Structure of p-sd shell Λ hypernuclei studied with AMD

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2014 J. Phys.: Conf. Ser. 569 012083
(http://iopscience.iop.org/1742-6596/569/1/012083)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 188.184.3.52
This content was downloaded on 24/06/2015 at 11:09

Please note that terms and conditions apply.
Structure of p-sd shell Λ hypernuclei studied with AMD

Masahiro Isaka
RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198, Japan
E-mail: masahiro.isaka@riken.jp

Abstract. The structures of the ground and low-lying states of 21Ne and 12Be hypernuclei are studied with the antisymmetrized molecular dynamics. In these hypernuclei, first, the difference of the Λ binding energy on structures is discussed. Particularly, in 12Be, it is found that the parity-inverted ground state of 11Be is reverted by adding a Λ particle. Furthermore, in 21Ne, it is discussed that the reduction of nuclear radii is larger in the 16O + Λ band than the ground band and the difference appears as the difference of the $B(E2)$ reduction.

1. Introduction
We focus on the ground and low-lying states of 21Ne and 12Be and discuss the difference of the Λ binding energy as well as structure changes by a Λ particle based on the antisymmetrized molecular dynamics (AMD). In sd-shell nuclei and neutron-rich nuclei, it is discussed that the many kinds of (cluster) structures coexist in the ground and low-lying energy regions. For example, 20Ne is a typical sd-shell nucleus having the various structures within the small excitation energy [1, 2, 3]. The ground band ($K^\pi = 0^+_1$) and the $K^\pi = 0^+_1$ band built on the 1^+_1 state at 5.79 MeV constitute the parity doublet associated with $\alpha + ^{16}$O clustering. It is known that the $K^\pi = 0^+_1$ band has the pronounced $\alpha + ^{16}$O clustering, while the ground band has the mixing of deformed shell structure and $\alpha + ^{16}$O cluster structure. Therefore, it is of interest to investigate how a Λ particle affects and modifies their structures. In the neutron-rich nucleus 11Be, the ground state is $1/2^+$, which is inconsistent with the ordinary shell-model picture where the seven neutrons may have a $1/2^-$ state as the ground state. One of the main reasons for the parity inversion is molecular-orbit structure of 11Be [4]. In the $1/2^+$ state, one of the extra neutrons occupies the σ orbit around the 2α cluster structure and enhance the 2α clustering. The deformation of the $1/2^-$ state is smaller than that of the $1/2^+$ state because the extra neutrons occupy the π orbit and reduce the clustering. By adding a Λ hyperon to such nuclei, it is expected that the Λ binding energy is different depending on the deformations and the level structure will be changed.

In this article, we focus on the low-lying structure of 21Ne and 12Be hypernuclei with the coexistence of various (exotic) cluster structures. Especially, first, we focus on the difference of the Λ binding energy (B_Λ) depending on the structure. In neutron-rich 12Be, the difference of B_Λ may affect the parity-inverted ground states of 11Be. Furthermore, in 21Ne, it is expected that the Λ particle modifies the $\alpha + ^{16}$O cluster structure in the $K^\pi = 0^+_1$ band and the structure change is different from the $K^\pi = 0^+_1$ band. To study such phenomena, we have applied the AMD model extended to hypernuclei (HyperAMD) to these hypernuclei[5]. Combined with the
generator coordinate method (GCM), it is possible to predict the low-lying level structure and structure changes of Λ hypernuclei[6].

