The prostaglandin E2 receptor EP3 controls CC-chemokine ligand-mediated neuropathic pain induced by mechanical nerve damage

Elsa-Marie Treutlein¹, Katharina Kern¹, Andreas Weigert², Neda Tarighi³, Claus-Dieter Schuh¹, Rolf M. Nüsing¹, Yannick Schreiber¹, Nerea Ferreirós¹, Bernhard Brüne², Gerd Geisslinger¹³, Sandra Pierre¹, Klaus Scholich¹

¹From the Institute of Clinical Pharmacology, pharmazentrum frankfurt, University Hospital Frankfurt, Germany, ²Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Germany; ³Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt/Main, Germany

Running title: EP3/CCL2 axis in trauma-induced neuropathy

Address correspondence to: Klaus Scholich, pharmazentrum frankfurt, Institute of Clinical Pharmacology, Universitätsklinikum Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany. Tel. 49-69-6301-83103. Fax 49-69-6301-83778. e-mail: scholich@em.uni-frankfurt.de

Keywords: PGE₂, GPCR, neuropathic pain, peripheral neurons, mast cells, CCL2

ABSTRACT

Prostaglandin (PG) E₂ is an important lipid mediator that is involved in several pathophysiological processes contributing to fever, inflammation and pain. Previous studies have shown that early and continuous application of non-steroidal anti-inflammatory drugs significantly reduces pain behavior in the spared nerve injury (SNI) model for trauma-induced neuropathic pain. However, the role of PGE₂ and its receptors in the development and maintenance of neuropathic pain is incompletely understood, but may help inform strategies for pain management. Here, we sought to define the nociceptive roles of the individual PGE₂ receptors (EP1-4) in the SNI model using EP-knockout mice. We found that PGE₂ levels at the site of injury were increased and that the expression of the terminal synthase for PGE₂, cytosolic PGE synthase was upregulated in resident positive macrophages located within the damaged nerve. Only genetic deletion of the EP3 receptor affected nociceptive behavior and reduced the development of late-stage mechanical allodynia as well as recruitment of immune cells to the injured nerve. Importantly, EP3 activation induced the release of CC-chemokine ligand 2 (CCL2) and antagonists against the CCL2 receptor reduced mechanical allodynia in wild type but not in EP3 knockout mice. We conclude that selective inhibition of EP3 might present a potential approach for reducing chronic neuropathic pain.

Neuropathic pain often occurs after nerve injury caused by metabolic (e.g. diabetes), mechanical, chemical or virus-induced damage of neurons. It has a high tendency for chronification and the therapeutic options are often unsatisfactory. Mediators, comprising cytokines, chemokines and lipids (i.e. prostanoids), are released at the site of injury by immune cells and are fundamental for the development and maintenance of neuropathic pain (1,2). Although Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), which inhibit cyclooxygenases (COX) and as consequence decrease the synthesis of prostanoids, are sometimes used for treatment, their therapeutic significance is relatively small. However, animal studies showed that early and continuous application of NSAIDs, significantly reduces mechanical allodynia in the spared nerve injury (SNI) (3), the chronic constriction injury (4) and the partial sciatic nerve ligation (5) models for trauma-induced neuropathic pain. Accordingly, many prostanoid generating enzymes as well as prostanoid receptors are upregulated after trauma-induced nerve injury, supporting a functional role of prostanoids in the pathomechanism of neuropathic pain (3,6,7). For example, COX-2 is up-regulated in macrophages (8) and Schwann cells
(9) in injured nerves following various types of injury.

Prostaglandin E₂ (PGE₂) is known as an important lipid mediator, which is involved in several pathophysiological processes contributing to fever, inflammation and pain (10). It can activate four G-protein coupled receptors (GPCRs) named EP1, EP2, EP3 and EP4, which are Gq (EP1), Gs (EP2 and EP4) or Gi (EP3) coupled. Due to the different signaling pathways regulated by these receptors as well as their variable expression patterns in the different tissues, PGE₂ can exhibit opposing effects ranging from pro-inflammatory to anti-inflammatory (10,11). The variability in signaling events and downstream effectors raises the question if it could be more useful to target single EP receptors instead of inhibiting the PGE₂ synthesis itself and, therefore, stimulation of all EP receptors. In regard to neuropathic pain, mRNA for all four EP receptors was found in the nervous system of mice with a strong expression in peripheral sensory neurons (5,10). Partial sciatic nerve ligation, a model for trauma-induced neuropathic pain, induced the upregulation of all four EP receptors in the injured nerve (12,13). However, besides pharmacological evidence for a pronociceptive role of EP4 (14) and EP1 (15) so far little is known about the specific importance of the four EP receptors in the development and maintenance of neuropathic pain.

Here, we aimed to define the nociceptive role of the individual PGE₂ receptors in the SNI model for trauma-induced neuropathic pain using knockout mice for the four receptors. We found increased PGE₂ levels at the site of injury and enhanced expression of the terminal synthase for PGE₃, cytosolic PGE synthase (cPGES), in IBA1-positive macrophages, which were located within the damaged nerve. Interestingly, out of the four PGE₂ receptors only deletion of the EP3 receptor decreased late stage trauma-induced mechanical allodynia. EP3 activation can induce the release of C-C motif-chemokine ligand 2 (CCL2) and pharmacological inhibition of its receptor C-C motif chemokine receptor 2 (CCR2) reduced mechanical allodynia in wild type but not in EP3 knockout mice.

RESULTS

EP3-deletion diminishes mechanical allodynia in the SNI model for neuropathic pain

First we investigated if PGE₂ levels in sciatic nerve, DRGs (L3-L5) and spinal cord (L3-L5) are altered 14 days after inducing the nerve injury according to the SNI model when a stable mechanical allodynia was established (16). While LC-MS/MS analysis showed no change of the PGE₂ levels in DRGs and the spinal cord, PGE₂ levels were increased at the site of injury in the sciatic nerve (Fig. 1A). Next, we compared the paw withdrawal latencies after mechanical stimulation of wild type mice with mice deficient for either EP1, EP2, EP3 or EP4. All mouse strains showed an initial reduction of mechanical thresholds 4 days after nerve injury. This reduction was ongoing in the wild type mice for the whole time-period of the experiment, reaching a minimum of the mechanical thresholds 28 days after SNI. Mice deficient for EP1 (Fig. 1B), EP2 (Fig. 1C) or EP4 (Fig. 1E) showed a similar reduction of the mechanical thresholds compared to wild type mice. However, EP3-deficient mice developed a milder form of mechanical allodynia whereby the mechanical thresholds did not further decrease after day 4 and were, starting at day 10, significantly higher than in wild type mice (Fig. 1D).

