Dark Matter from freeze-in and its inhomogeneities

Alessandro Strumia

Dipartimento di Fisica dell’Università di Pisa, Italia

Abstract

We consider generic freeze-in processes for generation of Dark Matter, together with the consequent re-thermalization of the Standard Model fluid. We find that Dark Matter inherits the Standard Model adiabatic inhomogeneities on the cosmological scales probed by current observations, that were super-horizon during freeze-in. Thereby, freeze-in satisfies the bounds on iso-curvature perturbations.

Contents

1 Introduction 1
2 Intuitive argument based on ‘separate universes’ 2
3 Iso-curvature perturbations during freeze-in? 3
 3.1 Intrinsic non-adiabatic energy transfer 4
 3.2 Intrinsic non-adiabatic pressure 5
4 Conclusions 6

1 Introduction

Freeze-in is a possible mechanism that could have generated the Dark Matter (DM) cosmological abundance [1]. It assumes that the Standard Model (SM) cosmological thermal plasma was not initially accompanied by any DM abundance. Since all SM components self-interact thermalising to a common temperature, cosmological inhomogeneities were initially adiabatic.

Next, ‘freeze-in’ particle physics processes produce DM particles with mass M out of the SM plasma. For example, one can have decays $\text{SM} \rightarrow \text{DM DM}$ or scatterings SM SM...
DM DM, dominated either at large temperatures $T \gg M$ (‘UV-dominated freeze-in’) or at low temperatures $T \sim M$ (‘IR-dominated freeze-in’). In order to match the observed cosmological DM density [2], the rate of freeze-in processes must be much smaller than the Hubble rate H. Freeze-in automatically generates DM inhomogeneities out of SM inhomogeneities.

Observations are consistent with dominant adiabatic inhomogeneities (namely, the SM/DM fluid is the same everywhere), while iso-curvature inhomogeneities (namely, DM inhomogeneities different from SM inhomogeneities) are constrained, on cosmological scales, to be below a few % level [2].

We consider if freeze-in leads to acceptable DM inhomogeneities.

Weinberg answered positively this issue for thermal freeze-out: since freeze-out dominantly happens in the non-relativistic regime, computing inhomogeneities in the DM number density was enough [3]. On the other hand, freeze-in can be relativistic, and the iso-curvature issue started being considered recently: [4] claims that a specific freeze-in model is excluded because it generates too large scale-independent iso-curvature perturbations. The authors of [4] argue that all freeze-in models are similarly problematic. In the model considered in [4] DM has a small electric charge and is thereby produced by IR-dominated scatterings of two SM particles, such as $e^- e^+ \rightarrow$ DM DM. This generates, at any given time, a contribution to the DM density ρ_{DM} proportional to the square of the SM density ρ_{SM}, and DM inhomogeneities might be not proportional to SM inhomogeneities. However, one must consider the cumulative cosmological process taking into account that all regions of the Universe undergo a similarly diluting ρ_{SM}. As we will see, this leads to negligible iso-curvature effects. A simple argument is presented in section 2, and the general formalism is used in section 3. Section 4 presents our conclusions.

2 Intuitive argument based on ‘separate universes’

We start presenting an intuitive argument. Working in the Newtonian gauge,

$$ds^2 = -[1 + 2\Phi(t, \vec{x})]dt^2 + a^2(t)[1 - 2\Psi(t, \vec{x})]d\vec{x}^2$$

(1)

the primordial adiabatic perturbations $\delta \rho_{\alpha}(t, \vec{x})$ in the density $\rho_{\alpha}(t)$ of a fluid α can be characterised in a simple geometric way as [3, 5–7]

$$\delta \rho_{\alpha} = \frac{d\rho_{\alpha}}{dt} \delta t$$

(2)

working at first-order in the small $\delta \rho_{\alpha} \ll \rho_{\alpha}$. In eq. (2) $\delta t(t, \vec{x})$ is some universal function common to all fluids that can be intuitively thought as a delay in the time evolution of the different regions.

