ALDH1L1 variant rs2276724 and mRNA expression predict post-operative clinical outcomes and are associated with TP53 expression in HBV-related hepatocellular carcinoma

GUANGZHI ZHU1*, XIWEN LIAO1*, CHUANGYE HAN1, XIAOGUANG LIU2, LONG YU3, WEI QIN1, SICONG LU1, HAO SU1, ZHIWEI CHEN1, ZHENGTAO LIU1, YU LIANG1, JIANLU HUANG4, TINGDONG YU1, CHENGKUN YANG1, KETUAN HUANG1, LIMING SHANG1, XINPING YE1, LEQUAN LI5, XUE QIN6, KAIYIN XIAO1, MINHAO PENG1 and TAO PENG1

1Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021; 2Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001; 3Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000; 4Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031; 5Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021; 6Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China

Received December 14, 2016; Accepted June 29, 2017

DOI: 10.3892/or.2017.5822

Abstract. Aldehyde dehydrogenase 1 family member L1 (ALDH1L1) is downregulated in hepatocellular carcinoma (HCC) tumors, and its decreased expression is associated with the poor prognosis of HCC patients. We, therefore, evaluated the effect of single nucleotide polymorphisms (SNPs) of ALDH1L1, and its mRNA expression on the survival of hepatitis B virus (HBV)-related HCC patients and the association with tumor protein p53 (TP53) expression. ALDH1L1 SNPs in 415 HBV-related HCC patients were genotyped via direct sequencing. Expression profile chip datasets and survival information were obtained from GSE14520. The C allele (CT/CC) carriers of rs2276724 were significantly associated with a favorable prognosis [adjusted P=0.040; adjusted hazard ratio (HR)=0.725; 95% confidence interval (CI)=0.533-0.986]. Joint-effect analyses suggested that the CT/CC genotype of rs2276724 in TP53-negative patients was significantly associated with a decreased risk of death, compared to the TT genotype of rs2276724 in TP53-positive patients (adjusted P=0.037; adjusted HR=0.621; 95% CI=0.396-0.973). Furthermore, low expression of ALDH1L1 predicted a poor prognosis for the HBV-related HCC patients (adjusted P=0.04 for disease-free survival; adjusted P=0.001 for overall survival). Patients with high ALDH1L1 expression and low TP53 expression were significantly associated with a decreased risk of recurrence and death, and patients with a high TP53 expression were also significantly associated with a decreased risk of death in HBV-related HCC, compared with low ALDH1L1 and low TP53 expression. Our results suggest that ALDH1L1 may be a biomarker for predicting postoperative clinical outcomes. Moreover, ALDH1L1-rs2276724 and mRNA expression were associated with TP53 expression in HBV-related HCC patients.

Introduction

Liver cancer is the second leading cause of cancer-related deaths in males worldwide. More than half of these liver cancer-related deaths occurred in China during 2012 (1). A recent study estimated that approximately 422,100 Chinese patients died from liver cancer in 2015, which will make it the third leading cause of cancer-related death in China (2). A population-based study of 138,852 cancer cases reported that liver cancer is associated with poor survival with an age-standardized 5-year relative survival of 10.1% in China (3). Liver cancer death rates in Guangxi Province were the highest in China for both males and females (4). Hepatocellular carcinoma (HCC) is the most common type of liver cancer (85-90%) (5). The most prominent parameters associated with HCC in China include hepatitis B virus (HBV) and C viral infection, alcoholic liver disease, and aflatoxin-B1-contaminated food (6). Previous studies of the Guangxi population reported that high HBV infection and aflatoxin B1 (AFB1)
exon 7, and HCC patients in Guangxi have a high rate (34%) of TP53 mutations at codon 249 in exon 7, and HCC patients in Guangxi have a high rate (34%) of TP53 mutations at codon 249 in exon 7 (8,17). Thus, the population in this region presents a unique opportunity to investigate the relationship of HBV infection, AFBI exposure, and TP53 gene mutations with HCC. Recently, meta-analyses have reported that immunohistochemical characterization of TP53 expression is associated with a poor prognosis of HCC (18).

Aldehyde dehydrogenase 1 family member L1 (ALDH1L1), also known as 10-formyltetrahydrofolate dehydrogenase (FDH), is a folate metabolism enzyme with tumor-suppressor-like properties and is involved in the regulation of cell proliferation. A previous study conducted by Oleinik and Krupenko demonstrated that the antiproliferative effects of FDH in human lung cancer cell line A549 induced G1 arrest and apoptosis, accompanied by an increase in TP53 and p21 (19). In addition, subsequent research by this group also demonstrated that FDH-induced tumor-suppressor effects were strictly TP53-dependent in A549 cells and the TP53 pathway was a downstream mechanism in response to induction of FDH expression (20). Another study of HCC patients in Guangxi reported that low ALDH1L1 protein expression was a new and potential prognostic marker for the survival of HCC patients (21). Using bioinformatic analyses, we found that expression of ALDH1L1 in the liver was the highest in various human normal tissues, and was significantly downregulated in HCC tumor tissues compared to tissues adjacent to the tumor. Our previous genome-wide association study also reported that single nucleotide polymorphisms (SNPs) were associated with positive immunohistochemical characterization of TP53 expression in Guangxi patients with HBV-related HCC (22). In the present study, we determined the association between ALDH1L1 genetic variations and mRNA expression and the postoperative prognosis in Chinese HBV-related HCC patients, and its interaction with TP53.

