Management and therapy of vasovagal syncope: A review

Muhammet Ali Aydin, Tushar V Salukhe, Iris Wilke, Stephan Willems

Abstract

Vasovagal syncope is a common cause of recurrent syncope. Clinically, these episodes may present as an isolated event with an identifiable trigger, or manifest as a cluster of recurrent episodes warranting intensive evaluation. The mechanism of vasovagal syncope is incompletely understood. Diagnostic tools such as implantable loop recorders may facilitate the identification of patients with arrhythmia mimicking benign vasovagal syncope. This review focuses on the management of vasovagal syncope and discusses the non-pharmacological and pharmacological treatment options, especially the use of midodrine and selective serotonin reuptake inhibitors. The role of cardiac pacing may be meaningful for a subgroup of patients who manifest severe bradycardia or asystole but this still remains controversial.

INTRODUCTION

Syncope is a common clinical problem challenging both cardiologists and general practitioners with an annual incidence of 1.3 to 2.7 events per thousand population[1]. The aim of this review is to present a review on the management and treatment of vasovagal syncope. It covers new aspects presented in current guidelines for the diagnosis and management[2], and new data for risk stratification[3].

The main aim of the evaluation is to distinguish patients with a benign cause like vasovagal syncope from patients with life-threatening conditions like arrhythmias, severe cardiovascular diseases or neurological causes to minimize the risk of sudden cardiac death. There is still a high unexplained syncope rate in all settings, so new strategies for evaluation and diagnosis are crucial.

DEFINITIONS: SYNNCOPE, PRESYNCOPE, REFLEX SYNCOPE, VASOVAGAL SYNCOPE

Syncope is defined as a transient and self-terminating loss of consciousness (LOC) with rapid onset, short duration combined with spontaneous, prompt and complete recovery. Syncope is characterized by global cerebral hypoperfusion[2]. It is essential to discriminate syncope from other disorders with transient LOC, e.g. seizure, hypoglycemia, catalepsy or aborted sudden cardiac death. In most cases a detailed medical history and information about the trigger situation allows identification of cause. To avoid confusion, syncope should not be used as a synonym for transient loss of consciousness. The term 'pre-syncope' or 'near-syncope' is used to describe a state that resembles the prodrome of syncope but which is not followed by LOC[2]. It is important to underline that doubts remain
in any setting and age group representing 21% of all syncopes in the general population, 35%-48% of syncopes presenting to the emergency department and 56%-78% of syncopes in a specialized syncope unit. The vasovagal syncope is by far the most common reflex syncope in young patients. Clinical studies reveal a peak incidence between 10 and 30 years of age. The epidemiology of syncope is different in relation to age. In younger patients a neurally-mediated mechanism is the most common cause, while in older patients cardiovascular causes are more prevalent. The actual incidence and prevalence of vasovagal syncope in the elderly has not yet been established, but vasovagal syncope is now being diagnosed with increasing frequency in this age group, suggesting a bimodal age distribution of vasovagal syncope. In the elderly, cardiac causes, orthostatic and postprandial hypotension, and the effects of medications are common, whereas typical vasovagal syncope is less frequent.

The older patients the diagnostic work-up is more complex, the prognosis may not necessarily follow the benign course commonly observed in younger patients and therapy often remains uncertain. In this paper the management and treatment of vasovagal syncope focuses on patients with vasovagal syncope.

ETIOLOGY AND PATHOPHYSIOLOGY

The pathophysiology of the hypotension/bradycardia reflex responsible for vasovagal syncope is not completely understood. Central as well as peripheral mechanisms have been implicated in its pathogenesis; however their relative contribution is not fully elucidated. The different clinical presentation of vasovagal syncope, the variable outcome and the syncope tilt-induced with different drugs such as isoproterenol, nitroglycerin, or clomipramine, acting at very different levels of the reflex pathway, suggest that complex pathophysiologic mechanisms may cause a vasovagal reaction.

The pathophysiology of vasovagal syncope is characterized by a reflex activation triggering a rapid decrease in heartbeat and a reduction of vascular tone. The concept of depressor reflexes originating in the heart was first described by von Bezold in 1867 and was later revised by Jarisch in 1937. The change to an upright position causes symptoms, such as syncope, due to orthostatic hypotension.

EPIDEMIOLOGY

Epidemiological studies indicate that up to 40% of the general population has experienced at least one episode of syncope in their lifetime. Savage et al reported an incidence of 1.3 per 1000 person-years for at least one syncopal episode and 1.0 per 1000 person-years in subjects with criteria for isolated syncope (likely vasovagal syncope). Soteriades et al reported an overall incidence of a first report of syncope in 6.2 per 1000 person-years. Recently a large database with reasons for encounters of general practitioners in the Netherlands revealed that 2 to 9 per 1000 encounters are due to blackouts or fainting.

A reflex syncope is the most frequent cause of syncope.
activity and inhibits sympathetic activity. Vagal c-type nerve fibers connect the heart with the brainstem. Within the brainstem vagal neurons are stimulated and the activity of cells of the sympathetic nervous system is depressed.

