Novel molecular approach to define pest species status and tritrophic interactions from historical *Bemisia* specimens

W. T. Tay\(^1\), S. Elfekih\(^1\), A. Polaszek\(^2\), L. N. Court\(^1\), G. A. Evans\(^3\), K. H. J. Gordon\(^1\) & P. J. De Barro\(^4\)

Museum specimens represent valuable genomic resources for understanding host-endosymbiont/parasitoid evolutionary relationships, resolving species complexes and nomenclatural problems. However, museum collections suffer DNA degradation, making them challenging for molecular-based studies. Here, the mitogenomes of a single 1912 Sri Lankan *Bemisia emiliae* cotype puparium, and of a 1942 Japanese *Bemisia* puparium are characterised using a Next-Generation Sequencing approach. Whiteflies are small sap-sucking insects including *B. tabaci* pest species complex. *Bemisia emiliae*’s draft mitogenome showed a high degree of homology with published *B. tabaci* mitogenomes, and exhibited 98–100% partial mitochondrial DNA Cytochrome Oxidase I (mtCOI) gene identity with the *B. tabaci* species known as Asia II-7. The partial mtCOI gene of the Japanese specimen shared 99% sequence identity with the *Bemisia* 'JpL' genetic group. Metagenomic analysis identified bacterial sequences in both *Bemisia* specimens, while hymenopteran sequences were also identified in the Japanese *Bemisia* puparium, including complete mtCOI and rRNA genes, and various partial mtDNA genes. At 88–90% mtCOI sequence identity to Aphelinidae wasps, we concluded that the 1942 *Bemisia* nymph was parasitized by an *Eretmocerus* parasitoid wasp. Our approach enables the characterisation of genomes and associated metagenomic communities of museum specimens using 1.5 ng gDNA, and to infer historical tritrophic relationships in *Bemisia* whiteflies.

Since its description by Gennadius in 1889, the taxonomy of the whitefly *Bemisia tabaci* has proven a challenge. There had been various significant taxonomic revisions\(^1\)–\(^3\) within this nominal species, but the lack of unique morphological features associated with these led to all being synonymised under the name 'B. tabaci'. The confusing nomenclature was revised using allozyme and DNA markers that indicated substantial sub-clustering, eventually giving rise to the biotype concept. This has more recently been superseded, by thorough integration of sequence and biological data which demonstrated that *B. tabaci* is in fact a complex of more than 43 cryptic biological species\(^4\).

The recognition that *B. tabaci* is a species complex presented a further challenge, which is to link collection specimens (all tagged with the nomenclature at the time of identification) with the newly adopted genetically-based structure\(^5\). Tay *et al.*\(^6\) determined the identity of the original 1889 Gennadius *B. tabaci* whitefly specimen through Sanger sequencing of multiple PCR products. Characterisation of the partial mitochondrial DNA cytochrome oxidase subunit I (mtCOI) gene from a single museum individual originally collected by Gennadius in 1889 subsequently showed that the Mediterranean (‘MED’) member of the complex was the true ‘*B. tabaci*’. Since then, there have been no further studies using museum specimens to address taxonomic issues in the remaining members of the *B. tabaci* complex.

One of the most important concerns in working with historical specimens is the finite amount of material available. PCR primers for the partial mtCOI region\(^7\) can be inefficient, due to the large diversity within *B. tabaci* clades\(^4\)–\(^6\), and multiple PCR amplification attempts can rapidly deplete the sample with no guarantee of success.

1CSIRO, Black Mountain Laboratories, Clunies Ross Street, Canberra, ACT 2601, Australia. 2Natural History Museum, London, UK. 3USDA APHIS NIS, BARC-West, Beltsville, Maryland, United States of America. 4CSIRO, Brisbane, 4001, Queensland, Australia. Correspondence and requests for materials should be addressed to W.T.T. (email: weetek.tay@csiro.au)
An estimated 3,635 bps distributed across six regions of the mitogenome were missing from the 1942 genome (GenBank KX714968) for the 1942 *B. large subunit rRNA and small subunit rRNA, missing tRNA Asn, tRNA Arg, tRNA Ala, ND3, tRNA Gly, and also part *B.iae (i.e., GQ139492, AJ748378, DQ174523) of the *B. Timmermans method of Tay et al. to 15.7% to 16.5% for species between clades (i.e., the 1942 *B. specimen, impacting eight protein coding genes (PCGs), eight tRNAs, and one rRNA (Fig. 1; Supplementary Table 1). Missing tRNAs and PCGs are shown in grey with corresponding orange segments on the mtDNA genome schematic diagram of the 1942 *Bemisia* species.

Attempts to overcome this have involved replacing the commonly-used universal primers developed by Simon et al. with ones designed for a specific clade. For instance, partial mtCOI gene diversity ‘within species’ typically ranges between 0 to 3.4%, while it ranges from 3.1 to 5.5% between species within clades (e.g., MEA1 vs MED), to 15.7% to 16.5% for species between clades (i.e., *B. tabaci* SSA4 vs MEAM1). However, in addition to primer design, factors such as the poor quality and low yield of the genomic DNA (gDNA) due to the specimen size, preservation methods and the age of the material, have all contributed to the difficulty of mtCOI genotyping. Work on historical *Bemisia* samples would therefore greatly benefit from novel, more efficient technologies.

Next-generation sequencing (NGS) approaches are now routinely used to characterise mitogenomes from individual specimens (e.g., Arnemann et al.), and including from a single *Bemisia* individual, although the method of Tay et al. used at least 18 ng of double stranded gDNA for NGS library construction. Recently, Timmermans et al. demonstrated that a large volume of both nuclear and mitochondrial DNA data could be generated and captured from single historical insect individuals using NGS platform. These NGS approaches not only bypassed primer binding efficacy issues, but offer vastly more effective utilisation of gDNA from individual specimens of interest. The NGS platform therefore represents an attractive option for studying historical *Bemisia* specimens, and will enable us to relate these individuals to our emerging understanding of challenging species complexes, associated metagenomics compositions, and host-parasitoid interactions.

Here, we describe the draft mitogenomes of two historical *Bemisia* specimens, that of a 104-year-old *B. emiliae* Corbett 1926, previously synonymised with *B. tabaci*, and a 74-year-old whitefly specimen identified as ‘*B. tabaci*’ from Japan in 1942, prepared using a Nextera XT DNA library and sequenced using an Illumina MiSeq sequencer. The high-throughput sequence data allowed us to conduct a comparative genomics analysis between *Bemisia* species, to explore their metagenomic communities, and provide insights into the diversity of *Bemisia* parasitoid species.

