Paraoxonase Gene Polymorphism in South-western Korean Population

INTRODUCTION

Paraoxonase (PON) has anti-atherogenic activity. Considering the important role of polymorphism in the genetic susceptibility to cardiovascular disease and the variability of its allele frequencies in different ethnic groups, the distribution of genotypes and allele frequencies of PON1M55L, PON1Q192R, PON2A148G, and PON2S311C polymorphisms was analyzed in a total 988 South-western Koreans and determined their effects on lipid parameters. The genotype distribution of PON1 at position 55 was LL=0.886, LM=0.114; and at position 192 was QQ=0.406, QR=0.594. The frequencies of the PON1 55L allele and the PON1 192R allele were similar to those seen in Chinese populations and Western populations, respectively. The genetic distribution of PON2 at position 148 was AA=0.619, AG=0.345, GG=0.035; and at position 311 was CC=0.035, SC=0.345, SS=0.619. The frequencies of the PON2 148G and 311S alleles were similar to those seen in Chinese populations. The concentrations of LDL and ApoB were significantly different between the PON2A148G (P<0.05) and PON2 S311C polymorphisms (P<0.01). PON polymorphisms and allele frequencies were described in Koreans living south-western part of Korea. These ethnic variations are considered important in the interpretation of diseases associated with PON polymorphisms.

Key Words: Paraoxonase; Polymorphisms; Korean
frequencies among different ethnic groups, the aim of this work was to evaluate the distribution of PON polymorphisms and to determine their role association with lipid profiles in a population living in South-western part of Korea.

MATERIALS AND METHODS

Subjects

The allele distribution of the PON polymorphisms was determined in 988 (519 males, 469 females) unrelated volunteers, all of whom were hospital patients or outpatients for health screening from South-west parts of Korea. Written informed consent was obtained from each patient. This study protocol was approved by the Institutional Review Board of Chonbuk National University Hospital.

Genotyping of DNA

Peripheral blood samples were collected after the consent. DNA was extracted using Nucleon® DNA extraction kits. DNA samples were quantified using a GeneQuant II RNA/DNA calculator (Amersham-Pharmacia Biotech, Uppsala, Sweden), and 5-10 ng of DNA form each patient was amplified through a Hot Start polymerase chain reaction (PCR) protocol. The primers applied for PON1 55, PON1 192, and PON2 311 genotyping consisted of a 3’-gonucleotide sets applied for PON1 55, PON1 192, and PON2 311 PCR amplicon size, respectively. The detection oligonucleotide sets applied for PON2 148 PCR were PON1-55F, PON1-55R, PON1-192F, and PON1-192R, determining a 138 bp and a 151 bp PCR amplicon size, respectively. The primers applied for PON1 55 PCR and PON1 192 PCR were PON1-55F, PON1-55R, PON1-192F, and PON1-192R, determining a 138 bp and a 151 bp PCR amplicon size, respectively. The primers applied for PON2 148 PCR and PON2 311 PCR were PON2-148F, PON2-148R, PON2-311F, and PON2-311R, determining a 138 bp and a 151 bp PCR amplicon size, respectively. The detection oligonucleotide sets applied for PON1 55, PON1 192, PON2 148, and PON2 311 genotyping consisted of a 3’-fluorescein-labeled anchor and either a 5’-fluorescein-labeled sensor probe. The sequences of primers and probes, as well as the applied fluorophores and nucleotide sets applied for the PON genotyping with melting point analysis, are shown in Table 1. Both primers and fluorescently labeled probes were synthesized by TIB MolBiol (Berlin, Germany). PCR and melting curve analysis were performed in 20 μL volumes in glass capillaries (Hoffmann-La Roche, Alameda, CA, U.S.A.). During PCR, the LightCycler automate (software version 4.5) continuously displays the current fluorescence and fluorescence history of each capillary. Analysis of PCR products on agarose gel and sequencing confirmed the presence of the specific PCR products (data not shown). The observed melting point temperature in PON1 55 MM was 63.0°C, PON1 55 LL was 58°C, PON1 192 QQ was 63°C, PON1 192 RR was 57°C, PON2 148 AA was 64°C, PON2 148 GG was 58°C, PON2 311 SS was 59°C, and PON2 311 CC was 53°C (5).