2. Theoretical Framework
In this study, we have applied the HyperAMD [5, 6]. The Hamiltonian used in this study is given as,

\[\hat{H} = \hat{T}_N + \hat{T}_\Lambda - \hat{V}_g + \hat{V}_{NN} + \hat{V}_{AN} + \hat{V}_C \]

(1)

where \(\hat{T}_N \), \(\hat{T}_\Lambda \) and \(\hat{V}_g \) are the kinetic energies of nucleons, Λ hyperon and the center-of-mass motion. We used the Gogny D1S interaction as an effective nucleon-nucleon interaction \(V_{NN} \), which has been successfully applied to the stable and unstable nuclei. The YNG interactions have been employed as Λ-nucleon interaction \(V_{AN} \) [7, 8]. Since the YNG interactions depend on the nuclear density through the Fermi momentum \(k_F \), we adopted \(k_F = 1.17 \text{ fm}^{-1} \) and \(k_F = 0.97 \text{ fm}^{-1} \) for \(^{\Lambda}_{\text{He}} \) and \(^{\Lambda}_{\text{Be}} \), respectively. The Coulomb interaction is approximated by the sum of seven Gaussians.

The variational wave function of a single Λ hypernucleus is described by the parity-projected wave function,

\[\Psi^\pi = \hat{P}^\pi \{ \Psi_N \otimes \varphi_\Lambda \}, \quad \Psi_N = \frac{1}{\sqrt{A!}} \det \{ \phi_i (r_j) \}, \]

(2)

\[\phi_i \propto e^{-\sum \nu_\sigma (r_\sigma - Z_{\sigma\iota})^2 (u_\iota_1 + v_\iota_1)} \eta_i \]

(3)

\[\varphi_\Lambda \propto \sum_{m=1}^M c_m (a_m \chi_1 + b_m \chi_1)e^{-\sum \nu_\sigma (r_\sigma - z_{\sigma m})^2}, \]

(4)

where \(\phi_i \) is the nucleon single-particle wave packet consisting of spatial, spin and isospin \(\eta_i \) parts. The single particle wave function of Λ, \(\varphi_\Lambda \) is represented by a superposition of Gaussian wave packets. The variational parameters \(Z_{\sigma\iota}, \nu_\sigma, u_\iota, v_\iota, a_m, b_m, \) and \(c_m \) are set to minimize the total energy under the constraint on the matter quadrupole deformation \(\beta \).

After the variation, we perform the angular momentum projection and the generator coordinate method (GCM) calculations [9],

\[\Psi_{MK}^J(\beta) = \frac{2J + 1}{8\pi^2} \int d\Omega D_{MK}^J(\Omega)R(\Omega)\Psi^\pi(\beta), \quad \Psi_{nK}^J = \sum_{\beta} \sum_{K=-J}^J c_{nK} \Psi_{MK}^J(\beta), \]

(5)

where the wave functions with differing values of \(K \) and \(\beta \) are superposed. The coefficients \(c_{nK} \) are determined by solving the Griffin-Hill-Wheeler equation.

To analyze each state obtained after the GCM calculation, we calculate the overlap between the \(\Psi_{MK}^J(\beta) \) and \(\Psi_{nK}^J(\beta) \), so called GCM overlap, defined as,

\[O^J(\beta) = |(\Psi_{MK}^J(\beta) | \Psi_{nK}^J(\beta))|^2. \]

(6)

It is noted that the GCM overlap \(O^J(\beta) \) is a function of \(\beta \). In this study, we regard the deformation of each state as the \(\beta \) which gives the largest \(O^J(\beta) \) in each state.

Finally, we introduce the energy gain of the \(J^\pi \) state in hypernuclei from the core state \(j^\pi \) to investigate the Λ binding energy, as,

\[B_\Lambda = E(AZ(j^\pi)) - E(A+1Z(J^\pi)), \]

(7)

where \(E(AZ(j^\pi)) \) and \(E(A+1Z(J^\pi)) \) are the calculated energies of the \(j^\pi \) and \(J^\pi \) states, respectively.
Let us compare B_Λ, defined by the equation(7), of the band head states of the $K^\pi = 0^+_1 \otimes \Lambda_s$ and $K^\pi = 0^-_1 \otimes \Lambda_s$ bands. As mentioned above, the mean-field like and $\alpha + ^{16}\text{O}$ structures are mixed in the $K^\pi = 0^+_1$ band, while the $K^\pi = 0^-_1$ band has a pronounced $\alpha + ^{16}\text{O}$ cluster structure. In table 1, the total energy E, excitation energy E_x, and Λ binding energy B_Λ are listed. It shows that the B_Λ of the $K^\pi = 0^+_1 \otimes \Lambda_s$ (ground) state is larger than that of the $K^\pi = 0^-_1 \otimes \Lambda_s$ band head state. In figure 2, the density distributions of the band head states

