable in \((0,a)\) and that

\[
(\log \phi)''(t) = \left(\frac{\phi'}{\phi} \right)'(t) < 0 \quad \text{for all } t \in (0,a).
\] (2.15)

Then, there exists a unique \(T \in (0,a) \) such that \(\eta''_a(t) < 0 \) in \((0,T)\) and \(\eta''_a(t) > 0 \) in \((T,a)\).

Proof. Differentiating the Riccati equation (2.7) we obtain

\[
\eta'_a \phi' + \eta_a \left(\frac{\phi'}{\phi} \right)' + (p-1)\eta''_a = 2(p-1)\eta_a \eta_a'.
\] (2.16)

Suppose that \(\eta'_a(\hat{t}) = 0 \). Then, (2.16) implies that

\[
\eta''_a(\hat{t}) = -\frac{1}{p-1} \eta_a(\hat{t}) \left(\frac{\phi'}{\phi} \right)'(\hat{t}) > 0.
\]

It follows that any critical point for \(\eta_a \) is necessarily a strict minimum point. In view of Lemma 2.2, it follows that \(\eta_a \) admits a unique minimum point and the existence of \(T \) is established.

Let \(\phi \) be twice differentiable and suppose that \(\phi \) satisfies (2.1) and (2.15). Then, the following function obtained by truncating \(\eta_a \) at the point \(T \), is non-increasing:

\[
\eta_{aT}(t) = \begin{cases}
\eta_a(t) & \text{for } t \in (0,T) \\
\eta_a(T) & \text{for } t \in (T,a).
\end{cases}
\] (2.17)

Since \(\eta_{aT} \leq \eta_a \) pointwise, it is clear that Proposition 2.1 still holds with \(\eta_a \) replaced by \(\eta_{aT} \). On the other hand, it is not a priori clear whether or not, with such a replacement, the constant \(|(p-1)/p|^p \) is still sharp. In the next proposition we show that this is indeed the case.

Proposition 2.2. Suppose that \(\phi \) is twice differentiable and satisfies (2.1) and (2.15). Let \(\eta_{aT} \) be defined by (2.17). Then,

\[
\int_0^a |u|^p \phi \, dt \geq \left(\frac{p-1}{p} \right)^p \int_0^a |u|^p \eta_{aT} \phi \, dt, \quad \forall u \in \mathcal{E}.
\]

Furthermore, the constant \(\left(\frac{p-1}{p} \right)^p \) is sharp.

Proof. We need only check sharpness. For \(k \in \mathbb{N}, 1/k < T \), we consider the sequence \(\{V_k\}_{k \in \mathbb{N}} \subset \mathcal{E} \) defined by

\[
V_k(t) = \begin{cases}
U_k(t) & \text{if } t \in [0,T) \\
\left(\int_T^a \phi^\frac{p-1}{p} \, d\sigma \right)^\frac{p}{p-1} \frac{2a-T}{T-a} & \text{if } t \in [T,(a+T)/2) \\
0 & \text{if } t \in [(a+T)/2,a]
\end{cases}
\] (2.18)
where \(\{U_k\}_{k \in \mathbb{N}} \) is the sequence defined in (2.10). Then,

\[
V'_k(t) = \begin{cases}
U'_k(t) & \text{if } t \in [0,T) \\
\int_T^t \phi^{-\frac{1}{p-1}} d\sigma & \text{if } t \in [T,(a+T)/2) \\
0 & \text{if } t \in [(a+T)/2,a]
\end{cases}
\]

We claim that

\[
\lim_{k \to +\infty} \frac{\int_0^a |V'_k|^p \phi dt}{\int_0^a |V_k|^p \eta_a \phi dt} = \left(\frac{p-1}{p} \right)^p.
\]

Let \(C_1, C_2 > 0 \) be defined by

\[
C_1 = \left(\frac{p}{p-1} \right)^p \int_T^{(T+a)/2} |V'_k|^p \phi dt, \quad C_2 = \int_T^{(T+a)/2} |V_k|^p \eta_a \phi dt.
\]

