New limits on 2β processes in 106Cd

V I Tretyak1,2, P Belli3, R Bernabei3,4, V B Brudanin5, F Cappella6, V Caracciolo6, R Cerulli6, D M Chernyak1, F A Danevich1, S d’Angelo3,4,*, A Di Marco4, A Incicchitti2,7, M Laubenstein6, V M Mokina1, D V Poda1,8, O G Polischuk1,2, I A Tupitsyna9

1 Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine
2 INFN, sezione di Roma, I-00185 Rome, Italy
3 INFN, sezione di Roma “Tor Vergata”, I-00133 Rome, Italy
4 Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome, Italy
5 Joint Institute for Nuclear Research, 141980 Dubna, Russia
6 INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy
7 Dipartimento di Fisica, Università di Roma “La Sapienza”, I-00185 Rome, Italy
8 Centre de Sciences Nucléaires et de Sciences de la Matière, 91405 Orsay, France
9 Institute of Scintillation Materials, 61001 Kharkiv, Ukraine

* Deceased

E-mail: tretyak@kinr.kiev.ua

Abstract. A radiopure cadmium tungstate crystal scintillator, enriched in 106Cd to 66%, with mass of 216 g (106CdWO$_4$) was used in coincidence with four ultra-low background HPGe detectors contained in a single cryostat to search for double beta (2β) decay processes in 106Cd. New improved half-life limits on the 2β processes in 106Cd have been set on the level of $10^{20} - 10^{21}$ yr after 13085 h of data taking deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (Italy). In particular, the limit on the two neutrino electron capture with positron emission, $T^{4/3+2\nu}_{1/2} \geq 1.1 \times 10^{21}$ yr, has reached the region of theoretical predictions. The resonant neutrinoless double electron captures to the 2718, 2741 and 2748 keV excited states of 106Pd are restricted on the level of $T^{2\nu0\nu}_{1/2} \geq (8.5 \times 10^{20} - 1.4 \times 10^{21})$ yr.

1. Introduction

While we already know from experiments on neutrino oscillations that ν’s have non-zero masses, their absolute values are unknown because these investigations are sensitive only to differences in ν mass squares [1]. Experiments on neutrinoless (0ν) double beta (2β) decay of atomic nuclei $(A,Z) \to (A,Z \pm 2) + 2e^\mp$ are considered to-date as the only reliable way to find the mass absolute scale and to study the neutrino properties (are they Majorana, $\nu = \bar{\nu}$, or Dirac, $\nu \neq \bar{\nu}$, particles). This process is related also with other effects beyond the Standard Model (SM), like possible existence of right-handed currents in weak interaction, Majorons, etc. In spite of searches for $2\beta0\nu$ decay during near 70 years, it is still not surely observed, with half-life sensitivities of $\sim 10^{25}$ yr for $(A,Z) \to (A,Z \pm 2)$ and $\sim 10^{21} - 10^{22}$ yr for $(A,Z) \to (A,Z - 2)$ processes reached in the best experiments. Two neutrino (2ν) mode of 2β decay (process allowed in the SM) was already observed in more than 10 nuclides with $T_{1/2} \simeq 10^{18} - 10^{24}$ yr; see the last reviews [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and refs. therein.
106Cd is one of the best candidates to search for processes $(A, Z) \rightarrow (A, Z-2)$: double positron emission ($2\beta^+$), electron capture with positron emission ($\epsilon\beta^+$) and two electron capture (2ϵ) because of its high decay energy ($Q_{2\beta} = 2775.39(10)$ keV [15]) and comparatively high natural abundance ($\delta = 1.25(6)\%$ [16]). Investigations of $2\beta^+ / \epsilon\beta^+ / 2\epsilon$ processes could clarify question about possible contribution of right-handed admixtures in the weak interaction to $2\beta0\nu$ decay probability [17]. 106Cd nucleus is interesting also because of possible resonant $2\beta0\nu$ captures to excited levels of the daughter nucleus 106Pd which could be enhanced by few orders of magnitude because of proximity of the released energy to energy of one or more of the excited levels [6, 18].

In recent searches for 2β decay of 106Cd, 32 planar HPGe detectors and 16 thin 106Cd metallic foils between them were used in the TGV-2 experiment [19], and array of CdZnTe room temperature semiconductors was used in the COBRA studies [20]. At the first stage of our investigations [21], 106CdWO$_4$ crystal enriched in 106Cd to 66% with mass of 216 g was used as a scintillating detector. At the second stage, described here, it is operated in low background set-up together with four HPGe detectors enhancing sensitivity to some 2β processes with emission of γ quanta. We report here preliminary results of the experiment.

