The mitochondrial C16069T polymorphism, not mitochondrial D310 (D-loop) mononucleotide sequence variations, is associated with bladder cancer

Nasser Shakhssalim1, Massoud Houshmand2,*4, Behnam Kamalidehghan3, Abolfazl Faraji4, Reza Sarhangejad1, Sepideh Dadgar4, Maryam Mobarak4, Rozita Rosli5 and Mohammad Hossein Sanati3

Abstract

Background: Bladder cancer is a relatively common and potentially life-threatening neoplasm that ranks ninth in terms of worldwide cancer incidence. The aim of this study was to determine deletions and sequence variations in the mitochondrial displacement loop (D-loop) region from the blood specimens and tumoral tissues of patients with bladder cancer, compared to adjacent non-tumoral tissues.

Methods: The DNA from blood, tumoral tissues and adjacent non-tumoral tissues of twenty-six patients with bladder cancer and DNA from blood of 504 healthy controls from different ethnicities were investigated to determine sequence variation in the mitochondrial D-loop region using multiplex polymerase chain reaction (PCR), DNA sequencing and southern blotting analysis.

Results: From a total of 110 variations, 48 were reported as new mutations. No deletions were detected in tumoral tissues, adjacent non-tumoral tissues and blood samples from patients. Although the polymorphisms at loci 16189, 16261 and 16311 were not significantly correlated with bladder cancer, the C16069T variation was significantly present in patient samples compared to control samples (p < 0.05). Interestingly, there was no significant difference (p > 0.05) of C variations, including C7TC6, C8TC6, C9TC6 and C10TC6, in D310 mitochondrial DNA between patients and control samples.

Conclusion: Our study suggests that 16069 mitochondrial DNA D-Loop mutations may play a significant role in the etiology of bladder cancer and facilitate the definition of carcinogenesis-related mutations in human cancer.

Keywords: Mitochondrial DNA displacement loop, 16069 D-Loop mutation, Urinary bladder neoplasm

Introduction

Human mitochondrial DNA (mtDNA) is a 16569-bp closed circular, double-stranded molecule approximately 1000 copies per cell. mtDNA contains 37 genes, including 13 subunits involved in the electron transport chain, 22 tRNAs, the 12S and 16S rRNAs, and a non-coding region (D-loop) located at nucleotide position 16024–576 (MITOMAP, 2011) [1]. The D-loop region regulates the replication and transcription of mtDNA, where mutations in this region might lead to copy number and/or change in mtDNA gene expression [2].

Bladder cancer is the ninth most common cancer worldwide [3]. According to the latest American Cancer Society statistics, bladder cancer accounts for 7% of all cancers and 3% of all cancer deaths [4,5]. In Iran, bladder cancer accounts for 7.04% of all cancers [6].

Many attempts have been made to develop an urothelial cancer biomarker test to complement or replace urine cytology, including NMP22, BTA stat, BTA TRAK, and FISH. Most studies on the molecular genetics of the bladder cancer focus on changes in genomic DNA, including oncoproteins and tumor suppressor genes, such as HRAS, ERBB2, TP53 and RB, and subsequent cellular events [7,8].
Mitochondrial function and DNA attract less interest in studies on bladder carcinoma. Mitochondrial dysfunction has been linked to a wide range of degenerative and metabolic diseases, cancer, and even aging. mtDNA, which has a very high mutation rate, results in three classes of clinically relevant phenotypes: deleterious germline mtDNA mutations, which are linked to mitochondrial diseases; mtDNA polymorphisms, which are related to environmental adaptation in human evolution; and mtDNA somatic mutations, which are associated with aging and cancer. Mitochondrial defects were first associated with carcinogenesis several decades before, when Warburg reported “injury of the respiratory chain” and high glycolytic rate as typical of cancer [9-12].

