In Vivo Turnover of Tau and APP Metabolites in the Brains of Wild-Type and Tg2576 Mice: Greater Stability of sAPP in the β-Amyloid Depositing Mice

Jose Morales-Corraíza¹,²*, Matthew J. Mazzella¹, Jason D. Berger¹, Nicole S. Diaz¹, Jennifer H. K. Choi¹,², Efrat Levy¹,², Yasuji Matsuoka³†, Emmanuel Plane⁴, Paul M. Mathews¹,²*

1 Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America, 2 New York University School of Medicine, Orangeburg, New York, United States of America, 3 Department of Neurology, Georgetown University Medical Center, Washington, D. C, United States of America, 4 Centre Hospitalier de l’Université Laval, Neurosciences, Québec, Canada

Abstract

The metabolism of the amyloid precursor protein (APP) and tau are central to the pathobiology of Alzheimer’s disease (AD). We have examined the in vivo turnover of APP, secreted APP (sAPP), Aβ and tau in the wild-type and Tg2576 mouse brain using cycloheximide to block protein synthesis. In spite of overexpression of APP in the Tg2576 mouse, APP is rapidly degraded, similar to the rapid turnover of the endogenous protein in the wild-type mouse. sAPP is cleared from the brain more slowly, particularly in the Tg2576 model where the half-life of both the endogenous murine and transgene-derived human sAPP is nearly doubled compared to wild-type mice. The important Aβ degrading enzymes neprilysin and IDE were found to be highly stable in the brain, and soluble Aβ40 and Aβ42 levels in both wild-type and Tg2576 mice rapidly declined following the depletion of APP. The cytoskeletal-associated protein tau was found to be highly stable in both wild-type and Tg2576 mice. Our findings unexpectedly show that of these various AD-relevant protein metabolites, sAPP turnover in the brain is the most different when comparing a wild-type mouse and a β-amyloid depositing, APP overexpressing transgenic model. Given the neurotrophic roles attributed to sAPP, the enhanced stability of sAPP in the β-amyloid depositing Tg2576 mice may represent a neuroprotective response.

Citation: Morales-Corraíza J, Mazzella MJ, Berger JD, Diaz NS, Choi JHK, et al. (2009) In Vivo Turnover of Tau and APP Metabolites in the Brains of Wild-Type and Tg2576 Mice: Greater Stability of sAPP in the β-Amyloid Depositing Mice. PLoS ONE 4(9): e7134. doi:10.1371/journal.pone.0007134

Editor: Ashley I. Bush, Mental Health Research Institute of Victoria, Australia

Received December 19, 2008; **Accepted** August 26, 2009; **Published** September 22, 2009

Copyright: © 2009 Morales-Corraíza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the NIH (NS045205 (PM), AG017617 (EL and PM), AG022455 (YM)) and Alzheimer’s Association (IIRG-07-60047;PM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jmoraless-corraliza@niki.rfmh.org (JMC); mathews@nki.rfmh.org (PMM)
† Current address: Neurodegeneration Research, GlaxoSmithKline, Shanghai, China

Introduction

The brain accumulation of abnormal proteins is a common hallmark of multiple neurodegenerative diseases. Alzheimer’s disease (AD) brains are characterized by extracellular aggregates of the small (40 and 42 residues) β-amyloid peptide (Aβ) [1], and intraneuronal neurofibrillary tangles, composed of hyperphosphorylated tau associated with the cell [2]. Aβ is generated by proteolysis of the ~100-kDa amyloid precursor protein (APP), a broadly expressed type-1 transmembrane protein that is found primarily in the trans-Golgi network, endocytic compartments, and at the cell surface [3]. β-Cleavage of APP, mediated by BACE1, occurs within the luminal/extracellular domain of APP and generates two APP fragments: a large, soluble amino-terminal fragment (sAPP) that is secreted from the cell and a transmembrane, carboxyl-terminal fragment (CTF) containing the whole Aβ peptide that remains associated with the cell [4]. An alternative pathway involves the cleavage of APP 16 residues downstream of this site at the α-cleavage site, which is mediated by metallocproteinases [5]. Like β-cleavage, α-cleavage generates an sAPP fragment (sAPPα) that is secreted from the cell and an αCTF that remains membrane-associated. α-Cleavage occurs within the Aβ peptide sequence and as such prevents the generation of Aβ from a given APP molecule. Aβ is generated from the βCTF by an intramembrane cleavage (mediated by the presenilin γ-secretase complex) that occurs primarily at 40 residues, and to a lesser extent at 42 residues, downstream from the β-cleavage site, releasing Aβ1–40 and Aβ1–42 [4].

