Pfaffian-type Sugawara operators

A. I. Molev

School of Mathematics and Statistics
University of Sydney, NSW 2006, Australia
alexander.molev@sydney.edu.au

Abstract

We show that the Pfaffian of a generator matrix for the affine Kac–Moody algebra \(\hat{\mathfrak{o}}_{2n} \) is a Segal–Sugawara vector. Together with our earlier construction involving the symmetrizer in the Brauer algebra, this gives a complete set of Segal–Sugawara vectors in type \(D \).

1 Introduction

For each affine Kac–Moody algebra \(\hat{\mathfrak{g}} \) associated with a simple Lie algebra \(\mathfrak{g} \), the corresponding vacuum module \(V(\mathfrak{g}) \) at the critical level is a vertex algebra. The structure of the center \(z(\hat{\mathfrak{g}}) \) of this vertex algebra was described by a remarkable theorem of Feigin and Frenkel in [3], which states that \(z(\hat{\mathfrak{g}}) \) is the algebra of polynomials in infinitely many variables which are associated with generators of the algebra of \(\mathfrak{g} \)-invariants in the symmetric algebra \(S(\mathfrak{g}) \). For a detailed proof of the theorem, its extensions and significance for the representation theory of the affine Kac–Moody algebras see [4].

In a recent paper [5] we used the symmetrizer in the Brauer algebra to construct families of elements of \(z(\hat{\mathfrak{g}}) \) (Segal–Sugawara vectors) for the Lie algebras \(\mathfrak{g} \) of types \(B \), \(C \) and \(D \) in an explicit form. In types \(B \) and \(C \) they include complete sets of Segal–Sugawara vectors generating the center \(z(\hat{\mathfrak{g}}) \), while in type \(D \) one vector in the complete set of [5] was not given explicitly. The aim of this note is to produce this Segal–Sugawara vector in \(z(\hat{\mathfrak{o}}_{2n}) \) which is associated with the Pfaffian invariant in \(S(\mathfrak{o}_{2n}) \).

Simple explicit formulas for generators of the Feigin–Frenkel center \(z(\hat{\mathfrak{g}}(n)) \) were given recently in [1], [2], following Talalaev’s construction of higher Gaudin Hamiltonians [6]. So, together with the results of [5] we get a construction of generators of the Feigin–Frenkel centers for all classical types.
2 Pfaffian-type generators

Denote by \(E_{ij}, 1 \leq i, j \leq 2n \), the standard basis vectors of the Lie algebra \(\mathfrak{gl}_{2n} \). Introduce the elements \(F_{ij} \) of \(\mathfrak{gl}_{2n} \) by the formulas

\[
F_{ij} = E_{ij} - E_{ji}. \tag{2.1}
\]

The Lie subalgebra of \(\mathfrak{gl}_{2n} \) spanned by the elements \(F_{ij} \) is isomorphic to the even orthogonal Lie algebra \(\mathfrak{o}_{2n} \). The elements of \(\mathfrak{o}_{2n} \) are skew-symmetric matrices. Introduce the standard normalized invariant bilinear form on \(\mathfrak{o}_{2n} \) by

\[
\langle X, Y \rangle = \frac{1}{2} \text{tr} XY, \quad X, Y \in \mathfrak{o}_{2n}.
\]

Now consider the affine Kac–Moody algebra \(\widehat{\mathfrak{o}}_{2n} = \mathfrak{o}_{2n}[t, t^{-1}] \oplus \mathbb{C} K \) and set \(X[r] = X t^r \) for any \(r \in \mathbb{Z} \) and \(X \in \mathfrak{o}_{2n} \). The element \(K \) is central in \(\widehat{\mathfrak{o}}_{2n} \) and

\[
[X[r], Y[s]] = [X, Y][r + s] + r \delta_{r, -s} \langle X, Y \rangle K.
\]

Therefore, for the generators we have

\[
[F_{ij}[r], F_{kl}[s]] = \delta_{kj} F_{il}[r + s] - \delta_{il} F_{kj}[r + s] - \delta_{ki} F_{jl}[r + s] + \delta_{jl} F_{ki}[r + s] + r \delta_{r, -s} \langle \delta_{kj} \delta_{il} - \delta_{ki} \delta_{jl} \rangle K.
\]

The **vacuum module at the critical level** \(V(\widehat{\mathfrak{o}}_{2n}) \) can be defined as the quotient of the universal enveloping algebra \(U(\widehat{\mathfrak{o}}_{2n}) \) by the left ideal generated by \(\mathfrak{o}_{2n}[t] \) and \(K + 2n - 2 \) (note that the dual Coxeter number in type \(D_n \) is \(h' = 2n - 2 \)). The Feigin–Frenkel center \(\mathfrak{z}(\widehat{\mathfrak{o}}_{2n}) \) is defined by

\[
\mathfrak{z}(\widehat{\mathfrak{o}}_{2n}) = \{ v \in V(\widehat{\mathfrak{o}}_{2n}) \mid \mathfrak{o}_{2n}[t] v = 0 \}.
\]