Table 1. Sequences of primers and probes, as well as the applied fluorochromes used for PON1 and PON2 genotyping through melting point analysis on the LightCycler

Primers/probes	Sequences
Primers	
PON1-55F	5′-CTCTGAAGACATGGGATAGACACTG-3′
PON1-55R	5′-CTAGAAGACATGGGATAGACACTG-3′
PON1-192F	5′-TTATTGTTGCTGGAGACACTG-3′
PON1-192R	5′-ATGGACGCTCCCATCA-3′
PON2-148F	5′-CATGACGGTGTCCTATATATG-3′
PON2-148R	5′-TTACACAGCATGTCACCCCTAA-3′
PON2-311F	5′-CTCCCATGATACACTGAGGCTA-3′
PON2-311R	5′-CTCCCATGATACACTGAGGCTA-3′
Probes	
55-Sensor	5′-CTCTGAAGACATGGGATAGACACTG-3′
55-Anchor	5′-LCRed640-ATGGACGCTGGCTTATAGCTG-3′
192-Sensor	5′-CCCCTACTTACACCTCGGAGAT-FL-3′
192-Anchor	5′-LC705-ATTGGGTTGATGGGTAGTATGG-3′
148-Sensor	5′-GAACATTCTTACGTAAGAGGCTACAGTG-3′
148-Anchor	5′-LC705-CTACAGTTATGCAACATATGGGT-3′
311-Sensor	5′-CATACGAGACATCCAACTGAGAFL-3′
311-Anchor	5′-LC640-CTACAGTTATGCAACATATGGGT-3′
F, forward primer; R, reverse primer; LC Red 705, fluorophore LightCycler Red 705; LC Red 640, fluorophore LightCycler Red 640.	

Both melting point temperatures were noted in heterozygotes (PON1 55 LM, PON1 192QR, PON2 148 AG, PON2 311SC).

Statistical analysis

Differences in demographic characteristics were compared by univariate analysis using Student’s t test. Allele and genotype frequencies were calculated by gene counting. The chi-square test was used both to estimate the Hardy-Weinberg equilibrium and to compare the genotype and allele frequencies between the sexes. Allele frequencies observed in the Korean population were compared with those reported in other populations using the Mantel-Haenszel chi-square test. One-way analysis of variance (ANOVAR) was used to compare the mean levels of lipid parameters among the different genotypes. A value of P<0.05 was considered statistically significant.

RESULTS

Clinical characteristics of study subjects are shown in Table 2. The mean age was 66.18±12.2 yr, with no age difference between the sexes (male, n=519, 64.13±12.2 yr; female, n=469, 67±12.4 yr; P=0.561). With respect to vascular disease risk factors, a large proportion of individuals had hypertension. Genotype and allele frequencies for the PON1M55L,
PON1Q192R, PON2A148G, and PON2S311C polymorphisms are summarized in Table 3. Observed and expected frequencies for the polymorphisms were at Hardy-Weinberg equilibrium. In the case of the PON1 55 polymorphism, the most frequent allele was L (94.3%), and the most common genotype was the homozygote LL (88.6%). The most frequent PON1 192 allele was Q (70.3%) and the most common genotype was heterozygote QR (59.4%). In the case of the PON2 148 polymorphism, the most frequent allele was A (79.2%), and the most common genotype was the homozygote AA (61.9%). The most frequent PON2 311 allele was S (79.2%), and the most common genotype was homozygote SS (61.9%).

There was no significant difference between the sexes in terms of genotype or allele frequency. The allele frequencies of PON1M55L, PON1Q192R, PON2A148G, and PON2S311C were compared in the Korean population to those previously described in other Asian (12-18), American (19-23) and European (7, 8, 24-31) groups (Table 4). The PON1 55 L allele frequencies in Asian populations were higher than in other ethnic groups \((P<0.05)\), and the allele frequency in Koreans was higher than those seen in Thai, Iranian, and Pakistani populations \((P<0.05)\). The Korean population showed a PON1 192Q allele frequency similar to that seen in other ethnic groups, except for those of China, Taiwan, Mexico and Latin America \((P<0.05)\). The PON2 148 A allele frequency in the Korean population was similar to that seen in other populations, except for those of Pakistan and Brazil \((P<0.005)\). The PON2 311S allele frequency in the Korean population was different compared to that of populations in Pakistan and the U.S.A. \((P<0.05)\).

