Keywords: Tuberculosis; Multidrug-resistant tuberculosis; Relapsed tuberculosis; Newly diagnosed pulmonary tuberculosis; Anti-tuberculosis therapy; Peroxide oxidation of lipids; Antioxidant system

Introduction

Tuberculosis (TB) remains the global problem of mankind with 8.8 million new cases of TB diagnosed each year and 1.4 million people dying from the disease [1,2]. The emergence of Multi-Drug-Resistant (MDR) and extensively drug-resistant TB threatens disease control efforts throughout the world [3,4]. About 50 million people are estimated to be infected with resistant strains of Mycobacterium tuberculosis [5].

In the last decade the Ukraine experienced marked increase in the proportion of TB strains resistant to one or more anti-mycobacterial drugs, causing reduced effectiveness of standard chemotherapy [6,7]. As a result the frequency of Relapsed or Recurrent Pulmonary Tuberculosis (RPTB) becomes higher [8]. The success of treating relapsed tuberculosis remains low resulting in higher rate of transition to chronic disease and increased mortality [9,10]. One of reasons for relapse include disorders in oxidant-antioxidant system, which affect the proper immune surveillance and exaggerates destructive inflammatory process underlying the variety of pathological changes [11,12]. Several studies have implicated local and systemic intensification of pro-oxidant-antioxidant system in various forms of pulmonary tuberculosis [13-15].

Clinical manifestations of TB, especially its progression and outcome, are closely associated with nonspecific metabolic perturbations in patients. TB is characterized by the activation of lipid peroxidation (LPO), reduced activity of Antioxidant System (AOS) and other related changes. These processes can play a significant role in elimination of Mycobacterium tuberculosis, but the imbalance in these processes can also causes damage to the healthy lung tissue and enhancement of inflammatory process [16-19].

One of the basic mechanisms that regulate the stability and permeability of cell membranes are LPO and AOS [16,20]. Normally the LPO, i.e., the formation of reactive oxygen species, is counterbalanced by AOS. Our study was aimed to uncover changes of pro-oxidant-antioxidant system in patients with various forms of RPTB, including those with MDR-TB. We have examined the dynamics of oxidant-antioxidant system in TB patients who were receiving anti-mycobacterial therapy.

Materials and Methods

We have followed 140 patients, aged 20 to 70 years, divided into three groups: the 1st group had 74 patients with MDR-TB; the 2nd group consisted of 66 patients who had pulmonary TB without MDR; and the 3rd group consisted of 30 healthy donors. The 1st group was further divided into two subgroups: 1A, which had 41 patients with RPTB with MDR-TB, 1B – had 33 patients with newly diagnosed pulmonary tuberculosis (NDPTB) with MDR-TB. The 2nd group which had patients without MDR-TB was also divided into subgroups: 2A, consisting of 15 patients with RPTB; 2B with 51 patients with NDPTB. All patients had infiltrating pulmonary TB and were receiving standard chemotherapy consisting of daily doses of: isoniazid (0.3 g); rifampicin (0.6 g); pyrazinamide (2.0 g); ethambutol (1.2 g); and/or streptomycin (1.0 g). Patients were recruited at the Regional TB Hospital № 1 and Regional TB Dispensary № 1, both in Kharkiv; Regional TB Dispensary № 3 in Zmeev and Regional TB Dispensary № 4 in Izyum, both in Kharkiv region.

Select parameters of LPO and AOS activities were evaluated.
Results

The patients with pulmonary TB exhibited significant perturbances in LPO and AOS activities as compared to healthy controls. The parameters of pro-oxidant system in TB patients, as shown in Table 1, namely the TC and LP levels, were significantly higher than in healthy donors (p<0.05). The AOS levels, i.e., GP, GR, TAA and SH-groups, as indicated in Table 2, were significantly lower than in healthy donors (p<0.05). In general patients with pulmonary tuberculosis donors and TAA baseline values were almost twice lower and the LP is twice higher than in healthy donors.

Two months after treatment initiation with standard chemotherapy a significant reversal in indices of LPO and AOS activities was observed (p<0.05). The levels of TC in LPO system in group 2 and 2B after two months became practically same as in healthy controls (p>0.05).

