Geometric action for extended Bondi-Metzner-Sachs group in four dimensions

Glenn Barnich,a Kevin Nguyenb and Romain Ruzziconic

aPhysique Théorique et Mathématique, Université libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, Bruxelles B-1050, Belgium
bDepartment of Mathematics, King’s College London, The Strand, London WC2R 2LS, U.K.
cInstitute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8, Vienna A-1040, Austria

E-mail: Glenn.Barnich@ulb.be, kevin.nguyen@kcl.ac.uk, romain.ruzziconi@tuwien.ac.at

ABSTRACT: The constrained Hamiltonian analysis of geometric actions is worked out before applying the construction to the extended Bondi-Metzner-Sachs group in four dimensions. For any Hamiltonian associated with an extended BMS\textsubscript{4} generator, this action provides a field theory in two plus one spacetime dimensions whose Poisson bracket algebra of Noether charges realizes the extended BMS\textsubscript{4} Lie algebra. The Poisson structure of the model includes the classical version of the operator product expansions that have appeared in the context of celestial holography. Furthermore, the model reproduces the evolution equations of non-radiative asymptotically flat spacetimes at null infinity.

KEYWORDS: Classical Theories of Gravity, Models of Quantum Gravity, Sigma Models, Space-Time Symmetries

ArXiv ePrint: 2211.07592
1 Introduction

Whereas sigma models on symmetric spaces G/H involve a Killing form for the construction of a G-invariant spacetime action principle, geometric actions yield G-invariant first order worldline action principles for G/H_{b_0} that do not rely on an invariant metric but rather on the coadjoint representation and the choice of a fixed coadjoint vector b_0 with H_{b_0} the stabilizer subgroup of b_0. Geometric actions appear in the context of the orbit method [1–4] when constructing group characters through path integral quantization [5]. For infinite-dimensional groups such as Kac-Moody or Virasoro groups [6, 7] (see also e.g. [8–10]), they appear as Hamiltonian gauge field theories with spatial sections that are circles. In the same context, a geometric action for the (centrally extended) BMS group in three spacetime dimensions [11, 12] has recently been constructed in [13].

The main objective of the current paper is to apply this construction to the BMS group in four spacetime dimensions [14–17], or more precisely the extended version [18, 19] that appears in the celestial holography program [20–24], by combining the ingredients of the construction in three dimensions with the detailed understanding of the coadjoint representation in four dimensions [25].
In the course of the construction, the question whether one may consider the coadjoint vectors as time-dependent, dynamical variables in addition to the group elements has come up. In order to clarify this issue, after a brief review of geometric actions, we work out the constrained Hamiltonian analysis for geometric actions (see also [26]), before applying the construction to the group of interest.

In the final two sections, general comments about the relevance of the models to non-radiative asymptotically flat gravity at null infinity are provided. In particular, the proper choice of a Hamiltonian reproduces the time-dependence of the asymptotic symmetry vectors and gravitational flux-balance relations, without the fluxes.

2 Generalities

We briefly summarize here the construction of geometric actions following the conventions of [13], up to an overall sign in the definition of the Hamiltonian and the Noether charges. Furthermore, the Lie algebra bracket for the diffeomorphism group in 1 dimension is taken here to be minus the Lie bracket of vector fields, as it should if all signs related to the passage from the group to the algebra are to be correct. As a consequence, some formulas will have the opposite signs to those that appear commonly in the literature.

Let \(g \in G \) be a group element and \(b_0 \in \mathfrak{g}^* \) a fixed coadjoint vector. The coadjoint orbit \(O_{b_0} \) is the set of coadjoint vectors \(b = \text{Ad}_{g^{-1}}b_0 \in \mathfrak{g}^* \) that can be reached from \(b_0 \) through the coadjoint action \(\text{Ad}^* \). This orbit is isomorphic to \(G/H_{b_0} \) with \(H_{b_0} \) the isotropy sub-group of \(b_0 \), i.e., the elements \(h \in G \) such that \(\text{Ad}_h b_0 = b_0 \).

Consider left/right translations by elements \(g \),

\[
L_g : h \rightarrow gh \quad / \quad R_g : h \rightarrow hg,
\]

and let \(\theta/\kappa \) be the left-invariant/right-invariant Maurer-Cartan forms satisfying

\[
d\theta = -\frac{1}{2}\text{ad}_\theta \theta \quad / \quad d\kappa = \frac{1}{2}\text{ad}_\kappa \kappa.
\]

For \(X \in \mathfrak{g} = \frac{d}{ds}g(s)|_{s=0} \), let

\[
v^R_X = \frac{d}{ds}(hg(s))|_{s=0} \quad / \quad v^L_X = \frac{d}{ds}(g(s)h)|_{s=0},
\]

the vector fields which generate right/left translations. These vector fields are the left/right invariant vector fields that reduce to \(X \) at the identity, with

\[
i_{v^R_X} \theta = X \quad / \quad i_{v^L_X} \kappa = X,
\]

and

\[
i_{v^L_X} \theta = \text{Ad}_{g^{-1}}X \quad / \quad i_{v^R_X} \kappa = \text{Ad}_g X.
\]

On the level of the generators, the left/right invariance of the Maurer-Cartan forms translates into

\[
\mathcal{L}_{v^L_X} \theta = 0 \quad / \quad \mathcal{L}_{v^R_X} \kappa = 0.
\]
The presymplectic potential and two-form are
\[a = \langle b, \theta \rangle = \langle b_0, \kappa \rangle, \quad \Omega = da, \tag{2.7} \]
with \(\langle \cdot, \cdot \rangle \) the pairing between \(\mathfrak{g}^* \) and \(\mathfrak{g} \). Furthermore, let \(X_0 \in \mathfrak{g} \) be a fixed Lie algebra element and
\[H_{X_0} = \langle b, X_0 \rangle. \tag{2.8} \]
In particular, it follows from the second of (2.5) that
\[dH_{X_0} = -i_{v_{X_0}^R} \Omega. \tag{2.9} \]
The geometric actions we will be considering below are of the form
\[I_G[g; b_0, X_0] = \int_\gamma [a - H_{X_0} dt] = \int dt L_H, \quad L_H = i_V a - H_{X_0}, \tag{2.10} \]
where \(\gamma : t \to g(t) \) represents a path on \(G \) with tangent vector \(V = \dot{g} \). Models with different \(b_0 \)'s that belong to the same coadjoint orbit are equivalent in the sense that they are described by geometric actions that are related by “field redefinitions”, that is to say invertible reparametrizations of the configuration space variables that correspond to left translations,
\[I_G[g; Ad_{h^{-1}}b_0, X_0] = I_G[g'; b_0, X_0], \quad g' = hg, \tag{2.11} \]
for constant \(h \in G \).
In other words, in order to cover all inequivalent models of this type, it is enough to study them for the different representatives \(b_0 \) of the partition of \(\mathfrak{g}^* \) into coadjoint orbits.
For a family \(g(t, \lambda) \) of such paths, and their infinitesimal variation characterized by \(W = \frac{\partial g}{\partial \lambda} \), the associated variation of the action is
\[\delta S = \delta \lambda \int dt \left[i_W (-i_V \Omega - dH_{X_0}) + \frac{d}{dt}(i_W a) \right], \tag{2.12} \]
so that extremal paths satisfy the equations of motion
\[i_V \Omega + dH_{X_0} = 0 \iff \langle b_0, [i_V \kappa - Ad_g X_0, \kappa] \rangle = 0. \tag{2.13} \]
For a time dependent Lie algebra element \(X = X(t) \in \mathfrak{g} \), let
\[Q_X = \langle b, X(t) \rangle. \tag{2.14} \]
Under an infinitesimal right translation generated by \(v_{X_0}^R \), the variation of the Lagrangian density is
\[\frac{d}{dt} Q_X - i_V dQ_X - Q_{[X, X_0]} = Q_X - Q_{[X, X_0]}. \tag{2.15} \]
It follows that right translations define global symmetries if the time dependence of \(X(t) \) is fixed through
\[\dot{X} = -\text{ad}_{X_0} X = [X, X_0]. \tag{2.16} \]
The associated Noether charges are Q_X. When acting with a global symmetry, they satisfy
\[\mathcal{L}_{v_{X_1}^L} Q_{X_2} = Q_{[X_1,X_2]} \quad (2.17) \]

The little algebra \mathfrak{h}_{b_0} is the subalgebra defined by elements $\epsilon \in \mathfrak{g}$ such that $\text{ad}_\epsilon^* b_0 = 0$. As will be explicitly shown below, the zero eigenvectors of Ω are exhausted by the vector fields v_L^ϵ.
\[\mathcal{L}_{v_L^\epsilon} Q_X = 0 \quad (2.18) \]

When $\epsilon = \epsilon(t)$, these transformations are gauge invariances of the action. Indeed, the variation of the Lagrangian density is $\frac{d}{dt} \langle b_0, \epsilon(t) \rangle$ so that the variation of the action vanishes for all $\epsilon(t)$ that vanish at the end points of the path γ. In these terms, (2.18) means that the Noether charges for the global symmetries, including the Hamiltonian, are gauge invariant.

