IVIG regulates the survival of human but not mouse neutrophils

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Schneider, C., S. Wicki, S. Graeter, T. M. Timcheva, C. W. Keller, I. Quast, D. Leontyev, et al. 2017. “IVIG regulates the survival of human but not mouse neutrophils.” Scientific Reports 7 (1): 1296. doi:10.1038/s41598-017-01404-0. http://dx.doi.org/10.1038/s41598-017-01404-0.

Published Version

doi:10.1038/s41598-017-01404-0

Citable link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33029813

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
IVIG regulates the survival of human but not mouse neutrophils

Christoph Schneider1, Simone Wicki1, Stefanie Graeter1, Tankica M. Timcheva1, Christian W. Keller2, Isaak Quast2,3, Danila Leontyev4, Iglika K. Djourmerska-Alexieva5, Fabian Käsermann5, Stephan M. Jakob7, Petya A. Dimitrova5, Donald R. Branch4, Richard D. Cummings8, Jan D. Lünemann2, Thomas Kaufmann2, Hans-Uwe Simon2 & Stephan von Gunten1

Intravenous immunoglobulin (IVIG) are purified IgG preparations made from the pooled plasma from thousands of healthy donors and are being tested in preclinical mouse models. Inherent challenges, however, are the pluripotency of IVIG and its xenogenicity in animals. IVIG can alter the viability of human neutrophils via agonistic antibodies to Fas and Siglec-9. In this study, we compared the effects of IVIG on human and mouse neutrophils using different death assays. Different commercial IVIG preparations similarly induced cytokine-dependent death in human neutrophils, whereas they had no effects on the survival of either peripheral blood or bone marrow neutrophils from C57BL/6 or BALB/c mice. F(ab')2 but not Fc fragments of IVIG induced death of human neutrophils, whereas neither of these IVIG fragments, nor agonistic monoclonal antibodies to human Fas or Siglec-9 affected the viability of mouse neutrophils. Pooled mouse IgG, which exhibited a different immunoprofile compared to IVIG, also had no effect on mouse cells. Together, these observations demonstrate that effects of IVIG on neutrophil survival are not adequately reflected in current mouse models, despite the key role of these cells in human inflammatory and autoimmune diseases.

Intravenous immunoglobulin (IVIG) preparations consist primarily of IgG antibodies produced from pooled plasma from thousands of healthy donors. Initially used for the antibody replacement therapy of humoral immunodeiciencies, to date their value as anti-inflammatory drugs is appreciated for the treatment of a steadily increasing number of disorders across medical disciplines, including rheumatology, neurology, dermatology, gynecology, and transplantation medicine1–4. Given their polyclonal nature, these immunoglobulin preparations contain a wide range of specificities for antigens5, reflecting the combined antibody repertoire of the donor population6. Within this repertoire functional antibodies with immunomodulatory capacity have been identified that target virtually all arms of the humoral and cellular immune systems, and include immunoregulatory, neutralizing, or anti-idiotypic antibodies1,6–9.

Animal models revealed immunomodulatory antibodies in IVIG that ameliorate the course of autoimmune disorders, such as lupus, myasthenia gravis, pemphigus vulgaris and antiphospholipid syndrome (APS) by targeting specific pathogenetic mechanisms10. Based on these in vivo experiments, it was proposed that specific IVIG (siIVIG) enriched for the active compounds may have an advantage over regular IVIG10. Other studies suggest that sialylation of both the Fc and Fab regions of IgG may contribute to the anti-inflammatory effects of IVIG11–13; yet, conflicting evidence in models of immune thrombocytopenia (ITP) and rheumatoid arthritis (RA) indicates the need for further investigations14–16, in which potential experimental limitations related to the disease model or to intrinsic characteristics of IVIG are given special attention in terms of study design and data interpretation17,18. The pharmacological complexity of IVIG is determined by its pluripotency6,17,19, polyclonality, and origin from

1Institute of Pharmacology, University of Bern, Bern, Switzerland. 2Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland. 3Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia. 4Department of Medicine, University of Toronto and Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada. 5Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria. 6CSL Behring, Research, Bern, Switzerland. 7Department of Intensive Care Medicine, University Hospital Bern (Inselspital), University of Bern, Bern, Switzerland. 8Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. Correspondence and requests for materials should be addressed to S.v.G. (email: stephan.vongunten@pki.unibe.ch)
different individuals. Notably, these complex human preparations might have xenogeneic effects at least on certain immunological players in animals, eventually leading to loss-of-function or gain-of-function effects. Species-related differences in IVIG functions might be common. It is, therefore, imperative for the design and interpretation of future in vivo studies on IVIG to dissect species-related similarities and differences of potential IVIG targets.

Neutrophils are key players of innate immunity and often the most predominant leukocyte at the site of inflammation, in particular at acute stages of autoimmune or other inflammatory disorders. Upon activation, these cells cannot only cause substantial tissue damage, but recent evidence suggests that neutrophils play an active role in the coordination of innate and adaptive immunity. In humans, but not in mice, neutrophils represent the most frequent leukocytes in the circulation. Neutrophils are short-lived cells and the regulation of neutrophil survival is considered as a mechanism to control this innate effector cell. Clinically relevant concentrations of IVIG can regulate the survival of neutrophils in a cytokine-dependent manner. Functional antibodies to the death receptor Fas (also called CD95) and to Siglecs have been implicated in the regulation of granulocyte death by IVIG. In mice, IVIG was reported to limit inhibition of neutrophil apoptosis induced by lipopolysaccharide (LPS) stimulation, potentially by blocking LPS-mediated effects, although no direct pro-apoptotic activity of IVIG could be demonstrated.

