SUPPLEMENTARY INFORMATION

Somatostatin slows Aβ plaque deposition in aged APPNL-F/NL-F mice by blocking Aβ aggregation

Declan Williams1, Bei Qi Yan1,2, Hansen Wang1, Logine Negm1, Christopher Sackmann1, Claire Verkuyl1,2, Vanessa Rezai-Stevens1, Shehab Eid1,2, Nimit Vediya1, Christine Sato1, Joel C. Watts1,3, Holger Wille4,5, Gerold Schmitt-Ulms1,2*

1Tanz Centre for Research in Neurodegenerative Diseases

2Department of Laboratory Medicine & Pathobiology, University of Toronto

3Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.

4Department of Biochemistry, University of Alberta, Edmonton, Canada;

5Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.

*Please address correspondence to: g.schmittulms@utoronto.ca

Supplementary Figure 1. Indel sequence of Sst-/- allele determined by Sanger sequencing.

In addition to depicting the indel, the image shows the position of forward and reverse primers used in this study for genotyping.

Supplementary Figure 2. Hippocampal Aβ amyloid plaque counts in 12- or 15-month-old AppNL-F/NL-F mice that express wild-type Sst levels or were Sst-deficient.

Hippocampal Aβ amyloid plaque densities increased between 12- and 15-month-old AppNL-F/NL-F mice. Differences in hippocampal Aβ amyloid plaque densities were observed when comparing AppNL-F/NL-F mice that expressed wild-type Sst versus Sst-deficient mice. More specifically, a trend toward higher Aβ plaque densities of small sizes (0.25-200 \(\mu\)m) was observed in 12-month-old Sst gene-deficient mice, echoing the increase in Aβ amyloid plaque densities observed in the cortex of Sst ablated AppNL-F/NL-F mice (Fig. 3F).

Supplementary Figure 3. Original images of Coomassie stains and western blots.
Supplementary Figure 1

Start of insertion

-3' to 5'

Jackson Labs mutant forward primer (oIMR 7988)

Alternate Sst mutant forward primer

Sst WT sequence 3' of indel

Supplementary Figure 1
Supplementary Figure 2

Hippocampus data

(A) 12 months

(B) 15 months

Number of Aβ amyloid plaques / mm² hippocampus

Ratio over App^{Nl-f/Nl-F} <i>Sst</i>^{+/−}

Plaque size [µm²]

Sst genotype
Supplementary Figure 3

Fig. 4A

Sst genotype	Female	Male
-/-	X	X
+/-	X	X
-/-	X	X
+/-	X	X
-/-	X	X
+/-	X	X

Fig. 5A

- Anti-neprilysin (AF1126) western blot
- Coomassie stain

Fig. 5C

- MW [kDa]
- Female
- Male
- Sst genotype

Fig. 5D

- Western blot panels shown above and below were obtained after cutting the PVDF membrane horizontally and therefore do not extend to the full range of MW markers.