Vertical stratification of the air microbiome in the lower troposphere

Daniela I. Drautz-Moses1,1, Irvan Luhung1,1, Elena S. Gusareva2,3, Carmon Kee4, Nicolas E. Gaultier4, Balakrishnan N. V. Premkrishnan5, Choou Fook Lee6, See Ting Leong6, Changsook Park7, Zhei Hwee Yap8,9, Cassie E. Heinle, Kenny J. X. Lau, Rikky W. Purbojati10, Serene B. Y. Lim9, Yee Hui Lim9, Shruti Ketan Kutmutia11, Ngu War Aung12, Elaine L. Oliveira13, Soo Guek Ng14, Justine Dacanay15, Poh Nee Ang16, Samuel D. Spence17, Wen Jia Phung18, Anthony Wong19, Ryan J. Kennedy, Namrata Kalsi20, Santhi Puramadathil Sasia21, Rudolf Hankers22, Thomas Feuerle23, Ulrich Corsmeier, and Stephan C. Schuster2–4

1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551; 2The Asian School of the Environment, Nanyang Technological University, Singapore 637459; 3Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; 4Institute of Flight Guidance, Technische Universität, 38108 Braunschweig, Germany; and 5Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

Edited by Edward DeLong, Daniel K. Inoue Center for Microbial Ecology: Research and Education, University of Hawaii at Manoa, Honolulu, HI; received September 20, 2021; accepted December 11, 2021

The troposphere constitutes the final frontier of global ecosystem research due to technical challenges arising from its size, low biomass, and gaseous state. Using a vertical testing array comprising a meteorological tower and a research aircraft, we conducted synchronized measurements of meteorological parameters and airborne biomass (n = 480) in the vertical air column up to 3,500 m. The taxonomic analysis of metagenomic data revealed differing patterns of airborne microbial community composition with respect to time of day and height above ground. The temporal and spatial resolution of our study demonstrated that the diel cycle of airborne microorganisms is a ground-based phenomenon that is entirely absent at heights >1,000 m. In an integrated analysis combining meteorological and biological data, we demonstrate that atmospheric turbulence, identified by potential temperature and high-frequency three-component wind measurements, is the key driver of bioaerosol dynamics in the lower troposphere. Multivariate regression analysis shows that at least 50% of identifiable airborne microbial taxa (n = ~10,000) are associated with either ground or height, allowing for an understanding of dispersal patterns of microbial taxa in the vertical air column. Due to the interconnectedness of atmospheric turbulence and temperature, the dynamics of microbial dispersal are likely to be impacted by rising global temperatures, thereby also affecting ecosystems on the planetary surface.

The scale and boundaries of microbial biomass in the earth’s atmosphere remain elusive despite the advances made for the understanding of microbial community composition of terrestrial and aquatic ecosystems (1, 2). This is despite a century of innovative research into the processes that disperse bacteria, fungi, and pollen in the atmosphere. Early interest in airborne microbial organisms is attributed to the works and writing of Louis Pasteur in 1865 (3), with subsequent assessments of airborne microorganisms relying on microscopic and cultivation-based methods (4, 5). Attempts to analyze the microbial content of the vertical air column date back to the early 20th century when aviation pioneers such as Charles Lindberg conducted the Skyhook experiments (6–10). Other vertical experimental designs resorted to air sampling on mountains with high elevation (11–13), low-height sampling at research towers (14), or meteorological balloons (15). In parallel to addressing the issues associated with vertical sampling, more recent studies have advanced the field taxonomically with molecular biological approaches, while still being challenged by limiting amounts of airborne biomass (16, 17). Furthermore, the recently discovered diel cycle of airborne microbial communities (18) mandates synchronized, time-resolved experimental approaches with short sampling times, requiring an array of high-volumetric air samplers. In this study, we have addressed the aforementioned issues through the combination of a meteorological tower and a research aircraft, fitted with a total of 38 high-volumetric air samplers. The newly designed vertical testing array allowed for simultaneous sampling of bioaerosols at a large spatial scale, while maintaining high temporal and taxonomic resolution. The combination of aviation, physicochemical measurements, advances in metagenomics, and air sampling techniques resulted in a high-resolution vertical map of airborne microorganisms in the lower troposphere. The previously discovered diel cycle of airborne microorganisms is now

