СОВРЕМЕННЫЕ МЕТОДЫ ЛУЧЕВОЙ ДИАГНОСТИКИ НЕСТАБИЛЬНОСТИ НАДКОЛЕННИКА У ДЕТЕЙ. ВЫБОР СПОСОБА ЛЕЧЕНИЯ
© А.А. Саутенко, Е.В. Огарёв, В.Н. Меркулов, А.Г. Ельцин, Д.С. Мининков
ФГБУ «НМИЦ ТО им. Н.Н. Приорова» Минздрава России, Москва
Статья поступила в редакцию: 31.10.2017
Статья принята к печати: 27.04.2018

Введение. Нестабильность надколенника представляет собой распространенную проблему у детей. До 2–3 % всех травм коленного сустава приходится на острый вывих надколенника. По данным разных авторов, вывиху и последующему развитию нестабильности надколенника наиболее подвержены дети в возрасте 10–17 лет, поэтому необходимо обследовать детей с данной патологией по алгоритму и использовать адекватный метод лечения.

Цель — диагностика нестабильности надколенника у детей и последующий выбор метода лечения на основе полученных данных.

Материалы и методы. Работа основана на материале обследования и лечения 147 пациентов в 9-м детском травматолого-ортопедическом отделении. Большое внимание уделено компьютерной томографии, значимым параметрам и способам их измерения. Это такие параметры, как наклон надколенника, дисплазия дистального метаэпифиза бедренной кости, индекс TT-TG, ротационные соотношения бедра и голени.

Результаты. Предложен алгоритм обследования пациентов с использованием компьютерной томографии. Данные, полученные с применением МСКТ, принципиально влияли на выбор хирургического метода лечения пациентов.

Выводы. При обследовании пациентов с использованием МСКТ, в соответствии с определенным алгоритмом диагностики, появляется возможность выбора и использования необходимого метода лечения, что приведет к выздоровлению пациента и возвращению к уровню активности до травмы.

Ключевые слова: коленный сустав; компьютерная томография; надколенник; нестабильность, дети.

CURRENT METHODS OF PATELLAR INSTABILITY IMAGING IN CHILDREN. SELECTION OF THE BEST TREATMENT APPROACH
© A.A. Sautenko, E.V. Ogarev, V.N. Merkulov, A.G. Eltsin, D.S. Mininkov
N.N. Priorov Central Institute of Traumatology and Orthopedics, Moscow, Russia
For citation: Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2018;6(2):29-36
Received: 31.10.2017
Accepted: 27.04.2018

Background. Patellar instability is a common problem in pediatric patients. Up to 2%–3% of all knee injuries are associated with acute patellar dislocation. According to the data in the literature, patients aged 10–17 years are at the highest risk of patellar dislocation and subsequent instability. These patients must be evaluated according to the proposed algorithm to select the optimal treatment method.

Aim. To diagnose patellar instability in children and subsequently select the optimal treatment method based on acquired data.

Materials and methods. The study is based on data acquired through the examination and treatment of 147 patients at the 9th Department of Pediatric Traumatology and Orthopedics. Great emphasis was put on computed tomography (CT) data, its essential parameters, which require the most thorough analysis, and assessment methods. These parameters include patellar tilt, dysplasia of the distal metaepiphysis of the femur, the tibial tubercle–trochlear groove index, and the rotational relation of the femur and tibia.
Results. A novel algorithm for patient examination using CT is proposed. Data obtained by multislice CT (MSCT) had a significant influence on the selection of the surgical method for treating patients with patellar instability.

Conclusion. The examination of patients with patellar instability using MSCT in adherence to the proposed diagnostic algorithm allows the selection of the optimal treatment method, which will increase the likelihood of rapid recovery of patients and their return to the level of activity similar to that before injury.

