O tamanho do baço em pacientes em hemodiálise

The spleen size in patients undergoing hemodialysis

Autores
Nordeval Cavalcante Araújo1
José Hermógenes Rocco Suassuna2

1Universidade do Estado do Rio de Janeiro, Departamento de Nefrologia, Rio de Janeiro, RJ, Brasil.

Resumo
Introdução: A inflamação promove a progressão da insuficiência renal crônica, e o início da diálise agrava a inflamação. O aumento do baço está associado à inflamação e os pacientes em hemodiálise podem apresentar um baço grande. O objetivo do presente estudo foi comparar o tamanho do baço de pacientes em hemodiálise versus aquele de controles, para atualizar este tópico.

Métodos: Controles e pacientes foram elegíveis para participar do estudo desde que fossem negativos para marcadores sorológicos dos vírus da hepatite B, C e HIV, se não apresentassem distúrbio linfoproliferativo e tivessem pelo menos 18 anos de idade. Registramos idade, sexo e duração da diálise. Avaliamos as variáveis laboratoriais (hemoglobina, contagem de células hematológicas, creatinina sérica) e a causa básica da doença renal terminal. O tamanho dos baços dos pacientes foram divididos em tercis.

Resultados: Os 75 controles e 168 pacientes selecionados foram pareados por sexo. Os pacientes eram mais velhos, tinham baços maiores e menor contagem de plaquetas do que os controles. A relação entre o tamanho do baço e a idade dos controles e pacientes foi bastante semelhante. Os pacientes do primeiro tercil de tamanho do baço, em comparação com os do terceiro, eram mais velhos e apresentavam contagens de plaquetas mais altas. A doença subjacente e o período de diálise não tiveram efeito no tamanho do baço.

Discussão: Os pacientes tinham baços maiores e uma maior variedade de tamanhos de baço do que os controles. Entre os pacientes, a associação entre baço maior e menor com contagens de plaquetas mais baixas e mais altas, respectivamente, gerou a especulação da ocorrência de hiperesplenismo e hiposplenismo.

Descritores: Diálise Renal; Plaquetas; Ultrassonografia; Esplenomegalia.

Abstract
Introduction: Inflammation promotes the progression of chronic renal failure, and the start of dialysis worsens inflammation. The enlargement of the spleen is associated with inflammation, and patients on hemodialysis may show a large spleen. The aim of the present study was to compare the spleen size of patients undergoing hemodialysis versus controls to update this thread.

Methods: Controls and patients were eligible to participate in the study provided they were negative for serological markers of hepatitis B and C viruses and HIV, if they had no lymphoproliferative disorder, and if they were at least 18 years of age. Age, sex, and the duration of dialysis were recorded. Laboratory variables (hemoglobin, hematological cell count, serum creatinine) and the underlying cause of end-stage renal disease were analyzed. The spleen sizes of the patients were divided into tertiles.

Results: The 75 controls and 168 patients selected were sex-matched. The patients were older, had larger spleens and lower platelet counts than controls. The relationship between spleen size and age in the controls and patients was quite similar. The patients in the first tertile of spleen size compared with those in the third were older and had a higher platelet counts. The underlying disease and dialysis vintage had no effect on spleen size.

Discussion: The patients had larger spleens and a greater range of spleen sizes than the controls. In patients, the association between larger and smaller spleen with lower and higher platelet counts, respectively, sparked the speculation of occurrence of hypersplenism and hyposplenism.

Keywords: Renal Dialysis; Blood Platelets; Polysomnography; Splenomegaly.
Introdução

A inflamação tem um papel importante na progressão da insuficiência renal crónica, independente da etiologia. Na doença renal terminal, o início do tratamento dialítico atua como um evento desencadeador que agrava a inflamação. Além disso, repetidos tratamentos dialíticos levam à ativação leucocitária e, consequentemente, à produção de citocinas. A persistência da inflamação contribui para a mortalidade geral e cardiovascular associada a essa condição.