Results

The single 1912 *B. emiliae* 4th instar nymph (‘puparium’) yielded a total of 4.62 ng of double stranded gDNA, and the 1942 ‘*B. tabaci*’ 4th instar from Japan yielded 27.85 ng of double stranded gDNA. The Illumina MiSeq run generated 4,520,563 pair-end sequence reads (i.e., 9,041,126 reads) for *B. emiliae*, and 2,906,587 pair-end sequence reads (i.e., 5,813,174 reads) for the Japanese ‘*B. tabaci*’. Pair-end sequences from both the 1912 *B. emiliae* and the Japanese ‘*B. tabaci*’ supported the mitogenomes as circular molecules. The draft mitogenomes of both museum specimens were assembled using the mitogenome of *B. tabaci* Asia I (KJ778614) as a reference. We recovered a complete mitogenome for *B. emiliae* (15,515 bp from 37,089 reads) (GenBank KX714967) and a partial mitogenome (GenBank KX714968) for the 1942 ‘*B. tabaci*’ individual from 2,607 NGS genomic fragments (Fig. 1). An estimated 3,635 bps distributed across six regions of the mitogenome were missing from the 1942 *Bemisia* specimen, impacting eight protein coding genes (PCGs), eight tRNAs, and one rRNA (Fig. 1; Supplementary Table 1). Alignment with the assembled *B. tabaci* Asia II-7 (Fig. 1, Supplementary Table 1) indicated that these missing mitogenome regions included regions spanning partial ATP8 to partial NDS, part of Cyt b, part of the large subunit rRNA and small subunit rRNA, missing tRNA Ala, tRNA Arg, tRNA Asn, ND3, tRNA Glu, and also part of COIII. Gene orientation and gene order between the 1912 and 1942 *Bemisia* specimens were identical overall and as confirmed via the De Novo Assemble algorithm within Geneious version 8.0.5 (Biomatters Ltd, Auckland, NZ) (data not shown), although gene orientation for ATP6, ND3, and the missing tRNAs for the Japanese *Bemisia* specimen could not be ascertained. The assembled partial mitogenome of the Japanese *Bemisia* consisted of 2,255 sequences, with an estimated sequence genome length of 15,214 bp.

The 1912 *B. emiliae* cotype specimen had a 100% partial mtCOI (657 bp) sequence identity to three members (i.e., GQ139492, AJ748378, DQ174523) of the *B. tabaci* Asia II-7 clade, and ranged between 98% (AY686075) and 99% sequence identity (AM408899, DQ174523, AJ748372, DQ116650, DQ116660, DQ174521, AJ748375, DQ116662, AY686064) with other *B. tabaci* Asia II-7 members. All reported Asia II-7 members were of Asian origin (e.g., India, Taiwan, China). Similarly, based on partial mtCOI sequence (777 bp) identity, the 1942 *Bemisia* specimen matched 99% with members of the *Bemisia* genetic group of ‘*P.‘19 (GenBank accession numbers AB308111, AB308114-AB308119, AB240967, accessed 02-Jun-2016), all of which are from Japan. Phylogenetic analysis5, 11 based on the same partial mtCOI gene region indicated a basal position of the ‘*P.‘ genetic group to the ‘*B. tabaci*’ species complex, providing support that this 1942 Japanese ‘*B. tabaci*’ was likely a non-‘*tabaci*’ species. Its basal position clusters with other members of *Bemisia* that were, until recently, members of Lipaleyrodes, which was synonymised with *Bemisia* in 20099, 14.

Figure 1. Diagrammatic representation of the complete mitochondrial DNA genome of *Bemisia emiliae* (black bar), showing orientation of protein coding genes (PCGs), tRNAs and rRNAs, with the mitochondrial DNA cytochrome oxidase (mtCOI) gene arbitrarily selected as a starting point. The mitochondrial DNA genome of the 1942 Japanese *Bemisia* sp. is aligned against that of *B. emiliae*, and gaps are introduced for alignment purposes. Predicted tRNAs, and partial PCGs of the 1942 *Bemisia* sp. are as detailed in Supplementary Table 1. Missing tRNAs and PCGs are shown in grey with corresponding orange segments on the mtDNA genome schematic diagram of the 1942 *Bemisia* species.
A total of 1.5% of sequences from B. and 0.1%, respectively) sequences that matched to Candidatus Portiera aleyrodidarum primary (P)-endosymbiont 61% of arthropod origin (Table 1). Interestingly, both Bemisia with the metagenomic compositions of the 1942 B. emiliae specimen (MG-Rast accession number: 4681440.3) and the 1942 Japanese Bemisia species (MG-Rast accession number: 4690946.3). A summary of taxonomic hits for Bacteria, Eukaryota, Viruses are provided. Hit abundances that differed greatly between B. emiliae and the 1942 Bemisia sp. are indicated in by *.

Table 1. MiSeq input and post quality control (QC) data for metagenomic analysis via MG-Rast standard pipeline for the 1912 B. emiliae specimen (MG-Rast accession number: 4681440.3) and the 1942 Japanese Bemisia species (MG-Rast accession number: 4690946.3).

	1912 B. emiliae	1942 B. emiliae
Up-load count (bp)	950,823,796	870,198,516
up-load seq count	9,041,126	5,813,174
Upload: Mean Sequence Length (bp)	105 ± 54	149 ± 56
Post QC: Count (bp)	848,681,218	839,130,417
Post QC: Sequences Count	7,921,154	5,544,879
Post QC: Mean Sequence Length (bp)	107 ± 54	151 ± 55

Taxonomic Hits Distribution

Kingdom	GenBank Accession	1912 B. emiliae	1942 B. emiliae
Bacteria	860,366	90.4*	75,320
Proteobacteria	803,377	84.3*	58,567
Enterobacteriaceae	75,341	7.9	13,319
Candidatus	1,613	0.2	491
Hamiltonellina	545	0.06	1,228
Portiera			
aleyrodidarum	539	0.06	
Arsenophonus	1,642	0.2	703
Bacteroidaceae	87	<0.01	n/a
Alphaproteobacteria	142,248	14.9*	11,640
Rickettsia	1,527	0.2	915
Wolbachia	1,427	0.2	3,743
Commonodaceae			
Acidovorax	291,123	30.1*	6,903
Eukaryota	86,636	9.1	211,856
Arthropoda	57,242	6.1	176,903
Bemisia	2,088	0.2	429
Nasonia	5,527	0.6	64,603
Harpegnotus	3,064	0.3	15,369
Camponotus	2,858	0.3	17,345
Apis	2,931	0.3	9,546
Viruses	2,036	0.2	1,522
Others	1,901	0.2	1,006

Metagenomics analysis showed that 90.4% of B. emiliae sequences was of bacterial origin, of which 84.3% belonged to the Gram-negative Proteobacteria phylum, and only 6% to Arthropoda. This contrasted significantly with the metagenomic compositions of the 1942 Bemisia individual where only 26% was of bacterial origin and 61% of arthropod origin (Table 1). Interestingly, both B. emiliae and the 1942 Bemisia specimens had low (0.2% and 0.1%, respectively) sequences that matched to Bemisia, and is reflective of the absence of a Bemisia genome. A total of 1.5% of sequences from B. emiliae matched sequences corresponding to Hymenoptera (i.e., Nasonia, Harpegnotus, Camponotus, Apis), while this was 36.5% for the 1942 Bemisia specimen (Table 1). We detected the primary (P)-endosymbiont Candidatus Portiera aleyrodidarum in both hosts, as well as similar proportions of the facultative secondary (S)-endobacteria Candidatus Hamiltonellina and Rickettsia, and a higher proportion of Wolbachia was detected in the 1942 Bemisia than in B. emiliae. Finally, both Arsenophonus (Enterobacteriaceae) and Candidatus (Bacteroidaceae) were detected only in B. emiliae (Table 1).