3. Results and Discussions

3.1. Ground and $\alpha + ^{16}\text{O} + \Lambda$ bands in $^{21}_\Lambda\text{Ne}$

By performing the GCM calculations, it is found that many excited states with positive parity appear in $^{21}_\Lambda\text{Ne}$. Among them, we obtain the two rotational bands of $^{21}_\Lambda\text{Ne}$, which correspond to the $K^\pi = 0^+_1$ and $K^\pi = 0^-_1$ bands of ^{20}Ne. Therefore, we denote these bands in $^{21}_\Lambda\text{Ne}$ as $K^\pi = 0^+_1 \otimes \Lambda$ and $K^\pi = 0^-_1 \otimes \Lambda$, respectively. The resulting excitation spectra of these bands are shown in figure 1.

Let us compare B_Λ, defined by the equation(7), of the band head states of the $K^\pi = 0^+_1 \otimes \Lambda_s$ and $K^\pi = 0^-_1 \otimes \Lambda_s$ bands. As mentioned above, the mean-field like and $\alpha + ^{16}\text{O}$ structures are mixed in the $K^\pi = 0^+_1$ band, while the $K^\pi = 0^-_1$ band has a pronounced $\alpha + ^{16}\text{O}$ cluster structure. In table 1, the total energy E, excitation energy E_x, and Λ binding energy B_Λ are listed. It shows that the B_Λ of the $K^\pi = 0^+_1 \otimes \Lambda_s$ (ground) state is larger than that of the $K^\pi = 0^-_1 \otimes \Lambda_s$ band head state. In figure 2, the density distributions of the band head states
of $K^\pi = 0^+_1 \otimes \Lambda_s$ and $K^\pi = 0^+_1 \otimes \Lambda_s$ bands of $^{21}_\Lambda$Ne are presented. It is clearly seen that the Λ hyperon coupled to the $K^\pi = 0^+_1$ band head state of 20Ne is localized around the 16O cluster. This is because the single-particle potential of Λ_s is not parity symmetric due to the $\alpha + ^{16}$O clustering and is deeper around 16O cluster. Indeed, B_{Λ} of $^{17}_\Lambda$O may be more than 12 MeV, while that of $^{5}_\Lambda$He is about 3 MeV. On the other hand, the Λ hyperon coupled to the $K^\pi = 0^+_1$ band head state locates at the center of 20Ne nucleus and interacts with all nucleons. Therefore, the Λ_s in the the $K^\pi = 0^+_1 \otimes \Lambda_s$ band head state is more deeply bound than that in the $K^\pi = 0^+_1 \otimes \Lambda_s$ band head state.

Since the Λ particle in the $K^\pi = 0^+_1 \otimes \Lambda_s$ band is located around the 16O cluster, it is not an eigenstate of parity of single particle state of Λ_s. Thus, the p-orbit component of the Λ hyperon should contribute to the $K^\pi = 0^-_1 \otimes \Lambda_s$ state. Such mixed nature was called “parity coupling”[10] for $^{21}_\Lambda$Ne or “inter-shell coupling”[11]. It was argued that parity coupling could occur because the energy difference between the positive and negative parity states in the core nucleus is similar to that between the s- and p-orbits of the Λ hyperon [10]. However, in the present result, the parity coupling is due to the asymmetry of $\alpha + ^{16}$O clustering. To see the contribution of the Λ particle in p orbit, as discussed in the reference [10], we also analyze the GCM overlap, defined by the equation (6), of the $1/2^-$ state which is the band head state of the $K^\pi = 0^-_1 \otimes \Lambda_s$. The details are discussed in the reference [6].