A fisiopatologia da inflamação inclui o recrutamento de leucócitos para o baço, e foi relatado que o aumento do órgão está associado à inflamação. Segundo publicações da década de 1970 e início da década de 1980, os pacientes em hemodiálise apresentavam aumento do baço. Em consonância com esse último achado, sabemos que o hipersplenismo pode aparecer em pacientes em hemodiálise regular. Por outro lado, também foi relatado que o hiposplenismo está associado a algumas condições que causam doença renal em estágio terminal (DRT) e distúrbios linfoproliferativos. Além disso, a associação entre hiposplenismo e transplante renal foi estabelecida com base nos corpos de Howell-Jolly em esfregaços de sangue e cintilografia hepatoesplênica. No entanto, não foi determinado se o hiposplenismo se desenvolve após o transplante ou se a condição já estava presente antes do início da imunossupressão.

O objetivo do presente estudo é trazer novos dados sobre este tópico, comparando o tamanho do baço em pacientes em hemodiálise versus aqueles de um grupo controle, analisando os fatores determinantes relacionados ao comprimento do baço para atualizar o conhecimento sobre esta questão.

Materiais e Métodos

Trata-se de um estudo transversal realizado no Serviço de Nefrologia do Hospital Pedro Ernesto da Universidade do Estado do Rio de Janeiro.

Todos os candidatos a doadores renais e pacientes com DRT em terapia renal substitutiva encaminhados para ultrassonografia no período de 2008 a 2019 foram elegíveis para participar do estudo. Desde 2010, a maioria dos exames de ultrassonografia foi realizada pelo mesmo observador (NCA).

Os critérios de inclusão foram os seguintes: (1) marcadores sorológicos negativos para os vírus da hepatite B (HBsAg) e da hepatite C (anti-HCV), e vírus da imunodeficiência humana (anti-HIV), (2) nenhum distúrbio linfoproliferativo, e (3) pelo menos 18 anos de idade. Foram excluídos pacientes em diálise peritoneal e aqueles encaminhados para hemodiálise em tratamento imunossupressor por disfunção precoce ou tardia do transplante renal.

Além da idade e do sexo, a duração do tratamento dialítico também foi considerada. Variáveis laboratoriais (hemoglobina, contagem de células hematológicas e creatinina sérica) e a causa básica da DRT foram obtidas nos prontuários dos pacientes. Uma contagem de plaquetas <150.000/mm³ foi usada como valor limite para o diagnóstico de trombocitopenia, enquanto uma contagem de plaquetas superior a 450.000/mm³ foi indicada como trombocitose.

O protocolo para ultrasonografia do baço já foi detalhado em outra publicação. Em suma, diferentes ângulos de insação em diferentes locais foram realizados para exibir a melhor imagem, na qual a borda mais cranial e mais caudal do baço foram vistas no plano de varredura para medir o comprimento do baço. Todos os estudos de ultrassonografia foram realizados pelo mesmo observador (NCA).

Análise Estatística

A normalidade da distribuição dos dados foi avaliada por meio do teste de Wilks-Shapiro. Segundo a normalidade dos dados, as variáveis contínuas estudadas nos controles e pacientes em hemodiálise foram comparadas por meio de testes paramétricos (teste t de Student) ou não paramétricos (teste de Mann-Whitney). A força de associação entre variáveis contínuas foi avaliada usando o coeficiente de correlação de Pearson. As associações entre variáveis categóricas foram avaliadas por meio do teste Qui-quadrado. Os valores do tamanho do baço do grupo de estudo foram divididos em tercis. Os subconjuntos (tercis) foram definidos pelos valores de corte do tamanho do baço, refletindo os percentis 33 e 66 da distribuição do tamanho do baço. O limite de significância estatística foi estabelecido em p <0,05.

