Composition, diversity and function of intestinal microbiota in pacific white shrimp (*Litopenaeus vannamei*) at different culture stages

Shenzheng Zeng¹,*, Zhijian Huang¹,*, Dongwei Hou¹, Jian Liu¹, Shaoping Weng² and Jianguo He¹²

¹State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
²School of Life Sciences, Sun Yat-sen University, Guangzhou, China
*These authors contributed equally to this work.

ABSTRACT

Intestinal microbiota is an integral component of the host and plays important roles in host health. The pacific white shrimp is one of the most profitable aquaculture species commercialized in the world market with the largest production in shrimp consumption. Many studies revealed that the intestinal microbiota shifted significantly during host development in other aquaculture animals. In the present study, 22 shrimp samples were collected every 15 days from larval stage (15 day post-hatching, dph) to adult stage (75 dph) to investigate the intestinal microbiota at different culture stages by targeting the V4 region of 16S rRNA gene, and the microbial function prediction was conducted by PICRUSt. The operational taxonomic unit (OTU) was assigned at 97% sequence identity. A total of 2,496 OTUs were obtained, ranging from 585 to 1,239 in each sample. Forty-three phyla were identified due to the classifiable sequence. The most abundant phyla were Proteobacteria, Cyanobacteria, Tenericutes, Fusobacteria, Firmicutes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Actinobacteria and Chloroflexi. OTUs belonged to 289 genera and the most abundant genera were *Candidatus_Xiphinematobacter*, *Propionigenium*, *Synechococcus*, *Shewanella* and *Cetobacterium*. Fifty-nine OTUs were detected in all samples, which were considered as the major microbes in intestine of shrimp. The intestinal microbiota was enriched with functional potentials that were related to transporters, ABC transporters, DNA repair and recombination proteins, two component system, secretion system, bacterial motility proteins, purine metabolism and ribosome. All the results showed that the intestinal microbial composition, diversity and functions varied significantly at different culture stages, which indicated that shrimp intestinal microbiota depended on culture stages. These findings provided new evidence on intestinal microorganism microecology and greatly enhanced our understanding of stage-specific community in the shrimp intestinal ecosystem.

Keywords Intestinal microbiota, Microbial composition, Pacific white shrimp, Diversity, Function, Culture stage
INTRODUCTION

Intestinal microbiota is a complex organ ecosystem with multiple functions critical for host health (Al-Harbi & Uddin, 2005; Ramirez & Romero, 2017). It has been reported that the stable intestinal microbiota influences myriad host functions like the establishment of microorganisms in the intestinal tract and infectious susceptibility (Wu et al., 2010; Ravel et al., 2014). During the host development, different shifts happen in intestinal microbiota depending on host age (Fraune & Bosch, 2010; Li et al., 2017). In an effort to better understand the relationship between intestinal microbiota and host, it is necessary to identify the composition of the microbiota and understand how they vary during the host development.

The pacific white shrimp, Litopenaeus vannamei, is becoming increasingly important for aquaculture as one of the most profitable species in shrimp farming, with the production being more than 3 million tons per year (Zhang et al., 2016). In recent years, some bacterial diseases in shrimp, such as early mortality syndrome (EMS), acute hepatopancreatic necrosis disease (AHPND) and hepatopancreas necrosis syndrome (HPNS), have led to the shrimp production dropped to nearly 60% and caused global losses to the shrimp farming industry estimated at more than $1 billion per year (Lightner et al., 2012; Lee et al., 2015; Huang et al., 2016). Some previous studies reveal that many bacterial diseases are associated with the shifts and imbalance of intestine microbiota in other aquaculture animals (Perez et al., 2010; Li et al., 2016) and the probiotic addition is helpful for maintaining the intestinal bacterial balance (Irianto & Austin, 2002; Balcazar et al., 2006).

Some studies have been conducted on intestinal microbiota in aquaculture animals, such as grass carp (Wu et al., 2012; Li et al., 2015), yellow catfish (Wu et al., 2010) and atlantic cod (Dhanasiri et al., 2011). The intestinal microbiota of pacific blue shrimp and black tiger shrimp have been well investigated (Rungrassamee et al., 2014; Cardona et al., 2016), while most reports about pacific white shrimp focus on the microbial community of the surrounding water (Tang et al., 2014; Hou et al., 2016) and the effect of diet on intestinal microbiota (Zhang et al., 2014). A previous report shows that the shift of microbial composition and structure is less affected by the surrounding environment than by the host development (Li et al., 2017), and fish intestinal microbiota is mainly shaped by intestinal environment and some changes accompanying the host development (Yan et al., 2016). Knowledge of the intestinal microbiota of pacific white shrimp at different culture stages is still limited.

The functional potential of microbial community reflects the connection between intestinal microbiota and the surrounding environment (Abubucker et al., 2012). Therefore, the functional characterization of the microbial community is necessary to determine microbial function in the intestine. In other animals, the microbial functions have been well studied, such as grass carp (Wu et al., 2015) and fine flounder (Ramirez & Romero, 2017). However, the function of shrimp intestine microbiota has not been extensively explored yet.

