Measurement of $|V_{ub}|$ using inclusive $B \to X_u \ell \nu$ decays with a novel X_u-reconstruction method

H. Kakuno, K. Abe, I. Adachi, H. Aihara, Y. Asano, T. Aso, V. Aulchenko, A. Aushev, A. Bakich, Y. Ban, S. Banerjee, I. Bizjak, A. Bondar, A. Bozek, M. Bračko, T. E. Browder, Y. Chao, B. G. Cheon, R. Chistov, S.-K. Choi, Y. Choi, Y. K. Choi, A. Chuvikov, S. Cole, M. Danilov, M. Dash, L. Y. Dong, J. Dragic, A. Drutskoy, S. Eidelman, V. Eiges, N. Gabyshev, A. Garmash, T. Gershon, G. Gokhroo, Y. Chao, P. Križan, L. E. Piilonen, Heyoung Yang, M. E. Sevior, L. Y. Dong, H. Iwasaki, S. Banerjee, L. Y. Dong, High Energy Accelerator Research Organization (KEK), Tsukuba

V. Eiges, T. E. Browder, T. Lesiak, A. Limosani, Y. Yusa, M. Yamauchi, T. Nagamine, Y. Hoshi, T. Iijima, K. Inami, A. Ishikawa, 6 R. Itoh, H. Iwasaki, Y. Iwasaki, J. H. Kang, J. S. Kang, P. Kapusta, N. Katayama, H. Kawai, T. Kawasaki, H. Kichimi, H. J. Kim, J. H. Kim, K. Kinoshita, S. Korpar, P. Križan, P. Krokovny, J.-I. Kwon, S. H. Lee, T. Lesiak, J. Li, A. Limosani, S.-W. Lin, J. MacNaughton, F. Mandl, A. Matyja, Y. Mikami, W. Mitaloff, K. Miyabayashi, H. Miyata, G. R. Moloney, T. Mori, T. Nagamine, Y. Nagasaka, T. Nakadaira, E. Nakano, M. Nakao, H. Nakazawa, Z. Nataki, N. Nishida, O. Nitoh, T. Nozaki, S. Ogawa, T. Ohshima, S. Okuno, S. L. Olsen, W. Ostrowicz, H. Ozaki, P. Pakhlov, C. W. Park, H. Park, K. S. Park, N. Parslov, L. S. Peak, L. E. Pilonen, H. Sagawa, S. Saitoh, O. Schneider, A. J. Schwartz, S. Semenov, K. Senyo, M. E. Sevior, H. Shibuya, B. Shwartz, V. Sidorov, J. B. Singh, N. Soni, Stanič, M. Starič, A. Sugiyama, T. Sumiyoshi, Y. Suzuki, O. Tajima, F. Takasaki, K. Tanai, M. Tanaka, Y. Teramoto, T. Tomura, T. Tsuboyama, T. Tsukamoto, S. Uehara, K. Ueno, S. Uno, G. Varner, K. E. Varvell, C. C. Wang, C. W. Park, J. G. Wang, M.-Z. Wang, M. Watanabe, Y. Watanabe, B. D. Yabsley, Y. Yamada, A. Yamaguchi, H. Yamamoto, Y. Yamashita, M. Yamauchi, H. Yanai, Heyoung Yang, Y. Yuan, Y. Yusa, J. Zhang, Z. P. Zhang, V. Zhilich, D. Žontar, (The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chita University, Chita
3University of Cincinnati, Cincinnati, Ohio 45221
4Gyeongsang National University, Chinju
5University of Hawaii, Honolulu, Hawaii 96822
6High Energy Accelerator Research Organization (KEK), Tsukuba
7Hiroshima Institute of Technology, Hiroshima
8Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
9Institute of High Energy Physics, Vienna
10Institute for Theoretical and Experimental Physics, Moscow
11J. Stefan Institute, Ljubljana
12Kanagawa University, Yokohama
13Korea University, Seoul
14Kyungpook National University, Taegu
15Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
16University of Ljubljana, Ljubljana
17University of Maribor, Maribor
18University of Melbourne, Victoria
19Nagoya University, Nagoya
20Nara Women’s University, Nara
21National Lien-Ho Institute of Technology, Miaoli Li
22Department of Physics, National Taiwan University, Taipei
23H. Niewodniczanski Institute of Nuclear Physics, Krakow
24Nhon Dental College, Niigata
25Niigata University, Niigata
26Osaka City University, Osaka
27Osaka University, Osaka
28Panjab University, Chandigarh
29Peking University, Beijing
30Princeton University, Princeton, New Jersey 08545
31Saga University, Saga
32University of Science and Technology of China, Hefei
33Seoul National University, Seoul
34Sungkyunkwan University, Suwon
We report the measurement of an inclusive partial branching fraction for charmless semileptonic B decay and the extraction of $|V_{ub}|$. Candidates for $B \to X_u \ell\nu$ are identified with a novel X_u-reconstruction method based on neutrino reconstruction via missing 4-momentum and a technique called “simulated annealing.” Based on 86.9 fb$^{-1}$ of data taken with the Belle detector, we obtain $\Delta B(B \to X_u \ell\nu; M_X < 1.7 \text{ GeV}/c^2, q^2 > 8.0 \text{ GeV}^2/c^4) = (7.37 \pm 0.89(\text{stat.}) \pm 1.12(\text{syst.}) \pm 0.55(b \to c) \pm 0.24(b \to u) \times 10^{-4}$ and determine $|V_{ub}| = (4.66 \pm 0.28(\text{stat.}) \pm 0.35(\text{syst.}) \pm 0.17(b \to c) \pm 0.08(b \to u) \pm 0.58(\text{theory}) \times 10^{-3}$.