Here we report our discovery that different commercial IVIG preparations equally induce cytokine-dependent death of human neutrophils, whereas mouse neutrophils, regardless of cytokine priming or origin from bone marrow or circulation, were resistant to IVIG-induced death. Unexpectedly, we observed no signs of cell death in mouse neutrophils following IVIG treatment, neither in terms of genomic DNA fragmentation, phosphatidylserine (PS) redistribution, cell permeability, loss of mitochondrial membrane potential, nor morphology. Human neutrophil death was triggered in a F(ab')2 but not Fc-dependent manner, supporting the notion that specific antibodies in IVIG are responsible for granulocyte death in humans. Mouse neutrophils were also resistant to homologous pooled IgG from mice, indicating that the use of species-matched pooled IgG may not provide an adequate alternative to mimic IVIG effects in animal models. These findings suggest that despite the key role of neutrophils in autoimmune disease and other inflammatory disorders, currently used mouse models may not reflect important effects of IVIG on human neutrophils.

**Results**

**Different effects of IVIG on human versus mouse neutrophil survival.** IVIG can regulate the survival of human neutrophils, an effect that is enhanced in cells under inflammatory conditions. We compared the efficacy of different lots or batches of commercial IVIG preparations to modulate the survival of human and mouse neutrophils. Hizentra, Immunovenin-intact, Sandoglobulin, and two lots of Privigen, all at 20 mg/ml, a concentration that following high-dose IVIG treatment is typically reached in the circulation, induced cell death in human peripheral blood neutrophils to a similar extent, and this effect was further enhanced following priming of cells with human GM-CSF (Fig. 1A). In contrast, none of the preparations had an effect on the survival of mouse neutrophils in peripheral blood neutrophils of mice, either in the presence or absence of mouse GM-CSF. In line with previously published results, the effects of IVIG on human neutrophil survival were concentration-dependent, whereas we observed no death-induction on mouse neutrophils even at high concentrations (Fig. 1B). We also investigated the responses of mouse cells from different compartments, but found no death responses to IVIG in either peripheral circulatory or in the less mature bone marrow-derived mouse neutrophils from both C57/B16 and BALB/c mouse strains, respectively (Fig. 1C, Supplementary Fig. 1). Further, when C57/B16 mice were immunized with complete Freund's adjuvant (CFA), which is known to induce strong neutrophil responses, the activation marker CD11b was upregulated on neutrophils isolated from spleen (Supplementary Fig. 2), but no IVIG-induced neutrophil cell death was observed in neutrophils isolated from spleen or peripheral blood (Fig. 1D). Peritoneal injection of IVIG up to 4 g/kg in healthy BALB/c mice did not affect peripheral blood neutrophil counts in vivo nor flow cytometric Annexin V staining (Supplementary Fig. 3), a marker for apoptosis. Furthermore, intravenous IVIG administration did not alter the frequency of Annexin V+ blood neutrophils in BALB/c mice with LPS-induced sepsis (Supplementary Fig. 3). Interestingly, non-rodent peripheral blood neutrophils ex vivo from a porcine sepsis model of fecal peritonitis also showed no death response in 24-h cultures in the presence of IVIG (Supplementary Fig. 4).

**Occurrence of IVIG-induced features of cell death in human but not mouse neutrophils.** To further investigate the susceptibility of mouse neutrophils toward IVIG-induced death effects, we analyzed various markers of cell death. As expected for a sign of spontaneous apoptosis, phosphatidylserine (PS) redistribution to the surface was evident in aged human and mouse neutrophil cultures (15 hours) by flow cytometric Annexin V staining, which was delayed in the presence of species-matched GM-CSF (Fig. 2A, Supplementary Figs 5 and 6). IVIG treatment increased the frequency of Annexin V+ human neutrophils, and this was further enhanced by GM-CSF priming. In contrast, IVIG had no effects on either PS redistribution or on propidium iodide uptake of mouse neutrophils compared to cytokine-primed or unprimed controls. Similarly, IVIG treatment led to increased DNA fragmentation exclusively in human cells (Fig. 2B, Supplementary Fig. 6). We also could detect dissipation of the mitochondrial membrane potential (ΔΨm) in human neutrophils following IVIG treatment for 5 hours as a sign of early mitochondrial apoptosis pathway activation (Fig. 2C), whereas there was no effect of IVIG on ΔΨm in mouse neutrophils upon treatment with IVIG.

