In Antisynthetase Syndrome, ACPA Are Associated With Severe and Erosive Arthritis

Alain Meyer, MD, Guillaume Lefèvre, MD, PhD, Guillaume Bierry, MD, PhD, Aurélien Duval, MD, Sébastien Ottaviani, MD, PhD, Olivier Meyer, MD, PhD, Anne Tournadre, MD, PhD, Benoît Le Goff, MD, PhD, Laurent Messer, MD, Anne Laure Buchdahl, MD, Michel De Bandt, MD, PhD, Christophe Deligny, MD, PhD, Matthieu Dubois, MD, Pascal Coqueryelle, MD, Géraldine Falgarone, MD, PhD, René-Marc Flipo, MD, PhD, Alexis Mathian, MD, PhD, Bernard Geny, MD, PhD, Zahir Amoura, MD, PhD, Olivier Benveniste, MD, PhD, Eric Hachulla, MD, PhD, Jean Sibilia, MD, PhD, and Baptiste Hervier, MD, PhD, on behalf of the Club Rhumatismes et Inflammation

Abstract: Anticitrullinated peptide/protein antibodies (ACPA), which are highly specific for rheumatoid arthritis (RA), may be found in some patients with other systemic autoimmune diseases. The clinical significance of ACPA in patients with antisythetase syndrome (ASS), a systemic disease characterized by the association of myositis, interstitial lung disease, polyarthralgia, and/or polyarthritis, has not yet been evaluated with regard to phenotype, prognosis, and response to treatment. ACPA-positive ASS patients were first identified among a French multicenter registry of patients with ASS. Additionally, all French rheumatology and internal medicine practitioners registered on the Club Rhumatismes et Inflammation web site were asked to report their observations of ASS patients with ACPA. The 17 collected patients were retrospectively studied using a standardized questionnaire and compared with 34 unselected ACPA-negative ASS patients in a case–control study. All ACPA-positive ASS patients suffered from arthritis versus 41% in the control group ($P < 0.0001$). The number of swollen joints was significantly higher (7.0 ± 5.0 vs 2.9 ± 3.9, $P < 0.005$), with a distribution resembling that of RA. Radiographic damages were also more frequent in ACPA-positive ASS patients (87% vs 11%, $P < 0.0001$). Aside from a significantly higher transfer factor for carbon monoxide in ACPA–ASS patients, lung, muscle, and skin involvements had similar incidences, patterns, and severity in both groups. Although Nonbiologic treatments were similarly used in both groups, ACPA-positive patients received biologics more frequently (59% vs 12%, $P < 0.0008$), mostly due to refractory arthritis (n = 9). Eight patients received anti-Cluster of differentiation 20 (CD20) monoclonal antibodies (mAbs) with good efficacy and tolerance, whereas 2 of the 5 patients treated with antitumor necrosis factor drugs had worsened myositis and/or interstitial lung disease. After a > 7-year mean follow-up, extra-articular outcomes and survival were not different. ACPA-positive ASS patients showed an overlapping RA–ASS syndrome, were at high risk of refractory erosive arthritis, and might experience ASS flare when treated with antitumor necrosis factor drugs. In contrast, other biologics such as anti-CD20 mAb were effective in this context, without worsening systemic involvements.

(Medicine 94(20):e523)

Abbreviations: ACPA = anticitrullinated peptide/protein antibodies, Anti-ARS = anti-aaminocyl-transfer RNA synthetase, ASS = antisythetase syndrome, CK = creatine kinase, DLCO = diffusing capacity of the lung for carbon monoxide, DM = dermatomyositis, FVC = forced vital capacity, HRCT = high-resolution computed tomography, ILD = interstitial lung disease, IPF = interphalangeal joint, MMRT = manual muscle testing, OR = odds ratio, mAb = monoclonal antibody, RA = rheumatoid arthritis, SE = shared epitope, SJC = swollen joint count, TJC = tender joint count, ULN = upper limit of normal.
INTRODUCTION

Numerous studies have confirmed that anticitrullinated peptide/protein antibodies (ACPAs) are both highly sensitive and specific for rheumatoid arthritis (RA). This has recently led to their inclusion in the serological criteria for the classification of RA. In this disease, ACPAs also have a high prognostic significance as they are associated with higher disease activity, radiographic progression, and poorer response to therapy.

However, despite their high specificity, ACPA may be found in some patients with other systemic autoimmune diseases, including systemic sclerosis and systemic lupus. Importantly, in these settings, ACPA positivity has been linked to bone erosions resembling RA. For example, in systemic lupus, ACPA positivity is associated with "rhupus" in which the signs and symptoms of RA prevail.

The occurrence of ACPA in antisynthetase syndrome (ASS) has been documented in only a few case reports or series involving <10 patients. ASS is also a systemic autoimmune connective tissue disease, characterized by the association of interstitial lung disease (ILD), inflammatory myopathy, Raynaud phenomenon, and/or mechanic’s hands with the presence of antianimalcyto-transfer RNA synthetase (anti-ARS) antibodies. Arthritis and/or arthralgia are present in up to 90% of these patients, and joint disease is the initial symptom in 21% to 32% of patients with ASS. Subluxation arthropathy has been described in 19% of anti-Jo1–ASS patients, whereas joint damages are less common, ranging generally from 0% to 8%.

In light of the above, we retrospectively studied cases of patients displaying ACPA in the context of ASS with the aim of assessing the clinical significance of this association with regard to phenotype, prognosis, and response to treatment.

METHODS

Patients

In this case–control retrospective study, patients with ACPA (n = 7) were first identified among a French 9-center registry of 284 patients with ASS.

