Confident Classification using a Hybrid between Deterministic and Probabilistic Convolutional Neural Networks

MUHAMMAD NASEER BAJWA¹,²,* , SULEMAN KHURRAM¹,²,* , MOHSIN MUNIR¹,²,* , SHOAIB AHMED SIDDQUI¹,², MUHAMMAD IMRAN MALIK³,⁴, ANDREAS DENGEL¹,², AND SHERAZ AHMED.²
¹Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
²German Research Center for Artificial Intelligence GmbH (DFKI), 67663 Kaiserslautern, Germany
³School of Electrical Engineering and Computer Science, National University of Science and Technology (NUST), 46000 Islamabad, Pakistan
⁴Deep Learning Laboratory, National Center of Artificial Intelligence, 46000 Islamabad, Pakistan
*Authors contributed equally

ABSTRACT Traditional neural networks trained using point-based maximum likelihood estimation are deterministic models and have exhibited near-human performance in many image classification tasks. However, their insistence on representing network parameters with point-estimates renders them incapable of capturing all possible combinations of the weights; consequently, resulting in a biased predictor towards their initialisation. Most importantly, these deterministic networks are inherently unable to provide any uncertainty estimate for their prediction which is highly sought after in many critical application areas. On the other hand, Bayesian neural networks place a probability distribution on network weights and give a built-in regularisation effect making these models able to learn well from small datasets without overfitting. These networks provide a way of generating posterior distribution which can be used for model’s uncertainty estimation. However, Bayesian estimation is computationally very expensive since it greatly widens the parameter space. This paper proposes a hybrid convolutional neural network which combines high accuracy of deterministic models with posterior distribution approximation of Bayesian neural networks. This hybrid architecture is validated on 13 publicly available benchmark classification datasets from a wide range of domains and different modalities like natural scene images, medical images, and time-series. Our results show that the proposed hybrid approach performs better than both deterministic and Bayesian methods in terms of classification accuracy and also provides an estimate of uncertainty for every prediction. We further employ this uncertainty to filter out unconfident predictions and achieve significant additional gain in accuracy for the remaining predictions.

INDEX TERMS Bayesian Estimation, Convolutional Neural Networks, Hybrid Neural Networks, Image Classification, Time-series Classification, Uncertainty Estimation

I. INTRODUCTION

OVER the last decade, Convolutional Neural Networks (CNNs) have made phenomenal strides in various classification tasks using a wide array of input modalities. These powerful algorithms have achieved impressive performance, often at par with human experts, in many challenging natural scene image recognition tasks [1]-[3] and even in sensitive and critical application areas like medical image analysis for disease prediction [4]-[8]. These CNNs gained significant attention due to their parameter efficiency, in contrast to other deep learning models like densely connected Multi-Layer Perceptrons (MLPs), resulting in comparatively better generalisation performance. They are particularly powerful in analysing visual modalities like images and videos [9] but have also proved their worth in time-series analysis where they have been used for classification [10] and anomaly detection [11].

The fundamental principle behind conventional CNNs is
to learn the optimal combination of network parameters
(weights and biases) that can capture encoded representation
of input training data. These conventional CNNs use point-
estimates to represent network parameters and although they
work astonishingly well in most image recognition tasks,
they have large insatiable appetite for data [12]. Additionally,
the softmax function tips the odds in favour of one class by
squashing classification probabilities for others. Therefore,
it results in overly confident predictions often times even
when the network is completely wrong. This compulsive
behaviour of traditional point-based neural networks to
always be relentlessly assertive in their prediction raises
serious concerns in many crucial application areas like
medical image analysis, security, autonomous driving, finan-
cial transactions and IoT (Internet of Things) based human
health monitoring. Also, the very nature of these point-based
classifiers prohibits them to associate uncertainty with their
predictions, which is a highly desired characteristic of any
AI-based classifier.

Bayesian estimation introduces a probabilistic perspective
to the neural networks and addresses many shortcomings
of traditional point-based neural networks. It represents each
parameter with a probability distribution instead of a single
point-estimate. As a result, Bayesian neural networks are able
to learn effectively from relatively small amount of data and
thus are fairly robust to overfitting [13]. They can provide
an inherent regularisation effect [14] by constraining the
network parameters within a distribution instead of letting
them increase out of bound. Most importantly, Bayesian
inference can allow to estimate network’s uncertainty about
any prediction. However, a full Bayesian estimation over all
network parameters is computationally expensive and finding
true posterior probability is intractable. These limitations
are normally addressed by employing various tricks like
Markov Chain Monte Carlo (MCMC) sampling [15] and
Variational Inference (VI) [16], or a combination of the
two [17], to approximate the true posterior with a manageable
distribution. A CNN trained using Bayesian estimates for
network parameters is shown to lag its counterpart, trained
using point-estimates, in terms of classification accuracy [13],
[18].

