Introduction

Over the last century, ectomycorrhizal plants have been produced in tree nurseries for purposes such as the production of edible fungi and improving the outcome of afforestation programs. Independent evaluation of the mycorrhizal methods used by such nurseries, and of the mycorrhizal quality of their products, is in the interests of both producers and customers (Vosátka, 2009). The Spanish authorities have increasingly been asking for the control of the quality of mycorrhized plants before granting funds for new plantations, especially truffle orchards. In fact, this has been of academic concern since the 1st International Truffle Congress (Spoleto, Italy, 1968) through to the recent ICOM6 (Belo Horizonte, Brazil, 2009). Several protocols for evaluating the mycorrhizal quality of plants exist (Bencivenga et al., 1987; Abourouh, 1994; Fischer and Colinas, 1996; Miko and Gažo, 2007), but these are not strictly followed. Those charged with quality control largely rely on personal adaptations of these methods (Bach et al., 2010) or even completely different methods.

A reproducible and inexpensive method for evaluating the mycorrhizal quality of plants is particularly

Abstract

Aim of study: The aim of the work was to determine the degree of mycorrhization of Quercus ilex L. subsp. ballota (Desf.) Samp. by the black truffle fungus T. melanosporum Vittad. by quantitative and molecular analyses.

Area of study: seedlings inoculated by different Spanish suppliers.

Material and methods: The internal transcribed spacers (ITS) of mycorrhizae from different plants were amplified by nested PCR involving fluorescently-labelled primers, and the amplicons either directly sized by ARISA or analysed by TRFLP following their digestion with restriction endonucleases. TRFLP analysis distinguished between mycorrhizae of T. melanosporum, T. indicum Cooke & Massee and T. borchii Vittad., as suggested possible by virtual (in silico) TRFLP analysis and real TRFLP analysis of the ascomata of these species.

Main results: Significant differences between suppliers were detected in terms of the mean number of mycorrhizae established per plant and percentage mycorrhization. These results allowed the following quality standards for 2 year-old plants to be proposed: a) good quality: > 3,000 mycorrhizae/plant, > 40% mycorrhization, b) medium (acceptable): > 3,000 mycorrhizae/plant, > 30% mycorrhization, c) low quality: < 3,000 mycorrhizae/plant or <30% mycorrhization, always supposing the mycorrhizae counted represent the species of interest as confirmed by the presence of its DNA and the absence of DNA belonging to contaminating species. Finally, a new microsatellite allelic map obtained from the analysis of several T. melanosporum populations across Spain was used to provide a tool capable of determining the geographic origin of the fungi used to inoculate plants.

Research highlights: The proposed quality standards can be useful for the evaluation and certification of commercialized Q. ilex plants mycorrhized with T. melanosporum.

Key words: mycorrhiza; certification; truffle; TRFLP; fungi.
necessary when dealing with highly prized edible fungal species, such as those of the genus *Tuber*. The presence of morphologically similar species (*e.g.*, *Tuber melanosporum* and *Tuber indicum*) in nursery seedlings could lead to the involuntary introduction of undesired taxa and even the displacement of local varieties (Murat et al., 2008; Bonito et al., 2011). Further, the mycorrhizal status of nursery plants directly affects the growth of the fungus after planting, the extent of the symbiotic association achieved (Garbaye and Wilhelm, 1984), and probably the onset of truffle production. Low rates of mycorrhization might also increase the chances of contamination as the local mycobiota take advantage of free niches. Finally, the geographical origin of the fungal strain inoculated into commercial plants is important if the success of plantations is to be assured (Zambonelli et al., 2010).

The methods currently used for the evaluation of mycorrhizal quality generally involve three main steps. First, some sort of root system cleaning is performed (Abourouh, 1994). This is followed by the sampling of different mycorrhizal tips, and finally by fungal identification (commonly performed under a stereomicroscope or even using the naked eye). However, the morphological typing of mycorrhizae is time-consuming and requires training and experience (Rinaldi et al., 2008; Suz et al., 2008a), and even then mistakes can be made, *e.g.*, strains of the same species can appear different and lead to misidentifications (Giomaro et al., 2000). Moreover, morphological similarities between structures of closely related species could lead to misidentifications (Manjón et al., 2009; Bonuso et al., 2010). In contrast, DNA-based methods can be easily standardized, require less training, allow for sample-pooling, and provide more accurate identifications than morphotyping. The presence of unwanted mycorrhizal contaminants, *e.g.*, competitors that might displace a desired fungal species, can be assessed by PCR targeting each taxon of interest if specific primers are available, or by following a universal mixed-DNA profiling method such as fragment analysis. The latter is based on the sizing of either undigested or endonuclease-digested amplicons labelled with a fluorescent signal. Theoretically, fragment analysis is more informative than PCR with specific primers since it can offer a holistic view of the fungal community without any prior knowledge of the species present. This is especially true if it is combined with sequencing methods (*e.g.*, clo-

The aim of the present work was to determine the degree of mycorrhization of *Quercus ilex* L. subsp. *ballota* (Desf.) Samp. by the black truffle fungus *T. melanosporum* Vittad. by quantitative and molecular analyses in seedlings inoculated by different Spanish suppliers. In addition, a new microsatellite allelic map obtained from the analysis of several *T. melanosporum* populations across Spain was used to characterize the inoculated fungi in terms of geographic origin.

