Molecular characterization of *Fasciola gigantica* in Punjab, Pakistan to infer the dispersal route among the neighbouring countries of the Indian subcontinent

Zia Ur Rehman\(^a\), Atsushi Tashibu\(^b\), Michiyo Tashiro\(^b\), Imran Rashid\(^a\)*, Qasim Ali\(^d\), Osama Zahid\(^c\), Kamran Ashraf\(^a\), Wasim Shehzad\(^a\), Umer Chaudhry\(^c\)*, Madoka Ichikawa-Seki\(^b\)*

\(^a\) Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, 54200, Pakistan

\(^b\) Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan

\(^c\) Roslin Institute, University of Edinburgh, Midlothian, Scotland, EH25 9RG, United Kingdom

\(^d\) Department of Parasitology, Gomal University Dera Ismail Khan, Khyber Pakhtoon Khah, Pakistan

*Corresponding authors:

Imran Rashid
Tel: +92 42 99 213 697
E-mail: imran.rashid@uvas.edu.pk

Madoka Ichikawa-Seki
Tel.: +81 19 621 6218
E-mail: madoka@iwate-u.ac.jp

Umer Chaudhry
Email: uchaudhr@exseed.ed.ac.uk
Abstract

Fasciola gigantica is considered to be a major pathogen causing fasciolosis in the Indian subcontinent, resulting in millions of dollars production losses to the livestock industry. To understand the dispersal origin and the spread patterns of _F. gigantica_ is important for preventing the disease. A total of 53 _Fasciola_ flukes collected from buffalo and goat in the Punjab province of Pakistan, were identified as _F. gigantica_ based on the multiplex PCR for the phosphoenolpyruvate carboxykinase (_pepck_) and the PCR-restriction fragment length polymorphism (RFLP) for DNA polymerase delta (_pold_). A significant genetic difference between _F. gigantica_ from buffalo and goats in Pakistan was indicated by the genetic analysis of two distinct mitochondrial markers [NADH dehydrogenase subunit 1 (_nad1_) and cytochrome C oxidase subunit 1 (_cox1_)]. Phylogenetic analysis of the seventeen _nad1_ haplotypes of _F. gigantica_ from Pakistan with those in neighbouring countries of the Indian subcontinent revealed that all the haplotypes were clustered in haplogroup A. _Fasciola gigantica_ with the eight haplotypes might be expanded in Pakistan from Indian origin, along with the migration of the domestic animals, since they were related to Indian haplotypes. In contrast, the remaining nine haplotypes were not shared with any neighbouring countries, suggesting independent origin, or possibly come from neighbouring Middle East countries. Our study provides a proof of concept for a method that could be used to investigate the epidemiology of _F. gigantica_ regarding the development of sustainable parasite control strategies.

Key words: _Fasciola gigantica, pepck, pold, nad1, cox1_.

1. Introduction

Fasciolosis, caused by the liver fluke of genus *Fasciola*, is a neglected zoonotic disease that results in a severe economic losses in the livestock industry (Aghayan et al., 2019). Fasciolosis is one of the most widely spread diseases reported from over 50 countries mostly in Asia, Africa and America (Mas-Coma, 2003; Mas-Coma et al., 2005; Toledo and Fried, 2014). The incidents of fasciolosis have increased over the past two decades, possibly because of the changes in farming practices, development of anthelmintic resistance and climatic changes (Sabourin et al., 2018). The genus *Fasciola* comprises of two important species. *Fasciola hepatica* is found in temperate zones, whereas *F. gigantica* is generally considered to be a parasite of tropical areas (Mas-Coma et al., 2009). Both species co-exist in subtropics, which can result in the formation of intermediate or hybrid forms mainly in Asian countries (Ichikawa and Itagaki, 2010b; Rokni et al., 2010). *Fasciola* infects the livers and bile ducts of ruminants and other mammals, while the snails of Lymnaeidae family act as their intermediate hosts (Toledo and Fried, 2014; Usip et al., 2014).

