Emergence of scale-free syntax networks

Bernat Corominas Murtra,1 Sergi Valverde,1 and Ricard V. Solé1,2

1ICREA-Complex Systems Lab, Universitat Pompeu Fabra (GRIB), Dr Aiguader 80, 08003 Barcelona, Spain
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA

The evolution of human language allowed the efficient propagation of nongenetic information, thus creating a new form of evolutionary change. Language development in children offers the opportunity of exploring the emergence of such complex communication system and provides a window to understanding the transition from protolanguage to language. Here we present the first analysis of the emergence of syntax in terms of complex networks. A previously unreported, sharp transition is shown to occur around two years of age from a (pre-syntactic) tree-like structure to a scale-free, small world syntax network. The nature of such transition supports the presence of an innate component pervading the emergence of full syntax. This observation is difficult to interpret in terms of any simple model of network growth, thus suggesting that some internal, perhaps innate component was at work. We explore this problem by using a minimal model that is able to capture several statistical traits. Our results provide evidence for adaptive traits, but it also indicates that some key features of syntax might actually correspond to non-adaptive phenomena.

Keywords: Language evolution, language acquisition, syntax, complex networks, small worlds

I. INTRODUCTION

Human language stands as one of the greatest transitions in evolution (Maynard-Smith and Szathmáry, 1997) but its exact origins remain a source of debate and is considered one of the hardest problems in science (Christiansen and Kirby, 2003; Szamadó and Szathmáry, 2006). Since language does not leave fossils, our windows to its evolution are limited and require extrapolation from different sources of indirect information (Bickerton, 1990). Among the relevant questions to be answered is the leading mechanism driving language emergence: Is language the result of natural selection? The use of population models under noisy environments is consistent with such selection pressures (Gould, 2002; Gould and Lewontin, 1979). The evolution of human language allowed the efficient propagation of nongenetic information, thus creating a new form of evolutionary change. Language development in children offers the opportunity of exploring the emergence of such complex communication system and provides a window to understanding the transition from protolanguage to language. Here we present the first analysis of the emergence of syntax in terms of complex networks. A previously unreported, sharp transition is shown to occur around two years of age from a (pre-syntactic) tree-like structure to a scale-free, small world syntax network. The nature of such transition supports the presence of an innate component pervading the emergence of full syntax. This observation is difficult to interpret in terms of any simple model of network growth, thus suggesting that some internal, perhaps innate component was at work. We explore this problem by using a minimal model that is able to capture several statistical traits. Our results provide evidence for adaptive traits, but it also indicates that some key features of syntax might actually correspond to non-adaptive phenomena.

FIG. 1 Building the networks of Syntax Acquisition. First we identify the structures in child’s productions (a) using the lexico-thematic nature of early grammars (Radford, 1990), see (Corominas-Murtra, 2007). Afterwards, a basic constituency analysis is performed (b) assuming that the semantically most relevant item is the head of the phrase and that the verb in finite form (if any) is the head of the sentence. Finally (c) a projection of the constituent structure in a dependency graph is obtained.

An alternative approach to this problem considers instead a non-adaptive view. Roughly, language would be a “spandrel” i.e. an unselected side-effect of a true adaptation (Gould, 2002; Gould and Lewontin, 1979). The term spandrel was borrowed from Architecture and refers to the space between two arches or between an arch and a rectangular enclosure. In the context of evolution, a spandrel would be a phenotypic characteristic that evolved as a side effect of a true adaptation. More precisely, the features of evolutionary spandrels have been summarized (Solé and Valverde, 2006) as follows (a) they are the byproduct (exaptation) of building rules; (b) they have intrinsic, well-defined, non-random features and (c) their structure reveals some of the underlying rules of system’s construction. This non-adaptive view has been criticized for a number of good reasons (Dennet, 1995) but remains as an important component of the evolution debate. Within the context of language evolution, it has been suggested that language would have been a consequence of a large brain, with neural structures formerly used for other functions (Hauser et al., 2002).

Since there is no direct trace of primitive commu-
communication systems, we are forced to study this problem by means of indirect evidence, in the hope that “no event happens in the world without leaving traces of itself” (Bickerton, 1990). The remarkable process of language acquisition in children is probably the best candidate for such a trace of adaptation (Bickerton, 1990; Maynard-Smith and Szathmáry, 1997). Confronted with the surprising mastery of complex grammar achieved by children over two years, some authors early concluded that an innate, hardwired element (a language acquisition device) must be at work (Chomsky, 1988; Pinker, 1994; Pinker and Bloom, 1994). Children are able to construct complex sentences by properly using phonological, syntactic and semantic rules in spite that no one teaches them. Specifically, they can generate a virtually infinite set of grammatically correct sentences in spite that they have been exposed to a rather limited number of input examples. Moreover, although the lexicon shows a monotonous growth as new words are learned, the pattern of change in syntactic organization is strongly nonlinear, with a well-defined transitions from babbling to a fully, complex adult grammar through the one word and two words stage (Radford, 1990).

