Vitamin D Receptor Signaling and Cancer

Moray J. Campbell, MS, PhD⁹, Donald L. Trump, MD⁸

⁹Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 536 Parks Hall, Columbus, OH 43210, USA;

⁸Department of Medicine, Inova Schar Cancer Institute, Virginia Commonwealth University, 3221 Gallows Road, Fairfax, VA 22031, USA

Keywords
Vitamin D; Chemoprevention; Chemotherapy; TCGA; Genomics

A PRIMER ON VITAMIN D BIOLOGY AND MEDICINE

The primary biological action of the secosteroid hormone vitamin D (1,25(OH)₂D₃) is to bind to the vitamin D receptor (NR1I1/VDR) and to regulate serum calcium levels. As a downstream consequence, the actions of the receptor control bone formation and maintenance. The first clinical manifestation of insufficient VDR endocrine signaling, rickets, was discovered by Daniel Whistler in the Netherlands in the 17th century; 300 years later, the VDR gene was cloned by Bert O’Malley and coworkers.¹ Between these dates, research into vitamin D was at the forefront of areas of public health, chemistry and biochemistry including the light catalyzed synthesis of vitamin D₃ by Adolf Windaus. For this work, he received the Nobel Prize in Chemistry (1928). Work in the 1960s and 1970s led to analyses of vitamin D endocrine metabolism and led to remarkable strides describing biochemical synthesis of 1,25(OH)₂D₃ and the diverse biology in which VDR participates.

The precursor of 1,25(OH)₂D₃, cholecalciferol or vitamin D₃, is produced in the skin and converted in the liver to 25-hydroxyvitamin D₃, (25(OH)D₃); circulating levels of 25(OH)D₃ serve as a useful index of vitamin D total body stores. A further hydroxylation occurs in the principally in the kidney at the carbon 1 position by 25-hydroxyvitamin D₁-α-hydroxylase (encoded by CYP27B1) to produce the biologically active hormone, 1,25(OH)₂D₃. A second mitochondrial cytochrome P450 enzyme, the 24-hydroxylase (encoded by CYP24A1), can use both 25(OH)D and 1,25(OH)₂D₃ as substrates, and is the first step in the inactivation pathway for these metabolites. Because of the direct role 1,25(OH)₂D₃ plays in control of serum calcium levels, elevated levels of 1,25(OH)₂D₃ block its synthesis and induce inactivation and accelerate catabolism² via induction of CYP24A1, in a classical negative feedback loop.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

¹Corresponding author. Campbell.1933@osu.edu.
In parallel to these VDR-centered discoveries a greater awareness emerged of the 48 members of the nuclear hormone receptor (NR) superfamily, of which the VDR is a member. As a result, the VDR and other NRs represent some of the most well-studied human transcription factors and have yielded significant insight into the mechanisms of transcriptional control.

It is worth stressing the fundamental importance of the precise monitoring and regulation of serum calcium levels to human health; hence, the endocrine role of the VDR in the regulation of calcium homeostasis is critical. The levels of vitamin D depend on cutaneous synthesis initiated by solar radiation and on dietary intake; a decrease of either one or both sources leads to insufficiency. The contribution from the ultraviolet light (UV)-initiated cutaneous conversion of 7-dehydrocholesterol to vitamin D₃ is the greater, contributing more than 90% toward final 1,25(OH)₂D₃ synthesis in a vitamin D-sufficient individual.

The importance of the relationships between solar exposure and the ability to capture UV-mediated energy is underscored by the inverse correlation between human skin pigmentation and latitude and associated 25(OH)D levels. That is, skin pigmentation was lost as humans migrated out of Africa to adjust to life with reduced solar UV exposure. As a result, individual capacity to generate vitamin D₃ in response to solar UV exposure is intimately associated with forebear environmental adaptation. The correct and sufficient level of solar exposure and serum vitamin D₃ are matters of considerable debate, and an Institute of Medicine report in 2010 recommended daily vitamin D₃ intake at the levels of 600 IU/d for most groups in the population (800 IU/d for those >70 years of age). However, this recommendation is not without controversy; parallel reassessment of the vitamin D impact on the prevention of osteoporosis has suggested that the correct level may be as high as 2 to 3000 IU/d, which may reflect more accurately ancestral serum levels. Another challenge is determining how a given intake relates to serum levels among individuals and what are the appropriate biochemical readouts for measuring systemic response.

However, given that there has been a concerted research focus on VDR signaling, there now exists a fairly sophisticated appreciation of this process, and it has been extensively reviewed.

WHY CONSIDER TREATING CANCER WITH VITAMIN D COMPOUNDS?

The first report that VDR actions could control cancer cell growth were discovered partly through serendipity, and partly through logical extension of other studies. Reports in the 1970s identified purified cell fractions that bound 1,25(OH)₂D₃ with high affinity, and encouraged investigators to begin to consider what were the molecular actions of the VDR in the classic tissues involved in calcium homeostasis, for example, skin, bone, intestine, and kidney. In 1981, Kay Colston and coworkers were first to demonstrate that 1α,25(OH)₂D₃ at nanomolar concentrations inhibited human melanoma cell proliferation in vitro. That the workers used a cancer cell model was serendipitous; cancer cell models are more readily available to study in cell culture experiments than nonmalignant counterparts, and in this case the cells chosen were available in an adjacent laboratory.
In parallel, it was also known that retinoids, which are also small lipophilic molecules that target NRs, could drive cell differentiation, for example, in HL60 leukemia cells lines cells. In turn these studies led to the pharmacologic exploitation of all-trans retinoic acid in acute promyelocytic leukemia (APL). The molecular cause of APL are translocations of the RARγ receptor forming chimeric proteins such as PML-RARγ. These chimeric proteins disrupt the control of differentiation and give rise to APL. Pharmacologic doses of all-trans retinoic acid are able to trigger differentiation and, therefore, this therapy in APL is a dramatic example of targeted cancer therapies; in addition, these findings contributed significantly to the rise of the concept of differentiation therapy. All-trans retinoic acid remains the mainstay of therapy for APL and this is a major catalyst for studying RARs across cancers. As a result, workers began to consider exploiting the antiproliferative actions of 1,25(OH)2D3 as a differentiation therapy in cancers. In the first instance, the ability of 1,25(OH)2D3 to induce differentiation in cultured mouse and human myeloid leukemia cells was examined. From the early 1980s onwards the antiproliferative effects of 1,25(OH)2D3 have been explored in a wide variety of cancer cell lines, which include all major solid tumors and leukemia.

WHAT HAS BEEN LEARNED FROM PRECLINICAL STUDIES?

One of the most highly cited papers in the last 20 years of cancer research is the *Hallmarks of Cancer* paper by Douglas Hanahan and Robert Weinberg. This landmark paper defined 6 stages necessary for cancer to develop and be sustained. Although this work has been expanded to include additional steps, this original thesis provides a highly significant backdrop against which to examine anticancer VDR functions.

Insestinity to Antigrowth Signals and Evasion of Apoptosis

Cancer cells sustain their own proliferative signals and silence cues for programmed cell death. Signaling via 1,25(OH)2D3 drives antiproliferative events, and counters the insensitivity to antigrowth signals and the evasion of apoptosis in cancer cells. Multiple investigators have examined the mechanistic basis for cell sensitivity to VDR antiproliferative responses. For example, early studies focused on understanding antiproliferative pathways, be they mediating cell cycle arrest or programmed cell death. However, other studies supported a role for 1,25(OH)2D3 to block or impede programmed cell death. Historically, hematologic malignancies combined an ease of interrogation with robust classification of cellular differentiation capacity that were envied by investigators of solid tumors. It is, therefore, no coincidence that these cell systems led to the identification of VDR control of genes that control cell cycle progression, including p21(waf1/cip1) and p27(kip1), as well as the direct binding sites on the gene CDKN1A (encodes p21[waf1/cip1]). The regulation of p27(kip1) seems to be mechanistically enigmatic and exemplifies the broad effects of VDR signaling in that both transcriptional and translational regulation, such as enhanced mRNA translation, and attenuating degradative mechanisms are described.

The upregulation of p21(waf1/cip1) and p27(kip1) principally mediate G1 cell cycle arrest, but 1α,25(OH)2D3 has been shown to mediate a G2/M cell cycle arrest in a number of cancer
cell lines via direct induction of GADD45α. Concomitant with these events is a downregulation of cyclins such as cyclin A, a decrease in kinase activities associated with activated complexes, and ultimately the dephosphorylation of the retinoblastoma protein and sequestration of E2F family members in a repressive complex. Concomitant with changes in the cell cycle, 1,25(OH)₂D₃ induces differentiation, most clearly evident in myeloid cell lines, but also supported by other cell types and most likely reflects the intimate links that exist between the regulation of the G₁ transition and the induction of cellular differentiation.

Programmed cell death has been reported in breast cancer models and leukemia models, with evidence that the levels of BCL-2 family of proteins are tightly regulated. Treatment with 1α,25(OH)₂D₃ upregulates vitamin D upregulated protein 1, which binds to the disulfide reducing protein thioredoxin and inhibits its ability to neutralize reactive oxygen species, which in turn can lead to stress-induced apoptosis.

Tissue Invasion and Metastasis

VDR signaling enhances adhesion and suppresses the invasive capacity of cells; many of these effects are associated with a more differentiated phenotype. In an elegant series of studies, Munoz and coworkers have dissected the relationships between VDR signaling and invasion in colon cancer cell lines and primary tumors. These workers established the delicate interplay between VDR, E-cadherin, and the Wnt signaling pathway in cell lines and clinical samples. Others have examined adhesion protein expression in other cancer models, suggesting that these mechanisms may be generalizable beyond colon cancer cells.

Limitless Replicative Potential

An essential component of cancer is the ability to replicate without limits that often requires silencing of mechanisms of genomic surveillance. The VDR seems to play roles in maintaining genomic integrity and facilitating DNA repair. There is close cooperation between VDR actions and the p53 tumor suppressor pathway. Correlative data suggest that, generally, cells that respond to 1,25(OH)₂D₃ most profoundly have wild-type p53, and at the molecular level several target genes are shared by both signaling pathways, such as CDKN1A and GADD45A. Notably in the skin, VDR signaling is combined with surveillance of genomic damage to regulate mitosis negatively. In other epithelial tissues, close cooperation between VDR regulates BRCA1 mRNA and protein via transcriptional activation, again supporting a role in genomic surveillance.

IDENTIFYING VITAMIN D RECEPTOR–MEDIATED TRANSCRIPTOMES

To identify critical target genes that mediate these actions, comprehensive genome-wide transcriptomic screens have revealed broad consensus on certain targets, but have also highlighted variability. There is a significant history of VDR-centric transcriptomic studies that support the cell phenotypes observed. For example, the study of isogenic cell pairs with differing sensitivities to 1,25(OH)₂D₃ signaling has identified networks that mediate antiproliferative sensitivity. In this manner, a significant
role of cross-talk between VDR and transforming growth factor (TGF)-β signaling has been revealed. In addition, similar studies have shown that VDR transcriptional targets can distinguish leukemia aggressiveness. The list of gene targets that is common across cell models seems to be short; the most clearly shared target is CYP24A1. Beyond that, commonly enriched gene networks often focus on cell cycle control and signal transduction. However, substantial variations in experimental design (eg, dose, exposure time, and use of 1,25(OH)₂D₃ or an analog) limit strict comparisons. Thus, although a formal metaanalysis to reveal common themes has not been applied, it seems clear that there is little overlap between the transcriptomic studies. It is also noteworthy that datasets have been developed that are aimed at noncoding RNA species. Therefore, the diversity of the VDR regulated transcriptome is likely to increase.

More recently, these transcriptomic studies have been complemented by VDR ChIP-Seq studies in which the VDR genomic binding patterns have been captured. VDR ChIP-seq studies have been performed in several human cell types, in the presence and/or absence of ligand, and revealed the impact of ligand binding on VDR genomic targeting. Arguably, VDR ChIP-seq studies are more important than transcriptomic studies because they reveal direct VDR genomic interactions, whereas transcriptomic analyses inevitably include direct and indirect VDR-mediated effects. Each VDR ChIP-Seq analysis revealed approximately 2000 to 6000 genomic loci normally distributed around transcription start sites, reflecting the binomial distributions found for other transcription factors, but many loci are found at considerable distance from the transcription start sites. Another important finding from these studies is that the dual hexameric DNA motif spaced by 3 bp, a so-called DR3 motif, is found in the majority but not all of the most prominent genomic VDR binding sites. Other binding motifs have also been suggested, for example, an inverted palindrome spaced by 9 bp, a so-called IP-9. The application of ChIP-Seq approaches to NRs in general has revealed greater binding site diversity than previously expected; in addition the importance of flanking regions for cofactors to be biologically important to determine function. These aspects of transcriptional regulation are described in greater depth in J. Wesley Pike and Sylvia Christakos’ article, “Biology and Mechanisms of Action of the Vitamin D Hormone,” in this issue.

