Concurrent purification of two defense proteins from French bean seeds: a defensin-like antifungal peptide and a hemagglutinin

EDWIN H. W. LEUNG, JACK H. WONG and T. B. NG*

Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China

Received 20 August 2007; Accepted 29 August 2007

Abstract: A purification protocol is described herein for concurrent isolation of two defense proteins including a 6-kDa defensin-like antifungal peptide and a 60-kDa dimeric hemagglutinin from seeds of the French bean (Phaseolus vulgaris). It involved ion-exchange chromatography on SP-Sepharose, affinity chromatography on Affi-gel blue gel, ion-exchange chromatography on Q-Sepharose, and gel filtration on Superdex Peptide (for defensin-like antifungal peptide) or Superdex 200 (for hemagglutinin). Both antifungal and hemagglutinating activities were adsorbed on SP-Sepharose and then on Affi-gel blue gel. Hemagglutinin was subsequently unadsorbed and defensin-like antifungal peptide adsorbed on Q-Sepharose. The antifungal activity of the antifungal peptide was stable in the temperature range of 0–90 °C for 20 min, in the pH range of 4–10, and after exposure to trypsin (1 mg/ml) at 37 °C for 1 h. The hemagglutinin was stable from 10 to 80 °C, from pH 1 to 12, and after treatment with trypsin at 37 °C for 2 h. It inhibited [methyl-3H]thymidine incorporation into breast cancer (MCF-7), leukemia (L1210), hepatoma (HepG2) and human embryonic liver (WRL68) cells with an IC50 of 6.6, 7, 13 and 15 µM, respectively, and elicited maximal mitogenic response from mouse splenocytes at 1 µM concentration. It curtailed HIV-1 reverse transcriptase activity with an IC50 of 1.9 µM, but was devoid of antifungal activity. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd.

Keywords: defensin-like antifungal peptide; hemagglutinin; isolation; French bean

INTRODUCTION

Leguminous plants have tremendous economic importance. Their products including phytoestrogens [1] and protease inhibitors [2] may have some bearing on human health. Other products include antifungal proteins that may have value in protecting crops from fungal destruction [3–5], α-amylase inhibitors that may have anti-insect activity [6], lectins/hemagglutinins that may have mitogenic and antiproliferative activities [3,7–9], and ribosome inactivating proteins with translation-inhibitory, antifungal, antiviral and antitumor activities [10]. Thus, there is a voluminous amount of literature on leguminous products, especially proteins, many of which have a function of defense.

Antifungal proteins and lectins have been isolated from diverse organisms. They represent intensively studied proteins on account of their potentially exploitable activities including anticancer/antiproliferative, immunoenhancing and antiviral [8,9,11–13] activities. However, to date, antifungal proteins and lectins have not been reported from the French bean, a common vegetable.

Phaseolus vulgaris is a leguminous species with different cultivars. The objective of the present study was to isolate, for the first time, a defensin-like antifungal peptide and a hemagglutinin/lectin from the French bean cultivar of P. vulgaris, and to compare its characteristics and activities with its counterparts from other cultivars.

MATERIALS AND METHODS

Purification Protocol

Dried seeds of P. vulgaris cv. French bean cultivar number 12 from Mainland China (25 g) were soaked in distilled water overnight prior to homogenization and then centrifugation. To the resulting supernatant, NH4OAc buffer (pH 4.5) was added until a final concentration of 10 mM was attained. Cation-exchange chromatography on a 2.5 × 16 cm column of SP-Sepharose (Amersham Biosciences) was carried out. After removal of unadsorbed proteins (fraction SP1), adsorbed proteins were eluted sequentially with 0.2 M NaCl and 1 M NaCl in 10 mM NH4OAc buffer (pH 4.5) into fractions SP2 and SP3, respectively. Fraction SP3 was dialyzed extensively against distilled water. Tris-HCl buffer (pH 7.4) was added till a final concentration of 10 mM Tris was reached. SP3 was then applied on a 2.5 × 16 cm column of Affi-gel blue gel (Bio-Rad) that had previously been equilibrated with and was eluted with 10 mM Tris-HCl buffer (pH 7.4). After unadsorbed proteins (fraction BG1) had come off the column, adsorbed proteins (fraction BG2) were desorbed with 10 mM Tris-HCl buffer (pH 7.4) containing 1 M NaCl. Fraction BG2 was dialyzed against distilled water before addition of concentrated NH4HCO3 solution to produce a final concentration of 10 mM NH4HCO3. Fraction BG2 was then loaded on a 2.5 × 16 cm
column of Q-Sepharose (Amersham Biosciences) in 10 mM
NH$_4$HCO$_3$ buffer (pH 9.4). The trace amount of proteins,
unadsorbed on Q-Sepharose, was subjected to gel filtration
on Superdex Peptide (Amersham Biosciences). The single peak
eluted represented defensin-like antifungal peptide. The Q-
Sepharose column was eluted with 10 mM NH$_4$HCO$_3$ buffer
(pH 9.4) containing 1 M NaCl. The fraction desorbed was then
chromatographed on Superdex 200 in 10 mM NH$_4$HCO$_3$ (pH
9.4). The single peak eluted represented purified French bean
haemagglutinin.

