Cross-Reactivity Between SARS-CoV-2 Proteins and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death

Robert Root-Bernstein, Ph. D., Professor of Physiology, Michigan State University, East Lansing, MI 48824 USA; rootbern@msu.edu

Abstract

A significant inverse correlation exists between rates of pneumococcal vaccination, at both national and local levels, and symptomatic cases of SARS-CoV-2 infection and death. No correlations exist to BCG, Hib, diphtheria-tetanus-pertussis, measles-mumps-rubella, or poliovirus vaccinations. This paper explored the possibility that pneumococcal vaccines contain antigens that might be cross-reactive with SARS-CoV-2 antigens and that such cross-reactive antigens are absent from other vaccines. Comparison of the glycosylation structures of SARS-CoV-2 with the polysaccharide structures of pneumococcal vaccines yielded no obvious similarities. However, while pneumococcal vaccines are primarily composed of capsular polysaccharides, they also contain about three percent protein contaminants, including the pneumococcal surface proteins PsaA, PspA and probably PspC. These proteins have very high degrees of similarity, using very stringent criteria, with several SARS-CoV-2 proteins including the spike protein, membrane protein and replicase 1a. Equivalently similarities were found at statistically significantly lower rates, or were completely absent, among the proteins in diphtheria, tetanus, pertussis, measles, mumps, rubella, and poliovirus vaccines. Appropriate data were not available for testing Hib and BCG similarities. Notably, PspA and PspC are highly antigenic and new pneumococcal vaccines based on them are currently in human clinical trials so that their effectiveness against SARS-CoV-2 disease is easily testable.

Keywords: COVID-19; SARS-CoV-2; pneumococcal; Streptococcus pneumoniae; vaccine; vaccination; cross-reactivity; similarity; protection

Introduction

In attempting to explain why people in some nations and locales are apparently much more susceptible to serious disease, a very significant inverse correlation has been found between rates of pneumococcal vaccination at both national and local population levels and rates of SARS-CoV-2 infections and death (Root-Bernstein, 2020). No correlation was found to the tuberculosis vaccine BCG (Bacillus Calmette Guerin), Haemophilus influenzae type B (Hib), diphtheria-tetanus-pertussis, measles-mumps-rubella, or poliovirus vaccinations. The purpose of this paper is to provide a possible mechanism for how pneumococcal vaccines might protect against SARS-CoV-2 while the other vaccines do not.

The hypothesis tested is that antigens in pneumococcal vaccines induce antibodies protective against SARS-CoV-2 by means of cross-reactivity with similar SARS-CoV-2 antigens. There are two types of antigens that might play such a role, one being the capsular polysaccharide antigens in current pneumococcal vaccines and the other the proteins that they contain. An extensive search for polysaccharide structures shared by SARS-CoV-2 glycosylated proteins (Watanabe, et al., 2020) and S. pneumoniae serotypes (Shajahan, et al., 2020) failed to identify any, so the search then shifted to possible protein similarities.
While current pneumococcal vaccines are composed primarily of capsular polysaccharides, they also contain one or both of two types of proteins. The polysaccharide component is never pure, generally containing around three percent of the cell surface proteins to which the polysaccharides are attached (WHO, 2010; Morais, et al., 2018; Lee, et al., 2020). Proteins identified in pneumococcal vaccines include pneumococcal surface protein A (PspA) and pneumococcal surface adhesin A (PsaA) (Yu, et al., 1999; Yu, et al., 2003). Because the presence of PsaA was identified only by immunological methods and PsaA cross-reacts strongly with an additional pneumococcal surface protein, PspC (also known as CbpA and SpsA) (Brooks, et al., 1999; Ogguniyi, et al., 2001), it is likely that PspC is also present in capsular polysaccharide-based pneumococcal vaccines. Additionally, pneumococcal conjugate vaccines covalently attach the polysaccharides to a modified diphtheria protein called Cross-Reactive Material 197 (CRM197) which is also present in Hib and meningitis vaccines (Möginger, et al., 2016).

This study reports that SARS-CoV-2 proteins contain significant regions that mimic sequences within pneumococcal surface proteins but not CRM197 or proteins present in other vaccines.

METHODS

In order to ascertain whether PspA, PsaA, PspC and CRM197 have regions of significant similarity to SARS-CoV-2 proteins, LALIGN (at www.expasy.org) was employed to perform pair-wise protein comparisons. The parameters chosen were 20 best alignments to show; BLOSSUM80 (in order to maximize small, local similarities); E = 10; gap penalty of -10.0 (to maximize continuous sequence similarities). SARS-CoV-2 sequences were retrieved from https://viralzone.expasy.org/8996 as HTML files or using the accession numbers from the UniProtKB database (UniProtKB accession numbers PODTC1-PODTDC9). *Streptococcus pneumoniae* PspA, PsaA and PspC sequences were retrieved as accession numbers (provided in the Tables below) from the UniProtKB database. Because different streptococcal serotypes have slightly different versions of these proteins, several were randomly selected for each search and the sequences similarities displayed in FIGURE 1 are representative of several serotype results.

