KIDNEY

2-Methoxyestradiol Ameliorates Angiotensin II–Induced Hypertension by Inhibiting Cytosolic Phospholipase A₂α Activity in Female Mice

Chi Young Song, Purnima Singh, Mustafa Motiwala, Ji Soo Shin, Jessica Lew, Shubha R. Dutta, Frank J. Gonzalez, Joseph V. Bonventre, Kafait U. Malik

ABSTRACT: We tested the hypothesis that CYP1B1 (cytochrome P450 1B1)-17β-estradiol metabolite 2-methoxyestradiol protects against Ang II (angiotensin II)–induced hypertension by inhibiting group IV cPLA₂α (cytosolic phospholipase A₂α) activity and production of prohypertensive eicosanoids in female mice. Ang II (700 ng/kg per minute, SC) increased mean arterial blood pressure (BP), systolic and diastolic BP measured by radiotelemetry, renal fibrosis, and reactive oxygen species production in wild-type mice (cPLA₂α+/+ Cyp1b1+/+) that were enhanced by ovariectomy and abolished in intact and ovariectomized-cPLA₂α−/− Cyp1b1+/+ mice. Ang II–induced increase in SBP measured by tail-cuff, renal fibrosis, reactive oxygen species production, and cPLA₂α activity measured by its phosphorylation in the kidney, and urinary excretion of prostaglandin E₂ and thromboxane A₂ were enhanced in ovariectomized-cPLA₂α−/− Cyp1b1+/+ and intact cPLA₂α+/− Cyp1b1–/− mice. 2-Methoxyestradiol and arachidonic acid metabolism inhibitor 5,8,11,14-eicosatetraynoic acid attenuated the Ang II–induced increase in SBP, renal fibrosis, reactive oxygen species production, and urinary excretion of prostaglandin E₂, thromboxane A₂, metabolites in ovariectomized-cPLA₂α−/− Cyp1b1+/+ and intact cPLA₂α+/− Cyp1b1–/− mice. Antagonists of prostaglandin E₂ and thromboxane A₂ receptors EP1 and EP3 and TP, respectively, inhibited Ang II–induced increases in SBP and reactive oxygen species production and renal fibrosis in ovariectomized-cPLA₂α−/− Cyp1b1+/+ and intact cPLA₂α+/− Cyp1b1–/− mice. These data suggest that CYP1B1-generated metabolite 2-methoxyestradiol mitigates Ang II–induced hypertension and renal fibrosis by inhibiting cPLA₂α activity, reducing prostaglandin E₂, and thromboxane A₂ production and stimulating EP1 and EP3 and TP receptors, respectively. Thus, 2-methoxyestradiol and the drugs that selectively block EP1 and EP3 and TP receptors could be useful in treating hypertension and its pathogenesis in females.

(Hypertension. 2021;78:1368–1381. DOI: 10.1161/HYPERTENSIONAHA.121.18181.) • Data Supplement

Key Words: blood pressure ■ fibrosis ■ ovariectomy ■ phosphorylation ■ renin

We reported previously that Ang II (angiotensin II), the main product of the renin-angiotensin system, produces hypertension by activating group IV cPLA₂α (cytosolic phospholipase A₂α), resulting in arachidonic acid (AA) release and the generation predominantly of eicosanoids with prohypertensive effects in male mice.1,2 The eicosanoids produced by COX (cyclooxygenase), PGE₂ (prostaglandin E₂) by acting on EP1 and EP3, and TXA₂ (thromboxane A₂) by acting on its TP (prostanoid receptor), contribute to the hypertensive effect of Ang II.3–6 Also, AA metabolites generated via 12/15-lipoxygenase and cytochrome P450 P450 A1, 12S- and 20-hydroxyeicosatetraenoic acids, respectively, participate in the vasoconstrictor effect of Ang II and contribute to its prohypertensive effect.7,8 There is sexual dimorphism in blood pressure (BP) levels in humans and various animal models of hypertension which is attributed to gonadal hormones and sex chromosomes affecting renin-angiotensin and immune cell system activity.9–11 Ang II produces a greater pressor effect in men than...
women. In addition, Ang II infusion produces a higher increase in BP in males than in female animals. Ovariectomy enhances in female mice, and castration reduces the effect of Ang II in male mice to increase BP. However, whether the protection against Ang II–induced hypertension in the females depends on alteration in the activity of the \(\text{cPLA}_2^\alpha \)/AA system is unknown.

Previously, we showed that E2 (17\(^\beta \)-estradiol)–CYP1B1 generated metabolite 2-ME (2-methoxyestradiol) protected against Ang II–induced hypertension in female mice. However, the mechanism by which 2-ME protects against Ang II–induced hypertension is not known. Our preliminary observation that \(\text{cPLA}_2^\alpha \) gene disruption in females, as in male mice, also prevents Ang II–induced hypertension led to the following hypothesis: CYP1B1-E2 generated metabolite 2-ME acts upstream by inhibiting \(\text{cPLA}_2^\alpha \) activity and reducing the generation of prohypertensive eicosanoids, protects against Ang II–induced hypertension and its pathogenesis.

MATERIALS AND METHODS

The authors declare that a detailed Methods Section and all supporting data are available within the article and in the Data Supplement. Other details of analytic methods, study materials, and the data will be made available from the corresponding author upon reasonable request.

