The phosphoinositide sensitivity of the K_V channel family

Martin Kruse and Bertil Hille*
Department of Physiology and Biophysics; University of Washington; Seattle, WA USA

Recently, we screened several K_V channels for possible dependence on plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P$_2$). The channels were expressed in tsA-201 cells and the PI(4,5)P$_2$ was depleted by several manipulations in whole-cell experiments with parallel measurements of channel activity. In contrast to reports on excised-patches using *Xenopus laevis* oocytes, we found only K_{Ca}, but none of the other tested K_V channels, to be strongly dependent on PI(4,5)P$_2$. We now have extended our study to $K_{Ca}1.2$ channels, a K_V channel we had not previously tested, because a new published study on excised patches showed regulation of the voltage-dependence of activation by PI(4,5)P$_2$. In full agreement with those published results, we found a reduction of current amplitude by ~20% after depletion of PI(4,5)P$_2$, and a small left shift in the activation curve of $K_{Ca}1.2$ channels. We also found a small reduction of $K_{Ca}11.1$ (hERG) currents that was not accompanied by a gating shift. In conclusion, our whole-cell methods yield a PI(4,5)P$_2$-dependence of $K_{Ca}1.2$ currents in tsA-201 cells that is comparable to findings from excised patches of *Xenopus laevis* oocytes. We discuss possible physiological rationales for PI(4,5)P$_2$ sensitivity of some ion channels and insensitivity of others.

Introduction

Here we revisit the regulation of voltage-gated potassium (K_V) channels by plasma membrane phosphoinositide phospholipids. Although not in high abundance, the phosphoinositides of eukaryotic biological membranes regulate many membrane proteins through protein-lipid interaction domains. At the plasma membrane, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P$_2$) is the dominant phosphoinositide. It enhances the activity of many ion channels, and, for some channels, is necessary for activity. Thus, it is obligatory for function of all 5 members of the K_{Ca} channel family and of nearly all inward rectifiers and TRP channels. In recent reviews, the number of ion channels said to be regulated by PI(4,5)P$_2$ has grown so large (> 80) that one might anticipate that all plasma membrane channels are sensitive. However, using whole-cell recording and enzymatic methods to deplete endogenous PI(4,5)P$_2$, our laboratory failed to find PI(4,5)P$_2$ sensitivity in several channels. For example, we found that only 4 out of 8 tested voltage-gated calcium (Ca_{Ca}) channel subtypes were significantly depressed when PI(4,5)P$_2$ levels were enzymatically lowered, and some of these sensitive Ca_{Ca} channels became nearly insensitive when coexpressed with a different Ca_{Ca} subunit.

Recently, we screened for PI(4,5)P$_2$ sensitivity of 8 voltage-gated potassium (K_V) channels from the K_{Ca}, 1, 2, 3, and 4 families, again using whole-cell methods and enzyme recruitment. Three of the channels we tested, $K_{Ca}1.1$, 1.4, and 3.4, had been studied before in excised patches from *Xenopus laevis* oocytes. The authors had reported interesting changes of current kinetics and amplitude when exogenous brain PI(4,5)P$_2$ was applied to the cytoplasmic face. Thus, we assumed our screen would identify many lipid-sensitive channels, yet we saw no sensitivity to PI(4,5)P$_2$ depletion for any of them ($K_{Ca}1.1$, 1.3, 1.4, 1.5, 2.1, 3.4, 4.2, and 4.3). For large test depolarizations, neither the current amplitude nor the gating...
Figure 1. For figure legend, see page 532.
kinetics were changed. In the same study, we did confirm that our methods easily resolved the well-known lipid sensitivity of K_1.2, 7.1, 7.2, and 7.3 and K_2.1 channels. Subsequently, using mostly different approaches, Rodriguez-Menchaca et al. reported that K_1.2 channels are sensitive to PI(4,5)P_2 depletion. They found a ~30% decrease in current amplitude from Xenopus oocytes by depleting excised patches of PI(4,5)P_2 and a restoration of the original current amplitude by perfusing PI(4,5)P_2 onto the inside-out patches. They recognized a dual effect of depleting PI(4,5)P_2: First, a decrease of maximum open probability and, second, a left-shift of ~14 mV in the voltage dependence of the activation curve. This result was not in contradiction to ours since we had not tested K_1.2 channels in our screen. Nevertheless, we were stimulated by this new work to check whether our whole-cell assay system, which had given negative results with other channels, would confirm PI(4,5)P_2 sensitivity of K_1.2.