Materials and methods

Study population. This study was approved by the Ethics Committee of the First Affiliated Hospital of Guangxi Medical University (Guangxi, China) with approval number KY-E-032. Fresh specimens of 415 cases of HCC were collected from 2001 to 2013 at the First Affiliated Hospital of Guangxi Medical University and were confirmed by pathology. All the patients were positive for serum HBV surface antigen inspection. The TP53 expression status in the cancer tissues was detected by immunohistochemistry. The cancer tissues were collected during surgery and immediately stored at -80°C for further use. The tumor status was classified using the Barcelona Clinic Liver Cancer (BCLC) staging system, and the liver reserve function was determined using the Child-Pugh classification. Portal vein tumor thrombus (PVTT) was classified according to a previous study (23).

SNP selection and genotyping. ALDH1L1 tagged SNPs and non-synonymous SNPs were selected by using an SNP info browser (http://snppinfo.niehs.nih.gov/; accessed 20 October 2016). Evaluation of SNP non-synonymous mutations caused by changes in protein amino acids were determined using SIFT (http://sift.jcvi.org/; accessed October 20, 2016) (24) and PolPhen2 (http://genetics.bwh.harvard.edu/pph2/index.shtml; accessed October 20, 2016) (25). Bioinformatic analyses of ALDH1L1 SNPs with the tagged SNP located in the exon region showed that rs2276724 was a non-synonymous SNP. The influence of SNP non-synonymous mutation analyses by SIFT also showed that rs2276724 S481G was deleterious to protein coding. Consistent results from PolPhen2 also showed that rs2276724 S481G was possibly deleterious to protein coding. Thus, rs2276724 was further studied. The transcriptional regulation of rs2276724 S481G was detected by F-SNP database (http://comphio.cs.queensu.ca/F-SNP/; accessed February 7, 2017) and the prediction tool Golden Path suggested that non-synonymous mutation of rs2276724 S481G caused transcriptional regulation change (26).

Genomic DNA was extracted from surgical tumor samples using the TIANamp Genomic DNA kit (Tiangen Biotech, Beijing, China). All samples were genotyped by DNA sequencing using an ABI Prism 3100 (Applied Biosystems, Shanghai Sangon Biological Engineering Technology and Services, Shanghai, China) with the following primers: forward, 5'-GCCCTGTCTTCCCTTCCTGTG-3', and reverse, 5'-CTCCTGAGGCTCTCTGCTGAAAT-3' for rs2276724. The sequencing results were analyzed using Chromas software (http://technelysium.com.au/wp/chromas/ accessed October 20, 2016) with a signal/noise >98%.

GEO data and bioinformatic analysis. Based on the predictive result of F-SNP, non-synonymous mutation of rs2276724 S481G may affect gene transcriptional regulation. We hypothesized that ALDH1L1 mRNA expression may contribute to prognostic prediction of HBV-related HCC. To test this hypothesis, we further analyzed the association of ALDH1L1 and TP53 at the transcriptional level to evaluate the effects of ALDH1L1 mRNA expression and the interactions with TP53 on HCC prognosis after hepatectomy. The profile chip dataset of Chinese HBV-related HCC from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/; accessed October 20, 2016) was analyzed and Spearman’s correlation coefficient was used to assess its correlations. The GEO data selection criteria were set as follows: i), expression profiling chip; ii), Chinese HBV-related HCC; iii), corresponding survival profiles was available; and iv), patients undergoing hepatectomy. By searching the GEO database, we found that only the data of GSE14520 met the criteria above. Then, the samples were divided into two groups according to the ALDH1L1 expression in tumors. The high ALDH1L1 group was composed of samples with ALDH1L1 expression levels above the median value, and the low ALDH1L1 group was composed of the remaining samples. TP53 expression was
grouped in the same manner. Both disease-free survival (DFS) and overall survival (OS) were analyzed in the different ALDH1L1 expression groups and used for the joint-effect survival analyses of the TP53 groups. We also stratified the analyses of associations between different ALDH1L1 expression levels and clinical features, both for OS and DFS. A gene interaction analysis web site (GeneMANIA: http://www.genemania.org/ accessed October 20, 2016) was used for correlation analyses between genes. Online analysis tool was used to analyze the ALDH1L1 expression in multiple human normal tissues (http://www.gtexportal.org/home/ accessed October 20, 2016) and in differences of expression of HCC tumor and adjacent tumor tissues (MERA V, Metabolic gEne Rapid Visualizer:http://merav.wi.mit.edu/ accessed October 20, 2016).

Statistical analysis. Hardy-Weinberg equilibrium (HWE) of the selected SNPs was estimated using a goodness-of-fit χ^2-test. The binary logistic regression model was used to analyze the genetic model of ALDH1L1 genotypes for the status of different TP53 expression levels and for the association between clinical risk factors with ALDH1L1 genotypes. Survival analyses were performed using the Kaplan-Meier method with the log-rank test for different clinical factors and different genotypes. Cox proportion haphazard regression analyses were used to calculate the crude or adjusted hazard ratio (HR) and the 95% confidence interval (CI) in univariate analyses and multivariate analyses, adjusted for those variables with P<0.1 in later multivariate analyses. A value of P<0.05 was considered statistically significant. All statistical analyses were conducted using SPSS Statistical Software for Windows, version 20.0 (SPSS, Chicago, IL, USA).

Results

Clinical features and outcomes. Patients were followed up after surgery until the final follow-up or until death. The final follow-up was conducted in September 2014. A total of 415 patients successfully completed the follow-up, with 6.7% of the patients lost in the follow-up. The duration of the follow-up ranged from 12-125 months, with an overall median survival time (MST) of 48 months. At the time of analyses, 192 (46.3%) of the patients had died. A total of 162 patients followed for a shorter MST compared to those with CT or CC genotypes of rs2276724 (TT vs. CT vs. CC; 39 vs. 50 vs. 79 months; log-rank P=0.017; Fig. 3A). However, the difference was similar after adjustment for alcohol consumption, Child-Pugh score, tumor size, tumor number, BCLC stage, radical resection, cirrhosis, adjuvant antiviral treatment, and PVTT. Using a co-dominant genetic model, the CT genotype of rs2276724 was significantly reduced the risk of death among patients with tumor sizes ≤5 cm, Child-Pugh score A, and without a PVTT. Regarding the invasion in the adverse strata, we also observed a similar effect that the CT/CC genotype of rs2276724 significantly decreased the risk of death among patients with BCLC stage B/C, non-radical resection, and the presence of regional invasion. The genotype distributions of rs2276724 in different strata of TP53 expression were similar to the four genetic models.

