Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Unravelling the dynamics of the COVID-19 pandemic with the effect of vaccination, vertical transmission and hospitalization

Rubayyi T. Alqahtania,1, Salihu S. Musab,c,1, Abdallah Yusufd,e,1

a Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
b Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
c Department of Mathematics, Near East University TRNC, Mersin 10, Nicosia 99138, Turkey
d Department of Computer Engineering, Biruni University, Istanbul, Turkey
e Department of Mathematics, Federal University Dutse, Jigawa, Nigeria

\textbf{ARTICLE INFO}

Keywords:
COVID-19
Epidemiological modelling
Reproduction number
Vaccination
Vertical transmission

\textbf{ABSTRACT}

The coronavirus disease 2019 (COVID-19) is caused by a newly emerged virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), transmitted through air droplets from an infected person. However, other transmission routes are reported, such as vertical transmission. Here, we propose an epidemic model that considers the combined effect of vertical transmission, vaccination and hospitalization to investigate the dynamics of the virus's dissemination. Rigorous mathematical analysis of the model reveals that two equilibria exist: the disease-free equilibrium, which is locally asymptotically stable when the basic reproduction number \(R_0 \) is less than 1 (unstable otherwise), and an endemic equilibrium, which is globally asymptotically stable when \(R_0 > 1 \) under certain conditions, implying the plausibility of the disease to spread and cause large outbreaks in a community. Moreover, we fit the model using the Saudi Arabia cases scenario, which designates the incidence cases from the in-depth surveillance data as well as displays the epidemic trends in Saudi Arabia. Through Caputo fractional-order, simulation results are provided to show dynamics behaviour on the model parameters. Together with the non-integer order variant, the proposed model is considered to explain various dynamics features of the disease. Further numerical simulations are carried out using an efficient numerical technique to offer additional insight into the model's dynamics and investigate the combined effect of vaccination, vertical transmission, and hospitalization. In addition, a sensitivity analysis is conducted on the model parameters against the \(R_0 \) and infection attack rate to pinpoint the most crucial parameters that should be emphasized in controlling the pandemic effectively. Finally, the findings suggest that adequate vaccination coupled with basic non-pharmaceutical interventions are crucial in mitigating disease incidences and deaths.

\textbf{Introduction}

SARS-CoV-2, a newly emerged virus which emanated from China towards the end of 2019, has induced the current pandemic of COVID-19, as described by the World Health Organization (WHO) in early 2020 \cite{1}. It was the first in the history of its kind from the coronavirus family to have caused a global pandemic \cite{1-4}. This pandemic has greatly derailed worldwide public health and the economy. As of 23 January 2022, there had been more than 318.6 million COVID-19 cases reported, including over 5.5 million deaths globally \cite{5}.

Interventions other than pharmaceuticals, such as face masks, remote schooling, social distancing, and border closure/travel restrictions have been the most crucial control measures in halting the effects of the pandemic, especially during the early stages \cite{6-8}. Despite the crucial role played by the NPIs in slowing transmission and reducing the mortality rate, the pandemic continues to engulf and deteriorate global public health and the economy.

Consequently, pharmaceutical intervention measures, such as vaccines that are expected to come up with long-term or permanent shield against the SARS-CoV-2 infection, are currently the most efficient preventive measures, providing immunity against COVID-19 infection or protecting people from severe infection \cite{8-10}. Owing to the efficiency of the COVID-19 vaccines in halting the pandemic’s effects, they are in high demand worldwide. Thus, it is imperative to employ a decision-making approach for the appropriate distribution of the vaccines, especially in vulnerable communities where the vaccine availability is still limited \cite{8,11,12}. Interestingly, by 14 January 2022,

* Corresponding author.

E-mail address: ayusuf@biruni.edu.tr (A. Yusuf).

1 All authors in this work have equally contributed and granted epilogue approval for publication.

https://doi.org/10.1016/j.rinp.2022.105715

Received 26 April 2022; Received in revised form 2 June 2022; Accepted 7 June 2022
Available online 14 June 2022

2211-3797/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
more than 9.28 billion vaccine doses had been administered worldwide [5,8], contributing significantly to the reduction in morbidity and fatality cases.

According to previous reports, infection with COVID-19 could be severe in pregnant women due to maternal physiological changes, which may raise the chance of acquiring a serious disease as a result of viral infections [13]. In addition, COVID-19 vertical transmission during pregnancy (primarily during the third trimester) has been reported in the literature [13–16]. However, no previous coronaviruses have been reported to transmit from mother-to-child in the cause of pregnancy [13]. One of the epidemiological consequences of the SARS-CoV-2 infection from an infected mother to newborns during the pregnancy is that it increases the likelihood of more adverse effects, such as maternal depression, stillbirth, and maternal and neonatal mortality [14,13].

However, diverse work must be done to explore the actual scenario of how the virus transmits vertically. Some reports also suggested that COVID-19 vertical transmission could be due to environmental exposure [13,17,18]. Moreover, the mode of delivery from COVID-19 infected mothers may not have an intense effect on the risk of newborn infection; therefore, it is insignificant to stop breastfeeding newborn babies [17,18].

Since the pandemic’s beginning, many epidemiological studies have been conducted to investigate COVID-19 transmission dynamics. These studies include examining the disease’s clinical features [19], and estimating crucial epidemiological parameters, such as reproduction numbers, exponential growth, serial intervals and the infection fatality rate [2,3,7,20–27]. Moreover, studies have also assessed reinfec tion and reactivation [28–31], the impact of declaring the disease a major public health crisis of international importance [4,32,33], the influence of public health awareness on COVID-19 dynamics [34], optimal control and cost-effectiveness [35,36] and the effects of pharmaceutical and NPI measures [5,37]. Some studies also adopted fractional calculus to analyse the COVID-19 dynamics to find the optimal control strategies [38–40].

