T Cell Trafficking through Lymphatic Vessels

Morgan C. Hunter1, Alvaro Teijeira2 and Cornelia Halin1*

1 Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland, 2 Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, Pamplona, Spain

T cell migration within and between peripheral tissues and secondary lymphoid organs is essential for proper functioning of adaptive immunity. While active T cell migration within a tissue is fairly slow, blood vessels and lymphatic vessels (LVs) serve as speedy highways that enable T cells to travel rapidly over long distances. The molecular and cellular mechanisms of T cell migration out of blood vessels have been intensively studied over the past 30 years. By contrast, less is known about T cell trafficking through the lymphatic vasculature. This migratory process occurs in one manner within lymph nodes (LNs), where recirculating T cells continuously exit into efferent lymphatics to return to the blood circulation. In another manner, T cell trafficking through lymphatics also occurs in peripheral tissues, where T cells exit the tissue by means of afferent lymphatics, to migrate to draining LNs and back into blood. In this review, we highlight how the anatomy of the lymphatic vasculature supports T cell trafficking and review current knowledge regarding the molecular and cellular requirements of T cell migration through LVs. Finally, we summarize and discuss recent insights regarding the presumed relevance of T cell trafficking through afferent lymphatics.

Keywords: T cells, migration, trafficking, afferent, efferent, lymphatic vessels, lymph node

INTRODUCTION

In an antigen-inexperienced host, the frequency of naïve T cells specific for any given antigen is extremely low, several thousand at most (1, 2). Given that the diversity of possible antigens is almost countless and that T cell activation requires direct contact with antigen, naïve T cells constantly circulate through secondary lymphoid organs (SLOs) in pursuit of antigen (1, 2). Upon encountering antigen in SLOs, antigen-specific naïve T cells proliferate and become activated effector T cells (Teff) that egress from SLOs and enter peripheral tissue at sites of inflammation (2, 3). Most Teff die after antigen is cleared but a few antigen-experienced T cells remain for long-term protection and either develop into tissue-resident memory T cells (TRM), into central memory T cells (TCM) that circulate through blood and home to inflamed tissue (1, 2). In addition to the abovementioned antigen-experienced cell types, regulatory T cells (Tregs) also circulate between blood, tissue, and SLOs (2–4).

Throughout the life of a T cell, the blood and lymphatic vasculature act as highways for T cell circulation. While much is known about T cell migration across and within the blood vasculature, much less is known about T cell migration into and within the lymphatic vasculature. Since the late 1950s, cannulation studies in sheep and rats have helped develop our current understanding of the cell subsets that circulate through lymphatic vessels (LVs). More recent technical advances...
capillaries, which converge into larger collecting vessels that transport lymph, are taken up by a network of blind-ended lymphatic capillaries, which converge into larger collecting vessels that transport lymph. We then review the mechanisms by which T cells exit from lymph nodes (LNs) into efferent lymphatics as well as emerging knowledge of T cell entry and migration within afferent lymphatics. Finally, new insights regarding the overall relevance of T cell circulation through the afferent lymphatic vasculature are discussed.

STRUCTURE OF THE LYMPHATIC VASCULATURE

The lymphatic system consists of central and peripheral lymphoid organs and a LV network that permeates most tissues of the body (32, 33). In peripheral tissues, extravasated fluid, macromolecules, and leukocytes, i.e., the main constituents of lymph, are taken up by a network of blind-ended lymphatic capillaries, which converge into larger collecting vessels that drain into and through LNs (33). Upon passage through chains of tissue-draining LNs (dLNs), connected by adjoining collecting LVs, lymph is finally returned to the blood vasculature through the thoracic ducts, which merge into the subclavian vein (33) (Figure 1A).

Tissue fluid uptake and immune cell entry/transport into LVs is thought to mainly occur at the level of the initial lymphatic capillaries, where characteristic structural features support these processes. Lymphatic capillaries are composed of partially overlapping, oak leaf-shaped lymphatic endothelial cells (LECs) that are connected by discontinuous button-like cell–cell junctions (Figure 1B). Moreover, lymphatic capillaries are surrounded by a thin, highly fenestrated basement membrane (34, 35). Tissue fluid and leukocytes [as best shown for dendritic cells (DCs)] enter through the characteristic flaps between overlapping LECs (34, 35). Collecting LVs are structurally more specialized for fluid and immune cell transport (Figure 1C). Lymphatic collectors are composed of cuboidal LECs connected by continuous zipper-like cell–cell junctions and are surrounded by a continuous basement membrane and smooth muscle cell layer (34, 35). Intraluminal valves prevent the backflow of lymph, while contraction of smooth muscle cells helps to propagate lymph toward the dLN (36).

BOX 1 | Tools to study T cell trafficking in vivo.

Tool	Description	Selected reference
Cannulation studies	This procedure involves the surgical insertion of cannula (tube) directly into an afferent or efferent vessel or into the cisterna chyli, to collect lymph fluid. The cellular composition of lymph is subsequently analyzed, typically by flow cytometry or microscopy methods	(5–9)
Adoptive transfer	In adoptive transfer experiments, cells are isolated from donor mice, fluorescently labeled (unless already marked by endogenous expression of a fluorophore or a congenic marker) and intravenously or subcutaneously injected into a recipient mouse. In some cases, T cells are subjected to an in vitro culturing step (e.g., in vitro activation) prior to injection. At defined time points after transfer, T cell numbers in lymph nodes (LNs) (or other tissue) are quantified by flow cytometry, LN sectioning and microscopy, or other means. While this experimental setup is technically straightforward, the transferred cells may differ from the endogenously migrating populations. Also, typically only a small fraction of cells injected subcutaneously actually migrate to dLNs or beyond	(7, 10–13)
Intravital microscopy (IVM)	This technique allows the study of migratory processes at the single-cell level and in real time. It involves fluorescence-based time-lapse imaging by, e.g., confocal-/multiphoton- or stereomicroscopy. Several mouse reporter lines expressing a fluorescent protein in lymphatic vessels (LVs) have been generated (14–18). In the case of T cells, most studies have been performed with fluorescently labeled and adoptively transferred T cells, but endogenous models are also available (19–21)	(22–26)
Intralymphatic injection	Microinjection of T cells directly into a LV upstream of a draining lymph node. Similar to adoptive transfer but permits the study of T cell entry specifically across the LN subcapsular sinus. This represents an elegant yet technically challenging method complementing IVM studies	(25)
LN egress studies	This experimental setup allows quantifying dwell time of T cells in LNs. In a typical experiment, fluorescently labeled T cells are first transferred intravenously into a recipient mouse. After an equilibration phase, further T cell ingress into LNs is blocked by administration of entry-blocking antibodies (e.g., directed against the integrin subunit α4 or against L-selectin). Antibody treatment allows the uncoupling of T cell entry from exit, which continues to occur. Exit rates, for example, can be calculated by comparing fluorescent T cell numbers in LNs at the time of antibody injection to a later time point (e.g., 24 h later; flow cytometry-based quantification)	(9, 22, 27, 26)
Photoconvertible transgenic mice	The use of photoconvertible transgenic mice permits monitoring the migration of endogenously labeled cells in vivo. It requires transgenic mice expressing a photoconvertible fluorescent protein in all cell types [e.g., Kaede protein (28) or Kikume Green–Red protein (29)]. Upon illumination with violet light, fluorescent proteins undergo irreversible changes that alter their fluorescent spectrum (typically a green to red shift). By selectively illuminating the tissue at a particular site (e.g., skin), one can subsequently quantify the appearance of photoconverted T cells in other tissues (e.g., dLNs) to gain insight about their trafficking behavior. The system can easily be combined with pharmacologic blockade of genes of interest. Alternatively, backcrossing onto a genetic knockout can be done	(28, 30, 31)
Collecting vessels enter the LN and convey lymph along the subcapsular sinus (SCS) and through the LN sinuses toward the efferent LV in the hilus region (37) (Figure 1A). Efferent lymph is then transported in the efferent collecting vessel to downstream LNs and is finally returned to the blood vasculature. Considering that LNs in mice and humans are typically arranged in chains (38), the efferent LV of a tissue-draining LN is conjointly the afferent LV of the next downstream LN. In this review, we will consider afferent lymph as lymph that has not previously passed through a LN, i.e., lymph that is derived solely from non-lymphoid tissue (as designated in Figure 1A).