Animal Experiments

All experiments were performed in female mice according to protocols approved by the University of Tennessee Health Science center Institutional Animal Care and Use Committee according to the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals. \(\text{cPLA}_2^\alpha \)/\(\text{Cyp1b1}^{+/−} \), \(\text{cPLA}_2^\alpha /\text{Cyp1b1}^{+/−} \), and \(\text{cPLA}_2^\alpha /\text{Cyp1b1}^{−/−} \) female mice on the C57BL/6J background were used in this study. \(\text{CYP1B1}^{−/−} \) and \(\text{CYP1B1}^{+/−} \) female mice, respectively, were bred and genotyped as described previously and also as detailed in the Data Supplement. The animals were randomly divided into various treatment groups and infused...
subcutaneously with Ang II (700 ng/kg per minute) or saline for 14 days through implanted micro-osmotic pumps (Alzet, Cupertino, CA; model 1002). Mean arterial BP, systolic BP (SBP), and diastolic BP, and heart rate was measured by radiotelemetry. In some experiments, as described in the Results section, SBP was measured by the noninvasive tail-cuff method (Kent Scientific; model XBP 1000). To test our hypothesis, we investigated (1) the effect of cPLA2α gene disruption on Ang II–induced hypertension and associated pathogenesis in intact and ovariectomized-cPLA2α+/+;Cyp1b1+/+ mice; (2) the effect of Ang II on renal cPLA2α expression and activity in ovariectomized-cPLA2α+/+;Cyp1b1+/+ and intact and ovariectomized-cPLA2α+/+;Cyp1b1+/+ mice treated with E2 or 2-ME (1.5 mg/kg, IP, every third day), respectively, and their vehicle, dimethyl sulfoxide (DMSO); (3) the effect of Ang II on plasma levels of E2 and 2-ME in intact cPLA2α+/+;Cyp1b1+/+ and cPLA2α−/−;Cyp1b1+/+ mice, and in ovariectomized-cPLA2α+/+;Cyp1b1+/+ and intact cPLA2α−/−;Cyp1b1+/+ mice treated with exogenous E2 or 2-ME and their vehicle (DMSO); (4) the effect of AA metabolism inhibitor ETYA (5, 8, 11,14-eicosatetraenoyl acid, 50 mg/kg, IP, every third day),20 2-ME, and antagonists of EP1 (SC19220, 10 μg/g, SC, second day),21 as well as EP3 (L-798106, 10 μg/g SC, every second day),56 and (terutroban, 10 μg/g SC, every second day)22 receptors and their vehicle (DMSO) on Ang II–induced increase in SBP in ovariectomized-cPLA2α+/+;Cyp1b1+/+ and intact cPLA2α−/−;Cyp1b1+/+ mice. Administration of E2, 2-ME, ETYA, EP1, EP3, and TP receptor antagonists or their vehicle DMSO was initiated with the implantation of micro-osmotic pumps for infusion of Ang II or its vehicle (saline).

Histological Analysis

Kidney sections from various treatment groups were stained with Masson trichrome for collagen detection. The sections were viewed blinded with an Olympus inverted system microscope (Olympus America Inc, model BX41) and photographed using a SPOT Insight digital camera (Diagnostic Instruments Inc, model Insight 2MP Firewire). Images were quantified by ImageJ software version 1.53a (National Institutes of Health, Bethesda, MD).

Western Blot Analysis

Kidneys were lysed in TissueLyser II (Qiagen) and centrifuged; an equal amount of protein from each lysate was subjected to SDS-PAGE and transferred onto a nitrocellulose membrane. The blots were probed with anti-phospho (p)-cPLA2α and cPLA2α and corresponding secondary antibodies.

Urinary Levels of PGE2 and TXB2

Urine samples were collected by placing the mice in metabolic cages for 24 hours. PGE2 is rapidly converted to its 13,14-dihydro-15-keto metabolite in vivo and further undergoes degradation to PGA products. We measured the concentration of its metabolites using a Prostaglandin E Metabolite ELISA kit (Cayman Catalog No. 514531) following the manufacturer’s instructions. This kit enables the conversion of 13,14-dihydro-15-keto PGA3 and 13,14-dihydro-15-keto PGE2 to a single, stable derivative that can be quantified. TXA2 is rapidly hydrolyzed nonenzymatically to form TXB2 and excreted to urine. TXB2 levels were measured using an ELISA kit (Cayman Catalog No. 501020).

Measurement of Renal Reactive Oxygen Species Production

Five micrometer frozen sections of the kidney were exposed to dihydroethidium, and the yellow fluorescence selective for 2-hydroxyethidium as an index of ROS was visualized on a fluorescence microscope (model IX50, Olympus America) with dual-wavelength filter, excitation at 375 nm and emission at 585 nm as described previously.23 Images were quantified by ImageJ software version 1.53a.

Statistical Analysis

The data were analyzed by one-way ANOVA and Tukey test for multiple comparisons. BP data were analyzed by repeated measures 2-way ANOVA followed by Tukey multiple comparison test. The values of different experiments are expressed as mean±SEM, and P<0.05 was considered statistically significant. In most of our experiments, the main comparisons exceeded a power of 0.8 with the number of animals used (Data Supplement).

RESULTS

Ang II Increased Mean Arterial BP, SBP, and Diastolic BP in cPLA2α+/+;Cyp1b1+/+ But Not in Intact or Ovariectomized-cPLA2α−/−;Cyp1b1+/+ Mice

Ang II activates cPLA2α and releases AA from tissue phospholipids,24 and AA metabolites with prohypertensive effects contribute to the development of Ang II–induced hypertension in male mice. Ang II produced a smaller increase in BP in females than in male animals,9–11 which is enhanced by ovariectomized.13 To determine if Ang II–induced hypertension in both intact and ovariectomized female mice is also dependent on cPLA2α, we examined the effect of Ang II on BP in intact and ovariectomized-cPLA2α+/+;Cyp1b1+/+ and cPLA2α−/−;Cyp1b1+/+ mice. Ang II infusion for 2 weeks increased the mean arterial BP, and SBP and diastolic BP, as measured by radiotelemetry in intact (Figure 1A, Figure S1A and S1B in the Data Supplement) and to a much higher level, in ovariectomized-cPLA2α+/+;Cyp1b1+/+ (Figure 1B, and Figure S1D and S1E), but not in intact and ovariectomized-cPLA2α−/−;Cyp1b1+/+ mice (Figure 1A and 1B, and Figure S1A, S1B, S1D, and S1E); heart rate was not altered in these groups of mice (Figure S1C and S1F). The increase in SBP produced by Ang II, measured by tail-cuff and radiotelemetry at the same time of the day, are comparable. Therefore, we measured SBP in the rest of the experiments by tail-cuff.

