Cognitive impairment in sporadic cerebral small vessel disease

Citation for published version:
Hamilton, O, Backhouse, E, Janssen, E, Jochems, A, Maher, C, Ritakari, T, Stevenson, A, Xia, L, Deary, I & Wardlaw, J 2020, 'Cognitive impairment in sporadic cerebral small vessel disease: A systematic review and meta-analysis', Alzheimer's & Dementia. https://doi.org/10.1002/alz.12221

Digital Object Identifier (DOI):
10.1002/alz.12221

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Alzheimer's & Dementia

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Cognitive impairment in sporadic cerebral small vessel disease: A systematic review and meta-analysis

Olivia K. L. Hamilton1,2,3 | Ellen V. Backhouse1,2 | Esther Janssen1,2 | Angela C. C. Jochems1,2 | Caragh Maher1,2 | Tuula E. Ritakari1,2 | Anna J. Stevenson2,4,5 | Lihua Xia6 | Ian J. Deary3,6 | Joanna M. Wardlaw1,2,3

1 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
2 Dementia Research Institute, University of Edinburgh, Edinburgh, UK
3 Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
4 Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
5 Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
6 Department of Psychology, University of Edinburgh, Edinburgh, UK

Correspondence Joanna Wardlaw, Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
E-mail: joanna.wardlaw@ed.ac.uk

Abstract
This paper is a proposal for an update on the characterization of cognitive impairments associated with sporadic cerebral small vessel disease (SVD). We pose a series of questions about the nature of SVD-related cognitive impairments and provide answers based on a comprehensive review and meta-analysis of published data from 69 studies. Although SVD is thought primarily to affect executive function and processing speed, we hypothesize that SVD affects all major domains of cognitive ability. We also identify low levels of education as a potentially modifiable risk factor for SVD-related cognitive impairment. Therefore, we propose the use of comprehensive cognitive assessments and the measurement of educational level both in clinics and research settings, and suggest several recommendations for future research.

KEYWORDS cerebral small vessel disease, cognitive ability, lacunar stroke, meta-analysis, systematic review, vascular cognitive impairment, vascular dementia

1 | CONTEXT FOR THE "HYPOTHESIS"

The term small vessel disease (SVD) refers to a collection of neuroimaging and neuropathological abnormalities found in the brain's white and deep gray matter. Visible radiological markers of the disease include white matter hyperintensities (WMH) and lacunes of presumed vascular origin, cerebral microbleeds, visible perivascular spaces, and cerebral microinfarcts. These markers likely reflect multiple pathological changes affecting the brain's small vessels, such as endothelial dysfunction, impaired cerebral blood flow, and reduced vessel pulsatility, although the relationships among these mechanisms are complex and not yet fully understood.1,2 SVD is the primary cause of vascular cognitive impairment (VCI) in older age. The meaning of the term VCI has been refocused several times in recent years,3-5 but broadly refers to cognitive impairments due to underlying vascular contributions, which can range in severity from subtle subclinical decline in cognitive ability, to mild cognitive impairment (MCI) and dementia.7,8 In this review, we use the term "impairment" to denote any reduction in cognitive ability relative to an individual’s typical ability, as opposed to a normative standard, or a diagnostic construct, unless otherwise stated.

1.1 | Why is SVD-related cognitive impairment important?

As life expectancies across the world continue to rise, so too does the predicted global burden of age-related cognitive impairment, including VCI. In all societies, the economic impact of cognitive impairment...
is tremendous. Individuals with cognitive impairment use more healthcare services and require greater support with activities of daily living, either from unpaid family carers, or from paid care services.9,10 In 2002, a review of the costs associated with VCI in Canada estimated the average annual cost per individual to be between CAD $15,022 (USD equivalent $9,313) for mild VCI, and CAD $34,515 (USD equivalent $21,399) for severe VCI.12 Equally as striking is the personal impact upon individuals experiencing cognitive impairment, who are at greater risk of anxiety and depression and report having a lower quality of life.11,12 A reduction in the incidence or progression of cognitive impairment, therefore, is a key target for clinical trials of treatments or interventions for SVD. Any intervention that improves cognitive outcomes in SVD has the potential to alleviate the burdens it places on individuals and on our societies, and would be a step toward reducing rates of VCI and multiple major dementias.

1.2 What kind of cognitive impairments are associated with SVD?

To accurately assess cognitive ability in SVD and how it might change in response to intervention, researchers must use cognitive tests that are sensitive to the cognitive impairments caused by SVD. However, despite a huge number of studies on the subject, the nature of cognitive impairments in SVD remains poorly characterized. Current consensus statements suggest that the disease primarily affects the domains of processing speed and executive function, but that memory and language abilities remain relatively well preserved.13,14 Processing speed refers to the speed at which a person can understand and respond to information.15 Executive function is a broader concept encompassing skills such as planning, organization, and switching attention, which enable goal-directed behaviors.15 This profile of SVD-related cognitive impairments is frequently reported in the research literature, but the studies underpinning this suggestion are conflicting and require careful consideration. First, many of the studies examining SVD-related cognitive impairments have small participant samples, so could be insufficiently powered to detect cognitive deficits. Second, many of these studies focus on narrowly defined subtypes of SVD (ie, genetic SVDs), or on those with a high disease burden who may not represent the full spectrum of sporadic SVDs. We also anticipate that some studies may be influenced by expectations of the cognitive impairments they will observe. Based on the understanding that SVD causes deficits in executive function and processing speed, studies might carry out tests that measure only those abilities and neglect to test for impairments in other abilities such as memory, which are more typically associated with dementia.

To gain an unbiased overview of the nature of cognitive impairments associated with SVD, we carried out a systematic review and meta-analysis of studies reporting cognitive data for cohorts with clinical or radiological evidence of SVD, and control cohorts without SVD (see Figure 1; full details of the Methods and Results are provided in Section 2). As expected, the sample sizes of the SVD cohorts were small, ranging between 4 and 196 participants (median: 27). Four studies conducted power calculations,52,57,71,85 but only one of these studies included a sample size sufficient to detect differences in cognitive performance between groups, according to their own calculations.57

We carried out seven separate meta-analyses to examine differences in performance between SVD and control groups in seven cognitive domains: executive function, delayed memory, processing speed, language, visuospatial ability, reasoning, and attention. The results of our meta-analyses suggested that individuals with SVD performed more poorly than controls on cognitive tests in each cognitive domain that we examined. Our findings concur with those of a recent meta-analysis of 27 studies by Vasquez and Zakzanis,16 which compared the cognitive abilities of participants with vascular cognitive impairment without dementia and control subjects, finding deficits in a similarly broad range of domains. Contrary to current consensus, our results suggest that the cognitive impairments associated with SVD extend beyond executive function and processing speed, to affect all major domains of cognitive ability.

Typically, multiple cognitive abilities are recruited to carry out an individual cognitive task. For example, a list learning task is broadly considered to be a test of memory, but performance of the task will also require language abilities to comprehend the words on the list, processing speed to process the verbal information, and so on. Therefore, deficits in a number of cognitive domains could result in poor performance on this memory task. Many cognitive tasks appear to require speed of information processing for efficient performance, and tests of processing speed are among those most affected by aging. As a
result, it has been suggested that processing speed drives age-related changes in other fluid cognitive abilities. Moreover, processing speed has been found to mediate, statistically, the association between brain white matter health and general cognitive ability in older people. However, there is currently a more agnostic attitude to the place of processing speed; there is not considered to be definitive evidence about whether processing is the driver of age-related declines in other cognitive abilities, or whether it is just another domain of cognitive ability that declines on average with age. Whereas the results of our meta-analyses suggest that relative to controls, cohorts with SVD have deficits in all major domains of cognitive ability, it remains to be examined whether these deficits could be the result of the early impairment of certain key domains of cognitive ability, or could be the result of impairment across multiple domains of cognitive ability more generally.

