Preparation and Chemical Analysis of Volatile Oil in Ficus Hirta

Mengjiao Du¹, Jianping Chen², Chuqin Yu¹*, Yi Yang¹, Shanbin Deng¹, Shuhua Wu¹ and Chuzhen Chen⁴

¹ Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, School of Pharmacy, East Waihuan Road 280, Guangzhou, Guangdong, China
² The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
³ Guangzhou Lvheyuan Biotechnology Co., Ltd., Guangzhou, China
⁴ Heyuan Jin Yuan green life Co. Ltd., Heyuan, China
* E-mail: pn333@163.com

Abstract. Subcritical fluid extraction technology was used to collect the extract of Ficus hirta, and the volatile oil was obtained by molecular distillation. The chemical composition of the volatile oil was characterized by gas chromatography-mass spectrometry (GC-MS), and the relative content of each component in the volatile oil was obtained by GC-MS peak area normalization analysis. Subcritical extraction technology combined with molecular distillation method is not only can be very good in the preparation of volatile oil Ficus hirta, but also can preserved its rich fragrance; Ficus hirta volatile oil identified a total of 29 kinds of substances, of which the higher levels of components of caproic acid, pelargonic acid, psoralen, caprylic acid. This method is simple and feasible, what's more, it can be used to prepare the composition of the volatile oil from Ficus hirta preliminary identification.

1. Introduction
Medicinal Ficus hirta, which is comes from Southern China, is the mulberry plants Ficus hirta Vahl dry roots [1]. Ficus hirta is a medicinal and edible plants [2], with the spleen dampness, lungs cough effect [3]. Ficus hirta are mainly produced in Guangdong, Guangxi, Hunan and other places. Due to the fact that it has the high economic value, at present, Heyuan and other places in Guangdong have a large area of artificial cultivation [4].

Subcritical fluid extraction is based on the principle of similar compatibility of organic matter, the target ingredient in the material is transferred to the liquid extractant and the extractant is separated from the product by evaporation under reduced pressure[5]. Molecular distillation, also known as short range distillation, is a fast, efficient, non-polluting separation and concentration technique. It is also considered as a common method for the separation and purification of natural products. It is especially suitable for the separation of high boiling point, high viscosity and heat sensitive materials. It is widely used in the separation of volatile oil of Chinese herbal medicine and other oils [6,7]. Furthermore, it has broad application prospects. However, the molecular distillation technology used in the research of Volatile oil of Ficus hirta has not been reported at home and abroad. In this study, Ficus hirta subcritical extracts were purified by molecular distillation to obtain the volatile oil. The constituents were analyzed by GC-MS, which provided a scientific basis for the development and utilization of the volatile oil of Ficus hirta.
2. Instruments, samples and reagents

2.1. Instruments
D-70 molecular distillation (Guangzhou Green and edge Biological Technology Co., Ltd.); YLJ-3 subcritical extraction unit (Guangzhou Green and edge Biological Technology Co., Ltd.); YP 3001N electronic balance (Shanghai Jing Branch Instrument Co., Ltd.); TRACE DSQ GC-MS (The United States Fenigen mass spectrometry company); DFT-200 portable high-speed grinder (Wenling Lin Machinery Co., Ltd.); Sartorius hundred thousandth electronic balance (Beijing Sartorius Instrument System Co., Ltd.).

2.2. Samples and reagents
Ficus hirta (Provided by Heyuan Jinyuan Green Life Co., Ltd., and it was identified as the dry root of Ficus hirta Vahl by Moraceae Ficus plant by the Professor Liu Jizhu of Department of Traditional Chinese Medicine, Guangdong University of Pharmacy); Ethyl acetate is of analytical grade (Tianjin Zhiyuan Chemical Reagent Co., Ltd.); Butane (Food grade).

3. Methods and results

3.1. Volatile oil extraction

3.1.1. Subcritical extraction. The Ficus hirta crushed and passed through a 20 mesh screen. The smashing pinch Ficus hirta powder placed in the extraction tank, capped with screws. When the extraction pressure is reduced to -0.1MPa, the butane from the storage tank pumped into the extraction tank; after extraction, turn on the compressor for solvent recovery and desolventizing to collect the Ficus hirta subcritical extract. Extract is a yellow semi-solid fat.

3.1.2. Molecular distillation. Turn on the condenser, condensate temperature 30°C after filling the Ficus hirta sub-critical extraction into the the molecular distillation unit feed bottle. After cooling the system, the work is set to 1 Pa degree of vacuum, with a distillation temperature of 70°C. Pressure stability, vacuum and temperature have reached the set value, the film speed adjust 500r/min, and open the feed valve. At a feed temperature of 70°C, molecular distillation was started, and fraction 1, fraction 2 and fraction 3 were collected.