Ang II Stimulated Renal Collagen Deposition and ROS Production in Intact and Ovariectomized-cPLA2α+/+;Cyp1b1+/+ But Not Intact and Ovariectomized-cPLA2α−/−;Cyp1b1+/+ Mice

Infusion of Ang II–induced collagen deposition as detected by Masson trichrome staining (Figure 1C and
Ang II–Induced Increase in Renal cPLA₂ Activity Was Enhanced in Ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ and Intact cPLA₂⁺/⁻/Cyp1b1⁺/⁻ Mice and Attenuated by E2 Only in Ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻, and by 2-ME in Both the Groups

Several vasoactive agents, including Ang II, increase cPLA₂ activity and release AA in the vascular smooth muscle cells. Infusion of Ang II did not alter cPLA₂ expression but increased cPLA₂ activity, as determined by a higher ratio of p-cPLA₂ to cPLA₂ in the kidneys of cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice. To determine if E2-CYP1B1 generated metabolite 2-ME acts upstream or downstream of cPLA₂, we examined the effect of Ang II on cPLA₂ activity and expression in the kidneys of intact and ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice and intact cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice treated with E2 and 2-ME. Ang II–induced increase in the ratio of p-cPLA₂ expression was enhanced to a much greater degree in the kidneys of ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ compared with the intact cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice (Figure 2A). E2 inhibited the ability of Ang II to increase p-cPLA₂ expression in ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ (Figure 2B) but not ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice (Figure 2C). Treatment with 2-ME attenuated the Ang II–induced increases in the ratio of p-cPLA₂ to cPLA₂ in both ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ (Figure 2D) and intact cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice (Figure 2E). As expected, cPLA₂ expression was not detected in the kidneys of cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice with the cPLA₂ antibody used in our experiment, indicating that this antibody detects only cPLA₂ (Figure 2F).

cPLA₂ Gene Disruption Did not Reduce Plasma Levels of E2 or 2-ME, and Cyp1b1 Gene Disruption Inhibited Plasma Levels of 2-ME but not E2

To determine if cPLA₂ and Cyp1b1 gene disruption affected the production of E2 and 2-ME, we examined the effect of Ang II infusion on plasma levels of E2 and 2-ME in intact cPLA₂⁺/⁻/Cyp1b1⁺/⁻ and cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice and ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ and intact and ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice with exogenous E2 and 2-ME treatment or their vehicle DMSO. The plasma levels of E2 in intact cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice were not different from that observed in cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice and were not altered by Ang II (Figure S2A). Plasma levels of E2 and 2-ME were reduced in ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ and ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice, and treatment with exogenous E2 but not 2-ME increased levels of E2 (Figure S2A and S2B). Ang II increased plasma levels of 2-ME in both intact cPLA₂⁺/⁻/Cyp1b1⁺/⁻ and cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice (Figure S2C). In ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ and intact and ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice, 2-ME levels were reduced, and treatment with exogenous E2 raised the basal level of 2-ME that was increased by Ang II in the former but not in the latter groups of mice (Figure S2C and S2D). Administration of exogenous 2-ME increased its plasma levels in both ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ and ovariectomized-cPLA₂⁺/⁻/Cyp1b1⁺/⁻ mice that were not altered by Ang II (Figure S2C and S2D).
S3A and S3B). The AA metabolism inhibitor ETYA, E2, and 2-ME attenuated the ability of Ang II to increase the urinary excretion of metabolites of PGE$_2$ and TXB$_2$ in ovariectomized-cPLA$_2$$\alpha$+/+Cyp1b1+/+ mice (Figure S3A and S3B), as well as ETYA and 2-ME in intact cPLA$_2$$\alpha$+/+Cyp1b1+/+ mice (Figure S3C and S3D). E2 failed to inhibit Ang II–induced increased urinary excretion of PGE$_2$ metabolites and TXB$_2$ in ovariectomized-cPLA$_2$$\alpha$+/+Cyp1b1+/+ mice (Figure S3C and S3D).
Figure 2. Ang II (angiotensin II) increased renal cPLA2α (cytosolic phospholipase A2α) activation in intact and ovariectomized (OVX)-cPLA2α+/+/-Cyp1b1+/- and intact cPLA2α+/+/-Cyp1b1+/- mice. OVX-cPLA2α+/+/-Cyp1b1+/- mice expressed Ang II-induced phospho (p)-cPLA2α, activation form of cPLA2α, more than intact-cPLA2α+/+/-Cyp1b1+/- mice (A). 17β-estradiol (E2) diminished Ang II–induced p-cPLA2α expression in OVX-cPLA2α+/+/-Cyp1b1+/- (B) but not in OVX-cPLA2α+/+/-Cyp1b1–/– mice (C). 2-methoxyestradiol (2-ME) abolished Ang II–induced cPLA2α activation in OVX-cPLA2α+/+/-Cyp1b1+/- (D) and in intact cPLA2α+/+/-Cyp1b1–/– mice (E). cPLA2α proteins were not detected in OVX-cPLA2α+/+/-Cyp1b1–/– mice (F). Saline was used as a vehicle (Veh) of Ang II (A and F) and dimethyl sulfoxide (B–D) for 2-ME. p-cPLA2α and cPLA2α expressions were analyzed by Western blot. Quantitative data were presented as the relative ratio, p-cPLA2α, and cPLA2α, and on the top of each panel is the representative blot for each group of experiments, respectively. β-actin was used for loading control in intact and OVX-cPLA2α+/+/-Cyp1b1+/- mice (F). Data are mean±SEM (n=3–6 per group) and analyzed by 1-way ANOVA and Tukey multiple comparisons test.
PGE₂-EP1/EP3 and TXA₂-TP Receptor Antagonists Reduced the Ang II–Induced Increase in SBP, Renal Collagen Deposition, and ROS Production in Ovariectomized-cPLA₂α+/+ and cPLA₂α+/+ Cyp1b1–/– Mice

Receptor antagonists of PGE₂-EP1 (EP1RA, SC19220),21 EP3 (EP3RA, L-798106),4 and TXA₂ (tertbutran)22 reduced Ang II–induced increases in SBP, renal collagen deposition, and ROS production in ovariectomized-cPLA₂α+/+ and cPLA₂α+/+ Cyp1b1–/– (Figure 5A through 5C and Figure 6A and 6B) and in intact cPLA₂α+/+ Cyp1b1–/– mice (Figure 5D through 5F and Figure 6C and 6D).

