Potential herb-drug interactions found in a community pharmacy patients

Potenciais interações plantas - medicamentos encontradas em utentes de uma farmácias comunitária

C. Batista¹, C. Pinho², M. Castel-Branco¹,³, M. Caramona¹,³ and I. Figueiredo¹,³

¹Grupo de Farmacologia e Cuidados Farmacêuticos, Faculdade de Farmácia, Universidade de Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-390 Coimbra, Portugal
²Farmácia Figueiredo, Rua da Sofia, nº 105, 3000-390 Coimbra, Portugal
³IBILI - Institute for Biomedical Imaging and Life Sciences, Universidade de Coimbra
Email: isabel.vitoria@netcabo.pt

Abstract
Phytotherapy has always played a leading role in therapeutics. However, a strong knowledge of the risk-benefit relationship of herbal products by patients and health professionals is necessary.
The goals of this study were to characterize the consumption pattern of medicinal plants in patients in a community pharmacy, identify potential herb-drug interactions, and establish a list of recommendations for health professionals and/or patients in order to prevent/minimize negative outcomes arising from these interactions.
In a sample of 25 patients, 24 cases of potential herb-drug interactions were detected. Most of the cases corresponded to the simultaneous use of a conventional medication with Ginkgo. The recommendation list involved monitoring the effectiveness and safety of conventional therapy associated with the use of medicinal plants, with particular focus on clinical and laboratory monitoring of the occurrence of bleeding, blood pressure, glycaemia and liver function.
The results indicate that there is still a lack of knowledge about the possible risks of herbal products, which may adversely affect patient’s health. The pharmacist is in prime position to raise awareness in the population, avoiding harmful situations for the patient's health.

Keywords: phytotherapy, herb-drug interactions, pharmacist.

Resumo
A fitoterapia desempenha um papel preponderante ao nível da terapêutica. Mas só um forte conhecimento da relação benefício-risco dos produtos à base de plantas, por parte dos doentes e profissionais de saúde, permite retirar um máximo benefício desta terapêutica.
Foram objetivos deste trabalho a caracterização do padrão de consumo de plantas medicinais em utentes de uma farmácia comunitária, a identificação de potenciais interações planta-medicamento e a criação de uma lista de recomendações para o profissional de saúde e/ou doente, a fim de reduzir/evitar resultados clínicos negativos decorrentes da ocorrência dessas interações.
Numa amostra de 25 utentes foram detetados 24 casos de potenciais interações planta-medicamento. A maioria dos casos correspondeu à toma concomitante de um medicamento convencional com Ginkgo. A lista de recomendações envolveu a monitorização da efetividade e segurança da terapêutica convencional associada ao uso de plantas medicinais, com destaque para a monitorização clínica e laboratorial da ocorrência de hemorragias, da pressão arterial, glicémia e função hepática.
Os resultados obtidos indicam que há ainda uma falta de conhecimento quanto aos riscos dos produtos à base de plantas, que pode influenciar negativamente a saúde de qualquer doente. O farmacêutico está em situação privilegiada para a sensibilização da população, evitando situações prejudiciais para a saúde do doente.

Palavras-chave: enfermeiros, cuidados continuados, prorrogação de internamento, prorrelações de altas clínicas, motivos não clínicos
Introduction

In the last decades, interests in medicinal plants and phytotherapy have grown enormously, with a better acceptance from both the health professional and the patients. Despite the rise of the acceptance of herbal medicines, the critical analysis is still greatly behind what may be expected. The belief that “if it’s natural, it’s good” is still a thought for the majority of people. In Portugal, the Observatory of Herb-Drug Interactions (Observatório de Interações Planta-Medicamento), set at the Faculty of Pharmacy of the University of Coimbra, has been making efforts to alert the people about the lack of innocuity of medicinal plants through the creation of a database with Herbal-Drug interaction data. This entity also assists in clarifying any doubts that a citizen, consumer or health professional may have on the subject.

The fact that there is a gap in the government health care authority’s regulations - especially at the food supplement areas, which are under control by the Direção Geral de Alimentação e Veterinária - leads not only to a reduced quality control, safety and efficacy but also to an easy way into the market and general public access (via internet, supermarkets, and herbal shops). Quality is one of the most critical aspects of medicinal products development. In the case of herbal products, many factors can affect the end product such as: harvest time, process and processing of the harvested product, (light, temperature, humidity), chemical variability (different parts of the plant, different climate), non-standardized extraction processes, complexity of the chemical composition, knowledge of the active principles in the herbal product, not to mention the presence of contaminants and modifiers. All these factors contribute negatively to the establishment of quality criteria and standardization for these products.

The efficacy is also a relevant factor but not heavily explored. The history and the traditional use of plants sometimes avoids the necessity for the randomized clinical trials, leading to inconclusive or insufficient scientific evidence, and herbal products frequently shows a synergic effect of its components which makes the creation of a database with Herbal-Drug interaction data. This entity also assists in clarifying any doubts that a citizen, consumer or health professional may have on the subject.

Nas últimas décadas, o interesse pelas plantas medicinais e fitoterapia tem sido alvo de grande crescimento, observando-se também uma maior aceitação por parte dos profissionais de saúde e dos doentes. No entanto, esta aceitação nem sempre tem sido acompanhada de uma análise crítica. A crença de que “o que é natural é bom” acompanha ainda a larga maioria das pessoas.

Em Portugal, o Observatório de Interações Planta-Medicamento, sediado na Faculdade de Farmácia da Universidade de Coimbra, tem feito alguns esforços no sentido de alertar a população para a falta de inocuidade das plantas medicinais, através da criação de uma base de dados de interações planta-medicamento. Esta entidade presta ainda serviço de apoio a todos os utentes e profissionais de saúde que pretendam elucidar as suas dúvidas acerca desta temática.

O facto de existir uma falta de regulamentação por parte das autoridades de saúde competentes, especialmente no caso dos suplementos alimentares – que apenas se encontram sob tutela da Direção Geral de Alimentação e Veterinária – conduz não só a um reduzido controlo de qualidade, segurança e eficácia, como também a uma maior facilidade da sua introdução no mercado e acesso ao público (internet, supermercados e ervanárias).

