Identification of loci of functional relevance to Barrett’s esophagus and esophageal adenocarcinoma: Cross-referencing of expression quantitative trait loci data from disease-relevant tissues with genetic association data

Julia Schröder, Vitalia Schüller, Andrea May, Christian Gerges, Mario Anders, Jessica Becker, Timo Hess, Nicole Kreuser, René Thieme, Kerstin U. Ludwig, Tania Noder, Marino Venerito, Lothar Veits, Thomas Schmidt, Claudia Fuchs, Jakob R. Izbicki, Arnulf H. Hölscher, Dani Dakkak, Boris Jansen-Winkeln, Yusef Moulla, Orestis Lyros, Stefan Niebisch, Matthias Mehdorn, Hauke Lang, Dietmar Lorenz, Brigitte Schumacher, Rupert Mayershofer, Yogesh Vashist, Katja Ott, Michael Vieth, Josef Weismüller, Elisabeth Mangold, Markus M. Nöthen, Susanne Moebus, Michael Knapp, Horst Neuhaus, Thomas Rösch, Christian Eil, Ines Gockel, Johannes Schumacher, Anne C. Böhmer

1 Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany, 2 Institute for Medical Biometry, Informatics, and Epidemiology, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany, 3 Department of Medicine II, Sana Klinikum Offenbach, Germany, 4 Department of Internal Medicine II, Evangelisches Krankenhaus, Düsseldorf, Germany, 5 Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany, 6 Department of Gastroenterology and Interdisciplinary Endoscopy, Vivantes Wenckebach-Klinikum, Berlin, Germany, 7 Center for Human Genetics, University Hospital Marburg, Marburg, Germany, 8 Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany, 9 Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany, 10 Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany, 11 Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany, 12 Department of General, Visceral, and Cancer Surgery, University of Cologne, Cologne, Germany, 13 Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany, 14 Department of Internal Medicine and Gastroenterology, Elisabeth Hospital, Essen, Germany, 15 Department of General, Visceral, and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany, 16 Department of General, Visceral, and Thoracic Surgery, Klinikum Darmstadt, Darmstadt, Germany, 17 Gastroenterologie am Burgweier, Bonn, Germany, 18 Kantonsspital Aarau, Aarau, Switzerland, 19 Department of General, Visceral, and Thoracic Surgery, RoMed Klinikum Rosenheim, Rosenheim, Germany, 20 Gastroenterologische Gemeinschaftspraxis, Koblenz, Germany, 21 Centre of Urban Epidemiology, Institute of Medical Informatics, Biometry, and Epidemiology, Institute of University of Essen, Essen, Germany

These authors contributed equally to this work.
* julia.schroeder@uni-bonn.de

Abstract

Esophageal adenocarcinoma (EA) and its precancerous condition Barrett’s esophagus (BE) are multifactorial diseases with rising prevalence rates in Western populations. A recent meta-analysis of genome-wide association studies (GWAS) data identified 14 BE/EA risk loci located in non-coding genomic regions. Knowledge about the impact of non-coding...
Identification of loci of functional relevance to Barrett’s esophagus and esophageal adenocarcinoma

Introduction

Esophageal adenocarcinoma (EA) represents one of the most rapidly increasing cancers in Western populations [1]. Despite new treatment strategies, mortality rates among EA patients remain high [1]. EA is preceded by the precancerous condition Barrett’s esophagus (BE), which is characterized by a metaplastic transformation of the squamous epithelium in the distal esophagus. Here, the normal stratified squamous epithelium at the gastroesophageal junction is replaced by columnar epithelium, commonly found in the lower gastrointestinal tract. The prevalence of BE in the general population of Western countries is 1.6% [2]. Reported non-genetic risk factors for BE/EAs include gastroesophageal reflux, obesity, and age > 50 years [3]. Additionally, family studies of EA and BE have implicated genetic factors in disease development and progression, thus demonstrating that the etiology of BE/EAs is multifactorial [4,5]. Furthermore, genetic research has shown that BE and EA display a polygenic overlap [6].

In a recent meta-analysis of data from genome-wide association studies (GWAS), separate (BE and EA) and combined (BE/EA) analyses identified 14 genetic risk loci for BE/EAs [7]. The majority of the associated variants map to intergenic or intronic regions of the genome, which renders the identification of the disease-relevant genes and underlying pathomechanisms difficult. Since many non-coding GWAS risk variants exert their effects via gene regulatory mechanisms, expression quantitative trait loci (eQTL) analyses make an important contribution to the elucidation of multifactorial disease etiology [8,9]. In eQTL studies, the alleles or genotypes of genetic variants are correlated with the quantitative expression level of transcripts [10], thereby identifying genetic variants that influence the expression level of a gene. This method is useful for identification of candidate genes at risk loci for functional follow-up studies [11–13].

