ON SINGULARITIES OF THIRD SECANT VARIETIES OF VERONESE EMBEDDINGS

KANGJIN HAN

Abstract. In this paper we study singularities of third secant varieties of Veronese embedding $v_d(P^n)$, which corresponds to the variety of symmetric tensors of border rank at most three in $(\mathbb{C}^{n+1}) \otimes d$.

CONTENTS

1. Introduction 1
2. Singularities of third secant of $v_d(P^n)$ 2
 2.1. Preliminaries 3
 2.2. Cases of non-degenerate orbits 6
 2.3. Degenerate case: binary forms 8
 2.4. Defining equations of $\text{Sing}(\sigma_3(X))$ 10
References 10

1. INTRODUCTION

For a projective algebraic variety $X \subset \mathbb{P}W$, the k-th secant variety $\sigma_k(X)$ is defined by

$$\sigma_k(X) = \bigcup_{x_1, \ldots, x_k \in X} \mathbb{P}\langle x_1, \ldots, x_k \rangle \subset \mathbb{P}W$$

where $\langle x_1, \ldots, x_k \rangle \subset W$ denotes the linear span of the points x_1, \ldots, x_k and the overline denotes Zariski closure. Let V be an $(n+1)$-dimensional complex vector space and $W = S^d V$ be the subspace of symmetric d-way tensors in $V \otimes d$. Equivalently, we can also think of W as the space of homogeneous polynomials of degree d in $n+1$ variables. When X is the Veronese embedding $v_d(PV)$ of rank one symmetric d-way tensors over V in $\mathbb{P}W$, then $\sigma_k(X)$ is the variety of symmetric d-way tensors of border rank at most k (see subsection 2.1 for terminology and details).

If X is an irreducible variety and $\sigma_k(X)$ its k-secant variety, then it is well known that

$$\text{Sing}(\sigma_k(X)) \supseteq \sigma_{k-1}(X),$$

(e.g. see [Ad87, coro. 1.8]). Equality holds in many basic examples, like determinantal varieties defined by minors of a generic matrix, but the strict inequality also holds for some other tensors (e.g. just have a look at [MOZ12, coro. 7.17] for the case $\sigma_2(X)$ when X is the Segre embedding $\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_r$ or [AOP12, figure 1, p.18] for the third secant variety of Grassmannian $G(2,6)$).

Therefore, it should be very interesting to compute more cases and to give a general treatment about singularities of secant varieties. Further, the knowledge of singular locus is known to be

\begin{itemize}
 \item 2010 Mathematics Subject Classification. 14M12, 14J60, 15A21, 15A69.
 \item Key words and phrases. singularity, secant variety, Veronese embedding, Segre embedding.
 \item The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2012R1A1A2038506).
\end{itemize}
In this paper, we deal with the case of third secant variety of Veronese embeddings, decomposition (see [COV14, thm. 4.5]). It has recently been paid more attention in this context. Very crucial to the so-called identifiability problem (see [Ott09, see remarks in section 2]). Look at the table in Figure 1.

Theorem 2.1 (Singularity of $\sigma_3(v_d(\mathbb{P}^n))$). Let X be the n-dimensional Veronese variety $v_d(\mathbb{P}^N)$ in \mathbb{P}^N with $N = \binom{n+d}{d} - 1$. Then, the following holds that the singular locus

$$\text{Sing}(\sigma_3(X)) = \sigma_2(X)$$

as a set for all (d, n) with $d \geq 3$ and $n \geq 2$ unless $d = 4$ and $n \geq 3$. In the exceptional case $d = 4$, for each $n \geq 3$ the singular locus $\text{Sing}(\sigma_3(v_4(\mathbb{P}^N)))$ is $D \cup \sigma_2(v_4(\mathbb{P}^N))$, where D denotes the locus of all the degenerate forms f (i.e. $\dim(f) = 2$) in $\sigma_3(v_4(\mathbb{P}^N)) \setminus \sigma_2(v_4(\mathbb{P}^N))$.

Proof. Combine Corollary 2.10, Theorem 2.11 and 2.13.

We can sum up all the relevant results into the following table:

(k, d, n)	Singular locus of $\sigma_k(v_d(\mathbb{P}^n))$	Comment & Reference
$(\geq 2, \geq 2, 1)$	σ_{k-1}	Classical; case of binary forms, [IK99, thm. 1.45]
$(\geq 2, 2, \geq 1)$	σ_{k-1}	Symmetric matrix case, [IK99, thm. 1.26]
$(2, \geq 2, \geq 1)$	σ_1	[Kan99, thm. 3.3]
$(3, 3, 2)$	σ_2	Aronhold hypersurface, [Ott09, remarks in §2]
$(3, \geq 4, 2)$	σ_2	Thm. 2.1+Thm. 2.13
$(3, 3, \geq 3)$	σ_2	Coro. 2.10
$(3, 4, \geq 3)$	$D \cup \sigma_2$	Only exceptional case ($d = 4$), Thm. 2.13
$(3, \geq 5, \geq 3)$	σ_2	Thm. 2.1+Thm. 2.13

Figure 1. Singular locus of $\sigma_k(v_d(\mathbb{P}^n))$.

2
2.1. Preliminaries. For the proof, we recall some preliminaries on (border) ranks and geometry of symmetric tensors and list a few known facts on them for future use.