While much is known about the proteolytic processes that lead to the generation of these APP metabolites, their subsequent metabolism and function(s) in the central nervous system (CNS) are not as well defined [6]. APP that is not cleaved at the α- or β-sites can be degraded through the lysosomal pathway [7–9]. Aβ accumulation in the brain during AD is dependent on the misbalance of production and turnover of this peptide, with neprilysin and insulin degrading enzyme (IDE) known to be important Aβ degrading enzymes in the brain [10,11]. The turnover of the secreted sAPP fragments in *vivo* has not been extensively examined [12], and, unlike APP, cannot be assessed using cell culture systems where sAPP is simply secreted into the growth media. Understanding the turnover of proteins in the brain that play a central role in neurodegenerative diseases, such as APP and tau, can help to explain why a protein/peptide fragment, such as Aβ, accumulates. Additionally, understanding
the \textit{in vivo} turnover of APP metabolites and tau in the normal, intact brain is an important consideration when developing therapeutic strategies directed at altering their levels. In the case of APP, the fragments that are generated may have important physiological functions related to their abundance and regulation in the CNS. For example, sAPP is thought to have neuroprotective and neurotrophic functions \cite{13,14}, which would be unique to the CNS and dependent upon its stability in the brain. In order to directly examine the turnover of endogenous APP, APP metabolites, and tau in an intact brain, we have blocked \textit{de novo} protein synthesis in mice and examined the stability of these proteins over time.

\section*{Results}

Following treatment with cycloheximide, we examined by Western blotting APP holoprotein levels in the brains of Tg2576 mice with \textit{b}-amyloid deposits and wild-type littermates. Figure 1A and 1B show that APP levels rapidly declined in Tg2576 and wild-type mice following protein synthesis inhibition. The initial turnover of the human Swedish APP in the Tg2576 model, which is overexpressed at \(~6\)-fold of the endogenous protein \cite{15}; see also Figure 1A), is similar to the turnover of the endogenous APP in a wild-type mouse, with \(~40\%\) of the pre-existing APP degraded within the first hour. In both Tg2576 and wild-type mice, a portion of the initial APP was found to persist up to 25 hours following the inhibition of protein synthesis, with a greater amount of the initial APP pool persisting in the Tg2576 mice \((\sim50\%)\) than in the wild-type mice \((\sim30\%)\); \(p<0.001\), two-way ANOVA comparing the APP turnover in the Tg2576 and wild-type mice.

Next, we examined the levels of sAPP in the brain following cycloheximide treatment. Using 22C11 antibody to detect all sAPP fragments, human and mouse and following cycloheximide treatment, it was found that sAPP total is cleared from the brain in the Tg2576 (top panel of Figure 1C) and wild-type mice (top panel of Figure 1D). The half-life for sAPP total was found to be more than 7 hours in Tg2576 mice and \(~4\) hours in wild-type mice (calculated as a first-order process \cite{16}); Figure 1E); \(p<0.001\), two-way ANOVA comparing the sAPP total turnover in the Tg2576 and wild-type mice. Initial sAPP total levels in the brain of Tg2576 mice were increased relative to wild type, as is expected given the way ANOVA comparing the sAPP turnover in the Tg2576 and wild-type mice.

In the brain. In order to directly examine the turnover of endogenous APP, APP metabolites, and tau in an intact brain, we have blocked \textit{de novo} protein synthesis in mice and examined the stability of these proteins over time.

Prior to examining the clearance of A\(\beta\) in the brain, we determined the stability of two A\(\beta\) degrading enzymes: neprilysin and insulin degrading enzyme (IDE). The levels of these important A\(\beta\) degrading enzymes do not decline rapidly following cycloheximide treatment in either Tg2576 mice (Figure 2A) or wild-type mice (Figure 2B), and both procatases were readily detected following 23 hours of cycloheximide treatment. Plaque-associated A\(\beta\) is thought to be highly stable within the brain \cite{17}. Total A\(\beta\) levels in the Tg2576 mice, determined by formic acid extraction of plaque A\(\beta\), varied between animals independently of cycloheximide treatment time (data not shown). However, the pool of soluble A\(\beta\) measured by DEA extraction normalized to formic-acid extractable A\(\beta\) in a given Tg2576 mouse was found to rapidly decrease following cycloheximide treatment (Figure 2C). The soluble A\(\beta\) pool in the Tg2576 mice decreased by \(~50\%) at maximum, suggesting that soluble A\(\beta\) in the \textit{b}-amyloid depositing mice may be in equilibrium with plaque-associated A\(\beta\). We also examined DEA extractable, soluble endogenous A\(\beta\) levels in wild-type mice (Figure 2D). Brain A\(\beta\)40 and A\(\beta\)42 levels decreased rapidly, at a rate similar to that of soluble A\(\beta\) in the Tg2576 mice, and consistent with the rapid depletion of precursor APP in the brain. In comparison to the Tg2576 mice, less of the initial A\(\beta\) remained after 23 hours of cycloheximide treatment in the wild-type mice.

