Participatory mapping: Assessing problems and defined marine conservation planning and zoning in Jor Bay, Indonesia

M A Al Amin¹,²,*, L Adrianto²,³, T Kusumastanto²,⁴, Z Imran²,³ and F Kurniawan²,³

¹Coastal and Marine Management Program, Graduate School, IPB University Bogor (Bogor Agricultural University), Kampus IPB Dramaga, Bogor 16680, Indonesia
²Center for Coastal and Marine Resources Studies (CCMRS), IPB University (Bogor Agricultural University), Kampus IPB Baranangsiang, Jl. Raya Pajajaran No. 1, Bogor 16127, West Java, Indonesia
³Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, IPB University (Bogor Agricultural University), Jl. Agatis, Kampus IPB Dramaga, Bogor 16680, Indonesia
⁴Department of Environment and Resources Economic, Faculty of Economy and Management, IPB University (Bogor Agricultural University), Kampus IPB Dramaga, Bogor 16680, Indonesia

*E-mail: arsyadalamin@pksplib.or.id

Abstract: Jor Bay Lombok is a marine protected area (MPA) which is initiated by local communities, which have a local-driven marine management regulation called *Awig-awig*. Unfortunately, the fisheries condition has continued to decline in the past decades, where the rate of exploitation of capture fisheries in Jor Bay shows an unbalanced condition because the harvest value is still higher than the recruitments and growth. *Awig-awig* regulates all existing utilization and protection of marine resources, but yet, has not included spatial aspects, leaving a situation that leads to unsustainability for fisheries resources and other resources. Balanced zoning of ecosystems and marine resources is needed in order to ensure the sustainability of the fisheries system in Jor Bay. This paper aims to illustrate how a marine spatial planning approach in a local MPA can be built with a community-based zoning system. The integration of local systems and formal-government systems is very effective and fast in the development of MPA zoning systems by considering the optimum allocation of the existence of ecosystems that guarantee the natural metabolic processes of the fisheries system in the Bay. The implementation of the MPA zoning system is expected to be able to support the guarantee of sustainable fisheries production for the surrounding region.

Keywords: participatory mapping; bay management; sustainable fisheries.

1. Introduction

Around the world, marine ecosystems show signs of distress, including drastically diminished fish stocks, habitat destruction and pollution. In order to address these and other marine environmental issues, many countries are conducting marine spatial planning (MSP) [1].
The Government of Indonesia is trying to protect marine resources to stop damage and restore to the environment and marine ecosystems, including habitat for fisheries resources, by reserving a conservation area of 20 million hectares by 2020 and 25 million hectares by 2025. Indonesia has made rules and guidelines to establish conservation areas and open up opportunities for anyone to initiate, be it individual, community, private, Non-Government Organization (NGO) or local government. However, these processes are very complex and must have the support and understanding of all parties. The community assumes that the existence of a conservation area is considered to limit the space for community activities, especially reducing the fishing ground area.

Indonesia has made rules and guidelines for establishing conservation areas and open up opportunities for anyone to initiate, be it individual, community, private, NGO or local government. However, these processes are very complex and must have the support and understanding of all parties.

Historically, Indonesian people have proven to have traditional fisheries management practices [2], and many of these community groups have local wisdom in managing and protecting natural resources, including coastal and marine, such as sasi, tiatiki, awiq-awiq, etc. The purpose of establishing a marine conservation area is to ensure the sustainability of fisheries resources by providing healthy habitats and ecosystems for the development of fisheries biota and the protection of marine ecosystems, as well as being targeted in sustainable development goals (SDGs target 14). The function of fisheries itself has three aspects, namely protecting and restoring fish stocks, supporting fishing livelihoods and feeds more people [3].

The community of Jor Bay area has the local knowledge-based rules on coastal and marine resources management called “Awiq-awiq”, and they had formed the Lembaga Pemangku Awiq Teluk Jor – Jor Bay regulatory authorities (LPATJ) as mandated institution to manage multi marine resources utilization including fisheries management. However, the Rules do not include zoning system yet. It makes LPATJ difficult to enforce the awiq-awiq. Due to the unclear zoning of bay, there is no specific area that was protected, therefore depleting and over-exploitation of resources is occurring continuously. It is necessary to be established MSP with zoning system which integrates local knowledge, scientific approach and government systems to build an effective MPA, as well as to manage sustainable fisheries in the bay.