Mitochondrial DNA is thought to accumulate more mutations than nuclear DNA (nDNA) to some extent, because the protective histones as well as the highly efficient DNA repair mechanisms do not exist in the mitochondrial nucleus. Certain tumors have been shown to result from mutations in nDNA-encoded mitochondrial proteins, which may result in increased reactive oxygen species (ROS) production. Mitochondrial dysfunction does appear to be a factor in cancer etiology. Alterations in mitochondrial DNA (mtDNA), including point mutations, deletions, insertions and genome copy number changes, are believed to be responsible for carcinogenesis [13-15]. For example, many reports have identified a mtDNA 4977-bp deletion in lung [16], breast [17] and endometrial carcinomas [18]. The use of mtDNA mutation and/or polymorphism patterns as a biomarker is rapidly expanding in disciplines, ranging from rare metabolic diseases and aging to cancer and the tracing of human migration patterns, population characterization and human identification in forensic science. In this study, we examined the presence of mutations in the mitochondrial D-Loop sequences of tumoral tissues as compared with adjacent non-tumoral tissues from Iranian patients with bladder cancer.

| Table 1 Age and histological type of primary urothelial bladder neoplasm subtypes |
|--------------------------|------------------|-------------------------------|
| No. of Male patients | Age | Histological type |
| 1 | 62 | Carcinoma in situ+ |
| 2 | 60 | Papilloma |
| 3 | 58 | Papillary Urothelial carcinoma- low grade |
| 4 | 63 | Neoplasm of low malignant potential Papillary urothelial |
| 5 | 73 | Carcinoma in situ+ |
| 6 | 80 | Papillary urothelial carcinoma – high grade |
| 7 | 69 | Papillary Urothelial carcinoma- low grade |
| 8 | 68 | Neoplasm of low malignant potential Papillary urothelial |
| 9 | 53 | Non-papillary urothelial carcinoma –high grade |
| 10 | 55 | Papillary urothelial carcinoma – high grade |
| 11 | 75 | Non-papillary urothelial carcinoma –high grade |
| 12 | 78 | Papillary Urothelial carcinoma- low grade |
| 13 | 73 | Neoplasm of low malignant potential Papillary urothelial |
| 14 | 69 | Papillary Urothelial carcinoma- low grade |
| 15 | 68 | Non-papillary urothelial carcinoma –high grade |
| 16 | 57 | Neoplasm of low malignant potential Papillary urothelial |
| 17 | 53 | Non-papillary urothelial carcinoma –high grade |
| 18 | 50 | Papillary urothelial carcinoma – high grade |
| 19 | 49 | Papillary Urothelial carcinoma- low grade |
| 20 | 45 | Non-papillary urothelial carcinoma –high grade |
| 21 | 29 | Papillary urothelial carcinoma – high grade |
| 22 | 70 | Papillary Urothelial carcinoma- low grade |
| 23 | 66 | Non-papillary urothelial carcinoma –high grade |
| 24 | 58 | Papillary urothelial carcinoma – high grade |
| 25 | 59 | Papillary Urothelial carcinoma- low grade |
| 26 | 74 | Neoplasm of low malignant potential Papillary urothelial |

| Table 2 Primers used for detection of four deletions |
|--------------------------|------------------|------------------|
| Forward Start point of primer | Reversed End point of primer | Length of deletion, kb |
| ONP 86: 5461–5480 | ONP 74: 15260–15241 | 8.7 |
| 5′-CCCTACCAGCTACTCCTA -3′ | 5′-TGCTACTGAGTGCTCCTCT-3′ |
| ONP 86: 5461–5480 | ONP 10: 13640–13621 | 7.5 |
| 5′-CCCTACCAGCTACTCCTA -3′ | 5′-GTTGACCTGGTGGTGGGAG-3′ |
| ONP 25: 8161–8180 | ONP 10: 13640–13621 | 5 |
| 5′-CTACGGTCAATGCTCTGAAA-3′ | 5′-GTGGTCAAGTATTTATGGTA-3′ |
| ONP 25: 8161–8180 | ONP 99: 16150–16131 | 7.5 |
| 5′-CTACGGTCAATGCTCTGAAA-3′ | 5′-GTGGTCAAGTATTTATGGTA-3′ |
| ONP 86: 5461–5480 | ONP 89: 5740–5721 | Internal Control |
| 5′-CCCTACCAGCTACTCCTA -3′ | 5′-GGCGGGAGAAGTAGATTGGA-3′ |
NO.	Variations	Controls	Patients
1	15968		
2	15969		
3	15996		
4	16004		
5	16017		*
6	16021		
7	16026		
8	16033		*
9	16051		*
10	16057		*
11	16069		
12	16071		
13	16075		
14	16082		
15	16085		
16	16086		
17	16092		*
18	16093		
19	16095		
20	16111		*
21	16114		
22	16124		
23	16126		
24	16129		*
25	16130		
26	16145		
27	16147		*
28	16148		
29	16150		*
30	16153		
31	16155		
32	16162		
33	16163		
34	16167		
35	16169		
36	16172		
37	16173		
38	16174		*
39	16176		*
40	16179		
41	16183		*
42	16184		
43	16187		*