Keywords: knee joint; computed tomography; patellar instability; pediatric surgery.
в норме равен 12 мм [12]. Кроме того, при значении индекса TT-TG 15–20 мм пациентам показана артроскопическая стабилизация надколенника с пластикой медиальной пателлофеморальной связки (МПФС) [13]. Также определяют наклон надколенника. По литературным данным, у пациентов с отсутствием нестабильности или вывихов надколенника этот угол был менее 20°, лишь у 3 % из них его величина превышала данное значение [10]. Кроме того, величина наклона надколенника находится в прямой зависимости от типа дисплазии блока бедренной кости: чем больше дисплазия, тем больше угол наклона надколенника. Пациентам с углом наклона надколенника менее 20° показана артроскопическая стабилизация без латерального релиза [14].

Большинство параметров при компьютерной томографии коленного сустава оценивают на аксиальных срезах. Одним из условий выполнения МСКТ является возможность пациента полностью разгибать коленный сустав. Только в этом положении можно оценить большинство параметров, в частности наклон и/или подвывих надколенника, так как при стабилизации коленного сустава надколенник фиксируется в вырезке блока бедренной кости, в результате чего эти нарушения корректируются.

Цель исследования — создание алгоритма обследования и диагностики пациентов с нестабильностью надколенника. По результатам обследования, полученным с применением лучевых методов исследования (УЗИ, МРТ и МСКТ), определить показания к выбору метода оперативного лечения: артроскопическая стабилизация надколенника по методике Ямамото, стабилизация надколенника с пластикой медиальной пателлофеморальной связки, стабилизация надколенника по одной из перечисленных методик с транспозицией бугристости большеберцовой кости.

Материалы и методы

Под нашим наблюдением находились 147 пациентов, проходивших лечение в отделении детской травмы и ее последствий ЦИТО (НМИЦ Toro им. Н.Н. Приорова) в возрасте от 5 до 18 лет. Из них было 86 девочек (58,5 %) и 61 мальчик (41,5 %). Длительность анамнеза с момента травмы до оперативного лечения составляла до 7 лет; наименьшие группы образовывали дети, у которых с момента вывиха прошло от одного года до двух лет (33 % — 49 пациентов) и от двух до четырех лет (34 % — 50 пациентов). Родители детей, которым проводили обследование по разработанному алгоритму, подписали информированное добровольное согласие и согласие на обработку персональных данных.

Основную группу составили 113 детей в возрасте от 12 до 18 лет; срок с момента травмы, приведшей к нестабильности надколенника, колебался от 3 месяцев до 4 лет. У 84 пациентов был привычный вывих надколенника, а у 29 детей — подвывих надколенника. При исследовании этих пациентов мы использовали компьютерную томографию. Таким образом, МСКТ была выполнена всем пациентам с закрытыми зонами роста, а также пациентам, у которых угол Q (угол квадрицепса) был более 25°. При клиническом осмотре отмечалась гипермобильность надколенника, смещение его кнаружи при сгибании коленного сустава, положительный J-симптом, положительный симптом наклона надколенника, боль при пассивном скольжении надколенника по надколенниковой поверхности бедра; при пальпации — боль вдоль внутреннего края надколенника, а также в проекции наружного мыщелка бедра.

Кроме того, проводили сравнение с контрольной группой. Эту группу составили дети с отсутствием патологии в пателлофеморальном сочленении, а также дети, у которых наблюдалась односторонняя нестабильность надколенника при интактном пателлофеморальном сочленении на контралатеральной стороне. В этой группе было 48 пациентов, из них 31 — с односторонней нестабильностью, а у 17 патология в пателлофеморальном суставе отсутствовала.