The LALIGN results were culled by applying the criterion that any sequence similarity reported must have a region containing at least six out of ten identities, where a pair of acceptable substitutions (as determined by the BLOSSUM80 program) counted as one identity. This criterion is based on a number of experimental studies involving the average length of peptide recognized by major histocompatibility receptors and T cell receptors (Rudensky, et al., 1991; Hemmer, et al., 2000; Ekeruche-Makinde, et al., 2013) and the degree of similarity between two antigens that is likely to induce cross-reactive immune responses (Cunningham, et al., 1989; Hemmer, et al., 2000; Root-Bernstein, 2009; Root-Bernstein and Podufaly, 2012; Root-Bernstein, 2014).

As controls for the LALIGN results, all SARS-CoV-2 proteins were used to search for similarities to bacterial proteins used in diphtheria, pertussis, and tetanus vaccines (TABLE 1) and viral proteins incorporated into the measles, mumps, rubella and polio vaccines. The only identified proteins in Hib and meningitis vaccines are CRM197 or meningococcal outer membrane complex protein, so these were also examined for similarities to SARS-CoV-2 proteins (TABLE 1). The same criteria used above to screen the results for sequences having at least six identities in a span of ten amino acids. Bacillus Calmette Guerin (BCG) vaccine (a version of *Mycobacterium bovis*) was not available in the UniProtKB complete proteome dataset and was therefore not subject to similarity searching.
Only results that met the six-in-ten antigenic-cross-reactivity criterion just stated as well as an E value equal to or less than 0.1 and a Watermann-Eggert (W-E) score of 60 or above are reported since these are statistically unlikely to have appeared by chance.

Two statistical tests were used to evaluate the results. A student’s T-test (https://www.usablestats.com/calcs/2samplet) was used to test the significance of the difference between the number of pneumococcal protein similarity matches satisfying the criteria listed above compared with the number of matches from other vaccine proteins satisfying the criteria. A chi squared test (https://www.graphpad.com/quickcalcs/chisquared2/) was used to determine the significance of the difference in the percent of protein pairs that had at least one significant similarity as compared with the number that had no similarities (36 possibilities for 9 SARS-CoV-2 proteins versus 4 streptococcal proteins; 288 possibilities for 9 SARS-CoV-2 proteins versus the 32 bacterial and viral proteins listed in TABLE 1).

RESULTS

Results of the similarity searches that satisfy the W-E score of 60 or greater, E values of 0.1 or less, and in which at least six identical amino acids are present in a sequence of ten, are presented in FIGURES 1 and 2. FIGURE 1 displays the similarities between nine SARS-CoV-2 proteins (P0DTC1-9) and streptococcal proteins PsaA, PspA, PspC. Twenty significant similarities were observed, ten of which are indicated in the figure in bold type as sequences that repeat within pair of proteins. Note that a significant sequence similarity was also found between SARS-CoV-2 proteins and the S. pneumoniae GRAM positive anchor protein (Q8DRK2), which serves as an anchor site for capsular polysaccharides. It is not known at this time whether this protein is among those contaminating capsular polysaccharide preparations but because of its association with polysaccharide anchoring, it is likely to be such a contaminant of the polysaccharide material used in pneumococcal vaccines. Each of the four streptococcal proteins was tested against each of the SARS-CoV-2 proteins yielding 36 pairwise tests. Six of these combinations yielded one or more matches that satisfied all similarity criteria employed here.

No significant similarities were found between CRM197 and any SARS-CoV-2 protein or between meningococcal outer membrane protein complex and any SARS-CoV-2 protein. FIGURE 2 displays the results for the pairwise tests of the nine SARS-CoV-2 proteins with the additional bacterial and viral proteins listed in TABLE 1 that are present in measles, mumps, rubella, polio, diphtheria, pertussis, and tetanus vaccines, for a total of 32 microbial proteins. Of these, six yielded one or more significant similarities for a total of nine matches out of 288 possible pairwise combinations.

Statistical tests demonstrate that the results reported above are highly significant. All four of the pneumococcal proteins tested had significant similarities to at least one of the nine SARS-CoV-2 proteins. Altogether, six of the 36 possible permutations of pneumococcal protein pairs yielded significant similarities, or 16.9 percent. In contrast, only six of the 32 other viral and bacterial vaccine proteins tested had significant matches to any of the nine SARS-CoV-2 proteins (2.2% of the 288 pairwise comparisons). The four pneumococcal proteins yielded 21 significant matches, for an average of 5.25 per protein, while the 32 other vaccine proteins yielded only nine significant matches, for an average of 0.28 per protein. The t-test comparing the number of matches from FIGURES 1 and 2 yielded a T Test Statistic t= 3.8081 corresponding to a P value of 0.0002. The chi squared test comparing the 16.7% of protein comparisons that yielded at least one significant similarity from FIGURE 1 (6 categories
out of 36 pairwise comparisons) with the 2.2% (6 categories out of 288 pairwise comparisons) from FIGURE 2 yielded a chi squared value of 114.796 corresponding to a P value of 0.0001.