Material and methods

Mycorrhized plants

The experimental plants included 11 *Quercus ilex* subsp. *ballota* seedlings (from a Spanish supplier) inoculated with no mycorrhiza-producing fungus (control, set 1), 103 *Quercus ilex* subsp. *ballota* seedlings inoculated with *T. melanosporum* by different Spanish suppliers (sets 2-11), 10 *Quercus ilex* subsp. *ilex* seedlings inoculated with *T. melanosporum* (set 12), 10 *Quercus ilex* subsp. *ilex* seedlings (from a high quality Italian supplier) inoculated with *T. borchii* (set 13), and 10 *Quercus ilex* subsp. *ballota* seedlings inoculated with *T. indicum* produced *ex professo* at the University of Alcalá (set 14) (Table 1). The different suppliers planted their seedlings in different types of substrate and pot (Table 1) and employed different mycorrhization procedures, although their exact nature was not disclosed to the authors. Note that the plants in some groups were 1 year-old, while those in others were two years old; this allowed the influence of duration of mycorrhization to be examined. The plants were grown in glasshouses under the standard conditions employed by the different suppliers. Note also that the substrate for the plants of set 5 was not sterilized; this allowed the influence of contamination to be more easily seen.

Preparing the root for observation

The entire root system of each plant was cleaned of substrate under gently running tap water, taking care not to break the secondary root system (and recovering the broken parts if this did occur). The root tip fraction (RTF) of each plant was obtained by rubbing the se-
condary root system over a stainless steel sieve of pore size 1 mm. The mycorrhizae were forced through the mesh using a strong tap water stream. The RTF was retained on a 0.2 mm mesh below the 1 mm mesh, and weighed after removing the excess water.

To check the efficiency of RTF extraction, the material that remained on the 1 mm mesh [unsieved fraction (UF)], and that which passed through the 0.2 mm mesh [sedimentary fraction (SF)] was also collected and weighed after removing the excess water from plants in sets 3 and 4. Three samples of random weight (5-100 mg) of the RTF, UF and SF fractions were then taken the number of mycorrhizae counted. The efficiency of RTF extraction was calculated as the relationship between the estimated number of root tips in the RTF over the sum of the root tips in all fractions combined. It proved to be highly efficient, with a mean extraction rate of 70.95 ± 11.13% for the 0.2 mm mesh alone. The UF and SF fractions were therefore not required in ensuing assays.

Number of mycorrhizae established per plant and percentage mycorrhization

Three subsamples of random weight were taken of the RTF of each plant in all sets, the number of mycorrhized and non-mycorrhized roots counted, and the percentage mycorrhization determined (\(n^{\text{mycorrhized roots}}/n^{\text{roots}}\)). However, since mycorrhiza can differ in size, large mycorrhizae were counted as more than 1, depending on their size compared to the average