Note that \(C_1, C_2 \) are independent of \(k \). Then, we have:

\[
\frac{\int_0^a |V'_k|^p \phi dt}{\int_0^a |V_k|^p \eta_a \phi dt} = \left(\frac{p-1}{p} \right)^p \frac{\int_T^{(T+a)/2} \phi^{-\frac{1}{p-1}} \phi^{-\frac{1}{p-1}} d\sigma + C_1}{A_k + \int_T^{(T+a)/2} \phi^{-\frac{1}{p-1}} \phi^{-\frac{1}{p-1}} d\sigma + C_2} = \left(\frac{p-1}{p} \right)^p \frac{\int_T^{(T+a)/2} \phi^{-\frac{1}{p-1}} \phi^{-\frac{1}{p-1}} d\sigma + C_1}{1 + o(1) + \int_T^{(T+a)/2} \phi^{-\frac{1}{p-1}} \phi^{-\frac{1}{p-1}} d\sigma + C_2},
\]

where \(A_k \) is defined in (2.11). This establishes the claim.

\[\square \]

3 Proofs of Theorem 1.1 and Theorem 1.2

In this section we apply Proposition 2.2 in order to prove Theorem 1.1 and Theorem 1.2. In what follows we assume that \(1 < p < n \). We let \(a \in (0, \pi) \) and we take \(\phi = \tilde{\phi} \), where

\[
\tilde{\phi}(t) = \sin^{n-1}(t).
\]

We note that \(\tilde{\phi} \) satisfies assumptions (2.1) with \(\delta = n - p \). The weight function corresponding to \(\tilde{\phi} \) defined according to (2.5) is given by (1.2), namely

\[
\tilde{\eta}_a(t) = \frac{\sin^{-\frac{n-1}{p-1}}(t)}{\int_0^a (\sin \sigma)^{-\frac{n-1}{p-1}} d\sigma}.
\]

Furthermore, \(\tilde{\phi} \) is twice differentiable and we have

\[
\left(\log \tilde{\phi} \right)''(t) = \frac{-n-1}{\sin^2 t}
\]
for all $t \in (0, \pi)$. In particular, $\tilde{\phi}$ satisfies assumption (2.15). Using L’Hospital’s rule we have:

$$
\frac{p - 1}{n - p} \lim_{t \to 0^+} t \eta_n(t) = \frac{p - 1}{n - p} \lim_{t \to 0^+} t (\sin t) \frac{\frac{-n-1}{p-1}}{\sin \sigma \frac{-n-1}{p-1}} = \frac{p - 1}{n - p} \lim_{t \to 0^+} (1 + o(1)) \frac{t \frac{-n-1}{p-1}}{\sin \sigma \frac{-n-1}{p-1}} = 1,
$$

and therefore (1.6) follows. The following elementary facts will be used in the sequel. Recall that for $x = (x_1, \ldots, x_n, x_{n+1}) \in \mathbb{R}^{n+1}$ we set $x_{n+1} = |x| \cos \theta$.

Lemma 3.1. Let $\Omega \subset S^n$ and suppose that $u : \Omega \to \mathbb{R}$ depends on θ only. Then:

$$
|\nabla u|^2 = \left(\frac{\partial u}{\partial \theta}\right)^2,
$$

$$
\int_{B(a)} u(\theta) dV = \omega_{n-1} \int_0^a u(\theta) \tilde{\phi}(\theta) d\theta
$$

where $\omega_{n-1} = (2\pi)^{n/2}/\Gamma(n/2)$ denotes the volume of S^{n-1}.

We shall also need the following basic facts concerning spherical rearrangements, see, e.g., [4, 12].

