Isolation and Structural Characterization of Eightfold Protonated Octacyanometalates \([\text{M(CNH)}_8]^{4+} (\text{M = Mo IV , W IV})\) from Superacids
Malte Sellin, Valerie Marvaud, Moritz Malischewski

To cite this version:
Malte Sellin, Valerie Marvaud, Moritz Malischewski. Isolation and Structural Characterization of Eightfold Protonated Octacyanometalates \([\text{M(CNH)}_8]^{4+} (\text{M = Mo IV , W IV})\) from Superacids. Angewandte Chemie International Edition, Wiley-VCH Verlag, 2020, 10.1002/anie.202002366. hal-02565286

HAL Id: hal-02565286
https://hal.sorbonne-universite.fr/hal-02565286
Submitted on 6 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Isolation and Structural Characterization of Eightfold Protonated Octacyanometalates \([M(CNH)_8]^{4+}\) (M = Mo\(^{IV}\), W\(^{IV}\)) from Superacids

Malte Sellin, Valérie Marvaud, and Moritz Malischewski*

Dedicated to Professor Konrad Seppelt on the occasion of his 75th birthday

Abstract: Octacyanometalates \(K_4[Mo(CN)_8]\) and \(K_4[W(CN)_8]\) are completely protonated in superacidic mixtures of anhydrous hydrogen fluoride and antimony pentfluoride. The resulting hydrogen isocyanide complexes \([Mo(CN)_8]^{4+}\) \([ShF_6]^{-}\) and \([W(CN)_8]^{4+}\) \([ShF_6]^{-}\) are the first examples of eight-coordinate homoleptic metal complexes containing hydrogen isocyanide (CNH) ligands. The complexes were crystallographically characterized, revealing hydrogen-bonded networks with short \(N\cdots H\cdots F\) contacts. Low-temperature NMR measurements in HF confirmed rapid proton exchange even at \(-40^\circ\text{C}\). Upon protonation, \(\nu(C\equiv N)\) increases of about 50 cm\(^{-1}\) which is in agreement with DFT calculations.

The lability of metal cyanides towards acids is well known and often a subject of safety warnings since highly toxic hydrogen cyanide might be released. In general, protonation of metal-bound cyano ligands (M=C≡N) at the terminal nitrogen atom leads to the corresponding metal complex with hydrogen cyanide as a ligand (M=C≡N⋅H\(^+\)). In contrast, only a small number of metal complexes with hydrogen cyanide as a ligand are known (M=Ne=C\equiv H\(^+\)). Although hydrogen isocyanide CNH is a good ligand for transition metals, it can be displaced by donor solvents (e.g., water) or nucleophilic counteranions. Subsequently the liberated hydrogen isocyanide CNH can isomerize to its thermodynamically more stable tautomer, hydrogen cyanide HCN.

The superacidic mixtures HF/AsF\(_5\) or HF/SbF\(_5\) have advantage that even the formed AsF\(_6\)^{-} or SbF\(_6\)^{-} anions are very weak nucleophiles and therefore much weaker ligands than the CNH ligands that are formed upon protonation.

The first reports on octacyanometalates \([M(CN)_8]^{4+}\) (M = Mo\(^{IV}\), W\(^{IV}\)) date to the beginning of the 20th century\(^{16–19}\) they got a lot of attention from coordination and magnetochemists in the past decades. Since the early 2000s, a plethora of octacyanometalate-based supramolecular coordination networks as well as polynuclear complexes and cluster compounds\(^{20–24}\) have been reported. The ease of oxidation of \([M(CN)_8]^{4+}\) (M = Mo, W) to \([M(CN)_8]^{3+}\) and the accessibility of an excited triplet state for \([M(CN)_8]^{4+}\) (M = Mo, W) by light irradiation make octacyanometalates suitable building blocks for photomagnetic materials\(^{25–28}\) while paramagnetic \([M(CN)_8]^{3+}\) (M = Mo, W) are promising building blocks for single-molecule magnets\(^{29}\).

