INTRODUCTION

Breath analysis is a promising approach for monitoring diseases and their progression as it provides a non-invasive, very safe and simple way for all patients as many times as needed. The exhaled breath markers (EBMs) compose of inorganic compounds (e.g. carbon dioxide, carbon monoxide and nitric oxide), voltaic organic compounds (e.g. isoprene, formaldehyde, and acetone) and non-voltaic compounds (e.g. cytokines and hydrogen peroxide; Cazzola & Novelli, 2010; Kim, Jahan, et al., 2012; Lu et al., 2018; Wang & Sahay, 2009). The abnormal level of EBM carries some information about the disease status and treatment efficiency (Das & Pal, 2020). Many clinical trials focused on EBM for the diagnosis of disease ranging from respiratory, diabetes to cancer (Brinkman et al., 2020; Chang et al., 2018; Gregis et al., 2018; Kabir et al., 2019; Rahman et al., 2020).

To monitor EBM, various techniques have been utilized, such as chromatography, selected ion flow tube–mass spectrometry (SIFT-MS), proton-transfer reaction–mass spectrometry (PTR-MS) and laser spectroscopy technique (Das & Pal, 2020; Kharitonov & Barnes, 2002; Kim, Jahan, et al., 2012). Among them, chromatography–mass spectroscopy (GC-Mass) is a well-established method in clinical trials for monitoring EBM, owing to its outstanding precision and selectivity (Wang & Sahay, 2009). However, GC-Mass application often is limited to laboratory usage due to requiring sophisticated, bulky and high-cost instruments, and experts (Glockler et al., 2020). To date, the advances in portable gas sensors with the miniaturized size hold great potential to overcome such shortcomings and pave the way for point-of-care EBM monitoring.

Chemoresistive metal oxide-based gas sensors (MGSs) identify the target gas by using a change in electrical resistance that translates to the gas concentration. Recently, MGS has received much attention given for their great potential in breath analysis owing to the advantages such as straightforward integration in a chip, simple manufacturing, high stability and reusability (Cho et al., 2017; Das & Pal, 2020; Guntner et al., 2019; Tai et al., 2020). The metal oxides are categorized into n-type and p-type. In the n-type MGS, adsorbed
Exhaled breath markers and corresponding diseases stemming from genetics, human activities or air pollutions. Despite assessments that include but not limited to inter-individual variability, there are great challenges for the standardization of EBM as shown in some cases, the abnormality in EBM renders several diseases. As some of these gases are known as EBM that any variations in their sensing performance.

In a recent study, by taking benefits from data analysis methods, seven biomarkers for the discrimination of lung cancer patients from healthy ones were named as acetone, methyl acetate, isoprene, methyl vinyl ketone, cyclohexane, 2-methylheptane and cyclohexane (Rudnicka et al., 2019). To date, by utilizing nanomaterials into sensors, the exhaled breath analysis has become more achievable for rapid and painless disease diagnostic.

2 | EXHALE BREATH MARKERS

Exhaled breath composes of more than a thousand gases of which some of these gases are known as EBM that any variations in their concentrations initiate disorders and diseases. The most common EBM and their corresponding disease are briefed in Table 1. As shown in some cases, the abnormality in EBM renders several diseases, while several EBM might be attributed to particular diseases.

Still, the exploration of breath analysis in the clinics is very immature. There are great challenges for the standardization of EBM assessments that include but not limited to inter-individual variability stemming from genetics, human activities or air pollutions. Despite such challenges, there is remarkable progress in revealing the connection between EBM and disorders (Guntner et al., 2019). The identification of acetone as EBM for diagnosis of diabetic people backs to 1857 (Crofford et al., 1977) resuming with continuous efforts on the investigation of EBM to accurately diagnose diseases.

In a recent study, by taking benefits from data analysis methods, seven biomarkers for the discrimination of lung cancer patients from healthy ones were named as acetone, methyl acetate, isoprene, methyl vinyl ketone, cyclohexane, 2-methylheptane and cyclohexane (Rudnicka et al., 2019). To date, by utilizing nanomaterials into sensors, the exhaled breath analysis has become more achievable for rapid and painless disease diagnostic.