2. Experimental set-up and measurements

The 106CdWO$_4$ scintillator ($\odot 27 \times 50$ mm, mass 216 g) was grown from deeply purified Cd (66% of 106Cd) by the Low-Thermal-Gradient Czochralski method [22]. It was optically connected to a low-background photomultiplier tube (PMT, Hamamatsu R6233MOD) through a radiopure PbWO$_4$ crystal light-guide ($\odot 40 \times 83$ mm) produced from deeply purified archaeological lead that allowed to suppress radioactivity from PMT. The detector was installed in an ultra-low background GeMulti HPGe spectrometer at the Gran Sasso underground laboratory (LNGS) of the INFN (Italy) at the depth 3600 m w.e. Four HPGe detectors (with volumes approximately 225 cm3 each) were mounted in one cryostat with a well in the centre. An event-by-event data acquisition system stored the time of arrival of the events in the 106CdWO$_4$ and HPGe detectors, and the pulse shape of 106CdWO$_4$ scintillation signals. The 106CdWO$_4$ and HPGe detectors were calibrated with 22Na, 60Co, 137Cs and 228Th. The energy resolution of the 106CdWO$_4$ detector can be described by the function: $\text{FWHM} = \sqrt{21.7 \times E_\gamma}$, with FWHM and E_γ in keV. The energy resolution of the HPGe spectrometer is ≈ 2.0 keV for the 1332 keV γ quanta of 60Co. More details are given in [23].

The data were accumulated during 13085 h. The pulse-shape discrimination based on the mean time of the scintillation signal [24] was applied to discriminate events caused by γ and β particles from those induced by α’s. Fig. 1 (left) shows 106CdWO$_4$ energy spectra: in anticoincidence with HPGe detectors; in coincidence when energy release in at least one of the HPGe detectors is >200 keV; and in coincidence when $E(\text{HPGe}) = 511$ keV ($\pm 3\sigma$, where σ is the energy resolution of the HPGe detectors at 511 keV).

3. Results and discussion

Contributions of possible radioactive sources to the collected spectra were simulated with the EGS4 code [25]. The list includes, in particular, radioactive contaminations of the 106CdWO$_4$ crystal scintillator [21], external γ quanta from the PMT and materials of the set-up, and also $2\beta2\nu$ decay of 116Cd present in the 106CdWO$_4$ crystal on the level of 1.5% [22]. Fit of the 106CdWO$_4$ anticoincidence spectrum by the background model, and its main components are shown in Fig. 1 (right).

Response of the 106CdWO$_4$ scintillator to different modes of 2β decay of 106Cd to the ground state and excited levels of 106Pd were also simulated with the EGS4; initial kinematics of particles emitted in decay and deexcitation of the daughter nucleus was given by the DECA0Y event generator [26]. In general, we did not find any peculiarities in the data accumulated with the 106CdWO$_4$ and HPGe detectors that could be ascribed to the 2β processes in 106Cd. Thus we
Counts / 20 keV

10
10
2
10
3
4

1
10
10
2
10
3
4

1
10
10
2
10
3
4

Figure 1. Left: 106CdWO$_4$ energy spectra collected during 13085 h: 1 – in anticoincidence with HPGe detectors; 2 – in coincidence when energy release in at least one of the HPGe is > 200 keV; 3 – in coincidence when E(HPGe) = 511(±3σ) keV. Right: Fit of the anticoincidence spectrum by background model (red continuous line), and its main components. The excluded distribution of the $\varepsilon\beta^+0\nu$ decay of 106Cd to the ground state of 106Pd with $T_{1/2} = 1.5 \times 10^{21}$ yr is shown too.

give only the half-life limits according to a formula: $\lim T_{1/2} = \ln 2 \cdot N \cdot \eta \cdot t / \lim S$, where N is the number of 106Cd nuclei in the 106CdWO$_4$ crystal ($N = 2.42 \times 10^{23}$), η is the detection efficiency, t is the time of measurements, and $\lim S$ is the number of events of the effect searched for, which can be excluded at a given confidence level (C.L.).

We have analyzed different data to estimate limits on the 2β processes in 106Cd. For instance, to derive the value of $\lim S$ for the $\varepsilon\beta^+0\nu$ decay of 106Cd to the ground state of 106Pd, the 106CdWO$_4$ anticoincidence spectrum was fitted by the model built from the components of the background and the effect searched for. The best fit, achieved in the energy interval $1000 – 3200$ keV, gives the area of the effect $S = 27 \pm 49$ counts, thus providing no evidence for the effect.

In accordance with the Feldman-Cousins procedure [27], this corresponds to $\lim S = 107$ counts at 90% C.L. Taking into account the detection efficiency within the interval given by the Monte Carlo simulation (69.3%) and the 95.5% efficiency of the pulse-shape discrimination to select γ and β events, we got the half-life limit: $T_{1/2} \geq 1.5 \times 10^{21}$ yr. The excluded distribution of the $\varepsilon\beta^+0\nu$ decay of 106Cd to the ground state of 106Pd is shown in Fig. 1 (right).

