Quantitative GC-FID analysis of heroin for seized drugs

Bayram Yüksel1,2
1Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, USA
2Giresun University, Espiye Vocational School, Giresun, Turkey

Aim: Heroin is a semi-synthetic opioid, which is widely abused due to its euphoric effects. It is responsible for numerous deaths or diseases each year throughout the world. The goal of this work was to validate and establish a simple and reliable GC-FID method for quantitative analysis of heroin in seized drug samples in accordance with the predicted sample matrix. Material and Method: Detection parameters and chromatographic conditions were optimized in order to achieve an advanced method. Separation was accomplished on a HP-5 column (30 m-0.32 nm ID-0.25 μm) utilizing n-tetracosane as an internal standard at the concentration of 0.25 mg/mL in chloroform/methanol (1:1) mixture. Method validation was processed by means of specificity, linearity, accuracy, precision, range, quantitation limit and detection limit. Results: Method provided a great linearity with correlation coefficients ($r^2=0.9994$) for heroin. The limit of detection and limit of quantification values of GC-FID method for heroin analysis were 2.20 µg/mL and 7.33 µg/mL, respectively while the limit of linearity was 1000 µg/mL. Mean recovery value obtained from spike study was 99.89%, and relative error calculated after CRM analysis was equal to 1.80%, indicating that the method was accurate. Discussion: Inter-day stability of the instrument was demonstrated by use of the control chart. The method represented is comparatively simple, fast, precise, and pertinent for clandestine drug analysis in toxicological, pharmaceutical, and forensic laboratories.

Keywords
Drug Abuse; Clandestine Drug; Heroin; Toxicology; Forensic Chemistry; Validation; GC-FID

DOI: 10.4328/JCAM.6139 Received: 28.12.2018 Accepted: 26.01.2019 Published Online: 29.01.2019 Printed: 01.01.2020 Ann Clin Anal Med 2020;11(1):38-42

Corresponding Author: Bayram Yüksel, Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, USA. Giresun University, Espiye Vocational School, Giresun, Turkey. T.: +1-304-276-6820, +90-454-310-1430 E-Mail: bayrAmyuksel83@gmail.com, bayram.yuksel@mail.wvu.edu

ORCID ID: https://orcid.org/0000-0001-7686-8648
Introduction

Heroin is a semi-synthetic drug formulated by acetylation of morphine presenting as the main opiate in opium poppy tears. As an intravenous illicit drug, heroin addiction is a phenomenon involving all age groups in Europe, and it is responsible for many deaths or diseases each year throughout the world [1,2]. Although some individuals may use heroin in a controlled manner [3], most of those who try to use heroin become addictive to this substance [4]. Chemical structure of heroin, 6-monooacetyl-morphine (6-MAM) and morphine, are shown in Figure 1.

Following oral administration, heroin is subjected to comprehensive pre-systemic biotransformation by deacetylation, resulting in a pharmacologically active drug for the systemic delivery of morphine [5]. Although injection of heroin bypasses pre-systemic metabolism effect, it can pass the blood-brain barrier quickly by reason of the acetyl groups causing it further lipophilic than morphine [6,7]. Nevertheless, heroin is rapidly metabolized first to 6-MAM following systemic administration, and the half-life of heroin in humans is nearly 1.8 to 7.8 minutes [8]. Like other opioids, morphine also causes euphoric, analgesic, and anxiolytic effects that is liable for its addictive function. The µ-opioid receptor in the brain intermediates to these effects of heroin [9]. However, heroin itself shows a comparatively small affinity for the µ receptor [10].

Heroin is converted to morphine through the 6-MAM in the body within minutes. In cases, morphine is usually a dominant active metabolite and is excreted from the body by transformation 3- and 6-glucuronides through the urine and bile. The existence of 6-MAM in urine differentiates the use of heroin from morphine. Low amount of codeine can also be involved in the urine of abusers by reason of acetyl codeine in heroin [11].

Heroin arrrievs Europe through four major transportation ways. The two essential directions are the Balkan and southern routes. The Balkan route passes Turkey through Bulgaria, Greece or Romania as well as the central, southern and Western Europe. Furthermore, Syria and Iraq have also appeared as an outgrowth of the Balkan route. The southern route which involves transition directions from Pakistan and Iran through African countries or directly into Europe by air or sea has recently been used. Northern route and the southern Caucasus crossing the Black Sea are the remaining minor routes [12]. Based on the Turkey Drug Report (2018): toxicological examination was accessible for the entire approved drug-related deaths. More than half of expirations was associated with multi-substances involving opioids, particularly heroin, engaged in approximately one-third of the deaths. The statistic of opioid-linked deaths recorded in Tukey has been approximately steady from 2014 up to now. Moreover, 8179 heroin cases were reported in 2016, and 5585.1 kg of heroin were seized in Turkey.

