XPS and TPR studies of 2%(Ru$_{1/2}$-Sn$_{1/2}$)/Al$_2$O$_3$ catalyst synthesized by microwave techniques

Ari Sulistyo Rini1,a, Shahidan Radiman2,b, Mohd. Ambar Yarmo3,c

1Jurusan Fisika FMIPA Universitas Riau, Jl. H.R. Soebrantas, Pekanbaru, Riau
2Pusat Pengajian Fizik Gunaan, FST, UKM, Malaysia
3Pusat Pengajian Kimia dan Teknologi Makanan, FST, UKM, Malaysia

aari.sulistyo.rini@gmail.com, bshahidan@ukm.my, cambar@ukm.my

Abstract. X-Ray photoelectron spectroscopy (XPS) and Temperature-programmed Reduction (TPR) of 2%(Ru$_{1/2}$-Sn$_{1/2}$)/Al$_2$O$_3$ prepared by the microwave-assisted method have been studied. 2%(Ru$_{1/2}$-Sn$_{1/2}$)/Al$_2$O$_3$ have previously been evaluated as a catalyst in the reduction reaction of 4-nitrophenol. XPS and TPR studies of 2%(Ru$_{1/2}$-Sn$_{1/2}$)/Al$_2$O$_3$ was performed to confirm the metal state of Ru and Sn and reducibility of the sample, respectively. XPS data suggested that the formation of metal Ru(0) and Sn(0) in all samples. The XPS spectra of Ru 3p$_{3/2}$ and Sn 3d$_{5/2}$ shows binding energy peak at ~ 461.0 ± 0.2 eV and ~ 484.1 eV, respectively. The correlation of TPR and XPS characterization will be discussed further.

1. Introduction

Nitro-aromatic compounds such as 4-nitrophenol are the most important class of industrial chemicals which is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Their extensive use has led to environmental contamination of soil and groundwater. US Environmental Protection Agency has listed the aromatic compound as "priority pollutant" for environment [1]. Borohydride reduction of 4-nitrophenol to 4-aminophenol by metal nanoparticles has received increasing attention because this reaction can be performed in aqueous solutions under mild condition. Nanoparticles serve as better catalysts in the facile reduction process of pollutants like 4-nitrophenols due to the greater accessibility to surface atoms and low coordination number. The characteristics and the structures of photocatalysts were depended on the preparation processes. In the other words, the preparation method plays a key role in a successful synthesis of catalysts.

Various Ru-Sn/Al$_2$O$_3$ catalysts which had been prepared according to different metal reduction sequences under microwave irradiation was evaluated in the process of 4-nitrophenol hydrogenation [2]. The results of catalytic measurements obtained at room temperature revealed that differently prepared catalysts and the physical mixture containing Ru-Sn/Al$_2$O$_3$ with the same Ru/Sn ratio exhibited similar activities [2]. The structure of Ru-Sn bimetallic catalysts prepared by microwave irradiation method has not been reported. The structure of these solids has so far been studied by means of EXAFS, XANES, temperature-programmed reduction (TPR), CO adsorption and FTIR analyses [10–12]. The TPR of Pd-Cu/KL-zeolite bimetallic catalysts was studied by Fernandez-García et al. [11] using XANES and infrared spectroscopy with the probe molecule CO. The authors showed that
complete alloying with electronic perturbation of both components was reached over the full range of compositions. They also reported that the effect of reduction temperature on the nature of the surfaces exposed by the active phases, as well as the sintering processes.

In this paper, Ru-Sn based nanocatalyst was characterized by XPS and TPR to examine the oxidation states of metals prepared in a different route.

2. Methodology

2.1. Materials
Stannum chloride hydrate (SnCl$_2$.xH$_2$O), Ruthenium trichloride dehydrate (RuCl$_3$.2H$_2$O), 4-Nitrophenol (4-NP), sodium borohydride (NaBH$_4$) were purchased from Sigma Aldrich. Ethylene glycol and PVP (40K) was supplied by Fluka, whereas ethanol, acetone, and methanol provided by Sterm chemical. A domestic microwave SHARP model ShowerWaveTM was used to carry out all the microwave-assisted reactions. All mixtures were irradiated under a power of 700W. Metal ratio and metal content on the support were kept (1:1) and 2 wt%, respectively.