Results

As in our previous paper, the experimental design was to study ion channels transfected in mammalian tsA-201 cells by whole-cell voltage clamp. Plasma membrane phosphoinositides were depleted by 2 enzymatic maneuvers: (1) by stimulating a G protein coupled receptor (GPCR) coupled to phospholipase C (PLC), and (2) by using chemical dimerization to recruit lipid phosphatases to the plasma membrane.

PI(4,5)P_2 dependence of K_1.2 channels

We first tested PI(4,5)P_2 depletion by PLC. K_1.2 channels were co-expressed with PLC-coupled M_γ muscarinic receptors (M_γR) in tsA-201 cells, and depolarizing pulses to 20 mV elicited outward K' currents (Fig. 1A). Application of the muscarinic agonist oxotremorine methiodide (Oxo-M) led to a clear decrease in the current amplitude on average by 27 ± 6% (n = 5, Fig. 1D). Activation of phospholipase C (PLC) is a complex stimulus. It generates several intracellular signals including depletion of PI(4,5)P_2, rise of cytoplasmic inositol trisphosphate (Ins(1,4,5)P_3) and calcium, production of diacylglycerol (DAG) and activation of protein kinase C (PKC).

To check whether the effects were really due to PI(4,5)P_2 depletion, we turned to recruitment of the lipid phosphatase pseudojanin (Pj) to the plasma membrane as another tool to deplete PI(4,5)P_2. Pseudojanin is an engineered fusion protein containing a rapamycin-binding domain (FKBP) and 2 lipid phosphatase domains in tandem (derived from Inp54p and Sac1 enzymes), which dephosphorylate PI(4,5)P_2 at the 5-position (Ins(1,4,5)P_3) and PI(4,5)P_2 at the 4-position (Sac1) to yield phosphatidylinositol (PI). Addition of the membrane-permeable drug rapamycin dimerizes the FKBP domain with the coexpressed membrane anchor Lyn-FRB-CFP, thus recruiting the pseudojanin phosphatases to the plasma membrane. This dimerization strategy depletes PI(4,5)P_2 at the plasma membrane without generating downstream signaling molecules like Ins(1,4,5)P_3 or DAG. As the FKBP-rapamycin-FRB complex is very stable, the recruitment of pseudojanin to the plasma membrane is irreversible and results in a lasting depletion of PI(4,5)P_2. Rapamycin addition to cells coexpressing K_1.2, pseudojanin, and LDR-CFP resulted in a clear 19 ± 2% decrease in current amplitude (n = 5, Fig. 1C and D). These experiments show that K_1.2 channel current is PI(4,5)P_2 sensitive as previously reported.

We next asked whether the voltage-dependence of activation can be shifted by turning on PLC. We coexpressed K_1.2 with MγR and measured the conductance-voltage (G-V) relation before and after activation of MγR (Fig. 1E). There was a small, but significant left shift in the normalized activation curve by 3.5 ± 0.4 mV (n = 5) (Fig. 1F). Thus, we confirm the observations of Rodriguez-Menchaca et al.

PI(4,5)P_2 dependence of hERG channel activation

We and others have reported a change in the voltage-dependence of activation of erg channels if PI(4,5)P_2 levels are altered. Bian et al. reported a left shift of about ~19 mV for the activation curve of hERG channels upon dialysis of 10 μM PI(4,5)P_2 into the cells via the patch pipette, while we found a right shift of about ~5 mV in the activation curve for rat erg1 channels upon depletion of PI(4,5)P_2 by activating MγR. We decided to extend our previously published recordings on rat erg1 channels to hERG channels to test whether we would observe a similar right shift in the voltage-dependence.

We co-expressed hERG and MγR in tsA-201 cells and measured current amplitudes before and after MγR activation. After addition of Oxo-M we observed an inhibition of hERG mediated current of 31 ± 7% (n = 5) (Fig. 2A and B), in good agreement with our work on rat erg1 channels after MγR activation. We next asked whether this decrease in current amplitude is accompanied by a change in the activation curve for hERG channels. Again, we co-expressed hERG channels with MγR and measured G-V curves before and after addition of Oxo-M to deplete PI(4,5)P_2. We detected a right shift of the activation curve of about ~7 mV (n = 5), which correlates very well with the 5 mV right shift Hirdes at al. had observed for rat erg1 channels (Fig. 2C).

