Reactivation of hepatitis B virus infection in patients with hemo-lymphoproliferative diseases, and its prevention

Caterina Sagnelli, Mariantonietta Pisaturo, Federica Calò, Salvatore Martini, Evangelista Sagnelli, Nicola Coppola

ORCID number: Caterina Sagnelli (0000-0002-6413-7810); Mariantonietta Pisaturo (0000-0001-5870-0956); Federica Calò (0000-0002-8817-3429); Salvatore Martini (0000-0001-5214-1268); Evangelista Sagnelli (0000-0003-2817-8436); Nicola Coppola (0000-0001-5897-4949).

Author contributions: All authors equally contributed to this paper with conception and design of the study, literature review and analysis, drafting and critical revision and editing, and final approval of the final version.

Conflict-of-interest statement: All the authors of the manuscript declare that they have no conflict of interest regarding this paper.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: March 17, 2019

Abstract

Reactivation of hepatitis B virus (HBV) replication is characterized by increased HBV-DNA serum values of about 1 log or by HBV DNA turning positive if previously undetectable in serum, possibly associated with liver damage and seldom life-threatening. Due to HBV reactivation, hepatitis B surface antigen (HBsAg)-negative/anti-HBc-positive subjects may revert to HBsAg-positive. In patients with hemo-lymphoproliferative disease, the frequency of HBV reactivation depends on the type of lymphoproliferative disorder, the individual's HBV serological status and the potency and duration of immunosuppression. In particular, it occurs in 10%-50% of the HBsAg-positive and in 2%-25% of the HBsAg-negative/anti-HBc-positive subjects may revert to HBsAg-positive. In patients with hemo-lymphoproliferative disease, the frequency of HBV reactivation depends on the type of lymphoproliferative disorder, the individual's HBV serological status and the potency and duration of immunosuppression. In particular, it occurs in 10%-50% of the HBsAg-positive and in 2%-25% of the HBsAg-negative/anti-HBc-positive, the highest incidences being registered in patients receiving rituximab-based therapy. HBV reactivation can be prevented by accurate screening of patients at risk and by a pharmacological prophylaxis with anti-HBV nucleo(t)sides starting 2-3 wk before the beginning of immunosuppressive treatment and covering the entire period of administration of immunosuppressive drugs and a long subsequent period, the duration of which depends substantially on the degree of immunodepression achieved. Patients with significant HBV replication before immunosuppressive therapy should receive anti-HBV nucleo(t)sides as a long-term (may be life-long) treatment. This review article is mainly directed to doctors engaged every day in the treatment of patients with onco-lymphoproliferative diseases, so that they can broaden their knowledge on HBV infection and on its reactivation induced by the drugs with high immunosuppressive potential that they use in the care of their patients.

Key words: Hepatitis B virus reactivation; Hepatitis B virus infection; Hemo-lymphoproliferative diseases; Immunosuppressive therapy; Hepatitis B virus therapy;

Manuscript source: Invited manuscript

Received: March 17, 2019
Hepatitis B virus prophylaxis

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Hepatitis B virus (HBV) reactivation frequently exerts a negative impact on the outcome of patients with hemo-lymphoproliferative disorders both by liver injury, at times severe, and a premature delay or termination of immunosuppressive treatments. Patients at risk should be identified by screening of HBV serum markers before immunosuppressive therapy is started. The use of HBV nucle(t)side analogues, as treatment or prophylaxis, is effective in limiting the frequency and intensity of the damage caused. Antivirals should be administered 2-3 wk before starting immunosuppressive treatment, for the entire immunosuppressive period and during post-treatment follow-up, the length of which depends on the intensity of immunosuppression reached.

Citation: Sagnelli C, Pisaturo M, Calò F, Martini S, Sagnelli E, Coppola N. Reactivation of hepatitis B virus infection in patients with hemo-lymphoproliferative diseases, and its prevention. World J Gastroenterol 2019; 25(26): 3299-3312

INTRODUCTION

Although universal hepatitis B virus (HBV) vaccination has been successfully applied worldwide and effective drugs for a long-term suppression of HBV have been extensively applied, chronic HBV infection remains a serious health problem in most countries because of the large number of subjects with chronic HBV infection living in most of the nations. Two billion people worldwide had contact with HBV (overt or occult HBV infection), and nearly 240 million people had chronically HBV infected[1]. While for individuals with overt HBV infection [hepatitis B surface antigen (HBsAg)-positive] there are well-standardized clinical and therapeutic strategies. In occult HBV infection patients (HBsAg-negative, anti-HBc negative and HBV-DNA positive) these strategies are not so well defined[2-10].

HBV reactivation, a phenomenon characterized by increased HBV-DNA serum values of about 1 log or by HBV DNA turning positive if previously undetectable in serum, mostly occurs in a context of temporary or permanent immunosuppression. HBV reactivation in patients with occult HBV infection may also determine a reappearance of HBsAg in serum, possibly associated with an acute hepatic exacerbation characterized by an elevation in liver enzymes above the normal values and seldom by increased bilirubin levels[11].

Clinical conditions leading to HBV reactivation are human immunodeficiency virus infection and the immunosuppression induced by drugs used for autoimmune diseases, neoplastic diseases and organ transplants[12]. Noteworthy, HBV reactivation most frequently develops in patients with serious hematologic disorders characterized by a worse prognosis[13]. The reported percentage of subjects with HBV reactivation ranges between 2% in Europe to over 10% in eastern Asia, estimates, however, are approximate, depending on the frequency of the different clinical situations in which the phenomenon occurs[14].

HBV INFECTION: PIVOTAL CONCEPTS

HBV infection is responsible for a variety of clinical forms. It begins as acute hepatitis that evolves in healing in most cases, but in a minority of cases it progresses to chronic forms, such as an inactive carrier state, chronic hepatitis and liver cirrhosis, the last one potentially leading to hepatocellular carcinoma (HCC)[15]. HBV is a DNA virus enveloped double-stranded virus belonging to the hepadnaviridae family that infects hepatocytes, and its DNA may be detected also in mononuclear cells[16]. HBV has no direct cytotoxic activity, but it induces hepatocyte necrosis through an immunopathogenetic mechanism that includes the cytolytic action of cytotoxic T cells presensitized to viral antigens[16-18].
Ten HBV genotypes (A-J) have so far been identified, some of which further sub-classified in sub-genotypes. These genotypes have epidemiological value since differently distributed worldwide\(^\text{[19-43]}\), but their clinical impact has not been fully elucidated.

In 2015, the World Health Organization estimated 257 million people, are living with chronic HBV infection worldwide. HBV endemcity is usually represented by the prevalence of HBsAg chronic carriers in the general population in a defined geographical area. Three levels of endemicity have been defined: (1) High endemicity with an HBsAg prevalence over 8%, observed in some countries in sub-Saharan Africa and eastern Asia; (2) Intermediate endemicity with HBsAg levels between 2%-8% observed in most Mediterranean countries, in several countries in the Middle East and in some countries in South America; (3) Low endemicity with an HBsAg prevalence lower than 2% observed in the United States of America, Canada and western Europe\(^\text{[24]}\).

In geographical areas with high endemicity, HBV infection is prevalently spread from mother to child at birth and between siblings in early childhood\(^\text{[44,45]}\), whereas in areas at low endemicity, unsafe sexual habits and sharing of contaminated needles, especially among drug users, are the major routes of transmission\(^\text{[46]}\).

Universal HBV vaccination of newborn babies has resulted in a dramatic, progressive reduction in HBV transmission in all countries where this prophylactic procedure has been applied\(^\text{[47]}\).

The outcome of HBV infection is age-dependent. Once acquired, HBV infection causes symptomatic acute hepatitis in approximately 1% of perinatal infections, in 10% of infections in early childhood (1-5 years), in 30% of children aged more than 5 years and in most infected adults. Fulminant hepatitis develops in 0.1%-0.6% of acute hepatitis cases and is more frequent in young adults; mortality from fulminant hepatitis B is approximately 70%. HBV infection progresses to chronicity with a frequency inversely related to the age at HBV acquisition, approximately 80%-90% in babies infected perinatally, in about 30% in children aged less than 6 and in less than 5% in adults\(^\text{[48]}\).

