PURPOSE The systematic collection of data on cancer is being performed by various population-based cancer registries (PBCRs) and hospital-based cancer registries (HBCRs) across India under the National Cancer Registry Programme–National Centre for Disease Informatics and Research (NCDIR) of the Indian Council of Medical Research since 1982.

METHODS This study examined the cancer incidence, patterns, trends, projections, and mortality from 28 PBCRs and also the stage at presentation and type of treatment of patients with cancer from 58 HBCRs (N = 667,666) from the pooled analysis for the composite period 2012-2016. Time trends in cancer incidence rate were generated as annual percent change from 16 PBCRs (those with a minimum of 10 years of continuous good data available) using Joinpoint regression.

RESULTS Aizawl district (269.4) and Papumpare district (219.8) had the highest age-adjusted incidence rates among males and females, respectively. The projected number of patients with cancer in India is 1,392,179 for the year 2020, and the common 5 leading sites are breast, lung, mouth, cervix uteri, and tongue. Trends in cancer incidence rate showed an increase in all sites of cancer in both sexes and were high in Kamrup urban (annual percent change, 3.8%; \(P < .05 \)). The majority of the patients with cancer were diagnosed at the locally advanced stage for breast (57.0%), cervix uteri (60.0%), head and neck (66.6%), and stomach (50.8%) cancer, whereas in lung cancer, distant metastasis was predominant among males (44.0%) and females (47.6%).

CONCLUSION This study provides a framework for assessing the status and trends of cancer in India. It shall guide appropriate support for action to strengthen efforts to improve cancer prevention and control to achieve the national noncommunicable disease targets and the sustainable development goals.

JCO Global Oncol 6:1063-1075. © 2020 by American Society of Clinical Oncology

INTRODUCTION Globally, noncommunicable diseases (NCDs) accounted for 71% of total deaths. In India, NCDs were estimated to account for 63% of all deaths, and cancer was one of the leading causes (9%). Cancer registries are recognized as vital components of national cancer-control programs. Publications from developed and developing countries provide updated information on cancer occurrence, trends, and projections. In India, the systematic collection of data on cancer has been performed since 1982 by the population-based cancer registries (PBCRs) and hospital-based cancer registries (HBCRs) under the National Cancer Registry Programme (NCRP)–National Centre for Disease Informatics and Research (NCDIR) of the Indian Council of Medical Research (ICMR; ICMR-NCDIR-NCRP), Bengaluru (Appendix). NCRP commenced with the objective of generating reliable data on the magnitude and patterns of cancer. Several NCRP reports on cancer from different registries across India have been published.

PBCRs provide statistics on the occurrence and outcome of cancer in a geographically defined population. They also provide the framework for assessing the control of cancer in the community. HBCRs are concerned with the recording of information on patients with cancer seen in a particular hospital and are mainly used for reviewing clinical performance and the hospital cancer program.

This article reports the cancer incidence, patterns, time trends, and mortality from 28 PBCRs for the composite period 2012-2016 across India under ICMR-NCDIR-NCRP. Also, it covers the stage at presentation and type of treatment received by patients with cancer from 58 HBCRs for the period 2012-2016 in India under the...
CONTEXT

Key Objective
This study reports the cancer incidence, patterns, trends, projections, cancer mortality, and clinical aspects of stage at presentation and treatment for the period 2012-2016 from 28 population-based and 58 hospital-based cancer registries in India under the network of the National Cancer Registry Programme.

Knowledge Generated
There is heterogeneity in cancer incidence (age-adjusted rate per 100,000: males: Osmanabad and Beed, 39.5 v Aizawl district, 269.4; females: Osmanabad and Beed, 49.4 v Papumpare district, 219.8) and in patterns across India and a lower proportion (< 33%) of early stage at presentation for common cancers. The projected incidence of patients with cancer for the year 2020 in India in males is 679,421 and in females is 712,758.

Relevance
Results of this study will help in assessing the status and trends of cancer in India. This will assist local- and national-level stakeholders to implement public health action to control cancer.

METHODS

Presently, there are 36 PBCRs and 236 HBCRs registered under the ICMR-NCDIR-NCRP. However, this article includes data from 28 PBCRs and 58 HBCRs, which were complete with at least 1 year of good-quality data. All neoplasms with a behavior code of 3 as defined by the International Classification of Diseases for Oncology, 3rd Edition, and the International Statistical Classification of Diseases and Related Health Problems (10th revision; ICD-10) were considered reportable and therefore registered in NCRP.11 Cancer registration is a complex process. In India, cancer registration is active wherein trained registry staff go to different sources (hospitals, diagnostic laboratories, vital statistics departments) for collection of data on a standardized core form.10 This is followed by quality control checks, duplicate checks, matching with mortality cases, follow-up of death certificate notifications, and assigning death certificate only (DCO). Patients with cancer who were residents in the registration area for a minimum period of 1 year before the date of diagnosis were included in the registry. Multiple cancer data sources were followed for data collection.10 Quality of the data was maintained per International Association of Cancer Registries/International Agency for Research on Cancer (IACR/IARC) norms.12,13 Incidence and mortality data were retrieved from 28 PBCRs (urban or rural, or both) for the period 2012-2016. Cancer burden measures were calculated as crude rate, age-adjusted rate (AAR) per 100,000 population using world standard population,14 and cumulative risk (probability that an individual will be diagnosed with cancer [0- to 74-year-old age group] in the absence of any competing cause of death and assuming that the current trends prevail over the time period). Time trends in cancer incidence rate were generated as annual percent change (APC) and considered statistically significant (at $P < .05$) from 16 PBCRs (with minimum of 10 years of data) using the Joinpoint regression program, 4.0.1 (National Cancer Institute).15 The years of data for trend analysis varied (11 to 35 years) across the PBCRs, and there were 6 PBCRs with more than 25 years of continuous data.

The country was categorized into 6 geographic zones based on the location of the PBCRs: North (Delhi, Patiala), South (Hyderabad, Kollam, Thiruvananthapuram, Bangalore, and Chennai), East (Kolkata), West (Ahmedabad urban, Aurangabad, Osmanabad and Beed, Barshi rural, Mumbai, and Pune), Central (Wardha, Bhopal, and Nagpur) and Northeast (NE; Manipur, Mizoram, Sikkim, Tripura, West Arunachal, Meghalaya, Nagaland, Pasighat, Cachar, Dibrugarh, and Kamrup urban). Population denominators were derived from the Census of India, conducted by the Registrar General and Census Commissioner of India under the Ministry of Home Affairs, Government of India.16 The census populations of 2001 and 2011 were used to calculate the postcensal population estimates for the years 2012 and 2016 by 5-year age groups and sex. For time trend analysis, the respective 1981, 1991, 2001, and 2011 censuses were taken as the base to estimate inter- or postcensal population by 5-year age groups and sex.17

