Abstract

The aim of this research is to acquire valuable information about the mineral content of Bluish-Black and Yellowish-White Myrtus communis berries and Arbutus unedo fruits. The analysis of minerals was conducted by atomic absorption spectrophotometry. The results showed that there were significant (p < 0.5) differences between species for the following elements: Phosphorus (P), Magnesium (Mg), Iron (Fe), Manganese (Mn), cobalt (Co), Calcium (Ca) and Chromium (Cr). The highest values of P, Ca, Mg, Mn, Co and Fe were recorded by Yellowish-White fruits with respective rate of 0.38, 12942.5, 4586.67, 130.58, 5, 510.25 mg/g DM. No significant differences were recorded for Potassium (K), Lead (Pb), Copper (Cu), Sodium (Na), Nickel (Ni) and Zinc (Zn).

Keywords

Myrtus communis L., Arbutus unedo L., Fruits, Mineral composition

Introduction

Myrtus communis L. (Myrtaceae) is an evergreen scrub, widely distributed in the Mediterranean region. This plant is known by its therapeutic uses. It is recommended, in folk medicine, as an antibacterial, antifungal and hypoglycemic agent [1]. The leaves and fruits of the plant are commonly used in the food industry, especially, for flavoring meat. It is also introduced in the cosmetic sector [2].

Arbutus unedo L. (Strawberry-tree) is an evergreen shrub in the flowering plant family Ericaceae. It is distributed in the Mediterranean region and Western Europe North to Western France and Ireland. The leaves of A. unedo are known to be used, in traditional medicine, as antiseptic, diuretic, anti diarrheal, depurative and as antihypertensive [3, 4].

Despite their wide uses, fruits of these two Mediterranean species remain poorly exploited. Hence there is a need of valorization of these no wood forest products through highlighting their nutritional values.

The aim of our research, conducted for the first time in Tunisia, is to provide information about the mineral content of the two bluish-black and yellowish-white-colored fruits of Myrtus communis and the Arbutus unedo fruits.

Material and Methods

Plant material and sample preparation

Arbutus unedo fruits and Bluish-Black and Yellowish-White Myrtus communis
berries were harvested from wild plants growing in North West of Tunisia. The plant name corresponds to “The Plant List” (www.theplantlist.org). Fruits were dried, blended into a fine powder and then stored at 4 °C until use for the experiments.

Mineral composition

To determine mineral content of Ca, P, Mg, K, Na, Zn and Cr 1 g of fruits powder was calcined in an oven at 450 °C for 6 h. The cinder was then weighed and mixed with 5 ml of a mixture nitric acid/perchloric acid (2/1). The solution was then filtered, added with pure nitric acid (to 250 ml), heated and diluted. An atomic absorption spectrophotometry was used to analyse the minerals. The colorimetric method using molybdovanadate reagent was conducted to analyze P content. To determine Fe, Mn, Ni, Co and Cr contents, 0.5 g of the samples were added with 5 ml of solution hydrochloric acid/nitric acid (3/1) and boiled for 2 h. The solution was then filtered, and the minerals were analyzed by atomic absorption spectrophotometer.

Statistical analysis

Relationships between mineral contents were tested with the GLM procedure (General Linear Models) of the SAS (9.0) program. All values are the mean of three replications.

Results

Results of mineral composition of A. unedo fruits and Bluish-Black and Yellowish-White M. communis berries are summarized in table 1. According to the obtained results, the elements P, K, Ca, Mg, Mn, Fe, Cu, Zn, Na, Pb, Ni and Cr were detected in all three samples, whereas Cd was not detected. The results of the analyses demonstrated that there were significant (p < 0.5) differences between species for the following elements: Phosphorus (P), Calcium (Ca), Magnesium (Mg), Manganese (Mn), Cobalt (Co), Iron (Fe) and Chromium (Cr). The highest values of P, Ca, Mg, Mn, Co and Fe were recorded by Yellowish-White fruits with respective range of 0.38, 12942.5, 4586.67, 130.58, 5, 510.25 mg/g DM. Nevertheless, the lowest amounts of these elements were reached by A. unedo fruits. The latest showed the most important amount of Cr with 34.5 mg/g.

No significant differences were recorded for Potassium (K), Sodium (Na), Copper (Cu), Lead (Pb), Nickel (Ni) and Zinc (Zn).

Discussion

Globally, the mineral profile content obtained for the fruits is comparable to that obtained for other plants by Glew et al. Cook et al. and Boukari et al. [5-7]. Among the fruits evaluated, the Yellowish-White M. communis berries appear as outstanding mineral sources presenting the highest contents in P, Ca, Mg, Fe, Mn and Co. These findings are in accordance with those reported by Yildirim et al. [8]. Their Ca content (12942.50 mg Ca/g DM on average) is higher than the amount reported by several studies [8-10].

Fruits contained several heavy metals such as Co, Cu, Zn, Pb, Ni and Cr. The maximum limit of all metals in both M. communis berries and A. unedo fruits are acceptable and their amounts are in accordance with those recommended by WHO/FAO [11].

The differences between black and white berries of M. communis observed in this investigation have also been reported by other authors [8, 10].

Studied A. unedo fruits showed similar mineral profile for that determined by Asmaa et al. [12] for Algerian A. unedo. Tunisian A. unedo fruits seem to be richer in both macro and micro-elements. This could be related to differences in growth conditions, such as soil acidity and richness, water availability, climatic conditions and seasonal variations [13, 14].

Both A. unedo and M. communis fruits are valuable sources of minerals, particularly, Ca and Mg. Many studies suggest that lack of calcium or magnesium in nutrition is associated with a risk of developing hypertension and cardiovascular illness [15-17]. Hence, A. unedo and M. communis fruits can be considered a natural source of macro and micro-elements.

Conclusion

This study showed the great presence of mineral elements in both A. unedo and M. communis fruits. Significant differences were revealed between the two species and also between the two varieties of Myrtle. Based on the results of our study, M. communis berries are a potent source of macro and micro elements. This reflects the high nutritional value of this natural product. These properties would enable the use of these berries by the food industry.

Table 1: Mineral content of Arbutus unedo fruits and Bluish-Black and Yellowish-White Myrtus communis berries (mg/g dry matter).

Mineral elements (mg/g DM)	A. unedo	White M. communis	Black M. communis
K	16.3 ± 1.1	20.59 ± 0.7	17.80 ± 3.9
Na	7.65 ± 0.8	7.47 ± 1.18	7.84 ± 1.4
P	0.26 ± 0.02	0.38 ± 0.0	0.31 ± 0.05
Ca	7044.17 ± 475.09	12942.50 ± 323.2	9567.5 ± 1701.2
Mg	2954.17 ± 166.15	4586.67 ± 91.7	3960.83 ± 618.6
Mn	18.67 ± 1.8	130.58 ± 6.6	60.25 ± 18.2
Cu	20.75 ± 3.3	27.42 ± 4.2	20.42 ± 6.9
Cd	0.00 ± 0.0	0.00 ± 0.0	0.00 ± 0.0
Pb	12.08 ± 3.01	7.33 ± 1.1	7.00 ± 2.1
Co	0.25 ± 0.0	5.00 ± 1.08	2.25 ± 0.4
Ni	6.58 ± 2.5	6.08 ± 1.8	7.58 ± 3.1
Fe	164.00 ± 35.02	510.25 ± 19.9	345.33 ± 107.3
Zn	43.25 ± 8.9	56.25 ± 5.4	54.25 ± 22.5
Cr	34.50 ± 5.2	22.67 ± 2.4	9.08 ± 2.8
Conflict of Interest

There is no conflict of interest.

Acknowledgments

This project is carried out under the MOBIDOC scheme, funded by the EU through the EMORI program and managed by the ANPR.

