Application of a Combination of a Knowledge-Based Algorithm and 2-Stage Screening to Hypothesis-Free Genomic Data on Irinotecan-Treated Patients for Identification of a Candidate Single Nucleotide Polymorphism Related to an Adverse Effect

Hiro Takahashi1,2,3*, Kimie Sai4, Yoshiro Saito4, Nahoko Kaniwa4, Yasuhiro Matsumura5, Tetsuya Hamaguchi6, Yasuhiro Shimada6, Atsushi Ohtsu7, Takayuki Yoshino7, Toshihiko Doi7, Haruhiro Okuda4, Risa Ichinohe3,8, Anna Takahashi2, Ayano Doi3,8, Yoko Odaka3, Misuzu Okuyama3, Nagahiro Saijo9¤a, Jun-ichi Sawada10¤b, Hiromi Sakamoto3, Teruhiko Yoshida3

1 Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan, 2 Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan, 3 Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan, 4 Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan, 5 Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan, 6 Gastrointestinal Medical Oncology Division, National Cancer Center Hospital East, Kashiwa, Chiba, Japan, 7 Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan, 8 Faculty of Horticulture, Chiba University, Matsudo, Chiba, Japan, 9 National Cancer Center Hospital East, Kashiwa, Chiba, Japan, 10 Division of Functional Biochemistry and Genomics, National Institute of Health Sciences, Tokyo, Japan

Abstract

Interindividual variation in a drug response among patients is known to cause serious problems in medicine. Genomic information has been proposed as the basis for "personalized" health care. The genome-wide association study (GWAS) is a powerful technique for examining single nucleotide polymorphisms (SNPs) and their relationship with drug response variation; however, when using only GWAS, it often happens that no useful SNPs are identified due to multiple testing problems. Therefore, in a previous study, we proposed a combined method consisting of a knowledge-based algorithm, 2 stages of screening, and a permutation test for identifying SNPs. In the present study, we applied this method to a pharmacogenomics study where 109,365 SNPs were genotyped using Illumina Human-1 BeadChip in 168 cancer patients treated with irinotecan chemotherapy. We identified the SNP rs9351963 in potassium voltage-gated channel subfamily KQT member 5 (KCQ5) as a candidate factor related to incidence of irinotecan-induced diarrhea. The p value for rs9351963 was 3.31 × 10^{-3} in Fisher's exact test and 0.0289 in the permutation test (when multiple testing problems were corrected). Additionally, rs9351963 was clearly superior to the clinical parameters and the model involving rs9351963 showed sensitivity of 77.8% and specificity of 57.6% in the evaluation by means of logistic regression. Recent studies showed that KCQ4 and KCQ5 genes encode members of the M channel expressed in gastrointestinal smooth muscle and suggested that these genes are associated with irritable bowel syndrome and similar peristalsis diseases. These results suggest that rs9351963 in KCQ5 is a possible predictive factor of incidence of diarrhea in cancer patients treated with irinotecan chemotherapy and for selecting chemotherapy regimens, such as irinotecan alone or a combination of irinotecan with a KCQ5 opener. Nonetheless, clinical importance of rs9351963 should be further elucidated.

Citation: Takahashi H, Sai K, Saito Y, Kaniwa N, Matsumura Y, et al. (2014) Application of a Combination of a Knowledge-Based Algorithm and 2-Stage Screening to Hypothesis-Free Genomic Data on Irinotecan-Treated Patients for Identification of a Candidate Single Nucleotide Polymorphism Related to an Adverse Effect. PLoS ONE 9(8): e105160. doi:10.1371/journal.pone.0105160

Editor: Olga Y. Gorlova, Geisel School of Medicine at Dartmouth College, United States of America

Received March 29, 2014; Accepted July 17, 2014; Published August 15, 2014

Copyright: © 2014 Takahashi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported in part by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT); Grants-in-Aid for Scientific Research for Young Scientists (B) (nos. 21710211 and 24710222 to H.T.) and Grant-in-Aid for Scientific Research on Innovative Areas (no. 26114703 to H.T.). This work was also supported by the Advanced Research for Medical Products Mining Program of the National Institute of Biomedical Innovation (NIBIO ID10-41), the Futaba Electronics Memorial Foundation, the Research Foundation for the Electrotechnology of Chubu, and the Nakajima Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: hiro.takahashi@chiba-u.jp

¤a Current address: Japanese Society of Medical Oncology, Tokyo, Japan

¤b Current address: Pharmaceutical and Medical Devices Agency, Tokyo, Japan
Introduction

Genomic information has been proposed to be utilized as the basis for “personalized” health care. Interindividual variation in a drug response among patients has been well documented to cause serious problems in pharmacotherapy. This variation may be due to multiple factors such as disease phenotypes, genetic and clinical parameters (or environmental factors), and variability in the drug target or allergic response; all of these factors may affect both main and side effects [1,2]. Although some biomarkers [3–9] have been proposed, it is still difficult to determine which group of patients will respond positively, which patients are nonresponders, and which may experience adverse reactions in cases where patients are administered the same medication dose. For effectiveness of personalized medicine in cancer chemotherapy, it is critically important to observe interindividual differences in a drug response and the role of genetic polymorphisms relevant to the drug metabolic pathways and drug response biology in pharmacogenomics [10].