Additionally, all French rheumatology and internal medicine practitioners registered on the Club Rhumatismes et Inflammation web site (representing >1400 physicians) were contacted by 2 successive electronic newsletters and asked to report their observations of ASS patients with ACPA who met the following inclusion criteria: 2 successive positive tests for anti-ARS, including LUMINEX-100 system (Luminex, Austin, TX), ENA-LISA-kit (BioMedical Diagnostics, Marne-la-Vallée, France), or IMMUNO-DOT (Euroimmun AG, Lübeck, Germany); DiaSorin, Saluggia, Italy); clinical involvement in accordance with ASS, including pulmonary, muscle, dermatological, or rheumatic involvements; ACPA positivity using anti-cyclic citrullinated peptide 2 (CCP2) assays, including BioPlex 2200 System (Bio-Rad Laboratories, Hercules, CA); Immunoscan-CCP Plus (Eurodiagnostica, the Netherlands, Arnhem), Quantalite CCP2 (Inova, San Diego, CA), and Elecsys anti-CCP (Roche, Meylan, France). Among 13 reported patients, 3 did not meet the inclusion criteria: 2 patients had solely rheumatic involvement and 1 had solely pulmonary involvement. Patients were included from May 1, 2012 to May 1, 2014.

The 17 ACPA-positive ASS patients included in the study were compared with 34 unselected ASS patients from the French 9-center registry matched for age, sex, and follow-up, fulfilling inclusion criteria, whereas being tested negative for ACPA.

Data Collection

Demographic information, comorbidities, clinical history of ASS, imaging findings (including hand and foot radiographs, high-resolution computed tomography (HRCT)) thoracic scans, pulmonary function tests, biological data, and detailed medical treatment were collected. Data collection was compiled by A.M., G.L., and B.H. using the same standardized form.

Definitions

ACPA were considered positive when superior to the upper limit of normal (ULN) for the laboratory of immunology.

Joint involvement included arthralgia and/or arthritis. Severity was assessed through higher recorded values of tender joint count (TJC), swollen joint count (SJC), and appearance of radiographic damage. Radiographic damage was defined by the presence of bone erosion and/or joint narrowing on standard radiographs of the hand and/or the foot. All radiographs were examined by experienced radiologists and rheumatologists. Hand radiographs were also retrospectively examined blinded to ACPA status by A.M., G.B., and J.S., and radiographic damages were scored using the Sharp method with additional scoring of the distal interphalangeal joints (IPJs) of the hands. Consensus was always obtained.

Pulmonary involvement was defined by the presence of an ILD on HRCT, confirmed in most cases by abnormal pulmonary function tests (forced vital capacity [FVC] <70% and/or diffusing capacity of the lung for carbon monoxide [DLCO] <70%). Muscle involvement was defined either by the occurrence of myalgia, muscle weakness (Medical Research Council 5 sum score ≤4 for at least ≥1 muscle group evaluated by manual muscle testing [MMT]), along with increased creatine kinase (CK) level ≥ 2 times the normal level, myopathic changes on electromyography, or typical features in muscle biopsies (assessed by different pathologists experienced in muscle histopathology).

Outcome was assessed for each patient during the follow-up period. Changes ≥30% in TJC and/or SJC were considered to be significant in defining aggravation, stability, and improvement of joint disease. Pulmonary aggravation, stability, and improvement were defined as changes in pulmonary function tests >15% for DLCO or >10% for FVC; in accordance with the international consensus statement of the American Thoracic Society on idiopathic pulmonary fibrosis, concordant with evolution in dyspnea according to New York Heart Association stages, and/or to HRCT results. Muscle aggravation, stability, and improvement, respectively, corresponded to a decrease, stability, or increase in MMT or a ≥2-fold modification in CK levels, as compared with the time of ACPA diagnosis.

Statistical Analysis

Quantitative data were described as mean ± SD (unless specified otherwise). Mann–Whitney and Fisher tests were used for comparison of continuous and categorical variables, respectively. The Kaplan–Meyer method and log rank tests were used to compare survival between groups. Only a P value <0.05 was considered significant. All analyses were performed using GraphPad Prism 5 software (San Diego, CA).

RESULTS

Polyarthralgia and/or polyarthritis were the first symptoms to appear in the majority of ACPA-positive ASS patients (n = 88%), whereas myositis and/or ILD were present at onset.
TABLE 1. Comparison of Clinical Manifestations Between ACPA-Positive and ACPA-Negative SAS Patients