Competing interests: The authors have declared that no competing interests exists.

Abbreviations: BE, Barrett’s esophagus; CFDP1, craniofacial development protein 1; ChIP, chromatin immunoprecipitation; EA, esophageal adenocarcinoma; eQTL, expression quantitative trait locus; FDR, false discovery rate; GTEx, Genotype-Tissue Expression; GWAS, genome-wide association study; HWE, Hardy-Weinberg equilibrium; LD, linkage disequilibrium; LDAH, lipid droplet-associated hydrolase; NHE3, Na/H-exchanger 3; OCT3, organic cation transporter 3; PPI, protein-protein interaction; QC, quality control; SLC22A3, solute carrier family 22 member 3; SLC9A3, solute carrier family 9 member 3; SNP, single-nucleotide polymorphism; ZFP57, zinc finger protein 57.
The aim of the present study was (i) to identify novel candidate genes of functional relevance to BE/EA at known risk loci and (ii) to find novel risk loci among the suggestively associated variants. This was accomplished by integrating eQTL data from BE/EA-relevant tissues (esophageal mucosa and gastroesophageal junction) [14] and genetic data from the recent BE/EA GWAS meta-analysis [7]. Variants with suggestive evidence for association were further investigated in a genetic association analysis in an independent replication case-control cohort. To increase statistical power, association data were combined with the data of the previous GWAS meta-analysis [7].

Materials and methods

The study workflow is illustrated in Fig 1.

Cross-referencing of eQTLs from BE/EA-relevant tissues with BE/EA genetic association data

The GTEx project [14] represents the largest eQTL database to date comprising 152,869 cis-eQTLs from 44 tissues (V6P). Tissue was sampled from donors post-mortem and eQTLs were mapped using tissue-specific RNA sequencing data and genotype data of DNA from whole blood. Two tissue types most relevant to BE/EA were selected from the GTEx database [14]: esophageal mucosa and gastroesophageal junction. Both datasets were restricted to eQTLs with a false discovery rate (FDR) of <0.05. The esophageal mucosa sample comprised tissues of 241 individuals with 6,169 cis-eQTLs (eQTL-gene located <1 Mb distance from genetic variant) and the gastroesophageal junction sample comprised tissues of 127 individuals with 2,237 cis-eQTLs.

The eQTLs were cross-referenced to variants that showed at least a suggestive association to BE/EA (P < 5×10^{-5}) in the BE/EA GWAS meta-analysis [7]. All variants showing an eQTL effect in one or both tissues were then assigned to distinct genomic loci: The index SNP of each locus was specified as the variant with the most significant BE/EA association and each locus was defined at ±1 Mb around this variant. All loci on the same chromosome were reviewed for independence by analysis of linkage disequilibrium (LD). Where applicable, long-range LD was taken into account and the respective loci were marked accordingly. We tested the option of applying statistical colocalization analyses on the selected loci using COLOC [15] but found that the analysis was severely underpowered most likely due to a small sample size in the eQTL datasets. The resulting loci were categorized into genome-wide significant loci (P < 5×10^{-8}) and novel candidate loci (5×10^{-8} < P ≤ 5×10^{-5}). The index SNPs of these candidate loci were then included in the subsequent genetic replication study in an independent BE/EA case-control.

Replication sample

The case-control cohort for the replication study comprised: (i) 1,117 BE cases and 876 EA cases (total of 1,993 BE/EA patients); and (ii) 967 controls. The cases were recruited in an ongoing effort as described for the Bonn sample in Gharakhani et al. [7]. All samples included in this replication cohort have not been part of the prior Gharakhani et al. [7] GWAS and were recruited between November 2014 and February 2018. Patients with suspected BE/EA were recruited in hospitals and clinics where they underwent endoscopies or surgeries. Exclusion criteria were (i) a negative histopathological diagnosis that did not confirm BE/EA disease status and (ii) self-reported descent was non-European. The patients were recruited at 15 medical centers across Germany and blood samples were collected at the University Hospital Leipzig before being sent to Bonn for DNA extraction and genotyping. The
The control cohort was recruited at the University Hospital Bonn from blood donors, also of European descent. Relevant demographic details for both cohorts can be found in S1 Table. The study was approved by the ethics committees of the Universities of Bonn and Leipzig. All participants provided written informed consent prior to inclusion.