In this paper, we recognise specific merits of each approach
discussed above and combine them into a hybrid training
paradigm. This hybrid approach integrates deterministic
CNNs, where each parameter assumes only one value, with
probability driven Bayesian CNNs, where each parameter
may take any value drawn from a probability distribution
characterised by a mean and a standard deviation. This proba-
bility distribution is learnt for each parameter during training.
The proposed hybrid training method provides an estimate of
uncertainty, using Bayesian classifier, without compromising
on classification accuracy owing to deterministic feature
extractor. It also captures maximum weight configurations
from small datasets while still remaining computationally
manageable. The proposed approach is tested on 13 different
classification datasets including benchmark image datasets,
fine-grained medical image datasets and time-series datasets.
The proposed hybrid method is proved to be superior to both
fully deterministic and fully Bayesian CNN approaches in
terms of classification accuracy.

A. RELATED WORK

Conventional CNNs have demonstrated their worth in various
image recognition tasks since long [19] and have resurged
into popularity in 2012 with Alexnet [20]. They have
lately evolved into awfully complicated networks spanning
thousands of layers [21].

Although applications of Bayesian method into neural
networks have also been investigated for many decades [22],
it was only after Blundell et al. [23] proposed Bayes
by Backprop that training of deep neural networks was
made possible using Bayesian estimation. This method of
Variational Inference allowed backpropagation of so called
Expected Lower BOnNd (ELBO) loss and regularising weight
distributions. A CNN trained using Bayesian method was
recently proposed by Shridhar et al. [18] as a fundamental
construct for other network architectures. They used Bayes
by Backprop for training convolutional network and reported
comparable results on many benchmark datasets.

Acknowledging the excessive computational cost of
Bayesian models, Gal and Ghahramani [24] proposed a
Monte Carlo dropout method to approximate Bayesian infer-
ence in deep Gaussian processes. The method is equivalent
to performing multiple forward passes through the network
and taking the average of results to model the uncertainty
of the network. Kwon et al. [25] recognised the importance
of uncertainty quantification especially in medical domain
and proposed to calculate it by splitting the uncertainty into
aleatoric, which corresponds to model’s uncertainty; and
epistemic uncertainty, which represents inherent noise in
the data. Kendall and Gal [26] studied the advantages of
modelling epistemic uncertainty as compared to aleatoric
uncertainty in deep Bayesian models.

Combining deterministic and probabilistic models in
various fashions has also been studied for long. Tang
and Salakhutdinov [27] pointed out that the conditional
distribution $p(Y|X)$ does not need to be unimodal, as
normally assumed by MLPs, but can also be represented
as a multimodel output distribution for many structured
prediction problems. They proposed a hybrid Sigmoid Belief
Network (SBN) with some stochastic hidden variables and
some deterministic hidden variables and achieved superior
performance on synthnetic and facial expression datasets.
Similarly, other neural networks with partially Bayesian
parameters have been proposed for regression tasks as
alternative to Gaussian Processes [14], [28], which do not
scale well with the number of training samples.

The problem of estimating uncertainty has been addressed
in variety of ways, for example out-of-distribution (OOD)
samples detection [29], [30] and density estimation using
flow based models. Normalising flows and autoregressive
models have been successfully combined to produce state-
of-the-art results in density estimation, via Masked Autoregressive Flows (MAF) [31], and to accelerate state-of-the-art WaveNet-based speech synthesis to 20x faster than real-time [32], via Inverse Autoregressive Flows (IAF) [33]. Huang et al. [34] presented Neural Autoregressive Flows (NAFs) and demonstrated that these models are universal approximators for continuous probability distributions, and their greater expressivity allows them to better capture multimodal target distributions. Adding on to their work, Cao et al. [35] proposed Block Neural Autoregressive Flow which is much more compact and universal approximator of density functions, where a bijection is directly modelled using a single feedforward network. Dinh et al. [36] introduced a set of transformations called real-valued Non-Volume Preserving (real NVP) as a tractable and expressive way to modelling high-dimensional data. Ardizzone et al. [37] extended real NVP architecture and argued that their proposed Invertible Neural Networks (INNs) are well suited for determining full posterior parameter distribution conditioned on training data. They noted that alternating backward and forward training passes and accumulating gradients from both sides before updating parameters allows efficient training. Kingma et al. [38] furthered flow-based generative models [39] which are useful for calculating exact log-likelihood, performing exact latent-variable inference, and parallelising training and synthesis pipelines. Their Generative flow (Glow) model uses an invertible \(1 \times 1 \) convolution and is shown to be capable of efficient and accurate synthesis of large images.