How can children acquire such huge set of rules? Are there some specific, basic rules predefined as a part of the biological endowment of humans? If so, some mechanism of language acquisition (the universal grammar) should guide the process. In this way, models assuming a constrained set of accessible grammars have shown that final states (i.e., an evolutionary stable complex grammar) can be reached under a limited exposure to the right inputs (Komarova et al., 2001; Nivogix, 2006). However, we cannot deny the fact that important features of the language acquisition process can be obtained by appealing only to general purpose mechanisms of learning (Elman, 1993; MacWhinney, 2005; Newport, 1990) or the importance of pure self-organization in the structure of the speech code (Ondrej, 2006; Steels, 1997). An integrated picture should take into account the interaction of some predefined grammar with general purpose mechanisms of learning and code self-organization, structuring human languages as we know today. Under this view, transition from protogrammar to grammar would be the result of an innovation of brain organization rapidly predated for communication (Hauser et al., 2002).

A quantitative analysis of language acquisition data is a necessary source of validation of different hypotheses about language origins and organization. Indeed, it is well accepted that any reasonable theory of language should be able to explain how it is acquired. Here we analyze this problem by using a novel approximation to language acquisition based on a global, network picture of syntax. Instead of following the changes associated to lexicon size or counting the number of pairs (or strings) of words, we rather focus on how words relate to each other and how this defines a global graph of syntactic links. We focus our analysis in the presence of marked transitions in the global organization of such graphs. As shown below, both the tempo and mode of network change seem consistent with the presence of some predefined hardware that is triggered at some point of child’s cognitive development. Furthermore, we explore this conjecture by means of an explicit model of language network change that is able to capture many (but not all) features of syntax graphs. The agreements and disagreements can be interpreted in terms of non-adaptive and adaptive ingredients of language organization.

II. BUILDING SYNTACTIC NETWORKS

Language acquisition involves several well-known stages (Radford, 1990). The first stage is the so-called babbling, where only single phonemes or short combinations of them are present. This stage is followed by the Lexical spurt, a sudden lexical explosion where the child begins to produce a large amount of isolated words. Such stage is rapidly replaced by the two words stage, where short sentences of two words are produced. In this period, we do not observe the presence of functional items nor inflectional morphology. Later, close to the two-years age, we can observe the syntactic spurt, where more-than-two word sentences are produced. The data set studied here includes a time window including all the early, key changes in language acquisition, from non-grammatical to grammatical stages.

In this paper we analyse raw data obtained from child’s utterances, from which we extract a global map of the pattern of the use syntactic relations among words. In using this view, we look for the dynamics of large-scale organization of the use of syntax. This can be achieved by means of complex networks techniques, by aggregating all syntactic relationships within a graph. Recent studies have shown that networks reveal many interesting features of language organization (Ferrer-i-Cancho and Sold, 2004; Ferrer-i-Cancho et al., 2004; Hudson, 2006; Ke, 2007; Melcuk, 1989; Sigman and Cecchi, 2002) at different levels. These studies uncovered new regularities in language organization but so far none of them analyzed the emergence of syntax through language acquisition. Here we study in detail a set of quantitative, experimental data involving child utterances at different times of their development.

Formally, we define the syntax network \(G = G(W, E)\) as follows (see fig.1). Using the lexicon at any given acquisition stage, we obtain the collection of words \(W = \{w_1, ..., w_n\}\), being every word a node \(w_i \in G\). There is a connection between two given words provided that they are syntactically linked\(^1\). The set of links \(E\) describes

\(^1\) Recall that the net is defined as the projection of the constituency hierarchy. Thus, the link has not an ontological status under our
FIG. 2 Transitions from tree-like graphs to scale-free syntax graphs through the acquisition process. Here three snapshots of the process are shown, at (a) 25 months, (b) 26 moths and (c) 28 months. Although a tree-like structure is shown to be present through the pre-transition (a-b) a scale-free, much more connected web suddenly appears afterward (c), just two months later. The lower pictures indicate how the hubs are organized and their nature. There is a critical change at the two-years age marked by a strong reorganization of the network. Prior to the transition, semantically degenerated elements (such as *it*) act as hubs. Key words essential to adult syntax are missing in these early stages. After the transition, the hubs change from semantically degenerated to functional items (i.e., *a* or *the*). In (f) we highlight the core of this network (the hubs and their links) using yellow nodes and edges.

all the syntactic relationships in the corpus. For every acquisition stage, we obtain a syntactic network involving all the words and their syntactic relationships. The structure of syntax networks will be described by means of the adjacency matrix \(A = [a_{ij}] \) with \(a_{ij} = 1 \) when there is a link between words \(w_i \) and \(w_j \) and \(a_{ij} = 0 \) otherwise.

