ET-13
CONTROL OF ACTIVATED MICROGLIA THROUGH P2X4 RECEPTOR IN RADIATION BRAIN NECROSIS
Kondo Natsuko1, Sakurai Yoshimori1, Takayuki Kasahara, Takashi Takada, Nakashoku Takai, Kyoko Kurihara, Shinichi Miyatake, Shoji Oda, Minoru Suzuki1,1 Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan

INTRODUCTION: Brain radiation necrosis (RN) is severe adverse event after radiation therapy for brain tumor patients, especially in case of re-irradiation. Although corticosteroids or vitamin E, etc. are clinically used for RN, the effect is limited and underlying mechanism is to be clarified. Therefore, we established RN mouse model with irradiating right hemisphere of mouse brain using proton beam at dose of 60 Gy [Kondo et al., 2015]. In this study, we investigated change of phospholipids and lipid mediators after irradiation using this RN model in correlation with microglia activation. METHODS: After irradiation, change of phospholipids and lipid mediators in mouse brain was investigated using imaging mass spectrometry and LC-MS. Immunohistochemistry on microglia and P2X4 receptor, a receptor for lysophosphatidylcholine (LPC) was performed. RESULTS: In imaging mass spectrometry, 1 and 4 months after irradiation, phosphatidylcholine (PC): (16:0/20:4), (18:0/20:4) decreased in irradiated area compared non-irradiated area. On the other hand, LPC: (16:0) increased in irradiated area compared to non-irradiated area after 1 month and 4 months irradiation. PC: (16:0/20:4) is a precursor of LPC (16:0) and arachidonic acid (20:4). By LC-MS, LPC was twice higher in irradiated area compared to non-irradiated, 6 months after irradiation. Microglia was highly activated in irradiated area compared to non-irradiated from 3 months after irradiation to 8 months and strongly co-expressed P2X4 receptor in irradiated area after 6 months. Pretreatment with P2X4 receptor agonist administration test prolonged the RN to 12 months after irradiation. CONCLUSION: In RN, LPC may continuously activated microglia through P2X4 receptor and cause chronic inflammation after irradiation. P2X4 agonist administration test including action resolution and immunohistochemistry is ongoing.

TUMOR BIOLOGY/MODELS (TB)

TB-01
HUMAN IPS CELL- DERIVED BRAIN TUMOR MODEL UNCOVERS THE EMBRYONIC STEM CELL SIGNATURE AS A KEY DRIVER IN ATYICAL TERATOID/RHABDOID TUMOR
Yukinori Terada1, Norhide Jo, Yoshiki Arakawa, Yohi Mineharu, Yasuhiro Yamada, Susumu Miyamoto;1 Department of Neurosurgery, Osaka Red Cross Hospital, Osaka, Japan

Atypical teratoid/rhabdoid tumor (AT/RT), which harbors SMARCB1 mutation and exhibits a characteristic histology of rhabdoid cells, has a poor prognosis because of the lack of effective treatments. We established and characterized pluripotent stem cells (hPSCs) which enabled investigation of the pathogenesis of AT/RT. SMARCB1-deficient hPSCs and neural progenitor-like cells (NPLCs) efficiently gave rise to brain tumors when transplanted into mouse brain. Notably, the emergence of rhabdoid cells was significantly enhanced in tumors from SMARCB1-deficient hPSCs. An embryonic stem cell (ESC)-like gene expression signature was more prominent in hPSC-derived tumors when compared with NPLC-derived tumors. Moreover, mice transplanted with SMARCB1-deficient hPSCs showed poor survival than NPLC-transplanted mice. Activation of the ESC-like signature by the forced expression of reprogramming factors conferred a rhabdoid histology in SMARCB1-deficient NPLC-derived tumors, suggesting that acquisition of the ESC-like signature is responsible for the rhabdoid histology. Consistently, we found activation of the ESC-like gene expression signature and an ESC-like DNA methylation landscape in clinical specimens of AT/RT. Mechanistically, c-MYC expression was sufficient to acquire the ESC-like signature and the rhabdoid histology in SMARCB1-deficient NPLC-derived tumors, which resulted in poor survival. Together, SMARCB1-deficient hPSCs offer the first human model for AT/RT, which uncovered the unappreciated role of the activated ESC-like signature in the poor prognosis and unique histology. Finally, we performed a CRISPR/Cas9 knockout screening to inhibit activation of the ESC-like signature in AT/RT. Our effort identified candidate genes as therapeutic targets, including RAD21, which encodes a key component within the cohesin complex. Notably, chemical inhibition of HDAC3, which indirectly targets the function of cohesin, with simultaneous inhibition of EZH2, efficiently suppressed activation of the ESC-like signature and inhibited the growth of AT/RT cells. Collectively, we propose that the ESC-like signature could be a crucial therapeutic target for AT/RTs with rhabdoid histology.