The precise frequency of DR3 type elements in part remains ambiguous, because it depends on a number of variables that include the depth of the sequence read, the precise discovery motif algorithm applied, and the statistical thresholds used. Regardless of the actual percentage of VDR binding sites that contain DR3 motifs, it is clear that the VDR binds in significant levels to genomic regions that do not contain a canonical DR3. This may be explained by the VDR interacting with the genome in both direct (VDR–DNA) and indirect (VDR–protein–DNA) modes (reviewed in reference). There is a compelling case to be made for the reanalysis of the VDR ChIP-Seq data, from genomic alignment to differential peak calling. The rationale for reanalyses is two-part. Analyses of ChIP-Seq is not trivial in terms of statistical assumptions, and the existing studies have all been analyzed in a different manner. Therefore, there is the possibility that thresholds and cutoffs differ between studies. Second, the methodologies for ChIP-Seq...
IN VIVO VITAMIN D RECEPTOR ANTICANCER ACTIONS

Given this wealth of understanding of the broad anticancer actions of the VDR, and the aim to exploit this understanding in cancer settings, the use of rodent models is a major intermediary step before clinical exploitation of VDR signaling in either chemoprevention or chemotherapy settings.

A clear difficulty in investigating the efficacy of targeting VDR with either 1,25(OH)$_2$D$_3$ or analogues that have more attractive pharmacologic proterits is that mice are not humans. Their spectra of age-associated malignancies are different from humans and other key metabolic differences exist. Recapitulating these lifetime effects are further compounded by the need to establish the window in which chemoprevention effects may play a role in either tumor initiation or progression.

Notwithstanding these caveats, the Vdr$^{-/-}$ animals are extremely useful tools to elucidate more clearly the role for the VDR to act in a cancer preventive manner. A series of animals have been generated in which the VDR-ablated background has been crossed into animals with tumor disposition phenotypes. In the first instance, there is evidence that deleting or reducing VDR levels alters the morphology in the colon and breast. Furthermore, crossing the Vdr-deficient and heterozygote mice with mouse mammary tumor virus–neu transgenic mice has generated animals that show a degree of Vdr haplosufficiency. The mammary tumor burden in the crossed mice is reduced with the presence of one wild-type Vdr allele and further with 2 wild-type Vdr alleles. Alternatively, the Vdr$^{-/-}$ animals demonstrate greater susceptibility to carcinogen challenge. For example, challenging Vdr$^{-/-}$ mice with DMBA induced more preneoplastic lesions in the mammary glands than in wild-type mice.

Previously, other workers have established that deletion of the Adenomatous polyposis coli (Apc) gene in a mouse can faithfully recapitulate human colon cancer. In turn, these mice have been exploited to examine the impact of Vdr deletion on the progression of colon cancer; similar studies support an antitumorogenic role for the VDR in the skin. Numerous studies have examined the ability of dietary or pharmacologic addition of vitamin D compounds to either prevent tumor formation or inhibit the growth of xenograft tumors. One area of investigation is the impact of experimental dietary variations and their impact on tumor predisposition. Long-term studies of mice fed with a Western-style diet (eg, high fat and phosphate and low vitamin D and calcium content) have been exploited to examine the impact of vitamin D on colon cancer proliferation. Similarly, vitamin D and calcium dietary interventions and can modulate colon crypt hyperplasia and provide a rationale for how diet, inflammation, and premalignant cells could all interact and modulate cancer progression.
HUMAN EPIDEMIOLOGIC FINDINGS AND CLINICAL TRIALS

Epidemiologic studies by Cedric Garland and coworkers were the first to investigate relationships between intensity of sunlight exposure and cancer incidence and revealed an inverse correlation with risk of colon cancer, and subsequently extended these findings to implicate a relationship with other cancers.166–170 For example, levels of 25OH-D, the major circulating metabolite of vitamin D, are significantly lower in breast cancer patients than in age-matched controls.171–173 However, these relationships are clearly complex and reflect lifetime exposures, and indeed controlling for lifestyle factors can significantly impact the strength of the relationships.174 Although these are all association studies, and therefore function cannot be readily inferred, there are some suggestive findings that low serum levels of 25OH-D are an unfavorable prognostic indicator175–178 or may trigger worse chemotherapy responses.179 In other cancers, prostate for example, the relationships are more equivocal, with some positive findings,180,181 although more generally the results are not able to support a cancer-preventative impact of vitamin D levels.182–185 To address these ambiguities, investigators are now in the first stages of randomized supplementation trials,186 one of which, VITAL (VITamin D and omega-3 TriaL), has now accrued 25,000 people and is examining the impact of supplementing vitamin D and omega 3 fatty acid on a range of pathologies, principally cancer and heart disease incidence.187

Collectively, these preclinical studies and aspects of the epidemiologic findings encouraged academic and pharmaceutical partnerships in the design of vitamin D analogues that may have an optimal balance of in vivo properties to be used as a chemoprevention or chemotherapy agent. Optimizing vitamin D compounds for in vivo anticancer efficacy is aimed at ensuring a favorable balance between calcium mobilizing actions, which result in hypercalcemia, and enhancing the anticancer actions of targeting the VDR. Several medicinal chemistry groups undertook this goal, led in many ways by the group of Milan Uskokovic at Hoffman la Roche,64,188–200 alongside Lisa Binderup at Leo Pharmaceuticals,201–204 as well as other groups in academic settings, including Gary Posner.205–208 Together, these and other investigators have synthesized a blizzard of vitamin D analogues that have many promising properties, being resistant to metabolism and yet have tolerable impact on serum calcium levels.

Several of these analogues have served as the lead compounds in the search for disease settings where the anticancer actions of vitamin D compounds can be exploited. For example, phase I trials have been undertaken in a range of advanced cancers209,210 and led to more targeted phase II trials in pancreatic,211 liver,212 prostate,213–216 and breast cancers.186,217 In all cases, the regimens were well-tolerated but clinical responses were at times modest. However, this in part may reflect that the doses chosen were too conservative and the correct endpoints for these trials would be measuring cellular differentiation (or reduced proliferation or enhanced apoptosis), and this is not readily undertaken in the context of clinical trials.

These challenges are illustrated by considering prostate cancer in more detail. A number of investigators have considered the option of treating men with localized disease before surgery and then studying the prostate tumor after surgery for characterization of known
VDR target genes. In a trial of nearly 40 patients with localized prostate cancer, Beer and colleagues administered either 1,25(OH)$_2$D$_3$ or placebo for 4 weeks before radical prostatectomy. Expression changes in the VDR or known candidate VDR target genes of markers of cell proliferation were examined. Interestingly VDR was downregulated in the treatment group, whereas the other genes chosen (eg, TGFBR2) were unchanged. Others replicated this approach but with doxercalciferol and revealed significant modulation of TGFBR2. Interestingly, microarray studies of 1,25(OH)$_2$D$_3$ sensitivity in isogenic breast cancer cell lines established that TGFBR2 was a critical mediator and marker of sensitivity toward 1,25(OH)$_2$D$_3$. Other investigators have examined the question of efficacy by escalating dose to assess how well higher levels of 1,25(OH)$_2$D$_3$ can be tolerated.

Together these studies suggest that 1,25(OH)$_2$D$_3$ can be given to prostate cancer patients at quite high doses and changes in expression of VDR-dependent genes can be observed. This finding has also led others to consider how chemotherapy with 1,25(OH)$_2$D$_3$ could be potentiated by combinations with other cytotoxic agents for added clinical benefit. Such combination studies are intrinsically challenging; in the vitamin D arena, Novocea undertook such an approach in their development of DN-101 (a new formulation of 1,25(OH)$_2$D$_3$) as a cancer therapy in combination with docetaxel for men with advanced prostate cancer that had failed hormonal therapy, so-called castration resistant prostate cancer. Based on numerous preclinical studies and a single institution clinical study, Novocea conducted a randomized phase III study (ASCENT I [AIPC Study of Calcitriol ENhancing Taxotere]) to determine whether the prostate-specific antigen response rate (defined as a >50% decline in prostate-specific antigen for >1 month) was different for the standard therapy for castration resistant prostate cancer at the time (docetaxel 36 mg/m2 weekly intravenously for 4 weeks every 6 weeks) compared with the same dose and schedule of docetaxel plus DN-101, 45 mg weekly. Although this study did not meet the prostate-specific antigen response criteria, it did alter the overall survival and therefore justified a large randomized trial to assess survival. This new trial (ASCENT II) was halted before full recruitment because survival in the DN-101 arm was reduced compared with standard of care. However, the ASCENT II trial design was seriously flawed: the chemotherapy in each arm was not equal in efficacy. The design of the trial was docetaxel A + DN-101 versus docetaxel B + placebo. Substantial data existed at the time that the trial was initiated that docetaxel A was clearly inferior to docetaxel B in terms of survival in men with castration resistant prostate cancer. Therefore, the trial was actually designed to ask the question, can DN-101 overcome the inferiority of docetaxel regimen A.

A more fundamental flaw of both trials was that the dose of 1,25(OH)$_2$D$_3$ chosen was neither the biologically optimal nor the maximum tolerated dose. Other studies have clearly shown that a 2 to 3 times higher doses of calcitriol can be given safely to such patients. However, the result of ASCENT II has been interpreted as “calcitriol does not potentiate docetaxel (and hence any chemotherapy) in a large clinical trial.” This is a conclusion based on no adequate data. As a result, the application of vitamin D formulations have probably been left in a challenging development point.

Given these tantalizing preclinical and epidemiologic findings, the question then is why have the clinical trials not been successful? It is clear that clinical exploitation of any drug is hard,
and there is a very high attrition rate of drugs passing from preclinical development to clinical implementation.222 There are many therapies that struggle to balance preclinical promise with clinical realities, and the clinical development pipeline is often challenged by ensuring optimal clinical trial design, as illustrated by PARP inhibitors and antiangiogenesis therapies223–227 that, although approved by the US Food and Drug Administration, have required further reanalyses to define optimal efficacy.228,229 Therefore, it is possible that vitamin D–centered chemotherapies will fall to a similar fate. It may well be that, to date, an incomplete understanding of what are the desirable anticancer actions and inappropriate clinical trial design have impeded clinical success with vitamin D compounds.

CELLULAR MECHANISMS OF RESISTANCE

A major focus emerged on dissecting how cancer cells vary in their response to 1,25(OH)\textsubscript{2}D\textsubscript{3}. One initial focus was on genetic variation in the 3′ and 5′ regions of the VDR gene itself.230–233 For example, a start codon polymorphism in exon II at the 5′ end of the gene, determined using the fok-I restriction enzyme, result in a truncated protein.234 These findings were initially suggestive of a functional relationship between VDR gene genetic variation and cancer risk, but in larger studies these associations seem to be equivocal, or more nuanced.235–242 Indeed, this is also reflected by the fact that the National Human Genome Research Institute genome-wide association studies (GW AS) catalog does not list any genome-wide significant genetic variation that is annotated to the VDR and related to cancer phenotypes; rather the genetic variation of the VDR seems to associate with immune, diabetic, and reproduction phenotypes.243–245

Also at the genetic level, various investigators have considered how cell responsiveness to 1,25(OH)\textsubscript{2}D\textsubscript{3} may be determined by the expression of the activating (CYP27B1) and metabolizing (CYP24A1) enzymes. For example, comparative genome hybridization studies found that CYP24A1 is amplified in human breast cancer in relation to paired normal tissue.246,247 Others have revealed reduced CYP27B1 mRNA and protein levels in a wide variety of cancer cell lines and primary tumors.248–254 Together these findings suggest that cancer cell sensitivity toward 1,25(OH)\textsubscript{2}D\textsubscript{3} may primarily depend on autocrine metabolism in target cells rather than the endocrine synthesis and uptake in target cells. This raises the possibility that local control of these enzymes could be exploited in targeted VDR-centric therapies.

