Comparative clinical data for gingivitis treatment using gels from *Ocimum sanctum* (Tulsi) and chlorhexidine (CHX)

BA Deepika, Jaiganesh Ramamurthy*, Nadathur Duraisamy Jayakumar & S Rajesh Kumar

Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India; *Corresponding author

Author E-mail contacts:
BA Deepika - deepikaba93@gmail.com; Jaiganesh Ramamurthy - jaiganeshr@saveetha.com; NadathurDuraisamy Jayakumar - profndj@yahoo.com; S Rajesh Kumar - ssrajeshkumar@hotmail.com

Received July 1, 2021; Revised October 21, 2021; Accepted October 21, 2021, Published December 31, 2021

DOI: 10.6026/973206300171091

Declaration on official E-mail:
The corresponding author declares that official e-mail from their institution is not available for all authors

Declaration on Publication Ethics:
The author’s state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

This is part of a special issue in Dental Biology

Abstract:
Ocimum sanctum (Tulsi) has various properties like anti bacterial, anti inflammatory, anti oxidant for curing diseases. It is a plant with known medicinal value in Indian system of medicine. Therefore, it is of interest to evaluate the effectiveness of *Ocimum sanctum* with Chlorhexidine (CHX) which is a standard material for the treatment of gingivitis. We used 30 gingivitis subjects divided into 2 groups. Group I used Tulsi gel (n= 15) and Group II used CHX gel (n = 15) for treatment. Tulsi and CHX gel use was advised for 1 month. The Clinical parameters assessed were gingival Index (GI), plaque Index (PI), probing depth (PD) and clinical attachment loss (CAL) assessed at a time interval of 30 days. Statistical analysis was completed using the SPSS software 23.0. Data showed that GI and PD for Tulsi and CHX in pre and post groups are not significant with p > 0.05. Moreover, PI is not significant with p>0.05 among pre Tulsi, pre CHX and post CHX. However, data is significant with p<0.05 for Tulsi group. CAL is significant with p<0.05 among pre/post Tulsi groups. However, this is not significant with p>0.05 among pre/post CHX groups. Data shows that 2% of Tulsi is effective in reducing gingival bleeding and inflammation. Thus, clinical data shows that Tulsi gel is promising for the treatment of gingivitis.

Keywords: *Ocimum sanctum*, dental plaque, gingivitis, chlorhexidine, local delivery, Tulsi
Background:
Plaque is the main factor for gingivitis (gingival inflammation). Oral hygiene failure leads to plaque formation [1]. The mechanical supra gingival plaque control measures includes toothbrush, floss, wood sticks, and interdental brushes. Oral hygiene maintenance is in plaque control measures [2]. There is increasing inclination towards biofilm properties and microbial colonies [3]. Different stages of dental biofilm formation are (a) absorption of bacterial molecules to host tooth surface [4-6]; (b) transport of bacteria to tooth surface [7-9]; (c) adherence of late colonies to early colonies [10-12]; (d) multiplication of the attached organisms [13-18] and (e) active detachment [19,20]. Gingivitis is the inflammation of gingiva without apical migration of junction epithelium [21]. Prolonged use of Chlorhexidine leads to brown colour stains on the teeth and change in pattern of taste. It also leads to formation of calculus and swelling of the parotid gland [22]. Plant extracts are used as the main component in mouthwash to reduce gingival inflammation and gel forms are mostly used to reduce periodontitis. These products have low side effects because of their herbal nature [23]. Some Indian plant species that contain antimicrobial activities are as follows they are Aloe vera, Piper betel, Piper nigrum, Szygium aromaticum, Coriandrum sativum, Eucalyptus globules, Allium sativum, Curcuma longa, Camellia sinensis, Allium cepa, Carica papaya, Solanum tuberosum and Ocimum sanctum [24]. Ocimum sanctum (Tulsi) belongs to the basil family Lamiaceae. Tulsi is an aromatic shrub [25]. Tulsi has both medicinal properties and spiritual properties [26]. The 2 types of Tulsi are Sri Tulsi and Krishna Tulsi. Sri Tulsi has green coloured leaves and Krishna Tulsi has purple coloured leaves [27]. Tulsi is available in various forms like dried leaves powder; fresh leaves and herbal tea [28]. Tulsi was used as a mouthwash to control plaque and gingival conditions [29]. A 4% of prepared Tulsi plant extract showed highest antibacterial activity against Streptococcus mutans [30]. Thus, Tulsi is considered as “The master of the herbs” for its magical healing properties and anti-inflammatory properties [31]. Therefore, it is of interest to document the comparative clinical data for gingivitis treatment using gels from Ocimum sanctum (Tulsi) and chlorhexidine.

