Facial palsy as a manifestation of COVID-19: A systematic review of cases

Aiman Khurshid | Maman Khurshid | Aruba Sohail | Imran Mansoor Raza | Muhammad Khubab Ahsan | Mir Umer Farooq Alam Shah | Anab Rehan Taseer | Abdulqadir J. Nashwan | Irfan Ullah

1Department of Forensic Medicine, Abbasi Shaheed Hospital, Karachi, Pakistan
2Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
3Department of Internal Medicine, Jinnah Medical and Dental College, Karachi, Pakistan
4Department of Psychiatric Medicine, Dr Ruth KM Pfau Civil Hospital, Karachi, Pakistan
5Department of Pulmonology, Lady Reading Hospital (LRH), Peshawar, Pakistan
6Hamad Medical Corporation, Doha, Qatar
7Kabir Medical College, Gandhara University, Peshawar, Pakistan

Correspondence
Abdulqadir J. Nashwan, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar. Email: anashwan@hamad.qa

Abstract

Background and Aims: Facial palsy is a rare complication of the COVID-19 infection. Herein, we conducted a systematic review of all published cases of facial palsy post-COVID-19 infection in an attempt to educate the general population and medical practitioners regarding the likely occurrence of facial palsy in COVID-19 patients, its detection, effective treatment plan, and prognosis of the condition.

Methods: We searched PubMed, Google Scholar, and Directory of Open Access Journals (DOAJ) from December 1, 2019 to September 21, 2021.

Results: We included 49 studies bearing accounts of 75 cases who had facial palsy. The mean age of patients was 42.9 ± 19.59 years, with a male-to-female ratio of 8:7. The majority of the cases were reported from Brazil (n = 14), USA (n = 9), Turkey (n = 9), and Spain (n = 9). Noticeably, 30.14% of COVID-19 patients were diagnosed with Guillain-Barré syndrome. In total, 22.97% of patients complained of bilateral facial paralysis (n = 17), whereas ipsilateral paralysis was observed in 77.03% (n = 57). These were common complaints of Lagophthalmos, otalgia, facial drooping, dysarthria, and compromised forehead wrinkling. The treatment regimen mainly included the use of corticosteroids (n = 51) (69.86%), antivirals (n = 23) (31.51%), IVIG (n = 18) (24.66%), antibiotics (n = 13) (17.81%), antiretroviral (n = 9) (12.33%), and antimalarial (n = 8) (10.96%) medications. In all, 35.62% of patients (n = 26) adhered to a combination of antiviral and corticosteroid-based therapy. Positive treatment outcomes were observed in 83.58% (n = 56) of cases. In contrast, 10 patients (14.93%) showed nonsignificant recovery, out of which 3 (4.48%) died from the disease.

Conclusion: The association of facial palsy with COVID-19 is controversial and therefore requires further investigation and published work to confirm a causal relationship. However, physicians should not overlook the likelihood of facial palsy post-COVID-19 infection and treat it accordingly.

KEYWORDS
COVID-19, facial palsy, neurological symptoms, SARS-CoV-2, systematic review
1 | INTRODUCTION

On December 31, 2019, a novel coronavirus was first identified in Wuhan, China, after reports of multiple cases of pneumonia among its people.¹ This was the start of an outbreak that took the shape of a pandemic over a few months, owing to its rapid transmission through respiratory droplets. As of May 10, 2022, 6.53% of the world population (n = 515,748,861) has confirmed infection with COVID-19, while 1.21% of these have lost their lives to the complications of COVID-19.²

COVID-19 patients commonly complain of fever, fatigue, nasal congestion, myalgia, anosmia, dry cough, ageusia, hemoptysis, dyspnea, and so forth.³ Under more serious circumstances, COVID-19 can result in severe pneumonia, acute respiratory distress syndrome, sepsis, septic shock, multiple organ failure, and so forth.⁴ While these are some of the most widely reported complications of COVID-19 infection, other less common ones have also surfaced, for example, hemophagocytic lymphohistiocytosis (HLH), vasculitis, central retinal vein occlusion, and so forth.⁵–⁷ Similarly, facial palsy has emerged as an unusual yet interesting complication of COVID-19, whose pathophysiology is yet to be known.

Numerous case reports and series documenting facial palsy as a complication of COVID-19 have been published. In addition, some systematic reviews have discussed the association of facial palsy with COVID-19. However, none of these reviews collectively assessed all the cases of facial palsy secondary to COVID-19. For instance, Gupta et al.⁸ included only those cases in which facial palsy was an isolated neurological finding. Therefore, in our systematic review, we aim to develop a stronger evidence base by including all the cases of facial palsy secondary to COVID-19 that have been published to date. Moreover, we generated patient-level data by including case reports to thoroughly evaluate the patient characteristics and clinical course of facial palsy secondary to COVID-19. This will not only bridge the gap in literature but will also aid physicians in reaching a timely diagnosis and in devising treatment regimens that cater to the patients’ individual needs.

2 | METHODOLOGY

2.1 | Literature review

Our work aligns with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) checklist (Supporting Information: File S1).⁹ We searched PubMed, Google Scholar, and Directory of Open Access Journals (DOAJ) from December 1, 2019 to September 21, 2021 for published accounts of cases of facial palsy as a symptom of COVID-19. Search terms were combined using appropriate Boolean operators. Our search strategy included keywords/subject headings pertaining to COVID-19 (e.g., SARS-CoV-2 OR Coronavirus Disease 2019 OR COVID-19 OR severe acute respiratory syndrome coronavirus 2 OR coronavirus infection) and facial palsy (e.g., facial palsy OR facial weakness OR facial paresis OR bell's palsy). The Reference section of included studies was also checked for completeness’ sake. Please refer to our Supporting Information: File S1 for a detailed search strategy. Furthermore, this study is registered in the International prospective register of systematic reviews (PROSPERO) and holds the unique identifying number (UIN): CRD42022324693.¹⁰

2.2 | Inclusion and exclusion criteria

Our search criteria included all case reports, case series, editorials, correspondence, and retrospective cohorts on the topic of facial palsy following COVID-19 infection. Only work published in English and containing comprehensive detail of clinical presentation and progression of the condition in each patient was included in our systematic review. Studies bearing aggregate level data, language barriers, and incomplete detail of the condition were excluded from our study. The title, abstract, and full-text screening were completed in duplicate and independently by two reviewers (M.K. and A.S.). Disagreements regarding the inclusion of studies for data extraction were resolved by the senior author (A.K.).

2.3 | Data extraction

Duplicate work was removed after a final version of included literature was entered on excel sheets. We gathered available data on the origin of the reported case (country), date of publication, study type, relevant case within every included study, patient characteristics, age, sex, the status of Guillain-Barre syndrome (present or absent), affected side of the face, the onset of facial palsy, the test used for detection of COVID-19, features related to facial palsy, results of cerebrospinal fluid (CSF) analysis, COVID-19-related symptoms, other signs/symptoms, imaging results, treatment regimen and outcome of treatment. Due to a lack of uniformity in the assessment of facial symptoms between included studies, the percentage-wise prevalence of symptoms could not be calculated. Additionally, since follow-up time varied between studies, treatment follow-up results are not comparable. The terms "complete recovery," "partial recovery," "progressive improvement," and "significant improvement" were regarded as positive treatment outcomes by the author of this review.

