Differences in Antipsychotic-Related Adverse Events in Adult, Pediatric, and Geriatric Populations

Hersh Sagreiya 1, Yi-Ren Chen 2, Narmadan A. Kumarasamy 3, Karthik Ponnusamy 4, Doris Chen 5, Amar K. Das 6

1. Radiology, University of Pittsburgh Medical Center 2. Department of Neurosurgery, Stanford University Medical Center 3. Radiology, Montefiore Medical Center 4. Orthopedics, Western University 5. Internal Medicine, Stanford University Medical Center 6. Healthcare and Life Sciences, IBM T.J. Watson Research Center

Corresponding author: Hersh Sagreiya, sagreiya@gmail.com

Abstract

In recent years, antipsychotic medications have increasingly been used in pediatric and geriatric populations, despite the fact that many of these drugs were approved based on clinical trials in adult patients only. Preliminary studies have shown that the "off-label" use of these drugs in pediatric and geriatric populations may result in adverse events not found in adults. In this study, we utilized the large-scale U.S. Food and Drug Administration (FDA) Adverse Events Reporting System (AERS) database to look at differences in adverse events from antipsychotics among adult, pediatric, and geriatric populations. We performed a systematic analysis of the FDA AERS database using MySQL by standardizing the database using structured terminologies and ontologies. We compared adverse event profiles of atypical versus typical antipsychotic medications among adult (18-65), pediatric (age < 18), and geriatric (> 65) populations. We found statistically significant differences between the number of adverse events in the pediatric versus adult populations with aripiprazole, clozapine, fluphenazine, haloperidol, olanzapine, quetiapine, risperidone, and thiothixene, and between the geriatric versus adult populations with aripiprazole, chlorpromazine, clozapine, fluphenazine, haloperidol, paliperidone, promazine, risperidone, thiothixene, and ziprasidone (p < 0.05, with adjustment for multiple comparisons). Furthermore, the particular types of adverse events reported also varied significantly between each population for aripiprazole, clozapine, haloperidol, olanzapine, quetiapine, risperidone, and ziprasidone (Chi-square, p < 10^-6). Diabetes was the most commonly reported side effect in the adult population, compared to behavioral problems in the pediatric population and neurologic symptoms in the geriatric population. We also found discrepancies between the frequencies of reports in AERS and in the literature. Our analysis of the FDA AERS database shows that there are significant differences in the numbers and types of adverse events among these age groups and between atypical and typical antipsychotics. It is important for clinicians to be mindful of these differences when prescribing antipsychotics, especially when prescribing medications off-label.

Introduction

While antipsychotic medications were initially approved based on clinical trials in adult populations, they are commonly prescribed "off-label" in pediatric and geriatric populations [1-2]. In addition, they are increasingly being prescribed to children. Between the 1993 - 1998 and 2005 - 2009 time periods, visits including a prescription for antipsychotics per 100 people increased from 0.24 to 1.83 for children, 0.78 to 3.76 for adolescents, and 3.25 to 6.18 for adults; moreover, antipsychotics were included in 31.1% of youth visits to psychiatrists [3]. While antipsychotics are among the most effective drugs for the treatment of schizophrenia, mania, or acute psychotic reactions, these medications are often prescribed to children and adolescents for non-FDA approved indications, such as disruptive behaviors and aggression [4-5]. Similarly, antipsychotics are frequently used in the elderly and are prescribed to more than a quarter of Medicare patients in nursing homes, with common conditions including dementia, delirium, and behavioral disturbances [2]. However, the use of these medications may result in unexpected adverse events that are specific to the pediatric and geriatric populations [6]. In our study, we sought to elucidate the differences in adverse events between pediatric, adult, and geriatric populations using the FDA's Adverse Events Reporting System (AERS), a database that has collected information about adverse events since 1998 [7]. AERS is the FDA's primary tool for post-marketing adverse event surveillance, with over 250,000 adverse event reports annually [8]. A key strength of the AERS database is the ability to analyze a massive dataset and discover potentially new information regarding drug-related adverse events warranting further investigation. For instance, a recent paper probing the AERS database and found a potential link between amisulpride, cyamemazine, and olanzapine and torsadogenic risk [9]. Drug manufacturers are required to submit adverse event reports, while healthcare providers can voluntarily submit information.
Materials And Methods