MSP is a framework that informs the spatial distribution of marine resources, activities, uses, both existing and future based on ecological, economic and social objectives [4]. Zoning is a ubiquitous land use planning and regulatory mechanism whose purpose is to provide for orderly community growth and development by segregating land uses that are deemed incompatible. Zoning seeks to prevent new development from interfering with existing uses and, to preserve community “character”, but is also used to implement government plans and policies related to economic development and urban renewal [5]. Participatory mapping is an approach which can apply for identifying conservation areas necessary to safeguard the provision of important ecosystem services for indigenous communities [6].

We assume that the integration of local knowledge, scientific approach and government systems to build an MSP is very effective and faster to develop MPA zoning systems by considering the optimum allocation of the existence of ecosystems that guarantee the natural metabolic processes of the fisheries system in the bay. This study aims to illustrate how a participatory mapping is succeeded to define the cause roots of bay management issues and problems and established MSP in a local MPA by zoning system.

The integration of local knowledge systems and formal-government systems is very effective and faster to develop MPA zoning systems by considering the optimum allocation of the existence of ecosystems that guarantee the natural metabolic processes of the fisheries system in the bay. This paper illustrates the process of prioritizing spatial zoning led by stakeholders for a small area known as Jor Bay on Lombok Island, informed by science and supported by a systematic conservation planning

1 Awiq-awiq is a set of regulation for managing resources based on local knowledge/wisdom.
approach. This process has been sufficiently helpful to ensure that the resulting biodiversity planning is adequately represented in the expansion of protected areas and embed the results into wider land-use decision making, including working with local communities.

2. Materials and methods

2.1. Study area

The geographic setting for this study was Jor Bay, which is located at East Lombok West Nusa Tenggara Province, Indonesia, encompasses 1,007.96 hectares (Figure 1). The study was conducted in January - December 2018.

![Figure 1. Map of the research site in Jor Bay Lombok Indonesia](image)

2.2. Data collection

The study was conducted by using participatory planning and mapping for a marine conservation area. LPATJ initiated conservation program in Jor Bay as a local NGO who has mandated to manage the bay, in collaboration with academician group who join-led the systematic conservation planning process. Participatory mapping is a type of public participation that includes the generation and/or use of spatial information for a variety of purposes. Participatory mapping is highly variable in design and implementation [7]. In this study, to facilitate participatory mapping, the community formed a Working group (*kelompok kerja – Pokja*). *Pokja* were formed consist of from the representatives of community, stakeholders and policymakers to support all planning process. *Pokja* quickly grew to
consist of representatives from all of the community groups, government representative, as well as village governmental agent. Every stage of the planning process, i.e. collecting data, defining the issues and problems, a survey to resources mapping, analysis and zoning were reviewed by Pokja and consulted to stakeholders and policymakers by Meeting and Focus Group Discussion (FGD), particularly in zoning process to ensure the spatial prioritization allocation. We consulted with stakeholders and policymakers as well as Village Government during every stage of the planning process to ensure the spatial prioritization remained relevant.

Data collected are both spatial-ecological and social data. Both spatial data are collected by the participatory method. This method is needed to support the processes and stages of spatial planning [8]. Geographic Information System (GIS) is a system used as a decision support tool that can assist in making decisions to determine the spatial allocation in MSP by identifying various options for areas that require special management, both protected areas or core zones and fishing areas.

1) Social Data
Social data includes all human activities that are used to identify important community activities related to the utilization of marine resources. The data include all existing community activities in the areas, such as capture fisheries, mariculture, sea transport, tourism, etc. Social-spatial data were generated through participatory mapping, satellite image analysis, and field observations and ground checkpoint using Global Positioning System (GPS) involving the local community. Participatory mapping methods can assess the consistency, compatibility, and potential conflict of zoning with public values and preferences in a general plan revision process using a coastal community [5]. Therein lies the basis for what is, in fact, local knowledge and tradition of viewing natural resource sectors.

