Iron(III) metallomesogen of \([\text{N}_2\text{O}_2]\) donor Schiff base ligand containing 4-substituted alkoxy chains

Harun A. R. Pramanik\(^a\), Soumitra Chanda\(^a\), Chira R. Bhattacharjee\(^a\), Pradip C. Paul\(^a\), Paritosh Mondal\(^a\), S. Krishna Prasad\(^b\) and D. S. Shankar Rao\(^b\)

\(^a\)Department of Chemistry, Assam University, Silchar, India; \(^b\)Centre for Nano and Soft Matter Sciences, Bangalore, India

ABSTRACT
Two new square pyramidal iron(III)-complexes of ‘salen’-type Schiff base ligands containing 4-substituted long alkoxy arms on the aromatic rings, \([\text{Fe}(4-\text{C}_{16}\text{H}_{33}\text{O})_2\text{salcn})\text{Cl}\] and \([\text{Fe}(4-\text{C}_{16}\text{H}_{33}\text{O})_2\text{salophen})\text{Cl}\] \(\text{salcn} = \text{N,N’-cyclohexanebis(salicylideneiminato)}\) and \(\text{salophen} = \text{N,N’-phenylenebis(salicylideneiminato)}\), have been successfully synthesised, and their mesomorphic property investigated. The ligands and complexes were characterised by elemental analyses, UV–Vis, FT-IR, ESI–MS, \(^1\)H and \(^13\)C NMR (for ligands only). The phase behaviour of the iron(III) complexes were ascertained by differential scanning calorimetry, polarising optical microscopy and variable temperature PXRD study. Ligands are non-mesomorphic, however, mesomorphism got induced upon complexation with the iron(III) centre. X-ray diffraction study revealed a layer-like arrangement of the five coordinated mesomorphic iron(III) complexes. The mesophase is stable over a wide range of temperature. The density functional theory calculations were carried out using Gaussian 09 program at B3LYP level using unrestricted 6–31G (d, p) basis set to obtain the optimised geometry of the iron(III) complexes.

ARTICLE HISTORY
Received 3 March 2016
Accepted 11 May 2016

KEYWORDS
Iron(III); metallomesogen; Schiff base; density functional theory

1. Introduction
Multifunctional soft materials with organised molecular motifs exhibiting several different physical and chemical properties in a single material are a vibrant field for future technological applications. The design of such multifunctional materials with specific structure–property relationship is a challenging task. The synthesis of liquid crystal (LC) based on metal coordination with suitably designed
ligand provides an useful route for obtaining new multifunctional soft material combining anisotropic fluidity with those properties imparted by the metal component, such as optical, electronic and magnetic properties.[1–8] The coordination geometry of the complex determines the overall molecular shape and in turn the mesomorphic behaviour.[9–15] Factors such as substituent on the ligand structure and the type of spacer linkage also tend to influence the phase behaviour of such compounds. Due to their flexibility in coordination, unique geometrical disposition, easy functionalisation and chemical stability of the imine linkages, ‘salen’-type fragments have widely been used as building block for the design of metallomesogens.[16–29] Such ligands have also been exploited as efficient catalyst for a wide variety of chemical transformations [30–33] and for the design of nonlinear optical (NLO) materials.[34–36] Unlike most other d-block elements, mesomorphic Schiff base complexes of iron in either of its oxidation state are less known.[37–43] Furthermore, the combination of spin crossover and liquid crystalline properties of mesomorphic iron Schiff base compound renders them to be novel advanced materials.[39–43] Iron(III) complexes of Schiff base ligands are also important as synthetic models for magnetic materials.[44–46] catechol dioxygenase[47,48] and as catalyst for olefin epoxidation.[49] In this article we report the synthesis, characterisation and mesomorphic behaviour of iron(III) complexes of ‘salen’-type N$_2$O$_2$ donor Schiff base ligands containing 4-substituted long alkoxy chain on the side aromatic rings. The free ligands are devoid of mesomorphism; however on coordination with the metal centre, induction of mesomorphic character occurs due to conformational change in the ligands. The mesophases were stable for a fairly wide temperature range.

2. Experimental

2.1. Materials

All solvents were purified and dried using standard procedures. All the chemicals used were of analytical grade, obtained from commercial sources and used without further purification. Silica (60–120 mesh) from Spectrochem was used for chromatographic separation. Silica gel G (E-Merck, India) was used for thin-layer chromatography (TLC).

2.2. Physical measurement

The C, H and N analyses were carried out using PE2400 elemental analyzer. The 1H NMR spectra were recorded on a Bruker DPX-400 MHz spectrometer in CDCl$_3$ (chemical shift in δ) solution with TMS as internal standard. UV–Vis absorption spectra of the compounds in CH$_2$Cl$_2$ were recorded on a Shimadzu UV-160PC spectrophotometer. Infrared spectra were recorded on a Perkin–Elmer L 120-000A spectrometer on KBr disc. The optical textures of the compounds were studied using a polarising microscope (Nikon optiphot-2-pol) attached with Instec hot and cold stage HCS302, with STC200 temperature controller of 0.1°C accuracy. The thermal behaviour of the compounds were studied using a Perkin–Elmer differential scanning calorimeter (DSC) Pyris-1 spectrometer with a heating or cooling rate of 5°C/min. Variable temperature powder X-ray diffraction (PXRD) study of the samples were carried out on a Bruker D8 Discover instrument using Cu Ka radiation.