3 Constrained Hamiltonian analysis of geometric actions

Even though geometric actions are already in first order form, the Hamiltonian analysis is not complete because of the degeneracies of the pre-symplectic two form. In order to have explicit expressions for Poisson and Dirac brackets, required in the context of operator quantization and extended formulations of the theory with both group elements and coadjoint vectors as dynamical variables, it is instructive to perform a complete constrained Hamiltonian analysis. Conversely, such world-line actions are prime examples where Dirac’s theory comes into its own in the case of completely tractable mechanical systems as opposed to field theories. We refer to the reviews [27] on Lie groups and [28, 29] on constrained Hamiltonian systems for more details and proofs. There is of course no claim of originality as all results are known in one form or the other in the (mathematical) literature.

3.1 Lie groups and algebras in local coordinates

We find it convenient to perform the analysis by using explicit (arbitrary) local coordinates g^i on G. At the same time, even though not necessary for our purpose here, we provide in parenthesis the simplified expressions for the objects of section 2 for the case of (subgroups) of $\text{GL}(n)$, where the inner product $\langle \cdot , \cdot \rangle$ is the matrix trace.

In local coordinates, the left/right translations L_g/R_g are encoded in the multiplication table $L^i(g^j,h^k) / R^i(g^j,h^k)$, while their differentials L'_g/R'_g needed to push-forward vector fields from h to gh/hg are characterized by
\[\frac{\partial L^i(g^j,h^k)}{\partial h^j} / \frac{\partial R^i(g^j,h^k)}{\partial h^j}. \quad (3.1) \]

The matrices
\[L^i_j(g^l) = \frac{\partial L^i(g^j,h^k)}{\partial h^j} \bigg|_{h=e} / \quad R^i_j(g^l) = \frac{\partial R^i(g^j,h^k)}{\partial h^j} \bigg|_{h=e}, \quad (3.2) \]

are invertible, reduce to δ^i_j at the identity e, and commute, $L^i_j R^j_k = R^i_j L^j_k$.

Denoting by $e_i = \frac{\partial}{\partial q^i}$, the coordinate basis for tangent vector fields at the identity, bases for the generators of right/left translations which are the left/right invariant vector fields $v_{e_i}^R(=ge_i)/v_{e_i}^L(=e_ig)$ that reduce to e_i at the identity e are given by
\[
v_{e_i}^R = L^j_i \frac{\partial}{\partial g^j} \quad / \quad v_{e_i}^L = R^j_i \frac{\partial}{\partial g^j}. \tag{3.3}\]
Left/right invariance of these vector fields translates into
\[
\frac{\partial L^i_j(g,h)}{\partial g^l} L^l_j(h) = L^i_j(gh) \quad / \quad \frac{\partial R^i_j(g,h)}{\partial g^l} R^l_j(h) = R^i_j(hg). \tag{3.4}\]
These bases are mutually commuting,
\[
[v_{e_i}^R, v_{e_j}^L] = 0, \tag{3.5}\]
and their rotation coefficients are determined by the Lie algebra structure constants,
\[
[v_{e_i}^R, v_{e_j}^R] = f_{ijk} v_{e_k}^R \quad / \quad [v_{e_i}^L, v_{e_j}^L] = -f_{ijk} v_{e_k}^L. \tag{3.6}\]
The left/right invariant Maurer-Cartan forms $\theta(=g^{-1}dg), \kappa(=dgg^{-1})$ are given by
\[
\theta = e_i(L^{-1})^j_i dg^j \quad / \quad \kappa = e_i(R^{-1})^i_j dg^j, \tag{3.7}\]
and satisfy
\[
d\theta + \frac{1}{2}[\theta, \theta] = 0 \quad / \quad d\kappa - \frac{1}{2}[\kappa, \kappa] = 0, \tag{3.8}\]
with $[e_i, e_j] = f_{ijk} e_k$. The adjoint representation is determined by
\[
\text{Ad}_g e_i = e_j(R^{-1}L)^j_i, \tag{3.9}\]
with $(R^{-1}L)^j_i = (R^{-1})^k_j L^k_i$. In the following, we will use
\[
v_{e_i}^L(R^{-1}L)^j_i = f_{ijk}^j(R^{-1}L)^h_k, \tag{3.10}\]
which holds on account of (3.5) and (3.6).

In order to explicitly show in local coordinates that replacing b_{0i} by $b'_0 = b_{0i}(R^{-1}L)^i_j$ amounts to replacing g^i by $g^h = L^i(h, g)$, one uses left invariance in the form of (3.4) and the matrix expression for $\text{Ad}_g \text{Ad}_g = \text{Ad}_g$.

3.2 Legendre transform, primary constraints and canonical generators

In terms of local coordinates, the geometric action (2.10) becomes
\[
I_G[g; b_0, X_0] = \int dt \left[b_{0i}(R^{-1})^i_j \dot{g}^j - b_{0i}(R^{-1}L)^i_j X_0^j \right]. \tag{3.11}\]
Denoting by p_j the canonical momenta, $\{g^i, p_j\} = \delta^i_j$, $\{g^i, g^j\} = 0 = \{p_i, p_j\}$, the primary constraints and the canonical Hamiltonian are
\[
\dot{\phi}^j_{b_0} = p_j - b_{0i}(R^{-1})^i_j \approx 0, \quad H_C = p_i L^i_j X_0^j \approx b_{0i}(R^{-1}L)^i_j X_0^j. \tag{3.12}\]
By construction, geometric actions are then equivalent to

\[I^H_G[g^i, p_j, \tilde{u}^m; b_0, X_0] = \int dt \left[p_j \dot{g}^j - H_G - \tilde{u}^i \phi_i^{b_0} \right]. \tag{3.13} \]

Models with different b_0’s that belong to the same coadjoint orbit are described by equivalent actions,

\[I^H_G[g, \pi, u^m; \text{Ad}^{-1}_h b_0, X_0] = I^H_G[g^i, p_j, \tilde{u}^m; b_0, X_0] \]

that are related through the canonical transformations,

\[g^i' = L_i^k(h^k, g^i), \quad p_j' = L^m_i(g)(L^{-1})^l_j(h) p_m, \tag{3.14} \]

together with

\[\tilde{u}'^m = L^m_j(h)(L^{-1})^l_n(g) \tilde{u}^n. \tag{3.15} \]

In the following, it turns out to be convenient not to use Darboux coordinates (g^i, p_j), but rather to change coordinates on phase space to g^i and

\[\pi_j = R^k_j p_k. \tag{3.16} \]

The fundamental Poisson brackets in terms of these coordinates are

\[\{ g^i, g^j \} = 0, \quad \{ g^i, \pi_j \} = R^i_j, \quad \{ \pi_i, \pi_j \} = f^k_{ij} \pi_k. \tag{3.17} \]

In particular, $\{ \pi_i, \cdot \} = \pi_k f^k_{ij} \frac{\partial}{\partial \pi_j} - u^L_j \pi_i$. Under the canonical transformation designed to compensate a change of the orbit representative b_0, these variables transform as

\[\pi'_i = \pi_i (R^{-1} L)^i_j (h). \tag{3.18} \]

In the mathematical literature, when considering π_i as coordinates on g^*, $\pi = \pi_i e^{*i}$, the above Poisson brackets for the π_i’s are referred to as the Lie-Poisson bracket or Kirillov-Kostant-Souriau bracket on g^*.

