Enabling valley selective exciton scattering in monolayer WSe$_2$ through upconversion

M. Manca1, M. M. Glazov2, C. Robert1, F. Cadiz1, T. Taniguchi3, K. Watanabe3, E. Courtade1, T. Amand1, P. Renucci1, X. Marie1, G. Wang1, and B. Urbaszek1

1 Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
2 Ioffe Institute, 194021 St. Petersburg, Russia
3 National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan

Excitons, Coulomb bound electron-hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe$_2$ monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional (2D) materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy, we also observe the excited A-exciton state 2s. Detuning of the continuous wave, low power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal.

RESULTS.

Upconversion emission 430 meV above excitation laser. We study WSe$_2$ MLs encapsulated in hexagonal boron nitride (h-BN) [59]. The aim is to eliminate detrimental surface effects [41] and to provide a symmetric (top/bottom) dielectric environment to study excitons. The high optical quality of the sample is demonstrated in Fig. 1c: Here we show reflectivity spectra using a white light source for illumination. We detect the A exciton peak at 1.723 eV, with a linewidth of typically 4 meV, this main exciton transition is labelled 1s in...
FIG. 1: Exciton resonances in linear spectroscopy and upconversion at T=4 K. The sample consists of a WSe$_2$ monolayer encapsulated in hBN [59]. (a) Strongly bound electron-hole pairs, excitons, dominate optical properties of TMDC monolayers such as WSe$_2$. In WSe$_2$ there exist 2 different exciton series. The B-exciton is about 400 meV above the A-exciton due to spin-orbit splitting of the valence band. (b) Excitons have a binding energy E_B, defined as the difference between the free particle bandgap and the optical bandgap observed in photoluminescence (PL) emission. E_B is of the order of 500 meV, the first excited state $n=2$ is about 130 meV above the $n=1$ state, marked as A:2s and A:1s, respectively, throughout this manuscript. (c) We have performed reflectivity with a white light source to identify the A- and B-exciton at T=4K. In addition we observe an excited states of the A-exciton labelled A:2s. (d) In photoluminescence we observe neutral A-exciton and trion emission (T), in addition we see hot luminescence of the A:2s state. (e) We also demonstrate upconversion PL: the laser is tuned to the A:1s-exciton resonance and strong emission from B:1s and A:2s at much higher energy is recorded, in addition to the trion emission (T) at lower energy. (f) optical microscope image of the studied van der Waals heterostructure. (g) Scheme of the side view of the sample.

The optical spectra shown in Fig. 1e introduce our upconversion scheme: excitation of the A:1s exciton ($E_L=1.723$ eV) results in strong PL emission at higher energy of the A:2s (E_L+133 meV) and B:1s exciton (E_L+430 meV), as well as trion emission (labelled T) at lower energy E_L-31 meV. This upconversion is achieved using a narrow linewidth, continuous wave laser and moderate excitation powers in the μW/\mu$m2 range, see Methods. Interestingly we also observe in WSe$_2$ MLs directly exfoliated onto SiO$_2$ (no hBN in the structure) this upconversion emission for A:2s and B:1s, see supplement. These observations are very surprising and further experiments that aim to clarify the origin of this upconversion are shown in Fig. 2.

Investigating the origin of the upconversion signal. The observed upconversion is extremely energy dependent: only strictly resonant excitation of the A:1s exciton results in measurable upconversion luminescence.
FIG. 2: **Investigating the origin of the upconversion process.** Sample temperature \(T = 4 \) K. (a) Left panel: contour plot of the upconversion PL intensity for A:2s and B:1s as a function of excitation energy, with a clear resonance at 1.723 eV, the A:1s exciton transition energy. Right panel: The resonance in upconversion PLE has a FWHM of only 4 meV. (b) We show power dependence of the upconversion PL intensity at resonance and compare with power dependence of the neutral exciton excited at the A:2s state in standard PL. Slopes in the range of \(10 \ldots 100 \) µW are for A:2s=1.1, B:1s=1.25 and A:1s=0.56 (c) Scenario for upconversion PL based on 2-photon absorption aided by a real intermediate state is presented. (d) Evolution of upconversion PL of A:2s for \(T = 4 \) K up to room temperature, the excitation laser energy is indicated following the shift of the A:1s exciton resonance with temperature.