A standardized patient information form for HBCRs under NCRP and the data collection methods have been explained previously.18 Newly diagnosed and treated patients with cancer (N = 667,666) from 58 HBCRs (with a minimum of 1 year of a complete dataset) in 2012-2016 were pooled and are presented as the relative proportion of clinical stage and treatment. The stage/clinical extent of disease before treatment (excludes previously treated patients with cancer) was classified into localized only, locoregional, distant metastasis, and unknown.19 The completion of planned cancer-directed treatment after
Serial No.	Registry (period of reference)	CR	AAR	Cum Risk	AAMR	CR	AAR	Cum Risk	AAMR	
	North									
1	Delhi (2012-14)	10,344	112.3	147.0	1 in 6	9,688	119.6	141.0	1 in 7	17.8
2	Patiala district (2012-16)	1,079	101.6	108.2	1 in 9	1,215	127.7	124.6	1 in 8	30.1
3	Hyderabad district (2014-16)	1,714	84.2	101.6	1 in 9	2,151	109.8	136.0	1 in 7	12.5
4	Kollam district (2012-16)	1,986	159.4	127.7	1 in 7	1,956	139.1	107.1	1 in 9	38.3
5	Thiruvananthapuram district (2012-16)	2,701	170.4	137.8	1 in 7	2,865	164.8	127.3	1 in 8	39.5
6	Bangalore (2012-14)	4,407	96.8	122.1	1 in 7	5,276	125.1	146.8	1 in 6	41.5
7	Chennai (2012-16)	2,894	121.8	119.9	1 in 8	3,361	141.4	132.8	1 in 7	28.8
	South									
8	Kolkata (2012-15)	2,547	109.9	91.2	1 in 10	2,288	105.9	89.2	1 in 11	32.1
9	Ahmedabad urban (2012-16)	2,916	89.1	98.3	1 in 9	2,205	74.7	76.7	1 in 12	16.9
10	Aurangabad (2012-16)	385	56.6	70.9	1 in 13	400	62.9	75.1	1 in 12	8.5
11	Osmanabad and Beed (2012-15)	909	39.3	39.5	1 in 23	1,117	52.8	49.4	1 in 19	10.4
12	Barshi Rural (2012-16)	145	53.9	50.6	1 in 17	163	67.2	61.0	1 in 15	36.1
13	Mumbai (2012-15)	6,564	97.3	108.4	1 in 9	6,865	117.6	116.2	1 in 8	61.4
14	Pune (2012-16)	1,937	67.5	83.0	1 in 11	2,164	83.3	94.0	1 in 10	35.3
	East									
15	Wardha district (2012-16)	478	70.4	64.5	1 in 14	507	78.7	69.9	1 in 14	37.1
16	Bhopal (2012-15)	892	83.3	101.0	1 in 9	897	90.4	106.9	1 in 8	30.9
17	Nagpur (2012-16)	1,190	89.0	91.1	1 in 10	1,209	93.1	89.8	1 in 11	17.7
	Central									
18	Manipur state (2012-16)	740	47.0	62.8	1 in 14	900	57.8	71.1	1 in 12	17.3
	Imphal West District (2012-16)	227	85.1	95.3	1 in 9	300	107.9	110.9	1 in 8	24.3
19	Mizoram state (2012-16)	865	146.1	207.0	1 in 5	747	127.5	172.3	1 in 5	76.4
20	Aizawl district (2012-16)	436	206.2	269.4	1 in 4	380	174.6	214.1	1 in 5	89.5
21	Sikkim state (2012-16)	234	69.9	88.7	1 in 10	226	75.3	97.0	1 in 10	46.2
22	Tripura state (2012-16)	1,312	67.0	80.9	1 in 11	983	52.0	58.3	1 in 15	28.9
23	West Arunachal (2012-16)	244	56.6	101.1	1 in 8	234	56.3	96.3	1 in 10	18.9
24	Papumpare district (2012-16)	94	94.8	201.2	1 in 4	106	105.1	219.8	1 in 4	37.9
25	Meghalaya (2012-16)	938	92.6	176.8	1 in 5	566	55.7	96.5	1 in 9	38.1
26	East Khasi Hills (2012-16)	577	131.0	227.9	1 in 4	346	76.9	118.6	1 in 8	51.5
27	Nagaland (2012-16)	281	74.5	124.5	1 in 7	198	56.3	88.2	1 in 10	11.1
28	Kamrup urban (2012-16)	1,245	190.5	213.0	1 in 4	958	150.8	169.6	1 in 6	37.3

NOTE. Reporting year data given in parentheses; Meghalaya covers East Khasi Hills, West Khasi Hills, Jaintia Hills, and Ri Bhoi districts; Nagaland covers Kohima and Dimapur districts; Pasighat covers East Siang and Upper Siang; West Arunachal covers Tawang, West Kameng, East Kameng, Upper Subansiri, Lower Subansiri, Kurung Kumey, Papumpare, and West Siang districts.

Abbreviations: AAMR, age-adjusted mortality rate per 100,000; AAR, age-adjusted rate per 100,000; CR, crude rate per 100,000; cum risk, cumulative risk of developing any site of cancer 0-74 years of age; NCRP, National Cancer Registry Program; PBCR, population-based cancer registry.
diagnosis was classified as surgery, radiotherapy, systemic therapy, and multimodality (combination of surgery and/or radiotherapy and/or systemic therapy).

Good-quality data indices of microscopic verification (MV%) above 75%, DCO% below 20%, other and unspecified sites (O&U%) below 15%, and mortality-to-incidence ratio (M:I%) were calculated for each PBCR and accordingly classified. NCRP has developed in-house software (PBCR and HBCR Data Management) for data capture, quality checks, duplicates checks (deterministic and phonetic-similar sounding duplicate names), and mortality-incidence matching. The list of errors was sent back to registries for clarification and corrections at each level. Incidence data for 2012-2016 was used as a reference for projection of patients with cancer in India until 2020 by sex and anatomical site. On comparison of AARs for all sites of cancer (ICD10: C00-C97) across the population among males, Aizawl district, Papumpare district, East Khasi Hills district, and Kamrup urban are likely to develop cancer in the age group of 0-74 years. One of every 4 females in the Papumpare district and 1 of 5 females in Mizoram state are likely to develop cancer in the age group of 0-74 years. One of every 4 males in Aizawl district had the highest AAR (269.4) and mortality (152.7) rate among males. One of every 4 males in Aizawl district, Papumpare district, East Khasi Hills district, and Kamrup urban are likely to develop cancer in the age group of 0-74 years. One of every 4 females in the Papumpare district and 1 of 5 females in Mizoram state are likely to develop cancer in the age group of 0-74 years.

![Graph](https://example.com/graph.png)

FIG 1. Comparison of all cancer sites’ age-adjusted incidence rates (AARs) of all population-based cancer registries, 2012-2016 (International Statistical Classification of Diseases and Related Health Problems, 10th revision: C00-C97). AARs are in blue and crude rates are given in parentheses in red. Thiruvananthapuram district, Thiruvananthapuram district.
respectively. The higher proportion of cancers associated with use of tobacco was in the NE states, followed by registries in the West and Central regions (Fig 2).