Genotyping

Genotyping was performed using the multiplex MALDI-TOF mass spectrometer MassArray system by Agena (San Diego, USA). Of the 16 index SNPs representing the novel candidate loci, three variants (rs59341339, rs11145842, rs12985299) were excluded from the plex for technical reasons. No alternative SNP in high LD was found among the associated eQTLs, and thus the corresponding loci were excluded from the analyses. The index SNPs of three further loci, which were excluded due to the same technical reasons, were replaced by variants in high LD \(r^2 > 0.95 \); rs2442722 (\(P = 1.22 \times 10^{-6} \)) was replaced by rs36057735 (\(P = 5.13 \times 10^{-6} \)), rs76510925 (\(P = 7.86 \times 10^{-6} \)) by rs12112778 (\(P = 1.57 \times 10^{-5} \)), and rs11169302 (\(P = 1.05 \times 10^{-5} \)) by rs9364 (\(P = 2.23 \times 10^{-5} \)). Thus, a total of 13 variants were genotyped in the 1,993 BE/EA
cases and 967 controls. Primers for amplification and genotyping were synthesized by Metabion (Martinsried, Germany). For the purposes of quality control (QC), negative controls (H2O) and intra- and inter-plate duplicates were added to each plate. After genotyping, clusters were visually inspected, and re-clustering was performed if necessary. Finally, genotype and SNP information files were extracted for the subsequent genetic association analysis.

Association analyses

Genotype QC and association calculations were performed using R and PLINK [16,17]. SNPs or samples were excluded on the basis of: (i) low call rate (SNPs: ≤ 95%, samples: > 1 missing SNP call); (ii) deviation from Hardy-Weinberg equilibrium (HWE; P < 0.05 in controls). For the replication study, association was calculated using the one-sided Cochran-Armitage trend test in the direction of effect established through the previous GWAS meta-analysis [7]. The effect size was estimated using logistic regression. Standard errors of the effect sizes were calculated with 95% confidence intervals.

All BE/EA association results from the replication sample were then combined with the association results from the BE/EA GWAS meta-analysis [7]. This was performed via a fixed-effect meta-analysis, as based on the standard-error in METAL (version 2011-03-25) [18].

Downstream analyses

Downstream analyses of the target genes of the reported variants were performed using the tool STRING [19]. The STRING database is a collection of protein-protein interaction information that also integrates tools for pathway analyses such as Gene Ontology and KEGG. A gene-set enrichment analysis was performed on the list of target genes (see Tables 1 and 2) and analyzed for possible protein-protein interactions and enrichment in pathways.

Results

Cross-referencing of eQTLs with genetic association data

In total, 6,387 SNPs in the GWAS meta-analysis [7] showed at least a suggestive association with BE/EA (P ≤ 5x10^-5) and were cross-referenced to the cis-eQTL data from GTEx esophageal mucosa and gastroesophageal junction tissues [14]. Of these, 2,180 SNPs showed eQTL effects in at least one of the two tissues. These variants were assigned to 25 distinct genomic loci (see Materials and Methods, and S2 Table).

Nine of the 25 loci were reported with genome-wide significance by Gharahkhani et al. [7], but we here identified novel downstream target genes at these nine loci based on regulatory effects on gene expression (see Table 1). For three of these loci, the best-associated SNP reported by Gharahkhani et al. [7] was not present in the GTEx dataset, but the locus is represented by the next best SNP (marked with b in Table 1). Three more loci show long-range LD with another locus and have therefore not been reported as separate loci by Gharahkhani et al. [7] (marked with c or d in Table 1).

Replication of candidate loci

Variants at 16 loci presented both an eQTL effect in relevant tissues and suggestive evidence of association (5x10^-8 < P ≤ 5x10^-5) in the GWAS data, respectively. For 13 loci, the index SNP (or a proxy SNP in strong LD) was genotyped in the replication sample. Of the genotyped SNPs, six variants failed QC: five variants showed a call-rate < 95% and another SNP deviated from HWE (P < 0.05 in controls). In addition, 53 samples (32 cases, 21 controls) were
Table 1. Genome-wide significant loci resulting from the cross-referencing of eQTL and genetic data.