Significance

Large-scale meteorological and biological data demonstrate the vertical stratification of airborne biomass. The previously described diel cycle of airborne microorganisms is shown to disappear at height. Atmospheric turbulence and stratification are shown to be defining factors for the scale and boundaries, dynamics, and natural variability of airborne biomass, resulting in the biological organization of the planetary air ecosystem. The atmosphere above the mixing layer height is proposed to act as a sink for microorganisms. With atmospheric processes being temperature dependent, rising global temperatures will result in major disruptions of the currently observed airborne microbial community structures. Increased abundances of radio-tolerant bacteria at height will allow investigation of these microorganisms’ life cycle in the planetary atmosphere.
shown to be a ground-based phenomenon that diminishes with height. Our analysis identified diurnal atmospheric turbulence and atmospheric stability as the key factors for the dispersal of ground-based microorganisms and the transport of biomass from higher air layers to the ground. Among the investigated physicochemical factors, temperature was identified as the main driver for atmospheric dynamics. Given the role of air temperature in regard to the abundance and diversity of airborne microorganisms, investigating the impact of global warming on atmospheric ecosystems is warranted, also in light of emerging novel airborne diseases (19).

Results
Vertical Testing Array. To enable the collection of metagenomics samples from vertical air columns, multiple spatial settings were evaluated. Sites that do not provide unrestricted airflow, such as high-rise buildings and mountain tops, were found to be unsuitable as they obstruct the natural airflow, resulting in highly similar taxonomic profiles at different heights (20) (SI Appendix, sections 11 and 12). An ideal experimental setup was found in the combination of a 200-m meteorological tower (MT) (Karlsruhe Institute of Technology [KIT], Institute of Meteorology and Climate Research, Karlsruhe, Germany) and a research aircraft (RA) (Technische Universität Braunschweig, Institute of Flight Guidance, Braunschweig, Germany), which were both fitted with an extensive set of meteorological sensors (e.g., temperature, absolute humidity, solar radiation, and wind speed) (Fig. 1A). In the instance of the MT, an automated sampling system was devised that allowed simultaneous air sampling at different heights and time points without human supervision. This resulted in an environmental time series with high temporal resolution (MT, ground and 200 m, 120 samples over 5 consecutive days). In the instance of RA sampling at a large spatial scale (0 to 3,500 m, 40-km triangle), human supervision for air sampling was required (five 4-h flights, 48-flight samples per flight, 12 samples per height, 24 ground samples, 360 total for the RA campaign). Twelve air samplers were rack mounted inside the aircraft cabin and provided with a stream of outside air that exceeded the samplers' airflow rate (300 L/min/sampler) by five- to sixfold (SI Appendix, Fig. S34 and Table S3). MT and RA experimental setups independently resulted in highly reproducible metagenomic profiles of the air samples taken. This enabled us to investigate airborne microbial communities relative to atmospheric stability in day/night settings and at various heights. By coordinating sampling times between MT and RA, datasets with both high temporal (six time points per 24 h) and large spatial resolution (0 to 3,500 m, 40-km triangle) were obtained.

