Autoimmune cytopenias in common variable immunodeficiency

Jenna C. Podjasek1 and **Roshini S. Abraham**2*

1 Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
2 Cellular and Molecular Immunology Laboratory, Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA

Correspondence:
Roshini S. Abraham, Cellular and Molecular Immunology Laboratory, Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Hilton 210e, 200 First Street Southwest, Rochester, MN 55905, USA.
e-mail: abraham.roshini@mayo.edu

Common variable immunodeficiency (CVID) is a humoral immunodeficiency whose primary diagnostic features include hypogammaglobulinemia involving two or more immunoglobulin isotypes and impaired functional antibody responses in the majority of patients. While increased susceptibility to respiratory and other infections is a common thread that binds a large cross-section of CVID patients, the presence of autoimmune complications in this immunologically and clinically heterogeneous disorder is recognized in up to two-thirds of patients. Among the autoimmune manifestations reported in CVID (20–50%; Chapel et al., 2008; Cunningham-Rundles, 2008), autoimmune cytopenias are by far the most common occurring variably in 4–20% (Michel et al., 2004; Chapel et al., 2008) of these patients who have some form of autoimmunity. Association of autoimmune cytopenias with granulomatous disease and splenomegaly has been reported. The spectrum of autoimmune cytopenias includes thrombocytopenia, anemia, and neutropenia. While it may seem paradoxical “prima facie” that autoimmunity is present in patients with primary immune deficiencies, in reality, it could be considered two sides of the same coin, each reflecting a different but inter-connected facet of immune dysregulation. The expansion of CD21 low B cells in CVID patients with autoimmune cytopenias and other autoimmune features has also been previously reported. It has been demonstrated that this unique subset of B cells is enriched for autoreactive germine antibodies. Further, a correlation has been observed between various B cell subsets, such as class-switched memory B cells and plasmablasts, and autoimmunity in CVID. This review attempts to explore the most recent concepts and highlights, along with treatment of autoimmune hematological manifestations of CVID.

Keywords: common variable immunodeficiency (CVID), autoimmune cytopenias, immune thrombocytopenia, autoimmune hemolytic anemia, autoimmune lymphoproliferative syndrome, Evans syndrome
As alluded to previously, several clinical and immunological classifications have been posited in an attempt to stratify and may present as thrombocytopenia, anemia or neutropenia. In the longitudinal study mentioned above, immune thrombocytopenia (ITP) was reported in 14% of patients, while autoimmune hemolytic anemia (AIHA) and neutropenia was less common with only 7 and <1%, respectively, of the cohort affected (Resnick et al., 2011). It should also be kept in mind that autoimmune cytopenias may in fact be the presenting symptom for a small subset of CVID patients, especially in children, where Evans syndrome (ES) has been reported to precede the clinical and immunological phenotype of CVID (Sawas et al., 2007). Other autoimmune presentations reported in CVID include rheumatoid arthritis, anti-IgA Antibodies, vitiligo, and alopecia (Horn et al., 2007; Piek et al., 2008; Resnick et al., 2011). A very recent longitudinal study assessing clinical complications that cause morbidity and mortality in CVID patients identified autoimmune complications in 29% of a cohort of 473 patients studied over 4 decades (Resnick et al., 2011). Interestingly, in the same study, the presence of autoimmunity was not associated with an increase in mortality.