SNP	Chromosome	Position	Alleles	P-value	Effect	Tissue	eGene	GTEx eQTL	
rs7255	2	20,878,820	T/C	9.12×10⁻¹¹	0.127	Gastro	C2orf43	2.54×10⁻⁷	0.471
							C2orf43	6.75×10⁻¹⁶	0.479
rs147462972b	5	622,869	AC/A	3.23×10⁻⁹	-0.139	Mu cosa	AC026740.1	5.84×10⁻¹¹	-0.547
							SLC9A3	3.39×10⁻⁸	0.362
rs13220495c	6	26,441,640	C/T	5.36×10⁻⁷	-0.166	Gastro	BTN3A2	9.22×10⁻¹⁷	-1.151
							BTN3A2	2.05×10⁻³²	-1.263
rs13201294d	6	27,556,141	A/T	2.98×10⁻⁸	0.169	Mu cosa	AL022393.7	1.65×10⁻⁵	0.964
							RPS-874C20.3	1.89×10⁻⁵	-0.248
							ZSCAN31	2.04×10⁻⁴	0.373
rs9257809	6	29,356,331	A/G	5.93×10⁻⁹	0.204	Gastro	ZFP57	5.24×10⁻⁵	1.062
							ZFP57	4.42×10⁻¹³	1.368
rs6213646b	6	58,003,289	A/T	2.58×10⁻⁷	0.127	Gastro	LINC00680	2.02×10⁻⁸	-0.789
							LINC00680	7.58×10⁻⁸	-0.388
rs11249893d	8	8,700,851	T/C	7.73×10⁻⁸	0.102	Mu cosa	FAM868B3P	5.66×10⁻⁵	0.762
							CTA-398F10.2	1.60×10⁻⁹	0.442
							ALG1L13P	1.91×10⁻⁹	0.505
rs28630503b	8	10,009,016	T/C	1.20×10⁻⁸	0.118	Mu cosa	AF131215.9	8.59×10⁻⁷	0.274
							AF131215.2	3.03×10⁻⁵	0.319
rs10108511	8	11,435,516	T/C	2.12×10⁻⁹	0.0188	Mu cosa	AF131215.9	1.63×10⁻¹²	-0.359
							AF131215.2	2.88×10⁻¹⁰	-0.464
							FAM167A	1.26×10⁻⁹	-0.382
							RP11-419H7.1	1.29×10⁻⁶	-0.379

eQTL—expression quantitative trait loci; Gastro—gastroesophageal junction; GTEx—Genotype-Tissue Expression; LD—linkage disequilibrium; Mucosa—esophageal mucosa; SNP—single-nucleotide polymorphism

* Effect allele specified first

b Best-associated SNP at that locus was not present in the GTEx dataset, next best-associated variant was analyzed instead
c Long-range LD with rs9257809, reported in Gharahkhani et al. [7] as single locus
d Long-range LD with rs10108511, reported in Gharahkhani et al. [7] as single locus

https://doi.org/10.1371/journal.pone.0227072.t001

excluded due to the presence of > 1 missing genotype. Details of the final BE/EA replication analysis are shown in Table 2.

Upon statistical analysis, the variant rs1540 on 16q23 showed a nominally significant association to BE/EA in the independent replication study (Preplication = 0.019). In the combined analysis, a lower P-value was observed as compared to the meta-analysis data alone (Pmeta-analysis = 3.02×10⁻⁵, Pcombined = 4.16×10⁻⁶). According to the GTEx data, this variant represents an eQTL for CFDP1 in gastroesophageal junction tissue (P = 2.32×10⁻⁷). Here, the BE/EA risk allele leads to an increase in gene expression. Similarly, rs7754014 on 6q25 showed a nominally significant association to BE/EA in the replication study (Preplication = 0.028) and a lower P-value in the combined analysis (Pmeta-analysis = 2.07×10⁻⁶, Pcombined = 3.16×10⁻⁵). According to the GTEx data, this variant represents an eQTL for SLC22A3 in esophageal mucosa tissue (P = 6.61×10⁻⁵). Again, the BE/EA risk allele leads to an increase in gene expression.

Downstream analyses

The target genes of the index variants of the nine genome-wide significant and seven candidate loci were analyzed using STRING. Several genes could not be included in the analyses because
they do not code for proteins (RNA genes, pseudogenes). The protein-protein interaction (PPI) analysis of the remaining 14 genes did not show any interactions between the proteins encoded by genes (PPI enrichment p = 1, see S1 Fig). Likewise, the pathway analyses did not yield any significant results.

Discussion

Previous GWAS have identified a total of 14 genetic risk loci for BE/EA [7,20–22]. However, the mechanisms through which these risk variants exert their effects remain unclear. The aim of the present study was (i) to identify candidate genes of functional relevance to BE/EA at known risk loci and (ii) to find novel risk variants among the suggestively associated variants through the integration of eQTL- and genetic association data. Cross-referencing of eQTL data and genetic data from the recent GWAS meta-analysis yielded 2,180 variants at 25 loci (see S2 Table). Of these, nine loci were established BE/EA risk loci from the GWAS meta-analysis and 16 were novel candidate loci.

The replication study yielded two nominally significant BE/EA-associated variants: rs1540 and rs7754014. Variant rs1540 on 16q23 regulates the expression of the gene CFDPI (craniofacial development protein 1) in the gastroesophageal junction. The biological function of CFDPI remains unclear. However, research suggests that the protein is involved in both the maintenance of higher-order chromatin organization and cell cycle progression [23]. Variant rs7754014 on 6q25 represents an eQTL for the gene SLC22A3 (solute carrier family 22 member 3) in the esophageal mucosa. SLC22A3 encodes the protein OCT3 (organic cation transporter 3), which transports endogenous organic cations as well as drugs and toxins [24,25]. Interestingly, SLC22A3 expression plays a role in other esophageal disorders: downregulation of SLC22A3 was reported in patients with familial esophageal squamous cell cancer [26]. Previous authors have therefore proposed that suppression of SLC22A3 may be implicated in the progression of this cancer type [27]. It remains to be shown how these findings relate to the upregulation of SLC22A3 as it was observed in BE/EA risk allele carriers through our integrative analysis. The independent replication of these two loci gives evidence to their functional relevance for the BE/EA phenotype. This is further supported by the decrease of the P-value after the combined analysis by one order of magnitude. However, since the effect sizes are small, the

Table 2. Novel loci resulting from the cross-referencing of eQTL and genetic data.

