IMPACT OF CARBOHYDRATE COUNTING ON GLYCEMIC CONTROL IN CHILDREN WITH TYPE 1 DIABETES

Sanjeev N. Mehta, MD, MPH \(^1\)
Nicolle Quinn, MS, LD, RDN \(^2\)
Lisa K. Volkening, MA \(^1\)
Lori M.B. Laffel, MD, MPH \(^1\)

\(^1\) Pediatric, Adolescent, and Young Adult Section, Joslin Diabetes Center, Boston, MA
\(^2\) Clinical and Translational Study Unit, Children’s Hospital Boston, Boston, MA

Corresponding Author:
Sanjeev N. Mehta, MD, MPH
E-mail: sanjeev.mehta@joslin.harvard.edu

Submitted 17 November 2008 and accepted 17 February 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: To study the association between parent carbohydrate counting knowledge and glycemic control in youth with type 1 diabetes (T1D).

Research design and methods: We assessed 67 youth ages 4-12 years with T1D ≥1 year. Parents estimated carbohydrate content of children’s meals in diet recalls. Ratios of parent estimates to computer analysis defined carbohydrate counting knowledge; the mean and standard deviation of these ratios defined accuracy and precision, respectively. A1C defined glycemic control.

Results: Greater accuracy and precision were associated with lower A1C in bivariate analyses (p<.05). In a multivariate analysis ($R^2=.25$, $p=.007$) adjusting for child age, gender and T1D duration, precision ($p=.02$) and more frequent blood glucose monitoring ($p=.04$), but not accuracy ($p=.9$), were associated with lower A1C. A1C was 0.8% lower (95%CI=-0.1 to -1.4) among youth whose parents demonstrated precision.

Conclusions: Precision with carbohydrate counting and increased blood glucose monitoring were associated with lower A1C in children with T1D.
Medical nutrition therapy in type 1 diabetes (T1D) is associated with improved glycemic outcomes (1, 2). Meal-planning strategies for T1D emphasize the relationship between prandial insulin dose selection and the anticipated amount of carbohydrate to be consumed. Although no method for carbohydrate estimation has proven superior in the management of youth with T1D, carbohydrate counting has become a principal strategy for children with T1D (3, 4). In this study, we investigated the association between parental carbohydrate counting knowledge and glycemic control in youth with T1D.

RESEARCH DESIGN AND METHODS
Families with T1D who were routinely attending a multidisciplinary pediatric diabetes program were invited to participate in this study. During the three months following the study visit, a research dietitian conducted three unannounced telephone interviews. The Committee for Clinical Investigation approved the protocol and participants provided written informed consent/assent.

Eligible youth were aged 2-12 years with T1D duration ≥1 year. They had daily insulin dose ≥0.5 units/kg, used carbohydrate counting in meal planning, and were intensively treated with multiple (3 or more) daily injections or insulin pump therapy. A1C (reference range 4-6%) was determined at the study visit.

During each telephone call, parents provided estimates of carbohydrate content (in grams) for each meal consumed during the previous 24-hour period. The dietitian then completed a diet recall using a multiple-pass approach with Nutrition Data System for Research (NDSR) software (version 2005, Minneapolis, MN) (5). Household kitchen measures and 2-dimensional food models assisted portion size estimation.

Carbohydrate counting knowledge was defined using the ratios of carbohydrate content estimated by parents to those calculated using NDSR. “Accuracy” was defined by the mean of meal ratios; a value of 1 defined perfect accuracy. Values <1 and >1 defined inaccuracy due to underestimation and overestimation, respectively. “Precision” (consistency) was defined by the standard deviation (SD) of meal ratios; a value of 0 defined perfect precision. Increasing SD values defined decreasing precision.

Analyses were performed with SAS (version 9.1, Cary, NC); α<.05 determined significance.

RESULTS
Youths (45% female) with complete dietary data (n=67) were 9.1±2.5 years old (range 4-12 years) with diabetes duration of 4.1±2.3 years (range 0.6-9.9 years). All were intensively treated using pump (70%), sliding scale-supported injection (27%) or basal-bolus injection (3%) therapy. Mean blood glucose (BG) monitoring frequency was 5.5±0.8 checks daily and mean A1C was 7.5±0.8% (range 5.8-10.3%); only four youth had A1C>9%.