2.2. Methods

2.2.1. Sample Preparation
The synthesis of 2%(Ru$_{0.5}$Sn$_{0.5}$)/Al$_2$O$_3$ bimetallic nanoparticles was adopted from the method reported [3], [4] with some modifications in preparation steps and washing procedures [5]. In detail, sample preparation procedures were previously reported elsewhere[2].

2.2.2. X-ray Photoelectron Spectroscopy (XPS) and TPR characterization
X-ray photoelectron spectra (XPS) were acquired by KRATOS AXIS ULTRA spectrometer equipped with a hemispherical electron analyzer an Al Kα (E = 1486.4 eV, 1 eV = 1.6302 x 10$^{-19}$ J) 300-W of the X-ray source. The powder sample was mounted on a double-sided copper adhesive tape and then placed on a sample rod in a pre-treatment chamber and then transferred to the analysis chamber. Before recording the spectra, the sample was maintained in the analysis chamber until a residual pressure of ca. 5x10$^{-7}$ Nm$^{-2}$ was reached. The narrow scan spectra of the particular element were collected at the pass energy of 20 eV.

Normally, the binding energy of C1s was used as a standard for calibration. In this study, we examined Ru 3p instead of Ru 3d because the Ru 3d spectra are overlapped with the region of C1s [4], [5]. For that reason, we also calibrated the reading using Al$^{3+}$ binding energy (74.4 eV) as reference [6]. Spectral background calibration used Shirley or Linear method for every peak and adjusted using the Gaussian function.

The characterization of the sample using TPR is done using ThermoFinnigan TPD/R/O 1100 apparatus. Before being characterized, the sample was treated in a flow N$_2$ gas stream with a flow rate of 5 cc/min for 5min at room temperature. Then the temperature was raised at a warming rate of 10 °C/min to a temperature of 150°C and held for 5 min. At the time of TPR characterization, 5% hydrogen gas in argon with flow rate (25 cc/min) flowed into the sample at a temperature rate of 10 °C/min to 450 °C. H$_2$ gas consumption is read at every temperature increase.

3. Result and Discussion

3.1. X-Ray Spectroscopy
To confirm the reduction of Ru and Sn, the irradiated samples were characterized by X-ray Photoelectron Spectrometer as shown in Figure 1. From XPS analysis, all samples contain ruthenium in its metallic state. It is characterized by the binding energy of Ru 3p$_{3/2} \sim 461.0 \pm 0.2$ eV [4]. Other signals at higher binding energy were assigned to the higher oxidation states of ruthenium (Ru$^{4+}$ and Ru$^{6+}$) i.e. 463.1±0.1 eV and 466±0.2 eV. The surface oxidation of ruthenium was actually possible
because of ambient condition exposure for a few minutes [4], [5]. A narrow scan of the Sn 3d_{5/2} XPS spectra provides some information. Sn at metallic oxidation state was detected for RS-2 and RS-3 samples which are noticed at 484.1 eV. However, Sn(II) and Sn (IV) are unable to be differentiated [7]. According to literature, Sn 3d_{5/2} peak of Sn at ~ 486.5 might be assigned to Sn(II) and/or Sn(IV) [6]. The peak at ~ 484.1 eV corresponds to Sn⁰. The first peak is most probably due to tin Sn⁰ species.