Any element of \(\mathfrak{z}(\widehat{\mathfrak{o}}_{2n}) \) is called a **Segal–Sugawara vector**. A complete set of Segal–Sugawara vectors \(\phi_{22}, \phi_{44}, \ldots, \phi_{2n-22n-2}, \phi'_{n} \) was produced in [3], where all of them, except for \(\phi'_{n} \), were given explicitly. We will produce \(\phi'_{n} \) in Theorem \([2.1] \) below.

Combine the generators \(F_{ij}[-1] \) into the skew-symmetric matrix \(F[-1] = [F_{ij}[-1]] \) and define its Pfaffian by

\[
Pf F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \text{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)}[-1] \cdots F_{\sigma(2n-1) \sigma(2n)}[-1].
\]

Note that the elements \(F_{ij}[-1] \) and \(F_{kl}[-1] \) of \(\widehat{\mathfrak{o}}_{2n} \) commute, if the indices \(i, j, k, l \) are distinct. Therefore, we can write the formula for the Pfaffian in the form

\[
Pf F[-1] = \sum_{\sigma} \text{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)}[-1] \cdots F_{\sigma(2n-1) \sigma(2n)}[-1], \tag{2.2}
\]

summed over the elements \(\sigma \) of the subset \(\mathfrak{B}_{2n} \subset \mathfrak{S}_{2n} \) which consists of the permutations with the properties \(\sigma(2k-1) < \sigma(2k) \) for all \(k = 1, \ldots, n \) and \(\sigma(1) < \sigma(3) < \cdots < \sigma(2n-1) \).
Theorem 2.1. The element \(\phi'_n = \text{Pf} \ F[-1] \) is a Segal–Sugawara vector for \(\widehat{\mathfrak{o}}_{2n} \).

Proof. We need to show that \(\mathfrak{o}_{2n} \{ \} \phi'_n = 0 \) in the vacuum module \(V(\widehat{\mathfrak{o}}_{2n}) \). It suffices to verify that for all \(i, j \),

\[
F_{ij}[0] \text{Pf} \ F[-1] = F_{ij}[1] \text{Pf} \ F[-1] = 0. \tag{2.3}
\]

Note that for any permutation \(\pi \in \mathfrak{S}_{2n} \) the mapping

\[
F_{ij}[\sigma] \mapsto F_{\pi(i)\pi(j)}[\sigma], \quad K \mapsto \hat{K}
\]
defines an automorphism of the Lie algebra \(\widehat{\mathfrak{o}}_{2n} \). Moreover, the image of \(\text{Pf} \ F[-1] \) under its extension to \(U(\widehat{\mathfrak{o}}_{2n}) \) coincides with \(\text{sgn} \pi \cdot \text{Pf} \ F[-1] \). Hence, it is enough to verify (2.3) for \(i = 1 \) and \(j = 2 \).

Observe that \(F_{12}[0] \) commutes with all summands in (2.2) with \(\sigma(1) = 1 \) and \(\sigma(2) = 2 \). Suppose now that \(\sigma \in \mathcal{B}_{2n} \) is such that \(\sigma(2) > 2 \). Then \(\sigma(3) = 2 \) and \(\sigma(4) > 2 \). In \(V(\widehat{\mathfrak{o}}_{2n}) \) we have

\[
F_{12}[1] F_{1\sigma(2)}[1] F_{\sigma(4)}[1] \cdots F_{\sigma(2n-1)} \sigma(2n)[1] = -F_{2\sigma(2)}[1] F_{2\sigma(4)}[1] \cdots F_{\sigma(2n-1)} \sigma(2n)[1] + F_{1\sigma(2)}[1] F_{1\sigma(4)}[1] \cdots F_{\sigma(2n-1)} \sigma(2n)[1].
\]

Set \(i = \sigma(2) \) and \(j = \sigma(4) \). Note that the permutation \(\sigma' = \sigma(24) \) also belongs to the subset \(\mathcal{B}_{2n} \), and \(\text{sgn} \sigma' = -\text{sgn} \sigma \). We have

\[
- F_{2i}[1] F_{2j}[1] + F_{1i}[1] F_{1j}[1] + F_{2i}[1] F_{2j}[1] - F_{1i}[1] F_{1j}[1] = F_{ij}[2] - F_{ij}[2] = 0.
\]

This implies that the terms in the expansion of \(F_{12}[0] \text{Pf} \ F[-1] \) corresponding to pairs of the form \((\sigma, \sigma') \) cancel pairwise. Thus, \(F_{12}[0] \text{Pf} \ F[-1] = 0 \).