Growing evidence suggests that SVD-related cognitive impairments result from the disruption of white matter tract networks connecting regions of the brain that are critical for cognitive function. Several cohort studies have suggested that the dysexecutive/slowed information processing profile typically associated with SVD could arise from strategic lesions that disrupt frontal-subcortical white matter projections, such as the anterior thalamic radiation and the forceps.
minor. However, visible infarcts represent only a proportion of the structural changes occurring in SVD. Microstructural alterations in WMH extend beyond the visible lesion, into the surrounding, normal-appearing peri-lesional tissue known as the “SVD penumbra.” Similarly, the impact of visible lesions can extend beyond local tissue, to affect distant brain regions. Therefore, SVD-related structural brain changes are diffuse and likely affect white matter networks throughout the whole brain.

One analytic approach that has provided insight into the impact of SVD on the structural connectivity of the brain is the application of graph theoretic approaches to diffusion tensor imaging (DTI) tractography data. Whereas several studies adopting this approach have found reduced connectivity and efficiency of both local and global white matter networks, associations between these changes and impairments in specific cognitive domains remain unclear.

1.3 Do cognitive impairments vary according to the clinical presentation of SVD?

In the majority of cases, SVD manifests sub-clinically with few overt symptoms. However, SVD also contributes to, and in some cases is the primary cause of, a spectrum of disorders ranging from stroke to MCI, and multiple major dementias. SVD causes \(\approx 20\% \) of all strokes, increases the risk of recurrent ischemic stroke, and associates with poorer functional outcomes post-stroke. SVD also contributes to \(\approx 40\% \) of all dementias and increases the odds of developing incident dementia. Whereas stroke and dementia are often considered separately, they convey mutual risk to one another. For example, stroke doubles the chance of developing dementia, and poor cognitive performance increases the risk of stroke. Additionally, increasing evidence supports the hypothesis that stroke and dementia share underlying mechanisms. For example, dysfunction of the blood–brain barrier (BBB) has been identified as one of the earliest detectable mechanistic changes in the preclinical stages of dementia, occurring prior to the development and accumulation of typical Alzheimer’s disease (AD) biomarkers such as amyloid beta (A\(\beta \)) and phosphorylated tau.

Arterial stiffness, another pathological hallmark of SVD, has also been associated with the deposition of A\(\beta \) and its accumulation over time. Vascular pathologies are now considered to contribute substantially to the cognitive deficits observed in most major forms of dementia, including AD. In a recent study examining carriers of the E4 variant of apolipoprotein E (APOE4), the primary susceptibility gene for AD, BBB breakdown in the hippocampus and parahippocampal gyrus was associated with poorer cognitive ability independently of A\(\beta \) or tau accumulation. Whereas these findings have yet to be replicated, they suggest that this gene variant might contribute to AD and its resultant cognitive decline through BBB dysfunction, rather than solely through more traditional AD biomarkers. In 2017 the World Health Organization highlighted the prevention of stroke via the management of traditional vascular risk factors (eg, smoking, high blood pressure, high cholesterol, diabetes) as a means of preventing dementia. However, despite increasing recognition of cerebrovascular contributions to neurodegenerative disease processes, little is known about how cognitive impairments might differ across different SVD presentations. Patients who experience stroke and dementia have differing routes into clinical care, are treated by different specialists, and are recruited into different research studies, often preventing direct comparison of their cognitive symptoms.

We categorized the SVD cohorts in our sample into three groups based on the clinical characterizations and recruitment settings detailed in the original publications. These three groups included: (1) non-clinical SVD cohorts (cohorts who exhibited radiological evidence of SVD, but had no specific clinical or cognitive symptomatology); (2) cohorts who presented with stroke; and (3) cohorts with subjective or objective cognitive impairments, or dementia (further detail on cohort categorization is provided in Section 2). To some extent, our three SVD presentation categories may represent a continuum; individuals with radiological evidence of SVD but no overt clinical symptoms may go on to experience stroke and/or dementia. Additionally, owing to the inter-related nature of stroke and dementia, it is possible that cohorts in these three categories exhibit both vascular and neurodegenerative pathologies. As expected, tests of processing speed, executive function, attention, and reasoning were most frequently carried out in cohorts with stroke and tests of delayed memory, visuospatial ability and language were most commonly carried out in cohorts with cognitive impairments (see File S1 in supporting information).

The results of meta-regression models investigating differences in cognitive performance of the three SVD presentation groups (relative to controls) indicated differences in the magnitude of cognitive effect sizes among the three groups, such that cohorts with cognitive impairment/dementia performed worse than non-clinical cohorts on tests of executive function, delayed memory, and visuospatial ability, and worse than stroke cohorts on tests of delayed memory only. It is possible that the inclusion of samples with cognitive impairments (including MCI and dementia) could be driving the findings that SVD cohorts overall performed more poorly on tests of memory than control cohorts. However, visual inspection of a forest plot for memory (Figure 2) suggests that this is unlikely to be the case as almost all cohorts in each presentation group show deficits relative to control cohorts.

1.4 How do risk factors for SVD affect cognitive impairment?

Age is the primary risk factor for the development and progression of SVD. The prevalence of magnetic resonance imaging (MRI) markers of SVD increase with age and are found in the majority of individuals over the age of 60. In contrast, it is unclear whether biological sex may act as a risk factor for SVD, although the under-recruitment of women in stroke research may limit knowledge, and the lack of sex-disaggregated reporting limits the scope of meta-analyses on this topic. Owing to their potential for modification, traditional vascular risk factors (VRFs) such as hypertension, diabetes, and hypercholesterolemia have received a great deal of attention, alongside lifestyle factors such as smoking, lack of exercise, poor diet, and high salt intake.
FIGURE 2 Forest plot of meta-analysis of tests of delayed memory. The effect size metric is a standardized mean difference. The sizes of the squares reflect the weight given to each effect size. Letters in brackets indicate different SVD cohorts in a given study.
Each has been associated with increased SVD risk, but trials of risk-lowering interventions have produced mixed results.\(^5\) Additionally, a recent meta-analysis of early life risk factors for SVD found lower childhood socioeconomic status, lower childhood IQ, and fewer years of education to be associated with increased radiological burden of SVD;\(^{45}\) although these risk factors are related to one another and may convey interdependent effects.

Due to their associations with an increased brain burden of SVD, each of these risk factors has the potential to impact cognitive ability. Therefore, it is important that these factors are accounted for statistically (where appropriate) and considered carefully when interpreting study results. Of the studies included in our meta-analysis, almost all reported data on the age, sex, and education of study cohorts, however, reporting of vascular risk data was less complete (see File S2 in supporting information). Approximately half of all studies reported history of hypertension or diabetes, and only one third of studies reported smoking status, despite its known association with SVD progression.

Vascular risk data were least often reported for cohorts with a cognitive presentation of SVD, which could suggest that these factors are perceived as being less relevant to cohorts with MCI or dementia. We carried out further meta-regression analyses to investigate whether differences in age, education, or the prevalence of hypertension or diabetes between SVD and control cohorts accounted for the cognitive effects we observed in our meta-analyses. The results of these analyses suggest that differences in years of education between SVD and control groups account for a proportion of the differences in cognitive test scores in the domains of memory, executive function, and visuospatial ability. All other cognitive domains showed a similar direction of effect (albeit non-significant) except processing speed, which could support the suggestion that processing speed might be less amenable to beneficial effects of education than other cognitive abilities.\(^{46}\) These findings highlight education as a (potentially modifiable) risk factor for SVD-related cognitive impairment, emphasizing the importance of accounting for education in analyses of cognitive change over time, or comparisons of cognitive ability between groups. An additional factor for consideration that is closely related to educational level is peak (or premorbid) cognitive ability. In any analysis of cognitive decline, observed levels of cognitive ability will be relative to an individual’s prior abilities.\(^{57}\) Despite this, peak cognitive ability is seldom considered in clinical studies. Of the 69 studies included in our meta-analysis, only seven\(^{52,56,57,64,66,92}\) estimated peak ability and only two of these studies included this score as a covariate in their analyses.\(^{56,92}\)

1.5 Summary of findings and recommendations for future work

Based on 3229 individuals with SVD and 3679 control participants from 69 studies, our meta-analyses demonstrated that SVD-related cognitive impairments affect all major domains of cognitive ability. To accurately assess the full extent of SVD-related cognitive impairments, we recommend the use of comprehensive test batteries that cover a range of cognitive domains, such as that proposed by the National Institute for Neurological Disorders and Stroke (NINDS) and the Canadian Stroke Network (CSN\(^{45}\)). This test protocol is designed for use with participants with VCI and assesses a broad range of cognitive abilities. The full-length protocol takes 60 minutes to administer, but can be shortened to 30 or 5 minutes, while still capturing information from a fairly broad range of cognitive abilities. Widespread use of a standard cognitive testing protocol will also facilitate more accurate cross-comparison or meta-analysis of cognitive data from different studies.