Our corpora are extracted from a recorded session where a child speaks with adults spontaneously. We have collected them from the CHILDES Database (MacWhinney, 2000)\(^2\). The analysis was performed using the Dependency Grammar Annotator (Popescu, 2003). Specifically, we choose Peter's corpora as a particularly representative and complete example (Bloom et al., 1974, 1975). Time intervals are regular and the corpora spans a time window that can be considered large enough to capture statistically relevant properties. Each corpus contains several conversations among adult investigators and the child. However, the raw corpus must be parsed in order to construct properly defined graphs. In (Corominas-Murtra, 2007) we present a detailed description of the criteria and rules followed to pre-process the raw data. The main features of the parsing algorithm are indicated in fig[1] and can be summarized as follows:

1. Select only child's productions rejecting imitations, onomatopoeia's and undefined lexical items.
2. Identify the structures, i.e., the minimal syntactic constructs.
3. Among the selected structures, we perform a basic analysis of constituent structure, identifying the verb in finite form (if any) in different phrases.
4. Project the constituent structures into lexical dependencies. This projection is close to the one proposed by (Hudson, 2006) within the framework of the network-based Word Grammar\(^3\).
5. Finally, we build the graph by following the dependency relations in the projection of the syntactic

\(^2\) http://talkbank.org

\(^3\) note that the operation is reversible, since can rebuild the tree from the dependency relations
structures found above. Dependency relations allow us to construct a syntax graph.

With this procedure, we will obtain a graph for every corpus. The resulting graphs will be our object of study in the following section.

III. EVOLVING SYNTAX NETWORKS

Here we analyze the topological patterns displayed by syntax networks at different stages of language acquisition. To our knowledge, this is the first detailed analysis of language network ontogeny so far. The resulting sequence exhibits several remarkable traits. In fig. 2a,b, we show three examples of these networks. At early stages, (fig. 2a,b) most words are isolated (not shown here) indicating a dominant lack of word-word linkage. Isolated words are not shown in these plots. For each stage, we study the largest subset of connected words or giant component (GC). The reason for considering the largest connected component is that, from the very beginning, the GC is much larger than any other secondary connected component and in fact the system shows an almost all-or-none separation between isolated words and those belonging to the GC. In other words, the giant component captures almost all word-words relations. By sampling corpora at different times, we obtain a time series of connected networks $G(W_T, E_T)$, where W_T and E_T are the set of words and links derived from the T-th corpus, $T = 1, ..., 11$.

A. Global organization

In agreement with the well-known presence of two differentiated regimes, we found that networks before the two-year transition (fig. 2a-b) show a tree-like organization, suddenly replaced by much larger, heterogeneous networks (fig. 2c) which are very similar to adult syntactic networks [Ferrer-i-Cancho et al., 2004]. This abrupt change indicates a global reorganization marked by a shift in grammar structure. This is particularly obvious in looking to the changes in the nature of hubs before and after the transition. Highly connected words in the pre-transition stage are semantically degenerated lexical items, such as it. After the transition, hubs emerge as functional items, such as a or the. These hubs were essentially nonexistent in previous stages, as displayed in fig. 3.

B. Average degree

A first quantitative measure is the connectivity of every element. The number of links (or degree $k_i = k(w_i)$) of a given word $w_i \in W$ gives a measure of the number of different syntactic relations in which such a word participates. Figure 3 shows the time series of k for several relevant words. All of them display a sharp change around two-years ($T = 5$). The gray area indicates the presence of syntactic organization and words such as a, the or that strongly increase their presence and take the control of the hub structure (compare with the previous figure). The advantage of using degree as a measure of the relevance of a given word is that this topological trait is largely independent on its frequency of appearance.

C. Small world development

Two important measures allow us to characterize the overall structure of these graphs. These are the average path length L_T and clustering coefficient C_T (Watts and Strogatz, 1998). The first measure is defined as the average $D_T = \langle D_{\text{min}}(i,j) \rangle$, where $D_{\text{min}}(i,j)$ indicates the length of the shortest path connecting nodes w_i and w_j. The average is performed over all pairs of words. Roughly speaking, short path lengths mean that it is easy to reach any given word w_i starting from another arbitrary word w_j. Small path lengths in sparse networks are often an indication of efficient information exchange. The clustering coefficient C_T is defined as the probability that two words that are neighbors of a given word are also neighbors of each other (i.e. that a triangle is formed). In order to estimate C_T, we define for each word w_i a neighborhood Γ_i. Each word $w_j \in \Gamma_i$ is syntactically related (at least once) with w_i in a production. The words in Γ_i can also be linked to each other,
FIG. 4 Changes in the structure of syntax networks in children are obtained by means of several quantitative measures associated to the presence of small world and scale-free behavior. Here we display: (a) the average path length D_T, (b) The number of words (N_w) and links L (c) the clustering coefficient. As shown in (a) and (c), a small world pattern suddenly emerges after an age of ≈ 24 months. A rapid transition from a large L and low C takes place towards a small world network (with low D and high C). After the transition, well-defined scale-free graphs, with $P(k) \propto k^{-2.30}$, are observed (d).