DISCUSSION

The Results of this study indicate that proteins known to contaminate pneumococcal vaccines significantly mimic SARS-CoV-2 proteins (FIGURE 1) while the CRM197 used to conjugate various polysaccharide vaccines and the proteins contained in other vaccines are statistically significantly less likely to do so (FIGURE 2). In particular, the Results point to potential cross-reactivity between SARS-CoV-2 proteins and the pneumococcal proteins PspA and PsaA, which are known to contaminate polysaccharide-based pneumococcal vaccines (WHO, 2010; Morais, et al., 2018; Lee, et al., 2020) as well as PspC, which it is reasonable to assume is another such contaminant since it derives from the same outer membrane protein complex and is highly cross-reactive with the antibodies against PspA used to demonstrate the presence of PspA in vaccines (Brooks, et al., 1999; Ogunniyi, et al., 2001).

The concentration of protein contaminants in pneumococcal vaccines is sufficient to induce immunity. In Prevnar-13, for example, there are 30.4 µg of capsular polysaccharides and 34.0 µg of CRM197 for a total of 64.4 micrograms of antigen per dose (FDA, 2017). Protein contaminants may make up an additional 3%, or 1.92 µg, of antigenic material according to WHO guidelines and confirmed by laboratory analysis (WHO, 2010; Morais, et al., 2018; Lee, et al., 2020). This 1.92 µg of protein is virtually identical to the 2.2 µg of each of twelve of the capsular polysaccharides present (plus 4.4 µg of serotype 6) or the 2.3 micrograms of CRM197 conjugated to each polysaccharide type (FDA, 2017) and is therefore quite sufficient to induce an immune response, especially since PspA and PspC are strongly cross-reactive. Pneumovax-23, in contrast, has 25 µg of each capsular polysaccharide, adding up to a total of 575 µg of antigen. The three percent protein contamination allowed by WHO (WHO, 2010; Morais, et al., 2018; Lee, et al., 2020) could result in 17.25 µg of PsaA, PspA and PspC per dose, which is certainly sufficient to induce immunity. For comparison, each 0.5-mL dose of Adacel®, a diphtheria-tetanus-pertussis vaccine (Sanofi Pasteur) contains 2.5 µg detoxified pertussis toxoid, 5 µg FHA, 3 µg pertactin and 5 µg FIM acellular pertussis antigens (CDC, 2020).

In addition to being present in concentrations that could induce protective immunity, the pneumococcal-SARS-CoV-2 similarities reported here satisfy multiple criteria involving sequence identities and statistical measures for predicting potential antigenic cross-reactivity so that it is possible that pneumococcal vaccination can protect individuals against SARS-CoV-2 disease. Evidence of protection against SARS-CoV-2 by T cells reactive to unidentified, cross-reactive microbes has been reported by Grifoni, et al. (2020). The study reports that 40- to 60% of people unexposed to SARS-CoV-2 had SARS-CoV-2-reactive CD4+ T cells. The assumption made by the authors is that the cross-reactivity is to coronaviruses that cause colds. However, the study also reports that this cross-reactive immunity is greatest in young people and least in older people, which is not consistent with cold virus exposures. Such waning immunity is, however, consistent with waning childhood vaccination immunity. In light of the data presented here, it is therefore possible that at least some proportion of individuals with cross-reactive immunity developed it through exposure to pneumococcal vaccinations. Such cross-reactivity would also explain the epidemiological observation that pneumococcal vaccination rates, but not vaccination rates with any other commonly used vaccine (DTP, MMR, polio, meningitis), correlate inversely with rates of serious SARS-CoV-2 disease and death (Root-Bernstein, 2020).
The observation that viral and bacterial proteins exhibit antigens similar enough to be cross-reactive may be surprising but it is not novel. Härkönen, et al. (2000) found that rabbit antibodies to HSP65 of *Mycobacterium bovis* (from which BCG is derived) recognized capsid protein VP1 of coxsackievirus A9, VP1, and/or VP2 of coxsackievirus B4. Misko, et al. (1999) demonstrated that Epstein-Barr virus mimicked a *Staphylococcus aureus* replication initiation protein and induced antibodies cross-reactive with it. Trama, et al., (2014) and Williams, et al. (2015) have documented antibodies against the gp41 protein of human immunodeficiency virus that cross-react with commensal bacteria in the human gut. Ross, et al. (1990) reported that sera from chickens inoculated with infectious bursal disease viruses or infectious bursal disease vaccines cross-reacted with *Mycoplasma gallisepticum* and *Mycoplasma synoviae*. And Bordenave (1973) found that antibodies against *Salmonella abortusequi* also recognized tobacco mosaic virus. In short, while the phenomenon may be rare – and, indeed, the data reported here suggests that such similarities may occur at a rate of about 1/200 pairwise combinations -- bacterial antigens are known to occasionally induce antibodies that cross-react with viral antigens or vice versa.