Mitochondrial markers have been used for the phylogenetic characterizations of *Fasciola* species to examine the propagation route of this group of parasites in many countries (Ai et al., 2011; Elliott et al., 2014; Ichikawa-Seki et al., 2017; Ichikawa and Itagaki, 2012; Semyenova et al., 2006; Thang et al., 2019). In the Asian subcontinent, *F. gigantica* has been divided into three haplogroups. Haplogroups B and C have been predominant mainly in Southeast Asian countries including Thailand (Chaichanasak et al., 2012), Myanmar (Ichikawa et al., 2011) and Indonesia (Hayashi et al., 2016). Haplogroup A has been distributed in the Indian subcontinent including East India (Hayashi et al., 2015), Bangladesh (Mohanta et al., 2014), Nepal (Shoriki et al., 2014) and Myanmar (Ichikawa et al., 2011). The zebu cattle (*Bos indicus*) and water buffalo (*Bubalus bubalis*) have been considered to be the definitive host of *F. gigantica* (Kikkawa et al., 2003). Hayashi et al. (2015) demonstrated that the haplogroup A of *F. gigantica* originated in the Indus River valley, and the unregulated animal movement might be involved in the spread of this parasite species. However, limited information is available on *F. gigantica* fluke in Pakistan to reveal the expansion history of this parasite through Indus River valley of the Indian subcontinent.

In this paper, we describe a study using liver flukes collected from buffalo and goat slaughtered in abattoirs in the Punjab province of Pakistan, with the following aims: i) to perform the species identification using the most reliable nuclear markers: phosphoenolpyruvate carboxykinase (*pepck*) and DNA polymerase delta (*pold*) genes (Shoriki et al., 2016); ii) to determine the propagation route of *F. gigantica* in the Indian
subcontinent using mitochondrial NADH dehydrogenase subunit 1 (nad1) and cytochrome C oxidase subunit 1 (cox1) genes.

2. Materials and Methods

2.1. Sample collection and gDNA extraction

A total of 14 Fasciola infected livers (7 buffalo and 7 goats) were collected from the animals slaughtered at the Punjab Agriculture & Meat Company (PAMCO) Lahore (31.4330° N, 74.1945° E). The livers were transported from abattoir to the laboratory on ice, where flukes were recovered from the biliary ducts by dissection. A total of 53 flukes (25 from 7 buffalo and 28 from 7 goats) (Table 1) were thoroughly washed with phosphate-buffered saline (PBS), and preserved in 70% ethanol until use. A small portion of the vitelline glands from the posterior part of each fluke was used for DNA extraction using the High Pure DNA Extraction Kit (Roche, Mannheim, Germany) following the manufacturer's protocols, and stored at -20°C until further use.

2.2. Multiplex PCR and PCR-RFLP of pepck and pold genes of Fasciola species

The fragments of pepck were amplified through the multiplex PCR assay previously described by Shoriki et al. (2016). The PCR amplicons were run on 1.8% agarose gels for 30 min to detect the F. hepatica (approximately 500bp), F. gigantica (approximately 240bp) or hybrid fragment patterns (both the fragments). The fragments of pold were analysed through the PCR-RFLP assay previously described by Shoriki et al. (2016). The PCR products were subsequently digested with AluI enzyme (Toyobo, Osaka, Japan) at 37 °C for three hours. The resultant products were run on 1.8% agarose gels for 30 min to detect the F. hepatica (approximately 700bp), F. gigantica (approximately 500bp) or hybrid fragment patterns (both the fragments).

2.3. PCR amplification and sequencing of nad1 and cox1 genes

The fragments of nad1 (535bp) and cox1 (430bp) genes were amplified through a PCR assay previously described by Itagaki et al. (2005). The PCR amplicons were purified using NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel, Düren, Germany) and sequenced by Eurofin Genomics K.K. (Tokyo, Japan). The resultant DNA sequences were assembled using ATGC v. 6.0.3 (Genetyx Co., Tokyo, Japan) and the haplotypes were identified by GENETYX v. 10.0.2 (Genetyx Co.).
2.3. Median-joining network and diversity indices of nad1 and cox1 genes

Median-joining (MJ) network was constructed using Network v. 5.0.1.1 software (Tajima, 1989) to determine the phylogenetic relationships among the nad1 and cox1 haplotypes. Median-joining (MJ) network has been further used to compare the nad1 haplotypes of the present study with the reference nad1 haplotypes of *F. gigantica* from India (Ichikawa and Itagaki, 2010a), Bangladesh (Mohanta et al., 2014), Nepal (Shoriki et al., 2014), Myanmar (Ichikawa et al., 2011), Thailand (Chaichanasak et al., 2012), Vietnam (Itagaki et al., 2009), Indonesia (Hayashi et al., 2016), China (Peng et al., 2009), Korea (Ichikawa and Itagaki, 2012) and Japan (Itagaki et al., 2005). The reference nad1 haplotypes were retrieved from the GenBank and their frequencies were referred from the previous reports.

