RESEARCH ARTICLE

GENETIC POLYMORPHISM OF XRCC1 AND XRCC3 GENES AND RISK OF CERVICAL CANCER IN SENEGALESE POPULATION

Moussa Ndiaye1,3, Gora Diop1,3, Cheikh A.T. Diarra6, Cédric Coulonges2, Sigrid LeClerc2, Davy Kiory7, Sidy Ka6, khadidiatou Niane1,3, Céline Derbois4, Mbaké Sembene1, Jean-François Zagury2, Alioune Dieye5, Jean-François Deleuze4, Ahmadou Dem6

1. Department of Animal Biology, Faculty of Science and Technology, Cheikh Anta DIOP University, PO Box 5005, Cheikh Anta Diop Avenue, Dakar, Senegal.
2. Laboratory GBCM (EA7528), Equipe GBA « Génomique, Bio-informatique and Applications », Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75141 Paris Cedex 03, Paris, France.
3. Unité d’Immunophysiopathologie & Maladies infectieuses, PasteurInstitute of Dakar, 36, avenue Pasteur, BP : 220, Dakar, Senegal.
4. Centre National de Recherche en Génétique Humaine (CNRGH), Institut de Génomique-CEA, 2 rue Gaston Crémieux, CP 5721, 91057, Evry Cedex, France.
5. Service d’Immunologie, Faculty of Medicine, pharmacie and Ondontology, Cheikh Anta DIOP University, PO Box 5005, Cheikh Anta Diop Avenue, Dakar, Senegal.
6. Department of Oncology, Institut-Juliot-Curie, Hospital Aristide Le Dantec, Avenue Pasteur, Dakar, Senegal.
7. Pole of Virology, PasteurInstitute of Dakar, 36, avenue Pasteur, BP: 220, Dakar, Senegal.

Abstract

X-ray repair cross complementing 1 and 3 (XRCC1 and XRCC3) gene plays a key role in DNA repair, genetic instability and tumorigenesis. We hypothesized that single nucleotide polymorphisms (SNPs) in XRCC1 and XRCC3 gene might affect its expression and/or function which have an influence on the development of cervical cancer. The aim of our study was to assess the association of four polymorphisms was carried out in the following DNA repair genes: XRCC1 (Arg399Gln, Arg194Trp) (rs25487, rs1799782), XRCC3 (C241T and A316G) (rs861539, rs1799794). The study group included 505 Senegalese individuals (313 cervical cancer patients, and 192 healthy controls). From the cancer patients and controls, genomic DNA was extracted from blood and tissues samples. Genotype was carried out for four SNPs using Taqman genotyping assay method. A significant association was found between XRCC1 194C>T and cervical cancer (OR=2.696; 95% CI=1.181-6.154; p=0.018, using an additive model), (OR=2.989; 95% CI=1.078-8.283; p=0.035, using dominant model), while there is no significant association between Arg399Gln polymorphisms and cervical cancer. Also, no association was found between XRCC3 Thr241Met genotype and expressed risk of susceptibility to both cervical cancer in Senegalese population. This study indicates that variant types of DNA repair genes play an important role in modifying individual susceptibility to cervical cancer.

Corresponding Author: Moussa Ndiaye
Department of Animal Biology, Faculty of Science and Technology, Cheikh Anta DIOP University. ndiayemoussas66@yahoo.fr
Background

Cervical cancer (CC) is one of the most common genital tract carcinomas which has become an exigent health concern and the first leading cause of cancer related death among women world over with more than 570 000 new cases and 311 365 deaths (Bray et al., 2018). Among these, 85% of the cervical cancer cases occur in developing countries (Jemal et al., 2011). Infection with high-risk types of human papillomavirus (HPV) is the main causative factor for developing cervical intraepithelial neoplasia (CIN) which is a precursor lesion for cervical cancer (Ahn et al., 2003). While, not all women who are infected with HPV will certainly progress into cervical cancer, suggesting that there are still other factors playing a role in the pathogenesis of cervical cancer such as genetic and environmental factors (Shi et al., 2016). In human body, DNA repair genes are considerable factors in the prevention of genomic injury and sequential carcinogenesis. Previous studies have shown that genomic instability is a crucial event in HPV associated cancers, with a significant increase in single and double strand breaks (Udumudi et al., 1998; Cortés-Gutiérrez et al., 2012).

DNA damage may contribute to both genetic instability and carcinogenesis, which could occur through different pathways (exogenous carcinogens, endogenously produced reactive oxygen metabolites). DNA damage repair systems play vital roles in maintaining normal physiological functions, particularly for sustaining genome integrity in humans (Pan et al., 2014). Exposure to different endogenous and exogenous mutagens and carcinogens can result in various types of DNA damages. These alterations, if not repaired, can cause genetic instability, mutagenesis and cancer (Goode et al., 2002). Importantly, to counteract the deleterious consequences of the DNA-damaging agents, evolution has moulded a number of DNA repair systems that as a whole take care of most of the insults inflicted on a cell’s vital genetic information. The repairing of different types of DNA damages is important for safeguarding genomic integrity (Smith et al., 2003). There are six DNA repair pathways: direct repair (Eker et al., 2009), base excision repair (BER) (Robertson et al., 2009), nucleotide excision repair (NER) (Diderich et al., 2011), mismatch repair (MMR) (Hsieh and Yamane, 2008), double-strand breaks repair (DSBR) (Khanna and Jackson, 2001; Scott, 2004) and ribonucleotide excision repair (RER) (Wallace and Williams, 2014).

Among the main DNA maintenance mechanisms operating in humans, the base excision repair (BER) pathway is the primary defence against lesions and responsible for repairing the DNA single-strand breaks caused by oxidative stress (such as reactive oxygen species, ROS), thereby maintaining genomic integrity. Impaired BER pathways are considered the major cause of cervical cancer (Jiricny and Marra, 2003). The double-strand break DNA repair pathway, including XRCC3 genes, is implicated in maintaining genomic stability and therefore could affect the cancer risk (Tambini et al., 2010; Yuan et al., 2014). Genetic polymorphisms in homologous recombination repair (HRR) genes, which can lead to protein haploinsufficiency, have been associated with increased cancer risk (Areeshi, 2013).