Abundance and Diversity of Airborne Microbial Communities in the Vertical Air Column. Extracted DNA concentrations were used as a proxy for bioaerosol amassment as previously described (17, 18). As a result, we show that recorded DNA amounts vary with height. In the case of the MT, the highest diversity was observed for the large spatial-scale RA experiment (0.2 to 0.6 ng/m3), whereas a much smaller diel difference was assessed in slightly higher abundances of fungal taxa at heights of 200 to 300 m as compared to ground (Fig. 2B). This observation becomes apparent in the small spatial scale of the MT experiment, which results in partially overlapping microbial communities in the PCo analysis. In contrast, the larger spatial scale of the RA experiment results in a complete separation of ground- and height-based communities. The scale of this experiment reveals that the diel cycle of airborne microbial organisms diminishes with height and is entirely absent at heights greater than 3,500 m. All datasets of 200 to 300 m (MT and RA) were found to be in close enough proximity to the ground to contain components of the ground-based diel cycle. Importantly, at heights of 1,000 to 3,500 m, physicochemical parameters remain constant, as shown by the day/night temperature convergence, resulting in highly similar taxonomic profiles for all identified airborne microbial taxa (Fig. 2D). Temperature is therefore the key environmental parameter that drives the diel cycle of airborne microorganisms, as no other measured meteorological factor was significant. In fact, both experiments show that during the day, the air temperature near ground level is higher than at greater altitudes, whereas during nighttime, the air temperature profile is reversed, resulting in higher temperature at heights up to 300 m as compared to ground (Fig. 2B and D). This is reflected in slightly higher abundances of fungal taxa at heights of 200 to 300 m at night.

Diurnal Atmospheric Turbulence as a Driver of Atmospheric Microbial Dispersal. Diurnal dynamic and thermodynamic processes cause turbulence due to wind shear and/or buoyant convection of air masses located between the ground and the top of the mixing layer (ranging from 500 to 1,500 m). One measure that can indicate atmospheric turbulence when high-frequency wind measurements are not available is potential temperature (PT). When PT is constant or decreasing with altitude, vertical mixing is likely to occur. Inversely, increasing values of PT result in
Vertically stable, stratified air masses (21). This is illustrated in the MT experiment, where daytime measurements show decreasing PT values with height, indicating strong vertical convection during this time period (Fig. 3A, Left). In contrast, during the night, PT values increase with height, indicating vertically stable air masses (Fig. 3A, Right). Exceptions to this pattern were observed for day 5 (partly stable stratification) and night 2 (partly unstable stratification). Our data show that metagenomic profiles (Fig. 3B) and absolute abundances (Fig. 3C) of airborne biomass in height-stratified air layers can be matched to the established meteorological observations. This is illustrated by near-identical taxonomic profiles (Fig. 3) matched to the established meteorological observations. This is illustrated in our multivariate regression analysis, we calculated association of species abundance with height and plotted P values against the fold change of relative abundance. The analysis demonstrates a significant association (P < 0.05) of a large number of bacterial (n = 3,569 species) and Ascomycota (n = 144 species) taxa to height, in contrast to Basidiomycota (n = 16 species) (Fig. 4A, blue box). The respective ground-associated numbers are: Bacteria (n = 576 species), Ascomycota (n = 59 species), and Basidiomycota (n = 175 species) (Fig. 4A, green box). Considering only taxa significantly associated with height, a graph plotting abundances relative to ground and height visualizes the dispersal of airborne microbial communities at greater height.

Height- and Ground-Associated Airborne Microorganisms. Using the established measurements for MLH and nighttime SRL height, we investigated potential associations of identified airborne microorganisms to either ground or height. Despite the height of the tower (200 m) not exceeding the MLH, we can show that height-associated microbial diversity is larger than those of ground-level air masses (Fig. 4B). In our multivariate regression analysis, we calculated association of species abundance with height and plotted P values against the fold change of relative abundance. The analysis demonstrates a significant association (P < 0.05) of a large number of bacterial (n = 3,569 species) and Ascomycota (n = 144 species) taxa to height, in contrast to Basidiomycota (n = 16 species) (Fig. 4A, blue box). The respective ground-associated numbers are: Bacteria (n = 576 species), Ascomycota (n = 59 species), and Basidiomycota (n = 175 species) (Fig. 4A, green box). Considering only taxa significantly associated with height, a graph plotting abundances relative to ground and height visualizes the dispersal of airborne microbial communities at greater height.