We initially imported AERS quarterly data from January 2004 to September 2008 into the MySQL program (v.1.2.17) (Oracle Corp., Redwood Shores, CA). A table was created that mapped all the various drug names for antipsychotics to a generic name and a drug class (typical vs. atypical) using RxNorm (U.S. National Library of Medicine, Bethesda, MD) and Micromedex® (Truven Health Analytics, Greenwood Village, CO) (Table 1). Next, we joined this table with the AERS drug table (matching by DRUGNAME), the AERS demo table (matching by ISR, which stands for individual safety report), and the AERS REAC table (also matching by ISR). We first retrieved the total number of adverse events associated with each drug name, generic name, and drug class. Next, we created a yearage variable (which standardized all ages in AERS to be reported in years using the AGE and AGE_COD variables) as well as the GNDR_COD variable (which was reported as either “M” or “F”) in order to repeat this analysis on the following five subgroups: yearage < 18 (pediatrics), 18 ≥ yearage ≤ 65 (adults), and yearage > 65 (geriatrics), GNDR_COD = “M” (males), and GNDR_COD = “F” (females).

Drug Name	Generic Name	Drug Class
Abilify	Aripiprazole	Atypicals
Aripiprazole	Aripiprazole	Atypicals
Chlorpromazine	Chlorpromazine	Typical
Clozapine	Clozapine	Atypicals
Clozaril	Clozapine	Atypicals
Decazate	Fluphenazine	Typical
Dozine	Chlorpromazine	Typical
Fazalco	Clozapine	Atypicals
Fentazin	Perphenazine	Typical
Fluphenazine	Fluphenazine	Typical
Fortunant	Haloperidol	Typical
Geodon	Ziprasidone	Atypicals
Haldol	Haloperidol	Typical
Haloperidol	Haloperidol	Typical
Invega	Paliperidone	Atypicals
Kentace	Haloperidol	Typical
Largactil	Chlorpromazine	Typical
Loxapac	Loxapine	Typical
Loxapine	Loxapine	Typical
Loxitane	Loxapine	Typical
Mellaril	Thioridazine	Typical
Mesoridazine	Mesoridazine	Typical
Moban	Molindone	Typical
Moditen	Fluphenazine	Typical
Navane	Thiothixene	Typical
Noxene	Thiothixene	Typical
Olanzapine	Olanzapine	Atypicals
Orap	Pimozide	Typical
Ormazine	Chlorpromazine	Typical
Permitil	Fluphenazine	Typical
Next, for each drug, we computed the percent of antipsychotic-related adverse events that the drug represented in each population. We then used the z-test of proportions to compare this percent for each drug in the following categories: pediatrics vs. adults, adults vs. geriatrics, and males vs. females. This process was conducted separately for typical and atypical drugs. This resulted in a z-score and a p-value for each comparison, which was then adjusted using a Bonferroni correction for multiple comparisons, making the significance threshold $0.05/26 = 1.92 \times 10^{-3}$.

Afterward, we retrieved the count of each individual adverse event associated with each generic drug, ordered by the frequency of occurrence in each population. We made sure not to include irrelevant or vague side effects in our top results, excluding terms such as "DRUG INTERACTION," "ACCIDENTAL EXPOSURE," and "ACCIDENTAL DRUG INTAKE BY CHILD." In order to compare the frequencies of the different adverse events in the adult, pediatric, and geriatric populations, we conducted a Chi-square test. For each drug, we selected the top five adverse events in adults and added a sixth column that contained the sum of all other adverse events. We chose the top five since this minimized the number of cells in the Chi-square calculation that contained an expected value less than 5, which is not ideal for the Chi-square test. Next, we compared the frequency of these particular adverse events in the adult, pediatric, and geriatric populations using a 3 by 6 Chi-square table with 10 degrees of freedom, and we calculated p-values for each of seven major drugs—aripiprazole, clozapine, haloperidol, olanzapine, quetiapine, risperidone, and ziprasidone—using the R statistical program (v2.12.2). We also used the MedRDA (Medical Directory for Regulatory Activities: International Federation of Pharmaceutical Manufacturers and Associations, Geneva, Switzerland) hierarchy to map MedDRA Preferred Terms (the default FDA coding) to high-level terms and determined the frequency of the high-level terms in the three populations.