Now we verify that

\[
F_{12}[1] \text{Pf} \ F[-1] = 0. \tag{2.4}
\]

Consider first the summands in (2.2) with \(\sigma(1) = 1 \) and \(\sigma(2) = 2 \). In \(V(\widehat{\mathfrak{o}}_{2n}) \) we have

\[
F_{12}[1] F_{1\sigma(3)} \sigma(4)[1] \cdots F_{\sigma(2n-1)} \sigma(2n)[1] = -K F_{\sigma(3)} \sigma(4)[1] \cdots F_{\sigma(2n-1)} \sigma(2n)[1].
\]

Furthermore, let \(\tau \in \mathcal{B}_{2n} \) with \(\tau(2) > 2 \). Then \(\tau(3) = 2 \) and \(\tau(4) > 2 \). We have

\[
F_{12}[1] F_{1\tau(2)}[1] F_{2\tau(4)}[1] \cdots F_{\tau(2n-1)} \tau(2n)[1] = -F_{2\tau(2)}[0] F_{2\tau(4)}[1] \cdots F_{\tau(2n-1)} \tau(2n)[1] + F_{\tau(2)} \tau(4)[1] \cdots F_{\tau(2n-1)} \tau(2n)[-1].
\]

Note that for any given \(\sigma \), the number of elements \(\tau \) such that the product

\[
F_{\tau(2)} \tau(4)[1] \cdots F_{\tau(2n-1)} \tau(2n)[-1]
\]
coincides, up to a sign, with the product

\[F_{\sigma(3)} \sigma(4)[-1] \cdots F_{\sigma(2n-1)} \sigma(2n)[-1] \]
equals 2n - 2. Indeed, for each \(k = 2, \ldots, n \) the unordered pair \(\{\tau(2), \tau(4)\} \) can coincide with the pair \(\{\sigma(2k-1), \sigma(2k)\} \). Hence, taking the signs of permutations into account, we find that

\[F_{12}[1] Pf F[-1] = (-K - 2n + 2) \sum_{\sigma} \text{sgn} \sigma \cdot F_{\sigma(3)} \sigma(4)[-1] \cdots F_{\sigma(2n-1)} \sigma(2n)[-1], \]

summed over \(\sigma \in \mathcal{B}_{2n} \) with \(\sigma(1) = 1 \) and \(\sigma(2) = 2 \). Since \(-K - 2n + 2 = 0\) at the critical level, we get (2.4).

Introduce formal Laurent series

\[F_{ij}(z) = \sum_{r \in \mathbb{Z}} F_{ij}[r] z^{-r-1} \quad \text{and} \quad F_{ij}(z)_+ = \sum_{r < 0} F_{ij}[r] z^{-r-1} \]

and expand the Pfaffians of the matrices \(F(z) = [F_{ij}(z)] \) and \(F(z)_+ = [F_{ij}(z)_+] \) by

\[\text{Pf} F(z) = \sum_{p \in \mathbb{Z}} S_p z^{-p-1} \quad \text{and} \quad \text{Pf} F(z)_+ = \sum_{p < 0} S_p^+ z^{-p-1}. \]

Invoking the vertex algebra structure on the vacuum module \(V(\mathfrak{o}_{2n}) \) (see [4]), we derive from Theorem 2.1 that the coefficients \(S_p \) are Sugawara operators for \(\hat{\mathfrak{o}}_{2n} \); they commute with the elements of \(\hat{\mathfrak{h}}_{2n} \) (note that normal ordering is irrelevant here, as the coefficients of the series pairwise commute). Moreover, the coefficients \(S_p^+ \) are elements of the Feigin–Frenkel center \(\mathfrak{z}(\hat{\mathfrak{o}}_{2n}) \).

References

[1] A. V. Chervov and A. I. Molev, *On higher order Sugawara operators*, Int. Math. Res. Not. (2009), no. 9, 1612–1635.

[2] A. Chervov and D. Talalaev, *Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence*, arXiv:hep-th/0604128.

[3] B. Feigin and E. Frenkel, *Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras*, Int. J. Mod. Phys. A7, Suppl. 1A (1992), 197–215.

[4] E. Frenkel, *Langlands correspondence for loop groups*, Cambridge Studies in Advanced Mathematics, 103. Cambridge University Press, Cambridge, 2007.

[5] A. I. Molev, *Feigin–Frenkel center in types B, C and D*, arXiv:1105.2341.

[6] D. V. Talalaev, *The quantum Gaudin system*, Funct. Anal. Appl. 40 (2006), 73–77.