Citation: Adams, R. A., Pinotsis, D. A. ORCID: 0000-0002-6865-8103, Tsirlis, K., Unruh, L., Mahajan, A., Horas, A. M., Convertino, L., Summerfelt, A., Sampath, H., Du, X. M., Kochunov, P., Ji, J. L., Repovs, G., Murray, J. D., Friston, K. J., Hong, L. and Anticevic, A. (2021). Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia. Biological Psychiatry, doi: 10.1016/j.biopsych.2021.07.024

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27043/

Link to published version: http://dx.doi.org/10.1016/j.biopsych.2021.07.024

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Archival Report

Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia

Rick A. Adams, Dimitris Pinotsis, Konstantinos Tsirlis, Leonhardt Unruh, Aashna Mahajan, Ana Montero Horas, Laura Convertino, Ann Summerfelt, Hemalatha Sampath, Xiaoming Michael Du, Peter Kochunov, Jie Lisa Ji, Grega Repovs, John D. Murray, Karl J. Friston, L. Elliot Hong, and Alan Anticevic

ABSTRACT

BACKGROUND: Diminished synaptic gain—the sensitivity of postsynaptic responses to neural inputs—may be a fundamental synaptic pathology in schizophrenia. Evidence for this is indirect, however. Furthermore, it is unclear whether pyramidal cells or interneurons (or both) are affected, or how these deficits relate to symptoms.

METHODS: People with schizophrenia diagnoses (PScz) (n = 108), their relatives (n = 57), and control subjects (n = 107) underwent 3 electroencephalography (EEG) paradigms—resting, mismatch negativity, and 40-Hz auditory steady-state response—and resting functional magnetic resonance imaging. Dynamic causal modeling was used to quantify synaptic connectivity in cortical microcircuits.

RESULTS: Classic group differences in EEG features between PScz and control subjects were replicated, including increased theta and other spectral changes (resting EEG), reduced mismatch negativity, and reduced 40-Hz power. Across all 4 paradigms, characteristic PScz data features were all best explained by models with greater self-inhibition (decreased synaptic gain) in pyramidal cells. Furthermore, disinhibition in auditory areas predicted abnormal auditory perception (and positive symptoms) in PScz in 3 paradigms.

CONCLUSIONS: First, characteristic EEG changes in PScz in 3 classic paradigms are all attributable to the same underlying parameter change: greater self-inhibition in pyramidal cells. Second, psychotic symptoms in PScz relate to disinhibition in neural circuits. These findings are more commensurate with the hypothesis that in PScz, a primary loss of synaptic gain on pyramidal cells is then compensated by interneuron downregulation (rather than the reverse). They further suggest that psychotic symptoms relate to this secondary downregulation.

https://doi.org/10.1016/j.biopsych.2021.07.024

Reduced excitatory synaptic gain (i.e., decreased slope of the presynaptic input–postsynaptic response relationship) is believed to be a primary deficit in schizophrenia (1,2). This reduction may primarily affect pyramidal cells (1) or inhibitory interneurons (3). For example, loss of cortical interneuron markers (in postmortem studies of people with schizophrenia diagnoses [PScz]) was originally thought to indicate a primary interneuron pathology, but recent work suggests that these markers are activity dependent, so their loss may reflect weaker pyramidal inputs (4). Decreased interneuron function in the disorder may thus be primary or a compensatory response to try to rebalance excitatory and inhibitory transmission in cortical circuits (5). These hypotheses are difficult to test in vivo, however.

Various mechanisms may reduce synaptic gain in schizophrenia: the most important is probably hypofunction of NMDA receptors (NMDARs) and their postsynaptic signaling cascade (1,2). Evidence for this comes from psychiatric genetics (6), magnetic resonance spectroscopy imaging (7), neuroanatomical studies (4), and animal models (8), but of these, only magnetic resonance spectroscopy is performed in humans in vivo, and its glutamatergic measures are difficult to interpret. Other neuromodulatory dysfunctions in schizophrenia [e.g., reduced cortical dopamine (9) or muscarinic receptors (10)] can be assessed more directly using positron emission tomography, but magnetic resonance spectroscopy and positron emission tomography are very indirect measures of synaptic gain.
Figure 1. An overview of the analysis. This schematic illustrates the key steps in the preprocessing of the electroencephalography (EEG) (resting state [rs], mismatch negativity [MMN], and 40-Hz auditory steady-state response [ASSR]) and resting-state functional magnetic resonance imaging (rsfMRI) paradigms and their subsequent analysis using dynamic causal modeling (DCM) and parametric empirical Bayes. Simplified depictions of the paradigms are shown in the first column (see the Supplement for details), with group differences in EEG data features in the second column (first 3 rows) and DCM in the third column. The EEG data control group (Con) versus people with schizophrenia diagnoses (PScz) group differences are (first to third rows) in rsEEG (Θ, β, and γ frequency band power (Figure 2A), MMN responses (Figure 3A), and 40-Hz ASSR power (Figure 4C). The second column of the final row (rsfMRI) shows the Glasser parcellation areas primary auditory cortex (A1) (middle), A4 (left), and 44 (right) containing the MMN sources A1, superior temporal and inferior frontal gyri, using group empirical Bayesian fitting. Key preprocessing and analysis steps are described below the illustrations. DCM for EEG uses a cortical microcircuit model, shown on the left in the third column.
An alternative way to investigate synaptic gain is by using electroencephalography (EEG) paradigms such as the mismatch negativity (MMN), an auditory oddball paradigm (11), and auditory steady-state response at 40 Hz (40-Hz ASSR); a paradigm inducing neural oscillations using a click train (12); or in the “resting state,” measuring with EEG (rsEEG) or functional magnetic resonance imaging (rsfMRI). PScz show robust reductions in 40-Hz ASSR (12) (d = 0.6) and MMN (11) (d = 1) responses, which may relate to diminished synaptic gain and decreased gain modulation (13), respectively, but these paradigms are not direct indices of synaptic gain.

