SUPPLEMENTARY MATERIAL

Triterpene glycosides from the Vietnamese sea cucumber *Holothuria edulis*

Le Hoang*, Tran Thi Hong Hanh, Nguyen Van Thanh, Nguyen Xuan Cuong, Nguyen Hoai Nam, Do Cong Thung, Natalia V. Ivanchina, Do Thi Thao, Pavel S. Dmitrenok, Alla A. Kicha, Phan Van Kiem and Chau Van Minh

*Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam; †Graduate University of Science and Technology, VAST, Hanoi, Vietnam; ‡Institute of Marine Environment and Resources, VAST, Haiphong, Vietnam; §G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia, ‡Institute of Biotechnology, VAST, Hanoi, Vietnam.

*To whom correspondence should be addressed: Email: cvminh@vast.vn (Chau Van Minh); Email: cuongnx@imbc.vast.vn (Nguyen Xuan Cuong)

Abstract. From the MeOH extract of the Vietnamese sea cucumber *Holothuria edulis*, eight triterpene glycosides (1–8), including one new compound namely holothurin A5 (1), were isolated by using various chromatographic separations. Their structures were established by spectroscopic experiments including 1D, 2D NMR and HR-ESI-MS. Holothurin A5 (1) has a hydroperoxy group at C-25. To the best of our knowledge, this is the first report of this group in triterpene saponins obtained from sea cucumbers to date. In addition, the *in vitro* cytotoxicity against five human cancer cell lines (HepG2, KB, LNCaP, MCF7 and SK-Mel2) of all isolated compounds was also evaluated using SRB assays.

Keywords: *Holothuria edulis*, Holothuriidae, triterpene glycoside, cytotoxicity.
CONTENTS

General experimental procedures	Pages
Figure S1. 1H NMR spectrum (pyridine-d_5, 500 MHz) of compound 1	S2
Figure S2. 13C NMR spectrum (pyridine-d_5, 125 MHz) of compound 1	S3
Figure S3. HSQC spectrum (pyridine-d_5, 500 MHz) of compound 1	S4
Figure S4. HMBC spectrum (pyridine-d_5, 500 MHz) of compound 1	S5
Figure S5. COSY spectrum (pyridine-d_5, 500 MHz) of compound 1	S6
Figure S6. 1D TOCSY spectrum (pyridine-d_5, 500 MHz) of compound 1	S7
Figure S7. 2D TOCSY spectrum (pyridine-d_5, 500 MHz) of compound 1	S8
Figure S8. ROESY spectrum (pyridine-d_5, 500 MHz) of compound 1	S9
Figure S9. Key COSY (▬), HMBC (✓✓) and ROESY (✓✓✓) correlations of compound 1	S10
Figure S10. Negative HR ESI MS spectrum of compound 1	S11
Figure S11. Plausible (−) ESI MS/MS fragmentation of compound 1	S12
Table S1. 1H (pyridine-d_5, 500 MHz) and 13C NMR (pyridine-d_5, 125 MHz) spectroscopic data of 1	S13
Table S2. Cytotoxic activity of compounds 1–8	S14

General experimental procedures

Optical rotations were determined on a JASCO P-2000 polarimeter (Tokyo, Japan). The HR-ESI-MS and ESI-MS/MS spectra were recorded on a Bruker Impact IIQ-TOF spectrometer (Germany). The 1HNMR (500 MHz) and 13CNMR (125 MHz) spectra were recorded on a Bruker AVANCE III HD 500 (MA, USA) FT-NMR spectrometer with tetramethylsilane (TMS) as an internal standard. Medium pressure liquid chromatography (MPLC) was carried out on a Biotage - Isolera One system (SE-751 03 Uppsala, Sweden). Column chromatography (CC) was performed on silica gel (Kieselgel 60, 70–230 mesh and 230–400 mesh, Merck, Darmstadt, Germany) and YMC®GEL (ODS-A, 12 nm S-150 mm, YMC Co., Ltd., Japan) resins. TLC used pre-coated silica gel 60 F$_{254}$ (Merck) and RP-18 F$_{254S}$ plates (Merck), and compounds were visualized by spraying with aqueous 10% H$_2$SO$_4$ and heating for 3–5 min.
Figure S1. 1H NMR spectrum (pyridine-d_5, 500 MHz) of compound 1
Figure S2. 13C NMR spectrum (pyridine-d_5, 125 MHz) of compound 1
Figure S3. HSQC spectrum (pyridine-d_5, 500 MHz) of compound 1
Figure S4. HMBC spectrum (pyridine-d_5, 500 MHz) of compound 1
Figure S5. COSY spectrum (pyridine-d_5, 500 MHz) of compound 1
Figure S6. 1D TOCSY spectra (pyridine-d_5, 500 MHz) of compound 1
Figure S7. 2D TOCSY spectrum (pyridine-d_5, 500 MHz) of compound 1
Figure S8. ROESY spectrum (pyridine-d_5, 500 MHz) of compound 1
Figure S9. Key COSY (—), HMBC (▲) and ROESY (❖) correlations of compound 1
Figure S10. Negative HRESIMS spectrum of compound 1
Figure S11. Plausible (−) ESI MS/MS fragmentation of compound 1
Table S1. 1H (pyridine-d_5, 500 MHz) and 13C NMR (pyridine-d_5, 125 MHz) spectroscopic data of 1.