Vertical stratification of the air microbiome in the lower troposphere. Drautz-Moses et al. (2022) demonstrated that the vertical structure of the atmosphere plays a crucial role in the distribution of airborne microorganisms. The study utilized a combination of environmental sampling and metagenomic analysis to investigate the microbial communities at different altitudes and times of day. The results showed that the vertical distribution of airborne microorganisms is influenced by the atmospheric stability, with distinct differences observed between day and night conditions. The authors also highlighted the importance of considering the diel cycle in understanding the vertical distribution of microorganisms, as there was a significant increase in microbial diversity and abundance during the night, particularly in vertically stable air masses. This study provides valuable insights into the ecological processes driving the vertical stratification of the air microbiome, which has implications for understanding the dispersal and fate of airborne microorganisms in the lower troposphere.
bacteria, Ascomycota, and Basidiomycota in the respective air layers (Fig. 4B). The observed differences between the ground- and height-associated communities are further amplified by the larger spatial scale of the RA experiment, in which ground-level samples were compared to samples from heights of 1,000 m and above (Fig. 4D). In this experiment (Fig. 4D, blue box), heights above 1,000 m were largely dominated by bacterial taxa (n = 1,572), while Ascomycota taxa were much less frequent (n = 19). The RA ground-level air layers (Fig. 4D, green box) showed similar ratios of Ascomycota (n = 206) and bacterial (n = 2,139) taxa with a location-specific reduction in Basidiomycota (n = 108). As in the MT, the ratio of Basidiomycota taxa between ground and higher altitudes was 10-fold, indicative of being strictly associated with the ground layer (sky, n = 12; ground, n = 108), albeit at a lesser abundance compared to the MT experiment (Fig. 4D and E).

Abundance of Radio-Tolerant Microorganisms in Higher Air Layers. The above-described dispersal and stratification patterns of specific microbiota in the vertical air column can be shown in detail using species-level taxonomic resolution. A key finding of our analysis is the observation that bacterial species, which have previously been described to be radio tolerant, are significantly more abundant at height (Fig. 4 C and F) (22). Specifically, the observed nighttime difference for the most abundant radio-tolerant taxon, Kineococcus radiotolerans, was found to be 4.8-fold between ground and tower top (200 m), whereas during daytime, the difference was only 1.4-fold in the MT experiment. This dispersal pattern is also observed for other radio-tolerant bacterial species (Fig. 4C). In the large spatial-scale RA experiment (Fig. 4F), the finding was independently confirmed for observations from a similar height range between ground-level and heights of 300 to 330 m. For heights above
1,000 m, this finding is even more pronounced with nighttime differences between ground and 3,500 m, resulting in a 22.3-fold change for *Truepera radiovictrix*. Corresponding daytime changes show a 5.8-fold increase, indicative of more pronounced daytime mixing and downward transport. No significant differences for day/nighttime were observed for any of the investigated radio-tolerant bacteria taxa in a range of 1,000 to 3,500 m. The spatial-temporal distribution of radio-tolerant airborne bacterial organisms, therefore, make them suitable proxies for studying the dispersal of atmospheric biomass above and below the mixing layer.