Рентгенографию коленного сустава выполняли в трех проекциях: прямой, боковой и аксиальной (под углом сгибания коленного сустава в 45°) [15]. По ее данным определяли положение надколенника относительно мыщелков бедренной кости и наличие или отсутствие сопутствующей костно-хрящевой патологии (костно-хрящевые выделения, перелом и т. д.). Также всем 147 пациентам с нестабильностью надколенника, а также пациентам контрольной группы осуществляли УЗИ коленного сустава. По данным ультразвукового исследования получали информацию о состоянии медиального поддерживающего аппарата, а также о сопутствующих повреждениях (повреждение менисков, гипертрофия жирового тела и т. д.). Также всем 147 пациентам с нестабильностью надколенника, а также пациентам контрольной группы осуществляли УЗИ коленного сустава. По данным ультразвукового исследования получали информацию о состоянии медиального поддерживающего аппарата, а также о сопутствующих повреждениях (повреждение менисков, гипертрофия жирового тела и т. д.). Выявлялись рубцовые изменения поддерживающего аппарата — дефекты, прерывистость, неоднородность, утолщения; повреждения хрящевой надколенника и мыщелков бедренной кости. А у пациентов из контрольной группы отмечалось нормальное строение медиального поддерживающего аппарата, отсутствие дефектов хрящевого покрытия надколенника и надколенниковой поверхности бедренной кости.
У 59 больных с нестабильностью надколенника, частыми вывихами (более 10 в год), сопутствующей нестабильностью коленного сустава (клиническими признаками разрыва крестообразных связок, коллатеральных связок) производили МРТ. При обследовании мультиспиральную компьютерную томографию выполнили 113 пациентам с нестабильностью надколенника, находившимся на лечении в отделении детской травмы и ее последствий НМИЦ ТО им. Н.Н. Приорова в период 2012–2017 гг. Исследование проводили на компьютерном тормографе LightSpeedVCT с возможностью получения 64 срезов за один оборот рентгеновской трубы по стандартной программе с толщиной срезов 0,6 мм. При выполнении компьютерного сканирования при нестабильности надколенника исследовали обе нижние конечности, что давало информацию о наличии деформаций как на стороне поражения, так и на здоровой стороне. Эта информация о деформациях позволяет проводить профилактику вывихов и в дальнейшем — нестабильности надколенника с контралатеральной стороны. На стороне поражения визуализируют костные деформации, которые необходимо корректировать с помощью хирургического лечения. К ним относятся избыточный наклон надколенника, антеторсия шейки бедренной кости, при которой отмечается увеличенная наружная ротация мыщелков бедренной кости, а также вальгусная деформация коленного сустава и чрезмерно латеральное расположение бугристости большеберцовой кости, которое определяется индексом TT-TG

Для измерения требуются два специфических среза, указанных выше: срез в проксимальном отделе блока бедренной кости, где межмышцелковая ямка имеет форму «романской арки» и определяется легко уплотнение на латеральной фасетке блока бедренной кости (рис. 1, а), и срез через проксимальную часть бугристости большеберцовой кости (рис. 1, б). Вычисляют расстояние между самой глубокой точкой надколенниковой поверхности бедренной кости (линия A1–A2) и точкой в центре бугристости большеберцовой кости (линия B1–B2). При нашем исследовании пациентов контрольной группы индекс TT-TG был менее 15 мм. У четырех пациентов с односторонней нестабильностью надколенника на контралатеральной стороне значение индекса было равно 18 мм. Это говорит о предрасположенности к возникновению подвывихов и нестабильности надколенника. У пациентов со значением индекса TT-TG более 20 мм проводили корригирующую остеотомию бугристости при лечении нестабильности надколенника, а при значениях индекса TT-TG 15–20 мм пациентам выполняли артроскопическую стабилизацию надколенника с пластикой МПФС. Кроме того, мы отметили, что чем больше значение индекса TT-TG, тем чаще происходили вывихи и были более выражены признаки нестабильности. Однако выраженность болевого синдрома не зависела от этого показателя.

Для измерения использовали срез через блок бедренной кости (такой же, как и при измерении TT-TG) и срез через надколенник в проекции максимального поперечника. В некоторых случаях эти срезы совпадают (рис. 2). Затем проводили две линии: одну — через надколенник во фронтальной плоскости (A1–A2), вторую — через задние края мыщелков бедра (B1–B3). Угол между двумя линиями и будет углом наклона надколенника. У 90% пациентов с нестабильностью надколенника этот угол более 20°. У данной группы детей
артроскопическую стабилизацию надколенника выполняли с латеральным релизом, а у 10 % пациентов с нормальным углом наклона надколенника (менее 20°) — артроскопическую стабилизацию без латерального релиза. У пациентов с большим углом наклона надколенника наблюдался более выраженный болевой синдром в покое и в моменты вывиха. По нашему мнению, это связано с тем, что при большом значении угла наклона надколенника (более 25°) в момент вывиха и подвывиха значительнее повреждается хрящ надколенника и латерального мыщелка бедренной кости.