Patients recovering from acute hepatitis B become HBsAg negative but a covalently closed circular DNA (cccDNA) persists in the hepatocytes and anti-HBc in serum; many of them become anti-HBs positive and are protected from eventual HBV reinfection. For most patients with chronic HBV infection, the clinical presentation progressively varies from a chronic HBsAg carrier state with no evidence of liver disease, to chronic hepatitis (first HBeAg-positive and then HBeAg-negative), and finally to liver cirrhosis (compensated in a first phase and therefore decompensated), with or without HCC. In adults, the major routes of transmission are less frequently induce severe adverse reactions, have a high barrier to antiviral resistance and almost always provide a steady suppression of viral replication\(^\text{[49]}\). At present, the treatment endpoint is the reduction of the disease to an inactive stage, with HBeAg loss if previously detectable, HBV DNA undetectable or at a low level in serum and normal liver enzymes, a clinical condition associated with a remarkable improvement even in cirrhotic patients that may prevent the development of HCC in nearly half of the cases\(^\text{[57,64]}\). However, both IFN and nucleo(t)sidic
treatments do not eradicate HBV infection because HBV DNA persists in hepatocytes in an integrated form and as cccDNA and a reactivation of viral replication may occur once treatment has been discontinued. Future treatments, already under study, consider the combined use of antivirals directed against new targets and possibly immunomodulatory drugs[65].

VIROLOGIC AND CLINICAL CHARACTERISTICS OF OCCULT HBV INFECTION

Patients with occult HBV infection showed HBsAg negativity and anti-HBc positive, at times associated with the antibody to surface antigen (anti-HBs). HBV DNA undetectable or detectable at very low levels in serum and normal liver enzymes; HBV DNA, however, persists within the hepatocytes as cccDNA and integrated DNA[66], whose active replication is inhibited by innate and adaptive immune responses (HBV-specific T-cell and neutralizing antibodies). Such inhibition is unable to eradicate all forms of HBV DNA and an HBV reservoir persists in the liver tissue.

A reduction in the immune-mediated control of HBV replication in these reservoirs, due to any cause, may favor the reactivation of HBV replication[67,68], which may induce an acute exacerbation of chronic HBV infection both in patients with HBsAg positivity (≥ 2 log10 rise in the HBV-DNA level) and in those with occult HBV infection who, in this case may revert to HBsAg-positive. This acute exacerbation is characterized by an increase in liver damage highlighted by an increase in ALT or aspartate aminotransferase (AST) ≥ 3-times the baseline serum values, which in its severe forms is accompanied by jaundice and may progress to severe hepatic failure if effective treatment is delayed. This event may lead to rapid life-threatening liver decompensation requiring urgent liver transplantation to prevent a fatal outcome. This critical clinical condition could simply be prevented by adopting a therapeutic prophylaxis with an effective nucleo(t)side against HBV, in which case the use of effective immunosuppressive drugs for neoplastic or hematological diseases is foreseen.

If HBV reactivation for some reason is not prevented, effective antiviral therapy should immediately be administered to reduce, if still in time, the entity of the associated clinical events through a pharmacologic control of HBV replication; this can lead, in cases with a favorable prognosis, to a gradual reduction in the levels of serum HBV-DNA, a progressive return of liver enzymes to the baseline values and a gradual recovery of the liver lesions[61]. Accordingly, HBV reactivation may occur years after hematopoietic stem cell transplantation (HSCT) due to low immune reconstitution[69]. Therefore, pharmacological prevention of HBV-reactivation prophylaxis must start within the recommended times, can be very long-lasting and require an accurate long-term surveillance.

RISK FACTORS

The risk factors of HBV reactivation concern either the patients, HBV, the underlying disease or the immunosuppressive regimen.

Patient

Male sex and more than 50 years old are risk factor for HBV reactivation. Yeo et al[70] in 600 cancer positive HBsAg patients who underwent chemotherapy, found an incidence almost 3-times higher in men than in women. It has also been observed that older patients are more likely to have HBsAg positivity, persistent levels of HBV-DNA in serum and cccDNA in the liver, a virological condition increasing the risk of HBV reactivation[71].

Virus

As mentioned above, factors associated with HBV reactivation include HBsAg positivity, HBeAg positivity and high levels of HBV DNA before the onset of pharmacological immuno-suppression[72]. In contrast, the presence of anti-HBs antibodies has been shown to protect against reactivation, although the antibody titer necessary to achieve this effect is unknown[73].

Underlying diseases

As regards the magnitude of risk factors for HBV reactivation associated with the underlying disease, the data are not so clear because it is difficult to distinguish the contribution of the individual disease from that of the treatment used. In a recent
study of 1962 patients with hematological malignancies in Taiwan, the authors noted similar incidences of HBV reactivation among patients with various types of hematological cancer. Lymphoma is the most common underlying disease favoring HBV reactivation, possibly because HBsAg-negative patients with non-Hodgkin lymphoma (NHL) frequently present a direct HBV infection of lymphocytes, chronic antigenic stimulation and associated B-cell proliferation. Onco-hematological patients undergoing immunosuppression with aggressive chemotherapy or HBV reactivation.

In fact, the risk of reactivation is estimated at around 10%-50% for HBsAg-positive patients undergoing chemotherapy, while different percentages have been reported in HBsAg negative/anti-HBc positive patients and in inactive HBV carriers, from 2% to 41.5%. Consequently, it is mandatory to identify the hematological patients at risk of reactivation who need antiviral treatment, either in prophylaxis or as pre-emptive therapy. In fact, various guidelines, controlled clinical trials and meta-analyses have shown that in patients undergoing cancer chemotherapy, nucleo(t)side analogs reduce the incidence of HBV reactivation and the frequency of associated hepatitis and death for liver failure. Allogeneic autologous HSCT is another eventuality characterized by a high risk for HBV reactivation. Published data are still limited, but a study on 32 HBsAg-positive patients with NHL undergoing high-dose chemotherapy and autologous HSCT reported a symptomatic acute exacerbation in 50% of cases. In patients with occult HBV infection the risk could be lower, because in allogeneic HSCT, donor vaccination including that against HBV can result in the transfer of immunity against infectious antigens, thus reducing the risk of HBV reactivation. Finally, the development of graft-vs-host disease significantly increases the risk of HBV reactivation due to the immunosuppression therapy administered and to the delay in the reconstitution of the immune system.

Immunosuppressive regimens

The risk of HBV reactivation has been graded in relation to the different immunosuppressive treatments as follows: (1) High risk: Greater than 10% reactivation (rituximab and other anti-CD20-directed monoclonal antibodies; doxorubicin and other drugs of systemic cancer chemotherapy); (2) Moderate risk: Between 1%-10% (imatinib, ibrutinib and other tyrosine kinase inhibitors; corticosteroids at a daily dose of ≥ 20 mg for ≥ 4 wk); (3) Low risk: Less than 1% (azathioprine, methotrexate and other traditional immunosuppressive agents; corticosteroids for ≤ 4 wk).

RISK FACTORS FOR HBV REACTIVATION IN DIFFERENT IMMUNOSUPPRESSIVE REGIMENS

Cancer chemotherapy

A study on patients with lymphoma treated with different chemotherapy regimens reported HBV reactivation in 48% of 27 HBsAg-positive patients and in 4% of 51 HBsAg-negative/anti-HBc-positive. It has also been reported that this reactivation occurred more frequently in patients receiving anthracycline-derived chemotherapeutic drugs, such as doxorubicin and epirubicin, than in those treated with other chemo-therapy regimens.

Corticosteroids

The evidence that corticosteroids may enhance HBV replication was first reported by Sagnelli et al. in 1980 and subsequently confirmed in several other investigations. More recently a glucocorticoid-responsive-transcription regulatory element has been identified in HBV genome which, up-regulated by corticosteroids, may induce increased viral replication and a direct suppressive effect on cytotoxic T cells involved in HBV control. Corticosteroids are often associated with other chemotherapy agents in patients with hematologic disorders, with an additive deleterious effect. To better understand the role of corticosteroids in such associations, 50 NHL patients with HBsAg-positive underwent chemotherapy regimens had a higher incidence of HBV acute exacerbation than patients treated with corticosteroid.

Monoclonal antibodies

Treatment of onco-hematologic diseases with monoclonal antibodies in patients with overt or occult HBV infection is associated with the risk of viral reactivation, which may induce severe or fatal hepatic failure. This risk is particularly high when
HBsAg-positive patients are treated with anti CD20 antibodies, such as rituximab, ofatumumab and obinutuzumab, commonly used to treat B-cell malignancies due to the effective elimination of B cells from blood, lymphatic system and bone marrow, which may induce HBV reactivation in 16.9% of treated cases with rituximab. Patients with occult HBV infection have a lesser risk of HBV reactivation, which occurs in about 8% of cases. In this context, subjects with occult HBV infection positive with anti-HBc and anti-HBs show a reduced risk of HBV reactivation, due to a protective role of anti-HBs. HBV-reactivation occurring more than two years after the use of rituximab.