Some conventional methods had been adopted to study the microbiota, including culture-dependent plate counting method (Tuyub Tzuc et al., 2014), clone libraries (Wu...
et al., 2010) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) (Dhanasiri et al., 2011). However, the above traditional methods were certainly limited since it would underestimate the overall diversity and it was difficult to profile a comprehensive community in complex environments. The high throughput sequencing, which can generate more reliable and sufficient information through the amplification and identification of 16S rRNA gene, can provide a profile of the whole community (Glenn, 2011; Sun et al., 2014). Many studies detected the intestinal microbiota by high throughput sequencing to obtain a high-resolution map of the intestinal microbiota in other aquaculture animals (Al-Harbi & Uddin, 2005; Wu et al., 2012; Rungrassamee et al., 2014; Ramirez & Romero, 2017).

This study aimed to evaluate the difference of intestinal microbiota at different culture stages. The present study compared the composition, diversity and functions of intestinal microbiota in pacific white shrimp, which showed that intestinal microbiota varied significantly at different culture stages. This study greatly enhanced our understanding of stage-specific community assembly patterns in the shrimp intestine microecosystem.

MATERIALS AND METHODS

Sample collection

From July to October 2015, 22 intestine samples were collected from 5 shrimp ponds in a commercial shrimp farm, Maoming, Guangdong, China (21.68°N, 110.88°E). Healthy shrimp were collected every 15 days from the larval stage (stage1, 15 dph) to adult stage (stage 5, 75 dph) (Table S1).

Each pond was approximately 2,600 m² and the average depth was 1.5 m. Shrimp larvae with average length of 0.7 cm were cultured at a stocking density of 200,000 shrimps each pond. The water temperature was relatively stable at approximately 32 °C. The pH value ranged from 7.5 to 8.61. The concentration of NH₃-N, NO₂-N, NO₃-N, PO₄³⁻ and SO₄²⁻ were in range of 0.0089~1.1095 mg L⁻¹, 0.0022~0.9869 mg L⁻¹, 0.0323~3.3007 mg L⁻¹, 0.0171~0.3131 mg L⁻¹ and 0.0012~0.3777 mg L⁻¹. There was no antibiotic application during the culture period. Some probiotics, including Lactobacillus and Bacillus from Guangdong Zhongtai Biology Co., Ltd. (Guangdong, China), have been mixed with feed and applied to ponds once a week.

Sampling was according to the previously reported methods (Oxley et al., 2002; Rungrassamee et al., 2014). The shrimp’s surface was sterilized with 70% ethanol and the intestine was aseptically dissected. The intestine was put into a 2 mL centrifuge tube which contained sterile glass beads and 1.5 mL PBS buffer. The tube was thoroughly vortexed for 3 min and centrifuged at 10,000 g for 1 min. Samples were immediately stored at −80 °C before DNA extraction.

DNA extraction and sequencing

Total DNA was extracted by the PowerFecal DNA Isolation Kit (MoBio, Palo Alto, CA, USA) following the manufacturer’s directions. The concentration and purity of total DNA were determined by NanoVuePlus Spectrophotometer (GE Healthcare, USA) and 1% agarose gels. The primer pair 515F (5′-GTGCCAGCMGCGCAGTAA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) were used to amplify the V4 hypervariable region of 16S rRNA gene, which was modified with a barcode tag with a random 6-base oligos (Bates et al., 2011). Sequencing libraries were generated via using TruSeq DNA PCR-Free Sample Preparation Kit (Illumina, San Diego, CA, USA). In addition, the library quantity was assessed on Qubit 2.0 Fluorometer (Thermo Scientific, Waltham, MA, USA). The libraries were sent for sequencing by Illumina Hiseq2500 platform (Illumina, San Diego, CA, USA), which was conducted by Novogene Bioinformatics Technology Co., Ltd. (Beijing, China). Raw data generated from Hiseq2500 platform were paired-end reads.

Data analysis

Based on the unique barcode, sequences were assigned to samples and then removed off the barcode and primer sequence by QIIME (Version 1.7.0, http://qiime.org/index.html) (Caporaso et al., 2010). In order to merge paired-end reads when at least some of the reads overlap the read generated from the opposite end of the same DNA fragment, FLASH (Version 1.2.7, http://ccb.jhu.edu/software/FLASH/) was used to get raw tags (Magoc & Salzberg, 2011). In terms of quality control, raw tags with low quality (quality value ≤19, homopolymers ≥3 bases and sequence length ≤200 bp) were filtered by QIIME according to the QIIME quality filtering process in a bid to obtain the high-quality clean tags. Tags were compared with Gold database (http://drive5.com/uchime/uchime_download.html) by UCHIME algorithm (http://www.drive5.com/usearch/manual/uchime_algo.html) so as to remove off chimera sequences and then the effective tags were finally gained (Edgar et al., 2011).

