Normothermic liver machine perfusion as a dynamic platform for regenerative purposes. What does the future have in store for us?
Lascaris, Bianca; de Meijer, Vincent E; Porte, Robert J

Published in:
Journal of Hepatology

DOI:
10.1016/j.jhep.2022.04.033

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lascaris, B., de Meijer, V. E., & Porte, R. J. (2022). Normothermic liver machine perfusion as a dynamic platform for regenerative purposes. What does the future have in store for us? Journal of Hepatology, 77(3), 825-836. Advance online publication. https://doi.org/10.1016/j.jhep.2022.04.033
Normothermic liver machine perfusion as a dynamic platform for regenerative purposes: What does the future have in store for us?

Bianca Lascaris, Vincent E. de Meijer, Robert J. Porte*

Summary
Liver transplantation has become an immense success; nevertheless, far more recipients are registered on waiting lists than there are available donor livers for transplantation. High-risk, extended criteria donor livers are increasingly used to reduce the discrepancy between organ demand and supply. Especially for high-risk livers, dynamic preservation using machine perfusion can decrease post-transplantation complications and may increase donor liver utilisation by improving graft quality and enabling viability testing before transplantation. To further increase the availability of donor livers suitable for transplantation, new strategies are required that make it possible to use organs that are initially too damaged to be transplanted. With the current progress in experimental liver transplantation research, (long-term) normothermic machine perfusion may be used in the future as a dynamic platform for regenerative medicine approaches, enabling repair and regeneration of injured donor livers. Currently explored therapeutics such as defatting cocktails, RNA interference, senolytics, and stem cell therapy may assist in the repair and/or regeneration of injured livers before transplantation. This review will provide a forecast of the future utility of normothermic machine perfusion in decreasing the imbalance between donor liver demand and supply by enabling the repair and regeneration of damaged donor livers.

Introduction
Liver transplantation offers the only definitive cure for end-stage liver disease but primarily relies on the supply of suitable donor livers. Because of the ongoing imbalance between demand and supply, up to 20% of patients die while on the transplant waiting list.1 The discrepancy between organ availability and demand has forced an increasing use of “extended criteria donor” (ECD) livers for transplantation, including fatty livers, livers from donors of older age, or livers donated after circulatory death (DCD). However, a significant number of ECD livers are currently discarded.2,3 Meanwhile, fatty liver disease has emerged as the most common chronic liver disease, affecting up to a quarter of the global population. It is expected that fatty liver-induced cirrhosis will become the leading indication for liver transplantation worldwide.4,5 Besides, due to the success of transplant oncology, indications for liver transplantation are expanding.6,7

A practical solution to this conundrum is ex situ dynamic preservation of livers before transplantation to aid in the careful selection of ECD livers, thereby optimising utilisation rates. Also, ex situ dynamic preservation has shown that many livers that were initially discarded can be safely used, leading to the extension of standard criteria for donor organs. Compared to traditional static cold preservation, ex situ machine perfusion improves the quality of donor livers, and allows for longer preservation times and viability testing.8–11 By using normothermic (37°C) machine perfusion (NMP), high-risk ECD livers have been successfully transplanted with excellent short-term outcomes.7,10,12,13 Several clinical trials have already been conducted, and many more are ongoing, primarily to investigate the feasibility of NMP, patient and graft survival, postoperative and graft complications, and to perform graft viability assessments. A detailed overview of different (ongoing) clinical trials is presented elsewhere.14,15 However, to further increase the availability of donor livers suitable for transplantation, new strategies are required that make it possible to use organs that are initially too damaged to be transplanted. With the current progress in NMP research, whereby experimental human donor livers have been preserved for up to 7 days on a custom-made NMP device,16 NMP may become a platform for regenerative medicine approaches, enabling repair and reconditioning of injured donor livers, immunomodulation, and other treatments in the future.

This review provides a forecast of the potential future utility of long-term (≥24 h) NMP in decreasing the discrepancy between donor liver demand and supply (Fig. 1 and 2). The use of NMP outside liver transplantation, for instance as a platform to test the safety and effectiveness of new therapeutics in metabolically active livers before
Fig. 1. NMP as a platform for repair and regenerative medicine purposes. To obtain a better balance between the supply and demand for donor livers, NMP can be used as a platform for repair and regenerative medicine to improve the quality of extended criteria donors and make them suitable for transplantation. (A) Donor liver taken out. The liver can be damaged during life, procurement, and/or preservation. (B) The liver is placed on machine perfusion after procurement. Machine perfusion can be used for several purposes, depending on the (expected) degree of injury to the donor liver and/or logistical circumstances. (C) D-HOPE: livers from DCD donors can be placed on hypothermic perfusion to decrease post-transplantation complications (e.g., due to IRI). This is already implemented in clinical care in some clinics. (D) NMP: the viability of high risk, ECD livers of questionable quality can be tested with NMP: i) When the liver fulfills the viability criteria, the liver proceeds to transplantation (current practice). ii) When the viability criteria are not met, the liver will be discarded (current practice). The liver could remain on NMP for treatment to repair or regenerate it in the future. iii) When viability criteria are not met, the donor liver remains on NMP for therapeutic interventions. Different treatments (e.g., defatting cocktails, RNAi, senolytics) can be used during NMP for donor livers that are too damaged for transplantation. Because during NMP the liver is perfused in isolation, the therapeutics will only affect the liver and no other parts of the human, reducing potential side effects and decreasing the amount of drug needed, and thus the cost. When the liver subsequently meets the viability criteria after the interventions, the repaired donor liver proceeds to transplantation. When criteria are not met, the liver will be discarded. iv) When criteria are not met, the liver remains on NMP for the regeneration interventions. Regeneration can take place with decellularised scaffolds and/or organoids. Also, NMP can be used for the regeneration of partial livers. Livers from deceased donors can be split into 2 parts, or partial livers from living donors can be placed on NMP for regeneration to a full size, passively or with treatment (not shown). (E) Livers that were initially discarded are now transplanted after the use of (long-term) NMP: DCD, donation after circulatory death; D-HOPE, dual hypothermic oxygenated machine perfusion; ECD, extended criteria donor; NMP, normothermic machine perfusion; RNAi, RNA interference.

the start of clinical trials, is outside the scope of this review.