The rarity of antigenic mimicry between bacteria and viruses is emphasized by the finding that there are no significant similarities between SARS-CoV-2 proteins and the vaccine conjugate proteins, CRM197 and meningococcal outer membrane protein. This lack of antigenic mimicry suggests that neither protein is likely to contribute to the possible SARS-CoV-2 protection associated with conjugated pneumococcal, Hib or meningococcal vaccines. This negative result is consistent with the absence of any epidemiological association between Hib and meningococcal vaccines and SARS-CoV-2 rates of disease or death (Root-Bernstein, 2020).

The almost completely negative results reported here for antigenic mimicry between SARS-CoV-2 proteins and proteins from poliovirus, measles, mumps, diphtheria, pertussis and tetanus are also consistent with the lack of association between these vaccines and SARS-CoV-2 rates of disease or death (Root-Bernstein, 2020). Franklin, et al., (2020) report “significant” similarities between both rubella and measles proteins and SARS-CoV-2, the key results or which were independently reproduced here in FIGURE 2. However, there are significantly fewer similarities between measles and rubella proteins and those of pneumococcal proteins and epidemiological evidence does not support measles containing vaccines (which often include rubella) as protective against SARS-CoV-2 (Root-Bernstein, 2020). The suggestion that polio vaccine be tested as a SARS-CoV-2 (Chumakov and Gallo, 2020) is likewise not supported by the data presented here (FIGURE 2) or by epidemiological data (Root-Bernstein, 2020).

Tuberculosis (BCG) vaccination has also been proposed to be epidemiologically associated with protection against SARS-CoV-2, but unfortunately, because the Bacillus Calmette Guerin (BCG) proteome is not in the UniProtKB database, it was not possible to perform the type of LALIGN analysis of BCG vaccine that was performed for the other vaccines. BCG vaccination was found to be associated with SARS-CoV-2 protection in one epidemiological study (Miller, et al., 2020) but not in another (Root-Bernstein, 2020) so that the current literature is divided on the issue and further research will be needed.

The observation of an inverse association of pneumococcal vaccinations with rates of SARS-CoV-2 rates of disease and death makes sense in terms of the particular protein contaminants of pneumococcal vaccines that are identified in this study as being potentially protective. These are PspA, PsAA and PspC, the specific regions identified in this study being known to be highly antigenic (van de
Garde, et al., 2019). Moreover, these proteins are under active investigation as more effective and broadly protective pneumococcal vaccine components to replace the polysaccharide-based vaccines (Briles, et al, 2000; Ferreira, et al., 2009; Schachern, et al., 2014; Lagousi, et al., 2019). Some of these vaccine candidates are already in human trials (Lagousi, et al., 2019; Masomiam, et al., 2020). Thus, it should be possible rapidly to determine whether such pneumococcal protein-based vaccines are effective deterrers to SARS-CoV-2 disease and these vaccines may provide needed protection until a SARS-CoV-2 vaccine is produced in sufficient quantities to be effective worldwide.

Acknowledgements: This research was not funded.

Conflicts of Interest: The author declares no conflicts of interest.

References

Bordenave G. Eur J Immunol. L’idiotypie comparée des anticorps de lapins différents contre salmonella abortus-equi et contre le virus de la mosaïque du tabac. observation d’une réactivité croisée entre certains idiotypes d’anticorps contre ces deux matériaux antigéniques [Comparison of idiotypes of rabbit antibodies against Salmonella abortusequi and tobacco mosaic virus. Study of cross reactions between antibody idiotypes against these 2 antigenic materials]. 1973 Nov;3(11):726-31. doi: 10.1002/eji.1830031114.

Briles D E, Hollingshead S, Brooks-Walter A, Naborbs G S, Ferguson L, Schilling M, Gravenstein S, Braun P, King J, Swift A. The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine. 2000;18:1707–1711

Brooks-Walter A, Briles D E, Hollingshead S K. The PspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun. 1999;67:6533–6542.

CDC. 2020. About Diphtheria, Tetanus, and Pertussis Vaccines. https://www.cdc.gov/vaccines/vpd/dtap-tdap-td/hcp/about-vaccine.html Accessed 28 June 2020.

