Research Article

New Interaction Solutions for a (2 + 1)-Dimensional Vakhnenko Equation

Qing Meng\(^1\) and Bin He\(^2\)

\(^1\)Department of Physics, Honghe University, Mengzi, Yunnan 661100, China
\(^2\)College of Mathematics, Honghe University, Mengzi, Yunnan 661100, China

Correspondence should be addressed to Bin He; hebinmtc@163.com

Received 18 November 2019; Accepted 3 February 2020; Published 10 April 2020

1. Introduction

It is well known that nonlinear partial differential equations (NPDEs) and their solutions play a significant role in interpreting many important phenomena in nonlinear sciences. A variety of powerful methods are developed for finding the exact solutions of NPDEs, such as Hirota’s method [1, 2], simplified Hirota’s method [3, 4], the Lie symmetry analysis method [5, 6], the simplest equation method [5, 6], the invariant subspace method [7], and the nonlinear steepest descent method [8]. Very recently, the lump and interaction solutions [9–11] have attracted the attention of many scholars because of lump’s applications in nonlinear optics, physics, oceanography, etc, and the interaction solutions are valuable in analyzing the nonlinear dynamics of waves in shallow water and can be used for forecasting the appearance of rogue waves [12, 13].

In order to describe high-frequency wave propagations in a relaxing medium, the Vakhnenko equation [14], the generalized Vakhnenko equation [15], and the modified generalized Vakhnenko equation [16] were presented. Many different kinds of valuable results have been obtained [17–23]. Vakhnenko and Parkes [17] obtained the two-loop soliton solution for the Vakhnenko equation using Hirota’s bilinear method. Vakhnenko et al. [18] derived a Bäcklund transformation both in the bilinear and in ordinary form for the generalized Vakhnenko equation and found the exact N-soliton solution via the inverse scattering method. Wazwaz [19] derived multiple soliton solutions and multiple singular soliton solutions for the Vakhnenko equation, the generalized Vakhnenko equation, and the modified generalized Vakhnenko equation by the simplified form of the bilinear method. Wang and Chen [20] investigated the integrability of the modified generalized Vakhnenko equation and presented the quasiperiodic solution by applying Hirota direct method and Riemann theta function. Brunelli and Sakovich [21] obtained a bi-Hamiltonian formulation for the Vakhnenko equation via the Miura-type transformations. The dynamical behaviours and exact traveling wave solutions of the modified generalized Vakhnenko equation were studied in [22]. Hashemi et al. [23] determined the Lie symmetry group, the corresponding symmetry reductions, and invariant solutions of the modified generalized Vakhnenko equation by the Li group analysis method, and so on.

In 2008, Victor et al. [24] initially derived a (2 + 1)-dimensional Vakhnenko equation

\[
\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \left( \frac{\partial}{\partial t} + u \left( \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) \right) u + u = 0, \tag{1}
\]
which is to model high-frequent wave perturbations in relaxing high-rate active barothropic media and involves two spatial variables \(x, y\) and a temporal variable \(t\). With the aid of symbolic computation and Hirota’s method, Victor et al. [24] unearthed some typical solitary wave solutions to equation (1) and depicted single- and multivalued solutions depending on the dissipative parameter. Morrison and Parkes [15, 16] showed that \(u(x, y, t) = U(T_1, T_2, X)\) under the following transformation:

\[
\begin{align*}
x &= T_1 + \int_{-\infty}^{X} U(T_1, T_2, X')\,dX' + x_0, \\
y &= T_2 + \int_{-\infty}^{X} U(T_1, T_2, X')\,dX' + y_0, \\
t &= X,
\end{align*}
\]

where \(x_0\) and \(y_0\) are two constants and \(T_1, T_2, X\) are three independent variables. Li et al. [25] introduced a new function \(W\) defined by

\[
W(T_1, T_2, X) = \int_{-\infty}^{X} U(T_1, T_2, X')\,dX'.
\]

Then, \(W_x = U\) and equation (1) becomes

\[
W_{XX_{T_1}} + W_{XX_{T_2}} + W_{X}W_{T_1} + W_{X}W_{T_2} + W_{X} = 0.
\]

Moreover, Li et al. [25] indicated that if \(W = W(T_1, T_2, X)\) is an explicit solution of equation (4), then

\[
\begin{align*}
u(x, y, t) &= W_x(T_1, T_2, X), \\
x &= T_1 + W(T_1, T_2, X) + x_0, \\
y &= T_2 + W(T_1, T_2, X) + y_0, \\
t &= X,
\end{align*}
\]

is an implicit solution of equation (1). Some 1-loop, 2-loop, and 3-loop soliton solutions were presented applying the improved Hirota method, and the traveling and interaction processes for the N-loop soliton solutions are explored in [25].

