The New Genetic Landscape of Alzheimer’s Disease: from Amyloid Cascade to Genetically-driven Synaptic Failure Hypothesis

Supplementary Material

Pierre Dourlen, Devrim Kilinc, Nicolas Malmanche, Julien Chapuis, Jean-Charles Lambert

Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France; Institut Pasteur de Lille, Lille, France; University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France.
Supplementary Table 1 Functional description of the genes located in the known AD risk loci. The name of the loci usually corresponds to the gene closest to the most significant genetic variant of the locus. Of note, it does not indicate that this gene is the AD functional gene of the locus. Information were manually curated from searches on PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) using the name of the gene and Alzheimer and/or neuron as keywords.

Locus	Gene	General description	Relation to Aβ/APP	Relation to Tau	Other features
ABCA7 [19, 50, 95, 108, 138, 144, 240]	ABCA7	ATP binding cassette subfamily A member 7, member of the ‘A’ subfamily of ATP binding cassette transporters initially characterized by their capacity to transport lipids across membranes [134]	- associated with plaque burden in AD brain [234]. Associated with Aβ deposition on in vivo imaging in human [13, 292] - regulates APP processing resulting in an inhibition of Aβ production in vitro and in vivo in APP/PS1 mice, ABCA7 deletion facilitates the processing of APP to Aβ by increasing the levels of β-site APP cleaving enzyme 1 (BACE1) [35, 214, 219] - stimulates phagocytosis in macrophages. ABCA7 loss results in 50% reduction of oAβ uptake by bone marrow-derived macrophages. ABCA7 loss doubles insoluble Aβ levels in J20 amyloidogenic mouse brain [110, 133] - highly expressed in microglia. Its loss reduces microglia phagocytic clearance of amyloid-β [69]	- associated with neurofibrillary tangle pathology in AD brain [287]	- stimulates cellular cholesterol efflux to APOE discs [35] - ABCA7 rs3764650 associated with cortical and hippocampal atrophy in MCI [203] - genetic risk factor for posterior cortical atrophy (PCA), typically a rare variant of AD [221] - its loss-of-function variants are enriched in patients with AD [78] - Lysophosphatidylcholine is one of the major transport substrates for ABCA7 in the brain and this transport may be an important function of ABCA7 [254]
ABI3 [108, 237]	ABI3	ABI family member 3, adaptor protein with a homeobox homology domain, a proline rich region and a SH3 domain			- highly expressed in microglia cells, coexpressed with INPP5D, important role in actin cytoskeleton organization through participation in the WAVE2 complex, a complex that regulates multiple pathways leading to T cell activation [188, 222, 237]
AC099552.4 [25]	AC099552.4	long non coding RNA			
Gene/Protein	Description	Functions and Observations			
--------------	--	--			
ACE	Angiotensin I converting Enzyme, peptidase activity (reviewed in [127])	- ACE is an Aβ degrading enzyme [93, 99, 192, 249, 255]			
- ACE expression in AD brain tissue is associated with Aβ load and AD severity. Exposing SH-SY-5Y neurons to oAβ1-42 increases ACE level and activity, suggesting Abeta may upregulate ACE in AD [179]
- CSF levels of the angiotensin-converting enzyme (ACE) are associated with Aβ levels [115] and LOAD risk [126]
- in CSF, its levels but not activity is reduced in AD [179] |
| CYB561 | cytochrome b561 | - its overexpression in cultured neurons increases the density of dendritic spines and excitatory synapses [85]
- involved in the capture of KIF1A-driven dense core vesicle (DCV) at dendritic spines [244] |
| TANC2 | tetra tricopeptide repeat, ankyrin repeat and coiled-coil containing 2, synaptic scaffold protein | |
| ADAM10 | the major α-secretase in the brain (reviewed in [213]) | - component of the non-amyloidogenic pathway of APP metabolism (reviewed in [82]).
- over-expression of ADAM10 in mouse models can halt Aβ production and subsequent aggregation [199].
- two rare ADAM10 mutations segregating with disease in LOAD families increased Aβ plaque load in “Alzheimer-like” mice, with diminished α-secretase activity from the mutations likely the causal mechanism [130, 248]
-numerous and fundamental functions in the development of the embryonic brain and also in the homeostasis of adult neuronal networks. Mechanistically, ADAM10 controls these functions by utilizing unique postsynaptic substrates in the central nervous system, in particular synaptic cell adhesion molecules (reviewed in [213])
- sheds TREM2 to release soluble TREM2 |
| ADAMTS1 | a disintegrin and metalloproteinase with thrombospondin motifs 1 | - manifold overexpressed in brain of AD patients [176]
- ADAMTS1 null female, but not male, exhibits a decline in synaptic protein levels [96] |
| Gene | Function and Relevance | Notes |
|-----------------------|--|--|
| ADAMTS4 [108] | ADAMTS4, a disintegrin and metalloproteinase with thrombospondin motifs 4 | - generates N-truncated Aβ4-x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer's disease [267] - could modulate Tau phosphorylation by cleaving Reelin (reviewed in [80]) |
| B4GALT3 | beta-1,4-galactosyltransferase 3 | |
| PPOX | protoporphyrinogen oxidase | |
| AKAP9 [154] | AKAP9, A-kinase anchoring protein 9, AKAPs bind or tether protein kinase A (PKA) and other signaling molecules to relevant targets [275] | - AKAP9 mutations significantly increases pTau/Tau ratio in lymphoblastoid cell lines treated with phosphodiesterase-4 inhibitor rolipram, which activates protein kinase A [104] |
| ALPK2 [108] | ALPK2, alpha kinase 2 | |
| APH1B [108] | APH1B, aph-1 homolog B | - subunit of the gamma-secretase complex that cleaves APP [224] |
| APOE [46] | APOE, apolipoprotein E maintains the structure of specific lipoprotein particles and directs lipoproteins to specific cell surface receptors 3 alleles/isoforms, ε2, ε3, ε4, the first and the last being protective and deleterious respectively for Alzheimer's disease | - binding to Aβ - role in Aβ production - role in Aβ aggregation - role in Aβ degradation and clearance (reviewed in [103]) - ApoE affects tau pathogenesis, neuroinflammation, and tau-mediated neurodegeneration independently of amyloid-β pathology [233] - hypothesized to influence all the hallmarks of AD, from APP/Aβ to Tau aspects through lipid metabolism and neuroinflammation (reviewed in [243, 259]) |
| BHMG1 / FBXO46 [108] | BHMG1, basic helix-loop-helix and HMG-box containing 1 | |
| FBXO46 | F-box protein 46, protein ubiquitin ligase | |
| BIN1 [108, 138, 144, 184, 225] | Bridging integrator 1 (BIN1), nucleocytoplasmic adaptor protein involved in endocytosis and membrane recycling, cytoskeleton regulation, DNA repair, cell cycle progression, and apoptosis [201] |
|--------------------------------|--|
| | - BIN1 depletion increases Aβ production through a decreased lysosomal BACE1 degradation [180] |
| | - BIN1 depletion raises Aβ generation in axons by a defective BACE1 recycling to the membrane and increased BACE1 convergence with APP in early endosomes [260] |
| | - BIN1 is found insoluble and accumulated in proximity to amyloid fibrils at the edges of amyloid deposits, suggesting a potential role for BIN1 in extracellular Aβ deposition in vivo [210] |
| | - the functional risk allele (rs59335482) is associated with Tau loads in the brains of AD patients [37]. |
| | - loss of its Drosophila ortholog rescues Tau toxicity in Drosophila [37, 58] |
| | - BIN1 SH3 domain interacts physically with Tau Proline-Rich domain and the interaction is regulated by Tau and BIN1 phosphorylation and an isoform-dependent BIN1 intramolecular folding [37, 163, 217, 239]. |
| | - lower BIN1 levels promote the propagation of Tau pathology by increasing aggregate internalization through regulation of endocytosis and endosomal trafficking [30] |
| | - stabilizes Tau-induced actin bundles, loss of Drosophila BIN1 reduces tau-induced actin inclusions in Drosophila [60]. |
| | - Overexpression in mice results in neurodegeneration, loss of spine density, impaired LTP and behavioral deficits [52] |
| | - interacts with integrin α3A in double hybrid screen and with the Focal Adhesion Kinase (FAK) [175, 273] |
| | - physically interacts with intracellular form of CLU [299] |
| CASS4 | Cas scaffold protein family member 4, member of the CASS Scaffolding protein localized at focal adhesions, regulates cell spreading and motility [238] |
| | - Its Drosophila ortholog modifies human Tau toxicity in Drosophila [58] |
| | - associated with CSF Tau biomarker in AD patient [204] |
| CASS4 [108, 138, 144] | Physically interaction between the CASS and FAK family of protein [16] |
| CSTF1 | Cleavage stimulation factor (CSTF) subunit 1, CSTF is involved in the polyadenylation and 3'end cleavage of pre-mRNAs |
| FAM209A | Family with sequence similarity 209 member A |
| FAM209B | Family with sequence similarity 209 member B |
| GCNT7 | Glucosaminyl (N-acetyl) transferase family member 7 |
| CASS4 (cont’d) | RTFDC1 | replication termination factor 2 domain containing 1 |
|----------------|--------|---|
| CD2AP [95, 108, 138, 144, 184] | CD2 associated protein, scaffolding protein involved in the regulation of membrane receptor endocytosis and signaling, actin cytoskeleton organization, endosomal vesicular trafficking, cell adhesion and cytokinesis [47, 61, 83, 116, 137, 157, 291] |
| - its loss-of-function raises Aβ generation in primary neuronal culture dendrite by increasing APP and its convergence with BACE1 in early endosomes but results in decreased cell membrane APP, decreased Aβ release and a lower Aβ42/Aβ40 ratio in N2a-APP695 cells. Complete loss of CD2AP results in a lower Aβ42/Aβ40 ratio in PS1APP mouse brain lysate but loss of one copy of CD2AP does not modify Aβeta deposition or accumulation in these mice [152, 260] |
| - its Drosophila ortholog modifies human Tau toxicity in Drosophila [235] |
| - associated with CSF Tau biomarker in AD patient [204] |
| - decreased expression in peripheral blood lymphocytes from Chinese sporadic AD patients [251] |
| - physically interacts with p130CAS (CASS1), colocalizes with F-actin and p130Cas to membrane ruffles and leading edges of cells in vitro, regulates actin cytoskeleton [135] |
| - coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity [91] |
| - regulates the signaling of the Tyrosine kinase Ret receptor in neurons [258] |
| - CD2AP-deficient mice have reduced blood-brain barrier integrity [44] |
| - recruited by RIN3 to RAB5-positive early endosomes [211] |
| GPR111 | adhesion G protein-coupled receptor F2 |
| GPR115 | adhesion G protein-coupled receptor F4 |
| Gene | Description | Regulation and Function |
|---------------------|---|---|
| CD33 [95, 108, 184] | transmembrane sialic acid-binding immunoglobulin-like lectin that regulates innate immunity | - its expression is increased in microglial cells in AD brain and inhibits microglial uptake of Aβ, which correlates with increased Aβ42 levels and plaque burden in AD patient brain [27, 77]
- the AD-risk allele increases the full-length CD33M isoform containing the Exon2, which inhibit Aβ uptake [162, 202]. The protective CD33m isoform is localized in peroxisome and may be protective because it does not localize to the cell membrane and neither interact directly with amyloid plaques nor engage in cell-surface signaling [236] |
| CELF1 | CUGBP Elav-like family member 1, role in RNA processing (splicing and mRNA stability mainly), role in myotonic dystrophy (reviewed in [70]) | - its Drosophila ortholog, Aret, modifies Tau toxicity in Drosophila [22, 235] |
| ACP2 | acid phosphatase 2, lysosomal. lysosomal membrane member of the histidine acid phosphatase family, which hydrolyze orthophosphoric monoesters to alcohol and phosphate | - Acp2 mutant mice exhibit ataxia due to degeneration of cerebellum neurons exhibiting lysosomal storage bodies [165] |
| AGBL2 | ATP/GTP binding protein like 2 | |
| C1QTNF4 | C1q and TNF related 4 | |
| DDB2 | damage specific DNA binding protein 2, Protein that is necessary for the repair of ultraviolet light-damaged DNA | - oxidative stress generates a differential and specific DNA damage response involving overexpression of DDB2 in the presence of Aβ [67] |
| FAM180B | family with sequence similarity 180 member B | |
Gene Symbol	Description
FNBP4	formin binding protein 4, protein containing two tryptophan-rich WW domains that binds the proline-rich formin homology 1 domains of formin family proteins, suggesting a role in the regulation of cytoskeletal dynamics during cell division and migration
KBTBD4	kelch repeat and BTB domain containing 4
MADD	MAP kinase activating death domain, death domain-containing adaptor protein that interacts with the death domain of TNF-alpha receptor 1 to activate mitogen-activated protein kinase (MAPK) and regulate apoptosis
MIR4487	microRNA 4487
MTCH2	mitochondrial carrier 2, member of the SLC25 family of nuclear-encoded transporters that are localized in the inner mitochondrial membrane
MYBPC3	myosin binding protein C, cardiac, cardiac isoform of myosin-binding protein C
NDUFS3	NADH:ubiquinone oxidoreductase core subunit S3, one of the iron-sulfur protein (IP) components of mitochondrial NADH:ubiquinone oxidoreductase (complex I)