Materials and Method:
Preparation of 2% Ocimum sanctum gel:
Data for the preparation is shown in Table 1.

Preparation of supercritical fluid:
250 g of Tulsi powder is taken and soaked in 1000 mL of Ethyl alcohol for 48 hours. Filter with Whartman’s filter. Filter liquid evaporated - Supercritical Fluid and stored in the fridge is shown in Figure 1 and Figure 2.

Preparation of Ocimum sanctum gel:
Carbopol 940 soaks it in distilled water containing 0.2% sodium benzoate throughout the night. HPMC solution was added. Propylene glycol was added to it. 2ml of SCF (Homogenized) was added. Tri ethanol amine was added in drops. Check for pH 6-6.5. The gel was stored at ambient temperature. The prepared gel is firm for the time interval of six months. Alteration in pH changes were noted and adjusted according to the protocol (Figure 3).

Assessment of physical properties of 2% Ocimum sanctum gel:
The formulations were assessed for different evaluation tests. They evaluate the physical appearance, homogenous nature, spreadability, grittiness, ability to extrude, and pH evaluation. Estimation: The Physical examinations are Hue (color) and Aspect (look) was assessed. Lubricity: Lubricity is estimated by a wooden block apparatus. The apparatus has a pulley at one of its ends. Basic methodology is to slide and draw the properties of Ocimum sanctum (Tulsi) gel. Two grams of the prepared gel was taken and kept on the bottom slide. The Ocimum sanctum (Tulsi) gel was fitted into the bottom slide; another slide with the same measurements was taken and a hook was attached to it. One kilogram weighing scale was kept on the top of 2 slides for a period of 5 minutes. Hence air bubbles were eliminated to produce a constant form of gel film among slides. Excess gel was removed from the edges. The top plate was put through a jerk of 80 grams with the help of a string which is joined with a hook. The time period taken to envelope a distance of 7.5 centimeters by the top plate was noted in seconds. A shorter interval means better spreadability nature.

Spreadability was evaluated using the approved formula: S = M × L/T Where, S = Spreadability, M = Weight applied the pan (tied to the upper portion of slide), L = to what length moved by the glass slide and T = Time in seconds taken to separate the slides from each other.

Homogeneity:
Once the formulation is set in a container Homogeneity was examined by visible monitoring. It was evaluated for visible and tangible aggregates. It is categorized as good, fair, poor. For good it triple plus scale, fair means double plus, poor means single plus.

Extrudability:
The formulation was stored in a clean aluminium collapsible one ounce tube and it has a nasal tip of 5 mm opening slot. It was assessed by calculating the quantity of the gel expelled through nib when applied with a load of one kilogram was kept. The expelled gel was collected in a container and weighed for the measurement. The expelled gel was measured in percentages, and categories were assigned.

Determination of viscosity:
Viscosity of the formulation was evaluated at 25°C using Brookfield digital viscometer. The dimensions were taken in the established speed settings. The settings range from 10 to 100 rotations per minute. A time interval of 30 seconds among 2 consecutive speeds in a declining manner is used.

pH Measurement:
2.5 grams of the Ocimum sanctum (Tulsi) gel was taken and measured exactly and then poured into 25 ml of water. It was stored for 2 hours. The pH was measured using a standard pH meter.
Study design:
The study design includes a parallelized controlled clinical trial for the subjects from outpatient department of periodontics, Saveetha dental college and hospitals for the eligibility criteria for the study population are as follows:

Inclusion criteria:
1. Patients with generalized chronic gingivitis.
2. Patients in the age group of 20-65 years.
3. Systemically healthy subjects with Gingival index score, Plaque index score and sulcular bleeding index score > 1 at the time of examination.

Exclusion criteria:
1. Patients with periodontitis.
2. Smokers.
3. Antibiotic therapy within last 6 months of the study.
4. Pregnant and lactating women.
5. Patients undergone or having undergone periodontal therapy within the last 6 months of study.

With the above inclusion criteria and exclusion criteria a total of 30 subjects were included in the study. The subjects were asked to massage the gingiva with Tulasi gel and CHX gel 2 times a day for 1 month.