Table 2. RMS radii (fm) for the $K^\pi = 0^+_1$ band in 20Ne and the corresponding band in $^{21}_\Lambda$Ne. Δr_{rms} is defined as a subtraction of RMS radius: $\Delta r_{rms} = r_{rms}(^{21}_\Lambda$Ne) - $r_{rms}(^{20}$Ne) for each state.

20Ne	r_{rms}	$^{21}_\Lambda$Ne	r_{rms}	Δr_{rms}
0^+	2.97	1/2+	2.92	-0.05
2^+	2.96	3/2+	2.91	-0.05
	5/2+	2.91	-0.05	
4^+	2.93	7/2+	2.87	-0.06
	9/2+	2.88	-0.04	
6^+	2.87	11/2+	2.81	-0.06
8^+	2.82	15/2+	2.77	-0.04

Table 3. Same as table 2 but for the $K^\pi = 0^-_1$ band in 20Ne and the corresponding band in $^{21}_\Lambda$Ne.

20Ne	r_{rms}	$^{21}_\Lambda$Ne	r_{rms}	Δr_{rms}
1^-	3.27	1/2-	3.15	-0.11
	3.15		-0.11	
3^-	3.24	5/2-	3.13	-0.11
	3.14		-0.10	
5^-	3.23	9/2-	3.11	-0.12
	3.11		-0.13	
7^-	3.23	13/2-	3.06	-0.17

Next, we discuss the difference in the reduction of the nuclear radii by adding a Λ particle, so called "shrinkage effect", between the $K^\pi = 0^+_1 \otimes \Lambda_s$ and $K^\pi = 0^-_1 \otimes \Lambda_s$ bands in $^{21}_\Lambda$Ne. In tables
2-3, the nuclear RMS radii for the \(K^\pi = 0^+ \) and \(K^\pi = 0^- \) bands of \(^{20}\text{Ne}\) and the corresponding bands with \(\Lambda \) are listed. The RMS radii for the \(K^\pi = 0^- \) band change more than those of the \(K^\pi = 0^+ \). This is due to the difference in the clustering of these bands. Since the \(K^\pi = 0^- \) band has well developed \(\alpha + ^{16}\text{O} \) cluster structure, \(\Lambda \) hyperon reduces the inter-cluster distance.

The difference of the shrinkage effect in \(^{21}\text{Ne}\) affect the reduction of the intra-band \(B(E2) \) values in \(K^\pi = 0^+_1 \otimes \Lambda_s \) and \(K^\pi = 0^-_1 \otimes \Lambda_s \) bands. To compare \(B(E2) \) values of \(^{21}\text{Ne}\) with those of \(^{20}\text{Ne}\), we corrected them under the assumption that a \(\Lambda \) hyperon occupies the \(s \)-orbit for each hypernuclear state in the \(K^\pi = 0^+_1 \otimes \Lambda_s \) and \(K^\pi = 0^-_1 \otimes \Lambda_s \) bands [6]. Both the corrected and uncorrected \(B(E2) \) values for the \(K^\pi = 0^+_1 \otimes \Lambda_s \) and \(K^\pi = 0^-_1 \otimes \Lambda_s \) bands are presented in tables 4-5.

Tables 4-5 shows that a \(\Lambda \) particle causes the \(B(E2) \) reduction in the \(K^\pi = 0^-_1 \otimes \Lambda_s \) and the \(K^\pi = 0^+_1 \otimes \Lambda_s \) bands. In the reference [10], the \(B(E2) \) reductions predicted by Yamada et al. are more than 20 \(\% \) for those bands. However, in the present study, the corrected \(B(E2) \) values for the \(0^+_1 \otimes \Lambda_s \) band reduce less than 20 \(\% \), while those for the \(K^\pi = 0^+_1 \otimes \Lambda_s \) band is almost about 20 \(\% \), as shown in tables 4-5. We consider the difference in the \(B(E2) \) reduction mainly comes from the difference in the reduction of RMS radii between these two bands, as discussed above.