Chumakov K, Gallo R. Could an old vaccine be a godsend for new coronavirus? Using the oral polio vaccine could prevent or reduce the spread of COVID-19 to immunized individuals. USA Today. 21 April 2020. https://www.usatoday.com/story/opinion/2020/04/21/oral-polio-vaccine-has-potential-treat-coronavirus-column/5162859002/ ACCESSED 21 APRIL 2020

Cunningham MW, McCormack JM, Fenderson PG, Ho MK, et al., 1989. Human and murine antibodies cross-reactive with streptococcal M protein and myosin recognize the sequence GLN-LYS-SER-LYS-GLN in M protein. J Immunol. 1989 Oct 15;143(8):2677-83.

Davies, N.G., Klepac, P., Liu, Y. Prem K, Jett M, CMMID COVID-19 Working Group, Eggo RM. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med (2020). https://doi.org/10.1038/s41591-020-0962-9

Ekeruche-Makinde J, Miles JJ, van den Berg HA, Skowera A, Cole DK, Dolton G, Schauenburg AJA, Tan MP, Pentier JM, Llewellyn-Lacey S, Miles KM, Bulek AM, Clement M, Williams T, Trimby A, Bailey M, Rizkallah P, Rossjohn J, Peakman M, Price DA, Burrows SR, Sewell AK, Wooldridge L. Peptide length
determines the outcome of TCR/peptide-MHCI engagement. Blood. 2013 Feb 14; 121(7): 1112–1123. doi: 10.1182/blood-2012-06-437202

FDA. 1983. Package insert – PNEUMOVAX 23. https://www.fda.gov/media/80547/download Accessed 28 June 2020.

FDA. 2017. Package insert – Prevnar-13. https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/package-insert------Prevnar-13.pdf Accessed 28 June 2020.

Ferreira D, Darrieux M, Débora SA, Leite L, Ferreira J, Ho P, Miyaji E, Oliveira M. (2009). Characterization of Protective Mucosal and Systemic Immune Responses Elicited by Pneumococcal Surface Protein PspA and PspC Nasal Vaccines against a Respiratory Pneumococcal Challenge in Mice. Clinical and vaccine immunology : CVI. 16. 636-45. 10.1128/CVI.00395-08.

Franklin R, Young A, Neumann B, Fernandez R, Joannides A, Reyahi A, Modis Y. Homologous protein domains in SARS-CoV-2 and measles, mumps and rubella viruses: preliminary evidence that MMR vaccine might provide protection against COVID-19. MedRxiv 2020. doi: https://doi.org/10.1101/2020.04.10.20053207

Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181(7):1489-1501.e15. doi:10.1016/j.cell.2020.05.015

Härkönen T, Puolakkainen M, Sarvas M, Airaksinen U, Hovi T, Roivainen M. Picornavirus Proteins Share Antigenic Determinants With Heat Shock Proteins 60/65. J Med Virol. 2000 Nov;62(3):383-91. doi: 10.1002/1096-9071(200011)62:3<383::aid-jmv11>3.0.co;2-#

Hemmer B, Kondo T, Gran B, Pinilla C, Cortese I, Pascal J, Tzou A, McFarland HF, Houghten R, Martin R. Minimal peptide length requirements for CD4+ T cell clones—implications for molecular mimicry and T cell survival. International Immunology, Volume 12, Issue 3, March 2000, Pages 375–383, https://doi.org/10.1093/intimm/12.3.375

Kamboj K, King C, Greensapn N, Kirchner L, Schreiber J. Immunization with Haemophilus influenzaeType b-CRM197 Conjugate Vaccine Elicits a Mixed Th1 and Th2 CD4+ T Cell Cytokine Response That Correlates with the Isotype of Antipolysaccharide Antibody. Journal of Infectious Diseases. 184(7):931–935, OCTOBER 1, 2001 DOI: 10.1086/323342

Lagousi T, Basdeki P, Routsi J, Spoulou V. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines (Basel) 2019 Mar; 7(1): 9. doi: 10.3390/vaccines7010009

Lee C, Cuh HJ, Park M, Kim RK, Whan YH, Choi SK, Baik YO, Park SS, Lee I. Quality Improvement of Capsular Polysaccharide in Streptococcus pneumoniae by Purification Process Optimization. Front Bioeng Biotechnol. 2020; 8: 39. doi: 10.3389/fbioe.2020.00039

Masomian M, Ahmad Z, Gew LT, Poh CL. Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines (Basel). 2020 Mar 17;8(1):132. doi: 10.3390/vaccines8010132.
Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv preprint doi: https://doi.org/10.1101/2020.03.24.20042937 Accessed 8 April 2020.

Misko IS, Cross SM, Khanna R, Elliott SL, Schmidt C, Pye SJ, Silins SL. Crossreactive recognition of viral, self, and bacterial peptide ligands by human class I-restricted cytotoxic T lymphocyte clonotypes: implications for molecular mimicry in autoimmune disease. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2279-84. doi: 10.1073/pnas.96.5.2279.

Möginger U, Resemann A, Martin CE, Parameswarappa S, Govindan S, Wamhoff EC, Broecker F, Suckau D, Pereira CL, Anish C, Seeberger PH, Kolarich D. Cross Reactive Material 197 glycoconjugate vaccines contain privileged conjugation sites. Sci Rep. 2016 Feb 4;6:20488. doi: 10.1038/srep20488.