While treatment of octacyanometalates with hydrogen chloride gives adducts of the neutral acids \(H_4[Mo(CN)_8]\)\(\cdot\)6\(\text{H}_2\text{O}\) (M = Mo, W)\(^{30}\) \(H_4[W(CN)_8]\)\(\cdot\)4\(\text{HCl}\)\(\cdot\)12\(\text{H}_2\text{O}\)\(^{31}\) \(H_4[\text{Mo(CN)}_8]_2\text{O(C}_2\text{H}_5)_2\cdot\text{CH}_3\text{OH}\cdot 2\text{H}_2\text{O}\)\(^{32}\) complete (octa-) protonation is achieved by reacting \(K_4[Mo(CN)_8]\)\(\cdot\)2\(\text{H}_2\text{O}\) (M = Mo, W) with anhydrous hydrogen fluoride and a large excess of antimony pentfluoride \(\text{SbF}_5\) (Scheme 1). Although the fully protonated species \([M(CNH)_8]^{4+}\) \([\text{SbF}_6]\)\(^{-}\) (M = Mo, W) are only slightly soluble in anhydrous hydrogen fluoride at room temperature, their solubility can be slightly increased by adding small amounts of sulfur dioxide \(\text{SO}_2\) as cosolvent. Highly moisture-sensitive yellow crystals form upon slow cooling to \(-75^\circ\text{C}\) besides colorless crystals of \(K\text{SbF}_5\)\(^{-}\). \([\text{Mo(CNH)}_8]^{4+}\) \([\text{ShF}_6]\)\(^{-}\) \(\cdot\)2\(\text{HF}\) and \([\text{W(CNH)}_8]^{4+}\) \([\text{SbF}_6]\)\(^{-}\)\(\cdot\)2\(\text{HF}\) both crystallize in the monoclinic space group \(P2_1/n\) and are isomorphous. The central metal is coordinated by eight (crystallographically different) protonated cyanide/hydrogen isocyanide ligands (M=C≡N), resulting in a slightly distorted square-antiprismic coordination geometry. The question whether the ligands are coordinated to the metal via nitrogen (M=C≡NH) or nitrogen (M=C≡CH) could be clearly answered by comparing the R factors and atomic displacement parameters of both structure solutions (see the Supporting Information). Due to the high overall data quality the

Scheme 1. Preparation of \([M(CNH)_8]^{4+}\) \([\text{SbF}_6]\)\(^{-}\) (M = Mo, W).

\[
\begin{array}{c}
K_4[\text{Mo(CN)}_8] \quad \text{HF}/\text{SbF}_5 \\
\text{M=Mo,W} \quad \text{K}\text{SbF}_5 \\
\text{M=Mo,W} \quad [\text{M(CNH)}_8]^{4+} \quad [\text{SbF}_6]\ production information)

Dedicated to Professor Konrad Seppelt on the occasion of his 75th birthday

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under:
https://doi.org/10.1002/anie.202002366.

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!
The Mo–C bond lengths in [Mo(CNH)₈]⁴⁺ [SbF₅]⁻·2HF (2.140(2)–2.168(2) Å) are very similar to the Mo–C bond lengths in K₄[Mo(CN)₈]·2H₂O (Mo–C 2.163(5) Å). However, changes in C–N bond lengths are more significant. In the fully protonated species, the C–N bond lengths are in the range of 1.128(3)–1.136(3) Å and therefore shorter than in the potassium salt (1.151(6) Å). While the former value resembles more the C–N bond length in protonated nitriles, the latter is more similar to free HCN (1.157(1) Å). Bond lengths in [W(CNH)₈]⁴⁺ [SbF₅]⁻·8HF (M = Mo, W) with the reaction products was inconclusive. Probably this is caused by the high ionic charges and strong hydrogen bonding which are insufficiently modeled in the calculations.

The IR spectra of [M(CNH)₈]⁴⁺ [SbF₅]⁻·2HF (M = Mo, W) both display a very broad band above 3000 cm⁻¹ which can be attributed to N–H stretching. Additionally, a weak band at 1615 cm⁻¹ can be assigned to N–H bending, since both bands were shifted during deuteration experiments with DF/SbF₅. While an isotopic ratio of 1.37 is observed for the δ(NH)/δ(ND) deformation vibrations (close to the theoretical value of 1.41) the corresponding value for the v(NH)/v(ND) stretching vibrations is only ≈ 1.2 (Table 2).

Similar effects have been observed before and are caused by strong hydrogen bonding, which has a greater influence on stretching vibrations than on deformation vibrations.

IR and Raman spectra of [M(CNH)₈]⁴⁺ [SbF₅]⁻·2HF (M = Mo, W) both display an increase of the CN stretching vibration by about 50 cm⁻¹ compared to K₄[M(CN)₈]·2H₂O. A similar blueshift has already been observed in IR spectra of neutral polycyanometalate acids. This bond-strengthening effect upon protonation is caused by the increased polarization of the carbon–nitrogen bond. This observation revealed that C–N bond lengths were totally unaffected, while M–C bond lengths decreased slightly in the calculated HF solvates. However, it has to be stated that the calculated M–C bond lengths were significantly longer than the experimentally found values.