The FWHM of the observed resonance in upconversion PL excitation (PLE) is about 4 meV, as shown in Fig. 2a, see red data points. Resonant excitation 31 meV below the A:1s state at the trion energy for example [53], does not result in emission at the A:2s and B:1s energies in our experiment. Emission at higher energy than the laser can have several origins [54–58, 65], here important information comes from the B-exciton emission: at 430 meV above the laser energy mechanisms purely based on phonon emission (i.e. laser cooling [66]) are very unlikely at the sample temperature \(T = 4 \) K. A more probable scenario is 2 photon absorption, made efficient by the A:1s as a real intermediate state. This idea is supported by (i) the narrow resonance around the A:1s exciton (Fig. 2a) and (ii) by analysis of the power dependence of the emission: the upconversion PL evolves with a slope roughly twice that of the exciton A:1s emission, see Fig. 2c. This indicates that two excitons resonantly excited by the laser combine to form a single excited state of the electron-hole pair, with the energy being the sum of exciton energies. As a plausible scenario we may suggest an Auger-like process, also referred to as exciton annihilation [36–39]. In this case the scattering of two existing excitons results in the transition of one electron forming an exciton to the valence band (i.e., nonradiative recombination [67]) while the remaining electron absorbs the released energy and is promoted towards the radiating states, particularly, B:1s and A:2s. As a result, the upconversion intensity scales as \(N^2_{A:1s} \), where \(N_{A:1s} \) is the exciton occupancy created by the laser. The occupancy \(N_{A:1s} \) is directly proportional to the intensity of the exciton emission from A:1s state, in agreement with experiment, see also the detailed discussion in the
FIG. 3: Creating B- and A-excitons: first signatures of boson scattering. T=4 K, $E_L = 1.723\text{ eV}$, σ^+ laser polarization. (a) B:1s upconversion PL detected in σ^+ (black – co-polarized) and σ^- (red – cross-polarized) polarization for a laser power of 5 μW. (b) Same as (a), but for 10 μW. (c) Same as (a) but for 50 μW. The value of the circular polarization degree of the emission $P_c = \frac{I_+ - I_-}{I_+ + I_-}$ is indicated on the panel. As we increase the power, the emission becomes strongly cross-polarized with respect to the initial excitation, we generate a negative polarization $P_c < 0$. (d) Laser excitation linearly (X) polarized, detection of upconverted PL at B:1s energy in linear X and Y basis. (e) Scheme to explain negative, power depedent polarization of hot B:1s PL emission observed in panels (a)-(c) based on boson scattering.

Possibility of boson scattering from B- to A-exciton levels. In our experiment we resonantly pump the A-exciton transition. As addressed above, presumably an additional photon is absorbed to create a second exciton and, ultimately, to generate an electron-hole pair in a high energy continuum state. From there the electron-hole pairs relax towards the B-exciton, where we observe hot luminescence 430 meV above the A-exciton. Very surprisingly the B:1s emissions is strongly σ^- polarized following circularly polarized σ^+ excitation i.e. counter-polarized with respect to the laser, see Fig. 3a-c. A strong indication for the importance of scattering processes comes from power dependent measurements: for a laser excitation power of 5 μW we measure $-3 \pm 2\%$ PL polarization, for a stronger excitation power of 50 μW the negative polarization is about $-14 \pm 2\%$, see panels a-c in Fig. 3. Observing any polarization at all for these upconversion PL signals is extremely surprising, as it is expected that absorption at high energy continuum states as well as Auger-type processes are not governed by strict polarization selection rules. In this context we have verified that linearly polarized excitation and circularly polarized excitation yield exactly the same intensity of the upconversion signal [68].