The primary constraints are equivalent to

\[\phi_i^{b_0} = \pi_i - b_0 \approx 0, \tag{3.19} \]

while the canonical Hamiltonian may be chosen as

\[H^*_X_0 = \pi_i (R^{-1} L)^i_j X_0^j. \tag{3.20} \]

By construction, the theory defined by the geometric action $I[g; b_0, X^0]$ is equivalent to the one defined by

\[I^H_G[g, \pi, u; b_0, X^0] = \int dt \left[\pi_i (R^{-1})^i_j \dot{g}^j - H^*_X_0 - u^i \phi_i^{b_0} \right], \tag{3.21} \]

where u^i are Lagrange multipliers that may be considered as elements of g, $u = u^i e_i$, that transform in the adjoint representation,

\[u'^i = (R^{-1} L)^i_j (h) u^j. \tag{3.22} \]
When using the second of (3.8), variations with respect to the dynamical variables gives,

\[
\delta I_G^H = \int dt \left[\delta \pi_i ((R^{-1})^i_j \dot{g}^j - (R^{-1}L)^i_j X_0^j - u^i) - \delta u^i \phi^{b_0} \right. \\
+ \left. [\pi_i (R^{-1})^i_j \dot{g}^j - \pi_i \partial_j (R^{-1})^i_m \dot{g}^m - \pi_i \partial_j (R^{-1}L)^i_m X_0^m] \delta g^j \right].
\]

(3.23)

The Euler-Lagrange equations with respect to \(g^j \) may then be simplified using (3.10), and the associated dynamics is provided by the primary constraints (3.19), together with the Hamiltonian evolution equations

\[
\dot{g}^i = \{g^i, H_{\pi} X_0 + u^j \phi^{b_0} \} = L^i_j X_0^j + R^i_j u^j, \\
\dot{\pi}_i = \{\pi_i, H_{\pi} X_0 + u^j \phi^{b_0} \} = \pi_k f^k_{ij} u^j.
\]

(3.24)

In the Hamiltonian formalism, the Noether charges

\[
Q_{\pi}^X = \pi_i (R^{-1}L)^i_j X^j,
\]

(3.25)

canonically generate right translations and do not act on the \(\pi_i \),

\[
\delta_X g^i = v^R (g^i) = L^i_j X^j = \{g^i, Q_{\pi}^X \}, \quad \delta_X \pi_i = \{\pi_i, Q_{\pi}^X \} = 0.
\]

(3.26)

They form a Poisson bracket realization of \(g^i \),

\[
\{Q_{\pi X_1}^X, Q_{\pi X_2}^X \} = Q_{[X_1, X_2]}^X.
\]

(3.27)

3.3 Dirac algorithm: first and second class constraints

The preservation in time of the primary constraints, \(\{\phi_i, H_{\pi} X_0 + u^j \phi^{b_0} \} \approx 0 \) leads to

\[
b_{0k} f^k_{ij} u^j = 0.
\]

(3.28)

To solve this equation, one considers vectors \(e^i_a \) that constitute a complete set of zero eigenvectors of the matrix \(C_{ij} = b_{0k} f^k_{ij} \),

\[
b_{0k} f^k_{ij} v^j = 0 \iff v^j = v^a e^i_a,
\]

(3.29)

and introduces an associated change of basis in \(g \) and \(g^\ast \) defined through constant matrices \(e^i_a, e^a_i, e^A_i, e^a_i \) such that

\[
e^a_i e^b_i = \delta^b_a, \quad e^A_i e^B_i = \delta^B_A, \quad e^a_i e^A_j + e^A_i e^a_j = \delta^j_i.
\]

(3.30)

In the following, we will use these constant vielbeins and their inverse to transform quantities with greek indices into the same quantities with small and capital Latin indices. In terms of the new basis, the little algebra \(b_0 \) is determined by vectors such that \(v^A = 0 \). Furthermore,

\[
f^C_{ab} = 0, \quad C_{ab} = 0, \quad C_{aB} = 0
\]

(3.31)

while the matrix

\[
C_{AB} = b_{0c} f^C_{AB} + b_{0C} f^C_{AB}
\]

(3.32)
is invertible, with inverse denoted by \((C^{-1})^{AB}C_{BC} = \delta^A_B\). Equation (3.28) leaves the Lagrange multipliers \(u^a\) undetermined and sets to zero the remaining Lagrange multipliers \(u^A = 0\). There are thus no secondary constraints, while the primary constraints split into first and second class constraints

\[
\phi^b_a = \pi_a - b_0 a \approx 0, \quad \phi^b_A = \pi_A - b_0 A \approx 0, \tag{3.33}
\]

with

\[
\{\phi^b_a, \phi^b_b\} = f_{ab}^c \phi^b_c, \quad \{\phi^b_a, \phi^b_B\} = f_{ab}^C \phi^b_C + f_{AB}^C \phi^b_C + C_{AB}. \tag{3.34}
\]

The gauge transformations are generated by the first class constraints,

\[
\delta_c g^i = \{g^i, \phi^b_a e^a\} = R^i_a e^a, \quad \delta_c \pi_i = \{\pi_i, \phi^b_a e^a\} \approx 0, \tag{3.35}
\]

with \(e^a = e^a(t)\). The Hamiltonian \(H^X_0\) is first class while the total Hamiltonian

\[
H^C_{X_0} = H^X_0 + u^a \phi_a, \tag{3.36}
\]

is also the extended Hamiltonian since there are no secondary constraints. In terms adapted to the classification of the constraints, one has

\[
I^H_C [g^i, \pi_b, \pi_B, u^a, u^C; b_0, X^0] = \int dt \left[a_i^H g^i - H^X_0 - u^a \phi_a - u^A \phi_A \right],
\]

\[
a_i^H = \pi_a (R^{-1})^a_i + \pi_A (R^{-1})^A_i. \tag{3.37}
\]

3.4 Reduced theory and Dirac brackets

At this stage, one may solve the second class constraints in the action and eliminate the \(\pi_A\) in favor of \(b_0 A\). The reduced theory becomes

\[
I^R_C [g^i, \pi_a, u^a; b_0, X_0] = \int dt \left[a_i^R g^i - H^R_{X_0} - u^a \phi^b_a \right], \tag{3.38}
\]

\[
a_i^R = \pi_a (R^{-1})^a_i + b_0 A (R^{-1})^A_i, \quad H^R_{X_0} = \pi_a (R^{-1})^0_j X^j_0 + b_0 A (R^{-1})^A_j X^j_0,
\]

with associated reduced brackets defined by the inverse of the symplectic form \(\Omega^R = da^R\), with \(a_R = a^R dg^i\). More explicitly,

\[
\Omega^R = d\pi_a (R^{-1})^a_i dg^i + \frac{1}{2} C_{AB} (R^{-1})^A_i (R^{-1})^B_j dg^idg^j. \tag{3.39}
\]

and

\[
\{g^i, g^j\}^R = R^i_A (C^{-1})^{AB} R^j_B, \quad \{g^i, \pi_a\}^R = R^i_a, \quad \{\pi_a, \pi_b\}^R = 0. \tag{3.40}
\]

When using (3.10), it follows that the dynamics of the reduced theory is

\[
\phi^b_a = 0, \quad \phi^b_A = 0, \quad g^i = \{g^i, H^R_{X_0}\}^R + u^b \{g^i, \phi^b_a\}^R \approx L^i_j X^j_0 + R^i_j u^b, \tag{3.41}
\]

\[
\pi_a = \{\pi_a, H^R_{X_0}\}^R + u^b \{\pi_a, \phi^b_a\}^R \approx 0.
\]

- 8 -
Note that if one also eliminates the first class constraints by solving them in the action, one recovers $I_G[g; b_0, X_0]$ in (2.10) with degenerate two-form Ω.