CELLULAR COMPOSITION OF LYMPH

Most of our current knowledge on the cellular composition of lymph extends from cannulation studies (see Box 1). This relatively simple surgical model allows collection of lymph under physiologic conditions from a defined area of drainage over long periods of time (6, 39, 40)—and therefore most accurately reflects the composition of cells circulating through LVs. In rodents, efferent lymph can be collected from the cysterna chilii in mice (8, 9, 41), or by cannulation of the thoracic duct in rats (5, 42). However, due to the small size of afferent LVs in mice...
and rats, cannulation of afferent LVs in rodents is very difficult. Correspondingly, most experimental studies comparing the composition of efferent and afferent lymph have been performed in larger animals like sheep (6, 7, 39, 40, 43–45).

Efferent Lymph

Cannulation studies have revealed that thoracic duct lymph (46–48) as well as efferent lymph collected after passage through one or more LNs is mainly constituted by T lymphocytes (6, 43, 44). More than 90% of lymphocytes in efferent lymph were shown to have initially entered the LN through high endothelial venules (HEVs) (39, 43). CD4+ T cells enter and recirculate through LNs more rapidly than CD8+ T cells (27). Accordingly, CD4+ T cells constitute the major cellular fraction in efferent lymph and outnumber CD8+ T cells at a ratio higher than that in blood (49, 50). Most T cells in efferent lymph collected from sheep exhibit a naïve phenotype, with a reported increase in the proportion of memory T cells in older animals (44, 51, 52).

Antigenic stimulation of LNs often leads to distinct phases in the efferent lymph response: an initial “LN shutdown” where lymphocyte output is decreased; a “recruitment phase” where lymphocyte output rises above resting levels; and a “resolution phase” where lymphocyte output and cellular composition return to resting levels (53–55). While in most cases a sequential egress of CD4+ and then CD8+ T cells has been reported (56–58), the dominance of a particular subset lymphocyte in efferent lymph appears to be dependent on the antigenic stimulus (45, 59–61).

Afferent Lymph

Compared to efferent lymph, the cellularity of afferent lymph is much lower (5–10%) under homeostatic conditions (6, 43, 44). While αβ T lymphocytes represent the most abundant cell type of afferent lymph (80–90%), DCs (5–15%), monocytes, B cells, and few granulocytes are also routinely found in steady-state afferent lymph (39, 43). CD4+ T cells in afferent lymph collected from sheep outnumber CD8+ T cells by approximately fourfold to fivefold (6, 43, 44). As reported in sheep, CD4+ T cells are the dominant cell type in afferent lymph collected from superficial dermal LVs of healthy humans (62–64). T cells in afferent lymph of both humans and sheep exhibit an effector-memory (TEM) phenotype, characterized by elevated expression of common T cell activation markers, adhesion molecules, and effector cytokines (44, 45, 63, 64). Although γδ T cells are present in large numbers in afferent lymph from sheep (65), they are almost non-existent in lymph or blood in humans (63, 64) and so are not further discussed here.

As cannulation of LVs is difficult in mice, a lot of our current knowledge of the T cell populations migrating through afferent LVs in mice has come from other experimental techniques used to investigate leukocyte trafficking (see Box 1). Specifically, these include adoptive transfer experiments or experiments performed in transgenic mice in which migrating leukocytes can be tracked by photoconversion of endogenously expressed fluorescent proteins [e.g., Kaede mice (28)—see Box 1]. Conclusions drawn from these approaches in mice are in accordance with earlier cannulation studies in larger animals. Moreover, they have revealed that the CD4+ T cell dominance in afferent lymph results from more efficient CD4+ T cell migration from the skin to the dLN (7, 31). In Kaede mice, the majority of CD4+ T cells that migrated from the skin to the dLN expressed the common T cell activation marker CD44 as well as the skin-homing molecules C–C chemokine receptor type 4 (CCR4) and E-selectin ligands (30, 31). Approximately 25% of CD4+ T cells that migrated from the skin to the dLN were also found to express the Treg transcription factor FOXP3+ (30). Similarly, others have reported that adoptively transferred Treg enter afferent LVs and migrate from the skin to dLN in mice (66–68). Notably, Treg are phenotypically similar to TEM and are only distinguishable when specific Treg markers are used. The fact that FOXP3, the most widely used Treg marker, was only described approximately 13 years ago might explain why Treg have thus far not been reported from cannulation studies performed in sheep and humans (which frequently date back to earlier times).

In contrast to the conventional viewpoint that naïve T cells exclusively recirculate between blood and SLOs, low numbers of naïve T cells have also been found in both homeostatic and inflamed non-lymphoid tissues and have been suggested to circulate through afferent LVs (20, 69, 70). Indeed, in adoptive transfer experiments in mice, naïve T cells were shown to avidly migrate from the skin to dLN (7, 10). However, it is important to consider that the majority of endogenous CD4+ T cells in the skin have an effector/memory-like phenotype (10, 71). Correspondingly, cannulation studies in humans and sheep, and studies in Kaede mice, suggest that naïve T cells constitute only a minor subset of T cells in afferent lymph under both steady-state (30, 44, 64) and inflammatory conditions (12, 30, 72).

Impact of Tissue Inflammation on Afferent Lymph Composition

Cannulation studies in sheep have revealed that acute skin inflammation, e.g., elicited by injection of complete Freund’s adjuvant (CFA), induced a dramatic increase in granulocyte numbers in skin-draining afferent lymph, whereas CD4+ and CD8+ T cells initially remained fairly stable (12, 53, 72, 73). By contrast, chronic inflammation, resulting from CFA-induced granuloma formation, was shown to lead to a substantial increase in CD4+ and CD8+ T cell output in skin-draining afferent lymph (12, 72). Contrastingly, in Kaede mice, an acute contact hypersensitivity response elicited a striking increase in the number of T cells that migrated from the skin to the dLN (30). However, it needs to be considered that numbers of T cells in steady-state lymph of laboratory mice might be unnaturally low, because of the sterile housing conditions that lead to the formation of a reduced pool of effector-memory T cells populating peripheral tissues (74).

REJCIRCULATION OF T CELLS THROUGH EFFERENT LYMPHATICS

Seminal studies performed in the late 1950s by Sir James Gowans were the first to show that lymphocytes constantly circulate between blood and SLOs (42, 46). Naïve T cells in the blood extravasate through HEVs into the LN via a multistep adhesion cascade and subsequently migrate to T cell areas in the paracortex.
tissues are tightly controlled by sphingosine kinase 1 and 2 rearrangements, and cellular chemotaxis (91, 92). S1P levels in diverse cellular processes, including cell survival, cytoskeletal

S1P1/S1P (8, 9, 41, 77) S1P1-deficient T cells are retained in LNs; disruption of S1P gradient in lymph. In addition to S1P-induced receptor internalization, the C-type lectin CD69 has also been reported to regulate S1P1 surface expression in T cells. CD69 is an early T cell activation marker and is upregulated in T cells by various inflammatory mediators, such as type I interferons (78, 93). CD69 has been shown to interact with S1P1, thereby inducing a receptor conformation similar to the ligand bound state, leading to S1P1 internalization

T Cell Egress vs. Retention: Interplay of S1P1, CD69, and CCR7

Early findings that pertussis toxin (a natural inhibitor of G protein-coupled receptors, such as chemokine receptors) inhibited the export of mature T cells from the thymus (84), suggested that egress of T cells from the LN could also be an active process. Studies on the immunosuppressive activity of Fingolimod (FTY720), a now approved treatment for multiple sclerosis (85), incited further research on the molecular mechanism of T cell exit from LNs. FTY720 induces sequestration of lymphocytes in SLOs through retention and “log jamming” of lymphocytes on the abluminal side of the lymphatic sinuses, thereby inhibiting lymphocyte egress into circulation and migration to sites of disease (86–88). Besides histologic analysis of lymphatic sinuses, efferent lymph cannulation studies and LN egress experiments, in which T cell homing into LNs is first blocked and T cell numbers subsequently quantified over time, have been instrumental for studying T cell exit into efferent LVs (see Box 1).