- **MADD**
 - change in MADD splice variants upon Aβ treatment, which could be protective [181]
 - loss of its Drosophila ortholog enhances Tau toxicity in Drosophila [58]

- **MTCH2**
 - loss of forebrain MTCH2 in mice decreases mitochondria motility and calcium handling and impairs hippocampal-dependent cognitive functions [6, 212]

- **MYBPC3**
 - reduced expression and protein levels in the hippocampus of AD patients. MADD antisense treatment of cultured rat hippocampal neurons promoted neuronal cell death, suggesting a protective role of MADD in AD [265].

- **NDUFS3**
 - RNA interference knockdown of the C. elegans ortholog of NDUFS3 is associated with Aβ toxicity [183].
| Gene | Description | Reference |
|--------|---|-----------|
| NR1H3 | Nuclear receptor subfamily 1 group H member 3. Also known as liver X receptor α (LXRA), member of the NR1 subfamily of the nuclear receptor superfamily, which are key regulators of macrophage function. Role in cholesterol metabolism and inflammation (reviewed in [31]). - Genetic loss of either Lxrα or Lxrβ in APP/PS1 mice results in increased amyloid plaque load. Ligand activation of LXRα attenuates the inflammatory response of primary mixed glial cultures to fibrillar Aβ (fAβ) in a receptor-dependent manner and LXRα promote the capacity of microglia to maintain fAβ-stimulated phagocytosis in the setting of inflammation [288]. | [31] |
| NUP160 | Nucleoporin 160, one of the proteins that make up the 120-MD nuclear pore complex, which mediates nucleoplasmic transport. - Involvement in cholesterol efflux in astrocytes [1]. | [1] |
| PACSIN3| Protein kinase C and casein kinase substrate in neurons 3, member of the PACSIN family of proteins involved in synaptic vesicular membrane trafficking and endocytosis [51]. | [51] |
| PSMC3 | Proteasome 26S subunit, ATPase 3. | |
| PTPMT1 | Protein tyrosine phosphatase, mitochondrial 1. | |
| RAPSN | Receptor associated protein of the synapse, also known as RAPSYN, critical role in clustering and anchoring nicotinic acetylcholine receptors at neuromuscular synaptic sites by linking the receptors to the underlying postsynaptic cytoskeleton, possibly by direct association with actin or spectrin. | |
| SLC39A13| Solute carrier family 39 member 13, member of the LIV-1 subfamily of the ZIP transporter family. | |
| CELF1 / SPI1 (cont’d) | SPI1 | Spi-1 proto-oncogene, ETS-domain transcription factor that activates gene expression during myeloid and B-lymphoid cell development |
|----------------------|------|--|
| | LOC1019289 | - the minor allele of rs1057233 (G) shows association with delayed AD onset and lowers expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. Altered PU.1 levels affects the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells [100] |

43
CLU [90, 108, 138, 143, 144, 184]

Clusterin, multifunctional apolipoprotein (J) involved in lipid metabolism, inflammation, apoptosis, cell cycle (reviewed in [190, 272])
- increased expression and levels in AD [23, 171]
- influences the regional distribution of Aβ [178]
- Aβ increases intracellular clusterin and decreases clusterin protein secretion [128]
- sequesters αAβ1–40 [185]
- complex effect of CLU on extracellular Aβ aggregation depending on APOE, CLU:Aβ ratio and mode of aggregation – nucleation or elongation [17, 54, 55, 193, 284]:
 - suppresses the toxicity of Aβ42 oligomers after they are formed in vivo [34]
 - mediates the clearance of Aβ from the brain by binding to LRP2/megalin receptor at the level of the blood-brain and blood-cerebrospinal barrier [18, 84, 302]. Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways [274].
 - CLU regulates Aβ toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway [128]
- its rs11136000 SNP is associated with Tau CSF levels modification in AD patients [299]
- its intracellular form physically interacts with Tau and BIN1 [299]
- its intracellular form is upregulated in the brain of Tau overexpressing Tg4510 mice [299]
- inhibition of the complement by binding to C5b-7 component [42]
- its non-synonymous mutation reduces the secretion of its protein [24]
- differentially expressed in the microglia of the 5xFAD mouse model [205]

SCARA3
scavenger receptor class A member 3, express a macrophage scavenger receptor-like protein that would protect cells from oxidative stress
Gene	Description
CNTNAP2	Contactin associated protein like 2, encodes a member of the neurexin family which functions in the vertebrate nervous system as cell adhesion molecules and receptors.
CR1	Complement C3b/C4b receptor 1 (Knops blood group), member of the receptors of complement activation (RCA) family.
ECHDC3	Enoyl-CoA hydratase domain containing 3.
USP6NL	Ubiquitin-specific peptidase 6 N-terminal like.

CR1
- Expressed on erythrocyte, clears Aβ from the blood by binding to circulating Aβ-C3b-complement component complexes [29, 208].
- Association of CR1 risk allele and amyloid plaque burden/Amyloid deposition by in vivo brain imaging [41, 300].
- Activation of microglial CR1 is detrimental to neurons and blockade of CR1 decreases the capacity of microglia to phagocytose Aβ1-42 [48].
- Decrease expression of the long CR1 isoform, decrease CR1 density per erythrocyte and increased blood soluble CR1 in AD patients [159].

ECHDC3
- Increased expression in AD brains compared to control [57].

USP6NL
- USP6NL is a Rab5 GTPase-activating protein, which regulate the endocytosis and internalization of EGFR [146, 167].
- USP6NL is also an effector of Rab5 that regulates the actin cytoskeleton [145].
| **Gene** | Description | Function |
|---------|-------------|----------|
| **EPHA1** | Founding member of the Eph family of tyrosine kinase receptor [94] | - Drosophila ortholog of Eph receptor modifies human Tau toxicity in Drosophila [59] |
| **EPHA1-AS1** | EPHA1 antisense RNA 1 | |
| **CASP2** | Caspase 2, member of the cysteine-aspartic acid protease (caspase) family involved in apoptosis | - activated upon Aβ treatment [3, 166, 257] - required for dendritic spine and behavioural alterations in J20 APP transgenic mice, as a critical mediator in the activation of the RhoA/ROCK-II signalling pathway, in the presence of Aβ [200] - caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines [293] |
| **CLCN1** | Chloride voltage-gated channel 1, involved in the regulation of the electric excitability of the skeletal muscle membrane | - unexpected expression in human and mouse brain. Some CLCN1 variants are associated with epilepsy [38] |
| **FAM131B** | Family with sequence similarity 131 member B | |
| **LOC100507507** | Uncharacterized LOC100507507 | |

- interacts with Integrin-Like Kinase and regulates cell morphology and motility through the ILK-RhoA-ROCK pathway [282]
- role of ephrin/EphR in synapse development and plasticity [140]
- altered distribution of its paralog EphA4 with neuritic plaques in AD [209]
- EphA4 receptor regulates dendritic spine remodeling by affecting β1-integrin signaling pathways [26]
- synaptic role of EphA4 in Aβ toxicity [68]
- EphA4 activation of c-Abl mediates synaptic loss and LTP blockade caused by Aβ oligomers [264]
- EphA4 cleaved by γ-secretase, γ-secretase-cleaved EphA4 intracellular domain regulates dendritic spine formation [105, 169]
| Gene | Description | | | |
|---|---|---|---|---|
| **EPHA1** | (cont’d) |
| **TAS2R41**| taste 2 receptor member 41, member of the bitter taste receptor family which belong to the G protein-coupled receptor superfamily and are predominantly expressed in taste receptor cells of the tongue and palate epithelia. |
| **TAS2R60**| taste 2 receptor member 60, member of the bitter taste receptor family which belong to the G protein-coupled receptor superfamily and are predominantly expressed in taste receptor cells of the tongue and palate epithelia |
| **ZYX** | Zyxin, zinc-binding phosphoprotein that concentrates at focal adhesions and along the actin cytoskeleton, may function as a messenger in the signal transduction pathway that mediates adhesion-stimulated changes in gene expression and may modulate the cytoskeletal organization of actin bundles. |
| **MIR6892**| microRNA 6892 |
| **FERMT2** | - increases Aβ peptide production by raising levels of mature APP at the cell surface and facilitating its recycling [36] |
| | - associated with brain amyloidosis on in vivo brain imaging [13] |
| | - its Drosophila ortholog modifies human Tau toxicity in Drosophila [235] |
| **ER01A** | endoplasmic reticulum oxidoreductase 1 alpha |
| **GNPNAT1**| glucosamine-phosphate N-acetyltransferase 1 |
| **GPR137C**| G protein-coupled receptor 137C |
| **PSMC6** | proteasome 26S subunit, ATPase 6 |
| Gene Symbol | Gene Name | Description | Function | Remarks |
|-------------|-----------|-------------|----------|---------|
| FERMT2 | STYX | serine/threonine/tyrosine interacting protein, it is a pseudophosphatase | | |
| FRMD4A [142]| FRMD4A | FERM domain containing 4A, FERM domain-containing protein that regulates epithelial cell polarity | - regulates Tau secretion in HEK293 cells and mature cortical neurones [283] | - a homozygous mutation in FRMD4A results in a syndrome of congenital microcephaly, intellectual disability and dysmorphism [65] |
| KAT8 [108] | KAT8 | lysine acetyltransferase 8, member of the MYST histone acetylase protein family | | |
| BCKDK | | branched chain ketoacid dehydrogenase kinase, regulator of the valine, leucine, and isoleucine catabolic pathways | | - mutations in the gene BCKDK cause autism, epilepsy, microcephaly, neurobehavioral deficits and intellectual disability [71, 189] |
| HESX1 / IL17RD / APPL1 [108] | HESX1 | HESX homeobox 1, transcriptional repressor in the developing forebrain and pituitary gland | | |
| L17RD | IL17RD | interleukin 17 receptor D | | |
| HESX1 / IL17RD / APPL1 (cont'd) | APPL1 | adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1, |
|---------------------------------|-------|--|
| | | - After being recruited by the β-cleaved carboxy-terminal fragment of APP, the rab5 effector APPL1 mediates rab5 overactivation in Down syndrome and AD leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired axonal transport of rab5 endosomes [132] |
| | | - in AD hippocampus and not in control, APPL1 accumulates perisomatically as granules around neurons and co-localizes with glutamate receptor 2 and ubiquitin, suggesting the possible involvement of APPL1 in the synaptic modifications in AD [195] |
| | | - an APPL1/Akt signaling complex regulates dendritic spine and synapse formation in hippocampal neurons [160] |
| | | - adaptor protein APPL1 couples synaptic NMDA receptor with neuronal prosurvival phosphatidylinositol 3-kinase/Akt pathway [268] |
| | | - APPL1 gates long-term potentiation through its plekstrin homology domain [63] |

