Microbial Quality and the Occurrence of Aflatoxins In Plantain/ Yam And Wheat Flours In Ado-Odo Ota

Okafor, S. E.*, and Eni, A. O.

Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Correspondence: Email: nuella954@gmail.com

ABSTRACT

Flours made from various foods including plantain, yam and wheat are a major part of daily diet for millions of people in Nigeria. If these food crops are not dried rapidly and thoroughly prior to milling, fungal growth and mycotoxin production can occur. Aflatoxins, a type of mycotoxin produced by *Aspergillus* species have been classified as Group 1 human carcinogens hence should be monitored in routinely consumed foods as the populace maybe potentially exposed to doses of aflatoxins in their daily diet. This study sought to determine the microbial quality and the occurrence of fungi and aflatoxins in plantain, yam and wheat purchased from four markets (Oja-ota, Sango, Atan and Owode markets) in Ado Odo Local Government Area. The mean microbial count for each sample was determined by plating each sample on nutrient agar and fungi was isolated by plating on Potato Dextrose Agar. The total aflatoxin content of the food samples was determined using the Agra Quant® competitive enzyme linked immunosorbent assay (ELISA) kit. The highest mean microbial count (9.30 x 10^{13} cfu/g) was observed in a plantain flour bought from Sango market while the lowest (1.16 x 10^{12} cfu/g), was observed in wheat flour from Oja-Ota market. *Aspergillus flavus* was the predominant (31%) aflatoxigenic fungi isolated compared to *A. niger* (21%). The other fungi isolated include *Rhizopus spp, Geotrichium spp*, *Yeast, Penicillium spp* and *Paecilomyces spp*. Aflatoxin was detected in all the food samples tested in this study at concentrations ranging from 0.2 ppb to 5.9 ppb which were all within the CODEX Alimentarius Commission (CAC) aflatoxin acceptable limit of 15 ppb.

Keywords: Aflatoxins, ELISA, *Aspergillus spp, Rhizopus spp, Geotrichium spp, Yeast, Penicillium spp* and *Paecilomyces spp.*

1. INTRODUCTION

The major degradation agents of foods and feedstuffs are fungi which are ubiquitous plant pathogens. Fungal infection of plants results in poor crop yield and quality which translate to economic losses, also toxicity impacts mycotoxins (Makun *et al.*, 2010). Mycotoxins are secondary metabolites produced by the toxigenic strains of fungi during their stationary phase, which impact food stuffs in pre-harvest or under post-harvest conditions. Over 400 mycotoxins have been discovered, but scientists pay more attention to those that have proven to be carcinogenic and/or toxic to humans and animals. The mycotoxins that are considered to be the most significant medically and in the food industry include aflatoxins (* aflatoxin B1*), ochratoxins (ochratoxin A), fumonisins (fumonisin B1), zearalenone, patulin and trichotheceenes (deoxynivalenol) (Huffman *et al.*, 2010). Aflatoxins are produced mainly by *Aspergillus parasiticus* and *Aspergillus flavus* which are found in many countries, especially in the tropical and subtropical regions where there is optimal condition that supports the growth of fungi and the production of toxin (Rustom,
Aflatoxin B₁ (AFB₁), Aflatoxin B₂ (AFB₂), Aflatoxin G₁ (AFG₁) and Aflatoxin G₂ (AFG₂) are the four naturally occurring types amongst the 18 different types of aflatoxins (Filazi and Sireli, 2013). They were named according to the colour they produce when they fluoresce under ultraviolet light; Aflatoxin B₁ and B₂ produces a strong blue colour, hence the “B”, while Aflatoxin G₁ and G₂ are so named because of their greenish-yellow fluorescence (Kensler et al., 2011).

Ochratoxin A is a secondary metabolite of several Aspergillus and Penicillium spp (Duarte et al., 2010). Trichothecces was first isolated from Trichothecces roseum (Yazar and Omurtag, 2008). Fumonisins are a group of non-fluorescent mycotoxins. They were first isolated from the Fusarium verticillioides (Yazar and Omurtag, 2008). Zearalenone is a mycotoxin that is produced primarily by the fungus Fusarium graminearum while Patulin is produced by several species of Aspergillus, Penicillium particularly Penicillium expansum (Puel et al., 2010).

Both in man and animals, the effects of mycotoxins can be chronic manifesting in the form of toxicity to the nervous, respiratory, digestive and circulatory systems or death in extreme cases. These toxins have attracted public health concerns owing to their nephrotoxicity, teratogenicity, immunotoxicity, etc. (Bhat and Vasanthi, 2003). Although inhalation and dermal contact can also expose one to mycotoxins most cases of mycotoxicoses in animals and humans occur through ingestion. Aflatoxin exposure to humans can be direct via consumption of plant products, or indirect via consumption of animal products (meat, milk and eggs) (CAST, 2003).

Within normal food processing temperature range (80°C-121°C), there is little or no destruction of these toxins and they are therefore said to be heat-stable. Therefore, under normal cooking conditions, such as frying and boiling or even following pasteurization; these toxins remain active (Milicevic et al., 2010). Some of the effective food processes include physical treatments such as sorting, cleaning and milling, thermal processing done at very high temperature above 150°C such as baking, frying, roasting (Bullerman and Bianchini, 2007).

