Secondary Mania induced by TNF-α inhibitors: A systematic review

Alessandro Miola, MD,†1,2,3 Veronica Dal Porto, MD,†1 Nicola Meda, MD,4 Giulia Perini, MD,1,2,3 Marco Solmi, MD PhD5,6,7 and Fabio Sambataro, MD PhD1,2,*

A growing number of studies support a bidirectional relationship between inflammation and bipolar disorders. Tumor necrosis factor-α (TNF-α) inhibitors have recently attracted interest as potential therapeutic compounds for treating depressive symptoms, but the risk for triggering mood switches in patients with or without bipolar disorders remains controversial. Thus, we conducted a systematic review to study the anti-TNF-α medication-induced manic or hypomanic episodes. PubMed, Scopus, Medline, and Embase databases were screened for a comprehensive literature search from inception until November 2020, using The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Out of the initial 75 references, the screening resulted in the inclusion of four case reports (each describing one patient) and a cohort study (in which 40 patients out of 7600–0.53%—experienced elated mood episodes after infliximab administration). Of these 44 patients, 97.7% experienced a manic episode and 2.3% hypomania. 93.2% of patients had no history of psychiatric disorder or psychotropic treatment. Only 6.8% had a history of manic or hypomanic symptoms varied across TNF-α inhibitors with an early onset for Infliximab and a later onset for Adalimumab and Etanercept. These findings suggest that medications targeting the TNF-α pathway may trigger a manic episode in patients with or without affective disorders. However, prospective studies are needed to evaluate the relative risk of such side effects and identify the population susceptible to secondary mania.

Keywords: bipolar disorders, disease-modifying antirheumatic drugs, immune system, manic switch, TNF inhibitors.

http://onlinelibrary.wiley.com/doi/10.1111/pcn.13302/full

A growing number of studies support a bidirectional relationship between inflammation and bipolar disorders (BDs)1–3; elevated levels of inflammatory markers – such as Interleukin-1β, soluble Interleukin-2-Receptor (sIL-2-R), Interleukin-6 (IL-6) – have been reported in patients with bipolar disorders (BDs).4 Furthermore, serum levels of tumor necrosis factor-alpha (TNF-α), a cytokine also regulating synaptic function5 and neuronal survival,6 have been reported to be altered during manic,7 depressed,8,9 or euthymic phases7 of mood cycles. In addition to the association between inflammatory markers and mood polarity, inflammation has been shown to play a central role in contributing to the neuroprogression of bipolar disorders,1,10,11 and a positive association between cytokine levels and manic symptoms severity has been reported.12 Moreover, lithium therapy – the mainstay treatment for BDs treatment – yields immunomodulatory effects13; it has been shown that successful treatment with this medication leads to the normalization of altered cytokine levels,14 and patients who do not respond to lithium therapy also have persistently high TNF-α serum levels,15 whereas those who benefit from lithium therapy, besides retaining elevated TNF-α levels, show an increase in anti-inflammatory cytokines (i.e., IL-4) levels.16

Given the case for the role of inflammation and innate immunity in BDs pathophysiology, molecules targeting the TNF-α pathway have recently attracted interest as potential therapeutic compounds. Disease-modifying antirheumatic drugs (DMARDs), including TNF-α inhibitors (i.e., infliximab, adalimumab, certolizumab, and etanercept), have shown positive effects on the affective, cognitive, and somatic function of patients with inflammatory illnesses.17 In particular, the administration of TNF-α inhibitors improves depressive symptoms in patients with psoriasis18 or Crohn’s disease19 and reduces fatigue in patients with advanced cancer.20 However, very little is known about the safety and efficacy of these drugs in patients with BDs. Analogously to other antidepressant treatments, DMARDs may contribute to triggering a manic switch in patients with BDs. However, sparse and limited evidence on this topic has been reported. Thus, this systematic review aimed to summarize current evidence supporting the role of TNF-α antagonists in inducing secondary manic episodes or exacerbating a mood switch in patients with or without mood disorders.
Methods

Protocol and search strategy

This systematic review followed a pre-defined protocol available online (https://osf.io/mt7jb/quickfiles) and adhered to the procedures of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement21 (see Supplementary materials for details). A comprehensive literature search was performed in PubMed, Scopus, Medline, and Embase databases, with the following keywords: (‘infliximab’ OR ‘adalimumab’ OR ‘etanercept’ OR ‘certolizumab’ OR ‘anti-TNF’ OR ‘TNF antagonist’ OR ‘TNF inhibitors’) AND (‘mania’ OR ‘manic’ OR ‘hypomania’ OR ‘hypomanic’). Moreover, the reference lists of included papers were screened by snowball search.