DISCUSSION

The main findings of the present study are that (1) Ang II–induced hypertension and associated renal ROS production and fibrosis are dependent on cPLA₂α in female mice; (2) the E2-CYP1B1 derived metabolite 2-ME acts upstream of cPLA₂α and by inhibiting its activation by Ang II, prevented the production of the AA-generated COX metabolites PGE₂ and TXA₂; (3) ovariectomy and Cyp1b1–/– mice. Treatment with E2 and 2-ME in ovariectomized-cPLA₂α+/+ and cPLA₂α+/+ Cyp1b1–/– mice. However, the administration of exogenous 2-ME increased its plasma levels in all these groups. Previously, we reported that Ang II increased renal CYP1B1 activity without altering its expression that was associated with increased plasma levels of 2-ME.15

The mechanism by which 2-ME inhibits Ang II–induced activation of cPLA₂α is not known. Since 2-ME treatment alone did not alter the activity of cPLA₂α, it appears that 2-ME acts as an inhibitory modulator of Ang II–induced activation of cPLA₂α. 2-ME, which could attenuate cPLA₂α activity via genomic E2 receptor and its nongenomic G-protein coupled estrogen receptor127 by interfering with one or more signaling molecules including the influx of extracellular calcium, calcium-calmodulin-dependent kinase, and extracellular signal-regulated kinase 1/2 activities required for cPLA₂α stimulation by Ang II,2425 remains to be determined.

In our study, the ability of 2-ME to inhibit cPLA₂α activity is unlikely due to downregulation of the AT1a receptor because treatment with 2-ME did not alter AT1 receptor expression in the kidney.17

Ang II increased the urinary excretion of PGE₂ metabolites and TXB₂ in intact cPLA₂α+/+ Cyp1b1–/– but not in cPLA₂α+/+ Cyp1b1–/– mice, and these effects of Ang II were enhanced in ovariectomized-cPLA₂α+/+ Cyp1b1–/– and intact and ovariectomized-cPLA₂α+/+ Cyp1b1–/– mice. Treatment with E2 and 2-ME in ovariectomized-cPLA₂α+/+ Cyp1b1–/– and 2-ME but not E2 in intact and ovariectomized-cPLA₂α+/+ Cyp1b1–/– mice inhibited Ang II–induced increases in urinary excretion of PGE₂ metabolites and TXB₂. These data suggest that 2-ME, by inhibiting cPLA₂α activity and AA-COX-generated metabolites of PGE₂ and TXA₂ ameliorates Ang II–induced hypertension, renal fibrosis, and ROS production. Supporting these conclusions are our findings that 2-ME and the AA metabolism inhibitor ETYA20 attenuated the Ang II–induced increases in SBP, renal fibrosis, and ROS production, and urinary excretion of PGE₂ metabolites and TXB₂ in ovariectomized-cPLA₂α+/+ Cyp1b1–/– and intact cPLA₂α+/+ Cyp1b1–/– mice.
Ang II–induced increases in BP were reported to be responsible for cardiac hypertrophy and fibrosis, along with renal injury.29–32 Cyclic stretch via stress-induced calcium influx activates cPLA2α and releases AA in rabbit proximal tubule cells33 and increases ROS production in striated muscle.34 Therefore, the mechanical stretch caused by Ang II–induced increases in BP might also, by activating cPLA2α, produce PGE2 and TXA2, and 2-ME, by inhibiting cPLA2α activity, prevents the production of these eicosanoids, ROS production, and renal fibrosis in female mice. PGE2 via EP1 and EP3,3,4 and TXA2 through TP receptors,5,35 promote vasoconstrictor and hypertensive effects.

Figure 3. 2-Methoxyestradiol (2-ME) inhibited Ang II (angiotensin II)–induced increase in systolic blood pressure (SBP), renal collagen deposition, and 2-hydroxyethidium (2-OHE) fluorescence in ovariectomized (OVX)-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice.

Systolic blood pressure (SBP) was measured by the tail-cuff method (A and B). Collagen deposition was detected by Masson trichrome staining (C), and reactive oxygen species were measured by DHE staining (E), and the quantitative values were expressed as arbitrary units (AU; D) and (F), respectively. Data are mean±SEM (n=4–6 per group). Data for SBP were analyzed using repeated measures 2-way ANOVA followed by Tukey multiple comparison test (A and B) and, data for collagen deposition and 2-OHE fluorescence by 1-way ANOVA followed by Tukey multiple comparison test (D and F). *P<0.05 vs day 0 value before osmotic pump with Ang II. †P<0.05 vs Ang II alone. A indicates Ang II; and V, vehicle. Saline was used as a vehicle of Ang II and DMSO for 2-ME. Scale bars 50 μm.
Figure 4. ETYA (5,8,11,14-eicosatetraynoic acid) inhibited Ang II (angiotensin II), increased systolic blood pressure (SBP), renal collagen deposition, and 2-hydroxyethidium (2-OHE) fluorescence in ovariectomized (OVX)-cPLA₂α+/−/Cyp1b1−/− and intact cPLA₂α+/+ Cyp1b1−/− mice. SBP was measured by the tail-cuff method in OVX-cPLA₂α+/−/Cyp1b1−/− (A) and intact cPLA₂α+/+ Cyp1b1−/− mice (B), and collagen deposition was measured by Masson trichrome staining (C), and reactive oxygen species were measured by 2-OHE fluorescence (E), and the quantitative values were expressed as arbitrary units (AU; D and F), respectively. Saline was used as a vehicle (Veh) of Ang II and dimethyl sulfoxide for ETYA. Data are mean±SEM (n=5–6 per group). Statistical analysis was performed using repeated measures 2-way ANOVA and Tukey multiple comparisons test (A and B) and 1-way ANOVA and Tukey multiple comparisons test (D and F). *P<0.05 vs day 0 value before osmotic pump with Ang II; †P<0.05 vs Ang II alone. A indicates Ang II; and V, Veh. Scale bars 50 μm.