(Continued)
Materials and Methods

Twenty-six men with primary urothelial bladder cancer with a mean age of 62.5 years were enrolled in this study (Table 1). The patients’ written consent was obtained and the institutional review board approved this study. Tumoral tissues were obtained from transurethral resection of the bladder tumor (TURBT) or radical cystectomy specimens. Tumoral tissues and adjacent non-tumoral tissues were immediately frozen in liquid nitrogen and kept at −80°C, while blood samples from patients were obtained before surgery.

Urothelial bladder cancer diagnosis was done via histological analysis. Blood samples from healthy controls with a mean age of 57.5 years were obtained from 404 individuals of 17 ethnicities and 100 random individuals, all from the Tehran Special Medical Center. The exclusion criterion for the control group was any history of cancer, metabolic diseases and mitochondrial DNA related diseases that may affect the mtDNA. Ethics approval and patient informed consent including consent to participate in the study and consent to publish was obtained for the present study in accordance to the Tehran Special Medical Center and Medical Ethics Committee (Approval No. MS-16-2007).

DNA extraction and sequencing

Genomic DNA (DNA fast, QIAGEN, Cat. No. 51204) was isolated from the tumoral tissues, adjacent non-tumoral tissues and blood samples of patients, as well as from the blood samples of controls, according to the manufacturer’s protocol. Two pairs of primers designed to amplify the mtDNA D-loop region are as follows: ONP 98 F)1579-15810(: 5′-ATC ATT GGA CAA GTA

Table 3 List of variations in both healthy controls and bladder cancer patients (Continued)

Patient ID	Variation Site
88	16311
89	16318
90	16318
91	16319
92	16320
93	16324
94	16325
95	16327
96	16342
97	16343
98	16352
99	16354
100	16355
101	16356
102	16362
103	16390
104	16391
105	16399
106	16413
107	16468
108	16482
109	16497
110	16527

*Indicates novel mutation has not been reported before.

Figure 1 Multiplex-PCR amplification. Lanes 1, 2, 3 and 5 show the internal control (279 bp), lane 4 is the negative control and lane M is a 100 bp DNA size marker. No other bands were observed. Amplification only takes place if deletions occur in the DNA between the PCR primers.
Polymerase chain reaction (PCR) was carried out with the following protocol: pre-denaturation at 95°C for 5 min, then 35 cycles of 94°C for 30 sec, 60°C for 45 sec and 72°C for 1 min, and a final extension step of 72°C for 6 min. Each amplified fragment was purified using a Agarose Gel DNA Fragment Recovery Kit, Ver.2.0 (TaKaRa, Japan) and subsequently sequenced using a ABI PRISM 3730 sequence analyzer (gene Fanavaran, Macrogen Seoul, Korea). The quality of the obtained chromatograms was assessed by FinchTV® software Version 1.4.0 (Geospiza, Inc., USA).

