Bethe ansatz diagonalization of the Heun–Racah operator

Pierre-Antoine Bernard · Gauvain Carcone · Nicolas Crampé · Luc Vinet

Received: 20 September 2022 / Revised: 5 January 2023 / Accepted: 5 January 2023 / Published online: 17 January 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
The diagonalization of the Heun–Racah operator is studied with the help of the modified algebraic Bethe ansatz. This operator is the most general bilinear expression in two generators of the Racah algebra. A presentation of this algebra is given in terms of dynamical operators and allows the construction of Bethe vectors for the Heun–Racah operator. The associated Bethe equations are derived for both the homogeneous and inhomogeneous cases.

Keywords Racah algebra · Heun operator · Bethe ansatz

1 Introduction

The differential Heun operator defines the Fuchsian second-order differential equation with four regular singularities. It generalizes the Jacobi operator which gives rise to the hypergeometric equation with three regular singularities. This standard differential Heun operator is recovered from the general bilinear combination of the Jacobi differential operator and the operator multiplication by the variable [35]. This construction
can be extended to any pair of operators defining a bispectral problem and leads to the definition of algebraic Heun operators [36]. The polynomials of the Askey scheme are bispectral: They obey a differential or difference equation and satisfy a 3-term recurrence relation. The associated algebraic Heun operator is designated by the name of the family. The Heun–Jacobi operator is thus identified with the standard one [3, 8, 27, 49]. The Heun operators have found many applications in various contexts. For example, they were seen in [13, 14, 36] to provide an algebraic interpretation for the existence of the commuting operators in the time and band limiting problem [43, 47]. They also naturally lead to the commuting tridiagonal operator [28] arising in the computation of the entanglement entropy for 1D free Fermion models [24, 25] with couplings given by the recurrence coefficients of orthogonal polynomials of the Askey scheme. This has been generalized to free fermions on vertices of distance regular graphs [11, 12, 22] or to multidimensional networks associated to the multivariate Krawtchouk polynomials [9].

In this paper, we focus on the Heun–Racah operator. The recurrence and difference relations of the Racah polynomials satisfy the Racah algebra introduced in the algebraic study of the $6j$-symbol and of the Racah problem for $\text{su}(2)$ [30, 34] (see [21] for a review). The Racah algebra can be embedded in \mathfrak{sl}_2 [15, 23, 33, 42], is associated to the DAHA (C_γ^+, C_γ^1) [37] and appears in the context of superintegrable models [31, 32, 39, 40, 46]. Its finite-dimensional irreducible representations have been classified in [38]. The Heun–Racah operator and its associated algebra have been studied specifically in [8].

It is known that the spectrum of an algebraic Heun operator has no analytical expression. The algebraic Bethe ansatz, a method introduced to solve quantum integrable system [48], has been used to study the Heun–Askey–Wilson operator and to express its eigenvalues in terms of the Bethe roots [2]. This approach has been applied to the Heun operators of Lie type [10]. These computations are based on the fact that the Heun operator is identified in a transfer matrix of a quantum integrable system, namely the XXZ spin chain with generic boundaries for the Heun–Askey–Wilson type and the Gaudin model for the one of Lie type. The Racah algebra has not been found however in the context of quantum integrable systems. Let us notice that the Hahn algebra, which lies between the Racah algebra and the Lie ones, appears in this integrable context and has been related to the XXX spin chain and the Yangian [26]. Since the Racah algebra seems not to be directly related to an integrable model, a generalization of these methods is required to study the Heun–Racah operator with the Bethe ansatz. In [10], a direct method to construct the necessary objects for the Bethe ansatz has been applied successfully to study the spectrum of a Heun operator associated to a time and band limiting problem. We show here that this direct method can be also be adopted to find eigenvectors the Heun–Racah operator by a Bethe ansatz approach.

The plan of this paper is as follows. In Sect. 2, a presentation of the Racah algebra $R(3)$ in terms of dynamical operators is introduced. Representations of $R(3)$ and the Heun–Racah operator are given in Sect. 3. Section 4 covers the study of the diagonalization of the Heun–Racah operator by the modified algebraic Bethe ansatz. In particular, Bethe vectors are defined in terms of dynamical operators and the associated Bethe equations are given for both the homogeneous and inhomogeneous cases. For the homogeneous case, the parameters of the Heun–Racah operator must satisfy
a constraint such that a factor in front of the inhomogeneous term vanishes. Then, the number of Bethe roots depends on this constraint. In the inhomogeneous case, this term does not vanish but takes a suitable form to be treated by modified algebraic Bethe ansatz when the number of Bethe roots is the size of the matrix minus 1. In the present paper, we prove this result for small sizes of the Heun–Racah operators and provide a conjecture for any size.