and the clustering $C(\Gamma_i)$ is defined as

$$C(\Gamma_i) = \frac{1}{k_i(k_i-1)} \sum_j \sum_{k \in \Gamma_i} a_{jk} \quad (1)$$

The average clustering of the G_T network is simply $C_T = \langle C(\Gamma_i) \rangle$ i.e. the average over all $w_i \in W$. Most complex networks in nature and technology are known to be small words, meaning that they have short path lengths and high clustering [Watts and Strogatz, 1998]. Although language networks have been shown to have small world structure [Ferrer-i-Cancho and Solé, 2001; Ferrer-i-Cancho et al., 2004; Sigman and Cerchi, 2002; Stevvers and Tenenbaum, 2005] little is known about how it emerges in developing systems.

Two regimes in language acquisition can be also observed in the evolution of the average path length fig.(4a). It grows until reaches a peak at the transition (where the small word domain is indicated by means of the grey area). Interestingly, at $T = 5$ the network displays the highest number of words for the pre-transition stage. For $T > 5$, the average path length stabilizes $D_T \approx 3.5$ (see fig. (4b)). The increasing trend of D_T in $T < 5$ may be an indication that combinatorial rules are not able to manage the increasing complexity of the lexicon. In fig.(4b) we plot the corresponding number of words N_T and links L_T of the GC as filled and open circles, respectively. We can see that the number of connected words that belong to the GC increases in a monotonous fashion, displaying a weak jump at the age of two. However, the number of links (and thus the richness of syntactic relations) experiences a sharp change.

The rapid increase in the number of links indicates a qualitative change in network properties strongly tied to the reduction of the average path length. A similar abrupt transition is observed for the clustering coefficient: In the pre-transition stage C_T is small (zero for $T = 1, 2, 3$). After the transition, it experiences a sudden jump. Both D_T and C_T are very similar to the measured values obtained from syntactic graphs from written corpus (Ferrer-i-Cancho et al., 2004).

D. Scale-free topology

The small world behavior observed at the second phase is a consequence of the heterogeneous distribution of links in the syntax graph. Specifically, we measure the degree distribution $P(k)$, defined as the probability that a node has k links. Our syntactic networks display scale-free degree distributions $P(k) \propto k^{-\gamma}$, with $\gamma \approx 2.3 - 2.5$. Scale-free webs are characterized by the presence of a few elements (the hubs) having a very large number of connections. Such heterogeneity is often the outcome of multiplicative processes favouring already degree-rich elements to gain further links [Barabási and Albert, 1999; Dorogovtsev and Mendes, 2001, 2003].

An example is shown in fig.(4l) where the cumulative degree distribution, i.e:

$$P_{\geq}(k) = \int_{k}^{\infty} P(k) dk \sim k^{-\gamma+1} \quad (2)$$

is shown. The fitting gives a scaling exponent $\gamma \approx 2.3$, also in agreement with adult studied corpora. They are responsible for the very short path lengths and thus for the efficient information transfer in complex networks. Moreover, relationships between hubs are also interesting: the syntax graph is dissassortative [Newman, 2002], meaning that hubs tend to avoid to be connected among them (Ferrer-i-Cancho et al., 2004). In our networks, this tendency also experiences a sharp change close to the transition domain (not shown) thus indicating that strong constraints emerge strongly limiting the syntactic linking between functional words.

IV. MODELING LANGUAGE ACQUISITION

We have described a pattern of change in syntax networks. The patterns are nontrivial and quantitative. What is their origin? Can we explain them in terms of some class of self-organization (SO) model? Are they instead associated to some internal, hardwired component? Here we present a new model of network evolution that tries to capture the observed changes and provides tentative answers to the previous questions.
A. Simple SO graph growth models

We explored several types of SO models without success. Appropriate models should be able to generate: (a) sharp changes in network connectivity and (b) scale-free graphs as the final outcome of the process. In relation to the sudden shift, it is well known that a sharp change in graph connectivity occurs when we add links at random between pairs of nodes until a critical ratio of links against nodes is reached (Bollobás, 2001; Erdős and Rényi, 1959). Starting from a set of N isolated elements, once the number of links L is such that $p \equiv L/N \approx 1$, we observe a qualitative change in graph structure, from a set of small, separated graphs $(p < 1)$ to a graph structure displaying a giant component $(p > 1)$ with a comparatively small number of isolated subgraphs. This type of percolation model has been widely used within the context of SO (Kauffman, 1993; Solé and Goodwin, 2001). Unfortunately, such a transition is not satisfactory to explain our data, since (a) it gives graph with a Poissonian degree distribution (Bollobás, 2001), i.e.

$$P(k) \approx \frac{(k)^ke^{-k}}{k!} \quad (3)$$

and (b) there is no sharp separation between isolated nodes and a single connected graph, but instead many subgraphs of different sizes are observed.

