Research Article

Universality Properties of a Double Series by the Generalized Walsh System

Sergo A. Episkoposian

Faculty of Applied Mathematics, State Engineering University of Armenia, Teryan Street 105, 375049 Yerevan, Armenia

Correspondence should be addressed to Sergo A. Episkoposian; sergoep@ysu.am

Received 16 December 2012; Accepted 2 April 2013

Academic Editor: Frédéric Robert

Copyright © 2013 Sergo A. Episkoposian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a question on existence of a double series by the generalized Walsh system, which is universal in weighted $L_1^\mu[0,1]^2$ spaces. In particular, we construct a weighted function $\mu(x,y)$ and a double series by generalized Walsh system of the form

$$\sum_{n,k=1}^{\infty} c_{n,k} \psi_n(x)\psi_k(y)$$

with the $\sum_{n,k=1}^{\infty} |c_{n,k}|^q<\infty$ for all $q>2$, which is universal in $L_1^\mu[0,1]^2$ concerning subseries with respect to convergence, in the sense of both spherical and rectangular partial sums.

1. Introduction

Let X be a Banach space.

Definition 1. A series

$$\sum_{k=1}^{\infty} f_k, \quad f_k \in X$$

is said to be universal in X with respect to rearrangements, if for any $f \in X$ the members of (1) can be rearranged so that the obtained series $\sum_{k=1}^{\infty} f_{\sigma(k)}$ converges to f by norm of X.

Definition 2. The series (1) is said to be universal (in X) concerning subseries, if for any $f \in X$, it is possible to choose a subseries $\sum_{k=1}^{\infty} f_{n_k}$ from (1), which converges to the f by norm of X.

Note that for one-dimensional case there are many papers that are devoted to the question on existence of various types of universal series in the sense of convergence almost everywhere and on a measure (see [1–10]).

Let $a \geq 2$ be a fixed integer and $\omega_n = e^{2\pi i / a}$. Recall the following definitions (see [11]).

The Rademacher system of order a is defined inductively as follows. For $n = 0$ let

$$\varphi_0(x) = \omega_n^k \quad \text{if } x \in \left[\frac{k}{a}, \frac{k+1}{a} \right), \quad k = 0, 1, \ldots, a-1,$$

and for $n \geq 1$ let

$$\varphi_n(x+1) = \varphi_n(x) = \varphi_0(a^n x).$$

The generalized Walsh system of order a is defined by

$$\psi_0(x) = 1,$$

and if $n = \alpha_1 a^{n_1} + \cdots + \alpha_s a^{n_s}$, where $n_1 > \cdots > n_s$, $0 \leq \alpha_j < a$, $j = 1, 2, \ldots, s$, then

$$\psi_n(x) = \varphi_{n_1}^{\alpha_1}(x) \cdots \varphi_{n_s}^{\alpha_s}(x).$$

We denote the generalized Walsh system of order a by Ψ_a. Not that Ψ_2 is the classical Walsh system. The basic properties of the generalized Walsh system of order a have been obtained by Chrestenson, Fine, Watari, Young, Vilenkin, and others (see [11–16]).

In [6–9], the existence of universal one-dimensional series by trigonometric and the classical Walsh system with respect to rearrangements and subseries in some weighted...
space $L^1_{\mu}[0,1]$. Some results for two-dimensional case for the classical Walsh system were obtained in [10] and improved. In this paper we consider the universality properties of a double series by the generalized Walsh system.

2. Preliminary Notes

Now we list some properties of Ψ_a, $a \geq 2$, which will be useful later.

(i) Each nth Rademacher function has period a^{-n} and

$$\varphi_n(x) = \text{const} \in \Omega_a = \{1, \omega, \omega^2, \ldots, \omega^{a-1}\}, \quad (6)$$

if $x \in \Delta^{(k)}_{n+1} = [k/a^{n+1}, (k+1)/a^{n+1})$, $k = 0, \ldots, 2^n - 1, n = 1, 2, \ldots$.

