Citrus peel flavonoids as potential cancer prevention agents

Nooshin Koolaji1,2,†, Balakrishnan Shammugasamy1,2,†, Aaron Schindeler1,2,3, Qihan Dong4,5,6, Fariba Dehghani1,2,‡, Peter Valtchev1,2,‡

1School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, 2006, Australia
2Center for Advanced Food Enginomics, University of Sydney, Sydney, 2006, Australia
3Bioengineering & Molecular Medicine, The Children's Hospital at Westmead, 2145, Australia
4School of Science and Health, Western Sydney University, Sydney, 2560, Australia
5Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
6Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, 2050, Australia
†: N.K. and B.S. contributed equally.
‡: Equal senior author.

Correspondence to:

Peter Valtchev
Email: peter.valtchev@sydney.edu.au

Conflicts of interest:

The authors declare that there is no conflict of interest regarding the publication of this paper.

Sources of Support:

This work was supported by the Australian Research Council (IC14012006) and Faculty of Engineering and Information Technologies at the University of Sydney for the award of postgraduate scholarship to Balakrishnan Shammugasamy.
List of Abbreviations:

ACF – Aberrant crypt foci

APAF-1 – Apoptosis protease activating factor-1

COX – Cyclooxygenase

CDK – Cyclin-dependent kinases

CPE – Citrus peel extract

DMBA – 7,12-dimethylbenz(α)anthracene

EMT – Epithelial mesenchymal transition

GSK-3β – Glycogen synthase kinase-3β

GST – Glutathione transferase

IAP – Inhibitor of apoptosis

iNOS – Inducible nitric oxide synthase

JAK – Janus-like kinase

MAPK – Mitogen-activated protein kinase

MMP – Matrix metalloproteinase

mTOR – Mechanistic target of rapamycin

NF-κB – Nuclear factor kappa-light-chain-enhancer of activated B cells

ODC – Ornithine decarboxylase enzyme

PARP – Poly ADP-ribose polymerase
PCNA – Proliferating cells’ nuclear antigen

PGP – Permeability glycoprotein

PKC – Protein kinase C

PMF – Polymethoxylated flavone

STAT-3 – Signal transducer and activator of transcription 3

tPA – Tissue plasminogen activator

VCAM – Vascular cell adhesion molecule

Abstract

Citrus fruit and in particular flavonoid compounds from citrus peel have been identified as agents with utility in the treatment of cancer. This review provides a background and overview regarding the compounds found within citrus peel with putative anti-cancer potential as well as the associated *in vitro* and *in vivo* studies. Historical studies have identified a number of cellular processes that can be modulated by citrus peel flavonoids including cell proliferation, cell cycle regulation, apoptosis, metastasis, and angiogenesis. More recently, molecular studies started to elucidate the underlying cell signaling pathways that are responsible for the flavonoids’ mechanism of action. This growing data supports further research into the chemo-preventative potential of citrus peel extracts, and purified flavonoids in particular. This critical review highlights new research in the field as well as synthesizes the pathways modulated by flavonoids and other polyphenolic compounds into a generalized schema.
Keywords: citrus peel extract, flavonoids, anti-cancer, inflammation, mechanism of action, apoptosis

1. Medicinal Properties of Citrus Fruits

Citrus fruits such as mandarin, pomelo, orange, lime, lemon, and grapefruit have been recognized as having high contents of bioactive compounds (1). Between the pulp and the peel, such fruits contain folate, vitamin C, dietary fiber, and bioactive compounds such as flavonoids. Flavonoids widely distribute in aromatic plants such as mint and tea but are present in high concentrations in citrus fruits and their peels (2).

Citrus peel has untapped potential as a source of medicinal compounds as they contain carotenes, essential oils, pectin and a range of polyphenolic compounds (3). Epidemiological studies have suggested that high consumption of fruits and vegetables (>400g/day) can reduce cancer risk by at least 20% (4). The Mediterranean diet is rich in fruit pulp and juice, and the associated high intake of fiber, antioxidants, and polyphenol compounds are linked with lower cancer risk (5, 6).

The medicinal usage of citrus peels can be traced back to the 10th century, but the biological activities of specific chemicals within the peel have only been recently characterized (7, 8). Citrus peels are rich in polyphenolic compounds, which are secondary plant metabolites with diverse and essential biological functions (9, 10).

Polyphenolic compounds can be classified into various classes of bioactive compounds including flavonoids, limonoids, coumarins, phenolic acids, terpenoids, tannins, stilbenes, lignans, and carotenoids (11-13). They contain heterocycles including aromatic rings with hydroxyl groups in their basic structure (14) and exist in the free state or as glycosides.

Flavonoids are likely to be key bioactive compounds in citrus peel, particularly in terms of their anti-cancer activity (15-17) as well as in the prevention of infectious and degenerative diseases (18-20). While it is appealing to identify specific molecules with high anti-cancer
activity, there is growing evidence to suggest synergy between bioactive molecules in citrus peel extract (CPE). Whole CPEs have been shown to have higher anti-cancer activity than the fractionated extracts and isolated single compounds. Indeed the methanolic extracts and freeze-dried CPEs are correlated to higher concentrations of total phenolic and flavonoid contents (21-23).

Several salient reviews should be noted. Cirmi et al. detail the range of individual flavonoid and polyphenolic compounds found within citrus fruits and summarize the preclinical and epidemiological evidence for their utility in cancer treatment (4). Kandaswami et al. describe the general utility of flavonoid compounds (not specifically from citrus) in modulating cell signaling pathways (24). This critical review focuses on the bioactive compounds that are enriched in the citrus peel and examines their underlying mechanism of action. This is timely based on growing efforts to utilize CPE as chemopreventive agents (25), as well as leverage their anti-atherogenic, anti-carcinogenic, anti-inflammatory (26), anti-cancer (27), anti-diarrheal and anti-microbial properties (3, 28). In this extensive field, such studies are challenging to compare due to a lack of standardized in vitro and in vivo methodologies, as well as the use of whole CPE versus individual polyphenolics, flavonoids, flavonols, flavones, and polymethoxylated flavones. However this review explores a range of common mechanisms that feature in preclinical studies including motivation of carcinogen detoxification, scavenging of free radical species, control of cell cycle progression, preventing the initiation of cancer, inhibiting cell proliferation, increasing apoptosis, reducing oncogene activity, prohibiting metastasis and angiogenesis, as well as modulating hormone or growth-factor activity (4, 29-32). This involves highlighting both recent and historical reports and synthesizing a model for the different biological functions of CPE bioactives. In the most of cases there has been no proper follow up in vivo or clinical research.

2. Flavonoid Subtypes within Citrus Peel Extract
Flavonoids are low molecular weight compounds that are responsible for the vivid color of fruit peels, pulp, and leaves (11). They are abundantly found in citrus fruits, seeds, olive oil, red wine, and tea. More than 9000 flavonoids have been identified to date. Flavonoids feature a basic C6-C3-C6, 15-carbon skeleton. They are comprised of two benzene rings (A and B), which are linked via a heterocyclic pyran ring (C). Flavonoids are subdivided according to the presence of an oxy moiety at carbon atom 4, a double bond between positions 2 and 3, or a hydroxyl group in position 3 of a heterocyclic ring (C) (Figure 1).

The biological activities of flavonoids increase with the degree of hydroxylation of the B ring (24, 33). The basic structure of flavonoids permits a significant number of substitution patterns in the benzene rings A and B within each class of flavonoids: O-sugars, methoxy groups, phenolic hydroxyls, sulfates and glucuronides (2, 34). The abundance of distinct flavonoids arises from a large number of different combinations of hydroxyl and methoxyl group substitutions. Besides, flavonoids can be classified by variations of the heterocyclic ring C to flavones, flavanones, flavonols, isoflavones, flavans, and anthocyanidins (9, 35). The antioxidant activity of flavonoids is related to ortho-dihydroxy substitution in the ring B, the presence of a 2,3 double bond and of a 4-oxo moiety in the ring C as well as a 3-hydroxy-4-keto and/or 5-hydroxy-4-keto conformation in the ring C and A (36, 37).

Flavonoids with a hydroxyl group in position C-3 of the C ring are named as flavonols and those lacking such OH moiety flavanones and flavones. Figure 2 illustrates the main structural formula of some flavonoids isolated from CPE and their structural variations. The main abundant flavonoids in CPE are flavanones such as neohesperidin, naringin, and hesperidin (38-42) as well as nobiletin, sinensetin, and tangeretin (43). The biological activities of flavonoids are related to their antioxidant properties (44). The different degenerative diseases such as brain diseases and Alzheimer's are effected by flavonoids via their antioxidant properties (42, 45, 46). There is evidence linking the pharmacological
activity of CPE flavonoids to their ability to reduce the activity of intracellular signaling molecules including topoisomerases, phosphodiesterases, and kinases, as well as other regulatory enzymes (45, 47).

Flavanones (2,3-dihydro-2-phenylchromen-4-one) are the major classes of flavonoids and present mostly in glycoside forms such as hesperidin, neo hesperidin, narirutin, naringin, eriocitrin, and neo eriocitrin. The glycosidic forms are divided into two types – rutinosides and neo hesperidosides. Both rutinose and neo hesperidose are glycosylated at position 7 and disaccharides are formed by glucose (Figure 2). The bitter taste of neo eriocitrin, naringin and neo hesperidin occur by the presence of neo hesperidose (rhamnosyl-α-1,2 glucose) in flavanones. Hesperidin, narirutin and eriocitrin, consist of a flavanone bound to rutinose (rhamnosyl-α-1,6 glucose), and they have no taste. The most critical flavanones in aglycone forms are naringenin and hesperetin.

Flavonols (3-hydroxy-2-phenylchromen-4-one) such as kaempferol, quercetin, catechin, isorhamnetin are aglycone forms of flavonoids. Flavonols are recognized by the presence of a 2,3-double bond and the 4-oxo group in the C ring. They differ in the presence of one additional -OH moiety at position C-3 in the C ring. Additionally, the 3-OH group can be glycosylated by different sugars, which significantly increases the number of flavonols isomers (48). The glycoside flavonols such as rutin are found in trace amounts in citrus peel. The predominant types are 3-O-monoglycosides and glycosylation occurs at the 3-hydroxyl group of the C ring (4).

Flavones (2-phenylchromen-4-one) are found in low concentrations in citrus peel. Nevertheless, they can produce important biological activities in vitro and in vivo. For instance, apigenin has shown high anti-inflammatory activity, and diosmin is an important venotonic agent (49, 50). Methylated flavones are the key flavones noted in citrus fruits (51).
Anthocyanidins (2-phenylchromenylum cation) are structurally derived from pyran, flavan, and flavones which are found only in grapefruit and blood oranges (4). Anthocyanidins are the aglycones counterpart of anthocyanins that are natural pigments of fruits that are responsible for the fruits and flowers violet, red and blue coloring. The color of the anthocyanin occurs in response to changes in PH, oxygen, temperature, light, enzymes and also by methylation or acylation at the hydroxyl groups on the A and B rings (52).

Polymethoxylated flavones (PMFs) are a subdivision of flavones with two or more methoxyl groups on their basic benzo-γ-pyrone skeleton and a carbonyl moiety at the C4 position. Notable PMFs include tangeretin, nobiletin, and sinensetin. PMFs exist exclusively in citrus peels and have been used as herbal (alternative) medicines for decades (49, 53). In research studies, PMFs have shown a broad spectrum of biological activities including anti-carcinogenic (54, 55), antioxidant, cardiovascular protection, anti-proliferation, anti-atherogenic (56, 57), and anti-inflammatory activities (7, 55, 58-60). The permeability of PMFs through biological membranes is higher than other flavonoids because of their planar structure and low polarity (58, 61).

The antioxidant, enzyme-inhibitory, and anti-proliferative activities of flavonoids are related to their specific structural factors including the presence of glycosylation, the structure oxidation state, and the substituents in both the A and B rings of the flavonoid structure (62, 63). Studies on melanoma cell lines employing several flavonoids of citrus peels have shown the presence of the C2–C3 double bond on the B ring, conjugated with the 4-oxo function, to be critical for this biological activity (64). The presence of three or more hydroxyl/methoxyl groups in each rings (A or B) of the flavonoid skeleton significantly increased the anti-proliferative activity in human melanoma B16F10 and SK-MEL-1 cell lines as well (64, 65). Up to 62 glucoside and aglycone limonoids have been reported as present in citrus fruits (66). Obacunone glucoside and nomilin acid glucoside are the major limonoid glucosides in CPEs...
Coumarins are another class of bioactive compounds mainly present in citrus peel. Coumarins such as 7-methoxy-8-(2-oxo-3-methylbutyl) coumarin, 5-geranyloxy-7-methoxycoumarin, auraptene, limettin and epoxyaurapten, as well as furanocoumarins such as psoralen, xanthotoxin, bergamottin, and epoxybergamottin were found in citrus peels (68-71). Cinnamic acids (caffeic, p-coumaric, chlorogenic, ferulic, and sinapic) and benzoic acids (protocatechuic, p-hydroxybenzoic, and vanillic) are phenolic acids found in low concentration in citrus peel (72, 73). Meanwhile, carotenes (β-carotene) and xanthophylls (β-cryptoxanthin, lutein, β-citraurin, violaxanthin, (9Z)-violaxanthin, and zeaxanthin) are the main carotenoids found mostly in citrus peel (72, 74). Apart from the above bioactive compounds, D-limonene is the primary essential oil in citrus peel (75) which has anti-cancer activity in humans (76).