PACS numbers: 12.15.Hh, 13.25.Hw, 29.85.+c

The off-diagonal element V_{ub} in the CKM matrix plays an important role in CP-violation and rare decays of the B meson. It is an important ingredient in overconstraining the unitarity triangle by measuring its sides and angles. In the experiments on the $\Upsilon(4S)$ resonance, its magnitude is extracted from measurements of the $B \to X_u \ell\nu$ process in the limited region of lepton momentum [1] and the hadronic recoil mass M_X where the contribution of background from the $B \to X_c \ell\nu$ process is suppressed. These experiments achieve more precise measurements than LEP experiments [2] due to higher signal purity; however, the need to extrapolate measured rates from such limited regions results in large theoretical uncertainties on $|V_{ub}|$. A recent theoretical development suggests that one can significantly reduce the theoretical uncertainty on the extrapolation by applying simultaneous cuts on M_X and the invariant mass squared of the lepton-neutrino system (q^2) in inclusive $B \to X_u \ell\nu$ [3]. We report here the first result with simultaneous requirements on M_X and q^2. The result is obtained with a novel X_u-reconstruction method based on a combination of neutrino reconstruction and a technique called simulated annealing [3] to separate the two B meson decays. This method allows us to measure M_X and q^2 with good efficiency so that it achieves good statistical precision and small theoretical uncertainty with a modest integrated luminosity. This analysis is based on 78.1 fb$^{-1}$ data, corresponding to 85 million BB pairs, taken at the $\Upsilon(4S)$ resonance, and 8.8 fb$^{-1}$ taken at an energy 60 MeV below the resonance, by the Belle detector [4] at the energy-asymmetric e^+e^- collider KEKB [5].

We select hadronic events containing one lepton candidate (electron or muon) having momentum above 1.2 GeV/c in the center-of-mass-system (CMS) of the $\Upsilon(4S)$. To remove events with more than one neutrino, we exclude events containing additional lepton candidates ($p_{\ell} > 0.5 \text{ GeV}/c$ and $p_{\nu} > 0.8 \text{ GeV}/c$). The neutrino is reconstructed from the missing 4-momentum in the event ($\vec{p}_{\nu} \equiv \vec{p}_{\Upsilon(4S)} - \Sigma_i \vec{p}_i$, $E_\nu \equiv E_{\Upsilon(4S)} - \Sigma_i E_i$). The net observed momentum ($\Sigma_i p_i$) and energy ($\Sigma_i E_i$) are calculated using particles surviving track quality cuts based on the impact parameter to the interaction point and a shower energy cut. Pairs of pions and electrons passing secondary vertex criteria are treated as K_S^0 and photons, respectively. All remaining charged tracks are classified as kaons, pions, or protons, based on particle identification information. K_S^0 candidates are identified from isolated clusters of hits in the detector for K_S^0's and muons [3]. The energy of each particle candidate is calculated based on its momentum and mass assignment. We then compute the missing mass of the event, defined as $MM^2 \equiv E_\nu/c^4 - |\vec{p}_\nu|^2/c^2$, where the sign of E_ν is reversed when $E_\nu < 0$. We require $-1.5 \text{ GeV}^2/c^4 < MM^2 < 1.5 \text{ GeV}^2/c^4$ to suppress events with missing particles and with particles removed due to poor reconstruction quality. For events that pass this requirement, we add back tracks and clusters rejected earlier due to reconstruction quality, selecting the combination that gives the smallest value of $|MM^2|$. This determines the set of particles that are used in the subsequent analysis. Events are further required to have a net charge of 0 or ±1, and a polar angle for the missing momentum within the barrel region ($32^\circ < \theta < 128^\circ$). To suppress beam-gas events, we demand that the net charge of all proton candidates be zero. Requiring that the cosine of the angle of K_L candidates with respect to
the missing momentum be less than 0.8 rejects events where the neutrino candidate is actually a K^0_L meson.