Alemtuzumab, a monoclonal antibody against CD52 used for refractory chronic lymphocytic leukemia (CLL) caused reverse HBsAg seroconversion and symptomatic reactivation in patients with occult HBV infection. This event was observed even for newer monoclonal antibodies, namely mogamulizumab, a treatment for T-cell lymphoma, and brentuximab vedotin, used to treat Hodgkin’s lymphoma. Also Daratumumab, a monoclonal antibody against CD38, over-expressed in B-cell hematologic malignancies, may have the same potential effect, but no reports have emerged to date to this regard.

New drugs

Attention should be paid to the risk of HBV reactivation in the new treatment regimens for multiple myeloma and CLL, since published data on the topic are scanty. Tyrosine kinase inhibitors such as imatinib and nilotinib are used for effective immunosuppressive action, which, however, implies the possibility of HBV reactivation.

Idelalisib (PI3K tyrosine kinase inhibitor), brutinib (bruton tyrosine kinase inhibitor) used to treat CLL and certain NHLs, have been found to be responsible for cases of HBV reactivation. Similar observations have been made for ruxolitinib (inhibitor of Janus-activated kinases-JAK) used to treat myelofibrosis, and for bortezomib (proteasome inhibitor) in multiple myeloma.

Venetoclax, a small molecule inhibitor of BCL-2 used in refractory cases of CLL may have a potential risk of HBV reactivation, but no case has been signaled to date. The same consideration also applies to azacitidine and decitabine, hypomethylating agents used to treat acute myeloid leukemia.

It has also been suggested that treatment of cancer with antibody immune checkpoint inhibitors (anti-CTLA4 tremelumab and ipilimumab; anti-PD-L1: Nivolumab and pembrolizumab; PD-L1: durvalumab, atezolizumab and avelumab) is a risk factor for HBV reactivation, to be prevented by anti-HBV prophylaxis.

MANAGEMENT OF HBV REACTIVATION IN AN ONCO-HEMATOLOGICAL SETTING

Nucleo(t)side analogues should be administered to all patients with a high/moderate risk of HBV reactivation undergoing immunosuppressive therapy, as therapy to the HBsAg-positive (regardless of HBV DNA levels) and as prophylaxis to HBsAg-negative and anti-HBc-positive cases. The risk of HBV reactivation is associated with HBV serological status (HBsAg positivity or HBsAg negativity and anti-HBc positivity with/without anti-HBs positivity) and with the immunosuppression level obtained with the drug administered (Table 1).

As in clinical practice, patients with HBsAg-positivity and serum HBV DNA ≥ 2000 IU/ml and increased ALT serum values (active carriers) should start long-term antiviral therapy with NAs, namely ETV, TDF or TAF, according to international guidelines. Inactive HBsAg carriers with HBV DNA < 2000 IU/mL, normal ALT and AST and no sign of liver cirrhosis are at risk of HBV reactivation under immunosuppressive therapy and should receive a prophylaxis with ETV, TDF or TAF, drugs with a high genetic barrier to resistance. Although effective for the prevention of HBV reactivation, lamivudine is not indicated in the last two settings mentioned because of its low genetic barrier to viral resistance and to a residual risk of HBV reactivation in approximately 10% of cases treated.

In fact, Huang et al., in a randomized controlled trial, comparing the efficacy of ETV versus LAM in prophylaxis the reactivation of HBV infection in diffuse large B-cell lymphoma patients with HBsAg-positivity undergone R-CHOP chemotherapy (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) observed that ETV is more effective than LAM, reducing the risk of HBV reactivation (6.6% vs 30%), HBV-related hepatitis (0% vs 13.3%), and chemotherapy discontinuation (1.6% vs 18.3%).

While there is agreement in the literature on the fact that all HBsAg-positive
Table 1 Incidence of hepatitis B virus replication in hemo-lymphoproliferative diseases and related management, according to hepatitis B virus markers and type of immunosuppressive regimens

Drug classes	Drugs	Incidence of HBVr in the absence of HBV prophylaxis	Management of HBVr		
		HBsAg-positive (%)	HBsAg-negative/HBcAb-positive (%)	HBsAg-positive	HBsAg-negative/HBcAb-positive
Monoclonal antibody	Rituximab	High: 30-60	High: > 10	ETV	LMV
	Ofatumumab			TDF	
	Obinutuzumab			TAF	
	Alemtuzumab				
Anthracycline	Doxorubicin	High: 15-30	Moderate: 1-10	ETV	LMV
chemotherapy	Epirubicin			TDF	
	Daunorubicin			TAF	
Tyrosine kinase	Imatinib, Nilotinib	Moderate: 1-10	Moderate: 1-10	ETV	LMV
inhibitors	Dasatinib			TDF	
	Bosutinib			TAF	
Proteasome inhibitors	Bortezomib	Moderate: 1-10	Moderate: 1-10	TAF	LMV
	Carfilzomib			TDF	
	伊沙佐米			TAF	
Inhibitors of cytokine	Mogamulizumab	Moderate: 1-10	Moderate: 1-10	ETV	LMV
				TDF	
				TAF	
Corticosteroids	High/moderate dose of	High: > 10	Moderate: 1-10	ETV	LMV
	prednisone			TDF	

HBV: Hepatitis B virus; HBVr: Hepatitis B virus replication; HBsAg: Hepatitis B surface antigen; HBcAb: Hepatitis B core antibodies; ETV: Entecavir; TDF: Tenofovir; TAF: Tenofovir alafenamide; LMV: Lamivudine.

patients undergoing immunosuppressive therapy should be assigned to pharmacologic therapy or prophylaxis, in the case of HBsAg-negative/hepatitis B core antibodies-positive patients two strategies have been adopted to prevent HBV reactivation: prophylaxis or pre-emptive antiviral therapy. Also, the international guidelines are divided on the type of management for these latter patients (Figure 1). For example, for rituximab-based therapy, routine prophylactic antiviral therapy is recommended by several guidelines.110,111 However, it is advisable for HBsAg-negative/anti-HBc-positive patients with HBV-DNA levels detectable before starting immunosuppressive therapy to use the same prophylactic regimen (with ETV, TDF or TAF) adopted for HBsAg-positive patients.111 Lamivudine may be used only for antiviral prophylaxis in non-viremic patients with resolved HBV infection. In fact, a meta-analysis of five randomized controlled trials comparing lamivudine prophylaxis to the pre-emptive strategy (treatment at the beginning of viral reactivation) showed that antiviral prophylaxis is more effective. Thus, the preemptive strategy could be used only in cases at a very low risk of HBV reactivation, and, consequently, it should not be used in an onco-hematologic setting, where patients are treated with combination chemotherapies conferring a high risk of HBV reactivation.

It is commonly accepted that an antiviral regimen should be started 2-3 wk before immunosuppressive treatment and that it should last throughout the whole immunosuppressive treatment and, thereafter, throughout the whole prophylaxis; periodical controls including physical examination, serum liver enzymes, HBsAg and HBV DNA should be performed at a 3-monthly interval. The correct duration of pharmacological prophylaxis remains controversial. Of course, antiviral therapy should not be discontinued in patients with chronic hepatitis B or cirrhosis, regardless of the duration of chemotherapy. In inactive carriers, antiviral prophylaxis should cover the entire period of immunosuppressive treatment and an additional period of 12-18 mo after the discontinuation of the
immunosuppressive regimen, to be extended to 24 mo if chemotherapy had included rituximab or other anti-CD20 antibodies. The rationale for this extension is that immune recovery may be delayed due to deep immunodepression exerted by rituximab or its analogues. In fact, Yamada et al. described a case of HBV reactivation emerging over the third year after the discontinuation of R-CHOP.
therapy; in this case HBV-DNA monitoring had been stopped 18 months after chemotherapy was discontinued. The same authors also reviewed the literature data on the topic and concluded that an advanced age, lymphoid malignancies, multiple courses of rituximab-containing therapies were all common features in cases of late reactivation.

In patients with resolved HBV infection, lamivudine prophylaxis should cover the entire period of immunosuppressive treatment and, thereafter, an additional period of 18-24 mo as delayed episodes of HBV reactivation have been reported[119,120]. In fact, Marrone et al[119] described HBV reactivation in 3 (4%) of 68 patients with onco-hematological disease (two with CLL and one with Waldenstrom’s disease) occurring 1-7 mo after discontinuation of lamivudine prophylaxis that had covered the whole period of immunosuppressive treatment and a subsequent 18 mo after.

Particular attention should be paid to the recipients of HSCT, a condition involving much deeper immunological suppression, for whom the duration of antiviral therapy has not yet been established. In these cases, HBV reactivation occurred years after the transplant, as in the anecdotal case of a patient who was anti-HBs-positive at baseline and had HBV reactivation 4 years after transplantation[119]. For this special population the duration of a long-term antiviral therapy has not yet been established by the international guidelines and, in the meantime, lifelong treatment may be wiser[119].

