Hemichannels: new roles in astroglial function

Juan A. Orellana and Jimmy Stehberg

1 Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
2 Laboratorio de Neurobiología, Centro de Investigaciones Médicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile

The role of astrocytes in brain function has evolved over the last decade, from support cells to active participants in the neuronal synapse through the release of “gliotransmitters.” Astrocytes express receptors for most neurotransmitters and respond to them through Ca2+ intracellular oscillations and propagation of intercellular Ca2+ waves. While such waves are able to propagate among neighboring astrocytes through gap junctions, thereby activating several astrocytes simultaneously, they can also trigger the release of gliotransmitters, including glutamate, d-serine, glycine, ATP, adenosine, or GABA. There are several mechanisms by which gliotransmitter release occurs, including functional hemichannels. These gliotransmitters can activate neighboring astrocytes and participate in the propagation of intercellular Ca2+ waves, or activate pre- and post-synaptic receptors, including NMDA, AMPA, and purinergic receptors. In consequence, hemichannels could play a pivotal role in astrocyte-to-astrocyte communication and astrocyte-to-neuron cross-talk. Recent evidence suggests that astroglial hemichannels are involved in higher brain functions including memory and glucose sensing. The present review will focus on the role of hemichannels in astrocyte-to-astrocyte and astrocyte-to-neuron communication and in brain physiology.

Keywords: astrocytes, hemichannel, calcium waves, tripartite synapse, connexins, brain functions

ASTROCYTES: GENERAL BACKGROUND

Astrocytes are spongiform-shaped glial cells (Bushong et al., 2002 and Ogata and Kosaka, 2002) that, contrary to common belief, are the most abundant cell type in the brain. They are divided into two major types based on their morphology, biochemistry, development, and location within the central nervous system (CNS): protoplasmic and fibrous (Miller and Raff, 1984). Given their numerous functions, several studies have tried to differentiate subpopulations of astrocytes (Lerea and McCarthy, 1989). However, such attempts have been unsuccessful due to the extraordinary capacity of astrocytes to adapt to their surrounding environment by changing the expression of a vast number of proteins. This is particularly evident in primary cultures, where they show fast changes in the expression of several receptors for neurotransmitters (Shao and McCarthy, 1993; Shao et al., 1994). There is a remarkable heterogeneity in astrocyte populations, between different species, brain regions and within a brain region, in terms of their receptor expression, gap junction coupling, membrane currents, and their morphology (Matyash and Kettenmann, 2010; Zhang and Barres, 2010; Theis and Gaume, 2012).

Astrocytes have pivotal roles in brain function, including the maintenance of osmotic balance and optimal ionic conditions for neurons (Kimelberg, 2005), K+ clearance from the extracellular space (Wallraff et al., 2006; Sibille et al., 2013), glucose and lactate metabolism (Allaman et al., 2011), neurotransmitter recycling of the two most abundant neurotransmitters in the brain, glutamate and GABA (Simard and Nedergaard, 2004), and immune responses (Dong and Benveniste, 2001; Farina et al., 2007). Moreover, astrocytes have end-feet that cover blood vessels and release vasoactive substances to regulate cerebral microcirculation (Anderson and Nedergaard, 2003; Zonta et al., 2003; Takano et al., 2006) and blood brain barrier (BBB) permeability (Alvarez et al., 2013). In fact, their end-feet physically constitute part of the BBB. Finally, astrocytes communicate with neurons through transmitter release at synapses, now called “gliotransmitters.” It is not within the scope of the present review to comment on the above functions, for which we have cited very comprehensive reviews, which are highly recommended. The present review will focus on the possible role of hemichannels in astroglial function and brain physiology.

ASTROCYTES RESPOND TO SYNAPTIC NEUROTRANSMITTERS

Astrocytes express membrane receptors for almost all major neurotransmitters and neuromodulators, and possess ion channels and intracellular signaling cascades that allow them to respond within milliseconds to neuronal activity and neurotransmitters released at synapses. These fast responses occur mainly as changes in intracellular free Ca2+ concentration ([Ca2+]i) (MacVicar and Tse, 1988; Marrero et al., 1989; Usowic et al., 1989; Barres et al., 1990; Salm and McCarthy, 1990; McCarthy and Salm, 1991). The mechanism by which astroglial activation occurs is believed to start when neurotransmitters released from neurons at the synapse activate receptors at the astroglial membrane, inducing activation of phospholipase C (PLC) and the concomitant production of IP3. The latter then triggers the release of intracellular Ca2+ stored at the endoplasmatic reticulum (Sheppard
et al., 1997; Golovina and Blaustein, 2000; Scemes, 2000), which opens hemichannels (De Vuyst et al., 2009) and activates other Ca\(^{2+}\) dependent gliotransmitter release mechanisms including exocytosis. Hemichannels are hexameric plasma membrane channels formed by two different families of membrane proteins: connexins (Cx) and pannexins (Panx). Although these proteins do not share a relevant homologous primary structure, they have similar secondary and tertiary structures with four α-helical transmembrane domains, connected by one cytoplasmic and two extracellular loops, and intracellular N- and C-termini.