Finally, we determined the \textit{in vivo} turnover rate of tau. In Tg2576 mice, the levels of tau protein \((T57120)\) were unchanged with cycloheximide treatment over 23 hours. Similarly, in the wild-type mice levels of tau protein were unchanged following protein synthesis inhibition (Figure 3A and 3B). In contrast, a greater upward shift in the mobility of tau in the wild-type mice compared to the Tg2576 mice following cycloheximide treatment is suggestive of a robust increase in tau phosphorylation. Consistent with this idea, the levels of phosphorylated-tau detected by PHF-1 dramatically increased in the wild-type mice following protein synthesis inhibition \((\sim3.4\text{-times at 23 hours})\), whereas the change in PHF-1 signal from baseline in the Tg2576 mice following cycloheximide treatment was less \((\sim1.5\text{-times at 23 hours})\) (Figure 3A and 3C). While the initial PHF-1 signal was less in the wild-type mice compared to the Tg2576 mice \((T57120 \sim2.2\text{-times wild-type without treatment})\), after 23 hours of protein-synthesis inhibition the level of PHF-1 reactivity was similar in both groups of mice \((Figure 3C)\). Cycloheximide treatment is known to cause hypothermia \cite{18}, and a decrease in body temperature in mice increases the levels of phospho-tau \cite{19,20}. To determine whether cycloheximide-treatment increases tau phosphorylation in the wild-type mice primarily as the result of a decrease in body temperature, mice housed at room temperature were compared to mice housed at 34°C. When housed for 19 hours at 22°C following cycloheximide treatment body temperature decreased by 4.8\(\pm\)1.1°C \((n=6)\), whereas mice housed at 34°C showed a smaller drop in body temperature \((2.3\pm0.4°C; n=6)\). Control mice showed no change in body temperature when housed at 34°C. When compared by Western blotting, the mice housed at 34°C had less of an increase in phospho-tau levels following cycloheximide treatment (Figure 3D). Primary neurons maintained at 37°C showed a small and transient increase in phospho-tau following cycloheximide treatment that was also reflected in the appearance of a slower migrating band in the total tau Western blot, possibly due to differential turnover of the relevant tau kinases and phosphatases (Figure 3E). Nevertheless, the reduction in cycloheximide-dependent tau phosphorylation \textit{in vivo} when body temperature is maintained suggests that the bulk of the increase in tau phosphorylation over a longer period results from a decrease in body temperature (Figure 3D).
Figure 1. Turnover of APP and sAPP in 16-month-old Tg2576 mouse and wild-type brains following cycloheximide treatment. Western blotting is shown of total proteins isolated from brain tissue following cycloheximide treatment of mice for the indicated times. (A) Transgene-derived human and endogenous APP in Tg2576 mice and endogenous murine APP in wild-type mice was detected with the anti-C-terminal APP antibody C1/6.1; β-tubulin, which is known to be stable in the CNS [52], is shown in control Western blots. An untreated wild-type mouse (wt) is included in the Tg2576 analysis to show the increased APP expression in this model. (B) Quantification of APP turnover in the Tg2576 and wild-type mice normalized to the band density without cycloheximide treatment; two-way ANOVA was used to compare APP turnover in the Tg2576 and wild-type mice (p < 0.001). (C) Following the indicated cycloheximide treatment times, sAPP total was detected with 22C11 in Tg2576 mice. Human sAPPα and sAPPβ were detected by Western blotting with 6E10 and 6A1, respectively, and endogenous murine sAPPα and sAPPβ were detected by Western blotting with m3.2 and 242, respectively. Non-specific bands detected by the affinity purified polyclonal 242 are shown by the APP knockout brain homogenate. (D) Levels of endogenous sAPP total, sAPPα and sAPPβ were detected by Western blotting in wild-type mice following cycloheximide treatment as described above. The graphic representations in (E) compare the quantification of the levels of sAPP total in Tg2576 and wild-type mice (p < 0.001). In (F), the turnover of the indicated sAPP species in the Tg2576 mice is shown (p < 0.001, comparing murine sAPPα to the other sAPP species). In (G), the levels of endogenous sAPPα and sAPPβ in wild-type mice is shown (p > 0.5). Throughout, quantifications are from two experiments (mean ± SEM) as specified in the Methods section.

doi:10.1371/journal.pone.0007134.g001
Discussion

Global protein-synthesis inhibition can be used to determine the stability of proteins in an animal, and is appealing when examining protein turnover in the CNS as the protein-synthesis inhibitor cycloheximide readily passes the blood-brain barrier and the conditions for CNS-protein-synthesis inhibition in mice have been well established [21]. Using this, we examined in the brain the metabolic turnover of two proteins key to AD pathobiology, tau and APP, comparing wild-type mice with a transgenic β-amyloid depositing AD mouse model Tg2576 [15]. The turnover for a metabolite such as the secreted sAPP species as well as extracellular Aβ cannot be extrapolated from a cell culture system, and can only be determined in the intact brain. Moreover, determining the impact of plaque pathology and associated gliosis [22] on the turnover rate for tau, APP and other APP metabolites such as sAPP also necessarily requires an intact in vivo system.