II. PROPOSED HYBRID NEURAL NETWORK

A CNN primarily consists of two main modules: a feature extractor and a classifier. The proposed network consists of a set of convolutional layers trained with point estimates followed by fully-connected layers trained using Bayesian estimate. It provides a trade-off between high accuracy of deterministic models and uncertainty estimation of Bayesian models. It also restricts the parameter space of the network as compared to fully Bayesian models because only the classifier part of the network treats its parameters as random variables. Fig. 1 shows schematic diagram of the hybrid model proposed in this work. The network initially trains to optimise parameters for both convolutional feature extractor and dense classifier as given below.

\[
W_C^*, W_D^* = \arg \min_{W_C, W_D} \frac{1}{|X|} \sum_{(x,y) \in X \times Y} \mathcal{L}(\psi(\Phi(x; W_C; W_D), y),
\]

where \(\mathcal{L} \) denotes the loss function, \(\Phi \) represents the convolutional part of the network parameterised by \(W_C \) and \(\psi \) represents the dense layers (forming the classifier) parameterised by \(W_D \).

Once the network is trained using point-estimates, we reinitialise fully connected layers with random variables following normal distribution and retrain them using Bayesian estimation. The parameters of convolutional feature extractor are frozen throughout this retraining. This whole training paradigm allows us to capitalise on economically learned features by deterministic convolutional block and use expensive Bayesian inference only to approximate posterior distribution, which might then be used for uncertainty estimation. Mathematically, the learning of FC classifier of hybrid model is given by:

\[
\theta_D^* = \arg \min_{\theta_D} \frac{1}{|X|} \sum_{(x,y) \in X \times Y} \mathcal{L}(\psi(\Phi(x; W_C^*; \theta_D), y),
\]

where \(\Psi \) represents the Bayesian layers learned through Bayes by Backprop and \(\theta_D \) denotes the distribution of weights. Since the weights are described by a distribution instead of point-wise estimates, \(\mathcal{L} \) in this case denotes the ELBO loss. Convolutional feature extractor trained with point-estimates learns crisp features of the input data while probabilistic classifier allows to sample from posterior distribution and offers an insight into network’s confidence.

After this retraining is finished, we perform inference by passing test samples a number of times from our network. Since the parameters of the last fully-connected layers of the network are sampled from a probability distribution, each

![FIGURE 1: Proposed Hybrid Model. Convolutional Layers are trained separately using point estimates. The parameters of the convolutional layers are then frozen and Bayesian classifier is trained.](image)
Algorithm 1 Uncertainty Estimation

Inputs modelOutput: Array containing softmax probabilities of all images for all models
allPredictions: Array containing class predictions for all images and for all models
allTargets: Array containing actual targets for all images and for all models
percentile: A scalar parameter to ascertain uncertain images to ignore
consensus: A scalar parameter representing minimum number of confident models to reach certain prediction

Outputs certainAccuracy: Accuracy when model is certain
uncertainImages: A percentage of uncertain images filtered out

1: procedure ESTIMATEUNCERTAINTY
2: for each model i in allModels do
3: for each image j in allImages do
4: differences = differences of top two classes’ probabilities in modelOutput[i][j]
5: end for
6: end for
7: threshold = calculate for each model by filtering percentile number of images from differences of each model and average them.
8: for each image j in allImages do
9: confPred = 0, uncertain = 0, confModels = 0 be new variables
10: for each model i in allModels do
11: if differences[i][j] > threshold then
12: allTargets[i][j] = confModels
13: increment confModels
14: end if
15: end for
16: if confModels >= consensus then
17: increment confPred
19: else
20: increment uncertain
21: end if
22: end for
23: return confPred/(len(allImages) − uncertain), uncertain/len(allImages)
24: end procedure

pass of the same test sample gives a different prediction. These output predictions are used to draw a posterior distribution and estimate network’s uncertainty. Complete algorithms used for this task is given in Algorithm 1.