Our next step asked whether the observed right shift in the activation curve is caused by the depletion of PI(4,5)P_2 at the plasma membrane or by signaling pathways downstream of PI(4,5)P_2 hydrolysis, such as activation of protein kinases. Unlike K_1.2 channels, it had been shown for hERG channels that...
Figure 2. For figure legend, see page 534.
activation of PKC leads to a right shift of the activation curve.\(^1\) We expressed hERG channels together with pseudojsoanin-YFP and LDR-CFP in tsA-201 cells and applied rapamycin to induce translocation of pseudojsoanin-YFP to the plasma membrane. Recruiting Pj to deplete PI(4,5)P\(_2\) led to a significant decrease (15 ± 1%, n = 5) of hERG mediated current amplitude (Fig. 2D) but, in the same cells, no significant shift in the voltage-dependence of activation (Fig. 2E and F). We conclude from this result that a depletion of PI(4,5)P\(_2\) does not alter the voltage-dependence of activation of hERG channels and that our finding of a right shift in the activation curve after M\(_R\)-activation should be attributed to other signals downstream of PI(4,5)P\(_2\) cleavage by PLC.

Discussion

We now review 2 broad questions briefly: (1) Are K\(_\beta\) channels sensitive to plasma membrane PI(4,5)P\(_2\); and (2) is there a physiological benefit from such sensitivity or insensitivity?

For excitable cells, the K\(_\beta\) channels whose PI(4,5)P\(_2\) sensitivity is best studied are the K\(_{\beta7}\) (KCNQ) family.\(^7\,20\) It is widely accepted that the 5 members of this family absolutely require PI(4,5)P\(_2\) to function. They bind PI(4,5)P\(_2\) with low enough affinity that when the lipid is depleted enzymatically by 90–95% either by PLC or by 5-phosphatases, the current falls by 80–95%. In addition, K\(_{1,2}\) channels have clear PI(4,5)P\(_2\) sensitivity. In whole-cell experiments, currents decrease and gating is shifted in response to M\(_R\) or voltage-sensing phosphatase activation, and in excised patches, the same effects are induced by rundown, by anti-PI(4,5)P\(_2\) antibodies, and by blocking lipid kinases, and current is restored by application of PI(4,5)P\(_2\).\(^14\,22\,23\)

With K\(_{1,2}\) however, rather than eliminating current, PI(4,5)P\(_2\) depletion modulates channel properties more gently, reducing the amplitude by 25–30% and shifting gating. Possibly with a more severe elimination of PI(4,5)P\(_2\), the channel could be shown above current traces. (B) Time course of hERG channel mediated current at +40 mV from the experiment shown in (A). (C) Voltages of half-maximal activation (V\(_{1/2}\)) of hERG channels before and after M\(_R\)-activation. (D) Current traces for hERG channels expressed together with pseudojsoanin-YFP (PJ) and LDR-CFP (before solid black) and after (dashed gray) recruitment of Pj to the plasma membrane by rapamycin-application. (E) Representative G-V curve of hERG channels generated from test pulses to membrane potentials of −80 to +60 mV from a holding potential of −80 mV before (solid black) and after (dashed gray) recruitment of PJ to the plasma membrane. (F) Voltages of half-maximal activation (V\(_{1/2}\)) for hERG channels before and after PJ-recruitment.

We now review 2 broad questions briefly: (1) Are K\(_\beta\) channels sensitive to plasma membrane PI(4,5)P\(_2\); and (2) is there a physiological benefit from such sensitivity or insensitivity?