Here, we proposed a new compartmental model to examine the dynamics of the virus’s transmission, taking into account the combined effects of vaccines, vertical transmission and early hospitalization. To our knowledge, no previous studies have employed an epidemiological model to investigate the transmission dynamics of SARS-CoV-2 with the combined effects of vaccination, vertical transmission and early hospitalization. The current research contributes additional insight into the existing knowledge on the epidemiological characteristics (e.g. transmission potential) of SARS-CoV-2 and provides suggestions for effective control measures.

The manuscript is arranged as follows. The model is formulated in Section “Formulation of the Conceptual Model” and analysed in Section “Analysis of the Conceptual Model”. Numerical results and sensitivity analysis are presented in Section “Numerical Simulations and Sensitivity Analysis”. Finally, a detailed discussion is presented in Section “Discussion and Conclusions”.

Formulation of the conceptual model

First, we obtained data on the number of COVID-19 cases in Saudi Arabia from the public domain of the WHO disease surveillance system (dashboard) [5]. To examine the dynamics behaviour of SARS-CoV-2 with the combined effects of vaccination, vertical transmission, and hospitalization, we designed a new deterministic model based on the standard susceptible–exposed–infectious–recovered (SEIR) type. This model assumes two different transmission scenarios: COVID-19 transmission through contact with an infected person (primarily by air droplets) and vertical transmission (mother-to-child infection during pregnancy).

The human population is denoted by \(N(t) \) at time \(t \) and is categorized into mutually exclusive compartments of unvaccinated susceptible \(S(t) \), vaccinated susceptible \(V(t) \), exposed \(E(t) \) (epidemiologically, every infection from an infectious disease must pass through a latency period, the time interval between when a pathogen infects an individual or host and when the host becomes infectious), infectious \(I(t) \) (comprising asymptotically and symptomatically infected individuals, lumped together for computational convenience), hospitalized \(H(t) \) (individuals receiving treatment for mild or severe COVID-19 cases) and recovered \(R(t) \) humans. The parameters \(\theta_1 \) and \(\theta_2 \) denote the fraction of newly newborn babies infected with SARS-CoV-2 directly from COVID-19 infected mothers to the \(I(t) \) and \(H(t) \). Hence, we have

\[
N(t) = S(t) + V(t) + E(t) + I(t) + H(t) + R(t).
\]

Fig. 1 portrays model (2), while Table 1 classified the variables and parameters (all nonnegative). Therefore, using Fig. 1, we obtained the model equations, represented by (2), as follows:

\[
\begin{align*}
\frac{dS}{dt} &= \pi(1 - \theta_1 I - \theta_2 H) + kR + \phi V - \lambda S - (\eta + \mu)S, \\
\frac{dV}{dt} &= \eta S - (1 - c)\lambda V - (\phi + \mu)V, \\
\frac{dE}{dt} &= k[S + (1 - c)V] - (\sigma + \mu)E, \\
\frac{dI}{dt} &= \pi\theta_1 I + \sigma E - (\tau_1 + \delta_1 + \omega + \mu)I, \\
\frac{dH}{dt} &= \pi\theta_2 H + \omega I - (\tau_2 + \delta_2 + \mu)H, \\
\frac{dR}{dt} &= \tau_1 I + \tau_2 H - (k + \mu)R.
\end{align*}
\]

In the model (2), the term \(\lambda \), represent the force of infection, which reads

\[
\lambda = \frac{\beta_1 I + \beta_2 H}{N}.
\]

The parameters \(\beta_1 \) and \(\beta_2 \) represent the rate at which infectious (asymptomatic and symptomatic) and hospitalized humans transmit COVID-19 to susceptible humans, respectively. It is also assumed that \(\beta_1 \neq \beta_2 \), implying that an infected individual from \(I \) and \(H \) have different transmission potentials. Epidemiologically, it is reasonable to assume that infectious humans can interact more with susceptible populations than hospitalized COVID-19-infected humans because the former are not isolated or quarantined. Thus, they are likely to have higher transmission ability, except if they are vaccinated and abide by the NPI control measures. Exposed humans progress out of the \(E \) compartment at a rate of \(\sigma \) (\(\frac{1}{\tau} \) is the intrinsic incubation period for COVID-19). Infectious humans can acquire the COVID-19 infection through vertical transmissions at a rate of \(\pi \theta_1 \) from \(I \). Similarly, hospitalized humans can receive the COVID-19 infection through vertical transmission at a rate of \(\pi \theta_2 \) from \(H \). The parameters \(\tau_1 \) and \(\tau_2 \) denote the recovery rate from \(I \) and \(H \), respectively. Individuals in the infectious \((I)\) and hospitalized \((H)\) compartments die of COVID-19 at rates \(\delta_1 \) and \(\delta_2 \), respectively. The vaccine efficacy \(\epsilon \), at \(0 < \epsilon < 1 \), can provide up to 100% protection. Natural mortality occurs at a similar rate of \(\mu \) in all epidemiological classes.

It is worth noting that one of the novelties of the proposed model over previous studies is that the current model aims to address the combined effects of vaccination, mother-to-child transmission as well as early hospitalization on the overall dynamics of SARS-CoV-2 transmission. We incorporated these measures/factors into the SEIR-typed model to assess their impact to find the optimum strategies for halting the pandemic impact in Saudi Arabia and beyond.

All model’s parameters are summarized and interpreted in Table 1.