Observation constrain iso-curvature perturbations only on scales comparable to the horizon today, while the freeze-in DM density was generated before matter/radiation
equality (much before in most freeze-in models). This means that we only need to worry
if freeze-in generated iso-curvature perturbations on scales much larger than the small
horizon at freeze-in.

We can thus apply the ‘separate universes’ picture (see e.g. [5]): the very early Universe
at freeze-in can be thought as many homogeneous regions without causal contact, given
that inhomogeneities on different scale evolve independently in first-order approximation.
Freeze-in dynamics produces DM with adiabatic perturbations because all regions undergo
the same dynamics, up to the delay \(\delta t \). So eq. (2) holds for the DM density, no matter
how complicated the freeze-in dynamics is. Explicitly, the Boltzmann equation for the
homogeneous small DM number density \(n_{\text{DM}} \) is \(d(n_{\text{DM}}/s)/d\ln T \approx \gamma/H_s \), where \(s \) is
the entropy density, \(H \) is the Hubble rate, and \(\gamma(T) \) is the space-time density rate of
freeze-in processes that produce one DM particle out of the SM plasma at temperature
\(T \). Integrating this equation leads to

\[
\frac{n_{\text{DM}}}{s} = \int dT \frac{\gamma(T)}{T \cdot H_s}.
\]

(3)

Interpreting eq. (3) in the ‘separate universes’ picture implies that, in regions where
the SM plasma was denser, freeze-in initially produced more DM by some amount that
depends on the freeze-in model, but in these region the DM average density changed
more rapidly leading to adiabatic DM inhomogeneities. The above discussion explicitly
verifies how, in the special freeze-in case, the ‘separate universes’ regions undergo the
same evolution, up to the time delay.

The next section substantiates the above intuitive reasoning by explicit computations.

3 Iso-curvature perturbations during freeze-in?

A general formalism to compute the cosmological evolution of inhomogeneities in inter-
acting fluids was developed in [8,9]. We adopt its presentation as summarized in [10],
that makes more explicit the sources of iso-curvature inhomogeneities.

Simple first-order evolution equations for the various densities are obtained by combin-
ing the Einstein gravity equations into the conservation of the energy-momentum tensor
\(T_{\mu\nu} = \sum_\alpha T_{(\alpha)}^{\mu\nu} \). The energy-momentum tensor \(T_{(\alpha)}^{\mu\nu} \) of fluid \(\alpha \) only is not conserved because
interactions transfer energy-momentum \(Q_{(\alpha)}^\nu \) to other fluids. So one has

\[
\nabla_\mu T_{(\alpha)}^{\mu\nu} = Q_{(\alpha)}^\nu \quad \text{with} \quad \sum_\alpha Q_{(\alpha)}^\nu = 0
\]

(4)

because of total energy conservation. In the homogeneous limit, this implies that the
average densities evolve as \(\dot{\rho}_\alpha + 3H(\rho_\alpha + \varphi_\alpha) = Q^0_{(\alpha)} = Q_{(\alpha)} \), where \(\varphi_\alpha \) is the pressure of
fluid \(\alpha \). The energy component of \(Q_{(\alpha)} \) is expanded in small inhomogeneities as \(Q_{(\alpha)0} =
- Q_{\alpha}(1 + \Phi) - \delta Q_{\alpha} [10] \) so that \(\sum_\alpha \delta Q_{\alpha} = 0 \) by total energy conservation. The total
density is \(\rho = \sum_\alpha \rho_\alpha \).