For uncertainty analysis in Bayesian and hybrid architectures during inference, the algorithm works by sampling 10 classifier models from Bayesian weights distribution for every test sample and taking their output predictions. This way, instead of a single prediction, we get a set of predictions representing a probability distribution on network’s output. This set of predictions are normalised in \([0 \rightarrow 1]\) range using min-max normalisation for direct comparison. Predictions for top two classes are taken and difference in their values is recorded. After having the normalised differences, we build a distribution of all these differences and use a percentile value (40% in this case) to automatically select a threshold for the measure of uncertainty. The percentile value of 40% is determined heuristically. This parameter can be considered as a knob to control how confident predictions are desired in any given application area. In circumstances where no prediction is deemed better than a wrong prediction (medical diagnosis, for example), this value can be raised to ensure that only the most confident predictions are given by the network. For other, relatively less critical, scenarios this knob can be adjusted accordingly. The underlying assumption for our uncertainty estimation is that if the output for two classes is fairly distinctive then the difference in top two classes should be greater than the threshold and the model is regarded as certain about prediction otherwise it is considered uncertain. If a test sample is regarded as certain by more than half models (represented by consensus parameter), using simple majority voting, then it is output as a fairly certain prediction.

A. TIME AND SPACE COMPLEXITY ANALYSIS

The proposed hybrid model uses fewer parameters than its Bayesian counterpart as is evident from Table 1. The table shows the number of trainable parameters in each method and training time per epoch for some of the datasets. The hybrid model does not incur any additional cost for combining the benefits of both deterministic and Bayesian methods.

The time complexity of the Algorithm 1 is \(O(2M \times I)\), where \(M\) represents number of Models sampled and \(I\) denotes the number of test samples. Also, the algorithm computes in constant space since, regardless of number of total models and test samples, only one model and one test sample are loaded at any given time.

TABLE 1: Time and space requirement of deterministic, Bayesian and hybrid models for some datasets

Dataset	Network Parameters (Millions)	Execution Time per epoch (s)				
	Deterministic	Bayesian \([D]\)	Hybrid \([Ours]\)	Deterministic	Bayesian \([D]\)	Hybrid \([Ours]\)
MNIST	2.457	4.914	2.459	15	70	27
CIFAR-10	5.851	11.703	9.528	338	832	602
ISIC-Subset	3.486	116.579	3.486	16	16	6
ORIGIA	3.801	116.579	9.528	16	16	3
Electric Devices	3.001	33.423	3.486	2	10	3
Mallat	2.726	24.589	2.569	2	10	5

III. EXPERIMENTATION

We used 13 datasets of disparate modalities and from diverse areas of application to ascertain the viability of our proposed hybrid CNN architecture. A brief description of all the datasets used and overall experimental setup is given below.
A. DATASETS

Table 2 gives an overview of all the datasets used in this work. We picked standard benchmark image datasets, as well as challenging fine-grained medical image classification datasets and many time-series datasets so that the validity of our approach on a broad range of datasets may be extensively investigated.

TABLE 2: Distribution of datasets used to evaluate proposed architecture

Datasets	Modality	No. of Classes	No. of Samples
Image Datasets			
MNIST	Grey Images	10	70k
CIFAR-10	Color Images	10	50k
			80k
			60k
Medical Image Datasets	Color Retinal Fundus Images	2	520
ISIC-Subset	Color Clinical Skin Images	3	5201
			600
			5801
Time Series Datasets	Image-derived data	7	175
Fish	Image-derived data	7	175
ShapesAll	Image-derived data	60	600
Plane	Sensor data	7	105
TwoPattern	Simulation data	4	1000
ECG5000	ECG data	5	500
MedicalImages	Image-derived data	10	381
ElectricalDevices	Device data	7	8926
Mullar	Simulation data	8	55
ECG Thorax1	ECG data	42	1800

1) Image Datasets

We used two of the most common benchmark datasets i.e. MNIST [19] and CIFAR-10 [40] and two publicly available medical image datasets i.e. ORIGA [41] and a subset of ISIC Archive to evaluate the performance of our proposed approach. For MNIST and CIFAR-10, standard pre-defined train and test splits are used. ORIGA dataset provides clinical ground truth to benchmark segmentation of optic disc and classification of healthy and glaucomatous images. Since this dataset is very small and no predefined train and test splits are given, we used 5-fold Cross Validation (CV) for such dataset such that in each iteration of CV there are 130 images in validation fold and 520 images in training fold. The second dataset of medical images was taken from ISIC Archive 2018 version. It consists of around 24000 clinical and dermoscopic images of skin lesions categorised into 7 classes. Some of the classes in this dataset have as fewer as 122 images per class, therefore, we took a subset of the whole data with three largest classes namely Benign Keratosis-like Lesions (BKL), Melanoma (MEL), and melanocytic Nevi (NV) and randomly divided them into training and test sets.

