Karyotype Differentiation among Four Dinoponera (Formicidae: Ponerinae) Species

Authors: Santos, Igor S., Delabie, Jacques H.C., Silva, Janisete G., Costa, Marco A., Barros, Luisa A. C., et. al.

Source: Florida Entomologist, 95(3) : 737-742

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.095.0324
KARYOTYPE DIFFERENTIATION AMONG FOUR DINOPONERA (FORMICIDAE: PONERINAE) SPECIES

Igor S. Santos1,2,3, Jacques H.C. Delabie3,4, Janisete G. Silva1,*, Marco A. Costa1, Luisa A. C. Barros5, Silvia G. Pompolo5 and Clea S. F. Mariano1,3

1Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna km 16, 45650-000- Ilhéus, Bahia, Brazil
2Instituto Federal de Educação, Ciência e Tecnologia Baiano, BR 420, Km 2,5 45.320-000- Santa Inês - Bahia, Brazil
3Laboratório de Mirmecologia, Caixa Postal 7, 45600-000 Itabuna, Bahia, Brazil
4Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna km 16, 45650-000-Ilhéus, Bahia, Brazil
5Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa-MG, Brazil

*Corresponding author; E-mail: jgs10@uol.com.br

ABSTRACT

Ants in the genus Dinoponera (Hymenoptera: Formicidae) are among the largest sized Formicidae of the World. In Brazil Dinoponera has an allopatric distribution, and several species occur in threatened biomes. We characterized karyotypes of the following 4 species: Dinoponera australis Emery, Dinoponera gigantea Perty, Dinoponera lucida Emery, and Dinoponera quadriceps Santschi. Karyotype analysis found that all 4 species have high numbers of small-sized chromosomes (D. australis, 2n = 114; D. gigantea, 2n = 82; D. lucida, 2n = 118/120; D. quadriceps, 2n = 92). A moderate variation in chromosome number was observed among the 4 species, which suggests the occurrence of chromosome rearrangements during karyotype evolution in Dinoponera. An exclusive AMT chromosome pair was found to occur in all Dinoponera species studied thus far, which we conclude is a probable synapomorphy in Dinoponera.

Key Words: Ponerinae, cytogenetics, Hymenoptera, Formicidae

RESUMO

As formigas do gênero Dinoponera (Hymenoptera: Formicidae) estão entre as maiores Formicidae do Mundo. Dinoponera é alopatricamente distribuído no Brasil com várias espécies ocorrendo em biomas ameaçados. No presente trabalho foi feita a caracterização do cariótipo de quatro espécies de Dinoponera: Dinoponera australis Emery, Dinoponera gigantea Perty, Dinoponera lucida Emery, e Dinoponera quadriceps Santschi. Um grande número de cromossomos pequenos foi encontrado no cariótipo de todas as espécies analisadas (D. australis, 2n = 114; D. gigantea, 2n = 82; D. lucida, 2n = 118/120; D. quadriceps, 2n = 92). Uma moderada variação no número de cromossomos foi observada entre as espécies estudadas, o que sugere a ocorrência de rearranjos cromossômicos durante a evolução cariotípica neste gênero. O presente estudo também confirma a presença de um par cromossômico AMT em todas as espécies de Dinoponera estudadas até o momento, o que provavelmente representa uma sinapomorfia para este gênero.

Palavras chave: Ponerinae, citogenética, Hymenoptera, Formicidae

The South American endemic genus Dinoponera (Hymenoptera: Formicidae) Roger ranks among the largest ants worldwide and includes 6 valid species: Dinoponera australis Emery, Dinoponera gigantea Perty, Dinoponera longipes Emery, Dinoponera lucida Emery, Dinoponera mutica Kempf, and Dinoponera quadriceps Santschi (Bolton et al. 2006).