Table 4. Intra-band \(B(E2) \) values in \(e^2 \text{fm}^4 \) for the \(K^\pi = 0^+_1 \) in \(^{20}\text{Ne}\) and the corresponding band in \(^{21}\text{Ne}\). \(B(E2) \) and \(cB(E2) \) represent the uncorrected and corrected \(B(E2) \) values, respectively. The correction of the \(B(E2) \) values is explained in the reference [6].

\(K^\pi = 0^+_1 \)	\(B(E2) \)	\(0^+_1 \otimes \Lambda_s \)	\(B(E2) \)	\(cB(E2) \)	\((%) \)
\(2^+ \rightarrow 0^+ \)	72.2	\(3/2^+ \rightarrow 1/2^+ \)	63.7	63.7	-11.8
		\(5/2^+ \rightarrow 1/2^+ \)	63.9	63.9	-11.5
\(4^+ \rightarrow 2^+ \)	86.9	\(7/2^+ \rightarrow 3/2^+ \)	64.3	71.4	-17.8
		\(9/2^+ \rightarrow 5/2^+ \)	75.7	75.7	-13.0
\(6^+ \rightarrow 4^+ \)	55.1	\(11/2^+ \rightarrow 7/2^+ \)	40.3	41.9	-23.9
		\(13/2^+ \rightarrow 9/2^+ \)	48.0	48.0	-12.9
\(8^+ \rightarrow 6^+ \)	17.0	\(15/2^+ \rightarrow 11/2^+ \)	15.9	16.2	-4.6
		\(17/2^+ \rightarrow 13/2^+ \)	17.1	17.1	0.8

Table 5. Same as table 4 but for the \(K^\pi = 0^-_1 \) band in \(^{20}\text{Ne}\) and the corresponding band in \(^{21}\text{Ne}\).

\(K^\pi = 0^-_1 \)	\(B(E2) \)	\(0^-_1 \otimes \Lambda_s \)	\(B(E2) \)	\(cB(E2) \)	\((%) \)
\(3^- \rightarrow 1^- \)	221.2	\(5/2^- \rightarrow 1/2^- \)	139.2	179.0	-19.1
		\(7/2^- \rightarrow 3/2^- \)	178.5	178.5	-19.3
\(5^- \rightarrow 3^- \)	249.3	\(9/2^- \rightarrow 5/2^- \)	184.2	195.4	-21.6
		\(11/2^- \rightarrow 7/2^- \)	189.3	189.3	-24.1
\(7^- \rightarrow 5^- \)	240.3	\(13/2^- \rightarrow 9/2^- \)	164.3	166.7	-30.6
Table 6. Quadrupole deformation β, calculated energy E and excitation energy E_x for the $1/2^+_1$ and $1/2^-_1$ states in 11Be and the corresponding 0^+ and 0^- states in $^{12}_{\Lambda}$Be. A binding energy B_{Λ} is also listed for $^{12}_{\Lambda}$Be.

State	J^π	β	E(MeV)	E_x(MeV)	B_{Λ}(MeV)
$^{12}_{\Lambda}$Be(HyperAMD)	0^+_1	0.70	-74.44	0.25	9.67
$^{12}_{\Lambda}$Be(HyperAMD)	0^-_1	0.47	-74.69	0.00	10.24
11Be(AMD)	$1/2^+_1$	0.72	-64.77	0.00	-
11Be(AMD)	$1/2^-_1$	0.52	-64.45	0.32	-
11Be(Exp.)	$1/2^+_1$		-65.48	0.00	-
11Be(Exp.)	$1/2^-_1$		-65.16	0.32	-

3.2. Parity reversion of the $^{12}_{\Lambda}$Be ground state

First, let us discuss the structure of the core nucleus 11Be. As shown in figure 3(a), the 11Be ground state has positive parity, and the order of the $p_{3/2}$ and sd shells looks inverted, which is called “parity inversion” [12, 13]. In the present study, the AMD calculation successfully describes the parity inversion of the ground state in 11Be as shown in figure 3(b).