Neural mass models of noninvasive data can be parameterized in terms of synaptic gain and these parameters estimated, for example, using dynamic causal modeling (DCM) (14), furnishing model-based biomarkers (15,16). This has several advantages: it can estimate subject-specific parameters and can fit evoked (e.g., MMN) and induced (e.g., 40-Hz ASSR or resting) EEG responses and rsfMRI, and thus explain responses to different paradigms in terms of common synaptic parameters, such as gain or self-inhibition on pyramidal cells or interneurons. Although fMRI models cannot incorporate detailed microcircuit parameters, due to fMRI’s coarse temporal resolution, they can assess local changes in excitability. Third, one can employ hierarchical modeling, e.g., using group-level parameters recursively to inform single-subject fits, for example, using parametric empirical Bayes (PEB) (17).

To date, DCM studies of PScz have used modest sample sizes and single paradigms but have found reasonably consistent results, e.g., cortical disinhibition in EEG (13,18–20) and rsfMRI (21) and diminished contextual gain modulation (13,19,22). Nevertheless, foundational questions remain, including the following: are well-replicated group differences between PScz and control subjects (Con) across paradigms all ascribable to the same model parameter(s)? How do symptoms in PScz relate to these parameters? Here, we address these questions using DCM across multiple EEG and fMRI paradigms, in PScz, Con, and first-degree relatives (Rel).

METHODS AND MATERIALS

Data were collected from PScz (n = 107) recruited from outpatient clinics, first-degree relatives (n = 57), and control subjects (n = 108) recruited from media advertisements, who each underwent rsEEG, MMN, 40-Hz ASSR, and rsfMRI paradigms and recorded symptoms and other measures. PScz and Con were well matched in terms of age (mean ± SD = 39.4 ± 14.3 years and 39.4 ± 13.9 years, respectively), sex (59% and 68% male, respectively) and smoking status (33% and 39% smokers, respectively). PScz had mean Brief Psychiatric Rating Scale scores of 14.4 out of 49 for positive symptoms and 7.3 out of 28 for negative symptoms (Table S1). We first performed conventional analyses of group differences in data features for each paradigm. We then inferred the best explanations for these differences in terms of DCM parameters. Figure 1 summarizes the analysis (excluding results).

We used the DCM canonical microcircuit neural mass model (Figure S1) to analyze the EEG paradigms; more details are given in the Results, with a full description in the Supplement. Model parameters include connectivity strengths between populations, self-inhibition (synaptic gain) in these populations, and membrane time constants and transmission delays. For the rsEEG, MMN, and 40-Hz ASSR paradigms, we analyzed group differences using conventional data features (event-related potentials or power spectra). We then modeled either group-averaged data (rsEEG) or estimated subject-specific DCM parameters (MMN and 40-Hz ASSR). For rsfMRI, we only modeled the network generating MMN (and 40-Hz ASSR, in part) for comparative purposes.

We used PEB to analyze group and individual differences in synaptic (model) parameters, with the exception of rsEEG, where characteristic group responses were modeled. We interpret greater self-inhibition of pyramidal cells as an effective loss of pyramidal synaptic gain. Given known pathophysiology in PScz, NMDAR hypofunction seems the most likely explanation for loss of pyramidal gain, but other explanations are possible (see Supplement for further discussion).

Age, sex, smoking, and chlorpromazine dose equivalent covariates did not significantly affect the results, unless otherwise stated. All t tests were two-tailed, and rank sum tests were used if distributions were skewed; none are Bonferroni-corrected unless stated.

RESULTS

In rsEEG, PScz Have Altered Power in 0, β, and γ Frequency Bands

We first examined rsEEG power spectra by subtracting the 1/f gradient, noting that gradients did not differ between groups with eyes open or closed (p > .2). The mean adjusted power spectra within the Con (n = 98) and PScz (n = 95) groups are shown in Figure 2A, for eyes closed (left) and open (right) conditions, with θ/α/β/γ frequency bands demarcated. A repeated-measures analysis of variance (between-subjects factor, group; within-subjects factors, eyes open/closed and frequency band) demonstrated a significant interaction of frequency × group (F3,573 = 6.59, p < .001) but not of eyes × group (F1,191 = 0.05, p = .8) or of frequency × eyes × group (F3,573 = 0.4, p = .8). We therefore averaged the power in each frequency band across eyes open and closed conditions and performed Wilcoxon rank sum tests (as some distributions were skewed), Bonferroni-corrected for 4 frequency bands (Figure 2B). PScz had increased θ (Z = 2.63, Pcorr = .035), decreased β (Z = −2.77, Pcorr = .022), and increased
Figure 2. Resting-state electroencephalography (rsEEG) results, dynamic causal modeling (DCM) model structure, and rsEEG simulations. (A) Mean normalized eyes closed and eyes open rsEEG power spectra (± SEM) across all channels for control subjects (Con) (n = 98; blue) and people with schizophrenia diagnoses (PScz) (n = 95; red) groups, divided into 4 frequency bands (dotted lines): θ (3–7 Hz), α (8–14 Hz), β (15–30 Hz), and γ (>31 Hz). (B) Group comparisons in mean power across both eyes closed and eyes open conditions in the θ, α, β, and γ bands are shown. The box plots show the mean, SEM, and SD. p values are Bonferroni-corrected for 4 comparisons. (C) EEG DCMs used the current version of the canonical microcircuit model (59) (also see Figure S1A). This microcircuit (left) consists of superficial pyramidal (sp) and deep pyramidal (dp) cells, inhibitory interneuron (ii), and spiny stellate (ss) cells. They are interconnected with excitatory (arrowheads) and inhibitory (beads) connections; their self-inhibitory connections parameterize their responsiveness to their inputs, i.e., synaptic gain. In EEG DCM, each modeled cortical area contains a microcircuit (middle); functional magnetic resonance imaging DCM uses a much simpler neuronal model. Both DCMs have self-inhibition parameters (round gray beads), which—in EEG—inhibit superficial pyramidal cells specifically. A schematic DCM diagram is explained on the right. (D) The top row shows the results of 5 sets (models 1–5) of simulations of microcircuit parameter changes.
Loss of Pyramidal Synaptic Gain in Schizophrenia

\[\gamma (Z = 2.58, \rho_{Corr} = .040), \text{but unchanged } \alpha (Z = -1.32, \rho_{Corr} = .75). \]

