ER-shaping atlastin proteins act as central hubs to promote flavivirus replication and virion assembly

Christopher J. Neufeldt1, Mirko Cortese1, Pietro Scaturro1,2, Berati Cerikan3, Jeremy G. Wideman3,4, Keisuke Tabata1, Thaís Moraes1, Olga Oleksiuk1, Andreas Pichlmair2,5 and Ralf Bartenschlager1,6,7*

Flaviviruses, including dengue virus and Zika virus, extensively remodel the cellular endomembrane network to generate replication organelles that promote viral genome replication and virus production. However, it remains unclear how these membranes and associated cellular proteins act during the virus cycle. Here, we show that atlastins (ATLs), a subset of ER resident proteins involved in neurodegenerative diseases, have dichotomous effects on flaviviruses—with ATL2 depletion leading to replication organelle defects, and ATL3 depletion to changes in virus production pathways. We characterized non-conserved functional domains in ATL paralogues and show that the ATL interactome is profoundly reprogrammed following dengue virus infection. Screen analysis confirmed non-redundant ATL functions and identified a specific role for ATL3, and its interactor ARF4, in vesicle trafficking and virion maturation. Our data identify ATLs as central hubs targeted by flaviviruses to establish their replication organelle and to achieve efficient virion maturation and secretion.

Viruses of the Flavivirus genus, including dengue virus (DV), Zika virus (ZV) and West Nile virus (WNV), comprise the most prevalent arthropod-borne pathogens responsible for high morbidity and mortality. The high prevalence and current lack of effective treatments make these flaviviruses a significant global health concern.

Flavivirus RNA genomes have positive-strand polarity, and after entry into cells, are translated at the rough endoplasmic reticulum (ER) to produce a viral polyprotein that is cleaved into individual proteins. Some of these proteins induce rearrangement of ER membranes to create an environment conducive to viral replication. For DV and ZV, these rearrangements include 80–100 nm diameter invaginated vesicles forming extended arrays known as vesicle packets (VPs). These vesicles are the presumed site of viral replication and hence regarded as the viral replication organelle (RO). In addition, virus particles bud into the ER lumen. Although the morphology of membrane rearrangements has been well characterized, the specific host and viral factors and the mechanisms involved in membrane reorganization are poorly understood.

The ER is the largest cellular organelle, and is composed of several subdomains ranging from perinuclear membrane sheets to tubule-like structures that extend through the cell periphery. This ER tubule network links many cellular organelles and is involved in numerous processes. ER tubule morphology is maintained by distinct membrane shaping and fusion proteins, including the membrane-bending reticulon (RTN) and REEP protein families as well as atlastins (ATLs) and Lunapark. ATLs are ER resident membrane-bound GTPases of the dynamin family of membrane fusion proteins, and are required for production of ER tubules in vitro. The disruption of ATL function leads to the formation of long, unbranched ER tubules, implicating ATLs as ER fusogens maintaining branched ER tubule networks. Additionally, specific mutations in ATLs have been linked to neurodegenerative diseases, including hereditary spastic paraplegia. Therefore, ATLs are key cellular factors in regulating ER function, and important factors in human disease.

In mammalian cells, the three ATL paralogues are differentially expressed, with ATL1 being expressed primarily in neural cells, and ATL2 and ATL3 more ubiquitously. The functions of the three mammalian ATLs are described as mostly redundant, only differing in the efficiency of membrane fusion. ATLs have also been linked to other cellular processes such as lipid droplet dynamics, endosomal transport, mitochondrial lipid exchange, selective autophagy, and inner nuclear membrane protein insertion. Moreover, ATLs may have a membrane tethering function independent of membrane fusion activity. Although their ER tubule membrane fusion activity has been well documented, specific functions of ATLs in connection with other cellular structures remain largely elusive.

Here, we demonstrate that ATLs are host factors exploited by both DV and ZV. Our data show that the two most prevalent ATL homologues in non-neural cells have divergent roles, with ATL2 primarily required in the formation of the viral ROs and ATL3 for production of infectious virus particles. Additionally, we show that DV causes reprogramming of the ATL interactome, and establish a link between ATL3 and the vesicle trafficking pathway required for virion maturation.

Results
Divergent roles of atlastins in flavivirus RNA replication and virion formation. The intimate relationship between the ER and flavivirus replication, and the critical involvement of ATLs in forming and maintaining the ER tubule network, prompted us to investigate the role of ATLs in ER membrane reorganization induced by flavivirus infection. We first determined the effects of reducing each
of the three mammalian ATL paralogues (Extended Data Fig. 1a) on virus production (Extended Data Fig. 1b–d). In infected cells, knockdown of either ATL2 or ATL3, but not ATL1, significantly reduced DV and ZV production compared to cells expressing the non-target shRNA (Fig. 1a; see also Extended Data Fig. 1e for additional shRNAs). Additionally, ATL2 depletion also reduced WNV titres whereas ATL3 depletion had no effect. Notably, ATL3 is not present in birds (Extended Data Fig. 1a), one of the WNV host species. Depletion of other ER shaping proteins did not significantly alter flavivirus titres, arguing for ATL-specific effects (Extended Data Fig. 1d–g). ATL depletion did not alter Rift Valley fever virus (RVFV, a negative-strand RNA virus) titres indicating that the role of ATL2 and ATL3 in virus infection might be limited to a subset of viruses or specifically, to flaviviruses (Extended Data Fig. 1h).

We next evaluated the effect of ATL2 or ATL3 depletion on viral genome replication. Although we observed no effect of ATL1 depletion on flavivirus RNA production, knockdown of ATL2 significantly reduced viral RNA levels in DV-, ZV- or WNV-infected cells (Fig. 1b), but not in RVFV-infected cells (Extended Data Fig. 1h). Interestingly, although ATL3 depletion reduced DV and ZV titre, there was no significant reduction in viral RNA levels. These results indicate that ATL2 and ATL3 support flavivirus infection and suggest that, for DV, ZV and WNV, ATL2 has a role in viral RNA replication whereas ATL3 influences DV and ZV assembly or virion release. Moreover, the phenotypic differences between ATL2 or ATL3 depletion in virus infection indicate non-redundant roles for these ATLs.

Atlastin depletion alters formation of the membranous flavivirus replication organelle. To further dissect the differential roles of ATLs in flavivirus replication or assembly, we examined virus protein localization (Fig. 1c,d). In DV-infected control cells, NS3 was distributed throughout the cytoplasm with enrichment in larger perinuclear regions, which also contained double-strand (ds) RNA and small amounts of capsid protein (Fig. 1c,d top rows). In ATL2-depleted cells, the majority of the NS3 and dsRNA signal was localized to a relatively small nucleus–proximal focus, whereas capsid protein was observed to be enriched in cytosolic foci surrounding lipid droplets (LDs) (Fig. 1c,d middle rows and Extended Data Fig. 2a, respectively). In ATL3-depleted cells, both capsid and dsRNA fluorescence patterns were similar to control cells. However, viral non-structural proteins as well as envelope (Env) protein accumulated at the cell periphery in regions enriched for the ER tubule marker reticulin 3 (RTN3), but not the ER sheet marker Climp63 (Fig. 1c,d bottom rows and Extended Data Fig. 2b–d).

Next we examined the role of ATLs in DV infection using electron microscopy (EM) to visualize possible changes in virus-induced replication organelles following ATL depletion (Fig. 1e). Consistent with previous studies, in control cells infected with DV we observed the formation of VPs as well as ER–wrapped virions (electron-dense dots ~30 nm in diameter) (Fig. 1e and Extended Data Fig. 3a). In ATL2-depleted cells, similar numbers of invaginated vesicles were observed (Fig. 1f and Extended Data Fig. 3a); however, the vesicles were condensed to a small perinuclear region (Fig. 1g and Extended Data Fig. 3a), and vesicle size and shape was distorted (Fig. 1c–h). Additionally, very few intracellular virus particles were observed in ATL2-depleted cells (Fig. 1e,f and Extended Data Fig. 3a). In ATL3-depleted cells, there was no significant effect on VP numbers or morphology, but an increase in the overall number of intracellular virus particles, accumulating in paracrystalline structures within the lumen of ER cisternae (Fig. 1e,f and Extended Data Fig. 3a). Accumulation of ER tubular networks at the cell periphery was also observed by transmission EM (TEM) in ATL3-depleted cells (Extended Data Fig. 3a), which, together with our immunofluorescence data (Fig. 1c and Extended Data Fig. 2c,d), indicates that ATL3 might play a role in membrane trafficking.

To determine whether the effects of ATL2 depletion on replication organelle morphology were a result of decreased viral replication or due to specific defects in VP formation, we used an expression-based system that induces VP formation independent of viral replication (Extended Data Fig. 3b). We found that, even though virus NS protein levels were not altered (Extended Data Fig. 3c,d), significantly fewer VPs were formed in ATL2-depleted cells compared to control or ATL3-depleted cells (Extended Data Fig. 3e,f). Together, these data suggest that ATL2 has a role early in viral replication, specifically in replication organelle formation, and ATL3 is required at later stages of the DV replication cycle, probably having a role in virion trafficking and/or release from the cell.

Atlastins differentially associate with viral proteins. We next examined whether the localization of ATLs was altered during infection. In DV-infected cells expressing HA-tagged ATL2 or ATL3, we found that fluorescent signals for both ATLs were enriched in regions containing DV NS3 or Env protein (Extended Data Fig. 4a–c). Of note, ATL2 had a slightly higher colocalization with NS3 whereas ATL3 had a higher colocalization with DV Env protein (Extended Data Fig. 4d). To test for interaction between viral proteins and ATLs, we performed coimmunoprecipitation experiments using HA-tagged ATLs or an HA-tagged calnexin (CANX) control (Fig. 2a,b). Consistent with previous reports, CANX associated with viral glycoproteins Env and NS1, and, to a lesser extent, with NS3 and NS5. Both HA-ATL2 and HA-ATL3 associated with NS3, NS5 and NS2B, components of the viral replicase (Fig. 2a,b and Extended Data Fig. 4e); however, associations between viral proteins and HA-ATL2 were relatively weak. Additionally, ATL3 associated with NS1 and the structural proteins Env and capsid (Fig. 2b). Neither ATL2 nor ATL3 associated with NS4B, demonstrating specificity (Extended Data Fig. 4e). These results indicate transient or indirect interactions between ATLs and viral non-structural proteins, and stronger associations between ATL3 and the structural proteins, in particular capsid, which correlates with a viron assembly or release role for ATL3 in flavivirus infection.

