1. INTRODUCTION

Supergiant Fast X-ray Transients (SFXTs), consisting of a wind accreting compact object and an OB supergiant donor star, spend most of the time in a quiescent state, with X-ray luminosities of the order of $10^{32} - 10^{33}$ erg s$^{-1}$. Sporadically they go into outburst reaching luminosities of $10^{36} - 10^{37}$ erg s$^{-1}$ (Sguera et al. 2005; in’t Zand 2005; Negueruela et al. 2006; Smith et al. 2006). The outbursts or strong flaring activities are characterized by very short time scales, i.e. from minutes to hours. SFXTs have been discovered only recently as a new class of X-ray sources, and may unresolved fundamental questions remain open. The lack of confirmed orbital or pulse periods complicates the determination of the system parameters as well as of the compact object nature. Up to now IGR J11215-5952 alone shows regularly recurrent outbursts every ~330 days, most likely linked to its orbital period (Sidoli et al. 2006). To account for the accretion process that causes the short outbursts, it was proposed that the clumpy wind in early-type stars could be captured by the compact object producing the X-ray flares on the observed time scale (in’t Zand 2005). However, this scenario has yet to be well understood and confirmed for OB stars in binary systems.

The number of known SFXTs has grown recently thanks to the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), see e.g. IGR J16465-4507, IGR J17544-2619, or IGR J11215-5952 (e.g. Walter et al. 2006; Sguera et al. 2006; Sidoli et al. 2006). The new SFXT presented here, IGR J08408–4503, was discovered in the Vela region on May 15, 2006 with INTEGRAL during a bright outburst lasting about 15 minutes (Götz et al. 2006). The candidate optical counterpart was first tentatively identified as the supergiant, OB5ib(f), HD 74194 star (Götz et al. 2006; Masetti et al. 2006) located at 3 kpc in the Vela region (e.g. Walborn 1973; Humphreys 1978; Schröder et al. 2004). Successively, using the Swift X-ray Telescope (XRT) a refined source position ($\alpha_{2000} = 08^{h}49^{m}47^{s}.97$ and $\delta_{2000} = -45^{\circ}03\prime29\prime\prime$ with an uncertainty of 5.4) was derived, strengthening the association with HD 74194 (Kennea & Campana 2006).

The supergiant fast X-ray transient IGR J08408–4503 was discovered by INTEGRAL on May 15, 2006, during a bright flare. The source shows sporadic recurrent short bright flares, reaching a peak luminosity of 10^{36} erg s$^{-1}$ within less than one hour. The companion star is HD 74194, an Ob5ib(f) supergiant star located at 3 kpc in the Vela region. We report the light curves and broad-band spectra (0.1–200 keV) of all the three flares of IGR J08408–4503 detected up to now based on INTEGRAL and Swift data. The flare spectra are well described by a power-law model with a high energy cut-off at ~15 keV. The absorption column density during the flares was found to be $\sim 10^{21}$ cm$^{-2}$, indicating a very low matter density around the compact object. Using the supergiant donor star parameters, the wind accretion conditions imply an orbital period of the order of one year, a spin period of the order of hours and a magnetic field of the order of 10^{13} G.

Subject headings: X-rays: binaries – X-rays: bursts – X-rays: individual: IGR J08408–4503

Electronic address: diego.gotz@cea.fr

1 CEA Saclay, DSM/DAPNIA/Service d’Astrophysique, F-91191, Gif sur Yvette, France
2 Unité mixte de recherche Astroparticule et Cosmologie, 11 place Berthelot, 75005 Paris, France
3 INAF–IASF Milano, via Bassini 15, I-20133 Milano, Italy
4 Université Paul Sabatier, 31062 Toulouse, France
5 Università di Pavia, Dipartimento di Fisica Nucleare e Teorica and INFN–Pavia, via Bassi 6, I-27100 Pavia, Italy
6 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching, Germany

Draft version March 21, 2022
Preprint typeset using L\LaTeXe\ style emulateapj v. 12/14/05
Draft version March 21, 2022

arXiv:astro-ph/0612437v1 15 Dec 2006
keV. For JEM-X the data were extracted only for flare 2, flare 1 being outside the JEM-X field of view. The data reduction was performed using the standard Offline Science Analysis (OSA) version 5.1.

Single pointings (∼2000 s each) were deconvolved and analyzed separately. The IBIS/ISGRI 15–40 keV high energy light curve, shown in Fig. 1, has been extracted from the images using all available pointings. Light curves with a 100 s time bin were also extracted around the outburst peaks.