For example levels of SH- in group 2 and 2B were significantly higher than in RPTB (1A and 2A subgroups) at both time points (p<0.05). In regard to the AOS significantly lower indices were seen in patients with RTBL (1A and 2A subgroups) compared with group 3 (p<0.05). The comparison of patients with relapsed and newly diagnosed pulmonary tuberculosis indicates a significant reduction (p<0.05) in all parameters before the treatment and after two months. The indicators of lipid peroxidation were significantly higher in patients with relapsed TB (1A and 2A subgroups) than in patients NDPTB (subgroups 1B and 2B) at both time points (p<0.05).

The comparison of MDR-TB patients (group 1) with those without MDR-TB (group 2) suggests a significant difference (p<0.05) in terms of reduction of almost all indicators as resulting from 2 months of chemotherapy. A significant difference between groups 1 and 2 was seen between treatment and post-treatment times and the gap was significantly higher in group 1 than in group 2 (p<0.05). The AOS indices were significantly higher in group 2 than in group 1, both prior to treatment and after two months (p<0.05).

The comparison of patients with relapsed and newly diagnosed pulmonary tuberculosis indicates a significant reduction (p<0.05) in all parameters before the treatment and after two months. The indicators of lipid peroxidation were significantly higher in patients with relapsed TB (1A and 2A subgroups) than in patients NDPTB (subgroups 1B and 2B) before and after treatment (p<0.05).

In addition, in patients with RPTB MDR-TB (subgroup 1A) the values were significantly lower than in RPTB without MDR-TB (subgroup 2A). In patients with NDPTB MDR-TB (subgroup 1B) the results were considered statistically significant at P<0.05 [25].


citation: Butov DO, Kuzhko MM, Kuznetsova IM, Grinishina OA, Maksimenko OA, et al. (2013) Dynamics of Oxidant-antioxidant System in Patients with Multidrug-resistant Tuberculosis Receiving Anti-mycobacterial Therapy. J Pulm Respir Med 3: 161. doi: 10.4172/2161-105X.1000161
values were lower than in subgroup 2B patients, and lipid peroxidation indices in patients with NDPTB without MDR-TB were also lower than in patients 1B subgroup (p <0.05). The indicators of lipid peroxidation in subgroup 1A were significantly higher than in subgroup 2A (p<0.05) at both time points.

Conclusion

We have conducted the measurements of antioxidant enzyme activity and lipid peroxidation parameters in 140 TB patients prior to and after two months on standard TB chemotherapy. In patients with pulmonary tuberculosis marked changes in the prooxidant-antioxidant system were observed as manifested by accumulation in the blood of LPO markers (TC and LP) and decreased function of the antioxidant system. Our data shows more pronounced disturbance in LPO and AOS in patients in relapsed and MDR-TB as compared to those who had newly diagnosed TB or were without MDR-TB. At the end of two months of standard anti-tuberculosis therapy we have observed relative normalization of parameters of LPO and AOS.

Increased activity of lipid peroxidation and decreased performance of AOS in patients with pulmonary tuberculosis provides a rationale to use in addition to standard TB therapy the antioxidant and membrane stabilizing interventions, especially in patients with relapsed MDR-TB.

Acknowledgements

We thank all volunteers who participated in this study. The wholehearted support of clinicians, nurses and lab personnel who contributed their effort made this study possible. Our gratitude is expressed to many experts in TB and immunology fields who kindly shared with us their opinions and critiques prior to and after this study was completed.