Activation of this reflex mechanism provokes bradycardia, vasodilatation and hypotension. Furthermore, non-cardiac, humoral effects are part of the effenter leg of this reflex loop: e.g. renin, catecholamine and glucocorticoid secretion is augmented. Conversely, a decrease in the activity of these inhibitory sensory receptors stimulates an increase in sympathetic activity, vascular resistance, plasma renin activity and vasopressin. The main trigger for this reflex loops is a reduction in venous return during upright position. Factors which augment this reflex response include extravascular factors such as a warm environment or psychological stress.

The different types of vasovagal syncope are explained by different degrees of activation or depression of the autonomic nervous system: a more intensive activation of the parasympathetic nervous system provokes bradycardia, the main symptom of cardioinhibitory vasovagal syncope. The primarily acute loss of sympathetic stimulation is the reason for the drop of blood pressure, the main symptom of the vasodepressive type. Nevertheless in most cases a combined mechanism is seen. Recent data in patients with vasovagal syncope undergoing tilt testing potentiated by intravenous clomipramine, suggested that the neurally-mediated syncope can not only be provoked by increased sympathetic nerve tone, but can also be initiated by some central nervous system triggers of the serotoninergic system.

In addition, in older subjects the mechanisms of tilt-induced syncope seems to be different than in younger subjects, justifying at least partially the different clinical pattern of neurally-mediated reflex syncope.

CLINICAL PRESENTATION

Although most patients display typical conditions and signs of a vasovagal syncope such as symptom onset during standing, light-headedness and full recovery after a few minutes, up to 30% have an atypical presentation. In some cases syncope occurs without any prodromal symptoms. The loss of consciousness is usually brief and fatigue is rarely seen. In the case of longer lasting cerebral hypoperfusion seizure-like movements are observed, imitating an epileptic seizure.

Symptoms before fainting are caused by reduced cerebral perfusion. The patients complain of fatigue, weakness, dizziness, wetness of the skin, a dimming of vision, and sometimes tinnitus and complete loss of vision. Some patients suffer trauma, though severe traumatic injuries are rare.

DIAGNOSTICS

Basic diagnostics

Many sophisticated tools, provocation tests and diagnostic methods have been introduced to diagnose vasovagal syncope though none are definitive. An exhaustive in-depth history and detailed examination are essential for diagnosis. The identification of life-threatening conditions in which syncope is only the indicator of an underlying cardiovascular disease is paramount.

Most experts recommend a standard 12-lead electrocardiography (ECG) as a routine investigation to rule out heart rhythm disturbances. In any patient with a history of cardiac disease and/or an abnormal examination, e.g. heart murmurs, echocardiography and/or stress-ECG is justified (Figure 2).

Special tests in suspected vasovagal syncope

Tilt table test: In patients with unexplained syncope and ambiguous history for a vasovagal syncope, a tilt table test may help to support a diagnosis. Fundamental to tilt testing is the ability to replicate the patient’s symptoms, during which critical observations of heart rate and blood pressure are documented. A head-up tilt table test is a widely employed method in the diagnosis of syncopal disorders. Many investigations reported its usefulness in detecting neurally-mediated syncope. Different tilt table protocols are introduced with variations in the initial stabilization phase, duration of tilting (20 to 45 min) and application of pharmacological agents. Currently the most used protocols are the intravenous isoproterenol test, and the protocol using sublingual nitroglycerin. Some protocols use adenosine, clomipramine or alcohol to provoke syncope. We use a method commonly known as the Westminster protocol, which was first introduced by Fitzpatrick et al. After maintaining a supine position of 10 min the patient is tilted to a head-up angle of 60°. If symptoms are not proved within a few minutes sublingual nitroglycerin is administered as additional provocation. Using the same protocol, Raviele et al. observed a positive test response in 51% of patients with unexplained syncope; the test resulted in a specificity of 94%. In a recent analysis of pooled data published by Brignole, a positive head-up tilt table test was found in 62%-69% of patients with unexplained syncope, with a sensitivity of...
The implantable loop recorder: The main goal of the evaluation of patients with syncope is to rule out cardiac arrhythmia as a marker of a high risk for cardiac death[18]. Continuous monitoring increases the likelihood of arrhythmia detection, with modern implantable loop recorders (ILRs) capable of continuous recording for up to 18 months. The ILR is implanted subcutaneously in the left hemithorax with automatic and patient-activated ECG-documentation modes available on most devices. Many studies have shown its value in detection of infrequent arrhythmias[39-41]. Current guidelines suggest ILR implantation for unexplained syncopes. In patients with vasovagal syncopes a significant cardioinhibitory reaction is seen in 25% and a mild decrease of the heart rate in 50% of all falls. Even documented asystole does not necessarily indicate that an anti-bradycardic therapy would result in symptoms relief, if the setting is typical for vasovagal syncope. Particularly in young patients, the question “when to implant” and “whom to implant” a pacemaker is often far from clear even with current trial evidence. We believe that a conservative pacing policy in younger patients without any evidence for structural heart disease or conduction disease is justifiable. In contrast every patient with a history of structural heart disease, unexplained syncope or high risk for cardiac arrhythmia may benefit from an ILR or a pacemaker.