Definitions for liver repair and regeneration

Although organ repair and regeneration are commonly used terms in the field of machine perfusion, there is currently no consensus about their exact definition. In a review, Resch et al. did not find uniform terminology and concluded that only the term organ preservation should be used for now because organ reconditioning, repair, and regeneration have not yet been established clinically.17

According to the Cambridge dictionary, repair means: “to put something that is damaged, broken, or not working correctly, back into good condition or make it work again”.18 This would mean that repairing damaged livers is to correct the damage that has occurred during the donor’s life, the procurement, or the preservation period. For regeneration, the Cambridge dictionary definition in biology is: “to grow again, or to make something grow again, for example, new tissue or a new part”.19 This would imply that it is necessary to renew and/or replace the old/damaged tissue to regenerate damaged livers. This review will adhere to the aforementioned terminology for repair and regeneration.

NMP as a platform for repair and regeneration

Promising therapeutics to treat ECD livers are defatting strategies, RNA interference (RNAi), and senolytics. These therapies mainly focus on repairing the damage that has occurred to the donor liver during life (e.g. steatosis, old age) or during procurement and/or reperfusion (e.g. DCD). When donor livers are too damaged, and repair during NMP is not possible or desirable, assisted regeneration of a part of the liver (e.g. the bile ducts) or the whole liver could be an alternative. The use of regeneration with autologous cells from the recipient can also minimise the complications of rejection and the use of immunosuppressants.20,21 In deceased donor liver transplantation, it is currently not possible to use autologous cells because of the limited time between the procurement of the liver allograft and subsequent transplantation. However, with the advent of long-term
NMP, this might become a possibility. Whole liver regeneration of large animals or humans has not yet been accomplished, but rapid developments in whole organ decellularisation, generation of scaffolds, and creation of human organoids, in combination with long-term NMP, may create a range of possibilities.

Also, after a reduction (e.g., after partial hepatectomy or liver split) in mass, the liver has the ability to regenerate almost all of its original mass within a week. Mueller et al. have shown that long-term perfusion of partial human livers is possible, which could allow for the use of isolated perfused hemi-livers in the future.

Conditions to support liver repair and regeneration
In clinical settings, NMP was initially used for a duration of 3-6 h, but (experimental) perfusion of 24 h and longer is not uncommon anymore. However, to support liver repair and mainly regeneration, long-term NMP (>24 h) will be necessary. To keep a liver metabolically active for more than 24 h, the machine has to mimic the human body to maintain a physiologic environment for the liver (Fig. 3). However, several developments are required to make long-term NMP a success. These include long-term oxygenators that last for at least 7 days, pumps that minimise haemolysis, an artificial kidney to remove waste products, an artificial pancreas and nutrients to meet the demands of the liver, a container where the liver stays undamaged and sterile, and a perfusate containing an oxygen carrier, but also medication to prevent or limit activation of coagulation and the immune system. As Eshmuminov et al. showed in their research on 7-day ex situ liver NMP, 5 major obstacles needed to be addressed by them: i) control of glucose metabolism, ii) prevention of haemolysis, iii) removal of waste products, iv) control of perfusate oxygenation, and v) simulation of diaphragm movement to prevent pressure necrosis. Also, sterility was a problem that needed to be addressed. Nevertheless, these investigators succeeded in long-term NMP of porcine and human (discarded) livers for up to 7 days.
days, which shows the potential for repair and regeneration of discarded donor livers in combination with NMP.

NMP may also have limitations, such as inducing ischaemia-reperfusion injury (IRI) while the liver perfuses on the machine. Therefore it may be helpful to combine NMP with other machine perfusion techniques. Several groups, including the Birmingham group and our group, have applied hypothermic machine perfusion before NMP. This combined approach may lead to improved mitochondrial function during hypothermic machine perfusion, resulting in reduced oxidative and inflammatory damage during subsequent NMP. Especially for long-term NMP, hypothermic machine perfusion prior to NMP might be of particular value.

Ex situ treatment strategies

Defatting strategies

Hepatic steatosis can be classified as mild (<30%), moderate (30-60%), or severe (>60%), and it is often subcategorised as macro- and microvesicular steatosis. Severely steatotic livers are generally not used for transplantation because of the increased risk for IRI and primary non-function. Several defatting strategies have been studied which might decrease the amount of hepatic steatosis. Some promising results have already been achieved in isolated hepatocytes and precision-cut liver slices, as well as in rat and discarded human livers in combination with NMP.

An often studied defatting cocktail is the combination of forskolin, scoparone, nuclear receptor ligands GW7647 and GW501516, hypericin, and visfatin, which all play a role in fat metabolism, uptake, or accumulation. This cocktail led to a 4-fold faster decrease in macrovesicular steatosis in isolated rat hepatocytes and a triglyceride content reduction of 65% in rat livers after only 3 h NMP, compared to a 30% reduction with a control perfusate. Histology showed a significant decrease in lipid vesicles in hepatocytes, especially in the perportal area (zone 1), and a restored hepatocellular cytoplasmic volume. The addition of L-carnitine to this cocktail led to even better results, by increasing fatty acid transportation to the mitochondria. Reductions in tissue triglyceride levels and macrovesicular steatosis were seen in discarded human steatotic livers after 6 h NMP. The addition of L-carnitine also decreased IRI, expression of oxidative injury markers, activation of immune cells, and inflammatory cytokines in the perfusate.