Alternatively, one may work with Dirac brackets and keep the variables π_A, u^A together with the second-class constraints $\phi^{b_0}_A \approx 0$ for reasons of Lie algebra covariance. In this case, the Dirac brackets are given by

$$
\{g^i, g^j\}^* = R^i_A(C^{-1})^{AB} R^j_B, \\
\{g^i, \pi_a\}^* = R^i_a - R^i_A(C^{-1})^{AB}(f_{Ba}^{c} \phi^{b_0}_c + f_{Ba}^{C} \phi^{b_0}_C), \\
\{\pi_a, \pi_b\}^* = f_{aB}^{c} \phi^{b_0}_c - (f_{aA}^{C} \phi^{b_0}_A + f_{aA}^{b_0}_C)(C^{-1})^{AB}(f_{Bb}^{d} \phi^{b_0}_d + f_{Bb}^{D} \phi^{b_0}_D),
$$

which agree with the reduced brackets on the constraint surface, $\{\cdot, \cdot\}^* \approx \{\cdot, \cdot\}^R$, while the additional Dirac brackets all vanish,

$$
\{g^i, \pi_A\}^* = 0, \quad \{\pi_a, \pi_B\}^* = 0, \quad \{\pi_A, \pi_B\}^* = 0.
$$

A point on the coadjoint orbit of a given covector b_0 can be parametrized by the group element needed to reach it,

$$
b_0^g = \text{Ad}_{g^{-1}}^* b_0.
$$

The time dependence of such a covector is given by

$$
\frac{db_0^g}{dt} = -\text{Ad}_{g^{-1}}^*(\text{ad}_{V^\kappa} b_0).
$$

When using the equations of motion (3.41) together with the fact that $u^b e_b$ belongs to the little algebra of b_0, it follows that

$$
\frac{db_0^g}{dt} = -\text{ad}_{X^0}^* b.
$$

3.5 Unconstrained model

One may decide to use the Lie algebra covariant form (3.21) of the model,

$$
I_G^H[g, \pi, u; b_0, X_0] = \int_\gamma [\langle \pi, \kappa \rangle - dt(H_{X_0}^\pi + \langle \phi^{b_0}, u \rangle)],
$$

where

$$
H_{X_0}^\pi = \langle \text{Ad}^*_g \pi, X_0 \rangle, \quad \phi^{b_0} = \pi - b_0,
$$

without explicitly splitting into first and second class constraints. As seen above, the latter can always be done once b_0 is fixed and the little algebra has been worked out.

One may also go a step further and drop the constraints ϕ^{b_0} to study the unconstrained model

$$
I_G^U[g, \pi; X_0] = \int_\gamma [\langle \pi, \kappa \rangle - dtH_{X_0}^\pi],
$$

with Poisson brackets given in (3.17) and Hamiltonian evolution equations that simplify to

$$
\dot{g}^i = \{g^i, H_{X_0}^\pi\} = L^i_j X_0^j \iff i_V \kappa = \text{Ad}_g X_0, \quad \dot{\pi}_i = \{\pi_i, H_{X_0}^\pi\} = 0.
$$

It follows that, besides the Q^π_X, the π’s themselves are constants of the motion,

$$
\pi_i = b_0^i,
$$

with b_0^i constant. On these level sets, one can study Hamiltonian reduction. This amounts to performing the analysis in the previous section.
4 Geometric action for extended BMS\(_4\) group

4.1 Group and algebra

The extended BMS\(_4\) group is a semi-direct product group of the form

\[S_\sigma = G \ltimes_\sigma A, \]

(4.1)

with \(A\) and abelian ideal,

\[(g_1, \alpha_1) \cdot (g_2, \alpha_2) = (g_1 \cdot g_2, \alpha_1 + \sigma_g \alpha_2). \]

(4.2)

The non-abelian factor \(G\) corresponds to conformal coordinate transformations on the complex plane minus the origin, \(g = (f, \bar{f})\),

\[z'(z) = f(z), \quad \bar{z}'(\bar{z}) = \bar{f}(\bar{z}), \]

(4.3)

with group law on the level of \(f, \bar{f}\) defined by composition.

The abelian ideal \(A\) consists of real fields \(T\) of conformal dimensions \((-\frac{1}{2}, -\frac{1}{2})\), with

\[(\sigma_g T)(z', \bar{z}') = \left(\frac{\partial z}{\partial z'}\right)^{-\frac{1}{2}} \left(\frac{\partial \bar{z}}{\partial \bar{z'}}\right)^{-\frac{1}{2}} T(z, \bar{z}). \]

(4.4)

More generally \(G\) acts on conformal fields of dimensions \((h, \bar{h})\) as

\[(\sigma_g \phi^h) (z', \bar{z}') = \left(\frac{\partial z}{\partial z'}\right)^h \left(\frac{\partial \bar{z}}{\partial \bar{z'}}\right)^{\bar{h}} \phi^{h,\bar{h}}(z, \bar{z}). \]

(4.5)

while \(\Sigma_X\) acts as

\[(Y, \bar{Y}) \cdot \phi^{h,\bar{h}} = - [Y \partial + \bar{Y} \bar{\partial} + h\partial Y + \bar{h}\partial \bar{Y}] \phi^{h,\bar{h}}. \]

(4.6)

The associated Lie algebra \(\mathfrak{bms}_4^E\) is of the form \(\mathfrak{g} \oplus_\Sigma A\),

\[[(X_1, \alpha_1), (X_2, \alpha_2)] = ([X, Y], \Sigma_X, \alpha_2 - \Sigma_X \alpha_1), \]

(4.7)

where \(\Sigma_X\) is the differential of \(\sigma_g\) and we identify the Lie algebra elements of \(A\) with elements of \(A\) itself. The Lie algebra of \(G\) is described by chiral fields \(Y, \bar{Y}\) of conformal dimensions \((-1, 0)\) and \((0, -1)\),

\[\partial Y = 0 = \partial \bar{Y}, \]

(4.8)

while the \(\mathfrak{bms}_4^E\) Lie bracket is explicitly given by

\[[(Y_1, \bar{Y}_1, T_1), (Y_2, \bar{Y}_2, T_2)] = -(\hat{Y}, \hat{\bar{Y}}, \hat{T}), \]

\[\hat{Y} = Y_1 \partial Y_2 - (1 \leftrightarrow 2), \quad \hat{\bar{Y}} = \bar{Y}_1 \partial \bar{Y}_2 - (1 \leftrightarrow 2), \]

\[\hat{T} = Y_1 \partial T_2 - \frac{1}{2} \partial Y_1 T_2 + \text{c.c.} - (1 \leftrightarrow 2). \]

(4.9)
4.2 Adjoint and coadjoint representation

The adjoint action is of the form

$$\text{Ad}_{(g,\alpha)}(X,\beta) = (\text{Ad}_g X, \sigma_g \beta - \Sigma_{\text{Ad}_g} \chi \alpha),$$

(4.10)

where $\text{Ad}_g X$ is given by $(g \cdot (Y, \tilde{Y}))(x') = (Y'(x'), \tilde{Y}(x'))$ with

$$Y'(z') = \left(\frac{\partial z}{\partial z'}\right)^{-1} Y(z), \quad \tilde{Y}'(z') = \left(\frac{\partial \tilde{z}}{\partial z'}\right)^{-1} \tilde{Y}(z).$$

(4.11)

If $\alpha = T_1, \beta = T_2, \sigma_g \beta - \Sigma_{\text{Ad}_g} \chi \alpha$ is given by

$$T'(x') = \left(\frac{\partial z}{\partial z'}\right)^{-\frac{1}{2}} \left(\frac{\partial \tilde{z}}{\partial z'}\right)^{-\frac{1}{2}} \left(T_2 + \left(Y \partial T_1 - \frac{1}{2} T_1 \partial Y + \text{c.c.}\right)\right)(x).$$

(4.12)

The dual space to the Lie algebra is of the form $\mathfrak{g}^* \oplus A^*$, with non-degenerate pairing denoted by

$$\langle (j, p), (X, \alpha) \rangle = \langle j, X \rangle + \langle p, \alpha \rangle.$$

(4.13)

In terms of

$$\times : A \oplus A^* \to \mathfrak{g}^*, \quad \langle \alpha \times p, X \rangle = \langle p, \Sigma_X \alpha \rangle,$$

(4.14)

and σ^*, the dual realization associated with $\sigma, \sigma^* : G \times A^* \to A^*, \langle \sigma^* p, \alpha \rangle = \langle p, \sigma_{g^{-1}} \alpha \rangle$, the coadjoint actions of the group and algebra are of the form

$$\text{Ad}_{(g,\alpha)}^*(j, p) = (\text{Ad}_g^* j + \alpha \times \sigma^*_g p, \sigma^*_g p),$$

$$\text{ad}^*_{(X,\alpha)}(j, p) = (\text{ad}_X^* j + \alpha \times p, \Sigma^*_X p).$$

