Anisotropic crystal of the δ-BiB$_3$O$_6$ investigated by vibrational spectroscopy

E A Strikina1,2, A S Krylov2,3, A S Oreshonkov2,3, A N Vtyurin2,3 and O A Maximova1,2

1 Reshetnev Siberian State Aerospace University, Krasnoyarsk, 660037, Russia
2 Siberian Federal University, Krasnoyarsk, 660041, Russia
3 Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia

E-mail: nas-nas@iph.krasn.ru

Abstract. The vibrational spectroscopy has been applied to investigate the structure the BiB3O6 (BIBO) crystal. Based on the experimental results, the total set of phonons mode of the polarized Raman spectra was proposed. To verify the obtained experimental data have been performed theoretical calculation in software package LADY.

1. Introduction

BiB$_3$O$_6$ (BIBO) has excellent optical nonlinear properties for conversion frequency in the solid state lasers [1]. It is most effective in the optical range UV and visible light which have widely been used in medicine, signal progressing. BIBO have large nonlinear optical coefficient due to its structure and non-hydroscopic nature [2].

Long time thought that BiB$_3$O$_6$ have only alpha phase with space group symmetry C2. [3] Recently have been found new six phase of this compound. More extensively known and studied phase is α-BiB$_3$O$_6$, which build from chain bounded triangles [BO$_3$] and tetrahedrons [BO$_4$] in range 1:2. β-BiB$_3$O$_6$ is metastable phase and it can undergo the phase transition in other phase at the high temperature. As α - BiB$_3$O$_6$, β - BiB$_3$O$_6$ consist of chain bounded triangles [BO$_3$] and tetrahedrons [BO$_4$] in range 2:1. The first principles simulation showed that the main contribution in nonlinearity comes from [BO$_4$] tetrahedral units. Therefore, γ and δ – BiB$_3$O$_6$ attract the great interest due to the features of their structures (Figure 1) which are exclusively consisting of the chains of bounded tetrahedrons [BO$_4$].

Figure 1. The crystal structure of δ–BiB$_3$O$_6$.
Since γ–BiB$_3$O$_6$ have inversion center, subject of the present research work is δ–BiB$_3$O$_6$. The symmetry space group of orthorhombic δ-phase is Pca$_2_1$ (Z=4). The expansion of the total vibrational representation in the Brillouin zone center for the δ phase has the following view: $\Gamma_{\text{Vibr}} = 30A_1 + 30A_2 + 30B_1 + 30B_2$, acoustic and optic modes: $\Gamma_{\text{acoustic}} = A_1 + B_1 + B_2$, $\Gamma_{\text{optic}} = 29A_1 + 30A_2 + 29B_1 + 29B_2$.

2. Experiment
The samples have been obtained same as described in the paper [4]. The assembling is spectrometer Horiba Jobin Yvon T64000 equipped with a liquid nitrogen cooled charge coupled device detection system in subtractive dispersion mode in 10 to 1600 cm$^{-1}$ range. The spectra were recorded in the backscattering geometry. It was used notation. [4]

3. Results and discussion
To simulate the δ–BiB$_3$O$_6$ the vibrational spectrum package LADY was used. The program allows to obtain the full Raman spectrum using the model of ‘rigid-ion’. The interatomic potential is considered as a sum of the short-range interaction potentials was taken in the Born–Mayer form:

$$V^{\text{RM}}(r_{ij}) = \frac{1}{2} \sum_{j} \frac{Z_i Z_j}{r_{ij}} + U(r_{ij}),$$

and of the of long range Coulomb electrostatic potentials:

$$U(r_{ij}) = \lambda \exp(-r_{ij}/\rho),$$

where r_{ij} is the interatomic distance and λ and ρ are the parameters characterizing of the short-range pair interionic interaction. Resulting model parameters were obtained by minimization of residual values of the simulated and experimental Raman frequencies using the Fletcher–Reeves method [5–7]. The values of λ, ρ and Z_{ij} are listed in Table 1.

Interactions	Radii of interaction, Å	λ, aJ/Å2	ρ, Å
Bi – O	0–3.00	350.00	0.300
B1 – O	0–1.50	321.60	0.210
B2 – O	0–1.60	400.60	0.220
B3 – O	0–1.60	345.30	0.199
O – O	0–3.00	242.80	0.245
Ion	Bi	B	O
$Z(e)$	2.00	1.80	-1.2333

The Raman active frequency is shown in Table 2 in comparison with experiment.
Table 2. The calculated Raman active frequencies are shown in Table 2 along with the experimental dates