Importantly, hemichannel opening allows the release of glutamate (Ye et al., 2003; Takeuchi et al., 2006; Kang et al., 2008; Jiang et al., 2011; Orellana et al., 2011a,b), ATP (Stout et al., 2002; Iglesias et al., 2009; Orellana et al., 2011a,b; Torres et al., 2012) and other gliotransmitters into the extracellular space. Given that astrocytes express NMDA receptors insensitive to blocking by extracellular Mg\(^{2+}\), and are activated following physiological synaptic transmission (Verkhratsky and Kirchhoff, 2007) and through purinergic receptor channels (Idestrup and Salter, 1998; Zhu and Kimelberg, 2004; Lalo et al., 2008; Illes et al., 2012), ATP and glutamate released via hemichannels onto the extracellular space can activate purinergic or NMDA receptor channels located in the same astrocyte or in neighboring astrocytes, inducing changes in [Ca\(^{2+}\)]\(_i\) (Zanotti and Charles, 1997; Guthrie et al., 1999). Moreover, because astrocytes envelope synapses, the release of glutamate, ATP, and other gliotransmitters also activates neighboring pre- and post-synaptic neurons, modulating synaptic activity (Dani et al., 1992; Nedergaard, 1994; Parpura et al., 1994; Kang et al., 1998; Parri et al., 2001). In fact, astrocytes stimulated by amyloid β-peptide (Aβ) release ATP and glutamate via connexin 43 (Cx43) hemichannels (Orellana et al., 2011a).

Importantly, both of these gliotransmitters released by astrocytes have been shown to increase Panx1 hemichannel activity in neurons by activating P2X7 and NMDA receptors, resulting in further neuronal death. Given that high [Ca\(^{2+}\)]\(_i\) enhances Panx1 hemichannel activation (Locovei et al., 2006), it is likely that purinergic and glutamatergic receptor activation leads to Panx1 hemichannel opening by inducing Ca\(^{2+}\) influx or by releasing Ca\(^{2+}\) from intracellular stores via activation of IP\(_3\) receptors (Zanotti and Charles, 1997; Guthrie et al., 1999; Stout et al., 2002; Suadicani et al., 2006).

As reported by Cornell-Bell et al. (1990), both the initial increase, and sustained oscillation of [Ca\(^{2+}\)]\(_i\) induced by glutamate in astrocytes, depend on the concentration of the latter. Indeed, under low glutamate concentrations (>1 μM), [Ca\(^{2+}\)]\(_i\)oscillations in single astrocytes appear locally, asynchronously and are short-lasting, whereas concentrations above 100 μM generate astrocyte-to-astrocyte propagating Ca\(^{2+}\) waves which last up to 30 min (Cornell-Bell et al., 1990). These intercellular Ca\(^{2+}\) waves can be propagated among adjacent astrocytes through Cx43 and Cx30 gap junction channels (GJs) (Cornell-Bell et al., 1990; Charles et al., 1991; Enkvist and McCarthy, 1992; Finkbeiner, 1992; Venance et al., 1995; Leybaert et al., 1998; Scemes et al., 1998; Blomstrand et al., 1999; Suadicani et al., 2006) or by the Ca\(^{2+}\)-dependent release of ATP and glutamate and further activation of purinergic or glutamate receptors in neighboring astrocytes (Zanotti and Charles, 1997; Guthrie et al., 1999; reviewed in Bennett et al., 2003; Leybaert and Sanderson, 2012). GJs are intercellular channels formed by docking of two hemichannels, one provided by each adjacent cell (Sáez et al., 2003). These channels connect the cytoplasmic compartments of adjacent cells, favoring the intercellular exchange of metabolites (e.g., ADP, ATP, glucose and glutathione), second messengers (e.g., cAMP and IP\(_3\)) and ions (e.g., Ca\(^{2+}\), K\(^+\) and Na\(^+\)).

To obtain a Ca\(^{2+}\) wave, the released Ca\(^{2+}\) needs to be significantly amplified. This amplification is mediated at least in part by the capacity of Ca\(^{2+}\) itself to actuate both IP\(_3\) receptors (Finch and Turner, 1991; Bezprozvanny and Ehrlich, 1995) and phospholipase C (Berridge, 1993; Venance et al., 1997) as well as through other mechanisms reviewed in Leybaert and Sanderson, 2012. It has been reported that such Ca\(^{2+}\) waves originate from a localized area of the cell (Shao et al., 1994) and spread throughout the cell and into other cells in a non-decremented manner (Shao et al., 1994). Moreover, it has been suggested that astroglial Ca\(^{2+}\) responses occur once a “threshold” is reached and in an “all-or-none” manner reminiscent of neuronal action potentials (Shao and McCarthy, 1993; Shao et al., 1994). In consequence, the formation of Ca\(^{2+}\) waves is intriguing, as it must include a mechanism that will set this threshold, which may depend on the isoform of the IP\(_3\) receptor and on the concentration of IP\(_3\) and Ca\(^{2+}\). In neurons, during the generation of an action potential this threshold is defined by the membrane potential required to activate voltage-dependent Na\(^+\) channels, which are densely located at the axon hillock and along the axon. The mechanism by which Ca\(^{2+}\) oscillations or fluctuations are integrated into a threshold that determines the triggering of a Ca\(^{2+}\) wave remains unclear, although some hypotheses have been postulated (see Leybaert and Sanderson, 2012). Nonetheless, the idea of a Ca\(^{2+}\) wave being a distinct phenomenon rather than just the consequence of a larger increase in [Ca\(^{2+}\)]\(_i\), is also supported by other studies. In a study by McCarthy and Salm (1991), primary astrocytes were exposed to different neurotransmitter agonists and showed different Ca\(^{2+}\) responses to different neurotransmitters in distinct subpopulations. Interestingly, they found that astrocytes respond to neurotransmitter agonists by either a Ca\(^{2+}\) wave or [Ca\(^{2+}\)] oscillations (McCarthy and Salm, 1991), that is, if a cell population responded to a given agonist with a Ca\(^{2+}\) wave, it may respond to another agonist with [Ca\(^{2+}\)] oscillations and vice versa (McCarthy and Salm, 1991). This suggests, that in a manner similar to neuronal summation of post-synaptic evoked potentials, fluctuations in [Ca\(^{2+}\)]\(_i\) may be integrated additively to generate propagating Ca\(^{2+}\) waves that can activate entire astroglial networks.