Gene expression analysis. Bioinformatic analysis of ALDH1L1 gene expression in multiple human normal tissues showed that ALDH1L1 was the highest expression in normal liver tissue (Fig. 1A). ALDH1L1 expression was significantly downregulated in HCC tumor tissue, as determined for MERA V(Fig. 1B) and GSE4520(Fig. 1C).

Genetic model analysis of rs2276724. The success of genotyping for rs2276724 was 100%. The genotype frequencies met Hardy-Weinberg equilibrium as shown by the goodness-of-fit χ^2-test (rs2276724, $\chi^2=0.236; P=0.627$). The genotype distribution of rs2276724 in patients with different TP53 expression is shown in Table Ⅰ. The binary logistic regression model was used for adjustment for alcohol consumption, the Child-Pugh score, tumor size, tumor number, BCLC stage, radical resection, cirrhosis, adjuvant antiviral treatment, and PVTT. Using a co-dominant genetic model, the CT genotype of rs2276724 was significantly reduced the risk of death among patients with tumor sizes ≤5 cm, Child-Pugh score A, and without a PVTT. Regarding the invasion in the adverse strata, we also observed a similar effect that the CT/CC genotype of rs2276724 significantly decreased the risk of death among patients with BCLC stage B/C, non-radical resection, and the presence of regional invasion. The genotype distributions of rs2276724 in other strata showed no difference.

Relationship of rs2276724 and TP53 status with the OS. Using a dominant genetic model, patients with the TT genotype had a shorter MST compared to those with CT or CC genotypes of rs9275572 (TT vs. CT vs. CC; 39 vs. 50 vs. 79 months; log-rank P=0.017; Fig. 3A). However, the difference was similar after adjustment for alcohol consumption, Child-Pugh score, tumor size, tumor number, BCLC stage, radical resection, cirrhosis, adjuvant antiviral treatment, and PVTT. In the dominant genetic model, patients with the TT genotype had a significantly smaller MST than the C allele carriers (TT vs. CT/CC; 39 vs. 58 months; log-rank P=0.009; Fig. 3B), and the CT/CC genotype of rs2276724 had a significantly decreased risk of death (adjusted P=0.040; adjusted HR=0.725; 95% CI=0.533-0.986; Table IV). Haplotype analysis showed that the C allele was associated with a significantly decreased risk of death (adjusted P=0.032; adjusted HR=0.747; 95% CI=0.572-0.976; Table IV), compared with the T allele. The prognosis for a different status of TP53 expression was similar in the patients (adjusted P=0.280; adjusted HR=1.183; 95% CI=0.872-1.605; Table IV and Fig. 3C).
Table I. Clinical features of the patients with HBV-related HCC.

Variables	Patients (N=415)	No. of events (%)	MST (months)	HR (95% CI)	Log-rank p-value
Age (years)					0.149
≤60	367	169 (46.0)	51	1	
>60	48	23 (47.9)	41	1.375 (0.888-2.128)	0.479
Sex					0.989
Male	375	177 (47.2)	48	1	
Female	40	15 (37.5)	42	0.828 (0.488-1.404)	
Ethnicity					0.745
Han	260	122 (46.9)	47	1	
Minority	155	70 (45.2)	50	0.998 (0.743-1.341)	
BMI					0.019
≤25	328	150 (45.7)	45	1	
>25	87	42 (48.3)	51	0.945 (0.6670-1.333)	0.107
Smoking status					
None	263	118 (44.9)	51	1	
Ever	152	74 (48.7)	39	1.269 (0.947-1.702)	0.084
Drinking status					
None	246	107 (43.5)	51	1	
Ever	169	85 (50.3)	40	1.284 (0.964-1.710)	0.005
Child-Pugh score					0.027
A	356	153 (43.0)	51	1	
B	59	39 (66.1)	31	1.689 (1.159-2.460)	
Cirrhosis					0.523
No	46	16 (34.8)	NA	1	
Yes	369	176 (47.7)	44	1.769 (1.058-2.958)	
Radical resection					0.052
Yes	231	97 (42.0)	71	1	
None	172	89 (51.7)	40	1.330 (0.997-1.774)	
Portal hypertension					0.622
No	208	100 (48.1)	52	1	
Yes	172	75 (43.6)	42	1.197 (0.883-1.623)	
Pathological diagnosis					0.233
Well differentiated	24	9 (37.5)	79	1	
Moderately differentiated	341	159 (46.6)	44	1.378 (0.703-2.699)	
Poorly differentiated	11	4 (36.4)	NA	1.200 (0.369-3.898)	
Adjuvant antiviral treatment					0.019
Yes	143	43 (30.0)	NA	1	
No	272	149 (54.8)	41	1.501 (1.065-2.116)	
AFP level					0.233
<400	210	89 (42.4)	51	1	
≥400	175	85 (48.6)	42	1.197 (0.889-1.612)	
Tumor behavior					<0.001
Tumor size (cm)					
≤5	158	59 (37.3)	75	1	
>5	229	133 (58.1)	36	1.802 (1.326-2.450)	<0.001
Tumor number					
Single	302	127 (42.0)	58	1	
Multiple	113	65 (57.5)	28	1.792 (1.326-2.420)	<0.001
Regional invasion					0.156
Absence	353	162 (45.9)	51	1	
Presence	62	30 (48.4)	35	1.323 (0.895-1.958)	
Table I. Continued.

