Analysis of Uranyl Nitrate Hexahydrate composition for optimum neutron multiplication factor of SAMOP

P I Wahyono* and S Syarip
Centre for Science & Accelerator Technology, JL. Babarsari, POB 6101 ykbb, Yogyakarta 55281, Indonesia

*puradwii@batan.go.id

Abstract. Subcritical Assembly for Molybdenum Production (SAMOP) is a concept of nuclear reactor where the neutron multiplication factor (k_{ef}) less than one ($k_{\text{ef}} \sim 0.99$). Therefore, SAMOP reactor need an external neutron source for its operation. Uranyl Nitrate Hexahydrate, $\text{UO}_2(\text{NO}_3)_2.6\text{H}_2\text{O}$ or UN is used as fuel as well as target material for ^{99}Mo production. The ^{99}Mo isotope is used to generate ^{99m}Tc which is the most widely used radioisotopes for diagnostic in nuclear medical fields. The composition of Uranyl Nitrate Hexahydrate (UNH) should be analyzed to achieve the required subcritical level in the SAMOP core i.e. $k_{\text{ef}} \sim 0.99$. Methodology for this analysis is an elemental composition calculation of UNH, with enrichment of uranium of 19.75% and 2.81 gr/cc of density. The analysis result shows that the elemental composition of ^{235}U, ^{238}U, N, O, and H, are 4.9715%, 20.2009%, 5.3448%, 37.4138%, and 32.069% respectively, and therefore, the composition of U and N-O-H are 25.1724%, and 74.8276% respectively. The composition is then used as input for the neutronic analysis using the WIMS-D/4 computer code for k_{ef} calculation of SAMOP. The result shows that the optimum k_{ef} of 0.99 is achieved with the above elemental compositions.

1. Introduction
Subcritical Assembly for Molybdenum Production (SAMOP) is a concept of nuclear reactor where the neutron multiplication factor (k_{ef}) less than one. Neutron multiplication factor, k_{ef} is a ratio of the neutron production rate with the neutron absorption and neutron leakage rates in the nuclear reactor system. The SAMOP reactor need an external neutron source for it continue operation. Uranyl Nitrate Hexahydrate, $\text{UO}_2(\text{NO}_3)_2.6\text{H}_2\text{O}$ or UNH is used as fuel as well as target material for ^{99}Mo production [1,2]. The ^{99}Mo isotope is used to generate ^{99m}Tc which is the most widely radioisotopes used for diagnostic in nuclear medical fields [3,4].

The development of the SAMOP reactor system is initiated by the need of Mo production without critical reactor, that is by developing a concept of subcritical reactor system [5]. This concept needs a careful analysis in the content composition of the reactor fuel and target (UNH) as well as the material and geometric of the reactor core for achieving the value of $k_{\text{ef}} \sim 0.99$. Modelling for analysis of UNH composition for optimum k_{ef} needs a preparation input of UNH composition, material and geometric of the reactor core. The parameter is one of important factors that would contribute to the accuracy of the neutronic calculations result, as such used in reactor core design, core power distributions etc.

The composition of UNH should be analysed to achieve the required subcritical level in the SAMOP core i.e. $k_{\text{ef}} \sim 0.99$ [5,6]. The elements composition of UNH is then used as input in the reactor calculation by using WIMS-D/4 computer code. The other similar parameters which is already analysed...
is number density, that is number of atoms or nuclides per cm3 \text{atoms/cm}^3, or in unit of atoms per 1024 barn cm (atom / barn cm) \cite{7}. This analysis is done as a benchmarking in neutronic calculation where several neutronic analyses have been previously conducted \cite{8-11}.

2. Material and methods

2.1. Description of SAMOP reactor

The SAMOP reactor core consists of annular cylindrical tube containing uranyl nitrate UO$_2$ (NO$_3$)$_2$6H$_2$O or UNH as fuels and target, surrounded by ring of UNH tubes and or TRIGA fuel elements. The TRIGA fuel elements is loaded in the ring together with UNH tubes to increase neutron multiplication factor. The enrichment of all UNH is similar with TRIGA fuels i.e. 19.75\% 235U. The SAMOP reactor core is surrounded by neutron reflector made of graphite. The SAMOP reactor core and reflector design concept is shown in Figure 1.