The defatting combination of L-carnitine and exendin-4 led to an increased triglyceride concentration in the perfusate in human steatotic livers after 8 h NMP, but information on changes in tissue fat content was not reported. However, these promising results with NMP might also reflect the
effect of a continuous flow passing the hepatocytes. Yarmush et al. showed that flow is an important catalyst for the effectiveness of a defatting cocktail. By adding flow conditions to a defatting cocktail in isolated hepatocytes, the defatting time decreased from 48 h to 4-6 h (70% defatting), probably because of the increase in L-carnitine uptake by the cells.29 Another possibility to increase the speed of defatting passively might be the use of mild hyperthermia during machine perfusion.29

Unfortunately, some of these compounds are not approved for clinical use yet and might actually be harmful despite these encouraging results. The first mentioned defatting cocktail has been reported to increase lactic dehydrogenase activity, and the GW-compounds are associated with hepatic carcinogenesis and mitochondrial dysfunction.33,40 For this reason, other agents have also been tested, with success. The replacement of the GW-compounds with 2 polyphenols, epigallocatechin-3-gallate, and resveratrol, led to less hepatotoxicity in rat livers, and glial cell line-derived neurotrophic factor led to no alteration in lactic dehydrogenase activity in steatotic mouse livers after 4 h NMP, while both were still effective.33,40

In summary, in experimental studies, defatting cocktails can decrease steatosis in livers in just a few hours. However, with long-term NMP, it might become possible to defat livers without extra medication because a “spontaneous” decrease in hepatic triglyceride content and steatosis is also seen without defatting cocktails.35,41 To make this work, we propose that the fat that is transported to the perfusion solution (e.g., as very-low-density lipoprotein) should be removed from the perfusate with a filter. Otherwise, the perfusate will become saturated with fat, a defatting limit will be reached, and potentially, fat emboli may occlude the oxygenators leading to impaired gas exchange.

RNA interference
RNA interference (RNAi) is a natural process of post-transcriptional gene regulation that inhibits the translation of mRNA into proteins by adding a complementary strand. By explicitly targeting genes related to the causes of donor liver damage or post-transplantation complications, such as IRI or graft rejection, these genes can be transiently silenced to prevent such problems from arising.32 Several molecules, including microRNA, small interfering RNA (siRNA), and short hairpin RNA, can be used for therapeutic RNAi.62

IRI is associated with liver apoptosis, mediated by death receptors such as Fas and tumour necrosis factor α, and mitochondrial dysfunction induced by cellular stress. Also, apoptotic genes, such as caspase-8 and caspase-3, and those involved in the nuclear factor-kB pathways can induce IRI.31–43 Silencing these genes in rodent liver and transplantation models of IRI has resulted in less Fas, caspase-8, and caspase-3 protein expression and activity and better preservation of the liver architecture, indicating diminishing IRI.43,44 Many more experiments have been successfully performed on different targets to diminish IRI and graft rejection, as reviewed by Brüggenwirth et al.42

The downside of these agents is that they have to be administrated to the donor a few hours to days before organ procurement.62 This is where NMP may become an attractive solution. During NMP, the medication to target these genes can be administrated ex situ to the isolated liver before transplantation. This has already been tested in a few experimental studies.30–40 siRNA against the Fas receptor, coated with in vivo vectamine lipid nanoparticles, were added directly to the perfusion solution and were taken up by hepatocytes in a rat liver after 4 h NMP.49 Ablation of endothelial cell class II major histocompatibility complex molecules, which can reduce protein expression in the allograft and protect the graft against rejection, has been achieved by administering siRNA-releasing poly(amine-co-ester) nanoparticles during NMP – this led to effective and reliable particle uptake and major histocompatibility complex class II molecule silencing in vascular endothelial cells in mouse livers, without causing toxic effects.48

RNAi can also be used for antiviral treatment of the donor liver, such as for hepatitis C. The hepatitis C virus is dependent on the presence of microRNA-122, which can be silenced by miravirsen, a locked-nucleic acid oligonucleotide that can inhibit hepatitis C virus replication. After 4 h of NMP, miravirsen led to microRNA-122 sequestration and target gene derepression in porcine livers, preventing hepatitis C infection after liver transplantation.49

The success of these experiments can be enhanced using ex situ NMP, which allows for the delivery of therapeutics into the isolated liver. This will minimise systemic toxicity and reduce costs, as only the dose required for a single organ will be needed. In this way, RNAi can directly act inside the liver, thereby potentially curing, protecting, or repairing damaged livers before transplantation. While the current literature on the application of RNAi during NMP is limited to experimental studies, RNAi in other fields is already being explored in clinical trials.50 The application of RNAi in liver transplantation is still in its infancy, but successes in other areas make RNAi a serious candidate to become a therapeutic agent for use during NMP in the future.

Senolytics
Senescent cells (SCs) are cells in an irreversible state of cell-cycle arrest that triggers the production of a range of inflammatory cytokines and chemokines, matrix metalloproteinases, and growth factors referred to as the senescence-associated secretory phenotype.51–52 Cellular senescence results from a stress response, such as inflammatory or metabolic signals, DNA damage, reactive oxygen species, and mitochondrial dysfunction.31 For this reason, SCs play an important role in age-related and chronic
Review

Diseases, as well as in solid organ transplantation due to the systemic response to IRI. Thus, targeting SCs to limit the senescence-associated secretory phenotype during and shortly after liver transplantation is garnering interest.