The majority of studies in our meta-analysis had small sample sizes, and very few studies carried out power calculations. To make inferences about cognitive impairments in SVD, it is of vital importance that studies are adequately powered to detect cognitive effects. This meta-analysis summarizes 69 publications on a broad range of SVD presentations—references 52 to 120 provide a useful database of effect sizes, which can be consulted and used to estimate power calculations in future studies.

The results of our first meta-regression analysis suggested that cohorts with a cognitive presentation of SVD performed more poorly than cohorts with non-clinical presentations of the disease on tests of delayed memory, executive function, and visuospatial ability, and more poorly than cohorts with stroke presentations on tests of delayed memory. Our grouping of cohorts into their respective SVD presentation categories was based on cohort descriptions, recruitment settings, and diagnostic criteria, all of which varied considerably between studies. A more effective approach to characterizing SVD subtypes would be to recruit subjects with differing presentations of SVD into the same study, which would facilitate comparison of cognitive and other clinical outcomes.

As we have described, vascular disease and neurodegeneration are interrelated. Where possible, data should be collected that is relevant to both vascular and neurodegenerative disease processes. In terms of cognitive data, this would mean collecting data from a broad range of cognitive domains, as previously recommended. In terms of neuroradiological data, this would mean considering radiological markers of SVD (WMH, enlarged perivascular spaces, lacunes, microbleeds, microinfarcts, altered diffusion tensor imaging metrics), and those more commonly associated with neurodegeneration such as cerebral atrophy and hippocampal volume. The collection of vascular risk data is also important. History of hypertension, diabetes, and smoking status are quick to ascertain and should be collected for all individuals with suspected SVD in clinical and research settings. The collection of vascular biomarkers at different stages throughout the development of dementia may also provide an indication of the changing contributions of vascular dysfunction to neurodegenerative disease processes over time. Through a more complete exploration of the risk factors, brain changes, and cognitive consequences that are shared between stroke and dementia, more accurate characterization of SVD subtypes and their precipitating factors might be possible.

Finally, the results of our second set of meta-regression analyses indicated that level of education is associated with the severity of SVD-related cognitive impairments. We strongly recommend that future studies account for educational level or peak cognitive ability when
examining cognitive change over time, or comparing cognitive ability between groups. A range of methods can be used to estimate peak cognitive ability, some of which are free and have been validated in multiple languages.49

2 | APPENDIX

2.1 | Methods

We performed this systematic review and meta-analysis in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The review protocol is registered on the PROSPERO database (ID: CRD42017080215).

2.1.1 | Search strategy and study selection criteria

We developed and tested a detailed search strategy (see File S3 in supporting information) to identify studies reporting the results of cognitive testing in a cohort with SVD (performed contemporaneous with identification of SVD), and a control cohort with no history of neurological or psychiatric conditions. We searched OVID MEDLINE, Embase, and PsycINFO, for human studies published in any language from January 1, 1985, when MRI became more widely available in clinical practice, to October 6, 2019. To identify additional studies, we checked the reference lists of relevant review articles and hand-searched the previous 7 years of Stroke and the Journal of Cerebral Blood Flow and Metabolism. Study inclusion and exclusion criteria are presented in File S4 in supporting information.

2.1.2 | Data extraction

Two authors (OH and EB) independently extracted key information, which included group-level demographic data for the SVD and control groups (age, sex, education), group-level data on vascular risk factors (% cohorts with hypertension, diabetes, hypercholesterolemia, and smoking status), group-level data on WMH burden, and group-level cognitive test scores for SVD and control groups. The vast majority of cognitive data were presented as mean and standard deviation. To avoid introducing additional heterogeneity into the meta-analysis dataset, we did not convert cognitive data presented as median and range to mean and standard deviation—instead these data are summarized in File S5 in supporting information. Where individual participant data were presented, we calculated the mean and standard deviation of the variables we extracted. Cognitive data were then categorized into seven domains of cognitive ability: information processing speed, executive function, delayed memory, attention, reasoning, visual-spatial ability, and language. However, it is important to note that subdomains of cognitive ability are not discrete, and that individual cognitive tests often engage abilities from multiple cognitive domains.

To ensure that tests were reliably categorized according to the cognitive domain that they are considered to primarily assess, two authors experienced in neuropsychological testing (OH and AJ) independently categorized cognitive data into the seven domains listed above and resolved disagreements by consensus (see File S6 in supporting information). Studies reported a wide range of memory tests, including tests of long-term, short-term, and working memory. To reduce heterogeneity in the dataset, we included only tasks featuring a delayed recall/recognition component, as these were the most frequently reported memory tasks. We excluded data for which we could not identify the specific test score (eg, where authors reported results for a Trail Making task, but did not specify whether the score was for Trail Making A, Trail Making B, or Trail Making A-B). We also excluded data for which we could not discern whether a higher or lower score indicated better performance. Where studies reported multiple scores for one cognitive test (eg, for the Wisconsin Card Sorting Test: number of perseverative errors, total number of errors, number of categories, etc.), we included the score most commonly reported in the meta-analysis dataset. Due to the large number of included studies and the large number of variables used in our analyses (ie, sociodemographic, cognitive, and vascular risk variables), we did not contact the authors of original publications to obtain missing data.

2.1.3 | Statistical analysis

We calculated a standardized mean difference (SMD) to represent the difference between performance of the SVD and control cohorts on each cognitive test. We multiplied the SMD by -1 for tests on which a lower score indicated better performance. We excluded three studies due to reporting of implausibly large effect sizes, which upon examination appeared to be due to statistical or reporting errors in the original publications. While several larger effect sizes (SMD > 3) remain in our meta-analyses, these effect sizes come from small study samples so are unlikely to affect results if omitted.

2.1.4 | Meta-analysis models

We ran seven separate random effects meta-analyses to assess the differences in performance between SVD and control groups on cognitive tests in each cognitive domain. We conducted all meta-analyses using the robumeta package50 in R version 3.6.1.51 robumeta permits the meta-analysis of multiple effect sizes from one study using robust variance estimation (RVE) to account for their statistical dependency. This approach maximizes the amount of data included from a single study, increasing the statistical power of each meta-analysis. Dependency in our dataset arose from the inclusion of multiple effect sizes from the same study sample, and the inclusion of studies that used the same control group as a comparison for multiple SVD groups. Covariance matrices for multiple outcomes arising from a single study are rarely published; therefore, robumeta imputes a user-specified value
for the within-study effect size correlation. We were conservative in our choice of within-study effect size correlation—we specified rho as 0.8 and carried out sensitivity analyses in robmeta, which impute rho values at increments of 0.1 to test whether this alters the model results. For all analyses, we weighted effect sizes according to a correlated effects dependence structure within the robmeta package and used small sample size corrections. Small sample corrections, which correct both the residuals and degrees of freedom (df) used in the RVE, increase the accuracy of models including <40 studies. After correction, if the Satterthwaite df for the model are less than four, the P value is considered unreliable due to the probability of type I error being greater than 0.05. In our analyses, results of models with Satterthwaite df < 4 were considered unreliable. We report I² and χ² as measures of heterogeneity.