References

1. Elfellah MS, Akhter MH, Khan MT. 1984. Anti-hyperglycaemic effect of an extract of Myrtus communis in streptozotocin-induced diabetes in mice. J Ethnopharmacol 11(3): 275-281. https://doi.org/10.1016/0378-8741(84)90073-4

2. Chalchat JC, Garry RP, Michet A. 1998. Essential oil of Myrtle (Myrtus Communis L.) of the Mediterranean littoral. J Essen Oil Res 10: 613-617. https://doi.org/10.1080/10412905.1998.9700988

3. Ziyyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, et al. 1997. Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol 58(1): 45-54. https://doi.org/10.1016/s0378-8741(97)00077-9

4. Afkir S, Nguelefack TB, Aziz M, Zoheir J, Cuisinaud G, et al. 2008. Arbutus unedo prevents cardiovascular and morphological alterations in L-NAME-induced hypertensive rats. Part I: Cardiovascular and renal hemodynamic effects of Arbutus unedo in L-NAME-induced hypertensive rats. J Ethnopharmacol 116(2): 288-295. https://doi.org/10.1016/j.jep.2007.11.029

5. Glew R, Vanderjagt D, Lockett C, Grivetti L, Smith G, et al. 1997. Amino acid, fatty acid and mineral composition of 24 indigenous plants of Burkina Faso. J Food Comp Anal 10(3): 205-217. https://doi.org/10.1006/jfca.1997.0539

6. Cook J, Vanderjagt D, Pastuszyn A, Mounkaila G, Glew R, et al. 2000. Nutrient and chemical composition of 13 wild plant foods of Niger. J Food Comp Anal 13(1): 83-92. https://doi.org/10.1006/jfca.1999.0843

7. Boukari I, Shier N, Fernandez X, Frisch J, Watkins B, et al. 2001. Calcium analysis of selected Western African foods. J Food Comp Anal 14(1): 37-42. https://doi.org/10.1006/jfca.2000.0967

8. Yıldırım F, Şan B, Yıldırım AN, Polat M, Erçişi S. 2020. Mineral composition of leaves and fruit in some myrtle (Myrtus communis L.) genotypes. Eruysya-Osnuhau 57(3): 149-152. https://doi.org/10.1007/s10341-021-0243-9

9. Özcan M, Akbulut M. 1998. Some physical and chemical properties of myrtle (Myrtus communis L.). Gida 23: 121-123.

10. Hacseferoğulları H, Özcan MM, Arslan D, Unver A. 2012. Biochemical composition and technological characterization of black and white myrtle (Myrtus communis L.) fruits. J Food Sci Technol 49: 82-88. https://doi.org/10.1007/s13197-011-0253-z

11. FAO/WHO. 2002. Codex alimentarius general standards for contaminants and toxins in food. Schedule 1 maximum and guideline levels for contaminants and toxins in food. Reference CX/FAC 02/16. Joint FAO/WHO Food Standards Programme, Codex Committee, Rotterdam, Netherlands.

12. Asmaa N, Abdelaziz G, Boulanouar B, Carbonell-Barrachina ÁA, Cano-Lamadrid M, et al. 2019. Chemical composition, antioxidant activity and mineral content of Arbutus unedo (leaves and fruits). J Microbiol Biotech Food Sci 8(6): 1335-1339. https://doi.org/10.15414/jmbfs.2019.8.6.1335-1339

13. Hofman P, Vuthapanich S, Whiley A, Klieber A, Simons D. 2002. Tree yield and fruit mineral concentrations influence ‘Hass’ avocado fruit quality. Sci Horticul 92(2): 113-123. https://doi.org/10.1016/S0304-4238(01)00286-2

14. Alfaia S, Ribeiro G, Nobre A, Luizao R, Luizao F. 2003. Evaluation of soil fertility in smallholder agroforestry systems and pastures in western Amazonia. Agri Ecosys Environ 102(3): 409-414. https://doi.org/10.1016/j.agee.2003.08.011

15. McCarron DA. 1982. Calcium, magnesium, and phosphorus balance in human and experimental hypertension. Hypertension 4(5 Pt 2) III: 27-33. https://doi.org/10.1161/01.hyp.4.5_pt_2.iii27

16. WHO. 2004. Vitamin and mineral requirements in human nutrition. Geneva, Rome.

17. Karppanen H, Karppanen P, Mervaala E. 2005. Why and how to implement sodium, potassium, calcium, and magnesium changes in food items and diets? J Hum Hypertens 19 Suppl 3: S10-S19. https://doi.org/10.1038/sj.jhh.1001955