First of all, the equations defining $\sigma_3(v_d(\mathbb{P}V))$ come from so-called symmetric flattenings. Consider the polynomial ring $S^*V = \mathbb{C}[x_0, \ldots, x_n]$ (we call this ring S) and consider another polynomial ring $T = S^*V^\vee = \mathbb{C}[y_0, \ldots, y_n]$, where V^\vee is the dual space of V. Define the differential action of T on S as follows: for any $g \in T_{d-k}, f \in S_d$, we set
\begin{equation}
(2.1) \quad g \cdot f = g(\partial_0, \partial_1, \ldots, \partial_n)f \in S_k.
\end{equation}
Let us take bases for S_k and T_{d-k} as
\begin{equation}
(2.2) \quad \mathbf{X}^I = \frac{1}{i_0! \cdots i_n!}x_0^{i_0} \cdots x_n^{i_n} \quad \text{and} \quad \mathbf{Y}^J = y_0^{j_0} \cdots y_n^{j_n},
\end{equation}
with $|I| = i_0 + \cdots + i_n = k$ and $|J| = j_0 + \cdots + j_n = d - k$. For a given $f = \sum_{|I|=d} a_I \cdot \mathbf{X}^I$ in S_d, we have a linear map $\phi_{d-k,k}(f) : T_{d-k} \to S_k, \ g \mapsto g \cdot f$ for any k with $1 \leq k \leq d - 1$, which can be represented by the following $(k+n) \times (d-k+n)$-matrix:
\begin{equation}
(2.3) \quad \left(\begin{array}{c}
a_{I,J} \end{array} \right) \quad \text{with} \quad a_{I,J} = a_{I+J},
\end{equation}
in the bases defined above. We call this the symmetric flattening (or catalecticant) of f. It is easy to see that the transpose $\phi_{d-k,k}(f)^T$ is equal to $\phi_{k,d-k}(f)$.

Given a homogeneous polynomial f of degree d, the minimum number of linear forms l_i needed to write f as a sum of d-th powers is the so-called (Waring) rank of f and denoted by $\text{rank}(f)$. The (Waring) border rank is this notion in the limiting sense. In other words, if there is a family \(\{ f_\epsilon \mid \epsilon > 0 \} \) of polynomials with constant rank r and $\lim_{\epsilon \to 0} f_\epsilon = f$, then we say that f has border rank at most r. The minimum such r is called the border rank of f and denoted by $\text{rank}^b(f)$.

Note that by definition $\sigma_k(v_d(\mathbb{P}V))$ is the variety of homogeneous polynomials f of degree d with border rank $\text{rank}^b(f) \leq k$.

It is obvious that if f has (border) rank 1, then any symmetric flattening $\phi_{d-k,k}(f)$ has rank 1. By subadditivity of matrix rank, we also know that rank $\phi_{d-k,k}(f) \leq r$ if $\text{rank}^b(f) \leq r$. We have the following known result for the defining equations of $\sigma_3(X)$:

Proposition 2.2 (Defining equations of $\sigma_3(v_d(\mathbb{P}V))$). Let X be the n-dimensional Veronese variety $v_d(\mathbb{P}V)$ in \mathbb{P}^N with $N = (\binom{n+d}{n} - 1)$. For any (d,n) with $d \geq 3, n \geq 2$, $\sigma_3(X)$ is defined scheme-theoretically by the 4×4-minors of the two symmetric flattenings
\[\phi_{d-1,1}(F) : S^{d-1}V^\vee \to V \quad \text{and} \quad \phi_{d-\lfloor \frac{d}{2} \rfloor,\lfloor \frac{d}{2} \rfloor}(F) : S^{d-\lfloor \frac{d}{2} \rfloor}V^\vee \to S^{\lfloor \frac{d}{2} \rfloor}V, \]
where F is the form $\sum_{I \in \mathbb{N}^{n+1}} a_I \cdot \mathbf{X}^I$ of degree d as considering the coefficients a_I’s indeterminate.

Proof. Aronhold invariant ($n = 2$, see e.g. [IK99, p.247]) and symmetric inheritance (Proposition 2.3.1 in [LO13]) prove the result for the case $d = 3$. For any $d \geq 4$, see Theorem 3.2.1 (1) in [LO13]. \[\square \]

Since there is a natural $\text{SL}_{n+1}(\mathbb{C})$-group action on $\sigma_3(X)$, we may take the $\text{SL}_{n+1}(\mathbb{C})$-orbits inside $\sigma_3(X)$ into consideration for the study of singularity. And we could also regard a canonical representative of each orbit as below.

First, suppose $f \in \sigma_3(X) \setminus \sigma_2(X)$ is a degenerate form (i.e. $\dim(f) = 2$). Choose x_0, x_1 as the basis of $\langle f \rangle$. Then, we recall the following lemma
Lemma 2.3. For any \(d \geq 4 \) and \(n \geq 1 \), any general degenerate form \(f \in \sigma_3(v_d(\mathbb{P}^V)) \setminus \sigma_2(v_d(\mathbb{P}^V)) \) can be written as \(x_0^d + \alpha \cdot x_1^d + \beta \cdot (x_0 + x_1)^d \), up to \(\text{SL}_{n+1}(\mathbb{C}) \)-action, for some nonzero \(\alpha, \beta \in \mathbb{C} \).