3.1.3. Sample solution configuration. 20μl of Ficus hirta molecular distilled volatile oil (component 3) was placed in an 1ml volumetric flask. After dissolution and dilute with ethyl acetate, shake it well and filter it with 0.22μm filter, the filtrate stored in the liquid vial for GC-MS analysis as the test solution.

3.2. GC-MS conditions

3.2.1. Gas chromatography conditions. The GS system used chromatographic separation was achieved by using a fused capillary column DM-5MS, length (30×0.25 mm, 3μm). The inlet temperature and the interface temperature were 250°C and 230°C, respectively. The carrier gas was 99.99% high purity Helium with a flow rate of 1.0mL/min. The sample of volume was 1.0μl, which was injected on to the column, with a column pressure of 80kPa. The injection mode was splitless. Oven temperature program was initially set at 40°C for 2 min, then ramped at 10°C /min to 70°C, then ramped at 10°C /min to 280°C and held for 10 min.

3.2.2. Mass spectrometry conditions. The mass spectrometer ion source was an EI source and the ion source temperature was 200°C; the electron multiplier voltage was 520V; the full ion scan gap was 1.0s and the scan rate was 1000 amu/s.
3.3. Results

3.3.1. *Ficus hirta* molecular distillation. Molecular distillation gets three fractions. It is a brown paste at room temperature and light in weight for a single component. Light Component 2 is a brownish-yellow paste and light in odor; cold trap component 3 is a yellow liquid and is rich in odor.

3.3.2. *Ficus hirta* volatile oil GC-MS analysis. In order to obtain the total ion chromatogram, the volatile oil of the *Ficus hirta* were analyzed by GC-MS (Figure 1). The results and mass spectral information is automatically retrieved by a computerized data processing system. The components of Volatile oil were identified and compared with the standard mass spectrometer library (NIST08), and the relative content of each component was calculated by the peak area normalization method.

![Figure 1. The total ion chromatogram of the Ficus hirta Vahl molecular distillation of volatile](image_url)
4. Discussion
Volatile oil obtained when steaming Ficus hirta with higher temperature, and heated a long time, it will cause the volatile oil decomposition of certain components or polymerization. The molecular distillation of volatile oil due to the fact that the distillation temperature is low, Ficus hirta heated time will cause the volatile oil decomposition of certain components or polymerization. The molecular distillation of volatile oil obtained when steaming Ficus hirta with higher temperature, and heated a long time, it will cause the volatile oil decomposition of certain components or polymerization. The molecular distillation of volatile oil due to the fact that the distillation temperature is low, Ficus hirta heated time will cause the volatile oil decomposition of certain components or polymerization. The molecular distillation of volatile oil obtained when steaming Ficus hirta with higher temperature, and heated a long time, it will cause the volatile oil decomposition of certain components or polymerization. The molecular distillation of volatile oil due to the fact that the distillation temperature is low, Ficus hirta heated time will cause the volatile oil decomposition of certain components or polymerization.

Table 1. Component analysis of the Ficus hirtamolecular distillation of volatile oil