Other models instead consider growing graphs using preferential attachment rules (Barabási and Albert, 1999; Dorogovtsev and Mendes, 2001, 2003). In these models the number of nodes grows by adding new ones which tends to link with those having the largest connectivity (a rich-gets-richer mechanism). Under a broad range of conditions these amplification mechanisms generate scale-free graphs. However, the multiplicative process does not lead to any particular type of transition phenomenon. The status of hubs remains the same (they just win additional links). Actually, well-defined predictions can be made, indicating that the degree of the hubs scales with time in a power-law form $\langle k \rangle \sim t^{\gamma}$ (Barabási and Albert, 1999; Dorogovtsev and Mendes, 2003). Although many possible combinations of the previous model approaches can be considered, we have found that the simultaneous presence of both scale-free structure emerging on top of a tree and a phase transition between both is not possible. In order to properly represent the dynamics of our network, a data-driven approach seems necessary.

B. Network growth model and analysis

In order to reproduce the observed trends, we have developed a new model of network evolution. The idea is to describe the process of network growth without predefined syntactic rules. We make the simplistic assumption that word interaction only depends on word frequency following Zipf’s law. In this context, it has been suggested that Zipf’s law might be the optimal distribution compatible with efficient communication (Ferrer-i-Cancho and Solé, 2003; Ferrer-i-Cancho et al., 2005; Harremoës and Topsoe, 2001; Solé, 2005). If no internal mechanisms are at work, then our model should be able to capture most traits of the evolution of syntax.

In order to develop the model, a new measure, close to the usual MLU^4 used in linguistics, must be defined. The structure length of the i-th structured production (s_i) is measured by counting the number of words that participate in the i-th syntactic structure. In our previous example (see figure 1) we had 4 structures, of sizes $|s_1| = 4, |s_2| = 2, |s_3| = 2$ and $|s_4| = 3$. Its average, the Mean Structure Length, $\langle s \rangle$ is $\langle s \rangle = 2.75$. In fig. (5c) we can see how the MLU evolves over time. The frequency of s, $p(s)$ was also measured and was found to decay exponentially, with $p(s) \propto e^{-|s|/\gamma}$, with $\gamma = 1.40$ in this specific set of data (fig. (5d)). We can connect the two previous through

$$\langle s \rangle = \frac{1}{Q} \sum_s se^{-|s|/\gamma} \quad (4)$$

where Q is defined as the normalization constant:

$$Q = \sum_s e^{-|s|/\gamma} \quad (5)$$

In the five first corpora, $\langle s \rangle < 2$. Beyond this stage, it rapidly grows with $\langle s \rangle > 2$, (see fig. (5b)).

4 The MLU is the Mean Length of Utterance i.e. the average length of a child’s utterances, measured in either words or morphemes.
We incorporate to the data-driven model our knowledge on structure lengths. We first construct, for each corpus, a random syntactic network that shares the statistics of word frequencies and structure lengths of the corresponding data set. Such a measure can be interpreted, in cognitive terms, as some kind of working memory and might be the footprint of some maturational constraints (Elman, 1993; Newport, 1990). For simplicity, we assume that the probability of the i-th most frequent word is a scaling law:

\[p_w(i) = \frac{1}{Z} i^{-\beta} \]

with \(1 \leq i \leq N_w(T) \), \(\beta \approx 1 \) and \(Z \) is the normalization constant:

\[Z = \sum_{i=1}^{N_w(T)} \left(\frac{1}{T} \right)^{\beta} \]

(notice that \(Z \) depends on lexicon size, \(N_w(T) \), which grows slowly at this stage). However, the actual word frequency is affected by other corpus features. In particular, our corpora are highly redundant with many duplicated structures but we build our nets ignoring such redundancies, since we are interested in the topological patterns of use. For every corpus \(T \) with \(N_a(T) \) distinct structures, we compute the distribution of structure lengths \(p_T(s) \), \(1 \leq T \leq 11 \). From \(N_w(T) \), \(p_w(i) \), \(N_a(T) \) and \(p_T(s) \), we generate a random syntactic network for every stage \(1 \leq T \leq 11 \) (see fig. 6). Given a lexicon with \(N_w(T) \) different items, labeled as \(a_1 \ldots a_{N_w(T)} \) the model algorithm goes as follows:

1. Generate a random positive integer \(s \) with probability \(p_T(s) \).
2. Choose \(s \) different “words” from the lexicon, \(a_1^s, \ldots, a_j^s \) each word with probability \(p(a_i) \propto i^{-\beta} \), with \(\beta \approx 1 \).
3. Trace an arc between every two successive words thus generating a unstructured string of \(s \) nodes.
4. Repeat (1), (2) and (3) until \(N_a(T) \) structures are generated.
5. Aggregate all the obtained strings in a single, global graph.