Discussion

An innovative experimental design for investigating the stratification and microbial abundance of the vertical air column was developed by combining meteorological measurements with species-level metagenomic sequencing. Consisting of a MT and RA, the use of a vertical testing array resulted in the integration of temporally and spatially resolved physiochemical and biological data. This allowed interrogation of the potential stratification of airborne biomass in the near-surface atmosphere with a temporal resolution of 4 h and 200-m height at a fixed location in the instance of the MT and up to 3,500-m height, within a horizontal area of a 40-km triangle for the RA. Importantly, the experimental design consisting of the simultaneous use of 38 high-volumetric flow-rate air samplers, operated at two locations (MT and RA) and at various heights (MT, two heights; RA, five heights), allows for assessment of the dynamics of bioaerosol transport with respect to atmospheric processes. By combining the biological data with the meteorological measurements, the study demonstrated that the mixing layer height (MLH) plays a crucial role in determining the abundance and distribution of airborne bacteria. The results highlight the importance of accounting for the mixing layer dynamics in studies of bioaerosol transport and suggest potential implications for air pollution and public health.
Fig. 4. Association of airborne microorganisms to different altitudes in the lower troposphere. (A and D) Volcano graph plotting the mean fold change in relative abundance of specific species (x axis) and its corresponding P value difference (manyglm method, y axis) (A) between ground and 200-m tower-top air samples in the MT experiment and (D) between ground and 1,000- to 3,500-m air samples in the RA experiment. Each species is color labeled based on their domain/phyllum. Species with significantly higher abundance at the 200-m tower top or 1,000- to 3,500-m height are plotted in the Top graph, while species with significantly higher abundance in the ground-level air are shown in the Bottom graph. Species with P value <0.05 are considered to be significantly associated with height. (B and E) Taxa cloud graph plotting the mean relative abundance of the species identified (B) in the MT experiment at ground level (x axis) and in the 200-m tower-top air layer (y axis) and (E) in the RA experiment on the ground level (x axis) and in the 1,000- to 3,500-m air layer (y axis). Only species significantly diverging between ground and high altitude are plotted (P < 0.05, manyglm method). The Venn diagrams denote the number of species that overlap between ground and high-altitude air samples in each group (domain/phyllum/others). (C and F) Bubble charts showing the change in relative proportion of the top seven most abundant radio-tolerant bacterial species at different sampling times/altitudes in (C) the MT experiment and (F) the RA experiment. Day abundances are colored orange, while night abundances are in gray. The fold change and the corresponding P value (manyglm method) for the chosen taxa are listed at the Bottom.
meteorological parameters (e.g., PT, wind speed), we can show that daytime turbulence results in atmospheric mixing, which drives the dispersal of ground-based microorganisms to greater heights. Importantly, the turbulence is also responsible for the reverse transport of microorganisms from higher air layers to the ground. The downward movement of air masses amplifies the effect of wet and dry deposition on bioaerosols (23, 24).

The resulting steady state of bioaerosol distribution, caused by opposing vertical forces of convection and gravity, is reflected in our taxonomic analysis of airborne microorganisms. As an outcome, we show the height-associated differences in the composition and abundance of the top 10 most prevalent taxonomic groups (Fig. 1), with pronounced differences for bacteria, Ascomycota, and Basidiomycota (Figs. 2–4). Furthermore, our approach uses differences in airborne microbial community composition as a proxy for vertical transport, without the need for artificial tracer substances. As a result, airborne microbial taxa can be associated with either ground or height in a statistically significant manner with high taxonomic and spatial resolution. This is exemplified by the association of specific bacteria with height, which are only being transported toward the ground via atmospheric turbulence during the daytime. The lack of atmospheric turbulence at night, in combination with enhanced nighttime wet deposition, results in substantially reduced bacterial abundance in the near-surface air layers. Consequently, the air layers above MLH act as a sink for airborne biomass that replenishes the near-surface air layers after sunrise the following day. During nighttime, wet deposition is triggered by stable stratification, due to near-surface air temperatures that are lower than those at 200- to 300-m height (Fig. 2D) and by condensation of air masses. In addition to physical factors, microbial abundances are impacted by biological processes, such as sporulation. One example is the active release of basidiospores, which occurs only within a small range of meteorological parameters at nighttime (25, 26). Consequently, this diurnally repeating pattern of daytime atmospheric turbulence and nighttime stratification shapes the long-term amassment and enrichment of airborne biomass at the respective heights. Therefore, these diurnal patterns impact the scale and boundaries, as well as the dynamics and natural variability of effect of microorganisms resulting in the biological organization of the planetary air ecosystem.