![Figure 1. SAMOP reactor core design concept.](image)

Notes: (1) Water coolant tank, (2) SAMOP tank, (3) Graphite reflector, (4) Line gap of water coolant, (5) SAMOP UNH fuels, (6) Coolant water pump, (7) Heat exchanger.

3. Methodology

Analytical calculation methods is used for elemental composition determination of UNH, with using 19.75\%enrichment of 235U and 2.81 gr/cc of uranium density. The elemental composition of U, N, O, and H in UNH is then used for the analysis of subcritical level of SAMOP reactor by using WIMS-D/4 computer code. The WIMS-D/4 code is a freely available thermal reactor physics lattice cell code \cite{12,13} that is widely used in many laboratories for thermal research reactor and power reactor calculations. WIMSD-D/4 version is thermal reactor physics lattice cell code developed by Winfrith-United Kingdom.

The UNH is fuels and also as target for 99Mo isotope production in SAMOP reactor. While, SS-304, graphite, water and aluminium are as materials contain in SAMOP reactor core and reflector. The materials for WIMSD code input are as follows: UNH as fuel, SS-304 for tank, graphite for moderator, H$_2$O for coolant, Al for tank, and light water r for coolant. The annulus geometric is used for each geometric input. The modeling of SAMOP concept is described in CELL model input of WIMSD for cylindrical geometric, see Figure 2.

The materials for WIMSD code input are as follows: UNH as fuel, SS-304 for tank, graphite for moderator, H$_2$O for coolant, Al for tank, and light water r for coolant. The annulus geometric is used for each geometric input. The modeling of SAMOP concept is described in CELL model input of WIMSD for cylindrical geometric with 8 regions, see Figure 2.
4. Result and discussion

The UNH with 300.0 gU/L in 25908.05 cm3 volume of SAMOP reactor core contains variations in composition of $^{92}\text{U}_{235}$, $^{92}\text{U}_{238}$, $^7\text{N}_{14}$, $^1\text{H}_{1}$, $^8\text{O}_{16}$. The material composition for each region of SAMOP reactor is shown in Table 1.

Table 1. Composition of materials in the region of SAMOP reactor.

Region	Material	Density	Volume (cm3)	Composition
1 and 2	UNH	300.0 gU/L	25908.05 cm3	0.681035% of $^{92}\text{U}_{235}$; 2.76725% of $^{92}\text{U}_{238}$; 6.8966% of $^7\text{N}_{14}$; 48.2415% of $^8\text{O}_{16}$; 41.3794% of $^1\text{H}_{1}$
3	SS304	8.0 g/cm3	222.069 cm3	79.9% of Fe; 18.0% for Cr; 0.8% for Ni; 1% for Si; 0.1% for Nd; 0.2% for Mn
4	H$_2$O	1 g/cm3	520.0592 cm3	88.89% for H and 11.11% for O
5	C	1.6 g/cm3	1806.227 cm3	100% of C
6	H$_2$O	1 g/cm3	44109.97 cm3	88.89% for H and 11.11% for O
7	Al	2.7 g/cm3	3364.17 cm3	99.5% of Al; 0.18% of Cu; 0.2% of Fe; 0.03% of Cu; 0.03% of Mg; 0.03% of Mn; 0.03% V

The neutron calculation using WIMSD code of the SAMOP concept is done with cell modellings related to different composition of the uranium in UNH, to find the optimum k_{eff}. The model is shown in Figure 2 above. The different composition of UNH with 300.0 gU/ltr in 25908.05 cm3 volume is varied in composition of $^{92}\text{U}_{235}$, $^{92}\text{U}_{238}$, $^7\text{N}_{14}$, $^1\text{H}_{1}$, $^8\text{O}_{16}$.

The optimum result shows that the SAMOP reactor operation is still under subcritical condition ($k_{\text{eff}} < 1$), see Figure 3. The analysis result shows that the optimum k_{eff} is 0.9919 with the composition of ^{235}U, ^{238}U, ^7N, ^1H, ^8O, respectively. Therefore, the composition of U and N-O-H are 25.1724% and 74.8276% respectively. It is shown in Figure 3 that the uranium composition of 25% in UNH is the optimum percentage in order to reach a neutron multiplication factor of 0.99 or k_{eff}~ 0.99 i.e. the optimum subcritical level for SAMOP.
In a solution nuclear reactor design calculation, some variations of ^{235}U percentage in the solution are commonly needed. This will affect the isotopic compositions of the main uranium isotopes i.e. ^{235}U and ^{238}U for the respective uranium concentrations. This phenomenon is in accordance with references [14,15] and with the previous analysis result [2,7].