Eligibility

Case–control, experimental, cross-sectional, and prospective studies were considered eligible. Studies were included if (i) reported the use of TNF-α inhibitors in patients with or without mood disorders according to the Diagnostic and Statistical Manual (DSM) or the International Classification of Diseases (ICD); (ii) a qualitative measure of manic or hypomanic episodes induced by TNF-α inhibitors as side effects; (iii) were written in English. Commentaries, editorials, and reviews were excluded. All articles published until November 2020 were included, while no publication status restrictions were imposed.

Data extraction

Every reference was screened by at least two researchers independently (A.M. and V.D.P.), any disagreement was discussed between the two, and whenever it was not possible to make a decision, a third researcher was involved in the discussion (F.S.). Once the full-text articles were selected, the data retrieved have been entered into a spreadsheet. Sample size, demographics, previous treatment, treatment response, adverse effects, and follow-up time were extracted. The analysis of the data was made by comparison. The heterogeneity of the results, such as the type of studies identified, did not allow us to perform a meta-analysis. A narrative synthesis was considered the best approach to describe and analyze the results.

Results

The database search, after duplicates removal, brought a total of 71 records. Following the inclusion/exclusion criteria, the screening resulted in the inclusion of 5 full-text articles (Fig. 1). The evidence available regarding the manic or hypomanic induced by TNF-α antagonists is limited to four case reports17,22–24 and a cohort study.25 Information about the patients, such as demographics, previous

Identification of studies via databases and registers

Identification	Records identified from:
	Pubmed, Medline, Scopus,
	Embase (n = 75)
	Registers (n = 0)
	Records removed before screening:
	Duplicate records removed (n = 4)
	Records marked as ineligible by automation tools (n = 0)
	Records removed for other reasons (n = 0)
Screening	Records screened (n = 71)
	Records excluded (n = 60):
	No data about outcome of interest (n = 2)
	Review articles (n = 3)
	Letter to the editor (n = 1)
Included	Reports sought for retrieval (n = 11)
	Reports not retrieved (n = 0)
	Reports assessed for eligibility (n = 11)
	Studies included in review (n = 5)
	Reports of included studies (n = 5)

Fig1 PRISMA study flow chart.
treatment, treatment response, manic or hypomanic adverse effects, and follow-up time, were extracted and summarized in Table 1. A total of 44 patients experienced manic or hypomanic episodes after treatment with a TNF-α antagonist (n = 1, etanercept; n = 1, adalimumab; n = 42, infliximab). In particular, 97.7% showed an induced manic episode, and just 2.3% of patients (n = 1) experienced hypomania. Several rheumatological illnesses were associated with anti-inflammatory-induced hypomanic or manic episodes: psoriasis,24 psoriatic arthritis,24 ankylosing spondylitis,22,25 Crohn’s disease,22,25 and ulcerative colitis.25 Most patients had no history of psychiatric disorder, n = 1, dysthymia, n = 21,22,25 bipolar disorder, n = 125. The onset of manic or hypomanic symptoms differed across TNF-α inhibitors: with an early onset for Infliximab (after first administration) and a later onset for Adalimumab and Etanercept (after second administration). No cases of secondary mania or hypomania after certolizumab administration have been reported so far.

Discussion

To our knowledge, this is the first systematic review conducted to date assessing the available evidence about the role of TNF-α antagonists in inducing secondary manic episodes or exacerbating a mood switch in patients with or without mood disorders.