For excitable cells, the K\(_\beta\) channels whose PI(4,5)P\(_2\) sensitivity is best studied are the K\(_{\beta7}\) (KCNQ) family.\(^7\,20\) It is widely accepted that the 5 members of this family absolutely require PI(4,5)P\(_2\) to function. They bind PI(4,5)P\(_2\) with low enough affinity that when the lipid is depleted enzymatically by 90–95% either by PLC or by 5-phosphatases, the current falls by 80–95%. In addition, K\(_{1,2}\) channels have clear PI(4,5)P\(_2\) sensitivity. In whole-cell experiments, currents decrease and gating is shifted in response to M\(_R\) or voltage-sensing phosphatase activation, and in excised patches, the same effects are induced by rundown, by anti-PI(4,5)P\(_2\) antibodies, and by blocking lipid kinases, and current is restored by application of PI(4,5)P\(_2\).\(^14\,22\,23\)

With K\(_{1,2}\) however, rather than eliminating current, PI(4,5)P\(_2\) depletion modulates channel properties more gently, reducing the amplitude by 25–30% and shifting gating. Possibly with a more severe elimination of PI(4,5)P\(_2\), the channel could be

Discussion

We now review 2 broad questions briefly: (1) Are K\(_\beta\) channels sensitive to plasma membrane PI(4,5)P\(_2\); and (2) is there a physiological benefit from such sensitivity or insensitivity?

For excitable cells, the K\(_\beta\) channels whose PI(4,5)P\(_2\) sensitivity is best studied are the K\(_{\beta7}\) (KCNQ) family.\(^7\,20\) It is widely accepted that the 5 members of this family absolutely require PI(4,5)P\(_2\) to function. They bind PI(4,5)P\(_2\) with low enough affinity that when the lipid is depleted enzymatically by 90–95% either by PLC or by 5-phosphatases, the current falls by 80–95%. In addition, K\(_{1,2}\) channels have clear PI(4,5)P\(_2\) sensitivity. In whole-cell experiments, currents decrease and gating is shifted in response to M\(_R\) or voltage-sensing phosphatase activation, and in excised patches, the same effects are induced by rundown, by anti-PI(4,5)P\(_2\) antibodies, and by blocking lipid kinases, and current is restored by application of PI(4,5)P\(_2\).\(^14\,22\,23\)

With K\(_{1,2}\) however, rather than eliminating current, PI(4,5)P\(_2\) depletion modulates channel properties more gently, reducing the amplitude by 25–30% and shifting gating. Possibly with a more severe elimination of PI(4,5)P\(_2\), the channel could be shown above current traces. (B) Time course of hERG channel mediated current at +40 mV from the experiment shown in (A). (C) Voltages of half-maximal activation (V\(_{1/2}\)) of hERG channels before and after M\(_R\)-activation. (D) Current traces for hERG channels expressed together with pseudojsoanin-YFP (PJ) and LDR-CFP (before solid black) and after (dashed gray) recruitment of Pj to the plasma membrane by rapamycin-application. (E) Representative G-V curve of hERG channels generated from test pulses to membrane potentials of −80 to +60 mV from a holding potential of −80 mV before (solid black) and after (dashed gray) recruitment of PJ to the plasma membrane. (F) Voltages of half-maximal activation (V\(_{1/2}\)) for hERG channels before and after PJ-recruitment.
membranes, a subject we know less about. We would need further information about the physiology of intracellular compartments. What are the ion gradients across their membranes? What is their membrane potential? Is this electrical potential important for the compartment’s function? Does it change during cellular activities? From such information we might be able to deduce which ion channels would be good to silence and which to promote as they traffic through that compartment. Phosphoinositides would be likely candidates to accomplish such regulation since each compartment has different lipids. We already know of compartments with lumens that are acidic or have high sodium or calcium concentrations, and we know of stimuli that release stored calcium. This knowledge probably only scratches the surface of a much fuller understanding that will eventually emerge about compartmental electrophysiology.

We envision several possible outcomes of these inquiries. Internal membranes may have membrane potentials more positive than the resting potential of the plasma membrane. If so, ion channels with voltage-dependent inactivation might already be inactivated during internal trafficking, and that category of channels would not need a lipid-based mechanism to ensure lack of activity. In addition, when we understand the membrane potential of a compartment, we should recognize some transiting ion channels that would be compatible with that membrane potential and others that are not that must be kept silent there by some mechanism.

In sum, we propose hypotheses for why some channels are sensitive and some channels are not sensitive to the lipid PI(4,5)P2.