(4.15)

In the case of $(\mathfrak{sl}_2^{\mathbb{F}})^*$, elements are denoted by $([[J], [\bar{J}], P])$. Here J, \bar{J} have conformal dimensions $(1, 2)$ and $(2, 1)$, while P has dimensions $\left(\frac{3}{2}, \frac{3}{2}\right)$, with pairing given by

$$\langle ([J], [\bar{J}], P), (Q, \bar{Q}, T) \rangle = \int dx [\bar{J}Y + J\bar{Y} + PT].$$

(4.16)

As discussed in more details in [25], if we assume that conformal fields may be expanded in terms of suitable series in z, \bar{z},

$$\phi_{h,\bar{h}}(z, \bar{z}) = \sum_{k,l} a_{k,l} z^{-k} \bar{z}^{-\bar{h}^{-1}},$$

(4.17)

the integral corresponds to taking residues in z, \bar{z}: $\int di(x) = \int dz d\bar{z}$ with

$$\int dz \phi_{h,\bar{h}}(z, \bar{z}) = \text{Res}_z \phi_{h,\bar{h}}(z, \bar{z}) = \sum_l a_{1-h,1} z^{-l},$$

$$\int d\bar{z} \phi_{h,\bar{h}}(z, \bar{z}) = \text{Res}_{\bar{z}} \phi_{h,\bar{h}}(z, \bar{z}) = \sum_k a_{k,1} \bar{z}^{-\bar{h}-1}.$$
Because Y, \bar{Y} are chiral fields, one has to consider equivalence classes, $J \sim J + \partial L$, $\bar{J} \sim \bar{J} + \partial \bar{L}$ with L, \bar{L} of dimensions $(0, 2)$ and $(2, 0)$. In these terms, the coadjoint representation is given by

$$J'(x') = \left(\frac{\partial z}{\partial \bar{z}} \right)^2 \left(\frac{\partial \bar{z}}{\partial \bar{z}} \right)^2 \left(J - \left(\frac{1}{2} T \partial P + \frac{3}{2} \partial TP \right) \right)(x),$$

$$\bar{J}'(x') = \left(\frac{\partial \bar{z}}{\partial \bar{z}} \right)^2 \left(\frac{\partial z}{\partial \bar{z}} \right)^2 \left(\bar{J} - \left(\frac{1}{2} T \partial P + \frac{3}{2} \partial TP \right) \right)(x),$$

$$P'(x') = \left(\frac{\partial z}{\partial \bar{z}} \right)^2 \left(\frac{\partial \bar{z}}{\partial \bar{z}} \right)^2 P(x).$$

Representatives for the equivalence classes $[\bar{J}], [J]$ are given by

$$\bar{J}(z, \bar{z}) = \bar{J}(z) \delta(\bar{z}, 0), \quad J(z, \bar{z}) = \delta(z, 0) J(\bar{z}),$$

where $\bar{J}(z) = \int d\bar{z} \bar{J}(z, \bar{z})$ is of conformal dimension $h = 2$, while $J(\bar{z}) = \int dz J(z, \bar{z})$ is of conformal dimension $\bar{h} = 2$. This follows from the fact that the only term in a series in z, \bar{z} that cannot be written as a $\partial/\partial \bar{z}$ derivative is \bar{z}^{-1}/z^{-1} and from the series expansion of the delta function: if

$$\bar{J}(z, \bar{z}) = \sum_{k,l} \bar{J}_{k,l} z^{-2-k} \bar{z}^{-l-1}, \quad J(z, \bar{z}) = \sum_{k} J_{k,l} z^{-1-k} \bar{z}^{-2-l},$$

we have

$$\bar{J}(z, \bar{z}) = \sum_{k} \bar{J}_{k,0} z^{-2-k} \bar{z}^{-1} + \partial \bar{L}, \quad J(z, \bar{z}) = \sum_{l} J_{0,l} z^{-1-2-l} + \partial L,$$

with

$$\bar{L} = - \sum_{k,l \neq 0} \bar{J}_{k,l} z^{-2-k} \bar{z}^{-l}, \quad L = - \sum_{k \neq 0, l} J_{k,l} z^{-1-k} \bar{z}^{-2-l}.$$ \hspace{1cm} (4.23)

and furthermore,

$$\delta(z, w) = \sum_{k} z^{k-1} w^{-k}, \quad \delta(\bar{z}, \bar{w}) = \sum_{k} \bar{z}^{k-1} \bar{w}^{-k}. \hspace{1cm} (4.24)$$

4.3 Unconstrained model for extended BMS$_4$

For a semi-direct product group of the form (4.1), the left/right invariant Maurer-Cartan forms $\theta_{g,\alpha}/\kappa_{g,\alpha}$ are given by

$$\theta_{g,\alpha} = (\theta_{g,\sigma_{g-1}d\alpha}) / \kappa_{g,\alpha} = (\kappa_{g, d\alpha - \Sigma_{\kappa_{g}}} \alpha),$$

where θ_{g}/κ_{g} denote the left/right invariant Maurer-Cartan forms of the non-abelian group G. It then follows from (4.14) that the kinetic term of the unconstrained model (3.49) is

$$\langle \pi, \kappa \rangle = \langle j - \alpha \times p, \kappa_{g} \rangle + \langle p, d\alpha \rangle, \hspace{1cm} (4.26)$$

while the Hamiltonian $\langle \pi, \text{Ad}_{g} X_{0} \rangle$ is

$$H(\delta_{0}) = \langle j - \alpha \times p, \text{Ad}_{g} X_{0} \rangle + \langle p, \sigma_{g} \delta_{0} \rangle. \hspace{1cm} (4.27)$$
Furthermore, the identity $\langle \pi, \kappa \rangle = \langle \text{Ad}^*_{g^{-1}}, \pi \rangle$ becomes
\[
\langle j - \alpha \times p, \kappa_g \rangle + \langle p, \text{d} \alpha \rangle = \langle \text{Ad}^*_{g^{-1} - \sigma_g^{-1} \alpha}(j, p), (\theta_g, \sigma_g^{-1} \text{d} \alpha) \rangle = \langle \text{Ad}^*_{g^{-1} - \sigma_g^{-1} \alpha}(j - \sigma_g^{-1} \alpha \times \sigma_g^{-1} p, \theta_g) + \langle \sigma_g^{-1} p, \sigma_g^{-1} \text{d} \alpha \rangle, \quad (4.28)
\]
while the Hamiltonian may also be written as $\langle \text{Ad}^*_{g^{-1}} j, X_0 \rangle$.

For conformal coordinate transformations, $z \mapsto z' = f(z)$, $\bar{z} \mapsto \bar{z}' = \bar{f}(\bar{z})$ the left/right invariant Maurer-Cartan forms are
\[
\theta_g = \left(\frac{1}{f} \text{d} f \frac{\partial}{\partial z}, \text{c.c.} \right) \quad / \quad \kappa_g = \left(\text{d} f \circ f^{-1} \frac{\partial}{\partial \bar{z}}, \text{c.c.} \right). \quad (4.29)
\]

As a consequence, the unconstrained model (3.49) for the extended BMS$_4$ group may be written either as
\[
I_{\text{BMS}_4}^U[f, \bar{f}, T, J, \tilde{J}, P; Y_0, \bar{Y}_0, T_0] = \int dt dz \bar{d} z \left(\left[\tilde{J} + \left(\frac{1}{2} T \partial P + \frac{3}{2} \bar{\partial} T \bar{P} \right) \right] \left[(f - (f') Y_0) \circ f^{-1} \right] + \text{c.c.} \right.
\]
\[
+ P \bar{T} - P \left(\left[(f' \bar{f}) \frac{1}{2} T_0 \right] \circ (f^{-1}, \bar{f}^{-1}) \right) \left(\left[(f' \bar{f}) \frac{1}{2} T_0 \right] \circ (f^{-1}, \bar{f}^{-1}) \right), \quad (4.30)
\]
or, in a chiral boson like form, as
\[
I_{\text{BMS}_4}^U[f, \bar{f}, T, J, \tilde{J}, P; Y_0, \bar{Y}_0, T_0] = \int dt dz \bar{d} z \left(\left[\tilde{J} + \left(\frac{1}{2} T \partial P + \frac{3}{2} \bar{\partial} T \bar{P} \right) \right] \circ (f, \bar{f}) \right) \left[(f' \bar{f}) \tilde{j} - (f')^2 \bar{f} \bar{f} Y_0 \right] + \text{c.c.} \right.
\]
\[
+ P \bar{T} - [P \circ (f, \bar{f})](f' \bar{f}) \frac{1}{2} T_0 \right). \quad (4.31)
\]
That these forms of the model are equivalent may also be shown by replacing in the integral in (4.30) of the relevant terms the dummy variables z, \bar{z} by z', \bar{z}' and then performing the change of coordinates $z' = f(z)$, $\bar{z}' = \bar{f}(\bar{z})$.