While it is known that COX-2 is up-regulated in macrophages (8) and Schwann cells (9) after nerve injury, the localization of the PGE₂ synthases downstream of COX-2 and, therefore, the localization of PGE₂ synthesis have not been described in injured nerves. As day 10 after the SNI operation marks the beginning of the reduced pain behavior in EP3-deficient mice, we confirmed that PGE₂ levels are significantly elevated at this day at the injured nerve (Fig. 2A). 10 days after the SNI operation the expression of the PGE₂ synthase cPGES was higher in the injured sciatic nerve, whereas the other terminal synthase for PGE₂, mPGES-1, was not detectable at the site of injury (Fig. 2B). Densitometric analysis showed a significantly elevated expression of cPGES in the injured sciatic nerve as compared to uninjured sciatic nerves (Fig. 2C). After having identified the enzymatic source of PGE₂, we investigated, which cell types express cPGES. Using the MELC technique for multiple sequential immunohistochemical staining we identified four markers, which colocalized with cPGES: IBA1, CD11b, CD45 and F4-80 (Fig. 2D and 2E). Importantly, IBA1/F4-80 double-positive cells are microglia of the central nervous system or resident macrophages of the peripheral nervous system (17-19). Thus, the combination of these cell markers
together with the absence of Ly6C suggest that cPGES is expressed in resident macrophages.

Immune cell recruitment to the site of injury is decreased in EP3-deficient mice. Since recruitment of myeloid immune cells is a prerequisite in the development of trauma-induced neuropathic pain (2), we tested whether or not the recruitment of immune cells to the site of injury is impaired in EP3-deficient mice. Indeed, 10 days after the nerve injury the number of all CD45-positive cells and more specifically the number of neutrophils, monocytes, macrophages, B-cells, NK-cells and T-cells were significantly increased in wild type mice (Fig. 3A, B). Importantly, in EP3-deficient mice the numbers of several immune cell populations were significantly lower as compared to wild type mice (Fig. 3B). No significant difference between wild type and EP3-deficient mice was observed at the contralateral side.

Next, we studied whether or not deletion of EP3 in myeloid cells affects the development of neuropathic pain. Therefore, irradiated wild type mice received bone marrow from wild type or EP3-deficient mice and were tested for successful transplantation by genotyping blood samples (Fig. 4A). 4 weeks after transplantation the mice underwent the SNI operation and were tested for the mechanical paw withdrawal latencies. We found that, independently of EP3 expression in the myeloid cells, the mice developed the same mechanical pain intensity demonstrating that EP3 deletion in myeloid cells is not sufficient to reduce the mechanical allodynia (Fig. 4B). Furthermore, FACS analysis showed no significant difference in the amount of immune cells at the site of injury between the chimeric types (Fig. 4C) suggesting that EP3 expression on the recruited immune cells does not play a role in trauma-induced neuropathic pain. Taken together, the data show that EP3 expression on recruited immune cells is not important for nociception in the SNI model, while EP3 expression on non-myeloid cells (e.g. neuronal cells) or myeloid cells, such as mast cells, which are not affected by the irradiation, are involved in SNI-induced nociception.

EP3 activation induces the release of CCL2 from neurons. One of the mediators regulated by EP3 is the chemokine CCL2 (20), which is also known to contribute to neuropathic pain development after injury of the sciatic nerve due to its ability to recruit immune cells (21). Thus, we performed real time RT-PCR 10 days after the SNI operation using mRNA from naïve and injured nerves, and found that CCL2 mRNA levels were indeed increased in injured nerves (Fig. 5A) with a 4.4-fold increase in the injured vs. the uninjured sciatic nerve. Relative mRNA levels for the CCL2-receptor CCR2 were also significantly upregulated with a 1.5-fold increase (Fig. 5A). To identify cells which release CCL2 at the injury site, we performed immunohistochemical staining with sciatic nerve tissue of wild type mice after SNI. CCL2 immunostaining colocalized with the mast cell marker CD117 (Fig. 5B) as well as with Isolectin B4, a marker for sensory neurons (Fig. 5C).

Since CCL2 mRNA expression is upregulated at the site of injury and CCL2 can be detected in mast cells and sensory neurons, we hypothesized that EP3 activation might induce CCL2-release from these cells. Indeed, treatment of neuronal DRG cultures from wild type mice with the EP3 receptor agonist sulprostone resulted in a significantly increased release of CCL2 as compared to DRGs from EP3-deficient mice (Fig. 6A). To study whether or not EP3 also mediates the release of CCL2 from mast cells, bone marrow-derived mast cells were treated with PMA as positive control and increasing concentrations of sulprostone. Importantly, stimulation with sulprostone induced CCL2 release only in wild type but not in EP3-deficient mast cells (Fig. 6B,C). Then we studied whether or not mast cells are involved in the mechanical allodynia response in the SNI model and therefore tested mast cell-deficient mice (Mcpt5-DTA-Cre mice (22)). Cre-positive mast cell-deficient mice had a significantly decreased number of macrophages at the injury site (Fig. 6D), while other immune cell populations, such as resident macrophages, were not affected (data not shown). More importantly, mast cell-deficient mice developed a normal mechanical allodynia (Fig. 6E). Thus, although mast cells seem to mediate the recruitment of macrophages to the site of injury, these macrophages are apparently not relevant for the SNI-induced mechanical allodynia.

Antinociceptive effects of CCR2 antagonists are absent in EP3-deficient mice. Since our data indicate that EP3 stimulation leads to CCL2 release in neurons and mast cells, we investigated whether or not EP3-controlled CCL2 release contributes to the allodynia in the SNI model. Therefore, mechanical allodynia of wild type and EP3
EP3/CCL2 axis in trauma-induced neuropathy

knockout mice was determined before and after the SNI operation. After the mice developed a sustained allodynia (day 18/19) the CCR2 antagonist INCB3344 was injected i.v. once daily on two consecutive days (0.18 µmol/injection) as described previously (23). Vehicle treated mice showed no change in the intensity of the SNI-induced nociceptive behavior (Fig. 7). Importantly, application of the CCR2 antagonist significantly increased mechanical allodynia in wild type mice, while it had no effect on the threshold of EP3-deficient mice (Fig. 7). Thus, the findings demonstrate that the injury-induced EP3-mediated mechanical allodynia is depending on the CCL2-CCR2 axis and that signaling in this model for neuropathic pain the CCL2-CCR2 is downstream of EP3.

DISCUSSION

Previous studies demonstrated the involvement of PGE2 in the development and maintenance of neuropathic pain and showed that early and continuous treatment with NSAIDS prevents at least partly the occurrence of trauma-induced neuropathic pain (15,24,25). Here, we show that out of the four PGE2 receptors only the deletion of EP3 reduces the development of mechanical allodynia in mice after peripheral nerve injury and that this effect is mediated via the CCL2-CCR2 axis.

In contrast to our observation of a pronociceptive effect of EP3, it was previously reported that EP3 activation can decrease nociception. In this report intrathecal application of an EP3 agonist induced antinociception in a model for acute inflammation through EP3 receptors expressed on spinal cord neurons (26). However, in the SNI mode used in our study PGE2 levels increased only in the periphery but not in the spinal cord. This finding suggests strongly that central EP3-mediated effects are not involved nociception in the SNI model. Thus, inhibition EP3 in the periphery might present an alternative approach to reduce long lasting neuropathic pain.