The genus ranges from northern Brazil and Peru, to northern Argentina. The species have a mostly allopatric distribution (Fig. 1), which is likely related to their adaptive evolution to the distinct biome each species occupies. Dinoponera lucida is listed as endangered in Brazil (Ministério Do Meio Ambiente 2003) and occurs along the eastern coastline in the...
central region of the Atlantic rainforest; *D. gigantea* and *D. longipes* have been reported in distinct regions of the Brazilian and Peruvian Amazon; *D. quadriceps* is restricted to the Caatinga in northeastern Brazil, whereas *D. mutica* and *D. australis* both occur in the Cerrado close to Bolivia (*D. mutica*) and northern Argentina (*D. australis*) (Kempf 1971; Paiva & Brandão 1995; Mariano et al. 2008). It is noteworthy that the Atlantic rainforest, a large part of the Amazon forest, the Caatinga, and the Cerrado are all subject to strong deforestation due to the expansion of human population and activities (Coimbra-Filho & Câmara 1996; Myers et al. 2000; Laurence et al. 2001; Leal et al. 2003).

Fig. 1. Distribution map of the genus *Dinoponera* adapted from Paiva & Brandão (1995). Lines delimit the geographic distribution of each species. Symbols correspond to collection localities listed in Table 1.
All *Dinoponera* species are morphologically very similar in body size and color and are distinguished by only a few relatively discrete morphological characters such as the cuticular ornamentation, pilosity, and petiole shape. Furthermore, there is a series of clear synapomorphies that distinguish this genus from other Ponerinae (Schmidt 2009).

Previous studies on some species of *Dinoponera* have mostly focused on population ecology, reproductive biology, and behavior. Information is available only on *D. australis* (Paiva & Brandão 1995), *D. gigantea* (Fourcassié & Oliveira 2002), *D. lucida* (Peixoto et al. 2008, 2010), and *D. quadriceps* (Monnin & Peeters 1999; Vasconcellos et al. 2004).

Dinoponera have queenless colonies, where reproduction is taken over by a fertile dominant worker known as a “gamergate.” Gamergate physiology and behavior are modified according to dominance status relative to the other workers (Monnin & Peeters 1999). The occurrence of gamergates has been reported in 8 genera of Ponerinae (Peeters 1993, 2012).

In the last decade, different research groups have examined aspects of ant phylogeny using molecular data (e.g. Brady & Brady 2003; Ward & Brady 2003; Saux et al. 2004; Ward & Downie 2005; Moreau et al. 2006; Brady et al. 2006; Schmidt 2009). These studies have contributed important information on basic aspects of ant evolution in different subfamilies, even though there are limitations regarding taxon sampling and resolution (Schmidt 2009). In his recent molecular phylogenetic study of Ponerinae, Schmidt (2009) suggested that *Dinoponera* and *Pachycondyla sensu Kempf* (1972) are sister genera, however, only a single *Dinoponera* species, *D. australis*, was included in this analysis.

Important information regarding Formicidae genetics and evolution has also been achieved by cytogenetic studies on a range of ants. Currently, karyotypes or chromosome numbers for approximately 700 ant populations or species are available in the literature (Lorite & Palomeque 2010; Santos et al. 2010; Mariano et al. 2008). Although only *D. lucida* is officially listed as endangered (Ministério Do Meio Ambiente 2003), we may reasonably expect that other species in this genus might also be prone to similar population decline because of their shared peculiar reproductive strategy, small population size, and populations that are becoming increasingly more isolated due to native habitat loss.

Our multidisciplinary collaborative network is engaged in a series of studies regarding the genus *Dinoponera*, as well as several other Ponerinae genera in Brazil (i.e., *Anochetus*, *Pachycondyla*, *Thaumatomyrmex*), which include biogeographical, chemical, cytogenetic, ecological, ethological, and molecular aspects. Herein, we report the results of a comparative cytogenetic study carried out on *D. australis*, *D. gigantea*, *D. lucida*, and *D. quadriceps* collected in different biomes in Brazil.

MATERIAL AND METHODS

Nine colonies were collected in 6 different localities in Brazil (Table 1) and at least 2 colonies per species were analyzed. The ant nests were taken from aggregated populations in native vegetation remnants. Some of the colonies were kept at the Laboratório de Mirmecologia (Centro de Pesquisas do Cacau - CEPEC/Comissão Executiva para o Plano da Lavoura Cacaueira - CEPLAC) at an average temperature of 27 °C. Other colonies were processed at the collection site or at the Laboratório de Citogenética de Insetos (Universidade Federal de Viçosa - UFV).