2.3. Synthesis and analysis

2.3.1. Hexadecyloxy salicyldehyde

4-(Hexyloxy)salicyldehyde was prepared using a general method as reported in the literature.[50] 2,4-Dihydroxybenzaldehyde (10 cm3, 1.38 g), KHCO$_3$ (10 cm3, 1 g), KI (catalytic amount) and 1-bromohexadecane (10 mmol, 1.6 g) were mixed in 250 cm3 of dry acetone. The mixture was heated under reflux for 36 h, and then filtered to separate any insoluble solids present. Dilute HCl was added slowly to the warm solution, and the organic part was extracted with chloroform (100 cm3). The combined chloroform extract was concentrated to give a purple solid product. The solid was purified by column chromatography (silica gel) using a mixture of chloroform and hexane (v/v, 1/1) as eluent. Evaporation of the solvent resulted in a white solid.

2.3.2. N, N'-Bis [4-(4'-hexadecyloxy)salicylidene]trans-1,2-diaminocyclohexane (16-dch)

An ethanolic solution (15 mL) of 2-hydroxy-(4-hexadecyloxy)salicylaldehyde (0.73 g, 2 mmol) was added slowly to an ethanolic solution (10 mL) of trans-1,2-diaminocyclohexane (0.12 g, 1 mmol) followed by addition of few drops of glacial acetic acid. The mixture was heated to reflux for 3 h to yield a yellow product. The compound was collected by filtration and recrystallized from absolute ethanol. Yield 0.58 g (72%); ESI–MS: m/z = 802.5. C$_{52}$H$_{96}$N$_2$O$_4$: calcd. C 77.8, H 10.7, N 3.6; found C 77.6, H 10.6, N 3.6. 1H NMR (400 MHz, CDCl$_3$): δ = 13.38 (s, 1H, ph-OH), 8.18 (s, 1H, N = CH), 7.32 (d, J = 8.2 Hz, 1H, H$_2$), 6.34 (d, J = 6.4 Hz, 1H, H$_1$), 6.28 (d, J = 7.8 Hz, 1H, H$_2$), 3.14 (q, J = 4 Hz, 1H, H3), 3.92 (t, J = 5.4 Hz, 2H, –OCH$_2$), 1.62–1.85 (m, 4H, cyclohexyl), 1.54 (m, 2H,
cyclohexyl), 1.42 (m, 2H, cyclohexyl), 0.92 (t, J = 6.7 Hz, 6H, –CH3), 0.86 (m, –CH2 in side chain) ppm. IR (νmax cm⁻¹, KBr): 3348 (νOH), 2926 (νas(C=H)), 2860 (νs(C=H)), 1621 (νC = N), 1560 (νC = C), 1275 (ν (C=O), phenolic), 1152 (ν(C=N)), 756 (δ(C=H)).

2.3.3. N, N'-Bis[4-(4'-hexadecyloxy)salicylidene]-1,2-phenylenediamine (16-opd)

An ethanolic solution (15 mL) of 2-hydroxy-(4-hexadecyloxy)salicylaldehyde (0.11 g, 1 mmol) was added slowly to a solution (10 mL) of 1, 2-phenylenediamine (0.11 g, 1 mmol). The reaction mixture was heated to reflux in the presence of a few drops of glacial acetic acid as catalyst for 3 h to yield a yellow product. The product was filtered followed by recrystallisation from absolute ethanol. Yield 0.06 g (73%); ESI–MS: m/z = 796.5. C52H66N2O4%; calcd. C 78.4, H 10.1, N 3.5; found C 78.2, H 10.2, N 3.6. 1H NMR (400 MHz, CDCl3): δ = 13.08 (s, 1H, ph-OH), 8.41 (s, 1H, N = CH), 7.31 (d, J = 8.2 Hz, 1H, H'), 7.23 (d, J = 8.4 Hz, 1H, H'), 7.14 (d, J = 8.5 Hz, 1H, H'), 6.32 (d, J = 6.3 Hz, 1H, H'), 6.27 (d, J = 8.1 Hz, 1H, H'), 3.92 (t, J = 6.7 Hz, 2H, –OCH2), 0.94 (t, J = 6.7 Hz, 6H, –CH3), 0.87 (m, –CH2 in side chain) ppm. IR (νmax cm⁻¹, KBr): 3400 (νOH), 2932 (νas(C=H)), 2852 (νs(C=H)), 1618 (νC = N), 1565 (νC = C), 1280 (ν(C=O), phenolic), 1150 (ν(C=N)), 760 (δ(C=H)).