Irinotecan (CPT-11), an anticancer prodrug, is widely used for the treatment of a broad range of carcinomas, such as colorectal, lung, ovarian, and cervical cancers. Unexpected severe diarrhea and neutropenia are prominent adverse effects of irinotecan treatment. The active metabolite SN-38 (7-ethyl-10-hydroxy camptothecin), a topoisomerase I inhibitor, is generated via hydrolysis of the parent compound by carboxylesterases [11], and is subsequently glucuronidated by uridine diphosphate glucuronosyltransferases (UGTs), such as UGT1A1, UGT1A7, or UGT1A9, to form an inactive metabolite, SN-38 glucuronide (SN-38G) [12–14]. Irinotecan is also inactivated by CYP3A4 to produce 7-ethyl-10- [4-N-(3-amino-1-piperidino) carbonyloxycamptothecin (APC; a major CYP3A4 product) and 7-ethyl-10- (4-amino-1-piperidino) carbonyloxycamptothecin (NPC; a minor product) [15,16]. Irinotecan and its metabolites are excreted into the bile and urine via the action of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp/ABCB1), multiple resistance-associated protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) [17]. Transport of SN-38 from the plasma into the liver is mediated by the organic anion transporting polypeptide C (OATP-C/SLC01B1) [18]. Most of the previous pharmacogenetic studies of irinotecan have been focused on UGT1A1 polymorphisms and have shown clinical relevance of UGT1A1*28, a repeat polymorphism in the TATA box [-54_-39A(TA)7TAA or -40_-39insA(TA)7TAA], to severe adverse effects [3,19,20]. Based on these findings, in 2005, the Food and Drug Administration (FDA) of the USA approved an application for the formulation called Camptosar (irinotecan-HCl) (NDA 20-571/S-024/S-027/S-028) and for clinical use of a diagnostic kit for the *28 allele. In parallel with this advance in the USA, clinical relevance to severe neutropenia of UGT1A1*6 [21G>A/G71R], another low-activity allele detected specifically in East Asians, as well as *28, was demonstrated in several studies on Asian patients [5,21–23]. Accordingly, in June 2008, the Ministry of Health, Labor, and Welfare of Japan approved changes to irinotecan formulations (Campto and Topotecin) by adding a warning about the risk of severe adverse effects in patients either homozygous or compound-heterozygous for UGT1A1*28 and *6 (*28/*28, *6/*6, *28/*6) and also approved clinical use of a diagnostic kit for UGT1A1*28 and *6. Severe adverse effects, however, are reported in patients without the genetic variations *6/*6, *28/*28, and *28/*6; therefore, several clinical studies have suggested that polymorphisms of the drug transporter genes, such as ABCB1, ABCC2, ABCG2, and SLC01B1, might affect irinotecan pharmacokinetics (PK)/pharmacodynamics (PD) in Caucasian and Asian patients [22,24–35], as shown in Fig. 1. Nonetheless, the almost all reported results deal with PK in patients and neutropenia induced by irinotecan as an adverse reaction not but with diarrhea. Therefore, other factors responsible for other irinotecan adverse effects, such as diarrhea should be identified.

Diarrhea induced by irinotecan is classified into early- and delayed-onset diarrhea, occurring within 24 hr or ≤24 hr after irinotecan administration, respectively [36]. Irinotecan induces early-onset diarrhea as one of adverse cholinergic effects (acetylcholine-like effects) by inhibiting acetylcholinesterase (AChE) and binding to muscarinic acetylcholine receptors (mAChR) [37,38]. These inhibitory actions are induced by irinotecan, which has an amino group at the C-10 position [37]. Other than that, irinotecan induces delayed-onset diarrhea via rapid deconjugation of SN38G and adsorption of released free SN-38 by β-gluconuridase of intestinal flora [39–41], as shown in Fig. 1. In the present study, we focused on polymorphisms of genes with transporter activity to identify predictive factors of diarrhea induced by irinotecan because there are many genes related to transporter activity in both pathways.

A genome-wide association study (GWAS), also known as a whole-genome association study (WGA study, or WGAS), is an examination of many common genetic variants in different individuals to determine whether a particular variant is associated with a trait. GWAS using hypothesis-free genomic data is a powerful technique for identifying interindividual variation among patients. On the other hand, multiple testing problems are a limitation of this approach. To address this issue, we recently proposed a combined method consisting of a knowledge-based algorithm, 2 stages of screening, and a permutation test for identifying single nucleotide polymorphisms (SNPs) [7]. In general, the objective of a statistical or bioinformatic analysis is the enrichment of important information in a large dataset [42–47]. The use of a knowledge-based algorithm is not a novel concept, but is both practical and useful [48–66]. In the previous study, we found that rs2293347 in the gene of human epidermal growth factor receptor (EGFR) is a candidate SNP related to the chemotherapeutic response; we achieved this result by applying our combined method to gastric cancer patients who were treated with fluoropyrimidine [7]. However, our combined method was applied to only 1 dataset. Therefore, the usability of our combined method as a novel approach was still unclear.

We used the combined method in an actual genome-wide pharmacogenomics study of antitumor drugs, particularly irinotecan. We found that rs9351963 in the gene of potassium voltage-gated channel subfamily Q1 member 5 (KCNQ5) is a candidate SNP related to the adverse response. Rs9351963 may be a potential predictive factor of incidence of diarrhea in cancer patients treated with the cancer prodrug irinotecan.

Materials and Methods

Ethics statement

The study was conducted according to the principles expressed in the Declaration of Helsinki, and the ethics committees of the National Cancer Center and National Institute of Health Sciences, Japan, approved the study protocol. All patients provided written informed consent to participate.

Preparation of hypothesis-free genomic data for cancer patients treated with irinotecan

This study was performed within the framework of the Millennium Genome Project in Japan, and 4 antitumor drugs...
were chosen as project targets: gemcitabine, paclitaxel, fluoropyrimidine, and irinotecan. These drugs (alone or in some combination) were administered to approximately 1,000 cancer patients at the National Cancer Center, Japan. Additionally, approximately 1,000 DNA samples were extracted from peripheral blood mononuclear cells and 109,365 SNPs were genotyped using the Illumina Human-1 BeadChip. In this study, we focused on pharmacogenomic properties of irinotecan. Participants included 177 Japanese irinotecan-naïve cancer patients (56 cancer patients treated with irinotecan monotherapy and 121 cancer patients treated with irinotecan combination therapy) at the National Cancer Center Hospital and National Cancer Center Hospital East. A summary of the characteristics of the 176 patients is listed in Table S1. We excluded 1 patient who refused grading of adverse reactions. Furthermore, we excluded 8 patients who did not have genotyping data. Therefore, we analyzed the remaining 168 patients (53 cancer patients treated with irinotecan monotherapy and 115 cancer patients treated with irinotecan combination therapy) as the second dataset for 2 stages of screening.

Monitoring and adverse effects

A complete medical history and data on physical examination were recorded before the irinotecan therapy. Complete blood cell counts with differentials and platelet counts, as well as blood biochemical variables, were measured once a week during the first 2 months of irinotecan treatment. Adverse events were graded according to the National Cancer Institute - Common Toxicity Criteria (NCI-CTC Version 2.0). Only the highest grade of adverse events was recorded during the first 2 months of irinotecan treatment for each patient and adverse event.