The third outburst, flare 3, was observed on October 4, 2006 (14:45:42 UT) with Swift/BAT (Gehrels et al. 2004; Barthelmy et al. 2005). Since the flare was detected with an image trigger (15–150 keV), only “Survey” data products are available from the BAT instrument, with a typical integration time of ∼300 s. We note that the BAT data coverage is not continuous due to the low Earth orbit of the Swift satellite. For each ∼300 s time bin the target count rate in the 14–40 keV energy range was evaluated with the mask-weighting technique using the XRT coordinates. The BAT data were selected 15 h before and 30 h after the trigger, and reduced using the standard software version 2.5.

Swift slewed automatically to the direction of the source and XRT (Burrows et al. 2005) (0.1–10 keV) follow-up observations were performed. The XRT data were reduced using ftools version 6.1.1., and processed with XRTPipeline version 0.10.4, using standard filtering selections. The XRT 0.1–10 keV energy band light curves have been extracted by selecting a circular region of 20 pixels around the source for the Photon Counting (PC) mode, and rectangular region of 40×20 pixels for the Window Timing (WT) mode. Background light curves were extracted in source free regions in order to produce the final background-subtracted XRT/PC/WT light curves. The count rate of the source in both modes is low enough in order to avoid the pile-up in the CCD.

2.1. Flare light curves

In Fig. 1 we show the three outburst light curves of IGR J08408–4503 observed up to now. The light curves are dominated by a first bright flare that typically reaches a peak luminosity of 3×10^{36} erg s$^{-1}$ (see Sec. 2.2) in a time scale of several tens of minutes to hours. The observed flares vary from an isolated strong flare (flare 2) to a more structured flaring activity (flare 1 and 3). Moreover flare 3 shows also weaker flares with a luminosity of the order of 5×10^{35} erg s$^{-1}$. The three outburst durations are of the order of several hours. The flare characteristics are similar to those observed in other SFXTs, such as XTE J1739-302 (e.g. Sguera et al. 2005), IGR J16465-4507 (e.g. Lutovinov et al. 2005), IGR J17544-2691 (e.g in’t Zand 2005), and IGR J11215-5952 (e.g. Sidoli et al. 2006), but resemble also those well studied in persistent wind accretion high mass X-ray binary (HMXB) sources like Vela X-1 (e.g. White et al. 1983), 4U 1700-377 (e.g. Rubin et al. 1996).

Up to now only IGR J11215-5952 has shown a ∼330 days periodic outburst. Therefore, using a linear orbital function $T(n) = T_0 + nP_{\text{orb}}$, we attempted to test the hypothesis of a periodically recurrent outburst also for IGR J08408–4503. P_{orb} is the orbital period in days and T_0 is taken from flare 2 (MJD 53780.77125). A possible orbital period is 4.2988 days (with $n_1 = 244$ and $n_2 = 33$), however, searching in the INTEGRAL archival data around the expected outburst time, we did not find any significant flux excess at the IGR J08408–4503 source position. We conclude that the three observed outbursts are sporadic episodes of accretion of matter fed from the wind of the supergiant companion star.

In order to directly compare the light curves measured with different instruments (see Fig. 1), all the count rates have been converted to the 0.1–10 keV fluxes assuming the spectral shape derived in Sec. 2.2.

2.2. Flare spectra

We performed the spectral analysis using XSPEC version 11.3, for the ISGRI data (20–200 keV), flare 1, for the 3.5–20 keV JEM-X data with the simultaneous 20–200 keV ISGRI data, flare 2, and for the 0.3–100 keV simultaneous XRT/BAT data, flare 3. Only the brightest parts of the flares have been considered. For the simultaneous data a constant factor was included in the fit to take into account the uncertainty in the cross-calibration of the instruments. All data were rebinned in order to have 3σ points and the spectral uncertainties in the results are given at a 90% confidence level for a single parameter. We use the source distance of 3 kpc throughout the paper.

