Negative Surveys

Fernando Esponda

Yale University, Computer Science Department, New Haven CT 06520, USA

Summary

In this paper we propose a strategy for administering a survey that is mindful of sensitive data and individual privacy. The survey in question seeks to estimate the population proportions of a sensitive, polychotomous variable and does not depend on anonymity, cryptography, or in legal guarantees for its privacy preserving properties. Our technique, called Negative Surveys, presents interviewees with a question and \(t \) possible answers, and asks participants to eliminate one of \(t - 1 \) alternatives at random. The method is closely related to randomized response techniques (RRTs) in that both rely on a random component to preserve privacy; however, while RRTs require respondents to choose among questions and give an answer, negative surveys ask them to choose between possible answers to a single question. This distinction has important consequences for the privacy, methodology, and reliability of our scheme.

In the course of the paper we quantify the amount of information surrendered by an interviewee, elaborate on how to estimate the desired population proportions, and discuss the properties of our method at length. We also introduce a specific setup that requires a single coin as a randomizing device, and that limits the amount of information each respondent is exposed to by presenting to them only a subset of the question’s alternatives.

Keywords: Privacy preserving surveys; Estimating population proportions; Randomized response techniques; Sensitive attribute; Polychotomous variable

1. Introduction

Surveys are an indispensable tool for learning the characteristics of a population, from matters of public health, such as drug use frequency, to gauging public opinion on issues like abortion and homosexuality, to electing the leaders of a democratic country. Their reliability is dependent on having ample participation and an unbiased sample. On occasion, however, they require disclosing sensitive or otherwise private data compelling some interviewees to give faulty answers and discouraging others from participating altogether. There is seldom a big incentive to answer a survey, and when its questions are potentially stigmatizing, special care should be taken to protect respondent privacy and promote participation.

In this paper, we propose Negative surveys as a technique for conducting surveys that is mindful of participant’s privacy. Negative surveys allow participants to keep the target datum undisclosed by asking them, instead, to make a series of decisions with the datum in mind. In this way, the frequency of drug use can be calculated without respondents admitting to using any drugs, the popular opinion on abortion can be measured without asking for anyone’s specific position, and an election can be run without any of the voters explicitly stating their preference. Our objective is that, by providing transparent privacy guarantees, studies using our scheme will have greater participation and more accurate responses, and will, therefore, be more reliable.
In what follows, we review some of the work related to our own, specify the kind of survey under study and the negative survey technique, and discuss the privacy of our method by analyzing the amount of information gained by each questionnaire. We then look at how a negative survey is applied, how the sought data is extracted from it, and, finally, conclude by summarizing its characteristics.

1.1. Related Work

Esponda (2005) studies the idea of depicting a data set DB by alternatively storing every datum not in DB—the universe of possible data items is assumed to be finite. This is accomplished by introducing a data compaction scheme and a series of algorithms that allow the complement set to be created and stored efficiently. One property of this construction, called negative database, is its potential for restricting the kinds of inferences that can be drawn from the data: given a negative database, it is a difficult problem to recover the original dataset DB; yet, answers for a certain, limited type of queries can be obtained efficiently.

Other properties or representing data negatively are outlined in Esponda (2005); including the suggestion that this viewpoint may be useful, not only to protect stored data, but also, as a paradigm to enhance the privacy of data collection. It is this proposition that inspired the current work.

A suit of techniques that share the same motivation as our proposal—to protect privacy, promote participation, and increase survey accuracy—and which have a similar procedure for conducting surveys are known as Randomized response techniques.

Randomized response techniques (RRT) were introduced in Warner (1965). The original model sets out to estimate the proportion of a population that belongs to a particular, stigmatizing group A. It offers participants two possible questions:

$Q1$: Do you belong to group A?

$Q2$: Do you belong to group B?

where A and B are exhaustive and mutually exclusive groups, i.e., $B = Ā$; for example, if A represents the group of people that have had sex with a minor; B would stand for the people that haven’t. Only one of the two questions is to be answered. The question must be selected privately using a randomizing device provided by the interviewer and should remain undisclosed at all times. The only information surrendered by the participant is a Yes or No answer, not the question being answered, not the outcome of the randomizing device. In this way, the interviewee avoids disclosing which group he belongs to, yet provides sufficient information to estimate the desired proportions—the Yes and No answers of all the respondents in the sample along with the known characteristics of the randomizing device, are enough to estimate the proportion of population members in each group (see Warner (1965); Fox and Tracy (1986); Chaudhuri and Mukerjee (1988); Mangat (1994); Gjestvang and Singh (2006)).