Morais V, Dee V, Suárez N. Purification of Capsular Polysaccharides of Streptococcus pneumoniae: Traditional and New Methods Front. Bioeng. Biotechnol., 12 October 2018 | https://doi.org/10.3389/fbioe.2018.00145

Ogunniyi AD, Woodrow MC, Poolman JT, Paton JC. Protection against Streptococcus pneumoniae Elicited by Immunization with Pneumolysin and CbpA. Infect Immun. 2001 Oct; 69(10): 5997–6003. doi: 10.1128/IAI.69.10.5997-6003.2001

Root-Bernstein RS. 2009. Autoreactive T-cell receptor (Vbeta/D/Jbeta) sequences in diabetes are homologous to insulin, glucagon, the insulin receptor, and the glucagon receptor. J Mol Recognit 22(3): 177-187.

Root-Bernstein RS. 2014. Rethinking molecular mimicry in rheumatic heart disease and autoimmune myocarditis: Laminin, collagen IV, CAR, and B1AR as initial targets of disease. Front Ped Rheumatol 2:85. doi: 10.3389/fped.2014.00085.

Root-Bernstein RS, Podufaly A. 2012. Autoreactive T-cell receptor (Vbeta/D/Jbeta) sequences in diabetes recognize insulin, the insulin receptor, and each other, and are targets of insulin antibodies. Open Autoimmunity J., 4: 10-22, DOI: 10.2174/1876894601204010010

Ross T, Slavik M, Bayyari G, Skelees J. Elimination of Mycoplasmal Plate Agglutination Cross-Reactions in Sera From Chickens Inoculated With Infectious Bursal Disease Viruses Avian Dis. Jul-Sep 1990;34(3):663-7.

Rudensky AYu, Preston-Hurlburt P, Hong SC, Barlow A, et al., 1991. Sequence analysis of peptides bound to MHC class II molecules. Nature. 353(6345):622-7.

Schachern PA, Tsuprun V, Ferriero P, Briles DE, Goetz S, Cureoglu S, Paparella MM, John S. Pneumococcal PspA and PspC Proteins: Potential Vaccine Candidates for Experimental Otitis Media. Int J Pediatr Otorhinolaryngol. 2014 Sep; 78(9): 1517–1521. doi: 10.1016/j.ijporl.2014.06.024

Shajahan A, Supekar NT, Gleinich AS, Azadi P. Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology, cwaa042, https://doi.org/10.1093/glycob/cwaa042

Silva GP, Santos RS, Pereira-Manfro WF, et al. A cross-reacting material CRM197 conjugate vaccine induces diphtheria toxin neutralizing antibody response in children and adolescents infected or not with HIV. Vaccine. 2017;35(31):3803-3807. doi:10.1016/j.vaccine.2017.05.080
Trama AM, Moody MA, Alam SM, Jaeger FH, Lockwood B, Parks R, Lloyd KE, Stolarchuk C, Searce R, Foulger A, Marshall DJ, Whitesides JF, Jeffries TL Jr, Wiehe K, Morris L, Lamson B, Soderberg K, Hwang KK, Tomaras GD, Vandergrift N, Jackson KJL, Roskin KM, Boyd SD, Kepler TB, Liao HX, Haynes BF. HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria. Cell Host Microbe. 2014 Aug 13;16(2):215-226. doi: 10.1016/j.chom.2014.07.003.

van de Garde MDB, van Westen E, Poelen MCM, Rots NY, van Els CACM. Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4+ T Cells. Infect Immun. 2019 May 21;87(6):e00098-19. doi: 10.1128/IAI.00098-19

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Cripin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020 May 4 : eabb9983. Published online 2020 May 4. doi: 10.1126/science.abb9983

Williams WB, Liao HX, Moody MA, Kepler TB, Alam SM, Gao F, Wiehe K, Trama AM, Jones K, Zhang R, Song H, Marshall DJ, Whitesides JF, Sawatzki K, Hua A, Liu P, Tay MZ, Seaton KE, Shen X, Foulger A, Lloyd KE, Parks R, Pollara J, Ferrari G, Yu JS, Vandergrift N, Montefiori DC, Sobieszczyk ME, Hammer S, Karuna S, Gilbert P, Grove D, Grunenberg N, McElrath MJ, Mascola JR, Koup RA, Corey L, Nabel GJ, Morgan C, Churchyard G, Maenza J, Keefer M, Graham BS, Baden LR, Tomaras GD, Haynes BF. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science. 2015 Aug 14;349(6249):aab1253. doi: 10.1126/science.aab1253.

