Mechanism of Oxygen Reduction Reaction on Monolayer WTe₂ with and without S Dopant at Low Coverage

Do Ngoc Son, a,b, † Viorel Chihaia, c Pham Tan Thi a,b

a Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
b Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
c Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Splaiul Independentei 202, Sector 6, 060021 Bucharest, Romania
† Corresponding author: dnson@hcmut.edu.vn

Received: 5 May, 2021; Accepted: 5 November, 2021; Published: 13 November, 2021

Transition metal dichalcogenides possess properties such as low cost, easy fabrication, and suitability for various applications. Monolayer WTe₂ is a potential electro-catalytic material for the oxygen reduction reaction (ORR). However, the reaction mechanism on pure and S-doped monolayer WTe₂ remains unknown; therefore, this work is devoted to clarifying the current topic using density functional theory calculations and a thermodynamics model. We found that the ORR mechanism is a four-electron pathway on pure and S-doped monolayer WTe₂. However, S-doped monolayer WTe₂ increases the thermodynamic barrier of the ORR compared to pure monolayer WTe₂. Therefore, the S dopant decreases the performance of WTe₂. The result implies that doping with different elements is not always a method to improve the efficiency of chemical reactions.

Keywords Fuel cell; Catalyst; 2D materials; Density functional theory; Interfaces

I. INTRODUCTION

The development of catalysts for the cathode is a challenge to improve the performance of proton exchange membrane fuel cells and rechargeable metal-air batteries. The oxygen reduction reaction (ORR) on the cathode involves many intermediate steps and has a slow rate. Pure Pt, Pt-based alloys, and carbon-supported Pt nanoparticles were the most efficient catalytic materials [1]. However, they are too expensive to be widely commercialized. Pt-free alloys of less expensive metals such as Pd, Fe, and Co are the alternatives to significantly reduce cost and simultaneously improve the stability of catalysts [2–4]. Their ORR activity is comparable to that of the carbon-supported Pt materials [2]. Single-atom catalysts fabricated by dispersing metal atoms onto macromolecules and carbon-based materials like porphyrin and graphene were also investigated for the ORR [5]. The single-atom catalysts possess the maximum atom utilization efficiency. Besides, transition metal oxides such as cobalt oxides and copper oxides also exhibited a high performance [6]. Recently, transition metal dichalcogenides (TMDs) have attracted much attention for the ORR due to their low cost, high abundance, and high tolerance to organic molecules [7]. Perfect, defective, and doped structures of TMDs could significantly enhance the ORR activity [8–10]. Besides, the ORR mechanisms on WTe₂, which is a new material of the TMD family, with Te vacancies have been recently investigated [11]. However, there is no research available to elucidate the ORR mechanism and the activity on perfect and doped monolayer WTe₂. Especially, S is one of the most popular chalcogenide elements, which can form natural compounds like MoS₂ and WS₂. Hence, S doping in WTe₂ is expected to be thermodynamically favorable. Indeed, we found in this work that the formation energy of S substitution for the Te atom in WTe₂ is significantly negative, which implies that S doping is an exothermic process, and substitution proceeds simultaneously. Other examples of S doping in TMDs such as WSe₂ and MoTe₂ were also found in literature [12–14]. Doping with electron-donating and electron-withdrawing elements is an effective method to
modify the electronic structure of substrates and, therefore, it influences the adsorption strength of ORR intermediates and the efficiency of catalysts. However, due to the complicated nature of the ORR involving many intermediates, understanding the electron-withdrawing S dopant on the overall performance of WTe$_2$ remains unclarified. For these reasons, the present research will elucidate the ORR mechanisms on the perfect monolayer WTe$_2$ and S-doped monolayer WTe$_2$ (abbreviated as WTe$_2$S) using density functional theory (DFT) calculations and a thermodynamics model.

II. COMPUTATIONAL METHOD

We performed the DFT-based calculations using the Vienna *ab initio* simulation package [15] with the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) functional for exchange-correlation [16, 17] and the projector augmented wave (PAW) method for the core-valence interaction [18–20]. The cut-off energy for the plane-wave basis set expansion was 400 eV. The k-point mesh grid of $3 \times 3 \times 1$ was sampling by the Monkhorst-Pack technique. We took into account the dipole corrections for excluding the interaction of images in periodic supercells.