Hitherto, a cohort study,25 two clinical cases for infliximab,22,23 one for etanercept,24 and one for adalimumab17 support the case for these drugs of inducing manic episodes in patients receiving treatment for inflammatory illnesses, especially for patients without a history of bipolar disorders or hypomanic/manic symptoms. No cases of secondary manic or hypomanic episodes after treatment with certolizumab have been reported so far.

TNF-α antagonists had recently attracted interest as potential therapeutic compounds for mood disorders.6 However, few studies have been published regarding their safety and efficacy for treating patients with mental disorders or patients with inflammatory diseases and comorbid psychiatric disorders. In this systematic review, we sought to analyze the available evidence on the putative role of TNF-α in triggering hypomanic or manic episodes in patients with or without a mental disorder. The vast majority of patients who experienced a manic/hypomanic episode (93.2%) had no history of psychiatric disorders until exposure to TNF-α inhibitors. Except for the case reported in the study by Ghosshoub and colleagues (Table 1), only manic episodes have been reported to be triggered by Infliximab, Adalimumab, or Etanercept. This is in line with previous evidence that supports the case for the role of the immune system response in the onset and clinical presentation of bipolar disorders.24 Furthermore, it has been reported that the thymic phases of the disorder (depression, mania/hypomania, and euthymia) show different cytokine profiles, suggesting an association between inflammatory dysfunction, mood state, and mood phase.3,7,12 In patients experiencing a manic episode, pro-inflammatory cytokines (e.g., TNF-α, IL-1, IL-6), soluble receptors of IL-2, soluble TNF-α receptor type 1 (sIL-2R and sTNFR1, respectively), and C reactive protein (CRP) are generally increased when compared to a control population.1,3 The association between inflammation and depressive episodes in both bipolar and

Table 1. Characteristics of included studies

Author, year	Sample size	Sex (n)	Primary diagnosis	Previous episodes	TNF-α antagonist	Psychiatric medication	Time of hypomania/mania onset	Hypomania/mania treatment
Kaufman K.R., 200524	1	21, F	Atypical depression and manic sertraline-induced episode	Psoriatic arthritis	Etanercept (25 mg s.c. / 2 weeks)	Lamotrigine (37.5 mg q.h.s.)	Mania after the 2nd administration	Stop Etanercept + starting Valproate (1000 mg/day), + oscarbazepine (1200 mg/day), and ziprasidone (80 mg/day), clonazepam (1 mg/day)
Brietzke E. & Lafer B., 201025	1	43, F	Dysthymia	Ulcerative colitis	Infliximab (dosage not available)	Citalopram (40 mg/day)	Mania after the 1st administration	Stop infliximab
Austin M., 201222	1	62, M	none	Crohn’s disease	Infliximab (dosage not available)	none	Mania after the 1st administration	Starting Olanzapine (5 mg/day)
Ghosshoub E. et al., 201627	1	25, M	Dysthymia	Ankylosing spondylitis	Adalimumab (40 mg s.c. / 2 weeks)	None; escitalopram (dosage not available) for one month	Mania after the 2nd administration; Hypomanic symptoms after the 1st administration; manic symptoms after starting antidepressant	Stop Adalimumab and starting + valproate (750 mg/day) and aripiprazole (10 mg/day)
Thillard E-M et al., 202023	40 patients, treated with infliximab	n.a., 47.7% M	none	Rheumatoid arthritis, psoriasis, ulcerative colitis, Crohn’s disease, ankylosing spondylitis	Infliximab	none	Mania after 5 days n.a. (median time interval)	Stop infliximab

M, male; F, female; q.h.s, quaque hora somni; S.c., subcutaneously.
unipolar depression is supported by several studies.27,28 Similarly to manic episodes, serum levels of many inflammatory markers (CRP, TNF-\textit{α}, IL-6, IL-1β, sTNFR1, and CXCL10) are elevated during depressive episodes,29 and this alteration correlates with increased depression severity.30 Euthymia is generally associated with normal cytokine levels, except for sTNFR1, which remains elevated during partial or complete remission.31 A systematic review of cytokine profiles in patients with bipolar disorder suggested that several cytokines (e.g., sIL-2R, IL-6) are “state-related” markers in medication-free bipolar disorder.13 On this cytokine background, pro-inflammatory cytokines might be altered independently of the mood phase, while other pro-inflammatory molecules elevate specifically during manic or hypomanic episodes.

