NKG2D ligands in inflammatory joint diseases: analysis in human samples and mouse models

Alexandre Mariotte 1,2, Livio Bernardi 1,3, Cécile Macquin 1,2, Aurore DeCauwer 1,2, Irina Kotova 4, Stephan Blüml 5, Daniele Noël 6, Anna Scanu 3, Leonardo Punzi 3, Raphael Carapito 1,2, Jean Sibilia 1,2,7, Seiamak Bahram 1,2 and Philippe Georgel 1,2,*

1 Université de Strasbourg, INSERM, ImmunoRhumatologie Moléculaire UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, F-67000 Strasbourg, France.
2 Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d'Hématologie, 67085 Strasbourg, France.
3 Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padua, Italy.
4 BIOMICA SAS, Strasbourg, France
5 Department of Rheumatology, Medical University Vienna, Vienna, Austria.
6 IRMB, Université de Montpellier, INSERM u1183 and CHU Montpellier, Montpellier, France.
7 Centre de Référence des Maladies Autoimmunes Rares, Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
* corresponding author : pgeorgel@unistra.fr, tel +33 (0) 368.853.984, Fax +33 (0) 368.853.965

The authors have declared that no conflict of interest exists

Running title: NKG2D Ligands in joint inflammation
Abstract

Background

NKG2D ligands (NKG2DLs) are stress-inducible molecules involved in multiple inflammatory settings. In this work, we quantified MICA, an NKG2DL, in the synovial fluid of patients suffering various arthritides and measured Nkg2dLs gene expression in murine models of acute joint inflammation.

Methods

Soluble MICA (sMICA) was quantified by ELISA in synovial fluids harvested from patients suffering osteoarthritis, rheumatoid arthritis, psoriatic arthritis, calcium pyrophosphate crystal arthritis, urate crystal arthritis and reactive arthritis. Transcripts encoding murine NKG2DLs were quantified by RT-qPCR in the joints of mouse models of rheumatoid arthritis, urate crystal arthritis and osteoarthritis.

Results

Marked overproduction of sMICA was observed in the synovial fluid of RA patients. Mouse studies highlighted the complex transcriptional regulation of Nkg2d ligands encoding genes depending on the inflammatory setting and microenvironment

Conclusions

sMICA quantification could be an interesting biomarker to identify acute inflammation in RA patients in which classical markers (ie, anti-citrullinated protein antibodies, ACPA) are undetectable.

Key words: MICA; joint inflammation; NKG2D ligands
Background

Multiple triggers can induce inflammatory joint diseases. However, a common feature of inflammation is the sensing of danger molecules which are detected by innate immune cells through cognate pattern recognition receptors (PRRs) and subsequent production of inflammatory mediators, such as pro-inflammatory cytokines (IL-1β, IL-6, TNFα), arachidonic acid derivatives (leukotrienes, prostaglandins) or reactive oxygen species (ROS) [1].

Among “danger-signaling” molecules, NKG2D ligands (NKG2DLs) appear of particular importance. They are stress-inducible molecules, non-conventional MHC class I molecules, upregulated under various pathological conditions, such as cancer, microbial infections and inflammation [2]. NKG2DLs are a family of proteins capable of engaging the NKG2D receptor, thereby activating cytotoxic lymphocytes (essentially NK and CD8+ T cells) and inducing cytokine secretion [2]. In Man, NKG2DLs are encoded by two groups of genes: the MHC class I chain-related genes A and B (MICA and MICB) and the UL16-binding proteins (also known as retinoic acid early transcripts) ULBP1-6 genes. In mice, which do not harbor orthologous genes to MICA or MICB, three set of genes encode NKG2DLs: Rae-1, H60 and Mult-1. Numerous studies have reported the importance of the NKG2D-NKG2DLs in tumor immunosurveillance, leading to the development of novel therapies against cancer [3]. With regards to rheumatic diseases, the role of NKG2D signaling and NK cells responses in pathogenesis appears less well characterized. Interestingly, nucleotide variants in genes encoding some of these ligands, as well as the NKG2D receptor, have been associated to rheumatic diseases, like rheumatoid arthritis (RA), psoriatic arthritis [4] or Sjögren’s disease [5]. MICA and MICB expression by human RA synoviocytes (RASF) has been described [6], but the underlying mechanism is still poorly described, pointing to the necessity to evaluate NKG2DLs expression in various inflammatory environments, and not only RA, in order to obtain a comprehensive vision of the role of these molecules in joint diseases.