Role of S1P

Several studies have shown that the egress-blocking activity of FTY720 can mainly be attributed to the action of FTY720 on sphingosine-1-phosphate (S1P) receptors, in particular, S1P receptor 1 (S1P1) expressed on T cells (8, 9, 89, 90). The natural ligand of S1P1, is S1P, an endogenous sphingolipid that mediates diverse cellular processes, including cell survival, cytoskeletal rearrangements, and cellular chemotaxis (91, 92). S1P levels in tissues are tightly controlled by sphingosine kinase 1 and 2 (Sphk1/2)-mediated production and S1P degradation, which depends on S1P lyase and other enzymes (77, 93). While erythrocytes, red blood cells, and the blood endothelium constitute major cellular sources of plasma S1P, lymph S1P is derived independently from the blood (91, 94). In fact, LECs were identified as the major source of S1P in lymph (41).

SIP levels in the blood and in lymph are much higher than in lymphoid organs (77, 95). Low concentrations of S1P in lymphoid tissues and S1P abundance in lymph was shown to create a gradient across LECs, which induces transmigration of S1P1-expressing T cells into the lymphatic sinuses and egress into efferent lymph (93, 96): acting as a functional antagonist, FTY720 induces downregulation and degradation of S1P1 in T cells, thereby inhibiting S1P-mediated chemotaxis across the lymphatic sinuses (8). Similar to FTY720 treatment, adoptively transferred S1P1-deficient T cells were found to “log jam” around medullary and cortical sinuses and failed to egress into efferent lymph (8, 9, 23, 41). An analogous egress defect could also be evoked when the S1P gradient in LNs was experimentally destroyed, by inhibiting S1P lyase (77), or upon genetic deletion of Sphk1 and Sphk2 in LECs (41).

Modulation of S1P, for Fine-Tuning T Cell Transit Time through LNs

Similar to FTY720, high concentrations of S1P are capable of inducing S1P1 internalization in T cells (92, 97). Consequently, T cells in blood express low levels of S1P1 (95). Following entry into LNs via HEVs, T cells begin to upregulate S1P1 (95). Given that entry into LN sinuses, and subsequent egress from the LN, is S1P1, dependent, T cell transit time through the LN is in some manner dependent on S1P1-mediated resensitization to S1P in lymph. In addition to S1P-induced receptor internalization, the C-type lectin CD69 has also been reported to regulate S1P1 surface expression in T cells. CD69 is an early T cell activation marker and is upregulated in T cells by various inflammatory mediators, such as type I interferons (78, 93). CD69 has been shown to interact with S1P1, thereby inducing a receptor conformation similar to the ligand bound state, leading to S1P1 internalization

Molecule	Selected reference	Comment
S1P1/S1P	(8, 9, 41, 77)	S1P1-deficient T cells are retained in LNs; disruption of S1P gradient in LNs prevents T cell egress
CD69	(78, 79)	CD69 expression induces S1P1 internalization and degradation in T cells resulting in T cell retention in LNs
C–C chemokine receptor type 7 (CCR7)	(22)	CCR7^{+/−} T cells egress more rapidly from LNs whereas CCR7 overexpressing T cells are retained
CXCR4	(83)	Synergizes with CCR7 in retaining T cells in LNs
Leukocyte function-associated antigen 1 (LFA-1)/ intercellular adhesion molecule 1 (ICAM-1)	(82)	CD4⁺ LFA-1^{−/−} T cells egress more rapidly from LNs.
Common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1)	(81)	Blockade of CLEVER-1 reduces T cell binding to LN sinuses in situ in vivo involvement not confirmed thus far
Mannose receptor (MR)/L-selectin	(82)	Blockade of MR/L-selectin reduces T cell binding to LN sinuses in situ in vivo involvement not demonstrated thus far
α₄ integrin	(83)	Blockade of LEC-expressed α₄ reduces T cell egress from LNs
and degradation (78, 79). CD69 expression by recently activated T cells therefore serves to inhibit the egress promoting function of S1P₁ (24, 78, 79). However, activated T cells only transiently express CD69 (98). Accordingly, once activated T cells have undergone several rounds of division and have downregulated CD69, they start to re-express S1P₁, and appear in circulation (8, 22). Akin to CD69 regulated surface expression of S1P₁, on recently activated T cells, T cell receptor signaling (the first signal of T cell activation) has been reported to induce transcriptional downregulation of S1P₁ (8). Transcriptional restoration of S1P₁ is also likely to regulate T cell egress during an immune response.

Role of CCR7
In addition to S1P₁, CCR7 expression levels in T cells also impact the time T cells spend in LNs. Upon antigen recognition, activated T cells downregulate CCR7 (22). Fibroblastic reticular cells within the LN produce CCL21 and help generate a gradient where CCL21 levels are highest toward the LN center and decrease toward the peripheral medullary areas (25, 99). In addition to mediating intranodal positioning, migration, and motility (75), CCR7 also confers T cell retention within LNs (22). T cells devoid of CCR7 (CCR7^{−/−}) egressed more rapidly than their wild-type (WT) counterparts, whereas transgenic T cells overexpressing CCR7 were retained in the LN for longer periods of time (22). Treatment with pertussis toxin restored egress competence of S1P₁-deficient lymphocytes and in mixed bone marrow chimeras FTY720 treatment increased the number of CCR7^{−/−} T cells found in efferent lymph relative to their WT counterparts (22). Collectively, these findings suggest that CCR7 on T cells promotes their retention in LNs and that egress signals through S1P₁ in part overcome CCR7-mediated retention (22). Interestingly, more CCR7^{−/−} than WT T cells entered sinuses, suggesting that the interplay between CCR7-mediated retention and S1P₁-mediated egress occurs at the level of entry into sinuses (22). More recently, it has also been reported that C–X–C chemokine receptor 4 (CXCR4) on T cells synergizes with CCR7 to retain both naïve and activated T cells in LNs (80).

Adhesion Molecules Involved in Egress across Sinuses
While it is well established that adhesion molecules and their integrin ligands play an important role in T cell entry into LNs through HEVs (100), not much is known about their role in T cell egress across lymphatic sinuses. A role for leukocyte function-associated antigen 1 (LFA-1) in delaying egress of T cells across lymphatic sinuses has recently been suggested. Following the probing of the surface of LN sinuses, CD4⁺ T cells devoid of LFA-1 had a greater tendency to egress across sinuses and spent less time in the LN than their WT counterparts (26). This distinction was lost in mice lacking the major LFA-1 ligand intercellular adhesion molecule 1 (ICAM-1) (26).

In addition to LFA-1, the common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1), as well as the macrophage mannose receptor (MR) or its ligand L-selectin have been implicated in T cell migration across lymphatic sinuses: when performing adhesion assays on LN sections, antibody-mediated blockade of CLEVER-1 or MR reduced binding of lymphocytes to sinus endothelium (81, 82). However, the in vivo involvement of these receptors in LN egress has not been demonstrated thus far. On the other hand, a possible role for the integrin α₉ subunit in lymphocyte egress from inflamed LNs has recently been reported (83). Integrin α₉β₁ is a well-described binding partner of the extracellular matrix component tenascin-C, and both α₉ and tenasin-C reportedly are upregulated in medullary and cortical LN sinuses during inflammation. The study revealed that tenasin-C binding to LEC-expressed α₉β₁ induced S1P production in LECs, establishing a mechanistic link between α₉ integrin expression and S1P₁-mediated T cell egress. In fact, antibody-based blockade of α₉ or tenasin-C deficiency resulted in impairment of T cell egress from inflamed LNs, reminiscent of treatment with FTY720 (83).

Cellular Insights into Egress from Intravital Microscopy (IVM)
T cell egress from LNs has not only been studied at the population level but also at the single-cell level using IVM (see Box 1). Such studies have confirmed previous histology-based studies showing that T cell migration and egress occurs both at the level of the cortical and medullary sinuses (23, 101). T cells were observed entering sinuses at multiple locations, however, occasionally two or more T cells entered at specific entry “hot spots” (23, 101). In cortical sinuses without flow, T cells migrated at the same speed as those in the parenchyma and occasionally exited sinuses back into the LN parenchyma (23, 24). In larger cortical sinuses with flow, T cells were more rounded, shared fairly uniform velocities, and had a lower frequency of exit back into the parenchyma (23, 24). T cells in the macrophage-rich medullary sinuses appeared to become poorly mobile and occasionally exited the sinuses and returned to the T cell zone (23). Following migration of T cells through cortical and medullary sinuses, T cells were released into the subcapsular region near the efferent vessel and moved off rapidly with lymph flow (23). Overall, T cell transit time through the LN appears to be determined by random walk encounters with lymphatic sinuses (24). Only at the level of the sinus do S1P₁-expressing T cells start to sense S1P in lymph, which triggers their exit into the lymphatic compartment (22–24).