3 | METAL OXIDE-BASED GAS SENSORS FOR THE DETECTION OF EXHALED BREATH MARKERS

The analytical performance of gas sensors at the operating temperature and relative humidity (RH) is determined with the following characteristics. (i) Selectivity: the main challenge in MGS is selectivity for the accurate detection of EBM that often is modulated by the type and amount of dopants, grain size, morphologies and preparation protocols (Kim, Kim, et al., 2012; Kim, Choi, et al., 2016). The selectivity of metal oxide-based gas sensors is often reduced in the interferences of water vapours (Liu et al., 2020). It is of note that the RH of human breath is about 89%–97% (Ferrus et al., 1980). (ii) Limit of detection (LOD): the EBM concentration is in the range of ppb-ppt, and the MGS should have high sensitivity for detection of trace level of EBM (Das & Pal, 2020). (iii) Stability: MGS should be stable to generate reliable and reproducible results. In the following, we will discuss recent MGS with the focus on ZnO, SnO₂ and In₂O₃. These metal oxides are n-type semiconductors, meaning that they have a similar mechanism in response to the oxidizing/reducing target gas (Zhang, Liu, et al., 2016). Due to taking benefit from the high electron mobility, they use as sensitive platforms for the detection of gases (Ho et al., 2020; Zhang, Zhou, et al., 2016). Among these three metal oxides, ZnO has been extensively studied
in medical gas sensors due to low toxicity, ease of preparation and cost-effectiveness (Wei et al., 2011). Compared to ZnO, SnO₂ and In₂O₃ standing out for their high stability (Bulemo et al., 2017) the operational temperature of these metal oxides often is high (150–400°C) (Zhang, Liu, et al., 2016). Integration of these metal oxides with noble metal elements and carbon nanostructures is importance as it might lower their operational temperature to room temperature. Table 2 summarizes recent MGS with their key characteristics for EBM detection.

3.1 ZnO-based gas sensors

ZnO is a very active semiconductor metal oxide for disease monitoring due to its excellent biocompatibility, low cost and environmental friendliness. ZnO morphology adjustment is important to maximize the interaction between the adsorbed oxygen and the target gas and thereby the sensitivity of MGS. Sensitivity and selectivity of ZnO-based metal oxides are often tailored via integration with other metal oxides (e.g. CuO) and noble metal elements that might tune the Schottky barrier modulation and provide multiple p-n heterojunctions (Kim, Jahan, et al., 2012; Li et al., 2019).

In recent years, the modification of ZnO with CuO for MGS has received remarkable attentions. Various morphologies of ZnO-CuO nanocomposites were explored for MGSs such as flower-like (ethanol), nanorods (H₂S) (Kim, Jahan, et al., 2012) and three-dimensional nanocomposites were explored for MGSs such as flower-like (ethanol) junctions (Kim, Jahan, et al., 2012; Li et al., 2019). ZnO-CuO nanocomposites provide n-p type heterojunction that stems from a combination of ZnO (n-type) and CuO (p-type) where the fabrication of such heterojunction can lead to increased resistance as an output signal when compared to pure ZnO and CuO (Xie et al., 2015). 3D IO ZnO-CuO nanocomposite with well-ordered pores was evaluated for sensing acetone at LOD = 0.1 ppm in breath. The acetone concentration in the exhaled breath of healthy people is approximately 0.3 to 0.9 ppm and that in diabetic patients, type 1 and type 2, is 2.2 ppm and 1.7 ppm, respectively; therefore, the latter sensor can meet the requirement of the proper dynamic linear range and LOD for diabetic diagnosis (Table 2) (da Silva et al., 2016). The interaction between the metal oxide and gases occurs near the surface of metal oxide. However, porous structures not only have active sites near the surface but also have channels at the inner sites that give rise to the number of reaction sites and thereby the sensitivity (Kim, Choi, et al., 2016). 3D IO ZnO-Fe₃O₄ nanocomposite also indicated high sensitivity for the detection of acetone, while the overall analytical performance of MGS based on 3D IO ZnO-CuO nanocomposite is superior to 3D IO ZnO-Fe₃O₄ nanocomposite (Table 2) (Zhang et al., 2017). The role of ZnO morphologies in the detection of the target gas was studied, and as a result, 3D IO ZnO response towards acetone was 2.2 times more than ZnO nanoparticles due to the large surface-to-volume ratio of 3D IO morphology that boosted the sensitivity by providing more active sites. The high operating temperature in these two works limits their practical applications for breath analysis as per their high-energy consumption and difficult operation. Importantly, high operating temperature reduces the discrimination capability of MGS in actual breath since volatile organic compounds might be unstable and decomposed to other compounds.

Metal doping enhances the selectivity of gas sensors and amplifies the response towards the target gas (Kim, Ahn, et al., 2016). Additionally, metal doping leads to rapid response and recovery time. Ti doping on ZnO by flame spray reactor led to good isoprene sensing abilities. The preparation method for Ti-ZnO particles is illustrated in Figure 1A where Zn and Ti metal ions mixed before spray (Guntner et al., 2016). The incorporation of Ti⁺⁺ reduced the particle and crystal size of ZnO by which could further enhance the sensitivity. Isoprene gas is employed for monitoring the high level of cholesterol (Guntner et al., 2016). Treatment with atorvastatin led to the reduction in the exhaled isoprene level suggesting isoprene as a predicting biomarker for evaluating the efficiency of treatment in a rapid manner (Karl et al., 2001). Ce-doped ZnO amplified the response to acetone at room temperature (RT) owing to the generation of various cerium specious (Ce²⁺, Ce³⁺ and Ce⁴⁺) that produced many oxygen vacancies for electron transportation with metal oxides and the target gas (Kulandaiamy et al., 2016). However, at RH equal to 54 humidity of breath is not mimicked. In addition to Ce, Pt and La doping on ZnO presented great sensitive materials for acetone detection, as discussed in the following.