Истинная антеверсия (ретроверсия) шейки бедренной кости

Использовали два среза: один — через дистальный отдел бедренной кости (как при измерении индекса TT-TG), и, соответственно, линию проводили через задние края мыщелков бедра (B1–B3) (рис. 3, б); второй — через шейку бедра, линию проводили через центр головки и шейки бедра (A1–A2) (рис. 3, а). Угол между двумя линиями — антеверсия шейки. По данным Murphy, у пациентов с нестабильностью надколенника этот показатель равен 15,6 ± 9°, у пациентов с отсутствием нестабильности — 10,8 ± 8,7° [16]. Однако, по исследованиям Murphy, значения обеих групп пересекаются, пороговое значение статистически достоверно не определено. Наши данные, а также некоторые литературные источники [17] свидетельствуют, что значение более 30° является важным фактором, приводящим к посттравматической нестабильности надколенника. Следовательно, данным пациентам необходима хирургическая коррекция деформации бедренной кости, а именно корригирующая надмышцелковая остеотомия.

Результаты и обсуждение

На большом клиническом материале (147 пациентов) мы разработали алгоритм диагностики и обследования пациентов с подозрением на нестабильность надколенника для выбора метода хирургического лечения — артроскопического или открытого. Он включает применение клинических тестов, рентгенографии в трех проекциях, УЗИ, МРТ, а также МСКТ.
При клиническом обследовании обращали внимание на положение надколенника, его гипермобильность, смещение его кнаружи. При пальпации отмечали болезненность по медиальному краю надколенника, в проекции наружного мышцелка бедра, предчувствие вывиха, положительный симптом наклона надколенника. Затем производили рентгенографию коленного сустава в трех проекциях: прямой, боковой и аксиальной (под углом сгибания коленного сустава 45°). По ее данным определяли положение надколенника относительно мышцелков бедренной кости, высоту стояния надколенника, а также наличие сопутствующей патологии (внутрисуставные тела, переломы и т. д.). УЗИ проводили всем 147 пациентам для визуализации медиального поддерживающего аппарата надколенника. При остром вывихе определяли его повреждение, пропитывание кровью, а в застарелых случаях — его утолщение или истончение, неоднородность.

У 59 больных с рецидивирующим вывихом и нестабильностью надколенника в возрастной группе 14–18 лет производили МРТ коленного сустава для уточнения других мягкотканых повреждений при выраженной нестабильности надколенника, а также сопутствующей патологии (повреждения крестообразных связок, отек костной ткани в области латерального мышцелка бедра и надколенника и др.).

Компьютерная томография произведена у 113 пациентов. С ее помощью мы получили информацию о наличии и виде деформации нижней конечности, что принципиально влияет на выбор метода оперативного лечения. При индексе TT-TG более 20 мм пациентам выполняли артроскопию, стабилизацию надколенника по методике Ямамото с латеральным релизом и медиализацией бугристости большеберцовой кости (26 пациентов). При функционирующих зонах роста, но значении индекса менее 20 мм произвели мягкотканную стабилизацию в различных модификациях (операция Ямамото, латеральный релиз). При значении индекса TT-TG от 15 до 20 мм пациентам осуществили артроскопию и пластике МПФС с латеральным релизом. Латеральный релиз выполняли для исключения синдрома латеральной гиперпрессии надколенника при наклоне надколенника более 20°. Практически у всех пациентов нам удалось добиться стабилизации надколенника в сроки до 6 лет. У этих пациентов рецидивов не отмечалось. Кроме того, по результатам шкал оценки коленного сустава у всех наблюдалось улучшение. У четырех пациентов был рецидив вывиха, но в данной группе выполняли операцию Ямамото и имелась вальгусная и ротационная деформация коленного сустава, значение индекса TT-TG было более 20 мм, но из-за возраста не было возможности провести транспозицию бугристости. Этим пациентам в дальнейшем была осуществлена повторная операция с медиализацией бугристости большеберцовой кости. У этих детей в сроки после операции 1–2 года рецидива вывиха надколенника не отмечалось. Кроме того, двум пациентам первично выполнена корригирующая надмышцелковая деротационная остеотомия бедренной кости. У одной пациентки антеверсия шейки была равна 37°; в результате корригирующей остеотомии бедра при контрольном исследовании через 1 год антеверсия шейки стала равна 15°, пластина удалена, рецидива вывиха надколенника не было. По данным шкал оценки коленного сустава также отмечалось улучшение.