HLA	HLA-DQA1 HLA-DQA2 HLA-DQB1 HLA-DRA HLA-DRB1 HLA-DRB5	member of the Major Histocompatibility Complex Class II (MHCII)
	- highly expressed on reactive microglia (reviewed in [266, 290])	
	- increased HLA-DR positive microglia in AD [170, 279]	
	- increased expression in monocytes and neutrophils in AD [64]	
	- reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR [172]	

| LOC1002941 | 45 |

| MIR3135B |

HS3ST1 [57, 108]	HS3ST1	heparan sulfate-glucosamine 3-sulfotransferase 1, member of the heparan sulfate biosynthetic enzyme family
		- HS3ST1 transcript expression is decreased in AD brains [57]
Gene Symbol	Description	Functional Note
-------------	-------------	----------------
IGHG3 [25]	immunoglobulin heavy constant gamma 3, member of the IgG family	- some IgG antibodies present in human plasma recognize conformational epitopes present on Aβ fibrils and oligomers [191]. The anti-amyloidogenic activity is a general property of free human Ig gamma heavy chains. The F1 heavy chain prevents in vitro fibril growth and reduces in vivo soluble Aβ oligomer-induced impairment of rodent hippocampal long term potentiation [2]
INPP5D [108, 138, 144]	member of the inositol polyphosphate-5-phosphatase (INPP5) family	- associated with CSF Tau biomarker [204]
NEU2	neuraminidase 2, glycohydrolytic enzyme which removes sialic acid residues from glycoproteins and glycolipids	- neuramidases regulate many aspect of brain physiology at the level of the cell surface carbohydrates of the central nervous system tissues [76] - NEU1 regulate APP metabolism through desialylation [12]
NGEF	neuronal guanine nucleotide exchange factor, member of the Dbl family of proteins, which function as guanine nucleotide exchange factors for the Rho-type GTPases	- NGEF links Eph receptors to the actin cytoskeleton and are involved in axon growth cone dynamic [226]
IQCK [138]	IQ motif containing K, The IQ motif serves as a binding site for different EF-hand proteins such as calmodulin	
KNOP1	lysine rich nucleolar protein 1	
IQCK (cont’d)	C16orf62	VPS35 endosomal protein sorting factor like, component of the retriever complex, which recycles endocytosed membrane protein back to the cell membrane [173]
---	---	---
MAPT [118]	MAPT	microtubule associated protein tau. Composing one of AD hallmarks too huge to be reviewed here too huge to be reviewed here too huge to be reviewed here
MS4A [95, 108, 138, 144, 184]	MS4A2, MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A6E, MS4A7	Members of a family of membrane proteins with four transmembrane domains. Role in calcium signaling and immune function (reviewed in [123, 158]) - elevated MS4A6A expression levels associated with Braak plaque score [124] - expression of MS4A6A significantly increases in relation to increasing AD-related neurofibrillary pathology [168] - MS4A4A LOAD risky allele associates with higher brain expression [5]
OOSP2	Ooocyte secreted protein 2	
OARD1 [138]	OARD1	O-acyl-ADP-ribose deacylase 1, hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains post-translational modifications - homozygous mutation of the OARD1 gene in patients is associated with severe neurodegeneration [227]
PFDN1 / HBEGF [119, 153]	PFDN1	Prefoldin subunit 1, one of six subunits of prefoldin, a molecular chaperone complex that facilitates posttranslational folding of actins and other cytoskeletal proteins - Pfdn1-deficient mice displayed phenotypes characteristic of defects in cytoskeletal function, including manifestations of ciliary dyskinesia, neuronal loss, and defects in B and T cell development and function [32]
	HBEGF	Heparin binding EGF like growth factor - HBEGF is an abundant neurotrophic molecule of the brain regulating many higher brain functions [197]
Gene	Description	Functions
------	-------------	-----------
PICALM	Phosphatidylinositol binding clathrin assembly protein, protein involved in clathrin mediated endocytosis (reviewed in [281])	- modifies Aβ toxicity in relationship with endocytosis in yeast [256]
- regulates APP endocytosis, subsequent APP metabolism and Aβ production [252, 280]
- binds LC3, suggestive role in the trafficking APP-CTF from the endocytic pathway to the autophagic degradation pathway and in Aβ clearance [253]
- regulates γ-secretase endocytosis and subsequent Aβ42/total Aβ ratio [120, 121]
- regulates Aβ blood-brain-barrier transcytosis and clearance [294] |
| PLCG2 | Phospholipase C gamma 2, transmembrane signaling enzyme converting PIP2 into IP3 and DAG second messengers | - regulates autophagy, Tau clearance and Tau toxicity [182]
- co-localizes and coimmunoprecipitates with neurofibrillary tangles in human brains [10]
- its levels correlates with Tau pathology and autophagy impairments in human brains [11]
- strongly expressed in microglia [10]
- regulates the endocytosis of synaptic vesicle proteins [89, 177]
- regulates the cell surface level of the AMPA receptor subunit GluR2 [88] |

CCDC83
Coiled-coil domain containing 83

PLCG2
Phospholipase C gamma 2, transmembrane signaling enzyme converting PIP2 into IP3 and DAG second messengers
- highly expressed in microglia cells and limited expression in neurons, oligodendrocytes, astrocytes, and endothelial cells [289]
| Gene | Description | Notes |
|-----------|---|---|
| PTK2B | protein tyrosine kinase 2 beta, encode the Pyk2 protein, member of the Focal Adhesion Kinase (FAK) family of protein tyrosine kinase | - mediates Aβ neurotoxicity downstream of integrins [276]
- its Aβo-induced phosphorylation is inhibited by Fyn inhibition [125]
- transduces signal downstream of Aβo-PrPC-mGluR5 complexes with deleterious effects on synaptic transmission and maintenance [81, 216]
- Hippocampal slices lacking Pyk2 are protected from AD-related Aβ oligomer suppression of synaptic plasticity. In APPswe/PSEN1E9 mice, deletion of Pyk2 rescues synaptic loss and learning/memory deficits [215]. Upon oAβ treatment, brain Pyk2 interacts with the RhosGAP protein Gra1 to alter dendritic spine stability via RhoA GTPase [148].
- less active in 5XFAD mice. Loss of Pyk2 in 5XFAD x Pyk2/- double mutant mice has no effect but lentivirus-mediated Pyk2 overexpression improves synaptic markers and behavioral performance suggesting that Pyk2 is not essential for the pathogenic effects of human amyloidogenic mutations in the 5XFAD mouse model. However Pyk2 could contribute to amyloid plaque formation [74].
- activated in microglial cells upon fibrillar Aβ treatment [45]
- its Drosophila ortholog modifies human Tau toxicity in Drosophila [59]
- abnormally accumulates in neuronal somata concurrently with early markers of Tau pathology in brains of the Thy-Tau22 mouse model and AD patients [59]
- PTK2B is activated by neuronal depolarization, Ca2+ and stressful conditions [75]
- Role in neurite outgrowth [106]
- Role in LTP and LTD [97, 102]. On hippocampal slices, Pyk2 is not required for basal synaptic transmission or long term potentiation but participates in long term depression [215]
- Deficiency in mice have alterations in NMDA, PSD-95 and spines structures. Low level of PTK2B in huntington mouse model. Normalizing PTK2B levels rescues memory deficits, spines pathology and PSD-95 localization [72]
- Role in the survival of cerebellar granule neurons [242]
- Essential for astrocytes mobility following brain lesion [73] |
| EPHX2 | epoxide hydrolase 2. The protein, found in both the cytosol and peroxisomes, binds to specific epoxides and converts them to the corresponding dihydrodiols. | -its products regulate synaptic plasticity [277]
- coding mutation in EPHX2 modifies the phenotype of familial hypercholesterolemia [218] |
| Gene Symbol | Description | Notes |
|-------------|-------------|------|
| STMN4 | stathmin 4, belongs to a family of proteins that regulates microtubule dynamics [49] |
| TRIM35 | tripartite motif containing 35, a RING-B-box-coiled-coil protein with apoptotic function |
| CHRNA2 | cholinergic receptor nicotinic alpha 2 subunit, subunit of the muscle and neuronal nicotinic acetylcholine receptor |
| MIR6842 | microRNA 6842 |
| SCIMP / RABEP1 [108, 153] | SLP adaptor and CSK interacting membrane protein, transmembrane adaptor protein that is expressed in antigen-presenting cells and is localized in the immunologic synapse |
| RABEP1 | rabaptin, RAB GTPase binding effector protein 1, |
| SLC24A4 / RIN3 [108, 138, 144] | solute carrier family 24 member 4, potassium-dependent sodium-calcium exchanger expressed in the brain [150] |
| RIN3 | Ras and Rab interactor 3, guanine nucleotide exchange factor for RAB5 and RAB31 |

- Cholinergic transmission is strongly involved in Alzheimer with a major focus on CHRN7 (reviewed in [230])

- role in endocytosis in neurons as an effector of Rab5 [186]

- role in Ca2+ signaling in neurons controlling feeding and satiety [151]

- necessary for rapid response termination and proper adaptation of vertebrate olfactory sensory neurons [241]

- RIN3 recruits CD2AP to RAB5a-positive early endosomess [211]
| Gene | Description | Function |
|--------|--|---|
| SORL1 | Sortilin related receptor 1, transmembrane protein, member of the sortilin family of receptors [271] | -sorts APP into the retromer recycling pathway at the expense of the late endosomal pathway where APP undergoes β- and γ-secretase cleavage to generate Aβ. Loss of SORL1 results in increased Aβ levels. SORL1 interaction and sorting of APP is dependent on APP dimerization [9, 62, 194, 207] - modulates EphA4, attenuates synaptotoxic EphA4 activation and cognitive impairment associated with Aβ-induced neurodegeneration in AD [101] |
| SPPL2A | Signal peptide peptidase like 2A, member of the GXGD family of aspartic proteases, homologue of the presenilins, located in late endosome and lysosome compartments | -Various roles in immune cells, protease of TMEM106b, a genetic risk factor for the development of frontotemporal lobar degeneration [174] |
| TM2D3 | TM2 domain containing 3, the encoded protein contains a structural module related to that of the seven transmembrane domain G protein-coupled receptor superfamily | -preferentially influences uptake of Aβ aggregates during phagocytosis [86] - Mutation in the Drosophila TM2D3 homolog, almondex, causes a phenotype similar to loss of Notch/Presenilin signaling [107] - By functional transcomplementation in Drosophila, the rare TM2D3 variant associated with LOAD, P155L, is a functionally damaging allele [107] |
TREM2

