The role of autophagy in idiopathic pulmonary fibrosis: from mechanisms to therapies

Yue-Liang Yue, Meng-Yu Zhang, Jian-Yu Liu, Li-Jun Fang and Yi-Qing Qu

Abstract: Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with an extremely poor prognosis. Autophagy is a fundamental intracellular process involved in maintaining cellular homeostasis and regulating cell survival. Autophagy deficiency has been shown to play an important role in the progression of pulmonary fibrosis. This review focused on the six steps of autophagy, as well as the interplay between autophagy and other seven pulmonary fibrosis related mechanisms, which include extracellular matrix deposition, myofibroblast differentiation, epithelial–mesenchymal transition, pulmonary epithelial cell dysfunction, apoptosis, TGF-β1 pathway, and the renin-angiotensin system. In addition, this review also summarized autophagy-related signaling pathways such as mTOR, MAPK, JAK2/STAT3 signaling, p65, and Keap1/Nrf2 signaling during the development of IPF. Furthermore, this review also illustrated the commonly used autophagy detection methods, the currently approved antifibrotic drugs pirfenidone and nintedanib, and several prospective compounds targeting autophagy for the treatment of IPF.

Keywords: autophagy, autophagy detection, idiopathic pulmonary fibrosis, therapies

Received: 10 June 2022; revised manuscript accepted: 8 November 2022.

Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with progressive onset, while its etiology is still unknown. IPF affects 0.9 to 13 out of every 100,000 individuals worldwide, and its incidence is rising year after year according to an IPF epidemiological survey. Among the numerous countries studied, South Korea, Canada, and also the United States took the top three places in terms of the incidence rate. The prevalence of IPF increases with age, with a high rate in men and individuals over 50. In the United States, the median age is 62 in patients newly diagnosed, of which 54% of them are male.

Histopathological features of IPF include spatially and temporal heterogeneous fibrosis, fibroblast and myofibroblast clusters, massive aggregation of extracellular matrix (ECM), and disorganized collagen. These pathological changes eventually lead to the disruption of normal lung tissue structure and an irreversible decline in pulmonary function. The current findings suggested that the complicated interactions between the environment and host factors lead to abnormal lung tissue repair and the development of IPF. However, the specific factors that trigger this process remain unknown. IPF presents with progressive cough, dyspnea, and some signs of reduced quality of life. The characteristic manifestation of IPF on chest high-resolution computed tomography (HRCT) is usual interstitial pneumonia (UIP), mainly distributed in both lower lungs and outer bands. At present, the pharmacological treatment for IPF recommended by evidence-based guidelines includes pirfenidone and nintedanib, both of which have pleiotropic antifibrosis effects. However, these two drugs have limited efficacy in improving quality of life and preventing disease progression, and have been associated with tolerance issues. The limitation of IPF treatment is mainly caused by its uncertain pathogenesis; therefore, clarifying its specific pathogenesis is in extremely urgent need.

Correspondence to:
Yi-Qing Qu
Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan 250012, China. quyiqing@sdu.edu.cn

Yue-Liang Yue
Meng-Yu Zhang
Jian-Yu Liu
Li-Jun Fang
Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
A range of molecular mechanisms, including ECM deposition, epithelial cells damage, oxidative stress, fibroblasts differentiation to myofibroblasts, immunity, and inflammation, are involved in pulmonary fibrosis. However, recent research has identified that there is insufficient autophagy during lung fibrosis, indicating that autophagy may be a significant driving factor for IPF development. Autophagy is a collection of normal physiological processes that respond to various stress, such as nutritional deficiencies, radiation exposure, and infection. Activated autophagy maintains pulmonary homeostasis in a cellular protective manner, it can selectively degrade potentially detrimental cytoplasmic substances, uneliminated proteins, and some unfavorable microorganisms, such as damaged organelles, viruses, protists, and bacteria. Interestingly, under conditions of energy deficiency and other pressures, autophagy also secretes cytoplasmic components and provides nutrients for important cellular functions. In recent years, more and more research has been committed to investigating the regulatory network of autophagy in IPF. Therefore, in this review, we mainly generalized the patterns and molecular pathways of autophagy in regulating IPF, the commonly used methods for detecting autophagy, as well as promising therapeutic strategies.

The overview of autophagy

Autophagy is a significant degradation pathway that relies on lysosomes and is evolutionarily conserved. Autophagy is classified into macro-autophagy, micro-autophagy, and chaperone-mediated autophagy according to the way substrates enter lysosomes, all of which ultimately transport cargoes to lysosomes for degradation. Macro-autophagy utilizes autophagosomes to transport cytoplasmic contents to lysosomes. Autophagosomes are vesicles formed by intracellular degenerated or damaged organelles surrounded by a bilayer membrane, which subsequently fuses with lysosomes to form autolysosomes and degrades the contained substances. In micro-autophagy, the lysosomal or vesicular endosomes directly invaginate and then wrap and degrade the intracellular material. On the contrary, chaperone-mediated autophagy is highly selective, the substrate proteins recognized by molecular chaperone bind to lysosomal-associated membrane protein 2A (LAMP-2A) for translocation across lysosomal membrane, leading to its unfolding and degradation. Even if these three kinds of autophagy have distinct pathways of occurrence, they all function critically in removing damaged substances and responding to external stimuli. Compared with micro-autophagy and chaperone-mediated autophagy, macro-autophagy has been studied in great detail. Therefore, herein we refer to macro-autophagy simply as ‘autophagy’.

The process of autophagy includes initiation, nucleation, elongation, maturation, fusion, and degradation, which is strictly controlled by the coordinated activity of diverse regulatory components (Figure 1). In mammalian cells, the initiation step is the induction of autophagosome formation in response to autophagy activation signals. The endoplasmic reticulum (ER)-associated structures called omegasome may be the starting site for mammals. The process is regulated by the Unc-51-like kinase 1 (ULK1) or ULK2 complex, which is made up of ULK1/2, focal adhesion kinase-family-interacting protein of 200 kDa (FIP200), autophagy-related 13 (ATG13), and ATG101. Several signals can act on various sites of the ULK complex to regulate its autophagic activity. In the case of adequate nutrition, the ULK1 complex associates with the mammalian target of rapamycin complex 1 (mTORC1) and then phosphorylates the Ser758 or Ser757 sites of ULK1, causing the inhibition of autophagic activity via suppressing ULK1 catalytic activity. Equally, mTORC1 can phosphorylate ATG13 and inhibit the process of the ULK1 complex migrating to the autophagy initiation sites. On the contrary, 5-AMP-activated protein kinase (AMPK) can stimulate ULK complex to deliver stress signals for autophagosome generation during energy scarcity. However, except for AMPK and mTORC1, many other signals can also regulate the ULK complex activity. The nucleation formation is the immediate next step. During this process, the vacuolar protein sorting 34 (VPS34) complex would be stimulated by the activation of ULK1 complex, which is engaged in vesicle nucleation and consists of VPS34, VPS15, ATG14, AMBRA, and Beclin-1. The nucleation formation is the immediate next step. During this process, the vacuolar protein sorting 34 (VPS34) complex would be stimulated by the activation of ULK1 complex, which is engaged in vesicle nucleation and consists of VPS34, VPS15, ATG14, AMBRA, and Beclin-1.

In the subsequent phase of elongation, the phagophore keeps expanding and engulfing the cytoplasm and its content. The extension of phagophores mainly depends on two ubiquitination complex systems. The first ubiquitination system is correlated with the formation of ATG12-ATG5-ATG16 complex. ATG12 binds to ATG5 in a covalent manner to form a complex
through a ubiquitin-like (UBL) response that demands ATG7 and ATG10. Then ATG16 L binds to ATG12-ATG5 conjugate noncovalently and dimerizes to compose ATG12-ATG5-ATG16 L complex, which binds to the phagophore membrane then dissociates after autophagosome completion.49–53 Another UBL system involving phagophore expansion is the ATG8/LC3 system. Light Chain 3 (LC3) in mammals is encoded by homologues of the ATG8 gene, which serves as a pivotal indicator of the level of cellular autophagy.49,52 During the maturation and fusion steps, the phagophore is completely enclosed, which contributes to the formation of round or elliptical autophagosomes encapsulated by bilayer membranes. This process is promoted by autophagy receptor or adaptive proteins such as p62, acrylonitrile-butadiene rubber 127 (NBR127), autophagy-linked FYVE protein 28 (Alfy28), and optineurin. Following this, the mature autophagosome transports cargoes to the lysosome through microtubules, which subsequently enter the lysosome to form an autophagic lysosome.54–57 In the final step of degradation, the endosomal portion of autophagosomes would be degraded along with its encapsulated contents and then the components of which are released into the cytoplasm for cycling by lysosomal membrane permeases.58

The role of autophagy in IPF

A growing number of evidence have verified that both autophagic stream and autophagic function are inhibited in the lung tissues of IPF, as manifested by a decline in autophagosomes,
the inability of fusion of autophagosomes with lysosomes, elevated expression of intracellular p62, and ubiquitinated proteins.59 This phenomenon reveals that deficient autophagy is closely associated with the pathogenesis of IPF. The next step is to figure out how the abnormality of autophagic process results in the occurrence of pulmonary fibrosis (Figure 2).