Finally, others have considered how epigenetic mechanisms may disrupt VDR signaling. Evidence for this approach arises from the observation that 1,25(OH)\textsubscript{2}D\textsubscript{3}-reclacitrant cells still often respond transcriptionally, but lack transcriptional responsiveness to antiproliferative target genes such as CDKN1A, but sustain or even enhance induction of CYP24A1 gene.61,100,112,118,255 These data suggest that the VDR transcriptome is skewed in cancer cells to disfavor antiproliferative target genes, and that lack of functional VDR alone cannot explain resistance. The interactions of transcriptional corepressors such as NCOR1 and NCOR2/SMRT have been examined to investigate this possibility.61,256–261 In turn, altered VDR–corepressor interactions may form a molecular lesion that could be targeted by cotreatment of 1,25(OH)\textsubscript{2}D\textsubscript{3} plus the HDAC inhibitors.262–267
LESSONS FOR BIG DATA TO OPTIMIZE VITAMIN D RECEPTOR–CENTERED THERAPIES

Biology is very clearly in the genomic era, in which the sum total of genes, transcripts, proteins and metabolites in cells are captured and analyzed. Arguably, the achievements of the Human Genome Project served as a major catalyst for this approach, and other research consortia have applied similar technologies and approaches to tackle other fundamental challenges in biology. Powerful examples are illustrated by Encyclopedia of DNA coding elements (ENCODE), RoadMap Epigenome, Functional and Taxonomic Analysis of Metagenomes, International Human Epigenome Consortium, the Cancer Genome Atlas (TCGA), and the Genotype-Tissue Expression (GTEx) project. The volume of data generated by these projects is unprecedented and truly transformative in terms of the questions that can be addressed, the manner in which they are tackled, and the how the findings are interpreted and widely translated.

Bioinformatic analyses are central to both the generation of these complex datasets and their investigation. Unbiased bioinformatics analyses can reveal organizational insight that is neither obvious nor intuitive. Unbiased and agnostic analyses are achieved by applying algorithmic approaches that depend on discrete mathematics and information theory, combined with graph theory, data mining, and computer science generally, with a central role for the statistical sciences. In this manner, bioinformatic approaches offer the promise to reveal underlying mechanisms of biology in health and disease.

For example, -omic technologies can be applied to capture genomic structural variants and mutations, gene and protein expression patterns, protein posttranslational modifications, and metabolites across cell states. Bioinformatics analyses is applied to all steps from data capture, to data processing (eg, filtering and normalization), to establishing reproducible changes between states A and B, and to more complex integrative analyses from combining different -omic datasets. The statistical sciences are central to all these steps. The ultimate goal from these workflows is to identify network changes between states, and finally to identify nodes that exert control. Such nodes would then form attractive targets for interventionist wet laboratory-based experiments.

Several points are worth stressing from this theoretic workflow. First, study design and phenotype definition are critical. Second, all analyses include a denominator (eg, the genome, the detectable transcriptome, etc) so that any change is considered against the appropriate backdrop of all events occurring in the cell. Third, all data processing includes normalization across samples, including replicates and states, and subsequent filtering to remove the large component of the signal that is unchanging to, therefore, control the penalties of false discovery. Finally, the integrative steps have very high potential for creativity and novelty. That is, as the volume of publicly available data grows, the statistical approaches and types of data integration that can occur are varied and represent where many of the key biological questions of the future will be framed.

The mechanics of VDR signaling and disruption in cancer can, therefore, be analyzed in the paradigm of mining and analyzing large biological datasets. Therefore, there are several
bioinformatics approaches that are applicable to the VDR. In the first instance, applying the genome as the denominator allows the question to be addressed of where VDR biology is significant. For example, in what cancer does a significant role for the VDR emerge when considering all genetic variations or gene expression?

At the simplest, GTEx project277 and the TCGA data can be investigated to identify in which normal tissue is the VDR most highly expressed, or in what cancer is it most commonly altered. The GTEx data reveal that the VDR is most abundant in tissues of the colon and small intestine, and least abundant in basal ganglia and brain tissues. The TCGA data reveal that the VDR is most commonly altered by deletion in 2 cohorts of adenoid cystic carcinoma of the breast.278,279 Interestingly, the GTEx data clearly reflect the focus at the preclinical and epidemiologic level of investigated VDR in colon cancer. However, no studies to date have examined VDR in the context of adenoid cystic carcinoma of breast cancer.

The TCGA280,281 data are derived from more than 33 different cancer types that were collected from approximately 11,000 patients. The analyses of these data have been the subject of more than 350 papers to date and it is striking that none of these papers identified a genome-wide significant role for disruption or association of the VDR with tumor phenotypes. By comparison, more than 100 TCGA papers report a significant relationship with TP53.

Often, biological signals are extremely contextual. Analyses of myeloid282 and megakaryocyte283 cells illustrate that there is a significant role for the VDR to act in distinct transcriptional units that control specific points of cell differentiation. These findings reveal the intricate mechanistic basis to some of the earliest cancer studies on VDR signaling in leukemia,284,285 which revealed that exogenous vitamin D compounds can trigger cell differentiation. Therefore, reflecting on the role VDR seems to be playing in myeloid systems, it is worth stressing the apparent importance of VDR in immune phenotypes. That is, GWAS identify significant roles for VDR genetic variation in immune phenotypes.244,286,287

Perhaps reflecting the reproduction-related functions of the VDR in murine systems288 the Vdr−/− mice display a mammary gland phenotype, and this genotype can modulate cancer incidence in murine cancer models.145,289,290 However, transcriptional and epigenomic control of breast epithelial systems in human cells does not reveal a genome-wide significant role for the VDR,291 and the major breast cancer papers from TCGA have not identified a genome-wide significant role for the VDR to act as a cancer driver.292–295

Putting these findings together from leukemia and common cancers suggests that the VDR itself does not act as a direct cancer driver, either through loss or gain of function. This finding may limit the likelihood of therapeutic exploitation in the cancer context.

Other approaches can be applied to leverage public data by changing the denominator. It is possible to address questions centered around the VDR and related genes, and thereby limit the penalties of false discovery. For example, previously we analyzed 13 transcription factor families implicated in cancer, including the NR superfamily, across 3000 tumors from 6
different tumor types.296–300 Bootstrapping approaches301 established that, across cancers, only the NR family was significantly downregulated, but was neither significantly mutated nor altered by copy number variation.302 Within the NRs, we found that several NRs were uniquely suppressed in only one tumor site, including VDR in the colon cancer (COAD) cohort; this finding may reflect the strong expression of VDR in the normal colon. VDR downregulation was not found to be driven by copy number variation or mutation and thus epigenetic mechanisms may be primarily responsible for altered expression.301,302 There is a very well-established literature supporting links between corrupted VDR signaling and colon cancer.85,147,303–308 Our pan-cancer analyses add to these findings, suggesting that loss of VDR-induced growth restraint may be more apparent in colon cancer than in other cancers where alterations are not apparent.

The VDR ChIP-seq data also lend themselves to be combined with other types of publicly available data to ask further questions concerning VDR function. For example, an attractive integration approach is to examine how significant genetic variation in transcription factor binding site can relate to phenotypes and disease susceptibility. Testing the possibility that genetic variation impacts transcription factor function underpins trait differences and disease phenotypes is analytically challenging, given the size of the datasets and the potential for false discovery. Various groups have addressed this challenge; notably, both the ENCODE and Roadmap Epigenome consortia leveraged the remarkable volume of ChIP-seq data they generated and merged the binding sites with GWAS data to reveal and rank sites where single nucleotide polymorphisms (SNPs) seem to have a significant impact on the activity of multiple transcription factors.124,271,309

However, given that VDR has not been considered in any of these consortia, we have recently integrated VDR ChIP-Seq119–123 with National Human Genome Research Institute GWAS SNPs, and SNPs in linkage disequilibrium, to provide novel insight into the interaction between disease- and phenotype-associated SNPs and VDR binding. From these analyses, we applied transcription factor motif searching and exploited other ChIP-Seq data to identify significant interactions between the VDR and other transcription factors and disease traits. In this manner, we identified genetic variation that was significant at the genome-wide level enriched in VDR binding sites that were shared with nuclear factor-κB binding regions related to immune phenotypes, including self-reported allergy.310 However, none of the GWAS SNPs identified in VDR binding sites were neither in a DR3 type motif, again underscoring the diversity of VDR binding sites, nor related to cancer phenotypes.

However, there does seem to be a significant relationship between VDR and colon cancer, given that the VDR is highly expressed in the normal colon, associated with the control of local immunity,82,308,311–315 and that, of all the NRs, the VDR is commonly and significantly downregulated in colon cancer. To test this possibility, we leveraged VDR ChIP-Seq data derived in LS180 colon cancer cells121 with the expression of VDR target genes in the TCGA–COAD cohort.298 Clustering the tumors by expression patterns then allowed testing the relationships between expression of VDR target genes and clinical outcome. Expression of VDR target genes were either significantly repressed or activated in the COAD cohort, suggesting that VDR functions in both activating and repressing complexes at the basal (or physiologically activated) state.316 For instance, LGALS4 is a
VDR target gene that is specific to colonic cells and is downregulated in colon cancer, acting as a tumor suppressor, and \textit{LGALS4} quartile expression patterns significantly associated with disease-free survival in specific patient subgroups.

A further opportunity available for meaningful data integration of ChIP-Seq studies is in the judicious choice of the cell line of study. For example, there are 3 tier 1 cell lines in the ENCODE project including K562 cells, which has approximately 600 publicly available genome-wide datasets. Therefore, there is an exciting opportunity once VDR ChIP-Seq is undertaken in one of these models in terms of integrative analyses that could leverage ENCODE or RoadMap Epigenome data.

FUTURE CONSIDERATIONS AND SUMMARY

Enthusiasm remains for exploiting vitamin D signaling in cancer systems. This partly reflects that the biology is now very well-understood, that the toxicities associated with vitamin D compounds are easily monitored and managed and that in an era of high dimensional biological data it is possible to measure and dissect the actions of VDR signaling in very great detail. It seems likely that efforts will continue to exploit vitamin D compounds in the clinical setting, and it may well be that by exploiting tools to very accurately measure tumor type and burden will allow vitamin D-centered therapies to be applied with great precision. It seems likely that among the actions of VDR, the immunomodulatory capacity may ultimately be the ones that are most advantageous in cancer therapies.

ACKNOWLEDGMENTS

M.J. Campbell acknowledges support in part from the Prostate program of the Department of Defense Congressionally Directed Medical Research Programs [W81XWH-14-1-0608, W81XWH-11-2-0033]. D.L. Trump acknowledges the support of the Inova Schar Cancer Institute and the generosity of the Schar Family.

REFERENCES

1. Baker AR, McDonnell DP, Hughes M, et al. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A 1988;85: 3294–8. [PubMed: 28357677]
2. Takeyama K, Kitanaka S, Sato T, et al. 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science 1997;277:1827–30. [PubMed: 9295274]
3. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab 2011;96:53–8. [PubMed: 21118827]
4. Dawson-Hughes B, Heaney RP, Holick MF, et al. Estimates of optimal vitamin D status. Osteoporos Int 2005;16:713–6. [PubMed: 15776217]
5. King L, Dear K, Harrison SL, et al. Investigating the patterns and determinants of seasonal variation in vitamin D status in Australian adults: the Seasonal D Cohort Study. BMC Public Health 2016;16:892. [PubMed: 27565723]
6. Diffey BL. Modelling the seasonal variation of vitamin D due to sun exposure. Br J Dermatol 2010;162:1342–8. [PubMed: 20163416]
7. Campbell MJ. Vitamin D and the RNA transcriptome: more than mRNA regulation. Front Physiol 2014;5:181. [PubMed: 24860511]
8. Carlberg C, Campbell MJ. Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor. Steroids 2013;78:127–36. [PubMed: 23178257]
9. Carlberg C. Molecular approaches for optimizing vitamin D supplementation. Vitam Horm 2016;100:255–71. [PubMed: 26827955]

10. Narvaez CJ, Matthews D, LaPorta E, et al. The impact of vitamin D in breast cancer: genomics, pathways, metabolism. Front Physiol 2014;5:213. [PubMed: 24982636]

11. White JH. Vitamin D metabolism and signaling in the immune system. Rev Endocr Metab Disord 2012;13:21–9. [PubMed: 21845364]

12. Bikle DD. Extraskeletal actions of vitamin D. Ann N Y Acad Sci 2016;1376:29–52. [PubMed: 27649525]

13. Jeffery LE, Raza K, Hewison M. Vitamin D in rheumatoid arthritis-towards clinical application. Nat Rev Rheumatol 2012;10:4:313–21. [PubMed: 21845364]

14. Brumbaugh PF, Hughes MR, Haussler MR. Cytoplasmic and nuclear binding components for 1alpha25-dihydroxyvitamin D3 in chick parathyroid glands. Proc Natl Acad Sci U S A 1975;72:4871–5. [PubMed: 1061076]

15. Jones PG, Haussler MR. Scintillation autoradiographic localization of 1,25-dihydroxyvitamin D3 in chick intestine. Endocrinology 1979;104:313–21. [PubMed: 446363]

16. Colston K, Colston MJ, Feldman D. 1,25-dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology 1981;108:1083–6. [PubMed: 6257495]

17. Strickland S, Mahdavi V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 1978;15:393–403. [PubMed: 12901941]

18. Raelson JV, Nervi C, Rosenauer A, et al. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 1996;88:2826–32. [PubMed: 8874178]

19. Grignani F, Ferrucci PF, Testa U, et al. The acute promyelocytic leukaemiaspecific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993;74:423–31. [PubMed: 8394219]

20. de The H, Lavau C, Marchio A, et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukaemia encodes a functionally altered RAR. Cell 1991;66:675–84. [PubMed: 1652369]

21. Chen SJ, Zhu YJ, Tong JH, et al. Rearrangements in the second intron of the RARA gene are present in a large majority of patients with acute promyelocytic leukaemia and are used as molecular marker for retinoic acid-induced leukaemic cell differentiation. Blood 1991;78:2696–701. [PubMed: 1668609]

22. Douer D, Koeffler HP. Retinoic acid. Inhibition of the clonal growth of human myeloid leukaemia cells. J Clin Invest 1982;69:277–83. [PubMed: 6276439]

23. Breitman TR, Selonick SE, Collins SJ. Induction of differentiation of the human promyelocytic leukaemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A 1980;77:2936–40. [PubMed: 6930676]

24. Castaigne S, Chomienne C, Daniel MT, et al. Retinoic acids in the treatment of acute promyelocytic leukaemia. Nouv Rev Fr Hematol 1990;32:36–8. [PubMed: 2190178]

25. Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukaemia. Haematol Blood Transfus 1989;32:88–96. [PubMed: 2696695]

26. Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998;391:815–8. [PubMed: 9486655]

27. Lin RJ, Nagy L, Inoue S, et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998;391:811–4. [PubMed: 9486654]

28. Spira AI, Carducci MA. Differentiation therapy. Curr Opin Pharmacol 2003;3: 338–43. [PubMed: 12901941]

29. Ferrari AC, Waxman S. Differentiation agents in cancer therapy. Cancer Chemo-ther Biol Response Modif 1994;15:337–66.