High proportions of sequences matching Hymenoptera (Table 2) in the 1942 Bemisia suggested either contamination, or alternatively parasitism by a hymenopteran parasitoid wasp. Mining the NGS sequence data successfully assembled a DNA contig of 8,951 bp (from 3,410 DNA fragments) that spanned the complete 16S to 28S ribosomal RNA (rRNA) genes and included the intergenic spacer (ITS) 1, the 5.8s rRNA, and the ITS2 region (GenBank KX714966). A DNA contig of 1,926 bp (GenBank KX714952) was also assembled that included the complete mtDNA COI gene (1,356 bp; 512 amino acids), and two tRNAs (tRNA^{Aaa} and tRNA^{Met}) genes. The predicted tRNA^{Met} is 68 bp (Fig. 2A) and is within the typical tRNA lengths of 60–80 bp in Hymenoptera and has the (TAT) anticodon. The tRNA^{Aaa} has the (TTT) anticodon reported in various Hymenoptera species including species within the Chalcidoidea superfamily (e.g., Encarsia formosa), and may represent mutation from the ancestral state of (CTT) anticodon. Interestingly, this tRNA^{Aaa} is only predicted to be 48bp in length and having a two-arms clover leaf secondary structure due to the absence of the T\(\text{Y}\)/C arm and loop (Fig. 2B). The prediction of this 48 bp tRNA^{Aaa} secondary structure is unlikely to have been affected by contig assemblies using short NGS DNA fragments due to its centrally located position within multiple pair-end sequences, some of which are
nopteran wasp species20, 21, identification of tRNA Met-tRNA Lys-COI, as well as the NADH4-tRNA Arg gene orders reports of \textit{Eretmocerus} between 88–89% sequence identity with 10 other publicly available (ie., through GenBank) but unpublished C-terminal region matched the Aleyrodidae parasitoid \textit{Eretmocerus} would nevertheless suggest presence of novel mitogenome gene rearrangements in the parasitoid wasp, likely to gene orders for tRNA Thr-tRNA Pro-NADH6-Cyt

Table 2. Annotations of the detected mitochondrial DNA (mtDNA) genes of a parasitoid \textit{Eretmocerus} sp. from the gDNA of the ‘1942’ Japanese \textit{Bemisia} specimen. A total of 13 DNA fragments (GenBank accession numbers KX714952–KX714964) representing eight mtDNA protein coding genes and five tRNAs were detected. Amino acid positions of the best matched hymenopteran species within the Chalcidoidea superfamily and the percentage identity are also shown. Note: (A) A total of 168 reads for the assembly of (i, ii, iii). (B) A total of 139 reads for the assembly of (vi, vii). (C) A total of 198 reads for the assembly of (xiv, xv). (D) A total of 8 reads for the assembly of (xxvii, xxviii). (E) A total of 74 reads for the assembly of (xiv, xx).

Phylogenetic analysis of \textit{Eretmocerus} species. Sequence identity of the 779 bp partial mtDNA COI C-terminal region matched the Aleurodidae parasitoid \textit{Eretmocerus coccus} (EU017333) at 90% identity, and between 88–89% sequence identity with 10 other publicly available (ie., through GenBank) but unpublished reports of \textit{Eretmocerus} species including \textit{Eret. desantisi, Eret. coccus, Eret. mundus, Eret. hayati}, and an unnamed \textit{Eretmocerus} sp. YBZ-2013 (sequence identity to \textit{Eret. hayati} = 98%) from China Xinjiang province (KF859899).

Phylogenetic analysis (best substitution model: HKY85+G+I+F, proportion of invariable sites: estimated (0.387); number of substitution rate categories: 6; Gamma shape parameter: estimated (0.319); Lkl: −5517.437; AIC: 11260.873; K = 113) of the aligned 657 bp partial mtCOI sequences, and included various Chalcidoidea wasp species indicated that our unknown hymenopteran entity was from a separate evolutionary lineage basal to the sister clade that included \textit{Eret. mundus, Eret. hayati}, and \textit{Eret. sp.} YBZ-2013. The two sister clades of \textit{Eret. mundus-Eret. hayati-Eret. sp.} YBZ-2013, and the Japanese 1942 hymenopteran individual were clustered with 100% bootstrap node support that indicated a shared most recent common ancestor. A third \textit{Eretmocerus} basal sister clade included the Caribbean/New World species of \textit{Eret. coccus} and \textit{Eret. desantisi} from the French overseas territory of Guadeloupe22 (Fig. 3). All Aphelinidae wasps (i.e., \textit{Eretmocerus} species including the unknown

Eretmocerus sp. JAP1942	GenBank	nucleotide positions	Best matched organism	GenBank	Amino acid positions	Identity (%)	Number of reads
i tRNA51 (M)	KX714952	59..126	Nasonia longicornis	ACH81769	31..516	82	268
ii tRNA51 (K)	KX714952	186..233					
iii COI	KX714952	362..1,879	Megaphragma amalphitanum	YP_009176325	67..206	74	40
iv COI	KX714953	3..422					
v ATP6	KX714954	102..314	Philotrypesis pilosa	AEG25310	1..67	32	306
vi ATP6	KX714955	42..461	Philotrypesis pilosa	AEG25310	83..222	71	
vii COIII	KX714955	499..522					
viii COIII	KX714956	10..312	Nasonia longicornis	ACH81765	161..261	71	19
ix COIII	KX714957	1..198	Nasonia giraulti	ACH81754	60..125	85	8
x NADH5	KX714958	2..229	Ceratosolen solnai	AEG67044.1	47..122	64	14
xi NADH5	KX714959	2..262	Nasonia giraulti	ACH81759	193..279	83	10
xii NADH5	KX714960	2..269	Megaphragma amalphitanum	YP_009176327	304..439	57	6
xiii NADH4	KX714961	3..155	Nasonia vitripennis	ACH81738.1	268..318	65	4
xiv NADH4	KX714962	34..243	Nasonia vitripennis	ACH81738.1	187..256	73	
xv tRNA51 (R)	KX714962	278..337				198 c	
xvi tRNA51 (T)	KX714963	1..61					
xvii tRNA51 (P)	KX714963	67..135					
xviii NADH6-0	KX714963	220..447	Nasonia vitripennis	ACH81751.1	29..104	49	8 b
xix NADH6-0	KX714964	8..112	Nasonia vitripennis	ACH81751.1	148..182	51	
xx Cyt-b	KX714964	114..1,166	Nasonia vitripennis	ACH81741.1	2..347	76	74 a
Japanese 1942 Hymenoptera, all *Encarsia/Coccophagoides* species formed sister clades with each other and exhibited high (99.6%) bootstrap value.

Discussion

To our knowledge, this is the first investigation into tritrophic interactions in historical *Bemisia* specimens. This was made possible by developing a protocol using low amounts of input double stranded gDNA (only 1.5 ng). This novel approach offers enormous potential to resolve existing taxonomic questions and also contribute to genome-wide surveys of individual historical *Bemisia* specimens, and can potentially be adopted for solving nomenclatural and taxonomic confusion in other cryptic species complexes. Since the synonymising of *Bemisia* species including *B. inconspicua* Quaintance (1900; collected in Florida, USA, synonymised by Russell⁹), *B.
gossypiperda Misra & Singh (1929; from India, synonymised by Russell3), and B. emiliae Corbett (1927; collected from Sri Lanka, synonymised by Mound and Halsey2 with ‘B. tabaci’; see also Martin and Mound23), genetic data based on partial mtDNA COI gene 4, 5, 8, 24, and mating behaviour studies4, 25–28 have increasingly supported the recognition of B. tabaci as being a complex of cryptic species. By analysing historical specimens collected from the same geographic localities and at similar time frames prior to mass global commodity movements, it is possible to help ascertain historical species habitat boundaries, and ultimately contribute to rectify incorrectly synonymised species. In this respect, the cotype 1912 B. emiliae individual with partial mtCOI gene matching at high percentage (98–100%) with B. tabaci Asia II-7 may be seen as the next stage of solving Bemisia whitefly nomenclatural confusion, since the identification of the true B. tabaci6. We further provided an example of cryptic species misidentification in the 1942 Japanese Bemisia species, and highlighted the on-going challenges in understanding the genetic diversity and species status of this global agricultural pest species complex.