A qualidade é um dos aspetos mais críticos no processo de desenvolvimento de produtos com fins medicinais. No caso dos produtos à base de plantas, são vários os fatores que a podem afetar: diferentes processos de colheita e processamento (luz, temperatura, humidade), variabilidade química (diferentes partes da planta, diferente clima), métodos de extração não padronizados, complexidade da composição, conhecimento dos princípios ativos e ainda a presença de contaminantes e adulterantes. Todos estes fatores tornam mais difícil o estabelecimento de critérios de qualidade e a padronização dos produtos.

A eficácia é também um fator relevante mas ainda pouco explorado nesta área: a história e o uso tradicional das plantas ultrapassam muitas vezes a necessidade de realização de ensaios clínicos randomizados, levando a que o grau de evidência científica para uma determinada utilização clínica seja, quase sempre, insuficiente ou inconclusivo. Frequentemente, as atividades terapêuticas atribuídas a determinada planta derivam do efeito sinérgico de vários dos seus constituintes, o que dificulta ainda mais o seu estudo pormenorizado e individualizado.

A segurança assume-se, no entanto, como sendo o factor mais preocupante: apesar de considerados seguros, os produtos à base de plantas podem, tal como os medicamentos convencionais, provocar efeitos secundá-
plexity of herbal products greatly increases this risk. The interactions can be pharmacodynamic (synergism or antagonism of the pharmacological effect, through the changing of the target/receptor bonding levels) or pharmacokinetic (absorption, distribution, metabolism and excretion change, increasing or decreasing the plasmatic concentration of medicines and their therapeutic effect/counter effect) (6). The adverse effects can be intrinsic or extrinsic due to the chemical composition of the herbal product or the manufacturing process, respectively. The intrinsic reactions are divided in four groups: predictable toxicity overdose, interaction with other pharmaceutical products and idiosyncratic reactions (allergies). The extrinsic reactions can arise from mixtures and substituents (from different species that look the same to the naked eye), lack of standardization and batch specification, contamination (pollutants and toxins), adulteration with other medicines (steroids, tranquilizers), improper production and storage (mold and bacteria proliferation) or incorrect labeling (2). Because of all of these factors, pharmacovigilance also has an important position on the monitoring of this type of product (5).

The great problem of polymedication is added on top of all these observations, which, in the long run, can hinder the achievement of any medicinal benefit. Further, the polymedication increases the chance of medicine-related problems (adverse reactions, interactions, treatment failure, etc.). These problems greatly increase when an over the counter medicine or supplement is not prescribed by a physician or indicated by a pharmacist. The pharmacist is the health professional capable of preventing, detecting and solving problems related to medicines (patient centered pharmaceutical care). The adjustment of the medication and the pharmacotherapeutic follow-up combined with pharmaceutical services focused on the medication usage and on the negative results derived from the therapeutics lead to a reduction of risks from the medication use, a promotion of the rational use of medicines and to the overall fulfillment of the population health needs. With his acquired competence and knowledge, the pharmacist is able to raise awareness in order to avoid harmful situations and contribute to the patient’s welfare (7).

Studies on the consumption habits for plant products by the Portuguese population are extremely important since information on this theme is scarce. With this lack of knowledge context in mind, the following study was performed at a community pharmacy in attempt (via medicine revision) to signal potential complications based on the interaction of herbal products and conventional medication in patients with chronic diseases. rios, apresentar contraindicações, exigir precauções ou manifestar interações com outros medicamentos. No caso específico das interações, a preocupação justifica-se: os doentes crónicos e polimedicados são os mais propensos a usar “produtos naturais”, potenciando o risco de interações(1). Além disso, a complexidade dos constituintes das plantas medicinais aumenta também este risco. As interações podem ser farmacodinâmicas (sinergismo ou antagonismo do efeito farmacológico, por alteração do nível de ligação a alvos/recetores específicos) ou farmacocinéticas (alteração nos processos de absorção, distribuição, metabolismo e excreção, aumentando ou diminuindo as concentrações plasmáticas dos fármacos e respetivos efeitos terapêuticos/adversos) (6). Quanto aos efeitos adversos das plantas medicinais, estes podem ser intrínsecos ou extrínsecos, consoante sejam inerentes à constituição química do produto ou sejam devidos a falhas no seu processo de fabrico, respetivamente. As reações intrínsecas reúnem quatro tipos de reações: toxicidade previsível, overdose, interação com outros fármacos e reações idiossincráticas (alergias). Já as reações extrínsecas podem ser provenientes de misturas e substituições (de espécies e partes de planta semelhantes a olho nu), falta de padronização e de especificações de lote, contaminação (poluentes, toxinas), adulteração com medicamentos (esteroides, tranquilizantes), produção e armazenamento incorretos (proliferação de fungos e bactérias) ou rotulagem inapropriada(2). Por tudo isto, atribui-se também à farmacovigilância uma posição de relevo na monitorização da segurança deste tipo de produtos(5).

Acerce a toda esta problemática o facto de um grande número dos doentes ser polimedicado, o que, a longo prazo, pode dificultar a obtenção do máximo benefício para todos os medicamentos. Além disso, com a polimedicação aumentam também as probabilidades de surgirem problemas relacionados com os medicamentos (reações adversas a medicamentos, interações, falhas no tratamento, entre outros). Estes problemas aumentam ainda mais quando um doente toma medicamentos não sujeitos a receita médica ou suplementos não prescritos pelo médico ou sem a indicação de um farmacêutico.

O farmacêutico é o profissional de saúde capaz de prevenir, detetar e resolver problemas relacionados com os medicamentos (cuidados farmacêuticos centrados no doente). A revisão da medicação e o acompanhamento farmacoterapêutico, enquanto serviços farmacêuticos focados, respetivamente, no processo de uso do medicamento e nos resultados negativos da medicação, convergem no sentido de, tendo em consideração sempre os objetivos terapêuticos definidos para cada condição clínica, zelarem pela diminuição dos riscos negativos, promoverem o uso racional dos medicamentos e contribuirem para colmatar as necessidades de saúde da po-
Isabel Vitória Figueiredo et al.