2.4 | Quality assessment

The quality of included cases was assessed using Joanna Briggs institute’s critical appraisal tools.¹¹ Selected studies were examined for inclusion criteria, sample size, description of study participants, and setting. Two reviewers independently assessed the methodological quality of each paper. Quality assessments were done with different tools based on different study designs. Each tool was modified to provide a numeric score. Tools had 8 items for case reports and 10 for case series. Included case reports (n = 39) had a mean score of 6.385 ± 1.41 with scores ranging from 2 to 8.¹²–⁵⁰ 10 case series had a mean score of 5.60 ± 2.01, and scores ranged from 3 to 9.⁵¹–⁵⁹ The detailed results of the quality
assessments are provided in Supporting Information: File S1. The quality of our systematic review was assessed using AMSTAR 2 criteria.60 The level of compliance with AMSTAR 2 came out to be “low.” We could not conduct a meta-analysis because only case reports and case series were included in the analyses without quantitative data.

2.5 | Statistical analysis

This systematic review reported descriptive information using individual-level data of 75 cases from a total of 49 studies reported on facial palsy as a manifestation of COVID-19. The data focused on the date and country of publication, patient’s characteristics, detailed symptoms of facial palsy and COVID-19, the status of Guillain-Barré syndrome (present or absent), results of imaging and Cerebrospinal Fluid (CSF) analysis, treatment plan and its outcome. In addition, the continuous variable’s mean, median, and SD were calculated where possible.

3 | RESULTS

Our initial search provided 1408 results. After removing duplicate studies (N = 1006), 347 studies were screened individually by the two reviewers (M.K. and A.S.). Two hundred and sixteen studies were rejected after going through their titles and abstracts, while full-text versions of the remaining articles (N = 131) were opened to ascertain their relevance to the topic. Out of these, 82 were excluded for reporting aggregate-level data (N = 35), not being of the desired study type (N = 12), not being in English (N = 19), or for reporting insufficient data on medical manifestation (N = 16). Finally, 49 studies met our inclusion criteria and were, thus, included for systematic analysis (Figure 1).

3.1 | Patient characteristics

A total of 75 patients gathered from 49 studies who developed facial palsy due to COVID-19 [Table 1]. The mean age of patients was 42.91 ± 19.59 years, ranging from 15 months to 88 years. In addition, 40 out of 75 patients were males. At the same time, 35 were females, giving a slightly higher ratio of male to female sufferers (8:7). Highest number of cases were reported from Brazil (n = 14), followed by the USA (n = 9), Turkey (n = 9), and Spain (n = 7). Iran and Italy reported six cases each, whereas Singapore, Morocco, and France published accounts of three people each suffering from the condition. India, Egypt, and Japan reported two cases each. At the same time, Canada, Nepal, UK, Belgium, Qatar, Germany, Sweden, Norway, and Portugal each had one published account of a patient complaining of facial palsy due to COVID-19. It is noteworthy that 13 out of 62 patients

![Figure 1](Image)
Author	Country	Study type	No of cases	Patient No.	Patient characteristics	Age/ Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/ symptoms	Imaging	Treatment	Treatment outcome
Lima et al.	Brazil	Case series	8	1	None	43/F	No	Right	Yes	Moderate (HB Grade 3)	NS	Mild symptoms	Ipsilateral abducant nerve palsy	CT Scan normal	Oral corticosteroids	PR
				2	None	25/F	No	Right	Yes	Mild (HB Grade 2)	NS	Mild	None	Brain MRI normal	Oral corticosteroids + acyclovir	CR
				3	None	33/F	No	Right	Yes	Moderate (HB Grade 3)	NS	Mild	None	NA	Oral corticosteroids + acyclovir	PR
				4	None	26/F	No	Left (after 2-10 days for all Nos)	No	Mild (HB Grade 2)	NS	Mild	MRI: left CN7 enhancement	Oral corticosteroids	CR	
				5	None	50/F	No	Left	No	Moderate (HB Grade 3)	Protein: mildly elevated; WBC: normal; SARS-CoV: negative	Mild	None	CT scan: normal	Oral corticosteroids	PR
				6	None	38/F	No	Left	No	Mild (HB Grade 2)	NS	Mild	None	Brain MRI: normal	Supportive (eye lubricant)	CR
				7	None	39/F	No	Right	No	Mild (HB Grade 2)	NS	Mild	None	Brain MRI: normal	Oral corticosteroids	CR
				8	None	34/M	No	Left	No	Mild (HB Grade 2)	NS	Mild	None	Brain MRI: normal	IV corticosteroids	CR
Homma et al.	Japan	Case report	1	1	Smoker	35/F	No	Right	Yes	NA	NS	Cough, malaise, sore throat, nausea, fever, right-sided aguesia of tongue and anosmia	None	CT scan: multiple bilateral ground-glass opacities	Acetaminophen, Maoto, favipiravir, and inhaled Cidofovir (corticosteroid)	CR
Author	Country	Study type	No of cases	Patient No.	Patient characteristics	Age/Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/symptoms	Imaging	Treatment	Treatment outcome
----------------------	---------	------------	-------------	-------------	------------------------	---------	------------	---------------------	---------------------------------	-------------------------------	-------------	------------------------	----------------------	----------	------------	------------------------
Goh et al.	Singapore	Case report	1	1	NA	27/M	No	Left	No (after 6 days)	Left-sided otalgia	NS	Myalgia, cough, fever, dysguesia, left-sided throbbing headache, and conjunctival infection	None	None	Oral corticosteroid, valacyclovir and Lopinavir/ritonavir	No significant improvement
Figueiredo et al.	Portugal	Case report	1	1	Pregnant, 35/F	35/F	No	Left	Yes	Involuntary drooling, left-side labial commissure deviation and ipsilateral lagophthalmos	NA	None	None	None	Corticosteroid therapy and eye hydration therapy	No significant improvement
Caamaño et al.	Spain	Case report	1	1	None	61/M	Yes	Bilateral	No (after 10 days)	Involuntary drooling on his right facial commissure, unresponsive blink reflex on both eyes	Protein: mildly elevated; WBC: normal; SARS: CON: negative	Fever, cough, and pneumonia	None	Brain MRI: unremarkable; Chest X-ray: bilateral frosted glass pneumonia	Oral corticosteroid, antimalarial and Lopinavir/ritonavir	
Muras et al.	Spain	Case report	1	1	None	20/M	No	Bilateral	No (after a week)	NA	Protein: elevated; WBC: elevated; SARS: CON: negative	Fever, significant asthenia, headache, myalgia, nausea, headache, odynophagia and vomiting	EBV coinfection	Brain MRI: confirmed bilateral facial neuritis	Levofloxacin and oral corticosteroid CR	
Manganotti et al.	Italy	Case series	3	1	NA	72/M	Yes	Right	No (after 18 days)	Mild right sided lower face weakness	Protein: elevated; WBC: normal; SARS: negative	Fever, dyspnea, hyposmia, ageusia	Racid tetraparesis, hypothermia of	NA	IVIG cycle, antimalarial, oseltamivir, darunavir	NA