Overall, the most suitable duration of monitoring for early identification of HBV reactivation after antiviral withdrawal remains partially undefined, depending on several factors, among which the degree of immunosuppression that predominates. Therefore, it is prudent that this decision be reserved for skilled clinicians who will use international guidelines, results from specialized literature and clinical and laboratory data obtained during the entire period of observation.

CONCLUSION

Reactivation of HBV replication has a negative impact on the clinical course of patients with hemo-lymphoproliferative malignancies, because of its significant morbidity and its potential to induce a worse prognosis, or even a fatality. However, no shared effective solution has been decided worldwide to date, nor has a uniform standard of screening, treatment or prevention been established. Given the efficacy of nucleos(t)ide analogues against HBV, administered as treatment or prophylaxis is recommended for the patients at risk. All patients should be evaluated for serum HBsAg, anti-HBc antibody, HBV DNA and liver enzymes before any immunosuppressive therapy is initiated. In recent years, national and international guidelines have recommended HBV screening before starting chemotherapy. The risk posed by individual treatment regimens should be carefully assessed to establish the need for antiviral prophylaxis or treatment and the duration of antiviral drug administration. For the patients identified as requiring antiviral treatment or prophylaxis, anti HBV nucleos(id)e/nucleotide analogues with a high genetic barrier to viral resistance is recommended, especially for those at a high risk of HBV reactivation and when long-term immunosuppressive treatment is planned.

REFERENCES

1. Schweitzer A, Horn J, Mikołajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: A systematic review of data published between 1965 and 2013. *Lancet* 2015; 386: 1546-1555 [PMID: 26231459 DOI: 10.1016/S0140-6736(15)61412-X]
2. Sagnelli C, Macera M, Pisaturo M, Zampino R, Coppola M, Sagnelli E. Occult HBV infection in the onco-hematological setting. *Infection* 2016; 44: 575-582 [PMID: 27076347 DOI: 10.1007/s15010-016-0891-1]
3. Coppola N, Onorato L, Pisaturo M, Macera M, Sagnelli C, Martini S, Sagnelli E. Role of occult hepatitis B virus infection in chronic hepatitis C. *World J Gastroenterol* 2015; 21: 11931-11940 [PMID: 26576082 DOI: 10.3748/wjg.v21.i42.11931]
4. Sagnelli E, Pisaturo M, Sagnelli C, Coppola N. Rituximab-based treatment, HCV replication, and hepatic flares. *Clin Dev Immunol* 2012, 2012: 949590 [PMID: 22919406 DOI: 10.1155/2012/949590]
5. Tonziello G, Pisaturo M, Sica A, Ferrara MG, Sagnelli C, Pasquale G, Sagnelli E, Guastafierro S, Coppola N. Transient reactivation of occult hepatitis B virus infection despite lamivudine prophylaxis in a patient treated for non-Hodgkin lymphoma. *Infection* 2013; 41: 225-229 [PMID: 22855434 DOI: 10.1007/s15010-012-0305-y]
6. Musolino C, Cacciola I, Tripodi G, Lombardo D, Raffa G, Alibrandi A, Squadrito G, Raimondo G, Pollicino T. Behaviour of occult HBV infection in HCV-infected patients under treatment with direct-acting antivirals. *Antivir Ther* 2019 [PMID: 30628893 DOI: 10.3851/IMP3288]
7. Merli M, Frigini M, Afric L, Visco C, Besson C, Mannelli L, Di Rocco A, Ferrari A, Farina L, Perisi M, Piazza F, Leoustad-Ratti V, Arcari A, Marino D, Sica A, Goldaniga M, Rusconi C, Gentile M, Cencini E, Benanti F, Rumi MG, Ferreri VV, Grossi P, Gotti M, Sciarra R, Tisi MC, Cano I, Zuccaro V, Passamonti F, Arcaini L. Direct-Acting Antivirals in Hepatitis C Virus-Associated Diffuse Large B-cell Lymphomas.
HBV reactivation in hemo-lymphoproliferative diseases

Sagnelli C et al. Hepatitis B virus replication and disease progression. PLoS One 2013; 8: e65336 [PMID: 23843939 DOI: 10.1371/journal.pone.0065336]

Mosca N, Castilli F, Coppola N, Trotta MC, Sagnelli C, Pisaturo M, Sagnelli E, Russo A, Potenza N. Functional interplay between hepatitis B virus X protein and human miR-125a in HBV infection. Biochem Biophys Res Commun 2014; 449: 141-145 [PMID: 24824183 DOI: 10.1016/j.bbrc.2014.05.009]

Hoofnagle JH. Reactivation of hepatitis B. Hepatology 2009; 49: S156-S165 [PMID: 19399805 DOI: 10.1002/hep.22945]

Wang B, Mufli G, Agarwal K. Reactivation of hepatitis B virus infection in patients with hematologic disorders. Haematologica 2019; 104: 435-443 [PMID: 30733266 DOI: 10.3324/haematol.2018.210252]

Guo L, Wang D, Ouyang X, Tang N, Chen X, Zhang Y, Zha H, Li X. Recent Advances in HBV Reactivation Research. Biomed Res Int 2018; 2018: 2931402 [PMID: 30687740 DOI: 10.1155/2018/2931402]

Fattovich G. Natural history and prognosis of hepatitis B. Semin Liver Dis 2003; 23: 47-58 [PMID: 12626480 DOI: 10.1055/s-2003-37590]

Terrault NA, Lok ASF, McMahan BJ, Chang KM, Hwang JP, Jonas MM, Brown RS, Bzowej NH, Wong JB. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018; 67: 1560-1599 [PMID: 29405329 DOI: 10.1002/hep.29800]

Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5: 215-229 [PMID: 15738952 DOI: 10.1038/nri1500]

Lok AS, Zoulim F, Dushelko G, Ghany MG. Hepatitis B cure: From discovery to regulatory approval. Hepatology 2017; 66: 1296-1313 [PMID: 28762522 DOI: 10.1002/hep.29323]

Liu CJ, Kao JH. Global perspective on the natural history of chronic hepatitis B: Role of hepatitis B virus genotypes A to J. J Srin Liver Dis 2013; 53: 97-102 [PMID: 23794865 DOI: 10.1533/jls.2012.034716]

Sakamoto T, Tanaka Y, Orito E, Gino K, Clavio J, Sagnelli C, Quinao A, Ueda R, Sollano J, Mizokami M. Novel subtypes (subgenotypes) of hepatitis B virus genotypes B and C among chronic liver disease patients in the Philippines. J Gen Virol 2006; 87: 1873-1882 [PMID: 16760389 DOI: 10.1099/vir.0.81714-0]

Schafer S. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World J Gastroenterol 2007; 13: 14-21 [PMID: 17206751 DOI: 10.3748/wjg.v13.i1.14]

Shi W, Zhang Z, Ling C, Zheng W, Zhu C, Carr MJ, Higgins DG. Hepatitis B virus subgenotyping: History, effects of recombination, misclassifications, and corrections. Infect Genet Evol 2013; 16: 355-361 [PMID: 23538336 DOI: 10.1016/j.meegid.2013.03.021]

Tripe G, Chan HL, Lok A. Hepatitis B virus infection. Lancet 2014; 384: 2053-2063 [DOI: 10.1016/S0140-6736(14)60220-8]

World Health Organization. Geneva, World Health Organization, Vaccine-preventable diseases monitoring system, 2009. Available from: http://www.who.int/immunization_monitoring/en/globalsumary/GS_GLOPROtive.pdf; https://www.who.int/immunizationMonitoring_surveillance/en/

Sagnelli E, Sagnelli C, Pisaturo M, Macera M, Coppola N. Epidemiology of acute and chronic hepatitis B and delta over the last 5 decades in Italy. World J Gastroenterol 2014; 20: 7635-7643 [PMID: 24976701 DOI: 10.3748/wjg.v20.i24.7635]

Struffolò T, Sagnelli E, Sagnelli C, Smedile A, Furlan C, Morisco F, Coppola N, Andriulli A, Almasio PL. The burden of hepatitis B infection in HIV patients in Italy and the risk of reactivation under ADA therapy. Dig Liver Dis 2019; 51: 434-437 [PMID: 30361002 DOI: 10.1016/j.dld.2019.09.010]

Struffolò T, Sagnelli E, Sagnelli C, Smedile A, Morisco F, Coppola N, Furlan C, Almasio PL. Geographical pattern of chronic liver diseases in Italy: Results from two pooled national surveys. Eur J Intern Med 2019; 41: 40-45 [PMID: 30369042 DOI: 10.1016/j.ejim.2018.10.015]

