RESEARCH ARTICLE

REVIEW ABOUT THERAPEUTIC AND PROPHYLACTIC EFFECTS OF VITAMIN (D AND E) ON SOME RESPIRATORY VIRAL INFECTIONS, AND COVID 19

Mohammed I. Hamzah¹, Israa A. Abdul Kareem² and Sabah Hasan Shindakh Nooraldeen³

1. Clinical Chemistry, College of Medicine, Al-Nahrain University.
2. Chemical Pathology, College of Pharmacy, Al-Nahrain University.
3. Disgnostic and Therapeutic Radiology. University of Granada.

Manuscript Info

Abstract

Oxidative stress associated with almost all viral infections; in other words, inducing immune storm which increase generation of reactive-oxygen species(ROS) that causes damage in small vessels cellular membranes extensively at viral infections durance.Vitamin E considered as one amongmany antioxidants examined in mice in infections of influenza virus, with a leader position for its ability in blocking oxidative damage by its scavenging activity of free-radical. The phenomenon of Vitamin D multi-directional activity is probablybecause of the existence of the Vit. D receptors (VDR)sin most human cells of non-skeletal.Also, vit. D able tochange the immunity (acquired and innate) , therefore able to be utilized as preventive, therapeutic adjuvant vaccine, for many viral infections difficultly to treat like influenza virus, and course modulating therapy for oral herpes virus, Epstein bar virus, hepatitis B virus, and some respiratory viruses, like covid 19.Retinoic acid has important role in cell differentiation and growth,where vitamin A partially can regulate viral growth. Retinoidsinfluence many of virus infections in different complex ways i.e., ifvariouslines of cellshave an infectionby the human cytomegalic-virus(hCMV), cells exposure to retinoic acid (RA) encouragesexpression of viral nucleic acid with vulnerability to infection.

Introduction:-

Many viral infections can cause dramatic health and economic problems worldwide, among these infections are influenza infection, Hepatitis B viral infection, some respiratory viral infections, and Ebola viral infection and recently pandemic of new corona virus infection.

Previously vaccinations, and / or anti-viral therapies, used to reduce these problems; recently adjuvants are used to either ameliorate immunity of the patient to fight the infection or reduce complications of oxidative stress accompanying viral infection. This can be done by using Vitamins, like those to be mentioned in this review.

Corresponding Author:- Mohammed I. Hamzah
Address:- Clinical Chemistry, College of Medicine, Al-Nahrain University.
Metabolism:
Two sources of Vitamin D are recognized either from precursor of 7-dehydrocholesterol to cholecalciferol via radiation of UVB on skin, or from food asergocalciferol (D$_2$)or cholecalciferol (D$_3$). Figure (1) illustrates the metabolic pathways for both forms. 25-hydroxylation metabolized to calcidiol (25(OH)D), via liver enzymes CYP27A1 and CYP2R1 (cytochrome P450-linked 25-hydroxylases) and followed then by 1α-hydroxylation to the activity metabolite of 1α,25-di-hydroxy-vitamin D$_3$ (calcitriol, 1α,25(OH)$_2$D) which catalyzed via cytochrome P450-linked to 25(OH)D(3)-1α-hydroxylase (CYP27B1) which present in kidney, as well as extra-renal tissues such ascells of immunity [1-3]. Because of a feedback development, the chole- and ergocalciferol metabolism, activation and catabolic reactions are modified significantly. Production of 1α, 25(OH)$_2$D positive regulators are parathormone (PTH), parathyroid secreted hormone, and Ca level, while growth factor-23 of fibroblast (FGF-23)and phosphate level are considered as negative ones. The activity of 1α-hydroxylase is affected by all of them [4].

![Figure 1: Vitamin D Metabolic pathways][5].

CYP27B1 exist in the cells of immunity is not regulated via signaling of PTH, FGF-23, Ca, or phosphate, but cytokines stimulating it i.e.interferon gamma(IFNγ) and tumor necroticfactor alpha(TNF α) [3,6]. In turn, in keratinocytes CYP27B1 is regulated responding to activation of Toll-like receptor (TLR) and injury [3]. Expression of earlier enzyme (extra-renal) might been encouraged via receptors of recognition of alternate pathogen or (PRRs=pathogen-recognizing receptors) [7]. 1α-hydroxylase (the extra-renal type) regulation is dependent highly on circulating 25(OH)D concentration[8].

1α,25(OH)$_2$D and metabolites, at bloodstream are transferred via vit. D binding protein carrier (DBP-25(OH)D), and the transporter affinity is higher for 25(OH)D [5]. Degradation of metabolites is catalyzed throughCYP24A1 resulting in 24-hydroxylation with1α,24,25(OH)$_2$D and 24,25(OH)$_2$D formation that are converted to calcitroic acid subsequently [1, 4].Calcidiolini circulation mightas well changed through CYP24A1 to 24, 25(OH)$_2$D(ainactive form)and lactone of 25(OH)$_2$D-26,23- [1].

Three-epimers metabolites are yielded through C-3 epimerization in ring A of 1α,25(OH)$_2$D, 24,25(OH)$_2$D and 25(OH)$_2$D, which are slightly weaker in activity biologically than 1α,25(OH)$_2$D. In 1994, these epimers were stated for the first time in keratinocytes of human [9].
Action of Vit. D (Genomic and Non-genomic):
Pathways of non-genomic and genomic cellular metabolism is affected by Vitamin D. Vitamin D, acts mostly via VDR, and then, after a heterodimer yielding with retinoid X receptor (RXR). The latter dimer enters nucleus, and connects to vitamin D responsive element (VDRE) in genomic nucleic acid to control gene transcription.

Non-genomic pathways are the cell membranes rapid reactions and had been proposed for estrogen, corticosteroids, and thyroid hormone [4,10,11, and 12]. Possibly through a (1α, 25(OH)2D) membrane-bound receptor protein that can give fast reply steroid-binding protein, which as well been known as stress protein endoplasmic reticulum [57]. Activity of Ca-activated chloride channel and rapid cellular Ca efflux are regulated by vitamin D [12].

Responses (non-genomic) to the metabolite of active vitamin D continue through the phospholipase C systems messenger, protein kinase C and phosphatidylinositol-3'-kinase (PI3K), starting signal transduction of Ras/MAPK and Ca gateways widening [7].

Besides the role in bone metabolism and Ca homeostasis, vitamin D causes different effects in extra-skeletal tissues via the VDR, that exist in most body tissues [12, 13]. Affinity of VDR for (K_a = 10^-10 M) 1α,25(OH)2D is higher if compared to (K_a = 10^-8 M) 25(OH)D [13]. Activation of receptor is the foundation for 3% human genes regulation. Vitamin D involved in regulating functions of nervous and immune system in addition to cardiovascular, gastrointestinal and skin diseases role, cancer repression, or restraining of autoimmune diseases [4,11].

Recently, it was found that polymorphism in some proteins and enzymes of relation to vitamin D, e.g. DBP, CYP2B1, VDR or CYP24A1 (particularly polymorphs TaqI, FokI, BsmI, and ApaI), able to affect the response of individuals to treatment with anti-infectious therapy e.g. interferon/ribavirin in chronic hepatitis C [14,15], individuals susceptibility to tuberculosis, cancer, disease of Crohn, and ulcerative colitis or the increasing T1DM risk, as was noticed in people of European origin [16,17,18,19].