2) Ecological Data
Ecological data are necessary to identify the importance of habitat and ecosystem quality for biodiversity conservation and delivery of ecosystem services [8]. The data covers the distribution and quality of coral reef, seagrass meadow mangrove, coastal and small islands. Ecological-spatial data were obtained through participatory mapping, satellite image analysis and field surveys using the line intercept transect (LIT) method for coral reef ecosystems, and quadratic transects for coral reef, mangrove and seagrass ecosystems [9], and then also involves the local community.

2.3. Analysis

2.3.1. Issues and Problems Analysis
FGD collects the issues and problem and following by snowball technique to in-depth problems roots. The connectivity and relation among the problems found then analysed using DPSIR (Driver, Pressure, State, Impact and Response) tools. DPSIR is framework comprises a systematic approach to environmental management by exploring the interdisciplinary links among socioeconomic drivers, environment-related pressures, state of the environment, impacts of environmental changes and, finally, social responses to combat environmental degradation [10].

2.3.2. Zoning Analysis

1) Defining indicators and targets
The indicators are based on Guideline for the Preparation of Management and Zoning Plans for Marine, Coastal and Small Islands Protected Areas [9], especially in ecological and social indicators, adapted to existing conditions in the Jor Bay area. Targets for core zones are made up of at least 2% of the total area (1,007.96 hectares) to optimize conservation objectives. Locally, zoning systems are also built on existing rules, community activities, and conservation actions.
Based on the workshop and community consultations recommendations [11], the prioritized conservation option should be:

a. focus on Jor Bay's importance ecosystem, explicitly including threatened species;
b. incorporate the mangrove ecosystem;
c. consider *awiq-awiq* rule; and,
d. consider new activities development, especially marine tourism.

2) Overlay analysis

Zoning analysis was generated using the overlay method from the ecological and social data and consensus. In the overlay processes, the data combination is a valuable step in spatial allocation explicitly to multiple users and coastal biodiversity conservation and identifying trade-off. Then, the result of overlaying is reaffirmed based on the result of scientific assessment by the condition of ecological quality and community utilization activities (as calibration), so the conflict of spatial allocation can be avoided. To reassure the results, a public consultation was held again to establish the agreed zoning system.

The stakeholders have been agreed that due to data availability, the map of species distribution needs to be developed, and the spatial analysis use Marxan, a software package designed to identify sets of priority areas that meet quantitative targets for specified conservation features while minimizing costs and maintaining connectivity [12, 13]. All stakeholders were kept up-to-date and remained involved as the spatial conservation prioritization was developed and completed.

![Figure 2. A number of Fishermen in the Bay.](image-url)
3. Result and discussion

3.1. Socio-ecological system profile of Jor Bay

3.1.1. Social system

Administratively, Jor Bay covers two villages, namely Paremas and Jerowaru Villages which are divided into seven sub-villages (SV) (Poton Bako, Telong elong, Jor, Tutuk, Permas, Keranji and Gili Belek), the number of inhabitants around Jor Bay is 16,528 peoples and 4,030 households, which is Paremas Village 3,025 inhabitants (680 households). The Jerowaru village has 13,503 inhabitants (3,350 households) with a density of population is 807.11 inhabitants/km2. There were 820 fishers in the Bay (210 in Jerowaru and 610 in Paremas) (Figure 2), and there was 217 mariculturist in total who taking activity in the bay for two villages (Figure 3) [14].

3.1.2. Ecological system

Jor Bay have plenty and complete coastal ecosystems, such as mangroves, coral reefs and seagrass beds, each of which has interrelated functions to support fisheries activities in Jor Bay [14-16]. Map of the distribution of the three ecosystems in Jor Bay shown as Figure 4. There is no zoning recently; current utilization of the Bay is only for fishing and mariculture. The distribution map of the utilization of the bay is shown in Figure 5.
Figure 4. Distribution of coastal ecosystem (coral, mangrove and seagrass).

Figure 5. Distribution variant of existing utilization of the bay.
1) Mangrove
Mangrove ecosystem around Jor Bay has ± 82.36 hectare, Kecebing Bay ± 128.71 hectares and Telone ± 27.17 hectare. The results of several studies indicate that the level of density of Mangrove resources around the Jor Bay, Kecebing Bay and Telone regions has a moderate category [16].
Mangrove ecosystems in Jor Bay are almost evenly spread along the coast of Jor Bay. Mangrove ecosystem vegetation in Jor Bay consists of five types of mangroves: *Avicennia alba*, *Ceriops tagal*, *Rhizophora mucronata*, *Rhizophora stylosa*, and *Sonneratia alba* (Table 1).