ATL3 is associated with viral assembly sites. To determine if ATL3 is recruited to regions of virus assembly, HA-ATL3-expressing cells infected with DV were co-stained for HA and several viral proteins or dsRNA, followed by super-resolution imaging using STED microscopy (Extended Data Fig. 4f–h). Image quantification revealed that ATL3 colocalizes with both viral non-structural (NS3) and structural proteins (Env), but not with dsRNA, indicating that ATL3 is not associated with sites of viral RNA replication (Extended Data Fig. 4f–i).

To more precisely define the DV replication organelle subsites enriched for ATL3, we used correlative light electron microscopy (CLEM). To avoid overexpression artifacts, we endogenously tagged ATL3 to allow detection of endogenous ATL3 with either the FLAG epitope or the split GFP11 system in A549 cells (Extended Data Fig. 5a)\(^\text{27}\). In the selected cell clone, designated A549-ATL3-ET-GFP, endogenously tagged (ET) ATL3 colocalized with the ER marker PDI (Extended Data Fig. 5b,c) and showed consistent localization and interaction profiles to HA-tagged ATL3 (Extended Data Fig. 5d,e). Importantly, A549-ATL3-ET-GFP cells produced levels of infections DV comparable to naive cells (Extended Data Fig. 5f). These cells were used to correlate ATL3-GFP fluorescence signal with membrane structures using CLEM (Fig. 2c). ATL3 signal was enriched in regions with high numbers of VPs and virus particles (Fig. 2c, lower panels), but not in regions containing just ER membranes (Fig. 2c, EM subpanel 1), confirming that ATL3 is recruited to DV replication organelles where RNA replication and virion assembly occur in close proximity\(^\text{7}\). To differentiate between these two sites, we refined our analysis by using immune EM (Fig. 2d), and observed enrichment of ATL3-specific
Fig. 1 | Impact of atlastin depletion on flavivirus replication. a–d, AS49 cells were transduced with the indicated shRNA constructs for 48 h followed by infection with DV (DV-2), ZV (strain H/PF/2013) or WNV (strain NY99) for 48 h. Virus titre (a) and intracellular viral RNA (b) were quantified, and protein/dsRNA localization was determined (c,d). a, Graphs showing the mean fold change in PFU ml\(^{-1}\) relative to the non-targeting (NT) shRNA cells (set to 1), error bars show SEM; \(n=4\) biological replicates. b, Graphs showing the mean fold change in viral RNA levels relative to the non-targeting shRNA cells (set to 1), error bars show SEM. \(n=4\) biological replicates. For a,b, statistical significance was determined using one-way ANOVA with a Dunnett’s multiple comparison analysis. *\(P<0.05\), **\(P<0.01\), ***\(P<0.001\). c,d, Cells were fixed with PFA and viewed by immunofluorescence microscopy using antibodies of given specificities. Images are representative of 3 independent experiments. Scale bars, 10 µm. e, Cells were fixed and processed for viewing by TEM. Vesicle packets (VPs) and virions (Vi) are highlighted. A VP was defined as array of >2 connected vesicles residing at the same point of the ER lumen. Yellow boxes show the region of magnification displayed on the bottom. Images are representative of 3 biological replicates. Scale bars, 200 nm. f, Numbers of virions and vesicle packets were calculated for each condition (\(n=7\) cells per condition). Graphs show the mean number per cell counted, error bars represent SEM. g, Graph showing the mean diameter of vesicles contained in VPs for each treatment. \(n=200\) vesicles for each condition. h, Graph showing the mean distribution of VPs within shRNA transduced cells as measured from a central focus (\(n=6\) cells per treatment). Box plots, box shows 25th–75th percentile; whiskers show minimum to maximum; line shows the mean value. For f–h, **\(P<0.01\), ***\(P<0.001\), as determined by two-tailed t-test.
gold particles at membranes surrounding virions, but only sporadic labelling was found at VPs (Fig. 2e). These results suggest that ATL3 is specifically associated with cytoplasmic transport vesicles containing individual virions in close proximity to viral replication complexes, further indicating a specific role for ATL3 in virus assembly, distinct from the role of ATL2 in replication organelle formation.

Fig. 2 | Atlastins associate with DV proteins. a, b, A549 cells stably expressing HA-ATL2, HA-ATL3, HA-calnexin (CANX) or an empty plasmid were infected with DV for 48 h. Cells were lysed and HA-tagged proteins were immunoprecipitated with anti-HA beads. Inputs and precipitated proteins were determined by western blot and probing for the indicated proteins. GapDH served as loading and specificity control. Panels are representative of 3 biological replicates. Breaks between adjacent blots indicate lanes not relevant to the experiment were removed. c, A549-derived cells expressing endogenously tagged ATL3 were grown in Mattek gridded dishes and infected with DV. After 48h, cells were fixed with parafomaldehyde and glutaraldehyde followed by lipidTOX staining to visualize lipid droplets (LD) and imaging by confocal microscopy. Cells were then immediately embedded and processed for EM imaging using grid numbers as a reference. Correlation of light microscopy and EM images was done with Fiji software using lipid droplets as correlation markers. Images are representative of 3 independent samples. Scale bars: magnified box ii, 1 μm; magnified boxes 1–4, 200 nm. d, A549 cells stably expressing HA-ATL3 were infected with DV for 48 h. Cells were processed using the Tokuyasu protocol and labelled with HA-epitope targeting 10 nm gold beads. For EM images, VP denotes areas containing vesicle packets and Vi denotes regions containing virions. Scale bars, 100 nm. e, Quantification of the number of virions or vesicle packets containing proximal immune-gold staining pertaining to either a control antibody or an HA-specific antibody. Graph shows the mean value for 6 cells from 2 biological replicates. For each sample, >100 Vi or VP structures were counted. ***P < 0.001 as determined by two-tailed t-test.

Domains in ATL that are functionally interchangeable and required for the DV replication cycle. The phenotypic difference between ATL2 and ATL3 in DV infection provided us with a unique opportunity to evaluate functional differences between these two cellular proteins that are generally perceived as having largely redundant roles\(^\text{15,14}\). To this end, we generated ATL chimaera to characterize subdomains responsible for redundant
or unique functions (Fig. 3). ATL protein sequences alignments revealed that the middle domains were highly conserved between all 3 paralogues, whereas the N-terminal variable domain (NVD) and the C-terminal amphipathic-helix (CTA) domains have little amino acid sequence identity (Fig. 3a). This suggests that NVD and CTA confer major functional differences between ATL2 and ATL3. To test this, we performed a domain-swap analysis using the ATL-dependent viral replication or assembly defect as phenotypic readouts. A549 ATL knockout (KO) cell pools (Extended Data Fig. 6a,b) were transduced with constructs encoding for wild-type or mutant ATLs (Fig. 3b), followed by infection with either DV or ZV. None of the expression constructs had a significant effect on cell growth and, in control cells, no significant changes in viral RNA replication were observed (Fig. 3c–f and Extended Data Fig. 6c,d). For either ATL2-KO or ATL3-KO cells, expression of the respective wild-type protein rescued virus replication or assembly/release (Fig. 3c,d and Extended Data Fig. 6e, grey regions).

Fig. 3 | Mapping of functional domains of ATls involved in the DV replication cycle. a, Sequence comparison of human ATL1, ATL2 and ATL3 proteins, showing the amino acid sequence identity of each annotated domain. Sequences were aligned using the NCBI BLAST server. NVD, N-terminal variable domain; 3HB, three-bundle helix; TM, transmembrane region; CTA, C-terminal amphipathic-helix domain. b, Schematic representation of ATL2 and ATL3 mutant constructs used for rescue experiments. Names of expressed proteins are given on the left. c–f, ATL2-knockout or control cells were transduced with lentivirus encoding for the ATL variant given on the bottom of each panel. 24 h after transduction, cells were infected with DV-R2A (c,e) or synZV-R2A (d,f) for 48 h. Graphs show viral replication expressed as average fold change in RLU ml⁻¹ relative to control cells transfected with the empty plasmid (ctrl). Numbers above each bar pair in c,d refers to the number of independent experiments. Lower dashed line indicates the difference between ATL2-KO cells and control cells, both transduced with an empty plasmid. For all graphs, error bars represent SEM; * P < 0.05, ** P < 0.01, calculated by one-way ANOVA with a Dunnett’s multiple comparison analysis.
Analysis of ATL2 mutations showed a significant rescue of replication for both DV and ZV in cells expressing the C-terminal truncation ATL2ΔC or ATL2/3C (Fig. 3c,d). Interestingly, although expression of either ATL3 or ATL2ΔN did not rescue the ATL2-KO phenotype, expression of the ATL2/3N did. Expression of any of the other ATL mutants did not restore virus replication in the ATL2-KO cells. Similar N-terminal domain requirements were observed for ATL3; however, the window to measure rescue was low, making statistical significance difficult to determine (Extended Data Fig. 6e).

Depletion of ATL3 or ARF4/5 limits maturation of viral particles. ARF4 and ARF5 have been previously linked to regulating traffic between the ER and Golgi as well as secretion of DV subviral particles19-22. To better understand the relationship between ARF and ATL3, we evaluated the effects of ATL3 depletion on trafficking. First we confirmed that ATL3 depletion had no effect on secretion of a Gaussia luciferase reporter that follows a constitutive secretory pathway, and did not impair the transport of a vesicular stomatitis virus G protein from the ER to the Golgi (Extended Data Fig. 9b,c)19. Next we determined whether ATL3 depletion limits flavivirus particle secretion by evaluating intra- and extracellular levels of viral RNA, titre of infectious virions, and virus protein accumulation (Fig. 5e-g and Extended Data Fig. 9d-h). Knockdown of ATL3 had limited effects on intracellular DV or ZV RNA or protein levels, but profoundly reduced virus titre (Fig. 5e and Extended Data Fig. 9d). Notably, extracellular DV RNA levels did not decrease (Fig. 5e) but uncleaved DV prM accumulated, compared to its cleavage product M, in ATL3-depleted cells (Fig. 5f,g and Extended Data Fig. 9e). Moreover, we observed no change in extracellular virus RNA levels, as well as an accumulation of extracellular PrM for ARF4 or ARF5 depletion, and especially upon co-depletion (Extended Data Fig. 9f-h).