	ACPA (−) N = 34	ACPA (+) N = 17	OR (95% CI)	P
Age at onset, y (range)	45.6 ± 15.4	42.1 ± 10.8	0.44	
Male	4 (12%)	4 (24%)	0.43 (0.093–2.00)	0.42
Anti-Lo-1	25 (74%)	12 (71%)	0.86 (0.23–3.14)	1.00
Anti-PL-12	7 (21%)	2 (12%)	0.51 (0.095–2.80)	0.70
Anti-PL-7	2 (6%)	3 (18%)	3.43 (0.52–22.85)	0.32
Joint involvement (arthralgia and/or arthritis)	29 (85%)	17 (100%)	6.53 (0.34–125)	0.16
Arthritis	14 (41%)	17 (100%)	49.48 (2.75–891)	<0.0001
TJC	11.3 ± 7.7	13.2 ± 1.7	—	0.35
SJC	2.9 ± 3.9	7.0 ± 5.0	—	0.0022
Artricular damage on standard hand and/or foot radiographs\(^\text{a}\)	3 of 27 (11%)	13 of 16 (87%)	34.67 (6.10–197)	<0.0001
Sharp score (including DIP scoring)\(^\text{a}\)	5.8 ± 3.2 in 14 patients with JD	35.3 ± 21.6 in 9 patients with JD	—	0.029
Lung involvement	28 (82%)	14 (82%)	1.00 (0.22–4.61)	1.00
NYHA > 2\(^\text{b}\)	6 (21%)	2 (14%)	0.61 (0.11–3.51)	0.70
FVC\(^\text{c}\)	68.1 ± 22.37	79.50 ± 20.67	—	0.068
DLCO\(^\text{d}\)	50.78 ± 21.92	69.58 ± 18.73	—	0.046
NSIP\(^\text{e}\)	22 (78.5%)	9 (64%)	0.19 (0.12–2.03)	0.46
UIP\(^\text{g}\)	5 (18%)	4 (29%)	1.84 (0.41–8.33)	0.45
OP\(^\text{h}\)	1 (3.5%)	1 (7)	2.08 (0.12–35.9)	1.00
Muscle involvement	27 (79%)	14 (82%)	1.21 (0.27–5.42)	1.00
Muscle weakness\(^\text{d}\)	16 (59%)	11 (79%)	2.52 (0.57–11.19)	0.31
Serum CK level\(^\text{d}\)	3540 ± 3355	3124 ± 3382	—	0.67
Myopathic changes	16 (84%) of 19 patients with myositis	6 (75%) of 8 patients with myositis	0.56 (0.075–4.24)	0.62
Inflammatory infiltrate on EMG\(^\text{h}\)	16 (80%) of 20 patients with myositis	7 (100%) of 7 patients with myositis	0.25 (0.055–1.14)	0.14
Skin involvement	14 (41%)	7 (44%)	1.00 (0.31–3.27)	1.00
Mechanic’s hand	9 (26%)	2 (12%)	0.37 (0.070–1.95)	0.30
Sclerodactyly	7 (21%)	1 (6%)	0.19 (0.021–1.68)	0.13
DM rash	2 (6%)	4 (24%)	4.92 (0.80–30.27)	0.09
Raynaud phenomenon	19 (56%)	8 (47%)	0.70 (0.22–2.26)	0.37
CRP amount, mg/dL	2.80 ± 4.36	5.32 ± 5.37	—	0.007
Rheumatoid factor	5 (15%) of 33 patients	14 (88%) of 16 patients	39.20 (6.74–228)	<0.0001
HLA-SE	2 (25%) of 8 patients	5 (50%) of 10 patients	3.00 (0.40–22.72)	0.37
Tobacco use (ever)	5 (15%)	5 (29%)	2.9 (0.69–12.16)	0.25
Corticosteroids	24 (100%)	17 (100%)	NS	—
Methotrexate	17 (50%)	13 (76%)	3.25 (0.88–12.01)	0.082
Plaquenil	5 (15%)	5 (29%)	2.42 (0.39–9.90)	0.27
Leflunomide	2 (6%)	5 (29%)	6.67 (1.14–39.12)	0.034
Azathioprine	9 (26%)	2 (12%)	0.37 (0.070–1.95)	0.30
Mycophenolate mofetil	10 (29%)	2 (12%)	0.32 (0.062–1.67)	0.29
Cyclophosphamide	8 (24%)	4 (24%)	1.00 (0.25–3.95)	1.00
IV-Ig	7 (21%)	1 (6%)	0.24 (0.027–2.14)	0.24
Biologics	4 (12%)	10 (59%)	10.71 (2.58–44.42)	0.0008
Biologics due to JD	1 (3%)	9 (53%)	47.14 (5.16–431)	<0.0001
refractory to DMARDs\(^\text{e}\)	—	—	—	—
Follow-up, mo	96.18 ± 77.53	93.19 ± 61.31	—	0.80
Death	6 (18%)	0 (0%)	0.13 (0.0070–2.51)	0.26

Presented values are the worst values during the entire follow-up. ACPA = anticitrullinated peptide/protein antibody, CK = creatine kinase, CI = confidence interval, CRP = C-reactive protein, DIP = distal-interphalangeal, DLCO = diffusing capacity of the lung for carbon monoxide, DM = dermatomyositis, DMARD = disease-modifying antirheumatic drug, EMG = electromyogram, FVC = forced vital capacity, HLA = human leukocyte antigen, IV-Ig = intravenous immunoglobulin, NSIP = nonspecific interstitial pneumonia, NYHA = New York Heart Association, OP = organizing pneumonia, OR = odds ratio, SE = shared epitope, SJC = swollen joint count, TJC = tender joint count, UIP = usual interstitial pneumonia.

\(^{a}\)In patients with joint involvement.

\(^{b}\)In patients with lung involvement.

\(^{c}\)In patients with muscle involvement.

In 41% and 35% of patients, respectively. ACPA were identified 3 months (range 0–132) after the first symptoms whereas antisynthetase autoantibodies were found 2 months (range 0–145) after disease onset. Initial diagnoses were RA (n = 6), ASS (n = 5), dermatomyositis (DM) (n = 3), polymyositis (n = 1), and RA–ASS overlapping syndrome (n = 2). Clinical characteristics of the 17 ACPA–ASS patients are shown in Table 1.
Demographic Characteristics
Among the 17 ACPA-positive ASS patients, there were 4 men and 13 women, with a mean age at onset of 45.6 ± 15.4 years (Table 1). There were no significant differences in terms of sex or age at onset between ACPA-positive ASS patients and the control group. Of note, the proportion of smokers was not significantly higher in ACPA-positive ASS patients (29% vs 15%, P = 0.25).

Clinical Characteristic of ACPA-Positive ASS Patients
Despite a similar incidence of joint involvement in both groups, all ACPA-positive ASS patients suffered from arthritis versus 14 patients (41%) in ACPA-negative ASS patients, resulting in an odds ratio (OR) for arthritis of 49.5, 95% confidence interval (CI) 2.8–891, and P < 0.0001 (Table 1). When solely considering patients with joint involvement, the number of swollen joints was significantly higher in the ACPA-positive ASS group (2.9 ± 3.9 vs 7.0 ± 5.0, P = 0.0022). Distribution of arthritis (n = 16/17) was always symmetric and mainly involved metacarpophalangeal (MCP) joints (n = 14), wrists (n = 10), and proximal IPJ of both hands (n = 8). Knees (n = 7), ankles (n = 4), elbows (n = 4), and distal IPJ (n = 1) were less commonly involved. There was no difference in the pattern of joint involvement between ACPA-positive and ACPA-negative patients.