No	Species	S1	S2	S3	S4	S5	S6	S7
1	*Avicennia alba*	-	√	√	√	√	-	-
2	*Ceriops tagal*	-	-	-	-	√	*	-
3	*Rhizophora stylosa*	-	-	-	√	√	-	-
4	*Rhizophora. mucronata*	√	√	√	-	-	√	√
5	*Sonneratia alba*	√	√	√	√	√	√	√

Source: [17]
Note: S1 = in Poton Bako sub-village; S2 = in Telong Elong sub-village; S3 = in Jor sub-village; S4 = in Tutuk sub-village; S5 = in Permas-I sub-village; S6 = in Permas-II sub-village; S7 = in Keranji sub-village; √ = found; * = not found; * = found out the transect.

Table 2. Mangrove densities at the tree level in Jor Bay.

Species	Density (ind/ha)
------------------------------	------------------
Avicennia alba	0 467 367 800 1,200 0 0
Ceriops tagal	0 0 0 0 0 0 0
Rhizophora stylosa	0 0 0 233 67 0 0
Rhizophora mucronata	3,867 0 2,133 0 0 1,367 267
Sonneratia alba	667 2,333 300 1,567 2,700 1,333 2,733
Total	4,534 2,800 2,800 2,600 3,967 2,700 3,000

Source: [17].
Note: the location (S1-S7): S1 = in Poton Bako sub-village; S2 = in Telong Elong sub-village; S3 = in Jor sub-village; S4 = in Tutuk sub-village; S5 = in Permas-I sub-village; S6 = in Permas-II sub-village; S7 = in Keranji sub-village.

Table 3. Mangrove densities at stake level in Jor Bay.

Species	Density (ind)
------------------------------	---------------
Avicennia alba	0 300 33 1,100 800 0 0
Ceriops tagal	0 0 0 0 100 0 0
Rhizophora stylosa	0 0 0 0 200 0 0
Rhizophora mucronata	1,833 33 1,600 0 0 400 1,633
Sonneratia alba	367 2,367 100 433 1,200 1,233 733
Total	2,200 2,700 1,733 1,533 2,300 1,633 2,367

Source: [17].
Note: the location (S1-S7): S1 = in Poton Bako sub-village; S2 = in Telong Elong sub-village; S3 = in Jor sub-village; S4 = in Tutuk sub-village; S5 = in Permas-I sub-village; S6 = in Permas-II sub-village; S7 = in Keranji sub-village.

Based on Table 1, it was shown that *Sonneratia alba* was found in all stations. Another species that is also found in almost all stations is *R. mucronata*. The beaches with mud substrate type were dominated by *S. alba*, while beaches with mud and sand substrate type were dominated by *R.
and *R. stylosa*. The tree-level density in Poton Bako SV is the highest density with a value of 4,534 ind/ha, while the lowest density of the tree level is found in Tutuk SV with a density value of 2,600 ind/ha [17]. An assessment of mangrove density at the tree, stake, and seedling level in Jor Bay is presented in Table 2 and Table 3.

Table 4. Mangrove densities at a seedling level in Jor Bay.

Species	S1	S2	S3	S4	S5	S6	S7
Avicennia alba	0	0	67	1,133	233	0	0
Ceriops tagal	0	0	0	0	0	0	0
Rhizophora stylosa	0	0	0	167	200	0	0
Rhizophora mucronata	800	133	1,833	0	0	1,333	0
Sonneratia alba	0	400	0	600	967	0	0
Total	800	533	1,900	1,900	1,400	1,333	0

Source: [17].

Note: the location (S1-S7): S1 = in Poton Bako sub-village; S2 = in Telong Elong sub-village; S3 = in Jor sub-village; S4 = in Tutuk sub-village; S5 = in Permas-I sub-village; S6 = in Permas-II sub-village; S7 = in Keranji sub-village.

