Activities of three erythrocyte enzymes of hyperglycemic rats (*Rattus norvegicus*) treated with *Allium sativa* extract

Paul C Chikezie¹* and Augustine A Uwakwe²

Abstract

Background: The present study sought to investigate erythrocyte glutathione S-transferases (GST), NADH-Methaemoglobin reductase (NADH-MR) and Na⁺/K⁺-ATPase activities of hypoglycemic rats treated with ethanol/water (1:2 v/v) extract of *A. sativa* as agent of glycemic control.

Methods: Hyperglycemia was induced by a single intra-peritoneal injection of 0.1 mol/L alloxan monohydrate in phosphate buffer saline (PBS) solution (pH = 7.4); dosage = 140 mg/kg. At the end of the experimental time (t = 76 h), erythrocyte GST, NADH-MR and Na⁺/K⁺-ATPase activities as well as serum fasting blood sugar (FBS) levels were measured by spectrophotometric methods.

Results: Serum FBS levels of control/normal (C/N) rats ranged between 72.93 ± 0.82 – 95.12 ± 0.92 mg/dL, whereas experimental rats without glycemic control gave: 249.41 ± 1.03 – 256.11 ± 1.23 mg/dL. Hyperglycemic rats treated with ethanol/water (1:2 v/v) extract of *A. sativa* exhibited comparative reduced serum levels of FBS alongside with erythrocyte GST, NADH-MR and Na⁺/K⁺-ATPase activities. The average relative activities of the three enzymes and corresponding order of enzyme activity in hyperglycemic rats treated with ethanol/water (1:2 v/v) extract of *A. sativa* was: NADH-MR = 60.99% > GST = 47.81% > Na⁺/K⁺-ATPase = 46.81%. In the same order, relative activities of the three enzymes in rats without glycemic control were: NADH-MR = 49.65% > GST = 23.69% > Na⁺/K⁺-ATPase = 17.02%.

Conclusion: Erythrocyte GST, NADH-MR and Na⁺/K⁺-ATPase activities gave insights into the pathophysiology of diabetic state and served as biomarkers for ascertaining therapeutic control in Type 1 diabetes mellitus.

Keywords: Glutathione S-transferases, NADH-Methaemoglobin reductase, Na⁺/K⁺-ATPase, *Allium sativa*, Hyperglycemia, Diabetes mellitus

Introduction

Diabetic mellitus is an endocrine disorder characterized by insufficiency in circulating plasma level of insulin (Type 1, or Insulin-Dependent Diabetes Mellitus; IDDM) and peripheral resistance and insensitivity to insulin (Type 2, or Non-Insulin-Dependent Diabetes Mellitus; NIDDM). Unlike Type 1 diabetes mellitus, Type 2 is associated with hyperinsulinism. Primarily, overall physiologic distortions prompted by poor control of metabolism in absence or insufficiency of insulin engender hyperglycemia and associated metabolic disorders [1,2]. Striking consequential effects of prolong hyperglycemia are changes in structure and function of macromolecules [3,4], auto-oxidation of glycoalted proteins, increased production of reactive oxygen species (ROS), decreased antioxidant defense, increased lipid peroxidation, and associated apoptosis or necrosis occasioned by membrane degeneration [4,5]. Notably, alterations/adjustments in most glycolytic, tricarboxylic acid cycle (TCA) enzymes activities are associated with diabetic states [5,6]. Activities of these enzymes (pyruvate kinase, pyruvate dehydrogenase, glycogen synthase, pyruvate carboxylase, fructose 1, 6-bisphosphate etc.) are regulated by insulin and have been observed to be phosphoenzymes. Activation of enzyme activity in response to insulin stimulus is prompted by cyclic adenosine monophosphate (cAMP) phosphodiesterase mediated...
pathway [6] or through secondary metabolic events connected to insulin action. Glutathione S-transferases (GSTs) are multi-gene and multifunctional antioxidant enzymes that comprise several classes of GST isozymes. These enzymes by virtue of their activities act as subset of numerous cellular antioxidants defense systems against ROS species that are associated with many disease-causing electrophiles [2,7,8]. NADH-Methaemoglobin reductase (NADH-MR) (EC: 1.6.2.2) transfers electrons from NADH + H+ to cytochrome b5 via its flavin adenine dinucleotide (FAD) prosthetic group [9]. This erythrocyte enzyme maintains hemoglobin in its ferrous (Fe2+) state [10]. Na+/K+-ATPase, also called the sodium pump, is a soluble conserved trimeric pump (α-133 kDa; β-35 kDa; γ-10 kDa) involved in transmembrane cation regulation via ATP-dependent dual efflux/influx of sodium (Na+) and potassium (K+) ions in various cells [11,12]. The regulation of this pump activity is dependent on the phosphorylation of the α-subunit of Na+/K+-ATPase [11,13].

Allium sativa has been widely reported to exhibit therapeutic benefits to numerous pathologic states whose etiology is linked to oxidative stressors and electrophiles [14] such as diabetes mellitus [15-18], atherosclerosis [19,20], hyperlipidemia [20,21] thrombosis [22], hypertension [23]. Phytochemical and biochemical profile of A. sativa has been reported elsewhere [24]. The present study was based on the premise that hyperglycemia is one of the various indicators and promoters of distortional haemostasis associated with diabetes mellitus. Therefore, we sought to investigate level of alterations in erythrocyte GST, NADH-MR and Na+/K+-ATPase activities of hypoglycemic rats treated with ethanol/water (1:2 v/v) extract of A. sativa as agent of glycemic control.