Regulation of ECM deposition

Loss of balance between ECM production and degradation can lead to massive aggregation of ECM, which in turn promotes tissue fibrosis progression, the most significant pathological change during pulmonary fibrosis.60,61 Collagen I and III are essential elements of human connective tissues, which are secreted by the activated myofibroblasts. However, Type I collagen is mainly associated with the pathogenesis of severe cases of IPF, while type III collagen is primarily accumulated in mildly fibrotic lung tissues. During pulmonary fibrosis, the critical functions of autophagy for degrading pathogens, misfolded proteins, and ECMs are impaired.62 The research found that Beclin1-deficient mice showed an increase in type I collagen and ECM deposition.63,64 The study found that autophagy induced by etoposide-induced protein 2.4 (Ei24) can inhibit the deposition of ECM in a mouse model of pulmonary fibrosis. While the suppression of autophagic activity by 3-methyladenine (3-MA) promotes the production of ECM protein, which is manifested by increased levels of collagen I and fibronectin.24 The above results indicate that autophagy is a significant channel for intracellular collagen degradation. Inhibiting autophagic activity can contribute to the failure of collagen clearance and ECM deposition, thus promoting the development of IPF.

Regulation of myofibroblast differentiation

Studies have found that fibroblast infiltration and myofibroblast activation can lead to pathological changes in fibrosis, which is a critical step in the generation of pulmonary fibrosis.65 Knockdown of Beclin1 or LC3B promoted transforming growth factor-β (TGF-β)-mediated myofibroblasts differentiation, and increased the expression of fibronectin and alpha-smooth muscle actin (α-SMA) in myofibroblasts. Another study collected primary
lung fibroblasts from patients with IPF to detect changes in autophagy activity, and they found that under starvation conditions, p62 expression was reduced in fibroblasts, while LC3B-II levels were markedly increased, and the cells exhibited distinct features of myofibroblast activation. However, the knockdown of ATG7, or autophagy inhibitors, can inhibit starvation-induced myofibroblast activation. In addition, a cellular assay demonstrated that activation of mTORC1 in MRC-5 cells by rapamycin can downregulate the levels of myofibroblast markers α-SMA and fibronectin. As described previously, defective autophagy can give rise to fibroblasts differentiation into myofibroblasts during the generation of pulmonary fibrosis. The lung architecture will then be remodeled by fibroblasts and myofibroblasts through the production of matrix and media, as well as metalloproteinase secretion.

In addition to fibroblasts, there are several other cell types that can transdifferentiate into myofibroblasts and participate in the pulmonary fibrosis process. The research found that markers of myofibroblasts, vimentin, and α-SMA, were detected in alveolar macrophages in response to TGF-β stimulation. Furthermore, the researchers demonstrated that myofibroblasts were mainly differentiated from M2-type macrophages. In vivo rat experiments have also confirmed the occurrence of M2-type macrophage-myofibroblast, leading to pulmonary fibrosis. Several experiments have shown that alveolar epithelial and endothelial cell lines can express the myofibroblast phenotype through mesenchymal transformation. Recognizing the origin of myofibroblasts is essential for finding effective targets to suppress fibrosis.

Regulation of epithelial–mesenchymal transition (EMT)

Another significant pathogenesis of IPF is the development of EMT in alveolar epithelial cells, which is manifested by a decline in cell adhesion molecules, the formation of vimentin-dominated cytoskeleton, and morphological characteristics of mesenchymal cells. Alveolar epithelial cells that undergo EMT lose cell polarity and connectivity with basement membranes, and in the presence of tissue damage, they can be converted into fibroblasts to repair the damage. Nevertheless, if the inflammatory reaction continues to persist, the EMT process may continue and ultimately promote the process of pulmonary fibrosis. Inhibition of autophagy treated with Bafilomycin-A1 leads to EMT, as demonstrated by a decline in E-cadherin, a rise in vimentin, and upregulation of EMT transcription factor Snail2. Furthermore, a broad range of studies has revealed that in the presence of blocked autophagic flux and impaired autophagic function, epithelial cells cannot eliminate a great number of misfolded proteins, and can cause the accumulation of some nuclear factors, which can induce the occurrence of EMT and chronic inflammation. Leptin inhibits autophagic activity in A549 cells through PI3K/AKT/mTOR signaling, thereby accelerating the EMT process. Inhibition of autophagy activity has been verified to participate in EMT during the development of pulmonary fibrosis. At present, most studies related to EMT focus on tumor cells, and the relationship between EMT and pulmonary fibrosis needs to be further explored.

Regulation of lung epithelial cell dysfunction

Epithelial cells are known to secrete not only anti-fibrotic and anti-inflammatory mediators but also profibrotic molecules that participate in the generation of pulmonary fibrosis. It has been hypothesized that epithelial cell stress promotes fibrosis by causing chronic or persistent lung injury. Therefore, the relationship between the autophagy formation in epithelial cells and fibrosis becomes a research hotspot. The research demonstrated that several essential genes in the autophagic pathway, including ATG14 and Beclin1, were downregulated in the lung epithelial cells treated with profibrotic factor IL-17, that is mostly released by neutrophils. It has been speculated that IL-17-induced attenuation of autophagy contributes to the promotion of fibrogenesis and may inhibit the collagen degradation pathway. Except for IL-17, several bioactive lipids like lysophosphatidic acid also have a role in inhibiting autophagy and promoting fibrogenesis. In addition, it has been demonstrated that mice with knockout of ATG4b exhibited more pronounced apoptosis of bronchial and alveolar epithelial cells at day 7 post bleomycin treatment, along with a stronger inflammatory response, resulting in more severe fibrosis and collagen accumulation. Likewise, in the case of conditional knockout of tuberous sclerosis-1 (TSC1) gene in mouse epithelial cells, the mice appear to have a higher risk of fibrosis caused by bleomycin, while rapamycin or chloroquine, that induce autophagy,
could reverse this phenomenon. Therefore, insufficient autophagy leads to epithelial cell dysfunction and subsequent pulmonary fibrosis, while activating autphagic flux can enhance the repairability of epithelial cells and attenuate pulmonary fibrosis. The exact molecular mechanism on how autophagy formation is regulated and its effect on epithelial cell function remains unclear and needs to be explored in future research.

Regulation of apoptosis
Fibroblasts and myofibroblasts have been discovered to have high anti-apoptotic properties in IPF. Beclin1 is downregulated in pulmonary fibroblasts from IPF patients, whereas the anti-apoptotic protein Bcl-2 is upregulated. Apoptosis of alveolar and bronchial epithelial cells in mice deficient in the autophagy-related gene ATG4b was increased after bleomycin treatment for 7 days. At the same time, it was also observed in pulmonary fibroblasts of IPF patients that when the mTOR pathway was continuously activated, its anti-apoptotic ability was significantly enhanced, and when the expressions of forkhead box-class O3a (FOXO3a) and LC3B were reduced, the type I collagen matrix-mediated apoptosis reduced. However, fibroblasts can recover the sensitivity to collagen matrix-induced apoptosis upon restoration of FOXO3a or LC3B expression. Some studies found that aberrantly activated human chromosome 10 deleted phosphatase and tensin homolog (PTEN)/AKT/mTOR signaling can induce autophagy in myofibroblasts by regulation of collagen synthesis, which leads to cell survival. Therefore, autophagy may reduce fibroblast apoptosis through the mTOR pathway, thereby increasing its anti-apoptotic ability. Currently, the mechanism regarding how autophagy is involved in apoptosis remains obscure and further research is needed to improve the understanding of the detailed relationship.

Regulation of TGF-β1 signaling pathways
TGF-β1 is capable of activating the TGF-β1/Smad and non-Smad signaling pathways, causing the activation of myofibroblast and excessive aggregation of ECM, which contributes to pulmonary fibrosis in the progression of IPF patients. TGF-β1 is a major contributor to fibrosis. Multiple autophagy genes including PARK, PINK1, p62, aminobutyric acid receptor-related protein, ATG4c, ATG5, ATG7, ATG16l1, ATG16l2, and ubiquitin-like kinase 2, are associated with the regulation of TGF-β1. Overexpression of TGF-β1 could induce the generation of pulmonary fibrosis in animal models. In addition, TGF-β can induce MRC-5 cell differentiation and increase the expression of fibronectin, collagen I, p62, and α-SMA, and also activate mTOR pathway, reducing the level of LC3B instead. Silencing of LC3 and ATG5 genes increased type I collagen and α-SMA expression, while TGF-β treatment could further increase their expression levels. In addition, TGF-β treatment also promoted differentiation of alveolar macrophages in mice, and autophagic activity could enhance this effect. TGF-β1 has been shown to reduce the number of autophagic vesicles and inhibit autophagic gene expression in normal human lung fibroblasts (NHLFs).

