Lab Resource: Stem Cell Line

Generation of KCL013 research grade human embryonic stem cell line carrying a mutation in the HTT gene

Laureen Jacquet, Heema Hewitson, Victoria Wood, Neli Kadeva, Glenda Cornwell, Stefano Codognotto, Emma Stephenson, Dusko Ilic *

Stem Cell Laboratories, Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London and Assisted Conception Unit, Guys’ Hospital, London, United Kingdom

ARTICLE INFO

Article history:
Received 31 December 2015
Received in revised form 12 January 2016
Accepted 12 January 2016
Available online 14 January 2016

Abstract

The KCL013 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (~46 trinucleotide repeats; 17 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Resource table

Name of stem cell line	KCL013
Institution	King’s College London, London, UK
Derivation team	Neli Kadeva, Victoria Wood, Glenda Cornwell, Stefano Codognotto, Emma Stephenson
Contact person and email	Dusko Ilic, email: dusko.ilic@kcl.ac.uk
Type of resource	Biological reagent: cell line
Origin	Human embryonic stem cell line
Sub-type	Human embryo
Key marker expression	Pluripotent stem cell markers: NANOG, OCT4, TRA-1-60, TRA-1-81, alkaline phosphatase (AP) activity
Authentication	Identity and purity of line confirmed

1) Ilic, D., Stephenson, E., Wood, V., Jacquet, L., Stevenson, D., Petrova, A., Kadeva, N., Codognotto, S., Patel, H., Semple, M., Cornwell, G., Ogilvie, C., Braude, P., 2012. Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy. 14 (1), 122–128.doi: 10.3109/14653249.2011.623692 http://www.ncbi.nlm.nih.gov/pubmed/22029654

2) Stephenson, E., Jacquet, L., Miere, C., Wood, V., Kadeva, N., Cornwell, G., Codognotto, S., Dajani, Y., Braude, P., Ilic, D., 2012. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat. Protoc. 7 (7), 1366–1381. doi: 10.1038/nprot.2012.080 http://www.ncbi.nlm.nih.gov/pubmed/22722371

Name of stem cell line KCL013

Information in public databases

KCL013 is a National Institutes of Health (NIH) registered hESC line
NIH Registration Number: 0214
NIH Approval Number: NIHhESC-13-0214 http://grants.nih.gov/stem_cells/registry/current.htm?id=651

The hESC line KCL013 is derived under license from the UK Human Fertilisation and Embryology Authority (research license numbers: R0075 and R0133) and also has local ethical approval (UK National Health Service Research Ethics Committee Reference: 06/Q0702/90).

Ethics Committee Reference: 06/Q0702/90.

Informed consent was obtained from all subjects and the experiments conformed to the principles set out in the WMA Declaration of Helsinki and the NIH Belmont Report.

No financial inducements are offered for donation.

Resource details

Consent signed Aug 12, 2009
Embryo used Aug 23, 2009
UK Stem Cell Bank Sex Sep 23, 2010
Deposit approval Male 46, XY
Research Reference: SCSC10-32
Mutation affecting one allele of the HTT gene encoding huntingtin (~46 CAG repeats; 17 for the normal allele) associated with Huntington’s disease (Ilic et al., 2012)

* Corresponding author.
E-mail address: dusko.ilic@kcl.ac.uk (D. Ilic).

http://dx.doi.org/10.1016/j.scr.2016.01.011
1873-5061/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
We generated KCL013 clinical grade hESC line following protocols, established previously (Ilic et al., 2012; Stephenson et al., 2012). The expression of the pluripotency markers was tested after freeze/thaw cycle (Fig. 3; Ilic et al., 2012). Differentiation potential into three germ layers was verified in vitro (Fig. 4; Ilic et al., 2012).

