Screening for *Lipomyces* strains with high ability to accumulate lipids from renewable resources

(Received April 9, 2018; Accepted May 23, 2018; J-STAGE Advance publication date: November 21, 2018)

Mana Yanagiba,1,* Kazuo Masaki,2 Hideyuki Shinmori,3 and Takafumi Naganuma3

1 Biotechnology, Human Environment Medical Engineering, Department of Education Interdisciplinary, Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
2 Industrial Technology Center, Gifu Prefectural Government, 47 Kitaoyobi, Hashinagun, Kusamatsucho, Gifu 501-6064, Japan
3 Graduate School of Interdisciplinary Research, Division of Engineering, Faculty of Life and Environmental Sciences (Biotechnology), University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan

The yeast *Lipomyces* accumulates triacylglycerols (TAGs) as intracellular fat globules, and these TAGs can be used as source materials for biodiesel production. In this study, we aimed to use this yeast to produce lipids from renewable resources. Using plate culture and micrograph methods, strains with a high lipid-accumulation ability were screened from 15,408 types of systems combining renewable resources, strains, and culture temperatures. The lipid-accumulation ability of the strains was estimated from the fat globule volume, which was calculated using a micrograph. The reliability of this method was examined, and strains with a high lipid-accumulation ability were identified for each renewable resource. Seventy-seven *Lipomyces* strains (7 deposit, 68 wild-type, 2 mutants) with a high lipid-accumulation ability were selected. A few strains possessed the ability to accumulate large amounts of TAGs from more than four different renewable resources. We found that strains with a high lipid-accumulation ability could efficiently convert consumed carbon sources into TAGs, which could be easily recovered from the fat globules of these strains through physical disruption.

Key Words: biodiesel; fat globule; lipid-accumulation ability; *Lipomyces* yeast; renewable resource; screening; triacylglycerol conversion ratio; triacylglycerol recovery

Introduction

Light oil purified from low-cost fossil fuels can be used efficiently for diesel engines with a high heat conversion efficiency; however, this method results in the accumulation of carbon dioxide. Triacylglycerols (TAGs) obtained from oil crops can be used in biodiesel as substitutes for light oil and can reduce carbon dioxide accumulation to help slow global warming.

Lipid production with microorganisms was studied to ameliorate lipid shortages during the First and Second World Wars (Hongou, 1956; Iwamoto, 1958). Since then, lipid production with microorganisms has been intermittently studied. Recent papers have concerned, for example, oleaginous yeasts for biodiesel (Sitepu et al., 2014); oil production by *Lipomyces* deposit strains grown in glucose, xylose, glycerol, and wood saccharification solution (Wang et al., 2014); lipid production by oleaginous yeasts from crude glycerol (Spier et al., 2015); and the identification of superior lipid-producing strains from 18 members of deposit oleaginous yeasts (Dien et al., 2016).

Our laboratory has been carrying out research on the physiology, biochemistry and ecology of yeast *Lipomyces* (Naganuma et al., 1985, 1986, 1989, 1999; Watanabe et al., 1997). In these studies, we used deposit strains and strains isolated from Japanese soils. These *Lipomyces* strains were used for the screening of strains with high lipid-accumulation ability from renewable resources (Fig. 1).

A small-scale, simple method is needed to screen strains with a high lipid-accumulation ability under conditions of combining 12 renewable resources, 428 strains, and three culture temperatures.
There are three experiments necessary to achieve the research. The first step is the screening of strains with a high lipid-accumulation ability corresponding to the renewable resources. The second step is the development of the culture medium and the conditions for efficiently producing TAGs. The third step is the development of methods for efficiently recovering TAGs from fat globules in the cell.

Lipomyces cells typically have a single fat globule in each cell, and this fat globule can be observed clearly under a microscope. The fat globule is filled with TAGs, among which the major fatty acids are oleic acid and palmitic acid (Uzuka et al., 1975).

In this paper, we describe a small-scale, simple method for measuring the size of the fat globule in many samples on micrographs and for calculating the fat globule volume. We then compare the fat globule volume measured by the simple method and the amount of TAGs per cell to select strains with a large fat globule volume adapted to each renewable resource. Our results demonstrate that strains with a high lipid-accumulation ability (high fat globule volume) are advantageous for the efficient conversion of TAGs and the recovery of intracellular TAGs.

Materials and Methods

Strain, culture, and observation. Isolation of genus *Lipomyces* from field soil and primary identification: The features of genus *Lipomyces* yeast are the formation of a fat globule in the cell (Slooff, 1970), resistance to cycloheximide (Barnett et al., 2000) and the ability to grow on nitrogen-free medium (Robert, 1945).