To determine if the increased levels of extracellular prM and viral RNA pertained to immature virions or aberrant virus particles caused by defects in the assembly process, we performed a virus reactivation assay34. Virions released from ATL3-knockdown cells were more efficiently activated following furin cleavage compared to virus from control cells (Fig. 5h). These results show that ATL3 as well as ARF4 and ARF5 play an important role in the maturation of flavivirus particles.

Depletion of ATL3 limits furin recycling. In addition to roles in secretory pathways, ARF4 has been linked to retrograde trafficking in cells when depleted together with either ARF1 or ARF5, and ARF5 has specifically been linked to internalization at the plasma membrane33-35. Therefore, we hypothesized that ATL3 might function in coordination with ARF4 to regulate vesicular trafficking. To test this, we evaluated the effects of ATL3 on transferrin (Tfn) recycling. In non-targeting shRNA expressing cells, high levels of Tfn-568 associated fluorescence signal accumulated in close proximity to the trans-Golgi network (TGN) (Fig. 6a). In contrast, in ATL3-depleted cells the majority of the Tfn-568 signal resided at the cell periphery, suggesting either an increase in recycling or a limitation in transport to the late endosome or endosomal sorting body.

To determine how this defect is linked to virus particle maturation, we examined cellular factors involved in this process. Furin is a cellular enzyme that critically relies on this cycling process and is required for virus particle maturation57. To determine if the decrease in virus maturation, and thus infectivity, was caused by changes in the furin transport pathway, we evaluated changes in furin localization following ATL3 depletion (Extended Data Fig. 10a). In control cells, furin localized predominantly to the perinuclear region, probably reflecting its accumulation in the Golgi. In ATL3-knockdown cells, furin accumulated at the cell periphery, similar to the fluorescence pattern observed for other ER markers and LDs (Fig. 1c,d and Extended Data Fig. 10e), suggesting that depletion of ATL3 prevents the access of immature virus particles to furin (Extended Data Fig. 10a). We did not observe significant localization changes in mitochondria (ATP5B) or endosomal proteins (RAB5, RAB7) (Extended Data Fig. 10b-d), indicating that depletion of ATL3 does not cause global changes in the endosomal transport pathway.

To further dissect the role of ATL3 in furin recycling, we used a well-defined CD4-furin fusion protein as a reporter34. In control cells, this reporter localized primarily to the Golgi and TGN, whereas in ATL3-depleted cells, the reporter was dispersed away from the TGN to the cellular periphery (Fig. 6b). Importantly,
Fig. 4 | Comparative ATL interaction networks. a, b, Network representation of unique and shared ATL2- and ATL3-interacting cellular proteins. AP–LC–MS/MS analysis of HA-tagged ATLs in comparison to calnexin (CANX). n = 4 independent experiments; significance testing are results from Welch's t-test. a, Solid lines represent specific interactors identified by AP–MS/MS analysis of naive A549 cells (log2(fold change) ≥ 2.5, unadjusted two-sided P ≤ 0.05). b, Solid lines represent specific interactors identified by AP–MS/MS analysis of DV-infected A549 cells (log2(fold change) ≥ 1), unadjusted two-sided P ≤ 0.05). c, The scatter plot displays ATL2 (x-axis) and ATL3 (y-axis) specific changes in uninfected compared to DV-infected cells. Virus proteins (grey), significant enrichment or depletion (red) and specific hits selected for RNAi screen (blue) are shown. Significantly enriched or depleted proteins are shown in red (n = 4 independent experiments; Welch's t-test unadjusted two-sided P ≤ 0.05; log2(fold-change) ≥ 1). A schematic of the variables compared is shown on the bottom right.
depletion of other ER tubule forming proteins, including RTN3 and LNP, did not alter furin reporter localization, and ATL3 depletion did not significantly impact total furin levels (Fig. 6c and Extended Data Fig. 10f,g). Using this reporter and live cell imaging, we evaluated the dynamics of furin internalization and observed a significant delay in intracellular accumulation of CD4-furin following ATL3 depletion (Fig. 6d and Supplementary Video 1). Taken together, our data suggest that ATL3 functions in an ARF4-dependent trafficking pathway that leads to the association of immature virions with furin to allow virion maturation cleavage (Fig. 6e).
The ER is a versatile organelle having functions in numerous cellular processes, many of which are coopted by flaviviruses. Here we show that ATL2 and ATL3 support flavivirus replication or assembly processes, respectively, and provide data supporting a model in which ATL2 functions in replication organelle formation and ATL3
in virion maturation (Fig. 6c). ATLs are well characterized as membrane fusogens and involved in maintaining ER membrane structure, suggesting that ATLs play a role in recruitment of membranes or specific lipids required for the membrane structure of replication organelles. Indeed, ATLs have been linked to reticulophagy, lipid droplet formation and formation of ER exit sites, all pathways of relevance for flavivirus infection\(^{2,3,9,10}\). Flaviviruses are likely to hijack one or more of these specific cellular functions of ATLs to facilitate either replication organelle biogenesis (ATL2) or virion assembly (ATL3). For ATL2 this may include associations with the nucleic acid editing protein APOBEC3C and the actin binding protein TPM1, which we have physically and phenotypically linked to ATL2 and DV replication (Figs. 4 and 5). For ATL3, we have demonstrated a link between ATL3 and ARF4/ARF5 and provide data showing that this is important for endosomal trafficking and virus particle maturation. Further study of these and other proteins identified in our proteomics and RNAi analysis will provide important insights into ER function per se and its exploitation by flaviviruses.

We propose two functions for ATL3 in flavivirus infection: directly in assembly and trafficking of virus particles (Figs. 1 and 2) and indirectly in the recycling of virion from the PM to the Golgi (Figs. 5 and 6). The increase in intracellular virus particles (Fig. 1f) compared to limited changes in extracellular virus particle number (Fig. 5e,f) indicates that, in addition to blocking maturation of virions, ATL3 might have additional roles. These could include regulating virion assembly or trafficking, or coordinating the association of virion-containing vesicles with furin. Consistently, we found a large proportion of intracellular virus particles colocalizing with ATL3 (Fig. 2d,e). Additionally, our data show a previously unidentified link between ATL3 and early endosomal trafficking involved in virus particle maturation. It may be that ATL3 contributes to previously described contact sites between ER tubules and endosomes, thereby facilitating uptake or trafficking of furin and perhaps other endosomal proteins\(^{3,14}\). Moreover, this may involve coordination with ARF proteins, which have links to both virus assembly and endosomal trafficking\(^{3,23,24}\). Further work will be required to determine the precise function of ATL3 in flavivirus particle maturation.

We demonstrate distinct roles of ATL3 and ATL2 in virus assembly and replication organelle formation, respectively. Although ATL paralogues serve several redundant functions, different ATLs also have distinct cellular functions; however, evaluating these has proved difficult\(^{2,12,14}\). We have used comparative proteomics and a virus-based phenotypic assay to demonstrate non-redundant roles for these ATLs in different cellular pathways. Moreover, we show that the C-terminal, but not the N-terminal, region of ATL2 is dispensable for ATL function in DV and ZV RNA replication. Although the C-terminal amphipathic helix is important for efficient membrane fusion\(^{14,45}\), ATL2AC deletion mutants might retain residual membrane activity sufficient to overcome this attenuation. In addition, the N-terminal domain of ATL3 can functionally replace the one of ATL2. Previous studies have shown that ATLs favour homodimer over heterodimer formation\(^{11}\). Our observations may indicate that specificity for homodimer formation is conferred through the N-terminal domain. Although we did not exhaust the possibilities for evaluating the differences between ATL2 and ATL3, we provide a powerful tool to further dissect non-overlapping functions of ATLs. Taken together, our findings increase the basic understanding of the ER and open interesting avenues for cell biological inquiries. Our results also provide knowledge and tools to decipher mechanisms of ER-linked human pathologies, both in the context of viral infection and in ATL-related neurodegenerative diseases.

Methods

Cell lines and virus strains. VeroE6 cells were obtained from Progen, HEK-293T, HELa and A549 cells were obtained from ATCC, and Huh7-Lunet cells were developed in our research group\(^{-\ast}\). All cell lines are regularly tested for mycoplasma contamination and cell lines were authenticated by visual observations of cell morphology. All cells were cultured in Dulbecco’s modified Eagle medium (DMEM, Life Technologies) containing 10% fetal bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 1% non-essential amino acids (complete medium). Stable A549 cell lines were cultured in complete medium containing either 5 µg/ml blasticidin or 1 µg/ml puromycin or both. Stable Huh7-Lunet cells were cultured in medium containing 2 µg/ml zeocin. A list of stable cell lines produced for this study is available in Supplementary Table 1.

The reporter virus genomes for DV-2 (strain 16681; DV-R2A) and ZV (strain H/PF/2013; synZIKV-R2A), which encode Renilla luciferase, have been previously described\(^{19,20}\). DV stocks were prepared as previously described\(^{19,20}\) by electroporation of BHK-21 cells with in vitro transcribed DV-2 RNA and subsequent virus amplification in VeroE6 cells. ZV H/PF/2013 (obtained from the European Virus Archive, synZIKV-R2A, and WNV (strain NY99, kindly provided by H. Schmidt-Chanasit, Germany) were produced by virus amplification in VeroE6 cells or insect C6/36 cells. The Rift Valley Fever virus (RVFV) encoding a Renilla Luciferase gene (RVFV-R2A, a gift from F. Weber, University of Giessen, Germany) has been described elsewhere\(^{21}\). Extracellular virus titres were determined by plaque-forming unit (PFU) assay in VeroE6 cells overlay medium containing 1% carboxymethylcellulose. Intracellular virus titres were analysed by first freeze-thawing cells three times followed by centrifugation (14,000 g for 10 min) and PFU assay using the resulting supernatant. Virus replication was measured by Renilla luciferase assay. Quantification of viral RNA levels in cells and culture supernatants was done by RT-qPCR (see below).