Materials and methods

Collection of plant specimen
Fresh samples of A. sativa were obtained in July, 2012 from local market at Umuoziri-Inyishi, Imo State, Nigeria. The plant specimen was identified and authenticated by Dr. F.N. Mbagwu at the Herbarium of the Department of Plant Science and Biotechnology, Imo State University, Owerri, Nigeria. A voucher specimen was deposited at the Herbarium for reference purposes.

Preparation of extract
Fresh bulbs of A. sativa were washed under a continuous stream of distilled water for 15 min and air-dried at room temperature for 5 h. The bulbs were chopped and further dried for 5 h in an oven at 60°C and subsequently ground with a ceramic mortar and pestle. Twenty-five grams (25 g) of pulverized specimen was suspended in 250 mL of ethanol/water mixture (1:2 v/v) in stoppered flasks and allowed to stand at −4°C for 24 h. The suspensions were filtered with Whatman No. 24 filter papers. The filtrate was concentrated in a rotary evaporator at 50°C and dried in vacuum desiccator. The yield was calculated to be 3.4% (w/w). The extract was finally suspended in phosphate buffered saline (PBS) solution (extract vehicle), osmotically equivalent to 100 g/L PBS (90.0 g NaCl, 17.0 Na2HPO4·2H2O and 2.43 g NaH2PO4·2H2O), and used in all the studies with doses expressed in mg/kg of body weight of the animals.

Experimental animals
Male rats Rattus norvegicus (8–10 weeks old) weighing 150–200 g were generous gift from Professor A.A. Uwakwe (Department of Biochemistry, University of Port Harcourt, Nigeria). The rats were maintained at room temperatures of 25 ± 5°C, 30–55% of relative humidity on a 12-h light/12-h dark cycle, with access to water and food ad libitum for 2 weeks acclimatization period. The handling of the animals was in accordance with the standard principles of laboratory animal care of the United States National Institutes of Health (NIH, 1978).

Induction of hyperglycemia and study design
Hyperglycemia was induced by a single intra-peritoneal injection of 0.1 mol/L alloxan monohydrate in PBS solution (pH = 7.4) at a dosage of 140 mg/kg. The animals were considered hyperglycemic when their blood glucose concentrations exceeded 250 mg/dL 72 h after alloxan treatment, which was in conformity with our previous study [24]. The animals were deprived of food and water for additional 16 h before commencement of treatment (control and test experiments) as described elsewhere [24]. A total of twenty four (24) rats were divided into six (6) groups of four (n = 4) each as follows:

- Group C1: Control-Normal (C/N): Normal rats received only PBS (Vehicle; 1.0 mL/kg/16 h, i. p.) for 64 h.
- Group C2: Control-Hyperglycemic (C/H): Hyperglycemic rats received PBS (Vehicle; 1.0 mL/kg/16 h, i. p.) for 64 h.
- Group T1: H[A. sativa] = 1.0 mg/kg, Hyperglycemic rats received A. sativa (1.0 mg/kg/16 h, i. p.) for 64 h.
- Group T2: H[A. sativa] = 2.0 mg/kg, Hyperglycemic rats received A. sativa (2.0 mg/kg/16 h, i. p.) for 64 h.
- Group T3: H[A. sativa] = 4.0 mg/kg, Hyperglycemic rats received A. sativa (4.0 mg/kg/16 h, i. p.) for 64 h.
- Group T5: H[Glibenclamide] = 5.0 mg/kg, Hyperglycemic rats received glibenclamide (5.0 mg/kg/16 h, i. p.) for 64 h.

Measurement of fasting blood sugar
After alloxan treatment, blood samples were drawn from apical region of the tails of the rats i.e., at experimental
t = 0 h and by carotid artery puncture at experimental $t = 76 \text{ h}$ for measurement of fasting blood sugar (FBS). Determination of serum level of FBS was by glucose oxidase method according to the Randox$^\text{®}$ kit manufacturer’s procedure (Randox Laboratories Ltd. Ardmore, United Kingdom). Glibenclamide, a standard anti-diabetic agent is a product of Aventis Pharma. Ltd. Goa, India.

Collection of blood and preparation of erythrocyte haemolysate

At the end of treatment, the animals were fasted for 12 h [15] and subsequently sacrificed according to United States National Institutes of Health approved protocols (NIH, 1978). Blood volume of 4.0 mL was obtained by carotid artery puncture using hypodermic syringe. The erythrocytes were separated from plasma by bench centrifugation for 10 min. The harvested erythrocytes were washed by methods of Tsakiris et al. [25] as described by Chikezie et al., [26]. Within 2 h of collection of blood specimen, 1.0 mL of harvested erythrocyte was introduced into centrifuge test tubes containing 3.0 mL of buffer solution pH = 7.4: 250 mM tris (hydroxyl methyl) amino ethane–HCl (Tris–HCl)/140 mM NaCl/1.0 mM MgCl$_2$/10 mM glucose. The erythrocytes suspension was further centrifuged at 1200 g for 10 min and repeated 3 times. According to Chikezie [27], to remove platelets and leucocytes, the pellet was re-suspended in 3.0 mL of phosphate-buffered saline (PBS) solution (pH = 7.4) and passed through a column (3.5 cm in a 30 mL syringe) of cellulose-microcrystalline cellulose (ratio w/w 1:1) [28]. The eluted fraction was passed twice through a new column of cellulose-microcrystalline cellulose (ratio 1:1) to obtain erythrocyte suspension sufficiently devoid of leucocytes and platelets. Finally, erythrocytes were re-suspended in 1.0 mL of this buffer and stored at 4°C. The washed erythrocytes were lysed by freezing/thawing as described by Galbraith and Watts, [29] and Kamber et al., [30]. The erythrocyte haemolysate was used for the determination of erythrocyte glutathione S-transferase (GST) and NADH-Methaemoglobin reductase (NADH-MR) activity.