Our experimental design combines physical and biological measurements, revealing the height-specific stratification of airborne microorganisms in the vertical air column. Based on our observations, we propose a model in which the heating of the planetary surface by nonionizing radiation (infrared + ultraviolet (UV)) results in increased temperatures within ground-level air masses, thereby driving the diel cycle of ground-originated microorganisms. Conversely, the absence of day/night temperature differences results in the air microbiome being entirely devoid of diel fluctuations at higher altitudes. As air layers in the lower atmosphere are exposed to similar amounts of incoming solar radiation, air/surface temperature is indicated as the key driver governing air microbiome composition and dynamics. Our observations are also relevant with respect to global warming, as rising atmospheric temperatures will potentially cause substantial disturbances to the currently recorded airborne microbial community compositions. A warmer atmosphere will therefore result in a greater abundance of microorganisms reaching greater heights and dispersing across larger distances. This effect will predominantly impact bacteria that use daytime convection for aerial transport but will have a particularly large influence on the aerodynamically shaped ascospores. The latter include a substantial number of taxa that have been identified as plant pests and will potentially result in a wider spread of plant diseases. In contrast, increasing temperatures are not expected to impact the range of Basidiomycota dispersal. However, increased nighttime temperatures potentially will lead to altered sporulation patterns of this important class of saprophytes. Lastly, changes in atmospheric temperature are expected to disrupt currently observed circadian rhythms of microorganisms, with cyanobacteria being one such example (27). Future research will need to investigate the extent of interconnection between the physiological response of the microbial circadian rhythm and the diel cycle of airborne microorganisms, which is considered to be a combination of physical and biological processes.

Our model for the stratification of biomass in the vertical air column is further supported by the species-level analysis of ground- and height-based bacterial groups. We show that radio-tolerant bacteria, as well as cyanobacteria (SI Appendix, Fig. S79) have evolved physiological traits that provide for their resilience in one of the harshest ecological settings. Both classes of organisms either harvest light via their chlorophyll-based photosynthetic systems (28) or have adapted to survive at significantly elevated levels of ionizing radiation (22).

The discovery of radio-tolerant bacteria being associated with greater heights in the atmosphere opens the possibility that these organisms’ lifecycles partially occur in the atmosphere. The large tolerance of this bacterial group toward environmental stresses, including resistance against ionizing and nonionizing radiation, extreme desiccation, and temperature, has allowed them to gain an evolutionary advantage relative to strictly ground-based organisms. Radio-tolerant bacteria, as well as cyanobacteria, may therefore serve as examples of multiple taxonomic groups that validate the proposed model for the atmospheric stratification of airborne biomass.

Lastly, our vertical testing methods can form the experimental basis for investigating whether the evolutionary principle of radio tolerance has evolved at higher layers of the planetary atmosphere. Alternatively, the observed stratification of radio-tolerant bacteria could merely be the result of airborne biomass enrichment in a gaseous but stratified vertical ecosystem.

Materials and Methods

Sample Collection. All air samples were collected using dry electret filters and SASS33100 air samplers (Research International), operated at an airflow rate of 300 L/min. For the MT experiment, samples were collected in duplicates for each sampling height and time point (total of 130 filters for the entire MT experiment). For each flight of the RA experiment, 12 air filters were collected on the aircraft at each of the four sampling altitudes for a total of 48 filters per flight. Concurrently, an additional six ground-level air samples were collected for each altitude, resulting in a total of 360 collected air samples for the RA experiment.

Filter Processing and DNA Extraction. While filters from the MT experiment were processed individually, multiple filters from the RA experiment were pooled to obtain sufficient DNA for library preparation and sequencing. Biomass removal from the filters and subsequent DNA extraction were performed as previously described (17, 18). In short, biomass was removed from the filters with a Triton X-100-containing phosphate-buffered saline wash buffer, followed by biomass concentration from the resulting wash solution onto an Anodisc filter (Sylva Whatman). The Anodisc filter was then subjected to DNA extraction with the DNeasy PowerWater Kit, following the manufacturer’s recommendations with some slight modifications as previously described.

DNA Library Preparation and Metagenomic Sequencing. Libraries from the DNA extractions were prepared with the Accel-NGS 25 Plus DNA Library Kit (Swift Biosciences), following the instructions provided in the kit. All libraries were dual barcoded with the 25 Dual Indexing Kit (Swift Biosciences). Subsequent sequencing was performed on the Illumina HiSeq2500 platform in rapid mode and at a read length of 250 bp paired end.