Basic properties

To analyse the transmission behaviour of the proposed model (2) qualitatively, we first study its fundamental properties by equating the sum of the systems (2) to 0 (i.e. \(\frac{dN(t)}{dt} = 0 \)). So that

\[
\frac{dN}{dt} = \pi - \mu N - (\delta_1 I + \delta_2 H) \leq \pi - \mu N.
\]
The model’s DFE is computed at a steady state. In this
Analysis of the conceptual model
such a way that the continuation results, uniqueness, and existence hold
\(\Xi_0 \) for (2) with initial data that are nonnegative maintain the region
\(\mathcal{H} \)
for model (2) to be epidemiologically reasonable, the following biological feasible regions, given by \(\Omega = \{ (S, V, E, I, H, R) \in \mathbb{R}^6_+ : N \leq \frac{\lambda}{\mu} \} \), are considered, solving for \(N \) from the model (2). Thus, all solutions for (2) with initial data that are nonnegative maintain the region \(\Omega \) for \(t \geq 0 \). Therefore, the biologically feasible region, \(\Omega_0 \), is invariant-positive and fascinating; thus, it suffices to compute solutions restricted to \(\Omega \) in such a way that the continuation results, uniqueness, and existence hold for (2) only if the enclosed solutions in \(\Omega \) are preserved [41].

Analysis of the conceptual model

Basic reproduction number and disease-free equilibrium

We rigorously analysed the qualitative dynamics features of the model (2). The model’s DFE is computed at a steady state. In this circumstance, there is no COVID-19 infection, so all infected compartments are assumed to be zero. Hence, the equation below,

\[
\Xi_0 = \left(S_0, V_0, E_0, I_0, H_0, R_0 \right) = \left(\frac{(\phi + \mu)\pi}{\mu(\eta + \phi + \mu)}, \frac{\eta e}{\mu(\eta + \phi + \mu)}, 0,0,0,0 \right)
\]

(5)
is always feasible.

One of the essential epidemiological variables to examine the control tactics and transmission dynamics of emerging diseases is the \(R_0 \) [42]. The approach, called the next-generation matrix, was applied to scrutinize the asymptotic stability of the DFE and obtain the computation of \(R_0 \) [42]. The notations \(F_1 \) and \(F_2 \), respectively, represent the associated NGM for the transition and the new infection stated as

\[
F_1 = \begin{bmatrix} 0 & a_1 & a_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\quad \text{and} \quad
F_2 = \begin{bmatrix} N_1 & 0 & 0 \\ -\sigma & b_1 & 0 \\ 0 & -\omega & b_2 \end{bmatrix}
\]

(6)

where,

\[
N_0 = \frac{\lambda}{\mu}, \quad a_1 = \frac{\beta(M_2 + M_3)}{M_1 + M_2}, \quad a_2 = \frac{\beta(M_2 + M_3)}{M_1 + M_2}, \quad b_1 = -\sigma \theta_1 + N_2, \quad b_2 = -\sigma \theta_2 + N_3, \quad M_1 = \eta + \mu, \quad M_2 = \phi + \mu, \quad M_3 = 1 - \epsilon, \quad N_1 = \eta + \mu, \quad N_3 = \delta_h + \tau_h + \mu, \quad N_4 = \kappa + \mu.
\]

Therefore, \(R_0 = \rho_{F_1} F_2^{-1} \) is computed below.

\[
R_0 = R_0^c + R_0^h = \frac{\sigma a_1}{N_1 b_1} + \frac{\sigma a_2}{N_1 b_2}
\]

(7)

During the infectious time, the \(R_0 \) evince the average number of secondary infections caused by normally infected people put in a totally susceptible population. It is represented by the sum of the component related to new infections generated by infectious (\(R_0^c \)) and hospitalized (\(R_0^h \)) humans.

The local asymptotic stability (LAS) of the DFE of (2) was analysed following Theorem 2 of [42].

Lemma 1. For model (2), the LAS of the DFE, \(\Xi_0 \), holds inside the region \(\Omega \) if \(R_0 < 1 \) and unstable when \(R_0 > 1 \).

Moreover, the results below are established following Theorem 2.2 in [43], and a similar approach was taken in [44,45].
Recall that, Eq. (3) described the incidence function of the model (2) and the persistence is continuous for following equation in terms of S and E

$$\gamma \frac{S}{N} (\frac{(N_3 - \pi \theta_N) (N_3 - \pi \theta_e)}{N_3 - \pi \theta_h})$$

and ν.

The steady-state solution of the model (2) is attained by equating the right-hand side of (2) to 0, which is known as the endemic equilibrium (EE) point. In this case, it is denoted by E^*. It represents the phenomenon in which an ailment circulates and persists in a population. For the model (2), the EE points, $E^* = (S^*, V^*, E^*, I^*, H^*, R^*)$, that is assumed to be the solution of the model (2). In terms of E and I, the EE points are given by the following equations

$$S^* = \frac{M_2 + M_3 \lambda}{\eta} \left[(1 - \theta) \left(\frac{\sigma E}{N_2 - \pi \theta_h} \right) - \theta_M \left(\frac{\omega t E}{(N_3 - \pi \theta_N) (N_3 - \pi \theta_N) N_4} \right) + \kappa \frac{(1 - \pi \theta_N + \pi \theta_e) E}{(N_2 - \pi \theta_N) (N_3 - \pi \theta_N) N_4} \right]$$

$$V^* = \frac{\sigma E}{N_2 - \pi \theta_h} \left[(1 - \theta) \left(\frac{\sigma E}{N_2 - \pi \theta_h} \right) - \theta_M \left(\frac{\omega t E}{(N_3 - \pi \theta_N) (N_3 - \pi \theta_N) N_4} \right) + \kappa \frac{(1 - \pi \theta_N + \pi \theta_e) E}{(N_2 - \pi \theta_N) (N_3 - \pi \theta_N) N_4} \right]$$

$$I^* = \frac{\gamma S}{N_2 - \pi \theta_h}$$

$$H^* = \frac{\omega t E}{(N_3 - \pi \theta_N) (N_3 - \pi \theta_N) N_4}$$

$$(1 - \pi \theta_N + \pi \theta_e) E$$

$$R^* = \frac{(1 - \theta) \left(\frac{\sigma E}{N_2 - \pi \theta_h} \right) - \theta_M \left(\frac{\omega t E}{(N_3 - \pi \theta_N) (N_3 - \pi \theta_N) N_4} \right) + \kappa \frac{(1 - \pi \theta_N + \pi \theta_e) E}{(N_2 - \pi \theta_N) (N_3 - \pi \theta_N) N_4} \right]$$