A further refinement of this approach relaxes the need for groups A and B to be exhaustive and mutually exclusive and substitutes the second question for something less sensitive. For example, $Q1$ could read “Have you had sex with a minor?” and $Q2$: “Do you belong to the YMCA?” This variant is known as the unrelated question or paired-alternative method Horvitz et al. (1967); Moors (1971); Chaudhuri and Mukerjee (1988).
The RRT methods discussed so far are designed for dichotomous populations. Negative surveys, on the other hand, are relevant only when there are more than two categories in which the population can be divided. Abul-Ela et al. (1967) generalizes Warner’s model to polychotomous populations by employing several independent samples. Bourke and Dalenius (1973, 1976) propose a different scheme that necessitates only a single sample: categories are numbered 1 through t, participants disclose which category they belong to with probability p or, with probability $1-p$, choose a number between 1 and t; each number is selected with probability $p_1 \ldots p_t$, where $\sum p_i = 1 - p$ (see Chaudhuri and Mukerjee (1988) for more detail and Kim and Ward (2005) for a more recent example).

Finally, it is worth pointing out the existence of mechanisms for conducting direct response surveys privately. For instance, anonymity schemes can be used to conceal the identity and input of individual participants, e.g., Sudman and Bradburn (1974)’s self administered questionnaires, Web and e-mail anonymous surveys, and cryptographically based surveys as in Feigenbaum et al. (2004). Also, legal guarantees can be set that safeguard respondent privacy. However, these methods may not always lead to the desired participation level since respondents still need to answer a sensitive question—the guarantees offered by the study need to be understood to be trusted, and trust must be put on higher authorities not to circumvent the promise. Further, some of these techniques require setups that are not always available for a study, such as the use of computers, and some, like anonymous surveys, have additional shortcomings when it comes to verifying their results or conducting longitudinal studies. Fox and Tracy (1986) discuss the drawbacks of some of these approaches at length.

2. Negative Surveys

The type of survey we consider consists of a questionnaire with a single question (or statement) and t categories $\{X_1, X_2, \ldots, X_t\}$ from which to choose an answer (or alternative). The survey is administered to a sample of n individuals drawn uniformly at random with replacement from the population.

We refer to it as a Positive survey or as a Direct response survey when the subjects are asked to reveal which category they belong to. We call it a negative survey when the requirement is to disclose a category (a single one, for the current work) to which they do not belong—a negative questionnaire can be obtained by simply negating the question of a positive questionnaire. The categories in the direct response survey are exhaustive and mutually exclusive—one and only one option is true; in the negative survey, one and only one category is false for a particular individual. The object of both versions of the survey is to estimate the proportions of the population that belong to each category.

Take, for example, a direct response, salary survey:

I earn:

[] Less that 30,000 dollars a year
[] Between 30,000 and 60,000 dollars a year
[] More that 60,000 dollars a year

The negative version would read:
I do not earn:

[] Less that 30,000 dollars a year
[] Between 30,000 and 60,000 dollars a year
[] More that 60,000 dollars a year

If the positive version of the survey is being answered by an individual whose income is 20,000 dollars, the first option must be chosen. Alternatively, if the same person is answering the negative version of the survey, one of the last two options should be selected. Next we look more closely at the amount of information that is being surrendered in both cases.

2.1. Privacy Preserved

It is intuitively clear that the amount of information required by a negative questionnaire is inferior to what is asked for in its direct response version, at least when the query has more than two options. We formalize this notion and show that, indeed, the information required for a negative survey is at most that of its positive counterpart.

Using Shannon’s uncertainty measure, Shannon (1948), the amount of information gained from a positive questionnaire in which categories are exhaustive and mutually exclusive can be written as:

$$- \sum_i p_i \log p_i$$

(1)

where p_i is the probability that option X_i is true and t is the number of categories in the questionnaire. The maximum amount is obtained when all options are equally likely.

Now consider the information gained from applying a negative questionnaire in which only one option, X_s, is selected by the respondent. We compute this quantity as the difference in information of two positive questionnaires: the information obtained by the positive version of the questionnaire (given in Eq. 1), minus the information gained from the same questionnaire once X_s is no longer an option.

$$- \sum_i p_i \log p_i + \sum_{i \neq s} P(X_i = T | X_s = F) \log P(X_i = T | X_s = F)$$

(2)

where $P(X_i = T | X_s = F)$ is the probability that category i is true in a direct response survey after X_s has been removed as an option, i.e., after finding out it is false.

It is easy to see from the above expressions that the information gained from a negative questionnaire is at most the quantity obtained from its positive counterpart.