By construction, the model is invariant under infinitesimal right BMS$_4$ transformations,
\[
\delta_R f = f' Y_R, \quad \delta_R \bar{f} = \bar{f}' \bar{Y}_R, \quad \delta_R T = [(f' \bar{f}) \frac{1}{2} T_R] \circ (f^{-1}, \bar{f}^{-1}), \quad (4.32)
\]
provided that
\[
\bar{Y}_R = Y_0 \partial Y_R - Y_R \partial Y_0, \quad \bar{Y}_R = Y_0 \partial \bar{Y}_R - \bar{Y}_R \partial \bar{Y}_0,
\]
\[
\bar{T}_R = Y_0 \partial T_R - \frac{1}{2} \partial Y_0 T_R - Y_R \partial T_0 + \frac{1}{2} \partial Y_R T_0 + \text{c.c.}. \quad (4.33)
\]
The direct check of invariance on the form (4.30) uses $\delta_R f^{-1} = -Y_R \circ f^{-1}$ and the associated complex conjugate relation, as well as spatial integrations by parts.

The associated equations of motion are explicitly given by
\[
\bar{f} = f' Y_0, \quad \bar{f} = f' \bar{Y}_0, \quad \bar{T} = [(f' \bar{f}) \frac{1}{2} T_0] \circ (f^{-1}, \bar{f}^{-1}), \quad (4.34)
\]
\[
\dot{\bar{f}} = 0, \quad \dot{\bar{f}}(z) = 0, \quad \dot{\bar{f}}(\bar{z}) = 0.
\]
while the Poisson brackets \(\{ \pi_i, \pi_j \} = f^k_{ij} \pi_k \) read explicitly

\[
\{ \tilde{J}(z), P(w, \bar{w}) \} = \frac{3}{2} \partial_w \delta(z, w) + \delta(z, w) \partial_w \] P(w, \bar{w}),
\]
\[
\{ \tilde{J}(z), P(w, \bar{w}) \} = \frac{3}{2} \partial_w \delta(\bar{z}, \bar{w}) + \delta(\bar{z}, \bar{w}) \partial_w \] P(w, \bar{w}),
\]
\[
\{ \tilde{J}(z), \tilde{J}(w) \} = [2 \partial_w \delta(z, w) + \delta(z, w) \partial_w] \tilde{J}(w),
\]
\[
\{ J(z), J(w) \} = [2 \partial_{\bar{w}} \delta(\bar{z}, \bar{w}) + \delta(\bar{z}, \bar{w}) \partial_{\bar{w}}] J(\bar{w}),
\]
\[
\{ J(z), \tilde{J}(w) \} = 0,
\]
\[
\{ P(z, \bar{z}), P(w, \bar{w}) \} = 0.
\]

This can be shown from \(\{ \pi_i X^1_i, \pi_j X^1_j \} = \pi_k [X_1, X_2]^k \). An manifestly skew-symmetric form of the brackets may be obtained by using the relations

\[
\partial_z \delta(z, w) = -\partial_w \delta(z, w), \quad F(w) \partial_z \delta(z, w) = F(z) \partial_z \delta(z, w) + \partial_z F(z) \delta(z, w).
\]

5 Relation to asymptotically flat gravity at null infinity and celestial holography

The Lie-Poisson or Kirillov-Kostant-Souriau brackets (4.35) are the classical analogs of the operator product expansions that have recently appeared in the context of celestial holography [30–33].

In the spirit of effective field theories, since the symmetry group of asymptotically flat spacetimes at null infinity is the BMS_4 group, the current algebra and conserved charges of the model are expected to reproduce the behavior of the currents and charges of these spacetimes [34–36]. In particular, when choosing the Hamiltonian associated to (retarded) time-translations \(t = u, \) \(X_0 = (0, 0, 1), \) \(Y_0 = 0 = \bar{Y}_0, \) \(T_0 = 1, \)

\[
H_{(0,0,1)} = \int dudzd\bar{z} P \left[(f' \bar{f'} \right) \frac{1}{2} \circ (f^{-1}, \bar{f}^{-1}) \right] = \int dudzd\bar{z} [P \circ (f, \bar{f})](f' \bar{f'} \right) \frac{1}{2},
\]

the time dependence of the symmetry generators of right translations is determined by

\[
\dot{Y}_R = 0 = \dot{\bar{Y}}_R, \quad \dot{T}_R = \frac{1}{2} (\partial Y_R + \partial \bar{Y}_R).
\]

This is consistent with the time dependence of the leading parts of the asymptotic symmetries generators in the gravitational computation at future null infinity. The equations for the group elements in (4.34) simplify to

\[
\dot{f} = 0 = \dot{\bar{f}}, \quad \dot{T} = [f' \bar{f'} \right] \frac{1}{2} \circ (f^{-1}, \bar{f}^{-1}),
\]

so that \(T = T(z, \bar{z}, 0) + u[f' \bar{f'} \right] \frac{1}{2} \circ (f^{-1}, \bar{f}^{-1}), \) while those for the coadjoint vectors are unchanged. Furthermore, in the constraint model with points on the coadjoint orbits
described by \(b_0^g = \text{Ad}_{g^{-1}} b_0 \),

\[
J_0^g = \left[J_0 + \left(\frac{1}{2} T \partial P_0 + \frac{3}{2} \partial T P_0 \right) \right] \circ (f, \bar f)(f')^2 f',
\]

\[
\bar J_0^g = \left[\bar J_0 + \left(\frac{1}{2} T \partial P_0 + \frac{3}{2} \partial T P_0 \right) \right] \circ (f, \bar f)(f')^2 \bar f',
\]

\[
P_0^g = P_0 \circ (f, \bar f)(f' \bar f')^2,
\]

it follows from (3.46) or by direct computation that

\[
\frac{dP_0^g}{du} = 0, \quad \frac{df_0^g}{du} = \frac{1}{2} \partial P_0^g, \quad \frac{d\bar f_0^g}{du} = \frac{1}{2} \partial \bar P_0^g.
\]

(5.5)

If \(\sigma^0, \Psi_0^0, \Psi_0^1, \Psi_1^0 \) are the leading components of shear and of suitable components of the Weyl tensor in the Newman-Penrose description of asymptotically flat spacetimes at null infinity and \(f = T + \frac{1}{2} u (\partial Y + \bar \partial Y) \), the former transform under \(\mathfrak{bms}_4^E \) as

\[
- \delta \sigma^0 = \left(f \partial_u + Y \partial + \bar Y \partial + \frac{3}{2} \partial Y - \frac{1}{2} \partial \bar Y \right) \sigma^0 - \bar \partial^2 f,
\]

\[
- \delta \Psi_0^1 = \left(f \partial_u + Y \partial + \bar Y \partial + \frac{5}{2} \partial Y + \frac{1}{2} \partial \bar Y \right) \Psi_0^0,
\]

\[
- \delta \Psi_0^3 = \left(f \partial_u + Y \partial + \bar Y \partial + 2 \partial Y + \bar \partial Y \right) \Psi_0^0 \partial f + \Psi_0^1 \partial f,
\]

\[
- \delta \Psi_0^2 = \left(f \partial_u + Y \partial + \bar Y \partial + \frac{3}{2} \partial Y + \frac{3}{2} \partial \bar Y \right) \Psi_0^0 + 2 \Psi_0^1 \partial f,
\]

(5.6)

\[
- \delta \Psi_1^1 = \left(f \partial_u + Y \partial + \bar Y \partial + \partial Y + 2 \bar \partial Y \right) \Psi_1^0 + 3 \Psi_0^1 \partial f.
\]