TB-02
NF-KB CANONICAL PATHWAY ACTIVATION DRIVES GLYCOLYSIS AND TUMOR PROGRESSION IN PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA
Kensuke Tateishi1, Nobuyoshi Sasaki, Masahito Kawaza, Yohei Miyake1, Taishi Nakamura1, Yukie Yoshii, Yoko Matsushita, Shigeta Miyake1, Jo Sasa1, Shoji Yamanaka, Tetsuya Yamamoto1, Hiroaki Wakimoto, Motoo Nagane, Koichi kimura;1 Department of Neurosurgery, Yokohama City University

Recent genomic analyses have identified highly recurrent genetic alterations in PCNSL. However, due to the lack of clinically representative PCNSL preclinical models, the clinical relevance of these alterations remains largely unknown. Here, we established the largest panel of 12 clinically relevant PCNSL patient-derived orthotopic xenografts retained the histopathologic phenotype, lymphoma expression subtype, copy number alterations and 90% of the non-synonymous mutations of primary tumors, with 100% concordance of MYD88 and CD79B mutations, which are highly recurrent in PCNSL. Patient tumor regression with high-dose methotrexate correlated with in vitro sensitivity to methotrexate in corresponding PCNSL models. By knocking down canonical NF-kB pathway genes, we found that successful orthotopic xenograft formation was dependent on NF-kB canonical pathway activation induced by MYD88 mutation or overexpression of EBV-related LMP1. Metabolically, PCNSL xenografts showed heightened the high 18F-fluorodeoxyglucose uptake observed in patients and demonstrated glycolytic dependence, revealing new potential therapeutic strategies in PCNSL. Collectively, we found NF-kB canonical pathway activation as a crucial driver of PCNSL xenograft progression and found that NF-kB canonical pathway inhibition as an addition to glycolytic pathways, revealing a novel potential therapeutic strategy. Our PCNSL xenograft panel represents a valuable and reproducible preclinical tool that has the potential to help decipher how genetic and/or epigenetic alterations contributes to lymphomagenesis and tumor maintenance and enhance the development of novel therapeutic strategies in PCNSL.

TB-03
THE SURVIVAL PROLONGATION EFFECT OF NOVEL BORON COMPOUND FOR BNCT USING RAT BRAIN TUMOR MODEL
Yasuake Fukuo1, Shinji Kawabata1, Hideki Kashiyagi1, Takuya Kametsumi1, Kouji Takeuchi1, Ryo Hiramatsu1, Masahiko Wainuchi1, Kouji Ono, Shinichi Miyatake;1 Neurosurgery, Osaka Medical University, Osaka, Japan

INTRODUCTION: Boron neutron capture therapy (BNCT) is form of tumor-cell selective particle irradiation. Although novel boron compounds have been developed, BPA (boronophenylalanine) and BSH (borocaprate sodium) are used in the clinical practice. The development of effective boron compounds is a major theme. We used Dodecaborate-containing BPA (AAL) which is combined the characteristics of both BPA and BSH. We have been conducting research on how the new compound for BNCT will affect rat brain tumor model. MATERIALS AND METHODS: We evaluated the boron concentration of F98 glioma cells for BPA and AAL, and the biodistribution of these following BPA administrated intravenously (i.v.) or AAL intracranially. The radiation ability of boron showed almost the same value at all exposure times in high concentration. In biodistribution study, the AAL(CED) 6h after the termination of boron showed almost the same value at all exposure times in high concentration. In biodistribution study, the AAL(CED) and BPA(i.v.) combined group had a significant survival prolongation compared with the single-agent group. It is thought that AAL(CED) and BPA(i.v.) combined group (38(36–40) days) was shorter than that in the BPA(i.v.) group(34(33–36) days). And the combination group of AAL(CED) and BPA(i.v.) gave the most significant prolongation of survival(38(36–40) days). DISCUSSION: AAL(CED) and BPA(i.v.) combined group had a significant survival prolongation compared with the single-agent group. It is thought that AAL irradiated by thermal neutron had a cell-killing effect on cells in which BPA was not taken up. The combination uses of AAL (CED) provides additional BNCT effects. The mechanism by which AAL is incorporated has not been clarified, and further experiments including the influence on normal cells and brain tumor will be necessary. CONCLUSION: Dodecaborate-containing BPA (AAL) is a novel boron compound for BNCT that can be expected to prolong the survival time in combination with BPA.