30. Lo-Coco F, Di Donato L, GIMEMA, et al., German-Austrian Acute Myeloid Leukemia Study Group and Study Alliance Leukemia. Targeted therapy alone for acute promyelocytic leukaemia. N Engl J Med 2016;374:1197–8. [PubMed: 27007970]
31. Uray IP, Dmitrovsky E, Brown PH. Retinoids and rexinoids in cancer prevention: from laboratory to clinic. Semin Oncol 2016;43:49–64. [PubMed: 26970124]
32. Bhutani T, Koo J. A review of the chemopreventative effects of oral retinoids for internal neoplasms. J Drugs Dermatol 2011;10:1292–8. [PubMed: 22052311]
33. Campbell MJ, Park S, Uskokovic MR, et al. Expression of retinoic acid receptorbeta sensitizes prostate cancer cells to growth inhibition mediated by combinations of retinoids and a 19-nor hexafluoride vitamin D3 analog. Endocrinology 1998;139:1972–80. [PubMed: 9528984]
34. Miyaura C, Abe E, Kuribayashi T, et al. 1 alpha,25-dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun 1981;102:937–43. [PubMed: 6946774]
35. Abe E, Miyaura C, Sakagami H, et al. Differentiation of mouse myeloid leukemia cells induced by 1 alpha,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A 1981;78:4990–4. [PubMed: 6946446]
36. Palmer HG, Sanchez-Carbayo M, Ordonez-Moran P, et al. Genetic signatures of differentiation induced by 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Cancer Res 2003;63:7799–806. [PubMed: 14633706]
37. Koike M, Elstner E, Campbell MJ, et al. 19-nor-hexafluoride analogue of vitamin D3: a novel class of potent inhibitors of proliferation of human breast cell lines. Cancer Res 1997;57:4545–50. [PubMed: 9377567]
38. Campbell MJ, Elstner E, Holden S, et al. Inhibition of proliferation of prostate cancer cells by a 19-nor-hexafluoride vitamin D3 analogue involves the induction of p21waf1, p27kip1 and E-cadherin. J Mol Endocrinol 1997;19:15–27. [PubMed: 9278857]
39. Elstner E, Campbell MJ, Munker R, et al. Novel 20-epi-vitamin D3 analog combined with 9-cis-retinoic acid markedly inhibits colony growth of prostate cancer cells. Prostate 1999;40:141–9. [PubMed: 10398275]
40. Peehl DM, Skowronski RJ, Leung GK, et al. Antiproliferative effects of 1,25-dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Res 1994; 54:805–10. [PubMed: 7508338]
41. Welsh J, Wietzke JA, Zinser GM, et al. Impact of the vitamin D3 receptor on growth-regulatory pathways in mammary gland and breast cancer. J Steroid Biochem Mol Biol 2002;83:85–92. [PubMed: 12650704]
42. Colston KW, Berger U, Coombes RC. Possible role for vitamin D in controlling breast cancer cell proliferation. Lancet 1989;1:188–91. [PubMed: 2563099]
43. Colston K, Colston MJ, Fieldsteel AH, et al. 1,25-dihydroxyvitamin D3 receptors in human epithelial cancer cell lines. Cancer Res 1982;42:856–9. [PubMed: 6895862]
44. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70. [PubMed: 10647931]
45. Yen A, Varvayanis S. RB phosphorylation in sodium butyrate-resistant HL-60 cells: cross-resistance to retinoic acid but not vitamin D3. J Cell Physiol 1995;163:502–9. [PubMed: 7775593]
46. Hager G, Formanek M, Gedlicka C, et al. 1,25(OH)2 vitamin D3 induces elevated expression of the cell cycle-regulating genes P21 and P27 in squamous carcinoma cell lines of the head and neck. Acta Otolaryngol 2001;121:103–9. [PubMed: 11270487]
47. Kumagai T, O’Kelly J, Said JW, et al. Vitamin D2 analog 19-nor-1,25-dihydroxyvitamin D2: antitumor activity against leukemia, myeloma, and colon cancer cells. J Natl Cancer Inst 2003;95:896–905. [PubMed: 12813173]
48. Davoust N, Wion D, Chevalier G, et al. Vitamin D receptor stable transfection restores the susceptibility to 1,25-dihydroxyvitamin D3 cytotoxicity in a rat glioma resistant clone. J Neurosci Res 1998;52:210–9. [PubMed: 9579411]
49. Fife RS, Sledge GW Jr, Proctor C. Effects of vitamin D3 on proliferation of cancer cells in vitro. Cancer Lett 1997;120:65–9. [PubMed: 9570387]
50. Naveilhan P, Berger F, Haddad K, et al. Induction of glioma cell death by 1,25(OH)2 vitamin D3: towards an endocrine therapy of brain tumors? J Neurosci Res 1994;37:271–7. [PubMed: 8151734]
51. Wang X, Studzinski GP. Antia apoptotic action of 1,25-dihydroxyvitamin D3 is associated with increased mitochondrial MCL-1 and RAF-1 proteins and reduced release of cytochrome c. Exp Cell Res 1997;235:210–7. [PubMed: 9281370]
52. Xu HM, Tepper CG, Jones JB, et al. 1,25-Dihydroxyvitamin D3 protects HL60 cells against apoptosis but down-regulates the expression of the bcl-2 gene. Exp Cell Res 1993;209:367–74. [PubMed: 8262155]

53. Liu M, Lee MH, Cohen M, et al. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev 1996;10:142–53. [PubMed: 8566748]

54. Saramaki A, Banwell CM, Campbell MJ, et al. Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic Acids Res 2006;34:543–54. [PubMed: 16434701]

55. Wang QM, Jones JB, Studzinski GP. Cyclin-dependent kinase inhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitamin D3 in HL60 cells. Cancer Res 1996;56:264–7. [PubMed: 8542578]

56. Li P, Li C, Zhao X, et al. p27(Kip1) stabilization and G(1) arrest by 1,25-dihydroxyvitamin D(3) in ovarian cancer cells mediated through down-regulation of cyclin E/cyclin-dependent kinase 2 and Skp1-Cullin-F-box protein/Skp2 ubiquitin ligase. J Biol Chem 2004;279:25260–7. [PubMed: 15075339]

57. Huang YC, Chen JY, Hung WC. Vitamin D(3) receptor/Sp1 complex is required for the induction of p27(Kip1) expression by vitamin D(3). Oncogene 2004;23(28):4856–61. [PubMed: 15064717]

58. Hengst L, Reed SI. Translational control of p27Kip1 accumulation during the cell cycle. Science 1996;271:1861–4. [PubMed: 8596954]

59. Jiang F, Li P, Fornace AJ Jr, et al. G2/M arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through the induction of GADD45 via an exonic enhancer. J Biol Chem 2003;278:48030–40. [PubMed: 14506229]

60. Akutsu N, Lin R, Bastien Y, et al. Regulation of gene Expression by 1alpha,25-dihydroxyvitamin D3 and Its analog EB1089 under growth-inhibitory conditions in squamous carcinoma Cells. Mol Endocrinol 2001;15:1127–39. [PubMed: 11435613]

61. Khanim FL, Gommersall LM, Wood VH, et al. Altered SMRT levels disrupt vitamin D3 receptor signalling in prostate cancer cells. Oncogene 2004;23:6712–25. [PubMed: 15300237]

62. Wu G, Fan RS, Li W, et al. Modulation of cell cycle control by vitamin D3 and its analogue, EB1089, in human breast cancer cells. Oncogene 1997;15:1555–63. [PubMed: 9380407]

63. Lubbert M, Salser W, Prokocimer M, et al. Stable methylation patterns of MYC and other genes regulated during terminal myeloid differentiation. Leukemia 1991;5:533–9. [PubMed: 1649355]

64. Zhou JY, Norman AW, Lubbert M, et al. Novel vitamin D analogs that modulate leukemic cell growth and differentiation with little effect on either intestinal calcium absorption or bone mobilization. Blood 1989;74:82–93. [PubMed: 2665845]

65. Zile MH, Cullum ME, Simpson RU, et al. Induction of differentiation of human promyelocytic leukemia cell line HL-60 by retinoyl glucuronide, a biologically active metabolite of vitamin A. Proc Natl Acad Sci U S A 1987;84:2208–12. [PubMed: 3470785]

66. Wang JK, Johnson MD, Morgan JJ, et al. Vitamin D3 derivatives inhibit the differentiation of Friend erythroleukemia cells. Mol Pharmacol 1986;30:639–42. [PubMed: 3023814]

67. Brelvi ZS, Studzinski GP. Inhibition of DNA synthesis by an inducer of differentiation of leukemic cells, l alpha, 25 dihydroxy vitamin D3, precedes down regulation of the c-myc gene. J Cell Physiol 1986;128:171–9. [PubMed: 3755442]

68. Munker R, Norman A, Koeffler HP. Vitamin D compounds. Effect on clonal proliferation and differentiation of human myeloid cells. J Clin Invest 1986;78:424–30. [PubMed: 3461004]

69. Palmer HG, Gonzalez-Sancho JM, Espada J, et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 2001;154:369–87. [PubMed: 11470825]

70. Lazzaro G, Agadir A, Qing W, et al. Induction of differentiation by 1alpha-hydroxyvitamin D(5) in T47D human breast cancer cells and its interaction with vitamin D receptors. Eur J Cancer 2000;36:780–6. [PubMed: 10762752]

71. Konety BR, Schwartz GG, Acienro JS Jr, et al. The role of vitamin D in normal prostate growth and differentiation. Cell Growth Differ 1996;7:1563–70. [PubMed: 8930406]
72. Kim YR, Abraham NG, Lutton JD. Mechanisms of differentiation of U937 leukemic cells induced by GM-CSF and 1,25(OH)2 vitamin D3. Leuk Res 1991;15:409–18. [PubMed: 1861527]

73. Narvaez CJ, Byrne BM, Romu S, et al. Induction of apoptosis by 1,25-dihydroxyvitamin D3 in MCF-7 vitamin D3-resistant variant can be sensitized by TPA. J Steroid Biochem Mol Biol 2003;84:199–209. [PubMed: 12711004]

74. Diaz GD, Paraskea C, Thomas MG, et al. Apoptosis is induced by the active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Res 2000;60:2304–12. [PubMed: 1078699]

75. Elstner E, Linker-Israeli M, Le J, et al. Synergistic decrease of clonal proliferation, induction of differentiation, and apoptosis of acute promyelocytic leukemia cells after combined treatment with novel 20-epi vitamin D3 analogs and 9-cis retinoic acid. J Clin Invest 1997;99:349–60. [PubMed: 9006004]

76. Elstner E, Linker-Israeli M, Said J, et al. 20-epi-vitamin D3 analogues: a novel class of potent inhibitors of proliferation and inducers of differentiation of human breast cancer cell lines. Cancer Res 1995;55:2822–30. [PubMed: 7796409]

77. Narvaez CJ, Vanweelden K, Byrne I, et al. Characterization of a vitamin D3-resistant MCF-7 cell line. Endocrinology 1996;137:400–9. [PubMed: 8593782]

78. Byrne BM, Welsh J. Altered thioredoxin subcellular localization and redox status in MCF-7 cells following 1,25-dihydroxyvitamin D3 treatment. J Steroid Biochem Mol Biol 2005;97:57–64. [PubMed: 16061374]