Our finding that tau is a highly stable protein in the brains of both wild-type and Tg2576 mice is in agreement with a report of tau protein persisting for more than 30 days during transport along the mouse optic nerve from the retina [23], and suggests that tau remains long-lived once delivered to the distal neurite. In both wild-type and Tg2576 mice, the total levels of tau protein were unchanged with as long as 23 hours of cycloheximide treatment, and this stability of tau in vivo may predispose it to accumulation such as occurs in AD with paired helical filament tau [24,25]. Unexpectedly, both in wild-type and Tg2576 mice the levels of phosphorylated-tau increased following inhibition of protein synthesis, apparently due to hypothermia. Hypothermia is a powerful enhancer of tau phosphorylation through its effects on the balance of kinase and phosphatase activities [19,20], although this effect was less pronounced in the Tg2576 mice, possibly because baseline phospho-tau is higher in these mice [26–28].

The rapid turnover of endogenous APP following protein synthesis inhibition in the brain is consistent with what has been reported by pulse-chase of cultured rodent neurons and glia [29]. APP is transported by rapid anterograde transport in neurons, with most of its processing apparently occurring at the distal neurite [30]. Following metabolic labelling of retinal ganglion cells, Lyckman et al. [31] found that APP, once transported to the presynaptic termini, had a half-life of less than 4 hours. Consistent with these reports, our findings present a global picture of APP metabolism in the brain showing a rapid bulk-turnover of the holoprotein, both under normal expression levels in wild-type mice and with APP overexpression and plaque pathology in aged Tg2576 mice. Indeed, in spite of the greater APP expression in the transgenic mice the initial turnover of APP is similar in Tg2576 and wild-type mice, although a greater proportion of APP stably persists following extended cycloheximide treatment in the APP overexpressing transgenics.

The bulk flow of the CSF in a mouse brain, measured by inulin [32] or albumin [33] transport, is approximately 2–3 hours, which is similar to the turnover of sAPP in a wild-type mouse brain and suggests that this soluble APP metabolite may diffuse in the brain.
Figure 3. Metabolism of tau following protein synthesis inhibition. (A) Western blots are shown using an antibody that recognizes tau independent of its phosphorylation status (T57120, top panels) and an antibody that detects a phospho-epitope on tau (PHF-1, bottom panels) in Tg2576 mouse brain and in wild-type mouse brain. Total brain proteins were analyzed as in Figure 1. (B) Change in the intensity of the T57120 signal following cycloheximide treatment in Tg2576 and wild-type mice is shown (mean ± SEM). (C) Change in the intensity of the PHF1 signal following cycloheximide treatment in Tg2576 and wild-type mice is shown (mean ± SEM). Signal intensity is normalized to the PHF1 signal in wild-type mice without treatment (inserted Western blot). (D) Tau levels detected with T57120 and PHF-1 antibodies in wild-type mouse brain following cycloheximide treatment when mice were housed at ambient temperature (22°C) or at 34°C for 19 hours. β-tubulin is shown as a loading control. (E) Tau levels in primary neurons were detected by Western blotting with T57120 and PHF-1 antibodies after cycloheximide treatment as indicated. β-tubulin is shown as a loading control.
doi:10.1371/journal.pone.0007134.g003
along with the bulk flow of CSF as a major pathway for its
catabolism [16]. However, the turnover of sAPP in the brain was
found to be slower in the Tg2576 mouse than in a wild-type
animal. sAPP has been shown to support cell survival, neurite
outgrowth, synaptogenesis, synaptic plasticity, can modify the
response of neurons to injury, and can substantially rescue CNS
deficits in an APP null mouse [34–39]. The increased stability of
sAPP in Tg2576 mice relative to wild-type mice is consistent with a
greater need for neurotrophic support in the β-amyloid containing
brain [40] and may reflect an ongoing role for sAPP in supporting
neuron function in the context of β-amyloid toxicity, neuron stress,
and inflammatory responses [34–38]. In the context of the greater
overall stability of sAPP in the Tg2576 mice, substantial
differences were also seen in the turnover of the specific sAPP
species, with the murine sAPPβ the most stable of the sAPP
species. Given that the Swedish mutation in the transgene human
APP drives β-cleavage and sAPPβ production [41,42], the
disproportionate levels of sAPPβ in the Tg2576 mice may impact
the turnover of the relatively underrepresented sAPPα. In addition,
βA pathology may alter the turnover of sAPPβ through an
interaction in the brain parenchymal between the sequence
homology at the C-terminus of sAPPβ with the N-terminus of βA.
Additionally, overexpression of sAPP in the Tg2576 mouse may
overload the degradation pathway, although the differences in the
metabolism between human and murine sAPP species, with murine sAPPβ showing the longest half-life, suggests that species
differences and/or differences in the handling of the Swedish-mutation-containing sAPP fragments also play a role in brain
sAPP turnover in the β-amyloid depositing mouse model.