2.3.4. Synthesis of Iron(III) complexes

In a typical procedure, a methanolic solution of FeCl3.6H2O (0.03 g, 0.1 mmol) was added slowly to a solution of synthesised ligands, 16-dch (0.08 g, 0.1 mmol) or 16-opd (0.08 g, 0.1 mmol) in a minimum volume of absolute ethanol and refluxed for ca. 2 h. The volume of the reaction mixture was reduced to one-third, whereupon a brown colour solid precipitated out. The product was isolated by filtration, washed several times with diethyl ether and recrystallised from chloroform/ethanol (1:1) to obtain a pure compound.

[Fe(16-dch)Cl] Yield 0.06 g (70%); C52H66N2O4ClFe; calcd. C 70.0, H 9.4, N 3.1; found C 69.8, H 9.3, N, 3.2. ESI–MS: m/z = 891.8 [M]+. IR (νmax cm⁻¹, KBr): 3095 (νas(C=H)), 2854 (νs(C=H)), 1606 (ν(C = N)), 1554 (ν(C = C)), 1256 (ν(C=O), phenolic), 1148 (ν(C=N)), 758 (δ(C=H)), 560 (ν (Fe=N)), 452 (ν(Fe=O)).

[Fe(16-opd)Cl] Yield 0.06 g (70%); C52H66N2O4ClFe; calcd. C 70.5, H 8.8, N 3.1; found C 70.4, H 8.7, N, 3.2. ESI–MS: m/z = 885.8 [M]+. IR (νmax cm⁻¹, KBr): 3098 (νas(C=H)), 2857 (νs(C=H)), 1605 (ν(C = N)), 1548 (ν(C = C)), 1254 (ν(C=O), phenolic), 1145 (ν(C=N)), 757 (δ(C=H)), 556 (ν (Fe=N)), 455 (ν(Fe=O)).

3. Results and discussion

3.1. Synthesis and characterisation

Following a simple synthetic strategy given in scheme 1, condensation of hexadecyloxy salicylaldehyde with appropriate diamine resulted in the isolation of N, N’-bis[4-(4'-hexadecyloxy)salicylidene]-trans-1; 2-diaminocyclohexane (16-dch) and N, N’-bis[4-(4'-hexadecyloxy)salicylidene]-1,2-phenylene diamine (16-opd) in quantitative yield. The iron(III) complexes were prepared by refluxing the tetradeinate [N2O2] donor Schiff base ligands with FeCl3.6H2O (1:1 molar ratio) in methanol. The complexes so obtained are deep brown solids in good yields and were recrystallised from chloroform/ethanol. The ligands and the corresponding iron(III) complexes were characterised with the help of analytical data and spectroscopic study such as FT–IR, UV–Vis, 1H and 13C NMR and ESI–MS. The results of elemental analysis indicate a good match with the calculated values, which corroborates the proposed formulae of the compounds. Comparison of FT–IR spectra of the ligands and their corresponding iron(III) complexes reveal some important characteristics features. The ligands show a strong absorption band around ~1620 cm⁻¹ due to C = N stretching attesting the formation of Schiff base. This band shifted to lower wave numbers by ~15 cm⁻¹ in the complexes due to reduction of the double-bond character of the C = N bond indicating the involvement of imine nitrogen in coordination to the metal centre.[51,52] The infrared spectra of the ligands showed a broad absorption band at ca. 3350 cm⁻¹ due to phenolic–OH. The absence of absorption band corresponding to the –OH group in the metal complexes indicate phenolic-O coordination with the metal centre. The Fe–N and Fe–O stretching frequency of the complexes located at ~560 cm⁻¹ and ~455 cm⁻¹, respectively, lends further confirmation of the coordination of the azomethine-N and phenolic-O to the metal centre (Fig S1 and S2). The ESI–MS of the compounds are concordant with their formula weights. The 1H NMR spectra of the free ligands showed characteristic signals at 13.1–13.4 ppm, corresponds to the -OH proton, and at 8.2–8.4 ppm, corresponds to the imine proton.

3.1.1. UV-visible absorption studies

The electronic spectra of the compounds were recorded in dichloromethane at room temperature (Table 1). Both the ligands (16-dch and 16-opd) exhibited two absorption bands in the region ~278–332 nm, assigned to π→π* transitions of the molecular orbitals essentially localised on the phenyl ring. In addition, ligand 16-opd exhibited a shoulder band at ca. 364 nm
corresponds to $\pi \rightarrow \pi^*$ transition of the azomethine chromophore. Whereas, ligand 16-dch showed a low-intensity band at ca. 390 nm, attributed to the $n \rightarrow \pi^*$ transition of the imine nitrogen lone pair to the π^* orbital of the $C = N$ fragment. The complexes showed one intense band ~282–312 nm originating from $\pi \rightarrow \pi^*$ transitions of the aromatic rings (Figure 1). Another low-intensity band observed in the region ~410–450 nm corresponds to the ligand to metal charge transfer (LMCT) transition.

3.2. POM and DSC study: mesomorphic behaviour

The thermal behaviour of the compounds was examined using differential scanning calorimetry and polarised optical microscopy. The thermal data of the complexes are summarised in Table 2. The free ligands did not show any mesomorphic behaviour probably due to their greater conformational flexibility with small molecular anisotropy. However, on coordination with the metal centre mesomorphism in the ligand was induced, which indicates conformational modification of the ligands with enhanced structural anisotropy in

Table 1. UV–Vis spectra of the compounds.