Metagenomic compositions of various B. tabaci cryptic species have been investigated29–31 using gene-specific primers, with secondary endosymbionts such as Arsenophonus, Cardinium, and Wolbachia reported in Chinese B. tabaci’ Asia II-7 samples29, 30, while Bing et al.29 also identified Rickettsia in their Asia II-7 material. In the 1912 B. emiliae individual, in addition to Arsenophonus, Cardinium, Rickettsia and Wolbachia, Hamiltonella was also detected. While we showed that both B. emiliae and the Japanese Bemisia species had, to a certain extent, similar P- and S-endobacterial compositions, there were also significant endosymbionts metagenomic profile differences. For example, the endosymbionts Arsenophonus and Cardinium were only detected in B. emiliae, as well as significant amount (14.9%) of Alphaproteobacteria, in contrast to only 4% detected in the 1942 Bemisia species (Table 2).

We identified two regions of a partial wsp Wolbachia gene (106 bp and 230 bp; GenBank KX714969) that showed between 98% and 99% sequence identity, to the B. tabaci Asia II-7 Wolbachia wsp gene (KJ600634) as reported by Ahmed et al.32. The 230 bp partial wsp gene region from our historical 1942 specimen also showed high sequence homologies (99–100%) with diverse organisms, including a 99% sequence identity with the Wolbachia wsp gene from B. afer, and with native members of the B. tabaci species complex from China (e.g., Asia

Figure 3. Phylogenetic placement of the unknown hymenopteran entity detected in the gDNA of the 1942 Japan Bemisia sp. The Hymenoptera is likely a parasitoid wasp species of the Eretmocerus genus based on partial (657 bp) mtCOI gene phylogeny, being placed within the ‘Eretmocerus’ clade (indicated by a red branch). The Aphelinidae wasps (‘Encarsia/Coccophagoides’ and ‘Eretmocerus’ species) formed sister clades with 99.6% node confidence. Green coloured box indicates Coccophagoides moeris. Outgroups used are Eurytoma caninae (Eurytomidae), Nasonia species (Pteromalidae) and Philotrypesis species (Pteromalidae). Node confidence of ≥50% (estimated from 1,000 bootstrap replications) are indicated.
Table 3. Percentage (%) sequence identity of Bemisia species Wolbachia endosymbionts wsp partial gene (230 bp). The Wolbachia wsp partial gene from the historical 1942 Bemisia specimen (‘Jap_1942’) was most similar to KJ648499, which belonged to the W2 Wolbachia strain isolated from invasive (i.e., MED, MEAM1) and native (Asia I, Asia II3, China 2) B. tabaci cryptic species complex. " Indicates the five Wolbachia strains that had sufficient wsp gene sequence at the 5’ region to enable sequence identity comparison with the historical Japanese Wolbachia wsp gene (sequence identity across these 5’ end of 106 bp are indicated within parentheses). Note: GenBank accession numbers provided for Wolbachia strains W1 (KJ648498), W2 (KJ648499), W3 (KJ648500), W4 (KJ648501), W5 (KJ648502), and W6 (KJ648503) are as reported by ref. 33.

Jap_1942	KJ648499	AJ291370	JN315980	FJ545748	KJ648498	HQ404797	GU968901	KJ648500	AJ291379	KJ648502	KJ648503	KJ648501
KJ648499	99.13	98.7	98.7	98.7	98.7	100	100	100	100	100	100	100
AJ291370	98.7 (100)	98.7	98.7	98.7	98.7	100	100	100	100	100	100	100
JN315980	98.7 (100)	98.7	98.7	98.7	98.7	100	100	100	100	100	100	100
FJ545748	98.7	98.7	98.7	98.7	98.7	100	100	100	100	100	100	100
KJ648498	98.7	98.7	98.7	98.7	98.7	100	100	100	100	100	100	100
HQ404797	98.26 (100)	98.26	98.26	98.26	98.26	100	100	100	100	100	100	100
GU968901	98.26 (98.11)	98.26	98.26	98.26	98.26	100	100	100	100	100	100	100
KJ648500	95.65	96.52	96.96	96.96	96.96	96.52	96.52	96.52	96.52	96.52	96.52	96.52
AJ291379	94.78 (87.74)	95.65	96.09	96.09	96.09	95.65	95.65	95.65	95.65	95.65	95.65	95.65
KJ648502	93.91	94.78	95.22	95.22	95.22	94.78	94.78	94.78	94.78	94.78	94.78	94.78
KJ648503	93.91	94.78	95.22	95.22	95.22	94.78	94.78	94.78	94.78	94.78	94.78	94.78
KJ648501	81.12	81.12	81.55	81.55	81.55	81.97	81.12	83.69	83.69	83.69	83.69	83.69

II3, Asia I, China I; Ji et al.33, although reduced sequence identity (81.12–93.91%) were also detected between the historical wsp partial gene sequence and the partial sequences of ‘B. tabaci’ Wolbachia strain W4 and W6 strains (Table 3)33. Similarly, the 106 bp partial wsp gene that were identified also shared 100% sequence identity with the Wolbachia wsp gene of B. afer (AJ291370), and between 98.11–100% with B. tabaci (GU968901, JN315980, HQ404797) (Table 3), all of which were clustered at 73% on the same W1/W2 phylogenetic branch33. A lower sequence identity of 87.74% was also shared with the Wolbachia wsp gene (AJ291379) (Table 3) from a B. tabaci host that was shown to be phylogenetically basal to the W1-W6 Wolbachia strains reported by Ji et al.33, and highlighted the difficulty of pin-pointing the identity of the Wolbachia strain(s) in our 1942 Miseq sequence data due to the short sequence nature of this partial gene region.

Alternatively, it is also possible that the Eretmocerus parasitoid larva within the 1942 Bemisia nymph was itself infected with a different Wolbachia strain. Exploring the MiSeq data identified a 189 bp coxA sequence (GenBank KX714965) that shared between 91% and 94.7% sequence identity with the majority of B. tabaci cryptic species Wolbachia coxA gene32, 34 but 100% sequence identity with B. afer coxA ST382 at this 189 bp region, as well as 100% sequence identity with the coxA partial gene of Wolbachia isolated from six diverse species including Philaenus spumarius (Hemiptera, Aphrophoridae) (KM377724), Hypoponera ant (Hymenoptera, Formicidae) (KF490396), Macrosteles fascifrons (Hemiptera, Cicadellidae) (HQ404763), Sogatella furcifera (Hemiptera, Delphacidae) (FJ713762), Telegryllus taivenannma (Orthoptera, Gryllidae) (DQ842303), and Acraea encon (Lepidoptera, Nymphalidae) (DQ842269) (data not shown). Horizontal transfer of Wolbachia strains between phylogenetically distantly related arthropods has been reported previously35–37, and our partial coxA gene shared 100% sequence identity with the hemipteran (i.e., P. spumarius, S. furcifera) and orthopteran (i.e., T. taivenannma) hosts that were also known to be present in Japan. The coxA locus between Bemisia species including B. tabaci cryptic species complex and B. afer species have been characterised (e.g., Ghosh et al.34) and are highly similar. The 189 bp coxA partial gene from the 1942 Bemisia specimen captured only 23 SNPs of the total 40 SNPs present in the characterised coxA gene across a diverse groups of B. tabaci cryptic species, and shared 100% SNP identity with B. afer ST382 (Table 4). Given the partial coxA sequence gene matched both B. afer’s Wolbachia coxA partial ST382 sequence as well as non-Bemisia hosts, it suggests that the increase in Wolbachia sequences detected in the 1942 Bemisia specimen may well be due to infections in both the Bemisia nymph and the parasitoid larva.