TREM2	TREML2				
Trem2, triggering receptor expressed on myeloid cells 2, cell surface receptor of the immunoglobulin superfamily expressed on microglial cells (reviewed in [232, 261])	TREML2, triggering receptor expressed on myeloid cells like 2, structurally related to the TREM family but does not signal though DAP12/TYROBP (reviewed in [66])				
- oAβ1-42 binds TREM2 on microglia and activates microglial response in a TREM2-dependent manner. The effect of the disease-associated mutations of TREM2 on its binding affinity to oAβ1-42 is debated [149, 297] - its loss alters microglia phagocytosis, including phagocytosis of Aβ [111, 136] - its TREM2 in amyloid mouse models (APPPS1-21, 5XFAD) results in defective microgliosis surrounding Aβ plaques with contradictory effects on the Aβ accumulation, whereas overexpression of TREM2 in the brain of APPswe/PS1dE9 mice ameliorated AD-related neuropathology [109, 111, 262, 269] - in vitro, human stem cell-derived monocytes and transdifferentiated microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2 [43] - its deficiency reduces the efficacy of immunotherapeutic amyloid clearance [278]	- oligomeric amyloid-β treatment up-regulates TREML2 expression in primary microglia [296]				
- increased soluble TREM2 (sTREM2) CSF levels in AD patients that correlates with CSF Tau levels [198, 246] - its loss exacerbates Tau pathology in P301S Tau mice [112]. Increased TREM2 ameliorates the pathological effects of activated microglia on GSK3-mediated neuronal Tau hyperphosphorylation via suppression of microglial inflammatory response [113] - In contrast, glial expression of TREM2/TYROBP exacerbates Tau-mediated neurodegeneration in Drosophila [223] - In transgenic mice expressing mutant human tau, TREM2 haploinsufficiency, but not complete loss of TREM2, increases Tau pathology. The effect on microglial injury and Tauopathy would depend on the partial or complete loss of TREM2 [220]	- has AD-associated functional variants independent of TREM2 ones [21]. - The modulation of TREM2 or TREML2 levels has opposing effect on the proliferation of primary microglia, TREM2 or TREML2 downregulation respectively decrease or increase microglia proliferation [296].				
- APOE is a ligand of TREM2 whose binding to TREM2 can be blocked by the high-affinity binding of oAβ to TREM2. APOE binding is reduced for R47H TREM2 [14, 15, 149]	- Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway [295] - The AD-associated R47H TREM2 mutation have pleiotropic negative effects on microglia and myeloid cells that can be rescued by some TREM2-activating antibodies [39, 40] - Structural analysis reveals that Arg47 plays a critical role in maintaining the structural features of the complementarity-determining region 2 (CDR2) loop and the putative positive ligand-interacting surface (PLIS), stabilizing conformations capable of ligand interaction [247]. However AD-associated TREM2 mutant would bind Aβ with equivalent affinity but show loss of function in terms of signaling and Aβ internalization [149] - APOE is a ligand of TREM2 whose binding to TREM2 can be blocked by high-affinity binding of oAβ to TREM2. APOE binding is reduced for R47H TREM2 [14, 15, 149]				
Gene	Description	Notes			
-------------	---	--			
TSPOAP1	TSPO associated protein 1, TSPO (translocator protein) is a key factor in the flow of cholesterol into mitochondria to permit the initiation of steroid hormone synthesis				
MIR142	microRNA 142, abundantly expressed in hematopoietic cells with roles in inflammatory and immune responses (reviewed [228])	upregulated in the hippocampi of rTg4510 Tau mice in the presymptomatic stage and onward. Similar to what is observed in Tau brains, overexpressing miR142 in wildtype cortical neurons augments mRNA levels of Gfap and Csf1, accompanied by a significant increase in microglia and reactive astrocyte numbers [229]			
TSPOAP1-AS1	TSPOAP1 antisense RNA 1				
WWOX	WW domain containing oxidoreductase, member of the short-chain dehydrogenases/reductases (SDR) protein family	WWOX is decreased in the neurons of AD hippocampi. WWOX binds to Tau through its SDR domain. Knockdown of WWOX results in Tau hyperphosphorylation [250]	WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation [164]		
WWOX / MAF	WWOX / MAF [138]				
MAF	MAF bZIP transcription factor, DNA-binding, leucine zipper-containing transcription factor that acts as a homodimer or as a heterodimer	MAF promotes functional differentiation and anti-inflammatory responses in myeloid cells [33]	Negative regulation of MAF mediates p53 proinflammatory responses in microglia [245]	Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells [131]	c-Maf is required for the development of dorsal horn laminae III/IV neurons and mechanoreceptive DRG axon projections [98]
Gene	Description				
------	-------------				
ZCWPW1	Contain a zf-CW domain involved in histone modification reading [92]				
ACTL6B	actin like 6B, member of a family of actin-related proteins (ARPs)				
AGFG2	ArfGAP with FG repeats 2, member of the HIV-1 Rev binding protein (HRB) family and plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs				
ZCWPW1 / NYAP1 [108, 138, 144]	- subunit of neuron-specific chromatin remodeling complex [196] - its loss in mice results in synaptic plasticity and cocaine-associated memory defects that can be rescued by BDNF [270]				
AP4M1	adaptor related protein complex 4 subunit mu 1, subunit of the heterotetrameric AP-4 complex, which is involved in the recognition and sorting of cargo proteins with tyrosine-based motifs from the trans-golgi network to the endosomal-lysosomal system				
AZGP1	alpha-2-glycoprotein 1, zinc-binding, encode Zinc-α2-glycoprotein (ZAG), which is a major histocompatibility complex I molecule and a lipid-mobilizing factor.				
C7orf43	chromosome 7 open reading frame 43				
C7orf61	chromosome 7 open reading frame 61				
CNPY4	canopy FGF signaling regulator 4, regulates cell surface expression of Toll-like receptor 4				
Gene	Description				
--------	--				
COPS6	COP9 signalosome subunit 6, one of the eight subunits of COP9 signalosome, regulator in multiple signaling pathways, whose structure is similar to that of the 19S regulatory particle of 26S proteasome.				
CYP3A43	cytochrome P450 family 3 subfamily A member 43, The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids				
FBXO24	F-box protein 24, F-box protein of the Fbxs class, the F-box proteins constitute one of the four subunits of the SCF ubiquitin protein ligase complex				
GAL3ST4	galactose-3-O-sulfotransferase 4, member of the galactose-3-O-sulfotransferase protein family				
CASTOR3	CASTOR family member 3, also named GATS				
GIGYF1	GRB10 interacting GYF protein 1, member of the gyl family of adaptor proteins				
GJC3	gap junction protein gamma 3				
GNB2	G protein subunit beta 2, G proteins integrate signals between receptors and effector proteins				

- Lower expression in AD brain [122]
- its Drosophila ortholog regulates neuronal autophagy [129]
- regulates the Insulin signaling pathway [298]
- expressed in the myelinating glial cells [8]
| Gene | Description | |
|---|---|---|
| GPC2 | Glypican 2. Glypicans are a group of cell-surface glycoproteins in which heparan sulfate (HS) glycosaminoglycan chains are covalently linked to a protein core, it can function as coreceptors for multiple signaling molecules. |
| LAMTOR4 | late endosomal/lysosomal adaptor, MAPK and MTOR activator 4, subunit of the Rag-Ragulator complex, located on lysosome membrane and regulating MAPK and mTOR signaling pathways |
| LOC1001283 34 | gap junction protein gamma 3 pseudogene |
| LRCH4 | leucine rich repeats and calponin homology domain containing 4, the encoded protein resembles a membrane receptor |
| MBLAC1 | metallo-beta-lactamase domain containing 1 |
| MCM7 | minichromosome maintenance complex component 7, subunit of the MCM complex, key component of the pre-replication complex, involved in the formation of replication forks and possessing a DNA helicase activity |
| MEPCE | methylphosphate capping enzyme, possesses histone-binding and RNA methylation activities involved in the regulation of transcription |
| Gene | Description | Notes |
|----------|---|--|
| **MIR106B** | microRNA 106b | reduces ATG16L1 levels and autophagy in human cell lines (Lu C et al 2014)[155] |
| **MIR25** | microRNA 25 | |
| **MIR4658** | microRNA 4658 | |
| **MIR93** | microRNA 93 | reduces ATG16L1 levels and autophagy in human cell lines [155] |
| **MOSPD3** | motile sperm domain containing 3, encodes a multi-pass membrane protein with a major sperm protein (MSP) domain | |
| **NYAP1** | neuronal tyrosine phosphorylated phosphoinositide-3-kinase adaptor 1 | NYAP family links PI3K to WAVE1 complex, which mediates remodelling of the actin cytoskeleton, and regulate neuronal morphogenesis [285] |
| **OR2AE1** | olfactory receptor family 2 subfamily AE member 1 | |
| **PCOLCE** | procollagen C-endopeptidase enhancer, encodes a glycoprotein which binds and drives the enzymatic cleavage of type I procollagen and heightens C-proteinase activity | |
| **PCOLCE-AS1** | PCOLCE antisense RNA 1 | |
| **PILRA** | paired immunoglobulin like type 2 receptor alpha, encode a cell surface inhibitory receptor paired with PILRB that recognizes specific O-glycosylated proteins and is expressed on various innate immune cell types including microglia | The common missense variant (G78R, rs1859788) of PILRA could be the causal allele for the locus. The G78R mutation reduces the binding of PILRA to its ligand such as complement component 4A. It could protects individuals from AD risk via reduced inhibitory signaling in microglia [206] |
| Gene | Description |notes |
|-----------|---|------|
| PILRB | paired immunoglobulin-like type 2 receptor beta, encode a cell surface activator receptor paired with PILRB that recognizes specific O-glycosylated proteins and is expressed on various innate immune cell types including microglia | - its levels is associated with AD status [122] and with LOAD GWAS index SNPs [4] |
| PPP1R35 | protein phosphatase 1 regulatory subunit 35, a centrosomal protein critical for centriole elongation | |
| PVRIG | PVR related immunoglobulin domain containing, a member of poliovirus receptor-like proteins and a coinhibitory receptor for human T cells | |
| SAP25 | Sin3A associated protein 25, SAP25 associates with the mSin3A-HDAC complex in vivo and represses transcription | |
| SPDYE3 | speedy/RINGO cell cycle regulator family member E3 | |
| STAG3 | stromal antigen 3, subunit of the cohesin complex which regulates the cohesion of sister chromatids during cell division | |
| TAF6 | TATA-box binding protein associated factor 6, component of the transcription factor IID involved in basal transcription | |
| TFR2 | transferrin receptor 2, This protein mediates cellular uptake of transferrin-bound iron | |
| TRIM4 | tripartite motif containing 4 | |
| Gene | Description |
|------------|---|
| **TSC22D4**| TSC22 domain family member 4, member of the TSC22 domain family of leucine zipper transcriptional regulators |
| **ZKSCAN1**| Zinc finger with KRAB and SCAN domains 1, encodes a member of the Kruppel C2H2-type zinc-finger family of proteins that may function as a transcription factor regulating the expression of GABA type-A receptors in the brain |
| **ZNF3** | Zinc finger protein 3 |
| **ZSCAN21**| Zinc finger and SCAN domain containing 21 |
| **ZNF655** | Zinc finger protein 655 |

ZSCAN21 regulates α-synuclein transcription in neuronal cells and rare genetic variants in ZSCAN21 gene occur in patients with familial forms of Parkinson's Disease [56, 147]
References

1. Abildayeva K, Jansen PJ, Hirsch-Reinshagen V, Bloks VW, Bakker AHF, Ramaekers FCS, et al. (2006) 24(5)-Hydroxysterol Participates in a Liver X Receptor-controlled Pathway in Astrocytes That Regulates Apolipoprotein E-mediated Cholesterol Efflux. J Biol Chem 281:12799–12808. doi: 10.1074/jbc.M601019200

2. Adekar SP, Klyubin I, Macy S, Solomon A, Dessain SK, et al. (2010) Inherent anti-amyloidogenic activity of human immunoglobulin gamma heavy chains. J Biol Chem 285:1066–74. doi: 10.1074/jbc.M109.044321

3. Allen JW, Eldadah BA, Huang X, Knoblach SM, Fadens AI (2001) Multiple caspases are involved in ?-amyloid-induced neuronal apoptosis. J Neurosci Res 65:45–53. doi: 10.1002/jnr.1126

4. Allen M, Bach A, Hess P, Younkin CS, Crook J, Shane Pankratz V, et al. (2012) Novel late-onset Alzheimer disease loci variants associate with brain gene regulation loci. Neurol Genet 1:e15. doi: 10.1212/NXG.0000000000000012