Compounds	$\pi \rightarrow \pi^*$ (Lmol$^{-1}$ cm$^{-1}$)	$n \rightarrow \pi^*$ (Lmol$^{-1}$ cm$^{-1}$)	CT (Lmol$^{-1}$ cm$^{-1}$)
16-dch	278 (23500)	~390 (1800)	–
16-opd	292 (16400)	–	~450 (3500)
[Fe(16-dch)Cl]	282 (24800)	–	~410 (6800)
[Fe(16-opd)Cl]	312 (19200)	–	~450 (3500)

Scheme 1. (i) $C_n H_{2n+1}$ Br, KHCO$_3$, KI, dry acetone, Δ, 36 h, (ii) glacial AcOH, absolute EtOH, Δ, 3 h and (iii) FeCl$_3$.6H$_2$O, EtOH, Δ, 2 h.
the presence of metal centre. The [Fe(16-dch)Cl] complex exhibited enantiotropic mesomorphic behaviour. Examination of the sample under polarised optical microscopy revealed that on cooling the sample from isotropic melt, a viscous mesophase (Figure 2) is developed at 152.6°C, which is identified as lamellar columnar phase. The DSC thermogram of the complex [Fe(16-dch)Cl] exhibited three sharp transitions in heating as well as cooling (Figure 3). The transition at 158.3°C ($\Delta H = 15.6$ KJ mol$^{-1}$) is due to I-ColL phase transition.

The [Fe(16-opd)Cl] complex showed a fan-like texture (Figure 4) at 126.5°C characteristic of typical SmA mesophase. The DSC thermogram of [Fe(16-opd)Cl] showed two transition in the heating run but no transition could be detected in the cooling run (Figure 5). The transition at 82.3°C ($\Delta H = 2.3$ KJ mol$^{-1}$) is due to crystal to SmA phase transition. The thermal stability of the complexes confirmed on subsequent heating and cooling scans, although the complexes tend to decompose at higher temperature after reaching the isotropic state. It is important to note that [Fe(16-dch)Cl] showed high enthalpy values for the phase transition in comparison to [Fe(16-opd)Cl]. The larger enthalpy change for [Fe(16-dch)Cl] during transition from mesophase to isotropic liquid indicated a higher lamellar ordering of the mesophase, that is, lamellar columnar (ColL) phase.

3.3. X-ray diffraction studies

To confirm the results as obtained from optical microscopy and DSC experiment, temperature-dependent XRD studies was carried out for the [Fe(16-dch)Cl] and [Fe(16-opd)Cl] complexes in the mesophase (Table 3). For [Fe(16-dch)Cl] complex at 150°C, three sharp Bragg peaks were observed at 30.3, 15.15 and 10.1 Å in the small angle region (Figure 6). The sharp nature of the small angle reflection clearly indicates towards the existence of a long-range interaction of the structure. These reflections do not attest to either

![Figure 1. UV–Vis absorption spectra of iron(III) complexes in dichloromethane (10$^{-4}$M solution).](image1)

![Figure 2. (colour online) Fan-like texture of [Fe(16-dch)Cl] at 152°C on cooling.](image2)

![Figure 3. DSC thermogram of [Fe(16-dch)Cl].](image3)

![Figure 4. (colour online) Fan-like texture of [Fe(16-dch)Cl] at 152°C on cooling.](image4)

![Figure 5. DSC thermogram of [Fe(16-dch)Cl].](image5)

![Figure 6. DSC thermogram of [Fe(16-dch)Cl].](image6)
a purely lamellar or purely columnar structure. The d-spacing ratio of the three reflections turns out to be 1:2:3, which corresponds to (001), (002) and (003) plane. The presence of these equidistant reflections shows that the molecules are packed in a regularly spaced layer-like arrangement in the mesophase with a layer distance of 30.3 Å. Two other less intense but relatively sharp reflections at 5.0 and 4.6 Å overriding a broad peak observed in the wide-angle region corresponds to (010) and (100) plane. The diffuse peak corresponds to the short-range liquid-like positional ordering of molten alkoxy chains within the layers. The Miller index of (010) and (100) plane affords the presence of short columns within the layers.

As the intensity of the peaks are less than primary layer peak, they can be ascribed to 2D columnar modulation of the layer. Therefore, it may be inferred that the observed mesophase is not a simple SmA phase due to the presence of short-range columnar order within the layers. The XRD data clearly indicates towards lamello-columnar phase (Col$_L$) with two-dimensional ordering of molecules within the smectic layers. A model (Figure 7) could be deduced for the organisation of the molecules. In the present case, the non-discoid molecules tend to organise in a face-to-face antiparallel dimeric fashion within the layer. The one-dimensional stacking distance of 4.6 Å with the aliphatic alkoxy chains diverged in the opposite direction of the column. However, it is relevant here to mention that the report related to metallomesogen exhibiting Col$_L$ mesophase are not ubiquitous in literature.[16–19,23,53,54] Molecules with branched chains where columnar morphology often transcends into a lamellar structure have been well elaborated by Lattermann et al. [55,56].

