Risk prediction models for lung cancer: Perspectives and dissemination

Wei Tang¹, Qin Peng¹, Yanzhang Lyu², Xiaoshuang Feng², Xin Li², Luopei Wei², Ni Li², Hongda Chen², Wanqing Chen², Min Dai², Ning Wu¹,³, Jiang Li², Yao Huang¹

¹Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; ²Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; ³PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

Correspondence to: Jiang Li, MD. Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Pan Jia Yuan Nanli, Beijing 100021, China. Email: lij0515@sina.com; Yao Huang, MD. Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Pan Jia Yuan Nanli, Beijing 100021, China. Email: huangyao93@163.com.

Abstract

Objective: The objective was to systematically assess lung cancer risk prediction models by critical evaluation of methodology, transparency and validation in order to provide a direction for future model development.

Methods: Electronic searches (including PubMed, EMBase, the Cochrane Library, Web of Science, the China National Knowledge Infrastructure, Wanfang, the Chinese BioMedical Literature Database, and other official cancer websites) were completed with English and Chinese databases until April 30th, 2018. Main reported sources were input data, assumptions and sensitivity analysis. Model validation was based on statements in the publications regarding internal validation, external validation and/or cross-validation.

Results: Twenty-two studies (containing 11 multiple-use and 11 single-use models) were included. Original models were developed between 2003 and 2016. Most of these were from the United States. Multivariate logistic regression was widely used to identify a model. The minimum area under the curve for each model was 0.57 and the largest was 0.87. The smallest C statistic was 0.59 and the largest 0.85. Six studies were validated by external validation and three were cross-validated. In total, 2 models had a high risk of bias, 6 models reported the most used variables were age and smoking duration, and 5 models included family history of lung cancer.

Conclusions: The prediction accuracy of the models was high overall, indicating that it is feasible to use models for high-risk population prediction. However, the process of model development and reporting is not optimal with a high risk of bias. This risk affects prediction accuracy, influencing the promotion and further development of the model. In view of this, model developers need to be more attentive to bias risk control and validity verification in the development of models.

Keywords: Lung neoplasms; carcinoma; bronchogenic; risk assessment; models; theoretical

Submitted Nov 21, 2018. Accepted for publication Feb 02, 2019.
doi: 10.21147/j.issn.1000-9604.2019.02.06
View this article at: https://doi.org/10.21147/j.issn.1000-9604.2019.02.06
Introduction

Lung cancer is the most common cause of cancer death worldwide. In 2012, there were 1.82 million new cases, accounting for 12.9% of the total number of new cancers and 1.56 million lung cancer deaths, with lung cancer responsible for nearly 1 in 5 cancer deaths (1). In Europe, lung cancer is the most common cause of cancer death in males (267,000, 24.8%) and the second most common cause of cancer death in females (121,000 deaths, 14.2%) (2). The National Lung Screening Trial (NLST) in the United States found a 20% relative reduction in mortality of lung cancer among long-term, high-risk smokers that were screened with low-dose computed tomography (LDCT) (3). That trial suggests that screening may prevent and reduce lung cancer mortality with sensitive risk models. Hence, population screening for the early detection of lung cancer is an important part of current clinical research.

However, LDCT screening has disadvantages including radiation exposure, false positives and over diagnosis. It is therefore essential to identify the most appropriate target population to maximize screening benefits and minimize adverse effects. By preliminary assessment, screening programs for high-risk groups will improve screening efficiency as well as reduce screening costs and resource waste. In fact, the success of any screening program is directly related to high-risk group assessment (4,5) and accomplished with lung cancer prediction models (6,7). To help define the target population for lung cancer screening, some models allow calculation of individual risk for lung cancer based on previously results (8). Model prediction can improve clinical intervention and post-care development, as well as guide the selection of screening populations to promote optimal use of resources. After Bach’s study (9), research focus has been on predictive models of lung cancer. Current models have good sensitivity and specificity and were based on traditional variables, biomarkers, LDCT and data mining techniques. The objective of this study was to evaluate prediction models for lung cancer high-risk groups in order to provide a direction for further model development.