3
It is useful to write equations in terms of the curvature perturbation \(\zeta = -H[\Psi/H + \delta \rho/\dot{\rho}] \), which is the relative displacement between uniform-density and uniform-curvature surfaces. This curvature perturbation can be defined for each fluid

\[
\zeta_\alpha = -\Psi - H \frac{\delta \rho_\alpha}{\rho_\alpha}
\]

and it evolves as [10]

\[
\dot{\zeta}_\alpha = -H \frac{\delta \rho_\alpha}{\rho_\alpha} + 3H^2 \frac{\delta \varphi_{\text{intr},\alpha}}{\rho_\alpha} - H \frac{Q_\alpha}{\rho_\alpha} \left(\frac{\delta \rho_\alpha}{\rho_\alpha} - \frac{\delta \rho}{\rho} \right) + O(k^2)
\]

where \(\delta Q_{\text{intr},\alpha} \) and \(\delta \varphi_{\text{intr},\alpha} \) will be defined later. As usual, small perturbations are conveniently expanded in comoving Fourier modes \(k \), and the ‘separate universe’ argument amounts to consider the limit \(k \to 0 \) of the full equations. We focus on large super-horizon scales, thereby omitting the label \(k \) and neglecting Laplacians and other terms suppressed by \(k^2/a^2H^2 \). Such terms are indeed negligible whenever freeze-in occurs way before matter/radiation equality, for relevant cosmological scales \(k \).

The equations (6) can be written in a slightly more convenient form by avoiding using the total density \(\rho \) and defining instead the iso-curvature relative perturbations \(S_{\alpha\beta} \) between two fluids \(\alpha \) and \(\beta \)

\[
S_{\alpha\beta} \equiv 3(\zeta_\alpha - \zeta_\beta) = -3H \left(\frac{\delta \rho_\alpha}{\rho_\alpha} - \frac{\delta \rho_\beta}{\rho_\beta} \right)
\]

that evolve as

\[
\dot{S}_{\alpha\beta} = -3H \left(\frac{\delta Q_{\text{intr},\alpha}}{\rho_\alpha} - 3H \frac{\delta \varphi_{\text{intr},\alpha}}{\rho_\alpha} - \frac{\delta Q_{\text{intr},\beta}}{\rho_\beta} - 3H \frac{\delta \varphi_{\text{intr},\beta}}{\rho_\beta} \right) + \dot{\zeta}_{\alpha\beta} + O(k^2).
\]

We again ignore the terms suppressed by \(k^2 \). We can also ignore the ‘multiplicative’ terms (namely, those proportional to combinations of \(S_{\alpha',\beta'} \) terms) [10]

\[
\dot{S}_{\alpha\beta}^{\text{mul}} = \frac{\dot{H}}{2H} \left[\left(\frac{Q_\alpha}{\rho_\alpha} + \frac{Q_\beta}{\rho_\beta} \right) S_{\alpha\beta} + \left(\frac{Q_\alpha}{\rho_\alpha} - \frac{Q_\beta}{\rho_\beta} \right) \sum_\gamma \frac{\dot{\rho}_\gamma}{\dot{\rho}} (S_{\alpha\gamma} + S_{\beta\gamma}) \right]
\]

because we are only concerned in understanding if non-zero iso-curvature perturbations are generated by the ‘source’ terms explicitly shown in eq. (8). The formalism summarized in [10] makes clear that, in the long-wavelength limit \(k \to 0 \), iso-curvature perturbations are only sourced by the non-adiabatic energy transfer \(\delta Q_{\text{intr},\alpha} \) and by the non-adiabatic pressure \(\delta \varphi_{\text{intr},\alpha} \) intrinsic in each fluid \(\alpha \). These terms will be now be defined and evaluated.

3.1 Intrinsic non-adiabatic energy transfer

One source of iso-curvature perturbations is the intrinsic non-adiabatic energy transfer, the part of energy transfer \(\delta Q_\alpha \) from fluid \(\alpha \) ‘biased’ with respect to its energy density
\[\delta Q_{\text{intr},\alpha} \equiv \delta Q_{\alpha} - \frac{\dot{Q}_{\alpha}}{\dot{\rho}_{\alpha}} \delta \rho_{\alpha}. \]

We next consider its value during freeze-in, where the relevant fluids are \(\alpha = \{\text{SM, DM}\} \).