Aflatoxins have been classified as a Class 1 human carcinogen by the International Agency for Research on Cancer (IARC, 1993) as it leads to a disease called “hepatocellular carcinoma” (liver cancer) when ingested (Williams et al., 2004), is the third-leading cause of cancer worldwide with about 600,000 fresh cases each year.

In relation to animals, aflatoxin contamination has been shown to reduce food intake, increase liver and kidney weights of farm animals, as well as induce immunosuppression and hepatitis in them; all of which contribute to increased mortality in farm animals (Hussein and Brassel, 2001; Zain, 2011).

Yam flour (gbodo), wheat flour and plantain flour (elubo ogede) are major staple foods of Ado-Odo Ota. The residents of these area consume these products because of their nutritional value.

Poor drying during processing or storage conditions below optimal conditions often encourages contamination by fungi such as Aspergillus, Fusarium and Penicillium. This is because of the residual moisture content in the drying products which predisposes them to mould growth.

Many of the Aspergillus fungi, especially A. flavus and A. parasiticus produce aflatoxins. Aflatoxins are among the most powerful teratogenic, mutagenic and carcinogenic compounds that occur naturally (Jackson and Al-Taher, 2008) and have a striking association with impaired growth in children (Egal et al., 2005; Gong et al., 2003). The disease that results from the ingestion of aflatoxins is referred to as Aflatoxicosis and one of the largest and most...
acute outbreaks of aflatoxicosis ever documented occurred in Kenya in 2004 with 317 cases reported and 125 deaths recorded (CDC, 2004). There is therefore a need for routine assessment of aflatoxins to ensure these food products are safe for consumption. Hence, this research was aimed to determine the microbial quality and the occurrence of aflatoxins of some foods sold in four different markets in Ota, Ogun State.

1.1 Fungi
Fungi are a group of organisms that have a well-defined nuclei but lack chlorophyll, a characteristic of most other plant (Mavor and Harold, 1966). They are a subdivision of the subkingdom Thallophyta. They are made up of assimilative body which could be ameboid or unicellular in some species. Vascular tissue in these organisms are absent. Fungi are heterotrophs and are also made up of multicellular branching filaments called hyphae reproducing asexually by the means of spores (Talbot, 1971). Fungi are ubiquitous eurythermal organism which can grow in a wide range of habitats (Sancho et al., 2007; Hawksworth, 2006; Mueller and Schmit, 2006).

1.2 Mycotoxins and mycotoxin-producing fungi
Mycotoxins are low-molecular-weight natural products produced during the secondary metabolism of filamentous fungi. These metabolites constitute a toxigenically and chemically heterogenous assemblage which can cause disease and death in humans and other vertebrates (Bennett, 1987). The term mycotoxin originated after an unusual veterinary crisis took place near London, England in the year 1960 during which approximately 100,000 turkey pouls died. This mysterious outbreak of turkey X disease was traced to a peanut (groundnut) meal which was contaminated by Aflatoxins, a secondary metabolite produced by Aspergillus flavus (Bennett and Klich, 2003). It is important to note that while all mycotoxins are of fungal origin, not all toxic compounds produced by fungi are called mycotoxins. In referring to mycotoxins, the target and the level of concentration is important. Hence, mycotoxins are made by fungi and are toxic to vertebrates and animal groups in low concentrations (Bennett, 1987). Thus, mycotoxins can be classified as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins, and soforth. Organic chemists have attempted to classify them by their chemical structures (e.g., lactones, coumarins); Cell biologists put them into generic groups such as teratogens, mutagens, carcinogens, and allergens.

In fungal growth and development, mycotoxins have no biochemical significance; however, they vary from simple C4 compounds, e.g. moniliformin, to complex substances such as the phomopsins. Mycotoxins may develop on various foods and feeds at suitable temperature and humidity (Dinis et al., 2007). Mycotoxin exposure to humans may be as a result of exposure to air and dust containing toxins (Jarvis, 2002), consumption of plant-derived foods that are contaminated with toxins and the carry-over of mycotoxins and their metabolites in animal products such as meat and eggs which are then consumed. (CAST, 2003). There are three major genera of fungi that produce mycotoxins and they include Aspergillus, Fusarium and Penicillium. Currently, more than 300 mycotoxins are known. Some of them are of great public health and agro-economic significance and they include aflatoxins, ochratoxins, trichothecenes, zearalenone, fumonisins and ergot alkaloids (Hussein and Brassel, 2001).

1.3 Aflatoxins
Aflatoxins are a group of chemically related mycotoxins produced by a large number of Aspergillus species, primarily Aspergillus flavus and Aspergillus parasiticus. Other species of Aspergillus that can produce these mycotoxins include A. nomius, A. pseudotamarii, A. parvisclerotigenus, A.bombycis of section Flavi, A. ochraceoroseus and A. rambellii from
section Ochraceorosei (IARC, 2002; Frisvad et al., 2004). Aspergillus is a fungus that grows optimally at 25 °C with a minimum necessary water activity of 0.75. Secondary metabolites are produced by Aspergillus at 10-12 °C, but the most toxic ones are produced at 25°C with a water activity of 0.95 (Hesseltine, 1976). Aspergillus contaminate a large portion of the world’s food, some of which include: maize, rice, groundnut, peanut, barley, wheat and soya (Saleemullah et al., 2006; Masoero et al., 2007).