Expression constructs and transfection. A list of expression vectors and cloning primers is displayed in Supplementary Table 2. For all ATL pWPI expression constructs, the gateway cloning system was used as per the manufacturer’s protocol (ThermoFisher). Sequences were amplified with primers containing the ATTO recombinase overhangs (Supplementary Table 2), followed by recombination into the p207 entry vector using the BP recombination reaction (invitrogen). From the entry vectors, sequences were transferred to either the pWP1-hha or pWP1-rosa26 expression vectors using the LR recombination reaction. The pWP1-rosa26 plasmid was made by swapping the EA1 promoter for a ROSA26 eukaryotic promoter which supports significantly lower target protein expression. For site directed mutagenesis of the ATL GTPase mutants, DNA sequences were amplified using PFU Taq polymerase with primers containing the specific mutations (Supplementary Table 2), followed by DpnI digestion of the original plasmid. Transfection of tissue culture cells was performed using TransIT-LT1 (Mirus) transfection reagent according to the manufacturer’s protocol.

Lentivirus production and transduction of cells. Delivery of expression plasmids for depletion, knockout or overexpression experiments was done through transduction with lentiviruses. For production of lentivirus stocks, sub-confluent 293T cells were transfected with packaging plasmids pCMV-Gag-Pol and pMD2-VSV-G (kind gifts from D. Trono, EPFL, Lausanne) and specific plasmids (specific shRNA constructs used are given in Supplementary Table 3 and expression constructs are listed in the Supplementary Table 2). Two days post-transfection, lentivirus-containing medium was collected and filtered. Lentiviruses were titrated by SYBR green I-based real-time PCR-enhanced reverse transcriptase (SG-PERT) assay using the Takyon SYBR green kit (Eurogentec). Alternatively, HeLa cells were transduced, cultured in the presence of 1 µg/ml puromycin fixed and stained with 1% crystal violet/10% ethanol for 15–30 minutes. Stained cells were rinsed with water, colonies were counted and titre calculated taking into account inoculum dilution. For SG-PERT based virus titer calculations, samples were compared to a standard curve derived from known RNA concentrations in order to determine specific titre for each sample. For all experiments, transductions were performed using a MOI of 5 in the presence of 4 µg/ml puromycin polybrene. Cell viability of transduced cells was evaluated using the Cell Titer-Glo Luminescent Cell Viability Assay Kit (Promega) according to the manufacturer’s instructions. Luminescence was measured with a Milhua LB940 plate reader (Berthold Technologies). Stable cell lines were produced by transduction of the target cells with lentivirus particles at an MOI of 0.1, followed by selection with either blasticidin or puromycin containing media.

For the shRNA knockdown screen, lentiviral particles harbouring shRNA expression constructs directed towards the indicated genes (Supplementary Table 3) were ordered from Sigma. A549 cells (8,000 per well in a 96-well plate) were transduced (MOI = 3), 48 h later infected with DV-R2A (MOI = 1), and 48 h later analysed by Renilla luciferase assay.

Generation of ATL-KO cells by using the CRISPR-Cas9 system and ATL rescue experiments. The 20-base guide strands used to target ATLs are listed in Supplementary Table 4. CRISPR plasmids were constructed by insertion of the annealed oligonucleotides (Addgene) into the lentivector plasmid (Addgene encoding puromycin resistance for ATL3 or into the lentivector plasmid (Addgene) encoding blasticidin resistance for ATL2. To generate knockout cell lines, A549 cells were infected with the respective lentivirus and one day later the cells were cultured in medium containing 3 µg/ml puromycin or blasticidin. For the rescue experiments, ATL-KO knockdown cells were plated at 8,000 cells per well into
Endogenous tagging of ATL3 in A549 cells. For N-terminal endogenous tagging of ATL3, the split GFP system was used. The tagging sequence of GFP11 (116 bp-fragment of the superfolder GFP b-barrel structure) was fused to a FLAG epitope sequence with three glycine residues flanking the tag cassette. To create a donor construct for homology directed repair (HDR), sequences homologous to the sites of insertion were added to the 5’ and 3’ ends of the tag cassette. This DNA fragment was inserted into a plasmid vector using the Clonetig PCR cloning kit (ThermoFisher). Homology arm sequences (NC_000011.10, Homo sapiens chromosome 11, GRCh38.p12 Primary Assembly; left homology arm chromosomal position: 63671324-63671587; right homology arm chromosomal position: 63671048-63671323) were retrieved from NCBI (National Center for Biotechnology Information). The ATL3 gene locus was targeted with a lentivirus based CRISPR–Cas9 system. The relevant guide RNA sequence (5’-GATTCTCTGGATGCGCCCG-3’) was inserted into lentiCRISPRv2 and used to produce the ATL3 gene targeting CRISPR-Cas9 lentiviral particles. To reconstitute a functional GFP protein, A549 cells stably expressing the complementary GFP fragment (GFP1-10) were created using lentiviral transduction and transduced cells were selected with 5 µg/ml blasticidin. A549 cells were transduced with 5000-10,000 viral particles/ml over 24 hr, and fed with a donor construct using the TransIT-LT1 transfection reagent (Mirus) in a 6-well plate for 3 days, followed by transfection with 2 µg of the HDR construct and selection using 1 µg/ml of the HDR construct using the TransIT-LT1 transfection reagent (Mirus) in a 6-well plate. Cells were sorted 3 days later single cells were sorted and selected on the basis of GFP fluorescence. Single cells were expanded and evaluated using immunofluorescence. Cells with ER localizing GFP signal were expanded to test expression of the HDR construct using Western blot analysis as described above. The resulting cell line was designated A549-ATL3-ET-GFP.

Phylogenetic analysis of ATL proteins. Human ATL proteins were used as BLAST queries to search for homologues in publicly available predicted animal and chordate like proteins at NCBI. Retrieved protein sequences were aligned using MUSCLE, manually trimmed to 494 well-conserved homologous sites before being subjected to phylogenetic analysis. Phylogenetic tree reconstructions were performed using MrBayes v3.2.6 for Bayesian analysis. MrBayes analyses were run with the following parameters: nst aamodelpr = fixed (WAG); r2 = 1; r0 = 1; Delta = 0.01; startmodel = GTR + G; burnin = 500; split frequencies were checked to ensure convergence. Maximum likelihood bootstrap values (100 pseudoreplicates) were obtained using RAxML v8.2.10 under the LG model.

Quantitative real-time PCR (RT-qPCR). Isolation of total cellular RNA was carried out using a NucleoSpin RNA extraction kit (Macherey-Nagel) according to the manufacturer's specification. cDNA was synthesized using a high capacity cDNA reverse transcription (RT) kit (Thermo Scientific) according to the manufacturer's specification. cDNA was diluted 1:20 and used directly for qPCR analysis using specific primers and the iTaq Universal SYBR green mastermix (Bio-Rad). Primers for qPCR were designed using Primer3 software; primer sequences are supplied in Supplementary Table 2. To obtain the relative abundance of specific RNA’s from each sample, cycle threshold (ct) values were corrected for the PCR efficiency of the specific primer set, and normalized to hypoxanthine phosphoribosyltransferase 1 (HPRT) transcript levels.

Western blotting. Cells were lysed using protein sample buffer, followed by sonication and denaturation at 95°C for 10 min. 10 µg of total protein from each sample was resolved by SDS-PAGE and transferred to nitrocellulose. Membranes were blocked with PBS-T (PBS—pH 7.4, containing 0.1% Tween-20) containing 5% skimmed milk for 2 hr at room temperature, followed by incubation with antibodies of interest (at least 3 antibodies are used if possible) for 1 hr. Membranes were washed and incubated for 1 hr with the HRP-conjugated secondary antibodies. Membranes were imaged using the Chemocam 6.0 ECL system (INTAS Science Imaging, Goettingen, Germany). Images were cropped and analysed using Fiji software (National Institute of Health).

Immunofluorescence. A549 cells grown on glass cover slips were fixed for 30 min by incubation with pre-warmed 2.5% glutaraldehyde/2% sucrose in 50 mM sodium cacodylate buffer (CaCO) (50 mM cacodylate, 50 mM KCl, 2.6 mM CaCl2, 2.6 mM MgCl2, pH 7.4). After 3 washes with 50 mM CaCo buffer, cells were incubated with 2% paraformaldehyde/2% sucrose for 40 min on ice, washed with 3 times and then permeabilized for 30 min at room temperature, washed 3 times with PBS, stained with DAPI and LipidTOX and analysed by fluorescence microscopy analysis on a Nikon TE2000 Ultraview ERS spinning disc (PerkinElmer). Z-stacks of GFP-positive cells were obtained using an EM-10 transmission electron microscope (Zeiss) with a built-in MegaView camera (Olympus) or with a JEOL JEM-1400 transmission electron microscope (Jeol Ltd., Tokyo, Japan). Quantification of virion number, size, and distribution was done manually or using macros developed for the Fiji software package.

Electromicroscopy. Cells grown on glass coverslips were fixed for 30 min by incubation with pre-warmed 2.5% glutaraldehyde/2% sucrose in 50 mM sodium cacodylate buffer (CaCO) (50 mM cacodylate, 50 mM KCl, 2.6 mM CaCl2, 2.6 mM MgCl2, pH 7.4). After 3 washes with 50 mM CaCo buffer, cells were incubated with 2% paraformaldehyde/2% sucrose for 40 min on ice, washed with 3 times and then permeabilized for 30 min at room temperature, washed 3 times with PBS, stained with DAPI and LipidTOX and analysed by fluorescence microscopy analysis on a Nikon TE2000 Ultraview ERS spinning disc (PerkinElmer). Z-stacks of GFP-positive cells were obtained using an EM-10 transmission electron microscope (Zeiss) with a built-in MegaView camera (Olympus) or with a JEOL JEM-1400 transmission electron microscope (Jeol Ltd., Tokyo, Japan). Quantification of virion number, size, and distribution was done manually or using macros developed for the Fiji software package.