T CELL ENTRY AND MIGRATION WITHIN AFFERENT LVs
In comparison to T cell egress from LNs, little is known about T cell migration from peripheral tissue into afferent LVs. As already suggested by the dominance of CD4⁺ over CD8⁺ T cells in afferent lymph (43, 44, 62), CD4⁺ T cells migrate more efficiently through afferent LVs. Indeed, adoptive transfer studies (7), crawl-out experiments from murine skin explants (102), and studies in Kaede mice (31) uniformly demonstrate that CD4⁺ T cells more efficiently exit the tissue via afferent LVs. This is also reflected by emerging findings from many laboratories showing that under steady-state conditions most CD8⁺ T cells in peripheral organs form part of a slow-moving, skin-resident memory population [T_{RM}; reviewed in Ref. (103, 104)]. Although recent
studies indicate that a similar tissue-resident population also exists for CD4+ T cells (31), many CD4+ memory T cells seem to rapidly traffic through the dermis, forming part of a recirculating memory population (31, 102).

Although several molecules involved in T cell egress through afferent LVs have recently been identified, we still know fairly little about this process, particularly at the single-cell level. In fact, thus far only DC, but not T cell, migration through afferent LVs has been visualized using IVM (see Box 1). Interestingly, these findings have revealed that migration into and within afferent LVs occurs in a stepwise fashion: DCs enter LVs at the level of lymphatic capillaries and then crawl in a semi-directed manner within lymphatic capillaries (105–107). Only once they have reached contracting lymphatic collectors do cells switch from an active to passive mode of movement, i.e., they are passively carried away with the lymph flow toward the dLN. Similarly, neutrophils were recently found to actively crawl within dermal lymphatic capillaries (108). The reason why intralymphatic DCs and neutrophils only flow in lymphatic collectors is likely linked with the low flow conditions in lymphatic capillaries [reportedly ranging from 1 to 30 μm/s; (109, 110)], which are several orders of magnitude lower than blood flow in blood vascular capillaries (111) or peak lymph flow velocities measured in large contracting lymphatic collectors (112, 113). Although not demonstrated so far, it is therefore likely that T cell migration through lymphatic collectors also involves an active, intraluminal crawling step (Figure 1A). In the following section, important molecules involved in T cell migration from the skin to the dLN will be discussed in greater detail (see also Table 2).

Chemotactic Exit and Retention Cues: CCR7, S1P1, and Others

Classical definitions outline that non-lymphoid tissue homing T_{EM} are devoid of CCR7 (119). However, in humans, CCR7 is expressed on the majority of T cells in blood, including those that express adhesion molecules required for homing to non-lymphoid tissue (120). Consistent with these findings, 40–50% of all skin-associated CD4+ T cells in humans (121) and mice (31) express CCR7. Several studies have identified CCR7 and its ligand CCL21, which is constitutive expressed by LVs (107, 122), as one of the most important drivers of T cell migration to dLNs: adoptive transfer experiments (7, 10) and experiments performed in Kaede mice (31) have shown that compared to WT T cells, significantly fewer (in the order of 10–20%) CCR7−/− CD4+ or CD8+ T cells migrated from the skin to the dLN. Moreover, in a model of allergic airway inflammation, CCR7−/− CD4+ T_{EM} cells accumulated in the lung and airways (114). Similarly, CD4+ T_{EM} have been shown to accumulate within the epithelial tissues of CCR7−/− mice (123), and CCR7−/− T_{EM} accumulated in inflamed skin (124). Although CCR7 appears to be crucial for T cell exit from chronically inflamed skin, its contribution to T cell exit from homeostatic and acutely inflamed skin, its contribution to T cell exit from chronically inflamed skin appears to be more limited (11, 12). In the case of DCs, IVM studies have recently revealed that the CCR7/CCL21 axis mediates DC migration toward and into LVs (106, 122) and also impacts the directionality of DC crawling within lymphatic capillaries (107). By contrast, the exact contribution of CCR7 to T cell migration through afferent lymphatics has not been addressed so far.

Besides CCR7/CCL21, the second best described chemotactic pathway involved in T cell exit from skin is S1P1/S1P. As mentioned, LECs are considered the major contributor to S1P levels in lymph (41). Overexpression of S1P1 in CD8+ T cells prevented “settling” of T_{EM} in the intestine, kidney, salivary gland, and skin, suggesting S1P1, enhanced exit via afferent LVs (125). Similar to S1P1-overexpressing CD8+ T cells, CD69-deficient CD8+ T cells failed to persist in skin after HSV infection, and treatment with an S1P1 antagonist restored their retention within the skin (126). Correspondingly, surface expression of CD69 and transcriptional loss of S1P1 is a hallmark for CD8+ T_{EM} (127–130).

In contrast to CD8+ T_{EM}, tissue-resident CD4+ T cells have been less well characterized and studied. In a study using Kaede mice (see Box 1), Bromley and colleagues identified one population of CD4 memory T cells that remained in the skin and a second population, termed recirculating memory CD4+ T cells (T_{EM}), that migrates from the skin to the dLN (31). T_{EM} expressed a novel cell surface phenotype (CCR7+/−, CD62L−, CD69−, CD103+/−, CCR4+/−, and E-selectin ligands−) and migrated in a CCR7-dependent manner (31). These cells displayed a trafficking behavior distinct from classical T_{EM} or T_{EM} cells in such that T_{EM} migrated from skin to dLNs, and from circulation back into sites of unspecific cutaneous inflammation (31). The role of S1P in CD4+ T cell egress from skin has been addressed by two

TABLE 2 | Molecules regulating T cell migration through afferent lymphatic vessels (LVs) into lymph nodes (LNs).

Molecule	Selected reference	Comment
CCR7	(7, 31, 114)	Adaptorily transferred or endogenous CCR7−/− T cells have reduced migration from peripheral tissues to dLNs
S1P1, S1P	(10, 12)	Treatment of adoptively transferred CD4+ T cells or recipient mice with FTY720 or S1P significantly reduces T cell migration to dLNs
CD44/mannose receptor (MR)	(115, 116)	T cell-expressed CD44 interacts with LEC-expressed MR during CD4+ and CD8+ T cell migration into afferent LVs
Common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1)	(117)	CLEVER-1 blockade decreases CD4+ and CD8+ T cell migration from the skin to the dLN
LT and VCA-1	(67)	Shown to mediate migration of nT_{EM} from skin to dLNs
Macrophage scavenger receptor 1	(118)	Regulates lymphocyte entry into the LN parenchyma
PLVAP (MECA-32)	(13)	Mediates lymphocyte entry across the subcapsular sinus into the LN parenchyma
other recent studies (10, 12). Treatment of adoptively transferred T cells or of recipient mice with FTY720 or S1P significantly reduced T cell migration to the dLN (10, 12). Interestingly, acute inflammation was shown to increase S1P levels in the skin and also resulted in reduced migration of CD4+ T cells to the dLN (10). This suggests that acute inflammation might induce T cell retention in the tissue.

T cells that have migrated from the skin to the dLN display high expression of CCR7, CXCR4, and S1P1 (7, 10). In contrast to the involvement of CCR7 and S1P1, CXCR4 was reported to have no role in T cell migration from homeostatic (10) or inflamed skin to the dLN (11). By contrast, in a pancreatic islet transplantation model, CCR2, CCR5, and CXCR3 reportedly contributed to the migration of natural Tregs (nTregs) from the allograft to the dLN (66, 68). While LECs constitutively produce CXCL12, CCL21, and S1P (41, 131), they are also able to upregulate inflammatory chemokines under conditions of tissue inflammation (131, 132). This upregulation occurs in a stimulus-specific manner (131) and may serve to fine-tune leukocyte recruitment into LVs. Although not specifically studied so far, changes in the chemokine expression profile of LECs might also explain the reduced CCR7 and S1P dependence of T cell tissue exit observed from chronically but not from acutely inflamed skin (12). On the other hand, it has to be considered that most studies investigating T cell tissue exit have been performed using adoptively transferred T cells, which might not completely reflect the chemokine (or adhesion molecule) requirements of endogenous T cells.