In the last decades, many chromatographic assays were advanced to determine heroin concentration in seized drugs as well as biological samples for toxicological, clinical, pharmaceutical, and forensic purposes [13-17]. As an alternative to immunoassays, thin-layer chromatography (TLC) appears as a beneficial method by reason of it is one of the practical and the cheapest techniques. Yet, such screening methods can fail to detect low concentration of drugs. For this reason, mass spectroscopy (MS) connected to liquid chromatography (LC) and gas chromatography (GC) are good instrumental examples for quantification and confirmation [18,19].

The aim of this research essentially focuses on validation and development of a GC-FID system for quantitative determination of heroin in clandestine drug specimens in order to improve the criminal justice system by providing enhanced objective conclusions. There are numerous works on this topic. However, major significance and novelty of this paper fundamentally depends on the advanced chromatographic resolution and detection sensitivity throughout validation and optimization of the technique designed in accordance with the predicted sample matrix. Ultimately, the study showed a satisfactory separation of all analyte peaks within 15 minutes.

Material and Methods

Instrumentation

The analysis was performed using Agilent GC 6890N (Santa Clara, California, USA) equipped with a flame ionization detector (FID) and an automated liquid sampler. An Agilent Series Auto-Injector was utilized for the injection of samples. This instrumentation was utilized for validation and optimization of an analytical method based on the determination of heroin in illicit samples.

Standard Solutions and Reagents

Stock solutions of methanol, chloroform, and n-tetracosane powder were obtained from Merck (Darmstadt, Germany). Certified reference material (CRM) of heroin, and caffeine, codeine, morphine, and 6-MAM solutions were obtained from Lipomed Services to Health®, Switzerland. All the other solvents and chemicals used during laboratory work were of analytical reagent grade. Ultrapure water (Merck Millipore Direct-Q8, Germany) with a resistivity of 18 MΩ.cm, was used to prepare the solutions during the experimental process.

Sample Preparation and Procedure

An Agilent Model 6890N gas chromatograph was utilized during analyses. One mL of the prepared solutions was placed into an autosampler vial for analysis, and separation was achieved on an HP-5 column (30 m, 0.32 mm ID, 0.25 μm) using an IS (tetracosane at the concentration of 0.25 mg/mL) in chloroform/ methanol (1:1, v/v) mixture. Ultrahigh purity (99.999 percent) hydrogen was chosen as the carrier gas with a flow rate of 1.5 mL/minute. The flame ionization detector and the injection port were sustained at 280 °C. An Agilent 7683 Series Auto-Injector was used during injection of samples. In the splitless mode (20:1), 2 mL amounts of samples were injected. Then, isothermally programmed oven temperature was adjusted to 180 °C for 10.00 minutes, and nitrogen was utilized as the auxiliary make-up gas for the detector. Operating parameters of the GC-FID system for heroin analysis was given in Table 1. All samples and calibration standard solution were prepared by use of an appropriate amount of our working solution: chloroform/methanol (1:1, v/v) mixture containing the IS (tetracosane at the concentration of 250 μg/mL). In order to prepare the
Determination of heroin in seized drugs

Method Validation
As outlined in International Conference on Harmonization (ICH) guidelines, this GC-FID method for analysis of heroin content in illicit specimens was validated based on specificity, accuracy, precision, range, linearity, quantitation limit and detection limit.

Results
Calibration
All calibration standards were analyzed 5 times, and a calibration curve of area heroin/area tetracosane versus concentration of heroin standards was drawn (Figure 2). The correlation coefficient (r^2) and equation of the calibration curve for heroin were respectively found to be $r^2=0.9994$ and $y=2.1106x-0.0003$ where y stands for area heroin/area tetracosane, and x is the heroin concentration in μg/mL. The chromatogram of heroin standard at 600 µg/mL, obtained after analysis according to proposed GC-FID method, was illustrated in Figure 3.

Limit of Detection, Quantification, and Linearity
The limit of detection (LOD) and lowest limit of quantification (LOQ) were determined by means of the standard deviation of the response and the slope of the calibration curve, according to International Conference on Harmonization (ICH) guidelines, LOD=3.3σ/S, LOQ=10σ/S, where σ is the standard deviation of the response and S is the slope of the calibration curve. The LOD and LOQ values of GC-FID method for heroin analysis were 2.20 μg/mL and 7.33 μg/mL, respectively. Limit of linearity (LOL) is the concentration at which the calibration curve departs from the linearity. Dynamic range refers to concentration intervals from LOQ to LOL, which was found between 7.73 μg/mL and 1000 μg/mL, in this study.