Erythrocyte haemolysate haemoglobin concentration

The cyanomethaemoglobin reaction modified method of Baure, [31] as described by Chikezie et al., [26] was used for measurement of haemolysate haemoglobin concentration. A 0.05 mL portion of erythrocyte haemolysate was added to 4.95 mL of Drabkins reagent (100 mg NaCN and 300 mg K$_3$Fe(CN)$_6$ per liter). The mixture was left to stand for 10 min at 25 ± 5°C and absorbance read at $\lambda_{\text{max}} = 540$ nm against a blank. The absorbance was used to evaluate for haemolysate haemoglobin concentration by comparing the values with the standard.

Erythrocyte glutathione S-transferase

GST activity was measured by the method of Habig, [32] as described by Pasupathi et al., [3] with minor modifications according to Chikezie et al., [26]. The reaction mixture contained 1.0 mL of 0.3 mM phosphate buffer (pH = 6.5), 0.1 mL of 30 mM 1-chloro-2, 4-dinitrobenzene (CDNB) and 1.7 mL of distilled water. After pre-incubating the reaction mixture at 37°C for 5 min, the reaction was started by the addition of 0.1 mL of erythrocyte haemolysate and 0.1 mL of glutathione (GSH) as substrate. The absorbance was followed for 5 min at $\lambda_{\text{max}} = 340$ nm. The enzyme activity was expressed as erythrocyte GST activity in international unit per gram haemoglobin (IU/gHb) using an extinction coefficient (Σ) of 9.6 mM$^{-1}$ cm$^{-1}$ in reaction in which 1 mole of GSH is oxidized (Eq. 1).

Erythrocyte NADH-Methaemoglobin reductase

NADH-MR activity was assayed according to the method of Board, [33]. A mixture of 0.2 mL Tris–HCl/EDTA buffer pH = 8.0, 0.2 mL NADH and 4.35 mL of distilled water was introduced into a test tube and incubated for 10 min at 30°C. The content was transferred into a cuvette and the reaction started by adding 0.2 mL of K$_3$Fe(CN)$_6$/0.05 mL erythrocyte haemolysate. The increase in absorbance of the medium was measured at $\lambda_{\text{max}} = 340$ nm per min for 10 min at 30°C against a blank solution. NADH-MR activity was expressed in international unit per gram haemoglobin (IU/gHb) using an extinction coefficient (Σ) of 6.22 mM$^{-1}$ cm$^{-1}$ in reaction in which 1 mole of NADH + H$^+$ is oxidized (Eq. 1).

Calculation of GST and NADH-MR activities:

$$E_A = \frac{100}{\text{Hb}} \times \frac{\text{OD/ min}}{\Sigma} \times \frac{V_C}{V_H}$$

(1)

Where,

$E_A = $ Enzyme activity in IU/gHb
[Hb] = Haemolysate haemoglobin concentration (g/dL)
0. D/min = Change per min in absorbance at 340 nm.
$V_C = $ Cuvette volume (total assay volume) = 1.0 mL.
$V_H = $ Volume of haemolysate in the reaction system (0.05 mL).

Erythrocyte ghost membrane preparation

A simplified procedure of DeLuise and Flier, [34] as reported by Iwalokun and Iwalokun, [35] was used for erythrocyte ghost membrane preparation. Briefly, 10 mL of ice cold 5 mM Tris/0.1 mM Na$_2$EDTA (pH = 7.6) were added to test tubes containing Buffy coat free-packed erythrocytes of test and control rats to achieve osmotic lysis. The resulting membranes were centrifuged at 20,000 g for 20 min at 4°C. The membrane suspensions
were washed 3 times in 0.017 M NaCl/5 mM Tris–HCl, pH = 7.6 and 3 times with 10 mM Tris–HCl (pH = 7.5). The haemoglobin-free membrane suspension was finally stored at −20°C in 10 mM Tris–HCl buffer (pH = 7.5).

Erythrocyte Na\(^+\)/K\(^-\)-ATPase

The erythrocyte total ATPase activity was determined by incubating 50 μL of ghost membrane suspension (~200 μg of membrane protein) of test and control rats with 5 mM Tris-ATP, 25 mM KCl, 75 mM NaCl, 5 mM MgCl\(_2\), 0.1 mM EDTA, 25 mM Tris–HCl (pH = 7.5) in 500 μL for 90 min at 37°C in a shaking water bath. The reaction was stopped by adding tricarboxylic acid (TCA) to a final concentration of 5% (w/v). After centrifugation for 20 min at 1,500 g, an aliquot of the supernatant was used to measure total inorganic phosphate liberated according to Fiske and Subbarow, [36] reaction. This assay was repeated in the presence of 200 μM methyl digoxin, an inhibitor of Na\(^+\)/K\(^-\)-ATPase activity. Total ATPase activity was expressed as micromole of inorganic phosphate liberated per milligram membrane protein per hour (μM pi/mg protein/h). The activity of Na\(^+\)/K\(^-\)-ATPase was subsequently determined by subtracting total ATPase activity in the presence of digoxin from enzyme activity in the absence of the inhibitor drug.

Ghost erythrocyte membrane protein

Membrane protein was measured according to the method of Lowry et al., [37] after solubilizing aliquots of ghost membrane suspension with 0.2% sodium dodecyl sulfate (SDS). Bovine serum albumin (BSA) (50–300 μg), product of Sigma Chemical Company, Saint Louis, Missouri, USA, was used as standard. Absorbance was measured with Beckmann D700 spectrophotometer (Beckmann, USA) at \(\lambda_{\text{max}} = 720\) nm.