Among males, lung, mouth, esophagus, and stomach were the most common cancer sites. Among females, breast cancer, followed by cervix uteri and ovary cancer, were the most common sites across the PBCRs. Thyroid cancer was the second most common cancer in the PBCRs of Thiruvananthapuram and Kollam, whereas lung cancer was seen in Manipur and Mizoram state. In the NE region, the third most common cancers were stomach and gallbladder (Data Supplement). The decadal changes in leading sites of
cancer from 6 older PBCRs (Barshi rural, Bangalore, Bhopal, Chennai, Delhi, and Mumbai) were observed for the first 10 and last 10 years of data (Data Supplement).

The relative proportion of patients according to clinical extent of disease at the time of diagnosis as seen in the pooled data of 58 HBCRs for common sites of cancer showed that the majority of patients with cancer were diagnosed as locally advanced/locoregional for breast (57.0%), cervix uteri (60.0%), head and neck (66.6%), and stomach (50.8%) cancer. The majority of patients with lung cancer were diagnosed with distant metastasis in males (44.0%) and females (47.6%; Fig 3). The relative proportion of types of cancer-directed treatment received (only at the reporting hospital) according to clinical extent of disease before treatment showed that multimodality was the first choice of treatment (locoregional, 79.5%; localized, 74.4%; distant metastasis, 47.6%; Data Supplement).

The estimated APC in cancer AAR for selected anatomic sites of cancer over the time period showed an increase in the incidence rate of all sites of cancer (12 PBCRs in males and 13 PBCRs in females). There was a significant decrease in the incidence rate of cervical cancer in 10 PBCRs, except in Dibrugarh district and Pune. Lung cancer showed a significant increase in 11 PBCRs among females (Fig 4).

Among 28 PBCRs, MV%, ranged between 77% (Patiala) and 96.7% (Hyderabad); DCO% ranged between 0.05% (Osmanabad and Beed) and 19.4% (Patiala); O&U% ranged between 1.8% (Hyderabad) and 13.0% (Patiala). M:I% was high in Barshi rural (67.2%) followed by Wardha (59.2%) and Mumbai (56.0%; Data Supplement).

The projected incidence of patients with cancer in India among males was 679,421 (94.1 per 100,000) and among females 712,758 (103.6 per 100,000) for the year 2020. One in 68 males (lung cancer), 1 in 29 females (breast cancer), and 1 in 9 Indians will develop cancer during their lifetime (0-74 years of age; Table 2). The projected 5 most common cancers in 2020 for males (lung, mouth, prostate, tongue, and stomach) constitute 36% of all cancers and for females (breast, cervix uteri, ovary, corpus uteri, and lung) constitute 53% of all cancers (Data Supplement).

DISCUSSION

India exhibits heterogeneity in cancer. The incidence rates of Aizawl district were observed to be 7 times and 4 times...

FIG 3. Relative proportion (%) of patients according to clinical extent of disease, 2012-2016 (proportion [%] may not total 100% because of rounding).

Disease	Proportion (%)
Breast (Female)	
Localized only	29.0
Loco regional	57.0
Distant metastasis	10.3
Unknown extent	3.7

Cervix Uteri	
Localized only	32.8
Loco regional	60.0
Distant metastasis	5.1
Unknown extent	2.2

Head & Neck (both sexes)	
Localized only	25.2
Loco regional	46.6
Distant metastasis	4.8
Unknown extent	3.4

Stomach (both sexes)	
Localized only	18.7
Loco regional	50.8
Distant metastasis	24.7
Unknown extent	5.8

Lung (male)	
Localized only	13.9
Loco regional	37.0
Distant metastasis	44.0
Unknown extent	5.1

Lung (female)	
Localized only	17.0
Loco regional	29.8
Distant metastasis	47.6
Unknown extent	5.6
that of Osmanabad and Beed district PBCRs in males and females, respectively. The highest cancer incidence rate was observed in the NE region (6 PBCRs for males and 4 PBCRs for females) than other areas in the country. The leading sites of cancer in the NE region were nasopharynx, hypopharynx, esophagus, stomach, liver, gallbladder, larynx, lung, breast, and cervix uteri. The NE region lacks required infrastructure with respect to specialized treatment facilities, human resources, as seen by the low 5-year survival of breast, cervix, and head and neck cancer compared with rest of India. A substantial proportion of patients with cancer from the NE region are traveling outside the NE for treatment and cancer care. Local cultural factors and lifestyle choices may have contributed to the heterogeneity in cancer incidence pattern and differences in India, as was seen in Thailand.

Lung (9 PBCRs), mouth (9 PBCRs), esophagus (5 PBCRs), stomach (4 PBCRs), and nasopharynx (1 PBCR) cancers were the most common cancers in men. Lung cancer was the leading site in metropolitan cities and the southern region, whereas mouth cancer was the leading site in the West and Central regions. Lung cancer and oral/mouth cancer were the most common cancers among males in the Indian subcontinent. Cancers of the esophagus, stomach, and nasopharynx were the leading sites in the NE region of India. Here, the cancer incidence pattern is different from the rest of India. There are similarities in the cancer incidence pattern with the Southeast Asian region. Overall, these findings on patterns of cancer were similar to previously published reports under NCRP.

Cancer of the breast (19 PBCRs) and cervix uteri (7 PBCRs) were the most common cancers in women. The highest burden of breast cancer was observed in metropolitan cities. There is an increase in the trend of incidence of breast cancer, whereas cervix uteri cancer is on the decline. A steady increase in breast cancer in most of the PBCRs including newer PBCRs, poses a great health challenge to women in India. Presently, breast cancer and cervix uteri are the leading sites of cancer among women in India, posing an important public health problem that needs important input from various health and other agencies to tackle. A multidisciplinary approach to breast cancer, including awareness programs, preventive measures, screening programs for early detection, and availability of treatment facilities, are vital for reducing both incidence and mortality of cancer in Indian women.