Serum Concentrations Guidance:
Vit. D status of the body depends on the serum 25(OH)D levels, since it’s relatively to DBP has high affinity and of 25 days as the half-life. Assessment of 1α,25(OH)2D in the body determine level of vitamin D is not advisable, as its serum half-life is only a some hours (ca. 7 h) [10,13]. 25(OH)D serum concentration, that indicates vitamin D available in sufficient level for organism, is (ca. 75–200 nM/L) or 30–80 ng/mL. A strong deficiency of vit. D is when concentrations are less than 10 ng/mL [13,20,21,22,23,24].

Vit. D anti-infection agent:
Functions of Vit. D for system of immunity is not easy to identify since the immunity response is not constant and relies on stage of infection.

VDR detected in cells of immunity propose that vit. D is one of the organizers of immune system. Activated B and T cells in vitrous well as the cells of epithelium that line the lower and upper tract of respiration able of transforming 25(OH)D (inactive metabolite) into 1α,25(OH)2D which is metabolically active. The latter metabolite affects cells of immunity in paracrine way or an autocrine, intracrine (for example, via inside pathways of cells) [25-27].

Vit. D probable role in diseases of infections is illustrated through its effect on the adaptive and innate immunity (Figure 2):
Innate Immunity and Vit. D:

**Pathogen Recognizing Receptors (PRRs):**

Generally, innate immune response or nonspecific, was proved to be the first defense line against agents of infection and initiates presentation of antigen [28, 29].

Innate immunity response crucial points are the receptors of Toll-like (TLRs), which are of different subgroups of innate intracellular PRRs that exist at monocytes, cells of epithelia, poly-morpho-nuclear cell, and macrophages. TLRs can recognize compounds of pathogen origin; e.g., bacterial, viral lipopolysaccharides, proteins and nucleic acid. Cytokines released by activated TLRs would induce antimicrobial peptides (AMPs), ROS, defensins, and cathelicidins [3,6,7, 25,26]. VDR induction affected or affect by numerous TLRs e.g. co-stimulatory molecule CD-14, co-receptor expression for TLR4, that is triggered via 1α,25(OH)2D in epidermal keratinocytes and monocytes. In macrophages, CYP27B1 increased expression considered as indirect AMPs result, that encourages TLR2 [6]. It had been shown by Greiller and Martineau that in macrophages [7], heterodimer of TLR2/1 ligation causes CYP27B1 up-regulation, in a similar manner to the TLR4 by lipopolysaccharide (LPS) or TLR8 by CL097 ligation.

Production of CYP27B1 by TLR ligation is probably occurs if alternate PRRs or TLRs encourage enzyme (extra-renal) activation, permitting calcitriol to cause effects more extensively on the immunity response [7]. In case of infection by virus, pathogen-associated molecular patterns (PAMPs) might identified by different PRRs, e.g. nucleotide binding-oligomerization receptors domain (NOD)-like ligand (NLRs) and retinoic-acid-inducible receptors of gene I (RIG-I)-like ligand. In epithelial cells and myeloid, 1α, 25(OH)2D encouraged the receptor of NOD2 through 2 VDREs in NOD2 gene. Products of lysosomal breakdown (peptidoglycan of bacteria), if associated with calcitriol, it would induce NOD2 to enhance signaling of AMP and expression of beta defensin 2 [7, 30]. Interleukins (IL) IL-1β, TNFα and -6, and -12 and other inflammatory cytokines are yielded at an innate immune response early phase. Among others, cytokines encourage proteins of acute phase synthesis and contribute to the
cells activation and recruitment of the response of adaptive immunity. Signaling of PRR also contribute to the chemokine ligands (CXCLs) production of e.g. IL-15 and CXCL8–CXCL10 that stimulate production of natural killer cells (NK) and neutrophils which have role, particularly in immunity (innate) versus bacteria [7].

TLRs up-regulation can occur by other ways. Neutrophils don’t synthesize α-hydroxylase but, express the VDR unlike macrophages. Hence, in these cells, it is hard to induce 25(OH)D transformation into the functioning compound via TLR stimulation. Proteins of surface, e.g. transforming growth factor β (TGFβ), or triggering receptor on myeloid cells-1 (TREM-1) , exist on the epithelial keratinocytes or neutrophils, respectively, might associate in response of cell to serum 1α,25(OH)2D by CYP27B1 expression stimulation, through TGFβ or signaling of TLR, through TREM-1, [30]. TGFβ able to associate with calcitriol to yield 5-lipoxygenase (5-LO) that stimulates the leukotrienes production and chemicals that associate with the bacteria phagocytosis [30].

Pathogens destruction is a response of many of antibacterial innate immunity via autophagy [27]. Chun et al. [30], suggested such process which is significant for the antimicrobial response that triggered by vit. D against infection of Mycobacterium tuberculosis.

AMPs released by TLR have wide- spectrum antiviral and microbial effect, and proved to inactive viral influenza [25]. The AMPs antiviral effect is resulting from envelope proteins destruction performed via cathelicidins. As for antibacterial impacts, AMPs, can disrupt of microbial membrane. Cathelicidin 37-residue in humans, as active antimicrobial along with LL-37 helical peptide, amphipathic, is cleaved from the pro-peptide, human cathelicidin (hCAP18). The cathelicidin majority is kept in vesicles of neutrophil as well as other kinds of immunity cells, as B lymphocytes and NK and monocytes that are able to express hCAP18 [3]. In vitro, 1α, 25(OH)2D and vitamin D active metabolite stimulate cathelicidins production in human macrophages through elevated VDR expression [26]. Sundaram and Coleman [26], mentioned that VDRE up-regulation via TLRs cause cathelicidin transcription that destroys intracellular Mycobacterium tuberculosis. Szymczak and Pawliczak [27], revealed that hCAP18 has activity against viruses and bacteria. In case of infection by virus, the cells of lung epithelium are able to convert calcidiol into the calcitriol as active metabolite, causing an increase in production of hCAP18. Beard et al. [3] showed that expression of cathelicidin in keratinocytes and macrophages is encouraged by CYP27B1, and when there is no VDR, CYP27B1, or 25(OH)2D, the capacity of cells to yield cathelicidins is highly disrupted. Report of Pawliczak and Szymczak [27] showed that not only signaling of TLR is contributing, yet cytokines also do so, e.g. IL-4 and IFNγ might affect CYP27B1 production. IFNγ existence encourages CYP27B1 of macrophage. 1α, 25(OH)2D has role in the down feedback strategy which inhibits TLRs hyper-activation [27].

1α, 25(OH)2D effect on synthesis of cytokine by stimulation of viral pattern recognition receptor differs among pathogens. Fitch et al. [31] mentioned that vitamin D does not succeed in modifying virus or TLR-7/8- of syncytial respiratory (RSV) to enhance production of cytokine of innate immunity, even at high concentrations (supra-physiologic) levels.

**Anti-Microbe - Proteins or Peptides (AMPs):**
AMPs are organized by Vitamin D, e.g. defensins. 1α, 25(OH)2D stimulates modestly human beta defensin 2 and the effect of the latter as antiviral comes from its ability as chemo-attractive for monocytes and neutrophils [3, 26]. Nevertheless, concentration of 25(OH)D serum was not associated with AMPs serum levels in pneumonia of community-acquired origin [26].