of Ang II.³⁴,³⁶ PGE₂/EP3 also contributes to L-NAME (Nω-nitro-L-arginine methyl ester hydrochloride)⁳⁷ and high salt diet-fed S-P467L mice with decreased PPARγ (peroxisome proliferator-activated receptor γ) activity-induced hypertension.³⁸ In our study, antagonists of EP1 (SC19220),²¹ EP3 (L-798106),⁴ and TXA₂-TP (terutroban)²² receptors reduced Ang II–induced increases in SBP, renal fibrosis, and ROS production in ovariecotomized-cPLA₂α+/−/Cyp1b1−/− and intact cPLA₂α+/−/Cyp1b1−/− mice. From these observations, it follows
Song et al CYP1B1 and cPLA2α Interaction Ang II Hypertension

that the E2-CYP1B1 generated metabolite 2-ME by inhibiting Ang II–induced cPLA2α activation and production of PGE2 and TXA2, reduced stimulation of EP1 and EP3 and TP receptors, respectively, which ameliorates hypertension and associated renal fibrosis and ROS production most likely consequent to decreased BP. Although EP3 and TP receptor antagonists attenuated Ang II–induced increase in BP in ovariectomized and intact Cyp1b1 gene disrupted mice, EP1 receptor antagonist SC19220 abolished the effect of Ang II in

Figure 5. Prostaglandin E2 receptor antagonist (RA) EP1, EP3, and thromboxane A2 (TP) RA diminished Ang II (angiotensin II)–induced increased systolic blood pressure (SBP) and collagen deposition in ovariectomized (OVX)-cPLA2α+/+/?/Cyp1b1+/+ and intact cPLA2α+/+/?/Cyp1b1−/− mice.

Blood pressure was measured by the tail-cuff method in OVX-cPLA2α+/+/?/Cyp1b1+/+ (A), and intact cPLA2α+/+/?/Cyp1b1−/− mice (D), and the collagen deposition was detected by Masson trichrome staining (B and E), and the quantitative values expressed as an arbitrary unit (AU; C and F), respectively. Saline was used as a vehicle (Veh) of Ang II and dimethyl sulfoxide (DMSO) for EP1, EP3, and TP receptor antagonists. Data are mean±SEM (n=5–6 per group). Statistical analyses were performed using repeated-measures 2-way ANOVA followed by Tukey multiple comparison test (A and D) and 1-way ANOVA followed by Tukey multiple comparison test (C and F). *P<0.05 vs day 0 value before osmotic pump with Ang II; †P<0.05 vs Ang II alone. A indicates Ang II; and V, Veh. Scale bars 50 μm.
Figure 6. EP1, EP3, and TP receptor antagonists prevented Ang II (angiotensin II)–induced increase 2-hydroxyethidium (2-OHE) fluorescence in ovariectomized (OVX)-cPLA$_{2\alpha}^{\alpha+/+}$/Cyp1b1$^{-/-}$ and intact cPLA$_{2\alpha}^{\alpha+/+}$/Cyp1b1$^{-/-}$ mice. Reactive oxygen species were measured by 2-OHE fluorescence in the kidney section of OVX-cPLA$_{2\alpha}^{\alpha+/+}$/Cyp1b1$^{-/-}$ (A), and intact cPLA$_{2\alpha}^{\alpha+/+}$/Cyp1b1$^{-/-}$ mice (C), and quantitative values expressed as arbitrary units (AU), respectively (B and D). Saline was used as a vehicle (Veh) of Ang II and dimethyl sulfoxide for EP1, EP3, and TP receptor antagonists. Data are mean±SEM (n=5–6 per group) and analyzed using 1-way ANOVA and Tukey multiple comparisons test. A indicates Ang II; V, Veh; EP1RA, EP1 receptor antagonist; EP3RA, EP3 receptor antagonist; and TPRA, TP receptor antagonist. Scale bars 50 μm.

Ovariectomized and significantly reduced it in cPLA$_{2\alpha}^{\alpha+/+}$/Cyp1b1$^{-/-}$ mice. EP1 receptor antagonist SC19220 used in our study has been reported not to alter the binding of [3H]PGE$_2$ to mouse cloned EP1 receptor expressed in Chinese hamster ovary cells, but it attenuated the effect of PGE$_2$ to upregulate renin expression in mouse cortical CD-M1 cells expressing EP1 receptors and inhibited binding of [3H]PGE$_2$ to human cloned EP1 receptor expressed in COS cells. One of the limitations of our study is that we did not confirm the selectivity of EP1, EP3, and TP receptor antagonists used in our study. Therefore, we cannot rule out their nonspecific effects. Further studies using EP1, EP3, and TP receptor knockout mice are required to confirm our findings.

In the present study, EP1, EP3, and TP receptor antagonists did not reduce basal SBP in ovariectomized-cPLA$_{2\alpha}^{\alpha+/+}$/Cyp1b1$^{-/-}$ and intact cPLA$_{2\alpha}^{\alpha+/+}$/Cyp1b1$^{-/-}$ mice probably because the amount of PGE$_2$ and TXA$_2$ produced due to low basal cPLA$_{2\alpha}$ activity in the absence of Ang II, was insufficient to alter BP. Therefore, PGE$_2$ and TXA$_2$ via EP1 and EP3 and TP receptors, respectively, appear to promote Ang II–induced increased BP, renal ROS production, and fibrosis by acting as permissive factors in ovariectomized- and Cyp1b1 gene disrupted mice. Ang II promotes PGE$_2$, EP3 receptor-mediated constriction of the femoral artery by increasing cell calcium and activating proline-rich tyrosine kinase and Rho-kinase. However, as stated above, antagonists of EP1 and EP3 and TP receptors did not alter the basal BP. Therefore, activation of EP1, EP3, and TP receptors by PGE$_2$ and TXA$_2$, respectively, in our study could promote the effect of Ang II on vascular tone by facilitating the increase in cell calcium and sensitization to calcium by Rho-kinase activation. Ang II also increases ROS generation and isolevuglandin protein adducts in dendritic cells, T cells activation, and cytokine production that contribute to its hypertensive effect and renal fibrosis. In the L-NAME/high salt–induced model of hypertension, ROS production, dendritic cell activation, accumulation of isolevuglandin protein adducts in spleen cells, and production of proinflammatory cytokines are dependent on PGE$_2$ activated EP3 receptors. PGE$_2$, also via the EP1 receptor,
acts directly on dendritic cells to increase isolevuglandin adducted proteins. The protection against Ang II-induced hypertension in females has been attributed to decreased proinflammatory T cells and increased Treg cell activation, along with increased AT2 and Mas receptor expression and ACE2 in the kidneys of females compared with males. Moreover, L-NAME, an inhibitor of the NOS system, increases BP and reduces the compensatory increase in Treg cells in female rats. 2-ME stimulates NO production and inhibits L-NAME–induced increases in BP and cardiac and renal injury, collagen deposition, and infiltration of ED1+ macrophages in the hearts and kidneys. 2-ME also inhibits activation and proliferation of T and B cells and production of cytokines in vitro and in a model of autoimmune encephalomyelitis. Since cPLA2α is also required for L-NAME–induced hypertension and its associated endothelial dysfunction, and deoxycorticosterone salt-induced hypertension (Song and Malik, unpublished work), isolevuglandins are formed from AA, by inhibiting Ang II–induced cPLA2α activation, AA release, and generation of PGE2 and TXA2, which would reduce stimulation of EP1 and EP3 receptors. This, in turn, would decrease ROS production and isolevuglandin protein adducts in dendritic cells, activation of T cells and generation of cytokines, and increased BP and associated renal fibrosis. However, further studies are required to determine the effect of 2-ME on GPCR/EP1 and EP3 and TXA2/TP receptor-mediated Ang II– and L-NAME–induced isolevuglandin protein adducts formation in dendritic cells, and T lymphocytes and Treg cells activation. Furthermore, protection by 2-ME against eicosanoids with prohypertensive effects generated from AA via lipoxigenase and cytochrome P450 4A1 including 12S-HETE and 20-HETE, respectively, that contribute to Ang II–induced hypertension1 are currently under investigation. Moreover, the contribution of renal sodium transport and renal vascular function to the eicosanoid-mediated effect of 2-ME in lowering Ang II–induced increased BP in ovariec-tomized- and Cyp1b1 gene disrupted mice remains to be determined. Finally, the protective effects of 2-ME on pressure-dependent and independent cardiac hypertrophy and fibrosis and renal injury, lowering cholesterol levels, reducing neointimal growth, angiogenesis, pulmonary hypertension, and preeclampsia, magnesium insufficiency–induced salt-sensitive hypertension with reduced catechol-O-methyltransferase activity, and antitumorogenic actions all of which could be due to its inhibitory effect on cPLA2α activity and generation of eicosanoids that have been implicated in these disorders remains to be explored.