(ii) $$(\varphi_n(x))^k = (\varphi_n(x))^m, \quad \forall n, k \in \mathcal{N}, m = k \text{ (mod } a). \quad (7)$$

(iii) $\psi_n(x)$ is a finite product of the Rademacher functions with values in Ω_a.

(iv) $$\psi_{a^n+j}(x) = \varphi_k(x) \cdot \psi_j(x), \quad \text{if } 0 \leq j \leq a^n - 1. \quad (8)$$

(v) $\Psi_a, a \geq 2$ is a complete orthonormal system in $L^2[0,1]$ and it is a basis in $L^p[0,1]$ for $p > 1$.

The rectangular and spherical partial sums of the double series

$$\sum_{k,v=1}^{\infty} c_{k,v} \psi_k(x) \psi_v(y), \quad (x, y) \in T = [0,1]^2 \quad (9)$$

will be denoted by

$$S_{n,m}(x,y) = \sum_{k=1}^{n} \sum_{v=1}^{m} c_{k,v} \psi_k(x) \psi_v(y), \quad (10)$$

$$S_R(x,y) = \sum_{\gamma^2+k^2 \leq R^2} c_{k,v} \psi_k(x) \psi_v(y).$$

If $g(x,y)$ is a continuous function on $T = [0,1]^2$, then we set

$$\|g(x,y)\|_{C} = \max_{(x,y) \in T} |g(x,y)|. \quad (11)$$

3. Main Results

Let us denote the generalized Walsh system of order a by Ψ_a, $a \geq 2$. These are the main results of the paper.

Theorem 3. There exists a double series of the form

$$\sum_{k,v=1}^{\infty} c_{k,v} \psi_k(x) \psi_v(y) \quad \text{with} \quad \sum_{k=1}^{\infty} |c_{k,v}|^q < \infty \quad (12)$$

$$\forall q > 2$$

with the following property: for any number $\varepsilon > 0$ a weighted function $\mu(x,y)$ satisfying

$$0 < \mu(x,y) \leq 1, \quad \|\{(x,y) \in T : \mu(x,y) \neq 1\}\|_\varepsilon < \varepsilon \quad (13)$$

can be constructed so that the series (12) is universal in $L^1_{\mu}(T)$ concerning subseries with respect to convergence in the sense of both spherical and rectangular partial sums.

Theorem 4. There exists a double series of the form (12) with the following property: for any number $\varepsilon > 0$ a weighted function $\mu(x,y)$ with (13) can be constructed, so that the series (12) is universal in $L^1_{\mu}(T)$ concerning rearrangements with respect to convergence in the sense of both spherical and rectangular partial sums.

Repeating the reasoning of the proof of [17, Lemma 2] we will receive the following lemma.

Lemma 5. For any given numbers $0 < \varepsilon < 1$, $N_0 > 2$ ($N_0 \in \mathcal{N}$) and a step function

$$f(x) = \sum_{s=1}^{q} \psi_s \chi_{\Delta_s}(x), \quad (14)$$

where Δ_s is an interval of the form $\Delta_m = [(i-1)/2^m, i/2^m]$, $1 \leq i \leq 2^m$, there exist a measurable set $E \subset [0,1]$ and a polynomial $P(x)$ of the form

$$P(x) = \sum_{k=N_0}^{N} c_k \psi_k(x) \quad (15)$$

which satisfy the following conditions:

$$P(x) = f(x) \text{ on } E, \quad (16)$$

$$|E| > (1 - \varepsilon), \quad (17)$$

$$\sum_{k=N_0}^{N} |c_k|^{2+\varepsilon} < \varepsilon, \quad (18)$$

$$\max_{N_0 < m < N} \left[\int_{[0,1]} \left| \sum_{k=N_0}^{m} c_k \psi_k(x) \right| \, dx \right] < \varepsilon + \int_{[0,1]} |f(x)| \, dx, \quad (19)$$

for every measurable subset ε of E.