3. Estimating Proportions Using Negative Input

In the previous sections, we explained negative surveys and discussed how their application increases the interviewees’ privacy by requiring less information than their positive counterpart. Negative surveys ask respondents to choose one of the $t-1$ options that truthfully answer the question before them—all choices except one are true for a specific individual when surveyed “negatively”. However, we are after the proportions of the population that “positively” belong to each of the t categories: a particular interviewee positively belongs to one and only one category. In this section, we show how to estimate these values along with
their corresponding measures of variation. The analysis follows a similar reasoning—albeit different in the details—as the one used for randomized response techniques, particularly as shown in [Chaudhuri and Mukerjee (1988)] for vector responses. We therefore adopt the same notation.

Let \(p_{i,j} \) \((1 \leq i, j \leq t)\) be the probability that option \(X_i \) is chosen given that a respondent positively belongs to \(X_j \), and \(\sum_j p_{i,j} = 1 \). Let \(\pi_i \) denote the proportion of the population that positively belongs to category \(i \) with \(\sum_i \pi_i = 1 \). Then, the probability of selecting \(X_i \) is given by:

\[
\lambda_i = \sum_j p_{i,j} \pi_j \tag{3}
\]

Let \(P \) denote the matrix of \(p_{i,j} \)'s:

\[
P = \begin{bmatrix}
p_{1,1} & +p_{1,2} & + \cdots & +p_{1,t} \\
p_{2,1} & +p_{2,2} & + \cdots & +p_{2,t} \\
& \vdots & & \ddots \\
p_{t,1} & +p_{t,2} & + \cdots & +p_{t,t}
\end{bmatrix}
\]

where \(\sum_i p_{i,j} = 1 \) and \(p_{i,i} = 0 \); let \(\pi = (\pi_1, \ldots, \pi_t) \)' and \(\lambda = (\lambda_1, \ldots, \lambda_t) \)'s. The probability of responses for each category is written in matrix notation as:

\[
P \pi = \lambda \tag{4}
\]

Let \(n_i \) be the observed frequency of category \(X_i \) \((1 \leq i \leq t)\) obtained from the application of a negative survey to \(n \) individuals. Observe that \(n_i \) is binomially distributed with parameters \(n \) and \(\lambda_i \). An unbiased estimator of \(\lambda_i \) is \(\hat{\lambda}_i = \frac{n_i}{n} \), and, provided \(P \) is non-singular, an unbiased estimator of \(\pi \) is given by:

\[
\hat{\pi} = P^{-1} \hat{\lambda} \tag{5}
\]

where \(\hat{\pi} = (\hat{\pi}_1, \ldots, \hat{\pi}_t) \)' and \(\hat{\lambda} = (\hat{\lambda}_1, \ldots, \hat{\lambda}_t) \)'s.

An unbiased estimator for the variance and covariance of \(\hat{\pi} \) is computed as follows: Let \(\hat{\lambda}^d \) be a diagonal matrix where entry \((i, i)\) is equal to the \(i^{th} \) element of \(\hat{\lambda} \); the estimated covariance of \(\hat{\pi} \) is written as:

\[
\text{cov}(\hat{\pi}) = \frac{1}{n-1} P^{-1}(\hat{\lambda}^d - \hat{\lambda} \hat{\lambda}^{'})P^{-1} \tag{6}
\]

The accuracy of the resulting \(\pi_i \)'s is dependent on an adequate sampling of the \(n_i \)'s, as would also be the case in a positive survey, and on having a good estimate of the \(p_{i,j} \)'s. Knowing how individuals choose an option is the extra information needed to estimate the desired proportions while keeping personal data concealed. Insight may come from knowledge about the behavior of the population—factors like name recognition may bias an individual to select a category—from data gathered in previous surveys, or from employing a specific design in the administration of the survey. This last alternative is discussed further in the next section.