Multiplex PCR

The PCR reactions were performed for 35 cycles of the following steps: 94°C for 10 min, 55°C for 10 min, and 72°C for 35 sec. Using the primers ONP 86, ONP 89, ONP 10, ONP 74, ONP 25 and ONP 99, the deletion-prone region between 5461 nt of the light strand and 15000 nt of the heavy strand was investigated in all the patients. The distances between the primers were long enough to allow amplification only if a part of the DNA between each respective primers was deleted. As a control in PCR analysis, a normal internal mtDNA fragment in a region which is seldom affected by deletions was amplified.
amplified using the primer pair of ONP 86 and ONP 89 (Table 2). Polymerase chain reaction products were separated on 2% agarose gels and run in 0.5× Tris/Borate/EDTA buffer at 110 V for 50 min, stained in 0.002 μg/mL ethidium bromide, and visualized by means of an ultraviolet light.

Southern blot analysis
Extracted mtDNA was eletrophoresed on 1% agarose gel. After electrophoresis, the DNA were denatured, neutralized and transferred to nylon membrane. Meanwhile, the ONP98 primer (5′-ATCATTTGGAACAGTAGCATC-3′), located at 15791–15810 bp, and the ONP79...
primer (5′-GAGCTGATTGCTGGCTGCT-3′), located at 780–761 bp of the mtDNA, were used to amplify a 1558-bp fragment from the D-loop region. This fragment was used as a mtDNA probe. Southern blot analysis was performed using the DIG DNA Labeling and Detection Kit (Cat. #11093657910, Roche).

Statistical analysis

Sequences were edited and aligned using ClustalX. The revised Cambridge Reference Sequence was used as a reference (GI: 251831106) (MITOMAP, 2009). The Chi-square test was used with SPSS (Statistical Package for the Social Sciences, version: 13) to examine the association of variations with control and patient samples. P-values < 0.05 were regarded as statistically significant.

Results

Samples from a total of 26 patients with sporadic bladder cancer were screened for mitochondrial deletions and variations. Sequence analysis found a total of 110 variations (Cambridge Mitochondrial Sequences), of which 62 mutations were previously reported (MITOMAP). However, 48 of these mutations were reported as new mutations, which are summarized in Table 3. In this study, almost all of the mutations were homoplasmic, but in 6 (16.6%) cases, a C nucleotide insertion was seen in locus 16194. No mitochondrial deletions were found in the patient samples (Figures 1 and 2), as confirmed by Southern blotting (Figure 3).

Four common variations, 16069, 16189, 16261 and 16311, were found in the tumoral tissues, adjacent non-tumoral tissues and blood samples of both patients and controls from different ethnicities. The polymorphisms at 16189, 16261 and 16311 were not significantly correlated with bladder cancer. However, the D-loop C16069T polymorphism (Figure 4) was significantly correlated with bladder cancer (P < 0.05). Analysis of control samples by ethnicities for these 4 variations is summarized in Table 4. No significant difference (p > 0.05) in D310 C variations was observed between the patient and control samples (Table 5).

Discussion

Our sequencing analysis focused on the mtDNA D-loop region, which is highly polymorphic and contains two hypervariable regions, HV1 (16024–16383) and HV2 (57–333), that was considered as a somatic mutation “hot spot” in many types of cancer [19]. In this study, no deletions were seen in the mitochondrial genome. One hundred and sixteen variations were observed in the D-Loop region, where 48 of them were not previously reported. Wada et al. [20] also reported that the majority of somatic mutations were homoplasmic, suggesting that the mutant mtDNA became dominant in tumor cells.

Table 4 Comparison of 4 common variations in bladder cancer patients and controls