Sagnelli E, Struffolò T, Sagnelli C, Morisco F, Coppola N, Smedile A, Pisaturo M, Coloredo G, Babudieri S, Licata A, Brancaccio G, Andriulli A, Almasio PL, Gaeta GB. EPACRON study group. Influence of universal HBV vaccination on chronic HBV infection in Italy: Results of a cross-sectional multicenter study. J Med Virol 2017; 89: 2138-2143 [PMID: 28608566 DOI: 10.1002/jmv.24873]

Lai A, Sagnelli C, Presti AL, Cella E, Angeletti S, Spoto S, Costantino S, Sagnelli E, Ciccozzi M. What is changed in HBV molecular epidemiology in Italy? J Med Virol 2018; 90: 786-795 [PMID: 29315661 DOI: 10.1002/jmv.25027]

Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004; 11: 97-107 [PMID: 14996343 DOI: 10.1046/j.1365-2893.2003.00487.x]

Lavanchy D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J Clin Virol 2005; 34 Suppl 1: S1-S3 [PMID: 16461208 DOI: 10.1016/S1386-6532(05)00384-7]

Zehender G, Ebrarani E, Gabanelli E, Sorrentino C, Lo Presti A, Tanzi E, Ciccozzi M, Galli M. Enigmatic origin of hepatitis B virus: An ancient travelling companion or a recent encounter? World J Gastroenterol 2014; 20: 7622-7634 [PMID: 24976700 DOI: 10.3748/wjg.v20.i24.7622]

Sagnelli C, Ciccozzi M, Alessio L, Cella E, Guaidieri L, Pisaturo M, Mosca N, Di Caprio G, Starace M, Onorato L, Caporese M, Occhiello L, Angeletti S, Scotto G, Macera M, Sagnelli E, Coppola N. HBV molecular epidemiology and clinical condition of immigrants living in Italy. Infection 2018; 46: 523-531 [PMID: 29796738 DOI: 10.1007/s15010-018-1153-1]

Struffolò T, Sagnelli E, Sagnelli C, Morisco F, Babudieri S, Furlan C, Pirisi M, Russello S, Smedile A, Pisaturo M, Almasio PL. Decreasing role of HBV and HBV infections as aetiological factors of hepatocellular carcinoma in Italy. Infection 2019 [PMID: 31028627 DOI: 10.1007/s15010-019-01388-3]

Sagnelli C, Ciccozzi M, Coppola N, Minichini C, Lo Presti A, Starace M, Alessio L, Macera M, Cella E, Guaidieri L, Caprio N, Pasquale G, Sagnelli E. Molecular diversity in irregular or refugee immigrant patients with HBV-genotype-E infection living in the metropolitan area of Naples. J Med Virol 2017; 89: 1015-1024 [PMID: 27805272 DOI: 10.1002/jmv.24724]
Chan HL, Hansen BE, Janssen HL, Lampertico P. Risk of hepatocellular carcinoma in infection, Sagnelli E, Sagnelli C, Galli M. Spatial and temporal dynamics of hepatitis B virus D genotype in Europe and the Mediterranean Basin. Plos One 2012; 7: e37198 DOI: 10.1371/journal.pone.0037198

Coppola N, Alessio L, Gualtieri L, Pisaturo M, Sagnelli C, Mininini C, Di Caprio G, Starace M, Onorato L, Signorocchio G, Macera M, Angello IF, Pasquale G, Sagnelli E. Hepatitis B virus infection in undocumented immigrants and refugees in Southern Italy: Demographic, virological, and clinical features. Infect Dis Poverty 2017; 6: 33 DOI: 10.1186/s40249-016-0224-4

Sagnelli C, Ciccozzi M, Pisaturo M, Sagnelli C, Di Pietro A, Cellai E, Coppola N, Sagnelli E. The impact of viral molecular diversity on the clinical presentation and outcome of acute hepatitis B in Italy. New Microbiol 2015; 38: 137-147 DOI: 10.2174/1570282X14666150207184312

Sagnelli C, Ciccozzi M, Pisaturo M, Zehender G, Lo Presti A, Alessio L, Starace M, Lavoro D, Sagnelli E, Coppola N. Molecular epidemiology of hepatitis B virus genotypes circulating in acute hepatitis B patients in the Campania region. J Med Virol 2014; 86: 1683-1693 DOI: 10.1002/jmv.24005

Coppola N, Alessio L, Pisaturo M, Macera M, Sagnelli C, Sagnelli E, Zampino R, Sagnelli E. Hepatitis B virus infection in immigrant populations. World J Hepatol 2015; 7: 2959-2961 DOI: 10.4254/wjh.v7.i30.2959

Sagnelli E, Taliani G, Castelli F, Bartolozzi D, Bacquero-B, Armignacco O, Scotto G, Coppola N, Stroffolini T, Sagnelli C. Chronic HBV infection in pregnant immigrants: A multicenter study of the Italian Society of Infectious and Tropical Diseases. New Microbiol 2016; 39: 114-118 DOI: 21796549

Stroffolini T, Stroffolini T, Sagnelli E, Gaeta GB, Sagnelli C, Andriulli A, Brancaccio G, Pisiri M, Colloredo G, Mosrico F, Furlan C, Almasio PL: EPACRON study group. Characteristics of liver cirrhosis in Italy: Evidence for a decreasing role of HCV aetiology. J Hepatol Intern Med 2017; 38: 68-72 DOI: 10.1001/jhepin.2016.10.012

Goldstein ST, Zhou F, Hadler SC, Bell BP, Mast EE, Margolis HS. A mathematical model to estimate global hepatitis B disease burden and vaccination impact. Int J Epidemiol 2005; 34: 1329-1339 DOI: 10.1093/ije/dyv066

de la Hoz F, Perez L, de Neira M, Hall AJ. Eight years of hepatitis B vaccination in Colombia with a recombinant vaccine: Factors influencing hepatitis B virus infection and effectiveness. J Infect Dis 2008; 12: 183-189 DOI: 10.1538/17915355.10.6.010

Goldstein ST, Alter MJ, Williams IT, Moyar LA, Judson FN, Mottok RM, Fleener M, Ryder PL, Margolis HS. Incidence and risk factors for acute hepatitis B in the United States, 1982-1998: Implications for vaccination programs. J Infect Dis 2002; 188: 713-719 DOI: 10.1086/339192

Hyams KC. Risks of chronicity following acute hepatitis B virus infection: A review. Clin Infect Dis 1995; 29: 992-1000 DOI: 10.1093/clinids/20.4.992

Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2007; 45: 507-539 DOI: 17256718

Fattovich G, Bortoliotti G, Donato F. National history of chronic hepatitis B: Special emphasis on disease progression and prognostic factors. J Hepatol 2008; 48: 335-352 DOI: 10.1016/j.jhep.2007.11.011

European Association for the Study of the Liver: Electronic address: easoffice@easoffice.eu; European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol 2017; 67: 370-398 DOI: 10.1016/j.jhep.2017.03.021

Torbenson M, Thomas DL. Occult hepatitis B. Lancet Infect Dis 2002; 2: 479-486 DOI: 12150847

Sagnelli E, Pisaturo M, Martini S, Filippini P, Sagnelli C, Coppola N. Clinical impact of occult hepatitis B virus infection in immunosuppressed patients. World J Hepatol 2014; 6: 384-393 DOI: 25108849

Coppola N, Loquerco G, Tonziello G, Azzaro R, Pisaturo M, Di Costanzo G, Starace M, Pasquale G, Cacciapuoti C, Petruzziello A. HBV transmission from an occult carrier with five mutations in the major hydrophilic region of HBsAg to an immunosuppressed plasma recipient. J Clin Virol 2013; 58: 315-317 DOI: 23856167

Coppola N, Onorato L, Iodice V, Starace M, Mininini C, Farella N, Liorre G, Filippini P, Sagnelli E, de Stefano G. Occult HBV infection in HCC and cirrhotic tissue of HBsAg-negative patients: A virological and clinical study. Oncotarget 2016; 7: 62706-62714 DOI: 27448682

Raimondo G, Caccamo G, Filomia R, Pollicino T. Occult HBV infection. Semin Immunopathol 2013; 35: 39-52 DOI: 22829332

Coppola N, Onorato L, Sagnelli C, Ebranati E, Gabanelli E, Shkjezi R, Lai A, Sorrentino L, Cella E, Ganati M. Occult HBV infection in the Campania region. J Med Virol 2016; 86: 684-6301 DOI: 27040400