2) Time-series Datasets

We selected 9 datasets from UCR archive [42]. The time-series datasets were generated based on different sources including device usage, sensors data, ECG, motion sensor, or simulation etc. Each time-series contains different number of classes; and the number of observations also vary in each dataset. All datasets are already divided into train and test sets by the publisher.

B. PREPROCESSING

To preprocess benchmark image datasets (MNIST and CIFAR-10), we used random crop and normalisation by mean subtraction. On medical image datasets (ORIGA and ISIC Subset), histogram equalisation is applied to enhance contrast and normalize brightness. We also made use of different data augmentation techniques like rotations, flipping, and random crops to increase the dataset size. Note that in addition to preprocessed images, original images are also kept in the dataset. Data augmentation was done keeping in mind the class ratio, such that the minor class can have more augmentations and more copies generated. Time-series datasets are used without any preprocessing.

C. EXPERIMENTAL SETUP AND HYPERPARAMETER SELECTION

All of our image datasets were trained and compared with similar experimental setup. We used a 5-layer convolutional block as baseline CNN, however, our experiments with varying depths and breadths of CNN shows that the approach is fairly scalable to more advance CNN architectures. We trained this CNN using Maximum Likelihood Estimation (MLE) for 60 epochs with a learning rate of 0.001, weight decay of 5×10^{-4}, and batch size of 32. For probabilistic models, we used the same setup as described above but instead of using point estimates we trained convolutional and fully connected layers with distribution-based weights using Bayes by Backprop for 60 epochs. In our proposed hybrid approach, we employed a fully-connected classifier with frozen convolutional feature extractor, pre-trained using MLE, and fine-tuned it using Bayesian estimation for 60 epochs with similar parameters. Two hyperparameters used in Algorithm 1, i.e. percentile and consensus can be selected as per use case requirements. In critical application areas, for example medical image diagnosis or stock market prediction, where there is little room for incorrect classification, higher values of these parameters can be selected to ensure only the most certain predictions are given by the network. In other applications, a relaxed criterion for uncertainty estimation might be acceptable. In our experiments, we used percentile = 40% and consensus of more than half models (i.e. 6 models). These values were selected empirically and they worked well in all 13 datasets of different kind. It should be emphasised here that, for a given dataset, we used the same underlying architecture (number, width, and depth of convolutional layers and size of dense layers) in all three training paradigms, i.e. fully deterministic, fully Bayesian and Hybrid, to ensure fair comparison among three approaches.

For time-series modality, we used CNN with two convolutional layers, each followed by a max pooling layer for deterministic model analysis. On top of that, two fully connected layers were added as classifier. For probabilistic and hybrid approach, we used the same setting as explained before.
IV. RESULTS AND ANALYSIS

Table 3 summarises classification accuracies obtained by traditional fully deterministic CNN, Bayesian CNN [18] and our proposed hybrid approach. The table shows that the proposed hybrid approach outperforms not only purely Bayesian CNNs but also their deterministic counterparts in 9 out of 13 datasets while giving comparable results on rest of them. Even when the hybrid approach lagged other methods in classification accuracies, the difference was very small and came at no additional cost in terms of time or number of parameters as shown in Table 1. The results in Bayesian Accuracy field in Table 3 are generated by our own experiments using the implementation of Shridhar et al. [18] for Bayesian CNNs.