The diffraction pattern of [Fe(16-opd)Cl] at 120°C exhibit four sharp reflections in the low-angle region.

Table 3. XRD data of iron(III) complexes.

Compound	Mesophase parametersa	d_{obsd}/Åb	Miller indicesc
[Fe(16-dch)Cl]	$a = 4.63$ Å	30.29 (30.30)	001
$T = 150^\circ$C	$b = 5.01$ Å	15.15 (15.15)	002
	$c = 30.30$ Å	10.10 (10.10)	003
		5.01	010
		4.63	100
		ca. 4.52	
[Fe(16-opd)Cl]	$d = 30.3$ Å	45.65 (45.52)	001
$T = 120^\circ$C	$V_m = 1470$ Å3	22.82 (22.75)	002
		15.20 (15.24)	003
		11.38 (11.36)	004
		ca. 4.60	

![Figure 4](colour online) Fan-like texture of [Fe(16-opd)Cl] at 126°C on cooling.

![Figure 5](DSC thermogram of [Fe(16-opd)Cl].)

![Figure 6](XRD profile of [Fe(16-dch)Cl].)
with d-spacings of 45.6, 22.7, 15.2 and 11.3 Å which are in the ratio 1:2:3:4. These equidistant reflections correspond to (001), (002), (003) and (004) plane with a lamellar periodicity of 45.6 Å (Figure 8). A diffuse peak centred at ca. 4.6 Å is also observed in the wide-angle region corresponding to the short-range liquid-like positional ordering of the alkoxy chains within the layer plane. However, as opposed to [Fe(16-dch)Cl], there is no long-range correlation order observed within the layers in this complex, as evident from the absence of any sharp peak in the wide-angle region. Therefore, a SmA mesophase with a layer-like arrangement of the molecules is conjectured. The molecules are arranged in a dimeric head-to-head organisation (Figure 9) within the layer. Pertinent here is to mention that, similar d-block metallomesogen of ‘salen’-type ligands with square planar geometry reported by us, predominantly shows columnar mesophase with hexagonal or rectangular ordering.[24–29] The five coordinated square pyramidal geometry of the resulting iron(III) complex is believed to be responsible for the layer-like arrangement of the molecules in the present case. Thus, the packing of molecules in the mesophase, we believe, are promoted by pi-stacking. The spacer group in [Fe(16-dch)Cl] is non aromatic while it is aromatic in [Fe(16-opd)Cl]—this might have a bearing on inter molecular ‘pi-stacking’ interaction causing slight variation in the molecular packing.

3.4. DFT studies

DFT calculations were performed at B3LYP level using the Gaussian 09 package.[57] The 6-31G (d, p) basis set was used for the computation. The gas-phase ground state geometry of the iron(III) complex was fully optimised with tight convergence criteria excluding any symmetry constrain. The vibrational frequency calculation was performed using second-derivative analytic methods to verify the attainment of the energy minima at the same level of theory that confirmed the absence of imaginary Eigen values. A five coordinated square pyramidal structure around the metal ion was conjectured (Figures 10 and 11). The N₂O₂ core forms an equatorial plane by means of the O and N atoms, and the axial site is occupied by Cl atom. The central metal ion is located in the equatorial least square plane. Some of the significant geometric parameters of the optimised iron(III) complexes are shown in Table 4. The Fe–N and Fe–O bond lengths were 2.12–2.14 Å and 1.89 Å, implying the presence of regular σ and dative coordination.
bonding, respectively. The calculated bond length of Fe—Cl was 2.38 Å. The bond angle O1—Fe—O2, O1—Fe—N1, O1—Fe—N2, N1—Fe—O2, N1—Fe—N2, N2—Fe—O2 value reveals a deviation from planarity of the equatorial plane. The dihedral angle, N1—O1—O2—N2 of [Fe(16-dch)Cl] was found to be 12°, whereas for [Fe(16-opd)Cl] the value of dihedral angle is close to zero. The cyclohexane spacer acquires a somewhat non-planar conformation than phenylene spacer, and is believed to have caused a greater distortion from a square pyramidal geometry. The molecular length of the iron(III) complexes measured from the two terminal end of the side alkyl chain in the fully extended form was found to be around 41.2 Å.

4. Conclusion

Iron(III) complexes of tetradentate 'salen'-type Schiff base ligands containing alkoxy chains in 4-position of the terminal aromatic ring and a central cyclohexane/phenylene spacer have been successfully synthesised and characterised. While the Schiff base ligands do not show any liquid crystalline behaviour, but mesomorphism is induced upon coordination with the iron(III) centre. The [Fe(16-dch)Cl] complex exhibits enantiotropic lamello columnar mesomorphism, whereas the [Fe(16-opd)Cl] complex exhibits SmA mesomorphism. Based on spectral and DFT studies, a five coordinated distorted square pyramidal geometry have been proposed.