In this paper, we investigate interaction solutions of equation (1) via Hirota’s transformation [26] and three-wave methods [27–30].

2. Interaction Solutions of Equation (1)

Under the transformation \(W = 6(\ln f)_x\), equation (4) becomes the Hirota bilinear equation:

\[
(D^2_x D_{T_1} + D^2_x D_{T_2} + D^2_x)(f \cdot f) = 0,
\]

where \(f = f(T_1, T_2, X)\) is a real function, and the Hirota bilinear differential operator \(D^m_x D^n_t\) was defined by [26]

\[
D^m_x D^n_t(f \cdot g) = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x'}\right)^m \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t'}\right)^n (f(x,t)g(x',t'))|_{(x,t)\rightarrow(x',t')}.
\]

In fact, equation (6) is equivalent to one special case of a generalized Bogoyavlensky–Konopelchenko equation [31] upon combining \(T_1\) and \(T_2\) as \(t\).

Consider equation (6) as well as the following novel test function:

\[
f = b_1 e^{\xi_1} + b_2 e^{-\xi_1} + b_3 \sin(\xi_2) + b_4 \cos(\xi_3) + b_5 \sinh(\xi_4),
\]

which is a combination of \(f = k_1 e^{\xi_1} + k_2 e^{-\xi_1} + k_3 \sin(\xi_2) + k_4 \cos(\xi_3)\) and \(f = k_1 e^{\xi_1} + k_2 e^{-\xi_1} + k_3 \sin(\xi_2) + k_4 \sinh(\xi_3)\) [28, 29], where \(\xi_i = \omega_i x + c_i T_1 + k_i T_2, \omega_i, c_i, k_i, b_j\) (1 \(\leq i \leq 4, 1 \leq j \leq 5\) are unknown constants to be determined later.

Substituting (8) into (6), we can obtain an algebraic system of \(\omega_1, c_1, k_1, b_j(1 \leq i \leq 4, 1 \leq j \leq 5)\).

Case 1. Choosing \(b_5 = 0\) and with the aid of Maple, we present some solutions of the algebraic system as follows:

\[
\begin{align*}
b_1 &= 0, b_2 = b_2, b_3 = b_3, b_4 = b_4, b_5 = 0, \omega_1 = \sqrt{3} \omega_2, c_1 = \frac{\sqrt{3} - 4\omega_1 k_1}{4\omega_2}, \\
k_1 &= k_1, \omega_2 = \omega_2, c_2 = \frac{1 - 4\omega_1 k_2}{4\omega_2}, k_2 = k_2, \omega_3 = \omega_2, c_3 = \frac{1 - 4\omega_1 k_3}{4\omega_2}, k_3 = k_3,
\end{align*}
\]

where \(\omega_2 \neq 0\).
\[
\begin{aligned}
    b_1 &= \frac{b_2^2 \omega_2^2 \left( \omega_1^2 - 3 \omega_3^2 \right)}{4b_2 \omega_2^2 \left( \omega_3^2 - 3 \omega_1^2 \right)}, \\
    b_2 &= b_2, \\
    b_3 &= 0, \\
    b_4 &= b_4, \\
    b_5 &= 0, \\
    \omega_1 &= \omega_1, \\
    c_1 &= -\frac{\omega_1 + k_1 \left( \omega_1^2 + \omega_3^2 \right)}{\omega_1^2 + \omega_3^2}, \\
    k_1 &= k_1, \\
    \omega_2 &= \omega_2, \\
    c_2 &= c_2, \\
    k_2 &= k_2, \\
    \omega_3 &= \omega_3, \\
    c_3 &= -\frac{\omega_3 - k_3 \left( \omega_1^2 + \omega_3^2 \right)}{\omega_1^2 + \omega_3^2}, \\
    k_3 &= k_3,
\end{aligned}
\]  

(10)

where \( b_2 \neq 0, \omega_1 \neq 0, \) and \( \omega_3 \neq \pm \sqrt{3} \omega_1 \).

\[
\begin{aligned}
    b_1 &= b_1, \\
    b_2 &= 0, \\
    b_3 &= b_3, \\
    b_4 &= b_4, \\
    b_5 &= 0, \\
    \omega_1 &= \sqrt{3} \omega_2, \\
    c_1 &= \frac{\sqrt{3} + 4 \omega_2 k_1}{4 \omega_2}, \\
    k_1 &= k_1, \\
    \omega_2 &= \omega_2, \\
    c_2 &= -\frac{1 - 4 \omega_2 k_2}{4 \omega_2}, \\
    k_2 &= k_2, \\
    \omega_3 &= -\omega_2, \\
    c_3 &= -\frac{1 + 4 \omega_2 k_3}{4 \omega_2}, \\
    k_3 &= k_3,
\end{aligned}
\]