IMMUNOLOGICAL AND PHENOTYPIC MANIFESTATIONS OF AUTOIMMUNE CYTOPENIAS IN CVID

As alluded to previously, several clinical and immunological classifications have been posited in an attempt to stratify and may be even simplify the complex and heterogeneous phenotypes seen in CVID (Warnatz et al., 2002; Piqueras et al., 2003; Chapel et al., 2008; Wehr et al., 2008). The relatively more recent EUROclass study attempted to cohesively link the earlier Freiburg and Paris classifications by correlating B cell subset immunophenotypes with clinical presentation specifically providing correlation for autoimmunity, granulomatous disease, and splenomegaly (Warnatz et al., 2002; Piqueras et al., 2003; Wehr et al., 2008). Of particular relevance was the correlation of an expansion of low class-switched memory B cells with splenomegaly (Wehr et al., 2008). The CD21^{low/dim} B cells have been previously reported to be a subset of anergic B cells with defective signaling that has the capacity to home to sites of inflammation (Rahman et al., 2009, 2010; Froester et al., 2010; Charles et al., 2011). Additionally, correlations were identified between an expansion of transitional B cells with lymphadenopathy and autoimmune cytopenias with reduced plasmablasts – pre-terminally differentiated plasma cells (Wehr et al., 2008).

Data from Sanchez-Ramon et al. (2008) and Vodjani et al. (2007) provide independent substantiation of the association between low class-switched memory B cells and clinical features of autoimmunity and splenomegaly in CVID patients reported by the EUROclass and other classification studies (Warnatz et al., 2002; Piqueras et al., 2003; Wehr et al., 2008).

Martinez-Gutierrez et al. (2009) showed that there was a numerical decrease in memory B cell numbers in ITP patients who underwent splenectomy and alluded to a potential role for the spleen in maintaining memory B cell homeostasis. However, a different study suggests that the age at which splenectomy is performed is more relevant to maintenance of marginal zone (memory) B cells numbers than consideration of splenectomy in isolation, regardless of age at which the procedure is done (Wasserstrom et al., 2008).

Besides the correlation of B cell subsets, specifically switched memory B cells, with autoimmunity, there is evidence from multiple human and mouse models on the significance and importance of regulatory T cells expressing FOXP3 in suppressing autoimmune cytopenias (memory) B cells numbers than consideration of splenectomy for autoimmunity, granulomatous disease, and splenomegaly in CVID patients reported (Warnatz et al., 2002; Piqueras et al., 2003; Wehr et al., 2008).

CVID: OVERLAP WITH AUTOIMMUNE LYMPHOPROLIFERATIVE SYNDROME AND EVANS SYNDROME

Published data have demonstrated a clear immunologic and clinical overlap between CVID, ES, and autoimmune lymphoproliferative syndrome (ALPS). ES is characterized by the presence of autoimmune cytopenias in two or more hematopoietic lineages. A small study evaluating 12 pediatric patients with ES determined that half (6/12) also had elevated uIgM T cells (CD3⁺CD4⁻) and defective Fas apoptosis characteristic of ALPS patients (inaccessible 2005). A subsequent larger study of 45 patients with ES substantiated the earlier finding
by demonstrating diagnostic criteria for ALPS in 21/45 patients (Seif et al., 2010).

The correlation between ES, ALPS, and CVID was made in a different study, which though limited in sample size ($n = 7$), showed development of hypogammaglobulinemia, as seen in CVID in 5/7 patients with ES. These patients also had increased Fas expression (Savasan et al., 2007). A larger cohort study of 68 patients with ES showed that only a relatively small proportion, 4/68 had CVID (Michel et al., 2009).

In a separate study of ALPS patients ($n = 66$), an equally small number, 5/66 had hypogammaglobulinemia, suggesting a potential phenotypic overlap with CVID. The majority of the ALPS patients in this study had reduced class-switched memory B cells, similar to what has been reported in two-third or greater of CVID patients (Rensing-Ehl et al., 2010).

MECHANISMS OF DEVELOPMENT OF AUTOACTIVITY

The development of self-reactive B cells is regulated both centrally (bone marrow) and peripherally through at least two independent check-points. It has been suggested that there may be a failure of both central and peripheral tolerance mechanisms in CVID due to immune dysregulation resulting in a flawed negative selection process. Logically, this would suggest that there would be an increased selection of autoreactive B cells prior to affinity maturation (somatic hypermutation) or memory B cell/plasma cell commitment in the secondary lymphoid organs (Haymore et al., 2008). This is a topic that is discussed in depth elsewhere in this journal series, and therefore, not addressed herein.