For every $a \in [0, \pi]$, let

$$
A(a) = |B(a)| = \omega_{n-1} \int_0^a \tilde{\phi}(\theta) d\theta.
$$

Let $\Omega \subset S^n$ be an open set and let $u : \Omega \to \mathbb{R}$ be a measurable function. For every $t > 0$, let

$$
\mu(t) = |\{x \in \Omega : |u(x)| > t\}|
$$

denote the distribution function of u. Then the decreasing rearrangement u^* of u is defined by

$$
u^*(s) = \inf \{t \geq 0 : \mu(t) \leq s\}
$$

for every $s \in [0, |\Omega|]$. Let $\Omega^* = B(a^*)$, where $a^* = A^{-1}(|\Omega|)$. Then, the spherical rearrangement u^* of u is defined by

$$
u^*(x) = u^*(A(\theta)), \quad x \in \Omega^*.
$$

It follows that u^* is a decreasing function of θ, and that its level sets are geodesic balls (spherical caps) centered at $N = (0, 0, \ldots, 1) \in S^n$. Since $|u|$ and u^* have the same distribution function, we have

$$
\int_{\Omega} |u|^q dV = \int_{\Omega^*} (u^*)^q dV,
$$

for all $q \geq 1$. We shall use two standard inequalities involving rearrangements. The following lemma is a special case of the well-known Hardy-Littlewood inequality and may be found, e.g., in [6], Theorem 2.2 p. 44.

Lemma 3.2 (Hardy-Littlewood inequality). Let $\Omega \subset S^n$ be an open set and suppose that $u, v : \Omega \to \mathbb{R}$ are measurable and finite a.e. Then,

$$
\int_{\Omega} uv dV \leq \int_{\Omega^*} u^* v^* dV.
$$

(3.5)
The following inequality is a special case of the Pólya-Szego principle, and may be found in [3], Proposition 2.17, p. 41, see also [12], Theorem p. 325.

Lemma 3.3 (Pólya-Szego principle). Let \(q \geq 1 \) and let \(u \in W^{1,q}(\mathbb{S}^n) \). Then,

\[
\int_{\mathbb{S}^n} |\nabla u|^q \, dV \geq \int_{\mathbb{S}^n} |\nabla u^*|^q \, dV.
\]

(3.6)

We can now prove Theorem 1.1.

Proof of Theorem 1.1. For every fixed \(r > 0 \) we consider the function obtained by restricting \(u \) to \(\mathbb{S}^n \cap \mathbb{R}^{n+1}_+ \). Therefore, it suffices to show that

\[
\int_\Omega |\nabla u|^p \, dV \geq \int_\Omega |\nabla u^*|^p \, dV = \omega_{n-1} \int_0^{a^*} \left| \frac{\partial u^*}{\partial \theta} \right|^p \tilde{\phi}(\theta) d\theta.
\]

On the other hand, in view of Lemma 3.2 we have:

\[
\int_\Omega |u|^p \rho^{p^*}_a \, dV \leq \int_\Omega |u^*|^p \rho^{p^*}_a \, dV = \omega_{n-1} \int_0^{a^*} |u^*|^p \rho^{p^*}_a \tilde{\phi}(\theta) d\theta.
\]

Therefore, it suffices to show that

\[
\int_0^{a^*} \left| \frac{\partial u^*}{\partial \theta} \right|^p \tilde{\phi}(\theta) d\theta - \left(\frac{n-p}{p} \right) \int_0^{a^*} |u^*|^p \rho^{p^*}_a \tilde{\phi}(\theta) d\theta \geq 0.
\]

The above inequality holds by definition of \(\rho^{p^*}_a \), as in (1.4), and by Proposition 2.2.

In order to show that the constant \(\left(\frac{n-p}{p} \right) \) is sharp it suffices to use, as test functions, the sequence \(\{T_k\}_{k \in \mathbb{N}} \) obtained by setting \(\phi = \phi, a = a^* \) and \(T = T \) in (2.18). Namely,

\[
\tilde{T}_k(\theta) = \begin{cases}
\left(\int_{\frac{1}{k}}^{a^*} \tilde{\phi} \, d\sigma \right)^{\frac{p-1}{p}} & \text{if } \theta \in \left[0, \frac{1}{k}\right) \\
\left(\int_{\frac{1}{k}}^{T} \tilde{\phi} \, d\sigma \right)^{\frac{p-1}{p}} & \text{if } \theta \in \left[\frac{1}{k}, T\right) \\
\left(\int_{\frac{1}{k}}^{T} \tilde{\phi} \, d\sigma \right)^{\frac{p-1}{p}} \frac{2(a^* - T)}{T - a^*} & \text{if } \theta \in \left[T, (a^* + T)/2\right) \\
0 & \text{if } \theta \in \left[(a^* + T)/2, a^*\right]
\end{cases}
\]

(3.7)

Now the proof of Theorem 1.1 is complete.