Morphological characterization by light microscopy revealed signs of spontaneous apoptosis, as expected, in 15-hour cultures of both mouse and human neutrophils. The frequency of cells with an apoptotic phenotype (cellular shrinkage, nuclear condensation) was enhanced in IVIG-treated human neutrophils, and extensive cytoplasmic vacuolization appeared in treated cells in the presence of GM-CSF (Fig. 2D), an observation that has been associated with neutrophil death by IVIG, Siglec-9, or CD44, under inflammatory conditions. By contrast,
we observed no signs of increased cell death or cytoplasmic vacuole formation in mouse neutrophils treated with IVIG. Together, these findings indicate that IVIG triggers apoptotic pathways in human but not in mouse neutrophils.

IVIG-mediated death effects on human neutrophils are F(ab’)_2- but not Fc-mediated. The implication of Fc- versus specific Fab-mediated effects of IVIG on the regulation of different leukocytes remains to be explored. Therefore, we investigated the effects of whole IVIG with Fc-, or F(ab’)_2 (Gammavenin)-fragments of pooled IgG on human and mouse neutrophils. The streptococcal cysteine proteinase Ide-S was used to generate Fc and F(ab’)_2 fragments from IVIG. In line with previous findings, IVIG and the preparation of F(ab’)_2-fragments both induced death of human neutrophils that was enhanced in GM-CSF primed cells (Fig. 3A). In contrast, we did not observe any effects of Fc fragments of IVIG on the survival of neutrophils. In addition, neither Fc-, nor F(ab’)_2 preparations affected mouse neutrophils. The observed findings contribute to accumulating evidence that IVIG mediates the regulation of neutrophil survival by antibodies with specificity to human-specific antigenic determinants. Functional antibodies to Fas and Siglec-9 are thought to be responsible for the regulatory effects of IVIG on the survival of human neutrophils. Commercial agonistic antibodies to human Fas or Siglec-9 receptors, like IVIG, induced death in human but not mouse neutrophils, whereas mouse neutrophils were highly responsive to crosslinked Fas ligand (FasL), in accordance with published reports. Induction of death in human neutrophils by anti-Siglec-9 monoclonal antibody (mAb) was GM-CSF-dependent, which supports the possibility that the cytokine-dependent effects of IVIG might be linked to targeting of Siglec-9.
Pooled IgG from mouse sera does not induce death in autologous neutrophils. IVIG preparations consist primarily of IgG derived from the sera of thousands of donors and hence reflect the IgG antibody repertoire of the donor population. Recently, it was reported that the specific recognition of antigens by IgG antibodies varies substantially between sera from different species. Given that IVIG-induced death in human neutrophils depends on F(ab’)2-fragments that are responsible for antigen recognition, we wondered if pooled IgG from mouse sera would also have the capacity to trigger death in neutrophils of the same species (mice). Mouse neutrophils were treated with commercial IgG derived from pooled mouse sera at 20 mg/ml and cell death of 15-hour cultures was assessed by annexin V-FITC/PI staining and subsequent flow cytometric analysis. Pooled mouse IgG had no effect, neither on PS redistribution nor PI incorporation of unprimed or GM-CSF primed cells (Fig. 4A and B). Glycan array technology, a powerful tool to assess immunoprofiles, was used to screen the reactivity of pooled mouse IgG with IVIG to 609 glycan antigens. While human IVIG bound a broad range of glycans on the array, recognition by pooled mouse IgG was restricted to only few blood group antigens that are also found in bacteria, including GalNAcα1-3(Fucα1-2)Galβ1-3GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAc (Supplementary Fig. 7). These findings indicate that pooled mouse sera exhibit a significantly different immunoprofile compared to IVIG, and do not contain functional antibodies with the capacity to regulate the survival of autologous neutrophils.

Discussion

In humans, neutrophils are the most frequent nucleated cells in the circulation (50–70% neutrophils) and are involved in the pathogenesis of a wide range of inflammatory and autoimmune disorders. Compared to their human counterparts, mouse neutrophils are significantly less frequent in the blood (75–90% lymphocytes, 10–25% neutrophils), and also exhibit functional differences, e.g. in terms of the expression of immunological...
effector molecules. In both species, neutrophil clearance by death is considered an efficient means to control this cell type, which also represents one pharmacodynamic effect of IVIG on human neutrophils. We and others have tested human IVIG in xenogeneic animal models and gained significant mechanistic insights. However, in the present work we show that mouse neutrophils are resistant to IVIG-mediated cell death, indicating that animal models do not show, or, potentially, even provide misleading information on the important effects of IVIG on neutrophils and neutrophil-modulated processes that are relevant for the pathogenesis of human disease.

We observed that IVIG induced death of human neutrophils in a cytokine-dependent manner, a finding that is in line with previous publications, which also represents one pharmacodynamic effect of IVIG on human neutrophils. We and others have tested human IVIG in xenogeneic animal models and gained significant mechanistic insights. However, in the present work we show that mouse neutrophils are resistant to IVIG-mediated cell death, indicating that animal models do not show, or, potentially, even provide misleading information on the important effects of IVIG on neutrophils and neutrophil-modulated processes that are relevant for the pathogenesis of human disease.

We observed that IVIG induced death of human neutrophils in a cytokine-dependent manner, a finding that is in line with previous publications, which also represents one pharmacodynamic effect of IVIG on human neutrophils. We and others have tested human IVIG in xenogeneic animal models and gained significant mechanistic insights. However, in the present work we show that mouse neutrophils are resistant to IVIG-mediated cell death, indicating that animal models do not show, or, potentially, even provide misleading information on the important effects of IVIG on neutrophils and neutrophil-modulated processes that are relevant for the pathogenesis of human disease.