DIAGNOSIS AND TREATMENT

DIAGNOSIS

The evaluation of CVID patients for autoimmune cytopenias should include appropriate diagnostic work-up (Figure 1), however, in the case of ITP this may primarily be a diagnosis of exclusion. A presumptive diagnosis of ITP can be arrived at by ruling out alternative pathological mechanisms through clinical history, physical review, complete blood count (CBC) analysis, and peripheral blood smears (Provan et al., 2010). Confirmation of the diagnosis is usually determined by response to appropriate treatment. As per the previous discussion that autoimmune cytopenias may precede a diagnosis of CVID, it would be reasonable to evaluate both pediatric and adult patients for immunoglobulin levels on diagnosing ITP to rule out a possible CVID or selective IgA deficiency (Provan et al., 2010). Additionally, follow-up may be required with periodic evaluation and correlation with clinical history to document evolution of the disease process.

Likewise, the diagnosis of AIGN mandates evidence of hemolysis along with detection of an autoantibody. There are a number of laboratory markers for establishing hemolysis, including a CBC with peripheral smear, increased indirect bilirubin, increased lactate dehydrogenase (LDH), and decreased haptoglobin. Autoantibodies can be detected by a direct antiglobulin test (DAT) or Coomb’s test (Gehrs and Friedberg, 2002).

The diagnosis of autoimmune neutropenia (AIN) is similar to ITP in that it is a diagnosis of exclusion. In some cases, detection of anti-granulocyte antibodies may be useful but the lack of detectable autoantibodies does not exclude a diagnosis of AIGN (Bope and Kellerman, 2012). Most cases of AIGN are associated with normal marrow reserve and pathogenesis is related to antibody-mediated destruction and in some cases, sequestration. The diagnosis can include a bone marrow biopsy, which would reveal a hypercellular marrow and usually a late maturation arrest, though in some cases, an early arrest can also be seen. AIGN may be associated with ITP and/or AIHA in CVID patients. Besides, the possible presence of anti-neutrophil antibodies, circulating immune complexes may also be present in a subset of patients with AIGN (Dinauer and Coates, 2009).

TREATMENT

A treatment algorithm for autoimmune cytopenias in CVID is provided in Figure 2. The American Society of Hematology has provided guidelines for the treatment of patients with ITP and these include initiation of treatment in adult patients if the platelets are below 30 \times 10^9/L. However, in pediatric patients, the current guidelines state that treatment is based on clinical symptoms associated with thrombocytopenia regardless of the platelet counts (Neunert et al., 2011). Pediatric patients are far
more likely to experience spontaneous remissions. The treatment of choice as first-line therapy for ITP is the use of steroids at 1 mg/kg for a duration of at least three weeks with subsequent dose reduction and eventual withdrawal. Alternative therapeutic options could include a single dose of intravenous immunoglobulin (IVIG) at 1 g/kg. Further use of IVIG is dependent on clinical response to the initial dose. A combination of the above two therapies may be utilized if a rapid response is required. Rho(D) immune globulin is an option for Rh-positive individuals who have not undergone a splenectomy and are unable to tolerate steroid treatment (Neunert et al., 2011). Splenectomy is recommended as a therapeutic option only for those patients that fail corticosteroid therapy. CVID patients undergoing splenectomy or receiving immunosuppressive medication may be at increased risk for infection given their intrinsic immunological defects.