Polyprotein expression system. Huh7-Lunet cells stably expressing T7 RNA polymerase were transfected with the DV polyprotein construct pSM3-Δ5'-SLAB-DV: 24 hr after transfection cells were harvested for further IF (to determine transfection efficiency and protein expression level) or EM. To determine transfection efficiency, parallel samples were prepared for immunofluorescence analysis as described above and stained with antibodies directed against DV NS3. Samples were observed using a Nikon Ti Eclipse microscope and the percent of transfected cells was determined using the Fiji software package. For EM analysis, samples were fixed and processed as described above. EM data were obtained from three independent cell cultures (of at least 3-5 different plates) from 3 different days per condition. A VP was defined as array of 2 to 5 connected vesicles residing at the same level in the EM data. For quantitative evaluation, at least 10 VP were counted from each condition. A VP was defined as array of 2 to 5 connected vesicles residing at the same level in the EM data. For quantitative evaluation, at least 10 VP were counted from each condition.
and spun at 4 °C overnight. Cell pellets were mounted on silver pins, flash-frozen and stored in liquid nitrogen. Samples were sectioned with a Reichert Ultracut S ultramicrotome using a Reichert FCS cryo-attachment and a Diatome diamond knife (Diatome). Sections were thawed in 95% ethanol and cryo-cut at -150 °C using a cryo-attachment described previously63 using rabbit anti-HA (Sigma-Aldrich) and protein A-Gold, 10 nm (Utrecht). Samples were examined using a JEOL transmission electron microscope. Quantification of virosomes and VP4 containing proximal gold labelling was done manually, counting >150 structures for each.

Furin reactivation assay. The furin reactivation assay was performed as previously described63. 2 × 106 cells were transfected with lentivirus (as described above), and 48 h later were infected with DV-2 (16681 strain) for 48 h followed by collection of the serum (total volume 10 ml for each sample). Virus particles in the serum were purified by centrifugation through 2 ml 20% sucrose containing NTE buffer (120 mM NaCl, 120 mM sucrose, 10 mM HCl, pH 8, 1% TX-100) at 4 °C. Supernatant was then removed and the resultant pellet was resuspended in 50 µl NTE buffer. Purified DV particles in NTE buffer were mixed with 50 mM 2-(N-morpholino)ethanesulfonic acid (MES) at a 1:1 ratio to adjust the pH to 6.0. Furin (New England Biolabs Inc.) was added at a final concentration of 0.4 µg/ml and the mixture was incubated at 30 °C for 16 h in the presence of 3 mM CaCl2. The samples were then mixed with neutralization buffer (120 mM NaCl, 100 mM Tris at pH 8.0) at a 1:1 ratio. Virus particle infectivity was determined by PFU assay as described above.

Affinity purification and quantification LC-MS/MSE proteomics. For co-immunoprecipitations or in vitro translated [35S]methionine labelled lysates, clarified cell lysates AS49 cells constitutively expressing the indicated tagged proteins, were lysed in lysis Buffer (50 mM Tris pH 7.4, 150 mM NaCl, 0.5% TX-100, containing complete protease inhibitor and PhosStop [Roche]) and subjected to immunoprecipitation using anti-HA agarose beads (Sigma-Aldrich) or anti-FLAG magnetic beads (Sigma). After 3 h, immune complexes were washed 5 times with lysis buffer. Proteins were eluted using 3% SDS and evaluated by western blot.

For the determination of the ATL2 and ATL3 interactions, 4 independent affinity purifications were performed for each bait. AS49 cells constitutively expressing only the HA tag (pWPI-nHA only; NT), or HA-tagged calnexin, ATL2 or ATL3 were mock-infected or infected with DV-2 (MOI = 3). 48 h later cells were scraped into 1 ml of lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 0.5% TX-100, containing complete protease inhibitor and PhosStop [Roche]) and HA-affinity purifications were performed as described earlier63. Briefly, clarified cell lysates were incubated with anti-HA-specific beads for 3 h at 4 °C, and non-specifically bound proteins removed by 3 washes with lysis buffer and 5 washes with washing buffer (50 mM Tris pH 8.5, 150 mM NaCl). Bound proteins were denatured by incubation in 40 µl 10% U/A buffer (8 M urea, 100 mM Tris-HCl pH 8.5), and reduction and alkylation carried out with 10 mM DTT and 55 mM iodoacetamide in 50 mM ABC buffer (50 mM NH4HCO3, in water, pH 8.0), respectively. After digestion with 1 µg LysC (WAKO Chemicals USA) at room temperature for 3 h, the suspension was diluted in ABC buffer, and the protein solution was digested with trypsin (Promega) overnight at room temperature. Peptides were purified on a C18 column with 318 Empore filter discs (3M) and analysed by liquid chromatography coupled to mass spectrometry on an Orbitrap XL instrument (Thermo Fisher Scientific) as described previously63.

For global proteomic analysis of stable cell lines used for affinity-purification, 4 independent samplings were prepared for each cell line. Cells were lysed in SDS-TrisCl (pH 8) and homogenized by two cycles of heating (98 °C, 5 min) and sonication (15 min). After centrifugation proteins in normalized cell lysates were acetone precipitated twice and processed as described above.

Raw mass-spectrometry data were processed with MaxQuant software versions 1.5.6.251 using the built-in Andromeda search engine to search against the human proteome (UniprotKB release 2015_08 including isoforms and unreviewed sequences) containing forward and reverse sequences plus the DVPolyprotein (DV-2 strain 16681, UniprotID P29990 with the individual viral cleavage products manually annotated), and the label-free quantitation algorithm as described previously17. Additionally, the intensity-based absolute quantification (iBAQ) algorithm and Match Between Runs option were used. In MaxQuant, carbamidomethylation was set as fixed and methionine oxidation and N-acetylation as variable modifications, using an initial mass tolerance of 6 ppm for the precursor ion and 0.5 Da for the fragment ions. Search results were filtered with a false discovery rate (FDR) of 0.01 for peptide and protein identifications. Perseus software version 1.5.3.0 and 1.6.2.2 were used to further process the affinity-purification or the proteomics datasets, respectively. Protein tables were filtered to eliminate the identifications from the reverse database and common contaminants. In analysing mass spectrometry data, only proteins identified on the basis of at least one peptide and a minimum of 3 quantitation events in at least one experimental group were considered. For the interactome dataset, iBAQ protein intensity values were normalized against the median intensity of each sample (using only peptides with recorded intensity values across all samples and biological replicates), log-transformed and missing values filled by imputation with random numbers drawn from a normal distribution calculated for each sample.

Significant interactors were determined by Welch’s t-tests with permutation-based false discovery rate statistics. We performed 250 permutations and the FDR threshold was set at 0.01. The parameter 50 was set at 1 to separate background from specifically enriched interactors. For the proteomics dataset, the label-free quantitation values (LFQ) of uniquely unlabelled and doubly labelled peptides were used and values filtered and imputed as described above. Significant interactors were determined as described above using an FDR threshold of 0.05, and the parameter 50 was set at 1 to separate background from specifically enriched or depleted proteins. Results were plotted as scatter plot and heat map using Perseus+ or Cytoscape (version 3.7.0)

Transferin (Tfn) and furin internalization assays. For visualization of Tfn internalization and recycling, cells were first serum starved for 30 min at room temperature. Cells were then incubated with 50 µg/ml Alexa Fluor 568 conjugated transferin (Tfn-568) (ThermoFisher) for 45 min followed by paraformaldehyde fixation and immunofluorescence staining as described above. Cells were visualized by confocal microscopy at 40x for 4 at h after infection. The levels of pernucrins/FurinGolgi-associated Tfn-568 fluorescence signal was determined by evaluating the fluorescence levels in proximity to signal arising from TGN46-specific antibodies using a custom made macro in the Fiji software package.

The CD4-furin chimeric protein containing the ectodomain of CD4 and the transmembrane and cytoplasmic regions of furin has been previously described64. AS49 cells stably expressing CD4-furin were transduced with lentiviruses encoding for shRNA targeting ATL2, ATL3 or non-target control (MOI = 5). Three days post-transduction, medium was replaced with imaging medium (DME complete without phenol red) and samples were imaged with a confocal spinning disc microscope at 24 time points. Each position of the single confocal slice was collected every 60 seconds. After two minutes Alexa Fluor 647-conjugated anti-Cd4 antibodies were added to the medium and antibody internalization and trafficking was allowed to proceed for 2h. Images were analysed using the Fiji software package (National Institute of Health). Briefly, after background subtraction, a region of interest was manually drawn around each cell. For each time point, total cell-associated fluorescence was calculated. For each experiment, at least 8 cells were analysed and each experiment was repeated 3 times.

VSVG trafficking and Gaussia luciferase secretion assays. The VSVG trafficking assay was performed as previously described64. Briefly, Hela cells were transduced with lentiviruses encoding for shRNA targeting ATL2, ATL3 or non-target control (MOI = 5). Three days post-transduction cells were transfected with a construct expressing a temperature-sensitive mutant of the vesicular stomatitis virus G protein fused to GFP (VSVG_G_lo045_GFP) (kind gift from Megan Staniw, Department of Infectious Diseases, Virology, Heidelberg University). After 6h cells were incubated at 40 °C for 16h to arrest the protein in the ER and then imaged 24h post-transfection at 32°C with a confocal spinning disc microscope in imaging medium (DME complete without phenol red). For each cell, a single confocal slice was collected every 5 min. For each time point, the integrated fluorescence intensity in a region of interest surrounding the perinuclear area was calculated and reported as fraction of the total intensity collected within the same region across all the time points. For each experiment, at least 20 positions per condition were collected for the Gaussia luciferase assay, cells were transfected with the Gaussia luciferase reporter. After 24h an initial sample of media was taken (time point 0) and the media was exchanged for fresh media. Media samples were taken every 2h for a total of 12h and the total amount of luciferase was measured.

Statistical reproducibility. Unless otherwise stated, all microscopy or western blot images shown in this study are representative of at least 3 biological replicates.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data Availability
UniprotKB accession codes of all protein groups and proteins identified by mass spectrometry are provided in each respective Supplementary Table 8 and were extracted from UniprotKB (Human; release 2015_08 including isoforms and unreviewed sequences). Protein sequences of DV-2 16681 strain (P29990) were extracted from UniprotKB. The MS-based proteomics data were deposited at the PRIDE (The Proteome Archive) via the PRIDE partner repository with the data set identifier PXD014639 and PXD014640. For the evolutionary tree analysis, all accession codes can be found in Supplementary Table 7. The remainder of the data that support the findings of this study are available from the corresponding authors upon reasonable request.