We then seek the most likely combination of particles belonging to $X\ell\nu$, the remainder being from the associated B-meson (B_{opp}). Six discriminant variables are used: the momentum, energy, and polar angle of B_{opp} ($p_B^*, E_B, \cos \theta_B$) in the CMS, its charge multiplicity (N_{ch}), and net charge times the lepton charge ($Q_B \times Q_\ell$), and the missing-mass squared recalculated with the energy and mass of B_{opp} constrained to the known values ($M_{X\ell\nu}^2$). Using Monte Carlo (MC) simulation events for $\Upsilon(4S) \to BB$ where at least one B decays into $X\ell\nu$, we determine probability density functions (PDFs) for correct $X\ell\nu$ combinations and for random $X\ell\nu$ combinations. Random candidates for $X\ell\nu$ consist of the lepton and neutrino candidates plus particles from the remainder of the event, selected randomly so that the relative multiplicities between X and the remainder of the event matches that at the generator level. From the PDFs we calculate two likelihoods, \mathcal{L}(correct) and \mathcal{L}(random). The most likely candidate combination in each event is found by minimizing the parameter $W \equiv \mathcal{L}$(random)/(\mathcal{L}(random) + \mathcal{L}(correct)).

To minimize W, we have developed an approximate iterative algorithm based on simulated annealing. We start from the initial candidate for $X\ell\nu$ that consists of the lepton and neutrino plus approximately one third of the remaining particles, selected randomly. We move a random particle (other than the lepton or neutrino) between the X and B_{opp} sides in an iterative way, where in one iteration we cross all particles at least once, and search for the combination that gives the minimum W with 50 iterations. During the iteration process we take special care to reduce the chance of convergence to a local minimum of W. For instance, after every fifth iteration we compare all combinations that can be constructed by crossing one particle and use the combination that gives the largest value of W to seed a new cycle. We repeat this iteration process 10 times, starting each time with a different initial candidate, and select the case with the smallest W. Figure 1 shows the distributions in three of the six discriminant variables and W, before and after simulated annealing. Also shown are the distributions for the correct combination in signal MC events.

The final candidate is required to satisfy: i) $W < 0.1$, ii) $5.1 < E_B^* < 5.4$ GeV, iii) $0.25 < p_B^* < 0.42$ GeV/c, iv) $-2 < Q_B \times Q_\ell < +1$, and v) $-0.2 < M_{X\ell\nu}^2 < 0.4$ GeV2/c4. Contamination from the continuum is reduced by demanding $|\cos \theta_{B\ell}| < 0.8$, where $\theta_{B\ell}$ is the angle between the thrust axis of B_{opp} and the lepton momentum. Figure 2 shows the resolutions in M_X and q^2 for $B \to X_\ell\nu\ell\nu$ MC events. Also shown in the figure are the resolutions for correct combination in signal MC events.

The validity of the method is checked with two data samples, one containing 38,600 fully-reconstructed $B \to D^{*\pm}\ell\nu$ decays and the other containing 84,100 $B \to J/\psi X, J/\psi \to \ell^+\ell^-$ decays. These data samples are also used to calibrate the detection efficiency. For the $J/\psi X$ sample we treat one of the two leptons from J/ψ as a neutrino, to emulate $B \to X\ell\nu$. Corresponding MC events

FIG. 1: Distributions for 3 discriminants and W before (dashed histogram) and after (solid histogram) simulated annealing, for real data. Distributions for 3 discriminants for correct combination of particles for MC events (solid curve).

FIG. 2: M_X (a) and q^2 (b) resolution distributions for $B \to X_u\ell\nu$ MC events. Histograms (curves) show the results with the simulated annealing method (with correct particle assignment to X_u).