Materials and Methods

Cell culture and plasmids

All experiments were performed in tsA-201 cells cultured at 37 °C and 5% CO2 in DMEM (Invitrogen) supplemented with 10% FBS (PAA) and 0.2% penicillin/streptomycin (Invitrogen). Transient transfection of cells was performed as previously described.12

The following plasmids were generously given to us: M, R (M1 muscarinic receptor)–YFP from Neil Nathanson (University of Washington); pseudojanin-YFP from Gerald Hammond and Robin Irvine (University of Cambridge); K1,2 from Diomedes Logothetis (Virginia Commonwealth University); LDR (Lyn–targeted FRB)–CFP from Tamas Balla (National Institute of Health); and hERG from Olaf Pongs (University of Hamburg).

Electrophysiology

Whole-cell recordings were performed as previously described.12

Data analysis and statistics

Data analysis was performed using Igor Pro (Wavemetrics) and Excel (Microsoft). Statistical data are presented as mean ± SEM unless otherwise stated. The Student t-test was used to test for statistical significance. We considered p-values of < 0.05 as significant.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank all colleagues who have generously provided us with plasmids (see Material and Methods). We are also thankful to all members of the Hille laboratory and many members of the Department of Physiology and Biophysics at the University of Washington for discussions and experimental advice, and to Lea M Miller for technical help. This study was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award R01 NS08174 (Hille B) and the Alexander von Humboldt-Foundation (Kruse M).

References

1. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006; 443:651-7; PMID:17059955; http://dx.doi.org/10.1038/nature05185

2. Varnaı P, Thyagarajan B, Rohacs T, Balla T. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J Cell Biol 2006; 175:377-82; PMID:17088424; http://dx.doi.org/10.1083/jcb.200607116

3. Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41; PMID:20396900; http://dx.doi.org/10.1007/s00424-010-0828-y

4. Suh BC, Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 2005; 15:370-8; PMID:15922587; http://dx.doi.org/10.1016/j.conb.2005.05.005

5. Suh BC, Hille B. PI(4,5)P2, a necessary cofactor for ion channel function: how and why? Anna Rev Biophys 2008; 37:175-95; PMID:18573078; http://dx.doi.org/10.1146/annurev.biophys.37.032807.125859
6. Rodríguez-Menchaca AA, Adney SK, Zhou L, Logothetis DE. Dual Regulation of Voltage-Sensitive Ion Channels by PI(4,5)P2. Front Pharmacol 2012; 3:170; PMID:23059573; http://dx.doi.org/10.3389/fphar.2012.00170

7. Suh BC, Hille B. Recovery from muscarinic modulation of M-channel currents requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 2002; 35:507-20; PMID:12165472; http://dx.doi.org/10.1016/S0896-6273(02)00790-0

8. Zhang H, Craiciuc LC, Mirnahu D, Rohács T, Lopes CM, Jin T, Logothetis DE. PI(4,5)P2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 2003; 37:963-75; PMID:12670425; http://dx.doi.org/10.1016/S0896-6273(03)00125-9

9. Rohács T, Chen J, Prestwich GD, Logothetis DE. Distinct specificities of inwardly rectifying K+ channels for phosphoinositides. J Biol Chem 1999; 274:36065-72; PMID:10593888; http://dx.doi.org/10.1074/jbc.274.51.36065

10. Suh BC, Leaf K, Hille B. Modulation of high-voltage activated Ca2+ channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 2010; 67:224-38; PMID:20670831; http://dx.doi.org/10.1016/j.neuron.2010.07.001

11. Suh BC, Kim DJ, Falkenburger BH, Hille B. Membrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca2+ channels. Proc Natl Acad Sci U S A 2012; 109:3161-6; PMID:22308488; http://dx.doi.org/10.1073/pnas.1123414109

12. Kruse M, Hammond GRV, Hille B. Regulation of voltage-gated potassium channels by PI(4,5)P2. J Gen Physiol 2012; 140:189-205; PMID:22851677; http://dx.doi.org/10.1085/jgp.201210806

13. Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B. Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 2004; 304:265-70; PMID:15034347; http://dx.doi.org/10.1126/science.1094113

14. Rodríguez-Menchaca AA, Adney SK, Tang QY, Meng XY, Rosenhouse-Dantsker A, Cui M, Logothetis DE. PI(4,5)P2 controls voltage-sensor movement and pore opening of K+ channels through the S4–S5 linker. Proc Natl Acad Sci U S A 2012; 109:E2399-408; PMID:22891352; http://dx.doi.org/10.1073/pnas.1207901109