The counting rate of the 106CdWO$_4$ detector is substantially suppressed in coincidence with the energy 511 keV in the HPGe detectors. The coincidence energy spectrum of the 106CdWO$_4$ detector is presented in Fig. 2 (left). There are only 115 events in the energy interval 0.05 – 4 MeV, while the simulated background model (built by using the parameters of the anticoincidence spectrum fit) contains 108 counts. We have estimated values of $\lim S$ for the 2β processes in 106Cd in different energy intervals. Some of the excluded distributions are presented in Fig. 2 (left); corresponding $T_{1/2}$ limits are given in Table 1. In particular, the half-life limit on the $\varepsilon\beta^+2\nu$ decay is equal $T_{1/2} \geq 1.1 \times 10^{21}$ yr. This value is close to theoretical predictions of [29] where $T_{1/2} = (1.4 - 1.6) \times 10^{21}$ yr was calculated.

Using the relation between the effective nuclear matrix element (NME) for $\varepsilon\beta^+2\nu$ decay: $(T_{1/2}^{\beta^+2\nu})^{-1} = C^{\varepsilon\beta^+2\nu} \cdot |M^{\varepsilon\beta^+2\nu}|^2$, and recent calculations of phase space factor $C^{\varepsilon\beta^+2\nu} = (702 - 741) \times 10^{-24}$ yr [30, 31], one can obtain a limit on NME for $\varepsilon\beta^+2\nu$ decay of 106Cd to the ground state of 106Pd as: $M^{\varepsilon\beta^+2\nu} < 1.1$. We also used the data accumulated by the HPGe detectors to estimate limits on the 2β
processes in 106Cd. For instance, in neutrinoless 2ε capture we assume that the energy excess is taken away by bremsstrahlung γ quanta with energy $E_\gamma = Q_{2\beta} - E_{b1} - E_{b2} - E_{exc}$, where E_{bi} is the binding energy of i-th captured electron on the atomic shell, and E_{exc} is the energy of the populated (g.s. or excited) level of 106Pd. In case of transition to an excited level, in addition to the initial γ quantum, other γ's will be emitted in the nuclear deexcitation process. For example, to derive a limit on the $2K0\nu$ capture in 106Cd to the ground state of 106Pd the energy spectrum accumulated with the HPGe detectors was fitted in the energy interval $2700 - 2754$ keV by a simple function (first degree polynomial function to describe background plus Gaussian peak at the energy 2726.7 keV with the energy resolution FWHM = 4.4 keV to describe the effect searched for). The fit gives an area of the peak 6.2 ± 3.2 counts, with no evidence for the effect. According to [27] we took 11.4 events which can be excluded with 90% C.L. Taking into account the detection efficiency for γ quanta with energy 2726.7 keV in the experimental conditions (1.89%), we have set the following limit for the $2K0\nu$ capture of 106Cd to the ground state of 106Pd: $T_{1/2} > 4.2 \times 10^{20}$ yr. The excluded peaks are shown in Fig. 2 (right).

![Energy spectrum of the 106CdWO$_4$ detector during 13085 h in coincidence with 511 keV annihilation γ quanta in at least one of the HPGe detectors (filled circles). The excluded distributions of different 2β processes in 106Cd are shown by different lines. Right: Part of the energy spectrum accumulated by the HPGe detectors. Excluded peaks expected in the $2K0\nu$, $KL0\nu$ and $2L0\nu$ captures in 106Cd to the ground state of 106Pd are shown.](image)

Some of the obtained half-life limits on different 2β processes in 106Cd are given in Table 1, where results of the most sensitive previous experiments are also given for comparison.

4. Conclusions
An experiment to search for 2β decay of 106Cd with enriched 106CdWO$_4$ crystal scintillator with mass of 216 g in coincidence with four HPGe detectors has been completed after 13085 h of data taking. New improved limits on $2\beta^+/\varepsilon\beta^+/2\varepsilon$ processes in 106Cd were set on the level of $T_{1/2} > 10^{20} - 10^{21}$ yr. The half-life limit on $\varepsilon\beta^+2\nu$ decay $T_{1/2} > 1.1 \times 10^{21}$ yr reached the region of some theoretical predictions. Advancement of the experiment in the version when 106CdWO$_4$ scintillator is operating in coincidence with two large volume radiopure CdWO$_4$ scintillation detectors in close (almost 4π) geometry is in progress.