The isolation medium was a glucose-mineral medium (pH 10) and shaken with a mixer (Model CM-1000; Eyela, Hitachi Living Systems, Ltd.) and then added to the medium. Yacon was crushed (MM1; TANINAKA O&K Co., Ltd.) and then squeezed (squeezer: HC-JH type; SUN FOOD Machinery Co., Ltd.). Powder materials were used. Unshipped peaches were crushed (crusher: 5SW type; TANINAKA O&K Co., Ltd.) and then squeezed (squeezer: HC-JH type; SUN FOOD MACHINERY Co., Ltd.). Yacon was crushed (MM1; Hitachi Living Systems, Ltd.) and then added to the medium.

Screening of *Lipomyces*, a lipid yeast

Fig. 1. Biodiesel production using TAGs (triacylglycerols) obtained from the *Lipomyces* yeast cultured from a renewable resource.

There are three experiments necessary to achieve the research. The first step is the screening of strains with a high lipid-accumulation ability corresponding to the renewable resources. The second step is the development of the culture medium and the conditions for efficiently producing TAGs. The third step is the development of methods for efficiently recovering TAGs from fat globules in the cell.

Materials and Methods

Strain, culture, and observation. Isolation of genus *Lipomyces* from field soil and primary identification: The features of genus *Lipomyces* yeast are the formation of a fat globule in the cell (Slooff, 1970), resistance to cycloheximide (Barnett et al., 2000) and the ability to grow on nitrogen-free medium (Robert, 1945).

The isolation medium was a glucose-mineral medium (pH 10) and shaken with a mixer (Model CM-1000; Eyela, Hitachi Living Systems, Ltd.) and then added to the medium. Yacon was crushed (MM1; TANINAKA O&K Co., Ltd.) and then squeezed (squeezer: HC-JH type; SUN FOOD MACHINERY Co., Ltd.). Powder materials were used. Unshipped peaches were crushed (crusher: 5SW type; TANINAKA O&K Co., Ltd.) and then squeezed (squeezer: HC-JH type; SUN FOOD MACHINERY Co., Ltd.). Yacon was crushed (MM1; Hitachi Living Systems, Ltd.) and then added to the medium.

After incubation at 25°C, the yeast colonies were picked and placed on the same nitrogen-depleted plate medium. The yeast colonies were purified on a nitrogen-depleted plate medium without cycloheximide, and single cells were picked using a Joy- stick Micromanipulator (MN-151; Narishige, Tokyo, Japan) attached to an inverted microscope (IMT-2; Olympus, Tokyo, Japan).

Method for obtaining mutants with repression of extracellular polysaccharide synthesis (Iefuji et al., 2012): The yeast was cultured in YM liquid medium (10 g of glucose, 5 g of peptone, 3 g of yeast extract, and 3 g of malt extract in 1 L of distilled water) using L-shaped test tubes at 25°C. After 3 days of cultivation, the cells were harvested and washed with distilled water. Cells suspended in distilled water were agitated for 90 s at 50 cm below a UV germicidal lamp until a survival rate of approximately 10% on a clean bench was reached (MCV-710ATS; Sanyo [Panasonic], Tokyo, Japan). The cell suspension (20 μL) was transferred to a YM plate medium (10 g of glucose, 5 g of peptone, 3 g of yeast extract, 3 g of malt extract, and 20 g of agar in 1 L of distilled water) and spread. The YM plate medium was incubated for approximately 7 days at 25°C, and white colonies (fewer extracellular polysaccharides) were picked.

Materials and Methods

Strain, culture, and observation. Isolation of genus *Lipomyces* from field soil and primary identification: The features of genus *Lipomyces* yeast are the formation of a fat globule in the cell (Slooff, 1970), resistance to cycloheximide (Barnett et al., 2000) and the ability to grow on nitrogen-free medium (Robert, 1945).

The isolation medium was a glucose-mineral medium (pH 10) and shaken with a mixer (Model CM-1000; Eyela, Hitachi Living Systems, Ltd.) and then added to the medium. Yacon was crushed (MM1; TANINAKA O&K Co., Ltd.) and then squeezed (squeezer: HC-JH type; SUN FOOD MACHINERY Co., Ltd.). Powder materials were used. Unshipped peaches were crushed (crusher: 5SW type; TANINAKA O&K Co., Ltd.) and then squeezed (squeezer: HC-JH type; SUN FOOD MACHINERY Co., Ltd.). Yacon was crushed (MM1; Hitachi Living Systems, Ltd.) and then added to the medium.

Medium: The optimum concentrations of the renewable resources and the optimum media were determined by observing the formation of clear colonies (>0.5 mm). S agar plate medium was used for strains obtained from the BioResource Center Collection and UV treatment. The S medium comprised 3.5 g of (NH₄)₂SO₄, 1.0 g of KH₂PO₄, 0.5 g of MgSO₄·7H₂O, 0.1 g of NaCl, 0.1 g of CaCl₂·2H₂O, 1 g of yeast extract, the appropriate amount of renewable resource, and 20 g of agar in 1 L of distilled water. In the case of a 1/10 YM medium agar plate, the YM medium was diluted 10 fold and added to 20 g/L agar. This medium was used for strains isolated from the field.
Preparation of agar plates: After autoclaving, 20 mL of medium was immediately poured into sterilized plastic dishes (90 × 15 mm; IWAKI & Co., Ltd.). Agar plates were allowed to stand in a clean bench until inoculation. The inoculation method is described in the Results and Discussion section.