FIG. 3: (a) M_X distributions for $B \to D^{*}\ell\nu$ control samples. (b) q^2 distributions for $B \to J/\psi X$ control samples. Points are data and the histogram is MC.
are generated with the QQ event generator \cite{11} and the detector response is simulated using Geant 3 \cite{10}. Figure 4 shows the \(M_X\) distribution for the \(D^+\ell\nu\) sample and the \(q^2\) distribution for the \(J/\psi X\) sample, with MC distributions scaled to the number of background-subtracted events in the respective data samples. The peaks are at the \(D^*\) mass and \(J/\psi\) mass squared, as expected, and the shapes are in good agreement between data and MC. Although these results verify that the simulated annealing method works as expected, we observe a small difference of efficiency between the data and MC. By averaging the results of the two data samples, we obtain the efficiency ratio \(r_{\text{eff}} = 0.891 \pm 0.043\) between the data and MC.

We observe 8910 events in the \(X_c\ell\nu\) “signal” region, defined as \(M_X < 1.7\,\text{GeV}/c^2\) and \(q^2 > 8.0\,\text{GeV}^2/c^2\). These consist of semileptonic decays, \(B \to X_c\ell\nu\), other \(B\bar{B}\) background, and residual continuum events. The continuum contribution is estimated from off-resonance data to be \(251 \pm 48\) events and is subtracted directly from the analyzed distributions. The contributions from \(B \to X_c\ell\nu\) and other \(B\bar{B}\) backgrounds are estimated via MC in the “background” region \(M_X > 1.8\,\text{GeV}/c^2\), where \(X_c\ell\nu\) dominates, and extrapolated to the signal region. We estimate them by fitting the \(M_X\) and \(q^2\) distributions from MC events to those from the data using a two-dimensional \(\chi^2\) fit method. Contributions to \(X_c\ell\nu\) come from \(D^+\ell\nu\), \(D^{*-}\ell\nu\), and \(D^{(*)}\pi\ell\nu\). Their branching fractions are floated in the fit. The total rate for other \(B\bar{B}\) backgrounds, arising from sources such as \(b \to c \to s\ell\nu\) and fake leptons, which amounts to less than 1% of events in the signal region, is floated. The small \(X_c\ell\nu\) contribution is estimated iteratively and is found to be \((0.94 \pm 0.04)\%\) of events in the background region. The obtained branching fractions for the exclusive \(B \to X_c\ell\nu\) modes are consistent with the PDG values \cite{13}. The \(B\bar{B}\) background in the signal region is estimated to be \(7283 \pm 130 \pm 63\) events, where the first and second errors come from fit and MC statistics, respectively. The upper plots in Figure 4 show the \(M_X\) distribution for \(q^2 > 8.0\,\text{GeV}^2/c^2\) and the \(q^2\) distribution for \(M_X < 1.7\,\text{GeV}/c^2\) after continuum subtraction. After subtracting the \(B\bar{B}\) backgrounds, we obtain distributions for the \(X_c\ell\nu\) signal, shown in the lower plots. The net signal is \(N_{\text{obs}} = 1376\pm167\) events where the error is statistical only.

In order to extract the partial branching fraction \(\Delta B\) for \(B \to X_c\ell\nu\) in the signal region, a Monte Carlo simulation is used to convert \(N_{\text{obs}}\) to the true number of signal events produced in this region, \(N_{\text{true}}\), and to estimate the efficiency for these events to be observed anywhere, \(\epsilon_{\text{signal}}\). In the MC simulation, \(B \to X_c\ell\nu\) decays are simulated based on the prescription of ref. \cite{12}. That analytic result gives \(\mathcal{O}(\alpha_s)\) corrections to leading order in the heavy-quark expansion for the triple differential \(B \to X_c\ell\nu\) rate and includes the effect of the b-quark’s Fermi motion. Two parameters therein, the b-quark pole mass, \(m_b\), and the average momentum squared of the b-quark inside the B meson, \(\mu_b^2\), are derived from the CLEO measurements of the hadronic mass moments in inclusive \(B \to X_c\ell\nu\) and photon energy spectrum in \(B \to X_c\gamma\) \cite{13}. We use \(m_b = 4.80 \pm 0.12\,\text{GeV}/c^2\) and \(\mu_b^2 = 0.30 \pm 0.11\,\text{GeV}^2/c^2\), which differs from CLEO’s evaluation in that terms proportional to \(1/m_b^2\) and \(\alpha_s^2\) have been removed from the relation between the measured observables and \(m_b\) and \(\mu_b^2\). The MC events are generated with the EvtGen generator \cite{14}. \(N_{\text{true}}\) is estimated by \(N_{\text{true}} = N_{\text{obs}} \times F(F = 1 + N_2/N_1 - N_3/N_1)\). Here \(N_1\) is the number of events observed in the signal region and \(N_2\) (\(N_3\)) is the number of events generated inside (outside) the signal region and observed outside (inside) the signal region. We find \(F = 0.938\), and thus \(N_{\text{true}} = 1291 \pm 157\). The efficiency \(\epsilon_{\text{signal}}\) is predicted to be 0.578%. We determine \(\Delta B\) by \(0.5 \times N_{\text{true}}/(\epsilon_{\text{signal}} \times r_{\text{eff}})/(2N_B)\), where \(r_{\text{eff}}\) is the efficiency correction factor described earlier, \(N_B\) is the number of \(B\bar{B}\) events and the factor 0.5 is needed to take into account the electron and muon data:

\[
\Delta B = (7.37 \pm 0.89 \pm 0.11 \pm 0.55 \pm 0.24) \times 10^{-4}.
\]

The errors are statistical, systematic, from \(B \to X_c\ell\nu\) model dependence, and \(B \to X_u\ell\nu\) model dependence, respectively. Sources of systematic uncertainty include signal MC statistics (1.8%), lepton identification (2.6%), uncertainty of \(F\) due to imperfect detector simulation (1.2%), selection and reconstruction efficiency (4.9%), \(B\bar{B}\) background estimation (14.0%). The uncertainty in the \(B\bar{B}\) background estimation is from MC statistics (4.6%) and distortion of the \(M_X\) and \(q^2\) distributions due to imperfect detector simulation (13.2%). Major contributions to the last error are from \(K^0\) contamination (8.6%), electromagnetic cluster finding efficiency (8.2%),

FIG. 4: (a) \(M_X\) distribution for \(q^2 > 8.0\,\text{GeV}^2/c^2\). (b) \(q^2\) distribution for \(M_X < 1.7\,\text{GeV}/c^2\). Points are the data and histograms are backgrounds from \(D^+\ell\nu\) (dotted), \(D\ell\nu\) (short dashed), others (long dashed), and total background contribution (solid). Lower plots show the data after background subtraction. Solid curves show the inclusive MC predictions for \(B \to X_u\ell\nu\).
dependence of finding efficiency is estimated by reducing the photon-finding efficiency within its uncertainty. The model dependence of \(X_u\ell\nu\) is estimated to be 7.4\% by varying the \(D_1\ell\nu\) plus \(D_2\ell\nu\) fraction in the \(D^{*+}\ell\nu\) by 25\% and by varying the slope parameters of the form factors for \(D\ell\nu\) and \(D^*\ell\nu\), \(\rho_0^2 = 1.19 \pm 0.19\) and \(\rho^2 = 1.51 \pm 0.13\), within their errors. \(B \to X_u\ell\nu\) model dependence (3.4\%) is estimated by varying the parameters of the inclusive model within their errors and by comparing to a simulation with a full exclusive implementation of the ISGW2 model.

In the context of HQET and OPE the partial branching fraction \(\Delta \mathcal{B}(B \to X_u\ell\nu)\) is related to \([V_{ub}]\),

\[
|V_{ub}| = 0.00444 \left(\frac{\Delta \mathcal{B}(B \to X_u\ell\nu) \times 1.55ps}{\tau_B} \right)^{1/2}
\]

where \(1.21G(q_{\text{cut}}^2, m_{\text{cut}}) = f_{\text{HQET}} \times \left(\frac{m_b^{15}}{4.7 GeV/c^2} \right)^5 \), \(f_{\text{HQET}}\) represents the fraction of events with \(q^2 > q_{\text{cut}}^2\) and \(M_X < m_{\text{cut}}\), and \(m_b^{15}\) is one-half of the perturbative contribution to the mass of the \(\Upsilon(1S)\). \(G(q_{\text{cut}}^2, m_{\text{cut}})\) is calculated to \(O(a_s^2)\) and \(O(1/m_b^2)\) in 4, including the effect of the Fermi motion of the \(b\) quark, which is expressed in terms of \(m_b^{15}\). We use \(m_b^{15} = 4.70 \pm 0.12 GeV/c^2\), which gives \(G(q_{\text{cut}}^2, m_{\text{cut}}) = 0.268\), \([13]\). The theoretical uncertainty on \([V_{ub}]\) is determined only by the uncertainty on \(G(q_{\text{cut}}^2, m_{\text{cut}})\). The uncertainty on \(G(q_{\text{cut}}^2, m_{\text{cut}})\), in total 25\%, consists of 6\% for perturbative, 8\% for nonperturbative terms (dominated by the weak annihilation contribution), and 23\% from the uncertainty on \(m_b^{15}\) \([13]\). The 23\% error contains 10\% for \(f_{\text{HQET}}\) and 13\% for \(m_b^{15}\). These uncertainties are positively correlated, so we add them linearly, whereas they have been given separately in conventional analyses. Using \(\tau_B = 1.604 \pm 0.012 ps\), \([13]\) we obtain