5. Allen M, Zou F, Chai HS, Younkin CS, Crook J, Shane Pankratz V, et al. (2012) Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology 79:221–28. doi: 10.1212/WNL.0b013e3182605801

6. Aloni E, Ruggiero A, Gross A, Segal M (2018) Learning Deficits in Adult Mitochondria Carrier Homolog 2 Forebrain Knockout Mouse. Neuroscience 394:156–163. doi: 10.1016/j.neuroscience.2018.05.017

7. Aloor JJ, Azzam KM, Guardiola JJ, Gowdy KM, Madenspacher JH, Gabor KA, et al. (2018) Leucine-Rich Repeats and Calponin Homology containing 4 and is cleaved in Alzheimer’s brains. Acta Neuropathol 125:861–878. doi: 10.1007/s00401-013-1111-z

8. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, et al. (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102:13461–6. doi: 10.1073/pnas.0503689102

9. Ando K, Brion JP, Stygelbout V, Suain V, Authelet M, Dedecker R, et al. (2013) Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is deregulated in the brains of Alzheimer’s patients. J Biol Chem 287:6606–6615. doi: 10.1074/jbc.M112.443891

10. Ando K, Tomimura K, Sazdovitch V, Suain V, Yilmaz Z, Authelet M, et al. (2016) Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease. Neurobiol Dis 94:32–43. doi: 10.1016/j.nbd.2016.05.017

11. Annunziata I, Patterson A, Helton D, Hu H, Moshia S, Gomez E, et al. (2013) Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-? secretion via deregulated lysosomal exocytosis. Nat Commun 4:2734. doi: 10.1038/ncomms3734

12. Apostolova LG, Risacher SL, Duran T, Stage EC, Goukasian N, West JD, et al. (2018) Associations of the Top 20 Alzheimer Disease Risk Variants With Neurodegeneration and Neuropsychiatric Symptoms. JAMA Neurol 75:328. doi: 10.1001/jamaneurol.2017.4198

13. Atagi Y, Liu C-C, Painter MM, Chen X-F, Verbeecck Z, Zheng H, et al. (2015) Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). J Biol Chem 290:26043–26050. doi: 10.1074/jbc.M115.679043

14. Bailey CC, Devaux LB, Farzan M (2015) The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J Biol Chem 290:26033–26042. doi: 10.1074/jbc.M115.677286

15. Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, et al. (2007) Transport Pathways for Clearance of Human Alzheimer’s Amyloid-? -Peptide and Apolipoproteins E and J in the Mouse Central Nervous System. J Cereb Blood Flow Metab 27:909–918. doi: 10.1038/sj.jcbfm.9600419

16. Bellenguez C, Charbonnier C, Grenier-Boley B, Queneau K, Le Guennec K, Nicolas G, et al. (2017) Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol Aging 59:220.e1–220.e9. doi: 10.1016/j.neurobiolaging.2017.07.001

17. Bellenguez C, Charbonnier C, Grenier-Boley B, Queneau K, Le Guennec K, Nicolas G, et al. (2017) Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol Aging 59:220.e1–220.e9. doi: 10.1016/j.neurobiolaging.2017.07.001

18. Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, et al. (2014) Missense variant in TREM2 protects against Alzheimer’s disease. Neurobiol Aging 35:1510.e19–1510.e26. doi: 10.1016/j.neurobiolaging.2013.12.010

19. Bernstein AI, Lin Y, Street RC, Lin L, Dai Q, Yu L, et al. (2016) S-Hydroxymethylazation-associated epigenetic modifiers of Alzheimer’s disease modulate Tau-induced neurotoxicity. Hum Mol Genet 25:2437–2450. doi: 10.1093/hmg/ddw109

20. Bertrand P, Poirier J, Oda T, Finch CE, Pasinetti GM (1995) Association of apolipoprotein E genotype with brain levels of apolipoprotein E and apolipoprotein J (clusterin) in Alzheimer disease. Brain Res Mol Brain Res 33:174–8

21. Bettens K, Vermeulen S, Van Cauwenberghe C, Heeman B, Asselbergh B, Robberecht C, et al. (2015) Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations. Mol Neurodegener 10:30. doi: 10.1186/s13024-015-0024-9

22. Bis JC, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, et al. (2014) AD-associated variants in TREM2 protects against Alzheimer’s disease. Neurobiol Aging 35:1510.e19–1510.e26. doi: 10.1016/j.neurobiolaging.2013.12.010

23. Bourgin C, Murai KK, Richter M, Pasquale EB (2007) The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol 178:1295–307. doi: 10.1083/jcb.200610319

24. Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, et al. (2013) Clusterin Binds to Aβ1-42 Oligomers with High Affinity and Interferes with Peptide Aggregation by Inhibiting Primary and Secondary Nucleation. J Biol Chem 291:6958–6973. doi: 10.1074/jbc.M113.485393

25. Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, et al. (2013) The effect of CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850. doi: 10.1038/nmn.3435
28. Broe IJ, Tan CH, Fan CC, Jansen I, Savage JE, Witoelar A, et al. (2018) Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer's disease. Acta Neuropathol. doi: 10.1007/s00401-018-1928-6

29. Brubaker WD, Crane A, Johansson JU, Yen K, Garfinkel K, Mastroeni D, et al. (2017) Peripheral complement interactions come with amyloid β peptide: Erythrocyte clearance mechanisms. Alzheimer’s Dement 13:1397–1409. doi: 10.1016/j.jalz.2017.03.010

30. Calafate S, Flavin W, Vrenstreken P, Moechars D (2016) Loss of Bin1 Promotes the Propagation of Tau Pathology. Cell Rep 17:931–940. doi: 10.1016/j.celrep.2016.09.063

31. Cao G, Bales KR, DeMattos RB, Paul SM (2007) Liver X receptor-mediated gene regulation and cholesterol homeostasis in brain: relevance to Alzheimer’s disease therapeutics. Curr Alzheimer Res 4:179–84

32. Cao S, Carlizzo G, Osipovich AB, Llanes J, Lin Q, Hoek KL, et al. (2008) Subunit 1 of the prefoldin chaperone complex is required for lymphocyte development and function. J Immunol 181:476–84

33. Cao S, Liu J, Song L, Ma X (2005) The protooncogene c-Maf is an essential transcription factor for IL-10 expression in macrophages. J Immunol 174:3484–92

34. Cascella R, Conti S, Tatinì F, Evangelisti E, Scartabelli T, Casamonti F, et al. (2013) Extracellular chaperones prevent Aβ42-induced toxicity in rat brains. Biochim Biophys Acta - Mol Basis Dis 1832:1217–1226. doi: 10.1016/j.bbadis.2013.04.012

35. Chan Si, Kim WS, Kwok JB, Hill AF, Cappai R, Rye K-A, et al. (2008) ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro. J Neurochem 106:793–804. doi: 10.1111/j.1471-4159.2008.05433.x

36. Chapuis J, Flag A, Grenier-Boley B, Eysercet F, Pottiez G, Deloison G, et al. (2017) Genome-wide, high-content siRNA screening identifies the Alzheimer's disease risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol 133:955–966. doi: 10.1007/s00401-016-1652-z

37. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolenkovic V, et al. (2013) Increased expression of BIN1 mediates Alzheimer's genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–34. doi: 10.1038/mp.2013.1

38. Chen TT, Klassen TL, Goldman AM, Marini C, Guerrini R, Noebels JL (2013) Novel brain expression of ClC-1 chloride channels and enrichment of CLCN1 variants in epilepsy. Neurology 80:1078–1085. doi: 10.1212/WNL.0b013e31828868e7

39. Cheng Q, Danao J, Talreja S, Wen P, Yin J, Sun N, et al. (2018) TREM2-activating antibodies abrogate the negative pleiotropic effects of the Alzheimer’s disease variant Trem2M663V on murine myeloid cell function. J Biol Chem 293:12620–12633. doi: 10.1074/jbc.RA118.018148

40. Cheng-Hathaway PJ, Reed-Geaghan EG, Jay TR, Casali BT, Bemiller SM, Puntambekar SS, et al. (2018) The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer’s disease. Mol Neurodegener 13:29. doi: 10.1186/s13024-018-0262-8

41. Chibnik LB, Shulman JM, Leurgans SE, Schneider JA, Wilson RS, Tran D, et al. (2011) CR1 is associated with amyloid plaque burden and age-related cognitive decline. Ann Neurol 69:560–569. doi: 10.1002/ana.22277

42. Choi-Miura NH, Sakamoto T, Tobe T, Nakano Y, Tominaga M (1993) The role of HDL consisting of SP-40,40, apo A-I, and lipids in the formation of SMAC of Erythrocyte clearance mechanisms. J Biochem 113:484–7

43. Claes C, Van Den Daele J, Boon R, Schouteden S, Colombo A, Monasor LS, et al. (2018) Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimers Dement. doi: 10.1016/j.jalz.2018.09.006

44. Cochran JN, Rust T, Buckingham SC, Roberson ED (2015) The Alzheimer’s disease risk factor CD2AP maintains blood-brain barrier integrity. Hum Mol Genet 24:6667–74. doi: 10.1093/hmg/ddv371

45. Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci 19:928–39

46. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer disease in late onset families. Science 261:921–3

47. Crehan H, Hardy J, Pocock J (2013) Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis 54:139–149. doi: 10.1016/j.nbd.2013.02.003

48. Curry PA, Gavet O, Charbaut E, Ozon S, Lachkar-Comlerauer S, Manceau V, et al. (1999) Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct Funct 24:345–57

49. Cuypers E, De Roeck A, Van den Bossche T, Van Cauwenberge C, Bettens K, Vermeulen S, et al. (2015) Mutations in ABCA7 in a Belgian cohort of Alzheimer’s disease patients: a targeted resequencing study. Lancet Neurol 14:814–822. doi: 10.1016/S1474-4422(15)00133-7

50. D’hoedt D, Owsianik G, Prenen J, Cuajungco MP, Grimm C, Heller S, et al. (2008) Stimulus-specific Modulation of the Cation Channel TRPV4 by PACSIN 3. J Biol Chem 283:6272–6280. doi: 10.1074/jbc.M706386200

51. DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, et al. (2004) ApoE and clusterin cooperatively suppress Abeta deposition and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41:193–202

52. DeMattos RB, O’dell MA, Parsadanian M, Taylor JW, Harmony JAK, Bales KR, et al. (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 99:10843–10848. doi: 10.1073/pnas.162228299
56. Dermentzaki G, Paschalidis N, Politis PK, Stefanis L (2016) Complex Effects of the ZSCAN21 Transcription Factor on Transcriptional Regulation of α-Synuclein in Primary Neuronal Cultures and in Vivo. J Biol Chem 291:8756–8772. doi: 10.1074/jbc.M115.704973

57. Desikan RS, Schork AJ, Wang Y, Thompson WK, Dehghan A, Ridker PM, et al. (2015) Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease. Circulation 131:2061–2069. doi: 10.1161/CIRCULATIONAHA.115.015489

58. Dourlen P, Fernandez-Gomez FJ, Dupont C, Grenier-Boley B, Bellenguez C, Obriot H, et al. (2017) Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry 22:874–883. doi: 10.1038/mp.2016.59

59. Dräger NM, Nachman E, Winterhoff M, Brühmann S, Shah P, Katsinelos T, et al. (2017) Bin1 directly remodels actin dynamics through its BAR domain. Proc Nat Acad Sci 114:2979–2983. doi: 10.1073/pnas.17184375

60. Dustin ML, Olszowy MW, Holdorf AD, Li J, Bromley S, Desai N, et al. (1998) A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94:667–77

61. Eggert S, Gonzalez AC, Thomas C, Schilling S, Schwarz SM, Tischer C, et al. (2018) Dimerization leads to changes in APP (amyloid precursor protein) trafficking mediated by LRPI and SorLA. Cell Mol Life Sci 75:301–322. doi: 10.1007/s00018-017-2625-7

62. Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsa o G, Patel A, et al. (2005) Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 7:221–32; discussion 255–62

63. Fine D, Flusser H, Markus B, Shorer Z, Gradste in L, Khateeb S, et al. (2015) A syndrome of congenital microcephaly, intellectual disability and dysmorphism with a homozygous mutation in FRMD4A. Eur J Hum Genet 23:1729–1734. doi: 10.1038/ejhg.2014.241

64. Ford JW, McCvicar DW (2009) TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 21:38–46. doi: 10.1016/j.coi.2009.01.009

65. Forestier A, Douki T, De Rosa V, Béal D, Rachi di W (2015) Combination of Aβ Secretion and Oxidative Stress in an Alzheimer-Like Cell Line Leads to the... do: 10.1038/ncomms14058

66. Fu AKY, Hung K-W, Huang H, Gu S, Shen Y, Cheng EYL, et al. (2014) Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proc Nat Acad Sci 111:9959–9964. doi: 10.1073/pnas.1405803111

67. Fu Y, Hsiao J-HT, Paxinos G, Halliday GM, Kim WS (2016) ABCA7 Mediates Phagocytic Clearance of Amyloid-β in the Brain. J Alzheimer’s Dis 54:569–584. doi: 10.3233/JAD-160456

57. Gallo J-M, Spicckett C (2010) The role of CELF proteins in neurological disorders. RNA Biol 7:474–479. doi: 10.4161/ma.7.4.12345

68. García-Cazorla A, Oyarzabala A, Fort J, Robles C, Castejón E, Ruiz-Sala P, et al. (2014) Two Novel Mutations in the BCKDK (Branched-Chain Keto-Acid Dehydrogenase Kinase) Gene Are Responsible for a Neurobehavioral Deficit in Two Pediatric Unrelated Patients. Hum Mutat 35:470–477. doi: 10.1002/humu.22513

69. Giralt A, Brito V, Chevy Q, Simonnet C, Otzu Y, Cifuentes-Díaz C, et al. (2017) Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a Huntington’s disease model. Nat Commun 8:15592. doi: 10.1038/ncomms15592

70. Giralt A, Coura R, Giraut J-A (2016) Pyk2 is essential for astrocytes mobility following brain lesion. Glia 64:620–634. doi: 10.1002/glia.22952

71. Giralt JA, Costa A, Derkinderen P, Studler JM, Toutant M (1999) FAK and PYK2/CAKbeta in the nervous system: a link between neuronal activity, polarity in T-cell contacts. Cell 94:667–77

72. Glanz VY, Myasoedova VA, Grechko AV, Orekhov AN (2019) Sialidase activity in human pathologies. Eur J Pharmacol 842:345–350. doi: 10.1016/j.ejphar.2018.11.014

73. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, et al. (2013) Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Synuclein in Primary Neuronal Cultures and... doi: 10.1002/humu.22513

74. Haglund K, Nezis IP, Lemus D, Grabbe C, Wescbe J, Liestøl K, et al. (2010) Cindr Interacts with Anillin to Control Cytokinesis in Drosophila melanogaster. Curr Biol 20:944–950. doi: 10.1016/j.cub.2010.03.068

75. Hammad SM, Ranganathan S, Loukinova E, Twal WO, Argraves WS (1997) Interaction of apolipoprotein J-amyloid beta-peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid beta-peptide. J Biol Chem 272:18644–9

76. Haas LT, Savarino M, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM (2016) Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease. Exp Neurol 272:18644–9

77. Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM (2016) Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease. Exp Neurol 272:18644–9

78. Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM (2016) Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease. Exp Neurol 272:18644–9

79. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270. doi: 10.1101/cshperspect.a006270

80. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270. doi: 10.1101/cshperspect.a006270

81. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270. doi: 10.1101/cshperspect.a006270

82. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270. doi: 10.1101/cshperspect.a006270

83. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270. doi: 10.1101/cshperspect.a006270

84. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270. doi: 10.1101/cshperspect.a006270
85. Han S, Nam J, Li Y, Kim S, Cho S-H, Cho YS, et al. (2010) Regulation of Dendritic Spines, Spatial Memory, and Embryonic Development by the TANC Family of PSD-95-Interacting Proteins. J Neuroscience 30:15102–15112. doi: 10.1523/JNEUROSCI.3128-10.2010

86. Haney MS, Bohlen CJ, Morgens DW, Ousey JA, Barkal AA, Tsui CK, et al. (2018) Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nat Genet 50:1716–1727. doi: 10.1038/s41588-018-0254-1

87. Hardaway JA, Sturgeon SM, Snrennberg CL, Li Z, Xu XZS, Bermingham DP, et al. (2015) Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling. J Neuroscience 35:9409–9423. doi: 10.1523/JNEUROSCI.0800-15.2015

88. Harel A, Mattson MP, Yao PJ (2011) CALM, A Clathrin Assembly Protein, Influences Cell Surface Glur2 Abundance. NeuroMolecular Med 13:88–90. doi: 10.1007/s12107-010-1842-6

89. Harel A, Wu F, Mattson MP, Morris CM, Yao PJ (2008) Evidence for CALM In Directing VAMP2 Trafficking. Traffic 9:417–429. doi: 10.1111/j.1600-0854.2007.00694.x

90. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–93. doi: 10.1038/ng.440

91. Harrison BJ, Venkat G, Lamb JL, Hutson TH, Drury C, Rau KK, et al. (2016) The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity. J Neuroscience 36:4259–75. doi: 10.1523/JNEUROSCI.2432-15.2016

92. He F, Umemura T, Saito K, Harada T, Watanabe S, Yabuki T, et al. (2010) Structural Insight into the Zinc Finger CW Domain as a Histone Modification Reader. Structure 18:1127–1139. doi: 10.1016/j.str.2010.06.012

93. Hemming ML, Selkoe DJ (2005) Amyloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem 280:37644–50. doi: 10.1074/jbc.M508462000

94. Hirai H, Maru Y, Hagiwara N, Nishida J, Takaku F (1987) A novel putative tyrosine kinase receptor encoded by the eph gene. Science 238:1717–20

95. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carraquillo MM, et al. (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–35. doi: 10.1038/ng.803

96. Howell MD, Torres-Collado AX, Iruela-Arispe ML, Gottschall PE (2012) Selective Degeneration of Dorsal Horn Laminae III/IV Neurons and Mechanoreceptive DRG Axon Projections. J Neuroscience 32:5362–5373. doi: 10.1523/JNEUROSCI.6239-11.2012

97. Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biological Chem 276:47863–8. doi: 10.1074/jbc.M104068200

98. Huynh T-P.V., Davis AA, Ulrich JD, Holtzman DM (2017) Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-β and its aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biological Chem 276:47863–8. doi: 10.1074/jbc.M104068200

99. Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biological Chem 276:47863–8. doi: 10.1074/jbc.M104068200

100. Huang K-L, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. (2017) A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neuroscience 20:1052–1061. doi: 10.1038/nn.4587

101. Huang TY, Zhao Y, Jiang L, Li X, Liu Y, Sun Y, et al. (2017) SORLA attenuates EphA4 signaling and amyloid β–induced neurodegeneration. J Exp Med 214:3669–3685. doi: 10.1084/jem.20171413

102. Hu J, Huang L, Li T, Guo Z, Cheng L (2012) c-Maf Is Required for the Development of Dorsal Horn Laminae III/IV Neurons and Mechanoreceptive DRG Axon Projections. J Neuroscience 32:5362–5373. doi: 10.1523/JNEUROSCI.2432-15.2016

103. Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biological Chem 276:47863–8. doi: 10.1074/jbc.M104068200

104. Ikezu T, Chen C, DeLeo AM, Zeldich E, Fallin MD, Kanaan NM, et al. (2018) Tau Phosphorylation is Impacted by Rare AKAP9 Mutations Associated with Onset Alzheimer’s Disease. PLOS Genet 14:e1007461. doi: 10.1371/journal.pgen.1007461

105. Inoue E, Deguchi-Tawarada M, Togawa A, Matsui C, Arita K, Katahira-Tayama S, et al. (2009) Synaptic activity prompts γ-secretase–mediated cleavage of the extracellular Metalloproteinase ADAMTS1. PLoS One 7:e47226. doi: 10.1371/journal.pone.0047226

106. Ivankovic-Dikic I, Grönroos E, Blaukat A, Barth BU, Dikic I (2000) Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nat Cell Biol 2:574–81. doi: 10.1038/35023515

107. Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, et al. (2015) TREM2 deficiency eliminates TREM2-mediated inflammatory signaling. J Biological Chem 280:37644–50. doi: 10.1074/jbc.M508462000

108. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. (2019) Genome-wide meta-analysis identifies new loci and functional CRISPR screens. Nat Genet 50:1716–1727. doi: 10.1038/s41588-018-0311-9

109. Jiang T, Tan L, Zhu X-C, Zhang Q-Q, Cao L, Tan M-S, et al. (2014) Upregulation of TREM2 Ameliorates Neuropathology and Rescues Spatial Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease. Neuropsychopharmacology 39:2949–2962. doi: 10.1038/npp.2014.164

110. Jiang T, Tan L, Zhu X-C, Zhou J-S, Cao L, Tan M-S, et al. (2015) Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol Aging 36:3176–3186. doi: 10.1016/j.neurobiolaging.2015.08.019

111. Jiang T, Zhang Y-D, Gao Q, Ou Z, Gong P-Y, Shi J-Q, et al. (2018) TREM2 Ameliorates Neuronal Tau Pathology Through Suppression of Microglial Inflammatory Response. Inflammation 41:811–823. doi: 10.1007/s10753-018-0735-5
198. Piccio L, Deming Y, Del-Águila JL, Ghezzi L, Holtzman DM, Fagan AM, et al. (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131:925–933. doi: 10.1007/s00401-016-1533-5

199. Postina R, Schroder A, Dewachter I, Bohi J, Schmitt U, Kojro E, et al. (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113:1456–1464. doi: 10.1172/JCI20864

200. Pozueta J, Lefort R, Ribe EM, Troy CM, Arancio O, Shelsman M (2013) Caspase-2 is required for dendritic spine and behavioural alterations in 220 APP transgenic mice. Nat Commun 4:1939. doi: 10.1038/ncomms2927

201. Prokic I, Cowling BS, Laporte J (2014) Amphiphysin 2 (BIN1) in physiology and diseases. J Mol Med 92:453–463. doi: 10.1007/s00109-014-1138-1

202. Raj T, Ryan KJ, Replogle JM, Chibnik LB, Rosennrant L, Tang A, et al. (2014) CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum Mol Genet 23:2729–2736. doi: 10.1093/hmg/ddh666

203. Ramírez LM, Goukasian N, Porat S, Hwang KS, Eastman JA, Hurtz S, et al. (2016) Common variants in ABCA7 and MS4A6A are associated with cortical and hippocampal atrophy. Neurobiol Aging 39:82–89. doi: 10.1016/j.neurobiolaging.2015.10.037

204. Ramos de Matos M, Ferreira C, Soininen H, Janeiro A, Santana I, et al. (2018) Quantitative Genetics Validates Previous Genetic Variants and Identifies Novel Genetic Players Influencing Alzheimer’s Disease Cerebrospinal Fluid Biomarkers. J Alzheimer’s Dis 66:639–652. doi: 10.3233/JAD-180512

205. Rogaeva E, Lee YH, Gu Y, Kawai T, Zou F, et al. (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–77. doi: 10.1038/ng1943

206. Rathore N, Ramani SR, Pantula H, Payandeh J, Bhangale T, Wuster A, et al. (2018) Paired Immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease. PLoS Genet 14:e1007427. doi: 10.1371/journal.pgen.1007427