Variables	Patients (N=415)	No. of events (%)	MST (months)	HR (95% CI)	Log-rank p-value
BCLC stage					<0.001
A	236	81 (34.3)	95	1	
B	68	37 (54.4)	36	2.055 (1.391-3.035)	
C	111	74 (66.7)	24	2.741 (1.994-3.767)	
PVTT					<0.001
No	342	139 (40.6)	73	1	
Yes	73	53 (72.6)	18	2.801 (2.032-3.861)	

*Information regarding radical resection was unavailable for 12 patients; information regarding portal hypertension was unavailable for 35 patients; information regarding pathological diagnosis was unavailable for 39 patients; information regarding AFP level was unavailable for 30 patients. HBV, hepatitis B virus; HCC, hepatocellular carcinoma; BMI, body mass index; AFP, α-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; PVTT, portal vein tumor thrombus; MST, median survival time; HR, hazard ratio; CI, confidence interval.

Figure 1. (A) ALDH1L1 gene expression in multiple normal tissues. (B) Comparison of ALDH1L1 expression between HCC and normal tissues by MERAV. (C) Comparison of ALDH1L1 expression between HCC and non-tumor tissues by GSE14520. ALDH1L1, aldehyde dehydrogenase 1 family member L1; HCC, hepatocellular carcinoma.
Joint-effect analysis. We further analyzed the TP53 status and rs2276724 genotypes with the mutual association with OS of the HBV-related HCC patients. TP53-positive patients with CT/CC genotypes had a significantly longer MST (Table V and Fig. 3D) as compared to the TP53-positive patients with TT genotype. After adjustment for alcohol consumption, Child-Pugh score, tumor size, tumor number, BCLC stage, radical resection, cirrhosis, adjuvant antiviral treatment, PVTT in the Cox proportion haphazard regression model, the TP53-negative patients with CT/CC genotypes showed a significantly decreased risk of death (adjusted $P=0.037$; adjusted HR=0.621; 95% CI=0.396-0.973; Table V).

GEO data and gene interaction analysis. In order to determine the relationship of ALDH1L1 with TP53 at the transcriptional level, the GSE14520 database (including 218 Chinese HBV-related HCC patients with clinical information and prognosis) was used to correlate the ALDH1L1 and TP53 mRNA expression in HBV-related HCC patients. The results showed that ALDH1L1 had a weak negative correlation with TP53 ($r=-0.396; P<0.001$; Fig. 4A). Gene interaction analyses through GenMANIA also showed that ALDH1L1 shared protein domains with ALDH1A3, that affected the TP53 pathway (Fig. 4B). Stratified analyses for the DFS showed that high ALDH1L1 expression significantly decreased the risk of recurrence among patients >60 years of age, with a single tumor, BCLC stage 0/A, and AFP >300 ng/ml (Fig. 5A). Regarding the OS, high ALDH1L1 expression significantly decreased the risk of death among patients in both male age groups, both tumor size groups with a single tumor, who

Table II. Genotype distribution of rs2276724 in HBV-related HCC patients with different TP53 expression statuses (genetic model).

SNP	TP53-negative (n=162)	TP53-positive (n=253)	Crude OR (95% CI)	Crude p-value	Adjusted OR (95% CI)	Adjusted P-valuea
rs2276724						
Allele						
T	246	394	1	0.512	0.878 (0.623-1.238)	0.458
C	78	112	0.894 (0.640-1.249)	0.394		
Co-dominant						
TT	89	156	1	0.076	0.644 (0.418-0.990)	0.045
CT	68	82	0.688 (0.455-1.040)	0.031	1.838 (0.629-5.365)	0.266
CC	5	15	1.712 (0.602-4.867)	0.314		
Dominant						
TT	89	156	1	0.175	0.725 (0.479-1.097)	0.128
CT+CC	73	97	0.758 (0.508-1.131)	0.175	1.838 (0.629-5.365)	0.266
Recessive						
CT+TT	157	238	1	0.195	2.153 (0.747-6.207)	0.156
CC	5	15	1.979 (0.705-5.554)	0.195		

aAdjustment for drinking status, Child-Pugh score, tumor size, tumor number, BCLC stage, radical resection, cirrhosis, adjuvant antiviral treatment, PVTT in logistic regression model. HBV, hepatitis B virus; HCC, hepatocellular carcinoma; TP53, tumor protein p53; SNP, single nucleotide polymorphism; AFP, α-fetoprotein; OR, odds ratio; CI, confidence interval.

Figure 2. Stratified analyses of associations of rs2276724 with the OS in the patients with HBV-related HCC. All variables were stratified by favorable and adverse strata. HBV, hepatitis B virus; HCC, hepatocellular carcinoma; OS, overall survival.
were characterized with cirrhosis, BCLC stage 0/A, and
AFP >300 ng/ml (Fig. 5B). We further analyzed the effects
of \textit{ALDH1L1} expression on the DFS and OS of g EO 1 4520
HBV-related HCC patients by adjusting for age, sex, cirrhosis,
BCLC stage and serum AFP level. The results showed that
high \textit{ALDH1L1} expression was significantly associated with
a favorable prognosis for both the DFS and OS (adjusted
\(P=0.04\); adjusted HR=0.669; 95\% CI=0.456-1.467 for DFS;
adjusted \(P=0.001\); adjusted HR=0.446; 95\% CI=0.277-0.719
for OS; Table VI and Fig. 6A and B).