In regard to the importance of peripheral events for the development of neuropathic pain, it has been shown in various animal models for peripheral nerve injury that immune cell recruitment to the injury site is required for the development of neuropathic pain (1,2,12). Notably, EP3^{−/−} mice showed a decreased recruitment of immune cells to the sciatic nerve after the SNI operation.

This decreased recruitment did not depend on the activation of EP3 receptors on myeloid cells, since the selective deletion of EP3 on these cells did not alter SNI-induced mechanical allodynia. Fittingly, only 6% of macrophages in injured nerves of rats with partial nerve ligation express EP3 (12) while EP3 mRNA is found in about 50% of murine DRG neurons (26). Accordingly, real-time RT-PCR analysis of the injured nerve showed an apparent decrease of EP3 mRNA in the injured nerve (data not shown), which is probably due to the massive recruitment of immune cells, which do not express EP3. In accordance with previous reports we found that EP3 activation induces the release of CCL2 from neurons and mast cells. This neuronal CCL2 expression was already reported in models for trauma-induced neuropathic pain (21,22). We also found CCL2 expression in mast cells, which have been described to release CCL2 after activation of EP3 (20). However, in mast cell-deficient mice was only the number of monocyte-derived macrophages decreased and there was no apparent effect on the SNI-induced mechanical allodynia. It should be noted that although we did not detect by immunohistochemistry CCL2 in other cells than neurons and mast cells, we cannot exclude that other immune cells also express CCL2 at the site of injury, since a rapid release of CCL2 may lower intracellular CCL2 expression levels under the detection limit.

The significance of the CCL2/CCR2 signaling pathway for the development of neuropathic pain was demonstrated in the chronic constriction injury model using CCR2-deficient mice, which did not develop mechanical allodynia (34), and the use of the CCR2 antagonist INCB3344, which partly reversed mechanical allodynia (23). Fittingly we found that the antinociceptive effect INCB3344 is absent in EP3-deficient mice in the SNI model. This observation shows that CCR2 is a downstream effector of EP3. This is in accordance with our other results, which show that EP3 activation induces the release of the CCR2 activator CCL2 from mast cells and peripheral neurons. An additive effect should be seen if EP3 influences the pain behavior in ways, which are independent of CCL2 or if the CCL2 release in this model would also occur independent from EP3. This does not seem to happen according to our data.
Currently two modes of actions are discussed for the pronociceptive effect of CCL2. On one hand, chemotaxis of immune cells can be mediated by direct binding of CCL2 to its cognate receptor CCR2 located on the cell surface of myeloid immune cells, directing these cells to the site of inflammation. Additionally, CCL2 has been shown to facilitate immune cell infiltration to nervous tissue by increasing the blood-brain barrier permeability (35). As mentioned above the recruitment of the immune cells to the site of injury is a requirement for the development of trauma-induced neuropathic pain and the number of infiltrating cells for several immune cell types was significantly decreased at the site of injury in EP3-deficient mice. On the other hand, CCR2 is expressed in peripheral myeloid cells, DRG neurons and microglia [26] and potentially in second order neurons in lamina II of the spinal cord (36,37). Here, several pro-nociceptive electrophysiological effects of CCL2, such as enhancement of glutamate receptor function or reduction of GABAergic signaling (36,38) have been described. Thus, CCL2 released from DRG neurons may stimulate second order (spinal) neurons to enhance noicception. In addition, CCL2 released from neurons might activate spinal microglia (39), which are important contributors to neuropathic pain.

EXPERIMENTAL PROCEDURES

Animals- 6-8 week old male C57BL/6N (Janvier, Le Genest, France) and knockout mice with C57BL/6N background (40-42) were compared with strain-, age-, and sex-matched controls. Mcpt5-DTA-Cre mice were originally described by the group of Prof. Roers, Technische Universität Dresden (22). In all experiments the Ethics guidelines of the Public Health Services were obeyed and the procedures were approved by the local Ethics Committee.

Animal experimentation- The investigator was unaware of the treatment or the genotypes during all behavioral experiments. Mice were anesthetized and the sciatic nerve (N. ischiadicus) with its three branches was exposed by blunt dissection. The common peroneal and the tibial branches were tightly ligated with 6-0 silk thread and cut distally from the ligature (16). Mechanical thresholds of the plantar side of a hind paw were determined using a plantar aesthesiometer (Dynamic Plantar Aesthesiometer, Ugo Basile).

Here, a steel rod (0.5 mm diameter) was pushed against the paw with ascending force (0-5 g over a 10 second period, time resolution 0.1 sec) until a strong and immediate withdrawal occurred. The paw withdrawal (PW) was taken to be the mean of at least 3 consecutive trials with at least 20 seconds in-between. Cut-off time was set at 20 seconds. Baselines were taken prior to the surgery.

The CCR2 antagonist INCB3344 (MedChem Express, Sollentuna, Sweden) was dissolved in DMSO and diluted with PBS to a final concentration of 1 mg/ml. To dissolve precipitated substance it was kept in a waterbath at 37°C for 30 min and sonicated. 100 µl (0.1 mg) were intravenously injected into the tail vein of C57BL/6N and EP3-deficient mice. The antagonist was injected once a day and the mechanical thresholds were measured 2 hours after the application. 100 µl of 0.25 % DMSO in PBS was used as vehicle control.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)- LC-MS/MS analysis of PGE$_2$ from spinal tissue, DRGs and sciatic nerves was performed as described previously (43). Briefly, at different time points after SNI surgery the sciatic nerves (ca. 1 cm proximal starting at the ligation site), the DRGs and the dorsal part of the spinal cord were prepared. Then, the tissue was weighed and liquid-liquid extracted using 200 µl PBS, 600 µl ethyl acetate, 100 µl 150 mM EDTA and 20 µl internal standard solution (25 ng/ml of [H$_3$]-PGE$_2$ in methanol). The samples were homogenised using Mixer Mill MM400 (Retsch, Haan, Germany) and centrifuged at 20,000 x g for 5 minutes. The extraction was repeated using 600 µl ethyl acetate, organic layers were collected, evaporated at 45°C under a gentle stream of nitrogen and stored at -80°C until measurement. The residues were reconstituted with 50 µl of acetonitrile/water/formic acid (20:80:0.0025, v/v), and 20 µl were injected into the LC-MS/MS system. Chromatographic separation was done using a Synergi Hydro-RP 2.0 x 150 mm (Phenomenex, Aschaffenburg, Germany), 4 µm column coupled to a precolumn of the same material, and 0.0025% formic acid (A) and acetonitrile with 0.0025% formic acid (B) as mobile phases. The elution gradient was as follows:

Time (min)	Flow rate (µL/min)	%A	%B
0	300	90	10
1	300	90	10
Sample analysis was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) consisting of a QTrap 5500 hybrid triple quadrupole-ion trap mass spectrometer (AB Sciex, Darmstadt, Germany) equipped with a Turbo-V-source operating in negative ESI mode, an Agilent 1200 binary HPLC pump and degasser (Agilent, Waldbronn, Germany) and an HTC Pal autosampler (Chromtech, Idstein). A cooling stack was used to store the samples at 6° C in the autosampler. High purity nitrogen for the mass spectrometer was produced by a NGM 22-LC/MS nitrogen generator (cmc Instruments, Eschborn, Germany). The mass spectrometer was operated in the negative ion mode with an electrospray voltage of -4500 V at 450°C. Multiple reaction monitoring (MRM) was used for quantification. The mass transitions used were m/z 351.1 → m/z 315.0 for PGE2 and m/z 355.1 → m/z 275.1 for [3H]-PGE2 all with a dwell time of 50 ms. All quadrupoles were working at unit resolution. Quantitation was performed with Analyst Software V1.5 (Applied Biosystems, Darmstadt, Germany) using the internal standard method (isotope-dilution mass spectrometry). Ratios of analyte peak area and internal standard peak area (y-axis) were plotted against concentration (x-axis) and calibration curves for each prostaglandin were calculated by least square regression with 1/concentration² weighting.

Western Blot - Ipsilateral and contralateral sciatic nerves were prepared 10 days after SNI operation and immediately quick-frozen in liquid nitrogen. The nerves were homogenized by ultrasonication (3x10 sec.) in a suitable volume of PhosphoSafe buffer (Merck Millipore) and afterwards centrifuged at 18,000 x g, for 4 min at 4°C to isolate the cytosolic fraction. The protein concentration was determined and 20-30 µg protein were loaded on a 12% SDS polyacrylamide gel for analyses. cPGES (cat. 10209) and mPGES (cat. 160145) were detected with polyclonal antibodies from Cayman Chemical (Ann Arbor, USA) used at dilution 1:200 and 1:6000, respectively. Bone marrow-derived macrophages stimulated with 0.1 µg/ml LPS for 24 h served as positive control. ERK-2 served as loading control (sc154, Santa Cruz, Heidelberg, Germany, dilution 1:1000). Bands were visualized using HRP-coupled secondary antibodies (Sigma-Aldrich) and an ECL reagent (Thermo Fisher Scientific) and densitometrically analyzed using ImageJ software.

Multi-Epitope-Ligand Cartography (MELC) - The MELC technology is an immunohistological imaging method that allows the visualization of 20-40 proteins on the same sample and has been described previously (44,45). Briefly, tissues were embedded in tissue freezing medium (Leica Microsystems, Nussloch, Germany), cryosections of 10 µm thickness were applied on silane-coated coverslips, fixed in 4% paraformaldehyde in PBS for 15 min, permeabilized with 0.1% Triton X100 in PBS for 15 min and blocked with 3% BSA in PBS for 1 h. The sample was placed on the stage of a Leica DM IRE2 and a picture was taken. Then, by a robotic process, the sample was incubated for 15 minutes with bleachable fluorescence-labelled antibodies (Table 1) and rinsed with PBS. Afterward, the phase contrast and fluorescence signals were imaged by a cooled charge-coupled device camera (Apogee KX4; Apogee Instruments, Roseville, CA, 2048 x 2048 pixels; final pixel size was 286 nm x 286 nm). To delete fluorescence signals, a bleaching step was performed. A post-bleaching image was recorded and the next antibody was applied. The post-bleaching image was subtracted from the following fluorescence image during the data analysis. Using the corresponding phase contrast images, fluorescence images produced by each antibody were aligned pixel-wise. Images were corrected for illumination faults using flat-field correction. After the MELC run the tissue slices were stained with Diff-Quick (Dade Behring).

To analyze coexpression the relative immunofluorescence intensities for all antibodies were determined in a single pixel using the TIC Experiment Viewer software (Meltc, Magdeburg, Germany) as described previously (46). Briefly, the minimum intensity (value 0) was set individually for each antibody to eliminate background staining. Maximum intensity (value 1) was set automatically for each antibody using the brightest pixel in its image. A protein was defined as present in an
individual pixel when its signal reached as least 10 percent of the maximal signal strength seen for this protein.

FACS analysis- Polychromatic flow cytometry was performed as described (47). Briefly, single cell suspensions were generated from sciatic nerves (ca. 1 cm length starting at the ligation site, proximal), which were cut into pieces of about 1 mm³, by digestion with 3 mg/ml Collagenase IA (Sigma, Steinheim, Germany), 1 U/ml DNAse I (Promega, Mannheim Germany) for 30 min at 37°C, followed by filtration through a 70 μm nylon mesh (BD Biosciences). Cells were transferred to FACS tubes, non-specific antibody binding to FC-γ receptors was blocked with Mouse BD Fc Block (BD Biosciences, Heidelberg, Germany) for 20 min on ice. This was followed by incubation with an antibody cocktail for 30 min on ice comprising antibodies listed in Table 1 or for multiparameter FACS analysis CD45-Vioblue, HLA-DR-APC (Miltenyi Biotec, Bergisch-Gladbach, Germany), F4/80-PE-Cy7 (eBioscience, Frankfurt, Germany), CD3-PE-CF594, CD11b-BV605, CD11c-AlexaFluor700, CD19-APC-H7, Ly6C-PerCP-Cy5.5, Ly6G-APC-Cy7, NK1.1-PE (BD Biosciences, Heidelberg, Germany). Samples were acquired with a LSRII/Fortessa flow cytometer (BD Biosciences, Heidelberg, Germany) and analyzed using FlowJo software 7.6.5 (Treestar, Ashland, OR, USA). All antibodies were titrated to determine optimal concentrations. Antibody-capturing CompBeads (BD Biosciences, Heidelberg, Germany) were used for single-color compensation to create multi-color compensation matrices. For gating, fluorescence minus one (FMO) controls were used. The instrument calibration was controlled daily using Cytometer Setup and Tracking beads (BD Biosciences, Heidelberg, Germany).

Bone marrow transplantation and generation of chimeric mice- Bone marrow was isolated from wild type or EP3 knockout mice. Recipients wild type mice were irradiated with a sub-lethal doses of 9.5 Gy (Biobeam 2000 137Cs γ-irradiation source; Eckert & Ziegler Strahlen- und Medizintechnik AG, Berlin; Germany), injected with at least 4x10⁶ bone marrow cells from donor mice via the tail vein and kept for 4 weeks to allow humoral reconstitution as described previously (3,48). The genotype of white blood cells was determined after the experiment by extracting genomic DNA using the Extract-N-Amp Blood PCR Kit (Sigma-Aldrich, St. Louis MO, USA). Genotyping was done as described previously by PCR (49) using the following EP3 primers: GCTGGCTCTGTGGTGCACCTT, AAGCCAGCCGAACGTGCAATTAGAA.