5. Conclusion
The analysis of elements composition contained in a homogeneous uranyl nitrate solution (UNH) has been done. The composition of UNH for enrichment of uranium of 19.75% and 2.81 gr/cc of density shows that the elemental composition of ^{235}U, ^{238}U, N, O, and H, are 4.9715%, 20.2009%, 5.3448%, 37.4138%, and 32.069% respectively. Its mean that the composition of U and N-O-H are 25.1724%, and 74.8276% respectively. The analysis result shows that the optimum k_{eff} of 0.99 or neutron multiplication factor in SAMOP reactor can be achieved with that elemental compositions.

Acknowledgments
This work was part of design assessment activities, related to the neutronic aspect of the SAMOP (Subcritical Assembly for Mo99 Production) system, INSINAS Project No.: RT-2016-0151, funded by Ministry of Research, Technology& Higher Education (Ristekdikti). The author would like to thank to the director of PSTA-BATAN and his staffs for supporting the implementation of the project.

References
[1] Syarip S, Tegas S, Edi Trijono B S and Endang S 2018 Design and Development of Subcritical Reactor by Using Aqueous Fuel for Mo-99 Production Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences 55 (1) 21–26
[2] Syarip and Sutondo T 2018 Analytical Method of Atomic Density Determination of Uranyl Nitrate Solution J. Phys.: Conf. Ser. 1090 012036
[3] International Atomic Energy Agency (IAEA) 2008 Homogeneous Aqueous Solution Nuclear Reactors for the Production of Mo-99 and Other Short Lived Radioisotopes (Vienna: IAEA TECDOC Report 1601)
[4] Youker A J, Chemerisov S D, Kalensky M, Tkac P, Bowers D L and Vandegrift G F 2013 A Solution-based approach for Mo-99 production: considerations for nitrate versus sulfate media Hindawi Publishing Corporation, Science and Technology of Nuclear Installations
[5] Sutondo T, Syarip and Santoso S 2009 Safety design limits of main components of the proposed SAMOP system Proceedings of the 3rd Asian Physics Symposium (APS 2009)
[6] Syarip S 2019 Kinetika dan Pengendalian Reaktor Nuklir Second Edition (Yogyakarta: Pustaka Pelajar)
[7] Sutondo T 2008 Metoda semi empiris untuk menentukan komposisi isotop uranium *Jurnal Ipeteck Nuklir GANENDRA* **8** (2) 45–51

[8] Wahid M I F and Syarip 2018 Mo-99 Isotope Production Calculation of SAMOP Reactor Experimental Facility *J. Phys.: Conf. Ser.* **1090** 012013I

[9] Wahid M I F and Syarip 2018 Source Term Analysis of SAMOP Reactor Experimental Facility *J. Phys.: Conf. Ser.* **1090** 012031

[10] Hermawan D P, Rionaldy and Syarip 2018 Neutronic Analysis of SAMOP Reactor Experimental Facility Using SCALE Code System *J. Phys.: Conf. Ser.* **1090** 012032

[11] Yassar F, Harto A W and Syarip 2018 Neutronic analysis of subcritical assembly for 99Mo isotope production based on thorium nitrate fuel *J. Phys.: Conf. Ser.* **1080** 012021

[12] Deen J R, Woodruff W L and Costescu C I 1995 *WIMS-D4M user manual* (United States: ANL-RERTR/TM-23)

[13] The WIMS Nuclear Data Library 1986 United Kingdom Atomic Energy Agency

[14] Ro S Gy, Min D K and Chon J-K 1982 Atom number densities for uranil nitrate solution *Journal of Korean Nuclear Society* **14** (8) 103-109

[15] Sakurai S, Miyauchi M and Tachimori S 1987 Density equations of U02(NO3)2-HN03 and U02(NO3)2-Gd(NO3)3-HN03 solutions *Journal of Nuclear Science and Technology* **24** (5) 415-419