Datasets	Deterministic Accuracy (%)	Bayesian Accuracy [18] (%)	Hybrid [Proposed] Accuracy (%)
MNIST	99.0	99.01	99.3
CIFAR-10	88	92.0	98.7
Medical Image Datasets			
ORIGA	76	74.4	80.3
ISIC-Subset	74	65.5	75.7
Time Series Datasets			
Fish	85.1	80.7	84.7
ShapesAll	67.0	70.9	72.3
Plane	97.0	96.7	95.1
TwoPattern	89.0	81.0	89.4
ECG50000	92.0	93.2	91.9
MedicalImages	69.0	62.4	64.7
ElectricalDevices	55.0	54.0	56.6
Mallat	88.0	82.5	89.3
ECG Thorax1	90.0	89.1	91.3

Fig. 2 shows output probabilities of deterministic, Bayesian and hybrid models for various correctly classified and misclassified images from CIFAR-10 and ORIGA. It can be observed in Fig. 2 that when hybrid model was unable to make a correct prediction (subfigures (b), (d), (e), and (h)), it associated relatively smaller probability scores with its misclassification than its competing models who also misclassified but did so with overconfidence. Additionally, in cases where both deterministic and Bayesian models failed to correctly classify an image and hybrid network succeeded (subfigures (c), (f), and (g)), it predicted very cautiously with reasonable probability scores. The probability scores of hybrid model were at par with other two methods for relatively easy examples as shown in subfigure (a).

A. UNCERTAINTY ESTIMATION

Since deterministic model does not have intrinsic ability to estimate uncertainty (although some works like [24], [43] have used deterministic models and applied some post-processing to get confidence estimates), in this section we focus on Bayesian and Hybrid models only and compare their performance. Since the classifier part of both Bayesian and Hybrid methods are trained using Bayesian estimates, both networks provide posterior distribution which is used to estimate uncertainty using Algorithm-I. Table 4 compares the accuracies of both training methods before and after using Algorithm I. In this table, Overall Accuracy refers the accuracy of the model before applying Algorithm I whereas Certain Accuracy refers to the accuracy on the predictions for which the network was certain according to Algorithm I. When the algorithm is not sure about the prediction it tags the test sample as uncertain. We can observe that accuracies for both fully Bayesian and hybrid approaches improved after uncertainty estimation algorithm was applied.

FIGURE 2: An analysis of confidence comparison for all three approaches on various samples of CIFAR10 and ORIGA datasets. The actual class is mentioned on left side of each image in bold vertical text.
TABLE 4: Comparison of Bayesian and proposed hybrid models on different datasets with uncertainty estimation

Datasets	Bayesian Model [18]	Hybrid Model				
	Overall Accuracy (%)	Certain Accuracy (%)	Uncertain Samples (%)	Overall Accuracy (%)	Certain Accuracy (%)	Uncertain Samples (%)
Image Datasets						
MNIST	99.01	99.17	20.5	99.26	99.28	9.6
CIFAR-10	65.41	92.7	66.9	88.70	91.11	46.2
Medical Image Datasets						
ORIGA	74.42	77.10	35.65	80.31	77.21	36.7
ISIC-Subset	58.15	65.48	34.3	75.67	81.5	53.8
Time Series Datasets						
Fish	80.7	82.4	8.1	84.5	100.0	6.8
ShapesAll	70.9	71.8	1.0	72.3	72.9	1.3
Plate	96.7	98.9	8.95	95.1	97.1	3.0
TwoPattern	81.0	84.4	25.0	89.4	91.3	24.9
ECG5000	93.2	93.8	36.2	91.9	93.9	36.8
MedicalImages	62.4	62.9	0.13	64.7	66.5	0.13
ElectricalDevices	54.0	55.8	14.6	56.6	57.9	14.8
Mallat	82.5	84.2	35.6	89.3	92.1	37.7
ECG Thorax1	89.1	90.9	14.9	91.3	91.6	14.8

The accuracy of our hybrid approach is higher than fully Bayesian model especially when it was fairly certain about the predictions. Fig. 3 shows some examples of images that were considered certain or uncertain by both Bayesian model (top row) and hybrid model (bottom row). It is very interesting to observe that the algorithm enabled both models to confidently categorised those images that had clearly defined optic disc border (black dotted elliptical boundary drawn on images to highlight disc boundary). In both training approaches the images where the boundary of the disc was dwindled, for examples because of papilledema (Fig. 3d and Fig. 3h) or optic atrophy (Fig. 3b and Fig. 3f), were filtered out and the model did not predict on these images because of high uncertainty.

Fig. 4 depicts the trade-off between number of uncertain samples and classification accuracy for both Bayesian and Hybrid models. We can see from this figure that the accuracy of the networks increases with the increase in percentage of uncertain samples. It can be argued from these curves that since, difficult samples have been passed over by the classifier and prediction is given for easy samples only, that is why we see a positive trend in accuracy with growing number of uncertain samples. However, in many crucial application areas, it is better to abstain from giving any half-cooked prediction than making a potentially costly mistake. In medical image analysis, for instance, such non-compulsive classifiers can reduce the workload of human experts by screening relatively easy disease patterns and allowing the physicians to focus their time and energy only on the most challenging of the cases.