Culture and measurement of fat globules: The relevant details are described in the Results and Discussion section.

Verification of the reliability of the apparent lipid-accumulation ability based on the volume of the fat globule.

Strains: *Lipomyces* wild-type strain (No. 67, 320, 335, 347, 350), *Lipomyces kononenkoeae* CBS 8113 and CBS 8114, the mutant of *Lipomyces* wild-type No. 8.

Medium: The [1/10]N-S medium contained 0.035% of the ammonium sulfate concentration of S medium. Waste peach juice and leftover boiled rice were used as carbon sources.

Culture: Quantitative analysis of TAGs in the intracellular fat globule requires a high number of yeast cells. Therefore, the yeast cells in 100 mL of liquid medium in a 500-ml shaking flask were cultivated with a shaker. The culture conditions were 28 or 33°C and 120 strokes/min.

Measurement of the fat globule volume: The method for measuring the fat globule volume as a measure of apparent lipid-accumulation ability is described in Section “Results and Discussion”.

Quantitative estimation of lipid-accumulation ability.

Cell disruption for analysis of TAGs in intracellular fat globules: A test tube containing 2.5 g of glass beads (ø, 1.00–1.05 mm) and 1 mL of cell suspension with 10^8–10^9 cells was shaken with a mixer (Model CM-1000; EYELA) at 2,500 rpm until complete cell disruption (approximately 60 min) (Naganuma et al., 1984).

Quantitative estimation of TAGs: The homogenate (20 μL) was transferred into a test tube containing 3.0 mL of Cleantech TG assay kit reagents (Triglyceride E-test Wako; Wako Pure Chemical Industries, Ltd.). The solution was incubated at 37°C for 10 min and centrifuged at 2,500 × g for 5 min. The supernatants were filtered using a 0.45-μm membrane filter (DISMIC-25CS; ADVANTEC). The absorbance of the filtrates was then measured at 600 nm (Naganuma et al., 1982).

Measurement of cell number: The cell number was measured using a counting chamber (Thoma deep 0.1 mm; Erma) (Naganuma et al., 1975).

Calculation of the concentration (quantitative) of TAGs per 10^8 cells: The amount of TAGs accumulated in the intracellular fat globules (TAGs [mg]/10^8 cells) was estimated as follows: (TAGs [mg]/culture medium [mL])/(cell number/culture medium [mL]) × 10^8.

The amount of TAGs in 10^8 cells was defined as the quantitative lipid-accumulation ability.

Association between quantitative lipid-accumulation ability and TAG conversion ratio.

Strains and medium: These are each as described in the section “Verification of the reliability of the apparent lipid-accumulation ability based on the volume of the fat globule”.

Quantitative lipid-accumulation ability: The quantitative lipid-accumulation ability was measured as described previously.

Sugar consumption: The amount of sugar in the peach juice medium was measured using a pocket refraction meter (PAL-1; Atago). The starch concentration in the medium was analyzed by measuring the glucose concentration after starch hydrolysis, as follows: 250 μL of the medium was added to 7 mL of 2.5% HCl, and the starch was hydrolyzed at 121°C for 60 min (specified analysis method of National Tax Agency (2007)). The glucose concentration was estimated using a diagnostic glucose assay kit (Glucose C-test Wako; Wako Pure Chemical Industries, Ltd.).

The TAG conversion ratio (%) was expressed in terms of grams of TAGs produced per 100 g of sugar consumed (Park et al., 1990).

Relationship between quantitative lipid-accumulation ability and the recovery ratio of TAGs in fat globules.

Strains: *Lipomyces* wild-type strain (No. 67, 320, 335, 350), *Lipomyces kononenkoeae* CBS 8113, the mutant of *Lipomyces* wild-type No. 8. To investigate the strain character of leaking TAGs from fat globules, two *Lipomyces* wild-type strains (No. 35 and 357) with approximately the same volume of fat globules were used.

Medium: Media are the same as described in “Verification of the reliability of the apparent lipid-accumulation ability based on the volume of the fat globule”.

Quantitative lipid-accumulation ability: The quantitative lipid-accumulation ability was measured as described above.

Cell disruption: Complete cell disruption was performed at 2,500 rpm for 60 min. The conditions used for weak cell disruption were as follows: 1,000 rpm for 10 min.

The recovery ratio of the TAGs in the fat globule was calculated as follows: recovery (%) = (amount of TAGs leaked by weak disruption)/(amount of TAGs leaked by complete disruption) × 100.

Results and Discussion

Screening for Lipomyces strains with a high lipid-accumulation ability.

Development of small-scale, simple methods for the screening of strains with a high lipid accumulation. The combination of 12 types of renewable resources, 428 strains, and three culture temperatures required 15,408 experiments. Thus, we attempted to develop a small-scale, simple method for the screening of strains with a high lipid-accumulation ability.