3. Extraction of Flavonoids from Citrus Waste

In order to maximise the yield of bioactive flavonoid compounds from citrus peel, several different methods for the extraction of have been reported in the literature (77). Recommended methods include: 1) chemical methods including: hot water extraction (78, 79), solvent extraction (80), and alkaline extraction (81, 82), 2) advanced methods such as ultrasound-assisted extraction, supercritical fluid extraction (83), microwave-assisted extraction (84), and enzyme-assisted extraction. The goal is to develop processes that are rapid and economical.

Most of the pharmaceutical and food industries use solvents for the extraction of bioactive compounds from citrus. Organic solvents, such as hexane, methanol, ethanol, petroleum ether, benzene, toluene, ethyl acetate, isopropanol, and acetone have been used to extract flavonoids from citrus waste. Phenolic compounds transfers from the solids to the surrounding solvents during the extraction. The temperature and time of extraction are
specific for different kind of flavonoids. The limitations of chemical methods are the requirements for several hours for extraction, large volumes of solvent, and the extra cost and time to evaporate the residual solvent. In contrast, “green chemistry” has emerged as a principle for the environment-friendly extraction of high-value compounds. Such methods can be selective, low-energy, time-saving, and produce higher yields at a reduced solvent consumption (78).

The different extraction methods are used for citrus flavonoids have their own advantages and limitations. However, combined approaches may ultimately prove superior to any individual method. In general, using food-grade solvents and ultrasound-assisted extraction of flavonoids from citrus waste has a strong potential for future industrial development as an efficient and environment-friendly process (85).

4. Mechanism of Action of Citrus Peel Extract Flavonoids

CPEs have been reported to show anticancer activity in various cancer lines at different efficacious levels, which is directly related to the CPE composition and the cell line sensitivity. The following sections provide an overview of the in vitro and in vivo studies that CPEs have potential in reducing the risk of cancer development and progression (Table 1 and Table 2).

The following section examines the anti-cancer effects of CPEs reported in in vitro experiments and animal studies that elucidate the specific mechanisms involved. The anti-cancer effect of CPEs can be exhibited through suppression of proliferation, cell cycle inhibition, and induction of apoptosis.

4.1 Suppression of Proliferation

Cancer cells differ from normal cells by their ability to proliferate without control, resistance to apoptosis, ability to form new blood vessels, and metastasis in distant parts of the body.
Flavonoids found in CPEs were shown to suppress these events through modulation of multiple cellular proteins that inhibit cell proliferation by down-regulation of oncoproteins. In human lung carcinoma A549 cells, the methanol extract of Korean *citrus aurantium* fruit peel inhibited cell proliferation dose dependently and inducing apoptosis as well (86). Similar inhibitory effects were also observed with flavonoids isolated from Korean *citrus aurantium* peel in A549 cancer cells (39).

Quercetin - the aglycone form of polyhydroxylated flavonoid (flavonols) found in onions, berries grapes green vegetables and apple - is one of the most highly studied flavonoids in terms of its effects on cell proliferation. It exhibits a growth inhibitory effects against a range of cancer cell lines including immortal human HeLa cells (36), human epidermoid carcinoma (A431), NK/LY ascites tumor cells, gastric cancer cells including NUGC-2, HGC-27, MKN-28, and MKN-7 (39), colon (COLO 320 DM) (39, 87), human breast (87, 88), human squamous, gliosarcoma (89, 90), ovarian (91), human pancreatic, and human liver cancer cells (HepG2) (88, 92). Indeed, quercetin’s strong anti-proliferative effect might be attributable to inhibition of the protein kinase C (PKC) pathway (93, 94).

Polymethoxylated flavones such as nobiletin, tangeretin, quercetin, and sinensetin showed anti-proliferative activity against human lung carcinoma cells (A549), squamous cell carcinoma (HBT43) (90), gastric cancer, leukemia (HL-60), T-cell leukemia (CCRF-HSB-2), and B16 melanoma cells (95). The anti-proliferation effect of naringin is correlated with the inhibition of cell survival by binding ATP on PI3K binding site; prohibition of cell growth and modulation of cell-cycle-associated proteins by inhibition of ERK-signaling pathway (96); and/or binding to p21 to proliferating cells’ nuclear antigen (PCNA) and blocking DNA synthesis (97). Naringenin and hesperetin exhibited strong anti-proliferative activity against a broad spectrum of human (ER−) MDA-MB-435 and (ER+) MCF-7 breast cancer cells,
prostate (DU-145), melanoma (SK-MEL5), lung (DMS-114), and colon (HT-29) cancer cell lines (60, 90, 98-100).

Nobiletin, a major polymethoxyflavone, also enhances the cytostatic effect in (ER⁺) MCF-7 breast cancer cells, via CYP1B1 and CYP1A1-selective (the main oxidizing enzymes which are major determinants of resistance) inhibitors upregulation (101). Moreover, nobiletin has effectively inhibited the proliferation of human endothelial cells of human breast, prostate, skin, and colon carcinoma cells (95, 102); decreased (azoxymethane) AOM-induced cell proliferation in colonic adenocarcinoma cells (103, 104) and illustrated direct cytotoxicity in gastric cancer cells MKN-45, TMK-1, MKN-74, and KATO-III cells through cell cycle deregulation (105).

CPEs can modulate proteins involved with cell growth such as epidermal growth factor receptor and Ras that have a range of downstream pathways including mitogen-activated protein kinases (MAPK), phosphatidylinositol Akt, 3-kinase PI3K/Akt, and mechanistic target of rapamycin (mTOR). Methanol extract from freeze dried Korean *citrus platymamma* flavonoids reduced the proliferation of Hep3B cells by inhibiting PI3K and Akt phosphorylation and increased the ERK1/2, JNK, and p38 MAPK phosphorylation; these reduced PI3K/AKT signaling and increased MAPK activity (106). Methanol extract of the peel of *citrus aurantium* L. also suppressed the phosphorylation of Akt in U937 cells (107), and mTOR in SNU-1 cancer cell lines (108). In A549 cells, the ethanolic extract from *citrus aurantifolia* peels inhibited cell proliferation dose-dependently while inducing apoptosis (39, 86, 109). The suppression of growth signals was ascribed to Akt, Ras, ERK1/2, and E-cadherin in colon tumor-bearing mice (110). The treated mice showed low levels of inactive glycogen synthase kinase-3β (GSK-3β) and low accumulation of β-catenin in cell nuclei, which limits the growth of signaling pathways. The oral administration of CPEs from Gold Lotion has been reported to considerably reduce the ornithine decarboxylase enzyme (ODC),
which controls cell growth and proliferation through the biosynthesis and metabolism of polyamines in treated mice with colorectal cancer (110-112).

4.2 Cell Cycle Inhibition

Cell cycle dysfunction is correlated with cancer development. Cell cycle progression is a complex and highly regulated process and consists of four phases: G1, S, G2, and M (113). The progression of cells from one phase to another is controlled by the coordinated interaction of cyclin-dependent kinases (CDKs) and their cyclin subunits to form active complexes. The formation of an active complex is regulated by CDK inhibitors. In normal cells, cell cycle progression is arrested when faulty DNA needs to be repaired, or further cell replication is not required. In the context of cancer, by arresting the cell cycle progression, of malignant cells the tumor or metastatic cancer burden can be reduced or eliminated (114, 115).

CPEs suppress cancer cell proliferation by arresting cell cycle progression and modulating cell proliferation signaling pathways that can be reduced or eliminated in malignant cells. Analysis of cell cycle distribution in CPE treated cells demonstrated that auraptene, the main compound of the supercritical fluid extraction of *citrus hassaku* Hort ex. Tanaka peel, caused cell cycle arrest mainly at G1 phase (108, 116). The ethanolic extract of *citrus aurantifolia* lime peels at concentration of 6 μg/mL induced apoptosis and cell accumulation at G1 phase, while the 15 μg/mL induced apoptosis and cell accumulation at G2/M phase (38, 39, 86, 106, 109). CPEs have been shown to up-regulate the expression of p21 (cyclin-dependent kinase inhibitor 1) and/or p53 (tumor suppressor protein) leading to G1 arrest as observed in breast cancer cell lines MCF-7 (109), human gastric cells SNU-1 (108), DU145 prostate cancer cells (75), and COLO 205 human colon carcinoma cells (109, 117). The CPEs can also arrest cell cycle at G2/M by increasing the expression of p21 and decreasing the expression of cyclin B1, CDC25C, and CDC2 in A549, Hep3B, and AGS cells (38, 39, 86, 106). A water-based
extract from citrus sinensis L. peel (that chiefly contains hesperidin and narirutin) modulates the cell cycle of quiescent (PC-3 and LNCaP) prostate cancer cells that was impaired in their ability to enter the S phase (2–3% reduction of G0/G1 cells compared to 12–18% reduction of control cells) (118).

Tangeretin induced G1 phase by increasing the expression of p37 and p21 in COLO 205 human colon carcinoma cells (117) and prohibited the growth of estradiol-stimulated T47D cells (119). Nobiletin modulates cell cycle on MKN-45, TMK-1, KATO-III human gastric carcinoma cells (105), and MKN-74 as well as induced G1 phase arrest in MCF-7, MDA-MB-435 breast cancer cells, and HT-29 colon cancer cell lines (120, 121). Hesperetin decreased MCF-7 breast cancer cells activity by accumulating cells in G1 phase through the inhibition of CDK4, CDK2, and cyclin D; upregulation of p21 and p27; and increasing the binding of p21 and CDK4 (122). Both tangeretin and nobiletin led to the accumulation of cells in the G1/S cell cycle in human colon and breast cancer cells. Naringin induced G1 arrest by up-regulation of p21 (96). Apigenin also arrested both androgen-insensitive PC-3 and androgen-sensitive LNCaP human prostate cancer cell cycle in the G2/M phase by activation of a cyclin kinase suppressor WAF1/p21 (123) (Table 3).

4.3 Induction of Apoptosis

Apoptosis and necrosis are two distinct mechanisms of cell death in eukaryotes cells.

Apoptosis or programmed cell death is involved in embryonic development, hormone-dependent atrophy, and metamorphosis. These processes eliminate damaged or unwanted cells (124). The apoptosis is characterised by plasma blebbing, cell shrinkage, and fragmented nuclei/DNA (125), which is reported in variety of cancer cells treated with CPE extract in vitro (38, 40, 42, 53, 68, 70, 75, 106-108, 126) and in vivo mouse model (127). Citrus peel polymethoxyflavones and citrus peel extract from citrus unshiu induce apoptosis mainly through the intrinsic pathway by reducing anti-apoptotic Bcl-2 proteins (Bcl-2 and
Bcl-XL) and increasing pro-apoptotic proteins (Bax, Bid, Bak, and Bad) in different cancer cell lines (105, 128-130). The increase in the ratios of Bax/Bcl-XL and Bax/Bcl-2 allows the release of cytochrome C through the permeabilised mitochondrial membrane. Following the binding of cytochrome C to the apoptosis protease activating factor-1 (Apaf-1) and formation of an apoptosome complex, activation of caspase-9 and the apoptosis effector protein caspase-3 is achieved (131).

Increasing of caspase-9 and caspase-3 was reported following treatment with CPEs (super critical extract of *citrus hassaku* peels) for many cancer lines including gastric carcinoma SNU-668 (132) and SNU-1 (108), adenocarcinoma human alveolar basal epithelial cells A549 (40, 86), histiocytic lymphoma U937 (68, 107), metastatic prostate cancer DU145 (75), AGS (38), hepatocellular carcinoma Hep3B (106) and HepG2 (116), as well as acute myeloblastic leukemia Kasumi-1 by the extract of citrus peel (*paradise macfad*) (110, 126). CPEs increased the levels of cleaved the poly ADP-ribose polymerase (PARP) inhibitors in U937, SNU-1, AGS, Kasumi-1, A549, Hep3B, DU145 and colon cancer cells (38, 68, 75, 86, 106-108, 110, 126). CPE can also reduce endogenous inhibitor of apoptosis (IAP) proteins such as XIAP, cIAP1, and cIAP2 in U937 (107) and DU145 cancer cells (75).

It was reported that nobiletin could induce apoptosis by increasing Bax and p53 protein expression, inhibiting Bcl-2 protein expression and elevating protein ratio of Bax/Bcl-2 in human lung adenocarcinoma cell line A549 cells (133). Tangeretin induced apoptosis in leukemia HL-60 cells through affecting the mitogen-stimulated blastogenic response of human peripheral blood mononuclear cells (99) and quercetin promoted apoptosis as a consequence of cell cycle arrest in triple-negative breast cancer cells (88, 92, 134).

Accumulated evidence supports that CPE has negligible apoptosis inducing effects through the extrinsic apoptotic pathway. It was shown that CPEs induced apoptosis in U937 cells by increasing caspase-8, however expression of the death receptors (DR4, DR5, and Fas), pro-
apoptotic ligands such as TRAIL, FasL, and FADD were unchanged (107). Similarly, no reduction in the Fas and FasL proteins was observed in Hep3B cells treated with CPE (106). Further research is required to clarify the precise modulation of extrinsic apoptotic pathways involving cell death receptors by CPEs.