In conclusion, the E2-CYP1B1–generated metabolite 2-ME, by acting upstream of cPLA2α and inhibiting its activation by Ang II, attenuates the COX-α1 metabolites PGE2 and TXA2 and stimulation of EP1 and EP3, and TP receptors, respectively. This, in turn, reduces BP, and renal fibrosis, and ROS production (Graphical Abstract, Figure S4). Therefore, selective inhibitors of EP1, EP3, and TP receptors and 2-ME could be useful for treating hypertension and its pathogenesis in postmenopausal females; hypoestrogenic premenopausal women; women with menstrual irregularities due to ovarian failure; as well as in males.

Perspectives

The protection against Ang II–induced hypertension and associated cardiovascular and renal pathogenesis is mediated by the CYP1B1-E2 derived metabolite 2-ME in female mice. Moreover, Ang II–induced hypertension and its associated pathogenesis are mediated by prohypertensive eicosanoids produced by activation of cPLA2α in male mice. This study furthers our understanding of the mechanism by which the E2-CYP1B1 metabolite 2-ME protects against Ang II–induced hypertension and its pathogenesis by acting upstream of cPLA2α and by inhibiting cPLA2α activation, attenuates the generation of AA metabolites PGE2 and TXA2, and their prohypertensive effects mediated via stimulation of EP1 and EP3, and TP receptors, respectively. However, the site of interaction of 2-ME and cPLA2α is unknown. We recently demonstrated that E2-CYP1B1 generated 2-ME in the paraventricular nucleus, which, by decreasing sympathetic activity, ameliorates Ang II–induced hypertension. Hence, further studies are needed to determine the interaction of the CYP1B1–generated E2 metabolite 2-ME and cPLA2α and AA metabolites in the paraventricular nucleus to elucidate the mechanism that contributes to the protective effect of E2 against Ang II–induced hypertension and its associated pathogenesis. Moreover, it was recently reported that there is an association of the CYP1B1 Leu432Val gene polymorphism with hypertension in a small group of Slovak midlife women. Therefore, it would be important to explore CYP1B1 gene polymorphism further in a larger population of females and males to determine its impact on the contribution of cPLA2α and AA-derived eicosanoids in hypertension and its pathogenesis. Thus, the regulation of CYP1B1–generated E2 metabolite 2-ME and cPLA2α and AA metabolites in the kidney and the paraventricular nucleus is important to explore further how E2 protects against Ang II–induced hypertension and its associated pathogenesis.

ARTICLE INFORMATION

Received August 2, 2021; accepted September 5, 2021.

Affiliations

From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.); Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.); and Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (J.V.B.).
Acknowledgments

We thank Nathan G. Tipton, PhD, Executive Assistant, Department of Physiology, University of Tennessee Health Science Center for his editorial assistance.

Sources of Funding

This work was supported by the National Institutes of Health (NHI) National Heart, Lung, and Blood Institute grants R01HL-19134-45 and University of Tennessee Health Science Center CORNET Award (K.U. Malik). J.V. Bonventre was supported by the NIH, National Institutes of Diabetes, Digestive and Kidney Diseases (NIH) grant 2R01DK097753 and R01DK052381. The contents of this article are solely the authors’ responsibility and do not necessarily represent the official views of the National Heart, Lung, and Blood Institute.

Disclosures

J.V. Bonventre is cofounder and holds equity in Goldfinch Bio. He is a co-inventor on KIM-1 and kidney organoid patents assigned to Mass General Brigham. He is a consultant and owns equity in Coegin Pharma. J.V. Bonventre's interests were reviewed and are managed by Brigham and Women's Hospital and Partners HealthCare International, Boston, MA, in accordance with their conflict of interest policies. The other authors report no conflicts.