Ethnicity	NO.	16069	16189	16261	16311
Arab	23	0 (0%)	7 (30.4%)	4 (17.4%)	4 (17.4%)
Armenian	18	0 (0%)	5 (27.7%)	2 (11%)	3 (16.7%)
Azari	19	1 (5.2%)	7 (36.8%)	3 (15.8%)	1 (5.3%)
Turkmen	22	0 (0%)	6 (27.3%)	0 (0%)	4 (18.2%)
Bandari	31	0 (0%)	13 (42%)	2 (6.5%)	5 (13.5%)
Guilani	24	0 (0%)	2 (8.3%)	3 (12.5%)	3 (12.5%)
Jews	37	1 (2.7%)	6 (16.2%)	4 (10.8%)	4 (10.8%)
Kurd	24	2 (8.3%)	3 (12.5%)	4 (16.7%)	6 (25%)
Lur	22	0 (0%)	1 (4.5%)	8 (36.4%)	8 (36.4%)
Mazani	23	0 (0%)	4 (17.4%)	4 (17.4%)	1 (4.3%)
Persian Isfahan	16	0 (0%)	6 (37.5%)	2 (12.5%)	5 (31.2%)
Persian Kerman	25	0 (0%)	7 (28%)	1 (4%)	5 (20%)
Persian Mashhad	23	0 (0%)	5 (21.7%)	2 (8.7%)	2 (8.7%)
Persian Shiraz	23	0 (0%)	4 (17.4%)	2 (8.7%)	3 (3.2%)
Persian Yazd	24	0 (0%)	5 (20.8%)	1 (4.1%)	2 (8.3%)
Mixed Tehran	100	8 (8%)	9 (9%)	9 (9%)	12 (12%)
Total (controls)	504	13 (2.6%)	95 (18.8%)	53 (10.5%)	78 (15.5%)
Patients	26	5 (19%)	4 (15.4%)	4 (15.4%)	8 (31%)

*pShows statistically significant, p < 0.05.

Table 5 Association of the mtDNA D310 variation in bladder cancer patients and controls

Ethnicity	NO.	C 7TC6	C 8TC6	C 9TC6	C 10TC6
Arab	23	12 (52.2%)	8 (34.7%)	2 (8.7%)	1 (4.3%)
Armenian	18	7 (38.9%)	11 (61.1%)	0 (0%)	0 (0%)
Azari	22	8 (36.4%)	12 (54.5%)	2 (9%)	0 (0%)
Turkmen	37	17 (45.9%)	16 (43%)	4 (10.8%)	0 (0%)
Bandari	31	10 (32%)	15 (48.4%)	6 (19.4%)	0 (0%)
Persian Isfahan	16	5 (31.3%)	9 (56.3%)	2 (12.5%)	0 (0%)
Persian Mashhad	23	14 (60.9%)	8 (34.8%)	1 (4.3%)	0 (0%)
Persian Shiraz	23	6 (26%)	16 (69.6%)	1 (4.3%)	0 (0%)
Persian Yazd	24	9 (37.5%)	9 (37.5%)	5 (20.8%)	1 (4.1%)
Guilani	24	8 (33%)	12 (50%)	4 (16.6%)	0 (0%)
Jews	37	16 (43%)	17 (45.9%)	4 (10.8%)	0 (0%)
Kurd	24	3 (12.5%)	14 (58%)	7 (29%)	0 (0%)
Lur	22	9 (41%)	9 (41%)	4 (18%)	0 (0%)
Total (controls)	324	124 (38.3%)	156 (48.1%)	42 (13%)	2 (0.6%)
Patients	21	9 (42.9%)	10 (47.6%)	2 (9.5%)	0 (0%)

The D310 sequence variations of mtDNA in patients and controls were not significantly different (p > 0.05).
Fliss et al. [21] screened 14 urinary bladder cancers for somatic mutations in the D-loop region, and found mutations in 4 (29%) samples.

Polymorphism 16189, which is highly polymorphic, was the previous focus of oncological research because carriers with the T16189C polymorphism were apparently more susceptible to breast cancer and ganglioma development. Interestingly, the T16189C polymorphism was found in 14% of endometrial cancers [22] and type II diabetes mellitus [23,24].

In this study, in contrast to 16189, 16194, 16261 and 16311 variations, the C16069T polymorphism of the D-loop indicated significant correlation with bladder cancer (P < 0.05), which has not been studied in bladder cancer before. However, the C16069T polymorphism has been reported in prostate cancer [25], pancreatic cancer [26], endometrial cancer [27], breast cancer [28,29], repeated pregnancy loss [30] and age-related macular degeneration [31]. This result supports our hypothesis, which shows the potential of specific mitochondrial 16069 polymorphism involvement in carcinogenesis.