The incidence rate of thyroid cancer among women is increasing, and it is most common in the districts of Thrivunanthapuram and Kollam in Kerala. The high burden of thyroid cancer in Kerala could be due to overdiagnosis, as was observed even in high-income and low- and middle-income countries. AAR in Barshi rural is almost one third of urban PBCRs (males, 50.6 v 147.0; females, 61.0 v 146.8), and the increase in APC was...
Site	Male Patients	CR	Cum Risk	Female Patients	CR	Cum Risk	Both Sexes Patients	CR	Cum Risk
All sites	679,421	94.1	1 in 9	712,758	103.6	1 in 9	1,392,179	98.7	1 in 9
Oral cavity and pharynx	139,018	19.2	1 in 41	49,951	7.3	1 in 112	188,969	13.4	1 in 60
Tongue	39,902	5.5	1 in 147	13,870	2.0	1 in 401	53,772	3.8	1 in 215
Mouth	57,380	7.9	1 in 103	22,483	3.3	1 in 241	79,863	5.7	1 in 144
Pharynx	3,029	0.4	1 in 1,793	1,102	0.2	1 in 5,475	4,131	0.3	1 in 2,701
Other oral cavity	38,707	5.4	1 in 137	12,496	1.8	1 in 476	51,203	3.6	1 in 213
Digestive system	163,845	22.7	1 in 32	110,137	16.0	1 in 50	273,982	19.4	1 in 39
Esophagus	32,622	4.5	1 in 159	20,206	2.9	1 in 264	52,828	3.7	1 in 198
Stomach	32,713	4.5	1 in 160	17,430	2.5	1 in 319	50,143	3.6	1 in 213
Small intestine	2,155	0.3	1 in 2,492	1,451	0.2	1 in 3,901	3,606	0.3	1 in 2,044
Colon	20,572	2.8	1 in 260	15,685	2.3	1 in 348	36,257	2.6	1 in 298
Rectum	21,915	3.0	1 in 244	14,985	2.2	1 in 372	36,900	2.6	1 in 295
Anus, anal canal	2,897	0.4	1 in 1,865	2,028	0.3	1 in 2,682	4,925	0.3	1 in 2,200
Liver and intrahepatic bile duct	26,678	3.7	1 in 189	10,732	1.6	1 in 514	37,410	2.7	1 in 277
Gallbladder and other biliary	12,385	1.7	1 in 422	19,510	2.8	1 in 284	31,895	2.3	1 in 340
Pancreas	11,908	1.6	1 in 429	8,110	1.2	1 in 657	20,018	1.4	1 in 519
Respiratory system	103,552	14.3	1 in 48	32,480	4.7	1 in 165	136,032	9.6	1 in 74
Larynx	27,146	3.8	1 in 184	3,316	0.5	1 in 1,633	30,462	2.2	1 in 331
Lung and bronchus	71,788	9.9	1 in 68	26,490	3.9	1 in 201	98,278	7.0	1 in 101
Other respiratory organs	4,618	0.6	1 in 1,273	2,674	0.4	1 in 2,156	7,292	0.5	1 in 1,600
Bones and joints	8,115	1.1	1 in 1,013	5,840	0.8	1 in 1,370	13,955	1.0	1 in 1,162
Soft issue	8,047	1.1	1 in 842	6,590	1.0	1 in 1,052	14,637	1.0	1 in 936
Skin (excluding basal and squamous)	11,203	1.6	1 in 510	8,962	1.3	1 in 640	20,165	1.4	1 in 568
Melanoma of the skin	3,003	0.4	1 in 1,904	2,364	0.3	1 in 2,281	5,367	0.4	1 in 2,075
Other nonepithelial skin	8,200	1.1	1 in 695	6,598	1.0	1 in 890	14,798	1.0	1 in 781
Breast	5,377	0.7	1 in 1,022	205,424	29.9	1 in 29	210,801	15.0	1 in 56
Genital system	51,994	7.2	1 in 105	155,630	22.6	1 in 36	207,624	14.7	1 in 54
Uterine cervix	—	—	—	75,209	10.9	1 in 75	75,209	10.9	1 in 75
Uterine corpus	—	—	—	26,514	3.9	1 in 190	26,514	3.9	1 in 190
Ovary	—	—	—	43,866	6.4	1 in 133	43,866	6.4	1 in 133
Vulva	—	—	—	2,138	0.3	1 in 2,459	2,138	0.3	1 in 2,459
Vagina and other genital, female	—	—	—	7,570	1.1	1 in 745	7,570	1.1	1 in 745
Placenta	—	—	—	313	0.0	1 in 30,912	313	0.0	1 in 30,912
Prostate	41,532	5.7	1 in 125	—	—	—	41,532	5.7	1 in 125
Testis	4,352	0.6	1 in 2,095	—	—	—	4,352	0.6	1 in 2,095
Penis and other genital, male	6,110	0.8	1 in 916	—	—	—	6,110	0.8	1 in 916
Urinary system	33,269	4.6	1 in 158	11,265	1.6	1 in 502	44,534	3.2	1 in 240
Urinary bladder	20,470	2.8	1 in 250	5,403	0.8	1 in 1,014	25,873	1.8	1 in 402
Kidney and renal pelvis	12,363	1.7	1 in 442	5,657	0.8	1 in 1,038	18,020	1.3	1 in 620

(Continued on following page)
less compared with urban PBCRs. This needs additional investigation.

There are cancers of several anatomic sites known to be associated with the use of tobacco. Based on PBCR data, almost one third of the cancers were known to be associated with the use of tobacco in India. India state-level disease burden initiative cancer collaborators estimated that tobacco use was the highest contributing risk factor for cancer in India. In India, lung cancer can be attributed to tobacco use and air pollution, which are the leading risk factors. Approximately 70% of cancers in India were potentially preventable through modifiable risk factors.

Because it is difficult to obtain information on the clinical extent of disease and treatment from PBCRs, the hospital database was used for such analysis. The majority of breast and cervix uteri cancers were diagnosed at a locally advanced stage. Chemoradiation was the most common type of treatment of cancer cervix uteri. A multi-institutional study from India on cervix cancer showed significantly better survival with chemoradiation than radiation alone in the locally advanced stage. A study from Chennai showed that concurrent chemoradiation for locally advanced cervical cancer resulted in the best disease-free survival. Two thirds of the patients with cancer were diagnosed at the locoregional stage for head and neck cancers from HBCRs. Similar to that, a low proportion of patients with head and neck cancer presented in the early stage, and a high proportion (88.1%) were seen in Uttarakhand. Multimodality was the most common treatment given for breast and head and neck cancers. A multi-institutional study estimated that 65% of new head and neck cancers with locally advanced disease did not receive the benefit of optimal treatment, resulting in poor survival. Less than one fifth of lung and stomach cancers were diagnosed as localized only. Systemic therapy was the most common type of treatment given for lung and stomach cancer. A previous report on HBCR results showed similar findings. A hospital-based study from northern India showed that 90% of patients with lung cancer were diagnosed at an advanced stage of the disease, and there was a delay in diagnostic evaluation and treatment. Creating cancer awareness, preventing risk factors, and improving access to care among people would result in downstaging of cancer.

The measure of validity, MV%, was above 77% for all the PBCRs. Varying patterns of DCO% and M:I% were observed among PBCRs which were dependent on the quality of death registration and certification. Efforts to improve the quality are always underway. In some registries, low DCO% (< 1%) is due to nonavailability of all-cause mortality data and incomplete/incorrect certification of cause of death. Some registries had an efficient trace back procedure by house visit/phone. Data from PBCRs were regularly published in successive volumes of Cancer Incidence Patterns and Burden in India Under NCRP.