The XRT/BAT (flare 3) broad-band (0.3–100 keV) dataset provides us the widest energy coverage and the best statistics, so we fitted it first. We fitted the data using a simple photoelectrically-absorbed power-law (PL) model which was found inadequate with a χ2/d.o.f. = 132.76/76. The addition of a high-energy exponential cut-off significantly improved the fit to χ2/d.o.f.=80.36/75, resulting in a best-fit photon index of 0.1±0.2 and a cut-off energy at 15±5 keV. The hydrogen column density, N_H, was found to be $1.0 \pm 0.3 \times 10^{21}$ cm$^{-2}$. This value is compatible with Galactic value in the direction of the source, $N_H = 3 \times 10^{21}$ cm$^{-2}$, reported in the radio maps of Dickey & Lockmann (1990). We attempted to fit the low energy spectrum also with a thermal black-body model, BB, plus a PL for the high energies, but we found high BB temperature, $kT_{BB} \sim 8$ keV, which is much larger than the measured values for a neutron star (NS) surface or polar cap thermal emission. Also a fit with a thermal bremsstrahlung model can be statistically ruled out by our data (χ^2/d.o.f.=183.2/76). The energy spectra during the flaring activity are hence best fitted with a high-energy exponential cut-off PL model similar to the spectra observed from persistent wind accreting HMXB hosting a NS, e.g. Vela X-1 (White et al. 1983).

The joint JEM-X/ISGRI (3.5–200 keV), flare 2, spectrum was also fitted with the cut-off PL model used for the flare 3. The best fit values are similar to the ones of flare 3, see Table 1. Given that we were not able to constrain the N_H value (as the JEM-X bandpass starts above 3 keV) we fixed it to the value found from flare 3.

For flare 1 only ISGRI data (20–200 keV) are available. The data can be well fitted with a simple PL model with a photon index, Γ, of 2.5±0.5. Note that fitting flare 2 (ISGRI) and 3 (BAT) spectra in the same energy range gives consistent photon index values, namely $\Gamma=2.8\pm0.3$ and $\Gamma=2.3\pm0.4$, respectively. The apparently soft spectra derived using only the data above 20 keV show how important it is, to have a broad energy coverage in order
to better characterize the spectrum of these sources. To be coherent, we applied the same spectral model derived from the broad-band fit of flare 2 and 3, also for flare 1, even if we had a smaller energy range. We fixed the slope of the power law index to the values found (see Table 1) and found the cut-off energy compatible with the one found for flares 2 and 3.

In Fig. 1, last panel, weak flares are visible after the main peak. To infer the flux at very low mass accretion rate we extracted a XRT/PC spectrum in the 0.1–6 keV energy band at ~2.2 hr after the main flare, see Fig. 1. This is the last time interval where the source is clearly detected in the XRT images. We call this weak flare, flare 4. Using the same model found for flare 3, the source was at a bolometric luminosity of 5×10^{35} erg s$^{-1}$, with a marginal indication of an increase of the absorption column density.

The best fit parameters for the different flares are reported in Table 1. In Fig. 2, we show the broad-band unfolded spectrum and the residuals of the data to the PL with a high energy cut-off model for flare 3.

During the outbursts the derived absorption of $\sim 1 \times 10^{21}$ cm$^{-2}$ is compatible with the total Galactic absorption in that direction as estimated from the HI maps, indicating that the source is not surrounded by large amounts of material. Some information about the distribution of matter around an X-ray binary can be inferred from the absorption column density.

TABLE 1

Dataset	Flare 1	Flare 2	Flare 3	Flare 4
N$_{H}$ a	...	0.1 (f)	0.1±0.03	<0.75
E_c (keV)	12.7±2.8	11.8±2.8	15±5	15 (f)
χ^2/d.o.f	14.06/12	57.09/90	80.36/75	11.72/10
Flux$_{bol}$ b	7.0×10$^{-10}$	2.7×10$^{-10}$	6.0×10$^{-10}$	5.0×10$^{-10}$

a in units of 1022 cm$^{-2}$.

b Unabsorbed 0.1–100 keV flux in units of erg cm$^{-2}$ s$^{-1}$.

3. DISCUSSION AND CONCLUSIONS

IGR J08408–4503 is a recurrent SFXT with most likely sporadic episodes of accretion of matter from the wind of the Ob5Ib(f), HD 74194, supergiant companion star. The broad-band spectrum (0.3–200 keV) allowed us to perform an improved spectral analysis for the new source IGR J08408–4503 using XRT/BAT and JEM-X/ISGRI data. The best fit to the data required a PL with a high energy cut-off, see Table 1. The spectrum is typical for HMXBs hosting a NS (White et al. 1983) where the emergent radiation is presumably produced by accretion columns at the magnetic poles of the NS. The bolometric flare peak luminosity is of the order of $3 \sim 6 \times 10^{36}$ erg s$^{-1}$, which are typical values for wind accreting HMXB.

At low mass accretion rates, the source is observed at a bolometric luminosity of 5×10^{35} erg s$^{-1}$. The source's quiescent luminosity is in the order of $\sim 2 \times 10^{32}$ erg s$^{-1}$ (Kennea & Campana 2006).