79. Jeon JH, Lee KN, Hwang CY, et al. Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Res 2005;65:4485–9. [PubMed: 15930262]

80. Junn E, Han SH, Im JY, et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 2000;164:6287–95. [PubMed: 10843682]

81. Ferrer-Mayorga G, Gomez-Lopez G, Barbachano A, et al. Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer. Gut 2017;66(8):1449–62. [PubMed: 27053631]

82. Alvarez-Diaz S, Valle N, Garcia JM, et al. Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells. J Clin Invest 2009;119:2343–58. [PubMed: 19662683]

83. Pendas-Franco N, Garcia JM, Pena C, et al. DICKKOPF-4 is induced by TCF/beta-catenin and upregulated in human colon cancer, promotes tumour cell invasion and angiogenesis and is repressed by 1alpha,25-dihydroxyvitamin D3. Oncogene 2008;27:467–77. [PubMed: 18408752]

84. Larriba MJ, Valle N, Palmer HG, et al. The inhibition of Wnt/beta-catenin signalling by 1alpha,25-dihydroxyvitamin D3 is abrogated by Snail1 in human colon cancer cells. Endocr Relat Cancer 2007;14:141–51. [PubMed: 17395983]

85. Palmer HG, Larriba MJ, Garcia JM, et al. The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med 2004;10:917–9. [PubMed: 15322538]

86. Tenbaum SP, Ondrej-Moran P, Puig I, et al. Beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 2012;18:892–901. [PubMed: 22610277]

87. Chiang KC, Yeh CN, Hsu JT, et al. The vitamin D analog, MART-10, represses metastasis potential via downregulation of epithelial-mesenchymal transition in pancreatic cancer cells. Cancer Lett 2014;354:235–44. [PubMed: 25149065]

88. Upadhyay SK, Verone A, Shoemaker S, et al. 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) signaling capacity and the epithelial-mesenchymal transition in non-small cell lung cancer (NSCLC): implications for use of 1,25(OH)2D3 in NSCLC treatment. Cancers (Basel) 2013;5:1504–21. [PubMed: 24217116]

89. Gniadecki R, Gajkowska B, Hansen M. 1,25-dihydroxyvitamin D3 stimulates the assembly of adherens junctions in keratinocytes: involvement of protein kinase C. Endocrinology 1997;138:2241–8. [PubMed: 9165007]

90. Prudencio J, Akutsu N, Benlimame N, et al. Action of low calcemic 1alpha,25-dihydroxyvitamin D3 analogue EB1089 in head and neck squamous cell carcinoma. J Natl Cancer Inst 2001;93:745–53. [PubMed: 11353784]
91. Baudet C, Chevalier G, Chassevent A, et al. 1,25-dihydroxyvitamin D3 induces programmed cell death in a rat glioma cell line. J Neurosci Res 1996;46:540–50. [PubMed: 8951666]

92. Asada M, Yamada T, Fukumuro K, et al. p21Cip1/WAF1 is important for differentiation and survival of U937 cells. Leukemia 1996;12:1944–50. [PubMed: 894924]

93. Munker R, Kobayashi T, Elstner E, et al. A new series of vitamin D analogs is highly active for clonal inhibition, differentiation, and induction of WAF1 in myeloid leukemia. Blood 1996;88:2201–9. [PubMed: 882240]

94. Schwaller J, Koeffler HP, Niklaus G, et al. Posttranscriptional stabilization underlies p53-independent induction of p21/WAF1/CIP1/SDI1 in differentiating human leukemic cells. J Clin Invest 1995;95:973–9. [PubMed: 7883998]

95. Stambolsky P, Tabach Y, Fonternaggg G, et al. Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 2010;17:273–85. [PubMed: 20227041]

96. Reichrath J, Reichrath S, Heyne K, et al. Tumor suppression in skin and other tissues via cross-talk between vitamin D- and p53-signaling. Front Physiol 2014;5:166. [PubMed: 24917821]

97. Ellison TI, Smith MK, Gilliam AC, et al. Inactivation of the vitamin D receptor enhances susceptibility of murine skin to UV-induced tumorigenesis. J Invest Dermatol 2008;128:2508–17. [PubMed: 18509362]

98. Graziano S, Johnston R, Deng O, et al. Vitamin D/vitamin D receptor axis regulates DNA repair during oncogene-induced senescence. Oncogene 2016;35:5362–76. [PubMed: 27041576]

99. Pickholz I, Saadyy L, Kesht GI, et al. Cooperation between BRCA1 and vitamin D is critical for histone acetylation of the p21waf1 promoter and growth inhibition of breast cancer cells and cancer stem-like cells. Oncotarget 2014;5:11827–46. [PubMed: 25460500]

100. Campbell MJ, Gombart AF, Kwoh SH, et al. The anti-proliferative effects of 1alpha,25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. Oncogene 2000;19:5091–7. [PubMed: 11042697]

101. Eelen G, Verlinden L, Van Camp M, et al. Microarray analysis of 1alpha,25-dihydroxyvitamin D3-treated MC3T3-E1 cells. J Steroid Biochem Mol Biol 2004;89–90:405–7.

102. Wang TT, Tavera-Mendoza LE, Laperrrie D, et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol 2005;19(11):2685–95. [PubMed: 16002434]

103. Savli H, Aalto Y, Nagy B, et al. Gene expression analysis of 1alpha,25-dihydroxyvitamin D3-dependent differentiation of HL-60 cells: a cDNA array study. Br J Haematol 2002;118:1065–70. [PubMed: 12199786]

104. Lin R, Nagai Y, Sladek R, et al. Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol 2002;16:1243–56. [PubMed: 12040012]

105. Ferreira GB, Vanherwegen AS, Eelen G, et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways. Cell Rep 2015 [Epub ahead of print].

106. Bosse Y, Maghni K, Hudson TJ. 1alpha,25-dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility, and remodeling processes. Physiol Genomics 2007;29:161–8. [PubMed: 17213369]

107. Kawata H, Kamiakito T, Takayashiki N, et al. Vitamin D3 suppresses the androgen-stimulated growth of mouse mammary carcinoma SC-3 cells by transcriptional repression of fibroblast growth factor 8. J Cell Physiol 2006;207:793–9. [PubMed: 16508948]

108. Guzey M, Luo J, Getzenberg RH. Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells. J Cell Biochem 2004;93:271–85. [PubMed: 15366355]

109. Kobayashi T, Uehara S, Ikeda T, et al. Vitamin D3 up-regulated protein-1 regulates collagen expression in mesangial cells. Kidney Int 2003;64:1632–42. [PubMed: 14531794]

110. Hilpert J, Wogensen L, Thykjaer T, et al. Expression profiling confirms the role of endocytic receptor megalin in renal vitamin D3 metabolism. Kidney Int 2002;62:1672–81. [PubMed: 12371967]

111. Takahashi Y, Nagata T, Ishii Y, et al. Up-regulation of vitamin D3 up-regulated protein 1 gene in response to 5-fluorouracil in colon carcinoma SW620. Oncol Rep 2002;9:75–9. [PubMed: 11748459]
112. Townsend K, Trevino V, Falciani F, et al. Identification of VDR-responsive gene signatures in breast cancer cells. Oncology 2006;71:111–23. [PubMed: 17377416]

113. Larsen JE, Nathan V, Osborne JK, et al. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 2016;126:3219–35. [PubMed: 27500490]

114. Tagliafico E, Tenedini E, Manfredini R, et al. Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia. Leukemia 2006;20:1751–8. [PubMed: 16932344]

115. Engreitz JM, Chen R, Morgan AA, et al. ProfileChaser: searching microarray repositories based on genome-wide patterns of differential expression. Bioinformatics 2011;27:3317–8. [PubMed: 21967760]

116. Shah NH, Jonquet C, Chiang AP, et al. Ontology-driven indexing of public datasets for translational bioinformatics. BMC Bioinformatics 2009;10(Suppl 2):S1.

117. Jiang YJ, Bikle DD. LncRNA: a new player in 1alpha, 25(OH)2 vitamin D3/VDR protection against skin cancer formation. Exp Dermatol 2014;23:147–50. [PubMed: 24499465]

118. Singh PK, Long MD, Battaglia S, et al. VDR regulation of microRNA differs across prostate cell models suggesting extremely flexible control of transcription. Epigenetics 2015;10:40–9. [PubMed: 25494645]

119. Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 2013;153:601–13. [PubMed: 23622244]

120. Heikkinnen S, Vaisanen S, Pekkonen P, et al. Nuclear hormone 1alpha,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res 2011;39:9181–93. [PubMed: 21846776]

121. Meyer MB, Goetsch PD, Pike JW. VDR/RXR and TCF4/beta-catenin cistromes in colonic cells of colorectal tumor origin: impact on c-FOS and c-MYC gene expression. Mol Endocrinol 2012;26:37–51. [PubMed: 22108803]

122. Ramagopalan SV, Heger A, Berlanga AJ, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res 2010;20:1352–60. [PubMed: 20736230]

123. Tuoresmaki P, Vaisanen S, Neme A, et al. Patterns of genome-wide VDR locations. PLoS One 2014;9:e96105. [PubMed: 24773735]

124. Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature 2012;489:101–8. [PubMed: 22955620]

125. Shaffer PL, Gewirth DT. Structural analysis of RXR-VDR interactions on DR3 DNA. J Steroid Biochem Mol Biol 2004;89–90:215–9.

126. Sasaki H, Harada H, Handa Y, et al. Transcriptional activity of a fluorinated vitamin D analog on VDR-RXR-mediated gene expression. Biochemistry 1995; 34:370–7. [PubMed: 7819220]

127. Nayeri S, Danielsson C, Kahlen JP, et al. The anti-proliferative effect of vitamin D3 analogues is not mediated by inhibition of the AP-1 pathway, but may be related to promoter selectivity. Oncogene 1995;11:1853–8. [PubMed: 7478614]

128. Quack M, Carlberg C. Selective recognition of vitamin D receptor conformations mediates promoter selectivity of vitamin D analogs. Mol Pharmacol 1999;55: 1077–87. [PubMed: 10347251]

129. Phan TQ, Jow MM, Privalsky ML. DNA recognition by thyroid hormone and retinoic acid receptors: 3,4,5 rule modified. Mol Cell Endocrinol 2010;319:88–98. [PubMed: 19945505]

130. Lun AT, Smyth GK. From reads to regions: a bioconductor workflow to detect differential binding in ChIP-seq data. F1000Res 2015;4:1080. [PubMed: 26834993]

131. Yoon JS, Kim JY, Park HK, et al. Antileukemic effect of a synthetic vitamin D3 analog, HY-11, with low potential to cause hypercalcemia. Int J Oncol 2008; 32:387–96. [PubMed: 18202761]

132. Vaisanen S, Perakyla M, Karkkainen JI, et al. Structural evaluation of the agonistic action of a vitamin D analog with two side chains binding to the nuclear vitamin D receptor. Mol Pharmacol 2003;63:1230–7. [PubMed: 12761332]

133. Peleg S, Ismail A, Uskokovic MR, et al. Evidence for tissue- and cell-type selective activation of the vitamin D receptor by Ro-26–9228, a noncalcemic analog of vitamin D3. J Cell Biochem 2003;88:267–73. [PubMed: 12520525]
134. Evans SR, Soldatenkov V, Shchepotin EB, et al. Novel 19-nor-hexafluoride vitamin D3 analog (Ro 25–6760) inhibits human colon cancer in vitro via apoptosis. Int J Oncol 1999;14:979–85. [PubMed: 10200351]

135. Takahashi F, Finch JL, Denda M, et al. A new analog of 1,25-(OH)2D3, 19-NOR-1,25-(OH)2D2, suppresses serum PTH and parathyroid gland growth in uremic rats without elevation of intestinal vitamin D receptor content. Am J Kidney Dis 1997;30:105–12. [PubMed: 9214408]

136. O’Kelly J, Uskokovic M, Lemp N, et al. Novel Gemini-vitamin D3 analog inhibits tumor cell growth and modulates the Akt/mTOR signaling pathway. J Steroid Biochem Mol Biol 2006;100:107–16. [PubMed: 16777406]

137. Zhou JY, Norman AW, Akashi M, et al. Development of a novel 1,25(OH)2-vitamin D3 analog with potent ability to induce HL-60 cell differentiation without modulating calcium metabolism. Blood 1991;78:75–82. [PubMed: 1648977]

138. Belorussova AY, Rochel N. Structural studies of vitamin D nuclear receptor ligand-binding properties. Vitam Horm 2016;100:83–116. [PubMed: 26827949]

139. Eelen G, Valle N, Sato Y, et al. Supergonistic fluorinated vitamin D3 analogs stabilize helix 12 of the vitamin D receptor. Chem Biol 2008;15:1029–34. [PubMed: 18940664]