The diversity indices, including the number of variable sites (*S*), the number of haplotypes (*h*), and the nucleotide diversity (*π*) were calculated using DnaSP software v. 5.1 (Librado and Rozas, 2009). Tukey’s test was performed by GraphPad Prism v. 7.04 (GraphPad Software Inc., San Diego, CA, USA) to detect the significant differences in *π* values among the populations. First, the samples of the present study were compared to each other to find the differences between buffalo and goat. In the next step, the indices of nad1 were compared with those of the reference populations of *F. gigantica* from India (Hayashi et al., 2015), Bangladesh (Mohanta et al., 2014), Nepal (Shoriki et al., 2014) and Myanmar (Ichikawa et al., 2011) to find relationships between the neighbouring countries.

The pairwise fixation index (*F*_{ST}) values between the *F. gigantica* samples derived from buffalo and goat were calculated using Arlequin program v. 3.5.2.2 (Loftus et al., 1994) to find genetic differences. If the *F*_{ST} values approaching 1 indicate extreme genetic differentiation between the two populations.

Results

3.1. Species identification

The fragment analysis by the multiplex PCR and the PCR-RFLP for pepck and pold showed that a total of 53 flukes collected from buffalo and goat were *F. gigantica* (Table 1). These results are complemented with the previous reports which suggest that *F. gigantica* is the predominant species in Punjab province of Pakistan (Chaudhry et al., 2016; Rehman et al., 2020).
3.2. Mitochondrial haplotype distribution of *F. gigantica* between buffalo and goat

The haplotype distribution was analysed separately for 53 individual *F. gigantica* flukes. A total of seventeen *nad1* haplotypes were detected in *F. gigantica* (Table 1). The MJ network revealed that PAK-nad1Fg1 and PAK-nad1Fg2 were the two predominant haplotypes present in both buffalo and goat (Fig. 1A) with four nucleotide substitutions between them. A total of seventeen *cox1* haplotypes were detected in *F. gigantica* (Table 1). The MJ network revealed that PAK-cox1Fg1 and PAK-cox1Fg2 were the predominant haplotypes found in both buffalo and goat (Fig. 1B), with three nucleotide substitutions between them.

The π for *nad1* and *cox1* were compared between *F. gigantica* samples acquired from both hosts. For the *nad1* gene, a higher π value was observed in the *F. gigantica* populations obtained from goat, but the result was opposite for the *cox1* gene (Table 2), and therefore, more diverse i.e. older population could not be determined. The F_{ST} values between the two hosts for both the genes (*nad1*: 0.12931, *cox1*: 0.16914) were statistically significant ($P < 0.05$), indicating the existence of genetic differentiation.

3.3. Comparative analysis of *F. gigantica* with that from neighboring countries

The MJ network analysis of seventeen *nad1* haplotypes revealed that PAK-nad1Fg2 haplotype had an identical sequence with the *F. gigantica* haplotypes from India (ND1-E6), Nepal (Fg-ND1-N1), Myanmar (Fg-M15), Bangladesh (Fg-ND1-Bd9) and Thailand (Fg-ND1-Thai13) (Fig. 2). The PAK-nad1Fg9, 10, 11, 12, 14 and 15 haplotypes had a single or double nucleotide substitutions present nearly to the PAK-nad1Fg2 haplotype. The PAK-nad1Fg13 halotype had an identical sequence with the *F. gigantica* haplotypes from India (ND1-E7) and Myanmar (Fg-M16), and PAK-nad1Fg10 was identical to ND1-IN14 haplotype from India (Fig. 2). In contrast, the remaining nine haplotypes including PAK-nad1Fg1 (a most dominanted haplotype) were not related to any reference haplotypes from neighbouring countries (Fig. 2).