Furthermore, they are related through

\[
\Psi_0^1 = - \partial_\sigma^0, \quad \Psi_0^3 = - \bar \partial \sigma^0, \quad \Psi_0^2 = \partial \sigma^0 - \bar \partial \bar \sigma^0 + \sigma^0 \partial \sigma^0 - \bar \sigma^0 \partial \bar \sigma^0,
\]

(5.7)

and satisfy the evolution equations,

\[
\partial_u \Psi_0^3 = \bar \partial \Psi_0^1, \quad \partial_u \Psi_0^2 = \bar \partial \Psi_0^3 + \sigma^0 \Psi_0^1, \quad \partial_u \Psi_1^1 = \bar \partial \Psi_1^2 + 2 \sigma^0 \Psi_3^0.
\]

(5.8)

We define here non-radiative spacetimes by the conditions

\[
\Psi_1^0 = 0 = \Psi_3^0,
\]

(5.9)

and their complex conjugates. Furthermore, we require \(\Psi_0^0 \) to be real,

\[
\Psi_0^0 = \bar \Psi_0^0.
\]

(5.10)

On account of the relations (5.7), these are constraints on the asymptotic part of the shear and the news that are somewhat weaker than \(\partial_u \sigma^0 = 0 \) and its complex conjugate, together with \(\partial^2 \sigma^0 = \bar \partial \bar \sigma^0 \), i.e., the requirement that the news vanishes together with the analog of the electric condition. The reason is that the latter would require \(\bar \partial^3 \bar Y = 0 = \)
\[\partial^3 Y \] and eliminate superrotations, while the former are invariant under extended BMS4 transformations. With these conditions, the map

\[
m \left(-\frac{1}{G} \Psi_0^0 \right) = P_0^g, \quad m \left(-\frac{1}{2G} \Psi_1^0 \right) = J_0^g, \quad m \left(-\frac{1}{2G} \bar{\Psi}_1^0 \right) = J_0^g
\]

(5.11)
is compatible with the transformations laws, while the remaining non-trivial evolution equations (5.8) are compatible with (5.5).

6 Discussion

The Chern-Simons to chiral Wess-Zumino-Witten [37–39] to Liouville theory [40, 41] reductions have been used in the context of three-dimensional gravity [42–44] (see also [45–47]). They provide a direct approach to constructing holographic action principles that may be compared to the group theoretic constructions [13, 48].

Due to the absence of a pure Chern-Simons formulation, this avenue is less straightforward in four dimensions, see however [49–51] for such constructions. From this point of view, our models provide consistent targets for holographically dual theories that may be compared to the group theoretic constructions [13, 48].

Due to the absence of a pure Chern-Simons formulation, this avenue is less straightforward in four dimensions, see however [49–51] for such constructions. From this point of view, our models provide consistent targets for holographically dual theories that may be compared to the group theoretic constructions [13, 48].

More generally, considerations on the coadjoint orbits of closely related groups that appear in gravitational theories may be found in [57, 58], while prescriptions for gravitational charges in terms of the left hand sides of (5.11) have recently been discussed in [59–62]. Note that the reality condition imposed in (6.1) explicitly excludes magnetic mass, which has played a prominent role in a number of recent studies [63–68].

In the case of the global BMS4 group, the Maurer-Cartan forms for the non-abelian part SL(2, \mathbb{C}) can be obtained directly from the matrix representations

\[
g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} e^{-E/2} & -\bar{A}e^{E/2} \\ -Be^{-E/2} & (1 + AB)e^{E/2} \end{pmatrix},
\]

(6.1)

with \(a, b, c, d, E, A, B \in \mathbb{C} \) and \(ad - bc = 1 \). The second parametrization corresponds to a composition of Lorentz rotations of type \(II \circ I \circ II \) in the terminology of [69, 70]. Explicit formulas for the associated geometric action will be given elsewhere.

Finally, since BMS groups are conformal Carroll groups [71], the BMS3 invariant models of [13, 72] and the BMS4 invariant models constructed here are explicit examples of conformal Carroll field theories in \(1 + 1 \) and \(2 + 1 \) dimensions, respectively.
Acknowledgments

This work is supported by the F.R.S.-FNRS Belgium through convention FRFC PDR T.1025.14 and convention IISN 4.4514.08. RR is supported by the Austrian Science Fund (FWF), project P 32581-N. KN is grateful to Jakob Salzer for useful discussions and supported by the STFC, grant numbers ST/P000258/1 and ST/T000759/1.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. SCOAP³ supports the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, France (1970).
[2] B. Kostant, Quantization and unitary representations, Springer (1970).
[3] A.A. Kirillov, Elements of the Theory of Representations, Springer (1976).
[4] A.A. Kirillov, Lectures on the orbit method, American Mathematical Society (2004).
[5] A. Alekseev, L.D. Faddeev and S.L. Shatashvili, Quantization of symplectic orbits of compact Lie groups by means of the functional integral, J. Geom. Phys. 5 (1988) 391 [inspire].
[6] A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the Virasoro Group and 2D Gravity, Nucl. Phys. B 323 (1989) 719 [inspire].
[7] A. Alekseev and S.L. Shatashvili, From geometric quantization to conformal field theory, Commun. Math. Phys. 128 (1990) 197 [inspire].
[8] B. Rai and V.G.J. Rodgers, From Coadjoint Orbits to Scale Invariant WZNW Type Actions and 2-d Quantum Gravity Action, Nucl. Phys. B 341 (1990) 119 [inspire].
[9] G.W. Delius, P. van Nieuwenhuizen and V.G.J. Rodgers, The Method of Coadjoint Orbits: An Algorithm for the Construction of Invariant Actions, Int. J. Mod. Phys. A 5 (1990) 3943 [inspire].
[10] H. Aratyn, E. Nissimov, S. Pacheva and A.H. Zimerman, Symplectic actions on coadjoint orbits, Phys. Lett. B 240 (1990) 127 [inspire].
[11] A. Ashtekar, J. Bičák and B.G. Schmidt, Asymptotic structure of symmetry-reduced general relativity, Phys. Rev. D 55 (1997) 669 [gr-qc/9608042].
[12] G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [Corrigendum Class. Quant. Grav. 24 (2007) 3139] [gr-qc/0610130] [inspire].
[13] G. Barnich, H.A. González and P. Salgado-Rebolledo, Geometric actions for three-dimensional gravity, Class. Quant. Grav. 35 (2018) 014003 [arXiv:1707.08887] [inspire].
[14] H. Bondi, M.G. van der Burg and A.W. Metzner, Gravitational waves in general relativity. Part 7. Waves from axi-symmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21.
[15] R.K. Sachs, Gravitational Waves In General Relativity. Part 8. Waves In Asymptotically Flat Space-Time, Proc. Roy. Soc. Lond. A 270 (1962) 103.
[16] R. Sachs, *Asymptotic Symmetries in Gravitational Theory*, Phys. Rev. 128 (1962) 2851.

[17] E.T. Newman and R. Penrose, *Note on the Bondi-Metzner-Sachs group*, J. Math. Phys. 7 (1966) 863 [inSPIRE].

[18] G. Barnich and C. Troessaert, *Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited*, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [inSPIRE].

[19] G. Barnich and C. Troessaert, *Aspects of the BMS/CFT correspondence*, JHEP 05 (2010) 062 [arXiv:1001.1541] [inSPIRE].

[20] A. Strominger, *On BMS Invariance of Gravitational Scattering*, JHEP 07 (2014) 152 [arXiv:1312.2229] [inSPIRE].

[21] D. Kapec, V. Lysov, S. Pasterski and A. Strominger, *Semiclassical Virasoro symmetry of the quantum gravity S-matrix*, JHEP 08 (2014) 058 [arXiv:1406.3312] [inSPIRE].

[22] F. Cachazo and A. Strominger, *Evidence for a New Soft Graviton Theorem*, arXiv:1404.4091 [inSPIRE].

[23] S. Pasterski, S.-H. Shao and A. Strominger, *Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere*, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [inSPIRE].

[24] A. Strominger, *Lectures on the Infrared Structure of Gravity and Gauge Theory*, arXiv:1703.05448 [inSPIRE].

[25] G. Barnich and R. Ruzziconi, *Coadjoint representation of the BMS group on celestial Riemann surfaces*, JHEP 06 (2021) 079 [arXiv:2103.11253] [inSPIRE].