SNP	Chromosome	Position	Alleles	Replication	Combined analysis	GTEx eQTL					
rs2808207	6	76,130,215	C/T	0.651	-0.023	1.00×10⁻⁴	0.074	Mucosa	SENP6	5.79×10⁻⁴	-0.176
rs7774070	6	89,911,865	G/A	0.264	0.035	3.31×10⁻⁵	0.076	Mucosa	GABRI1	3.50×10⁻⁵	-0.358
rs7754014	6	160,918,295	T/A	0.028*	0.130	3.16×10⁻⁷	0.112	Mucosa	SLC22A3	6.61×10⁻⁵	0.322
rs1626067	11	67,192,555	A/G	0.926	-0.083	3.10×10⁻⁵	0.078	Mucosa	SLC22A3	6.61×10⁻⁵	0.322
rs9364	12	50,570,519	G/A	0.544	-0.006	6.41×10⁻⁴	0.074	Gastro	PTPRCAP	8.43×10⁻⁴	-0.558
rs1540	16	75,481,185	C/G	0.019*	0.162	4.16×10⁻⁶	0.116	Gastro	CFDP1	2.32×10⁻³	0.431
rs1029689	19	964,051	T/G	0.295	0.042	4.29×10⁻⁵	0.118	Mucosa	WDR18	4.74×10⁻⁹	-0.594

eQTL—expression quantitative trait loci; Gastro—gastroesophageal junction; GTEx—Genotype-Tissue Expression; Mucosa—esophageal mucosa; SNP—single-nucleotide polymorphism

* Significant (p < 0.05)

https://doi.org/10.1371/journal.pone.0227072.t002
P-value has not reached genome-wide significance in the combined sample. Larger patient cohorts are warranted to carry these variants over the threshold of genome-wide significance.

Among the established BE/EA risk loci from the GWAS meta-analysis [7], the present analyses identified three eQTLs with a regulating effect on biologically plausible genes. Most of these eQTLs have not been reported previously despite the fact that cross-referencing with eQTL analyses had been performed in the context of the original GWAS meta-analysis [7]. The reason is most likely the use of GTEx version 6 in the analysis by Gharahkhani et al. [7] for the cross-referencing with eQTL data, as opposed to GTEx version 6P used in the present study. While this new dataset does not differ in respect to sample size, it provides new eQTL results due to an improved gene-level annotation. The most significantly associated risk variant from the BE/EA GWAS meta-analysis was rs7255 on 2p24. This is an eQTL for the expression of the gene \(C2orf43\) in tissue from the esophageal mucosa and the gastroesophageal junction. This gene encodes the protein LDAH (lipid droplet-associated hydrolase), which is a lipid droplet-associated serine lipid hydrolase [28]. The BE/EA risk variant rs92578209 on 6p22 regulates the expression of the gene \(ZFP57\) (zinc finger protein 57) in both the esophageal mucosa and the gastroesophageal junction. Research has shown that among others, \(ZFP57\) plays a key role in cell fate decisions during early mouse gastrulation [29]. The third BE/EA risk variant from the GWAS meta-analysis was rs147462972 on 5p15, which represents an eQTL for the expression of \(SLC9A3\) (solute carrier family 9 member A3) in the esophageal mucosa. The BE/EA risk allele of this variant results in a structural change in the binding sites of the transcription factors CTCF and RAD21. Interestingly, research has demonstrated an enrichment of somatic mutations in the CTCF binding motif in patients with esophageal cancer [30]. \(SLC9A3\) encodes the epithelial brush border Na/H-exchanger NHE3, which uses the inward sodium ion gradient to expel acids from the cell [31]. Importantly, an increase in \(SLC9A3\) expression has been correlated with the severity of gastroesophageal reflux disease, which is a major risk factor for BE [32]. Future studies are warranted to generate further evidence for the involvement of \(SLC9A3\) in BE/EA development.