Then applying this Lemma we get the next one.
Lemma 6. For any numbers $\gamma \neq 0$, $0 < \delta < 1$, $N > 1$ and for any square $\Delta = \Delta_1 \times \Delta_2 \subset T$, there exists a measurable set $E \subset T$ and a polynomial $P(x, y)$ of the form
\begin{equation}
P(x, y) = \sum_{k,s=N}^{M} c_{k,s} \psi_k(x) \cdot \psi_s(y),
\end{equation}
with the following properties:

1. $|E| > 1 - \delta$,
2. $\sum_{k,s=N}^{M} |c_{k,s}|^{2+\delta} < \delta$,
3. $P(x, y) = \gamma \cdot \chi_\Delta(x, y)$ for $(x, y) \in E$,
4. \begin{equation}
\max_{N \leq R \leq M} \left[\left| \int \int E \left| \sum_{k,s=N}^{M} c_{k,s} \psi_k(x) \cdot \psi_s(y) \right| dx \, dy \right| \right] \\
\leq 16 \cdot |\gamma| \cdot |\Delta|,
\end{equation}
for every measurable subset e of E.

Proof. We apply Lemma 5, setting $f(x) = \gamma \cdot \chi_\Delta(x)$, $N_0 = N$, $\varepsilon = \frac{\delta}{2}$.

Then we can define a measurable set $E_1 \subset [0, 1]$ and a polynomial $P_1(x)$ of the form
\begin{equation}
P_1(x) = \sum_{k=N}^{N_1} a_k \psi_k(x)
\end{equation}
which satisfy the following conditions:

1. $P_1(x) = \gamma \cdot \chi_{\Delta_1}(x)$ for $x \in E_1$,
2. \begin{equation}
|E_1| > 1 - \frac{\delta}{2},
\end{equation}

By applying Lemma 5 again, setting $f(y) = \chi_{\Delta_2}(y)$, $N_0 = M_0$, $\varepsilon = \frac{\delta}{2}$,

Then we can define a measurable set $E_2 \subset [0, 1]$ and a polynomial $P_2(y)$ of the form
\begin{equation}
P_2(y) = \sum_{s=M_0}^{M} b_s \psi_s(y)
\end{equation}
which satisfy the following conditions:

1. $P_2(y) = \chi_{\Delta_2}(y)$ for $y \in E_2$,
2. \begin{equation}
|E_2| > 1 - \frac{\delta}{2},
\end{equation}

Set
\begin{equation}
E = E_1 \times E_2,
\end{equation}
\begin{equation}
P(x, y) = P_1(x) \cdot P_2(y) = \sum_{k,s=N}^{M} c_{k,s} \psi_k(x) \cdot \psi_s(y),
\end{equation}
where
\begin{equation}
c_{k,s} = a_k \cdot b_s, \quad \text{if } N \leq k \leq N_1, \quad M_0 \leq s \leq M,
\end{equation}
\begin{equation}
c_{k,s} = 0, \quad \text{for other } k, s.
\end{equation}
By (1)–(3), (10)–(30), and (38), (39), we obtain

\[|E| > 1 - \delta, \]

\[\sum_{k=1}^{N_1} |\epsilon_{k,x}|^{2+\delta} = \sum_{k=1}^{N_1} |\epsilon_{k,x}|^{2+\delta} \cdot \sum_{x=M_0}^{M} |\epsilon_{k,x}|^{2+\delta} < \delta, \quad (40) \]

\[P(x, y) = y \cdot \chi_{\Delta}(x, y) \quad \text{for} \ (x, y) \in E. \]

Thus, the statements (1)–(3) of Lemma 6 are satisfied. Now we will check the fulfillment of statement (4).

Let \(N_0^2 + M_0^2 < R^2 < N_1^2 + M_1^2 \), then for some \(m_0 > M_0 \) we have \(m_0 < R \sim m_0 + 1 \) and from (31) it follows that \(R^2 - N_0^2 > (m_0 - 1)^2 \).