WHO (2009). Recommendations to Assure the Quality, Safety and Efficacy of Pneumococcal Conjugate Vaccines. Geneva Available online at: http://www.who.int/biologicals/areas/vaccines/pneumo/Pneumo_final_23APRIL_2010.pdf?ua=1

Yu X, Sun Y, Frasch C, Concepcion N, Nahm MH. Pneumococcal Capsular Polysaccharide Preparations May Contain Non-C-Polysaccharide Contaminants That Are Immunogenic. Clin Diagn Lab Immunol. 1999 Jul; 6(4): 519–524.

Yu J, Briles DE, England JA, Hollingshead SK, Glezen WP, Nahm MH. Immunogenic protein contaminants in pneumococcal vaccines. JID 2003 187: 1019-1023.
TABLE: UniProtKB accession numbers for viral and bacterial proteins used in this study.

Mumps
P11235|HN_MUMPM (HN)RecName: Full=Hemagglutinin-neuraminidase
P30929|L_MUMPM (L)RecName: Full=RNA-directed RNA polymerase L
P09458|FUS_MUMPR (F)RecName: Full=Fusion glycoprotein F0
P30928|V_MUMPM (P/V)RecName: Full=Non-structural protein V
P22112|SH_MUMPM (SH)RecName: Full= Small hydrophobic protein

Measles
P08362|HEMA_MEASE (H)RecName: Full=Hemagglutinin glycoprotein
Q89933|NCAP_MEASF (N)RecName: Full=Nucleoprotein
P12576|L_MEASE (L)RecName: Full=RNA-directed RNA polymerase L
Q786F3|FUS_MEASC (F)RecName: Full=Fusion glycoprotein F0
P0C774|V_MEASC (P/V)RecName: Full=Non-structural protein V

Rubella
P08563|POLS_RUBVM RecName: Full=Structural polyprotein
Q86500|POLN_RUBVM RecName: Full=Non-structural polyprotein p200

Poliovirus
P03301|POLG_POL1S RecName: Full=Genome polyprotein; 2209 aa CONTAINS:
RecName: Full=P3;
RecName: Full=Protein 3AB;
RecName: Full=P1;
RecName: Full=Capsid protein VP0;
RecName: Full=Capsid protein VP4;
RecName: Full=Capsid protein VP2;
RecName: Full=Capsid protein VP3;

Pertussis
P04977|TOX1_BORPE (ptxA)RecName: Full=Pertussis toxin subunit 1
P04978|TOX2_BORPE (ptxB)RecName: Full=Pertussis toxin subunit 2
P04979|TOX3_BORPE (ptxC)RecName: Full=Pertussis toxin subunit 3
P0A3R5|TOX4_BORPE (ptxD)RecName: Full=Pertussis toxin subunit 4
P04981|TOX5_BORPE (ptxE)RecName: Full=Pertussis toxin subunit 5
P35077|FHAC_BORPE (fhaC)RecName: Full=Filamentous hemagglutinin transporter protein FhaC
P14283|PERT_BORPE (prn)RecName: Full=Pertactin autotransporter
P05788|FM2_BORPE (fim2)RecName: Full=Serotype 2 fimbrial subunit
P17835|FM3_BORPE (fim3)RecName: Full=Serotype 3 fimbrial subunit

Tetanus
P04958|TETX_CLOTE (tetX)RecName: Full=Tetanus toxin

Diphtheria
Q5PY51|Q5PY51_CORDP SubName: Full=Diphtheria toxin;[Corynebacterium diphtheriae]

Meningococcus
0DH58|OMPA_NEIMB (porA) RecName: Full=Major outer membrane protein
CRM197
Q6NK15|Q6NK15_CORDI (tox) SubName: Full=Diphtheria toxin

SARS-CoV-2
P0DTC1 Replicase polyprotein 1a (pp1a)
P0DTC2 Spike glycoprotein (S)
P0DTC3 Protein 3a (NS3a)
P0DTC4 Envelope small membrane protein (E)
P0DTC5 Membrane protein (M)
P0DTC6 Non-structural protein 6 (NS6)
P0DTC7 Protein 7a (NS7a)
P0DTC8 Non-structural protein 8 (NS8)
P0DTC9 Nucleoprotein (N)

Pneumococcal proteins PsaA, PspA, PspC and Gram-positive anchor protein have multiple variants; accession numbers of representative variants are provided in FIGURE 1.
FIGURE 1: Similarities between the four known or probable pneumococcal vaccine protein contaminants PsaA, PspA, PspC and Gram-positive anchor protein and SARS-CoV-2 proteins. Multiple variants for each protein were examined and results provided here are representative of results but each serotype presents slightly different matches. 36 pairs of proteins were searched. Only similarities satisfying criteria laid out in Methods are shown.