207. Rogers J, Li R, Mastroeni D, Grover A, Leonard B, Ahern G, et al. (2006) Peripheral clearance of amyloid β peptide by complement C3-dependent adherence to erythrocytes. Neurobiol Aging 27:1733–1739. doi: 10.1016/j.neurobiolaging.2005.09.043

208. Rosenberger AF, Rozemuller AJ, van der Flier WM, Scheltens P, van der Vlies SM, Hoozemans JJ (2014) Altered distribution of the EphA4 kinase in hippocampal brain tissue of patients with Alzheimer’s disease correlates with pathology. Acta Neuropathol Commun 2:79. doi: 10.1186/s40478-014-0079-9

209. De Rossi P, Andrew RJ, Musial TF, Buggia-Prevot V, Xu G, Ponnapasmy M, et al. (2018) Aberrant accrual of BIN1 near Alzheimer’s disease amyloid deposits in transgenic models. Brain Pathol. doi: 10.1111/bpa.12687

210. Rouka E, Simister PC, Janning M, Kumbirik J, Konstantinou T, Muniz JRC, et al. (2015) Differential Recognition Preferences of the Three Sncolomomy 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3). J Biol Chem 290:25275–25292. doi: 10.1074/jbc.M115.637207

211. Ruggiero A, Aloni E, Korkotian E, Zaltsman Y, Oni-Biton E, Kuperman Y, et al. (2017) Loss of forebrain MTCH2 decreases mitochondria motility and calcium handling and impairs hippocampal-dependent cognitive functions. Sci Rep 7:44401. doi: 10.1038/srep44401

212. Saftig P, Lichtenthaler SF (2015) The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain. Prog Neurobiol 135:1–20. doi: 10.1016/j.pneurobio.2015.10.003

213. Sakae N, Liu C-C, Shinohara M, Frisch-Daiello J, Ma L, Yamazaki Y, et al. (2016) ABCA7 Deficiency Accelerates Amyloid-β Generation and Alzheimer’s Disease. J Biol Chem 291:25275–25292. doi: 10.1074/jbc.M115.637207

214. Salazar S V, Cox TO, Lee S, Brody AH, Chyungh AS, Haas LT, et al. (2018) Alzheimer’s Disease Risk Factor Pyk2 Mediates Amyloid-β Induced Synaptic Dysfunction and Loss. J Neurosci 1873–18. doi: 10.1523/JNEUROSCI.3757-15.2016

215. Santos RM, De la Fuente J, Carrasquillo MM, Uphill J, Shashikumar TJ, Ryan NS, et al. (2016) Genetic risk factors for the posterior cortical atrophy variant of Alzheimer’s disease. J Neurosci 36:3848–59. doi: 10.1523/JNEUROSCI.3757-15.2016

216. Santor M, Mendes T, Desai S, Lasorsa A, Herleidan A, Malmanche N, et al. (2018) BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr348 phosphorylation. bioRxiv. doi: https://doi.org/10.1101/462317

217. Sato K, Ake-Dohme S, Yokoyama S, St George-Hyslop P, Fraser PE (2015) ATP-binding cassette transporter A7 (ABCA7) loss of function alters neuronal pathology. J Neurosci 36:3848–59. doi: 10.1523/JNEUROSCI.3757-15.2016

218. Sato K, Emi M, Ezura Y, Fujita Y, Takada D, Ishigami T, et al. (2004) Soluble epoxide hydrolase variant (Glu287Arg) modifies plasma total cholesterol and triglyceride phenotype in familial hypercholesterolemia: intrafamilial association study in an eight-generation hyperlipidemic kindred. J Hum Genet 49:29–34. doi: 10.1007/s10038-003-0103-6

219. Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE (2015) Amyloid-β deposition in transgenic models. Brain Pathol. doi: 10.1111/bpa.12687

220. Sayed FA, Telpoukhovskaia M, Kodama L, Li Y, Zhou Y, Le D, et al. (2018) Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy. Proc Natl Acad Sci 115:10172–10177. doi: 10.1073/pnas.1811411115

221. Schott JM, Crutch SJ, Carrasquillo MM, Uphill J, Shakespeare TJ, Ryan NS, et al. (2016) Genetic risk factors for the posterior cortical atrophy variant of Alzheimer’s disease. J Neurosci 36:3848–59. doi: 10.1523/JNEUROSCI.3757-15.2016

222. Sekino S, Kashiyagi Y, Kanazawa H, Takada K, Baba T, Sato S, et al. (2015) The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex. Cell Commun Signal 13:41. doi: 10.1186/s12994-015-0119-5

223. Sekiya M, Wang M, Fujisaki N, Sakakibara Y, Quan X, Ehrlich ME, et al. (2018) Integrated biology approach reveals molecular and pathological interactions among Alzheimer’s Ab42, Tau, TREM2, and TYROBP in Drosophila models. Genome Med 10:26. doi: 10.1186/s13073-018-0530-9

224. Serneels L, Van Biervliet J, Craessaerts K, Dejaegere T, Horre K, Van Houtvin T, et al. (2009) -Secretase Heterogeneity in the Aph1 Subunit: Relevance for Alzheimer’s Disease. Science (80-) 324:639–642. doi: 10.1126/science.1171176
229. Shen K, Wu J (2015) Nicotinic Cholinergic Mechanisms in Alzheimer’s Disease. In: International review of neurobiology. pp 275–292

230. Shen J, Wu J (2015) Nicotinic Cholinergic Mechanisms in Alzheimer’s Disease. In: International review of neurobiology. pp 275–292

231. Shen K, Sidik H, Talbot WS (2016) The Rag-Ragulator Complex Regulates Lysosome Function and Phagocytic Flux in Microglia. Cell Rep 14:547–559. doi: 10.1016/j.celrep.2015.12.055

232. Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18:759–772. doi: 10.1038/s41577-018-0051-1

233. Shimizu N, Umeda H, Tanaka T, Kusama E, Konishi M, Inoue T, et al. (2013) Abnormal Ca2+ Homeostasis in Tg2576 Brain. J Neurosci 33:827–838. doi: 10.15252/jn.2013.230.0532

234. Shulman JM, Chen K, Keenan BT, Chibnik LB, Fleisher A, Thiyyagura P, et al. (2013) Genetic Susceptibility for Alzheimer Disease Neuritic Plaque Pathology. JAMA Neurol 70:1150. doi: 10.1001/jamaneurol.2013.2815

235. Siddiqui SS, Springer SA, Verhagen A, Sundaramurthy V, Ali, YO, Zhao H, et al. (2017) Alzheimers disease--protective CD33 splice variant mediates adaptive loss of function via diversion to an intracellular pool. J Biol Chem 292:15312–15320. doi: 10.1074/jbc.M117.799346

236. Siddiqui SS, Springer SA, Verhagen A, Sundaramurthy V, Ali, YO, Zhao H, et al. (2017) Alzheimers disease--protective CD33 splice variant mediates adaptive loss of function via diversion to an intracellular pool. J Biol Chem 292:15312–15320. doi: 10.1074/jbc.M117.799346

237. Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49:1373–1384. doi: 10.1038/ng.3916

238. Singh MK, Dadke D, Nicolas E, Serebriskii IG, Apostolou S, Canutescu A, et al. (2008) A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell 19:1627–36. doi: 10.1091/mbc.E07-09-0953

239. Sottejeau Y, Bretteville A, Cantrelle F-X, Malmanche N, Demiaute F, Mendes T, et al. (2015) Tau phosphorylation regulates the interaction between BIN1’s SH3 domain and Tau’s proline-rich domain. Acta Neuropathol Commun 3:58. doi: 10.1186/s40478-015-0237-8

240. Steinberg S, Stefanosch H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, et al. (2015) Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat Genet. doi: 10.1038/ng.3246

241. Stephan AB, Tobochnik S, Dibattista M, Wall CM, Reisert J, Zhao H, et al. (2016) The Cellular Phase of Alzheimer’s Disease. Cell 164:603–15. doi: 10.1016/j.cell.2015.12.056

242. Strappazzon F, Torch S, Trioulier Y, Blot B, Sadoul R, Verna J-M (2007) Survival response-linked Pyk2 activation during potassium depletion-induced apoptosis of cerebellar granule neurons. Mol Cell Neurosci 34:355–65. doi: 10.1016/j.mcn.2006.11.012

243. Sudom A, Talreja S, Danao J, Bragg E, Kegel R, Min X, et al. (2018) Molecular basis for the loss-of-function effects of the Alzheimer’s disease–associated R47H variant of the immune receptor TREM2. J Biol Chem 293:12634–12646. doi: 10.1074/jbc.RA118.002352

244. Sun X, Becker M, Pankow K, Krause E, Ringling M, Beyermann M, et al. (2008) Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-β peptides. Eur J Pharmacol 588:18–25. doi: 10.1016/j.ejpchar.2008.03.058

245. Sze C-I, Su M, Pugazhenthi S, Jambal P, Hsu L-J, Heath J, et al. (2004) Down-regulation of WW Domain-containing Oxidoreductase Induces Tau Phosphorylation in Vitro. J Biol Chem 279:30498–30506. doi: 10.1074/jbc.M401399200

246. Sudom A, Talreja S, Danao J, Bragg E, Kegel R, Min X, et al. (2018) Molecular basis for the loss-of-function effects of the Alzheimer’s disease–associated R47H variant of the immune receptor TREM2. J Biol Chem 293:12634–12646. doi: 10.1074/jbc.RA118.002352

247. Sudom A, Talreja S, Danao J, Bragg E, Kegel R, Min X, et al. (2018) Molecular basis for the loss-of-function effects of the Alzheimer’s disease–associated R47H variant of the immune receptor TREM2. J Biol Chem 293:12634–12646. doi: 10.1074/jbc.RA118.002352

248. Suh J, Choi SH, Romano DM, Gannon MA, Lesinski AN, Kim DY, et al. (2013) ADAM10 Missense Mutations Potentiate β-Amyloid Accumulation by Impairing Prodomain Chaperone Function. Neuron 80:385–401. doi: 10.1016/j.neuron.2013.08.035

249. Sun X, Becker M, Pankow K, Krause E, Ringling M, Beyermann M, et al. (2008) Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-β peptides. Eur J Pharmacol 588:18–25. doi: 10.1016/j.ejpchar.2008.03.058

250. Sun X, Becker M, Pankow K, Krause E, Ringling M, Beyermann M, et al. (2008) Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-β peptides. Eur J Pharmacol 588:18–25. doi: 10.1016/j.ejpchar.2008.03.058

251. Tao Q-Q, Liu Z-J, Sun Y-M, Li H-L, Yang P, Liu D-S, et al. (2017) Decreased gene expression of CD2AP in Chinese patients with sporadic Alzheimer’s disease. J Neurobiol Aging 56:212.e5–212.e10. doi: 10.1016/j.neurobiolaging.2017.03.013

252. Thomas RS, Henson A, Gerrish A, Jones L, Walters J, Kidd EJ (2016) Decreasing the expression of PICALM reduces endocytosis and the activity of β-secretase: implications for Alzheimer’s disease. BMC Neurosci 17:50. doi: 10.1186/s12868-016-0288-1

253. Tian Y, Chang JC, Fan EY, Flajolet M, Greengard P (2013) Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer’s APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci 110:17071–17076. doi: 10.1073/pnas.1315110110
254. Tomioka M, Toda Y, Maucucat NB, Akatsu H, Fukumoto M, Kono N, et al. (2017) Lysophosphatidylcholine export by human ABCA7. Biochim Biophys Acta - Mol Cell Biol Lipids 1862:658–665. doi: 10.1016/j.bbalip.2017.03.012

255. Toroppygin Y, Kugaevskaya E V, Mirgorodskaya OA, Elisseeva YE, Kozmin YP, Popov IA, et al. (2008) The N-domain of angiotensin-converting enzyme specifically hydrolyzes the Arg-5-His-6 bond of Alzheimer’s Abeta-(1-16) peptide and its isoAsp-7 analogue with different efficiency as evidenced by quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:231–8. doi: 10.1002/rcm.3357