Received: 16 February 2019; Accepted: 10 September 2019; Published online: 21 October 2019

References
1. World Health, O. Dengue vaccine: WHO position paper, July 2016 — recommendations. Vaccine 35, 1200–1201 (2017).
2. Wikan, N. & Smith, D. R. Zika virus: history of a newly emerging arbovirus. Lancet Infect. Dis. 16, e119–e126 (2016).
3. Neufeldt, C. J., Cortese, M., Acosta, E. G. & Bartenschlager, R. Rewiring cellular networks by members of the Flaviviridae family. Nat. Rev. Microbiol. 16, 125–142 (2018).

4. Cortese, M. et al. Ultrastructural characterization of zika virus replication factories. Cell Rep. 18, 2113–2123 (2017).

5. Welsch, S. et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5, 365–373 (2009).

6. Gliniak, J. K., Hoener, A., Morgan, G. & Mackenzie, J. M. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84, 10438–10447 (2010).

7. Goyal, U. & Blackstone, C. Untangling the web: mechanisms underlying ER network formation. Biochim. Biophys. Acta 1833, 2492–2498 (2013).

8. Powers, R. E., Wang, S., Liu, T. Y. & Rapoport, T. A. Reconstitution of the tubular endoplasmic reticulum network with purified components. Nature 543, 257–260 (2017).

9. Wang, S., Tsuchekinsky, H., Romano, F. B. & Rapoport, T. A. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulon to generate a tubular membrane network. eLife 5, e18605 (2016).

10. Hu, J. & Rapoport, T. A. Fusion of the endoplasmic reticulum by membrane-bound GTPases. Semin. Cell Dev. Biol. 60, 105–111 (2016).

11. Zhang, H. & Hu, J. Shaping the endoplasmic reticulum into a social network. Trends Cell Biol. 26, 934–943 (2016).

12. Hu, J. et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Biochem. Biophys. Acta 1738, 549–561 (2009).

13. Orso, G. et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460, 978–983 (2009).

14. Rismarchi, N., Soderblom, C., Stadler, J., Zhu, P. P. & Blackstone, C. Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum. Mol. Genet. 17, 1591–1604 (2008).

15. Zhao, G. et al. Membrane knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp. Cell Res. 349, 32–44 (2016).

16. Salinas, S., Proukakis, C., Crosby, A. & Warner, T. T. Hereditary spastic paraplegia: clinical features and pathogenic mechanisms. Lancet Neurol. 7, 1127–1138 (2008).

17. Fischer, D. et al. A novel missense mutation confirms ATL3 as a gene for hereditary sensory neuropathy type 1. Brain 137, e286 (2014).

18. Kornak, U. et al. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase. Brain 137, 683–692 (2014).

19. Zhao, X. et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat. Genet. 39, 326–331 (2007).

20. Behrendt, L., Kurth, I. & Kaelter, C. A disease causing ATL3 ATN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cellul. Mol. Life Sci. 76, 1433–1445 (2019).

21. Hu, X., Wu, F., Sun, S., Yu, W. H. & Hu, J. Human atlastin GTPases mediate differentiated fusion of endoplasmic reticulum membranes. Protein Cell 6, 307–311 (2015).

22. Klemm, R. W. et al. A conserved role for atlastin GTPases in regulating lipid droplet size. Cell 139, 1465–1475 (2013).

23. Ortiz Sandoval, C. & Simmen, T. Rab proteins of the endoplasmic reticulum: structural and functional insights. Cell Rep. 2301–2319 (2016).

24. Kornak, U. et al. Membrane alterations induced by nonstructural proteins of human norovirus. J. Virol. Methods 158, 354–358 (2009).

25. Fischl, W. & Bartenschlager, R. Kissing-loop interaction in the 3′ end of the hepatitis C virus genome essential for RNA replication. J. Virol. 79, 380–392 (2005).

26. Monzen, M. et al. A reverse genetics system for zika virus based on a simple molecular cloning strategy. Viruses 10, e368 (2018).

27. Murray, R. W. & Voeltz, G. K. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell 24, 1030–1040 (2013).

28. Di Mattia, T., Tomasetto, C. & Alpy, F. Faraway, so close! Functions of endosomal GTPases. Biochem. Biophys. Acta Mol. Cell Biol. Lipids https://doi.org/10.1016/j.bbalip.2019.06.016 (2019).

29. Iglesias, N. et al. Dengue virus uses a non-canonical function of the host GBF1-Arf-COP1 system for capsid protein accumulation on lipid droplets. Traffic 16, 962–977 (2015).

30. Faust, J. et al. The Atlasm C-terminal tail is an amphipathic helix that promotes the bilayer structure of endoplasmic reticulum homotypic fusion. J. Biol. Chem. 290, 4772–4783 (2015).

31. Friedmann, J. R., Dibenedetto, J. R., West, M., Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell 24, 1030–1040 (2013).

32. Lee, J. Y. et al. Spatiotemporal coupling of the hepatitis C virus replication complex by creating a lipid droplet-proximal membranous replication network. J. Virol. 83, 12510–12517 (2009).

33. El-Sayed, E. et al. On the mechanism of dengue virus assembly: a mechanism possibly operating by forming a lipid droplet-proximal membranous replication network. J. Virol. 89, 14585–14595 (2015).

34. Yu, I. M. et al. Association of the pr peptides with dengue virus at acidic pH by creating a lipid droplet-proximal membranous replication network. J Cell. Biol. 203, E3501–E3508 (2016).

35. Nakai, W. et al. Association of the pr peptides with dengue virus at acidic pH by creating a lipid droplet-proximal membranous replication network. J Cell. Biol. 203, E3501–E3508 (2016).

36. Faust, J. et al. The Atlasm C-terminal tail is an amphipathic helix that promotes the bilayer structure of endoplasmic reticulum homotypic fusion. J. Biol. Chem. 290, 4772–4783 (2015).

37. Fischl, W. & Bartenschlager, R. High-throughput screening using dengue virus reporter genomes. Methods Mol. Biol. 1030, 205–219 (2013).

38. Monzen, M. et al. A reverse genetics system for zika virus based on a simple molecular cloning strategy. Viruses 10, e368 (2018).

39. Kuri, T., Habjan, M., Pem, N. & Weber, F. Species-independent bioassy for sensitive quantification of antiviral type I interferons. Virology 7, 50 (2010).

40. Vermeire, J. et al. Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lent- and retroviral vectors. PLoS ONE 7, e38589 (2012).

41. Pizzato, M. et al. A one-step SYBR Green I-based product-enhanced reverse transcription assay for the quantitation of retroviruses in cell culture assay for the quantitation of retroviruses in cell culture assay. Proc. Natl Acad. Sci. USA 113, E3501–E3508 (2016).

42. Donaldson, J. G., Simmen, T. & Voeltz, G. K. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 12, 362–375 (2011).

43. Volpicielli-Daley, L. A., Liu, Y., Zhang, C. J. & Kahn, R. A. Isoform-selective effects of the depletion of ADP-ribosylation factors I-5 on membrane transport. Mol. Biol. Cell 16, 4495–4508 (2005).

44. Mazelova, J. et al. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf6. Embio 28, 183–192 (1999).

45. Chun, J., Shapovalova, Z., Dejaudarre, S. G., Presley, J. F. & Melancon, P. Characterization of class I and II ADP-ribosylation factors (Arfs) in live cells: GDP-bound class I Arfs associates with the ER-Golgi intermediate compartment independently of GBF1. Mol. Biol. Cell 19, 3488–3500 (2008).

46. Cortese, M. et al. Reciprocal effects of fibroblast growth factor receptor signaling on dengue virus replication and virion production. Cell Rep. 27, 2579–2592 (2019).
Acknowledgements
We thank A. Ruggieri, L. Chatel-Chaix and M. Joyce for constructive scientific discussions and valuable comments. We also thank U. Haselmann, M. Bartenschlager, I. Paron, A. Piras and S. Kallis for excellent technical support. We acknowledge the Electron Microscopy Core Facility at Heidelberg University and the Infectious Diseases Imaging Platform (IDIP) at the Center for Integrative Infectious Disease Research, Heidelberg, Germany, for expert assistance and access to their equipment as well as the Department of Proteomics and Signal Transduction of the Max Planck Institute of Biochemistry for generous support. We thank the European Virus Archive (EVAg, France) for provision of ZV strains, J. Schmidt-Chanasit for providing WNV strains, F. Weber for providing the RVFV isolate, D. Trono for providing the lentiviral transduction system and M. Stanifer for providing the VSVG constructs. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB1129, TP11 and BA1505/8-1, both to R.B., and TRR179 and TP11 to A.P.) and the ERC (StG (VIP 331339, CoG ProDAP 817798) to A.P. C.J.N. was supported in part by a European Molecular Biology Organization (EMBO) Long-Term Fellowship (ALTF 466-2016).