(Continues)
Author	Country	Study type	No of cases	Patient characteristics	Age/ Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/ symptoms	Imaging	Treatment	Treatment outcome	
Khaja et al.	USA	Case report	1	1	HTN and asthma	44/M	Yes	Bilateral	No (after 3 days)	Elevated; Protein: normal; WBC: normal; SARS-COV: negative	Fever, hypoxia, and ageusia	None	Chest X-ray: clear; MRI brain: unremarkable	IVIG	PR	
Sancho-Saldana et al.	Spain	Case report	1	1	None	56/F	Yes	Bilateral	No (after 20 days)	Elevated; Protein: normal; WBC: normal; SARS-COV: negative	Fever, dry cough, and dyspnea	Tetraparesis, lumbar pain, paraparesis in both hands and oropharyngeal weakness	Chest X-ray: lobar consolidation	Antimalarial, azithromycin, and IVIG	PR	
Author	Country	Study type	No of cases	Patient No.	Patient characteristics	Age / Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/ symptoms	Imaging	Treatment	Treatment outcome
----------------	----------	------------------	-------------	-------------	---	-----------	-------------	----------------------	----------------------------------	----------------------------------	-------------	-------------------------------	-----------------	---------	-----------------------------------	-------------------
Theophanous et al.	USA	Case report	1	1	Prematurely born, multiple congenital abnormalities, asthma, and gastrostomy tube feeding	6/M	No	Right	Yes	Moderate severe (HB Grade 4)	NA	None	Tachycardiac	NA	IV acyclovir, IVIG infusion, lubricating eye drops and IV corticosteroids	Significant improvement
Dahl et al.	Norway	Case report	1	1	Acute MI	37/M	No	Right	No (after 18 days)	NA	Protein: elevated; IgG: normal; WBC: elevated	Fever, headache, dyspnea	X-ray thorax: bilateral consolidations	IV furosemide and intermittently required low-dose nor-epinephrine	CR	
Egilmez et al.	Turkey	Retrospective cohort	8	1	HTN, CHF	90/M	No	Left	Yes	Moderate severe (HB Grade 4)	NA	Pneumonia	None	Thorax CT: Intense pneumonia with ground glass opacities	IV methylprednisolone and corticosteroids (dexamethasone and prednisolone)	PR
				2	None	4/F	No	Left	No (after 7 days)	Moderate severe (HB Grade 4)	NA	Cough and fever	None	Thorax CT: normal	Oral corticosteroid	CR
				3	None	17/F	No	Right	Yes	Moderate (HB Grade 3)	NA	Cough, ageusia and anosmia	None	Thorax CT: normal	Favipiravir and oral corticosteroid	CR
				4	HTN, DM	71/F	No	Right	Yes	Moderate severe (HB Grade 4)	NA	Fever, ageusia and anosmia	None	Thorax CT: normal	Favipiravir and IV corticosteroid	CR

(Continues)
Author	Country	Study type	No of cases	Patient characteristics	Age/Sex	GB present	Affected side of face	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/symptoms	Imaging	Treatment	Treatment outcome
5	None	63/F	No	Left	Yes	Moderate severe (HB Grade 4)	NA	Fever, myalgia, ageusia and anosmia	None	Thorax CT: Mild pneumonia with ground glass appearance	Favipiravir and oral corticosteroids	PR		
6	None	60/F	No	Left	No (after 12 days)	Moderate severe (HB Grade 4)	NA	Fever, ageusia and anosmia	None	Thorax CT: normal	Favipiravir and oral corticosteroids	PR		
7	HTN	65/F	No	Left	Yes	Moderate (HB Grade 3)	NA	Ageusia and anosmia	None	Thorax CT: Mild pneumonia with ground glass opacities	IV corticosteroids	PR		
8	HTN, OSA	30/M	No	Left	No (after 9 days)	Moderate (HB Grade 3)	NA	ageusia and anosmia	None	Thorax CT: Mild pneumonia with ground glass appearance; brain MRI: normal	Favipiravir and oral corticosteroids (methylprednisolone and dexamethasone)	No improvement		

Engström et al. Sweden Case report 1 1 None 46/F No Left No (after 26 days) Tongue deviation to left, inability to wrinkle forehead and left lagophthalmos, drooping left corner of mouth, vocal cord paresis, left-sided paresis NA High fever, cough, dyspnea, dysphagia, and severe headaches None CT thorax: bilateral ground glass appearance, MRI brain: some edema in the parotid gland High-flow oxygen therapy, dalteparin, IV cefotaxime, oral and IV corticosteroids, and tear substitutes with watch bandages Significant improvement

Corrêa et al. Brazil Case series 4 1 None 25/F No Right No (after 2 weeks) Right-sided facial muscle weakness and right lagophthalmos NA Vertigo, mild dyspnea, and fever Stabismus in the right eye after right CN6 palsy None Brain MRI: restricted diffusion (right CN6 nucleus) and an Oral corticosteroids CR
Author	Country	Study type	No of cases	Patient characteristics	Age/ Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/symptoms	Imaging	Treatment	Treatment outcome	
Chan et al.	Canada	Case report	1	None	58/M	Yes	Bilateral	Right	No (after 10 days)	NA	Mild fever and sore throat	None	Brain MRI:	CR	CR	
													CR			
Ozer et al.	Turkey	Case report	1	62/F	Left	No	No (after 2 days)	Total paralysis (HB Grade 6)	NA	NA	Fatigue, chills, and myalgia	None	Brain MRI:	Oral	CR	
													corticosteroids			

(Continues)
Author	Country	Study type	No of cases	Patient No.	GB present	Age/Sex	Patient characteristics	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	COVID-19 related symptoms	Other signs/symptoms	Imaging	Treatment	Treatment outcome
Neo et al.	Singapore	Case series	2	1	NA	25/M		Left	Yes	Severe (HB Grade 5)	None	None	NA	enoxaparin sodium	
Mackenzie et al.	USA	Case report	1	1	HTN, T2DM	39/F	Bilateral	No (after 20 days)	NA	NA	NA	None	NA	oral corticosteroids, valaciclovir and given eye care advice	
Bastola et al.	Nepal	Case report	1	1	DM	48/M	Left	No (after 4 days)	Left-sided facial droop with inability to wink left forehead, raise left eyebrow and left lateral canthus	NA	Mild dry cough and hyposmia	None	HRCT chest: ground-glass opacity in the right lower lobe	Regular insulin and other antidiabetic medications, tear plus drops for dry eyes, and IV corticosteroid	
Hookham et al.	UK	Case report	1	1	Childhood asthma and HTN	17/M	Right	No (after 1.5 months)	Right-sided facial droop with right-sided facial hypesthesia	NA	Fever, diaphoresis, vomiting, mild headache, intermittent right-sided chest pain, myalgia and pedal paresis	Pediatric inflammatory multisystem syndrome, tachycardia	Brain MRI: minimal increased enhancement of a segment right CN 7	IV fluids, broad spectrum antibiotics, oral corticosteroids, tocilizumab	
Author	Country	Study type	No of cases	Patient characteristics	Age/ Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/ symptoms	Imaging	Treatment	Treatment outcome
-----------------	---------	------------	-------------	-------------------------	----------	------------	----------------------	-------------------------------	---------------------------------	-------------	------------------------	----------------------	----------	-----------	-------------------
Khedr et al.	Egypt	Case report	2	None	49/F	Yes	Left	No	Right-sided deviation of mouth and left lagophthalmos	NA	Fever, dysphagia, and vomiting	Flaccid areflexic quadriplegia, hoarseness of voice, and an impaired cough reflex and stock and glove hypoesthesia	CT chest: bilateral ground-glass opacities	Plasmapheresis and IVIg	Progressive improvement