Real-time PCR- Sciatic nerves were dissected, quick-frozen in liquid nitrogen and stored at −80 °C. Total RNA of the DRGs was isolated using a mirVana miRNA Isolation Kit (Ambion) according to the manufacturer's instructions and quantified with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies). The cDNA was synthesized from 54 ng RNA in the nerve and 138 ng RNA in DRGs using a First Strand cDNA Synthesis Kit (Thermo Scientific) according to the manufacturer's instructions. Real-time RT-PCR was performed using an ABI Prism 7500 Sequence Detection System (Applied Biosystems) with Maxima SYBR Green qPCR Master Mix ROX and primers for GAPDH (CAATGTGTCCGTCGTGGATCT, GTCTCCAGTGTAGCACAAGAT), CCL2 (GCCCCACTACCTGCTGCTAC), (GGTTCGTATCTTGGTCCG), and CCR2 (ATCCACGCGATATGACAATTCTC), (GACAAGGCTCATCATCGTAG). Water controls were included to ensure specificity. Relative expression of target gene levels were determined using the ΔΔCt method, with Ct indicating the cycle number at which the signal of the PCR product crosses a defined threshold within the exponential phase of the PCR. The amount of sample RNA was normalized to GAPDH.

DRG neuron culture- C57BL/6N and EP3 deficient mice were sacrificed and the spinal cord was exposed and removed. Connective tissue and nerve processes were removed to collect the DRGs. DRGs were transferred into ice cold HBSS (Hanks balanced salt solution) containing Ca²⁺ and Mg²⁺. After 3 minutes centrifugation at (1000 rpm) cells were incubated with 3 ml of Collagenase (500 U/ml) and Dispase (2.5 U/ml) for 75 minutes at 37 °C and 5 % CO₂. Following two washing steps with Neurobasal medium containing 10 % FCS and 1 % P/S cells were digested with Trypsin for 10 minutes. Afterwards cells were washed twice, then resuspended in the washing medium containing a 48 well plate coated with poly-l-lysine. After 2 hours incubation the medium was changed to Neurobasal medium containing (+ Glutamin, +
Gentamicin + P/S, + B27) without FCS and the cells were then incubated overnight. The following conditions were used for stimulation: LPS (25 ng/ml), sulprostone (1 µg/ml), vehicle (0.1 % DMSO). For CCL2-quantitation the LEGEND MAX Mouse MCP-1/CCL2 ELISA Kit (BioLegend, San Diego, CA) was used following the manufacturer’s instructions.

Bone marrow-derived mast cells- Femur and tibia of hind legs from adult mice were extracted from muscle tissue. Bone ends were cut and bone marrow was extracted by centrifugation at 10,000 x g for 10 seconds. The cells of a single animal were resuspended in 40ml RPMI 1640 Medium (Thermo Fisher, Darmstadt, Germany) containing 10 % FCS, 4 nM L-Glutamine, 1 % P/S, 1 mM sodium pyruvate, 1 % MEM Non-Essential Amino Acids Solution, 50 µM 2-mercaptoethanol and 10 µg/l IL-3 (PeproTech, Hamburg, Germany). Twice a week 40 ml medium was added and during the first week the culture flasks were exchanged to remove macrophages adherent to the flasks. After 5 weeks mast cells were centrifuged (1000 x g for 5 minutes) and resuspended in 3 ml fresh medium. 500 µl of cell suspension was pipetted into a 12-well plate and stimulated with the following conditions: 0.1 µM PMA (Phorbol 12-myristate 13-acetate), 2.148 µM sulprostone (1 µg/ml) or vehicle (0.1 % DMSO). After 2 hours of stimulation supernatant was collected and stored at -20°C for later quantitation of CCL2. FACS analysis showed that >90 % of the cells were CD117+.

Statistics- Experiments with only two treatment groups were analyzed for statistical significance using Student’s t-test. Experiments with more than two groups were analyzed using two way analysis of variance (ANOVA) with the Bonferroni post-hoc test. Significance was accepted at p < 0.05.

Acknowledgements: The authors are grateful to Praveen Mathoor and Annett Wilken Schmitz for excellent technical help. This work was supported by the DFG (German Research Foundation) grant SCH0817/3-2 and the SFB1039 (TPA08, B04, B06, Z01). EMT was funded by the Else Kröner-Fresenius-Foundation (EKFS) as part of the Else Kröner Graduate School. KK was funded by the Else Kröner-Fresenius-Foundation (EKFS) as part of the Translational Research Innovation - Pharma (TRIP) Graduate School.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: EMT and CDS did the in vivo experiments, EMT and AW performed FACS analyses, EMT and NT performed in vitro assays, YS and NF performed LC-MS/MS analysis, GG and RN provided knockout mice, GG and BB provided reagents, KK performed western blot analysis, KS and SP performed MELC analysis, KS, EMT and SP designed experiments and wrote the paper. All authors read and approved the manuscript.
REFERENCES

1. Grace, P. M., Rolan, P. E., and Hutchinson, M. R. (2011) Peripheral immune contributions to the maintenance of central glial activation underlying neuropathic pain. *Brain Behav Immun* 25(3), 223-230
2. Scholz, J., and Woolf, C. J. (2007) The neuropathic pain triad: neurons, immune cells and glia. *Nat Neurosci* 10, 1361-1368
3. Schuh, C. D., Brenneis, C., Zhang, D. D., Angioni, C., Schreiber, Y., Ferreiros-Bouzas, N., Pierre, S., Henke, M., Linke, B., Nusing, R., Scholich, K., and Geisslinger, G. (2014) Prostacyclin regulates spinal nociceptive processing through cyclic adenosine monophosphate-induced translocation of glutamate receptors. *Anesthesiology* 120, 447-458
4. Schafers, M., Marziniak, M., Sorkin, L. S., Yaksh, T. L., and Sommer, C. (2004) Cyclooxygenase inhibition in nerve-injury- and TNF-induced hyperalgesia in the rat. *Exp Neurol* 185, 160-168
5. Ma, W., Chabot, J. G., Vercauteren, F., and Quirion, R. (2010) Injured nerve-derived COX2/PGE2 contributes to the maintenance of neuropathic pain in aged rats. *Neurobiol Aging* 31, 1227-1237
6. Muja, N., and DeVries, G. H. (2004) Prostaglandin E(2) and 6-keto-prostaglandin F(1alpha) production is elevated following traumatic injury to sciatic nerve. *Glia* 46, 116-129
7. Ma, W., and Quirion, R. (2005) Up-regulation of interleukin-6 induced by prostaglandin E from invading macrophages following nerve injury: an in vivo and in vitro study. *J Neurochem* 93, 664-673
8. Ma, W., and Eisenach, J. C. (2002) Morphological and pharmacological evidence for the role of peripheral prostaglandins in the pathogenesis of neuropathic pain. *Eur J Neurosci* 15, 1037-1047
9. Takahashi, M., Kawaguchi, M., Shimada, K., Konishi, N., Furuya, H., and Nakashima, T. (2004) Cyclooxygenase-2 expression in Schwann cells and macrophages in the sciatic nerve after single spinal nerve injury in rats. *Neurosci Lett* 363, 203-206
10. Grosch, S., Niederberger, E., and Geisslinger, G. (2017) Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain. *Expert Opin Investig Drugs* 26, 51-61
11. Ricciotti, E., and FitzGerald, G. A. (2011) Prostaglandins and inflammation. *Arterioscler Thromb Vasc Biol* 31, 986-1000
12. Ma, W., and Eisenach, J. C. (2003) Four PGE2 EP receptors are up-regulated in injured nerve following partial sciatic nerve ligation. *Exp Neurol* 183, 581-592
13. Woodhams, P. L., MacDonald, R. E., Collins, S. D., Chessell, I. P., and Day, N. C. (2007) Localisation and modulation of prostanoid receptors EP1 and EP4 in the rat chronic constriction injury model of neuropathic pain. *Eur J Pain* 11, 605-613
14. Cruz Duarte, P., St-Jacques, B., and Ma, W. (2012) Prostaglandin E2 contributes to the synthesis of brain-derived neurotrophic factor in primary sensory neuron in ganglion explant cultures and in a neuropathic pain model. *Exp Neurol* 234, 466-481
15. Syriatowicz, J. P., Hu, D., Walker, J. S., and Tracey, D. J. (1999) Hyperalgesia due to nerve injury: role of prostaglandins. *Neuroscience* 94, 587-594
16. Decosterd, I., and Woolf, C. J. (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. *Pain* **87**, 149-158