Author contributions
C.J.N. designed the concept of the project, carried out the majority of the experiments, interpreted the results and wrote the manuscript. M.C. conceived and carried out experiments, and interpreted the results. P.S. performed and analysed mass spectrometry data. J.W. performed and interpreted evolutionary analysis and sequence comparisons. R.C. produced endogenously tagged cell lines. T.M. performed some siRNA experiments. K.T. produced knockout cell lines. O.O. provided reagents and advice for STED microscopy. A.P. contributed to the analysis of mass spectrometry data as well as critical discussions. R.B. contributed to the concept of the study, interpretation of the results and manuscript writing, supervised the project and secured funding.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41564-019-0586-3. Supplementary information is available for this paper at https://doi.org/10.1038/s41564-019-0586-3. Correspondence and requests for materials should be addressed to C.J.N. or R.B. Reprints and permissions information is available at www.nature.com/reprints. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. © The Author(s), under exclusive licence to Springer Nature Limited 2019.
Extended Data Fig. 1 | ER protein depletion in virus infection. a, Phylogenetic analysis of metazoan ATL proteins collected from a subset of publicly available metazoan predicted proteomes. ATL sequences were aligned with MUSCLE and manually trimmed into a 494-site alignment. Phylogenies were reconstructed, and node support values were calculated using MrBayes for posterior probability and RAxML for maximum likelihood and presented as inset (MrBayes/RAxML). The MrBayes tree topology is shown. Scale bar: number of estimated substitutions per site. For genomes used see Supplementary Table 7 b-h, A549 cells were transduced with constructs encoding for shRNAs (b-e, and g-h) or transfected with siRNA (f) targeting indicated mRNA transcripts, or a non-targeting (NT) shRNA or siRNA. b-d, 96 h post transduction, mRNA levels, protein levels and cell viability were evaluated. b, ATLs mRNA transcript levels were evaluated by RT-qPCR and values corrected using HPRT. Graphs show average percent change compared to NT shRNA for 3 independent experiments. c, ATL protein levels evaluated by western blot. Graph shows average protein levels compared to NT shRNA treated cells from 3 experimental replicates. d, Graph shows mean cell viability as percent survival compared to NT shRNA treated cells. e, 48 h after transduction cells were infected with DV (MOI=1) for 48 h. DV titre were determined by PFU assay. Graph show average fold change in PFU/mL (titre). * and ** - p values lower than 0.05 or 0.01, respectively, determined using one-way ANOVA with a Dunnett’s multiple comparison analysis. RTN, reticulon; LNP, lunapark. f, 96 h post transduction, cells were lysed for RNA analysis. Graph shows average percent change vs. NT shRNA for 3 independent experiments. g-h, 48 h after transduction cells were infected with DV or RVFV (MOI=1) for 48 h. DV titre were determined using a PFU assay and RVFV replication was determined by luciferase assay. Graphs show average fold change in PFU/mL (titre) or average fold change in RLU/mL (replication) relative to NT shRNA expressing cells for three independent experiments. For all graphs, error bars show SEM and N= ≥ 3 biological replicates.
Extended Data Fig. 2 | Virus protein localization in ATL depleted cells. 48 h after lentiviral transduction of shRNA expression constructs, cells were infected with DV for 48 h. Cells were fixed with paraformaldehyde and viewed by immunofluorescence microscopy using LipidTOX or antibodies directed against capsid, Env, NS4B, NS3, Climp63 or RTN3. Scale bars, 10 µm, inset 5 µm.
Extended Data Fig. 3 | Effects of ATL depletion on virus-induced membrane alterations. Cells were transduced with constructs encoding for shRNAs directed against ATL2 or ATL3, or a NT shRNA. a, 48 h after transduction, cells were infected with DV and 48 h later fixed and processed for viewing by TEM. Invaginated vesicles (yellow dots) and viral particles (blue dots) were determined by counting using Fiji software. Inserts display magnified views of the boxed area (scale bars, 2 µm; inset, 200 nm). Note the accumulation of ER tubular networks at the cell periphery in ATL3 depleted cells.

b-f, Huh7-Lunet cells stably expressing the bacterial T7 RNA polymerase were transduced for 48 h, followed by transfection with a construct encoding for the viral polyprotein and containing the 3’ untranslated region (UTR) of the DV genome (panel b). c, 24 h post transfection, cells were fixed and stained with antibodies specific to the viral NS3 protein and visualized by confocal light microscopy. Scale bars, 10 µm. d, Graph shows the average relative fluorescence signal of NS3 in shRNA transduced cells. N=7 independent samples. e, Representative EM images of polyprotein expressing cells from a total of 3 independent experiments. Scale bars, 200nm. f, VPs in each cell were counted and mean values are represented in the graph (N=23 cells, error bars represent SEM). For all graphs * and ** represent p values lower than 0.05 or 0.01, respectively as determined by 2-tailed T-test.
Extended Data Fig. 4 | ATLs associate with distinct DV proteins. a–c, A549 cells stably expressing HA-ATL2 or HA-ATL3 were infected with DV for 48 h. Cells were then fixed and stained with antibodies directed against NS3 or Env and the HA epitope, respectively. Scale bars, 10 µm. d, Pearson’s colocalization coefficients were calculated for cells from panels a–c. The graph shows the average value from 20 cells for each condition. Error bars, SEM. e, A549 cells stably expressing HA-ATL2, HA-ATL3, HA-CANX, or an empty plasmid were infected with DV for 48 h. Cells were lysed and HA-tagged proteins were immunoprecipitated with anti-HA beads. Inputs and precipitated proteins were analysed by western blot using NS2B- and NS4B-specific antibodies. Breaks between adjacent blots indicate lanes not relevant to the experiment were removed. f–h, A549 cells stably expressing HA-ATL3 were infected with DV for 48 h. Cells were fixed and stained with antibodies directed against virus proteins or dsRNA (RED) and the HA epitope (green). Pearson’s colocalization coefficients for merge images are given in the top right corners. Images were taken using an Abberior instruments STED microscope. Scale bars, confocal 10 µm, STED 1 µm, inset 100 nm. i, Average Pearson’s colocalization coefficients were calculated for the fluorescent signal corresponding to the HA-tagged ATL3 compared to those from the indicated viral proteins in STED microscopy images. Graph shows the average Pearson’s colocalization coefficients calculated for 10 cells. Error bars, SEM.
Extended Data Fig. 5 | Production and testing of endogenously tagged ATL3.

a, Schematic representation of the cloning strategy used for endogenous tagging of ATL3. NVD, N-terminal variable domain; 3HB, three-bundle Helix; TM, transmembrane region; CTA, C-terminal amphipathic-helix domain. The tagging cassette includes the 11th beta-strand of GFP (GFP11) and the FLAG-tag.

b, Individual ATL3-ET (Endogenously Tagged) cell clones were lysed and lysates were analysed by western blot using the indicated antibodies. N=2 biological replicates.

c, Cells expressing the endogenously tagged ATL3 were fixed and stained for FLAG or the ER marker PDI. Fluorescence signals specific for antibodies or GFP were visualized by confocal microscopy. Scale bar, 10 µm.

d-f, A549 cells expressing endogenously-tagged ATL3 were infected with DV for 48 h.

d, Cells were fixed and stained with NS3 (red) or FLAG-specific antibodies (green). Scale bars, 10 µm.

e, Cells were lysed and FLAG-tagged proteins were precipitated with anti-FLAG magnetic beads. Inputs and captured protein complexes were evaluated by western blot using antibodies of given specificities. Actin served as loading and specificity control. Breaks between adjacent blots indicate lanes not relevant to the experiment were removed. N=2 biological replicates.

f, Titre of infectious extracellular DV were determined by PFU assay. Graph shows the average fold change in PFU ml⁻¹ compared to wild type cells for CRISPR–Cas9 control (Ctrl) or ATL3-ET cells over 3 biological replicates. Error bars, SEM.
Extended Data Fig. 6 | Production of ATL KO cells and effects of ATL mutations on viral replication and subcellular localization. a–e, A549 cells were transduced with vectors expressing CRISPR–Cas9 as well as a guide RNA directed towards ATL1, ATL2, ATL3, or a non-target guide RNA (Ctrl). a, Knock out or control cells were lysed and protein levels were determined by western blot using given antibodies. GapDH served as loading control. b, Knock out or control cell pools were infected with ZV or DV for 48 h followed by quantification of extracellular virus titre. Graphs show average fold change in PFU ml−1 for each cell line compared to control cells over 3 independent experiments. ** and *** represent p values lower than 0.01 or 0.001, respectively as determined by 2-tailed T-test. c–e, Knockout or control cell pools were transduced with lentiviruses encoding for the ATL variant given on the bottom of each. c–d, 72 h after transduction, cell viability was determined using celltiter glow measuring intracellular ATP levels. Graphs show the average fold change in cell viability compared to control A549 cells. Lower dashed line shows the cut off of 80% viability. N=3 biological replicates. e, 24 h after transduction, cells were infected with DV for 48 h followed by evaluation of virus production using PFU assay. Graph shows the average PFU ml−1 as fold change compared to ctrl cells for 3 independent experiments. Lower dashed line indicates the difference between ATL3 KO cells and ctrl cells, both transduced with an empty plasmid. For all graphs, error bars show SEM. f–g, A549 cells were transduced with constructs encoding for the indicated ATL variants. 72 h after transduction, cells were fixed and stained with antibodies directed against the HA epitope (green) or the ER marker reticulon 3 (RTN3; red). Scale bars, 10 µm.
Extended Data Fig. 7 | ATL2 and ATL3 overexpression does not alter the cellular proteome. Proteomic analysis of A549 cells stably expressing HA-ATL2, HA-ATL3, HA-CANX, or an empty plasmid. **a**, Heat map of log2-transformed LFQ intensities for each individual replicate in rainbow colours (see colour scale). **b–c**, Volcano plots of the p values vs. the log2 protein abundance differences between HA-tagged ATL2- and ATL3-overexpressing cells compared to HA-Calnexin (CANX) overexpressing cells, with proteins outside the significance lines highlighted (unadjusted two-sided t-test. Permutation based FDR <0.05, S0 = 1, p<0.05). N=4 independent experiments. For Raw data see Source Data Table 1.
Extended Data Fig. 8 | ATL interactome and shRNA screen. **a-b.** The scatter plot displays ATL2 (a) or ATL3 (b) specific interactors (compared to calnexin (CANX)) in both infected and uninfected cells. Schematics of the variables compared are shown in the bottom right of each scatter plot. Significantly enriched or depleted proteins are shown in red (N = 4 independent experiments. Welch’s T-test unadjusted two-sided P ≤ 0.05; |log2(fold-change)| ≥ 1).

c. Heat map showing imputed log2-transformed iBAQ intensities for each individual replicate in rainbow colours (see colour scale). Only the bait proteins and the selected cellular interaction partners used for the RNAi screen are depicted in the plot. |log2(fold-change)| < 1.

d. Knockout or control cells were transduced with lentivirus encoding for shRNAs (3/gene) targeting the genes specified in the left of the panel. 72 h after transduction, cell viability was tested. Graphs show the average change in cell viability, as determined by intracellular ATP quantification, for each treatment compared to control cells that were transduced with the non-target shRNA vectors. N = 3 independent experiments. Error bars, SEM.