Analysis of human nucleic acid revealed that there is VDRE in cathelicidin and beta defensin promoters. Transcription of Cathelicidin only seemed to be induced in monocytes via 1α, 25(OH)2D [30]. The elevated beta defensin 2 level is a result from the interleukin-1 (IL-1) and 1α, 25(OH)2D decreased expression in monocytes AMPS for gene induction, VDRE needs to integrate with nuclear- factor kappaB (NFκB) in the promoter [30].

**Adaptive Immunity and Vitamin D:**
**T-Lymphocytes:**
Response of adaptive basis is: presentation of antigen to cells of T and B type, where antigen-stimulated production of antibodies, cytokines, chemokines, hormones, and enzymes of a wide spectrum will occur. The existence of VDR in the activated lymphocytes was first to be noticed to correlate with vit. D role with system of immunity [30]. Subgroups of T cells are few kinds of cells: cells of CD8+ T show vitamin D-activating 1α-hydroxylase and VDR at high levels relatively; cells of CD4+ T; cells of memory; and cells of NK. Activated cells of CD8+ T able
toddifferentiate to cytotoxic (CTLs), importan against cancer and intracellular pathogens. Activated cells of CD4+T able to differentiate to cells of Th cells, cells of regulatory (T-reg) (cells of suppressor) type, Th1, and γδT cells, Th2, Th1, and Th9 cells that yield various cytokines profiles. Thus interferon γ, IL-2, and TNFα produced from Th1 cells, while IL-3, -4, -5, -10, and -13 secreted from Th2 cytokines induced. CD+ T cells give enforcement to other cells of immunity, e.g. CTLs, and to the response of antibody in circulation, by CD40:CD40 bond of antigen-specific B cells co-stimulatory sites [6, 26, 27, 28, 30, 32]. Th cells role involve: immunoglobulin production enhancement, activation of macrophage, and mastocytes (Th2) and eosinophils generation [28]. Response of stimulated Th1 is the main factor for various viral and bacterial infections whereas when this process becomes not controlled, it causes autoimmunity [29].

Regarding vit. D role in response of immunity, it behaves like Th cell generation modulator and changing production of cytokine type, as well as by T-reg cells promotion, that are related to anti-inflammatory reply, immune suppression, and for limitation processes of inflammation [29]. One report concentrated on 25(OH)D ability for stimulating T-reg cells via the cells for antigen presentation (dendritic cell (DC)) induction to synthesize CYP27B1 and VDR [33] . Jeffrey et al. [33] reported the vitamin D significant form for cells T-regeneration was non-25(OH)D DBP-bound. Areport by Bruce et al. [29] showed that 1α, 25(OH)2D able to regulate cells of invariant NK T (iNKT), that are able to behave as an organizer cells and associate in the relation between adaptive immunity and innate.

Induction of iNKT had proven protection against autoimmunity diseases. A report of Sigmundsdotter et al. [34] mentioned that chemokine expression of receptor 10 (CCR10) by naive 25(OH)2D- on cells of T-lymphocyte eases associations with cells of competent immunity, e.g. signaling keratinocytes CCL27. In vitro, 1α, 25(OH)2D blocks Th1 cytokine expression and stimulates cytokines of Th2. Cells of Th subgroups; for example, cells of Th17, secrete IL-17, have important role in autoimmunity [6, 30].

Inverse relationships between disease and concentrations of vitamin D in patients with T1DM, disease of inflammatory bowel, autoimmune thyroiditis, arthritis (rheumatoid), or multiple sclerosis had been noticed [35].

1α, 25(OH)2D seemed to reduce autoimmune process viablocking activity of Th17 cell [36]. 1α, 25(OH)2D can reduce the antigens presentation ability via DC maturation inhibition. A decrease in the molecules of co-stimulatory receptors and human leukocyte antigen HLA-DR expression i.e. CD40, CD86, and CD80 were observed. 1α, 25(OH)2D triggers T-reg differentiation that induces production of IL-10 which inhibits IL-12. 1α, 25(OH)2D-treated DC showed less co-stimulatory MHC (major complex of histocompatibility) II binding, compared to intact ones [29]. Based on that, production of macrophage and cells of Th1 is diminished, yet the cells ability for inducing T-reg is conserved [6, 26, 29]. IL-10 induced as well blocks Th1 cells and Th1 and so IL-17, IL-2, and IFNγ production leads to tolerance of immunity [6]. The foregoing renders cells of Th2 to be predominant. Accordingly, the enhanced IL-4, -5 secretion, and -13 mrored due Th1. In vitro, monocytes of human, 1α, 25(OH)2D was proved to be Th1 cell- cytokines mediated inhibitor as well as for (TNFα), but incase of mice, in vivo as Th1 suppressor via IL-23 and -6 down-regulation [6, 26, 29]. Bruce et al. [29], showed that naive CD4þ Th cells incubated with 1α, 25(OH)2D, through priming of Th17 cells, it would block production of IL-17. Chun et al. [30] illustrated that expression of DC gene can be organized via 2 vitamin D major metabolites: 1α, 25(OH)2D and 25(OH)D, considering this as a different way for immunomodulation.

According to studies of animals, it was proposed that Th2 cells progression might have exacerbating effects on diseases of allergy, e.g. dermatitis, asthma atopic inflammatory processes induction [6]. The increased Th2 cytokines production (IL-4, -5, -13) noticed in the atopic dermatitis acute period, leads to cathelicidin suppression and infection vulnerability increment. In the disease chronic phase, Th1 cells were of predominance [6].

Via IFNγ hindering, 1α, 25(OH)2D blocks stimulation of ROS and production of nitric oxide. All effects, with IL-17 suppression are the causes for the decreased pathogens resistance e.g. Citrobacter and Toxoplasma [6, 37, 38]. Report of Ehrchen et al. [37] proved that mice VDR-knock out leads to change in response of Th1 to infection with Leishmania major, though IFNγ produced via CD8+ and CD4+ Th cells. Rajapakse et al. [38] noticed IL-12 and IFNγ reduction levels in infected mice with Toxoplasma gondii, suggesting Th1 cell blocking. After 1α, 25(OH)2D treatment, CD4+ Th cells counts, splenocytes reduced with obvious apoptosis were noticed. Report of Ryz et al. [39] revealed reduction in Th17 cells of infected mice with Citrobacter rodentium when 1α, 25(OH)2D is given. Based on Th17 impaired response, production defect in antimicrobial peptide REG3γ was observed.
1α, 25(OH)2D leads to antigen-presentation and T-cell stimulation ability of macrophages and monocytes and CD40, -80, -86, and MHC II reduction. Activation of NFκB by 1α,25(OH)2D contributes to IL-23 and IL-12 suppression that are linked to differentiation of Th1. [7,29].

T cell responses regulation is viaDC existence and vitamin D inactive metabolite such as 25(OH)D. Jeffery et al. [33], described upon maturation,CYP27B1 is produced by DC if come in contact with LPS or T cell resulting in the 1α,25(OH)2D release and synthesis that affects responses of T cell.

