Flora diversity of Ijero Local Government Area of Ekiti State, South-Western Nigeria

Emmanuel Chukwudi Chukwuma¹*, Deborah Moradeke Chukwuma² and Aderonke Folashade Adio³

¹Forest Herbarium Ibadan (FHI), Department of Forest Conservation and Protection, Forestry Research Institute of Nigeria, Jericho Hills, Ibadan, Nigeria
²Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Ekiti State, Nigeria
³Department of Sustainable Forest Management, Forestry Research Institute of Nigeria, Jericho Hills, Ibadan, Nigeria

*Corresponding Author: chukwuma.ec@frin.gov.ng, chukwumaemma@gmail.com [Accepted: 03 March 2020]

Abstract: In an attempt to keep biodiversity records of our world today, species diversity studies have remained important in the face of climate change and habitat degradation resulting from urbanization and other human activities. Consequently, we surveyed to document the plants of Ijero Local Government Area (Ekiti State), an area that has been poorly studied in South-Western Nigeria. The study area was periodically visited over 18 months and all identified species were carefully documented. One hundred and sixty-three (163) species in forty-six (46) families, one hundred and thirty (130) genera were recorded. These species are represented in seven (7) plant habits. The trees were dominant followed by the herbs, shrubs and climbers. The dominant families were Euphorbiaceae, Asteraceae and Caesalpinaceae, with 17, 13 and 10 species respectively. Asteraceae, Euphorbiaceae, Papilionaceae and Rubiaceae also all had the highest number of genera represented, with 12, 10, 9 and 6 respectively. Generally, the Legumes collectively contributed 25 species (15.3%) of the total enumeration. This study has not only added to the existing records of floristic data in south-western Nigeria, but it is the first of its kind in the study area.

Keywords: Biodiversity - Flora - Legumes - Conservation.

[Cite as: Chukwuma EC, Chukwuma DM & Adio AF (2020) Flora diversity of Ijero Local Government Area of Ekiti State, South-Western Nigeria. *Tropical Plant Research* 7(1): 55–64]

INTRODUCTION

Accessing the World’s genetic resources has continued to gain remarkable interest among scientists. Nigeria has several biodiversity hotspots that are yet to be assessed. Although data on the country’s flora are available (Anoliefo *et al.* 2006, Soladoye *et al.* 2011, Ariwaodo *et al.* 2012a, Soladoye *et al.* 2013, Soladoye *et al.* 2015, Iyagin & Adekunle 2017), they are inadequate and incomplete. For successful management and effective utilization of any resource, there is a need for an inventory of such resources (Soladoye *et al.* 2011). The value of any biodiversity analysis and the adequacy of conservation measures, largely depend on the quality of basic data as noted by Valdecasas & Camacho (2003). Similarly, Oduwaiye & Ajibode (2005) opined that the forest reserves in Nigeria and protected forests outside the reserve provide a lot of tangible and intangible benefits of forest products, and the sustenance of these resources depends on conservation or other management techniques employed. Forests are therefore essential in maintaining environmental stability, provision of raw materials for wood-based industries and provision of livelihood, food and employment for man, especially in the rural areas. Previous studies have shown that south-western Nigeria accommodates a large number of species which are economically and medicinally useful especially to the common man (Ariwaodo *et al.* 2012a, b, Soladoye *et al.* 2015, Chukwuma & Adebisi-Fagbohungbe 2015). It is important to note that knowledge of the floristic composition and structure of the forest is useful in identifying and monitoring the state of the forests (Ssegawa & Nkutu 2006) and this has become very crucial in the face of the ever-increasing threat to the forest ecosystem.
and eventual species extinction. As clearly put by Kimmlins (1987), we do not know how to recreate a species once it has become extinct. Soladoye & Lewis (2003) also noted that it is wise to have an inventory of our biodiversity and to make an appropriate recommendation for the preservation of the species which will be enormous to encompass the local variation of genotypes and which will further ensure the survival of the angiosperm genetic diversity of an area. The present study thus, takes into account the floristic diversity of a poorly studied area of South-western Nigeria in an attempt to update existing floristic data of the zone. This work also aimed at forming a baseline data for future biodiversity studies within the study area and the adjoining towns.