Adhesion Molecules Involved in Entry and Migration within Afferent LVs

MR and CLEVER-1

Few adhesion molecules have thus far been implicated in T cell exit from skin. The MR (82), which has been shown to mediate T cell binding to lymphatic sinuses in LNs (82), is also expressed on effenter and afferent LVs (133, 134). Interaction of MR with its T cell-expressed binding partner CD44 reportedly mediates CD4+ and CD8+ T cell exit from the skin (115, 116). Similarly, CLEVER-1 is expressed on both effenter and afferent LVs and has been shown to mediate T cell entry into afferent LVs (81, 117, 135). Blockade of CLEVER-1 markedly decreased CD4+ and CD8+ T cell migration from the skin to the dLN in both mice and rabbits (117).

VCAM-1, Selectins, and Their Ligands

A recent study suggested a role for LEC-expressed VCAM-1 in homeostatic migration of nTregs but not of naïve CD4+ or CD8+ T cells from skin to the dLN (67). VCAM-1 is a known target of LTβR (136) and blockade of LTβR reduced nTreg exit from the skin (67). Similarly, fewer nTregs devoid of the LTβR ligand, LTα, exited from the skin (67). As with ICAM-1, VCAM-1 expression is induced on afferent LVs during inflammatory conditions (131, 132). Whether VCAM-1 might more broadly support T cell migration through afferent LVs in the context of tissue inflammation remains to be determined. With regard to the involvement of selectins, T cell migration from homeostatic skin to dLNs was found to occur normally in mice lacking the ligands for P-, E-, and L-selectins or upon adoptive transfer of CD62L−/− T cells (10). However, it is noteworthy that P-selectin is also upregulated on afferent LVs during contact hypersensitivity-induced inflammation (131). This raises the question whether inflammation-induced selectins and their ligands might play a role in T cell exit under inflammatory conditions.

Insights into T Cell Entry into the LN from Afferent LVs

While several studies highlight the entry of T cells through HEVs or the migration of T cells within LNs (75, 137), few have focused on the entry of T cells into LNs from afferent LVs. Braun and colleagues investigated this entry pathway by performing time-lapse imaging in the popliteal LN following microinjection of T cells directly into the cannulated afferent LV (25). This study revealed that most naïve CD4+ T cells were passively transported in the SCS to peripheral medullary sinuses where they either directly transmigrated, or first crawled within the peripheral medullary sinuses before transmigrating into the LN parenchyma at the level of the medullary sinuses (25). As reported for T cell egress from the LN parenchyma into lymphatic sinuses (23, 101), several T cells occasionally crossed the sinus floor at specific transmigration “hot spots” (25). Interestingly, naïve CD4+ T cells entered across the medullary sinuses in a CCR7-independent manner, but subsequently preferentially migrated within the medulla toward the paracortical T cell zone by means of a CCR7-skewed random walk (25).

In contrast to T cells, injected DCs were able to directly transmigrate the SCS floor of the LN, allowing for a more direct access of the LN parenchyma (25). On the other hand, T cells injected after pre-injection of DCs now transmigrated the SCS floor on the afferent side of the LN and avidly migrated inward at sites of DC transmigration (25). These findings suggested that DCs induced local changes in the SCS floor during transmigration that facilitated direct entry of T cells into the LN parenchyma. Considering that afferent lymph typically contains both T cells and DCs that arrive simultaneously in the subcapsular space, it will be interesting to further explore LN entry from afferent LVs in an endogenous setup.

Other studies have suggested that T cells might enter the LN parenchyma directly through the SCS: as early as 4 h after adoptive transfer into the footpad of mice, T cells could be detected within the LN parenchyma in close proximity to the SCS (13, 118). Moreover, macrophage scavenger receptor 1, a molecule expressed on LECs of the SCS, but not on the medullary or cortical sinuses, was recently found to regulate lymphocyte entry into the LN parenchyma (118). Furthermore, the same group previously reported the involvement of plasmalemma vesicle-associated protein (PLVAP, also known as MEC-32) in lymphocyte entry across the SCS into the LN parenchyma (13). PLVAP is expressed by LECs in lymphatic sinuses where it forms diaphragms that overlay the entry to the FRC conduit system. This generates a sort of molecular sieve that restricts the access of soluble antigen into the conduit system and hence into the LN parenchyma. Interestingly, PLVAP also appeared to regulate
Although mainly studied for CD8+ evidence suggests that TRM differentiate from Teff, remain resident immediate protection against reinfection (104, 139). Current fully known, but evidence suggests that TRM functionally delay greater detail. the following section, these hypotheses shall be discussed in avoid overshooting T cell-mediated inflammatory responses. In another hand, recent data indicate that T cell trafficking through afferent LVS may not only occur to promote immune surveillance but may additionally have immune-dampening effects and serve to avoid overshooting T cell-mediated inflammatory responses. In the detail.

Purpose of T Cell Migration through Afferent LVs

As we gain more insight into T cell trafficking through LVs, our knowledge regarding the biological significance of this migratory process continues to grow. In the case of migration through efferent LVs, there is overwhelming evidence that this migratory step is crucial for immune surveillance: naïve T cells and TCM constantly recirculate through blood, SLOs, and lymphatics in pursuit of antigen (1–3). Blocking this important migratory step, e.g., with FTY720, inhibits T cells recirculation and represents a powerful strategy for inducing immunosuppression, e.g., in the context of autoimmunity. On the other hand, recent data indicate that T cell trafficking through afferent LVs may not only occur to promote immune surveillance but may additionally have immune-dampening effects and serve to avoid overshooting T cell-mediated inflammatory responses. In the following section, these hypotheses shall be discussed in greater detail.

Role of T Cell Circulation through Afferent LVs in Immune Surveillance

T cell recirculation through afferent LVs is thought to contribute to immune surveillance by constantly replenishing the T cell pool in peripheral tissues with new antigenic specificities. However, increasing evidence suggests that recirculating T cells do not provide complete protection of peripheral tissues, and that TRM play a more important role in this process (104, 138). Although mainly studied for CD8+ T cells and in a limited number of infection models, TCM (typically CD69+, CD103−, E-cadherin+, S1PR1+, and CCR7+) have been shown to provide immediate protection against reinfection (104, 139). Current evidence suggests that TCM differentiate from TCM, remain resident within the tissue for long periods of time (>1 year in mice) and predominate at sites of infection or inflammation (104, 140, 141). Although there is some evidence that TCM proliferate locally, it is unknown whether TCM are ever replaced by circulating T cells (139, 142, 143). The protective mechanisms of TCM are not yet fully known, but evidence suggests that TCM functionally delay pathogen spread and further act as an antigen-specific sensor that “sounds the alarm” for the recruitment of circulating T cells (104). The relative contribution of resident and circulating T cells in pathogen clearance remains unknown and might be highly context dependent, e.g., dependent on the type of infection and the specific requirement for CD4+ or CD8+ T cells for immune control (104, 139).

Role of Treg Tissue Exit in Controlling Immune Responses in dLNs

Previous studies have shown that the local ratio of Treg to Teff at inflamed sites is a critical determinant for the outcome of inflammation (144–146). In support of this notion, adoptively transferred CCR7−/− Treg, that accumulated in the skin of mice controlled Th1-mediated inflammation more efficiently than WT Treg (124). While these findings suggest that retention of Treg within peripheral tissue promotes resolution of inflammation, large numbers of Treg reportedly exit the skin during a cutaneous immune response in mice (30).

CD4+ Treg control both priming and expansion of Teff in SLOs and the activation of Treg in the skin (147–150). Several islet allograft survival studies highlight Treg migration to dLNs as a prerequisite for efficient downregulation of the ongoing allo-graft response (66–68, 151). Only Treg within the skin, or having previously exited the skin via afferent LVs, reportedly displayed an activated phenotype (66). Upon adoptive transfer of egress-incompetent Treg into the graft, graft survival was shorter than that for WT Treg (66–68). Similarly, in a study using Kaede mice, Treg that migrated from inflamed skin had an activated phenotype, inhibited immune responses more robustly than LN-resident Treg, and were able to recirculate back to the skin (30). These findings suggest that Treg that have exited the skin via afferent LVs restrict LN immune responses (and consequently tissue inflammation) and recirculate back to inflamed tissue to help further control local immune responses.