B-Lymphocyte s:
1α,25(OH)2D considered to be generation inhibitor and actsin vitro as anagent of pro-apoptosis in B cells (activated). Despite it does not generate thesecells; yet it act as differentiation inhibitor [26]. Fang et al. stated that in mice having virus of influenza (primary infection),and inducing immune protection, meaning a significantdependance on existence oflymphocytes B [40].

1α,25(OH)2D suppression effects were observed refereeing to secreting B cells of immunoglobulin (Ig). 1α,25(OH)2D was particularlyblocks theirprogression after mitogenstimulation [41]. Ig mechanism impact is not one only for interaction B cell and vitamin D. 1α,25(OH)2D regulatecells of B viaCCR-10 and IL-10 [42]. Heine et al. [43], reported that B cells through activation viasignals of IL-4 and CD40 receptor, illustrateelevated gene expression for 25(OH)D 1α-hydroxylase CYP1α, then viasignificant 1α,25(OH)2D amounts production. In B cells, expression of IL-10 1α,25(OH)2D enhanced through VDR transcriptional activity or byCa signaling modulation. Accordingly, it might be proposed that vit. D and 25(OH)D inactive metabolites able as well to modulate the response of immunity.

Vitamin D Anti-Inflammatory Action:
Vitamin D behaves by feedback loop promotion to blockinflammatory events and antibacterial processes over activity throughTLR4 and TLR2 down regulation in monocytes [26, 30]. 1α,25(OH)2D was stated to reducepro-inflammatory chemokine production in cells of epithelium of human respiratory system and down regulate cytokines such aSTNFα, IL-6, and IL-8, in vitro within various cells [26]. In respect tolymphocytes of human, vitamin D anti-inflammatory effect occurs through inhibition of NFκB. This factor of transcription regulates genes expression encoding for proteins of immunity yieldedinfection, e.g.proteins of acute phase, chemokines, and cytokines or enzymes of inducible effectors [6, 26].

Proliferation of T-cell considered as Vitamin D-modulated where the mechanisms partially lead to responses of anti-inflammatory through elevation of T cells subgroup proliferation, CD8α. Cells of T type, unlike cells of CD8+ T, considered of no cytotoxicity, rather might have a role in gastro-inflammation suppressing [30].

Time-Dependence of Vitamin D Immuno-modulatory Effects:
Vitamin D immune-modulatory effects are associated to infection (late or early periods). The association levels in circulation for 25(OH)D and a1-antichymotrypsin , in tuberculosis, protein of an acute-phase was illness- correlated, and not with the response of early acute-phase of infection [46]. Also, 1α,25(OH)2D interacted differently with various mechanisms stated to account on time in human cells leukemia. Report of Tse et al. [47] stated dependency of time for NFκB in HL-60 cells biphasic regulation. After HL-60 cells exposure to 1α,25(OH)2D, suppression in first 4h ca. with a late (8–72h) prolonged - NFκBtranscription factor reactivation. With this stimulation, there were genes of anti-apoptotic and inflammatory up-regulation e.g.IL-1β, Bcl-xL and TNFα [47]. This effect has indirect impact on the regulation of immunity illustrated via vitamin D since the processes of inflammation are related highly to the cells immune response to pathogens. Sundaram and Coleman [26]. proposed that in vivo study, the response of immunity in mice to allergens suggested that supplementation of (1α,25(OH)2D by injection of 100 ng) applied following primary sensitization period blocked local inflammatory response and eosinophils at high levels in lung tissues and bronchoalveolar lavage fluid. But this effect couldn’t be seen in every day-supplementation throughout that study.

Retinoids Role in Influenza Symptoms and Pathogenesis:
Influenza A epidemiologic observations and seasonality are due to wide population- impairing immunity of innate type attributed to a reduction in sunlight exposure at winter months and a consequent vitamin D deficiency [48–50]. Theory of Cannell proposed that epidemics of influenza are consequent of disease dormancy which is activated responding to deficiency of vit. D.
Vitamins D and A have intermingling roles in influenza and retinoids have indirect role in pathogenesis of influenza infection. For example, radiation of sun has different impact on vit. D and A; i.e. reduces Vit. A, yet elevates vit. D. Vitamin A and D can inhibit one the other. Retinoids can regulate growth of epithelial cell of airways, gene expression, and progression. Influenza symptoms are identical to toxicity of retinoid, pharmacological and/or supplementary levels induce symptoms of influenza-like. They also partially organize the activity of virus. They affect block or stimulation of pathogenesis of influenza.

Sunlight reduction, and/or deficiency of vit. D elevates simultaneously accumulation, expression, and endogenous retinoid toxicity potentials (such as reabsorption in the vit. D-to-vit. A ratio), that agitate activation of virus or elevates susceptibility of host to influenza virus (novel strains). Moreover, during normal retinoid physiological concentrations seem to function along with vitamin D to block pathogenesis of influenza. Higher concentrations with (very low vit. D: A ratios) make it wors and might encourage fatal disease or severe complications. Influenza infections outcome might partially rely on balance of the ratio among vitamins concentrations. Vit. A and Vit. D roles in influenza may extend to genetic variability in their metabolism and their levels [51].

Retinoids:
Retinoid as synthetic and natural congeners, are basically signaling molecules of fat-soluble dietary-derived principally liver stored and are necessary for development of embryo, normal homeostasis of cell, differentiation of tissue, secretion of mucus, and growth [52, 53]. Vitamin A active form (Retinoic acid) in most systems’ celluar differentiation connected to and activates receptors (retinoid X receptors (RXRs)), (retinoic acid receptors (RARs)); that regulate many target gene transcription [54–56].

RXRs and RARs are lipophilic thyroid / steroid super-family members of factors of ligand-dependent nuclear transcription agent which composed of retinoids, steroids, vitamin D3 and thyroid hormones. Since they are able to diffuse readily from the source and permeating the target, hormones of lipophilic property are of organization potentials for development, cell differentiation, and organ functions [68, 69]. The RXRs and RARs present in products of identifiable gene—β, γ, and α. At activation of ligand, the function of receptors as factors of hetero-dimeric transcription and control the target genes expression via connecting to specific sequences of DNA, termed of RA-elements respond (RAREs) [57, 58].

Free retinol yield retinoic acid viaretinyl esters hydrolysis, liver stored, and retinol release into circulation and transport to tissues of the target, then bound to retinol-binding peptide (RBP). First, through an alcohol dehydrogenase, to retinaldehyde retinol is oxidized and then synthesis of primarily RA from retinaldehyde within the cell microsomes by the dehydrogenase of retinaldehyde occurs. A level of retinol in circulation stays fixed because of a careful transport system of regulation and ensures target tissues to receive retinol essential quantity in spite of large fluctuations in intake of diet [59]. Many factors of transcription action are influenced by retinoic acid e.g. AP-1 activation repressing viablocking the c-fos and c-Jun induction [60]. Other nuclear receptors are regulated e.g. receptor of vitamin D, peroxisome proliferation-activereceptors (PPARs), receptor X of farnesoid, and receptor X of liver that hetero-dimerize along RXR and regulates the transcription factors activation e.g. STAT-1, NF-κB, and AP-1 [56]. RA shows negative effects on growth of cell by RARs alternative activation versus PPARβδ [61].