| Kumar et al. | India | Case report | 1 | pregnant and PCOS | 28/F | No | Right | No | Inability to wrinkle right forehead and close right eye, left-sided deviation of mouth, numbness of the right side of the face and right-sided drooling | NA | Fever, dysgeusia, and anosmia | Persistently high blood pressure (160/110), generalized weakness | NA | Oral valacyclovir and oral corticosteroid, insulin (for steroid-induced DM) with physiotherapy and eye protective measures | CR | (Continues) |
Author	Country	Study type	No of cases	Patient characteristics	Age/ Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/ symptoms	Imaging	Treatment	Treatment outcome			
Aasfara et al.	Morocco	Case report	1	Pregnant	36/F	Yes	Bilateral	Yes	Moderate severe (HB Grade 4)	WBC: normal; protein: elevated; glucose: normal	vertigo, nausea, and vomiting	asymmetric numbness in the lower limbs and left fingers, right sensori-neural hearing loss, right vestibular areflexia and nystagmus	NA	IV Ig and IV corticosteroids	CR of facial palsy.			
Paybast et al.	Iran	Case report	1	HTN	38/M	Yes	Bilateral	Yes	Bilateral facial droop, drooling, and slurred speech	glucose: normal; WBC: normal; protein: elevated	head ache, dysphagia, and mild dizziness	quadriparesis, decrease in all sensation modalities in four limbs affecting the distal parts up to ankle and elbow joints, tachycardia, blood pressure instability	NA	Plasmapharesis and labetalol (for HTN)	No significant improvement			
Bigaut et al.	France	Case report	2	None	43/M	Yes	Right	No	WBC: normal; protein: elevated	cough, anosmia, ageusia, and diarrhea	flaccid paraparesis, generalized areflexia, hypaesthesias, fore limb paresthesia, ataxia, myalgias in legs	chest CT: bilateral ground glass opacities; MRI: CN 3, 5, 6, 7, and 8 neuritis	IV Ig	Progressive improvement				
			2	Obesity	70/M	Yes	Left	No	WBC: normal; protein: elevated	anosmia, ageusia,	flaccid tetraparesis	Chest CT: bilateral moderate	IV Ig and physiotherapy	No significant improvement				
Author	Country	Study type	No of cases	No of Patient	Patient characteristics	Age/ Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/ symptoms	Imaging	Treatment	Treatment outcome		
-----------------	---------	------------	-------------	---------------	-------------------------	----------	------------	-----------------------	-------------------------------	-------------------------------	-----------------------------	---------------------------	------------------------	----------	-----------	------------------		
Ottaviani et al.	Italy	Case report	1	1	Mild HTN	66/F	NA	left	Yes	NA	Protein: elevated; rest: normal	Acute fatigue, mild fever, and cough	Paraplegia, transient pruriginous dorsal rash, initial distal weakness in the upper limbs and diffuse areflexia	Lung CT: bilateral ground-glass opacities	IVIG, lopinavir/ritonavir and antimalarial	NA		
Casas et al.	Spain	Case report	1	1	vWB	32/M	No	Left	No	Moderate severe (HB Grade 4)	Malaise, fever, dry cough, and headache	None	Brain MRI: asymmetric contrast uptake in a segment of Left CN7	acetylsalicylic acid, metamizole, physiotherapy and ocular hydration	CR			
Hutchins et al.	USA	Case report	1	1	HTN, pre-diabetes, Class I obesity	21/M	Yes	Bilateral	No	Dysarthria, hypogeusia, and facial numbness	Protein: mildly elevated; WBIC: normal; SARS-COV: negative	Fever, cough, dyspnea, diarrhea, nausea, headache, and sinonasal congestion, dizziness, hypogeusia	Tachycardic, bilateral lower extremity weakness, bilateral upper extremity paraesthesia, Grade 4/5 weakness in the deltoids and hip flexors bilaterally, diffuse areflexia	Chest X-ray: increased bilateral airspace opacities; brain MRI: abnormal bilateral enhancement of CN 6 and 7, alongside right CN 3	Plasmapheresis	Nonsignificant improvement		
Abolmaali et al.	Iran	Case series	3	1	HTN	88/F	Yes	Left	Yes	Left	Fatigue: low back and thigh pain, impaired proprioception	Quadruparesis, with a ground-glass pattern	CT: pneumonia with a ground-glass pattern	Plasmapheresis, intubation, corticosteroids, antimalarsal and lopinavir/ritonavir	No significant improvement	(Continues)		
Author	Country	Study type	No of cases	Patient No.	Patient characteristics	Age/ Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/symptoms	Imaging	Treatment	Treatment outcome		
----------------	---------	------------	-------------	-------------	------------------------	----------	------------	----------------------	-----------------------------------	----------------------------------	-------------	------------------------	---------------------	----------	-----------	----------------------		
Oke et al.	USA	Case report	1	1	history of nephrolithiasis	36/M	No	Right	No	Moderate severe (HB Grade 4)	NA	Fever and body aches	NA	Brain MRI: asymmetric enhancement of the right CN7	Oral valacyclovir, corticosteroid, eye patch and artificial tears	Significant improvement		
Derollez et al.	France	Case report	1	1	Overweight	57/F	NA	Left	No	NA	NA	NA (HB Grade 4)	NA	Chest X-ray: infiltrates	Oral and corticosteroid, favipiravir, arbidol and NSAID	CR		
Hasibi et al.	Iran	Case report	1	1	Class 1 obesity	52/M	No	Right	No	Severe (HB Grade 5)	NA	Fever, malaise, dry cough, and anorexia	NA	CT: multiple peripheral ground glass opacities	Oral and corticosteroid, favipiravir, remdesivir, arbidol and NSAID	CR		
Taouihar et al.	Morocco	Case report	2	1	DM, CML	39/M	No	Right	Yes	Facial asymmetry, dysarthria, and difficulty chewing	NA	Dyspnea	NA	Azithromycin, zinc, vitamin C, oral corticosteroid, preventive anticoagulation	CR of facial palsy			
Author	Country	Study type	No of cases	Patient No.	Gender	Age/Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/symptoms	Imaging	Treatment	Treatment outcome		
-----------------	---------	-----------------	-------------	-------------	--------	---------	-------------	-----------------------	----------------------------------	---------------------------------	--------------	-----------------------	---------------------	---------	-----------	------------------------		
Kaplan et al.	USA	Case report	1	1	DM	48/F	No	Left	No	Asymmetric forehead folds, dry eye, inability to raise the left eyebrow and left facial droop	NA	Fever, chills, headaches, fatigue, myalgia, and weakness	None	CT: bilateral CN7 contrast enhancement	Oral corticosteroids, valacyclovir, and doxycycline	Significant improvement		
Kerstens et al.	Belgium	Case report	1	1	NA	27/M	No	Bilateral	Yes	Severe (HB Grade 5)	IgG: elevated; rest: normal	None	MRI: bilateral CN7 contrast enhancement	Valacyclovir, artificial tears and oral corticosteroids	CR			
Kakumoto et al.	Japan	Case report	1	1	NA	22/M	Yes	Bilateral	No	Dysarthria	Protein: elevated; rest: normal	Fever and dysphagia	Tetraparesis, hypotension of extremities, dysuria, inability to deflectate, dyschezia, sinus arrhythmia	Head MRI: bilateral CN7 contrast enhancement	IVIG, intubated and managed on a ventilator	CR		
Al-Mashdali et al.	Qatar	Case report	1	1	Atrial septal defect	21/M	No	Right	No	NA	NA	Fever, cough, watery diarrhoea, vomiting, conjunctivitis, and abdominal pain	Acute myocarditis	CT: Bilateral ground-glass opacities and pleural effusion	IV corticosteroids and ocular lubricant	Significant improvement	(Continues)	
Author	Country	Study type	No of cases	No of patients	Patient characteristics	Age/sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/symptoms	Imaging	Treatment	Treatment outcome		
----------------	---------	------------	-------------	----------------	-------------------------	---------	------------	---------------------	-----------------------------------	---------------------------------	-------------	------------------------	----------------------	----------	-----------	------------------------		
Judge et al.	USA	Case report	1	1	NA	64/M	No	Bilateral	No	Dysarthria and subjective facial paresthesia	WBC: elevated; protein: elevated; Glucose: normal	Cough, fever, and chills	None	NA	Progressive improvement			
Tran et al.	USA	Case report	1	1	DM	42/M	Yes	Right	Yes	Right-sided hypesthesia, dysartrhia, diplopia, ptosis, and inability to raise eyebrows or smile	Protein: elevated; WBC: normal; glucose: elevated	None	Right lower extremity weakness	None	NA	NA		
Silveira et al.	Brazil	Case report	1	1	DM, HTN	65/M	No	Left	Yes	Facial asymmetry, otalgia, and ophthalmo-plegia	NA	Fever, dry cough, and dyspnea	Chest X-ray: bilateral infiltrates; CT: ground-glass opacities	IV corticosteroids, electrolyte replacement for hypokalemia, IVig, physical, occupational, and speech therapy	CR	IV	Death	
Liberatore et al.	Italy	Case report	1	1	HTN and history of testicular seminoma	49/M	Yes	Left	No	NA	Glucose: normal; protein: slight elevation; WBC: normal	Fever, cough	Symmetric weakness in the upper limbs with flaccid tone, reduced tendon reflexes, and	Chest CT: multifocal ground-glass opacities; Brain MRI: compression of CN 2, 3, 4 and 6	Antimalarial, lopinavir/ritonavir, and ceftriaxone	NA	IV	NA
Author	Country	Study type	No of cases	Patient characteristics	Age/ Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	COVID-19 related symptoms	Other signs/symptoms	Imaging	Treatment	Treatment outcome				
-----------------	---------	------------	-------------	-------------------------	----------	------------	----------------------	-----------------------------------	-------------------------------	-----------------------	---------------------	----------	-----------	-------------------				
Shinde et al.	India	Case report	1	1	64/M	No	Right	Yes	Severe (HB Grade 5)	NA	None	Macular erythematous rash along zygomatic arch, maxillary and mandibular division of trigeminal nerve	Chest X-ray: normal	Eye care, acyclovir, corticosteroid, and methylcobalamin	PR			
Ochoa-Fernández et al.	Spain	Case report	1	1	6/F	No	Left	Yes	Moderate (HB Grade 3)	NA	None	None	NA	Eye protection and oral corticosteroids	CR			
Zain et al.	USA	Case report	1	1	2/F	No	Right	Yes	Right lagophthalmos, ptosis, and drooping of corner of mouth, flattening of the nasolabial fold, dryness of the eye and tearing	Glucose: normal; protein: normal; WBC: normal	None	EBV coinfection and contact dermatitis	Brain MRI: abnormal enhancement of the canalicular segment of right CN7	IV	corticosteroids	CR		