In cultured astrocytes, [Ca\(^{2+}\)] oscillations can occur spontaneously in the absence of neuronal activation (Aguado et al., 2002; Perea and Araque, 2005), but can be regulated by neuronal activation and transmitter release. Ca\(^{2+}\) waves, on the other hand, appear in response to neurotransmitters, but given that astrocytes so far have been studied in vitro, it has been argued that Ca\(^{2+}\) waves may appear only in non-physiological conditions or in pathology (Scemes and Giaume, 2006). In vivo it is difficult to differentiate Ca\(^{2+}\) waves from [Ca\(^{2+}\)] oscillations due to technical difficulties. However, [Ca\(^{2+}\)] oscillations have been observed in vivo using imaging techniques under physiological...
conditions. These \([Ca^{2+}]_i\) oscillations in astrocytes were found to be correlated to neuronal discharges (Hirase et al., 2004), and appear in response to sensory stimulation (Cirillo et al., 2012; Lind et al., 2013), electrical stimulation of afferent fibers (Johannsen and Helmchen, 2010) or ATP (Ding, 2012) and at speeds sufficiently fast to occur concomitantly with neuronal activity and hemodynamic changes (Lind et al., 2013). A very recent study has reported that whisker stimulation in awake, behaving mice induces very large \(Ca^{2+}\) astroglial responses spread over a large portion of cortex and which are modulated by sub-cortical noradrenergic input, but not by intracortical glutamate (Ding et al., 2013).

FUNCTIONAL HEMICHannels IN AstrocytES

Although the principal connexin in astrocytes is Cx43 (Dermietzel et al., 1989), they also express Cx30 GJCs (Nagy et al., 1999) and Pannexin 1 (Panx1; Iglesias et al., 2009) and Panx2 (Zappalà et al., 2007). Some studies, however, have also reported low levels of Cx26, Cx40, and Cx45 (Dermietzel et al., 1989, 2000; Nagy et al., 1997, 1999). Yet, despite the observations of these latter studies, astrocytes from Cx43/Cx30 double knockout mice fail to show gap junction-mediated communication (Wallraff et al., 2006; Rouach et al., 2008) indicating that Cx43 and Cx30 are the main functional connexins in astrocytes.

Cx43 hemichannels have mostly been studied *in vitro* using transfected and primary cells, as well as from acute slice experiments (Ye et al., 2003; Orellana et al., 2011a; Chen et al., 2012; Torres et al., 2012). The conditions found *in vitro* that favor Cx43 hemichannel opening seemed non-physiological at first, leading to a debate on its functionality under physiological conditions. This stems from an earlier belief that hemichannels opened at only highly depolarized membrane potentials (around 60 mV), making their opening virtually impossible in non-excitable cells like astrocytes, which show no large changes in membrane potential. However, recent studies have shown hemichannel opening also at negative membrane potentials (Retamal et al., 2007; Orellana et al., 2011a,b). Indeed, hemichannel-mediated uptake of several dyes (e.g., ethidium, propidium, TOPRO, YOPRO) occurs at resting membrane potentials (Contreras et al., 2003), suggesting that hemichannel opening may also be present at resting membrane conditions.

