Synthesis and Structure of the Copper Complex
$[\text{Cu}_2\text{L}_2^{\text{ox}}(\text{SO}_4)(\text{H}_2\text{O})_4](\text{H}_2\text{O})_4$

Zhaodong Wang* 1

1College of Chemistry and Environmental Engineering, Chongqing University of Arts And Sciences, Yongchuan 402160, China.
Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Yongchuan 402160, China.

Abstract. The reaction of N-(pyridine-2-ylmethyl)pyrazine-2-carboxamide (HL) and copper(II) sulfate leads to the formation of a new copper complex, $[\text{Cu}_2\text{L}_2^{\text{ox}}(\text{SO}_4)(\text{H}_2\text{O})_4](\text{H}_2\text{O})_4(1)$, in which the deprotonated amide L^- ligand was oxidized to an imide L^{ox} exposed to the air in the presence of the Cu ion. The X-ray crystal analysis reveals that it consists of two mononuclear copper unit with different coordination modes, multiple O-H...O hydrogen bonding between water molecules or water and sulfate O atom to form 3D networks. CCDC: 2088935,1.

1 Introduction

Pyrazine-based amide ligands have played very important role in the copper coordination chemistry.[1-5]. These ligands exhibit different coordination modes depending on a deprotonated base used or not in the synthesis of the title complexes. The neutral form of the ligands coordinate in either a monodentate fashion via the pyrazyl N donor or in a bridging mode through the N and carbonyl O atom. When a base was used to deprotonate the NH group, which renders the ligand as an anionic moiety to coordinate with the metal ions in a bidentate fashion through the pyrazyl and amide N donors. Bis(terdentate)pyrazine based diamide ligands and their transition metal chemistry have been well studied by Dr. Brooker’s and Dr. Stoeckli Evans’s group.[6]. As a homolog of the aforementioned diamide ligands, an alkylpyridine armed pyrazine-pyridine amide ligand HL[7] was prepared and its transition metal chemistry were also investigated by several different groups, Dr. Hubin firstly reported a trinuclear cobalt complex[7]. Khavasi’s group also reported a novel binuclear manganese(II) complex and its catalytic property[8]. Later, they reported two temperature dependent complexes of 1D and 2D HgCl2 coordination polymer with HL[9]. Recently, my previous group reported the synthesis, characterization and structures of five copper complexes with HL and its homolog ligand[10]. As a complimentary work to my previous research, here, we report the synthesis, crystal structure of a new copper complex based on the bispyrazyl amide ligand, HL, which was reported by Dr. Brooker’s group. A cobalt complex with abrupt, complete, hysteretic spin crossover properties by thermal, pressure, and electrochemical stimuli was well investigated[11]. The most interesting part of the work is that the HL ligand was oxidized to an imide due to the expose of the air during the reaction in the presence of the copper ions, which is consistent to the reported results[12]. A mononuclear Cu complex with pyrazine-pyrazine imide ligand from the oxidation of an amide ligand has been reported by my group[13]. Here, we synthesized and characterized a new mononuclear copper complex based on the same ligand.

2 Experimental

2.1 General procedures

All the chemicals commercially available were used as supplied without further purification. The HL was synthesized according to previously reported methods.[10] Infrared spectra were recorded with a Bruker VERTEX-70 spectrometer as KBr pellets in the frequency range 4000 to 400 cm$^{-1}$. Elemental analyses were performed with a Perkin-Elmer 2400 Series II analyzer.

2.2 Synthesis of $[\text{Cu}_2\text{L}_2^{\text{ox}}(\text{SO}_4)(\text{H}_2\text{O})_4](\text{H}_2\text{O})_4(1)$

A solution of CuSO$_4$·5H$_2$O (25.8mg,0.103mmol) in methanol was added to a solution of HL(22.3mg,0.103mmol) in CH$_3$OH, affording a dark green solution. Keep stirring for 6h, after the filtration, the blue filtrate was obtained. Slow evaporation of the filtrate afforded green block-shaped crystals of the title copper complex suitable for X-ray analysis. C$_{20}$H$_{22}$Cu$_4$N$_{10}$O$_{18}$S. Calcd.C 29.16, H 3.43, N 17.01%; found:C 29.42,H 3.28, N 16.91%. IR(KBr): 3 359(s), 2 407(w), 1 652(s), 1 356(s), 1 134(s), 1 067(s), 835(w), 673(w), 614(w), 467(w)cm$^{-1}$