Lebbo F, Testoni B, Fleschet J, Facetti C, Galmozzi E, Fourmier M, Hervieu V, Berthillon P, Berfy F, Bordes I, Durante D, Lebrero M, Lampertico P, Zoulim F. Intrahepatic innate immune response pathways are downregulated in untreated chronic hepatitis B. J Hepatol 2017; 66: 897-909 DOI: 26043874

Sagnelli E, Potenza N, Onorato L, Sagnelli C, Coppola N, Russo A. Micro-RNAs in hepatitis B virus-related chronic liver diseases and hepatocellular carcinoma. World J Hepatol 2018; 10: 558-570 DOI: 30310534

Sagnelli E, Sagnelli C, Macera M, Pisaturo M, Coppola N. An update on the treatment options for HBV/HCV coinfected patients. Expert Opin Pharmacother 2017; 18: 1691-1702 DOI: 29081251

Stroffolini T, Sagnelli E, Sagnelli C, Russello M, De Luca M, Rosina F, Cacopardo B, Brancaccio G, Furlan C, Gaeta GB, Licitra A, Almasio PL, behalf of EPACRON study group. Hepatitis delta infection in Italian patients: Towards the end of the story? Infection 2017; 45: 277-281 DOI: 27871447

Papatheodoridis GV, Charalambous P, Hansen BE, Janssen HL, Lampertico P. Risk of hepatocellular carcinoma in the Campania region. J Med Virol 2015; 87: 137-141 DOI: 23856167

Evidence for a decreasing role of HCV aetiology. J Hepatol 2017; 67: 612-616 DOI: 10.1016/j.jhep.2016.12.024

Sagnelli E, Potenza N, Onorato L, Sagnelli C, Coppola N, Russo A. Micro-RNAs in hepatitis B virus-related chronic liver diseases and hepatocellular carcinoma. World J Hepatol 2018; 10: 558-570 DOI: 30310534

Sagnelli E, Sagnelli C, Macera M, Pisaturo M, Coppola N. An update on the treatment options for HBV/HCV coinfected patients. Expert Opin Pharmacother 2017; 18: 1691-1702 DOI: 29081251

Stroffolini T, Sagnelli E, Sagnelli C, Russello M, De Luca M, Rosina F, Cacopardo B, Brancaccio G, Furlan C, Gaeta GB, Licitra A, Almasio PL, behalf of EPACRON study group. Hepatitis delta infection in Italian patients: Towards the end of the story? Infection 2017; 45: 277-281 DOI: 27871447

Papatheodoridis GV, Charalambous P, Hansen BE, Janssen HL, Lampertico P. Risk of hepatocellular carcinoma in the Campania region. J Med Virol 2015; 87: 137-141 DOI: 23856167
in chronic hepatitis B: Assessment and modification with current antiviral therapy. *J Hepatol* 2015; 62: 956-967 [PMID: 25395383 DOI: 10.1016/j.jhep.2015.01.002]

63 Lok AS, McMahon BJ, Brown RS, Wong JB, Ahmed AT, Farah W, Almasri J, Alabead F, Benkhadra K, Moussili MA, Singh S, Mohamed EA, Abu Dahab AM, Prokop LJ, Wang Z, Murad MH, Mohamed R. Antiviral therapy for chronic hepatitis B viral infection in adults: A systematic review and meta-analysis. *Hepatology* 2016; 63: 284-306 [PMID: 26566246 DOI: 10.1002/hep.28280]

64 Calogero A, Sagnelli E, Creta M, Angeletti S, Peluso G, Incollongo P, Candida M, Minieri G, Carlomagno N, Dodaro CA, Cieczozi M, Sagnelli C. Eradication of HCV infection with the Direct-Acting Antiviral Therapy in renal allograft recipients. *BioMed Res Int* 2019; 2019: 4674560 [PMID: 31119732 DOI: 10.1155/2019/4674560]

65 Suk-Fong Lok A. Hepatitis B Treatment: What We Know Now and What Remains to Be Researched. *Hepatol Commun* 2018; 3: 8-19 [PMID: 30619990 DOI: 10.1002/hepc.1281]

66 Fong TL, Di Bisceglie AM, Gerber MA, Waggoner JG, Hoofnagle JH. Persistence of hepatitis B virus DNA in the liver after loss of HBsAg in chronic hepatitis B. *Hepatology* 1993; 18: 1313-1318 [PMID: 8244254 DOI: 10.1002/hep.180198050]

67 Loomba R, Liang TJ. Hepatitis B Reactivation Associated With Immune Suppressve and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. *Gastroenterology* 2017; 152: 1297-1309 [PMID: 28219691 DOI: 10.1016/j.gastro.2017.02.001]

68 Seto WK, Chan TS, Hwang YY, Wong DK, Fung J, Liu KS, Gill H, Lam YF, Lie AK, Lai CL, Kwong YL, Yuen MF. Hepatitis B reactivation in patients with previous hepatitis B virus exposure undergoing rituximab-containing chemotherapy for lymphoma: A prospective study. *J Clin Oncol* 2014; 32: 3736-3743 [PMID: 25237820 DOI: 10.1200/JCO.2014.66.7081]

69 Hammond SP, Borechti AM, Ukornadu C, Ho VT, Baden LR, Marty FM. Hepatitis B virus reactivation following allogeneic hematopoietic stem cell transplantation. *Biol Blood Marrow Transplant* 2009; 15: 1049-1059 [PMID: 19660717 DOI: 10.1016/j.bbmt.2009.05.001]

70 Yeo W, Chan PK, Zhong S, Ho WM, Steinberg JH, Tam JS, Hui P, Leung NW, Zee B, Johnson PJ. Frequency of hepatitis B virus reactivation in cancer patients undergoing cytotoxic chemotherapy: A prospective study of 626 patients with identification of risk factors. *J Clin Oncol* 2000; 28: 299-307 [PMID: 11055529 DOI: 10.1002/1096-9071(200011)62:3<299::AID-JMO1>3.0.CO;2-0]

71 Yuen MF, Wong DK, Fung J, Ip P, But D, Hung I, Lau K, Yuen JC, Lai CL, HBsAg Seroclearance in chronic hepatitis B disease. *Gastroenterology* 2008; 135: 1192-1199 [PMID: 18722377 DOI: 10.1013/gastro.2007.08.008]

72 Perrillo RP. Acute flares in chronic hepatitis B: The natural and unnatural history of an immunologically mediated liver disease. *Gastroenterology* 2001; 120: 1009-1022 [PMID: 11231956 DOI: 10.1016/j.gastro.2001.02.2464]

73 Paul S, Dickstein A, Saxena A, Terrin N, Viveiros K, Balk EM, Wong JB. Role of surface antibody in hepatitis B reactivation in patients with resolved infection and hematologic malignancy: A meta-analysis. *Hepatology* 2016; 67: 379-388 [PMID: 28128861 DOI: 10.1002/hep.29002]

74 Chen CY, Tien FM, Cheng A, Huang SY, Chou WC, Yao M, Tang JL, Tien HF, Sheng WH. Hepatitis B reactivation among 1962 patients with hematological malignancy in Taiwan. *BMJ Gastroenterol* 2018; 18: 6 [PMID: 29310589 DOI: 10.1186/s12878-017-0735-1]

75 De Monte A, Courjon J, Arty R, Cua E, Naqvi A, Mondain V, Cottalorda J, Ollier L, Giordanengo V. Direct-acting antiviral treatment in adult patients infected with hepatitis C virus: Reactivation of hepatitis B virus coinfection as a further challenge. *J Clin Virol* 2016; 78: 27-30 [PMID: 26967675 DOI: 10.1016/j.jcv.2016.02.026]

76 Sarmati L, Andreoni M, Antonelli G, Arcene W, Bruno R, Coppola N, Gaeta GB, Galli M, Gimignani C, Mikalska M, Panet F, Perno CF, Picardi M, Piotti M, Rambaldi A, Svicher V, Talanini G, Gentile G. Recommendations for screening, monitoring, prevention, prophylaxis and therapy of hepatitis B virus reactivation in patients with haematologic malignancies and patients who underwent haematologic stem cell transplantation-a position paper. *Clin Microbiol Infect* 2017; 23: 935-940 [PMID: 28686466 DOI: 10.1016/j.cmi.2017.06.023]

77 Coppola N, Squara R, Tonziello G, Martini S, Imparato M, Piai G, Filippini P, Sagnelli E. Virological pattern in plasma, peripheral blood mononuclear cells and liver tissue and clinical outcome in chronic hepatitis B and C virus coinfection. *Antivir Ther* 2008; 13: 307-318 [PMID: 18505182 DOI: 10.1016/j.antiviral.2007.08.009]