Figure 3. Human neutrophil susceptibility to death stimuli is specific, Fc-independent, and differs from responses of mouse neutrophils. Death of human (PMN) or mouse C57BL/6 (PMN) polymorphonuclear neutrophils as assessed by flow cytometric ethidium bromide exclusion assay. Results of 24-h cultures of quiescent or GM-CSF primed cells are shown following treatment with (A) 20 mg/ml of whole IgG (Privigen®) or equimolar concentrations of Fc-, or F(ab')2, (Gammavenin®)-fragments of pooled IgG, or with (B) stimuli known to trigger human neutrophil death including IVIG (Prigiven®), Fas-ligand, anti-human Fas (clone CH11) mAb or anti-Siglec-9 mAb. Bars show mean ± SEM. Data are representative of at least 3 (B), or 4 (A) independent experiments. *p < 0.05, **p < 0.01, Student t test. Specific death was calculated in comparison to untreated controls as outlined in the Materials and Methods section.
F(ab')₂- or Fc-fragments affected survival of peripheral blood or bone marrow neutrophils derived from C57BL/6 or BALB/c mice. Despite evidence of IVIG-binding to self-antigens 53, to our knowledge no reports show clinically relevant tissue-destruction related to autoreactivity by antibody-dependent cellular cytotoxicity (ADCC) following IVIG administration.

Commercial IVIG preparations, including Immunovenin-intact, Hizentra, Sandoglobulin and two different lots of Privigen, all similarly induced cytokine-dependent death of human, but not mouse, neutrophils. Absence of IVIG-mediated death was confirmed in different death assays, including flow cytometric assessment of Annexin-V/PI staining or ethidium bromide exclusion, DNA fragmentation, mitochondrial potential measurement, and morphological analysis. These data demonstrate that IVIG mediates death of human neutrophils by the action of specific antibodies directed to targets that are recognized and functional in human, but not in mouse neutrophils.

Treatment with Siglec-9-specific mAb resulted in cytokine-dependent death of human neutrophils, but unexpectedly had no effect on mouse neutrophils on which this receptor is absent. The functional orthologue of human Siglec-9 in mice is Siglec-E 54, but it remains to be shown if this receptor is capable to activate death pathways in mouse neutrophils. Fas is expressed in both species, and mouse neutrophils were highly susceptible to Fas ligand-mediated death. In contrast, a human-specific anti-Fas mAb induced human neutrophil death, but failed to induce apoptosis in mouse cells. It is likely that the clone differentially recognized antigenic structural determinants on human and mouse Fas, but might also be related to subtle differences in proximal signaling events. These data illustrate how specific antibodies to known targets of IVIG, i.e. Fas and Siglec-9 29–31, are functional on human neutrophils, but dysfunctional on mouse neutrophils, due to species-related differences in receptor expression, signaling or cellular biology.

To avoid species-related bias of xenogeneic IVIG we additionally tested the susceptibility to polyclonal IgG-induced neutrophil cell death in a mouse analogue, i.e. a mouse polyclonal preparation of pooled IgG antibodies (IgG\textsubscript{Mice}), as a substitute for studies in mice. However, IgG\textsubscript{Mice} did not promote death in neutrophils of
C57BL/6 nor BALB/c mice. Glycan array technology has previously been used to assess immunoprofiles of IVIG preparations\(^1\), and has recently revealed species-related differences in antigen recognition patterns of sera by Stowell et al.\(^1\). Using this technology we observed that the immunoprofiles of IgG\(^{\text{mouse}}\) and (human) IVIG differed dramatically. Given these species-related differences in specificities, as well as the known differences in antibody isotypes and Fc-receptors\(^5\), the use of IgG\(^{\text{mouse}}\) in animal models appears inadequate as a substitute for xenogeneic IVIG for the study of neutrophil-dependent or –independent immune responses.