TABLE 1: List of Antipsychotic Medications Mapped to Generic Name and Drug Class

Drug	Generic Name	Drug Class
Perphenazine	Perphenazine	Typicals
Pimozide	Pimozide	Typical
Primazine	Promazine	Typical
Prolixin	Fluphenazine	Typical
Promazine	Promazine	Typical
Quetiapine	Quetiapine	Atypicals
Rideril	Thoridazine	Typical
Risperdal	Risperidone	Atypicals
Risperidone	Risperidone	Atypicals
Serenace	Haloperidol	Typical
Seroquel	Quetiapine	Atypicals
Spanine	Promazine	Typical
Stelazine	Trifluoperazine	Typical
Symbyax	Olanzapine	Atypicals
Thoridazine	Thoridazine	Typical
Thiothixene	Thiothixene	Typical
Thorazine	Chlorpromazine	Typical
Trifluoperazine	Trifluoperazine	Typical
Trilafon	Promazine	Typical
Vesprin	Triflupromazine	Typical
Ziprasidone	Ziprasidone	Atypicals
Zyprexa	Olanzapine	Atypicals
Next, we took the list of the top five adverse events for the seven drugs in the three populations and used Medical Subject Headings (MeSH terms) to evaluate how many times a particular drug-adverse event combination was indexed in PubMed for the three populations. For instance, for the side-effect “TREMOR” for aripiprazole in the geriatric population, we would have used the following search term: ‘aripiprazole’ [Substance Name] AND (‘Aged’[Mesh]) AND tremor. We then compared the number of reports in AERS and in the literature. For the drug, population, and adverse event combinations that had fewer than five reports in the literature, we manually examined the results to ensure their validity and highlighted the ones that we confirmed to have less than five reports.

Results
A summary of the populations we studied is shown in Table 2.

Category	Value
Total number of patients	61,380
Mean age ± SD	45.7 ± 20.0
Patients where age < 18	3,578
Patients where age ≥ 18 and age ≤ 65	32,660
Patients where age > 65	7,260
Patients where age is not available	17,882
Male patients	27,783
Female patients	29,780
Gender NA (null, unknown, or not specified)	3,817

TABLE 2: Demographics: Summary of the Population

The percentage of antipsychotic-related side effects was often significantly different in the pediatric, adult, and geriatric populations for atypical and typical antipsychotics as shown in Tables 3-4.

Generic Name	% of Adverse Events	p-value (vs. Adults)	Statistical Significance			
	Pediatrics	Adults	Geriatrics	Pediatrics	Geriatrics	
Aripiprazole	25.9	9.8	4.8	0	0	Both
Clozapine	4.6	17.3	13.9	0	2.7e-14	Both
Olanzapine	16.1	26.0	25.6	0	0.23	Pediatrics
Paliperidone	0.6	0.6	0.2	0.43	3.5e-5	Geriatrics
Quetiapine	24.4	27.2	26.1	2.6e-9	0.019	Pediatrics
Risperidone	23.3	14.4	27.5	0	0	Both
Ziprasidone	5.1	4.6	1.9	0.077	0	Geriatrics
TOTALS	100.0	100.0	100.0			

TABLE 3: Comparison of the Number of Adverse Events in Each Population for Atypical Antipsychotics

Results were statistically significant either for pediatrics vs. adults, geriatrics vs. adults, or both. The significance threshold was 0.05/26 = 1.92 x 10^-3. The p-values that R found to be extremely low are labeled as "0." Items that were statistically significant are in bold.
Generic Name	% of Adverse Events	p-value (vs. Adults)	Statistical Significance			
	Pediatrics	Adults	Geriatrics	Pediatrics	Geriatrics	
Chlorpromazine	20.3	17.1	12.1	0.066	3.31e-6	Geriatrics
Fluphenazine	0.3	5.1	2.4	4.3e-5	4.39e-6	Both
Haloperidol	64.9	56.3	72.8	0.0011	0	Both
Loxapine	2.8	2.7	1.9	0.46	0.043	--
Molindone	0.0	0.2	0.1	0.20	0.27	--
Perphenazine	0.3	2.7	2.3	0.0038	0.19	--
Pimozide	3.4	1.6	1.3	0.0082	0.17	--
Promazine	0.6	2.8	0.1	0.0095	9.39e-10	Geriatrics
Thioridazine	5.5	3.9	3.4	0.070	0.20	--
Thiothixene	0.0	4.5	0.9	4.9e-5	1.24e-10	Both
Trifluoperazine	0.9	2.9	2.0	0.017	0.031	--
TOTALS	100.0	100.0	100.0			