Study group:
Group I: Tulasi gel
Group II: CHX gel

The assessment criteria included Gingival Index (GI) score, Plaque Index (PI) score, Probing Depth (PD) and Attachment Loss (AL) score that were measured as pre and post *Ocimum sanctum* (Tulasi) gel and Chlorhexidine (CHX) gel.

Statistical analysis:
Differences between the study groups were statistically analyzed by SPSS Software 23.0 version; Paired t-test was used to analyse the Differences between the study groups were statistically analyzed by Statistical analysis:

Table 1: The ingredients for 2% *Ocimum sanctum* gel

Ingredients	Quality
Carbolapol	2 g
Polymer (HPMC)	2 g
Tulasi SCF Extract	2 ml
Sodium benzoate	0.2 ml
Propylene glycol	0.5 ml
Triethanolamine	q.s
Distilled Water	q.s to make 100 ml

Table 2: Gingival Index

	Mean ± Standard deviation	p value
Ocimum sanctum (Tulsi) pre	1.63± 0.147	0.224
Ocimum sanctum (Tulsi) post	1.013± 0.115	0.13
Chlorhexidine (CHX) pre	1.61± 0.445	0.356
Chlorhexidine (CHX) post	0.188± 0.191	0.13

Table 3: Plaque index

	Mean ± Standard deviation	p value
Ocimum sanctum (Tulsi) pre	1.53± 0.488	0.13
Ocimum sanctum (Tulsi) post	0.387± 0.134	0.02
Chlorhexidine (CHX) pre	1.62± 0.351	0.877
Chlorhexidine (CHX) post	0.63± 0.213	0.776

Table 4: Probing depth

	Mean ± Standard deviation	p value
Ocimum sanctum (Tulsi) pre	1.98± 0.411	0.291
Ocimum sanctum (Tulsi) post	0.225± 0.197	0.286
Chlorhexidine (CHX) pre	2.43± 0.296	0.872
Chlorhexidine (CHX) post	0.057± 0.180	0.688

Table 5: Attachment Loss

	Mean ± Standard deviation	p value
Ocimum sanctum (Tulsi) pre	1.94± 0.427	0.017
Ocimum sanctum (Tulsi) post	0.525± 0.103	0.007
Chlorhexidine (CHX) pre	5.82± 0.916	0.805
Chlorhexidine (CHX) post	0.050± 0.385	0.794

Table 6: Subjective and objective criteria

	Discomfort	X	X
Burning Sensation	30	X	30
Dryness/ Soreness	30	X	30
Ulcer formation	30	X	30
Staining of teeth	30	X	30
Acceptability	30	30	X

Results and Discussion:
Plant extracts are possible sources of novel antimicrobial components especially against bacterial microorganisms. An important feature of plant extracts and their constituents is hydrophobicity, which makes them divide the lipids portion of the cell membrane of bacteria and mitochondria, interrupting the structures of cells and making them more absorbent. Plants have different forms of bioactive compounds. It has different forms of phytochemical compounds [32]. It is of interest to assess the efficacy of *Ocimum Sanctum* (Tulsi) Gel compared to Chlorhexidine (CHX) Gel for the management of gingival disease patients. *Ocimum Sanctum* (Tulsi) gel is effective, demonstrating its potential use as efficient, and in addition used as standard control for the management of periodontitis. A Triple-blinded Randomized control trial to assess the effectiveness of *Ocimum Sanctum* (Tulsi) and Chlorhexidine (CHX) mouthwash used 4% w/v *Ocimum Sanctum* (Tulsi) and 0.12% Chlorhexidine (CHX) mouthwash. They show that *Ocimum Sanctum* (Tulsi) mouthwash was efficient in decreasing gingival condition and also decreasing the plaque levels as Chlorhexidine (CHX) mouthwash [33]. Ipsita et al. showed that the antimicrobial activity against *A. actinomycetemcomitans* and *P. gingivalis* at 8% concentration of *Ocimum Sanctum* (Tulsi) plant extract. Thus, *Ocimum Sanctum* (Tulsi) is an adjunct to mechanical therapy in the interruption and management of periodontal conditions [33].
Figure 1: The image shows (a) Tulsi leaves; (b) dried Tulsi leaves; (c) powdered tulsi and (d) Tulsi gel.