Acknowledgements

Authors gratefully acknowledge the instrumental facility provided under UGC-SAP and DST-FIST programme, New Delhi. HARP is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi for research fellowship (No. 09/747(0006)/2011-EMR-I). Sophisticated Analytical Instrumentation Facility, North-Eastern Hill University, Shillong is acknowledged for some spectral results.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Coe BJ. Comprehensive coordination chemistry II. Vol. 9. McCleverty JA, Meyer TJ, editors. Oxford: Elsevier-Pergamon; 2004. p. 621–687.
[2] Serrano JL. Metallomesogens: synthesis, properties and applications. Weinheim: VCH Verlagsgesellschaft mbH; 1996.
[3] Pucci D, Donnio B. Metal-containing liquid crystals. In: Goodby JW, Collings PJ, Kato T, et al., editors. Handbook of liquid crystals. 2nd ed. Vol. 5. Weinheim: Wiley-VCH GmbH&Co. KGaA; 2014. p. 1–67.
[4] Donnio B, Bruce DW. Metallomesogens. Struct Bonding. 1999;95:193–247. doi:10.1007/3-540-68118-3_5.
[5] Donnio B, Guillou D, Deschenaux R, et al. Comprehensive coordination chemistry II. Vol. 7. Oxford: Elsevier; 2003. p. 357–627.
[6] Espinet P, Estebuelas MA, Oro LA, et al. Transition metal liquid crystals: advanced materials within the

Table 4. Calculated bond distances (Å), angles (°) and dihedral angles (°) of the iron(III) complexes.

Geometrical parameters	[Fe(16-dch)Cl]	[Fe(16-opd)Cl]
Fe—O1	1.89	1.89
Fe—O2	1.89	1.89
Fe—N1	2.12	2.14
Fe—N2	2.14	2.14
O1—Fe—O2	94.2	93.8
O1—Fe—N1	85.9	85.9
O1—Fe—N2	76.1	74.9
N1—Fe—O2	86.3	85.9
N1—Fe—O3	153.8	144.7
O1—Fe—N3	136.7	144.8
N1—O1—O2—N2	12	0
reach of the coordination chemist. Coord Chem Rev. 1992;117:215–274. doi:10.1016/0010-8554(92)80025-M.

[7] Serrano JL, Sierra T. Helical supramolecular organizations from metal-organic liquid crystals. Coord Chem Rev. 2003;242:73–85. doi:10.1016/S0010-8554(03)00661-4.

[8] Collinson SR, Bruce DW. Transition metals in supramolecular chemistry. Sauvage JP, editor. New York (NY): Wiley; 1999. Chapter 7; p. 285–369.

[9] AL-Hamdani UJ, Jameel HA. Synthesis and mesomorphic properties of new metallo- mesogens derived from azo and Schiff base ligands. J Chem Pharm Res. 2012;4:922–931.

[10] Ohta K, Higashi R, Ikejima M, et al. Disk-like liquid crystals of transition metal complexes Part 21.—Critical molecular structure change from columnar to lamellar liquid crystal in bis(diphenylglyoximato)nickel(II)-based complexes. J Mater Chem. 1998;8:1979–1991. doi:10.1039/A800897C.

[11] Ghedini M, Pucci D, Crispini A, et al. Oxidative addition to cyclometalated azobenzene platinum(II) complexes: a route to octahedral liquid crystalline materials. Organometallics. 1999;18:2116–2124. doi:10.1021/om9808155.

[12] Trzaska ST, Zheng H, Swager TM. Eight-vertex metal-lomesogens: zirconium tetrakis-β-diketonate liquid crystals. Chem Mater. 1999;11:130–134. doi:10.1021/cm980550k.

[13] Hoshino N. Liquid crystal properties of metal–salicyldimine complexes: chemical modifications towards lower symmetry. Coord Chem Rev. 1998;174:77–108. doi:10.1016/S0010-8554(98)00129-5.

[14] Szydlowska J, Krowczynski A, Gorecka E, et al. Columnar mesomorphism of bi- and trinuclear Ni(II), Cu(II), and VO(II) cis-enammonoketone complexes with low symmetry. Inorg Chem. 2000;39:4879–4885. doi:10.1021/ic0008080.

[15] Douce L, Diep TH, Ziessel R, et al. Columnar liquid crystals from wedge-shaped tetrahedral copper(I) complexes. J Mater Chem. 2003;13:1533–1539. doi:10.1039/B302038J.

[16] Chakrabarty S, Bhattacharjee CR, Mondal P, et al. Synthesis and aggregation behaviour of luminescent mesomorphimous zinc(II) complexes of [N′′-bis(salicylidene)dodecane-1,10-diamine core. Mol Cryst Liq Cryst. 2015;4:7477–7488. doi:10.1016/j.molliq.2013.09.089.

[17] Abe Y, Akao H, Yoshida Y, et al. Syntheses, structures, and mesomorphism of a series of Ni(II) salen complexes with 4-substituted long alkoxy chains. Inorg Chim Acta. 2006;359:347–355. doi:10.1016/j.ica.2006.04.002.