Joint-effect analyses among different \textit{ALDH1L1} and \textit{TP53}
expression groups showed that patients with a high \textit{ALDH1L1}
and low \textit{TP53} expression were significantly associated with
a favorable prognosis, when compared with patients with a
low \textit{ALDH1L1} and \textit{TP53} expression for both the DFS and
OS (adjusted \(P=0.005\); adjusted HR=0.460; 95\% CI=0.266-
0.795 for DFS; adjusted \(P=0.00001\); adjusted HR=0.211;
95\% CI=0.105-0.422 for OS; Table VII and Fig. 6C and D).

Patients in groups b and d also had a reduced risk of death,
compared with patients with low \textit{ALDH1L1} expression in
the low \textit{TP53} expression group (adjusted \(P=0.023\); adjusted
HR=0.524; 95\% CI=0.300-0.914 for group b; adjusted
\(P=0.014\); adjusted HR=0.434; 95\% CI=0.222-0.846 for
group d; Table VII and Fig. 6D).

\textbf{Discussion}

\textit{ALDH1L1} has been widely accepted as an astroglial
marker in the brain (27,28) and is also expressed in neural
stem cells (29), but is not a suitable marker for enteric glial
cells (30). Due to the cell-specificity of \textit{ALDH1L1} in nerve
cells, \textit{ALDH1L1} polymorphisms have also been associated
with neurological diseases, such as neural tube defects (31)
and ischemic stroke (32), but \textit{ALDH1L1} polymorphisms have
not been investigated in spina bifida (33). Its upregulation
is involved in central nervous system development and reduced
proliferation (34). \textit{ALDH1L1} is mainly expressed in human
limb (35), implying that \textit{ALDH1L1} has an important function

\begin{table}
\centering
\caption{Association between risk factors and rs2276724 in HBV-related HCC patients.}
\begin{tabular}{lllll}
\hline
Variables & TT & CT+CC & OR (95\% CI) & \(\text{P-value} \) \\
\hline
Tumor size (cm) & & & & \\
\leq 5 & 98 & 70 & 1 & \\
>5 & 147 & 100 & 0.952 (0.640-1.418) & 0.810 \\
Tumor number & & & & \\
Single & 176 & 126 & 1 & \\
Multiple & 69 & 44 & 0.891 (0.573-1.386) & 0.608 \\
Child-Pugh score & & & & \\
A & 211 & 145 & 1 & \\
B & 34 & 25 & 1.070 (0.612-1.869) & 0.812 \\
BCLC stage & & & & \\
A & 136 & 100 & 1 & \\
B & 43 & 25 & 0.791 (0.453-1.379) & 0.408 \\
C & 66 & 45 & 0.927 (0.586-1.467) & 0.747 \\
Radical resectiona & & & & \\
Yes & 133 & 98 & 1 & \\
None & 103 & 69 & 0.909 (0.609-1.358) & 0.642 \\
AFP levelb & & & & \\
<400 & 122 & 88 & 1 & \\
\geq 400 & 109 & 66 & 0.839 (0.557-1.266) & 0.403 \\
Regional invasion & & & & \\
Absence & 209 & 144 & 1 & \\
Presence & 36 & 26 & 1.048 (0.606-1.812) & 0.866 \\
PVTT & & & & \\
No & 199 & 143 & 1 & \\
Yes & 46 & 27 & 0.817 (0.485-1.376) & 0.447 \\
Pathological diagnosisc & & & & \\
Well differentiated & 13 & 11 & 1 & \\
Moderately differentiated & 198 & 143 & 0.854 (0.372-1.960) & 0.709 \\
Poorly differentiated & 7 & 4 & 0.675 (0.156-2.930) & 0.600 \\
\hline
aInformation regarding radical resection was unavailable for 12 patients; binformation regarding pathological diagnosis was unavailable for 39 patients; cinformation regarding AFP level was unavailable for 30 patients. HBV, hepatitis B virus; HCC, hepatocellular carcinoma; OR, odds ratio; CI, confidence interval; BCLC stage, Barcelona Clinic Liver Cancer stage; PVTT, portal vein tumor thrombus; AFP, \(\alpha \)-fetoprotein;
Figure 3. Survival curves of patients with rs2276724 and joint-effect analyses with different levels of TP53 expression. (A) Kaplan-Meier survival curves for patients with TT, CT, and CC genotypes. (B) Kaplan-Meier survival curves for patients with TT and CT/CC genotypes. (C) Kaplan-Meier survival curves for patients with different levels of TP53 expression. (D) Kaplan-Meier survival curves for joint-effect analyses of patients with different rs2276724 genotypes and different levels of TP53 expression. TP53, tumor protein p53.

Table IV. Survival analysis of HBV-related HCC patients according to rs2276724 and TP53 status.

Variable	Patients (n=415)	No. of events (%)	MST (months)	Crude HR (95% CI)	Crude p-value	Adjusted HR (95% CI)	Adjusted p-valuea
rs2276724							
Allele							
T	640	309 (48.3)	41	1		1	1
C	190	75 (39.5)	73	0.692 (0.535-0.893)	0.005	0.747 (0.572-0.976)	0.032
Genotype							
TT	245	123 (50.2)	39	1		1	1
CT	150	63 (42.0)	50	0.716 (0.527-0.972)	0.032	0.749 (0.545-1.029)	0.074
CC	20	6 (30.0)	79	0.421 (0.185-0.958)	0.039	0.554 (0.240-1.278)	0.166
CT+CC	170	69 (40.6)	58	0.675 (0.502-0.909)	0.010	0.725 (0.533-0.986)	0.040
TP53 status							
Negative	162	68 (42.0)	58	1		1	1
Positive	253	124 (49.0)	41	1.199 (0.892-1.612)	0.229	1.183 (0.872-1.605)	0.280