Site	Male Patients	CR	Cum Risk	Female Patients	CR	Cum Risk	Both Sexes Patients	CR	Cum Risk
Ureter and other urinary organs	436	0.1	1 in 10,843	205	0.0	1 in 21,892	641	0.0	1 in 14,531
Eye and orbit	1,304	0.2	1 in 6,870	953	0.1	1 in 9,063	2,257	0.2	1 in 7,792
Brain and other nervous system	19,979	2.8	1 in 341	12,750	1.9	1 in 546	32,729	2.3	1 in 419
Endocrine system	9,263	1.3	1 in 709	26,665	3.9	1 in 279	35,928	2.5	1 in 402
Thyroid	8,570	1.2	1 in 759	26,095	3.8	1 in 285	34,665	2.5	1 in 416
Adrenal gland	693	0.1	1 in 10,797	570	0.1	1 in 14,053	1,263	0.1	1 in 12,209
Lymphoma	32,695	4.5	1 in 197	20,247	2.9	1 in 296	52,942	3.8	1 in 236
Hodgkin lymphoma	7,294	1.0	1 in 1,150	3,936	0.6	1 in 1,871	11,230	0.8	1 in 1,418
Non-Hodgkin lymphoma	25,344	3.5	1 in 238	16,263	2.4	1 in 352	41,607	3.0	1 in 284
Malig Imn Prol D	57	0.0	1 in 101,774	48	0.0	1 in 164,355	105	0.0	1 in 126,050
Multiple myeloma	10,725	1.5	1 in 465	7,756	1.1	1 in 646	18,481	1.3	1 in 541
Leukemia	32,481	4.5	1 in 239	21,132	3.1	1 in 353	53,613	3.8	1 in 284
Lymphoid leukemia	14,159	2.0	1 in 608	7,419	1.1	1 in 1,138	21,578	1.5	1 in 789
Myeloid leukemia	14,913	2.1	1 in 474	11,275	1.6	1 in 617	26,188	1.9	1 in 536
Leukemia uns	3,409	0.5	1 in 2,287	2,438	0.4	1 in 2,980	5,847	0.4	1 in 2,583
Other and unspecified primary sites	48,554	6.7	1 in 114	36,976	5.4	1 in 153	85,530	6.1	1 in 131

Abbreviations: CR, crude rate; cum risk, cumulative risk of developing cancer at 0-74 years of age; Malig Imn Prol D, malignant immunoproliferative diseases; Uns, unspecified.
in Five Continents (CI-5) by WHO-IACR/IARC. The incidence data from 15 PBCRs under NCRP (India) were published in Cancer Incidence in Five Continents, Volume XI, by WHO-IACR/IARC.36-38

The projected incidence of patients with cancer is higher for females (712,758) than males (679,421) for the year 2020. The projected national cancer incidence burden in 2020 will be 98.7 per 100,000 population (1,392,179 patients) as a conservative estimate. It is assumed that the observed rate of 2012-2016 will remain unchanged until 2020. The time trend in rate was not used to avoid uncertainty in the projection for a populous country like India. NCRP has estimated a slightly higher number of patients with cancer compared with IACR/IARC and GLOBOCAN for all sites of cancer in 2018. This may be because of a difference in methodology and use of recent data (1,392,179 vs 1,157,294).22 This is the first such attempt in the country and will be further updated on availability of the next data set and census information. The influencing factors, such as risk factors/behavior, case finding procedure, screening program, and improved techniques for detecting patients with cancer, are likely to influence the projected number of patients.

PBCRs in this study covered 100 million average annual person-years, accounting for coverage close to 10% of the population in India. Cancer registration in India faces several challenges because it is not a notifiable disease, posing challenges to data collection.39-42 The mortality registration system has several gaps, including incomplete and inaccurate certification of cause of death.43,44 Registering through passive notification by health care providers to report cancer occurrence in India would improve the coverage with limited resources. Linking of cancer registry data with Ayushman Bharat,45 mortality databases, and the Hospital Information System would improve cancer registration, follow-up, and outcome data.

This study provides a framework for assessing the status and trends of cancer in India. This shall guide appropriate support for action to strengthen efforts to improve cancer prevention and control to achieve the National NCD targets and the sustainable development goals.36,47 The data also provide leads to key research questions.

REFERENCES

1. WHO: World Health Statistics 2019: Monitoring Health for the SDGs. Geneva, Switzerland, World Health Organization, 2018
2. Parkin DM: The evolution of the population-based cancer registry. Nat Rev Cancer 6:603-612, 2006
3. Nandakumar A, Gupta PC, Gangadharan P, et al: Geographic pathology revisited: Development of an atlas of cancer in India. Int J Cancer 112:740-754, 2005
4. Swaminathan R, Selvakumaran R, Esmy PO, et al: Cancer pattern and survival in a rural district in South India. Cancer Epidemiol 33:325-331, 2009
5. Jemal A, Ward EM, Johnson CJ, et al: Annual report to the nation on the status of cancer, 1975-2014, featuring survival. J Natl Cancer Inst 109:djx030, 2017
6. de Camargo B, de Oliveira Santos M, Rebelo MS, et al: Cancer incidence among children and adolescents in Brazil: First report of 14 population-based cancer registries in Five Continents (CI-5) by WHO-IACR/IARC. The incidence data from 15 PBCRs under NCRP (India) were published in Cancer Incidence in Five Continents, Volume XI, by WHO-IACR/IARC.36-38

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/site/misc/authors.html.

No potential conflicts of interest were reported.

ACKNOWLEDGMENT

The authors acknowledge the contribution of the 28 population-based cancer registries and 58 hospital-based cancer registries under the National Cancer Registry Program, which contributed data, and Research Area Panel Expert Group on Cancer.

AFFILIATION

1National Centre for Disease Informatics and Research, Bengaluru, India

CORRESPONDING AUTHOR

Prashant Mathur, PhD, National Centre for Disease Informatics and Research, ICMR Complex (II Floor), Poojanahalli, Kannamangala Post, Bengaluru, Karnataka 562 110 India; Twitter: @ncdirindia; e-mail: director@ncdirindia.org.

AUTHOR CONTRIBUTIONS

Conception and design: Prashant Mathur, Krishnan Sathishkumar, Meesha Chaturvedi
Collection and assembly of data: Prashant Mathur, Krishnan Sathishkumar, Meesha Chaturvedi, Priyanka Das, Kondallil Lakshminarayana Sudarshan, Anish John, Francis Selvaraj Roselind
Data analysis and interpretation: All authors
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors
42. Behera P, Patro BK: Population based cancer registry of India
41. Sahoo SS, Verma M, Parija PP: An overview of cancer registration in India: Present status and future challenges. Eur J Cancer 45:745-755, 2009