[18] Abe Y, Nakazima N, Tanase T, et al. Syntheses, structures, and mesomorphism of a series of Cu(II) salen complexes with 4-substituted long alkoxy chains. Mol Cryst Liq Cryst. 2007;466:129–147. doi:10.1080/15421400601150304.

[19] Abe Y, Nakabayashi K, Matsukawa N, et al. Syntheses, structures, and mesomorphic properties of two series of oxovanadium(IV) salen and salpn complexes with 4-substituted long alkoxy chains. Inorg Chim Acta. 2006;359:3934–3946. doi:10.1016/j.ica.2006.04.047.

[20] Abe Y, Nakabayashi K, Matsukawa N, et al. Novel crystal structure and mesomorphism appeared in oxovanadium(IV) salen complexes with 4-substituted long alkoxy chains. Inorg Chim Commun. 2004;7:580–583. doi:10.1016/j.inoche.2004.02.022.

[21] Pucci D, Aiello I, Bellusci A, et al. Copper(II) and nickel (II) complexes of a tetradentate ligand containing an N, N′- bis(salicylidene)dodecane-1, 10-diamine core. Mol Cryst Liq Cryst. 2009;500:144–154. doi:10.1080/15421400802714098.

[22] Chico R, Dominguez C, Donnio B, et al. Liquid crystalline salen manganese(III) complexes. Mesomorphic and catalytic behaviour. Dalton Trans. 2011;40:5977–5983. doi:10.1039/C0DT01700K.

[23] Bhattacharjee CR, Das G, Mondal P, et al. Lamellar columnar mesomorphism in a series of oxovanadium(IV) complexes derived from N, N′-di-(4-alkoxy-salicylidene) diaminobenzene. Inorg Chem Commun. 2011;14:606–612. doi:10.1016/j.inoche.2011.01.041.

[24] Bhattacharjee CR, Das G, Mondal P, et al. Novel photo-luminescent hemi-disc-like liquid crystalline Zn(II) complexes of [N,N′′- bis(salicylidene)diamine Schiff base with aromatic spacer. Polyhedron. 2010;29:3089–3096. doi:10.1016/j.poly.2010.08.017.

[25] Bhattacharjee CR, Das G, Mondal P, et al. Novel green light emitting nondiscoid liquid crystalline zinc(II) Schiff- base complexes. Eur J Inorg Chem. 2011;1418–1424. doi:10.1002/ejic.201001248.

[26] Bhattacharjee CR, Das G, Mondal P, et al. New mesomorphism in copper complexes of [N,N′′- bis(salicylidene)diamine Schiff base via nickel(II) coordination. Eur J Inorg Chem. 2011;5390–5396. doi:10.1002/ejic.201100679.

[27] Bhattacharjee CR, Das G, Mondal P, et al. Plastic columnar mesomorphism in half-disc- shaped oxovanadium(IV) Schiff base complexes. Liq Cryst. 2011;38:615–623. doi:10.1080/02678292.2011.564314.

[28] Bhattacharjee CR, Datta C, Das G, et al. Induction of photoluminescence and columnar mesomorphism in hemi-disc salphen type Schiff bases via nickel(II) coordination. Eur J Inorg Chem. 2011;3251–3259. doi:10.1002/ejic.201101201.

[29] Datta C, Chakrabarty R, Das G, et al. Influence of spacer group substituent on mesomorphism in copper complexes of ‘salen’ type Schiff bases bearing long alkoxy arm. Liq Cryst. 2014;41:541–551. doi:10.1080/02678292.2013.862311.

[30] Gennari C, Piarulli U. Combinatorial libraries of chiral ligands for enantioselective catalysis. Chem Rev. 2003;103:3071–3100. doi:10.1021/cr020058r.

[31] Cozzi PG, Dolci LS, Garelli A, et al. Photophysical properties of Schiff-base metal complexes. New J Chem. 2003;27:692–697. doi:10.1039/B209396K.

[32] Cozzi PG. Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev. 2004;33:410–421. doi:10.1039/B307853C.

[33] Rayati S, Zakavi S, Koliaei M, et al. Electron-rich salen-type Schiff base complexes of Cu(II) as catalysts for oxidation of cyclooctene and styrene with tert-butyldihydroperoxide: a comparison with electron-deficient ones. Inorg Chem Commun. 2010;13:203–207. doi:10.1016/j.inoche.2009.11.016.

[34] Aubert V, Guercia V, Ishow E, et al. Efficient photo-switching of the nonlinear optical properties of dipolar...
photochromic zinc(II) complexes. Angew Chem Int Ed. 2008;47:577–580. doi:10.1002/anie.200704138.

[35] Oliveri IP, Failla S, Columbo A, et al. Synthesis, characterization, optical absorption/fluorescence spectroscopy, and second-order nonlinear optical properties of aggregate molecular architectures of unsymmetrical Schiff-base zinc(II) complexes. Dalton Trans. 2014;43:2168–2175. doi:10.1039/C3DT53072H.

[36] Bella SD, Oliveri IP, Columbo A, et al. An unprecedented switching of the second-order nonlinear optical response in aggregate bis(salicylaldiminato)zinc(II) Schiff-base complexes. Dalton Trans. 2012;41:7013–7016. doi:10.1039/C2DT30702B.