Senolytics are a group of drugs that selectively target SCs to remove their protection from apoptosis and hence induce apoptosis. Because SCs can form from all kinds of cells, different senolytics can target specific tissue types. Several different senolytics are currently being investigated, and some are already being tested in clinical trials, such as dasatinib and quercetin, navitoclax, and heat-shock protein 90 inhibitors.

Senescence plays a major role in liver dysfunction. Accumulation of SCs promotes hepatic fat accumulation and steatosis, which were significantly reduced after dasatinib administration in mouse livers and human adipose tissue. The same treatment also cleared SCs and diminished cell-free mitochondrial DNA release in old mice, thereby dampening the senescence-associated secretory phenotype and prolonging the survival of old cardiac allografts. Furthermore, the treatment with the senescence-inhibiting drug ABT-737 improved regeneration by disrupting p21 expression, a senescence-associated gene.

Besides hepatocytes, cholangiocytes are also influenced by SCs. Senolytics, such as B-cell lymphoma–extra-large inhibitors (A-1331852 and navitoclax) that induce apoptosis in senescent murine biliary epithelial cells or AP20187 and fisetin that reduce senescence markers associated with cholangiopathy could be used to treat cholangiopathy.

Senolytics can potentially be administrated to the donor or the recipient. However, during NMP, senolytics will directly target the isolated liver, thereby enabling optimal dosing to achieve adequate treatment effects and reduce the risk of side effects. To date, no experimental or clinical research is available on the combination of senolytics with NMP; future work will need to demonstrate its efficacy to diminish or prevent post-transplantation complications, such as post-transplant cholangiopathy.

Stem cell/progenitor cell therapy
Stem cells are cells with the ability to divide for an indefinite period and can differentiate into different kinds of cells under specific conditions and signals. Mesenchymal stem cells (MSCs) are present in various adult organs and often function to support organs. MSCs can be isolated from various tissues and organs, such as bone marrow and adipose tissue, and may be used to treat diseases. MSCs have immunosuppressive functions, participate in the anti-inflammatory response, and secrete cytokines that inhibit the macrophage-mediated inflammatory response and reduce hepatic IRI because of their reparative immunomodulatory effects. MSCs are most often used in experimental settings to reduce IRI and to overcome rejection via their immunomodulatory action. In a preclinical setting with rats, injection of MSCs after reperfusion preserved hepatocyte integrity and suppressed inflammatory responses, oxidative stress, and apoptosis, and inhibited acute allograft rejection after liver transplantation.

Some studies showed promising results with MSCs in combination with machine perfusion. Human bone marrow MSCs (BMMSCs) have been injected into the hepatic artery or portal vein of a porcine liver kept on hypothermic machine perfusion for 30 min, where a wide range and patchy distribution was shown, with preserved paracrine activity. After 4 h of NMP, to mimic the reperfusion phase of liver transplantation, an increase in the cytokines IL-6 and IL-8 was observed, showing regenerative and immunomodulatory effects. Injection of BMMSCs during NMP of DCD rat livers led to improved liver function with reduced histological damage, serum and liver pro-inflammatory cytokine levels, oxidative stress injury, mitochondrial damage and biliary epithelial cell injury, and prolonged survival time.

These improvements were enhanced by administering heme oxygenase-1-modified BMMSCs during NMP in rats, which improved post-transplant survival and promoted activation of peribiliary glands to facilitate repair of injured bile duct epithelium in recipient rats. These promising results were also seen in discarded human livers. Multi-potent adult progenitor cells were infused directly into the right lobe via the right hepatic artery or the portal vein during NMP. The introduction of the cells directly into the target organ was successful, without any noticeable adverse effect on the perfusion itself.

Extracellular vesicles (EVs) released by stem cells have also been used in a preclinical setting to mitigate IRI. EVs play an important role in cell-to-cell communication and contain several materials, such as proteins, lipids, and RNA, that can transfer to other cells. Human liver stem cell-derived EVs were added during NMP of rat livers. After 4 h of NMP, EV uptake by hepatocytes was shown, and the rat liver allograft showed less histological damage and injury markers.

Regeneration techniques
Even though a liver itself has regenerative properties, for assisted regeneration, a good basic structure that can provide biomechanical support for tissue to regenerate is preferred. A scaffold, which is a template on which (stem) cells can be attached to proliferate, differentiate, migrate, repair, and regenerate new tissue, is frequently used for this purpose.

Because scaffolds have to mimic the properties of the extracellular matrix (ECM), regarding both structure and cellular behaviour/interactions, scaffolds made by decellularisation of natural tissues or organs have
many advantages, such as maintaining natural geometric morphology, vasculature structure, and active ECM proteins that are beneficial for recellularisation.17,83 The downside is the need for (discarded) organ donors. Although porcine livers might also be used for decellularisation and recellularisation with human cells in the future.4,85

Different protocols can achieve decellularisation, including chemical and enzymatic reagents and physical methods.77,81,86,87 For whole organs, the perfusion method is preferred and is possible because the basic structure of the vascular system stays intact. This method shows better preservation of the ECM and has the advantage of supplying the liver with oxygen and nutrients.79,81 It can also be decellularised to serve as a scaffold.89

While liver decellularisation is a delicate procedure, promising experimental results have already been reported with animal and discarded human livers. The basic architecture of the liver allograft, consisting of the ECM with the biliary drainage network and the vascular structure, is preserved and immunological compounds are removed.80,82,86–88,90–95