In 2004 Mestas and Hughes described differences between mouse and human immunology, and highlighted a tendency to ignore differences in experimental models with the associated risk of overlooking aspects of human immunology that do not occur, or cannot be modeled, in mice\(^6\). Indeed, such differences have led to many controversies in different areas of experimental immunology, including B cell biology\(^5\), models of inflammatory diseases\(^6\), immune thrombocytopenia\(^7\), or multiple sclerosis (MS)\(^8\). In many cases, protective effects of agents observed in animal models had no effects in the clinics, as for IVIG treatment in MS\(^9\), or even led to disease exacerbation, as observed for IFN-\(\gamma\) in MS\(^8\), or to unexpected, even life-threatening, immune reactions in humans, as in the case of the first phase 1 trial of TGN1412 (anti-CD28 mAb)\(^8\). Recent evidence showed that high-dose IVIG treatment protects from experimental autoimmune encephalomyelitis (EAE), a widely used mouse model for MS, if administered during disease induction, probably by binding to mycobacterial antigens in Freund’s complete adjuvant that is required to facilitate active induction\(^10\). In contrast, IVIG even exacerbated EAE symptoms if applied 7 days after disease induction\(^10\). Responses to IVIG in a mouse model of TTP was dependent on strain differences\(^9\). As pointed out by Mestas and Hughes, it is imperative to understand the potential limitations of extrapolating data from mice to humans, especially where complex multicomponent processes differ\(^5\). Inherent challenges working with IVIG are imposed by its pleiotropic pharmacodynamics actions\(^1\) and its xenogeneity in mice that is associated with gain- or loss-of-function effects\(^2\). A better understanding of the limitations of current models for IVIG will lead to more caution in interpreting preclinical data obtained in mice\(^5\), and to an improved study design of in vivo studies, e.g. with use of humanized mice that are increasingly being used in specific areas of immunology\(^6\). However, while humanized mice display an interest in mice\(^3\), and to an improved study design of in vivo studies, e.g. with use of humanized mice that are increasingly being used in specific areas of immunology\(^6\), the granulocyte fraction in such models is underrepresented and only accounts for about 3% of the leucocytes\(^7\), thereby impeding the investigation of neutrophil-driven effects. Accordingly, in regards of granulocyte biology, there is a need of refined humanized mouse models with adequate granulocyte fractions. Significant differences between mouse and human immunology have evolved as a tribute to evolutionary divergence of the species between 65 and 75 million years ago, life in different ecological niches, and differences in size and lifespan\(^5\). While well-designed animal studies may have value in the identification of potential mechanisms, it will remain key to verify such effects in a human system\(^5\), and to note species-related differences, when they occur\(^9\). The findings of our study indicate the need to establish experimental systems that take into account the divergent species-related effects of IVIG on neutrophils.

Materials and Methods

Material. The polyclonal IgG preparations used in this study were Privigen, Hizentra, Sandoglobulin (all CSL Behring, Bern, Switzerland) and Immunovenin-Intact (BulBio-NCIPB, Sofia, Bulgaria). Vehicle (250 mM proline) control for Privigen was used to exclude potential IgG-independent effects (Supplementary Fig. 8). Gamma-Venin, a clinical preparation consisting of F(ab’\(^2\)) fragments from pooled human plasma IgG, was from Ceneton Pharma, Wien, Austria. Polyclonal pooled mouse serum IgG was from MP Biomedicals (Santa Ana, CA, US). Anti-human IgG monoclonal antibody (mAb) (clone HP-6043-Biot), recognizing all IgG subtypes, and streptavidin–Alexa 633 as well as goat-anti mouse IgG (Alexa Fluor 633) were purchased from Invitrogen, Life Technologies.

To obtain Fc fragments from human IgG, the Streptococcus pyogenes endopeptidase Ide-S (also called Mac-1) was used\(^1\). Therefore, the cDNA of Ide-S was cloned into the pET28a (GE Healthcare, Little Chalfont, US) expression vector. The expression of the resulting HIS-tagged protein was induced in BL21 E. coli (NEB) using 0.1 mM IPTG for 3 hours at 37 °C and the protein was purified using HISTrap HP columns (GE healthcare Little Chalfont, US) according to the manufacturers recommendations using ÄktA prime plus (GE healthcare Little Chalfont, US). To obtain Fc fragments of IgG, 300 mg IVIG (Privigen) was incubated with 2 mg Ide-S for at least 8 hours. Digested IVIG was applied to a HiLoad 26/60 Superdex 75 prep grade column (GE Healthcare Little Chalfont, US) and the fractions containing Fc were collected, concentrated (using Amicon Ultra 15 ml centrifugal filter units; Millipore), sterile filtered and stored at 4 °C until use\(^1\). For quality control, a coomassie stained SDS-PAGE under reducing conditions (5 µg/lane loaded) is shown in Supplementary Fig. 7A. In addition, a size-exclusion chromatography was performed to verify the integrity of the Fc fragments after IdeS-digestion (Supplementary Fig. 7B).

Cell isolation and cell culturing. Human blood was taken from healthy individuals following informed and written consent in accordance with the Declaration of Helsinki. All experimental protocols were approved by the local institutional and/or licensing committees in Bern and Zürich (Kantonale Ethikkommission; Cantonal Animal Care Committee), Switzerland, by the University Health Network Animal Research Committee in Toronto, Canada, by the Animal Care Committee at the Institute of Microbiology, Sofia according to the ARRIVE (Animal Research: Reporting of In Vivo Experiments), National and European Guidelines and in accordance with the National Institutes of Health guidelines for the care and use of experimental animals. All methods were carried out in accordance with relevant guidelines and regulations.