Sequences with over 97% similarity were considered as the same OTUs for further annotation (Edgar, 2013). To align the sequences, the GreenGene Database (http://greengenes.lbl.gov/download) was used as a reference database (DeSantis et al., 2006). Later, the taxonomic information was annotated by RDP classifier (Version 2.2, http://sourceforge.net/projects/rdp-classifier/) with 80% confidence threshold. OTUs abundance information was normalized using a standard of sequence number corresponding to the sample with the least sequences. The Venn diagram, which was used to find out the shared OTUs among groups, was conducted by Draw Veen Diagram online tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). Alpha diversity, showing the complexity of species for one sample through 5 indices, including Chao, Shannon, Simpson, ACE and Good’s coverage, was calculated by QIIME following the tutorial (http://qiime.org/scripts/alpha_diversity.html) and displayed via R software (Version 2.15.3). Beta diversity, used to evaluate differences of samples in species complexity, was calculated by QIIME (http://qiime.org/scripts/beta_diversity.html). Unweighted pair-group method with arithmetic means (UPGMA) was conducted to report the hierarchical clustering of samples by QIIME following the guidance (http://qiime.org/scripts/jackknifed_beta_diversity.html). Statistical analyses of alpha diversity were calculated by analysis of variance (ANOVA) to compare the significant differences at different culture stages by SPSS (Version 21). Multiple-response permutation procedure (MRPP) was conducted to test significant difference between any two of compared culture stages using the vegan package in R (Cai, 2006). Permutational analysis of
multivariate dispersions (PERMDISP) was used to test whether the microbial community varied at different culture stages by using the vegan package in R (Anderson, 2006). Permutational multivariate analysis of variance (PerMANOVA) was conduct to compare microbial composition and function dissimilarities (Anderson, 2001). A calculated P value < 0.05 was considered to be statistically significant.

Microbial function prediction based on 16S rDNA data

The OTU table was used to generate the inferred metagenomic data by using PICRUSt (version 1.1.0) to predict the metagenomic functional capacity (Langille et al., 2013). The abundance values of each OTU were firstly normalized to its 16S rRNA copy number respectively. Predicted functional pathways were annotated by using the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2012) at level 2 and level 3 KEGG orthology groups (KOs) (Langille et al., 2013). The accuracy of the predictions of the metagenomes was assessed by computing the nearest sequenced taxon index (NSTI). The associated metabolic pathways were identified by means of employing the HMP unified metabolic analysis network (HUMAnN) (Abubucker et al., 2012). Moreover, the KOs at different culture stages were further examined by PerMANOVA. The relationships among functional capacities were analyzed by principal component analysis (PCA).

Accession number

The raw data in this study have been deposited in the GenBank Sequence Read Archive database. The accession number is SRX2946975.

RESULTS

Composition of intestinal microbiota

Quality and chimera filtration of the raw data produced totally 1,408,105 high quality sequencing reads from 22 samples, belonging to five culture stages, with an average of 64,005 reads, ranging from 41,250 to 79,515 (Table 1). By performing the alignment at an average length of 253 bp, OTUs were clustered at 3% distances, among which each OTU represented a unique phylotype. Finally, 2,496 OTUs were obtained and the number of OTUs detected in each sample ranged from 585 to 1,239, with an average of 880 OTUs (Table 1).

OTUs were identified into 43 phyla. Sequences that could not be classified into any known groups were assigned as ‘others’. The most relative abundant phyla in all samples were Proteobacteria (63.5%), Cyanobacteria (7.0%), Tenericutes (6.5%), Fusobacteria (5.3%), Firmicutes (4.1%), Verrucomicrobia (3.6%), Bacteroidetes (3.6%), Planctomycetes (2.9%), Actinobacteria (0.8%) and Chloroflexi (0.4%) (Fig. 1). Proteobacteria was the most abundant phylum among 21 samples except sample E2, in which Cyanobacteria was the most abundant phyla (27.8% relatively abundance).

At genus level, a total of 289 taxa were identified. The top 10 genera were Candidatus_Xiphinematobacter (3.4%), Propionigenium (3.4%), Synechococcus (2.7%), Shewanella (1.3%), Cetobacterium (1.1%), Bacillus (0.9%), Robigrinatale (0.7%), Fusibacter (0.5%) and Arcobacter (0.5%) (Fig. S1). The abundance of Lactobacillus and Bdellovibrio were 0.04% and 0.002% respectively.
For further investigation of the dominant microbiota that exists in all samples, Venn diagram was constructed to identify dominant OTUs presented in intestine (Fig. 2). There were 59 OTUs shared among 22 samples, representing 83.1% of the total reads. Among the shared OTUs, 17 OTUs (28.8%) belonged to Proteobacteria, 5 OTUs (8.5%) belonged to Cyanobacteria and 5 OTUs (8.5%) belonged to Bacteroidetes.

Diversity, similarity and function analysis

The diversity and richness indices of all samples from five ponds were calculated in an effort to illustrate the complexity of each sample (Table S2). The completeness of sequencing was estimated with Good’s coverage, showing the probability of a randomly sequence already detected in the sample. The rarefaction curves approached the plateau (Fig. S2). The Good’s coverage ranged from 0.989 to 0.996, suggesting that additional 90 to 250 reads needed to be sequenced before discovering new OTUs. Shannon index and Simpson index were often used to quantify the diversity. The Shannon index ranged from 1.936 to 6.592, while the Simpson index ranged from 0.273 to 0.968. The richness of each sample was calculated via Chao index and ACE index. Chao index ranged from 558 to 1,386, while ACE index ranged from 599 to 1,416.
The similarity and difference in different intestinal microbiota samples were further investigated. UPGMA clustering showed that almost all of the individual samples were clustered into groups according to the culture stage (Fig. 3). The OTU number, Shannon index, Simpson index, ACE index and Chao index were shown in boxplot graph (Fig. 4), and ANOVA showed that there was extremely significant difference in the OTU number, Shannon index, Simpson index, ACE index and Chao index at different culture stages (P value < 0.05) (Table 2). MRPP and PERMDISP showed the intestinal microbiota differed significantly between any two of compared stages (P value < 0.05) (Table 3). Among the top 10 phyla, PerMANOVA demonstrated the abundance of Proteobacteria, Fusobacteria, Tenericutes, Verrucomicrobia, Planctomycetes and Chloroflexi changed significantly at different culture stages (P value < 0.05) (Fig. 5).