Collectively, autophagy participates in conjunction with TGF-β1 signaling pathways in lung fibrosis.

Regulation of angiotensin
The renin-angiotensin (Ang) system is composed of two major axons, which act as a critical part in lung fibrosis. Abnormality in AngII is related to several respiratory diseases. In addition, Ang-(1~7) performs antagonistic effects on AngII by acting on its specific receptor Max. AngII is a key factor in inducing collagen synthesis, autophagy occurrence, and collagen degradation in pulmonary fibrosis. The evidence shows that autophagy activity not only increases reactive oxygen species caused by AngII but also activates nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome via redox. Ang-(1~7) attenuates the impairment of autophagy caused by an increase in reactive oxygen species and ameliorates pulmonary fibrosis associated with cigarette smoking. Furthermore, overexpression of angiotensin-converting enzyme 2 (ACE2) enhances autophagy and attenuates collagen deposition in the lung tissue. At present, the reports regarding the interactions between autophagy and Ang in the occurrence and progression of IPF remain limited. More and more studies are needed.

Underlying signaling pathways of autophagy involved in IPF
Substantial studies have rectified that several signaling pathways could cause pathological alterations in IPF through regulation of cell differentiation and migration. Therefore, in order to discover
pivotal signaling targets in IPF pathologies and improve the integrated signaling pathway spectrum of IPF, it is necessary to figure out how these signaling pathways are involved in these processes (Figure 3).

mTOR signaling pathway

A growing body of research indicates that mTOR-mediated pathways may play indispensable roles in facilitating IPF. mTOR is a serine-threonine kinase that has two distinct forms of complex: mTORC1 and mTORC2. mTORC1 mainly modulates cell growth and autophagy in an unfavorable environment, thereby altering the proliferation and viability of fibroblasts. In contrast, mTORC2 acts mostly on cytoskeletal protein construction and cell survival. In addition, mTOR can recognize various intracellular signaling molecules and inhibit autophagy via suppression of the phosphorylation state of ATG1/ULK1 protease complex.

PI3K/akt/mTOR signaling. The PI3K/akt/mTOR pathway is a widely studied signal axis that is correlated with autophagic regulation. The studies showed that the suppression of PI3K/akt/mTOR signaling alleviated pulmonary fibrosis in bleomycin-induced pulmonary fibrosis animal models. Phosphatidylinositol 3-kinase (PI3K) is a network of lipid kinases that is participated in numerous processes, which can activate the downstream protein kinase Akt. There are three isoforms of Akt: Akt1, Akt2, and Akt3. Research on pulmonary fibrosis has focused on isoforms of Akt1 and Akt2, as Akt3 is predominantly expressed in brain tissue. PI3K activates Akt by phosphorylating threonine (Thr308) and serine (serine 473), and then Akt signals to several downstream effectors including mTOR. Phosphorylated-mTOR (p-mTOR) can phosphorylate downstream effector molecules such as ribosomal protein S6 kinase 1, thus promoting the production of protein and inhibiting autophagy.

The activity of mTOR is enhanced in IPF fibroblasts incubated on collagen I through Akt activation, resulting in a proliferative and anti-apoptotic fibroblast phenotype by changing autophagic activity. Long-term treatment with paraquat (PQ) can stimulate the PI3K/ AKT signaling pathway, thereby increasing mTOR activation, reducing the expression of Beclin1 and LC3-II expression. Ultimately, the autophagic activity was inhibited and the process of pulmonary fibrosis induced by PQ was aggregated as well.

Figure 3. Autophagy-related molecular pathways in IPF. Six autophagy pathways are summarized in this figure: PI3K/Akt/mTOR pathway, AMPK/mTOR/ULK1 signaling, p38MAPK/eEF2 K/eEF2 signaling, JNK signaling, JAK2/STAT3 signaling, p65, and Keap1/Nrf2 signaling. These six autophagic pathways are involved in the autophagic process through cascade reactions.
autophagy mediated by PI3K/AKT signaling was significantly reversed after LY294002 treatment, as evidenced by decreased levels of phosphorylated S6K protein, a downstream target of mTOR signaling. In addition, the PI3K/AKT/mTOR signal axis can be induced and activated by lipopolysaccharide (LPS), which is manifested by the elevated expression of p-mTOR and p-Akt. The activation of this pathway would further upregulate p62 expression and reduce the number of autophagic vesicles, which would inhibit autophagy in lung fibroblast. Collectively, the numerous findings above show that studying the specific regulatory network of PI3K/AKT/mTOR signaling could provide an effective target for IPF management.

AMPK/mTOR/ULK1 signaling. AMPK is able to diminish ATP consumption by inhibiting anabolism and stimulate metabolism to promote ATP production, which functions as a significant regulator in the metabolic process. It was found that in case of hunger and energy deprivation, activated AMPK directly phosphorylates the Thr1227 and Ser1345 sites of the mTOR upstream regulator TSC2, and the Ser722 and Ser792 sites of the mTORC1 subunit PAPTOR. These two phosphorylation processes inhibit the action of mTOR, thus attenuating the inhibitory phosphorylation effect on ULK1 and activating autophagy. The silica-induced pulmonary fibrosis could be inhibited by metformin by activation of autophagy through AMPK/mTOR pathway, as demonstrated by the increased levels of phosphorylated AMPK, LC3B, and Beclin1, and decreased p-mTOR and p62 expression.

Except for phosphorylating ULK1, AMPK can also phosphorylate other key elements in autophagic pathways, such as Ser91 and Ser94 on Beclin1, Ser761 on ATG9, and so forth. However, some AMPK phosphorylation sites mentioned above have not been clarified. Therefore, the regulatory role of AMPK and ULK1 on autophagy and its relationship with lung fibrosis remains to be explored in future studies.

Mitogen-activated protein kinase (MAPK) signaling pathway

MAPK is a key transmitter of signal transduction, which is activated by various external stimulants. MAPKs consist of p38MAPK, c-Jun N-terminal kinase (JNK)1/2/3, extracellular signal-regulated kinase (ERK)1/2, ERK7/8, ERK3/4, and ERK5/BMK1, which exerts a signal transduction role in the occurrence of autophagy and other metabolic activities.

P38MAPK/eEF2K/eEF2 signaling. p38MAPK has been shown to have four isoforms in mammals, which have different tissue-specific distributions and can be coupled to different upstream kinases. The p38MAPK pathway is a critical regulator of autophagic process. Eukaryotic elongation factor-2 (eEF2) kinase (eEF2K) is a well-conserved protein kinase that is encoded by genes in the calcium- or calmodulin-mediated pathway. Protein eEF2K participates in regulating the process of protein synthesis through the control of peptide chain elongation. Once activated by the upstream p38MAPK, eEF2K would phosphorylate the Thr56 site of its sole substrate eEF2, making it unable to bind to the ribosome and thus inhibiting the function of eEF2. Recent studies have shown that inhibiting eEF2K promotes myofibroblast proliferation and differentiation through the p38MAPK signaling pathway. Furthermore, the inhibition of myofibroblast autophagy could be aggravated by inactivating eEF2K, which facilitates the formation of myofibroblasts and subsequently accelerates the procedure of lung fibrosis. Overall, more extensive studies of p38MAPK/eEF2K/eEF2 signaling are needed to find more effective treatments for IPF.

JNK signaling. The JNK family is a key molecule in signaling transduction initiated by diverse stimuli during cellular stress reactions. Previous research has shown that the JNK signaling acts as a key player in the process of autophagy induced by multiple stimulations, such as hypoxia, infection, and DNA damage. JNK activation regulates autophagy mainly by promoting the phosphorylation of Bcl-2/Bcl-XL. Beclin-1 is a protein containing the pro-autophagy BH3 domain, and its binding to Bcl-2 can be disturbed by phosphorylation of Bcl-2 mediated by JNK. Research data has suggested that JNK may upregulate the expression of autophagy gene Beclin-1 by regulating the phosphorylated state of Bcl-2, thereby enhancing autophagy. In addition, JNK also leads to the upregulation of diastasis of the rectus abdominis (DRAM). DRAM regulates autophagosome-lysosome fusion, which can promote the production and accumulation of autophagic phagosomes. One study found that
JNK activation promoted the initiation of autophagy and alleviated the progression of liver fibrosis in a mouse model. Nevertheless, the current research concerning JNK and autophagy in IPF is still limited. Broadening the understanding of their interactions would provide new perspectives on the treatment of IPF patients.