We have selected two DNA repair genes, representing two different repair pathways, for this study: the X-ray repair cross-complementing group 1 (XRCC1) and the X-ray repair cross complementing group 3 (XRCC3) genes.

XRCC1 gene, located on chromosome 19 (19q13.2–13.3) is a key mediator of single-strand break DNA repair, including nucleotide excision repair (NER) and base excision repair (BER) (Fan and Wilson, 2005; Al Zoubi, 2015). XRCC1 serves as the scaffold protein in the BER pathway, which recognizes DNA breaks and interacts with polynucleotide kinase enzyme, DNA polymerase β, PARP1 and DNA ligase IIIα (Caldcott et al., 1995; Pramanik et al., 2011). There are three most common polymorphisms in XRCC1, contributing to amino acid substitutions in XRCC1 at codon 194 (exon 6, base C to T, amino acid Arg to Trp), codon 280 (exon 9, base G to A, amino acid Arg to His), and codon 399 (exon 10, base G to A, amino acid Arg to Gln). Moreover, these variants eventually alter XRCC1 function.

The associations of SNPs in DNA repair genes and various types of cancer and tumors have been extensively described. However, the evidence is frequently confusing, with some SNPs increasing the risk of certain types of cancer, but decreasing the risk of others.
Many studies have demonstrated that XRCC1 polymorphisms (rs1799782, Arg194Trp; rs25489, Arg280His; and rs25487, Arg399Gln) could alter XRCC1 function and result in altered efficiency of the protein, eventually increased risk of development of oesophageal squamous cell carcinoma (Yun et al., 2015), lung cancer (Fan and Xiu, 2015), pancreatic cancer (Hou et al., 2016), breast cancer (Zheng et al., 2013), colorectal cancer (Nissar et al., 2015), gastric cancer (Zhao et al., 2013) and cervical cancer risk (Niwa et al., 2005; Huang et al., 2007; Alsbeih et al., 2013).

XRCC3 gene, located at chromosome 14q32.3 is one of the central protein, playing an important role in HRR (homologous recombination repair) pathway. XRCC3 interacts, stabilizes RAD51 and involves in HRR for DNA DSBs (double strand breaks of DNA) and cross-link repair in mammalian cells (Kurumizaka et al., 2001; Zhao et al., 2013). XRCC3 is a paralog of RAD51, it is essential for genetic stability (Brenneman et al., 2002).

XRCC3 polymorphism was associated with the risks of numerous types of cancer, such as ovarian cancer, breast cancer, head and neck cancer, colorectal cancer (Yin et al., 2012; He et al., 2012; Yuan et al., 2014; Nissar et al., 2015) and cervical cancer is inconclusive (Setheetham-Ishida et al., 2011; Wang and Yang, 2010).

Thus, our hereby was to investigate the relationship between XRCC1 and XRCC3 polymorphisms in women with cervical cancer and healthy controls. Then, we genotyped 4 variants of the two DNA repair genes XRCC1 (C194T and G399A) and XRCC3 (C241T and A316G), and assessed their contributions to cervical cancer susceptibility, and their association with other epidemiological risk factors in a Senegalese woman.

Materials and Methods

Study population

The Ethical and Scientific committee of Cheikh Anta Diop of Dakar University approved the study under the number 0197/2016/CER/UCAD. Blood samples and tissues were obtained from patients attending at the center of cancerology Aristide le Dantec hospital (Joliot Curie center) and Gaspard Camara Health Center, from 313 cervical cancer patients (include 127 tissue and 186 blood samples) and 192 healthy controls (blood samples).

All included cases were newly and histopathologically diagnosed with cervical cancer. None of the patients had received chemotherapy or radiotherapy prior to enrolment.

Blood controls patients enrolled in this study were obtained from the Yeumbeul Health Center. All controls were age matched and recruited following physical examinations after diagnostic exclusion of cancer and who were histologically confirmed to have a normal cervix. Demographic data and clinical data of the patients were collected from their files, after obtaining informed and written consent from each patient (Table 1).

DNA isolation

DNA was extracted from both whole blood and cervical tissue using Qiagen kit and based on the manufacturer’s instructions (Qiagen, Germantown, Maryland, USA). Quantification of DNA was carried out by measuring absorbance using NanoDrop Lite Spectrophotometer (Thermo Scientific, USA) and were stored at −20°C until used for genotyping.

Single-nucleotide polymorphisms (SNP) genotyping

The SNPs included in this study were selected based on previous studies that demonstrated their association with cervical cancer (rs1799782, rs25487 of XRCC1 gene and rs861539, rs1799794 of XRCC3 gene). The polymorphisms were genotyped using a TaqMan SNP genotyping assay (Applied Biosystems, Foster City, CA, USA) and a 96-well ABI 7500HT real-time PCR system (Applied Biosystems, Foster City, CA, USA). The final volume for each reaction was 10 μL, containing 5 μL Quanta Mix, 0.5 μL TaqMan probe mix, 2.5 μL DNase/RNase-Free distilled water (Bio Basic Inc. CA) and 2 μL genomic DNA. The real-time PCR steps included an initial activation step at 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec, and 60°C for 1 min. To validate results from real-time PCR, around five percent of assays were repeated. Eventually, the frequencies of genotype or allele of XRCC1 and XRCC3 polymorphisms were determined based on the allelic discrimination plots. To ensure the accuracy of the results, 10% of samples were randomly chosen for repeated assays, and no inconsistent results
were found.

Statistical analysis
The comparison of two groups of categorical variables was performed using Student test or Fisher's exact test. Hardy–Weinberg equilibrium analysis was performed for each SNP. The statistical analysis was performed using multivariate logistic regression in the additive, dominant, recessive and genotypic model, adjusted for age, marital status, gestity, parity and oral contraceptive. Linkage disequilibrium (LD) was computed for each pair of polymorphisms. \(P < 0.05 \) was considered statistically significant. All statistical analyses were carried out using the PLINK software http://zzz.bwh.harvard.edu/plink/.