Assay of Antifungal Activity

The assay of antifungal activity toward *Mycosphaerella
arachidicola*, *Rhizoctonia solani* and *Valsa mali* was carried
out in plates containing potato dextrose agar. After the
mycelial colony had developed, sterile blank paper disks were
placed around the rim of the mycelial colony. The plates
were incubated at 23 °C for 72 h until mycelial growth had
enveloped the disks containing the control and had formed
crescents of inhibition around disks and containing samples
with antifungal activity [14]. The IC$_{50}$-value of antifungal
activity was determined as described in [14].

Assay of Hemagglutinating Activity

In the assay for lectin (hemagglutinating) activity, a serial
dilution of the haemagglutinin solution was mixed with rabbit
red blood cells. The results were read after about 1 h [8].

The tests to investigate inhibition of haemagglutinin-
induced haemagglutination by various carbohydrates including
D-mannose, D-fructose, D-xylene, L-arabinose, raffinose,
L-rhamnose, D-melezitose, D-melibiose, cellobiose, D-ribose,
inositol, D-glucose, sucrose, D-galactose, galactitol,
O-nitropheryl-β-D-galactopyranoside and 4-O-β-D-galactopy-
ranosyl-D-glucose were performed as described in [8]. The
effects of temperature, NaOH, HCl and metallic chloride
solutions on haemagglutinating activity of the haemagglutinin
were examined, as previously described [8].

**Molecular Mass Determination and N-Terminal
Sequence Determination**

For molecular mass determination, the purified antifungal
peptide and haemagglutinin were subjected to sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) [15]
and gel filtration on an FPLC-Superdex 200 or Superdex
peptide column, which had been calibrated with molecular
mass markers. The N-terminal sequences were determined by
using a Hewlett-Packard HP G1000A Edman degradation unit
and an HP 1000 HPLC System.

Assay of Mitogenic Activity

The assay of mitogenic activity was performed as described in
[9] using splenocytes, isolated from BALB/c mice. The cellular
uptake of $[^3]$H-methyl-thymidine was used as an index of the
proliferative (mitogenic) response.

Assay of Nitric Oxide Inducing Activity

Assay of nitric oxide production by murine peritoneal
macrophages. The assay was conducted as described by

Wong and Ng [16]. Lipopolysaccharide was used as a positive
control in this assay.

Assay of Antiproliferative Activity

The cell lines L121 (leukemia), MCF-7 (mammary tumor),
HepG2 (hepatoma) and WR168 (embryonic liver) were pur-
chased from American Type Culture Collection were incubated
for 3 h before addition of the hemagglutinin. Incubation was
carried out for another 48 h. A MTT solution was added to
each well and incubated for 4 h. The medium was removed
and DMSO was added to dissolve MTT-formazan formed [9].

**Assay for Ability to Inhibit Human Immunodeficiency
Virus Type 1 (HIV-1) Reverse Transcriptase Activity**

The assay for ability to inhibit human immunodeficiency virus
(HIV) reverse transcriptase activity was carried out as detailed
in [8] using a nonradioactive ELISA kit.

Assay for Ability to Inhibit HIV-1 Integrase

The plasmid that expressed His-tagged wild-type HIV-1
integrase, pT7-7-His(YTX)-HIV-1-IN, was a generous gift from
Dr S.A. Chow (School of Medicine, UCLA). The expression
and purification of the protein were carried out as previously
described [17]. A nonradioactive ELISA-based HIV-1 integrase
assay was performed according to the method of DNA coated
plates [17].