Lipomyces yeasts can accumulate TAGs in intracellular fat globules, which can be observed using a microscope. The lipid-accumulation ability can therefore be estimated by microscopically measuring the sizes of the fat globules in the cells.

Six strains were inoculated on agar plate medium divided into six fractions. Spot inoculation was performed because the surface of the plate medium with a natural substance was uneven. The plastic dishes were placed into incubators at 20, 28, and 35°C (Fig. 2). Many strains were
Yeasts were stored in 15% glycerol in a deep freezer (−80°C).

Yeasts were cultured for 3-7 days on 5 or 1/10 YM liquid medium at 28°C with a shaker (120 rpm).

Ten microliters of culture medium were inoculated in an agar plate medium.

Two spots / each block

Agar plate medium with renewable resources divided into 6 blocks.

The plastic dishes were stacked into incubators at temperatures of 20, 28, and 35°C.

Fig. 2. Inoculation into agar plate medium containing the renewable resource.

A medium consisting of 2% agar and the renewable resources was autoclaved at 121°C. The medium was poured into sterilized plastic dishes (90 x 15 mm; IWAKI & Co., Ltd.). Six strains were inoculated into a plate medium.

A digital camera (NIKON COOLPIX P5100) was attached to a microscope (OLYMPUS BX51) through an attachment (MICRONET NY-P5000 90455). The objective lens was a UPlanFI 40x (OLYMPUS).

Fig. 3. Measurement of fat the globule volume.

A digital camera (NIKON COOLPIX P5100) was attached to a microscope using an attachment. Micrographs of cells within clear single colonies (> 0.5 mm) were acquired with a digital camera. The diameters of six large globules and six small globules were measured using a ruler. The fat globule volume (μm³) was calculated.

obtained from different isolation sources, and many types of renewable resources as carbon sources were used; therefore, we assumed that the optimum culture temperature for TAG accumulation may also vary. Accordingly, we tested culture temperatures of 20, 28, and 35°C.

Small amounts of cells were collected from each colony to measure the fat globule diameter. A digital camera (NIKON COOLPIX P5100) was then used to obtain micrographs. After printing the micrographs, the sizes of the fat globules were measured with a ruler. Each large and small fat globules of three, six, fifteen, thirty, fifty, seventy, and one hundred were measured. In over six of the fat globules, the standard deviation was almost same. For reducing the experimental period, the number of measurement fat globules was set to six large and small, the diameters of large fat globules and small fat globules were measured, and the average fat globule volume was calculated (Fig. 3).

Natural substances in the renewable resources negatively affected the quantitative analysis in some cases. However, the intracellular fat globules in medium containing these materials are easily visible with a microscope, and the lipid-accumulation ability is therefore measured easily.

The calculated fat globule volume was defined as the apparent lipid-accumulation ability.

Verification of the reliability of the apparent lipid-accumulation ability. By measuring the volume of the fat globules (μm³) with a small-scale, simple method, the apparent lipid-accumulation ability was estimated. In contrast, the calculation of the quantitative lipid-accumulation ability (TAGs [mg]/10⁸ cells) requires a complicated analytical process, large amounts of cells, and expensive reagents. To investigate the quantitative relationship between the sizes of fat globules and the amounts of TAGs in the globules, globules of different sizes were used.

The reliability of the apparent lipid-accumulation ability based on the volume of the fat globule.

Three shaking flasks were used per single strain, the shaking flasks contained waste peach juice or leftover boiled rice. The apparent lipid accumulation ability is the fat globule volume determined by the micrograph measurement method. The quantitative lipid accumulation ability is the amount of TAGs per cell. Error bars are the standard deviation from the mean. For selecting strains to experiment in Fig. 4, several pre-experiments were performed using many strains, and the strains which had reliable values for the relationship between the fat globule volume and the quantitative lipid-accumulation ability were used. The strain designation on each circle are as follows: (1) the mutant of *Lipomyces* wild-type No. 8, (2) *Lipomyces kononenkoe CBS 8113*, (3) No. 67 of *Lipomyces* wild-type strain, (4) *Lipomyces kononenkoe CBS 8114*, (5) No. 320 of *Lipomyces* wild-type strain, (6) No. 335 of *Lipomyces* wild-type strain, (7) No. 350 of *Lipomyces* wild-type strain, and (8) No. 347 of *Lipomyces* wild-type strain.

Fig. 4. Reliability of the apparent lipid accumulation ability based on the volume of the fat globule.
Yeast strains corresponding to renewable resources as carbon sources. Fat globule volumes of >46 μm³ were needed for selecting more one strain with a high lipid-accumulation ability from one renewable resource.

Table 1 shows the number of strains that had fat globules with volumes >46 μm³ (apparent lipid-accumulation ability) from each renewable resource.