Retinoic acids at low concentrations are necessary factors of growth for specific kinds of cells, whereas concentrations of higher level block growth of cell and are teratogenic, cytotoxic, and mutagenic. Toxicity of exogenous vit. A may take place because of excessive consumption of diet or from retinoid treatments. Even though toxicity of vit. A from pro-vitamin A, but carotenoid of plant as sources has never mentioned. Storage in liver, absorption from fortified foods, supplements, and animal foods in retinyl esters form may cause hypervitaminosis A. Retinoid intoxication endogenously might naturally take place at cholestasis, if metabolites of vit. A are refluxing to blood from liver [62].

Throughout life, retinoic acid is needed for lung alveoli maintenance and a deficiency resulting in alveoli loss and to emphysema features. Alveolar regeneration is induced by exogenous retinoic acid has been stated in emphysema experiment of rat model. Alveologenesis disruption occurs by action of (disulfiram), a retinoic acid synthesis inhibitor [63].

Circulating retinol = (1–3 μmol/L as normal) doesn’t give an idea about liver concentrations for vit. A, because the RBP secreted is controlled homeostatically. Hence, concentrations of retinol in plasmadiffer a bit in spite of major
intake alterations in vit. A. Hypervitaminosis A may be seen even if serum retinol within limits of normality, mentioning that plasma retinol at toxicity conditions is not an accurate evaluation of status of vit. A [64, 65].

Vit. A is one of the antioxidant vitamins and its supplements are available as measures for protecting human from disease widely. A review in Cochrane, mentioned the antioxidant effect on the mortality (including vit. A), according to trials of randomization, Belakovici et al. [66] also went over all trials of randomization where adults consuming singly or combined Se, beta-carotene, and vit. A, C, E. Sixty eight trials randomly studied with 232,606 cases. When antioxidant trials of supplements were analyzed, no significant effect for mortality were noticed (RR: 1.02; 95% CI: 0.98–1.06). Nevertheless, analyzing multi-variate regression illustrated that, in “low bias” trials as better designed, β-carotene was correlated of significant risk 7% increasing, vit. A 16% risk increasing, and vit. E 4% mortality risk increasing. Vit. C and Se are of no significant effect. Researchers arrived to a conclusion that vit. A, vitamin E, and β-carotene treatments might elevate mortality.

Below are a summary for many evidence lines supporting the model proposed:
1. Vit. A is of photo-oxidation sensitivity.
2. Vit. A and D are associated inversely where vit. A can block vit. D actions and vice versa.
3. Retinol, major metabolite for retinoic acid has necessary role in growth of epithelial cell of airway regulation, progression, and gene expression.
4. Clinical features of influenza simulate toxicity of retinoid i.e. syndrome of retinoic acid induced through synthetic retinoids usage for acute promyelocytic leukemia treatment.
5. Vit. A Supplementation able to induce symptoms of influenza-like.

Generally, activity of virus is of retinoids regulation.

Retinoids have an influence to mechanisms and elements which both contribute and block pathogenesis of influenza [66].

**Influenza virus infection and Vitamin E:**
Oxidative stress in organism infected with virus of influenza produces saturated lipid chains oxidation of cytoplasmic membrane (lipid peroxidation), that minimizes membranes permeability. A deficiency of antioxidant, if membranes damaged and/or exposed, influenza infection proceeds astrangely and lead to body serious damage at all levels.

Throughout infection of influenza in mice, antioxidant enzymes activity catalase and SOD were modified, besides a reduction on the endogenous antioxidants quantity of low-molecular-weight e.g. ascorbate, α-tocopherol (Table 1) and glutathione. Vit. E endogenic levels were decreased significantly in lung, blood plasma and liver. Moreover, cytochromes modifications were noticed along a reduction in activities of hepaticcytochrome P-450-dependent mono-oxygenases. Along with the abovementioned, in the disease course, the organism’s antioxidant protection buffering capacity is diminished [67].

**Table 1:** Endogenous vit. E content [nmol/mg protein] in blood plasma, lung, liver of mice experimentally with virus of influenza A/Aichi/2/68 H3N2 (1.5 MLD50) infected. Values = (means ± SEM) [41].

| Group   | Lung 5th day | Lung 7th day | Liver 5th day | Liver 7th day | Blood plasma 5th day | Blood plasma 7th day |
|---------|-------------|-------------|---------------|---------------|----------------------|----------------------|
| I Control | 2.2 ± 0.31  | 2.14 ± 0.26 | 4.94 ± 0.51  | 5.4 ± 0.42    | 1.8 ± 0.065           | 1.72 ± 0.07          |
| II Flu   | 1.47 ± 0.14 | 1.7 ± 0.17  | 3.35 ± 0.42   | 3.12 ± 0.37   | 1.46 ± 0.035          | 1.2 ± 0.37           |

The above information shows that, during influenza infection virus, a reduction in antioxidant of natural vit. E was observed along with anelevation of products of endogenous lipid peroxidation significantly. In humans factor of nuclear (erythroid-derived 2)-like 2 (NRF2) encoded viagene NSF2, is regulating protein for antioxidant proteins expression which have a role against triggered oxidative damage through inflammation and injury. NRF2 can control the induced and basal response of antioxidant element-dependent expression of genes for regulating patho-physiological and physiological outcomes of exposure to oxidant. NRF2 is of a significant impact on toxicity and oxidative stress, organizing the defense by antioxidant [67].
NRF2 can control pathway of antioxidant and considered as pivotal for lungs protection against influenza virus development, injury and inflammation of infection-induced pulmonary under oxidative stress conditions. The antioxidant system of NRF2-mediated is necessary to save the lungs from oxidative storm and injury induced via viral influenza. [67].

Since there is an important oxidative stress role in viral influenza pathogenesis, enormous work had employed to examine the antioxidants influence on influenza course. Pathway of NRF2 stimulated by drugs is examined for diseases treatment of oxidative stress and infective influenza virus. In vivo models experiments, in mice predominantly, have an important place in such studies.

α-tocopherol (vitamin E) is an antioxidant examined against infections of influenza virus in mice, it is also of leading position since its impact in blocking damage of oxidation via its scavenging activity of ROS [67].

NRF2 protein expression is noticed to be elevated in vit. E-supplemented rabbits and cholesterol-fed by NRF2 activation pathway, leading to induction of many genes of antioxidant. Vit. E seemed to stimulate the NRF2 protection effect. Furthermore, it was observed that vit. E blocks suppression of NRF2 via allergens in macrophages of alveoli, showed in vivo for asthmatic cases [67].

Clearly the above information proves the antioxidants role e.g. vit. E, that able to be shown in different methods:

1. Capturing free radicals in multiple mechanism(s) (non-enzymatic or enzymatic).
2. ROS Generation suppression.
3. Indirectly affecting the above processes i.e. by viral replication inhibition.

Since vit. E is a substance soluble in lipid with hydrophobic terminus; it accumulation within the membranes interior lipid where it behaves as the main significant series breaker, as it reacts with lipid radicals (peroxy) almost 4 times faster compared to their reaction with adjacent side chains of fatty acids. It is famous that vit. E can block oxidative damage, since its lipophilic property contributes to easy diffusion passively via the membranes of cell, permitting reticulum (single-plated) and mitochondrial arrival. Vit. E saves them against damage and lipid peroxidation (Figure 3). Particularly significant is its chain-free radicals reaction termination that saves fatty (multi-unsaturated) acids of the membrane against oxidation ROS [67].