In all locations, the density of mangrove species was categorized as good (dense), especially at the tree and stake level. This shows that the condition of mangrove ecosystems in Jor Bay is still relatively good. The highest density at the tree, stake, and seedling level was found in Species *R. mucronata*. Meanwhile, the lowest density was found in species *C. tagal* at the level of trees, stake, and seedling. This assessment refers to the Decree of the Minister of Environment No. 201/2004, the criteria for the density of mangrove species at a value of <1,000 ind/ha, including the rare (damaged) category, 1,000 - <1,500 ind/ha including the medium (good) category and ≥ 1,500 ind/ha is included in the very solid (good) category [9].

![Important Value Index (IVI/INP) of mangrove in Jor Bay.](image-url)
R. mucronata is one of mangrove species that have high adaptability; this causes R. mucronata to grow and survive more easily. This condition was also confirmed by fisher and communities in Jor Bay, where most of the R. mucronata species in Jor Bay, especially at Poton Bako SV were the result of community planting, mangrove vegetation at the site looks neatly arranged which shows it is the result of rehabilitation and not natural growth.

The influence and role of mangrove type in the community are described by the Importance Value Index (IVI/INP) (Figure 6). INP values are calculated using vegetation analysis consisting of values of relative density, relative frequency and relative closure. INP values range from 0-300. The mangrove species with the highest INP in Jor Bay is the S. alba species found at in Keranji SV while the lowest INP is the R. stylosa species found at Permas-I SV.

Species S. alba and R. mucronata dominate in almost all observation locations. The distribution of S. alba species increased when the location led to the mainland and at the location has relatively small waves and a greater amount of mud. Different research was found the different data that the INP of S. alba is the highest value of INP, which is dominated by the type of S. alba. This data shows that during 2016-2018 there were no significant changes when viewed from the mangrove structure [18]. However, if viewed from the perspective of species density, it can be said that there has been a positive growth of the mangrove ecosystem. This condition is seen in the difference in the value of mangrove density in 2016 [18], mangrove density was 867 ind/ha, while in 2018 (this study) mangrove density was known to be 3,200 ind/ha. When viewed from the density value of each type of stand, it is suspected that there has been positive growth in the mangrove ecosystem. This status can be seen from the increase in the number of trees in 2018 when compared to 2016, and conversely a decline in the number of seedlings in 2018. In more detail, changes in the value of mangrove density from 2016 to 2018 are presented in Table 5.

Table 5. Changes in the mangrove density of Jor Bay from 2016 to 2018.

Type of Mangrove	Mangrove density (ind/ha)	
	Year 2016¹⁾	Year 2018²⁾
Trees	867	3,200
Stake	2,533	2,067
Seedling	99,167	1,124

Source: ¹⁾[17], ²⁾[18].

2) **Coral reef**
Coral reefs found around Jor Bay which include Jor Bay itself, Kecibing Bay, and Telong Elong waters are about 78.47 hectares with an average living coral cover percentage of 43.30% (33.98 hectares) which the damaged cover of 56.70% (44.49 hectares). Live coral reefs consist of Hard Coral (Hard Coral) and Soft Coral [17].

3) **Sea Grass**
The seagrass ecosystem for the Jor Bay community is one of the important fishing areas, especially fishermen with a gill net, fishing and traditional fishing gear called "madak" [14]. Utilization of seagrass ecosystems is currently limited to the fishing ground. Seagrass ecosystems in Jor Bay are found in the outer bay waters of the left side around Sub-Village Telong Elong and Sub Village Paton Bako [17].

4) **Fish Resources**
Fish resources in Jor Bay are very diverse. There are several types of fish found both in inner and outer bays. In addition to the potential for fish farming, Jor Bay also has a high potential for capture fisheries. This can be seen from the catches of fishermen with catchment areas around Jor Bay. In the mangrove ecosystems of Jor Bay there is much meroplankton, and fish larvae found. The mangrove
ecosystem in Jor Bay is used as a place to enlarge fish larvae before they finally mature and return to the sea [19]. There are several types of fish obtained around the bay, as shown in Table 6. Some types of fish that are often used by surrounding communities include snapper (Lutjanidae), grouper (Serranidae), Lethrinidae, and Haemulidae [15].

