Research Article

Antibacterial Activity of Desiccated Cyanobacterium Anabaena sp. Isolated from Terracotta Monuments of Bishnupur, West Bengal

Shailen Bhakat¹, Subarna Saha¹, Sikha Mandal², Jnanendra Rath¹*

¹Department of Botany, Visva-Bharati University, Santiniketan-731235, West Bengal, India
²Department of Botany, Sree Chaitanya College, Habra-743268, West Bengal, India

ABSTRACT

Anabaena sp. are the dominant cyanobacterial species on terracotta monuments of Bishnupur, which exposed to high solar radiation, ultraviolet, and in a desiccated condition in most parts of the year. In the present study, three Anabaena species were isolated from crust samples, and its antibacterial activities were evaluated against pathogenic bacteria Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli. We observed good antibacterial activity in ethyl acetate and ethanol extract of Anabaena sp. (VBCCA 052002) which has the highest antibacterial activity against Staphylococcus aureus, Salmonella typhimurium, Staphylococcus aureus, and E. coli respectively. We have validated the antibacterial assay by using resazurin based anti-microbial assay in microtiter plates and calculated the minimum inhibitory concentration (MIC) value of ethyl acetate extract of Anabaena sp. (VBCCA 052002) which is found 100 µg/mL against Staphylococcus aureus and 150 µg/mL against Salmonella typhimurium.

INTRODUCTION

Multidrug-resistance to the pathogenic bacteria is a great concern for public health throughout the world. The routinely used drugs against many clinical pathogens such as Mycobacterium tuberculosis, Enterococcus, Pseudomonas sp., Streptococcus pneumoniae, and Staphylococcus aureus are not working. To overcome this alarming situation novel antibacterial product development from unknown sources is the need of the hour. Cyanobacteria, photosynthetic prokaryotes are a prolific source of natural products with a great choice for new drug developments in biotechnology and pharmaceutical industries. Cyanobacteria being able to tolerate many stresses and found in extreme climatic conditions, is a very potential candidate for novel drug discovery.[1-3] Many cyanobacteria occurred in desiccated state on sub-aerial surfaces like ancient monuments and building facades. Anabaena sp. is one of the subaerial cyanobacterium, which can survive in desiccated conditions. Many of the subaerial cyanobacteria are having polysaccharide covering in the form of slime, capsule or sheath, which acts as a protective boundary between the cells and its surrounding environment.[4-5] Among cyanobacteria, marine cyanobacteria are studied well for their bioactive metabolites and till now 569 natural products have been reported in MarinLit[6] from them. However, bioactive metabolites of sub-aerial cyanobacteria are not well known. Since in subaerial environment cyanobacteria have to adapt a wide variation of stresses, they might have produced some novel anti-microbial compounds. Therefore we have initiated this study with objectives of isolation and culture of subaerial...
cyanobacteria and evaluate its anti-microbial properties against some pathogenic bacteria.

Materials and Methods

Collection Site, Isolation, Growth Conditions and Identification

Bishnupur temples are unique for its excellent terracotta works and located between 23°4′48″ N latitude and 87°19′12″ E longitude in Bankura districts of West Bengal. In these terracotta monuments cyanobacteria colonises and can withstand high temperature and desiccation conditions in the form of crusts. Cyanobacterial crust samples were collected from the Bishnupur terracotta using non-destructive double-sided tapes, and a pinch of the collected crust was soaked for 12-48 hours. When some bluish-green color appeared on the crust, it was transferred to BG-11 medium with 1.2% w/v agar with or without nitrogen sources and incubated with fluorescent light (7.5 W/m²) at 25 ± 1°C. After repeated sub-culturing, pure cultures of the cyanobacteria were established. The isolated cyanobacteria were observed using a trinocular research microscope (Leica DM 750) and microphotographs were taken using Leica EC3 scientific digital camera and further analyzed with LAS EZ software. Three *Anabaena* sp. (*Anabaena* sp. (VBCCA 052002), *Anabaena* sp. (VBCCA 052 009), and *Anabaena sphaerica* (VBCCA 052 010)), were isolated, assigned with a strain number, and the pure cultures were deposited in the Visva-Bharati Culture Collection of Algae (VBCCA) which is affiliated to the World Federation of Culture Collection (WDCM 931). The isolated cyanobacteria were identified using standard monographs.