TABLE 4: Comparison of the Number of Adverse Events in Each Population for Typical Antipsychotics

Results were statistically significant either for pediatrics vs. adults, geriatrics vs. adults, or both. The significance threshold was 0.05/26 = 1.92 x 10^{-3}. The p-values that R found to be extremely low are labeled as "0." Items that were statistically significant are in bold.

Eight antipsychotics were associated with a significant difference in the number of adverse events in the pediatric vs. adult populations, including aripiprazole, clozapine, fluphenazine, haloperidol, olanzapine, quetiapine, risperidone, and thiothixene. Ten antipsychotics were associated with a significant difference in the number of adverse events in the adult vs. geriatric populations, including aripiprazole, chlorpromazine, clozapine, fluphenazine, haloperidol, paliperidone, promazine, risperidone, thiothixene, and ziprasidone.

When we compared the distributions of adverse events in the adult population to the pediatric and geriatric populations, Chi-square tests revealed that they were significantly different, as the p-values were 4.33e-32, 1.68e-32, 2.60e-35, 6.96e-106, 4.50e-124, 3.45e-65, and 1.35e-7, respectively, for aripiprazole, clozapine, haloperidol, olanzapine, quetiapine, risperidone, and ziprasidone. Tables comparing the number of reports in the literature to those in the AERS database for the top five adverse events in seven major antipsychotics revealed some outliers in the three populations, as evidenced by the reports with less than five cases in the literature (Tables 5-6).
TABLE 5: Top Adverse Events in the Pediatric Population

The searches that have five or less PubMed articles are in bold.

Generic Name	Event	Geriatrics
Clozapine	SOMNOLENCE	31
Clozapine	WHITE BLOOD CELL COUNT DECREASED	26
Clozapine	SEDATION	21
Clozapine	OTHERS	1,069
Haloperidol	SOMNOLENCE	35
Haloperidol	TREMOR	23
Haloperidol	EXTRAPYRAMIDAL DISORDER	18
Haloperidol	MUSCLE SPASMS	15
Haloperidol	NEUROLEPTIC MALIGNANT SYNDROME	14
Haloperidol	OTHERS	770
Olanzapine	WEIGHT INCREASED	106
Olanzapine	AGGRESSION	69
Olanzapine	SUICIDAL IDEATION	58
Olanzapine	ABNORMAL BEHAVIOUR	46
Olanzapine	COMPLETED SUICIDE	44
Olanzapine	OTHERS	3,755
Quetiapine	WEIGHT INCREASED	121
Quetiapine	SUICIDAL IDEATION	80
Quetiapine	TACHYCARDIA	74
Quetiapine	CONVULSION	72
Quetiapine	AGGRESSION	70
Quetiapine	OTHERS	4,745
Risperidone	AGGRESSION	112
Risperidone	WEIGHT INCREASED	69
Risperidone	CONVULSION	66
Risperidone	SUICIDAL IDEATION	65
Risperidone	ABNORMAL BEHAVIOUR	54
Risperidone	OTHERS	4,015
Ziprasidone	DYSTONIA	26
Ziprasidone	SUICIDAL IDEATION	25
Ziprasidone	DEPRESSION	20
Ziprasidone	SUICIDE ATTEMPT	20
Ziprasidone	WEIGHT INCREASED	19
Ziprasidone	OTHERS	943
Medication	Adverse Event	Count
--------------	--------------------------------	-------
Aripiprazole	Tremor	27
Aripiprazole	Neuroleptic Malignant Syndrome	22
Aripiprazole	Parkinsonism	21
Aripiprazole	Death	18
Aripiprazole	Gait Disturbance	15
Aripiprazole	Others	1,087
Clozapine	Death	174
Clozapine	Pneumonia	100
Clozapine	Pyrexia	63
Clozapine	Somnolence	50
Clozapine	Fall	46
Clozapine	Others	3,117
Haloperidol	Agitation	78
Haloperidol	Confusional State	75
Haloperidol	Fall	68
Haloperidol	Pyrexia	67
Haloperidol	Delirium	62
Haloperidol	Others	5,196
Olanzapine	Fall	175
Olanzapine	Confusional State	142
Olanzapine	Diabetes Mellitus	138
Olanzapine	Cerebrovascular Accident	107
Olanzapine	Pneumonia	100
Olanzapine	Others	9,494
Quetiapine	Fall	155
Quetiapine	Death	111
Quetiapine	Confusional State	107
Quetiapine	Agitation	103
Quetiapine	Pneumonia	91
Quetiapine	Others	7,377
Risperidone	Somnolence	161
Risperidone	Death	159
Risperidone	Confusional State	152
Risperidone	Fall	135
Risperidone	Asthenia	117
Risperidone	Others	8,770
Ziprasidone	Myocardial Infarction	15
Ziprasidone	Coma	15
Ziprasidone	Loss of Consciousness	11
Chi-square analysis was performed to compare the actual distribution of adverse events between the different populations for each drug. Seven commonly prescribed antipsychotics are presented in Table 7: aripiprazole, clozapine, haloperidol, olanzapine, quetiapine, risperidone, and ziprasidone.