2 Racah algebra and dynamical operators

The Racah algebra \(R(3) \) is generated by \(X, Y \) and \(Z \) satisfying the following defining relations

\[
\begin{align*}
[X, Y] &= Z, \\
[Z, X] &= -2X^2 - 2[X, Y] + bX + d_2, \\
[Y, Z] &= -2Y^2 - 2[X, Y] + bY + d_1,
\end{align*}
\]

where \([X, Y] = XY - YX, \{X, Y\} = XY + YX\) and \(b, d_1\) and \(d_2\) are defining parameters.

For an arbitrary parameter \(\rho \in \mathbb{C}\), let us introduce a set of operators labeled by two additional real parameters \(u\) and \(m\)

\[
\begin{align*}
\mathcal{A}(u, m) &= \frac{1}{2m\rho - 1} \left(g_0(u, m) + g_1(u, m)X + g_1(-1, m)Y + Z + \rho\{X, Y\} \right), \\
\mathcal{B}(u, m) &= f_0(u, m) + f_1(u, m)X + f_1(-1, m)Y + 2mZ + \{X, Y\}, \\
\mathcal{C}(u, m) &= \mathcal{B}(u, -m + 1/\rho),
\end{align*}
\]

where

\[
\begin{align*}
f_0(u, m) &= \frac{(4m^2 - 1)(u^2 - 2b - 1)}{8} - d_2, \\
f_1(u, m) &= \frac{4m^2 - u^2}{2}, \\
g_0(u, m) &= \rho f_0(u, m) + (2m\rho - 1) \left(\frac{(4m - u + 1)(2b + 1 - u^2)}{8} - \frac{d_1 - d_2}{u - 1} \right), \\
g_1(u, m) &= \frac{(u - 2m)(2m\rho - \rho u - 2)}{2}.
\end{align*}
\]

The choice of operators (2.4)–(2.6) has been dictated by the fact that the defining relations of the Racah algebra (2.1)–(2.3) give the following relations between \(\mathcal{A}(u, m), \mathcal{B}(u, m)\) and \(\mathcal{C}(u, m)\):

\[
\begin{align*}
\mathcal{B}(u, m + 1)\mathcal{B}(v, m) &= \mathcal{B}(v, m + 1)\mathcal{B}(u, m), \\
\mathcal{A}(u, m)\mathcal{B}(v, m) &= k_1(u, v)\mathcal{B}(v, m)\mathcal{A}(u, m - 1) \\
&\quad + \mathcal{B}(u, m)\left(k_2(u, v, m)\mathcal{A}(v, m - 1) + k_2(u, -v, m)\mathcal{A}(-v, m - 1) \right),
\end{align*}
\]

\(\mathcal{C}(u, m) = \mathcal{B}(u, -m + 1/\rho)\).
\[C(v, m)A(u, m) = k_1(u, v)A(u, m - 1)C(v, m) + (k_2(u, v, m)A(v, m - 1) + k_2(u, -v, m)A(-v, m - 1))C(u, m), \]

\[2.12 \]

with functions \(k_1 \) and \(k_2 \) given by

\[k_1(u, v) = \frac{(u - 2)^2 - v^2}{u^2 - v^2}, \quad k_2(u, v, m) = \frac{(v - 1)(\rho (u - v - 4m) + 2)}{v(v - u)(2m\rho - 1)}. \]

\[2.13 \]

Operators verifying similar relations are usually called dynamical operators in the context of the algebraic Bethe ansatz. Such operators have been introduced in [4, 29] to study the XYZ model; the approach was then adapted to analyze the XXZ spin chain with boundary fields that are not parallel [7, 16]. Up to then, these dynamical operators have been constructed from the \(R \)-matrix formalism. However, as explained in Introduction, the Racah algebra, in contrast to the Askey–Wilson algebra, does not appear in this context. The idea of this paper consists in constructing the dynamical operators without using an \(R \)-matrix.

The dynamical operators \(A(u, m), B(u, m) \) and \(C(u, m) \) provide a new presentation of the Racah algebra \(R(3) \) as stated in the following proposition

Proposition 2.1 Both relations (2.10) and (2.11) with the expressions (2.4) and (2.5) are equivalent to the defining relations (2.1)–(2.3) of the Racah algebra \(R(3) \).