To determine the of PON gene polymorphisms on the lipid profile, the lipid profile was classified as high, normal or low according to the previously defined normal ranges (cholesterol, 0-200 mg/dL; triglyceride, 0-200 mg/dL; HDL cholesterol, 48.9-73.5 mg/dL; LDL cholesterol, 0-140 mg/dL; ApoAI, 1.08-2.24 g/L; ApoB 0.60-1.17 g/L; lipoprotein A, 0-30 mg/dL; total homocysteine 5-20 μM/L). There was no difference in lipid profile among PON 1 polymorphisms, but the PON2 A148G and PON2S311C polymorphisms showed significant differences in LDL and ApoB concentrations \((P=0.023, P<0.001)\) (Table 5). Homozygotes for PON2 148G and PON2 311 C showed higher concentrations of LDL cholesterol and higher ApoB levels (Table 6).

DISCUSSION

Numerous studies have been conducted on the relation between PON polymorphisms and genetic susceptibility to coronary heart disease (CHD). PON1 has the capacity to inhibit LDL oxidation. The PON1 192R allele is positively...
associated with CHD while the Q allele is protective against atherosclerosis (1). The majority of clinicians have studied the PON1 Q192R polymorphism. On meta-analysis of PON Q192R polymorphisms and CHD, a highly significant positive association was confirmed in the population with type 2 diabetes (32). Fewer studies have been conducted on the PON1 L55M, PON2 A148G, and PON2 S311C polymorphisms in CHD, but the results have proved conflicting (2, 33). The major factor contributing of these differences is a completely different distribution of PON polymorphisms among different ethnic populations.

In the present study, the allele and genotype frequencies

Table 4. PON polymorphism allele frequencies in various world populations compared with those found in the present study

Population	PON1-55	PON1-192	PON2-148	PON2-311	References
Korea (n=988)	0.941	0.705	0.825	0.7825	Present study
Japan (n=2,210)	0.927	0.666	0.802	0.7825	Yamada et al., 2003 (13)
China (n=475)	1	0.352	0.826	0.827	Wang et al., 2003 (12)
Taiwan (n=597)	0.972	0.359	0.862	0.827	Li et al., 2006 (14)
Thailand (n=202)	0.95	0.71	0.802	0.7825	Pranakul et al., 2005 (15)
Iran (n=132)	0.59	0.19	0.822	0.72	Sepahvand et al., 2007 (16)
Pakistan (n=370)	0.783	0.672	0.51	0.388	Saeed et al., 2007 (17)
Austria (n=303)	0.644	0.746	0.862	0.333	Watzinger et al., 2002 (18)
U.S.A. (n=2,553)	0.637	0.72	0.766	0.234	Yamada et al., 2003 (13)
Canada (n=324)	0.64	0.73	0.76	0.24	McKeown-Eyssen et al., 2004 (20)
Mexico (n=214)	0.84	0.51	0.69	0.49	Rojas-Garcia et al., 2005 (21)
Brazil (n=376)	0.64	0.66	0.51	0.006	Oliveira et al., 2004 (22)
Latin America (n=260)	0.82	0.48	0.71	0.29	Holland et al., 2006 (23)
U.K. (n=405)	0.63	0.71	0.411	0.74	Pasdar et al., 2006 (8)
Netherlands (n=201)	0.627	0.677	0.76	0.24	Leus et al., 2001 (24)
Ireland (n=388)	0.65	0.69	0.841	-	Hasselwander et al., 1999 (25)
Germany (n=535)	0.644	0.723	0.82	-	Gardemann et al., 2000 (26)
Italy (n=273)	0.601	0.711	0.913	-	Martinelli et al., 2005 (27)
Poland (n=437)	0.64	0.743	0.557	-	Slawik et al., 2007 (7)
Turkey (n=116)	0.702	0.621	0.214	-	Agacan et al., 2005 (28)
Israel (n=193)	0.583	0.65	0.422	-	Karban et al., 2007 (29)
Spain (n=388)	0.626	0.701	0.963	-	Ferre et al., 2003 (30)
Switzerland (n=199)	0.666	0.666	0.614	-	Garin et al., 2005 (31)

Statistical significance between the world populations and the Korean population in this study was determined by means of the Mantel-Haenszel chi-square test. PON, paraoxonase.