The aims of the study were:
I - Real consumption characterization of medicinal plants in a community pharmacy setting
II - Identification of the potential interactions between conventional medicines and plant-derived therapeutics
III - Elaboration of a recommendation list for the health professionals and/or patients in order to minimize potential negative clinical results due to plant-conventional medicine interactions

Material and Methods

The present study was carried out at the Figueiredo Community Pharmacy in Coimbra, Portugal, between March 15 and May 17, 2013.

The target population included the population that sought the Pharmacy’s services, with greater than 18 years of age, who made use of at least one conventional medicine and one plant-based product.

The individuals that asked for plant-based products which complied with the inclusion criteria and did not have any of the exclusion criterion (less than 18 years of age, cognitive disorders and/or speech disorders, pregnant women and/or women still lactating, clients that sought medication for third parties, those who did not sign the informed consent form) were invited to participate in the study.

Those who accepted to join the study and signed the informed consent form were immediately interviewed, in a reserved area inside the pharmacy. The interview consisted of the completion of a therapeutic review table. The SIFARMA 2000® was also used to check the patient’s background (when available), in order to better understand the therapeutic background.

The data gathered from the interviews were analyzed in order to search for possible interactions between plant-based products and conventional medicine. The abstract of medicine characteristics (RCM) was one

Material e Métodos

O presente estudo decorreu na Farmácia Figueiredo, em Coimbra, entre 15 de março e 17 de maio de 2013.

A população alvo deste estudo incluiu utentes da Farmácia Figueiredo, com idade igual ou superior a 18 anos, que tomavam pelo menos um produto à base de plantas e pelo menos um medicamento.

Os utentes que solicitavam produtos à base de plantas medicinais, que cumpriram com os critérios de inclusão e que não preenchiam nenhum critério de exclusão (idade inferior a 18 anos, indivíduos com desordens cognitivas e/ou dificuldade de comunicação, mulheres grávidas ou a amamentar, utentes que se dirigiam à farmácia para levantarem medicação para terceiros ou utentes que não assinaram a declaração de consentimento informado do estudo) foram convidados a participar no estudo.

Os utentes que aceitaram participar assinaram a declaração de consentimento informado e foram entrevistados, por norma, no próprio momento, em zona reservada da farmácia. A entrevista consistiu no preenchimento de uma tabela de revisão de terapêutica. Recorreu-se ainda ao sistema informático Sifarma 2000®, sempre que possível e, através do histórico do doente, tentou-se conhecer melhor o seu perfil farmacoterapêutico.

Os dados recolhidos nas entrevistas foram analisados de forma a procurar possíveis interações entre produ-
of the principal sources of information, as well as the Observatory of Herb-Drug Interactions (OIPM)\(^4\) site, the drugs.com site, the book “Terapêutica Medicamentosa e suas Bases Farmacológicas”\(^9\), and also recently published scientific articles. The same information sources were used to formulate the recommendation list.

Results

In the two month period in which the study took place, 25 patients were interviewed, 18 females and 7 males; 19 had more than 60 years of age and 18 were taking 5 or more medicines.

The most frequent plants in use were the following: *Ginkgo biloba*, *Camellia sinensis*, *Glycine max*, *Serenoa repens* and *Equisetum arvense*. In 16 cases, the plant-based medicine was prescribed by a physician; in the other cases the food supplements (6) or teas/infusions (2) were acquired by self-initiative - without a medical prescription.

An analysis of the potential interactions was performed between the plant-based products and the conventional medicines taken by the patients. These interactions were established taking into account the mechanism of action of each medicine and the different ways the plants could interfere with that mechanism, causing either loss of effectiveness or safety concerns. In this manner, for *Ginkgo biloba* 17 potential interactions were found, 3 for *Camellia sinensis*, 2 for *Glycine max*, 1 for *Serenoa repens* and 1 for *Equisetum arvense*. The Tables 1-4 explain the interactions found and present recommendations which can be used by a health professional or the patient with the intention of minimizing and, if possible, avoiding these potentially negative clinical outcomes.

No período de dois meses em que decorreu o estudo foram entrevistados 25 utentes: 18 utentes do sexo feminino e 7 utentes do sexo masculino. Da amostra de utentes entrevistados, 19 utentes tinham mais de 60 anos e 18 utentes encontrava-se a tomar 5 ou mais medicamentos.

As plantas medicinais referenciadas pelos doentes foram as seguintes: *Ginkgo biloba*, *Camellia sinensis*, *Glycine max*, *Serenoa repens* e *Equisetum arvense*. Em 16 casos o medicamento à base de plantas foi prescrito pelo médico, sendo que nos restantes casos os suplementos alimentares (6) ou chás/infusões (2) foram adquiridos por iniciativa própria, sem prescrição médica.

Procedeu-se à análise das potenciais interações existentes entre as plantas medicinais referenciadas e os medicamentos tomados pelos utentes. Estas potenciais interações foram estabelecidas tendo em conta o mecanismo de ação de cada fármaco e o modo como as plantas podem interferir nesse mesmo mecanismo, originando resultados clínicos negativos como perda de efetividade e/ou segurança. Assim, para a *Ginkgo biloba* foram detetadas 17 interações, para a *Camellia sinensis* 3 interações, para a *Glycine max* 2 interações, para a *Serenoa repens* 1 interação e para a *Equisetum arvense* 1 interação. Nas tabelas (1 – 4) podem encontrar-se os mecanismos que suportam as potenciais interações bem como as recomendações que um profissional de saúde e/ou utente podem seguir no sentido de minimizar e, se possível, evitar esses potenciais resultados negativos da medicação.
The *Ginkgo biloba* is a well-known for its peripheral vasodilation and anti-platelet aggregation proprieties, which can be used in cerebral insufficiency and cognitive dysfunction, dementia, vertigo, “buzzing” in the ear and in the prevention of arteriosclerotic disease (10,11,12). Its activities derive from the synergism of many of its components, specially the flavonoids and terpenic lactones (ginkgolides) (5,11,13). In Table 1, the detected cases of potential herb-drug interactions are shown, describing the pharmacokinetic/dynamic mechanism that supports the referred interaction and the monitoring recommendations in order to minimize the risk of any negative clinical outcome.