Functional prediction of the intestinal microbiota

The changes in the presumptive functions of the intestinal microbiota of pacific white shrimp were examined by predicting the metagenomes using PICRUSt. The accuracy of the prediction was evaluated by computing the NSTI, and the mean of the samples was 0.171 ± 0.023. The metagenomic prediction showed the intestinal microbiota was enriched with functions that were related to transporters, ATP-binding cassette (ABC) transporters, DNA repair and recombination proteins, two component system, secretion system, bacterial motility proteins, purine metabolism, ribosome, pyrimidine metabolism, peptidases and transcription factors (Table 4). The relative abundance of transporters
(5.25%) and ABC transporters (3.06%) were at the highest level during all culture stages. Two component system (2.49%) as well as DNA repair and recombination proteins (2.43%) were the thirdly and fourthly most abundant KOs. The range of KOs related to membrane transport, cell motility, energy metabolism, and the signal transduction was wide, while other KOs varied at small range. Moreover, PerMANOVA showed there were totally 199 KOs shifting significantly at different stages (P value < 0.05), including the KOs which belonged to amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport and nucleotide metabolism (Fig. 6). PCA revealed that the functions of intestinal microbiota from the same culture stages were clustered closer, with the first two components explaining a total of 58.67% of the variation (Fig. 7). The results suggested the functional KOs of the intestinal microbiota varied a lot according to different culture stages.

DISCUSSION

The intestinal microbiota of pacific white shrimp at different culture stages was investigated by high throughput sequencing to profile the complex microecosystem in shrimp intestine.
Results showed that the microbial composition and function shifted significantly at different stages.

The Good’s coverage ranged from 0.989 to 0.996, which suggested that the complete microbial communities present in the samples were identified completely in this study. The RDP Classifier was able to classify an average of 11.6% sequences to the genus level, indicating that the high abundance of unclassified sequences represented a significant presence of novel species. The result was consistent with previous studies on other
Table 2 ANOVA of OTU number, Shannon index, Simpson index, ACE index and Chao index at different culture stages. ANOVA was used to compare significant differences at different culture stages. The asterisk represents that there is significant difference in groups (P value < 0.05). The two-asterisk represents that there is extremely significant difference in groups (P value < 0.01).

Index	F value	P value
OTU number	8.283	0.001**
Shannon index	15.291	<0.001**
Simpson index	38.958	<0.001**
ACE index	6.580	0.001**
Chao index	5.120	0.002**

Table 3 MRPP and PERMDISP test for significant difference between two culture stages. MRPP test shows differences in intestinal microbiota between culture stages. Observe-delta represents the difference within group. Expect-delta represents the difference between groups. The difference between groups is larger than the difference within group (P value < 0.01). PERMDISP test whether the intestinal microbiota varied at different culture stages. The t value is calculated by Levene’s test. The asterisk represents that there is significant difference in groups (P value < 0.05). The two-asterisk represents that there is extremely significant difference in groups (P value < 0.01).

Group	MRPP	PERMDISP			
	Observed-delta	Expected-delta	P value	t value	P value
Stage 1 vs Stage 2	0.2570	0.3641	0.001**	3.944	0.032*
Stage 1 vs Stage 3	0.3562	0.4173	0.001**	1.149	0.001**
Stage 1 vs Stage 4	0.2933	0.4677	0.001**	0.882	0.014*
Stage 1 vs Stage 5	0.3341	0.4158	0.001**	8.808	0.005**
Stage 2 vs Stage 3	0.3351	0.4269	0.002**	15.336	0.016*
Stage 2 vs Stage 4	0.3600	0.4871	0.001**	7.536	0.002**
Stage 2 vs Stage 5	0.3054	0.3201	0.024*	6.575	0.023*
Stage 3 vs Stage 4	0.2388	0.3006	0.001**	3.351	0.004**
Stage 3 vs Stage 5	0.2661	0.2769	0.049*	10.261	0.039*
Stage 4 vs Stage 5	0.3121	0.3546	0.001**	5.906	0.002**

aquaculture animals’ intestine that intestine harbors a large bacterial diversity (Wu et al., 2012; Ramirez & Romero, 2017).