The integration of Pt nanoparticles into a sensing platform has been widely reported owing to the high catalytic activity of these nanoparticles in the redox process that enhances sensing characteristics (Cho et al., 2017; Haghshenas et al., 2020). Notably, the methodology for the incorporation of nanomaterial into ZnO plays a significant role in ensuring its catalytic activity in the absence of agglomeration. To provide functional Pt, La and Cu nanoparticles for the modification of ZnO nanofibres, Cho et al. applied the protein template termed apoferritin followed by calcination as shown in Figure 1B (Cho et al., 2017). With the use of apoferritin, the repulsive forces between protein shells not only inhibited the aggregation of nanoparticles but also significantly improved the size distribution of Pt through the encapsulation in apoferritin nanocages. Pt-functionalized ZnO nanofibre implied the response (Rair/Rgas = 13.07) towards acetone compared with the response (Rair/Rgas = 2.05) of ZnO nanofibres. The catalytic activity of Cu-ZnO nanofibres resulted in (Rair/Rgas = 6.04) and that of La-ZnO nanofibres led to the responses (Rair/Rgas = 10.6) towards acetone. Similar gas sensors were reported somewhere else where WO₃ nanofibres were modified with Pt nanoparticles using apoferritin (Kim et al., 2017; Kim, Choi, et al., 2016).

Operational temperature plays a critical role in the sensing efficiency of MGS. The response of hierarchical ZnO gas sensor towards acetone, as a function of the operating temperature, was studied; the unique U-shape response attributed to the oxidizing and reducing behaviour of acetone at 25°C and 200°C, respectively (Singh et al., 2019). This study further highlights the challenges associated with MGS rely on high operational temperature regardless of the behaviour of exhaled breath compounds. It is of note that high operational temperature may change the selectivity of MGS.
Table 2: ZnO, SnO₂ and In₂O₃-based gas sensors

Sensitive material	Target gas	Operational temperature	Detection range (ppm)	LOD (ppm)	RH%	Reference
3D inverse opal ZnO-CuO	Acetone	310°C	0.2–50	0.1	93	Xie et al. (2015)
Ti-ZnO	Isoprene	325°C	20–500	9.3	90	Guntner et al. (2016)
Ce-ZnO	Acetone ethanolamine	RT	1-100	1	54	Kulandaisamy et al. (2016)
Pt-ZnO	Acetone	450°C	1-5	–	95	Cho et al. (2017)
Cu-ZnO	Acetone	450°C	1-5	–	95	
La-ZnO	NO	400°C	1-5	–	95	
ZnO hierarchical	Acetone	RT and 200°C	1-5	1	5	Chen et al. (2017)
3D inverse opal ZnO-Fe₃O₄	Acetone	485°C	–	0.1	20	Zhang et al. (2017)
Ag nanowire-ZnO nanorods	NO	RT	0.01–0.1	0.01	10	Singh et al. (2019)
Nanospiral ZnO film	NO	150°C	10–100	10	40	Luo et al. (2020)
Pt-SnO₂ nanotubes	H₂S	300°C	0.1–0.6	0.1	95	Bulemo et al. (2017)
Pd-SnO₂ nanowires	H₂	150°C	10–100	–	–	Nguyen et al. (2017)
RGO-SnO₂	Ethanol	300°C	43–100	–	98	Zito et al. (2017)
SnO₂ nanoparticles	H₂	450°C	100–500	1	80	Vasiliev et al. (2018)
PdAu-SnO₂	Formaldehyde	110°C	–	45	94	Li et al. (2019)
Au@WO₃SnO₂ nanofibres	Acetone	150°C	0.2–10	–	90	Shao et al. (2019)
SnO₂/rGO/PANI	H₂S	RT	0.05–10	0.05	97	Zhang et al. (2019)
Pt@In₂O₃ core-shell nanowires	Acetone	320°C	–	0.01	100	Liu et al. (2018)
Pt-In₂O₃ mesoporous nanofibres	Acetone	180°C	0.01–50	0.01	85	Liu et al. (2019)
PA/Gr/nanoribbon/In₂O₃	NH₃	RT	0.65–1.69	0.65	–	Xu and Wu (2020)

Abbreviations: Gr, graphene; PANI, polyaniline; RGO, reduced graphene oxide; RT, room temperature.
Therefore, developing MGS that enabled to work at room temperature is desirable.

3.2 | SnO$_2$-based gas sensors

SnO$_2$ (n-type semiconductor) is one of the most explored metal oxides in MGS fields owing to its outstanding stability, wide bandgap and excellent electron mobility. SnO$_2$ with various morphologies, such as powder (Cirera et al., 1999), nanowire (Hwang et al., 2011; Wang et al., 2008), nanotube (Bulemo et al., 2017), SnO$_2$-ZnO core–shell nanofibre (Choi et al., 2009) and SnO$_2$-ZnO core–shell nanospheres (Zhang, Zhou, et al., 2016), was studied in gas sensors. In an interesting study, the preparation of porous SnO$_2$ nanotubes was reported from SiO$_2$-SnO$_2$ composites after SiO$_2$ etching followed by the decoration of exteriors and interiors walls with Pt nanoparticles (Figure 2) (Bulemo et al., 2017). This sensing platform revealed a remarkable response (R$_{\text{air}}$/R$_{\text{gas}} = 89.3$) towards 1 ppm H$_2$S. Excellent surface area, nanosize crystals and the exceptional electocatalytic property of Pt nanoparticles led to remarkable sensing performance.
The high RH (95%) superior sensing performance of this gas sensor is attributed to residual SiO$_2$ that is responsible for humidity adsorption, while it did not contribute to H$_2$S sensing because of dielectric characterization.