The π values for *nad1* were compared between *F. gigantica* samples from Pakistan and neighbouring countries. The data suggest that the *F. gigantica* of the present study had the highest π value among the populations (Table 3), implying a higher nucleotide diversity in Pakistani populations as compared to the neighbouring countries.
Discussion

Historically, it has been suggested that *F. gigantica* might originate and spread by zebu cattle (*Bos indicus*) and water buffalo (*Bubalus bubalis*) in the Indian subcontinent (Peng et al., 2009). The water buffalo was domesticated in the Indus River valley (modern-day Pakistan) at around 7,000 to 8,000 BC, whereas zebu cattle was domesticated in the Indus Valley, Near and Middle East and Eastern Europe around 5,000 years ago (Bradley et al., 1996; Loftus et al., 1994; Tanaka et al., 1996). Since Pakistan is a part of the Indian subcontinent, free movement of zebu cattle and water buffalo probably play a significant role in the spread of *F. gigantica* in the region. Over the past few decades, high levels of animal movement have been reported in domestic ruminants in the Indian subcontinent (Kelley et al., 2016; Vilas et al., 2012). The farmers rear multiple species of animals to meet their livelihood in this region (Devendra, 2007). The mixed farming system might play an important role in the spread of *F. gigantica*. The animal movement patterns differ between farms, and *F. gigantica* infects a wide range of hosts including domestic and wild animals. Therefore, human activities potentially enable the spread of this parasite (Rojo-Vázquez et al., 2012). Hence genetic analysis are needed to understand the corresponding origin and spread of *F. gigantica* infections, which aid in the development of parasite control strategies (Hayashi et al., 2016).

In the present study, a significant genetic differentiation between *F. gigantica* samples from buffalo and goat was suggested by the F_{ST} value, which might be due to the difference in host immunity (Haroun and Hillyer, 1986; Piedrafita et al., 2004; Roberts et al., 1997) or due to the variances in the geographical position of these two hosts in the Punjab province of Pakistan. Generally, the lowlands of Punjab are more prone to flooding and reported to be highly populated with buffalo, in comparison, goat are resided in higher areas or keep moving to different areas due to human travelling (Afshan et al., 2014). However, the expansion history of *F. gigantica* between the hosts could not be inferred in the present study; the older host in Punjab could not be determined since the opposite statistical differences were observed in the π values of *nad1* and *cox1*.

The current study revealed that at least two origins of *F. gigantica* in Pakistan with reference to the neighbouring countries. In haplogroup A, the eight *F. gigantica* haplotypes of the present study had a close relationship with the haplotypes from India, Bangladesh, Nepal, Myanmar and Thailand. The MJ network indicates that the haplotypes detected in India were apparently more diverse than Pakistan, which indicates the hypothesis of the expansion of
these haplotypes from India to Pakistan. In contrast, the nine Pakistani haplotypes were not
shared with any neighbouring countries, suggesting an independent origin, or possibly come
from neighbouring Middle East countries where genetic analysis of *F. gigantica* has never
been conducted. Further studies from different areas of Pakistan, as well as neighbouring
Middle East countries, will be required to reveal the origin and dispersal direction of these
haplotypes.

In summary, the present study provides preliminary insights into the origin and spread of
F. gigantica in Pakistan and the neighbouring countries of the Indian subcontinent. We have
also described the genetic difference between *F. gigantica* populations derived from buffalo
and goat. Overall, the study provides a benchmark and opens a new avenue for more detailed
analysis in this region. It might be helpful to involve higher samples size, more host species
from different areas to get more conclusive results of the genetic diversity of *F. gigantica*
among buffalo, goat, sheep and cattle as well as their possible spread patterns in the country
and the subcontinent.

Acknowledgements

The authors acknowledge Mr Zain Ali khan, Mr Obaid Mohammad Abdullah and Mr
Muhammad Omer Gulzar for their support and participation during sample collection. This
work was supported by a Grant-in-Aid for Scientific Research (B) from MEXT KAKENHI
(Grant Number16H05806).

Conflicts of interest

The authors declare no conflicts of interest.

Reference

Afshan, K., Fortes-Lima, C.A., Artigas, P., Valero, M.A., Qayyum, M., Mas-Coma, S., 2014.
Impact of climate change and man-made irrigation systems on the transmission risk,
long-term trend and seasonality of human and animal fascioliasis in Pakistan.
Geospatial Health, 317-334.

Aghayan, S., Gevorgian, H., Ebi, D., Atoyan, H.A., Addy, F., Mackenstedt, U., Romig, T.,
Wassermann, M., 2019. Fasciola spp. in Armenia: Genetic diversity in a global
context. Veterinary parasitology 268, 21-31.

