Visual outcomes after cataract surgery among the elderly residents in the ‘homes for the aged’ in South India: the Hyderabad Ocular Morbidity in Elderly Study

Srinivas Marmamula 1,2,3,4,5, Navya Rekha Barrenakala,1 Rajesh Challa,1 Thirupathi Reddy Kumbham,1 Satya Brahmanandam Modepalli,1 Ratnakar Yellapragada,1 Madhuri Bhakki,1 Jagadesh C Reddy 6, David S Friedman,5 Rohit C Khanna 1,4

ABSTRACT

Background/Aim To report visual outcomes and factors associated with good visual outcomes after cataract surgery among the elderly residents in ‘homes for the aged’ in Hyderabad, India.

Methods Individuals aged ≥60 years were recruited from 41 ‘homes for the aged’. All participants had a detailed eye examinations including visual acuity (VA) assessment, refraction, slit-lamp examination and fundus imaging by trained professionals. A detailed history of cataract surgery was recorded. Multivariate logistic regression was used to determine the factors associated with good visual outcomes after cataract surgery which was defined as presenting VA of 6/18 or better in the operated eye. Visual impairment (VI) is defined as presenting VA worse than 6/18 in the operated eye.

Results 1215 eyes of 703 individuals had cataract surgery. The mean age of these participants was 77.5 years (SD: 8.2 years; range: 60–108 years), 66.8% were women, 29.9% reported diabetes and 61% reported hypertension. 406/1215 (33.4%; 95% CI 30.8 to 36.1) eyes had VI after cataract surgery. Posterior capsular opacification (31.8%; n=129) was the leading cause of VI followed by uncorrected refractive error (24.1%; n=98). The prevalence of good outcomes was 66.6% (95% CI 63.8 to 69.2). On applying multivariable analysis, younger age, self-reported hypertension, independent mobility, surgery in a non-government (as opposed to private) hospital and undergoing paid surgery were associated with good outcomes.

Conclusions One-third of the eyes of elderly individuals living in homes for the aged that had previously undergone cataract surgery had VI. Regular eye examinations with the provision of laser capsulotomy and appropriate refractive correction can substantially improve their vision.
In HOMES, a total of 46/76 (60.5%) homes for the aged who agreed to participate in the study (including 5 for pilot study) were included.13 14 A total of 16/76 (21.1%) homes were not interested in participation in the study. The residents who were aged ≥60 years at the time of enumeration and residing in these homes for at least 1 month and agreed to participate were included in the study. All the residents in the selected homes were enumerated, and all those who were available and provided consent were examined. A total of 1512 elderly residents were enumerated, of which 1182 participants (78.1%) were examined. Those examined and not examined were similar in terms of sex (p=0.31); however, the mean age of these examined was slightly higher (75.0 years vs 74.2 years; p=0.05).13 14

Detailed personal and demographic information, systemic and ocular history were collected. The ocular history included information on previous eye examinations, current and past use of spectacles as well as medical and surgical history. If a participant reported having undergone cataract surgery, details of the cataract surgery were recorded such as the place of surgery (government hospital which typically provides free surgeries), private hospital (provides paying surgeries only) or NGO-run hospital (provides both paying and non-paying surgeries, as is done in LV Prasad Eye Institute), cost of surgery (free or paid) and time since surgery. If any surgical reports were available for the participants, they were reviewed, and details were documented. Systemic history included self-report of hypertension or diabetes. Apart from this, mobility status based on the interviewer’s observations and self-report was classified as ‘independently mobile’, ‘mobile with assistance’ or ‘immobile/bedridden’.