O comitê de ética institucional aprovou o protocolo do estudo com a dispensa do consentimento informado devido à natureza retrospectiva do estudo.
RESULTADOS

De maio de 2010 até fevereiro de 2020, de 3.009 ultrassonografias realizados em 1.281 indivíduos diferentes, os ultrassonogramas do baço estiveram disponíveis para 1.070 indivíduos. Destes, 763 pacientes foram excluídos por terem sido transplantados (440 pacientes), estarem em tratamento conservador (297 pacientes), ou em diálise peritoneal ambulatorial contínua (26 pacientes).

Setenta e cinco indivíduos com função renal normal, incluindo candidatos a doadores renais, pacientes com anormalidades renais menores (hematúria microscópica, pacientes com cálcio renal sem obstrução, proteinúria não nefrótica) e pacientes encaminhados para check-up de rotina, foram designados para o controle grupo. Dos 232 pacientes em hemodiálise, 62 foram descartados porque os testes sorológicos para hepatite B ou C ou HIV foram positivos ou não disponíveis, e 2 foram descartados por serem menores de 18 anos. Após a exclusão desses pacientes, 168 permaneceram elegíveis para o grupo de estudo.

As principais etiologias subjacentes da DRT foram diabetes mellitus (41; 24,4%), hipertensão (40; 23,8%), glomerulopatia (27; 16,1%), doença renal policística (8; 4,8%), causas desconhecidas (35; 20,8%), e causas diversas (17; 10,1%). Pacientes com diabetes e hipertensão concomitantes foram designados ao grupo de diabéticos, e pacientes com lúpus eritematoso foram designados para o grupo de glomerulopatia. Ambos os grupos apresentaram padrões semelhantes de distribuição por sexo (Qui-quadrado = 0,005; p = 0,942). A Tabela 1 mostra as variáveis contínuas estudadas e as diferenças estatísticas entre os controles e pacientes em hemodiálise.

Os pacientes em hemodiálise eram mais velhos (p <0,014), tinham baços maiores (p <0,001), níveis de hemoglobina mais baixos (p <0,001), leucócitos (p = 0,021), neutrófilos (p <0,001) e monócitos (p <0,001) mais altos e menores contagens de linfócitos (p <0,001) e de plaquetas (p = 0,001) do que os controles (Tabela 1). Usando um valor limite de <150.000/mm³ ou >450.000/mm³ para contagem de plaquetas, o presente estudo mostrou uma incidência de trombocitopenia de 16,0% em pacientes em hemodiálise e uma incidência de trombocitopenia de 1,9% no grupo controle (Qui-quadrado = 7,233; p = 0,007), enquanto houve 0,6% de incidência de trombocito-se em pacientes em hemodiálise e 0,0% de incidência de trombocitose no grupo controle (Qui-quadrado = 0,327; p = 0,755).

Houve uma dispersão maior na distribuição do tamanho do baço no grupo de estudo (mínimo = 51,8 mm, máximo 149,7 mm, intervalo = 97,9 mm) do que nos controles (mínimo = 63,3 mm, máximo 139,6 mm, intervalo = 76,3 mm). O coeficiente de correlação entre o tamanho do baço e a idade nos controles e pacientes em hemodiálise foi bastante semelhante (Figura 1). Entre os pacientes em hemodiálise, a comparação do primeiro e terceiro tercis de tamanho do baço revelou que os pacientes com baços menores eram predominantemente mulheres (p = 0,029), mais velhos (p = 0,004), tinham contagens de plaquetas mais altas estatisticamente significativas (p = 0,023) (Tabela 2), e uma menor incidência de trombocitopenia (10,9% vs 25,9%; Qui-quadrado = 4,101; p = 0,043), mas a incidência de trombocitose foi semelhante em ambos os grupos (1,8% vs 0,0%; Qui-quadrado = 0,991; Teste Exato de Fisher = 0,505).