Patient characteristics and clinical parameters

A summary of the patients’ characteristics in the two datasets for diarrhea is shown in Table 1. The association of genetic or clinical parameters with incidence of grade ≥ 2 diarrhea was examined on the basis of Spearman’s rank correlation coefficient. “$UGT1A1^*6$ or *28” is an effective genetic predictive factor of irinotecan-induced neutropenia and pharmacokinetics in cancer patients [5]. This factor was constructed from 2 polymorphisms: $UGT1A1^*6$ and *28.

Fisher’s exact test

This statistical test is usually used to determine nonrandom associations between 2 categorical variables [67]. Fisher’s exact test is similar to the chi-squared test. If a sample size is large, then the chi-squared test is suitable. Nevertheless, significance values from the chi-squared test are only approximated. Fisher’s exact test is used in to analyze contingency tables when the sample sizes are small [67]. We used Fisher’s exact test in the present study. The odds ratio (OR) is defined as $\frac{a \times d}{b \times c}$, where a is the number of patients that had adverse events with a minor allele, b is the number of patients that did not have adverse events with a minor allele, c is the number of patients that had adverse events with a major allele, and d is the number of patients that did not have adverse events with a major allele. The null hypothesis for Fisher’s exact test is $OR = 1$.

Figure 1. Drug metabolic pathways and the drug response of irinotecan.

doi:10.1371/journal.pone.0105160.g001
Table 1. Irinotecan-treated cancer patients with SNP information, genetic factor, and clinical parameters for incidence of diarrhea.

Parameters	Diarrhea									
	Irinotecan monotherapy	Spearman’s rank correlation	Irinotecan chemotherapy (including monotherapy)	Spearman’s rank correlation						
	Number of patients	Grade <2	Grade ≥2	p	p value	Number of patients	Grade <2	Grade ≥2	p	p value
UGT1A1*6 or *28		0	15	5	0.056	6.89E–01	64	17	0.009	9.06E–01
		1	21	7	0.023	1.00E–01	57	16	0.009	9.06E–01
		2	3	2	0.014	1.17E–01	11	3	0.009	9.06E–01
Gender	Male	26	11	−0.114	4.15E–01	101	28	−0.012	8.75E–01	
	Female	13	3	0.052	1.45E–01	31	8	0.009	9.06E–01	
Age	39	14	0.013	9.29E–01	132	36	0.080	3.02E–01		
Area	39	14	0.010	9.45E–01	132	36	−0.054	4.88E–01		
PS	<2	38	13	0.106	4.50E–01	130	35	0.039	6.15E–01	
	≥2	1	1	0.011	9.37E–01	111	30	0.008	9.13E–01	
Smoking	0	37	14	−0.119	3.97E–01	111	30	0.008	9.13E–01	
	1	2	0	0.149	2.88E–01	90	26	−0.036	6.44E–01	
Alcohol	0	33	10	0.061	6.65E–01	58	14	0.040	6.05E–01	
	1	6	4	0.001	1.00E–01	42	10	0.054	4.10E–01	
Alb	0	18	10	−0.223	1.08E–01	71	24	−0.108	1.62E–01	
	1	21	4	0.121	2.00E–01	60	12	0.121	2.00E–01	
Alb	0	14	4	0.061	6.65E–01	58	14	0.040	6.05E–01	
	1	22	9	0.121	2.00E–01	67	20	0.121	2.00E–01	
	2	3	0	0.001	1.00E–01	6	1	0.001	1.00E–01	
GOT	0	33	12	−0.014	9.23E–01	108	32	−0.080	3.05E–01	
	1	6	2	0.117	4.05E–01	89	23	0.026	7.38E–01	
ALP	0	28	8	0.117	4.05E–01	89	23	0.026	7.38E–01	
	1	9	6	0.001	1.00E–01	38	12	0.001	1.00E–01	
	2	0	0	0.001	1.00E–01	2	1	0.001	1.00E–01	
	3	2	0	0.001	1.00E–01	3	0	0.001	1.00E–01	
Cr	0	31	13	−0.157	2.62E–01	124	35	−0.060	4.41E–01	
	1	8	1	0.049	7.31E–01	132	36	0.019	8.10E–01	
Cmax/dose	39	14	0.049	7.31E–01	132	36	0.019	8.10E–01		
AUC ratio	39	14	−0.078	5.81E–01	132	36	−0.109	1.60E–01		
Table 1. Cont.

Parameters	Diarrhea								
	Irinotecan monotherapy	Irinotecan chemotherapy (including monotherapy)							
	Number of patients	Spearman’s rank correlation	Number of patients	Spearman’s rank correlation					
	Grade ≤2	Grade ≥2	p	Grade ≤2	Grade ≥2	p	p value		
Concomitant drug - 5-FU	0	39	14	NA	NA	106	28	0.026	7.40E−01
	1	0	0	26	8				
Concomitant drug - CDDP	0	39	14	NA	NA	76	24	−0.076	3.28E−01
	1	0	0	56	12				
Concomitant drug - MMC	0	39	14	NA	NA	121	36	−0.138	7.40E−02
	1	0	0	11	0				
Concomitant drug - VP16	0	39	14	NA	NA	129	35	0.014	8.61E−01
	1	0	0	3	1				
Concomitant drug - Amrubicin	0	39	14	NA	NA	132	34	0.210	6.25E−03
	1	0	0	0	2				

“UGT1A1*6 or *28” is a genetic factor constructed from 2 polymorphisms (UGT1A1*6 and *28); “2” indicates *6/*6, *28/*28 or *6/*28, “1” indicates *6 or *28, and “0” indicates “other than 2 and 1.” Area: body surface area (m²), PS: performance status, Cr: grade of creatinine, Hg: grade of hemoglobin, Alb: grade of albumin, ALP: grade of alkaline phosphatase, and GOT: grade of glutamic oxaloacetic transaminase. Each laboratory test value (Alb, Hg, GOT, ALP, and Cr) was recorded before the irinotecan therapy. For each type of clinical tests the grade and aberrant values were defined according to the National Cancer Institute - Common Toxicity Criteria (NCI-CTC, Version 2.0). C\text{\textsubscript{max}}/dose: SN38 C\text{\textsubscript{max}}/dose [10 −3:m²/L], AUC: area under the concentration-time curve. AUC ratio: Ratio of AUC\text{\textsubscript{SN38}}/AUC\text{\textsubscript{CPT-11}}. 5-FU: 5-fluorouracil, CDDP: cisplatin, MMC: mitomycin C, VP16: etoposide. * and † indicate p < 0.05 and 0.05 < p < 0.10, respectively. For each concomitant drug, 0 means “not administered,” 1 indicates administered.

doi:10.1371/journal.pone.0105160.t001
The permutation test

The permutation test theory evolved from the works of Fisher and Pitman in the 1930s [68]. In this study, p values of multiple-comparison analyses were adjusted by applying the permutation test to 2 stages of screening. The case-control (or phenotype) labels were randomly shuffled for the 2 screening stages, and p values were calculated using Fisher’s exact test. The lowest p value was selected for the randomized data. This procedure was repeated 100,000 times. Exact p values for the permutation test were calculated based on the distribution of the lowest p values.