Таблица 1

Метод оперативного лечения	Наклон надколенника	Индекс TT-TG	Высота стояния надколенника	Антеверсия шейки бедренной кости
Латеральный релиз	> 20°	Не влияет	Не влияет на выбор	Не влияет на выбор
Операция Ямамото	Не влияет на выбор	<15 и 20–25 мм	Не влияет на выбор	Не влияет на выбор
Пластика МПФС	Не влияет на выбор	При значениях 15–20 и > 25 мм	Не влияет на выбор	Не влияет на выбор
Транспозиция бугристости большеберцовой кости	Не влияет на выбор	> 20 мм	Индексы Catton-Deschamps, Insall-Salvati > 1,2	Не влияет на выбор
Корригирующая надмышцелковая остеотомия бедренной кости	Не влияет на выбор	Не влияет на выбор	Не влияет на выбор	> 30°

Примечание: МПФС — медиальная пателлофеморальная связка.

© ОРИГИНАЛЬНЫЕ СТАТЬИ

Подписано в печать 2018 г.

Ортопедия, травматология и восстановительная хирургия детского возраста. Том 6. Выпуск 2. 2018
выражающееся в уменьшении болевого синдрома и улучшении показателей стабильности коленного сустава (Anterior knee pain, 2000 IKDC subjective knee evaluation form). Все это говорит о том, что при выявлении всех факторов с помощью лучевых методов обследования, приводящих к нестабильности надколенника, применяется необходимый метод оперативного лечения, что приводит к выздоровлению пациента и возвращению к уровню активности до травмы.

Таким образом, выбор метода оперативного лечения нестабильности надколенника в зависимости от данных, полученных при использовании лучевых методов диагностики, можно представить в виде таблицы (табл. 1).

Стоит отметить, что любые костные операции, в том числе пластика МПФС, должны производиться пациентам с закрытыми зонами роста. Кроме того, корригирующую надмышечковую остеотомию бедренной кости мы выполняли без применения каких-либо дополнительных методов стабилизации надколенника, а результат характеризовался отсутствием рецидивов вывиха надколенника.

Лучевая нагрузка компьютерной томографии

Общая нагрузка при КТ-сканировании нижней конечности составляет 600 мГр/см²: 100 — при сканировании таза, 500 — коленного сустава. Это меньше, чем применяемый ранее рентген, при котором организм человека получал дозу 800 мГр. Также доза в 600 мГр примерно равна дозе, получаемой человеком при нахождении в горах в течение четырех дней [12]. Таким образом, этот аргумент не может исключить применение компьютерной томографии.

Заключение

Успех лечения пациента зависит от правильной диагностики и последующего выбора метода оперативного лечения. Для этого необходимо последовательно обследовать пациента. В первую очередь следует осуществить тщательный клинический осмотр. Затем, при подозрении на нестабильность надколенника, выполняют рентгенографию коленного сустава в прямой, боковой и аксиальной проекциях, а также УЗИ коленного сустава; после этого — мультиспиральную компьютерную томографию коленного сустава по предложенному выше алгоритму. Большое значение имеет выбор уровня «среза» при выполнении МСКТ нижней конечности у пациентов с нестабильностью надколенника. В случае неправильного выбора среза параметры могут искажаться и приводить к диагностическим ошибкам и, как следствие, к неправильному выбору лечения. Предложенный алгоритм диагностики и обследования пациентов с нестабильностью надколенника имеет высокую эффективность и позволяет на его основе выбрать метод оперативного лечения, приводящий к выздоровлению.

