Introduction

Intestinal parasite infection can reduce animal growth and cause severe economic losses to livestock industry, particularly in tropical and subtropical areas (1). In addition to several environmental and epidemiological factors that influence the susceptibility to the parasitic infection, outdoor rearing of sheep and goats provides a suitable environment for direct or indirect transmission of infection (2).
Gastrointestinal parasite infections, particularly with roundworms, cause different clinical signs and symptoms of illness including body weight loss, ascites, diarrhea, and low production. Biochemically, roundworm infection in sheep and goats decreases copper absorption resulting in decline of copper concentration in serum (3).

Copper plays an important role in regulating the mechanisms of different enzymes, particularly metabolic enzymes (4). Copper deficiency may cause dysfunction in reproductive, digestive, nervous, immune performance, and cardiovascular systems (5,6). Therefore, copper deficiency results in several clinical signs including anemia, diarrhea, poor wool production, and trembling (7). Trembling is considered one of the most clinical signs that appear due to copper deficiency. It can be primary; due to lack low concentration of copper in the animal food, or secondary; due to the reduction of copper absorption (8).

Gastrointestinal parasitic infection is widespread in sheep and goats in Mosul city, Iraq. The aim of the present study was to estimate serum copper concentration and blood parameters in sheep and goats infected with gastrointestinal worms in Mosul city, Iraq.

Materials and method

Ethical approval

This study was subjected to ethical examination at the College of Veterinary Medicine, University of Mosul and was approved.

Animals of study

A total of 60 sheep and 30 goats (> 1-year-old) brought to the Veterinary Teaching Hospital, the University of Mosul from different areas in Mosul city were used in this study. The animals were divided into two groups: (group-1) infected with gastrointestinal parasites; including 40 sheep and 20 goats, and (group-2) free from gastrointestinal parasites and clinically normal animals; including 10 sheep and 10 goats. All animals were clinically examined for changes in appetite, body condition, mucous membranes color, wool (or hair) health, trembling, and fecal consistency.

Study samples

Fecal and blood samples were collected from each animal. Fecal samples were collected from the rectum directly, placed in small plastic containers, and transferred to the laboratory within 24 hours for the examination. Blood samples (7 ml/animal) were collected from the jugular vein; 2 ml kept in EDTA tubes, and 5 ml used for serum collection. Serum samples were stored at -20 °C.

Laboratory examination

Fecal samples were examined using both direct and flotation methods to detect presence of gastrointestinal parasites eggs, while EDTA blood samples were used to determine blood parameters values, including Red Blood Cells Count (RBC), hemoglobin (Hb), Packed Cell Volume (PCV), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Volume (MCV) and Mean Corpuscular Hemoglobin Concentration (MCHC). Whereas serum samples were used to estimate copper concentration using a commercial kit (BIOLABO, France) and spectrophotometer.

Statistical analysis

The differences in copper concentrations and blood parameters between infected and non-infected animals were tested using t-test at a concentration of (p ≤ 0.05). Statistical analysis was performed using SPSS version 12.

Results and Discussion

In the present study, sheep and goats were infected with different gastrointestinal parasites (Table 1). The predominant of infection type in both sheep and goats were single infection; i.e., infection with one type of parasite (Table 2). Infected sheep and goats suffered from different clinical signs including emaciation, poor wool (or
hair), trembling, pale mucous membrane, loss of appetite, and diarrhea (Table 3). In addition, copper concentrations, RBC, Hb, PCV, MCH, MCV, and MCHC were significantly lower (p ≤ 0.05) in infected sheep and goats, compared to non-infected animals (Table 4).

Table 1. Gastrointestinal worms diagnosed through detection of parasites eggs in the fecal samples which collected from sheep and goats in Mosul city, Iraq

Gastrointestinal worm	Sheep (n = 40)	Goats (n = 20)
Chabertia ovina	2	3
Cooperia spp.	-	1
Haemonchus contortus	1.2	8
Marshallagia marshalli	8	2
Nematodirus spp.	8	-
Oesophagostomum spp.	-	2
Ostertagia ostertagi	4	1
Strongylus spp.	2	-
Trichostrongylus spp.	4	2

Table 2. Types of gastrointestinal parasite infection (single and mixed) in studied sheep and goats

Types of infection	Sheep (n = 40)	Goats (n = 20)		
Number	%	Number	%	
Single infection	24	60	16	80
Mixed infection	16	40	4	20
Total	40	100	20	100

Table 3. Clinical signs observed in sheep and goats infected with gastrointestinal parasites

Types of infection	Sheep (n = 40)	Goats (n = 20)		
Number	%	Number	%	
Emaciation	2	5	2	10
Poor wool (or hair)	16	40	9	45
Trembling	6	15	2	10
Pale mucous membrane	14	35	9	45
Loss of appetite	8	20	6	30
Diarrhea	6	15	3	15

Table 4. Serum copper concentration and hematological values in sheep and goats infected with gastrointestinal parasites compared to non-infected animals

Type of infection	Sheep (n = 40)	Goats (n = 20)	
Number		Number	
Cu (μg/dL)	59.08±7.47	100.5±12.7	
Hb (g/dL)	6.31±0.17	10.88±0.42	
PCV (%)	24.01±0.82	34.58±0.84	
RBC (10^6/μl)	5.61±0.20	11.52±0.48	
MCH (pg)	9.60±0.55	11.62±0.60	
MCV (FL)	30.49±1.53	43.99±2.21	
MCHC (g/dL)	26.89±1.18	31.69±1.60	

Different superscript letters in the same row indicate significant differences (p ≤ 0.05).