Recall that, Eq. (3) described the incidence function of the model (2). So that, at the EE points, the force of infection (incidence rate) is now given by

$$\lambda^* = \frac{\beta I^* + \beta_0 H^*}{S^*}$$

Also, in terms of the EE points, we have

$$N^* = S^* + V^* + E^* + I^* + H^* + R^*$$

So that, Eq. (9) can be simplified as

$$S^* + V^* + E^* + (1 - \frac{\beta_I}{\lambda^*}) I^* + (1 - \frac{\beta_0}{\lambda^*}) H^* + R^* = 0$$

Substituting the right-hand sides of system (8) into (11), gives the following equation in terms of λ^*.

$$A_1 \lambda^* 2 + A_2 \lambda^* + A_3 = 0. $$

$$A_1 = M_3 \left((1 - \theta) (\beta_I + \omega + N_3) \sigma + (\pi \theta_N - N_3) (\pi \theta_N - N_3) \right) \Delta$$

$$A_2 = (\eta + 1) \left(\frac{\beta_0 \theta_N}{\lambda^*} \right)$$

$$A_3 = (\eta + 1) \left((N_2 - \pi \theta_N) \pi \theta_N + \pi \theta_e \right) \Delta$$

where

Hence, the endemic equilibrium of system (2) correspond to positive solutions of the above equation, which is epidemiologically reasonable.

Following theorem 4.1 of [45], the result below can be easily constructed.

Theorem 3. The model (2) has a unique EE E^*, whenever $R_0 > 1$.

Global stability analysis of the endemic equilibrium

In this section, we show that all solutions in the viable region converge to the same unique EE E^* whenever $R_0 > 1$ is greater than unity. Therefore, at the EE level, the disease spreads and persists in the community. We attained proof of global stability of E^* through constructing a global Lyapunov function. Mathematical modellers have used this technique extensively (e.g. [41,45,48–52] and the references therein).

Theorem 4. For the model (2), if $R_0 > 1$ and the following two conditions hold, i.e.,

$$(i) \left(1 - \frac{\alpha}{\beta} \right) \left(1 - \frac{\eta M}{\omega \theta} \right) \geq 0$$

$$(ii) \left(1 - \frac{\alpha}{\beta} \right) \left(1 - \frac{M \omega \theta}{\eta H} \right) \geq 0,$$

then the EE (E^*) is globally-asymptotically stable (GAS) in the region of attraction, Ω.

Proof. Considering [48,49], the Lyapunov function is defined as

$$Y(i) = \Delta \left(S - S^* - S \ln \frac{S}{S^*} \right) + \Delta \left(V - V^* - V \ln \frac{V}{V^*} \right)$$

$$+ \Delta \left(E - E^* - E \ln \frac{E}{E^*} \right) + \Delta \left(I - I^* - I \ln \frac{I}{I^*} \right)$$

$$+ \Delta \left(H - H^* - H \ln \frac{H}{H^*} \right)$$

Then the derivative of the above Lyapunov function with respect to time (i) is given by

$$Y(i) = \Delta \left(1 - \frac{S^*}{S} \right) \dot{S} + \Delta \left(1 - \frac{V^*}{V} \right) \dot{V} + \Delta \left(1 - \frac{E^*}{E} \right) \dot{E}$$

$$+ \Delta \left(1 - \frac{I^*}{I} \right) \dot{I} + \Delta \left(1 - \frac{H^*}{H} \right) \dot{H}.$$

Computing each term of (13), we have

$$\Delta \left(1 - \frac{S^*}{S} \right) \dot{S} = \Delta \left(1 - \frac{S^*}{S} \right) \quad \times \left(\frac{\sigma (1 - \theta (1 - \theta) H) + \kappa R + \phi V - \lambda S - M_1 S}{\beta I} \right)$$

$$= \Delta \left(1 - \frac{S^*}{S} \right) \left(\frac{\beta I^* + \beta_0 H^*}{S^*} \right) - \Delta \left(\frac{S^*}{S} \right) \frac{M_1 (S - S^*)^2}{S}$$

$$\leq \Delta \left(\frac{S^*}{S} \right) \left(\frac{\lambda S}{\lambda^*} - \frac{S^*}{S^*} + \frac{\lambda}{\lambda^*} \right).$$

R.T. Alqahtani et al. Results in Physics 39 (2022) 105715
\[
\Delta_t \left(1 - \frac{V}{\bar{V}}\right) \leq \Delta_t M_t \dot{\lambda} V^+ \left(1 - \frac{\dot{V}}{\bar{V}} + \frac{\dot{\lambda}}{\bar{\lambda}}\right).
\]
\[
\Delta_t \left(1 - \frac{E}{\bar{E}}\right) \leq \Delta_t \dot{\lambda} S^+ \left(\frac{\dot{\lambda} S^+}{\bar{\lambda} S^+} + \frac{\dot{\lambda}}{\bar{\lambda}}\right) + \lambda M_t \dot{\lambda} V^+ \left(1 - \frac{\dot{V}}{\bar{V}} + \frac{\dot{\lambda}}{\bar{\lambda}}\right) + \dot{\lambda} V \left(\frac{\dot{V}}{\bar{V}} - \frac{E}{\bar{E}}\right).
\]

Similarly,
\[
\Delta_t \left(1 - \frac{I}{\bar{I}}\right) = \Delta_t \sigma E^+ \left(\frac{E}{\bar{E}} - \frac{I}{\bar{I}} + \frac{\dot{\lambda}}{\bar{\lambda}}\right).
\]