Increased Pyramidal Self-inhibition Explains \(\theta, \beta, \) and \(\gamma \) Changes in PScz

We used DCM’s canonical microcircuit model—a biophysical model of interacting pyramidal, interneuron, and spiny stellate populations (Figure 2C, left)—to identify the most likely synaptic pathology. To model power spectrum changes in PScz, we treated cortex as a single microcircuit in which specific parameters were changed in 5 plausible ways (Figure 2D, bottom): a loss of all microcircuit connectivity (model 1), a loss of pyramidal connections to or from interneurons (model 2), interneuron disinhibition (model 3), increased interneuron self-inhibition (model 4), and increased pyramidal cell self-inhibition (model 5). Note that this model does not fit the large \(\alpha \) peak.

Only model 5 could explain the \(\theta, \beta, \) and \(\gamma \) changes seen in PScz (Figure 2D, upper row). Models 1 and 2 only reproduced the \(\theta \) and \(\beta \) changes. Model 3 showed decreased \(\beta \) peak frequency, which was quantitatively lower in PScz but not statistically significant (Figure S2A).

MMN and P100 Are Reduced in Both PScz and Rel

The MMN paradigm consisted of standard and duration-deviant tones. The mismatch amplitude is the deviant—standard response in electrode Fz (11), which was reduced in both PScz and Rel around 200 ms (Figure 3A). There were no significant group differences in MMN latency between Con (mean \(\pm SD, 194 \pm 34 ms \)) and Rel (196 \(\pm 45 ms, p = .8 \)) or PScz (202 \(\pm 44 ms, p = .18 \)). In the averaged deviant and standard waveforms (Figure 2B), PScz showed reduced response amplitudes around 50 to 100 ms in both, and an exaggerated mismatch-like response around 175 ms in the standard condition.

Smoothed sensor-level data were analyzed using cluster-based statistics. Across Con and PScz, there was a strong mismatch effect, peaking at 198 ms (peak familywise error-corrected \(p_{FWE} < .001, t_{376} = 11.23 \) (Figure 3B), which was reduced in PScz (peak at 186 ms, \(p_{unc} < .001, \) cluster \(p_{FWE} = .010, t_{376} = 3.46 \) and in Rel (peak at 198 ms, \(p_{unc} < .001, \) cluster \(p_{FWE} = .011, t_{268} = 3.83 \) (Figure 3C)). Likewise, PScz had a reduced P100 response (peak at 82 ms, \(p_{FWE} = .003, \) cluster \(p_{FWE} < .001, t_{376} = 4.83 \)), as did Rel, although this was only significant at an uncorrected peak threshold (peak at 94 ms, \(p_{unc} = .001, \) cluster \(p_{FWE} = .8, t_{268} = 3.02 \) (Figure S2C).

DCM of MMN Indicates Increased Frontal Self-inhibition in PScz, but Disinhibition in Broca Area Relates to Abnormal Auditory Percepts

We first used model comparison to establish whether it was best to fix or estimate various microcircuit parameters in the MMN analysis (see Supplement). We compared 6 models (Figure 3D): model 6G estimates 6 connectivity (G) parameters, models 4Ga-d consider subsets of these six, and model 6G,D,T also estimates delays and time constants. Bayesian model selection preferred model 6G (also in Con and PScz separately), with a protected exceedance probability of \(p = .89 \) (Figure 3E, left). This model fitted most participants’ data accurately (e.g., Figure S3A). A histogram of \(R^2 \) values is shown in Figure 3E (right); the group mean \(R^2 \) was 0.73. \(R^2 \) were slightly higher in Con (mean \(\pm SD, 0.76 \pm 0.13 \)) than in PScz (0.70 \(\pm 0.14 \); rank sum \(Z = 3.12, p = .0018 \) and Rel (0.71 \(\pm 0.15 \); rank sum \(Z = 2.14, p = .033 \) (Figure S3C).

We then used PEB to ask which parameters best explained group differences in MMN: self-inhibition within areas or connections between areas. The reduced mismatch amplitude in PScz was best explained by increased self-inhibition in deviant—relative to standard—trials in LIFG (IFG) (\(p < .95 \)) and right (R) IFG (\(p < .95 \) (Figure 3F). Including chlorpromazine dose equivalent covariates reduced the posterior probability to \(p > .75 \), but age, sex, and smoking had no effect. Conversely, there was no overall group effect (across both standards and deviants) of PScz on the microcircuit parameters (all \(p < .95 \) (Figure 4C, left) unless chlorpromazine dose equivalents were included as covariates; here, PScz showed greater superficial pyramidal self-inhibition in L and R IFG (both \(p < .95 \) (Figure 4D, middle and right) and reduced interneuron self-inhibition throughout (\(p > .95 \). Rel did not show effects of \(p > .95 \) in either analysis.

In PScz, the auditory perceptual abnormalities state measure was associated with disinhibition in L IFG (\(p > .95 \)—within the Broca area—but increased self-inhibition in R IFG (\(p < .95 \) in the mismatch contrast (Figure 3G). Historical auditory perceptual abnormalities (the trait measure) showed similar effects but at lower posterior probability (\(p > .75 \), not shown).