aAdjustment for drinking status, Child-Pugh score, tumor size, tumor number, BCLC stage, radical resection, cirrhosis, adjuvant antiviral treatment, PVTT in Cox proportion haphazard regression model. HBV, hepatitis B virus; HCC, hepatocellular carcinoma; TP53, tumor protein p53; MST, median survival time; HR, hazard ratio; CI, confidence interval.
in this organ. Consistent with our bioinformatic analyses, **ALDH1L1** is significantly downregulated in various human malignant tumors and cancer cell lines, including HCC (36). A similar result for **ALDH1L1** downregulation in different tumor tissues was confirmed by ONCOMINE analyses (37) and other studies (21,38,39), but in non-small cell lung cancer (nSCLC), **ALDH1L1** expression was upregulated (40). Our bioinformatic analyses also showed that **ALDH1L1** was downregulated in HBV-related HCC tumor tissues. **ALDH1L1** is upregulated in the presence of high concentrations of folate, and depletion of folate leads to the absence of **ALDH1L1**, resulting in cofilin dephosphorylation and inhibition of motility by protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) in several cell lines. These results suggested that folate promotes a malignant phenotype in cancer (41). However, a study of oral cancer reported that folate supplementation decreased the risk of oral cancer even with alcohol abuse, thus, **ALDH1L1** may play a causal role in oral cancer occurrence (42). in spite of the conflicting results of these studies, underexpressed **ALDH1L1** was associated with an aggressive histology and/or biological behavior in renal cell carcinomas and pilocytic astrocytomas (43,44). **ALDH1L1** knockdown in lung cancer cell lines showed that inhibition of **ALDH1L1** expression reduced adenosine triphosphate (ATP) production by decreasing nicotinamide adenine dinucleotide (NADH) levels, resulting in cell death (40). Recent studies also reported that high expression of **ALDH1L1** is correlated with better survival in HCC (21), neuroblastoma (45) and breast cancer (BC) (46). However, survival analyses of gastric cancer showed the opposite result that high expression of **ALDH1L1** was associated with a worse prognosis (37,47). Furthermore, no significant relationship was observed between **ALDH1L1** mRNA expression and OS in NSCLC (48). As previously mentioned, **ALDH1L1** may play a different role as a tumor-suppressor during oncogenesis. Genetic variation analyses have reported that rs2276731 and rs2002287 of **ALDH1L1** can affect the risk of BC morbidity (n=1007) (49), but this conclusion was not found for the risk of prostate cancer (n=2288) including other **ALDH1L1** SNPs (50). A study of HCC and lung cancer reported that **ALDH1L1** mRNA and protein levels correlated with the methylation status of the CpG island, and modicum **ALDH1L1** CpG island methylation was sufficient to significantly decrease **ALDH1L1** expression, suggesting that the mechanism of action of **ALDH1L1** involves downregulation in cancers (51). A follow-up study in Chinese Kazakh patients with esophageal squamous cell carcinoma also showed that **ALDH1L1** is involved in a one carbon metabolic process that plays a key role in DNA methylation (39). A study carried out by

Group	Genotype	TP53 status	Patients (n=421)	No. of events (%)	MST (months)	Crude HR (95% CI)	Crude p-value	Adjusted HR (95% CI)	Adjusted P-value*
1	TT	Positive	156	81 (51.9)	36	1	1	0.868 (0.598-1.260)	0.457
2	TT	Negative	89	42 (47.2)	41	0.695 (0.479-1.008)	0.055	0.763 (0.518-1.126)	0.173
3	CT+CC	Positive	97	43 (44.3)	61	0.570 (0.366-0.888)	0.013	0.621 (0.396-0.973)	0.037
4	CT+CC	Negative	73	26 (35.6)	58	1	1		

*Adjustment for drinking status, Child-Pugh score, tumor size, tumor number, BCLC stage, radical resection, cirrhosis, adjuvant antiviral treatment, PVTT in Cox proportion hazard regression model. HBV, hepatitis B virus; HCC, hepatocellular carcinoma; MST, median survival time; HR, hazard ratio; CI, confidence interval.

Figure 4. (A) Correlations between **ALDH1L1** and **TP53** mRNA expression using GSE14520. (B) A gene interaction diagram of the **ALDH1L1** and **TP53** genes using GeneMANIA. **ALDH1L1**, aldehyde dehydrogenase 1 family member L1; **TP53**, tumor protein p53.
Oleinik and Krupenko also reported that inducible ALDH1L1 expression in A549 cells induced G1 cell cycle arrest and apoptosis. These anti-proliferative and apoptotic effects result in activation of TP53, followed by the TP53-mediated transcriptional activation of a downstream target of p21 (19), to function as a potent cyclin-dependent kinase inhibitor. Further studies of the relationship between ALDH1L1 and TP53 showed that expression of ALDH1L1 induced suppressor effects that were p53-dependent, and a TP53 deficit resulted in suppressor effects (20). This ALDH1L1-induced p53-dependent apoptosis also responded to folate stress, resulting in upregulation of ceramide synthesis (52).

A previous study of Guangxi HCC patients reported that ALDH1L1 expression was associated with the prognosis of HCC (21). HBV-related HCC patients in Guangxi were associated with a high morbidity of HBV-infection (53).

Table VI. Survival analysis between ALDH1L1 and TP53 mRNA expression in GSE14520 HBV-related HCC patients.