TABLE 6: Top Adverse Events in the Geriatric Population

The searches that have five or less PubMed articles are in bold.
The distribution of antipsychotic-related adverse events was compared between the pediatric, adult, and geriatric populations for seven major antipsychotics. For each major antipsychotic drug, adverse events were ordered by their frequency in the adult population, the top five were selected (and the rest designated as "other"), and their distribution was compared using the Chi-square test. The resultant p-value is in the final column.

The top five adverse events for less common drugs are listed in Table 8.
Medication	Effect	Count	Associated Effect	Count		
Loxapine	Pregnancy	2	Lactic Acidosis	10		
Loxapine	Renal Cyst	2	Blood Creatine Phosphokinase Increased	9		
Loxapine			Anaemia	3		
Mesoridazine		0	Aggression	4		
Mesoridazine		0	Excessive Masturbation	3		
Mesoridazine		0	Rash Papular	3		
Mesoridazine		0	Skin Ulcer	3		
Mesoridazine		0	Rash	2		
Molindone	Neuroleptic Malignant Syndrome	2	Prescribed Overdose	3		
Molindone	Myositis	1	Convulsions	3		
Molindone	Pyrexia	1	Diabetes Mellitus Non-Insulin-Dependent	2		
Molindone	Viral Myositis	1	Anger	2		
Molindone	Rash	1	Abdominal Distension	2		
Paliperidone	Neuroleptic Malignant Syndrome	10	Galactorrhoea	30		
Paliperidone	Headache	9	Extrapyrimal Disorder	23		
Paliperidone	Confusional State	8	Akathisia	17		
Paliperidone	Palpitations	8	Oedema Peripheral	17		
Paliperidone	Dystonia	6	Dystonia	12		
Perphenazine		0	Vomiting	11		
Perphenazine		0	Completed Suicide	10		
Perphenazine		0	Diabetes Mellitus	10		
Perphenazine		0	Drug Interaction	8		
Perphenazine		0	Drug Ineffective	8		
Pimozide	Weight Increased	4	Cardiac Arrest	12		
Pimozide	Diarrhoea	4	Suicide Attempt	8		
Pimozide	Rectal Haemorrhage	4	Drug Interaction	7		
Pimozide	Somnolence	3	Overdose	6		
Pimozide	Alopexia	2	Anxiety	6		
Promazine	Neonatal Diabetes Mellitus	1	Diabetes Mellitus	33		
Promazine	Premature Baby	1	Pancreatitis	15		
Promazine	Death	1	Myocardial Infarction	15		
Promazine	Diaphragmatic Hernia	1	Blood Pressure Decreased	14		
Promazine	Pulmonary Hypoplasia	1	Myocarditis	14		
Thoridazine	Nausea	8	Headache	32		
Thoridazine	Alopexia	8	Dizziness	29		
Thoridazine	Vomiting	5	Depression	25		
Thoridazine	Acholia	5	Anxiety	24		
Generic	Event Pediatrics	N	Event Adults	N	Event Geriatrics	N
------------	--	-----	------------------------------------	-----	------------------	-----
Aripiprazole	Neurological signs and symptoms NEC	196	Neurological signs and symptoms NEC	577	Neurological signs and symptoms NEC	56
Aripiprazole	Dyskinesias and movement disorders NEC	172	Dyskinesias and movement disorders NEC	445	General signs and symptoms NEC	36
Aripiprazole	Disturbances in consciousness NEC	143	Anxiety symptoms	420	Muscle tone abnormal	33
Aripiprazole	Physical examination procedures	133	General signs and symptoms NEC	408	Dyskinesias and movement disorders NEC	33
Aripiprazole	General signs and symptoms NEC	117	Physical examination procedures	402	Parkinson’s disease and parkinsonism	29
Clozapine	Disturbances in consciousness NEC	78	White blood cell analyses	1,222	General signs and symptoms NEC	193
Clozapine	White blood cell analyses	56	Neutropenias	1,137	Death and sudden death	192
Clozapine	Neutropenias	52	Disturbances in consciousness NEC	952	Disturbances in consciousness NEC	145
Clozapine	Rate and rhythm disorders NEC	42	General signs and symptoms NEC	887	Lower respiratory tract and lung infections	121
Clozapine	Neurological signs and symptoms NEC	39	Neurological signs and symptoms NEC	831	Lower respiratory tract infections NEC	117
Haloperidol	Disturbances in consciousness NEC	51	Disturbances in consciousness NEC	471	Neurological signs and symptoms NEC	246
Haloperidol	Medication errors due to accidental exposures	50	Neurological signs and symptoms NEC	425	Disturbances in consciousness NEC	162
Haloperidol	Muscle tone abnormal	39	General signs and symptoms NEC	381	General signs and symptoms NEC	141