Statistical analyses

The data collected were analyzed by the analysis of variance procedure while treatment means were separated by the least significance difference (LSD) incorporated in the statistical analysis system (SAS) package of 9.1 version (2006). The correlation coefficients between the results were determined with Microsoft Office Excel, 2010 version.

Results and discussion

Table 1 showed that serum FBS levels of C/N rats ranged between 72.93 ± 0.82–95.12 ± 0.92 mg/dL, whereas the experimental rats without glycemic control (C/H) was between 249.41 ± 1.03–256.11 ± 1.23 mg/dL. These values represented decrease in serum FBS levels by 22.19 mg/dL and 6.7 mg/dL in C/N and C/H rats respectively within the experimental time of 76 h. At experimental time \(t = 0\) h and \(t = 76\) h, serum FBS levels of C/H was significantly (\(p < 0.05\)) higher than C/N rats. A cursory look at Table 1 showed that hyperglycemic rats treated with ethanol/water (1:2 v/v) extract of A. sativa exhibited comparative reduced serum levels of FBS, which was in a dose dependent manner. Serum FBS levels of hyperglycemic rats at \(t = 0\) h was within the range of 255.64 ± 1.09–267.94 ± 0.92 mg/dL.

However, these values represented marginal variations in serum FBS levels amongst the three categories of A. sativa treated hyperglycemic rats (Group T1, Group T2 and Group T3) within the experimental time: 0 h ≤ \(t \leq 76\) h. Specifically, at \(t = 76\) h, serum FBS\(\text{[A. sativa]} = 1.0\) mg/kg = 125 ± 0.91 mg/dL; FBS\(\text{[A. sativa]} = 2.0\) mg/kg = 129.32 ± 1.50 mg/dL and FBS\(\text{[A. sativa]} = 4.0\) mg/kg = 132.61 ± 0.81 mg/dL; \(p < 0.05\) compared to C/N rats.

For instance, compared to serum FBS levels at \(t = 0\) h, H\([\text{Glibenclamide} = 5.0\) mg/kg\) showed reduced serum FBS levels by 61.91% at \(t = 76\) h, representing a ratio of 1:1.4 decrease in serum FBS levels compared to C/N rats; \(p < 0.05\). At the end of the experiment, serum FBS levels of H\([\text{A. sativa]} = 1.0\) mg/kg was not significantly different (\(p > 0.05\)) from H\([\text{A. sativa]} = 2.0\) mg/kg rats. Likewise, FBS levels of H\([\text{A. sativa]} = 2.0\) mg/kg showed no significantly difference (\(p > 0.05\)) compared to H\([\text{A. sativa]} = 4.0\) mg/kg rats.

Within the experimental time, hyperglycemic rats with or without glycemic control exhibited decreased levels of erythrocyte GST activity. Specifically, erythrocyte GST activity of C/H rats represented 23.69% of GST activity of C/N rats (\(p < 0.05\)). Figure 1 showed a corresponding increase in erythrocyte GST activity of hyperglycemic rats treated with ethanol/water (1:2 v/v) extract of A. sativa in a dose dependent manner (H\([\text{A. sativa]} = 1.0–4.0\) mg/kg) with comparative no significant difference (\(p > 0.05\)). Furthermore, within the experimental time, the decreased levels of

| Table 1 Serum FBS levels of hyperglycemic rats with/without glycemic control |
|-----------------------------|-----------------------------|
| **Group** | **t = 0 h** | **t = 76 h** |
| C/N | 95.12 ± 0.92\(^a\) | 72.93 ± 0.82\(^a\) |
| C/H | 256.11 ± 1.23\(^b\) | 249.41 ± 1.03\(^b\) |
| H\([\text{A. sativa]} = 1.0\) mg/kg\) | 255.64 ± 1.09\(^c\) | 125.11 ± 0.91\(^c\) |
| H\([\text{A. sativa]} = 2.0\) mg/kg\) | 261.13 ± 2.00\(^c, d\) | 125.11 ± 1.50\(^c, d\) |
| H\([\text{A. sativa]} = 4.0\) mg/kg\) | 267.94 ± 0.92\(^c, d, e, f\) | 132.61 ± 0.81\(^d, e, f\) |
| H\([\text{Glibenclamide} = 5.0\) mg/kg\) | 265.49 ± 4.10\(^c, d, e, f\) | 101.12 ± 0.80\(^f\) |

Means in the column with the same letters are not significantly different at \(p > 0.05\) according to LSD.

\(\lambda_{\text{max}} = 720\) nm.
erythrocyte GST activity of rats treated with ethanol/water (1:2 v/v) extract of A. sativa were significantly different (p < 0.05) from that of C/N rats. Also, erythrocyte of H[Glibenclamide] = 5.0 mg/kg rats showed 76.82% GST activity compared to the C/N rats (p < 0.05).

Figure 2 showed that erythrocyte NADH-MR activity of rats without glycemic control (C/H rats) was not significantly different (p > 0.05) from those with glycemic control (H[A. sativa] = 1.0–4.0 mg/kg and H[Glibenclamide] = 5.0 mg/kg rats). Similarly, erythrocyte NADH-MR activity of H[A. sativa] = 1.0–4.0 mg/kg rats was not significantly different (p > 0.05) from H[Glibenclamide] = 5.0 mg/kg rats. Specifically, erythrocyte NADH-MR activity of H[Glibenclamide] = 5.0 mg/kg rats was 67.38% compared to erythrocyte NADH-MR activity of C/N rats, whereas H[A. sativa] = 1.0–4.0 mg/kg rats NADH-MR activity showed relative enzyme activity between the range of 49.65–63.12%. Erythrocyte NADH-MR activity of C/H rats was significantly (p < 0.05) lower than C/N rats, representing 68.97% reduction of NADH-MR activity in C/H rats.