(Continues)
Author	Country	Study type	No of cases	Patient No.	Patient characteristics	Age/ Sex	GB present	Affected side of face	Facial palsy as first sign or not	Features related to facial palsy	CSF results	COVID-19 related symptoms	Other signs/symptoms	Imaging	Treatment	Treatment outcome
Ribeiro et al.	Brazil	Case report	1	1	None	26/M	No	Right	No (on 8th day from first onset of symptoms)	Right facial weakness	NA	Cough and fever	None	NA	High-flow oxygen therapy	NA
González-Castro et al.	Spain	Case series	2	1	Obesity	40/F	No	Left	No (after 2nd day of ward admission)	Moderate (HB Grade 3)	NA	None	MRI: poorly defined contrast uptake in the left hemifacial/malar subcutaneous region	NA	High-flow oxygen therapy	NA
					DM, smoker and Parkinson's disease patient	65/M	No	Left	No	Moderate (HB Grade 3)	NA	None	NA	NA	High-flow oxygen therapy	NA
had hypertension (20.97%), 9 had diabetes mellitus (14.52%), and 3 of the women were pregnant (4.84%). Twenty-seven patients had no comorbid condition (43.55%), while no information was shared for 13 patients (17.33%).

3.2 | Symptom presentation

Noticably, 30.14% of the patients were diagnosed with Guillain-Barré Syndrome associated with COVID-19. Facial palsy was observed as an initial symptom in 26/74 (35.14%) patients. In all, 22.97% of patients complained of bilateral facial paralysis, whereas ipsilateral paralysis was observed in 77.03%. Out of this 77.03% of patients, left (n = 29) and right (n = 28) sided involvement was observed in an almost equal number of patients. In all, 76.47% of bilateral facial paralysis patients also had GBS. Varying intensity of facial paralysis was seen among the 75 COVID-19-inflicted patients. While some experienced only mild facial deficit, weakness, or hypesthesia of the face, others complained of complete facial paralysis (n = 1). Most people complained of moderate-severe facial dysfunction (n = 10) based on the House Brackmann scale. Among sufferers, Lagophthalmos, otalgia, facial drooping, dysarthria, and compromised forehead wrinkling were common complaints. Most patients witnessed mild to moderate COVID-19-specific symptoms. These included complaints of fever, fatigue, cough, ageusia, and headache.

3.3 | Diagnostic results

Polymerase chain reaction (PCR), reverse transcriptase (RT)-PCR, and serology were the most used tests to confirm COVID-19 infection among 75 individuals. CSF analysis was performed in only half (48%) of the patients. 55.56% of whom had elevated CSF protein levels. CSF SARS-CoV-2 result was negative in all (100%), while approximately 1 in every 7 patients (13.5%) had elevated WBC levels on CSF report. Moreover, some patients underwent radiologic imaging to reach a diagnosis. Common findings on chest X-ray, computer tomography (CT) thorax, and magnetic resonance imaging (MRI) brain included the presence of infiltrates/consolidations (50%), ground glass opacities (71.88%), and enhancement of CN 7 of the affected side (51.52%), respectively.