Acknowledgment
The authors from the Institute for Nuclear Research (Kyiv, Ukraine) were supported in part by the project CO-1-2/2015 of the Program of collaboration with the Joint Institute for Nuclear
Table 1. $T_{1/2}$ limits on 2β processes in 106Cd (AC – anticoincidence with HPGe; CC – coincidence with the given energy in HPGe; HPGe – using data of only HPGe detectors).

Decay and 106Pd level (keV)	$T_{1/2}$ limit (yr) at 90% C.L.	Present work (data)	Best previous limit
$2\beta^+0\nu$, g.s.	$\geq 3.0 \times 10^{21}$ (CC 511 keV)	$\geq 1.2 \times 10^{21}$ [21]	
$2\beta^+2\nu$, g.s.	$\geq 2.3 \times 10^{21}$ (CC 511 keV)	$\geq 4.3 \times 10^{20}$ [21]	
$\epsilon\beta^+0\nu$, g.s.	$\geq 1.5 \times 10^{21}$ (AC)	$\geq 2.2 \times 10^{21}$ [21]	
$\epsilon\beta^+2\nu$, g.s.	$\geq 1.1 \times 10^{21}$ (CC 511 keV)	$\geq 4.1 \times 10^{20}$ [28]	
$\epsilon\beta^+2\nu$, 0$^+$ 1134	$\geq 1.1 \times 10^{21}$ (CC 622 keV)	$\geq 3.7 \times 10^{20}$ [21]	
$2K0\nu$, g.s.	$\geq 4.2 \times 10^{20}$ (HPGe)	$\geq 1.0 \times 10^{21}$ [21]	
Res. $2K0\nu$, 2718	$\geq 1.1 \times 10^{21}$ (CC 1160 keV)	$\geq 4.3 \times 10^{20}$ [21]	
Res. $KL_10\nu$, 4$^+$ 2741	$\geq 8.5 \times 10^{20}$ (HPGe)	$\geq 9.5 \times 10^{20}$ [21]	
Res. $KL_30\nu$, 2, 3$^-$ 2748	$\geq 1.4 \times 10^{21}$ (CC 2236 keV)	$\geq 4.3 \times 10^{20}$ [21]	

Research (Dubna, Russia) “Promising basic research in High Energy and Nuclear Physics” for 2014-2015 of the National Academy of Sciences of Ukraine.

References
[1] Patterson R B 2015 Annu. Rev. Nucl. Part. Sci. 65 177
[2] Pase H and Rodejohann W 2015 New J. Phys. 17 115010
[3] Sarazin X 2015 J. Phys.: Conf. Ser. 593 012006
[4] Bilenky S M and Giunti C 2015 Int. J. Mod. Phys. A 30 1530001
[5] Cremonesi O and Pavan M 2014 AHEP 2014 951432
[6] Maalampi J and Suhonen J 2013 AHEP 2013 505874
[7] Saakyan R 2013 Annu. Rev. Nucl. Part. Sci. 63 503
[8] Schwingenheuer B 2013 Ann. Phys. 525 269
[9] Giuliani A and Poves A 2012 AHEP 2012 857016
[10] Vergados J D, Ejiri H and Simkovic F 2012 Rep. Prog. Phys. 75 106301
[11] Faessler A, Rodin V and Simkovic F 2012 J. Phys. G 39 124006
[12] Vogel P 2012 J. Phys. G 39 124002
[13] Elliott S R 2012 Mod. Phys. Lett. A 27 12300029
[14] Gomez-Cadenas J J et al 2012 Riv. Nuovo Cim. 35 29
[15] Wang M et al 2012 Chinese Phys. C 36 1603
[16] Berglund M and Wieser M E 2011 Pure Appl. Chem. 83 397
[17] Hirsch M et al 1994 Z. Phys. A 347 151
[18] Krivoruchenko M I et al 2011 Nucl. Phys. A 859 140
[19] Briancon Ch et al 2015 Phys. At. Nucl. 78 740
[20] Ebert J et al 2013 AHEP 2013 703572
[21] Belli P et al 2012 Phys. Rev. C 85 044610
[22] Belli P et al 2010 Nucl. Instrum. Meth. A 615 301
[23] Belli P et al 2016 Phys. Rev. C submitted
[24] Bardelli L et al 2006 Nucl. Instr. Meth. A 569 743
[25] Nelson W R et al 1985 SLAC report 265
[26] Ponkratenko O A et al 2000 Phys. At. Nucl. 63 1282
[27] Feldman G J and Cousins R D 1998 Phys. Rev. D 57 3873
[28] Belli P et al 1999 Astropart. Phys. 10 115
[29] Stoica S et al 2003 Eur. Phys. J. A 17 529
[30] Kotila J and Iachello F 2013 Phys. Rev. C 87 024313
[31] Mirea M et al 2015 Romanian Reports in Physics 67 872