High levels of intracellular \([Ca^{2+}]_i\) and low extracellular \(Ca^{2+}\) increase opening probability of Cx43 hemichannels (Stout and Charles, 2003; Bao et al., 2004; Wang et al., 2012) whereas normal extracellular \([Ca^{2+}]_o\) closes them (Stout and Charles, 2003). Cx43 hemichannels have been reported to mediate the release of gliotransmitters (glutamate, ATP, glutathione) from astrocytes and glial cells (Stout et al., 2002; Ye et al., 2003). Ye et al. (2003) demonstrated that low extracellular \([Ca^{2+}]_o\) induces glutamate release from astrocytes through Cx43 hemichannels in an exocytosis-independent manner and involves neither large pore anion channels, purinergic receptors, nor reversal of the glutamate transporter (Ye et al., 2003). This idea was further supported by reports showing ATP release from glial cells overexpressing Cx43 and exposed to zero extracellular \([Ca^{2+}]_o\) (Ye et al., 2003; Contreras et al., 2004; Retamal et al., 2006). Other studies, however, have reported ATP release from astrocytes also mediated by the P2X7 receptor, Panx1 hemichannels, and exocytosis (Parpura et al., 1994; Coco et al., 2003; Bezzi et al., 2004; Mothet et al., 2005; Pascual et al., 2005; Garré et al., 2010). This suggests that ATP is released by astrocytes through different mechanisms. In a study by Garré et al. (2010), it was reported that pharmacological blockade of vesicles inhibited only early ATP release from astrocytes, while later release was reported to be mediated by P2X7 receptor activation as well by Panx1 and Cx43 hemichannel opening, suggesting that each release mechanism may occur at different periods.

ROLE OF ASTROGLIAL CONNEXIN AND PANNEXIN HEMICHannels IN Gliotransmitter RELEASE AT THE SYNAPSE

Astrocytes release gliotransmitters into neuronal synapses, giving rise to what is now known as the tripartite synapse (Araque et al., 1998), implying a synapse between a pre- and post-synaptic neuron and their bidirectional communication with one astrocyte. Glutamate is the most important and abundant excitatory neurotransmitter of the CNS and one the most ubiquitous gliotransmitters released by astrocytes (Navarrete et al., 2012). Multiple mechanisms have been proposed to explain the release of glutamate from astrocytes, including hemichannels (Ye et al., 2003), anion channels (Wang et al., 2013), and exocytosis (Parpura et al., 1994; Coco et al., 2003; Bezzi et al., 2004; Mothet et al., 2005; Pascual et al., 2005 but see Wang et al., 2013). The other major neurotransmitter is GABA, the principal inhibitory neurotransmitter of the CNS. Although GABA is abundantly released by interneurons, it is also released by astrocytes (Lee et al., 2011).

Perhaps some of the best known gliotransmitters are D-serine and glycine, which are required for NMDAR activation of post-synaptic neurons and necessary for glutamate-mediated synaptic plasticity (Panatier et al., 2006; Henneberger et al., 2010; Hogerton and Bowser, 2013; Kang et al., 2013). D-serine has been reported to be released from astrocytes via large vesicles (Kang et al., 2013) and exocytosis (Parpura et al., 1994; Coco et al., 2003; Bezzi et al., 2004; Mothet et al., 2005; Pascual et al., 2005). It must be noted that a recent report has suggested that neurons may also release D-serine and glycine (Balu et al., 2014 and Ehmsen et al., 2013) both involved in regulating synaptic plasticity (Rosenberg et al., 2013). Until now, there has been no evidence indicating that astroglial hemichannels can release either D-serine or glycine.

As stated earlier, ATP both activates astrocytes and is also released by them. Additionally, it appears to suppress glutamatergic synapses (Zhang et al., 2003; Cao et al., 2013a) and can be turned into adenosine, which decreases excitatory transmission (Dunwiddie and Diao, 1994; Dunwiddie et al., 1997, but see Fujita et al., 2012). ATP has been shown to be released through hemichannels (Stout et al., 2002; Kang et al., 2008), P2X7 channels (Suadicani et al., 2006) and exocytosis (Parpura et al., 1994; Coco et al., 2003; Bezzi et al., 2004; Mothet et al., 2005; Pascual et al., 2005). Another gliotransmitter, glutathione, is released in response to extracellular glutamate (Frade et al., 2008) through connexin hemichannels (Rana and Dringen, 2007). Other well-known gliotransmitters include BDNF (Parpura and Zorec, 2010) and taurine (Choe et al., 2012). Although, previous studies have shown that taurine could be released via astroglial hemichannels (Stridh 2006/2008), further studies are necessary to elucidate whether BDNF could be released by the same pathway.
ASTROCYTIC HEMICHANNELS IN BRAIN FUNCTION
Given that astrocytes participate in the tripartite synapse, their contribution to brain function is as wide as that of neurons; taking into account their other functions (microcirculation, BBB formation), perhaps even more so (for a schematic of main astrocytic signaling cascades see Figure 1). Hemichannels contribute to the release of glutamate which is necessary for NMDAR-dependent synaptic plasticity (Henneberger et al., 2010; Navarrete et al., 2012). In fact, recently it was shown that blockade of Cx43 hemichannels in the basolateral amygdala by microinjection of mimetic peptides impairs memory consolidation but not short-term memory (Stehberg et al., 2012). Given that this study was performed using rodent fear conditioning, which is the most accepted model of post-traumatic stress disorder in animals, it would be plausible to suggest that Cx43 hemichannels may have a role in the establishment of memories in general and traumatic memories in particular.