3.4 | Treatment regimen and disease prognosis

Data on treatment plans were shared for 73 (97.33%) out of 75 patients. Although every individual had a treatment plan tailored according to his age, comorbidities, severity of the condition, availability of resources, and so forth, a handful of overlapping medications were prescribed too. Treatment regimen mainly included the use of corticosteroids (69.86%), antivirals (31.51%), IVIG (24.66%), antibiotics (17.81%), antiretroviral (12.33%), and

Table 1 (Continued)

Author	Country	Study type	No of cases	Patient characteristics	Age/ Sex	GB present	Patient No.	Affected side of face	features related to facial palsy as first sign or not	G8 present	Patient No.	No	Treatment outcome	Features related to facial palsy CSF results	Other signs related to COVID-19	Imaging	Treatment	outcome
Pelea et al.	Germany	Case report	1	HTN, hypothyroidosis	56/F	Yes	1	Bilateral	No	Severe (HB Grade 5)	NA	1	PR	Protein: elevated; glucose: normal; WBC: elevated; SARS-CoV: negative	Fever, cough, and dypnea	Chest CT: leaky infiltrates in the right lower lobe	IVIG and Plasmapheresis	PR
Karimi et al.	Iran	Letter to the editor	1	None	60/M	No	1	Bilateral	No	Right-sided facial nerve palsy, involving mouth, eye, and forehead	NA	1	PR	None	Chest CT: ground glass opacities	Remdesivir, corticosteroid, and oxygen therapy	NA	PR

Abbreviations: CR, complete recovery; CT, computed tomography; IVIg, intravenous immunoglobulin; MRI, magnetic resonance imaging; NA, not applicable; PR, partial recovery.
antimalarial (10.96%) medications. Lopinavir/Ritonavir was the most readily prescribed antiretrovirals, whereas hydrochloroquine (100%) was the only antimalarial advised to patients. Three antivirals, namely, acyclovir, valacyclovir, and favipiravir, were predominantly administered to these patients. In total, 35.62% of patients (n = 26) adhered to a combination of antiviral-corticosteroid-based therapy. Furthermore, in some cases, eye care (19.18%) medications, for example, lubricants, artificial tears and watch bandages, and so forth, were also encouraged eye care. Physiotherapy (5.48%) and plasmapheresis (10.96%), though less common, were also a part of the treatment plan of some patients. The outcome of treatment was provided for 67 (89.33%) patients. Positive treatment outcomes were observed in 83.58% of cases. In contrast, 10 patients (14.93%) showed nonsignificant recovery, out of which 3 (4.48%) died from the disease.

4 | DISCUSSION

Systematic reviews have been conducted in the past that discussed the association of facial palsy with COVID-19. The reviews indirectly discussed facial palsy concerning COVID-19 by establishing the correlation of COVID-19 with GBS, while some only explored cases in which facial palsy was an isolated neurological finding. However, none of them collectively assessed all the cases of facial palsy secondary to COVID-19 regardless of associated conditions. Thus, we were able to collate a stronger evidence base to support our findings concerning facial palsy and COVID-19.

Cranial nerve involvement in GBS most commonly results in bilateral facial palsy, rarely unilateral involvement, and facial palsy mostly occurs in the early stage of the disease. The findings of our study corroborate this observation. Of the 17 patients who demonstrated bilateral facial nerve palsy, 13 (76.5%) had accompanying GBS. Thus, cases of bilateral facial palsy are mostly attributed to GBS.

4.1 | Pathophysiology

Pathomechanisms of nervous tissue involvement have been discussed in great detail in the literature. Some of these mechanisms have been highlighted in Figure 2. In our study, unilateral facial palsy patients demonstrated right and left side involvement in almost equal proportions. This shows that SARS-CoV-2 has an equivalent predilection for right and left facial nerves.

In clinical practice, various other viruses have been observed to be associated with facial palsy as well, which include echovirus, enterovirus, herpes simplex virus, Epstein-Barr virus, cytomegalovirus, human herpesvirus 6, human immunodeficiency virus, mumps, rubella, poliomyelitis, and varicella zoster virus. Thus, this further corroborates that a virus like SARS-CoV-2 could be behind the etiopathogenesis of facial palsy.

Classically, facial palsy is known to show a predominance in females, which is evident in the prevalence studies conducted. Moreover, a systematic review involving studies in which Bell’s palsy was the only major neurological manifestation in COVID-19 patients also showed a female preponderance. However, our study demonstrated a slightly high male preponderance. This is because our study included a significantly high number (30.14%) of patients with accompanying GBS, and previous reviews evaluating the relationship between COVID-19 and GBS have demonstrated a high male preponderance. In addition, approximately 21% of the patients had hypertension, and 14.5% demonstrated diabetes mellitus. This finding is corroborated by a study conducted in Korea which demonstrated that facial palsy was associated with age, gender, smoking status, alcohol drinking, history of hypertension, stroke, CVD, diabetes mellitus, total cholesterol level in the blood, and hearing loss through a univariable analysis.
Furthermore, Paolino and colleagues\(^7\),\(^7\) reported a greater frequency of arterial hypertension and lipid disorders in patients with Bell’s palsy than in controls. Moreover, a study showed that the risk of Bell’s palsy was increased in diabetes.\(^7\)\(^9\) Also, patients with underlying comorbidities such as DM, obesity, hypertension, respiratory distress, or advanced age are at higher risk of developing COVID-19.\(^8\)\(^0\) Thus, all these factors contribute to the findings of our study.

The treatment regimen mainly involved corticosteroids (69.86%), and 35.62% of patients adhered to a combination of antiviral–corticosteroid-based therapy. This finding corroborates a meta-analysis demonstrating significant benefits of treating Bell’s palsy with corticosteroids.\(^8\)\(^1\) Moreover, a network meta-analysis showed that combined therapy remains the best regimen for a good recovery outcome, supporting its use by a significant 35.62% of patients.\(^8\)\(^2\) However, only two patients used antivirals without corticosteroids to treat facial palsy. A systematic review supports this finding by demonstrating that corticosteroids alone were superior to antivirals alone in treating facial palsy. There was no clear benefit from antivirals alone over placebo.\(^8\)\(^3\) Our findings show that the successful regimens in treating facial palsy due to other etiologies are also effective in treating facial palsy secondary to COVID-19.

Positive treatment outcomes were observed in 83.58% of patients. This corroborates the effectiveness of the treatment regimens used in the case reports to treat facial palsy secondary to COVID-19. A favorable response to treatment has also been shown in other complications that arise secondary to COVID-19, such as central retinal vein occlusion.\(^7\) However, some complications, such as hypoxic encephalopathy, have also shown a poor prognosis.\(^8\)\(^4\) Thus, this highlights that many distinct complications can arise due to COVID-19 with differing pathogenesis and severity.

There were some limitations in our study. Due to lack of provision of pertinent analytical data, no meta-analysis could be conducted on the topic to confirm the relationship between COVID-19 and facial palsy. Our review only comprised of case reports/series in which a limited number of patients were assessed. Therefore, large-scale studies with more patients and longer follow-ups are warranted to reliably draw the correlation between COVID-19 and facial palsy. Moreover, studies in languages other than English were excluded from the analyses. Lastly, adequate representation of most countries was not seen in our review, which implies that many cases went unreported there, so they could not be included in our analyses. Despite the limitations, we tried to include all relevant cases to date and demonstrated an in-depth comparison of clinical, radiological, and diagnostic features of COVID-19 and concomitant facial palsy in our patient-level analyses.