Although ILD affected 82% of the patients in both groups, ASS patients with ACPA tended to display higher FVC (68.11 ± 22.37 vs 79.50 ± 20.67) and had higher DLCO compared with the ACPA-negative group (50.78 ± 21.98 vs 69.58 ± 18.73, P = 0.046). The distribution of the different ILD patterns, according to international consensus, was similar in both groups. No patient exhibited pulmonary rheumatoid nodules.

Patients from both groups were equally affected by myositis (about 80%, P = 1.00). Furthermore, there were no differences with regard to occurrence of muscle weakness (59% vs 79%, P = 0.31), CK amount (3540 ± 7355 vs 3124 ± 3382, P = 0.67), and frequency of myopathic changes recorded on electromyogram (84% vs 75%, P = 0.62). When performed (n = 7), muscle biopsy features in patients with ACPA included inflammatory infiltrate (endomyosal n = 3, perimysial n = 2, and perivascular n = 2), muscle fiber necrosis (n = 4), and perifascicular atrophy (n = 2), which did not differ from the ACPA-negative group (data not shown).

Patients with ACPA also exhibited Raynaud phenomenon (47%), DM rash (24%), mechanic’s hands (12%), and/or sclerodactyly (6%), in similar proportions to the control ASS group.

Radiographic Characteristics of ACPA-Positive ASS Patients
Radiographic damages were more frequent in ACPA−ASS patients (13/16 [81%]) vs 3/27 (11%) patients with joint disease (OR 34.67, 95% CI 6.1–197.0, P < 0.0001) (Table 1 and Figure 1). In ACPA−ASS patients, bone erosion and/or joint narrowing were observed 40.8 ± 19.8 months after joint disease onset, and involved MCP joints (n = 9), metatarsophalangeal joints (n = 7), wrist (n = 4), PIP (proximal interphalangeal) joints (n = 4), and/or DIP (distal interphalangeal) (n = 1). In contrast, in the 3 ACPA-negative patients with radiographic damages, only joint narrowing with no erosion was observed, involving wrists (n = 3), MCP (n = 2), PIP (n = 1), and/or DIP (n = 1) joints, all of which tended to be diagnosed later during follow-up: median 63 months, range 106–118 (P = 0.11).

Sharp score (including DIP joints) assessed blindly the ACPA status after examination of the last available hand radiographs, and was higher in ACPA-positive patients (n = 9/17, 53%) compared with ACPA-negative patients (n = 14/34, 41%): 35.3 ± 21.6 vs 5.8 ± 3.2, P < 0.05.

Biological Characteristics
Distribution of anti-ARS specificities was similar between the 2 groups, anti-Jo1 being the most common (always above 70% of patients, Table 1). Median ACPA-titer in ACPA−ASS patients was 200 UI/L, range 33–7742. Rheumatoid factor was found in 14/16 patients (88%) versus 5/33 patients (15%) in the control group (OR 39.20, 95% CI 6.74–228, P < 0.0001), and ACPA-positive ASS patients exhibited higher CRP amount compared with ACPA-negative ASS patients (5.32 mg/dL ± 5.37 vs 2.80 ± 4.36, P = 0.007). Among 10 ASS patients with ACPA tested for human leukocyte antigen (HLA) haplotypes, 5 (50%) were HLA-shared epitope (SE) positive (HLA-DR4 [n = 4] or HLA-DR10 [n = 1], heterozygous in all cases), although this occurrence was similar to the ACPA-negative group (25%, P = 0.37).

Treatments
Mean follow-up after onset of symptoms was 96.2 ± 77.5 and 93.2 ± 61.3 months in ACPA-negative and ACPA-positive groups, respectively (P = 0.80) (Table 1).

All of the patients with ACPA received prednisone (n = 17) with a maximum dosage during follow-up (46.8 ± 17.8 mg/d) comparatively with the ACPA-negative patients (42.2 ± 19.5 mg/d (n = 25), P = 0.35). Additionally, at least 1 additional immunomodulating therapy was used, including methotrexate (n = 13), hydroxychloroquine (n = 5), leflunomide (n = 5), sulfasalazine (n = 2), azathioprine (n = 2), mycophenolate mofetil (n = 2), cyclophosphamide (n = 4), and/or intravenous immunoglobulin (n = 1). At the end of the follow-up period, at least 2 nonbiologic drugs were used in both groups (P = 0.53). With the exception of leflunomide, which was more frequently given in ACPA-positive ASS patients (P = 0.007), there was no qualitative difference in nonbiologic treatments received between both groups. Biologics, including rituximab (n = 8), infliximab (n = 4), etanercept (n = 1), adalimumab (n = 1), tocilizumab...
TABLE 2. Tolerance and Efficacy of Biologics in 10 ACPA-SAS Patients

Molecules	Treatment Duration, mo	Age/Female	Cotreatments	Improvement at M4	Improvement at Last Evaluation	No Improvement	Lung disease	Muscle Disease	Infection	Other Side Effects		
Anti-TNF courses in 5 patients	15.4 ± 14.9	43.2 ± 11.3/5 (100%)	P (n = 6), MTX (n = 2), LFM (n = 1), SFZ (n = 1), MM (n = 1)	4 (67%)	3 (50%)	2 (33%)	0 (0%)	5 (83%)	6 (75%)	0 (0%)	1 (17%)	No
INF (n = 4), ETN (n = 1)	15.0 ± 12.3	50.4 ± 7.4/8 (100%)	P (n = 6), MTX (n = 4), LFM (n = 1), MM (n = 1), SFZ (n = 1), PQ (n = 1)	8 (100%)	8 (100%)	0 (0%)	2 (25%)	6 (75%)	0 (0%)	1 (13%)	1 (13%)	No
RTX (n = 8)	13.0 ± 12.3	10.4 ± 7.4/8 (100%)	P (n = 6), MTX (n = 4), LFM (n = 1), MM (n = 1), SFZ (n = 1), PQ (n = 1)	8 (100%)	8 (100%)	0 (0%)	2 (25%)	6 (75%)	0 (0%)	1 (13%)	1 (13%)	No
ABA (n = 1)	2	52/yes P	P	Yes	Yes	No	No	Yes	No	No	Yes	No
TCZ (n = 1)	10	37/yes P, AZA	Yes	Yes	No	No	Yes	No	No	Yes	No	