V. CONCLUSION

Practical applications of deep learning based classification models require high accuracy, better generalisation, computational efficiency and an estimate of uncertainty in model’s predictions. All these characteristics are not readily available with either traditional deterministic CNNs or their Bayesian counterparts. Deterministic models, though provide better accuracies, do not facilitate uncertainty estimation on their own. Bayesian method, on the other hand, allows explication of posterior distribution but have significantly larger number of parameters that require more memory and time for tuning. Therefore, in this work we conceptualised and implemented a hybrid CNN capable of combining some of the merits of deterministic and Bayesian methods in terms of classification accuracy. The proposed method in validated on 13 different datasets and it shows promising results. We experimented with different architectures with varying number of convolutional and dense layers, and the hybrid training approach consistently performed better than its deterministic and Bayesian counterparts. We anticipate that this work might serves as a proof-of-concept that such hybrid CNN training is worth exploring since it works noticeably better than its pure deterministic and
probabilistic versions while at the same time facilitating estimation of network’s certainty for every prediction. A thorough architecture search and hyper-parameter tuning might be required to increase baseline accuracies for each dataset. However, our experimentation with various data modalities and application areas has shown great promise to prompt further comprehensive investigation into this training paradigm. Our next logical step in this research would be to incorporate this hybrid approach with dataset specific architectures obtained through, for instance, NAS-Net [3] and ENAS [44] algorithms.

REFERENCES

[1] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in Advances in neural information processing systems, 2017, pp. 3856–3866.

[2] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z. Chen, “Gpipe: Efficient training of giant neural networks using pipeline parallelism,” arXiv preprint arXiv:1811.06965, 2018.

[3] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for scalable image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697–8710.

[4] H. Haensle, C. Fink, R. Schneiderbauer, F. Toberer, T. Buhl, A. Blum, A. Kalloo, A. B. H. Hassen, L. Thomas, A. Enk et al., “Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists,” Annals of Oncology, vol. 29, no. 8, pp. 1836–1842, 2018.

[5] A. Esteva, B. Kropel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, p. 115, 2017.

[6] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convolutional neural networks for diabetic retinopathy,” Procedia Computer Science, vol. 90, pp. 200–205, 2016.

[7] X. Pei, “Emphisyema classification using convolutional neural networks,” in International Conference on Intelligent Robotics and Applications. Springer, 2015, pp. 455–461.

[8] M. N. Bajwa, M. I. Malik, S. A. Siddiqui, A. Dengel, F. Shafait, W. Neumeier, and S. Ahmed, “Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning,” BMC medical informatics and decision making, vol. 19, no. 1, p. 136, 2019.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.

[10] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series classification using multi-channels deep convolutional neural networks,” in International Conference on Web-Age Information Management. Springer, 2014, pp. 298–310.

[11] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “Deeppant: A deep learning approach for unsupervised anomaly detection in time series,” IEEE Access, vol. 7, pp. 1991–2005, 2019.

[12] D. Ho, E. Liang, I. Stoica, P. Abbeel, and X. Chen, “Population based augmentation: Efficient learning of augmentation policy schedules,” arXiv preprint arXiv:1905.05393, 2019.

[13] K. Shridhar, A comprehensive guide to Bayesian CNN with variational inference : with implementation in PyTorch. LAMBERT Academic Publishing, 2019.

[14] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat, and R. Adams, “Scalable bayesian optimization using deep neural networks,” in International conference on machine learning, 2015, pp. 2171–2180.

[15] R. M. Neal, “Probabilistic inference using markov chain monte carlo methods,” 1993.

[16] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to variational methods for graphical models,” Machine learning, vol. 37, no. 2, pp. 183–233, 1999.

[17] T. Salimans, D. P. Kingma, and M. Welling, “Markov chain monte carlo and variational inference: Bridging the gap,” arXiv preprint arXiv:1410.6460, 2014.

[18] K. Shridhar, F. Laumann, A. Llopart Maurin, and M. Liwicki, “Bayesian convolutional neural networks,” arXiv preprint arXiv:1806.05978, 2018.