Consequently taking relations (4), (40), and (38), (39) for any measurable set \(e \subset E \) (\(e = e_1 \times e_2, \ e_1 \subset E_1, \ e_2 \subset E_2 \)) we obtain

\[\int \int \left| \sum_{k=1}^{N_1} a_{k} \psi_{k} (x) \cdot \psi_{y} (y) \right| dx \, dy \]

\[\leq \int \int \left| \sum_{k=1}^{N_1} \sum_{x=M_0}^{M} b_{k} \psi_{y} (y) \right| dx \, dy \]

\[+ \max_{N \leq n \leq N_1} \left[\int \int \left| \sum_{k=1}^{N_1} a_{k} \psi_{k} (x) \cdot \psi_{y} (y) \right| dx \, dy \right] \]

\[\leq 12 \cdot |\Delta| \cdot \left| \Delta_{\Delta} \right|. \]

Similarly, for \(N \leq n \leq N_1 \), \(M_0 \leq m \leq M \), we get

\[\int \int \left| \sum_{k=1}^{N_1} a_{k} \psi_{k} (x) \cdot \psi_{y} (y) \right| dx \, dy \leq 4 \cdot |\Delta| \cdot \left| \Delta_{\Delta} \right|. \quad (42) \]

Lemma 6 is proved. \(\square \)

Lemma 7. For any numbers \(\varepsilon > 0, N > 1 \) and a step function

\[f(x, y) = \sum_{\gamma=1}^{\gamma_0} y_{\gamma} \cdot \chi_{\Delta_{\gamma}}(x, y), \quad (43) \]

there exists a measurable set \(E \subset T \) and a polynomial \(P(x, y) \) of the form

\[P(x, y) = \sum_{k=1}^{M} c_{k} \psi_{k} (x) \cdot \psi_{y} (y), \quad (44) \]

which satisfy the following conditions:

\[(1^0) \quad P(x, y) = f(x, y) \quad \text{for} \ (x, y) \in E, \]

\[(2^0) \quad |E| > 1 - \varepsilon, \quad (45) \]

\[(3^0) \quad \sum_{k=1}^{M} |c_{k}|^{2+\varepsilon} < \varepsilon, \quad (46) \]

\[(4^0) \quad \max \left[\int \int \left| \sum_{k=1}^{N_1} a_{k} \psi_{k} (x) \cdot \psi_{y} (y) \right| dx \, dy \right] \]

\[+ \max_{\sqrt{2N} \leq R \leq \sqrt{2M}} \left[\int \int \left| \sum_{k=1}^{N_1} a_{k} \psi_{k} (x) \right| \cdot \left| \psi_{y} (y) \right| \cdot dx \, dy \right] \]

\[\leq 2 \cdot \int \int |f(x, y)| \cdot dx \, dy + \varepsilon, \quad (48) \]

for every measurable subset \(e \) of \(E \).

Proof. Without any loss of generality, we assume that

\[\max_{1 \leq \gamma \leq \gamma_0} \left| \gamma_{e} \right| \cdot \left| \Delta_{\Delta} \right| < \frac{\varepsilon}{32}. \quad (49) \]

\(\Delta_{\Delta}, 1 \leq \gamma \leq \gamma_0 \) are the constancy rectangular domain of \(f(x, y) \), that is, where the function \(f(x, y) \) is constant.

Given an integer \(1 \leq \gamma \leq \gamma_0 \), by applying Lemma 6 with \(\delta = \varepsilon/16\gamma_0 \), we find that there exists a measurable set \(E_{\gamma} \subset T \) and a polynomial \(P_{\gamma}(x, y) \) of the form

\[P_{\gamma}(x, y) = \sum_{k=1}^{M} c_{k}^{(\gamma)} \psi_{k} (x) \cdot \psi_{y} (y) \quad (50) \]

with the following properties:

\[|E_{\gamma}| > 1 - \frac{\varepsilon}{2}, \quad (51) \]

\[\sum_{k=1}^{M} |c_{k}^{(\gamma)}|^{2+\varepsilon} < \frac{\varepsilon}{\gamma_0}, \quad (52) \]

