Design of High-Precision Frequency Measure System Based on CPLD Time Delay Unit

Feng Qian, Ding Wei, Wang Hao

Institute of Seismology, China Earthquake Administration, 40# Hongshan Road, Wuchang District, Wuhan, China

E-mail: fengqian@eqhb.gov.cn

Abstract. Introduced a method for high-precision frequency measurement, which do not need the complicated measuring control circumstance. CPLD is used for improving the precision of measurement by the method of quantization time-delay. High precision frequency adjustable module based on the method has been used on the photoelectricity data acquisition system. Frequency accuracy is -8.306×10^{-10}, which meet the requirement of instrument.

1. Introduction

The measurement of frequency is actually the measurement of the time intervals. Direct count method [1], which using the quantity of known frequency, is the common way. The desynchronization of the rising edge of measuring frequency and the under test frequency may lead to ± 1 pulse error. We can increase the frequency to avoid the problem. However, in most situations, clock frequency cannot change. How to get the high precision in the situation of stable clock frequency is a desiderate problem.

The appear of quantization time-delay [2-5] make it possible. We use it to design a high-precision frequency measure System Based on GPS second pulse, which is low cost and power consumption, without traditional complex frequency measure system. It meets the demand of high-precision frequency.

![FIG.1 the phase of reference frequency and related frequency](image)

1 To whom any correspondence should be addressed.
In frequency measuring, such as GPS second pulse signal, phase equality and high precision of the under test frequency and basic frequency are most important. The core element is enhancing the resolution of the time interval. In direct counting method, 10Mhz Frequency can only lead to the measurement resolution of 10ns. Increasing or doubling the base frequency of the crystal oscillator, increases the resolution by a very limited level, it also increases the cost. Therefore, if we use the method of quantization time-delay, which is related with gate signal time and frequency of the basic signal, and is unconcerned with the resolution and frequency of the under test signal [6-8]. Such as FIG1, We can measure time interval Δt_1 and Δt_2 in order to improve the resolution without change the basic frequency.

Make use stability of signal delay, we can measure Δt_1 and Δt_2 qualitative the signal delay. The principle can explain below: let the signal pass by some delay unit, record the situation of the delay unit and calculate the relative difference of the frequency based on the basic frequency, then adjust the VCO sensitivity. Such as FIG1, $T_G=NT_m+\Delta t_1-\Delta t_2$, T_G is ideal gate signal. If we can measure the time interval Δt_1 and Δt_2, we can get T_G Accurate. Device of delay unit can use passive conductors, gate device or other way [9]. The delay time of conductor is too short and may cause complex circuit. The delay time of gate device is too long to control. In general, we choose LCELL logic unit in Complex Programmable Logic Device (CPLD) as delay unit [10], which can reduce conductor disturb, make system stable and simple.

2. Material and methods
In real design, using VCXO to generate 16.384M frequency standard, using GPS module Navman JUPITER 21 to generate standard second pulse, using MCU PIC18F452 control GPS module and adjust D/A device feedback voltage, which achieve using GPS second pulse lock high stable VXCO, and get adjusted second pulse output with long term stability.

![FIG.2 Functional block diagram of the high precision of measurement by the method of quantization time-delay based on CPLD](image)
bus will be locked at the raise edge of the clock frequency. Δt_1 can be measured by the quantity of LCELL which changed from 0 to 1, we also can measure Δt_2 by the quantity of LCELL which changed from 1 to 0. The key lock module is programmed by verilog HDL as below:

```
module lock(s1,clk,sin,sout);
input s1,clk;
input[31:0] sin;//delay pulse input
output[31:0] sout;//lock signal output
reg flag=0;/*first pulse flag, flag=0 and S1=1 show the first pulse coming in*/
reg[31:0] sout;
always @(posedge clk):
    if(s1)
        begin
            if(flag= =0)
                begin
                    sout<=sin;//now input the value of time delay
                    flag<=1;
                end
            else  //s1=1, not first pulse
                flag<=1;
        end
    else //s1=0,stop count, reset flag
        flag<=0;
```

The acquisition quantity LCELLs of Δt_1 and Δt_2 counted by CPLD transmit in MCU serial port. According to the change of Δt_1 and Δt_2. We use The Kalman Filter Algorithm[12-13], which principle is minimum mean square error and using the previous estimate value and last observed value to correct standard value[14], deducing with state equation and recurrence method and reducing error by filtering the time difference. Standard frequency and GPS second pulse will output after adjusting D/A output.