Ai, L., Weng, Y., Elsheikha, H., Zhao, G., Alasaad, S., Chen, J., Li, J., Li, H., Wang, C.,
Chen, M., 2011. Genetic diversity and relatedness of Fasciola spp. isolates from
different hosts and geographic regions revealed by analysis of mitochondrial DNA
sequences. Veterinary parasitology 181, 329-334.
Bradley, D.G., MacHugh, D.E., Cunningham, P., Loftus, R.T., 1996. Mitochondrial diversity and the origins of African and European cattle. Proceedings of the National Academy of Sciences 93, 5131-5135.

Chaichanasak, P., Ichikawa, M., Sobhon, P., Itagaki, T., 2012. Identification of Fasciola flukes in Thailand based on their spermatogenesis and nuclear ribosomal DNA, and their intraspecific relationships based on mitochondrial DNA. Parasitol Int 61, 545-549.

Chaudhry, U., Van Paridon, B., Shabbir, M., Shafee, M., Ashraf, K., Yaqub, T., Gillear, J., 2016. Molecular evidence shows that the liver fluke Fasciola gigantica is the predominant Fasciola species in ruminants from Pakistan. Journal of helminthology 90, 206-213.

Devendra, C., 2007. Small farm systems to feed hungry Asia. Outlook on Agriculture 36, 7-20.

Elliott, T., Muller, A., Brockwell, Y., Murphy, N., Grillo, V., Toet, H., Anderson, G., Sangster, N., Spithill, T., 2014. Evidence for high genetic diversity of NAD1 and COX1 mitochondrial haplotypes among triclabendazole resistant and susceptible populations and field isolates of Fasciola hepatica (liver fluke) in Australia. Veterinary parasitology 200, 90-96.

Haroun, E., Hillyer, G.V., 1986. Resistance to fascioliasis--a review. Veterinary parasitology 20, 63-93.

Hayashi, K., Ichikawa-Seki, M., Allamanda, P., Wibowo, P.E., Mohanta, U.K., Sodirun, Guswanto, A., Nishikawa, Y., 2016. Molecular characterization and phylogenetic analysis of Fasciola gigantica from western Java, Indonesia. Parasitol Int 65, 424-427.

Hayashi, K., Ichikawa-Seki, M., Mohanta, U.K., Singh, T.S., Shoriki, T., Sugiymama, H., Itagaki, T., 2015. Molecular phylogenetic analysis of Fasciola flukes from eastern India. Parasitology international 64, 334-338.

Ichikawa-Seki, M., Tokashiki, M., Opara, M.N., Iroh, G., Hayashi, K., Kumar, U.M., Itagaki, T., 2017. Molecular characterization and phylogenetic analysis of Fasciola gigantica from Nigeria. Parasitology international 66, 893-897.

Ichikawa, M., Bawn, S., Maw, N.N., Htun, L.L., Thein, M., Gyi, A., Sunn, K., Katakura, K., Itagaki, T., 2011. Characterization of Fasciola spp. in Myanmar on the basis of spermatogenesis status and nuclear and mitochondrial DNA markers. Parasitology international 60, 474-479.

Ichikawa, M., Itagaki, T., 2010a. Discrimination of the ITS1 types of Fasciola spp. based on a PCR-RFLP method. Parasitology research 106, 757-761.

Ichikawa, M., Itagaki, T., 2010b. Discrimination of the ITS1 types of Fasciola spp. based on a PCR–RFLP method. Parasitology research 106, 757-761.

Ichikawa, M., Itagaki, T., 2012. Molecular analysis of aspermic Fasciola flukes from Korea on the basis of the nuclear ITS1 region and mitochondrial DNA markers and comparison with Japanese aspermic Fasciola flukes. Journal of Veterinary Medical Science, 1203050785-1203050785.

Itagaki, T., Kikawa, M., Sakaguchi, K., Shimo, J., Terasaki, K., Shibahara, T., Fukuda, K., 2005. Genetic characterization of parthenogenic Fasciola sp. in Japan on the basis of the sequences of ribosomal and mitochondrial DNA. Parasitology 131, 679-685.

Itagaki, T., Sakaguchi, K., Terasaki, K., Sasaki, O., Yoshihara, S., Van Dung, T., 2009. Occurrence of spermic diploid and aspermic triploid forms of Fasciola in Vietnam and their molecular characterization based on nuclear and mitochondrial DNA. Parasitol Int 58, 81-85.
Kelley, J.M., Elliott, T.P., Beddoe, T., Anderson, G., Skuce, P., Spithill, T.W., 2016. Current threat of triclabendazole resistance in Fasciola hepatica. Trends in parasitology 32, 458-469.