In 15,408 types of systems combining renewable resources, strains with a high lipid-accumulation ability, and culture temperatures, 117 types were selected. Seventy-seven *Lipomyces* strains (7 deposit, 68 wild-type, 2 mutants) were obtained from 428 strains which were the subject of screening. Crude glycerol, waste peach juice, yacon, and rice bran all had impurities, and few yeasts were selected from these substances. Cellobiose, xylose, and glycerol had no impurities, and many yeasts were selected from these substances.

No. 296 of *Lipomyces* wild-type strain accumulated a large amount of TAGs from six types of renewable resources (cellobiose, xylose, xylooligosaccharide, potato, waste peach juice, and rice bran). No. 260 of *Lipomyces* wild-type strain accumulated TAGs from four types of renewable resources (cellobiose, xylitol, crude glycerol•maker B, and tapioca). *Lipomyces kononenkoae* CBS 7681 accumulated TAGs from four types of renewable resources (xylose, glycerol, glycerol•maker B, and yacon).

Even at 35°C, many strains accumulated large amounts of TAGs from the renewable resources. In particular, *Lipomyces kononenkoae* CBS 7681 accumulated TAGs at 20°C (glycerol), 28°C (yacon), and 35°C (xylose and glycerol•maker B). *Lipomyces kononenkoae* CBS 7682 accumulated TAGs at 20°C (glycerol), 28°C (glycerol•maker A), and 35°C (glycerol•maker B).

Characteristics of strains with a high lipid accumulation

TAG conversion ratio. The relationship between quantitative lipid-accumulation ability and the TAG conversion ratio (TAGs [g]/100 g sugar) is shown in Fig. 5. Yeasts with a high lipid accumulation tended to have a high TAG conversion ratio as well.

Recovery ratio of TAGs in fat globules. Microscopic observations revealed that cells with larger fat globules leaked TAGs in the fat globule upon exertion of a slight force. We investigated the effects of lipid-accumulation ability (size of fat globule volume) on TAG recovery; the results are shown in Fig. 6. High lipid accumulation caused a high recovery ratio; however, in some cases, the size of the fat globule was not correlated with the recovery ratio. This result suggests that both the lipid-accumulation ability and the strength of the fat globule membrane could affect TAG recovery.

The glycolytic pathway, pentose phosphate cycle, glycerol 3-phosphate pathway, tricarboxylic acid cycle, fatty-acid biosynthesis pathway, and carbon uptake are involved in TAG biosynthesis in cells, and different enzymes regulate these pathways (Hübscher, 1970; Naganuma et al., 1987; Wakil, 1970). It is suggested that the high lipid accumulation is induced by the activation of these pathways.
Table 1. Strains with a high lipid-accumulation ability obtained on renewable resources.