The rate of freeze-in particle collisions can be computed, in any given particle-physics model, as a function of the local temperature of the SM fluid, that also controls its density. Thereby the energy transfer from the SM fluid only depends on its local density, \(Q_{\text{SM}}(\rho_{\text{SM}}) \). Consequently \(\delta Q_{\text{intr,SM}} = \delta Q_{\text{SM}} - \delta \rho_{\text{SM}} dQ_{\text{SM}}/d\rho_{\text{SM}} = 0 \) vanishes in a generic freeze-in model.

Next, energy conservation demands \(\delta Q_{\text{SM}} + \delta Q_{\text{DM}} = 0 \), so that the intrinsic non-adiabatic energy transfer to the DM fluid can be written as

\[\delta Q_{\text{intr,DM}} = \delta Q_{\text{DM}} - \frac{\dot{Q}_{\text{DM}}}{\dot{\rho}_{\text{DM}}} \delta \rho_{\text{DM}} = \dot{Q}_{\text{DM}} \left(\frac{\delta \rho_{\text{SM}}}{\dot{\rho}_{\text{SM}}} - \frac{\delta \rho_{\text{DM}}}{\dot{\rho}_{\text{DM}}} \right). \]

This potential ‘source’ terms thereby becomes a ‘multiplicative’ term, proportional to the relative entropy \(S_{\text{SM,DM}} \). Since this is assumed to be initially vanishing, \(\delta Q_{\text{intr,DM}} \) generates no isocurvature perturbation.

3.2 Intrinsic non-adiabatic pressure

The second kind of source term, the non-adiabatic part of the pressure perturbation intrinsic of each fluid \(\alpha \), is given by [10]

\[\delta \varphi_{\text{intr,\alpha}} = \delta \varphi_{\alpha} - c_{\alpha}^2 \delta \rho_{\alpha} \text{ where } c_{\alpha}^2 = \frac{\dot{\varphi}_{\alpha}}{\dot{\rho}_{\alpha}} \]

is its adiabatic speed of sound. This term vanishes when the pressure and energy inhomogeneities respect the equation of state of the fluid, \(\varphi_{\alpha}(\rho_{\alpha}) \).

Freeze-in particle-physics processes contribute as \(\delta \varphi_{\text{intr,SM}} \neq 0 \) because they convert SM particles into DM particles, thereby inducing an energy and momentum loss of the SM fluid, as dictated by the specific freeze-in interaction, that generically does not follow the equation of state of the SM fluid.

As a simple example of this unbalance, freeze-in via the decay into DM particles of some SM particle (or, in SM extensions, of some speculative new-physics particle tightly coupled to the SM) transfers more energy than pressure (\(\dot{\rho}_{\text{SM}}/\dot{\varphi}_{\text{SM}} > \rho_{\text{SM}}/\varphi_{\text{SM}} \)) because the decaying particles must be massive and thereby they decay slower when they have higher relativistic energy. An unbalance also generically occurs in freeze-in scatterings, described by a cross-section \(\sigma(\text{SM SM} \rightarrow \text{DM DM}) \) that only depends on the invariant energy \(\sqrt{s} \) at leading order in the couplings (the motion with respect to the plasma enters at higher orders). The sign of \(\delta \varphi_{\text{intr,SM}} \) is not fixed, as the energy dependence of \(\sigma \) can either result in a larger energy transfer when the colliding SM particles have higher energy \(E \gtrsim T \) (this can happen in UV-dominated freeze-in, via non-renormalizable interactions,
for example gravitational [11]) or when the colliding SM particles have lower energy $E \lesssim T$ (this can happen in IR-dominated freeze-in, via renormalizable interactions). As a possibly relevant special case, $\delta \varphi_{\text{intr,SM}}$ is nearly-vanishing in freeze-in models that only lead to the disappearance of ultra-relativistic SM particles, as they (on angular average) satisfy the same equation of state $\varrho = \rho/3$ as the radiation-dominated SM fluid.