![Figure 3: “Triangle of Bermuda” made by the viral influenza pathogenesis in the infested patient. Vit. E action is steered to the core of tempest.[67].](image)

Vit. E affect immuner responses in various tissues e.g. respiratory system, through oxidative stress quenching directly, and by eicosanoid oxidative modulation pathways and synthesis of prostaglandin, inflammatory mediators inhibition, and apoptotic signaling control of lipid. Vit. E stabilizes phospholipids of membranes [67] (Figure 3).
Many functions (non-antioxidant) of vit. E might be necessary for the cell integrity functions and maintenance, e.g. its anti-phospholipase A2 agent function as lipid bi-layer stabilizer of membranes against oxidized and hydrolyzed lipids [67].

**Corona virus 19 (covid 19):**

COVID-19 was classified by (WHO) as a β CoV of group 2B [68]. Ten COVID-19 genome sequences were taken from 9patients of 99.98% identity sequence [69]. Another study showed there was 99.8–99.9% nucleotide identity in isolates from five patients and results of sequence proved the new beta-CoV strain existence [70]. The COVID-19 genetic sequence revealed more than identity of 50% to the MERS-CoV and 80% to SARS-CoV[69, 70], where MERS-CoV and SARS-CoV initialized in bats [71]. Hence, phylogenetic evidence analysis indicates the belonging of COVID-19 to betacorona virus genus that includes SARS-CoV, that infects bats, wild animals and humans [72].

The receptor binding isohost expressed cells which considered as firstinfection step of viral thenfusion followed with the membrane of cell. It is reasoned that the cells of lung epithelia are the viralprimary target. Thus, it has been reported that SARS-CoVhuman-to-human transmissions occurs by the binding between the receptor-binding domain of virus spikes and the cellular receptor which has been identified as receptor of angiotensin-converting enzyme 2 (ACE2) [73, 74]. Importantly, sequence of the receptor-binding domain of COVID-19 spikes is identical to SARS-CoV. This data effectively suggests that entry into the host cells is most likely via the ACE2 receptor [73].

COVID-19 infected patients presented higher numbers of leukocyte, findings of abnormal respiratory, and plasma cytokines (pro-inflammatory) enhancement levels. Case report of COVID-19 indicated at the 5th day, patientshowed fever, breathing of coarse sounds, a cough, for both lungs, and 39.0 °C temperature. The sputum of patient withpolymerase chain reaction (real-time), resulting aspositive for COVID-19, confirmed infection [75]. Studies of laboratory revealed leukocyte with leucopenia counts of 2.91 × 10⁹ cells/L where neutrophils of 70.0%. Furthermore, 16.16 mg/L for a protein in blood, (C-reactive) was noticed that is above the range of (0–10 mg/Las normal). High D-dimer and ESR were observed as well [75]. The main infection COVID-19 pathogenesis as respiratory system for virus targeting was associated with severe RNAemia, pneumonia, along with the incidence of ground-glass opacities, and injury of cardiaacuteley [76]. Significant high blood cytokines and chemokines levels were observed in cases with infection of COVID-19 including IL10, IL1RA, IL7, IL1β, IL8, IL9, basic GCSF, FGF2, IFNγ, GMCSF, IP10, MIP1α, MIP1β, MCP1, PDGFB, VEGFA, and TNFα. Fewcases of great severity admitted to the ICU presented high pro-inflammatory cytokines levels i.e. IL7, IL2, GCSF, IL10, MCP1, TNFα, IP10, MIP1α, that are due tosevereity progression of the disease [76].

**Conclusion:-**

Because of the above mentioned great and vast effects of vitamin D on immune system in many diseases, and vitamin E effects on immune system specially on respiratory system during infections, it is better to boost immunity of patients with those 2 vitamins, and ameliorate the over stimulation of inflammatory response with its dramatic derangement on patient’s life and health.

As the Globe nowadays is passing through the most vicious pandemic of covid 19, causing paralysis of economy worldwide, taking lives of thousands of humans, spreading horror within nations, burdens financial efforts to overcome this tragedy; so it’s recommended to

1. give a high single bolus dose of vitamin D (600 000 IU), (this because vitamin D act as hormone in the body and its receptors number would decline if exposed to this hormone for long period if given as daily maintenance therapy), so it’s better to give it as high single bolus dose, every few months to allow for its receptor to get up-regulated), and give maintenance dose of vitamin E and C, with trace amount of Iron and Zinc (because of being the metallic portion of many cytochromes), and used as usual regimen in all health centers worldwide to be given for all populations at the beginning of each cold seasons, as a preventive measure.

2. As for therapeutic measures for covid 19, give high single dose of Vitamin D3 (600 000 IU), as immune-modulator, with high daily dose of vitamin E and C (as antioxidants, because ROS can act as strong chemo-attractants leading to exaggerated immune response, which was observed in patients with COVID -19) with Iron and Zinc maintenance dose.
3. Reduction of vitamin A–rich foods, or supplementation during infection, because of its ability to re-activate or increase susceptibility to respiratory viral infections; but vit A supplementation can be given after complete and certain resolution of covid 19 infection to stimulate alveolo-genesis.

4. Cathelicidin, to be given as inhaler or nebulizer to stop viral replication, mainly during the first 3 days of infection especially for patients who are unable to synthesize it.