Multiple testing correction

The Bonferroni correction is a method used to address the problem of multiple comparisons (also known as the multiple testing problem). It is considered the simplest and most conservative method for control of the family-wise error rate (FWER). In addition, false discovery rate (FDR) controlling procedures, such as the Benjamini-Hochberg [69], are more powerful (i.e., less conservative) than the FWER procedures, such as the Bonferroni correction, at the cost of increasing the likelihood of false positives within the rejected hypothesis. In the present study, the BH method was used to calculate the q value. The q value is defined as an FDR analog of the p value.

The Akaike information criterion (AIC)

The AIC is a measure of the relative goodness of fit of a statistical model [70]. A smaller AIC indicates a better fit when comparing fitted objects. The AIC is defined according to the formula \(-2\times\log \text{likelihood} + 2\times n_{\text{par}} \), where \(n_{\text{par}} \) represents the number of parameters in the fitted model, and the log-likelihood value [71] is obtained from the logistic regression model.

The receiver operating characteristic (ROC)

ROC analysis is a graphical plot that illustrates the performance of a binary classifier system as its discrimination threshold is varied. It is built by plotting sensitivity (the number of true positive results divided by the number of true positive samples) against 1 minus specificity at various threshold settings. (Specificity is the number of true negative results divided by the number of true negative samples.) The area under the curve (AUC) of a ROC curve is an indicator of expected performance of the test. A higher AUC is more desirable, with a value of 1.00 denoting perfect performance (sensitivity and specificity are both 100%); while a value of 0.50 indicates random performance.

Gene set based on gene ontology GO terms

GO has been developed to provide scientists with a controlled terminology system for labeling gene functions in a precise, reliable, computer-readable manner. Data for annotated genes and associated GO terms were obtained from the GO website (http://www.geneontology.org). We compiled a GO term list to select polymorphisms in genes with transporter activity (GO:0005215) and related activities, as shown in Table S2. The numbers of GO terms obtained was 943. GO data were obtained on July 1, 2010.

Results

Association analysis of adverse affects and clinical parameters (or a genetic factor)

The association between clinical parameters (or a genetic factor) and incidence of grade ≥2 diarrhea was examined on the basis of Spearman’s rank correlation coefficient, as shown in Table 1. This shows that no parameter was associated with the adverse response to chemotherapy (incidence of grade ≥2 diarrhea) in the first dataset (patients treated with irinotecan monotherapy). Nonetheless, Amrubicin (\(p = 0.00625 \)) was significantly associated with the response in the second dataset (patients treated with any irinotecan chemotherapy: a combination or monotherapy). Mitomycin C (MMC; \(p = 0.0740 \)) was weakly associated with the response. These clinical factors should be evaluated when constructing diagnostic models involving multiple factors.

GWAS of Irinotecan-Treated Cancer Patients

We analyzed not only an allele model but also dominant and recessive models of rs9351963 in KCNQ5 in relation to the first dataset (irinotecan monotherapy), the second dataset (any irinotecan chemotherapy), and the dataset of irinotecan combination chemotherapy (excluding irinotecan monotherapy), as shown in Figure 3. Figure 3A shows that the p value of the allele model was the lowest (\(p = 8.86 \times 10^{-5}, \text{OR} = 6.3 \)), and the p value (\(p = 1.29 \times 10^{-4}, \text{OR} = 24 \)) of the dominant model was lower than the p value (\(p = 0.0338, \text{OR} = 7.0 \)) of the recessive model in the first dataset. In addition, Figure 3B shows that the p value of the
allele model was the lowest ($p = 3.31 \times 10^{-10}$, OR = 3.1), and the p value ($p = 1.28 \times 10^{-12}$, OR = 6.7) of the recessive model was lower than the p value ($p = 4.44 \times 10^{-10}$, OR = 3.3) of the dominant model in the second dataset. Therefore, we evaluated the 3 models using the dataset of irinotecan combination chemotherapy (excluding irinotecan monotherapy; Fig. 3C). Figure 3C shows that the p value ($p = 1.44 \times 10^{-3}$, OR = 6.9) of the recessive model meant strong statistical significance and the OR was almost equal to OR (= 7.0) in the first dataset, as shown in Figure 3A. Although ORs of the recessive models seemed to have high homogeneity among all 3 datasets, there was no statistical evidence. Therefore, the proportional odds model was used to construct multiple logistic regression models.

Selection of the model of rs9351963 in KCNQ3 and construction of multiple regression models

We compared the AICs and AUCs using the second dataset in the 8 models: NULL (without parameter), “UGT1A1 *6 or *28” (an integrated predictive factor based on polymorphisms related to neutropenia), and rs9351963 (genotype of rs9351963 in KCNQ3), Amrubicin, MMC, rs9351963+Amrubicin, rs9351963+MMC, and rs9351963+Amrubicin+MMC (Fig. 4A). Figure 4A shows that performance of all models except UGT1A1 *6 or *28 is better than the performance of the NULL model. Although the Amrubicin+MMC (combination of Amrubicin and MMC) model was better than Amrubicin alone or MMC, the rs9351963 models were clearly better than the Amrubicin+MMC model, as shown in Figures 4A and 4B. Performance of rs9351963+Amrubicin and rs9351963+MMC models was better than performance of the rs9351963 model. Furthermore, performance of the rs9351963+Amrubicin+MMC model was better than that of rs9351963+Amrubicin and rs9351963+MMC models. Therefore, we selected the rs9351963+Amrubicin+MMC model as the best one on the basis of AIC. AUC, sensitivity, and specificity of this model were 0.744, 77.8%, and 57.6% in the ROC curve, respectively, as shown in Figures 4A and 4B.