All participants underwent a comprehensive eye examination as described previously.12 In brief, monocular distance visual acuity (VA) was assessed using a logMAR (minimum angle of resolution) chart at a distance of 3 m under ambient lighting conditions. Refraction was done and the best-corrected VA was recorded. Slit-lamp examination was conducted using a portable slit lamp, and intraocular pressure was measured using a Perkins handheld tonometer. Fundus images of the disc and macula were captured using a non-mydriatic fundus camera (Visuscout 100 Handheld Fundus Camera, Carl Zeiss Meditec, Dublin, CA, USA). Among those with aphakia or pseudophakia, a slit-lamp examination and distance direct ophthalmoscopy were done in a semidark room to grade density, area and the extent of posterior capsular opacification (PCO) in the pupillary area. This was graded as (a) no posterior capsule, (b) clear posterior capsule (clear red glow), (c) hazy posterior capsule (dull red glow), (d) opaque posterior capsule (no red glow visible) and (e) cannot examine the posterior capsule (for reasons such as the opaque cornea, absent globe, phthisis bulbi).12 13

Definitions

Good visual outcome was defined as presenting VA of 6/18 or better in the operated eye (definition 1). We also analysed visual outcomes using presenting VA of 6/12 or better in the operated eye to define a good visual outcome (definition 2). Among those who had bilateral cataract surgery, VA in the better-seeing eye was used to define VI and good outcome. The revised Indian categories of VI, which now include a definition for severe VI, were used, and these included moderate VI (VA worse than 6/18–6/60), severe VI (VA worse than 6/60–3/60), and blindness (VA worse than 3/60 to no perception of light).13

URE was deemed to be present if the presenting VA improved to at least 6/18 with refraction (best correction).7 9 Whenever there were multiple causes, based on the clinical examination and the retinal images, the cause which most likely explained the vision loss in the eye was considered the primary cause. In cases of bilateral surgery where there were different causes of VI in each eye of a participant, the cause that was more easily correctable or treatable to regain vision was considered the primary cause for that participant. For example, if URE was the main cause of VI in one eye and PCO in the other eye, then URE was considered as the main cause and used for analysis.12 13 VI due to URE or PCO was considered as avoidable. Effective cataract surgical coverage (eCSC) was defined as the number of people with a good outcome after cataract surgery divided by the number with vision-imparing cataract plus those operated for cataract.16 To enable comparison with recent studies, the mild VI category (presenting VA worse than 6/12–6/18) as proposed by WHO was also used.17

Data management

Data analysis was conducted using Stata statistical software version 14 (StataCorp LP, TX).18 The prevalence of postoperative good visual outcomes was calculated and presented with 95% CIs. Univariable and multivariable analyses were conducted to explore the factors associated with good outcomes. Multiple logistic regression was done using generalised estimating equation along with robust variance estimation to account for correlation between the two eyes of an individual. In the regression models, ‘good outcome’ was considered a dependent variable, with covariates being age group, gender, education (no formal education/any education), type of home (free, aided or private), place of surgery (private hospital, government hospital or non-government hospital), cost of surgery (free/paid), time from eye surgery (0–5 years, 6–10 years or >10 years), diabetes (yes/no), hypertension (yes/no) and mobility score. Eyes offering no visualisation of the lens (n=3) and those with aphakia (n=39) were excluded from this analysis.

RESULTS

Overall, 1182 participants were examined from 41 homes for the aged in Hyderabad with 703 (59.5%) having had cataract surgery in at least one eye. The mean age of those who had cataract surgery was 77.5 years (SD: 8.2 years; range: 60–108 years), 470 (66.8%) were women, 389 (55.3%) had independent mobility, 245 (34.9%) needed assistance for mobility and 69 (9.8%) were bedridden; 210 (29.9%) reported diabetes and 429 (61%) reported hypertension, 113 (16.1%) reported current/past smoking and 105 (14.9%) reported current/past alcohol consumption. The prevalence of unilateral cataract surgery was 16.2% (95% CI 14.1 to 18.4; n=191) and bilateral surgery was 43.3% (95% CI 40.5 to 46.2; n=512). While unilateral cataract surgery was highest among those aged 70–79 years, bilateral cataract surgery was highest among those aged ≥80 years (table 1). The eCSC for persons with VA threshold of 6/18 and 6/12 was 69.0% and 40.9%, respectively.