After decellularisation, recellularisation has to take place. Rebuilding the scaffold can be achieved by several cells. Induced pluripotent stem cells (iPSCs) are most often used, but hepatic and endothelial progenitor cells, and embryonic, foetal and mesenchymal stem cells have also been used, as have foetal and adult/mature hepatocytes.80,92,93,96–98 Because the liver is composed of many different cell types, it is a challenging task to rebuild a whole functioning liver. Approximately 30 billion hepatocytes are required for a full-size liver, which is not easily achieved.78,80,99 The sheer number of cells required is not the only problem, which cell types to use, the method, sequence/timing of seeding, and the culture media also have to be studied before whole livers can be regenerated.21,96,100

Different recellularisation methods have been used, but the continuous perfusion method has shown many advantages and is now commonly used.96 During machine perfusion, cells are either injected into the perfusion fluid or directly into the portal vein in a single or multi-step approach, with the multi-step approach leading to a higher number of cells attaching to the liver.4,80,82,89,90,101 The machine perfusion method also provides a better distribution of cells. One study showed that the primary rat hepatocytes remained around the vessels for the first 4 h, but after 1–2 days, they were distributed to the whole decellularised liver scaffold.102 Also, the direction in which the seeding occurs can have an influence on the distribution of cells, which is better with antegrade flow (through the portal vein) than with retrograde flow (through the vena cava and hepatic veins).102

Machine perfusion already plays an important part in this method of experimental liver regeneration. For decellularisation, either hypothermic machine perfusion alone or combined with NMP can be used, but for the regeneration process, NMP is more appropriate.80,87,90,103 This method of regeneration can not only be used for the generation of whole livers but can also be used as a therapeutic option for the administration of liver cubes in hepatic diseases or after hepatectomy.96,103 However, despite major progress in this field, no large animal or human livers have been regenerated and transplanted yet. This is mainly because of the diversity and very high number of different cells that need to be generated in line with good manufacturing practices and the difficulties of re-endothelialisation of the vascular system to prevent coagulation activation.96

The development of organoids has been increasing over the last decade. An organoid has recently been defined by consensus as a “three-dimensional structure derived from (pluripotent) stem cells, progenitor, and/or differentiated cells that self-organize through cell-cell and cell–matrix interactions to recapitulate aspects of the native tissue architecture and function in vitro”.104 Liver organoids can be developed from the same cells used to recellularise scaffolds. The cells can differentiate into different cells depending on the culture medium and conditions used.104–107 Also, autologous cells can be obtained from patients to decrease graft rejection and immunological problems after transplantation.80 However, primary hepatocytes remain scarce, which is why iPSCs are still commonly used.105

The advantage of a 3D structure is that organoids resemble the actual tissue better, including the architecture and ECM, which is important for cell–cell interactions.78,81,83 However, a problem with large 3D organoids is the vascularisation of these structures and not receiving enough oxygen and nutrients, resulting in necrosis. This problem might be solved by NMP, where the perfusion machine acts as a platform for the implantation and distribution of organoids in injured liver allografts. In an experimental setting, Sampaziotis et al. have used NMP to deliver cholangiocyte organoids to donor livers and demonstrated repair of injured bile ducts. Cholangiocyte organoids, made from primary human cholangiocytes, exhibit plasticity and can keep their in vivo signatures when placed around the “original” biliary tree. The organoids were injected into a terminal branch of the intrahepatic ducts. After only 100 h of NMP, the organoids were still in place and had been regenerating so that after NMP, the intrahepatic ducts consisted of native and transplanted cells, without signs of cholangiopathy and with higher pH and higher bile volume than control livers.106 This success represents an early example of the increasing possibilities of long-term NMP in the development of organoids and the regeneration of damaged livers.

Key point

Major challenges and barriers still need to be overcome before NMP can be used for this purpose.
Table 1. Proposed research agenda to enable repair and regeneration of damaged livers with NMP in the future.

Subject	What remains to be done
Long-term (≥24 h) NMP machine	Assessment of safety, feasibility and efficacy, and obtaining clinical approval for long-term NMP devices
Trained personnel	Development of clinical training programs
Ex situ treatment strategies	Assessment of safety, feasibility and efficacy, and obtaining clinical approval
Viability criteria	Validation of previously established viability criteria Development of new viability criteria
Costs	Economic cost-utility analysis of new treatments and technology

NMP, normothermic machine perfusion.

Challenges and barriers

The aforementioned future ideas for possible treatments and therapies to treat damaged livers with NMP can only become a reality if more research is done and some major challenges and barriers are overcome.

A major barrier is having clinically certified long-term NMP devices available to apply these treatments. Although no such machine is currently available, both clinically certified short-term machines as well as custom-made devices are used for perfusion for up to 7 days for experimental research. In addition to most of the treatments described, devices that enable long-term NMP are not yet clinically approved, which could potentially take several years.

Another challenge is the translation of these treatments with (long-term) NMP into clinical practice. Even if an NMP machine becomes fully automated, it will require trained personnel who will need to be able to adjust the machine at any time of day as needed. The NMP device must also be readily accessible to certified personnel at all times while maintaining sterility.

For long-term NMP, viability assessment criteria need to be established to evaluate treatments and decide whether the liver is suitable for transplantation or not. Currently, (non-validated) hepatocellular and/or cholangiocellular viability markers are used. However, when using NMP for repair and regeneration, new biomarkers will have to be identified to act as viability criteria in order to evaluate the effect of the treatments in addition to the current criteria (Box 1).