JAK2/STAT3 signaling

Janus kinases (JAK) is a family of intracellular non-receptor type protein tyrosine kinase, and four members have been found, namely, JAK1, JAK2, JAK3, and TYK2. It is a key part of signal transduction initiated by multiple receptor molecules. Signal transducer and activator of transcription (STAT) is a unique group of proteins that can bind to DNA, including seven structurally and functionally related proteins, which can respond to a variety of extracellular cytokine and growth factor signals. Cytokine and growth factor can phosphorylate and activate JAK after receptor binding, which can phosphorylate tyrosine residues of downstream target proteins, recruit and phosphorylate the transcription factor STAT. Once activated, STAT dimerizes and enters the nucleus to combine with target genes, regulating the transcription of downstream genes and the process of cell proliferation, differentiation, and apoptosis. Among these JAK/STAT isoforms, it was found that JAK2/STAT3 pathway was mainly involved in the pulmonary fibrosis process. The studies have indicated that JAK2 and STAT3 play independent roles in the process of autophagy and aging. Compared with the inhibition of either protein alone, the dual inhibition of JAK2 and STAT3 can lead to higher levels of autophagy. Nevertheless, the independent mechanisms of JAK2 and STAT3 causing pulmonary fibrosis remain unclear, and the potential mechanisms of the synergistic effect of double inhibition have yet to be studied in the future.

p65 and Keap1/Nrf2 signaling

p65 is a subunit of nuclear factor (NF)-κB, and its expression level was elevated in lung fibrosis caused by lipopolysaccharide and TGF-β1. Upregulating p65 expression could reverse PQ-induced suppression of autophagic flux and progression of fibrosis in lung tissues. In addition, p65 can bind to Kelch-like ECH-associated protein 1 (Keap1) to induce the production of nuclear factor erythroid-derived 2-like 2 (Nrf2). Nrf2 knockout can reverse the protective effects of p65 in pulmonary fibrosis, and reduce autophagy gene expression. Furthermore, the study has found that p62 could also competitively binds to Keap1, resulting in the release of Nrf2. As a key marker for autophagy, the accumulation of p62 indicates that autophagy is impaired. Similarly, Nrf2 promotes autophagy by activating the positive feedback loop of the downstream target gene p62. In conclusion, both P65 and P62 can regulate autophagic activity in pulmonary fibrosis through the Keap1/Nrf2 signaling pathway. However, studies on the Keap1/Nrf2 signaling axis and its relationship with pulmonary fibrosis are still limited, and further studies in this area are needed in the future.

Routine methods monitoring autophagy after IPF

It has been widely established that inadequate autophagy causes the generation of pulmonary fibrosis in IPF. Hence, observing the status and activity of autophagy is quite necessary to investigating autophagic function, which facilitates autophagy-targeted IPF therapy. A large number of methods for detecting autophagy have their own merits. However, one single autophagy detection method is unable to precisely identify this process. In practical studies, to precisely illustrate the process of autophagy, it might be necessary for the researchers to use complementary approaches.

LC3 detection

Western analysis. It is well known that LC3 is a specific marker for autophagy. Under normal physiological conditions, LC3 level in mammalian cells is usually remained within a certain range. The mammalian LC3 gene has a high genetic identity of 94%, reflecting the evolutionary conservation of autophagy. When autophagy is formed, cytoplasmic LC3-I cleaves off a small segment of polypeptides and subsequently binds to phosphatidylethanolamine (PE) to transform into membrane-bound LC3-II. Therefore, the total quantitative changes of LC3 merely represent the transformation between LC3-I and LC3-II, and detecting LC3-II or LC3-I alone is unable to reflect the status of autophagic activity. In order to ascertain the authentic activity of autophagy, it is of great necessity to detect the dynamic change of these two isoforms. Usually, converting
LC3-I to LC3-II or elevated LC3-II expression represents activated autophagy, whereas the declined LC3-II content indicates that autophagy is inhibited. Intriguingly, blocking of autophagic activity can contribute to a failure in converting LC3-I to LC3-II, resulting in a decline in LC3-II levels. Besides, the overactivation of autophagic flux can also reduce LC3-II content according to the removal of LC3B-II by autophagic lysosomes. Both of the abovementioned situations can lead to similar results in Western blot, but they represent unequal biological ending points. Hence, clarifying the relationship between LC3 protein content and different autophagy states is crucial to ensure a proper assessment of autophagy activation. To distinguish between these two possible conditions, it is advisable to utilize lysosome-dependent degradation inhibitors, such as Bafilomycin A1 and pepstatin A, which can prevent autophagosome-to-autolysosome fusion and block the proteolytic activity of autophagosome-degrading enzymes.

Fluorescence microscopy detection. Except for the Western blot assay, the contents of LC3 can also be detected by fluorescence microscopy. The antibodies against endogenous LC3 or LC3-expressing plasmid tagged with green fluorescent protein (GFP) can be used to detect puncta via immunofluorescence microscopy. Intracellular aggregation of GFP-LC3B under fluorescence microscopy is considered as an indicator of activated autophagic flux. Unlike the soluble cytosolic LC3-I, the membrane-bound LC3-II protein can bind to the outer membrane of autophagosome. Thus, when autophagy is formed, the GFP-LC3 fusion proteins appear as multiple bright green fluorescent spots under fluorescence microscopy, while LC3-I shows only diffuse fluorescence. Each spot represents one autophagosome, so counting the amounts of GFP-LC3 spots per cell can help assess the autophagic activity. In addition, the utilization of tandem fluorescent-labeled LC3 expression vectors is also a proper method to detect autophagy flux by LC3 puncta. For instance, the utilization of mRFP/mCherry-GFP-LC3 tandem fluorescent proteins in cellular experiments could accurately determine the autophagic activity through simultaneously observing changes in fluorescence intensity.

Flow cytometry. The flow cytometry can determine the autophagy activity as well. In the state of activated autophagy, the intracellular LC3B-I convert to membrane-bound LC3B-II. As the activation of autophagy continues, LC3B-II localized on the surface of autophagosomes or autophagic lysosomal membranes will be gradually degraded, resulting in a decrease in LC3B fluorescence intensity on the flow cytometer. Nevertheless, due to the generation of LC3B-I also improved after the initiation of cellular autophagy, the decline of LC3B fluorescence intensity is implicit. Therefore, the use of Saponin is essential for observing obvious changes in fluorescence intensity on flow cytometers, which can damage the membranes of cells via producing micropores on the cell surface. Collectively, both the immunofluorescence and flow cytometry detection of autophagy demands the use of fluorescent dyes or proteins for labeling. While immunofluorescence can observe punctate aggregation of LC3, flow cytometry can offer high-throughput analysis for autophagic flux.

Transmission electron microscopy (TEM) In cellular experiments, TEM is widely utilized to directly observe the morphological alterations in autophagy during different periods. Monitoring autophagic flux via TEM enables qualitatively observing the autophagy ultrastructures inside cells. Autophagy inhibitors can be used to observe the morphology and number of autophagic ultrastructure during various periods, and they can realize the dynamic detection of autophagic flux. For instance, the significantly higher proportion of autophagosomes than autolysosomes may be due to overactivation upstream of the autophagic flux, or hindered formation and maturation of autolysosomes. Besides, if substantial late autophagic structures accumulate in cells, it may mean that the process of autolysosome degradation is blocked. At present, TEM can observe various ultrastructures of autophagy, such as phagocytic vesicles and autolysosomes, which is the most direct method to monitor autophagy activity.

The SQSTM1/p62 and LC3B binding protein turnover assay Sequestosome1 (SQSTM1)/p62 is involved in autophagosome composition as a regulator with substrate specificity and serves as a bridge connecting LC3B-II to the ubiquitinated substrates to be degraded. p62 binds to the ubiquitinated proteins to enter the autophagosomes, and then
eventually cleared within autolysosomes. In the absence of certain ATG genes or blocked autophagosome-lysosome fusion, p62/SQSTM1 accumulates significantly in cells with impaired autophagic flux, and the expression of overall p62 levels in cells is negatively correlated with autophagic activity. In addition, p62 is also associated with the proteasomal degradation process, and when the proteasomal degradation pathway is blocked, the p62 expression levels increase as well.\(^{168,169}\) Hence, to ensure that only the autophagic degradation of p62 is monitored in experiments, it is necessary to appropriately use proteasome degradation system inhibitors for observing the correct p62 protein degradation rate. In addition, it is worth noting that with the fluctuation of autophagic flux, there is a certain lag in the changes of soluble and insoluble p62. The level of LC3 protein changes rapidly, whereas p62 has a longer adaptation time as an autophagic substrate, which makes it difficult to detect.\(^{170}\) In the process of detection, different time points need to be set to dynamically analyze the changes of p62 during the autophagic flux.

Potential therapeutic agents targeting autophagy

IPF is a rare respiratory disease with an extremely terrible clinical outcome, which can dramatically affect the physical and psychological health of patients. Nevertheless, at present, treatment options for IPF are severely limited, and there is no medicine could reverse or completely prevent the development of IPF. At present, lung transplantation is the only curative therapy for IPF, while the average survival time is only about 5 years and there still exist extremely limitations in clinical treatment, such as the lack of donors. Along with the study on mechanisms of autophagy in IPF, several drugs have been marketed to ameliorate IPF progress, in addition, a variety of compounds that have therapeutic effects on IPF through modulating autophagy are gradually being discovered.