Human neutrophils were isolated from peripheral blood of healthy donors by density gradient centrifugation, as previously described\(^3\). Briefly, granulocytes and erythrocytes were separated from peripheral blood mononuclear cells (PBMCs) by density gradient using Pancoll (Pan-Biotech, Aidenbach, Germany). The granulocytes and
erythrocytes were treated with erythrocyte lysis solution (155 mM NH₄Cl, 10 mM KHCO₃, 0.1 mM EDTA, pH 7.3), resulting in cell populations containing at least 95% neutrophils. C57BL/6 and BALB/c wild-type mice were maintained under pathogen-free conditions. Mouse bone marrow-derived neutrophils were isolated from WT mice using magnetic bead based sorting for GR1 high expressing neutrophils as previously described. Analogous, mouse neutrophils were isolated from mouse peripheral blood. Cells were cultured at 2 × 10⁶/ml in the presence or absence of cytokines, Abs, or both, for the indicated times using complete culture medium for human (RPMI 1640 containing 10% FCS and 200 IU/ml penicillin/100 μg/ml streptomycin; Life Technologies, Basel, Switzerland) or mouse (RPMI 1640/GlutaMax containing 10% FCS and 200 IU/ml penicillin/100 μg/ml streptomycin, 50 μM 2-mercaptoethanol; Life Technologies, Basel, Switzerland) neutrophils. Unless otherwise indicated, cells were stimulated with 20 mg/ml polyclonal IgG preparations or the equimolar amount of F(ab)² fragments. Cytokine stimulation with human GM-CSF (25 ng/ml; Novartis Pharma GmbH, Nürnberg, Germany) or mouse GM-CSF (1 ng/ml, PeproTech, London, UK) occurred 20 minutes before the addition of polyclonal IgG. Further details are provided below and in Supplementary Material.

**Determination of cell death and apoptosis.** Cell death was assessed by uptake of 1 μM ethidium bromide (Invitrogen, Lucerne, Switzerland) and subsequent flow cytometric analysis (FACSVerse; Becton Dickinson Biosciences) as previously described. Redistribution of phosphatidylserine (PS) in presence of propidium iodide (PI; Sigma-Aldrich, Buchs, Switzerland) and DNA fragmentation were assessed by flow cytometry as previously described. Recombinant His6-tagged annexin V-FITC, Fas-Ligand (Fasl, at 100 ng/ml) and FasL cross-linker (anti-FLAG at 2 μg/ml) were from Alexis (Enzo) and Sigma, respectively. Anti-Fas/CH11 (MBL international corporation distributed by Lab Fore AG, Nunningen, Switzerland) was used at 20 μg/ml. Anti-Siglec-9 (Becton Dickinson Bioscience, Allschwil, Switzerland) was used at 35 μg/ml in combination with 20 μg/ml unlabeled F(ab)² fragments of secondary GaM Ab (Jackson ImmunoResearch Laboratories, Baltimore, US). Specific cell death was calculated as previously described:

\[
\text{Specific death} = \frac{(\text{cell death}[%] - \text{death control}[%])}{(100 - \text{death control}[%])} \times 100
\]

For light microscopic (Zeiss AX10) analysis, 100 cells were evaluated in respect to their morphology as previously described.

**Mitochondrial Potential.** Mitochondrial potential was assessed using TMRE-Mitochondrial membrane potential assay kit ab113852 (Abcam, Cambridge, UK) according to the manufactures protocol. Briefly, freshly isolated human neutrophils were incubated for 5 h with or without polyclonal IgG. Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) was added (50 μM) for 10 min at 37 °C as a positive control. To assess mitochondrial membrane potential, the cells were stained for 30 min at 37 °C with 100 nM TMRE and assessed by flow cytometry (FACSVerse; Becton Dickinson Biosciences).

**Glycan array analysis.** The glycan microarrays from the CFG (Version 5.1) were prepared from amine functionalized glycan structures covalently coupled in microarrays to N-hydroxysuccinimide–derivatized microscope slides as previously described. In accordance to previous publication, Privigen as well as polyclonal pooled mouse serum IgG were screened at 180 μg/ml. In previous studies, vehicle-dependent effects have been excluded at the same concentration. Data are expressed the mean of relative fluorescence units (RFU).

**Complete Freund’s adjuvant (CFA) in vivo priming.** In order to prime neutrophils in vivo, six-week-old female C57BL/6 mice (Janvier Labs) were injected with complete Freund’s adjuvant (CFA; Difco Laboratories). On the day of injection, CFA was diluted in a 1:1 ratio with PBS by vigorously mixing the emulsion for 15 min via transfer in between two syringes connected to each other by a Luer-Lock connector. Mice were anesthetized by isoflurane inhalation and subsequently injected s.c with 100 μl of the emulsion on both sides of the lateral abdomen using a 24 G × 1″ needle. After 24 h of placing the CFA depots, mice were euthanized by CO2 inhalation and subsequently injected s.c with 100 μl of the emulsion. After 24 h of placing the CFA depots, mice were euthanized by CO2 inhalation and subsequently injected s.c with 100 μl of the emulsion.

**Statistical analysis.** Statistical analysis was performed as indicated in the figure legends using GraphPad Prism (GraphPad Software Inc., version 6.0c). If mean levels are presented, SEM and number (n) of independent experiments are indicated. The p values < 0.05 were considered as statistically significant.