How can we explain the strong, negative polarization of the B:1s emission? We propose a scenario based on stimulated boson scattering [13–15], as sketched in Fig. 3e. As a first step, we assume excitation creates an equal population of σ^+ and σ^- excitons in the continuum $|f\rangle$, as chiral selection rules are relaxed. Subsequently the electron-hole pairs relax towards the B:1s state with the same rates for σ^+ and σ^-. However, the relaxation from the B-excitons towards the ground, A:1s states is polarization-dependent as bosons preferentially scatter to a quantum state that is already occupied: The pump laser creates a majority of co-polarized A-excitons and since excitons are bosons, the scattering probability of σ^+/σ^- polarized B:1s excitons towards A:1s excitons grows as $(1 + N_{A:1s}^\sigma)$ [15], where $N_{A:1s}^\sigma$ are the occupancies of correspondingly polarized A:1s-excitons. As a result, co-polarized B-exciton states get depleted faster than counter-polarized B-excitons. This imbalance gives rise to hot B-exciton PL emission counter-polarized with respect to the excitation laser.
FIG. 4: Photon emission 133 meV above the excitation laser at 4 Kelvin. (a) $T = 4$ K, $E_L = 1.723$ eV σ^+ laser polarization. Upconversion PL of A:2s state detected in σ^+ (black) and σ^- (red) polarization for a laser power of 5 μW. (b) Same as (a), but for 10 μW. (c) Same as (a) but for 50 μW. (d) Laser excitation linearly (X) polarized, detection of upconverted PL at A:2s energy in linear X and Y basis. (e) Contour plot of A:2s upconversion PL as a function of laser energy, a Raman feature moving with the laser energy is clearly visible, see supplement for water-fall style plot.

Linearly polarized excitation of A:1s does not induce any linearly polarized upconversion emission of B:1s, see Fig. 3d. Linear polarization is linked to valley coherence [32], which is too fragile to be maintained during the upconversion and energy relaxation processes.

Polarization of A:2s upconversion emission and anti-Stokes Raman at $E_L + 133$ meV. The upconversion PL of the A:2s transition on the other hand is strongly co-polarized with the excitation laser with $P_c \approx 25\%$, here the dependence on excitation laser power is rather weak as shown in Fig. 4a-c. We argue that the polarization of the A:2s is similar to the A:1s polarization as the exciton populations of the two states are coupled. First, the A:2s to A:1s separation is only 133 meV, compared to the B:1s to A:1s separation of 430 meV. Second, we observe anti-Stokes Raman scattering superimposed on the hot PL of the A:2s exciton, as can be seen in Fig. 4e and in the supplement. Previously, we have reported double resonant Stokes Raman scattering [60], that showed efficient relaxation from the A:2s state to the A:1s state as they are separated by a phonon-multiple. Here the equivalent anti-Stokes process is visible in the experiments. Due to efficient phonon exchange between the A:1s and A:2s states the polarizations of the ground and excited states have the same sign. Note that we cannot probe the A:1s polarization directly in resonant excitation conditions (signal is obscured by scattered laser light). In these experiments at $T = 4$ K the phonons can be generated by the relaxation following 2 photon absorption, for example, as well as due to the exciton to trion conversion through phonon emission [53]. Just as for the B:1s upconversion, the experiments using linearly polarized lasers do not result in linearly polarized emission in Fig. 4d.

In summary, we demonstrate upconversion photoluminescence in WSe$_2$ monolayers at energies as high as 430 meV above the laser energy. The effect occurs for strictly resonant excitation of the ground A-exciton state 1s and is most probably related to 2 photon absorption enabled by a real intermediate state. Very surprisingly, the upconverted PL emission of the B-exciton is counter-circularly polarized with respect to the excitation laser, which provides a fingerprint of stimulated exciton scattering from B- to A-states, which efficiently depletes the co-polarized B-exciton state. We also show upconversion emission at an energy corresponding to the excited state of the A-exciton 2s. Here strong phonon effects are visible in the form of anti-Stokes emission which exactly shifts with the excitation laser energy E_L as $E_L + 133$ meV.

METHODS.

Samples. The WSe$_2$ ML flakes are prepared by micro-mechanical cleavage of a bulk crystal (from 2D Semiconductors) and deposited using a dry-stamping technique on hexagonal boron nitride [59] on SiO$_2$/Si substrates. Subsequently h-BN was deposited on top of the WSe$_2$. Figure 1d shows an optical microscope image of the fabricated van der Waals heterostructure.