3. Results & Discussion
The frequency correction system can adjust frequency accuracy to a higher resolution in 40 seconds when it correctly receive GPS second signal. Actual measurement may be disturbed by external
factors such as field or weather, so the stability is decreased. Table 1 shows measured value of the crystal oscillator after correction. (Standard frequency is 16.384Mhz)

Time	Frequency	Time	Frequency
(h:m:s)	(Hz)	(h:m:s)	(Hz)
11:00:10	16383999.8772	11:00:15	16384000.1072
11:00:11	16383999.8792	11:00:16	16384000.1037
11:00:12	16383999.8766	11:00:17	16384000.0881
11:00:13	16383999.8875	11:00:18	16384000.0787
11:00:14	16383999.8873	11:00:19	16384000.0684

Table 1 Measured value of the corrected crystal oscillator

We can calculate the accuracy of the frequency is \(-0.8306\times10^{-9}\)[15]. It’s better than the initial frequency accuracy, which value is \(-4.963\times10^{-8}\). After being multiple tested, the system can reach \(10^{-10}\) degree of accuracy in 5 minutes.

4. Conclusion

The method can enhance measurement accuracy without having to increase manufacturing cost and power consumption. Now it has worked well in the circuit of sampling photoelectricity system.

References

[1] Ryszard Szplet, Jozef Kalisz. Interpolating Time Counter with 100 ps Resolution on a Single FPGA Device[J]. IEEE Transactions on Instrumentation and Measurement. 2000,49(4):879-882

[2] This reference has two entries but the second one is not numbered (it uses the ‘Reference (no number)’ style).

[3] Zhou Wei, et.al. Some New Development of Precision Frequency Measurement Technique[J]. Proceedings of the 1995 IEEE International Frequency Control Symposium, 1995:354-359.

[4] ANG H,ZHOU W. Frequency measurement method based on delay chain[J].Chinese Journal of Scientific Instrument,2008,29(3):520-523.

[5] YU JIANGUO,CHEN MING. An Improved Method for Precision Time Interval Measurement[J].2003,23(3):15-19.

[6] ZHANG YING ZHOU WEI. Research of Techniques to Lock High-stablility Crystal Oscillators Based on GPS[J]. Journal of Astronautic Metrology and Measurement. 2005,25(1):54-58.

[7] Qu Bayi, Zhou Wei. Time to digital method with good precision, linearity and temperature stablility[J]. Chinese Journal of Scientific Instrument. 2009, 30(10):2013-2016.

[8] LIU YILI, ZHOU WEI. A New Method of High Speed and Continuous Measurement of Frequency [J].Journal of Astronautic Metrology and Measurement. 2005, 20(1):32-38

[9] JIANG YUIJIE,CHEN CHEN. A Study of New Methods about Frequency Measurement. Chinese Journal of Scientific Instrument. 2004,25(1):30-33.

[10] Zhou Wei et al. Some New Method for Precision Time Interval Measurement [J]. Proceedings of the 1997 IEEE International Frequency Control Symposium, 1997,418-421

[11] ZHANG YAN LONG, CHU PENG. Design and Analysis of a Digitally Controlled Programmable Delay Element [J]. 2007, 24(8):142-144.

[12] WU JI HUA, WANG CHENG. Design of Altera FPGA/CPLD (Advance)[M].2005,160-164.
[13] LIU GUOHAI, LI QINXUE. Application of dynamic Kalman filtering in state estimation of navigation test [J]. Chinese Journal of Scientific Instrument. 2009, 30(2): 396-339.

[14] LI ZHAN, ZHANG YING. A Frequency Calibration System Based on Single Chip Processor and GPS Signal [J]. Journal of Time and Frequency. 2005, 28(1): 68-75.

[15] HAYTHAM Q, LEONHARD R. Unscented and extended Kalman estimators for non-linear indoor tracking using distance measurements[J]. Positioning Navigation and Communication, 2007(3): 177-181.

[16] YAN XUE YI. Using Programmable Timer/Couter Improve Output Frequency Accuracy [J]. Microcontrollers & Embedded Systems. 2002, 2(6): 14-16.