Tabela 1	Comparação entre o grupo controle e pacientes em doença renal terminal (DRT) em hemodiálise		
Variável	Controles, n=75	DRT, n=168	p
Sexo, masculino*	45,3 %	45,8 %	0,942
Idade, anos	44,87±14,75	49,89±16,79	0,017
Tamanho do baço, mm	96,55±16,03	106,41±17,07	<0,001
Hematócrito, %	41,16±4,05	29,09±7,79	<0,001
Hemoglobina, g/dL	13,64±1,47	9,39±2,54	<0,001
Leucócitos, células/mm³	7113±2141	8184±3485	0,049
Neutrófilos, células/mm³	4184±1831	5612±3135	<0,001
Linfócitos, células/mm³	2217±725	1654±789	<0,001
Monócitos, células/mm³	478±177	637±342	0,001
Plaquetas, células/mm³	260415±63210	222025±75281	<0,001
Creatinina, mg/dL	0,88±0,19	7,67±3,02	<0,001

O teste de Mann-Whitney foi usado, exceto se especificado do contrário. *Teste do qui-quadrado.
Nenhuma associação foi encontrada entre diabetes mellitus ou glomerulopatia e os menores ou maiores tercis de tamanho do baço (menor: 81,0% vs 19,0%; maior: 66,7% vs 33,3%; Qui-quadrado = 0,952; Teste Exato de Fisher = 0,277) (Tabela 2). Além disso, neste estudo, a utilização de um grupo controle aumentou a confiabilidade dos resultados (Tabela 1). É bem conhecido que os homens têm baços maiores que as mulheres. Portanto, é importante ressaltar que os dois grupos deste estudo foram pareados por sexo. Por outro lado, a diferença de idade média dos dois grupos merece alguns comentários. Embora, neste estudo, os indivíduos do grupo controle fossem mais jovens do que os indivíduos do grupo de hemodiálise, o efeito da idade no tamanho do baço foi o oposto do que se poderia esperar com base nos resultados. Ou seja, os indivíduos do grupo de hemodiálise (mais velhos) deveriam ter baços menores do que os indivíduos do grupo controle (mais jovens). Além disso, a Figura 1 destaca esse problema, mostrando que a relação entre idade e tamanho do baço nos controles e pacientes em hemodiálise não teve efeito no coeficiente de correlação (Figura 1). Porém, a reta imaginária que descreve a trajetória dos dados de ambas as correlações foi quase paralela, e a linha do grupo em hemodiálise situou-se acima da dos controles, indicando que para cada idade o tamanho do baço é maior neste grupo. Portanto, a diferença no tamanho do baço nos controles e no grupo em hemodiálise não pode ser atribuída a diferenças na distribuição por sexo ou idade em ambos os grupos. Se os pacientes jovens em hemodiálise irão desenvolver reduções relacionadas à idade no tamanho do baço, apesar da continuação do tratamento, isso só pode ser abordado por meio de um estudo longitudinal.

Discussão

A contribuição mais importante deste estudo é que ele confirmou o achado de relatos publicados anteriormente sobre o aumento do baço em pacientes em hemodiálise. De fato, por meio da ultrassonografia pudemos reproduzir os resultados de estudos realizados com o volume estimado pela cintilografia e o peso na autópsia e após a esplenectomia.

Tabela 2
Comparação entre o primeiro tercil (menor) e o terceiro (maior) do tamanho do baço de pacientes com doença renal terminal (DRT) submetidos à hemodiálise

Variável	Menor, n=58	Maior, n=55	p
Sexo, masculino*	41,2 %	58,8 %	0,050
DM vs glomerulopatia*	81,0% vs 66,7%	19,0% vs 33,3%	0,277
Idade, anos	55,67±15,63	43,31±15,32	<0,001
Tempo em diálise, me	13,45±25,66	28,64±44,81	0,256
Tamanho do baço, mm	88,77±8,95	125,43±9,76	<0,001
Hematócrito, %	28,42±6,62	29,94±9,12	0,617
Hemoglobina, g/dL	9,19±2,15	9,65±2,92	0,801
Leucócitos, células/mm³	8319±3542	7596±3676	0,109
Neutrófilos, células/mm³	5601±3210	5123±3271	0,163
Linfócitos, células/mm³	1753±999	1638±703	0,559
Monócitos, células/mm³	679±360	542±284	0,059
Plaquetas, células/mm³	233891±69702	203463±78656	0,023
Creatinina, mg/dL	7,59±3,03	8,18±2,98	0,226