Role of T Cell Exit of Bystander T Cells in Resolving Local Inflammation

The extent of tissue inflammation often correlates with the number and composition of infiltrating T cells, which itself is dependent on T cell recruitment from blood, survival in the tissue, and, last but not least, on T cell exit through afferent LVs. Interestingly, two recent studies have shown that the ability of T cells to exit inflamed tissues has an impact on the degree of tissue inflammation. In mouse models of delayed-type hypersensitivity and TNF-driven Crohn’s-like ileitis, reduced exit of CCR7+ T cells from the site of inflammation translated into enhanced and prolonged inflammation (152, 153). Similarly, T cells overexpressing CCR7 had an enhanced capacity to exit from inflamed skin and accelerated resolution of inflammation (152). However, depending on the experimental setup, these experiments might have to be interpreted with caution because of the confounding influence of autoimmunity observed in CCR7−/− mice, which might be due to other factors in addition to limited exit from peripheral tissues (76).

While recruitment into tissue is independent of the antigen specificity of T cells (154, 155), exit of T cells from inflamed tissues appears to be at least in part antigen dependent (152, 156). In a mouse model of delayed-type hypersensitivity, transgenic CD4+ Th1 cells, co-injected with DCs that were pulsed with cognate antigen, displayed reduced migration from inflamed skin to the dLN relative to polyclonal CD4+ Th1 cells (152). Similarly, a significantly reduced number of antigen-specific cytotoxic CD8+ T cells (Tc1), in comparison to antigen-unspecific Tc1 cells, migrated from the lung to the dLN in influenza-infected animals (156). These findings suggest that upon recognition of antigen, T cells have an impaired “tissue exit program” and are retained at the effector site, while antigen non-specific bystander T cells continue to exit via the afferent LVs in a CCR7-dependent manner (156). This mechanism is likely in place to reduce unnecessary tissue damage through bystander T cells.
CONCLUSION AND OUTLOOK

In addition to cannulation studies, which have for more than six decades provided insights into the cellular composition of lymph, newer techniques such as adoptive transfer studies, LN egress studies or experiments performed in Kaede mice have considerably accelerated our recent gain of knowledge regarding the molecular mechanism of T cell trafficking through LVs. At the same time, IVM studies have provided further insight into the dynamics of these processes, by visualizing the single-cell behavior and anatomic location of T cell migration toward, across, and within LVs. While T cell egress from LNs into efferent LVs has been quite intensively studied, we still know comparably little about T cell migration into and within efferent LVs, or about the subsequent T cell entry step into the parenchyma of a dLN. In the future, it will be important to better characterize the distinct T cell subsets migrating through efferent LVs and the molecules involved in their trafficking. Moreover, the importance of tissue-resident vs. recirculating memory T cells will need to be addressed in more models. Given that CD4+ T cells constitute the main cell types recirculating through efferent LVs, this will be particularly relevant in the case of CD4+ T cell-dependent immunity. At the same time, it will also be important to carefully choose the right animal models when studying these processes: the fact that only few memory T cells are present in peripheral tissues of laboratory mice held under optimized hygienic conditions, and that these mice respond differently to immunologic challenges in comparison to mice housed under less hygienic environments (7,4), indicate that our preferred experimental setups might not represent a faithful model for studying the importance of recirculating vs. tissue-resident T cells in immune recall responses.

On the other hand, we also still know very little about the potential function of recirculating T cells in dampening acute immune responses, possibly via tissue exit of Tregs or of T cells with irrelevant antigenic specificities. Recent observations that migration of DCs and neutrophils through afferent LVs involves active semi-directed migration within lymphatic capillaries suggest that the migratory process itself is more complex and might serve other purposes than the mere transport of cells to the dLN. Thus, in spite of recent advances regarding the molecular control of T cell traffic through LVs, we still know little about the biological relevance of these processes, particularly with regard to migration through efferent LVs. Ultimately, more insight into both the molecular mechanisms and the relevance are expected to contribute to identifying new targets for immunomodulatory therapies.

AUTHOR CONTRIBUTIONS

All the authors jointly wrote the manuscript and prepared the figures.

ACKNOWLEDGMENTS

The authors thank the members of the Halin lab for continual discussion and support.

FUNDING

CH gratefully acknowledges financial support from the Swiss National Science Foundation (SNF—grant 310030_156269).

REFERENCES

1. von Andrian UH, Mackay CR. Advances in immunology: T-cell function – and migration – two sides of the same coin. New Engl J Med (2000) 343(14):1020–33. doi:10.1056/NEJM200001053431407
2. Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol (2013) 13(5):309–20. doi:10.1038/nri3442
3. Lewis M, Tarlton JF, Cosse S. Memory versus naive T-cell migration. Immunol Cell Biol (2008) 86(3):226–31. doi:10.1038/ijc.7100132
4. Li MO, Rudensky AY. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat Rev Immunol (2016) 16(4):220–33. doi:10.1038/nri.2016.26
5. Bollman JL, Cain JC, Grindlay IH. Techniques for the collection of lymph from the liver, small intestine, or thoracic duct of the rat. J Lab Clin Med (1948) 33(10):1349–52.
6. Hall JG, Morris B. The output of cells in lymph from the popliteal node of sheep. Q J Exp Physiol Cogn Med Sci (1962) 47:360–9.
7. Debes GE, Arnold CN, Young AJ, Krautwald S, Lipp M, Hay JB, et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol (2005) 6(9):889–94. doi:10.1038/nii.2005.13
8. Matloubian M, Lo CG, Cinnamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on SIP receptor 1. Nature (2004) 427(6972):355–60. doi:10.1038/35022842
9. Halin C, Scimone ML, Bonasio R, Gauguet JM, Mempel TR, Quackenbush E, et al. The SIP-analog FTY720 differentially modulates T-cell homing via HEV: T-cell-expressed SIP1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood (2005) 106(4):1314–22. doi:10.1182/blood-2004-09-3687
10. Ledgerwood LG, Lal G, Zhang N, Garin A, Essers S, Ginhoux F, et al. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol (2008) 9(1):42–53. doi:10.1038/ni1534
11. Geherin SA, Wilson RP, Brennich S, Debes GE. CXCR4 is dispensable for T cell egress from chronically inflamed skin via the afferent lymph. PLoS One (2014) 9(4):e95626. doi:10.1371/journal.pone.0095626
12. Brown MN, Fintushel SR, Lee MH, Brennich S, Geherin SA, Hay JB, et al. Chemotactoattractant receptors and lymphocyte egress from extralymphoid tissue: changing requirements during the course of inflammation. J Immunol (2010) 185(8):4873–82. doi:10.4049/jimmunol.20100676
13. Rantakari P, Auvinen K, Jappinen N, Kapraai M, Valtonen J, Karikosi M, et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat Immunol (2015) 16(4):386–96. doi:10.1038/ni.3101
14. Bianchi R, Teijeira A, Proulx ST, Christiansen AJ, Seidel CD, Rulicke T, et al. A transgenic Prox1-Cre-tfTomato reporter mouse for lymphatic vessel research. PLoS One (2015) 10(4):e0122976. doi:10.1371/journal.pone.0122976
15. Choi I, Chung HK, Ramu S, Lee HN, Kim KE, Lee S, et al. Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse. Blood (2011) 117(1):362–5. doi:10.1182/blood-2010-07-298562
16. Hagerling R, Pollmann C, Kneer M, Andresen L, Viesz F. Intravital two-photon microscopy of lymphatic vessel development and function using a transgenic Prox1 promoter-directed mOrange2 reporter mouse. Biochem Soc Trans (2011) 39(6):1674–81. doi:10.1042/BST20110722
17. Truman LA, Bentley KL, Smith EC, Massaro SA, Gonzalez DG, Haberman AM, et al. ProxTom lymphatic vessel reporter mice reveal Prox1
expression in the adrenal medulla, megakaryocytes, and platelets. *Am J Pathol* (2012) 180(4):1715–25. doi:10.1016/j.ajpath.2011.12.026.

18. Martinet C, Corrillá I, Olmeda D, Dieguez-Hurtado R, Tammelti A, Altaito K, Ortega S. In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. *Proc Natl Acad Sci U S A* (2012) 109(16):6223–8. doi:10.1073/pnas.1115542109.

19. Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D, et al. Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. *Nature* (2007) 446(7135):547–51. doi:10.1038/nature05597.

20. Wening W, Carlsen HS, Goodarzi M, Moazed F, Crowley MA, Baekkevold ES, et al. Naive T cell recruitment to nonlymphoid tissues: a role for endothelium-expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis. *J Immunol* (2003) 170(9):4638–48. doi:10.4049/jimmunol.170.9.4638.

21. Matheu MP, Othy S, Greenberg ML, Dong TX, Schuijs M, Deswarte K, et al. Tracking of antigen-specific T cells using the Photosynergist S1P1 receptor signaling override retention mediated by G alpha i-coupled receptors to promote T cell egress. *Immunity* (2008) 28(1):122–33. doi:10.1016/j.immuni.2007.11.017.

22. Pham TH, Okada T, Motoh S, Yu S, Tomura M, Kanagawa O, Luster AD. Recirculating memory T cells are a unique subset of CD4+ and CD8+ T lymphocytes from single lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. *Proc Natl Acad Sci U S A* (2010) 107(4):20447–52. doi:10.1073/pnas.1004986107.

23. Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bolter J, et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. *Nat Immunol* (2011) 12(9):879–87. doi:10.1038/ni.2085.

24. Reichardt P, Patzak I, Jones K, Eitemere G, Gunzer M, Hogg N. A role for LFA-1 in delaying T-lymphocyte egress from lymph nodes. *EMBO J* (2013) 32(6):829–43. doi:10.1038/emboj.2013.33.

25. Mandl JN, Liou R, Klauschen F, Vrisekoop N, Monteiro JP, Yates AJ, et al. Quantification of lymph node transit times reveals differences in antigen presentation, migration and relationship to lymphocyte egress dynamics and antigen exposure. Proc Natl Acad Sci U S A (2010) 107(4):20447–52. doi:10.1073/pnas.1004986107.

26. Tomura M, Yoshida N, Tanaka J, Karasawa S, Miwa Y, Miyawaki A, et al. Monitoring cellular membrane movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. *Proc Natl Acad Sci U S A* (2008) 105(31):10871–6. doi:10.1073/pnas.0802278105.

27. Shand FH, Ueha S, Otsuji M, Koid SS, Shichino S, Tsukui T, et al. Tracking of memory T cells. *J Immunol* (2005) 170(9):4638–48. doi:10.4049/jimmunol.170.9.4638.
60. Gohin I, Olivier M, Lantier I, Pepin M, Lantier F. Analysis of the immune response in sheep efferent lymph during Salmonella abortussuis infection. Vet Immunol Immunopathol (1997) 60(1–2):111–30. doi:10.1016/S0165-2427(97)00090-1

61. Sanchez-Cordon PJ, Perez de Diego AC, Gomez-Villanandos JC, Sanchez-Vizcaino JM, Pleguezuelos FJ, Garbia F. Comparative analysis of cellular immune responses and cytokine levels in sheep experimentally infected with bluetongue virus serotype 1 and 8. Vet Microbiol (2015) 177(1–2):95–105. doi:10.1016/j.vetmic.2015.02.022

62. Sokolowski J, Jakobsen J, Johannessen JV. Cells in peripheral leg lymph of normal men. Lymphology (1998) 31(4):202–7.

63. Olszewski WL, Grzelak I, Ziolkowska A, Engeset A. Immune cell traffic from blood through the normal human skin to lymphatics. Clin Dermatol (1995) 13(5):473–83. doi:10.1016/0738-0819(95)00087-V

64. Zhang N, Schroppel B, Lal G, Jakubzick C, Mao X, Chen D, et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the allogeneic response. Immunity (2009) 30(3):458–69. doi:10.1016/j.immuni.2008.12.022

65. Brinkman CC, Iwami D, Hrizko MK, Xiong Y, Ahmad S, Simon T, et al. Treg engagement lymphotixin beta receptor for afferent lymphatic transendothelial migration. Nat Commun (2016) 7:12021. doi:10.1038/ncomms12021

66. Xiong Y, Ahmad S, Iwami D, Brinkman CC, Bromberg JS. T-bet regulates natural regulatory T cell afferent lymphatic migration and suppressive function. J Immunol (2016) 196(6):2526–40. doi:10.4049/jimmunol.1502537

67. Cose S, Bramer C, Khanna KM, Masopust D, Lefrancois L. Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. Eur J Immunol (2006) 36(6):1423–33. doi:10.1002/eji.200535539

68. Krakowski ML, Owens T. Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur J Immunol (2000) 30(4):1002–9. doi:10.1002/1521-4141(200004)30:4<1002::AID-IMMU1002>3.0.CO;2-8

69. Bos JD, Zonneveld I, Das PK, Krieg SR, van der Loos CM, Kapsemberg ML. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. Inter J Invest Dermatol (1997) 8:356–69. doi:10.1111/1353-2147.ep12470172

70. Smith JB, McIntosh GH, Morris B. The migration of cells through chronically inflamed tissues. J Pathol (1970) 100(1):21–9. doi:10.1002/path.1711000104

71. Haig D, Deane D, Percival A, Myatt N, Thomson J, Inglis L, et al. The cytokine response of afferent lymph following orf virus reinfection of sheep. Vet Dermatol (1996) 7(1):11–20. doi:10.1111/j.1365-3164.1996.tb00221.x

72. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature (2016) 532(6600):512–6. doi:10.1038/16117655

73. Girard JP, Mousson C, Forster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Rev Nat Immunol (2012) 12(11):762–73. doi:10.1038/ni.3298

74. Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol (2008) 8(5):362–71. doi:10.1038/ nri2297

75. Schwab SR, Pereira JP, Matloobian M, Xu Y, Huang Y, Cyster JG. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science (2009) 309(5741):173S–9. doi:10.1126/science.1113640

76. Shaw LR, Rosen DB, Brdiczka N, Xu Y, An J, Lanier LL, et al. CDF9 acts downstream of interferon-alpha/beta to inhibit S1P and lymphocyte egress from lymphoid organs. Nature (2006) 440(7083):540–4. doi:10.1038/ nature04606

77. Bankovich AJ, Shaw LR, Cyster JG. CDF9 suppresses sphingosine 1-phosphate receptor-1 (S1PR) function through interaction with membrane helix 4. J Biol Chem (2010) 285(29):22328–37. doi:10.1074/jbc.M110.123299

78. Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K. Control of lymphocyte egress from lymph nodes through beta2-adrenergic receptors. J Exp Med (2014) 211(3):2383–98. doi:10.1084/jem.20141132

79. Irjala H, Elima K, Johansson EL, Merinen M, Kontula A, Alanen K, et al. The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels. Eur J Immunol (2003) 33(3):815–24. doi:10.1002/ ej.200323859

80. Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol (2007) 8(12):1295–301. doi:10.1038/nl1545

81. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzelev R, et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science (1998) 279(5356):346–9. doi:10.1126/science.1070238

82. Mandala S, Haju R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science (2002) 296(5566):346–9. doi:10.1126/science.1070238

83. Forster R, Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol (2012) 30:69–94. doi:10.1146/ annurev-immunol-020711-070511

84. Venkataraman K, Lee YM, Michaud I, Thangada S, AY, Bondovsky HL, et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res (2008) 102(6):669–76. doi:10.1161/CIRCRESAHA.107.165854

85. Lo CG, Xu Y, Proia RL, Cyster JG. Cyclical modulation of sphingosine-1-phosphate receptor expression in lymph nodes. Eur J Immunol (2016) 46(6):2526–40. doi:10.1002/eji.20154309

86. Rosen H, Goetzl EJ. Sphingosine-1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol (2005) 5(7):560–70. doi:10.1038/ nri1650

87. Liu CH, Thangada S, Lee MJ, Van Brocklyn JR, Spiegel S, HLA T. Lipeduced trafficking of the sphingosine-1-phosphate receptor EDG-1. Mol Biol Cell (1999) 10(4):1179–90. doi:10.1091/mbc.10.4.1179

88. Lambricht BN, Pauwels RA, Fazekas De St Groth B. Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model. J Immunol (2000) 164(6):2937–46. doi:10.4049/jimmunol.164.6.2937