Approximately eighteen types of aflatoxins have been identified, but there are four major naturally occurring types which includes aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) (Saleemullah et al., 2006). AFB1 and AFB2 are primarily produced by Aspergillus flavus while AFG1 and AFG2 are primarily produced by Aspergillus parasiticus (Goto et al., 2013).

The order of toxicity of these aflatoxins is AFB1>AFG1>AFB2>AFG2. However AFB2 and AFG2 are typically nontoxic except they are metabolized into AFB1 and AFG1 respectively inside the cells (Kensler et al., 2011; Filazi and Sireli, 2013). AFB1 is always genotoxic in vitro and in vivo (EFSA, 2007).

![Chemical structures of the four major types of aflatoxins (Zain, 2011)](image_url)

FIGURE 1: Chemical structures of the four major types of aflatoxins (Zain, 2011)

The major types of aflatoxins are named due to blue (B) or green (G) fluorescence under ultraviolet light and their migration patterns during chromatography (Wogan and Busby, 1980; Diekman and Green, 1992). Since 1987, aflatoxin B1 has been classified as a group 1
carcinogen (that means carcinogenic to humans) by The International Agency for Research on Cancer (IARC, 1993), and a group 1 carcinogenic agent since 1993 due to the exposure to hepatitis B virus (Castegnaro & McGregor, 1998). The most prevalent aflatoxin usually found in cases of aflatoxicosis is aflatoxin B1 which is responsible for carcinogenicity, acute toxicity, chronic toxicity, immunotoxicity, teratogenicity and genotoxicity. The metabolic derivative of AFB1 is AFM1 while the metabolic derivate of AFB2 is AFM2; both come from the metabolism of some animals, and are normally found in milk and urine (Strosnider et al., 2006).

1.4 Factors influencing the growth of fungi and mycotoxin-producing fungi in food
Mycotoxigenic fungi are those fungi that produce mycotoxins. Members of the genera Aspergillus, Penicillium and Fusarium are the major mycotoxin-producing fungi. Different factors can promote the growth of fungi and the production of mycotoxins in food items. However, the most important factors include:

i.) Temperature: The optimum temperature of Penicillium is 25°C to 30°C while that of Aspergillus is 30°C to 40°C. The maximum temperature of Penicillium is 28°C to 30°C while that of Aspergillus is 37°C to 47°C. Various Fusarium species can also be regarded as psychrophilic, because of their low optimum temperature of 8°C to 15°C (Moss, 1991).

ii.) Water activity: This is the amount of unbound water in the food which is available for fungal growth. Most storage fungi grow at water activity of less than 0.75 while water activity appreciation varies between 0.61 and 0.91 (Moss, 1991). According to Smith and Moss (1985), moisture content determines whether a substrate can be colonized by microorganisms. These factors enable fungi to degrade complex macromolecular compounds and utilize them for their growth and reproduction; in this process mycotoxins are produced and secreted (Moss, 1996).

iii.) Oxygen: Though oxygen is a necessary factor for the growth of fungi, certain species can grow under anaerobic conditions. The production of mycotoxins is also influenced by oxygen. The growth of Aspergillus is restricted to an oxygen concentration of less than 1% (Pitt and Hocking, 1997).

iv.) pH: Fungi compete with bacteria as food spoilers at high water activities (Wheeler et al., 1991). Most fungi are slightly affected by pH over a broad range, commonly 3 to 8 (Wheeler et al., 1991), however, the pH of a medium may exercise important control over a given morphogenic event without remarkably influencing the overall growth of a fungus (Pitt and Hocking, 1997).
Furthermore, poor hygienic practices during transportation and storage may also facilitate fungal growth which will subsequently lead to mycotoxin production in food items.

1.5 Implication of mycotoxin contamination
The consumption of mycotoxin contaminated food is detrimental to both human and livestock as mycotoxicoses can emerge. Mycotoxicoses can generally be categorized into acute and chronic. Acute toxicity is elicited in a short time while chronic toxicity is characterized by low-dose exposure over a long period of time, leading to cancer and other irreversible effects. The consumption of high to moderate amount of mycotoxins results in acute primary mycotoxicoses while the consumption of moderate to low amount of mycotoxins results in chronic primary mycotoxicoses.

Implication on human health
Acute aflatoxicoses, neonatal jaundice, growth retardation, carcinogenicity and immunological suppression in humans are all as a result of aflatoxins. Since aflatoxin has
been classified as a Group 1 carcinogen by IARC, it is of paramount importance, hence its disease pathway in humans (Figure 5).

FIGURE 2: Aflatoxin and disease pathways in humans (Wu and Khlangwiset, 2010)

From the figure above, the key predisposing factor in pre-harvest aflatoxin contamination is stress of the host plant in field which could be as a result of drought stress, high temperatures or insect damage while the key predisposing factor in post-harvest aflatoxin contamination is poor storage conditions which can range from pest-related crop damage, excessive heat and moisture to prolonged time of storage.

The toxicity of aflatoxin consumption can be exerted in several ways. The intestinal integrity may be altered (Gong *et al.*, 2008) or the expression of cytokines may be modulated. These effects may result in the suppression of the immune system or stunted growth in children.