Proof. Since \(\dim(f) = 2 \), let \(U := \langle f \rangle = \mathbb{C}(x_0, x_1) \), a subspace of \(V \). For such a \(f \in \sigma_3(v_d(\mathbb{P}^V)) \setminus \sigma_2(v_d(\mathbb{P}^V)) \), it is easy to see that

\[
3 = \text{rank}(f) \leq \text{rank}(f, U),
\]

where the latter is the border rank of \(f \) being considered as a polynomial in \(S^*U \). On the other hand, we also have \(\text{rank}(f, U) \leq 3 \), because the symmetric flattenings \(\phi_{d-1,1}(f, U) \) and \(\phi_{d-1,1}(f, U) \setminus \sqrt[3]{d} \) are just submatrices of \(\phi_{d-1,1}(f) \) and \(\phi_{d-1,1}(f) \setminus \sqrt[3]{d} \) respectively and therefore all their 4 \(\times \) 4-minors also vanish (so, \(f \in \sigma_3(v_d(\mathbb{P}^U)) \)). Since \(\text{rank}(f, U) \) and \(\text{rank}(f, U) \) coincide for a general \(f \) in the rational normal curve case (see e.g. [CG01]), we have \(\text{rank}(f, U) = 3 \). Thus, for some nonzero \(\lambda, \mu \in \mathbb{C} \) we can write \(f \) as

\[
f(x_0, x_1) = (a_0x_0 + a_1x_1)^d + (b_0x_0 + b_1x_1)^d + \{ \lambda(a_0x_0 + a_1x_1) + \mu(b_0x_0 + b_1x_1) \}^d
\]

\[
= X_0^d + \left(\frac{\lambda}{\mu} \right)^d \cdot X_1^d + \lambda^d \cdot (X_0 + X_1)^d,
\]

by some scaling and using a \(\text{SL}_{n+1}(\mathbb{C}) \)-change of coordinates, which proves our assertion. \(\square \)

Remark 2.4. There are some remarks related to Lemma 2.3 as follows:

(a) Note that there does not exist a degenerate form corresponding to an orbit in \(\sigma_3(v_d(\mathbb{P}^V)) \setminus \sigma_2(v_d(\mathbb{P}^V)) \) if \(d \leq 3 \). In this case, if \(f \) is degenerate, then \(f \) always belongs to \(\sigma_2(v_d(\mathbb{P}^V)) \), for the \(\phi_{d-1,1}(f) \) have at most two nonzero rows and all the \(3 \times 3 \)-minors of \(\phi_{d-1,1}(f) \) vanish.

(b) In fact, in \(d = 4 \) case, Lemma 2.3 holds for all degenerate form \(f \in \sigma_3(v_d(\mathbb{P}^V)) \setminus \sigma_2(v_d(\mathbb{P}^V)) \), because there exist only rank 3 forms in \(\sigma_3(v_4(\mathbb{P}^1)) \setminus \sigma_2(v_4(\mathbb{P}^1)) \) (see [CG01] and also [LT10, chap.4]).

Now, let’s put all types of canonical representatives for \(\text{SL}_{n+1}(\mathbb{C}) \)-orbits together as follows:

Theorem 2.5. There are 4 types of homogeneous forms representing \(\text{SL}_{n+1}(\mathbb{C}) \)-orbits in \(\sigma_3(v_d(\mathbb{P}^V)) \setminus \sigma_2(v_d(\mathbb{P}^V)) \):

\[
x_0^d + x_1^d + x_2^d, \quad x_0^{d-1}x_1 + x_2^d, \quad x_0^{d-2}x_1^2 + x_0x_1^{d-2},
\]

which correspond to all the three non-degenerate orbits and the binary type corresponding to \(D \), the locus of all orbits represented by degenerate forms, which appears only if \(d \geq 4 \) and can be written as \(x_0^d + \alpha x_1^d + \beta(x_0 + x_1)^d \) for some nonzero \(\alpha, \beta \in \mathbb{C} \) in case of a general point of \(D \).

Proof. Combine [LT10, thm. 10.2], Lemma 2.3 and Remark 2.4. \(\square \)

Let us introduce more basic terms and facts. Let \(Z \subset \mathbb{P}^W \) be a variety and \(\check{Z} \) be its affine cone in \(W \). Consider a (closed) point \(p \in \check{Z} \) and say \([p]\) the corresponding point in \(\mathbb{P}^W \). We denote the affine tangent space to \(Z \) at \([p]\) in \(\mathbb{P}^W \) by \(\check{T}_{[p]}Z \) and we define the affine conormal space to \(Z \) at \([p]\), \(\check{N}_{[p]}^\vee Z \) as the annihilator \((\check{T}_{[p]}Z)^\perp \subset W^\vee \). Since \(\dim \check{N}_{[p]}^\vee Z + \dim \check{T}_{[p]}Z = \dim W \) and \(\dim Z \leq \dim \check{T}_{[p]}Z - 1 \), we get that \(\dim \check{N}_{[p]}^\vee Z \leq \text{codim}(Z, \mathbb{P}^W) \) and the equality holds if and only if \(Z \) is smooth at \([p]\). This conormal space is quite useful to study the tangent space of \(Z \).