78 Hsu C, Tsou HH, Lin SJ, Wang MC, Yao M, Hwang WL, Kao WV, Chiu CF, Lin SF, Lin J, Chang CS, Tien HF, Liu TW, Chen PJ, Cheng AL; Taiwan Cooperative Oncology Group. Chemotherapy-induced hepatitis B reactivation in lymphoma patients with resolved HBV infection: A prospective study. *Hepatology* 2014; 59: 2092-2100 [PMID: 24002804 DOI: 10.1002/hep.26718]

79 Kusumoto S, Tanaka Y, Suzuki R, Watanabe T, Nakata M, Takasaki H, Fukushima N, Fukushima T, Morishita Y, Itoh K, Nosaka K, Choi I, Sawa M, Okamoto R, Tajimura H, Uchida T, Suzuki S, Okamoto M, Takashiki T, Sugiuara I, Onishi Y, Kohri M, Yoshida S, Sakai R, Kojima M, Takahashi H, Tomita A, Maruyama D, Atsuta Y, Tanaka E, Suzuki T, Kinoshita T, Ogura M, Mizokami M, Ueda R. Monitoring of Hepatitis B Virus (HBV) DNA and Risk of HBV Reactivation in B-Cell Lymphoma: A Prospective Study. *Clin Infect Dis* 2015; 61: 719-729 [PMID: 25935551 DOI: 10.1093/cid/civ344]

80 Huang YH, Hsiao LT, Hong YC, Chou WC, Yao M, Lu YP, Gau JP, Lin SJ, Tien HF, Chen SJ, Lee PC, Lin HC. Randomized controlled trial of entecavir prophylaxis for rituximab-associated hepatitis B virus reactivation in patients with lymphoma and resolved hepatitis B. *J Clin Oncol* 2013; 31: 2765-2772 [PMID: 23775867 DOI: 10.1200/JCO.2012.48.5938]

81 Yeo W, Chan TC, Leung NW, Lam WY, Mo FK, Chu MT, Chan HL, Hui EP, Lei KI, Mok TS, Chan PK. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B under undergoing anticancer therapy with or without rituximab. *J Clin Oncol* 2009; 27: 605-611 [PMID: 19075267 DOI: 10.1200/JCO.2008.18.0182]

82 Buti M, Manziano ML, Morillas RM, Garcia-Retorillo M, Martin L, Prieto M, Gutierrez ML, Suarez E, Gomez Rubio M, Lopez J, Castillo P, Rodriguez M, Zozaya JM, Simon MA, Moreno LE, Calleja JL, Yelensky M, Esteban R. Randomized prospective study evaluating tenofovir disoproxil fumarate prophylaxis against hepatitis B virus reactivation in anti-HBe-positive patients with rituximab-based regimens to treat hematologic malignancies: The Preblin study. *PLoS One* 2017; 12: e0184550 [PMID: 28898281 DOI: 10.1371/journal.pone.0184550]

83 Mallet V, van Bömmel F, Doering C, Pischke S, Hermine O, Locasciulli A, Cordiner M, Berg T, Moradpour D, Wedemeyer H, Ljungman P, ECIL-5. Management of viral infection in patients with hematologic malignancy. *J Hepatol* 2018; 69: 322-335 [PMID: 29496077 DOI: 10.1016/j.jhep.2018.05.011]
Sagnelli C et al. HBV reactivation in hemo-lymphoproliferative diseases

Haematological malignancy and in patients undergoing haemopoietic stem cell transplantation: Recommendations of the 5th European Conference on Infections in Leukaemia (ECIL-5). *Lancet Infect Dis* 2016; 16: 606-617 [PMID: 27598453 DOI: 10.1016/S1473-3099(16)00116-5]

Lau GR, Yu HH, Fong DY, Cheng HC, Au WW, Lai LS, Cheung M, Zhang HY, Lie A, Ngan R, Liang R. Early is superior to deferred preemptive lamivudine therapy for hepatitis B patients undergoing chemotherapy. *Gastroenterology* 2003; 125: 1742-1749 [PMID: 14724827 DOI: 10.1053/j.gastro.2003.09.026]

Hsu C, Hsiao CA, Su JH, Huang WS, Wang MC, Lin SF, Lin TH, Hsiao HY, Young JH, Chang MC, Liao YM, Li CC, Wu HB, Tien HF, Chao TY, Liu TW, Cheng AL, Chen PJ. A revist of prophylactic lamivudine for chemotherapy-associated hepatitis B reactivation in non-Hodgkin's lymphoma: A randomized trial. *Hepatology* 2008; 47: 844-853 [PMID: 18302293 DOI: 10.1002/hep.22106]

Loomba R, Rowley A, Wesley R, Liang T, Hoofnagle JH, Pucino F, Csako G. Systematic review: The effect of prophylactic lamivudine on hepatitis B reactivation during chemotherapy. *Ann Intern Med* 2008; 148: 519-528 [PMID: 18578848 DOI: 10.7326/0003-4819-148-7-200804010-00008]

Katz LH, Fraser A, Gaf ler-Gavili, A, Lebovici L, Tur-Kaspa R. Lamivudine prevents reactivation of hepatitis B and reduces mortality in immunosuppressed patients: Systematic review and meta-analysis. *J Viral Hepat* 2008; 15: 89-102 [PMID: 18148191 DOI: 10.1111/j.1365-2093.2007.00992.x]

Franceschi D, Falcinelli F, Scharilli E, Capponi M, Belfiori B, Flenighi L, Baldelli F. Management of hepatitis B virus reactivation in patients with hematological malignancies treated with chemotherapy. *Infection* 2010; 38: 58-61 [PMID: 19904491 DOI: 10.1007/s10530-009-0910-1]

Huang H, Cai Q, Lin T, Lin X, Liu Y, Gao Y, Peng R. Lamivudine for the prevention of hepatitis B virus reactivation after high-dose chemotherapy and autologous hematopoietic stem cell transplantation for patients with advanced or relapsed non-Hodgkin's lymphoma single institution experience. *Expert Opin Pharmacother* 2009; 10: 2399-2406 [PMID: 19761353 DOI: 10.1517/14656960903251710]

Lindemann M, Barsegian, R, Vunde, R, Fiedler, H, Heermanth, K, Schaefer, U, Roggendorf, M, Grossen-Wilde H. Transfer of humoral and cellular hepatitis B immunity by allogeneic hematopoietic cell transplantation. *Transplantation* 2003; 75: 833-838 [PMID: 12660511 DOI: 10.1097/01.tp.0000054841.42796.68]

Soci G, Ritz J. Current issues in chronic graft-versus-host disease. *Blood* 2014; 124: 374-384 [PMID: 24914139 DOI: 10.1182/blood-2014-01-414752]

Paul S, Saxena A, Terrin N, Viveiros K, Balk EM, Wong JB. Hepatitis B Virus Reactivation and Prophylaxis During Solid Tumor Chemotherapy: A Systematic Review and Meta-analysis. *Ann Intern Med* 2016; 164: 30-40 [PMID: 26595088 DOI: 10.7326/M15-1121]

Sagenni E, Manzoor G, Maio G, Pasquale G, Felaco FM, Filippini P, Izzo CM, Piccinno F. Serum levels of hepatitis B surface and core antigens during immunosuppressive treatment of HBsAg-positive chronic active hepatitis. *Lancet* 1980; 3: 395-397 [PMID: 6105519 DOI: 10.1016/1673-928X(94)90042-6]

Tur-Kaspa R, Shaul Y, Moore DO, Burk RD, Okretz L, Poellinger L, Shafritz DA. The glucocorticoid receptor recognizes a specific nucleotide sequence in hepatitis B virus DNA causing increased activity of the HBV enhancer. *Virology* 1988; 167: 630-633 [PMID: 3201757 DOI: 10.1016/0042-6822(88)9017-4]

Cheng AL, Hsiung CA, Su JH, Chen PJ, Chang MC, Tsao CJ, Kao WY, Uen WC, Hsu CH, Tien HF, Chao TY, Chen LT, Wang-Peng J. Hepatoma Committee of Taiwan Cooperative Oncology Group. Steroid-free chemotherapy decreases risk of hepatitis B virus (HBV) reactivation in HBV-carriers with lymphoma. *Hepatology* 2003; 37: 1320-1328 [PMID: 12774010 DOI: 10.1001/jhep.2003.50.2202]

Westhoff TH, Jochimsen F, Schmitten A, Stoffler-Meliecke M, Schafer JH, Gerlich WH, Thiel E. Fatal hepatitis B virus reactivation by an escape mutant following rituximab therapy. *Blood* 2003; 102: 1930 [PMID: 12930732 DOI: 10.1182/blood-2003-05-1400]