During the outbursts the derived absorption of $\sim 1 \times 10^{21}$ cm$^{-2}$ is compatible with the total Galactic absorption in that direction as estimated from the HI maps, indicating that the source is not surrounded by large amounts of material. Some information about the distribution of matter around an X-ray binary can be inferred from the absorption column density.
TABLE 2

Parameter	Value
T_{eff} (k)	33000
R_\star (R_\odot)	14.5
M_\star (M_\odot)	28
log(L_\star/L_\odot)	5.3
M_{w}^a (M_\odot yr$^{-1}$)	2.3x10$^{-7}$
ν_{∞} (km s$^{-1}$)	2000±300
ν_{acc} (km s$^{-1}$)	776

*Calculated using Eq. 2.

The companion mass loss rate, \dot{M}_w, was calculated for HD 74194 using the average relation for the galactic O or B supergiants stars (Lamers & Cassinelli 1999).

$$\log(\dot{M}_w) = -1.37 + 2.07 \log(L_\star/10^6) - \log(\nu_{\infty} R_\star^{0.5}).$$ (2)

The \dot{M}_w value is a factor 10–100 lower that what found for the persistent wind accretion HMXB, like Vela X-1 or 4U 1700-37. The free parameter to obtain a higher N_H value for IGR J08408–4503 is to have a higher mass loss rates, \dot{M}_w. Using Eqs. (2) and (2) we can see that if the terminal wind velocity is a factor 5 lower (as observed for an intrinsically obscured high energy source IGR J16318-4848 (Filliatre & Chaty 2004)), we would have a higher absorption of $\sim 10^{23}$ cm$^{-2}$, but such a low wind velocity is not observed for HD 74194. This indicates that during the accretion of matter for IGR J08408–4503 there is no accretion wake of dense matter surrounding the compact object (Blondin 1994).

We will assume that all the material within the capture radius

$$R_{\text{acc}} = \frac{2GM_\star}{\nu_\star^2 + \nu_{\infty}^2}$$ (3)

$$\approx 9.2 \times 10^8 \left(\frac{M_{\text{acc}}}{M_w} \right)^{1/2} \left(\frac{M_\star + M_\star}{28M_\odot} \right)^{1/3} P_{\text{orb}}^{1/3} \text{ cm}$$

is accreted by the compact object (Bondi & Hoyle 1944). M_\star is the mass of the NS, ν_\star its orbital velocity, and $M_{\text{acc}} = L_\star c^{-2} \eta^{-1}$ the mass accretion rate, where $\eta \sim 0.2$ is the accretion efficiency for a NS. The rate of mass captured is then given by $\dot{M}_{\text{acc}} = \dot{M}_w R_{\text{acc}}^2/(4a^2)$, with $R_{\text{acc}} = 9.3 \times 10^9$ cm. We consider that $\nu_{\infty} >> \nu_\star$ and $a >> R_\star$. From the measured persistent emission $L_\star \sim 2 \times 10^{32}$ erg s$^{-1}$, we derive from Eq. (4) an orbital period of \sim1.5 years.

The condition for accretion to take place is that the NS magnetosphere radius is within the mass capture radius and the corotation radius, i.e. $R_{\text{Mag}} \leq R_{\text{acc}}$ and $R_{\text{Mag}} \leq R_{\text{cor}}$ (Illarionov, A. & Sunyaev, 1974). If we set $R_{\text{acc}} = R_{\text{cor}}$ we have $P_{\text{spin}} = 2.36 \times 10^{27}(1.4M_\odot)\nu_{\infty}^{-3} \approx 7000$ s. The magnetosphere radius is given by

$$R_{\text{Mag}} = 0.1\mu^{1/3} M_w^{1/6} \nu_{\infty}^{-1/6} M_\star^{1/9} P_{\text{orb}}^{2/9},$$ (4)

where $\mu = BR_\text{NS}^3$. Setting the accretion condition $R_{\text{Mag}} = R_{\text{cor}} = R_{\text{acc}}$ the magnetic field has to be $B \sim 1.1 \times 10^{13}(P_{\text{orb}}/1\text{yr})^{-2/3}$ G, for $R_{\text{NS}} = 10^6$ cm. Assuming the orbital period derived above, the NS magnetic field has to be of the order of 10^{13} G. These are typical magnetic field values for young HMXBs hosting a NS, like e.g. Vela X-1 (La Barbera et al. 2003).