SnO$_2$-based metal oxide sensors often need high operational temperature for gas sensing, and this increases the power consumption and shortens the lifetime of a sensor. To solve this issue, the Pd layer was deposited on SnO$_2$ nanowires prepared through on-chip growth approach. As a result, it lowered the operational temperature for the detection of H$_2$ to 150°C, while bare SnO$_2$ nanowires were comparably able to detect H$_2$ at a temperature of higher 350°C (Nguyen et al., 2017). Additionally, the selectivity of the gas sensor chip was evaluated in the presence of CO$_2$ and ethanol as interferences. Although the sensor did not indicate enough selectivity in ethanol, the response was remarkable for the detection of H$_2$ in the presence of CO$_2$. High operational temperature (150°C in this case) might be the reason for the low selectivity of this sensor as the behaviour of gases at high temperature is complex. Some images from this gas sensor chip are shown in Figure 3.

The low sensitivity of MGS particularly at high RH of the exhaled breath is one of the greatest challenges of gas sensors. This is due to the presence of superficial hydroxyl groups on metal oxides that conclude in undesirable reactions with false results. To reduce the number of hydroxyl groups on metal oxide surfaces, dry synthesis of nanomaterials and high-temperature annealing is suggested (Vasiliev et al., 2018). In a study, a spark discharge approach was applied for the dry synthesis of SnO$_2$ to generate airborne SnO$_2$ nanoparticles, which are separated with air gap for the purpose of H$_2$ detection (Vasiliev et al., 2018). Additionally, surface saturation of metal oxide with hydroxyl groups could provide highly sensitive MGS at high RH since they do not adsorb more hydroxyl groups.

With a synergistic effect, the decoration of metal oxides with bimetallic nanoparticles is superior to their individuals for enhancing the sensitivity of MGS. Bimetallic nanoparticle decoration tailors the surface electronic structure of metal oxide and reduces the activation surface energy, and as a result, facilitates the electron transport for sensitive target detection. Generally, to ensure the high catalytic performance of bimetallic nanoparticles when integrated into MGS the size, morphology, dispersibility and also compatibility of bimetallic nanoparticles with metal oxide substrate should be taken into consideration (Kim et al., 2017). In a study, SnO$_2$ nanosheets with flower-like morphology decorated with PdAu bimetallic nanoparticles showed an excellent sensing platform for the detection of acetone at 250°C with features of reusability and reliability at high RH (Li et al., 2019). PdAu-SnO$_2$ had the sensitivity towards formaldehyde at the temperature of 110°C. This study highlighted the concern about the cross-sensitivity in an actual breath when the temperature is high.
The majority of current MGS suffered from low selectivity. Many researchers focus on the optimization of the experimental conditions to overcome this problem. However, developing MGS that relies on EBM separation with a filter and membrane holds a great promise for improving the selectivity of MGS, even in the cases that the materials do not have enough selectivity towards the target gas (Gregis et al., 2018).

Reduced graphene oxide, as a two-dimensional nanostructure, with excellent surface-to-volume ratio, low toxicity and outstanding electron mobility (200,000 cm² V⁻¹ S⁻¹), has been widely utilized for disease monitoring (Feng et al., 2017; Lee et al., 2018; Vajhadin et al., 2020; Zhang et al., 2018). In addition to graphene, other two-dimensional materials such as 2D-SnSe₂ and Ti₃C₂MXene have employed for producing flexible MGS owing to lightweight, outstanding flexibility and low cost (Sun et al., 2020; Tannarana et al., 2020). Recently, Lee et al. reviewed carbon-based materials such as graphene oxide as a sensing substrate for the detection of NO₂ gas (Lee et al., 2018). The nanocomposite of reduced graphene oxide and SnO₂ indicated the enhanced sensitivity for ethanol detection compared with hollow SnO₂ nanostructures in humid and dry conditions (Figure 4) (Zito et al., 2017).

The combination of reduced graphene oxide (p-type), polyaniline (p-type) and SnO₂ (n-type) served as a flexible sensing platform for the detection of very low concentration of H₂S (0.05 ppm) (Figure 5) (Zhang et al., 2019). Data processing for the recognition of H₂S through principal component analysis (PCA) was beneficial to improve the quality and reliability of their sensor. Generally, data analysis methods, including PCA, partial least squares (PLS), neural networks and Gaussian mixture models (GMMs), hold the potential to differentiate the target EBM among thousand EBM in exhaled breath (Rahman et al., 2020).