3.1. How to Choose an Option

In this section we propose a scheme intended to reduce the impact of unknown biases by automating, and hence, predetermining part of the decision process used to elect an answer.
One way to determine how respondents select a category is by instructing them on how to choose among available options. For instance, a simple, straightforward design gives each category an equal chance of being selected:

\[
P = \begin{bmatrix}
0 & +\frac{1}{t-1} & +\cdots & +\frac{1}{t-1} \\
\vdots & +0 & +\cdots & +\frac{1}{t-1} \\
\frac{1}{t-1} & +\frac{1}{t-1} & +\cdots & +0
\end{bmatrix}
\]

In this scenario the probability of option \(X_i\) being chosen is:

\[
\lambda_i = \frac{1}{t-1} (1 - \pi_i)
\]

following (8) and noting that \(\sum_i \pi_i = 1\). An unbiased estimator of \(\pi_i\) is given by:

\[
\hat{\pi}_i = 1 - (t-1)\hat{\lambda}_i
\]

where \(\hat{\lambda}_i = \frac{n_i}{n}\) is an unbiased estimator for \(\lambda_i\). Similarly, an u.e. for the variance of \(\hat{\pi}_i\):

\[
\text{var}(\hat{\pi}_i) = \frac{(t-1)^2}{n-1} \hat{\lambda}_i (1 - \hat{\lambda}_i)
\]

and the covariance of \(\hat{\pi}_i\) and \(\hat{\pi}_j\):

\[
\text{cov}(\hat{\pi}_i, \hat{\pi}_j) = -\frac{(t-1)^2}{n-1} \hat{\lambda}_i \hat{\lambda}_j
\]

With this scheme respondents provided with a fair, \(t-1\) sided, die can select an answer by privately obtaining a value \(m\), and choosing, for instance, the \(m^{th}\) true option from the top, skipping over the false category if needed. One difficulty of the approach is, in fact, having a \(t-1\) sided die readily available, as during a phone survey. This is compounded when asking several questions, each with a different number of categories. In the following section we propose a design that addresses this point and illustrates other important properties of gathering information with a negative survey.

3.1.1. Two-option Survey Scheme

It was earlier discussed how it is essential to know how respondents choose, on average, from the available options, and considered using a \(t-1\) sided die to determine their selection. However, this has the inconvenience of necessitating a customized device for each question (unless an general purpose random number generator is at hand). Next, we present a scheme that resolves this issue and reduces the impact of unknown biases (arising from an incorrect compliance with the survey instructions) by automating part of the decision process.

Direct response surveys as well as randomized response techniques require presenting all categories to the interviewee—for only one choice is true. Conversely, in a negative survey all options except one are true: consequently, only a subset needs to be evaluated by the respondent. With this in mind, our scheme preselects, uniformly at random, a subset of the categories (two or more) for each of the individuals questioned.
Consider the case where each subject is presented with a question and two options; if both options prove true, one should be selected at random—the interviewee privately tosses a fair coin prior to reading the question and picks the first category if heads, the second if tails—otherwise, when only one option is true, the true option must be selected. Note that the setup only makes sense when the original survey doesn’t include categories of the type “None of the above”.

The probability of choosing \(X_i \) in this setup, is the probability of it being presented in the questionnaire times the probability that it is selected by the interviewee. We can analyze this as the sum of two terms \(^†\): when it is presented alongside the only false option \((X_j) \), in which case it will be selected, and when it is paired with another true alternative and a choice must be made between them:

\[
p_{i,j} = \frac{2}{t(t-1)} + \sum_k \frac{2}{t(t-1)} P(X_i|X_k = T), \quad (k \neq j)
\]

where \(P(X_i|X_k = T) \) denotes the probability of \(X_i \) being chosen given that it is presented together with another true option \(X_k \).

We obtain a bound for selecting \(X_i \), when it is a true alternative, by setting \(P(X_i|X_k = T) \) to zero and one respectively:

\[
p_{i,j} \in \left[\frac{2}{t(t-1)} \left(\frac{2(t-2)}{t(t-1)} \right) \right]
\]

Consider that if all categories are presented to each respondent and respondents ignore the outcome of the randomizing device, there might be a particular alternative that never gets chosen (true also if the subset shown to the interviewee has more than two categories), or an option that always does (except when it proves false to the interviewee). Using the two-option survey scheme, this possible error is greatly reduced.

Finally, if no additional information is available regarding how subjects choose between true alternatives, we assume \(P(X_i|X_k = T) = \frac{1}{2} \) for all \(i \neq k \), and, therefore, that \(p_{i,j} = \frac{1}{t-1} \) for all \(i \neq j \). The sought after proportions, \(\pi_i's \), are computed according to Eq. \ref{eq:p textStyle} and the variances and covariances according to Eq. \ref{eq:var} and \ref{eq:cov} respectively.

Three interesting features of this approach are worth noting: first, the use of a single randomizing device for every question independent of the number of categories (for the above scenario, the use of a coin instead of a \(t-1 \) sided die); second, the ability to conduct a survey without disclosing all of the options to individual respondents; and third, that the error in estimating the \(p_{i,j} \)'s is bounded even if the coin is used improperly.