*Corresponding author’s e-mail: 20120051@cqwu.edu.cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
2.3 X-ray crystal structure determination

Single crystal X-ray diffraction analyses of complex 1 was carried out with a Bruker SMART APEX IICCD diffractometer equipped with a graphite monochromated Mo-Kα radiation (\(\lambda = 0.71073\) Å) by using a \(\omega\)-scan mode. The structure of 1 was solved by direct methods and refined by full-matrix least-squares methods on \(F^2\) using the program SHEXL 97\[14\]. Using Olex2\[15\]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were located by geometrically calculations, and their positions and thermal parameters were fixed during the structure refinement. The crystallographic data and experimental details of structural analyses for 1 are summarized in Table 1. Selected bond and angle parameters are listed in Table 2.

3 Results and discussion

3.1 Crystal structure of complex 1

Single crystal X-ray analysis reveals that complex 1 crystallizes in the tetragonal, \(I 41/a\) space group. In the title compound, it consists of two monocopper units and four free water molecules as shown in Fig1. The Cu1 is five-coordinated by three N atoms from the oxidized imide ligand and two O atoms from water and sulfide anion with a square pyramidal geometry. The coordination mode of Cu2 is six-coordinated by three N atoms from the oxidized imide ligand and three O atoms from water molecules with an octahedral geometry. The bond distance of Cu2-O10 is 0.2696nm, which is longer than other Cu-O bond distances assigned as a weaker bond interactions. There are multiple O-H.....O hydrogen bonding between water molecules or water and sulfide O atom to form 3D networks as shown in Fig2. The cabonyl groups in the title complex are available for the coordination with secondary metal ions to construct heteronuclear metal complexes.

![Fig.1 Molecular structure of the complex 1 shown with 30% probability displacement ellipsoids. Hydrogen atoms and the uncoordinated water molecule are deleted for clarity.](image1)

![Fig.2 Intermolecular hydrogen bonding diagram of complex 1](image2)
	Cu2-O10	0.2696(5)
O1-Cu1-O5	88.56(17)	174.81(15)
O1-Cu1-N2	99.17(18)	93.14(19)
O1-Cu1-N1	178.82(19)	84.03(17)
O1-Cu1-N4	96.81(18)	98.1(2)
N2-Cu1-O5	91.31(17)	97.4(2)
N1-Cu1-O5	90.76(17)	88.95(18)
N1-Cu1-N2	81.81(18)	87.15(17)
N1-Cu1-N4	82.29(18)	163.9(2)
N4-Cu1-O5	94.95(17)	96.69(18)
N4-Cu1-N2	162.98(18)	170.2(2)
N6-Cu2-O10	86.14(17)	81.78(19)
N6-Cu2-N9	82.19(19)	94.47(18)
N9-Cu2-O10	90.21(17)	

4 Conclusions

In summary, we successfully synthesized a new copper(II) complex derived from N-(pyridine-2-ylmethyl)pyrazine-2-carboxamide (HL), in which the deprotonated amide was oxidized to imide ligand. The X-ray analysis reveals that the coordination modes and geometries of the copper center change with the choice of the anion in the synthesis of the title complexes.

Acknowledgments

This research work is supported by the Chongqing University of Arts and Sciences major scientific research project Cultivation Fund (P2017CH10); Chongqing Yongchuan District Science and Technology Bureau Natural Science Foundation program funded project (2020nb0224)