39. Bray F, Fray: Evaluation of data quality in the cancer registry: Principles and methods. Part II. Completeness. Eur J Cancer 45:756-764, 2009
38. Segi M: Cancer Mortality for Selected Sites in 24 Countries 1950-1957. Sendai, Japan, The Department of Public Health, Tohoku University School of Medicine 1960
37. UN: Transforming our world: The 2030 agenda for sustainable development. https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20Web.pdf
36. Forman D, Bray F, Brewster DH, et al (eds): Cancer Incidence in Five Continents Volume X. Lyon, France, IARC Scientific Publications, 2007
35. Chandra S, Mohan A, Guleria R, et al: Delays during the diagnostic evaluation and treatment of lung cancer. Asian Pac J Cancer Prev 10:453-456, 2009
34. Nandakumar A, Kishor Rath G, Chandra Kataki A, et al: Concurrent chemoradiation for cancer of the cervix: Results of a multi-institutional study from the setting of a developing country (India). J Glob Oncol 1:11-22, 2015
33. Pandey KC, Revannasiddaiah S, Pant NK, et al: Stage-wise presentation of non-metastatic head and neck cancer: An analysis of patients from the Kumaon hills of India. Asian Pac J Cancer Prev 15:1091-1098, 2010
32. Shanta V, Selvaluxmy G, Swaminathan R, et al: Evolution in the management of locally advanced cervical cancer: The experience of Cancer Institute (WIA), Chennai, India. Asian Pac J Cancer Prev 11:1091-1098, 2010
31. Gandhi AK, Kumar P, Bhandari M, et al: Burden of preventable cancers in India: Time to strike the cancer epidemic. J Egypt Natl Canc Inst 29:1745-1754, 2016
30. WHO: International Statistical Classification of Diseases and Related Health Problems. Geneva, Switzerland, World Health Organization, 1994
29. WHO: Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs, Volumes 1-42. Lyon, France, IARC, 1987
28. Mathew IE, Mathew A: Rising thyroid cancer incidence in Southern India: An epidemic of overdiagnosis? J Endocr Soc 1:480-487, 2017
27. Mathew IE, Mathew A: Rising thyroid cancer incidence in Southern India: An epidemic of overdiagnosis? J Endocr Soc 1:480-487, 2017
26. Malvia S, Bagadi SA, Dubey US, et al: Epidemiology of breast cancer in Indian women. Asia Pac J Clin Oncol 13:289-295, 2017
25. Takiar R: Status of breast and cervix cancer in selected registries of India. Ann Womens Health 2:1012-1018, 2017
24. Chaturvedi M, Vaitheeswaran K, Satishkumar K, et al: Concurrent chemoradiation for cervical cancer: Results of a multi-institutional study from the setting of a developing country (India). J Glob Oncol 1:11-22, 2015
23. Sharma JD, Kalit M, Nirmolia T, et al: Cancer: Scenario and relationship of different geographical areas of the globe with special reference to North-East India. Asian Pac J Cancer Prev 15:3721-3729, 2014
22. Lortet-Tieulent J, Franceschi S, Dal Maso L, et al: Thyroid cancer “epidemic” also occurs in low- and middle-income countries. Int J Cancer 144:2082-2087, 2019
21. Edge SB: AJCC Cancer Staging Manual (ed 7). New York, NY, Springer, 2010
20. WHO: AJCC Cancer Staging Manual (ed 7). New York, NY, Springer, 2010
19. WHO: International Statistical Classification of Diseases and Related Health Problems. Geneva, Switzerland, World Health Organization, 1994
18. National Centre for Disease Informatics and Research: Time trends in cancer incidence rates, 1982-2010, Bangalore: National Cancer Registry Programme (NCRP-ICMR), 2013. https://www.ncdirindia.org/All_Reports/TREND_REPORT_1982_2010/
17. Takiar R, Shobana B: Cancer incidence rates and the problem of denominators - a new approach in Indian cancer registries. Asian Pac J Cancer Prev 10:123-126, 2009
16. Pregnancy and Child Health National Centre:印度的宫颈癌发病率及问题-新的方法在印度癌症登记。Asian Pac J Cancer Prev 18:9603-9607, 2017
15. Mathew IE, Mathew A: Rising thyroid cancer incidence in Southern India: An epidemic of overdiagnosis? J Endocr Soc 1:480-487, 2017
14. Nandakumar A, Kishor Rath G, Chandra Kataki A, et al: Concurrent chemoradiation for cancer of the cervix: Results of a multi-institutional study from the setting of a developing country (India). J Glob Oncol 1:11-22, 2015
13. Parkin DM: Cancer Registration: Principles and Methods. Lyon, France, IARC Scientific Publications, 1991
12. Segi M: Cancer Mortality for Selected Sites in 24 Countries 1950-1957. Sendai, Japan, The Department of Public Health, Tohoku University School of Medicine 1960
11. WHO: International Statistical Classification of Diseases and Related Health Problems. Geneva, Switzerland, World Health Organization, 1994
10. Jensen DM, Parkin DM, MacLennan R, et al (eds): Cancer Registration: Principles and Methods. Lyon, France, IARC Scientific Publications, 1991
9. National Centre for Disease Informatics and Research: Time trends in cancer incidence rates, 1982-2010, Bangalore: National Cancer Registry Programme (NCRP-ICMR), 2013. https://www.ncdirindia.org/All_Reports/TREND_REPORT_1982_2010/
APPENDIX

INDIAN COUNCIL OF MEDICAL RESEARCH–NATIONAL CENTRE FOR DISEASE INFORMATICS AND RESEARCH–NATIONAL CANCER REGISTRY PROGRAM INVESTIGATOR GROUP

Swetha Acharaya, Dilip Kumar Agarawalla, Zarika Ahmed, Gazi Naseem Ahmed, Shiraj Ahmed, B.S. Ajakumar, P. Anandhi, Anil Kumar Anand, Ramandeep Arora, R.A. Badwe, Manas Ranjan Baisakh, Bhalumalikrishna, Debabrata Barmon, Sangita Bhandari, Samir Bhattacharya, M. Bhattacharyya, Arup Bhowmik, T.W. Bhatla, T. Bindhu, Vijay Kumar Bodal, Pradeep Chandrakar, Latha Chaturveda, Richa Chauhan, Saia Chenkual, S. Chhabra, Lily Chakhchhikui, Vivek Choudhary, Ashok Kumar Das, Rituparna Das, Dhritiman Datta, Biswajit Debsharmi, Shrimoni Debbarma, S.V. Suryanarayana Deo, Vinay Deshmache, Madhuvbala Devi, Punyababi Devi, Laishram Purnima Devi, Rajesh Dixitkh, H. Dikhar, Biswajit Dubhashi, Debayanarayana Dutta, Vijay Gadagi, Vinay Gadgi, B. Ganesh, M.S. Ganesh, K.V. Ganghadhar, Nitin Gangane, Urmã Greet, Preethi Sara George, Sushmita Ghosal, Radha Ghosh, Debasmita Ghoshat, Ajay Gogia, H.K. Goswami, Ashutosh Gupta, Manish Gupta, Kaveri Halikerti, Rajesh Harswardhan, B.H. Srinivas, Vandana Jain, Srinath Jaitkumar, J.L. Jayakumar, P. Jayalekshmi, Kaling Jerang, G. Jongchou, V. Jiyavukumar, D. Kadambari, Geeta Kadayaprath, Ravi Kannan, R. Kapoor, Tejinder Kataria, Mohanvir Kaur, Swam Kaur, K. Gunaseelan, Shenna A. Khader, V. Khamo, Nazir Ahmad Khan, Sushma Khurajiram, Marla K. Prashanthan, Anjali Kolhe, S.S. Koyande, Adishi Kri, Dinesh Kumar, G. Dilip Kumar, Nanender Kumar, S. Shiva Kumar, Sunil Kumar, Rajesh Singh Laislham, Lhalanchhanmi, K. Laflazzuku, Lalhpluipi, Doris Lallawmthi, Jerry Lalthanpui, Imliwat Longkum, M.B. Jayaraman, Gautam Majumdar, Reeni Malik, Swapna Malyie, Indranil Mallick, Syamsundar Mandal, N. Manoharan, Lone Mohammad Maqbool, Ayelema Mathew, Sanjna Mishra, Janmane Mohapatra, C.T. Muthukumaran, Rekha G. Nair, Prem Nair, Sunitha Nair, Durgaprasad Nanda, D.K. Nath, Partha Nath, N. Venkatesh, Gampa Padu, Rakesh Pandey, Shashank Pandya, Sangeeita Pankaj, N.S. Panse, Sujith Chayu Pataani, P.C. Pathy, Jeremy L. Pauktu, K. Pavithran, Prasanth Penumade, Priya Darshini Pradhan, Aruna E. Prasad, Puntaldev, Kundozepu Puryu, K. Kelpma Raamghunath, Mubeep Rahman, Vinod Rana, Ravi Shankar Rajendra, Ramachandra, C. Ramesh, B.S. Ramesh, Rakesh S. Ramesh, R. Rama Ranganathan, Rita Rani, K. Ratheesan, Sudhir Rawali, Prathanna Rosell, G. Sada-shivudu, B.J. Saikoa, Pranoin Saikia, S.K. Samantara, A. Santa, Anupam Sarma, N. Hariranadharmada Sarma, Sunil Kumar Saxena, Pooja Sethi, Anand Shah, B.K. Sharma, Jagannath Dev Sharma, Sudarshan Sharma, Shah Alam Sheik, Kamalaksh Shenoy, Dinesh Shet, Atul Shirivastava, B.R. Shrivastava, Sushma Shirivastava, Alben Sigamani, Neetu Singhal, Indibor Singh, Rajesh Kumar Singh, Usha Singh, Badarasa Singh, G.S. Sreenath, U. Srihari, V.G. Sudhakaran, Saina Sunilkumar, Partha Sarathi Sutraddh, R. Swaminathan, A. Talukdar, Ritesh Tapkire, Sopai Tawsik, R. Bindhu, K.T. Harichandramarka, Pampa Ch. Toi, Shyam Tsering, B.B. Tyagi, Ajith Kumar, V.R. Ashok Kumar Vaid, K. Velavan, C.R. Vijay, W.B. Langtshet, Chaltai Wagmre, Meenul Walia, John Zozhmimgthang, Eric Zomawia, and B. Zothankima.