17. Shechter, R., London, A., Varol, C., Raposo, C., Cusimano, M., Yovel, G., Rolls, A., Mack, M., Pluchino, S., Martino, G., Jung, S., and Schwartz, M. (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. *PLoS Med* **6**, e1000113

18. Streit, W. J., Schulte, B. A., Balentine, D. J., and Spicer, S. S. (1985) Histochemical localization of galactose-containing glycoconjugates in sensory neurons and their processes in the central and peripheral nervous system of the rat. *J Histochem Cytochem* **33**, 1042-1052

19. Streit, W. J., and Kreutzberg, G. W. (1987) Lectin binding by resting and reactive microglia. *J Neurocytol* **16**, 249-260

20. Nakayama, T., Mutsuga, N., Yao, L., and Tosato, G. (2006) Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. *J Leukoc Biol* **79**, 95-104

21. White, F. A., Sun, J., Waters, S. M., Ma, C., Ren, D., Ripsch, M., Steflik, J., Cortright, D. N., Lamotte, R. H., and Miller, R. J. (2005) Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. *Proc Natl Acad Sci U S A* **102**, 14092-14097

22. Dudeck, A., Dudeck, J., Scholten, J., Petzold, A., Surianarayanan, S., Kohler, A., Peschke, K., Vohringer, D., Waskow, C., Krieg, T., Muller, W., Waisman, A., Hartmann, K., Gunzer, M., and Roers, A. (2011) Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptons. *Immunity* **34**, 973-984

23. Van Steenwinckel, J., Auvynet, C., Sapienza, A., Reaux-Le Goazigo, A., Combadiere, C., and Melik Parsadaniantz, S. (2015) Stromal cell-derived CCL2 drives neuropathic pain states through myeloid cell infiltration in injured nerve. *Brain Behav Immun* **45**, 198-210

24. Schuh, C. D., Pierre, S., Weigert, A., Weichand, B., Altenrath, K., Schreiber, Y., Ferreiros, N., Zhang, D. D., Srao, J., Treutlein, E. M., Henke, M., Kunkel, H., Grez, M., Nusing, R., Brune, B., Geisslinger, G., and Scholich, K. (2014) Prostacyclin mediates neuropathic pain through interleukin 1beta-expressing resident macrophages. *Pain* **155**, 545-555

25. Ma, W., and Quirion, R. (2008) Does COX2-dependent PGE2 play a role in neuropathic pain? *Neurosci Lett* **437**, 165-169

26. Natura, G., Bar, K. J., Eitner, A., Boettger, M. K., Richter, F., Hensellek, S., Ebersberger, A., Leuchtweis, J., Maruyama, T., Hofmann, G. O., Halbhuber, K. J., and Schaible, H. G. (2013) Neuronal prostaglandin E2 receptor subtype EP3 mediates antinociception during inflammation. *Proc Natl Acad Sci U S A* **110**, 13648-13653

27. Oida, H., Namba, T., Sugimoto, Y., Ushikubi, F., Ohishi, H., Ichikawa, A., and Narumiya, S. (1995) In situ hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. *Br J Pharmacol* **116**, 2828-2837

28. Gomi, K., Zhu, F. G., and Marshall, J. S. (2000) Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism. *J Immunol* **165**, 6545-6552

29. Zahn, G., Schaper, M., Panzer, U., Kluger, M., Stahl, R. A., Thaiss, F., and Schneider, A. (2009) Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation. *Biochem J* **422**, 563-570
30. Zuo, Y., Perkins, N. M., Tracey, D. J., and Geczy, C. L. (2003) Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. *Pain* **105**, 467-479

31. Kwon, M. J., Shin, H. Y., Cui, Y., Kim, H., Thi, A. H., Choi, J. Y., Kim, E. Y., Hwang, D. H., and Kim, B. G. (2015) CCL2 Mediates Neuron-Macrophage Interactions to Drive Preregenerative Macrophage Activation Following Preconditioning Injury. *J Neurosci* **35**, 15934-15947

32. Weller, C. L., Collington, S. J., Hartnell, A., Conroy, D. M., Kaise, T., Barker, J. E., Wilson, M. S., Taylor, G. W., Jose, P. J., and Williams, T. J. (2007) Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor. *Proc Natl Acad Sci U S A* **104**, 11712-11717

33. Morimoto, K., Shirata, N., Taketomi, Y., Tsuchiya, S., Segi-Nishida, E., Inazumi, T., Kabashima, K., Tanaka, S., Murakami, M., Narumiya, S., and Sugimoto, Y. (2014) Prostaglandin E2-EP3 signaling induces inflammatory swelling by mast cell activation. *J Immunol* **192**, 1130-1137

34. Abbadie, C., Lindia, J. A., Cumiskey, A. M., Peterson, L. B., Mudgett, J. S., Bayne, E. K., DeMartino, J. A., MacIntyre, D. E., and Forrest, M. J. (2003) Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. *Proc Natl Acad Sci U S A* **100**, 7947-7952

35. Stamatovic, S. M., Shakui, P., Keep, R. F., Moore, B. B., Kunkel, S. L., Van Rooijen, N., and Andjelkovic, A. V. (2005) Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. *J Cereb Blood Flow Metab* **25**, 593-606

36. Gao, Y. J., Zhang, L., Samad, O. A., Suter, M. R., Yasuhiro, K., Xu, Z. Z., Park, J. Y., Lind, A. L., Ma, Q., and Ji, R. R. (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. *J Neurosci* **29**, 4096-4108

37. Jung, H., Bhangoo, S., Banisadr, G., Freitag, C., Ren, D., White, F. A., and Miller, R. J. (2009) Visualization of chemokine receptor activation in transgenic mice reveals peripheral activation of CCR2 receptors in states of neuropathic pain. *J Neurosci* **29**, 8051-8062