Materials and methods

Search strategies and eligibility criteria

A systematic literature search was performed with both English and Chinese databases including EMbase, PubMed, Web of Science, the Cochrane Library, Chinese BioMedical Literature Database (CBM), WanFang Data, and the China National Knowledge Infrastructure (CNKI). The search used a combination of subject mesh terms and free words. Search terms included lung neoplasms, lung cancer, mass screening, early detection of cancer, risk factors, high-risk population, high-risk group, high-risky population, decision support techniques, prediction model and forecast model. A search strategy in PubMed is listed below as an example:

#1 “lung Neoplasms”[MeSH] OR “lung Neoplasms” [Title/Abstract] OR “lung cancer”[Title/Abstract]
#2 “Mass Screening”[MeSH] OR “Early Detection of Cancer”[MeSH] OR “Screening”[Title/Abstract]
#3 “high risk”[Title/Abstract]
#4 “decision support techniques”[MeSH] OR “prediction model” [Title/Abstract] OR “forecast model”[Title/Abstract]

The inclusion criteria were: 1) lung cancer screening; 2) high-risk population prediction model; and 3) report validity and model’s statistical method, etc. Literature exclusion criteria were: 1) non-Chinese, non-English, and documents that do not have full text; 2) not related to lung cancer screening or early diagnosis of lung cancer; 3) repeated publications; 4) review and other secondary research literature; 5) conference summary; or 6) patented technology.

Selection of eligible studies and data extraction

Two researchers independently conducted literature screening, data extraction and cross-checking. If disagreements occurred, the two researchers would discuss a solution or submit the disagreement to a third researcher for discussion. If information could not be extracted from an article, the researchers contacted the original author for clarification. When reading the literature, the researchers read the title and abstract first to exclude apparently unrelated literature, and then read the complete text to determine inclusion. Data extraction content mainly included: 1) basic information such as publication year, country or region, research design type, model’s statistical method, crowd information, modeling sample, area under the receiver-operating characteristic curve (AUC) and concordance index (C-index); 2) model transparency information, inclusion variables, expressions, limitations, financial support, conflicts of interest and validity evaluation methods; 3) model risk of bias, including blind
method, data bias risk, sensitivity analysis of uncertainty variables, whether the model was calibrated, and external validity; 4) variables included in each model: socio-demographic, exposure history, smoking history, medical history, family history and genetic risk factors; 5) model validity evaluation content including internal validity, cross-validity and external validity; and 6) basic information of single-use models.

Framework for qualitative assessment of multiple-use models

In this study, models were divided into multiple-use and single-use. The model description, transparency and risk of bias assessment were used for multiple-use models. Model descriptions included model publication date, country or region, study type, model’s statistical method, population information, modeling samples, model samples and model accuracy (AUC or C-index).

Transparency mainly evaluates the degree of disclosure of specific information by the model. Improving the transparency of the model promotes the use of the model by exposing the model development process, statistical methods, inclusion parameters, model structure and other pertinent information for the user (7). Herein, this study conducted a transparency evaluation of the inclusion variables, expressions, limitations, financial support and conflicts of interest for each model.

Validity directly reflects the accuracy of the model in realistic prediction and is also an important criterion for actual application of the model. This study evaluated the internal validity, intersection angle and external validity of the included models. Internal validity detects the standardization of mathematical methods and models in the process of model construction. Through multiple data training, it avoids unintentional calculation errors and improves the internal accuracy of the model. Cross-validation identifies how different models solve the same problem. External validity aligns the model to actual data and investigates its predictive accuracy. Validity evaluation should be compared and completed (10,11).

Risk of bias assessment was based on the Mcginn checklist (12) and the results of Jamie’s study (13). A checklist for model risk of bias assessment was developed and blinded from outcome evaluation by the predictive factor blind method. In this manner, sensitivity analysis of the variables was determined when the model had been calibrated. The five dimensions of external validity were used to evaluate the risk of bias for clinical prediction tools, and the study was rated as high, moderate, or low risk of bias. Studies with a high risk of bias had a fatal flaw that made their results very uncertain. Studies with a low risk of bias met all criteria, making their results more certain. Studies that did not meet all criteria but had no fatal flaw (thus making their results somewhat uncertain) were rated as having a moderate risk of bias (Table 1).