Table 5. Association between PON2 polymorphisms and lipid profile (n=988)

	PON2A148G				PON2S311C										
	AA	AG	GG		SS	SC	CC								
LDLC															
Normal					469 (47.5)	275 (27.9)	19 (1.9)				469 (47.5)	275 (27.9)	19 (1.9)		
High					140 (14.2)	69 (7.0)	15 (1.5)				140 (14.2)	69 (7.0)	15 (1.5)		
ApoB					42 (4.2)	21 (2.1)	7 (0.7)				42 (4.2)	21 (2.1)	7 (0.7)		
Low					501 (50.8)	295 (29.9)	15 (1.5)				501 (50.8)	295 (29.9)	15 (1.5)		
Normal					67 (6.8)	28 (2.8)	11 (1.1)				67 (6.8)	28 (2.8)	11 (1.1)		

PON, paraoxonase; LDLC, low-density lipoproteins cholesterol; Apo, apolipoprotein.
Table 6. Comparison of concentrations of LDLC and ApoB in PON2 polymorphisms

PON2A148G	AA	AG	GG	P	LDLC	ApoB		
	112.2±30.9	114.4±29.3	135.1±28.5	0.017	0.877±0.248	0.852±0.223	1.373±0.241	0.014
PON2S311C	SS	SC	CC	P	LDLC	ApoB		
	112.2±30.9	114.4±29.3	135.1±28.5	0.017	0.877±0.248	0.852±0.223	1.373±0.241	0.014

Data are reported as mean±SD. Homozygotes for PON2A148G and PON2S311C show higher concentrations of LDLC cholesterol and higher ApoB levels compared to populations from China and Taiwan. The genotype distribution of PON2 polymorphism was narrower than that seen in the PON1 polymorphism. PON2 A148G and PON2 S311C polymorphisms seen in the Korean population exhibited a pattern similar to that seen in other ethnic groups, with increased frequency of the C allele. However, this was significantly different compared to populations from China and Taiwan. The genotype distribution of PON2 polymorphism was narrower than that seen in the PON1 polymorphism. PON2 A148G and PON2 S311C polymorphisms seen in the Korean population exhibited a pattern similar to that seen in other ethnic groups, with increased frequencies of A and S alleles. However, there were significant distribution differences compared with populations from Pakistan, Brazil, and the U.S.A. PON serum concentration and activity are considered more important than PON polymorphisms in the risk of atherosclerotic disease, and gene-gene and gene-environmental interaction may increase or decrease susceptibility to the disease. Therefore, these ethnic variations in PON polymorphisms could help us to understand the role of PON as a marker for the interpretation of data correlated with a specific disease.

In order to determine the role of PON polymorphism in the lipid profile of this study population, the lipid levels were determined and the association of the PON polymorphisms and lipid profiles was evaluated. In this analysis, no association was found between PON1 genotypes and lipid concentration (data not shown). However the PON2 polymorphism was found to affect concentrations of LDL and ApoB. Homozygotes for PON2 148G and PON2 311C showed higher concentrations of LDL cholesterol and higher ApoB levels (P=0.017, 0.014, respectively). These findings differ from previous reports. Homozygotes for PON2 148A and PON2 311S had significantly higher plasma total cholesterol and LDL cholesterol and higher ApoB levels than homozygotes for PON2 148G and PON2 311C and heterozygotes for PON2 A148G and PON2 S311C (4). Another report found that homozygotes for PON2 148G had the highest plasma concentrations of total cholesterol, HDL cholesterol, and ApoA1 (34). Homozygotes of for PON2 311C was reported to have the highest concentration of total cholesterol and LDL cholesterol (24). These discrepancies suggest that polymorphisms in the PON gene are associated with significant variations in intermediate traits in plasma lipoprotein metabolism, through an unknown mechanism. Additional studies using large population based cohorts will be needed to determine the general applicability of the present results for Korean population.

In this study, the PON polymorphisms and allele frequencies were described in a Korean population, and compared with other ethnic groups. These ethnic variations are considered important factors in the interpretation of diseases associated with PON polymorphism.