A recent systematic review and meta-analysis finally confirmed altered peripheral markers in BD, according to which IL-6 seems to be a trait marker for BDs, while CRP and TNF-\textit{α} could constitute state markers, as they are increased during mood episodes,32 a feature that could also represent a fruitful entry-point for the prevention of suicide attempts.33

Increased cytokine variability suggests that a subset but not all patients may exhibit cytokine elevations as part of a manic episode.33 TNF-\textit{α} is a major Th1-class pro-inflammatory cytokine, that can bind to TNFR1 and/or TNFR2, activating downstream signaling pathways that mediate a wide variety of biological responses, including apoptosis, cell differentiation, proliferation, survival, homeostatic synaptic plasticity and inflammation.5,35–38 (Fig. 2). The gene encoding TNF-\textit{α} is located on chromosome 6, which has been reported to be a genetic Major Depressive disorder-susceptibility region.39,40 Nonetheless, a recent systematic review and meta-analysis revealed that neither the genotypes of the TNF-\textit{α} G308A gene nor allele frequencies might represent an independent risk factor of depression.41

TNF-\textit{α} contributes to brain development, particularly by modulating hippocampal growth and function.42,43 However, in several disorders, increased levels of this cytokine activate microglia, which then leads to demyelination and/or neuronal degeneration.44–46 Furthermore, stimulated microglia causes an increase in cytotoxic molecules, including TNF-\textit{α}, which is regulated by a positive feedback mechanism of autocrine activation.45,47–49 Moreover, cytokines including TNF-\textit{α} can modulate neural activity and neurotransmitter systems. Chronic exposure to high levels of inflammatory cytokines and central neurotransmitters impairment may play a role in psychiatric disorders, including bipolar and mood disorders.48,49 The activation of inflammatory signaling pathways underlying cytokine behavioral effects results in changes in monoamine and neuropeptide systems, chronic HPA axis activation, purinergic system abnormalities, increases oxidative stress and glutamate excitotoxicity, as well as decreases in growth factors, such as brain-derived neurotrophic factor (BDNF).3,27,49 The randomized controlled trial (RCT) by Raison \textit{et al.} assessed infliximab safety and efficacy for patients with treatment-resistant unipolar and bipolar depression. Although the overall antidepressant effect was negative, a significant antidepressant effect was observed in the subgroup with elevated serum C reactive protein levels.50 The result of this trial supports the idea of inflammatory biotypes as if individuals with a mood disorder that are exhibiting pro-inflammatory balance26 would be more likely to benefit from an anti-inflammatory treatment. A more recent RCT assessed the efficacy of infliximab in treatment-resistant bipolar depression, and it included patients with a biochemical and/or phenotypic marker of the inflammatory