Results

Basic information

A total of 11 models that were used multiple times were included in this study (Figure 1). Three of those were derived versions. The earliest model was the Bach model published in 2003. The largest number of published models was from the United States, with the remaining from the United Kingdom and Canada. These models were based on case-control studies (six studies) and cohort studies (five studies). Statistically, most of the studies used logistic regression, while three of the models used Cox regression.

Two of the models included racial factors. The other models were mainly limited by age and smoking history. The youngest individual was 20 years old and the oldest 80 years old. Most individuals were 50–75 years old. The definition of smoking history was defined as never smoker, former smoker and current smoker (Table 2).

Modeling samples ranged from 594 to 70,962. The accuracy of the model was measured by AUC or C statistic.

Table 1 Framework for quality assessment of multiple-use models

Term	Content
Transparency	1. Variables include (Yes or No)
	2. Model expression (Yes or No)
	3. Limitation
	4. Financial support
	5. Conflict of interest
	6. Validation
Risk of bias	1. Blind evaluation of outcome (Yes or No)
	2. Blind evaluation of predictor (Yes or No)
	3. Sensitivity analysis (Yes or No)
	4. Calibration (Yes or No)
	5. External validation (Yes or No)
Validation methods	1. Internal validation
	2. Cross-validation
	3. External validation

© Chinese Journal of Cancer Research. All rights reserved.

www.cjcrcn.org

Chin J Cancer Res 2019;31(2):316-328

318
According to the summary results, the minimum AUC of each model was 0.57 and the largest was 0.87. The smallest C statistic was 0.59 and the largest was 0.85.

Transparency

The models included in this study listed inclusion variables, but only two models listed the model’s expressions. The limitations of each model were primarily uncommon population assessed by the model, the lack of good external validity verification and the inability of the model to assess an individual’s lung cancer risk. The model research was supported by national and regional projects, or by public welfare funds such as the Lung Cancer Foundation. Only four studies reported no conflicts of interest with no other studies reporting relevant content. Six studies were validated through external validation and three were cross-validated (Table 3).

Risk of bias

Two of the included models had a high risk of bias and the remaining nine were of moderate risk. Sensitivity analysis of uncertain variables was not performed for all models,
Model	Year	Country or region	Research design	Statistical methods	Population	Modeling sample	AUC (95% CI)	C-index (95% CI)
Bach (9)	2003	US	Cohort study	Cox proportional hazards regression	Aged 50–69 years, current and former smokers	18,172		0.72
Spitz (14)	2007	US	Case-control study	Logistic	Cancer case 1,851/Control 2,001 Never smokers; cancer case 330/Control 379 Former smokers; cancer case 784/Control 884 Current smokers; cancer case 737/Control 738	Never smokers, Cancer case 330/Control 379 Former smokers; Cancer case 784/Control 884 Current smokers; Cancer case 737/Control 738	0.57 (0.47–0.66); 0.63 (0.58–0.69); 0.58 (0.52–0.64)	Never smokers: 0.59 (0.51–0.67); Former smokers: 0.63 (0.58–0.67); Current smokers: 0.65 (0.60–0.69)
Spitz (15)	2008	US	Case-control study	Logistic	Current and former smokers, White non-Hispanic cases	Current smokers: cancer case 350/Control 244; Former smokers: cancer case 375/Control 371	0.70 (0.66–0.74); 0.73 (0.69–0.77)	0.70 (0.66–0.74); 0.73 (0.69–0.77)
LLP (16)	2008	United Kingdom	Case-control study	Logistic	Aged 20–80 years, White non-Hispanic cases	Cancer case 579/Control 1,157	0.71	
LLPi (17)	2015	United Kingdom	Case-control study	Cox proportional hazards regression	Aged 45–79 years, White non-Hispanic cases	Cancer case 237, control 8,523	0.852 (0.831–0.873)	
PLCO (18)	2009	Canada	Cohort study	Logistic	Aged 55–74 years, White non-Hispanic cases	12,314	0.865	
PLCO (19)	2011	Canada	Cohort study	Logistic	Aged 55–74 years, White non-Hispanic cases, Former smokers, Never smokers	70,962: cancer case 237, control 8,523	0.859 (0.831–0.873)	0.859 (0.831–0.873)
PLCOM (20)	2012	Canada	Cohort study	Logistic	Aged 55–74 years, White non-Hispanic cases, Former smokers, Never smokers	36,286	0.803 (0.782–0.813)	0.803 (0.782–0.813)
Etzel (21)	2008	US	Case-control study	Logistic	African-Americans	Cancer case 491/Control 497	0.75	
Pittsburgh (22)	2016	US	Case-control study	Logistic	Aged 55–74 years, White non-Hispanic cases, Former smokers, Never smokers	25,929: cancer case 237, control 8,523	0.679/CXR 0.687	
Hoggart (23)	2012	United Kingdom	Cohort study	Survival analysis	Aged 40–65 years, White non-Hispanic cases, Former smokers, Never smokers	169,035 (90% of the data)	169,035 (90% of the data)	0.82; Former: 0.83; Never: 0.84. 5 year-current: 0.77; Former: 0.72; Never: 0.79