Number	Retention time (min)	Compound	Molecular formula	Relative molecular mass	Relative content (%)
1	6.58	Pentanoic acid	C₅H₁₀O₂	102	2.94
2	8.56	Hexanoic acid	C₆H₁₂O₂	116	34.37
3	9.41	4-Hexanolid	C₆H₁₀O₂	114	0.79
4	9.79	Heptanoic acid	C₇H₁₈O₂	130	3.28
5	10.21	Nonanal	C₇H₁₈O	142	0.94
6	11.10	2-Octenoic acid, (E)	C₈H₁₆O₂	142	1.79
7	11.28	Octanoic Acid	C₈H₁₆O₂	144	5.69
8	12.27	2-Coumaranone	C₈H₁₀O₂	134	3.53
9	12.66	Nonanoic acid	C₉H₁₈O₂	158	5.25
10	13.00	Benzene, 1-methoxy-1-(1-propenyl)	C₁₀H₁₄O	148	1.89
11	13.43	Bicyclo[3.3.2]decan-9-one	C₁₀H₁₄O	152	4.49
12	13.77	Bicyclo[2.2.2]octane,1-methoxy-4-methyl-gamma-Nonanolace	C₁₀H₁₄O	154	3.89
13	14.05	Vanillin	C₁₁H₁₀O₂	156	2.94
14	14.56	5-Hepten-3-yn-2-ol,6-methy	C₁₁H₁₄O	152	3.66
15	15.17	Eudesma-3,7(11)-diene	C₁₃H₁₈O	204	1.42
16	15.48	b-Guaiene	C₁₅H₁₄O	204	1.77
17	15.81	Naphthalene,1,2,3,4,4a,5,6,8a-octahydro-4a, 8-dimethyl-2-(1-methylethyl)-, (2R,4aR,8aR)-	C₁₅H₁₄O	204	1.14
18	15.92	3-O-Acety-8-O-tigloylingol	C₁₅H₁₈O₃	490	1.39
19	16.15	Mellein	C₁₅H₁₄O₃	178	2.55
20	16.52	Caryophyllene oxide	C₁₅H₁₄O	220	1.64
21	17.03	1-Cyclohexanone,3,3-dimethyl-2-[5-methoxy-3-methyl-2-pentenyldiene]-5-Methoxy-2,2,6-trimethyl-1-(3-methyl-buta	C₁₆H₂₆O₂	236	1.17
22	17.28	1,3-dienyl)-7-oxa-bicyclo[4.1.0]heptane	C₁₆H₂₆O₂	236	1.31
23	18.00	Octadecane,3-ethyl-5-(2-ethylbuty)-	C₁₈H₃₄	366	1.36
24	18.11	Psoralen	C₁₈H₃₄	186	5.98
25	19.75	Disobutyl phthalate	C₁₈H₂₆O₄	278	0.77
26	20.01	Dibutyl phthalate	C₁₈H₂₆O₄	278	0.70
27	20.97	8-(4-Chlorophenylthio)guanosine-3’,5’-cyclic monophosphorothioate, Rp-isomer	C₁₈H₁₆Cl	502	0.66
28	21.05	Erucylamide	C₂₂H₃₄N	337	1.23
29	28.29				
This may be due to the subcritical extraction of volatile oils containing some high-boiling substances that needed further isolation and identification.

The result of GC-MS analysis of molecular distillation was compared with steam distillation[8]. The contents of long-chain organic acids were significantly increased, but the content of aldehydes and ketones decreased significantly, meanwhile, the molecular weight of the volatile oil of volatile oil was obviously higher than that of water vapor.

In this experiment, the extraction and separation of Volatile Oil from Ficus hirta through subcritical extraction-molecular distillation was aims to find out an effective new way to obtain volatile oil. Compared with the traditional methods, this method had the advantages merits of low temperature, no pollution, etc., and has broad application prospects.

5. Acknowledgements
This work was financially supported by the joint project of the Department of Science and Technology of Guangdong Province and the Guangdong Provincial Academy of Chinese Medical Sciences (2016A020226038).

6. References
[1] Traditional Chinese medicine of Guangdong committee 1994 Guangdong traditional Chinese medicine, Guangzhou vol 1 (Guangdong Science & Technology Press) pp 163-194
[2] Lin H., Mei Q. X., Zeng C. Y., Application of fingers peach and its preparation in clinic China pharmacy, Journal: China Pharmacy, ISSN: 10010408 Year: 2013 Volume: 24 Issue: 15 Pages: 1434-35 Publisher: China Pharmacy
[3] Dictionary of modern medicine committee 2001 Dictionary of modern medicine (Beijing, People's Medical Publishing House) p 371
[4] Lin L., Zhong X. Q., Wei G., GC-MS analysis of volatile components in root of Ficus Hitra Journal: Zhong Yao Cai, ISSN: 10014454 Year: 2000 Volume: 23 Issue: 4 Pages: 206-7 Publisher: Zhong Yao Cai
[5] Zhu G., Zhao Q. Z., Zhao Y., Research on extracting zanthoxylum bungeanum oil by subcritical extraction technology, Journal: Science and Technology of Cereals, Oils and Foods, ISSN: 10077561 Year: 2010 Volume: 18 Issue: 4 Pages: 24-26 Publisher: Science and Technology of Cereals, Oils and Foods
[6] Li Y., Liu J. H., Application progress on molecular distillation in isolation and purification for crude substance, Journal: Cereals & Oils, ISSN: 10089578 Year: 1987 Issue: 3 Pages: 7-11
[7] Xu H. F., Yu L., Recent progress in the extraction methods for the active ingredients of Chinese herbal drugs, Journal: Strait Pharmaceutical Journal, ISSN: 10063765 Year: 2012 Volume: 24 Issue: 1 Pages: 13-18 Publisher: Strait Pharmaceutical Journal
[8] Li J. X., Hui J., Yang Y. Y., Component analysis of volatile oil from Ficus hitra Vahl by GC-MS, Journal: Journal of Anhui Agri. Sci., ISSN: 05176611 Year:2010 Volume: 38 Issue: 14 Pages: 7281-82 Publisher: Journal of Anhui Agri. Sci.