Primer efficacy issues may have contributed to the lack of detection of Hamiltonella by Bing et al.29 and Zhori-Fein et al.35, although host plant utilisation and environmental factors including adaptation to pesticides could also play a role in influencing endobacterial communities in Bemisia38–40. Hamiltonella from B. tabaci MED/MEAM1 has been proposed to present no parasitoid-resistance due the inactivation of the APSE phage31. However, it can enhance hosts’ survival rates through an endosymbiont-mediated defense against parasitoid wasps in aphids31. In addition, Hamiltonella can also increase host growth rates in nutrient-poor environments49, or enhance reproductive rates and nymph growth rates, as reported for the invasive B. tabaci MED39. It is possible that host association with the Hamiltonella endosymbiont may therefore diminish in nutrient-rich environments49, for instance, applications of crop fertilisers. Similarly, applications of pesticides could result in the reduction of beneficial insects including parasitoids, and therefore reduce the benefits provided by this endosymbiont to its host (i.e., defense against parasitoid wasps). These anthropogenic factors often associated with the green revolution
Nucleotide position	15	21	24	30	33	52	60	120	123	130	135	141	165	189	246	249	252	255	258	259	
Consensus sequence	T	G	C	G	G	G	A	A	A	A	T	T	C	C	T	C	A	G	G	G	G
coxA 14	.	A	A	.	A	A	C	T	T	T	C	T	T	C	T	C	T	A	G	A	G
B. afer (ST382)	C	A	.	.	.	T	C	.	G	A	A	A	A	A	A
JAP1942 coxA	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

Table 4. Comparison of single nucleotide polymorphism (SNP) profile of the Wolbachia coxA gene between known *Bemisia tabaci* cryptic species, *B. afer*, and the Japanese 1942 (JAP1942) *Bemisia* specimen. coxA-14 sequences include *B. tabaci* SSA1-SG1, and *B. tabaci* SSA1-SG2 and are as reported in ref. 34. Consensus sequence identities are noted below coxA-14 missing regions for the 1942 Japanese *Bemisia* specimens are between nucleotide positions 1 and 174, and from 364 to 402. Unknown SNP profiles are indicated by ‘?’. **Note:** consensus sequence SNP profiles were from identical coxA-14 sequence. coxA sequences aligned included: HQ404793, JQ013511, B. tabaci Q(ST116), B. tabaci Asia-1 (ST378, ST385, ST395), B. tabaci Asia II-1 (ST389, ST390, ST391, ST392), B. tabaci Asia II-2 (ST396), B. tabaci Asia II-3 (ST393, ST394), B. tabaci Asia II-7 (ST378), B. tabaci Asia II-9 (ST384), B. tabaci China-1 (ST377, ST379, ST383), B. tabaci SSA1-SG5 (coxA 88), B. tabaci SSA1-SG3 (ST424, 425), B. tabaci Australia (ST380), and B. afer NG (ST427).

could have potential and indirect effects that contributed to the non-detection of *Hamiltonella* in present-day non-invasive *B. tabaci* Asia II-7 hosts as compared to the historical *B. emiliae* specimen. Given our current understanding, and the uncertainty about whether there are different strains of *Hamiltonella* being detected, it remains possible that this endosymbiont may be important for both nutrient benefit and parasitoid resistance, however, complete genome and the phylogenetic positions of *Hamiltonella* from *Bemisia* cryptic species including that from *B. emiliae* would be needed to better test the hypothesis postulated above. We would like to emphasise that our hypothesis has been postulated based on our very limited NGS data that were derived from very small historical samples. Globally, the near fixation of *Hamiltonella* has been reported in both the *B. tabaci* MEAM 1 and MED cryptic species within the ‘Africa/Middle East/Asia Minor’ clade, however the level of association between *Hamiltonella* and other *B. tabaci* cryptic species lacks this level of knowledge. This hypothesis should be further tested through the analysis of additional museum *Bemisia* samples, especially via NGS methods as demonstrated from this study. While the endosymbiont *Fritschea bemisiae* (Chlamydiales) had been reported in the *B. tabaci* ‘New World’ species complex (previously Biotype A), this endosymbiont was not detected in both museum specimens analysed in this study. This again suggested potential differences in endobacterial metagenomic signatures between *B. tabaci* cryptic species from evolutionary diverse clades, as well as reflecting potential impact from both antropogenic (e.g. agricultural) activities and/or environmental/climatic differences.

Within the bacterial sequences from *B. emiliae*, a total of 291,123 sequences (30.1%) showed high homology to the protobacteria *Acidovorax* genus, a genus that included highly-damaging agricultural species capable of damaging seeds and fruit crop (e.g., *A. citrulli* is capable of causing seeding blight and bacterial fruit blotch in cucurbits). The metagenomic analysis also identified a total of 40,391 sequences (4.2%) with homology to *Verminephrobacter* species (MR-RAST ID 4661244.3 and 4690946.3), which was closely related to *Acidovorax* bacteria. *Verminephrobacter* species has been reported only in the Lumbricidae earthworm *Eisenia fetida* so far. It is difficult to provide plausible explanations for the detection of significant number (i.e., greater number of sequences than the p-endosymbiont *Cand. P. aleyrodidarum*) of such sequences. Although environmental contamination remained a possibility, the 4th instar *B. emiliae* larva was immersed in 100% ethanol for 24 hours prior to gDNA extraction, a process that would likely have reduced potential bacterial contaminations on the surface of the whitefly nymph. This metagenomic bacterial signature is absent in the 1942 *Bemisia* specimen, and its detection in *B. emiliae* could be due environmental to factors or possibly of saprophytic origins.

The family Aphelinidae are predominantly parasitoid wasps of hemipteran sap-sucking insects, and includes the genera *Encarsia* and *Eretmocerus* that have *Bemisia* species among their hosts. Despite their importance as biological control agents of *Bemisia* whiteflies, species diversity in both *Encarsia* and *Eretmocerus* genera are likely to be underestimated. With >450 *Encarsia* species described (including 435 valid species at present) in this genus, only 95 partial *Encarsia* mtCOI sequences (included 10 named *Encarsia* species: *En. laetoa*, *En. formosa*, *En. hispida*, *En. citrina*, *En. vandrieschii*, *En. normarki*, *En. brimblecombei*, *En. schmidtii*, *En. protransvena*, *En. inaron*, and five unnamed *Encarsia* species: *En. sp. 1373B KF778422, Aphelinidae sp. 1378 A KF778427, En. sp. 1382 A KF778401, *En. sp. 1369 A KF778420, En. sp. 1475 A KF778470* have been characterised at our aligned region (i.e., C-terminal region/3′-end) and are publicly available (GenBank nucleotide database, access 01-June-2016). Similarly, only 18 mtDNA COI partial sequences representing seven (i.e., *Eret. hawaii*, *Eret. mundus, Eret. emeritis, Eret. orphanoplasti, Eret. cocois, Eret. desantisii, Eret. sp. YBZ-2013) of 81 valid *Eretmocerus* species have been reported (GenBank nucleotide database, access 01-June-2016), and none originated from Japan, the likely origin of the *Eretmocerus* species detected in the 1942 *Bemisia* nymph host. Of these 18 reported *Eretmocerus*
species mtCOI sequences, two belonged to *Eret. eremicus* (FM210161, FM210163) and six to *Eret. orchamoplati* (HQ660514, JF750711 to JF750715), and had the N-terminal region (i.e., 5' end) of the mtCOI gene characterized at 460–651 bp. Sequence identities between the 1942 Japanese *Eretmocerus* species and *Eret. eremicus* or *Eret. orchamoplati* were both at 85% for this 5'-end partial mtCOI gene region, further ruling out them as candidates.