Table 6. List of fish resources in Jor Bay.

No	Local name	Common name	Scientific name
1	Amang jaran	Slender worm eel	Muraenichthys gymnotus
2	Api-api	Spotted sicklefish	Drepane punctata
3	Bante	Parrot fish	Scarus sp.
4	Bante basong	Parrot fish	Scarus sp.
5	Bante bontet	Parrot fish	Scarus sp.
6	Baronang	Smudespot spinefoot	Siganus guttatus
7	Belanak	Green black mullet	Planiliza subviridis
8	Blungkusian	Pink shrimpgoby	Cryptocentrus leptocephalus
9	Bulu baby	Sea urchin	Salmacis sparamoides
10	Bunge waru	Yellow-lined snapper	Lutjanus rufo lineatus
11	Cepak - cepak	Japanesa trevally	Carangoides uii
12	Cotek keras	Ponyfish	Leiognatus sp.
13	Cotek lemes	Toothphony fish	Gaza minuta
14	Empak antap	Double ended pipe fish	Syngnathoides biculeatus
15	Empak setoek	Twinspot flounder	Pseudorhoribus diplospilus
16	Galigase	Sergeant major	Abudefduf vaigiensis
17	Gronggong	Gold spotted trevally	Carangoides fulvoguttatus
18	Joget	Longfish bannerfish	Heniochus acuminatus
19	Kakap	Indonesian snapper	Lutjanus bitaenius
20	Kepiting bakau	Mud crab	Scylla serrate
21	Kerang	Blood cockle	Anadara granosa
22	Kerapu macan	Brown marbled grouper	Ephinephelus fuscoguttatus
23	Kerapu rangah	Blacktip grouper	Ephinephelus fasciatus
24	Kerong kerong	Terapon	Terapon sp.
25	Langgor	Pennantfish	Allectis ciliaris
26	Merelah	Blue lined surgeon fish	Acanthurus lineatus
27	Monar/teri	Anchovy	Stelophorus sp.
28	Ngom	Orbicular cardinal fish	Sphaeramia orbicularis
29	Pari karang	Blue spotted fantail stingray	Taeniura lymma
30	Piyo	Goatfish	Parupanneus sp.
31	Rebon	Paste shrimp	Acetes sp.
32	Sange	Long nosed unicorn fish	Naso brevirostis
33	Semulang	Stripped eel catfish	Plotosus japonicus
34	Serpik	Whitespot spinefoot	Siganus cannaliculatus
35	Strie	Lion fish	Pteoris sp.
36	Tambak	Pink ear emperor	Lethrinus lenjan
37	Tambak losoh	Emperor fish	Lethrinus sp.
38	Tambak sronteng	Blackspot snapper	Lutjanus fulvilama
39	Tamban	Smooth belly sardine	Amblygaster leigaster
40	Tawes	Oxeye herring	Megalops cyprinoides
41	Tawor	Barred garfish	Hemirampus fur
42	Unduk-unduk	Spiny sea horse	Hyppocampus hystrix

Source: [15].
3.2. Problems mapping

There are at least three key elements that will have an impact-related with the issues and problem on society to manage a conservation area such as Jor Bay: societies, economies and communities dependent on environmental services and natural resources always have an ecosystem, human and management/governance components to them. One cannot properly understand a coupled human-nature system without taking an integrated approach that incorporates these multiple considerations. Therein lies the basis for what is, in fact, a long tradition of viewing [20]. The problems found in Jor Bay are complex, but briefly cause four main problems: (a) degradation of Jor Bay resources, (b) declining productivity of waters and ecosystems, (c) low community welfare and (d) ineffective Jor Bay management institutions. By using the DPSIR approach, the main issues, problems and its the connectivity among the problems in Jor Bay were asses and the Defined cause roots issues and problems in Jor Bay as Figure 7.

![Diagram](image)

Figure 7. The Issues, problems and its connectivity.