PScz Had Reduced \(\gamma \) Power and Peak Frequency in 40-Hz ASSR, and Rel Had Reduced \(\gamma \) Power

We next considered induced responses during auditory steady-state stimulation. Group-averaged 40-Hz ASSR are shown in Figure 4A and the distributions of participants’ peak \(\gamma \) (35–45 Hz) frequencies in Figure 4B. PScz had slightly reduced \(\gamma \) peak frequency: mean peak frequencies (following subtraction of the 1/f gradient) (Figure S2E) were Con = 40.2 Hz (SD, 1.7), PScz = 39.5 Hz (SD, 1.7; \(f_{184} = 2.67, p_{Corr} = .016 \), and Rel = 39.9 Hz (SD, 2.1; \(f_{132} = 1.03, p = .3 \). Adjusted time-frequency plots are shown in Figure 4C (and raw time-frequency data in Figure S2F): Con showed a robust increase in ~ 40 Hz power around 100 ms, which is diminished in PScz and Rel (\(p < .05 \); t tests at each frequency and time point are circled on the middle and right plots, for Con vs. PScz and Con vs. Rel in black and PScz vs. Rel in white; these many differences are unlikely due to chance—Con vs. PScz and Con and
Figure 3. Mismatch negativity data and modeling analysis. (A)Mismatch difference waves (i.e., deviant-standard, mean ± SEM) for control subjects (Con) (n = 94; blue), people with schizophrenia diagnoses (PScz) (n = 96; red), and first-degree relatives (Rel) (n = 42; green) at electrode Fz. Group differences are computed using t tests (uncorrected [unc]) at each time point and are marked with red (PScz vs. Con) and green (Rel vs. Con) bars above the difference waves. There were no significant PScz vs. Rel differences. (B)The lower plot shows the location of the mismatch effect (i.e., deviants—standard) at sensor level across all Con and PScz, displayed at p < .05 (familywise error [FWE]). Fz is shown in white. The peak effect is shown in green (p < .001 [FWE], t_{376} = 11.23). The upper plot shows sensors vs. time; the peak effect occurs at 198 ms. (C) These plots show the interaction of condition and group for the Con > PScz contrast.
Loss of Pyramidal Synaptic Gain in Schizophrenia

vs. Rel both \(p < .001 \), PScz vs. Rel \(p = .006 \), permutation tests). Maximum ASSR \(\gamma \) power correlated with MMN amplitude in PScz \((r = 0.28, p_{\text{corr}} = .029) \) but not in Con \((r = 0.04, p = .7) \) or Rel \((r = 0.14, p = .4) \).

40-Hz ASSR DCM Suggests a Loss of Pyramidal Input to Interneurons in PScz and Rel and Greater Self-inhibition in PScz

The peak cortical source—closest to primary auditory cortex (A1)—was \((50 - 12) \), hence bilateral sources at \((\pm 50 - 12) \) were used as priors for reconstruction of virtual electrode data: the DCM comprised these bilateral sources and their thalamic drive (Figure 4D). Empirical priors for several parameters were used to optimize model fit (Figure S1A). Bayesian model comparison between the full model (containing empirical priors for the contribution of spiny stellate cells to measured signals, the neural activation function, and synaptic time constants) and models with standard priors for these parameters showed that the full model was superior (Figure 4E, left). The 40-Hz thalamic drive was modeled using a Gaussian bump function of width \(w \leq 4 \) Hz (see Supplement); this width performed better than a narrower bump of 1 Hz (model -w) (Figure 4E). Model fits for the winning model were reasonable (mean \(R^2 = 0.53 \) (Figure S3B). Group differences in \(R^2 \) were not detected (rank sum tests: all \(p > .1 \) (Figure S3C).

We performed group comparisons with PEB using schizophrenia genetic risk (PScz + Rel + Con) and diagnosis (PScz > Rel) as explanatory variables (13,19), instead of PScz > Con and Rel > Con comparisons (as in the MMN analysis). This was because the group differences in data features were less marked in the 40-Hz ASSR, and there were substantial differences between Rel and Con parameters, only some of which were shared by PScz (Figure S6B). The genetic risk effect was an increased conduction delay in L A1 \((p > .95) \) (Figure 4F), and reduced superficial pyramidal (sp) to inhibitory interneuron (ii) connectivity \((p > .99) \) (Figure 4G, left). The schizophrenia diagnosis effect was increased superficial pyramidal self-inhibition in bilateral A1 in PScz (both \(p > .99 \)) (Figure 4G, right).

40-Hz ASSR DCM Links Abnormal Auditory Percepts to A1 Disinhibition in PScz

In PScz, the auditory perceptual abnormalities trait measure related to a disinhibited sp-ii-sp circuit, i.e., increased sp-ii \((p > .99) \) and reduced ii-sp connectivity \((p > .99) \), and greater self-inhibition in L A1 \((p > .99) \) (Figure 4H). The auditory state measure had similar associations but at lower posterior probability \((p > .95 \) for sp-ii, \(p > .75 \) for ii-sp and sp-sp: not shown).

rsfMRI DCM of the MMN Circuit Finds Increased Self-inhibition in IFG in PScz and Rel

We then analyzed effective connectivity within the MMN network during rsfMRI, i.e., the Glasser parcellations areas (in the rsfMRI data) based on MMN source locations (see Supplement): bilateral A1, A4, and 44 (Figure 1). The microcircuit model for fMRI data is simpler than the neural mass models used for EEG; however, they retain inhibitory self-connections. Model fits were accurate: \(R^2 \)s were >0.7 in all groups, with no group differences (rank sum tests: all \(p > .05 \) (Figure S3C).