\[P_{\gamma}(x, y) = \gamma_{e} \cdot \chi_{\Delta_{\gamma}}(x, y) \quad \text{for} \ (x, y) \in E_{\gamma}, \quad (53) \]
In view of the conditions (51)–(54) and the equality
\[P(x, y) = f(x, y) \] on \(E \), for any measurable set \(e \subset E \) we obtain
\[
\left\| \int_{e} \sum_{k=1}^{M} c_{k} \psi_{k}(x) \cdot \psi_{s}(y) \, dx \, dy \right\|
\leq \int_{e} \left\| \sum_{k=1}^{M} P_{r}(x, y) \right\| \, dx \, dy
+ \int_{e} \left\| \sum_{k=1}^{M} c_{k} \psi_{k}(x) \cdot \psi_{s}(y) \right\| \, dx \, dy
\leq \int_{e} |f(x, y)| \, dx \, dy + \frac{\varepsilon}{2}.
\] Similarly, for any \(e \subset E \) we have
\[
\max_{N \leq R \leq M} \left[\int_{e} \left\| \sum_{k=1}^{M} c_{k} \psi_{k}(x) \cdot \psi_{s}(y) \right\| \, dx \, dy \right]
\leq \int_{e} |f(x, y)| \, dx \, dy + \frac{\varepsilon}{2}.
\] Lemma 7 is proved. \(\square \)

4. Proofs of the Theorems

Theorem 3 is proved similarly [10, Theorem 3], but for maintenance of integrity of this paper, here we will give the proof.

Proof of Theorem 3. Let
\[
\{f_{s}(x, y)\}^{\infty}_{s=1}, \quad (x, y) \in T
\] be a sequence of all step functions, values, and constancy interval endpoints which are rational numbers. Applying Lemma 7 consecutively, we can find a sequence \(\{E_{s}\}^{\infty}_{s=1} \) of sets and a sequence of polynomials
\[
P_{s}(x, y) = \sum_{k=1}^{N_{s}-1} c_{k}^{-1} \psi_{k}(x) \psi_{s}(y),
\] which satisfy the following conditions:

\[
P_{s}(x, y) = f_{s}(x, y), \quad (x, y) \in E_{s}, \quad \left| E_{s} \right| > 1 - 2^{-2(s+1)}, \quad E_{s} \subset T,
\] and
\[
\sum_{k=1}^{N_{s}-1} \left| c_{k}^{-1} \right|^{2s+2s} < 2^{-2s},
\]
\[\max_{N_{s+1} \leq k \leq N_s} \left[\int_{\mathbb{R}^2} \left| \sum_{k, v = N_{s+1}}^{\infty} c_{k,v}(x) \cdot \psi_v(y) \right| dx \, dy \right]\]

\[+ \max_{\sqrt{2N_{s+1}} \leq R \leq \sqrt{2N_s}} \left[\int_{\Omega} \left| \sum_{k = N_{s+1}}^{N_s-1} c_{k,s}(x) \cdot \psi_s(y) \right| dx \, dy \right]\]

(69)

\[\leq 2 \cdot \int_{\Omega} |f_s(x, y)| \, dx \, dy + 2^{-2(s+1)},\]

for every measurable subset \(\varepsilon\) of \(E_s\).

Denote

\[\sum_{k, v = 1}^{\infty} c_{k,v}(x) \cdot \psi_v(y) = \sum_{v = 1}^{\infty} \left[\sum_{k = N_{s+1}}^{N_s-1} c_{k,v}(x) \cdot \psi_v(y) \right],\]

(70)

where

\[c_{k,v} = c_{k,v}^{(s)} \quad \text{for } N_{s+1} \leq k, \ v < N_s, \ s = 1, 2, \ldots.\]

(71)

For an arbitrary number \(\varepsilon > 0\) we set

\[\Omega_n = \bigcap_{n = 1}^{\infty} E_s, \quad n = 1, 2, \ldots,\]

\[E = \Omega_n = \bigcap_{s = n_0}^{\infty} E_s, \quad n_0 = \left[\log_{1/2} \varepsilon \right] + 1,\]

(72)

\[B = \bigcup_{n = n_0}^{\infty} \Omega_n = \Omega_n \cup \left(\bigcup_{s = n_0}^{\infty} \Omega_s \setminus \Omega_{n-1} \right).\]

It is obvious (see (67) and (72)) that \(|B| = 1\) and \(|E| > 1 - \varepsilon\).