We find that endogenous βA, both βAβ40 and βAβ42, is rapidly
degraded following cycloheximide treatment and the depletion of
pre-existing APP. Following γ-secretase inhibition, βA micro-
dialysis measurements have given a half-life for extracellular βA of
~2 hours [13], and Savage et al. [14] have shown that shifting
APP processing to the γ-secretase pathway resulted in a decline in
total brain βA with a half-life between 1 and 2.5 hours. Our
findings, which used a different experimental approach that does
not specifically alter an APP cleavage step, further support the
conclusion that βA is rapidly cleared from the normal brain.
Soluble βA in the β-amyloid plaque containing Tg2576 mice showed a similar and rapid decrease following cessation of protein
synthesis, again with βAβ40 and βAβ42 turnover being similar.
These findings indicate that the soluble βA pool in a brain
containing β-amyloid plaque is similarly accessible to degradation
as is soluble βA in a normal brain. The reduction plateau reached in
the Tg2576 mice for soluble βA, which is likely to be in
equilibrium with plaque-associated βA, may represent additional
DEA-extractable βA being liberated from β-amyloid plaques
over time in the brain. While brain APP is metabolized rapidly in both
wild-type and an APP transgenic mice, our findings unexpectedly
show that sAPP is more stable in vivo in the β-amyloid containing
Tg2576 brain when compared to wild-type mice. Additionally, the
rapid turnover of a soluble pool of βA is similar in the wild-type
and the Tg2576 mice in spite of the significant accumulation of
plaque-associated βA in the brains of the transgenic mice. The
slower turnover of sAPP in the mice with plaque pathology
suggests that this neurotrophic APP metabolite may have an
important role in the β-amyloid containing brain.

Materials and Methods

Cycloheximide treatment

All experiments involving mice received prior approval from the
Nathan Kline Institute Animal Care and Use Committee. Sixteen-
month-old Tg2576 mice (overexpressing Swedish-mutant human
APP) [15] and wild-type littermates on a Swiss Webster x DBA/
C57BL6 F1 background were injected ip with 4.8 mg cyclohex-
imide in 150 μl isotonic saline (containing 20 mM HEPES, pH 8),
which has been shown to block protein synthesis in the brain of
mice [21]. Mice were returned to their home cage, maintained at
room temperature (22°C), sacrificed at the times indicated, and
brain tissue was dissected and flash-frozen prior to storage at
−80°C. The quantification of Western blot band density in
Figure 1B, 1E, 1F, 1G and 5A is from two experiments with a total
for both wild-type and Tg2576 of three mice at 0 and 23 hours
cycloheximide treatment, two mice at 2, 4 and 6 hours treatment
and one mouse at 1, 3, 5 and 7 hours treatment. In the tau
experiments shown in Figure 3B, half of the mice were held in
their home cage at a temperature of 34°C following cycloheximide
injection.

Cell cultures

Primary rat neuronal cultures were established from E18
embryos as previously described [43], and maintained in
Neurobasal Media (minus L-glutamine and phenol red) containing
B27 supplement, penicillin-streptomycin and Gluta MAX-1 (all
from Invitrogen, Carlsbad, CA) for 10 days. Primary neurons were
treated with 40 μg of cycloheximide per 1 ml media for the times
indicated prior to lysis and recovery of proteins for Western
blotting as previously described [44].

Antibodies

Antibodies C1/6.1 and m3.2 were generated in our laboratory:
C1/6.1 recognizes the carboxyl-terminal cytoplasmic domain of
APP [44], while the epitope for m3.2 has been determined to be
within residues 10–15 of murine βAβ by mapping against synthetic
peptides m3.2 recognizes murine APP, sAPPα and βA (See Figure
S1). 22C11 was purchased from Millipore (Temecula, CA) and
recognizes the N-terminal APP epitope common to the human and
murine proteins. Monoclonal antibody 6E10 (Covance,
Princeton, NJ), which recognizes residues 1–16 of human βA,$ was
used to detect human sAPPα. Rabbit polyclonal anti-sAPPβ antibody
242 recognizes only wild-type (murine or human) sAPPβ but not
Swedish-mutant-derived sAPPβ [45], and mouse monoclonal antibody 6A1 recognizes sAPPβ containing the
Swedish mutation but not the wild-type sequence [46]. These
sAPP antibodies (242, 6A1) recognize cleaved sAPP fragments and
are not cross-reactive with uncleaved APP. Total tau protein was
detected by a phosphate-independent anti-tau monoclonal antibody
(Tau T57120; BD Bioscience, San Jose, CA); PHF-1 recognizes tau protein phosphorylated at serine residues 396 and
404 [47]. Neprilysin was detected with the monoclonal antibody
56C6 (CD10) (Novacastra, Newcastle, UK), and IDE with the
rabbit polyclonal antibody IDE1 [11]; a gift of Dr. Dennis
Selkoe).