O teste de Mann-Whitney foi usado, a menos que o contrário seja especificado. *Teste qui-quadrado. DM: diabetes mellitus; me: meses.
O efeito da causa subjacente da DRT foi avaliado por comparação do diabetes, uma condição basicamente não relacionada às respostas imunológicas, com a glomerulopatia, um grupo de patologias nas quais o sistema imunológico desempenha um papel fundamental na fisiopatologia da doença. Além disso, neste último caso, o tratamento inclui muitos medicamentos que suprime o sistema imunológico. Visto que nenhuma associação foi encontrada entre glomerulopatia ou diabetes com o tamanho do baço, é razoável questionar se a doença ou tratamento subjacente antes do início da hemodiálise tem efeito sobre o tamanho do baço desses pacientes. Ou seja, o efeito hemodiálise por si só pode ser a causa do aumento do baço. Corroborando esses achados, dados de autópsias de pacientes com trombocitopenia crônica mostraram que os baços eram mais do que dobro do tamanho em pacientes em hemodiálise (173 ± 15 g) do que aqueles que não estavam em hemodiálise (81 ± 15 g).8

No passado, a esplenomegalia foi atribuída à congestão venosa secundária à sobrecarga de fluidos, hepatite viral, cirrose ou estimulação do sistema imunológico por infecções bacterianas ou virais crônicas, ou a presença de partículas estranhas no parênquima. No presente estudo, as infecções virais foram excluídas. Os pacientes estavam em hemodiálise ambulatorial sem necessidade de tratamento adicional para sobrecarga hídrica. Partículas estranhas no parênquima do baço estão fora do escopo deste estudo. Portanto, é razoável especular que o aumento do baço pode ser resultado da própria hemodiálise.

Com base nesse achado, é apropriado apontar que apesar do desenvolvimento de novas técnicas para melhorar a biocompatibilidade dos polímeros médicos usados em dispositivos de hemodiálise nas últimas décadas, este estudo mostrou que o efeito da hemodiálise sobre o tamanho do baço é o mesmo relatado em trabalhos anteriores. A contagem de plaquetas mais baixa e a maior incidência de trombocitopenia em pacientes do que nos controles sugerem aumento da destruição das plaquetas esplênicas.

A dispersão do tamanho do baço no grupo em hemodiálise foi maior do que nos controles. Como consequência, os pacientes localizados nas extremidades da distribuição apresentavam baços menores ou maiores. Esses pacientes foram incluídos nos tercis inferior e superior do tamanho do baço, respectivamente.

Em comparação com o tercil mais alto, os pacientes com baço menor tiveram contagens de plaquetas mais altas, estatisticamente significativa (p = 0,023) (Tabela 2), um achado que sugere que tamanhos diferentes de baço têm efeitos diferentes na remoção das plaquetas. No entanto, não foi possível determinar o mecanismo subjacente: baços pequenos associados a menor sequestro ou baços grandes associados a maior sequestro. Os valores extremos (pequeno e grande) do tamanho do baço nas caudas da distribuição podem ser a base anatômica para a especulação sobre a ocorrência de hiposplenismo e hiperesplenismo em pacientes em hemodiálise.