C	δ^a	δ^b,c	$\delta^{b,d}$ mult. (J = Hz)	HMBC
				(H \rightarrow C)
Aglycon				
1	36.6	36.1	1.30 m/1.71 m	
2	27.1	26.7	1.80 m/1.99 m	
3	88.64	88.4	3.04 dd (4.0, 11.5)	1'
4	40.03	39.7	-	
5	52.70	52.4	0.90 br d (11.0)	
6	21.2	20.9	1.45 m/1.66 m	
7	28.0	28.1	1.43 m/1.70 m	
8	40.08	40.6	3.27 dd (5.5, 12.0)	
9	153.95	153.8	-	
10	39.71	39.4	-	
11	115.54	115.2	5.57 br d (5.0)	8, 10, 12, 13
12	71.49	71.1	4.91 d (5.0)	18
13	58.61	58.4	-	
14	46.40	46.1	-	
15	38.93	36.4	1.33 m/1.78 m	17
16	36.0	35.6	2.28 m/2.64 m	
17	89.36	89.0	-	
18	174.87	174.6	-	
19	22.5	22.3	1.28 s	1, 5, 9, 10
20	87.21	86.5	-	
21	23.00	23.0	1.69 s	17, 20, 22
22	36.6	41.3	2.64 m	
23	22.29	124.4	5.95 ddd (6.5, 9.0, 15.5)	22, 24, 25
24	39.71	139.1	6.01 d (15.5)	22, 23, 25, 26, 27
25	28.00	81.1	-	
26	22.61	24.8	1.49 s	24, 25, 27
27	22.67	24.8	1.50 s	24, 25, 26
30	16.7	16.5	0.98 s	3, 4, 5, 31
31	28.00	27.8	1.19 s	3, 4, 5, 30
32	20.1	19.8	1.57 s	8, 13, 14, 15
Sulfo-Xyl				
$1'$	105.1	105.0	4.62 d (7.5)	3
$2'$	83.0	82.7	4.00 dd (7.5, 9.0)	
$3'$	76.2	75.4	4.28 t (9.0)	
$4'$	75.4	75.9	5.10 m	
$5'$	63.9	64.2	3.71 dd (11.0, 11.5)	4.77 dd (5.0, 11.5)
Qui				
$1''$	105.1	105.0	5.01 d (8.0)	2'
$2''$	76.2	76.0	3.94 dd (8.0, 9.0)	
$3''$	75.6	75.3	4.02 t (9.0)	
$4''$	87.0	86.8	3.59 t (9.0)	
$5''$	71.7	71.5	3.67 dd (9.0, 6.0)	
$6''$	18.1	18.0	1.64 d (6.0)	$4'\,, 5''$
C	δ_c	δ_c^{b,c}	δ_{t}^{b,d}	HMBC
--------	-----	----------	-------------	---------
Glc			mult. (J = Hz)	
1’’	104.6	104.4	4.88 d (8.0)	4’’
2’’	73.9	73.6	3.97 dd (8.0, 9.0)	
3’’	88.2	87.4	4.21 t (9.0)	
4’’	69.9	69.5	3.93*	
5’’	77.7	77.6	3.94*	
6’’	62.4	61.8	4.08 dd (5.5, 12.0)	
			4.41 br d (12.0)	
OMe-Glc				
1’’’	105.4	105.1	5.25 d (8.0)	3’’
2’’’	74.9	74.8	3.92 dd (8.0, 9.0)	
3’’’	87.7	87.5	3.67 t (9.0)	
4’’’	70.8	70.4	3.98 t (9.0)	
5’’’	78.0	78.0	3.94 m	
6’’’	62.4	61.9	4.14 dd (5.5, 12.0)	
			4.43 dd (2.0, 12.0)	
OMe	60.4	60.7	3.81 s	3’’’

\^δ_c of holothurin A2 in pyridine-d5 (Oleinikova et al. 1982), recorded in pyridine-d5, 125 MHz, 500 MHz, overlapped signals; All assignments were done by HSQC, HMBC, COSY, ROESY, and 1D and 2D TOCSY experiments.
Table S2. Cytotoxic activity of compounds 1–8

Compounds	IC50 values (μM)				
	LNCaP	HepG2	KB	MCF7	SK-Mel2
1	66.22±6.32	57.53±6.27	46.65±2.28	49.08±6.44	63.53±3.49
2	0.96±0.09	0.76±0.06	0.75±0.09	0.81±0.07	0.84±0.05
3	82.75±3.91	75.76±7.60	67.31±6.93	76.45±6.29	68.55±3.18
4	57.61±5.54	59.59±3.38	64.72±4.94	55.99±6.43	61.65±5.67
5	>100	93.56±4.95	91.27±5.41	91.47±3.30	>100
6	1.30±0.18	2.03±0.49	1.79±0.33	2.29±0.47	2.49±0.21
7	2.74±0.29	2.63±0.28	2.75±0.31	3.35±0.47	3.66±0.41
8	>100	>100	>100	>100	>100
Ellipticine*	1.71±0.24	1.67±0.28	1.42±0.12	1.54±0.20	1.50±0.16

*Ellipticine was used as positive control. Results are the means±SD of triplicate experiments.

Reference

Oleinikova GK, Kuznetsova TA, Rovnykh NV, Kalinovskii AI, Elyakov GB. 1982. Glycosides of marine invertebrates. XVIII. Holothurin A2 from the Caribbean holothurian *Holothuria floridana*. Chem Nat Comp. 18:501-502.