Operated eyes

A total of 1215 eyes of 703 individuals were operated for cataract; 1173 (96.8%) had intraocular lens (IOLs) implantation, 39 (3.2%) were aphakic. There was no view of the lens in 3 cases. Of the operated eyes, 527 (45.2%) eyes were operated within the last 5 years, 404 (34.6%) operated 6–10 years ago and 236 (20.2%) eyes operated more than 10 years ago. A total of 750 (64.3%) surgeries were done in private hospitals compared to 280 (24.0%) in non-government hospitals and 137 (11.7%) in government hospitals; 776 (66.5%) were free surgeries while 319 (33.5%) were paid surgeries. In all, 30 participants (n=48 eyes) could not
Of the 406/1215 (33.4%; 95% CI 30.8 to 36.1) eyes that had VI after cataract surgery, 287 (23.6% 21.3 to 26.1) eyes had moderate VI, 46 (3.8% 95% CI 2.8 to 5.0) eyes had severe VI and 73 (6%; 95% CI 4.7 to 7.5) eyes were blind (table 3). PCO had moderate VI, 46 (3.8% 2.8 to 5.0) eyes had severe VI after cataract surgery, 287 (23.6% 21.3 to 26.1) eyes had VI after bilateral cataract surgery included 78 (15.2%; 9.5% CI 12.2 to 18.6) participants with moderate VI, 11 with severe VI (2.1%; 95% CI 1.1 to 3.8) and 6 (1.2%; 95% CI 0.4 to 2.5) with blindness. PCO (33.7%; n=32) and URE (33.7%; n=32) were the leading causes of VI, followed by glaucoma (7.4%; n=7), age-related macular degeneration (6.3%; n=6) and optic atrophy (6.3%; n=6) (table 4). In total, 67.4% of the VI was due to avoidable causes. A large proportion of blindness was due to unavoidable causes, whereas a large portion of moderate and severe VI was due to avoidable causes. In addition, mild VI (presenting VA 6/12–6/18) was present in 130/512 (25.4%; 95% CI 21.7 to 29.4) participants who had bilateral cataract surgery of which 65.3% were due to avoidable causes (URE—46.1% (n=60) and PCO—19.2% (n=25)).

Table 1 Characteristics of the participants who had undergone cataract surgery in either eye (n=703)

Age group (in years)	Unilateral surgery	Bilateral surgery	Total
	n (%)	n (%)	n (%)
60–69	52 27.2	58 11.3	110 15.6
70–79	78 40.8	202 39.5	280 39.8
≥80	61 31.9	252 49.2	313 44.5
Gender			
Male	63 33.0	170 33.2	233 33.1
Female	128 67.0	342 66.8	470 66.9
Hypertension			
Yes	109 57.1	320 62.5	429 61.0
No	82 42.9	192 37.5	274 39.0
Diabetes			
Yes	60 31.4	150 29.3	210 29.9
No	131 68.6	362 70.7	493 70.1
Mobility score			
Immobile/bedridden	19 9.9	50 9.8	69 9.8
Mobile with support	60 31.4	185 36.1	245 34.9
Independent	112 58.6	277 54.1	389 55.3
Smoking			
Never	156 81.7	434 84.8	590 83.9
Past/current	35 18.3	78 15.2	113 16.1
Alcohol			
Never	152 79.6	446 87.1	598 85.1
Past/current	39 20.4	66 12.9	105 14.9
Total	191 100.0	512 100.0	703 100.0

Characteristics of the eyes operated for cataract among the elderly residents in homes for the aged (n=1215)
Total operated eyes (n=1215)
Total (%)
Lens status*
Aphakia
Pseudophakia
Years lapsed after surgery†
<5
6–10
>10
Place of surgery†
Government hospital
Non-governmental organisation hospital
Private clinic
Paid surgery
Cost of surgery†
Free surgery
Paid surgery

*No view of the lens in three eyes.
†Data not available in 48 eyes.
‡Data not available in 28 eyes.