Extraction and Fractionation of the Metabolites

The isolated cyanobacteria were cultured in the batch culture system using the BG-11(-N) medium for 30 days and centrifuged at 10,000 rpm for 10 minutes to get the cell biomass. The algal pellet was washed in distilled water to remove the salts and dried in a lyophilizer. Five grams of the respected dried cyanobacteria samples were extracted with 50 mL of ethyl acetate, ethyl alcohol, and water using a sonicated water bath for 30 minutes. The extracts were filtered and dried in a rotary vacuum evaporator under reduced pressure and treated as crude extracts. The crude extracts were dissolved in 1 mL Dimethyl sulfoxide (DMSO) and stored in 4°C for further anti-microbial studies. Crude extracts (10 mg) of the metabolites are further fractionated using LH₂₀ column chromatography and stored National Institute of Health (NIH), USA fractionation scheme. In brief, the fractionations of crude extracts were carried out using silica column chromatography and eluted with non-polar to polar solvent systems such as hexane (100%), hexane: ethyl acetate (50:50), ethyl acetate (100%), ethyl acetate: methanol (50:50), methanol (100%), and water (100%). Further purification of the metabolites was carried out using LH₂₀ column chromatography and eluted with mobile phase chloroform (100%), chloroform:methanol (50:50), methanol (100%), and methanol:water (50:50). All the fractions were dried using a rotary vacuum evaporator, and antibacterial assay were carried out using crude as well as silica and LH₂₀ fractions.

Antibacterial Assay

Antibacterial activates of crude and all the fractions of three *Anabaena* sp. were carried out using the agar well diffusion method. The five test pathogenic bacteria (*Bacillus subtilis* (MTCC 121), *Listeria monocytogenes* (MTCC 657), *Staphylococcus aureus* (MTCC 96), *Salmonella typhimurium* (MTCC 98), and *Escherichia coli* (MTCC 1667)) were procured from microbial type culture collection (MTCC), IMTech, Chandigarh. The bacterial test strains were picked up from the agar slants and inoculated in freshly prepared slants and incubated inside an incubator with 28 or 37°C temperature. Further, the bacterial suspensions were evenly inoculated in nutrient agar (NA) plates and holes of 5 mm in diameter was punched aseptically with a sterile cork borer. In each well, 50 µL of crude and the column fractions dissolved in DMSO were added and incubated at 28 or 37°C temperature. After 24 hour of incubation, the zone of inhibition was observed, and the diameter of zones of inhibition was measured in mm. Ciprofloxacin (100 µg/mL) and DMSO were used as positive and negative control, respectively.

Microtiter Plate-based Anti-microbial Assay

Purified natural compounds are generally found in a very low amount, which can create some challenges for the bioassay. Therefore, we have also used a resazurin microtiter plate-based assay following a modified method of Sarkar et al. 2007. In brief sterile 96 well microtiter plate is opened under aseptic condition. Several working concentrations of the crude extract were made and added to the plate resulting in final concentrations (µg/mL) of 200, 150, 100, 50, 25, 12.5, 10, and 5. Both the crude extracts and the fractions were dissolved in sterile DMSO, and tested against the pathogenic bacterial strains. Each of the test metabolites solution was added a volume of 2.5 µL to the respective wells. Pathogenic bacterial cultures were grown overnight and diluted by sterile nutrient broth and measured to a specific OD of 0.00075 in a spectrophotometer. In each well, 97.5 µL of bacterial suspension was added, making the final test volume in each well to 100 µL. Ciprofloxacin was used as a positive control. For sterility control, all the test materials were added, and sterile nutrient broth was added instead of bacterial suspension to check whether the test materials is sterile. For negative control, only bacterial suspensions were added to the wells to check whether the bacteria were growing or not. To check the solvents (water and DMSO) were not inhibiting growth of bacteria, another control
were used with water and DMSO were added in respective wells and bacterial suspension to them. Resazurin solution was prepared at 0.01% concentration with sterile water. A volume of 4 µL was added to each well (except the blank) and mixed well.

Plates were incubated at 37°C overnight and any color change was detected visually and measured in an ELISA microplate reader.