Three species of *Eretmocerus* are currently known from Japan \(^{51}\): *Eret. aleurolobi* (Ishii 1938), *Eret. furuhashii* (Rose and Zolnerowich 1994) and *Eret. serius* (Silvestri 1927), but none has yet been sequenced for mtCOI genes. *Eret. aleurolobi* has only been recorded from *Aleurolobus marlatti*. *Eret. serius* is a well-known parasitoid of *Aleurocanthus* species in the Oriental region, with two published records from *B. tabaci*, either of which appears to be reliable \(^ {52,53}\). The third species, *Eret. furuhashii* is known only from *Parabemisia myricae*. However, Hoelmer and Goolsby \(^ {54}\) record ‘*Eret. near furuhashii*’ as one of the species introduced from Taiwan into USA against *B. tabaci*. This identification would have been made by Rose, who clearly considered this *B. tabaci* parasitoid close to, but distinct from, *Eret. furuhashii* which he had co-described in 1994. There is thus strong circumstantial evidence that our historical *Eret. sp.* from Japan is this undescribed species from Taiwan that Rose designated ‘near furuhashii’. In China, at least 19 aphelinid wasps have been recorded to parasitise *Bemisia*, with *Eret. sp. nr. furuhashii* being the most abundant, followed by *En. bimaculata* (Heraty and Polaszek), being responsible for 53.3% parasitism in agricultural crops \(^ {35,36}\). Given that the partial mtCOI phylogeny did not support our unknown parasitoid as being an Encarsia species, it would rule out *En. bimaculata*, leaving *Eret. sp. nr. furuhashii* (Fig. 4) as the most probable candidate. Two further pieces of supporting evidence that *Eret. sp. near furuhashii* is the likely candidate came from the partial mtCOII (cytochrome oxidase subunit II) gene (424 bp; GenBank KX714953) and the 28 s rRNA gene (GenBank KX714966) assembled and identified from the 1942 Japanese *Bemisia* nymph specimen, where these two partial hymenopteran genes (i.e., mtCOII, 28 s rRNA) matched *Eret. sp. nr. furuhashii* from Sanya China, between the mtCOII at nucleotide positions 64 and 332 (i.e., JF820015, 266 bp) with 98.14% sequence identity, and between the 28 s rRNA at nucleotide positions 4,348 and 4,804 (i.e., JF899345, 457 bp) with 100% sequence identity.

Although intriguing, it remains to be seen whether the 1942 Japanese native *Bemisia* species is a natural host of *Eret. sp. nr. furuhashii*, and whether the abundance of this aphelinid wasp is the same in Japan as in China. The identity of the *Eretmocerus* species that parasitized the Japanese 1942 *Bemisia* nymph will for now remain unconfirmed and intra-species genetic diversity survey, followed by morphological and molecular characterisation of aphelinid wasps in this native Japanese *Bemisia* species will be needed for its future identification. Our study demonstrated the possibility of investigating tritrophic interactions between host, parasitoid and endosymbionts in museum specimens from just 1.5 ng of double stranded gDNA. While *Tin et al.* \(^ {38}\) demonstrated between 14–220 ng of gDNA would be sufficient for genome-wide SNP analysis via the Restriction-Associated DNA sequencing (i.e., RAD-Tag/RADseq) method for museum specimens (collected from 1910 to 1976), our protocol further reduced the required gDNA for NGS methods to approximately one-tenth of the 14 ng used by *Tin et al.* \(^ {38}\). Our method also overcame the challenge of working with highly fragmented gDNA starting material without performing an initial ‘end-repair’ step \(^ {38}\) that may lead to the loss of gDNA. Although non-destructive extraction of gDNA is possible from a range of small insects \(^ {38}\) including Aphelinidae wasps \(^ {38}\), it was not attempted for these *Bemisia* museum specimens, and could be adopted to provide a non-destructive NGS protocol for the recovery of these historical specimens. Our method described here will offer significantly improved opportunity to better investigate the genomics of historical specimens, and together with new genome-wide SNP generating methodologies that have been developed \(^ {38}\), will deepen our knowledge regarding how current ecological and
climatic conditions as well as anthropogenic factors have impacted on species historical distributional range and their bacterial metacommunity compositions.

Material and Methods

A single *Bemisia emiliae* pupa (cotype) was collected from Hakgala, Sri Lanka (formerly Ceylon), by E. E. Green in May 1912. It was formerly described 14 years later\(^1\). The specimen was deposited at the Smithsonian Institution, Washington D.C. The second sample is a single whitely 4\(^{th}\) instar nymph collected by S. Kanda in Muroto, Shikoku, Japan on 08-Aug-1942 and morphologically identified as *B. tabaci*. All samples were made available for use in this study by Greg Evans, USDA APHIS NIS.

The extraction protocol consisted of first placing the pupa in 1,000 \(\mu\)L of analytical grade 99.9% ethanol for 24 hours in a sterile 1.5 mL Eppendorf tube. The ethanol was then removed and the specimen and air-dried for 15 minutes at room temperature. Once dried, the pupa was crushed in a sealed P200 sterile pipette tip and extracted using a modified protocol that combined the Qiagen Blood and tissue DNA extraction kit and the Zymo Research DNA concentrator protocol. The protocol was modified to improve the quality and yield of DNA extracted. It involved digesting the crushed pupa in 196 \(\mu\)L of AL (Qiagen) and 4 \(\mu\)L of proteinase K (Qiagen; >600 mAU/mL) for 24 hours at 56 °C. At the end of the digestion step, 4 \(\mu\)L of RNase A (Qiagen; 100 mg/mL) was added and incubated at room temperature for 5 minutes. The digestion buffer with the pupa was pulse-spun and 200 \(\mu\)L of wash buffer AW1 (Qiagen) was added. The liquid was then transferred to the Zymo Research genomic DNA concentrator column, centrifuged as per the Zymo Research genomic DNA concentrator protocol (10,000 g, 1 min). The washing step was repeated and the gDNA was finally eluted in 15 \(\mu\)L of Buffer EB (Qiagen, Cat. # 19086). We used 2 \(\mu\)L of the eluted gDNA to estimate DNA concentration using Qubit v2.0 (Life Technologies, Grand Island, NY) dsDNA HS assay. The remaining amount of eluted gDNA (ca. 3.98 ng (B. emiliae); ca. 24.01 ng (1942 ‘Bemisia’)) in Elution Buffer (~12.5 \(\mu\)L) was allowed to evaporate at room temperature for 16 hours (in a sterile fume hood, uncapped, but loosely covered by a piece of clean Kimwipe tissue). The dried gDNA from the pupa was then re-suspended in 5 \(\mu\)L nuclease-free water (Qiagen, Cat.129114) for 60 minutes at room temperature.