[19] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[20] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for statisticians,” Journal of the American Statistical Association, vol. 112, no. 518, pp. 859–877, 2017.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available: http://arxiv.org/abs/1512.03385

[22] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat, and R. Adams, “Scalable bayesian optimization using deep neural networks,” in International conference on machine learning, 2015, pp. 2171–2180.

[23] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural networks,” arXiv preprint arXiv:1505.05424, 2015.

[24] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: representing model uncertainty in deep learning,” in International conference on machine learning, 2016, pp. 1050–1059.

[25] Y. Kwon, J.-H. Won, B. J. Kim, and M. C. Paik, “Uncertainty quantification using bayesian neural networks in classification: Application to ischemic stroke lesion segmentation,” 2018.

[26] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vision?” in Advances in neural information processing systems, 2017, pp. 5574–5584.

[27] Y. Tang and R. R. Salakhutdinov, “Learning stochastic feedforward neural networks,” in Advances in Neural Information Processing Systems, 2013, pp. 530–538.
SHOAIB AHMED SIDDIOQUI is currently pursuing MS leading to Ph.D. program at German Research Center for Artificial Intelligence GmbH (DFKI) and Technische Universität Kaiserslautern under supervision of Prof. Dr. Prof. h.c. Andreas Dengel. He received his Bachelor’s degree in Computer Science from National University of Sciences and Technology (NUST), Pakistan in 2016. His areas of interest include interpretability and robustness of deep learning models (including adversarial examples and defenses), document understanding, time series analysis, extreme classification and reinforcement learning. He is also a reviewer for ICES Journal of Marine Science and IEEE Access.

MUHAMMAD IMRAN MALIK received his master’s and PhD degrees in Artificial Intelligence, in 2011 and 2015 respectively, from the University of Kaiserslautern. He also worked in the German Research Center for Artificial Intelligence GmbH (DFKI), Kaiserslautern, Germany. His Ph.D. topic was automated forensic handwriting analysis on which he focused on both the perspectives of forensic handwriting examiners and pattern recognition researchers. He is currently an Assistant Professor with the School of Electrical Engineering and Computer Science (SEECS) at the National University of Sciences and Technology (NUST), Islamabad, Pakistan. He has authored more than 40 publications including several journal and high ranked conference papers.

ANDREAS DENGEL is Scientific Director at German Research Center for Artificial Intelligence GmbH (DFKI) in Kaiserslautern. In 1993, he became a Professor at Computer Science Department of the University of Kaiserslautern where he holds the chair Knowledge-Based Systems. Since 2009 he is appointed Professor (Kyakuin) at the Department of Computer Science and Information Systems at the Osaka Prefecture University. He received his Diploma in CS from the University of Kaiserslautern and his PhD from the University of Stuttgart. He also worked at IBM, Siemens, and Xerox Parc. Andreas is member of several international advisory boards, chaired major international conferences, and founded several successful start-up companies. Moreover, he is co-editor of international computer science journals and has written or edited 12 books. He is author of more than 300 peer-reviewed scientific publications and supervised more than 170 PhD and master theses. Andreas is a IAPR Fellow and received many prominent international awards. His main scientific emphasis is in the areas of Pattern Recognition, Document Understanding, Information Retrieval, Multimedia Mining, Semantic Technologies, and Social Media.

SHERAZ AHMED is Senior Researcher at German Research Center for Artificial Intelligence GmbH (DFKI) in Kaiserslautern, where he is leading the area of Time Series Analysis. He received his master’s degree in Computer Science from Technische Universität Kaiserslautern, Germany. He completed his PhD in the German Research Center for Artificial Intelligence, Germany, under the supervision of Prof. Dr. Prof. h.c. Andreas Dengel and Prof. Dr. habil. Marcus Liwicki. His PhD topic is Generic Methods for Information Segmentation in Document Images. Over the last few years, he has primarily worked on development of various systems for information segmentation in document images. His research interest includes document understanding, generic segmentation framework for documents, gesture recognition, pattern recognition, data mining, anomaly detection, and natural language processing. He has more than 30 publications on the said and related topics including three journal papers and two book chapters. He is a frequent reviewer of various journals and conferences including Patter Recognition Letters, Neural Computing and Applications, IJDAI, ICDAR, ICFHR, and DAS. From October 2012 to April 2013 he visited Osaka Prefecture University (Osaka, Japan) as a research fellow, supported by the Japanese Society for the Promotion of Science and from September 2014 to November 2014 he visited University of Western Australia (Perth, Australia) as a research fellow, supported by the DAAD, Germany and Go - 8, Australia.
