Tightness results for infinite-slit limits of the chordal Loewner equation

Andrea del Monaco Ikkei Hotta∗ Sebastian Schleißinger†

July 30, 2018

Abstract

In this note we consider a multi-slit Loewner equation with constant coefficients that describes the growth of multiple SLE curves connecting N points on \mathbb{R} to infinity within the upper half-plane. For every $N \in \mathbb{N}$, this equation provides a measure valued process $t \mapsto \{\alpha_{N,t}\}$, and we are interested in the limit behaviour as $N \to \infty$. We prove tightness of the sequence $\{\alpha_{N,t}\}_{N \in \mathbb{N}}$ under certain assumptions and address some further problems.

Keywords: chordal Loewner equation, stochastic Loewner evolution, multiple SLE, complex Burgers equation, tightness, quadratic differentials

2010 Mathematics Subject Classification: 60J67, 37L05.

Contents

1 Introduction 1

2 Tightness of a multiple SLE process 2
 2.1 Geometry and Loewner Theory 2
 2.2 Single and Multiple SLE 3
 2.3 The chordal Loewner equation for $H_{\mathbb{H},\kappa}((x_1,\ldots,x_N),\infty)$ 4
 2.4 Tightness 5
 2.5 The simultaneous case 8
 2.6 Examples 9
 2.7 Problems and Remarks 12

3 Trajectories of a certain quadratic differential 13

1 Introduction

In [dMS16], the second and third author noted that the conformal mappings for a certain multiple SLE (Schrödinger-Loewner evolution) process for N simple curves in the upper half-plane \mathbb{H} converges as $N \to \infty$. The deterministic limit has a simple description: The conformal mappings $f_t : \mathbb{H} \to \mathbb{H}$ satisfy the Loewner PDE

$$\frac{\partial f_t(z)}{\partial t} = -\frac{\partial f_t(z)}{\partial z} \cdot M_t(z), \quad f_0(z) = z \in \mathbb{H},$$

where M_t satisfies the complex Burgers equation

$$\frac{\partial M_t(z)}{\partial t} = -2\frac{\partial M_t(z)}{\partial z} \cdot M_t(z),$$

see Section 2.5 for more details. In several situations, partial differential equations of this type appear to describe the limit of N-particle systems; see [Cha92] [RS93] [CL97].

∗Supported by the JSPS KAKENHI Grant no. 26800053.
†Supported by the ERC grant “HEVO - Holomorphic Evolution Equations” no. 277691.
In Section 2 we consider again the same multiple SLE measure for N curves connecting N points on \mathbb{R} with ∞. We describe the growth of these curves by a Loewner equation with weights that correspond to the speed for these curves in the growth process, and we obtain an abstract differential equation for limit points as $N \to \infty$ (Corollary 2.7).

Furthermore, in Section 3 we see that an equation of a similar type also appears in the limit behaviour of a Loewner equation describing the growth of trajectories of a certain quadratic differential.

2 Tightness of a multiple SLE process

2.1 Geometry and Loewner Theory

In this section we briefly recall the general background of hulls in the upper half-plane and the chordal Loewner equation.

A domain $D \subseteq \hat{\mathbb{C}}$ is said to be a Jordan domain if ∂D is homeomorphically equivalent to the unit circle $\mathbb{T} = \partial \mathbb{D}$. Let Γ be a subset of \overline{D} such that there exist some $T > 0$ and a homeomorphism $\gamma : [0, T) \to \Gamma$ with $\gamma(0, T) \subseteq D$ and $\gamma(0) \in \partial D$. Then, if $\gamma(T) \in D$, the set $\Gamma \cap D = \Gamma \setminus \gamma(0)$ is said to be a slit in D, and if $\gamma(T) \in \partial D$ as well, Γ is referred to as a chord (in D).

Since by the Riemann Mapping Theorem (see, e.g., [Pom75, Section 1.1]) D is conformally equivalent to the upper half-plane $\mathbb{H} = \{ z \in \mathbb{C} \mid \mathrm{Im}(z) > 0 \}$, it suffices to consider the case $D = \mathbb{H}$ and $\gamma(0) \in \mathbb{R}$. In this setting, in particular, one may also introduce the more general notion of hull, i.e. a subset $A \subset \mathbb{H} \cup \{ \infty \}$ such that $\overline{A} \cap \mathbb{H} = A$ and $\mathbb{H} \setminus A$ is simply connected.

It is known that if $A \subset \mathbb{H}$ is a bounded hull, then there exists a unique conformal mapping $g_A : \mathbb{H} \setminus A \to \mathbb{H}$ with hydrodynamic normalization (see [Law05, Proposition 3.34]), meaning that

$$g_A(z) = z + \frac{b}{z} + \tilde{g}(z) \quad \text{as } z \to \infty$$

for a holomorphic function \tilde{g} with $\angle \lim_{z \to \infty} z \cdot \tilde{g}(z) = 0$. The quantity $b = \mathrm{hcap}(A) \geq 0$ is called the half-plane capacity of A.

The mapping g_A can be embedded into the solution of a Loewner equation as follows. Let $T > 0$ be defined by $2T = \mathrm{hcap}(A)$. Then there exists a family $\{ \mu_t \}_{t \in [0, T]}$ of probability measures on \mathbb{R}, with the property that $t \mapsto \int_{\mathbb{R}} \frac{1}{t-u} \mu_t(du)$ is measurable for every $z \in \mathbb{H}$, such that the solution $\{ g_t \}_{t \in [0, T]}$ of the chordal Loewner equation

$$\begin{cases}
\frac{dg_t(z)}{dt} = \int_{\mathbb{R}} \frac{2}{g_t(z) - u} \mu_t(du) & \text{for almost every } t \in [0, T] \\
g_0(z) = z \in \mathbb{H}
\end{cases} \quad (2.1)$$

satisfies $g_A = g_T$. This follows from [GB92, Theorem 5] and considering the time-reversed flow and the inverse mapping g_A^{-1}.

Conversely, one can always solve (2.1) and obtain conformal mappings with hydrodynamic normalization; see [GB92, Theorem 4] or [Law05, Theorem 4.5].

For $z \in \mathbb{H}$ fixed, the solution $t \mapsto g_t(z)$ of (2.1) may have a finite lifetime $T(z) > 0$, namely $g_t(z) \in \mathbb{H}$ for all $t < T(z)$ and $\mathrm{Im}(g_t(z)) \to 0$ as $t \uparrow T(z)$.

If we fix a time $t > 0$ and let $K_t = \{ z \in \mathbb{H} \mid |T(z)| \leq t \}$, then K_t is a (not necessarily bounded) hull and the mapping $z \mapsto g_t(z)$ is the conformal mapping from $\mathbb{H} \setminus K_t$ onto \mathbb{H} with hydrodynamic normalization. Furthermore, the hulls K_t are strictly growing, i.e. $K_s \subset K_t$ whenever $s < t$, and $\mathrm{hcap}(K_t) = 2t$.

When the hull A is a slit Γ, equation (2.1) necessarily has the form

$$\frac{dg_t(z)}{dt} = \frac{2}{g_t(z) - U(t)}; \quad g_0(z) = z \in \mathbb{H}, \quad (2.2)$$

with a unique, continuous driving function $U : [0, T] \to \mathbb{R}$ (see [dMG16], and the references therein, for more details). In this case, we obtain a parametrization γ of Γ by setting $\gamma(0, t) = K_t$, which is equivalent to requiring $\mathrm{hcap}(\gamma(0, t)) = 2t$. We call γ the parametrization by half-plane capacity of Γ.
More generally, if A is the union of n slits $\Gamma_1, \ldots, \Gamma_n$ with pairwise disjoint closures, i.e. $\Gamma_j \cap \Gamma_k = \emptyset$ whenever $j \neq k$, then (2.1) must have the form

$$\frac{dg_k(z)}{dt} = \sum_{j=1}^n \frac{2\lambda_j(t)}{g_k(z) - U_j(t)}, \quad g_0(z) = z \in \mathbb{H},$$

(2.3)

where $U_j : [0, T] \to \mathbb{R}$ are continuous and $\lambda_j : [0, T] \to [0, 1]$ are measurable functions with $\sum_{j=1}^n \lambda_j(t) = 1$ for every t; see [Boe15] Theorem 2.54. In this way, we obtain parametrizations $\gamma_1, \ldots, \gamma_n$ of $\Gamma_1, \ldots, \Gamma_n$ by requiring $K_t = \cup_{j=1}^n \gamma_j(0,t)$. It is worth noting that, for $n > 1$, a representation of A by (2.3) is not unique. For example, we could first generate slit Γ_k only, i.e. $\lambda_k(t) = 1 = 1 - \lambda_j(t)$ for $j \neq k$ and t small enough.

Remark 2.1. The coefficients $\lambda_j(t)$ can be thought of as the speed of growth of the slit Γ_j at time t. More precisely, we have the following relation:

Fix j and $t_0 \geq 0$, assume that g_k is differentiable at $t = t_0$ and consider the curve $\tilde{\gamma}(h) = g_k(\gamma_h(t_0) + h)$. Let $b(h) := \text{hcap}(\tilde{\gamma}(0,h)| = h$ be the half-plane capacity of the slit $\tilde{\gamma}(0,h)$. Then $b(h)$ is differentiable at $h = 0$ with $b(0) = \lambda_j(t_0)$, see [Boe15] Theorem 2.36.

