Expansion by regions with pySecDec

Emilio Villa

RADCOR + LoopFest, 17-21 May 2021
Tallahassee, FL, USA

Karlsruher Institut für Technologie
Introduction
Introduction

Why caring about loop integrals?

Observables are dominated by theoretical uncertainties\(^1\)

\(^1\)image from CERN HL-HE Yellow Report 2019
There are **many techniques** to evaluate loop integrals:

- Mellin-Barnes representation
- Differential Equations
- Dimensional Recurrence
- Sector Decomposition
- Asymptotic expansions (e.g. Expansion by regions)

In the following → *Expansion by regions*
Expansion by regions
Expansion by regions

First: motivation

\[G = \int \prod_{l=1}^{L} d^{D}K_l \frac{1}{\prod_{j=1}^{N} P_{ij}^{\nu_j} \left(\{k\}, \{p\}, m_j^2\right)} \quad d^{D}K \equiv \mu^{4-D} \frac{d^{D}k}{i\pi^{D/2}} \]

\(G \) is a complicated function of masses \(m_j \) and kinematics invariants \(p_i \cdot p_j \)

Idea: Exploit parameter hierarchies to expand integrand in small parameter, e.g. \(m^2/p^2 \rightarrow \) resulting integrals might be easier to evaluate

Caveat: one cannot just Taylor expand \(\rightarrow \) magnitude of \(k_l \)

\(^2\)The method was pioneered in arXiv:hep-ph/9711391 by M. Beneke and V.A. Smirnov
Expansion by regions

Example → limit $|p^2| \gg m^2$ of

$$G = \int d^D \kappa \frac{1}{(k + p)^2(k^2 - m^2)^2} \equiv \int d^D \kappa \ I$$

hard region: $|k^2| \gg m^2$

soft region: $|k^2|, |2k \cdot p| \ll p^2$

$$I_{(h)} \sim \frac{1}{(k + p)^2k^2} \left(1 + 2\frac{m^2}{k^2}\right)$$

$$I_{(s)} \sim \frac{1}{p^2(k^2 - m^2)^2} \left(1 - \frac{k^2 + 2p \cdot k}{p^2}\right)$$
Expansion by regions

Next \(\rightarrow\) *Integrate over whole domain*

\[
G = \int d^D \kappa \ I(h) + \int d^D \kappa \ I(s) - \int d^D \kappa \ I(hs) \quad \text{scaleless} \rightarrow 0 \text{ in } DR
\]

\[
= \frac{1}{p^2} \left[-\frac{1}{\epsilon} + \ln \left(\frac{-p^2}{\mu^2} \right) \right] + \frac{1}{p^2} \left[\frac{1}{\epsilon} - \ln \left(\frac{m^2}{\mu^2} \right) \right] + o \left(\epsilon, \frac{m^2}{p^2} \right)
\]

\[
= \frac{1}{p^2} \ln \left(\frac{-p^2}{m^2} \right) + o \left(\epsilon, \frac{m^2}{p^2} \right)
\]
Workflow

1. Find the regions
2. Expand
3. Integrate over **whole** domain
4. Sum together
Expansion by regions

Workflow

Find the regions

Expand

Integrate over whole domain

Sum together

how?

scaleless?
Expansion by regions

Let’s move to Feynman parameters → Lee-Pomeransky parametrisation

\[G \propto \int_0^\infty \prod_j dx_j \ x_j^{\nu_j-1} \ P^{-D/2} \]

where \(P = F + U \) is a polynomial

→ to find the regions we use the Geometric Approach

\[^3\text{arXiv:1308.6676 by R. Lee and A. Pomeranksy}\]
\[^4\text{arXiv:1011.4863 by A. Pak and A. Smirnov}\]
Consider

\[P(x, t) = \sum_{i=0}^{m} c_i x_1^{p_{i,1}} \cdots x_n^{p_{i,n}} t^{p_{i,n+1}} \]

with

- \(c_i \rightarrow \) non-negative coefficients
- \(x_i \rightarrow \) integration variables
- \(p_i = (p_{i,1}, \ldots, p_{i,n+1}) \in \mathbb{N}^{n+1} \rightarrow \) exponent vectors
- \(t \rightarrow \) small parameter
Expansion by regions

We define u such that $x_i = t^{u_i}$ (note: $t = t \rightarrow u_{n+1} = 1$) and write

$$P(u, t) = \sum_{i=0}^{m} c_i t^{p_i \cdot u}$$

The largest term of the polynomial is the one with the smallest value of $p_i \cdot u$ → let’s visualise this with the **Newton polytope** $\equiv \text{convHull} (p_1, p_2, \ldots)$

$$\text{convHull} (p_1, p_2, \ldots) = \left\{ a_1 p_1 + \cdots + a_n p_n \mid a_i > 0 \text{ } \forall i, \sum_{i=1}^{n} a_i = 1 \right\}$$
Newton polytope for $P(x) = x + x^2 + t$, along with an example vector u