Current effective drugs

In recent years, evidence-based treatment guidelines have recommended two antifibrotic drugs for clinical treatment of IPF patients. Clinical trials have verified that pirfenidone and nintedanib can delay pulmonary fibrosis progression and reduce mortality. Studies have found that pirfenidone exerts its antifibrotic effects mainly by inhibiting TGF-\(\beta\)1 and the downstream molecules of its pathway. In the bleomycin-induced lung fibrosis model in mice, pirfenidone inhibited TGF-\(\beta\)1-mediated phosphorylation of SMAD3 and \(\alpha\)-SMA expression, thereby reducing fibroblast proliferation and myofibroblast trans-differentiation. In addition, pirfenidone has been shown to interfere with collagen generation and the fibrillogenic process by decreasing the production of some profibrotic factors and growth factors to reduce ECM deposition.\(^{172-174}\) A recent study confirmed the ability of pirfenidone to activate the formation of autophagic vesicles in lung fibroblasts by detecting an increase in EGFP-LC3 sites and the conversion of LC3-I to LC3-II.\(^{175}\) However, the exact mechanism of how pirfenidone exerts its antifibrotic effects through autophagy remains to be investigated. Furthermore, pirfenidone can detoxify mitochondrial peroxidase to improve mitochondrial respiration, and maintain normal mitochondrial function.\(^{172}\) In addition, pirfenidone can also...
Therapeutic role in IPF through its antioxidant and anti-inflammatory effects. Despite the obvious clinical efficacy of pirfenidone in the treatment of IPF, it still has some pharmacokinetic deficiencies. Several clinical studies have verified that feeding remarkably reduces the absorption and utilization of pirfenidone, affecting its bioavailability. Another study proved that inhaled pirfenidone significantly improved this condition and had the same therapeutic effect, which holds great potential for the treatment of IPF.

Another therapeutic drug with antifibrotic properties is nintedanib. In clinical trials, nintedanib has been validated to reduce the rate of lung function deterioration and attenuate the fibrosis process. Nintedanib can decrease the deposition of collagen induced by TGF-β and inhibit fibroblast proliferation, fibroblast motility and contraction stimulated by growth factor, and fibroblast to myofibroblast transformation, thereby inhibiting the underlying process of progressive pulmonary fibrosis. In addition, some research has confirmed that nintedanib inhibits the proliferation of some pulmonary vascular cells, such as endothelial cells and pulmonary artery vascular smooth muscle cells. However, it is still uncertain whether these effects are related to its antifibrotic properties. In addition, nintedanib may also slow disease progression through an anti-inflammatory response. Importantly, the study found that nintedanib was able to enhance autophagy via detecting the ratio of LC3-I/II. Another study yielded the same results, but found that nintedanib induced a form of autophagy dependent on Beclin-1 and independent of ATG7. Currently, several therapeutic strategies for IPF that target autophagy have been discovered as a result of the intensive study of autophagy regulation.

Potential compounds

Amounting research focus on the development of new molecular targets and treatment options. Berberine is a plant quaternary alkaloid segregated from natural sources, which is characterized by a wide spectrum of pharmacological properties that have gained significant interest in clinical applications. The treatment of berberine exerts a beneficial effect on inducing autophagy to resist pulmonary fibrosis. Berberine can promote Beclin-1 and LC3-II production with p-mTOR reduced, and stimulate autophagosome formation as well, leading to autophagy initiation. Meanwhile, in bleomycin-induced animal models, berberine can also reduce the levels of α-SMA, fibronectin, and collagens I and III, restore the normal alveolar structure, and reverse the ultrastructural changes in the lung. In addition, berberine ameliorates the fibrotic progression induced by bleomycin via purposefully inhibiting PI3K/AKT/mTOR signaling axis.

Spermidine is a natural polycation that serves as a physiological autophagy inducer, which can reduce bleomycin-induced production of profibrogenic mediators and structural disorders in mouse lung tissue. The research confirmed that spermidine can increase the levels of critical autophagic marker molecules, such as ATG7 and Beclin-1 in bleomycin-induced fibrotic lung tissues and IPF fibroblasts, thus enhancing the formation of autophagosomes. Moreover, it can reverse autophagy impairment in IPF fibroblasts by suppressing mTOR. This mentioned evidence shows that spermidine may be a promising direction for IPF therapy.

Programmed cell death ligand 1 (PD-L1) has been confirmed to be highly expressed in lung tissues of patients with pulmonary fibrosis. The anti-PD-L1 monoclonal antibody (anti-PD-L1 mAb) was found to greatly reduce the expression of fibrotic marker proteins and relieve pulmonary fibrosis in mouse models. The study has shown that anti-PD-L1 mAb can increase the immunofluorescence intensity of LC3B, promote the transition from LC3I to LC3II, and autophagosomes formation, resulting in promoting autophagy in lung fibrosis. The findings indicate that anti-PD-L1 therapy is capable of relieving pulmonary fibrosis and provides a new strategy for IPF therapy.

Bergenin is a compound isolated from various herbal plants, such as Saxifragaceae. A recent study confirmed that bergenin improved lung function in mice with pulmonary fibrosis, attenuated lung tissue structural disorders caused by bleomycin, and reduced the degree of pulmonary fibrosis. The research found that bergenin reduced phosphorylation levels of mTOR, ULK1, and S6, and inhibited fibroblast activation and collagen deposition, thereby promoting autophagic activity and alleviating pulmonary fibrosis. Furthermore, bergenin can regulate energy metabolism through recovering normal
ATP levels in activated fibroblasts and promote the apoptotic process of fibroblasts. In general, further research and animal model tests are in great need to develop and validate more IPF therapeutic drugs that target autophagy.

Conclusion and prospect

In recent years, accumulating evidence demonstrates that autophagy exerts some unprecedented functions during IPF pathogenesis, which offers novel targets for the therapy of IPF. Targeted autophagy for lung fibrosis is a hot field of research, and there are a variety of elusive mechanisms that need to be further investigated. This review summarizes the interplay of autophagy with other mechanistic processes leading to pulmonary fibrosis. Among them, the exhaustive regulatory mechanisms linking autophagy to epithelial cell dysfunction, apoptosis, and the renin-angiotensin system remain poorly defined. In addition, besides epithelial cells, future research ideas can also focus on other types of cells such as endothelial cells, vascular smooth muscle cells in the lung. Studies on the intricate regulatory network within the renin-angiotensin system and its role with autophagy in the fibrotic process will provide a broad perspective for clinical diagnosis and therapy. Currently, the spectrum of autophagy regulatory pathways in IPF remains to be refined. Six related pathways are summarized in this review; however, studies on JNK signaling axis, JAK2/STAT3 axis, and p65 and Keap1/Nrf2 signaling are still insufficient, and more studies are needed in the future to elucidate their specific regulatory networks in pulmonary fibrosis and to develop molecular drugs targeting these pathways to activate autophagic activity in fibrosis and treat IPF. It must be beneficial to apply these experimental findings to clinical diagnosis and treatment.

Currently, in vivo experiments on pulmonary fibrosis are mainly based on bleomycin-induced mouse models, and most of the available findings are derived from these pulmonary fibrosis models. However, the distribution of bleomycin-induced pulmonary fibrosis lesions and their stability are defective and differ from those of human IPF. Therefore, it is necessary to continuously explore and establish lung fibrosis models that are more consistent with the pathological process of IPF, so that the experimental results can be more accurate.

Although there are numerous pharmaceutical drugs approved for treatments of pulmonary fibrosis, the exact mechanism remains incompletely understood. In recent years, it has been identified that pirfenidone and nintedanib can activate autophagic activity in the fibrotic process, but it remains poorly understood about its specific action process and targets. These two drugs have certain drawbacks in clinical treatment and need to be continuously improved later to fully exploit their antifibrotic effects. Many cellular animal experiments confirmed that some compounds were able to alleviate pulmonary fibrosis progression by mediating autophagy, but the research only stayed at the experimental stage, and further development of these compounds for clinical trials is needed to clarify their therapeutic effects. Meanwhile, researchers can focus on mining other autophagy targets and exploring broader molecular regulatory networks to provide a theoretical basis for drug development.

Therefore, it is extremely urgent to elucidate new IPF pathogenesis and search for more effective drug targets to block the development of pulmonary fibrosis. Furthermore, studying the signaling transduction pathways and detailed molecular mechanisms of autophagy will potentially minimize the impairment to normal tissues and cells. Collectively, developing efficient and safe therapeutic agents through animal disease models and preclinical trials and applying them to the clinic will greatly benefit the treatment and prognosis of IPF patients.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Author contributions
Yue-Liang Yue: Writing – original draft; Writing – review and editing.
Meng-Yu Zhang: Writing – review and editing.
Jian-Yu Liu: Writing – review and editing.
Li-Jun Fang: Writing – review and editing.
Yi-Qing Qu: Writing – review and editing.
Acknowledgements
Not applicable.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Competing interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Availability of data and materials
No new data were created or analyzed in this study. Data sharing is not applicable to this article.