MATERIALS AND METHODS

Study site

Ijero Local Government Area is located on Latitude 7°49′N and Longitude 5° 05′ E in the Northwestern part of Ekiti (Fig. 1). The area is bordered by Moba, Ido-Osi, Irepodun/Ifelodun and Ekiti West local government areas of the state. The study area has been reported to be rich in mineral resources such as Tin, Columbite, Tantalite, industrial feldspar, ceramic, clays, kaolin bery (aquamarine), smoky quartz, amongst others but these have not been exploited for commercial purpose (https://ekitistate.gov.ng). The area is also characterised by forested areas in-between towns and villages and accommodates several typical forest species.

Figure 1. Map of Ekiti State showing location of the study area.

Species enumeration

The survey involved repeated visits to the study area to ensure that nearly all existing tracheophytes are recorded. This was embarked upon for 18 months (December, 2018 – May, 2019) to ensure that the two climatic seasons (rainy and dry) in Nigeria are considered. Species were identified on the field using taxonomic keys provided in Hutchinson et al. (1954, 1958, 1963, 1968 & 1972), Stanfield (1970), Lowe & Stanfield (1974), and Keay (1989), while others were taken to the Forest Herbarium Ibadan (FHI) (Holmgren et al. 1990) for proper identification. All scientific names were also checked and verified from the International Plant Name Index (IPNI) website (http://www.ipni.org).

RESULTS AND DISCUSSION

A total of one hundred and sixty-three (163) species in forty-six (46) families and one hundred and thirty (130) genera were recorded from the survey (Table 1). These species cut across seven (7) different plant habits. Families Euphorbiaceae, Asteraceae and Caesalpinaceae had the highest species diversity with 17, 13 and 10 respectively. Other prominent families include Papilionaceae with 9 species, Verbenaceae (7), Acanthaceae, Amaranthaceae, Malvaceae, Mimosaceae, Moraceae and Rubiaceae with 6 species each. Convolvulaceae, Sapindaceae and Solanaceae had 5 species, Apocynaceae and Poaceae with 4 while Asclepiadaceae, www.tropicalplantresearch.com
Bignoniaceae, Cucurbitaceae, Lamiaceae and Rutaceae were represented with 3 species each. 8 other families had 2 species represented while the remaining 17 families were represented with only one species each (Table 2). Of the total 130 genera recorded, a huge sum of 109 were represented with only one species, 13 genera had 2 species each, 6 genera (Albizia, Citrus, Euphorbia, Ficus, Phyllanthus and Sida) had 3 species while the remaining 2 genera (Ipomoea and Senna) had 4 and 6 species respectively (Table 3). Furthermore, Asteraceae, Euphorbiaceae, Papilionaceae and Rubiaceae all had the highest number of genera represented, with 12, 10, 9 and 6 respectively. Interestingly, the Legumes (Caesalpiniaceae, Mimosaceae and Papilionaceae) collectively contributed the highest record with a total of 25 species (Table 2).

Table 1. Identified species of Iroko-Ekiti community, Ekiti State.

S.N.	Species/Botanical names	Family	Habit
1.	Abrus precatorius L.	Papilionaceae	Climber
2.	Acalypha fimbriata Schumach. et Thonn.	Euphorbiaceae	Herb
3.	Acalypha godseffiana Mast.	Euphorbiaceae	Shrub
4.	Acanthospermum hispidum DC.	Asteraceae	Herb
5.	Achrysanthes aspera L.	Amaranthaceae	Herb
6.	Ageratum conyzoides L.	Asteraceae	Herb
7.	Albizia ferruginea (Guill. & Perr.) Benth.	Mimosaceae	Tree
8.	Albizia lebbeck (L.) Benth.	Mimosaceae	Tree
9.	Albizia zygia (DC) J.F. Macbr.	Mimosaceae	Tree
10.	Alchornea laxiflora (Benth.) Pax et K. Hoffm.	Euphorbiaceae	Shrub
11.	Allophylus africanus P. Beauv.	Sapindaceae	Tree
12.	Alternanthera sessilis (L.) R. Br. ex DC.	Amaranthaceae	Creeper
13.	Amaranthus spinosus L.	Amaranthaceae	Herb
14.	Amaranthus viridis L.	Amaranthaceae	Herb
15.	Anacardium occidentale L.	Anacardiaceae	Tree
16.	Anthocleista djalonensis A Chev.	Loganiaceae	Tree
17.	Anthonotha macrophylla P. Beauv.	Caesalpiniaceae	Tree
18.	Antiaris toxicaria A.Chev.	Moraceae	Tree
19.	Aspilia africana L.	Asteraceae	Herb
20.	Asystasia gangetica (L.) T. Anderson	Acanthaceae	Herb
21.	Azadirachta indica A. Juss.	Meliaceae	Tree
22.	Baphia nitida Lodd.	Papilionaceae	Tree
23.	Basella alba L.	Basellaceae	Climber
24.	Berlinia grandiflora (Vahl) Hutch. & Dalzeil	Caesalpiniaceae	Tree
25.	Bidens pilosa L.	Asteraceae	Herb
26.	Bixa orellana L.	Bixaceae	Shrub
27.	Blepharis maderaspatensis (L.) B. Heyne ex Roth	Acanthaceae	Herb
28.	Blighia sapida Koenig	Sapindaceae	Tree
29.	Boerhavia diffusa L.	Nyctaginaceae	Herb
30.	Borreria ocyoides (Burm. f.) DC.	Rubiaceae	Herb
31.	Brachystegia eurycoma Harms	Caesalpiniaceae	Tree
32.	Brosocarpus coccineus Schumach. Et Thonn.	Connaraceae	Climber
33.	Caesalpinia pulcherima (L.) Sw.	Caesalpiniaceae	Shrub
34.	Calopogonium mucunooides Desv.	Papilionaceae	Creeper
35.	Calotropis procera (Aiton) Dryand.	Asclepiadaceae	Shrub
36.	Cardiospermum grandiflorum SW.	Sapindaceae	Climber
37.	Carica papaya L.	Caricaceae	Shrub
38.	Centrosema pubescens P. Beauv.	Papilionaceae	Creeper
39.	Chasmanthera dependens Hochst.	Menispermaceae	Creeper
40.	Chassalia kolly (Schumach.) Hepper	Rubiaceae	Shrub
41.	Chromolaena odorata King & Robinson	Asteraceae	Herb
42.	Cissampelos owariensis P. Beauv. ex DC.	Menispermaceae	Creeper
43.	Cissus aralioides (Welw. ex Baker) Planch.	Vitaceae	Creeper
44.	Cissus arguta Hook.f.	Vitaceae	Creeper
45.	Citrus aurantiifolia Swingle	Rutaceae	Tree
46.	Citrus paradisi Macfad	Rutaceae	Tree
47.	Citrus sinensis (L.) Osbeck.	Rutaceae	Tree
No.	Scientific Name	Family	Type
-----	--------------------------------------	----------------	------------
48	Clerodendrum capitatum (Wild.) Schum. & Thonn.	Verbenaceae	Shrub
49	Clerodendrum splendens G.Don.	Verbenaceae	Climber
50	Cocos nucifera L.	Arecales	Tree
51	Cola acuminata (P.Beauv.) Schott & Endl.	Sterculiaceae	Tree
52	Combretum platypterum Welw. ex M.A.Lawson	Combretaceae	Climber
53	Combretum racemosum P.Beauv.	Combretaceae	Climber
54	Crescencia cuyete L.	Bignoniaceae	Tree
55	Croton lobatus	Euphorbiaceae	Herb
56	Croton zambesicus Mull.Arg.	Euphorbiaceae	Tree
57	Datura metel	Solanaeae	Shrub
58	Duranta repens L.	Verbenaceae	Tree
59	Euphorbia heterophylla L.	Euphorbiaceae	Herb
60	Euphorbia hirta L.	Euphorbiaceae	Herb
61	Euphorbia hyssopifolia L.	Euphorbiaceae	Herb
62	Ficus exasperata P.	Moraceae	Tree
63	Ficus macus Ficalho	Moraceae	Tree
64	Ficus sur Forssk.	Moraceae	Tree
65	Fimbriylis sp.	Cyperaceae	Sedge
66	Gliricidia sepium (Jacq.) Walp.	Papilionaceae	Tree
67	Glyphaea brevis (Spreng.) Monach.	Tiliaceae	Shrub
68	Gmelina arborea Roxb.	Verbenaceae	Tree
69	Gomphrena celosioides Mart.	Amaranthaceae	Herb
70	Gossypium barbadense	Malvaceae	Shrub
71	Helianthus annuus L.	Asteraceae	Shrub
72	Hewittia sublobata (L.f.) Kuntze	Convolvulaceae	Climber
73	Holarrhena floribunda T. Durand & Schinz	Apocynaceae	Tree
74	Hoslandia opposita Vahl	Lamiaceae	Shrub
75	Hypitis suaveolens (L.) Poit.	Lamiaceae	Shrub
76	Indigofera spicata Forssk.	Papilionaceae	Creeper
77	Ipomoea alba L.	Convolvulaceae	Climber
78	Ipomoea asarifolia (Desr. et Schult.) Roem. et Schult.	Convolvulaceae	Creeper
79	Ipomoea involucrata P. Beauv.	Convolvulaceae	Climber
80	Ipomoea nil (L.) Roth	Convolvulaceae	Climber
81	Jatropha curcas L.	Euphorbiaceae	Shrub
82	Jatropha gossypifolia L.	Euphorbiaceae	Shrub
83	Lecaniodiscus cupanioides Planch. ex Benth.	Sapindaceae	Tree
84	Leucaena leucocephala (Lam.) de Wit	Mimosaceae	Tree
85	Lonchocarpus sericeus (Poir.) HB & K.	Papilionaceae	Tree
86	Luffa acutangula (L.) Roxb.	Cucurbitaceae	Climber
87	Macrophyra longistyla (DC.) Hiern	Rubiaceae	Shrub
88	Mallotus oppositifolius (Geiseler) Mull. Arg.	Euphorbiaceae	Herb
89	Malvastrum coronelienianum (L.) Garcke	Malvaceae	Herb
90	Mariscus alternifolius Vahl	Cyperaceae	Sedge
91	Martynia annua L.	Martyniaceae	Shrub
92	Melanthera scandens (Schum. et Thonn.) Roberty	Asteraceae	Herb
93	Microdesmis puberula Hook.f. ex Planch.	Pandaceae	Shrub
94	Millettia thomningii (Schum. et Thonn.) Baker	Papilionaceae	Tree
95	Mimosina invisa Mast	Mimosaceae	Creeper
96	Mirabilis jalapa L.	Nyctaginaceae	Shrub
97	Mitracarpus scaber Zucc. ex Schult. et Schult.	Rubiaceae	Herb
98	Momordica charantia L.	Cururbitaceae	Climber
99	Momordica foetida Schumach	Cururbitaceae	Climber
100	Morinda lucida Benth.	Rubiaceae	Tree
101	Morus mesozygia Stapf. ex A.Chev.	Moraceae	Tree
102	Mucuna pruriens (L.) DC. var pruriens	Papilionaceae	Climber
103	Myrianthus arboreus P.Beauv.	Moraceae	Tree
104	Nauclea latifolia Sm	Rubiaceae	Shrub
105	Nelsonia canescens (Lam.) Spreng.	Acanthaceae	Herb
No.	Name	Family	Category
-----	---	------------------	----------
106	*Newbouldia laevis* (P. Beauv.) Seems. Ex Bureau.	Bignoniaceae	Tree
107	*Ocimum gratissimum* L.	Lamiaceae	Shrub
108	*Olyra latifolia* L.	Poaceae	Grass
109	*Oplismenus hirtellus* (L.) P. Beauv.	Poaceae	Grass
110	*Parkia biglobosa* (Jacq.) R. Br. ex G	Mimosaceae	Tree
111	*Parquetina nigrescens* (Afzel.) Bullock	Periplocaeeae	Creeper
112	*Passiflora foetida* L.	Passifloraceae	Creeper
113	*Paulinia pinata* L.	Sapindaceae	Climber
114	*Peperomia pellucida* (L.) H. B. et Kunth.	Piperaceae	Herb
115	*Pergularia daemia* (Forssk.) Choiv.	Asclepiadaceae	Climber
116	*Phaulopsis barteri* T. Anders.	Acanthaceae	Herb
117	*Phaulopsis falcisepala* C. B. Clarke	Acanthaceae	Herb
118	*Phyllanthus amarus* L.	Euphorbiaceae	Herb
119	*Phyllanthus mellerianus* (Kuntze.) Exell	Euphorbiaceae	Shrub
120	*Phyllanthus odontadenius* Mull. Arg.	Euphorbiaceae	Herb
121	*Physalis angulata* L.	Solanaceae	Herb
122	*Physalis micrantha* Link.	Solanaceae	Herb
123	*Portulaca oleracea* L.	Portulacaceae	Herb
124	*Psidium guajava* L.	Myrtaceae	Tree
125	*Pupalia lappacea* (L.) Juss.	Amaranthaceae	Herb
126	*Ricinidendron heudelotii* (Baill.) Pierre ex Heckel	Euphorbiaceae	Tree
127	*Ricinus communis* L.	Euphorbiaceae	Shrub
128	*Ruellia tuberosa* L.	Acanthaceae	Herb
129	*Scoparia dulcis* L.	Scrophulariaceae	Herb
130	*Secamone africola* (Roem. et Schult.) K. Schum.	Asclepiadaceae	Climber
131	*Securinega virosa* (Roxb. ex Wild) Baill.	Euphorbiaceae	Shrub
132	*Senna alata* (L.) Roxb.	Caesalpiniaeeae	Shrub
133	*Senna hirsuta* (L.) Irwin & Barneby	Caesalpiniaeeae	Shrub
134	*Senna obtusifolia* (L.) Irwin & Barneby	Caesalpiniaeeae	Shrub
135	*Senna occidentalis* (L.) Link.	Caesalpiniaeeae	Shrub
136	*Senna siamea* (Lam.) H.S. Irwin & Barneby	Caesalpiniaeeae	Tree
137	*Senna sophora* (L.) Roxb.	Caesalpiniaeeae	Shrub
138	*Sesamum indicum* L.	Pedaliaceae	Herb
139	*Setaria longiseta* P. Beauv.	Poaceae	Grass
140	*Sida acuta* Burm.f.	Malvaceae	Herb
141	*Sida corymbosa* L.	Malvaceae	Herb
142	*Sida urens* L.	Malvaceae	Herb
143	*Solanum nigrum* L.	Solanaceae	Creeper
144	*Solanum torvum* Sw.	Solanaceae	Shrub
145	*Spigelia anthelmia* L.	Loganiaeeae	Herb
146	*Spilanthes filicaulis* (Schum. et Thonn.) C. D. Adams.	Asteraceae	Creeper
147	*Spondias mombin* L.	Anacardiaceae	Tree
148	*Stachyophorpha pyramidalis* P. Beauv.	Poaceae	Grass
149	*Stachyophorpha cayennensis* (Rich.) Schau.	Verbenaceae	Shrub
150	*Stachyophorpha indica* (L.) Vahl	Verbenaceae	Herb
151	*Strophanthus sarmentosus* DC.	Apocynaceae	Climber
152	*Synedrella nodiflora* Gaertn.	Asteraceae	Herb
153	*Tecoma stans* (L.) Juss. ex Kunth	Bignoniaceae	Shrub
154	*Tectona grandis* L.f.	Verbenaceae	Tree
155	*Tithonia diversifolia* A. Gray.	Asteraceae	Shrub
156	*Trema orientalis* Blume	Ulmaceae	Tree
157	*Tridax procumbens* L.	Asteraceae	Herb
158	*Urena lobata* L.	Malvaceae	Shrub
159	*Vernonia amygdalina* Del.	Asteraceae	Shrub
160	*Vernonia cinera* (L.) Less.	Asteraceae	Herb
161	*Voacanga africana* Stapf.	Apocynaceae	Tree
162	*Waltheria indica* L.	Sterculiaceae	Shrub
Table 2. Species distribution across families.

S.N.	Family	No. of genus/genera	Total no. of species	% species composition
1.	Acanthaceae	5	6	3.7
2.	Amaranthaceae	5	6	3.7
3.	Anacardiaceae	2	2	1.2
4.	Apocynaceae	4	4	2.5
5.	Areceae	1	1	0.6
6.	Asclepiadaceae	3	3	1.8
7.	Asteraceae	12	13	8.0
8.	Basellaceae	1	1	0.6
9.	Bignoniaceae	3	3	1.8
10.	Bixaceae	1	1	0.6
11.	Caesalpiniaceae	5	10	6.1
12.	Caricaceae	1	1	0.6
13.	Combretaceae	1	2	1.2
14.	Concaraceae	1	1	0.6
15.	Convulucaceae	2	5	3.1
16.	Cucurbitaceae	2	3	1.8
17.	Cyperaceae	2	2	1.2
18.	Euphorbiaceae	10	17	10.4
19.	Lamiaceae	3	3	1.8
20.	Loganiaceae	2	2	1.2
21.	Malvaceae	4	6	3.7
22.	Martyniaceae	1	1	0.6
23.	Meliaceae	1	1	0.6
24.	Menispermaceae	2	2	1.2
25.	Mimosaceae	4	6	3.7
26.	Moraceae	4	6	3.7
27.	Myrtaceae	1	1	0.6
28.	Nyctaginaceae	2	2	1.2
29.	Pandaceae	1	1	0.6
30.	Papilionaceae	9	9	5.5
31.	Passifloraceae	1	1	0.6
32.	Pedaliaceae	1	1	0.6
33.	Periplocaceae	1	1	0.6
34.	Piperaceae	1	1	0.6
35.	Poaceae	4	4	2.5
36.	Portulacaceae	1	1	0.6
37.	Rubiaceae	6	6	3.7
38.	Rutaceae	1	3	1.8
39.	Sapindaceae	5	5	3.1
40.	Scrophulariaceae	1	1	0.6
41.	Solanaceae	3	5	3.1
42.	Sterculiaceae	2	2	1.2
43.	Tiliaceae	1	1	0.6
44.	Ulmaceae	1	1	0.6
45.	Verbenaceae	5	7	4.3
46.	Vitaceae	1	2	1.2

In all, the trees dominated the life forms/habits identified, contributing 27% of the total enumeration. This was closely followed by herbs and shrubs with 26% and 23% respectively. The climbers constituted 15% while the creepers, grasses and sedge had 5%, 3% and 1% respectively (Fig. 2). Further results shown in table 4 gives the distribution of species across the families based on habits. Only Verbenaceae had species in 4 different habits/life forms. Euphorbiaceae, Papilionaceae, Rubiaceae and Solanaceae all had species across 3 habits, while 11 families were represented by 2 habits and the remaining 29 families had species represented by 1 habit only. In general, the climbers spread across 13 families, the creepers 6 families, the grasses 1 family (Poacea), herbs 14 families, sedges 1 family (Cyperaceae), shrubs 17 families and the tree in 18 families.

The Legumes have been known to be abundantly distributed across the ecological zones of Nigeria (Soladoye & Lewis 2003, Soladoye et al. 2011, Ayodele & Yang 2012, Soladoye et al. 2015). Our findings also
support previous studies by Lock (1989), whose report showed clearly that Africa has a vast array of indigenous legumes, ranging from large rainforest trees to small annual herbs. Some of the studies mentioned above, amongst others (Gills 1992, Odugbemi 2008, Schemelzer & Gurib-Fakim 2008, Ariwaojo et al. 2012b, Soladoye et al. 2013), have also reported the medicinal values of many species reported in the present study.

Table 3. Summary of species distribution according to genera.

Genera	Species per Genus
Ipomoea	4
Senna	6
Albizia, Citrus, Euphorbia, Ficus, Phyllanthus, Sida	1
Acalypha, Amananthus, Cissus, Clerodendrum, Combretum, Croton, Jatropha, Momordica, Phaulopsis, Physalis, Solanum, Stachydrapheta, Vernonina	2
Abrus, Acahanospermum, Achryanthes, Ageratum, Alchornea, Allophylus, Alternanthera, Anacardium, Anthoeclesta, Anthoquosa, Antiaris, Aspilia, Asystasia, Azadirachta, Baphia, Basella, Berlinga, Bidens, Bixa, Blepharis, Blighia, Boerhavia, Borreria, Brachystegia, Brsocarpus, Caesalpinia, Calopogonium, Calotrops, Cardiospermum, Carica, Centrosema, Chasmanthera, Chassalia, Chromolaena, Cissampelos, Cocos, Cola, Crescentia, Datura, Duranta, Fimbristyli, Gliricidia, Glyphaea, Gmelina, Gomphrena, Gossypium, Helianthus, Hewtitia, Holarrhena, Holundia, Hystis, Indigofera, Lecaniodiscus, Leucaena, Lonchocarpus, Luffa, Macophyra, Mallotus, Malvastrum, Mariscus, Martynia, Melanthera, Microdesmis, Millletta, Mimosal, Mirabilis, Mitracarpus, Morinda, Morus, Macuna, Myrianthus, Nauclea, Nelsonia, Newbouldia, Ocimum, Olyra, Oplismenus, Parkia, Parquetina, Passiflora, Paullinia, Peperomia, Pergularia, Portulaca, Psidium, Papalata, Rauwolfia, Ricinidendron, Rinus, Ruellia, Scoparia, Secamone, Securinega, Sesamum, Setaria, Spigelia, Spilanthes, Spontias, Sporobolus, Strophosteph, Synedrella, Tecoma, Tectona, Tithonia, Trema, Tridax, Urena, Voacanga, Waltheria	3

Table 4. Distribution of species within families based on habits.

Family	Climber	Creeper	Grass	Herb	Sedge	Shrub	Tree
Acantaceae	8	7	2	1			
Amanaceae	4	3	1				
Anacardiace	8	7	2	1			
Apocynaceae	4	3	1				
Areaceae	8	7	2	1			
Asclepiace	8	7	2	1			
Asteraceae	8	7	2	1			
Basellaceae	8	7	2	1			
Bignoniace	8	7	2	1			
Bixaceae	8	7	2	1			
Caesalpiniace	8	7	2	1			
Caricaceae	8	7	2	1			
Combretace	8	7	2	1			
Connaraceae	8	7	2	1			
Convulucace	8	7	2	1			
Cucurbitace	8	7	2	1			
Cyperaceae	8	7	2	1			
Euphorbiace	8	7	2	1			
Lamiaceae	8	7	2	1			
Loganiaceae	8	7	2	1			
Malvaceae	8	7	2	1			
Martyniace	8	7	2	1			
Melliaceae	8	7	2	1			
Menispermac	8	7	2	1			
Mimosaceae	8	7	2	1			
Moraceae	8	7	2	1			
Myrtaceae	8	7	2	1			
Nyctaginace	8	7	2	1			
Pandaceae	8	7	2	1			
Papilionace	8	7	2	1			
Passiflorace	8	7	2	1			

www.tropicalplantresearch.com
While man continues to depend on plants for survival, it is imperative to also consider the sustainable collection and use of these life sustainers. Hence, species conservation is inevitable if extinction is to be mitigated, as it is obvious that, with the continuous degradation of the ecosystem resulting from infrastructural and economic development in our society today, there is a greater threat to species disappearance. Additionally, previous reports by Gbile et al. (1981) & Oguntala et al. (1996) are indications that the ecosystems in Nigeria face a greater risk if urgent attention is not considered.

CONCLUSION

This study has revealed 163 angiosperms belonging to 46 families 130 genera. The present study has not doubt added to the existing records of flora South-Western Nigeria. We re-emphasize that, while urbanisation and other developmental activities are inevitable, the conservation of our ecosystem is of utmost importance if we must continue to rely on plants for survival. While this study has shown that the community is not only rich in biodiversity but also embraces some socio-economic value, it suggests some strategies for conservation to avoid complete loss of biodiversity resulting from over-exploitation of the important species.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for their constructive criticisms.
REFERENCES

Anoliefo GO, Ikhajiagbe B, Okonofhua BO & Diafe FV (2006) Eco-taxonomic distribution of plant species around motor mechanic workshops in Asaba and Benin City, Nigeria: Identification of oil tolerant plant species. *African Journal of Biotechnology* 5: 1757–1762.

Ariwaodo JO, Adeniji KA & Akinyemi OD (2012a) The vascular flora on Asamagbe stream bank, Forestry Research Institute of Nigeria (FRIN) premises, Ibadan, Nigeria. *Annals of Biological Research* 3: 1757–1763.

Ariwaodo JO, Chukwuma EC & Adeniji KA (2012b) Some Medicinal Plant Species of Asamagbe Stream Bank Vegetation, Forestry Research Institute of Nigeria, Ibadan. *Ethnobotany Research & Applications* 10: 541–549.

Ayodele AE & Yang Y (2012) *Diversity and distribution of vascular plants in Nigeria*. Published by Qingdao Publishing House, Qingdao, China, 350 p.

Chukwuma EC & Adebesi-Fagbohungbe TA (2015) A checklist of angiosperm diversity surrounding Awba Dam: an important reservoir in Ibadan, Nigeria. *Plant Science Today* (2): 116–122.

Gbile ZO, Oladimeji MO & Soladoye MO (1981) Endangered species of the Nigerian flora. *Nigeria Journal of Forestry* 8: 14–20.

Gills LS (1992) *Ethnomedical Uses of Plants in Nigeria*. Uniben Press, Benin City, Nigeria.

Holmgren PK, Keuken W & Schofield EK (1990) *Index Herbariorum, Part I: The Habaria of the World, 8th edition*. Utrecht, Regnum Veg., New York, 120 p.

Hutchinson J, Dalziel JM & Hepper FN (1968) *Flora of West tropical Africa, Volume III, Part 1*. Crown Agents for Oversea Governments and Administrations, London, 276 p.

Hutchinson J, Dalziel JM & Hepper FN (1972) *Flora of West tropical Africa, Volume III, Part 2*. Crown Agents for Oversea Governments and Administrations, London, 574 p.

Hutchinson J, Dalziel JM & Keay RWJ (1954) *Flora of West Tropical Africa, Vol. 1, 2nd edition*. Crown Agents for Oversea Governments and Administrations, London, pp. 1–295.

Hutchinson J, Dalziel JM & Keay RWJ (1958) *Flora of West Tropical Africa, Vol. 1, 2nd edition*. Crown Agents for Oversea Governments and Administrations, London, pp. 297–828.

Hutchinson J, Dalziel JM, Keay RWJ & Hepper FN (1963) *Flora of West tropical Africa, Volume II*. Crown Agents for Oversea Governments and Administrations, London, 544 p.

Iyagin FO & Adekunle VAJ (2017) Phytoecological studies of some protected and degraded forest areas of Lowland Humid forest, Ondo state Nigeria: a Comparative approach. *Tropical Plant Research* 4(3): 496–513.

Keay RWJ (1989) *Trees of Nigeria*. Oxford Science Publication, New York, 476 pp.

Kimmlins JP (1987) *Forest Ecology*. Macmillan publishing company, New York, 531 p.

Lock JM (1989) *Legumes of Africa: a check list*. Kew, England, Royal Botanic Gardens.

Lowe J & Stanfield DP (1974) *The Flora of Nigeria Sedges (Cyperaceae)*. Ibadan University Press, Ibadan, 144 p.

Odugbemi T (2008) *A Textbook of Medicinal Plants from Nigeria*. Unilag Press, Lagos, Nigeria, 628 p.

Oduwuaye EA & Ajibode MO (2005) Composition of tree species and regeneration potential at Onigambari forest reserve, Ibadan, Oyo State, Nigeria. *Journal of Raw Materials Research* 2(1): 4–13.

Oguntala AB, Soladoye MO, Ugboogu OA & Fasola TR (1996) A review of endangered tree species of cross river state and environs. In: *Proceedings of the Workshop on Rain Forest of South Eastern Nigeria and South Western Cameroon*, October 20-24, 1996, Calabar, Nigeria. pp. 120–125.

Schmelzer GH & Gurib-Fakim A (2008) *Plant Resources of Tropical Africa Vol. 11: Medicinal Plants 1*. PROTA Foundation, Wageningen, Netherlands/Backhuys Publishers, Leiden, Netherlands/CTA, Wageningen, Netherlands, 791 p.

Soladoye MO & Lewis GP (2003). *A checklist of Nigerian Legumes*. CENRAD Natural Resources Research Assessment and Conservation Series 03, Ibadan, Nigeria, West Africa, 133 p.

Soladoye MO, Asafa BA, Sonibare MA, Ihanesebor GA & Chukwuma EC (2011) Angiosperm Flora of Kamuku National Park: A Northern Guinea Savanna Protected Area in Nigeria. *European Journal of Scientific Research* 58(3): 326–340.

Soladoye MO, Chukwuma EC, Fagbenro JA & Adelagun EO (2015) A Checklist of Angiosperm Diversity of Bowen University Campus, Iwo, Osun State, Nigeria. *Journal of Plant Sciences* 10(6): 244–252.

Soladoye MO, Ikitun T, Chukwuma EC, Ariwaodo JO, Ihanesebor GA, Agbo-Adediran OA & Owolabi SM
(2013) Our plants, our heritage: Preliminary survey of some medicinal plant species of Southwestern University Nigeria Campus, Ogun State, Nigeria. *Annals of Biological Research* 4(12): 27–34.

Ssegawa P & Nkuutu DN (2006) Diversity of Vascular Plants on Ssese Islands in Lake Victoria Central Uganda. *African Journal of Ecology* 44: 22–29.

Stanfield DP (1970) *Flora of Nigeria Grasses*. Ibadan University Press, Ibadan, 118 p.

Valdecasas AG & Camacho AI (2003) Conservation to the rescue of taxonomy. *Biodiversity & Conservation* 12: 1113–1117.