Names Listed Alphanetically

Affiliations. National Centre for Disease Informatics and Research, Indian Council of Medical Research, Bengaluru, India: Prashant Mathur, DNB, PhD; Krishnan Sathishkumar, MSc; Meesha Chaturvedhi, MBBS; Priyanka Das, B-Level; Kondalli Lakshminaranayana Sudarshan, MSc; Stephen Santhappan, MSc, MPhip; Vinodh Nallasamy, MSc, MPhil; Anish John, BE; Sandeep Narasimhan, MSc, and Francis Selvaraj Roselind, MSc.

Population-based cancer registries. Delhi population-based cancer registry (PBCR) – B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi (S.V. Suryanarayana Deo, MS, N. Manoharan); Patiala District PBCR - Government Medical College and Rajindra Hospital, Punjab (Vijay Kumar Bodal, MD, Mohanvir Kaur, MD); Hyderabad PBCR - Nizam's Institute of Medical Sciences, Telangana (G. Dashashivudu, MD, U. Srihari); Kollam PBCR - District Cancer Registry Kollam, Regional Cancer Centre, Kerala (R. Jayalekshmi, MD, P. Rajalekshmi, PhD); Thrivunanthapuram PBCR - Regional Cancer Centre, Thrivanathanthuram, Kerala (Aleyema Mathew, PhD, Preethi Sara George, PhD); Bengaluru PBCR – Kidwai Memorial Institute of Oncology, Karnataka (Ramachandra, MS, C. Ramesh, PhD, C.R. Vijay, PhD); Chenennai PBCR – Cancer Institute (WIA), Tamil Nadu (R. Swaminathan, PhD, R. Rama Ranganathan, PhD); Kolkata PBCR – Chittaranjan National Cancer Institute and Saroj Gupta Cancer Centre and Research Institute, West Bengal (Samir Bhattacharya, PhD, Syamsundar Mandal, PhD, Durgaprasad Nanda, MS); Ahmedabad urban PBCR – Gujarat Cancer & Research Institute, Gujarat (Shashik Pandya, MD, Anand Shah, MD); Mumbai, Aurangabad, Nagpur, Pune PBCRs – Indian Cancer Society, Maharashtra (Vinay Deshmene, MD, S.S. Koyande); Barshi Expanded (Osmanabad and Beed Districts) PBCR – Nargis Dutt Memorial Cancer Hospital, Maharashtra (NS Panse); Barshi Rural PBCR – Tata Memorial Hospital, Maharashtra (R.A. Badwe, MD, Rajesh Dixitkh, PhD); Wardha PBCR – Mahatma Gandhi Institute of Medical Sciences, Maharashtra (Nitin Gangane, MD, Swapna Malie, S. Chhabra, MD); Bhopal PBCR – Gandhi Medical College, Madhya Pradesh (Reeni Malik, MS, M. Singh, PhD); Manipur PBCR – Regional Institute of Medical Sciences, Manipur (Madhuvbala Devi, MD, Punyababi Devi, MD, Laishram Rajesh, MD, Sushma Khurajiram); Mizoram PBCR – Civil Hospital, Mizoram (Erick Zomawia, MD, John Zozhmimgthang, MD, Lalchhanhimi, MD, Saia Zothankima, MD, Lily Chakhchhuak, MBBS, Jerry Lalrinsanga, MBBS); Sikkim PBCR – Sir Thubot Namygul Memorial Referral Hospital, Sikkim (T.W. Bhatla, MD, Priya Darshini Pradhan, MD, Sangita Bhandari); Nahaflagun (West Arunachal) PBCR – Timo Riba State Hospital, Arunachal Pradesh (Gopai Tawisk, MD, Shyam Tsering, MD, K.R. Adishi, MD, Gamba Padu, MD); Meghalaya PBCR – Civil Hospital, Meghalaya (W.B. Langtshet, H. Dhka, MD, B. Sohliya, MD, L. Purnima Devi, MD); Nagaland PBCR – Naga Hospital Authority, Nagaland (V. Khamo, MD, Kedozepu Puryu, MD); Pasighat PBCR – Bakin Pertin General Hospital, Arunachal Pradesh (Kaling Jerang, PGDCP, G. Jongkay, MD); Tripura PBCR – Cancer Hospital, Regional Cancer Centre, Tripura (Gopai Tawisk, MD, R.A. Badwe, MS, Rajesh Dikshit, PhD); Wardha PBCR – Mahatma Gandhi Institute of Medical Sciences, Maharashtra (Nitin Gangane, MD, Swapna Malie, S. Chhabra, MD); Bhopal PBCR – Gandhi Medical College, Madhya Pradesh (Reeni Malik, MS, M. Singh, PhD); Mannanora PBCR – Regional Institute of Medical Sciences, Manipur (Assam (Projan Saikia, MD, Zarika Ahmed, MD); Guwahati (Kamrup urban) PBCR – Dr. Bhubaneswar Borooah Cancer Institute (Regional Institute for Treatment and Research), Assam (Jagannath Sharma, MD, Arunap Sarma, MS, Debabrata Barmon, MD, Shiraj Ahmed, MD).