While AIHA is treated much like ITP, it may be more challenging to manage, particularly in patients with ES (Cunningham-Rundles, 2002; Wang and Cunningham-Rundles, 2005). For refractory cases of ITP, AIHA, or both, Rituximab, a chimeric monoclonal anti-CD20 B cell-depleting agent, has been effectively used. In a modest-size cohort of CVID patients (n = 33) with refractory autoimmune cytopenias (failure of at least 2-6 treatments prior to initiation of Rituximab), the initial response rate was remarkably high at 84% (Gobert et al., 2011). Severe infection was an unfortunate consequence in almost a quarter of these patients (8/33) over a mean follow-up period of 39 months. Of note, half the patients (4/8) were not on replacement immunoglobulin therapy at the time of infectious diagnosis. An earlier study reports similar rates of infection in patients with ITP who received standard treatment (Michel et al., 2004).

The treatment of AIN is primarily dictated by the severity of neutropenia-associated clinical symptoms and the underlying disease context. Treatment with high-dose IVIG or steroids may be used if there is very profound neutropenia (ANC < 500/mm^3) in conjunction with recurrent or fulminant infections. G-CSF therapy is only of value if bone marrow reserves are depleted. Splenectomy has little value in reversing neutropenia, especially if it is isolated, since the effect is transient, and can ultimately increase overall infection risk (Dinauer and Coates, 2009).

A separate study of 19 adult patients with steroid-refractory autoimmune cytopenias, reported a 100% initial response rate to a combination of low-dose Rituximab and Alemtuzumab (anti-CD52 humanized monoclonal antibody). Infection occurred in 6/19 patients after a median period of 70 weeks (Gomez-Almaguer et al., 2010). Other reports have documented an initial response rate of 78–92% for refractory autoimmune cytopenias treated with mycophenolate mofetil with no significant adverse events reported (Koth et al., 2005; Rao et al., 2005). Thus, the approach to treating autoimmune cytopenias in CVID is not dissimilar to the treatment of immune competent patients (Wang and Cunningham-Rundles, 2005).

SUMMARY

This minireview, which is limited in scope, provides an encapsulated discussion on the incidence and presentation of autoimmunity in CVID, specifically autoimmune cytopenias, their overlap with other clinical entities, some notable immunological hallmarks, laboratory diagnosis and an overview of standard and new therapies. As mentioned in the text, a more exhaustive treatment of autoimmunity in CVID, focusing on mechanistic aspects, is provided elsewhere.
REFERENCES

Al-Herz, W., Souissi, A., Casonova, J.-L., Chapel, H., Conley, M. E., Cunningham-Borchers, C., Ezrin, A., Fischer, A., Franco, J. L., Geha, R., Hammarstrom, L., Nionou, S., Notarangelo, L. D., Ochi, H. D., Puck, J., Roifman, C., Segel, K., and Tang, M. L. K. (2011). Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front. Immunol. 2, 74. doi: 10.3389/fimmu.2011.00054

Arunugakani, G., Wood, P. M., and Carter, C. R. (2012). Frequency of Treg cells is reduced in CVID patients with autoimmunity and ophthalmology and is associated with expanded CD21lo B lymphocytes. J. Clin. Immunol. 32, 292–300.

Bukker-Merkx, A., Nikolaen, C., and Nisius, H. C. (2006). B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus 15, 370–376.

Bos PD, E., and Kallman, R. D. (2012). Controls Carney Syndrome Philadelphia Elsevier/Saunders. Brandt, D., and Gershwin, M. E. (2006). Common variable immune deficiency and autoimmunity. Autoimmun. Rev. 5, 803–810.

Buckley, R. H. (2010). Mechanisms of impaired regulation by CD20 monoclonal antibodies: insights for future T cell autoimmunity T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859.

Buttner, G., and Klotzlein, L. (2009). Autoimmune manifestations of common variable immune deficiencies. Autoimmun. Rev. 8, 332–336.

Cattel, E., Wilson, S., Garibyan, L., Rachid, R., Bonilla, F., Schneider, L., Miura, M., Currant, J., and Geha, R. (2007). Recurring the role of DAI coding variants in variable immune deficiencies and selective IgA deficiency Nat Genet 39, 430–431.