The dominant phyla in shrimp intestine were Proteobacteria, Tenericutes and Fusobacteria in this study, which were commonly found in the intestine of banana prawn (Oxley et al., 2002), black tiger shrimp (Rungrassamee et al., 2014) and pacific blue shrimp (Cardona et al., 2016). Earlier studies on the intestinal microbiota of grass carp proved that Proteobacteria, Firmicutes and Fusobacteria were the dominant phyla (Van Kessel et al., 2011; Wu et al., 2012). Carp microbiota seemed to be slightly different from shrimp microbiota in the present study, which might be related to some factors that could affect the microbial composition in intestine, including the differences of species, water quality, diet, and population density (Wu et al., 2012; Kim & Kim, 2013; Ramirez & Romero, 2017). In addition, as the most abundant phyla, Proteobacteria and Firmicutes were also found in black tiger shrimp (Penaeus monodon) and banana prawn (Penaeus merguiensis)
Figure 5 The abundance of the top 10 phyla at different culture stages. The relative abundance of each phyla at 5 culture stages is shown. The abundance of stage 1 was given value 1 and the other stages were given the relative abundance compared to stage 1. The asterisk represents that there is significant difference in groups by PerMANOVA (P value < 0.05). The two-asterisk represents that there is extremely significant difference in groups (P value < 0.01).

Proteobacteria seemed to be the dominant phylum among the aquaculture animals. The second most abundant phylum was Cyanobacteria, with 7.0% relative abundance. *Synechococcus* and *Microcystis*, belonging to Cyanobacteria phylum, were detected in all shrimp intestine and their abundance were 2.8% and 1.3% respectively. However, Cyanobacteria were seldom found in such a high abundance in other aquaculture animals. The abundance of Cyanobacteria was less than 0.01% in black tiger shrimp, grass carp, bighead carp and Atlantic cod (Dhanasiri et al., 2011; Rungrassamee et al., 2014; Li et al., 2015). Among our previous studies, the abundance of Cyanobacteria ranged from 17.3% to 36.9% in the Pacific white shrimp culturing water (Hou et al., 2016). The abundance of Cyanobacteria in Pacific white shrimp intestine might be concerned with the water environment.

Cetobacterium and *Bacteroides* were reported as major producers of the vitamin B12 in intestine (Tsuchiya, Sakata & Sugita, 2008; Vogiatzoglou et al., 2009) and they were the dominant genera in grass carp’s intestine, with the abundance of more than 50% (Li et al., 2015). In the present study, *Cetobacterium* and *Bacteroides* were found in all shrimp...
Table 4 Relative abundance of predicted functions. KOs in KEGG level3 are listed following the relative average abundance. The KEGG level 2 is also listed.

KOs	KEGG level 2	Relative abundance
Transporters	Membrane transport	4.25 to 6.06
ABC transporters	Membrane transport	2.46 to 3.58
DNA repair and recombination proteins	Replication and repair	2.09 to 2.89
Two component system	Signal transduction	1.79 to 3.16
Secretion system	Membrane transport	1.50 to 2.99
Bacterial motility proteins	Cell motility	1.23 to 3.02
Purine metabolism	Nucleotide metabolism	1.89 to 2.32
Function unknown	Poorly characterized	1.64 to 2.58
Ribosome	Translation	1.28 to 2.72
Pyrimidine metabolism	Nucleotide metabolism	1.32 to 1.94
Peptidases	Enzyme families	1.30 to 1.73
Transcription factors	Transcription	1.03 to 1.97
Ribosome biogenesis	Translation	1.21 to 1.7
Oxidative phosphorylation	Energy metabolism	1.04 to 1.66
Amino acid related enzymes	Amino acid metabolism	1.14 to 1.53
Other ion-coupled transporters	Cellular processes and signaling	0.97 to 1.69
Chromosome	Replication and repair	1.14 to 1.45
Arginine and proline metabolism	Amino acid metabolism	0.94 to 1.28
Chaperones and folding catalysts	Folding, sorting and degradation	1.01 to 1.10
Glycolysis/Gluconeogenesis	Carbohydrate metabolism	0.82 to 1.21
Pyruvate metabolism	Carbohydrate metabolism	0.98 to 1.11
Amino sugar and nucleotide sugar metabolism	Carbohydrate metabolism	0.88 to 1.10
DNA replication proteins	Replication and repair	0.79 to 1.45
Aminoacyl-tRNA biosynthesis	Translation	0.64 to 1.32
Carbon fixation pathways in prokaryotes	Energy metabolism	0.87 to 1.08
Methane metabolism	Energy metabolism	0.84 to 1.06

Intestine, with the low abundance of 1.2% and 0.1%. Previous studies suggest that the abundance of Bacteroides may be relatively low in the intestinal contents of different fishes (Han et al., 2010; Roeselers et al., 2011; Li et al., 2017). A previous research showed that when fish was cultivated at high stocking density, the relative abundance of Cetobacterium would increase 7 to 11 folds in intestine (Zhou et al., 2011). The abundance of Cetobacterium in pacific white shrimp intestine might be related to the low stocking density.

Probiotic was added in shrimp culturing, the abundance of Bacillus was 0.9% and the abundance of Lactobacillus and Bdellovibrio were low in shrimp intestine, with relative abundance of 0.04% and 0.002%, even in some samples undetected. The result suggested that the probiotic addition did not effectively establish a large population in shrimp’s intestine as expected. Further studies are supposed to evaluate the abundance and retention of the probiotic for ensuring their potentially beneficial effects on host health.