Many studies reported that the C150T polymorphism is correlated with longevity (MITOMAP, 2009). The possible function of the C150T transition was investigated in a previous study [32], suggesting that the C150T transition functions in remodeling mtDNA replication. However, in our study, no significant differences were found between C150T mutations in patients and control samples from different ethnicities.

Large-scale mtDNA deletions have been demonstrated in several cancers. Kamalidehghan et al. [33] found that the common mtDNA4977 deletion was less frequent in gastric cancer tissues compared to the normal adjacent tissues. While in another study, a deletion of approximately 8.9 kb was more frequent in gastric carcinoma tissues than adjacent normal tissue samples [34]. However, in the present study, no deletions were detected in bladder carcinoma tissues nor adjacent non-tumoral tissues. Therefore, the pattern of mitochondrial deletions may differ among different carcinomas.

Marchington et al. [35] first used the term D310 to describe a highly polymorphic mononucleotide tract of poly (C) that varies from 12 to 18 Cs, located between nucleotide positions 303 and 318 in CSB II, that forms a RNA–DNA hybrid known as an R-loop. This (poly(C)) region is interrupted at nucleotide position 310 by a T (CCCCCCCCCTCCCCC), in which the number of Cs before the T can vary between 7 to 9 in normal polymorphic variants [35]. D310 has been reported as a mutational hot-spot in a large panel of tumors including gastric, head and neck, breast, colorectal, lung and bladder cancers, where head and neck cancer has the highest rate of D310 variants (37%), followed by breast (29%) and colorectal (28%) cancers. However, no D310 alterations were detected in prostate and ovarian cancers [36,37].

The D310 region of mtDNA plays an important role in mitochondrial biogenesis, where somatic insertions or deletions of one or two base pairs in this region are thought to have negligible effects on cancers. However, major deletions or insertions of up to ten bases in the D310 region could interfere with mtDNA biogenesis [38]. Mutations in the D-loop, mostly at D310, have been found in 21% of all head and neck squamous cell carcinomas [39]. However, in our study, the D310 mtDNA sequence variations, including C7TC6, C8TC6, C9TC6 and C10TC6, were not significantly different (p > 0.05) between bladder cancer patients and controls of different ethnicities.

In conclusion, our study suggests that the mitochondrial DNA D-Loop 16069 mutation may play a significant role in the etiology of bladder cancer and facilitate the definition of carcinogenesis-related mutations in human mtDNA.

Acknowledgements
We are thankful to the "Urology and Nephrology Research Center (UNRC) of Tehran" for giving the grant for this project and the "National Institute for Genetic Engineering and Biotechnology (NIGEB) of Tehran", Project 187.

Author details
1Urology and Nephrology Research Center (UNRC), Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2National Institute for Genetic Engineering and Biotechnology, Tehran, Iran.
3Department of Pharmacy, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur 50603, Malaysia.
4Medical Genetics Department, Special Medical Center, Tehran, Iran.
5UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.