Set number	Supplier	Plants (years)	Substrate	Plant	Fungus	Total number of roots extracted	Mean number of mycorrhizae	% Mycorrhization
1	Supplier 4	11	Peat	Q. ilex subsp. ballota	Uninoculated	14,786.843 ± 9,526.711	575.087 ± 525.561	4.0 ± 3.1
2	Supplier 1	8	2 Melfert	Q. ilex subsp. ballota	T. melanosporum	3,889.201 ± 1,731.758	866.250 ± 447.430	23.8 ± 12.4
3	Supplier 2	2	Soil-perlite-vermiculite	Q. ilex subsp. ballota	T. melanosporum	23,100.919 ± 13,164.747	9,913.470 ± 5,198.173	44.5 ± 6.8
4	Supplier 2	17	Soil-perlite-vermiculite	Q. ilex subsp. ballota	T. melanosporum	25,876.251 ± 12,886.809	10,959.516 ± 5,635.054	44.2 ± 17.1
5	Supplier 2	14	Peat*	Q. ilex subsp. ballota	T. melanosporum	4,312.389 ± 5,201.575	1,344.826 ± 658.871	14.2 ± 17.3
6	Supplier 3	4	Peat	Q. ilex subsp. ballota	T. melanosporum	20,601.105 ± 9,412.514	6,261.764 ± 2,363.187	33.3 ± 9.8
7	Supplier 5	10	2 Peat-perlite	Q. ilex subsp. ballota	T. melanosporum	12,224.119 ± 4,079.823	5,222.745 ± 1,865.266	52.1 ± 4.9
8	Supplier 5	10	2 Peat-perlite	Q. ilex subsp. ballota	T. melanosporum	15,092.375 ± 5,197.650	6,803.511 ± 1,801.069	49.7 ± 5.2
9	Supplier 5	10	1 Peat-perlite	Q. ilex subsp. ballota	T. melanosporum	12,542.153 ± 6,869.090	3,913.164 ± 1,891.848	32.6 ± 9.2
10	Supplier 6	10	2 Peat-perlite	Q. ilex subsp. ballota	T. melanosporum	22,732.829 ± 8,589.942	8,152.643 ± 4,303.897	28.5 ± 5.3
11	Supplier 8	4	Peat	Q. ilex subsp. ballota	T. melanosporum	16,740.756 ± 10,804.812	3,078.413 ± 1,417.370	22.5 ± 10.3
12	Supplier 7	10	2 Peat-vermiculite	Q. ilex subsp. ilex	T. melanosporum	31,656.644 ± 9,653.25	13,709.523 ± 5,600.469	44.1 ± 12.0
13	Supplier 10	10	Soil	Q. ilex subsp. ballota	T. borchii	—	—	—
14	Supplier 9	10	Soil-perlite	Q. ilex subsp. ballota	T. indicum	—	—	—

* Substrate not sterilized prior to inoculation. Number of mycorrhizae and number of roots are expressed per plant.
Mycorrhiza (i.e., a mycorrhiza twice the average size was counted as 2 mycorrhizae). Following the same reasoning, mycorrhizae broken during the sampling process were counted as fractions of a whole mycorrhiza.

Hierarchical cluster analysis (SPSS Statistics v.19, IBM) of the number of mycorrhizae and percentage mycorrhization (standardized in the interval 0-1) was performed in an attempt to classify the mycorrhizal quality of the different sets of plants.

Molecular analysis of mycorrhizae

An in silico database was constructed using published sequences of several well-known European species of the genus Tuber following the procedure of Alvarado and Manjón (2009). Virtual automated ribosomal intergenic spacer analysis (ARISA) was then performed to estimate the length of the ITS region. In addition, virtual terminal restriction fragment length polymorphism (TRFLP) analysis was performed to predict the fragment size to be produced following digestion of the ITS with the restriction enzymes MaeII and DdeI.

Real ARISA and TRFLP analyses were performed on the DNA extracted from the RTF fractions of all plants, as well as on that of real ascomata from different Tuber species (Table 2), and the results compared to the in silico predictions. Total DNA from the ascomata was extracted following the standard CTAB method. Total RFT DNA was extracted from 250 mg RTF samples using the PowerSoil DNA Isolation Kit (Mo Bio, Carlsbad CA), following the manufacturer’s protocol. Two microlitres of total DNA were amplified using primers NSI1 and NLB4 (Martin and Rygiewicz, 2005) or ITS1F and ITS4 (Gardes and Bruns, 1993; White et al., 1990). Two microlitres of the resulting PCR product were then used in a nested PCR reaction involving the fluorescently labelled primers 6FAM-ITS1 and VIC-ITS4. All PCR reactions were performed in 50 µL and included one unit EcoTaq DNA polymerase (Ecogene), 1X EcoTaq Buffer (Ecogene), MgCl₂ 2 mM and dNTPs 0.2 mM each. Amplifications were started using a hot start step at 95°C for 5 min, followed by 30 cycles of three steps at 94°C for 30 s, 54°C for 90 s and 72°C for 120 s, and a final extension step at 72°C for 10 min.

The amplification products were then subjected to ARISA and TRFLP. For ARISA, 1 µL of each PCR product was directly examined in an ABI Prism 3130xl sequencer (Applied Biosystems) using the internal standard LIZ1200 and a POP 7 polymer. For TRFLP analyses, 18 µL of each PCR product were digested with two units of HpyCH4IV (isoschizomer of MaeII) or DdeI (New England Biolabs) (Alvarado & Manjón 2009) in 2 µL of their respective 10X buffers for 2 h at the temperature recommended by the manufacturer. One microlitre of the digested amplicons was loaded in the same way as the undigested fragments. All results were checked in PeakScanner v1.0 software (Applied Biosystems).