Erythrocyte Na+/K+-ATPase activity of C/H rats was reduced by 82.98% compared to C/N rats (p < 0.05). At experimental t = 76 h, erythrocyte Na+/K+-ATPase activity H[A. sativa] = 1.0–4.0 mg/kg rats showed progressive increase in relative enzyme activity: H[A. sativa] = 1.0 mg/kg = 34.04%, H[A. sativa] = 2.0 mg/kg = 52.13% and H[A. sativa] = 4.0 mg/kg = 54.26%. H[Glibenclamide] = 5.0 mg/kg rats was 74.47% (Figure 3). An overview of Figures 1,
2 and 3 showed that the average relative activities of the three enzymes and corresponding order of enzyme activity in hyperglycemic rats treated with ethanol/water (1:2 v/v) extract of A. sativa was: NADH-MR = 60.99% > GST = 47.81% > Na+/K+-ATPase = 46.81%. In the same order, relative activities of the three enzymes in rats without glycemic control were: NADH-MR = 49.65% > GST = 23.69% > Na+/K+-ATPase = 17.02%. Furthermore, percentage decreases in GST, NADH-MR and Na+/K+-ATPase activities in H[A. sativa] = 1.0–4.0 mg/kg rats was related to the capacity of ethanol/water (1:2 v/v) extract of A. sativa to exert dose dependent glycemic control.

The use of experimental animal model for study of Type 1 diabetes mellitus has been widely reported [38-41]. The cytotoxic action of diabetogenic agents is mediated by formation of superoxide radicals and other related ROS, causing massive destruction of the β-cells [39,42,43]. From the present study, experimental rats treated with the widely used diabetogenic agent–alloxan, in conformity with previous reports elsewhere [24,39,42,43], showed evidence of hyperglycemia (Table 1). Hyperglycemia is the earliest and primary clinical presentation in diabetic states [3,44]. Studies on the application of nutraceuticals, sourced from spices and other edible plants and their products, for the treatment and management of diabetes mellitus have received the attention of several research endeavours [45]. The present study showed evidence of the capacity of ethanol/water extract of A. sativa to reduce serum level of FBS in hyperglycemic rats, which compared fairly with the standard anti-diabetic drug–glibenclamide (Table 1). The anti-diabetic properties of A. sativa extract have been previously reported [15,24]. The therapeutic action of A. sativa as it applies to its role in the treatment and management of diabetes mellitus is identical to the mode of action of other numerous anti-diabetic agents of plant origin such as Coriandrum sativum [45]; Gongronema latifolium [46]; Allium cepa Linn [15]. However, other mechanism of therapeutic action, which involves increase peripheral glucose consumption induced by Eugenia Floccosa [47], Berberis lyceum [48] and Tinospora cordifolia roots [49] have been documented. The active principles of these plant extracts exhibited insulin-like effect by mimicry. However, within the experimental time, administration of the three experimental doses of ethanol/water (1:2 v/v) extract of A. sativa as an instrument of glycemic control did not restore normal serum level of FBS (72.93 ± 0.82–95.12 ± 0.92 mg/dL) in hyperglycemic rats with [FBS] > 250 mg/dL.

According to Raza et al., [5] oxidative stress is an important factor in the etiology and pathogenesis of diabetes mellitus. Furthermore, Pasupathi et al., [3] had observed significant (p < 0.001) decrease in reduced glutathione (GSH) concentration in diabetic erythrocytes compared to control participants. They further averred that decreased level of GSH was an aftereffect of increased utilization of the coenzyme for scavenging ROS due to elevated oxidative stress associated with diabetes. Consequently, we observed decreased levels of erythrocyte GST activity in hyperglycemic rats, which was in conformity with previous studies [3,44,45,50-52], since the co-substrate (GSH) required for GST antioxidant protective activity [1,53] may have been utilized for other non-enzymatic reductive pathways. Judging from erythrocyte GST activity of rats without glycemic control, the relatively higher levels of erythrocyte GST activity of hyperglycemic
rats treated with *A. sativa* extract in dose dependent pattern (Figure 1) was an obvious indication of the capability of ethanolic extract of plant extract to serve as anti-diabetic agent, fairly comparable to the standard anti-diabetic drug-glibenclamide. Erythrocyte GST activity has been proven to be a reliable biochemical index and basis for diagnosis and monitoring of therapeutic events in the course of treatment and management of other pathologic/metabolic disorders whose etiologies and manifestations are linked to oxidative stress. Notable among which are: parasitic infections [26,54], gout and rheumatoid arthritis [55,56], haemoglobinopathies [26], malignancy [57], hypertension [58], stroke [59] and atherosclerosis [60]. In a related perspective, Moasser et al., [2] had previously given account of the use of GST activity as a reliable biomarker in depicting the etiology of diabetes mellitus. They posited that two isoforms of GST (GSTM1 and GSTT1) might be involved in the pathogenesis of Type 2 diabetes mellitus in South Iranian population. In addition, investigations by Yalin et al., [7] showed that the GSTM1 gene may play a significant role in the aetiopathogeneses of diabetes mellitus and could serve as a useful biomarker in the prediction of diabetes mellitus susceptibility of the Turkish population.