\textbf{Fig2} TNF-\textit{α} mediated pathways are involved in a delicate balance between cell death and survival. TNFR, tumor necrosis factor receptor; STATs, Signal transducer and activator of transcription 5; TGF, transforming growth factor; IL, interleukin; NF-\textit{κ}B, nuclear factor kappa-light-chain-enhancer of activated B cells; NAcc, nucleus accumbens; DS, dorsal striatum. TNF-\textit{α} exerts pleiotropic effects on neurons and neighboring cells in the central nervous system. TNF-\textit{α}, through the binding of TNFR-1, initiates two multiple-step cascades: an apoptotic one (Caspases-mediated) and a pro-survival one (NF-\textit{κ}B-mediated). The balance between the two signaling pathways is also regulated by ROS levels.56 The TNFR-2-mediated cascade leads to the activation of NF-\textit{κ}B and STATs, which eventually leads to the transcription of immuno-modulatory genes (e.g., genes encoding IL-6, IL-10, IL-12) and the production of neuroprotective molecules. These factors are released from the neurons and affect the neighboring microglia, eventually regulating the production and release of TNF-\textit{α}, thus closing an immuno-modulatory loop between neurons and neighbor immune cells. Furthermore, TNF-\textit{α} exerts neuronal nuclei-specific effects: for example, TNF-\textit{α} enhances drug reward responses through regulating NAcc neurons, whereas through the dorsal striatum neurons, it mediates an increase in locomotor activity.41
response. This RCT failed to show a significant reduction of depressive symptoms in the treatment arm with respect to the placebo arm, except for a subgroup of patients who reported a history of childhood physical and/or sexual abuse (an anamnestic event that can contribute to a pro-inflammatory state in adulthood). However, recent evidence highlights that amelioration of anhedonia symptoms by inﬂiximab administration can be predicted on the basis of inflammatory biomarkers. Taking together the evidence presented above, we propose that the elevation in proinﬂammatory cytokines to which manic switches in a subgroup of patients, as described in this review. This phenomenon suggests that higher levels of TNF-α somehow might act as a “brake” (a compensation, indeed) to the manic episode, and the rapid inhibition of TNF-α activity exacerbates a manic phase. Further evidence supporting an anti-manic role of high levels of TNF-α levels come from medication-free patients: (iii) the normalization of TNF-α levels during euthymic phase is observed only in medication-free patients (at higher risk of recurrence of manic/hypomanic episode), but not in patients who beneﬁt from taking lithium monotherapy for manic episode prevention, for whom also an increase of anti-inﬂammatory cytokines (IL-4) is reported. However, we underline that this consideration is practical only as a working hypothesis for further longitudinal studies, which can better elucidate the temporal relationship between cytokine levels and mood episodes. Lastly, we wish to underline that the risk of DMARDs-induced mania or hypomania (0.53%, according to) is 10 times lower when compared to the incidence of these adverse events due to other anti-inﬂammatory treatments, e.g., corticosteroid exposure (above 5%, depending on the steroid dosage and illness treated). In general, the risk of secondary mania following anti-inﬂammatory drug administration is much lower compared with antidepressant-induced mania (approximately 18%, as reported by). This evidence is not surprising since patients taking antidepressant medications are usually diagnosed with a psychiatric disorder (most likely a mood disorder) and, therefore, more amenable to a manic switch. The population taking TNF-α inhibitors included in this review, instead, had no prior history of mental disorders.

Some limitations to this systematic review have to be acknowledged. First, the available evidence is limited to four case reports and a cohort study, all characterized by small sample sizes. Second, given the lack of prospective evidence, we cannot draw ﬁrm conclusions on causality. Third, the population who experienced secondary mania is heterogeneous both in terms of diagnosis and treatment. In fact, the deﬁnitions of manic switch and the timeframes of the emergence of the affects episodes after treatment with TNF-α inhibitors vary among the reported literature. Moreover, the mood polarity before treatment initiation could not be assessed, thus hampering the possibility to clearly deﬁne a treatment-emergent aﬀective switch. Given the scarcity and low level of evidence of the literature published so far, the incidence of secondary manic or hypomanic episodes cannot be assessed with reliable conﬁdence, and those who experienced invalidating mood episodes might be a small subgroup of patients that would otherwise beneﬁt from DMARDs therapeutic regimens.

In conclusion, these psychiatric adverse events’ characterization is essential for adequately assessing the risk–beneﬁt ratio and improving the management of these events when they occur. Prospective studies with a multidisciplinary approach, close psychiatric monitoring, and serial cytokine levels measures are warranted to demonstrate the relative risk of secondary mania after TNF-α inhibitors administration, or abrupt discontinuation (as seldom reported for SSRI’s), and to further elucidate the relationship between mood phases and peripheral inﬂammatory marker alterations.

Acknowledgments

We would like to thank “Casa di cura Parco dei Tigli” for the support. Open Access Funding provided by Università degli Studi di Padova within the CRUI-CARE Agreement. [Correction added on May 18, 2022, after ﬁrst online publication: CRUI-CARE funding statement has been added.]

Disclosure statement

The authors declare no conﬂict of interest.