We define a function \(\mu(x, y)\) in the following way:

\[\mu(x, y) = \begin{cases} 1, & \text{for } (x, y) \in E \cup (T \setminus B); \\ \mu_n, & \text{for } (x, y) \in \Omega_n \setminus \Omega_{n-1}, \ n \geq n_0 + 1, \end{cases}\]

(73)

where

\[\mu_n = \left[2^{2n}, \prod_{k = 1}^{n} \Omega_k \right]^{-1},\]

\[h_s = \left\| f_s \right\|_C + \max_{N_{s+1} \leq k \leq N_s} \left\| \sum_{k, v = N_{s+1}}^{\infty} c_{k,v}(x) \cdot \psi_v(y) \right\|_C\]

\[+ \max_{\sqrt{2N_{s+1}} \leq R \leq \sqrt{2N_s}} \left\| \sum_{k = N_{s+1}}^{N_s-1} c_{k,s}(x) \cdot \psi_s(y) \right\|_C + 1.\]

(74)

From (68) and (70)–(74) we obtain the following:

(A) \(0 < \mu(x, y) \leq 1, \ \mu(x, y)\) is a measurable function and

\[\left| \{(x, y) \in T : \mu(x, y) \neq 1\} \right| < \varepsilon.\]

(75)

(B) Consider \(\sum_{k = 1}^{\infty} |c_{k,s}|^q < \infty\) for all \(q > 2\).

Hence, obviously we have (see (68) and (70))

\[\lim_{\min \{k, v\} \to \infty} c_{k,v} = 0.\]

(76)

It follows from (72)–(74) that for all \(s \geq n_0\) and \(N_{s+1} \leq \bar{n}, \ m < N_s\)

\[\int_{T \cap \Omega_s} \left| \sum_{k, v = N_{s+1}}^{\infty} c_{k,v}(x) \cdot \psi_v(y) \right| \mu(x, y) \, dx \, dy\]

\[= \sum_{n = n_1}^{\infty} \left[\int_{T \cap \Omega_n} \left| \sum_{k, v = N_{s+1}}^{\infty} c_{k,v}(x) \cdot \psi_v(y) \right| \mu(x, y) \, dx \, dy \right]\]

\[\leq 2^{-2n} \sum_{n = n_1}^{\infty} \left[\int_{T} \left| \sum_{k, v = N_{s+1}}^{\infty} c_{k,v}(x) \cdot \psi_v(y) \right| h_s^1 \, dx \, dy \right]\]

\[< \frac{1}{3} \cdot 2^{-2s}.\]

(77)

Analogously for all \(s \geq n_0\) and \(\sqrt{2N_{s+1}} \leq R \leq \sqrt{2N_s}\) we have

\[\int_{T \cap \Omega_s} \left| \sum_{k, v = N_{s+1}}^{\infty} c_{k,v}(x) \cdot \psi_v(y) \right| \mu(x, y) \, dx \, dy \]

\[< \frac{1}{3} \cdot 2^{-2s}.\]

(78)

By (65) and (72)–(74) for all \(s \geq n_0\) we have

\[\int_{T} |P_s(x, y) - f_s(x, y)| \mu(x, y) \, dx \, dy\]

\[= \int_{T \cap \Omega_s} |P_s(x, y) - f_s(x, y)| \mu(x, y) \, dx \, dy\]

\[+ \int_{T \setminus \Omega_s} |P_s(x, y) - f_s(x, y)| \mu(x, y) \, dx \, dy\]

\[= \sum_{n = n_1}^{\infty} \left[\int_{T \cap \Omega_n} |P_s(x, y) - f_s(x, y)| \mu_n \, dx \, dy \right]\]

\[< \sum_{n = n_1}^{\infty} 2^{-2n} \left[\int_{T} \left(|f_s(x, y)| + \sum_{k, v = N_{s+1}}^{N_s-1} c_{k,v}(x) \cdot \psi_v(y) \right) h_s^1 \, dx \, dy \right]\]

\[< \frac{1}{3} \cdot 2^{-2s} < 2^{-2s}.\]
By (69) and (72–77) for all \(\bar{n}, \bar{m} < N_i \) and \(s \geq n_0 + 1 \) we obtain