Table 1 – Interactions with *Ginkgo biloba*

Plant - Medicine	Interaction	Recommendations
Ginkgo biloba + nifedipine	Ginkgo *biloba* inhibits the cytochrome P450 isoforms CYP2C9 and CYP3A4. The nifedipine is metabolized by the isof orm CYP3A4. The concomitant use of the ginkgo and nifedipine can lead to a raise in the nifedipine’s plasmatic concentration due to the inhibition mentioned (6,8,13) [EC]. This interaction can result in: Increased chance of adverse effects; Excessive decrease of blood pressure.	- Clinically monitor the adverse effects (tachycardia, maleolar edema, exanthema)
- Closely monitor blood pressure. |
| *Ginkgo biloba* + acetylsalicylic acid 100 mg | Ginkgo *biloba* inhibits platelet aggregation through the inhibition of the platelet activation factor. The acetylsalicylic acid 100 mg also inhibits platelet aggregation through the irreversible acetylation of the COX-1, inhibiting the production of thromboxane A2. The concomitant use of these medicines can lead to a raised platelet aggregation inhibition (6,8,10) [RC]. This interaction can lead to:
- Raised hemorrhage risk. | - Clinically and laboratory monitor the eventual hemorrhage and the formation of hematoma. |
| *Ginkgo biloba* + naproxen | Ginkgo *biloba* inhibits platelet aggregation through the inhibition of the platelet activation factor. The naproxen also inhibits platelet aggregation through the irreversible acetylation of the COX-1. The concomitant use of naproxen and ginkgo can lead to a raised antiplatelet activity (6,8,10) [RC]. This interaction can result in:
- Raised hemorrhage risk. | - Clinically and laboratory monitor the eventual hemorrhage and the formation of hematoma. |
| *Ginkgo biloba* + omeprazole | Ginkgo *biloba* seems to induce the isoenzyme CYP2C19. The omeprazole is metabolized by CYP2C19. The concomitant use of ginkgo and omeprazole can lead to a reduction on the serum concentration of the medicine and, consequently, of its therapeutic effect (6,8,13) [EC]. This interaction can result in:
- Reduced therapeutic effect. | - Clinically monitor the effectiveness of omeprazole. |
| *Ginkgo biloba* + trazodone | Ginkgo *biloba* seems to raise the gabergic activity in the central nervous system. The trazodone raises the gabergic activity in the central nervous system. The concomitant use of ginkgo and trazodone can lead to a raised effect of trazodone related to the adverse effects of the drug with GABA effects potentiation (6,8,10) [RC]. This interaction can result in:
- Raised risk of sedation, convulsion and coma. | - Clinically monitor potential side effects (for example: sedation). |
| *Ginkgo biloba* + fluoxetine | *Ginkgo biloba* presents vasodilator proprieties. Fluoxetine can originate, as an adverse effect, sexual dysfunction. The concomitant use of ginkgo and fluoxetine seems to raise the penian vasodilation, reducing the potential sexual dysfunction caused by fluoxetine (6,8,10) [RC]. This interaction can result in:
- Reduction on the adverse effect ‘sexual dysfunction’.
- [Eventual improvement in the safety profile of fluoxetine] | - Clinically monitor the adverse effects of fluoxetine. |
| *Ginkgo biloba* + insulin | *Ginkgo biloba* seems to change the production of insulin and the blood levels of glucose. The principal function of insulin is the therapeutic reduction of blood levels of glucose (6,8,10). This interaction can result in:
- Risk of hypoglycemia. | - Regularly monitor glycemia levels. |
| *Ginkgo biloba* + alprazolam | *Ginkgo biloba* seems to reduce the absorption of alprazolam, reducing its plasmatic concentration and, consequently, its therapeutic effect (6,8,10) [EC]. This interaction can result in:
- Reduction of the therapeutic effect of alprazolam. | - Clinically monitor alprazolam’s activity. |

[EC] – Controlled, double blind randomized clinical assays; [RC] – Case report.
Ginkgo biloba

A *Ginkgo biloba* é uma planta medicinal conhecida pelas suas propriedades vasodilatadoras periféricas e antiagregantes plaquetares, podendo ser utilizada em casos de disfunção cognitiva e insuficiência cerebral, demência, vertigens, zumbidos e na prevenção da doença aterosclerótica\(^{10,11,12}\). As suas atividades devem-se ao sinergismo de vários constituintes, nomeadamente dos pertencentes à classe dos flavonoides e das lactonas terpénicas (ginkgólidos)\(^{5,11,13}\). Na tabela 1 apresentam-se os casos detetados de potenciais interações entre a *Ginkgo biloba* e medicamentos convencionais, com a descrição do mecanismo farmacocinético/farmacodinâmico que suporta a respetiva interação e as recomendações de monitorização a seguir de modo a minimizar o risco de ocorrência de resultados clínicos negativos.