Experimental Set-up. Low temperature PL and re-
flectance measurements were performed in a home build micro-spectroscopy set-up build around a closed-cycle, low vibration attoDry cryostat with a temperature controller \(T = 4 \) K to 300 K. For PL at a fixed wavelength of 633 nm a HeNe laser was used, for PL experiments as a function of excitation laser wavelength we used a tunable, continuous wave Ti-Sa Laser Solitons from M SQUARED allowing continuous tuning in the range of 700-1000 nm. For wavelength below 700 nm the sample is excited by picosecond pulses generated by a tunable frequency-doubled optical parametric oscillator (OPO) synchronously pumped by a mode-locked Ti:Sa laser. The typical pulse and spectral width are 1.6 ps and 3 meV, respectively; the repetition rate is 80 MHz [69]. The white light source for reflectivity is a halogen lamp with a stabilized power supply. The emitted and/or reflected light was dispersed in a spectrometer and detected by a Si-CCD camera. The excitation/detection spot diameter is \(\approx 1 \mu m \), i.e. smaller than the typical ML diameter.

[1] Gross, E. & Karryjew, I. The optical spectrum of the exciton. In Dokl. Akad. Nauk SSSR, vol. 84, 471 (1952).
[2] Knox, R. S. Theory of excitons, vol. 5 (Academic Press, 1963).
[3] Rashba, E. & Sturge, M. Excitons, North-Holland (1982).
[4] Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg excitons in the copper oxide Cu_2O. Nature 514, 343–347 (2014).
[5] Wang, F., Dukovic, G., Brus, L. & Heinz, T. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838 (2005).
[6] C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, Berlin, Germany) 2006.
[7] Haug, H. & Koch, S. W. Quantum theory of the optical and electronic properties of semiconductors, vol. 5 (World Scientific, 2004).
[8] Keldysh, L. V. & Kozlov, A. N. Collective properties of excitons in semiconductors. Sov. Phys. JETP 27, 521 (1968).
[9] Moskalenko, S. A. & Snake, D. W. Bose-Einstein Condensation of Excitons and Biexcitons and Coherent Non-linear Optics with Excitons (Cambridge University Press, 2009).
[10] Snake, D., Denev, S., Liu, Y., Pfeiffer, L. & West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754–757 (2002).
[11] Gorbunov, A. & Timofeev, V. Large-scale coherence of the Bose condensate of spatially indirect excitons. JETP Letters 84, 329–334 (2006).
[12] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS\(_2\). Nature materials 14, 290–294 (2015).
[13] Tassone, F. & Yamamoto, Y. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999).
[14] Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).
[15] Butov, L. V. et al. Stimulated scattering of indirect excitons in coupled quantum wells: Signature of a degenerate Bose-gas of excitons. Phys. Rev. Lett. 86, 5608–5611 (2001).
[16] Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
[17] Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).
[18] Goblot, V. et al. Phase-controlled bistability of a dark soliton train in a polariton fluid. Phys. Rev. Lett. 117, 217401 (2016).
[19] Fraser, M. D., Höfling, S. & Yamamoto, Y. Physics and applications of exciton-polariton lasers. Nature Materials 15, 1049–1052 (2016).
[20] Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nature Materials 15, 1061–1073 (2016).
[21] Chernikov, A. et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS\(_2\). Phys. Rev. Lett. 113, 076802 (2014).
[22] Zhu, B., Chen, X. & Cui, X. Exciton Binding Energy of Monolayer WS\(_2\). Scientific Reports 5, 9218 (2015).
[23] Ugeda, M. M. et al. Observation of giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Materials 13, 1091–1095 (2014).
[24] Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WS\(_2\) monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).
[25] He, K. et al. Tightly bound excitons in monolayer WSe\(_2\). Phys. Rev. Lett. 113, 026803 (2014).
[26] Banbicki, A., Currie, M., Kiossoglou, G., Friedman, A. & Jonker, B. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS\(_2\) and WSe\(_2\). Solid State Communications 203, 16 – 20 (2015).
[27] Ye, Z. et al. Probing Excitonic Dark States in Single-layer Tungsten Disulfide. Nature 513, 214–218 (2014).
[28] Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS\(_2\). Nature Nanotechnology 8, 497–501 (2013).
[29] Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS\(_2\), MoSe\(_2\), WS\(_2\), and WSe\(_2\). Phys. Rev. B 90, 205422 (2014).
[30] Cao, T. et al. Valley-selective circular dichroism in mos\(_2\). Nature Communications 3, 887 (2012).
[31] Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS\(_2\) and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
[32] Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe\(_2\). Nat. Nanotechnol. 8, 634–638 (2013).
[33] Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley hall effect in MoS\(_2\) transistors. Science 344,
Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS$_2$ and WS$_2$. Nature Physics 11, 830–834 (2015).