The present study had four main limitations. First, the capacity of the GTEx and BE/EA GWAS meta-analysis data to determine whether the eQTLs and BE/EA risk SNPs referred to the same causal variants, or whether they were only correlated, was limited. A different approach using a colocalization analysis could not bring forward significant results due to a lack of power caused by a small sample size of the eQTL samples. The exploratory approach applied in this study may be prone to type I error. Nevertheless, the discovery of genes associated to related phenotypes, such as esophageal squamous cell cancer and GERD, show that our approach has merit. Further research is warranted to establish a causal relationship between these genes and their effect on BE/EA development. Second, the replication sample was too small to achieve a test-wide significant association level in the replication study and a genome-wide significant association level after combination with the previous meta-analysis for the investigated variants. Third, the tissue of origin for development of BE/EA is not completely understood. Several studies discuss the importance of tissue selection in order to detect tissue-specific eQTL effects relevant to disease etiology [33–35]. However, the specific tissue or cell type relevant to a trait or disease is often unknown. In this study, we used eQTL effects in tissues drawn from esophageal mucosa and gastroesophageal junction. Wang [36] discusses the evidence for the squamous epithelium mucosa cell as a precursor for BE/EA, while Zhuang and Fitzgerald [37] debate the existence of a transitional layer at the gastroesophageal junction to be the origin of BE/EA. Thus, to our present knowledge, esophageal mucosa and gastroesophageal junction are the most likely of the currently available tissues to represent the true tissue of origin for BE/EA. Fourth, the highlighted genes have not been yet characterized in
functional studies using cellular or animal models. The manner in which the genes are influencing the disease development is currently unclear and requires further investigation.

Conclusions

Altogether, this study provides a link between BE/EA-associated genetic variants and a regulatory effect on candidate genes in disease-relevant tissues. The present analyses identified biologically plausible candidate genes for BE/EA, such as *SLC22A3* and *SLC9A3*. Notably, *SLC9A3* has already been implicated with gastroesophageal reflux, rendering it an interesting candidate gene. Follow-up analyses are warranted to refine the regulatory annotation and to elucidate the mechanisms through which the implicated variants and genes influence BE/EA development.

Supporting information

S1 Table. Demographic details on replication cohort.
(XLSX)

S2 Table. 25 risk loci determined after cross-referencing of eQTL and genetic data.
(XLSX)

S3 Table. Genotype counts of all 13 candidate loci in all analyzed cases and controls.
(XLSX)

S1 Fig. Results of protein-protein interaction analysis by STRING.
(TIFF)

Acknowledgments

The authors thank all patients and controls for their participation. The authors also thank Prof. Bernd Pötzsch (Institute of Experimental Hematology and Transfusion Medicine, University of Bonn) for assistance in the collection of DNA samples from anonymous blood donors. The authors thank Christine Schmael for careful examination of the manuscript. This work is part of the doctoral thesis of Julia Schröder.

Author Contributions

Conceptualization: Julia Schröder, Markus M. Nöthen, Johannes Schumacher, Anne C. Böhmer.

Data curation: Julia Schröder.

Formal analysis: Julia Schröder, Vitalia Schüller, Kerstin U. Ludwig, Michael Knapp.

Funding acquisition: Johannes Schumacher, Anne C. Böhmer.

Investigation: Julia Schröder, Jessica Becker, Timo Hess, Kerstin U. Ludwig, Markus M. Nöthen, Johannes Schumacher, Anne C. Böhmer.

Methodology: Julia Schröder, Michael Knapp.

Project administration: Anne C. Böhmer.

Resources: Andrea May, Christian Gerges, Mario Anders, Nicole Kreuser, René Thieme, Tania Noder, Marino Venerito, Lothar Veits, Thomas Schmidt, Claudia Fuchs, Jakob R. Izbicki, Arnulf H. Hölscher, Dani Dakkak, Boris Jansen-Winkeln, Yusef Moulla, Orestis Lyros, Stefan Niebisch, Matthias Mehdorn, Hauke Lang, Dietmar Lorenz, Brigitte
Identification of loci of functional relevance to Barrett’s esophagus and esophageal adenocarcinoma

Schumacher, Rupert Mayershofer, Yogesh Vashist, Katja Ott, Michael Vieth, Josef Weismüller, Elisabeth Mangold, Susanne Moebus, Horst Neuhaus, Thomas Rösch, Christian Ell, Ines Gockel.

Supervision: Kerstin U. Ludwig, Johannes Schumacher, Anne C. Böhmer.

Validation: Michael Knapp.

Writing – original draft: Julia Schröder, Anne C. Böhmer.

Writing – review & editing: Julia Schröder, Vitalia Schüller, Andrea May, Christian Gerges, Mario Anders, Jessica Becker, Timo Hess, Nicole Kreuser, René Thieme, Kerstin U. Ludwig, Tania Noder, Marino Venerito, Lothar Veits, Claudia Fuchs, Jakob R. Izbicki, Arnulf H. Hölscher, Dani Dakkak, Boris Jansen-Winkeln, Yusef Moulla, Orestis Lyros, Stefan Niebisch, Matthias Mehdonr, Hauke Lang, Dietmar Lorenz, Brigitte Schumacher, Rupert Mayershofer, Yogesh Vashist, Katja Ott, Michael Vieth, Josef Weismüller, Elisabeth Mangold, Markus M. Nöthen, Susanne Moebus, Michael Knapp, Horst Neuhaus, Thomas Rösch, Christian Ell, Ines Gockel, Johannes Schumacher, Anne C. Böhmer.