2.2 Single and Multiple SLE

In what follows, $\kappa \in (0, 4]$ is a fixed parameter and $D \subseteq \mathbb{C}$ is a Jordan domain.

Fix two points $x, y \in \partial D$ and assume that ∂D is analytic in neighbourhoods of x and y.

The chordal Schramm-Loewner evolution (SLE) of a random curve $\Gamma \subset D$ for the data D, x, y, κ can be viewed as a certain probability measure $\mu_{D,\kappa}(x, y)$ on the space of all chords connecting the points x and y within D. As one property of SLE is conformal invariance, it suffices to describe the SLE when $D = \mathbb{H}$, $x = 0$, and $y = \infty$. In this setting, the evolution of Γ can be described efficiently as follows. Let γ be a parametrization of Γ with $\gamma(0) = 0$ and assume that $\gamma(0, T]$ is parametrized by half-plane capacity for every $T > 0$. The random conformal mapping $g_\gamma := g_{\gamma(0, \cdot)}$ then satisfies the Loewner equation

$$\frac{dg_\gamma(z)}{dt} = \frac{2}{g_\gamma(z) - \sqrt{k_B t}}, \quad g_\gamma(0) = z,$$

(2.4)

where B_t is a standard one-dimensional Brownian motion.

Notice that one may also consider SLE for $\kappa > 4$. But then the measure is no longer supported on simple curves, and we are not interested in such a case here. For further information and a thorough treatment of SLE we refer to [Law05].

Next, we describe multiple SLE as it was introduced in [KL07].

Let $N \in \mathbb{N}$ and fix $2N$ pairwise distinct points $p_1, \ldots, p_{2N} \in \partial D$ in counter-clockwise order. Assume that ∂D is analytic in a neighbourhood of p_k, $k = 1, \ldots, 2N$.

We call the pair (x, y) of two tuples $x = (x_1, \ldots, x_N), y = (y_1, \ldots, y_N)$ a configuration for these points if

a) $\{x_1, \ldots, x_N, y_1, \ldots, y_N\} = \{p_1, \ldots, p_{2N}\}$,

b) there exist N pairwise disjoint chords γ_k connecting x_k to y_k within D, $k = 1, \ldots, N$,

c) $x_1 = p_1$ and x_1, x_2, \ldots, x_N, as well as x_1, x_k, y_k, for every $k \geq 2$, are in counter-clockwise order.

The points in x can be thought of as the starting points of these chords. Then y represents the end points and the assumption in c) just prevents us from getting a new configuration by exchanging a starting point of one curve with its endpoint. A simple combinatorial calculation gives that there exist

$$C_N = \frac{(2N)!}{(N + 1)!N!}$$

many configurations for $2N$ points.

Fix now a configuration (x, y). The **configurational multiple SLE** $Q_{D,\kappa}(x, y)$ is a positive finite measure on the space of all N-tuples $(\gamma_1, \ldots, \gamma_N)$, where γ_k is a chord in D connecting x_k to y_k and $\gamma_j \cap \gamma_j = \emptyset$ whenever $j \neq k$. One may contruct the $Q_{D,\kappa}(x, y)$ by means of the Brownian loop measure (see [KL07] for details).

If we let $H_{D,\kappa}(x, y)$ be the mass of $Q_{D,\kappa}(x, y)$, then we can write

$$Q_{D,\kappa}(x, y) = H_{D,\kappa}(x, y) \cdot \mu_{D,\kappa}(x, y)$$

3
for some probability measure $\mu_{D,\kappa}(x,y)$.

Thus, one may view $Q_{D,\kappa}(x,y)$ as a probability measure for the underlying configuration with weight $H_{D,\kappa}(x,y)$. Then we may use such weights as partition functions to combine multiple SLE for different configurations. Namely, if $p = (p_1, \ldots, p_{2N})$ and $S(p)$ is the set of all configurations, then the probability for $(x,y) \in S(p)$ will be given by

$$p(x,y) = \frac{H_{D,\kappa}(x,y)}{\sum_{(v,w) \in S(p)} H_{D,\kappa}(v,w)}. \quad (2.5)$$

Example 2.2. Consider the case $N = 2$ and $\kappa = 3$. Then there are two possible configurations C_1 and C_2, and $\mu_{D,\kappa}(\{C_1, C_2\})$ describes the scaling limit for the Ising model with corresponding boundary conditions (see [Koz09]). The probability p for obtaining configuration C_1 is given by

$$p = \frac{H_{D,\kappa}(C_1)}{H_{D,\kappa}(C_1) + H_{D,\kappa}(C_2)}.$$

On the other hand, $H_{D,\kappa}(x,y)$ may also be used to write down a Loewner equation that governs the growth of multiple SLE curves, see [KL07] Section 4.

Again, because of conformal invariance, it suffices just to consider the case $D = \mathbb{D}$, where $p_1, \ldots, p_{2N} \in \mathbb{R} \cup \{\infty\}$. In this setting, the number $H_{D,\kappa}(x,y)$ is known explicitly only for some special cases:

(i) for $N = 1$ and $(x,y) = (0,\infty)$, one simply takes $H_{\mathbb{D},\kappa}(0,\infty) = 1$ as a definition, which would then yield $Q_{D,\kappa} = \mu_{\mathbb{D},\kappa}$, i.e. the chordal SLE probability measure as described in [2.4];

(ii) if $N = 1$ and $x,y \in \mathbb{R}$, then $H_{\mathbb{D},\kappa}(x,y) = |y-x|^{-2\kappa}$, $b = \frac{6-\kappa}{2\kappa}$;

(iii) a special case for $\kappa = 2$ is given in [KL07] (see Remark after Proposition 3.3);

(iv) for $N = 2$, $H_{\mathbb{D},\kappa}((x_1,x_2), (y_1,y_2))$ can be expressed by a formula involving hypergeometric functions (see [KL07] Proposition 3.4).

We point out that multiple SLE can also be approached by requiring certain properties for the multi-slit Loewner equation, which leads to local properties of $H_{D,\kappa}(x,y)$ as a partition function. A framework for describing $H_{D,\kappa}(x,y)$ as the solution to certain differential equations is discussed in the recent works [FK15a, FK15b, FK15d, FK15f, KP15]. We also refer to the articles [Car03, BBK05, Gra07, Dub07].

Remark 2.3. Notice that one may consider $Q_{\mathbb{D},\kappa}(x,y)$ also for a configuration where $y_j = y_k$ (or $x_j = x_k$, or both) for certain $j \neq k$. This is done by considering the disjoint case $y_j \neq y_k$ first and then taking a scaled limit.

In particular, if $(x_1, \ldots, x_N) = (\infty, \ldots, \infty)$, then one has

$$H_{\mathbb{D},\kappa}((x_1, \ldots, x_N), \infty) := H_{\mathbb{D},\kappa}((x_1, \ldots, x_N), (\infty, \ldots, \infty)) := \prod_{1 \leq j < k \leq N} (x_k - x_j)^{2/\kappa}. \quad (2.6)$$

See [BBK05] Section 4.6, and the references therein, for more details.

2.3 The chordal Loewner equation for $H_{\mathbb{D},\kappa}((x_1, \ldots, x_N), \infty)$

Let $N \in \mathbb{N}$ and $x_{N,1} < \ldots < x_{N,N}$ be N points on \mathbb{R}. The growth of N random curves from $\mu_{\mathbb{D},\kappa}((x_{N,1}, \ldots, x_{N,N}), \infty)$ can be described by a Loewner equation as follows:

First, choose $\lambda_{N,1}, \ldots, \lambda_{N,N} \in (0,1)$ such that $\sum_{k=1}^{N} \lambda_{N,k} = 1$.

Next, we define N random processes $V_{N,1}, \ldots, V_{N,N}$ on \mathbb{R} as the solution of the SDE system

$$dV_{N,k}(t) = \sum_{j \neq k} \frac{2(\lambda_{N,k} + \lambda_{N,j})}{V_{N,k}(t) - V_{N,j}(t)} dt + \sqrt{\kappa \lambda_{N,k}} dB_{N,k}(t), \quad V_{N,k}(0) = x_{N,k}. \quad (2.7)$$

where $B_{N,1}, \ldots, B_{N,N}$ are N independent standard Brownian motions and $\kappa \in [0,4]$. Although multiple SLE was only defined for $\kappa \in (0,4]$, in this particular case one may also consider the deterministic case $\kappa = 0$.

The corresponding N-slit Loewner equation

$$\frac{d}{dt} g_{N,z}(z) = \sum_{k=1}^{N} \frac{2\lambda_{N,k}}{g_{N,z}(z) - V_{N,k}(t)}, \quad g_{N,0}(z) = z \in \mathbb{H}, \quad (2.8)$$
describes the growth of N multiple SLE curves growing from $x_{N,1},...,x_{N,N}$ to ∞; see [BBK05, p. 1130] (where the function Z is the partition function Z, see equation (4) on p. 1138). The function $z \mapsto g_{N,t}(z)$ is the conformal mapping $g_{\gamma_{1,0},...\cup \gamma_{N,N}[0,t]}$ for N random simple curves $\gamma_{N,k} : [0,\infty) \to \mathbb{H}$, which are non-intersecting and $\gamma_{N,k}(0) = x_{N,k}$.