Brain Processing, Western blotting, Detection of APP
Metabolites

Ten-percent (weight-to-volume) homogenates were prepared
(in 250 mM sucrose, 20 mM Tris base, 1 mM EDTA, 1 mM
EGTA and protease inhibitors) from hemibrains lacking the
olfactory bulb and cerebellum [48], and these homogenates
were subsequently used for Western blotting and extraction
prior to βA sandwich ELISA. For Western blot analysis,
membranes were incubated in the appropriate primary
antibody (2 μg/ml) overnight and HRP-coupled secondary
antibody for 1 hour.
Aβ sandwich ELISAs

Marine Aβ levels were determined by sandwich ELISA using aliquots of the 10% sucrose homogenate. Soluble Aβ from an aliquot of the sucrose homogenates of wild-type and Tg2576 mice was extracted by diethylamine (DEA) [48]; separately, formic-acid extraction of another aliquot of the sucrose homogenate was used to detect β-amyloid plaque-associated Aβ in the Tg2576 mice. In combination with Aβ40 and Aβ42 C-terminal specific monoclonal antibodies (capture antibodies JRF/cAβ40/10 and JRF/cAβ42/26) [49], horseradish peroxidase-conjugated m3.2 was used to detect endogenous murine Aβ in Aβ40- and Aβ42-specific sandwich ELISAs [50]. Similar ELISAs using JRF/AβN25 [51] were used to detect human Aβ in the Tg2576 mouse brains. ELISA results are reported as the mean ± SEM in fmol Aβ per g wet brain, based on standard curves using synthetic murine and human Aβ1–40 and Aβ1–42 peptide standards (American Peptide).

Statistics

Western blots were quantitated using ImageJ (http://rsb.info.nih.gov) and data analysis and graphs were plotted on GraphPad Prism v.5 (GraphPad Software, San Diego, CA, USA). Curve fitting and statistical two-way analysis of variance (ANOVA) were performed.

Supporting Information

Figure S1 Characterization of the monoclonal antibody m3.2. Antibody m3.2, which was generated in our laboratory against a synthetic peptide corresponding to residues 1–15 of murine Aβ, binds specifically to murine APP, sAPPα and Aβ. A. Specificity of m3.2 antibody for murine Aβ compared to human Aβ shown by immunoprecipitation and Western blotting. Equal amounts (3 μg) of synthetic murine Aβ42 and human Aβ42 were immunoprecipitated overnight [44] with m3.2 and 6E10 antibodies as indicated. The immunoprecipitate was resolved by SDS-PAGE, transferred to membrane, and probed with m3.2 antibody. Murine Aβ was detected in the m3.2 immunoprecipitation of synthetic murine Aβ42; human Aβ was not detected. IgG heavy and light chain reactivity is with the secondary detection antibody. B. Human Aβ was immunoprecipitated by antibody 6E10 and not detected by antibody m3.2. As was done in S1A, synthetic human and murine Aβ were immunoprecipitated as indicated. Human Aβ was immunoprecipitated and detected by antibody 6E10, while antibody m3.2 showed no reactivity for the human Aβ. C. Specificity of antibody m3.2 for murine APP metabolites. Western blotting using antibody m3.2 of human control and AD brain and wild-type and aged Tg2576 mouse brain is shown. Consistent with peptide mapping showing that the m3.2 antibody epitope is within residues 10–15 of murine Aβ (data not shown), antibody m3.2 detected murine APP and co-migrating sAPPs in the mouse brain extract, but did not detect any proteins in the human brain extracts. Additionally, antibody m3.2 detected the abundant murine Aβ co-deposited in aged Tg2576 mouse brain. D. Antibody m3.2 reactivity with human brain extract is blocked by co-incubation with synthetic murine Aβ. Wild-type and aged Tg2576 mouse brain extracts were resolved by SDS-PAGE, as indicated. Synthetic murine Aβ42 or synthetic human Aβ was added to the antibody m3.2 binding solution as indicated (1 μg/ml murine or human Aβ, 2 μg/ml m3.2 antibody) 1 hour prior to membrane incubation. APP metabolites were not detected with the addition of competing synthetic murine Aβ42. The addition of synthetic human Aβ42 did not interfere with m3.2 reactivity with murine APP metabolites in the mouse brain. E. Antibody m3.2 detects both APP and sAPPα in mouse brain. Mouse brain homogenates were subjected to centrifugation at 100,000 xg for 1 hour as previously described [48]. Equivalent amounts of the membrane pellet containing APP and the supernatant containing soluble sAPP were resolved by SDS-PAGE and probed with either antibody m3.2 or 22C11 as indicated. The subtle mobility shift in the smaller sAPP species is shown for sAPPα (m3.2) and total sAPP (22C11) compared to the membrane-associated APP in the pellet fractions. These Western blots also demonstrate the steady-state abundance of sAPPα (m3.2) and total sAPP (22C11) relative to APP, consistent with the slower turnover of sAPP in the mouse brain.