References

1. Boonmak, J., Youngme, S., Chaichit, N., van Albada, G.A., Reedijk, J. (2009) Series of Copper(II) Coordination Polymers Containing Aminopyrazine and Different Carboxylato Bridges: Syntheses, Structures and Magnetic Properties. Cryst. Growth Des., 9: 3318-3326.
2. Cati, D.S., Ribas, J., Ribas-Arino, J., Stoeckli-Evans, H. (2004) Self-Assembly of CuII and NiII [2 × 2] Grid Complexes and a Binuclear CuII Complex with a New Semiflexible Substituted Pyrazine Ligand: Multiple Anion Encapsulation and Magnetic Properties Inorg. Chem., 43: 1021-1030.
3. Zhang, X.M., Fang, R.Q. (2005) Hydrothermal Syntheses and Structures of Two Mixed-Valence Copper(II) 2-Pyrazinecarboxylate Coordination Polymers. Inorg. Chem., 44: 3955-2959.
4. Nathan, C., Wriedt, M., Jess, I. (2003) Dimorphism of a New CuI Coordination Polymer: Synthesis, Crystal Structures and Properties of Catena[Cul2(Iodopyrazine-N)] and Poly(Cul(μ2-Iodopyrazine-N,N')]. Inorg. Chem., 42: 2391-2397.
5. Hausmann, J., Jameson, G.B., Brooker, S. (2003). Control of molecular architecture by the degree of deprotonation: self-assembled di- and tetranuclear copper(II) complexes of N,N'-bis(2-pyridylmethyl)pyrazine-2,3-dicarboxamide. 24: Chem. Commun., 2992-2993.
6. (a) Hausmann, J., Jameson, G.B., Brooker, S. Control of molecular architecture by the degree of deprotonation: self-assembled di- and tetranuclear copper(II) complexes of N,N'-bis(2-pyridylmethyl)pyrazine-2,3-dicarboxamide. (2003) Chem. Commun., 2992-2993. (b) Hausmann, J., Brooker, S. Control of molecular architecture by use of the appropriate ligand isomer: a mononuclear “corner-type” versus a tetranuclear[2x2] grid-type cobalt(III) complex. (2004) Chem. Commun., 1530-1531. (c) Klingele, J., Boas J F, Pilbrow J R, Moubaraki B, Murray K S, Berry K J, Hunter K A, Jameson G B, Boyd P D, Brooker S A [2x2] nickel(II) grid and a copper(II) square result from differing binding modes of a pyrazine-based diamide ligand. (2007) Dalton. Trans. 633-645.
7. Cockriel D L, McClain J M, Patel K C, Ullon R, Hubin T J. The design and synthesis of pyrazine amide ligands for the “tiles” approach to molecular weaving with octahedral metal ions (2008) Inorg. Chem. Commun., 11:1-4.
8. Khavasi H R, Sasan K, Pirouzmand M, Ebrahimi S N. Highly Efficient Isobutraldehyde-Mediated Exoxidation of Cyclic Alkenes with Dioxygen Catalyzed by a Novel Dimeric Magnesian (II) Complex Containing an Easy-to-Prepare Flexible Carboxamide Ligand. (2009) Inorg. Chem. 48, 5593-5595.
9. Khavasi H R, Sadegh B M, Temperature-Dependent Supramolecular Motif in Coordination Compounds. (2010) Inorg. Chem. 49: 5356-5358.
10. Houser R P, Wang Z D, Powell D R, Hubin T J. Copper(I) and copper(II) complexes with pyrazine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide and N-(2-pyridin-2-yl)ethyl)pyrazine-2-carboxamide Journal of Coordination Chemistry, 2013,66:4080-4092.
11. Cowan, M. G.; Olguin, J.; Narayanaswamy, S.; Tallon, J. L.; Brooker, S. (2012). Reversible switching of a cobalt complex by thermal, pressure, and electrochemical stimuli: abrupt, complete, hysteresis spin crossover. J. Am. Chem. Soc.134: 2892-2894.
12. Hellyer, R.M.; Larsen, D.S.; Brooker, S. Cobalt and silver complexes of terdentate pyrazine-based amide ligands and assembly of monocobalt building blocks through a silver connector. (2009). Eur. J. Inorg. Chem., 9:1162-1171.
13. Wang Z., Xu Q., Ni H., Liu X. Crystal structure of bis((pyrazin-2-ylmethyl)(pyrazine carbonyl)amido-κ3N,N′,N′′)copper(II), C20H16CuN10O2.(2017)Z.Kristallogr.N.Cryst.Struc t.232:835-836.

14. Sheldrick G M, SHELXTL NT, version 5.1, Program for Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.

15. Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. A complete structure solution, refinement and analysis program. (2009) J. Appl. Crystallogr. 42:339-341.