Let us recall the apolar ideal \(f^\perp \subset T \). For any given form \(f \in S^dV \), we call \(\partial \in T_f \) apolar to \(f \) if the differentiation \(\partial(f) \) gives zero (i.e. \(\partial \in \ker \phi_{d-1}(f) \)). And we define the apolar ideal \(f^\perp \subset T \) as

\[
f^\perp := \{ \partial \in T \mid \partial(f) = 0 \}.
\]

It is straightforward to see that \(f^\perp \) is indeed an ideal of \(T \). Moreover, it is well-known that the quotient ring \(T_f := T/f^\perp \) is an Artinian Gorenstein algebra with socle degree \(d \) (see e.g. [IK99]).
In our case, we have a nice description of the conormal space in terms of this apolar ideal as follows:

Proposition 2.6. Let \(X \) be the \(n \)-dimensional Veronese variety \(v_d(\mathbb{P}V) \) as above and \(f \) be any form in \(S^dV \). Suppose that \(f \) corresponds to a (closed) point of \(\sigma_3(X) \setminus \sigma_2(X) \) and that \(\phi_{d-1,1}(f) = 3 \), \(\text{rank } \phi_{d-\left\lfloor \frac{d}{2} \right\rfloor,\left\lfloor \frac{d}{2} \right\rfloor}(f) = 3 \). Then, for any \((d,n) \) with \(d \geq 4, n \geq 2 \) we have

\[
\hat{N}_j^\vee \sigma_3(X) = (f^\perp)_1 \cdot (f^\perp)_{d-1} + (f^\perp)_{\left\lfloor \frac{d}{2} \right\rfloor} \cdot (f^\perp)_{d-\left\lfloor \frac{d}{2} \right\rfloor},
\]

where the sum is taken as a \(\mathbb{C} \)-subspace in \(T_d = S^dV^\vee \).

Proof. First, recall that \(\phi_{d-k,k}(f)^T = \phi_{k,d-k}(f) \). We also note that

\[
\ker \phi_{d-k,k}(f) = (f)_{d-k} \quad \text{and} \quad (\text{im } \phi_{d-k,k}(f))^\perp = \ker(\phi_{d-k,k}(f)^T) = \ker \phi_{k,d-k}(f) = (f)^\perp_{k}.
\]

Whenever \(\text{rank } \phi_{d-1,1}(f) = 3 \) and \(\text{rank } \phi_{d-\left\lfloor \frac{d}{2} \right\rfloor,\left\lfloor \frac{d}{2} \right\rfloor}(f) = 3 \), we have

\[
\hat{N}_j^\vee \sigma_3(X) = \langle \ker \phi_{d-1,1}(f) \cdot (\text{im } \phi_{d-1,1}(f))^\perp \rangle + \langle \ker \phi_{d-\left\lfloor \frac{d}{2} \right\rfloor,\left\lfloor \frac{d}{2} \right\rfloor}(f) \cdot (\text{im } \phi_{d-\left\lfloor \frac{d}{2} \right\rfloor,\left\lfloor \frac{d}{2} \right\rfloor}(f))^\perp \rangle
\]

(see [LO13, Proposition 2.5.1]), which proves the proposition. \(\square \)

Remark 2.7. Note that, in case of \(n = 2 \) or \(\text{dim}(f) = 2 \) (i.e. degenerate form), to compute conormal space \(\hat{N}_j^\vee \sigma_3(X) \) we only need to consider the symmetric flattening \(\phi_{d-\left\lfloor \frac{d}{2} \right\rfloor,\left\lfloor \frac{d}{2} \right\rfloor} \) so that we have

\[
\hat{N}_j^\vee \sigma_3(X) = (f^\perp)_{\left\lfloor \frac{d}{2} \right\rfloor} \cdot (f^\perp)_{d-\left\lfloor \frac{d}{2} \right\rfloor}.
\]

For \(n = 2 \) case, \(\phi_{d-1,1}(f) \) has only 3 rows, there is no non-trivial \(4 \times 4 \)-minor to give a local equation of \(\sigma_3(X) \) at \(f \). In case of \(\text{dim}(f) = 2 \), we may consider \(f \in \mathbb{C}[x_0, x_1]_d \) and choose bases as (2.2). Then, we could write the matrix of \(\phi_{d-1,1} \) and its evaluation at \(f, \phi_{d-1,1}(f) \) as

\[
\phi_{d-1,1} = \begin{pmatrix}
\cdots & y_0^{d-1} & y_0^{d-2} & \cdots & y_1 \cdots & \cdots & y_n^{d-1} \\
0 & x_0 & x_1 & \cdots & a_I & \cdots & \cdots \\
1 & a_I & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & 1 & \cdots & \cdots \\
\end{pmatrix}, \quad \phi_{d-1,1}(f) = \begin{pmatrix}
\cdots & y_0^{d-1} & y_0^{d-2} & \cdots & y_1 \cdots & \cdots & y_n^{d-1} \\
0 & x_0 & x_1 & \cdots & * & \cdots & \cdots \\
1 & * & * & \cdots & * & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & 0 & \cdots & \cdots \\
\end{pmatrix}.
\]

So, each \(4 \times 4 \)-minor of \(\phi_{d-1,1} \) (say \(D_4(\phi_{d-1,1}) \)) has at most rank 2 at \(f \). Hence, we see that all the partial derivatives in the Jacobian

\[
\frac{\partial D_4(\phi_{d-1,1})}{\partial a_I}(f) = 0
\]

for each index \(I \) with \(|I| = d \) and \(D_4(\phi_{d-1,1}) \) doesn’t contribute to span the conormal space of \(\sigma_3(X) \) at \(f \), because at least one row of \(D_4(\phi_{d-1,1}) \) (say \((a_I a_J a_K a_L) \)) vanishes at \(f \) and the Laplace expansion of \(D_4(\phi_{d-1,1}) \) along this row

\[
D_4(\phi_{d-1,1}) = \pm \left(a_I \cdot D_3^I(\phi_{d-1,1}) - a_J \cdot D_3^J(\phi_{d-1,1}) + a_K \cdot D_3^K(\phi_{d-1,1}) - a_L \cdot D_3^K(\phi_{d-1,1}) \right)
\]

guarantees all the partials of \(D_4(\phi_{d-1,1}) \) become zero at \(f \) as follows: for example, we see that