References

1. Reid BJ, Li X, Galipeau PC, Vaughan TL. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer. 2010; 10: 87–101. Available: https://doi.org/10.1038/nrc2773 PMID: 20094044

2. Ronkainen J, Aro P, Storskrubb T, Johansson SE, Lind T, Bolling-Sternevald E, et al. Prevalence of Barrett’s esophagus in the general population: An endoscopic study. Gastroenterology. 2005; 129: 1825–1831. https://doi.org/10.1053/j.gastro.2005.08.053 PMID: 16344051

3. Specchler SJ, Souza RF. Barrett’s Esophagus. N Engl J Med. 2014; 371: 836–845. https://doi.org/10.1056/NEJMra1314704 PMID: 25162890

4. Chak A, Ochs-Balcom H, Falk G, Grady WM, Kinnard M, Willis JE, et al. Familiality in Barrett’s esophagus, adenocarcinoma of the esophagus, and esophagogastric reflux. J Natl Cancer Inst. 2013; 105: 1711–8. https://doi.org/10.1093/jnci/djt303 PMID: 24168968

5. Poynton AR, Walsh TN, O’Sullivan G, Hennessy TP. Carcinoma arising in familial Barrett’s esophagus. Am J Gastroenterol. 1996; 91: 1855–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/8792715 PMID: 8792715

6. Ek WE, Levine DM, D’Amato M, Pedersen NL, Magnusson PKE, Bresso F, et al. Germline genetic contributions to risk for esophageal adenocarcinoma, Barrett’s esophagus, and gastroesophageal reflux. J Natl Cancer Inst. 2013; 105: 1711–8. https://doi.org/10.1093/jnci/djt303 PMID: 24168968

7. Gharahkhani P, Fitzgerald RC, Vaughan TL, Palles C, Gockel I, Tomlinson I, et al. Genome-wide association studies in oesophageal adenocarcinoma and Barrett’s oesophagus: a large-scale meta-analysis. Lancet Oncol. 2016; 17: 1363–1373. https://doi.org/10.1016/S1470-2045(16)30240-6 PMID: 27527254

8. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, et al. Genetic analysis of genome-wide variation in human gene expression. Nature. 2004; 430: 743–747. https://doi.org/10.1038/nature02797 PMID: 15269782

9. Ghousaini M, French JD, Michailidou K, Nord S, Beesley J, Canisus S, et al. Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGFR1 and MPRS30 Regulation. Am J Hum Genet. 2016; 99: 903–911. https://doi.org/10.1016/j.ajhg.2016.07.017 PMID: 27640304

10. Rockman M V., Kruglyak L. Genetics of global gene expression. Nat Rev Genet. 2006; 7: 862–872. https://doi.org/10.1038/nrg1964 PMID: 17047698

11. Guo X, Lin W, Bao J, Cai Q, Pan X, Bai M, et al. A Comprehensive cis-eQTL Analysis Revealed Target Genes in Breast Cancer Susceptibility Loci Identified in Genome-wide Association Studies. Am J Hum Genet. 2016; 102: 890–903. https://doi.org/10.1016/j.ajhg.2016.03.016 PMID: 27972689

12. Li Q, Stram A, Chen C, Kar S, Gayther S, Pharoah P, et al. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. Hum Mol Genet. 2014; 23: 5294–5302. https://doi.org/10.1093/hmg/ddu228 PMID: 24907074
13. Small KS, Hedman ÅK, Grundberg E, Nica AC, Thorleifsson G, Kong A, et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 2011; 43: 561–564. https://doi.org/10.1038/ng.833 PMID: 21572415

14. Aguët F, Ardlie KG, Cummings BB, Gelfand ET, Getz G, Hadley K, et al. Genetic effects on gene expression across human tissues. Nature. 2017; 550: 204–213. https://doi.org/10.1038/nature24277 PMID: 29022597

15. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet. 2014; 10: e1004383 PMID: 24830394

16. R Core Team, R Foundation for Statistical Computing. R: A language and environment for statistical computing. Vienna, Austria; 2017. Available: http://www.r-project.org

17. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet. 2007; 81: 559–575. https://doi.org/10.1086/519795 PMID: 17701901

18. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010; 26: 2190–2191. https://doi.org/10.1093/bioinformatics/btq340 PMID: 20616382

19. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47: D607–D613. https://doi.org/10.1093/nar/gky1131 PMID: 30476243