4.4 Inhibition of angiogenesis

It is well established that tumor growth is dependent on angiogenesis - the growth of new blood vessels around cancer tissue needed to supply nutrients and oxygen to tumor cells (135). Whereas angiogenesis is essential for the growth of different cancers, vascular targeting was considered as a potential strategy to reduce tumor growth and metastasis. Flavonoids are anti-angiogenic through a variety of mechanisms; they inhibit vascular endothelial growth factor (VEGF) expression; suppress endothelial cell migration, and decrease matrix metalloproteinases MMP-2 and MMP-9 (136). The anti-angiogenic properties of quercetin include inhibition of MMP-2 and MMP-9 secretion from tumor cells as well as inhibition of endothelial cell proliferation and migration (137). Quercetin reduced tube formation of VEGF-stimulated human umbilical vein endothelial cells (HUVECs) by 40% in vitro (138). Luteolin and apigenin are the most potent angiogenesis inhibitors through inhibiting the release of inflammatory cytokine IL-6 and the STAT3 pathway (137). Hydroxylated PMFs suppress the expression of MMP and VEGF in colonic tumors. For example, sinensetin inhibited angiogenesis by inducing cell cycle arrest in the G0/G1 phase in HUVEC culture and downregulated the mRNA expressions of angiogenesis genes, kdr1, hras, and fl1 in zebrafish (138). Nobiletin inhibited angiogenesis by regulating cell cycle progression through G0/G1 arrest in vivo (138). Nobiletin suppressed CD36 expression and decreased the expression of TSP-1 - an endogenous inhibitor of angiogenesis - and TGF-β1 (139). Eventually, the expression of VEGF was dramatically modified in DMB–induced animals by tangeretin treatment (140).
4.5 Inhibition of Metastasis

In metastasis, the cancer cells break away from a primary tumor to the distal sites in the body. Metastasis involves several distinct steps including secretion of metastasis inducing proteins, cell detachment at a primary site, migration, adhesion, and invasion at the new site. Matrix metalloproteinases (MMPs) such as MMP-2 and MMP-9 are the main proteins that are necessary for metastasis as they break down the extracellular matrix and allow the cancer cells to migrate (141).

The anti-metastatic effects of CPE extracted by different methodologies have been tested in a range of cancer cell lines (Table 3). CPEs have been shown to reduce MMP protein expression and activity in A549 (40), DU145 (75), Hep3B (106), MDA-MB-231 breast cancer cells (142), Caco-2, LoVo, and LoVo/ADR colon cancer cell lines (143). In one notable study, quercetin decreased the invasion of murine melanoma cells by suppressing MMP-9 via the PKC (protein kinase C) activator pathway (144). Genistein prohibited the invasion of triple-negative MDA-MB 231 breast cancer cells in vitro, via down-regulation of MMP-9 activity (141, 144). Apigenin, quercine, and luteolin can also inhibit MMP-2 and -9 activities (145). Flavonoids with an increasing number of substitutions or hydroxyl groups illustrated a stronger inhibitory effect on the activity of MMP-9 and -2 (145, 146).

Suppression in the MMP proteins by CPE also was observed in in vivo models for colon (110, 111) and prostate tumors (127).

Likewise the reduction in MMPs, CPEs reduced levels of chemokine receptor CXCR4 together with the HER2/neu protein that stimulates the CXCR4 expression in MDA-MB-231 cells (142). CPE also showed suppression in the phospholipase-C gamma-1 (PLK-γ1) protein that required for cell migration in U937 cells (107). Furthermore, vascular cell adhesion molecule-1 (VCAM-1), which promotes the adherence of cells at new sites, was reduced by *citrus unshiu* Marc. peel in MDA-MB-231 cells through inhibition of protein kinase C (PKC)
phosphorylation (147). Many proteins related to the metastasis such as reduced epithelial mesenchymal transition (EMT) markers (N-cadherin, vimentin, and fibronectin), EMT-associated transcription factors (Slug and Snail), and SMADs were shown to be downregulated by the Ougan (citrus reticulate cv. suavissima) flavedo extract in SKOV3 cells (148).

E-cadherin plays an essential role in cell adhesion, and loss of E-cadherin is associated with a tendency for tumor metastasis (149). An increase in the expression of E-cadherin was observed in colon tumor-bearing mice fed with hydroxylated polymethoxyflavones in CPE (110). In another study, the Korean citrus aurantium L peel showed anti-metastatic properties by preventing the migration of A549 cells to the wounded area in vitro experiment (40).

4.6 Anti-inflammatory activity

Cancer initiation and proliferation are closely associated with inflammation and, in some cases, infection. Inflammation can facilitate the initiation and progression of normal cells to malignancy through the production of inflammatory oxidants such as inducible nitric oxide synthase, myeloperoxidase, eosinophil peroxidase, and NADPH oxidase. Chronic inflammation is associated with carcinogenesis and acts as a driving force for cancer progression (150).

The expression of pro-inflammatory proteins is reduced by CPE in both in vitro and in vivo models (Table 3). Inducible nitric oxide synthase (iNOS) and inducible-type cyclooxygenase (COX) are enzymes that were induced in response to oxidative environment. Consequently, overexpression of these enzymes contributes to carcinogenesis through promotion of inflammation (7, 56, 122). CPEs down-regulated the expression of iNOS and COX-2 expression enzymes in human histiocytic lymphoma U937 cell lines, DU145 and murine macrophage RAW264.7 cells (75, 151-154). Reduction in these enzymes by CPEs was also
observed in colon, skin, and prostate cancer cell lines in vivo models (110-112). It is reported that CPEs in RAW264.7 cells reduced nitric oxide that is produced by iNOS (155).

Nuclear factor-kappa B (NF-κB) activation is an essential factor involved in inflammation. NF-κB is a heterodimeric protein composed of five subunits, and NF-κB presents in an inactive state in the cytoplasm due to the binding of inhibitory protein, IκBα (156, 157).

Upon the chemical signaling for the activation of NF-κB, the IκBα degrades and releases the NF-κB from its inactive state in the cytoplasm. The release of NF-κB allows the translocation of NF-κB subunits, p50 and p65, to the nucleus, where it activates the transcription of pro-inflammatory cytokines, chemokines, adhesion molecules, and enzymes. It is documented that CPEs treatment reduced the NF-κB activation and the nuclear translocation of its p50 and p65 subunits in RAW264.7, A549, MDA-MB-231, and U937 cancer cells (110, 151-153, 155, 158-161).

Likewise, inhibition of NF-κB suppresses a range of downstream genes that include pro-inflammatory cytokines. Sweet orange peel extract with high amount of PMFs suppressed the expression of TNF-α, ICAM-1, IL-1β, IL-6, and IL-8 in inflammation-induced U937 cells (151). The TNF-α, MCP-1, IL-6, and phosphorylated-p38 proteins were found to be lower in CPEs treated RAW264.7 cells than the control (153).

CPEs also have a suppressive effect on the signal transducer and activator of transcription 3 (STAT3) signaling pathway, which is involved in inflammation (75, 162). CPEs reduced the phosphorylation of STAT3 in DU145, PC-3, and prostate cancer cell lines M2182 (75). In the same study, janus-like kinase (JAK) and a c-Src kinase that mediated the phosphorylation of STAT3 were also found to be suppressed by CPE (110).

The mechanism of action of flavonoids on cancer cells is presented schematically in Figure 3. It is highly complex and involves not only some separate biological processes but also different modulation of overlapping cell signaling pathways.
5. Functional Evidence for Citrus Anti-Cancer Activity in *In Vivo* Models

CPE flavonoids have been suggested to play a critical role in a cancer prevention and maintaining a healthy lifestyle (163). Individual flavonoids such as apigenin, nobiletin, hesperidin and tangeretin, all highly enriched in CPE, have demonstrated anti-cancer activity in preclinical animal models. In addition to single and combined flavonoids, whole CPE has been tested for anti-cancer activity in rodent models.

A series of studies used preclinical mouse models of colon carcinogenesis to examine the protective effects of crude cold-pressed CPE oil. This oil contained approximately 30% polymethoxylated flavones such as nobiletin, sinensetin, tangeretin and monohydroxylated analogs. When mice were fed with a diet containing 0.2% of CPE before, during, and after carcinogen treatment (164), they showed a reduction in the number of aberrant crypt foci (ACF) - a histological biomarker for colon carcinogenesis - by 34-66% compared with control. The low incidence of tumor development could be due to the highly potent flavonoids in CPE (102, 164). Feeding mice with a diet containing 0.01% or 0.05% of hydroxylated PMFs for four weeks also reduced the total number of large ACF and tumors in colonic tissue by 40-44% compared to controls (110). When mice were fed with hydroxylated PMFs for 20 weeks, the number of microadenomas was reduced by up to 81% in comparison with controls. Similarly, oral administration of CPE with naringin and hesperidin reduced numbers of ACF up to 40% compared to the control group in colon tumor-bearing mice (110). Moreover, the addition of CPE (contained methoxylated flavones, including tetramethoxyflavone; 13.6%, nobiletin; 12.49%, sinensetin; 9.16%, hexamethoxyflavone; 11.06%, heptamethoxyflavone; 15.24%, and tangeretin; 19.0%) at 0.25 or 0.5% to the new western-style diet reduced the overall colon tumor number by 26-48% and overall tumor volumes by 36-63%, increased the number of apoptotic cells compared to the Western-style diet alone as well (165).
In another study, oral administration of ethanol extract of CPE (*citrus Junos* Tanaka) at 100 mg/kg/day significantly reduced the size of colorectal adenocarcinoma HT-29 tumor cells through reducing COX-2 expression in xenografts mice (153). Administration of methanol/water extract of dried citrus peel (*citrus reticulate* Blanco) at a dose of 1,000 ppm in the diet reduced total ACF by 75% compared to control (161). In a similar study, an in vivo model showed that a 70% aqueous methanol extract of CPE (*Korean citrus aurantium* L) could prevent human long (carcinoma) A549 cells migrating to lungs of mice injected with A549 cells via tail vein (40). These data suggested that CPE had effects on the regulation of apoptosis and cell migration.

In a two-stage skin carcinogenesis model, mice were treated with 7,12-dimethylbenz[a]anthracene to initiate tumors followed by repeated application of 12-O-tetradecanoylphorbol 13-acetate to promote tumor growth. Topical application of CPE, Gold Lotion (the peels of *navel oranges*, *citrus hassaku*, *citrus limon*, *citrus natsudaidei*, *citrus miyauchi*, and *satsuma*), at 100 µL and 200 µL on the skin reduced the number of papillomas by 25%, tumor incidence by 18%, tumor weight by 65% and the number of tumors with a diameter of above 5 mm by 33% compared to controls (112). The epidermal thickening was decreased 23-33% compared to control as a result of the associated inflammation and edema (112).

Apigenin reduced dimethyl benzanthracene-induced skin cancers by inhibiting epidermal ornithine decarboxylase, a key enzyme in cancer prevention (166). Nobiletin was effective in preventing skin carcinogenesis by suppression of 7,12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) and decreasing the inflammatory parameters (56). The 45-daily administration of hesperidin inhibited DMBA-induced experimental breast cancer formation through modification of phase I and phase II metabolizing enzymes, as well as modulating the xenobiotic-metabolizing enzymes during
1,2-dimethylhydrazine-induced colon carcinogenesis in rats (167). Tangeretin, a PMF, significantly arrested DMBA-induced breast cancer in rats (168). The anti-cancer activity of CPE (Gold Lotion) was also tested in prostate cancer models. In prostate cancer PC-3 tumor-bearing mice, treatment with CPE by intraperitoneal injection of 1 mg/kg/day reduced the tumor weight by 57% and tumor volume by 79% compared to control (127, 169). For mice treated with 2 mg/kg/day by oral ingestion, tumor weight was reduced by 86% and tumor size by 94%. The strong anti-cancer activity was attributed to the high concentration of PMFs and other compounds such as hesperidin. Chu, Chen, Chyau and Duh (116) showed the ethyl acetate extracts from sweet orange peel (50-500 µg/ml) reduced the human liver cancer HepG2 growth when tested in in vivo model and exhibits significant cytotoxicity on HepG2 cells.

Despite the growing number of preclinical animal studies, clinical trials involving citrus peel extracts are currently limited to a single study. Naringenin isolated from citrus aurantium peel (Chinese bitter orange) was tested as a therapeutic on 95 postoperative patients with osteosarcoma (170). The treatment group (n=47) that received 20 mg/day of naringenin showed significantly reduced osteosarcoma volume compared to placebo controls.

6. Conclusions

Citrus fruits are rich in flavonoid compounds, however much of the literature to date has focused on the effects of fruit pulp (and juice) consumption rather than examining the rich flavonoid profile of CPE. CPE is an underutilized commercial resource. For instance, the US orange juice industry produces 700,000 tons of peel waste annually (171) and contributes nearly 40% of the total weight of the fruit (49). Due to the low cost and current non-use of the peel by industry, citrus peel represents an untapped nutritional rich in bioactive compounds. There is a thus a great deal of potential for the application of citrus fruit peels to
create products that counter the effects of oxidative stress and have important health benefits (9).