\[
\pm \frac{\partial D_4(\phi_{d-1,1})}{\partial a_I}(f) = D_3^I(\phi_{d-1,1})(f) + a_I(f) \cdot \frac{\partial D_3^I(\phi_{d-1,1})}{\partial a_I}(f) - a_J(f) \cdot \frac{\partial D_3^J(\phi_{d-1,1})}{\partial a_I}(f) + a_K(f) \cdot \frac{\partial D_3^K(\phi_{d-1,1})}{\partial a_I}(f) - a_L(f) \cdot \frac{\partial D_3^K(\phi_{d-1,1})}{\partial a_I}(f) = 0,
\]

where
where $a_I(f) = a_J(f) = a_K(f) = a_L(f) = 0$ and $D_3^I(\phi_{d-1,1})(f) = 0$ because of rank $D_3^I(\phi_{d-1,1})$ is at most 2 at f.

2.2. Cases of non-degenerate orbits. For the locus of non-degenerate orbits in $\sigma_3(X) \setminus \sigma_2(X)$, we may consider a useful reduction method through the following arguments:

Lemma 2.8. For every $f \in \sigma_3(v_d(\mathbb{P}^n))$ ($d, n \geq 2$), there exists a linear $\mathbb{P}^2 = \mathbb{P}U \subset \mathbb{P}^n = \mathbb{P}V$ such that $f \in \sigma_3(v_d(\mathbb{P}U))$. In particular, for every $f \in \sigma_3(v_d(\mathbb{P}^n)) \setminus \sigma_2(v_d(\mathbb{P}^n))$, $2 \leq \dim(f) \leq 3$.

Proof. When $f \in \sigma_3(v_d(\mathbb{P}^n))$ (i.e., border rank ≤ 3), the image of the flattening $S^{d-1}C^{n+1} = \mathbb{C}^{n+1}$ has dimension ≤ 3 and it is contained in the required 3-dimensional subspace U, i.e., $\dim(f) \leq 3$. □

Recall that we denote the locus of degenerate forms in $\sigma_3(X) \setminus \sigma_2(X)$ by D (see Theorem 2.1 for notation). Then, by Lemma 2.8, we have an obvious corollary as follows:

Corollary 2.9. For each $f \in \sigma_3(v_d(\mathbb{P}^n)) \setminus (D \cup \sigma_2(v_d(\mathbb{P}^n)))$, there exists a unique 3-dimensional subspace U such that $f \in \sigma_3(v_d(\mathbb{P}U))$.

Proof. For those f, which correspond to three orbits in Theorem 2.5, the dimension of $\langle f \rangle$ is exactly 3 so that the subspace $U = \langle f \rangle$ is precisely determined in the claimed cases. □

When $d = 3$, we also have an immediate corollary as follows:

Corollary 2.10 ($d = 3$ case). For every $n \geq 2$ and $d = 3$, $\sigma_3(v_d(\mathbb{P}^n)) \setminus \sigma_2(v_3(\mathbb{P}^n))$ is smooth.

Proof. By Remark 2.4 (a), there is no degenerate orbit in this case. So, it comes directly from the smoothness result on Aronhold hypersurface (i.e., $n = 2$ case in Figure 1) and using the fibration argument in the proof of Theorem 2.11 for any $n \geq 3$. □

Here is the theorem for non-degenerate orbits for any $d \geq 4$:

Theorem 2.11 (Non-degenerate locus). For every $n \geq 2$ and $d \geq 4$, $\sigma_3(v_d(\mathbb{P}^n)) \setminus (D \cup \sigma_2(v_d(\mathbb{P}^n)))$ is smooth.

Proof. Let our $\mathbb{P}^n = \mathbb{P}V$ with $V = \mathbb{C}\langle x_0, x_1, \cdots, x_n \rangle$ and its dual $V^\perp = \mathbb{C}\langle y_0, y_1, \cdots, y_n \rangle$. First, we claim that one may reduce the problem to the case of $n = 2$. Construct the following map

\[
\sigma_3(v_d(\mathbb{P}^n)) \setminus (D \cup \sigma_2(v_d(\mathbb{P}^n))) \xrightarrow{\pi} \text{Gr}(\mathbb{P}U, \mathbb{P}^n) \quad \text{with dim} \mathbb{P}U = 2.
\]

This map is well defined by Corollary 2.9 and each fiber $\pi^{-1}(\mathbb{P}U)$ is isomorphic to $\sigma_3(v_d(\mathbb{P}U)) \setminus (D \cup \sigma_2(v_d(\mathbb{P}U)))$. So, if we prove our theorem for the case $n = 2$, then the fibers of π are all isomorphic and smooth. Hence π becomes a fibration over a smooth variety with smooth fibers. This shows that its domain $\sigma_3(v_d(\mathbb{P}^n)) \setminus (D \cup \sigma_2(v_d(\mathbb{P}^n)))$ is smooth, so proving our assertion.

So, from now on, let us assume $d \geq 4$ and $n = 2$. We can consider three different cases according to Theorem 2.5.

Case (i) $f_1 = x_0^d + x_1^d + x_2^d$ (Fermat-type). It is well-known that this Fermat-type f_1 becomes an almost transitive $\text{SL}_3(\mathbb{C})$-orbit, which corresponds to a general point of $\sigma_3(v_d(\mathbb{P}^2))$. Thus, $\sigma_3(v_d(\mathbb{P}^2))$ is smooth at f_1.