Discussion

Infected sheep and goats exhibited several clinical signs including emaciation, poor wool or hair, trembling, pale mucous membrane, loss of appetite, and diarrhea. These signs are attributed to different digestive disturbances that occur due to parasitic infection. For instance, *Haemonchus contortus* has oral suckers that can cause damage to the abomasal mucous membrane leading to anemia, hypoproteinemia, and vitamin deficiency. Furthermore, *Ostertagia ostertagi* can damage the glandular cells of the abomasum causing fatal diarrhea (8). On the other hand, other parasites (e.g., *Trichostrongylus* spp. and *Nematodirus* spp.) can cause damage to the intestinal mucosa leading to severe inflammation resulting in diarrhea, loss of appetite, and emaciation (9,2,10).

Infected animals showed low concentrations of copper in the serum, compared to non-infected animals. In the present study, copper deficiency can be considered secondary due to malabsorption in infected animals. Decreased copper concentrations in infected animals might exacerbate the clinical signs indicated in the infected animals, particularly...
poor wool or hair, and trembling. Copper is a cofactor for tyrosinase that stimulates synthesis of tyrosine to melamine; an important pigment for wool and hair color (11). In addition, trembling is potentially attributed to decrease in copper concentrations in infected animals. In other studies, sheep and goats exhibited trembling due to lack of copper in their feed (12). Copper deficiency can result in musculoskeletal system imbalance and partial paralysis (3).

In the current study, infected animals suffered from low hematological parameters including RBC, Hb, PCV, MCV, MCH, and MCHC, compared to non-infected animals. Although parasitic infection results in anemia due to decrease in blood parameters, low copper concentrations can also contribute to the anemia. The decrease in RBC, Hb, and PCV were indicated in animals with copper deficiency (13). Copper is important to RBC formation; as copper is found in transferase enzyme that transfers iron from the intestine and liver to bone marrow for Hb formation (11).

Conclusion

It is concluded that the infection with gastrointestinal worms in sheep and goats can cause decrease in serum copper concentrations, which exacerbate clinical signs and decrease hematological parameter values in infected animals.

Acknowledgments

This study was supported by the College of Veterinary Medicine, University of Mosul, Mosul, Iraq.

Authors’ contributions

All authors contributed equally to this paper.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Krecek RC, Waller PJ. Towards the implementation of the “basket of options” approach to helminth parasite control of livestock: emphasis on the tropics/subtropics. Vet Parasitol. 2006;139(4):270–82.

2. Williams AR, Palmer DG. Interactions between gastrointestinal nematode parasites and diarrhoea in sheep: Pathogenesis and control. Vet J. 2012;192(3):279–85.

3. Mohammed A, Campbell M, Youssef FG. Parasitic Infection in Association with Serum Copper, Phosphorus, and Heamatological values in sheep and goats of Central Trinidad. West Indian Vet J. 2013;10(1/2).

4. Muñoz M, García-Erce JA, Remacha ÁF. Disorders of iron metabolism. Part II: iron deficiency and iron overload. J Clin Pathol. 2011;64(4):287–96.

5. Mohammed IA. Study of some minerals deficiency in grazing sheep in Thi-Qar province. Al-Qadisiyah J Vet Med Sci. 2013;12(1):106–12.

6. Jimenez K, Kulnigg-Dabsch S, Gasche C. Management of iron deficiency anemia. Gastroenterol Hepatol (N Y). 2015;11(4):241.

7. Mohammed AJ, Khash QH. Comparative study of serum copper concentration in natural copper deficient and healthy Awassi sheep in Al-Najaf cityIraq. Kufa J Vet Med Sci. 2015;6(2):8–16.

8. Rahbar A, Saber APR, Hasanpour A, others. Evaluation the serum values of copper in sheep flocks of Kalayebar-Iran. Ann Biol Res. 2013;4(7):115–9.
9. Mohammed A, Campbell M, Youssef FG. Serum copper and haematological values of sheep of different physiological stages in the dry and wet seasons of central trinidad. Vet Med Int. 2014;2014.

10. Jegede OC, Adejoh AA, Obeta SS, Olayemi OD. Gastrointestinal Parasites of Sheep and Goats in Gwagwalada Area Council, Federal Capital Territory, Abuja, Nigeria; with a special reference to sex, breed and age. Alexandria J Vet Sci. 2015;46(1):170–6.

11. El-khaiat HM, Abd El-Raof YM, Ghanem MM. Clinical, haemato-biochemical changes in goats with experimentally-induced copper deficiency with trials of treatment. Benha Vet Med J. 2012;23:137–47.

12. Saleh WMM. Clinical and hematological profiles due to cases of minerals deficiency in local ewes at Basra, Iraq. Adv Anim Vet Sci. 2019;7(4):315–20.

13. Soli F, Terrill TH, Shaik SA, Getz WR, Miller JE, Vanguru M, et al. Efficacy of copper oxide wire particles against gastrointestinal nematodes in sheep and goats. Vet Parasitol. 2010;168(1–2):93–6.