Additionally, frequency calculations turned out to be even more problematic. The comparison between the calculations for [M(CNH)₈]⁴⁺, [M(NCH)₈]⁺⁺, [M(CNH)₈]⁺⁺·8HF, and [M(NCH)₈]⁺⁺·8HF (M = Mo, W) with the reaction products was inconclusive. Probably this is caused by the high ionic charges and strong hydrogen bonding which are insufficiently modeled in the calculations.

Figure 1. Selected short H···F contacts < 2 Å (in orange) in the crystal structure of [Mo(CNH)₈]⁴⁺ [SbF₅]⁻·2HF. Ellipsoids shown at 50% probability; C gray, N blue, H white, Mo turquoise, F green, Sb lavender.

![Figure 1](image1)

Figure 2. IR spectra showing the shifted CN stretching frequency upon protonation.

![Figure 2](image2)

Table 2: Experimental IR data in cm⁻¹.

Compound	v(NH)/v(ND)	δ(NH)/δ(ND)
[Mo(CNH)₈]⁺⁺	3082 (b)	1615 (m)
[Mo(CND)₈]⁺⁺	3030 (b)	1620 (m)
[W(CNH)₈]⁺⁺	2529 (b)	1182 (m)
[W(CND)₈]⁺⁺	2525 (b)	1180 (m)

Table 1: Experimental and calculated bond lengths in Å.

Compound	M–C (exp.)	C–N (exp.)	M–C (calc.)	C–N (calc.)
[Mo(CNH)₈]⁺⁺	2.140(2)	1.128(3)	2.203	1.146
[W(CNH)₈]⁺⁺	2.142(2)	1.127(3)	2.211	1.147
is in line with the shortening of the carbon–nitrogen distance in the solid state structure.

Despite the relatively low solubility of $[\text{M(CNH)}_8]^{4+}$ $[\text{SbF}_6]^{-4}$ ($\text{M} = \text{Mo, W}$) in pure anhydrous HF even at room temperature, it was possible to record NMR spectra of the products by using a solvent mixture of HF and SO$_2$ at -40°C (Table 3). The ^{14}N NMR spectrum of a solution of $[\text{Mo(CNH)}_8]^{4+}$ $[\text{SbF}_6]^{-4}$ shows a broad, unresolved peak at ($\delta = -182$ ppm) which is significantly shifted compared to $[\text{K}_4\text{Mo(CN)_8}]_8$ in water ($\delta = -95$ ppm). A similar shift was observed for the protonation of acetonitrile $(\delta(\text{CH}_3\text{CN} = -134$ ppm; $(\delta(\text{CH}=\text{CN})^+ = -241$ ppm).$]^{[11]}$ Only one signal at $\delta = 121$ ppm is displayed in the ^{13}C NMR spectrum, which indicates an upfield shift upon protonation compared to aqueous $[\text{K}_4\text{Mo(CN)_8}]_8$ ($\delta = 149$ ppm).

$[\text{K}_4\text{Mo(CN)_8}]_8$ in D_2O	$[\text{K}_4\text{W(CN)_8}]_8$ in D_2O	$[\text{Mo(CNH)}_8]^{4+}$ $[\text{SbF}_6]^{-4}$ in HF	$[\text{W(CNH)}_8]^{4+}$ $[\text{SbF}_6]^{-4}$ in HF
$+149$	$+143$	$+121$	$+115$
-95	-98	-182	-179

Table 3: NMR data, recorded in a mixture of HF and SO$_2$ at -40°C; chemical shifts δ in ppm.

It was not possible to detect a peak for the CNH ligand in the ^{1}H NMR spectrum, since rapid exchange between the CNH group and the highly acidic solvent mixture is expected. A similar problem was reported for the protonation of H$_2$Fe(CN)$_6$ by HF/BF$_3$ where it was not possible to freeze-out proton exchange even at the melting point of the solvent (-84°C).$]^{[62]}$ Although the product $[\text{Fe(CNH)}_6][\text{BF}_4]_2$ was reported to be stable for months in anhydrous HF, it decomposed in vacuum by losing HF and BF$_3$ to give H$_2$Fe(CN)$_6$. However, it has to be stated that under much more basic conditions, namely in presence of ethanol, a so-called supramolecular complex with the formula $[\text{Fe(CNH-O(H)Et)}_6][\text{Cl}]$ was crystallographically characterized.$]^{[62]}$