\[
|V_{ub}| = (4.66 \pm 0.28 \pm 0.35 \pm 0.17 \pm 0.08 \pm 0.58) \times 10^{-3}
\]

where the errors are statistical, systematic, \(b \to c\) model dependence, \(b \to u\) model dependence, and theoretical uncertainty for OPE, respectively.

To summarize, we have performed the first measurement of \([V_{ub}]\) with simultaneous requirements on \(M_X\) and \(q^2\) using a novel \(X_u\)-reconstruction method. The result of \([V_{ub}] = (4.66 \pm 0.76) \times 10^{-3}\) is consistent with the previous inclusive measurements \([1,2,8,13]\) and the total error is comparable with those of the previous measurements on \(\Upsilon(4S)\) \([1,2,8]\). Due to simultaneous requirements on \(M_X\) and \(q^2\), the \(f_{\text{HQET}}\) error is much smaller than those of the previous measurements on \(\Upsilon(4S)\) \([1,2,8]\).

We wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Education, Science and Training; the National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 01324; the Ministry of Science and Technology of the Russian Federation; the Ministry of Education, Science and Sport of the Republic of Slovenia; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

* on leave from Nova Gorica Polytechnic, Nova Gorica

[1] A. Bornheim et al. (CLEO Collaboration), Phys. Rev. Lett. 88, 231803 (2002).
[2] B. Aubert et al. (BaBar Collaboration), hep-ex/0307062.
[3] R. Barate et al. (ALEPH Collaboration), Eur. Phys. J. C6, 555 (1999). M. Acciarri et al. (L3 Collaboration), Phys. Lett. B436, 174 (1999). P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B478, 14 (2000). G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C21, 399 (2001).
[4] C.W. Bauer, Z. Ligeti and M. Luke, Phys. Rev. D64, 113004 (2001).
[5] S. Kirkpatrick et al., Science 220, No. 4598 (1983). H. Kakuno, PhD thesis, Tokyo Inst. of Technology, 2003 (http://belle.kek.jp/bdocs/theses.html).
[6] A. Abashian et al., Nucl. Instr. and Meth. A479, 117 (2002).
[7] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A499, 1 (2003).
[8] K. Abe et al. (Belle Collaboration), Phys. Rev. D66, 032007 (2002).
[9] The Q\(B\) meson event generator was developed by the CLEO Collaboration. See the following URL: http://www.lns.cornell.edu/public/CLEO/soft/QQ.
[10] R. Brun et al., CERN Report DD/EE/84-1, 1984.
[11] K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002).
[12] F. De Fazio, M. Neubert, JHEP 9906, 017 (1999).
[13] D. Cronin-Hennessy et al. (CLEO Collab.), Phys. Rev. Lett. 87, 251808(2001). We make use of the relations \(A_\ell = m_B - m_\ell\) and \(\lambda = -\mu_\ell^2\) where \(A_\ell\) and \(\lambda\) are the HQET parameters and \(m_B\) is the mass of the \(B\) meson.
[14] D. J. Lange, Nucl. Instr. and Meth. A 462, 152 (2001).
[15] D. Sgora and N. Isgur, Phys. Rev. D52, 2783 (1995).
[16] A.H. Hoang, Z. Ligeti, and A.V. Manohar, Phys. Rev. Lett. 82, 277 (1999).
[17] Z. Ligeti, private communication.
[18] M. Beneke and A. Signer, Phys. Lett. B471, 233 (1999), A.H. Hoang, hep-ph/0008102 A.H. Mahmood et al.
(CLEO Collaboration), Phys. Rev. D67, 072001 (2003).

[19] The uncertainty due to the possible quark-hadron duality violation is not included in this estimation. It is difficult to estimate the size of the duality error theoretically. One can only estimate its upper limit of 14% from the values of $|V_{cb}|$ (see S. Stone hep-ph/0310153).