After substituting the following terms \(\Delta_t = \Delta_t = \dot{\lambda} = 1, \Delta_t = \frac{\dot{\lambda} S^+}{\bar{\lambda} S^+}, \) and \(\Delta_t = \frac{\dot{\lambda} S^+}{\bar{\lambda} S^+}, \) and eqns (14)–(18) into eqns (13), we obtain

\[
Y(t) = \dot{\lambda} S^+ \left[\frac{2 - S^+}{S} - \frac{E}{\bar{E}} - \frac{\dot{\lambda} S^+}{\bar{\lambda} S^+} + \frac{\dot{\lambda}}{\bar{\lambda}}\right] + \lambda_M \dot{\lambda} V^+ \left[\frac{2 - V^+}{V} - \frac{E}{\bar{E}} - \frac{\dot{\lambda} V^+}{\bar{\lambda} V^+} + \frac{\dot{\lambda}}{\bar{\lambda}}\right] + \dot{\lambda} V^+ \left[\frac{I^+}{\bar{I}^+} + \frac{1}{\bar{I}^+}\right] + M_t \dot{\lambda} V^+ \left[\frac{I^+}{\bar{I}^+} - \frac{1}{\bar{I}^+} - 1\right] + M_t \dot{\lambda} V^+ \left[\frac{1}{\bar{I}^+} - \frac{1}{\bar{I}^+} + 1\right].
\]

Using eqn (19) again, we obtain

\[
\frac{E}{\bar{E}} - \frac{I}{\bar{I}} + \frac{\dot{\lambda}}{\bar{\lambda}} = \left(\frac{\dot{\lambda}}{\bar{\lambda}}\right) \left[\frac{I^+}{\bar{I}^+} + \frac{1}{\bar{I}^+}\right] + \lambda M_t \dot{\lambda} V^+ \left[\frac{2 - V^+}{V} - \frac{E}{\bar{E}} - \frac{\dot{\lambda} V^+}{\bar{\lambda} V^+} + \frac{\dot{\lambda}}{\bar{\lambda}}\right].
\]

Similarly,
\[
\frac{I}{\bar{I}} - \frac{H}{\bar{H}} = \left(\frac{\dot{\lambda}}{\bar{\lambda}}\right) \left[\frac{I}{\bar{I}} + \frac{1}{\bar{I}}\right] + \lambda M_t \dot{\lambda} V^+ \left[\frac{2 - V^+}{V} - \frac{E}{\bar{E}} - \frac{\dot{\lambda} V^+}{\bar{\lambda} V^+} + \frac{\dot{\lambda}}{\bar{\lambda}}\right] + \dot{\lambda} V^+ \left[\frac{I}{\bar{I}} - \frac{H}{\bar{H}}\right] + \lambda M_t \dot{\lambda} V^+ \left[\frac{2 - V^+}{V} - \frac{E}{\bar{E}} - \frac{\dot{\lambda} V^+}{\bar{\lambda} V^+} + \frac{\dot{\lambda}}{\bar{\lambda}}\right].
\]
Fig. 2. The model fitting result using the reported COVID-19 cases in Saudi Arabia from 2 March 2020 to 15 May 2021. The grey bars represent the observed COVID-19 cases, and the black curve is the model prediction to the reported COVID-19 situation in Saudi Arabia. The result shows the cumulative number of COVID-19 scenario for Saudi Arabia. The initial conditions used for the fitting processes are: $S_0 = 30 \times 10^6$, $V_0 = 0$, $E_0 = 85 \times 10^3$, $I_0 = 5$, $R_0 = 2$, and $R_t = 0$.

Fig. 3. Time-series simulations results of the model (1) showing the global stability of the DFE (changes in COVID-19 dynamics at DFE), with varying initial conditions (denoted by different colours): (a) susceptible (S), (b) vaccinated (V), (c) exposed (E), (d) infectious (I), and (e) hospitalized (H), humans. Parameters values implemented are same in Table 2 with $\beta_h = 0.027245$, $\phi = 0.5$, $\sigma = 0.0143$, and $r_f = 1/7$.

In Fig. 3(a)–(e), we take to account the dynamics of the model (2) when $R_0 = 0.8492306 < 1$ for different initial conditions. The parameter values are the same as in the Table 2 except for $\beta_h = 0.027245$, $\phi = 0.5$, $\sigma = 0.0143$, and $r_f = 1/7$. The dynamics of the model (2) with $R_0 < 1$ is depicted in Figure 3 (a)–(e), which demonstrates the system (2) has a DFE and it is GAS whenever $R_0 \leq 1$ underpinning the result presented in Theorem 2.
In Fig. 4, we take into account the dynamics of the model (2) when $R_0 = 4.9466717 > 1$ for different initial conditions. All the parameter values are the same as in the Table 2 except for $\phi = 0.5$, $\sigma = 0.0143$, and $\tau_c = 1/7$. The dynamics of the model (2) with $R_0 > 1$ is depicted in Fig. 4(a)-(e), which demonstrates the system (2) has EE, \mathcal{Z}^*, which is GAS whenever $R_0 > 1$ underpinning the result presented in Theorem 4.

Simulations on the general dynamics

Integer and non-integer order ρ, as well as several essential factors, can be used to show model dynamic behaviour via numerical methods. The numerical findings in [57–60] were presented using first-order convergent numerical techniques. These are important numerical algorithms for solving non-integer order differential equations which gives accurate, conditionally stable, and convergent results.