The top five adverse events for the seven major antipsychotics mapped to MedDRA high-level terms are listed in Table 9.
Drug	Event Description	Number	MedDRA® High-Level Terms	Number
Haloperidol	Dyssomnias	35	Breathing abnormalities	278
Haloperidol	Dyskinesias and movement disorders NEC	33	Liver function analyses	274
Olanzapine	Suicidal and self-injurious behavior	198	Diabetes mellitus (incl subtypes)	2,403
Olanzapine	Physical examination procedures	150	Physical examination procedures	2,016
Olanzapine	Neurological signs and symptoms NEC	134	General signs and symptoms NEC	1,556
Olanzapine	Behavior and socialization disturbances	130	Disturbances in consciousness NEC	1,551
Olanzapine	General signs and symptoms NEC	126	Non-site specific injuries NEC	201
Quetiapine	Suicidal and self-injurious behavior	235	Diabetes mellitus (incl subtypes)	2,432
Quetiapine	Neurological signs and symptoms NEC	205	General signs and symptoms NEC	1,531
Quetiapine	Physical examination procedures	178	Neurological signs and symptoms NEC	1,514
Quetiapine	General signs and symptoms NEC	172	General signs and symptoms NEC	221
Quetiapine	Disturbances in consciousness NEC	170	Disturbances in consciousness NEC	1,386
Quetiapine	Neurological signs and symptoms NEC	205	Non-site specific injuries NEC	181
Risperidone	Behavior and socialization disturbances	217	General signs and symptoms NEC	966
Risperidone	Suicidal and self-injurious behavior	202	Disturbances in consciousness NEC	870
Risperidone	Neurological signs and symptoms NEC	194	Neurological signs and symptoms NEC	867
Risperidone	General signs and symptoms NEC	128	Asthenic conditions	245
Risperidone	Neurological signs and symptoms NEC	194	General signs and symptoms NEC	223
Ziprasidone	Behavior and socialization disturbances	52	Anxiety symptoms	283
Ziprasidone	Neurological signs and symptoms NEC	47	Diabetes mellitus (incl subtypes)	281
Ziprasidone	Anxiety symptoms	41	Disturbances in consciousness NEC	280