AUC, area under receiver-operating characteristic curve; 95% CI, 95% confidence interval; C-index, concordance index.
with only one model blinded by predictive factors and outcome evaluations during development. It is worth noting that six models were calibrated after development, making the risk of bias moderate (Table 4).

Validity

Model internal validity design is used to develop data, perform repeated operations and verify consistency of...
results. Three models were repeated by the bootstrap method, one study was re-verified using a partial sample, and one study used five similar research data sets to perform internal validation of the model. Regarding cross-validity, two articles were verified 10-fold and one article 3-fold. Only six studies were externally validated. Sample size varied with a maximum of 44,233 cases and a minimum of 325 cases (Table 5).

Inclusion of variables

According to the statistical results, the variables included in the models were comprised of six aspects: sociodemographic factors, exposure history, smoking history, medical history, family history and genetic risk factors. The most used variables were age and smoking duration by 6 models, and 5 models included family history of lung cancer (Table 6).

Single-use models

The single-use models were mostly from China, with two from the United States and one from Germany. The types of studies were either cohort or case-control, with most studies from China case-control. Statistical methods were diverse. In addition to Logistic and Cox regression analysis, data mining techniques such as artificial neural network, artificial neural network, support vector machine, decision tree, support vector machine and Fisher discriminant analysis were employed. In addition to the above variables,
Variables	Bach (2007)	Spitz (2008)	LLP	LLPI (2009)	PLCO (2011)	PLCO M2012	Etzel	Pittsburgh	Hoggart
Sociodemographic factors									
Age	Y	Y	Y	Y	Y	Y			
Gender	Y	Y			Y	Y			
Race or ethnic group									Y
Education	Y	Y	Y	Y			Y		
BMI			Y						Y
Exposure history									
Dust exposures	Y	Y	Y						Y
Asbestos exposure									
Environmental tobacco									
Smoke exposure									
Smoking history									
Age stopped smoking	Y	Y							
Smoking duration									
Pack-years smoked	Y	Y	Y	Y	Y	Y			
Smoking status			Y						
Smoking intensity									
Smoking quit time									
Cigarettes per day									
Time since smoking cessation									
Medical history									
Emphysema									
Hay fever	Y	Y							
Bleomycin sensitivity									
Prior diagnosis of pneumonia									
Prior diagnosis of malignant tumor									
COPD	Y	Y	Y	Y			Y		
Chest X-ray in past 3 years									
Personal history of cancer									
Asthma									
Family history									
Family history of cancer	Y	Y							
First-degree relatives with cancer									
Family history of lung cancer			Y	Y	Y	Y			
Nodule									
Family history of smoking-related cancer									
Genetic risk factors									
DNA repair capacity									
chr15q25									
chr6p15									

BMI, body mass index; COPD, chronic obstructive pulmonary disease; LLP, Liverpool Lung Project; PLCO, the Prostate, Lung, Colorectal and Ovarian; Y, the variable was included in the model.
tumor markers, gene loci and psychological factors emerged, providing a valuable reference for model prediction. A large amount of data was extracted from established samples with the smallest sample size a total of 114 cases. Prediction accuracy and validity evaluation were not disclosed by some studies (Table 7).