Gene expression (n=218)	OS	DFS								
	No. of events (%)	MST (months)	Adjusted HR (95% CI)	Adjusted P-value^a	No. of events	MST (months)	Adjusted HR (95% CI)	Adjusted P-value^a		
------------------------	-----------------	-----------------								
ALDH1L1										
Low	109	66 (60.6)	28	0.669 (0.456-0.981)	0.040	54	49.5	0.446 (0.277-0.719)	0.001	
High	109	55 (50.5)	53	1		30	27.5	NA	1.137 (0.722-1.791)	0.580
TP53										
Low	109	58 (53.2)	50	1		37	33.9	NA	1.137 (0.722-1.791)	0.580
High	109	63 (57.8)	35	1		47	43.1	1.137 (0.722-1.791)	0.580	

^a Adjustment for age, sex, cirrhosis, BCLC stage, serum AFP level. ALDH1L1, aldehyde dehydrogenase 1 family member L1; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; DFS, disease-free survival; OS, overall survival; MST, median survival time; HR, hazard ratio; CI, confidence interval.
Figure 6. Survival curves for the GSE14520 analyses of HCC patients with different ALDH1L1 mRNA expression levels, and the joint-effect analyses with TP53 mRNA expression levels. (A) Kaplan-Meier survival curves for DFS for different ALDH1L1 expression levels. (B) Kaplan-Meier survival curves for the OS analyses of different ALDH1L1 expression levels. (C) Kaplan-Meier survival curves for the joint-effect analyses for different ALDH1L1 and TP53 mRNA expression levels; analysis for DFS. (D) Kaplan-Meier survival curves for the joint-effect analyses for different ALDH1L1 and TP53 mRNA expression levels; analysis for OS. HCC, hepatocellular carcinoma; TP53, tumor protein p53; ALDH1L1, aldehyde dehydrogenase 1 family member L1; DFS, disease-free survival; OS, overall survival.

Table VII. Joint effect survival analysis between ALDH1L1 and TP53 mRNA expression level in GSE14520 HBV-related HCC patients.

Group	ALDH1L1 expression	TP53 expression	Patients (n=218)	No. of events (%)	MST (months)	Adjusted HR (95% CI)	Adjusted P-value
DFS							
i	Low	Low	38	25 (65.8)	23	1	
ii	Low	High	71	41 (57.7)	35	0.675 (0.406-1.122)	0.129
iii	High	Low	71	33 (46.5)	57	0.460 (0.266-0.795)	0.005
iii	High	High	38	22 (57.9)	36	0.614 (0.342-1.101)	0.102
OS							
a	Low	Low	38	22 (57.9)	30	1	
b	Low	High	71	32 (45.1)	NA	0.524 (0.300-0.914)	0.023
c	High	Low	71	15 (21.1)	NA	0.211 (0.105-0.422)	0.000011
d	High	High	38	15 (39.5)	NA	0.434 (0.222-0.846)	0.014

\(^a\)Adjustment for age, sex, cirrhosis, BCLC stage, serum AFP level. ALDH1L1, aldehyde dehydrogenase 1 family member L1; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; TP53, tumor protein p53; DFS, disease-free survival; OS, overall survival; MST, median survival time; HR, hazard ratio; CI, confidence interval.
The present study characterized ALDH1L1 polymorphism in HBV-related HCC patients and its association with TP53 expression. Bioinformatic analyses showed that rs2276724 S481G in ALDH1L1 affected gene expression and was possibly deleterious to patients. We further analyzed the distribution of rs2276724 genotypes in different TP53 expression groups and its possible association with the prognosis of HBV-related HCC patients. The results suggested that the occurrence of rs2276724 was similar between different TP53 expression groups when analyzed in different genetic models. Survival analyses showed that the C allele was associated with a decreased risk of death in HBV-related HCC patients, when compared to the T allele. Through stratified analyses, the C allele carriers of rs2276724 had significantly decreased risk of death among patients with a tumor size ≤5 cm, a Child-Pugh score, and without a PVTT, BCLC stage B/C, non-radical resection, and the presence of regional invasion. Joint-effect analyses showed that the CT/CC of rs2276724 in TP53-negative patients was associated with a significantly decreased risk of mortality, compared to the TT of rs2276724 with TP53-positive patients. We then used the Chinese HBV-HCC mRNA expression profiling chip from the GSE14520 dataset to evaluate the prognosis of ALDH1L1 expression in Chinese HBV-related HCC patients, and found that low ALDH1L1 expression predicted a poor prognosis for Chinese HBV-related HCC patients with low expression of HBV-related HCC tumor tissues. High ALDH1L1 expression significantly decreased the risk of HCC recurrence among patients with an age >60 years, a single tumor, BCLC stage 0/A, AFP >300 ng/ml, and showed a decreased risk of mortality among the male HCC patients in both age groups, both tumor size groups, a single tumor with cirrhosis, with BCLC stage 0/A, and an AFP >300 ng/ml. Gene interaction analyses showed that Genemania ALDH1L1 and TP53 expression mRNA levels were negatively correlated in Chinese HBV-related HCC patients, and further showed that ALDH1L1 shared a protein domain with ALDH1A3 that was involved in the TP53 pathway. We then combined the analyses of ALDH1L1 and TP53 expression in HBV-related HCC patients to show that high ALDH1L1 with low TP53 expression was associated with a significantly decreased risk of HBV-related HCC recurrence and mortality when compared with low ALDH1L1 and low TP53 expression. Patients with high TP53 expression also had a significantly decreased risk of HBV-related HCC death, compared with low ALDH1L1 and low TP53-expressing patients.

In conclusion, the present study showed, for the first time, that prognosis can be predicted for the rs2276724 genotypes of ALDH1L1 in HBV-related HCC patients and their associations with TP53 expression. The CT/TT genotype of rs2276724 may have a protective survival value and may be a potential prognostic marker in patients with HBV-related HCC receiving hepatic resection. We also confirmed that a decrease in ALDH1L1 expression predicts a poor prognosis for patients with HBV-related HCC. The expression of ALDH1L1 and genotypes of rs2276724 may therefore play a role in TP53 expression in HBV-related HCC of Chinese hepatic resection patients. Due to the limitations of the relatively small sample sizes and the long period of specimen collection, we did not analyze the association among rs2276724 genotypes and mRNA expression. Further well-designed, comprehensive, and large sample size studies are therefore needed to confirm our results.