3.3. Community-Based Zoning System of Jor Bay

The recommended outcome of discussions and consultations between the parties is that conservation activities should: i) focus on the habitat and biodiversity of Jor Bay, explicitly including threatened species; ii) determine the specific location allocated for each community activity; and iii) consider the role of local communities to be involved in managing including monitoring their implementation. The stakeholders also agreed that complete data and maps of the ecosystem and species distribution need to be as detailed as possible. All stakeholders are always informed and must continue to be involved when spatial conservation priorities are developed and implemented. The decision zoning system agreed by the parties in the MPA Jor Bay area is as table 7.
Table 7. Proposed zoning and MPA areas in Jor Bay, result from community consensus.

Zoning	Ecosystem Type	Location
Core zone	Coral	Gili Kuri Island, Aruk, Taket Sebu
	Seagrass	Gili Kerate Island, Madak Limbung Pandan
	Mangrove	Tutuk SV, Poton Bako SV
Rehabilitation zone	Seagrass	Gili Ree island, Madak Bengkok, Gili Kuri, Island Gili
	Coral	Belek Island, Keranji SV
	Mangrove	Permas, Keranji (Less/damage)
Utilize zona/sustainable	Mariculture	Ambit Telong – Elong – Permas, Ambit Gili Ree – Gili
fishing zone	Capture fisheries	Belek Island, Ambit Poton Bako, Ambit Keranji
Utilize zona/tourism zone	Snorkelling/diving	Gili Kuri Island and Gili Butak Island
	Culinary	Gili Mangkem Island
	Mangrove track	Tutuk SV, Keranji, Poton Bako SV
Transportation channel zone	Port/transportation	Uj. Bt. Putek
	Port/Jetty	Permas SV and Jelok Mengkuru
Sea Transportation lane		Telong – Elong SV, Orong Tutuk SV, Gili Mangkem strait, Jor – Kuri Island

Source: Community consensus decision on a spatial plan, 2018.

The area determined for each designation zone within the Jor Bay’s MPA area is divided into four zones as shown in Table 8. The zoning system in the marine protected area (MPA) in Jor Bay is spatially shown in Figure 8.

Table 8. Zoning system on the Jor Bay and area determined based on community consensus.

Zoning system	Area (Ha)	Proportion (%)
Core zone	31.04	3.08
Utilization zone; Tourism	51.06	5.07
Utilize zone: Mariculture zone	48.70	4.83
Sustainable fisheries zone	877.16	87.02
Total area	1,007.96	100

The community in Jor Bay has been agreed in consensus on the allocation of space intended for ecosystem protection while still paying attention to the interests of the people who use bay resources as their source of livelihood. This success story also provides evidence that the Community in Jor Bay has successfully used the participatory mapping method [5], that participatory mapping can assess data and information as well as the consistency, compatibility and potential of zoning conflicts with consideration and preference of the public interest in the process improvement plans that will provide benefits to coastal communities.
4. Conclusions
By participatory local community-based approach combined with a scientific-technological based support, a marine spatial plan (MSP) with a zoning system in a marine protected area (MPA) in Jor bay is more easily formed and accepted by the community to strengthen the enforcement of Awiq-awiq in Jor Bay. MSP in Jor Bay is very important as an instrument to manage the bay so that it can accelerate the effectiveness of MPA zoning implementation optimally so that in addition to preserving the marine ecosystem, it also ensures that the natural metabolic processes of the fisheries management system can continue to work sustainably.

Acknowledgement
The research for this paper was carried out under the Blue Carbon Consortium (BCC) in the Knowledge Management on Low Emission Development for Coastal Areas in NTB and NTT Project. We thank the Center for Coastal and Marine Resources Study (PKSPL IPB University) and the Management of LPATJ Lombok.

References
[1] Klein S C and Chan K M A 2012 Navigating coastal values: Participatory mapping of ecosystem services for spatial planning *Ecological Economics* **82** 104–113
[2] Adrianto L, Al Amin M A, Solihin A and Hartoto D I 2011 *Konstruksi Lokal Pengelolaan Sumberdaya Perikanan di Indonesia* (Bogor: IPB Press) [in Indonesia]
[3] Adrianto L 2018 *Towards a Road Map for Sustainable Development Goals14 - Sustainable
Fisheries. Presented in Workshop on Sustainable Development Goals 14 and RPJMN 2020-2024 [Denpasar 3 December 2018] (Bali: Ministry of National Development Planning)