Author contributions

A.M., V.D.P., and F.S. conducted the literature review. F.S., G.P., and F.S. guided the author discussion. A.M., V.D.P., and F.S. conducted the statistical analysis. A.M., V.D.P., and N.M. wrote the draft of the manuscript. All authors have equally contributed to the critical revision of the manuscript.

Funding

The authors received no speciﬁc funding for this work.

References

1. Berk M, Kapczinski F, Andreazza AC et al. Pathways underlying neuroprogression in bipolar disorder: Focus on inﬂammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. Gennaio 2011; 35: 804–817.

2. Goldstein BI, Kemp DE, Soczynska JK, McIntyre RS. Inﬂammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: A systematic review of the literature. J Clin Psychiatry 2009; 70: 1078–1090.

3. Mucci F, Marazzi D, Vecchia A et al. State-of-the-art: Inflammatory and metabolic markers in mood disorders. Life 2020; 10: 82.

4. Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inﬂamed moods: A review of the interactions between inﬂammation and mood disorders. J Affect Disord 2015; 177: 180–187.

5. Heir R, Stellwagon D. TNF-mediated homeostatic synaptic plasticity: From in vitro to in vivo models. Front Cell Neurosci 2020; 14: 568541.

6. Chadwick W, Magnus T, Martin B, Kelselman A, Mattson MP, Maudsley S. Targeting TNF-α receptors for neurotherapeutics. Trends Neurosci 2008; 31: 504–511.

7. Munkholm K, Vinberg M, Vedel KL. Cytokines in bipolar disorder: A systematic review and meta-analysis. J Affect Disord 2013; 144: 16–27.

8. Brietzeke E, Stertz L, Fernandes BS et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord 2009; 116: 214–217.

9. Hope S, Dieset I, Agartz I et al. Aﬀective symptoms are associated with markers of inﬂammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatr Res 2011; 45: 1608–1616.

10. Gama CS, Kunz M, Magalhães PVS, Kapczinski F. Staging and neuroprogression in bipolar disorder: A systematic review of the literature. Rev. Bras. Psiquiatr. 2013; 35: 70–74.

11. Hamdani N, Doukhan R, Kurtlucan O, Tamouza R, Leboyer M. Immunity, inﬂammation, and bipolar disorder: Diagnostic and therapeutic implications. Curr Psychiatry Rep 2013; 15: 387.

12. Remlinger-Molenda A, Wojcik P, Michalak M, Karczewski J, Rybakowski JK. Selected cytokine proﬁles during remission in bipolar patients. Neuropsychobiology 2012; 66: 193–198.

13. Van Den Aeneele S, Van Diermen L, Staels W et al. The eﬀect of mood-stabilizing drugs on cytokine levels in bipolar disorder: A systematic review. J Aﬀect Disord. 2016; 203: 364–373.

14. Knijff EM, Nadine Breunis M, Kupka RW et al. An imbalance in the production of IL-1β and IL-6 by monocytes of bipolar patients: Restoration by lithium treatment. Bipolar Disord 2007; 9: 743–753.

15. Guloksuz S, Altinbas K, Aktas Cetin E et al. Evidence for an association between tumor necrosis factor-alpha levels and lithium response. J Aﬀect Disord 2012; 143: 148–152.

16. Guloksuz S, Aktas Cetin E, Cetin T, Deniz G, Oral ET, Nutt DJ. Cytokine levels in euthymic bipolar patients. J Aﬀect Disord 2010; 126: 458–462.
17. Ghosssoub E, Habli M, Uthman I, Maalouf FT. Mania induced by adalimumab in a patient with ankylosing spondylitis. Int. J. Psychiatry Med. 2016; 51: 486–493.

18. TYRING S, Gotlibe A, Papp K et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: Double-blind placebo-controlled randomised phase III trial. Lancet 2006; 367: 29–35.

19. Persoons P, Vermeire S, Demyttenaere K et al. The impact of major depressive disorder on the short- and long-term outcome of Crohn’s disease treatment with infliximab. Aliment Pharmacol Ther 2005; 22: 191–110.

20. Monk JP, Phillips G, Waite R et al. Assessment of tumor necrosis factor alpha blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J Clin Oncol 2006; 24: 1852–1859.