**Screening for Inhibitory Effect on SARS Coronavirus
(CoV) Proteinase**

The activity of severe acute respiratory syndrome (SARS)
coronavirus(CoV) protease was indicated by a designed
substrate composed of two proteins linked by a cleavage
site for SARS CoV proteinase. The reaction was performed
in a mixture containing 5 μM SARS CoV proteinase, 5 μM test
sample, 20 μM substrate and buffer (20 μM Tris-HCl (pH 7.5),
20 μM NaCl and 10 μM beta-mercaptoethanol) for 40 min at
37 °C. After 40 min, the reaction was stopped by heating at
100 °C for 2 min. Then the reaction mixture was analyzed by
SDS-PAGE. If SARS CoV proteinase is inhibited by the test
sample, there is only one band, which represents the intact
substrate, revealed by SDS-PAGE.

RESULTS

**Isolation of French Bean Defensin-Like Antifungal
Peptide and Hemagglutinin**

Ion-exchange chromatography of French bean seed
extract on SP-Sepharose yielded a large unadsorbed
fraction SP1 and a small adsorbed fraction SP2. both
devoid of antifungal and hemagglutinating activities
(Figure 1). Fraction SP3 eluted with 1 M NaCl
was largely adsorbed on Affi-gel blue gel. The antifungal
and hemagglutinating activities in fraction SP3
were recovered in fraction BG2 adsorbed on Affi-gel blue gel. The traces of unadsorbed materials in fraction BG1
lacked antifungal and hemagglutinating activities (data not shown). Upon chromatography on Q-Sepharose fraction, BG2 appeared as a very small unadsorbed peak and a single adsorbed peak that was eluted by 1 M NaCl in the starting buffer (data not shown). The tiny unadsorbed peak from Q-Sepharose was chromatographed on Superdex Peptide to yield a single 6-kDa peak that represented purified defensin-like antifungal peptide (data not shown). The adsorbed peak on Q-Sepharose, which yielded a single 60-kDa peak after gel filtration on Superdex 200 (data not shown) and appeared as a single band with a molecular mass of 30 kDa in SDS-PAGE (data not shown), represented purified hemagglutinin. The purification of French bean defensin-like antifungal peptide and hemagglutinin is summarized in Table 1.

Characterization of French Bean Defensin-Like Antifungal Peptide and Hemagglutinin

The N-terminal sequence of defensin-like antifungal peptide was homologous to plant defensins (Table 2). French bean hemagglutinin closely resembled

![Cation-exchange chromatography of French bean extract on SP-Sepharose column starting buffer: 10 mM NH₄OAc buffer (pH 4.5). The third fraction (SP3) eluted with 1 M NaCl was the fraction enriched in antifungal and hemagglutinating activities.](image)

Table 1 Yields and specific hemagglutinating (ha) and antifungal activities of different chromatographic fractions derived from French bean seed extract (25 g)

Fraction	Protein yield (mg)	Specific ha activity (units/mg)	Total ha activity (units)	Recovery of ha activity (%)	Purification fold of ha activities	IC₅₀°
Crude extract						
Fraction SP3 from SP-Sepharose	12	7.83 × 10⁴	9.4 × 10⁶	61.3	3.52	72
Fraction BG2 from Affi-gel blue gel	5.15	1.49 × 10⁵	7.68 × 10⁵	50	6.71	55
Fraction adsorbed on Q-Sepharose	3.41	1.80 × 10⁵	6.14 × 10⁵	40	8.10	—
Fraction unadsorbed on Q-Sepharose (= purified defensin-like antifungal peptide)	0.28	—	—	—	—	27
Fraction SU from Superdex 200 (= purified hemagglutinin)	1.2	2.32 × 10⁵	2.78 × 10⁵	18.1	10.41	—

°IC₅₀ of antifungal activity toward *Rhizoctonia solani* in microgram/ml.

Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd.
Table 2 Comparison of N-terminal sequences of French bean defensin-like antifungal peptide and hemagglutinin with other defensin-like antifungal peptides and hemagglutinins/lectins

N-terminal sequence	Reference	
French bean defensin-like antifungal peptide (1–10)	KTCENLADTY	This study
Vulgarinin (1–10)	KTCENLADTY	[14]
Medicago trunculata defensin (29–37)	TCENLADTY	BLAST search
Pachyrhizus erosus defensin (1–10)	KTCENLADTY	BLAST search
French bean hemagglutinin	ATETYFNFQRFCETNIFIQR	This study
Pinto bean lectin	ASETSFSEFQFVEVTLNQL QR	[9]
Red kidney bean hemagglutinin	ANQTSFNFQRDFETNLNIQR	[3]
Haricot bean hemagglutinin	ASESYFNFQRFEETN	[14]
Phaseolus acutifolius lectin (25–44)	ANDISFNQRFNETNLNLQG	[7]
Phaseolus coccineus lectin (22–41)	ASETSFSEFQFNETNLNLQ	BLAST search

Identical amino acid residues are underscored.

15 µM, respectively. It inhibited HIV-1 reverse transcriptase with an IC₅₀ of 1.9 µM (detailed data not shown), but was incapable of inhibiting HIV-1 integrase, SARS proteinase and mycelial growth (data not shown).

DISCUSSION

The present paper represents the first report of a defensin-like antifungal peptide and a hemagglutinin from the French bean. Previously, a thaumatin-like antifungal protein, and a peroxidase-like antifungal protein from the French bean have been described [4,5]. French bean defensin-like antifungal peptide resembles previously isolated plant defensin-like peptides in N-terminal sequence, molecular mass, chromatographic behavior on Affi-gel blue gel and ion exchangers, stability to trypsin, pH stability and thermostability [14,18]. However, it lacks inhibitory activity toward HIV-1 integrase and SARS proteinase.

Hemagglutinins/lectins, produced by French bean and other cultivars of *P. vulgaris* including pinto bean, red kidney bean, haricot bean and flageolet bean possess highly homologous but not identical N-terminal sequences. Lectins from other *Phaseolus* species also demonstrate similar N-terminal sequences. Lectins/hemagglutinins from French bean, flageolet bean, red kidney bean and pinto bean are dimeric but haricot bean hemagglutinin is tetrameric although the subunit molecular mass for all of them is approximately 30 kDa. With regard to sugar specificity, the hemagglutinating activity of hemagglutinins from French bean and other *P. vulgaris* cultivars cannot be inhibited by simple sugars whereas pinto bean lectin is galactose-specific. French bean hemagglutinin exhibits antiproliferative activity toward tumor cells like hemagglutinins from red kidney bean, haricot bean, and flageolet bean [3,9,19]. However, pinto bean...
lectin is devoid of antiproliferative activity. Mitogenic activity toward mouse splenocytes is a common feature of all these lectins/hemagglutinins. Unlike banana lectin [16], French bean hemagglutinin is not capable of augmenting nitric oxide production by mouse macrophages. In contrast to findings about the antifungal activity of some lectins [3]. French bean hemagglutinin is destitute of antifungal activity just like its counterparts from pinto bean and haricot bean.

Some lectins inhibit HIV-1 replication. French bean hemagglutinin manifests HIV-1 reverse transcriptase inhibitory activity \(\text{IC}_{50} = 1.9 \, \mu M \) which is slightly more potent than that of pinto bean lectin \(\text{IC}_{50} = 3 \, \mu M \). However, it does not inhibit HIV-1 integrase, unlike some of the milk proteins, antifungal proteins and ribosome inactivating proteins tested. It is also inactive against SARS proteinase. French bean hemagglutinin is stable over the temperature range 0–80°C and over the pH range 1–12. Its hemagglutinating activity is preserved after exposure to trypsin for 2 h, indicating that it does not have accessible lysine or arginine residues where cleavage and inactivation can occur or it may have dibasic pairs that are not cleaved. It is slightly more stable than pinto bean lectin which retains its hemagglutinating activity over the pH range 3–12 and the temperature range 0–70°C.

In summary, a highly efficient chromatographic procedure using SP-Sepharose chromatography initially for isolating French bean hemagglutinin and defensin-like antifungal peptide has been described herein. It is demonstrated in this study that lectins/hemagglutinins from different cultivars of a species are not identical in amino acid sequence and biological potency. French bean hemagglutinin isolated in the present study is fairly stable and biologically potent and possesses potentially exploitable activities. In addition, a defensin-like antifungal peptide has been isolated from French bean seeds. Previously a thaumatin-like protein and a peroxidase-like antifungal protein have been purified from French bean legumes. The antifungal activity of defensin toward \(R. \ solani \) and \(V. \ mali \) is first demonstrated in this study. Transgenic plants expressing French bean defensin would be expected to have a stronger resistance to fungal pathogens. French bean hemagglutinin, which is relatively stable to trypsin and a variety of pH values and temperatures, and exhibit mitogenic activity toward splenocytes and antiproliferative activity, may have health-promoting effects in human.