This review has summarized a selection of the key preclinical and clinical studies that show an anti-cancer utility for citrus-derived flavonoids. This property is linked to chemical structures of flavonoids, which can dramatically affect a range of molecular and cellular mechanisms for inhibiting cancer initiation and progression. Overall, citrus flavonoids act not only as free radical scavengers but also as modulators of several key molecular events implicated in cell survival and apoptosis. Flavonoids exhibit a remarkable spectrum of biological activities including anti-inflammatory, anti-cancer, anti-proliferation, anti-angiogenesis, anti-oxidant, cell cycle regulation, and anti-metastasis effects.

7. Future studies

Further studies are needed to address both the basic science underlying CPE mechanisms in greater detail, as well as examining pharmacokinetics and pharmacodynamics as well as efficacy in a clinical setting. At a fundamental level, there is scope to explore the means by which flavonoids enter cancer cells and potentially accumulate in specific cellular organelles and tissues. This plays into the concept of flavonoid bioavailability, and there has been some discussion regarding innovative methods for enhancing this property (172). Further study may also focus on elucidating signaling pathways by which PCE can affect critical enzymes such as tyrosine and focal adhesion kinases, protein kinase C, and MMPs.

For clinical translation, trials in both the general population (as health supplements) and in the setting of cancer treatment are both needed to build upon cell culture studies and preclinical animal models. Multiple tests indicate that CPEs have a low toxicity profile in vitro and in vivo, making them suitable for further dietary and food product development.
Future studies will be required to test the utility of CPEs in a multi-targeted pharmacological strategy, either for cancer prevention or as a co-administration in oncological therapies.

Acknowledgments

Dong, Dehghani and Valtchev were responsible for the design, Koolaji and Balakrishnan were responsible for the writing and Schindeler was responsible for the final content. All authors have read and approved the manuscript, NK, BS, AS, QD, FD, and PV.

References

1. Darband SG, Kaviani M, Yousefi B, Sadighparvar S, Pakdel FG, Attari JA, Mohebbi I, Naderi S, Majidinia M. Quercetin: A functional dietary flavonoid with potential chemopreventive properties in colorectal cancer. Journal of Cellular Physiology. 2018;233(9):6544-60.
2. Wang T-y, Li Q, Bi K-s. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian Journal of Pharmaceutical Sciences. 2018;13(1):12-23.
3. Tsitsagi M, Ebralidze K, Chkhaidze M, Rubashvili I, Tsitsishvili V. Sequential extraction of bioactive compounds from tangerine (Citrus Unshiu) peel. Annals of Agrarian Science. 2018;16(2):236-41.
4. Cirmi S, Ferlazzo N, Lombardo G, Maugeri A, Calapai G, Gangemi S, Navarra M. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives? Nutrients. 2016;8(11):698.
5. Giacosa A, Barale R, Bavaresco L, Gatenby P, Gerbi V, Janssens J, Johnston B, Kas K, La Vecchia C, Mainguet P, et al. Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev. 2013;22(1):90-95.
6. Smeriglio A, Cornara L, Denaro M, Barreca D, Burlando B, Xiao J, Trombetta D. Antioxidant and cytoprotective activities of an ancient Mediterranean citrus (Citrus lumia Risso) albedo extract: Microscopic observations and polyphenol characterization. Food Chemistry. 2019;279:347-55.
7. Li S, Pan M-H, Lo C-Y, Tan D, Wang Y, Shahidi F, Ho C-T. Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods. 2009;1(1):2-12.
8. Gómez-Mejía E, Rosales-Conrado N, León-González ME, Madrid Y. Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry. 2019;295:289-99.
9. Rafiq S, Kaul R, Sofi S, Bashir N, Nazir F, Ahmad Nayik G. Citrus peel as a source of functional ingredient: A review. Journal of the Saudi Society of Agricultural Sciences. 2018;17(4):351-58.
10. Tomás-Barberan F, Ferreres F, Gil M. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. In:
Atta ur R, editor. Studies in Natural Products Chemistry. 23: Elsevier; 2000. p. 739-95.
11. Hollman P, Katan M. Dietary Flavonoids: Intake, Health Effects and Bioavailability. Food and Chemical Toxicology. 1999;37(9):937-42.
12. Abudayeh Z, Al Khalifa I, Mohammed S, Ahmad A. Phytochemical content and antioxidant activities of pomelo peel extract. Pharmacognosy Research. 2019;11(3):244-47.
13. Sharma K, Mahato N, Lee Yong R. Extraction, characterization and biological activity of citrus flavonoids. Reviews in Chemical Engineering2019. p. 265.
14. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry. 2006;99(1):191-203.
15. Hakim I, Harris R, Ritenbaugh C. Citrus peel use is associated with reduced risk of squamous cell carcinoma of the skin. Nutrition and Cancer. 2000;37(2):161-68.
16. Li W, Kuriyama S, Li Q, Nagai M, Hozawa A, Nishino Y, Tsuji I. Citrus consumption and cancer incidence: the Ohsaki cohort study. Int J Cancer. 2010;127(8):1913-22.
17. Garcia-Castello EM, Rodriguez-Lopez AD, Mayor L, Ballesteros R, Conidi C, Cassano A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT - Food Science and Technology. 2015;64(2):1114-22.
18. Kim SS, Park KJ, An HJ, Choi YH. Phytochemical, antioxidant, and antibacterial activities of fermented Citrus unshiu byproduct. Food science and biotechnology. 2017;26(2):461-66.
19. Dandekar Deepak V, Jayaprakasha Guddadarangavvanahally K, Patil Bhimanagouda S. Simultaneous Extraction of Bioactive Limonoid Aglycones and Glucoside from Citrus aurantium L. Using Hydrotropy. Zeitschrift für Naturforschung C2008. p. 176.
20. Chen X-M, Tait AR, Kitts DD. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chemistry. 2017;218:15-21.
21. Kroyer G. The antioxidant activity of citrus fruit peels. Z Ernahrungswiss. 1986;25(1):63-69.
22. Zia ur R. Citrus peel extract – A natural source of antioxidant. Food Chemistry. 2006;99(3):450-54.
23. Azman N. F. I. N AA, Khoo H. E, Razman M. R. . Antioxidant Properties of Fresh and Frozen Peels of Citrus Species. Curr Res Nutr Food Sci 2019;7(2):331-39.
24. Kandaswami C, Lee L, Lee P, Hwang J, Ke F, Huang Y, Lee M. The antitumor activities of flavonoids. In Vivo. 2005;19(5):895-909.
25. Yusof S, Ghazali HM, King GS. Naringin content in local citrus fruits. Food Chemistry. 1990;37(2):113-21.
26. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. The Journal of clinical investigation. 2001;107(2):135-42.
27. Cazarolli LH, Zanatta L, Alberton EH, Figueiredo MS, Folador P, Damazio RG, Pizzolatti MG, Silva FR. Flavonoids: prospective drug candidates. Mini Rev Med Chem. 2008;8(13):1429-40.
28. Amutha. R; Kavusik. T; Sudha A. Analysis of Bioactive Compounds in Citrus Fruit Peels International journal of Scientific Research and Review. 2018;6(12):19-26.
29. Manson M. Cancer prevention – the potential for diet to modulate molecular signalling. Trends in Molecular Medicine. 2003;9(1):11-18.
30. Milner J, McDonald S, Anderson D, Greenwald P. Molecular targets for nutrients involved with cancer prevention. Nutr Cancer. 2001;41(1-2):1-16.
31. Micali S, Isgro G, Bianchi G, Miceli N, Calapai G, Navarra M. Cranberry and recurrent cystitis: more than marketing? Crit Rev Food Sci Nutr. 2014;54(8):1063-75.
32. Han X, Shen T, Lou H. Dietary Polyphenols and Their Biological Significance. International Journal of Molecular Sciences. 2007;8(9):950.
33. Long X, Zeng X, Yan H, Xu M, Zeng Q, Xu C, Xu Q, Liang Y, Zhang J. Flavonoids composition and antioxidant potential assessment of extracts from Gannanzao Navel Orange (Citrus sinensis Osbeck Cv. Gannanzao) peel. Natural Product Research. 2019:1-5.
34. Middleton E. Effect of Plant Flavonoids on Immune and Inflammatory Cell Function. Advances in Experimental Medicine and Biology. 1998;439.
35. Peterson J, Dwyer J. Flavonoids: Dietary occurrence and biochemical activity. Nutrition Research. 1998;18(12):1995-2018.
36. Mori A, Nishino C, Enoki N, Tawata S. Cytotoxicity of plant flavonoids against HeLa cells. Phytochemistry. 1988;27(4):1017-20.
37. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572-84.
38. Lee D, Park K, Park H, Kang S, Nagappan A, Kim J, Kim E, Lee W, Hah Y, Chung H, et al. Flavonoids isolated from Korean Citrus aurantium L. Induce G2/M Phase Arrest and Apoptosis in Human Gastric Cancer AGS Cells. Evidence-Based Complementary and Alternative Medicine. 2012;2012:11.
39. Park KI, Park HS, Nagappan A, Hong GE, Lee do H, Kang SR, Kim JA, Zhang J, Kim EH, Lee WS, et al. Induction of the cell cycle arrest and apoptosis by flavonoids isolated from Korean Citrus aurantium L. in non-small-cell lung cancer cells. Food Chemistry. 2012;135(4):2728-35.
40. Park K-I, Park H-S, Kim M-K, Hong G-E, Nagappan A, Lee H-J, Yumnam S, Lee W-S, Won C-K, Shin S-C, et al. Flavonoids identified from Korean Citrus aurantium L. inhibit Non-Small Cell Lung Cancer growth in vivo and in vitro. Journal of Functional Foods. 2014;7:287-97.
41. Du Q, Chen H. The methoxyflavones in Citrus reticulata Blanco cv. ponkan and their antiproliferative activity against cancer cells. Food Chemistry. 2010;119(2):567-72.
42. Zhang J, Wu Y, Zhao X, Luo F, Li X, Zhu H, Sun C, Chen K. Chemopreventive effect of flavonoids from Ougan (Citrus reticulata cv. Suavissima) fruit against cancer cell proliferation and migration. Journal of Functional Foods. 2014;10:511-19.
43. Goh JXH, Tan LT-H, Goh JK, Chan KG, Pusparajah P, Lee L-H, Goh B-H. Nobiletin and Derivatives: Functional Compounds from Citrus Fruit Peel for Colon Cancer Chemoprevention. Cancers. 2019;11(6):867.
44. Al-Saman MA, Abdella A, Mazrou KE, Tayel AA, Irmak S. Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb). Journal of Food Measurement and Characterization. 2019.
45. Benavente-Garcia O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem. 2008;56(15):6185-205.
46. Nakajima A, Ohizumi Y. Potential Benefits of Nobiletin, A Citrus Flavonoid, against Alzheimer's Disease and Parkinson's Disease. International Journal of Molecular Sciences. 2019;20(14):3380.
47. Ledesma-Escobar CA, Priego-Capote F, Luque de Castro MD. Chapter 9 - Relevance and Analysis of Citrus Flavonoids. In: Watson RR, editor. Polyphenols in Plants (Second Edition): Academic Press; 2019. p. 133-50.
48. Marijan Šeruga* IT. Influence of Chemical Structure of Some Flavonols on Their Electrochemical Behaviour. Int J Electrochem Sci. 2017;12(9):7616-37.
49. Li S, Lo C-Y, Ho C-T. Hydroxylated Polymethoxyflavones and Methylated Flavonoids in Sweet Orange (Citrus sinensis) Peel. Journal of Agricultural and Food Chemistry. 2006;54(12):4176-85.
50. Jiang N, Doseff AI, Grotewold E. Flavones: From Biosynthesis to Health Benefits. Plants (Basel, Switzerland). 2016;5(2):27.
51. Caristi C, Bellocco E, Gargiulli C, Toscano G, Leuzzi U. Flavone-di-C-glycosides in citrus juices from Southern Italy. Food Chemistry. 2006;95(3):431-37.
52. Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research. 2017;61(1):1361779-79.
53. Ko H-C, Jang M-G, Kang C-H, Lee N-H, Kang S-I, Lee S-R, Park D-B, Kim S-J. Preparation of a polymethoxyflavone-rich fraction (PRF) of Citrus sunki Hort. ex Tanaka and its antiproliferative effects. Food Chemistry. 2010;123(2):484-88.
54. Tang M, Ogawa K, Asamoto M, Hokaiwado N, Seeni A, Suzuki S, Takahashi S, Tanaka T, Ichikawa K, Shirai T. Protective effects of citrus nobiletin and auraptene in transgenic rats developing adenocarcinoma of the prostate (TRAP) and human prostate carcinoma cells. Cancer Sci. 2007;98(4):471-77.
55. Murakami A, Nakamura Y, Torikai K, Tanaka T, Koshiba T, Koshimizu K, Kuwahara S, Takahashi Y, Ogawa K, Yano M, et al. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res. 2000;60(18):5059-66.
56. Murakami A, Shigemori T, Ohigashi H. Zingiberaceous and citrus constituents, 1'-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 murine macrophages through different modes of action. J Nutr. 2005;135(12 Suppl):2987-92.
57. Kurowska E, Manthey J. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. J Agric Food Chem. 2004;52(10):2879-86.
58. Nielsen S, Breinholt V, Cornett C, Dragsted L. Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus. Food Chem Toxicol. 2000;38(9):739-46.
59. Manthey J, Guthrie N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J Agric Food Chem. 2002;50(21):5837-43.
61. Manthey J, Bendele P. Anti-inflammatory activity of an orange peel polymethoxylated flavone, 3',4',3,5,6,7,8-heptamethoxyflavone, in the rat carrageenan/paw edema and mouse lipopolysaccharide-challenge assays. J Agric Food Chem. 2008;56(20):9399-403.