Discussion

In the present study, we used 2 stages of screening: the method that is based on the concept of joint analysis. Joint analysis is more efficient than replication-based analysis [72]. The first dataset is a part of the second dataset in joint analysis (the latter includes the former). In contrast, the 2 datasets must be independent in a replication-based analysis (which we did not use here). Our 2 stages of screening derived from the joint analysis were used to increase statistical detection power. KB-SNP was performed prior to 2 stages of screening. KB-SNP reduced the number of
Table 2. Extracted 7 SNPs with $q < 1$ for the second dataset.

RS number	Allele	MAF	SNP function	Chr	Position	Associated gene symbol	For second dataset	Two stages of screening
rs9351963	A>C	0.328	cSNP	6	73749861	KCNQ5	3.31E–05	* 0.0289
rs11022922	C>T	0.376	cSNP	14	63472498	KCNH5	7.61E–04	1.0000
rs3918305	A>G	0.402	cSNP	12	109331162	SVOP	6.21E–04	1.0000
rs3813627	G>T	0.435	cSNP	1	161195148	TOMM40L	7.62E–04	1.0000
rs768172	A>T	0.441	cSNP	7	95805703	SLC25A13	7.87E–04	1.0000
rs10815019	A>G	0.222	cSNP	9	161196166	TOMM40L	1.02E–03	1.0000

Table Notes:
- **Type:** Location
- **Rs:** reference SNP identification number in dbSNP
- **MAF:** minor allele frequency
- **Chr:** chromosome number, i.e., a position in human genome GRCh37.p10 build 104
- **Position:** base pairs from the start of the chromosome
- **p:** Fisher’s exact test value of the association analysis
- **q:** permutation test value of the association analysis
- **BH:** adjusted F value by the Benjamini-Hochberg method

In the second dataset, we extracted rs9351963, which showed a p value of 0.0289 obtained using a combination of 2 stages of screening and a permutation test from SNPs selected by KB-SNP. In the present study, we extracted rs9351963, which showed a p value of 0.0289 obtained using a combination of 2 stages of screening and a permutation test from SNPs selected by KB-SNP. In the second dataset, the p value of Fisher’s exact test was 3.31×10^{-5}, and the q value was 0.173 calculated by correction of Benjamini-Hochberg method, as shown in Table 2. This value is candidate SNPs to 6,506 from 109,365. Approximately 80,000 SNPs can be extracted without knowledge-based reduction of the SNP number. Thus, statistically significant SNPs cannot be extracted from the present data. We could find the statistically significant rs9351963 in KCNQ5 by applying the combined method to hypothesis-free genomic data.

The KCNQ/K(ν)7 potassium channel family consists of 5 members of neural muscarine channel (M channel; from KCNQ1 to KCNQ5) which have a distinct expression pattern and a functional role. Although KCNQ1 is prevalently expressed in the cardiac muscle, KCNQ2, KCNQ3, KCNQ4, and KCNQ5 are expressed in neural tissue [73–75]. On the other hand, a recent study revealed that KCNQ4 and KCNQ5 are the most abundantly expressed KCNQ channels in smooth muscle throughout the gastrointestinal tract [76]. Furthermore, Jepps et al. opined that drugs that selectively block KCNQ4/KCNQ5 might be promising as therapeutics for the treatment of motility disorders such as constipation associated with irritable bowel syndrome [76]. In other words, drugs that selectively open KCNQ4/KCNQ5 might be effective against diarrhea. The KCNQ family gene products assemble as homomeric or heteromeric tetramers to form functional channels that mediate the M-current [77], a current that is suppressed by mAChR activation [78,79]. Irinotecan induces adverse cholinergic effects (acetylcholine-like actions) by inhibiting AChE and binding to mAChR [37,38,80]. Therefore, polymorphisms of KCNQ5 genes possibly effect incidence of diarrhea as interindividual variation in the drug response among cancer patients treated with irinotecan chemotherapy.

In the present study, only the highest grade of adverse events is recorded during the first 2 months of irinotecan treatment for each patient and each adverse effect. Therefore, incidence of grade ≥2 diarrhea possibly includes cases caused partially by enterohepatic circulation of APC and NPC, but genotype of rs9351963 in KCNQ5 correlates with the start date of treatment with antidiarrheal agents (Spearman’s rank correlation coefficient $r = -0.198$, $p = 0.00995$). In other words, genotype of rs9351963 may correlates with the diagnosis (or presentiment) of irinotecan induced early-onset diarrhea (diagnosis is made by trained chemotherapists).

The rs9351963 A>C polymorphism is located in an intron, which does not change the amino acid sequence of the protein and may not influence the biological function of the protein itself. Nonetheless, some intronic polymorphisms are effective markers: For example, rs2237892 in intron 15 of KCNQ1 is associated with susceptibility to type 2 diabetes mellitus in Japanese individuals [81], and the CA simple sequence repeat in intron 1 (CA-SSR1) of the gene of epidermal growth factor receptor (EGFR) is associated with the clinical outcome in gefitinib-treated Japanese patients with non-small cell lung cancer [82]. Furthermore, variations related to intronic or synonymous SNPs possibly affect mRNA stability, translational kinetics, and splicing, resulting in alterations at the protein level, e.g., changes of structure or function [83–89]. Although rs9351963 does not have a known function, this SNP is a possible predictive factor of adverse effects of irinotecan-based chemotherapy and is possibly linked to some functional polymorphisms in KCNQ5. Their clinical importance needs to be further elucidated.