The value and cost-effectiveness of ILR is well documented[36]. Implantation at an early stage in the investigation may reduce the costs of unnecessary investigations[35].

What treatment options do we have?
Once the diagnosis is clear the next questions that arise include, who needs therapy and what kind? Every patient benefits from information and education; some patients need medical therapy and only a few people need a pacemaker.

As there are many causes of syncope, a specific treatment cannot be administered without knowing the exact mechanism responsible for syncope. The main therapeutic innovations of the most recent years are isometric counter-pressure maneuver, lower limb compression bandage and therapy guided by external and ILR in patients with recurrent suspected neurally-mediated syncope. Most drugs are considered ineffective. However, some drugs such as midodrine and paroxetine showed positive results in patients with recurrent vasovagal syncope. The cornerstone of therapy for young patients with vasovagal syncope remains education and reassurance, except in rare and isolated cases of patients with a high frequency of recurrent episodes despite nonpharmacological measures. In the elderly, specific treatment is often necessary. In these patients, determination of the hemodynamic mechanism of spontaneous syncope by means of an external or implantable cardiac monitor seems to be the most advisable option for optimal management. Limited data exist for the role of drugs in the treatment of vasovagal syncope in older patients.

The main goal of treatment is to reduce syncope recurrence and physical trauma. However, patients with a single syncope without any high-risk occupations (e.g. professional drivers, pilots) may not necessarily need specific therapy. Clear education and counseling about the nature of the benign condition and how to avoid triggers may be sufficient. Patients with a high risk of recurrence or injury can be identified by risk scores and may require tailored treatment (Figure 3). Known risk factors for recurrent vasovagal syncope are the number of preceding syncope spells and female gender[19]. In contrast, the head-up tilt test response has no predictive value ($P = 0.881$)[36].

Non-medical therapy
An informative and instructive talk with the patient about the benign nature and prognosis is the first step in the treatment of patients with vasovagal syncope. Conditions triggering vasovagal reflexes should be avoided such as a hot environment, humid atmosphere, prolonged standing, and reduced water intake[21]. A reduction or cessation of vasoactive substances may be necessary[39]. Discontinuation of hypotensive drug treatment for concomitant conditions is an important first line measure for the prevention of syncope recurrences in many subjects, especially in older patients. Substitution of salt and intake of isotonic
drinks expands the circulating blood volume and may improve venous return[4].

Patients should be motivated to identify prodromals of syncope. Lying or sitting down when initial symptoms appear may avert or attenuate syncope or traumatic falls.

Furthermore counterpressure maneuvers such as hand-grip and leg crossing may inhibit vasovagal syncope by increasing the venous return[48]. Leg crossing combined with tensing of muscles at the onset of prodromal symptoms can delay or even prevent vasovagal syncope[46]. A more complex and time-consuming concept is that of tilt training: orthostatic training was found to significantly improve symptoms in adolescents with neurocardiogenic syncope[49]. Twice-a-day training sessions of 40 min tilt positioning at home by standing against a wall significantly reduced the incidence of recurrence[50]. However, the compliance in a tilt training program is rather low[50,51] and no long-term data are available.

Pharmacological therapy

A number of drugs have been tested in the treatment of vasovagal syncope. These have included β-blockers, disopyramide, scopolamine, theophylline, ephedrine, etilefrine, midodrine, clonidine, and serotonin reuptake inhibitors (SRI)[52]. Actually, no convincing data exist to support the use of one over another as a first line therapy. There is only limited data from placebo-controlled trials.

β-blockers: β-blockers have been the first choice for many years. Several small non-randomized, uncontrolled trials have shown a benefit, supporting the pathophysiological concept that β-blockers reduce sympathetic activity and avoid an “overshooting” vagal reaction[53]. However, there was no positive outcome in randomized, long-term, controlled trials for metoprolol[54], propanol, nadolol[55] or atenolol[56]. According to the guidelines of the European Society of Cardiology, β-blockers should not be used to treat reflex syncope[57].

Midodrine: Midodrine, an alpha-agonist vasoconstrictor, affects smooth muscle cells both in arteries and veins without effecting heart rhythm or negative inotropy. There is no effect on the central nervous system. It is metabolized to the active drug desglymidodrine[58]. It has to be administered 3 times per day starting with 5 mg, because of a half-life of only 2-3 h. In 3 small randomized, placebo-controlled trials, midodrine had a beneficial effect on symptom frequency, symptoms during head-up tilt, and quality of life[59-61] (Table 1). Ward et al[57] evaluated 16 patients (mean age 56 years) in a 2 × 2 crossover trial: group 1 received placebo for the first 28 d (period 1) and midodrine for the second 28 d (period 2); while group 2 received midodrine for period 1 and placebo for period 2. Patients treated with midodrine showed more symptom-free days ($P < 0.0001$), a higher quality of life and fewer positive tilt testing results ($P = 0.01$).