We modeled the supercell of monolayer WTe$_2$ by a slab of 5 × 5 unit cell and a vacuum of about 13 Å, as shown in Figure 1. S doping at a low coverage was created by replacing one Te atom in perfect monolayer WTe$_2$ to create the WTe$_2$S substrate. The substrates have the dimensions of $a = b = 17.61$ Å [11]. All atomic positions in the substrates and the ORR intermediates were fully optimized. The formation energy of ~6.64 eV for S doping implies that the process is exothermic and thermodynamically favorable. The formation energy E_t was defined by

$$E_t = E_{S_{Sub}}^S - E_{Sub}^i - E_{Sub}^f.$$

Here, $E_{S_{Sub}}^S$, E_{Sub}^i, and E_{Sub}^f are the total energies of the WTe$_2$S substrate, the WTe$_2$ substrate with a Te vacancy, and the isolated S atom, respectively. The formation energy was calculated by Eq. (1), because, in reality, monolayer WTe$_2$ is not formed from powder but bulk crystal by the mechanical exfoliation technique [21]. The chalcogenide vacancies often occur as an accompanying effect during the fabrication process [22]. Besides, substitutional doping with dopant atoms covalently bonded at vacancy sites is a promising process [22]. Therefore, the doping process can be interpreted as generating vacancies and updating dopant atoms into the vacancies [24].

The adsorption energy E_a for each ORR intermediate was estimated through the total energy of each component as

$$E_a = E_{Substrate+Intermediate} - E_{Substrate} - E_{Intermediate}.$$

The Gibbs free energy was studied to understand the progress of the reaction steps and the thermodynamic stability of reaction intermediates [25, 26]. The Gibbs free energy was calculated by the formula;

$$\Delta G(U) = \Delta E + \Delta ZPE - T \Delta S + eU.$$

Here, we ignored the contribution of the acid medium by taking pH = 0. The reaction energy, the zero-point energy correction, and the entropy change are denoted as ΔE, ΔZPE, ΔS, respectively. U is the electrode potential relative to the standard hydrogen electrode.

III. RESULTS AND DISCUSSION

Generally, the ORR in an acidic medium, $O_2 + 4(H^+ + e^-) \rightarrow 2H_2O$, can proceed through dissociative and associative mechanisms [1, 27] as described in Scheme 1. Both pathways begin with the adsorption of oxygen molecules onto the catalytic surface. The associative mechanism (path 2 → 4) remains the molecular state of the oxygen molecule during the electron and proton transfer, while the dissociative mechanism (path 1 → 6 → 8) involves the dissociation of the oxygen molecule to form two oxygen atoms before the hydrogenation steps. Partially, the associative mechanism can turn to the dissociative one at steps 3 and 5. The second hydrogenation step on HOO* and O* + HO* will generate O* + H$_2$O, while the third hydrogenation step on HOOH*, 2HO*, and O* + H$_2$O will create HO* + H$_2$O. The last hydrogenation step 12 will form...
for the possible intermediates of the ORR on WTe2 and WTe2S without water. Also, the adsorption energy of the DFT optimization. Scheme 1 listed the adsorption energy for the most stable configuration of intermediates. The positive adsorption energy of the ORR intermediates is thermodynamically favorable on top of the S atom. Furthermore, HO+ + H2O is also stable on top of the S atom of WTe2S with an adsorption energy of −0.683 eV. However, this value is less than that of −1.228 eV on the Te site of WTe2S. Therefore, although the S atom site is not the most favorable one, it is still an active adsorption site for HO+ + H2O on WTe2S. Also, both gas-phase O* and HO* intermediates adsorb most favorably on top of the Te atom for perfect WTe2 and the S atom for WTe2S. Noticeably, the structure of O* + H2O and HO* + H2O intermediates in their most favorable adsorption configuration on WTe2 is similar to WTe2S. However, the geometric parameters are different. Table 1 shows that the Te–O* bond length between O* + H2O and WTe2 is longer than the S–O* bond length between O* + H2O and WTe2S, which incorporate well with the trend in adsorption energy of the intermediate on the substrates. O* is sticking stronger on WTe2S than on WTe2. The O*–O distance between O* and O of the water molecule becomes elongated when the O* + H2O intermediate adsorbs on WTe2S. For HO* + H2O, the bond distances remain almost the same except for the angle Te–O*–H of HO* increases by 3° upon S doping.

Table 1: Bond lengths (Å) and bond angles (°) for O* + H2O and HO* + H2O at the most favorable adsorption site on the monolayer WTe2 and WTe2S substrates.