Preparation and normalisation of Nextera XT library to 2 nM of amplicon molecules. Although the Nextera XT protocol recommended only 1.0 ng of double stranded gDNA as starting input material, we used 1.5 ng of double stranded gDNA for very small museum specimens such as *Bemisia* nymphs, to compensate for the likely presence of very fragmented gDNA (i.e., <50 bp) and to allow for targeting of slightly larger fragments for \(2 \times 300\) bp PE sequencing. The amount of 1.5 ng of double stranded gDNA was sampled from each of *B. emiliae* and the 1942 *Bemisia* specimens and processed using the Nextera XT DNA Library Preparation kit (Illumina, Cat. # FC-131-1096). Individual *Bemisia* pupae gDNA was tagedmented (tagged and fragmented) by the Nextera XT transposome. The tagedmented gDNA was amplified in a limited cycle PCR reaction to add indexes and Illumina adapter sequences (Illumina, Cat. # FC-131-2003) for sample tracking and cluster formation. For each *Bemisia* specimen, the amplified library was purified and size-selected using AMPure XP beads (Beckman Coulter, Cat. # A63881). Purified libraries were then quantified by Qubit dsDNA HS assay and the size distribution checked by HS D1000 screentape assay (Agilent, Cat. # 5067–5584) on an Agilent 2200 Tapestation. The insert sizes of our gDNA libraries were determined to range between 160–500 bp for *B. emiliae* and between 154–1,234 bp for the 1942 ‘*Bemisia*’ species, and both have a peak fragment size of 256 bp. The Illumina Nextera XT libraries were then normalized to a final concentration of 2 nM, denatured and diluted to a final concentration of 10 pM and combined with a Phi X control library (Illumina, Cat. # FC-110-3001), spiked in at 2.5%. The Illumina libraries were then sequenced on an Illumina MiSeq sequencer using a MiSeq reagent kit v3, 600 cycles (Illumina, Cat. # MS-102-3003) to perform a \(2 \times 301\) bp paired-end sequencing run.

We used Geneious version 8.0.5 (Biomatters Ltd, Auckland, NZ) to assemble of the full mitogenome of *B. emiliae*, using the *Bemisia tabaci* cryptic species Asia I mitogenome (KJ778614)\(^3\) as a reference. We used Illumina reads with quality checking performed within Geneious version 8.0.5 for mitogenome assembly and annotations. The assembly parameters consisted of 10% maximum mismatches per read, minimum overlap of 25 bp, maximum gap size of 3 bp, and minimum overlap identity of 80%. The mitogenome annotation was conducted using MITOS\(^4\), with manual fine-tuning of putative start codon position for all protein coding genes within Geneious. Pairwise mitogenome alignments between the 1942 ‘*B. tabaci*, *B. emiliae*, and *B. tabaci* Asia I (KJ778614) were performed using MAFFT v7.017\(^5\) within the Geneious version 8.0.5 program and implementing default parameters (Algorithm: Auto; Scoring matrix: 200 PAM/k). The mitogenome annotation was then performed using MITOS\(^4\), with manual fine-tuning of putative start codon position for all protein coding genes within Geneious. Pairwise mitogenome alignments between the 1942 ‘*B. tabaci*, *B. emiliae*, and *B. tabaci* Asia I (KJ778614) were performed using MAFFT v7.017\(^5\) within the Geneious version 8.0.5 program and implementing default parameters (Algorithm: Auto; Scoring matrix: 200 PAM/k = 2; Gap open penalty: 1.53; Offset value: 0.123). To quantify microbial community compositions in the gDNA of both historical *Bemisia* specimens, paired-end sequence reads were analysed using MG-RAST metagenomic analysis server version 3.6. Analyses of gDNA from both 1912 *B. emiliae* and 1942 ‘*B. tabaci*’ samples were carried out using the default settings. Output sequences best matching hymenopteran mtDNA genes were used as template for re-assembly of contigs in Geneious version 8.0.5. MG-RAST metagenomic analysis results can be accessed from the MG-RAST website http://metagenomics.anl.gov using the accession numbers 46811440.3 and 4690946.3 for the 1912 *B. emiliae* and the 1942 *Bemisia* species, respectively.

We conducted a phylogenetic analysis to infer species relationships of the unknown Hymenoptera to selected Chalcidoidea parasitoid wasp species belonging to six genera (i.e., *Eretmocerus*, *Nasonia*, *Philotrypsis*, *Coccophagoides*, *Encarsia*, *Eurytoma*; Supplementary Table 2), based on partial mtCOI gene as obtained from GenBank nucleotide database (accessed 01-Jun-2016). Sequences were imported into CLC Sequence Viewer version 7.6 (Qiagen Aarhus A/S) and followed by alignment using default settings (Gap open cost = 10; Gap extension = 1.0). Alignment of the partial mtCOI gene is generally straightforward across diverse insect groups as it typically does not involve INDELS. Trimming of sequences therefore only involved removal of flanking 5\' and 3\' regions that extended beyond the region and length of interest. Trimmed sequences (657 bp) were used...
to generate a Maximum Likelihood phylogenetic tree using PhyML 3.0 [http://atgc-montpellier.fr/phyml/], using the 'autOMATIC model selection' option, followed by 1,000 bootstrap replications to estimate node confidence. The phylogenetic tree was then visualized in Dendroscope (Hudson and Scornavacca 2012) version 3.2.10 [www.dendroscope.org].

Identification of Wolbachia coxA and wsp partial gene sequences. The two regions of the Wolbachia wsp partial gene (106bp, 230bp: GenBank KX714969) were compared to sequences available in GenBank using Blastn search, and aligned and trimmed in Geneious version 8.0.5 to estimating the leve of sequence identity (Table 3). The coxA database was accessed (9-July-2016) and aligned with the 189bp partial coxA gene sequence (GenBank KX714965) identified from the 1942 Bemisia specimen using Geneious version 8.0.5 to identify SNP patterns (Table 4).

Identification of the parasitoid mtDNA and ribosomal (18S–28S) gene sequences. We assembled the complete 18s rRNA/ITS1/5.8s rRNA/ITS2/28s rRNA genes of the parasitoid larva from the 1942 Bemisia 4th instar nymph by using the Eret. sp. nr. furuhashi partial 28s rRNA sequence (JF820005) from GenBank as reference sequence. The contig obtained was characterised for ribosomal RNA subunits using the web-based RNAmmer 1.2 Server [64] to predict the presence of 5s/8s, 16s/18s and 23s/28s ribosomal RNA. Contig assembly for various mtDNA genes were based on partial hymenopteran mtDNA gene regions identified by MG-RAST. These partial gene regions were subsequently used as reference sequences for contig assembly in Geneious version 8.0.5, using default settings as described for the assembly of the 1912 B. emiliae and the 1942 Bemisia mt-chromosomes. To ensure that as many of as possible of known Chalcidoidea mtDNA genes were identified in our 1942 Bemisia specimen MiSeq Nextera XT library, we also used the Nasonia longicornis partial mtDNA genome (EU746612) previously reported by Oliveira et al. [65] as a reference genome in mining for mitochondrial DNA genes.