The metaphases were obtained from cerebral ganglia and male gonads of prepupae according to Imai et al. (1988). Metaphases were stained with Giemsa, photographed with an Olympus Microscope, and measured with the software MetaMorph. Some metaphases were also photographed with a Nikon SMZ800 stereomicroscope under UV illumination to reveal fluorescent chromosome banding patterns. Single metaphases were used from various colonies of each species. Metaphases were identified by the following characteristics: size, morphology, number, distribution, and banding of chromosome arms.

Table 1. Collection data, number of individuals analyzed, chromosome number, and fluorescent chromosome staining pattern for 4 species of *Dinoponera*

Species	Locality	Geographic coordinates	Number of colonies/ sample size	2n (n)
D. australis	Uberlândia-MG	18°55'5S 48°16'1W	2/3	114
D. gigantea	Marituba-PA	01°22'S 48°20'W	2/16	82
D. lucida	Teixeira de Freitas-BA	17°32'S 39°44'W	1/8	(60)
	Linhares-ES	19°23'S 40°04'W	1/12	118
D. quadriceps	Bom Jesus da Lapa-BA	13°15'S 43°25'W	1/8	92
	Sambaíba-SE	11°00'S 37°12'W	2/10	

a All states in Brazil: BA: Bahia; ES: Espírito Santo; MG: Minas Gerais; PA: Pará; SE: Sergipe.

Santos et al.: Cytogenetic analysis of *Dinoponera* ants 739

Terms of Use: https://bioone.org/terms-of-use

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 21 Mar 2020
BX60 microscope equipped with a digital camera, and analyzed with Image Pro Plus® version 4.1 analysis software (Media Cybernetics). Due to the large number and small size of the chromosomes, several metaphases were incomplete, so the chromosome number was determined after evaluation of all metaphases available on the slides. The classification of the chromosomes followed Imai’s (1991) nomenclature. Voucher specimens of each colony were deposited at the Laboratório de Mirmecologia, Centro de Pesquisas do Cacau (CEPEC), Ilhéus, Bahia, Brazil.

RESULTS AND DISCUSSION

Karyotype analysis revealed a well-defined pattern of a large number of small chromosomes, mostly acrocentric, in the 4 *Dinoponera* species analyzed. The chromosome number ranged from $2n = 82$ (*D. gigantea*) to $2n = 120$ (*D. lucida*) (Table 1).

Dinoponera lucida showed variation in chromosome number among the 2 populations that were sampled in different localities. In a colony collected in Teixeira de Freitas, Bahia, the haploid chromosome number was $n = 60$, whereas in a colony collected more to the south in Linhares, Espírito Santo, the chromosome number was $2n = 118$ ($n = 59$). This karyotype variation in *D. lucida* was first reported by Mariano et al. (2008), who found 4 different karyotypes for this species, ranging from $2n = 106$ to $2n = 120$. According to these authors, the fragmentation of the Atlantic rainforest due to climatic variation in the early Quaternary and modern anthropogenic effects contributed to population isolation, and when taken together, these help to explain the observed differences. Numerical variation in the karyotype of different colonies within a species has been reported for *Rhytidoponera metallica* (Smith) [5 karyotypes ranging from $2n = 22$ to 46 (Imai et al.]