In spite of the small number of assumptions made, the above model reproduces many of the topological traits observed in real networks. To begin with, we clearly observe the sudden transition from tree-like networks to scale-free networks (see fig 6). Furthermore, typical network properties, such as clustering, degree distribution or path lengths seem to fit real data successfully (see fig. 6). The very good agreement between global patterns of network topology is remarkable given the lack of true syntax. It indicates that some essential properties of syntax networks come “for free”. In other words, both the small world and the scale-free architecture of syntax graphs would be spandrels: although these type of networks provide important advantages (such as highly efficient and robust network interactions) they would be a byproduct of Zipf’s law and increased neural complexity. These results thus support the non-adaptive nature of language evolution.

However, particularly beyond the transition, a detailed analysis is able to find important deviations between data and model predictions. This becomes specially clear by looking at small subgraphs of connected words. Studying small size subgraphs allows to explore local correlations among units. Such correlations are likely to be closer to the underlying rules of network construction, since they are limited specifically to direct node-node relations and their frequency. We have found that the subgraph census reveals strong deviations from the model due to the presence of grammatical constraints, i.e, non-trivial rules to build the strings.

In figure [9] we display the so-called subgraph census plot (Holland and Leinhardt, 1970; Wasserman and Faust, 1994) for both real (circles) and simulated (squares) networks. Here the frequencies of observed subgraphs of size three are shown ordered in decreasing order for the real case. For the simulated
FIG. 7 Algorithm for network growth. The model uses as input information a Zipf’s distribution of “words” and the probability to find a structure of size s in a given corpus, $p_T(s)$. Each step we choose s words from the list, each word with a probability proportional to their frequency. A link is then established between two successive words generating an unstructured string of s nodes. We repeat the process a number of times and we aggregate in a global graph all the obtained strings. $p_T(s)$ can be interpreted as the footprint of a kind of working memory, and follows an exponential distribution (As shown in fig. (5)).

networks, we have averaged the subgraph frequencies over 50 replicas. Several obvious differences are observed between both censuses. The deviations are mainly due to the hierarchical relations that display a typical syntactic structure, and to the fact that lexical items tend to play the same specific role in different structures (see fig(9)–d). Specifically, we find that the asymmetries in syntactic relations induce the overabundance of certain subgraphs and constrain the presence of others. Specially relevant is the low value of third type of subgraph, confronted with the model prediction. This deviation can be due to the organizing role of functional words (mainly out-degree hubs) in grammar. Indeed, coherently with this interpretation, we find that the first type of subgraph (related with out-degree hubs) is more abundant than the model prediction.

The second interesting deviation is given by the changing status of hubs. As previously described, in the prefunctional period hubs are semantically degenerated words, such as *that*, *it*, whereas beyond the transition hubs are functional words. This observation seems to be coherent with a recently proposal to understand the emergence of functional items in child grammars. In short, a pure articulatory strategy introduces a new sound (mainly the a) that is rapidly predated by the syntactic system when it is mature enough (Veneziano and Sinclair 2000). This would imply a reuse of an existing, phontetical element and would explain the astonishing increasing of appearance that they experience. If we follow the changes in number of links displayed by the hubs in the simulated system, no such exchange is ever observed. Instead, their degree simply keeps growing through the process (not shown).

FIG. 8 Changes in the structure of syntax model networks -compare with fig.(4). Here we show: (a) the average path length L, (b) the number of links (L) and lexical items (N) and (c) the clustering coefficient C. An example of the resulting SF distributions is also shown in (d).

V. DISCUSSION

Our study reveals two clearly differentiated behaviors in the early stages of language acquisition. Rules governing both grammatical and global behavior seem to be qualitatively and quantitatively different. Could we explain the transition in terms of self-organizing or purely external-driven mechanism? Clearly not, given the special features exhibited by our evolving webs, not shared by any current model of evolving networks (Dorogovtsev and Mendes 2001, 2003). Beyond the transition, some features diverge dramatically from the pre transition graph, particularly the changing role of the hubs. Such features cannot be explained from external factors (such as communication constraints among
individuals). Instead, it seems tied to changes in the internal machinery of grammar. The sharp transition from small tree-like graphs to much larger scale-free nets, and the sudden change of the nature of hubs are the footprints of the emergence of new, powerful rules of exploration of the combinatorial space, i.e., the emergence of full adult syntax. This seems to support the hypotheses suggested by Hauser et al. (Hauser et al 2002; see also Nowak and Krakauer, 1999).