However, these patients probably had overlap with some forms of orthostatic hypotension. In an acute double-blind placebo-controlled tilt study performed in 12 patients with a history of neurally-mediated syncope, Kaufmann et al[62] (Table 1) reported that a positive tilt result was observed in 67% of patients in the placebo group versus 17% of patients in the active medication group. The patients were randomized to receive a nonpressor dose of midodrine (5 mg) or placebo on day 1 and the opposite on day 3. One hour after drug or placebo administration, patients underwent 60-degree head-up tilt lasting 40 min (unless hypotension or bradycardia developed first). Positive results were also obtained in one small randomized trial of pediatric patients. These data suggest that midodrine is more effective in the treatment of orthostatic hypotension caused by autonomic dysfunction than in the neurally-mediated syncope. The available data are still insufficient to prove an efficacy of midodrine in vasovagal syncope. Midodrine may be indicated in patients with frequent vasovagal syncope refractory to lifestyle measures (recommendation II B, level B)[63] (Figure 3).

Serotonin reuptake inhibitors: In contrast to vasoconstrictors, SRI may reduce the central sympathetic nervous system activity[64]. Some open-label studies and one randomized, placebo-controlled trial demonstrated that SRI may reduce recurrent vasovagal syncope: during a follow-up of 25 mo, 17.6% of patients who randomly received paroxetine had syncpe recurrence compared to 52.9% of the placebo group ($P < 0.001$)[65], although fluoxetine failed to show a significant reduction compared to propranolol[59] (Table 2). However Takata et al[66] reported that

Table 1 Midodrine: randomized placebo-controlled trials

Author, year	n	Follow-up period	Endpoint	P
Ward et al[57], 1998	16	1 mo	TT	0.01
Perez-Lugones et al[58], 2001	61	6 mo	Syncope recurrence	< 0.01
Kaufmann et al[59], 2002	12	1 wk	TT	< 0.02
Qingyou et al[60], 2006	26	42 mo	TT	< 0.05

TT: Head-up tilt table test.

Table 2 Selective serotonin reuptake inhibitors: randomized placebo-controlled trials

Author, year	n	Drug	Follow-up period	Endpoint	P
Theodorakis et al[61], 2006	96	Fluoxetine	6 mo	Time to vasovagal episode	< 0.05
				Well-being Syncope episodes	NS
				TT	< 0.001
Di Girolamo et al[62], 1999	68	Paroxetine	6 mo	Syncope recurrence	0.001

TT: Head-up tilt table test; NS: Not significant.
paroxetine does not prevent the vasovagal reaction associated with carotid sinus massage and/or lower body negative pressure in healthy volunteers. Until the result of the study is confirmed by other trials, use of this drug cannot be recommended.

Cardiac pacing

The role of cardiac pacing is controversial. Non-placebo-controlled trials (VPS I, VASIS, SYDIT) showed some benefit with dual-chamber pacing in reducing syncope recurrence (Table 3). However, placebo-controlled trials in which all patients received a dual-chamber pacemaker and were randomly assigned to DDD or 0D0-Mode could not reproduce these results (VPS II, SYNPACE) (66,67) (Table 3). A recently published meta-analysis of all studies suggested a non-significant 17% reduction in syncope from the double-blinded studies, and an 84% reduction in the studies where the control group did not receive a pacemaker (70). In conclusion, the results of small, initial trials have overrated the treatment effect of pacemakers due to a lack of blinding of physicians and patients. Blinded trials suggest that the apparent effect is due to a strong expectation response to pacing (70).

ILRs may identify patients with severe cardioinhibitory vasovagal syncope and hence a better detection rate may identify responders to pacing more accurately. This is supported by the observation that patients with syncope associated with abrupt bradycardia displayed a better response to cardiac pacing therapy than those with gradual onset bradycardia (71). The syncope burden decreased from 2.7 per year to 0.45 per year (P < 0.02) (71). A larger trial, the ISSUE 2 study, hypothesized that spontaneous asystole and not tilt test results should form the basis for patient selection for pacemaker therapy. This study followed 392 patients with presumed reflex syncope with an ILR. Patients with ILR-guided therapy, predominantly pacing for asystole, experienced a reduction in recurrence of syncope compared to non-ILR-guided therapy (10% vs 41%, P < 0.002). It is noteworthy that ISSUE 2 was not a randomized trial in contrast to the ongoing ISSUE 3 study which will give new insights into ILR-guided pacemaker therapy in vasovagal syncope (72).

Given a IIa/B classification by the European Society of Cardiology, pacemaker implantation may play a role in special circumstances. It should be considered in patients with frequent recurrent reflex syncope, e.g. when no prodromes occur, an age > 40 years and documented spontaneous bradycardia or asystole during monitoring (73).

CONCLUSION

The management of vasovagal syncope is evolving. The pathophysiology of vasovagal syncope is not fully understood. Non-pharmacological treatment options are a fundamental first step of all treatment pathways. Only limited data exist showing a modest benefit using midodrine or SRI for recurrent vasovagal syncope. An ILR is a useful tool to detect or exclude hazardous cardiac arrhythmia.