Case (ii) $f_2 = x_0^{d-1}x_1 + x_2^d$ (Unmixed-type). By Remark 2.7 (i.e., $n = 2$ case), we just need to consider $(f_2^\perp)_{C_{d-1}}(f_2^\perp)_{C_{d-2}}$ as (2.6) to compute $\dim \hat{N}_f^\perp \sigma_3(X)$. Say $s := \lfloor \frac{d}{2} \rfloor$. For $d \geq 4$, we have $2 \leq s \leq d - s \leq d - 2$. Note that $\dim \hat{N}_f^\perp \sigma_3(X) \leq \text{codim}(\sigma_3(X), \mathbb{P}U) = (\frac{d+2}{2}) - 9$. So, it is enough to show $\dim \hat{N}_f^\perp \sigma_3(X) \geq (\frac{d+2}{2}) - 9$ for proving non-singularity of f_2.
Since the summands of f_2 separate the variables (i.e. unmixed-type), we could see that the apolar ideal f_2^\perp is generated as

$$f_2^\perp = \left\{ Q_1 = y_0y_2, Q_2 = y_0^2, Q_3 = y_1y_2 \right\} \cup \{ \text{other generators in degree} \geq d \}.$$

So, we have

$$(f_2^\perp)_s = \{ h \cdot Q_i \mid \forall h \in T_{s-2}, \ i = 1, 2, 3 \} \text{ and } (f_2^\perp)_{d-s} = \{ h' \cdot Q_i \mid \forall h' \in T_{d-s-2}, \ i = 1, 2, 3 \}$$

$$\Rightarrow \quad \hat{N}^\vee_{f_2} \sigma_3(X) = (f_2^\perp)_s \cdot (f_2^\perp)_{d-s} = \{ h'' \cdot Q_i Q_j \mid \forall h'' \in T_{d-4}, \ i, j = 1, 2, 3 \}.$$

Thus, if we denote the ideal (Q_1, Q_2, Q_3) by I, then $\dim \hat{N}^\vee_{f_2} \sigma_3(X)$ is equal to the value of Hilbert function $H(I^2, t)$ at $t = d$. But, it is easy to see that I^2 has a minimal free resolution as

$$0 \rightarrow T(-6) \rightarrow T(-5)^6 \rightarrow T(-4)^6 \rightarrow I^2 \rightarrow 0,$$

which shows the Hilbert function of I^2 can be computed as

$$H(I^2, d) = 6\binom{d - 4 + 2}{2} - 6\binom{d - 5 + 2}{2} + \binom{d - 6 + 2}{2} = \begin{cases} 0 & (d \leq 3) \\ \binom{d + 2}{2} - 9 & (d \geq 4) \end{cases}.$$

This implies that $\dim \hat{N}^\vee_{f_2} \sigma_3(X) = \binom{d + 2}{2} - 9$ for any $d \geq 4$, which means that our $\sigma_3(X)$ is smooth at f_2 (see also Figure 2).

Figure 2. Case of $f_2 = x_0^{d-1}x_1 + x_2^d$. P_1 is the lattice polytope in $\mathbb{R}^3_{\geq 0}$ consisting of exponent vectors (i, j, k) of the monomials $y_0^i y_1^j y_2^k$ in $(f_2^\perp)_{d-s}$ and P_2 is the one corresponding to $(f_2^\perp)_s$. $P_1 + P_2$ is the Minkowski sum of two polytopes whose lattice points are exactly the exponent vectors of $\hat{N}^\vee_{f_2} \sigma_3(X) = (f_2^\perp)_{d-s} \cdot (f_2^\perp)_s$, which contains all the monomial of T_d but 9 monomials $y_0^d, y_0^{d-1}y_1, y_0^{d-2}y_1^2, y_0^{d-3}y_1^3, y_0^{d-1}y_2, y_0y_2^{d-1}, y_2^d, y_1y_2^{d-1}, y_0^{d-2}y_1y_2$. This also shows $\dim \hat{N}^\vee_{f_2} \sigma_3(X) = \binom{d + 2}{2} - 9$.

Case (iii) $f_3 = x_0^{d-2}x_1^2 + x_0^{d-1}x_2$ (Mixed-type). In this case, we similarly use a computation of $\dim \hat{N}^\vee_{f_3} \sigma_3(X)$ via $(f_3^\perp)_s \cdot (f_3^\perp)_{d-s}$ to show the smoothness of f_3 (recall $s := \left\lfloor \frac{d}{2} \right\rfloor$ and $2 \leq s \leq d - s \leq d - 2$).
Let $Q_1 := y_0 y_2 - \frac{d-1}{2} y_1^2 \in T_2$. We easily see that
\[
f^+_{i} = \left(\{Q_1, Q_2 = y_1 y_2, Q_3 = y_2^2 \} \cup \{ \text{other generators in degree } d-1 \} \right).
\]
Let I be the ideal generated by three quadrics Q_1, Q_2, Q_3. By the same reasoning as (ii), we have
\[
\dim \mathcal{N}^\vee_{f_3} \sigma_3(X) = \dim (f^+_{i})_s \cdot (f^+_{i})_{d-s} = H(I^2, d) = \begin{cases} 0 & (d \leq 3) \\ \left(\frac{d+2}{2} \right) - 9 & (d \geq 4) \end{cases},
\]
because in this case I^2 also has the same minimal free resolution $0 \to T(-6) \to T(-5)^6 \to T(-4)^6 \to I^2 \to 0$. Hence, we obtain the smoothness of $\sigma_3(X)$ at f_3 (see also Figure 3).

