Electronic Supplementary Information

RSC Advances

Photoluminescence color stability of
Greene-emitting InP/ZnS core/shell quantum dots
embedded in silica prepared via hydrophobic routes

Taichi Watanabe,a Yoshiki Iso,*a Tetsuhiko Isobe* a and Hirokazu Sasakib

aDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

bSHOEI CHEMICAL INC., 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-0443, Japan

*Corresponding Authors

E-mail address: iso@apple.keio.ac.jp (Y.I.), isobe@apple.keio.ac.jp (T.I.);

Tel: +81 45 566 1558 (Y.I.), +81 45 566 1554 (T.I.); Fax: + 81 45 566 1551
Fig. S1 Photograph showing blue light irradiation of a sample. The actual experiment was performed in the dark.
Fig. S2 Photographs of TEOS dispersion of InP/ZnS QDs at 9.3 mg mL$^{-1}$ under (left) white light and (right) 365-nm near-UV light. The images were captured immediately after mixing.
Fig. S3 Photographs of mixtures of TEOS (3 mL) and lactic acid (x mL) after gelation.
Table S1 Detailed values of the color coordinates plotted in Figs. 3 and 8.

	Color coordinate
(a)	(0.2438, 0.6830)
Fig. 3	
(b)	(0.2500, 0.6747)
(c)	(0.3198, 0.6239)
(a)	(0.2333, 0.6916)
Fig. 8	
(b)	(0.2225, 0.6957)
(c)	(0.2221, 0.6941)
Fig. S4 Photographs of 0.5-mg mL⁻¹ toluene dispersions of (a) as-received InP/ZnS QDs, (b) TMOS-modified InP/ZnS QDs (20 h), and (c) TMOS-modified InP/ZnS QDs (7 d) under (left) white light and (right) 365-nm UV light.
Table S2 PLQYs of toluene dispersions of the as-received InP/ZnS QDs without TMOS after stirring for a certain time. $\lambda_{ex} = 468.3$ nm.

Stirring duration	QY (%)
(Immediately after dispersion)	67
20 h	61
7 days	55
Fig. S5 Changes in the PL spectra under continuous irradiation by the flat panel blue LED. (a) As-received InP/ZnS QDs, (b) TMOS-modified InP/ZnS QDs (20 h), and (c) TMOS-modified InP/ZnS QDs (7d). $\lambda_{\text{ex}} = 468.3$ nm.