In the present study, we extracted rs9351963, which showed a p value of 0.0289 obtained using a combination of 2 stages of screening and a permutation test from SNPs selected by KB-SNP. In the second dataset, the p value of Fisher’s exact test was 3.31×10^{-5}, and the q value was 0.173 calculated by correction of Benjamini-Hochberg method, as shown in Table 2. This value is
A Irinotecan monotherapy

Allele model	rs9351963	Diarrhea	Grade < 2	Grade ≥ 2
A	63	11		
C	15	17		

OR (95% CI): 6.3 (2.3-19)
$p = 8.86 \times 10^{-5}$

Dominant model	rs9351963	Diarrhea	Grade < 2	Grade ≥ 2
AA	26	1		
AC + CC	13	13		

OR (95% CI): 24 (3.1-1139)
$p = 1.29 \times 10^{-4}$

Recessive model	rs9351963	Diarrhea	Grade < 2	Grade ≥ 2
AA + CC	37	10		
CC	2	4		

OR (95% CI): 7.0 (0.87-89)
$p = 0.0358$

B Any irinotecan chemotherapy (including irinotecan monotherapy)

Allele model	rs9351963	Diarrhea	Grade < 2	Grade ≥ 2
A	192	33		
C	72	39		

OR (95% CI): 3.1 (1.8-5.6)
$p = 3.31 \times 10^{-5}$

Dominant model	rs9351963	Diarrhea	Grade < 2	Grade ≥ 2
AA	69	9		
AC + CC	63	27		

OR (95% CI): 3.3 (1.4-8.5)
$p = 4.44 \times 10^{-3}$

Recessive model	rs9351963	Diarrhea	Grade < 2	Grade ≥ 2
AA + CC	123	24		
CC	9	12		

OR (95% CI): 6.7 (2.3-20)
$p = 1.28 \times 10^{-4}$

C Irinotecan combination chemotherapy (excluding irinotecan monotherapy)

Allele model	rs9351963	Diarrhea	Grade < 2	Grade ≥ 2
A	129	22		
C	57	22		

OR (95% CI): 2.3 (1.1-4.7)
$p = 0.0211$

Dominant model	rs9351963	Diarrhea	Grade < 2	Grade ≥ 2
AA	43	8		
AC + CC	50	14		

OR (95% CI): 1.5 (0.53-4.5)
$p = 0.478$

Recessive model	rs9351963	Diarrhea	Grade < 2	Grade ≥ 2
AA + CC	86	14		
CC	7	8		

OR (95% CI): 6.9 (1.9-26)
$p = 1.44 \times 10^{-3}$

Figure 3. Contingency tables for rs9351963 in KCNQ5 for each model using each dataset. (A) irinotecan monotherapy (first dataset), (B) any irinotecan chemotherapy (including irinotecan monotherapy; second dataset), and (C) irinotecan combination chemotherapy (excluding irinotecan monotherapy). OR: odds ratio. The p values were calculated using Fisher’s exact test. CI: confidence interval.

doi:10.1371/journal.pone.0105160.g003

Statistically insignificant. Therefore, during the 2 stages of screening, it is statistically sufficient to extract rs9351963.

The calculation of probability of occurrence in Bernoulli trials is suitable for estimation of validity of the repetition number in the permutation process. In this trial, occurrence probability is defined as $\binom{n}{k} (p_B)^k (1-p_B)^{n-k}$, where k is the occurrence number, n is the repetition number, and p_B represents probability. If the repetition number is 100,000 for rs9351963 ($p = 0.02891$ [2891/100000]) and the significance level of the test (a) is 0.05, the occurrence probability is $\binom{100000}{2891} (0.05)^{2891} (1-0.05)^{100000-2891} = 4.89 \times 10^{-241}$. In statistics, the 99% (or 95%) confidence interval should be considered. The significance level of $\alpha = 0.05$ does not exist in the 99% confidence interval of the p value for rs9351963, because the occurrence probability 4.89×10^{-241} is clearly lower than 0.01. Similarly, if the repetition number is 10,000, the occurrence probability is 3.41×10^{-26}. This way, the occurrence probability is sufficiently low for 10,000 permutations. Nevertheless, we conducted 100,000 permutations to estimate p values more accurately for the permutation test.

Using our combined method involving KB-SNP, we identified rs9351963 as a potential predictive factor of diarrhea in cancer patients treated with irinotecan chemotherapy; however, the comprehensiveness of KB-SNP was limited. Therefore, statistical information regarding the adverse effects of cancer patients treated with irinotecan chemotherapy is shown in Table S3 for incidence of diarrhea (p, 0.05) and in Table S4 for incidence of neutropenia (p, 0.05). The relevant data are also provided on the website Genome Medicine Database of Japan (GeMDBJ) [90] (https://gemdbj.nibio.go.jp/). These data will be useful for replication studies or meta-analyses in the future.

In conclusion, in the present study, we applied the combined method to hypothesis-free genomic data on cancer patients treated with irinotecan chemotherapy. By means of this method, rs9351963 in KCNQ5 was extracted as a candidate SNP related to the incidence of diarrhea. For example, the association of rs9351963 with irinotecan-related diarrhea (OR of 3.14) showed a p value of 3.31×10^{-25} in Fisher’s exact test (allele model). Even if this p value were adjusted by means of the permutation test for the effects of multiple testing problems, the adjusted p value would still indicate statistical significance (adjusted p value of 0.0289, 0.05).

Additionally, we evaluated the performance of rs9351963 using multiple regression models. rs9351963 was clearly superior to clinical parameters (or environmental factors) and showed a sensitivity of 77.8% and specificity of 57.6% in the multiple regression model, including rs9351963. Recent studies showed that the KCNQ4 and KCNQ5 genes encode components of the M channel expressed in gastrointestinal smooth muscles and suggested that these genes are associated with irritable bowel syndrome and similar peristalsis diseases. These results suggest that rs9351963 may be a predictive factor of diarrhea in cancer patients treated with irinotecan chemotherapy. This SNP may also be useful for selection of chemotherapy regimens, such as irinotecan monotherapy or a combination of irinotecan chemo-
therapy with KCNQ5 opener. Furthermore, the result of the present analysis supports usability of our combined method.

Supporting Information

Table S1 Irinotecan-treated cancer patients, genetic factor, and clinical parameters for incidence of diarrhea and neutropenia. “UGT1A1*6 or *28” is a genetic factor constructed from 2 polymorphisms (“UGT1A1*6 and *28”). “*2” indicates *6/*6, *28/*28 or *6/*28, “*1” indicates *6 or *28, and “0” indicates “other than 2 and 1.” Area: body surface area (m²); PS: performance status, Gr: grade of creatinine, Hg: grade of hemoglobin, Alb: grade of albumin, ALP: grade of alkaline phosphatase, and GOT: grade of glutamic oxaloacetic transaminase. Each laboratory test value was recorded before the irinotecan therapy. For each type of clinical tests the grade and aberrant values were defined according to the National Cancer Institute - Common Toxicity Criteria (NCI-CTC, Version 2.0). C\textsubscript{max}/dose: SN38 C\textsubscript{max}/dose [10-3 \text{ mm}^3/L]. AUC: area under the concentration-time curve. AUC ratio: Ratio of AUC\textsubscript{CPT-11}/AUC\textsubscript{MMC}. 5-FU: 5-fluorouracil, CDDP: cisplatin, MMC: mitomycin C, VP16: etoposide. * and † indicate p<0.05 and 0.05≤p<0.10, respectively. For each concomitant drug, 0 means “not administered,” 1 indicates administered.