Acknowledgements
The excellent secretarial assistance of Dr Jack Wong, Miss Fion Yung and Miss Kathy Lau is appreciated.

References

1. Reinwald S, Weaver CM. Soy isoflavones and bone health: a double-edged sword? J. Nat. Prod. 2006; 69: 450–459.
2. Haq SK, Khan RH. Characterization of an proteinase inhibitor from *Cajanus cajan*(L.). J. Protein Chem. 2003; 22: 543–554.
3. Ye XY, Ng TB. Tsang PW, Wang J. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean *Phaseolus vulgaris* seeds. J. Protein Chem. 2001; 20: 367–375.
4. Ye XY, Ng TB. Isolation of a novel peroxidase from French bean legumes and first demonstration of antifungal activity of a non-milk peroxidase. *Life Sci.* 2002; 71: 1667–1680.
5. Ye XY, Wang HX. Ng TB. First chromatographic isolation of an antifungal thaumatin-like protein from French bean legumes and demonstration of its antifungal activity. *Biochem. Biophys. Res. Commun.* 1999; 263: 130–134.
6. Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJ, Hogan SP. Transgenic expression of bean alpha-amylase inhibitor in pea results in altered structure and immunogenicity. *J. Agric. Food Chem.* 2005; 53: 9023–9030.
7. Reynoso-Camacho R, Gonzalez de Mejia E, Loarca-Pina G. Purification and acute toxicity of a lectin extracted from tepary bean *Phaseolus acutifolius*. *Food Chem. Toxicol.* 2003; 41: 21–27.
8. Wong JH, Ng TB. Purification of a trypsin-stable lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activity. *Biochem. Biophys. Res. Commun.* 2003; 301: 545–550.
9. Wong JH, Wong CC, Ng TB. Purification and characterization of a galactose-specific lectin with mitogenic activity from pinto beans. *Biochim. Biophys. Acta* 2006; 760: 808–813.
10. Lam SS, Wang HX, Ng TB. Purification and characterization of novel ribosome inactivating proteins, alpha- and beta-pisatins, from seeds of the garden pea *Pisum sativum*. *Biochem. Biophys. Res. Commun.* 1998; 253: 135–142.
11. Barrientos LG, Gronenborn AM. The highly specific carbohydrate-binding protein cyanovirin-N: structure, anti-HIV/Ebola activity and possibilities for therapy. *MiniRev. Med. Chem.* 2005; 5: 21–31.
12. Andrade CA, Correia MT, Coelho LC, Nascimento SC, Santos-Magalhaes NS. Antitumor activity of Cratyliya mollis lectin encapsulated into liposomes. *Int. J. Pharm.* 2004; 278: 435–445.
13. Choi SH, Lyu SY, Park WB. Mistletoe lectin induces apoptosis and telomerase inhibition in human A253 cancer cells through dephosphorylation of Akt. *Arch. Pharmacal. Res.* 2004; 27: 68–76.
14. Wong JH, Ng TB. Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (*Phaseolus vulgaris*). *Int. J. Biochem. Cell Biol.* 2005; 37: 1626–1632.
15. Nielsen TB, Reynolds JA. Measurements of molecular weights by gel electrophoresis. *Methods Enzymol.* 1978; 48: 3–10.
16. Wong JH, Ng TB. Isolation and characterization of a glucose/mannose-specific lectin with simulatory effect on nitric oxide production by macrophages from emperor banana. *Int. J. Biochem. Cell Biol.* 2006; 38: 234–243.
17. Ng TB, Au TK, Lam TL, Ye XY, Wan DCC. Inhibitory effects of antifungal proteins on human immunodeficiency virus type 1 reverse transcriptase, protease and integrase. *Life Sci.* 2002; 70: 927–936.
18. Wong JH, Ng TB. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. *Peptides* 2005; 26: 1120–1126.
19. Xia L, Ng TB. An antifungal protein from flageolet beans. *Peptides* 2005; 26: 2397–2403.