Discussion

This study included 11 multiple-use models and 17 single-use models. Models used multiple times were developed by European and American countries. In essence, a large number of models were based on large-scale national projects, such as the NLST (multicenter randomized controlled trial, 53,456 samples) (41), Liverpool Lung Project (LLP, case-control study: 800 cases and 400 controls, cohort study: 7,500 samples) (42), and the Prostate, Lung, Colorectal and Ovarian (PLCO, multicenter randomized controlled trial, 74,000 samples) (43). These projects provided model development based on a large quantity of detailed data. Most studies were case-control and cohort, which are convenient for model construction.

A model that can be used multiple times is also a model that can be updated. Four studies incorporated a model that was used to derive subsequent models, which were supplements and adjustments to the previous model. These updated models differ from the previous models. The difference between the previous and the updated version was the scope of the population even though the analysis was the same.

Since the development of the Bach model, many studies have focused on the form of predictive models. Predictive models have been highly valued by the academic community in recent years, and gradually, based on the Bach model, risk factor enrichment has increased. Some predictive models included parameters like tumor markers and genes, which have accelerated model development. Variables now include more basic information and family history, which eliminate the need for traditional factors when combined with single-use models. By the use of new medical information technologies, the accuracy of models has improved.

Transparency is of significance to the promotion and application of models. Through dual disclosure of technical documents and non-technical articles, the user can understand the model’s developmental process, providing application instruction and guidance (10). The multi-use models included in this study have relatively good transparency, although most cited literature does not report expressions of the model. The expression of the model has significance for model popularization. If the variables included in a model were reported, it would be possible for others to consider and weigh the importance of the variables in model prediction. In addition, some studies did not report relevant conflicts of interest, which does not insure the independence of the model.

The existence of bias makes the accuracy of model prediction difficult to assess and can distort the importance of influence on prediction results. There are many forms of biases in the development of a model including research design, field survey, data entry and data analysis, which in turn affect the predictive accuracy of the model. There are many tools for bias evaluation such as the Cochrane tool for randomized control trial (RCT) (44), QUADAS for diagnostic test studies (45), the Newcastle-Ottawa Scale (NOS) scale for cohort studies and case-control studies (46), and systematic review AMSTAR (47). The bias evaluation tool for model development is still immature. This study has developed a bias evaluation checklist based on related research, and found that the risk of bias in lung cancer prediction models is high. The main problem for sensitivity analysis is the lack of a blinding method and variable uncertainty. The absence of blinding may interfere with subjective thinking of the researcher. Sensitivity analysis of uncertain variables is an important step in the refinement of the variables and the main method to improve the validity of the model. Calibration increases the risk of bias in the model’s predictions.

Some models lack verification of external validity. Validation should be ongoing for a model (48). Conducting validation throughout the modeling process is essential in that mistakes can be found and corrected at an early stage of model development. Late validation leaves little time to remedy any issues. The likelihood of finding mistakes increases with the number of validation rounds, minimizing the chance that the model will contain serious errors. For all models, the validation process and its results should be reported. External verification works by comparison of the model’s results with data derived from actual events and by comparison of results. External validity is critical to model development in that the ultimate goal of the model is the application to practice to ensure that best choices are made (7). However, only six of the included studies were externally validated. Although the other studies performed validation (internal validation or cross-validation), these are
Table 7: Single-use models for lung cancer prediction