COVID-19 Replicase 1AB 7096 aa vs *S. pneumoniae* pspA O34097 653 aa
Waterman-Eggert score: 100; 35.6 bits; E(1) < 8.7e-05
90 100 110 120
SP pspA O34097 EKERKASEKTAEATKEVQQAYLAYLQASNESQRKEADKKIK
: ||:: ||:: ||:: : :: || ||:: |
COVID-19 Replicase 1AB 7096 aa vs S. pneumoniae pspC 792 aa
Waterman-Eggert score: 98; 32.6 bits; E(1) < 0.00053

COVID19 Repla EIPKEEVKPFITESKPSVEQRKQDDKK
| || |||| : : || | : : |||
SP pspC F2WN4 EKPKEVDPQLEKPKPDNSKFPQADDDKK
710 720 730

COVID-19 Replicase 1AB 7096 aa vs S. pneumoniae pspC 792 aa
Waterman-Eggert score: 79; 26.9 bits; E(1) < 0.027

COVID19 Repla EIPKEEVKPFITESKPSVEQRKQDDKK
| || |||| : : || | : : |||
SP pspC F2WN4 EKPKEVDPQLEKPKPEVKPQPK
660 670 680

COVID-19 Replicase 1AB 7096 aa vs S. pneumoniae pspC 792 aa
Waterman-Eggert score: 77; 26.3 bits; E(1) < 0.039

COVID19 Repla EIPKEEVKPFITESKPSVE
| || |||| : / || | : |
SP pspC F2WN4 EKPKEVDPQLEKPKPEVK
670 680

(Also 653-671)

COVID-19 Replicase 1AB 7096 aa vs S. pneumoniae pspC 792 aa
Waterman-Eggert score: 72; 24.9 bits; E(1) < 0.1

COVID19 Repla EIPKEEVKPFITESKPSVEQRKQDDKK
| || |||| / || | : \ |
SP pspC F2WN4 EKPKEVDPQLEKPKPEVKPQPK
560 570

(Also 565-590; 576-601; 587-612; 598-623; 609-634; 620-645; 631-656; 681-707)

COVID19 Spike Protein 1273 bp vs S. pneumoniae Gram-positive anchor protein Q8DRK2 1161 aa
Waterman-Eggert score: 72; 26.7 bits; E(1) < 0.013

SP GPAP Q8DRK2 GKADLTLNVLAVKNVIDINGL
| \ || || : | | : | |
COVID19 SPIKE PROT GPKSTNLVKNKCVNFRNGEL
530 540
FIGURE 2: Similarities between nine SARS-CoV-2 proteins and 32 proteins from measles, mumps, rubella, polio, Hib, meningitis, diphtheria, pertussis and tetanus vaccines (TABLE 1). 288 pairwise combinations were searched. Only similarities satisfying criteria laid out in Methods are shown.

RUBELLA NON-STRCTURAL PROT Q86500 2116 aa vs. COVID19 REPL1a 4405 aa
Waterman-Eggert score: 83; 29.9 bits; E(1) < 0.009
840 850
RUB NSP Q86500 VVNAANEGGLAGSGVCAG
| ||| ||| | | | |
COVID19 REPL1a VVNAANVYLKHGGVAGAL
1060 1070

MEASLES HEMA P08362 617 aa vs. COVID19 REPL1a 4405 aa
Waterman-Eggert score: 70; 25.8 bits; E(1) < 0.045
530 540
MEASLE HEM P08362 YVLATYDTSRVEHAVVYYVYSPS
| || | || || || |
COVID19 REPL1a YVLPNDTTLRVEAFEYYHTTDFS
1620 1630 1640

MEASLES FUSION GLYCOPROTEIN Q786F3 550 aa vs. COVID19 PROT REPL1A 4405 aa
Waterman-Eggert score: 65; 24.5 bits; E(1) < 0.097
500
MEASLES FGP Q786F3 IVYILIAVCLGGLI
| ::|::|::|::|::| |
COVID19 REPL1A IWFLLSVCGLSLI
2240

PERTUSSIS TOXIN 1 P04977 269 aa vs. COVID19 REPL1a 4405 aa
Waterman-Eggert score: 69; 25.3 bits; E(1) < 0.029
220
PERT TOX1 P04977 YTSRRSVASIVGTL
||| :||:||:||: |
COVID19 REPL1a YTSKTTVASLINTL
1430

PERTUSSIS TOXIN 4 P0A3R5 152 aa vs. COVID19 Repl 4405 aa
Waterman-Eggert score: 62; 23.2 bits; E(1) < 0.069
10 20 30
PERT TOX4 P0A3R5 FPTRTTAPQQGARRSRVRALAWLLAS
| | || | |
COVID19 REPL1A FVDRQTAQAGTDTTITVNVLWNLAYA
3450 3460 3470

TETANUS TOXOID P04958 1315 aa vs. COVID19 PROTEIN 3a 275 aa
Waterman-Eggert score: 64; 23.7 bits; E(1) < 0.026
1120 1130
TETANUS TOX P04958 NPLRYDTEYL
||| :||: |||
COVID19 PROT 3a NPLLYDANYFL
140