3.3 | In₂O₃-based gas sensors

In₂O₃ metal oxide has recently emerged as a promising metal oxide for MGS; however, its potential as a sensing material has been less
exploited compared with ZnO and SnO$_2$. In an interesting study, a portable gas sensor was fabricated using Pt@In$_2$O$_3$ core–shell nanowires for real-time acetone measurement in exhaled breath (Figure 6) (Liu et al., 2018). Pt@In$_2$O$_3$ core–shell structures, prepared by the co-electrospinning approach, lowered the measured LOD to 0.01 ppm at the operational temperature 320°C. Additionally, the parallel moisture resistance layer (mesoporous silica molecular sieve) that covered the sensing materials led to the functionality of the gas sensor at RH ~100. Liu et al also reported another gas sensor for the detection of acetone by Pt-decorated In$_2$O$_3$ mesoporous structures at a lower operational temperature (180°C) with very rapid response and recovery time of 6 s and 9 s, respectively (W. Liu et al., 2019). Besides, the sensor indicated high stability for 150 days that can be attributed to SnO$_2$ and the doping effect.

4 | CONCLUSIONS AND PERSPECTIVES

Rapid advancement in MGS leads to non-invasive and rapid monitoring of diseases on the basis of EBM. In this study, we reviewed the latest advances in metal oxide-based gas sensors for the detection of EBM with a focus on ZnO, SnO$_2$ and In$_2$O$_3$ owing to their unique sensing properties, satisfying stability and high compatibility for embedding into miniaturized chips. Despite progress in MGS, it is not profitable to use the majority of MGSs out of laboratories on a large scale. In fact, they are in their infancy and much more efforts needed to produce portable MGS to accurately characterize EBM in the actual exhaled breath. Generally, the bottlenecks of current MGS are as follows: (i) poor selectivity due to the difficulty
of recognition of EBM among various chemically similar molecules; (ii) unreliable responses at high RH (~100%) that mimics the amount of moisture in the exhaled breath; and (iii) high operational temperature that restrains the practical application of MGS for breath analysis. Coupling MGS with separation columns or membranes would significantly reduce the concern about the selectivity of the current MGS. In addition, statistically processing MGS responses elevates the selective detection by MGS. Utilizing new humidity-resistance composites in MGS leads to functional MGS in the humidity of breath.

ACKNOWLEDGEMENTS
The authors thank Yazd University for the funding support.

CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES
Alkhouri, N., Singh, T., Alsabbagh, E., Guirguis, J., Chami, T., Hanouneh, I., Grove, D., Lopez, R., & Dweik, R. (2015). Isoprene in the exhaled breath is a novel biomarker for advanced fibrosis in patients with chronic liver disease: A pilot study. Clinical and Translational Gastroenterology, 6, e112. https://doi.org/10.1038/ctg.2015.40
Amiri, V., Roshan, A., Mirzaei, A., Neri, G., & Ayesh, A. I. (2020). Nanostructured metal oxide-based acetone gas sensors: A review. Sensors (Basel), 20(11), 3096. https://doi.org/10.3390/s20113096
Barnes, P. J., Chowdhury, B., Kharitonov, S. A., Magnussen, H., Page, C. P., Postma, D., & Saetta, M. (2006). Pulmonary biomarkers in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 174(1), 6–14. https://doi.org/10.1164/rccm.200510-1659PP
Birrell, M., McCluskie, K., Hardaker, E., Knowles, R., & Belvisi, M. (2006). Utility of exhaled nitric oxide as a noninvasive biomarker of lung inflammation in a disease model. European Respiratory Journal, 28(6), 1236–1244.
Brindicci, C., Ito, K., Resta, O., Pride, N. B., Barnes, P. J., & Kharitonov, S. A. (2005). Exhaled nitric oxide from lung periphery is increased as markers for medication use in asthma. European Respiratory Journal, 26(1), 52–59. https://doi.org/10.1183/09031936.04.00125304
Brinkman, P., Ahmed, W. M., Gómez, C., Knobel, H. W., Weda, H., Vink, T. J., Nijsten, T. M., Wheelock, C. E., Dahlen, S.-E., Montuschi, P., Knowles, R. G., Vijverberg, S. J., Maitland-van der Zee, A. H., Sterk, P. J., & Fowler, S. J. (2020). Exhaled volatile organic compounds as markers for medication use in asthma. European Respiratory Journal, 55(2), 190054. https://doi.org/10.1183/13993003.00544-2019
Bulemo, P. M., Cho, H. J., Kim, N. H., & Kim, I. D. (2017). Mesoporous SnO2 nanotubes via electrospinning-etching route: highly sensitive and selective detection of H2S molecule. ACS Applied Materials & Interfaces, 9(31), 26304–26313. https://doi.org/10.1021/acsami.7b05241
Cazzola, M., & Novelli, G. (2010). Biomarkers in COPD. Pulmonary Pharmacology & Therapeutics, 23(6), 493–500. https://doi.org/10.1016/j.pupt.2010.05.001
Chang, J.-E., Lee, D.-S., Ban, S.-W., Oh, J., Jung, M. Y., Kim, S.-H., Park, S. J., Persaud, K., & Jhee, S. (2018). Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system. Sensors and Actuators B: Chemical, 255, 800–807. https://doi.org/10.1016/j.snb.2017.08.057
Chen, J., Pan, X., Bousaid, F., McKinley, A., Fan, Z., & Bermak, A. (2017). Breath level acetone discrimination through temperature modulation of a hierarchical ZnO gas sensor. IEEE Sensors Letters, 15(1), 1–4. https://doi.org/10.1109/LSENS.2017.2740222
Cho, H.-J., Kim, S.-J., Choi, S.-J., Jang, J.-S., & Kim, I.-D. (2017). Facile synthetic method of catalyst-load ZnO nanofibers composite sensor arrays using bio-inspired protein cages for pattern recognition of exhaled breath. Sensors and Actuators B: Chemical, 243, 166–175. https://doi.org/10.1016/j.snb.2016.11.137
Choi, S.-W., Park, J. Y., & Kim, S. S. (2009). Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties. Nanotechnology, 20(46), 465603.
Chung, K. F. (2014). Hydrogen sulfide as a potential biomarker of asthma. Expert Review of Respiratory Medicine, 8(1), 5–13.
Cirera, A., Dieguez, A., Diaz, R., Cornet, A., & Morante, J. (1999). New method to obtain stable small-sized SnO2 powder for gas sensors. Sensors and Actuators B: Chemical, 58(1–3), 360–364.
Crofford, O. B., Mallard, R. E., Winton, R. E., Rogers, N. L., Jackson, J. C., & Keller, U. (1977). Acetone in breath and blood. Transactions of the American Clinical and Climatological Association, 88, 128–139.
da Silva, L. F., Catto, A. C., Avansi, W., Cavalcante, L. S., Mastelaro, V. R., Andréjs, J., Aguir, K., & Longo, E. (2016). Acetone gas sensor based on α-Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. Journal of Alloys and Compounds, 683, 186–190. https://doi.org/10.1016/j.jallcom.2016.05.078
Das, S., & Pal, M. (2020). Review—Non-invasive monitoring of human health by exhaled breath analysis: A comprehensive review. Journal of the Electrochemical Society, 167(3), 3756. https://doi.org/10.1149/1945-7111/ab67a6
Feng, Q., Li, X., & Wang, J. (2017). Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2 composite based sensor. Sensors and Actuators B: Chemical, 243, 1115–1126. https://doi.org/10.1016/j.snb.2016.12.075
Ferrus, L., Guenard, H., Vardon, G., & Varene, P. (1980). Respiratory water loss. Respiration Physiology, 39(3), 367–381. https://doi.org/10.1016/0340-6626(80)90067-5
Glockler, J., Jaechke, C., Kocaoz, Y., Kokoric, V., Tutucu, E., Mitrovics, J., & Mizaikoff, B. (2020). iHWG-MOX: A hybrid breath analysis system via the combination of substrate-integrated hollow waveguide infrared spectroscopy with metal oxide gas sensors. ACS Sensors, 5(4), 1033–1039. https://doi.org/10.1021/acssensors.9b02554
Gregis, G., Sanchez, J.-B., Bezverkhyy, I., Guy, W., Berger, F., Fierro, V., Bellat, J.-P., & Celzard, A. (2018). Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor. Sensors and Actuators B: Chemical, 255, 391–400. https://doi.org/10.1016/j.snb.2017.08.056
Guntner, A. T., Abegg, S., Königstein, K., Gerber, P. A., Schmidt-Trucksass, A., & Pratsinis, S. E. (2019). Breath sensors for health monitoring. ACS Sensors, 4(2), 268–280. https://doi.org/10.1021/acssensors.8b00937
Guntner, A. T., Pineau, N. J., Chie, D., Krumeich, F., & Pratsinis, S. E. (2016). Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. Journal of Materials Chemistry B, 4(32), 5358–5366. https://doi.org/10.1039/c6tb01335j
Haghshenas, M., Mazloum-Ardakani, M., Alizadeh, Z., Vajhadin, F., & Naeimi, H. (2020). A sensing platform using Ag/PT core-shell nanostructures supported on multiwalled carbon nanotubes to detect hydroxyurea. Electroanalysis, 32, 1–10. https://doi.org/10.1002/elan.202006020
Hanif, N. H., Van Duy, L., Hung, C. M., Van Duy, N., Heo, Y.-W., Van Hieu, N., & Hoa, N. D. (2020). VOC gas sensor based on hollow cubic assembled nanocrystal Zn2SnO4 for breath analysis. Sensors and Actuators A: Physical, 302, 111834. https://doi.org/10.1016/j.sna.2020.111834
Ho, C.-H., Chan, C.-H., Tien, L.-C., & Huang, Y.-S. (2011). Direct optical observation of band-edge excitons, band gap, and Fermi level in
Kabir, E., Raza, N., Kumar, V., Singh, J., Tsang, Y. F., Lim, D. K., Szulejko, J. E., & Kim, K.-H. (2019). Exceptional high-performance of Pt-based bimetallic nanosensors for detection of acetone based on Au@WO3-SnO2 corrugated nanofibers. Sensors and Actuators B: Chemical, 298, 590–601. https://doi.org/10.1016/j.snb.2018.09.117