Em pacientes em hemodiálise, há duas consequências teóricas do hiposplenismo que devemos ter em mente. Em primeiro lugar, o papel do hiposplenismo na perda da fistula arteriovenosa não deve ser negligenciado. O hiposplenismo pode ser acompanhado por trombocitose,18-19, que pode causar o aumento do risco de eventos tromboembólicos.20-21 Na pós-esplenectomia, o estado de hipercoagulabilidade deve à trombocitose provavelmente contribui para o aumento do risco de isquemia miocárdica fatal.22 No hiposplenismo funcional, os achados patológicos são bastante semelhantes aos encontrados em pacientes esplenectomizados.20,23-24. Com base nessas evidências, é razoável especular se os pacientes em hemodiálise com características de hiposplenismo apresentam o mesmo risco de eventos de acesso vascular ou falha do acesso vascular, conforme relatado nas anormalidades do volume plaquetário médio.25-26. Em segundo lugar, os principais eventos adversos dos estados hiposplênicos são eventos imunológicos e infecciosos.21 O hiposplenismo pode prejudicar a resposta de anticorpos à vacinação,27-29, incluindo a vacinação contra hepatite B.30 Em pacientes em hemodiálise regular, a resposta geral induzida pela vacinação primária contra hepatite B foi prejudicada de maneira semelhante.31

A ocorrência de hiperesplenismo em pacientes hemodialisados é bem documentada.10,12 Nos casos de hiperesplenismo tratados com esplenectomia ou emboleização parcial, as características clínicas do hiperesplenismo foram leucopenia ou pancitopenia.10,12 A reversão da trombocitopenia isolada para uma contagem normal após a esplenectomia também foi relatada.31 Embora a trombocitopenia induzida por heparina tenha sido alegada como associada à hemodiálise, de acordo com alguns estudos, a diminuição da contagem de plaquetas foi semelhante ao regime anticoagulante alternativo.34
A hepatite viral (B ou C) é outro fator associado à trombocitopenia em pacientes com DRT em hemodiálise. No entanto, em nosso estudo, todos os pacientes receberam apenas heparina como regime anticoagulante, e os pacientes com hepatite viral (B ou C) foram excluídos. Portanto, os possíveis efeitos da heparina ou da hepatite viral são inadeguados para explicar a causa da trombocitopenia em um tercil específico do tamanho do baço. No entanto, é razoável supor que a trombocitopenia induzida por heparina poderia ter atenuado parcialmente o desenvolvimento de trombocitose em pacientes com baço pequeno.

No passado, a pancitopenia com necessidade excessiva de transfusão ou um grande baço junto de trombocitose em pacientes com baço pequeno poderia ter atenuado parcialmente o desenvolvimento de trombocitose em pacientes com baço pequeno. Hoje, em pacientes selecionados, esse diagnóstico ainda deve ser mantido em mente. No estudo atual, os pacientes com baços maiores tiveram contagens de plaquetas mais baixas, uma característica hematológica comumente encontrada no hiperesplenismo.

Embora existam muitas evidências de aumento do baço em pacientes hemoedalizados na literatura, acredita-se que esse conceito pode não ter implicações na prática clínica.

A fragilidade deste estudo foi a mesma de outros estudos transversais, ou seja, a relação causa e efeito não pode ser determinada. Além disso, embora as principais implicações teóricas de baços pequenos e grandes (ou seja, hiposplenismo e hiperesplenismo) sejam sugeridas pela contagem de plaquetas, nenhuma dessas condições foi avaliada posteriormente com métodos apropriados.

Em conclusão, os pacientes em hemodiálise têm baços maiores do que os controles e uma grande variação de tamanho. Pacientes com baços menores e maiores foram associados a contagens de plaquetas mais altas e mais baixas, respectivamente. Esses achados levantam especulações sobre a ocorrência de hiposplenismo e hiperesplenismo nesse grupo de pacientes.

CONTRIBUIÇÃO D OS AUTORES

Nordeval Cavalcante Araújo contribuiu com a concepção e desenho do estudo, coleta de dados, análise e interpretação dos dados, redação do manuscrito, revisão crítica do manuscrito quanto ao conteúdo intelectual importante e aprovação final do manuscrito para submissão e publicação.