Hospital-Based Cancer Registrations A.J. Hospital & Research Centre, Mangalore (Marla K. Prashanthan, MS, Kamalaksh Shenoy, MD); Acharya Harihar Regional Cancer Centre, Cuttack (Dilip Kumar Agarawalla, MD, Janmane Mohapatra, MD, P.C. Pathy, MD, S K Samantara, MD); Amrita Institute of Medical Sciences and Research, Kochi (Debanarayan Dutta, MD, K. Vijayakumar, MS, Prem Nair, MD, K. Pavithran, MD); Apollo Hospital, Bhubaneswar (Manas Ranjan Baisakh, MD); Asian Institute of Medical Sciences, Faridabad (Neetu Singhal, DNB); Assam Medical College, Assam (Shah Alam Sheik, MD, R.P. Banik, MD); Dibrugarh PBCR – Assam Medical College and Hospital, Assam (Projan Saikia, MD, Zarika Ahmed, MD); Guwahati (Kamrup urban) PBCR – Dr. Bhubaneswar Borooah Cancer Institute (Regional Institute for Treatment and Research), Assam (Jagannath Sharma, MD, Arunap Sarma, MS, Debabrata Barmon, MD, Shiraj Ahmed, MD).

© 2020 by American Society of Clinical Oncology
Research Institute, Gurugaoon (Vinod Raina, MD, B. B. Tyagi, MS); Gandhi Medical College, Bhopal (Atul Shrivasvata, Sushma Shrivasvata); General Hospital, Ernakulam (Balmarulkirishna, DMRT, J. Seios, MD, Sunitha Nair, MBBS); Government Medical College, Thrissur (K.L. Jayakumar, MD, Shamina A. Khader, DNB, M.B. Jayaraman, MD, V.R. Ajith Kumar, DMRT); Govt Arignar Anna Memorial Cancer Hospital & Research Institute, Kanchipuram (P. Anandha, MD, C.T. Muthukumaran, MBBS); HCG Bangalore Institute of Oncology, Bengaluru (BS Ajakumar, MD, B.S. Ramesh, MD); HCG NMR Cancer Centre, Hubli (Sanjay Mishra, MD); Indira Gandhi Institute of Medical Sciences, Patna (Sanheeta Pankaj, MD, Rajesh Kumar Singh, MD); Indo-American Cancer Institute & Research Centre, Hyderabad (G. Dilip Kumar, DNB, Sujith Chayu Patanaik, MS, K. Kalpana Raghunath, MBBS, A. Santa, MD); International Cancer Centre, Neyyor (Prarthana Rosell, MD, V.G. Sudhamaran, MD); Kidwai Memorial Institute of Oncology, Bengaluru (Ramachandra, MS, C. Ramesh, PhD); Mishavir Cancer Sansthan and Research Centre, Patna (Richa Chauhan, MD, Ravi Shankar Rajendra, MD, Rita Rani, DNB, Usha Singh, MD); Malabar Cancer Centre, Kannur (T. Bindhu, K. Rathesean, Saina Sunilkumar, MD); Mandy Institute of Medical Sciences, Mandya (S. Shiva Kumar, MS, N. Venkatesh, MD); Max Super Specialty Hospital, New Delhi (Anil Kumar Anand, MD, Ramandeep Arora, MD); Max Super Specialty Hospital, Patparganj (Geeta Kadayapratth, MS, Meenu Walia, MD); Medanta Cancer Centre, Gurugaoon (Tejinder Kataria, MD, Ashok Kumar Vaid, MD); MES Medical College & Hospital, Perinthalmanna (K.V. Gangadharaman, MD, Majeed Rahman, MS); Mizoram State Cancer Institute (Civil Hospital), Aizwal (K. Laishakhzuala, MD, Laiklupuu, MD, Doris Lallawzmzuali, MD, Cindy Lalthanpuii, MD, Jeremy L. Paultu, MD, B. Zothankima, MD); Narayana Hrudayalaya Health City, Bengaluru (Alben Sigamani, MD); North East Cancer Hospital & Research Institute, Guwahati (Gazi Naseem Ahmed, MD, Imlivati Longkumer, D.K. Nath, MD); Postgraduate Institute of Medical Education and Research, Chandigarh UT (Sushmita Ghosal, MD, R. Kapoor, MD, Narender Kumar, MD); Pravara Rural Hospital & Rural Medical College, Loni (Vandana Jain, MD, Chaitali Wagnere, MD); Rajiv Gandhi Cancer Institute and Research Centre, New Delhi (Swarna Jaitley, Sudhir Rawal, MS); Regional Cancer Centre, Raipur (Pradeep Chandrakar, MD, Vivek Choudhary, MD); Regional Cancer Centre, Agartala (Drhitman Datta, MD, Biswajit Debbarma, MD, Partha Sarathi Sutrathdar, MD, Gautam Majumdar, MD); Regional Cancer Centre, Thiruvananthapuram (Preeethi Sara George, PhD, Aleyamma Mathew, PhD); Regional Cancer Centre Kamala Nehru Memorial Hospital, Allahabad (Radha Ghosh, DNB, B. Paul Thalith, MD); Regional Cancer Centre, Indira Gandhi Medical College, Shimla (Manish Gupta, MD, Sudarshan Sharma, MD); Regional Institute of Medical Sciences, Imphal (Indibor Singh, MD, Madhrubala Devi, MD, Punyabati Devi, MD, Rajesh Singh Lashtram, MD); RST Regional Cancer Hospital, Cancer Relief Society, Nagpur (Anjali Kolhe, MD, B.K. Sharma, MD); Rural Development Trust, Bathalapalle (N. Harharanadha Sarma, MD); Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow (Rajesh Harswardhan, MD, MD, Rakesh Pandey, MD, Punitalal, MD); SDM College of Dental Sciences and Hospital, Dharward (Swetha Acharya, MS, Kaveri Hallikeri, MS); Shakuntala Memorial Hospital & Research Centre., Hubli (Vijay Gadagi, MD, Vinay Gadigi, MD); Sher-I-Kashmir Institute of Medical Sciences, Srinagar (Nazir Ahmad Khan, MD, Lone Mohammad Maqbool); St. Johns Medical Hospital, Bengaluru (Rakesh S Ramesh, DNB); Tata Medical Centre, Kolkata (Indranil Mallick, MD); Tata Memorial Hospital, Mumbai (B. Ganesh, PhD, R.A. Badwee, MD; The Gujarat Cancer & Research Institute, Ahmedabad (Shashank Pandya, MS, Anand Shah, MD); Vydehi Institute of Medical Sciences, Bengaluru (M.S. Ganesh, MS, Aruna E. Prasad, MD); JIPMER, Regional Cancer Centre, Puducherry UT (Biswaajit Dubashi, MD, D. Kadambari, MD, Debasis Gochhait, MD, G.S. Sreenath, MD, K. Gunaseelan, K.T. Harichandakumar, MD, Latha Chaturvedua, MD, Pampa Ch. Toi, MD, Pooja Sethi, MD, Prasanth Penamade, MD, B.H. Srinivas, MD, Sunil Kumar Saxena, MD); Government Medical College, Jammu (Dinesh Kumar, MD, Ashutosh Gupta, MD).