Aflatoxin is transformed in the liver to its DNA reactive form aflatoxin-8,9-epoxide by P450 enzymes. This molecule may bind to liver proteins and lead to liver failure which will result in acute aflatoxicoses and it may also bind to DNA which serves as a precursor for aflatoxin-induced hepatocellular carcinoma (liver cancer). Chronic infection with hepatitis B virus can have a synergistic effect with aflatoxins which could result in a significantly higher level of cancer risk.

Acute aflatoxicoses is characterized by haemorrhage, edema, alteration in digestion, acute liver damage (which manifests as severe hepatotoxicity with a case fatality rate of approximately 25%). Low-grade fever, anorexia and malaise are early symptoms hepatotoxicity from aflatoxicoses. Acute exposure to these toxins can progress to potentially lethal hepatitis with jaundice, vomiting, abdominal pain and even death (Strosnider *et al.*, 2006).

The effects of chronic aflatoxicoses are usually subclinical and difficult to recognize. However, some of the common symptoms include impaired food conversion and slower rates of growth with or without the production of an overt aflatoxins syndrome. Chronic aflatoxin exposure causes Hepatocellular Carcinoma (HCC), generally in association with hepatitis B.
virus or other predisposing factors. HCC is the sixth most prevalent cancer worldwide (Parkin et al., 2005). It is also important to note that aflatoxicoses can also be as a result of inhalation of the fungal spores as reported in some clinical cases (Dvorackova, 1976).

Implication on animal health
The effects of aflatoxin consumption in all animals is similar, however their susceptibility varies by individual variation, species and age. Anorexia, weight loss, depression, disease, gastrointestinal bleeding, pulmonary edema and liver damage are all symptoms of acute aflatoxicoses (Denli and Pérez, 2006).

Economic Implication of Mycotoxins
Mycotoxin contamination has a far reaching impact on economies. Mycotoxin contamination can also reduce the income of farmers. In respect to livestock production, contamination can lead to mortality which could result in reductions in productivity, weight, feed efficiency, fertility, ability to resist diseases and decrease in the quantity and quality of meat, milk and egg production.

1.6 Mycotoxin levels in food
The consumption of mycotoxin contaminated food will lead to myctoxicoses when the level of mycotoxins that is not safe for consumption is ingested. Hence, the establishment of toxicological safe limits by different regulatory bodies.

TABLE 1: Toxicological Safe Limits for Mycotoxins (Kibe, 2015)

Mycotoxins	Safe Limit
FB1	2.0 µg/kg bodyweight/day
FB2	2.0 µg/kg bodyweight/day
Total FBS	2.0 µg/kg bodyweight/day
AFB1	1.0 ng/kg bodyweight/day
AFB2	1.0 ng/kg bodyweight/day
AFG2	1.0 ng/kg bodyweight/day
DON	1.0 ng/kg bodyweight/day
T-2	0.06 µg/kg bodyweight/day
ZEN	0.05 µg/kg bodyweight/day
OTA	5.0 µg/kg bodyweight/day
2. MATERIALS AND METHOD

2.0 Sample Collection
Yam flour, wheat flour and plantain flour were purchased from four markets (Oja-Ota, Sango, Atan, Owode) in Ado-Ota Ota, Ogun State, Nigeria.

2.1 Sample Preparation
For sample preparation, 10ml of saline solution was dispensed into three test tubes. For each sample, 1g was placed into the first test tube containing 10ml of saline solution making a 10^1 serial dilution, the solution was vortexed and left to stand for 30 minutes then 1ml of the supernatant was taken out from the first tube and put into the second test tube with 9 ml of saline solution to make a 10^2 dilution. The serial dilution was repeated until 10^{-11} dilution was obtained.

2.2 Microbial Load
To determine the microbial load of each sample, 1ml of each dilution 10^{-1} to 10^{-11} was dispensed into sterile labelled petri dishes and 20ml of NA was added to it using the pour plate method (Van soestbergen and Ching, 1969). The plates were incubated at 37 °C for 24 hours. A colony count of each culture plate was performed to determine the optimal dilution factor. The optimal dilutions (10^8 to 10^{11}) were used and 1ml of each’s sample optimal dilutions were plated in duplicates and 20 ml of NA was added to it, swirled gently and left to solidify. The plates were incubated at 37 °C for 24 hours.

2.3 Isolation of fungi
To isolate fungi, 1ml of each’s sample optimal dilutions (10^{-5} to 10^{-7}), was inoculated into a petri dish and 20ml of molten PDA was added using the pour plate method (Van soestbergen and Ching, 1969). The plates were swirled gently and left to solidify. The plates were incubated at 25 °C for 5-7 days. To obtain a pure culture, each distinct fungal colony was sub cultured on fresh petri dishes of PDA using grafting method and incubated at 25 °C for 5-7 days for subsequent taxonomic identification.

2.4 Identification of fungi
The isolated fungal colonies were identified on the basis of their micro and macro morphological characteristics.

2.4.1 Microscopy
A drop of mounting fluid, lactophenol cotton blue solution was placed on a grease free slide. A mycelial mat was transferred on fluid using a sterilized and cooled needle. It was pressed gently to enable it mix properly with the stain. A sterile forceps was then used to place a coverslip on the mycelial mat and blotting paper was used to wipe the excess stain. The preparation was examined under low to high power objectives of the microscope.