Renewable resource	Species	Strain	Sampling date	Culture temperature (°C)	Quantitative lipid-accumulation ability (TAGS (mg/10^6 cells))	
			Vegetation	Locality		
Cellulbiose (Reagent)	Wild type	No. 1	Cherry tree	Kofu city	35	5.0 ± 0.1
	Wild type	No. 68	Green field	Fujisohida city	20	7.2 ± 0.0
	Wild type	No. 163	Mt. Maruyama	Narusawa mura	28	4.0 ± 0.0
	Wild type	No. 172	Taro field	Tokorozawa city	28	4.4 ± 0.0
	Wild type	No. 241	Needle leaf	Chino city	28	4.9 ± 0.0
	Wild type	No. 248	Grape orchard	Fuefuki city	28	8.5 ± 0.2
	Wild type	No. 259	Peach orchard	Koshu city	28	3.7 ± 0.0
	Wild type	No. 260	Peach orchard	Koshu city	35	5.5 ± 0.0
	Wild type	No. 262	Grape orchard	Koshu city	35	4.2 ± 0.0
	Wild type	No. 265	Peach orchard	Fuefuki city	35	3.7 ± 0.0
	Wild type	No. 266	Grape orchard	Minami-alps city	28	4.8 ± 0.1
	Wild type	No. 296	Rice field	Yokote city	28	3.6 ± 0.0
	Wild type	No. 305	Pine tree	Omiya city	28	4.6 ± 0.0
	Wild type	No. 314	Broad leaf	Kofu city	28	3.9 ± 0.0
	Wild type	No. 320	Hinoki cypress	Kanazawa city	28	4.7 ± 0.0
	Wild type	No. 323	Pine tree	Sado city	28	4.2 ± 0.0
	Wild type	No. 335	Orange grove	Yatsushiro city	28	9.9 ± 0.1
Xylose (Reagent)	Wild type	No. 1	Cherry tree	Kofu city	35	4.5 ± 0.0
	Wild type	No. 23	Strawberry field	Kamagai city	28	4.6 ± 0.1
	Wild type	No. 35	Cuppice	Fuefuki city	35	3.7 ± 0.0
	Wild type	No. 44	Cuppice	Hokote city	28	4.2 ± 0.0
	Wild type	No. 55	Grassland	Kawakami-mura	28	4.1 ± 0.0
	Wild type	No. 57	Cuppice	Minami-alps city	28	4.4 ± 0.0
	Wild type	No. 63	Lava area	Fujisohida city	28	5.1 ± 0.0
	Wild type	No. 67	Pine tree	Oshinomura	28	5.3 ± 0.0
	Wild type	No. 68	Green field	Fujisohida city	28	4.6 ± 0.0
	Wild type	No. 76	Garden	Yokoha city	28	7.2 ± 0.0
	Wild type	No. 225	Shore of Lake Motoko	Minobu-cho	28	4.5 ± 0.0
	Wild type	No. 260	Peach orchard	Koshu city	35	3.9 ± 0.0
	Wild type	No. 261	Grape orchard	Koshu city	35	3.6 ± 0.0
	Wild type	No. 263	Grape orchard	Fuefuki city	28	7.3 ± 0.0
	Wild type	No. 295	Apple orchard	Yokote city	28	4.5 ± 0.0
	Wild type	No. 296	Rice field	Yokote city	35	4.8 ± 0.0
	Wild type	No. 332	Sugarcane field	Kishima city	35	3.6 ± 0.0
	Wild type	No. 381	Pine tree	Minami-alps city	28	5.0 ± 0.0
	Wild type	No. 862-B	Vineyard	Yamanashi city	28	4.2 ± 0.0
konnenkoae	Wild type	No. 24	Pine tree	Yoro cho	28	3.9 ± 0.0
	Wild type	No. 57	Cuppice	Minami-alps city	35	5.0 ± 0.0
	Wild type	No. 175	Wilderness	Nara city	35	9.9 ± 0.1
	Wild type	No. 262	Grape orchard	Koshu city	35	4.3 ± 0.0
	Wild type	No. 331	Rice field	Kishima city	35	4.5 ± 0.0
	Wild type	No. 334	Cuppice	Taishinomi city	35	3.6 ± 0.0
	Wild type	No. 4a	Primeval forest with tree fern	Nago city	35	6.9 ± 0.1
Glycerol (Reagent)	Wild type	No. 89-3	Cryptomeria forest	Koshu city	28	3.9 ± 0.0
konnenkoae	konnenkoae	CBS 7535			35	4.2 ± 0.1
	konnenkoae	CBS 7683			35	3.8 ± 0.0
	konnenkoae	CBS 7682			35	6.9 ± 0.1
	konnenkoae	CBS 8114			35	4.9 ± 0.0
	konnenkoae	KW-3			35	4.9 ± 0.0
starkeyi	CBS 1807				35	6.9 ± 0.1
Table 1. (continued).