Not unimportantly, costs associated with the implementation of long-term NMP should be evaluated, especially in light of exponentially increasing overall healthcare costs. In the end, evidence of the clinical and economic advantages of this new technology will be needed to drive its implementation.

Despite an increase in experimental research on repair and regeneration strategies of damaged donor livers in combination with NMP, many challenges and barriers need to be addressed first. Table 1 shows an agenda outlining the topics that need to be explored before the treatments described in this review can become a reality.

Conclusion

To reduce the discrepancy between organ demand and supply in liver transplantation, NMP may increasingly be used in the future as a dynamic platform to optimise organ utilisation by enabling the repair and regeneration of damaged donor livers. Machine preservation has already been shown to be of great value in diminishing post-transplantation complications and increasing the donor pool via increased use of high-risk ECD livers (following pre-transplant viability testing). In the last few years, experimental research on the repair and regeneration of organs has increased exponentially. Several therapeutics, such as defatting cocktails, RNAi, senolytics, and stem cell therapy, might repair damaged livers, whereas stem cell therapy, scaffolds, and organoids may assist in the regeneration of injured livers before transplantation.

Box 1. Overview of potential biomarkers for assessment of viability during NMP.

Current viability criteria (validated and non-validated)

Hepatocyte function
- Bile production
- Injury markers (ALT, AST)
- Lactate clearance
- pH maintenance
- Glucose metabolism
- Coagulation factors (D-dimer, platelets)
- miRNAs
- Inflammation markers (Interleukins)
- TNF-α
- Endothelin-1
- FMN

Cholangiocyte function
- Biliary pH, bile/perfusate ratio
- Biliary glucose, bile/perfusate ratio
- Biliary bicarbonate, bile/perfusate ratio
- Biliary LDH
- Cholangiocyte-derived microRNAs-122

Long-term NMP viability criteria (additional to current)
- Response to vasoactive agents
- Response to pancreatic hormones
- Production of complement factors
- Production of coagulation proteins

Treatment specific (additional to current and long-term)
- Triglyceride content (defatting cocktails)
- Protein expression (RNAi, stem cell/progenitor cell)
- Senescence markers (senolytics)
- Biopsies (regeneration, RNAi, stem cell/progenitor cell)

ALT, alanine aminotransferase; AST, aspartate aminotransferase; FMN, flavin mononucleotide; LDH, lactate dehydrogenase; miRNA, microRNA; NMP, normothermic machine perfusion; RNAi, RNA interference; TNF-α, tumour necrosis factor-α.
Nevertheless, some major challenges and barriers need to be overcome before NMP can be used as a platform for the repair and regeneration of damaged donor livers. Currently, only a minority of liver transplant centres worldwide have employed NMP in their clinical practice. If future high-level evidence supports the widespread introduction of these techniques, overcoming logistical constraints, including optimal utilisation of these relatively expensive devices and the availability of specially trained perfusion personnel, will be essential. In addition, most of the aforementioned therapies are based on experimental research and require extensive clinical testing and approval before being used in clinical practice. This review may guide the future research agenda on NMP as a dynamic platform for the repair and regeneration of damaged donor livers, potentially leading to better utilisation of the current donor pool, ultimately reducing transplant waiting lists and improving patient outcomes.

Abbreviations

BMMSCs, bone marrow mesenchymal stem cells; DCD, donation after circulatory death; ECD, extended criteria donor; ECM, extracellular matrix; EVs, extracellular vesicles; iPSCs, induced pluripotent stem cells; IRI, ischaemia-reperfusion injury; MSCs, mesenchymal stem cells; NMP, normothermic machine perfusion; RNAi, RNA interference; SCS, senescent cells; siRNA, small-interfering RNA.

Financial support

V.E.d.M reports a VENI research grant by the Dutch Research Council (NWO; grant #0950161810030), a Research grant from the Dutch Ministry of Economic Affairs (Health–Holland Public Private Partnership grant #PPP-2019-024), and a Research grant from the Dutch Society for Gastroenterology (NVGE #01-2021).

Conflict of interest

The authors declare no conflicts of interest that pertain to this work.

Please refer to the accompanying ICMJE disclosure forms for further details.

Authors’ contributions

Concept and design: B.L., V.E.d.M and R.J.P. Writing of article & preparing figures and tables: B.L. Editing and revision & approval of the final version: B.L., V.E.d.M and R.J.P.

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2022.04.033.