Found at: doi:10.1371/journal.pone.0007134.s001 (9.70 MB TIF)

Acknowledgments

We would like to thank Dr. Dennis Selkoe (Harvard Medical School, Boston, MA, USA) for the gift of the anti-IDE antibody, Dr. Peter Davies (Albert Einstein College of Medicine, New York, NY, USA) for his gift of the anti-tau antibodies, Dr. Marc Mercken (Janssen, Beerse, Belgium) for anti-Aβ antibodies used in the ELISAs, Drs. Horikoshi-Sakuraba and Kinoshita (Immuno-Biological Laboratories, Takasaki, Japan) for anti-sAPP antibodies, Mr. Matthew Fligloda and Dr. Monika Pawlik for their maintenance of the mouse colonies, and Dr. Ralph Nixon for reading this manuscript.

Author Contributions

Conceived and designed the experiments: JMC PMM. Performed the experiments: JMC JDB NSD JHC PMM. Analyzed the data: JMC.

References

1. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120: 885–890.
2. Gründke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, et al. (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83: 4913–4917.
3. Hartmann T, Bieger SC, Bruhl B, Tienari PJ, Ida N, et al. (1997) Distinct sites of intracellular production for Alzheimer’s disease Aβ40/42 amyloid peptides. Nat Med 3: 1016–1020.
4. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 355–356.
5. Soodia SS (1992) β-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A 89: 6075–6079.
6. Gralle M, Ferreira ST (2007) Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 87: 11–32.
7. Cole GM, Bell L, Truong QB, Saitoh T (1992) An endosomal-lysosomal pathway for degradation of amyloid precursor protein. Ann N Y Acad Sci 674: 103–117.
8. Haas C, Schlommerger MC, Hung AY, Vigo-Pelfrey C, Mellon A, et al. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism [see comments]. Nature 359: 322–325.
9. Goldé TE, Easus S, Younkin LH, Selkoe DJ, Younkin SG (1992) Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 253: 728–730.
10. Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, et al. (2000) Amyloid β-protein by degradation. J Biol Chem 275: 32730–32738.
11. Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, et al. (2000) Identification of the major Aβ1-42-degrading catalytic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6: 143–150.
12. Qin WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, et al. (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J Biol Chem 273: 32730–32738.
13. De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113: 1657–1670.
14. Charrier IR, May PE, O’Dell MA, Taylor JW, Paradisian M, et al. (2003) In vivo assessment of brain intestinal fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J Neurosci 23: 8844–8853.
Savage MJ, Truko SP, Howland DS, Pinski LR, Mistretta S, et al. (1998) Turnover of amyloid β-protein in mouse brain and acute reduction of its level by phenol ester. J Neurosci 18: 1743–1752.

Hsiao K, Chapman P, Nisen S, Ezekian C, Harigaya Y, et al. (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice [see comments]. Science 274: 99–102.

Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, et al. (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131: 2173–2181.

Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, et al. (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313: 1781–1784.

Barney CC, Katzovich MJ, Fregly MJ (1979) Effect of cycloheximide on transport rates for tau, tubulin, and other microtubule-associated proteins: implications for Alzheimer’s disease. J Neurosci 24: 2401–2411.

Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, et al. (2004) Effect of cycloheximide on transport rates for tau, tubulin, and other microtubule-associated proteins: implications for Alzheimer’s disease. J Neurosci 24: 2401–2411.

Otth C, Concha, II, Arendt T, Stieler J, Schliebs R, et al. (2002) AbetaPP induces microtubule-associated protein tau hyperphosphorylation through inhibition of phosphorylation of phosphorytase activity by hypothenymia. J Neurosci 27: 3090–3097.

Gold PE, Sternberg DB (1976) Retrograde amnesia produced by several treatments: evidence for a common neurobiological mechanism. Science 201: 367–369.

Takeda R, Bolmont T, Kaser SA, Coomaraswamy J, Lindau D, et al. (2006) AP42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7: 940–946.

Merenken M, Fischer I, Kosik KS, Nixon RA (1995) Three distinct axonal subunits (ADan and Aβ) of Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261: 6084–6089.

Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation of tau plus microtubule-associate proteins: evidence for dynamic interactions of tau with microtubules in vivo. J Neurosci 15: R259–R267.

Abbott A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001). Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98: 6923–6928.

Grundke-Iqbal I, Zaidi K, Qianlan M, Tung YC, Zaidi MS, et al. (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261: 6084–6089.

Tomokoro Y, Lasley T, Rastogu A, Neubert TA, Bojjen-Moller M, et al. (2005) Familial Danish dementia: co-existence of Danish and Alzheimer amyloid subunits (AβDan and Aβ) in the absence of compact plaques. J Biol Chem 280: 36883–36894.

Oth C, Concha, II, Arendt T, Söderberg J, Schliebs R, et al. (2002) AβetaPP induces cdk5-dependent tau hyperphosphorylation in transgenic mice Tg2576. J Alzheimers Dis 4: 417–430.

Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW (2002) Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J Neurosci 22: 3376–3385.

LeBlanc AC, Nuc R, Gambetti P (1996) Amyloid precursor protein metabolism in primary cell cultures of neurons, astrocytes, and microglia. J Neurochem 66: 2300–2310.

Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, et al. (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A 87: 1561–1565.

Lyskamn AW, Confalone AM, Thinakaran G, Sisodia SS, Moya KL (1998) Posttranslational processing and turnover kinetics of presynaptically targeted amyloid precursor superfamily proteins in the central nervous system. J Biol Chem 273: 11100–11106.

Bass NH, Landborg P (1973) Postnatal development of bulk flow in the cerebrospinal fluid system of the albino rat: clearance of carboxyl-14 C inulin after intrathecal infusion. Brain Res 52: 325–332.

Rudick RA, Zirretta DK, Herndon RM (1982) Clearance of albumin from mouse subarachnoid space: a measure of CSF bulk flow. J Neurosci Methods 6: 253–259.

Araki W, Kitaguchi N, Tokushima Y, Ishii K, Aratuke H, et al. (1991) Trophic effect of β-amyloid precursor protein on cerebral cortical neurons in culture. Biochem Biophys Res Commun 181: 265–271.

Furukawa K, Barger SW, Blalock EM, Mattson MP (1996) Activation of K+ channels and suppression of neuronal activity by secreted β-amyloid precursor protein. Nature 379: 74–78.

Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, et al. (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron 10: 243–254.

Mattson MP (1994) Secreted forms of beta-amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons. J Neurobiol 25: 439–450.

Roch JM, Mababah E, Route-Leverage AC, Sundemo MP, Otero DA, et al. (1994) Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid β-A4 protein precursor. Proc Natl Acad Sci U S A 91: 7430–7434.

Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, et al. (2007) The secreted β-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27: 7817–7826.

Tajiri-Aranzihca L, Alaga E, Silled M, Arananzih S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59: 201–220.

Citró M, Oltersdorf T, Haas C, McConlogue L, Hung AY, et al. (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-secretase production. Nature 360: 672–674.

Cai XD, Golde TE, Younkin SG (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor [see comments]. Science 239: 514–516.

Brewer GJ, Torricelli JR, Eweke EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35: 567–576.

Mattson PM, Jiang Y, Schmidt SD, Gerosic OM, Mercken M, et al. (2002) Calpain activity regulates the cell surface distribution of amyloid precursor protein: inhibition of calpains enhances endosomal generation of β-cleaved C-terminal APP fragments. J Biol Chem 277: 36413–36424.

Nishitomi K, Sakaguchi G, Hirakoshi Y, Gray AJ, Maeda M, et al. (2006) BACE1 inhibition reduces endogenous Aβ and alters APP processing in wild-type mice. J Neurochem 99: 1553–1563.

Hiraoka-Fukae C, Li HF, Hoe HS, Gray AJ, Minami SS, et al. (2008) Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain Res 1216: 92–103.

Ortos L J, Feiner L, Lang E, Szendregi GI, Goodert M, et al. (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 196 and 404. J Neurosci Res 39: 669–673.

Schmidt SD, Jiang Y, Nixon RA, Mathews PM (2005) Tissue processing prior to protein analysis and amyloid-β quantitation. Methods Mol Biol 299: 267–278.

Roosmael R, Huang J, Chen F, Liang Y, Nguyen V, et al. (2002) Normal brain development in PS1 hypomorphic mice with markedly reduced γ-secretase cleavage of βAPP. Neurobiol Aging 23: 187–194.

Schmidt SD, Nixon RA, Mathews PM (2005) ELISA method for measurement of amyloid-β levels. Methods Mol Biol 299: 279–297.

Jasus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, et al. (2000) Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408: 979–982.

Garnier JA (1988) Differential turnover of tubulin and neurofilament proteins in central nervous system neuron terminals. Brain Res 450: 309–318.