REFERENCES

1. Khan NS, Song CY, Jennings BL, Estes AM, Fang XR, Bonventre JV, Malik KU. Cytosolic phospholipase A2α is critical for angiotensin II-induced hypertension and associated cardiovascular pathophysiology. Hypertension 2004;43:364–369. doi: 10.1161/01.HYP.0000120971.49659.6a
2. Khan NS, Song CY, Thirunavukkarasu S, Fang XR, Bonventre JV, Malik KU. Cytosolic phospholipase A2α is essential for renal dysfunction and end-organ damage associated with angiotensin ii-induced hypertension. Am J Hypertens. 2016;29:258–265. doi: 10.1093/ajh/hvp083
3. Guan Y, Zhang Y, Wu J, Qi Z, Yang G, Dou D, Gao Y, Chen L, Zhang X, Davis LS, et al. Anti hypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. J Clin Invest 2007;117:2496–2505. doi: 10.1172/JCI29838
4. Chen L, Miao Y, Zhang Y, Wang X, Liu D, Liu T, Tian X, Yang G, Pu D, Zhang X, Kang J, et al. Inactivation of the E-prostanoid 3 receptor attenuates the angiotensin ii pressor response via decreasing arterial contractility. Arterioscler Thromb Vasc Biol 2012;32:3024–3032. doi: 10.1161/ATVBAHA.112.292405
5. Wilcox CS, Welch WJ, Snellen H. Thromboxane mediates renal hemodynamic response to infused angiotensin II. Kidney Int. 1991;40:1090–1097. doi: 10.1038/kid.1991.319
6. Francois H, Athirakul K, Mao L, Rockman H, Coffman TM. Role for thromboxane A2 receptor and angiotensin type 1 receptor downregulation in rat aortic constriction by activating L-type calcium channels. J Lipid Res. 2003;44:2391–2399. doi: 10.1194/jlr.M300183-JLR200
7. Alonso-Galicia M, Maier KG, Greene AS, Cowley AW Jr, Roman RJ. Role of 20-hydroxyicosatetraenoic acid in the renal and vascularcontractor actions of angiotensin II. Am J Physiol Regul Integr Comp Physiol 2002;283:R60–R66. doi: 10.1152/ajpregu.00664.2001
8. Beckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37:1199–1208. doi: 10.1161/01.HYP.0000120971.49659.6a
9. Sandberg K, Ji H. Sex differences in primary hypertension. J Biol Sex Differ. 2012;2:7. doi: 10.1186/2044-6410-3-7
10. Gils E, Sullivan JC. Sex differences in hypertension: recent advances. Hypertension. 2016;68:1322–1327. doi: 10.1161/HYPERTENSIONAHA.116.06602
11. Toerig TJ, van der Graaf AM, Visser FW, Buikema H, Navis G, Faas MM, Lely AT. Gender differences in response to acute and chronic angiotensin II infusion: a translational approach. Physiol Rep. 2015;3:e12434. doi: 10.1484/phyj.2.12434
12. Xue B, Pamidimukkala J, Hay M. Sex differences in the development of angiotensin II-induced hypertension in conscious mice. Am J Physiol Heart Circ Physiol 2005;288:H2177–H2184. doi: 10.1152/ajpheart.00969.2004
13. Dubey RK, Oparil S, Imthurn B, Jackson EK. Sex hormones and hypertension. Cardiovasc Res. 2002;53:688–708. doi: 10.1016/s0008-6366(01)00527-2
14. Jennings BL, George LW, Pingli AK, Khan NS, Estes AM, Fang XR, Gonzalez FJ, Malik KU. Estrogen metabolism by cytochrome P450 1B1 modulates the hypertensive effect of angiotensin II in female mice. Hypertension. 2014;64:134–140. doi: 10.1161/HYPERTENSIONAHA.114.03275
15. Jacobs K, Schaich MP, Delles C, Schoebel HP, Schmieder RE. Angiotensin II stimulates left ventricular hypertrophy in hypertensive patients independently of blood pressure. Am J Hypertens. 1998;11:42–48. doi: 10.1161/01.HYP.0000115928.11572.73
16. Takemura T, Mimura Y, Ushida T, Sato T, Fujii N, Ohmori Y, Aizawa M, Ueda H, Tamai Y. The role of angiotensin II in the induction of aortic hypertension in mice. Hypertension. 2000;35:161–165. doi: 10.1161/01.HYP.0000050246.27963.70
17. Majid DSA, Gonzalez FJ, Navar LG, Malik KU. 2-Methoxyestradiol reduces angiotensin II-induced hypertension and renal dysfunction in ovariectomized female and intact male mice. Hypertension. 2017;69:1104–1112. doi: 10.1161/HYPERTENSIONAHA.117.09175
18. Song et al CYP1B1 and cPLA2α Interaction Ang II Hypertension
19. Yang H, Miao Y, Zhang Y, Wu J, Qi Z, Yang G, Pu D, Zhang X, Davis LS, et al. Anti hypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. J Clin Invest 2007;117:2496–2505. doi: 10.1172/JCI29838
20. Guan Y, Zhang Y, Wu J, Qi Z, Yang G, Dou D, Gao Y, Chen L, Zhang X, Davis LS, et al. Anti hypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. J Clin Invest 2007;117:2496–2505. doi: 10.1172/JCI29838
21. Gonzalez AA, Salinas-Parrna N, Leach D, Navar LG, Prieto MC. PGE2 upregulates ren through E-prostanoid receptor 1 via PKC/cAMP/CREB pathway in M-1 cells. Am J Physiol Renal Physiol 2017;313:F1038–F1049. doi: 10.1152/ajprenal.00194.2017
22. Zheng S, Song CY, Fang XR, Rhee S, Kim J, Singh P, Connick TE, Malik KU, Bruni JS. Brain testosterone-luteinizing hormone-releasing hormone receptor antagonist (CYP1B1) generates metastable 6α-hydroxytestosterone, a key metabolite that promotes neurogenic hypertension in mice. Hypertension. 2017;69:1104–1112. doi: 10.1161/HYPERTENSIONAHA.117.09175
33. Alexander LD, Alagarsamy S, Douglas JG. Cyclic stretch-induced cPLA2 mediates ERK ½ signaling in rabbit proximal tubule cells. *Kidney Int* 2004;65:515–521.
34. Ward CW, Prosser BL, Lederer WJ. Mechanical stretch-induced activation of ROS/RNS signaling in striated muscle. *Antioxid Redox Signal* 2012;18:939–944. doi: 10.1089/ars.2013.5517