In PEB analysis, PScz showed increased self-inhibition in L and R IFG \((p > .99 \) and \(p > .95 \), respectively) (Figure 5A). These effects were robust to age, sex, and smoking covariates (and to the removal of the 10 participants with the lowest rsfMRI signal-to-noise ratio: 8 PScz and 2 Con; both \(p > .95 \)). These effects did not survive addition of chlorpromazine dose equivalents (L IFG self-inhibition fell to \(p > .75 \)). However, Rel > Con showed the same increase in self-inhibition in bilateral IFG \((p > .95) \) (Figure 5B). This group difference did not survive addition of the age covariate: Rel were older than Con \((R \text{e} \text{m} \text{a} \text{n} \text{a} \text{g} \text{e} = 45.4 \pm 16.6 \) years, Con \text{m}ean \text{a} \text{g} \text{e} = 39.4 \pm 14.3 \) years; \(t_{162} = 2.4, p = .02 \)). These differences were not detected using conventional functional connectivity analyses, which cannot assess self-inhibition, or analyses of regional variance (Figure S6B-E and Supplement for further discussion).
Figure 4. 40-Hz auditory steady-state response (ASSR) data and modeling analysis. (A) 40-Hz ASSR time courses at electrode Fz for control subjects (Con) \((n = 92; \text{blue})\), people with schizophrenia diagnoses (PScz) \((n = 94; \text{red})\), and first-degree relatives (Rel) \((n = 42; \text{green})\). Sixteen clicks were played at 40 Hz, starting at 0 ms. Group differences in the baseline deflection (not modeled subsequently) emerge after around 250 ms, shown with red bars (Con vs. PScz) and green bars (Con vs. Rel), both \(p < .05\) (t-tests per time point, uncorrected). (B) \(\gamma (35-45 \text{ Hz})\) frequencies with the strongest power (in the normalized spectrum) in each participant are shown in a histogram. (C) These normalized time frequency plots show the 40 Hz responses around 100 to 400 ms. The PScz and Rel
Loss of Pyramidal Synaptic Gain in Schizophrenia

rsfMRI DCM Reveals Relationships of Positive Symptoms to Cortical Disinhibition in PScz

PEB analysis within PScz found that trait auditory perceptual abnormalities were associated with increased self-inhibition in L and R IFG (both \(p > .99\)) (Figure 5C, left). Conversely, state auditory perceptual abnormalities were associated with disinhibition in R A1 (\(p > .95\)) and L A1 and superior temporal gyrus (STG) (both \(p > .99\)) and STG-A1 backward connectivity bilaterally (both \(p > .99\)) (Figure 5C, right).

Similarly, Brief Psychiatric Rating Scale positive symptoms (including age, sex, smoking, and negative symptoms covariates) were associated with decreased self-inhibition everywhere except R STG (all \(p > .99\) except L IFG and R A1, both \(p > .95\)) and stronger forward connections everywhere except R AI-STG (all \(p > .99\)) (Figure 5D, left). Brief Psychiatric Rating Scale negative symptoms (including age, sex, smoking, and positive symptom covariates) were associated with decreased self-inhibition in all temporal—but not frontal—nodes (all \(p > .99\)) (Figure 5D, right).

Note that many rsfMRI results were lost if global signal regression was not performed (Supplemental Results, Figure S7).

Self-inhibition Findings in PScz Across Electroencephalography and rsfMRI Paradigms Are Similar

In summary, we found clear evidence for increased self-inhibition (evidence of reduced synaptic gain) in PScz (Figure 6A) in all data modalities and paradigms. However, auditory perceptual abnormalities within PScz were associated with the opposite change: disinhibition (Figure 6B). A sensitivity analysis (see Supplement) confirmed that increased superficial pyramidal self-inhibition best reproduced the key data features of MMN (i.e., decreased MMN amplitude but unchanged latency) (Figure S8A) and, along with loss of sp-ii connectivity, decreased 40-Hz ASSR (Figure S8B). Evidence for within-subject correlations in self-inhibition parameters across paradigms was weak, however (see Supplemental Results, Figure S9).

DISCUSSION

DCM of EEG and fMRI produced two key cross-paradigm findings. First, well-established effects in rsEEG (23), MMN (11), and 40-Hz ASSR (12) paradigms in PScz were replicated, and all could be explained by increased self-inhibition in (superficial) pyramidal cells. Likewise, PScz also showed an increase in prefrontal self-inhibition—similar to MMN—in rsfMRI (Figure 6A). This strongly favors the hypothesis that there is diminished synaptic gain on pyramidal cells (1,2,5) over the hypothesis of diminished synaptic gain on interneurons (3) in this sample of PScz with established illness.

Second, abnormal auditory percepts in PScz were associated with decreased self-inhibition in auditory areas selectively across 3 paradigms (Figure 6B). This is consistent with 40-Hz ASSR \(\gamma\) power (24) [and phase locking of auditory \(\gamma\) (25)] correlating positively with auditory symptoms, despite being reduced in PScz overall as in the visual domain (26), and with hallucinations and psychotic-like experiences relating to decreased self-inhibition in IFG across the psychosis spectrum (27). Positive symptoms were also associated with disinhibition in the rsfMRI analysis (Figure 5D). These opposing effects of group and symptoms on self-inhibition (28)—and also on cortical glutamate (29)—support the hypothesis (1,5) that decreased synaptic gain (NMDAR hypofunction in particular) is compensated by allostatic disinhibition of pyramidal cells (i.e., interneuron downregulation) and, furthermore, indicate that psychotic symptoms result from this disinhibitory rebalancing of excitatory and inhibitory transmission.

In rsEEG, increased \(\theta\) power in PScz is a well-established finding (23,30). A U-shaped change in spectral power (here, increased \(\theta\), decreased \(\beta\), increased \(\gamma\)) has been seen several times across \(\theta\), \(\alpha\), and \(\beta\) frequencies (23). Increases (not decreases) in \(\alpha\) and \(\beta\) in PScz have been seen in eyes open rsEEG (30,31), but in unnormalized data; before subtracting the 1/f gradient, \(\beta\) power was numerically higher in our sample of PScz as well. This speaks to the importance of distinguishing band-specific changes from changes in 1/f slope, which itself is increased by lower excitation/inhibition ratio (32,33). Of note, low \(\gamma\) (30–45 Hz) power is typically reduced in PScz with longstanding diagnoses (34), but we lacked illness duration information.