Tabela 1 – Interação Ginkgo biloba – medicamentos. [EC] – Ensaios clínicos randomizados, controlados, com dupla-ocultação; [RC] – Relatos de casos

Planta - Medicamento	Interação	Recomendações
Ginkgo biloba + nifedipina	A *Ginkgo biloba* inibe as isoenzimas CYP2C9 e CYP3A4 do citocromo P450. A nifedipina é metabolizada pela CYP3A4. O uso concomitante de ginkgo e nifedipina pode levar a um aumento da concentração plasmática da nifedipina, devido à inibição do seu metabolismo\(^{6,8,13}\) (EC). Desse intenção pode resultar: - Diminuição excessiva da pressão arterial. - Monitorizar clinicamente a ocorrência de efeitos adversos (náuseas, cefaleia, rash cutâneo).	
Ginkgo biloba + ácido acetilsalicílico 100 mg	A *Ginkgo biloba* inibe a agregação plaquetar através da inibição do fator ativador plaquetário. O ácido acetilsalicílico 100 mg é um fármaco antiagregante plaquetário, que inibe a agregação plaquetária através da acelitação irreversível da COX-1, impedindo a síntese do tromboxano \(A_2\). O uso concomitante de ginkgo e ácido acetilsalicílico 100 mg pode levar a um aumento da atividade antiagregante plaquetária\(^{6,8,10}\) (RC). Desse intenção pode resultar: - Monitorizar clinicamente a ocorrência de hemorragias e a maior facilidade de ocorrência de hematomas.	
Ginkgo biloba + naproxeno	A *Ginkgo biloba* inibe a agregação plaquetar através da inibição do fator ativador plaquetário. O naproxeno é um fármaco com potencial ação antiagregante plaquetária, por inibição reversível da COX-1. O uso concomitante de ginkgo e naproxeno pode levar a um aumento da atividade antiagregante plaquetária\(^{6,8,10}\) (RC). Desse intenção pode resultar: - Monitorizar clinicamente a ocorrência de hemorragias e a maior facilidade de ocorrência de hematomas.	
Ginkgo biloba + omeprazol	A *Ginkgo biloba* parece induzir a isoenzima CYP2C19. O omeprazol é metabolizado pela CYP2C19. O uso concomitante de ginkgo e omeprazol pode levar a uma diminuição da concentração plasmática do omeprazol e, consequentemente, da sua eficácia terapêutica\(^{6,8,13}\) (EC). Desse intenção pode resultar: - Diminuição do efeito terapêutico.	
Ginkgo biloba + trazodona	A *Ginkgo biloba* parece aumentar a atividade gabaérgica no Sistema Nervoso Central. A trazodona aumenta a atividade gabaérgica no SNC. O uso concomitante de ginkgo e trazodona pode levar a um aumento dos efeitos adversos da trazodona relacionados com a potenciação do GABA\(^{6,8,10}\) (RC). Desse intenção pode resultar: - Monitorizar clinicamente a eventual ocorrência de efeitos adversos (ex: sedação).	
Ginkgo biloba + fluoxetine	A *Ginkgo biloba* tem ação vasodilatadora. A fluoxetine pode originar, como efeito adverso, disfunção sexual. O uso concomitante de ginkgo e fluoxetine parece aumentar a vasodilatação a nível peniano, diminuindo a potencial disfunção sexual provocada pela fluoxetine\(^{6,8,10}\) (RC). Desse intenção pode resultar: - Diminuição da incidência do efeito adverso 'disfunção sexual'. [Eventual melhoria do perfil de segurança da fluoxetina]	
Ginkgo biloba + insulina	A *Ginkgo biloba* parece alterar a produção de insulina e os níveis de glicose no sangue. A insulina tem como principal ação terapêutica a redução dos níveis de glicose no sangue\(^{6,8,13}\). O uso concomitante de ginkgo e insulina pode levar a: - Aumento do risco de hipoglicemia. - Monitorizar regularmente a glicemia.	
Ginkgo biloba + alprazolam	A *Ginkgo biloba* parece diminuir a capacidade de absorção do alprazolam pelo organismo, diminuindo a sua concentração plasmática e, consequentemente, o seu efeito terapêutico\(^{6,8,10}\) (EC). Desse intenção pode resultar: - Diminuição do efeito terapêutico.	

[39]
Camellia sinensis

The *Camellia sinensis*, is mostly known for its activity as a central nervous system stimulant, increasing wake time/awareness and reducing the fatigue, but also increasing respiratory and cardiac stimulation. In addition, it possesses an antidiarrheal property, and anti-inflammatory and vasoprotective activity. All of these activities derive from its components: polyphenols (catechins and tannins) and alkaloids (caffeine), present in different quantities according to the extraction type to which the plant is subjected\(^{(11,14)}\). In Table 2 are shown different potential interactions between conventional medicines and *Camellia sinensis* (isolated or combined with *Equisetum arvense*), with the description of the mechanism that supports the interaction and the monitoring recommendations to minimize the risk for negative clinical outcomes.

Table 2 – interaction with Camellia sinensis / Equisetum arvense.

Plant-medicine	Interaction	Recommendations
Camellia sinensis	*Camellia sinensis* has a high content of vitamin K, which can affect the clotting cascade, increased blood clotting. The acetylsalicylic acid 100 mg inhibits platelet aggregation through the irreversible acetylation of the COX-1, inhibiting the production of thromboxane A\(_2\)^{1,8}. This interaction can result in: - Coagulant action and increased thromboembolic risk.	- Clinically and laboratorially monitor acetylsalicylic acid’s activity.
Camellia sinensis + Acetylsalicylic acid 100 mg		
Camellia sinensis	*Camellia sinensis* possesses a hepatotoxic potential. The equisetum, a plant used for its diuretic properties, has a hepatotoxic effect. This interaction can result in: - Hepatotoxicity.	- Clinically and laboratory monitor the possibility of any hepatotoxic effects.
Camellia sinensis + *Equisetum arvense*		
Camellia sinensis	*Camellia sinensis* possesses a central nervous system stimulant activity. The alprazolam presents anxiolytic properties. The concomitant use of camellia and alprazolam can lead to a therapeutic reduction of the drug’s effect\(^{8,20}\). This interaction can result in: - Reduction of the anxiolytic effect of alprazolam.	- Clinically monitor the activity of alprazolam.
Camellia sinensis + alprazolam		
Camellia sinensis

A *Camellia sinensis*, ou planta do chá, é principalmente conhecida pela sua atividade estimulante do sistema nervoso central, possibilitando o aumento da vigília e redução da fadiga, mas também uma maior estimulação cardíaca e respiratória. Além disso, possui atividade antidiarreica, anti-inflamatória e vasoprotetora. Todas estas atividades derivam dos seus principais constituintes: polifenóis (catequinas e taninos) e alcaloides (cafeína), presentes em diferentes quantidades, consoante o tipo de extração a que é sujeita a planta\(^{11,14}\). Na tabela 2 apresentam-se os casos detetados de potenciais interações entre medicamentos convencionais e a *Camellia sinensis* (isoladamente, ou em mistura com *Equisetum arvense*). Estão também presentes quer a descrição do mecanismo farmacocinético/farmacodinâmico que suporta a respetiva interação, quer as recomendações de monitorização a seguir de modo a minimizar o risco de ocorrência de resultados clínicos negativos.