2.5 Detection of total aflatoxins in food samples using Enzyme Linked Immunosorbert Assay (ELISA)
The total aflatoxin assay was carried out using the The AgraQuant® Total Aflatoxin Assay 1-20 ppb order #: COKAQ1100. It is a direct competitive ELISA that determines a concentration of total aflatoxin present in a sample. Aflatoxins in samples and control standards are allowed to compete with enzyme-conjugated aflatoxin for the antibody binding sites.
2.5.1 Sample preparation/ extraction
Five grams of the samples were weighed and placed in a clean jar. 25ml of 70/30 (v/v) methanol/water extraction solution was added to the jar and sealed properly (the samples were extracted in a ratio of 1:5 (w:v) of sample to extraction solution respectively). The mixture was shaken for 3 minutes. The samples were allowed to settle and the top layer of the extract was filtered through a whatman #1 filter and the filtrate was collected.

2.5.2 Assay
Seventeen blue-bordered dilution strips were placed in a microwell strip holder. Seventeen antibody coated microwell strips were also placed in a microwell strip holder. Afterwards, 200 µL of conjugate was dispensed into each blue-bordered dilution well. Then 100 µL of each standard or sample was added into the appropriate dilution well containing the 200 µL of conjugate (a fresh pipette tip was used for each standard or sample). Each well was properly mixed by pipetting up and down 3 times and 100 µL of the contents from each dilution well was immediately transferred into a corresponding antibody coated microwell. The microwell was incubated for 15 minutes at room temperature. The contents of the microwell strips were discarded. The microwells were washed by filling each microwell with distilled water, and then the water was dumped from the microwell strips. The microwells were washed five times. Several absorbent paper towels were layered on a flat surface and the microwell strips were tapped on the towel to expel as much residue water as possible. The bottom of the microwells were also dried with a dry cloth or towel. After which 100 µL of the substrate was pipetted in to each microwell strip and a blue color developed. It was incubated at room temperature for 5 minutes. Then 100 µL of stop solution was pipetted into each microwell strip. The color was changed from blue to yellow (the intensity of the color is inversely proportional to the concentration of aflatoxin present in the sample or standard). The strips were read with a microwell reader at 450 nm filter. The optical density (OD) reading was recorded for each microwell. The OD of the samples were compared to the OD’s of the standards and an interpretative result was determined.

3. RESULTS
A total of twelve samples were evaluated in this study and they comprise of three samples each (yam flour (Y), wheat flour (W) and plantain flour (P) from market 1 (Oja-Ota), market 2 (Sango), market 3 (Atan) and market 4 (Owode).
Results of this study showed that the sample with the highest microbial load is plantain flour from Sango at 9.30 x 10^{13} cfu/g while the sample with the lowest microbial load is wheat flour from Oja-Ota at 1.16 x 10^{12} cfu/g. From Oja-Ota market, plantain flour had a microbial load of 2.02 x 10^{12} cfu/g while yam flour had a microbial load of 1.21 x 10^{12} cfu/g. Wheat flour from Sango market had a microbial load of 4.88 x 10^{13} cfu/g while yam flour had a microbial load of 1.6 x 10^{12} cfu/g. From Atan market, yam flour had a microbial load of 7.38 x 10^{13} cfu/g, wheat flour had a microbial load of 3.51 x 10^{13} cfu/g while plantain flour had a microbial load of 3.08 x 10^{12} cfu/g. Plantain flour from Owode market had a microbial load of 3.08 x 10^{12} cfu/g, wheat flour had a microbial load of 1.94 x 10^{12} cfu/g and yam flour had a microbial load of 1.27 x 10^{12} cfu/g (Figure 3).
The result obtained from this study showed that a total number of seven fungi were isolated from the common staple foods purchased from the four different markets in Ado-Odo Ota. The isolated fungi include *Aspergillus flavus*, *Aspergillus niger*, *Rhizopus spp*, *Geotrichum spp*, Yeast, *Penicillium spp* and *Paecilomyces spp*.
Out of the twelve food samples used in this study, *Aspergillus flavus* was isolated from 31% of the food samples, *Aspergillus niger* was isolated from 21% of the food samples, *Rhizopus spp* was isolated from 14% of the food samples, *Paecilomyces spp* was isolated from 10% of the food samples, Yeast was isolated from 10% of the food samples, *Penicillium spp* was isolated from 7% of the food samples and *Geotrichum spp* was isolated from 7% of the food samples (Table 2).

A. flavus, A. niger, Rhizopus spp, Geotrichum spp, Yeast, Penicillium spp and Paecilomyces spp were isolated from the yam flour samples purchased from the various markets. *A. flavus* had the highest incidence level at 25% while *Geotrichum spp, Yeast and Paecilomyces spp* had the lowest incidence level at 8% each. *A. niger, Penicillium spp and Rhizopus spp* had 17% incidence level each. The fungi isolated from the plantain flour samples purchased from the four different markets include: *A. flavus, A. niger, Rhizopus spp, Paecilomyces spp* and *Yeast.* *Aspergillus flavus* had the highest incidence level at 38% while *Rhizopus spp, Yeast and Paecilomyces spp* had the lowest incidence level at 13% each. *A. niger* had 25% incidence level. The fungi isolated from the wheat flour samples purchased from the four different markets include: *A. flavus, A. niger, Rhizopus spp, Paecilomyces spp, Yeast and Geotrichum spp.* *A. flavus* had the highest incidence level at 33% while *Geotrichum spp, Yeast, Rhizopus spp and Paecilomyces spp* had the lowest incidence level of 11% each. *A. niger* had 22% incidence level (Figure 4).