POTENTIAL ROLE OF ASTROGLIAL CONNEXIN AND PANNEXIN HEMICHANNELS IN PSYCHIATRIC DISEASES
There is to-date no direct evidence linking astrocytic hemichannels and psychiatric disorders, so one can only speculate what their role might be. Studies have shown abnormal expression of glial fibrillary acid protein (GFAP)—a marker for astrocytes—in the post-mortem brain of patients with major depression (Bowley et al., 2002; Altshuler et al., 2010; Rajkowska and Stockmeier, 2013), while other studies have shown reduced density of astrocytes from clinical (Ongur et al., 1998; Cotter et al., 2001; Bremner et al., 2002), post-mortem (Cotter et al., 2001), and preclinical (Banasr and Duman, 2008; Banasr et al., 2010) studies, suggesting that the density and reactivity of astrocytes are reduced in this mood disorder.

Moreover, accumulating evidence suggests that antidepressants act on astrocytes (for reviews see Czéh and Di Benedetto, 2013; Étiévant et al., 2013). These express a variety of receptors including monoaminergic transporters and receptors, leading to the possibility that antidepressants exert their effects at least in part through modifying astroglial function (Peng and Huang, 2012; Quesseveur et al., 2013a). In this sense, it’s been demonstrated that application of antidepressants on rodent primary astrocyte cultures may elicit Ca^{2+} waves, Ca^{2+} oscillations, release of gliotransmitters, glucose metabolites, and neurotrophic factors (Hisaoaka et al., 2011), whereas studies in post-mortem human brain tissue suggest that antidepressants may reverse major depression associated glial reductions in the amygdala (Bowley et al., 2002). Interestingly, many transmitters released by astrocytes have antidepressant or anxiolytic effects. To this effect, acute D-serine treatment (800–2700 mg/Kg) produces antidepressant-like effects in rodents (Malkesman et al., 2012), astroglial release of ATP has been shown to modulate depressive-like behaviors.

![FIGURE 1 | Scheme of major astrocyte signaling associated to gliotransmitter release. Increased intracellular free Ca^{2+} concentration ([Ca^{2+}]_i) allows the release of gliotransmitters into the synaptic cleft through vesicles and hemichannels (HCs). D-serine, glycine, and glutamate released by astrocytes can activate NMDA receptors at the postsynaptic neuron and modulate neuronal plasticity. Astroglial glutamate also binds to mGluR at the presynaptic neuron increasing neuronal release of glutamate into the synapse. In astrocytes, increasing ([Ca^{2+}]_i) allows Ca^{2+} wave propagation between astrocytes, mediated by gap junction channels (GJC)s and by release of glutamate and ATP resulting in further activation of NMDA and P2YR receptors at neighboring astrocytes, respectively.](image-url)
Bases, B. A., Koors hetz, W. J., Chun, L. L. Y., and Corey, D. P. (1990). Ion channel expression by white matter glia: Type-1 astrocyte. Neuron 5, 527–544. doi: 10.1016/0896-6273(90)90091-5

Bennett, M. V., Contreras, J. E., Bukauskas, F. F., and Sáez, J. C. (2003). New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 26, 610–617. doi: 10.1016/j.tins.2003.09.008

Berridge, M. J. (1993). Inositol trisphosphate and calcium signalling. Nature 361, 315–325.

Bezprozvanny, I., and Ehrlich, B. E. (1995). The inositol 1,4,5-trisphosphate (InsP3) receptor. J. Membr. Biol. 145, 205–216.

Beczi, P., Gundersen, V., Galf berte, J. L., Seifert, G., Steinhauser, C., Pilati, E., et al. (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620. doi: 10.1038/nn1246

Blomstrand, E., Aberg, N. D., Eriksson, P. S., Hansson, E., and Ronnback, L. (1999). Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin43 expression in astrocytes in primary cultures from four brain regions. Neuroscience 92, 255–265. doi: 10.1016/S0306-4522(98)00738-6

Bowley, M. P., Drevets, W. C., Ongür, D., and Price, J. L. (2002). Low glial numbers in the amygdala in major depressive disorder. Biol. Psychiatry 52, 404–412. doi: 10.1016/s0006-3223(02)01404-x

Brennner, J. D., Vythilingam, M., Vermetten, E., Nazer, A., Adil, J., Khan, S., et al. (2002). Reduced volume of orbitofrontal cortex in major depression. Biol. Psychiatry 51, 273–279. doi: 10.1016/s0006-3223(01)01336-1

Bushong, E. A., Martone, M. E., Jones, Y. Z., and Ellisman, M. H. (2002). Protoplasmonic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192.

Cao, X., Li, L. P., Qin, X. H., Li, S. J., Zhang, M., Wang, Q., et al. (2013a). Astrocytic adenosine 5′-phosphate release regulates the proliferation of neural stem cells in the adult hippocampus. Stem Cells 31, 1633–1643. doi: 10.1002/stem.1408

Cao, X., Li, L. P., Wang, Q., Wu, Q., Hu, H. H., Zhang, M., et al. (2013b). Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med. 19, 773–777. doi: 10.1038/nm.3162

Charles, A. C., Merrill, J. E., Dirksen, E. R., and Sanderson, M. J. (1991). Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992. doi: 10.1016/0896-6273(91)90238-U

Chen, M. J., Kress, B., Han, X., Moll, K., Peng, W., Ji, R. R., et al. (2012). Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropsychiatric pain following spinal cord injury. Glia 60, 1660–1670. doi: 10.1002/glia.23384