Acknowledgements
This study was supported in part by the National Nature Science Foundation of China (nos. 81560535, 81072321, 30760243, 30460143 and 30560133), 2009 Program for New Century Excellent Talents in University (NCET), Guangxi Nature Sciences Foundation (no. GuiKeGong1104003A-7), Guangxi Health Ministry Medicine Grant (Key-Scientific Research-Grant Z200108) and Self-raised Scientific Research Projects of the Guangxi Zhuang Autonomous Region Health and Family Planning Commission (Z2016318). The authors thank Professor Xiao Qin, Xigang Chen, Bin Chen, Zhixiong Su, Ming Su, Zhang Wen, Jingning Lu, Ning Peng, Hai Zhu who provided HCC samples for this study, and who are from the Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University. Thanks also go to researchers Jiayuan Li and Ying Gui from Guangxi Medical University for their contribution to specimen management and Professor Jiahong Dong from Beijing Tsinghua Changgung Hospital for his contribution to thesis guidance. In addition, we also would like to acknowledge the helpful comments on this paper received from our reviewers, and the contributors of GSE14520 for sharing their dataset on open access.

References
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin 65: 87-108, 2015.
2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin 65: 115-132, 2016.
3. Zeng H, Zheng R, Guo Y, Zhang S, Zou X, Wang N, Zhang L, Tang J, Chen J, Wei K, et al: Cancer survival in China, 2003-2005: A population-based study. Int J Cancer 136: 1921-1930, 2015.
4. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, Wang L, Liu Y, Yin P, et al: Cause-specific mortality for 240 causes in China during 1990-2013: A systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet 387: 251-272, 2016.
5. El-Serag HB and Rudolph KL: Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology 132: 2557-2576, 2007.
6. Wang FS, Fan JG, Zhang Z, Gao B and Wang HY: The global burden of liver disease: The major impact of China. Hepatology 60: 2099-2108, 2014.
7. Xu L, Qian G, Tang L, Su J and Wang JS: Genetic variations of hepatitis B virus and serum aflatoxin-lysine adduct on high risk of hepatocellular carcinoma in Southern Guangxi, China. J Hepatol 53: 671-676, 2010.
8. Qian L, Bai T, Chen ZS, Wu FX, Chen YY, Dey XB, Peng T, Han ZG and Li LJ: The p53 mutation spectrum in hepatocellular carcinoma from Guangxi, China: Role of chronic hepatitis B virus infection and aflatoxin B1 exposure. Liver Int 35: 999-1009, 2015.
9. Yin Y, Stephen CW, Luciani MG and Fähréus R: p33 stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 4: 462-467, 2002.
10. Hainaut P and Wiman KG: 30 years and a long way into p53 and TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes. Oncogene 26: 2157-2165, 2007.
14. Oleinik NV and Krupenko SA: Ectopic expression of 10-formyltetrahydrofolate dehydrogenase in A549 cells induces G1 cell cycle arrest and apoptosis. Mol Cancer Res. 1: 577-588, 2003.

20. 21. 23. 25. 28. 31. 32. 37. 39. 49. Stevens VL, McCullough ML, Pavluck AL, Talbot JT, Feigelson HS, Thun MJ and Calle EE: Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence. Cancer Epidemiol Biomarkers Prev 16: 1140-1147, 2007.

24. Anthony TE and Heintz N: The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J Comp Neurol 500: 368-383, 2008.

26. Hong M, Lee Y, Kim JW, Lim JS, Chang SY, Lee KS, Paik SG and Choe IS: Isolation and characterization of cDNA clone for human liver 10-formyltetrahydrofolate dehydrogenase. Biochem Mol Biol Int 47: 407-415, 1999.

27. Krupenko SA and Oleinik NV: 10-formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells. Cell Growth Differ 13: 227-236, 2002.

29. Shao JX, Li G, Wang Y, Li Z, Zhao W, Wu H and Hu WT: Mining distinct aldheyde dehydrogenase 1 (ALDH1) isoforms in gastric cancer. Oncotarget 7: 75540-75549, 2016.

33. Dmitriev AA, Kashuba VI, Haraldson K, Senchenko VN, Pavlova TV, Kudryavtseva AV, Anedchenko EA, Krasnov GS, Pronina IV, Loginov VI, et al: Genetic and epigenetic analysis of non-small cell lung cancer with Nodont-microarrays. Epigenetics 7: 502-513, 2012.

39. Chen Y, Yin D, Li L, Deng YC and Tian W: Screening aberrant methylation profile in esophageal squamous cell carcinoma for Kazakhs in Xinjiang area of China. Mol Biol Rep 42: 457-464, 2015.

53. Stevens VL, Rodriguez C, Sun J, Talbot JT, Feigelson HS, Thun MJ and Calle EE: Association of polymorphisms in one-carbon metabolism genes with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 17: 3612-3614, 2008.

50. Oleinik NV, Krupenko NI and Krupenko SA: Epigenetic silencing of ALDH1L1, a metabolic regulator of cellular proliferation, in cancers. Genes Cancer 2: 130-139, 2011.

51. Hoeferlin LA, Fekry B, Ogermetten BR, Krupenko SA and Krupenko NI: Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J Biol Chem 288: 12880-12890, 2013.

52. Yeh FS, Yu MC, Mo CC, Luo S, Tong MJ and Henderson BE: Hepatitis B virus, aflatoxins, and hepatocellular carcinoma in southern Guangxi, China. Cancer Res 49: 2506-2509, 1989.