Results
Characteristics of the study population A total of 313 women diagnosed with cervical cancer (include 127 tissue and 186 blood samples) and 192 controls were included in this study. The demographic and clinical characteristics of cervical cancer patients and normal controls are summarized in Table 1.

From the 186 blood cervical cancer patients (CCB), 8 (4.3%) were IB stage, 24 (12.9%) were IIA stage, 47 (25.27%) were IIB stage, 41 (22.04%) were IIIA stage, 19 (10.21%) IIIB stage, 31 (16.67%) IVA stage and 16 (8.6%) IVB stage. Of the 127 tissues cervical cancer patients (CCT), 37 (29.13%) were IIA stage, 13 (10.23%) were IIB stage, 40 (31.50%) were IIIA stage, 16 (12.60%) IIIB stage, 10 (7.87%) IVA stage and 1 (0.8%) IVB stage. At all, 110 (59.14%) of women were polygamous among CCB and 106 (83.46%) among CCT while 114 (59.37%) were monogamous among controls.

The median ages of the cervical cancer patients (CCB and CCT) and control women were 53.1 (range 24–80), 49.84 (range 27–85), and 38.76 (range 20–64), respectively. The subjects more than 45 years old in cervical cancer CCB, CCT and control group were 140 (75.27%), 78 (61.42%), and 67 (34.9%), while the subjects less than 45 years old in cervical cancer CCB, CCT and control group were 41 (22.04%), 42 (33.07%), and 52 (27.08%), respectively.

The oral contraceptive in CCB, CCT, and control group were 38 (20.43%), 96 (75.59%) and 66 (34.38%) respectively. Women with more than 5 children from the CCB, CCT and controls were 137 (73.66%), 94 (74.01%) and 56 (29.17%), while the patients with less than 5 children were from the CCB, CCT and controls were 37 (19.89%), 22 (17.32%) and 118 (61.46%). There was significant difference in age between controls and patients with CCB and CCT. Similarly, significant differences between the cases and controls were found in parity, gestity, oral contraception and the marital status. However, the smoking status, alcohol consumption was not significantly associated with cervical cancer risk.

XRCC1 and XRCC3 gene variations and structure in Senegalese population
In the present study, the polymorphism of the XRCC1 and XRCC3 gene were analysed in a population of 505 Senegalese, including 127 CCT, 186 CCB and 192 CTR individuals. The SNPs rs25487 and rs1799782 are in linkage disequilibrium (LD) with \(D' = 1 \) and \(r^2 = 0.006 \) in according to the 1000 Genomes African populations, while rs861539 and rs1799794 are not in linkage disequilibrium (LD) with \(D' = 0.54 \) and \(r^2 = 0.008 \).

Table 2 summarizes the frequency of each polymorphism in the CCB, CCT and CTR groups. Allelic frequencies obtained in our study are similar to the data provided by 1000Genomes database with regard to African populations except rs861539.
Table 1: Frequency distribution analysis of selected demographic and risk factors in cervical cancer cases and controls

Variables	CTR (n=192) no.(%)	CCB (n=186) no.(%)	p-value	CCT (n=127) no.(%)	p-value
Tumor stage (FIGO)					
IB	8 (4.3)		0		
IIA	24 (12.9)		37 (29.13)		
IIB	47 (25.27)		13 (10.23)		
IIIA	41 (22.04)		40 (31.50)		
IIB	19 (10.21)		16 (12.60)		
IVA	31 (16.67)		10 (7.87)		
IVB	16 (8.6)		1 (0.8)		
unknown	0		10 (7.87)		
Age (years)					
Median (range)	38.76 (20–64)	53.1 (24–80)	49.84 (27–85)		
<35	73 (38.02)	5 (2.69)	7 (5.51)		
35-45	52 (27.08)	41 (22.04)	8.09e-27a	42 (33.07)	7.47e-15a
>45	67 (34.90)	140 (75.27)	78 (61.42)		
Marital status					
Polygamy	48 (25)	110 (59.14)	106 (83.46)		
Monogamy	114 (59.38)	76 (40.86)	3.31 e-8b	21 (16.54)	1.62 e-20b
Unmarried	30 (15.62)	0	0		
Tobacco smoking					
Yes	5 (2.6)	0	0	127 (100)	0.16b
No	187 (97.40)	186 (100)	0.06b	127 (100)	0.16b
Alcohol consumption					
Yes	1 (0.5)	0	0	0	
No	191 (99.5)	186 (100)	1b	127 (100)	1b
Oral Contraceptive					
Yes	66 (34.37)	38 (20.43)	96 (75.59)		
No	126 (65.63)	148 (79.57)	31 (24.41)	3.14 e-13b	
Gestity					
<5	118 (61.46)	37 (19.89)	22 (17.32)	8.04e-21a	4.18e-16a
>5	74 (38.54)	149 (80.11)	105 (82.68)		
Parity					
<5	136 (70.83)	49 (26.34)	33 (25.98)	7.1e-24a	6.32e-20a
>5	56 (29.17)	137 (73.66)	94 (74.02)		
HIV	0	3	0		

a Student test; *b* Fischer exact test; Cervical cancer blood (CCB), cervical cancer tissues (CCT), Controls (CTR)
Table 2: Allele frequencies and Hardy–Weinberg estimations of SNPs in the study population

Genes	dbSNP number	MAF (A1 frequency)	HWE p-value	Allele A1 African (1000Genomes)	Allele A1 European (1000Genomes)					
	A1	A2	CCB	CCT	CTR	GP	A1	A1		
XRCC1	rs25487	A	G	0.92	0.91	0.90	0.91	0.56	0.89	0.63
	rs1799782	T	C	0.05	0.06	0.02	0.04	0.61	0.07	0.05
XRCC3	rs861539	T	C	0.09	0.09	0.08	0.09	0.41	0.19	0.39
	rs1799794	G	A	0.23	0.20	0.21	0.21	0.41	0.20	0.21

Cervical cancer blood (CCB), cervical cancer tissues (CCT), Controls (CTR), group GP (global population), HWEp, Hardy–Weinberg in global group, Minor Allele frequency (MAF)

Association of the XRCC1 and XRCC3 gene polymorphisms with CCB susceptibility
We found no significant association between the XRCC1 and XRCC3 polymorphism with the risk of cervical cancer in all the subjects in the multivariate logistic regression analyses (Table 3).