140. Eelen G, Verlinden L, Rochel N, et al. Supergonistic action of 14-epi-analogs of 1,25-dihydroxyvitamin D explained by vitamin D receptor-coactivator interaction. Mol Pharmacol 2005;67:1566–73. [PubMed: 15728261]

141. Amling M, Priemel M, Holzmann T, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 1999;140:4982–7. [PubMed: 10537122]

142. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci U S A 2001;98:13324–9. [PubMed: 11687634]

143. Kallay E, Pietschmann P, Toyokuni S, et al. Characterization of a vitamin D receptor knockout mouse as a model of colorectal hyperplasia and DNA damage. Carcinogenesis 2001;22:1429–35. [PubMed: 11532865]

144. Jin D, Wu S, Zhang YG, et al. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther 2015;37: 996–1009.e7. [PubMed: 26046242]

145. Zinser GM, Welsh J. Vitamin D receptor status alters mammary gland morphology and tumorigenesis in MMTV-neu mice. Carcinogenesis 2004;25: 2361–72. [PubMed: 15333467]

146. Zinser GM, Sundberg JP, Welsh J. Vitamin D(3) receptor ablation sensitizes skin to chemically induced tumorigenesis. Carcinogenesis 2002;23:2103–9. [PubMed: 12507934]

147. Larriba MJ, Ordonez-Moran P, Chicote I, et al. Vitamin D receptor deficiency enhances Wnt/beta-catenin signaling and tumor burden in colon cancer. PLoS One 2011;6:e23524. [PubMed: 21858154]

148. Teichert AE, Elalieh H, Elias PM, et al. Overexpression of hedgehog signaling is associated with epidermal tumor formation in vitamin D receptor-null mice. J Invest Dermatol 2011;131:2289–97. [PubMed: 21814234]

149. Colston KW, Chander SK, Mackay AG, et al. Effects of synthetic vitamin D analogues on breast cancer cell proliferation in vivo and in vitro. Biochem Pharmacol 1992;44:693–702. [PubMed: 1324683]

150. Oades GM, Dredge K, Kirby RS, et al. Vitamin D receptor-dependent antitumour effects of 1,25-dihydroxyvitamin D3 and two synthetic analogues in three in vivo models of prostate cancer. BJU Int 2002;90:607–16. [PubMed: 12230626]

151. Zugmaier G, Jager R, Grage B, et al. Growth-inhibitory effects of vitamin D analogues and retinoids on human pancreatic cancer cells. Br J Cancer 1996;73: 1341–6. [PubMed: 8645577]

152. El Abdaimi K, Dion N, Papavasiou V, et al. The vitamin D analogue EB 1089 prevents skeletal metastasis and prolongs survival time in nude mice transplanted with human breast cancer cells. Cancer Res 2000;60:4412–8. [PubMed: 10969786]
153. Li Z, Jia Z, Gao Y, et al. Activation of vitamin D receptor signaling down-regulates the expression of nuclear FOXM1 protein and suppresses pancreatic cancer cell stemness. Clin Cancer Res 2015;21:844–53. [PubMed: 25501129]

154. Zhang X, Jiang F, Li P, et al. Growth suppression of ovarian cancer xenografts in nude mice by vitamin D analogue EB1089. Clin Cancer Res 2005;11:323–8. [PubMed: 15671562]

155. Dackiw AP, Ezzat S, Huang P, et al. Vitamin D3 administration induces nuclear p27 accumulation, restores differentiation, and reduces tumor burden in a mouse model of metastatic follicular thyroid cancer. Endocrinology 2004;145: 5840–6. [PubMed: 15319350]

156. Kim JS, Roberts JM, Bingman WE 3rd, et al. The prostate cancer TMPRSS2:ERG fusion synergizes with the vitamin D receptor (VDR) to induce CYP24A1 expression-limiting VDR signaling. Endocrinology 2014;155:3262–73. [PubMed: 24926821]

157. Tangpricha V, Spina C, Yao M, et al. Vitamin D deficiency enhances the growth of MC-26 colon cancer xenografts in Balb/c mice. J Nutr 2005;135:2350–4. [PubMed: 16177194]

158. Peleg S, Khan F, Navone NM, et al. Inhibition of prostate cancer-mediated osteoblastic bone lesions by the low-calcemic analog 1alpha-hydroxymethyl-16-ene-26,27-bishomo-25-hydroxy vitamin D3. J Steroid Biochem Mol Biol 2005; 97:203–11. [PubMed: 16081281]

159. Verone-Boyle AR, Shoemaker S, Attwood K, et al. Diet-derived 25-hydroxyvitamin D3 activates vitamin D receptor target gene expression and suppresses EGFR mutant non-small cell lung cancer growth in vitro and in vivo. Oncotarget 2016;7:995–1013. [PubMed: 26654942]

160. Newmark HL, Yang K, Kurihara N, et al. Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: a preclinical model for human sporadic colon cancer. Carcinogenesis 2009;30:88–92. [PubMed: 19017685]

161. Thomas MG, Tebbutt S, Williamson RC. Vitamin D and its metabolites inhibit cell proliferation in human rectal mucosa and a colon cancer cell line. Gut 1992;33: 1660–3. [PubMed: 1336758]

162. Cross HS, Nittke T, Kallay E. Colonic vitamin D metabolism: implications for the pathogenesis of inflammatory bowel disease and colorectal cancer. Mol Cell Endocrinol 2011;347:70–9. [PubMed: 21801808]

163. Kallay E, Bises G, Bajna E, et al. Colon-specific regulation of vitamin D hydroxylases–a possible approach for tumor prevention. Carcinogenesis 2005;26: 1581–9. [PubMed: 15905206]

164. Cross HS, Kallay E, Lechner D, et al. Phytoestrogens and vitamin D metabolism: a new concept for the prevention and therapy of colorectal, prostate, and mammary carcinomas. J Nutr 2004;134:1207S–12S. [PubMed: 15113973]

165. Aggarwal A, Kallay E. Cross talk between the calcium-sensing receptor and the vitamin D system in prevention of cancer. Front Physiol 2016;7:451. [PubMed: 27803671]

166. Garland CF, Gorham ED, Mohr SB, et al. Vitamin D for cancer prevention: global perspective. Ann Epidemiol 2009;19:468–83. [PubMed: 19523595]

167. Garland CF, Gorham ED, Mohr SB, et al. Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol 2007;103:708–11. [PubMed: 17368188]

168. Gorham ED, Garland CF, Garland FC, et al. Vitamin D and prevention of colorectal cancer. J Steroid Biochem Mol Biol 2005;97:179–94. [PubMed: 16236494]

169. Garland C, Shekelle RB, Barrett-Connor E, et al. Dietary vitamin D and calcium and risk of colorectal cancer: a 19-year prospective study in men. Lancet 1985; 1:307–9. [PubMed: 2857364]

170. Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol 1980;9:227–31. [PubMed: 7440046]

171. Engel P, Fagherazzi G, Boutten A, et al. Serum 25(OH) vitamin D and risk of breast cancer: a nested case-control study from the French E3N cohort. Cancer Epidemiol Biomarkers Prev 2010;19:2341–50. [PubMed: 20826834]

172. Chen P, Hu P, Xie D, et al. Meta-analysis of vitamin D, calcium and the prevention of breast cancer. Breast Cancer Res Treat 2010;121:469–77. [PubMed: 19851861]

173. Abbas S, Linseisen J, Slinger T, et al. Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer–results of a large case-control study. Carcinogenesis 2008;29:93–9. [PubMed: 17974532]
174. Vrieling A, Seibold P, Johnson TS, et al. Circulating 25-hydroxyvitamin D and postmenopausal breast cancer survival: influence of tumor characteristics and lifestyle factors? Int J Cancer 2014;134:2972–83. [PubMed: 24272459]

175. Meeker S, Seamons A, Maggio-Price L, et al. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016;22: 933–48. [PubMed: 26811638]

176. Shirazi L, Almqquist M, Borgquist S, et al. Serum vitamin D (25OHD3) levels and the risk of different subtypes of breast cancer: a nested case-control study. Breast 2016;28:184–90. [PubMed: 27326980]

177. Yao S, Kwan ML, Ergas IJ, et al. Association of serum level of vitamin D at diagnosis with breast cancer survival: a case-cohort analysis in the pathways study. JAMA Oncol 2017;3:351–7. [PubMed: 27832250]

178. Yuan C, Qian ZR, Babic A, et al. Prediagnostic plasma 25-hydroxyvitamin D and pancreatic cancer survival. J Clin Oncol 2016;34:2899–905. [PubMed: 27325858]

179. Bittenbring JT, Neumann F, Altmann B, et al. Vitamin D deficiency impairs rituximab-mediated cellular cytotoxicity and outcome of patients with diffuse large B-cell lymphoma treated with but not without rituximab. J Clin Oncol 2014;32:3242–8. [PubMed: 25135997]

180. Choo CS, Mamedov A, Chung M, et al. Vitamin D insufficiency is common in patients with nonmetastatic prostate cancer. Nutr Res 2011;31:21–6. [PubMed: 21310302]

181. Bonjour JP, Chevalley T, Fardellone P. Calcium intake and vitamin D metabolism and action, in healthy conditions and in prostate cancer. Br J Nutr 2007;97: 611–6. [PubMed: 17349071]

182. Shui IM, Mondul AM, Lindstrom S, et al., Breast and Prostate Cancer Cohort Consortium Group. Circulating vitamin D, vitamin D-related genetic variation, and risk of fatal prostate cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Cancer 2015;121:1949–56. [PubMed: 25731953]

183. Holt SK, Kolb S, Fu R, et al. Circulating levels of 25-hydroxyvitamin D and prostate cancer prognosis. Cancer Epidemiol 2013;37:666–70. [PubMed: 23972671]

184. Albanes D, Mondul AM, Yu K, et al. Serum 25-hydroxy vitamin D and prostate cancer risk in a large nested case-control study. Cancer Epidemiol Biomarkers Prev 2011;20:1850–60. [PubMed: 21784952]

185. Park SY, Cooney RV, Wilkens LR, et al. Plasma 25-hydroxyvitamin D and prostate cancer risk: the multiethnic cohort. Eur J Cancer 2010;46:932–6. [PubMed: 20064705]

186. Jacot W, Firmin N, Roca L, et al. Impact of a tailored oral vitamin D supplementation regimen on serum 25-hydroxyvitamin D levels in early breast cancer patients: a randomized phase III study. Ann Oncol 2016;27:1235–41. [PubMed: 27029707]

187. Bassuk SS, Manson JE, Lee IM, et al. Baseline characteristics of participants in the VITamin D and omega-3 TriAL (VITAL). Contemp Clin Trials 2016;47:235–43. [PubMed: 26767629]

188. Flarakos CC, Weiskopf A, Robinson M, et al. Metabolism of selective 20-epi-vitamin D3 analogs in rat osteosarcoma UMR-106 cells: isolation and identification of four novel C-1 fatty acid esters of 1alpha,25-dihydroxy-16-ene-20-epi-vitamin D3. Steroids 2017;119:18–30. [PubMed: 28089927]

189. Okamoto R, Gery S, Kuwayama Y, et al. Novel Gemini vitamin D3 analogs: large structure/function analysis and ability to induce antimicrobial peptide. Int J Cancer 2014;134:207–17. [PubMed: 23775785]

190. Huet T, Maehr H, Lee HJ, et al. Structure-function study of gemini derivatives with two different side chains at C-20, Gemini-0072 and Gemini-0097. Medchemcomm 2011;2:424–9. [PubMed: 22180837]

191. Reddy GS, Omdahl JL, Robinson M, et al. 23-carboxy-24,25,26,27-tetranorvitamin D3 (calcioic acid) and 24-carboxy-25,26,27-trinorvitamin D3 (cholacalcioic acid): end products of 25-hydroxyvitamin D3 metabolism in rat kidney through C-24 oxidation pathway. Arch Biochem Biophys 2006;455:18–30. [PubMed: 17027908]

192. Uskokovic MR, Manchand P, Marczak S, et al. C-20 cyclopropyl vitamin D3 analogs. Curr Top Med Chem 2006;6:1289–96. [PubMed: 16848742]

193. Weinstein EA, Rao DS, Siu-Caldera ML, et al. Isolation and identification of 1alpha-hydroxy-24-oxovitamin D3 and 1alpha,23-dihydroxy-24-oxovitamin D3: metabolites of 1alpha,24(R)-
dihydroxyvitamin D3 produced in rat kidney. Biochem Pharmacol 1999;58:1965–73. [PubMed: 10591152]

194. Sekimoto H, Siu-Caldera ML, Weiskopf A, et al. 1alpha,25-dihydroxy-3-epivitamin D3: in vivo metabolite of 1alpha,25-dihydroxyvitamin D3 in rats. FEBS Lett 1999;448:278–82. [PubMed: 10218492]