Decreased mismatch amplitude in PScz [and especially in chronic PScz (35)] is well documented (11), and we found an effect of similar size in Rel, larger than is typical (35). Underlying this effect, we found that deviant stimuli decrease self-inhibition in IFG in Con but not in PScz, recapitulating other DCM studies (13,22). The mismatch amplitude rarely correlates with hallucinations in PScz [e.g., in only 3 of 22 studies (11)], but we found abnormal auditory percepts related to (condition-specific) disinhibition in L IFG—Broca’s area. Traditional MMN analysis (using electrode Fz) might miss this lateralized effect. Nevertheless, there are reports of
Loss of Pyramidal Synaptic Gain in Schizophrenia

Figure 5. Resting-state functional magnetic resonance imaging (rsfMRI) modeling analysis. (A) For comparative purposes, the rsfMRI connectivity analysis was conducted on the same network as the mismatch negativity (MMN) analysis. Results for control subjects (Con) (n = 85) and people with schizophrenia diagnoses (PScz) (n = 72) are shown in the same format as Figure 3F. As in the MMN, PScz showed increased self-inhibition in the bilateral inferior frontal gyrus (IFG). Inclusion of chlorpromazine equivalent dose as a covariate still showed increased self-inhibition in left (L) IFG but only at p < .05. (B) rsfMRI connectivity analysis without covariates for Con (n = 85) and first-degree relatives (Rel) (n = 45) is shown. Similar to PScz, Rel show increased self-inhibition in the bilateral IFG, but this effect disappeared with addition of the age covariate (p > .75). (C) Left: within PScz, abnormal auditory percepts (trait measure) related to increased self-inhibition in the bilateral IFG. Right: conversely, abnormal auditory percepts (state score, i.e., experiences within the last week only) relate to disinhibition in temporal areas and also a loss of top-down connections within the auditory cortex. The right (R) primary auditory cortex (A1) effect was attenuated if age, sex, and smoking covariates were not included and if a chlorpromazine dose equivalent covariate was added. (D) Left: within PScz, Brief
Loss of Pyramidal Synaptic Gain in Schizophrenia

A

Scz show increased self-inhibition – indicating loss of (pyramidal) synaptic gain – vs other groups

B

Abnormal auditory perception (AP) in Scz linked to disinhibition in auditory/speech areas

Figure 6. Summary of key findings across paradigms. This figure illustrates similar dynamic causal modeling findings across paradigms using the schematic illustrations from previous analyses. The inset at bottom right shows the canonical microcircuit model for electroencephalography (EEG) (below), which exists in each modeled cortical area (above). The microcircuit consists of superficial pyramidal (sp) and deep pyramidal (dp) cells (blue), inhibitory interneuron (ii) (red), and spiny stellate (ss) cells (green), interconnected with excitatory (arrowheads) and inhibitory (beads) connections. (A) Crucially, the people with schizophrenia diagnoses (Scz) group consistently exhibited increased self-inhibition (as expected from a loss of synaptic gain) in superficial pyramidal cells in particular (i.e., in the EEG paradigms). This was the case (from left to right) in primary auditory cortex (A1) in the 40-Hz auditory steady-state response (ASSR) (when compared with first-degree relatives [Rel]), in the bilateral inferior frontal gyrus (IFG) in both the mismatch negativity (MMN) (deviant–standard contrast) and the resting-state functional magnetic resonance imaging (rsfMRI), and in the rsEEG simulations. (B) Within the PScz group, abnormal auditory percepts were linked with disinhibition in A1 in both the 40-Hz ASSR paradigm and the rsfMRI and with disinhibition in left (L) IFG—i.e., Broca area—in the MMN (deviant–standard contrast). Con, control subjects; R, right; STG, superior temporal gyrus.

Psychiatric Rating Scale positive symptom score related to disinhibition throughout the MMN network and increased forward (fwd) connectivity in 3 of 4 connections. Most effects were robust to addition of chlorpromazine dose equivalents as a covariate (all p > .99 except L IFG self-inhibition, p > .75), removal of the hallucinations score from the Brief Psychiatric Rating Scale positive symptom total (all p > .95 except L IFG and R A1 self-inhibition, p > .75), and analysis without covariates (all p > .99 except L IFG self-inhibition, p > .75). Right: within PScz, Brief Psychiatric Rating Scale negative symptom score related to disinhibition in temporal nodes of the MMN network. All effects shown (except Rel > Con) are also present without the addition of age, sex, and smoking covariates and if participants (2 Con, 8 PScz) with rsfMRI signal-to-noise ratio < .25 are excluded (all p > .95). Some rsfMRI results are no longer significant without global signal regression (Figure S7). No results change substantially with inclusion of chlorpromazine dose equivalent as a covariate unless stated. blkw, backward; PEB, parametric empirical Bayes; STG, superior temporal gyrus.
A crucial question is what changes in self-inhibition mean: changes in synaptic gain or reciprocal coupling with interneurons? Our interpretation of self-inhibition changes is guided by known pathophysiology in PScz, i.e., given that cortical synaptic gain is decreased [e.g., reduced function of NMDA (1,2,6), dopamine D1 (9), and muscarinic (10) receptors] and inhibitory interneurons downregulated (4,5), then the most logical interpretation of increases and decreases in pyramidal self-inhibition is diminished pyramidal synaptic gain (41,42) and decreased interneuron function, respectively (gain in the neural mass model is discussed in detail in the Supplement.) If the fundamental pathology in PScz was a loss of synaptic gain on interneurons, one would expect to see consistent group effects of increased interneuron self-inhibition and/or decreased pyramidal self-inhibition, neither of which were found.