REFERENCES

1. Savage DD, Corwin L, McGee DL, Kannel WB, Wolf PA. Epidemiologic features of isolated syncope: the Framingham Study. Stroke 1985; 16: 626-629
2. Moya A, Sutton R, Ammirati F, Blane JJ, Brignole M, Dahm JB, Deharo JC, Gajek J, Gjesdal K, Krahn A, Massin M, Pepi P, Pezawas T, Granell RR, Sarasin F, Ungar A, van Dijk JG, Wamena EP, Wieling W, Abe H, Benditt DG, Decker WW, Grubb BP, Kaufmann H, Morillo C, Olshansky B, Parry SW, Sheldon R, Shen WK, Vahanian A, Auricchio A, Bax J, Cecconi C, Dean V, Filippatos G, Funck-Brentano C, Jorde L, Kebilis P, Keaney P, McDonagh T, McGregor K, Popescu BA, Reiner Z, Sechtem U, Sirnes PA, Tendera M, Vardas P, Widimsky P, Auricchio A, Acratour E, Asteggiano R, Bax J, Belou A, Benetos A, Brandt J, Chung MK, Cortelli P, Da Costa A, Extramiana F, Ferro J, Gorenek B, Hedman A, Hirsch R, Kaliska G, Kenny RA, Kjeldsen KP, Lampert R, Molgard H, Paju R, Pudziukynas A, Raviele A, Roman P, Scherer M, Schondorf R, Sicari R, Vanbrabant P, Woltpert C, Zamorano JL. Guidelines for the diagnosis and management of syncope (version 2009): the Task Force for the Diagnosis and Management of Syncope of the European Society of Cardiology (ESC). Eur Heart J 2009; 30: 2631-2671
3. Aydin MA, Maas R, Mortensen K, Steinig T, Klemm H, Risius T, Meineitz T, Willems S, Morillo CA, Ventura R. Predicting recurrence of vasovagal syncope: a simple risk score for the clinical routine. J Cardiovasc Electrophysiol 2009; 20: 416-421
4. Brignole M, Menozzi C, Del Rosso A, Costa S, Gaggioli G, Bottoni N, Bartoli P, Sutton R. New classification of haemodynamic features of vasovagal syncope: beyond the VASIS classification. Analysis of the pre-syncopal phase of the tilt test without and with nitroglycerin challenge. Vasovagal Syncope International Study. Europace 2000; 2: 66-76
5. Ganzeboom KS, Colman N, Reitsma JB, Shen WK, Wieling W. Prevalence and triggers of syncope in medical students. Am J Cardiol 2003; 91: 1006-1008; A8
6. Brignole M, Albioni F, Benditt D, Bergfeldt L, Blane JJ, Bloch Thomsen PE, van Dijk JG, Fitzpatrick A, Hohnloser S, Jansoue J, Kapoor W, Kenny RA, Kulakowski P, Moya A, Raviele A, Sutton R, Theodorakis G, Wieling W. Guidelines on management (diagnosis and treatment) of syncope. Eur Heart J 2001; 22: 1256-1306
7. Soteriades ES, Evans JC, Larson MG, Chen MH, Chen L,
Aydin MA et al., Management of vasovagal syncope

Benjamin EJ, Levy D. Incidence and prognosis of syncope. N Engl J Med 2002; 347: 878-885

8 Alboni P, Brignole M, Menozzi C, Raviele A, Del Rosso A, Dinelli M, Solano A, Bottoni N. Diagnostic value of history in patients with syncope with or without heart disease. J Am Coll Cardiol 2001; 37: 1921-1928

9 Brignole M, Alboni P, Benditt DG, Bergfeldt L, Blanc JJ, Bloch Thomsen PE, van Dijk JG, Fitzpatrick A, Hohnloser S, Janousek J, Kapoor W, Kenny RA, Kulakowski P, Masotti G, Moya A, Raviele A, Sutton R, Theodorakis G, Ungar A, Wieling W. Guidelines on management (diagnosis and treatment) of syncope—update 2004. Europace 2004; 6: 467-537

10 Colman N, Nahm K, Ganzeboom KS, Shen WK, Reitsma J, Linzner M, Wieling W, Kaufmann H. Epidemiology of reflex syncope. Clin Auton Res 2004; 14 Suppl 1: 9-17

11 Ammirati F, Colacelli R, Cesario A, Strano S, Della Scala A, Colangelo I, De Santo T, Toscano E, Ricci R, Santini M. Management of syncope: clinical and economic impact of a Syncope Unit. Europace 2008; 10: 471-476

12 Alboni P, Tomasi C, Menozzi C, Bottoni N, Paparella N, Fucà G, Brignole M, Cappato R. Efficacy and safety of out-of-hospital self-administered single-dose oral drug treatment in the management of infrequent, well-tolerated paroxysmal supraventricular tachycardia. J Am Coll Cardiol 2001; 37: 548-553

13 Serletis A, Rose S, Sheldon AG, Sheldon RS. Vasovagal syncope in medical students and their first-degree relatives. Eur Heart J 2006; 27: 1965-1970