Model	Year	Country or region	Research design	Statistical methods	Variable included	Modeling sample	Validation	AUC (95% CI)	C-index (95% CI)
Wozniak MB (24)	2015	Germany	Case-control study	Logistic	Gender, age and smoking status, 24 microRNAs	100 control; 100 control	Internal validation	0.874	N
Wang X (25)	2015	China	Case-control study	Logistic	Gender, age, education, BMI, family history, medical history, exposure history, lifestyle	705 control; 988 control	Internal validation	0.8851	N
Muller DC (26)	2017	US	Cohort study	Flexible parametric survival	Gender, smoking history, medical history, family history	502,321 control	Internal validation	N	0.85 (0.82–0.87)
Ma S (27)	2016	China	Cohort study	Logistic	Gender, age, smoke, prolactin, CRP, NY-ESI-1, HGF	543 control	External validation	0.86 (95% CI: 0.83–0.88)	N
Wu X (28)	2016	China	Cohort study	Cox regression analysis	Age, gender, smoking pack-years, BMI, family history, medical history, exposure history, biomarkers	395,875 control	Internal validation; External validation	N	N
Gu F (29)	2017	US	Cohort study	Cox proportional hazard model	Age, gender, race/ethnicity, education, family history, BMI, smoking status, smoking history	18,729 control	N	Incidence model: 0.6941; Death model: 0.7376	N
Lin KF (30)	2017	China	Cohort study	Logistic	Age, gender, and BMI, nodule number, family history of lung cancer, family history of other cancer	784 control	N	N	N
Sha R (31)	2017	China	Case-control study	Logistic	Age, gender, BMI, family history	227 control; 454 control	N	Model 1: 0.827 (0.794–0.861); Model 2: 0.836 (0.804–0.868)	N
Lin H (32)	2011	China	Case-control study	Logistic	Gender, age, smoking status, medical history, exposure history, family history	633 control; 565 control	N	N	0.881
Ni R (33)	2016	China	Case-control study	ANN, SVM, Decision tree	Gender, age, medical history, smoking history, drinking history, family history	214 control	External validation	N	0.972
Li H (34)	2012	China	Case-control study	Logistic	Gender, age, smoking status, SNPs	N	N	0.637	N
Feng YJ (35)	2013	China	Case-control study	Logistic	Gender, age, smoking history, DNMT1, DNMT3a	136 cancer; 140 benign lung disease; 145 control	External validation	Logistic: 0.923; Decision tree: 0.946; ANN: 0.877; SVM: 0.851	N
Wang N (36)	2012	China	Case-control study	Fisher, Decision tree, ANN	Gender, age, smoking status, medical history, genetic factors	251 case; 256 control	N	Fisher: 0.722; Decision tree: 0.929; ANN: 0.894	N
Zhang HQ (37)	2012	China	Case-control study	Decision tree, ANN, Logistic, Fisher	Ferritin, AFP, CEA, NSE, CA199, CA242, CA125, CA153, HGH9	150 control; 150 control	External validation	Decision tree: 0.923; ANN: 0.86; Logistic: 0.809; Fisher: 0.765	N
Sun RL (38)	2013	China	Case-control study	Logistic	Family history, smoking status, lifestyle, psychology	563 case; 563 control	N	N	N
Nie GJ (39)	2009	China	Case-control study	ANN, Logistic	Tumor marker	53 case; 61 control	External validation	ANN: 0.88; Logistic: 0.82	N
Chang TT (40)	2011	China	Case-control study	Fisher	Gender, age, smoking status, medical history, exposure history	807 case; 807 control	External validation	Non-lung cancer: 0.823; Lung cancer: 0.745	N

AUC, area under receiver-operating characteristic curve; 95% CI, 95% confidence interval; C-index, concordance index; ANN, artificial neural network; SVM, support vector machine; BMI, body mass index; CRP, C-reactive protein; HGF, hepatocyte growth factor; SNP, single nucleotide polymorphism; DNMT, DNA-methyltransferase; AFP, alpha-fetal protein; CEA, carcinoembryonic antigen; NSE, neuron specific enolase; CA, carbohydrate antigen; HGH, human growth hormone.
not adequate for predictive models. A new evaluation model of 2 million high-risk individuals from the Cancer Screening in Urban China Program is being built based on this study. It will integrate analytics including validity, bias and other involved factors that will be applied to this future research project.