	A₁		A₂		B₁		B₂		
exp.	calc.	exp.	calc.	exp.	calc.	exp.	calc.		
TO	1116	1097	1121	1076	1153	1212	1278		
LO	1081	1035	1093	1037	1119	1082	1132	1037	1132
	1031	1007	979	1010	1090	1035	1023	1010	1029
	996	975	959	978	981	997	949	997	965
	959	935	908	944	945	955	938	956	929
	919	907	894	905	912	919	910	936	905
	864	865	789	864	805	897	854	880	892
	807	783	752	784	755	863	803	784	786
	783	727	721	728	751	813	749	727	737
	752	650	697	709	730	783	732	665	689
	726	607	634	607	648	753	648	607	647
	639	530	598	558	606	727	618	515	623
	606	515	552	534	553	607	575	499	563
	530	502	510	514	529	578	533	468	518
	499	467	490	501	511	531	504	415	483
	467	416	447	466	490	515	497	393	459
	415	394	428	417	428	500	432	327	442
	393	329	384	393	416	467	421	312	400
	328	310	345	330	382	415	392	304	383
	303	256	320	313	332	394	347	249	338
	272	244	274	255	310	327	319	226	307
	228	235	255	246	262	304	299	204	280
	186	225	221	226	227	245	267	185	240
	175	194	159	196	191	229	229	177	185
	122	165	128	126	170	184	156	166	135
	97	120	100	110	94	123	116	123	119
	71	88	69	89	89	116	89	112	94
	67	69	46	68	70	97	76	98	66
	46	49	18	51	54	71	55	69	35

Since the BO₄ bounded with B-O in crystal is not ideal we can observe a large number of vibrations in the range > 650 cm⁻¹. For this reason the whole spectrum is reached of lines. The simulations is shown that about 40 active modes appear in the range >650 cm⁻¹ for the different position of the polarization.

The bands below 150 cm⁻¹ are related with Bi translation vibrations. The lower wavenumber range of 150–350 cm⁻¹ contains translational, rotational and mixed vibrations of BO₄ tetrahedra. Bands in the 350–650 cm⁻¹ range are related with the distorted ν₂ and ν₄ BO₄ bending modes. Generally, frequency of ν₄ vibration should be above that of ν₂ vibration [8].
In the Figure 2 a,b is presented LO-TO splitting in depending on the different position of the polarization is presented. The lines corresponding to B\textsubscript{1} and B\textsubscript{2} modes are presented on Figure 3 a,b.

![Raman spectra](image)

Figure 2. Raman spectra of the δ–BiB\textsubscript{3}O\textsubscript{6} crystal at: a) b(cc)b, b(aa)b, a(bb)a, a(cc)a b) c(aa)c, c(bb)c, c) c(ba)c, c(ab)c geometries
4. Conclusion

The polarization selection rules, lattice dynamic simulations and number of the spectral lines are in the good agreement with experiment. The full set of experimental Raman spectra polarizations is presented. The vibration modes are classified to corresponding Raman bands.

Acknowledgments

This study was partially supported by the Ministry of Education and Science of the Russian Federation, the “Krasnoyarsky regional fund of scientific support and scientific-technical activity” and the Russian Foundation for Basic Research Grant “15-42-04347 r_siberia_a".
References

[1] E I Algazin, A P Kovalevsky, V B Malinkin 2009 Signals transmission by invariant method with further non-linear processing under weak correlation Vestnik SibGAU. 5 (26) pp. 4-7

[2] E M Levin, C L McDaniel 1962 The system Bi$_2$O$_3$ - B$_2$O$_3$. J. Am. Ceram. Soc. 45 pp 355–360

[3] Rihong Cong, Jinlong Zhu, Yingxia Wang, Tao Yang, Fuhui Liao, Changqing Jin and Jianhua Lin 2009 Phase transitions among four BiB$_3$O$_6$ polymorphs: a detailed investigation J. Cryst. Eng. Comm. 11 pp 1971–1978

[4] A S Aleksandrovsky, A D Vasiliev, A I Zaitsev, A V Zamkov 2008 Growth, optical and electromechanical properties of single-crystalline orthorhombic bismuth triborate. J. of Crystal Growth pp 4027–4030

[5] A S Krylov, A N Vtyurin, A S Oreshonkov, V N Voronov, S N Krylova 2013 Structural transformations in a single-crystal Rb$_2$NaYF$_6$: Raman scattering study J. Raman Spectr. 44 pp 763–770

[6] Y V Gerasimova, A S Oreshonkov, A N Vtyurin, A A Ivanenko, L I Isaenko, A A Ershov, E I Pogoreltsev 2013 Infrared Absorption Investigation of the Role of Octahedral Groups upon the Phase Transition in the Rb$_2$KMoO$_3$F$_3$ J. Crystal. Phys. Solid State 55 pp 2331–2334

[7] Z Xia, M S Molokeev, A S Oreshonkov, V V Atuchin, Ru-Shi Liu, Cheng Dong 2014 Crystal and local structure refinement in Ca$_2$Al$_3$O$_6$F explored by X-ray diffraction and Raman spectroscopy J. Phys. Chem. Chem. Phys. 16 pp 5952–5957

[8] K Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds 2009 (Wiley, New York etc.)