2.1.5 | Meta-regression models

We carried out two secondary analyses to examine the following study-level and cohort-level variables:

1. SVD presentation

To test whether the pooled study effect size differed according to SVD presentation, we grouped each SVD cohort into one of three categories according to the characterization of the cohort and recruitment setting detailed in the original publication (see File S7 in supporting information).

a) Stroke presentations

Cohorts in this category most commonly presented to stroke or neurology services with symptoms of lacunar syndrome, with or without evidence of corresponding vascular lesions. Other cohorts in this category had radiologically identified SVD, or subcortical ischemic vascular disease.

b) Cognitive presentations

Cohorts in this category were identified on the basis of impaired cognitive ability ranging from MCI to vascular dementia. Typically, cohorts presented with cognitive impairment (according to clinical diagnosis, objective cognitive testing, or subjective concern) and either radiological evidence supporting a vascular etiology, or multiple risk factors for cerebrovascular disease.

c) Non-clinical presentations

Non-clinical cohorts had radiological evidence of SVD (WMH or lacunes of presumed vascular origin), but no clinical diagnosis. Typically, cohorts were community-dwelling older individuals recruited within a defined geographical region, or via community advertising. Several cohorts in this category presented to clinical services with non-specific symptoms such as dizziness or headache, but received no diagnosis upon examination.

We then entered SVD presentation as an ordinal predictor in the meta-regression model for each cognitive domain, with the cognitive presentation category as the reference group.

2. Differences in the prevalence of vascular risk between the SVD and control cohorts

All extracted cognitive data were unadjusted for demographic or vascular risk factors. Therefore, to test whether differences in age, education, hypertension, or diabetes between SVD and control cohorts accounted for study effect sizes, we calculated the difference in age, years of education, % sample with hypertension, and % sample with diabetes (e.g., difference in age = mean age of control cohort – mean age of SVD cohort), and entered these variables as predictors in separate univariate meta-regression models for each cognitive domain.

2.1.6 | Quality assessment

Quality assessment criteria (see File S8 in supporting information) were devised according to STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. Two authors (OH and EJ) independently assessed the quality of included publications on a scale ranging from 0 to 8 and resolved disagreements by consensus. To assess whether the inclusion of lower quality studies affected the results of the meta-analyses, we re-ran meta-analysis models excluding studies with quality scores lower than the median quality score of the meta-analysis sample.

2.2 | Results

We identified 69 studies for inclusion in the review (see Table 1), which reported data for 89 cohorts with SVD (n = 3229), and 71 control cohorts (n = 3679; demographic data for the SVD and control cohorts are presented in Table 2). We did not pre-select literature that focused on a certain lesion type, or clinical, cognitive, or behavioral presentation of SVD, therefore, our dataset included SVD cohorts recruited from specialized cerebrovascular clinics; memory clinics; hospital-based stroke, dementia, and general neurology services; non-specialist medical centers; a stroke research network; and also included several research cohorts of healthy community-dwelling individuals. Included studies were from 18 countries in six continents, published in four languages.

2.2.1 | Meta-analyses

The pooled estimated effect size for each meta-analysis demonstrated that on average, control cohorts outperformed SVD cohorts on cognitive tasks in every domain examined (see Table 3 and forest plots in
Study	SVD cohort described as	SVD n	Control n	SVD age mean (SD)	SVD % female	SVD years of Education mean (SD)	SVD % Hypertension	SVD % Diabetes	SVD % Ever smoking	WMH/TIV (SD)	Mean Visual rating (SD)	Variables on which SVD & Controls are matched (blank cells = no matching, or data unavailable)	
Anderson	Lacunar syndrome	30	30	68.3 (16.8)	47%	9.7 (2.12)				1, 2			
Atwi, 2018	Fazekas ≥ 2	18	28	72.5	56%	22%	6%			1, 2, 3	9.2 ml (0.6)		
Bella, 2016	VCI-ND	25	20	67.5 (6.7)	60%	7.6 (3.9)	88%			1, 3	3		
Boone, 1992	WMH ≤ 1 cm²	27	46	63.6 (9.9)	60%	15.0 (1.9)				3	3		
	WMH > 1 cm² - 10 cm²	21		69.2 (6.8)	60%	14.2 (3.1)				3	3		
	Total WMH > 10 cm²	6		72.0 (4.9)	60%	12.8 (1.3)				3	3		
Brookes, 2014	SVD	45	80	69.7 (8.2)	44%		Highest formal qualification: None: 51% Secondary: 11% Further education: 27% Degree: 9% Higher degree: 0% Unavailable: 2%	84%	21%	69%	1, 2	Modified Fazekas n (%): Fazekas 0: 6 (13%) Fazekas 1: 12 (27%) Fazekas 2: 12 (27%) Fazekas 3: 12	
Brookes, 2015	SVD	196	303	63.5 (9.9)	32%	13.7 (3.8)	75%	23%	44%	1, 2, 4			
DeCarli, 1995	WMH volume > 0.5% TIV	5	17	74.14	32%	13.7 (3.8)	75%	23%	44%	1, 2, 4			
Deguchi, 2013	Lacunar infarction	76	105	73.4 (8.9)	34%	12.5 (2.3)	68%	30%	13%	1, 2			
Fang, 2013	1. Silent brain infarct	46	91	70.9 (6.4)	57%	8.11 (2.3)	82%	22%	20%	1, 2, 5			
	2. Microbleeds	41		70.6 (5.2)	42%	8.24 (1.9)	81%	27%	22%	1, 2, 5			
	3. Silent brain infarct + microbleeds	49		72.1 (5.0)	47%	8.20 (2.3)	82%	25%	25%	1, 2, 5			
Fernández, 2011	MCI with subcortical vascular damage	19	19	72.2 (7.6)	32%	3.6 (3.5)				1, 3			
Gainotti, 2008	MCI + multiple subcortical infarcts	41	65	71.7 (5.9)	41%	Reporting unclear				1, 3			

(Continues)
Study	SVD cohort described as	SVD n	Control n	SVD age mean (SD)	SVD % female	SVD % Hypertension	SVD % Diabetes	SVD % Ever smoking	Variables on which SVD & Controls are matched (blank cells = no matching, or data unavailable)	SVD Mean WMH/TIV (SD)	Mean Visual rating (SD)
Garrett, 2004	VCI-ND	18	25	78.4 (6.4)	44%	13.6 (2.5)					
Gonçalves 2017	Subcortical vascular dementia	16	40	74.94 (5.4)	38%	3.2 (1.8)				1.2	
Graham, 2004	VaD	19	19	71.2 (7.8)	26%	11.6 (3.1)					
Hassan, 2010	Symptomatic lacunar infarction	30	12	59.1 (5.5)	40%	able to read and write:	53% Educated	100%	47%	53%	1
Hsu, 2016	MCI due to SIVD	20	30	68.5 (10.8)	30%	7.6 (4.17)	40%	25%	1,2,3	23.9 (9.9) Scheltens	
Ishii, 2007	1. CDR 0, non-strategic CVD	68	38	74.9 (7.9)	30%	8.3 (1.5)	84%	10%			
	2. CDR 0, strategic CVD	21	21	79.1 (6.9)	40%	7.3 (2.2)	76%	14%			
	3. CDR 0.5, non-strategic CVD	21	21	80.7 (6.5)	40%	7.6 (1.7)	86%	5%			
	4. CDR 0.5, strategic CVD										
Jokinen, 2009	SIVD	89	524	73.6 (4.9)	48%	8.8 (4.2)	80%	18%	15%	1,2	
Kim, 2018	Subcortical VCI	61	19	78.7 (6.3)	72%	7.3 (5.1)				1,2,3	
Kramer, 2002	SIVD	12	27	73.7 (6.2)	50%	15.3 (2.6)				1.3	
Kuriyama, 2018	1. dWMH Fazekas grade 1	134	68	69.3 (5.7)	31%	reporting unclear	47%	12%	16%	2	
	2. dWMH Fazekas grade 2	62	a	71.5 (6.3)	36%	57%	15%	7%	13%		
	3. dWMH Fazekas grade 3	16		73.8 (6.6)	38%	81%	6%	13%	11 (69%)		