Cattel, E., Wilson, S. A., Garibyan, L., Rachid, R., Berezne, A., Bonnotte, B., Derevel, J., Volourn, N., Bakhtume, M., Keller, B., Geranhofer, S., Goldhacker, S., Thié, L., Forse, S., Peter, H. H., and Warré, K. (2010). Common variable immunodeficiency at the end of a prospering decade: towards novel genes defects and beyond. Curr. Opin. Allergy Clin. Immunol. 10, 528–535.

Conn’s Current Therapy. Philadelphia: Churchill Livingstone Elsevier.

Ehle, H., Saher, U., and Warten, E. K. (2010). Common variable immunodeficiency and selective IgA deficiency. J. Clin. Immunol. 30, 542–549.

Cunningham-Borchers, C. (2008). How I treat common variable immunodeficiency. Blood 111, 7–15.

DiBiase, M. C., and Coates, T. D. (2009). Disorders of Platyctasia Function and Nasalie. Chap. W. Philadelphia: PA Churchill Livingstone Elsevier.

Flach, M., and Zange, R. (1997). Anti-IgA antibodies in patients with hepatitis C virus-associated mixed cryoglobulinemia. J. Clin. Immunol. 17, 28(Suppl. 1), 83–89.

Gobert, D., Bussel, J. B., Cunningham-Rundles, C., Etzioni, J.-L., Chapel, H., Conley, M. E., Emilia, G., Bierling, P., and Godeau, B. (2007). Anti-IgA antibodies in common variable immunodeficiency (CVID): diagnostic workflow and therapeutic strategy. J. Clin. Immunol. 27, 156–162.

Gore, S., Cho, W. S., Cho, M. H., Park, H. J., Oh, H. J., Kang, S. M., Park, D. J., and Yoon, J. (2011). B cell receptor-mediated calcium-signaling is impaired in B lymphocytes of type I patients with common variable immunodeficiency. J. Immunol. 186, 7305–7313.

Horn, J., Thon, V., Baronskova, D., Salzer, U., Warré, K., Schleef, M., Peter, H. H., and Grimbacher, B. (2007). Anti-IgA antibodies in common variable immunodeficiency (CVID): diagnostic workflow and therapeutic strategy. J. Clin. Immunol. 27, 156–162.

Inflammatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 184, 7305–7313.

Kanagas, H., Agerotu, K., Putatunti, T., Sera, M. M., Sega, K., Sekiguchi, T., van Zelm, M., and Miyazawa, T. (2007). Novel mutations in a Japanese patient with CD20 deficiency. Genet. Immun. 8, 665–670.

Krueger, A. K., and Cunningham-Borchers, C. (2006). Inflammatory and autoimmune complications of common variable immune deficiencies. Autoimmun. Rev. 5, 156–159.

Knittel, A. K., Radigan, L., Morroni, D., Varon, T., Langer, A., Zhang, L., and Cunningham-Borchers, C. (2007). High serum levels of BAFF, APRIL, and TACI in common variable immunodeficiency. Clin. Immunol. 124, 182–189.

Ko, K., Pinganaud, C., Trichter, C., Lambotte, O., Dreyfus, M., Delfraissy, J. F., Tchernia, G., and Goujard, C. (2003). Homozygous loss of IOD5 is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268.

Kumagai, H., Agerotu, K., Putatunti, T., Sera, M. M., Sega, K., Sekiguchi, T., van Zelm, M., and Miyazawa, T. (2007). Novel mutations in a Japanese patient with CD20 deficiency. Genet. Immunol. 8, 665–670.

Knittel, A. K., and Cunningham-Borchers, C. (2006). Inflammatory and autoimmune complications of common variable immune deficiencies. Autoimmun. Rev. 5, 156–159.

Ko, K., Pinganaud, C., Trichter, C., Lambotte, O., Dreyfus, M., Delfraissy, J. F., Tchernia, G., and Goujard, C. (2003). Homozygous loss of IOD5 is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268.