(Click to download XLS)

Table S2 GO term list for transporter activity and the related functions.

(Click to download XLS)

Table S3 Statistical information on the chemotherapeutic response (incidence of grade ≥2 diarrhea) of irinotecan-treated cancer patients (p<0.05). RS number: reference SNP identification number in dbSNP; p values were calculated using Fisher’s exact test and q values were calculated using the Benjamini-Hochberg (BH) method from p values.

(Click to download XLS)

Table S4 Statistical information on the chemotherapeutic response (incidence of grade ≥3 neutropenia) of irinotecan-treated cancer patients (p<0.05). RS number: reference SNP identification number in dbSNP; p values were calculated using Fisher’s exact test and q values were calculated using the Benjamini-Hochberg (BH) method from p values.

(Click to download XLS)

Acknowledgments

We thank Ms. Sumiko Ohnami for help with SNP genotyping.

Author Contributions

Conceived and designed the experiments: HT Y. Saito NS JS HS T. Yoshida. Performed the experiments: HT KS NK HO YO MO. Analyzed the data: HT RI AT AD. Contributed reagents/materials/analysis tools: HT YM TH Y. Shimada AO T. Yoshino TD. Contributed to the writing of the manuscript: HT.
12. Iyer L, King CD, Whittington PF, Green MD, Roy SK, et al. (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isofrom 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101: 847–854.

13. Ciotti M, Baus N, Brangi M, Oreni IS (1999) Glucuronidation of 7-ethyl-10-hydroxycaptothecin (SN-38) by the human UDP-glucuronosyltransferases encoded at the UGT1 locus. Biochem Biophys Res Commun 260: 199–202.

14. Iyer L, Das S, Vernlet L, Robert J, Verweij J, et al. (2002) UDP-glucuronic acid conjugation of SN-38 by human UDP-glucuronosyltransferase 1A1 in common human UDP1A1 polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycaptothecin (SN-38). Mol Pharmacol 62: 608–617.

15. Haaz MC, Rivory L, Riche C, Vermillet L, Robert J (1998) Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 A4 and drug interactions. Cancer Res 58: 468–472.

16. Sai K, Saito Y, Fukushima-Uesaka H, Kurose R, Kanwa N, et al. (2008) Impact of CYP3A4 haplotypes on irinotecan pharmacokinetics in Japanese cancer drug use. Cancer Genet Pharmacol 102: 109–117.

17. Sparreboom A, Danese R, Ando Y, Chan J, Figg WD (2003) Pharmacogenomics of chemotherapeutic agents and its role in cancer chemotherapy. Drug Resist Updat 6: 71–84.

18. Nouotzou T, Minami H, Sugita S, Tsuji A, Tamai I (2005) Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycaptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 33: 434–439.

19. Iyer L, Das S, Vernlet L, Wen M, Ramirez J, et al. (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics 2: 43–47.

20. Immonei F, Udevita SD, Iyer L, Chen PX, Das S, et al. (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22: 1302–1308.

21. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, et al. (2008) Comprehensive analysis of UGT1A1 polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24::2237–2244.

22. Jada SR, Lim R, Wong CJ, Shu X, Lee SC, et al. (2007) Role of UGT1A1*16, UGT1A1*28 and ABCC2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients. Cancer Sci 98: 1461–1467.

23. Sai K, Saito Y, Sakamoto H, Shirao K, Kurose K, et al. (2008) Importance of UDP-glucuronyltransferase 1A1*6 for irinotecan toxicities in Japanese cancer patients. Cancer Lett 261: 165–171.

24. Sai K, Saito Y, Macka K, Kim SR, Kanwa N, et al. (2010) Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics and pharmacodynamics in Japanese cancer patients. Cancer Chemother Pharmacol 66: 95–105.

25. Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, et al. (2003) ABCG2 dependent renal clearance of irinotecan. Pharmacogenetics 13: 741–757.

26. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, et al. (2008) Comprehensive analysis of UGT1A1 polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24: 2237–2244.

27. Zhou Q, Sparreboom A, Tan EY, Cheung YB, Lee A, et al. (2005) Pharmacogenetic profiling across the irinotecan pathway in Asian patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 23: 2237–2244.

28. Jada SR, Lim R, Wong CJ, Shu X, Lee SC, et al. (2007) Role of UGT1A1*16, UGT1A1*28 and ABCC2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients. Cancer Sci 98: 1461–1467.

29. Sai K, Saito Y, Sakamoto H, Shirao K, Kurose K, et al. (2008) Importance of UDP-glucuronyltransferase 1A1*6 for irinotecan toxicities in Japanese cancer patients. Cancer Lett 261: 165–171.

30. Sai K, Saito Y, Macka K, Kim SR, Kanwa N, et al. (2010) Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics and pharmacodynamics in Japanese cancer patients. Cancer Chemother Pharmacol 66: 95–105.

31. Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, et al. (2003) ABCG2 dependent renal clearance of irinotecan. Pharmacogenetics 13: 741–757.

32. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, et al. (2008) Comprehensive analysis of UGT1A1 polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24: 2237–2244.

33. Zhou Q, Sparreboom A, Tan EY, Cheung YB, Lee A, et al. (2005) Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. Br J Clin Pharmacol 59: 413–424.

34. de Jong FA, Marsh S, Mathijssen RH, Cui, Verweij J, et al. (2004) ABCC2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 10: 5389–5394.

35. de Jong FA, Scott-Horton TJ, Kroeza DL, McLeod HL, Friebel LE, et al. (2007) Irinotecan-induced diarrhea: functional significance of the polymorphic ABCB1 transporter protein. Clin Pharmacol Ther 81: 42–49.

36. Xiang X, Jada SR, Li HH, Fan I, Tham LS, et al. (2006) Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenet Genomics 16: 603–691.

37. Takane H, Miyata M, Burioka N, Kurai J, Fukoysa Y, et al. (2007) Severe toxicities after irinotecan-based chemotherapy in a patient with lung cancer: a homozygote for the SLCO1B1*15 allele. Ther Drug Monit 29: 666–668.

38. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, et al. (2008) Influence of the genetic amino tetra-peptide polyphosphate 1B1 (OATP1B1) polymorphism on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer 59: 69–75.

39. Han JY, Lim HS, Park YH, Lee SY, Lee JS (2009) Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer 63: 115–120.

40. Michael M, Thompson M, Hicks RJ, Mitchell PL, Ellis A, et al. (2006) Relationship of hepatic functional imaging to irinotecan pharmacokinetics and early pharmacodynamic parameters of drug elimination. J Clin Oncol 24: 4228–4235.

41. Sai K, Ioda M, Saito Y, Kurose K, Katori N, et al. (2006) Genetic variations and haplotype structures of the ABCB1 gene in a Japanese population: an expanded haplotype block covering the distal promoter region, and associated expression of human Hmt gene. Genet 70: 605–612.

42. Yang X, Hu Z, Chan SY, Chan E, Goh BC, et al. (2005) Novel agents that potentially inhibit irinotecan-induced diarrhea. Curr Med Chem 12: 1343–1358.
cancer from gene expression based on boosting and projective adaptive resonance theory. J Biosci Bioeng 102: 46–52.

62. Takahashi H, Honda H (2006) Lymphoma prognoaisis from expression profiling using a combination method of boosting and projective adaptive resonance theory. J Chem Eng Jpn 39: 767–771.

63. Takahashi H, Honda H (2005) A new relable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method. J Chem Eng Jpn 38: 763–773.

64. Takahashi H, Masuda K, Ando T, Kobayashi T, Honda H (2004) Prognostic predictor with multiple fuzzy neural models using expression profiles from DNA microarray for metastases of breast cancer. J Biosci Bioeng 98: 193–199.

65. Takahashi H, Tomida S, Kobayashi T, Honda H (2003) Inference of common generic network using fuzzy adaptive resonance theory associated matrix method. J Biosci Bioeng 96: 154–160.

66. Takahashi H, Nakayama R, Hayashi S, Nemoto T, Murase Y, et al. (2013) Macrophage migration inhibitory factor and stearoyl-CoA desaturase 1: potential prognostic markers for soft tissue sarcomas based on bioinformatics analyses. PLoS One 8: e78250.

67. Fisher RA (1922) On the interpretation of contingency tables, and the calculation of P. J Roy Statistical Society 85: 67–94.

68. Pitman EJG (1938) Significance tests which may be applied to samples from any population. Part III. The analysis of variance test. Biometrika 29: 322–335.

69. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc serB 57: 289–300.

70. Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19: 716–723.

71. Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike Information Criterion Statistics. Dordrecht: Reidel Publishing Company.

72. Jepps TA, Greenwood IA, MoFatt JD, Sanders KM, Ohya S (2009) Molecular pharmacology and therapeutic potential of neuronal Kv7-modulating drugs. Curr Opin Pharmacol 9: 830–862.

73. Miceli F, Soldovieri MV, Martire M, Tagliatela M (2008) Molecular pharmacology and therapeutic potential of neuronal Kv7-modulating drugs. Curr Opin Pharmacol 8: 65–74.

74. Brown DA, Pasmore GM (2009) Neural KCNQ (Kv7) potassium channels. Br J Pharmacol 156: 1183–1195.

75. Jepps TA, Greenwood IA, MoFatt JD, Sanders KM, Ohya S (2009) Molecular and functional characterization of Kv7.5+K+ channel in murine gastrointestinal smooth muscles. Am J Physiol Gastrointest Liver Physiol 297: G107–115.

76. Schwake M, Jentsch TJ, Friedrich T (2003) A carboxy-terminal domain determines the subunit specificity of KCNQ+K+ channel assembly. EMBO Rep 4: 76–81.

77. Cavaliere S, Malak BR, Hodge JJ (2013) KCNQ channels regulate age-related memory impairment. PLoS One 8: e62445.

78. Perez C, Vega R, Soto E (2010) Phospholipase C-mediated inhibition of the M-potassium current by muscarinic-receptor activation in the vestibular primary-afferent neurons of the rat. Neurosci Lett 468: 238–242.

79. Blandizzi C, De Paolis R, Colacci R, Lazzeri G, Baschiera F, et al. (2001) Characterization of a novel mechanism accounting for the adverse cholinerig effects of the anticancer drug irinotecan. Br J Pharmacol 132: 73–84.

80. Yaenda K, Miyake K, Horikawa Y, Hara K, Osawa H, et al. (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40: 1092–1097.

81. Ichihara S, Toyooka S, Fujisawa Y, Hota K, Shigematsu H, et al. (2007) The impact of epidermal growth factor receptor gene status on gefitinib-treated Japanese patients with non-small-cell lung cancer. Int J Cancer 120: 1299–1247.

82. Ichihara S, Toyooka S, Uno K, Ohki H, Hashimoto R, et al. (2013) Functional Analysis of Deep Intronic SNP rs13430491 in Intron 24 of PCLO Gene. PLoS One 8: e76960.

83. Sauna ZE, Kinchi-Saraficy C, Ambulikar SV, Gottesman MM (2007) Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res 67: 9609–9612.

84. Capon F, Allen MH, Ameen M, Burden AD, Tillman D, et al. (2004) A synonymous SNP of the cornedodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum Mol Genet 13: 2361–2368.

85. Nakley AG, Shahalina SA, Trchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.

86. Nielsen KB, Sorensen S, Cartegni L, Corydon TJ, Doktor TK, et al. (2007) Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 3 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer. Am J Hum Genet 80: 416–432.

87. Spasovski V, Tosic N, Nikcevic G, Stojiljkovic M, Zukić B, et al. (2013) The influence of novel transcriptional regulatory element in intron 14 on the expression of Janus kinase 2 gene in myeloproliferative neoplasms. J Appl Genet 54: 21–26.

88. Xue G, Aida Y, Sakudo A (2012) The 5’ flanking region and intron1 of the bovine prion protein gene (PRNP) are responsible for negative feedback regulation of the prion protein. PLoS One 7: e52070.

89. Yoshida T, Otsu H, Kuchiba A, Sasaki N, Sakamoto H (2010) Genome-wide germline analyses on cancer susceptibility and GeMDBJ database: Gastric cancer as an example. Cancer Sci 101: 1582–1589.