Dietary analyses were based on 182 phone interviews (average 2.7/family). Average meal carbohydrate content was 50 grams, but varied across meals and ages. On average, parent estimates of carbohydrate intake were 120% of NDSR-calculated intake. Precision ranged from 0.1 to 1.6 (least precise). Neither pump use nor time since the last nutritionist visit were associated with accuracy or precision with
carbohydrate counting (p>.5 for all comparisons).

For bivariate analyses, youth were grouped into quartiles (Q) of carbohydrate counting accuracy: Q1, inaccurate (underestimation); Q2-3, most accurate; Q4, inaccurate (overestimation). Accuracy was associated with lower A1C (p=.006) due to differences between the most accurate parents (Q2-3) and those who overestimated (Q4). Similarly, youth were grouped into quartiles of carbohydrate counting precision: Q1 (most precise) to Q4 (least precise). Greater precision was associated with lower A1C (p=.003); A1C was significantly higher among children whose parents’ precision was above the 75th percentile (Q4) (See Figure).

To determine the unique contributions of carbohydrate counting accuracy and precision to glycemic control, we performed a multivariate analysis adjusting for age, gender, T1D duration, and frequency of BG monitoring. For this analysis, accuracy was defined by estimates within 20% of calculated intake and precision was defined by values less than the 75th percentile. In a significant model ($R^2=.25$, p=.007), lower A1C was associated with precision (B=-0.77, 95% CI=-0.10 to -1.44, p=.02) and more frequent BG monitoring (B=-0.24, 95% CI=-0.01 to -0.48, p=.04), but not accuracy (B=-0.04, 95% CI=-0.63 to 0.55, p=.9). Precision with carbohydrate counting explained 7% of the variance in A1C in the model.

CONCLUSIONS

Among intensively treated youth with T1D, parental carbohydrate counting knowledge was associated with lower A1C. Although both accuracy and precision were related to A1C in bivariate analyses, only precision was associated with lower A1C when adjusting for demographic and diabetes-specific characteristics. Precision was associated with a 0.8% lower A1C. Similar to previous studies, more frequent BG monitoring was also independently associated with lower A1C (6,7).

We hypothesized that carbohydrate counting knowledge would allow for proper calculation of prandial insulin doses and improve glycemic control. Our findings suggest that precise estimation may offset the negative impact of inaccurate estimation; that is, inaccurate estimation, if done consistently, may not adversely affect A1C. Furthermore, it is recognized that BG monitoring facilitates the selection and adjustment of insulin doses, and its association with A1C was not unexpected.

There are caveats to this analysis. Social desirability and reliance on memory may limit the validity of diet recalls in assessing actual intake in children (8, 9). For this reason, parent estimation was compared to formal analysis of recalled foods, not actual intake. Discrepancies between recalled and actual intake may affect glycemic control, but we were unable to evaluate this possibility. Furthermore, we did not assess carbohydrate quality (10), alterations in timing of insulin dosing (11, 12) or glycemic excursions (13, 14) which are also known to affect A1C. Our sample included children with relatively well-controlled T1D (78% achieving American Diabetes Association age-specific A1C recommendations (15)) and parents were mostly married (88%), well-educated (73% college degree) and of higher socioeconomic status (defined by education and 90% privately insured). Our findings would be strengthened by confirmation in more diverse populations.
Consistency (precision) when estimating carbohydrate content was associated with improved glycemic control. Future studies investigating factors that promote carbohydrate counting knowledge could help optimize nutrition education for youth with T1D and their families.

ACKNOWLEDGMENTS

This study was supported by an NIH Training Grant in Pediatric Endocrinology (K12 DK6396-05), an Eli Lilly Foundation Fellowship Training Grant and the Harvard Pediatric Health Services Research Fellowship (HRSA T32 HP10018-12). Portions of this manuscript were presented at the 68th Scientific Sessions of the American Diabetes Association (2008).

We thank Drs. Joseph Wolfsdorf and David Ludwig for their methodological advice and the staff of the Clinical and Translational Study Unit at Children’s Hospital Boston for their assistance in conducting this study. We are grateful to all of the families who participated in this study.
REFERENCES
1. Anderson EJ, Richardson M, Castle G, Cercone S, Delahanty L, Lyon R, Mueller D, Snetselaar L: Nutrition interventions for intensive therapy in the Diabetes Control and Complications Trial. The DCCT Research Group. J Am Diet Assoc 93:768-772, 1993
2. Delahanty LM, Halford BN: The role of diet behaviors in achieving improved glycemic control in intensively treated patients in the Diabetes Control and Complications Trial. Diabetes Care 16:1453-1458, 1993
3. American Diabetes Association: Nutrition Recommendations and Interventions for Diabetes: A position statement of the American Diabetes Association. Diabetes Care 30 Suppl 1:S48-S65, 2007
4. Kawamura T: The importance of carbohydrate counting in the treatment of children with diabetes. Pediatr Diabetes 8 Suppl 6:57-62, 2007
5. Buzzard IM, Faucett CL, Jeffery RW, McBane L, McGovern P, Baxter JS, Shapiro AC, Blackburn GL, Chlebowski RT, Elashoff RM, Wynder EL: Monitoring dietary change in a low-fat diet intervention study: advantages of using 24-hour dietary recalls vs food records. J Am Diet Assoc 96:574-579, 1996
6. Levine BS, Anderson BJ, Butler DA, Brackett J, Laffel L: Predictors of glycemic control and short-term adverse outcomes in youth with type 1 diabetes. J Pediatr 139:197-203, 2001
7. Haller MJ, Stalvey MS, Silverstein JH: Predictors of control of diabetes: monitoring may be the key. J Pediatr 144:660-661, 2004
8. Klesges RC, Klesges LM, Brown G, Frank GC: Validation of the 24-hour dietary recall in preschool children. J Am Diet Assoc 87:1383-1385, 1987
9. Stein AD, Shea S, Basch CE, Contento IR, Zybert P: Variability and tracking of nutrient intakes of preschool children based on multiple administrations of the 24-hour dietary recall. Am J Epidemiol 134:1427-1437, 1991
10. Brand-Miller J, Hayne S, Petocz P, Colagiuri S: Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 26:2261-2267, 2003
11. Burdick J, Chase HP, Slover RH, Knievel K, Scrimgeour L, Maniatis AK, Klingensmith GJ: Missed insulin meal boluses and elevated hemoglobin A1c levels in children receiving insulin pump therapy. Pediatrics 113:e221-e224, 2004
12. Deeb LC, Holcombe JH, Brunelle R, Zalani S, Brink S, Jenner M, Kitson H, Perlman K, Spencer M: Insulin lispro lowers postprandial glucose in prepubertal children with diabetes. Pediatrics 108:1175-1179, 2001
13. Boland E, Monsod T, Delucia M, Brandt CA, Fernando S, Tamborlane WV: Limitations of conventional methods of self-monitoring of blood glucose: lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes. Diabetes Care 24:1858-1862, 2001
14. Heptulla RA, Allen HF, Gross TM, Reiter EO: Continuous glucose monitoring in children with type 1 diabetes: before and after insulin pump therapy. Pediatr Diabetes 5:10-15, 2004
15. Silverstein J, Klingensmith G, Copeland K, Plotnick L, Kaufman F, Laffel L, Deeb L, Grey M, Anderson B, Holzmeister LA, Clark N: Care of children and adolescents with type 1 diabetes: a statement of the American Diabetes Association. Diabetes Care 28:186-212, 2005
FIGURE LEGEND
Figure—Child A1C (mean±SE) by quartiles of parent carbohydrate counting accuracy (A) or precision (B). A: The A1C of children whose parents overestimated carbohydrate content (Q4) was higher than the A1C of children whose parents were most accurate (Q2-Q3). The A1C of children whose parents underestimated carbohydrate content (Q1) was not significantly different from the A1C of other children. B: The A1C of children whose parents were the least precise (Q4) was significantly higher than the A1C of all other children (Q1-Q3).