References

Author names in bold designate shared co-first authorship

[1] Kwong AJ, Kim WR, Lake JR, Smith JM, Schladt DP, Skeans MA, et al. OPTN/SRTR 2019 annual data report: liver. Am J Transpl 2021;21(Suppl 2):208–315.
[2] Orman ES, Barritt AS, Wheeler SB, Hayashi PH. Declining liver utilization for transplantation in the United States and the impact of donation after cardiac death. Liver Transpl 2013;19:59–68.
[3] Busuttil RW, Tanaka K. The utility of marginal donors in liver transplantation. Liver Transplant 2003;9:651–663.
[4] Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015;148:547–555.
[5] Rajaram RB, Jayaraman T, Yoong BK, Koh PS, Loh PS, Koong JK, et al. Non-alcoholic fatty liver disease and obesity among adult donors are major challenges to living donor liver transplantation: a single-centre experience. Asian J Surg 2021.
[6] Sapisochin G, Hibi T, Toso C, Man K, Berenguer M, Heimbach J, et al. Transplant oncology in primary and metastatic liver tumors: principles, evidence, and opportunities. Ann Surg 2021;273:483–493.
[7] Ceresa CDL, Nasralla D, Pollock JM, Friend PJ. Machine perfusion of the liver: applications in transplantation and beyond. Nat Rev Gastroenterol Hepatol 2022.
[8] de Meijer VE, Fujiyoshi M, Porte RJ. Ex situ machine perfusion strategies in liver transplantation. J Hepatol 2019;70:203–205.
[9] van Rijn R, Schurink IJ, de Vries Y, van den Berg AP, Cortes Cerisuelo M, Darwish Murad S, et al. Hypothermic machine perfusion in liver transplantation - a randomized trial. N Engl J Med 2021;384:1391–1401.
[10] Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CDL, et al. A randomized trial of normothermic preservation in liver transplantation. Nature 2018;557:50–56.
[11] Czigány Z, Pratschke J, Fronek J, Guba M, Schoning W, Raptis DA, et al. Hypothermic oxygenated machine perfusion (HOPe) reduces early allograft dysfunction and improves post-transplant outcomes in extended criteria donation (ECD) liver transplantation from donation after brain death (DBD): results from a multicenter randomized controlled trial (HOPe ECD-DBD). Ann Surg 2021.
[12] van Leeuwen OB, de Vries Y, Fujiyoshi M, Nijsten MWN, Ubbink R, Pelgrim CJ, et al. Transplantation of high-risk donor livers after ex situ resuscitation and assessment using combined hypothermic and normothermic machine perfusion: a prospective clinical trial. Ann Surg 2019;270:906–914.
[13] Markmann JF, Abouljoud MS, Ghobrial RM, Bhati CS, Pelletier SJ, Lu AD, et al. Impact of portable normothermic blood-based machine perfusion on outcomes of liver transplant: the OCS liver PROTECT randomized clinical trial. JAMA Surg 2022.
[14] Bonaccorsi-Riani E, Bruggenwirth IMA, Buchwald JE, Lesari S, Martins PN. Machine perfusion: cold versus warm, versus neither. Update on clinical trials. Semin Liver Dis 2020;40:264–281.
[15] de Goey FHC, Schlegel A, Mulena P, Cuarrera JV, Dutkowski P. Hypothermic oxygenated machine perfusion protects from cholangiopathy in donation after circulatory death liver transplantation. Hepatology 2021;74:3525–3528.
[16] Eshmuninov D, Becker D. Bautista Borrego L, Hefti M, Schuler MJ, Hagedorn C, et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat Biotechnol 2020;38:189–198.
[17] Resch T, Cardini B, Oberhuber R, Weissenbacher A, Dumfarth J, Krafp C, et al. Transplanting marginal organs in the era of modern machine perfusion and advanced organ monitoring. Front Immunol 2020;11:631.
[18] “repair”. Cambridge Dictionary; 2021 [cited Retrieved 21 July 2021]; Available from: https://dictionary.cambridge.org/dictionary/english/repair.
[19] “regeneration”. Cambridge Dictionary; 2021 [cited Retrieved 21 July 2021]; Available from: https://dictionary.cambridge.org/dictionary/english/regeneration.
[20] Zomer HD, Vidane AS, Goncalves NN, Ambrosio CE. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells Cloning 2015;8:125–134.
[21] ElisseefJ, Badyak SF, BooKE JD. Immune and genome engineering as the future of transplantable tissue. N Engl J Med 2021;385:2451–2462.
[22] Nadalin S, Testa G, Malago M, Beste M, Frilling A, Schroeder T, et al. Volumetric and functional recovery of the liver after right heptectomy for living donation. Liver Transpl 2004;10:1024–1029.
[23] Michalopoulos GK, DeFrances MC. Liver regeneration. Science 1997;276:60–66.
[24] Mueller M, Hefti M, Eshmuninov D, Schuler MJ, Silva R, Petroswsky H, et al. Long-term normothermic machine preservation of partial livers: first experience with 21 human hemi-livers. Ann Surg 2021.
[25] Butler AJ, Rees MA, Wight DG, Casey ND, Alexander G, White DJ, et al. Successful extracorporeal porcine liver perfusion for 72 hr. Transplantation 2002;73:1212–1248.
[26] Liu Q, Nassar A, Buccini L, Grady P, Soliman B, Hassan A, et al. Ex situ 86-hour liver perfusion: pushing the boundary of organ preservation. Liver Transpl 2018;24:557–561.
[27] Lascaris B, Thorne AM, Lisan T, Nijsten MWN, Porte RJ, de Meijer VE. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EBioMedicine 2020;60:103014.
[28] Schlegel A, Muller X, Mueller M, Stepanova A, Kron P, de Rougemont O, et al. A novel multidrug pathway during normothermic machine perfusion. Transplantation 2021.
[29] Schlegel A, Muller X, Mueller M, Stepanova A, Kron P, de Rougemont O, et al. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. ElBioMedicine 2020;60:103014.
[30] McCormack L, Dutkowski P, El-Badry AM, Clavien PA. Liver transplantation using fatty livers: always feasible? J Hepatol 2011;54:1055–1062.
[31] Xu M, Zhou F, Ahmed O, Upadhya GA, Jia J, Lee C, et al. A novel multidrug combination mitigates rat liver steatosis through activating AMPK pathway during normothermic machine perfusion. Transplantation 2021.
[32] Nagrath D, Xu H, Tanimura Y, Zuo R, Berthiaume F, Avila M, et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab Eng 2009;11:274–283.
[33] Yarmush M, Santos L, Yarmush J, Koundounia S, Saleem M, Nativ NI, et al. CFD assessment of the effect of convective mass transport on the intracellular clearance of intracellular triglycerides in macrosteatotic hepatocytes. Biomach Model Mechanobiol 2017;16:1095–1102.
[34] Boteon YL, Laing RW, Schlegel A, Wallace L, Smith A, Attard J, et al. Combined hypothermic and normothermic machine perfusion improves functional recovery of extended criteria donor livers. Liver Transplant 2018;24:1699–1715.
[35] Thijssen MF, Bruggenwirth IMA, Gillooly A, Khvorova A, Kowalik TF, et al. First report of siRNA uptake (for RNA interference) during ex vivo hypothermic and normothermic liver machine perfusion. Transplantation 2019;103:e56–e57.
[36] Moore C, Thijssen M, Wang X, Mandrekar P, Xiaofei E, Abdi R, et al. Gene silencing with p53 si-RNA downregulates inflammatory markers in the liver: potential utilization during normothermic machine preservation. Am J Transplant 2017;18.
[37] Cui J, Qin J, Zhang J, Abrahimi P, Li H, Li G, et al. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nat Commun 2017;8:191.
[38] Van Willigenburg H, de Keijzer PJL, de Bruin RWF. Cellular senescence as a therapeutic target to improve transplantation outcome. Pharmacol Res 2018;130:322–330.
[39] Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020;288:518–536.
[40] Prata L, Ovsyannikova IG, Tchkonia T, Kirkland JL. Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin Immunol 2018;40:10127.
[41] Ogdovnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 2017;8:15691.
[42] Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med 2018;24:1246–1256.
[43] Iske J, Seyda M, Heinboek T, Maenosono R, Minami K, Nian Y, et al. Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat Commun 2020;11:4280.
[44] Ritschka B, Knauer-Meyer T, Goncalves DS, Mas A, Plassat JL, Durik M, et al. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes Dev 2020;34:489–494.
[45] Sasaki M, Sato Y, Nakamura Y. Increased p16(INK4a)-expressing senescent bile ductular cells are associated with inadequate response to ursodeoxycholic acid in primary biliary cholangitis. J Autoimmun 2020;107:102377.
[46] Alsauidi M, O’Hara SP, Woodrum JE, Piriou NE, LaRusso NF. Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and fibrosis in the Mdr2 (−/−) mouse. J Hepatol Rep 2021;3:100250.
[47] Yang L, Cao H, Sun D, Hou B, Lin L, Shen ZY, et al. Bone marrow mesenchymal stem cells combine with normothermic machine perfusion to improve rat donor liver quality-the important role of hepatic microcirculation in donation after circulatory death. Cell Tissue Res 2020;381:239–254.
[48] Haga H, Van IK, Borrelli DA, Matsuda A, Parasramka M, Shukla N, et al. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury. Liver Transplant 2017;23:791–803.
[49] Wang Y, Zhang A, Ye Z, Xie H, Zheng S. Bone marrow-derived mesenchymal stem cells inhibit acute rejection of rat liver allografts in association with regulatory T-cell expansion. Transpl Proc 2000;31:4352–4356.
[50] Van Raemdonck D, Neyrinck A, Rega F, Devos T, Pirenne J. Machine perfusion in organ transplantation: a tool for ex-vivo graft conditioning with mesenchymal stem cells? Curr Opin Organ Transplant 2013;18:24–33.
[51] Sun CK, Chang CL, Lin YC, Kao YH, Chang LT, Yen CH, et al. Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats. Crit Care Med 2012;40:1279–1290.
[52] Kanazawa H, Fujimoto Y, Teratani T, Iwasaki J, Kasahara N, Negishi K, et al. Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model. PLoS One 2011;6:e19195.
Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Beach TE, Godfrey EM, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 2021;371:839–846.