Proof The \(R(3) \)-relations imply the relations (2.10) and (2.11) since the dynamical operators have been constructed for this purpose. To prove the other implication, one replaces the dynamical operators by their expressions (2.4) and (2.5) in relations (2.10) and shows that the coefficients of \(u, v \) and \(m \) imply the \(R(3) \)-relations. \(\square \)

3 Heun–Racah operator and representation

The Heun–Racah operator is the most general bilinear operator in terms of \(X \) and \(Y \).

It reads explicitly as follows

\[W = r_0 + r_1X + r_2Y + r_3XY + r_4YX, \]

\[3.1 \]

for \(r_i \) some free parameters. It has been shown in [45] that it is the most general operator tridiagonal in the two bases where either \(X \) or \(Y \) is diagonal.

Representations of the Racah algebra \(R(3) \) are provided by the recurrence and difference relations of the Racah polynomials \(R_n(x(x + \gamma + \delta + 1); \alpha, \beta, \gamma, \delta) \) [41, 50]. These are obtained from the action of the following \((N + 1) \times (N + 1)\)-matrices on \((N + 1)\)-dimensional vectors with entry \(x \) given by one of polynomial evaluated at \(x \) [41]:

\[X = \frac{(\alpha + \beta)(\alpha + \beta + 2)}{4}I_{N+1} \]
\[
W = -2 \frac{\rho}{\rho - 1} XY + s_1 X + \frac{s_2^2 - 1}{2 \rho (\rho - 1)} Y + [X, Y],
\]

(4.1)

This realization gives an expression for the Heun operator (3.1) as a tridiagonal matrix. In the following section, a modified algebraic Bethe ansatz, based on the dynamical operators \(A(u, m), B(v, m)\) and \(C(u, m)\), is used to investigate its spectrum.

\section*{4 Diagonalization of the Heun–Racah operator}

\textbf{Heun–Racah operator.} For latter convenience, the Heun operator is rewritten as follows

\[
W = -2 \frac{\rho}{\rho - 1} XY + s_1 X + \frac{s_2^2 - 1}{2 \rho (\rho - 1)} Y + [X, Y],
\]

(4.1)
where ρ, s_1 and s_2 are free parameters. We recover the generic Heun–Racah operator (3.1), which has five free parameters, by performing an affine transformation of the operator (4.1). This Heun–Racah operator has a simple expression in terms of the dynamical operator A given by

$$W = h_1(u)A(u, \overline{m}) + h_1(-u)A(-u, \overline{m}) + h_2(u), \quad (4.2)$$

where

$$\overline{m} = \frac{s_2 - \rho + 1}{2\rho}, \quad (4.3)$$

$$h_1(u) = \frac{s_1}{2u} - \frac{(\rho u - \rho + s_2)^2 - 1}{4\rho u(\rho - 1)},$$

$$h_2(u) = -\frac{h_1(u)g_0(u, \overline{m}) + h_1(-u)g_0(-u, \overline{m})}{2\overline{m}\rho - 1}. \quad (4.4)$$

Bethe vectors. The Bethe vectors are defined by

$$|x_1, x_2, \ldots, x_p; m\rangle = B(x_1, m)B(x_2, m - 1) \ldots B(x_p, m - p + 1)|0\rangle, \quad (4.5)$$

for $p \geq 1$ and

$$|0\rangle = (1, 0, \ldots, 0)^t. \quad (4.6)$$

It is worth noting that the Bethe vector does not depend on the ordering of the x_i because of the relation (2.10) between two operators B. In the context of spin chains, the operator $B(x, m)$ is interpreted as the creation operator of a quasi-particle of momentum x. We shall show that these vectors become eigenvectors of the Heun–Racah operator W if the parameters x_i satisfy some relations called Bethe equations. In this case, the parameter x_i are called Bethe roots.