Precision
The precision of the method was assessed by means of repeatability, intermediate precision, and reproducibility parameters. The reproducibility of the recommended method was characterized by analysis of six different samples at the same concentration of 700 µg/mL from the same certified reference solution of heroin. Caffeine concentration of these samples was adjusted as 300 µg/mL to make sure the matrix effect. The mean of measured heroin concentrations was found as 699.17±9.64 μg/mL with 1.38% relative standard deviation (RSD). The result of the reproducibility study was shown in Table 2. Repeatability was controlled by injecting six individual samples of heroin at 200 μg/mL concentration while the intermediate precision was assessed by two analysts. Mean heroin concentrations from Analyst-A and Analyst-B were calculated as 202.17±2.56 μg/mL and 201.33±2.50 μg/mL, respectively. Repeatability study was summarized in Table 3.

Control Chart
The control chart study provides observation of inter-day and intra-day differences in peak intensity. From this point of view, a convenient procedure for monitoring the inter-day stability of the instrument was verified by use of the control chart. A mixture solution containing heroin at 500 µg/mL and caffeine at 500 µg/mL concentration was analyzed by GC-FID method once a month during a year, and the mean concentration of heroin was found as 499.330±10.30 µg/mL. After that, warning limits were calculated from the following formula: Warning

Table 1. Operation conditions for heroin analysis by GC-FID

Parameter	Conditions
Column	30 m – 0.32 mm ID – 0.25 mm HP-5
Injection	Splitless: 1/20
Injector Temperature	285 °C
Carrier Gas	Hydrogen at 1.5 mL/min flow rate
Oven Temperature Ramp Program	Initial Temperature 180 °C
	Start Time 1 minute
	Temperature Rate 10 °C/min
	Final Temperature 280 °C
	Final Time 10 minutes
Detector Temperature	275°C
Analysis Time	13.0 minutes
Determination of heroin in seized drugs

Optimization

Discussion

Table 2. The results demonstrating the reproducibility of the method for precision study.

Sample	Measured Heroin Concentration (µg/mL)
1	694
2	692
3	714
4	702
5	705
6	688

Statistics

Mean±SD 699.17±9.64
RSD% 1.38

Table 3. The results illustrating the repeatability and intermediate precision. (Six individual heroin samples at the concentration of 200 µg/mL were analyzed by two analysts)

Heroin Sample	Analyst-A (µg/mL)	Analyst-B (µg/mL)
1	205	199
2	200	204
3	203	201
4	199	198
5	205	204
6	201	202

Statistics

Mean±SD 202.14±2.56 201.33±2.50
RSD% 1.26 1.24

Selectivity/Specificity

Accuracy

Accuracy can be described as the proximity of a quantified magnitude to an approved certified value or known value [19]. The accuracy of the assay was evaluated by means of the percentage of recovery data from spike analysis. According to our experience, heroin samples seized in Turkey generally contain caffeine. Reference caffeine and heroin solution were therefore spiked in three different amounts. The mean of recovery was found as 99.89% for heroin (see Table 4). In addition, relative
error (RE) and coefficient of variation (CV) were also used to assess the accuracy of the method (see Table 5).

Conclusion

Heroin addiction is still a global public health problem through new psychoactive substances such as synthetic cannabinoids have been widely used by abusers. Turkey is exposed to international illegal heroin trafficking as transit and/or destination country. Hence, a significant amount of heroin has been seized by law enforcement agencies, indicating the importance of forensic drug analysis. In this study, GC-FID method for heroin analysis in illicit drug samples was developed and validated for accuracy, precision, and linearity. The mean recoveries obtained from CRMs analysis were found as 99.89% with relative error equal to 1.8%, indicating the method was accurate. The method provided LOD and LOQ equal to 2.20 μg/mL and 7.73 μg/mL, respectively. The GC-FID method is relatively fast, simple, precise, and applicable for routine forensic and pharmaceutical analysis. This work will improve the criminal justice system by providing quantitative and objective conclusions while examiners are presenting forensic evidence in the court.

Acknowledgment

Dr. Bayram Yüksel would like to express his gratitude to TUBITAK-BIDEB-2219 Program for the financial support

Scientific Responsibility Statement

The authors declare that they are responsible for the article's scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the contents and approval of the final version of the article.

Animal and human rights statement

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. No animal or human studies were carried out by the authors for this article.

Funding: None

Conflict of interest

None of the authors received any type of financial support that could be considered potential conflict of interest regarding the manuscript or its submission.