In summary, we report the first successful isolation of homoeptic metal complexes with eight hydrogen isocyanide ligands by exhaustive protonation of $[\text{K}_4\text{M(CN)_8}]_8$ by the superacid HF/SbF$_5$. Since isocyanides CNR are good donor but weak π-acceptor ligands,$]^{[61]}$ they provide an effective stabilization of the MoIV and WIV ions. The resulting square-antiprismatic complexes $[\text{M(CNH)_8}]^{4+}$ ($\text{M} = \text{Mo}^{V}$, WV) are diamagnetic and fulfill the 18-electron rule. While $\text{M} = \text{C}$ bond lengths remain almost unchanged, protonation slightly shortens the $\text{C} = \text{N}$ bond, which is supported by an increase of $\nu(\text{CN})$ by 50 cm$^{-1}$. Additionally, the crystal structures display networks of strong $\text{H} = \text{F}$ hydrogen bonds. These results suggest that polycyanometalates are much more stable against protolysis than generally thought (at least in the absence of potent nucleophiles) which opens up new pathways to hydrogen-bonded networks for various applications.$]^{[61]}

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 387824871 – SFB 1349. Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 387824871 – SFB 1349. Computing time was made available by HPC Service of ZEDAT, FU Berlin.

Conflict of interest

The authors declare no conflict of interest.

Keywords: cyanides · hydrogen bonds · isocyanide ligands · protonation · superacidic systems