e. A549 cells stably expressing HA-ATL2, HA-ATL3, HA-CANX (calnexin) or transduced with the empty vector were infected with DV for 48 h. Cells were lysed and HA-tagged proteins were captured with anti-HA beads. Inputs and precipitated protein were determined by western blot and probing for the indicated proteins. Red numbers below the ARF4 panel indicate efficiency of ARF4 pulldown compared to bait protein over an average of 3 experiments. Breaks between adjacent blots indicate non-relevant lanes were removed.
Extended Data Fig. 9 | Effects of ATL3 depletion on virus particle maturation and the secretory pathway. a, Cells were transduced with lentiviruses encoding for ARF4, ARF5 or non-targeting (NT) shRNAs. 72 h later RNA levels were quantified by RT-qPCR. Shown is the average fold change in viral RNA levels, corrected for HRPT. b–c, Cells were transduced with lentiviruses encoding for ATL2, ATL3 or NT shRNAs. b, After 72 h cells were transfected with a construct encoding for Gaussia luciferase and luciferase secretion was measured over 10 h. Graph shows the average levels of secreted luciferase compared to the 0 h time point. c, 72 h post transduction, cells were transfected with VSV-G-ts045_GFP and 8 h later incubated at 40 °C. 16 h later temperature was lowered to 32 °C and cells were imaged by confocal microscopy. Graph shows the means and SEM of perinuclear fluorescence intensity distribution for each condition. d–h, A549 cells were transduced with constructs of given specificities and cultured for 48 h. d, Cells were infected with ZV, and 48 h later viral RNA levels were determined by RT-qPCR (left panel). Intracellular viral RNA levels were corrected for HRPT. Titres of infectious virus contained in cell lysates and culture supernatants were determined using a PFU assay (right panel). For both panels, average fold changes are shown. e, Levels of prM and NS1 released from DV infected cells were calculated by quantifying western blots using Fiji software. Values were normalized to NT shRNA transduced cells (horizontal line). f, Cells were infected with DV for 48 h. RNA levels were determined by RT-qPCR; graph shows average fold change. g–h, Extracellular proteins were evaluated using western blot. h, Levels of prM released from DV infected cells were calculated using Fiji software. Values are displayed relative to NT shRNA transduced cells. All graphs show means and SEM derived from an average of 3 independent experiments. Significance was determined relative to NT shRNA transduced cells. * or ** represent p values < 0.05 or 0.01, respectively as determined by one-way ANOVA with a Dunnett’s multiple comparison analysis.
Extended Data Fig. 10 | Effects of ATL3 depletion on specific host protein localization. A549 cells were transduced with constructs encoding for shRNA directed against the indicated gene, or a NT shRNA. a, 48 h post transduction cells were infected with DV for 48 h. Cells were then fixed and the indicated proteins or structures were visualized by immune staining and confocal microscopy. b–e, 96 h after transduction, cells were fixed and stained with the antibodies of given specificity. After incubation with secondary, antibody fluorescence signal was visualized by confocal microscopy. f, shRNA transduced cells expressing the furin reporter protein CD4-Fu were fixed 72 h after transduction. The subcellular localization of the furin reporter was evaluated using immunofluorescence staining and confocal microscopy. Nuclear DNA was stained with DAPI. All scale bars, 10 μm. g, Transduced cells expressing the furin reporter protein were fixed 72 h after transduction and stained with anti-CD4 antibodies. The average total fluorescence levels of CD4-Fu were determined for ≥50 ctrl or ATL3 KD cells. Error bars, SEM.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a
- Confirmed
- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated
 - Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Confocal images were obtained with a Leica SP8 microscope using the Leica LAS X software. Super resolution images were taken on an Abberior Instruments STED microscope and images were deconvolved using inspector software. All original images were taken with a bit depth of 12 bits for display images or 16 bits for images that were quantified. Images for western blot were taken using the Chemocam 6.0 ECL system (INTAS Science Imaging, Gottingen, Germany), ImageJ software (National Institute of Health) was used to quantify both microscopy and western blot images. qPCR results were obtained using Bio-Rad CFX Manager 3.1. For Phylogenetic analysis, sequences were aligned using MUSCLE and trees were constructed using MrBayes v3.2.6. Maximum likelihood bootstrap values (100 pseudoreplicates) were obtained using RAxML v8.2.10 under the LG model. Raw mass-spectrometry data were processed with MaxQuant software versions 1.5.6.2. Mass-spectrometry results were plotted as scatter plot and heat map using Perseus software. Adobe Photoshop and illustrator software packages were used to assemble images into figures. Primers for qPCR were designed using Primer3 online software.

Data analysis

Statistical analyses were performed using the GraphPad Prism 5.0 or Microsoft Excel software. Two-tailed paired Student’s t-test with Bonferroni correction for multiple samples comparison or one-way ANOVA using a Dunnett post analysis were used to assess statistical significance. Data sets were considered signifi cantly different if the P-value was less than 0.05. For Mass-spectrometry analysis, Perseus software version 1.5.3.0 was used, and significantly enriched proteins were determined by Welch’s t test with permutation-based false-discovery rate (FDR) statistics, performing 250 permutations. The FDR threshold was set to 0.01 and S0 parameter was set to 1 to separate background from specifically enriched proteins (P ≤ 0.05 and |log2(fold-change)| ≥ 1). For Phylogenetic analysis MrBayes Bayesian analyses were run with the following parameters preset aamodelpr = fixed (WAG); mccngen = 1,000,000; samplefreq = 1000, nchains = 4; startingtree = random; sum burnin = 250.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data. All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All data and reagents will be made available upon reasonable request. The MS-based proteomics data were deposited at the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the data set identifier PXD014639 and PXD014640.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Experiments were performed using sample sizes based on standard protocols in the field which allow for statistical determination of changes between given samples.

Data exclusions

For the mass spectrometry analysis, Principal-Component Analysis was used to determine outlying data sets which were then removed from our analysis. For all other experiments no data were excluded from this manuscript.

Replication

For all data shown in the paper, experiments were replicated the indicated number of times with a minimum of 3 biological replicas. No replicates where excluded from the data.

Randomization

Sample allocation was random.

Blinding

No experimental blinding was used.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

Antibodies

Primary antibodies: Mouse anti-GFP (Roche, 1181446001, IF-1:500), Mouse anti-HA epitope (Sigma Aldrich H3663, WB-1:5000, IF-1:500), Rabbit anti-HA epitope (Thermofisher PA1-B95 IF-1:500), anti-ARF4 (Proteintech 11673-1-AP WB-1:5000, IF-1:100), anti-GAPDH (Santacruz sc365062 WB-1:5000), anti-Alpha Tubulin (Hölzel A01410 IF-1:500), anti-Beta Actin (Sigma Aldrich A5441 WB-1:5000), anti-TGN46 (Biorad AHP500G IF-1:200), anti-furin (Thermofisher PA1-062, IF-1:200), anti-RTN3 (Santacruz sc374599 IF-1:200), anti-Climp63 (Enyo LX-804-604-C100 IF-1:500), anti-FLAG epitope (Sigma Aldrich P7496, IF-1:200), anti-PDI (Thermofisher PA1-9850 IF-1:100), anti-RAB5 (Cell Signalling Technology 3547S IF-1:200), anti-RAB7 (Santa Cruz sc-376362, IF-1:200), anti-DENV NS5 (Genetex GTX629477, IF-1:100), anti-DENV Envelope (Gentex GTX127277, IF-1:100), anti-DENV Capsid (Gentex GTX103343, 1:200), anti-DENV NS4B (Genetex GTX133311, IF-1:1000), anti-DENV prM (Abcam 133311, 1:2000)
AB41473-1, IF-1:10), anti-dsRNA (Scicsons 10010500, IF-1:200), anti-DENV Capsid (Gift from John Aaskov, WB-1:50, IF-1:2), anti-DENV Envelope (Miller et al., 2006, WB-1:1000), anti-DENV prM (Welsch et al. 2009, WB-1:100), anti-DENV NS1 (Welsch et al. 2009, WB-1:500), anti-DENV NS2B (Welsch et al. 2009, WB-1:1000), anti-DENV NS3 (Miller et al., 2006, WB-1:1000, IF-1:100), anti-DENV NS4B (Miller et al., 2006, WB-1:1000), anti-DENV NS5 (Miller et al., 2006, WB-1:500), Mouse anti-CD4 (Novus, NBP2-52766AF647, IF-1:500)

Secondary antibodies: Goat anti–rabbit IgG-HRP (Sigma Aldrich A6154, 1:2000), Goat anti–mouse IgG-HRP (Sigma Aldrich A4416, 1:5000), Alexa Fluor 488 donkey anti-rabbit IgG (Thermofisher A-21206), Alexa Fluor 488 donkey anti-mouse IgG2a (Thermofisher A-21131), Alexa Fluor 568 donkey anti-rabbit IgG (Thermofisher A-10042), Alexa Fluor 568 donkey anti-mouse IgG (Thermofisher A-10007), Alexa Fluor 568 donkey anti-mouse IgG1 (Thermofisher A-21124), Alexa Fluor 647 donkey anti-rabbit IgG (Thermofisher A-31573), Alexa Fluor 647 donkey anti-mouse IgG (Thermofisher A-31571), Alexa Fluor 647 donkey anti-mouse IgG2b (Thermofisher A-21242), (ALL Alexa fluor secondaries used at 1:1000), STAR RED Goat anti-Rabbit IgG (Sigma Aldrich 41699, 1:400), Atto 594 Goat anti-mouse IgG (Sigma Aldrich 76085, 1:400).

Validation

All the antibodies used in this study were validated either by the commercial source or in the provided reference for the applications used in this manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line(s) VeroE6 were obtained from PROGEN Biotechnik GmbH, and HEK-293T, HeLa, and AS49 were obtained for ATCC. Huh7-Lunet cells were developed in our lab (Friebe et al. 2005. J. Virol).

Authentication The cell lines used were not authenticated.

Mycoplasma contamination All cell lines are regularly tested for mycoplasma contamination and were negative.

Commonly misidentified lines

No commonly misidentified cell lines were used.