References

1. European Drug Report 2014: Trends and Developments. Luxembourg: Publications Office of the European Union; 2014.p.11-22. DOI:10.2810/33306
2. Jones CM, Christensen A, Gladden RM. Increases in prescription opioid injection abuse among treatment admissions in the United States, 2004-2013. Drug Alcohol Depend. 2017;176:89-95. DOI:10.1016/j.drugalcdep.2017.05.011
3. Lipton B, Esbensen K, Blumenthal R, et al. Heroin and Related Drugs: A Global Overview. 2016. DOI:10.1162/10576100.2016.116430
4. Boix F, Andersen JM, Merland J. Pharmacokinetic modeling of subcutaneous heroin and its metabolites in blood and brain of mice. Addict Biol. 2013;18(1):1-7. DOI:10.1111/j.1369-1600.2010.00298.x
5. Sawynok J. The therapeutic use of heroin: a review of pharmacological literature. Can J Physiol Pharmacol. 1986;64(1): 1-6. DOI:10.1139/y86-001
6. Klouz MG, Van den Brink W, Van Ree JM, Beijnen JH. Development of pharmaceutical heroin preparations for medical co-prescription to opioid dependent patients. Drug Alcohol Depend. 2005;80(3):285-95. DOI:10.1016/j.drugalcdep.2005.04.009
7. Oldendorf WH, Hyman S, Braun L, Oldendorf SZ. Blood brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science. 1972;178(4064):984-86.
8. Roux EL, Hultermans AD, van den Brink W, Van Ree JM, Beijnen JH. Pharmacokinetics and pharmacokinetic variability of heroin and its metabolites: review of the literature. Curr Clin Pharmacol. 2006;1(1):109-18.
9. Hand TH, Stinus L, Le Moal M. Differential mechanisms in the acquisition and expression of heroin-induced place preference. Psychopharmacology. 1989;96:1-7. DOI:10.1007/BF00442007
10. Inturrieci CE, Schultz M, Shin S, Umanz JG, Angel L, Simon EJ. Evidence from opiate binding studies that heroin acts through its metabolites. Life Sciences. 1985;35(Suppl.1):77-86. DOI:10.1016/0024-3205(85)90224-1
11. Drummer OH. Postmortem toxicology of drugs of abuse. Forensic Sci Int. 2004;142(2-3):101-13.
12. European Drug Report 2018: Trends and Developments. Luxembourg: Publications Office of the European Union;2018.p.24. DOI:10.2810/800331
13. Yang HS, Wu AH, Lynch KL. Development and validation of a novel LC-MS/MS opioid confirmation assay: evaluation of β-lucinodulosine enzymes and sample cleanup Methods. J Anal Toxicol. 2016;40(5):323-9. DOI:10.1093/jat/bkw026
14. Chan KW. Tutorial on method verification: A routine method for the determination of heroin. Egyptian Journal of Forensic Sciences. 2015;5(2):62-9. DOI:10.1016/j.ejfs.2015.03.008
15. Zhang D, Shi X, Yuan Z, Ju H. Component analysis of illicit heroin samples with GC/MS and its application in source identification. J Forensic Sci. 2004;49(1):81-6.
16. Musshoff F, Traffowski J, Madia B. Validated assay for the determination of markers of illicit heroin in urine samples for the control of patients in a heroin prescription program. Journal of Chromatography B. 2004;811(1-4):47-52. DOI:10.1016/j.jchromb.2003.04.072
17. UmanGS, Chia TS, Lipman RA, Schultz MF, Shin SU, Inturrieci CE. Determination of heroin and its metabolites by high-performance liquid chromatography. Journal of Chromatography B. 1982;233:213-25.
18. Valente MJ, Carvalho F, Bastos ML, Carvalho M, Guedes de Pinho P. Chromatographic methodologies for analysis of heroin and its metabolites in biological matrices. In: Salih B, editor. Gas Chromatography - Biochemicals, Narcotics and Essential Oils. Rijeka, Croatia: Intech; 2012. p.169-93.
19. Yüksel B, Şen N. Development and validation of a GC-FID method for determination of cocaine in illicit drug samples. Marmara Pharm J. 2018;22(4):511-18. DOI:10.12991/jrp.2018.92
20. Keyfi F, Varasteh A. Development and validation of a GC-FID method for diagnosis of methylmalonic acidemia. Rep Biochem Mol Biol. 2016;4(2):104-9.
21. Taylor T. GC temperature programming-10 things you absolutely need to know. LCGC North America. 2015;33(6):438.

How to cite this article:

Yüksel B. Quantitative GC-FID analysis of heroin for seized drugs. Ann Clin Anal Med 2020;11(1):38-42

Table 4. Accuracy study for heroin analysis by GC-FID

Spiked Caffeine (μg/mL)	Theoretical Heroin Concentration (μg/mL)	Measured Heroin Concentration (μg/mL)	Recovery (%)
100	900	894±6.0	99.33
350	650	662±5.0	101.85
800	200	197±4.0	98.50

Mean Recovery: 99.89

Table 5. Assessment of Relative Error (RE) and Coefficient of Variation (CV).

Standard Solution (Sigma-Aldrich)	Number of Analysis	Certified Value (μg/mL)	Measured Value (μg/mL)	CV (%)	RE (%)
Heroin	11	1.00±0.00	0.982±0.01	1.12	1.80