Received: 19 June 2013 Accepted: 27 November 2013
Published: 5 December 2013

References
1. Suzuki M, Toyooka S, Miyajima K, Iizasa T, Fujisawa T, Bekele NB, Gazdar AF: Alterations in the mitochondrial displacement loop in lung cancers. Clin Cancer Res 2003, 9(15):5636–5641.
2. Yu M, Zhou Y, Shi Y, Ning L, Yang Y, Wei X, Zhang N, Hao X, Niu R: Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. JMBB Life 2007, 59(7):450–457.
3. Tomera KM: NMP22 BladderChek Test: point-of-care technology with life- and money-saving potential. Expert Rev Mol Diagn 2004, 4(6):783–794.
4. Jermal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer statistics, 2008. CA Cancer J Clin 2008, 58(2):71–96.
5. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P: Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007, 18(3):581.
6. Shakhssalim N, Hosseins SY, Basiri A, Eshrafi B, Mazahei M, Soleymanirahbar A: Prominent bladder cancer risk factors in Iran. Asian Pac J Cancer Prev 2010, 11:601–606.
7. Örntoft TF, Wolf H: Molecular alterations in bladder cancer. Urol Res 1998, 26(4):223–233.
8. Brandus S, Böhle A: Bladder cancer. Eur Urol 2001, 39(5):491–497.
9. Warburg O: On the origin of cancer cells. Science 1956, 123(3191):309–314.
10. Bayal BE, Ferrell RE, Willert-Brozick JE, Lawrence EC, Myslierek DB, Bosch A, Mey A, Taschner PM, Rubinstein WS, Myers EN: Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000, 287(5454):848.
11. Gambhir SS: Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002, 2(9):683–693.
12. Lima J, Tenexera-Gomes J, Soares P, Máximo V, Honavar M, Williams D, Sobrinho-Simões M: Germline succinate dehydrogenase subunit D mutation segregating with familial non-PH syndrome. J Clin Endocrinol Metab 2003, 88(10):4932.
13. Clayton DA, Doda JN, Friedberg EC: The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 1974, 71(7):2771–2775.
14. LeDoux SP, Wilson GL, Beecham EJ, Stevnsner T, Wassermann K, Bohr VA: Repair of oxidative damage to nuclear and mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis 1992, 13(11):1967.
15. Croteau DL, Bohr VA: Repair mechanism in mammalian mitochondria. Cancer Res 2000, 60(4):1202–1207.
16. Dai JG, Xiao YB, Min JX, Zhang GQ, Yao K, Zhou RJ: Mitochondrial DNA 4977-bp deletion mutations in sporadic breast cancer and benign breast diseases. Breast Cancer Res Treat 2008, 108(3):427–434.
17. Futyma K, Putowskii L, Cybulski M, Miotka P, Rechberger T, Semczuk A: The prevalence of mtDNA4977 deletion in primary human leukocytes. Acta Med Iran 2006, 44(1):120.
18. Ye C, Shu XO, Wen W, Pierce L, Courtney R, Gao YT, Zheng W, Cai Q: Quantitative analysis of mitochondrial DNA 4977-bp deletion in sporadic breast cancer and benign breast diseases. Breast Cancer Res Treat 2008, 108(3):427–434.
19. Futyma K, Putowskii L, Cybulski M, Miotka P, Rechberger T, Semczuk A: The prevalence of mtDNA4977 deletion in primary human leukocytes and matched control samples. Oncol Rep 2008, 20(3):683–688.
20. Akochekian M, Houshmard M, Hartman S, Ansarpour M, Shafa M: High rate of mutation in mitochondrial DNA displacement loop region in human colorectal cancer. Dis Colon Rectum 2009, 52(3):326.
21. WADA T, TANJ N, OZAWA A, WANG J, SHIMAMOTO K, SAKAYAMA K, YOKOGAWA M: Mitochondrial DNA mutations and 8-hydroxy-2-deoxyguanosine Content in Japanese patients with urinary bladder carcinomas and matched control samples. Breast Cancer Res Treat 2009, 116(3):688.
22. Liu WWS, Wang Y, Yang HJ, Tsang PCK, Ng TK, Wong LC, Nagley P, Ngan H: Mitochondrial DNA variant 16189 T > C is associated with susceptibility to endometrial cancer. Hum Mutat 2003, 22(2):173–174.
23. Poulton J, Luan JA, Macaulay V, Hennings S, Mitchell J, Wareham NJ: Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case–control study. Hum Mol Genet 2002, 11(13):1581–1583.