Plechinger, G. et al. Excitonic valley effects in monolayer WS$_2$ under high magnetic fields. Nano Letters 16, 7899 (2016).

Mouri, S. et al. Nonlinear photoluminescence in atomically thin layered WSe$_2$ arising from diffusion-assisted exciton-exciton annihilation. Phys. Rev. B 90, 155449 (2014).

Kumar, N. et al. Exciton-exciton annihilation in MoSe$_2$ monolayers. Phys. Rev. B 89, 125427 (2014).

Yu, Y. et al. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 201111 (2016).

Sun, D. et al. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Letters 14, 5625–5629 (2014).

Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nature communications 6, 8315 (2015).

Amani, M. et al. Near-unity photoluminescence quantum yield in MoS$_2$. Science 350, 1065–1068 (2015).

Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photonics 9, 30–34 (2015).

Lundt, N. et al. Room temperature Tamm-plasmon exciton-polaritons with a WSe$_2$ monolayer. Nature Communications 7, 13328 (2016).

Flatten, L. C. et al. Room-temperature exciton-polaritons with two-dimensional WS$_2$. Scientific Reports 6, 33134 (2016).

Low, T. et al. Polaritons in layered two-dimensional materials. Nature Materials (2016).

Kolobov, A. V. & Tominaga, J. Emerging Applications of 2D TMDCs, 473–512 (Springer International Publishing, 2016).

Bleu, O., Solnyshkov, D. & Malpuech, G. Optical Valley Hall Effect based on Transitional Metal Dichalcogenide cavity polaritons. ArXiv e-prints (2016). 1611.02894.

Vasilevskiy, M. I., Santiago-Pérez, D. G., Traller-Giner, C., Peres, N. M. R. & Kavokin, A. Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two Bose-Einstein condensates. Phys. Rev. B 92, 245435 (2015).

Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354 (2016).

Dufferwiel, S. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature communications 6, 8579 (2015).

Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nature Physics 3949, np1 (2016).

Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat Commun 5, 10.1038/ncomms5555 (2014).

Jones, A. M. et al. Excitonic luminescence up-conversion in a two-dimensional semiconductor. Nature Physics (2015).

Seidel, W., Titkov, A., André, J. P., Voisin, P. & Voos, M. High-efficiency energy up-conversion by an "Auger fountain" at an InP-AlInAs type-II heterojunction. Phys. Rev. Lett. 73, 2356–2359 (1994).

Hellmann, R. et al. Low-temperature anti-Stokes luminescence mediated by disorder in semiconductor quantum-well structures. Phys. Rev. B 51, 18053–18056 (1995).

Poles, E., Selmarten, D. C., Mii, O. I. & Nozik, A. J. Anti-Stokes photoluminescence in colloidal semiconductor quantum dots. Applied Physics Letters 75, 971–973 (1999).

Paskov, P. P. et al. Photoluminescence up-conversion in InAs/GaAs self-assembled quantum dots. Applied Physics Letters 77, 812–814 (2000).

Chen, S. L. et al. Efficient upconversion of photoluminescence via two-photon absorption in bulk and nanorod ZnO. Applied Physics B 108, 919–924 (2012).

Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-Bn solvent. Journal of Crystal Growth 303, 525 – 529 (2007).

Wang, G. et al. Double resonant Raman scattering and valley coherence generation in monolayer WSe$_2$. Phys. Rev. Lett. 115, 117401 (2015).

Pöllmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe$_2$. Nature materials 14, 889–893 (2015).

Kormanyos, A. et al. k · p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Materials 2, 022001 (2015).

Astakhov, G. V. et al. Optical method for the determination of carrier density in modulation-doped quantum wells. Phys. Rev. B 65, 115310 (2002).

Chernikov, A. et al. Electrical tuning of exciton binding energies in monolayer WSe$_2$. Phys. Rev. Lett. 115, 126802 (2015).