We are interested in the limit $N \to \infty$ of the growing curves, i.e. the convergence of $\gamma_{N,1}[0,t] \cup ... \cup \gamma_{N,N}[0,t]$ to a hull K_t. To be more precise, we would like to answer the following question once that some $t>0$ has been fixed: under which conditions does the sequence $H(\gamma_{N,1}[0,t] \cup ... \cup \gamma_{N,N}[0,t])$ of domains converge to a (simply connected) domain $H \setminus K_t$ with respect to kernel convergence (check Figure 1)?

According to Carathéodory’s Kernel Theorem (Theorem 1.8 in [Pom75]), the above question is equivalent to asking for locally uniform convergence of the mappings $g_{N,t}$ to a conformal mapping $g_t : H \setminus K_t \to \mathbb{H}$. Also, we would like to be able to describe g_t again by a Loewner equation.

Let δ_x be the point measure in x with mass 1 and define

$$\alpha_{N,t} = \sum_{k=1}^{N} \lambda_{N,k} \delta_{V_{N,k}(t)}. \quad (2.9)$$

Then equation (2.8) can be written as

$$\frac{d}{dt} g_{N,t} = \int_{\mathbb{R}} \frac{2}{g_{N,t} - u} d\alpha_{N,t}(u). \quad (2.10)$$

Assume now that

$$\alpha_{N,0} \xrightarrow{w} \alpha \quad \text{as} \quad N \to \infty, \quad (2.11)$$

where we denoted with "\xrightarrow{w}" the weak convergence and where α is again a probability measure. We wish to know whether the sequence $\{\alpha_{N,t}\}_{\mathbb{N}}$ of stochastic measure-valued processes converges. In what follows, we show that, under certain assumptions for $x_{N,k}$ and $\lambda_{N,k}$, this sequence is tight and that each limit process satisfies the same differential equation.

Figure 1: Kernel convergence of the complement of slits.

Definition 2.4. Fix $T > 0$ and let $\mathcal{P}(\mathbb{R})$ be the space of probability measures on \mathbb{R} endowed with the topology of weak convergence (which is a metric space due to the well-known Lévy-Prokhorov metric). We denote by $\mathcal{M}(T) = C([0,T], \mathcal{P}(\mathbb{R}))$ the space of all continuous measure-valued processes on $[0,T]$ endowed with the topology of uniform convergence.

For every $N \in \mathbb{N}$, $\alpha_{N,t}$ can be regarded as a random element from $\mathcal{M}(T)$.

2.4 Tightness

We call a sequence $\{\mu_N\}_{\mathbb{N}}$ of random elements from $C([0,T],\mathbb{R})$ (or $\mathcal{M}(T)$) tight if there exists a subsequence which converges in distribution. By Prohorov’s Theorem ([Bil99, Section 5]), this coincides with the usual definition of tightness.

We are now going to list certain conditions that guarantee tightness of the sequence $\{\alpha_{N,t}\}_{\mathbb{N}}$ defined in (2.9).

First of all, we make the following assumption:

there exists $C > 0$ such that for every $N \in \mathbb{N}$ it holds $\max_{k \in \{1,...,N\}} \lambda_{N,k} \leq \frac{C}{N}. \quad (a)$
Now, we introduce the "empirical distribution"
\[
\mu_{N,t} = \sum_{k=1}^{N} \frac{1}{N} \delta_{V_{N,k}(t)}
\]
and we let \(L_N : [0,1] \to [0,1] \) be defined as \(L_N(k/N) = \sum_{j=1}^{k} \lambda_{N,j} \) for \(k = 0, \ldots, N \). Next, we extend \(L_N \) to the entire unit interval \([0,1]\) by linear interpolation. Then the family \(\{L_N\}_{N \in \mathbb{N}} \) is uniformly bounded by 1 and equicontinuous by \([a] \). The Ascoli–Arzelà Theorem implies that it is precompact. We will hence assume that the limit exists:
\[
L_N(x) \to L(x) \text{ uniformly on } [0,1] \text{ as } N \to \infty. \tag{b}
\]
Notice that if \(F_{N,t}(x) = \alpha_{N,t}(-\infty, x] \) and \(G_{N,t}(x) = \mu_{N,t}(-\infty, x] \) are the cumulative distribution functions, we have that
\[
F_{N,t}(x) = L_N(G_{N,t}(x)). \tag{2.12}
\]
Finally, the last assumption is rather a technical condition. Namely, we assume that \(\mu_{N,0} \) converges weakly to a probability measure \(\mu \) in such a way that there exists a \(C^2 \)-function \(\varphi : \mathbb{R} \to [1, \infty) \), with \(\varphi', \varphi'' \) bounded and \(\varphi(x) \to \infty \) for \(x \to \pm \infty \) such that
\[
\sup_{N \in \mathbb{N}} \int_{\mathbb{R}} \varphi(x) d\mu_{N,0}(x) < +\infty. \tag{c}
\]
Let \(C^2_b(\mathbb{R}, \mathbb{C}) \) be the space of all twice continuously differentiable functions \(f : \mathbb{R} \to \mathbb{C} \) such that \(f', f'' \) are bounded.

Theorem 2.5. Let \(T > 0 \). Then, under the assumptions \([a] \), \([b] \) and \([c] \), the sequences \(\{\mu_{N,t}\}_{N} \) and \(\{\alpha_{N,t}\}_{N} \) are tight with respect to \(\mathcal{M}(T) \).
Moreover, if \(\mu_{N,t} \) is a converging subsequence of \(\{\mu_{N,t}\}_{N} \) with limit \(\mu_t \), then

1. \(\alpha_{N,k,t} \) converges to the process \(\alpha_t \), and for every \(t \in [0, T] \) the cumulative distribution function \(F_t \) of \(\alpha_t \) is given by
\[
F_t(x) = L \circ G_t(x) \tag{2.13}
\]
where \(G_t \) is the cumulative distribution function of \(\mu_t \);

2. \(\mu_t \) satisfies the (distributional) differential equation
\[
\begin{align*}
\frac{d}{dt} \left(\int_{\mathbb{R}} f(x) d\mu_t(x) \right) &= 2 \int_{\mathbb{R}^2} \frac{f'(x) - f'(y)}{x - y} d\mu_t(x) d\alpha_t(y) \\
\mu_0 &= \mu
\end{align*}
\tag{2.14}
\]
for all \(f \in C^2_b(\mathbb{R}, \mathbb{C}) \).

Remark 2.6. The conditions \([b] \) and \([c] \) are natural in the sense that we should assume convergence of the initial conditions \(x_{N,k} \) and the coefficients \(\lambda_{N,k} \), which are encoded in the functions \(L_N \). If some \(\lambda_{N,k} \) do not converge to 0 as \(N \to \infty \), then some part of the measure \(\alpha_{N,t} \) may escape to infinity as \(N \to \infty \), see Example 2.16.

Proof. To begin with, we notice that proving tightness of \(\{\mu_{N,t}\}_{N} \) can be reduced to proving tightness of stochastic real-valued processes (see [RS93, Section 3] and also [Gür88, Section 1.3]). Thus, the sequence \(\{\mu_{N,t}\}_{N} \) is tight if
\[
\left\{ \int_{\mathbb{R}} \varphi(x) d\mu_{N,t}(x) \right\}_N \text{ and } \left\{ \int_{\mathbb{R}} f(x) d\mu_{N,t}(x) \right\}_N
\]
are tight sequences (with respect to the space \(C([0, T], \mathbb{R}) \) with uniform convergence) for all \(f \in C^2_b(\mathbb{R}, \mathbb{C}) \).
Now, let \(f \in C^2_b(\mathbb{R}, \mathbb{C}) \); Itô’s formula gives
by the Stieltjes-Perron inversion formula (see \cite[Theorem F.2]{Sch12}). Denote its distribution times the Cauchy transform (or Stieltjes transform) of \((2.16) \)

First, let \(\mu_N, t \) converge provided the boundedness of both \(\varphi' \) and \(\varphi'' \), thanks to assumption (b), the same reasoning also implies tightness of the sequence \(\{ \int f(x) d\mu_N, t(x) \} \). Hence, \(\mu_N, t \) is tight and each limit process satisfies equation (2.14).

Finally, it follows from (2.12) and assumption (b) that the convergence of \(\alpha_N, t \) converges provided the convergence of \(\mu_N, t \). In particular, it follows that relation (2.13) holds for the limit processes. \(\square \)

Now we can easily show that if \(\mu_N, t \) is a converging subsequence, then \(g_N, t \) converges as well.

First, let \(C \) be the set of all \(M(z) = \int_{\mathbb{R}} \frac{2}{z-u} d\beta(u) \), where \(\beta \) is a probability measure. So \(M \) is 2 times the Cauchy transform (or Stieltjes transform) of \(\beta \). The measure \(\beta \) can be recovered from \(M \) by the Stieltjes-Perron inversion formula (see \cite[Theorem F.2]{Sch12}). Denote its distribution function by \(F(x) \). Then \(L \circ F(x) \) is also a distribution function, which corresponds to a measure \(\beta \). In this way, we obtain a map \(L : C \to C \) defined as

\[
\int_{\mathbb{R}} \frac{2}{z-u} d\beta(u) \mapsto \int_{\mathbb{R}} \frac{2}{z-u} d\beta(u).
\]

The limit of the Loewner equation can now be described as follows.

Corollary 2.7. Let \(\mu_N, t \) be a converging subsequence with limit \(\mu_t \). Then \(g_N, t \) converges in distribution with respect to locally uniform convergence to \(g_t \), the solution of the Loewner equation

\[
\frac{d}{dt} g_t = (L \circ M_t)(g_t), \tag{2.15}
\]

where \(M_t = \int_{\mathbb{R}} \frac{2}{z-u} d\mu_t(u) \) solves the (abstract) differential equation

\[
\begin{aligned}
\frac{\partial}{\partial t} M_t &= -\frac{\partial}{\partial z} M_t \cdot (L \circ M_t) - M_t \cdot \frac{\partial}{\partial z} (L \circ M_t), \\
M_0(z) &= \int_{\mathbb{R}} \frac{2}{z-u} d\mu(u).
\end{aligned} \tag{2.16}
\]

Remark 2.8. The convergence of \(\alpha_N, t \) and \(g_N, t \) would follow immediately if we knew that equation (2.16) (or, equivalently, (2.14)) had a unique solution. If \(\lambda_N, k = \frac{1}{N} \), then (2.16) is a usual PDE and uniqueness can be shown easily (see Section 2.5).
In order to prove the above corollary, we will need the following control-theoretic result.

Theorem 2.9. Fix some $t > 0$. Let λ be the Lebesgue measure on $[0, t]$ and let $\mathcal{N}(t)$ be the space of all finite measures on $\mathbb{R} \times [0, t]$ endowed with the topology of weak convergence. Let $\{\beta_{N,s}\}_{N \in \mathbb{N}}$ be a sequence of processes from $\mathcal{M}(t)$ and assume $\beta_{N,s} \times \lambda \in \mathcal{N}(t)$ converges weakly to $\beta_s \times \lambda \in \mathcal{N}(t)$ as $N \to \infty$. Denote with $h_{N,s}$, $s \in [0, t]$, the solution to the Loewner equation

$$
\frac{d}{ds} h_{N,s}(z) = \int_{\mathbb{R}} \frac{1}{h_{N,s}(u) - z} \, \beta_{N,s}(u), \quad h_{N,0}(z) = z.
$$

Then $h_{N,s}$ converges locally uniformly to h_t, where h_s, $s \in [0, t]$, is the solution to

$$
\frac{d}{ds} h_s(z) = \int_{\mathbb{R}} \frac{2}{h_s(u) - z} \, \beta_s(u), \quad h_0(z) = z.
$$

A proof of the above theorem can be found in [JVST12, Proposition 1] or [MS13, Theorem 1.1]. Notice that even though both results consider the radial Loewner equation, the proofs can be easily adapted to the chordal case.

Proof of Corollary 2.7. For $z \in \mathbb{H}$, let $f(x) = \frac{2}{2 + x}$. Then $f \in C^2_\text{c}(\mathbb{R}, \mathbb{C})$. Define now $M_t(z) = \int_{\mathbb{R}} f(x) \, d\alpha_t(x)$; then $(\mathcal{L} \circ M_t)(z) = \int_{\mathbb{R}} f(x) \, d\alpha_t(x)$, where α_t is the limit of $\alpha_{N_k,t}$, and Theorem 2.5 implies

$$
\frac{\partial}{\partial t} M_t(z) = 4 \int_{\mathbb{R}^2} \frac{1}{(z - x)^2 - (z - y)^2} \, d\alpha_t(x) d\alpha_t(y) = 4 \int_{\mathbb{R}^2} \frac{2z - x - y}{(z - x)^2(z - y)^2} \, d\mu_t(x) d\alpha_t(y)
$$

$$
= \int_{\mathbb{R}^2} \frac{2}{(z - x)^2(z - y)^2} \, d\mu_t(x) d\alpha_t(y) + \frac{2}{(z - x)(z - y)^2} \, d\mu_t(x) d\alpha_t(y)
$$

$$
= -\frac{\partial}{\partial z} M_t \cdot (\mathcal{L} \circ M_t) - M_t \cdot \frac{\partial}{\partial z} (\mathcal{L} \circ M_t).
$$

Furthermore, let g_t be the solution to

$$
\frac{d}{dt} g_t = (\mathcal{L} \circ M_t)(g_t), \quad g_0(z) = z.
$$

Fix some $t > 0$. The canonical mapping $\mathcal{M}(t) \ni \alpha_s \mapsto \alpha_s \times \lambda \in \mathcal{N}(t)$ is continuous. It follows from the Continuous Mapping Theorem (see [Bil99], p. 20) that $\alpha_{N_k,t}$ converges in distribution with respect to weak convergence to $\alpha_{t} \times \lambda$.

Hence, Theorem 2.9 and again the Continuous Mapping Theorem imply that $g_{N_k,t}$, which is the solution to (2.10), converges in distribution to g_t with respect to locally uniform convergence.

2.5 The simultaneous case

In the case $\lambda_{N,k} = \frac{1}{N}$ for all k, which we call the *simultaneous* case, equation (2.7) becomes

$$
\frac{dV_{N,k}}{dt} = \sum_{j \neq k} \frac{4}{N} \frac{1}{V_{N,k} - V_{N,j}} \, dt + \frac{\sqrt{\kappa}}{\sqrt{N}} dB_{N,k}, \tag{2.17}
$$

a process that is quite similar to a Dyson Brownian motion.

Note that in such a case $\mu_{N,t} = \alpha_{N,t}$ and \mathcal{L} is the identity map. If α_t is the limit of a converging subsequence of $\{\alpha_{N,t}\}_N$ and $M_t(z) = \int_{\mathbb{R}} \frac{2}{2 + u} \, d\alpha_t(u)$, then M_t satisfies the complex Burgers equation

$$
\left\{ \begin{array}{l}
\frac{\partial}{\partial t} M_t = -2M_t \cdot \frac{\partial}{\partial z} M_t(z) \\
M_0(z) = \int_{\mathbb{R}} \frac{2}{z - u} \, d\alpha_0(u)
\end{array} \right., \tag{2.18}
$$

and the the limit of $g_{N_k,t}$ satisfies

$$
\frac{d}{dt} g_t = M_t(g_t), \quad g_0(z) = z. \tag{2.19}
$$

If we put $f_t = g_t^{-1}$, we obtain the Loewner PDE mentioned in Section 1

$$
\frac{\partial f_t(z)}{\partial t} = -\frac{\partial f_t(z)}{\partial z} \cdot M_t(z).
$$
Theorem 2.10. Under the assumptions of Theorem [2.5] with \(\lambda_{N,k} = \frac{k}{N} \), the sequences \(\alpha_{N,t} \) and \(g_{N,\alpha} \) converge in distribution as \(N \to \infty \).

As already mentioned, this follows as soon as we know that equation (2.18) has a unique solution, which is shown, e.g., in [RS93 Section 4] or [CL97 Section 5]. We give here another short proof.

Proof. Let \(M_t \) be a solution of (2.18). As \(M_t \) has no zeros in \(\mathbb{H} \) we can consider \(F_t := 1/M_t \) which satisfies \(\frac{d}{dt} F_t = -2F_t^{-1} \cdot \frac{d}{dt} F_t \). Next we use the fact that every \(F_t \) is univalent in a region \(\Gamma_{\alpha(t),\beta(t)} \), where

\[
\Gamma_{\alpha,\beta} := \{ z \in \mathbb{H} \mid \text{Im}(z) > \beta, \text{Im}(z) > \alpha|\text{Re}(z)| \}, \quad \alpha, \beta > 0,
\]

see [BV93] Proposition 5.4. For \(t \in [0,T] \) we find \(\alpha_0 \) and \(\beta_0 \) such that \(F_t \) is univalent in \(\Gamma_{\alpha_0,\beta_0} \) for all \(t \in [0,T] \).

Thus we can define \(V_t(z) = F_t^{-1}(z) \) for \(z \in \Gamma_{\alpha_0,\beta_0} \) and a simple calculation gives

\[
\frac{\partial}{\partial t} V_t(z) = \frac{2}{z}, \quad V_0(z) = (1/M_0)^{-1}(z).
\]

Obviously, \(V_t \) and hence also \(M_t \), is uniquely determined.

\[\square \]

Remark 2.11. Transforms like \(\mu_t \to V_t(z) \) appear in free probability theory, which was introduced by D. Voiculescu in the 1980’s (in [AEPA09, p. 3059], \(V_t(z) - z \) is called Voiculescu transform).

We notice that Wigner’s semicircle law appears here as follows: for \(\alpha_0 = \delta_0 \), the solution of (2.18) is given by \(M_t(z) = \frac{4}{z + \sqrt{z^2 - 16t}} \), which is 2 times the Cauchy transform of the centred semicircle law with variance \(4t \).

For relations between the chordal (and radial) Loewner equation to non-commutative probability theory, we refer to [Bau04, Sch10].

Remark 2.12. In [dMST10], the authors prove some geometric properties of the solution \(g_t \) of (2.19), under the assumption that the support of \(\alpha_0 \) is bounded. We mention one property of this case, which will be needed later on.

The measures \(\nu_t \) “grow” continuously in the following sense: \(\text{supp} \alpha_t \subset \text{supp} \alpha_s \) for all \(s \leq t \) and for each \(x \in \mathbb{R} \setminus \text{supp} \alpha_s \) there exists \(T > s \) such that \(x \notin \text{supp} \alpha_t \) for all \(t \leq T \). This is actually a consequence of the theory of the real Burgers equation (see [dMST10 Section 3.2]).

Remark 2.13. Let \(M_t \) be a solution of (2.18) and \(c > 0 \). Define \(G_t(z) := c \cdot M_{t,c}(c \cdot z) \). Then \(G_t \) also satisfies (2.18) with initial value \(G_0(z) = c \cdot M_0(c \cdot z) \). Fix some \(T > 0 \). As \(G_0(z) \to \frac{2}{z} \) when \(c \to \infty \), we obtain together with Remark 2.11 the long time behaviour

\[
\lim_{c \to \infty} c \cdot M_{t,c,T}(c \cdot z) = \frac{4}{z + \sqrt{z^2 - 16t}} \quad \text{or} \quad M_t(z) \sim \frac{4}{z + \sqrt{z^2 - 16t}} \quad \text{as} \quad t \to \infty.
\]

2.6 Examples

In the following we consider three examples. In all three cases we assume that \(\kappa = 0 \), i.e. we look at the deterministic case to make the differential equations somewhat simpler.

The proof of Theorem 2.5 shows that the sequence \(\frac{d}{dt} \left(\int f(x) d\mu_{N,t}(x) \right) \), as a sequence of functions on \([0,T]\), is uniformly bounded. In general, this is not true for \(\alpha_{N,t} \).

Example 2.14. Let \(S_N = 1 + \frac{N+1}{2N} \). We choose

\[
x_{N,k} = \frac{k}{N^2} \quad \text{and} \quad \lambda_{N,k} = \frac{1}{S_N} \left(1 + \frac{k}{N} \right), \quad \frac{1}{N}.
\]

Obviously,

\[
\alpha_{N,0} \cdot \mu_{N,0} \overset{w}{\to} \delta_0,
\]

and \(\lambda_{N,k} \leq C/N \) for some \(C > 0 \) as \(\lambda_{N,k} \leq \lambda_{N,N} \sim \frac{2}{N^2} \) as \(N \to \infty \). Furthermore, as \(x_{N,k} \in [0,1] \) for all \(k, N \), it is easy to see that condition (1) is satisfied.

Finally, \(L_N(k/N) \) is given by \(L_N(k/N) = \sum_{j=1}^{N} \lambda_{N,j} = \frac{1}{S_N} (\frac{k}{N} + \frac{k}{N} \cdot \frac{N+1}{2N}) \), which shows that \(L_N \) converges uniformly to \(L(x) = \frac{2}{x} (x + \frac{x^2}{2}) \). Consequently, all the assumptions of Theorem 2.3 are satisfied.

Proposition 2.15. Under the assumptions of Example 2.14, there exists \(f \in C^0_b(\mathbb{R}, \mathbb{C}) \) such that \(\frac{d}{dt} \left(\int f(x) d\alpha_{N,t}(x) \right) |_{t=0} \) is unbounded.
Proof. Note that
\[
\frac{\lambda_{N,k} - \lambda_{N,j}}{x_{N,k} - x_{N,j}} = 1/S_N \frac{k/N^2 - j/N^2}{k/N^2 - j/N^2} = 1/S_N. \tag{*}
\]

Let \(f \in C^2_b(\mathbb{R}, \mathbb{C}) \). Then we obtain
\[
\frac{d}{dt} \left(\int_{\mathbb{R}} f(x) \, d\alpha_{N,t}(x) \right) = \frac{d}{dt} \left(\sum_{k=1}^{N} \lambda_{N,k} f(V_{N,k}(t)) \right) = \sum_{k=1}^{N} \lambda_{N,k} f'(V_{N,k}(t)) \sum_{j \neq k} \frac{2(\lambda_{N,k} + \lambda_{N,j})}{V_{N,k}(t) - V_{N,j}(t)}
\]
\[
= \sum_{k=1}^{N} \lambda_{N,k} f'(V_{N,k}(t)) \sum_{j \neq k} \frac{2\lambda_{N,j}}{V_{N,k}(t) - V_{N,j}(t)} + \sum_{k=1}^{N} \lambda_{N,k}^2 f''(V_{N,k}(t)) \sum_{j \neq k} \frac{2}{V_{N,k}(t) - V_{N,j}(t)}
\]
\[
= \int_{\mathbb{R}^2} \frac{2 f'(x)}{x-y} \, d\alpha_{N,t}(x) d\alpha_{N,t}(y) + 2 \sum_{j \neq k} \frac{\lambda_{N,k}^2 f''(V_{N,k}(t))}{V_{N,k}(t) - V_{N,j}(t)}
\]
\[
+ \sum_{j \neq k} \frac{\lambda_{N,k}^2 f'(V_{N,k}(t)) - \lambda_{N,j}^2 f'(V_{N,j}(t))}{V_{N,k}(t) - V_{N,j}(t)}.
\]

Now assume that \(f'(x) = 1 \) for all \(x \in [0, 1] \). It is easy to see that the first two terms are uniformly bounded. However,
\[
T_N(0) = \sum_{j \neq k} \frac{\lambda_{N,k}^2 - \lambda_{N,j}^2}{x_{N,k} - x_{N,j}} = \sum_{j \neq k} (\lambda_{N,k} + \lambda_{N,j})/S_N \leq \sum_{j \neq k} \lambda_{N,1}/S_N
\]
\[
= (N^2 - N) \left(\frac{1}{N} + \frac{1}{N^2} \right) \to \infty \quad \text{as} \quad N \to \infty.
\]

Next we have a look at two examples where condition \((\text{ii}) \) is not satisfied, as for every \(N \) there is one coefficient \(\lambda_{N,k} = \frac{1}{2} \).

Example 2.16. For \(N \geq 2 \), let
\[
x_{N,k} = \frac{k}{N} \quad \text{and} \quad \lambda_{N,k} = \frac{1}{2(N-1)} \quad \text{for all} \quad k \neq N, \quad \text{and} \quad x_{N,N} = 2, \quad \lambda_{N,N} = \frac{1}{2}.
\]

Proposition 2.17. Let \(T > 0 \). Under the assumptions of Example 2.16 the sequence \(\{\alpha_{N,t}\}_N \) is not tight with respect to the topology of \(\mathcal{M}(T) \).

Proof. We show that \(V_{N,N}(t) \to +\infty \) as \(N \to \infty \) for every \(t > 0 \). As \(V_{N,N} \) carries the mass 1/2, this proves that \(\{\alpha_{N,t}\}_N \) is not tight.

First, we need an upper bound for \(V_{N,N-1} \). For \(k \in \{1, \ldots, N-1\} \) we have
\[
dV_{N,k}(t) \leq \sum_{j \neq k, N} \frac{2}{V_{N,k}(t) - V_{N,j}(t)} \, dt.
\]

Let \(W_{N,1}, \ldots, W_{N,N-1} \) be the of solution the system
\[
dW_{N,k}(t) = \sum_{j \neq k, N} \frac{2}{W_{N,k}(t) - W_{N,j}(t)} \, dt, \quad W_{N,k}(0) = x_{N,k}.
\]

As the function
\[
(x_1, \ldots, x_{N-1}) \mapsto \left(\sum_{j \neq 1, N} \frac{2}{x_1 - x_j}, \ldots, \sum_{j \neq N-1, N} \frac{2}{x_{N-1} - x_j} \right)
\]
\[
\text{(10)}
\]
is quasimonotone, it follows that $V_{N,k}(t) \leq W_{N,k}(t)$ for all $t \geq 0$ (Theorem 4.2 in [LL80]). Note that $W_{N,1}, \ldots, W_{N,N-1}$ is a simultaneous multiple SLE process for $N-1$ curves, each growing with “speed” $\frac{1}{2(N-1)}$. From Remark 2.12 we conclude that there exists $T_0 > 0$ and a bound $B_1 \in (1,2)$ such that $W_{N,N-1}(t) \leq B_1$ for all $t \in [0,T_0]$ and $N \geq 2$. Hence, $V_{N,k}(t) \leq B_1 < 2$ for all $t \in [0,T_0]$.

This upper bound now gives us also a lower bound as follows: As $\frac{3}{4} V_{N,N}(t) \geq 0$ and $V_{N,N}(0) = 2$ we have $V_{N,N}(t) \geq 2$ for all $t \geq 0$. Thus, for $k \in \{1, \ldots, N-1\}$ we have

$$
\sum_{j \neq k,N} \frac{2}{N-1} \left(V_{N,k}(t) - V_{N,j}(t) \right) \ dt + \frac{2}{V_{N,k}(t) - V_{N,N}(t)} \ dt \\
\geq \sum_{j \neq k,N} \frac{2}{N-1} \left(V_{N,k}(t) - V_{N,j}(t) \right) \ dt + \frac{2}{B_1 - 2} \ dt.
$$

Let $Y_{N,1}, \ldots, Y_{N,N-1}$ be the of solution the system

$$
dY_{N,k}(t) = \sum_{j \neq k,N} \frac{2}{N-1} \left(Y_{N,k}(t) - Y_{N,j}(t) \right) \ dt + \frac{2}{B_1 - 2} \ dt, \quad Y_{N,k}(0) = x_{N,k}.
$$

From [CL97], Theorem 5.1, it follows that the sequence $w_{N,t} = \sum_{k=1}^{N-1} \frac{1}{N-1} \delta_{Y_{N,k}(t)}$ of measure-valued processes converges as $N \to \infty$. This does not imply that $Y_{N,1}(t)$ is bounded from below, but we can conclude that, for example, $Y_{N,[N/2]}(t)$ is bounded from below, i.e. there exists $B_2 < 1$ such that $Y_{N,[N/2]}(t) \geq B_2$ for all $t \in [0,T_0]$.

Now we look at $V_{N,N}$, which satisfies

$$
dV_{N,N} = \sum_{j \neq N} \frac{2}{N-1} \left(V_{N,N}(t) - V_{N,j}(t) \right) \ dt + \frac{B_2}{V_{N,N}(t) - B_2} \ dt
$$

for $t \in [0,T_0]$, which implies

$$
V_{N,N}(t) \geq B_2 + \sqrt{4 - 4B_2 + B_2^2 - 2t + 2[N/2]t}.
$$

Hence, $V_{N,N}(t) \to \infty$ for every $t \in (0,T_0]$ as $N \to \infty$. As $t \mapsto V_{N,N}(t)$ is increasing, we conclude that $V_{N,N}(t) \to \infty$ for every $t > 0$.

Even though $\{\alpha_{N,t}\}_N$ is not tight in this example, it is easy to see that $g_{N,t}$ converges as $N \to \infty$. If we decompose $\alpha_{N,t} = \beta_{N,t} + \gamma_{N,t}$, then it can easily be shown that $\beta_{N,t}$ converges to a process β and that $P_1(\alpha) = \int_{\mathbb{R}} \frac{2}{1-u} \ d\beta(u)$ satisfies a Burgers equation.

Example 2.18. Assume that $N = 2K + 1$, $K \in \mathbb{N}$, and let $x_{N,k} \in [-2,1]$ and $x_{N,2K+2-k} = -x_{N,k}$ for all $k \leq K$.

Assume that $x_{N,K+1} = 0$. The coefficients $\lambda_{N,k}$ are chosen as $\lambda_{N,K+1} = 1/2$, $\lambda_{N,k} = \frac{1}{4K}$, $k \neq K + 1$.

As $N \to \infty$, the sequence L_N converges pointwise, but not uniformly, to $L(x) = 1/2x$, $x \in [0,1/2)$, $L(x) = 1/2x + 1/2$, $x \in [1/2,1]$.

Proposition 2.19. Under the assumptions of example 2.18 there exists $T_0 > 0$ such that the sequence $\{\alpha_{N,t}\}_N$ is tight with respect to the topology of $\mathcal{M}(T_0)$.

Proof. By symmetry, we have $V_{N,K+1}(t) = 0$ for every $K \in \mathbb{N}$ and $t \geq 0$ and we can decompose the measure $\alpha_{N,t}$ as $\alpha_{N,t} = \beta_{N,t} + \gamma_{N,t}$, where the support of $\beta_{N,t}$ is contained in $(-\infty,0)$ and $\gamma_{N,t}(A) = \beta_{N,t}(-A)$ for every Borel set A.

Just as in the proof of Proposition 2.17, we obtain that there exist $T_0 > 0$ and $B \in (-1,0)$ such that

$$
V_{N,K}(t) \leq B \quad \text{for all } K \in \mathbb{N} \text{ and } t \in [0,T_0].
$$

Now let $f \in C^2_0(\mathbb{R}, \mathbb{C})$. Then we have
It seems that the last two examples behave in the same way when simulations of the driving functions conclude that $t \in [0, T_0]$. As already mentioned in Remark 2.8, the convergence of $\{\alpha_{N,t}\}_N$ in distributional sense at $t = 0$ is shown to be tight. We conclude that $\{\beta_{N,t}\}_N$ and thus $\{\alpha_{N,t}\}_N$ is tight w.r.t. $\mathcal{M}(T_0)$.

It seems that the last two examples behave in the same way when $\kappa > 0$. Figures 2 and 3 show simulations of the driving functions $V_{N,1}, \ldots, V_{N,N}$ for these two cases on the time interval $[0, 1]$ for $N = 51$ and $\kappa = 1$. The driving function with mass $\frac{1}{2}$ is coloured red.

Figure 2: Mass $\frac{1}{2}$ in $x_{N,N}$.

Figure 3: Mass $\frac{1}{2}$ in $x_{N,(N-1)/2}$.

2.7 Problems and Remarks

1. As already mentioned in Remark 2.8, the convergence of $g_{N,t}$ from Corollary 2.7 follows as soon as we know that equation (2.16) has only one solution.

2. Example 2.14 suggests that the process α_t might not in general be differentiable (in the distributional sense) at $t = 0$.

Question: Is it always differentiable for $t > 0$?

Also, we notice that in [BBC99] it is shown that, for a special case, α_t has a density with respect to the Lebesgue measure for $t > 0$.

Question: Is this always true for α_t under the assumptions made in Theorem 2.5?

3. Fix a parameter $\kappa \in (0, 4]$. For each $N \in \mathbb{N}$, we consider $2N$ boundary points $0 < p_{N,1} < p_{N,2} < \ldots < p_{N,2N} = 1$ for multiple SLE on \mathbb{H}. We set $p_N := (p_{N,1}, \ldots, p_{N,2N})$. Recall that $\mathcal{S}(p_N)$ is the set of all C_N configurations for these points, endowed with the probabilities given by formula (2.4).

Now we can ask for the limit of $\mathcal{S}(p_N)$ as $N \to \infty$ by using an idea from combinatorics, to encode configurations into Dyck paths.

An N–Dyck path is a continuous function $d : [0, 2N] \to [0, \infty)$ defined as follows:
• $d(0) = 0$ and $d(2N) = 0$,
• $d(k) - d(k + 1) \in \{-1, +1\}$ for all $k \in \{0, ..., 2N - 1\}$,
• for all other points $x \in [0, 2N] \setminus \{0, 1, ..., 2N\}$, $d(x)$ is defined by linear interpolation.

The set of all N--Dyck paths corresponds to the set $S(p_N)$ in the following way. An N--Dyck path can be completely described by $2N$ numbers $L_1, ..., L_{2N} \in \{-1, +1\}$ representing the slopes of the $2N$ line segments. These numbers are determined by a configuration for p_N as follows (see the figures below for an example):

(i) $L_k = +1$ and $L_{k+1} = -1$ if and only if p_k and p_{k+1} are connected by a simple curve;
(ii) $L_k = L_{k+1} = +1$ if and only if the curve connecting p_{k+1} is “contained” in the curve connecting p_k;
(iii) $L_k = L_{k+1} = -1$ if and only if the curve connecting p_k is “contained” in the curve connecting p_{k+1}.

![Figure 4: A Dyck path for $N = 5$.](image)

![Figure 5: The configuration corresponding to Figure 1.](image)

Define also $p_{N,0} := 0$ and fix some $\gamma \in (0, 1]$. Normalize now such a Dyck path d to define a normalized Dyck path as a continuous function $e_N : [0, 1] \to [0, \infty)$ with $e_N(p_{N,0}) = 0$ and

$$e_N(t) = e_N(p_{N,k}) + t \cdot \frac{d(k + 1) - d(k)}{(p_{N,k+1} - p_{N,k})^\gamma} \quad (2.21)$$

for $t \in [p_{N,k}, p_{N,k+1}]$, $k = 0, ..., 2N - 1$. Then the set of all normalized Dyck paths is a subset of the space $C([0, 1], \mathbb{R})$ endowed with the topology of uniform convergence. It becomes a probability space by taking the corresponding probabilities from the set $S(p_N)$. Let $E_N(t)$ be a random path from this set.

Question: Does $E_N(t)$ converge in distribution as $N \to \infty$?

Remark 2.20. Take $p_k = \frac{k}{N}$ and $\gamma = \frac{1}{2}$. If all the probabilities are equally distributed, i.e. the probability for each normalized Dyck path is $\frac{1}{2^N}$, then the corresponding random path $E_N(t)$ converges in distribution to a Brownian excursion process of duration 1 (see [Ric09, Section 1.2] and [MM03]).

Furthermore, we note that the probabilities for configurations are also considered for $\kappa > 4$, e.g. in [KP15].

Question: What can be said about the limit of the probabilities for the set $S(p_N)$ as $\kappa \to 0$?

4. The above questions can be extended to different settings like radial multiple SLE or multiple SLE in multiply connected domains (refer to [Law11]). For instance, in [Car03], the author describes the Loewner equation for radial SLE where N simple curves grow from the boundary of the unit disc \mathbb{D} within \mathbb{D} towards the interior point 0. The radial analogue of Theorem 2.10, i.e. the coefficients in the Loewner equation are $\frac{1}{N}$, can be obtained simply by using the main result of [CL01].

3 Trajectories of a certain quadratic differential

Finally, we take a look at a Loewner equation that describes the growth of N trajectories of a certain quadratic differential. By using the methods from the previous section, we obtain again an abstract differential equation for the limit case $N \to \infty$, which reduces to the Burgers equation in a special case.
Moreover, let a finite (signed) measure \(\mu \) and \(\alpha_{N,j} \in \mathbb{Z} \).

Remark 3.2. If \(\alpha_{N,j} \) such that \(\sum_{k=1}^{N} \alpha_{N,j} = 1 \). The Loewner equation

\[
\frac{d}{dt} V_{N,k}(t) = \sum_{j \neq k} \frac{2 \lambda_{N,j}}{V_{N,k}(t) - V_{N,j}(t)} + \sum_{j=1}^{M_N} \frac{\alpha_{N,j} \lambda_{N,k}}{V_{N,k}(t) - S_{N,j}(t)} + \sum_{j=1}^{M_N} \frac{\alpha_{N,j} \lambda_{N,k}}{V_{N,k}(t) - S_{N,j}(t)}
\]

where \(S_{N,j}(t) = g_{N,t}(\sigma_{N,j}) \).

Remark 3.1. This follows from [Tsa09, Theorem 5.1], where all the degrees \(\mu_k^\pm \) are equal to 0 in our case, as the trajectories form a 90°-angle with the real axis, which is also a trajectory of \(Q(z)dz^2 \) (check p. 564 in [Tsa09]).

Next, define the probability measure \(\mu_{N,t} = \sum_{k=1}^{N} \lambda_{N,k} \delta_{V_{N,k}(t)} \).

Remark 3.2. If \(M_N = 0 \) for all \(N \in \mathbb{N} \) and \(\lambda_{N,k} \leq C/N \) for all \(k,N \) and some \(C > 0 \), then, by the proof of Theorem 3.3, it is easy to that the following holds:

If \(\mu_{N,0} \to \mu \) as \(N \to \infty \) such that \([c] \) is satisfied, then the limit \(\mu_t \) of \(\mu_{N,t} \) exists, and the transform \(M_t(z) = \int_{\mathbb{R}} \frac{2}{z - u} d\mu_t(u) \) satisfies the Burgers equation

\[
\frac{\partial}{\partial t} M_t = -M_t \cdot \frac{\partial}{\partial z} M_t(z), \quad M_0(z) = \int_{\mathbb{R}} \frac{2}{z - u} d\mu_t(u).
\]

Note that this is equation [2.18] with the 2 replaced by 1. The limit \(g_t \) of \(g_{N,t} \) satisfies \(\frac{\partial}{\partial t} g_t = M_t(g_t) \) and a simple calculation shows that \(\frac{\partial}{\partial t} M_t(g_t(z)) = 0 \), which implies that \(t \mapsto g_t(z_0) \), for \(z_0 \in \mathbb{H} \) fixed, describes a straight line, and that \(M_t(g_t(z_0)) = M_0(z) \).

Assume now \(\lambda_{N,k} = \frac{1}{N} \) for all \(k \) and \(N \). First, we introduce a second measure-valued process

\[
\sigma_{N,t} = \sum_{j=1}^{M_N} \frac{\alpha_{N,j}}{N} \delta_{S_{N,j}(t)},
\]

and we assume that there exists a compact set \(K \subset \mathbb{H} \) such that

\[
\text{supp } \sigma_{N,0} \subset K \quad \text{for all } N \in \mathbb{N}.
\]

Theorem 3.3. Let \(\lambda_{N,k} = \frac{1}{N} \) for all \(k \) and \(N \). Assume that \(\mu_{N,0} \) converges weakly to the probability measure \(\mu \) such that \([c] \) holds. Furthermore, assume that \([d] \) holds and that \(\sigma_{N,0} \) converges weakly to a finite (signed) measure \(\sigma \) as \(N \to \infty \). Then there exists \(T > 0 \) such that \(\{\mu_{N,t}\}_{N \in \mathbb{N}} \) is tight as a sequence in \(\mathcal{M}(T) \).

Moreover, let \(\mu_{N,t} \) be a converging subsequence with limit \(\mu_t \). Then the following two statements hold:

(i) \(\sigma_{N,t} \) converges to a process \(\sigma_t \) and

\[
\frac{d}{dt} \left(\int_{\mathbb{R}} f(x) d\mu_t(x) \right) = \int_{\mathbb{R}^2} \frac{f'(x) - f'(y)}{x - y} d\mu_t(x)d\mu_t(y) + 2Re \left(\int_{\mathbb{H}} \int_{\mathbb{R}} \frac{f'(x)}{x - z} d\mu_t(x)d\sigma_t(z) \right),
\]

\[
\frac{d}{dt} \left(\int_{\mathbb{H}} h(z) d\sigma_t(z) \right) = \int_{\mathbb{H}} \frac{2h'(z)}{z - y} d\sigma_t(z)d\mu_t(y),
\]

for every \(f \in C^2_b(\mathbb{R}, \mathbb{C}) \) and continuously differentiable \(h : \mathbb{H} \to \mathbb{C} \) with \(h' \) bounded.
Finally, we can write the first equation of (i) as
\[d\frac{dt}{dt}g_t(z) = M_t(g_t), \]
\[\frac{\partial}{\partial t} M_t(z) = \frac{\partial}{\partial z} M_t(z) \cdot M_t(z) + 2 \text{Re} \left(\int_{\mathbb{R}} \frac{M_t(z)}{(z - g_t(w))^2} \cdot \frac{M_t(g_t(w))}{(z - g_t(w))^2} \cdot \frac{\partial}{\partial z} M_t(z) \cdot d\sigma(w) \right). \]

Proof. First we note that \(\sigma_{N,t} \) is the pushforward of \(\sigma_{N,0} \) w.r.t. \(g_{N,t} \), i.e.
\[\sigma_{N,t} = \left(g_{N,t} \right)_* (\sigma_{N,0}) \tag{3.1} \]
A normality argument plus assumption (iii) would yield the existence of \(T > 0 \) and a compact set \(K_T \subset \mathbb{H} \) such that
\[\text{supp} \sigma_{N,t} \subset K_T \text{ for all } t \in [0, T]. \tag{3.2} \]

Now let \(f \in C^2_b(\mathbb{R}, \mathbb{C}) \). Then
\[
\frac{d}{dt} \left(\int_{\mathbb{R}} f(x) d\mu_{N,t}(x) \right) = \frac{d}{dt} \left(\sum_{k=1}^{N} \frac{1}{N} f(V_{N,k}(t)) \right)
\]
\[
= \sum_{k=1}^{N} \frac{1}{N} f'(V_{N,k}(t)) \cdot \left(\sum_{j \neq k} \frac{2/N}{V_{N,k}(t) - V_{N,j}(t)} \right) + \sum_{j=1}^{M_N} \frac{\alpha_{N,j}/N}{V_{N,k}(t) - S_{N,j}(t)} + \sum_{j=1}^{M_N} \frac{\alpha_{N,j}/N}{V_{N,k}(t) - S_{N,j}(t)}
\]
\[
= \int_{x \neq y} \frac{f'(x) - f'(y)}{x - y} d\mu_{N,t}(x) d\mu_{N,t}(y) + 2 \text{Re} \left(\int_{\mathbb{H}} \int_{\mathbb{H}} \frac{f'(x)}{x - z} d\mu_{N,t}(x) d\sigma_{N,t}(z) \right).
\]
As in the proof of Theorem 2.5, we conclude that the first term is bounded. The second one is bounded for all \(t \in [0, T] \) because of (3.2) and as \(\sigma \) is finite.
Recall that \(S_{N,j}(t) = \mu_{N,t}(s_{N,j}) \). Thus, for any continuously differentiable \(h : \mathbb{H} \to \mathbb{C} \), with \(h' \) bounded, we get
\[
\frac{d}{dt} \left(\int_{\mathbb{R}} h(z) d\mu_{N,t}(z) \right) = \frac{d}{dt} \left(\sum_{j=1}^{M_N} \frac{\alpha_{N,j}/N}{N} h(S_{N,j}(t)) \right)
\]
\[
= \sum_{j=1}^{M_N} \frac{\alpha_{N,j}/N}{N} h'(S_{N,j}(t)) \cdot \sum_{k=1}^{N} \frac{2/N}{S_{N,j}(t) - V_{N,k}(t)} = \int_{\mathbb{R}} \int_{\mathbb{H}} \frac{2h'(z)}{z - y} d\sigma_{N,t}(z) d\mu_{N,t}(y),
\]
which is also bounded for all \(t \in [0, T] \).
As in the proof of Theorem 2.5, we conclude tightness of the sequences \(\{\mu_{N,t}\}_{n \in \mathbb{N}} \) and \(\{\sigma_{N,t}\}_{n \in \mathbb{N}} \). It should be noted that we do not need a condition like (c) for the convergence of \(\sigma_{N,0} \), as we assumed that the support of \(\sigma_{N,0} \) is contained in a compact set independent of \(N \).