Lee, S. W., Lee, W., Hong, Y., Lee, G., & Yoon, D. S. (2018). Recent advances in carbon material-based NO2 gas sensors. Sensors and Actuators B: Chemical, 255, 1788–1804. https://doi.org/10.1016/j.snb.2017.08.203

Li, G., Cheng, Z., Xiang, Q., Yan, L., Wang, X., & Xu, J. (2019). Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sensors and Actuators B: Chemical, 283, 590–601. https://doi.org/10.1016/j.snb.2018.09.117

Liu, L., Fei, T., Guan, X., Lin, X., Zhao, H., & Zhang, T. (2020). Room temperature ammonia gas sensor based on ionic conductive biomass hydrogels. Sensors and Actuators B: Chemical, 320, 128318. https://doi.org/10.1016/j.snb.2020.128318

Liu, W., Xie, Y., Chen, T., Lu, Q., Ur Rehman, S., & Zhu, L. (2019). Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sensors and Actuators B: Chemical, 298, 126871. https://doi.org/10.1016/j.snb.2019.126871

Liu, W., Xu, L., Sheng, K., Zhou, X., Dong, B., Lu, G., & Song, H. (2018). A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. NPG Asia Materials, 10(4), 293–308. https://doi.org/10.1038/s41427-018-0029-2

Lu, Z., Huang, W., Wang, L., Xu, N., Ding, Q., & Cao, C. (2018). Exhaled nitric oxide in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. International Journal of Chronic Obstructive Pulmonary Disease, 13, 2695–2705. https://doi.org/10.2147/COPD.S165780

Luo, P., Xie, M., Luo, J., Kan, H., & Wei, Q. (2020). Nitric oxide sensors using nanosporial ZnO thin film deposited by GLAD for application to exhaled human breath. RSC Advances, 10(25), 14877–14884. https://doi.org/10.1039/d0ra04488j

McCluskie, K., Birrell, M. A., Wong, S., & Belvisi, M. G. (2004). Nitric oxide as a noninvasive biomarker of lipopolysaccharide-induced airway inflammation: possible role in lung neutrophilia. Journal of Pharmacology and Experimental Therapeutics, 311(2), 625–633.

Moseley, P. T. (2017). Progress in the development of semiconducting metal oxide gas sensors: a review. Measurement Science and Technology, 28(8), 82001. https://doi.org/10.1088/1361-6501/aa7443

Nguyen, K., Hung, C. M., Ngoc, T. M., Thanh Le, D. T., Nguyen, D. H., Nguyen Van, D., & Nguyen Van, H. (2017). Low-temperature prototye hydrogen sensors using Pd-decorated SnO2 nanowires for exhaled breath applications. Sensors and Actuators B: Chemical, 253, 156–163. https://doi.org/10.1016/j.snb.2017.06.141

Rudnicka, J., Kowalkowski, T., & Buszewski, B. (2019). Searching for selected VOCs in human breath samples as potential markers of lung cancer. Lung Cancer, 135, 123–129. https://doi.org/10.1016/j.lungcan.2019.02.012

Ruzsanyi, V., & Peter Kalapos, M. (2017). Breath acetone as a potential marker in clinical practice. Journal of Breath Research, 11(2), 24002. https://doi.org/10.1088/1752-7163/aa66d3

Salerno-Kennedy, R., & Cashman, K. D. (2005). Potential applications of breath isoprene as a biomarker in modern medicine: a concise overview. Wiener Klinische Wochenschrift, 117(5–6), 180–186. https://doi.org/10.1007/s00508-005-0336-9

Shao, S., Chen, X., Chen, Y., Lai, M., & Che, L. (2019). Ultrasensitive and highly selective detection of acetone based on Au@WO3-SnO2 corrugated nanofibers. Applied Surface Science, 473, 902–911. https://doi.org/10.1016/j.apsusc.2018.12.208

Singh, P., Hu, L. L., Zan, H. W., & Tseng, T. Y. (2019). Highly sensitive nitric oxide gas sensor based on ZnO-nanorods vertical resistor operated at room temperature. Nanotechnology, 30(9), 95501. https://doi.org/10.1088/1361-6528/aaf7cb

Sun, S., Wang, M., Chang, X., Jiang, Y., Zhang, D., Wang, D., Zhang, Y., & Lei, Y. (2020). W18O49/Ti3C2Tx MXene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sensors and Actuators B: Chemical, 304, 127274. https://doi.org/10.1016/j.snb.2019.127274

Tai, H., Wang, S., Duan, Z., & Jiang, Y. (2020). Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sensors and Actuators B: Chemical, 318, https://doi.org/10.1016/j.snb.2020.128104