Furthermore, we have presented a novel approach to language acquisition based on a simple, data-driven model. Previous model approaches based on self-organization cannot reproduce the observed patterns of change displayed by syntax graphs. Our main goal was to explore the potential roles of adaptive versus non-adaptive components in shaping syntax networks as they change in time. The model is able to reproduce some fundamental traits. Specifically we find that: (a) the global architecture of syntactic nets obtained during the acquisition process can be reproduced by using a combination of Zipf’s law and assuming a growing working memory and (b) strong deviations are observed when looking at the behavior of hubs and the distribution of subgraph abundances. Such disagreements cannot be fixed by additional rules. Instead, they indicate the presence of some innate, hard-wired component related with the combinatorial power of the underlying grammatical rules that is triggered at some point of the child’s cognitive development. Our study supports the view that the topological organization of syntactic networks is a spandrel, a byproduct of communication and neural constraints. But the marked differences found here cannot be reduced to such scenario and need to be of adaptive nature. Furthermore, our analysis provides a quantitative argument to go forward beyond statistics in the search of fundamental rules of syntax, as it was early argued in Miller and Chomsky (1963).

A further line of research should extend the analysis to other (typologically different) languages and clarify the nature of the innovation. Preliminary work using three different European languages supports our previous results (Corominas-Murtra et al unpublished work). Moreover, modeling the transitions from finite grammars to unbounded ones by means of connectionist approximations (Szathmáry et al. 2007) could shed light on the neuronal prerequisites canalizing the acquisition process towards a fully developed grammar as described and measured by our network approach.

VI. ACKNOWLEDGEMENTS

The authors thank Guy Montag and the members of the CSL for useful discussions. We also acknowledge Liliana Tolchinsky and Joana Rosselló for helpful comments on theory of syntax acquisition. Finally, we acknowledge Maria Farriols i Vallkaura for her support during the whole process of this work. This work has been supported by grants FIS2004-0542, IST-FET ECABENTS, project of the European Community founded under EU R&D contract 01194, the McDonnell foundation (RVS) and by the Santa Fe Institute.

References

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509.

Bickerton, D. (1990). Language and Species. University of Chicago Press, Chicago.

Bloom, L., Hood, L., and Lightbown, P. (1974). Imitation in language development if when and why. Cognitive Psychology, (6), 380–420.

Bloom, L., Lightbown, P., and Hood, L. (1975). Structure and variation in child language. Monographs of the society for Research in Child Development. Serial 160, (40).

Bollobás, B. (2001). Random Graphs. Cambridge University Press.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton & Co. Paris.

Chomsky, N. (1988). Language and problems of knowledge. MIT Press. Cambridge, Mass.

Christiansen, M. H. and Kirby, S. (2003). Language evolution: Consensus and controversies. Trends in Cognitive Sciences, 7(7), 300–307.

Corominas-Murtra, B. (2007). Network statistics on early english syntax: Structural criteria. arXiv.org:0704.3708.

Deacon, T. W. (1997). The Symbolic Species: The Co-evolution of Language and the Brain. New York: W.W. Norton.

Dennett, D. C. (1995). Darwin’s dangerous idea. Penguin Books: London.

Dorogovtsev, S. N. and Mendes, J. F. F. (2001). Language as an evolving word web. Proc. Royal Soc. London B, 268.

Dorogovtsev, S. N. and Mendes, J. F. F. (2003). Evolution of Networks. Oxford University Press. New York.

Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48(1), 71–99.
Erdős, P. and Rényi, A. (1959). On random graphs. *Publications Mathematicae (Debrecen)*, 6, 290–297.

Ferrer-i-Cancho, R. and Solé, R. V. (2001). The small world of human language. *Proc. Royal Soc. London B, 268*.

Ferrer-i-Cancho, R. and Solé, R. V. (2003). Least effort and the origins of scaling in human language. *Proc. Natl. Acad. Sci. USA, 100*, 788–791.

Ferrer-i-Cancho, R., Köhler, R., and Solé, R. V. (2004). Patterns in syntactic dependency networks. *Phys. Rev. E, 69*, 051915.

Ferrer-i-Cancho, R., Riordan, O., and Bollobás, B. (2005). The consequences of Zipf’s law for syntax and symbolic reference. *Proceedings of The Royal Society of London. Series B, Biological Sciences*.

Gould, S. J. (2002). *The Structure of Evolutionary Theory*. Harvard U. Press, Cambridge MA.

Gould, S. J. and Lewontin, R. C. (1979). The spandrels of san marco and the panglossian paradigm: A critique of the adaptationist programme. *Proc. Roy. Soc. London B, 205*, 581–598.

Harremoës, P. and Topsoe, F. (2001). Maximum entropy fundamentals. *Entropy, 3* [3], 191–226.

Hauser, M. D., Chomsky, N., and Fitch, T. W. (2002). The faculty of language: What is it, who has it, and how did it evolve? *Science, 298*, 1569–1579.