In order to prove Theorem 1.2 we use a Steiner-type symmetrization on \(\mathbb{R}^{n+1}_+ \) with respect to the angular variables. See, e.g., [1] [10] for the main results on Steiner symmetrization. Let \(u \in C^1_0(\mathbb{R}^{n+1}_+) \). For every fixed \(r > 0 \) we consider the function obtained by restricting \(u \) to \(\mathbb{S}^n \cap \mathbb{R}^{n+1}_+ \). Namely, we consider the function

\[
\Theta \in \mathbb{S}^n \cap \mathbb{R}^{n+1}_+ \rightarrow u(r, \Theta),
\]

(3.8)

where \(\Theta = (\theta_1, ..., \theta_{n-1}, \theta) \) is the set of all angular variables. We denote by \(u^*(r, \cdot) \) the decreasing rearrangement of the function in (3.8), according to the definition given in (3.4). Finally we introduce the Steiner rearrangement \(u^\sharp \) of \(u \) as follows:

\[
u^\sharp(r, \theta) = u^*(r, A(\theta)), \quad \theta \in [0, \pi/2],
\]

(3.9)
where \(A(\theta) \) is defined in (3.3). We denote by \(g_r \) the standard metric on \(S^n_r \) and by \(dV_r \) the volume element on \(S^n_r \). Then, we have \(D_\Theta u = \nabla_{g_r} u \) and therefore, in view of Lemma 3.1 and a rescaling argument,

\[
|D_\Theta u|^p = \frac{1}{r^p} \left| \frac{\partial u^*}{\partial \theta} \right|^p.
\]

(3.10)

We claim that:

\[
\zeta(x) \frac{|x|}{|x'|} \leq C \frac{\theta r}{r \sin \theta} \leq C \frac{C}{|x'|}.
\]

(3.11)

Consequently, for any \(R > 0 \) we have:

\[
\int_{|x'|,|x_{n+1}|<R} \zeta(x) \frac{|x|}{|x'|} \, dx = \int_0^R \int_{|x'|<R} \zeta(x) \frac{|x|}{|x'|} \, dx'.
\]

Now (3.11) follows in view of the assumption \(p < n \).

Proof of Theorem 1.2. By density, it suffices to consider \(u \in C^1_0(\mathbb{R}^{n+1}_+) \). By rescaling, if \(\Omega \subset S^n_r \) and \(u : \Omega \to \mathbb{R} \) depends on \(\theta \) only, then rescaling (3.2) we obtain

\[
|\nabla_{g_r} u|^2 = 1 \frac{\partial u}{\partial \theta}^2 \int_{B_r(\alpha)} u(\theta) \, dV_r = \omega_{n-1} r^n \int_0^\alpha u(\theta) \tilde{\phi}(\theta) \, d\theta.
\]

(3.12)

By Fubini’s Theorem and in view of Lemma 3.3 we have:

\[
\int_{\mathbb{R}^{n+1}} |D_\Theta u|^p \, dx \geq \int_{\mathbb{R}^{n+1}} |\nabla_{g_r} u|^p \, d\sigma_r \geq \int_{\mathbb{R}^{n+1}} |\nabla_{g_r} u^*|^p \, d\sigma_r
\]