21. Page MJ, McKenzie JE, Bossuyt PM et al. PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol 2021; 134: 178–189.

22. Austin M, YCJ T. Mania associated with infliximab. Austral N Z J Psychiatry 2012; 46: 684–685.

23. Brietke E, Lafer B. Induction of manic switch by the tumor necrosis factor-alpha antagonist infliximab. Psychiatry Clin Neurosci 2010; 64: 442–443.

24. Kaufman KR. Etanercept, anticytokines and mania. Int. Clin. Psychopharmacol. 2005; 20: 239–241.

25. Thillard EM, Gautier S, Babynka E et al. Psychiatric adverse events associated with infliximab: A cohort study from the French Nationwide discharge abstract database. Front Pharmacol 2020; 11: 513.

26. McIntyre RS, Subramanipillai M, Lee Y et al. Efficacy of adjunctive infliximab vs placebo in the treatment of adults with bipolar I/II depression: A randomized clinical trial. JAMA Psychiatry. 2019; 76: 783–790.

27. Bortolato B, Carvalho AF, Soczynska JK, Perini GI, McIntyre RS. The involvement of TNF-alpha in cognitive dysfunction associated with major depressive disorder: An opportunity for domain specific treatments. Curr. Neuropharmacol. 2015; 13: 558–576.

28. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 2016; 21: 1696–1709.

29. Siwek M, Sowa-Kucima M, Styczien K et al. Associations of serum cytokine receptor levels with melancholia, staging of illness, depressive and manic phases, and severity of depression in bipolar disorder. Mol Neurobiol 2017; 54: 5883–5893.

30. Rueda JD, McIntyre RS. Bipolar disorder and immune dysfunction: Epidemiological findings, proposed pathophysiology and clinical implications. Brain Sci. 2017; 7: 144.

31. Barbosa IG, Bauer ME, MacHado-Vieira R, Teixeira AL. Cytokines in disease treatment with infliximab: An updated guideline for reporting systematic reviews. Psychopharmacology 2022; 239: 57855.

32. Solmi M, Suresh Sharma M, Osimo EF et al. Peripheral levels of C-reactive protein, tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability. Brain Behav Immun 2021; 97: 193–203.

33. Marini S, Vellante F, Matarazzo I et al. Inflammatory markers and suicidal attempts in depressed patients: A review. Int J Immunopharmacol Pharmacol 2016; 29: 583–594.

34. Leong KG, Karsan A. Signaling pathways mediated by tumor necrosis factor alpha. Histol Histopathol 2000; 15: 1303–1325.

35. Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Sig [Internet] 2009; 11: 2245–2263. Available from URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819802/.

36. Sethu S, Melendez AJ. New developments on the TNF-α-mediated signaling pathways. Biores Rep 2011; 31: 63–76.

37. Sedger LM, McDermott MF. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev 2014; 25: 453–472.

38. Old L. Tumor necrosis factor (TNF). Science 1985; 230: 630–632.

39. Cerri AP, Arosio B, Viazzioli C, Confalonieri R, Teruzzi F, Ammoni GA. 308(G/A) TNF-alpha gene polymorphism and risk of depression late in the life. Arch. Gerontol. Geriatr. 2009; 49: 29–34.

40. Wang X, Zhang H, Cao X et al. Gene–disease association study of tumor necrosis factor-alpha G-308A gene polymorphism with risk of major depressive disorder: A systematic review and meta-analysis. Brain Behav [Internet] 2020; 10: e01628. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303370/.

41. Golan H, Levav T, Mendelson A, Huleihel M. Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex N Y V 2004; 14: 97–105.

42. Raffaele S, Lombardi M, Verderio C, Fumagalli M. TNF production and release from microglia via extracellular vesicles: Impact on brain functions. Cells 2020; 9: 2145.

43. Kim YS, Koh TH. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 2006; 38: 333–347.

44. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8: 57–69.