ABA = abatacept, ACPA = anticitrullinated peptide/protein antibody, ADA = adalimumab, ETN = etanercept, F = female, INF = infliximab, LFM = leflunomide, M = male, MM = mycophenolate mofetil, MTX = methotrexate, NA = not assessed, P = prednisone, PQ = plaquenil, RTX = rituximab, SFZ = sulfasalazine, TCZ = tocilizumab, TNF = tumor necrosis factor, ULN = upper limit of normal.
(n = 1), and/or abatacept (n = 1), were more frequently used in ACPA-positive patients (59% vs 12%, \(P < 0.0008 \)). Of note, in 9/10 ACPA–ASS patients treated with biologics, the indication for initiating such treatment was refractory arthritis.

Biologics Tolerance and Efficacy

In 10 patients, a total of 16 biologic courses were used that included anti-Cluster of differentiation 20 (CD20) monoclonal antibody (mAb) (n = 8), antitumor necrosis factor (TNF) drugs (n = 6 courses in 5 patients, 1 patient receiving infliximab followed by adalimumab), anti-interleukin-6 receptor mAb (n = 1), and inhibitor of T-cell costimulation (n = 1) (Table 2).

Anti-CD20 mAb led to joint efficacy along with improvement and/or stability of extra-articular involvements in all cases (n = 8).

Anti-TNF treatments resulted in joint improvement in 4/6 courses (67%). However, in 2 cases (33%), systemic involvement worsened (myositis n = 2 and/or ILD n = 1).

In patients treated with other biologics (n = 2), both experienced improvement in joint disease, without systemic flare-up of ASS, although they exhibited increases in transaminase levels (up to 10-fold that of ULN, whereas CK amount was normal) and severe bronchopulmonary infection, leading to drug withdrawal.

Outcomes

Outcomes At the last clinical evaluation, joint disease had improved in the majority of patients in both groups (23/25 and 16/17, \(P = 1.0 \)). In the ACPA-negative group, 6 of the 23 patients with lung disease had worsened ILD versus 1 in the ACPA–ASS patients (\(P = 0.27 \)). Myositis had improved in all cases, regardless of ACPA status. Seven ACPA-positive patients (41%) were still under corticosteroid treatment with a dosage \(> 10 \) mg/d versus 8/27 (30%) in the ACPA-negative group (\(P = 0.53 \)). Finally, all patients with ACPA were alive at the end of the follow-up period, whereas 4 patients in the control group had died (\(P = 0.29 \)). Causes of death were ILD (n = 3) or concomitant multiple myeloma (n = 1). As a result, the survival rate was not statistically different between the 2 groups (\(P = 0.15 \), Figure 2).

DISCUSSION

This study, which is the first case–control study to assess the clinical significance of ACPA in patients with ASS, suggests that ASS-patients with ACPA have an overlapping RA–ASS syndrome. Indeed, polyarthritis was present in all ACPA-positive patients, involving numerous small joints, with a distribution resembling that of RA, along with higher CRP amount and a positive test for rheumatoid factor. Thus, although they exhibited increases in transaminase levels (up to 10-fold that of ULN, whereas CK amount was normal) and severe bronchopulmonary infection, leading to drug withdrawal.

ACPA is strongly associated with the HLA-DRB1 SE and with smoking. ACPA–ASS patients tended to be more frequently smokers and HLA-SE positive. However, as the trend did not reach statistical significance (likely due to the limited number of patients herein), the role of these factors in the development of ACPA during ASS remains to be further explored.

The present data extend the findings of the 9 previously described ACPA–ASS patients, reported as separate case reports, in which the presence of ACPA was systematically associated with erosive arthritis, and with a higher DLCO amount, whereas 8/27 (30%) in the ACPA-negative group (\(P = 0.53 \)). Finally, all patients with ACPA were alive at the end of the follow-up period, whereas 4 patients in the control group had died (\(P = 0.29 \)). Causes of death were ILD (n = 3) or concomitant multiple myeloma (n = 1). As a result, the survival rate was not statistically different between the 2 groups (\(P = 0.15 \), Figure 2).

FIGURE 2. Kaplan–Meyer survival curve (from disease onset) comparing patients with (n = 17) and without (n = 34) ACPA. ACPA = anticitrullinated peptide/protein antibody.

occurrence of lung, muscle, and skin involvement did not differ between ACPA-positive and ACPA-negative patients. This suggests that RA patients experiencing such systemic symptoms should be tested for anti-ARS as these autoantibodies are associated with ASS even in the setting of RA. A higher DLCO was recorded in ACPA–ASS patients with ILD, which was the only difference in extra-articular involvement between the 2 groups. DLCO has been shown to be a predictor of survival time in ILD patients, including RA–ILD and myositis–ILD. Although 4 deaths were recorded in the ACPA-negative group versus none in the ACPA-positive group, difference in survival between the 2 groups did not reach statistical significance despite prolonged follow-up.

ACPA strongly associates with the HLA-DRB1 SE and with smoking. ACPA–ASS patients tended to be more frequently smokers and HLA-SE positive. However, as the trend did not reach statistical significance (likely due to the limited number of patients herein), the role of these factors in the development of ACPA during ASS remains to be further explored.