62. Pouget C, Lauthier F, Simon A, Fagnere C, Basly J-P, Delage C, Chuila A-J. Flavonoids: structural requirements for antiproliferative activity on breast cancer cells. Bioorganic & Medicinal Chemistry Letters. 2001;11(24):3095-97.

63. Yanez J, Vicente V, Alcaraz M, Benavente-Garcia O, Canteras M, Teruel JA. Cytotoxicity and antiproliferative activities of several phenolic compounds against three melanocytes cell lines: relationship between structure and activity. Nutr Cancer. 2004;49(2):191-99.

64. Rodriguez J, Yanez J, Vicente V, Alcaraz M, Benavente-Garcia O, Castillo J, Lorente J, Lozano JA. Effects of several flavonoids on the growth of B16F10 and SK-MEL-1 melanoma cell lines: relationship between structure and activity. Melanoma Res. 2002;12(2):99-107.

65. Martinez C, Yanez J, Vicente V, Alcaraz M, Benavente-Garcia O, Castillo J, Lorente J, Lozano J. Effects of several polyhydroxylated flavonoids on the growth of B16F10 melanoma and Melan-a melanocyte cell lines: influence of the sequential oxidation state of the flavonoid skeleton. Melanoma Res. 2003;13(1):3-9.

66. Kim J, Jayaprakasha G, Vikram A, Patil BS. Cancer Chemopreventive Properties of Citrus Limonoids. In: Bhimanagouda S. Patil, Guddadarangavanahally K. Jayaprakasha, Kotamballi N. Chidambara Murthy, Navindra P. Seeram, editors. Emerging Trends in Dietary Components for Preventing and Combating Disease. 1093: American Chemical Society; 2012. p. 37-50.

67. Tian Q, Dai J, Ding X. Screening for limonoid glucosides in Citrus grandis L. Osbeck by high performance liquid chromatography-electrospray ionization/mass spectrometry. Chinese journal of chromatography 2000;18(4):291-94.

68. Lim H-K, Moon JY, Kim H, Cho M, Cho SK. Induction of apoptosis in U937 human leukaemia cells by the hexane fraction of an extract of immature Citrus grandis Osbeck fruits. Food Chemistry. 2009;114(4):1245-50.

69. Miyake Y, Murakami A, Sugiyama Y, Isobe M, Koshimizu K, Ohigashi H. Identification of coumarins from lemon fruit (Citrus limon) as inhibitors of in vitro tumor promotion and superoxide and nitric oxide generation. Journal of Agricultural and Food Chemistry. 1999;47(8):3151-57.

70. Gyawali R, Jeon DH, Moon J, Kim H, Song YW, Hyun HB, Jeong D, Cho SK. Chemical Composition and Antiproliferative Activity of Supercritical Extract of Citrus grandis(L.) Osbeck Fruits from Korea. Journal of Essential Oil Bearing Plants. 2012;15(6):915-25.

71. Dugrand A, Olry A, Duval T, Hehn A, Froelicher Y, Bourgaud F. Coumarin and Furanocoumarin Quantitation in Citrus Peel via Ultrasound and Chromatography Coupled with Mass Spectrometry (UPLC-MS). Journal of Agricultural and Food Chemistry. 2013;61(45):10677-84.

72. Wang Y-C, Chuang Y-C, Hsu H-W. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chemistry. 2008;106(1):277-84.

73. Xu G, Chen J, Liu D, Zhang Y, Jiang P, Ye X. Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J Food Science. 2008;73(1):11-18.

74. Agócs A, Nagy V, Szabó Z, Márik L, Ohmacht R, Deli J. Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innovative Food Science & Emerging Technologies. 2007;8(3):390-94.
Kim C, Lee IH, Hyun HB, Kim J-C, Gyawali R, Lee S-G, Lee J, Kim S-H, Shim BS, Cho SK, et al. Supercritical Fluid Extraction of Citrus iyo Hort. ex Tanaka Pericarp Inhibits Growth and Induces Apoptosis Through Abrogation of STAT3 Regulated Gene Products in Human Prostate Cancer Xenograft Mouse Model. Integrative Cancer Therapies. 2017;16(2):227-43.

Crowell P. Prevention and therapy of cancer by dietary monoterpenes. J Nutr. 1999;129(3):775-78.

Putnik P, Bursac Kovacevic D, Rezek Jambrak A, Barba FJ, Cravotto G, Binello A, Lorenzo JM, Shpigelman A. Innovative "Green" and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes-A Review. Molecules. 2017;22(5).

M'hiri N, Ioannou I, Ghoul M, Boudhrioua NM. Extraction Methods of Citrus Peel Phenolic Compounds. Food Reviews International. 2014;30(4):265-90.

Amanuel L. Extraction of Pectic Acid from Citrus Fruit Peels and its Application as Textile Printing Thickener. Latest Trends in textile and Fashion Designing. 2018;1(3):45-50.

Li BB, Smith B, Hossain MM. Extraction of phenolics from citrus peels: I. Solvent extraction method. Separation and Purification Technology. 2006;48(2):182-88.

Bocco A, Cuvelier M-E, Richard H, Berset C. Antioxidant Activity and Phenolic Composition of Citrus Peel and Seed Extracts. Journal of Agricultural and Food Chemistry. 1998;46(6):2123-29.

Zhou X-M, Wen G-Y, Zhao Y, Liu Y-M, Li J-X. Inhibitory effects of alkaline extract of Citrus reticulata on pulmonary fibrosis. Journal of Ethnopharmacology. 2013;146(1):372-78.

Diaz-Reinoso B, Moure A, Dominguez H, Parajo JC. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J Agric Food Chem. 2006;54(7):2441-69.

Ahmad J, Langrish TAG. Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction. Journal of Food Engineering. 2012;109(1):162-74.

Puri M, Verma ML, Mahale K. Processing of citrus peel for the extraction of flavonoids for biotechnological applications. Nova Science Publishers; 2017.

Nagappan A, Lee HJ, Saralamma VVG, Park HS, Hong GE, Yumnam S, Raha S, Charles SN, Shin SC, Kim EH, et al. Flavonoids isolated from Citrus platymamma induced G2/M cell cycle arrest and apoptosis in A549 human lung cancer cells. Oncology Letters. 2016;12(2):1394-402.

Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoi K, Kawai K, et al. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct. 1990;15(6):393-401.

Huang Y, Hwang J, Lee P, Ke F, Huang J, Huang C, Kandaswami C, Middleton E, Lee M. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol. 1999;128(5):999-1010.

Castillo M, Perkins E, Campbell J, Doerr R, Hassett J, Kandaswami C, Middleton E. The effects of the bioflavonoid quercetin on squamous cell carcinoma of head and neck origin. Am J Surg. 1989;158(4):351-55.

Kandaswami C, Perkins E, Soloniuk D, Drzewiecki G, Middleton E. Antiproliferative effects of citrus flavonoids on a human squamous cell carcinoma in vitro. Cancer Letters. 1991;56(2):147-52.
91. Scambia G, Ranelletti F, Panici P, Piantelli M, Bonanno G, De Vincenzo R, Ferrandina G, Rumi C, Larocca L, Mancuso S. Inhibitory effect of quercetin on OVCA 433 cells and presence of type II oestrogen binding sites in primary ovarian tumours and cultured cells. Br J Cancer. 1990;62(6):942-46.

92. Lee L, Huang Y, Hwang J, Lee A, Ke F, Huang C, Kandaswami C, Lee P, Lee M. Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: effect on invasive potential of human carcinoma cells. Biochem Pharmacol. 2004;67(11):2103-14.

93. Hofmann J, Ueberall F, Posch L, Malý K, Herrmann DB, Grunicke H. Synergistic enhancement of the antiproliferative activity of cis-diamminedichloroplatinum(II) by the ether lipid analogue BM41440, an inhibitor of protein kinase C. Lipids. 1989;24(4):312-17.

94. Liao C-Y, Lee C-C, Tsai C-c, Hsueh C-W, Wang C-C, Chen IH, Tsai M-K, Liu M-Y, Hsieh A-T, Su K-J, et al. Novel Investigations of Flavonoids as Chemopreventive Agents for Hepatocellular Carcinoma. BioMed research international. 2015;2015:840542-42.

95. Kawai S, Tomono Y, Katase E, Ogawa K, Yano M. Antiproliferative Activity of Flavonoids on Several Cancer Cell Lines. Bioscience, Biotechnology, and Biochemistry. 1999;63(5):896-99.

96. Kim D-I, Lee S-J, Lee S-B, Park K, Kim W-J, Moon S-K. Requirement for Ras/Raf/ERK pathway in naringin-induced G 1 -cell-cycle arrest via p21WAF1 expression. Carcinogenesis. 2008;29(9):1701-09.

97. Cayrol C, Knibiehler M, Ducommun B. p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene. 1998;16:311.

98. Sugiyama S, Umehara K, Kuroyanagi M, Ueno A, Taki T. Studies on the Differentiation Inducers of Myeloid Leukemic Cells from Citrus Species. Chemical & Pharmaceutical Bulletin. 1993;41(4):714-19.

99. Hirano T, Abe K, Gotoh M, Oka K. Citrus flavone tangeretin inhibits leukemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes. British Journal Of Cancer. 1995;72:1380.

100. Iwase Y, Takemura Y, Ju-ichi M, Yano M, Ito C, Furukawa H, Mukainaka T, Kuchide M, Tokuda H, Nishino H. Cancer chemopreventive activity of 3,5,6,7,8,3′,4′-heptamethoxyflavone from the peel of citrus plants. Cancer Letters. 2001;163(1):7-9.

101. Surichan S, Androutsopoulos VP, Sifakis S, Koutala E, Tsatsakis A, Arroo RR, Boarder MR. Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells. Food and Chemical Toxicology. 2012;50(9):3320-28.

102. Rawson N, Ho C-T, Li S. Efficacious anti-cancer property of flavonoids from citrus peels. Food Science and Human Wellness. 2014;3(3-4):104-09.

103. Suzuki R, Kohn H, Murakami A, Koshimizu K, Ohigashi H, Yano M, Tokuda H, Nishino H, Tanaka T. Citrus nobiletin inhibits azoxymethane-induced large bowel carcinogenesis in rats. BioFactors. 2004;21(1-4):111-14.

104. Kunimasa K, Ikekita M, Sato M, Ohta T, Yamori Y, Ikeda M, Kuranuki S, Oikawa T. Nobiletin, a citrus polymethoxyflavonoid, suppresses multiple angiogenesis-related endothelial cell functions and angiogenesis in vivo. Cancer Science. 2010;101(11):2462-69.

105. Yoshimizu N, Otani Y, Saikawa Y, Kubota T, Yoshida M, Furukawa T, Kumai K, Kameyama K, Fujii M, Yano M, et al. Anti-tumour effects of nobiletin, a citrus flavonoid, on gastric cancer include: antiproliferative effects, induction of apoptosis and cell cycle deregulation. Aliment Pharmacol Ther. 2004;20 Suppl 1:95-101.
106. Hong G, Lee H, Kim J, Yumnam S, Raha S, Venkatramane Gowda Saralamma V, Heo J, Lee S, Kim E, Won C, et al. Korean Byungkyul - Citrus platymamma Hort.et Tanaka flavonoids induces cell cycle arrest and apoptosis, regulating MMP protein expression in Hep3B hepatocellular carcinoma cells. Int J Oncol. 2017;50(2):575-86.

107. Han M, Lee W, Lu JN, Kim G, Jung J, Ryu C, Kim G, Hwang H, Kwon T, Choi Y. Citrus aurantium L. exhibits apoptotic effects on U937 human leukemia cells partly through inhibition of Akt. International Journal of Oncology. 2012;40(6):2090-96.

108. Moon JY, Kim H, Cho SK. Auraptene, a Major Compound of Supercritical Fluid Extract of Phalsak (Citrus Hassaku Hort ex Tanaka), Induces Apoptosis through the Suppression of mTOR Pathways in Human Gastric Cancer SNU-1 Cells. Evidence-Based Complementary and Alternative Medicine. 2015;2015:10.

109. Adina AB, Goenadi FA, Handoko FF, Nawangsari DA, Hermawan A, Jenie RI, Meiyanto E. Combination of Ethanolic Extract of Citrus aurantifolia Peels with Doxorubicin Modulate Cell Cycle and Increase Apoptosis Induction on MCF-7 Cells. Iranian journal of pharmaceutical research (IJPR). 2014;13(3):919.