TB-04
TERT PROMOTER MUTATION AS A SUSCEPTIBLE MOLECULAR MARKER OF BNCU LOCAL THERAPY
Shigeta Miyake1, Kensuke Tateishi1, Jo Sasa1, Yohei Miyake1, Shimochirou Matsuyma1, Motoo Nagane, Koichi Kimura1

1Department of Neurosurgery, Osaka Medical University, Osaka, Japan

December 2019

i10 NEURO-ONCOLOGY ADVANCES
INTRODUCTION: Alkylating agents, including Temozolomide (TMZ) and CCNU (ACNU) have been widely accepted as a standard treatment in malignant gliomas. Several studies also demonstrated that BCNU wafer placement extended survival in glioblastoma patients. However, little study demonstrated gene-specific efficacy of BCNU local therapy in malignant gliomas. Herein, we investigated BCNU sensitivity for patient-derived primary cultured glioma cells. MATERIALS AND METHODS: From January 2017 to July 2019, 58 gliomas (grade III, IV) were tested genomic analysis and TMZ-based cell viability after BCNU treatment. IDH1/2 mutation and TERT promoter mutations were determined by Sanger sequencing. MGMT methylation status were evaluated by methylation specific PCR. RESULTS: Of 58 cases, 10 cases (17.2%) and 32 (55.2%) cases harbored IDH1/2 mutation and TERT mutation (C227T and C2370T), respectively. Among them, co-mutation was identified in 5/38 cases (8.6%). MGMT was methylated in 17/58 cases (29.3%). Interestingly, the presence of TERT promoter mutation was positively correlated with BCNU sensitivity, particularly in IDH1/2 wild-type tumors (p<0.05). In contrast, there was no significant relationship between TMZ sensitivity and IDH mutation/MGMT methylation status. CONCLUSION: Although sample size is small, our results imply TERT promoter mutations might be a predictive molecular marker for BCNU sensitivity in malignant gliomas. Since TERT mutations are located at two hot spot loci (C227T and C2370T), vast majority of TERT promoter mutations can be evaluated during surgery, which may contribute tailored therapeutic strategy in malignant gliomas.

TB-06
MOLECULAR MECHANISM OF BRAIN TUMOUR FORMATION DRIVEN BY SUPRATENTORIAL EPENDYMOMA-SPECIFIC YAP1 FUSION GENES
Daishu Kawaschit, Kristian Pajpiter, Yijie Wei, Konstantin Okonechnikovt, Patricia Silvat, David Jonesi, Mikio Hoshinot, Stefan Pfsitet, Marcel Koolt, Wei Li; Hopp-Children's Cancer Center Heidelberg (KiTZ)

YAP1 fusion-positive supratentorial ependymomas predominantly occur in infants, but the molecular mechanisms of oncogenesis are unknown. Here we show YAP1-MAML1D1 fusions but not YAP1 wildtype are sufficient to drive malignant transformation of neural progenitors in the developing cerebrum cortex in mice, and the resulting tumours share histo-molecular characteristics of human ependymomas. Nuclear localization of YAP1-MAML1D1 protein is associated with its oncogenicity and is mediated by the nuclear localization signal of MAML1D1 in a YAP1-Ser127 phosphorylation-independent manner. Chromatin immunoprecipitation-sequence analyses of human YAP1-MAML1D1-positive ependymoma reveal enrichment of NFI and TEAD transcription factor binding site motifs in YAP1-bound regulatory elements, hypothesizing the important role of these transcription factors in YAP1-MAML1D1-driven tumourigenesis. Indeed, co-immunoprecipitation assays revealed physical interactions of TEADs and NFI/AB with the YAP1 and MAML1D1 domains of the fusion protein, respectively. Mutation of the TEAD binding site in the YAP1 fusion or repression of NFI targets prevents tumor induction in mice. Together, these results demonstrate that the YAP1-MAML1D1 fusion functions as an oncogenic driver of ependymoma through recruitment of TEADs and NFIs, indicating a rationale for preclinical studies to block the interaction between YAP1 fusions and NFI and TEAD transcription factors.

TB-08
PATIENT DERIVED XENOGRIFT'S BIOBANK FROM KANSAI MOLECULAR DIAGNOSIS NETWORK FOR CENTRAL NERVOUS SYSTEM TUMORS
Noriyuki Kijimait, Daishu Kanematsu, Tomoko Shofudait, Masahiro Nonakait, Ryuichi Iwatait, Junya Fukuiimin, Takashi Sazayama, Naohiro Tsuyuguchit, Akihiro Nakamurait, Yonehiro Kijimait, Takashi Kandait, Kanji Kawashimat; 1Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan

Patient-derived xenografts (PDXs) are essential tools for translational research for brain tumors. However, it is sometimes difficult for each institution to establish PDXs because it needs experiences and techniques and it also takes a lot of works to establish them. Thus we aim to establish patient derived xenograft’s biobank among institutions of Kansai Molecular Diagnostic Network for Central Nervous System (CNS) Tumors, Osaka, Japan. We have already begun satisfying articular anaplastic astrocytic PDx, twelve glioblastoma IDH wild type PDx, two medulloblastoma Shh sub-group PDx, one atypical teratoid/h万博d tumor (AT/RT) PDx, and three metastatic brain tumor PDx. Furthermore these PDx can also be cultured in vitro, except 2 medullloblastoma SH subgroup PDx, 1 AT/RT PDx. However, we have not yet established any PDx from low grade glioma, ependymoma, primary central nervous system lymphoma (PCNSL), diffuse intrinsic pontine glioma (DIPG).

We began sharing these PDx among the institutions of Kansai Molecular Diagnostic Network for CNS Tumors, Osaka, Japan. However, further improvement is necessary to succeed in establishing PDx from low grade glioma, PCNSL, DIPG, etc. and get enough number of PDx so we can share PDx from almost all of the brain tumors.

TB-09
MRNA-SEQ FOR PERICYTES FROM IN VITRO BRAIN METASTASIS AND BLOOD-BRAIN BARRIER MODEL.
Kenta Ujifuit, Takashi Fujimoto, Kei Saitoi, Yoichi Morofu, Hideki Muto, Hiroshi Masumotot, Shinusuke Nakagawat, Masami Niwot, Takayuki Matsuo1; 1Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences.

BACKGROUND: Metastatic brain tumors associated with poor prognosis and limited treatment options. The blood-brain barrier (BBB) is supposed to play a major role in brain metastasis. However, the role of pericytes in brain metastasis formation is not clearly known about the role of pericytes in brain metastasis formation. This study aimed to reveal the expression profile of interaction between pericytes, endothelial cells, and cancer cells. METHODS: The Institutional review board approved this study. We established an in vitro BBB model with rat primary cultured BBB-related cells (endothelial cells and pericytes) and investigated the gene expression of pericytes under the lung cancer cell's coculture circumstances. Pericytes showed inhibition of the KNS-62 cell proliferation significance (p<0.05). RNA was extracted from the pericytes using miRNeasy mini kit. Complementary DNA library preparation was performed with QuantSeq 3'mRNA-Seq Library Prep Kit. RNA-seq was performed with MiSeq using MiSeq Reagent Kit v3. Sequencing reads were analyzed on the MiSeq (Illumina). The expression data were analyzed with the Omim and KEGG databases. RESULT: The RIN value of RNA < 8.0 was confirmed. Data quality was acceptable in Fast QC analysis. In TCC differential expression gene (DEG) analysis, cluster analysis showed that the influence of pericyte lot difference was stronger than the change between cell lines and control. Therefore, lot specific DEG analysis was performed; the data were pretreated and re-analyzed to try to identify genes involved in the suppression of cancer cell growth. DISCUSSION: This study revealed that some expression profiles of brain pericytes implemented in the prevention of metastatic lung cancer cell proliferation in the brain. Pericytes exert an anti-metastatic effect and thus have the potential for the preventive treatment of brain metastasis.

IMMUNOLOGY (IM)

IM-01
P53 GAMMA INHIBITOR FOR OVERCOMING TREATMENT RESISTANCE IN COMBINATION THERAPY OF TEMOZOLOMIDE AND ANTI-PD1 ANTIBODY FOR GLOBLASTOMA PATIENTS.
Eichi Ishikawait, Tsuabsa Miyaizakit, Masahide Matsuadas, Shengo Takanoto, Akira Matsumurat; 1Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan

PURPOSE: Multidisciplinary therapies including immunotherapy in glioblastoma (GBM) patients often cause long survivor, while early relapse in GBM still remains. We should find factors associated with the immunotherapy-resistance for overcoming it. We previously reported that the infiltration of PD-1 positive cells and M2 macrophages (M2M&phi) increased in recurrent specimens compared to the initial specimens of GBMs treated with chemo-radiotherapy and autologous CAR-T cell immunotherapy. We previously reported that the infiltration of PD-1 positive cells and M2 macrophages (M2M&phi) increased in recurrent specimens compared to the initial specimens of GBMs treated with chemo-radiotherapy and autologous CAR-T cell immunotherapy. We measured PD-L1 expression and cytokine production associated with M2M&phi were evaluated. TMZRTS cells were implanted in mice flank, followed by anti-PD-L1 antibody and/or IPI-549 administration. RESULTS: Relative cell proliferation rate of TMZRTS cells was lower than TS cells, while PD-L1 mRNA expression was higher. Treatment with PD-L1 antibody caused marked infiltration of M2M&phi in glioma tissue. The