In the present translational study, we aimed at providing a better description of the expression of NKG2DLs in various arthropathies. For this, we performed soluble MICA (sMICA) quantification by ELISA in the synovial fluid of patients affected by joint diseases.
We also measured by RT-qPCR the expression levels of the genes encoding NKG2D and its ligands in several mouse models of acute and chronic joint inflammation. Our results with human samples reveal increased MICA expression in the synovial fluid of RA patients and our investigations in mice point to disease-specific transcriptional control of NKG2DL. Altogether, our data suggest that, depending on the environment and its origins, inflammation mediates complex NKG2DLs / NKG2D interactions.

Methods

Human samples

A total of 117 patients with various joint diseases from Strasbourg and Padua University hospitals were selected. All patients gave their written informed consent and the research protocol was approved by relevant institutional review boards. For 22 patients (10 OA, 5 RA, 3 REA, 2 CPP, 1 PSOA, 1 Gout), blood and synovial fluid was collected the same day. Sera from RA, OA and PSOA patients were collected and stored at the Medical University of Vienna (Austria).

Mouse models

Mouse models for rheumatic diseases were previously described: Acute urate crystal inflammation in [7]; Serum transfer arthritis (STA) and collagen-induced arthritis (CIA) [8]. The K/BxN model was described in [9] and the collagenase-induced osteoarthritis model (CIOA) in [10]. All procedures were approved by Ethic Committees on Animal Experimentation (approval CEEA-LR-10041 for the OA model and 2018083014133041 for the others).

Quantification of soluble MICA (sMICA).

sMICA quantification was performed as described in [5]. Briefly, the protocol is based on a sandwich ELISA using two different capture and one detection antibodies which recognize
MICA without any allele specificity. Synovial fluid or serum was diluted 10x in PBS and all samples were tested in duplicates.

Quantification of cytokines

IL-1β, IL-6 and IL-8 were quantified using dedicated ELISA according to the Manufacturer’s recommendations (eBioscience, San Diego, CA, USA).

Real-time quantitative PCR (RT-qPCR)

Total RNA was prepared from joints (dissected hips for the CIOA model, from hindpaws for all other models) as described in [7] and reverse transcribed using the cDNA synthesis kit (iScript ready-to-use cDNA supermix, Biorad). Real-time quantitative RT-qPCR was performed in a total volume of 20µL using the Sso-advanced universal SYBR-Green supermix (Biorad) and gene-specific primers. After a denaturing step at 95°C for 30 seconds, 40 cycles were performed (95°C for 5s and 60°C for 20s) using a Rotor-Gene 6000 real-time PCR machine (Corbett Life Science). Results were obtained using the SDS Software (Perkin Elmer). Melting-curve analysis was performed to assess the specificity of PCR products. Relative expression was calculated using the comparative threshold cycle (Ct) method. The Ct of the gene of interest was adjusted to the average Ct of three housekeeping genes (Hprt, Actin and Gapdh) to obtain a ΔCt. Then, the values were normalized to the control group for each experiment and expressed as $2^{-\Delta\Delta Ct}$. The sequence of the primers is available upon request.

Statistics

Following normality tests (Kolmogorov-Smirnov and Shapiro-Wilk), data were analyzed with a Mann-Whitney test or unpaired t test (two-tailed unpaired) to compare two independent groups and non-parametric (Spearman) test for correlation analysis. Statistics were
calculated with GraphPad 5.01 software. A probability (p) value of < 0.05 was considered significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p<0.0001.