4. Conclusion

Survey accuracy depends on minimizing the incidence of nonrespondents and on the honest participation of respondents. In studies where interviewees are required to answer sensitive questions, care must be taken to avert these difficulties by ensuring respondent privacy. In this paper we presented a method for administering a questionnaire that safeguards interviewee’s privacy. The survey in question seeks to estimate the population frequencies of a polychotomous variable; it consists of a single (potentially sensitive) question and \(t \)

\(^†\)The probability of \(X_i \) being selected if it does not answer the question truthfully is considered to be zero and therefore omitted.
options from which to choose an answer. Its privacy preserving properties do not rely on anonymity, cryptography or on any legal contracts, but rather on participants not revealing their true answer to the survey’s query—respondents are only required to discard, with a known probability distribution, some of the categories that do not answer the question for them. This information is enough to estimate the population proportions of the variable under study; yet, insufficient to ascribe a sensitive datum to a particular individual. We call the method Negative Surveys.

Negative surveys are closely related to randomized response techniques (RRTs): both aim at conducting private surveys and both rely on the (secret) use of a randomizing device to answer questionnaires. One key distinction, however, is that in RRTs participants use the device to choose among questions, at least one of which is sensitive; while in negative surveys, they use it to choose among answers, avoiding the problem of selecting the proper alternative question altogether. Also, with RRTs some subjects will be selected, by the randomizing device, to answer the potentially stigmatizing question. It might still be problematic for them to participate, as the question remains sensitive and answering it demands a measure of trust on the surveying scheme and on the surveyors. [Fox and Tracy (1986) cite a study in which the randomizing device was rigged in order to study respondent behavior; a similar practice could be used to subvert their privacy. Negative surveys never prompt respondents to answer a sensitive query directly.]

We also presented a special setup for negative surveys that reduces the complexity of the randomizing device to a simple, fair coin revealing an important characteristic of our method: an interviewee does not need to contemplate all of the question’s potential answers to pick his own, furnishing a level of secrecy to the survey itself and providing robustness against the non-observance of questionnaire instructions ([Ambainis et al. (2004) discuss cryptographic techniques to avoid cheating in RRT]).

We expect that the privacy of a negative survey, its comprehensible guarantees, and robustness will increase the level of cooperation and accuracy in topic-sensitive studies.

References

Abul-Ela, A., B. Greenberg, and D. Horvitz (1967, Sep.). A multiproportions randomized response model. *Journal of the American Statistical Association* 62, 990–1008.

Ambainis, A., M. Jakobsson, and H. Lipmaa (2004). Cryptographic randomized response techniques. In *Public Key Cryptography PKC 2004: 7th International Workshop on Theory and Practice in Public Key Cryptography*, London, UK, pp. 425–438. Springer-Verlag.

Bourke, P. D. and T. Dalenius (1973). Multi-proportions randomized response using a single sample. Technical Report 68, University of Stockholm, Institute of Statistics.

Bourke, P. D. and T. Dalenius (1976). Some new ideas in the realm of randomized inquiries. *International Statistics Review* 44, 219–221.

Chaudhuri, A. and R. Mukerjee (1988, Sep.). *Randomized Response: Theory and Techniques*. Marcel Dekker Inc.

Esponda, F. (2005). *Negative Representations of Information*. Ph. D. thesis, University of New Mexico.
Feigenbaum, J., B. Pinkas, R. Ryger, and F. S. Jean (2004). Secure computation of surveys. In EU Workshop on Secure Multiparty Computation (SMP), Amsterdam, The Netherlands.

Fox, J. A. and P. E. Tracy (1986, Jul.). Randomized Response: A Method for Sensitive Surveys (Quantitative Applications in the Social Sciences). Sage Publications.

Gjestvang, C. and S. Singh (2006). A new randomized response model. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(3), 523–530.

Horvitz, D., B. Shah, and W. Simmons (1967). The unrelated question randomized response model. In Proceedings of the Social Statistics Section, American Statistical Association.

Kim, J. and W. Warde (2005). Some new results on the multinomial randomized response model. Communications in Statistics—Theory and Methods 34, 847–856.

Mangat, N. (1994). An improved randomized response sampling strategy. Journal of Royal Statistical Society: Series B (Statistical Methodology) 56(1), 93–95.

Moors, J. (1971). Optimization of the unrelated question randomized response model. Journal of the American Statistical Association 66, 627–629.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal 27(3), 379–423.

Sudman, S. and N. Bradburn (1974). Response effects in surveys: A review and synthesis. Chicago: Aldine.

Warner, S. L. (1965, Mar.). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association 60(309), 63–69.