Here, we utilized the framework used in [61] to carry out numerical simulations in order to show vital dynamics behaviour of the proposed model. The fractional model below was used to obtain the simulations results.

$$ cS_{\rho+1} = S_0 + \frac{h^\rho}{\Gamma(\rho+1)} \sum_{k=0}^{\rho} \left[(p - k + 1)^\rho - (p - k)^\rho \right] $$

$$ \times \left[\sigma (1 - \theta H + \theta_H H) + kR + \phi V - \lambda S - (\eta + \mu)S \right]. $$

$$ cV_{\rho+1} = V_0 + \frac{h^\rho}{\Gamma(\rho+1)} \sum_{k=0}^{\rho} \left[(p - k + 1)^\rho - (p - k)^\rho \right] $$

$$ \times \left[\eta S - \lambda V + \mu S \right]. $$

$$ cE_{\rho+1} = E_0 + \frac{h^\rho}{\Gamma(\rho+1)} \sum_{k=0}^{\rho} \left[(p - k + 1)^\rho - (p - k)^\rho \right] $$

$$ \times \left[\lambda S + \sigma V - (\sigma + \mu)E \right]. $$

$$ cI_{\rho+1} = I_0 + \frac{h^\rho}{\Gamma(\rho+1)} \sum_{k=0}^{\rho} \left[(p - k + 1)^\rho - (p - k)^\rho \right] $$

$$ \times \left[\sigma I + \mu E - (\tau_c + \omega)I \right]. $$

To explore the impact of each scenario on the overall dynamics, we utilized the above technique and simulated the model (using classical (1) and fractional (25) systems, respectively). Figs. 5 and 6 shows the dynamics trends on each situation and their possible contribution on the general dynamics of the disease, thereby providing some suggestions for appropriate control strategies.

Assessing the effect of vaccination, vertical transmission and hospitalization

In this sub-section, we simulated the model (1) to assess the impact of the vaccination, vertical transmission and hospitalization on the overall dynamics. In Figs. 7 and 8, as described on the dynamical system in Eq. (1), we conducted simple simulations considering multiple choices based on related/key parameters (i.e., η, θ, θ_H, and ω) that drives the transmission, in this case. The results in Fig. 7 revealed that increasing vaccination rate, especially for the most vulnerable population, enhances the impact of vaccines as potential and effective strategy for mitigating COVID-19 pandemic. Also, our simulation result in Fig. 8 revealed how vertical transmission and early hospitalization affects infected individuals, which, in turn affects the overall transmission of the disease.

Sensitivity analysis

To investigate the impact of each parameter on the model (1), we utilized the partial ranked correlation coefficient (PRCC) technique [62, 63,34], which is a standard approach for investigating the sensitivity
Fig. 5. Simulation of the model showing the dynamics behaviour of COVID-19 transmission over time in panels (a)-(f) using fractional (green curve) and classical (red curve) variants. The parameters’ values used were given in Table 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Discussion and conclusions

The COVID-19 pandemic has disproportionally affected all groups, including newborn babies. Considering the growing clinical evidence from the literature for mother-to-child infection of COVID-19 during pregnancy [13,14,16], it has become necessary for more efforts from researchers and public health practitioners to investigate this issue to contribute to the existing knowledge. Moreover, researchers need to elucidate the influence of vertical transmission and suggest control measures to policymakers for timely and effective prevention and control.

Although previous studies have revealed that most neonates infected with COVID-19 were delivered via a caesarean delivery [16,64], this further indicates that the risk of mother-to-child infection does not heavily rely on the delivery route. Nevertheless, the short- or long-term adverse effects should be thoroughly analysed to prevent vulnerable newborns from being infected with COVID-19 during pregnancy.
Early treatment for COVID-19 infected individuals and effective vaccines coupled with NPI measures are the most crucial means for effective control to provide long-term prevention to mitigate the pandemic. Nevertheless, based on the previous knowledge of other pandemics, disease mitigation is a complex phenomenon that typically requires a targeted multistrategy technique for timely and effective control [37,65]. This technique could also be possible for the current pandemic, with elimination improbably attained in time and thus needing optimal global efforts. High uptake for COVID-19 vaccines helps reduce crucial epidemiological parameters, such as R_0, the infection fatality and attack rates. However, sustaining other NPI measures is also necessary (at the moment) to continue to fight the pandemic effectively and reduce morbidity and mortality rates. Moreover, such strategies as testing, tracing, and isolating [66] are vital in keeping the infection fatality and attack rates at low levels and lowering the risk of vaccine escape [67]. Eventually, it is imperative to focus more on the long-term solution while reducing the effects of the current scenario to achieve the public health target.

This study employed an SEIR-type model designed by proposing a new deterministic model to investigate the dynamics of the COVID-19 pandemic. The formulated model incorporated vaccination, hospitalization and vertical or mother-to-child transmission of SARS-CoV-2 in the cause of pregnancy. The proposed model was rigorously analysed and revealed that the DFE is locally stable using existing differential and integral operators. We applied the technique to the governing model and generated simulations similar to real-world circumstances with some crossover behaviours, as can be seen in 6a and 6d.

Different crucial parameter values have been tested in each scenario to show the dynamics features in both fractional and classic senses for the individual compartment using the model (1) and model (25),

Fig. 6. Time series simulation results of the model showing the dynamics behaviour of COVID-19 transmission using different fractional values in panels (a)–(f). The parameters’ values used were given in Table 2.
respectively. Simulation results showing the effect of the vaccination rate, η, on unvaccinated and vaccinated susceptible individuals given in Fig. 7, highlight that increasing the vaccination rate could significantly suppress the transmission rate of the disease and, in turn, reduce the morbidity and mortality rate in a population. Moreover, the model was simulated to show the impact of vertical transmission and early hospitalization of infected individuals, see Fig. 8. Based on the results, we suggest that vaccinating the most vulnerable population could help reduce the transmission of SARS-CoV-2 via vertical route by lowering the infection rate from pregnant women and preventing the onward spread of the disease. Thus, vaccination and early hospitalization are crucial measures in the fight to end the pandemic as well as to lower the transmissibility and likely increase the level of immunity in a population.