(11)

where \( \omega_2 \neq 0 \).
The parameters in set (9) generate the following class of interaction solutions to equation (6) as

\[ f_1 = b_2 e^{-(\sqrt{3} \omega_2 X + (\sqrt{3} - 4\omega_2 k_1/4\omega_2) \gamma_1 + k_1 \gamma_2)} \]

\[ + b_3 \sin(\omega_2 X + \frac{1 - 4\omega_2 k_2}{4\omega_2} T_1 + k_2 T_2) \]

\[ + b_4 \cos(\omega_2 X + \frac{1 - 4\omega_2 k_3}{4\omega_2} T_1 + k_3 T_2) \quad (12) \]

which further leads to furnish a class of interaction solutions to equation (1) as follows:

\[ u(x, y, t) = \frac{6(G_1 f_1 - H_1)}{f_1} \]

\[ x = T_1 + \frac{6H_1}{f_1} + x_0, \]

\[ y = T_2 + \frac{6H_1}{f_1} + y_0, \]

\[ t = X, \]

where \( b_2, b_3, b_4, \omega_2 (\neq 0), k_1, k_2, k_3, x_0, y_0 \) are arbitrary constants and

\[ G_1 = \omega_2^2 \left( 3b_2 e^{-(\sqrt{3} \omega_2 X + (\sqrt{3} - 4\omega_2 k_1/4\omega_2) \gamma_1 + k_1 \gamma_2)} \right. \]

\[ - b_3 \sin(\omega_2 X + \frac{1 - 4\omega_2 k_2}{4\omega_2} T_1 + k_2 T_2) \]

\[ - b_4 \cos(\omega_2 X + \frac{1 - 4\omega_2 k_3}{4\omega_2} T_1 + k_3 T_2) \left. \right) \quad (14) \]

\[ H_1 = \omega_2 \left( -b_2 \sqrt{3} e^{-(\sqrt{3} \omega_2 X + (\sqrt{3} - 4\omega_2 k_1/4\omega_2) \gamma_1 + k_1 \gamma_2)} \right. \]

\[ + b_3 \cos(\omega_2 X + \frac{1 - 4\omega_2 k_2}{4\omega_2} T_1 + k_2 T_2) \]

\[ - b_4 \sin(\omega_2 X + \frac{1 - 4\omega_2 k_3}{4\omega_2} T_1 + k_3 T_2) \left. \right) \]

The parameters in set (10) generate the following class of interaction solutions to equation (6) as

\[ f_2 = \frac{b_2^2 \omega_2^2 \left( \omega_1^2 - 3\omega_2^2 \right)}{4b_2 \omega_2^2 \left( \omega_2^2 - 3\omega_1^2 \right)} \left( \omega_1 X - (\omega_1 + k_1 (\omega_1^2 + \omega_2^2)/\omega_1^2 + \omega_2^2) \gamma_1 + k_1 \gamma_2 \right) \]

\[ + b_3 e^{-(\omega_1 X - (\omega_1 + k_1 (\omega_1^2 + \omega_2^2)/\omega_1^2 + \omega_2^2) \gamma_1 + k_1 \gamma_2)} \]

\[ + b_4 \cos(\omega_3 X + \frac{\omega_3 - k_3 (\omega_1^2 + \omega_2^2)}{\omega_1^2 + \omega_3^2} T_1 + k_3 T_2) \quad (15) \]

which further leads to furnish a class of interaction solutions to equation (1) as follows:

\[ u(x, y, t) = \frac{6(G_2 f_2 - H_2^2)}{f_2^2} \]

\[ x = T_1 + \frac{6H_2}{f_2} + x_0, \]

\[ y = T_2 + \frac{6H_2}{f_2} + y_0, \]

\[ t = X, \]

where \( b_2 (\neq 0), b_4, \omega_1 (\neq 0), \omega_3 (\neq \pm \sqrt{3} \omega_1), k_1, k_3, x_0, y_0 \) are arbitrary constants and

\[ G_2 = \frac{b_2^2 \omega_2^2 \left( \omega_1^2 - 3\omega_2^2 \right)}{4b_2 \omega_2^2 \left( \omega_2^2 - 3\omega_1^2 \right)} e^{-(\omega_1 X - (\omega_1 + k_1 (\omega_1^2 + \omega_2^2)/\omega_1^2 + \omega_2^2) \gamma_1 + k_1 \gamma_2)} \]