Ovsyankin, V. & Feofilov, P. Mechanism of summation of electronic excitations in activated crystals. JETP Lett. 3, 322 (1966).

Zhang, J., Zhang, Q., Wang, X., Kwek, L. C. & Xiong, Q. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nature Photonics 10, 600–605 (2016).

Abakumov, V. N., Perel, V. I. & Yassievich, I. N. Nonradiative recombination in semiconductors (North Holland, Amsterdam, 1991).

Ivchenko, E. L. Optical spectroscopy of semiconductor nanostructures (Alpha Science, Harrow UK, 2005).

Lagarde, D. et al. Carrier and polarization dynamics in monolayer mos$_2$. Phys. Rev. Lett. 112, 047401 (2014).

Acknowledgements.— We thank ERC Grant No. 306719, ITN Spin-NANO Marie Sklodowska-Curie grant agreement No 676108 , ANR MoS2ValleyControl, Labex NEXT project Bi-3 and LIA CNRS-Ioffe RAS ILCNACS for financial support. X.M. also acknowledges the Institut Universitaire de France. M.M.G. is grateful to RFBR, Russian Federation President grant and Dynasty Foundation for partial support. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grant Numbers JP26248061,JP15K21722 and JP25106006. We thank Alexey Chernikov and E.L. Ivchenko for very fruitful discussions.
Author Contributions.— M.M., G.W., F.C. and E.C. performed the measurements. K.W. and T.T. grew the hBN. C.R. and P.R fabricated and tested the van der Waals heterostructures. M.M.G, T.A., X.M. and B.U interpreted the data, B.U., G.W. and M.M.G wrote the manuscript with input from all the authors.

Additional information Competing financial interests: The authors declare no competing financial interests.
Enabling valley selective exciton scattering in monolayer WSe\(_2\) through upconversion:

Supplementary Information

M. Manca\(^1\), M. M. Glazov\(^2\), * C. Robert\(^1\), F. Cadiz\(^1\), T. Taniguchi\(^3\), K. Watanabe\(^3\), E. Courtade\(^1\), T. Amand\(^1\), P. Renucci\(^1\), X. Marie\(^1\), G. Wang\(^1\), and B. Urbaszek\(^1\)

*Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France

\(^1\) Ioffe Institute, 194021 St. Petersburg, Russia

\(^3\) Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan

EXPERIMENTS

In the main text upconversion and its polarization dependence is studied in detail for ML WSe\(_2\) encapsulated in hexagonal boron nitride (hBN) \([S1]\). This hBN / 1ML WSe\(_2\) / hBN has been chosen for its the spectrally sharp and intense exciton transitions, see Fig. S1 bottom panel. But the reported effects are not only observed in encapsulated samples. We also observe very strong upconversion when exciting the A:1\(_s\) resonantly in standard WSe\(_2\) monolayers directly exfoliated onto SiO\(_2\), see Fig. S1 top panel and also in uncovered samples 1ML WSe\(_2\) / hBN

MODELS

One-photon absorption. In linear absorption one absorbed photon generates one exciton. Hence, for resonant excitation of the A:1\(_s\) state the exciton occupancy \(N_{A:1_s}\) is directly proportional to the light intensity \(I\). In the linear regime the exciton generation rate can be con-
FIG. S3: Circularly polarized excitation, co-circular detection (black) and cross-circular (red) detection of A:2s upconversion PL at T=4K signal (left axis). The circular polarization degree is plotted in blue (right axis). The laser energy E_L is indicated for each panel.

A convenient presentation of the exciton occupancy

$$N_{A:1s} \propto G\tau_A,$$

where τ_A is the lifetime of the A-exciton. The nonlinearities are either included in the intensity dependence of the absorption coefficient $A = A(I)$ or in the exciton occupancy dependence of exciton lifetime, $\tau_A = \tau_A(N_{A:1s})$. The analysis of the particular origin of the sublinear behavior of $N_{A:1s}$ vs. intensity seen in Fig. 2b of the main text is beyond the scope of the present work.

Two-photon absorption and Auger-like process.

The observation of B:1s exciton emission at A:1s excitation is possible if any only if, in addition to the photogenerated exciton, another quantum: second exciton, photon or phonon is involved. Otherwise the energy conservation law is violated. Let us consider in more detail the processes without phonon involvement.