Tabela 2 – Interação *Camellia sinensis* – medicamentos / *Equisetum arvense*.

Planta - Medicamento	Interação	Recomendações
Camellia sinensis + ácido acetilsalicílico 100 mg	A planta do chá possui um elevado conteúdo em vitamina K, que pode afetar a cascata de coagulação, aumentando a coagulação sanquínea. O ácido acetilsalicílico 100 mg é um fármaco antiagregante plaquetar, que inibe a agregação plaquetária através da acetilação irreversível da COX-1, inibindo a síntese do tromboxano A\(_2\). Dessa interação pode resultar: - Ação coagulante e aumento do risco tromboembólico.	- Monitorizar clinicamente a efetividade do fármaco.
Camellia sinensis + *Equisetum arvense*	A planta do chá possui elevado potencial hepatotóxico. A cavalinha, uma planta utilizada pelas suas propriedades diuréticas, possui também potencial hepatotóxico\(^1\). Dessa interação pode resultar: - Hepatotoxicidade.	- Monitorizar clinicamente e laboratorialmente a potencial hepatotoxicidade.
Camellia sinensis + alprazolam	A planta do chá possui atividade estimulante do sistema nervoso central. O alprazolam possui atividade ansiolítica. O uso concomitante de planta do chá e alprazolam pode conduzir a uma diminuição do efeito terapêutico do fármaco\(^8,20\). Dessa interação pode resultar: - Diminuição do efeito ansiolítico do alprazolam.	- Monitorizar clinicamente a efetividade do alprazolam.
Glycine max

The Glycine max, or soy, is used for its hormonal properties in the symptomatic treatment of menopause due to its phytoestrogens composition (isoflavones) (10). In Table 3, the detected cases of potential interactions between Glycine max and conventional medicines are shown, with the description of the mechanism that supports the interaction and the monitoring recommendations to minimize the risk for negative clinical outcomes.

Table 3 – interactions with Glycine max.

Plant - medicine	Interactions	Recommendations
Isoflavones	Glycine max possesses anticoagulant activities. The acetylsalicylic acid 100 mg also inhibits platelet aggregation through the irreversible acetylation of the COX-1, inhibiting the production of thromboxane A2₁,₈,₁₀ [RC]. This interaction can result in: - raised hemorrhage risk.	- Clinically and laboratorially monitor the eventual hemorrhage and the formation of hematoma.
Acetylsalicylic acid 100 mg		

[RC] – Case report.

Serenoa repens

The Serenoa repens is known for its antiandrogenic, anti-inflammatory and diuretic activities, and is used in the relief of the prostate benign hyperplasia symptoms (2, 12, 14,15). In Table 4 the detected cases of potential interactions between Serenoa repens and conventional medicines are shown, with the description of the mechanism of action that supports the interaction and the recommendations to avoid and minimize possible negative clinical outcomes.

Table 4 – Interactions with Serenoa repens.

Plant - medicine	Interaction	Recommendations
Serenoa repens	Serenoa repens, due to its COX inhibition, can reduce platelet aggregation. The clopidoogrel is an antiplatelet drug induced by ADP. The concomitant use of Serenoa repens and clopidogrel can lead to a raised antiplatelet activity²,⁸. This interaction can result in: - Raised risk of hemorrhage	- Clinically and laboratorially monitor the eventual hemorrhage and the formation of hematoma.
+ clopidogrel		
Glycine max

A *Glycine max*, ou soja, é utilizada sobretudo pelas suas propriedades hormonais no tratamento dos sintomas da menopausa, devido à sua composição em fitoestrogénios (isoflavonas)\(^\text{10}\). Na tabela 3 apresentam-se os casos detetados de potenciais interações entre a *Glycine max* e medicamentos convencionais, com a descrição do mecanismo farmacocinético/farmacodinâmico que suporta a respetiva interação e as recomendações de monitorização a seguir de modo a minimizar o risco de ocorrência de resultados clínicos negativos.

Tabela 3 – Interação Glycine max – medicamentos. [RC] – Relatos de casos.

Planta - Medicamento	Interação	Recomendações
Isoflavonas + ácido acetilsalicílico 100 mg	A soja possui atividade anticoagulante. O ácido acetilsalicílico 100 mg é um fármaco antiagregante plaquetar, que inibe a agregação plaquetária através da acetilação irreversível da COX-1, inibindo a síntese do tromboxano A\(_2\)\(^\text{1,8,10}\) [RC]. Dessa interação pode resultar: - Aumento do risco de hemorragias.	- Monitorizar clínica e laboratorialmente a eventual ocorrência de hemorragias e a maior facilidade de ocorrência de hematomas.

Serenoa repens

A *Serenoa repens* é conhecida pelas suas propriedades antiandrogénicas, anti-inflamatórias e diuréticas, sendo utilizada no alívio dos sintomas da hiperplasia benigna da próstata\(^\text{2,12,14,15}\). Na tabela 4 apresentam-se os casos detetados de potenciais interações entre a *Serenoa repens* e medicamentos convencionais, com a descrição do mecanismo farmacocinético/farmacodinâmico que suporta a respetiva interação e as recomendações de monitorização a seguir de modo a minimizar o risco de ocorrência de resultados clínicos negativos.

Tabela 4 – Interação Serenoa repens – medicamentos.