(Continues)
Study	SVD cohort described as	SVD n	Control n	SVD age mean (SD)	SVD % female	SVD years of Education mean (SD)	SVD % Hypertension	SVD % Diabetes	SVD % Ever smoking	Variables on which SVD & Controls are matched (blank cells = no matching, or data unavailable)	SVD Mean WMH/TIV (SD) Mean Visual rating (SD)
Ledesma-Amaya, 2014	Lacunar infarction	16	16	63 (9.4)	38%	7.14	13%	8%			1.3
Lee, 2014	Subcortical vascular mild cognitive impairment	67	75	73.7 (6.7)	61%	9.0 (5.2)	75%	25%	2		34.9 mL (17.8)
Lewine, 1993	1. Men with WMH	4	4	35.2 (11.8)	0%	9.0 (5.2)	75%	25%			1
	2. Women with WMH	6	6	43.3 (8.4)	100%	9.0 (5.2)	75%	25%			1
Li, 2001	Leukoaraiosis	29	25	64.9 (6.8)	7.5 (6.8)	64.9 (6.8)	Reporting unclear	60%	60%		1, 2, 3
Li, 2012	Lacunar stroke with ischaemic leukoaraiosis	20	20	65.8 (8.4)	45%	Reporting unclear	60%	60%			
Li, 2015	Symptomatic lacunar infarction	19	23	66 (12.0)	37%	8.53	68%	37%	11%		3
Li, 2017	Leukoaraiosis	13	13	63 (6.8)	39%	10.3 (3.3)	69%	6%			1, 2, 6
Liu, 2008	Subcortical small vessel infarction	60	52	73 (8.4)	47%	10.3 (3.3)	27%	14%			1, 2, 3
Liu, 2015	WMH	30	30	78.2 (5.7)	8.42	Reporting unclear	23%	11%			1.3
Liu, 2019a	1. Subcortical ischaemic vascular impairment (pre-SVCI)	25	29	70.5 (3.5)	36%	Reporting unclear	56%	40%	20%		12.6 mL (5.0)
	2. Subcortical ischaemic vascular disease with cognitive			70.5 (5.8)	45%	9.4 (1.7)	59%	37%	24%		19.8 mL (8.8)
Liu, 2019b	1. SVD without cognitive impairment	21	25	64.6 (10.9)	52%	10.5 (3.6)	56%	40%	20%		1.23
	2. SVD with cognitive impairment			66.5 (7.9)	50%	13.1 (3.8)	24%	20%	1.23		3.2 ml (3.0)
											1.23

(Continues)
Study	SVD cohort described as	SVD n	Control n	SVD mean (SD)	SVD % female	SVD years of Education mean (SD)	SVD % Hypertension	SVD % Diabetes	SVD % Ever smoking	SVD Mean WMH/TIV (SD)	SVD Mean Visual rating (SD)	Variables on which SVD & Controls are matched (blank cells = no matching, or data unavailable)
Maeshima, 2002	1. Silent brain infarct	21	63	49.4 (5.6)	62%	12.5 (2.1)	24%	14%	21%	29%	1, 2, 3	
	2. pWMH	14	70	51.4 (6.6)	57%	12.4 (2.1)	21%	14%	21%	29%	1, 2, 3	
Nebes, 2013	WMH	26	40	75.1 (5.8)	65%	14.5 (2.7)	24%	14%	21%	29%	1, 2, 3	
Nordahl 2005	MCI + severe WMH	11	20	77.6 (3.6)	55%	13.5 (1.5)	82%	27%	1, 3 WMH/TIV 3.9 (1.3)			
Nordlund, 2005	Vascular MCI	60	60	67.0 (7.3)	63%	11.2 (3.2)	24%	14%	21%	29%	1, 2, 3	
Oguro, 2000	PWMH	18	9	73.6 (4.2)	61%	9.3 (3.2)	Scale unclear	2	3	Scale unclear		
Pascual, 2010	1. Vascular white matter disease without dementia	12	12	80.7 (5.2)	50%	12 (3.2)	Scale unclear	2	3	Scale unclear		
	2. Vascular white matter disease with dementia	12	12	79.5 (4.6)	50%	12 (3.2)	Scale unclear	2	3	Scale unclear		
Pinkhardt, 2014	Small vessel cerebrovascular disease	25	19	75.58–91	68%	12.6 (2.8)	2, 3	Junque score 4.0 (2.8)	12.0 (2.3)	22.3 (4.4)		
Price, 2009	Dementia with: mild leukoaraiosis	73	24	78.5 (5.7)	82%	12.6 (2.8)	2, 3	Junque score 4.0 (2.8)	12.0 (2.3)	22.3 (4.4)		
	moderate leukoaraiosis	44	3	81.0 (5.0)	66%	12.2 (2.8)	2, 3	Junque score 4.0 (2.8)	12.0 (2.3)	22.3 (4.4)		
	severe leukoaraiosis	27	2	79.4 (4.4)	81%	11.9 (2.1)	2, 3	Junque score 4.0 (2.8)	12.0 (2.3)	22.3 (4.4)		
Quinque, 2012	Early cerebral microangiopathy	11	21	61.4 (6.3)	40%	13.8 (3.0)	2, 3	Junque score 8.3 (4.0)	ARWMC			
Rao, 1989	Leukoaraiosis	10	40	47.1 (7.8)	90%	14.1 (1.9)	2, 3					
Schmidt, 1999	WMH	74	76	61.3 (6.6)	4%	11.4 (2.6)	3					
Study	SVD cohort described as	SVD n	Control n	SVD age mean (SD)	SVD % female	SVD years of Education mean (SD)	SVD % Hypertension	SVD % Diabetes	SVD % Ever smoking	Variables on which SVD & Controls are matched (blank cells = no matching, or data unavailable)	SVD Mean WMH/TIV (SD)	Mean Visual rating (SD)
---------------	--	-------	-----------	------------------	--------------	---------------------------------	-------------------	----------------	--------------------	---	------------------------	------------------------
Seo, 2010⁹⁵	1. Subcortical vascular MCI	34	96	70.6 (6.4)	44%	10.1 (4.8)	84%	29%	100%	1, 2, 3		
	2. Subcortical VaD			74.2 (6.1)	55%	7.2 (5.5)	100%	30%				
Sierra, 2004⁹⁵	Hypertensive with WMH	23	37	55.2 (4.2)	39%	11.2 (3.7)	100%	22%	1, 2, 3			
Squarzoni, 2017⁹⁵	Silent brain infarct	57	187	72.1 (3.4)	56%	68%	33%		1			
Sudo, 2013⁹⁵	Vascular MCI	15	11	74.1 (8.1)	60%	8.9 (4.0)	1, 2, 3					
Sun, 2014⁹⁹	Mild WMH	51	49	65.3 (7.2)	55%	10.3 (3.4)	16%	10%	8%	1, 2, 3		
Tupler, 1992¹⁰⁰	dWMH	48	18	69.9 (10.1)	69%	13.9 (4.2)						
van Swieten, 1991¹⁰¹	Hypertensive with confluent WMH	10	18	67.8 (5.3)	32%	100%	100%	50%	1, 2			