35. Misty M, Nasjletti A. Role of TXA2 in the pathogenesis of severe angiotensin II-salt hypertension. *Adv Prostaglandin Thromboxane Leukot Res* 1989;19:207–210.
36. Bryson TD, Pandrangi TS, Khan SZ, Xu J, Pavlov TS, Ortiz PA, Peterson E, Harding P. The deleterious role of the prostaglandin E2 EP3 receptor in angiotensin II hypertension. *Am J Physiol Heart Circ Physiol* 2020;308(1):H67–H82. doi: 10.1152/ajpheart.00538.2019
37. Xiao L, Itani HA, do Carmo LS, Caner LS, Breyer RM, Harrison DG. Central EP3 (E Prostanoid 3) receptors mediate salt-sensitive hypertension and immune activation. *Hypertension* 2019;74:1507–1515. doi: 10.1161/HYPERTENSIONAHA.119.13850
38. Wu J, Fang S, Lu KT, Wackman K, Schwartzman ML, Dikalov SI, Grobe JL, Abramovitz M, Adam M, Metters KM. Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. *J Biol Chem* 1997;272:26767–26772.
39. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. *Br J Pharmacol* 1997;122:959–967. doi: 10.1038/sj.bjp.0701367
40. Funk CD, Furi L, FitzGerald GA, Grygorczyk R, Rochette C, Bayne MA, Abramovitz M, Adam M, Metters KM. Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. *J Biol Chem* 1997;272:26767–26772.
41. Kraemer MP, Choi H, Reese J, Lamb FS, Breyer RM. Regulation of arterial reactivity by concurrent signaling through the E-prostanoid receptor 3 and angiotensin receptor 1. *Vasc Pharmacol* 2016;64:47–54. doi: 10.1016/j.vph.2016.05.015
42. Wilson DR, Sunjnar M, Kiss E, Sutherland C, Walsh MR. Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+-entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-865, but not Thr-697. *Biochem J* 2005;389(3):763–774. doi: 10.1042/BJ20050237
43. Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J, Bikineyeva AT, Dikalov SI, Xiao L, Chen W, et al. DC isoketal-modified proteins activate T cells and promote hypertension. *J Clin Invest* 2014;124:4642–4656. doi: 10.1172/JCI74084
44. Sullivan JC, Pardeeck JL, Hyndman KA, Pollock JS. Renal NOS activity, expression, and localization in male and female spontaneously hypertensive rats. *Am J Physiol Renal Integr Physiol* 2010;298:F61–R69. doi: 10.1152/ajpregu.00526.2009
45. Ramirez LA, Gillis EE, Musall JB, Mohamed R, Snyder E, El-Marakby A, Sullivan JC. Hypertensive female Sprague-Dawley rats require an intact nitric oxide synthase system for compensatory increases in renal regulatory T cells. *Am J Physiol Renal Physiol* 2020;319:F192–F201. doi: 10.1152/ajprenal.00228.2020
46. Xiao S, Gillespie DG, Baylis C, Jackson EK, Dubey RK. Effects of estradiol and its metabolites on glomerular endothelial nitric oxide synthesis and mesangial cell growth. *Hypertension* 2001;37(2 pt 2):645–650. doi: 10.1161/01.hyp.37.2.645
47. Tofovic SP, Salah EM, Melhem MF, Jackson EK. Estradiol metabolites attenuate renal and cardiovascular injury induced by chronic nitric oxide synthase inhibition. *J Cardiovasc Pharmacol* 2005;46:25–35. doi: 10.1097/01.jcp.0000162765.89437ae
48. Duncan GS, Brenner D, Tusche MW, Brustle A, Knobbe CB, Elia AJ, Mock T, Bray MR, Krammer FH, Mak TW. 2-Methoxyestra diol inhibits experimental autoimmunneencephalomyelitis through suppression of immune cell activation. *Proc Natl Acad Sci USA* 2012;109:21034–21039. doi: 10.1073/pnas.1215558110
49. Yamamoto TK, Ogino K, Tsujimoto S, Saito M, Uozumi N, Shimizu T, Hatisome I. Cytosolic phospholipase A2 alpha contributes to blood pressure increases and endothelial dysfunction under chronic NO inhibition. *Arterioscler Thromb Vasc Biol* 2011;31:1133–1138. doi: 10.1161/ATVBAHA.110.218370
50. Brame CJ, Salomon RG, Morrow JD, Roberts LJ 2nd. Identification of extremely reactive gamma-ketoaldehydes (isolevuglandins) as products of the isoprostane pathway and characterization of their lysyl protein adducts. *J Biol Chem* 1999;274:13139–13146. doi: 10.1074/jbc.274.19.13139
51. Maayah ZH, Levasseur J, Siva Pragasam R, Abdelhamid G, Dyck JRB, Fahliman RP, Siraki AG, El-Kadi AOS. 2-Methoxyestra diol protects against pressure overload-induced left ventricular hypertrophy. *Sci Rep* 2018;8:2780. doi: 10.1038/s41598-018-20613-9
52. Salah E, Bastacky SI, Jackson EK. 2-Methoxyestradiol attenuates angiotensin II-induced hypertension, cardiovascular remodeling, and renal injury. *J Cardiovasc Pharmacol* 2019;73:165–177. doi: 10.1097/FJC.0000000000000649
53. Dubey RK, Jackson EK. Potential vascular actions of 2-methoxyestra diol. *Trends Endocrinol Metab* 2009;20:374–379. doi: 10.1016/j.tem.2009.04.007
54. Tofovic SP, Jackson EK. 2-Methoxyestra diol in pulmonary arterial hypertension: a new disease modifier. 2019;1–26. doi: 10.5772/intechopen.86812
55. Kumagai A, Takeda S, Sohara E, Uchida S, Iijima H, Itakura A, Koya D, Kano K, Kanasaki K. Dietary magnesium insufficiency induces salt-sensitive hypertension in mice associated with reduced kidney catechol-o-methyl transferase activity. *Hypertension* 2021;78:138–150. doi: 10.1161/HYPERTENSIONAHA.120.16377
56. Falbova D, Vorobčová L, Cˇernˇanova L, Cˇernˇanova D, Vorobel’ova L, Benusˇ R, Wso Daniela Siva D. Association of cytochrome P450 1B1 gene polymor phisms and environmental biomarkers with hypertension in Slovak midlife women. *Menopause* 2020;27:1287–1294. doi: 10.1097/GME.0000000000001605