Fig. 2. Metaphases of the 4 species analyzed in the present study. (A) *Dinoponera australis*, $2n = 114$, (B) *D. gigantea*, $2n = 82$, (C) *D. lucida*, $n = 59$, and (D) *D. quadriceps*, $2n = 92$. Bars = 5μm. Arrows indicate A^{ST} chromosomes.
Dinoponera is considered to be closely related to Pachycondyla based on morphological, molecular, and ecological data (Schmidt 2009). This strongly suggests that these 2 genera share a recent common ancestor. The first molecular phylogenetic studies including species of both Dinoponera and Pachycondyla did not elucidate the relationship between these 2 genera (Moreau et al. 2006; Ouellette et al. 2006). However, a recent molecular phylogeny of the Ponerinae by Schmidt (2009) suggested a close relationship between one Dinoponera species (D. australis) and different species of Pachycondyla (Pachycondyla harpax (Fabricius), Pachycondyla crassinoda (Latreille), Pachycondyla striata Fr. Smith, and Pachycondyla impressa (Roger)), all included in Pachycondyla stricto sensu. There are many similarities between these Pachycondyla species and Dinoponera, such as a relatively large sized body, general habitus, and ground living habits. Regarding cytogenetics, Dinoponera and Pachycondyla stricto sensu (P. crassinoda, P. harpax, P. impressa, Pachycondyla metanotalis Luederwaldt, and P. striata) also share a high chromosome number (\(2n = 62, 2n = 96, 2n = 94, 2n = 70,\) and \(2n = 104,\) respectively) (Mariano et al. 2006, 2012).

Similarities were also observed among these species regarding chromosome morphology and size, as most chromosomes are small and acrocentric. It is noteworthy that this pattern of a large number of small acrocentric chromosomes has rarely been observed in ants. The aforementioned similarities thus lend support to the close phylogenetic relationship between these 2 genera.

According to Imai et al. (1988), acrocentric chromosomes predominate in ants and are derived from metacentric chromosomes that have undergone centric fissions. Such a process could lead to the increase of chromosome number with a reduction in size as a strategy to prevent the occurrence of deleterious translocations during meiosis.

A conspicuous chromosome pair [pseudo-acrocentric (\(A^{MT}\))], already identified in \(D.\) lucida karyotype (Mariano et al. 2004, 2008), was detected in the 4 Dinoponera species studied herein (Fig. 2). \(A^{MT}\) chromosomes, according to Imai (1991), arise from a relatively fast growth of heterochromatin on the smaller chromosome arms after a centric fission. The karyotype of the remaining species in this genus, \(D.\) mutica and \(D.\) longipes, are still to be analyzed. The presence of \(A^{MT}\) chromosomes in the remaining 2 Dinoponera species should be verified in order to confirm whether this character is synapomorphy for the genus.

Our data revealed high karyotype differentiation in Dinoponera and indicate that chromosome number and morphology can be suitable for the cytotaxonomy of this genus. Further analyses regarding chromosome banding and specific gene location will provide the necessary information for a better understanding of the karyotype evolution within the genus.

ACKNOWLEDGMENTS

We thank José Raimundo Maia dos Santos and José Cristópio Soares do Carmo for their help in field collections. We also thank Carter Robert Miller for kindly reviewing the manuscript and Hilda Sussele Rodrigues for her help with the map. This study was supported by the PRONEX FAPESB CNPq project PNX0011/2009: “Rede Multidisciplinar de Estudos sobre Formigas Poneromorfas do Brasil”. JHCD and MAC acknowledge their research grants from CNPq.

REFERENCES CITED

AGUIAR, J. H. A. C., BARBOSA, L. A. C., MARIANO, C. S. F., DELABIE, J. H. C., AND POMPOLO, S. G. 2011. 45S rDNA localization for the giant ant Dinoponera gigantea (Perty, 1833) with evolutionary inferences for Dinoponera genus (Formicidae: Ponerinae). Sociobiology 57(3): 607-620.

BARROS, L. A. C., MARIANO, C. S. F., POMPOLO, S. G., AND DELABIE, J. H. C. 2009. Hsc-FA and NOR bandings on chromosomes of the giant ant Dinoponera lucida Emery, 1901 (Hymenoptera: Formicidae). Comp. Cytogenet. 3: 97-102.

BOLTON, B., ALPERT, G., WARD, P. S., AND NASRECKI, P. 2006. Bolton’s Catalogue of ants of the world. Harvard University Press, Cambridge, Massachusetts, CD-ROM.

BRADY, S. G. 2003. Evolution of the army ant syndrome: The origin and long-term evolutionary stasis of a complex of behavioral and reproductive adaptations. Proc. Natl. Acad. Sci. USA. 100: 6575-6579.