The core microbiota is considered as a set of OTUs shared by all samples (Turnbaugh et al., 2009). Among other aquaculture animals, the majority of the shared OTUs varied among
Figure 6 Predicted functions of the intestinal microbiota that varies significantly at different culture stages. The asterisk represents that there is significant difference in groups by PerMANOVA (P value < 0.05). The two-asterisk represents that there is extremely significant difference in groups (P value < 0.01).

Full-size DOI: 10.7717/peerj.3986/fig-6
species and belonged to Fusobacteria, Bacteroidetes, Firmicutes and Chloroflexi (Dhanasiri et al., 2011; Wu et al., 2012; Li et al., 2017). All shrimp samples harbored similar intestinal bacterial communities dominated by shared OTUs, with the total relative abundance of 83.1%. The shared microbiota reflects the effects of diet, growth, stocking density and water quality on intestinal microbiota (Wong et al., 2013). Results demonstrated that there was a subset of microbes existing in all culture stages, which might be relevant to the fundamental structure and function of the shrimp intestinal microbiota.

The functional capacity of intestinal microbiota was predicted by PICRUST. KOs related to transporters and ABC transporters were the most abundant KOs. Both transporters and ABC transporters were reported as the largest known protein families and were widespread in bacteria, archaea and eukaryotes (Xiong et al., 2014). It was reasonable that these KOs were found in high abundance in the intestinal microbiota. The two component system was a signal transduction system that sensed developmental and environmental stimuli (Podgornaia & Laub, 2013). It demonstrated that the microbial function differed significantly at different culture stages, which revealed the difference of intestinal microbiota in regulating basic functions at different culture stages.

A study reveals that the intestinal microbiota of gibel carp tends to form distinct communities at different stages during the host’s age (Li et al., 2017). It was reported that microbial functions also varied specifically during the host development because the basic capacities were influenced by the interactions of host and microbes (Newell & Douglas,
In the study, the diversity of intestinal microbiota from the same culture stage demonstrated significant difference, while the most abundant phyla and functions varied significantly. The close relationships of functional capacities in the same culture stages were also found. These findings suggested that the composition, diversity and function of the intestinal microbiota in pacific white shrimp concerned with the culture stage.

CONCLUSIONS

The present study reported the comprehensive intestinal microbiota in pacific white shrimp. The composition of intestinal microbiota was found and the dominant intestinal microbes were shared in all samples. Diversity, composition and function shifted significantly at different culture stages. These findings enlarged the knowledge of stage-specific intestinal microbiota in shrimp microecosystem, and more studies are needed to explore the relationship between the microbial changes at different culture stages and shrimp health.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was financially supported by the China Agriculture Research System (CARS-47), the Guangzhou Science Technology and Innovation Commission Project (No. 201510010071), and the Guangdong Ocean and Fishery Bureau Project (20164200042090023). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
China Agriculture Research System: CARS-47.
Guangzhou Science Technology and Innovation Commission Project: 201510010071.
Guangdong Ocean and Fishery Bureau Project: 20164200042090023.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Shenzheng Zeng conceived and designed the experiments, performed the experiments, analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
• Zhijian Huang conceived and designed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.
• Dongwei Hou and Jian Liu performed the experiments, prepared figures and/or tables, reviewed drafts of the paper.
• Shaoping Weng conceived and designed the experiments, contributed reagents/materials/analysis tools, reviewed drafts of the paper.
• Jianguo He conceived and designed the experiments, contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.
Data Availability
The following information was supplied regarding data availability:

Sequence Read Archive database: SRX2946975.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.3986#supplemental-information.

REFERENCES

Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methe B, Schloss PD, Gevers D, Mitreva M, Huttenhower C. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLOS Computational Biology 8(6):e1002358 DOI 10.1371/journal.pcbi.1002358.

Al-Harbi AH, Uddin N. 2005. Bacterial diversity of tilapia (Oreochromis niloticus) cultured in brackish water in Saudi Arabia. Aquaculture 250(3–4):566–572 DOI 10.1016/j.aquaculture.2005.01.026.

Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26(1):32–46 DOI 10.1111/j.1442-9993.2001.01070.pp.x.

Anderson MJ. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62(1):245–253 DOI 10.1111/j.1541-0420.2005.00440.x.

Balcazar JL, De Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Muzquiz JL. 2006. The role of probiotics in aquaculture. Veterinary Microbiology 114(3–4):173–186 DOI 10.1016/j.vetmic.2006.01.009.

Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N. 2011. Examining the global distribution of dominant archaeal populations in soil. The ISME Journal 5(5):908–917 DOI 10.1038/ismej.2010.171.

Cai L. 2006. Multi-response permutation procedure as an alternative to the analysis of variance: an SPSS implementation. Behavior Research Methods 38(1):51–59 DOI 10.3758/BF03192749.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, CostelloEK, Fierer N, Pena AG, Goodrich JK, Gordon JJ, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7(5):335–336 DOI 10.1038/nmeth.f.303.

Cardona E, Gueguen Y, Magre K, Lorgeoux B, Piquemal D, Pierrat F, Noguier F, Saulnier D. 2016. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiology 16(1):157 DOI 10.1186/s12866-016-0770-z.

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB. *Applied and Environmental Microbiology* **72**(7):5069–5072 DOI 10.1128/AEM.03006-05.