Planta - Medicamento	Interação	Recomendações
Serenoa repens + clopidogrel	A *Serenoa repens*, devido à sua atividade inibidora da COX, pode diminuir a agregação plaquetar. O clopidogrel é um fármaco que inibe a agregação plaquetária induzida pelo ADP. O uso concomitante de *Serenoa repens* e clopidogrel pode levar a um aumento da atividade antiagregante plaquetar\(^\text{28}\). Dessa interação pode resultar: - Aumento do risco de hemorragias.	- Monitorizar clínica e laboratorialmente a eventual ocorrência de hemorragias e a maior facilidade de ocorrência de hematomas.
The popularity of phytoterapy is growing not only due to the discontentment with the conventional medicines (side effects of medicines, ineffectiveness of treatment and, sometimes, the sole relationship patient-physician), but also because of the necessity of the patients to have a more active role in their own health (1). In this way the pharmacist must be prepared to answer the needs of this growing trend, knowing how to advise the patients in this type of complementary treatment in order to optimize the therapeutic results (16). This pharmaceutical intervention assumes also a greater importance considering that, according to a study performed in Portugal by DECO (17), the plant-based product vendors in herbal shops, dietetic shops and supermarkets are still far behind when it comes to knowledge of risks and interactions of these products (1). In addition, the current licensing system for plant-based products and the growing accessibility does not protect the consumer from the lack of quality and safety. The pharmacist should be the one to make a screening and recommend the producers that provide products of greater quality and production rigor.

This study shows that the knowledge of plant-based products’ interactions, side effects, therapeutic doses, contraindications, precautions and indications is still scarce. The possible interactions found in the studied patients represent this lack of knowledge, even if they still do not translate in negative clinical results. The evidence-based phytotherapy (practiced in some countries, such as Germany) must be highlighted. Nevertheless, the great variability of some species’ composition coming from different producers and with different batches make the finished product distinct in composition, thus difficult to study in clinical assays (18). It is important to know how to select the best sources and the greatest evidence possible.

The interviews (n=25) led to some conclusions on the consumption pattern of plant-based products by the patients that attended the community pharmacy.

First, it is important to mention the prevalence of the use of Ginkgo biloba. In 24 potential interactions found, 17 were associated to the use of a conventional medicine and Ginkgo biloba. The greatest use of this plant is centered on its vast therapeutic activities, especially the ones linked to the central nervous system. Even if some of these activities are still not scientifically proven and there are no defined therapeutic doses, there are innumerous plant-based products, from food supplements to no prescription medicines. Even if the interactions found with Ginkgo biloba (17 interactions in 25 pa-
tients) is greater that with the other plant-based products (8 interactions), the negative clinical outcomes did not manifest themselves, the motive could lie on the dosage: patients were taking doses under the therapeutic dosages and the ones used on clinical safety assays – most of the patients took 40 to 80 mg/day, when the tested clinical doses ranged between 120 and 240 mg (14,19).

During the interview, it was also noted that some patients did not even know the plant’s therapeutic objective. The only known interaction was the interaction between Ginkgo and anticoagulants or antiplatelet drugs. One of the patients mentioned that, after the start of the anticoagulant dabigratan, their physician suspended the Ginkgo biloba consumption. Other interactions were not known by the patients.

The prospect was similar for the other plants but not with the same numeric expression. Seven interactions were found with the Camellia sinensis, Equisetum arvense, Glycine max and Serona repens. It is important to mention a 54-year-old patient case that had been hospitalized with a medicine-induced hepatitis. Before being accepted into the hospital, the patient used many antidepressants and anxiolytics, which alone could have initiated the liver injury. Nevertheless, the concomitant use of daily doses of Camellia sinensis’ capsules and Equisetum arvense infusion, both with hepatotoxic potential, could have strongly contributed to the progression of the hepatitis.

The other products used by the patients were mostly plant-based prescribed or advised by a physician (n=16). However, a relevant quantity of food supplements and teas/infusions were acquired without any medical prescription or pharmaceutical counseling (8). Between the prescribed medicines, Ginkgo biloba stood out (Biloban® and Gincoben®) and also the Serenoa repens (Permixon®).

As to the sample characterization, it is important to mention that the majority of the patients who were attended in the pharmacy and were interviewed were polymedicated senior citizens which, by its own, represent a greater probability for interaction.

It is important to note that this study may have some biases, namely the way the interview was carried out. In certain cases, the interview was short and/or inconclusive, due to the lack of time and/or knowledge of the patients about their own medication or pathological condition – they did not recall every medicine they were using. The identification of the negative clinical outcomes was also another limitation: blood pressure alteration, glucose values, blood coagulation values, often pass unnoticed or are difficult to identify by the nervous central. Ainda que algumas das atividades não estejam cientificamente provadas e não existam doses terapêuticas definidas para as mesmas, a presença desta espécie em produtos à base de plantas é enorme, desde suplementos alimentares a medicamentos sujeitos a receita médica. No entanto, o conhecimento acerca das suas potenciais interações parece ser limitado, já que o número de casos encontrados na amostra foi significativo (17 interações detetadas em 25 doentes) e superior ao das restantes plantas (8 interações). Ainda assim, os resultados clínicos negativos da medicação não se fizeram manifestar, e o motivo pode estar relacionado com a dosagem: os doentes eventualmente estariam a tomar doses de ginkgo inferiores á doses terapêuticas e ás doses habituais em ensaios clínicos de segurança – a maioria dos doentes toma entre 40 a 80 mg/dia, quando a dose testada clinicamente varia entre as 120 e as 240 mg (14,19). Pelo diálogo com os utentes, percebeu-se que alguns não tinham conhecimento do objetivo terapêutico da planta, e a única interação conhecida era a interação com anticoagulantes e antiagregantes plaquetários. Neste sentido, um dos utentes referiu que, após o início da toma do anticoagulante, dabigratano, o médico suspendeu a toma de ginkgo. Das demais interações possíveis, o conhecimento era inexistente.

Nas restantes plantas, o panorama foi semelhante, ainda que com menor expressão numérica. Foram encontradas 7 interações que envolviam as espécies Camellia sinensis, Equisetum arvense, Glycine max e Serenoa repens. Importa destacar o caso de uma doente de 54 anos que estivera internada no hospital com uma hepatite medicamentosa. Antes do internamento, tomava vários antidepressivos e ansiolíticos, o que por si só poderá ter originado a lesão hepática. No entanto, a toma concomitante diária de cápsulas de extrato de Camellia sinensis (planta do chá) e infusão de Equisetum arvense (cavalinha), ambas com potencial hepatotóxico, poderá ter contribuído fortemente para a progressão do seu estado patológico.