110. Lai C, Tsai M, Cheng A, Li S, Lo C, Wang Y, Xiao H, Ho C, Wang Y, Pan M. Chemoprevention of colonic tumorigenesis by dietary hydroxylated polymethoxyflavones in azoxymethane-treated mice. Molecular Nutrition & Food Research. 2011;55(2):278-90.

111. Pan M-H, Li S, Lai C-S, Miyauchi Y, Suzawa M, Ho C-T. Inhibition of citrus flavonoids on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumorigenesis in mice. Food Science and Human Wellness. 2012;1(1):65-73.

112. Grana X, Reddy E. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995;11(2):211-19.

113. Molinari M. Cell cycle checkpoints and their inactivation in human cancer. Cell Proliferation. 2000;33(5):261-74.

114. Chu C-C, Chen S-Y, Chyau C-C, Duh P-D. Antiproliferative effect of sweet orange peel and its bioactive compounds against human hepatoma cells, in vitro and in vivo. Journal of Functional Foods. 2017;33(Supplement C):363-75.

115. Foster I. Cancer: A cell cycle defect. Radiography. 2008;14(2):144-49.

116. Shammugasamy B, Valtchev P, Dong Q, Dehghani F. Effect of citrus peel extracts on the cellular quiescence of prostate cancer cells. Food & Function. 2019;10(6):3727-37.

117. Van Slambroutck S, Parmar V, Sharma S, De Bondt B, Fore F, Coopman P, Vanhoecke B, Boterberg T, Depypere H, Leclercq G, et al. Tangeretin inhibits extracellular-signal-regulated kinase (ERK) phosphorylation. FEBS Lett. 2005;579(7):1665-69.

118. Morley K, Ferguson P, Koropatnick J. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Lett. 2007;251(1):168-78.
121. Wu X, Song M, Gao Z, Sun Y, Wang M, Li F, Zheng J, Xiao H. Nobiletin and its colonic metabolites suppress colitis-associated colon carcinogenesis by down-regulating iNOS, inducing antioxidative enzymes and arresting cell cycle progression. The Journal of Nutritional Biochemistry. 2017;42:17-25.

122. Choi S, Ko H, Ko S, Hwang J, Park J, Kang S, Han S, Yun S, Kim S. Correlation between flavonoid content and the NO production inhibitory activity of peel extracts from various citrus fruits. Biol Pharm Bull. 2007;30(4):772-78.

123. Vue B, Zhang S, Chen Q. Flavonoids with Therapeutic Potential in Prostate Cancer. Anticancer Agents Med Chem. 2016;16(10):1205-029.

124. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007;35(4):495-516.

125. Jin Z, El-Deiry W. Overview of cell death signaling pathways. Cancer Biology & Therapy. 2005;4(2):139-63.

126. Wang, B, Lin, S-Y, Shen, Y-Y, Li-qiang, W, Chen, Z-Z, Jing Li CZ, Wen-bin. Q, Jian-ping. J. Pure total flavonoids from Citrus paradisi Macfadyen act synergistically with arsenic trioxide in inducing apoptosis of Kasumi-1 leukemia cells in vitro. Journal of Zhejiang University SCIENCE B (Biomedicine & Biotechnology). 2015;16(7):580-85.

127. Lai C, Li S, Miyauchi Y, Suzawa M, Ho C, Pan M. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors. Food & Function. 2013;4(6):944-49.

128. Kim M, Bo H, Choi E, Kwon D, Kim H, Ahn K, Ji S, Jeong J, Park S, Hong S, et al. Induction of Apoptosis by Citrus unshiu Peel in Human Breast Cancer MCF-7 Cells: Involvement of ROS-Dependent Activation of AMPK. Biol Pharm Bull. 2018;41(5):713-21.

129. Wang L, Wang J, Fang L, Zheng Z, Zhi D, Wang S, Li S, Ho C-T, Zhao H. Anticancer Activities of Citrus Peel Polymethoxyflavones Related to Angiogenesis and Others. BioMed Research International. 2014;2014:10.

130. Hata A, Engelman J, Faber A. The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Cancer discovery. 2015;5(5):475-87.

131. Yu S, Andrabi S, Wang H, Kim N, Poirier G, Dawson T, Dawson V. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A. 2006;103(48):18314-19.

132. Kim M, Park H, Hong M, Park H, Kim M, Leem K, Kim J, Kim Y, Kim H. Citrus Reticulata blanco induces apoptosis in human gastric cancer cells SNU-668. Nutrition and Cancer. 2005;51(1):78-82.

133. Guan X, Zhou L. Apoptotic effect of citrus fruit extract nobiletin on lung cancer cell line A549 in vitro and in vivo AU - Luo, Gang. Cancer Biology & Therapy. 2008;7(6):966-73.

134. Middleton E, Kandaswami C, Theoharides T. The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer. Pharmacological Reviews. 2000;52(4):673-751.

135. Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.

136. Schindler R, Mentlein R. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. J Nutr. 2006;136(6):1477-82.
137. Lamy S, Akla N, Ouanouki A, Lord-Dufour S, Beliveau R. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway. Exp Cell Res. 2012;318(13):1586-96.

138. Lam I, Alex D, Wang Y, Liu P, Liu A, Du G, Lee S. In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: identifying sinensetin as a novel antiangiogenesis agent. Mol Nutr Food Res. 2012;56(6):945-56.

139. Sp N, Kang DY, Kim DH, Park JH, Lee HG, Kim HJ, Darvin P, Park Y-M, Yang YM. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/NF-Kb Signaling Axis. Nutrients. 2018;10(6).

140. Arivazhagan L, Sorimuthu Pillai S. Tangeretin, a citrus pentamethoxyflavone, exerts cytostatic effect via p53/p21 up-regulation and suppresses metastasis in 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinoma. The Journal of Nutritional Biochemistry. 2014;25(11):1140-53.

141. Hamdy F, Fadlon E, Cottam D, Lawry J, Thurrell W, Silcocks P, Anderson J, Williams J, Rees R. Matrix metalloproteinase 9 expression in primary human prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer. 1994;69(1):177-82.

142. Kim C, Kim D, Nam D, Chung W, Ahn K, Kim S, Choi S, Shim B, Cho S, Ahn K. Anti-metastatic effect of supercritical extracts from the Citrus hassaku pericarp via inhibition of C-X-C chemokine receptor type 4 (CXCR4) and matrix metalloproteinase-9 (MMP-9). Phytother Res. 2014;28(9):1374-82.

143. Ademosun Ayokunle O, Oboh G, Passamonti S, Tramer F, Ziberna L, Boligon Aline A, Athayde Margareth L. Inhibition of metalloproteinase and proteasome activities in colon cancer cells by citrus peel extracts. Journal of Basic and Clinical Physiology and Pharmacology. 2015;26(5):471.

144. Zhang X, Huang S, Xu Q. Quercetin inhibits the invasion of murine melanoma B16-BL6 cells by decreasing pro-MMP-9 via the PKC pathway. Cancer Chemother Pharmacol. 2004;53(1):82-88.

145. Bachmeier B, Iancu C, Jochum M, Nerlich A. Matrix metalloproteinases in cancer: comparison of known and novel aspects of their inhibition as a therapeutic approach. Expert Review of Anticancer Therapy. 2005;5(1):149-63.

146. Park J, Shin M, Kim S, Kim H, Kim K, Shin K, Kang K. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration. International Journal of Biological Macromolecules. 2016;85:522-29.

147. Jin H, Lee W, Yun J, Jung J, Yi SM, Kim H, Choi Y, Kim G, Jung J, Ryu C, et al. Flavonoids from Citrus unshiu Marc. inhibit cancer cell adhesion to endothelial cells by selective inhibition of VCAM-1. Oncology Reports. 2013;30(5):2336-42.

148. Chang L, Jia S, Fu Y, Zhou T, Cao J, He Q, Yang B, Li X, Sun C, Su D, et al. Ougan (Citrus reticulata cv. Suavissima) flavedo extract suppresses cancer motility by interfering with epithelial-to-mesenchymal transition in SKOV3 cells. Chin Med. 2015;10:14.

149. Onder T, Gupta P, Mani S, Yang J, Lander E, Weinberg R. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645-54.

150. Ohshima H, Tatemiichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis. Archives of Biochemistry and Biophysics. 2003;417(1):3-11.
151. Gosslau A, Chen KY, Ho C-T, Li S. Anti-inflammatory effects of characterized orange peel extracts enriched with bioactive polymethoxylavones. Food Science and Human Wellness. 2014;3(1):26-35.
152. Oh Y-C, Cho W-K, Jeong YH, Im GY, Yang MC, Hwang Y-H, Ma JY. Anti-Inflammatory Effect of Citrus Unshiu Peel in LPS-Stimulated RAW 264.7 Macrophage Cells. The American Journal of Chinese Medicine. 2012;40(03):611-29.
153. Kim SH, Shin EJ, Hur HJ, Park JH, Sung MJ, Kwon DY, Hwang J-T. Citrus junos Tanaka peel extract attenuates experimental colitis and inhibits tumour growth in a mouse xenograft model. Journal of Functional Foods. 2014;8:301-08.
154. Shin H-S, Kang S-I, Ko H-C, Kim H-M, Hong Y-S, Yoon S-A, Kim S-J. Anti-inflammatory effect of the immature peel extract of Jinkyool (Citrus sunki Hort. ex Tanaka). Food Science and Biotechnology. 2011;20(5):1235-41.
155. Jung KH, Ha E, Kim MJ, Won H-J, Zheng LT, Kim HK, Hong SJ, Chung JH, Yim S-V. Suppressive effects of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression by Citrus reticulata extract in RAW 264.7 macrophage cells. Food and Chemical Toxicology. 2007;45(8):1545-50.
156. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nature Immunology. 2002;3(3):221-27.
157. Tsai S-H, Lin-Shiau S-Y, Lin J-K. Suppression of nitric oxide synthase and the down-regulation of the activation of NFκB in macrophages by resveratrol. British Journal of Pharmacology. 1999;126(3):673-80.
158. Etoh T, Kim YP, Hayashi M, Suzawa M, Li S, Ho C-T, Komiyama K. Inhibitory effect of a formulated extract from multiple citrus peels on LPS-induced inflammation in RAW 246.7 macrophages. Functional Foods in Health and Disease. 2013;3(6):242-53.
159. Kang S, Han D, Park K, Park H, Cho Y, Lee H, Lee W, Ryu C, Ha Y, Lee do H, et al. Suppressive Effect on Lipopolysaccharide-Induced Proinflammatory Mediators by Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-kappaB Signal Pathway. Evid Based Complement Alternat Med. 2011;2011.
160. Wang A-Y, Zhou M-Y, Lin W-C. Antioxidative and anti-inflammatory properties of Citrus sulcata extracts. Food Chemistry. 2011;124(3):958-63.
161. Onuma W, Asai D, Tomono S, Miyamoto S, Fujii G, Hamoya T, Nagano A, Takahashi S, Masumori S, Miyoshi N, et al. Anticarcinogenic Effects of Dried Citrus Peel in Colon Carcinogenesis Due to Inhibition of Oxidative Stress. Nutrition and Cancer. 2017;69(6):655-61.
162. Pan M, Ho C. Chemopreventive effects of natural dietary compounds on cancer development. Chemical Society Reviews. 2008;37(11):2558-74.
163. Hursting S, M Cantwell M, Sansbury L, Forman M. Nutrition and Cancer Prevention: Targets, Strategies, and the Importance of Early Life Interventions. Translational Medicine @ UniSa 2006;57:153-202.
164. Wei D, Yue L, Robert TR, Geetha G, Mou-Tuan H. Inhibitory Effects of Oral Administration of an Extract of Orange Peel in the Diet on Azoxy methane-Induced Formation of Aberrant Crypt Foci and Colon Tumor in CF-1 Mice. Food Factors in Health Promotion and Disease Prevention. ACS Symposium Series. 851: American Chemical Society; 2003. p. 213-23.
165. Fan K, Kurihara N, Abe S, Ho C-T, Ghai G, Yang K. Chemopreventive Effects of Orange Peel Extract (OPE) I. OPE Inhibits Intestinal Tumor Growth inApcMin/+ Mice. Journal of Medicinal Food. 2007;10(1):11-17.
166. Wei H, Tye L, Bresnick E, Birt D. Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 1990;50(3):499-502.

167. Aranganathan S, Selvam J, Sangeetha N, Nalini N. Modulatory efficacy of hesperetin (citrus flavanone) on xenobiotic-metabolizing enzymes during 1,2-dimethylhydrazine-induced colon carcinogenesis. Chem Biol Interact. 2009;180(2):254-61.

168. Lakshmi A, Subramanian S. Chemotherapeutic effect of tangeretin, a polymethoxylated flavone studied in 7, 12-dimethylbenz(a)anthracene induced mammary carcinoma in experimental rats. Biochimie. 2014;99:96-109.

169. Michiko Suzawa LG, Min-Hsiung Pan, Chi-Tang Ho, Shiming Li. In vivo anticarcinogenic property of a formulated citrus peel extract. Functional Foods in Health and Disease 2014;4(2):120-29.