ORCID iD
Yi-Qing Qu https://orcid.org/0000-0002-9538-7601

References
1. Maher TM, Bendstrup E, Dron L, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res 2021; 22: 197.
2. Mortimer KM, Bartels DB, Hartmann N, et al. Characterizing health outcomes in idiopathic pulmonary fibrosis using US Health Claims Data. Respiration 2020; 99: 108–118.
3. Mei Q, Liu Z, Zuo H, et al. Idiopathic pulmonary fibrosis: an update on pathogenesis. Front Pharmacol 2021; 12: 797292.
4. Glass DS, Grossfeld D, Renna HA, et al. Idiopathic pulmonary fibrosis: molecular mechanisms and potential treatment approaches. Respir Investig 2020; 58: 320–335.
5. Lederer DJ and Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med 2018; 378: 1811–1823.
6. Kreuter M, Swigris J, Pittrow D, et al. Health related quality of life in patients with idiopathic pulmonary fibrosis in clinical practice: insights-IPF registry. Respir Res 2017; 18: 139.
7. Kreuter M, Swigris J, Pittrow D, et al. The clinical course of idiopathic pulmonary fibrosis and its association to quality of life over time: longitudinal data from the INSIGHTS-IPF registry. Respir Res 2019; 20: 59.
8. Quinn C, Wisse A and Manns ST. Clinical course and management of idiopathic pulmonary fibrosis. Multidiscip Respir Med 2019; 14: 35.
9. Smith ML. The histologic diagnosis of usual interstitial pneumonia of idiopathic pulmonary fibrosis. Mod Pathol 2022; 35: 8–14.
10. Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 2018; 198: e44–e68.
11. Richeldi L, Scholand MB, Lynch DA, et al. Utility of a Molecular Classifier as a Complement to High-Resolution Computed Tomography to Identify Usual Interstitial Pneumonia. Am J Respir Crit Care Med 2021; 203: 211–220.
12. Martinez FJ, Collard HR, Pardo A, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 2017; 3: 17074.
13. Canestaro WJ, Forrester SH, Raghu G, et al. Drug treatment of idiopathic pulmonary fibrosis: systematic review and network meta-analysis. Chest 2016; 149: 756–766.
14. Justet A, Klay D, Porcher R, et al. Safety and efficacy of pirfenidone and nintedanib in patients with idiopathic pulmonary fibrosis and carrying a telomere-related gene mutation. Eur Respir J 2021; 57: 2003198.
15. Collins BF and Raghu G. Antifibrotic therapy for fibrotic lung disease beyond idiopathic pulmonary fibrosis. Eur Respir Rev 2019; 28: 190022.
16. Lancaster LH, de Andrade JA, Zibrak JD, et al. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev 2017; 26: 170057.
17. Spagnolo P, Kropski JA, Jones MG, et al. Idiopathic pulmonary fibrosis: disease mechanisms and drug development. Pharmacol Ther 2021; 222: 107798.
18. Otoupalova E, Smith S, Cheng GJ, et al. Oxidative stress in pulmonary fibrosis. Compr Physiol 2020; 10: 509–547.
19. Shenderov K, Collins SL, Powell JD, et al. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest 2021; 131: e143226.
20. Wolters PJ, Collard HR and Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Ann Rev Pathol 2014; 9: 157–179.
21. Wang Y, Liang Y, Luo J, et al. XIST/miR-139 axis regulates bleomycin (BLM)-induced...
extracellular matrix (ECM) and pulmonary fibrosis through β-catenin. Oncotarget 2017; 8: 65359–65369.

22. Racanelli AC, Choi AMK and Choi ME. Autophagy in chronic lung disease. Prog Mol Biol Transl Sci 2020; 172: 135–156.

23. Du S, Li C, Lu Y, et al. Dioscin alleviates crystalline silica-induced pulmonary inflammation and fibrosis through promoting alveolar macrophage autophagy. Theranostics 2019; 9: 1878–1892.

24. Zhang X, Mao Y, Peng W, et al. Autophagy-related protein EL24 delays the development of pulmonary fibrosis by promoting autophagy. Life Sciences 2021; 264: 118664.

25. Li XH, He SK and Ma BY. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 2020; 19: 16.

26. Racanelli AC, Kikkers SA, Choi AMK, et al. Autophagy and inflammation in chronic respiratory disease. Autophagy 2018; 14: 221–232.

27. Mizushima N and Levine B. Autophagy in human diseases. N Engl J Med 2020; 383: 1564–1576.

28. Eskelinen EL. New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol 2008; 266: 207–247.

29. Nieto-Torres JL and Hansen M. Macroautophagy and aging: the impact of cellular recycling on health and longevity. Mol Aspects Med 2021; 82: 101020.

30. Schuck S. Microautophagy – distinct molecular mechanisms handle cargoes of many sizes. J Cell Sci 2020; 133: jcs246322.

31. Dice JF. Chaperone-mediated autophagy. Autophagy 2007; 3: 295–299.

32. Hao Y, Kacal M, Ouchida AT, et al. Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy 2019; 15: 1558–1571.

33. Cong Y, Dinesh Kumar N, Mauthre M, et al. Manipulation of selective macroautophagy by pathogens at a glance. J Cell Sci 2020; 133: jcs240440.

34. Parzych KR and Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 2014; 20: 460–473.

35. Suzuki H, Kaizuka T, Mizushima N, et al. Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat Struct Mol Biol 2015; 22: 572–580.

36. Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 2008; 181: 497–510.

37. Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20: 1992–2003.

38. Shi X, Yokom AL, Wang C, et al. ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer. J Cell Biol 2020; 219: e201911047.

39. Mercer T and Tooze SA. The ingenious ULKs: expanding the repertoire of the ULK complex with phosphoproteomics. Autophagy 2021; 17: 4491–4493.

40. Zachari M and Ganley IG. The mammalian ULK1 complex and autophagy initiation. Essays in Biochemistry 2017; 61: 585–596.

41. Glick D, Barth S and Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221: 3–12.

42. Tamargo-Gómez I and Mariño G. AMPK: regulation of metabolic dynamics in the context of autophagy. Int J Mol Sci 2018; 19: 3812.

43. Alers S, Löffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 2012; 32: 2–11.

44. Puente C, Hendrickson RC and Jiang X. Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy. J Biol Chem 2016; 291: 6026–6035.

45. Kihara A, Noda T, Ishihara N, et al. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 2001; 152: 519–530.

46. Funderburk SF, Wang QJ and Yue Z. The Beclin 1-VPS34 complex – at the crossroads of autophagy and beyond. Trends Cell Biol 2010; 20: 355–362.

47. Russell RC, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 2013; 15: 741–750.

48. Molino D, Nascimbeni AC, Giordano F, et al. ER-driven membrane contact sites: evolutionary conserved machineries for stress response and autophagy regulation? Commun Integr Biol 2017; 10: e1401699.
49. Nakatogawa H. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. *Essays Biochem* 2013; 55: 39–50.

50. Karow M, Fischer S, Meßling S, et al. Functional characterisation of the autophagy ATG12-5/16 complex in dictyostelium discoideum. *Cells* 2020; 9: 1179.

51. Noda NN and Inagaki F. Mechanisms of autophagy. *Ann Rev Biophys* 2015; 44: 101–122.

52. Wesch N, Kirkin V and Rogov VV. Atg8-family proteins-structural features and molecular interactions in autophagy and beyond. *Cells* 2020; 9: 2008.

53. Fu J, Zhao L, Pang Y, et al. Apicoplast biogenesis mediated by ATG8 requires the ATG12-ATG5-ATG16L and SNAP29 complexes in Toxoplasma gondii. *Autophagy*. Epub ahead of print 22 September 2022. DOI: 10.1080/15548627.2022.2123639.

54. Padman BS, Nguyen TN, Uoselis L, et al. LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy. *Nat Commun* 2019; 10: 408.

55. Turco E, Savova A, Gere F, et al. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. *Nat Commun* 2021; 12: 5212.

56. Bansal M, Moharir SC and Swarup G. Autophagy receptor optineurin promotes autophagosome formation by potentiating LC3-II production and phagophore maturation. *Commun Integr Biol* 2018; 11: 1–4.

57. Nakamura S and Yoshimori T. New insights into autophagosome-lysosome fusion. *J Cell Sci* 2017; 130: 1209–1216.

58. Kim KH and Lee MS. Autophagy—a key player in cellular and body metabolism. *Nat Rev Endocrinol* 2014; 10: 322–337.

59. Araya J, Kojima J, Takasaka N, et al. Insufficient autophagy in idiopathic pulmonary fibrosis. *Am J Physiol Lung Cell Mol Physiol* 2013; 304: L56–L69.

60. Migneault F and Hébert MJ. Autophagy, tissue repair, and fibrosis: a delicate balance. *Matrix Biol* 2021; 100–101: 182–196.

61. Zhang Y, Liu Q, Ning J, et al. The proteasome-dependent degradation of ALKBH5 regulates ECM deposition in PM exposure-induced pulmonary fibrosis of mice 2022; 432: 128655.