Kikkawa, Y., Takada, T., Sutopo, Nomura, K., Namikawa, T., Yonekawa, H., Amano, T., 2003. Phylogenies using mtDNA and SRY provide evidence for male-mediated introgression in Asian domestic cattle. Animal genetics 34, 96-101.

Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452.

Loftus, R.T., MacHugh, D.E., Bradley, D.G., Sharp, P.M., Cunningham, P., 1994. Evidence for two independent domestications of cattle. Proceedings of the National Academy of Sciences 91, 2757-2761.

Mas-Coma, S., 2003. Adaptation capacities of Fasciola hepatica and their relationships with human fascioliasis: from below sea level up to the very high altitude. Taxonomy, ecology and evolution of metazoan parasites 2, 81-123.

Mas-Coma, S., Bargues, M.D., Valero, M., 2005. Fascioliasis and other plant-borne trematode zoonoses. International journal for parasitology 35, 1255-1278.

Mas-Coma, S., Valero, M.A., Bargues, M.D., 2009. Chapter 2. Fasciola, lymnaeids and human fasciolasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv Parasitol 69, 41-146.

Mohanta, U.K., Ichikawa-Seki, M., Shoriki, T., Katakura, K., Itagaki, T., 2014. Characteristics and molecular phylogeny of Fasciola flukes from Bangladesh, determined based on spermatogenesis and nuclear and mitochondrial DNA analyses. Parasitology research 113, 2493-2501.

Peng, M., Ichinomiya, M., Ohtori, M., Ichikawa, M., Shibahara, T., Itagaki, T., 2009. Molecular characterization of Fasciola hepatica, Fasciola gigantica, and aspermic Fasciola sp. in China based on nuclear and mitochondrial DNA. Parasitology research 105, 809-815.

Piedrafita, D., Raadsma, H., Prowse, R., Spithill, T.W., 2004. Immunology of the host–parasite relationship in fasciolosis (Fasciola hepatica and Fasciola gigantica). Canadian Journal of Zoology 82, 233-250.

Rehman, Z.U., Zahid, O., Rashid, I., Ali, Q., Akbar, M.H., Oneeb, M., Shehzad, W., Ashraf, K., Sargison, N.D., Chaudhry, U., 2020. Genetic diversity and multiplicity of infection in Fasciola gigantica isolates of Pakistani livestock. Parasitol Int 76, 102071.

Roberts, J., Estuningsih, E., Widjayanti, S., Wiedosari, E., Partoutomo, S., Spithill, T., 1997. Resistance of Indonesian thin tail sheep against Fasciola gigantica and F. hepatica. Veterinary Parasitology 68, 69-78.

Rojo-Vázquez, F.A., Meana, A., Valcárcel, F., Martínez-Valladares, M., 2012. Update on trematode infections in sheep. Veterinary parasitology 189, 15-38.

Rokni, M.B., Mirhendi, H., Mizani, A., Mohebali, M., Sharbatkhori, M., Kia, E.B., Abdoli, H., Izadi, S., 2010. Identification and differentiation of Fasciola hepatica and Fasciola gigantica using a simple PCR-restriction enzyme method. Experimental parasitology 124, 209-213.

Sabourin, E., Alda, P., Vázquez, A., Hurtrez-Boussès, S., Vittecoq, M., 2018. Impact of human activities on fasciolosis transmission. Trends in parasitology.

Semyenova, S.K., Morozova, E.V., Chrisanfova, G.G., Gorokhov, V.V., Arkhipov, I.A., Moskvin, A.S., Movsesyan, S.O., Ryskov, A.P., 2006. Genetic differentiation in eastern European and western Asian populations of the liver fluke, Fasciola hepatica, as revealed by mitochondrial nad1 and cox1 genes. Journal of Parasitology 92, 525-531.
Shoriki, T., Ichikawa-Seki, M., Devkota, B., Rana, H.B., Devkota, S.P., Humagain, S.K., Itagaki, T., 2014. Molecular phylogenetic identification of Fasciola flukes in Nepal. Parasitol Int 63, 758-762.