Results

We first quantified soluble MICA (sMICA) in the synovial fluid isolated from a cohort of 117 patients, among which 17 calcium pyrophosphate (CPP) crystal arthritis, 12 urate crystal arthritis (Gout), 8 reactive arthritis (REA), 13 psoriatic arthritis (PSOA), 22 rheumatoid arthritis (RA) and 45 osteoarthritis (OA). sMICA was quantified with an in-house developed sandwich ELISA using two antibodies for capture and a third for detection. This assay, which did not exhibit any MICA allelic specificity [5], showed that sMICA appears markedly increased in the synovial fluid (SF) of RA patients (Fig. 1A, 502.3 +/- 256.1 pg/ml) as compared to any of the other arthropathies tested. The lowest level of sMICA was detected in OA patients (144.7 +/- 58.03 pg/ml; p<0.0001). IL-1β, IL-6 and IL-8 levels are also increased in the synovial fluid of RA patients (Fig.1B-D), although not always reaching statistical significance when compared to other arthropathies. For instance, IL-1β and IL-8 levels are comparable between gout and RA patients (p=0.2273 and p=0.1653 respectively). Similarly, IL-6 is produced in high amounts in crystalopathies caused by calcium phosphate (CPP) or urate deposits (gout), as it is the case in RA (p= 0.2076 and p=0.5283). These data suggest that the detection of high levels of sMICA in the synovial fluid could represent a specific biomarker of RA. Correlation analyses showed that while sMICA quantity in the SF appears independent from IL-1β levels (Fig. 1E, p=0.1802), a significant correlation with IL-6 (p=0.0078) and IL-8 (p=0.0051) is evidenced (Fig. 1F and G). This suggests that MICA expression relies on NF-κB-dependent signaling like Il-6 and Il-8 genes [11]. We next quantified sMICA in the serum of a cohort of RA (n=99), OA (n=101) and PSOA (n=49) patients. As seen in Fig. 2A, no difference could be detected between arthritic diseases with regards to sMICA blood levels, which appeared much lower compared to those quantified in
the SF, although a significant (p=0.0149) correlation between paired blood / SF sMICA amount on a subset of 22 patients suffering various arthropathies could be shown (Fig. 2B). Therefore, in contrast to SF, serum appeared not to be a reliable fluid to quantify sMICA in order to discriminate RA from OA or PSOA.

To gain a global view on the possible involvement of all NKG2DLs in joint diseases, we used various mouse experimental models mimicking four different arthritides: (1) subcutaneous injection of Monosodium Urate (MSU) crystals to induces an acute inflammation resembling a gout crisis [7], (2) serum transfer arthritis (STA) which is an established model of acute arthritis and the K/BxN, (3) collagen-induced arthritis (CIA) models to reproduce a chronic disease [12], and (4) the collagenase-induced osteoarthritis (CIOA) to drive defects similar to those seen in human osteoarthritis [13]. Given the variety of genetic backgrounds of these models (C57Bl/6, DBA/1, composite C57Bl/6 and NOD1) and the important homology between murine NKG2DLs, designing primers to specifically amplify the corresponding genes was challenging. We identified and validated 5 pairs of primers respectively amplifying H60a (a pseudogene in C57Bl/6 but not in NOD1 and DBA/1 mice), H60b, H60c, Rae1ε and Rae1δ simultaneously, and Mult1. The expression of the Klrk1 gene encoding murine NKG2D was also quantified. As shown in Fig. 3, H60a expression is induced 47 days following collagen immunization in the CIA model (Fig.3A), H60b transcription increases upon arthritogenic serum transfer (Fig.3B) and H60c expression decreases in the acute models of urate inflammation (gout) and arthritis (Fig.3C). The transcription of the second family of ligands, encoded by the Rae1ε and Rae1δ genes which are amplified by the same primers pair is induced in the acute inflammatory models (MSU and STA), as well as in the chronic CIA model (Fig.3D). Expression of the third family, Mult1, is induced in both acute (STA) and chronic (K/BxN and CIA) models of arthritis (Fig.3E). Several information can be extracted from these data: (i) while Rae1 genes appear to be induced in all inflammatory arthritides (gout and RA models, acute and chronic), Mult1 overexpression seems more specific to RA models; (ii) H60b and H60c genes are differentially regulated in the acute STA
model of RA, suggesting opposite functions for these NKG2DLs in this inflammatory setting; (iii) strikingly, none of the genes encoding NKG2DLs are induced in the osteoarthritis model, which supports human observations indicating a completely different etiology for this disease (in which cartilage damage resulting from injuries induces subsequent inflammation) compared to other inflammatory arthritides such as RA (in which inflammation drives articular damages) [14]. Finally, we observed reduced *Klrk1* transcription upon serum transfer (STA) and in the chronic K/BxN arthritis models (Fig.3F), which might result from continuous exposure of the receptor to its ligands (RAE1ε and δ, MULT1 whose corresponding transcripts are induced in these conditions), as seen for sMICA and cell surface NKG2D in human NK cells [15].