62. Nakahira K, Pabon Porras MA and Choi AM. Autophagy in pulmonary diseases. *Am J Respir Crit Care Med* 2016; 194: 1196–1207.

63. Ricci A, Cherubini E, Scozzi D, et al. Decreased expression of autophagic beclin 1 protein in idiopathic pulmonary fibrosis fibroblasts. *J Cell Physiol* 2013; 228: 1516–1524.

64. Del Principe D, Lista P, Malorni W, et al. Fibroblast autophagy in fibrotic disorders. *J Pathol* 2013; 229: 208–220.

65. O’Dwyer DN, Ashley SL and Moore BB. Influences of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis. *Am J Physiol Lung Cell Mol Physiol* 2016; 311: L590–L601.

66. Im J, Hergert P and Nho RS. Reduced FoxO3a expression causes low autophagy in idiopathic pulmonary fibrosis fibroblasts on collagen matrices. *Am J Physiol Lung Cell Mol Physiol* 2015; 309: L552–L561.

67. Bernard M, Dieudé M, Yang B, et al. Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF. *Autophagy* 2014; 10: 2193–2207.

68. Liu H, Guan Q, Zhao P, et al. TGF-β-induced CCR8 promoted macrophage transdifferentiation into myofibroblast-like cells. *Exp Lung Res* 2022; 48: 86–99.

69. Yang F, Chang Y, Zhang C, et al. UUO induces lung fibrosis with macrophage-myofibroblast transition in rats. *Int Immunopharmacol* 2021; 93: 107396.

70. Barth K, Reh J, Sturrock A, et al. Epithelial vs myofibroblast differentiation in immortal rat lung cell lines—modulating effects of bleomycin. *Histochem Cell Biol* 2005; 124: 453–464.

71. Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. *Am J Pathol* 2005; 166: 1321–1332.

72. Jolly MK, Ward C, Eapen MS, et al. Epithelial-mesenchymal transition, a spectrum of states: role in lung development, homeostasis, and disease. *Dev Dyn* 2018; 247: 346–358.

73. Nieto MA, Huang RY, Jackson RA, et al. EMT:2016. *Cell* 2016; 166: 21–45.

74. Guo H, Jian Z, Liu H, et al. TGF-β1-induced EMT activation via both Smad-dependent
and MAPK signaling pathways in Cu-induced pulmonary fibrosis 2021; 418: 115500.

75. Hewlett JC, Kropski JA and Blackwell TS. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018; 71–72: 112–127.

76. Hill C, Li J, Liu D, et al. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis 2019; 10: 591.

77. Sakuma Y. Epithelial-to-mesenchymal transition and its role in EGFR-mutant lung adenocarcinoma and idiopathic pulmonary fibrosis. Pathol Int 2017; 67: 379–388.

78. Han Y, Ye L, Du F, et al. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis 2019; 10: 591.

79. Duan JX, Guan XX, Yang HH, et al. Vasoactive intestinal peptide attenuates bleomycin-induced murine pulmonary fibrosis by inhibiting epithelial-mesenchymal transition: restoring autophagy in alveolar epithelial cells. Int Immunopharmacol 2021; 101: 108211.

80. Singh KK, Lovren F, Pan Y, et al. The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem 2015; 290: 2547–2559.

81. Gui X, Chen H, Cai H, et al. Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 2018; 498: 660–666.

82. Saito A, Horie M, Micke P, et al. The role of TGF-β signaling in lung cancer associated with idiopathic pulmonary fibrosis. Int J Mol Sci 2018; 19: 3611.

83. Katzen J and Beers MF. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest 2020; 130: 5088–5099.

84. Parimon T, Yao C, Stripp BR, et al. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci 2020; 21: 2269.

85. Zhao X, Wei S, Li Z, et al. Autophagic flux blockage in alveolar epithelial cells is essential in silica nanoparticle-induced pulmonary fibrosis 2019; 10: 127.

86. Shea BS and Tager AM. Role of the lysophospholipid mediators lysophosphatidic acid and sphingosine 1-phosphate in lung fibrosis. Proc Am Thorac Soc 2012; 9: 102–110.

87. Tatler AL and Jenkins G. Sphingosine-1-phosphate metabolism: can its enigmatic lyase promote the autophagy of fibrosis. Thorax 2015; 70: 1106–1107.

88. Gui YS, Wang L, Tian X, et al. mTOR overactivation and compromised autophagy in the pathogenesis of pulmonary fibrosis. PLoS ONE 2015; 10: e0138625.

89. Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, et al. Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin Ther Targets 2018; 22: 1049–1061.

90. Wei Y, Sinha S and Levine B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 2008; 4: 949–951.

91. Cabrera S, Maciel M, Herrera I, et al. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis. Autophagy 2015; 11: 670–684.

92. Romero Y, Bueno M, Ramirez R, et al. mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell 2016; 15: 1103–1112.

93. Ye Z and Hu Y. TGF-β1: gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med 2021; 48: 132.

94. Li X, Wang Y, Liang J, et al. Bergenin attenuates bleomycin-induced pulmonary fibrosis in mice via inhibiting TGF-β1 signaling pathway. Phytother Res 2021; 35: 5808–5822.

95. Ghavami S, Yeganeh B, Zeki AA, et al. Autophagy and the unfolded protein response promote profibrotic effects of TGF-β1 in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2018; 314: L493–L504.

96. Andugulapati SB, Gourishetti K, Tirunavalli SK, et al. Biochanin-A ameliorates pulmonary fibrosis by suppressing the TGF-β mediated EMT, myofibroblasts differentiation and collagen deposition in vitro and in vivo systems. Phytomedicine 2020; 78: 153298.

97. Patel AS, Lin L, Geyer A, et al. Autophagy and the unfolded protein response promote profibrotic effects of TGF-β1 in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2018; 314: L493–L504.

98. Sosulski ML, Gongora R, Danchuk S, et al. Deregulation of selective autophagy during aging
and pulmonary fibrosis: the role of TGFβ1.
Aging Cell 2015; 14: 774–783.

99. Meng Y, Li T, Zhou GS, et al. The angiotensin-converting enzyme 2/angiotensin (1-7)/Mas axis protects against lung fibroblast migration and lung fibrosis by inhibiting the NOX4-derived ROS-mediated RhoA/Rho kinase pathway. Antioxid Redox Signal 2015; 22: 241–258.

100. Meng Y, Yu CH, Li W, et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. Am J Respir Cell Mol Biol 2014; 50: 723–736.

101. Meng Y, Pan M, Zheng B, et al. Autophagy attenuates angiotensin II-induced pulmonary fibrosis by inhibiting redox imbalance-mediated NOD-like receptor family pyrin domain containing 3 inflammasome activation 2019; 30: 520–541.

102. Zhao W, Li Y, Jia L, et al. Atg5 deficiency-mediated mitophagy aggravates cardiac inflammation and injury in response to angiotensin II. Free Radic Biol Med 2014; 69: 108–115.

103. Liu Q, Zhang D, Hu D, et al. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol 2018; 103: 115–124.

104. Pan M, Zheng Z, Chen Y, et al. Angiotensin-(1-7) attenuated cigarette smoking-related pulmonary fibrosis via improving the impaired autophagy caused by nicotinamide adenine dinucleotide phosphate reduced oxidase 4-dependent reactive oxygen species. Am J Respir Cell Mol Biol 2018; 59: 306–319.

105. Yan Z, Kui Z and Ping Z. Reviews and prospectives of signaling pathway analysis in idiopathic pulmonary fibrosis. Autoimmun Rev 2014; 13: 1020–1025.

106. Platé M, Guillotin D and Chambers RJ. The promise of mTOR as a therapeutic target pathway in idiopathic pulmonary fibrosis. Eur Respir Res 2020; 29: 200269.

107. Lawrence J and Nho R. The role of the mammalian target of rapamycin (mTOR) in pulmonary fibrosis. Int J Mol Sci 2018; 19: 778.

108. Al-Bari MAA and Xu P. Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann NY Acad Sci 2020; 1467: 3–20.

109. Wang X, Fang Y, Huang Q, et al. An updated review of autophagy in ischemic stroke: from mechanisms to therapies. Exp Neurol 2021; 340: 113684.

110. Hu X, Xu Q, Wan H, et al. PI3K-Akt-mTOR/PPFkB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest 2020; 100: 801–811.

111. Yu JZ, Ying Y, Liu Y, et al. Antifibrotic action of Yifei Sanjie formula enhanced autophagy via PI3K-AKT-mTOR signaling pathway in mouse model of pulmonary fibrosis. Biomed Pharmacother 2019; 118: 109293.

112. Wang J, Hu K, Cai X, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 2022; 12: 18–32.

113. Chitra P, Saiprasad G, Manikandan R, et al. Berberine inhibits Smad and non-Smad signaling cascades and enhances autophagy against pulmonary fibrosis. J Mol Med 2015; 93: 1015–1031.

114. Sala V, Della Sala A, Ghigo A, et al. Roles of phosphatidyl inositol 3 kinase gamma (PI3Kgamma) in respiratory diseases. Cell Stress 2021; 5: 40–51.