Chen, K. Y., Olson, J. E., and Bourque, C. W. (2012). Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J. Neurosci. 32, 12518–12527. doi: 10.1523/JNEUROSCI.1380-12.2012

Cirillo, G., De Luca, D., and Papa, M. (2012). Calcium imaging of living astrocytes in the mouse spinal cord following sensory stimulation. Neural Plast. 2012:425818. doi: 10.1155/2012/425818

Coco, S., Calegari, F., Pravettoni, E., Pozzi, D., Taverna, E., Rosa, P., et al. (2003). Storage and release of ATP from astrocytes in culture. J. Biol. Chem. 278, 1354–1362. doi: 10.1074/jbc.M209454200

Contreras, J. E., Sáez, J. C., Bukauskas, F. F., and Bennett, M. V. (2003). Gating and regulation of connexin 43 (Cx43) hemichannels. Proc. Natl. Acad. Sci. U.S.A. 100, 11388–11393. doi: 10.1073/pnas.1434298100

Contreras, J. E., Sánchez, H. A., Vélez, L. P., Bukauskas, F. F., Bennett, M. V., and Sáez, I. C. (2004). Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res. Brain Res. Rev. 47, 290–303. doi: 10.1016/j.brainresrev.2004.08.002

Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., and Smith, J. J. (1990). Glutamateinduces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473. doi: 10.1126/science.1967852

Cotter, D., Mackay, D., Landau, S., Kerwin, R., and Everall, I. (2001). Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch. Gen. Psychiatry 58, 545–553. doi: 10.1001/archpsyc.58.6.545

Czéh, B., and Di Benedetto, B. (2013). Antidepressants act directly on astrocytes: evidences and functional consequences. Eur. Neuropsychopharmacol. 23, 171–185. doi: 10.1016/j.eurineuro.2012.04.017
Henneberger, C., Papouin, T., Oliet, S. H., and Rusakov, D. A. (2010). Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232–236. doi:10.1038/nature08673

Hirase, H., Qian, L., Bartho, P., and Buzsaki, G. (2004). Calcium dynamics of cortical astrocytic networks in vivo. PloS Biol. 2:e96. doi:10.1371/journal.pbio.0020096

Hisaoka, K., Tsuichioka, M., Yano, R., Maeda, N., Kajitani, N., Morioka, N., et al. (2011). Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production. J. Biol. Chem. 286, 21118–21128. doi:10.1074/jbc.M111.224683

Hogerton, A. L., and Bowser, M. T. (2013). Monitoring neurochemical release from astrocytes using in vitro microdialysis coupled with high-speed capillary electrophoresis. Anal. Chem. 85, 9070–9077. doi:10.1021/ac401631k

Iedestrup, C. P., and Salter, M. W. (1998). P2Y and P2U receptors differentially release intracellular Ca2+ via the phospholipase c/isotol 1,4,5-trisphosphatepathway in astrocytes from the dorsal spinal cord. Neuroscience 86, 913–923. doi:10.1016/S0306-4522(98)00128-6

Iglesias, R., Dahl, G., Qiu, F., Spray, D. C., and Scemes, E. (2009). Pannexin 1: the molecular substrate of astrocyte “hemichannels.” J. Neurosci. 29, 7092–7097. doi:10.1523/JNEUROSCI.0662-08.2009

Illes, P., Verkhratsky, A., Burnstock, G., and Franke, H. (2012). P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist 18, 422–438. doi:10.1177/1073858411418524

Jiang, S., Yuan, H., Duan, L., Cao, R., Gao, B., Xiong, Y. F., et al. (2011). Glutamate release through connexin 43 by cultured astrocytes in a stimulated hypertonicity model. Brain Res. 1392, 8–15. doi:10.1016/j.brainres.2011.03.056

Johannessen, H. C., and Helmdt, F. (2010). In vivo Ca2+ imaging of dorsal horn neuronal populations in mouse spinal cord. J. Physiol. 588(Prt 18), 3397–3402. doi:10.1113/jphysiol.2010.191833

Kang, J., Jiang, L., Goldman, S. A., and Nedergaard, M. (1998). Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neuroscience 1, 683–692. doi:10.1038/36864

Kang, J., Kang, N., Lovatt, D., Torres, A., Zhao, Z., Lin, J., et al. (2008). Connexin 45 hemichannels are permeable to ATP. J. Neurosci. 28, 4702–4711. doi:10.1523/JNEUROSCI.0504-07.2008

Kang, N., Peng, H., Yu, Y., Stanton, P. K., Guiart, T. R., and Kang, J. (2013). Astrocytes release D-serine by a large vesicle. Neuroscience 240, 253–257. doi:10.1016/j.neuroscience.2013.02.029

Khan, Z. U., Koulou, P., Rubinstein, M., Grandy, D. K., and Goldman-Rakic, P. S. (2001). An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 98, 1964–1969. doi:10.1073/pnas.98.4.1964

Kimelberg, H. K. (2005). Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50, 389–397. doi:10.1002/glia.20174