Shoriki, T., Ichikawa-Seki, M., Suganuma, K., Naito, I., Hayashi, K., Nakao, M., Aita, J., Mohanta, U.K., Inoue, N., Murakami, K., Itagaki, T., 2016. Novel methods for the molecular discrimination of Fasciola spp. on the basis of nuclear protein-coding genes. Parasitology international 65, 180-183.

Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.

Tanaka, K., Solis, C.D., Masangkay, J.S., Maeda, K., Kawamoto, Y., Namikawa, T., 1996. Phylogenetic relationship among all living species of the genus Bubalus based on DNA sequences of the cytochrome b gene. Biochemical genetics 34, 443-452.

Thang, T.N., Hakim, H., Rahimi, R.R., Ichikawa-Seki, M., 2019. Molecular analysis reveals expansion of Fasciola hepatica distribution from Afghanistan to China. Parasitology international 72, 101930.

Toledo, R., Fried, B., 2014. Digenetic trematodes, Vol 480. Springer.

Usip, L., Ibanga, E., Edoho, H., Amadi, E., Utah, E., 2014. Prevalence of Fascioliasis and the economic loss of condemned liver due to Fasciola infection in Cattle slaughtered at three abattoirs in Eket Urban, Akwa Ibom State of Nigeria. Global Advanced Research Journal of Food Science and Technology 3, 54-75.

Vilas, R., Vázquez-Prieto, S., Paniagua, E., 2012. Contrasting patterns of population genetic structure of Fasciola hepatica from cattle and sheep: implications for the evolution of anthelmintic resistance. Infection, Genetics and Evolution 12, 45-52.

Figure Legend

Fig. 1: Median-joining network based on the mitochondrial (A) nad1 and (B) cox1 haplotypes of *F. gigantica* from Pakistani origin. Each circle indicates a single haplotype. Black colour indicates the haplotypes from Buffalo and white colour haplotypes from the goat. Small circles are the median vectors needed to connect the haplotypes.

Fig. 2: Median-joining network based on the mitochondrial nad1 haplotypes of *F. gigantica* in Pakistan and other countries. The *Fasciola* flukes from Pakistan are shown in black colour. Each circle indicates a single haplotype. Small circles are the median vectors which are needed to connect the haplotypes. The haplotype codes are shown within or adjacent to the circles. Numbers on each circle and node indicate the number of flukes and the number of substitution sites, respectively.
Table 1: Profiles of Fasciola flukes used in this study.