5 | CONCLUSION

To the best of our knowledge, this is the most updated review of facial palsy cases following COVID-19 infection. Although our patient-level systematic review successfully collated published accounts of facial palsy cases post COVID-19 infection while theorizing the pathophysiology behind COVID-19 and subsequent onset of facial palsy, the likelihood of the association being purely coincidental cannot be overlooked. Therefore, large-scale studies are still warranted to thoroughly understand the association between COVID-19 and concomitant facial palsy. Systematic reviews involving studies with large sample sizes, such as retrospective cohorts, should be conducted, generating a large patient pool for analyses. This would allow us to develop a clearer understanding of patient characteristics and devise more effective treatment regimens that cater to the needs of individual patients.

AUTHOR CONTRIBUTIONS

Aiman Khurshid: Conceptualization, methodology, writing – original draft preparation, writing – review & editing. Maman Khurshid, Aruba Sohail, Imran Mansoor Raza, Muhammad Khubab Ahsan, Mir Umer Farooq Alam Shah, Anab Rehan Taseer, Abdulqadir J. Nashwan, Irfan Ullah: Data curation, writing – review & editing. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

Open Access funding was provided by the Qatar National Library.

CONFLICT OF INTEREST

Abdulqadir J. Nashwan is an Editorial Board member of Health Science Reports and co-author of this article. He is excluded from editorial decision-making related to the acceptance of this article for publication in the journal. The remaining authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The authors confirm that the data supporting the findings of this study are available within the article and its Supporting Information.

TRANSPARENCY STATEMENT

The lead author Abdulqadir J. Nashwan affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

ORCID

Anab Rehan Taseer http://orcid.org/0000-0002-9168-7041
Abdulqadir J. Nashwan http://orcid.org/0000-0003-4845-4119
Irfan Ullah http://orcid.org/0000-0003-1100-101X

REFERENCES

1. World Health Organization. Archived: WHO Timeline - COVID-19. 2020. https://www.who.int/news/item/27-04-2020-who-timeline–covid-19
2. WHO Coronavirus (COVID-19) Dashboard. WHO coronavirus (COVID-19) Dashboard with Vaccination Data. World Health Organization; 2022. https://covid19.who.int/
3. Tsang HF, Chan LWC, Cho WCS, et al. An update on COVID-19 pandemic: the epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev Anti Infect Ther. 2021;19(7):877-888.
4. Respiratory management of COVID-19 - physiopedia. Physiopedia. Accessed March 1, 2022. https://www.physio-pedia.com/Respiratory_Management_of_COVID_19

5. Soy M, Atagündüz P, Atagündüz I, Sucak GT. Hemophagocytic lymphohistiocytosis: a review inspired by the COVID-19 pandemic. Rheumatol Int. 2020;41(7):7-18. https://pubmed.ncbi.nlm.nih.gov/32588191/

6. Wong K, Shah MUFA, Khurshid M, Ullah I, Tahir MJ, Yousaf Z. COVID-19 associated vasculitis: a systematic review of case reports and case series. Ann Med Surg. 2022;74:103249. https://pubmed.ncbi.nlm.nih.gov/35039779/

7. Ullah I, Sohail A, Shah MUFA, et al. Central retinal vein occlusion in patients with COVID-19 infection: a systematic review. Ann Med Surg. 2021;7:102898. https://pubmed.ncbi.nlm.nih.gov/34659743/

8. Gupta S, Jawanda MK, Taneja N, Taneja T. A systematic review of Bell's Palsy as the only major neurological manifestation in COVID-19 patients. J Clin Neurosci. 2021;90:284-292.

9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.

10. Systematic Reviews Registry. PROSPERO. 2022. https://www.crd.york.ac.uk/PROSPERO/#recordDetails

11. Critical Appraisal Tools. Joanna Briggs Institute. https://jbi.global/critical-appraisal-tools

12. Homma Y, Watanabe M, Inoue K, Moritaka T. Coronavirus Disease 2019 infection: a systematic review and report of the literature. Neurologist. 2020;25(4):101-103.

13. Ottaviani D, Boso F, Tranquillini E, et al. Early Guillain-Barré syndrome in coronavirus disease 2019 (COVID-19): a case report from an Italian COVID-hospital. Neurol Sci. 2020;41:1351-1354. doi:10.1007/s10072-020-04449-8

14. Casas E, Barbosa A, Rubio-Garcia E, et al. Isolated peripheral facial paralysis in a patient with COVID-19. Rev Neurol. 2020;71(4):40-41.

15. Ribeiro BN, de F, Gorji R, Mavandadi S. Guillain-Barré syndrome as a neurological complication of novel COVID-19 infection: a case report and review of the literature. Neurologist. 2020;25(4):101-103.

16. Mackenzie N, Lopez-Coronel E, Dau A, et al. Concomitant Guillain-Barré syndrome with COVID-19: a case report. BMC Neurol. 2021;21:135.

17. Bastola A, Sah R, Nepal G, et al. Bell's palsy as a possible neurological complication of COVID-19: a case report. Clin Case Rep. 2021;9(2):747-750.

18. Ozer F, Alkan O. Simultaneous sudden hearing loss and peripheral facial paralysis in a patient with Covid-19. Ear Nose Throat J. 2021:0145561321110280.

19. Pinsky-TS lead to a facial nerve palsy? BMJ Case Rep. 2021;14(6):e240287.

20. Shinde KJ, Karkanth T, Yeolekar AM. Otoneurological presentations of COVID-19. BMJ Case Rep. 2021;14(9):e241893.

21. Haseli S. 18FDG PET/CT assessment of COVID-19 manifestation in pregnant women: a case report. BMJ Case Rep. 2021;38:30.

22. Paybast S, Gorji R, Movandadi S. Guillain-Barré syndrome as a neurological complication of novel COVID-19 infection: a case report and review of the literature. Neurologist. 2020;25(4):101-103.

23. Sarna JR. Guillain-Barré syndrome following asymptomatic Sars CoV-2 infection: case report. Int J Surg. 2022;59(14):1773-1775.

24. Ribeiro BN, de F, Gorji R, Mavandadi S. Guillain-Barré syndrome as a neurological complication of novel COVID-19 infection: a case report and review of the literature. Neurologist. 2020;25(4):101-103.

25. Kakumoto T, Kobayashi S, Yuuki H, et al. Bilateral facial nerve palsy associated with leptomeningeal enhancement following SARS-CoV-2 infection treated with intravenous immunoglobulin. Am J Case Rep. 2021;21:1-6.

26. Derolez C, Alberto T, Lerol I, MacKowiak MA, Chen Y. Facial nerve palsy: an atypical clinical manifestation of COVID-19 infection in a family cluster. Eur J Neurol. 2020;27(12):2670-2672.

27. Zain S, Petropoulou K, Mirchia K, Hussien A, Mirchia K. COVID-19 as a rare cause of facial nerve neuritis in a pediatric patient. Radiol Case Rep. 2021;16(6):1400-1404.