Minimum Inhibitory Concentration (MIC)

We have calculated the MIC of those test metabolites, which gave positive results in the antibacterial assay. Different concentration of the extract e.g. 10, 15, 20, 25, 50, 100, 150, and 200 µg/mL were prepared in DMSO. These different concentrations were added to nutrient broth containing respective test tubes and a fixed volume of bacterial cultures. The culture tubes were then incubated at 37°C overnight. After proper incubation, 100 µL of cultures were picked up from each test tube and spread on Nutrient Agar (NA) plates and incubated at 37°C for overnight. MIC value was calculated using the colony-forming unit (CFU) counting method. To validate the data, MIC was also calculated using a microtiter plate-based anti-microbial assay.

Results

Bishnupur monuments are famous terracotta temples, and the nature of substratum in these temples varies from bare rocks to terracotta tiles and sculptures. In summer, the temperature on the surface of the monument goes above 60°C and along with high light intensity, UV and extreme dryness make it an extreme environment: three *Anabaena* sp. *Anabaena* sp. (VBCCA 052002), *Anabaena* sp. (VBCCA 052 009), and *Anabaena sphaerica* (VBCCA 052 010) are the predominant cyanobacteria in these terracotta moments forming black brownish crust (Fig. 1). Since these cyanobacteria were isolated from the extreme habitat of terracotta monuments with exposure to high light, UV, and desiccation, we carried out the anti-microbial activity of these cyanobacterial extracts against some gram-positive and gram-negative bacteria. Fig. 2 showing the zone of inhibition (in mm) of different solvent extract of three *Anabaena* sp. on the test pathogenic bacteria *Staphylococcus aureus*, *Salmonella typhimurium*, *Staphylococcus aureus*, *Listeria monocytogenes*, and *E. coli*.

The results indicated that ethyl acetate extract and ethanol extract of *Anabaena* sp. (VBCCA 052002) have the highest antibacterial activity against *Staphylococcus aureus*, *Salmonella typhimurium*, *Staphylococcus aureus* and *E. coli* respectively. In the water extract no antibacterial activity observed against the tested organisms. In ethyl acetate extract of *Anabaena* sp. (VBCCA 052002) maximum zone of inhibition 19.07 mm was found against *Staphylococcus aureus* and 13.33 mm against *Salmonella typhimurium*, followed by the ethanol extract of *Anabaena* sp. (VBCCA 052002) was detected

![Fig. 1: Figure showing the growth of *Anabaena* sp. on the terracotta monuments of Bishnupur](image)

![Fig. 2: Anti-microbial activity of *Anabaena* sp. isolated from terracotta monuments of Bishnupur](image)
Antibacterial Activity of Cyanobacterium Anabaena sp.

Table 1. Data were showing a growth of S. aureus and S. typhimurium in different test concentrations for calculation of MIC.

Concentration (µg/mL)	Staphylococcus aureus	Salmonella typhimurium
Control	7.8 × 10^{10}	1.7 × 10^{10}
10	8.6 × 10^{9}	1.3 × 10^{10}
15	1.9 × 10^{9}	2.8 × 10^{9}
20	1.9 × 10^{9}	6.2 × 10^{8}
25	2.0 × 10^{8}	5.1 × 10^{7}
50	1.9 × 10^{4}	1.1 × 10^{6}
100	0	1 × 10^{2}
150	0	0
200	0	0

18.22 mm against Staphylococcus aureus and 14.19 mm against E. coli. The ethanolic extract of Anabaena sp. (VBCCA 052009) showed minimum sensitivity in terms of inhibition zone against Bacillus subtilis, E. coli, and Salmonella typhimurium (Fig. 3). To confirm the results obtained in the anti-microbial test using agar diffusion method we further carried out the sensitive resazurin based assay for conformation of anti-microbial assay of Anabaena sp. extracts. Fig. 4: Figure showing sensitive resazurin based anti-microbial assay for conformation of anti-microbial assay of Anabaena sp. extracts.

Discussion

In the microbial population, cyanobacteria considered being one of the potential organism for the development of novel antibiotics. Anabaena is a filamentous, heterocyst-forming cyanobacterium having proven antibacterial activity. Heidari *et al.* (2012) reported that the ethanolic extract of Anabaena circinalis have the antibacterial activity against Serratia marcescens, E. coli, Klebsiella pneumonia, and the fungus Aspergillus flavus. Abdel-Raouf *et al.* 2011 also reported antibacterial activity against Sarcina maxima, and Micrococcus kristinae, Klebsiella pneumoniae, as well as against the filamentous fungus Aspergillus flavus. Bhateja *et al.* 2006 reported organic extracts of Anabaena virabilis showed activity against Staphylococcus aureus. Though few Anabaena sp. have been already tested for anti-microbial properties, subaerial cyanobacteria never been evaluated for its anti-microbial potential and our report of anti-microbial properties against two antibiotic-resistant bacteria Staphylococcus aureus and Salmonella typhimurium shows quite promising results.