Action of A on Bethe vectors Using the commutation relations (2.11) between the operators $A(u, m)$ and $B(u, m)$, the action of $A(u, m)$ on the Bethe vector (4.5) can be computed. Indeed, one gets

$$A(u, m)|x_1, x_2, \ldots, x_p; m\rangle$$

$$= \prod_{j=1}^{p} k_1(u, x_j)B(x_1, m)B(x_2, m - 1) \ldots B(x_p, m - p + 1)A(u, m - p)|0\rangle$$

$$+ \sum_{\epsilon = \pm} \sum_{r=1}^{p} k_2(u, \epsilon x_r, m) \prod_{\ell=1}^{p} k_1(\epsilon x_r, x_\ell)B(x_1, m) \ldots B(u, m)$$

$$- r - 1) \ldots B(x_p, m - p + 1)A(\epsilon x_r, m - p)|0\rangle. \quad (4.7)$$
To arrive at the previous relation, the specific representations of X and Y are not needed. They are however required to derive the action of A on the vector $|0\rangle$. Namely,

$$A(u, m)|0\rangle = \xi(u, m)|0\rangle + \zeta(u, m)B(u, m)|0\rangle,$$

(4.8)

where

$$\xi(u, m) = \frac{\delta \rho + \gamma \rho + 2m \rho + 2 \rho - \rho u - 2}{(2m \rho - 1)(\delta + \gamma - 2m + 2 - u)},$$

(4.9)

$$\zeta(u, m) = \frac{(u + N)^2 - (\beta - \gamma + \delta)^2)(\beta^2 - (u - N - 2 - \gamma - \delta)^2)(\delta + \gamma - 2m + u)}{8(u - 1)(\delta + \gamma - 2m + 2 - u)}.$$

(4.10)

Action of W on Bethe vectors We are now in a position to determine the action of the Heun–Racah operator W on the Bethe vector $V_p = |x_1, x_2, \ldots, x_p; \overline{m}\rangle$. Firstly, let us remark that

$$h_1(u)k_2(u, v, \overline{m}) + h_1(-u)k_2(-u, v, \overline{m}) = \frac{f_1(v)}{\rho(\rho - 1)(u^2 - v^2)},$$

(4.11)

where

$$f_1(v) = (2\rho(\rho - 1)s_1 - (\rho v - \rho + s_2 + 1)(\rho v - \rho + s_2 - 1))(1 - 1/v).$$

(4.12)

The important feature of the previous relation is that $f_1(v)$ does not depend on u. Secondly, using the expression (4.2) of W in terms of A and the previous action (4.7) of A on the Bethe vectors, one gets

$$W V_p = w_p V_p + \sum_{r=1}^{p} \frac{1}{\rho(\rho - 1)(u^2 - x_r^2)} U_r |x_1, \ldots, x_{r-1}, u, x_{r+1}, \ldots, x_p; \overline{m}\rangle$$

$$+ \psi(u, p) B(x_1, \overline{m})B(x_2, \overline{m} - 1) \cdots B(x_p, \overline{m} - p + 1)B(u, \overline{m} - p)|0\rangle,$$

(4.13)

where

$$w_p = h_1(u)\xi(u, \overline{m}) \prod_{j=1}^{p} k_1(u, x_j) + h_1(-u)\xi(-u, \overline{m}) \prod_{j=1}^{p} k_1(-u, x_j) + h_2(u),$$

(4.14)

$$U_r = \sum_{\epsilon = \pm} f_1(\epsilon x_r)\xi(\epsilon x_r, \overline{m} - p) \prod_{\ell=1}^{p} k_1(\epsilon x_r, x_{\ell}),$$

(4.15)
\[\psi(u, p) = \frac{\rho^2 (2(1-\rho)s_1 + (\gamma + \delta + 2 + 2p)(\delta \rho + \gamma \rho + 2\rho(p+1) - 2))}{(1-\rho)((\delta \rho + \gamma \rho + \rho(3 + 2p) - s_2 - 1)^2 - \rho^2 u^2)} \]
\[\times \prod_{r=1}^{p} \frac{(\delta \rho + \gamma \rho + \rho(1+2p) - s_2 - 1)^2 - \rho^2 x_r^2}{(\delta \rho + \gamma \rho + \rho(3 + 2p) - s_2 - 1)^2 - \rho^2 x_r^2} \] (4.16)

The expression (4.16) has been obtained by factoring terms in
\[\psi(u, p) = \sum_{\nu = \pm} h_1(vu) \left(\zeta(\nu u, m - p) \prod_{j=1}^{p} k_1(\nu u, x_j) \right.
+ \left. \sum_{\epsilon = \pm} \sum_{t=1}^{p} \zeta(\epsilon x_t, m - p) k_2(\nu u, \epsilon x_t, m) \prod_{\ell=1}^{p} k_1(\epsilon x_t, x_\ell) \right). \] (4.17)

At this point, there are two cases to consider. In the first case, there exists a \(p\) such that \(\psi(u, p) = 0\). It is referred to as the homogeneous case and can be solved by the usual algebraic Bethe ansatz.