[26] P.S. Rebolledo, *Symplectic Structure of Constrained Systems: Gribov Ambiguity and Classical Duals for 3D Gravity*, Ph.D. Thesis, Universidad de Concepción & Université Libre de Bruxelles (2015) and online at http://difusion.ulb.ac.be/vufind/Record/ULBDIPOT:oai:dipot.ulb.ac.be:2013/220463/Holdings.

[27] Y. Choquet-Bruhat, C. DeWitt and M. Dillard-Bleick, *Analysis, Manifolds and Physics*, revised edition, North-Holland (1982).

[28] A. Hanson, T. Regge and C. Teitelboim, *Constrained Hamiltonian systems. Volume 22*, Accademia Nazionale dei Lincei, Roma, Italy (1976).

[29] M. Henneaux and C. Teitelboim, *Quantization of Gauge Systems*, Princeton University Press (1992).

[30] S. Pasterski, S.-H. Shao and A. Strominger, *Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere*, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [inSPIRE].

[31] G. Barnich, *Centrally extended BMS4 Lie algebroid*, JHEP 06 (2017) 007 [arXiv:1703.08704] [inSPIRE].

[32] A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, *Extended BMS Algebra of Celestial CFT*, JHEP 03 (2020) 130 [arXiv:1912.10973] [inSPIRE].

[33] L. Donnay and R. Ruzziconi, *BMS flux algebra in celestial holography*, JHEP 11 (2021) 040 [arXiv:2108.11969] [inSPIRE].

[34] R.M. Wald and A. Zoupas, *A General definition of ‘conserved quantities’ in general relativity and other theories of gravity*, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [inSPIRE].

[35] G. Barnich and C. Troessaert, *BMS charge algebra*, JHEP 12 (2011) 105 [arXiv:1106.0213] [inSPIRE].
[36] G. Barnich and C. Troessaert, Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity, JHEP 11 (2013) 003 [arXiv:1309.0794 [nSPIRE]].

[37] E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [nSPIRE].

[38] G.W. Moore and N. Seiberg, Taming the Conformal Zoo, Phys. Lett. B 220 (1989) 422 [nSPIRE].

[39] S. Elitzur, G. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108.

[40] P. Forgacs, A. Wipf, J. Balog, L. Feher and L. O’Raifeartaigh, Liouville and Toda Theories as Conformally Reduced WZNW Theories, Phys. Lett. B 227 (1989) 214 [nSPIRE].

[41] M. Bershadsky and H. Ooguri, Hidden SL(n) Symmetry in Conformal Field Theories, Commun. Math. Phys. 126 (1989) 49 [nSPIRE].

[42] O. Coussaert, M. Henneaux and P. van Driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019 [nSPIRE]].

[43] M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys. 282 (2000) 31 [hep-th/9910013 [nSPIRE]].

[44] G. Barnich and H.A. González, Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity, JHEP 05 (2013) 016 [arXiv:1303.1075 [nSPIRE]].

[45] J. Cotler and K. Jensen, A theory of reparameterizations for AdS$_3$ gravity, JHEP 02 (2019) 079 [arXiv:1808.03263 [nSPIRE]].

[46] M. Henneaux, W. Merbis and A. Ranjbar, Asymptotic dynamics of AdS$_3$ gravity with two asymptotic regions, JHEP 03 (2020) 064 [arXiv:1912.09465 [nSPIRE]].

[47] W. Merbis and M. Riegler, Geometric actions and flat space holography, JHEP 02 (2020) 125 [arXiv:1912.08207 [nSPIRE]].

[48] K. Nguyen, Holographic boundary actions in AdS$_3$/CFT$_2$ revisited, JHEP 10 (2021) 218 [arXiv:2108.01095 [nSPIRE]].

[49] J. de Boer and S.N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006 [nSPIRE]].

[50] T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity, Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122 [nSPIRE]].

[51] K. Nguyen and J. Salzer, The effective action of superrotation modes, JHEP 02 (2021) 108 [arXiv:2008.03321 [nSPIRE]].

[52] G. Barnich and B. Oblak, Notes on the BMS group in three dimensions. Part II. Coadjoint representation, JHEP 03 (2015) 033 [arXiv:1502.00010 [nSPIRE]].

[53] Y. Nutku and R. Penrose, On impulsive gravitational waves, Twistor Newsl. 34 (1992) 9 and online pdf version at http://people.maths.ox.ac.uk/lmason/Tn/34/Tn34-04.pdf.

[54] G. Barnich and C. Troessaert, Finite BMS transformations, JHEP 03 (2016) 167 [arXiv:1601.04090 [nSPIRE]].
[55] A. Strominger and A. Zhiboedov, *Superrotations and Black Hole Pair Creation*, *Class. Quant. Grav.* **34** (2017) 064002 [arXiv:1610.00639] [INSPIRE].

[56] K. Nguyen, *Schwarzian transformations at null infinity*, *PoS CORFU2021* (2022) 133 [arXiv:2201.09640] [INSPIRE].

[57] W. Donnelly, L. Freidel, S.F. Moosavian and A.J. Speranza, *Gravitational edge modes, coadjoint orbits, and hydrodynamics*, *JHEP* **09** (2021) 008 [arXiv:2012.10367] [INSPIRE].

[58] L. Cianbelli and R.G. Leigh, *Universal Corner Symmetry and the Orbit Method for Gravity*, arXiv:2207.06441 [INSPIRE].

[59] G. Compère, A. Fiorucci and R. Ruzziconi, *The A-BMS$_4$ charge algebra*, *JHEP* **10** (2020) 205 [arXiv:2004.10769] [INSPIRE].

[60] L. Freidel and D. Pranzetti, *Gravity from symmetry: duality and impulsive waves*, *JHEP* **04** (2022) 125 [arXiv:2109.06342] [INSPIRE].

[61] L. Freidel, D. Pranzetti and A.-M. Raclariu, *Higher spin dynamics in gravity and $w_{1+\infty}$ celestial symmetries*, *Phys. Rev. D* **106** (2022) 086013 [arXiv:2112.15573] [INSPIRE].

[62] L. Donnay, K. Nguyen and R. Ruzziconi, *Loop-corrected subleading soft theorem and the celestial stress tensor*, *JHEP* **09** (2022) 063 [arXiv:2205.11477] [INSPIRE].

[63] M. Henneaux and C. Teitelboim, *Duality in linearized gravity*, *Phys. Rev. D* **71** (2005) 024018 [gr-qc/0408101] [INSPIRE].

[64] C.W. Bunster, S. Cunockaert, M. Henneaux and R. Portugues, *Monopoles for gravitation and for higher spin fields*, *Phys. Rev. D* **73** (2006) 105014 [hep-th/0601222] [INSPIRE].

[65] H. Godazgar, M. Godazgar and C.N. Pope, *New dual gravitational charges*, *Phys. Rev. D* **99** (2019) 024013 [arXiv:1812.01641] [INSPIRE].

[66] C. Bunster, A. Gomberoff and A. Pérez, *Bondi-Metzner-Sachs invariance and electric-magnetic duality*, *Phys. Rev. D* **101** (2020) 044003 [arXiv:1905.07514] [INSPIRE].

[67] U. Kol and M. Porrati, *Properties of Dual Supertranslation Charges in Asymptotically Flat Spacetimes*, *Phys. Rev. D* **100** (2019) 046019 [arXiv:1907.00990] [INSPIRE].

[68] H. Godazgar, M. Godazgar and M.J. Perry, *Hamiltonian derivation of dual gravitational charges*, *JHEP* **09** (2020) 084 [arXiv:2007.07144] [INSPIRE].

[69] R. Penrose and W. Rindler, *Spinors and Space-Time. Volume 1: Twospinor Calculus and Relativistic Fields*, Cambridge University Press (1984).

[70] S. Chandrasekhar, *The mathematical theory of black holes*, Oxford University Press (1998).

[71] C. Duval, G.W. Gibbons and P.A. Horvathy, *Conformal Carroll groups and BMS symmetry*, *Class. Quant. Grav.* **31** (2014) 092001 [arXiv:1402.5894] [INSPIRE].

[72] G. Barnich, A. Gomberoff and H.A. González, *Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory*, *Phys. Rev. D* **87** (2013) 124032 [arXiv:1210.0731] [INSPIRE].