Renewable resource	Species	Strain	Sampling date	Culture temperature (°C)	Quantitative lipid-accumulation ability (TAGs (mg)/10^6 cells)		
			Vegetation	Localidad			
Crude glycerol	Maker A	Wild type	No. 15	Cherry tree	Kofu city	28	4.2 ± 0.1
		Wild type	No. 50	Cryptomeria forest	Kawakami-mura	20	4.0 ± 0.1
		Wild type	No. 58	Pumpkin field	Minami-ku city	28	3.9 ± 0.1
		Wild type	No. 310	Broad leaf tree	Minami-ku city	28	7.7 ± 0.0
		Wild type	No. 354	Rice field	Yatsushiro city	28	4.5 ± 0.0
		Wild type	No. 89-1	Cryptomeria forest	Koshu city	28	15.9 ± 0.2
		Wild type	No. 89-4	Cryptomeria forest	Koshu city	28	7.5 ± 0.1
Potato	Wild type	No. 91-2	Green field	Yamanashi city	28	5.5 ± 0.1	
(Edible powder material)	Wild type	No. 91-2	Green field	Yamanashi city	28	6.6 ± 0.0	
		Mutant	CBS 1807		35	4.8 ± 0.1	
	No. 271	Grape orchard	Kofu city	28	4.6 ± 0.0		
	No. 295	Apple orchard	Yokote city	35	3.8 ± 0.0		
	No. 296	Rice field	Yokote city	35	8.6 ± 0.1		
	No. 311	Lotus garden	Choe city	28	7.6 ± 0.0		
	No. 327	Cabbage	Suzuka city	28	5.0 ± 0.0		
	No. 330	Rice field	Kumaoka city	28	3.6 ± 0.0		
	No. 346	Cabbage	Nikko city	28	4.0 ± 0.0		
	No. 347	Tree	Sendai city	28	9.3 ± 0.2		
	No. 347	Pineapple field	Nago city	35	3.7 ± 0.0		
		Mutant	CBS 1807		35	5.8 ± 0.0	
Xylooligosaccharides	(Reagent)	Wild type	No. 35	Cabbage	Fukuoka city	35	4.3 ± 0.1
		Wild type	No. 98	Cherry tree	Kofu city	28	3.7 ± 0.0
		Wild type	No. 296	Rice field	Yokote city	35	6.3 ± 0.0
		Wild type	No. 320	Hizoki cypress	Kumaoka city	35	4.2 ± 0.0
		Wild type	No. 324	Cabbage	Fukuoka city	35	4.0 ± 0.0
		Wild type	No. 355	Orange grove	Yatsushiro city	35	3.6 ± 0.2
		Wild type	No. 347	Tree	Sendai city	35	8.0 ± 0.1
		Wild type	No. 350	Tree	Iwakuni city	35	6.3 ± 0.1
		Mutant	CBS 1807		35	4.1 ± 0.0	
Crude glycerol	Maker B	Wild type	No. 1	Cherry tree	Kofu city	35	4.0 ± 0.0
		Wild type	No. 67	Pine tree	Oshinomura	28	4.5 ± 0.0
		Wild type	No. 259	Peach orchard	Koshu city	35	5.3 ± 0.0
		Wild type	No. 263	Grape orchard	Fukuoka city	35	5.6 ± 0.0
		Wild type	No. 295	Apple orchard	Yokote city	35	6.5 ± 0.1
		Wild type	No. 296	Rice field	Yokote city	35	8.4 ± 0.0
		Wild type	No. 86R-1	Vineyard	Yamanashi city	20	4.3 ± 0.1
		Mutant	CBS 7543	Peach orchard	Kofu city	35	5.9 ± 0.0
		Mutant	CBS 7581	Peach orchard	Kofu city	35	3.6 ± 0.0
		Mutant	CBS 8114	Peach orchard	Kofu city	35	4.0 ± 0.0
Tapioca (Edible powder material)	Wild type	No. 193	Fendob in Hino-o-dam	Yamanashi city	28	4.6 ± 0.0	
		Wild type	No. 260	Peach orchard	Kofu city	35	5.0 ± 0.0
		Mutant	CBS 7543	Peach orchard	Kofu city	35	3.6 ± 0.0
		Mutant	CBS 7581	Peach orchard	Kofu city	35	5.0 ± 0.0
		Mutant	CBS 8114	Peach orchard	Kofu city	35	4.0 ± 0.0
Yacon	Wild type	No. 25	Bamboo forest	Sagamihara city	28	5.1 ± 0.0	
	Wild type	No. 4-1	Bamboo forest	Sagamihara city	28	5.1 ± 0.0	
	Wild type	No. 2-1A	Prunus	Naha city	28	4.0 ± 0.0	
	Mutant	CBS 7618		Nago city	28	3.9 ± 0.0	
	Mutant	CBS 8114		Nago city	20	4.2 ± 0.0	
Rice bran	Wild type	No. 186	Swamp	Kofu city	28	6.0 ± 0.0	
	Wild type	No. 296	Rice field	Yokote city	35	5.1 ± 0.0	
	Wild type	No. 313	Needle leaf tree	Kofu city	35	5.1 ± 0.0	
	Mutant	No. 8	Swamp	Kofu city	28	7.0 ± 0.3	
Crude glycerol	Maker C	Wild type	No. 44	Cabbage	Kofu city	28	3.7 ± 0.0

* With a lipid-globule volume of over 46 μm³.
* These values were obtained by transferring apparent lipid-accumulation ability (the globule volume [μm³]) into quantitative lipid-accumulation ability (TAGs (mg)/10^6 cells), using Fig. 4.
* Containing 0.05% xylose as inducer.
* Containing mainly fructooligosaccharides.
associated with TAG synthesis.

When reagents are used as carbon sources, there are no effects of impurities on the activity of enzymes and metabolic pathways (Taherzadeh et al., 2000). Therefore, in strains selected from reagents as carbon sources, rescreening of strains with a high lipid-accumulation ability under the presence of impurities is necessary.

Identifying strains with a high lipid-accumulation ability in the presence of impurities is an important part of achieving biodiesel production from renewable resources (Fig. 1). This issue was resolved by selecting several Lipomyces strains with a high lipid-accumulation ability in the presence of waste peach juice and rice bran.

Strains with a high lipid accumulation can also easily leak TAGs upon weak cell disruption; therefore, TAGs can be easily recovered from fat globules by physical methods at low cost.

By determining the optimal culture conditions and media for lipid production and obtaining a low-cost method for easy recovery of TAGs from fat globules, a practical production of source lipids for biodiesel production can be achieved. However, biodiesel production using Lipomyces yeast is more expensive than the production of fossil fuel diesel. Thus, for commercial purposes, a biodiesel production system with lower cost is required.

Acknowledgments

We would like to thank Dr. Atsushi Yamazaki for providing useful advice regarding the yeast Lipomyces, and Minami-Alps City for kindly providing us with the renewable resources.

References

Barnett, J. A., Payne, R. W., and Yarrow, D. (eds.) (2000) Yeasts: Characteristic and Identification Third Edition, Cambridge University Press, U.K., pp. 443–448.