In the second (inhomogeneous) case, one must deal with the last term in (4.13), i.e., a vector of the form \(B(x_1, m)B(x_2, m - 1)\ldots B(x_p, m - p + 1)B(u, m - p)|0\rangle\). For \(p = N\), there exists a conjectural formula (see equation (4.21)) which allows to absorb these unwanted terms in the sum on the rhs of (4.13). Such a relation is the foundation of the modified Bethe ansatz introduced in [6] for the XXX spin chain with generic boundaries, and later used in different contexts [1, 2, 5, 7, 10, 14, 19, 20]. We explain both cases in detail in the following paragraphs.

Diagonalization of \(W\) for the homogeneous case In the first line of the expression (4.16), there is a factor which is independent of \(u\) and \(x_r\). This factor vanishes if
\[p = \frac{1 - \gamma \rho - \delta \rho - 2\rho \pm \sqrt{2s_1 \rho^2 - 2s_1 \rho + 1}}{2\rho}. \] (4.18)

If the rhs of the above equation is an integer \(\bar{p}\), a Bethe vectors such that \(\psi(u, \bar{p}) = 0\) can be constructed. Relation (4.13) then reduces to
\[W \mathcal{V}_{\bar{p}} = w_{\bar{p}} \mathcal{V}_{\bar{p}} + \sum_{r=1}^{\bar{p}} \frac{U_r}{\rho(\rho - 1)(u^2 - x_r^2)} |x_1, \ldots, x_{r-1}, u, x_{r+1}, \ldots, x_{\bar{p}}; m\rangle. \] (4.19)

Finally \(\mathcal{V}_{\bar{p}}\) becomes an eigenvector if \(U_r = 0\) for any \(r = 1, \ldots, \bar{p}\). These equations are referred to as the Bethe equations and read explicitly as
\[\frac{f_1(x_r) \xi(x_r, \bar{m} - \bar{p})}{f_1(-x_r) \xi(-x_r, \bar{m} - \bar{p})} = -\prod_{\ell=1}^{\bar{p}} \frac{(x_r + 2)^2 - x_\ell^2}{(x_r - 2)^2 - x_\ell^2}. \] (4.20)
Note that this case, where the Bethe ansatz method simplifies for a particular choice of the parameter, appears already in the study of the XXZ spin chain with generic boundaries [16]. For any solution of the Bethe equations (4.20) such that V_p does not vanish, $V_p = |x_1, x_2, \ldots, x_p; \overline{m}\rangle$ is an eigenvector of the Heun–Racah operator with eigenvalue w_p.

Diagonalization of W for the inhomogeneous case In the inhomogeneous case, we consider Bethe vectors with $p = N$ Bethe roots. We recall that $N + 1$ is the size of the matrices. Therefore, in the second line of (4.13), there are Bethe vectors with $N + 1$ variables. Fortunately, such Bethe vectors can be expressed as linear combinations of Bethe vectors depending only on N variables as follows

$$
|x_1, x_2, \ldots, x_N, u; \overline{m}\rangle = \tau_u |x_1, x_2, \ldots, x_N; \overline{m}\rangle + \sum_{j=1}^{N} \frac{(\gamma + \delta - 2\overline{m} + 2N + 2)^2 - u^2}{x_j^2 - u^2} \tau_j |x_1, x_2, \ldots, x_{j-1}, u, x_{j+1}, \ldots, x_N; \overline{m}\rangle,
$$

where

$$
\tau_j = \frac{(2m - N)^2 - \beta^2}{8} \prod_{k=1}^{N} \frac{(\gamma + \delta - 2\overline{m} + 2N + 2)^2 - x_k^2}{x_j^2 - x_k^2} \times \prod_{k=0}^{N} (x_j^2 - (\beta - \gamma + \delta - N + 2k)^2) \times \prod_{k=1}^{N} \frac{1}{(2\overline{m} - 2\delta - \beta - N - 2k)(2\overline{m} - 2\gamma + \beta - N - 2k)}.
$$

$$
\tau_u = \frac{(2m - N)^2 - \beta^2}{8} \prod_{k=1}^{N} \frac{(\gamma + \delta - 2\overline{m} + 2N + 2)^2 - x_k^2}{u^2 - x_k^2} \times \prod_{k=0}^{N} (u^2 - (\beta - \gamma + \delta - N + 2k)^2) \times \prod_{k=1}^{N} \frac{1}{(2\overline{m} - 2\delta - \beta - N - 2k)(2\overline{m} - 2\gamma + \beta - N - 2k)}.
$$