Materials and methods

Consenting process

We distribute Patient Information Sheet (PIS) and consent form to the in vitro fertilization (IVF) patients if they opted to donate to research embryos that were stored for 5 or 10 years. They mail signed consent back to us and that might be months after the PIS and consent form were mailed to them. If in the meantime new versions of PIS/consent are implemented, we do not send these to the patients or ask them to re-sign; the whole process is done with the version that was given them initially. The PIS/consent documents (PGD-V.6) were created on Aug. 10, 2007. HFEA Code of Practice that was in effect at the time of document creation: Edition 7 — R.1 (http://www.hfea.gov.uk/2999.html). The donor couple signed the consent on Oct. 15, 2009. HFEA Code of Practice that was in effect at the time of donor signature: Edition 8 — R.1. HFEA Code of Practice Edition 7 — R.1 was in effect until Dec. 09, 2007 and Edition 8 — R.1 was in effect: Oct. 01, 2009–Apr. 06, 2010.

Embryo culture and micromanipulation

Embryo culture and laser-assisted dissection of inner cell mass (ICM) were carried out as previously described in details (Ilic et al., 2012; Stephenson et al., 2012). The cellular area containing the ICM was then washed and transferred to plates containing mitotically inactivated human neonatal foreskin fibroblasts (HFF).

Cell culture

ICM plated on mitotically inactivated HFF was cultured as described (Ilic et al., 2012; Stephenson et al., 2012). Trophoderm cells were removed mechanically from outgrowth (Ilic et al., 2007; Ilic et al., 2010). hESC colonies were expanded and cryopreserved at the third passage.
Viability test

Straws with the earliest frozen passage (p. 2–3) are thawed and new colonies are counted three days later. These colonies are then expanded up to passage 8, at which point cells were part frozen and part subjected to standard battery of tests (pluripotency markers, in vitro and in vivo differentiation capability, genetics, sterility, mycoplasma).

Pluripotency markers

Pluripotency was assessed using two different techniques: enzymatic activity assay [alkaline phosphatase (AP) assay] and immunostaining as described (Ilic et al., 2012; Stephenson et al., 2012).

Genotyping

DNA was extracted from hESC cultures using a Chemagen DNA extraction robot according to the manufacturer’s instructions. Amplification of polymorphic microsatellite markers was carried out as described (Ilic et al., 2012). Allele sizes were recorded to give a unique fingerprint of each cell line.

Differentiation

Spontaneous differentiation into three germ layers was assessed in vitro and in vivo as described (Petrova et al., 2014; Stephenson et al., 2012).

Array comparative genomic hybridization (aCGH)

aCGH was performed as described in detail (Ilic et al., 2012).

Author disclosure statement

There are no competing financial interests in this study.

Acknowledgments

This work was supported by the UK Medical Research Council grants G0701172 and G0801061. We thank Dr. Yacoub Khalaf, Director of the Assisted Conception Unit of Guy’s and St Thomas’ NHS Foundation Trust and his staff for supporting the research program. We are especially indebted to Prof Peter Braude and to the patients who donated embryos.

References

Ilic, D., Genbacev, O., Krtolica, A., 2007. Derivation of hESC from intact blastocysts. Curr. Protoc. Stem Cell Biol. (Chapter 1: Unit 1 A.2).

Ilic, D., Caceres, E., Lu, S., Julian, P., Foulk, R., Krtolica, A., 2010. Effect of karyotype on successful human embryonic stem cell derivation. Stem Cells Dev. 19 (1), 39–46.

Ilic, D., Stephenson, E., Wood, V., Jacquet, L., Stevenson, D., Petrova, A., Kadeva, N., Codognotto, S., Patel, H., Semple, M., Cornwell, G., Ogilvie, C., Braude, P., 2012. Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14 (1), 122–128.

Petrova, A., Celli, A., Jacquet, L., Dafou, D., Crumrine, D., Hupe, M., Arno, M., Hobbs, C., Cvoro, A., Karagiannis, P., Devito, L., Sun, R., Adame, L.C., Vaughan, R., McGrath, J.A., Mauro, T.M., Ilic, D., 2014. 3D in vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Rep. 2 (5), 675–689.

Stephenson, E., Jacquet, L., Miere, C., Wood, V., Kadeva, N., Cornwell, G., Codognotto, S., Dajani, Y., Braude, P., Ilic, D., 2012. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat. Protoc. 7 (7), 1306–1381.