Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch

Fei Yu1,2, Wenbo Liu1, Si-Wen Ke3, Mohamedally Kurmoo4, Jing-Lin Zuo3✉ & Qichun Zhang1,5✉

Electrochromic (EC) materials with a dark-to-transmissive switch have great applications in optical communications, infrared wavelength detectors for spacecraft, and infrared camouflage coatings. However, such electroactive materials with high stability and cyclability are rare. Considering the advantages of the donor-acceptor approach (wide-range tuneable band position) and porous two-dimensional (2D) covalent organic framework (COF, well-ordered crystalline framework with stable structure and high surface area), in this work we constructed an extended delocalised π-electron layered dark purple EC-COF-1 by reacting the donor N,N,N′,N′-tetrakis(p-aminophenyl)-p-benzenediamine (TPBD) with the acceptor 2,1,3-benzothiadiazole-4,7-dicarboxaldehyde (BTDD). A sandwiched device made of EC-COF-1 exhibits the two-band bleaching (370 nm and 574 nm) in the visible region and becomes transparent under the applied potential with an induced absorption centring at 1400 nm. This discovery of a stable dark-to-transmissive switch in COF might open another door for their application in many EC devices for various purposes.
Recently, organic layered materials with extended π-electron structures, and controllable porosity to mimic graphene and its analogues are becoming the focus of much scientific research due to the numerous technological attributes—low density, easy preparation, electronic activity, photoactivity associated with the tuneable colours, the low-cost processing and manufacturing, and the friendliness to our environment. Generally, the design strategy to construct electronic and optical materials is to create covalent bonds between two redox-active building blocks. If both electron donating (D) and electron accepting (A) building units are simultaneously used in one structure, a D–A type-conjugated covalent organic framework (COF) is formed. By selecting the suitable D and A units with reasonable energy levels (redox potentials), the COF with the desired electrical, optical, or combined optoelectronic properties could be achieved. Recent reports have demonstrated the applicability of functional D–A COF as active elements in organic photovoltaics (OPV), photoconductive devices, photocatalysis, and two-photon-induced fluorescence. Beside benefiting from their ordered micro- or meso-pores, COFs are also used as external-stimuli-responsive materials to sense light, solvent, and pH. Although the energy levels of D–A polymers can be tuned to reach the desired valence and/or conduction band positions for the purpose to display desired EC properties, the application of D–A COF in electrochromic devices (ECD) is rare. However, for most EC products, such as eyewear, smart windows, and display devices, neutral-state black devices integrated with bleached states are highly desirable. Nevertheless, to the best of our knowledge, black colour currently remains a big challenge due to the special demand for broadband absorption across the whole visible region. Such gap strongly encourages us to develop COF with the ordered pores and the extended regular π–π stacking structures for potential application in electrochemistry and photoelectrochemistry fields.

Here, we show a D–A two-dimensional (2D) COF with N,N,N′,N′-tetraakis(p-aminophenyl)-p-benzenediamine (TPBD) as donor, and 1,3-benzothiazol-4,7-dicarboxaldehyde (BTDD) as acceptor, was prepared (Fig. 1 and Supplementary Fig. 1) and has been employed as an active element for EC device (Fig. 1c). When the voltage is ramped from −1.8 to +2.0 V, the colour of the as-fabricated 2D COF films accordingly change from opaque black to transparent. Note that under our experimental condition, all EC devices are stable and can be reversibly switched. The typical modulation of the electronic structure of the COF has been provided in Fig. 1c.

Results

COF design and synthesis. To obtain efficient electrical response, COF materials should not only have sufficient oscillator strength during charge transfer transitions, but also be sensitive to the changes of polarity in the pores. The COF with electron-rich donors and electron-deficient acceptors as building blocks might be ideal candidates for such applications, because they would provide us more opportunities to tune their band gap and electrochemical activity. Since our previous results have already demonstrated that triphenylamine units could easily realise well-ordered frameworks with large crystal domains, the same strategy will be extended in the present research. Besides, this type of units might enable us to optimise the EC response within a single COF family. Moreover, we believe that the tuneable electron deficiency in aldehyde counterparts would produce the electronic transitions, with the varying degrees of charge transfer across the conjugated imine bond and decrease the energy gap to form the dark-coloured COF (Supplementary Fig. 2).

The building units of TPBD and BTDD were synthesised according to the reported methods with slight modifications (see Supporting Information). The 2D COF was prepared as follows: after dissolving TPBD and BTDD in a mixed solvent of 1,2-dichlorobenzene-1-butanol (v:v = 1:1) and ultrasonating 20 min to generate a dark purple solution, acetic acid (6 M) was added, followed by rapid freezing to 77 K, degassed through three cycles of freeze–pump–thaw, and sealed under vacuum. After the sealed tube was heated at 120 °C for 72 h, the targeted EC-COF-1 was formed as a dark purple precipitate.

EC-COF-1 films were deposited on transparent conducting indium tin oxide (ITO) electrodes by direct liquid/solid interface solvothermal method at 120 °C. ITO electrodes were cut to the appropriate size (1.0 × 1.5 cm) and placed vertically in a glass tube. The as-fabricated EC-COF-1 film on the ITO electrode displays blue-purple colour with the well adhesion ability.

Structure characterisation. The powder X-ray diffraction (PXRD) pattern of the as-synthesised EC-COF-1 (Fig. 2a) shows several distinct Bragg reflections with 2θ approximately at 4.0, 5.8, 8.1, and 9.0°, consistent with that simulated for a model structure. Furthermore, Pawley refinement was used to extract C2 space group, and a unit cell of a = 31.96, b = 30.87, c = 4.72 Å, and β = 92.3°. The good match between the experimental result and the simulated pattern is further confirmed as judged by their difference (Fig. 2a–c and Supplementary Table 1). The suitable sample for transmission electron microscopy (TEM) was prepared through immersing ITO electrode into EtOH, where the films automatically detached from the ITO substrates. The TEM image (Fig. 2d) of the film clearly displays many parallel lines with the neighbouring distance of ~1.8 nm, attributing to a dominant hkl of an ordered structure of the EC-COF-1. The homogenous topography of the as-fabricated film lies in the range 500 ± 20 nm. This result further provides solid experimental evidence of the high crystalline and meso-porous nature of the EC-COF-1 film.
Changes in the optical spectrum of EC-COF-1

Band structure calculation. The electronic energy diagram of the band structure calculated by the PBE-D3 process clearly suggests that pristine EC-COF-1 is a semiconductor with an apparent indirect energy band gap of 0.64 eV (Fig. 3a and Supplementary Fig. 7)43, which is consistent with the observed gap of 0.75 eV from solid-state ultraviolet–visible–near-infrared (UV–vis–NIR) spectrum (Supplementary Fig. 8). The bandwidths of the valence and the conduction bands are 0.34 and 0.15 eV, respectively. The HOMO of the valence band maximum (VBM) is predominantly located on the TPBD donor node, while the LUMO of the conduction band minimum (CBM) is delocalised over the BTDD acceptor unit, confirming the π-conjugated feature (Fig. 3b, c). Furthermore, the CBM and VBM dominantly constitute of the atomic orbitals of C and N, which supports the creation of expanded π-conjugation, since these energy levels were observed through the partial density of states (Supplementary Figs. 9 and 10)44–46.

Electrochromism. A quasi-solid-state device was constructed to evaluate the potential application of the EC-COF-1 film as an EC electrode. The EC device has a sandwiched configuration (Figs. 1b and 4). The X-ray diffraction (XRD) patterns of the as-prepared EC-COF-1 clearly indicated that there were almost no changes, suggesting that the structure of the as-prepared EC-COF-1 film has high stability. Thermogravimetric analysis revealed that EC-COF-1 has high thermal stability up to 405 °C (Supplementary Fig. 6).

uniformity of the as-fabricated COF films. Attenuated total reflection Fourier transform infrared spectra revealed the absence of both ν(N – H) from TPBD in the range of 3450–3010 cm⁻¹ and ν(C = O) at 1670 cm⁻¹ from BTDD, while the emerging band at 1620 cm⁻¹ is assigned to ν(C = N) for EC-COF-1 (Supplementary Fig. 4). The Brunauer–Emmett–Teller measurement showed a non-hysteretic sorption isotherm for N₂ gas at 77 K with a surface area of 915 m² g⁻¹ and a pore volume of 0.64 cm³ g⁻¹ (Fig. 2f and Supplementary Fig. 5). The non-local density function theory31–42 was employed to estimate a pore size distribution of ~1.8 nm (Supplementary Fig. 5). The X-ray diffraction (XRD) patterns of the as-prepared films before and after electrochemical oxidation (Fig. 2g) clearly indicated that there were almost no changes, suggesting that the structure of the as-prepared EC-COF-1 film has high stability. Thermogravimetric analysis revealed that EC-COF-1 has high thermal stability up to 405 °C (Supplementary Fig. 6).
EC-COF-1-covered ITO plate was employed as the working electrode, another blank ITO glass as the counter electrode, and a LiClO₄/polypropylene carbonate-based PMMA polymer gel as a quasi-solid electrolyte, which was injected into the space between two electrodes. When an applied external potential across the device is gradually increased, both absorption bands at 370 and 574 nm proportionally decrease. Meanwhile, the concomitant formation of new absorption arose in the NIR region (Fig. 3d), indicating the formation of radical cations (polarons) and further evolving into dications (bipolarons) at higher bias voltages (Supplementary Fig. 11). These changes can be clearly observed in the transmittance (ΔT%) of 33% at 574 nm and 12% at 730 nm. Moreover, the stability of EC devices was also studied, where ΔT% dropped only ca. 0.3% at 574 nm and 0.5% at 730 nm after 15 cycles of switching potential. Also, good stability in 200 cycles was observed under cyclic voltammetry test. Moreover, the XRD pattern at the hkl (100) Bragg reflection was retained, indicating that the EC-COF-1 structure is stable after 13. The response time is obtained from the ΔT% experiments, where the contrast ratio reach over 90% of its maximum of approximately 12% at 730 nm. Moreover, the stability of EC devices was also significantly reduced the energy band gap (Fig. 3a) could be treated as a promising visible-to-NIR EC material.

The relative luminance changes during potential programming were studied through measuring the brightness of the transmitted light as a percentage of that of a light source calculated against the eye sensitivity. In the process of electrochemical oxidation, the colour of EC-COF-1 films switched from an opaque blue-purple state to strongly transparent appearance with a relative luminance change of up to 36.5% (Supplementary Fig. 16). A dark purple solution was formed, followed by the addition of acetic acid –Δfl, where Δfl was added, followed by rapid freezing to 77 K, degassed through filtration, washed with MeCN, and dried in air to yield a dark purple precipitate.

EC-COF-1 thin film synthesis. COF thin films were prepared in a 20 mL glass reaction tube of 12 mm diameter. ITO-coated glass (10–12 Ω/Y) substrates were cleaned with detergent solution, water, acetone, and isopropanol, and then, activated with an O₂-plasma for 10 min directly before use. The substrates were placed vertically in a glass tube. TPBD (4.6 mg, 10 μmol) and BTDD (3.8 mg, 20 μmol) were added into the tube, followed by the addition of a mixed solvent of 1,2-dichlorobenzene-ν-butanol (v/b = 1:1 mL). After ultrasonating 20 min, a dark purple solution was formed, followed by the addition of acetic acid (200 μL, 6 M), rapid freezing to 77 K, degassed through three freeze–pump–thaw cycles for three times, and sealed under vacuum. Then, the sealed tube was heated at 120 °C for 72 h. After cooling to room temperature, the precipitate was collected by filtration, washed with MeCN, and dried in air to yield a dark purple precipitate.

The data that support the findings of this study are available within the article and Supplementary Information files, or available from the corresponding authors on request. Source data are provided with this paper.

Received: 10 August 2020; Accepted: 8 October 2020; Published online: 02 November 2020

Discussions

We have demonstrated a successful D–A approach in constructing COF with a reversible electrochromic property switching from blue-purple to transparent. We believe that their D–A structure, stable crystallinity, high surface area, reversible transparency in the visible region, and the opacity in the NIR region are key factors to allow us to obtain such dark-to-transmissive switch. Together with other appealing advantages of COF such as the ease of self-assembly and low weight, we believe that such materials would have great application in diverse EC devices and stimuli-responsive instruments.

Methods

The synthesis of EC-COF-1 bulk powder. The synthesis of COF bulk powder was performed under vacuum in polytetrafluoroethylene-sealed glass reaction tubes (20 mL). Solvents and acetic acid were obtained in highly pure grades from commercial suppliers and were, unless shipped under argon, degassed, and saturated with argon prior to use. TPBD (23.2 mg, 50 μmol) and BTDD (19.3 mg, 100 μmol) were added into a reaction tube, followed by the addition of a mixed solvent of 1,2-dichlorobenzene-ν-butanol (v/b = 1:1 mL). After ultrasonating 20 min, a dark purple solution was formed, followed by the addition of acetic acid (200 μL, 6 M), rapid freezing to 77 K, degassed through three freeze–pump–thaw cycles for three times, and sealed under vacuum. Then, the sealed tube was heated at 120 °C for 72 h. After cooling to room temperature, the precipitate was collected by filtration, washed with MeCN, and dried in air to yield a dark purple precipitate.

Structure characterisation. PXRD patterns were conducted on a PANalytical X’ Pert Pro MPD diffractometer using Cu Kα radiation (λ = 1.5406 Å) and operating at 40 kV and 40 mA between 2 and 30° (2θ). Thin film XRD patterns were conducted on Bruker D8 Discover with Ni-filtered Cu Kα radiation (λ = 1.5406 Å) and a LynxEye position-sensitive detector. TEM was performed with a JEM-2100 (JEOL Ltd., Japan) with an accelerating voltage of 200 kV.

Optical absorption spectroscopy. UV–vis–NIR spectra were recorded on a Perkin-Elmer Lambda 950 spectrometer equipped with a 150 mm InGaAs integrating sphere. Time-resolved absorption measurements were performed at fixed detector gain and slit settings. Diffuse reflectance spectra were collected with a Praying Mantis (Harrick) accessory and were referenced to barium sulphate powder as white standard. The specular reflection of the sample surface was removed from the signal by spatial filtering.

Data availability

The data that support the findings of this study are available within the article and Supplementary Information files, or available from the corresponding authors on request. Source data are provided with this paper.

References

1. Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).
2. Ebrahimi, M. & Rosei, F. Materials science: organic analogues of graphene. Nature 542, 423–424 (2017).
3. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).
4. Chen, L. et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor–acceptor heterojunctions. J. Am. Chem. Soc. 136, 9806–9809 (2014).
5. Jin, S. et al. Charge dynamics in a donor–acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew. Chem. Int. Ed. 52, 2017–2021 (2013) with contribution from M.K.

6. Jin, S. et al. Creation of superheterojunction polymers via direct polycrystallization: segregated and bicontinuous donor–columnar arrays in covalent organic frameworks for long-lived charge separation. J. Am. Chem. Soc. 137, 7817–7827 (2015).

7. Feng, X. et al. Ambipolar conducting covalent organic framework with self- and periodic electron donor–acceptor ordering. Adv. Mater. 24, 3026–3031 (2012).

8. Jin, S. et al. Large pore donor–acceptor covalent organic frameworks. Chem. Sci. 4, 4505–4511 (2013).

9. Medina, D. D. et al. Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano 8, 4042–4052 (2014).

10. Mandal, A. K., Mahmood, J. & Baek, J.-B. Two-dimensional covalent organic frameworks for optoelectronics and energy storage. ChemNanoMat 3, 373–391 (2017).

11. Yao, L. et al. An energy and charge transfer synergetic donor–acceptor heterostructure 2D-COF in photovoltaics. J. Mater. Chem. A 8, 8518–8526 (2020).

12. Cox, J. M., Mileson, B., Sadagopan, A. & Lopez, S. A. Molecular recognition and band alignment in 3D covalent organic frameworks for cocrystalline organic photovoltaics. J. Phys. Chem. C. 124, 9126–9133 (2020).

13. Dogru, M. et al. A photoconductive thiophenoiline-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. 52, 2920–2924 (2013).

14. Wang, H. Covalent organic framework photocatalysts: structures and applications. Chem. Soc. Rev. 49, 4135–4165 (2020).

15. Lei, K. A metal-free donor–acceptor covalent organic framework photocatalyst for visible-light-driven reduction of CO2 with H2O. ChemSusChem 12, 1725–1729 (2019).

16. Luo, M. Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride heterostructures. Acc. Chem. Res. 53, 3434–3450 (2018).

17. McDonagh, A. M. et al. A variable optical attenuator operating in the near-infrared region based on an electrochromic molybdenum complex. Chem. Mater. 12, 2523–2524 (2000).

18. Aydemir, K., Tarkuc, S., Durmus, A., Gunbas, G. E. & Toppare, L. Synthesis, characterization and electrochromic properties of a near infrared active conducting polymer of 1,4-di(selenophen-2-yl)benzene. Polymer 49, 2029–2032 (2008).

19. Esmer, E. N., Tarkuc, S., Udum, Y. A. & Toppare, L. Near infrared electrochromic polymers based on phenazine moieties. Mater. Chem. Phys. 131, 519–524 (2011).

20. Bergeron, B. V. et al. Variable absorbance and emittance devices for thermal control. J. Phys. Chem. C. 112, 832–838 (2008).

21. Zheng, Y., Zheng, J., Dou, L., Qiao, W. & Wan, X. Synthesis and characterization of a novel kind of near infrared electrochromic containing an anthraquinone inside group and ionic moieties. J. Mater. Chem. 19, 8470–8477 (2009).

Acknowledgements
We acknowledge financial supports from Singapore AcRF Tier 1 (RG 113/18) and Tier 2 (MOE 2018-T2-1-070), National Basic Research Program (No. 2018YFA0308004), National Natural Science Foundation of China (No. 21801054 and 21631006), National Science Research of Jiangsu Higher Education Institutions of China and Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology. Q.Z. also thanks the support from the starting funding of City University of Hong Kong. 111 Project (D20015), and State Key Laboratory of Supramolecular Structure and Materials, Jilin University (sklssm202004).

Author contributions
Q.Z. and J.-L.Z. supervised the project. Q.Z. and F.Y. conceived and designed the project. F.Y. synthesized and characterized the materials. F.Y. performed the theoretical calculations. Y.W. and S.-W.K. conceived and built the device and contributed to the EC device. F.Y. and Q.Z. analyses the data with contribution from M.K. and wrote the manuscript. All authors discussed the results and contributed to the manuscript.

Competing interests
The authors declare no competing interests.
Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-19315-6.

Correspondence and requests for materials should be addressed to J.-L.Z. or Q.Z.

Peer review information Nature Communications thanks Shanxin Xiong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.