\[ + b_3 \omega_1 \sin(\omega_3 X + \frac{\omega_3 - k_3 (\omega_1^2 + \omega_2^2)}{\omega_1^2 + \omega_3^2} T_1 + k_3 T_2) \]

\[ - b_3 \omega_1 \cos(\omega_3 X + \frac{\omega_3 - k_3 (\omega_1^2 + \omega_2^2)}{\omega_1^2 + \omega_3^2} T_1 + k_3 T_2) \]

\[ H_2 = \frac{b_2^2 \omega_2^2 \left( \omega_1^2 - 3\omega_2^2 \right)}{4b_2 \omega_2^2 \left( \omega_2^2 - 3\omega_1^2 \right)} \left( \omega_1 X - (\omega_1 + k_1 (\omega_1^2 + \omega_2^2)/\omega_1^2 + \omega_2^2) \gamma_1 + k_1 \gamma_2 \right) \]

\[ + b_3 \omega_1 e^{-(\omega_1 X - (\omega_1 + k_1 (\omega_1^2 + \omega_2^2)/\omega_1^2 + \omega_2^2) \gamma_1 + k_1 \gamma_2)} \]

\[ - b_4 \omega_3 \sin(\omega_3 X + \frac{\omega_3 - k_3 (\omega_1^2 + \omega_2^2)}{\omega_1^2 + \omega_3^2} T_1 + k_3 T_2) \]

\[ - b_4 \omega_3 \cos(\omega_3 X + \frac{\omega_3 - k_3 (\omega_1^2 + \omega_2^2)}{\omega_1^2 + \omega_3^2} T_1 + k_3 T_2) \quad (17) \]
Setting \( b_2 = -(b_1\omega_3/2\omega_1)\sqrt{(\omega_1^2 - 3\omega_2^2)/(3\omega_1^2 - \omega_2^2)} \), solution (15) becomes
\[
\begin{align*}
\mathcal{F}_2 &= \frac{b_1\omega_3}{\omega_1}\sqrt{\frac{\omega_1^2 - 3\omega_2^2}{3\omega_1^2 - \omega_2^2}} \sin\left(\omega_1X - \frac{\omega_1 + k_1(\omega_1^2 + \omega_2^2)}{\omega_1^2 + \omega_3^2}T_1 + k_1T_2\right) \\
&\quad + b_4\cos\left(\omega_3X + \frac{\omega_3 - k_3(\omega_1^2 + \omega_3^2)}{\omega_1^2 + \omega_3^2}T_1 + k_3T_2\right),
\end{align*}
\]
which further leads to furnish a class of interaction solutions to equation (1) as follows:
\[
\begin{align*}
\begin{cases}
u(x, y, t) &= \frac{6(G_2\mathcal{F}_2 - \mathcal{H}_2^2)}{f_2}, \\
x &= T_1 + \frac{6\mathcal{H}_2}{f_2} + x_0, \\
y &= T_2 + \frac{6\mathcal{H}_2}{f_2} + y_0, \\
t &= X,
\end{cases}
\end{align*}
\]
where \( b_1, \omega_1 (\neq 0), \omega_3((\omega_1^2 - 3\omega_2^2)(3\omega_1^2 - \omega_2^2) > 0), k_1, k_3, x_0, y_0 \) are arbitrary constants and
\[
\begin{align*}
\mathcal{G}_2 &= b_4\omega_3\left(\omega_1\sqrt{\frac{\omega_1^2 - 3\omega_2^2}{3\omega_1^2 - \omega_2^2}} \sin\left(\omega_1X - \frac{\omega_1 + k_1(\omega_1^2 + \omega_2^2)}{\omega_1^2 + \omega_3^2}T_1\right) \\
&\quad + k_1T_2\right) - \omega_3\cos\left(\omega_3X + \frac{\omega_3 - k_3(\omega_1^2 + \omega_3^2)}{\omega_1^2 + \omega_3^2}T_1 + k_3T_2\right),
\end{align*}
\]
\[
\begin{align*}
\mathcal{H}_2 &= b_4\omega_3\left(\sqrt{\frac{\omega_1^2 - 3\omega_2^2}{3\omega_1^2 - \omega_2^2}} \cos\left(\omega_1X - \frac{\omega_1 + k_1(\omega_1^2 + \omega_2^2)}{\omega_1^2 + \omega_3^2}T_1\right) \\
&\quad + k_1T_2\right) - \sin\left(\omega_3X + \frac{\omega_3 - k_3(\omega_1^2 + \omega_3^2)}{\omega_1^2 + \omega_3^2}T_1 + k_3T_2\right).
\end{align*}
\]