195. Gardner JP, Zhang F, Uskokovic MR, et al. Vitamin D analog 25-(OH)-16,23E-Diene-26,27-hexafluoro-vitamin D3 induces differentiation of HL60 cells with minimal effects on cellular calcium homeostasis. J Cell Biochem 1996;63: 500–12. [PubMed: 8978465]

196. Rao LG, Sutherland MK, Reddy GS, et al. Effects of 1alpha,25-dihydroxy-16ene, 23yne-vitamin D3 on osteoblastic function in human osteosarcoma SaOS-2 cells: differentiation-stage dependence and modulation by 17-beta estradiol. Bone 1996;19:621–7. [PubMed: 8968029]

197. Napoli JL, Sommerfeld JL, Pramanik BC, et al. 19-nor-10-ketovitamin D derivatives: unique metabolites of vitamin D3, vitamin D2, and 25-hydroxyvitamin D3. Biochemistry 1983;22:3636–40. [PubMed: 6311251]

198. Reinhardt TA, Napoli JL, Praminik B, et al. 1 Alpha-25,26-trihydroxyvitamin D3: an in vivo and in vitro metabolite of vitamin D3. Biochemistry 1981;20:6230–5. [PubMed: 6272836]

199. Narwid TA, Blount JF, Iacobelli JA, et al. Vitamin D3 metabolites. 3. Synthesis and X-ray analysis of 1 alpha,25-dihydroxycholesterol. Helv Chim Acta 1974; 57:781–9. [PubMed: 4364578]

200. Asou H, Koike M, Elstner E, et al. 19-nor vitamin-D analogs: a new class of potent inhibitors of proliferation and inducers of differentiation of human myeloid leukemia cell lines. Blood 1998;92:2441–9. [PubMed: 9747844]

201. Maenpaa PH, Vaisanen S, Jaaskelainen T, et al. Vitamin D(3) analogs (MC 1288, KH 1060, EB 1089, GS 1558, and CB 1093): studies on their mechanism of action. Steroids 2001;66:223–5. [PubMed: 11179729]

202. Wang X, Chen X, Akhter J, et al. The in vitro effect of vitamin D3 analogue EB-1089 on a human prostate cancer cell line (PC-3). Br J Urol 1997;80:260–2. [PubMed: 9284199]

203. Akhter J, Goerdel M, Morris DL. Vitamin D3 analogue (EB 1089) inhibits in vitro cellular proliferation of human colon cancer cells. Br J Surg 1996;83:229–30. [PubMed: 8689173]

204. Mathiasen IS, Colston KW, Binderup L. EB 1089, a novel vitamin D analogue, has strong antiproliferative and differentiation inducing effects on cancer cells. J Steroid Biochem Mol Biol 1993;46:365–71. [PubMed: 9831485]

205. Sundaram S, Beckman MJ, Bajwa A, et al. QW-1624F2–2, a synthetic analogue of 1,25-dihydroxyvitamin D3, enhances the response to other deltanooids and suppresses the invasiveness of human metastatic breast tumor cells. Mol Cancer Ther 2006;5:2806–14. [PubMed: 17121927]

206. Kahraman M, Sinishtaj S, Dolan PM, et al. Potent, selective and low-calcemic inhibitors of CYP24 hydroxylase: 24-sulfoximine analogues of the hormone 1alpha,25-dihydroxyvitamin D(3). J Med Chem 2004;47:6854–63. [PubMed: 1561534]

207. Somjien D, Waisman A, Lee JK, et al. A non-calcemic analog of 1 alpha,25 dihydroxy vitamin D3 (IKF) upregulates the induction of creatine kinase B by 17 beta estradiol in osteoblast-like ROS 17/2.8 cells and in rat diaphysis. J Steroid Biochem Mol Biol 2001;77:205–12. [PubMed: 11457658]

208. Posner GH. New vitamin D analogues. Nephrol Dial Transplant 1996;11(Suppl 3):32–6.

209. Gulliford T, English J, Colston KW, et al. A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer. Br J Cancer 1998;78:6–13. [PubMed: 9662243]

210. Jain RK, Trump DL, Egorin MJ, et al. A phase I study of the vitamin D3 analogue ILX23–7553 administered orally to patients with advanced solid tumors. Invest New Drugs 2011;29:1420–5. [PubMed: 20661623]

211. Evans TR, Colston KW, Lofts FJ, et al. A phase II trial of the vitamin D analogue Seocalcitol (EB1089) in patients with inoperable pancreatic cancer. Br J Cancer 2002;86:680–5. [PubMed: 11875725]
212. Dalhoff K, Dancey J, Astrup L, et al. A phase II study of the vitamin D analogue Seocalcitol in patients with inoperable hepatocellular carcinoma. Br J Cancer 2003;89:252–7. [PubMed: 12865912]

213. Flaig TW, Barqawi A, Miller G, et al. A phase II trial of dexamethasone, vitamin D, and carboplatin in patients with hormone-refractory prostate cancer. Cancer 2006;107:266–74. [PubMed: 16779800]

214. Jarrard D, Koney B, Huang W, et al. Phase IIa, randomized placebo-controlled trial of single high dose cholecalciferol (vitamin D3) and daily Genistein (G-2535) versus double placebo in men with early stage prostate cancer undergoing prostatectomy. Am J Clin Exp Urol 2016;4:17–27. [PubMed: 27766277]

215. Chadha MK, Tian L, Mashtare T, et al. Phase 2 trial of weekly intravenous 1,25 dihydroxy cholecalciferol (calcitriol) in combination with dexamethasone for castration-resistant prostate cancer. Cancer 2010;116:2132–9. [PubMed: 20166215]

216. Osborn JL, Schwartz GG, Smith DC, et al. Phase II trial of oral 1,25-dihydroxy vitamin D (calcitriol) in hormone refractory prostate cancer. Urol Oncol 1995;1: 195–8. [PubMed: 2724117]

217. Amir E, Simmons CE, Freedman OC, et al. A phase 2 trial exploring the effects of high-dose (10,000 IU/day) vitamin D(3) in breast cancer patients with bone metastases. Cancer 2010;116:284–91. [PubMed: 19918922]

218. Beer TM, Myrthue A, Garzotto M, et al. Randomized study of high-dose pulse calcitriol or placebo prior to radical prostatectomy. Cancer Epidemiol Biomarkers Prev 2004;13:2225–32. [PubMed: 15598784]

219. Wagner D, Trudel D, Van der Kwast T, et al. Randomized clinical trial of vitamin D3 doses on prostatic vitamin D metabolite levels and ki67 labeling in prostate cancer patients. J Clin Endocrinol Metab 2013;98:1498–507. [PubMed: 23463655]

220. Beer TM, Ryan CW, Venner PM, et al., ASCENT (AIPC Study of Calcitriol ENhancing Taxotere) Investigators. Intermittent chemotherapy in patients with metastatic androgen-independent prostate cancer: results from ASCENT, a double-blinded, randomized comparison of high-dose calcitriol plus docetaxel with placebo plus docetaxel. Cancer 2008;112:326–30. [PubMed: 17960793]

221. Scher HI, Jia X, Chi K, et al. Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer. J Clin Oncol 2011;29:2191–8. [PubMed: 21483004]

222. Stahel R, Bogaerts J, Ciardiello F, et al. Optimising translational oncology in clinical practice: strategies to accelerate progress in drug development. Cancer Treat Rev 2015;41:129–35. [PubMed: 25533737]

223. Leichman L, Groshen S, O’Neil BH, et al. Phase II study of olaparib (AZD-2281) after standard systemic therapies for disseminated colorectal cancer. Oncologist 2016;21:172–7. [PubMed: 26786262]

224. Ledermann JA, Harter P, Gourley C, et al. Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Oncol 2016;17:1579–89. [PubMed: 27617661]

225. Guha M. PARP inhibitors stumble in breast cancer. Nat Biotechnol 2011;29:373–4. [PubMed: 21552220]

226. Martin M, Loibl S, von Minckwitz G, et al. Phase III trial evaluating the addition of bevacizumab to endocrine therapy as first-line treatment for advanced breast cancer: the letrozole/fulvestrant and avastin (LEA) study. J Clin Oncol 2015; 33:1045–52. [PubMed: 25691671]

227. Sharma SP. Avastin saga reveals debate over clinical trial endpoints. J Natl Cancer Inst 2012;104:800–1. [PubMed: 22673590]

228. Azvolinsky A. PARP inhibitors: targeting the right patients. J Natl Cancer Inst 2012;104:1851–2. [PubMed: 23231976]
229. Bang YJ, Im SA, Lee KW, et al. Double-blind phase II trial with prospective classification by ATM protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. J Clin Oncol 2015;33:3858–65. [PubMed: 26282658]

230. Tworoger SS, Gates MA, Lee IM, et al. Polymorphisms in the vitamin D receptor and risk of ovarian cancer in four studies. Cancer Res 2009;69:1885–91. [PubMed: 19223536]

231. Murtaugh MA, Sweeney C, Ma KN, et al. Vitamin D receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal cancer. Nutr Cancer 2006;55:35–43. [PubMed: 16965239]

232. Buyru N, Tezol A, Yosunkaya-Fenerci E, et al. Vitamin D receptor gene polymorphisms in breast cancer. Exp Mol Med 2003;35:550–5. [PubMed: 14749534]

233. Ingles SA, Ross RK, Yu MC, et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997;89:166–70. [PubMed: 8998186]

234. Bretherton-Watt D, Given-Wilson R, Mansi JL, et al. Vitamin D receptor gene polymorphisms are associated with breast cancer risk in a UK Caucasian population. Br J Cancer 2001;85:171–5. [PubMed: 11461072]

235. Gu H, Wang X, Zheng L, et al. Vitamin D receptor gene polymorphisms and esophageal cancer risk in a Chinese population: a negative study. Med Oncol 2014;31:827. [PubMed: 24381141]

236. Kang S, Zhao Y, Liu J, et al. Association of vitamin D receptor Fok I polymorphism with the risk of prostate cancer: a meta-analysis. Oncotarget 2016;7:77878–89. [PubMed: 27788484]

237. Lu D, Jing L, Zhang S. Vitamin D receptor polymorphism and breast cancer risk: a meta-analysis. Medicine (Baltimore) 2016;95:e3535. [PubMed: 27149457]

238. Clendenen TV, Ge W, Koenig KL, et al. Genetic polymorphisms in vitamin D metabolism and signaling genes and risk of breast cancer: a nested case-control study. PLoS One 2015;10:e0140478. [PubMed: 26488576]

239. Ashmore JH, Gallagher CJ, Lesko SM, et al. No association between vitamin D intake, VDR polymorphisms, and colorectal cancer in a population-based case-control study. Cancer Epidemiol Biomarkers Prev 2015;24:1635–7. [PubMed: 26224799]

240. Yang B, Liu S, Yang X, et al. Current evidence on the four polymorphisms of VDR and breast cancer risk in Caucasian women. Meta Gene 2014;2:41–9. [PubMed: 25606388]

241. Zhang Q, Shan Y. Genetic polymorphisms of vitamin D receptor and the risk of prostate cancer: a meta-analysis. J BUON 2013;18:961–9. [PubMed: 24344024]

242. Luo S, Guo L, Li Y, et al. Vitamin D receptor gene Apal polymorphism and breast cancer susceptibility: a meta-analysis. Tumour Biol 2014;35:785–90. [PubMed: 24048755]

243. Perry JR, Day F, Elks CE, et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 2014;514:92–7. [PubMed: 25231870]

244. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119–24. [PubMed: 23128233]

245. Lai HM, Chen CJ, Su BY, et al. Gout and type 2 diabetes have a mutual interdependent effect on genetic risk factors and higher incidences. Rheumatology (Oxford) 2012;51:715–20. [PubMed: 22179738]

246. Rennstam K, Jonsson G, Tanner M, et al. Cytogenetic characterization and gene expression profiling of the trastuzumab-resistant breast cancer cell line JIMT-1. Cancer Genet Cytogenet 2007;172:95–106. [PubMed: 17123017]

247. Albertson DG, Ylstra B, Segraves R, et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 2000;25:144–6. [PubMed: 10835626]

248. Lopes N, Sousa B, Martins D, et al. Alterations in vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC Cancer 2010;10:483. [PubMed: 20831823]

249. Holick CN, Stanford JL, Kwon EM, et al. Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1, in prostate cancer. Cancer Epidemiol Biomarkers Prev 2007;16:1990–9. [PubMed: 17932346]
250. Brozek W, Manhardt T, Kallay E, et al. Relative expression of vitamin D hydroxylases, CYP27B1 and CYP24A1, and of cyclooxygenase-2 and heterogeneity of human colorectal cancer in relation to age, gender, tumor location, and malignancy: results from factor and cluster analysis. Cancers (Basel) 2012;4:763–76. [PubMed: 24213465]