170. Zhang L, Xu X, Jiang T, Wu K, Ding C, Liu Z, Zhang X, Yu T, Song C. Citrus aurantium Naringenin Prevents Osteosarcoma Progression and Recurrence in the Patients Who Underwent Osteosarcoma Surgery by Improving Antioxidant Capability. Oxidative Medicine and Cellular Longevity. 2018;2018:16.

171. Manthey J, Grohmann K. Phenols in Citrus Peel Byproducts. Concentrations of Hydroxycinnamates and Polymethoxylated Flavones in Citrus Peel Molasses. Journal of Agricultural and Food Chemistry. 2001;49(7):3268-73.

172. Thilakarathna SH, Rupasinghe HPV. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients. 2013;5(9):3367-87.

173. Mak NK, Wong-Leung YL, Chan SC, Wen J, Leung KN, Fung MC. Isolation of anti-leukemia compounds from Citrus reticulata. Life sciences. 1996;58(15):1269-76.

174. Wang Y, Qian J, Cao J, Wang D, Liu C, Yang R, Li X, Sun C. Antioxidant Capacity, Anticancer Ability and Flavonoids Composition of 35 Citrus (Citrus reticulata Blanco) Varieties. Molecules. 2017;22(7).

175. Sergeev IN, Ho CT, Li S, Colby J, Dushenkov S. Apoptosis-inducing activity of hydroxylated polymethoxyflavones and polymethoxyflavones from orange peel in human breast cancer cells. Molecular Nutrition & Food Research. 2007;51(12):1478-84.

176. Hirata T, Fujii M, Akita K, Yanaka N, Ogawa K, Kuroyanagi M, Hongo D. Identification and physiological evaluation of the components from citrus fruits as potential drugs for anti-corpulence and anticancer. Bioorganic & Medicinal Chemistry. 2009;17(1):25-8.

177. Tanaka S, Sato T, Akimoto N, Yano M, Ito A. Prevention of UVB-induced photoinflammation and photoaging by a polymethoxy flavonoid, nobiletin, in human keratinocytes in vivo and in vitro. Biochem Pharmacol. 2004;68(3):433-39.

178. Alshatwi A, Ramesh E, Periasamy V, Subash-Babu P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol. 2013;27(6):581-92.

179. Hyo Jung Kim TY, Toshiaki Teruya, Je-Tae Woo, Byung-Yoon Cha. Nobiletin, a Polymethoxy Flavonoid, Reduced Endothelin-1 Plus SCF-Induced Pigmentation in Human Melanocytes. Photochemistry and Photobiology. 2015;91:379-86.

180. Yoshizaki N, Fujii T, Hashizume R, Masaki H. A polymethoxyflavone mixture, extracted from orange peels, suppresses the UVB-induced expression of MMP-1. Exp Dermatol. 2016;25 Suppl 3:52-6.

181. Charoensinphon N, Qiu P, Dong P, Zheng J, Ngauv P, Cao Y, Li S, Ho C-T, Xiao H. 5-Demethyltangeretin inhibits human nonsmall cell lung cancer cell growth
by inducing G2/M cell cycle arrest and apoptosis. Molecular Nutrition & Food Research. 2013;57(12):2103-11.
182. Lu C, Zhu F, Cho Y, Tang F, Zykova T, Ma W, Bode A, Dong Z. Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell. 2006;23(1):121-32.
183. Breinholt V, Lauridsen S, Dragsted L. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat. Xenobiotica. 1999;29(12):1227-40.
184. Chen K, Weng M, Lin J. Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochem Pharmacol. 2007;73(2):215-27.
185. Pereira CV, Duarte M, Silva P, Bento da Silva A, Duarte CMM, Cifuentes A, García-Cañas V, Bronze MR, Albuquerque C, Serra AT. Polymethoxylated Flavones Target Cancer Stemness and Improve the Antiproliferative Effect of 5-Fluorouracil in a 3D Cell Model of Colorectal Cancer. Nutrients. 2019;11(2):326.
186. Laavola M, Nieminen R, Yam M, Sadikun A, Abdallah M, Basir R, Welling J, Vapaatalo H, Korhonen R, Moilanen E. Flavonoids Eupatorin and Sinensetin Present in Orthosiphon stamineus Leaves Inhibit Inflammatory Gene Expression and STAT1 Activation. Planta medica. 2012;78:779-86.
187. Arifianti L, Sukardiman S, Hadi Santosa M. Sinensetin-Rich Fraction Solid Dispersion Inhibits Cancer Cell Cycle. KnE Life Sciences. 2017;3:436.
188. Dong Y, Ji G, Cao A, Shi J, Shi H, Xie J, Wu D. Effects of sinensetin on proliferation and apoptosis of human gastric cancer AGS cells. China journal of Chinese materia medica. 2011;36:790-94.
189. Choi C, Sun K, An C, Yoo J, Hahm K, Lee I, Sohng J, Kim Y. Reversal of P-glycoprotein-mediated multidrug resistance by 5,6,7,3′,4′-pentamethoxyflavone (Sinensetin). Biochem Biophys Res Commun. 2002;295(4):832-40.
190. Androutsopoulos V, Ruparelia K, Arroo R, Tsatsakis A, Spandidos D. CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells. Toxicology. 2009;264(3):162-70.
191. Sergeev I, Li S, Colby J, Ho C, Dushenkov S. Polymethoxylated flavones induce Ca(2+)-mediated apoptosis in breast cancer cells. Life Sci. 2006;80(3):245-53.
192. Kim H, Moon J, Mosaddik A, Cho S. Induction of apoptosis in human cervical carcinoma HeLa cells by polymethoxylated flavone-rich Citrus grandis Osbeck (Dangyuja) leaf extract. Food Chem Toxicol. 2010;48(8-9):2435-42.
193. Tan K-T, Lin M-X, Lin S-C, Tung Y-T, Lin S-H, Lin C-C. Sinensetin induces apoptosis and autophagy in the treatment of human T-cell lymphoma. Anti-Cancer Drugs. 2019;30(5):485-94.
194. Samidurai D, Pandurangan AK, Krishnamoorthi SK, Perumal MK, Nanjian R. Sinensetin isolated from Orthosiphon aristatus inhibits cell proliferation and induces apoptosis in hepatocellular carcinoma cells. Process Biochemistry. 2019.
195. Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sciences. 2015;124:64-74.
196. Stanisic D, F. Costa A, Fávaro W, Tasic L, Seabra A, Duran N. Anticancer Activities of Hesperidin and Hesperetin In vivo and their Potentiality against Bladder Cancer. Journal of Nanomedicine & Nanotechnology. 2018;9:6.
197. Zhang J, Wu D, Vikash, Song J, Wang J, Yi J, Dong W. Hesperetin Induces the Apoptosis of Gastric Cancer Cells via Activating Mitochondrial Pathway by Increasing Reactive Oxygen Species. Dig Dis Sci. 2015;60(10):2985-95.

198. Sak K, Lust H, Kase M, Saar M, Jaal J. Suppression of Taxanes Cytotoxicity by Citrus Flavonoid Hesperetin in PPC-1 Human Prostate Cancer Cells. Anticancer Research. 2018;38(11):6209-15.

199. Ye L, Chan FL, Chen S, Leung LK. The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. The Journal of Nutritional Biochemistry. 2012;23(10):1230-37.

200. Vinothkumar V, Velu P, Ramachandhiran D, Ramados Nirmal M. Molecular effects of hesperetin, a citrus flavanone on7,12-dimethylbenz(a)anthracene induced buccal pouch squamous cell carcinoma in golden Syrian hamsters AU - Babukumar, Sukumar. Archives of Physiology and Biochemistry. 2017;123(4):265-78.

201. Chen Y, Shen S, Lin H. Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids. Biochem Pharmacol. 2003;66(7):1139-50.

202. Leslie E, Mao Q, Oleschuk C, Deeye R, Cole S. Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and ATPase activities by interaction with dietary flavonoids. Mol Pharmacol. 2001;59(5):1171-80.

203. Wong K-C, Pang W-Y, Wang X-L, Mok S-K, Lai W-P, Chow H-K, Leung P-C, Yao X-S, Wong M-S. Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone. British Journal of Nutrition. 2013;110(3):475-85.

204. Chen R, Qi Q-L, Wang M-T, Li Q-Y. Therapeutic potential of naringin: an overview. Pharmaceutical Biology. 2016;54(12):3203-10.

205. Habauzit V, Sacco SM, Gil-Izquierdo A, Trzcinskiwicz A, Morand C, Barron D, Pinaud S, Offord E, Horcajada M-N. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone. 2011;49(5):1108-16.

206. Anwar A, Uddin N, Siddiqui BS, Siddiqui RA, Begum S, Choudhary MI. A natural flavonoid lawsonaringenin induces cell cycle arrest and apoptosis in HT-29 colorectal cancer cells by targeting multiple signalling pathways. Mol Biol Rep. 2018;45(5):1339-48.

207. Yoshinaga A, Kajiya N, Oishi K, Kamada Y, Ikeda A, Chigwechokha PK, Kibe T, Kishida M, Kishida S, Komatsu M, et al. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation. Eur J Pharmacol. 2016;782:21-29.

208. Cai L, Wu H, Tu C, Wen X, Zhou B. Naringin inhibits ovarian tumor growth by promoting apoptosis: An in vivo study. Oncology letters. 2018;16(1):59-64.

209. Nandakumar N, Haribabu L, Perumal S, Balasubramanian MP. Therapeutic effect of hesperidin with reference to biotransformation, lysosomal and mitochondrial TCA cycle enzymes against 7,12-dimethylbenz(a)anthracene-induced experimental mammary cellular carcinoma. Biomedicine & Aging Pathology. 2011;1(3):158-68.

210. Lee K-H, Yeh M-H, Kao S-T, Hung C-M, Liu C-J, Huang Y-Y, Yeh C-C. The inhibitory effect of hesperidin on tumor cell invasiveness occurs via suppression of activator protein 1 and nuclear factor-kappaB in human hepatocellular carcinoma cells. Toxicology Letters. 2010;194(1):42-49.

211. Febriansah R, Putri DDP, Sarmoko, Nurulita NA, Meiyan E, Nugroho AE. Hesperidin as a preventive resistance agent in MCF-7 breast cancer cells line resistance to doxorubicin. Asian Pacific journal of tropical biomedicine. 2014;4(3):228-33.
212. Kusharyanti I, Larasati L, Susidarti R, Meiyanto E. Hesperidin Increase Cytotoxic Activity of Doxorubicin on HeLa Cell Line Through Cell Cycle Modulation and Apoptosis Induction. Indonesian J Cancer Chemoprev. 2011;2:267-73.

213. Zhao J, Li Y, Gao J, De Y. Hesperidin inhibits ovarian cancer cell viability through endoplasmic reticulum stress signaling pathways. Oncology letters. 2017;14(5):5569-74.

214. Hana R, Bawi B. Hesperidin inhibits angiogenesis, induces apoptosis, and suppresses laryngeal cancer cell metastasis. Ibnosina Journal of Medicine and Biomedical Sciences. 2018;10(5):169-73.

Figure 1. Main skeleton of flavonoids and their classes
Figure 2. The structural formula of main citrus peel flavonoids and their subclasses

Figure 3. Schematic of the main molecular mechanism of flavonoids on anticancer. 1) The anti-angiogenesis activity via VEGF by inhibiting HIF-1α/Akt/NFkB signaling pathways. 2) The anti-inflammation activity by decreasing p38 via MAPK and inhibiting the expression of COX-2. 3) The anti-metastasis activity via inhibition of MMP-2/9 by diminishing the Akt/FAK/Ras/PI3K signaling pathways. 4) The anti-proliferation activity via inhibiting PI3K/Akt; via cell-cycle arrest the G0/G1 or G1/S phase by activating p53 and p21, and also inhibiting BAX and bcl-2; via increasing cytochrome-c and activating caspase pathways.
Table 1: *In-vitro* anticancer effect of citrus peel extract

Sample	Compound Identification	Cell lines (IC50, µg/mL)	Cell cycle arrest	Anti-proliferation	Anti-apoptosis	Anti-metastasis	Anti-inflammatory & anti-angiogenesis	Reference
Citrus reticulata	D	WEHI 3B (<100)						(173, 174)
Citrus reticulata		SNU-668 (=100)	I					(132)
Citrus sinensis	D	MCF-7 (10.2-17.9)		I				(175)
Citrus grandis	D	U937 (60), HepG2 (31), HeLa (287), HCT-15 (87), MCF-7 (144), NCI-H460 (73), SNU-16 (90)	I*					(68)
17 citrus varieties	D	HT-29 (31-45)						(176)
Citrus sunki	D	HL-60 (25)	G2/M	I				(53)
Citrus aurantium	D	AGS (99)	G2/M	I	I			(38)
Citrus aurantium		U937 (40-60)		I	I			(107)
Citrus grandis	D	HeLa (100-200), AGS (200-400)	I					(70)
Citrus aurantium	D	A549 (230)	G2/M	I	I			(39)
Citrus unshiu		MDA-MB-231 (>200)		I				(147)
Citrus junos		HT-29 (>1200)				I		(153)
Citrus aurantifolia		MCF-7 (59)	G2/M	I				(109)
Citrus aurantium	D	A549		I	I			(40)
Citrus hassaku	D	MDA-MB-231		I				(153)
Citrus reticulata	D	HepG2 (20-40), HL-60 (25-50), MDA-MB-231 (25-50)						(42)
Citrus paradisi, Citrus sinensis, Citrus maxima	D	Caco-2, LoVo, LoVo/ADR						(143)
Citrus hassaku	D	SNU-1 (=25)	G1	I				(108)
Citrus paradesi		Kasumi-1 (2000)		I				(126)
Citrus reticulata	D	SKOV3 (≥100)		I	I			(148)
Citrus platymamma	D	A549 (364)	G2/M	I	I	I	(86)	
Citrus sphaerocarpa	D	MDA-MB-231 (>200)			I	I	(153)	
Citrus iyo	D	U266 (>400), K562 (200–400), DU145 (>400), MDA-MB-231 (>400), HepG2 (200–400), RWPE-1 (>400)	I^	I^	I^	I^	(75)	
Citrus platymamma	D	Hep3B (100–200), HepG2 (300–400)	G2/M	I^	I^	I^	(106)	
Citrus sinensis	D	HepG2 (>500)	G1	I	I	I	(116)	
Citrus reticulata		HCT116					(161)	