Association of the XRCC1 and XRCC3 gene polymorphism with CCT susceptibility
In the dominant genetic model, the SNP XRCC1 rs1799782 Arg194Trp had an increased risk of CC (OR=2.989; 95% CI= 1.078-8.283; p= 0.035) when adjusted for age, parity, gestity, oral contraception and marital status. The effect was more clear when the additive model was applied (OR= 2.696; 95% CI= 1.181-6.154; p= 0.018) Table 4. Similarly, the frequency of Arg194Trp (rs1799782) genotypes in CCB were 160 (86%) for CC, 19 (10%) for CT and 0% for TT while in CCT cases the frequencies were 108 (85%) for CC, 16 (13%) for CT and 0% for TT. However, the C allele was associated with cervical cancer risk in CCT (OR= 2.579; 95% CI= 1.151-5.78; p= 0.017), while it was not associated in CCB (OR= 2.096; 95% CI= 0.9612-4.571; p= 0.057).

Similarly, by comparing 17 identical patients with blood and tumour we found that there is a mutation from the T allele in the blood to the C allele (3%) in the tumour and for the other patients they are homozygous (CC) in the blood and tumour.
Table 3: Genotype frequency distribution of *XRCC1* and *XRCC3* gene polymorphisms and risk associated with CCB

SNP	CCB (n=186) (%)	CTR (n=192) (%)	OR* (95% CI)	P value
XRCC1-399b				
GG	156 (84)	157 (82)	1.00 (ref)	
GA	30 (16)	33 (17)	1 (0.5-2)	0.900
AA	0	2 (1)	-	-
additive			0.8 (0.4-1.3)	0.446
XRCC1-194b				
CC	160 (86)	182 (95)	1.00 (ref)	
CT	19 (10)	10 (5)	1.5 (0.5-4.3)	0.432
TT	0	0	-	-
additive			2.1 (0.9-4.7)	0.057
XRCC3-241b				
CC	143 (77)	154 (80)	1.00 (ref)	
CT	30 (16)	33 (17)	1.5 (0.7-3)	0.193
TT	2	0	-	-
additive			1.1 (0.6-1.8)	0.673
XRCC3-316b				
AA	103 (56)	114 (59)	1.00 (ref)	
AG	66 (35)	68 (35)	0.8 (0.4-1.3)	0.456
GG	8 (4)	7 (4)	0.3 (0.08-1.5)	0.172
additive			1 (0.7-1.5)	0.624

CI: confidence interval; OR: odds ratio; CCB: Cervical cancer blood; CTR: Controls; ref: Reference; CCT: Cervical cancer tissues; Bold values indicate statistical significance.

*Adjusted for age, parity, gestity, marital status and use of oral contraceptive.

*Genotypic frequencies [N (%)].

Discussion

Cervical cancer is still the leading cause of cancer-related deaths among women. Carcinogenic compounds play an important role in causing direct or indirect DNA alteration. DNA repair is responsible for maintaining genomic stability in response to the assault of environmental carcinogens that causes DNA damage (Friedberg, 2003). If left unrepaired, such DNA damage could cause mutation fixation and initiation of carcinogenesis. Polymorphisms, which have an effect on the regulation of gene expression, can contribute to the differences between individuals in the susceptibility to a disease and its severity (Choi and Kim, 2007).

There are many opinions about influence of *XRCC1* (X-ray repair complementing defective repair in Chinese hamster cells 1) and *XRCC3* (X-ray repair complementing defective repair in Chinese hamster cells 3) genes on different cancer types. These genes participate in excision repair of bases and repair of single and double strand breaks. In our study, we
conducted a study to investigate the XRCC1 Arg194Trp, Arg399Gln and XRCC3 Thr241Met, A316G polymorphisms and development of cervical cancer.

The previous studies also point out to the relation of XRCC1 (Arg399Gln, Arg194Trp) and XRCC3 Thr241Met polymorphisms with colorectal cancer, skin cancer, lung cancer (Cui et al., 2012; Zheng et al., 2013), and others. There are data confirming the participation of XRCCI genes polymorphism to cervical cancer (Li et al., 2012).

In the present analysis, we demonstrated that the XRCC1 Arg194Trp polymorphism is associated with an increased risk of cervical cancer in CCT, while there is no significant association between Arg399Gln polymorphisms and cervical cancer in CCT and CCB. Interestingly, that Barbisan et al., (2011) have made a conclusion, that Arg194Trp polymorphism may be associated with cervical cancer risk, Arg399Gln polymorphism might be a low penetrant risk factor for cervical cancer only at Asians, which is confirmed by (Shuai et al., 2012). The meta-analysis of 16 studies (Li et al., 2012) found out that there were no obvious associations of XRCCI Arg399Gln polymorphism with cervical cancer risk. But in the subgroup analyses by ethnicity/country, a significantly increased risk was observed among Asian, especially among Chinese. We found out that XRCCI Arg194Trp polymorphism had been associated with cervical cancer in Kazakhstan population, but indifferent manner.

Different from previous studies (Huang et al., 2007; Roszak et al., 2011; Wen-peng et al., 2011), by pooling all available data from included studies, we found that only Arg194Trp polymorphism was associated with increased risk of cervical cancer.

Regarding the XRCCI Arg399Gln polymorphism our results did not find significant association between XRCC1 Gln399Gln genotype carriers which is confirmed by other (Bajpai et al., 2016).