Standard two-photon absorption (2PA) involves a virtual intermediate state. In this case the generation rate of the excitons in the highly excited states denoted as $|f\rangle$ in Fig. 2c of the main text (energy equals to $2\hbar\omega$, i.e. twice the laser energy) is proportional to the square of incident radiation intensity [S3–S5]

$$G^\text{2PA}_f \propto I^2. \quad (S2)$$

In the studied situation the single photon energy $\hbar\omega$ equals to the A:1s-exciton energy. Hence, the intermediate state for the two-photon process can be real. The two-photon excitation via real state (RS-2PA) can be viewed as a two-step process: creation of the A-exciton at the first step and transition of the A-exciton to the excited $|f\rangle$ state via the second photon absorption. On the level of free electron-hole pairs the process is illustrated in Fig. S4. In this process the generation rate of the excited excitons takes the form

$$G^\text{RS-2PA}_f \propto N_{A:1s(I)}.$$ \hspace{1cm} (S3)

This dependence is weaker than I^2 due to possible saturation of linear absorption. Particularly, if intermediate states saturate $G^\text{RS-2PA}_f \propto I$.

Moreover, two photons can be absorbed independently resulting in formation of two A:1s-excitons as schematically shown in Fig. S5a. The Coulomb interaction between the charge carriers forming the excitons results in the redistribution of the excitation in the k- and energy-spaces. Particularly, the Auger-like process is possible. In this scenario due to the Coulomb scattering one of the interacting electrons goes to the unoccupied state in the valence band, while another one takes the released energy and gets promoted to the excited energy band [S6]. As a result, the excited $|f\rangle$ state of the electron-hole pair...
TABLE I: Comparison of upconversion intensities for various phonon-less mechanisms: 2PA is the two-photon absorption via virtual state, RS-2PA is the two-photon absorption involving real intermediate states, Fig. S4, “sat” denotes saturation of the real intermediate state, Auger is the Auger-like two-exciton process, Fig. S5.

Process	2PA	RS-2PA	RS-2PA (sat)	Auger
Intermediate state	virtual	real	real intermediate states saturate	
Generation rate	$\propto I^2$	$\propto N_{A:1s} I$	$\propto N_{A:1s}^\text{real} I(\propto I)$	$\propto N_{A:1s}^2$

is formed, Fig. S5b. The strong Coulomb interaction between the electron and the hole results in the spread of excitonic functions in the k-space and relaxes the momentum conservation law. For the Auger-like process the generation rate of excitons in the excited states is quadratic in the occupancy of A:1s excitons

$$G_f^{\text{Auger}} \propto N_{A:1s}^2.$$ \(\text{(S4)}\)

Table I summarizes the results of the analysis performed above on the dependence of the exciton generation rate on the incident laser intensity. We assume that the relaxation from $|f\rangle$ exciton states towards A:2s- and B:1s-excitons is linear, i.e., its rate is proportional to the first power of the $|f\rangle$ states occupancy. Therefore, the upconversion intensity is proportional to the generation rate of the excited excitons, G_f. The comparison of the experimentally observed upconversion PL intensity as a function of the laser power, Fig. 2b of the main text, with the suggested mechanisms shows that the Auger-like process is the plausible source of the upconversion. The 2PA via real states is also possible if the substantial saturation of the intermediate states is assumed. However, the rise of the temperature up to the room temperature keeps upconversion efficient, Fig. 2d of the main text. This rules out trap states, which usually play a role of intermediate states for RS-2PA in the quantum well structures \([S7]\), as the origin of the intermediate states here.