Ascertaining historical Bemisia gDNA quality against published B. tabaci genome. The paired-end reads corresponding respectively to B. emiliae and B. sp. 'IpL' were mapped to the B. tabaci (MEAM1) genome [http://www.whiteflygenomics.org/cgi-bin/bta/blast.cgi] (last accessed 14-November-2016) using the Burrows-Wheeler Aligner BWA v.0.7.12 [66], with the defaults parameters. The mapped reads were converted from sam to bam format and checked for mapping quality using SAMtools [67]. The percentage of read mapping in the case of B. emiliae is 80.04%, from which 77.44% of reads were properly paired, whereas it was respectively 53.92% and 49.95% for B. sp. 'IpL'.

References

1. Mound, L. A. Host-correlated variation in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Proceedings of the Royal Entomological Society of London (A) 38, 171–180 (1963).
2. Mound, L. A. & Halsey, S. H. Whitefly of the World (British Museum (Natural History)/John Wiley & Sons, 1978).
3. Russell, L. M. Synonyms of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Bulletin of the Brooklyn Entomological Society 52, 122–123 (1957).
4. De Barro, P. J., Liu, S. S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: a statement of species status. Ann Rev Entomol 56, 1–19, doi:10.1146/annurev-ento-112408-085504 (2011).
5. Boykin, L. M., Bell, C. D., Evans, G., Small, I. & De Barro, P. J. Agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha): Dating, diversification and biogeographic evidence revealed. BMC Evol Biol 13, 122, doi:10.1186/1471-2148-13-122 (2013).
6. Tay, W. T., Evans, G. A., Boykin, L. M. & De Barro, P. J. Will the real Bemisia tabaci please stand up? PLoS One 7, e50550, doi:10.1371/journal.pone.0050550 (2012).
7. Shatters, R. G. Jr., Powell, C. A., Boykin, L. M., Liangsheng, H. & McKenzie, C. L. Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers. J Econ Entomol 102, 750–758 (2009).
8. Boykin, L. M. et al. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 44, 1306–1319, doi:10.1016/j.ympev.2009.04.020 (2007).
9. Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved Polymerase Chain Reaction primers. Ann Entomol Soc Am 87, 651–702 (1994).
10. Arnemann, J. A. et al. Complete mitochondrial genome of the soybean stem fly Melanagromyzra sojae (Diptera: Agromyzidae). Mitochondrial DNA A DNA MappSeq Anal 1–2, doi:10.3109/19401736.2015.1101550 (2016).
11. Tay, W. T., Elkhid, S., Court, I., Gordon, K. H. & De Barro, P. J. Complete mitochondrial DNA genome of Bemisia tabaci cryptic pest species complex Asia I (Hemiptera: Aleyrodidae). Mitochondrial DNA A DNA MappSeq Anal 27, 972–973, doi:10.3109/19401736.2014.926511 (2016).
12. Timmermans, M. J. T. N., Vibeck, C., Martin, G., Hopkins, K. & Vogler, A. P. Rapid assembly of taxonomically validated mitochondrial genomes from historical insect collections. Biol J Linn Soc 117, 83–95, doi:10.1111/bij.12552 (2016).
13. Ueda, S., Kitamura, T., Kijima, K., Honda, K. I. & Kanniya, K. Distribution and molecular characterization of distinct Asian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in Japan. J Appl Entomol 133, 355–366, doi:10.1111/j.1439-0418.2008.01379.x (2009).
14. Dubey, A. K., Ko, C. C. & David, B. V. The genus Lipaphylerodes Takahashi, a Junior Synonym of Bemisia Quaintance and Baker (Hemiptera: Aleyrodidae): A Revision Based on Morphology. Zool Stud 48, 539–557 (2009).
15. Gotzek, D., Clarke, J. & Shoemaker, D. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae). BMC Evol Biol 10, 300, doi:10.1186/1471-2148-10-300 (2010).
16. Song, S. N., Tang, P., Wei, S. J. & Chen, X. X. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans. Sci Rep 6, 20972, doi:10.1038/srep20972 (2016).
17. Dowton, M. & Austin, A. D. Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Mol Biol Evol 16, 298–309 (1999).
18. Watanabe, Y., Sueutsu, T. & Ohtsuki, T. Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Front Genet 5, 109, doi:10.3389/fgene.2014.00109 (2014).
19. Masta, S. E. Phyleogeography of the jumping spider Habronattus lugillius (araneae: salticidae): recent vicariance of sky island populations? Evolution 54, 1699–1711 (2000).
56. Qiu, B.-L., Ren, S.-X., Lin, L. & Wang, X.-M. Species and dynamics of aphelinid parasitoids of *Bemisia tabaci* in Guangdong area. *Entomological Knowledge* **41**, 18–22 (2004).
57. Ren, S. X., Wang, Z. Z., Qiu, B.-L. & Xiao, Y. The pest status of *Bemisia tabaci* in China and non-chemical control strategies. *Entomologica Sinica* **18** (2001).
58. Tin, M. M., Economo, E. P. & Mikheyev, A. S. Sequencing degraded DNA from non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun phylogenetics. *PloS One* **9**, e96793, doi:10.1371/journal.pone.0096793 (2014).
59. Rowe, K. C. *et al.* Museum genomics: low-cost and high-accuracy genetic data from historical specimens. *Mol Ecol Resour* **11**, 1082–1092, doi:10.1111/j.1755-0998.2011.03052.x (2011).
60. Tay, W. T., Beckett, S. J. & De Barro, P. J. Phosphine resistance in Australian *Cryptolestes* species (Coleoptera: Laemophloeidae): perspectives from mitochondrial DNA cytochrome oxidase I analysis. *Pest Manag Sci* **72**, 1250–1259, doi:10.1002/ps.3805 (2016).
61. Corbett, G. H. Contribution towards our knowledge of the Aleurodidae of Ceylon. *B Entomol Res* **16**, 267–284 (1926).
62. Bernt, M. *et al.* MITOS: Improved de novo metazoan mitochondrial genome annotation. *Mol Phylogenet Evol* **69**, 313–319, doi:10.1016/j.ympev.2012.08.023 (2013).
63. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res* **30**, 3059–3066, doi:10.1093/nar/gkl436 (2002).
64. Lageen, K. *et al.* RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res* **35**, 3100–3108, doi:10.1093/nar/gkm160 (2007).
65. Oliveira, D. C., Raychoudhury, R., Lavrov, D. V. & Werren, J. H. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp *Nasonia* (hymenoptera: ptoromalidae). *Mol Biol Evol* **25**, 2167–2180, doi:10.1093/molbev/msn159 (2008).
66. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**, 1754–1760, doi:10.1093/bioinformatics/btp324 (2009).
67. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–2079, doi:10.1093/bioinformatics/btp352 (2009).

Acknowledgements
S.E. was supported by a CSIRO OCE Postdoctoral Fellowship. We thank Tom Walsh and Matthew Morgan for input to improve an earlier version of the manuscript.

Author Contributions
Conceived ideas P.J.D.B., G.A.E., A.P., S.E., K.H.J.G., W.T.T.; Laboratory work L.N.C., A.P., W.T.T.; sequence data analysis S.E., W.T.T.; manuscript preparation P.J.D.B., G.A.E., L.N.C., S.E., K.H.J.G., W.T.T.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-00528-7

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/)

© The Author(s) 2017