Discussion

Production of soluble NKG2DL has been essentially studied in the context of tumor cells as an evasion mechanism from immune cells (NK and T cells) cytotoxicity. In joint diseases, NKG2DL were mainly investigated in RA. In line with previous reports [4], our data reveal increased sMICA expression in the synovial fluid (SF) of RA patients. As pointed by others, *MICA* upregulation by fibroblast-like synoviocytes (FLS) of RA patients has been suggested as an important event in the perpetuation of the disease. Increased sMICA detection in the synovial fluid of RA patients might result from the accumulation of DNA damage associated with FLS proliferation [16], a hallmark of RA pathogenesis. Furthermore, FLS from RA patients also express matrix metalloproteases (MMPs) [17], which, in addition to participating to their invasive properties, could also be responsible to membrane-bound MICA shedding and sMICA production in the synovial fluid. Interestingly, Toll-like receptor (TLRs) stimulation by ligands such as LPS can also trigger *MICA* expression by monocytes and the resulting activation of NK cells and subsequent interferon-γ secretion might fuel inflammatory responses [18]. This observation indicates that *MICA* expression could result from danger-sensing during other arthropathies and independently from synovial cells proliferation. Our quantification of sMICA in the synovial fluid harvested from patients suffering various
crystalopathies (resulting from urate or phosphate deposits), psoriatic arthritis or reactive arthritis does not support this possibility, although we could not directly evaluate MICA gene expression at the mRNA or membrane-bound levels form synovial tissues. Indeed, it is conceivable that reduced sMICA could also result from the absence of proteases responsible for MICA shedding. Furthermore, other NKG2DLs could also be produced in the synovium of arthritides with different etiologies and contribute to the maintenance of an inflammatory setting. Next, we quantified transcripts encoding H60, Rae1 and Mult1 family members in various joint inflammatory mouse models, mimicking acute or chronic diseases, either induced or spontaneous. Our work revealed that Rae1εδ expression is induced in all models of joint inflammation, except the CIA, pointing to an additional etiological difference between OA and other arthritides. Interestingly, Rae1εδ appeared also upregulated in joints harvested from MSU crystals-injected mice, suggesting that cellular damage and/or activation following urate crystals-induced inflammation might respond to NKG2D / NKG2DLs cross talk, further supporting a regulatory role for NK or NKT cells in gout [19]. Furthermore, down regulation of H60c expression in the same conditions suggests the existence of a balanced regulation of NKG2DLs expression in gout.

Conclusions
Altogether, our data suggest that sMICA quantification in the synovial fluid could be an interesting biomarker to confirm a diagnosis of RA, particularly when ACPAs are undetectable in a significant proportion of RA patients [20]. This will be tested in future studies. They also reveal a complex and differential transcriptional regulation of the genes encoding murine NKG2DLs under various inflammatory settings. Our observations indicate that, in addition to MICA, additional ligands should be quantified in the synovial fluid of arthritic patients with joint diseases of different etiologies. This would enhance our understanding of the complex cellular interactions involving NK or NKT cells in the inflammatory microenvironment in these diseases and potentially reveal novel therapeutic opportunities.
List of abbreviations

ACPA: anti-citrullinated protein antibodies
CIA: collagen-induced arthritis
CIOA: collagen-induced osteoarthritis
CPP: calcium pyrophosphate arthritis
Ct: threshold cycle
ELISA: enzyme-linked immunosorbent assay
IL: Interleukin
MICA: MHC class I chain-related A
MICB: MHC class I chain-related B
Mult: murine UL16-binding protein-like transcript
NK: Natural killer
NKG2DL: Natural killer group 2, member D Ligand
NKG2G: Natural killer group 2, member D
OA: osteoarthritis
PRR: pattern recognition receptor
PSOA: psoriatic arthritis
RA: rheumatoid arthritis
Rae: retinoid acid early transcript
RASF: rheumatoid arthritis synovial fibroblast
REA: reactive arthritis
RNA: ribonucleic acid
RT-qPCR: real-time quantitative polymerase chain reaction
SF: synovial fluid
sMICA: soluble MICA
STA: serum transfer arthritis
TNF-α: tumor necrosis factor-α
ULBP: UL16-binding protein

Declarations

Ethics approval and consent to participate

The study as approved by institutional ethics committees. All participants signed an informed consent.