Substrate	O* + H2O	HO* + H2O
WTe2	Te–O* = 1.856 Å	O*–H = 0.98 Å (for HO*)
	Te–O = 3.053 Å	Te–O–H = 102° (for HO*)
WTe2S	S–O* = 1.509 Å	O*–H = 0.98 Å (for HO*)
	O*–O = 3.243 Å	Te–O–H = 105° (for HO*)
	O*–O = 2.818 Å	O*–O = 2.783 Å

The density of state (DOS) structure exhibits that for the O* + H2O intermediate (the left column of Figure 2), the O* pσ orbital is more dominant than the O* pπ orbital around ~2.0 eV, which mainly interacts with the Te pσ and pπ states of the WTe2 and WTe2S substrates due to the overlapping with the DOS of the Te atoms. However, the O* pπ orbital is more significant than the O* pσ orbital at lower energies. Contrastingly, for WTe2S, there are the peak resonances of the O* pσ orbital with the S pσ orbital and the O* pπ orbital with the S pπ orbital around ~6.5 eV. For HO* + H2O (the right column of Figure 2), the DOS of O* disperses in a broad range of energy, and they are similar for both the WTe2 and WTe2S substrates. The S p orbitals do not show a resonance with the O* p orbitals because the most favorable configuration of the HO* + H2O intermediate locates far away from the S atom. Even though, we have to note that the S atom site is the second most favorable position of HO* + H2O on the WTe2S substrate.
The interaction of the DOS between the substrates and the intermediates leads to charge rearrangement. We calculated the point charge of the atoms in the substrate-intermediate systems by the Bader partition technique to understand the charge exchange tendency. Table 2 shows that the W atoms donate while the Te atoms accumulate charge. The H$_2$O molecule in O* + H$_2$O and HO* + H$_2$O on WTe$_2$ has a total charge of 0.02e$^-$. Therefore, the water molecule almost remains neutral charge state during the adsorption of O* and HO* on WTe$_2$. The O* atom of O* + H$_2$O and HO* + H$_2$O intermediates gains charge from WTe$_2$. However, the H atom of HO* compensates a part of the charge to the Te atoms. Therefore, the Te atoms of WTe$_2$ gain a higher charge value for the adsorption of HO* + H$_2$O than O* + H$_2$O.

For clean WTe$_2$, the S atom gains charge, which is in good agreement with its electron-withdrawing nature. The O* atom of O* + H$_2$O and HO* + H$_2$O accumulates a higher portion of the charge from the WTe$_2$ substrate and the H atoms relative to the case of WTe$_2$. Hence, the adsorption strength of O* + H$_2$O and HO* + H$_2$O is stronger on WTe$_2$ than on WTe$_2$.

The ORR intermediate steps are proposed based on the stable adsorption intermediates O* + H$_2$O and HO* + H$_2$O on WTe$_2$ and WTe$_2$S as follows:

$$\text{O}_2 + 2H^+ + e^- \rightleftharpoons \text{O}^* + \text{H}_2\text{O}$$

(Table 2: The Bader point charge (e$^-$) of the atoms in the systems of O* + H$_2$O and HO* + H$_2$O intermediates with WTe$_2$ and WTe$_2$S. The positive and negative signs indicate the charge accumulation and donation, respectively.)

System	O*	O	Σ H*	Σ W	Σ Te	S
(O* + H$_2$O)/WTe$_2$	1.77	2.02	−2.0	−25.10	23.31	
(HO* + H$_2$O)/WTe$_2$	1.58	2.02	−3.0	−25.10	24.50	
clean WTe$_2$S				−24.82	23.61	1.21
(O* + H$_2$O)/WTe$_2$S	2.01	1.95	−2.0	−26.43	25.09	−0.62
(HO* + H$_2$O)/WTe$_2$S	2.02	1.57	−3.0	−26.50	24.75	1.16

a Each hydrogen atom donates charge of 1e$^-$. Charge of H$_2$O is the contribution of O and 2H.
O\(^+\) + H\(^+\) + e\(^-\) ⇌ HO\(^*\) \hspace{1cm} (5)

HO\(^*\) + H\(^+\) + e\(^-\) ⇌ H\(_2\)O \hspace{1cm} (6)

Equation (4) involves transferring two protons and two electrons at once. We can imagine that O\(_2\) (gas phase) combines with two protons and two electrons during approaching the surface of WTe\(_2\) and WTe\(_2\)S to form the stable intermediates, while the common dissociative and associative ORR mechanisms always start with adsorption of the oxygen molecule.