Holland, P. W. and Leinhardt, S. (1970). A method for detecting structure in sociometric data. *Am. J. of Soc., 70*, 492–513.

Hudson, R. (2006). *Language Networks: The New Word Grammar*. Oxford University Press, New York.

Humboldt, W. V. (1999). *On Language: the Diversity of Human Language Construction and its influence on the Mental Development of the Human Species*, 2nd edn. Lomansky M., trans, Heath, P.L. (eds). Cambridge U. Press. Cambridge.

Hurford, J. (1989). Biological evolution of the saussurean sign as a component of the language acquisition device. *Lingua, 77*(2), 187–222.

Kauffman, S. A. (1993). *The Origins of Order: Self-Organization and Selection in Evolution*. Oxford University Press.

Ke, J. (2007). Complex networks and human language. arXiv:0701135.

Komarova, N., Niyogi, P., and Nowak, M. (2001). The evolutionary dynamics of grammar acquisition. *J. Theor. Biol., 209*(1), 43–59.

Komarova, N. L. and Niyogi, P. (2004). Optimizing the mutual intelligibility of linguistic agents in a shared world. *Art. Int., 154*(1-2), 1–42.

Macwhinney, B. (2000). *The CHILDES project: Tools for analyzing talk. Third Edition*. Lawrence Erlbaum Associates. Mahwah, NJ.

Macwhinney, B. (2005). The emergence of linguistic form in time. *Connection Science, 17*(3), 191–211.

Maynard-Smith, J. and Szathmáry, E. (1997). *The Major Transitions in Evolution*. University of New York Press. New York.

Melčuck, I. (1989). *Dependency Grammar: Theory and Practice*. Oxford University Press. New York.

Miller, G. A. and Chomsky, N. (1963). Finitary models of language users. In R. D. Luce, R. Bush, and E. Galanter, editors, *Handbook of Mathematical Psychology*, volume 2, pages 419–491. Wiley, New York.

Newman, M. E. J. (2002). Assortative mixing in networks. *Phys. Rev. Lett., 89*(208701).

Newport, E. L. (1990). Maturational constraints on language learning. *Cogn. Sci., 14*(1), 11–28.

Niyogi, P. (2006). *The Computational Nature of Language Learning and Evolution*. MIT Press. Cambridge, Mass.

Nowak, M. A. and Krakauer, D. (1999). The evolution of language. *Proc. Natl. Acad. Sci. USA, 96*(14), 8028–8033.

Oudeyer, P.-Y. (2006). *Self-Organization in the Evolution of Speech*. Studies in the Evolution of Language. Oxford University Press.

Pinker, S. (1994). *The Language Instinct*. Penguin Books: London.

Pinker, S. and Bloom, P. (1990). Natural language and natural selection. *Behav. Brain Sc.*

Popescu, M. (2003) Dependency Grammar Annotator. Building Awareness in Language Technology (editors: Florentina Hristea and Marius Popescu). Editura Universității din București, 2003. p.17-34.

Radford, A. (1990). *Syntactic Theory and the Acquisition of English Syntax: the nature of early child grammars of English*. Oxford. Blackwell.

Signman, M. and Cecchi, G. (2002). Global organization of the wordnet lexicon. *Proc. Nat. Acad. Sci. USA, 99*(3), 1742–1747.

Solé, R. and Goodwin, B. (2001). Signs of Life: How Complexity Pervades Biology. New York, NY. Basic Books.

Solé, R. V. (2005). Syntax for free? *Nature, 434*, 289.

Solé, R. V. and Valverde, S. (2006). Are network motifs the spandrels of cellular complexity? *Trends in Ecology & Evolution, 21*(8), 419–422.

Steele, L. (1997). The synthetic modelling of language origins. *Evolution of Communication, 1*(1), 1–34.

Stevyvers, M. and Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. *Cogn. Sci., 29*, 41–78.

Szamadó, S. and Szathmáry, E. (2006). Selective scenarios for the emergence of natural language. *Trends in Ecology and Evolution, 21*(10), 555–61.

Szathmáry, E., Szatmáry, Z., Ittész, P., Orbán, G., Zachár, I., Huszár, F., Fedor, A., Varga, M., and Számádó, S. (2007). In silico evolutionary developmental neurobiology and the origin of natural language. In: Lyon, C. and Nehaniv, C. L. and Cangelosi, A. *Emergence of Communication and Language*. Springer-Verlag. London pp. 151 – 187.

Veneziano, E. and Sinclair, H. (2000). The changing status of ”filler syllables” on the way to grammatical morphemes. *Journal of Child Language, 27*, 461–500.

Wasserman, S. and Faust, K. (1994). *Social Network Analysis*. Cambridge. Cambridge University Press.

Watts, D. J. and Strogratz, S. H. (1998). Collective dynamics of ’small-world’ networks. *Nature, 393*(6684), 440–442.