This expression is proven by direct computation for $N = 1, 2, 3, 4$. It is conjectured for bigger N. A proof of a similar relation can be found in [1, 19, 20]. Using the above relation, the action of W on Bethe vectors given by (4.13) becomes

$$
W \mathcal{V}_N = (w_N + w_N^{(i)}) \mathcal{V}_N
$$
\[
+ \sum_{r=1}^{N} \frac{1}{\rho (\rho - 1)(u^2 - x_r^2)} (U_r + U_r^{(i)}) |x_1, \ldots, x_{r-1}, u, x_{r+1}, \ldots, x_N; \bar{m}\rangle,
\]

(4.24)

where

\[
w_N^{(i)} = \tau_u \psi (u, N), \tag{4.25}
\]

\[
U_r^{(i)} = \tau_r \rho \left(2(1 - \rho)s_1 + (\gamma + \delta + 2 + 2N)(\delta \rho + \gamma \rho + 2 \rho (N + 1) - 2) \right) \times \prod_{q=1}^{N} \frac{(\delta \rho + \gamma \rho + \rho (1 + 2N) - s_2 - 1)^2 - \rho^2 x_q^2}{(\delta \rho + \gamma \rho + \rho (3 + 2N) - s_2 - 1)^2 - \rho^2 x_q^2}. \tag{4.26}
\]

These additional terms in the eigenvalues and the Bethe equations are referred as the inhomogeneous terms (and indexed by \((i)\)) in reference to the similar terms appearing in the context of the XXZ spin chain [17, 18, 44].

As in the homogeneous case, \(\mathcal{V}_N\) becomes an eigenvector if \(U_r + U_r^{(i)} = 0\) for any \(r = 1 \ldots N\). These are the inhomogeneous Bethe equations, which read as

\[
\frac{f_1(x_r) \xi (x_r, \bar{m} - N)}{f_1(-x_r) \xi (-x_r, \bar{m} - N)} + \frac{U_r^{(i)}}{f_1(-x_r) \xi (-x_r, \bar{m} - N) \prod_{\ell=1}^{N} k_1(-x_r, x_\ell)} N \prod_{\ell=1}^{N} k_1(-x_r, x_\ell)
\]

\[
= - \prod_{\ell=1}^{N} \frac{(x_r + 2)^2 - x_\ell^2}{(x_r - 2)^2 - x_\ell^2}. \tag{4.27}
\]

For any solution of the Bethe equations \((4.27)\) such that \(\mathcal{V}_N\) does not vanish, \(\mathcal{V}_N = |x_1, x_2, \ldots, x_N; \bar{m}\rangle\) is an eigenvector of the Heun–Racah operator with eigenvalue \(w_N^{(i)}\).

5 Conclusion

Dynamical operators have been defined with relations providing an equivalent presentation of the Racah algebra. The Heun–Racah operator was given in terms of these dynamical operators, and the Bethe ansatz method has been developed to study its spectrum. The resulting Bethe equations are homogeneous or inhomogeneous depending on the parameters defining the Heun–Racah operator. The problem of establishing if one obtains all the eigenvectors and eigenvalues of the Heun-Racah operator is not tackled in this paper. Indeed, proving the ansatz yields a complete basis is well-known to be hard. Its connection with the Racah polynomials may offer an interesting angle to deal with this issue and should be investigated.
The method proposed here does not rely on the usual R-matrix presentation. It should be interesting to use the same approach to find sets of dynamical operators for the Hahn and the Bannai–Ito algebra so as to diagonalize the corresponding Heun operators. Indeed, for these two algebras the generic Heun operator does not seem to arise in the usual R-matrix formalism. Let us remark that while the Hahn algebra can be defined within this R-matrix formalism (see [26]), the generic Heun operator with five parameters does not appear however.

The usual method consists in defining the algebra with some non-dynamical operators thanks to relations (FRT relation, reflection equation) based on the R-matrix (see, e.g., [2]). Dynamical operators are then constructed as linear combinations of these operators. It could also be instructive to find directly a presentation of the relations of these dynamical operators within a R-matrix formalism in order to find more complicated Heun operators. For example, Heun operators associated to multivariate polynomials have been introduced in [9] and it should prove interesting to study their spectra through the algebraic Bethe ansatz.