Regarding potential causes of reduced synaptic gain, some PScz data features imply NMDAR hypofunction. In rsEEG, increased γ follows NMDAR antagonism (43), e.g., using ketamine (which also suppresses β) (44), or in NMDAR encephalitis (which also increases θ) (15,45). In contrast, LSD and psilocybin do not increase θ (46), and D2 antagonists potentiate α and β (47,48). The 40-Hz ASSR is sensitive to NMDAR function (49) but also cholinergic (50), dopaminergic (51) and serotonergic (52) manipulations; the latter do not affect MMN, however, which is quite specific to NMDAR function (11). Ketamine also reduces rsfMRI functional connectivity of IFG and auditory cortices (53). Antipsychotic dose covariates weakened the PScz rsfMRI effects, but similar rsfMRI effects strengthened the overall MMN effects (Figure S4C); they also followed NMDAR hypofunction and seemingly unlikelihood to be medication induced.

Several limitations are addressable. Given that pathophysiology is dynamic in PScz (1) and that subgroups may exist (54), larger datasets should be analyzed, containing more early-course (and preferably unmedicated) PScz. Notably, even the latter show reductions (d > 1) in cortical glutamate (55), consistent with the idea that pyramidal cell hypofunction—rather than disinhibition—is primary in PScz. DCM models with explicitly parameterized NMDA (and other) receptor conductances (15) can explore self-inhibition in more detail and across more cortical areas.

In conclusion, we found consistently increased self-inhibition (i.e., diminished synaptic gain) in PScz, especially in frontal areas, but disinhibition—in auditory areas in particular—correlated with auditory perceptual abnormalities. Psychotic symptoms may therefore be caused by interneuronal downregulation that restores cortical excitation/inhibition balance in PScz. These complex processes may explain why successful glutamatergic treatments for PScz are elusive, and why such treatments may have narrow therapeutic windows (56) or depend on illness stage (57).

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by a Medical Research Council Skills Development Fellow (Grant No. MR/S007880/1 [to RAA]), a University College London Bogue Research Fellowship, the Academy of Medical Sciences (Grant No. AMS-SGCL13-Adams [to RAA]), the National Institute of Health Research (Grant No. CL-2013-18-003 [to RAA]), the National Institute for Health Research University College London Hospital Biomedical Research Centre (to RAA), Slovenian Research Agency (Grant Nos. J7-8275 and P3-0338 [to GJ]), National Institutes of Health (Grant No. MH112746 [to JDM]), and the Wellcome Trust (Grant No. 088130/Z/09/Z [to KJF]).

R.A.A. conceived the project, conducted or supervised all analyses, and wrote the paper. D.P. and K.T. developed analysis code and conducted some analyses. L.U, A.M, A.MH, and J.L.J assisted with analysis. A.S., X.M.D., and P.K. collected and curated the data. G.R. developed analysis code, assisted with analysis, and contributed to the paper. J.D.M contributed to the paper. K.J.F developed analysis code, assisted with analysis, and contributed to the paper. L.E.H collected the data and contributed to the paper. A.S. supervised the project and contributed to the paper.

We are very grateful to numerous colleagues who provided guidance in dynamic causal modeling and statistics, including Vladimir Litvak, Peter Zeidman, Rosalyn Moran, Adeel Razi, Amirhossein Jafari, Marta Garrido, and Jon Roiser.

A previous version of this article was published as a preprint on medRxiv: https://doi.org/10.1101/2021.01.07.21249389.

GR consults for and holds equity in RBNC Therapeutics. J.L.J, J.D.M, and A.A consult for RBNC (formerly BlackThorn Therapeutics) and are listed as coinventors on the following pending patent: Anticevic A, Murray JD, Ji JL: Systems and Methods for Neuro-Behavioral Relationships in Dimensional Geometric Embedding (N-BRIDG); PCT International Application No. PCT/US2119/022110, filed March 13, 2019. J.D.M holds stock in BlackThorn Therapeutics. L.E.H has received or plans to receive research funding or consulting fees on research projects from Mitsubishi, Your Energy Systems LLC, Neuralstem, Taiho, Heptares, Pfizer, Luay Pharma, Sound Pharma, Takeda, and Regeneneron. A.A is also a Scientific Advisory Board member for BlackThorn Therapeutics. All other authors report no biomedical financial interests or potential conflicts of interest.

ARTICLE INFORMATION

From the Centre for Medical Image Computing and Artificial Intelligence (RAA, KT, AM, AMH), Institute of Cognitive Neuroscience (RAA, LU, LC), and Welcome Centre for Human Neuroimaging (KJF), University College London; Centre for Mathematical Neuroscience and Psychology and Department of Psychology (DP), City University of London; Max Planck-UCL Centre for Computational Psychiatry and Ageing Research (RAA), London, United Kingdom; Department of Psychiatry (RAA, J.L.J, J.D.M, AA), Yale University School of Medicine, New Haven, Connecticut; Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences (DP), Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Psychiatry (AS, HS, XMD, PK, LEH), Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland; and Department of Psychology (GR), University of Ljubljana, Ljubljana, Slovenia.

Address correspondence to Rick A. Adams, Ph.D., M.R.C.P., M.R.C.Psych., at rick.adams@ucl.ac.uk.

Received Mar 31, 2021; revised and accepted Jul 29, 2021.

Supplementary material cited in this article is available online at https://doi.org/10.1016/j.biopsych.2021.07.024.

REFERENCES

1. Kristal JH, Anticevic A, Yang GJ, Dragoi G, Driesen NR, Wang XJ, Murray JD (2017): Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: A translational and computational neuroscience perspective. Biol Psychiatry 81:874–885.
2. Stephan KE, Friston KJ, Frith CD (2009): Disconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527.
3. Lewis DA, Hashimoto T, Volk DW (2005): Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324.
4. Chung DW, Fish KN, Lewis DA (2016): Pathological basis for deficient excitatory drive to cortical parvalbumin interneurons in schizophrenia. Am J Psychiatry 173:1131–1139.
Loss of Pyramidal Synaptic Gain in Schizophrenia

5. Diener SJ, Lewis DA (2019): Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis 131:104208.

6. Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ (2015): Genetic risk for schizophrenia: Convergence on synaptic pathways involved in plasticity. Biol Psychiatry 77:52–58.