Table 3 Prevalence of visual impairment (VI) following cataract surgery among the elderly in residential care

Eyes (n=1215)	Persons (n=512)	
Total (%)	Prevalence (95% CI)	Prevalence (95% CI)
Moderate VI (presenting visual acuity worse than 6/18–6/60)	287 23.6 (21.3 to 26.1)	78 15.2 (12.2 to 18.6)
Severe VI (presenting visual acuity worse than 6/60–3/60)	46 3.8 (2.8 to 5.0)	11 2.1 (1.1 to 3.8)
Blindness (presenting visual acuity worse than 3/60 to no light perception)	73 6.0 (4.7 to 7.5)	6 1.2 (0.4–2.5)
All VI	406 33.4 (30.8 to 36.1)	95 18.5 (15.3 to 22.2)
Among the participants who had bilateral cataract surgery and had VI postsurgery, URE was the leading cause of VI in the age group of 60–69 years and 70–79 years, whereas PCO was the leading cause among those aged ≥80 years (p<0.01). URE was the leading cause among those without any education and PCO was the leading cause among those who were educated (p<0.01). While the causes of VI did not vary with diabetes status (p=0.17), those with self-reported hypertension had PCO as the leading cause of VI compared to URE among those without hypertension (p<0.01). PCO was the leading cause of VI (68.8%) among the participants who were immobile/bedridden, while URE was the leading cause in those who had mobility with support or independently mobile (p<0.05). The causes of VI did not vary with gender (p=0.29).

The association of causes of VI after cataract surgery with place of surgery, paid versus free surgery and duration in years since surgery was assessed. Posterior segment disease was the leading cause of VI after cataract surgery though its proportion varied with place of surgery; it was not statistically significant (p=0.30). Posterior segment disease (38.4%), URE (28.7%) and PCO (21.9%) were the causes among free surgeries compared to posterior segment disease (36.1%), URE (24.7%) and PCO (30.5%) among paid surgeries (p<0.01). The causes of VI did not vary with duration since surgery (p=0.16).

Risk factors related to visual outcomes after cataract surgery

On applying multiple logistic regression analysis, those ≥80 years had substantially lower odds of good outcomes (definition 1), though this was not statistically significant (OR: 0.68; 95% CI 0.44 to 1.04). Those with self-reported hypertension were more likely to have good visual outcomes (OR: 1.45; 95% CI 1.10 to 1.91). Compared to those who were bedridden, the odds of good outcomes were higher for those who needed assistance for mobility (OR: 1.69; 95% CI 1.07 to 2.67) and also for those who were independently mobile (OR: 2.34; 95% CI 1.50 to 3.66). Having been operated on in a NGO-run hospital (OR: 1.91; 95% CI 1.19 to 3.08) and undergoing paid surgery (OR: 1.64; 95% CI 1.09 to 2.50) had higher odds for good outcomes. Length of time after surgery and self-report of diabetes was not associated with outcomes (table 5). Similar associations were found when definition 2 (presenting VA 6/12 or better) was used as a good outcome except for a positive association between self-report of diabetes and good outcomes.