Tannaran, M., Solanki, G. K., Bhakhar, S. A., Patel, K. D., Pathak, V. M., & Pataniya, P. M. (2020). 2D-ZnSe2 Nanosheet functionalized Piezo-resistive flexible sensor for pressure and human breath monitoring. ACS Sustainable Chemistry & Engineering, 8(20), 7741–7749. https://doi.org/10.1021/acssuschemeng.0c01827

Vajhadin, F., Ahadlan, S., Travers-Sejdic, J., Lee, J., Mazloum-Ardakani, M., Salvador, J., Aninwene, G. E., Bandaru, P., Sun, W., &
Khademhossieni, A. (2020). Electrochemical cytosensors for detection of breast cancer cells. *Biosensors and Bioelectronics*, 151, 111984. https://doi.org/10.1016/j.bios.2019.111984

Vasiliev, A., Varfolomeev, A., Volkov, I., Simonenko, N., Arsenov, P., Vlasov, I., Ivanov, V., Pishiyakov, A., Lagutin, A., Jahatspanian, I., & Maeder, T. (2018). Reducing humidity response of gas sensors for medical applications: Use of spark discharge synthesis of metal oxide nanoparticles. *Sensors (Basel)*, 18(8), 2600. https://doi.org/10.3390/s18082600

Wang, B., Zhu, L., Yang, Y., Xu, N., & Yang, G. (2008). Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. *The Journal of Physical Chemistry C*, 112(17), 6643–6647.

Wang, C., & Sahay, P. (2009). Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. *Sensors (Basel)*, 9(10), 8230–8262. https://doi.org/10.3390/s91008230

Wehinger, A., Schmid, A., Mechtcheriakov, S., Ledochowski, M., Grabmer, C., Gastl, G. A., & Amann, A. (2007). Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. *International Journal of Mass Spectrometry*, 265(1), 49–59. https://doi.org/10.1016/j.ijms.2007.05.012

Wei, A., Pan, L., & Huang, W. (2011). Recent progress in the ZnO nanostructure-based sensors. *Materials Science and Engineering: B*, 176(18), 1409–1421. https://doi.org/10.1016/j.mseb.2011.09.005

Xie, Y., Xing, R., Li, Q., Xu, L., & Song, H. (2015). Three-dimensional ordered ZnO–CuO inverse opals toward low concentration acetone detection for exhaled breath sensing. *Sensors and Actuators B: Chemical*, 211, 255–262. https://doi.org/10.1016/j.snb.2015.01.086

Xu, L.-H., & Wu, T.-M. (2020). Synthesis of highly sensitive ammonia gas sensor of polyaniline/graphene nanoribbon/indium oxide composite at room temperature. *Journal of Materials Science: Materials in Electronics*, 31(9), 7276–7283. https://doi.org/10.1007/s10854-020-03299-6

Zhang, D., Wu, Z., & Zong, X. (2019). Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. *Sensors and Actuators B: Chemical*, 289, 32–41. https://doi.org/10.1016/j.snb.2019.03.055

Zhang, J., Liu, X., Neri, G., & Pinna, N. (2016). Nanostructured materials for room-temperature gas sensors. *Advanced Materials*, 28(5), 795–831. https://doi.org/10.1002/adma.201503825

Zhang, J., Lu, H., Yan, C., Yang, Z., Zhu, G., Gao, J., Yin, F., & Wang, C. (2018). Fabrication of conductive graphene oxide-WO3 composite nanofibers by electrospinning and their enhanced acetone gas sensing properties. *Sensors and Actuators B: Chemical*, 264, 128–138. https://doi.org/10.1016/j.snb.2018.02.026

Zhang, J., Wang, X., Chen, Y., & Yao, W. (2015). Exhaled hydrogen sulfide predicts airway inflammation phenotype in COPD. *Respiratory Care*, 60(2), 251–258. https://doi.org/10.4187/respcare.03519

Zhang, L., Dong, B., Xu, L., Zhang, X., Chen, J., Sun, X., Xu, H., Zhang, T., Bai, X., Zhang, S., & Song, H. (2017). Three-dimensional ordered ZnO–Fe3O4 inverse opal gas sensor toward trace concentration acetone detection. *Sensors and Actuators B: Chemical*, 252, 367–374. https://doi.org/10.1016/j.snb.2017.05.167

Zhang, R., Zhou, T., Wang, L., Lou, Z., Deng, J., & Zhang, T. (2016). The synthesis and fast ethanol sensing properties of core–shell SnO2@ZnO composite nanospheres using carbon spheres as templates. *New Journal of Chemistry*, 40(8), 6796–6802. https://doi.org/10.1039/c6nj00365f

Zito, C. A., Perfecto, T. M., & Volanti, D. P. (2017). Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. *Sensors and Actuators B: Chemical*, 244, 466–474. https://doi.org/10.1016/j.snb.2017.01.015

How to cite this article: Vajhadin F, Mazloum-Ardakani M, Amini A. Metal oxide-based gas sensors for the detection of exhaled breath markers. *Med Devices Sens*. 2021;4:e10161. https://doi.org/10.1002/mds.3.10161