38. Gosselin, R. D., Varela, C., Banisadr, G., Mechighel, P., Rostene, W., Kitabgi, P., and Melik-Parsadanianzt, S. (2005) Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. *J Neurochem* **95**, 1023-1034

39. Thacker, M. A., Clark, A. K., Bishop, T., Grist, J., Yip, P. K., Moon, L. D., Thompson, S. W., Marchand, F., and McMahon, S. B. (2009) CCL2 is a key mediator of microglia activation in neuropathic pain states. *Eur J Pain* **13**, 263-272

40. Takeuchi, K., Ukawa, H., Furukawa, O., Kawauchi, S., Araki, H., Sugimoto, Y., Ishikawa, A., Ushikubi, F., and Narumiya, S. (1999) Prostaglandin E receptor subtypes involved in stimulation of gastroduodenal bicarbonate secretion in rats and mice. *J Physiol Pharmacol* **50**, 155-167

41. Hizaki, H., Segi, E., Sugimoto, Y., Hirose, M., Saji, T., Ushikubi, F., Matsuoka, T., Noda, Y., Tanaka, T., Yoshida, N., Narumiya, S., and Ichikawa, A. (1999) Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). *Proc Natl Acad Sci U S A* **96**, 10501-10506

42. Segi, E., Sugimoto, Y., Yamasaki, A., Aze, Y., Oida, H., Nishimura, T., Murata, T., Matsuoka, T., Ushikubi, F., Hirose, M., Tanaka, T., Yoshida, N., Narumiya, S., and
Ichikawa, A. (1998) Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochem Biophys Res Commun 246, 7-12

Linke, B., Schreiber, Y., Zhang, D. D., Pierre, S., Coste, O., Henke, M., Suo, J., Fuchs, J., Angioni, C., Ferreiros-Bouzas, N., Geisslinger, G., and Scholich, K. (2012) Analysis of sphingolipid and prostaglandin synthesis during zymosan-induced inflammation. Prostaglandins Other Lipid Mediat 99, 15-23

Linke, B., Pierre, S., Coste, O., Angioni, C., Becker, W., Maier, T. J., Steinhilber, D., Witttpoth, C., Geisslinger, G., and Scholich, K. (2009) Toponomics analysis of drug-induced changes in arachidonic acid-dependent signaling pathways during spinal nociceptive processing. J Proteome Res 8, 4851-4859

Linke, B., Pierre, S., Coste, O., Becker, W., Schmidtko, A., Holland, S., Witttpoth, C., Geisslinger, G., and Scholich, K. (2008) Toponomics analysis of functional interactions of the ubiquitin ligase PAM (Protein Associated with Myc) during spinal nociceptive processing. Mol Cell Proteomics 7, 2475-2485

Pierre, S., Maeurer, C., Coste, O., Becker, W., Schmidtko, A., Holland, S., Wittpoth, C., Geisslinger, G., and Scholich, K. (2008) Toponomics analysis of functional interactions of the ubiquitin ligase PAM (Protein Associated with Myc) during spinal nociceptive processing. Oncogene

Degousee, N., Simpson, J., Fazel, S., Scholich, K., Angoulvant, D., Angioni, C., Schmidt, H., Korotkova, M., Stefanski, E., Wang, X. H., Lindsay, T. F., Ofek, E., Pierre, S., Butany, J., Jakobsson, P. J., Keating, A., Li, R. K., Nahrendorf, M., Geisslinger, G., Backx, P. H., and Rubin, B. B. (2012) Lack of microsomal prostaglandin E(2) synthase-1 in bone marrow-derived myeloid cells impairs left ventricular function and increases mortality after acute myocardial infarction. Circulation 125, 2904-2913

Murata, T., Ushikubi, F., Matsuoka, T., Hirata, M., Yamasaki, A., Sugimoto, Y., Ichikawa, A., Aze, Y., Tanaka, T., Yoshida, N., Ueno, A., Oh-ishi, S., and Narumiya, S. (1997) Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 388, 678-682

Abbreviations used are: BL, baseline; CCL2, chemokine (CC-motif) ligand 2; CCR2, chemokine (CC-motif) receptor 2; cPGES, cytosolic PGE synthase; DRG, dorsal root ganglia; LPS, lipopolysaccharide; PWL, paw withdrawal latency; SNI, spared nerve injury

FIGURE LEGENDS

FIGURE 1: Deletion of the EP3 receptor reduces mechanical allodynia in the SNI model for neuropathic pain. (A) LC-MS/MS analysis of PGE2 levels in the sciatic nerve, DRGs (L3-L5) and spinal cord (L3-L5) in naïve mice and 14 days after SNI. Data are shown as mean ± SEM, n=5; **p≤ 0.01; two-tailed t-test. (B-E) C57BL/6N mice and EP receptor knockout mice underwent SNI surgery. Mechanical thresholds were measured before and at the indicated times after SNI. Data are shown as mean with ± SEM; WT n=15 (panel B – D); EP1-/- n=7 (panel B); EP2-/- n=8 (panel C) EP3-/- n=13 (panel D) EP4-/- n=6; (panel E); **p≤ 0.01; ****p≤ 0.0001; two way ANOVA with Bonferroni post-hoc test.
FIGURE 2: cPGES but not mPGES-1 is expressed in macrophages at the injury site. (A) LC-MS/MS analysis of PGE2 in the ipsi- and contralateral sciatic nerves 10 days after the SNI operation. Data are shown as mean ± SEM (n=6) **p≤0.01 one-tailed t-test. (B) Representative western blot for cPGES and mPGES-1 in ipsilateral and contralateral sciatic nerves 10 days after the SNI operation; bone marrow-derived macrophages stimulated for 24 hours with 0.1 µg LPS served as positive control. (C) Densitometric analysis of 4 independent western blot experiments as shown in panel B. Data are shown as mean ± SEM. Two tailed t-test **p≤ 0.01. (D-E) MELC analysis of sciatic nerve 10 days after the SNI operation. The white squares indicate the region shown for cPGES, IBA1, CD11b, CD45 and F4-80. White arrows indicate cells expressing these 5 markers. The radar chart (panel E) displays the percentage of cPGES-expressing cells (100%) that are positive for the respective stated marker (n=40).

FIGURE 3: Immune cell recruitment to the site of injury is decreased in EP3−/− mice. (A-B) FACS analysis with cells isolated from the site of injury from wild type and EP3−/− mice 10 days after the SNI operation. The gating strategy is shown in panel A. Data are shown as mean ± SEM (WT n=7; EP3−/− ipsilateral n=6; EP3−/− contralateral n=5). Two-way ANOVA/Bonferroni post-hoc test *p≤ 0.05; **p≤ 0.01, ***p<0.001. # as compared to contralateral.