Dhanasiri AK, Brunvold L, Brinchmann MF, Korsnes K, Bergh O, Kiron V. 2011. Changes in the intestinal microbiota of wild Atlantic cod *Gadus morhua* L. upon captive rearing. *Microbial Ecology* **61**(1):20–30 DOI 10.1007/s00248-010-9673-y.

Edgar RC. 2013. UPPARSE: highly accurate OTU sequences from microbial amplicon reads. *Nature Methods* **10**(10):996–998 DOI 10.1038/nmeth.2604.

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* **27**(16):2194–2200 DOI 10.1093/bioinformatics/btr381.

Fraune S, Bosch TCG. 2010. Why bacteria matter in animal development and evolution. *BioEssays* **32**(7):571–580 DOI 10.1002/bies.200900192.

Glenn TC. 2011. Field guide to next-generation DNA sequencers. *Molecular Ecology Resources* **11**(5):759–769 DOI 10.1111/j.1755-0998.2011.03024.x.

Han S, Liu Y, Zhou Z, He S, Cao Y, Shi P, Yao B, Ringo E. 2010. Analysis of bacterial diversity in the intestine of grass carp (*Ctenopharyngodon idellus*) based on 16S rDNA gene sequences. *Aquaculture Research* **42**(1):47–56 DOI 10.1111/j.1365-2109.2010.02543.x.

Hou D, Zeng S, Liu J, Yan M, Weng S, He J, Huang Z. 2016. Characterization of prokaryotic and eukaryotic microbial community in pacific white shrimp ponds. *Journal of Aquaculture Research & Development* **7**(12):463–472 DOI 10.4172/2155-9546.1000463.

Huang Z, Chen Y, Weng S, Lu X, Zhong L, Fan W, Chen X, Zhang H, He J. 2016. Multiple bacteria species were involved in hepatopancreas necrosis syndrome (HPNS) of *Litopenaeus vannamei*. *Acta Scientiarum Naturalium Universitatis SunYatseni* **55**(1):1–11 DOI 10.13471/j.cnki.acta.snus.

Irianto A, Austin B. 2002. Probiotics in aquaculture. *Journal of Fish Diseases* **25**(11):636–642 DOI 10.1046/j.1365-2761.2002.00422.x.

Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. *Nucleic Acids Research* **40**(D109–D114 DOI 10.1093/nar/gkr988.

Kim D-H, Kim D-Y. 2013. Microbial diversity in the intestine of olive flounder (*Paralichthys olivaceus*). *Aquaculture* **414**(02):103–108 DOI 10.1016/j.aquaculture.2013.06.008.

Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. *Nature Biotechnology* **31**(9):814–821 DOI 10.1038/nbt.2676.

Lee C-T, Chen IT, Yang Y-T, Ko T-P, Huang Y-T, Huang J-Y, Huang M-F, Lin S-J, Chen C-Y, Lin S-S, Lightner DV, Wang H-C, Wang AHJ, Wang H-C, Hor L-I, Lo C-F. 2015. The opportunistic marine pathogen *Vibrio parahaemolyticus* becomes virulent by acquiring a plasmid that expresses a deadly toxin. *Proceedings of the National Academy of Sciences of the United States of America* **112**(34):10798–10803 DOI 10.1073/pnas.1503129112.
Li T, Long M, Gatesoupe FJ, Zhang Q, Li A, Gong X. 2015. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. *Microbial Ecology* 69(1):25–36 DOI 10.1007/s00248-014-0480-8.

Li T, Long M, Ji C, Shen Z, Gatesoupe FJ, Zhang X, Zhang Q, Zhang L, Zhao Y, Liu X, Li A. 2016. Alterations of the gut microbiome of largemouth bronze gudgeon (*Coreius guichenoti*) suffering from furunculosis. *Scientific Reports* 6:30606 DOI 10.1038/srep30606.

Li X, Zhou L, Yu Y, Ni J, Xu W, Yan Q. 2017. Composition of gut microbiota in the gibel carp (*Carassius auratus gibelio*) varies with host development. *Microbial Ecology* 74(1):239–250 DOI 10.1007/s00248-016-0924-4.

Lightner DV, Redman RM, Pantoja C, Noble BL, Tran L. 2012. Early mortality syndrome affects shrimp in Asia. *Global Aquaculture Advocate* 15(January/February):40–47.

Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. *Bioinformatics* 27(21):2957–2963 DOI 10.1093/bioinformatics/btr507.

Newell PD, Douglas AE. 2014. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. *Applied and Environmental Microbiology* 80(2):788–796 DOI 10.1128/AEM.02742-13.

Oxley AP, Shipton W, Owens L, McKay D. 2002. Bacterial flora from the gut of the wild and cultured banana prawn, *Penaeus merguiensis*. *Journal of Applied Microbiology* 93(2):214–223 DOI 10.1046/j.1365-2672.2002.01673.x.

Perez T, Balcazar JL, Ruiz-Zarzuela I, Halaihel N, Vendrell D, De Blas I, Muzquiz JL. 2010. Host-microbiota interactions within the fish intestinal ecosystem. *Mucosal Immunology* 3(4):355–360 DOI 10.1038/mi.2010.12.

Podgornaia AI, Laub MT. 2013. Determinants of specificity in two-component signal transduction. *Current Opinion in Microbiology* 16:156–162 DOI 10.1016/j.mib.2013.01.004.