This research study showed that two strains of *Aspergillus* were isolated from the food samples purchased from the various markets in Ado-Odo Ota, Ogun state and they include: *Aspergillus flavus* and *Aspergillus niger.* *Aspergillus flavus* had a higher incidence level at 31% (112°) while *Aspergillus niger* had an incidence level of 21% (74°) amongst other isolated fungi (Figure 5).

Out of the twelve food samples purchased from the four markets, *Aspergillus flavus* was isolated from nine food samples. *Aspergillus flavus* was isolated from yam flour, wheat flour and plantain flour purchased from Oja-Ota, Sango and Atan markets. However, the food samples (yam flour, wheat flour and plantain flour) purchased from Owode market contained no *Aspergillus flavus.* Aflatoxins were detected in the twelve food samples purchased from the four markets (Table 3).

Total aflatoxins: Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1) and Aflatoxin G2 (AFG2) were detected in the twelve food samples purchased from Oja-Ota, Sango, Atan and Owode markets but were within the aflatoxin acceptable limit of 15 ppb established by Codex Alimentarius Commission (Table 4).
FIGURE 3: Microbial load of organisms isolated from common staple foods purchased from four markets in Ado-Odo Ota.
TABLE 2: Fungi isolated from common staple foods purchased from four markets in Ado-Odo Ota

S/N	Sample	LD	Isolated fungal species
1	M1	Yam	Aspergillus flavus, Aspergillus niger, Penicillium spp
2	M1	Plantain	Aspergillus flavus, Aspergillus niger
3	M1	Wheat	Aspergillus flavus, Aspergillus niger, Geotrichum spp
4	M2	Yam	Aspergillus flavus, Aspergillus niger, Rhizopus spp, Penicillium spp
5	Plantain	M2	Aspergillus flavus, Aspergillus niger, Rhizopus spp
6	M3	Wheat	Aspergillus flavus, Rhizopus spp
7	M3	Wheat	Aspergillus flavus, Rhizopus spp, Geotrichum spp
8	M4	Plantain	Aspergillus flavus, Rhizopus spp
9	Plantain	Yeast	Paecilomyces spp
10	Plantain	Yeast	Paecilomyces spp
11	M4	Yeast	Paecilomyces spp
12	M4	Wheat	Paecilomyces spp
FIGURE 4: Incidence of seven fungi isolated from common staple foods purchased from four markets in Ado-Odo Ota.

FIGURE 5: Incidence of the different isolated *Aspergillus* spp from common staple foods purchased from four markets in Ado-Odo Ota.

TABLE 3: The comparison of isolated *A. flavus* from common staple foods to the detection of total aflatoxin using ELISA

S/N	Sample Source	Sample Name	A. flavus Isolated	Aflatoxin Detected

13
	Location	Crop	Preference	Survival
1	Oja-Ota	Yam	Yes	Yes
2	Oja-Ota	Plantain	Yes	Yes
3	Oja-Ota	Wheat	Yes	Yes
4	Sango	Yam	Yes	Yes
5	Sango	Plantain	Yes	Yes
6	Sango	Wheat	Yes	Yes
7	Atan	Wheat	Yes	Yes
8	Atan	Yam	Yes	Yes
9	Atan	Plantain	Yes	Yes
10	Owode	Plantain	No	Yes
11	Owode	Yam	No	Yes
12	Owode	Wheat	No	Yes
4. DISCUSSION

The result from this study showed that the sample with the highest microbial load was plantain flour purchased from Sango with 9.30×10^{13} cfu/g. The samples purchased from Oja-Ota and Owode markets had low microbial count with Oja-Ota having the lowest microbial count values while the food samples purchased from Sango and Atan markets had high microbial counts. The three food samples (yam flour, wheat flour and plantain flour) purchased from Oja-Ota market all had low microbial load compared to other markets. Wheat flour had a microbial load of 1.16×10^{12} cfu/g, yam flour had a microbial load of 1.21×10^{12} cfu/g while plantain flour had a microbial load 2.02×10^{12} cfu/g. The high microbial load from Sango and Atan markets maybe due to poor storage conditions which encouraged proliferation of microorganisms. Enquiries made from the market vendors in Owode market reported that fresh food products are bought from a wholesales person, this may be the reason for a low microbial count in all the food samples purchased from Owode.

From this report, a total of seven fungi (Aspergillus flavus, Aspergillus niger, Rhizopus spp, Geotrichum spp, Yeast, Penicillium spp and Paecilomyces spp) were isolated from the three types of flour samples purchased. Aspergillus flavus, Aspergillus niger, Rhizopus spp, Geotrichum spp, and Penicillium spp were also isolated from flour samples in similar studies (Abulude and Ojediran, 2006; Padonou et al., 2009). Aspergillus flavus, Aspergillus niger and Rhizopus spp were also isolated from all flour samples and this result is similar that of Jonathan et al. (2011). The aflatoxin bearing fungi that grew on the flour samples must have been present in the surrounding air in form of spores following fermentation as a result of the sun drying and

TABLE 4: Summary of ELISA result and total concentration of aflatoxin in common staple foods purchased from four markets in Ado-Odo Ota

S/N	Sample Source	Sample Name	O.D	Ppb	Remark
1	Oja-Ota	Yam	1.015	2.1	Passed
2	Oja-Ota	Plantain	1.142	0.9	Passed
3	Oja-Ota	Wheat	1.508	>REF	Passed
4	Sango	Yam	0.743	5.9	Passed
5	Sango	Plantain	1.099	1.3	Passed
6	Sango	Wheat	1.24	0.2	Passed
7	Atan	Wheat	1.203	0.5	Passed
8	Atan	Yam	0.934	3	Passed
9	Atan	Plantain	1.11	1.2	Passed
10	Owode	Plantain	1.002	2.2	Passed
11	Owode	Yam	0.933	3	Passed
12	Owode	Wheat	1.067	1.5	Passed
storage of the yam and plantation chips prior to milling. Fungi could have been introduced during exposure to and direct contact with agricultural products in the market (Ekundayo, 1986; Aboaba and Amisike, 1991; Okigbo, 2003).

Aspergillus spp are the common fungi isolated in this study and this report is similar to that of Jonathan et al. (2011) which reported *Aspergillus spp* as the common isolated fungi. *Aspergillus flavus* was the most prevalent *Aspergillus spp* with 31% incidence rate followed by *Aspergillus niger* with 21% incidence rate amongst others. The report of this study contradicts the report of (Ajayi and Olorundare, 2014) which stated that *Aspergillus niger* was the most prevalent with 50% incidence rate followed by *Aspergillus flavus* with 6.25% incidence rate amongst others. The high incidence rate of *Aspergillus flavus* in these flour samples may make them unfit for human consumption because of the toxic metabolites (aflatoxins) they produce.

The report of this study showed that aflatoxins were detected in the twelve food samples purchased from Oja-Ota, Sango, Atan and Owode markets. Amongst the fungi isolated in this study, *Aspergillus flavus* is the only fungus that produces aflatoxins (Goto et al., 2013). However, *Aspergillus flavus* was isolated from only nine samples out of the twelve samples used in this study. Yam flour, wheat flour and plantain flour purchased from Owode market contained no *Aspergillus flavus* and this leads us to the question of how aflatoxins were detected from these food samples. *Aspergillus flavus* may have been present in these food samples initially but not during assay in the laboratory because of stress from prolonged storage and very high temperature condition. Also, the presence of aflatoxin in the food samples that contained no *A. flavus* may be a result of contamination from other food products during milling.

Total aflatoxins (AFB1, AFB2, AFG1 and AFG2) were detected in all flour samples (i.e. twelve food samples) used in this study. This study also showed that total aflatoxins were detected in all yam flours and plantain flours purchased and this report corroborates that of Jonathan et al. (2011) which reported the detection of total aflatoxins in yam flour and plantain flour.

Due to the toxigenicity of aflatoxins, International agencies have restricted the level of aflatoxins in food and this level varies from country to country and across regulatory bodies. The level of total aflatoxin content in all flour samples in this study ranged from 0.2 to 5.9 ppb and this is in accordance with Codex Alimentarius Commission (CAC), whose aflatoxin limit is 15 ug/kg or 15 ppb; this implies that the food products are safe for human consumption. However, this report is not in agreement with Jonathan et al. (2011) but corroborates the report of the study conducted in Malawi and Zambia in the year 2014. The total aflatoxin content in the wheat flour samples from this study range from 0 to 1.5 ppb and did not exceed the maximum level of aflatoxins allowed in wheat and wheat by-products established by the European Commission (4.0 ug/kg or 4 ppb) and the Brazilian legislation (5.0 ug/kg or 5 ppb). With this result it is safe to say that the wheat flour sold in these four markets are safe for human consumption as it met the established aflatoxin level of three regulatory bodies.

The low level of aflatoxin content in these food products may be because of predominant atoxigenic strains of *A. flavus*. Research has shown that not all strains of *A. flavus* produces aflatoxins. The International Institute of Tropical Agriculture (IITA) in collaboration with Agriculture Research Service of the United States Department of Agriculture (USDA-ARS), AATF, University of Bonn and University of Ibadan developed an indigenous biological control product named AfIaSafe. AfIaSafe contains a mixture of four atoxigenic strains of *A. flavus* originating from Nigeria on sorghum grain as a carrier.

The strains of *A. flavus* used in the production of AfIaSafe cannot produce aflatoxins because they have inherent defects in one or more of the 26 genes in the aflatoxin biosynthetic
pathway. These strains cannot also be transformed to the toxigenic strains since the selected atoxigenic strains belong to genetic groups that possess only atoxigenic strains. It is important to note that the application of aflasafe does not increase the total number of *Aspergillus spp* in the environment but rather it shifts the strain profile from toxigenic to atoxigenic strains of aflasafe. The protection conferred by aflasafe is a long-lasting one as it extends from field to store thus protecting crops along the entire value chain (from field to fork).

5. CONCLUSION
The overall low aflatoxin concentration of the food samples used in this study are below the aflatoxin limit established by Codex Alimentarius Commission (CAC). This implies that the persons in Ado-Odo Ota are consuming safe wheat flour, yam flour and plantain flour products that are free from aflatoxins’ contamination. However, it could also be possible that other mycotoxins that were not tested for may be present. There is therefore a need to conduct further intensive studies on other mycotoxins in these food products to ensure the well-being of the inhabitants.