[37] Galyametdinov Y, Ivanova G, Griesar K, et al. The synthesis and magnetic behavior of the first mesogenic μ-oxo-bridged iron(III) complex. Adv Mater. 1992;4:739–741. doi:10.1002/adma.19920041106.

[38] Zheng H, Swager TM. Octahedral Metallomesogens: liquid crystallinity in low aspect ratio materials. J Am Chem Soc. 1994;116:761–762. doi:10.1021/ja00081a044.

[39] Domracheva N, Pyataev A, Manapov R, et al. Structural, magnetic and dynamic characterization of liquid-crystalline (III) Schiff base complexes with asymmetric ligands. Eur J Inorg Chem. 2011;1219–1229. doi:10.1002/ejc.201001157.

[40] Seredyuk M, Gaspar AB, Kusz J, et al. Mononuclear complexes of iron(III) based on symmetrical tripodal ligands: novel parent systems for the development of new spin crossover metallomesogens. Z Anorg Allg Chem. 2011;637:965–976. doi:10.1002/zaac.201100034.

[41] Le YH, Ohta A, Yamamoto Y, et al. Iron(II) spin crossover complexes with branched long alkyl chain. Polyhedron. 2011;30:3001–3005. doi:10.1016/j.poly.2011.02.015.

[42] Hayami S, Motokawa N, Shuto A, et al. Spin–crossover iron(II) compounds with liquid crystal properties. Polyhedron. 2007;26:2375–2380. doi:10.1016/j.poly.2007.02.021.

[43] Hayami S, Motokawa N, Shuto A, et al. Photo-induced spin transition for iron(II) compounds with liquid-crystal properties. Inorg Chem. 2007;46:1789–1794. doi:10.1021/ic061646g.

[44] Sivasubramanian VK, Ganesan M, Rajagopal S, et al. Iron(III)–salen complexes as enzyme models: mechanistic study of oxo(salen)iron complexes oxygenation of organic sulfides. J Org Chem. 2002;67:1506–1514. doi:10.1021/jo0108780.

[45] Kanappan R, Tanase S, Mutikainen I, et al. Low-spin iron(III) Schiff-base complexes with symmetric hexadentate ligands: synthesis, crystal structure, spectroscopic and magnetic properties. Polyhedron. 2006;25:1646–1654. doi:10.1016/j.poly.2005.11.005.

[46] Que L Jr., Laufer RB, Lynch JB, et al. Elucidation of the coordination chemistry of the enzyme-substrate complex of catechol 1,2-dioxygenase by NMR spectroscopy. J Am Chem Soc. 1987;109:5381–5385. doi:10.1021/ja00025a013.

[47] Shyu H–I, Wei H–H, Lee G–H, et al. Structure, magnetic properties and epoxidation activity of iron(III) salicyaldimine complexes. J Chem Soc, Dalton Trans. 2000;915–918. doi:10.1039/A908648I.

[48] Weder C, Sarwa C, Bastiaansen C, et al. Highly polarized luminescence from oriented conjugated polymer/polyethylene blend films. Adv Mater. 1997;9:1035–1039. doi:10.1002/adma.19970091308.

[49] Cavaco I, Pessoa JC, Duarte MT, et al. Crystal and molecular structure of [V₂O₃(sal-L-val),₂(H₂O)](sal-L-val =N-salicylidene-L-valinate) and spectroscopic properties of related complexes. J Chem Soc, Dalton Trans. 1996;1989–1996. doi:10.1039/DT9960001989.

[50] Pessoa JC, Calhorda MJ, Cavaco I, et al. Molecular modelling studies of N-salicylideneaminono acidato complexes of oxovanadium(IV). Molecular and crystal structure of a new dinuclear LOV³–O–V³OL mixed valence complex. J Chem Soc, Dalton Trans. 2002;4407–4415. doi:10.1039/B205843J.

[51] Cardinaels T, Driesen K, Parac-Vogt TN, et al. Design of high coordination number metallomesogens by decoupling of the complex-forming and mesogenic groups: nematic and lamellar-columnar mesophases. Chem Mater. 2005;17:6589–6598. doi:10.1021/cm0513177.

[52] Abe Y, Takagi Y, Nakamura M, et al. Structural, photophysical and mesomorphic properties of luminescent platinum(II)-salen Schiff base complexes. Inorg Chim Acta. 2012;392:254–260. doi:10.1016/j.ica.2012.02.041.

[53] Schaz A, Lattermann G. ABC mesogen: a novel ‘hexagonal columns-in-lamelae’ morphology of low molar mass partially fluorinated ‘three-chain’ benzoic acid. Liq Cryst. 2005;32:407–415. doi:10.1080/0267829042331298111.

[54] Facher A, Stebani U, Lattermann G. 3,4-Dialkoxy benzoyl substituted derivatives of hexahydro-1,3,5-triazine with hexagonal columnar mesophases. Liq Cryst. 1998;25:441–448. doi:10.1080/0267829980205949.

[55] Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision B.01. Wallingford (CT): Gaussian, Inc.; 2010.