The present data extend the findings of the 9 previously described ACPA–ASS patients, reported as separate case reports, in which the presence of ACPA was systematically associated with erosive arthritis, and with a higher DLCO amount, whereas 8/27 (30%) in the ACPA-negative group (\(P = 0.53 \)). Finally, all patients with ACPA were alive at the end of the follow-up period, whereas 4 patients in the control group had died (\(P = 0.29 \)). Causes of death were ILD (n = 3) or concomitant multiple myeloma (n = 1). As a result, the survival rate was not statistically different between the 2 groups (\(P = 0.15 \), Figure 2).

DISCUSSION

This study, which is the first case–control study to assess the clinical significance of ACPA in patients with ASS, suggests that ASS-patients with ACPA have an overlapping RA–ASS syndrome. Indeed, polyarthritis was present in all ACPA-positive patients, involving numerous small joints, with a distribution resembling that of RA, along with higher CRP amount and a positive test for rheumatoid factor. Thus, although all patients displayed ASS manifestations and were tested positive for ACPA at least twice, all ACPA-positive patients also fulfilled the recently proposed 2010 American College of Rheumatology diagnostic criteria for RA versus 19 ACPA-negative patients (\(P = 0.0008 \)). Accordingly, and as also demonstrated in the setting of RA, ACPA positivity in ASS patients was associated with a greater occurrence of disease-modifying antirheumatic drugs (DMARDs)-refractory arthritis as well as a higher incidence of joint damages.

Arthritis, ILD, and Raynaud phenomenon are symptoms encountered in both RA and ASS. Thus, one third of our ACPA–ASS patients were first diagnosed as having solely RA. However, during the course of the follow-up, all but 2 patients developed at least 1 additional sign of ASS, including typical dermatological signs and/or myositis. Finally, the occurrence of lung, muscle, and skin involvement did not differ between ACPA-positive and ACPA-negative patients. This suggests that RA patients experiencing such systemic symptoms should be tested for anti-ARS as these autoantibodies are associated with ASS even in the setting of RA. A higher DLCO was recorded in ACPA–ASS patients with ILD, which was the only difference in extra-articular involvement between the 2 groups. DLCO has been shown to be a predictor of survival time in ILD patients, including RA–ILD and myositis–ILD. Although 4 deaths were recorded in the ACPA-negative group versus none in the ACPA-positive group, difference in survival between the 2 groups did not reach statistical significance despite prolonged follow-up.

ACPA strongly associates with the HLA-DRB1 SE and with smoking. ACPA–ASS patients tended to be more frequently smokers and HLA-SE positive. However, as the trend did not reach statistical significance (likely due to the limited number of patients herein), the role of these factors in the development of ACPA during ASS remains to be further explored.

The present data extend the findings of the 9 previously described ACPA–ASS patients, reported as separate case reports, in which the presence of ACPA was systematically associated with erosive arthritis, and with a higher DLCO amount, whereas 8/27 (30%) in the ACPA-negative group (\(P = 0.53 \)). Finally, all patients with ACPA were alive at the end of the follow-up period, whereas 4 patients in the control group had died (\(P = 0.29 \)). Causes of death were ILD (n = 3) or concomitant multiple myeloma (n = 1). As a result, the survival rate was not statistically different between the 2 groups (\(P = 0.15 \), Figure 2).

DISCUSSION

This study, which is the first case–control study to assess the clinical significance of ACPA in patients with ASS, suggests that ASS-patients with ACPA have an overlapping RA–ASS syndrome. Indeed, polyarthritis was present in all ACPA-positive patients, involving numerous small joints, with a distribution resembling that of RA, along with higher CRP amount and a positive test for rheumatoid factor. Thus, although all patients displayed ASS manifestations and were tested positive for ACPA at least twice, all ACPA-positive patients also fulfilled the recently proposed 2010 American College of Rheumatology diagnostic criteria for RA versus 19 ACPA-negative patients (\(P = 0.0008 \)). Accordingly, and as also demonstrated in the setting of RA, ACPA positivity in ASS patients was associated with a greater occurrence of disease-modifying antirheumatic drugs (DMARDs)-refractory arthritis as well as a higher incidence of joint damages.

Arthritis, ILD, and Raynaud phenomenon are symptoms encountered in both RA and ASS. Thus, one third of our ACPA–ASS patients were first diagnosed as having solely RA. However, during the course of the follow-up, all but 2 patients developed at least 1 additional sign of ASS, including typical dermatological signs and/or myositis. Finally, the occurrence of lung, muscle, and skin involvement did not differ between ACPA-positive and ACPA-negative patients. This suggests that RA patients experiencing such systemic symptoms should be tested for anti-ARS as these autoantibodies are associated with ASS even in the setting of RA. A higher DLCO was recorded in ACPA–ASS patients with ILD, which was the only difference in extra-articular involvement between the 2 groups. DLCO has been shown to be a predictor of survival time in ILD patients, including RA–ILD and myositis–ILD. Although 4 deaths were recorded in the ACPA-negative group versus none in the ACPA-positive group, difference in survival between the 2 groups did not reach statistical significance despite prolonged follow-up.

ACPA strongly associates with the HLA-DRB1 SE and with smoking. ACPA–ASS patients tended to be more frequently smokers and HLA-SE positive. However, as the trend did not reach statistical significance (likely due to the limited number of patients herein), the role of these factors in the development of ACPA during ASS remains to be further explored.