115. Tang JM, He QY, Guo RX, et al. Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer 2006; 51: 181–191.

116. Nho RS and Hergert P. IPF fibroblasts are desensitized to type I collagen matrix-induced cell death by suppressing low autophagy via aberrant Akt/mTOR kinases. PLoS ONE 2014; 9: e94616.

117. Liu MW, Su MX, Tang DY, et al. Ligustrazine increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm Med 2019; 19: 35.

118. Xie T, Xu Q, Wan H, et al. Lipopolysaccharide promotes lung fibroblast proliferation through autophagy inhibition via activation of the PI3K-Akt-mTOR pathway. Lab Invest 2019; 99: 625–633.

119. Wang H, Xie T, Xu Q, et al. Thy-1 depletion and integrin beta3 upregulation-mediated PI3K-Akt-mTOR pathway activation inhibits lung fibroblast autophagy in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest 2019; 99: 1636–1649.

120. Hsu CC, Peng D, Cai Z, et al. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85: 52–68.
121. Herzig S and Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 2018; 19: 121–135.

122. Li SX, Li C, Pang XR, et al. Metformin attenuates silica-induced pulmonary fibrosis by activating autophagy via the AMPK-mTOR signaling pathway. Front Pharmacol 2021; 12: 719589.

123. Xu DQ, Wang Z, Wang CY, et al. PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity. EMBO J 2016; 35: 496–514.

124. Zhao Y, Wang Q, Qiu G, et al. RACK1 promotes autophagy by enhancing the Atg14L–Beclin 1–Vps34–Vps15 complex formation upon phosphorylation by AMPK. Cell Rep 2015; 13: 1407–1417.

125. Zhang D, Wang W, Sun X, et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 2016; 12: 1447–1459.

126. Kim J, Kim YC, Fang C, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 2013; 152: 290–303.

127. Weerasekara VK, Panek DJ, Broadbent DG, et al. Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1- and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9. Mol Cell Biol 2014; 34: 4379–4388.

128. Zhou YY, Li Y, Jiang WQ, et al. MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 2015; 35: e00199.

129. Cuadrado A and Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J 2010; 429: 403–417.

130. Smith PR, Loerch S, Kunder N, et al. Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance. Nat Commun 2021; 12: 6789.

131. Wang X, Xie J and Proud CG. Eukaryotic elongation factor 2 kinase (eEF2K) in cancer. Cancers 2017; 9: 162.

132. Wang Y, Huang G, Wang Z, et al. Elongation factor-2 kinase acts downstream of p38 MAPK to regulate proliferation, apoptosis and autophagy in human lung fibroblasts. Exp Cell Res 2018; 363: 291–298.

133. Joannes A, Morzadec C, Duclos M, et al. Arsenic trioxide inhibits the functions of lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Toxicol Appl Pharmacol 2022; 441: 115972.
147. Lorin S, Pierron G, Ryan KM, et al. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. *Autophagy* 2010; 6: 153–154.

148. Liu YM, Cong S, Cheng Z, et al. Platycodin D alleviates liver fibrosis and activation of hepatic stellate cells by regulating JNK/c-Jun signal pathway. *Eur J Pharmacol* 2020; 876: 172946.

149. Boussoik E and Montazeri Aliabadi H. ‘Do We Know Jack’ About JAK? A closer look at JAK/STAT signaling pathway. *Front Oncol* 2018; 8: 287.

150. Owen KL, Brockwell NK and Parker BS. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. *Cancers* 2019; 11: 2002.

151. Montero P, Milara J, Roger I, et al. Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms. *Int J Mol Sci* 2021; 22: 6211.

152. Milara J, Hernandez G, Ballester B, et al. The JAK2 pathway is activated in idiopathic pulmonary fibrosis. *Respir Res* 2018; 19: 24.

153. Zhu M, An Y, Zhang X, et al. Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation. *Cell Tissue Res* 2019; 378: 255–265.

154. Yao J, Zhang J, Tai W, et al. High-dose paracquat induces human bronchial 16HBE cell death and aggravates acute lung intoxication in mice by regulating Keap1/p65/Nrf2 signal pathway. *Inflammation* 2019; 42: 471–484.

155. Yu M, Li H, Liu Q, et al. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. *Cell Signal* 2011; 23: 883–892.

156. Tang Z, Hu B, Zang F, et al. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration. *Cell Death Dis* 2019; 10: 510.

157. Filomeni G, De Zio D and Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. *Cell Death Differ* 2015; 22: 377–388.

158. Zois CE and Koukourakis MI. Radiation-induced autophagy in normal and cancer cells: towards novel cytoprotection and radio-sensitization policies? *Autophagy* 2009; 5: 442–450.

159. Mizushima N and Yoshimori T. How to interpret LC3 immunoblotting. *Autophagy* 2007; 3: 542–545.

160. Ling Q, Broad W, Trösch R, et al. Ubiquitin-dependent chloroplast-associated protein degradation in plants. *Science* 2019; 363: eaav4467.

161. Martinez J. Detection of LC3-associated phagocytosis (LAP). *Curr Protoc Cell Biol* 2020; 87: e104.

162. Xie Y, Kang R, Sun X, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. *Autophagy* 2015; 11: 28–45.

163. Gump JM and Thorburn A. Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry. *Autophagy* 2014; 10: 1327–1334.

164. Demishtein A, Porat Z, Elazar Z, et al. Applications of flow cytometry for measurement of autophagy. *Methods* 2015; 75: 87–95.

165. Cicchomksa IA and Tolkovsky AM. Non-autophagic GFP-LC3 puncta induced by saponin and other detergents. *Autophagy* 2007; 3: 586–590.

166. Qin ZH. *Autophagy biology and diseases*. Cham: Springer, 2021.

167. Eskelinen EL, Reggiori F, Baba M, et al. Seeing is believing: the impact of electron microscopy on autophagy research. *Autophagy* 2011; 7: 935–956.

168. Zhang Y, Mun SR, Linares JF, et al. ZZ-dependent regulation of p62/SQSTM1 in autophagy. *Nat Commun* 2018; 9: 4373.

169. Lin X, Li S, Zhao Y, et al. Interaction domains of p62: a bridge between p62 and selective autophagy. *DNA Cell Biol* 2013; 32: 220–227.

170. Pugsley HR. Assessing autophagic flux by measuring LC3, p62, and LAMPI Co-localization using multispectral imaging flow cytometry. *J Vis Exp* 2017; 125: 55637.

171. Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. *Biochem Biophys Res Commun* 2004; 313: 453–458.

172. Ruwanpura SM, Thomas BJ and Bardin PG. Pirfenidone: molecular mechanisms and potential clinical applications in lung disease. *Am J Respir Cell Mol Biol* 2020; 62: 413–422.

173. Ma Z, Zhao C, Chen Q, et al. Antifibrotic effects of a novel pirfenidone derivative in vitro and *in vivo*. *Palm Pharmacol Ther* 2018; 53: 100–106.

174. Qin W, Liu B, Yi M, et al. Antifibrotic agent pirfenidone protects against development of radiation-induced pulmonary fibrosis in a murine model. *Radiat Res* 2019; 190: 396–403.
175. Kurita Y, Araya J, Minagawa S, et al. Pirfenidone inhibits myofibroblast differentiation and lung fibrosis development during insufficient mitophagy. *Respir Res* 2017; 18: 114.

176. Shi S, Wu J, Chen H, et al. Single- and multiple-dose pharmacokinetics of pirfenidone, an antifibrotic agent, in healthy Chinese volunteers. *J Clin Pharmacol* 2007; 47: 1268–1276.

177. Rasooli R, Rajaian H, Pardakhty A, et al. Preference of aerosolized pirfenidone to oral intake: an experimental model of pulmonary fibrosis by paraquat. *J Aerosol Med Pulm Drug Deliv* 2018; 31: 25–32.

178. Wollin L, Wex E, Pautsch A, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. *Eur Respir J* 2015; 45: 1434–1445.

179. Wollin L, Distler JHW, Redente EF, et al. Potential of nintedanib in treatment of progressive fibrosing interstitial lung diseases. *Eur Respir J* 2019; 54: 1900161.

180. Rangarajan S, Kurundkar A, Kurundkar D, et al. Novel mechanisms for the antifibrotic action of nintedanib. *Am J Respir Cell Mol Biol* 2016; 54: 51–59.

181. Mohammadinejad R, Ahmadi Z, Tavakol S, et al. Berberine as a potential autophagy modulator. *J Cell Physiol* 2019; 234: 14914–14926.

182. Baek AR, Hong J, Song KS, et al. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. *Exp Mol Med* 2020; 52: 2034–2045.

183. Lu Y, Zhong W, Liu Y, et al. Anti-PD-L1 antibody alleviates pulmonary fibrosis by inducing autophagy via inhibition of the PI3K/Akt/mTOR pathway. *Int Immunopharmacol* 2022; 104: 108504.