Remark 2.12. From the viewpoint of apolarity, the three cases in Theorem 2.11 can be explained geometrically as follows: if we consider the base locus of the ideal I, which is generated by the three quadrics in each apolar ideal f^+_{i}, then case (i) corresponds to three distinct points, case (ii) to one reduced point and one non-reduced of length 2, and case (iii) to one non-reduced point of length 3 (not lying on a line).

2.3. Degenerate case: binary forms.
Since there is no degenerate form for $d = 3$ (see Remark 2.4 (a)), it is enough to consider the smoothness of the degenerate locus for $d \geq 4$.

Theorem 2.13 (Degenerate locus). Let D be the locus of all the degenerate forms in $\sigma_3(v_d(\mathbb{P}^n)) \setminus \sigma_2(v_d(\mathbb{P}^n))$. Then, for any $d \geq 4, n \geq 2, \sigma_3(v_d(\mathbb{P}^n))$ is singular on D if and only if $d = 4$ and $n \geq 3$.

Proof. Let f_D be any form belong to D. For this degenerate case, by Remark 2.7, we have
\[
\mathcal{N}^\vee_{f_D} \sigma_3(X) = (f^+_{D})_{\left\lfloor \frac{d}{2} \right\rfloor} \cdot (f^+_{D})_{d-\left\lfloor \frac{d}{2} \right\rfloor}.
\]
First of all, let us consider f_D as a polynomial in $\mathbb{C}[x_0, x_1]$ (i.e. $f_D = f_D(x_0, x_1)$). Then, by Hilbert-Burch theorem (see e.g. [IK99, thm. 1.54]) we know that T/f_D^\perp is an Artinian Gorenstein algebra with socle degree d and that f_D^\perp is a complete intersection of two homogeneous polynomials F, G of each degree a and b with $a + b = d + 2$ as an ideal of $\mathbb{C}[y_0, y_1]$. Since rank $\phi_{d-3,3}(f_D) = 3$, there is one-dimensional kernel of $\phi_{d-3,3}(f_D)$ in $\mathbb{C}[y_0, y_1]_3$, which gives one cubic generator F in f_D^\perp.

When f_D is general, $f_D = x_0^3 + \alpha x_1^3 + \beta(x_0 + x_1)^d$ for some $\alpha, \beta \in \mathbb{C}^*$ by Lemma 2.3, so we have $F = y_0^3 y_1 - y_0 y_1^2$. Even for the case f_D being not general, we have $F = y_0^3 y_1$ up to change of coordinates, because the apolar ideal of this non-general f_D corresponds to the case with one multiple root on \mathbb{P}^1 (see [CG01] and also [LT10, chap.4]).

Therefore, we obtain that

$$f_D^\perp = (F = y_0^3 y_1 - y_0 y_1^2 \text{ or } y_0^2 y_1, G)$$

for some polynomial G of degree $(d - 1)$ and that f_D^\perp as an ideal in $T = \mathbb{C}[y_0, y_1, \ldots, y_n]$ has its degree parts $(f_D^\perp)|_{\frac{d}{2}}$ and $(f_D^\perp)|_{d - \frac{d}{2}}$ both of which are generated by F, y_2, \ldots, y_n, since $d \geq 4$ so that $\left\lfloor \frac{d}{2} \right\rfloor, d - \left\lfloor \frac{d}{2} \right\rfloor < d - 1$.

Now, let us compute the dimension of conormal space as follows:

i) $d = 4$ case (i.e. $\left\lfloor \frac{d}{2} \right\rfloor = 2$) : In this case, we have

$$\hat{N}_{f_D}^\vee \sigma_3(X) = (f_D^\perp)_2 \cdot (f_D^\perp)_2 = (y_2, \ldots, y_n)_2 \cdot (y_2, \ldots, y_n)_2 = ((y_i y_j \mid 2 \leq i, j \leq n))_4 .$$

So, we get

$$\dim \hat{N}_{f_D}^\vee \sigma_3(X) = \dim T_4 - \dim \langle y_0^4, y_0^3 y_1, \ldots, y_1^4 \rangle - \dim \langle \{y_0^3 \cdot \ell, y_0^2 y_1 \cdot \ell, y_0 y_1^2 \cdot \ell, y_1^3 \cdot \ell \mid \ell = y_2, \ldots, y_n \} \rangle$$

$$= \left(4 + \frac{n}{4} \right) - 5 - 4(n - 1) .$$

This shows that $\sigma_3(X)$ is singular at f_D if and only if $n \geq 3$, because the expected codimension is $\left(\frac{4 + n}{4} \right) - 3n - 3$.

ii) $d = 5$ case (i.e. $\left\lfloor \frac{d}{2} \right\rfloor = 2$) : Recall that F is $y_0^3 y_1 - y_0 y_1^2$, the cubic generator of f_D^\perp.