Vogel T, Brockmann JC, Pigott D, Neil DAH, Muthusamy ASR, Coussios CC, et al. Successful transplantation of porcine liver grafts following 48-hour normothermic preservation. PLoS One 2017;12:e0188494.

Mergental H, Laing RW, Hodson J, Boteon YL, Attard JA, Walace LL, et al. Introduction of the concept of diagnostic sensitivity and specificity of normothermic perfusion protocols to assess high-risk donor livers. Liver Transpl 2021.

Panconesi R, Flores Carvalho M, Mueller M, Meierhofer D, Dutkowski P, Muiesan P, et al. Viability assessment in liver transplantation—what is the impact of dynamic organ preservation? Biomedicines 2021;9.

Boteon YL, Hesseheimer AJ, Bruggenwirth IMA, Boteon A, Padilla M, de Meijer VE, et al. The economic impact of machine perfusion technology in liver transplantation. Artif Organs 2021.

Bruggenwirth IMA, de Meijer VE, Poste RJ, Martins PN. Viability criteria assessment during liver machine perfusion. Nat Biotechnol 2020;38:1260–1262.

Bhogal RH, Mirza DF, Afford SC, Mergental H. Biomarkers of liver injury during transplantation in an era of machine perfusion. Int J Mol Sci 2020;21.

Kesseli SJ, Gloria JN, Abraham N, Halpern SE, Cywinska GN, Zhang M, et al. Point-of-Care assessment of DCD livers during normothermic machine perfusion in a nonhuman primate model. Hepatol Commun 2021;5:1527–1542.

Karangwa SA, Burlage LC, Adelmeijer J, Karimian N, Westerkamp AC, Matton AP, et al. Activation of fibrinolysis, but not coagulation, during end-ischemic ex situ normothermic machine perfusion of human donor livers. Transplantation 2017;101:e42–e48.

Thorgersen EB, Barratt-Due A, Haugaa H, Harboe M, Pischke SE, Nilsson PH, et al. The role of complement in liver injury, regeneration, and transplantation. Hepatology 2019;70:725–736.