14 Tan MF, Parry SW. Vasovagal syncope in the older patient. J Am Coll Cardiol 2008; 51: 599-606

15 Kapoor WN. Current evaluation and management of syncope. Circulation 2002; 106: 1606-1609

16 Hainsworth R. Pathophysiology of syncope. Clin Auton Res 2004; 14 Suppl 1: 18-24

17 Shalev Y, Gal R, Tchou PJ, Anderson AJ, Avitall B, Akhtar M, Jazayeri MR. Echocardiographic demonstration of decreased left ventricular dimensions and vigorous myocardial contraction during syncope induced by head-up tilt. J Am Coll Cardiol 1991; 18: 746-751

18 Mark AL. The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol 1983; 1: 90-102

19 Benditt DG, Erms C, Padanilam B, Samniah N, Sakaguchi S. Catecholamine response during haemodynamically stable upright posture in individuals with and without tilt-table induced vasovagal syncope. Europace 2003; 5: 65-70

20 Grubb BP, Kosinski D. Dysautonomic and reflex syncope syndromes. Cardiol Clin 1997; 15: 257-268

21 Flevari P, Letheriotis D, Komorozos C, Fountoulaki K, Dagres N, Theodorakis G, Kremastinos D. Recurrent vasovagal syncope: comparison between clonipramine and nitroglycerin as drug challenges during head-up tilt testing. Eur Heart J 2009; 30: 2249-2253

22 Grubb BP. Clinical practice. Neurocardiogenic syncope. N Engl J Med 2005; 352: 1004-1010

23 Morillo CA. Evidence-based common sense: the role of clinical history for the diagnosis of vasovagal syncope. Eur Heart J 2006; 27: 253-254

24 Sheldon R, Rose S, Connolly S, Ritchie D, Koshman ML, Frenneaux M. Diagnostic criteria for vasovagal syncope based on a quantitative history. Eur Heart J 2006; 27: 344-350

25 Grubb BP, Kosinski D. Tilt table testing: concepts and limitations. Pacing Clin Electrophysiol 1997; 20: 781-787

26 Kenny RA, Ingram A, Bayliss J, Sutton R. Head-up tilt: a useful test for investigating unexplained syncope. Lancet 1986; 1: 1352-1355

27 Raviele A, Gasparini G, Di Pede F, Menozzi C, Brignole M, Dinelli M, Alboni P, Piccolo E. Nitroglycerin infusion during upright tilt: a new test for the diagnosis of vasovagal syncope. Am Heart J 1994; 127: 103-111

28 Sheldon R, Koshman ML. A randomized study of tilt test angle in patients with undiagnosed syncope. Can J Cardiol 2001; 17: 1051-1057

29 Graham LA, Gray JC, Kenny RA. Comparison of provocative tests for unexplained syncope: isoprenaline and glyceryl trinitrate for diagnosing vasovagal syncope. Eur Heart J 2001; 22: 497-503

30 Shen WK, Jahangir A, Beinborn D, Lohse CM, Hodge DO, Rea RF, Hammill SC. Utility of a single-stage isoproterenol tilt table test in adults: a randomized comparison with passive head-up tilt. J Am Coll Cardiol 1999; 33: 985-990

31 Mittal S, Stein KM, Markowitz SM, Slotwiner DJ, Rohatgi S, Lerman BB. Induction of neurally mediated syncope with adenosine. Circulation 1999; 99: 1318-1324

32 Theodorakis GN, Livanius EG, Leftheriotis D, Flevari P, Markianos M, Kremastinos DT. Head-up tilt test with clozapine challenge in vasovagal syndrome—a new tilt testing protocol. Eur Heart J 2003; 24: 658-663

33 Tateoka K, Iwasaki YK, Ono T, Kobayashi Y, Katoh T, Takano T. A new alcohol provocation head up tilt protocol in the patients with alcohol-related syncope. Europace 2007; 9: 220-224

34 Fitzpatrick AP, Theodorakis G, Vardas P, Sutton R. Methodology of head-up tilt testing in patients with unexplained syncope. J Am Coll Cardiol 1991; 17: 125-130

35 Raviele A, Menozzi C, Brignole M, Gasparini G, Alboni P, Musso G, Lolli G, Oddone D, Dinelli M, Murreddu R. Value of head-up tilt testing potentiated with sublingual nitroglycerin to assess the origin of unexplained syncope. Am J Cardiol 1995; 76: 267-272

36 Brignole M, Alboni P, Benditt DG, Bergfeldt L, Blanc JJ, Thomsen PE, Gert van Dijk J, Fitzpatrick A, Hohnloser S, Janousek J, Kapoor W, Kenny RA, Kulakowski P, Masotti G, Moya A, Raviele A, Sutton R, Theodorakis G, Ungar A, Wieling W, Priori SG, Garcia MA, Budaj A, Cowie M, Deckers J, Burgos EF, Lekakis J, Lindhal B, Mazzotta G, Morais J, Otto A, Smiseth O, Menozzi C, Ector H, Vardas P. Guidelines on management (diagnosis and treatment) of syncope—update 2004. Executive Summary. Eur Heart J 2004; 25: 2054-2072