251. Cross HS, Kallay E, Farhan H, et al. Regulation of extrarenal vitamin D metabolism as a tool for colon and prostate cancer prevention. Recent Results Cancer Res 2003;164:413–25. [PubMed: 12899539]

252. Singh R, Yadav V, Kumar S, et al. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep 2015;5:17454. [PubMed: 26632252]

253. Ma JF, Nonn L, Campbell MJ, et al. Mechanisms of decreased Vitamin D 1alpha-hydroxylase activity in prostate cancer cells. Mol Cell Endocrinol 2004;221:67–74. [PubMed: 15223133]

254. Townsend K, Banwell CM, Guy M, et al. Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin Cancer Res 2005;11:3579–86. [PubMed: 15873623]

255. Peng X, Tiwari N, Roy S, et al. Regulation of CYP24 splicing by 1,25-dihydroxyvitamin D(3) in human colon cancer cells. J Endocrinol 2012;212:207–15. [PubMed: 22068926]

256. Doig CL, Singh PK, Dhiman VK, et al. Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns. Carcinogenesis 2013;34:248–56. [PubMed: 23087083]

257. Meyer MB, Pike JW. Corepressors (NCoR and SMRT) as well as coactivators are recruited to positively regulated 1alpha,25-dihydroxyvitamin D3-responsive genes. J Steroid Biochem Mol Biol 2013;136:120–4. [PubMed: 22944139]

258. Abedin SA, Thorne JL, Battaglia S, et al. Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells. Carcinogenesis 2009;30:449–56. [PubMed: 19126649]

259. Saramaki A, Diermeier S, Kellner R, et al. Cyclical chromatin looping and transcription factor association on the regulatory regions of the p21 (CDKN1A) gene in response to 1alpha,25-dihydroxyvitamin D3. J Biol Chem 2009;284:8073–82. [PubMed: 19122196]

260. Peng X, Jhaveri P, Hussain-Hakimjee EA, et al. Overexpression of ER and VDR is not sufficient to make ER-negative MDA-MB231 breast cancer cells responsive to 1alpha-hydroxyvitamin D3. Carcinogenesis 2007;28:1000–7. [PubMed: 17130524]

261. Tse AK, Zhu GY, Wan CK, et al. 1alpha,25-Dihydroxyvitamin D3 inhibits transcriptional potential of nuclear factor kappa B in breast cancer cells. Mol Immunol 2010;47:1728–38. [PubMed: 20371119]

262. Tavera-Mendoza LE, Quach TD, Dabbas B, et al. Incorporation of histone deacetylase inhibition into the structure of a nuclear receptor agonist. Proc Natl Acad Sci U S A 2008;105:8250–5. [PubMed: 18550844]

263. Rashid SF, Moore JS, Walker E, et al. Synergistic growth inhibition of prostate cancer cells by 1alpha,25-Dihydroxyvitamin D(3) and its 19-nor-hexafluoride analogs in combination with either sodium butyrate or trichostatin A. Oncogene 2001;20:1860–72. [PubMed: 11313934]

264. Daniel C, Schroder O, Zahn N, et al. The TGFbeta/Smad 3-signaling pathway is involved in butyrate-mediated vitamin D receptor (VDR)-expression. J Cell Biochem 2007;102:1420–31. [PubMed: 17471513]

265. Gaschott T, Werz O, Steinmeyer A, et al. Butyrate-induced differentiation of Caco-2 cells is mediated by vitamin D receptor. Biochem Biophys Res Commun 2001;288:690–6. [PubMed: 11676498]

266. Gaschott T, Wachtershauser A, Steinilber D, et al. 1,25-Dihydroxycholecalciferol enhances butyrate-induced p21(Waf1/Cip1) expression. Biochem Biophys Res Commun 2001;283:80–5. [PubMed: 11322770]

267. Malinen M, Saramaki A, Ropponen A, et al. Distinct HDACs regulate the transcriptional response of human cyclin-dependent kinase inhibitor genes to Trichostatin A and 1alpha,25-dihydroxyvitamin D3. Nucleic Acids Res 2008;36:121–32. [PubMed: 17999998]

268. Roberts L, Davenport RJ, Pennisi E, et al. A history of the human genome project. Science 2001;291:1195. [PubMed: 11233436]
269. Birney E. The making of ENCODE: lessons for big-data projects. Nature 2012; 489:49–51. [PubMed: 22955613]

270. ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007;447:799–816. [PubMed: 17571346]

271. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518: 317–30. [PubMed: 25693563]

272. Sanli K, Karlsson FH, Nookaew I, et al. FANTOM: functional and taxonomic analysis of metagenomes. BMC Bioinformatics 2013;14:38. [PubMed: 23375020]

273. Bujold D, Morais DA, Gauthier C, et al. The International human epigenome consortium data portal. Cell Syst 2016;3:496–9.e2. [PubMed: 27863956]

274. Chen L, Ge B, Casale FP, et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 2016;167:1398–414.e24. [PubMed: 27863251]

275. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013;45: 1113–20. [PubMed: 24071849]

276. Mele M, Ferreira PG, Reverter F, et al. Human genomics. The human transcriptome across tissues and individuals. Science 2015;348:660–5. [PubMed: 25954002]

277. Consortium GTEx. The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013;45:580–5. [PubMed: 23715323]

278. Martelotto LG, De Filippo MR, Ng CK, et al. Genomic landscape of adenoid cystic carcinoma of the breast. J Pathol 2015;237:179–89. [PubMed: 26095796]

279. Ho AS, Kannan K, Roy DM, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet 2013;45:791–8. [PubMed: 23685749]

280. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012;2:401–4. [PubMed: 22588877]

281. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6:p11. [PubMed: 23550210]

282. Novershtern N, Subramanian A, Lawton LN, et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011;144: 296–309. [PubMed: 21241896]

283. Fuhrken PG, Chen C, Apostolidis PA, et al. Gene Ontology-driven transcriptional analysis of CD341 cell-initiated megakaryocytic cultures identifies new transcriptional regulators of megakaryopoiesis. Physiol Genomics 2008;33:159–69. [PubMed: 18252802]

284. Yetgin S, Ozsoylu S. Myeloid metaplasia in vitamin D deficiency rickets. Scand J Haematol 1982;28:180–5. [PubMed: 6979773]

285. Koeffler HP. Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. Blood 1983;62:709–21. [PubMed: 6192859]

286. Mvubu NE, Pillay B, Gamieldien J, et al. Canonical pathways, networks and transcriptional factor regulation by clinical strains of Mycobacterium tuberculosis in pulmonary alveolar epithelial cells. Tuberculosis (Edinb) 2016;97:73–85. [PubMed: 26980499]

287. Sims AC, Tilton SC, Menachery VD, et al. Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells. J Virol 2013;87:3885–902. [PubMed: 23365422]

288. Zhou Y, Gong W, Xiao J, et al. Transcriptional analysis reveals key regulators of mammogenesis and the pregnancy-lactation cycle. Sci China Life Sci 2014;57: 340–55. [PubMed: 24554470]

289. Zinser GM, Welsh J. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol Endocrinol 2004;18:2208–23. [PubMed: 15178742]

290. Zinser G, Packman K, Welsh J. Vitamin D(3) receptor ablation alters mammary gland morphogenesis. Development 2002;129:3067–76. [PubMed: 12070083]

291. Pellacani D, Bilenky M, Kannan N, et al. Analysis of normal human mammary epigenomes reveals cell-specific active enhancer states and associated transcription factor networks. Cell Rep 2016;17:2060–74. [PubMed: 27851968]
292. Suo C, Hrydziuszko O, Lee D, et al. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics 2015;31:2607–13. [PubMed: 25810432]

293. Cirriello G, Gatza ML, Beck AH, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 2015;163:506–19. [PubMed: 26541490]

294. Keenan T, Moy B, Mroz EA, et al. Comparison of the genomic landscape between primary breast cancer in African American versus white women and the association of racial differences with tumor recurrence. J Clin Oncol 2015; 33:3621–7. [PubMed: 26371147]

295. Robinson DR, Wu YM, Vats P, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 2013;45:1446–51. [PubMed: 24185510]

296. Cancer Genome Atlas Research Network. Comprehensive molecular portraits of urothelial bladder carcinoma. Nature 2014;507:315–22. [PubMed: 24476821]

297. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70. [PubMed: 23000897]

298. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330–7. [PubMed: 22810696]

299. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330–7. [PubMed: 22810696]

300. Ahn SM, Jang SJ, Shim JH, et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGFl9 aberrations for patient stratification. Hepatology 2014;60:1972–82. [PubMed: 24798001]

301. Long MD, Thorne JL, Russell J, et al. Cooperative behavior of the nuclear receptor superfamily and its deregulation in prostate cancer. Carcinogenesis 2014;35: 262–71. [PubMed: 24104552]

302. Long MD, Campbell MJ. Pan-cancer analyses of the nuclear receptor superfamily. Nucl Receptor Res 2015;2 [pii:101182].

303. Satelli A, Rao PS, Thirumala S, et al. Galectin-4 functions as a tumor suppressor of human colorectal cancer. Int J Cancer 2011;129:799–809. [PubMed: 21064109]

304. Belo AI, van der Sar AM, Tefsen B, et al. Galectin-4 reduces migration and metastasis formation of pancreatic cancer cells. PLoS One 2013;8:e65957. [PubMed: 23824659]

305. Kim SW, Park KC, Jeon SM, et al. Abrogation of galectin-4 expression promotes tumorigenesis in colorectal cancer. Cell Oncol (Dordr) 2013;36:169–78. [PubMed: 23378274]

306. Tsai CH, Tzeng SF, Chao TK, et al. Metastatic progression of prostate cancer is mediated by autonomous binding of galectin-4-O-glycan to cancer cells. Cancer Res 2016;76(19):5756–67. [PubMed: 27485450]

307. Pena C, Garcia JM, Silva J, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet 2005;14:3361–70. [PubMed: 16203744]

308. Pereira F, Barbachano A, Silva J, et al. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum Mol Genet 2011;20:4655–65. [PubMed: 21890490]

309. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012;22:1790–7. [PubMed: 22955989]

310. Singh P, van den Berg PR, Long MD, et al. Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-kB binding that is linked to immune phenotypes. BMC Genomics 2017; 18(1):132. [PubMed: 28166722]

311. Peterlik M, Cross HS. Vitamin D and calcium deficits predispose for multiple chronic diseases. Eur J Clin Invest 2005;35:290–304. [PubMed: 15860041]

312. Dougherty U, Mustafi R, Sadiq F, et al. The renin-angiotensin system mediates EGF receptor-vitamin d receptor cross-talk in colitis-associated colon cancer. Clin Cancer Res 2014;20:5848–59. [PubMed: 25212605]

313. Giardina C, Madigan JP, Tierney CA, et al. Vitamin D resistance and colon cancer prevention. Carcinogenesis 2012;33:475–82. [PubMed: 22180570]
314. Kaler P, Augenlicht L, Klampfer L. Macrophage-derived IL-1beta stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene 2009;28:3892–902. [PubMed: 19701245]

315. Liu W, Chen Y, Golan MA, et al. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J Clin Invest 2013;123:3983–96. [PubMed: 23945234]

316. Long MD, Campbell MJ. Integrative genomic approaches to dissect clinically significant relationships between the VDR cistrome and gene expression in primary colon cancer. J Steroid Biochem Mol Biol 2016 [Epub ahead of print].

317. Michalak M, Warnken U, Andre S, et al. Detection of proteome changes in human colon cancer induced by cell surface binding of growth-inhibitory human galectin-4 using quantitative SILAC-based proteomics. J Proteome Res 2016; 15(12):4412–22. [PubMed: 27801591]

318. Solmi R, De Sanctis P, Zucchini C, et al. Search for epithelial-specific mRNAs in peripheral blood of patients with colon cancer by RT-PCR. Int J Oncol 2004;25: 1049–56. [PubMed: 15375555]

319. Long MD, van den Berg PR, Russell JL, et al. Integrative genomic analysis in K562 chronic myelogenous leukemia cells reveals that proximal NCOR1 binding positively regulates genes that govern erythroid differentiation and Imatinib sensitivity. Nucleic Acids Res 2015;43:7330–48. [PubMed: 26117541]
KEY POINTS

• Preclinical and epidemiologic data justify the concept that vitamin D compounds could be exploited as a differentiation therapy for a wide range of malignancies.

• Clinical evaluation of vitamin D compounds has been more equivocal and, although biological responses can be measured in vivo, clinical responses have not justified further evaluation.

• Dissecting mechanisms of cellular resistance is one route to defining patient groups with greater precision who may respond more fully to clinical targeting.

• Large genomic and population datasets are available that can be mined to define patient responses more completely and identify which tumor types may be most effectively targeted.