Acknowledgements PAB holds an Alexander-Graham-Bell scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC). GC thanks the Department of Physics of the Université de Montréal for partial support. NC thanks the CRM for its hospitality and are supported by the international research project AAPT of the CNRS and the ANR Project AHA ANR-18-CE40-0001. The research of LV is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose. Our manuscript has no associated data.

References

1. Avan, J., Belliard, S., Grosjean, N., Pimenta, R.A.: Modified algebraic Bethe ansatz for XXZ chain on the segment—III—Proof. Nucl. Phys. B 899, 229 (2015). arXiv:1506.02147
2. Baseilhac, P., Pimenta, R.: Diagonalization of the Heun–Askey–Wilson operator, Leonard pairs and the algebraic Bethe ansatz. Nucl. Phys. B 949, 114824 (2019). arXiv:1909.02464
3. Baseilhac, P., Tsujimoto, S., Vinet, L., Zhedanov, A.: The Heun–Askey–Wilson algebra and the Heun operator of Askey–Wilson type. Ann. Henri Poincaré 20, 3091–3112 (2019). arXiv:1811.11407
4. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)
5. Belliard, S.: Modified algebraic Bethe ansatz for XXZ chain on the segment—I: triangular cases. Nucl. Phys. B 892, 1–20 (2015). arXiv:1408.4840
6. Belliard, S., Crampe, N.: Heisenberg \textit{XXX} model with general boundaries: eigenvectors from Algebraic Bethe ansatz. SIGMA 9, 072 (2013). arXiv:1309.6165
7. Belliard, S., Pimenta, R.A.: Modified algebraic Bethe ansatz for XXZ chain on the segment—II: general cases. Nucl. Phys. B 894, 527 (2015). arXiv:1412.7511
8. Bergeron, G., Crampe, N., Tsujimoto, S., Vinet, L., Zhedanov, A.: The Heun–Racah and Heun–Bannai–Ito algebras. J. Math. Phys. 61, 081701 (2020). arXiv:2003.09558
9. Bernard, P.-A., Crampe, N., Nepomechie, R.I., Parez, G., Poulain d’Andecy, L., Vinet, L.: Entanglement of inhomogeneous free fermions on hyperplane lattices. arXiv:2206.06509
10. Bernard, P.-A., Crampe, N., Shaaban Kabakibo, D., Vinet, L.: Heun operator of Lie type and the modified algebraic Bethe ansatz. J. Math. Phys. 083501, 62 (2021). arXiv:2011.11659
11. Bernard, P.-A., Crampe, N., Vinet, L.: Entanglement of Free Fermions on Hamming Graphs, arXiv:2103.15742
12. Bernard, P.-A., Crampe, N., Vinet, L.: Entanglement of Free Fermions on Johnson Graphs, arXiv:2104.11581
13. Bernard, P.-A., Crampe, N., Vinet, L.: An explanation of the commuting operator “miracle” in time and band limiting, arXiv:2201.03646
14. Bernard, P.-A., Crampe, N., Vinet, L.: Time and band limiting operator and Bethe ansatz. J. Phys. A: Math. Theor. 55, 285201 (2022). arXiv:2201.04589
15. Bockting-Conrad, S., Huang, H.-W.: The universal enveloping algebra of sl_2 and the Racah algebra. Communications in Algebra 48, 1022–1040 (2020). arXiv:1907.02135
16. Cao, J., Lin, H.-Q., Shi, K., Wang, Y.: Exact solutions and elementary excitations in the XXZ spin chain with unparallel boundary fields. Nucl. Phys. B 663, 487 (2003). arXiv:cond-mat/0307578
17. Cao, J., Yang, W., Shi, K., Wang, Y.: Off-diagonal Bethe ansatz and exact solution of a topological spin ring. Phys. Rev. Lett. 111, 137201 (2013). arXiv:1305.7328
18. Cao, J., Yang, W., Shi, K., Wang, Y.: Off-diagonal Bethe ansatz solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields. Nucl. Phys. B 877, 152 (2013). arXiv:1307.2023
19. Crampe, N.: Algebraic Bethe ansatz for the totally asymmetric simple exclusion process with boundaries. J. Phys. A: Math. Theor. 48, 08FT01 (2015). arXiv:1411.7954
20. Crampe, N.: Algebraic Bethe ansatz for the XXZ Gaudin models with generic boundary. SIGMA 13, 094 (2017). arXiv:1710.08490