Ramirez C, Romero J. 2017. Fine Flounder (*Paralichthys adspersus*) microbiome showed important differences between wild and reared specimens. *Frontiers in Microbiology* 8:271–282 DOI 10.3389/fmicb.2017.00271.

Ravel J, Blaser MJ, Braun J, Brown E, Bushman FD, Chang EB, Davies J, Dewey KG, Dinan T, Domínguez-Bello M, Erdman SE, Finlay BB, Garrett WS, Huffnagle GB, Huttenhower C, Jansson J, Jeffery IB, Jobin C, Khoruts A, Kong HH, Lampe JW, Ley RE, Littman DR, Mazmanian SK, Mills DA, Neish AS, Petrof E, Relman DA, Rhodes R, Turnbaugh PJ, Young VB, Knight R, White O. 2014. Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26, 2013. *Microbiome* 2(1):16–26 DOI 10.1186/2049-2618-2-16.

Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF. 2011. Evidence for a core gut microbiota in the zebrafish. *The ISME Journal* 5(10):1595–1608 DOI 10.1038/ismej.2011.38.

Runggrassamee K, Klanchui A, Maibunkaew S, Chaiyaapechara S, Jiravanichpaisal P, Karoonuthaisiri N. 2014. Characterization of intestinal bacteria in wild and
domesticated adult black tiger shrimp (*Penaeus monodon*). *PLOS ONE* 9(3):e91853 DOI 10.1371/journal.pone.0091853.

Sun Z, Li G, Wang C, Jing Y, Zhu Y, Zhang S, Liu Y. 2014. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir. *Scientific Reports* 4:6966 DOI 10.1038/srep06966.

Tang Y, Tao P, Tan J, Mu H, Peng L, Yang D, Tong S, Chen L. 2014. Identification of bacterial community composition in freshwater aquaculture system farming of *Litopenaeus vannamei* reveals distinct temperature-driven patterns. *International Journal of Molecular Sciences* 15(8):13663–13680 DOI 10.3390/ijms150813663.

Tsuchiya C, Sakata T, Sugita H. 2008. Novel ecological niche of *Cetobacterium somerae*, an anaerobic bacterium in the intestinal tracts of freshwater fish. *Letters in Applied Microbiology* 46(2):43–48 DOI 10.1111/j.1472-765X.2007.02258.x.

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JL. 2009. A core gut microbiome in obese and lean twins. *Nature* 457(7228):480–484 DOI 10.1038/nature07540.

Tuyub Tzuc J, Rendíz Escalante D, Rafael R, Gaxiola G, Arena L. 2014. Microbiota from *Litopenaeus vannamei*: digestive tract microbial community of Pacific white shrimp (*Litopenaeus vannamei*). *SpringerPlus* 3(1):280–290 DOI 10.1186/2193-1801-3-280.

Van Kessel A, Dutilh BE, Neveling K, Kwint MP, Veltman JA, Flik G, Jetten MS, Klaren PH, Op den Camp HJ. 2011. Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (*Cyprinus carpio*). *AMB Express* 1(1):41–49 DOI 10.1186/2191-0855-1-41.

Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney PB, Welch T, Wiens GD, Snekvik K, Rawls JF, Good C. 2013. Aquacultured rainbow trout (*Oncorhynchus mykiss*) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. *Applied and Environmental Microbiology* 79(16):4974–4984 DOI 10.1128/AEM.00924-13.

Wu S, Wang G, Angert ER, Wang W, Li W, Zou H. 2012. Composition, diversity, and origin of the bacterial community in grass carp intestine. *PLOS One* 7(2):e30440 DOI 10.1371/journal.pone.0030440.
Xiong J, Zhu J, Wang K, Wang X, Ye X, Liu L, Zhao Q, Hou M, Qiuqian L, Zhang D. 2014. The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation. *Microbial Ecology* **67**:256–264 DOI 10.1007/s00248-013-0336-7.

Yan Q, Li J, Yu Y, Wang J, He Z, Van Nostrand JD, Kempher ML, Wu L, Wang Y, Liao L, Li X, Wu S, Ni J, Wang C, Zhou J. 2016. Environmental filtering decreases with fish development for the assembly of gut microbiota. *Environmental Microbiology* **18**(12):4739–4754 DOI 10.1111/1462-2920.13365.

Zhang D, Wang F, Dong S, Lu Y. 2016. *De novo* assembly and transcriptome analysis of osmoregulation in *Litopenaeus vannamei* under three cultivated conditions with different salinities. *Gene* **578**(2):185–193 DOI 10.1016/j.gene.2015.12.026.

Zhang M, Sun Y, Chen K, Yu N, Zhou Z, Chen L, Du Z, Li E. 2014. Characterization of the intestinal microbiota in Pacific white shrimp, *Litopenaeus vannamei*, fed diets with different lipid sources. *Aquaculture* **434**:449–455 DOI 10.1016/j.aquaculture.2014.09.008.

Zhou Z, He S, Liu Y, Shi P, Yao B, Ring E. 2011. Do stocking densities affect the gut microbiota of gibel carp *Carassius auratus gibelio* cultured in ponds? *Journal of Aquaculture Research & Development* **S1(003)**:1–6 DOI 10.4172/2155-9546.s1-003.