REFERENCES

1. Mackness B, Durrington PN, Mackness MI. The paraoxonase gene family and coronary heart disease. Curr Opin Lipidol 2002; 13: 357-62.
2. Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21: 473-80.
3. Ng CJ, Bourquard N, Grijalva V, Hana S, Shih DM, Navab M, Fogelman AM, Luuis AJ, Young S, Reddy ST. Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B-containing lipoproteins: anti-atherogenic role for paraoxonase-2. J Biol Chem 2006; 281: 29491-500.
4. Hegele RA. Paraoxonase genes and disease. Ann Med 1999; 31: 217-24.
5. Shin BS, Oh SY, Kim YS, Kim KW. The paraoxonase gene polymorphism in stroke patients and lipid profile. Acta Neurol Scand 2008; 117: 237-43.
6. Zintzaras E, Hadjigeorgiou GM. Association of paraoxonase 1 gene polymorphisms with risk of Parkinson’s disease: a meta-analysis. J Hum Genet 2004; 49: 474-81.
7. Slowik A, Wloch D, Szemer P, Wolkow P, Malecki M, Peri J, Turaj W, Dziiedzik T, Klimkowicz-Mrowiec A, Kopec M, Figlewicz DA, Szczudlik A. Paraoxonase 2 gene C311S polymorphism is associated with a risk of large vessel disease stroke in a Polish population. Cerebrovasc Dis 2007; 23: 395-400.
8. Pasdar A, Ross-Adams H, Cumming A, Cheung J, Whalley L, St Clair D, MacLeod MJ. Paraoxonase gene polymorphisms and haplotype analysis in a stroke population. BMC Med Genet 2006; 7: 28.
9. Roest M, Rodenburg J, Wiegman A, Kastelein JJ, Voorbij HA. Paraoxonase genotype and carotid intima-media thickness in children with familial hypercholesterolemia. Eur J Cardiovasc Prev Rehabil
Yamaguchi S, Yamada Y, Matsuo H, Segawa T, Watanabe S, Kato K, Yokoi K, Ichihara S, Metoki N, Yoshida H, Satoh K, Nozawa Y. Gender differences in the association of gene polymorphisms with type 2 diabetes mellitus. Int J Mol Med 2007; 19: 631-7.

10. Hamada Y, Ando F, Niino N, Miki T, Shimokata H.

12. Wang X, Fan Z, Huang J, Su S, Yu Q, Zhao J, Hui R, Yao Z, Shen Y, Qiang B, Gu D. Extensive association analysis between polymorphisms of PON gene cluster with coronary heart disease in Chinese Han population. Arterioscler Thromb Vasc Biol 2003; 23: 328-34.

13. Yamada Y, Ando F, Niino N, Miki T, Shimokata H. Association of polymorphisms of paraoxonase 1 and 2 genes, alone or in combination, with bone mineral density in community-dwelling Japanese. J Hum Genet 2003; 48: 469-75.

14. Li WF, Pan MH, Chung MC, Ho CK, Chiang HY. Lead exposure is associated with decreased serum paraoxonase (PON1) activity and genotypes. Environ Health Perspect 2006; 114: 1233-6.

15. Phuntuwate W, Suthisingsc C, Koamantakul B, Mackness MI, Mackness B. Paraoxonase 1 status in the Thai population. J Hum Genet 2005; 50: 293-300.

16. Sepahvand F, Shafaei M, Ghaffari SM, Rahimi-Moghaddam P, Mahmoudian M. Paraoxonase phenotype distribution in a healthy Iranian population. Basic Clin Pharmacol Toxicol 2007; 101: 104-7.

17. Saeed M, Perwaiz Iqbal M, Youssuf FA, Perverse S, Shafiq M, Sajid J, Frossard PM. Interactions and associations of paraoxonase gene cluster polymorphisms with myocardial infarction in a Pakistani population. Clin Genet 2007; 71: 238-44.

18. Watzinger N, Schmidt H, Schumacher M, Schmidt R, Eber B, Fruhwald FM, Zwerke R, Kostner GM, Klein W. Human paraoxonase 1 gene polymorphisms and the risk of coronary heart disease: a community-based study. Cardioology 2002; 98: 116-22.

19. Ranade K, Kirchgesser TG, Iqbalova OA, Devlin JJ, DelMonte T, Vishnupad P, Hui L, Tsuchihashi Z, Sacks FM, Sabatine MS, Braunwald E, White TJ, Shaw PM, Dracopoli NC. Evaluation of the paraoxonases as candidate genes for stroke: Glu192Arg polymorphism in the paraoxonase 1 gene is associated with increased risk of stroke. Stroke 2005; 36: 2346-50.