Data Processing and Metagenomic Analysis. Resulting metagenomic datasets for the air samples were processed with Cutadapt v.1.8.1 (29) to remove adapter sequences and quality trim the sequencing reads with a Phred quality score cutoff of Q20. Potential human contamination was then identified and

Drautz-Moses et al.

Vertical stratification of the air microbiome in the lower troposphere

PNAS | 7 of 8

https://doi.org/10.1073/pnas.2111729311

Conceived by guest contributor, 7/2002
subsequently removed by aligning the trimmed data against the GRCh38 human genome reference, using Bowtie2 v.2.4.1 with default parameters (30). Datasets that revealed significant human contamination were also subject to a co-occurrence analysis to identify and remove sequencing reads derived from human-associated microorganisms (Spearman R > 0.8) (31). Mapped and unmapped reads were separated using Samtools v.1.10 (32). The unmapped portion of the sequencing reads was then aligned against the National Center for Biotechnology Information (NCBI) nonredundant (nr) protein database using Kужi v1.7.2 (33), and taxon identifications (ID) for the resulting alignments were subsequently assigned with Megan v6.18 (34).

Statistical Analysis. For each time point, relative abundances of the technical replicates were averaged. We used the Wilcoxon test (35) to assess significance of differences in DNA yields between day and night samples as implemented in R v.4.0.2. The generalized linear regression framework (mgvlm method) was used to assess association of sampling location with the corresponding multivariate species abundance, as implemented in the mvabund package (36) in R v.4.0.2. Sampling timing (day/night) was taken as the covariate in the multivariate species abundance, as implemented in the vegan package, to assess association of sampling location with the corresponding method. A permutation test for homogeneity of multivariate dispersions were subsequently assigned with Megan v6.18 (34).