According to Coleman, [61] poor glycemic control in diabetes and combination of oxidative, metabolic, and carbonyl stresses caused restriction in supply but excesive demand for reducing equivalents. Therefore, repressed NADH-MR activity in hyperglycemic rats could be linked to the substantial diversion and utilization of reducing equivalents to other reductive pathways in efforts to minimize oxidative stress, prompted by erythrocyte high ROS content. Thus, the decreased level of erythrocyte NADH-MR activity of hyperglycemic rats (Figure 2) is a reflection of a compromised erythrocyte antioxidant status associated with hyperglycemia [61,62]. Furthermore, in concordance with the present reports, Zerez et al., [63] had stated that conditions that engender decreased erythrocyte NADH content resulted to decreased rate of methaemoglobin reduction in connection to impaired NADH-MR activity. This condition is responsible, in part, for relatively high methaemoglobin content in sickle erythrocytes and susceptibility to oxidative damage [27]. Based on the present observations, it is presumed that adjustments in diabetic erythrocyte methaemoglobin levels might provide early indication of diabetic antioxidant and oxidative stress status.

Studies suggest that insulin plays a stimulatory role in Na⁺/K⁺-ATPase activity through tyrosine phosphorylation process [11]. The relatively reduced levels of erythrocyte Na⁺/K⁺-ATPase activity in hyperglycemic rats (Figure 3) was consistent with the findings of previous authors. Soulis-Liparota et al., [64] reported reduced Na⁺/K⁺-ATPase activity streptozotocin-induced diabetic rats with nephropathy, whereas, Di Leo et al., [65] and Kowluru, [66] reported impairment in the enzyme activity in diabetic rats and mice with retinopathy. In a different study, using human participants, Iwalokun and Iwalokun, [35] noted compromised erythrocyte Na⁺/K⁺-ATPase activity in Type 1 diabetic patients from Lagos, Nigeria. This finding was corroborated by Mimura et al., [67] study, in which they noted reduced activity of erythrocyte Na⁺/K⁺-ATPase activity in Type 2 diabetic patients with hyperkalemia. Rachah et al., [68] suggested that diabetes-induced Na⁺/K⁺-ATPase activity dysfunction could be implicated in the pathogenesis of human diabetic neuropathy and the electrophysiological abnormalities.

The findings reported here was in concordance with those of Konukoglu et al., [69]. They noted that hypercholesterolemia and free radical-induced mechanisms may be responsible for the inhibition of erythrocyte Na⁺/K⁺-ATPase activity in patients with Type 2 diabetes mellitus. According to the present study, decreased erythrocyte Na⁺/K⁺-ATPase activity of hyperglycemic rats was analogous to altered enzyme activity in peripheral neurons of individuals with diabetic neuropathy. According to Greene et al., [70], impaired Na⁺/K⁺-ATPase activity is induced by hyperglycemia with characteristic distortions in myo-inositol and phosphoinositol metabolism, which normalizes with intensive insulin therapy that controls hyperglycemia [71]. Thus, decreased erythrocyte Na⁺/K⁺-ATPase activity was an obvious confirmation of a connection between the capacity of erythrocyte to actively transport Na⁺/K⁺ ions (antiport) and obligatory utilization of ATP for α-subunit of Na⁺/K⁺-ATPase phosphorylation required for enzyme activity [11,13,72]. Hyperglycemia with associated depressed glucose utilization in diabetic states results in low intracellular ATP concentration, insufficient for the required obligatory phosphorylation of the enzyme. The dose dependent increase in erythrocyte Na⁺/K⁺-ATPase activity in hyperglycemic rat treated with extract of *A. sativa* as instrument of glycemic control was an indication of improve glucose utilization exemplified in hyperglycemic rats treated with the standard anti-diabetic drug. The role and mechanism of insulin in regulation of Na⁺/K⁺-ATPase activity has been described elsewhere [73]. In another study, Konukoglu et al., [69] reported that hypercholesterolemia and free radical-induced mechanisms may be responsible for the inhibition of erythrocyte Na⁺/K⁺-ATPase activity patients with type 2 diabetes mellitus.

The present study showed that erythrocyte GST, NADH-MR and Na⁺/K⁺-ATPase activities gave insights into the pathophysiology of diabetic state and could serve as a biomarker for ascertaining therapeutic control in Type 1 diabetes mellitus.
Competing interests
The authors had no conflict of interest.

Authors' contributions
PCC wrote the draft and final manuscript of the reports, participated in the design and coordination of the study. AAU revised the manuscript, conceived and participated in the design and coordination of the study. All authors read and approved the final manuscript.

Author details
1 Department of Biochemistry, Imo state university, Owerri 460222, Nigeria.
2 Department of Biochemistry, University of Port Harcourt, Port Harcourt 460222, Nigeria.