The parameters in set (11) generate the following class of interaction solutions to equation (6) as
\[
f_3 = b_1e^{(\sqrt{3} \omega_2 X + (\sqrt{3} + 4\omega_1\omega_3/4\omega_2)T_1 + k_1T_2)} + b_3\sin\left(\omega_2X + \frac{1 - 4\omega_2k_2}{4\omega_2}T_1 + k_3T_2\right),
\]
\[
+ b_4\cos\left(\omega_2X + \frac{1 + 4\omega_2k_2}{4\omega_2}T_1 - k_3T_2\right),
\]
which further leads to furnish a class of interaction solutions to equation (1) as follows:
\[
\begin{align*}
\begin{cases}
u(x, y, t) &= \frac{6(G_3f_2 - H_3^2)}{f_3}, \\
x &= T_1 + \frac{6H_3}{f_3} + x_0, \\
y &= T_2 + \frac{6H_3}{f_3} + y_0, \\
t &= X,
\end{cases}
\end{align*}
\]
where \( b_1, b_3, b_4, \omega_2 (\neq 0), k_1, k_2, k_3, x_0, y_0 \) are arbitrary constants and
\[
\begin{align*}
G_3 &= \omega_2^2\left(3b_1e^{(\sqrt{3} \omega_2 X + (\sqrt{3} + 4\omega_1\omega_3/4\omega_2)T_1 + k_1T_2)} \\
&\quad - b_3\sin\left(\omega_2X + \frac{1 - 4\omega_2k_2}{4\omega_2}T_1 + k_3T_2\right) \\
&\quad - b_4\cos\left(\omega_2X + \frac{1 + 4\omega_2k_2}{4\omega_2}T_1 - k_3T_2\right),
\end{align*}
\]
\[
\begin{align*}
H_3 &= \omega_2^2\left(b_1\sqrt{3} e^{(\sqrt{3} \omega_2 X + (\sqrt{3} + 4\omega_1\omega_3/4\omega_2)T_1 + k_1T_2)} \\
&\quad + b_3\sin\left(\omega_2X + \frac{1 - 4\omega_2k_2}{4\omega_2}T_1 + k_3T_2\right) \\
&\quad - b_4\cos\left(\omega_2X + \frac{1 + 4\omega_2k_2}{4\omega_2}T_1 - k_3T_2\right).
\end{align*}
\]

Case 2. Choosing \( b_3 = 0 \) and with the aid of Maple, we present some solutions of the algebraic system as follows:
interaction solutions to equation (6) as

\[
\begin{align*}
\omega_1 &= \sqrt{\frac{\omega_2^2 - 3\omega_2^4}{3\omega_2^2 - \omega_4^2}}, \omega_2 = 0, b_5 = b_5, \\
\omega_1 &= \omega_1, c_1 = c_1, k_1 = k_1, \omega_2 = \omega_2, k_2 = \frac{\omega_2 - c_2(\omega_2^2 + \omega_4^2)}{\omega_2^2 + \omega_4^2}, \\
c_2 &= c_2, \omega_4 = \omega_4, c_4 = \frac{\omega_4 + k_4(\omega_2^2 + \omega_4^2)}{\omega_2^2 + \omega_4^2}, k_4 = k_4, \\
\end{align*}
\]

where \(\omega_2 \neq 0, (\omega_2^2 - 3\omega_2^4)(3\omega_2^2 - \omega_4^2) > 0\).

\[
\begin{align*}
b_1 &= b_1, b_2 = b_2, b_3 = 0, b_4 = 0, b_5 = b_5, \omega_1 = \omega_1, c_1 = -\frac{1 + 4\omega_1 k_1}{4\omega_1}, \\
k_1 &= k_1, \omega_2 = \omega_2, c_2 = c_2, k_2 = k_2, \omega_4 = -\omega_1, c_4 = \frac{1 - 4\omega_1 k_4}{4\omega_1}, k_4 = k_4, \\
\end{align*}
\]

where \(\omega_1 \neq 0\).