(Continues)
Study	SVD cohort described as	SVD n	Control n	SVD age mean (SD)	SVD % female	SVD % Hypertension	SVD % Diabetes	SVD % Ever smoking	Variables on which SVD & Controls are matched (blank cells = no matching, or data unavailable)	SVD Mean WMH/TIV (SD) Mean Visual rating (SD)
van Zandvoort, 2003¹⁰²	Lacunar infarct in brainstem	17	17	60.1 (11.6)	29%	<6 years primary school: 0% 6 years of education (YoE): 6% 8 YoE: 0% 9 YoE: 47% 10-11 YoE: 23.5% 12-18 YoE: 23.5% > 18 YoE: 0%				1, 2, 3
van Zandvoort, 2005¹⁰³	Supratentorial lacunar infarct	26	14	60.5 (12.3)	38%	Scale unclear				1, 3
Villeneuve, 2011¹⁰⁴	MCI with confluent WMH	21	27	73.4 (5.1)	48%	12.4 (5.2)				1, 2, 3
Wolfe, 1990¹⁰⁵	Multiple lacunar infarcts	11	11	64.6 (6.0)		10.1 (3.1)				1, 3
Wong, 2007¹⁰⁶	Stroke associated with SVD	32	42	72.8 (10.0)	44%	Scale unclear				1, 2, 3 56.9 ml (8.7)
Yamauchi, 2000¹⁰⁷	Lacunar infarct	28	34	69.3 (6.3)	32%	8.9 (1.3)	21%	11%		1, 3 Anterior WMH 3.6 (3.1) Posterior 3.6 (2.8) Scale - see publication
Yang, 2015¹⁰⁸	Vascular MCI	15	15	61.7 (6.2)	73%	9.3 (2.4)				1, 2, 3
Yang, 2016¹⁰⁹	Lacunar infarct	60	30	67.0 (7.0)	42%	7.2 (2.3)	58%	18%		1, 2, 3 38%^a
Yi, 2012¹¹⁰	Subcortical vascular MCI	26	28	66.7 (9.5)	58%	9.9 (4.4)				1, 2, 3
TABLE 1 (Continued)

Study	SVD cohort described as	SVD n	Control n	SVD age mean (SD)	SVD % female	SVD years of Education mean (SD)	SVD % Hypertension	SVD % Diabetes	SVD % Ever smoking	Variables on which SVD & Controls are matched (blank cells = no matching, or data unavailable)	SVD Mean WMH/TIV (SD) Mean Visual rating (SD)
Yu, 2019¹¹¹	Extensive SIVD	29	25	71.8 (11.0)	52%	14.4 (3.2)	75%	10%	58%		DWMH 2.55 (2.5) cm³ PWMH 29.0 (21.6) cm³
Yuan, 2012¹¹²	Leukoaraiosis	46	38	72.0 (6.0)	70%	8^a	74%	61%	1,2,3		
Yuan, 2017¹¹³	Leukoaraiosis	50	50	71.7 (5.5)	58%	7.5 (4.3)	67%	50%	26%		
Yuspeh, 2002¹¹⁴	SVaD	29	38	74.1 (8.2)	35%	13.2 (4.4)		1,2,3			
Zhang 2019^{a115}	SVD	77	39	70¹¹¹	40%	Educational level:	64%	16%	25%	WMH/TIV 0.014 (0.002)	
Zhang, 2019^{b116}	Amnestic MCI with Fazekas > 1	30	90	68.33 (5.3)	47%	12.30 (2.6)		1,2			
Zhao, 2016¹¹⁷											
1. Lacunar infarct	62	55		73.2 (4.7)	42%	10.7 (3.2)	76%	37%	31%		
2. WMH	60			71.9 (4.2)	38%	10.9 (3.6)	75%	33%	23%		
3. Lacunar infarct + WMH	61			73.9 (3.8)	33%	10.5 (3.2)	78%	43%	34%		
Zhou, 2009¹¹⁸	MCI due to SVD	56	80	67.3 (6.2)	36%	9.6 (3.1)	32%	29%	32%		2
Zhou, 2014¹¹⁹	Subcortical vascular MCI	79	77	72.2 (7.1)	53%	9.9 (3.3)	63%	29%	42%		2
2. Subcortical vascular disease	82	77^a	74.1 (7.1)	51%	7.4 (3.3)	73%	22%	42%	2		
Zi, 2014¹²⁰	pWMH	16	16	62.0 (4.9)	56%	8.6 (3.1)	63%	19%	19%		

Notes: Data are presented as mean (standard deviation) or median (range), unless otherwise stated. Controls matched for: 1 Age; 2 Sex; 3 Education; 4 Premorbid IQ; 5 Vascular risk factors; 6 history of hypertension. Where cells are blank, no data were available.
Abbreviations: CDR, Clinical Dementia Rating scale; CVD, cerebrovascular disease; dWMH, deep white matter hyperintensities; MCI, mild cognitive impairment; pWMH, periventricular white matter hyperintensities; SIVD, subcortical ischemic vascular disease; SVaD, subcortical ischemic vascular dementia; SVD, cerebral small vessel disease; TIV, total intracranial volume; VaD, vascular dementia; VCI, vascular cognitive impairment; VCI-ND, vascular cognitive impairment–no dementia; WMH, white matter hyperintensities.

^aSame control group used as comparison for both/all SVD groups.
^bCurrent smoker.
TABLE 2 Summary of sociodemographic and vascular risk data for SVD and control cohorts

	SVD cohorts	Control cohorts
	(n = 89)	(n = 71)
Mean age	88	70
% female	76	63
Mean years education	67	53
% hypertension	48	34
% diabetes	45	31
% hypercholesterolemia	5	4
% history of smoking	28	16

*Mean age and mean years of education were calculated using random effects meta-analysis in the meta package in R version 3.6.1.121 Only studies that presented group-level data for age and years of education as mean and standard deviation were included in these meta-analyses. We did not test for differences in age, sex, level of education, or vascular risk factors between the SVD and control groups as some studies only reported these data for the SVD group, therefore, comparisons would not include all participants contributing cognitive data to the meta-analyses. Abbreviations: CI, confidence interval; SD, standard deviation; SVD, cerebral small vessel disease.

TABLE 3 Results of meta-analysis models for each cognitive domain

Studies	Outcomes	Estimate (SE)	95% CI	Degrees of freedom	Uncorrected p value	Heterogeneity		
Processing speed	37	88	-0.885 (0.14)	-1.17, -0.60	35.8	2.3 x 10^-7	0.6	91.4
Executive function	58	188	-0.936 (0.08)	-1.09, -0.78	56.1	<2 x 10^-16	0.4	87.6
Delayed memory	41	98	-0.898 (0.10)	-1.10, -0.69	39.6	7.2 x 10^-11	0.5	88.0
Attention	12	19	-0.622 (0.14)	-0.94, -0.31	10.6	0.001	0.2	80.8
Reasoning	16	25	-0.634 (0.14)	-0.93, -0.34	14.6	4.2 x 10^-4	0.2	76.5
Visuospatial ability	27	50	-0.720 (0.11)	-0.96, -0.48	25.3	1.3 x 10^-6	0.3	77.6
Language	24	42	-0.808 (0.10)	-1.01, -0.60	22.7	3.2 x 10^-8	0.3	81.2

Abbreviations: CI, confidence interval; SE, standard error.

Figure 2 and Figures S1–S6 in supporting information). I² values, which are an indicator of inconsistency between effect sizes in the meta-analyses, were high in each model.

2.2.2 | Meta-regression analyses

Our meta-analysis dataset included 26 cohorts with stroke presentations of SVD, 31 cohorts with cognitive impairment or dementia, and 32 cohorts with non-clinical presentations of SVD. There were no differences in years of education, or prevalence of hypertension or diabetes among the three SVD presentation categories, but cohorts with cognitive impairment/dementia were significantly older than those with non-clinical presentations of the disease (P = .002; see Table 4).