BRADY, S. G. 2003. Evolution of the army ant syndrome: The origin and long-term evolutionary stasis of a complex of behavioral and reproductive adaptations. Proc. Natl. Acad. Sci. USA. 100: 6575-6579.

BRADY, S. G., SCHULTZ, T. R., AND FISHER, B. L. 2006. Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc. Natl. Acad. Sci. USA. 103: 18172-18177.

COIMBRA-FILHO, A. F., AND CÂMARA, I. G. 1996. Os limites originais do bioma Mata Atlântica na região Nordeste do Brasil. Fundação Brasileira para a Conservação da Natureza, Rio de Janeiro, Brazil.

DELABIE, J. H. C., MARIANO, C. S. F., MENDES, L. F., POMPOLO, S. G., AND FRESNEAU, D. 2008. Problemas apontados por estudos morfológicos, ecológicos e citogenéticos no gênero Pachycondyla na Região Neotropical: o caso do complexo apicalis, pp. 196-222 In: E. F. Villa, I. A. Santos, J. H. Schoederer, J. E. Serrão, L. A. O. Campos and J. Lino-Neto [eds.], Insetos Sociais: Da Biologia à Aplicação, Editora UFV, Viçosa, Brazil.

FOURCASSE, V., AND OLIVEIRA, P. S. 2002. Foraging ecology of the giant Amazonian ant Dinoponera gigantean (Hymenoptera, Formicidae, Ponerinae): activity
schedule, diet and spatial foraging patterns. J. Nat. Hist. 36: 2211-2227.
Imai, H. T. 1991. Mutability of constitutive heterochromatin (C-bands) during eukaryotic evolution and their cytological meaning. Japanese J. Genet. 66: 635-661.
Imai, H. T., Crozier, R. H., and Taylor, R. W. 1977. Karyotype evolution in Australian ants. Chromosoma 59: 341-393.
Imai, H. T., Taylor, R. W., and Crozier, R. H. 1994. Experimental bases for the minimum interaction theory. I. Chromosome evolution in ants of the Myrmecia pilosula species complex (Hymenoptera: Formicidae: Myrmicinae). Japanese J. Genet. 69: 137-182.
Kempf, W. W. 1971. A preliminary review of the ponerine ant genus Dinoponera Roger Hymenoptera: Formicidae. Stud. Entomol. 14: 369-394.
Kempf, W. W. 1972. Catálogo abreviado das formigas da Região Neotropical. Stud. Entomol. 15: 3-344.
Laurence, W., Cochrane, M. A., Bergen, S., Fearnside, P. M., Delamonica, P., Barber, C., D'angelo, S., and Fernandes, T. 2001. Environment: the future of the Brazilian Amazon. Science 19: 438-439.
Leal, I. R., Tabarelli, M., and Silva, J. M. C. 2003. Ecologia e Conservação da Caatinga. Editora Universitária UFPE, Recife, Brazil.
Lorite, P., and Palomeque, T. 2010. Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecol. News 13: 89-102.
Mariano, C. S. F., Delabie, J. H. C., Ramos, L. S., Lacaú, S., and Pompolo, S. G. 2004. Dinoponera lucida Emery (Hymenoptera: Formicidae: Ponerinae): largest number of chromosomes known in Hymenoptera. Naturwissenschaften 91: 182-185.
Mariano, C. S. F., Lacaú, S., Pompolo, S. G., Sposito, E. C., Borges, D. S., Dergam, J. A., Villemant, C., and Delabie, J. H. C. 2006. Cytogenetic studies in the rare Neotropical ant genus Typhlomyrmex Mayr (Ectatomminae: Typhlomyrmecini). Sociobiology 47: 225-234.
Mariano, C. S. F., Pompolo, S. G., Barros, L. A. C, Mariano-Neto, E., Campillo, S. P., and Delabie, J. H. C. 2008. A biogeographical study of the threatened ant Dinoponera lucida Emery (Hymenoptera: Formicidae: Ponerinae) using a cytogenetic approach. Insect Conserv. Diver. 1: 161-168.