Published data on the relationship of XRCC3 Thr241Met polymorphism with cancer risk are inconsistent (Au et al., 2003; Konstantinos and Theodoros, 2010; Settheetham-Ishida et al., 2011). However, the most studies show the association of XRCC3 241Met allele. But XRCC3 241Met allele did not increase the risk of cervical cancer development in the Chinese population (He et al., 2008; Cao et al., 2017) and among Thai women (Settheetham-Ishida et al., 2011). Our data confirm the no association between XRCC3 Thr241Met genotype and expressed risk of susceptibility to both cervical cancer in Senegalese population.

However, significant differences between the cases and controls were found in parity, gestity, oral contraception and the marital status. These factors have previously been reported as risk factors for HPV infection, or cofactors for cervical cancer (Munoz et al., 2003; Hinkula et al., 2004; Kim et al., 2012; Vessey and Yeates, 2013). Long-term use of oral contraceptive could be a cofactor that increases the risk of cervical carcinoma by up to four-fold in women who are positive for cervical HPV DNA ((Moreno et al., 2002). We found a significant number of oral contraceptive users in CCB (20%) and CCT (24%) compared with only 34% among the controls. However, oral contraceptive use was not correlated with the disease in CCB and CCT.

High parity, as evident in studies by (Jensen et al., 2013), seems to increase the risk of SCC of the cervix among HPV positive women. In our study, high parity was also associated significantly with CCB and CCT cases. Our study assessed the difference in age in cervical cancer cases and controls. There was a significant difference between cervical cancer cases and controls, whereas the difference in age was associated statistically significant with CCB and CCT cases.

Our study also showed that both blood and tumor samples can act as sources to detect polymorphism in DNA repair genes as findings of both blood and tissue samples matched 100%. Therefore, this interesting finding of a complete correlation between tissue and blood samples suggests that gene polymorphism in blood may be used as a non-invasive method to evaluate the risk of cervical cancer.

The identification of polymorphisms in many genes and the determination of their functional importance in cervical cancer will enable the design of susceptibility risk models for de-novo and therapy-related disease.

Conclusion

In conclusion, the research of the relationship of XRCC1 and XRCC3 polymorphisms and cervical cancer is very popular but conflicting at present. This is the first molecular epidemiological study on XRCC1 (rs1799782, rs25487), XRCC3 (rs861539, rs1799194) polymorphism and cervical cancer risk in Senegalese. Our study suggests that XRCC1 Arg194Trp polymorphism may be associated with cervical cancer.
risk, while XRCC1 Arg399Gln and XRCC3 polymorphism didn’t show an association with cervical cancer risk.

List of Abbreviations

HPV: Human Papilloma Virus; CIN: Cervical Intraepithelial Neoplasia; CC: Cervical Cancer; CTR: Control; CCB: Cervical Cancer Blood; CCT: Cervical Cancer Tissue; HRR: homologous recombination repair; PARP1: Poly (ADP-Ribose) Polymerase 1; DSBs: double strand breaks; HWE: Hardy–Weinberg equilibrium; MAF: Minor Allele frequency; BER: base excision repair; NER: nucleotide excision repair; MMR: mismatch repair; RD: Direct Reversion; DSBR: double-strand breaks repair; RER: Ribonucleotide Excision Repair; FIGO: International Federation of Gynecology and Obstetrics; ROS: reactive oxygen species

Acknowledgments

The authors are grateful to all the patients and medical staff of Cancerology Unit - Joliot Curie institute (HALD) who have generously collaborated in the Cancer Genomics Project in Senegal with UCAD and Pasteur Institute of Dakar. Also, Yeumbeul Health Center with Mrs Sakho.

Consent and Approval

We declare no conflicts of interest associated with this publication.

All patients and their families signed the informed consent form that was approved by the Ethical and Scientific committees.

References

1. Ahn, Woong Shick, S.u M.i Bae, Jae Eun Chung, Hyun Kyung Lee, Byung Kee Kim, Joon M.o Lee, Sung Eun Namkoong, Chong Kook Kim, and Jeong-I.m Sin. (2003): “Evaluation of Adenoassociated Virus 2 and Human Papilloma Virus 16 and 18 Infection in Cervical Cancer Biopsies.” Gynecologic Oncology 89 (1): 105–11. https://doi.org/10.1016/S0090-8258(03)00008-8.

2. Al Zoubi, Mazhar. (2015): “X-Ray Repair Cross-Complementing Protein 1 and 3 Polymorphisms and Susceptibility of Breast Cancer in a Jordanian Population.” Saudi Medical Journal 36 (10): 1163–67. https://doi.org/10.15537/smj.2015.10.12659.

3. Alsheih, Ghazi, Najla Al-Harbi, Medhat El-Sebaie, and Ismail Al-Badawi. (2013): “HPV Prevalence and Genetic Predisposition to Cervical Cancer in Saudi Arabia.” Infectious Agents and Cancer 8 (1). https://doi.org/10.1186/1750-9378-8-15.

4. Areeshi, Mohammed Yahya. (2013): “Genetic Variation in a DNA Double Strand Break Repair Gene in Saudi Population: A Comparative Study with Worldwide Ethnic Groups.” Asian Pacific Journal of Cancer Prevention 14 (12): 7091–94. https://doi.org/10.7314/APJCP.2013.14.12.7091.

5. Au, William W., Salama A. Salama, and Carlos H. Sierra-Torres. (2003): “Functional Characterization of Polymorphisms in DNA Repair Genes Using Cytogenetic Challenge Assays.” Environmental Health Perspectives 111 (15): 1843–50. https://doi.org/10.1289/ehp.6632.

6. Bajpai, Deepti, Ayan Banerjee, Sujata Pathak, Bhaskar Thakur, Sunesh K Jain, and Neeta Singh. (2016): “Single Nucleotide Polymorphisms in the DNA Repair Genes in HPV-Positive Cervical Cancer.” European Journal of Cancer Prevention 25 (3): 224–31.

7. Barbisan, Gisela, Luis Orlando Pérez, L Difranza, Cintia Judith Fernandez, Noelia Esther Ciancio, and Carlos Daniel Golijow. (2011): “XRCC1 Arg399Gln Polymorphism and Risk for Cervical Cancer Development in Argentine Women.” European Journal of Gynaecological Oncology 32 (3): 274.