The present data extend the findings of the 9 previously described ACPA–ASS patients, reported as separate case reports, in which the presence of ACPA was systematically associated with erosive arthritis, and with a higher DLCO amount, whereas 8/27 (30%) in the ACPA-negative group (\(P = 0.53 \)). Finally, all patients with ACPA were alive at the end of the follow-up period, whereas 4 patients in the control group had died (\(P = 0.29 \)). Causes of death were ILD (n = 3) or concomitant multiple myeloma (n = 1). As a result, the survival rate was not statistically different between the 2 groups (\(P = 0.15 \), Figure 2).
TABLE 3. Clinical Characteristics of the 9 ACPA-SAS Patients Previously Reported in Literature

Sex/Age at disease onset	Anti-ARS	ACPA titer (UI/L)	RF	Arthritis	Articular damages	Myositis	ILD	Raynaud phenomenon	Skin damages	Disease	Myositis	ILD	Arthritis	Articular damages	Myositis	ILD	Raynaud phenomenon	Skin damages	Disease	
-------------------------	----------	-------------------	----	-----------	------------------	---------	-----	-------------------	-------------	--------	---------	-----	-----------	------------------	---------	-----	-------------------	-------------	--------	
F/67	Yes	109	Yes	Yes	Yes	Yes	Yes	No	No	DM	No	Yes	Yes	Yes	Yes	Yes	No	No	DM	
F/56	Yes	1520	Yes	Yes	Yes	Yes	Yes	No	No	DM, MH	No	Yes	Yes	Yes	Yes	Yes	No	No	DM	
F/47	No	NA	Yes	NA	NA	Yes	Yes	No	NA	NA	No	Yes	Yes	Yes	Yes	Yes	No	NA	NA	
M/46	Yes	14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
F/62	Yes	>100	Yes	Yes	Yes	Yes	Yes	Yes	Yes	NA	NA	Yes	No	Yes	No	Yes	No	No	DM	
F/56	Yes	>100	Yes	Yes	Yes	Yes	Yes	Yes	Yes	DM	No	Yes	Yes	Yes	Yes	Yes	No	Yes	DM	
F/55	Yes	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	NA	No	Yes	Yes	Yes	Yes	Yes	No	Yes	DM	
F/53	Yes	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	NA	No	Yes	Yes	Yes	Yes	Yes	No	Yes	DM	
M/46	No	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	DM	No	Yes	Yes	Yes	Yes	Yes	No	Yes	DM	
F/55	No	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	DM	No	Yes	Yes	Yes	Yes	Yes	No	Yes	DM	
F/53	Yes	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	DM	No	Yes	Yes	Yes	Yes	Yes	No	Yes	DM	

ACPA = anticitrullinated peptide/protein antibody, ARS = aminoacyl-transfer RNA synthetase, DM = dermatomyositis, F = female, ILD = interstitial lung disease, M = male, MH = mechanic’s hand.

In summary, the present series demonstrates that ASS can overlap with RA. The recognition of this setting among patients diagnosed with ASS, but also in patients diagnosed with RA, has important implications for both prognosis and management. ACPA-positive ASS patients display extrarheumatic manifestations similar to ACPA-negative ASS patients and are at high risk of developing erosive arthritis refractory to DMARDs. Conversely, to anti-TNF drugs, anti-CD20 mAb may be effective and well tolerated in these patients, without exacerbating extra-articular involvements.

REFERENCES

1. Avouac J, Gossec L, Dougados M. Diagnostic and predictive value of anti-cyclic citrullinated protein antibodies in rheumatoid arthritis: a systematic literature review. Ann Rheum Dis. 2006;65:845–851.
2. Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–2581.
3. Kastbom A, Strandberg G, Lindroos A, et al. Anti-CCP antibody test predicts the disease course during 3 years in early rheumatoid arthritis (the Swedish TIRA project). Ann Rheum Dis. 2004;63:1085–1089.
4. Meyer O, Labarre C, Dougados M, et al. Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann Rheum Dis. 2003;62:120–126.
5. Potter C, Hyrich KL, Tracey A, et al. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis. Ann Rheum Dis. 2009;68:69–74.
6. Pakozdi A, Nihtyanova S, Moinzadeh P, et al. Clinical and serological hallmarks of systemic sclerosis overlap syndromes. J Rheumatol. 2011;38:2406–2409.
7. Ueda-Hayakawa I, Hasegawa M, Kumada S, et al. Usefulness of anti-cyclic citrullinated peptide antibody and rheumatoid factor to detect rheumatoid arthritis in patients with systemic sclerosis. Rheumatology (Oxford). 2010;49:2135–2139.
8. Arslan Tas D, Erken E, Sakalli H, et al. Evaluating hand in systemic sclerosis. *Rheumatol Int.* 2012;32:3581–3586.

9. Hoffman IEA, Peene I, Cebeuau L, et al. Presence of rheumatoid factor and antibodies to citrullinated peptides in systemic lupus erythematosus. *Ann Rheum Dis.* 2005;64:330–332.

10. Chan MT, Owen P, Dunphy J, et al. Associations of erosive arthropathy with anti-cyclic citrullinated peptide antibodies and MHC Class II alleles in systemic lupus erythematosus. *J Rheumatol.* 2008;35:77–83.

11. Qing Y-F, Zhang Q-B, Zhou J-G, et al. The detecting and clinical value of anti-cyclic citrullinated peptide antibodies in patients with systemic lupus erythematosus. *Lupus.* 2009;18:713–717.

12. Kakumanu P, Sobel ES, Narain S, et al. Citrulline dependence of anti-cyclic citrullinated peptide antibodies in systemic lupus erythematosus as a marker of deforming/erosive arthritis. *J Rheumatol.* 2009;36:2682–2690.

13. Simión JA, Granados J, Cabiedes J, et al. Clinical and immunogenetic characteristic of Mexican patients with “rhupe”. *Lupus.* 2002;11:287–292.

14. Amezcua-Guerra LM, Springall R, Marquez-Velasco R, et al. Presence of antibodies against cyclic citrullinated peptides in patients with “rhupe”: a cross-sectional study. *Arthritis Res Ther.* 2006;8:R144.

15. Nagashima T, Sato H, Minota S. Destructive arthropathy associated with dermatomyositis sine myositis positive for anti-Jo-1 and anti-cyclic citrullinated peptide antibodies. *J Rheumatol.* 2009;36:2133–2134.