Then,

$$\hat{N}_{f_D}^\vee \sigma_3(X) = (f_D^\perp)_2 \cdot (f_D^\perp)_3 = (y_2, \ldots, y_n)_2 \cdot (F, y_2, \ldots, y_n)_3 .$$

$$\dim \hat{N}_{f_D}^\vee \sigma_3(X) = \dim T_5 - \dim \langle y_0^5, y_0^4 y_1, \ldots, y_1^5 \rangle$$

$$- \dim \langle \{y_0^4 \cdot \ell, y_0^3 y_1 \cdot \ell, y_0^2 y_1^2 \cdot \ell, y_0 y_1^3 \cdot \ell, y_1^4 \cdot \ell \mid \ell = y_2, \ldots, y_n \} \rangle$$

$$= \left(5 + \frac{n}{5} \right) - 6 - 3(n - 1) = \text{expected codim}(\sigma_3(X), \mathbb{P}^5 V) ,$$

which gives that $\sigma_3(X)$ is smooth at f_D in this case.

ii) $d \geq 6$ case: Here we have $\hat{N}_{f_D}^\vee \sigma_3(X) = (f_D^\perp)|_{\frac{d}{2}} \cdot (f_D^\perp)|_{d - \frac{d}{2}} = (F, y_2, \ldots, y_n)|_{\frac{d}{2}} \cdot (F, y_2, \ldots, y_n)|_{d - \frac{d}{2}}$.

$$\dim \hat{N}_{f_D}^\vee \sigma_3(X) = \dim T_d - \dim \langle y_0^{d-1} \cdot \ell, y_0^{d-2} y_1 \cdot \ell, \ldots, y_1^{d-1} \cdot \ell \rangle \\setminus \{y_0^{d-4} F \cdot \ell, \ldots, y_1^{d-4} F \cdot \ell \mid \ell = y_2, \ldots, y_n \} \rangle$$

$$- \dim \langle \{y_0^d, y_0^{d-1} y_1, \ldots, y_1^d \setminus \{y_0^{d-6} F^2, y_0^{d-7} y_1 F^2, \ldots, y_1^{d-6} F^2 \} \rangle$$

$$= \left(d + \frac{n}{d} \right) - \{d - (d - 3)\}(n - 1) - \{(d + 1) - (d - 5)\}$$

$$= \left(d + \frac{n}{d} \right) - 3(n - 1) - 6 = \text{expected codim}(\sigma_3(X), \mathbb{P}^d V) ,$$

9
which implies that $\sigma_3(X)$ is also smooth at f_D. \hfill \Box

2.4. **Defining equations of $\text{Sing}(\sigma_3(X))$.** As an immediate corollary of Theorem 2.1, we obtain defining equations of the singular locus in our third secant of Veronese embedding $\sigma_3(X)$.

Corollary 2.14. Let X be the n-dimensional Veronese embedding as above. The singular locus of $\sigma_3(X)$ is cut out by 3×3-minors of the two symmetric flattenings $\phi_{d-1,1}$ and $\phi_{d-2,2}$ unless $d = 4$ and $n \geq 3$ case, in which the (set-theoretic) defining ideal of the locus is the intersection of the ideal generated by the previous 3×3-minors and the ideal generated by 3×3-minors of $\phi_{d-1,1}$ and 4×4-minors of $\phi_{d-[\frac{d}{2}],1}$.

Proof. It is well-known that $\sigma_2(X)$ is cut out by 3×3-minors of the two $\phi_{d-1,1}$ and $\phi_{d-2,2}$ (see [Kan99, thm. 3.3]). It is also easy to see that D, the locus of degenerate forms inside $\sigma_3(X)$, is cut out by 3×3-minors of $\phi_{d-1,1}$ and 4×4-minors of $\phi_{d-[\frac{d}{2}],1}$ by the argument in Remark 2.7 and Proposition 2.2. Thus, using these two facts the conclusion is straightforward by Theorem 2.1. \hfill \Box

Acknowledgements. The author would like to express his deep gratitude to Giorgio Ottaviani for introducing the problem, giving many helpful suggestions to him, and encouraging him to complete this work. He also gives thanks to Luca Chiantini and Luke Oeding for useful conversations with them.

References

[AOP12] H. Abo, G. Ottaviani and C. Peterson, *Non-defectivity of Grassmannians of planes*, J. Alg. Geom., 21 (2012), 1–20.

[Ad87] B. Ådlandsvik, *Joins and higher secant varieties*, Math. Scand. 61 (1987), no. 2, 213–222.

[CG01] G. Comas and M. Seiguer, *On the rank of a Binary form*, Found. Comput. Math., 11 (1) (2011), 65–78.

[COV14] L. Chiantini, G. Ottaviani and N. Vannieuwenhoven, *An algorithm for generic and low-rank specific identifiability of complex tensors*, Siam J. Matrix Anal. Appl. 35 (4) (2014), 1265–1287.

[IK99] A. Iarrobino and V. Kanev, *Power sums, Gorenstein algebras, and determinantal loci*, Lect. Notes in Math. vol. 1721, Springer-Verlag, Berlin, Appendix C by Iarrobino and S.L. Kleiman, 1999.

[Kan99] V. Kanev, *Chordal varieties of Veronese varieties and catalecticant matrices*, Algebraic Geometry. vol. 9, J. Math. Sci. (New York), 94 (1999), 1114–1125.

[LO13] J.M. Landsberg and G. Ottaviani, *Equations for secant varieties of Veronese and other varieties*, Annali di Matematica Pura ed Applicata, 192 (2013), 569–606.

[LT10] J.M. Landsberg and Z. Teitler, *On the ranks and border ranks of symmetric tensors*, Found. Comput. Math., 10 (3) (2010), 339–366.

[MOZ12] M. Michałek, L. Oeding and P. Zwiernik, *Secant cumulants and Toric geometry*, Int. Math. Res. Not. (2014), published online (DOI: 10.1093/imrn/rnq056).

[Ott09] G. Ottaviani, *An invariant regarding Waring’s problem for cubic polynomials*, Nagoya Math. J., 193 (2009), 95–110.

School of Mathematics, Korea Institute for Advanced Study (KIAS), 85 Hoegiro, Dongdaemun-gu, Seoul 130–722, Korea

E-mail address: kangjin.han@kias.re.kr