Consent for publication

Not applicable.

Availability of data and materials

Data and materials are available upon request.

Competing interests

The authors declare that they have no competing interests.

Funding

Work in our laboratory is supported by grants from the Agence Nationale de la Recherche (ANR) (ANR-11-LABX-0070_TRANSPLANTEX), the INSERM (UMR_S 1109), the Institut Universitaire de France (IUF), the University of Strasbourg (IDEX UNISTRA), the European regional development fund (European Union) INTERREG V program (project n°3.2 TRIDIAG) and MSD-Avenir grant AUTOGEN.

Authors’ contributions

AM, LB, CM, ADC, IK, AS performed experiments. StB and DN provided materials. AM, LB, RC, JS, LP analyzed data. SB and PG wrote the manuscript.

Acknowledgements

Not applicable.

Figure legends

Figure 1. Increased sMICA expression in the synovial fluid of rheumatoid arthritis patients correlates with IL-6 and IL-8 levels. Synovial fluid was harvested from patients suffering calcium pyrophosphate (CPP) crystal arthritis, urate crystal arthritis (Gout), reactive
arthritis (REA), psoriatic arthritis (PSOA), rheumatoid arthritis (RA) and osteoarthritis (OA). ELISAs were performed to quantify (A) soluble MICA (sMICA), (B) IL-1β, (C) IL-8, and (D) IL-6. *p < 0.05; **p < 0.01; ***p < 0.001; ****p<0.0001. Correlation analysis (non parametric, Spearman) of soluble MICA (sMICA) with (E) IL-1β, (F) IL-6 and (G) IL-8 levels were made.

Figure 2. Quantification of soluble MICA in the serum does not discriminate RA, OA and PSOA patients. (A) Soluble MICA (sMICA) was quantified by ELISA in the serum of rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis (PSOA) patients. (B) For 22 arthritis patients, sMICA was quantified in the serum and the synovial fluid (SF) harvested the same day. *p < 0.05.

Figure 3. NKG2D ligands and receptor gene expression in various mouse models of joint inflammation. Mice (n=4 to 8) subjected to monosodium urate (MSU) inflammation, serum-transfer arthritis (STA), collagen-induced arthritis (CIA), collagenase-induced osteoarthritis (CIOA) or mice exhibiting spontaneous and chronic arthritis (K/BxN) and the corresponding controls were used. RNA from dissected joint was purified, reverse transcribed and quantified. RNAs corresponding to (A) H60a, (B) H60b, (C) H60c, (D) Rae1εδ, (E) Mult1 and (F) Klrk1 genes were normalized to housekeeping genes to obtain a ΔCt which was adjusted to that of the controls using the 2^−ΔΔCt method. *p < 0.05; **p < 0.01. n.d: not detectable.

References

1. Medzhitov R: Origin and physiological roles of inflammation. *Nature* 2008, 454(7203):428-435.
2. Carapito R, Bahram S: Genetics, genomics, and evolutionary biology of NKG2D ligands. *Immunological reviews* 2015, 267(1):88-116.
3. Dhari P, Wu JD: NKG2D and its ligands in cancer. *Current opinion in immunology* 2018, 51:55-61.
4. Mariaselvam CM, Tamouza R, Krishnamoorthy R, Charron D, Misra DP, Jain VK, Negi VS: Association of NKG2D gene variants with susceptibility and severity of rheumatoid arthritis. *Clinical and experimental immunology* 2017, 187(3):369-375.