15. Hammond GRV, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF. PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 2012; 337:727-30; PMID:22272250; http://dx.doi.org/10.1126/science.1222483

16. Inoue T, Heo WD, Grimes JS, Wandless TJ, Meyer T. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat Methods 2005; 2:415-8; PMID:15908919; http://dx.doi.org/10.1038/nmeth763

17. Hirdes W, Horowitz LF, Hille B. Muscarinic modulation of erg potassium current. J Physiol 2004; 559:67-84; PMID:15253086; http://dx.doi.org/10.1113/jphysiol.2004.06944

18. Bian JS, Kagan A, MacDonald TY. Molecular analysis of PIP2 regulation of HERG and Ikr channels. Am J Physiol Heart Circ Physiol 2004; 287:H2154-63; PMID:15253197; http://dx.doi.org/10.1152/ajpheart.00120.2004

19. Thomas D, Zhang W, Wu K, Wimmer AB, Gut B, Wende-Noodahl G, Kalthofer S, Kreye VA, Katus HA, Schoels W, et al. Regulation of HERG potassium channel activation by protein kinase C independent of direct phosphorylation of the channel protein. Cardiovasc Res 2003; 59:14-26; PMID:12829172; http://dx.doi.org/10.1016/S0008-6363(03)00386-9

20. Li Y, Zaydman MA, Wu D, Shi J, Guan M, Virgin-Downey B, Cui J. KCNEm enhances phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of Kv to modulate channel activity. Proc Natl Acad Sci U S A 2011; 108:9095-100; PMID:21576493; http://dx.doi.org/10.1073/pnas.100872108

21. Brown DA, Hughes SA, Marsh SJ, Tinker A. Regulation of M(Kur1.2,7,2.3) channels by neurons in PIP2, and products of PI(4,5)P2 hydrolysis: significance for receptor-mediated inhibition. J Physiol 2007; 582:917-45; PMID:17395626; http://dx.doi.org/10.1113/jphysiol.2007.132498

22. Falkenburger BH, Jensen JB, Hille B. Kinetics of M, muscarinic receptor and G protein signaling to phosphoinositol C in living cells. J Gen Physiol 2010; 135:81-97; PMID:20100890; http://dx.doi.org/10.1085/jgp.200910344

23. Falkenburger BH, Jensen JB, Hille B. Kinetics of PI(4,5)P2 metabolism and KCNQ2/5 channel regulation studied with a voltage-sensitive phosphatase in living cells. J Gen Physiol 2010; 135:99-114; PMID:20100891; http://dx.doi.org/10.1085/jgp.200910345

24. Hilgemann DW. On the physiological roles of PIP2 at cardiac Na+Ca2+ exchangers and Kᵥ,₇₇ channels: a long journey from membrane biophysics into cell biology. J Physiol 2007; 582:903-9; PMID:17463041; http://dx.doi.org/10.1113/jphysiol.2007.132746

25. Hilgemann DW, Ball R. Regulation of cardiac Na+Ca2+ exchange and Kᵥ,₇₇ potassium channels by PI(4,5)P2. Science 1996; 273:956-9; PMID:8868808; http://dx.doi.org/10.1126/science.273.5277.956

26. Rudy B, McBain CJK. Kᵥ,₃ channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 2001; 24:537-26; PMID:11566885; http://dx.doi.org/10.1016/S0166-2236(00)01892-0

27. Nakamura TY, Coetzee WA, Vega-Saenz De Miera E, Artrman M, Rudy B. Modulation of Kᵥ,₃ channels, key components of rat ventricular transient outward K+ current, by PKC. Am J Physiol 1997; 273:H1775-86; PMID:9362243

28. Ritter DM, Ho C, O’Leary ME, Covarrubias M. Modulation of Kᵥ,₃,₇ channel N-type inactivation by protein kinase C shapes the action potential in dorsal root ganglion neurons. J Physiol 2012; 590:145-61; PMID:22063632

29. Covarrubias M, Wei A, Salkoff L, Vyas TB. Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate. Neuron 1994; 13:1403-12; PMID:7994631; http://dx.doi.org/10.1016/S0896-6273(94)00925-1

30. Snyders DJ. Structure and function of cardiac potassium channels. Cardiovasc Res 1999; 42:377-90; PMID:10533574; http://dx.doi.org/10.1016/S0009-9260(99)00071-1