Conclusions

This study considers risk prediction models for high-risk lung cancer populations. It rigorously evaluated multiple-use models for transparency, risk of bias and variables. Various models have been developed for different types of populations and were used to predict lung cancer risk based on various conditions (e.g. age and smoking status). The prediction accuracy of the models was high overall, indicating that it is feasible to use models for high-risk population prediction. However, the process of model development and report is not optimal in that the models have a high risk of bias, affecting credibility and predictive accuracy, which influences the promotion and further development of the model. In view of this, model developers need to be more attentive to bias risk control and validity verification in the development of models.

Acknowledgements

This study is supported by National Key R&D Program of China (No. 2017YFC1308700), National Natural Science Foundation of China (No. 81602930), and Chinese Academy of Medical Sciences Initiative for Innovative Medicine (No. 2017-I2M-1-005).

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
2. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 2018;103:356-87.
3. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409.
4. Lopes Pegna A, Picozzi G, Mascalchi M, et al. Design, recruitment and baseline results of the ITALUNG trial for lung cancer screening with low-dose CT. Lung Cancer 2009;64:34-40.
5. Field JK, Chen Y, Marcus MW, et al. The contribution of risk prediction models to early detection of lung cancer. J Surg Oncol 2013;108:304-11.
6. Cassidy A, Duffy SW, Myles JP, et al. Lung cancer risk prediction: a tool for early detection. Int J Cancer 2007;120:1-6.
7. Field JK. Lung cancer risk models come of age. Cancer Prev Res (Phila) 2008;1:226-8.
8. Marcus MW, Raji OY, Field JK. Lung cancer screening: identifying the high risk cohort. J Thorac Dis 2015;7 Suppl 2:S156-62.
9. Bach PB, Kattan MW, Thornquist MD, et al. Variations in lung cancer risk among smokers. J Natl Cancer Inst 2003;95:470-8.
10. Eddy DM, Hollingworth W, Caro JJ, et al. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7. Value Health 2012;15:843-50.
11. Kleijnen JP. Verification and validation of simulation models. Eur J Operational Res 1999;82:145-62.
12. McGinn TG, Guyatt GH, Wyer PC, et al. Users’ guides to the medical literature: XXII: how to use articles about clinical decision rules. Evidence-Based Medicine Working Group. JAMA 2000;284:79-84.
13. Carter JL, Coletti RJ, Harris RP. Quantifying and monitoring overdiagnosis in cancer screening: a systematic review of methods. BMJ 2015;350:g7773.
14. Spitz MR, Hong WK, Amos CI, et al. A risk model for prediction of lung cancer. J Natl Cancer Inst 2007;99:715-26.
15. Spitz MR, Etzel CJ, Dong Q, et al. An expanded risk prediction model for lung cancer. Cancer Prev Res (Phila) 2008;1:250-4.
16. Cassidy A, Myles JP, van Tongeren M, et al. The LLPi risk model: an individual risk prediction model for lung cancer. Br J Cancer 2008;98:270-6.
17. Marcus MW, Chen Y, Raji OY, et al. LLPi: Liverpool
Lung Project risk prediction model for lung cancer incidence. Cancer Prev Res (Phila) 2015;8:570-5.

18. Tammemagi MC, Freedman MT, Pinsky PF, et al. Prediction of true positive lung cancers in individuals with abnormal suspicious chest radiographs: a prostate, lung, colorectal, and ovarian cancer screening trial study. J Thorac Oncol 2009;4:710-21.

19. Tammemägi CM, Pinsky PF, Caporaso NE, et al. Lung cancer risk prediction: Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial models and validation. J Natl Cancer Inst 2011;103:1058-68.

20. Tammemagi MC, Katki HA, Hocking WG, et al. Selection criteria for lung-cancer screening. N Engl J Med 2013;368:728-36.

21. Etzel CJ, Kachroo S, Liu M, et al. Development and validation of a lung cancer risk prediction model for African-Americans. Cancer Prev Res (Phila) 2008;1:255-65.

22. Wilson DO, Weissfeld J. A simple model for predicting lung cancer occurrence in a lung cancer screening program: The Pittsburgh Predictor. Lung Cancer 2015;89:31-7.

23. Hoggart C, Brennan P, Tjonneland A, et al. A risk model for lung cancer incidence. Cancer Prev Res (Phila) 2012;5:834-46.