Kumagai, H., Agerotu, K., Putatunti, T., Sera, M. M., Sega, K., Sekiguchi, T., van Zelm, M., and Miyazawa, T. (2007). Novel mutations in a Japanese patient with CD20 deficiency. Genet. Immunol. 8, 665–670.

Krueger, A. K., and Cunningham-Borchers, C. (2006). Inflammatory and autoimmune complications of common variable immune deficiencies. Autoimmun. Rev. 5, 156–159.

Ko, K., Pinganaud, C., Trichter, C., Lambotte, O., Dreyfus, M., Delfraissy, J. F., Tchernia, G., and Goujard, C. (2003). Homozygous loss of IOD5 is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268.

Kumagai, H., Agerotu, K., Putatunti, T., Sera, M. M., Sega, K., Sekiguchi, T., van Zelm, M., and Miyazawa, T. (2007). Novel mutations in a Japanese patient with CD20 deficiency. Genet. Immunol. 8, 665–670.

Knittel, A. K., and Cunningham-Borchers, C. (2006). Inflammatory and autoimmune complications of common variable immune deficiencies. Autoimmun. Rev. 5, 156–159.

Ko, K., Pinganaud, C., Trichter, C., Lambotte, O., Dreyfus, M., Delfraissy, J. F., Tchernia, G., and Goujard, C. (2003). Homozygous loss of IOD5 is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268.

Kumagai, H., Agerotu, K., Putatunti, T., Sera, M. M., Sega, K., Sekiguchi, T., van Zelm, M., and Miyazawa, T. (2007). Novel mutations in a Japanese patient with CD20 deficiency. Genet. Immunol. 8, 665–670.

Ko, K., Pinganaud, C., Trichter, C., Lambotte, O., Dreyfus, M., Delfraisy, J. F., Tchernia, G., and Goujard, C. (2003). Homozygous loss of IOD5 is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268.

Kumagai, H., Agerotu, K., Putatunti, T., Sera, M. M., Sega, K., Sekiguchi, T., van Zelm, M., and Miyazawa, T. (2007). Novel mutations in a Japanese patient with CD20 deficiency. Genet. Immunol. 8, 665–670.
C. Gaspar, H. B. Offer, S. Behrens, T. W., Grimbacher, B., and Hammarstrom, L. (2007). Recomputing the role of TACI coding variants in common variable immunodeficiency and selective IgM deficiency. Nat Genet. 39, 429–435.

Park, M. A., Li, J. T., Hagan, J. B., Maclder, D. E., and Strobe, R. S. (2008). Common variable immunodeficiency: a new look at an old disease. Lancet 372, 489–502.

Paparizou, L., Rovero-Benedikt, C., Galicic, L., Bergerson-Van Der Cruyssen, F., Moutohin, L., Chernet, S., Deba, B., Schmidt, C., and Okken-Handels, E. (2005). Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. Curr. Opin. Clin. Immunol. 18, 385–400.

Pruim, D., Stuii, R., Newland, A. C., Blanchette, V. S., Bolton-Maggs, P., Busell, J. B., Choong, B. H., Cines, D. B., Grimbacher, T. W., Gutenberger, B., Graeff, A., Schlesier, M., Warnatz, K., and Hammarstrom, L. (2007). CD21low B cells in common variable immunodeficiency and selective IgM deficiency patients with increased CD31+ B cells suffer from altered receptor editing and defective B cell tolerance. Blood 111, 1653–1657.

Romberg, N., Ny, V. G., Cunningham-Rundles, C., and Mifsud, E. (2011). Common variable immunodeficiency patients with increased CD31+ B cells suffer from altered receptor editing and defective B cell tolerance. Blood 118, 9977–9987.

Romberg, N., Uchida, T., Brudzinski, P., Hopp, K., Nicklasson, S., Peltola, M., Uusitalo, J., Fredriksson, J., and Warnatz, K. (2005). CD20+ CD21low CD27+ B cells in common variable immunodeficiency with increased CD31+ B cells suffer from altered receptor editing and defective B cell tolerance. Blood 115, 2142–2143.