Received: 5 December 2013 Accepted: 14 April 2014
Published: 22 April 2014

References
1. Nowier SR, Kashmire NK, Rasool HAA, Morad H, Ismail S. Association of Type 2 diabetes mellitus and glutathione S-transferase (GSTM1 and GSTT1) genetic polymorphism. Res J Med Sci 2009, 4(2):181–188.
2. Moosar E, Kazemi-Nezhad SR, Saadat M, Azarpira N. Genetic polymorphism of glutathione S-transferases in patients with diabetes mellitus. J Med 2009, 2050–56.
3. Paupath P, Chandrasekar V, Kumar US. Evaluation of oxidative stress, antioxidiant and thyroid hormone status in patients with diabetes mellitus. J Med 2009, 2050–56.
4. Velladath SU, Das A, Kumar RN. Erythrocyte glutathione S-transferase activity in diabetes and its association with HbA1c, Webmed Central Clin Biochem 2011, 2(7), WWCO2004.
5. Raza H, Prabu SK, Robin MA, Avadhani NG. Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4-4 in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidative stress. Diabetes 2004, 53:185–194.
6. Grodsky GM. Chemistry and functions of hormones. III. Pancreas and gastrointestinal tract. In: Harper's Review of Biochemistry. Los Altos: Lange Medical Publications; 1983:511–522.
7. Yalin S, Hatunoglu B, Karam US, Yildirim H, Karakas S, Atik U. Glutathione S-transferase gene polymorphism in Turkish patients with diabetes mellitus. Cell Biochem Function 2007, 125(5):509–513.
8. Bid HK, Konwar R, Saxena M, Chaudhari P, Agrawal CG, Banerjee M. Association of glutathione S-transferase GSTM1, T1 and P1 gene polymorphisms with type 2 diabetes mellitus in north Indian population. J Postgrad Med 2010, 56:176–181.
9. Kubota T, Takehita M. Reduction of methaemoglobin through flavin at the physiological concentration by NADPH-flavin reductase of human erythrocyte membranes. J Biochem 1980, 87(6):1715–1720.
10. Rockwood GA, Armstrong KR, Baskin D. Chemistry and functions of hormones. III. Pancreas and gastrointestinal tract. In: Harper's Review of Biochemistry. Los Altos: Lange Medical Publications; 1983:511–522.
11. Feralle E, Cananza ML, Genta F, Fave H. Protein kinase C-dependent phosphorylation of the Na+/K+ ATPase in kidney proximal tubule cells depends on phosphorylation of the a-subunit at Tyr-10. Mol Biol Cell 1999, 10:2847–2859.
12. Kaplan JM. Biochemistry of Na+/K+/ATPase. Annu Rev Biochem 2002, 71:511–535.
13. Cananza ML, Feralle E, Fave F. Protein kinase C-dependent phosphorylation of the Na+/K+/ATPase a-subunit in rat kidney cortical tubules. Am J Physiol 1996, 271:C136–C143.
14. Banerjee SK, Maulik SK. Effect of garlic on cardiovascular disorders: a review. Nutr J 2002, 1:4.
15. El-Demerdash FM, Yousef MI, Abou El-Naga NI. Biochemical study on the hypoglycemic effects of garlic and garlic in allium-induced diabetic rats. Food Chem Toxicol 2005, 43:57–63.
16. Chauhan A, Sharma PK, Sivastava P, Kumar N, Dueae R. Plants having potential antidiabetic activity: a review. Der Pharm Lett 2010, 2(3):369–387.
17. Ayodhya S, Kusum S, Anjal S. Hypoglycemic activity of different extracts of various herbal plants. Int J Res Ayurveda Pharma 2010, 1(1):212–224.
18. Patel DK, Prasad SK, Kumar R, Hernalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012, 2(2):320–330.
19. Lau BHS, Adetumuba MA, Sanchez A. Allium sativum (garlic) and atherosclerosis: a review. Nutr Res 1983, 3(1): http://dx.doi.org/10.1016/ 0271-5317(83)90012-8.
20. Choudhary BY. Beneficial effect of Allium sativum and Allium tuberosum on experimental hyperlipidemia and atherosclerosis. Pak J Physiol 2008, 4(2):7–9.
21. Mahmodi M, Ismail MR, Karam AGR, Khaksar M, Saeheghadarm LA, Hajiadzej MR, Mirzaee MR. Study of the effects of raw garlic consumption on the level of lipids and other blood biochemical factors in hyperlipidemic individuals. Pak J Pharmacol Sci 2008, 19:295–298.
22. Fukao H, Yoshida H, Tazawa Y, Hada T. Antithrombotic effects of odorless garlic powder Bothin vitroadino vivo. Biosci Biotechnol Biochem 2007, 71:84–90.
23. Benavides GA, Squadrito GL, Mills MW, Patel HD, Isbell TS, Patel RL, Darley-Usmar VM, Doeller JE, Kraus DW. Hydrogen sulfide mediates the vasoactivity of garlic. PNAS 2007, 104(17):7977–7982.
24. Ibeogbu CO, Chikezie PC. Hypoglycemic properties of ethanolic extracts of Gongronema latifolium, Aloe peryi, Viscum album and Allium sativum administered to alloxan-induced diabetic albino rats (Rattus norvegicus). Pharmacochem Commun 2012, 2(3):212–16.
25. Tsakiris S, Giannoulla-Karananta A, Simintzi J, Schulpis KH. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity. Pharmacol Res 2005, 53:1–5.
26. Chikezie PC, Uwakwe AA, Monica CC. Glutathione S-transferase activation of three erythrocyte genotypes (HbAA, HbAS and HbSS) of male subjects/ volunteers administered with Fansidar and Quinine. Afr J Biochem Res 2009, 3(5):210–214.
27. Chikezie PC. Methaemoglobin concentration and NADH-methemoglobin reductase activity of three human erythrocyte genotypes. Asian J Biochem 2011, 6(1):98–103.
28. Kolay VK, Sikka SC, Sethi GS. Transport of amino acids in gamma-glutamyl transpeptidase-implemented human erythrocytes. J Biol Chem 1981, 256:5567.
29. Gabraham DA, Watts DC. Changes in some cytoplasmic enzymes from red cells fractionated into age groups by centrifugation in Ficoll™/Tryosil™ gradients: comparison of normal human and patients with Duchenne muscular dystrophy. Biochem J 1980, 191:63–70.
30. Kamber K, Poyiagi A, Dekonstantinos G. Modifications in the activities of membrane-bound enzymes during in vivo ageing of human and rabbit erythrocytes. Comp Biochem Physiol 1984, 87B:95–99.
31. Baare JD. Laboratory investigation of hemoglobin. In Gradwold Clinical Laboratory Methods and Diagnosis. Edited by Sonnerwell AC, Jarrett L, St Louis: Mosby; 1980.
32. Habig WH, Pabst MJ, Blumenthal GJ. Glutathione S-transferases; the first enzymatic step in mercapturic acid formation. J Biol Chem 1974, 249(2):130–137.
33. Board P, Coggan M, Johnston P, Ross V, Suzuki T, Webb G. Genetic heterogeneity of the human glutathione transferases; a complex of gene families. Pharmacol Ther 1990, 48:357–69.
34. Deluiso M, Flier J. Functionally abnormal Na+/K+ ATPase pump in erythrocytes of a morbidly obese patient. J Clin Invest 1982, 69:38–44.
35. Iwalokun BA, Iwalokun SO. Association between erythrocyte Na+/K+ ATPase activity and some blood lipids in type 1 diabetic patients from Lagos, Nigeria. BMC Endocrine Disorders 2007, 7:7.
36. Fiske CH, Subbarow Y. The colorimetric determination of phosphorous. J Biol Chem 1925, 62:375–400.
37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951, 193:265–275.
38. El-Missiry MA, El Gindy AM. Amelioration of allium induced diabetes mellitus and oxidative stress in rats by oil of Eruca sativa seeds. Ann Nutr Metab 2000, 44:97–100.
39. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001, 50(5):537–546.
40. Gwarzo MY, Nwachuku VA, Lateef AO. Prevention of alloxan induced diabetes mellitus in rats by vitamin a dietary supplementation. Asian J Anim Sci 2010, 4:190–196.
41. Shahaboddin ME, Pouramir M, Moghadamnia AA, Lakzai M, Mirhashemi SM, Motalebi M. Antihyperglycemic and antioxidant activity of Viscum album extract. A J Pharmacol 2011, 5(3):432–436.