The parameters in set (24) generate the following class of interaction solutions to equation (6) as

\[
f_4 = b_5 \omega_4 \frac{\omega_2^2 - 3\omega_2^4}{3\omega_2^2 - \omega_4^2} \sin\left(\omega_2 X + c_2 T_1 + \frac{\omega_2 - c_2(\omega_2^2 + \omega_4^2)}{\omega_2^2 + \omega_4^2} T_2\right) + b_5 \sinh\left(\frac{\omega_4 X - \omega_4 + k_4(\omega_2^2 + \omega_4^2)}{\omega_2^2 + \omega_4^2} T_1 + k_4 T_2\right),
\]

which further leads to furnish a class of interaction solutions to equation (1) as follows:

\[
\begin{align*}
u(x, y, t) &= \frac{6(G_4 f_4 - H_4^2)}{f_4^2}, \\
x &= T_1 + \frac{6H_4}{f_4} + x_0, \\
y &= T_2 + \frac{6H_4}{f_4} + y_0, \\
t &= X,
\end{align*}
\]

where \(b_5, \omega_2 (\neq 0), \omega_4 ((\omega_2^2 - 3\omega_2^4)(3\omega_2^2 - \omega_4^2) > 0), c_2, k_4, x_0, y_0\) are arbitrary constants and

\[
\begin{align*}
G_4 &= b_5 \omega_4 \left(-\omega_2 \frac{\omega_2^2 - 3\omega_2^4}{3\omega_2^2 - \omega_4^2} \sin\left(\omega_2 X + c_2 T_1 + \frac{\omega_2 - c_2(\omega_2^2 + \omega_4^2)}{\omega_2^2 + \omega_4^2} T_2\right) + \omega_4 \sinh\left(\frac{\omega_4 X - \omega_4 + k_4(\omega_2^2 + \omega_4^2)}{\omega_2^2 + \omega_4^2} T_1 + k_4 T_2\right)\right),
\end{align*}
\]

\[
\begin{align*}
H_4 &= b_5 \omega_4 \left(\frac{\omega_2^2 - 3\omega_2^4}{3\omega_2^2 - \omega_4^2} \cos\left(\omega_2 X + c_2 T_1 + \frac{\omega_2 - c_2(\omega_2^2 + \omega_4^2)}{\omega_2^2 + \omega_4^2} T_2\right) + \cosh\left(\frac{\omega_4 X - \omega_4 + k_4(\omega_2^2 + \omega_4^2)}{\omega_2^2 + \omega_4^2} T_1 + k_4 T_2\right)\right).
\end{align*}
\]

The parameters in set (25) generate the following class of interaction solutions to equation (6) as

\[
f_5 = b_1 e^{\left(\omega_1 X - \frac{1 + 4\omega_1 k_1}{4\omega_1} T_1 + k_1 T_2\right)} + b_2 e^{\left(\omega_1 X - \frac{1 + 4\omega_1 k_1}{4\omega_1} T_1 + k_1 T_2\right)} - b_5 \sinh\left(\frac{\omega_1 X - \frac{1 - 4\omega_1 k_4}{4\omega_1} T_1 - k_4 T_2}{4\omega_1}\right),
\]
which further leads to furnish a class of interaction solutions to equation (1) as follows:

\[
\begin{align*}
    u(x, y, t) &= \frac{6(G_5 f_5 - H_5^2)}{f_5^2}, \\
    x &= T_1 + \frac{6H_5}{f_5} + x_0, \\
    y &= T_2 + \frac{6H_5}{f_5} + y_0, \\
    t &= X,
\end{align*}
\]

(30)

where \(b_1, b_2, b_5, \omega_1 (\neq 0), k_1, k_4, x_0, y_0\) are arbitrary constants and

\[
G_5 = \omega_1^2 \left( b_1 e^{(\omega_1 X - (1 + 4\omega_1 k_1 k_4 T_1) + k_4 T_2)} ight) \\
H_5 = \omega_1 \left( b_1 e^{(\omega_1 X - (1 + 4\omega_1 k_1 k_4 T_1) + k_4 T_2)} ight) \\
\] \[
- b_2 e^{-\omega_1 X - (1 + 4\omega_1 k_1 k_4 T_1) + k_4 T_2)} \\
- b_2 \sinh \left( \omega_1 X - \frac{1 - 4\omega_1 k_4 T_1 - k_4 T_2}{4\omega_1} \right).
\]

(31)

Setting \(b_2 = -b_1\), solution (29) becomes

\[
\tilde{f}_5 = 2b_1 \sinh \left( \omega_1 X - \frac{1 + 4\omega_1 k_1 T_1 + k_1 T_2}{4\omega_1} \right) \\
- b_2 \sinh \left( \omega_1 X - \frac{1 - 4\omega_1 k_4 T_1 - k_4 T_2}{4\omega_1} \right).
\]