According to the literature [6], [8], this binding energy is not much different from the binding energy of Sn(II) ~ 484.8 eV[8]. The results were contrary with the results observed from uncalcinedRu-Sn bimetallic prepared by the co-impregnation technique where the metallic tin cannot be observed [6]. In our work, the as-prepared sample obtained by microwave irradiation technique exhibits Sn in the metallic state for all samples as listed in Table 1. From the results, cc As we can see from XPS analysis, bimetallic PVP-stabilized Ru-Sn/Al₂O₃ catalyst obtained via microwave irradiation are majority composed of ruthenium and Sn(II) species. In all samples, the oxidation state of Sn is in major concentration. The tin is tightly bonded (via oxygen) in the outer surface of the γ-Al₂O₃ particles and may act as electronic promoter.
Figure 1. XPS narrow scan spectra of Ru 3p and Sn 3d of (a) RS-1 (b) RS-2 (c) RS-3

Table 1. The XPS qualitative analysis of 2%(Ru-Sn)/Al$_2$O$_3$ samples and its reaction rate.

Sample	Binding Energy (eV)	XPS analysis	Reaction rate$^{[21]}$, 10^{-3}						
	Ru0 3p	Ru$_{4+}$ 3p	Ru$_{6+}$ 3p	Sn0 3d	Sn$_{n+}$ 3d	Ru0/Ru$_{4+}$	Sn0/Sn$_{n+}$	Cl/(Ru$^+$ Sn)	
RS-1	461. 2	463.5	466	1	484.8	1.7	0.31	0.25	(8.07±0.82)
RS-2	461. 2	463.6	466.5	2	484.6	1.03	0.23	0.07	(4.84±0.77)
RS-3	461. 2	463.1	465.9	484.	1	0.97	0.10	0.07	(3.02±0.99)

3.2. Temperature-Programmed Reduction

The XPS results were then correlated with the characterization of TPR. The effect of the preparation route to the TPR profile of the Ru-Sn catalyst sample is supported with Sn/Ru atom ratio of 1.0 and compared with Sn / Ru = 0 sample shown in Figure 2. The differences in H$_2$ use patterns for different samples after preparation indicate a change in decline behavior. The emergence of a peak of hydrogen use was seen in the 1% Ru/Al$_2$O$_3$ TPR pattern at temperatures around (~ 223 °C). The intensity is related to the free Ru (0) formed in support [6]. TPR sample RS-1 samples show peak intake of H$_2$ at around ~ 140 °C with a reduction rate of 160-190 °C. There is also a peak at 330 °C and another peak above 450 °C. The peak at 140 °C is the reduction in RuCl$_3$[9]. It also implies that there is still chlorine content in the sample, in accordance with the analysis using XPS in Table 1. The decrease in hydrogen consumption after temperatures around 160 and 200 °C is derived from the reduction of Ruthenium.
Oxychloride and Ruthenium oxide. Other tops at around 300 °C indicate a decrease in Sn (II) and Sn metal [9]. The peak above the 450 °C temperature comes from Sn (IV) which does not interact with Ru (0)[6], [10].

![Graph showing TPR profile of Ru/Al₂O₃, and bimetallic RS-1, RS-2 dan RS-3](image)

Figure 2 TPR profile of Ru/Al₂O₃, and bimetallic RS-1, RS-2 dan RS-3

The previous studies showed that the Ru-Sn preparation route drastically alters 2%(Ru-Sn)/Al₂O₃catalytic properties[2]. In the case of RS-2 catalysts, provided by a consecutive reduction, the peak of the TPR reading was observed near 100 °Cdue to the reduction of ruthenium oxide (RuO₂) to the Ru metal[11]. Another small peak seen at 180 °C is also due to RuO₂[12]. The use of low hydrogen by RS-2 sample shows that it can be easily reduced. This is contrary to other findings in conventional Ru-Sn cases that found that Sn prevented access to hydrogen for reduced ruthenium[13]. Sample prepared from in-situ reduction of metal salts with the presence of Al₂O₃ and ethylene glycol (RS-3) has a similar profile with RS-2. It exhibits a wide peak at 179 °C given to RuO₂[12]. The RS-2 and RS-3 profiles of hydrogen usetemperature decline at the range of approximately 270 °C. The peak at 270 °C comes from another Ru²⁺ with interactions toSn²⁺[6]. Low-temperature reduction of RS-2 and RS-3 samples from low peaks also show a strong interaction of Ru and Sn species to alumina support [13].