21. Crampe, N., Gaboriaud, J., Poulain d’Andecy, L., Vinet, L.: Racah algebras, the diagonal centralizer of sl_2 and its Hilbert–Poincaré series. Ann. Henri Poincaré (2022) arXiv:2105.01086
22. Crampe, N., Shaaban Kabakibo, D., Vinet, L.: New realizations of algebras of the Askey–Wilson type in terms of Lie and quantum algebras. Rev. Math. Phys. 33, 2150002 (2021). arXiv:2005.06957
23. Crampe, N., Guo, K., Vinet, L.: Entanglement of Free Fermions on Hadamard Graphs. Nucl. Phys. B 960, 115176 (2020). arXiv:2008.04925
24. Crampe, N., Ragoucy, E., Vinet, L., Zhedanov, A.: Truncation of the reflection algebra and the Hahn algebra. J. Phys. A: Math. Theor. 52, 35LT01 (2019). arXiv:1903.05674
25. Crampe, N., Vinet, L., Zhedanov, A.: Heun algebras of Lie type. Proc. Am. Math. Soc. 148, 1079–1094 (2020). arXiv:1904.10643
26. Eisler, V., Peschel, I.: Free-fermion entanglement and spheroidal functions. J. Stat. Mech.: Theory Exp. 4, P04028 (2013). arXiv:1302.2239
27. Granovskii, Y.A., Zhedanov, A.: Hidden symmetry of the Racah and Clebsch–Gordan problems or the quantum algebra $sl_q(2)$. J. Group Theor. Methods Phys. 1, 161 (1993). arXiv:hep-th/9304138
28. Grünbaum, F.A., Vinet, L., Zhedanov, A.: Algebraic Heun operator and band-time limiting. Commun. Math. Phys. 364, 1041 (2018). arXiv:1711.07862
29. Grünbaum, F.A., Vinet, L., Zhedanov, A.S.: Tridiagonalization and the Heun equation. J. Math. Phys. 58, 031703 (2017). arXiv:1602.04840
30. Grünbaum, F.A., Vinet, L., Zhedanov, A.S.: Algebraic Heun operator and band-time limiting. Commun. Math. Phys. 364, 1041 (2018). arXiv:1711.07862
31. Huang, H.-W.: Finite-dimensional modules of the universal Racah algebra and the universal additive DAHA of type (C_1^+, C_1^-). J. Pure Appl. Algebra 225, 106653 (2021). arXiv:1906.09160
32. Kemsley, T., Rudge, W.: Finite-dimensional irreducible modules of the Racah algebra at characteristic zero. SIGMA 16, 018–034 (2020). arXiv:1910.11446
33. Kalnins, E.G., Kress, J.M., Miller, W., Jr.: Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory. J. Math. Phys. 46, 053509 (2005)
40. Kalnins, E.G., Miller, W., Jr., Post, S.: Contractions of 2D 2nd order quantum superintegrable systems and the askey scheme for hypergeometric orthogonal polynomials. SIGMA 9, 057–084 (2013). arXiv:1212.4766
41. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their q-Analogues. Springer Monographs in Mathematics, Springer, Berlin (2010)
42. Koornwinder, T.H.: Askey–Wilson polynomials as zonal spherical functions on the $SU(2)$ quantum group. SIAM J. Math. Anal. 24, 795 (1993)
43. Landau, H.J.: An Overview of Time and Frequency Limiting, pp. 201–220. Springer, US, Boston, MA (1985)
44. Nepomechie, R.I.: Inhomogeneous T–Q equation for the open XXX chain with general boundary terms: completeness and arbitrary spin. J. Phys. A: Math. Theor. 46, 442002 (2013). arXiv:1307.5049
45. Nomura, K., Terwilliger, P.: Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair. Linear Algebra Appl. 420, 198 (2007). arXiv:math/0605316
46. Post, S.: Models of quadratic algebras generated by superintegrable systems in 2D. SIGMA 7, 036–055 (2011). arXiv:1104.0734
47. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25, 379–393 (1983)
48. Sklyanin, E.K., Takhtadzhyan, L.A., Faddeev, L.D.: Quantum inverse problem method. I. Theor. Math. Phys. 40, 688–706 (1979)
49. Vinet, L., Zhedanov, A.: The Heun operator of Hahn type. Proc. Am. Math. Soc. 147, 2987–2998 (2019). arXiv:1808.00153
50. Zhedanov, A.S.: “Hidden symmetry” of Askey–Wilson polynomials. Theor. Math. Phys. 89, 1146 (1991)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.