$p_0 = (1, 0), p_1 = (2, 0), p_2 = (0, 1) \rightarrow P(t) = t^3 + t^6 + t$
Expansion by regions

When expanding according to v gives a convergent expansion at u?

\[p_t = (2,0) \]
\[(1,0) \]
\[(0,1) \]
\[u = (3,1) \]
\[v = (1,1) \]

Answer: \(\{ \text{vertices closest along } v \} \subset \{ \text{vertices closest along } u \} \)
Expansion by regions

We can find all the regions choosing the v_i

to be the normal vectors to the facets pointing upwards \rightarrow “how?” solved
Consider now $P(x, y) = x^2 + y^2 + xy$ and the corresponding polytope.

The points lie on the line $p_x + p_y = 2$ orthogonal to the $v = (1, 1)$ direction.
Expansion by regions

Rescaling with \(\mathbf{v} = (1, 1) \), i.e. \(x \rightarrow \rho x, \ y \rightarrow \rho y \) gives \(P(\rho x, \rho y) = \rho^2 P(x, y) \)

Note that the \textbf{area} of the Newton polytope \(\mathcal{N}_P \) is 0.
Expansion by regions

For non homogeneous polynomials \(\rightarrow Q(x, y) = x^2 + y^2 + x^2y \)

The area of \(\mathcal{N}_Q \) is non-zero.
Expansion by regions

Homogeneity\(^5 \equiv \text{Scalelessness}**

Multiple expansions produce lower dimensional polytope \rightarrow \text{“scaleless?” solved}

\(^5\text{homogeneity w.r.t. a subset of the Feynman parameters.}\)
it’s actually not that easy ...

- with negative coefficients \rightarrow new regions arise, hard to detect
- dimension as regulator not enough \rightarrow additional regulators needed
- overlap contributions $\neq 0$ \rightarrow e.g. when not using analytic regulators

For more details \rightarrow arXiv:1111.2589 by B. Jantzen

However: Problematic cases can in general be anticipated and the validity of the method assessed
pySecDec: new release!
What’s new?

1. automated **Expansion by regions**

but also

2. automatic reduction of $\lambda_i \rightarrow$ **no more sign check error!**

3. $\sum_k c_k l_k \rightarrow$ automatic adjustment # evaluation points

4. FORM settings adjusted automatically$^6 \rightarrow$ based on detected hardware

\rightarrow towards *amplitudes* evaluation

6Based on the work of T. Ueda
For physical kinematics, contour deformation might be needed:

\[z_i(x) = x_i - i\lambda_i x_i (1 - x_i) \frac{\partial F}{\partial x_i}(x) \]

In order to preserve Feynman prescription \(-i\delta, \lambda_i\) should be small enough.

Before: sign-check error and stop of the integration

Now: **automatic** \(\lambda_i\) reduction
The number of sampling points N_s for each integral is set depending on its contribution to the error estimate of the sum and on the time required for each integrand evaluation. We set N_s minimising:

$$T = \sum_i t_i + \beta \left(\Delta_S^2 - \sum_i c_i^2 \Delta_i^2 \right)$$

where:

- $t_i \rightarrow$ integration time of I_i
- $\Delta_i \rightarrow$ absolute error of I_i
- $\Delta_S \rightarrow$ absolute error of S (accuracy goal)
- $\beta \rightarrow$ Lagrange multiplier

→ global accuracy goal for the sum reached more efficiently.
Examples
For $s, \ t, \ m^2 = 5.3, \ -1.86, \ 0.1$ and expanding at LO in m^2:

- regions: 13
- integrals: 5866
- time1 (compile + integrate): 10 [h]
- accuracy: 1.4 %

1Integration ran on a system with 4 GeForce 1080 Ti GPUs
Diagram	psd (r: 10^1) [min]	psd (r: 10^3) [min]	ebr (r: 10^3) [min]
![Diagram](image1)	5.23	101.94	1.61
![Diagram](image2)	1.52	33.77	8.55
![Diagram](image3)	0.12	0.13	0.09

$r \equiv$ invariants ratio, accuracy: 10^{-2}
pySecDec: scan (ebr vs psd)

ebr is numerically stable over many orders of magnitude as ratio of scales increases.
Conclusions
Conclusions

Summary:

- Expansion by regions
- pySecDec new features:
 1. automatic λ_i reduction
 2. automatic adjustment # evaluation points
 3. FORM settings
- Examples
Thank you for listening!