Cloning and sequencing

The ITS amplicons from three randomly selected plants from each set (except for sets 11 and 12) were cloned, and sequenced. The primer pair ITS1-ITS4 was used to amplify the ITS region in a nested PCR reaction following the procedures mentioned above. The PCR products were purified using the UltraClean™ PCR Clean-up kit (MoBio, Carlsbad, US) and eluted in 50 µl of buffer. Four microlitres of each purified PCR product were used in independent cloning reactions involving the plasmid pCR®2.1-TOPO®. The plasmids were then transferred into TOP10 chemically competent cells, using the TOPO TA Cloning® Kit (Invitrogen, Carlsbad, US) according to the manufacturer’s instructions. One or two hundred microlitres of transformed cells in SOC medium were spread on LB agar plates supplemented with 50 µg mL⁻¹ ampicillin, 40 mg L⁻¹ X-gal, and 23.83 mg L⁻¹ IPTG. Transformed colonies were verified as such in PCR reactions performed as described above, using the primers M13F (located in the vector), and ITS4 (from the insert). The PCR products were examined in MetaPhor® agarose gel (Lonza, Rockland, US). Clones with different ribotypes were purified and sequenced with ITS4 as above.

Microsatellite analysis

To determine whether microsatellite analysis of T. melanosporum intraspecific variability can be used to determine the geographical origin of the fungal strains inoculated into seedlings, several primers developed by Bertault et al. (2001) and Riccioni et al. (2008) were used to amplify different microsatellite loci in the mycorrhizae of the different plants, and in fruiting bodies of T. melanosporum collected in natural truffle habitats in central and southern Spain (77 samples from three localities in Guadalajara (central Spain), 19
samples from 10 localities in Soria (central Spain), 12 samples from 6 localities in Albacete (southern Spain), and 7 samples from 5 localities in Andalusia (southern Spain). The fluorescently-labelled primer pairs FAM-Cro74F/Cro74B, VIC-Cro71F/Cro71B, NED-07ISSR9f/07ISSR9b, PET-07ISSR10f/07ISSR10b, FAM-07ISSR14f/07ISSR14b, NED-F12If/F12Ib and VIC-H1bf/H1bb, were used to amplify the loci ME2, ME4, 07ISSR9, 07ISSR10, 07ISSR14, F12I and H1b respectively. Two microlitres of template DNA were used in two independent multiplex PCR reactions (volume 50 µL), amplifying 3 and 4 of the mentioned loci respectively. The PCR conditions were the same as those stated above.

In addition, the mycorrhizae of plants inoculated with truffle strains coming from different geographical locations were subjected to microsatellite amplification, to test the performance of this kind of analysis on DNA extracted from mycorrhized roots. To this end, 2 µL of template DNA of sets 7 (from Soria) and 12 (from Andalusia) was used to amplify the same microsatellite loci. Fragment analysis was performed in the same conditions as for TRFLP.

Table 2. ARISA and TRFLP results for several species of the genus Tuber. Values predicted in silico are shown in bold text. The upper section of the table represents the predicted fragment sizes after virtual (in silico) ARISA and TRFLP, plus the sizes recorded in analyses of the actual fruiting bodies and mycorrhized roots. The lower section contains the fragment sizes predicted in silico using GenBank data of other species of the genus Tuber.

Tuber genotypes	GenBank	Pred. ARISA	Obs. ARISA	Pred. MaeII 1-4	Obs. MaeII 1-4	Pred. MaeII 4-1	Obs. MaeII 4-1	Pred. Ddel 1-4	Obs. Ddel 1-4	Pred. Ddel 4-1	Obs. Ddel 4-1
In silico-Ascomata-Roots											
T. borchii 1	FJ554466	568	564	564	119	118	94	93			
T. brumale 1	FM205692	914	911	379	533	531	99	95	285	288	
T. indicum 1	DQ375511	620	616	141	138	139	155	154	168	168	
T. indicum 1	DQ375512	620	616	140	139	155	154	168	168	168	
T. indicum 2	FJ455097	624	620	180	178	178	442	475	169	169	
T. magnatum 1	EU807975	644	637	393	389	390	535	99	175	175	
T. malençonii 1	FM205596	704	692	530	523	523	108	106	62	62	
T. melanosporum 1	EU753270	620	616	620	616	616	169	169	167	167	
In silico											
T. aestivum 1	AF132509	703	204	258	346	346	198	198	302	302	
T. aestivum 2	AY226042	701	203	256	198	198	346	346	302	302	
T. aestivum 3	AJ492203	701	203	256	198	198	346	346	302	302	
T. borchii 2	FJ554495	568	568	568	568	568	60	60	94	94	
T. brumale 2	FM205660	917	380	535	99	99	289	289			
T. brumale 3	FJ748900	886	348	536	99	99	288	288			
T. excavatum 1	FN433155	659	659	659	78	78	141	141			
T. excavatum 1	FN433150	661	535	124	78	78	142	142			
T. excavatum 2	FN433145	659	530	127	202	202	145	145			
T. excavatum 3	FN433144	663	533	128	76	76	146	146			
T. excavatum 4	FM205559	661	661	661	205	205	143	143			
T. excavatum 5	FN433141	700	566	132	77	77	150	150			
T. indicum 1	DQ375498	621	142	477	170	170	86	86			
T. indicum 1	U93632	620	463	155	169	169	285	285			
T. indicum 2	DQ375493	628	184	442	173	173	94	94			
T. puberulum 1	AJ557540	651	651	651	202	202	93	93			
T. pseudohimalayense 1	DQ329371	891	781	108	105	105	282				
T. pseudohimalayense 1	AY514310	891	891	891	105	105	282				
T. rufum 1	EF362473	660	660	660	660	660	660	660			
T. rufum 2	EF362475	659	659	659	209	209	141	141			
T. rufum 3	FM205603	658	658	658	141	141	141	141			
T. rufum 4	FN433161	663	43	618	189	189	141	141			
T. rufum 5	FM205668	662	662	662	188	188	141	141			
Results