Sanchez-Ramon, S., Radigan, L., Yu, M., Brum, M., Gauthier, S., and Heslop, E. (2003). Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. Curr. Opin. Clin. Immunol. 16, 116, 116, 116, 116.

Van Zelm, M. C., Smot, J., Adams, B., Mascre, F., Schandein, L., Jensen, F., Feenst, A., Kao, C. S., Levy, S., Van Doring, J. I., and Van Der Berg, M. (2010). CD81 gene defect in humans disrupts CD81 complex formation and leads to antibody deficiency. Nat. Genet. 42, 429–435.

Van Zelm, M. C., Smot, J., Adams, B., Mascre, F., Schandein, L., Jensen, F., Feenst, A., Kao, C. S., Levy, S., Van Doring, J. I., and Van Der Berg, M. (2010). CD81 gene defect in humans disrupts CD81 complex formation and leads to antibody deficiency. Nat. Genet. 42, 429–435.

Vogelmi, M., Agha-Ghazali, M., Luciani, M., Mamer, M., Hachet, J., Mitrea, M., Pares, N., Sabin, A., Abraham, M., Resnick, E. S., Moshier, E. L., Godbold, S., Goldacker, S., Eidelberg, E., Bard, S., and Cunningham-Rundles, C., and Meffre, E. (2003). Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. Curr. Opin. Clin. Immunol. 16, 116, 116, 116, 116.

Wang, J., and Cunningham-Rundles, C. (2005). Treatment and outcome of autoimmune hemolytic disease in common variable immunodeficiency (CVID). J. Autoimmun. 25, 57–62.

Warnatz, K., Doerr, A., Drager, B., Braun, M., Gerth, C., Wolff Verbraak, G., Eidelberg, E., Schlesier, M., and Peter, H. H. (2002). Serum deficiency of switched memory B cells in patients with common variable immunodeficiency and its clinical implications. J. Immunol. 169, 521–528.

Watts, K., Salzer, U., and Gutenberger, S. (2005). Finally found human BAPR-R deficiency causes hyper-IgM syndrome I (CVID). Clin. Immunol. 115, 820.

Weih, C., Kaevas, T., Schmidt, C., Ferry, B., Witt, E., Ens, E., Vikoma, M., Hernander, M., Delherra, D., Ree, P. P., Roskam, K., de Groot, A., van Beuningen, U., Goldacker, S., Gutenberger, S., Schlesier, M., Bergerson-Van Der Cruyssen, F., Le Garff, M., Delbra, F., Jacobs, J., Jones, J., Barthe, M., Lierman, V., Braet, F., Pieters, M., Pahlmann, A., Schmidt, R. E., Then, V., Quint, I., Expert J., Wolff, A., Dool, A., Chairs, H., Vikomen, M., Okken-Handels, E., Peter, H. H., and Warters, K. (2008). The EURoBIDS trial: defining subgroups in common variable immunodeficiency. Blood 112, 77–85.

Waters, L., Handels, B., Salzer, U., and Gutenberger, S. (2006). Memory B cells and pneumococcal antibody after splenectomy. J. Clin. Immunol. 26, 504–511.

"fimmu-03-00189" — 2012/7/24 — 12:31 — page 6—# 6
immunologic outcomes in heterozygotes. J. Allergy Clin. Immunol. 120, 1179–1185.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 22 February 2012; accepted: 18 June 2012; published online: 24 July 2012. Citation: Podjasek JC and Abraham RS (2012) Autoimmune cytopenias in common variable immunodeficiency. Front. Immun. 3:189. doi: 10.3389/fimmu.2012.00189

This article was submitted to Frontiers in Primary Immunodeficiencies, a specialty of Frontiers in Immunology.
Copyright © 2012 Podjasek and Abraham. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.