Информация о финансировании и конфликте интересов

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи. Работа проведена при поддержке ФГБУ «НМИЦ ТО им. Н.Н. Приорова» Минздрава России.

Список литературы

1. Кузнецов И.А. Совершенствование методов лечения повреждений коленного сустава с применением эндоскопической техники: Автореф. дис. … д-ра мед. наук. – СПб., 1998. [Kuznetsov IA. Improvement of methods of treatment of knee joint injuries with the use of endoscopic technique. Saint Petersburg; 1998. (In Russ.)]
2. Lewallen LW, McIntosh AL, Dahm DL. Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am J Sports Med. 2013;41(3):575-581. doi: 10.1177/0363546512472873.
3. Camanho GL, Viegas Ade C, Bitar AC, et al. Conservative versus surgical treatment for repair of the medial patellofemoral ligament in acute dislocations of the patella. Arthroscopy. 2009;25(6):620-625. doi: 10.1016/j.arthro.2008.12.005.
4. Волков М.В. Руководство по ортопедии и травматологии. – М.: Медицина, 1968. [Volkov MV. Manual of Orthopedics and Traumatology. Moscow: Meditsina; 1968. (In Russ.)]
5. Абальмасова Е.А. Врожденные деформации опорно-двигательного аппарата и причины их происхождения. – Ташкент: Медицина, 1976. [Abal'masova EA. Congenital deformities of the musculoskeletal system and the causes of their origin. Tashkent: Meditsina; 1976. (In Russ.)]
6. Arendt EA, Fithian DC, Cohen E. Current concepts of lateral patella dislocation. Clin Sports Med. 2002;21(3):499-519. doi: 10.1016/s0278-5919(02)00031-5.
7. Verdonk R, Jansegers E, Stuyts B. Trochleoplasty in dysplastic knee trochlea. Knee Surg Sports Traumatol Arthrosc. 2005;13(7):529-533. doi: 10.1007/s00167-005-0570-0.
8. Гарбуния Р.И., Миронова З.С., Миронов С.П., и др. Компьютерная томография в норме и привычном вывихе надколенника // Ортопедия, травматология и протезирование. – 1986. – № 2. – С. 20–23. [Garbuniya RI, Mironova ZS, Mironov SP, et al. Computer tomography in normal and habitual patellar disloca-
tion. *Orthopaedics, Traumatology and Prosthetics.* 1986;(2):20-23. [In Russ.])

9. Tavernier T, Dejour D. Knee imaging: what is the best modality. *J Radiol.* 2001;82(3 Pt 2):387-405; 407-388.

10. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: An anatomic radiographic study. *Knee Surg Sports Traumatol Arthrosoc.* 1994;2(1):19-26. doi: 10.1007/bf01552649.

11. Goutallier D, Bernageau J, Lecudonnec B. The measurement of the tibial tuberosity. Patella groove distanced technique and results. *Rev Chir Orthop Reparatrice Appar Mot.* 1978;64(5):423-428.

12. Saggin PR, Dejour D, Meyer X, Tavernier T. Computed Tomography and Arthro-CT Scan in Patellofemoral Disorders. In: Patellofemoral Pain, Instability, and Arthritis. Ed by S. Zaffagnini, D. Dejour, E. Arendt. Berlin, Heidelberg: Springer; 2010. P. 73-78. doi: 10.1007/978-3-642-05424-2_9.

13. Servien E, Ait Si Selmi T, Neyret P. Subjective evaluation of surgical treatment for patellar instability. *Rev Chir Orthop Reparatrice Appar Mot.* 2004;90(2):137-142. doi: 10.1016/s0035-1040(04)70035-5.

14. Miller JR, Adamson GJ, Pink MM, et al. Arthroscopically assisted medial reefing without routine lateral release for patellar instability. *Am J Sports Med.* 2007;35(4):622-629. doi: 10.1177/0363546506296041.