24. Chinnery PF, Elliott H, Patel S, Lambert C, Keers S, Durham S, McCarthy M, Hitman G, Hattersley A, Walker M: Role of the mitochondrial DNA 16184–16193 poly-C tract in type 2 diabetes. Lancet 2005, 366(9497):1650–1651.
25. Ashitani ZO, Heidari M, Hasheminasab S-M, Ayati M, Rakhtshahi N: Mitochondrial D-Loop polymorphism and microsatellite instability in prostate cancer and benign hyperplasia patients. Asian Pac J Cancer Prev 2012, 13:3863–3868.
26. Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Klöppel G, Yoshimura A, Reinld W, Sipos B, Aikia S: Stat3/Soc3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011, 19(4):455–469.
27. Czamecka AM, Klemba A, Semczuk A, Plak K, Marcez B, Krawczyk T, Kofler B, Golik P, Bartnik E: Common mitochondrial polymorphisms as risk factor for endometrial cancer. Int Arch Med 2009, 2(1):33.
28. Rahmani B, Azimi C, Omranipour R, Raoofan R, Zendehdel K, Saeed-Sad R, Heidari M: Mutation screening in the mitochondrial D-loop region of tumoral and non-tumoral breast cancer in Iranian patients. Acta Med Iran 2012, 50(7):447–453.
29. Rosson D, Keshgahan AA: Frequent mutations in the mitochondrial control region DNA in breast tissue. Cancer Lett 2004, 215(1):89–94.
30. Seyedhassani SM, Houshmard M, Kalantar SM, Modabber G, Aflatoonian A: No mitochondrial DNA deletions but more D-loop point mutations in repeated pregnancy loss. J Assist Reprod Genet 2010, 27(11):661–668.
31. Mueller EE, Schauer E, Brunner SM, Weyer M, Mayer JA, Egger SF, Nischl CE, Oberkofler H, Retzmaier HA, Patch W: Mitochondrial haplogroups and control region polymorphisms in age-related macular degeneration: a case–control study. PLoS One 2012, 7(2):e30874.
32. Zhang J, Asm-Cayuela J, Fisk I, Michikawa Y, Bonafé M, Olivieri F, Passarino G, De Benedictis G, Franceschi C, Attardi G: Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc Natl Acad Sci USA 2003, 100(3):1116.
33. Kamalidéghan B, Houshmard M, Panahi MSS, AAbbassadeeghan MR, Ismail P, Shiroudi MB: Mitochondrial DNA mtDNA 8.9 kb deletion is more common than other deletions in gastric cancer. Arch Med Res 2006, 37(7):848–853.
34. Sanchez-Cespedes M, Parello P, Nomoto S, Cohen D, Xiao Y, Esteller M, Jeronimo C, Jordan RC, Nicol T, Koch WM: Identification of a nonmonoclonal repeat as a major target for mitochondrial DNA alterations in human tumors. Cancer Res 2001, 61(19):7015.
35. Martichon D, Hartshone G, Barlow D, Poulton J: Homopolymeric tracts heteroplasmic in mtDNA from tissues and single oocytes: support for a genetic bottleneck. Am J Hum Genet 1997, 60(2):408.
36. Sanchez-Sespedes M, Parello P, Nomoto S, Cohen D, Xiao Y, Esteller M, Jeronimo C, Jordan RC, Nicol T, Koch WM: Identification of a nonmonoclonal repeat as a major target for mitochondrial DNA alterations in human tumors. Cancer Res 2001, 61(19):7015.
37. Schwartz S Jr, Alazzouzi H, Peruchio M: Mutational dynamics in human tumors confirm the neutral instinctability of the mitochondrial D-loop poly-cytidine repeat. Genes Chromosomes Cancer 2006, 45(5):770–780.
38. Dakubo GD: Mitochondrial Genetics and Cancer. Heidelberg Dordrecht London New York: Springer; 2010:14–123.
39. Lieve A, Bions H, Houllier A, Laccoumery O, Busnau D, Beaune P, Laurent-Pujol P: Clinicalopathological significance of mitochondrial D-Loop mutations in head and neck carcinoma. Br J Cancer 2006, 94(5):692–697.

Cite this article as: Shakhssalim et al.: The mitochondrial C16069T polymorphism, not mitochondrial D310 (D-loop) mononucleotide sequence variations, is associated with bladder cancer. Cancer Cell International 2013:13.120

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit