Typical rise and fall of troponin in (peri-procedural) myocardial infarction: A systematic review

Dianne van Beek, Bas van Zaane, Marjolein Looije, Linda Peelen, Wilton van Klei

Abstract

AIM: To identify the typical shape of the rise and fall curve of troponin (Tn) following the different types of myocardial infarction (MI).

METHODS: We conducted a systematic search in PubMed and Embase including all studies which focused on the kinetics of Tn in MI type 1, type 4 and type 5. Tn levels were standardized using the 99th percentile, a pooled mean with 95%CI was calculated from the weighted means for each time point until 72 h.

RESULTS: A total of 34 of the 2528 studies identified in the systematic search were included. The maximum peak level of the Tn was seen after 6 h after successful reperfusion of an acute MI, after 12 h for type 1 MI and after 72 h for type 5 MI. In type 1 MI there were additional smaller peaks at 1 h and at 24 h. After successful reperfusion of an acute MI there was a second peak at 24 h. There was not enough data available to analyze the Tn release after MI associated with percutaneous coronary intervention (type 4).

CONCLUSION: The typical rise and fall of Tn is different for type 1 MI, successful reperfusion of an acute MI and type 5 MI, with different timing of the peak levels and different slopes of the fall phase.

Key words: Troponin; Myocardial infarction; Systematic review; Reperfusion; Coronary artery bypass grafting

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In this systematic review we aimed to identify the typical rise and fall of cardiac troponin (Tn) in the different types of myocardial infarction (MI). A total of 34 of the 2528 studies identified in the systematic search were included. The typical rise and fall of Tn is different for type 1 MI, successful reperfusion of an
van Beek D et al. Typical rise and fall of troponin in myocardial infarction

INTRODUCTION

Myocardial infarction (MI) is the collective term for myocardial necrosis in the setting of myocardial ischemia\(^1\). There are many different conditions which can result in myocardial ischemia and subsequent MI. Currently, there are five distinct types of MI defined: Type 1 spontaneous MI related to atherosclerotic plaque rupture, type 2 MI secondary to an imbalance between oxygen supply and oxygen demand, type 3 MI resulting in death when biomarkers are not available, type 4a MI related to percutaneous coronary intervention (PCI), type 4b MI related to stent thrombosis, and type 5 MI related to coronary artery bypass grafting (CABG)\(^2\).

For all different types of MI, excluding type 3, cardiac biomarkers are the cornerstone for diagnosing its occurrence. The preferred cardiac biomarker for the detection of myocardial damage is troponin (Tn)\(^3\). Tn (subtypes I en T) is part of the contractile apparatus of myocardial cells only and is therefore a highly specific biomarker for myocardial damage\(^3\). Elevated levels of Tn can be detected within 3-12 h after the start of ischemia and they reach a peak after 12-48 h\(^3\). However, as Tn is a structural component of myocardial cells, Tn levels will be elevated in patients with chronic heart conditions such as heart failure as well. Therefore, to distinguish between an acute MI and chronic cardiac disease, elevation of Tn alone is not specific enough. There needs to be a significant change in the level of Tn, i.e., a rise and/or a fall. In spontaneous MI a relative difference of more than 20% is considered a significant change\(^4\). More specifically, in spontaneous MI any level above the 99th percentile is considered a rise\(^1\). The cut off levels according to the third universal definition for a typical rise in PCI associated MI (> 5 times 99th percentile) and CABG associated MI (> 10 times 99th percentile) are consensus based and not evidence based\(^4\).

The typical rise and/or fall of Tn is thus crucial for the diagnosis of MI\(^3\). However, the exact shape of the rise and fall curve is largely unknown. Nevertheless, understanding the shape of the rise and fall curve would allow for better timing of Tn blood sampling in clinical practice and would improve diagnostic criteria per type of MI. The aim of this systematic review was to identify the typical shape of the rise and fall curve of Tn following the different types of MI.

MATERIALS AND METHODS

Literature search

Medline (PubMed) and Embase were searched from 1966 through October 2013 for publications. We used synonyms and abbreviations for “rising”, “falling”, “changing”, “troponin” and “myocardial infarction” as keywords (See supplementary 1 for search strategies). Based on titles and abstracts, all studies evaluating Tn in MI were included. Different types of studies were eligible, for example cross sectional studies of patients with MI, cohort studies including patients with symptoms of cardiac ischemia, randomized controlled trials concerning treatment or diagnosis of MI and case control studies where the cases had MI. We included studies in patients with MI that focused on cardiac Tn, both Tn-I and Tn-T, and that reported at least two different Tn-values with at least one sample above the cut off level. Abstracts from conference proceedings, non-human studies, non-English studies, and studies on animals, children, chronic conditions and cardiomyopathy were excluded.

First, all titles and abstracts were screened for eligibility. Second, screening was extended to full text for all studies that where either marked as relevant or when the eligibility was unclear from screening titles and abstracts. Eligibility was determined using a standardized form containing the above mentioned criteria.

The methodological quality of included studies was assessed by two observers (DvB and ML) and in case of doubt by a third observer (BvZ) using an adjusted QUADAS-tool\(^5\) (see supplementary 2 for quality criteria). The selected items of the QUADAS-tool enabled us to examine potential sources of bias and variation\(^4\). The defined quality domains were; representativeness of the spectrum (i.e., the representativeness of the patients in the study for clinical practice), acceptable reference standard, acceptable delay between tests, partial verification avoided, relevant clinical information, interpretable results reported, and withdrawals explained. We did not calculate summary scores estimating the overall-quality of included studies since it has been shown that their interpretation is problematic and may be misleading\(^6\).

Data extraction took place using a specifically designed data extraction form. The two observers independently extracted raw data from the included studies to obtain information on Tn levels at different time points. Other elements that were extracted included the year of publication, the type of study, the research question, any subgroups, inclusion and exclusion criteria, the setting (e.g., emergency department; in hospital, post-surgery) and sample size. In addition, the proportion of patients with MI, the mean or median age of patients with MI, the proportion of males with MI, any comorbidities and the diagnostic criteria used for MI were obtained. Finally, test characteristics were extracted such as the type of Tn test, the 99th percentile/upper reference limit/cut off level of the Tn test, limit of detection, number of samples per patient and the sample time points in relation to the
Data were considered missing if not explicitly mentioned in the text and if impossible to deduce the information directly from other information in the text. Discrepancies between the two observers were resolved by discussion.

Statistical analysis

Studies were divided into four subgroups based on the focus of the articles: Studies on type 1 spontaneous MI, studies that focused on successful reperfusion in the setting of an acute MI (where reperfusion was not initiated or its effect not evaluated), studies on MI associated with PCI (type 4a MI), and studies on MI associated with CABG (type 5 MI). Type 2 MI studies were not included in this systematic review as the etiology behind this type of MI is distinctly different.

In this review we aimed to address the general rise and fall of Tn and not the rise and fall of specific Tn tests. Therefore, all Tn levels that were obtained within 72 h were included in our analysis. If the timing of the samples was not specified, the study was excluded from analysis. If only one data source was available for a given point in time, we excluded this time-point from our analysis.

For each time point up till 72 h we conducted the following procedure. For each study, we first determined the mean and standard deviation (SD) of the Tn values. If available, mean and SD as presented in the article was used. Alternatively, when only a median was available the mean was approximated. For articles with less than 25 patients with MI, we used the formula of Hozo et al.\(^{10}\) to approximate the mean, for articles with 25 or more patients with MI, the median was used as the best estimate of the mean. Articles for which the mean could not be approximated were excluded from analysis. When the standard error (SE) was not available from the articles directly, it was calculated from SD, confidence interval (CI), or median absolute deviation. Articles for which the SE was not available nor could be calculated were excluded from the analysis.

Subsequently, in order to make the Tn levels from different studies comparable, all Tn levels were standardized. Standardization was achieved by dividing the Tn levels by the 99th percentile of that particular Tn test. If the 99th percentile was not available, we used the upper reference limit (URL) or the cut off value for standardization. Studies that did not mention a 99th percentile or an URL or a cut off value for their Tn test were excluded from analysis.

After standardization, results over studies were pooled as follows. Every study was assigned a weight according to the inverse of the variance (1/SE\(^2\)). The weighted mean per article was calculated by multiplying the mean with the weight. The sum of all weighted means was divided by the sum of all weights to calculate a pooled mean for every time point. The SE per time point was calculated as follows: 1/(sum of the weights)\(^{0.5}\). From the pooled SE the 95%CI was calculated.

The pooled mean of the standardized Tn levels with the corresponding CI at different time points were analyzed and summarized using a graph.

RESULTS

Search results

Our search resulted in 2528 potentially eligible studies (Figure 1). After screening titles and abstracts 2189 studies were excluded. After reviewing and applying the in- and exclusion criteria to the full text of the remaining 339 studies, 34 studies remained for analysis. There were 17 studies on type 1 spontaneous MI, 8 on successful reperfusion, 1 on MI associated with PCI (type 4), and 9 studies on MI associated with CABG (type 5). One study could be included in the analyses for both type 1 MI and reperfusion. The baseline characteristics of the included studies are summarized in Table 1.

Quality of the included studies

Table 2 describes the results of the quality assessment. Almost all studies avoided partial verification, worked with relevant clinical information and a representative spectrum of patients with MI. Very few studies reported uninterpretable results or explained withdrawals.

Typical rise and fall of Tn

The pooled mean Tn level in type 1 MI showed an early first peak of 7.0 (95%CI: 6.0-8.0) at 1 h. This initial peak was followed by a maximum pooled mean Tn level of 84 (95%CI: 82-86) at 12 h. A third small peak followed at 24 h (2.7; 95%CI: 2.6-2.9) (Figure 2). Finally, there was a gradual fall of Tn.

The maximum pooled mean of Tn after successful reperfusion was at 6 h (1853; 95%CI: 1851-1855), another high peak followed at 24 h (1006; 95%CI: 1004-1007) (Figure 3). Subsequently, there was a pronounced fall in Tn. The pooled mean Tn in type 5 MI associated with CABG raised the first 24 h, after which
van Beek D et al. Typical rise and fall of troponin in myocardial infarction

Table 1 Baseline characteristics of included studies

Ref.	Baseline characteristics of included studies															
Aldous et al[28]	2011	939	200 (21)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnT	HS-TnT (T)	HS-TnI (I)	(T) 0.014 μg/L	(I) 0.028 μg/L	(T) 99th	(I) 99th	Admission	
Aldous et al[28]	2012	385	82 (21)	59 (72)	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT (T)	(T) 0.014 μg/L	(I) 0.028 μg/L	(T) 99th	(I) 99th	Admission		
al-Harbi et al[29]	2002	86	51 (59)	46 (90)	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	0.05 μg/mL	99th	Admission					
Apple et al[30]	2009	381	52 (13)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	0.034 μg/L	99th	Admission					
Bahrmann et al[31]	2013	306	38 (12)	23 (61)	Biomarkers	ECG Imaging Symptoms	Symptoms	TnT	HS-TnT	14 ng/L	99th	Admission				
Bertinchant et al[32]	20196	682	48 (7)	41 (85)	WHO	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT	0.1 μg/L	14 ng/mL	Cut off	99th	Admission	
Bienert et al[33]	2013	459	111 (3)	82 (74)	WHO	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT	0.1 μg/L	14 ng/mL	Cut off	99th	Admission	
Bjurman et al[34]	2013	1504	1178 (75)	716 (61)	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT	40 ng/L	99th	Admission				
de Winter et al[35]	2000	131	131 (100)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT	0.1 μg/L	URL	Symptoms				
Falahati et al[36]	1999	327	62 (19)	NA	WHO	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT	0.20 μg/L	(HT): 0.014 μg/L	(II): 0.009 μg/L	(I): 0.009 μg/L	Symptoms	Admission
Haef et al[37]	2012	887	127 (14)	87 (69)	WHO	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT (I): 0.014 μg/L	(II): 0.009 μg/L	(I): 0.009 μg/L	Cut off	(HT): 99th	(II): 99th	(I): 99th
Lucia et al[38]	2001	82	42 (51)	32 (76)	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT	1.5 ng/mL	URL	Admission				
Mohler et al[39]	1998	100	21 (21)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT	0.1 ng/mL	Cut off	Admission				
Mueller et al[40]	2012	863	165 (21)	121 (73)	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT	14 ng/L	(T): 0.014 μg/L	(I): 0.04 μg/L	99th	(T): 99th	(I): 99th	Admission
Reichlin et al[41]	2011	836	108 (13)	73 (68)	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT (I): 14 ng/L	(T): 0.014 μg/L	(I): 9 ng/mL	(T): 99th	(I): 99th	(I): 99th	Admission	
Reichlin et al[42]	2013	840	120 (14)	81 (68)	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT	0.04 μg/L	99th	Admission				
Wu[43]	2009	14	4 (29)	4 (100)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI-ultra	0.04 μg/L	99th	Admission				
Aibe et al[44]	1994	38	26 (68)	20 (77)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	HS-TnT (T)	0.2 ng/mL	URL	Start treatment			
Apple et al[44]	1996	25	17 (68)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	3.1 μg/L	URL	Start treatment					
Ferraro et al[45]	2012	87	87 (100)	68 (78)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI-ultra	0.04 μg/L	99th	Before and after PCI				
Ferraro et al[46]	2013	856	360 (42)	253 (70)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI-ultra	40 ng/L	99th	Before and after PCI				
Mair et al[47]	1991	172	33 (18)	NA	WHO	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	0.5 μg/L	99th	NA				
Ricchiuti et al[48]	2000	83	23 (28)	17 (74)	WHO	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	0.8 μg/L	URL	End of treatment				
Tanasićev et al[49]	1997	30	19 (63)	15 (79)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	0.6 μg/mL	URL	Admission				
Tanasićev et al[49]	1999	442	344 (78)	258 (75)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	0.4 μg/mL	Cut off	Before and after treatment				
Type 4: MI associated with percutaneous coronary intervention	Reimers et al[50]	1997	80	5 (6)	NA	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	0.1 μg/L	URL	PCI and after				
Type 5: MI associated with coronary artery bypass grafting	Abdel Aziz et al[51]	2000	50	14 (28)	14 (100)	Biomarkers	ECG Imaging Symptoms	Symptoms	TnI	10 μg/L	Cut off	Declamping				

WJC | www.wjgnet.com | 296 | March 26, 2016 | Volume 8 | Issue 3 |
the Tn levels stabilized (Figure 4). The maximum pooled mean level of Tn was at 72 h (2.2; 95%CI: 1.8-2.6).

DISCUSSION

In this systematic review we identified the typical shape of the rise and fall curve of Tn following type 1 spontaneous MI, after successful reperfusion of a spontaneous MI, and after type 5 MI associated with CABG. The different types of MI resulted in a different peak level of Tn at different time points followed by distinct fall phases. Understanding these variations of Tn kinetics could result in improvement of the specific diagnostic criteria per type of MI.

It is remarkable that for type 5 MI we found the lowest pooled mean peak level of the different types of MI (2.2 compared to 84 in type 1 MI). This is in contrast with what one should expect when applying the third universal definition. In this definition for type 1 MI the recommended cut off level is defined as the 99th percentile and for type 5 MI 10 times the 99th percentile is recommended. First, the relative high levels of Tn that we found for type 1 MI may be the result of the use of high-sensitive Tn tests. Second, the peak level that we have found in our review for type 5 MI is considerably lower than the optimal cut off level for diagnosing type 5 MI according to a previous published study (266 times the URL). This could be due to the fact that...
The maximum level was at 72 h. Since we did not include patients without MI from the included studies; therefore we cannot make any claims regarding the pooled estimates are small, so it is rather unlikely that in a substantial number of patients the Tn pattern would be different. Second, we standardized the Tn levels preferentially by using the 99th percentile of Tn. However, the procedure of obtaining a 99th percentile of Tn tests is not uniform[11]. This could result in incorrect standardization and thus restriction of the generalizability. In addition, when the 99th percentile was not available we used the cutoff level. The argumentation for the chosen cutoff level was not always clear. However, the effect of this limitation seems minimal as it may affect the absolute levels of the standardized Tn, but not the Tn rise or fall. Third, the different studies used different criteria to define the baseline time point (0:00 h). These differences were more pronounced in type 1 MI than in type 5 MI articles. This makes the results of type 1 more difficult to interpret. Fourth, we only included studies that focused primarily on Tn levels during MI. The excluded studies measured Tn for a different purpose; the timing of the blood sampling and inclusion of the patients was therefore probably not optimal to evaluate the typical rise and fall of Tn. The excluded studies measured Tn for a different purpose; the timing of the blood sampling and inclusion of the patients was therefore probably not optimal to evaluate the typical rise and fall of Tn. Fourth, Tn levels can be influenced by several patient related factors. For instance, impaired renal function is associated with higher Tn levels. Insufficient patient specific data was available to correct for such patient related factors. However, these factors are likely affecting the absolute levels of Tn and not the

Ref.	1	2	3	4	5	6	7	
Type 1: Spontaneous MI	Aldous et al[1]	+		+	+	+	+	
Aldous et al[2]	+	?	+	?				
al-Harbi et al[2]	+		+	+	+			
Apple et al[3]		+	+	+				
Bahrmann et al[4]		+	+	+				
Bertinchant et al[5]	+			+	+			
Biener et al[6]	+			+	+	+		
Bjurman et al[7]	+	?	+	+				
de Winter et al[8]					+	+	+	
Falahati et al[9]		+	+	+	+			
Haaf et al[10]			+		+	+	+	
Lucia et al[11]				+	+		+	
Mohler et al[12]				+	+		+	
Mueller et al[13]				+	+	+		
Reichlin et al[14]	+		+	+	+			
Reichlin et al[15]	+	+	+	+	+			
Wu[16]		+	+	+	+			
Successful reperfusion during acute MI	Abe et al[17]			+	+			
Apple et al[18]		?		+	+	+	+	
Ferraro et al[19]		+	?	+	+	+	+	
Ferraro et al[20]		+	+	+				
Mair et al[21]		+	+	+	+			
Ricchiuti et al[22]		+	+					
Tanasijevic et al[23]		?	?	+				
Tanasijevic et al[24]		+		+				
Type 4: MI associated with percutaneous coronary intervention	Reimers et al[25]			+	+	+	+	
Type 5: MI associated with coronary artery bypass grafting	Abdel Aziz et al[26]		+	+	+			
Alyanakian et al[27]		+	+	+				
Benoit et al[28]		+	+	+	+			
Fellahi et al[29]		+	+	+	+			
Katus et al[30]		+	+	+	+			
Lim et al[31]		+	+	+	+	+		
Mair et al[32]		+	+	+	+			
Thielmann et al[33]	+	+	+	+	+	+		
Thielmann et al[34]	+	+	+	+	+	+	+	

MI: Myocardial infarction. 1: Representativeness of the spectrum; 2: Acceptable reference standard; 3: Acceptable delay between tests; 4: Partial verification avoided; 5: Relevant clinical; 6: Uninterpretable results; 7: Withdrawals explained information.
shape of the rise-and-fall curve. Finally, we did not scan the reference lists or related studies identified by Medline from the retrieved studies, nor did we hand-search topic specific journals or conference proceedings. However, our study was not a systematic review focusing on diagnostic accuracy or a therapeutic effect, but merely on the kinetics of Tn. Since only studies that focused on the kinetics of Tn were included we considered that the risk of publication bias was low.

The results of this systematic review give insight in the typical rise and fall of Tn in different types of MI. This systematic review is a first step in understanding the similarities and differences in the Tn kinetics between the different types of MI. The different types of MI each seem to result in a unique rise and fall pattern of Tn. In the future this may allow for optimization of the diagnostic criteria per type of MI. Potentially, understanding the kinetics of Tn can also help in monitoring treatment effec-
van Beek D et al. Typical rise and fall of troponin in myocardial infarction

tiveness.

COMMENTS

Background
An important diagnostic tool for diagnosing myocardial infarction (MI) is monitoring for dynamic cardiac troponin (Tn) levels. Tn levels are expected to rise and fall in MI. However, the exact shape of the Tn curve in MI is unknown. It is also unknown whether the shape of this curve differs for different types of MI. The aim of this systematic review was to identify the typical shape of the rise and fall curve of Tn following the different types of MI.

Research frontiers
The use of Tn in diagnosing the different types of MI was described by Thygesen et al in 2012. For every type of MI a cut off level and/or the minimal required change in Tn level is suggested for the diagnoses of that particular MI.

Innovations and breakthroughs
An extensive systematic search was conducted to identify all articles concerning the kinetics of Tn in MI type 1, type 4 and type 5. Articles were screened for eligibility and data was extracted in a standardized matter independently by two of the authors. The Tn levels were standardized using the 99th percentile and a pooled mean with 95%CI was calculated for analysis of the results.

Applications
This review suggests that there are important differences in the kinetics of Tn in the different types of MI. Understanding these differences is important for optimizing the diagnostic criteria for these unique types of MI.

Terminology
Myocardial ischemia resulting in myocardial necrosis is called MI. In addition to type 1 spontaneous MI related to atherosclerotic plaque rupture, type 4 MI related to percutaneous coronary intervention and type 5 MI related to coronary artery bypass grafting are classified as distinct types of MI. Cardiac Tn is a sensitive and specific biomarker for myocardial ischemia.

Peer-review
In this systematic review, the authors presented an overview of the typical rise and fall of Tn stratified for the different types of MI.

REFERENCES
1 Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. Third universal definition of myocardial infarction. Glob Heart 2012; 7: 275-279 [PMID: 25689940 DOI: 10.1016/j.gha.2012.08.001]
2 Tiwari RP, Jain A, Khan Z, Kohli V, Bharml RN, Kartikeyan S, Bisen PS. Cardiac troponins I and T: molecular markers for early diagnosis, prognosis, and accurate triaging of patients with acute myocardial infarction. Mol Diagn Ther 2012; 16: 371-381 [PMID: 23184341 DOI: 10.1007/s40291-012-0011-6]
3 Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003; 3: 25 [PMID: 14606960 DOI: 10.1186/1471-2288-3-25]
4 Whiting P, Rutjes AW, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J. Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Ann Intern Med 2004; 140: 189-202 [PMID: 14757617 DOI: 10.7326/0003-4819-151-5-201110180-00009]
5 Whiting P, Harbord R, Kleijnen J. No role for quality scores in systematic reviews of diagnostic accuracy studies. BMC Med Res Methodol 2005; 5: 19 [PMID: 15918908 DOI: 10.1186/1471-2288-5-19]
6 Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample.

BMC Med Res Methodol 2005; 5: 13 [PMID: 15840177 DOI: 10.1186/1471-2288-5-13]
7 Jorgensen PH, Nybo M, Jensen MK, Mortensen PE, Poulsen TS, Diederichsen AC, Mickley H. Optimal cut-off value for cardiac troponin I in ruling out Type 5 myocardial infarction. Interact Cardiovasc Thorac Surg 2014; 18: 544-550 [PMID: 24486583 DOI: 10.1093/icvts/ivt558]
8 Park DW, Kim YH, Yun SC, Ahn JM, Lee JY, Kim WJ, Kang SJ, Lee SW, Lee CW, Park SW, Park SJ. Frequency, causes, predictors, and clinical significance of peri-procedural myocardial infarction following percutaneous coronary intervention. Eur Heart J 2013; 34: 1662-1669 [PMID: 23404537 DOI: 10.1093/eurheartj/eh3048]
9 Ferraro S, Ardisano I, Boracchi P, Santagostino M, Ciardi L, Antonini G, Braga F, Biganzoli E, Panetteghi M, Bongo AS. Inside ST-elevation myocardial infarction by monitoring concentrations of cardiovascular risk biomarkers in blood. Clin Chim Acta 2012; 413: 888-893 [PMID: 22333672 DOI: 10.1016/j.cca.2012.01.034]
10 Mair J. High-sensitivity cardiac troponins in everyday clinical practice. World J Cardiol 2014; 6: 175-182 [PMID: 24772257 DOI: 10.4303/wjc.v6.i4.175]
11 Sandoval Y, Apple FS. The global need to define normality: the 99th percentile value of cardiac troponin. Clin Chem 2014; 60: 455-462 [PMID: 2411536 DOI: 10.1373/clinchem.2013.211706]
12 Aldous SJ, Richards AM, Cullen L, Than MP. Early dynamic change in high-sensitivity cardiac troponin T in the investigation of acute coronary infarction. Clin Chem 2011; 57: 1154-1160 [PMID: 21784766 DOI: 10.1373/clinchem.2010.161166]
13 Aldous S, Pemberton C, Richards AM, Troughton R, Than M. High-sensitivity troponin T for early rule-out of myocardial infarction in recent onset chest pain. Emerg Med J 2012; 29: 805-810 [PMID: 22109535 DOI: 10.1136/emermed-2011-200222]
14 al-Harbi K, Suresh CG, Zabuid M, Akanji AO. Establishing a gradient of risk in patients with acute coronary syndromes using troponin I measurements. Med Princ Pract 2002; 11: 18-22 [PMID: 12116689]
15 Apple FS, Pearce LA, Smith SW, Kaczmarek JM, Murakami MM. Role of monitoring changes in sensitive cardiac troponin I assay results for early diagnosis of myocardial infarction and prediction of risk of adverse events. Clin Chem 2009; 55: 930-937 [PMID: 19299542 DOI: 10.1373/clinchem.2008.114728]
16 Bahrmann P, Christ M, Bahrmann A, Rittert H, Heppner HJ, Achenbach S, Bertisch T, Sieber CC. A 3-hour diagnostic algorithm for non-ST-elevation myocardial infarction using high-sensitivity cardiac troponin T in unselected older patients presenting to the emergency department. J Am Coll Cardiol 2013; 14: 409-416 [PMID: 23375478 DOI: 10.1016/j.jacc.2012.12.005]
17 Bertinchant JP, Larue C, Pernel I, Ledermann B, Fabbro-Peray P, Beck L, Calzolari C, Trinquier S, Nigond J, Pau B. Release kinetics of cardiac troponin I in unselected older patients presenting to the emergency department. J Am Coll Cardiol 2013; 67: 1231-1238 [PMID: 23933541 DOI: 10.1016/j.jacc.2013.06.050]
18 de Winter RJ, Fischer JC, de Jongh T, van Straalen JP, Bholasingh R, Sanders GT. Different time frames for the occurrence of elevated levels of cardiac troponin T and C-reactive protein in patients with acute myocardial infarction. Clin Chem Lab Med 2000; 38: 1151-1153 [PMID: 11156347 DOI: 10.1515/CCLM.2000.175]
19 Falahati A, Sharkey SW, Christensen D, McCoy M, Miller EA, Murakami MA, Apple FS. Implementation of serum cardiac troponin I as marker for detection of acute myocardial infarction. Am Heart J 1999; 137: 332-337 [PMID: 9924168 DOI: 10.1016/S0002-2198(99)902421]

WJC | www.wignet.com
March 26, 2016 | Volume 8 | Issue 3 |
Typical rise and fall of troponin in myocardial infarction

22 Hafn P, Drexlner B, Reichlin T, Twerenbold R, Reiter M, Meissner J, Schaub N, Stelzig C, Freese M, Heinzelmatten A, Meune C, Balmelli C, Freidank H, Winkler K, Denhaerynck K, Hochholzer W, Osswald S, Mueller C. High-sensitivity cardiac troponin T in the distinction of acute myocardial infarction from acute cardiac noncoronary artery disease. *Circulation* 2012; 126: 31-40 [PMID: 22623715 DOI: 10.1161/CIRCULATIONAHA.112.100867]

23 Lucia P, Coppola A, Manetti LL, Sebastiani ML, Colliardo A, Cerroni F, De Martinis C, Strappini PM. Cardiac troponin I in acute coronary ischemic syndromes. Epidemiological and clinical correlates. *Int J Cardiol* 2001; 77: 215-222 [PMID: 11182185]

24 Mohler ER, Ryan T, Segar DS, Sawada SG, Sonel AF, Perkins L, Fineberg N, Feigenbaum H, Wilensky RL. Clinical utility of troponin T levels and echocardiography in the emergency department. *Am J Heart J* 1998; 135: 253-260 [PMID: 9489973]

25 Mueller M, Biener M, Vafaei M, Doer S, Keller T, Blankenberg S, Katus HA, Giannitsis E. Absolute and relative kinetic changes of high-sensitivity cardiac troponin T in acute coronary syndrome and in patients with increased troponin in the absence of acute coronary syndrome. *Clin Chem* 2012; 58: 209-218 [PMID: 22134520 DOI: 10.1373/clinchem.2011.171827]

26 Reichlin T, Irfan A, Twerenbold R, Reiter M, Hochholzer W, Burkhalter H, Bassetti S, Steuer S, Winkler K, Peter F, Meissner J, Haaf P, Potocki M, Drexlner B, Osswald S, Mueller C. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. *Circulation* 2011; 124: 136-145 [PMID: 21700958 DOI: 10.1161/CIRCULATIONAHA.111.023937]

27 Rechlin T, Twerenbold R, Haaf P. High-sensitivity cardiac troponin T as a marker of infarction during coronary bypass surgery. *Ann Thorac Surg* 2000; 8: 19-23

28 Ayanikay MA, Dehoux M, Chate P, Seguret C, Desmonts JM, Durand G, Philip I. Cardiac troponin I in diagnosis of perioperative myocardial infarction after cardiac surgery. *J Cardiothorac Vasc Anesth* 1998; 12: 288-294 [PMID: 9636910]

29 Benoit MO, Paris M, Silleran J, Fiemeayer A, Moatti N. Cardiac troponin I: its contribution to the diagnosis of perioperative myocardial infarction and various complications of cardiac surgery. *Crit Care Med* 2001; 29: 1880-1886 [PMID: 11588444]

30 Fellahi JL, Léger P, Philippe E, Arthaud M, Riou B, Gandjbakhch I, Coriat P. Pericardial cardiac troponin I release after coronary artery bypass grafting. *Anesth Analg* 1999; 89: 829-834 [PMID: 10512251]

31 Katus HA, Schoepfenthalu M, Tanzeem A, Bauer HG, Saggau W, Diedrichs KW, Hafl S, Kuebler W. Non-invasive assessment of perioperative myocardial cell damage by circulating cardiac troponin I. *Br Heart J* 1991; 65: 259-266 [PMID: 2039670]

32 Lim CC, Cuculi F, van Gauw WJ, Testa L, Arnold JR, Karamitsos T, Francis JM, Digby JE, Antoniades C, Kharabanda RK, Neubauer S, Westaby S, Banning AP. Early diagnosis of perioperative myocardial infarction after coronary bypass grafting: a study using biomarkers and cardiac magnetic resonance imaging. *Ann Thorac Surg* 2011; 92: 2046-2053 [PMID: 21962261 DOI: 10.1016/j.athorac Surg.2011.05.019]

33 Mair J, Larue C, Mair P, Balogh D, Calzolari C, Puschendorf B. Use of cardiac troponin I to diagnose perioperative myocardial infarction in coronary artery bypass grafting. *Clin Chem* 1994; 40: 2066-2070 [PMID: 7955380]

34 Thielmann M, Massoudy P, Marggraf G, Knipp S, Schmermund A, Piotrowski J, Erbel R, Jakob H. Role of troponin I, myoglobin, and creatine kinase for the detection of early graft failure following coronary artery bypass grafting. *Eur J Cardiothorac Surg* 2004; 26: 102-109 [PMID: 15200897 DOI: 10.1016/j.ejcts.2004.03.015]

35 Thielmann M, Massoudy P, Schmermund A, Neuhäuser M, Marggraf G, Kamler M, Herold U, Alexiis K, Mann K, Haude M, Heusch G, Erbel R, Jakob H. Diagnostic discrimination between graft-related and non-graft-related perioperative myocardial infarction with cardiac troponin I after coronary artery bypass surgery. *Eur Heart J* 2005; 26: 2440-2447 [PMID: 16087649 DOI: 10.1093/eurheartj/eji437]

P- Reviewer: Armstrong EJ, Chang ST, Kusmatic C
S- Editor: Qui S
L- Editor: A
E- Editor: Li D