15. Merchant AC. Patellofemoral imaging. *Clin Orthop Relat Res.* 2001;(389):15-21.

16. Murphy SB, Simon SR, Kijewski PK, et al. Femoral anteversion. *J Bone Joint Surg Am.* 1987;69(8):1169-1176.

17. Teitge RA. The Role of Limb Rotational Osteotomy in the Treatment of Patellofemoral Dysfunction. In: Patellofemoral Pain, Instability, and Arthritis. Ed by S. Zaffagnini, D. Dejour, E. Arendt. Berlin, Heidelberg: Springer; 2010. P. 237-244. doi: 10.1007/978-3-642-05424-2_30.

Сведения об авторах

Alexander A. Sautenko — MD, PhD Student of the 9th Department of Pediatric Traumatology and Orthopedics, N.N. Priorov Central Institute of Traumatology and Orthopedics, Moscow, Russia. E-mail: dr.sautenko@yandex.ru. ORCID: https://orcid.org/0000-0003-1264-7162.

Egor V. Ogarev — MD, PhD, Radiology Specialist, N.N. Priorov Central Institute of Traumatology and Orthopedics, Moscow, Russia.

Alexander G. Eltsin — MD, PhD, Leading Research Fellow, Pediatric Trauma Surgeon of the 9th Department of Pediatric Traumatology and Orthopedics, N.N. Priorov Central Institute of Traumatology and Orthopedics, Moscow, Russia.

Dmitry S. Mininkov — MD, PhD, Research Fellow, Pediatric Trauma Surgeon of the 9th Department of Pediatric Traumatology and Orthopedics, N.N. Priorov Central Institute of Traumatology and Orthopedics, Moscow, Russia.

Alexander A. Sautenko — аспирант 9-го детского травматолого-ортопедического отделения ФГБУ «НМИЦ ТО им. Н.Н. Приорова» Минздрава России, Москва. E-mail: dr.sautenko@yandex.ru. ORCID: https://orcid.org/0000-0003-1264-7162.

Егор Витальевич Огарёв — канд. мед. наук, врач отделения лучевой диагностики ФГБУ «НМИЦ ТО им. Н.Н. Приорова» Минздрава России, Москва.

Александр Геннадьевич Ельцин — канд. мед. наук, старший научный сотрудник, врач 9-го детского травматолого-ортопедического отделения ФГБУ «НМИЦ ТО им. Н.Н. Приорова» Минздрава России, Москва.

Владимир Николаевич Меркулов — д-р мед. наук, профессор, заведующий 9-м детским травматолого-ортопедическим отделением ФГБУ «НМИЦ ТО им. Н.Н. Приорова» Минздрава России, Москва. ORCID: https://orcid.org/0000-0003-0368-3890.

Дмитрий Сергеевич Мининков — канд. мед. наук, научный сотрудник, врач 9-го детского травматолого-ортопедического отделения ФГБУ «НМИЦ ТО им. Н.Н. Приорова» Минздрава России, Москва.

Alexander A. Sautenko — MD, PhD Student of the 9th Department of Pediatric Traumatology and Orthopedics, N.N. Priorov Central Institute of Traumatology and Orthopedics, Moscow, Russia. E-mail: dr.sautenko@yandex.ru. ORCID: https://orcid.org/0000-0003-1264-7162.

Egor V. Ogarev — MD, PhD, Radiology Specialist, N.N. Priorov Central Institute of Traumatology and Orthopedics, Moscow, Russia.

Alexander G. Eltsin — MD, PhD, Leading Research Fellow, Pediatric Trauma Surgeon of the 9th Department of Pediatric Traumatology and Orthopedics, N.N. Priorov Central Institute of Traumatology and Orthopedics, Moscow, Russia.

Dmitry S. Mininkov — MD, PhD, Research Fellow, Pediatric Trauma Surgeon of the 9th Department of Pediatric Traumatology and Orthopedics, N.N. Priorov Central Institute of Traumatology and Orthopedics, Moscow, Russia.