Drug	Event Description	Number	MedDRA® High-Level Terms	Number
Ziprasidone	Suicidal and self-injurious behavior	61	Neurological signs and symptoms NEC	319
Ziprasidone	General signs and symptoms NEC	53	Disturbances in consciousness NEC	41
Ziprasidone	Neurological signs and symptoms NEC	47	Ventricle arrhythmias and cardiac arrest	41
Ziprasidone	Behavior and socialization disturbances	52	Anxiety symptoms	283
Ziprasidone	Neurological signs and symptoms NEC	47	Neurological signs and symptoms NEC	35
Ziprasidone	Anxiety symptoms	41	Disturbances in consciousness NEC	280

TABLE 9: Number and Type of Events in Each Population for Major Drugs Organized by MedDRA® High-Level Terms

NEC: not elsewhere classified
Discussion

Overall, it was evident that both the frequencies and types of adverse events found in the adult population do not fit the distribution found in the pediatric or geriatric populations. As has been seen in prior studies, diabetes mellitus was frequently the most commonly reported adverse event in adults [10], but this was not the case for either the pediatric or geriatric populations. One possible explanation for this is that since adults are more likely than children to have impaired fasting glucose in the first place (often due to a longer exposure to certain physiologic factors, such as obesity and a sedentary lifestyle), they may be more predisposed to developing this complication. On the other hand, "weight increase" was frequently a top-five adverse effect for the major antipsychotic medications in children, consistent with prior meta-analyses [11]. Children were also more likely to exhibit side effects, such as "aggression," "abnormal behavior," and "suicidality," cognitive effects that may be seen more often in the developing brain. In particular, suicide attempts have previously been linked to antipsychotics in children with the AERS database [12]. For the geriatric population, neurological side effects, such as "confusional state" and "somanolence," figured more prominently. This suggests that the elderly, who are predisposed to neurological problems, may be more severely affected by the neurological sequelae of antipsychotics. In fact, the Clinical Antipsychotic Trials of Intervention Effectiveness–Alzheimer’s Disease (CATIE-AD) trial, studying elderly patients with Alzheimer’s disease, showed that atypical antipsychotics were associated with worsening cognitive function comparable to an additional year’s worth of cognitive decline compared to placebo [13].

Although we also analyzed differences in high-level terms between pediatric, adult, and geriatric populations, we realized that going to the next higher level grouping for MedDRA terms was not particularly illustrative. For instance, how does one distinguish "Neurological signs and symptoms" from "Disturbances in consciousness," and what exactly constitutes "General signs and symptoms?" These were among the most commonly reported high-level terms.

Our analysis of the literature revealed that there were adverse events that frequently had reports in AERS; yet, these events were not commonly mentioned in the literature. In the adult population, amongst the top five adverse events for the seven major antipsychotics, only pancreatitis in patients taking quetiapine had fewer than five reports in the literature. The analyses for the pediatric and geriatric populations generated comparatively more adverse events that were not commonly found in the literature. The result for quetiapine in the geriatric population is interesting, given reports of its association with pneumonia [14].

The limitations of the FDA AERS database include the lack of information on the number of individuals taking the various antipsychotic medications in each age group, which could have served as a "denominator" in our study. Due to this lack of a denominator, when comparing the total number of adverse events across the pediatric, adult, and geriatric populations, it was difficult to determine whether variations in the relative distribution of adverse events between the three age groups was truly due to differences in the rate of adverse events rather than simply variations in prescription frequency. For instance, this could be related to prescription trends or when the medications were released. Fortunately, the issue of a denominator was not problematic when comparing the particular side effect profile between the three populations for any given drug. Another issue is the fact that the correlation of a particular medication with an adverse event does not necessarily prove causation. For instance, an individual who is prone to a particular adverse event may be more likely to take an antipsychotic. Another potential problem is recall bias, as a physician who knows a patient is taking a given drug may be more likely to report adverse events that are widely known to be associated with that drug. Nevertheless, the sheer volume of the AERS database and its vast scope make it a useful tool for studying drug-related adverse events.

Conclusions

Overall, we were able to show that there are significant differences in both the numbers and types of adverse events between the pediatric, adult, and geriatric populations. In addition, this study offers a number of drug and adverse event combinations for follow-up analysis. Given the fact that these medications were overwhelmingly tested on the adult population and are commonly prescribed off-label, it is imperative that clinicians remain mindful of these differences when prescribing these medications in populations for whom the drugs were never formally tested.