Figure 2: The image depicts the preparation of Supercritical fluid – 250 g of tulsi powder taken and soaked in 1000 ml of ethyl alcohol for 48 hours.
Ahirwar et al. showed the effectiveness of *Ocimum Sanctum* (Tulsi) as a root canal medicament for primary molar teeth and evaluated it with respect to triple antibiotic paste. *Ocimum sanctum* (Tulsi) is known to have better results due to their antimicrobial properties and anti-inflammatory properties. Hence, it is used as a root canal medicament in primary teeth [34]. Mallikarjun et al. evaluated the antimicrobial efficacy of *Ocimum Sanctum* (Tulsi) with doxycycline as standard against periodontal microorganisms like *Aggregatibacter actinomycetemcomitans*, *Prevotella intermedia*, and *Porphyromonas gingivalis*. *Ocimum Sanctum* (Tulsi) at 5% and 10% concentrations...
showed better inhibition zones against *Aggregatibacter actinomycetemcomitans*. They showed smaller inhibition zones against *Prevotella intermedia*, and *Porphyromonas gingivalis*. Hence, *Ocimum Sanctum* (Tulsi) is utilized as an efficient adjunct and in addition to the regular periodontal treatment [35]. Kamryab et al. discussed the anti-inflammatory properties of *Ocimum sanctum* (Tulsi). It also discussed hepato protective properties and Gastric properties of *Ocimum Sanctum* (Tulsi). *Ocimum Sanctum* (Tulsi) is a medicinal plant with different forms of applications in the olden period as medicines. Nowadays, it is proved to be efficient against Diabetes mellitus, cancer, hepatic injury, bronchitis, gastric ulcer and also in hypertension [36]. Kalita et al. conducted a study to assess the antimicrobial properties of Tulsi, Pochotia and Neem against oral pathogens. The Plant extract was obtained from the hot continuous extraction method. The apparatus used is "Soxhlet". The oral microbes used were *E. faecalis, P. fluorescens, A. boumani, S. paucimobilis, K. kristinae, K. Oxytoca & B. subtilis*. Oral microbes were collected and poured in Mueller Hinton plates. The Plant extract were then poured into wells. Ciproflaxcin and Dimethyl sulfoxide controls. He concluded that all plant extracts used showed antibacterial effect against oral microbes [37].

Singh et al. discussed the uses of *Ocimum sanctum* seeds. Oil was extracted from seeds. Oil has anti histaminic activity and anti inflammatory activity because of dual suppression of arachidonate metabolism. The oil has antipyretic activity due to the inhibition of prostaglandin. It also has antifulcer activity. The oil has proven to be efficient against formaldehyde and in addition to induced arthritis. The oil also has immuno modulatory, hypotensive and anticoagulant properties [38]. Ramamurthy et al. showed *Ocimum Sanctum* (Tulsi) gel have possible anti-oxidant and anti-inflammatory effects. It is less toxic than brine shrimp nauplii. *Ocimum Sanctum* (Tulsi) proved to be the most favourable agent for the therapy of periodontal conditions [39].

Ocimum Sanctum (Tulsi) is equally effective against pathogenic gram +ve and gram -ve bacteria. Use of Tulsi in oral and systemic diseases, anti diabetic, wound recuperating movement, radio-defensive impact, cancer prevention agent, antimicrobial, gastroprotective, inflammatory, eye issue, renal issue, mental issue, skin issue, Tulsi use in oral health tooth ache, periodontal issue, antiarogenic impact, candidiasis, oral submucous fibrosis and ulcer. Therefore, it is of interest to evaluate the effectiveness of *Ocimum sanctum* with Chlorhexidine (CHX) which is a standard material for the treatment of gingivitis. The Clinical parameters assessed were gingival Index (GI), plaque Index (PI), probing depth (PD) and clinical attachment loss (CAL) assessed at a time interval of 30 days. Statistical analysis was completed using the SPSS software 23.0. Data showed that GI and PD for Tulsi and CHX in pre and post groups are not significant with p > 0.05. Moreover, PI is not significant with p>0.05 among pre Tulsi, pre CHX and post CHX. However, data is significant with p<0.05 for Tulsi group. CAL is significant with p<0.05 among pre/post Tulsi groups. However, this is not significant with p>0.05 among pre/post CHX groups. Data shows that 2% of Tulsi is effective in reducing gingival bleeding and inflammation. Thus, clinical data shows that Tulsi gel is promising for the treatment of gingivitis.

Conclusion:

We report that 2% of Tulsi is effective in reducing gingival bleeding and inflammation. Thus, clinical data shows that Tulsi gel is promising for the treatment of gingivitis.