Host ID	Host species	Number of flukes	Nuclear DNA	Mitochondrial DNA	species				
			pepck	pold	nad1	Accession No.	cox1	Accession No.	
B8	Buffalo	4	Fg	Fg		LC517886		LC520088	F. gigantica
			Fg	Fg		LC517895		LC517913	F. gigantica
			Fg	Fg		LC517896		LC517914	F. gigantica
			Fg	Fg		LC517886		LC517903	F. gigantica
B10	Buffalo	4	Fg	Fg		LC517899		LC517906	F. gigantica
			Fg	Fg		LC517894		LC517905	F. gigantica
			Fg	Fg		LC517885		LC517902	F. gigantica
			Fg	Fg		LC517895		LC517907	F. gigantica
B11	Buffalo	4	Fg	Fg		LC517892		LC517905	F. gigantica
			Fg	Fg		LC517898		LC517913	F. gigantica
			Fg	Fg		LC517885		LC517902	F. gigantica
			Fg	Fg		LC517888		LC517902	F. gigantica
B15	Buffalo	4	Fg	Fg		LC517886		LC517913	F. gigantica
			Fg	Fg		LC517894		LC517903	F. gigantica
			Fg	Fg		LC517886		LC517912	F. gigantica
			Fg	Fg		LC517886		LC517911	F. gigantica
B16	Buffalo	4	Fg	Fg		LC517885		LC517902	F. gigantica
			Fg	Fg		LC517895		LC517902	F. gigantica
			Fg	Fg		LC517885		LC517902	F. gigantica
			Fg	Fg		LC517895		LC517902	F. gigantica
B24	Buffalo	2	Fg	Fg		LC517868		LC517911	F. gigantica
			Fg	Fg		LC517895		LC517911	F. gigantica
			Fg	Fg		LC517897		LC517903	F. gigantica
			Fg	Fg		LC517894		LC517912	F. gigantica
B29	Buffalo	3	Fg	Fg		LC517886		LC517915	F. gigantica
			Fg	Fg		LC517895		LC517903	F. gigantica
			Fg	Fg		LC517895		LC517912	F. gigantica
Subtotal		7	Fg	Fg		LC517886		LC517902	F. gigantica
G1	Goat	4	Fg	Fg		LC517887		LC517902	F. gigantica
			Fg	Fg		LC517895		LC517902	F. gigantica
			Fg	Fg		LC517885		LC517902	F. gigantica
			Fg	Fg		LC517886		LC517902	F. gigantica
G2	Goat	4	Fg	Fg		LC517868		LC517902	F. gigantica
			Fg	Fg		LC517895		LC517902	F. gigantica
			Fg	Fg		LC517885		LC517902	F. gigantica
			Fg	Fg		LC517868		LC517902	F. gigantica
G3	Goat	4	Fg	Fg		LC517885		LC517902	F. gigantica
			Fg	Fg		LC517895		LC517902	F. gigantica
			Fg	Fg		LC517890		LC517902	F. gigantica
			Fg	Fg		LC517885		LC517902	F. gigantica
G4	Goat	4	Fg	Fg		LC517885		LC517902	F. gigantica
			Fg	Fg		LC517895		LC517902	F. gigantica
			Fg	Fg		LC517890		LC517902	F. gigantica
			Fg	Fg		LC517885		LC517902	F. gigantica
G5	Goat	4	Fg	Fg		LC517885		LC517904	F. gigantica
			Fg	Fg		LC517885		LC517908	F. gigantica
	Goat								
---	------	---	---	---	---	---	---	---	---
		Fg	Fg	PAK-nad1Fg1	LC517885	PAK-cox1Fg3	LC517904	F. gigantica	
		Fg	Fg	PAK-nad1Fg1	LC517885	PAK-cox1Fg3	LC517904	F. gigantica	
G6	Goat	4	Fg	Fg	PAK-nad1Fg7	LC517891	PAK-cox1Fg1	LC517902	F. gigantica
		Fg	Fg	PAK-nad1Fg3	LC515887	PAK-cox1Fg15	LC517916	F. gigantica	
		Fg	Fg	PAK-nad1Fg1	LC517885	PAK-cox1Fg8	LC517909	F. gigantica	
		Fg	Fg	PAK-nad1Fg1	LC517885	PAK-cox1Fg1	LC517902	F. gigantica	
G7	Goat	4	Fg	Fg	PAK-nad1Fg16	LC517900	PAK-cox1Fg1	LC517902	F. gigantica
		Fg	Fg	PAK-nad1Fg16	LC517900	PAK-cox1Fg15	LC517916	F. gigantica	
		Fg	Fg	PAK-nad1Fg1	LC517885	PAK-cox1Fg1	LC517902	F. gigantica	
		Fg	Fg	PAK-nad1Fg17	LC517901	PAK-cox1Fg16	LC517917	F. gigantica	

Subtotal	7	28
Total	14	53
Table 2: Diversity indices of *F. gigantica* populations based on the nucleotide sequences of mitochondrial markers.

Gene	Host	\(N\)	\(S\)	\(h\)	\(\pi\)	\(SD\)
nad1	Buffalo	25	14	11	0.00533	0.00049
	Goat	28	17	9	0.00668	0.00135
cox1	Buffalo	25	12	11	0.00612	0.00047
	Goat	28	10	8	0.00493	0.00125

\(N\): number of flukes accessed; \(S\): number of variable sites; \(h\): number of haplotypes; \(\pi\): nucleotide diversity. All values were statistically significant (\(P < 0.05\)).
Table 3 Diversity indices of *F. gigantica* within haplogroup A based on the nucleotide sequences of nad1 gene.

Countries	N	S	h	π	SD
Pakistan	53	26	17	0.00650	0.00071
India	132	41	43	0.00252*	0.00023
Bangladesh	21	14	10	0.00312	0.00075
Nepal	20	16	10	0.00366	0.00088
Myanmar	13	7	6	0.00225*	0.00072

N: number of flukes accessed; *S*: number of variable sites; *h*: number of haplotypes; *π*: nucleotide diversity; *SD*: standard deviation; *: Statistically non-significant between the identical letter (P > 0.05), others were significant (P < 0.05).

F. gigantica from Thailand (n = 1) and Indonesia (n = 1) in haplogroup A was excluded from the calculation.