Lalo, U., Pankratov, Y., Wichert, S. P., Rossner, M. J., North, R. A., Kirchhoff, F., et al. (2008). P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J. Neurosci. 28, 5473–5480. doi:10.1523/JNEUROSCI.1149-08.2008

Lee, M., McGeer, E. G., and McGeer, P. L. (2011). Mechanisms of GABA release from human astrocytes. Glia 59, 1600–1611. doi:10.1002/glia.21202

Lerea, L. S., and McCarthy, K. D. (1989). Astroglial cells in vitro are heterogeneous with respect to expression of the alpha 1-adrenergic receptor. Glia 2, 135–147. doi:10.1002/glia.440020302

Leybaert, L., Paemeleire, K., Strahonja, A., and Sanderson, M. J. (1998). Isotiol triphosphate- dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia 24, 398–407. doi:10.1002/(SICI)1098-1136(199812)24:4<398::AID-Glia2.0.CO;2-N

Leybaert, L., and Sanderson, M. J. (2012). Intracellular Ca2+ waves: mechanisms and function. Physiol. Rev. 92, 1359–1392. doi:10.1152/physrev.00029.2011

Lind, B. L., Brazhe, A. R., Jessen, S. B., Tan, F. C., and Lauritzen, M. J. (2013). Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc. Natl. Acad. Sci. U.S.A. 110, E4674–E4687. doi:10.1073/pnas.1301063110

Locovei, S., Wang, J., and Dahl, G. (2006). Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 580, 239–244. doi:10.1016/j.febslet.2005.12.004

MacVicar, B. A., and Tse, R. W. Y. (1988). Norepinephrine and cyclic adenosine 30,50-cyclic monophosphate enhance a nifedipine-sensitive calcium current in cultured rat astrocytes. Glia 1, 359–365. doi:10.1002/glia.440010602

Malkesman, O., Austin, D. R., Tragon, T., Wang, G., Rompala, G., Hamidi, A. B., et al. (2012). Acute D-serine treatment produces antidepressant-like effects in in vivo models of depression. Proc. Natl. Acad. Sci. U.S.A. 109, 14442–14447. doi:10.1073/pnas.1200216109
Orellana and Stehberg Hemichannels: new roles in astroglial function

Miguel-Hidalgo, J. J. (2009). The role of glial cells in drug abuse. Quesseveur, G., David, D. J., Gaillard, M. C., Pla, P., Wu, M. V., Nguyen, H. T., et al. (2012). ATP and glutamate released via astroglial connexin 43 hemichannels support hippocampal synaptic transmission. Science 332, 1551–1555. doi:10.1126/science.1164022 Sáez, J. C., Contreras, J. E., Bukauskas, F. F., Retamal, M. A., and Bennett, M. V. (2003). Gap junction hemichannels in astrocytes of the CNS. Acta Physiol. Scand. 179, 9–22. doi:10.1042/0306-4522(2003)01196.x Salm, A. K., and McCarthy, K. D. (1990). Norepinephrine-evoked calcium transients in cultured cerebral type 1 astroglia. Glia 3, 529–538. doi:10.1002/glia.4300301212 Scemes, E. (2000). Components of astrocytic intercellular calcium signaling. Mol. Neurobiol. 22, 167–179. doi:10.1385/EN:22:1-3:167 Scemes, E., Dermietzel, R., and Spray, D. C. (1998). Calcium waves between astrocytes from Ca43 knockout mice. Glia 24, 65–73. doi:10.1002/(SICI)1098-1106(199809)24:1%3C65:%3EAI%3DAID-GLIA%3E3.0.CO;2-%3E Scemes, E., and Giaume, C. (2006). Astrocyte calcium waves: what they are and what they do. Glia 54, 716–725. doi:10.1002/glia.20374 Shao, Y., and McCarthy, K. D. (1993). Regulation of astroglial responsiveness to neuropeptides in primary culture. Neuroscience 55, 991–1001. doi:10.1016/0306-4522(93)90313-5 Shao, Y., Porter, J. T., and McCarthy, K. D. (1994). Neuronal receptor heterogeneity among astroglia. Perspect. Dev. Neurobiol. 2, 205–215. Sheppard, C. A., Simpson, P. B., Sharp, A. H., Nuñofía, F. C., Ross, C. A., Lange, D. G., et al. (1997). Comparison of type 2 inositol 1,4,5-trisphosphate receptor distribution and subcellular Ca2+ waves in cultured astrocytes. J. Neurochem. 68, 2317–2327. doi:10.1046/j.1471-4159.1997.26082317.x Sibille, J., Pannasch, U., and Rouach, N. (2013). Astroglial potassium clearance contributes to short-term plasticity of synaptically-evoked currents at the tripartite synapse. J. Physiol. 592(Pt 1), 87–102. doi:10.1113/jphysiol.2013.261735 Simard, M., and Nederhauger, M. (2004). The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129, 877–896. doi:10.1016/neuroscience.2004.09.053 Stehberg, J., Moraga-Amaro, R., Salazar, C., Becerra, A., Echeverria, C., Orellana, J. A., et al. (2012). Release of glutamaters by astrocytic connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J. 26, 3649–3657. doi:10.1096/fj.11-198416 Stout, C., and Charles, A. (2003). Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43, 265–273. doi:10.1002/glia.10257 Stout, C. E., Costantin, J. L., Naus, C. C., and Charles, A. C. (2002). Intercellular calcium signaling in astrocytes via ATP release through connexin 43 hemichannels. J. Biol. Chem. 277, 10482–10488. doi:10.1074/jbc.M109922200 Suadicani, S. O., Brosnan, C. F., and Scemes, E. (2006). P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J. Neurosci. 26, 1378–1385. doi:10.1523/JNEUROSCI.3902-05.2006
Orellana and Stehberg