Meta-regression models investigating differences in cognitive effect sizes of the three SVD presentation groups indicated that the effect size for delayed memory was 0.83 standard deviations greater for the stroke cohorts (95% confidence interval [CI]: 0.44, 1.21; P < .001) and 0.85 standard deviations greater for non-clinical cohorts (95% CI: 0.40, 1.29; P = .001), than cohorts with cognitive impairment/dementia. We also found that the effect size was 0.49 standard deviations greater in the domain of executive function (95% CI: 0.10, 0.88; P = .015), and 0.68 standard deviations greater in the domain of visuospatial ability (95% CI: 0.30, 1.01; P = .002) for the non-clinical cohorts than the cohorts with cognitive impairment/dementia (see File S9 in supporting information for full results). Including SVD presentation as a predictor in meta-regression models had little effect on study heterogeneity

Meta-regression models investigating the impact of differences in age, education, and the prevalence of vascular risk factors between SVD versus control groups on cognitive effect sizes, indicated that the difference in cognitive performance between SVD and control groups could be due to lower levels of education in SVD cohorts (see File S10 in supporting information for full results). For every 1 year of difference in education between SVD and control groups, the cognitive effect size decreased (indicating superior performance of the control groups) by an estimated 0.23 standard deviations in the domain of executive function (95% CI: -0.37, -0.09; P = .004), 0.28 standard deviations in the
TABLE 4 Demographics of SVD cohorts with non-clinical presentations of SVD, stroke, or cognitive impairment/dementia

	Non-clinical	Stroke	Cognitive impairment/dementia			
	% cohorts	Mean (SD or 95% CI)	% cohorts	Mean (SD or 95% CI)	% cohorts	Mean (SD or 95% CI)
Mean agea	100%	66.1 (62.8, 69.4)	96.2%	69.0 (67.0, 71.1)	100%	72.8 (70.9, 74.7)
	(n = 32)		(n = 26)		(n = 31)	
% female	71.9%	53.2 (20.8)	92.3%	42.0 (8.5)	93.5%	51.6 (14.6)
	(n = 32)		(n = 26)		(n = 31)	
Mean years educationa	68.8%	10.6 (9.5, 11.7)	61.5%	10.6 (9.4, 11.8)	93.5%	9.9 (8.8, 10.9)
	(n = 32)		(n = 26)		(n = 31)	
% hypertension	62.5%	60.3 (28.7)	65.4%	68.6 (17.6)	35.5%	75.1 (16.4)
	(n = 32)		(n = 26)		(n = 31)	
% diabetes	59.4%	23.4 (16.4)	61.5%	28.6 (12.7)	32.3%	24.4 (9.1)

Mean age and mean years of education were calculated using random effects meta-analysis in the meta: An R package for meta-analysis. R News 2007, 7(3), 40–45. Only studies that presented group-level data for age and years of education as mean and standard deviation were included in these meta-analyses. Mean age and mean years of education were calculated using random effects meta-analysis in the meta: An R package for meta-analysis. R News 2007, 7(3), 40–45.121 Only studies that presented group-level data for age and years of education as mean and standard deviation were included in these meta-analyses. Significant difference at P < .01 between non-clinical and cognitive impairment/dementia groups. P value refers to comparisons made by one-way analysis of variance. Abbreviations: CI, confidence interval; SD, standard deviation; SVD, cerebral small vessel disease.

The majority of the meta-regression models assessing the influence of age on cognitive effect size produced df < 4, suggesting that model results were unreliable. Therefore, we further investigated the potential influence of age by re-running meta-analysis models excluding studies in which SVD and control groups were not matched for age. In these analyses magnitudes of estimated effect sizes were similar to the initial meta-analysis models and all models remained significant. Meta-regression models investigating the impact of hypertension and diabetes on cognitive effects also produced df < 4 suggesting that model results were unreliable, likely due to the limited availability of vascular risk data.

2.2.3 Study quality

The mean study quality score was 4.97 (median 5, range 2–8). The magnitudes of estimated effect sizes were comparable to those using the full meta-analysis dataset, and all models remained significant (see File S11 in supporting information). I² values reduced by a small amount in the domains of executive function, visuospatial ability, attention, and language, but increased in the other domains.

ACKNOWLEDGMENTS

We would like to thank Rana Fetit, Noboru Komiyama, Masoud Shirali, and Maria Valdéz Hernández, whose assistance with screening non-English texts for inclusion in the review was greatly appreciated. Thanks also to Ezgi Tanriver Ayder and Francesca Chappell for their advice on statistical aspects of the meta-analysis. OKLH is funded by the College of Medicine and Veterinary Medicine at the University of Edinburgh, and is supported by the Wellcome Trust through the Translational Neuroscience PhD program at the University of Edinburgh. JMW is supported by the Row Fogo Charitable Trust, Fondation Leducq (Perivascular Spaces Transatlantic Network of Excellence), and EU Horizon 2020 (SVDs@Target) and the MRC UK Dementia Research Institute at the University of Edinburgh. JJD is partially supported by grants that contribute to the Lothian Birth Cohorts (Age UK [MR/M013111/1], Medical Research Council [MR/R024065/1], and national Institutes of Health [1R01AG054628-01A1]). AS and TER are supported by funding from the Wellcome Trust 4-year PhD in Translational Neuroscience (108890/Z/15/Z).

AUTHOR CONTRIBUTIONS

The study was designed by OH and supervised by JMW and IJD. OH conducted the literature search and OH, EB, TR, AS, and CM screened papers for inclusion in the review. OH, EB, XL, and EJ extracted data from eligible papers. OH and AJ categorized cognitive test data into domains. OH analyzed and interpreted the data with contributions from JMW and IJD. OH wrote the first draft of the manuscript; all authors contributed to later versions.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