Now let \(\mu_t \) be the limit of a converging subsequence \(\mu_{N,t} \). Relation (3.1) implies that \(\sigma_{N,t} \) converges to \(\sigma := (g_t)_*(\sigma) \) as \(N \to \infty \), and we obtain statement (i).
As in the proof of Corollary 2.7, we conclude that \(g_{N,t} \) converges locally uniformly to \(g_t \) which satisfies
\[\frac{d}{dt} g_t = M_t(g_t). \]

Finally, we can write the first equation of (i) as
\[
\frac{d}{dt} \left(\int_{\mathbb{R}} f(x) d\mu_t(x) \right) = \int_{\mathbb{R}} f'(x) - f'(y) d\mu_t(x) d\mu_t(y) + 2 \text{Re} \left(\int_{\mathbb{R}} \int_{\mathbb{R}} f'(x) d\mu_t(x) d\sigma(w) \right).
\]
For \(f(x) = \frac{2}{x^2} \), \(z \in \mathbb{H} \), this becomes (and we use the calculation from the proof of Corollary 2.7)
\[
\frac{\partial}{\partial t} M_t(z) = \frac{\partial}{\partial z} M_t(z) \cdot M_t(z) + 2 \text{Re} \left(\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{2}{(z - x)(z - g_t(w))^2} - \frac{2}{(z - x)(z - g_t(w))^2} + \frac{2}{(x - z)(z - g_t(w))^2} d\mu_t(x) d\sigma(w) \right)
\]
\[
= \frac{\partial}{\partial z} M_t(z) \cdot M_t(z) + 2 \text{Re} \left(\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{M_t(z)}{(z - g_t(w))^2} - \frac{M_t(g_t(w))}{(z - g_t(w))^2} + \frac{2}{\partial z} M_t(z) \cdot d\sigma(w) \right)
\]
and we are done. \(\square \)
Figure 6 shows a stream plot of the trajectories for $Q(z) = \prod_{k=0}^{9} (z-2k/9+1)^2 \cdot (z-i)^{10} \cdot (z+i)^{10}$, and in Figure 7 $z=i$ is a zero of Q, i.e. $Q(z) = \prod_{k=0}^{9} (z-2k/9+1)^2 \cdot (z-i)^{10} \cdot (z+i)^{10}$.

Figure 6: Pole of order N at $z=i$.

Figure 7: Zero of order N at $z=i$.

References

[AEPA09] O. Arizmendi and V. Pérez-Abreu, The S-transform of symmetric probability measures with unbounded supports, Proc. Amer. Math. Soc. 137 (2009), no. 9, 3057–3066.

[Bau04] R. O. Bauer, Löwner’s equation from a noncommutative probability perspective, J. Theoret. Probab. 17 (2004), no. 2, 435–456.

[BBCL99] A. Bonami, F. Bouchut, E. Cépa, and D. Lépingle, A nonlinear stochastic differential equation involving the Hilbert transform, J. Funct. Anal. 165 (1999), no. 2, 390–406.

[BBK05] M. Bauer, D. Bernard, and K. Kytölä, Multiple Schramm-Loewner evolutions and statistical mechanics martingales, J. Stat. Phys. 120 (2005), no. 5-6, 1125–1163.

[Bil99] P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999, A Wiley-Interscience Publication.

[BV93] H. Bercovici and D. Voiculescu, Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), no. 3, 733–773.

[Boe15] C. Boehm: Loewner equations in multiply connected domains, PhD thesis, Wuerzburg (2015).

[Car03] J. Cardy, Stochastic Loewner evolution and Dyson’s circular ensembles, J. Phys. A 36 (2003), no. 24, L379–L386.

[Cha92] T. Chan, The Wigner semi-circle law and eigenvalues of matrix-valued diffusions, Probab. Theory Related Fields 93 (1992), no. 2, 249–272.

[CL97] E. Cépa and D. Lépingle, Diffusing particles with electrostatic repulsion, Probab. Theory Related Fields 107 (1997), no. 4, 429–449.

[CL01] ______, Brownian particles with electrostatic repulsion on the circle: Dyson’s model for unitary random matrices revisited, ESAIM Probab. Statist. 5 (2001), 203–224 (electronic).

[dMG16] A. del Monaco and P. Gumenyuk, Chordal Loewner equation, Complex analysis and dynamical systems VI. Part 2, Contemp. Math. (2016).

[dMS16] A. del Monaco and S. Schleißinger, Multiple SLE and the complex Burgers equation, Mathematische Nachrichten, to appear (2016).

[Dub07] J. Dubédat, Commutation relations for Schramm-Loewner evolutions, Comm. Pure Appl. Math. 60 (2007), no. 12, 1792–1847.
S. M. Flores and P. Kleban, *A solution space for a system of null-state partial differential equations: Part 1*, Comm. Math. Phys. 333 (2015), no. 1, 389–434.

S. M. Flores and P. Kleban, *A solution space for a system of null-state partial differential equations: Part 2*, Comm. Math. Phys. 333 (2015), no. 1, 435–481.

S. M. Flores and P. Kleban, *A solution space for a system of null-state partial differential equations: Part 3*, Comm. Math. Phys. 333 (2015), no. 2, 597–667.

S. M. Flores and P. Kleban, *A solution space for a system of null-state partial differential equations: Part 4*, Comm. Math. Phys. 333 (2015), no. 2, 669–715.

J. Gärtner, *On the McKean-Vlasov limit for interacting diffusions*, Math. Nachr. 137 (1988), 197–248.

V. V. Goryainov and I. Ba, *Semigroup of conformal mappings of the upper half-plane into itself with hydrodynamic normalization at infinity*, Ukrain. Mat. Zh. 44 (1992), no. 10, 1320–1329.

K. Graham, *On multiple Schramm–Loewner evolutions*, Journal of Statistical Mechanics: Theory and Experiment 2007 (2007), no. 03.

F. Johansson Viklund, A. Sola, and A. Turner, *Scaling limits of anisotropic Hastings-Levitov clusters*, Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012), no. 1, 235–257.

M. J. Kozdron and G. F. Lawler, *The configurational measure on mutually avoiding SLE paths*, Universality and renormalization, Fields Inst. Commun., vol. 50, Amer. Math. Soc., Providence, RI, 2007, pp. 199–224.

M. J. Kozdron, *Using the Schramm-Loewner evolution to explain certain non-local observables in the 2D critical Ising model*, J. Phys. A 42 (2009), no. 26.

K. Kytölä and E. Peltola, *Pure partition functions of multiple SLEs*, arXiv:1506.02476 (2015).

G. F. Lawler, *Conformally invariant processes in the plane*, Mathematical Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005.

G. F. Lawler, *Defining SLE in multiply connected domains with the Brownian loop measure*, arXiv:1108.4364 (2011).

G. S. Ladde and V. Lakshmikantham, *Stochastic differential inequalities of Itô type*, Applied stochastic processes (Proc. Conf., Univ. Georgia, Athens, Ga., 1978), Academic Press, New York-London, 1980, pp. 109–120.

J.-F. Marckert and A. Mokkadem, *The depth first processes of Galton-Watson trees converge to the same Brownian excursion*, Ann. Probab. 31 (2003), no. 3, 1655–1678.

J. Miller and S. Sheffield, *Quantum Loewner Evolution*, arxiv:1312.5745v1 (2013).

C. Pommerenke, *Univalent functions*, Vandenhoeck & Ruprecht, Göttingen, 1975.

C. Richard, *On q-functional equations and excursion moments*, Discrete Math. 309 (2009), no. 1, 207–230.

L. C. G. Rogers and Z. Shi, *Interacting Brownian particles and the Wigner law*, Probab. Theory Related Fields 95 (1993), no. 4, 555–570.

K. Schm"udgen, *Unbounded self-adjoint operators on Hilbert space*, Graduate Texts in Mathematics, vol. 265, Springer, Dordrecht, 2012.

S. Schleißinger, *The Chordal Loewner Equation and Monotone Probability Theory*, arXiv:1605.06689 (2016).

J. Tsai, *The Loewner driving function of trajectory arcs of quadratic differentials*, J. Math. Anal. Appl. 360 (2009), no. 2, 561–576.

Andrea del Monaco: Università di Roma “Tor Vergata”, 00133 Roma, Italy.

Ikkei Hotta: Yamaguchi University, Ube 755-8611, Japan.

Sebastian Schleißinger: Università di Roma “Tor Vergata”, 00133 Roma, Italy.