Perrillo RP, Gish R, Falcó-Yepez A. American Gastroenterological Association Institute technical review on prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. *Gastroenterology* 2015; 148: 221-244.e3 [PMID: 25447852 DOI: 10.1053.j.gastro.2014.10.038]

Kusumoto S, Arcaini L, Hong X, Jin J, Kim WS, Kwong YL, Peters MG, Tanaka Y, Zeleniki AD, Kuriki E, Fingerle-Rowson G, Nielsen T, Ueda E, Piper-Lepoutre H, Sellam G, Tobinai K. Risk of HBV reactivation in patients with B-cell lymphomas receiving obinutuzumab or rituximab free chemotherapy decreases risk of hepatitis B virus (HBV) reactivation in HBV-carriers with lymphoma. *Hepatology* 2013; 57: 254-263 [PMID: 23575008 DOI: 10.1002/hep.24213]

Yang H, Cao Z, Wang Z, Liu M, Zhou H, Yang Q. [Hepatitis B virus reactivation induced by Brentuximab vedotin in the treatment of Hodgkin lymphoma: a case report and literature review]. *Zhonghua Xue Ye Xue Za Zhi* 2013; 34: 949-950 [PMID: 23533937 DOI: 10.7567/cma.js.issz.0253-2727.2014.010.017]

Ikeda K, Shiga Y, Takahashi, A, Kii T, Kimura H, Takeyama K, Noji H, Ogawa K, Nakamura A, Ohira H, Sato Y, Maruyama Y. Fatal hepatitis B virus reactivation in a patient with advanced lymphoma treated with bortezomib-containing regimen. *Leuk Lymphoma* 2008; 49: 155-157 [PMID: 16231842 DOI: 10.1080/10428190500236818]

Li J, Huang B, Li Y, Zheng D, Zhou Z, Liu J. Hepatitis B virus reactivation in patients with multiple myeloma receiving bortezomib-containing regimens followed by autologous stem cell transplantation. *Leuk Lymphoma* 2015; 56: 1710-1717 [PMID: 25988429 DOI: 10.3732/lle.141833]

Shen CH, Hwang CE, Chen YY, Chen CC. Hepatitis B virus reactivation associated with ruxolitinib. *Ann Hematol* 2013; 92: 1075-1076 [PMID: 24173089 DOI: 10.1007/s00277-013-1936-5]

Aragr I, Altcri C, Battisti A, Di Carlo D, Minichini C, Sagnelli C, Bellocci MC, Piscatoro MA, Starace M, Armenta D, Carioti L, Pollicuta M, Salpin S, Sagnelli E, Perno CF, Coppola N, Sivicer V. Multiple Hepatitis B Virus (HBV) Quasispecies and Immune-Escape Mutations Are Present in HBV Surface Antigen and Reverse Transcriptase of Patients With Acute Hepatitis B. *J Infect Dis* 2016; 213: 1897-1905
HBV reactivation in hemo-lymphoproliferative diseases

107 Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH; American Association for the Study of Liver Diseases. AASLD guidelines for treatment of chronic hepatitis B. Hepatology 2016; 63: 261-283 [PMID: 26566060 DOI: 10.1002/hep.28156]

108 Huang H, Li X, Zhu J, Ye S, Zhang H, Wang W, Wu X, Peng J, Xu B, Lin Y, Cao Y, Li H, Lin S, Liu Q, Lin T. Entecavir vs lamivudine for prevention of hepatitis B virus reactivation among patients with untreated diffuse large B-cell lymphoma receiving R-CHOP chemotherapy: A randomized controlled trial. JAMA 2014; 312: 2521-2530 [PMID: 25514302 DOI: 10.1001/jama.2014.15784]

109 Sarin SK, Kupnar M, Lau GK, Abbas Z, Chen HL, Chen CJ, Chen DS, Chen HL, Chen PJ, Chien RN, Dokmeci AK, Gane E, Hou JL, Jafri W, Jia J, Kim JL, Lau CL, Lee HC, Lim SG, Liu CJ, Locarnini S, Al Mahtab M, Mohamed R, Omata M, Park J, Piratvisuth T, Sharma BC, Sollano J, Wang FS, Wei L, Yuen MF, Zheng SS, Kao JH. Asian-Pacific clinical practice guidelines on the management of hepatitis B: A 2015 update. Hepatol Res 2016; 40: 1-98 [PMID: 26863120 DOI: 10.1007/s12285-015-0575-4]

110 Reddy KR, Beavers KL, Hammond SP, Lin JK, Falek-Ytter YT; American Gastroenterological Association Institute. American Gastroenterological Association Institute guideline on the prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology 2015; 148: 215-9; quiz e16-7 [PMID: 25447850 DOI: 10.1053/j.gastro.2014.10.039]

111 Morillas RM, Lopez Sisamon D. Reactivation of hepatitis B associated with immunosuppressants and chemotherapy. Natural history, risk factors and recommendations for prevention. Med Clin (Barc) 2019; 152: 107-114 [PMID: 30424935 DOI: 10.1016/j.medcli.2018.08.018]

112 Hwang JP, Somerfield MR, Alston-Johnson DE, Creyer DR, Feld JJ, Kramer BS, Sabichi AL, Wong SL, Artz AS. Hepatitis B Virus Screening for Patients With Cancer Before Therapy. American Society of Clinical Oncology Provisional Clinical Opinion Update. J Clin Oncol 2015; 33: 2212-2220 [PMID: 25962474 DOI: 10.1200/JCO.2015.61.3745]

113 Jang JW, Choi JY, Bae SH, Yoon SK, Chang UI, Kim CW, Cho SH, Han JY, Lee YS. A randomized controlled study of preemptive lamivudine in patients receiving transarterial chemo-lipiodolization. Hepatology 2006; 43: 233-240 [PMID: 16440357 DOI: 10.1002/hep.21024]

114 Long SH, Liu SX, Lin L, Wu J, Rao N, Feng H, Chen K, Deng H, Liu F, Su F, Song E. A single-center, prospective and randomized controlled study: Can the prophylactic use of lamivudine prevent hepatitis B virus reactivation in hepatitis B s-antigen seropositive breast cancer patients during chemotherapy? Breast Cancer Res Treat 2011; 127: 705-712 [PMID: 21445574 DOI: 10.1007/s10549-011-1435-9]

115 Coluccio C, Begini P, Marzano A, Pellicelli A, Imperatrice B, Amanza G, Delle Fave G, Marignani M. Hepatitis B in patients with hematological diseases: An update. World J Hepatol 2019; 11: 1043-1053 [PMID: 28951776 DOI: 10.4254/wjh.v11.i25.1043]

116 Pattullo V. Prevention of Hepatitis B reactivation in the setting of immunosuppression. Clin Mol Hepatol 2016; 22: 219-237 [PMID: 27291688 DOI: 10.3350/cmh.2016.0024]

117 Cecarelli L, Salpini R, Sarmati L, Svicher V, Bertoli A, Sordillo P, Ricciardi A, Perno CF, Andreoni M. Reactivation of hepatitis B virus reactivation after lamivudine prophylaxis interruption in an anti-HBs-positive and anti-HBc-negative patient treated with rituximab-containing therapy. J Infect 2012; 65: 180-183 [PMID: 22138369 DOI: 10.1016/j.jinf.2011.11.021]

118 Yamada T, Nannya Y, Sue tsugu A, Shimizu S, Sugahara J, Shimizu M, Seichima M, Tsurumi H. Late Reactivation of Hepatitis B Virus after Chemotherapies for Hematological Malignancies: A Case Report and Review of the Literature. Intern Med 2017; 56: 115-118 [PMID: 28049989 DOI: 10.2169/internmed.56.7460]

119 Marrone A, Capoluongo N, D’Amore C, Pisature M, Esposito M, Guastafierro S, Siniscalchi I, Macer M, Boemino A, Onorato L, Rinaldi L, Minichini C, Adinolfi LE, Sagnelli E, Mastrullo L, Coppola N. Eighteen-month lamivudine prophylaxis on preventing occult hepatitis B virus infection reactivation in patients with haematological malignancies receiving immunosuppression therapy. J Viral Hepat 2018; 25: 198-204 [PMID: 29029365 DOI: 10.1111/jvh.12802]

120 Hashino S, Nozawa A, Izumi yama K, Yonezumi M, Chiba K, Kondo T, Suzuki S, Hige S, Asaka M. Lamivudine treatment for reverse seroconversion of hepatitis B 4 years after allogeneic bone marrow transplantation. Bone Marrow Transplant 2002; 29: 361-363 [PMID: 11896455 DOI: 10.1038/sj.bmt.1703387]