4. Conclusions
XPS studies of 2%(Ru-Sn)/Al₂O₃ by three different preparation route under microwave irradiation, contain ruthenium and tin at their metallic state. Ruthenium and Tin exist majorly in an oxidation state ofRu(0) andSn(II) on the surface of reduced samples, respectively. TPR studies of the catalysts showed the most reactive sample most probably due to its high content of Ru(0) with no interaction with Sn.

References
[1] K.-S. Ju and R. E. Parales, “Nitroaromatic compounds, from synthesis to biodegradation,,” Microbiol. Mol. Biol. Rev., vol. 74, no. 2, pp. 250–72, Jun. 2010.
[2] A. S. R. and S. R. and M. A. Yarmo, “Catalytic activity of Ru-Sn/Al 2 O 3 in reduction reaction of pollutant 4-Nitrophenol,” J. Phys. Conf. Ser., vol. 983, no. 1, p. 12040, 2018.
[3] J.-Q. Du, Y. Zhang, T. Tian, S.-C. Yan, and H.-T. Wang, “Microwave irradiation assisted rapid synthesis of Fe–Ru bimetallic nanoparticles and their catalytic properties in water-gas shift
reaction,” *Mater. Res. Bull.*, vol. 44, no. 6, pp. 1347–1351, Jun. 2009.

[4] M. Zawadzki and J. Okal, “Synthesis and structure characterization of Ru nanoparticles stabilized by PVP or γ-Al2O3,” *Mater. Res. Bull.*, vol. 43, no. 11, pp. 3111–3121, Nov. 2008.

[5] A. M. R. Galletti, C. Antonetti, I. Longo, G. Capannelli, and A. M. Venezia, "A novel microwave-assisted process for the synthesis of nanostructured ruthenium catalysts active in the hydrogenation of phenol to cyclohexanone,” *Appl. Catal. A Gen.*, vol. 350, no. 1, pp. 46–52, Nov. 2008.

[6] Z. Zhiqing, Z. Lu, L. Bin, and G. Shizhuo, "Characterization of bimetallic Ru-Sn supported catalysts and hydrogenation of 1,4-cyclohexane dicarboxylic acid," *Appl. Catal. A Gen.*, vol. 302, pp. 208–214, 2006.

[7] B. A. Riguetto et al., “Ru-Sn catalysts for selective hydrogenation of crotonaldehyde: Effect of the Sn/(Ru + Sn) ratio.” *Appl. Catal. A Gen.*, vol. 318, pp. 70–78, 2007.

[8] Y. Pouilloux, F. Autin, C. Guimon, and J. Barrault, “Hydrogenation of Fatty Esters over Ruthenium – Tin Catalysts; Characterization and Identification of Active Centers,” *Analysis*, vol. 224, pp. 215–224, 1998.

[9] V. Mazzieri, "XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts," *Appl. Surf. Sci.*, vol. 210, no. 3–4, pp. 222–230, Apr. 2003.

[10] A. M. Silva, O. A. A. Santos, M. J. Mendes, E. Jordão, and M. A. Fraga, “Hydrogenation of citral over ruthenium-tin catalysts,” vol. 241, pp. 155–165, 2003.

[11] N. Saadatjou and J. Ali, “Synthesis and Characterization of Ru / Al2O3 Nanocatalyst for Ammonia Synthesis,” *Iran. J. Chem. Chem. Eng.*, vol. 34, no. 1, pp. 1–9, 2015.

[12] V. A. Mazzieri, M. R. Sad, C. R. Vera, C. L. Pieck, and R. Grau, “Preparation and characterization of Ru-Sn/Al2O3 catalysts for the hydrogenation of fatty acid methyl esters,” *Quim. Nova*, vol. 33, no. 2, pp. 269–272, 2010.

[13] D. a. Echeverri, J. M. Marín, G. M. Restrepo, and L. a. Rios, “Characterization and carbonylic hydrogenation of methyl oleate over Ru-Sn/Al2O3: Effects of metal precursor and chlorine removal,” *Appl. Catal. A Gen.*, vol. 366, no. 2, pp. 342–347, Sep. 2009.