References:
1. Jones G. Vitamin D safety: Its mechanisms and application. Stand. Med. Pediair. 2012;9:605–609.
2. Kim D. The role of vitamin D in thyroid diseases. Int. J. Mol. Sci. 2017:18.
3. Beard J.A., Bearden A., Striker R. Vitamin D and the anti-viral state. J. Clin. Virol. 2011:50:194–200.
4. Kienreich K., Grübler M., Tomaschitz A., Schmid J., Verheyen N., Rutters F., Dekker J.M., Pilz S. Vitamin D, arterial hypertension & cerebrovascular disease. [(accessed on 23 September 2013)]; Indian J. Med. Res. 2013:137:669–679.
5. Beata M. Gruber-Bzura. Vitamin D and Influenza—Prevention or Therapy? Int J Mol Sci. 2018 Aug; 19(8): 2419. Published online 2018 Aug 16.
6. Bikle D.D. Extraskelatal actions of vitamin D. Ann. N. Y. Acad. Sci. 2016;1376:29–51.
7. Greiller C.L., Martineau A.R. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015;7:4240–4270.
8. Kienreich K., Grübler M., Tomaschitz A., Schmid J., Verheyen N., Rutters F., Dekker J.M., Pilz S. Vitamin D, arterial hypertension & cerebrovascular disease. [(accessed on 23 September 2013)]; Indian J. Med. Res. 2013:137:669–679. Available online
9. Odrowąż-Sypniewska G., Karczmarewicz E., Paprotny L., Pludowski P. 3-epi-25(OH)D—A new metabolite, potential biological function, interference in laboratory assays. Stand. Med. Pediair. 2012;9:680–686.
10. McCullough P., Amend J. Results of daily oral dosing with up to 60,000 international units (iu) of vitamin D3 for 2 to 6 years in 3 adult males. J. Steroid Biochem. Mol. Biol. 2017;137:308–312.
11. Christakos S., Hewison M., Gardner C.L., Wagner C.L., Sergeev I.N., Rutten E., Boland R., Ferrucci L., Bikle D.D. Vitamin D: Beyond bone. Ann. N. Y. Acad. Sci. 2013;1287:45–58.
12. Moukayed M., Grant W.B. Molecular link between vitamin D and cancer prevention. Nutrients. 2013;5:3993–4021
13. . Lorenc R.S., Karczmarewicz E., Kryśkiewicz E., Pludowski P. Vitamin D provision and supplementation standards. Stand. Med. Pediair. 2012;9:595–604.
14. Abdelsalam A., Rashed L., Salam T., Hammad L., Sabry D. Molecular assessment of vitamin D receptor polymorphism as a valid predictor to the response of interferon/Ribavirin based therapy in Egyptian patients with Chronic Hepatitis C. J. Dig. Dis. 2016;17:547–553.
15. Lange C.M., Bojunga J., Ramos-Lopez E., von Wagner M., Hassler A., Vermehren J., Herrmann E., Badenhoop K., Zeuzem S., Sarrazin C. Vitamin D deficiency and a CYP27B1-1260 promoter polymorphism are associated with chronic hepatitis C and poor response to interferon-alfa based therapy. J. Hepatol. 2011:54:887–893.
16. Xue L.N., Xu K.Q., Zhang W., Wang Q., Wu J., Wang X.Y. Associations between vitamin D receptor polymorphisms and susceptibility to ulcerative colitis and Crohn’s disease: A meta-analysis. Inflamm. Bowel Dis. 2013;19:54–60.
17. Misiorewski W. Vitamin D in type 1 and type 2 diabetes in adulthood. Stand. Med. Pediatr. 2012;9:639–644.
18. Holick C.N., Stanford J.L., Kwon E.M., Ostrander E.A., Peters U. Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP28B1, and CYP24A1, in prostate cancer. Cancer Epidemiol. Biomark. Prev. 2007;16:1990–1999.
19. Aresshi M.Y., Mandal R.K., Akhter N., Panda A.K., Haque S. Evaluating the association between TaqI variant of vitamin D receptor gene and susceptibility to tuberculosis: A meta-analysis. Toxicol. Int. 2014;21:140–147.
20. Pittas A.G., Laskowski U., Kos L., Saltzman E. The role of vitamin D in adults requiring nutrition therapy. J. Parenter. Enteral Nutr. 2010;34:70–78.
21. Bischoff-Ferrari H.A., Shao A., Dawson-Hughes B., Hathcock J., Giovannucci E., Willet W.C. Benefit-risk assessment of vitamin D supplementation. Osteoporos. Int. 2010;21:1121–1132.
22. Heaney R.P. Vitamin D in health and disease. Clin. J. Am. Soc. Nephrol. 2008;3:1535–1541.
23. Dougherty K.A., Schall J.J., Zemel B.S., Tuluc F., Hou X., Ritstein R.M., Stallings V.A. Safety and efficacy of high-dose daily vitamin D3 supplementation in children and young adult infected with human immunodeficiency virus. J. Pediair. Infect. Dis. Soc. 2014;3:294–303.
24. Cashman K.D., Ritz C., Kely M. ODIN Collaborators. Improved dietary guidelines for vitamin D: Application of individual participant data (IPD)-level meta-regression analyses. Nutrients. 2017;9:469.
25. Cannell J.J., Vieth R., Umhau J.C., Holick M.F., Grant W.B., Madronich S., Garland C.F., Giovannucci E. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006;134:1129–1140.
26. Sundaram M.E., Coleman L.A. Vitamin D and influenza. Adv. Nutr. 2012;3:517–525.
27. Szymczak I., Pawliczak R. The active metabolite of vitamin D₃ as a potential immunomodulator. Scand. J. Immunol. 2015;83:83–91.
28. Jakobs iak M. Immunologia. 2nd ed. WydawnictwoNaukowe PWN; Warsaw, Poland: 1995. Główne komponentyzasadniczych cech odpowiedzi immunologicznej; pp. 28–36.
29. Bruce D., Ooi J.H., Yu S., Cantorna M.T. Vitamin D and host resistance to infection? Putting the cart in front of the horse. Exp. Biol. Med. 2010;235:921–927.
30. Chun R.F., Liu P.T., Modlin R.L., Adams J.S., Hewson M. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front. Physiol. 2014;5:1–15.
31. Fitch N., Becker A.B., HayGlass K.T. Vitamin D[1,25(OH)2D3] differentially regulates human innate cytokine responses to bacterial versus viral pattern recognition receptor stimuli. J. Immunol. 2016;196:2965–2972.
32. Jasinska J. The role of receptor CD40-ligand CD40 (cd40/CD40L) system in inflammatory processes. Alergia. 2015;4:39–42.
33. Jeffery L.E., Wood A.M., Qureshi O.S., Hou T.Z., Gardner D., Briggs Z., Kaur S., Raza K., Sansom D.M. Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J. Immunol. 2012;189:5155–5164.
34. Sigmundsdottir H., Pan J., Debes G.F., Alt C., Habtezion A., Soler D., Butcher E.C. DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat. Immunol. 2007;8:285–293.
35. Amital H., Shoenfeld Y. Disease associations of vitamin D in autoimmune disorders-prevention and therapy. Stand. Med. Pediatr. 2012;9:620–622.
36. Tang J., Zhou R., Lug i D., Zhu W., Silver P.B., Grajewski R.S., Su S.B., Chan C.C., Adorini L., Caspi R.R. Calcitriol suppresses antirenal autoimmunity through inhibitory effects on the Th17 effector response. J. Immunol. 2009;182:4624–4632.
37. Ehrchen J., Helming L., Varga G., Pasche B., Loser K., Gunzer M., Sunderkötter C., Sorg C., Roth J., Lengeling A. Vitamin D receptor signaling contributes to susceptibility to infection with Leishmania major. FASEB J. 2007;21:3208–3218.
38. Rajapakse R., Mousli M., Pfaff A.W., Uring-Lambert B., Marcellin L., Bronner C., Jeanblanc M., Villard O., Letscher-Br u V., Klein J.P., et al. 1,25-dihydroxyvitamin D₃ induces splenocyte apoptosis and enhances BALB/c mice sensitivity to toxoplasmosis. J. Steroid Biochem. Mol. Biol. 2005;96:179–185.
39. Rysz N.R., Patterson S.J., Zhang Y., Ma C., Huang T., Bhinder G., Wu X., Chan J., Glesby J., Sham H.P., et al. Active vitamin D (1,25-dihydroxyvitamin D₃) increases host susceptibility to Citrobacter rodentium by suppressing mucosal Th17 responses. Am. J. Ohyosi. Gastrointest. Liver Physiol. 2012;303:G1299–G1311.