Finally, the sensitivity analysis results are illustrated in Fig. 9 divulged that the parameters θ_i, π, and β_i, primarily associated with disease infectivity/transmission, are the most vital model parameters for effectively mitigating the pandemic. This study, like numerous others, is not free from limitations. We employed a single-strain model instead of an age-structured model, which might capture more dynamic features in investigating the combined effects of vaccination, vertical transmission and hospitalization. However, in the future, we plan to extend the current study by incorporating an aged-structured model.
and using different case scenarios to investigate and shed more light on the dynamics of COVID-19 transmission.

In conclusion, in this study, we proposed a new model to study the transmission of SARS-CoV-2, incorporating the combined effect of vaccination, hospitalization and vertical transmission. The results highlighted that maintaining basic NPI measures coupled with increased vaccination, hospitalization and vertical transmission. The results highlighted that maintaining basic NPI measures coupled with increased vaccination, hospitalization and vertical transmission.

Table 2
Ranges of the parameters and their units used for the simulations.

Parameter	Value (Range)	Units/Remarks	Sources
N_0	34810000	per day	[68]
μ	1265.36 (1000 – 4000)	per day	estimated from [69]
ν	3.3635 x 10^{-3} (0.00002 – 0.00006)	per day	estimated from [69]
η	2.97 x 10^{-4} (0.0001 – 0.05)	per day	[70,71]
ϕ	0	dimensionless	[72]
ψ	0.70 (0 – 2)	dimensionless	[70]
ψ_i	1.2862 (0.599 – 1.68)	per day	fitted
ψ_h	0.7245 (0.711960 – 0.739537)	per day	fitted
σ	0.243 (0.05 – 0.275)	per day	assumed
ω	0.5604 (0.03 – 0.82)	per day	fitted
δ_i	0.005713 (0.0000 – 0.002399)	per day	[70]
δ_h	0.01 (0.00070 – 0.025)	per day	assumed
θ_i	0.00001 (0 – 0.1)	per day	assumed
θ_h	0.000024 (0 – 1)	per day	assumed
τ_i	1/1.5 (1/30 – 1/8)	per day	estimated from [6]
τ_h	1/14 (1/30 – 1/3)	per day	[6]
κ	0.11 (0 – 1)	per day	estimated from [73]

References

[1] World Health Organization. Who coronavirus disease (COVID-19) pandemic. 2020, https://www.who.int/, [Accessed 17 October 2021].
[2] Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020;382:1199-207. http://dx.doi.org/10.1056/NEJMc2001316.
[3] Zhao S, Lin Q, Ran J, Musa SS, Yan G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis 2020;92:214–7. http://dx.doi.org/10.1016/j.ijid.2020.01.050.
[4] Chen Z, Sun S, Zhao W, Liu Z, Zhao X, Huang X, et al. The impact of the declaration of the state of emergency on the spread of COVID-19: A modeling analysis. Comput Math Methods Med 2021;2021:8873059. http://dx.doi.org/10.1155/2021/8873059.
[5] World Health Organization. Who coronavirus disease (COVID-19) dashboard. 2020, https://covid19.who.int/. [Accessed 20 December 2020].
[6] Eikenberry SE, Mancuso M, Iboi E, Phan T, Eikenberry K, Yang Y, et al. To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect Dis Model 2020;5:293–308.
[7] Musa SS, Zhao S, Wang MH, Habib AG, Mustapha UT, He D. Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019(COVID-19) in Africa. Infect Dis Poverty 2020;9:96. http://dx.doi.org/10.1186/s40249-020-00718-y.
[8] World Health Organization, Global regions. COVID-19 vaccines. 2020, https://ourworldindata.org/covid-vaccinations. [Accessed 10 October 2021].
[9] COVID-19 Vaccine Tracker. COVID-19 vaccine and therapeutics tracker. 2020, https://biorender.com/covid-vaccine-tracker. [Accessed 10 October 2021].
[10] Alskakji HJ, Rihan FA, Hashish A. Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE. Complexity 2022;2022:4247800. http://dx.doi.org/10.1155/2022/4247800.
[11] Our World in Data. Statistics and research, coronavirus (COVID-19) vaccinations. 2021, https://ourworldindata.org/covid-vaccinations. [Accessed 27 December 2021].
[12] Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, et al. A global database of COVID-19 vaccinations. Nat Hum Behav 2021;5:947–53.
[13] Fenitza C, Basist M, Cetin I, Vergani P, Mileto D, Spinillo A, et al. Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nature Commun 2020;11:1–10.
[14] Angelidou A, Sullivan K, Melvin PR, Shui JE, Goldfarb IT, Bartolome R, et al. Association of maternal perinatal SARS-CoV-2 infection with neonatal analysis of SARS-CoV-2 vertical transmission during pregnancy. Nature Commun 2020;11:1–10.
[15] Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterinevertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet 2020;395:809–15.

and using different case scenarios to investigate and shed more light on the dynamics of COVID-19 transmission.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

I have shared the link to my data which is publicly available.

Acknowledgements

This research was supported by the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, and using different case scenarios to investigate and shed more light on the dynamics of COVID-19 transmission.

In conclusion, in this study, we proposed a new model to study the transmission of SARS-CoV-2, incorporating the combined effect of vaccination, hospitalization and vertical transmission. The results highlighted that maintaining basic NPI measures coupled with increased vaccine uptake, especially for the most the vulnerable population could greatly suppress the effects of the pandemic.

Grant No. (21-13-18-086). The authors are thankful to the Handling Editor and anonymous reviewers for their insightful and formative comments, which were used to improve the manuscript immensely.

This research was supported by the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia.
R.T. Alqahtani et al.

[42] Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 2002;180:29–48. http://dx.doi.org/10.1016/S0025-5564(02)00108-6.