[4] Foley M M, Halpern B S, Micheli F, Arnsby M H, Caldwell M R and Crain C M 2010 Guiding ecological principles for marine spatial planning Mar Policy 34 955–66

[5] Brown G, Sanders S and Reed P 2018 Using public participatory mapping to inform general land use planning and zoning Landscape and Urban Planning 177 64–74

[6] Ramirez-Gomez S O I, Brown G, Verweij P A and Boot R 2016 Participatory mapping to identify indigenous community use zones: Implications for conservation planning in southern Suriname Journal for Nature Conservation 29 69–78

[7] Brown G, Sanders S and Reed P 2018 Using public participatory mapping to inform general land use planning and zoning Landscape and Urban Planning 177 64–74

[8] Ban N C, Bodiker K M, Nicolson D, Robb C K, Royle K and Short C 2013 Setting the stage for marine spatial planning: Ecological and social data collation and analyses in Canada’s Pacific waters Marine Policy 39 11–20

[9] [KKP] Kementerian Kelautan dan Perikanan/Ministry of Marine Affairs and Fisheries Republic of Indonesia 2004 Guideline for the Preparation of Management and Zoning Plans for Marine, Coastal and Small Islands Protected Areas (Jakarta: Directorate General Coastal and Small Island, KKP)

[10] Song X and Frostell B 2012 The DPSIR Framework and a Pressure-Oriented Water Quality Monitoring Approach to Ecological River Restoration Journal Water 4(3) 670–682

[11] [BCC] Blue Carbon Consortium 2017 Review of Jor Bay Awiq-Awig Documents and Preparation of Follow Up Plans for Sustainable Coastal Development [Activity Report] Project Millennium Challenge Account – Indonesia Green Knowledge Project (Bogor: BCC)

[12] Bali I R, Possingham H P, Watts M 2009 Marxan and Relatives: Software for Spatial Conservation Prioritisation In: Moilanen A, Wilson K A and Possingham H P (editors) Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (Oxford: Oxford University Press) p. 185–95

[13] Watts M E, Ball I R, Stewart R S, Klein C J, Wilson K, Steinback C, Lourival R, Kircher L, Possingham H P 2009 Marxan with zones: software for optimal conservation based land- and sea-use zoning Environmental Modelling & Software 24 1513–1521

[14] [LPATJ] Lembaga Pemangku Awig-awig Teluk Jor 2018 Profil Perikanan dan Awig-awig di Teluk Jor (Lombok Timur: LPATJ)

[15] Adrianto L, Damar A, Kamal M M and Rustandi Y 2016 Optimum spatial allocation and determination of tactical management for fisheries management using an ecosystem approach in Jor Bay, East Lombok Regency, West Nusa Tenggara Province [Final Report] (Bogor: Institut Pertanian Bogor)

[16] [LPSDN] Lembaga Pengembangan Sumberdaya Nelayan Lombok Timur 2018 Kondisi Sumberdaya Alam dan Sosial Ekonomi Teluk Jor [Laporan Hasil Pengumpulan Data Tahunan Kawasan Teluk Jor Lombok Timur] (Lombok Timur: LPSDN)

[17] Nurokhmah I 2019 Elastisitas Jasa Ekosistem Mangrove Di Teluk Jor, KabupatenLombok Timur Nusa Tenggara Barat [Thesis] (Bogor: IPB University)

[18] Idrus A A, Syukur A and Zulkifli L 2017 Konservasi Mangrove Berbasis Institusi Masyarakat Lokal untuk Mendukung Pengembangan Ekowisata dan Sumber Belajar Biologi Di Pantai Selatan Lombok Timur [Laporan Akhir] (Mataram: Universitas Mataram)

[19] Fau F W 2017 Komposisi, kelimpahan, dan distribusi meroplankton di Teluk Jor, Lombok Timur, Nusa Tenggara Barat [BSc Thesis] (Bogor: IPB University)

[20] Berkes F, Arce-Ibarra M, Armitage D, Charles A, Loucks L, Makino M, Satria A, Seixas C, Abraham J and Berdej S 2016 Analysis of Social-Ecological Systems for Community Conservation (Community Conservation Research Network, Halifax Canada) Available online at: http://www.communityconservation.net/resources/social-ecological-systems