40. Fang Y., Banner D., Kelvin A.A., Huang S.S., Page C.J., Corfe S.A., Kane K.P., Bleackley R.C., Rowe T., Leon A.J., et al. Seasonal H1N1 influenza virus infection induces cross-protective pandemic H1N1 virus immunity through a CD8-independent, B cell dependent mechanism. J. Virol. 2012;86:2229–2238.
41. Shiozawa K., Shiozawa S., Shimizu S., Fujita T. 1α,25-dihydroxyvitamin D₃ inhibits pokeweed mitogen-stimulated human B-cell activation: An analysis using serum-free culture conditions. Immunology. 1985;56:161–167.
42. Shirakawa A.-K., Nagakubo D., Hieshima K., Nakayama T., Jin Z., Yoshie O. 1,25-Dihydroxyvitamin D₃ Induces CCR10 Expression in Terminally Differentiating Human B Cells. J. Immunol. 2008;180:2786–2795.
43. Heine G., Niesner U., Chang H.D., Steinmayer A., Zügel U., Zuberbier T., Radbruch A., Worm M. 1,25-dihydroxyvitamin D₃ promotes IL-10 production in human B cells. Eur. J. Immunol. 2008;38:2210–2218.
44. Penna G., Amuchastegui S., Cossetti C., Aquilano F., Mariani R., Sanvito F., Doglioni C., Adorini L. Treatment of experimental autoimmune prostatitis in nonobese diabetic mice by the vitamin D receptor agonist eocalcitrol. J. Immunol. 2006;177:8504–8511.
45. Langrish L.L., Chen Y., Blumenschein W.M., Mattson J., Basham B., Sedgwick J.D., McClanahan T., Kastelein R.A., Cua D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005;201:233–240.
46. Frii H., Range N., Pedersen M.L., Mølgaard C., Changalucha J., Krarup H., Magnusson P., Søborg C., Andersen A.B. Hypovitaminosis D is common among pulmonary tuberculosis patients in Tanzania but is not explained by the acute phase response. J. Nutr. 2008;138:2474–2480.
47. Tse A.K., Wan C.K., Shen X.L., Zhu G.Y., Cheung H.Y., Yang M., Fong W.F. 1,25-dihydroxyvitamin D3 induces biphasic NF-kappaB responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/degradation of IkB. Exp. Cell Res. 2007;313:1722–1734.
48. J. J. Cannell, R. Vieth, J. C. Umhau et al., “Epidemic influenza and vitamin D,” Epidemiology and Infection, vol. 134, no. 6, pp. 1129–1140, 2006.
49. J. J. Cannell, R. Vieth, W. Willett et al., “Cod liver oil, vitamin A toxicity, frequent respiratory infections, and the vitamin D deficiency epidemic,” Annals of Otology, Rhinology and Laryngology, vol. 117, no. 11, pp. 864–870, 2008.
50. J. J. Cannell, M. Zasloff, C. F. Garland, R. Scragg, and E. Giovanucci, “On the epidemiology of influenza,” Virology Journal, vol. 5, article 29, 2008.
51. B. Srivastava, P. Blazejewska, M. Hessmann et al., “Host genetic background strongly influences the response to influenza a virus infections,” PLoS One, vol. 4, no. 3. Article ID e4857, 2009.
52. C. Hoffmann and G. Eichele, “Retinoids in development,” in The Retinoids: Biology, Chemistry, and Medicine, M. B. Sporn, A. B. Roberts, and D. S. Goodman, Eds., pp. 387–441, Raven Press, New York, NY, USA, 1994.
53. M. Theodosiou, V. Laudet, and M. Schubert, “From carrot to clinic: an overview of the retinoic acid signaling pathway,” Cellular and Molecular Life Sciences, vol. 67, no. 9, pp. 1423–1445, 2010.
54. M. A. Lane and S. J. Bailey, “Role of retinoid signalling in the adult brain,” Progress in Neurobiology, vol. 75, no. 4, pp. 275–293, 2005.
55. G. Litwack, Ed., Vitamin A: Vitamins and Hormones, vol. 75, Elsevier Academic Press, San Diego, Calif, USA, 2007.
56. S. Manicassamy and B. Pulandran, “Retinoic acid-dependent regulation of immune responses by dendritic cells and macrophage,” SeminImmunol, vol. 21, pp. 22–27, 2009.
57. M. Pfähl and F. Chytil, “Regulation of metabolism by retinoic acid and its nuclear receptors,” Annual Review of Nutrition, vol. 16, pp. 257–283, 1996.
58. C. B. Nilsson and H. Håkansson, “The retinoid signaling system—a target in dioxin toxicity,” Critical Reviews in Toxicology, vol. 32, no. 3, pp. 211–232, 2002.
59. R. Blomhoff and H. K. Blomhoff, “Overview of retinoid metabolism and function,” Journal of Neurobiology, vol. 66, no. 7, pp. 663–630, 2006.
60. G. J. Fisher, S. Datta, Z. Wang et al., “c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid,” Journal of Clinical Investigation, vol. 106, no. 5, pp. 663–670, 2000.
61. T. T. Schug, D. C. Berry, N. S. Shaw, S. N. Travis, and N. Noy, “Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors,” Cell, vol. 129, no. 4, pp. 723–733, 2007.
62. M. A. Leo and C. S. Lieber, “New pathway for retinol metabolism in liver microsomes,” Journal of Biological Chemistry, vol. 260, no. 9, pp. 5228–5231, 1985.
63. M. Maden and M. Hind, “Retinoic acid in alveolar development, maintenance and regeneration,” Philosophical Transactions of the Royal Society, vol. 359, no. 1445, pp. 799–808, 2004.
64. K. L. Penniston and S. A. Tanumihardjo, “The acute and chronic toxic effects of vitamin A,” American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 191–201, 2006.
65. J. A. Olson, “Vitamin A—functions, dietary requirements and safety in humans,” in Present Knowledge in Nutrition, E. E. Ziegler and L. J. Filer Jr., Eds., pp. 109–119, International Life Sciences Institute Press, Washington, DC, USA, 7th edition, 2001.
66. Institute of Medicine, Food and Nutrition-Based Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Iron, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, National Academy Press, Washington, DC, USA, 2001
67. MiłkaMilewa, Angel S. Galabov. “Vitamin E and Influenza Virus Infection”. Vitamin E in health and disease book. Submitted: February 9th 2018 Reviewed: August 16th 2018 Published: October 24th 2018.
68. D.S. Hui, E. IA, T.A. Madani, F. Ntoumi, R. Kock, O. Dar, et al.The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - the latest 2019 novel coronavirus outbreak in Wuhan, China Int. J. Infect. Dis., 91 (2020), pp. 264-266
69. R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, et al.Genomiccharacterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395 (10224) (2020), pp. 565-574.
70. L.L. Ren, Y.M. Wang, Z.Q. Wu, Z.C. Xiang, L. Guo, T. Xu, et al.Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Med J (2020).
71. J. Cui, F. Li, Z.L. Shi-Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 17 (2019), pp. 181-192.
72. N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, et al.A novel coronavirus from patients with pneumonia in China N. Engl. J. Med., 382 (2019), pp. 727-733.
73. Y. Wan, J. Shang, R. Graham, R.S. Baric, F. Li-Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J. Virol. (2020).
74. J.A. Jaimes, J.K. Millet, A.E. Stout, N.M. Andre, G.R. Whittaker-A tale of two viruses: the distinct spike glycoproteins of feline coronaviruses. Viruses, 12 (2020).
75. J. Lei, J. Li, X. Li, X. Qi-CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology (2020), p. 200236,
76. C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 (10223) (2020), pp. 497-506.