ORCID

Olivia K. L. Hamilton https://orcid.org/0000-0002-5874-0058
Ellen V. Backhouse https://orcid.org/0000-0001-5083-9945
Angela C. C. Jochems https://orcid.org/0000-0001-7392-3066
Caragh Maher https://orcid.org/0000-0002-2655-5499
Tuula E. Ritakari https://orcid.org/0000-0002-2409-2929
Anna J. Stevenson https://orcid.org/0000-0002-0435-3562
Ian J. Deary https://orcid.org/0000-0002-1733-263X
Joanna M. Wardlaw https://orcid.org/0000-0002-9812-6642
52. Anderson JFI, Saling MM, Srikanth VK, Thrift AG, Donnan GA. Indi-
53. Atwi S, Metcalfe AWS, Robertson AD, Rezmovitz J, Anderson ND,
54. Ritchie SJ, Bates TC, Der G, Starr JM, Deary IJ. Education is associ-
55. DeCarli C, Murphy DGM, Tranh M, et al. The effect of white mat-
56. Fang M, Feng C, Xu Y, Hua T, Jin AP, Liu XY. Microbleeds and silent
57. Deguchi K, Kono S, Deguchi S, et al. A novel useful tool of com-
58. Hachinski V, Iadecola C, Petersen RC, et al. National institute
59. Dykiert D, Deary IJ. Retrospective validation of WTAR and NART
60. Fernández PJ, Campoy G, García Santos JM, et al. Is there a specific
61. Gainotti G, Ferraccioli M, Vita MG, Marra C. Patterns of neuropsy-
62. Garrett KD, Browndyke JN, Whelihan W, et al. The neuropsycho-
63. Gonçalves C, Pinho MS, Cruz V, et al. Portuguese version of Wech-
64. Graham NL, Emery T HJ. Distinctive cognitive profiles in Alzheimer’s
disease and subcortical vascular dementia. J Neurol Neurosurg Psycho-
65. Gainotti G, Ferraccioli M, Vita MG, Marra C. Patterns of neuropsy-
66. Hsu YH, Huang CF, Lo CP, Wang TL, Yang CC, Tu MC. Frontal assess-
memory battery as a useful tool to differentiate mild cognitive impair-
67. Hsu YH, Huang CF, Lo CP, Wang TL, Yang CC, Tu MC. Frontal assess-
memory battery as a useful tool to differentiate mild cognitive impair-
68. Ishii H, Meguro K, Yamaguchi S, Ishikawa H, Yamadori A. Preva-
lence and cognitive performances of vascular cognitive impairment
69. Jokinen H, Kalska H, Ylikoski R, et al. MRI-defined subcortical ischemic vascular disease: baseline clinical and neuropsychological findings. Cerebrovasc Dis. 2009;27(4):336-344.
70. Kramer JH, Reed BR, Mungas D, Weiner MW, Chui HC. Executive dysfunction in subcortical ischaemic vascular disease. J Neurol Neurosurg Psychiatry. 2007;78(5):999-1007.
71. Kramer JH, Reed BR, Mungas D, Weiner MW, Chui HC. Executive dysfunction in subcortical ischaemic vascular disease. J Neurol Neurosurg Psychiatry. 2007;78(5):999-1007.
72. Kuriyama N, Ozaki E, Mizuno T, et al. Association between α-Klotho and deep white matter lesions in the brain: a pilot case control study using brain MRI. J Alzheimer’s Dis. 2018;61(1):145-155.
73. Ledesma-Amaya Li, Salvador-Cruz J, Rodríguez-Aguedelo Y, Valencia-Flores M, Arauz A. Neuropsychological disorders associated with patients with lacunar infarct. Acta Colomb Psicol. 2014;17(2): 43-52.
74. Lee MJ, Seo SW, Na DL, et al. Synergistic effects of ischemia and β-
amyloid burden on cognitive decline in patients with subcortical vas-
cular mild cognitive impairment. JAMA Psychiatry. 2014;71(4):412-422.
75. Lewine R, Hudgins P, Risch SC & Walker, EF. Lowered attention capacity in young medically healthy men with magnetic resonance imaging brain hyperintensity signals. Neuropsychiatry, Neuropsychol Behav Neurosci. 1993;6(1):38-42.
76. Li M, Huang B, Li J, Li H. Neuropsychological characteristics of patients with leukoaraiosis. Chinese J Clin Psychol. 2001;9(3):161-163.
77. Li C, Ling X, Liu S, et al. Abnormalities of magnetic resonance spec-
troscopy and diffusion tensor imaging are correlated with executive dysfunction in patients with ischemic leukoaraiosis. J Clin Neurosci. 2012;19(5):718-722.
78. Li H, Zheng X, Yang S, et al. The changes of early cognitive function and cerebral hemodynamics in patients with lacunar cerebral infarc-
tion. Chinese J Cerebrovasc Dis. 2015;12(9):468-473. 35.
79. Li Q, Zhao L, Hu F. Characteristics of cognitive impairment and the resting state functional MRT in patients with leukoaraiosis. Chin Med J (Engl). 2017;97(45):3529-3533.
80. Liu W, Hu P, Zhang W, Li X, Wu X, Wang K. The episodic memory monitoring in patients with white matter lesions. China J Neurol 2015;48(4):302-306.
81. Liu W, Hu P, Zhang W, Li X, Wu X, Wang K. The episodic memory monitoring in patients with subcortical ischemic small vessel disease: a resting-state fMRI study. Brain Res. 2019a;1715:126-133.
82. Liu R, Wu W, Ye Q, et al. Distinctive and pervasive alterations of functional brain networks in cerebral small vessel disease with and without cognitive impairment. Dement Geriatr Cogn Disord. 2019b;47(1-2):55-67.
83. Maeshima S, Moriwaki H, Otsuki F, et al. Cortical thinning in vascular mild cognitive impairment: a combined VBM and DTI study. Acta Neurol Scand. 2002;105(3):179-184.
84. Nebes RD, Snitz BE, Cohen AD, et al. Cognitive aging in persons with minimal amyloid-β and white matter hyperintensities. Neuropsychologia. 2013;51(11):2202-2209.
85. Nordahl CW, Ranganatha C, Yonelinas AP, DeCarli C, Reed BR, Jagust WJ. Different mechanisms of episodic memory failure in mild cognitive impairment. Neuropsychologia. 2005;43(11):1668-1679.
86. Nordlund A, Rolstad S, Klang O, Lind K, Hansen S, Wallin A. Cognitive profiles of mild cognitive impairment with and without vascular disease. Neuropsychology. 2007;21(6):706-712.
87. Oguro H, Okada K, Yamaguchi S, Kobayashi S. A six year follow-up study on the influence of silent ischemic brain lesions on cognitive function and brain atrophy in elderly people. Japanese J Geriatr. 2000;37(4):298-303.
88. Pascual B, Prieto E, Arbizu J, Marti-Climent J, Olier J, Masdeu JC. Brain glucose metabolism in vascular white matter disease with dementia. Stroke. 2010;41(2):2889-2893.
89. Pinkhardt EH, Issa H, Gorges M, et al. Do eye movement impairments in patients with small vessel cerebrovascular disease depend on lesion load or on cognitive deficits? A video-oculographic and MRI study. J Neurol. 2014;261(4):791-803.
90. Price CC, Garrett KD, Jefferson AL, et al. Leukoaraiosis severity and list-learning in dementia. Clin Neuropsychol. 2009;23(6):944-961.
91. Quinque EM, Arélin K, Marti-Clement J, Olier J, Masdeu JC. Brain glucose metabolism in vascular white matter disease with dementia. Stroke. 2009;41(12):2889-2893.
92. Rao SM, Mittenberg W, Bernardin L, Haughton V, Leo GJ. Neuropsychological test findings in subjects with leukoaraiosis. Arch Neurol. 1989;46(1):40-44.
93. Schmidt R, Fazekas F, Offenbacher H, Dusek T, Zach E, Reinhart B GP et al. Neuropsychological correlates of MRI white matter hyperintensities: a study of 150 normal volunteers. Neurology. 1993;43(12):2490-2494.
94. Seo SW, Ahn J, Yoon U, et al. Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type. J Neurol Imaging. 2010;20(1):37-45.
95. Sierra C, De La Sierra A, Salamero M, Sobrino J, Gómez-Angelats E, Coca A. Silent cerebral white matter lesions and cognition in middle-aged essential hypertensive patients. Am J Hypertens. 2004;17(6):529-534.
96. Squerzoni P, Tamashiro-Duran J, Duran F, et al. High frequency of silent brain infarcts associated with cognitive deficits in an economically disadvantaged population. Clinics. 2017;72(08):474-480.
97. Sudo FK, Alves CEO, Alves GS, et al. White matter hyperintensities, executive function and global cognitive performance in vascular mild cognitive impairment. Arq Neuropsiquiatr. 2013;71(7):431-436.
P300 for cognitive assessment in elderly patients with cerebral small vessel disease. Chin J Contemp Neurol Neurosurg. 2016;16(11):768-773.

118. Zhou A, Jia J. Different cognitive profiles between mild cognitive impairment due to cerebral small vessel disease and mild cognitive impairment of Alzheimer's disease origin. J Int Neuropsychol Soc. 2009;15(6):898-905.

119. Zhou X, Wang L, Liu H, Sun Z. Relationship between serum bilirubin, uric acid and cognition impairment in patients with subcortical ischemic vascular disease. Chin J Neurol. 2014;47(5):305-310.

120. Zi W, Duan D, Zheng J. Cognitive impairments associated with periventricular white matter hyperintensities are mediated by cortical atrophy. Acta Neurol Scand. 2014;130(3):178-187.

121. Schwarzer, G (2007) meta: An R package for meta-analysis. R News, 7(3), 40-45.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Hamilton OKL, Backhouse EV, Janssen E, et al. Cognitive impairment in sporadic cerebral small vessel disease: A systematic review and meta-analysis. Alzheimer’s Dement. 2020;1–21. https://doi.org/10.1002/alz.12221