However, the fact that freeze-in processes (decays and scatterings) can contribute as $\delta \varphi_{\text{intr,SM}} \neq 0$ is inconsequential, as we must also take into account the self-interactions of the SM fluid. A multitude of SM particle processes allow the SM fluid to locally re-thermalize to its equation of state with rates Γ much faster than the Hubble rate and than the freeze-in rate. Typically $\Gamma \sim g^2 T$ where $g \sim 1$ is a typical SM coupling, such as a gauge coupling. The re-thermalizion processes conserve the SM energy ρ_{SM}: δQ_{SM} remains given by freeze-in processes only, so that $\delta Q_{\text{intr,SM}} = 0$ remains as in section 3.1. On the other hand, the SM pressure ϱ_{SM} changes such that the combination of the two processes (freeze-in and re-thermalization) leads to $\delta \varphi_{\text{intr,SM}} = 0$.

This leaves $\delta \varphi_{\text{intr,DM}}$ as a possible source of iso-curvatures. A self-thermalization argument parallel to what just discussed for the SM plasma implies $\delta \varphi_{\text{intr,DM}} = 0$ if DM has significant self-interactions just after being produced during freeze-in. This happens, for example, if DM is a multiplet under a dark gauge group [12] that confines at a scale Λ and if freeze-in happens at $T \gg \Lambda$. If instead DM self-interactions are negligible, a formalism extended to higher moments may be needed, but the physics is simple: DM particles free stream on sub-horizon scales, but not on large scales $k \to 0$. The non-thermal DM distribution $f(\vec{x}, t, q) = f_0(q) + \delta f(\vec{x}, t, q)$ produced by freeze-in redshifts with scale factor a as [13]

$$\rho_{\text{DM}} = \frac{1}{a^4} \int \frac{d^3 q}{(2\pi)^3} q^2 \sqrt{E f}, \quad \varrho_{\text{DM}} = \frac{1}{a^4} \int \frac{d^3 q}{(2\pi)^3} \frac{q^2}{3E} f$$

(13)

where q and $E = \sqrt{q^2 + a^2 M^2}$ are the comoving momentum and energy of the DM particle with mass M. Two limits are of special interest. If freeze-in is IR-dominated, DM is only mildly relativistic, so that DM motion is soon red-shifted down to negligible pressure, $\varrho_{\text{DM}} \ll \rho_{\text{DM}}$. UV-dominated freeze-in can produce ultra-relativistic DM with $\varrho_{\text{DM}}/\rho_{\text{DM}} \propto \varrho_{\text{DM}}/\rho_{\text{DM}} \simeq 1/3$, that becomes non-relativistic only later when the SM cools down to temperatures comparable to the DM mass M, while the horizon reaches larger scales.

4 Conclusions

We considered generic models of freeze-in (from decays, from scatterings, IR-dominated, UV-dominated...) finding that the generated Dark Matter inherits the Standard Model adiabatic inhomogeneities on the cosmological scales probed by current observations, that were super-horizon during freeze-in. In section 2 we presented an intuitive argument
based on the well-known ‘separate universe’ picture. This was substantiated in section 3 by checking the explicit sources of iso-curvature perturbations on super-horizon scales.

Iso-curvature perturbations can only be generated on small scales that were sub-horizon during freeze-in: this effect can perhaps be relevant in models where freeze-in happens at the lowest possible temperature $T \sim M \sim \text{keV}$, possibly in the presence of dark long-range forces.

In conclusion, freeze-in appears a viable mechanism for generation of the cosmological DM abundance. Similar arguments hold for other particle-physics mechanisms such as ‘cannibalism’ [14] or ‘freeze-out and decay’. Furthermore, baryogenesis mechanisms that involve elements similar to freeze-in (such as leptogenesis from right-handed neutrinos with initially negligible abundance) are similarly compatible with iso-curvature bounds.