Dien, B. S., Slincinger, P. J., Kurtzman, C. P., Moser, B. R., and O’Bryan, P. J. (2016) Identification of superior lipid producing Lipomyces and Myxozyrnaya yeasts. AIMs Environ. Sci., 3, 1–20.

Hongou, M. (1956) Chapter 10 Lipid producing by microorganisms. In Microbial Industry, ed. by Asai, T., Asakura Publishing, Tokyo, pp. 451.

Hübischer, G. (1970) III. Biosynthesis of triglycerides: Chapter VII Glyceride metabolism. In Lipid Metabolism, ed. by Wakiel, S. J., Academic Press, New York and London, pp. 302–332.

Iwafuji, H., Masaki, K., Wakamura, N., and Naganuma, T. (2012) The method for selection of microorganism strain with high ability of lipid production. Japan patent. P2012-183012A, September 27, 2012.

Iwamoto, H. (1958) Chapter 4 Lipid synthesis by microorganisms. In Chemistry of Lipids, ed. by Funahashi, S., Mori, S., Hara, I., Fukuba, H., and Matsumoto, T., Kyoritsu Shuppan Co., Ltd., Tokyo, pp. 143–144.

Naganuma, T., Uzuka, Y., Tanaka, K., and Koga, T. (1975) Effect of iron concentration in growth media on growth and development of intracellular oil globule of Lipomyces starkeyi. Nippon Nōgakagaku Kaishi, 49, 335–340.

Naganuma, T., Uzuka, Y., and Tanaka, K. (1982) Quantitative estimation of intracellular neutral lipids of the yeast, Lipomyces starkeyi. Agric. Biol. Chem., 46, 1213–1217.

Naganuma, T., Uzuka, Y., and Tanaka, K. (1984) Simple and small-scale breakdown of yeast. Anal. Biochem., 141, 74–78.

Naganuma, T., Uzuka, Y., and Tanaka, K. (1985) Physiological factors affecting total cell number and lipid content of the yeast, Lipomyces starkeyi. J. Gen. Appl. Microbiol., 31, 29–37.

Naganuma, T., Uzuka, Y., and Tanaka, K. (1986) Using inorganic elements to control cell growth and lipid accumulation in Lipomyces starkeyi. J. Gen. Appl. Microbiol., 32, 417–424.

Naganuma, T., Uzuka, Y., Tanaka, K., and Iizuka, H. (1987) Differences in enzyme activities of Lipomyces starkeyi between cells accumulating lipid and proliferating cells. J. Basic Microbiol., 27, 35–42.

Naganuma, T., Yamaguchi, T., and Uzuka, Y. (1989) Effects of Zn2+ and Mn2+ on the growth of genera Lipomyces and Woltzymyces. J. Gen. Appl. Microbiol., 35, 481–485.

Naganuma, T., Katsumata, K., Ando, T., Watanabe, H., Nishimura, K., and Minami-Alps City for kindly providing us with the renewable resources.

Sitepu, I. R., Garay, L. A., Sestric, R., Levin, D., Block, D. E. et al. (2014) Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnol. Adv., 32, 1336–1360.

Slooff, W. Ch. (1970) Genus 9 LIPOMYCES Lodder et Kreger-van Rij: Chapter IV Discussion of the genera belonging to the ascomycetous yeast. In The Yeasts, a Taxonomic Study Second Revised and Enlarged Edition, ed. by Lodder, J., North-Holland Publishing Company, Amsterdam and London, pp. 379–388.

Specified Analysis Method of National Tax Agency (2007) https://www.nta.go.jp/shiraberu/zeihou-kaishaku/tsutatsu/sonota/kaisei070622/01.pdf, pp. 58–59.

Spier, F., Buffon, J. G., and Burkert, C. A. V. (2015) Bioconversion of raw glycerol generated from the synthesis of biodiesel by different oleaginous yeasts: lipid content and fatty acid profile of biomass. Indian J. Microbiol., 55, 415–422.

Taherzadeh, M. J., Gustafsson, L., Niklasson, C., and Lidén, G. (2000) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J. Biosci. Bioeng., 90, 374–380.

Uzuka, Y., Kanamori, T., Koga, T., Kana, N., and Naganuma, T. (1975) Isolation and chemical composition of intracellular oil globules from the yeast Lipomyces starkeyi. J. Gen. Appl. Microbiol., 21, 157–168.

Wakiel, S. J. (1970) III. Fatty acid biosynthesis: Chapter I Fatty acid metabolism. In Lipid Metabolism, ed. by Wakiel, S. J., Academic Press, New York and London, pp. 9–30.

Wang, R., Wang, J., Xu, R., Fang, Z., and Liu, A. (2014) Oil production by the oleaginous yeast Lipomyces starkeyi using diverse carbon sources. BioResources, 9, 7027–7040.

Watanabe, H., Okada, M., Hibi, T., Nishimura, K., Naganuma, T. et al. (1997) Development of a new chemically defined sporulation medium for the yeasts in the genus Lipomyces. J. Gen. Appl. Microbiol., 43, 289–293.