Hemichannels: new roles in astroglial function

Takano, T., Tian, G. F., Peng, W., Lou, N., Libionka, W., Han, X., et al. (2006). Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267. doi: 10.1038/nn1623

Takeuchi, H., Jin, S., Wang, J., Zhang, G., Kawanokuchi, J., Kuno, R., et al. (2006). Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J. Biol. Chem. 281, 21362–21368. doi: 10.1074/jbc.M600594200

Theis, M., and Giaume, C. (2012). Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res. 1487, 88–98. doi: 10.1016/j.brainres.2012.06.045

Toro, C. T., Hallak, J. E., Dunham, J. S., and Deakin, J. F. (2006). Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neurosci. Lett.404, 276–281. doi: 10.1016/j.neulet.2006.05.067

Torres, A., Wang, F., Xu, Q., Fujita, T., Dobrowolski, R., Willecke, K., et al. (2012). Extracellular Ca²⁺ acts as a mediator of communication from neurons to glia. Sci. Signal. 5, ra8. doi: 10.1126/scisignal.2002160

Usovic, M. M., Gallo, V., and Call-Candy, S. G. (1989). Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature 339, 380–383. doi: 10.1038/339380a0

Venance, L., Piomelli, D., Glowinski, J., and Giaume, C. (1995). Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 376, 590–594. doi: 10.1038/376590a0

Venance, L., Stella, N., Glowinski, J., and Giaume, C. (1997). Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signalling in cultured rat astrocytes. J. Neurosci. 17, 1981–1992.

Verkhovsky, A., and Kirchhoff, F. (2007). NMDA Receptors in glia. Neuroscientist 13, 28–37. doi: 10.1177/1078935906294270

Wallraff, A., Köhling, R., Heinemann, U., Theis, M., Willecke, K., and Steinhauser, C. (2006). The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J. Neurosci. 26, 5438–5447. doi: 10.1523/JNEUROSCI.0037-06.2006

Wang, F., Smith, N. A., Xu, Q., Goldman, S., Peng, W., Huang, J. H., et al. (2013). Photolysis of caged Ca²⁺ but not receptor-mediated Ca²⁺ signaling triggers astrocytic glutamate release. J. Neurosci. 33, 17404–17412. doi: 10.1523/JNEUROSCI.2178-13.2013

Wang, N., De Bock, M., Antoons, G., Gadicherla, A. K., Bol, M., Decrock, E., et al. (2012). Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca²⁺ elevation. Basic Res. Cardiol. 107, 304–321. doi: 10.1007/s00395-012-0304-2

Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S., and Ransom, B. R. (2003). Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci. 23, 3588–3596.

Zanotti, S., and Charles, A. (1997). Extracellular calcium sensing by glial cells: low extracellular calcium induces intracellular calcium release and intercellular signalling. J. Neurochem. 69, 594–602. doi: 10.1046/j.1471-4159.1997.69020594.x

Zappalà, A., Li Volti, G., Serapide, M. F., Pellitteri, R., Falchi, M., La Delia, F., et al. (2007). Expression of pannexin 2 protein in Healthy and ischemized brain of adult rats. Neuroscience 148, 653–667. doi: 10.1016/j.neuroscience.2007.06.028

Zhang, J. M., Wang, H. K., Ye, C. Q., Ge, W., Chen, Y., Jiang, Z. L., et al. (2003). ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982. doi: 10.1016/S0896-6273(03)00717-7

Zhang, Y., and Barres, B. A. (2010). Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20, 588–594. doi: 10.1016/j.conb.2010.06.005

Zhu, Y., and Kimelberg, H. K. (2004). Cellular expression of P2Y and beta-AR receptor mRNAs and proteins in freshly isolated astrocytes and tissue sections from the CA1 region of P8-12 rat hippocampus. Brain Res. Dev. Brain Res.148, 77–87. doi: 10.1016/j.devbrainres.2003.10.014

Zonta, M., Sebelin, A., Gobbo, S., Fellin, T., Pozzan, T., and Carmignoto, G. (2003). Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J. Physiol. 553, 407–414. doi: 10.1113/jphysiol.2003.046706

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 28 January 2014; accepted: 07 May 2014; published online: 17 June 2014.

Citation: Orellana JA and Stehberg J (2014) Hemichannels: new roles in astroglial function. Front. Physiol. 5:193. doi: 10.3389/fphys.2014.00193

This article was submitted to Membrane Physiology and Membrane Biophysics, a section of the journal Frontiers in Physiology.

Copyright © 2014 Orellana and Stehberg. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | Membrane Physiology and Membrane Biophysics | June 2014 | Volume 5 | Article 193 | 8