16. Cavagna L, Fusetti C, Montecucco C, et al. Anticyclic citrullinated peptide antibodies as markers of erosive arthritis in antisynthetase syndrome. *J Rheumatol.* 2010;37:1967.

17. Ishikawa Y, Yukawa N, Ohmura K, et al. Etaercept-induced anti-Jo-1-antibody-positive polymyositis in a patient with rheumatoid arthritis: a case report and review of the literature. *Clin Rheumatol.* 2010;29:563–566.

18. Ishikawa Y, Yukawa N, Kawabata D, et al. A case of antisynthetase syndrome in a rheumatoid arthritis patient with anti-PL-12 antibody following treatment with etanercept. *Clin Rheumatol.* 2011;30:429–432.

19. Park C-K, Kim T-J, Cho Y-N, et al. Development of antisynthetase syndrome in a patient with rheumatoid arthritis. *Rheumatol Int.* 2011;31:539–542.

20. Tomioka H, Kaneko M, Kogata Y, et al. A case of interstitial lung disease with anti-EJ and anti-CCP antibodies preceding rheumatoid arthritis. *Respir Investig.* 2012;50:66–69.

21. Labrador-Horrillo M, Martínez MA, Selva-O’Callaghan A, et al. Anti-cyclic citrullinated peptide and anti-keratin antibodies in patients with idiopathic inflammatory myopathy. *Rheumatology (Oxford).* 2009;48:676–679.

22. Kaneko Y, Hanoaka H, Hirakata M, et al. Distinct arthropathies inpatients with anti-aminocarboxyl tRNA synthetase antibodies: utility of autoimmune antibody profiles in Discrimination. *Arthritis Rheum.* 2013;65(suppl 10):881.

23. Marguerie C, Bunn CC, Beynon HL, et al. Polymyositis, pulmonary fibrosis and autoantibodies to aminocetyl-tRNA synthetase enzymes. *Q J Med.* 1990;77:1009–1038.

24. Aggarwal R, Cassidy E, Fertig N, et al. Patients with non-Jo-1 anti-tRNA-synthetase autoantibodies have worse survival than Jo-1-positive patients. *Ann Rheum Dis Ann Rheum Dis.* 2014;73:227–232.

25. Hervier B, Devilliers H, Stanciu R, et al. Hierarchical cluster and survival analyses of antisynthetase syndrome: phenotype and outcome are correlated with anti-tRNA synthetase antibody specificity. *Autoimmun Rev.* 2012;11:210–217.

26. Oddis CV, Medsger TA Jr, Cooperstein LA. A subluxing arthropathy associated with the anti-Jo-1 antibody in polymyositis/dermatomyositis. *Arthritis Rheum.* 1990;33:1640–1645.

27. Meyer O, Charlanne H, Cherin P, et al. Subluxing arthropathy: an unusual manifestation of the antisynthetase syndrome. *Ann Rheum Dis.* 2009;68:152–153.

28. Mumm GE, McKown KM, Bell CL. Antisynthetase syndrome presenting as rheumatoid-like polyarthritis. *J Clin Rheumatol.* 2010;16:307–312.

29. Gomard-Mennesson E, Fabien N, Cordier J-F, et al. Clinical significance of anti-histidyl-tRNA synthetase (Jo1) autoantibodies. *Ann N Y Acad Sci.* 2007;1109:414–420.

30. Sharp JT, Young DY, Blluem GB, et al. How many joints in the hands and wrists should be included in a score of radiologic abnormalities used to assess rheumatoid arthritis? *Arthritis Rheum.* 1985;28:1326–1335.

31. Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). *N Engl J Med.* 1975;292:344–347.

32. American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. *Am J Respir Crit Care Med.* 2002;165:277–304.

33. Kim EJ, Collard HR, King TE Jr. Rheumatoid arthritis-associated interstitial lung disease: the relevance of histopathologic and radiographic pattern. *Chest.* 2009;136:1397–1405.

34. Hartmann M, Mohokum M, Schlattmann P. The association of Raynaud’s syndrome with rheumatoid arthritis-a meta-analysis. *Clin Rheumatol.* 2011;30:1013–1019.

35. Kim EJ, Ellicker BM, Maldonado F, et al. Usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease. *Eur Respir J.* 2010;35:1322–1328.

36. Marie I, Hatron PY, Dominique S, et al. Short-term and long-term outcomes of interstitial lung disease in polymyositis and dermatomyositis: a series of 107 patients. *Arthritis Rheum.* 2011;63:3439–3447.

37. Nagashima T, Onishi S, Kamata Y, et al. Dermatomyositis associated with thyroid cancer: a paraneoplastic syndrome? *Rheumol Int.* 2009;29:1261–1262.

38. Aggarwal R, Liao K, Nair R, et al. Anti-citrullinated peptide antibody (ACPA) assays and their role in the diagnosis of rheumatoid arthritis. *Arthritis Rheum.* 2009;61:1472–1483.

39. Smolen JS, Landewe R, Breedveld FC, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. *Ann Rheum Dis.* 2010;69:964–975.

40. Buch MH, Smolen JS, Betteridge N, et al. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. *Ann Rheum Dis.* 2011;70:909–920.

41. Bruhlart L, Waldbaumer J-M, Gabay C. Rituximab in the treatment of antisynthetase syndrome. *Ann Rheum Dis.* 2006;65:974–975.

42. Sem M, Mølberg O, Lund MB, et al. Rituximab treatment of the anti-synthetase syndrome: a retrospective case series. *Rheumatology (Oxford).* 2009;48:968–971.

43. Aggarwal R, Bandos A, Reed AM, et al. Predictors of clinical improvement in rituximab-treated refractory adult and juvenile dermatomyositis and adult polymyositis. *Arthritis Rheumatol.* 2014;66:740–749.

44. Marie I, Domiqué S, Janvresse A, et al. Rituximab therapy for refractory interstitial lung disease related to antisynthetase syndrome. *Respir Med.* 2012;106:581–587.