37 Foglia-Manzillo G, Giada F, Beretta S, Corrado G, Santarone M, Raviele A. Reproducibility of head-up tilt testing potentiated with sublingual nitroglycerin in patients with unexplained syncope. Am J Cardiol 1999; 84: 284-288

38 Ruiz GA, Scaglione J, Gonzalez-Zuelgaray J. Reproducibility of head-up tilt test in patients with syncope. Clin Cardiol 1996; 19: 215-220

39 Krahn AD, Klein GJ, Yee R, Norris C. Final results from a pilot study with an implantable loop recorder to determine the etiology of syncope in patients with negative noninvasive and invasive testing. Am J Cardiol 1998; 82: 117-119

40 Pezawas T, Stix G, Kastner J, Schneider B, Wolzt M, Schmidinger H. Implantable loop recorder in unexplained syncope: classification, mechanism, transient loss of consciousness and role of major depressive disorder in patients with and without structural heart disease. Heart 2008; 94: e17

41 Brignole M, Sutton R, Wieling W, Lu SN, Erickson MK, Markowitz T, Grovane N, Ammirati F, Benditt DG. Analysis of rhythm variation during spontaneous cardioinhibitory neurally-mediated syncope. Implications for RDR pacing optimization: an IJSS 2 substudy. Europace 2007; 9: 305-311

42 Krahn AD, Klein GJ, Yee R, Manda V. The high cost of syncope: cost implications of a new insertable loop recorder in the investigation of recurrent syncope. Am Heart J 1999; 137: 870-877

43 Solano A, Menozzi C, Magri R, Donatoe P, Bottoni N, Lolli G, Tomasi C, Croci F, Oddone D, Puggioni E, Brignole M. Incidence, diagnostic yield and safety of the implantable loop-recorder to detect the mechanism of syncope in patients with and without structural heart disease. Eur Heart J 2004; 25: 1116-1119

44 Farrell DJ, Freemantle N, Sulte N. The clinical impact of im-
plantable loop recorders in patients with syncope. *Eur Heart J* 2006; 27: 351-356

45. Küber CC. Implantable loop recorders. dollars and sense. *J Am Coll Cardiol* 2003; 42: 502-504

46. Gaglioti G, Bottoni N, Mureddu R, Foglia-Manzillo G, Marchioli G, Bartoli P, Musso G, Menozzi C, Brignole M. Effects of chronic vasodilator therapy to enhance susceptibility to vasovagal syncope during upright tilt testing. *Am J Cardiol* 1997; 80: 1092-1094

47. El-Sayed H, Hainsworth R. Salt supplement increases plasma volume and orthostatic tolerance in patients with unexplained syncope. *Heart* 1996; 75: 134-140

48. van Dijk N, Quartieri F, Blanc JJ, García-Civera R, Brignole M, Moya A, Wieling W. Effectiveness of physical counterpressure maneuvers in preventing vasovagal syncope: the Physical Counterpressure Manoeuvres Trial (PC-Trial). *J Am Coll Cardiol* 2006; 48: 1652-1657

49. Di Girolamo E, Di Iorio C, Leonzio L, Sabatini P, Barsotti A. Usefulness of a tilt training program for the prevention of refractory neurcardiogenic syncope in adolescents: A controlled study. *Circulation* 1999; 100: 1798-1801

50. Foglia-Manzillo G, Giada F, Gaglioti G, Bartoletti A, Lolli G, Dinelli M, Del Rosso A, Santarone M, Raviele A, Brignole M. Efficacy of tilt training in the treatment of neurally mediated syncope. A randomized study. *Eur J 2004; 6: 199-204

51. Rebyrouck T, Heidbüchel H, Van De Werf F, Ector H. Long-term follow-up results of tilt training therapy in patients with recurrent neurocardiogenic syncope. *Pacing Clin Electrophysiol* 2002; 25: 1441-1446

52. Ventura R, Maas R, Zaidler D, Schoder V, Nienaber CA, Schuchert A, Meinertz T. A randomized and controlled pilot trial of beta-blockers for the treatment of recurrent syncope in patients with severe vagovagal syncope. *Circulation* 2006; 113: 1164-1170

53. Sheldon R, Connolly S, Rose S, Klingenheben T, Kranz A, Morillo C, Talajic M, Ku T, Fouad-Tarazi F, Ritchie D, Koshman ML. Prevention of Syncope Trial (POST): a randomized, placebo-controlled study of metoprolol in the prevention of vasovagal syncope. *Circulation* 2006; 113: 502-504

54. Flevari P, Livianis EG, Theodorakis GN, Zarvalis E, Mesiskli T, Kremastinos DT. Vasovagal syncope: a prospective, randomized, crossover evaluation of the effect of propranolol, nadolol and placebo on syncope recurrence and patients' well-being. *J Am Coll Cardiol* 2002; 40: 499-504