Extraction of mycorrhizae

All the inoculated plants showed mycorrhizae; in fact, even the non-inoculated controls had become associated with fungi of some kind. Among the Spanish plants inoculated with T. melanosporum (sets 2-11), the number of root tips with mycorrhizae and the percentage mycorrhization varied significantly depending on the supplier (Fig. 1). Cluster analysis of the variables “mean number of mycorrhizae” and “percentage mycorrhization” revealed the existence of different groups of sets: Group I (sets 1, 2, 5, and 11) was formed of plants for which the mean number of mycorrhizae was < 3,000 —these were considered of poor mycorrhizal quality since the non-inoculated set was included in this group; Group II (sets 3, 4, 7, 8 and 12), in which the plants had > 3,000 mycorrhizae and the percentage mycorrhization exceeded 40%— these were considered optimally mycorrhized; and Group III (sets 6, 9 and 10) in which the plants showed intermediate mycorrhizal quality (> 3,000 mycorrhizae/plant, < 40% mycorrhization).

All the plants inoculated with T. melanosporum showed the honey-coloured mycorrhizae typical of this fungus, but also brownish or even dark brown mycorrhizae. Some extra-large and pear-shaped mycorrhizal apices were also seen (Fig. 2). The plants inoculated with T. indicum (set 14) had mycorrhizae morphologically indistinguishable from those of T. melanosporum. The plants of set 13, inoculated with T. borchii, showed typical mycorrhizae of this species with cystidia (Kovács and Jakucs 2006). However, the latter were hard to find, perhaps due to the sampling procedure or the fungal strain (Giomaro et al., 2000).

ARISA and TRFLP analysis

The in silico ARISA and TRFLP predictions (Table 2) matched closely the results obtained for the real ascomata; the mean difference between them was 3 bp.
The error, though variable (2-4 bp) was always the same in comparisons between the \textit{in silico} predictions and the ARISA/TRFLP results for samples of any given species.

ARISA analyses of the mycorrhized plants returned characteristic profiles depending on the supplier. The profiles differed mainly in terms of the most abundant ribotypes, as well as ribotype richness and evenness. The plants of sets 3, 4, 6, 7, 8, 9, 12 and 14 usually showed a dominant peak of 616-617 bp, similar in size to that obtained for the ascomata of \textit{T. melanosporum} and \textit{T. indicum} clade IV (Chen \textit{et al.}, 2011). Sometimes other, more or less co-dominant peaks, were seen (Fig. 2). In a few cases, other ribotypes were dominant over that of \textit{T. melanosporum}; in fact, the latter was absent from some supposedly-inoculated samples in sets 2, 5 and 10. As expected, it was also absent from set 1 (the non-inoculated control), and set 13 (inoculated with \textit{T. borchii}). The latter showed a 564 bp peak matching that obtained from an ascoma of this species; this closely approached the \textit{in silico}-predicted fragment size of 568 bp.

The TRFLP profiles of the mycorrhized plants matched those obtained for the ascomata, and allowed discrimination between plants inoculated with \textit{T. melanosporum}, \textit{T. indicum} clade IV or \textit{T. borchii} clade I (BONUSO \textit{et al.}, 2010).

\textbf{Cloning and sequencing}

ITS sequences matching those of GenBank accessions for \textit{T. melanosporum} (JN392089- JN392094), \textit{T. indicum} clade IV (JN392096) and \textit{T. borchii} clade I (JN392095) were recovered from the plants inoculated with these respective fungi. None were recovered from...
set 1 (Control) or set 2 (grown in Melfert bags). Set 5 contained sequences of the contaminating mycorrhizal fungus *Thelephora terrestris* (GenBank JN392097), an unidentified fungus of the order Sebacinales (GenBank JN392098), and a sequence from *Hebeloma* sp. (GenBank JN392099), while sets 8 and 12 were contaminated with an unidentified species of *Tomentella* sp. (GenBank JN392100). Most of the remaining sequences obtained through cloning were those of saprophytic or endophytic fungal genera, or failed to match any known genus, as reported by other authors (Lindner and Banik, 2009). *Alternaria* (JN392101), *Blastobotrapsis* (JN392102), *Cladosporium* (JN392103), *Clitopilus* (JN392104), *Coprinopsis* (JN392105), *Coprinus* (JN392106), *Geomyces* (JN392107), *Neonectria* (JN392108, JN392109), *Mycena* (JN392110), *Penicillium* (JN392111), *Peziza* (JN392112) and *Sphaeropsis* (JN392113) were among the main genera identified using BLAST software. Several other sequences could not be related to any existing genus; these will not be uploaded into public databases until they have been further investigated.

Microsatellite analysis

The analysis of microsatellite variability within *T. melanosporum* populations from central Spain (Gualdalajara, Soria) revealed a single dominant haplotype with scattered low-frequency allelic variations (Fig. 3). The southern populations (Andalusia, Albacete), in contrast, showed a greater evenness of alleles at loci F121, Cro71 and 07ISSR9. Additionally, these alleles were found combined, forming unique haplotypes that were absent from the populations of central and northern Spain (Riccioni et al., 2008). Locus H1b showed no apparent variability in the samples analysed, while locus 07ISSR10 (the different alleles of which differed by only 1 bp) had an ambiguous fragment size of 264.5 bp; it was therefore excluded from the analysis. Some degree of stuttering was detected (see Fig. 3f), but a dominant peak was always observed. Direct sequencing revealed the observed allele size to differ slightly (but constantly) from the real size, in agreement with that reported by Riccioni et al. (2008). Fig. 3 shows the corrected fragment sizes. Microsatellite analysis of DNA extracted from the mycorrhized roots successfully discriminated between strains with different genotypes from central Spain and Andalusia.

Discussion

All the nursery-produced plants tested showed mycorrhizae of some kind, including the control plants (set 1), although the percentage mycorrhization, and the species involved, depended greatly on the supplier. Further, broad differences in mycorrhization status and molecular traits were detected between the *T. melanosporum* inoculated by the different Spanish suppliers. This seems to be in keeping with the idea that spontaneous mycorrhization occurs in tree nurseries, and that standardised substrate preparation, environmental monitoring and fungal inoculation techniques must be developed and followed if high-quality mycorrhization is to be achieved (Pruett et al. 2009).

The set 2 plants, which were grown in Melfert bags, had very few mycorrhizae and returned low percentage mycorrhization values. *T. melanosporum* could not be detected by TRFLP or cloning and sequencing. The sets in which the plants were grown on substrates based on a mixture of peat or soil plus perlite or vermiculite provided better results. However, this could be due to other, unstudied influences on the production process, or even undeclared additions to the substrate mixture that could not be detected visually.

A mycorrhization value of at least 40% and > 3,000 mycorrhizae is here proposed as representing good mycorrhizal quality for 2 year-old Q. ilex subsp. balotata plants inoculated with *T. melanosporum*. Plants with > 3,000 mycorrhizae and 30% mycorrhization can be considered of acceptable quality, while those with lower values should be considered suboptimal. The literature contains no reports on the relationship between mycorrhizal status and truffle production onset or productivity. However, mycelium abundance in the soil seem to be directly involved (Suz et al., 2008b).

One set of 1 year-old plants (set 9) had a number of mycorrhizae and a percentage mycorrhization similar to that of two 2 year-old sets (sets 7 and 8). It is therefore difficult to draw any conclusions regarding the influence of mycorrhization time on the actual mycorrhization achieved. However, set 9 fell into Group III (acceptable plants) in the cluster analysis, suggesting that the quality standards proposed might also be applied to 1 year-old plants.

This is the first paper to report the use of TRFLP to detect inoculated fungi in commercial mycorrhized plants; the technique would appear to provide an alternative method of fungal community profiling. The fragment sizes showed a small bias when compared to
in silico predictions (although the size of the bias was not related to the fragment size) (Table 2); this was more or less constant for different assays of single samples and for different samples of the same species. The same has been reported by other authors employing techniques based on fragment analysis (Dickie and FitzJhon, 2007) or the use of fluorescently-labelled microsatellites (Riccioni et al., 2008). TRFLPs can be used to characterize mycorrhized root tips (Burke et al., 2005) cheaply compared to cloning and sequencing. If available, specific primers can be used to detect several taxa in multiplex reactions, but these could return amplicons of equal or similar length. TRFLP-identification requires looking for known peaks, either manually or using an automated system such as TRAMPR (TRFLP analysis and matching package for Evaluation of Tuber melanosporum mycorrhiza in Quercus ilex seedlings

Figure 3. Microsatellite variability of T. melanosporum in Spain. a-e) Allelic frequencies of five microsatellite loci taken from the present work and from Riccioni et al. (2008). f) Comparison of the microsatellite profiles of plants inoculated with T. melanosporum from central Spain (Soria), and from southern Spain (Andalusia).
R) (FitzJohn and Dickie, 2007). It also offers a semi-quantitative estimation of specific DNA abundance, at least for small quantities of DNA (Manter and Vivanco, 2007), which could be used to assess the dominance of the inoculated fungus.

ARISA successfully discriminated between morphologically similar species such as *T. melanosporum* and *T. indicum* Clade III (Chen et al., 2011). However, *T. indicum* Clade IV, which differs from *T. melanosporum* in 6.129% of its sequence (38 variable sites in 620 bp), could only be separated by its TRFLP profile. Even the two cryptic species of *T. borchii* (sensu Bonuso et al., 2010, or Alvarado et al., 2012; but not Halasz et al., 2005, or Kovács and Jakucs, 2006), which differ in as little as 1.937% of its ITS sequence (11 variable sites in 568 bp) were successfully discriminated by their TRFLP profile.

The microsatellite primers designed to characterize the *T. melanosporum* ascomata were here used for the first time to examine mycorrhized plant roots. Most of the alleles recorded were present — at least at a very low frequency — in all areas, although a single haplotype was the most common in central Spain. This agrees with previous reconstructions of the evolutionary history of *T. melanosporum* (Murat et al., 2004; Riccioni et al., 2008). The populations of Andalusia and Albacete to the south, and Navarre in northern Spain, showed characteristic alleles or haplotypes that allows fungal strains from these areas to be recognised. Further research into microsatellite profiles should be conducted to determine the reliability of geographical identifications.

Conclusions

This work reports an inexpensive and reproducible method for quantitatively and molecularly assessing the mycorrhiza in the roots of *Quercus ilex* saplings.

The mycorrhizal quality standards proposed for certifying 2 years-old plants mycorrhized with *T. melanosporum* are: a) good quality: > 3,000 mycorrhizae/plant, > 40% mycorrhization, b) medium (acceptable): > 3,000 mycorrhizae/plant, > 30% mycorrhization, c) low quality: < 3,000 mycorrhizae/plant or < 30% mycorrhization. The DNA of the fungus of interest must be present in the absence of DNA from contaminant species dangerous to truffle orchards.

Allelic differences between *T. melanosporum* strains from root samples can be used to determine the geographical origin of some strains.

Acknowledgements

This work was funded by the Spanish Ministry of Education and Culture (FPU grant AP2006-00890), and the Spanish “Plan Nacional” Research Project AGL2009-12884-C03-03. The authors thank M. Bencivenga, G. Moreno, B. Moreno-Arroyo, X. Parladé and A. Rodriguez for providing mycorrhizal plants and truffle samples, and Adrian Burton for editing assistance.

References

Abourouh M, 1994. Les évaluations quantitatives des mycorhizes en pépinière et sur le terrain. Cah Opt Mediterranennnes 20: 51-61.

Alvarado P, Manjón JL, 2009. Selection of enzymes for terminal restriction fragment length polymorphism analysis of fungal internally transcribed spacer sequences. Appl Environ Microbiol 75(14): 4747-4752.

Alvarado P, Moreno G, Manjón JL, 2012. Comparison between *Tuber gennadii* and *T. oligospermum* lineages reveals the existence of the new species *T. cistophilum* (Tuberaeaceae, Pezizales). Mycologia 104(4): 894-910.

Bach I, Bordács S, Szlávik S, 2010. Development of an official method to control the quality of mycorrhized forestry material in Hungary. Ost Zeitschr f Pilzk 19: 227-229.

Bencivenga M, Ferrara AM, Fontana A, Granetti B, Gregori G, Lo Bue G et al., 1987. Valutazione dello stato di miorrizazione di piante tartufogene. Proposta di un metodo. Ministero dell’Agricultura e Foreste, Roma, Italy.

Bertault G, Rousset F, Fernández D, Berthomieu A, Hochberg ME, Callot G et al., 2001. Population genetics and dynamics of the black truffle in a man-made truffle field. Heredity 86: 451-458.

Bonito G, Trappe JM, Donovan S, Vilgalys R, 2011. The Asian black truffle *Tuber indicum* can form ectomycorrhizas with North American host plants and complete its life cycle in non-native soils. Fung Ecol 4(1): 83-93.

Bonuso E, Zambonelli A, Bergemann SE, Iotti M, Garbelotto M, 2010. Multilocus phylogenetic and coalescent analyses identify two cryptic species in the Italian bianchetto truffle, *Tuber borchii* Vittad. Conserv Genet 11: 1453-1466.

Burke DJ, Martin KJ, Rygiewicz PT, Topa MA, 2005. Ectomycorrhizal fungi identification in single and pooled root samples: terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. Soil Biol & Biochem 37: 1683-1694.

Chen J, Guo S-X, Liu P-G, 2011. Species recognition and cryptic species in the *Tuber indicum* complex. PLoS ONE 6(1): e14625.

Dickie IA, FitzJohn RG, 2007. Using terminal restriction fragment length polymorphism (T-RFLP) to identify
mycorrhizal fungi: a methods review. Mycorrhiza 17: 259-270.

Fischer C, Colinas C, 1996. Methodology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. 1st International Conference on Mycorrhizae. Berkeley, California, USA, August, 1996.

FitzJohn RG, Dickie IA, 2007. TRAMPR: an R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Mol Ecol Notes 7: 583-587.

Garbaye J, Wilhelm ME, 1984. Influence de la mycorrhization acquise en pépinière sur la mycorrhization de jeunes plantations de chêne. Acta Oecol 5: 151-161.

Gardes M, Bruns TD, 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2: 113-118.

Giomaro G, Zambonelli A, Sisti D, Cecchini M, Evangelista V, Stocchi V, 2000. Anatomical and morphological characterization of mycorrhizas of five strains of Tuber borchii Vittad. Mycorrhiza 10: 107-114.

Halász K, Bratek Z, Szegő D, Rudnóy S, Rácz I, Lásztity D et al., 2005. Tests of species concepts of the small, white, European group of Tuber spp. based on morphology and rDNA ITS sequences with special reference to Tuber rapaeodorum. Mycol Prog 4: 281-290.

Kovács GM, Jakucs E, 2006. Morphological and molecular comparison of white truffle ectomycorrhizae. Mycorrhiza 16: 567-574.

Lindner DL, Banik MT, 2009. Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots. Mycologia 101: 157-165.

Manjón JL, García-Montero LG, Alvarado P, Moreno G, Di Massimo G, 2009. Tuber pseudoeccavatum versus T. pseudohimalayense – new data on the molecular taxonomy and mycorrhiza of Chinese truffles. Mycotaxon 110: 399-412.

Manter DK, Vivanco JM, 2007. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Meth 71: 7-14.

Martin KJ, Rygiewicz P, 2005. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5: 28.

Miko M, Gaño J, 2007. Methodical assessment of host tree seedlings inoculated with Tuber aestivum Vitt. for application in agroforestry. Acta Fytotech Zootech 1: 12-16.

Murat C, Diez J, Luis P, Delaruelle C, Dupré C, Chevalier G et al., 2004. Polymorphism at the ribosomal DNA ITS and its relation to postglacial re-colonization routes of the Perigord truffle Tuber melanosporum. New Phytol 164: 401-411.

Murat C, Zampieri E, Vizzini A, Bonfante P, 2008. Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened!. New Phytol 178: 699-702.

Pruett GE, Bruhn JN, Mihail JD, 2009. Greenhouse production of Burgundy truffle mycorrhizae on oak roots. New Forests 37: 43-52.

Ricciioni C, Belfiori B, Rubini A, Passeri V, Arcioni S, Paolocci F, 2008. Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180: 466-478.

Rinaldi AC, Comandini O, Kuyper TW, 2008. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33: 1-45.

Suz LM, Azul AM, Morris MH, Bledsoe CS, Martín MP, 2008a. Molecular and morphotyping methods to characterize ectomycorrhizal roots and hyphae in soil. In: Mycorrhizal manual (Nautiyal CS, Dion P, eds). Springer-Verlag. pp: 437-474.

Suz LM, Martín MP, Oliach D, Fischer C, Colinas C, 2008b. Mycelial abundance and other factors related to truffle productivity in Tuber melanosporum-Quercus ilex orchards. FEMS Microbiol Lett 285: 72-78.

Vosátka M, 2009. Basic aspects of mycorrhizal biotechnology: fungal inocula production and application. In: A textbook of molecular biotechnology (Chauhan AK, Varma A, eds). IK International, New Delhi, India.

White TJ, Bruns T, Lee S, Taylor JW, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press Inc, New York. pp: 315-322.

Zambonelli A, Piattoni F, Iotti M, 2010. What makes a good truffle infected tree? Ost Zeitschr f Pilz 19: 201-207.