Bose stimulation in the relaxation process. In order to illustrate the build-up of the cross-circular polarization we present the rate equation model accounting for the valley-independent generation of B-excitons via relaxation from excited $|f\rangle$ states and valley-dependent stimulated scattering towards A:1s excitons. To that end we introduce the generation rate of B-excitons, which is the same in both σ^+ and σ^- polarizations, G_B and present the rate equations for the densities N_B^\pm of the σ^\pm-polarized B:1s-excitons in the form

$$\frac{dN_B^+}{dt} = \frac{N_B^+}{\tau_B} + W(1 + N_A^+)N_B^+ = G_B, \quad \text{(S5a)}$$

$$\frac{dN_B^-}{dt} = \frac{N_B^-}{\tau_B} + W(1 + N_A^-)N_B^- = G_B, \quad \text{(S5b)}$$

where N_A^\pm are the occupancies of σ^\pm polarized A:1s-excitons, τ_B is the lifetime of B-excitons irrelrated with relaxation towards the A-states, W describes the rate of the relaxation to A:1s-excitonic state. This description is simplified as we neglect spin/valley relaxation of excitons and, moreover, the exciton relaxation from B- to A-state can be with multiple steps, in which case a cascaded process may be relevant \([S8]\). The circular polarization degree of B-excitons can be expressed, in the limit $W\tau_B(1 + N_A^\pm) \ll 1$ as

$$P_B = \frac{N_B^+ - N_B^-}{N_B^+ + N_B^-} = -\frac{1}{2}W\tau_B N_{A:1s} P_A, \quad \text{(S6)}$$

where $P_A = (N_A^+ - N_A^-)/N_{A:1s}$ is the circular polarization of the A-excitons, $N_{A:1s} = N_A^+ + N_A^-$ is the total number of A-excitons. Clearly, the polarization P_B of the upconverted B:1s-exciton emission is reversed as compared with P_A and it is the larger the more excitons are created by the laser, i.e. the larger $N_{A:1s}$. For the incident intensity $I = 100 \mu W/\mu m^2$ and A-exciton lifetime $\tau_A = 1$ ps we have, in accordance with Eq. (S1) the A-exciton density $N_x = 10^{10}$ cm$^{-2}$. To obtain an estimate of the occupancy of a single quantum state we present

$$N_{A:1s} = \frac{k^2 N_x}{M \Delta}, \quad \text{(S7)}$$

where $M \approx 0.5m_0$ with m_0 being free electron mass, is the exciton effective mass and Δ is the energy width of exciton distribution. The right hand side of Eq. (S7) plays a role of degeneracy parameter. For fully thermalized excitons $\Delta = k_B T \approx 0.3$ meV, $N_{A:1s} \approx 0.05$. However, the thermalization does not take place under resonant excitation conditions and low temperatures because
the exciton-acoustic phonon scattering is relatively weak in TMD materials and strongly exceed the radiative lifetime of excitons [S9]. The lowest limit for Δ comes from the laser linewidth, which is extremely narrow in our experiments with cw excitation. Taking $\Delta = 3 \times 10^{-2}$ meV and $W\tau_B = 0.5$ (evaluation of these quantities is beyond the scope of the present paper) and $P_A = 100\%$ we have for $P_B = -15\%$ in the order of magnitude agreement with experiment.

[S1] Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using ba-bn solvent. Journal of Crystal Growth 303, 525 – 529 (2007).

[S2] Seidel, W., Titkov, A., André, J. P., Voisin, P. & Voos, M. High-efficiency energy up-conversion by an "auger fountain" at an inp-aipas type-II heterojunction. Phys. Rev. Lett. 73, 2356–2359 (1994).

[S3] Ivchenko, E. L. Optical spectroscopy of semiconductor nanostructures (Alpha Science, Harrow UK, 2005).

[S4] Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition-metal dichalcogenides. Phys. Rev. B 92, 085413 (2015).

[S5] Glazov, M. M. et al. Intrinsic exciton states mixing and non-linear optical properties in transition metal dichalcogenide monolayers. ArXiv e-prints (2016). 1610.06780.

[S6] Abakumov, V. N., Perel, V. I. & Yassievich, I. N. Nonradiative recombination in semiconductors (North Holland, Amsterdam, 1991).

[S7] Hellmann, R. et al. Low-temperature anti-stokes luminescence mediated by disorder in semiconductor quantum-well structures. Phys. Rev. B 51, 18053–18056 (1995).

[S8] Liew, T. C. H. et al. Proposal for a bosonic cascade laser. Phys. Rev. Lett. 110, 047402 (2013).

[S9] Slobodeniuk, A. O. & Basko, D. M. Exciton-phonon relaxation bottleneck and radiative decay of thermal exciton reservoir in two-dimensional materials. Phys. Rev. B 94, 205423 (2016).