Quanto ao tipo de produtos tomados pelos utentes, a maioria eram medicamentos à base de plantas prescritos ou aconselhados pelo médico (n=16). Contudo, uma quantidade relevante de suplementos alimentares e chás/infusões eram adquiridos pelos utentes sem prescrição médica ou aconselhamento farmacêutico (8). Entre os medicamentos prescritos pelo médico, destacam-se a Ginkgo biloba (Biloban® e Gincoben®) e a Serenoa repens (Permixon®).

Quanto à caracterização da amostra, importa destacar ainda que a maioria dos utentes entrevistados eram idosos polimedicados, o que só por si já representa um maior risco de ocorrência de interações.
patient. Here the role of the pharmacist becomes especially important, in the sense that he/she must be alert to some symptoms, signs and/or complaints pointed out by the patients, monitoring the necessary parameters and making a critical analysis of them. Another difficulty of the study was the reluctance of the patients when addressed about the subject or even admitting the use of certain products. In some other cases where Valispert® (valerian) was dispensed, the patient claimed the product was for someone else, rendering the pharmaceutical counseling impossible.

Conclusions

This study allowed the characterization of the consumption of plant based products in a community pharmacy environment and, through the crafted recommendation list, the pharmacist could pass on new and valuable knowledge to the patient, specifically on the care needed when consuming this type of medicines. The study also highlighted the need for the pharmacist to be ready to answer the necessities of this growing trend of phytotherapy, knowing the right information about these complementary therapeutics, with the goal of optimizing the result of medication.

Conflict of Interests

The authors declare that there are no financial and/or personal relationships that could be viewed as presenting a potential conflict of interests.

Conflito de Interesses

Os autores declararam a inexistência de qualquer tipo de relação financeira ou pessoal que possa representar um potencial conflito de interesses.
Herb-drug interactions

Interações plantas-medicamentos

References/ Referências

1. Mendes E, Herdeiro MT, Pimentel F. O uso de terapêuticas à base de plantas por doentes oncológicos. Acta Med Port. 2010; 23:901-908.

2. Silveira P, Bandeira M, Arrais P. Farmacovigilância e reações adversas às plantas medicinais e fitoterápicos: uma realidade. Rev Bras Farmacogn. 2008; 18:618-626.

3. Observatório de Interações Planta-Medicamento. OIPM - Observatório de Interações Planta-Medicamento. [Acedido em 1 de Junho de 2014] Disponível na Internet: http://www.oipm.uc.pt/interacoes/index.php?target=list

4. Observatório de Interações Planta-Medicamento. Base de dados de interações. [Acedido em 1 de Junho de 2014] Disponível na Internet: http://www.oipm.uc.pt/recortes/2011_06_01_Farmacia_Distribuica.pdf

5. Canigueral S, et al. The Development of Herbal Medicinal Products. Pharm Med. 2008; 2:107-118.

6. Alexandre R, Bagatini F, Simões C. Interações entre fármacos e medicamentos fitoterápicos à base de ginkgo ou ginseng. Rev Bras Farmacogn. 2008; 1:117-126.

7. Castel-Branco MM, Caramona MM, Fernandez-Llimos F, Figueiredo IV – Necessidades reais de implementação de novos serviços farmacêuticos centrados no doente. Acta Farmacêutica Portuguesa. 1:2 (2012) 15-22.

ISSN – 2182-3340.

8. INFARMED - Infomed. - Base de dados de medicamentos. Disponível na Internet: http://www.infarmed.pt/infomed/inicio.php

9. Guimarães S, Moura D, Soares da Silva P. Terapêutica Medicamentosa e suas Bases Farmacológicas – Manual de Farmacologia e Farmacoterapia. 5ª Ed. Porto: Porto Editora; 2006.

10. Izzo A. Herb-drug interactions: an overview of the clinical evidence. Fundam Clin Pharm. 2004; 19:1-16.

11. Tavares AC, Zuzarte M, Salgueiro L. Plantas Aromáticas e Medicinais - Escola Médica do Jardim Botânico de Coimbra. Coimbra: Imprensa da Universidade de Coimbra. 2009. ISBN - 978-989-8074-71-3

12. Tachjian A, Maria V, Jahangir A. Use of Herbal Products and Potential Interactions in Patients With Cardiovascular Diseases. J Am Coll Cardiol. 2010; 55:515-25.

13. Dias M, Salgueiro L. Interacções entre preparações à base de plantas medicinais e medicamentos. Rev Fitoter. 2009; 1:5-22.

14. Medscape. Drugs, OTCs & Herbals. Reference Medscape. Online. WebMD LLC. [Acedido em 27 de Abril de 2013] Disponível na Internet: http://reference.medscape.com/pharmacists.

15. Wojtyniak K, Szymanski M, Matlawska I. Leonurus cardiaca L. (Motherwort): A Review of its Phytochemistry and Pharmacology. Phytother Res. 2012.

16. Brown CM, Pena A, Resendiz K. Pharmacists’ actions when patients use complementary and alternative medicine with medications: a look at texas–Mexico border cities. J Am Pharm Assoc. 2011; 51:619-22.

17. DECO: Conselhos com falta de chá. Teste Saúde 2008; 75:10-4

18. Barnes J. Quality, efficacy and safety of complementary medicines: fashions, facts and the future. Part II: Efficacy and safety. Br J Clin Pharmacol. 2003; 55:331-41.

19. Lautenschlager N, Ihl R, Muller W. Ginkgo biloba extract EGb 761 in the context of current developments in the diagnosis and treatment of age-related cognitive decline and Alzheimer’s disease: a research perspective. Int Psychogeriatr. 2012; 24:46–50.

20. Fasinu PS, Bouic PJ, Rosenkranz B. An overview of the evidence and mechanisms of herb-drug interactions. Front. Pharmacol. 2012; 3.