Efficient detection of novel nuclear markers for brassicaceae by transcriptome sequencing

Stockenhuber, Reinhold; Zoller, Stefan; Shimizu-Inatsugi, Rie; Gugerli, Felix; Shimizu, Kentaro K; Widmer, Alex; Fischer, Martin C

Abstract: The lack of DNA sequence information for most non-model organisms impairs the design of primers that are universally applicable for the study of molecular polymorphisms in nuclear markers. Next-generation sequencing (NGS) techniques nowadays provide a powerful approach to overcome this limitation. We present a flexible and inexpensive method to identify large numbers of nuclear primer pairs that amplify in most Brassicaceae species. We first obtained and mapped NGS transcriptome sequencing reads from two of the distantly related Brassicaceae species, Cardamine hirsuta and Arabis alpina, onto the Arabidopsis thaliana reference genome, and then identified short conserved sequence motifs among the three species bioinformatically. From these, primer pairs to amplify coding regions (nuclear protein coding loci, NPCL) and exon-primed intron-crossing sequences (EPIC) were developed. We identified 2,334 universally applicable primer pairs, targeting 1,164 genes, which provide a large pool of markers as readily usable genomic resource that will help addressing novel questions in the Brassicaceae family. Testing a subset of the newly designed nuclear primer pairs revealed that a great majority yielded a single amplicon in all of the 30 investigated Brassicaceae taxa. Sequence analysis and phylogenetic reconstruction with a subset of these markers on different levels of phylogenetic divergence in the mustard family were compared with previous studies. The results corroborate the usefulness of the newly developed primer pairs, e.g., for phylogenetic analyses or population genetic studies. Thus, our method provides a cost-effective approach for designing nuclear loci across a broad range of taxa and is compatible with current NGS technologies.

DOI: https://doi.org/10.1371/journal.pone.0128181

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-111187
Supplemental Material

Originally published at:
Stockenhuber, Reinhold; Zoller, Stefan; Shimizu-Inatsugi, Rie; Gugerli, Felix; Shimizu, Kentaro K; Widmer, Alex; Fischer, Martin C (2015). Efficient detection of novel nuclear markers for brassicaceae by transcriptome sequencing. PLoS ONE, 10(6):e0128181.
DOI: https://doi.org/10.1371/journal.pone.0128181
S3 Table. GO-overrepresentation analysis* of all 1,164 genes amplified (at least in part) with primer pairs developed in this study, sorted by false-discovery rate (FDR) values.

GO-Term	No. of genes	FDR
response to cadmium ion	49	8.85E-07
response to metal ion	52	8.75E-06
nitrogen compound biosynthetic process	62	1.20E-05
response to abiotic stimulus	113	2.80E-05
hexose metabolic process	28	2.89E-04
carbohydrate biosynthetic process	37	3.24E-04
monosaccharide metabolic process	30	5.97E-04
cellular carbohydrate catabolic process	26	6.11E-04
response to inorganic substance	59	0.001531559
carboxylic acid biosynthetic process	48	0.002492413
organic acid biosynthetic process	48	0.002492413
cellular carbohydrate biosynthetic process	29	0.003030663
photosynthesis	27	0.006668279
cellular glucan metabolic process	22	0.006986778
alcohol catabolic process	21	0.008892257
response to salt stress	43	0.012155865
amine biosynthetic process	29	0.013688571
glucan metabolic process	24	0.015633436
cellular polysaccharide metabolic process	24	0.021765577
response to temperature stimulus	41	0.023934446
glucose catabolic process	19	0.028219854
hexose catabolic process	19	0.03226425
monosaccharide catabolic process	19	0.03226425
glucose metabolic process	20	0.032467233
response to osmotic stress	44	0.037063436
carbohydrate catabolic process	28	0.038535592

*Analysis was performed by the online tool DAVID 6.7 [1,2].

References

1. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4: 44-57.
2. Huang DW, Sherman BT, Zheng X, Yang J, Imamichi T, et al. (2009) Extracting biological meaning from large gene lists with DAVID. Current Protocols in Bioinformatics 13: Unit 13.11.