8. Bray, Freddie, Jacques Ferlay, Isabelle Soerjomataram, Rebecca L. Siegel, Lindsey A. Torre, and Ahmedin Jamal. 2018. “Global Cancer Statistics (2018): GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.” CA: A Cancer Journal for Clinicians 68 (6): 394–424. https://doi.org/10.3322/caac.21492.

9. Brenneman, Mark A, Brant M Wagener, Cheryl A Miller, Chris Allen, and Jac A Nickoloff. (2002): “XRCC3 Controls the Fidelity of Homologous Recombination.” Molecular Cell 10 (2): 387–95. https://doi.org/10.1016/S1097-2765(02)00595-6.
10. Caldecott, Keith W., James D. Tucker, Lawrence H. Stanker, and Larry H. Thompson. (1995): “Characterization of the XRCC1-DNA Ligase III Complex in Vitro and Its Absence from Mutant Hamster Cells.” Nucleic Acids Research 23 (23): 4836–43. https://doi.org/10.1093/nar/23.23.4836.

11. Cao, Yi, Wei Chen, Yi Xia, Ge Zhao, Zheng Hu, and Xin-Hua Xie. (2017): “X-Ray Repair Cross-Complementing Group 3 Common Polymorphism Is Not Associated with Cervical Cancer Risk.” Biomedical Research 28 (17): 7370–72.

12. Choi, Jung Kyoyn, and Sang Cheol Kim. (2007): “Environmental Effects on Gene Expression Phenotype Have Regional Biases in the Human Genome.” Genetics 175 (4): 1607–13. https://doi.org/10.1534/genetics.106.069047.

13. Cortés-Gutiérrez, Elva I., Fernando Hernández-Garza, Jorge O. García-Pérez, Martha I. Dávila-Rodríguez, Miguel E. Aguado-Barrera, and Ricardo M. Cerda-Flores. (2012): “Evaluation of DNA Single and Double Strand Breaks in Women with Cervical Neoplasia Based on Alkaline and Neutral Comet Assay Techniques.” Journal of Biomedicine and Biotechnology 2012: 1–7. https://doi.org/10.1155/2012/385245.

14. Cui, Zhigang, Zhihua Yin, Xuelian Li, Wei Wu, Peng Guan, and Baosen Zhou. (2012): “Association between Polymorphisms in XRCC1 Gene and Clinical Outcomes of Patients with Lung Cancer: A Meta-Analysis.” BMC Cancer 12 (1). https://doi.org/10.1186/1471-2407-12-71.

15. Diderich, K., M. Alanazi, and J.H.J. Hoeijmakers. (2011): “Premature Aging and Cancer in Nucleotide Excision Repair-Disorders.” DNA Repair 10 (7): 772–80. https://doi.org/10.1016/j.dnarep.2011.04.025.

16. Economidouus, Konstantinos P., and Theodoros N. Sergentanís. (2010): “XRCC3 Thr241Met Polymorphism and Breast Cancer Risk: A Meta-Analysis.” Breast Cancer Research and Treatment 121 (2): 439–43. https://doi.org/10.1007/s10549-009-0562-3.

17. Eker, A. P. M., C. Quayle, I. Chaves, and G. T. J. van der Horst. (2009): “DNA Repair in Mammalian Cells: Direct DNA Damage Reversal: Elegant Solutions for Nasty Problems.” Cellular and Molecular Life Sciences 66 (6): 968–80. https://doi.org/10.1007/s00018-009-8735-0.

18. Fan, J., and D Wilsonii. (2005): “Protein?Protein Interactions and Posttranslational Modifications in Mammalian Base Excision Repair.” Free Radical Biology and Medicine 38 (9): 1121–38. https://doi.org/10.1016/j.freeradbiomed.2005.01.012.

19. Fan, Xiaohong, and Qingyu Xiu. (2015): “Effect of X-Ray Repair Cross Complementing Group 1 Polymorphisms on the Efficacy of Platinum-Based Chemotherapy in Patients with Nonsmall Cell Lung Cancer.” Journal of Cancer Research and Therapeutics 11 (3): 571. https://doi.org/10.4103/0973-1482.159085.

20. Friedberg, Errol C. (2003): “DNA Damage and Repair.” Nature 421 (6921): 436–40. https://doi.org/10.1038/nature01408.

21. Goode, Ellen L., Cornelia M. Ulrich, and John D. Potter. (2002): “Polymorphisms in DNA Repair Genes and Associations with Cancer Risk.” Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology 11 (12): 1513–30.

22. He, Xiaofeng, Wu Wei, Jiao Su, Zi-Xuan Yang, Yi Liu, Ying Zhang, Da-Peng Ding, and Wei Wang. (2012): “Association between the XRCC3 Polymorphisms and Breast Cancer Risk: Meta-Analysis Based on Case–Control Studies.” Molecular Biology Reports 39 (5): 5125–34. https://doi.org/10.1007/s11033-011-1308-y.

23. He, Xiaohong, Feng Ye, Jing Zhang, Qi Cheng, Jiajie Shen, and Huaizeng Chen. (2008): “Susceptibility of XRCC3, XPD, and XPG Genetic Variants to Cervical Carcinoma.” Pathobiology 75 (6): 356–63. https://doi.org/10.1159/000164220.

24. Hinkula, M, E Pukkala, P Kyyrönen, P Laukkanen, P Koskela, J Paavonen, M Lehtinen, and A Kauppila. (2004): “A Population-Based Study on the Risk of Cervical Cancer and Cervical Intraepithelial Neoplasia among Grand Multiparous Women in Finland.” British Journal of Cancer 90 (5): 1025–29. https://doi.org/10.1038/sj.bjc.6601650.