256. Trensch S, Hamamichi S, Goodman JL, Matlack KES, Chung CY, Baru V, et al. (2011) Functional Links Between A Toxicity, Endocytic Trafficking, and Alzheimer’s Disease Risk Factors in Yeast. Science (80-) 334:1241–1245. doi: 10.1126/science.1213210

257. Troy CM, Rabacchi SA, Xu Z, Maroney AC, Connors TJ, Shelanski ML, et al. (2001) beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem 77:157–64

258. Tsui CC, Pierchala BA (2008) CD2AP and Cbl-3/Cbl-c Constitute a Critical Checkpoint in the Regulation of Ret Signal Transduction. J Neurosci 28:8789–8800. doi: 10.1523/JNEUROSCI.2738-08.2008

259. Tzorias M, Davies C, Newman A, Jackson R, Spires-Jones T (2018) Invited Review: APOE at the interface of inflammation, neurodegeneration and protein pathology spread in Alzheimer’s disease. Neuprotap Appl Neurobiol. doi: 10.1111/nan.12529

260. Ubelmann F, Burrinha T, Salavessa L, Gomes R, Ferreira C, Moreno N, et al. (2017) Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. Acta Neuropathol 134:521–33. doi: 10.1007/s00401-017-1929-5

261. Ulland TK, Colonna M (2018) TREM2 — a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14:667–675. doi: 10.1038/s41582-018-0072-1

262. Ulrich JD, Finn M, Wang Y, Shen A, Mahan TE, Jiang H, et al. (2014) Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for SORL1. J Neuroinflammation 11:82. doi: 10.1186/1742-2094-11-82

263. Vardarajan BN, Zhang Y, Lee JH, Cheng R, Bohm C, Ghani M, et al. (2015) Coding mutations in TRIM28 increase susceptibility to Alzheimer’s Disease. J Biol Chem 290:13343–54. doi: 10.1074/jbc.M114.587712

264. Vargas LM, Leal N, Estrada LD, González A, Serrano F, Araya K, et al. (2014) EphA4 activation of c-Abl mediates synaptic loss and LTP blockade caused by amyloid-β oligomers. Plos One 9:e92309. doi: 10.1371/journal.pone.0092309

265. Del Villar K, Miller CA (2004) Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proc Natl Acad Sci U S A 101:4210–5. doi: 10.1073/pnas.0307349101

266. Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, Hardy J, Pocock JM (2016) Microglial genes regulating neuroinflammation in the progression of Alzheimer’s disease. Curr Opin Neurobiol 36:74–81. doi: 10.1016/j.conb.2015.10.004

267. Walter S, Jumpertz T, Hüttenrauch M, Ogorek I, Gerber H, Storck SE, et al. (2018) The metalloprotease ADAMTS4 generates N-truncated Aβ4–x species and marks oligodendrogliocytes as a source of amyloidogenic peptides in Alzheimer’s disease. Acta Neuropathol. doi: 10.1007/s00401-019-1929-5

268. Wang Y-b., Wang J-j., Wang S-h., Liu S-S, Cao J-y., Li X-m., et al. (2012) Adaptor Protein APPL1 Couples Synaptic NMDA Receptor with Neuronal Intracellular Amyloid Precursor Protein (APP) Processing and Amyloid Plaque Pathogenesis. J Biol Chem 287:21279–21289. doi: 10.1074/jbc.M111.338376

269. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, et al. (2015) TREM2 Lipid Sensing Sustains the Microglial Response in an Alzheimer’s Disease Model. Cell 160:1061–1071. doi: 10.1016/j.cell.2015.01.049

270. White AO, Kramár EA, López AJ, Kwapis JL, Doan J, Saldana D, et al. (2016) BDNF rescues BAF53b-dependent synaptic plasticity and cocaine-associated memory in the nucleus accumbens. Nat Commun 7:11725. doi: 10.1038/ncomms11725

271. Willnow TE, Andersen OM (2013) Sorting receptor SORLA—a trafficking path to avoid Alzheimer disease. J Cell Sci 126:2751–60. doi: 10.1242/jcs.125393

272. Wilson MR, Zoubeidi A (2017) Clusterin as a therapeutic target. Expert Opin Ther Targets 21:201–213. doi: 10.1080/14728222.2017.1267142

273. Wixler V, Laplantine E, Geerts D, Sonnenberg A, Petersohn D, Eckes B, et al. (1999) Identification of novel interaction partners for the conserved membrane proximal region of alpha-integrin cytoplasmic domains. FEBS Lett 445:351–5

274. Wojtas AM, Kang SS, Olley BM, Gatherer M, Shinohara M, Lozano PA, et al. (2017) Loss of clusterin shifts amyloid deposition to the cerebrovascular membrane proximal region of alpha-integrin cytoplasmic domains. FEBS Lett 445:351–5

275. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970. doi: 10.1038/nrm1527

276. Wright S, Malinini NL, Powell KA, Rednock T, Rydel RE, Griswold-Prenner I (2007) Alpha2beta1 and alphaVbeta1 integrin signaling pathways mediate amyloid-beta-induced neurotoxicity. Neurobiol Aging 28:226–37. doi: 10.1016/j.neurobiolaging.2005.12.002

277. Wu H-F, Chen Y-J, Wu S-Z, Lee C-W, Chen I-T, Lee Y-C, et al. (2017) Soluble Epoxide Hydrolase Inhibitor and 14,15-Epoxyeicosatrienoic Acid-Facilitated Endocytic Trafficking of the β-Amyloid Precursor Protein Protects Neuronal Dogma from Amyloid-β-Induced Neurotoxicity. Toxicol Sci 152:300–312. doi: 10.1093/toxsci/kfx255

278. Xiang X, Werner G, Bohrmann B, Liesz A, Mazaheri F, Capell A, et al. (2016) TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid plaques in Alzheimer’s disease. Acta Neuropathol 134:521–33. doi: 10.1007/s00401-017-1929-5

279. Xia Q, Gil S-C, Yan P, Wang Y, Han S, Gonzales E, et al. (2012) Role of Phosphatidylinositol Clathrin Assembly Lymphoid-Myeloid Leukemia (PICALM) in Intracellular Amyloid Precursor Protein (APP) Processing and Amyloid Plaque Pathogenesis. J Biol Chem 287:21279–21289. doi: 10.1074/jbc.M111.338376

280. Xu W, Tan L, Yu J-T (2015) The Role of PICALM in Alzheimer’s Disease. Mol Neurobiol 52:399–413. doi: 10.1007/s12035-014-8878-3
282. Yamazaki T, Masuda J, Omori T, Usui R, Akiyama H, Maru Y (2009) EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci 122:243–255. doi: 10.1242/jcs.036467

283. Yan X, Nykänen N-P, Brunello CA, Haapasalo A, Hiltunen M, Uronen R-L, et al. (2016) FRMD4A–cytohesin signaling modulates the cellular release of tau. J Cell Sci 129:2003–2015. doi: 10.1242/jcs.180745

284. Yerbury JJ, Poon S, Meehan S, Thompson B, Kumita JR, Dobson CM, et al. (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FEBS J 21:2312–2322. doi: 10.1080/6.06-7986com

285. Yokoyama K, Tezuka T, Kotani M, Nakazawa T, Hoshina N, Shimoda Y, et al. (2011) NYAP: a phosphoprotein family that links PI3K to WAVE1 signalling in neurons. EMBO J 30:4739–4754. doi: 10.1038/emboj.2011.348

286. Yoshino Y, Yamazaki K, Ozaki Y, Sao T, Yoshida T, Mori T, et al. (2017) INPP5D mRNA Expression and Cognitive Decline in Japanese Alzheimer’s Disease Subjects. J Alzheimer’s Dis 58:687–694. doi: 10.3233/JAD-161211

287. Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, Xu J, et al. (2015) Association of Brain DNA Methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 With Pathological Diagnosis of Alzheimer Disease. JAMA Neurol 72:15. doi: 10.1001/jamaneurol.2014.3049

288. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-G eaghan EG, Landreth GE, et al. (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci 104:10601–10606. doi: 10.1073/pnas.0701096104

289. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. (2016) Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 89:37–53. doi: 10.1016/j.neuron.2015.11.013

290. Zhao J, Bruck S, Cemerski S, Zhang L, Butler B, Dani A, et al. (2013) CD2AP links cortactin and capping protein at the cell periphery to facilitate formation of lamellipodia. Mol Cell Biol 33:38–47. doi: 10.1128/MCB.00734-12

291. Zhao Q-F, Wan Y, Wang H-F, Sun F-R, Hao X-K, Tan M-S, et al. (2016) ABCA7 Genotypes Confer Alzheimer’s Disease Risk by Modulating Amyloid-β Pathology. J Alzheimer’s Dis 52:693–703. doi: 10.3233/JAD-151005

292. Zhao X, Kotilinek LA, Smith B, Hlynialuk C, Zahas K, Ramsden M, et al. (2016) Caspase-2 cleavage of tau reversibly impairs memory. Nat Med 22:1268–1276. doi: 10.1038/nm.4199

293. Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, et al. (2015) Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 18:978–987. doi: 10.1038/nn.4025

294. Zheng H, Jia L, Liu C-C, Rong Z, Zhong L, Yang L, et al. (2017) TREM2 Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway. J Neurosci 37:1772–1784. doi: 10.1523/JNEUROSCI.2459-16.2017

295. Zheng H, Liu C-C, Atagi Y, Chen X-F, Jia L, Yang L, et al. (2016) Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging 42:132–141. doi: 10.1016/j.neurobiolaging.2016.03.004

296. Zhong L, Wang Z, Wang D, Wang Z, Martens YA, Wu L, et al. (2018) Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2). Mol Neurodegener 13:15. doi: 10.1186/s13024-018-0247-7

297. Zhou T, Ma Y, Tang J, Guo F, Dong M, Wei Q (2018) Modulation of IGFR Signaling Pathway by GIGYF1 in High Glucose-Induced SHSY-SY Cells. DNA Cell Biol 37:1044–1054. doi: 10.1089/dna.2018.4336

298. Zhou Y, Hayashi I, Wong J, Tugusheva K, Renger JI, Zerbinatti C (2014) Intracellular Clusterin Interacts with Brain Isoforms of the Bridging Integrator 1 and with the Microtubule-Associated Protein Tau in Alzheimer’s Disease. PLoS One 9:e103187. doi: 10.1371/journal.pone.0103187

299. Zhu X-C, Wang H-F, Jiang T, Lu H, Tan M-S, Tan C-C, et al. (2014) Effect of CR1 Genetic Variants on Cerebrospinal Fluid and Neuroimaging Biomarkers in Healthy, Mild Cognitive Impairment and Alzheimer’s Disease Cohorts. Mol Neurobiol 54:551–562. doi: 10.1007/s12035-015-9638-8

300. Zhu X-C, Yu J-T, Jiang T, Wang P, Cao L, Tan L (2015) CR1 in Alzheimer’s Disease. Mol Neurobiol 51:753–765. doi: 10.1007/s12035-014-8723-8

301. Zlokovic B V, Martel CL, Matsubara E, Hiltunen M, Usui R, Akiyama H, Maru Y. (2009) EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci 122:243–255. doi: 10.1242/jcs.036467

302. Zlokovic B V, Martel CL, Matsubara E, Hiltunen M, Usui R, Akiyama H, Maru Y (2009) EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci 122:243–255. doi: 10.1242/jcs.036467

303. Zlokovic B V, Martel CL, Matsubara E, Hiltunen M, Usui R, Akiyama H, Maru Y (2009) EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci 122:243–255. doi: 10.1242/jcs.036467

304. Zlokovic B V, Martel CL, Matsubara E, Hiltunen M, Usui R, Akiyama H, Maru Y (2009) EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci 122:243–255. doi: 10.1242/jcs.036467