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2^{-2s} \tag{84}
\]

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2^{-2s} \tag{85}
\]

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2^{-2s} \tag{86}
\]

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2^{-2s} \tag{87}
\]

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2^{-2s} \tag{88}
\]

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2^{-2s} \tag{89}
\]

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2^{-2s} \tag{90}
\]

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2^{-2s} \tag{91}
\]

Hence, we have

From (80) and (83) we get

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2^{-2s} \tag{92}
\]

Assume that numbers \(n_1 < n_2 < \cdots < n_{q-1} \) are chosen in such a way that the following condition is satisfied:

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2 \cdot 2^{-2j}, \tag{93}
\]

\[
1 \leq j \leq q - 1. \tag{94}
\]

Now we choose a function \(f_{n_q}(x, y) \) from the sequence (64) such that

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2 \cdot 2^{-q}, \tag{95}
\]

This with (86) implies

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2 \cdot 2^{-q}, \tag{96}
\]

Hence and from (65) and (79)–(81) we obtain

\[
\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy < 2 \cdot 2^{-q}, \tag{97}
\]

where

\[
P_{n_q}(x, y) = \sum_{k, \bar{n} = k, \bar{n} \leq N_i} \epsilon_k^{(n_q)} \psi_k(x) \psi_s(y), \tag{98}
\]

\[
\max_{N_{q-1} \leq \bar{n} < N_i} \left[\int_T \left| \int_{[k,\bar{n}]} \sum_{i=1}^{m} c_k^{(i)} \psi_k(x) \cdot \psi_s(y) \right| \mu(x, y) \, dx \, dy \right] < 19 \cdot 2^{-2q}. \tag{99}
\]
Analogously we have
\[
\max_{\sqrt{2} N_{n_q-1} \leq R \leq \sqrt{2} N_{n_q}} \left[\int_T \left| \sum_{k=1}^{N_{n_q-1}} c_{n_q}^{(m)} \psi_k (x) \right| \mu (x, y) \, dx \, dy \right].
\]
(92)
\[
< 19 \cdot 2^{-2q}.
\]
In quality subseries of the theorem we will take
\[
\sum_{q=1}^{\infty} P_{n_q} (x, y) = \sum_{q=1}^{\infty} \left[\sum_{k=1}^{N_{n_q-1}} c_{n_q}^{(m)} \psi_k (x) \psi_q (y) \right].
\]
(93)
From (87) and (88) we have
\[
\int_T \left| f (x, y) - \sum_{s=1}^{d} P_{n_s} (x, y) \right| \mu (x, y) \, dx \, dy \leq \int_T \left| f (x, y) - \sum_{s=1}^{q-1} P_{n_s} (x, y) \right| \mu (x, y) \, dx \, dy \times \mu (x, y) \, dx \, dy \nonumber \nonumber + \int_T \left| f_{n_q} (x, y) - P_{n_q} (x, y) \right| \mu (x, y) \, dx \, dy \nonumber \nonumber < 2 \cdot 2^{-2q}.
\]
(94)
Let \(\overline{n}\) and \(\overline{m}\) be arbitrary natural numbers. Then for some natural number \(q\) we have
\[
N_{n_q-1} \leq \min \{|\overline{n}|, |\overline{m}|\} < N_{n_q}.
\]
(95)
Taking into account (89) and (93) for rectangular partial sums \(S_{\overline{n}, \overline{m}} (x, y)\) of (91) we get
\[
\int_T \left| S_{\overline{n}, \overline{m}} (x, y) - f (x, y) \right| \mu (x, y) \, dx \, dy \leq \int_T \left| f (x, y) - \sum_{s=1}^{\overline{n}} P_{n_s} (x, y) \right| \mu (x, y) \, dx \, dy
\]
\[
+ \max_{N_{n_q-1} \leq R \leq \sqrt{2} N_{n_q}} \left[\int_T \left| \sum_{k=1}^{\overline{m}} c_{n_q}^{(m)} \psi_k (x) \psi_q (y) \right| \mu (x, y) \, dx \, dy \right]
\]
\[
< 21 \cdot 2^{-2q}.
\]
(96)
Analogously for \(\sqrt{2} N_{n_{q-1}} \leq R \leq \sqrt{2} N_{n_q}\) we have
\[
\int_T \left| S_R (x, y) - f (x, y) \right| \mu (x, y) \, dx \, dy < 21 \cdot 2^{-2q},
\]
(97)
where \(S_R (x, y)\) is the spherical partial sums of (91).
From (96) and (97) we conclude that the series (70) is universal in \(L^1 (T)\) concerning subseries with respect to convergence by both spherical and rectangular partial sums (see Definition 2).