José Hermógenes Rocco Suassuna contribuiu com a concepção e desenho do estudo e revisão crítica do manuscrito quanto ao conteúdo intelectual importante.

CONFLITO DE INTERESSE

Os autores declararam não haver conflito de interesses relacionado à publicação deste manuscrito.

REFERÊNCIAS

1. Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol. 2008 Aug;24(8):1445-52.
2. Jofré R, Rodríguez-Benítes P, López-Gómez JM, Pérez-García R. Inflammatory syndrome in patients on hemodialysis. J Am Soc Nephrol. 2006 Dec;17(12 Suppl 3):S274-S80.
3. Girndt M, Kaul H, Leinmäker CK, Sester M, Sester U, Köhler H. Selective sequestration of cytokine-producing monocytes during hemodialysis treatment. Am J Kidney Dis. 2001 May;37(3):S53-63.
4. Taheri S, Baradaran A, Alakbarian M, Mortazavi M. Level of inflammatory factors in chronic hemodialysis patients with and without cardiovascular disease. J Res Med Sci. 2017 Apr;22:47.
5. Li Y, Wu J, Xu L, Wu Q, Wan Z, Li L, et al. Regulation of leukocyte recruitment to the spleen and peritoneal cavity during pristane-induced inflammation. J Immunol Res. 2017;2017:9891348.
6. Mercier S, Breville D, Mosoni L, Obled C, Mirand PP. Chronic inflammation alters protein metabolism in several organs of adult rats. J Nutr. 2002;132(7):1921-8.
7. George CR, Tremann JA, Quadreadi LJ, Striker GE, Marchioro TL. The spleen in chronic renal failure and renal transplantation. Proc Clin Dial Transplant Forum. 1972:2:1-4.
8. Morhoschi T. Enlargement of hemodialyzed spleen in uremia - histopathological and biometrical studies compared with the kidney. Acta Pathol Jpn. 1977 May;27(3):283-95.
9. Platts MM, Anastasiadis E, Sheriff S, Smith S, Bartolo DC. Spleen size in chronic renal failure. Br Med J. 1984;289(6456):1415-8.
10. Neiman RS, Bichel MD, Lukes RJ. Hypesplenism in the uremic hemodialyzed patient: pathology and proposed pathphysiologic mechanisms. Am J Clin Pathol. 1973 Oct;60:502-11.
11. Neilan BA, Berney SN. Hyposplenism in systemic lupus erythematosus. J Rheumatol. 1983 Apr;10(2):332-4.
12. McVicar MI, Chandra M, Margouleff D, Zanzi I. Splenic hypofunction in the nephrotic syndrome of childhood. Am J Kidney Dis. 1986 May;7(5):395-401.
13. Araújo NC, Lucena SBSG, Rioja SDS. Functional hyposplenism in long-standing renal transplant recipients. Transplant Proc. 2013 May;45(4):S150-S16.
14. Araújo NC, Neves MB, Mandarim-de-Lacerda CA, Orlando MMC. Assessment of spleen filtrate function in renal transplant recipients using technetium-99m stannous colloid liver-spleen scan. Transplant Proc. 2017 Jul/Aug;49(6):1301-6.
15. Gauer RL, Braun MM. Thrombocytopenia. Am Fam Physician. 2012;85:612-22.
16. Schafer AL. Thrombocytosis. N Engl J Med. 2004 Mar;350(12):1211-9.
17. Chou KU, Luxembourg B, Seifried E, Bonig H. Spleen size is significantly influenced by body height and sex: establishment of normal values for spleen size at us with a cohort of 1200 healthy individuals. Radiology. 2016 Apr;279(1):306-13.
18. Mohamed M. Functional hyposplenism diagnosed by blood film examination. Blood. 2014 Sep;124(12):1997.
19. Subran B, Salama L, Dreyfus M, Carbonnel F, Besson C. Thrombosis in acquired hyposplenism associated with Crohn disease. Presse Med. 2010 Jun;39(6):726-7.