(3.13)

where \(u^* = u^*(r, \theta) \) is defined in (3.9). Consequently, from (3.10), (3.13) and in view of Theorem 1.1 with \(a^* = \pi/2 \), we derive

\[
\int_{\mathbb{R}^{n+1}} |D_\Theta u|^p \, dx \geq \omega_{n-1} \int_0^{+\infty} \left(\int_0^{\frac{\pi}{2}} \left(\frac{1}{r^p} \left| \frac{\partial u^*}{\partial \theta} \right|^p \sin^{n-1} \theta \, d\theta \right) \right) r^n \, dr
\]

\[
\geq \omega_{n-1} \left(\frac{n-p}{p} \right)^p \int_0^{+\infty} \left(\frac{1}{r^p} \int_0^{\frac{\pi}{2}} |u^*|^p \zeta^p \sin^{n-1} \theta \, d\theta \right) r^n \, dr
\]

\[
\geq \left(\frac{n-p}{p} \right)^p \int_{\mathbb{R}^{n+1}} \frac{|u|^p}{r^p} \zeta^p \, dx.
\]

We are left to prove sharpness. To this end, we consider the sequence \(u_k(\theta, r) = \Theta_k(\theta) R_k(r) \), \(k \in \mathbb{N} \), where \(R_k \in C_0(0, +\infty) \) satisfies \(R_k > 0 \) and \(R_k^p(r) \rightharpoonup \delta_1(r) \), weakly in the sense of measures. Here \(\delta_1 \)
denotes the Dirac mass on \((0, +\infty)\) centered at \(r = 1\), and \(\Theta_k(\theta) = \tilde{V}_k(\theta)\), where \(\tilde{V}_k\) is the sequence defined in \((3.7)\), with \(a^* = \pi/2\). We have

\[
\lim_{k \to +\infty} \int_0^{+\infty} R_k^n(r)^n \, dr = \lim_{k \to +\infty} \int_0^{+\infty} R_k^n(r)^{n-p} \, dr = 1.
\]

Now, the claim follows since

\[
\int_{S^{n+1}_+} |\Theta_k(\theta)|^p \, d\sigma = \int_0^{\pi/2} |\Theta_k'(\theta)|^p \, \theta^p \, d\theta + o(1) = \left(\frac{n-p}{p} \right)^p + o(1),
\]

where \(o(1)\) vanishes as \(k \to \infty\). \(\square\)

References

[1] Alvino, A., Trombetti, G., Diaz, J.I. and Lions, P.L. Elliptic Equations and Steiner Symmetrization. Commun. Pure Appl. Math. Vol. XLIX (1996), 217–236.

[2] Alvino, A., Ferone, V. and Trombetti, G., On the best constant in a Hardy-Sobolev inequality. Appl. Anal. 85 (2006), no. 1–3, 171–180.

[3] Aubin, Th., Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics, Springer-Verlag, Berlin Heidelberg New York, 1998.

[4] Baernstein, A. and Taylor, B.A., Spherical rearrangements, subharmonic functions, and \(*\)-functions in \(n\)-space. Duke Math. J., 43 (1976), no. 2, 245–268.

[5] Bandle, C., Peletier, L.A. and Stingelin, S., Best Sobolev constants and quasi-linear elliptic equations with critical growth on spheres. Math. Nachr. 278 (2005), no. 12–13, 1388–1407.

[6] Bennett, C. and Sharpley, R., Interpolation of operators. Pure and Applied Mathematics, 129. Academic Press, Inc., 1988.

[7] Brandolini, B., Chiacchio, F. and Trombetti, C., Hardy type inequalities and Gaussian measure. Commun. Pure Appl. Anal. 6 (2007), no. 2, 411–428.

[8] Brezis, H. and Peletier, L.A., Elliptic equations with critical exponent on spherical caps of \(S^3\). Anal. Math. 98 (2006), 279–316.

[9] Hardy, G., Littlewood, J.E. and Pólya, G., Inequalities. Cambridge University Press, 1952.

[10] Kowohl, B., Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics, 1150. Springer-Verlag, Berlin, 1985.

[11] Kufner, A. and Persson, L.E., Weighted Inequalities of Hardy Type. World Scientific, Singapore, 2003.
[12] Sperner, E. Jr., *Zur Symmetrisierung von Funktionen auf Sphären*. Math. Z. 134 (1973), 317–327.

[13] Tartar, L., *Imbedding theorems of Sobolev spaces into Lorentz spaces*. Boll. UMI (8) 1-B (1998), 479–500.