DISCUSSION

One-third of the eyes of elderly residents living in homes for the aged in Hyderabad, India, had VI (defined as presenting VA worse than 6/18) after cataract surgery. This increased to 38.2% when VI was defined as VA worse than 6/12. Nearly 20% of those who had undergone bilateral cataract surgery had bilateral VI defined

Table 4 The cause of vision impairment following cataract surgery in the elderly in residential care

VI causes—eyes (n=1215)	Moderate vision impairment (presenting visual acuity worse than 6/18–6/60 in the better-seeing eye) (%)	Severe vision impairment (presenting visual acuity worse than 6/60–3/60 in the better-seeing eye) (%)	Blindness (presenting visual acuity worse than 3/60 to no light perception in the better-seeing eye) (%)	Total vision impairment (presenting visual acuity worse than 6/18 to no light perception in the better-seeing eye) (%)
n=287	35.9	28.3	17.8	31.8
Posterior capsule opacification (PCO)	32.1	5.5	15.1	21.1
Uncorrected refractive error (URE)	8.4	13.0	10.1	31.5
Other posterior segment disorders	4.9	13.0	6.3	24.2
Age-related macular degeneration	6.3	8.7	7.9	22.9
Glaucoma	5.2	13.0	8.2	26.4
Other causes	3.5	6.5	5.5	15.5
Corneal scar	1.7	4.3	11.0	17.0
Diabetic retinopathy	1.0	4.3	1.4	6.7
Chorioretinal scars	1.0	4.3	1.4	6.7
100.0				

Causes—persons (n=512)

Causes	n=78	n=11	n=6	n=95
URE	38.5	18.2	0.0	33.7
PCO	37.2	18.2	16.7	33.7
Glaucoma	7.7	0.0	16.7	7.4
Age-related macular degeneration	3.8	18.2	16.7	6.3
Optic atrophy	5.1	9.1	16.7	6.3
Other posterior segment disorders	3.8	9.1	16.7	5.3
Corneal scar	1.3	9.1	0.0	2.1
Diabetic retinopathy	1.3	0.0	0.0	1.1
Chorioretinal scars	0.0	9.1	0.0	1.1
100.0				
as presenting vision worse than 6/18 in both eyes. A large proportion of VI was moderate with only a small proportion having severe VI or blindness. PCO was the leading cause of VI, a unique finding though earlier studies also had reported it as one cause of VI, but not the number one cause. The APEDS reported that half of the operated eyes in Hyderabad in 1999 had VI after cataract surgery. In 2009, another study that included urban areas of Andhra Pradesh reported better outcomes compared to the 1999 study, with 22.4% of operated eyes having poor outcomes after cataract surgery, similar to the findings of the present study among elderly in residential care. Several population-based studies from the rest of India have reported on visual outcomes after cataract surgery, and URE is the leading cause for poor outcomes. We confirm the importance of UREs, but in this study, PCO was the leading cause. The younger participants in earlier population-based studies compared to our study may explain to some extent the higher PCO rates in our study. We also actively assessed for PCO using a standardised grading system. Others may have missed this as a cause of VI due to the examination protocols used.

The higher prevalence of cataract surgery in older age groups and among women in our study is similar to that in earlier studies from this region. In previous studies, we found poorer visual outcomes in older age groups. As our definition of hypertension relied on self-report, it is probable that this association is due to better access to

Table 5
Multivariable logistic regression analysis (generalised estimating equation) showing the factors associated with good visual outcomes after cataract surgery with intraocular lens implantation