20. Levine DM, Ek WE, Zhang R, Liu X, Onstad L, Sather C, et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat Genet. 2013; 45: 1487–1493. https://doi.org/10.1038/ng.2796 PMID: 24121790

21. Palles C, Chegwidden L, Li X, Findlay JM, Farnham G, Castro Giner F, et al. Polymorphisms Near TBX5 and GDF7 Are Associated With Increased Risk for Barrett’s Esophagus. Gastroenterology. 2015; 148: 367–378. https://doi.org/10.1053/j.gastro.2014.10.041 PMID: 25447851

22. Su Z, Gay LJ, Strange A, Palles C, Band G, Whitman DC, et al. Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett’s esophagus. Nat Genet. 2012; 44: 1131–1136. https://doi.org/10.1038/ng.2408 PMID: 22961001

23. Messina G, Atterrato MT, Prozzillo Y, Piacentini L, Losada A, Dimitri P. The human Cranio Facial Development Protein 1 (Cfdp1) gene encodes a protein required for the maintenance of higher-order chromatin organization. Sci Rep. 2017; 7: 45022. https://doi.org/10.1038/srep45022 PMID: 28367969

24. Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, et al. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem. 1998; 273: 15971–15979. https://doi.org/10.1074/jbc.273.26.15971 PMID: 9632645

25. Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway SJ, et al. Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am J Physiol Renal Physiol. 2000; 279: F449–F458. https://doi.org/10.1152/ajprenal.2000.279.3.F449 PMID: 10966924

26. Fu L, Qin Y-R, Ming X-Y, Zuo X-B, Diao Y-W, Zhang L-Y, et al. RNA editing of SLC22A3 drives early tumor invasion and metastasis in familial esophageal cancer. Proc Natl Acad Sci U S A. 2017; 114: E4631–E4640. https://doi.org/10.1073/pnas.1703178114 PMID: 28533408

27. Nishikura K. Oesophageal cancer: RNA editing of SLC22A3 mRNAs: causative relevance to familial ESCC? Nat Rev Gastroenterol Hepatol. 2017; 14: 569–570. https://doi.org/10.1038/nrgastro.2017.102 PMID: 28743982

28. Goo Y-H, Son S-H, Kreienberg PB, Paul A. Novel lipid droplet-associated serine hydrolase regulates macropage cholesterol mobilization. Arterioscler Thromb Vasc Biol. 2014; 34: 386–96. https://doi.org/10.1161/ATVBAHA.113.302448 PMID: 24357060

29. Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I, Mulas C, et al. Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation. Cell Rep. 2017; 20: 1215–1228. https://doi.org/10.1016/j.celrep.2017.07.009 PMID: 28768204

30. Umer HM, Cavalli M, Dabrowski MJ, Diamanti K, Kruczyk M, Pan G, et al. A Significant Regulatory Mutation Burden at a High-Affinity Position of the CTCF Motif in Gastrointestinal Cancers. Hum Mutat. 2016; 37: 904–913. https://doi.org/10.1002/humu.23014 PMID: 27174533

31. Biemesderfer D, Pizzonia J, Abu-Alfa A, Exner M, Reilly R, Igarashi P, et al. NHE3: a Na+/H+ exchanger isofrom of renal brush border. Am J Physiol. 1993; 265: F736–F742. https://doi.org/10.1152/ajpregu.1993.265.5.F736 PMID: 8238556
32. Yang S-C, Chen C-L, Yi C-H, Liu T-T, Shieh K-R. Changes in Gene Expression Patterns of Circadian-Clock, Transient Receptor Potential Vanilloid-1 and Nerve Growth Factor in Inflamed Human Esophagus. Sci Rep. 2015; 5: 13602. https://doi.org/10.1038/srep13602 PMID: 26337663

33. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016; 48: 481–7. https://doi.org/10.1038/ng.3538 PMID: 27019110

34. Nica AC, Montgomery SB, Dimas AS, Stranger BE, Beazley C, Barroso I, et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 2010; 6. https://doi.org/10.1371/journal.pgen.1000895 PMID: 20369022

35. Lusis AJ, Arnold AP, Schadt EE, Wang H, Ingram-Drake L, Wang S, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006; 16: 995–1004. https://doi.org/10.1101/gr.5217506 PMID: 16825664

36. Wang DH. The Esophageal Squamous Epithelial Cell—Still a Reasonable Candidate for the Barrett’s Esophagus Cell of Origin? CMGH. Elsevier; 2017. pp. 157–160. https://doi.org/10.1016/j.jcmgh.2017.01.015 PMID: 28593187

37. Zhuang L, Fitzgerald RC. Cancer development: Origins in the oesophagus. Nature. 2017; 550: 463–464. https://doi.org/10.1038/nature24150 PMID: 29019986