20. McKeown-Eyssen G, Baines C, Cole DE, Riley N, Tyndale RF, Marshall L, Jazmaj V. Case-control study of genotypes in multiple chemical sensitivity: CYP2D6, NAT1, NAT2, PON1, PON2 and MTHFR. Int J Epidemiol 2004; 33: 971-8.

21. Rojas-Garcia AE, Solis-Heredia MJ, Pina-Guzman B, Vega L, Lopez-Carrillo L, Quintanilla-Vega B. Genetic polymorphisms and activity of PON1 in a Mexican population. Toxicol Appl Pharmacol 2005; 205: 282-9.

22. Oliveira SA, Mansur AP, Ribeiro CC, Ramires JA, Annichino-Bizzacchi JM. PON1 M/L55 mutation protects high-risk patients against coronary artery disease. Int J Cardiol 2004; 94: 73-7.

23. Holland N, Furlong C, Bastaki M, Richter R, Bradman A, Huen K, Beckman K, Eskennazi B. Paraoxonase polymorphisms, haplotypes, and enzyme activity in Latino mothers and newborns. Environ Health Perspect 2006; 114: 985-91.

24. Leus F, Zwart M, Kastelein JJ, Voorbij HA. PON2 gene variants are associated with clinical manifestations of cardiovascular disease in familial hypercholesterolemia patients. Atherosclerosis 2001; 154: 641-9.

25. Hasselwanter O, Savage DA, McMaster D, Loughrey CM, McNamee PT, Middleton D, Nicholls DP, Maxwell AP, Young IS. Paraoxonase polymorphisms are not associated with cardiovascular risk in renal transplant recipients. Kidney Int 1999; 56: 289-98.

26. Gardemann A, Philipp M, Hess K, Katz N, Tillmanns H, Haberbosch W. The paraoxonase Leu-Met54 and Glu-Arg191 gene polymorphisms are not associated with the risk of coronary heart disease. Atherosclerosis 2000; 152: 421-31.

27. Martinelli N, Girelli D, Olivieri A, Cavallari U, Biscuola M, Trabetti E, Friso S, Pizzolo F, Tenuti I, Bozzini C, Villa G, Ceradini B, Sandri M, Cheng S, Grow MA, Pignatti PF, Corrocher R. Interaction between metabolic syndrome and PON1 polymorphisms as a determinant of the risk of coronary artery disease. Clin Exp Med 2005; 5: 20-30.

28. Agachan B, Yilmaz H, Ergen HA, Karaali Z, Isbir T. Paraoxonase (PON1) 55 and 192 polymorphism and its effects to oxidant-antioxidant system in Turkish patients with type 2 diabetes mellitus. Physiol Res 2005; 54: 287-93.

29. Karban A, Hartman C, Eriakim R, Waterman M, Nesher S, Barnett-Ginnsy O, Shamir R. Paraoxonase (PON1) 192R allele carriage is associated with reduced risk of inflammatory bowel disease. Dig Dis Sci 2007; 52: 2707-15.

30. Ferre N, Camps J, Fernandez-Ballart J, Ariza V, Murphy MM, Cervelo S, Biamens E, Villena E, Tous M, Joven J. Regulation of serum paraoxonase activity by genetic, nutritional, and lifestyle factors in the general population. Clin Chem 2003; 49: 1491-7.

31. Garin MC, Kalix B, Morabia A, James RW. Paraoxonase phenotype distribution in a healthy Irani-

32. Mackness B, Davies GK, Turkie W, Lee E, Roberts DH, Hill E, Roberts C, Durrington PN, Mackness MI. Paraoxonase status in coronary artery disease. Int J Cardiol 2004; 94: 73-7.

33. Wheeler JG, Keaveny BD, Watkins H, Collins R, Danesh J. Four paraoxonase gene polymorphisms in 11212 cases of coronary heart disease and 12786 controls: meta-analysis of 43 studies. Lancet 2004; 363: 689-95.

34. Gunnarsdottir I, Birgisdottir BE, Thorsdottir I, Gudnason V, Benedictsson R. Size at birth and coronary artery disease in a population with high birth weight. Am J Clin Nutr 2002; 76: 1290-4.