Acknowledgements We thank Guido d’Amico, Alessio Notari, Paolo Panci, Michele Redi, Andrea Tesi for discussions. This work was supported by the MIUR grant PRIN 2017FMJFMW.

References

[1] The term ‘freeze-in’ was introduced in L.J. Hall, K. Jedamzik, J. March-Russell, S.M. West, “Freeze-In Production of FIMP Dark Matter”, JHEP 03 (2010) 080 [arXiv:0911.1120]. The idea is much older: it was for example assumed for sterile neutrinos, and next for singlet scalars, see e.g. J. McDonald, “Thermally generated gauge singlet scalars as self-interacting dark matter”, Phys.Rev.Lett. 88 (2002) 091304 [arXiv:hep-ph/0106249]. For a review and references see N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, V. Vaskonen, “The Dawn of FIMP Dark Matter: A Review of Models and Constraints”, Int.J.Mod.Phys.A 32 (2017) 1730023 [arXiv:1706.07442].

[2] PLANCK Collaboration, “Planck 2018 results. I. Overview and the cosmological legacy of Planck”, Astron.Astrophys. 641 (2020) A1 [arXiv:1807.06205]. PLANCK Collaboration, “Planck 2018 results. VI. Cosmological parameters”, Astron.Astrophys. 641 (2020) A6 [arXiv:1807.06209].

[3] S. Weinberg, “Must cosmological perturbations remain non-adiabatic after multi-field inflation?”, Phys.Rev.D 70 (2004) 083522 [arXiv:astro-ph/0405397].

[4] N. Bellomo, K.V. Berghaus, K.K. Boddy, “Dark matter freeze-in produces large post-inflationary isocurvature” [arXiv:2210.15691].

[5] D. Wands, K.A. Malik, D.H. Lyth, A.R. Liddle, “A New approach to the evolution of cosmological perturbations”, Phys.Rev.D 62 (2000) 043527 [arXiv:astro-ph/0003278].

[6] D.H. Lyth, D. Wands, “Conserved cosmological perturbations”, Phys.Rev.D 68 (2003) 103515 [arXiv:astro-ph/0306498].

[7] S. Weinberg, “Can non-adiabatic perturbations arise after single-field inflation?”, Phys.Rev.D 70 (2004) 043541 [arXiv:astro-ph/0401313].

[8] J.M. Bardeen, “Gauge Invariant Cosmological Perturbations”, Phys.Rev.D 22 (1980) 1882.

[9] H. Kodama, M. Sasaki, “Cosmological Perturbation Theory”, Prog.Theor.Phys.Suppl. 78 (1984) 1.
[10] K.A. Malik, D. Wands, “Adiabatic and entropy perturbations with interacting fluids and fields”, JCAP 02 (2005) 007 [arXiv:astro-ph/0411703].

[11] M. Garny, M.C. Sandora, M.S. Sloth, “Planckian Interacting Massive Particles as Dark Matter”, Phys.Rev.Lett. 116 (2016) 101302 [arXiv:1511.03278].

[12] C. Gross, S. Karamitsos, G. Landini, A. Strumia, “Gravitational Vector Dark Matter”, JHEP 03 (2021) 174 [arXiv:2012.12087].

[13] C.-P. Ma, E. Bertschinger, “Cosmological perturbation theory in the synchronous and conformal Newtonian bases”, Astrophys.J. 455 (1995) 7 [arXiv:astro-ph/9506072].

[14] E.D. Carlson, M.E. Machacek, L.J. Hall, “Self-interacting dark matter”, Astrophys.J. 398 (1992) 43. E. Kuflik, M. Perelstein, N.R.-L. Lorier, Y.-D. Tsai, “Elastically Decoupling Dark Matter”, Phys.Rev.Lett. 116 (2016) 221302 [arXiv:1512.04545]. D. Pappadopulo, J.T. Ruderman, G. Trevisan, “Dark matter freeze-out in a nonrelativistic sector”, Phys.Rev.D 94 (2016) 035005 [arXiv:1602.04219].