45. Soochoka M, Diniz BS, Leszek J. Inflammatory response in the CNS: Friend or Foe? Mol Neurobiol 2017; 54: 8071–8089.

46. Kuno R, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A. Autocrine activation of microglia by tumor necrosis factor-alpha. J Neuroimmunol 2019; 338: 89–96.

47. McNamara RK, Lotrich FE. Elevated immune-inflammatory signaling in mood disorders: A new therapeutic target. Expert Rev Neurother 2012; 12: 1143–1161.

48. Felger JC, Lotrich FE. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience 2013; 246: 199–229.

49. Mues M, Yirmiya R, Norberg J et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metab Brain Dis 2009; 24: 27–53.

50. Miller AH, Maletic V, Raison CL. Inflammation and its contents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65: 732–741.

51. Koo JW, Russo SJ, Fergusson D, Nestler EJ, Duman RS. Nuclear factor-κB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A 2010; 107: 2669–2674. Available from URL: https://www.pnas.org/content/.

52. Ramesh V, Nair D, Zhang SX et al. Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-alpha pathway. J Neuroinflammation 2012; 9: 601.

53. Millet CE, Harder J, Locascio JJ et al. TNF-α and its soluble receptors mediate the relationship between prior severe mood episodes and cognitive dysfunction in euthymic bipolar disorder. Brain Behav Immun 2020; 88: 403–410.

54. Martino M, Rocchi G, Escelsior A, Fornaro M. Immunomodulation mechanism of antidepressants: Interactions between serotonin/norepinephrine balance and Th1/Th2 balance. Curr Neuropharmacol 2012; 10: 97–123.

55. Raison CL, Rutherford RE, Woolwine BJ et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. Arch Gen Psychiatry 2013; 70: 31–41.

56. Baumeister D, Akhtar R, Ciufolini S, Pariente CM, Mondelli V. Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry 2016; 21: 642–649.

57. Lee Y, Mansur RB, Brietzke E et al. Peripheral inflammatory biomarkers define biotypes of bipolar depression. Mol Psychiatry 2021 [cited 22 marzo 2021]; Available from URL: http://www.nature.com/articles/s41380-021-01051-y.

58. Kenna HA, Poon AW, de los Angeles CP, Koran LM. Psychiatric complications of treatment with corticosteroids: Review with case report: Corticosteroid psychiatric complications. Psychiatry Clin Neurosci 2011; 65: 549–560.

59. Fornaro M, Anastasia A, Novello S et al. Incidence, prevalence and clinical correlates of antidepressant-emergent mania in bipolar depression: A systematic review and meta-analysis. Bipolar Disord 2018; 20: 195–227.

60. Tohen M, Frank E, Bowen CL et al. The International Society for Bipolar Disorders (ISBD) task force report on the nomenclature of course and outcome in bipolar disorders. Bipolar Disord 2009; 11: 453–473.

61. An MM, Zou Z, Shen H, Zhang JD, Cao YB, Jiang YY. The addition of tocilizumab to DMARD therapy for rheumatoid arthritis: A meta-
analysis of randomized controlled trials. *Eur J Clin Pharmacol* 2010; **66**: 49–59.

63. Hazlewood GS, Barnabe C, Tomlinson G, Marshall D, Devoe D, Bombardier C. Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying antirheumatic drugs for rheumatoid arthritis: Abridged Cochrane systematic review and network meta-analysis. *BMJ* 2016; **353**: i1777.

64. Lethaby A, Lopez-Olivo MA, Maxwell LJ, Burls A, Tugwell P, Wells GA. Etanercept for the treatment of rheumatoid arthritis. Cochrane musculoskeletal group, curatore. *Cochrane Database Syst Rev* 2013; **5**: CD004525.

65. on behalf of TITRATE Programme Investigators, Hughes CD, Scott DL, Ibrahim F. Intensive therapy and remissions in rheumatoid arthritis: A systematic review. *BMC Musculoskelet Disord* 2018; **19**: 389.

66. De Berardis D, Serroni N, Marini S et al. Emerging mania following escitalopram withdrawal in a patient with unipolar depression managed with its reintroduction. *J Psychiatr Pract* 2014; **20**: 228–231.

Supporting information
Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Appendix S1. Supporting information.