20. Kirkineska L, Perifanis V, Vasiliadis T. Functional hyposplenism. Hippokratia. 2014;18(1):7-11.
21. William BM, Corazza GR. Hyposplenism: a comprehensive review. Part I: basic concepts and causes. Hematology. 2007 Feb;12(1):1-13.
22. Robinette CD, Fraumeni Junior JFF. Splenectomy and subsequent mortality in veterans of the 1939-45 war. Lancet. 1977;2(8029):127-9.
23. Brigden ML. Detection, education and management of the asplenic or hyposplenic patient. Am Fam Physician. 2001 Feb;63(3):499-506.
24. Halfdanarson TR, Litzow MR, Murray JA. Hematologic manifestations of celiac disease. Blood. 2007 Jan;109(2):412-21.
25. Lano G, Sallée, M, Pelletier M, Bataille S, Fraisse M, Berda-Haddad Y, et al. Mean platelet volume predicts vascular access events in hemodialysis patients. J Clin Med. 2019 May;8(5):608.
26. Shin DH, Rhee SY, Jeon HJ, Park JY, Kang SW, Oh J. An increase in mean platelet volume/platelet count ratio is associated with vascular access failure in hemodialysis patients. PLoS One. 2017 Jan;12(1):e0170357.
27. Schwartz AD, Pearson HA. Impaired antibody response to intravenous immunization in sickle cell anemia. Pediatr Res. 1972 Feb;6:145-9.
28. Hosea SW, Burch CG, Brown EJ, Berg RA, Frank MM. Impaired immune response of splenectomised patients to polyvalent pneumococcal vaccine. Lancet. 1981 Apr;1(8224):804-7.
29. Di Padova F, Dürig M, Wadström J, Harder F. Role of spleen in immune response to polyvalent pneumococcal vaccine. Br Med J. 1983 Dec;287(6408):1829-32.
30. Kaddah N, Kaddah A, Omar N, Mostafa A. Antibody response to hepatitis B immunization in Egyptian children with sickle cell disease. Egypt J Pediatr Allergy Immunol. 2010 Jun;8(2):67-73.
31. Chaves SS, Daniels D, Cooper BW, Malo-Schlegel S, MacArthur S, Robbins KC, et al. Immunogenicity of hepatitis B vaccine among hemodialysis patients: effect of revaccination of non-responders and duration of protection. Vaccine. 2011 Dec;29(52):9618-23.
32. Spigos DG, Jonasson O, Mozès M, Capek V. Partial splenic embolization in the treatment of hypersplenism. AJR Am J Roentgenol. 1979 May;132(5):777-82.
33. Verzola A, Scapoli GL, Rischella Is, Prandini N, Rigolini M, Bergami M, et al. ‘Isolated’ thrombocytopenia by splenic sequestration in hemodialyzed patients. Nephron. 2000;86:184-5.
34. Daugirdas, JT, Bernardo AA. Hemodilysis effect on platelet count and function and hemodilysis-associated thrombocytopenia. Kidney Int. 2012 Jul;82(2):147-57.
35. Iwamoto Y, Ando M, Tsuchiya K, Nihei H. Clinical analysis of thrombocytopenia in chronic dialysis patients. Jpn J Nephrol. 1999;41(7):712-8.
36. Orasan OH, Urian L, Ciulei G, Breaban I, Stefan AM. Thrombocytopenia in end-stage renal disease and chronic viral hepatitis B or C. J Med Med Sci. 2018;5(2):236-43.
37. Paganini EP, Garcia J, Abdulhadi M, Latham D, Giesman J, Weick JK. The anemia of chronic renal failure. Overview and early erythropoietin experience. Cleve Clin J Med. 1989 Feb;56(1):79-86.
38. National Kidney Foundation (NKF). KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015;66(3):884-930.