25. Hou, Bao-Hua, Zhi-Xiang Jian, Peng Cui, Shao-Jie Li, Rui-Qing Tian, and Jin-Rui Ou. (2016): “Association and Intragenic Single-Nucleotide Polymorphism Interactions of the XRCC1 Polymorphisms for Pancreatic Cancer
Susceptibility.” Pancreas 45 (4): 546–51. https://doi.org/10.1097/MPA.0000000000000482.
26. Hsieh, Peggy, and Kazuhiro Yamane. (2008): “DNA Mismatch Repair: Molecular Mechanism, Cancer, and Ageing.” Mechanisms of Ageing and Development 129 (7–8): 391–407. https://doi.org/10.1016/j.mad.2008.02.012.
27. Huang, J., F. Ye, H. Chen, W. Lu, and X. Xie. (2007): “The Nonsynonymous Single Nucleotide Polymorphisms of DNA Repair Gene XRCC1 and Susceptibility to the Development of Cervical Carcinoma and High-Risk Human Papillomavirus Infection.” International Journal of Gynecological Cancer 17 (3): 668–75. https://doi.org/10.1111/j.1525-1438.2007.00840.x.
28. Jemal, Ahmedin, Freddie Bray, Melissa M. Center, Jacques Ferlay, Elizabeth Ward, and David Forman. (2011): “Global Cancer Statistics.” CA: A Cancer Journal for Clinicians 61 (2): 69–90. https://doi.org/10.3322/caac.20107.
29. Jensen, K E, S Schmiedel, B Norridl, K Frederiksen, T Iftner, and S K Kjaer. (2013): “Parity as a Cofactor for High-Grade Cervical Disease among Women with Persistent Human Papillomavirus Infection: A 13-Year Follow-Up.” British Journal of Cancer 108 (1): 234–39. https://doi.org/10.1038/bjc.2012.513.
30. Jiricny, Josef, and Giancarlo Marr. (2003): “DNA Repair Defects in Colon Cancer.” Current Opinion in Genetics & Development 13 (1): 61–69.
31. Khanna, Kum Kum, and Stephen P. Jackson. (2001): “DNA Double-Strand Breaks: Signaling, Repair and the Cancer Connection.” Nature Genetics 27 (3): 247–54. https://doi.org/10.1038/ng798.
32. Kim, Jw, Sh Song, Ch Jin, Jk Lee, Nw Lee, and Kw Lee. (2012): “Factors Affecting the Clearance of High-Risk Human Papillomavirus Infection and the Progression of Cervical Intraepithelial Neoplasia.” Journal of International Medical Research 40 (2): 486–96. https://doi.org/10.1177/14732301124000210.
33. Kurumizaka, H., S. Ikawa, M. Nakada, K. Eda, W. Kagawa, M. Takata, S. Takeda, S. Yokoyama, and T. Shibata. (2001): “Homologous-Pairing Activity of the Human DNA-Repair Proteins Xrcu3*Rad51C.” Proceedings of the National Academy of Sciences 98 (10): 5538–43. https://doi.org/10.1073/pnas.091603098.
34. Li, Ya, Fei Liu, Shi-Qiao Tan, Yan Wang, and Shang-Wei Li. (2012): “X-Ray Repair Cross-Complementing Group 1 (XRCC1) Genetic Polymorphisms and Cervical Cancer Risk: A HuGE Systematic Review and Meta-Analysis.” Edited by Joellen M. Schildkraut. PLoS ONE 7 (9): e44441. https://doi.org/10.1371/journal.pone.0044441.
35. Moreno, Victor, F Xavier Bosch, Nubia Muñoz, Chris JLM Meijer, Keerti V Shah, Jan MM Walboomers, Rolando Herrero, and Silvia Franceschi. (2002): “Effect of Oral Contraceptives on Risk of Cervical Cancer in Women with Human Papillomavirus Infection: The IARC Multicentric Case-Control Study.” The Lancet 359 (9312): 1085–92. https://doi.org/10.1016/S0140-6736(02)08150-3.
36. Munoz, Nubia, F. Xavier Bosch, Silvia De Sanjosé, Rolando Herrero, Xavier Castellsagué, Keerti V. Shah, Peter JF Snijders, and Chris JLM Meijer. (2003): “Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer.” New England Journal of Medicine 348 (6): 518–527.
37. Nissar, Saniya, Aga Syed Sameer, Roohi Rasool, Nissar A Chowdri, and Fouzia Rashid. (2015): “Polymorphism of the DNA Repair Gene XRCC1 (Arg194Trp) and Its Role in Colorectal Cancer in Kashmiri Population: A Case Control Study.” Asian Pacific Journal of Cancer Prevention 16 (15): 6385–90. https://doi.org/10.7314/APJC.2015.16.15.6385.
38. Niwa, Yoshimitsu, Keitaro Matsuo, Hidemi Ito, Kaoru Hirose, Kazuo Tajima, Toru Nakanishi, Akihiro Nawa, Kazuo Kuzuya, Akiko Tamakoshi, and Nobuyuki Hamajima. (2005): “Association of XRCC1 Arg399Gln and OGG1 Ser326Cys Polymorphisms with the Risk of Cervical Cancer in Japanese Subjects.” Gynecologic Oncology 99 (1): 43–49. https://doi.org/10.1016/j.ygyno.2005.05.018.
39. Pan, Ling, Jay Penney, and Li-Huei Tsai. (2014): “Chromatin Regulation of DNA Damage Repair and Genome Integrity in the Central Nervous System.” Journal of Molecular Biology 426 (20): 3376–88. https://doi.org/10.1016/j.jmb.2014.08.001.
40. Pramanik, Sreemanta, Saravana Devi, Sanghamitra Chowdhary, Subin T. Surendran, Kannan
Krishnamurthi, and Tapan Chakrabarti. (2011): “DNA Repair Gene Polymorphisms at XRCC1, XRCC3, XPD, and OGG1 Loci in Maharashtrian Population of Central India.” Chemosphere 82 (7): 941–46. https://doi.org/10.1016/j.chemosphere.2010.10.100.

41. Robertson, A. B., A. Klungland, T. Rognes, and I. Leiros. (2009): “DNA Repair in Mammalian Cells: Base Excision Repair: The Long and Short of It.” Cellular and Molecular Life Sciences 66 (6): 981–93. https://doi.org/10.1007/s00018-009-8736-z.