Age group (years)	Adjusted OR (95% CI) for good outcomes Definition 1 (presenting visual acuity 6/18 or better)	P value	Adjusted OR (95% CI) for good outcomes Definition 2 (presenting visual acuity 6/12 or better)	P value
60–69 Reference	Reference		Reference	
70–79 1.16 (0.76 to 1.78)	0.47	1.04 (0.71 to 1.52)	0.83	
≥80 0.68 (0.44 to 1.04)	0.78	0.71 (0.48 to 1.07)	0.10	
Gender	Male Reference	Reference		
Female 0.96 (0.66 to 1.38)	0.81	0.85 (0.60 to 1.20)	0.60	
Hypertension	No Reference	Reference		
Yes 1.45 (1.10 to 1.91)	0.01	1.01 (0.78 to 1.31)	0.94	
Diabetes	No Reference	Reference		
Yes 1.24 (0.91 to 1.68)	0.17	1.51 (1.15 to 1.98)	<0.01	
Mobility score	Immobile/bedridden Reference	Reference		
Mobile with support 1.69 (1.07 to 2.67)	0.02	1.56 (0.96 to 2.52)	0.07	
Independent 2.35 (1.50 to 3.66)	<0.01	1.95 (1.23 to 3.10)	0.01	
Smoking	Never Reference	Reference		
Past/current 0.88 (0.54 to 1.44)	0.60	1.05 (0.67 to 1.65)	0.82	
Alcohol	Never Reference	Reference		
Past/current 1.37 (0.86 to 2.19)	0.19	1.20 (0.79 to 1.83)	0.40	
Years after surgery	<5 Reference	Reference		
6–10 0.95 (0.70 to 1.28)	0.74	1.15 (0.87 to 1.52)	0.34	
>10 0.99 (0.68 to 1.44)	0.96	0.82 (0.57 to 1.18)	0.29	
Place of surgery	Government hospital Reference	Reference		
Non-governmental organisation (NGO)-run hospital 1.91 (1.19 to 3.08)	0.01	2.69 (1.55 to 4.66)	<0.01	
Private clinic 1.67 (0.96 to 2.90)	0.07	2.21 (1.20 to 4.08)	0.01	
Cost of surgery	Free surgery Reference	Reference		
Paid surgery 1.65 (1.09 to 2.49)	0.02	1.90 (1.28 to 2.81)	<0.01	

Marmamula S, et al. Br J Ophthalmol 2021;105:1087–1093. doi:10.1136/bjophthalmol-2020-317167
healthcare and possibly increased utilisation of health facilities by those who reported hypertension. However, we did not find a significant association between self-reported diabetes and visual outcomes (6/18 definition) following cataract surgery though a positive association was found for definition 2 (6/12 definition). Those with diabetes who end up in homes for the aged may be survivors and healthier, and/or may have been undergoing regular health check-up, which helped detection and management of ocular conditions resulting in better outcomes.

Eyes operated in hospitals run by NGOs that provide both paying and non-paying surgeries had better visual outcomes. The possible reason for better outcomes in NGO or private facilities is the greater use of biometry and greater access to IOls with a wide range of powers for implantation. Furthermore, those who paid for surgery had higher odds of good outcomes. This is probably indicative of the quality and type of surgery with better IOls and more attention to refraction and PCO after surgery for patients who pay for surgical services.23 Also, those who paid for surgery may have been operated by more experienced surgeons, which may have resulted in better outcomes.

Overall, our findings indicate that people seek and receive cataract surgery but miss out on regular follow-up consultations, which are essential to maintain clear vision. Our study population is especially vulnerable as they live in residential care and lack independence. Typically, NGOs reach out to provide cataract surgery to the elderly, often without a user fee. They provide transport facilities and other support for surgery. However, continuity of care is lacking after cataract surgery. Service providers need to reach out to this population to ensure proper follow-up care. While refractive errors can be corrected in homes for the aged, those who require additional treatment will need to be referred for care. Portable neodymium-doped yttrium aluminium garnet (Nd:YAG) lasers have been used in the past for performing iridotomy and could similarly be considered for capsulotomy.24 Portable retinal lasers are used to treat retinopathy of prematurity in infants. The use of such technologies could allow for a more streamlined provision of care to those who are immobile, bedridden or have limited mobility. Though the number of people who can benefit from portable Nd:YAG laser may not be high, with an ageing population and ever-increasing number of cataract surgeries over the years, portable technology usage could be beneficial.

Our study focused on the elderly population in residential care in Hyderabad; hence, results are not generalisable to other populations. The primary limitations of our study are limited information on the details of the surgeries provided. Residents did not have their surgical records and were operated at many locations, so it was not possible to review surgical records. Furthermore, the diagnosis of posterior segment conditions was performed using images taken through undilated pupils. While we were able to get good quality images in most cases, the details were not clear in a few cases where there were media opacities, such as a dense PCO. We may have underestimated the importance of posterior segment pathologies. PCO was also assessed without pupillary dilatation, which could have led to an underestimation of PCO. Also, our study sample had a higher representation of women, possibly due to a longer life expectancy among women.