7. Poels EMP, Kegeles LS, Karotuvitz JT, Javitt DC, Lieberman JA, Abi-Dargham A, Girgis RR (2014): Glutamatergic abnormalities in schizophrenia: A review of proton MRS findings. Schizophr Res 152:325–332.

8. Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, et al. (2010): Animal models of cognitive dysfunction and negative symptoms of schizophrenia: Focus on NMDA receptor antagonism. Pharmacol Ther 128:419–432.

9. Silfstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R, et al. (2015): Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: A positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry 72:316–324.

10. Scarr E, Cowie TF, Kanellakis S, Sundram S, Pantelis C, Dean B (2009): Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry 14:1017–1023.

11. Umbrecht D, Kripps S (2005): Mismatch negativity in schizophrenia: A meta-analysis. Schizophr Res 76:1–23.

12. Thuné H, Recasens M, Uhlhaas PJ (2016): The 40-Hz auditory steady-state response in patients with schizophrenia: A meta-analysis. JAMA Psychiatry 73:1145–1153.

13. Ranlund S, Adams RA, Díez Á, Constante M, Dutt A, Hall MH, et al. (2016): Impaired prefrontal synaptic gain in people with psychosis and their relatives during the mismatch negativity. Hum Brain Mapp 37:351–365.

14. Stephan KE, Schlagenauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, et al. (2017): Computational neuroimaging strategies for single patient predictions. Neuroimage 145:180–199.

15. Symmonds M, Moran CH, Leite MJ, Buckley C, Irani SR, Stephan KE, et al. (2018): Ion channels in EEG: Isolating channel dysfunction in NMDA receptor antagonist encephalitis. Brain 141:1691–1702.

16. Shaw AD, Hughes LE, Moran R, Coyle-Gichrist I, Rittman T, Rowe JB (2021): In vivo assay of cortical microcircuity in frontotemporal dementia: A platform for experimental medicine studies. Cereb Cortex 31:1837–1847.

17. Friston KJ, Litvak V, Osvald A, Razi A, Stephane KE, van Wijk BCM, et al. (2020): Abnormal frontoparietal synaptic gain mediating the P300 in schizophrenia and bipolar illness: A multi-dimensional predictions of psychotic symptoms via machine learning. Hum Brain Mapp 41:5151–5163.

18. Hong LE, Summerfelt A, McMahon R, Lil Y, Li F, Bi F, et al. (2015): Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change. J Neurosci 35:287–296.

19. Vierling-Claassen D, Siekmeier P, Stufflebeam S, Kopell N (2008): Modeling GABAergic alterations in schizophrenia: A link between impaired inhibition and altered gamma and beta range auditory entrainment. J Neurophysiol 99:2656–2671.

20. Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, et al. (2014): Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex 24:3116–3126.

21. Bygrave AM, Kilonzo K, Kullmann DM, Bannerman DM, Küttel D (2019): Can N-methyl-D-aspartate receptor hypofunction in schizophrenia be localized to an individual cell type? Front Psychiatry 10:835.

22. Stein H, Barbosa J, Rosa-Justicia M, Prades L, Morató A, Galan-Gadea A, et al. (2020): Reduced serial dependence suggests deficits in synaptic potentiation in anti-NMDAR encephalitis and schizophrenia. Nat Commun 11:4250.

23. Lemerici CE, Holman C, Gerevich Z (2017): Aberrant alpha and gamma oscillations ex vivo after single application of the NMDA receptor antagonist MK-801. Schizophr Res 188:118–124.

24. Rivoita D, Heidegger T, Scheller B, Sauer A, Schaum M, Birkner K, et al. (2015): Ketamine dysregulates the amplitude and connectivity of...
Loss of Pyramidal Synaptic Gain in Schizophrenia

52. Nissen TD, Laursen B, Viardot G, l’Hostis P, Danjou P, Sluth LB, et al. (2020): Effects of vortioxetine and escitalopram on electroencephalographic recordings - A randomized, crossover trial in healthy males. Neuroscience 424:172–181.

53. Adhikari BM, Dukat J, Hipp JF, Forsyth A, McMillan R, Muthukumaraswamy SD, et al. (2020): Effects of ketamine and midazolam on resting state connectivity and comparison with ENIGMA connectivity deficit patterns in schizophrenia. Hum Brain Mapp 41:767–778.

54. Clementz BA, Sweeney JA, Hamm JP, Ileva EI, Ethridge LE, Pearson GD, et al. (2016): Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry 173:373–384.

55. Jeon P, Limongi R, Ford SD, Mackinley M, Dempster K, Theberge J, Palaniyappan L (2021): Progressive changes in glutamate concentration in early stages of schizophrenia: A longitudinal 7-tesla MRS study. Schizophr Bull Open 2:sgaa072.

56. Javitt DC (2016): Bitopertin in schizophrenia; Glass half full? Lancet Psychiatry 3:1092–1093.

57. Kinon BJ, Millen BA, Zhang L, McKinzie DL (2015): Exploratory analysis for a targeted patient population responsive to the metabotropic glutamate 2/3 receptor agonist pomaglumetad methionil in schizophrenia. Biol Psychiatry 78:754–762.

58. Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009): The mismatch negativity: A review of underlying mechanisms. Clin Neurophysiol 120:453–463.

59. Shaw AD, Moran RJ, Muthukumaraswamy SD, Brealy J, Linden DE, Friston KJ, Singh KD (2017): Neurophysiologically informed markers of individual variability and pharmacological manipulation of human cortical gamma. Neuroimage 161:19–31.