**References**
1. Gelfand, E. W. Intravenous immune globulin in autoimmune and inflammatory diseases. N. Engl. J. Med. 367, 2015–25, doi:10.1056/NEJMra1009433 (2012).
2. Bayry, J., Negi, V. S. & Kaveri, S. V. Intravenous immunoglobulin therapy in rheumatic diseases. Nat. Rev. Rheumatol 7, 349–59, doi:10.1038/nrrheum.2011.61 (2011).
40. Geering, B., Gurzeler, U., Federzoni, E., Kaufmann, T. & Simon, H.-U. A novel TNFR1-triggered apoptosis pathway mediated by
30. Casulli, S.
29. von Gunten, S.
27. Simon, H.-U. Neutrophil apoptosis pathways and their modifications in inflammation.
25. Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. & Zychlinsky, A. Neutrophil function: from mechanisms to disease.
32. von Gunten, S.
34. Bayry, J.
33. Aoyama-Ishikawa, M.
37. von Gunten, S.
22. Wright, H. L., Moots, R. J. & Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis.
19. von Gunten, S., Cortinas-Elizondo, F., Kollarik, M., Beisswenger, C. & Lepper, P. M. Mechanisms and potential therapeutic targets in allergic inflammation: recent insights. *Allergy* 68, 1487–98, doi:10.1111/all.2013.68.issue-12 (2013).
18. Leontyev, D., Katsman, Y. & Branch, D. R. Mouse background and IVIG dosage are critical in establishing the role of inhibitory Fcγ receptor for the amelioration of experimental ITP. *Blood* 119, 5261–4, doi:10.1182/blood-2012-03-416692 (2011).
17. von Gunten, S. & Simon, H.-U. Cell death modulation by intravenous immunoglobulin.
15. Guhr, T.
16. Campbell, I. K.
14. Lünemann, J. D., Nimmerjahn, F. & Dalakas, M. C. Intravenous immunoglobulin in neurology—mode of action and clinical efficacy.
13. Käsermann, F.
12. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. Anti-inflammatory activity of immunoglobulin G resulting from Fc-sialylation.
11. Quast, I.
10. Svetlicky, N.
9. Schaub, A.
8. von Gunten, S., Wehrli, M. & Simon, H.-U. Cell death in immune thrombocytopenia: novel insights and perspectives.
7. von Gunten, S. & Simon, H.-U. Cell death modulation by intravenous immunoglobulin.
6. von Gunten, S. & Simon, H.-U. Neutrophil apoptosis pathways and their modifications in inflammation.
5. von Gunten, S.
4. Lünemann, J. D., Nimmerjahn, F. & Dalakas, M. C. Intravenous immunoglobulin in neurology—mode of action and clinical efficacy. *Clin. Exp. Immunol.* 178, 163–8, doi:10.1111/cel.12555 (2014).
3. Jolles, S., Jordan, S. C., Orange, J. S. & van Schaik, I. N. Immunoglobulins: current understanding and future directions. *Science Transl. Med.* 5, 178ra26 (2013).
2. Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. & Zychlinsky, A. Neutrophil function: from mechanisms to disease.
1. Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. & Zychlinsky, A. Neutrophil function: from mechanisms to disease.
S.G., S.W. and T.M.T. carried out the experiments. H.-U.S., F.K. and J.D.L. provided material. All authors had full

S.v.G., D.R.B., H.U.S., J.D.L., P.A.D., R.D.C., S.M.J., and T.K. designed the study. C.S., C.W.K., D.L., I.K.D.-A., I.Q.,

Author Contributions

S.G., D.R.B., H.U.S., J.D.L., P.A.D., R.D.C., S.M.J., and T.K. designed the study. C.S., C.W.K., D.L., I.K.D.-A., I.Q.,

Acknowledgements

This work was supported in part by the Swiss National Science Foundation (SNSF) grant No. 310030_162525/1 and

and the Bulgarian-Swiss Research Program (BSRP) No. IZEBZ0_142967 to S.V.G., SNSF grant No. 310030_166473
to H.-U.S.; SNSF grant No. 31003A_149387 to T.K.; and grant number GM62116 to the Consortium for

Functional Glycomics, P41GM103694 and GM098791 to R.D.C. I.Q. was supported by a DOC scholarship

provided by the Austrian Academy of Sciences (ÖAW). J.D.L. was supported by SNSF grant No. 31003A_169664,
the Swiss Multiple Sclerosis Society, the Sassella Foundation, and the Hartmann Müller Foundation (grant

number 1860). C.S. and S.W. are PhD students of the Graduate School of Cellular and Biomedical Sciences of

the University of Bern.

References

44. Bratton, D. L. & Henson, P. M. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 32, 350–7,
doi:10.1016/j.ti.2011.04.009 (2011).

45. Djoumearska-Alexieva, I., Roumenina, L., Pashov, A., Dimitrov, J., Hadzhiieva, M., Lindig, S., Voyerova, E., Dimitrov, P.,

Ivanovska, N., Bockmeyer, C., Stefanova, Z., Fitting, C., Blas, M., Claus, R., Von Gunten, S., Kaveri, S., Cavaillon, J. M.,

Bauer, M. & Vassilev, T. Intraextravenous immunoglobulin with enhanced polyspecificity improves survival in experimental

sepsis and septic systemic inflammatory response syndromes. Mol. Med. 21, 1018–1021, doi:10.2119/molmed.2014.01322 (2015).

51. Matsuo, H. et al. Intravenous immunoglobulin enhances the killing activity and autophagy of neutrophils isolated from

immunocompromised patients against multidrug-resistant bacteria. Biochem. Biophys. Res. Commun. 464, 94–9, doi:10.1016/j.

bbrc.2015.06.004 (2015).