1. J. C. Venter et al., Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).
2. J. A. Gilbert, J. K. Janssen, R. Knight, The Earth Microbiome project: Successes and aspirations. BMC Biol. 12, 69 (2014).
3. L. A. Pasteur, On the doctrine of spontaneous generation. Ann. Sci. Nat. Zool. 16, 5–98 (1861).
4. Z. Xu et al., Bioaerosol science, technology, and engineering: Past, present, and future. Aerosol Sci. Technol. 45, 1337–1349 (2011).
5. P. H. Gregory, Spore content of the atmosphere near the ground. Nature 170, 475–477 (1952).
6. F. C. Meier, C. A. Lindberg, Collecting micro-organisms from the Arctic atmosphere: With field notes and material. Sci. Mon. 40, 5–20 (1935).
7. D. J. Smith et al., Airborne bacteria in earth’s lower stratosphere resemble taxa detected in the troposphere: Results from a new NASA Aircraft Bioaerosol Collector (ABC). Front. Microbiol. 9, 1752 (2018).
8. G. Boehm, Aerobiology—Its past and its future. Experientia Suppl. 51, 3–8 (1987).
9. N. DeLeon-Rodriguez et al., Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc. Natl. Acad. Sci. U.S.A. 110, 2572–2580 (2013).
10. C. Jaing et al., Sierra Nevada sweep: Metagenomic measurements of bioaerosols vertically distributed across the troposphere. Sci. Rep. 10, 13239 (2020).
11. R. M. Bowers et al., Characterization of airborne microbial communities at a high-altitude site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol. 75, 5121–5130 (2009).
12. T. Maki et al., Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events. Atmos. Chem. Phys. 17, 11877–11879 (2017).
13. R. Smith et al., Soil microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation. Aerobiologia 35, 671–701 (2019).
14. M. Pras et al., Bioaerosols in the Amazon rain forest: Temporal variations and vertical profiles of Euakarya, Bacteria and Archaea. Biogeosciences 18, 4873–4887 (2021).
15. T. Maki et al., Vertical distributions of airborne microorganisms over Asian dust source region of Taklimakan and Gobi Desert. Atmos. Environ. 214, 116648 (2020).
16. J. Perica, M. Hernandez, Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review. Atmos. Environ. (1994) 40, 3941–3961 (2006).
17. I. Luhung et al., Experimental parameters defining ultra-low biomass bioaerosol analysis. NPJ Biofilms Microbiomes 7, 37 (2021).
18. E. S. Gueraeva et al., Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proc. Natl. Acad. Sci. U.S.A. 116, 23299–23308 (2019).
19. S. S. M. Soliman et al., Mucorcin is a ricin-like toxin that is critical for the pathogenesis of mucormycosis. Nat. Microbiol. 6, 113–326 (2021).
20. D. J. Smith et al., Free tropospheric transport of microorganisms from Asia to North America. Microb. Ecol. 64, 293–485 (2012).
21. P. T. Ambaum, H. P. Maarten, Thermal Physics of the Atmosphere (Elsevier, 2020).
22. S. Lim, J.-H. Jung, L. Blanchard, A. de Groot, Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol. Rev. 43, 19–52 (2019).
23. E. Roche, G. D’Orra, N. Mladenov, D. M. Winget, C. A. Suttle, Detoxification rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 12, 1154–1162 (2018).
24. C. Wuo, C. An, S. Xu, M. Y. Yi, N. Yamamoto, Taxonomic diversity of fungi deposited from the atmosphere. ISME J. 12, 2051–2060 (2018).
25. D. Lagomarsino Oneto, J. Golan, A. Mazzino, A. Pringle, A. Semina, Timing of fungal spore release dictates survival during atmospheric transport. Proc. Natl. Acad. Sci. U.S.A. 117, 5134–5143 (2020).
26. D. W. Li, Release and dispersal of basidiospores from Amanita muscaria var. alba and their infiltration into a residence. Mycol. Res. 109, 1235–1242 (2005).
27. C. H. Johnson, T. Mori, Y. Xu, A cyanobacterial cirriadin clockwork. Curr. Biol. 18, R816–R825 (2008).
28. D. A. Bryant, The Molecular Biology of Cyano bacteria, Advances in Photosynthesis and Respiration (Kluver Academic, Dordrecht, The Netherlands, 1994), vol. 1, pp. 904.
29. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBJ J. 17, 10–12 (2011).
30. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
31. F. Ju, Y. Xia, F. Guo, Z. Wang, T. Zhang, Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ. Microbiol. 16, 2421–2432 (2014).
32. H. Li et al.; 1000 Genome Project Data Processing Subgroup, The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
33. M. Menzel, K. L. Ng, A. Krogh, Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).
34. D. H. Huson, A. F. Auch, J. Oj, S. C. Schuster, MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).
35. D. F. Bauer, Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 67, 687–690 (1972).
36. Y. Wang, U. Naumann, S. T. Wright, D. I. Warton, mvabund-an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).
37. R Core Team, R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria 2018). https://www.R-project.org/
38. J. L. Gower, Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338 (1966).
39. M. J. Anderson, Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
40. M. J. Anderson, A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
41. J. Larsson, (2020). eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R package version 6.1.0. https://cran.r-project.org/package=eulerr

Data Availability. The raw metagenomic sequencing data reported in this paper have been deposited in the NCBI database (BioProject ID code PRJNA791118).

ACKNOWLEDGMENTS. This work was supported by the Singapore Ministry of Education Academic Research Fund tier 3 grant (MOE2013-T3-1-013). We thank the Singapore Centre for Life Sciences Engineering (SCELSE) for supporting the project with internal funds and infrastructure. We would also like to thank the Institute of Meteorology and Climate Research (IMK) at KIT for hosting the SCELSE scientific team and for fruitful scientific discussions. Particular thanks go to Stefan Kraut for supporting the experimental setup on the MT. We would also like to thank IMK for manufacturing scaffolds to mount air samplers inside the aircraft. Furthermore, we would like to thank the Institute of Flight Guidance at the Technische Universität, Braunschweig, for hosting the flight-related experiments, in particular, Mark Bitter and Helmut Schulz for engineering and implementing changes to the DQ 128 aircraft to accommodate our experiments. We would also like to thank Yann Boucher for scientific discussions and comments on the manuscript.

Vertical stratification of the air microbiome in the lower troposphere

Dratuz-Moses et al.