(32)

which further leads to furnish a class of interaction solutions to equation (1) as follows:

\[
\begin{align*}
    u(x, y, t) &= \frac{6(G_5 f_5 - H_5^2)}{f_5^2}, \\
    x &= T_1 + \frac{6H_5}{f_5} + x_0, \\
    y &= T_2 + \frac{6H_5}{f_5} + y_0, \\
    t &= X,
\end{align*}
\]

(33)

where \(b_1, b_5, \omega_1 (\neq 0), k_1, k_4, x_0, y_0\) are arbitrary constants and

\[
\mathcal{G}_5 = \omega_1^2 \left( 2b_1 \sinh \left( \omega_1 X - \frac{1 + 4\omega_1 k_1 T_1 + k_1 T_2}{4\omega_1} \right) \\
- b_2 \sinh \left( \omega_1 X - \frac{1 - 4\omega_1 k_4 T_1 - k_4 T_2}{4\omega_1} \right) \right),
\]

\[
\mathcal{H}_5 = \omega_1 \left( 2b_1 \cosh \left( \omega_1 X - \frac{1 + 4\omega_1 k_1 T_1 + k_1 T_2}{4\omega_1} \right) \\
- b_2 \cosh \left( \omega_1 X - \frac{1 - 4\omega_1 k_4 T_1 - k_4 T_2}{4\omega_1} \right) \right).
\]

(34)

Setting \(b_2 = b_1\), solution (29) becomes

\[
\tilde{f}_5 = 2b_1 \cosh \left( \omega_1 X - \frac{1 + 4\omega_1 k_1 T_1 + k_1 T_2}{4\omega_1} \right) \\
- b_2 \sinh \left( \omega_1 X - \frac{1 - 4\omega_1 k_4 T_1 - k_4 T_2}{4\omega_1} \right).
\]

(35)

which further leads to furnish a class of interaction solutions to equation (1) as follows:

\[
\begin{align*}
    u(x, y, t) &= \frac{6(G_5 f_5 - H_5^2)}{f_5^2}, \\
    x &= T_1 + \frac{6H_5}{f_5} + x_0, \\
    y &= T_2 + \frac{6H_5}{f_5} + y_0, \\
    t &= X,
\end{align*}
\]

(36)

where \(b_1, b_5, \omega_1 (\neq 0), k_1, k_4, x_0, y_0\) are arbitrary constants and
3. Conclusions

In this paper, we explore a (2+1)-dimensional Vakhnenko equation by Hirota’s transformation combined with the three-wave method. With symbolic computation, five types of interaction solutions are obtained. It should be pointed out that some similar types of interaction solutions as that of the solution presented in this paper are not shown here for brevity. Future investigation may be applied to the method in this paper to search for lump solutions and interaction solutions between lump and other functions for the equation.

Data Availability

The data used to support the findings of this study are included within the article. For more details, they are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant no. 11461022 and the Natural Science Foundation of Yunnan Province, China, under Grant no. 2014FA037.

References

[1] M. Gürses and A. Pekcan, “Nonlocal modified KdV equations and their soliton solutions by Hirota Method,” Communications in Nonlinear Science and Numerical Simulation, vol. 67, pp. 427–448, 2019.

[2] Y. Zhou, S. Manukure, and W.-X. Ma, “Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 68, pp. 56–62, 2019.

[3] A.-M. Wazwaz and S. A. El-Tantawy, “Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method,” Nonlinear Dynamics, vol. 88, no. 4, pp. 3017–3021, 2017.

[4] A.-M. Wazwaz, “Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations,” Applied Mathematics Letters, vol. 88, pp. 1–7, 2019.

[5] M. Inc, M. S. Hashemi, and A. Isa Aliyu, “Exact solutions and conservation laws of the Bogoyavlenskii equation,” Acta Physica Polonica A, vol. 133, no. 5, pp. 1133–1137, 2018.

[6] M. S. Hashemi, M. Inc, B. Kilic, and A. Akgül, “On solitons and invariant solutions of the Magneto-electro-elastic circular rod,” Waves in Random and Complex Media, vol. 26, no. 3, pp. 259–271, 2016.

[7] M. S. Hashemi, “Invariant subspaces admitted by fractional differential equations with conformable derivatives,” Chaos, Solitons & Fractals, vol. 107, pp. 161–169, 2018.

[8] W. X. Ma, “Long-time asymptotics of a three-component coupled mKdV system,” Mathematics, vol. 7, no. 7, p. 573, 2019.

[9] W.-X. Ma and Y. Zhou, “Lump solutions to nonlinear partial differential equations via Hirota bilinear forms,” Journal of Differential Equations, vol. 264, no. 4, pp. 2633–2659, 2018.