[1] W. P. Fehlhammer, M. Fritz, Chem. Rev. 1993, 93, 1243–1280.
[2] A. J. L. Pombeiro, Inorg. Chem. Commun. 2001, 4, 585–597.
[3] B. Scheibe, S. S. Rudel, M. R. Buchner, A. J. Karltenfan, F. Kraus, Chem. Eur. J. 2017, 23, 291–295.
[4] S. S. Rudel, C. Pietzonka, M. Hoelzel, F. Kraus, Chem. Commun. 2018, 54, 1241–1244.
[5] P. G. Jones, H. W. Roeksy, J. Schimkowiak, J. Chem. Soc. Chem. Commun. 1988, 730.
[6] G. Constant, J. C. Daran, Y. Jeannin, Acta Crystallogr. Sect. B 1971, 27, 2388–2392.
[7] G. Constant, J.-C. Daran, Y. Jeannin, R. Moroncho, J. Coord. Chem. 1973, 2, 303–308.
[8] C. Chavant, G. Constant, Y. Jeannin, R. Moroncho, Acta Crystallogr. Sect. B 1975, 31, 1823–1827.
[9] J. P. Smit, W. Purcell, A. Roodt, J. G. Leipoldt, J. Chem. Soc. Chem. Commun. 1993, 1388–1389.
[10] P. J. Staples, Coord. Chem. Rev. 1973, 11, 277–342.
[11] R. Haiges, A. F. Baxter, N. R. Goetz, J. A. Axhausen, T. Soltner, A. Kornath, K. O. Christe, Dalton Trans. 2016, 45, 8494–8499.
[12] M. Schickinger, Y. Morgenkern, K. Sterstorfer, A. Kornath, Z. Anorg. Allg. Chem. 2017, 643, 1431–1435.
[13] N. R. Goetz, J. A. H. Axhausen, T. Soltner, C. Rotter, A. J. Kornath, ChemistrySelect 2016, 1, 5517–5520.
[14] M. Malischewski, K. Seppelt, Angew. Chem. Int. Ed. 2017, 56, 368–370; Angew. Chem. 2017, 129, 374–376.
[15] M. Malischewski, K. Seppelt, Angew. Chem. Int. Ed. 2017, 56, 16495–16497; Angew. Chem. 2017, 129, 16718–16721.
[16] A. Chilesotti, Gazz. Chim. Ital. 1905, 34, 493–503.
[17] A. Rosenheim, A. Garfunkel, F. Kohn, Z. Anorg. Chem. 1910, 65, 166–177.
[18] O. Olsson, Z. Anorg. Chem. 1914, 88, 49–73.
[19] O. Olsson, Ber. Dtsch. Chem. Ges. 1914, 47, 917–923.
[20] B. Sieklucka, R. Podgajny, P. Przychoden, T. Korzeniak, Coord. Chem. Rev. 2005, 249, 2203–2221.
[21] P. Przychoden, T. Korzeniak, R. Podgajny, B. Sieklucka, Coord. Chem. Rev. 2006, 250, 2234–2260.
[22] B. Nowicka, T. Korzeniak, O. Stefanczyk, D. Pinkowicz, S. Chorazy, R. Podgajny, B. Sieklucka, Coord. Chem. Rev. 2012, 256, 1946–1971.
[23] B. Sieklucka, R. Podgajny, T. Korzeniak, B. Nowicka, D. Pinkowicz, M. Koziel, Eur. J. Inorg. Chem. 2011, 305–326.
[24] D. Pinkowicz, R. Podgajny, B. Nowicka, S. Chorazy, M. Reczynski, B. Sieklucka, Inorg. Chem. Front. 2015, 2, 10–27.
[25] A. Bleuzen, V. Marvaud, C. Mathioniere, B. Sieklucka, M. Verdaguer, Inorg. Chem. 2009, 48, 3453–3466.
[26] N. Bridonneau, J. Long, J.-L. Cantin, J. v. Bardeleben, S. Pillet, E.-E. Bendeif, D. Aravena, E. Ruiz, V. Marvaud, Chem. Commun. 2015, 51, 8229 – 8232.
[27] M. Magott, O. Stefanięczyk, B. Sieklucka, D. Pinkowicz, Angew. Chem. Int. Ed. 2017, 56, 13283 – 13287; Angew. Chem. 2017, 129, 13468 – 13472.
[28] X. Qi, S. Pillet, C. de Graaf, M. Magott, E.-E. Bendeif, P. Guionneau, M. Rouzières, V. Marvaud, O. Stefanięczyk, D. Pinkowicz, C. Mathoni, Angew. Chem. Int. Ed. 2020, 59, 3117 – 3121; Angew. Chem. 2020, 129, 31468 – 31472.
[29] Y. Song, P. Zhang, X.-M. Ren, X.-F. Shen, Y.-Z. Li, X.-Z. You, J. Am. Chem. Soc. 2005, 127, 3708 – 3709.
[30] S. S. Basson, L. D. C. Bok, J. G. Leipoldt, Acta Crystallogr. Sect. B 1970, 26, 1209 – 1216.
[31] L. D. C. Bok, J. G. Leipoldt, S. S. Basson, Z. Anorg. Allg. Chem. 1972, 392, 303 – 315.
[32] D. Nadele, E. Schweda, Z. Kristallogr. 1999, 214, 358 – 361.
[33] J. L. Hoard, T. A. Hamor, M. D. Glick, J. Am. Chem. Soc. 1968, 90, 3177 – 3184.
[34] J. W. Simmons, W. E. Anderson, W. Gordy, Phys. Rev. 1950, 77, 77 – 80.
[35] V. Jednáková, J. Radioanal. Chem. 1976, 30, 215 – 219.
[36] D. Jones, D. F. Evans, Nature 1963, 199, 277 – 278.
[37] W. Beck, H. S. Smedal, Z. Naturforsch. B 1964, 20, 109 – 116.
[38] D. F. Evans, D. Jones, G. Wilkinson, J. Chem. Soc. 1964, 3164 – 3167.
[39] A. P. Ginsberg, E. Koubeek, Inorg. Chem. 1965, 4, 1186 – 1194.
[40] H. Mohan, J. Inorg. Nucl. Chem. 1976, 38, 1303 – 1305.
[41] R. J. Gillespie, R. Hulme, J. Chem. Soc. Dalton Trans. 1973, 1261 – 1267.
[42] D. Rieger, F. E. Hahn, W. P. Fehlhammer, J. Chem. Soc. Chem. Commun. 1990, 285 – 286.
[43] L. Weber, Angew. Chem. Int. Ed. 1998, 37, 1515 – 1517; Angew. Chem. 1998, 110, 1597 – 1599.
[44] I. Cvrtila, V. Stilinović, Cryst. Growth Des. 2017, 17, 6793 – 6800.
[45] CCDC 1983867 and 1983868 ([C8H10F26MoN8Sb4] and [C8H10F26N8Sb4W]) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Manuscript received: February 14, 2020
Revised manuscript received: March 23, 2020
Accepted manuscript online: March 24, 2020
Version of record online: ---
Give me eight! All eight cyano groups in the octacyanometalates Mo(CN)$_8$$^{4+}$ and W(CN)$_8$$^{4+}$ are protonated under superacidic conditions without formation of HCN. Instead homoleptic complexes of Mo$^{4+}$ and W$^{4+}$ with eight hydrogen isocyanide ligands are formed and could be fully characterized.