[43] Shuai Z, van den Driessche P. Global stability of infectious disease models using Lyapunov functions. SIAM J Appl Math 2013;73(4):1513–32.

[44] Castillo-Chavez C, Feng Z, Huang W. On the computation of ρ0 and its role on. Mathematical Approaches for Emerging and Re-emerging Infectious Diseases: An Introduction. 2002;1:229.

[45] Nkansa LN, Manga TT, Agouanet F, Mann Manyomb LM. Mathematical model to assess vaccination and effective contact rate impact in the spread of tuberculosis. J Biol Dyn 2010;4(2):126–42.

[46] Van den Driessche P. Reproduction numbers of infectious disease models. Infect Dis Model 2017;2(3):288–303. http://dx.doi.org/10.1016/j.idm.2017.06.002.

[47] Musa SS, Zhao S, Gao D, Lin Q, Chowell G, He D. Mechanistic modelling of the large-scale Lassa fever epidemic in Nigeria from 2016 to 2019. J Theor Biol 2020;493:110209. http://dx.doi.org/10.1016/j.jtbi.2020.110209.

[48] Roop OP, Chiviririyasit W, Chiviririyasit S. The effect of incidence function in backward bifurcation for malaria model with temporary immunity. Math Biosci Eng 2021;18(7):457–64. http://dx.doi.org/10.3934/mbe.2021040.

[49] Yang C, Wang X, Gao D, Wang J. Impact of awareness programs on cholera dynamics: Two modeling approaches. Bull Math Biol 2017;79(9):1210–31. http://dx.doi.org/10.1007/s11518-017-0322-1.

[50] Musa SS, Zhao S, Hussaini N, Habib AG, He D. Mathematical modeling and analysis of meningococcal meningitis transmission dynamics. Int J Biomath 2020;13(5):2050066. http://dx.doi.org/10.1142/S1793542520500060.

[51] Asamoah JK, Owusu MA, Jin Z, Odorto FT, Abidemi A, Gyasi EO. Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: Using data from Ghana. Chaos Solitons Fractals 2020;140:110103.

[52] Asamoah JK, Bonnaa CS, Seidu B, Jin Z. Mathematical analysis of the effects of controls on transmission dynamics of SARS-CoV-2. J Eng Math 2021;205(6):5901–79.

[53] LoSalle JP. The stability of dynamical systems. Regional conference series in applied mathematics, Philadelphia: SIAM; 1976.

[54] Hussaini N, Okumey K, Gumel AB. Mathematical analysis of a model for zoonotic visceral leishmaniasis. Infect Dis Model 2021;7(4):455–74.

[55] Worldometer. Saudi arabia population. 2021, https://www.worldometers.info/world-population/saudi-arabia-population/. [Accessed 10 December 2021].

[56] The World Bank. Life expectancy at birth, total (years) - Saudi Arabia. 2021, https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=SA. [Accessed 10 December 2021].

[57] Li C, Zeng F. Numerical methods for fractional calculus, vol. 24. CRC Press; 2015.

[58] Jairaj A, Baleanu D. A new fractional analytical solution on the interaction of HIV with CD4+ T-cells. Chaos Solitons Fractals 2018;113:101919. http://dx.doi.org/10.1016/j.chaos.2018.10.092.

[59] Baleanu D, Jajarmi A, Hajipour M. On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel. Nonlinear Dyn 2018;94(1):397–414.

[60] Rihan FA, Al-Marlqm QM, Alhabshi JH, Hashish A. A fractional-order epidemiological model with time-delay and nonlinear incidence rate. Chaos Solitons Fractals 2019;126:97–105.

[61] Acay B, Inc M, Mustapha UT, Yusuf A. Fractional dynamics and analysis for a lana fever infectious ailment with Caputo operator. Chaos Solitons Fractals 2020;135:115116.

[62] Gao D, Lou Y, He D, Portoc T, Kuang Y, Chowell G, et al. Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modelling analysis. Sci Rep 2016;6(1):28070. http://dx.doi.org/10.1038/srep28070.

[63] Cai Y, Zhao S, Niu Y, Peng Z, Wang K, He D, et al. The effects of the modelled control scenarios on the epidemic behaviors of COVID-19. J Theor Biol 2021;510:11063.

[64] Novoa RH, Quintana W, Llancarí P, Urbina-Quispe K, Guevara-Ríos E, Ventura W. An overview of systematic reviews. Acta Obstet Gynecol Scand 2021;100:1016–26. http://dx.doi.org/10.1111/aogs.14080.

[65] Brieger WR, Ramakrishna J, Adeniyi JD, Sridhar MKC, Kale OO. Guinea worm control case study: Planning a multi-strategy approach. Soc Sci Med 2021;216:101919. http://dx.doi.org/10.1016/j.socscimed.2021.101919.

[66] Contreras S, Dehning J, Loidolt M, et al. The challenges of containing SARS-CoV-2: A systematic review of systematic reviews. Aust J Public Health 2021;45(4):261–9. http://dx.doi.org/10.1111/ajph.13597.

[67] Saad-Roy CM, Morris SE, Metcalf CJ, Mina MJ, Baker RE, Farrar J, et al. Sensitivity analysis and optimal economic evaluation of a new COVID-19 compartmental model of COVID-19 epidemic with effect of awareness programs. Infect Dis Model 2021;6(3):465–74. http://dx.doi.org/10.1016/j.idm.2021.04.008.

[68] Worldometer. Saudi arabia population. 2021, https://www.worldometers.info/world-population/saudi-arabia-population/. [Accessed 10 December 2021].

[69] Chickenpox. Alex Eng J 2020;6(17):1084. http://dx.doi.org/10.21037/atm-20-5602.

[70] An overview of systematic reviews. Int J Environ Res Public Health 2021;18:596.