References:

[1] Loe H et al. *The Journal of Periodontology*. 1965 36:177-87. [PMID: 14296927]

[2] Farwani SR et al. *Journal of Indian Society of Periodontology*. 2013 17:22. [PMID: 23633777]

[3] Nadell CD et al. *Nat Reo Microbiol*. 2016 14:589-600. [PMID: 27452230].

[4] Al-Hashimi I et al. *Archives of Oral Biology*. 1989 34:289. [PMID: 2480770]

[5] Li J et al. *Oral Microbiology and Immunology*. 2003 18:183. [PMID: 12753471]

[6] Vacca LK et al. *Caries Res*. 2001 35:67. [PMID: 11125200]

[7] Busscher HJ et al. *Advances in Dental Research*. 1997 11:24. [PMID: 9524439]

[8] Jenkinson HF et al. *Critical Reviews in Oral Biology & Medicine*. 1997 8:175. [PMID: 9167092]

[9] Davey ME et al. *Microbiol Mol Biol Rev*. 2000 64:847. [PMID: 11014821]

[10] Guggenheim M et al. *Appl Environ Microbiol*. 2001 67:1343. [PMID: 11229930]

[11] Socransky SS et al. *J Clin Periodontal*. 1998 25:134. [PMID: 9495612]

[12] Bradshaw DJ et al. *Infection and Immunity*. 1998 66:4729. [PMID: 9746571]

[13] Allison DG et al. *The biofilm matrix*. Biofouling. 2003 19:139. [PMID: 14618698]

[14] Scheie AA et al. *Adv Dent Res*. 1994 8:246-53. [PMID: 7865083]

[15] Marsh PD et al. *Dental caries*. 2003. [PMID: 12624191]

[16] Beighton D et al. *Archives of oral biology*. 1986 31:829. [PMID: 3479958]

[17] Bradshaw DJ et al. *Microbiology*. 1994 140:3407. [PMID: 7881585]

[18] Bowen WH et al. *Trends Microbiol*. 2018 26:229. [PMID: 29097091]

[19] Cavedon K et al. *Oral Microbiology and Immunology*. 1993 8:283. [PMID: 7903444]

[20] Lee SF et al. *Infection and Immunity*. 1996 64:1035. [PMID: 8641755]

[21] Armitage GC et al. *Periodontology 2000*. 2004 34:22. [PMID: 14717953]

[22] Eley BM et al. *British dental journal*. 1999 186:286. [PMID: 10230103]

[23] De Oliveira JS et al. *Int J Dent*. 2016 2016:3719879. [PMID: 27738432].

[24] Cowan MM et al. *Clinical microbiology reviews*. 1999 12:564. [PMID: 10515903]
[25] Bast F et al. The Scientific World Journal. 2014 2014. [PMID: 24523650]
[26] Cohen MM et al. Journal of Ayurveda and Integrative Medicine. 2014 5:251.[PMID: 25624701]
[27] Pattanayak P et al. Pharmacogn Rev. 2010 4:95. [PMID: 22228948]
[28] Jamshidi N et al. Evid Based Complement Alternat Med. 2017 2017:9217567. [PMID: 28400848].
[29] Gupta D et al. Journal of Ayurveda and Integrative Medicine. 2014 5:109. [PMID: 24948862]
[30] Agarwal P et al. Indian J Dent Res. 2010 21:357. [PMID: 20930344].
[31] Ramamurthy J et al. Drug Invention Today. 2019 Apr 1 11(4).

[32] OzaslanM et al. Pak J Biol Sci. 2018 21:1. [PMID: 30187713].
[33] Jayanti I et al. The Journal of Contemporary Dental Practice. 2018 19:415. [PMID: 29728546]
[34] Ahirwar P et al. J Indian SocPedodPrev Dent. 2018 36:191. [PMID: 29970638].
[35] MallikarjunS et al. Journal of Indian Society of Periodontology. 2016 20:145. [PMID: 27143825]
[36] Kamyab AA et al. Inflamm Allergy Drug Targets 2013 12:378. [PMID: 24266685].
[37] KalitaC et al. J Consero Dent. 2019 22:602. [PMID: 33088074].
[38] Singh S et al. Indian J Exp Biol. 2007 45:403. [PMID: 17569280].
[39] Ramamurthy et al. Bioinformation 2020. 16:1026.

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.