D: Determined; I: Induced, * only for U937, ^ only for DU145, # only for Hep3B

Table 2: In-vivo anticancer effect of citrus peel extract

Sample	Animal models	Dose (route)	Duration	Effects	Reference
Citrus junos	HT-29 cells implanted mice	100 mg/kg/daily (i.p)	4 weeks	Reduced tumor size, disease activity index and colon shortening	(153)
Citrus aurantium	A549 cells injected in mice tail vein	Twice weekly (i.p)	5 weeks	Reduced cancer metastasis	(40)
Citrus reticulata	Treated leukemic cells injected into mice	2/10 weeks	Reduced number of tumor cells and increased mice survival time	(173)	
Citrus sinensis	AOM-induced carcinogenesis in mice	0.2% in diet	26 weeks	Reduced number and size of ACF, tumor burden and incidence	(164)
Citrus sinensis	Western diet inducing cancer	0.25%/0.5% in diet	9 weeks	Reduced tumor number, multiplicity and induced apoptotic	(165)
Multiple citrus	DMBA-induced carcinogenesis in mice	100/200 µL/twice weekly (cream application)	20 weeks	Reduced epidermal thickness, number of papillomas, tumor incidence and tumor weight	(112)
Citrus unshiu	double-TPA-application to ICR mouse skin	8.1 nmol/30 min	24 hours	Inhibit NO and (O2-) generation	(56)
Multiple citrus	PC-3 cells implanted mice	1/2 mg/kg/five days per week (i.p) and 2 or 4 mg/kg/ five days per week (o.p)	3 weeks	Suppressed tumor size.	(111)
Multiple citrus	AOM-induced carcinogenesis in mice	100/200 µL/five days per week (o.p)	6 weeks	Reduced number of ACF	(111)
Citrus iyo	DU145 cells implanted mice	50/200 mg/kg/thrice weekly (i.p)	4 weeks	Suppressed tumor growth	(75)
Citrus depressa	TEWL and epidermal thickness in UVB-irradiated mouse skin	100µl of 10%/day	1 week	Reduce photoaging in mice	(177)
Citrus sinensis	HepG2 cells implanted mice	1/10 mg/kg/thrice weekly in diet	3 weeks	Reduced tumor growth	(116)
Citrus sinensis	AOM-induced carcinogenesis in mice	0.01%/0.05% in diet	4/18 weeks	Reduced number of ACF	(110)

i.p: intraperitoneal injection; o.p: oral injection; ACF: aberrant crypt foci; AOM: azoxymethane; 2, 4-dimethoxybenzaldehyde
Flavonoids	Chemopreventive & anti-inflammatory Effects	Mechanisms	Cancer cells	References	
Nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone)	Cell cycle regulation	Arrested cell cycle progression at G1	MDA-MB-435, MCF-7, HT-29, KATO-III, TMK-1, A549, MKN-45, MKN-74 cancer cells	(39, 68, 129, 177-180)	
	Anti-angiogenesis, anti-inflammatory, anti-metastasis	Inhibited the activity of extracellular-signal-regulated kinases 1/2 (ERK1/2) phosphorylation and c-JNK and activation of the caspase pathway	MDA-MB-435, MCF-7, HT-29 cancer cells		
Co-chemotherapeutic	Increased cytotoxicity of doxorubicin		MCF-7, T47D cancer cells		
Suppressing carcinogenesis	Inhibited the activity of CYP1A2		MCF-7, T47D		
Anti-oxidant	Scavenge DPPH radicals, hydrogen peroxide scavenging, hydroxyl radical scavenging				
Anti-metastasis	Prevented the migration		A549 cells in vitro/in vivo		
Apoptosis	Downregulated (Bcl-2)/upregulation (Bax)		HeLa; THP-1		
Anti-inflammatory	Decreased activation of AP-1, NF-kB and CREB		RAW 264.7 monocyte/macrophage-like cells		
Anti-inflammatory	Induced LPS-induced both O2 and N2 generation		Skin inflammation		
Anti-inflammatory	Induced the expression of COX-2 by suppressing UVB		Human keratinocytes in vitro		
Anti-metastatic	Inhibited MEK1/2 activity is associated with the suppression of pro MMPs		Human fibrosarcoma HT-1080 cells		
Anti-metastatic	Enhanced the expression of TIMP-1 by the activation of PKCbetaII/epsilon-JNK pathway		Human fibrosarcoma HT-1080 cells		
Anti-proliferation	Decrease their differentiation into granulocytes and macrophages by TNF-α		Murine myeloid leukemia WEHI 3B cells		
Tangeretin (4′,5,6,7,8-pentamethoxyflavone)	Anti-oxidant	Scavenge DPPH radicals, hydrogen peroxide scavenging, hydroxyl radical scavenging		(107, 119, 122, 178, 181-185)	
	Anti-oxidant	Inhibited the activity of CYP1A1 and the expression of mRNA			
	Apoptosis	Triggered apoptosis through p53 pathway		COLO 205, HL-60 cells	
	Anti-proliferation	Decreased the expression of PROM1 and SNAI1		Cancer stem cell of HT29	
	Anti-proliferation, Apoptosis	Activated caspase-3		Cocon LOvo/DX CELLS	
	Co-chemotherapeutic	Increased cytotoxicity of doxorubicin		MCF-7, T47D	
Property	Effect	Cell Type	Tissue/PD		
----------------------------------	--	--	--		
Cell cycle regulation	Arrested cell cycle at G1 by targeting p53, p21 and p37 pathway	MCF-7, MDA-MB-435 colon cancer line HT-29, upregulated COLO 205 cells			
Anti-inflammation	Blocked AKT activation	Lung carcinoma cells			
Anti-carcinogenic	Inhibited P450 1A1/2/3A4	Human liver microsome			
Anti-metastatic	Decreased the number of metastatic nodules in Lentini’s model	Melanoma B16F10			
Anti-carcinogenic	Reduced PhIP-DNA adduct formation in colon	Colon cancer cells			
Anti-inflammation	Induced LPS-induced NO production	RAW 264.7 cells			
Anti-inflammation	Inhibited IL-1beta-induced production of COX-2 by the activation of JNK, AKT, ERK and p38 MAPK	A549, H1299			
Sinensetin (5,6,7,3',4'-pentamethoxyflavone)	Cell cycle arrest	HUVEC (137, 186-194)			
Anti-angiogenesis, apoptosis	Downregulated the mRNA expression of angiogenesis, flt1, hras and kdr	Zebrafish			
Anti-proliferation, apoptosis	Inhibited iNOS expression, NO production and PGE2 production	-			
Cell cycle regulation	Inhibited on S phase by DNA elongation	T47/D breast cancer cells			
Anti-proliferation, cell cycle block	Captured cells G2/M phase and increased apoptosis, increased expression of p53 and p21	AGS gastric cancer cells			
Anti-inflammatory	Inhibited inflammatory gene expression and STAT1 activation, inhibited iNOS, NO production and PGE2 production	Carrageenan-induced paw inflammation in the rat			
Apoptosis	Reactivated oxygen species production, DNA damage, caspase activation	Leukemia cells			
Anti-proliferation	Activated Ca(2+)-dependent apoptotic proteases	MCF-7 breast cancer cells			
Apoptosis	Upregulated caspase-3/8/9 and poly(ADP-ribose) polymerase (PARP) cleavage.	T-cell lymphoma Jurkat cells			
Induced autophagy and cell death	Activated reactive oxygen species/ c-Jun N-terminal kinase (JNK), blocked the Akt/mTOR	T-cell lymphoma Jurkat cells			
Cell cycle arrest	Arrest cells at G0/G1 population	HepG2 cells			
Apoptosis	Down-regulated Bcl-xL, up-regulated TRAIL and PTEN	HepG2 cells			
Hesperetin (3',5,7,3'-trihydroxy-4'-methoxyflavone)	Apoptosis	HL-60 cells (39, 86, 195-201)			
Anti-proliferation	Inhibited oxidative stress and DNA damage	HT-29 colon adenocarcinoma			
Anti-carcinogenic	Downregulated the HIF-1a/VEGF/VEGFR2 pathway	Xenograft C6 gliomas cells in rats			
Cell cycle arrest	Decreased cyclin D1, CDK4	MCF-7 cancer cells			
Phenomenon	Activity	Cell line			
----------------------------------	--	---			
Anti-metastatic	Induced COX-2, MMP-2 and MMP-9	DMH-induced colon cancer in rat B16-F10 murine melanoma cells			
Apoptosis	Activated of the mitochondrial pathway by rising levels of ROS, Ca2+ and ATP on mice	Xenograft tumors in mice model of gastric cancer			
Apoptosis, anti-proliferation	Suppressed the expression of NFκB, p38 and caspase-3	PC-3 prostate cancer cells			
Cell cycle arrest	G2/M arrest by controlling the level of cyclin B1, CDC2, CDC25C and p21	A549 lung cancer, MCF-7			
Apoptosis	Increased the expression of caspase-3, caspase-8, caspase-9, p53, Bax and Fas death receptor	Cervical cancer SiHa, A549 lung cancer, HL-60 cells			
Apoptosis	Induced via Bax-dependent mitochondrial pathway	HT-29 cells			
Naringin (4',5,7-trihydroxyflavanone-7-chamnoglucoside)	Cell cycle regulation: Upregulated p21, G1-phase arrest, activated Ras/Rat/ERK-mediated, decreased cyclin D1 and cyclin E	5637 bladder cancer cells, MDA-MB-231 xenograft mice (96, 202-208)			
Metastasis, anti-carcinogenic	Inhibited the activity of PI3K/Akt/mTOR and upregulated p21CIP1/WAFI	AGS cells			
Cell cycle arrest	Cell cycle arrest in S phase	HT-29			
Anti-proliferation, anti-oxidant	Modulated gene expression: Decrease DNA methyltransferase activity, down-regulated the expression of Be12 and Bcl-xL	SKOV3 ovarian cancer cells			
Cell cycle arrest	Increasing p21 and arrest G1 cell cycle, inhibited the activity of CDK2	MCF-7			
Anti-proliferative	Inhibited CYP3A4, CYP1A2, CYP2C9, CYP2C19 and CYP2D6				
Anti-proliferation, apoptosis	Decreased the mRNA expressions of BID, BAX, caspase 3, cytochrome c, p53, p21, and p27	DU145 prostate cancer cells			
Apoptosis	Enhanced the expression of caspases, p53, Bax and Fas death receptor	HT-29			
Anti-metastasis	Downregulation of MMP-9 and repressed the PI3K/akt/mTOR/p70S6K signaling pathway	MCF-7			
Anti-proliferation	Upregulated EGFR and ERK phosphorylation	HeLa and A549 cells			
Anti-proliferation, apoptosis	Suppressing the NF-κB/COX-2-casppase-1	HeLa			
Hesperidin (Hesperetin-7-rutinoside)	Anti-proliferative: Inhibited MMP-9 by NF-κB and AP-1 signaling	NALM-6 leukemia cells (195, 196, 209-214)			
Apoptosis	Inhibited the PI3K/Akt pathway through PTEN-phosphatase	SUN-C4 colon cancer cells			
Anti-metastatic, angiogenesis	Suppressing ANGPT1 gene	Laryngeal cancer cells			
Category	Effect Description	Cells Tested			
-------------------------	---	-----------------------------------			
Anti-proliferation	Upregulated the level of p21 and p53	MCF-7 cells			
Apoptosis	Inhibited Aurora-A and Akt mediated GSK-3β/β catenin cascade	A431 skin cancer cells			
Anti-oxidant	Upregulated Nrf2 (Nuclear factor-2)	Cutaneous skin cancer cells			
Anti-inflammation	Downregulated mRNA expression of various cytokines (TNF, IL-1, IL-6)	Cutaneous skin cancer cells			
Anti-inflammation	Inhibited IL-6, TNF, COX-2, iNOS inflammatory components	A431 skin cancer cells			
Anti-proliferation	Upregulated BAX and downregulate Bcl-2, decreased the release of cytochrome c	HeLa cervical cancer cells, A2780 ovarian cancer cells			
Co-chemotherapeutic	Inhibited Pgp activity	Human leukemia cells (CEM/ADR5000)			