52. Von Gunten, S. & Bochner, B. S. Human cluster of differentiation (CD) markers. In Middleton’s Allergy: Principles & Practice

(Adkinson, N. F. Jr., Yunginger, J. W., Busse, W. W., Bochner, B., Estelle, F., Simons, R., Holgate, S. T. eds), Mosby, St.

Louis, MO, USA, 7th edition 1711–1737 (2008).

55. Von Gunten, S. & Simon, H.-U. Autophagic-like cell death in neutrophils induced by autoantibodies. Autophagy 3, 67–8, doi:10.4161/.

auto.3436 (2007).

56. Padler-Karavani, V. et al. Human IgA Fc receptor FcRαRI (CD89) triggers different forms of neutrophil death depending on the inflammatory

microenvironment. J. Leukoc. Biol. 94, 107–17, doi:10.1189/jlb.1406053-22RVR (2015).

57. Sugita, K. & Eguchi, M. Suppressive effect of intravenous immunoglobulin on peripheral blood neutrophil count in patients with

idiopathic thrombocytopenic purpura. J. Pediatr. Hematol. Oncol. 27, 7–10, doi:10.1097/MPH.0b013e32836f9e72 (2005).

58. Matsuda, M. et al. Neutropenia as a complication of high-dose intravenous immunoglobulin therapy in adult patients with

neuroimmunologic disorders. Clin. Pharmacol. Ther. 26, 306–11, doi:10.1002/cpt.10000-00009 (2003).

59. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–8,
doi:10.4049/jimmunol.172.5.2731 (2004).

60. Tanguy, S. C. To B1 or not to B1: that really is still the question! Blood 121, 5109–10, doi:10.1182/blood-2013-05-500704 (2013).

61. Griffin, D. O., Holod尼克, E. N. & Rothstein, T. L. Human B1 cells in umbilical cord and adult peripheral blood express the novel

phenotype CD20+ CD27+ CD43- CD70-. J. Allergy Clin. Immunol. 123, 1268–73.e15, doi:10.1016/j.jaci.2009.03.013 (2009).

62. Padler-Karavani, V. et al. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans:
potential implications for disease. Glycobiology 18, 818–30, doi:10.1093/glycobiology/ijn072 (2008).

63. Hulfejt, M. E. et al. Anti-carbohydrate antibodies of normal sera: findings, surprises and challenges. Mol. Immunol. 46, 3037–49,
doi:10.1016/j.molimm.2009.06.010 (2009).

64. Pashov, A., Monzavi-Karbassi, B. & Kieber-Emmons, T. Immune surveillance and immunotherapy: lessons from carbohydrate

mimotopes. Vaccine 27, 3405–15, doi:10.1016/j.vaccine.2009.01.074 (2009).

65. Panitch, H. S., Hirsch, R. L., Haley, A. S. & Johnson, K. P. Exacerbations of multiple sclerosis in patients treated with gamma

interferon. J. Pediatr. Hematol. Oncol. 18, 383–404, doi:10.1007/s10675-016-2325-4 (2016).

66. Panitch, H. S. et al. Myeloid Engraftment in humanized mice: Impact of granulocyte-colony stimulating factor treatment and

microenvironment. J. Biol. Chem. 281, 26579–85, doi:10.1074/jbc.M115.669425 (2016).

67. Marshall, E. Drug trials. Violent reaction to monoclonal antibody therapy remains a mystery. Science 318, 672–3, doi:10.1126/

science.318.5874.672b (2007).

68. Cohen, J. Immunology. Differences in immune cell “brakes” may explain chimp-human split on AIDS. Science 312, 672–3,
doi:10.1126/science.1125774 (2006).

69. Jandus, C. et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J.

Clin. Investig. 124, 1810–20, doi:10.1172/JCI65899 (2014).

70. Müns, C. Viral infections in mice with reconstituted human immune system components. Immunol. Lett. 161, 118–24, doi:10.1016/j.

imlet.2014.05.012 (2014).

71. Coughlan, A. M. et al. Myeloid Engraftment in humanized mice: Impact of granulocyte-colony stimulating factor treatment and

transgenic mouse strain. Stem Cells Dev. 25, 530–41, doi:10.1089/scd.2015.0289 (2016).

72. Agniswamy, J., Lei, B., Musser, J. M. & Sun, P. D. Insight of host immune evasion mediated by two variants of group a Streptococcus

transgenic mouse. J. Biol. Chem. 279, 5278–96, doi:10.1074/jbc.M410698200 (2004).

73. Wébril, M. et al. Human IgA Fc receptor FcγRI (CD89) triggers different forms of neutrophil death depending on the inflammatory

microenvironment. J. Immunol. 193, 5649–59, doi:10.4049/jimmunol.140128 (2014).

74. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101,

17033–8, doi:10.1073/pnas.0409790101 (2004).
access to the data, helped draft the report or critically revised the draft, contributed to data interpretation, and reviewed and approved the final version of the report.

**Additional Information**

**Supplementary information** accompanies this paper at doi:10.1038/s41598-017-01404-0

**Competing Interests:** The authors declare that they have no competing interests.

**Publisher’s note:** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017