24. Wozniak MB, Scelo G, Muller DC, et al. Circulating microRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PLoS One 2015;10:e0125026.

25. Wang X, Ma K, Cui J, et al. An individual risk prediction model for lung cancer based on a study in a Chinese population. Tumori 2015;101:16-23.

26. Muller DC, Johansson M, Brennan P. Lung cancer risk prediction model incorporating lung function: Development and validation in the UK Biobank Prospective Cohort Study. J Clin Oncol 2017;35:861-9.

27. Ma S, Wang W, Xia B, et al. Multiplexed serum biomarkers for the detection of lung cancer. Ebiomedicine 2016;210:8.

28. Wu X, Wen CP, Ye Y, et al. Personalized risk assessment in never, light, and heavy smokers in a prospective cohort in Taiwan. Sci Rep 2016;6:36482.

29. Gu F, Cheung LC, Freedman ND, et al. Potential impact of including time to first cigarette in risk models for selecting ever-smokers for lung cancer screening. J Thorac Oncol 2017;12:1646-53.

30. Lin HF, Wu HF, Huang WC, et al. Propensity score analysis of lung cancer risk in a population with high prevalence of non-smoking related lung cancer. BMC Pulm Med 2017;17:120.

31. Sha R. Study on influencing factors of lung cancer in Anhui province. Hefei: Anhui Medical University, 2017.

32. Lin H, Zhong WZ, Yang XN, et al. Forecasting model of risk of cancer in lung cancer pedigree in a case-control study. Zhongguo Fei Ai Za Zhi (in Chinese) 2011;14:581-7.

33. Ni R. Establishment of the diagnosis model of lung cancer based on epidemiology, clinical symptom, tumor marker and imaging characteristics. Zhengzhou: Zhengzhou University, 2016.

34. Li H. Prediction of lung cancer risk in a Chinese population using a multifactorial genetic model. Shanghai: Fudan University, 2012.

35. Feng YJ. Application of combined epigenetics markers in the early diagnosis of lung cancer based on data mining techniques. Zhengzhou: Zhengzhou University, 2013.

36. Wang N. Study of the early warning model for lung cancer based on data mining. Zhengzhou: Zhengzhou University, 2012.

37. Zhang HQ. Application of tumor markers protein biochip in the aided diagnosis of lung cancer based on data mining technology. Zhengzhou: Zhengzhou University, 2012.

38. Sun RL, Zhang CL, Xu DX. Lung cancer risk factors in Qingdao: retrospective study of 563 cases. Zhongguo Ai Zheng Fang Zhi Za Zhi (in Chinese) 2013;5:304-7.

39. Nie GJ. The application of artificial neural network technology and tumor markers in lung cancer's early warning. Zhengzhou: Zhengzhou University, 2009.

40. Chang TT. Establishment and investigation of the management system for the prevention and cure of incipient tumors in the elderly of Soochow City. Suzhou: Soochow University, 2011.

41. National Lung Screening Trial Research Team. The National Lung Screening Trial: overview and study design. Radiology 2011;258:243-53.

42. Field JK, Smith DL, Duffy SW, et al. The Liverpool
Lung Project research protocol. Int J Oncol 2005;27:1633-45.

Prorok PC, Andriole GL, Bresalier RS, et al. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control Clin Trials 2000;21 6 Suppl:273S-309S.

Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomized trials. BMJ 2011;343:d5928.

Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;3:25.

Cite this article as: Tang W, Peng Q, Lyu Y, Feng X, Li X, Wei L, Li N, Chen H, Chen W, Dai M, Wu N, Li J, Huang Y. Risk prediction models for lung cancer: Perspectives and dissemination. Chin J Cancer Res 2019;31(2):316-328. doi: 10.21147/j.issn.1000-9604.2019.02.06

Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

Shea BJ, Hamel C, Wells GA, et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol 2009;62:1013-20.

Ingalls RG, Rossetti MD, Smith JS, et al. Quality assessment, verification, and validation of modeling and simulation applications. Simulation Conference. IEEE, 2004.