55. Madrid AH, Ortega J, Rebollo JC, Manzano JG, Segovia JG, Sanchez A, Peña G, Moro C. Lack of efficacy of atenolol for the prevention of neurally mediated syncope in a highly symptomatic population: a prospective, double-blind, randomized and placebo-controlled study. *J Am Coll Cardiol* 2001; 37: 554-559

56. Calkins H. Pharmacologic approaches to therapy for vasovagal syncope. *Am J Cardiol* 1999; 84: 200Q-25Q

57. Ward CR, Gray JC, Gilroy JJ, Kenny RA. Midodrine: a role in the management of neurocardiogenic syncope. *Heart* 1998; 79: 45-49

58. Perez-Lugones A, Schweikert R, Pavia S, Sra J, Akhtar M, Jager F, Tommassoni GF, Saliba W, Leonelli FM, Bash D, Beheiry S, Shewchik J, Tchou PJ, Natale A. Usefulness of midodrine in patients with severely symptomatic neurocardiogenic syncope: a randomized control study. *J Cardiovasc Electrophysiol* 2001; 12: 935-938

59. Kaufmann H, Saadia D, Voustianiouk A. Midodrine in neurally mediated syncope: a double-blind, randomized, crossover study. *Ann Neurol* 2002; 52: 342-345

60. Qingyou Z, Jinbao D, Chaochu T. The efficacy of midodrine hydrochloride in the treatment of children with vasovagal syncope. *J Pediatr* 2006; 149: 777-780

61. Grubb BP, Karas BJ. The potential role of serotonin in the pathogenesis of neurocardiogenic syncope and related autonomic disturbances. *J Inter Card Electrophysiol* 1998; 2: 325-332

62. Di Girolamo E, Di Iorio C, Sabatini P, Leonzio L, Barbone C, Barsotti A. Effects of paroxetine hydrochloride, a selective serotonin reuptake inhibitor, on refractory vasovagal syncope: a randomized, double-blind, placebo-controlled study. *J Am Coll Cardiol* 1999; 33: 1227-1230

63. Theodorakis GN, Leiferiotis D, Livianis EG, Flevari P, Karabela G, Agglopoulou N, Krestamitos DT. Fluoxetine vs. propranolol in the treatment of vasovagal syncope: a prospective, randomized, placebo-controlled study. *Eur J 2006; 8: 193-198

64. Takata TS, Wasmund SL, Smith ML, Li JM, Jaglar JA, Banks K, Kowal RC, Page RL, Hamdan MH. Serotonin reuptake inhibitor (Paxil) does not prevent the vasovagal reaction associated with carotid sinus massage and/or lower body negative pressure in healthy volunteers. *Circulation* 2002; 106: 1500-1504

65. Connolly SJ, Sheldon R, Roberts RS, Gent M. The North American Vasovagal Pacemaker Study (VPS). A randomized trial of permanent cardiac pacing for the prevention of vasovagal syncope. *J Am Coll Cardiol* 1999; 33: 16-20

66. Sutton R, Brignole M, Menozzi C, Raviele A, Alboni P, Giani P, Moya A. Dual-chamber pacing in the treatment of neurally mediated tilt-positive cardioinhibitory syncope: pacemaker versus no therapy: a multicenter randomized study. The Vasovagal Syncope International Study (VASIS) Investigators. *Circulation* 2000; 102: 294-299

67. Ammirati F, Colivicchi F, Santini M. Permanent cardiac pacing versus medical treatment for the prevention of recurrent vasovagal syncope: an observational registry. *Eur Heart J 2002; 23: 104-107

68. Connolly SJ, Sheldon R, Thorpe KE, Roberts RS, Ellenbogen KA, Wilkoff BL, Morillo C, Gent M. Pacemaker therapy for prevention of syncope in patients with recurrent severe vasovagal syncope: Second Vasovagal Pacemaker Study (VPS II): a randomized trial. *JAMA* 2003; 289: 2224-2229

69. Raviele A, Giada F, Menozzi C, Speca G, Orazi S, Gasparini G, Sutton R, Brignole M. A randomized, double-blind, placebo-controlled study of permanent cardiac pacing for the treatment of recurrent tilt-induced vasovagal syncope. The vasovagal syncope and pacing trial (SYNPACE). *Eur Heart J* 2004; 25: 1741-1748

70. Sud S, Massel D, Klein GJ, Leong-Sit P, Yee R, Skanes AC, Gula LJ, Kranz AD. The expectation effect and cardiac pacing for refractory vasovagal syncope. *Am J Med* 2007; 120: 54-62

71. Sud S, Klein GJ, Skanes AC, Gula LJ, Yee R, Kranz AD. Implications of mechanism of bradycardia on response to pacing in patients with unexplained syncope. *Eur J 2007; 9: 312-318

72. Brignole M. International study on syncope of uncertain etiology (3 ISSUE 3): pacemaker therapy for patients with asymptomatic neurally-mediated syncope: rationale and study design. *Eur J 2007; 9: 25-30

S- Editor: Cheng JX I- Editor: Cant MR E- Editor: Zheng XM