[10] W. X. Ma, “A Search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions,” Journal of Applied Analysis and Computation, vol. 9, pp. 1319–1332, 2019.

[11] W. X. Ma, “Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions,” Frontiers of Mathematics in China, vol. 14, no. 3, pp. 619–629, 2019.

[12] M. Jia and S. Y. Lou, “A novel type of rogue waves with predictability in nonlinear physics,” 2017, https://arxiv.org/abs/1710.06604.

[13] X. Zhang, Y. Chen, and X. Tang, “Rogue wave and a pair of resonance stripe solitons to KP equation,” Computers & Mathematics with Applications, vol. 76, no. 8, pp. 1938–1949, 2018.

[14] V. A. Vakhnenko, “Solitons in a nonlinear model medium,” Journal of Physics A: Mathematical and General, vol. 25, no. 15, pp. 4181–4187, 1992.

[15] A. J. Morrison and E. J. Parkes, “The N -soliton solution of a generalised Vakhnenko equation,” Glasgow Mathematical Journal, vol. 43, no. A, pp. 65–90, 2001.

[16] A. J. Morrison and E. J. Parkes, “The N-soliton solution of the modified generalised Vakhnenko equation (a new nonlinear evolution equation),” Chaos, Solitons & Fractals, vol. 16, no. 1, pp. 13–26, 2003.

[17] V. O. Vakhnenko and E. J. Parkes, “The two loop soliton solution of the Vakhnenko equation,” Nonlinearity, vol. 11, no. 6, pp. 1457–1464, 1998.

[18] V. O. Vakhnenko, E. J. Parkes, and A. J. Morrison, “A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation,” Chaos, Solitons & Fractals, vol. 17, no. 4, pp. 683–692, 2003.

[19] A. M. Wazwaz, “N-soliton solutions for the Vakhnenko equation and its generalized forms,” Physica Scripta, vol. 82, no. 6, Article ID 065006, 2010.

[20] Y. Wang and Y. Chen, “Integrability of the modified generalised Vakhnenko equation,” Journal of Mathematical Physics, vol. 53, no. 12, Article ID 123504, 2012.

[21] J. C. Brunelli and S. Sakovich, “Hamiltonian structures for the Ostrovsky-Vakhnenko equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 1, pp. 56–62, 2013.

[22] J. J. Xiao, D. H. Feng, X. Meng, and Y. Q. Cheng, “Dynamical behaviours and exact travelling wave solutions of modified generalised Vakhnenko equation,” Pramana, vol. 88, no. 1, p. 17, 2017.
[23] M. S. Hashemi, M. C. Nucci, and S. Abbasbandy, “Group analysis of the modified generalized Vakhnenko equation,” *Communications in Nonlinear Science and Numerical Simulation*, vol. 18, no. 4, pp. 867–877, 2013.

[24] K. K. Victor, B. B. Thomas, and T. C. Kofane, “On high-frequency soliton solutions to a (2+1)-dimensional nonlinear partial differential evolution equation,” *Chinese Physics Letters*, vol. 25, no. 2, pp. 425–428, 2008.

[25] B.-Q. Li, Y.-L. Ma, L.-P. Mo, and Y.-Y. Fu, “The N-loop soliton solutions for (2+1)-dimensional Vakhnenko equation,” *Chinese Physics Letters*, vol. 2, no. 3, pp. 504–512, 2017.

[26] R. Hirota, *The Direct Method in Soliton Theory*, Springer, Berlin, Germany, 1980.

[27] Z. D. Dai, C. J. Wang, S. Q. Lin, D. L. Li, and G. Mu, “The three-wave method for nonlinear evolution equations,” *Nonlinear Science Letters A*, vol. 1, pp. 77–82, 2010.

[28] J.-G. Liu, J.-Q. Du, Z.-F. Zeng, and B. Nie, “New three-wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation,” *Nonlinear Dynamics*, vol. 88, no. 1, pp. 655–661, 2017.

[29] Y.-H. Yin, W.-X. Ma, J.-G. Liu, and X. Lü, “Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction,” *Computers & Mathematics with Applications*, vol. 76, no. 6, pp. 1275–1283, 2018.

[30] P. Verma and L. Kaur, “Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomstev-Petviashvili (BKP)-Boussinesq equation,” *Applied Mathematics and Computation*, vol. 346, pp. 879–886, 2019.

[31] S.-T. Chen and W.-X. Ma, “Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation,” *Frontiers of Mathematics in China*, vol. 13, no. 3, pp. 525–534, 2018.