42. Roszak, Andrzej, Margarita Lianeri, and Pawel P. Jagodzinski. (2011): “Involvement of the XRCC1 Arg399Gln Gene Polymorphism in the Development of Cervical Carcinoma.” The International Journal of Biological Markers 26 (4): 216–20. https://doi.org/10.5301/JBM.2011.8581.

43. Scott, Rodney J. (2004): “DNA Double Strand Break Repair and Its Association with Inherited Predispositions to Breast Cancer.” Hereditary Cancer in Clinical Practice 2 (1): 37. https://doi.org/10.1186/1897-4287-2-1-37.

44. Settheetham-Ishida, Wannapa, Pissamai Yuenyao, Sitakan Natphopsuk, Dariwan Settheetham, and Takafumi Ishida. (2011): “Genetic Risk of DNA Repair Gene Polymorphisms (XRCC1 and XRCC3) for High Risk Human Papillomavirus Negative Cervical Cancer in Northeast Thailand.” Asian Pacific Journal of Cancer Prevention: APJCP 12 (4): 963–66.

45. Shi, Ying, Song-Ling Peng, Li-Fang Yang, Xue Chen, Yong-Guang Tao, and Ya Cao. (2016): “Co-Infection of Epstein-Barr Virus and Human Papillomavirus in Human Tumorigenesis.” Chinese Journal of Cancer 35 (1). https://doi.org/10.1186/s40880-016-0079-1.

46. Shuai, Han-Lin, Xin Luo, Rui-Ling Yan, Jian Li, and Dan-Liang Chen. (2012): “XRCC1 Polymorphisms Are Associated with Cervical Cancer Risk and Response to Chemotherapy: A Systematic Review and Meta-Analysis.” Asian Pacific Journal of Cancer Prevention 13 (12): 6423–27.

47. Smith, Tasha R., Mark Steven Miller, Kurt Lohman, Ethan M. Lange, L. Douglas Case, Harvey W. Mohrenweiser, and Jennifer J. Hu. (2003): “Polymorphisms of XRCC1 and XRCC3 Genes and Susceptibility to Breast Cancer.” Cancer Letters 190 (2): 183–90. https://doi.org/10.1016/S0304-3835(02)00595-5.

48. Tambini, Cathryn E., Karen G. Spink, Caroline J. Ross, Mark A. Hill, and John Thacker. (2010): “The Importance of XRCC2 in RAD51-Related DNA Damage Repair.” DNA Repair 9 (5): 517–25. https://doi.org/10.1016/j.dnarep.2010.01.016.

49. Udomudi, Anuradha, Malini Jaiswal, N Rajeswari, Neena Desai, S Jain, N Balakrishna, K Visveswara Rao, and YR Ahuja. (1998): “Risk Assessment in Cervical Dysplasia Patients by Single Cell Gel Electrophoresis Assay: A Study of DNA Damage and Repair.” Mutation Research/Genetic Toxicology and Environmental Mutagenesis 412 (2): 195–205.

50. Vessey, Martin, and David Yeates. (2013): “Oral Contraceptive Use and Cancer: Final Report from the Oxford–Family Planning Association Contraceptive Study.” Contraception 88 (6): 678–83. https://doi.org/10.1016/j.contraception.2013.08.008.

51. Wallace, Bret D., and R Scott Williams. (2014): “Ribonucleotide Triggered DNA Damage and RNA-DNA Damage Responses.” RNA Biology 11 (11): 1340–46. https://doi.org/10.4161/15476286.2014.992283.

52. Wang, X., and Z. Yang. (2010): “The Relationship of XRCC1 Gene Polymorphism and the Risk of Cervical Cancer.” Modern Medicine & Health 26: 2137–38.

53. Wen-peng, M, J Ping, and G Yun. (2011): “Single Nucleotide Polymorphisms of the DNA Repair Genes XPD and XRCC1 and the Susceptibility to Cervical Squamous Cell Carcinoma.” Prog Obstet Gynecol 20: 881–85.

54. Yin, Qing-Hua, Chuan Liu, Lian Li, Xu-Yu Zu, and Ya-Jie Wang. (2012): “Association Between the XRCC3 T241M Polymorphism and Head and Neck Cancer Susceptibility: A Meta-Analysis of Case-Control Studies.” Asian Pacific Journal of Cancer Prevention 13 (10): 5201–5. https://doi.org/10.7314/APJCP.2012.13.10.5201.

55. Yuan, Cunzhong, Xiaoyan Liu, Shi Yan, Cunfang Wang, and Beihua Kong. (2014): “Analyzing Association of the XRCC3 Gene Polymorphism with Ovarian Cancer Risk.” BioMed Research International 2014: 1–9. https://doi.org/10.1155/2014/648137.
56. Yun, Yu-Xia, Li-Ping Dai, Peng Wang, Kai-Juan Wang, Jian-Ying Zhang, and Wei Xie. (2015): “Association of Polymorphisms in X-Ray Repair Cross Complementing 1 Gene and Risk of Esophageal Squamous Cell Carcinoma in a Chinese Population.” BioMed Research International 2015: 1–7. https://doi.org/10.1155/2015/509215.

57. Zhao, Peng, Peng Zou, Lin Zhao, Wei Yan, Chunsheng Kang, Tao Jiang, and Yongping You. (2013): “Genetic Polymorphisms of DNA Double-Strand Break Repair Pathway Genes and Glioma Susceptibility.” BMC Cancer 13 (1). https://doi.org/10.1186/1471-2407-13-234.

58. Zheng, Luming, Feng Yang, Xukui Zhang, Jian Zhu, Pen Zhou, Fang Yu, Lei Hou, Guowei Zhao, Qingqing He, and Baocheng Wang. (2013): “Investigation on XRCC1 Genetic Polymorphism and Its Relationship with Breast Cancer Risk Factors in Chinese Women.” Medical Oncology 30 (4). https://doi.org/10.1007/s12032-013-0738-x.