28. Go F, Villora-Morcillo N, Taboas-Pereira MA. Peripheral facial paralysis in a pediatric patient with no risk factors within the context of infection by SARS-CoV-2. Rev Neurol. 2021;72(5):177-178.

29. Koma A, Raygani N, Bakhshayeshkaram M, Haseli S. 18FDG-PET/CT assessment of COVID-19-induced Bell’s Palsy. Acad Radiol. 2021;28(1):144-145.

30. Pelea T, Reuter U, Schmidt C, Laubinger R, Siegmund R, Walther BW. SARS-CoV-2 associated Guillain–Barré syndrome. J Neurol. 2021;268(4):1191-1194.

31. Kurum O, Lohrer O, Sarna JR. Guillain-Barré syndrome following asymptomatic Sars CoV-2 infection: a case report. Ann Med Surg. 2021;68:102550.

32. Khurshid ET AL. 2022 of 23
57. González‐Liberatore G, De Santis T, Doneddu PE, Gentile F, Albanese A, Silveira RQ, Carvalho VT, Cavalcanti HN, et al. Multiple cranial nerve palsies in malignant external otitis: a rare presentation of a rare condition. IDCases. 2020;22:e00945.

58. Liberatore G, De Santis T, Doneddu PE, Gentile F, Albanese A, Nobile‐Orazio E. Clinical reasoning: a case of COVID‐19‐associated parlyngoeal‐cervical‐brachial variant of Guillain‐Barré syndrome. Neurology. 2020;95(21):978‐983.

59. Lima MA, Silva MTT, Soares CN, et al. Peripheral facial nerve palsy associated with COVID‐19. J Neurovirol. 2020;26(6):941‐944.

60. Manganotti P, Bellavita G, D’acunto L, et al. Clinical neurophysiology and cerebrospinal liquor analysis to detect Guillain‐Barré syndrome and polyneuritis cranialis in COVID‐19 patients: a case series. J Med Virol. 2021;93:766‐774.

61. Carrillo‐Kurshid ET, Khurshid M, Sohail A, Wolff D, Nee S, Hickey NS, Marschollek M. Risk factors for Covid‐19 severity and fatality: a structured literature review. J Neurol Sci. 2020;412:116824. doi:10.1016/j.jns.2020.116824

62. Uncini A, Vallat J, Fisher W, Rosenthal J, Neeki MM. Miller–Fisher syndrome as a parainfectious manifestation of SARS‐CoV‐2 infection: a case report. J Neurol Neurosurg Psychiatry. 2021;92(17):e00404‐e00418. doi:10.1136/jnnp.2020.374049.

63. Bhargava A, Banakar BF, Pujar GS, Khichar S. A study of Guillain‐Barré syndrome associated with COVID‐19. Cureus. 2020;12:9361. doi:10.7759/cureus.9361

64. Ropper AH. The Guillain‐Barré syndrome. 1986;20(5):622‐297.

65. Sánchez‐Castro A, Rodríguez‐Rodríguez E, Arnaiz F, Ferrer‐Pargada D. [Peripheral facial paralysis in patients with SARS‐CoV‐2 in prono position]. Rev Neurol. 2021;72(8):296‐297.

66. Mustafa AHK, Sulaiman AM. The epidemiology and management of Bell’s Palsy in the Sudan. Open Dent J. 2018;12:827‐836.

67. Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271‐280.e8. doi:10.1016/j.cell.2020.02.052

68. Conde Cardona G, Quintana Pájaro LD, Quintero Marzola ID, Ramos Villegas Y, Moscote Salazar LR. Neurotropism of SARS‐CoV 2: mechanisms and manifestations. J Neurosci Rural Pract. 2014;5(Suppl 1):S43‐S47. doi:10.4103/0976‐3147.145200

69. Bohm Wald K, Gálvez NMS, Ríos M, Kalergeris AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386. doi:10.3389/fncel.2018.00386

70. Dubé M, Le Coupéan A, Wong AHM, Rini JM, Desforges M, Talbot PJ. Axonal transport enables neuron‐to‐neuron propagation of human coronavirus OC43. J Virol. 2018;92(17):e00404‐e00418. doi:10.1128/JVI.00404‐18

71. Sedaghat Z, Karimi N. Guillain‐Barré syndrome associated with COVID‐19 infection: a case report. J Clin Neurosci. 2020;76:233‐235. doi:10.1016/j.jocn.2020.04.062

72. Song K, Chang S, Lee J, Shin SA, Lee HY. Clinical characteristics of dizziness associated with acute peripheral facial palsy. J Audiol Otol. 2018;22(3):148‐153.

73. Rath B, Gidudu JF, Anyoti H, et al. All that palsies is not Bell’s: the need to define Bell’s palsy as an adverse event following immunization. Vaccine. 2007;26(1):1‐14.

74. Zimmermann J, Jesse S, Kassubek J, Pinkhardt E, Ludolph AC. Differential diagnosis of peripheral facial nerve palsy: a retrospective clinical, MRI and CSF‐based study. J Neurol. 2019;266(10):2488‐2494.

75. Chang Y‐S, Choi JE, Kim SW, Baek S‐Y, Cho Y‐S. Prevalence and associated factors of facial palsy and lifestyle characteristics: data from the Korean National Health and Nutrition Examination Survey 2010–2012. BMJ Open. 2016;6(11):e012628.

76. Sheikh AB, Chourasia PK, Javed N, et al. Association of Guillain‐Barré syndrome with COVID‐19 infection: an updated systematic review. J Neuroinmunol. 2021;355:577577.

77. Katusic SK, Beard CM, Wiederholt WC, Bergstralh EJ, Kurland LT. Incidence, clinical features, and prognosis in Bell's palsy, Rochester, Minnesota, 1968‐1982. Ann Neurol. 1986;20(5):622‐627. doi:10.1002/ana.104200511

78. Paolino E, Granieri E, Tola MR, Panarelli MA, Carreras M. Predisposing factors in Bell’s palsy: a case‐control study. J Neurol. 1985;232(6):363‐365. doi:10.1007/BF00313837

79. Yazdi AR, Vasheghani A, Sadeghi M, Sadr‐Houseini A, Sazgar A. Bell's palsy and diabetes mellitus in Iranian population. Acta Med Iran. 2008;46(4):333‐336.

80. Wolff D, Nee S, Hickey NS, Marschollek M. Risk factors for Covid‐19 severity and fatality: a structured literature review. Infection. 2020;49:1‐14. doi:10.1007/s15010‐020‐01509‐1

81. Madhok VB, Gagyor I, Daly F, et al. Corticosteroids for Bell's palsy (idiopathic facial paralysis). Cochrane Database Syst Rev. 2016;7(7):CD001942.

82. Jalali MM, Soleimani R, Soltanipour S, Jalali SM. Pharmacological treatments of bell's palsy in adults: A systematic review and network meta-analysis. Laryngoscope. 2021;131(7):1615‐1625.

83. Gagyor I, Madhok VB, Daly F, Sullivan F. Antiviral treatment for Bell's palsy (idiopathic facial paralysis). Cochrane Database Syst Rev. 2019;9(9):CD003189.

84. Nepal G, Rehig JH, Shrestha GS, et al. Neurological manifestations of COVID‐19: a systematic review. Crit Care. 2020;24:421.