89. Werbs T, Mempel TR, Bolter J, von Andrian UH, Forster R. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med (2007) 204(3):489–95. doi:10.1084/jem.20061706
106. Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG, et al. DC mobilization
105. Nitschke M, Aebischer D, Abadier M, Haener S, Lucic M, Vigl B, et al.
103. Gebhardt T, Mueller SN, Heath WR, Carbone FR. Peripheral tissue surveil-
120. Campbell JJ, Murphy KE, Kunkel EJ, Brightling CE, Soler D, Shen Z, et al.
118. Iftakhar EKI, Fair-Makela R, Kukkonen-Macchi A, Elima K, Karikoski M,
116. Marttila-Ichihara F, Turja R, Miiluniemi M, Karikoski M, Maksimow M,
111. Popel AS, Johnson PC. Microcirculation and hemorheology.
112. Dixon JB, Zawieja DC, Gashev AA, Cote GL. Measuring microlymphatic
120(11):2249–58. doi:10.1182/blood-2012-03-417923
127. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, et al. The development of dendritic cell migration in a stimulus-dependent manner. J Exp Med (1999) 201(1):145–53.
126. Rantakari P, et al. Gene-expression profiling of different arms of lymphatic
125. Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC.
123. Hopken UE, Wengner AM, Loddenkemper C, Stein H, Heimesaat MM,
122. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science (2013) 339(6117):32–38. doi:10.1126/science.1228456
121. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowigert RK, et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol (2006) 176(7):4431–9. doi:10.4049/jimmunol.176.7.4431
120. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al. Intestinal dendritic cell guidance by haptotactic chemokine gradients. Science (2013) 339(6117):32–38. doi:10.1126/science.1228456
129. Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defense. Nat Rev Immunol (2016) 16(2):79–89. doi:10.1038/nn.2015.3
128. Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J, Smyth G, et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J Immunol (2012) 189(7):3462–71. doi:10.4049/jimmunol.1201305
127. Sathaliyawala T, Kubota M, Yudson N, Turner D, Camp P, Thome J, et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity (2013) 38(1):187–97. doi:10.1016/j.immuni.2012.09.020
126. Rantakari P, et al. Gene-expression profiling of different arms of lymphatic
125. Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC.
124. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, et al. The development of dendritic cell migration in a stimulus-dependent manner. J Exp Med (1999) 201(1):145–53.
123. Hopken UE, Wengner AM, Loddenkemper C, Stein H, Heimesaat MM,
122. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science (2013) 339(6117):32–38. doi:10.1126/science.1228456
121. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowigert RK, et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol (2006) 176(7):4431–9. doi:10.4049/jimmunol.176.7.4431
120. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al. Intestinal dendritic cell guidance by haptotactic chemokine gradients. Science (2013) 339(6117):32–38. doi:10.1126/science.1228456
129. Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defense. Nat Rev Immunol (2016) 16(2):79–89. doi:10.1038/nn.2015.3
128. Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J, Smyth G, et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J Immunol (2012) 189(7):3462–71. doi:10.4049/jimmunol.1201305
127. Sathaliyawala T, Kubota M, Yudson N, Turner D, Camp P, Thome J, et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity (2013) 38(1):187–97. doi:10.1016/j.immuni.2012.09.020
126. Rantakari P, et al. Gene-expression profiling of different arms of lymphatic
125. Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC.
124. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, et al. The development of dendritic cell migration in a stimulus-dependent manner. J Exp Med (1999) 201(1):145–53.
123. Hopken UE, Wengner AM, Loddenkemper C, Stein H, Heimesaat MM,
122. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science (2013) 339(6117):32–38. doi:10.1126/science.1228456
121. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowigert RK, et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol (2006) 176(7):4431–9. doi:10.4049/jimmunol.176.7.4431
Gaide O, Emerson RO, Jiang X, Gulati N, Nizza S, Desmarais C, et al. Common clonal origin of central and resident memory T cells following skin immunization. *Nat Med* (2015) 21(6):647–53. doi:10.1038/nm.3628

Zaid A, Mackay LK, Rahimpour A, Braun A, Veldhoen M, Carbone FR, et al. Persistence of skin-resident memory T cells within an epidermal niche. *Proc Natl Acad Sci U S A* (2014) 111(14):5307–12. doi:10.1073/pnas.132292111

Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. *Science* (2008) 319(5860):198–202. doi:10.1126/science.1151869

Cuburu N, Graham BS, Buck CB, Kines RC, Pang YY, Day PM, et al. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. *J Clin Invest* (2012) 122(12):4606–20. doi:10.1172/JCI63287

Siegmund K, Feuerer M, Siewert C, Ghani S, Haubold U, Dankof A, et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. *Blood* (2005) 106(9):3097–104. doi:10.1182/blood-2005-05-1864

Yurchenko E, Tritt M, Hay V, Shevach EM, Belkaid Y, Piccirillo CA. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of *Leishmania major* infection favors pathogen persistence. *J Exp Med* (2006) 203(11):2441–60. doi:10.1084/jem.20060956

Lehtimaki S, Savinko T, Lahl K, Sparwasser T, Wolff H, Lauerma A, et al. The spatial and temporal dynamics of Foxp3+ Treg cell-mediated suppression during contact hypersensitivity responses in a murine model. *J Invest Dermatol* (2012) 132(12):2744–51. doi:10.1038/jid.2012.212

Honda T, Otsuka A, Tanizaki H, Minegaki Y, Nagao K, Waldmann H, et al. Enhanced murine contact hypersensitivity by depletion of endogenous regulatory T cells in the sensitization phase. *J Dermatol Sci* (2011) 61(2):144–7. doi:10.1016/j.jdermsci.2010.11.001

Dubois B, Chapat L, Goubier A, Papiernik M, Nicolas JF, Kaiserlian D. Innate CD4+CD25+ regulatory T cells are required for oral tolerance and inhibition of CD8+ T cells mediating skin inflammation. *Blood* (2003) 102(9):3295–301. doi:10.1182/blood-2003-03-0727

Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. *Nat Immunol* (2006) 7(1):83–92. doi:10.1038/ni1289

Kish DD, Gorbachev AV, Fairchild RL. CD8+ T cells produce IL-2, which is required for CD(4+)CD25+ T cell regulation of effector CD8+ T cell development for contact hypersensitivity responses. *J Leukoc Biol* (2005) 78(3):725–35. doi:10.1189/jlb.0205069

Huang MT, Lin BR, Liu WL, Lu CW, Chiang BL. Lymph node trafficking of regulatory T cells is prerequisite for immune suppression. *J Leukoc Biol* (2016) 99(4):561–8. doi:10.1189/jlb.1A0715-296R

Gomez D, Diehl MC, Crosby EL, Weinkopff T, Debes GE. Effector T cell egress via afferent lymph modulates local tissue inflammation. *J Immunol* (2015) 195(8):3531–6. doi:10.4049/jimmunol.1500626

McNamee EN, Masterson JC, Veny M, Collins CB, Jedlicka P, Byrne FR, et al. Chemokine receptor CCR7 regulates the intestinal TH1/TH17/Treg balance during Crohn’s-like murine ileitis. *J Leukoc Biol* (2015) 97(6):1011–22. doi:10.1189/jlb.3HI0614-303R

Stephens R, Randolph DA, Huang G, Holtzman MJ, Chaplin DD. Antigen-nonspecific recruitment of Th2 cells to the lung as a mechanism for viral infection-induced allergic asthma. *J Immunol* (2002) 169(10):5458–67. doi:10.4049/jimmunol.169.10.5458

Ely KH, Cauley LS, Roberts AD, Brennan JW, Cookenham T, Woodland DL. Nonspecific recruitment of memory CD8+ T cells to the lung airways during respiratory virus infections. *J Immunol* (2003) 170(3):1423–9. doi:10.4049/jimmunol.170.3.1423

Jennrich S, Lee MH, Lynn RC, Dewberry K, Debes GF. Tissue exit: a novel control point in the accumulation of antigen-specific CD8+ T cells in the influenza a virus-infected lung. *J Virol* (2012) 86(7):3436–45. doi:10.1128/JVI.07025-11

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer TL and handling Editor declared their shared affiliation, and the handling Editor states that the process nevertheless met the standards of a fair and objective review.

Copyright © 2016 Hunter, Teijeira and Halin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.