42. Lankin VZ, Korchin VI, Konovalova GG, Lisina MO, Tikhaze AK, Akmaev Kz. Role of antioxidant enzymes and antioxidant compound probucol in antiradical protection of pancreatic beta-cells during alloxan-induced diabetes. Bull Exp Biol Med 2004, 137:201–23.

43. Sharma US, Kumar A. Anti-diabetic activity of Rubus ellipticus fruits extracts in alloxan-induced diabetic rats. J Diabetol 2011, 2:4.

44. Choudhuri S, Dutta D, Choudhury IH, Mitra B, Sen A, Mandal BK, Mukhopadhyay S, Bhattacharya B. Association of hyperglycemia mediated increased advanced glycation and erythrocyte antioxidant enzyme activity in different stages of diabetic retinopathy. Diabetes Res Clin Pract 2013, 100(3):376–384.

45. Rajeshwari CU, Andanu B. Oxidative stress in NIDDM patients: influence of coirian (Coriandrum sativum) seeds. Res J Pharmaceut, Biochem Sci 2011, 2(1):31–41.

46. Ugocchakuw N, Bubady NE. Antihyperglycaemic effect of aqueous and ethanolic extracts of Gongronema latifolium leaves on glucose and glycogen metabolism in livers of normal and streptozotocin induced diabetic rats. Life Sci 2003, 73(15):1925–1938.

47. Kala SMJ, Tresina PS, Mohan VR. Antioxidant, anti-hyperlipidemic and anti-diabetic activity of Eugenia floccosa Badd leaves in alloxan induced diabetic rats. J Basic Clin Pharmac 2012, 3(011):236.

48. Guedz M, Oudir G, Nosheen F, Parveen Z. Antihyperglycemic effects of Berberis lyceum Royle in alloxan induced diabetic rats. Diabetologia Croatica. 2007, 36:3–49–54.

49. Stanely P, Prince M, Menon VP. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol 2000, 70(1):15–19.

50. McRobie DJ, Glover OD, Tracy TS. Effects of gestational and overt diabetes on human placental cytochromes P450 and glutathione S-transferase-p as a time indicator of stroke onset. Mol Cell Toxicol 2008, 24(8):675–677.

56. Motallebi M. Antihyperglycemic and antioxidant activity of Gongronema latifolium (5:1) extract. J Diabetol Metab Disord 2013, 41(15):1925–1929.

67. Raccah D, Fabreguettes C, Azulay JP, Vague P. Erythrocyte Na+-K+-ATPase activity, metabolic control, and neuropathy in IDDM patients. Diabetes Care 1996, 19(6):564–566.

68. Nourouloom D, Kerner GD, Sabuncu T, Hatami H. Relation of erythrocyte Na+-K+-ATPase activity and cholesterol and oxidative stress in patients with Type 2 diabetes mellitus. Clin Invest Med 2003, 26(6):279–284.

69. Greene DG, Lattimer SA, Sima AAF. Are disturbances of sorbitol, phosphoinositide, and Na+/K+-ATPase regulation involved in pathogenesis of diabetic neuropathy? Diabetes 1988, 37:685–693.

70. Greene DA, Deleusis PV, Winegrad AL. Effects of insulin and dietary myo-inositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 1975, 55:1326–1336.

71. Mishra G, Routtay R, Das SR, Behera HH. Alloxan diabetes in Swiss mice: activity of Na+-K+-ATPase and succinic dehydrogenase. Indian J Physiol Pharmacol 1995, 39(3):271–274.

72. Hatou S, Yamada M, Akune Y, Mochizuki H, Shiraishi A, Joko T, Nishida T, Tsukuba K. Role of insulin in regulation of Na+-K+-dependent ATPase activity and pump function in corneal endothelial cells. Invest Ophthalmol Visual Sci 2010, 51(8):3935–3942.