References

1. World Health Organization (2011) Global tuberculosis control: report 2011. Geneva, Switzerland WHO/HTM/TB/2011.16.
2. World Health Organization (2008) The global burden of disease: 2004 update. Geneva, Switzerland WHO Document. W 74.
3. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, et al. (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375: 1830-1843.
4. WHO (2012) Global Tuberculosis Report 2012.
5. Melnyk VM, Novozhylova IO, Matusevych VG, Linnyk MI (2012) Analytical view on a problem of drug-resistant tuberculosis: current status, achievements and unsolved issues. Ukrainian Pulmonol J 1: 5-7.
6. Sokolova G, Bogadellinikova I, Byron M (2006) Clinical and radiological and bacteriological characteristics of drug-resistant tuberculosis. Problems of Tuberculosis and Lung Disease 12: 16-20.
7. Caminero JA (2010) Multidrug-resistant tuberculosis: epidemiology, risk factors and case finding. Int J Tuberc Lung Dis 14: 382-390.
8. Plieva SL, Seltsovsky PP (2011) Features of early and late relapse of pulmonary tuberculosis. Tuberculosis and Lung Disease 6: 23-27.
9. Mishin VY, Zhestovskaya SN (2004) Relapses of pulmonary tuberculosis. Problems of Tuberculosis 4: 11-13.
10. Petrenko VM, Cherenko SO, Byalyk IB (2009) Evolution and effectiveness of antimycobacterial therapy in patients with pulmonary tuberculosis relapse. Ukrainian Pulmonol J 3: 14-19.
11. Volchegorsky IA, Ignatov GL, Volkova EG (1998) The relationship between the functional status of neutrophils and the intensity of peroxidation in the lungs in chronic bronchitis and ischemic heart disease. Bull Exp Biol 10: 452-454.
12. Volchegorsky IA, Popov AN (1993) Preoperative parameters of immune status and lipid peroxidation, a marker of the risk of pyelonephritis attack after percutaneous nefrolitometki. Bull Exp Biol 8: 220-222.
13. Savula MM, Kravchenko NS, Poznan AI (1993) Chemotherapy destructive pulmonary tuberculosis with use of antioxidants and antihypoxants. Problems of Tuberculosis 5: 18-20.
14. Safarian MD, Karapetian ET (1990) [Dynamics of the activity of antioxidant enzymes in the blood of patients with pulmonary tuberculosis]. Probi Tuberk: 60-61.
15. Lamsal M, Gautam N, Bhatta N, Toora BD, Bhattacharya SK, et al. (2007) Evaluation of lipid peroxidation product, nitrile and antioxidant levels in newly diagnosed and two months follow-up patients with pulmonary tuberculosis. Southeast Asian J Trop Med Public Health 38: 695-703.
16. Chornovil AV (2000) Lipid peroxidation and its pathogenetic correction in infectious diseases (review). Livv Medical Journal 6: 17-22.
17. Dalvi SM, Patil VW, Ramraje NN, Phadatire JM, Gujarathi SU (2013) Nitric oxide, carbonyl protein, lipid peroxidation and correlation between antioxidant vitamins in different categories of pulmonary and extra pulmonary tuberculosis. Malays J Med Sci 20: 21-30.
18. Palanisamy GS, Kirk NM, Ackart DF, Obregon-Henao A, Shanley CA, et al. (2012) Uptake and accumulation of oxidized low-density lipoprotein during Mycobacterium tuberculosis infection in guinea pigs. PLoS One 7: e34148.
19. Palanisamy GS, Kirk NM, Ackart DF, Shanley CA, Orme IM, et al. (2011) Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS One 6: e26254.
20. Golubović S, Stanković I, Ristić L, Čosić V, Dordević I, et al. (2010) [Antioxidant enzymes and lipid peroxidation products in patients with pulmonary tuberculosis]. Med Pregl 63: 450-453.
21. Karpiščenko AI (1997) Medical Laboratory Diagnostics (programs and algorithms). St. Petersburg: “Intermedika”.
22. Severin SE, Solovevaj TA (1989) Determination of the number of sulfhydryl groups with Ellman’s reagent, Practicum in Biochemistry. Moscow: Moscow State University.
23. Bulankina NI, Ohrimenko SN, Ganusova GV (2005) Determination of total antioxidant capacity of blood plasma/Methods of lipids and carbohydrates: Methodical Instructions Special practical biochemistry. Kharkov.
24. Matushin BN, Loginov AS, Tkachev VD (1998) The activity of enzymes glutathione in chronic liver disease. Clinical lab diagnostics 4: 16-18.
25. Lapach SN, Chubenko AV, Babich PN (2000) Statistical methods in biomedical studies using Excel Kiev.