Mariano, C. S. F., Pompolo, S. G., Silva, J. G., and Delabie, J. H. C. 2012. Contribution of cytogenetics to the debate on the paraphyly of Pachycondyla spp. (Hymenoptera: Formicidae: Ponerinae). Psyche, Volume 2012, Article ID 973897, 9 pages; doi: 10.1155/2012/973897.
Ministerio Do Meio Ambiente. 2003. Lista nacional das espécies da fauna brasileira ameaçadas de extinção, Brazil. Available at: http://www.mma.gov.br/port/sbf/fauna/index.cfm, <Accessed on 5 Jun 2011.
Monnin, T., and Peeters, C. 1999. Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behav. Ecol. 10: 323-332.
Moreau, C. S., Bell, C. D., and Vila, R. 2006. Phylogeny of the ants: Diversification in the age of angiosperms. Science 312: 101-104.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., and Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
Ouellette, G. D., Fisher, B. L., and Girmian, D. J. 2006. Molecular systematics of basal subfamilies of ants using 28S rRNA (Hymenoptera: Formicidae). Mol. Phylogen. Evol. 40: 359-369.
Paiva, R. V. S., and Brandão, C. R. F. 1995. Nests, worker population, and reproductive status of workers, in the giant queenless ponerine ant Dinoponera Roger Hymenoptera Formicidae. Ethol. Ecol. Evol. 7: 297-312.
Peeters, C. 1993. Monogyny and polygyny in ponerine ants with or without queens, pp. 235-261 In L. Keller [ed.], Queen Number and Sociality in Insects. Oxford University Press, Oxford, UK.
Peeters, C. 2012. Convergent evolution of wingless reproductives across all subfamilies of ants, and sporadic loss of winged queens (Hymenoptera: Formicidae). Myrmecological News 16: 75-91.
Peixoto, A. V., Campillo, S., Lemes, T. N., Delabie, J. H. C., and Hora, R. R. 2008. Comportamento e estrutura reprodutiva da formiga ameaçada de extinção Dinoponera lucida Emery (Hymenoptera, Formicidae). Rev. Brasileira Entomol. 52: 88-94.
Peixoto, A. V., Campillo, S., and Delabie, J. H. C. 2010. Basic ecological information about the threatened ant, Dinoponera lucida Emery (Hymenoptera: Formicidae: Ponerinae), aiming its effective long-term conservation, pp. 183-213 In G. H. Tepper [ed.], Species Diversity and Extinction. Nova Science Publisher, Inc., New York, ISBN: 978-1-61668-343-6.
Santos, I. S., Costa, M. A., Mariano, C. S. F., Delabie, J. H. C., Andrade-Souza, V., and Silva, J. G. 2010. A cytogenetic approach to the study of Neotropical Odontomachus and Anochetus ants (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 103: 424-429.
Saux, C., Fisher, B. L., and Spicer, G. S. 2004. Dracula ant phylogeny as inferred by nuclear 28S rDNA sequences and implications for ant systematics (Hymenoptera: Formicidae: Amblyoponinae). Mol. Phylog. Evol. 33: 457-468.
Schmidt, C. A. 2009. Molecular phylogenetics and taxonomic revision of Ponerine ants (Hymenoptera: Formicidae: Ponerinae). PhD thesis. Graduate Interdisciplinary Program in Insect Science, University of Arizona, Arizona.
Vasconcellos, A., Santana, G. G., and Souza, A. K. 2004. Nest spacing and architecture and swarming of males of Dinoponera quadriceps (Hymenoptera: Formicidae) in remnant of the Atlantic Forest in Northeast Brazil. Brazilian J. Biol. 64: 357-362.
Ward, P. S., and Brady, S. G. 2003. Phylogeny and biogeography of the ant subfamily Myrmecinae (Hymenoptera: Formicidae). Invertebr. Syst. 17: 361-386.
Ward, P. S., and Downie, D. A. 2005. The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Syst. Entomol. 30: 310-335.