How the bioactive molecules help the cyanobacteria in surviving the stress condition is not well known, but since the cyanobacteria has wide biological adaptations and tolerance to environmental stress, some of these compounds might be produced in an attempt to confer advantages for their survival. The cyanobacterium Nostoc commune produces a novel antibiotic compound, called Noscomin, which is a diterpenoid. Though in the present study, we have not chemically characterized the antibacterial compound of the Anabaena sp. This is our first attempt to evaluate the antibacterial activity of subaerial cyanobacteria from ancient monuments, which is quite promising.

Acknowledgment

The authors gratefully acknowledge funding from West Bengal Department of Science and Technology (Project no. ST/P/S&T/1G-13/2018). SB thanks to UGC for Rajiv
Gandhi National Fellowship and SS thanks to DST Govt. of India for INSPIRE fellowship. The authors also thank the Head of the Departments of Botany, Visva-Bharati (A Central University), Santiniketan for providing laboratory facilities.

REFERENCES

1. Abed RM, Dobretsov S, Sudesh K. Applications of cyanobacteria in biotechnology. Journal of applied microbiology. 2009;106(1):1-12.
2. Ramamurthy V, Raveendran S, Thirumeni S, Krishnaveni S. Antimicrobial activity of heterocytic cyanobacteria. Int. J. Adv. Lif. Sci. 2012;1:32-39.
3. Carr NG, Whitton BA. The biology of cyanobacteria. Blackwell Scientific Publications, Oxford; 1982.
4. De Philippis R, Vincenzini M. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiology Review. 1998;22:151–175.
5. De Philippis R, Sili C, Paperi R. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. Journal of Applied Phycology. 2001;13:293
6. Munro MHG, Blunt JW Marine Lit. University of Canterbury. 2009. http://pubs.rsc.org/marinlit.
7. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology. 1979;111:1-61
8. Desikachary TV. Cyanophyta. Indian Council of Agricultural Research. New Delhi. 1959. pp 700.
9. Anagnostidis K, Komárek J. Modern approach to the classification system of the cyanophytes 3: Oscillatoriales. Algological studies. 1988. 50:327–472.
10. Anagnostidis K, Komárek J. Modern approach to the classification system of the cyanophytes 5: Stigonematales. Algological studies. 1990. 86:1–74.
11. Komárek J. Studies on the cyanophytes (cyanobacteria, cyanoprokaryota) of Cuba: (11) Freshwater Anabaena species.– Preslia. 2005; 77(2): 211–234.
12. Fernandez-Garayzabal, JF, Delgado C, Blanco M, Vázquez-Boland JA, Briones V, Suárez G, Domínguez L. Role of potassium tellurite and brain heart infusion in expression of the hemolytic phenotype of Listeria spp. on agar plates. Applied Environmental microbiology. 1992;58(1):434-438.
13. Sarker SD, Nahar L, Kumarasamy Y. Microtiter plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42:321–24.
14. Heidari A, Keshavarz H, Shojaee S, Raeisi A, Dittrich S. In vivo susceptibility of Plasmodium vivax to chloroquine in Southeastern Iran. Iranian Journal of Parasitology 2012;7:8-14
15. Abdel-Raouf N, Ibraheem IBM, Abdel-Tawab S, Naser YAG. Antimicrobial and anti-hyperlipidemic activities of isolated quercetin from Anabaena aequalis. Journal of Phycology. 2011;47:955–962.
16. Bhateja P, Mathur T, Pandya M, Fatma T, Rattan A. Activity of blue green microalgae extracts against in vitro generated Staphylococcus aureus with reduced susceptibility to vancomycin. Fitoterapia. 2006;77:233–235.
17. Jaki B, Orjala J, Sticher O. A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune. Journal of Natural Product. 1999;62:502-503.

HOW TO CITE THIS ARTICLE: Bhakat S, Saha S, Mandal S, Rath J. Antibacterial activity of desiccated cyanobacterium Anabaena sp. isolated from terracotta monuments of Bishnupur, West Bengal. Int. J. Pharm. Sci. Drug Res. 2020;12(2):94-98. DOI: 10.25004/IJPSDR2020.120201