In conclusion, homes for the aged are relatively new in India, but the number residing in them is rapidly rising.25 A large proportion of residents had poor outcomes after cataract surgery that could readily be addressed by simple interventions. A strategic framework for healthcare including eye care would provide surveillance of vision status and open avenues to routinely render appropriate follow-up care for all those who undergo cataract surgery. The elderly in residential care would then be assured of lifelong good eye health.
9 Dandona L, Dandona R, Anand R, et al. Outcome and number of cataract surgeries in India: Policy issues for blindness control. Clin Exp Ophthalmol 2003;31:23–31.
10 Bachani D, Gupta SK, Murthy GV, et al. Visual outcomes after cataract surgery and cataract surgical coverage in India. Int Ophthalmol 1999;19:49–56.
11 Dandona L, Dandona R, Naduvilath TJ, et al. Population-based assessment of the outcome of cataract surgery in an urban population in Southern India. Am J Ophthalmol 1999;127:650–8.
12 Marmamula S, Barrenakala NR, Challa R, et al. Hyderabad Ocular Morbidity in Elderly Study (HOMES) - rationale, study design and methodology. Ophthalmic Epidemiol 2020;27:83–92.
13 Marmamula S, Barrenakala NR, Challa R, et al. Prevalence and risk factors for visual impairment among elderly residents in ‘homes for the aged’ in India: the Hyderabad Ocular Morbidity in Elderly Study (HOMES). Br J Ophthalmol 2020;bjophthalmol-2019-315678.
14 Marmamula S, Barrenakala NR, Challa R, et al. Uncorrected refractive errors for distance among the residents in ‘homes for the aged’ in South India - the Hyderabad Ocular Morbidity in Elderly Study (HOMES). Ophthalmic Physiol Opt 2020;40:343–9.
15 Vashist P, Senjam SS, Gupta V, et al. Definition of blindness under national programme for control of blindness: do we need to revise it? Indian J Ophthalmol 2017;65:92–6.
16 Ramke J, Gilbert CE, Lee AC, et al. Effective cataract surgical coverage: an indicator for measuring quality-of-care in the context of universal health coverage. PLoS One 2017;12:e0172342.
17 Bourne RRA, Flaxman SR, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health 2017;5:e888–e897.
18 StataCorp. Stata statistical software: release 14. College Station, TX: StataCorp LP., 2014.
19 WHO. Informal consultation on analysis of blindness prevention outcomes. WHO/PBL/98/68. Geneva: World Health Organization, 1998.
20 Murthy GV, Vashist P, John N, et al. Prevalence and vision-related outcomes of cataract surgery in Gujarat, India. Ophthalmic Epidemiol 2009;16:400–9.
21 Paul P, Kuriakose T, John J, et al. Prevalence and visual outcomes of cataract surgery in rural South India: a cross-sectional study. Ophthalmic Epidemiol 2016;23:309–15.
22 Chandrashekar TS, Bhat HV, Pai RP, et al. Coverage, utilization and barriers to cataract surgical services in rural South India: results from a population-based study. Public Health 2007;121:130–6.
23 Sinha R, Shekhar H, Sharma N, et al. Posterior capsular opacification: a review. Indian J Ophthalmol 2013;61:371–6.
24 Robin AL, Arkell S, Gilbert SM, et al. Q-switched neodymium-YAG laser iridotomy. A field trial with a portable laser system. Arch Ophthalmol 1986;104:526–30.
25 UNPF. Caring for our elders: early responses - India ageing report – 2017. New Delhi, India: United Nations Population Fund, 2017.