The low N_H value measured during the flares is not consistent with the picture in which they are caused by clumps in the donor wind. In an alternative scenario, the flares could be associated with the sudden accretion onto the magnetic poles of matter previously stored in the magnetosphere during the quiescent phase. However, in order to have such a mass storage, the above simplest accretion conditions have to be studied for different scenarios (e.g. $R_{\text{acc}} > R_{\text{cor}} > R_{\text{Mag}}$). One can derive these conditions by varying opportunistically P_{orb}, P_{spin}, and B (Bozzo et al. 2007).

We conclude that these recurrent sporadic very short outburst episodes, due to the accretion of matter from the wind of a supergiant companion star, imply a spin period of the order of hours with a long orbital period, and a 10^{13} G magnetic field for the NS. The determination of all the system parameters can help to solve the accretion mechanism.

DG and MF acknowledge the French Space Agency (CNES) for financial support. MF is grateful to Luigi Stella and Enrico Bozzo for helpful discussions during his visit in Rome. ADL acknowledges an ASI fellowship. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain, Czech Republic and Poland, and with the participation of Russia and the USA. We acknowledge the use of public data from the Swift data archive.
REFERENCES

Barba, R., Gamen, R., & Morrell, N. 2006, Astr. Tel., 819
Barthelmy, S. D., et al. 2005, Space Science Reviews, 120, 143
Blondin, J., M. 1994, ApJ, 436, 756
Bozzo, E., et al. 2007, in preparation
Burrows, D.N., Hill, J.E, Nousek, J.A., et al. 2005, Space Sci. Rev., 120, 165
Bondi, H., & Hoyle, F. 1944, MNRAS, 104, 273
Conti, P., S., Myckky Leep, E., Lorre, J., J. 1977, ApJ, 214, 759
Dickey & Lockman, 1990, ARAA, 28, 215
Filliatre, P. & Chaty, S., 2004, ApJ, 616, 469
Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005
Götz, D., Schanne, S., Rodriguez, J., et al. 2006, Astr. Tel., 813
Heap, S., R. & Corcoran, M., F. 1992, ApJ, 387, 340
Humphreys, R., M., 1978, AJ, 38, 309
Ilharivinov, A. & Sunyaev, R. 1977, A&A, 39, 181
in’t Zand, J.J.M. 2005, A&A, 441, L1
Kennea, J.A., Campana, S. 2006, Astr. Tel., 818
La Barbera, A., et al. 2003, A&A, 400, 993
Lamers, H., J., G., L., M., Snow, T., P., & Lindholm, D., M., 1995, ApJ, 455, 269
Lamers, H., J., G., L., M. & Cassinelli, J., P. 1999, in Introduction to Stellar Winds (Camb. Univ. Press)
Lebrun, F., Leray, J.-P., Lavocate, Ph., et al. 2003, A&A, 411, L141
Lund, N., Budtz-Joergensen, C., Westgaard, N. J., et al. 2003, A&A, 411, L231
Lutovinov, A., Revnivtsev, M., Gilfanov, M., et al. 2005, A&A, 444, 821
Masetti, N., et al. 2006, Astr. Tel., 815
Mereghetti, S., Sidoli, L., Paizis, A., & Götz, D. 2006, Astr. Tel., 814
Negueruela, I., et al., ApJ, 638, 982
Pelizzza, L.J., Chaty, S., & Negueruela, I. 2006, A&A, 455, 653
Rubin, B., C., Finger, M., H., Harmon, B., A., 1996, ApJ, 459, 259
Schröder, S.E., et al. 2004, A&A, 428, 149
Sidoli, L., Paizis, A., & Mereghetti, S. 2006, A&A, 450, L9
Sguera, V., Barlow, E.J., Bird, A.J., et al., 2006, A&A, 444, 221
Sguera, V., Bazzano, A., Bird, A.J., et al. 2006, ApJ, 646, 452
Smith, D.M., Heindl, W.A., Markwardt, C.B., et al. 2006, ApJ, 638, 974
Ubertini, P., Lebrun, F., Di Cocco, G., et al. 2003, A&A, 411, L131
Walborn, N. R. 1978, AJ, 78, 1067
Walter, R., Zurita Heras, J., Bassani, L., et al. 2006, A&A, 453, 133
White, N.E., Swank, J.H., & Holt, S.S. 1983, ApJ, 270, 711
Winkler, C., Courvoisier, T.J.-L., Di Cocco G., et al. 2003, A&A, 411, L1
Ziaeepour, H., Burrows, D.N., Campana, S., et al. 2006, GCN Circ., 5687