5. Carapito R, Gottenberg JE, Kotova I, Untrau M, Michel S, Naegely L, Aouadi I, Kwemou M, Paul N, Pichot A et al: A new MHC-linked susceptibility locus for primary Sjogren’s syndrome: MICA. *Human molecular genetics* 2017, 26(13):2565-2576.

6. Groh V, Bruhl A, El-Gabalawy H, Nelson JL, Spies T: Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. *Proceedings of the National Academy of Sciences of the United States of America* 2003, 100(16):9452-9457.

7. Mariotte A, De Cauwer A, Po C, Abou-Faycal C, Pichot A, Paul N, Aouadi I, Carapito R, Frisch B, Macquin C et al: A mouse model of MSU-induced acute inflammation in vivo suggests imiquimod-dependent targeting of IL-1beta as relevant therapy for gout patients. *Theranostics* 2020, 10(5):2158-2171.

8. Nehmar R, Alsaleh G, Voisin B, Flacher V, Mariotte A, Saferding V, Puchner A, Niederreiter B, Vandamme T, Schabbauer G et al: Therapeutic Modulation of Plasmacytoid Dendritic Cells in Experimental Arthritis. *Rheumatism Arthritis* 2017, 69(11):2124-2135.

9. Korganow AS, Ji H, Mangialaio S, Duchatelle V, Pelanda R, Martin T, Degott C, Kikutani H, Rajewsky K, Pasquali JL et al: From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. *Immunity* 1999, 10(4):451-461.

10. Maumus M, Roussignol G, Toupet K, Penarier G, Bentz I, Teixeira S, Oustric D, Jung M, Lepage O, Steinberg R et al: Utility of a Mouse Model of Osteoarthritis to Demonstrate Cartilage Protection by IFNgamma-Primed Equine Mesenchymal Stem Cells. *Frontiers in immunology* 2016, 7:392.

11. Williams LM, Lali F, Willetts K, Balague C, Godessart N, Brennan F, Feldmann M, Foxwell BM: Rac mediates TNF-induced cytokine production via modulation of NF-kappaB. *Molecular immunology* 2008, 45(9):2446-2454.

12. Bessis N, Decker P, Assier E, Semerano L, Boissier MC: Arthritis models: usefulness and interpretation. *Seminars in immunopathology* 2017, 39(4):469-486.

13. Toupet K, Maumus M, Luz-Crawford P, Lombardo E, Lopez-Belmonte J, van Lent P, Garin MI, van den Berg W, Dalemans W, Jorgensen C et al: Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis. *Plos one* 2015, 10(1):e0114962.

14. Pap T, Korb-Pap A: Cartilage damage in osteoarthritis and rheumatoid arthritis--two unequal siblings. *Nature reviews Rheumatology* 2015, 11(10):606-615.

15. Moffetta R, Quatrini L, Capuano C, Gasparrini F, Zitti B, Zingoni A, Galandrini R, Santoni A, Paolini R: c-Cbl regulates MICA- but not ULBP2-induced NKG2D down-modulation in human NK cells. *European journal of immunology* 2014, 44(9):2761-2770.

16. Tang KF, Ren H, Cao J, Zeng GL, Xie J, Chen M, Wang L, He CX: Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB. *The Journal of cell biology* 2008, 182(2):233-239.

17. Bottini N, Firestein GS: Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. *Nature reviews Rheumatology* 2013, 9(1):24-33.

18. Kloss M, Decker P, Baltz KM, Baessler T, Jung G, Rammensee HG, Steinle A, Krusch M, Salih HR: Interaction of monocytes with NK cells upon Toll-like receptor-induced expression of the NKG2D ligand MICA. *J Immunol* 2008, 181(10):6711-6719.

19. Empson VG, McQueen FM, Dalbeth N: The natural killer cell: a further innate mediator of gouty inflammation? *Immunology and cell biology* 2010, 88(1):24-31.

20. Boeters DM, Mangnus L, Ajeganova S, Lindqvist E, Svensson B, Toes REM, Trouw LA, Huizinga TWJ, Berenbaum F, Morel J et al: The prevalence of ACPA is lower in rheumatoid arthritis patients with an older age of onset but the composition of the ACPA response appears identical. *Arthritis research & therapy* 2017, 19(1):115.
Figure 1
Figure 2

A.

B.

Figure 3