FIGURE 4: EP3-deficiency on myeloid cells does not affect mechanical allodynia or immune cell recruitment in the SNI model. (A) Genotyping of white blood cells from irradiated wild type mice having received bone marrow from wild type (WT/WT) or EP3−/− (EP3−/−/WT) mice. The lower PCR band (450 bp) shows wild type and the upper and (650 bp) EP3-knockouts. (B) C57Bl/6N received either bone marrow from wild type or EP3-deficient mice before they underwent SNI surgery. Mechanical allodynia was determined before and at the indicated times after surgery. Data are shown as mean ± SEM (WT n=7; EP3−/− n=10). (C) Immune cells numbers determined by FACS analysis at the site of injury at the sciatic nerve in bone marrow transplanted mice. Data are shown as mean ± SEM (WT n=5; EP3−/− n=7).

FIGURE 5: CCL2 expression in mast cells and neurons is upregulated at the site of injury. (A) Real time RT-PCR for CCL2 and CCR2 mRNA at the site of injury 10 days after the SNI operation. Data are shown as mean ± SEM of the fold stimulation compared to uninjured sciatic nerves (injured nerve n=4; uninjured nerve n=5). Two tailed t-test *p≤0.05. (B-C) Colocalization of CCL2 with the mast cell marker CD117 (panel B) and the neuronal marker IB4 (panel C) expression in the injured nerve. The white arrows indicate double-positive cells.

FIGURE 6: EP3 activation induces the release of CCL2 from DRG neurons and mast cells. (A) CCL2 release from DRG cultures of wild type and EP3−/− mice was determined by ELISA after 6 hour incubation with vehicle, sulprostone (1 µg/ml) or LPS (25 ng/ml). Data are shown as mean ± SEM (WT n=8; EP3−/− n=5). Students t-test, *p≤0.05. (B) CCL2 release from mast cells of wild type mice was determined by ELISA after 6 hour incubation with vehicle, sulprostone or PMA (0.1 µM). Data are shown as mean ± SEM (n=5) One-way ANOVA with Bonferroni multiple comparison, **p≤0.01; ***p≤ 0.001; ****p≤ 0.0001. (C) CCL2 release from mast cells of EP3−/− mice was determined by ELISA after 6 hour incubation with vehicle, sulprostone (1µg/ml) or PMA (0.1 µM). Data are shown as mean ± SEM (n=5) One-way ANOVA with Bonferroni multiple comparison, ***p≤ 0.001. (D) FACS analysis with cells isolated from the site of injury from wild type and Mcpt5-DTA-Cre−/+ mice 14 days after the SNI operation. Data are shown as mean±SEM (n=5). Two-way ANOVA/Bonferoni post-hoc test *p≤ 0.05; **p≤ 0.01, ***p<0.001. (E) Cre-positive and -negative Mcpt5 DTA mice underwent SNI surgery. Mechanical thresholds were measured before surgery and at the indicated times after SNI. Data are shown as mean with ± SEM; (n=6).

FIGURE 7: The CCR2-antagonist INCB3344 increases paw withdrawal latencies (PWL) in wild type, but not in EP3−/− mice. Mechanical allodynia was first determined before the SNI operation (Baseline, BL). When the mice had developed sustained neuropathic pain on day 18/19 after injury, vehicle or the CCR2-
antagonist INCB3344 was applied i.v. on two consecutive days (dose-1, -2) with a dose of 0.1 mg (0.18 µmol) per injection. Mechanical allodynia was determined 2 hours after application. Data are shown as mean ± SEM (vehicle n=6; WT+INCB3344 n=9; EP3-/-+INCB3344 n=8). Two way ANOVA with Bonferroni post-hoc test *p≤ 0.05; ***p≤ 0.001.
Table 1: Antibodies used for MELC and FACS analysis

Target/Marker	Source	Distributor	Clone
7-AAD		Calbiochem	JJ6
cPGES	mouse	Cayman Chem.	JJ6
CD4	rat	SoutherBiotech	L3T4
CD8a	rat	BDPharmingen	53-6.7
CD11b	rat	AbD Serotec	M1/70.15
CD11c	hamster	Miltenyi Biotec	N418
CD25	rat	Miltenyi Biotec	7D4
CD45	rat	Miltenyi Biotec	30F11.1
CD56 (N-Cam)	rat	R&D Systems	809220
CD117	rat	Miltenyi Biotec	3C11
F4-80	rat	Biolegend	BM8
Fibroblasts	rat	Santa Cruz	ER-TR7
IB4	lectin	Sigma-Aldrich	
IBA1	mouse	Gene Tex Inc	1022-5
Ly6C	rat	Miltenyi Biotec	1G7.G10
Ly6G	rat	eBioscience	RB6-8C5
NK1.1	mouse	BDPharmingen	PK136
MHC II	human	Miltenyi Biotec	REA813
Figure 1:

A

Bar graph showing PGE$_2$ (pg/mg) levels in nerve, DRG, and spinal cord over 0 d to 14 d.

B

Graph showing PW (g) over days after SNI for WT and EP1$^{+/+}$.

C

Graph showing PW (g) over days after SNI for WT and EP2$^{+/+}$.

D

Graph showing PW (g) over days after SNI for WT and EP3$^{+/+}$.

E

Graph showing PW (g) over days after SNI for WT and EP4$^{+/+}$.
Figure 2:

A. Bar graph showing the concentration of PGE2 (ng/mg) with error bars indicating standard deviation. The x-axis represents contralateral and ipsilateral conditions.

B. Western blot analysis showing the expression of ERK, cPGES, and mPGES-1. The y-axis represents molecular weight [kDa] with bands at 40, 30, 25, 20, 15, and 10 kDa. The x-axis labels are contralateral and ipsilateral.

C. Bar graph illustrating the ratio of cPGES/ERK. The x-axis represents contralateral and ipsilateral conditions. The y-axis represents the ratio from 0.0 to 1.0.

D. Images of F4/80, cPGES, and IB4 markers with arrows indicating specific regions. The scale bars are 80 µm and 25 µm.

E. A radar chart showing the expression of various cell markers such as CD11b, CD45, IBA1, and others, with arrows indicating the direction and magnitude of expression.
Figure 3:

A

18

macrophages

NK-cells

CD11b-DCs

monocytes

T-cells

CD45+ cells

B-cells

neutrophils

total cell number

0

2000

4000

6000

8000

10000

12000

**

**

*

##

B

B-cells

neutrophils

macrophages

monocytes

CD11b-DCs

NK-cells

T-cells

CD45+ cells

Wild type contralateral
EP3-/- contralateral
Wildtype ipsilateral
EP3-/- ipsilateral
Figure 5:

A

![Bar chart showing mRNA expression (fold change) for CCL2 and CCR2.](attachment:image.png)

B

![Images showing CCL2, CD117, and merge with 50 µm scale.](attachment:image.png)

C

![Images showing CCL2, IB4, and merge with 50 µm scale.](attachment:image.png)
Figure 6:

A

B

C

D

E
Figure 7:

PW (g)

WT

EP3−/−

Vehicle

INCB3344

INCB3344

n.s.

**

*