We obtained the Gibbs free energy for the intermediate steps, i.e., Eqs. (4) to (6), from the calculated zero-point energy, total energy, and the thermodynamics model [25, 26] at the electrode potential of 1.23 V, pH = 0, the pressure of 1 bar, and the temperature of 300 K. The Gibbs free energy for the proposed intermediate steps were calculated by the following formulae:

\[
\Delta G_i(U) = G_{i\text{HO}^*+^{2\text{H}^+}+\text{H}_2\text{O}(U)} - G_{i\text{O}^+\text{H}_2\text{O}(U)}
\]

where, \(\Delta G_i(0) \ (i = 0, 1, 2)\) obtained from Eq. (3) with \(U = 0\). The corresponding values of the Gibbs free energy were listed in Table 3.

The Gibbs free energy diagram in Figure 3(a) shows that, in the presence of H\(_2\)O, both steps of the O\(^+\) and HO\(^*\) formation on WTe\(_2\) are going uphill. In Figure 3(b), the step of the O\(^+\) formation on WTe\(_2\)S is downhill before uphill again at the step of the HO\(^*\) formation. The reason for going downhill is due to the stronger adsorption of the O\(^+\) intermediate upon the S doping. In the presence of H\(_2\)O, we find on both substrates that the first step transfers two protons and two electrons at the same time. This process is different compared to the first hydrogenation step with only one hydrogen atom at a time for various catalytic materials in the literature [1, 11, 27]. The second step is the rate-limiting step of the reaction, which is the transfer of the third proton and electron. This result is also different compared to the literature in that the first proton and electron transfer is the rate-limiting step of the reaction [1, 11, 25, 27]. The activation barrier for the whole process in the forward direction from left to right of the Gibbs free energy diagram was calculated by the energy difference between two steps of the HO\(^*\) formation and O\(_2\) + 4H for WTe\(_2\) and between two steps of the HO\(^*\) and O\(^+\) formation for WTe\(_2\)S. The barriers of 1.22 and 1.63 eV were obtained for the ORR in the presence of H\(_2\)O on WTe\(_2\) and WTe\(_2\)S, respectively. The result implies that S doping decreases the performance of WTe\(_2\) toward the ORR, which also agrees with literature for other electron-withdrawing elements or p-type doping [29–31]. Furthermore, the presence of H\(_2\)O decreases the activation barrier by 0.1 eV compared to the absence of H\(_2\)O on both WTe\(_2\) and WTe\(_2\)S substrates. The ORR mechanism involves four electrons in the current work.

Table 3: Gibbs free energy (eV) for the proposed mechanism.

Medium	Quantity	\(U = 0\) V	\(U = 1.23\) V	\(U = 0\) V	\(U = 1.23\) V
with H\(_2\)O	\(\Delta G_1(U)\)	0.40	1.63	-0.25	0.98
	\(\Delta G_2(U)\)	-2.25	-1.02	-2.45	-1.22
	\(\Delta G_0(U)\)	-1.85	0.61	-2.70	-0.24
without H\(_2\)O	\(\Delta G_1(U)\)	0.47	1.70	-0.39	0.85
	\(\Delta G_2(U)\)	-2.33	-1.10	-2.56	-1.33
	\(\Delta G_0(U)\)	-1.86	0.60	-2.95	-0.49

Figure 3: Gibbs energy diagram for the ORR in the absence (red) and presence (blue) of water on perfect WTe\(_2\) (a) and WTe\(_2\)S (b) at the electrode potential of 1.23 V, pH = 0, the pressure of 1 bar, and temperature of 300 K. The thermodynamic barriers are 1.22 and 1.63 eV for the ORR in the presence of water on WTe\(_2\) and WTe\(_2\)S, respectively.
IV. CONCLUSION

In summary, the density functional theory calculations and the thermodynamics model revealed that the ORR mechanism on perfect monolayer WTe2 and S-doped monolayer WTe2 begins with a simultaneous transfer of two protons and two electrons to dissociate and stabilize O_2 in the form of O^- + H_2O. The second step, i.e., the transfer of the third proton and electron, is the rate-limiting step with the thermodynamics barrier of about 1.22 and 1.63 eV for WTe2 and WTe2S, respectively. The final step forms water, the by-product of the ORR. We have to emphasize that the mechanism does not start with the adsorption of the oxygen molecules. Also, the rate-determining step is not the first hydrogenation step as the common dissociative and associative mechanisms. Interestingly, the ORR proceeds via a four-electron process on the transition-metal dichalcogenides. The S dopant harms the ORR performance of WTe2 because it enhances the adsorption strength of O^- and HO^* intermediates and leads to the increase of the ORR thermodynamics barrier.

Acknowledgments

This research was funded by Ho Chi Minh City University of Technology–VNU-HCM under grant number T-KHUD-2019-18.