Theorem 3 is proved.

\[\Box\]

Remark 8. We can prove Theorem 4 by the same method used in the proof of Theorem 3.

References

[1] D. E. Menshov, “On the partial sums of trigonometric series,” Studia Mathematica, vol. 20, pp. 197–238, 1947 (Russian).

[2] V. Ya. Kozlov, “On the complete systems of orthogonal functions,” Matematicheskii Sbornik, vol. 26, pp. 351–364, 1950 (Russian).

[3] A. A. Talalian, “On the universal series with respect to rearrangements,” Izvestiya Akademii Nauk SSSR, vol. 24, pp. 567–604, 1960 (Russian).

[4] O. P. Dzangadze, “On the universal double series,” Bulletin of the Georgian Academy of Sciences, vol. 34, pp. 225–228, 1964 (Russian).

[5] W. Orlicz, “Über die unabhängigkeit von der Anordnung fast überall konvergenter Reihen,” Bulletin de l’Academie Polonaise des Sciences, vol. 81, pp. 117–125, 1927.

[6] M. G. Grigorian, “On the representation of functions by orthogonal series in weighted \(L^p\) spaces,” Studia Mathematica, vol. 134, no. 3, pp. 211–237, 1999.

[7] S. A. Episkoposian, “On the series by Walsh system universal in weighted \(L^p[0, 1)\) spaces,” Izvestiya National’noi Akademi SSSR, 1999, English Translation in: Journal of Contemporary Mathematical Analysis, vol. 34, pp. 25–40, 1999.

[8] M.G. Grigorian and S.A. Episkoposian, “Representation of functions in weighted spaces \(L^p[0, 1)\) by trigonometric and Walsh series,” Analysis Mathematica, vol. 27, pp. 267–277, 2001.

[9] S. A. Episkoposian, “On the existence of universal series by trigonometric system,” Journal of Functional Analysis, vol. 230, no. 1, pp. 169–183, 2006.

[10] S. A. Episkoposian, “Existence of double Walsh series universal in weighted \(L^p\) spaces,” International Journal of Modern Mathematics, vol. 2, pp. 231–247, 2007.

[11] H. E. Chrestenson, “A class of generalized Walsh functions,” Pacific Journal of Mathematics, vol. 5, pp. 17–31, 1955.

[12] N. Ja. Vilenkin, “On a class of orthonormal systems,” American Mathematical Society Translations, vol. 28, pp. 1–35, 1963.

[13] R. E. A. C. Paley, “A remarkable set of orthogonal functions,” London Mathematical Society, vol. 34, pp. 241–279, 1932.

[14] N. J. Fine, “The generalized Walsh functions,” Transactions of the American Mathematical Society, vol. 69, pp. 66–77, 1950.

[15] W. S. Young, “Mean convergence of generalized Walsh-Fourier series,” Transactions of the American Mathematical Society, vol. 218, pp. 311–320, 1976.
[16] C. Watari, “On generalized Walsh Fourier series,” *The Tohoku Mathematical Journal*, vol. 10, pp. 211–241, 1958.

[17] S. A. Episkoposian, “L^1-convergence of greedy algorithm by generalized Walsh system,” *Banach Journal of Mathematical Analysis*, vol. 6, no. 1, pp. 161–174, 2012.
Submit your manuscripts at http://www.hindawi.com