The low-lying states of Be isotopes are known to have a 2α cluster core and valence neutrons occupying the molecular orbits around the core, which are called π and σ orbits [14]. The formation of the 2α cluster core in each state is confirmed by the proton density shown in figure 4. In the ground state $1/2^+_1$, two of the valence neutrons occupy the π orbit, and the third valence neutron occupies the σ orbit. In terms of the spherical shell model, a neutron is promoted to sd shell across the $N = 8$ shell gap (breakdown of magic number $N = 8$). On the contrary, in the first excited state $1/2^-_1$, all valence neutrons occupy the π orbit or p shell, which corresponds to the normal shell order. As we can see from figure 4 and table 6, the ground state has a more pronounced 2α clustering and a larger quadrupole deformation β than the first excited state.

Figure 3(c) shows the level structure of $^{12}_{\Lambda}$Be with a Λ hyperon in s orbit. It is found that the ground state parity of $^{12}_{\Lambda}$Be becomes negative. Namely, the parity reversion of the $^{12}_{\Lambda}$Be ground state will occur by adding a Λ particle. As shown in table 6, the B_{Λ} for the 0^-_1 state is larger than the 0^+_1 state by about 500 keV. The difference in B_{Λ} mainly comes from the ΛN potential
energy $V_{\Lambda N}$, and it originates in the difference of the nuclear deformation. It is expected that the difference of the deformation between the $1/2^+$ and $1/2^-$ states can be confirmed by observing the parity-reverted ground state of $^{12}_\Lambda$Be.

4. Summary

In summary, we applied an extend version of AMD to hypernuclei to $^{21}_\Lambda$Ne and $^{12}_\Lambda$Be. We discussed the difference of the Λ binding energy (B_Λ) depending on the structure of the core states. In $^{21}_\Lambda$Ne, it is discussed that B_Λ is different between the ground and $K^\pi = 0^+_1 \otimes \Lambda_s$ band, reflecting the difference of their structure. In $^{12}_\Lambda$Be, it is found that the parity reversion in the ground state will occur by a Λ particle due to the difference of B_Λ, originated in the difference of deformations between the $1/2^+$ and $1/2^-$ states in 11Be. Furthermore, in $^{21}_\Lambda$Ne, intra-band $B(E2)$ reduction in the $K^\pi = 0^+_1 \otimes \Lambda_s$ band is larger than that in the $K^\pi = 0^+_1 \otimes \Lambda_s$ band. This is mainly due to the reduction of the inter-cluster distance between α and 16O clusters in the $K^\pi = 0^-_1$ band.

References

[1] Ikeda K, Marumori T, Tamagaki R and Tanaka H 1972 Prog. Theor. Phys. Suppl. 52 1
[2] Ikeda K, Marumori T, Horiuchi H and Saito S 1980 Prog. Theor. Phys. Suppl. 68 1
[3] Kimura M 2004 Phys. Rev. C 69 044319
[4] Kanada-En’yo Y and Horiuchi H 2002 Phys. Rev. C 66 024305
[5] Isaka M, Kimura M, Dote A and Ohnishi A 2011 Phys. Rev. C 83 044323
[6] Isaka M, Kimura M, Dote A and Ohnishi A 2011 Phys. Rev. C 83 054304
[7] Yamamoto Y, Motoba T, Himeno H, Ikeda K and Nagata S 1994 Prog. Theor. Phys. Suppl. 117 361
[8] Hiyama E, Kamimura M, Motoba T, Yamada T and Yamamoto Y 1997 Prog. Theor. Phys. 97 881
[9] Hill D L and Wheeler J A 1953 Phys. Rev. 89 1102
[10] Yamada T, Ikeda K, Bandō H and Motoba T 1984 Prog. Theor. Phys. 71 985
[11] Motoba T 1998 Nucl. Phys. A 629 398c
[12] Wilkinson D H and Alburger D E 1959 Phys. Rev. 113 563
[13] Talmi U and Unna I 1960 Phys. Rev. Lett. 4, 469
[14] von Oertzen W, Freer M and Kanada-En’yo Y 2006 Phys. Rep. 432 43