References

[1] J. Stacy, Y. N. Regmi, B. Leonard, and M. Fan, Renew. Sust. Energ. Rev. 69, 401 (2017).
[2] O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya, and K.-I. Ota, Electrochem. Commun. 6, 105 (2004).
[3] D. N. Son, P. N. Thanh, N. D. Quang, K. Takahashi, and M. P. Pham-Ho, J. Appl. Electrochem. 47, 747 (2017).
[4] D. N. Son, P. Van Cao, T. T. T. Hanh, V. Chihaia, and M. P. Pham-Ho, Electrocatalysis 9, 10 (2017).
[5] R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, G. Shan, M. Yang, and J. Wang, npj Comput. Mater. 5, 78 (2019).
[6] Y. Wang, J. Li, and Z. Wei, J. Mater. Chem. A 6, 8194 (2018).
[7] Y. Feng, A. Gago, L. Timperman, and N. Alonso-Vante, Electrochim. Acta 56, 1009 (2011).
[8] C. (Rose) Zhu, D. Gao, J. Ding, D. Chao, and J. Wang, Chem. Soc. Rev. 47, 4332 (2018).
[9] S. Jayabal, G. Saranya, J. Wu, Y. Liu, D. Geng, and X. Meng, J. Mater. Chem. A 5, 24540 (2017).
[10] H. Zhang, Y. Tian, J. Zhao, Q. Cai, and Z. Chen, Electrochim. Acta 225, 543 (2017).
[11] O. My Na, N. T. Xuan Huyph, P. T. Thi, V. Chihaia, and D. N. Son, RSC Adv. 10, 8460 (2020).
[12] F. C. Chen, X. Luo, R. C. Xiao, W. J. Lu, B. Zhang, H. X. Yang, J. Q. Li, Q. L. Pei, D. F. Shao, R. R. Zhang, L. S. Ling, C. Y. Xi, W. H. Song, and Y. P. Sun, Appl. Phys. Lett. 108, 162601 (2016).
[13] Y. Li, Q. Gu, C. Chen, J. Zhang, Q. Liu, X. Hu, J. Liu, Y. Liu, L. Ling, M. Tian, Y. Wang, N. Samarth, S. Li, T. Zhang, J. Feng, and J. Wang, Proc. Natl. Acad. Sci. U.S.A. 115, 9503 (2018).
[14] M. Zou, J. Chen, L. Xiao, H. Zhu, T. Yang, M. Zhang, and M. Du, J. Mater. Chem. A 3, 18090 (2015).
[15] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[16] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
[17] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[18] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[19] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[20] P. E. Blöchl, C. J. Först, and J. Schimpi, Bull. Mater. Sci. 26, 33 (2003).
[21] Y. C. Jiang, J. Gao, and L. Wang, Sci. Rep. 6, 19624 (2016).
[22] H. Kwon, B. Ji, D. Bae, J.-H. Lee, H. J. Park, D. H. Kim, Y.-M. Kim, Y.-W. Son, H. Yang, and S. Cho, Appl. Surf. Sci. 515, 145972 (2020).
[23] H. Fang, S. Chuang, T. C. Chang, K. Takeki, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
[24] Z. Jin, Z. Cai, X. Chen, and D. Wei, Nano Res. 11, 4923 (2018).
[25] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson, J. Phys. Chem. B 108, 17886 (2004).
[26] D. N. Son and K. Takahashi, J. Phys. Chem. C 116, 6200 (2012).
[27] D. N. Son, O. K. Le, V. Chihaia, and K. Takahashi, J. Phys. Chem. C 119, 24364 (2015).
[28] H. Liu, N. Han, and J. Zhao, RSC Adv. 5, 17572 (2015).
[29] H. Zhang, Y. Tian, J. Zhao, Q. Cai, and Z. Chen, Electrochim. Acta 255, 543 (2017).
[30] X. J. Chua, J. Luxa, A. Y. S. Eng, S. M. Tan, Z. Sofer, and M. Pumera, ACS Catal. 6, 5724 (2016).
[31] V. Urbanová, P. Lazar, N. Antonatos, Z. Sofer, M. Otyepka, and M. Pumera, ACS Appl. Mater. Interfaces 12, 20383 (2020).

All articles published on e-J. Surf. Sci. Nanotechnol. are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You are free to copy and redistribute articles in any medium or format and also free to remix, transform, and build upon articles for any purpose (including a commercial use) as long as you give appropriate credit to the original source and provide a link to the Creative Commons (CC) license. If you modify the material, you must indicate changes in a proper way.

Published by The Japan Society of Vacuum and Surface Science