Additional Information

Disclosures

Human subjects: All authors have confirmed that this study did not involve human participants or tissue. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.
References

1. Biederman J: Credibility crisis in pediatric psychiatry. Nature Neurosci. 2008, 11:1233. 10.1038/nn0908-983
2. Wang PS, Schneeweis S, Avorn J, Fischer MA, Mogan H, Solomon DH, Brookhart MA: Risk of death in elderly users of conventional vs. atypical antipsychotic medications. N Eng J Med. 2005, 353:2355-41. 10.1056/NEJMoa052827
3. Olsson M, Blanco C, Liu SM, Wang S, Correll CU: National trends in the office-based treatment of children, adolescents, and adults with antipsychotics. Arch Gen Psychiatry. 2012, 69:1247-56. 10.1001/archgenpsychiatry.2012.647
4. Gareri P, Segura-García C, Manfredi VG, Bruni A, Ciambroone P, Cerminara G, De Sarro G, De Fazio P: Use of atypical antipsychotics in the elderly: a clinical review. Clin Interv Aging. 2014, 9:1363-73. 10.2147/CIA.S63942
5. Penfold RB, Stewart C, Hunkeler EM, Madden JM, Cummings JR, Owen-Smith AA, Rossum RC, Lu CY, Lynch FL, Waitzfelder BE, Coleman KJ, Ahmedani BK, Beck AL, Zeber JE, Simon GE: Use of antipsychotic medications in pediatric populations: what do the data say?. Curr Psychiatry Rep. 2013, 15:426. 10.1007/s11920-013-0426-8
6. Vitiello B, Correll C, van Zwieten-Boot B, Zuddas A, Parellada M, Arango C: Antipsychotics in children and adolescents: increasing use, evidence for efficacy and safety concerns. Eur Neuropsychopharmacol. 2009, 19:629-35. 10.1016/j.euroneuro.2009.04.008
7. Moore TJ, Cohen MR, Furberg CD: Serious adverse drug events reported to the Food and Drug Administration, 1998-2005. Arch Intern Med. 2007, 167:1752-59. 10.1001/archinte.167.16.1752
8. Gibbons RD, Segawa E, Karabatsos G, Amatya AK, Bhaumik DK, Brown CH, Kapur K, Marcus SM, Hur K, Mann JJ: Mixed-effects Poisson regression analysis of adverse event reports: the relationship between antidepressants and suicide. Stat Med. 2008, 27:1814-33. 10.1002/sim.3241
9. Poluzzi E, Raschi E, Koci A, Moretti U, Spina E, Behr ER, Sturkenboom M, De Ponti F: Antipsychotics and torsadogenic risk: signals emerging from the US FDA Adverse Event Reporting System database. Drug Saf. 2013, 36:467-79. 10.1007/s40264-013-0052-z
10. Kato Y, Uemizu R, Abe J, Ueda N, Nakayama Y, Kinosada Y, Nakamura M: Hyperglycemic adverse events following antipsychotic drug administration in spontaneous adverse event reports. J Pharm Health Care Sci. 2015, 1:15. 10.1186/s40780-015-0015-6
11. Seida JC, Schouten JR, Boylan K, Newton AS, Mousavi SS, Bealth A, Vandermeer B, Dryden DM, Carrey N: Antipsychotics for children and young adults: a comparative effectiveness review. Pediatrics. 2012, 129:e771-84. 10.1542/peds.2011-2158
12. Kimura G, Kadoyama K, Brown JB, Nakamura T, Miki I, Nisiguchi K, Sakaeda T, Okuno Y: Antipsychotics-associated serious adverse events in children: an analysis of the FAERS database. Int J Med Sci. 2015, 12:155-60. 10.7150/ijms.10453
13. Vigen CL, Mack WJ, Keefe RS, et al: Cognitive effects of atypical antipsychotic medications in patients with Alzheimer’s disease: outcomes from CATIE-AD. Am J Psychiatry. 2011, 168:851-859. 10.1176/appi.ajp.2011.108121844
14. Kuo CJ, Yang SY, Liao YT, Chen WJ, Lee WC, Shau WY, Chang YT, Tsai SY, Chen CC: Second-generation antipsychotic medications and risk of pneumonia in schizophrenia. Schizophr Bull. 2013, 39:648-57. 10.1093/schbul/sbr202