It is recommended that farmers should adopt the application of AflaSafe to mitigate aflatoxin contamination of their agricultural products. Proper hygiene should be observed by the market vendors and careful measures should be taken in the application of physical methods like cleaning before and after milling each food product especially in the market places as these methods help in the reduction of aflatoxin contamination but not its total elimination.

REFERENCES

[1] Aboaba, O. O. and Amisike, J. (1991). Storage of melon seeds. *Nigerian Journal of Botany* 4: 213-219.

[2] Abulude, F. O. and Ojediran, V. O. (2006). Development and Quality Evaluation of Fortified ‘Amala’. *Acta Scientiarum Polonorum Technologia Alimentaria* 5(2): 127-134.

[3] Ajayi, A. O. and Olorundare, S. D. (2014). Bacterial and fungal species associated with yam (*Dioscorea rotundata*) rot at Akungba-Akoko, Ondo state of Nigeria. *Applied Science Research Journal* 2(2): 12-28.

[4] Bennett, J. W. (1979). Aflatoxins and anthraquinones from diploids of *Aspergillus parasiticus*. *Journal of General Microbiology* 113: 127–136.

[5] Bennett, J. W. (1987). Mycotoxins, mycotoxicoses, mycotoxicology and mycopathology. *Myopathologia* 100: 3–5.

[6] Bennett, J. W., Kronberg, F. G., Goodman, L. A. and Seltman, M. A. (1983). Isolation of an anthraquinone-accumulating mutant of *Aspergillus parasiticus* and partial characterization by dry column chromatography. *Mycologia* 75: 202–208.

[7] Bennett, J. W., Chang, P. K. and Bhatnagar, D. (1997). One gene to whole pathway: The role of norsolorinic acid in aflatoxin research. *Advances in Applied Microbiology* 45: 1–63.

[8] Bennett, J. W. and Klich, M. (2003). Mycotoxins. *Clinical Microbiology Reviews* 16(3): 497-516.

[9] Bhat, R. V. (2008). Human health problems associated with current agricultural food production. *Asian Pacific Journal of Clinical Nutrition* 17(5): 91-94.

[10] Bhat, R. V. and Vasanthi, S. (2003). Food Safety in Food Security and Food Trade: Mycotoxin Food Safety Risk in Developing Countries. Washington D.C. International Food Policy Research Institute, 2003, (Brief 3).

[11] Bryden, W. L. (2007). Mycotoxins in the food chain: human health implications. *Asian Pacific Journal of Clinical Nutrition* 16(1): 93-101.
[12] Bullerman, L. B. and Bianchini, A. (2007). Stability of mycotoxins during food processing. *International Journal of Food Microbiology* **119**: 140–146.

[13] Council for Agricultural Science and Technology. (2003). Mycotoxins: Risks in Plant, Animal and Human Systems. Task Force Report No.139. Council for Agricultural Science and Technology, Ames, Iowa, USA.

[14] Castegnaro, M. and McGregor, D. (1998). Carcinogenic risk assessment of mycotoxins. *Revue de Médecine Vétérinaire* **149**:671- 678.

[15] Centers for Disease Control and Prevention (CDC). (2004). Outbreak of aflatoxin poisoning—eastern and central provinces, Kenya, January–July, 2004. Morbidity and Mortality Weekly Report **53**: 790–792. Available from: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5334a4.htm.

[16] Denli, M. and Pérez, J. F. (2006). Contaminación por Micotoxinas en los piensos: Efectos, tratamiento y prevención. XXII Curso de ESpecialización FEDNA, pp. 1-18.

[17] Diekman, M. A. and Green, M. L. (1992). Mycotoxins and reproduction in domestic livestock. *Journal of Animal Science* **70**(5): 1615-1627.

[18] Dinis, A. M., Lino, C. M. and Pena, A. S. (2007). Ochratoxin A in nephropathic patients from two cities of central zone in Portugal. *Journal of Pharmacautical and Biomedical Analysis* **44**: 553-557.

[19] Duarte, S. C., Pena, A. and Lino, C. M. (2010). A review on Ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. *Food Microbiology* **27**: 187–198.

[20] Dutton, M. F. (1988). Enzymes and aflatoxin biosynthesis. *Microbiology Reviews* **52**: 274–295.

[21] Dvorackova, I. (1976). Aflatoxin inhalation and alveolar cell carcinoma. Case Report. *British Medical Journal* **1**: 691.

[22] Egal, S., Hounsa, A., Gong, Y. Y., Turner, P. C., Wild, C. P., Hall, A. J., Hell, K. and Cardwell, K. F. (2005). Dietary exposure to aflatoxin from maize and groundnut in young children from Benin and Togo, West Africa. *International Journal of Food Microbiology* **104**: 215–224.

[23] Ekundayo, C. A. (1986). Biochemical Changes Caused by Mycoflora of Yam Slices during sun drying. *Microbios Letters* **32**: 13-18.

[24] European Food Safety Authority (EFSA). (2007). Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. *The EFSA Journal* **446**: 1-127.

[25] Filazi, A. and Sireli, U. T. (2013). Occurrence of Aflatoxins in Food. In: Aflatoxins - Recent Advances and Future Prospects, Razzaghi-Abyaneh, M. (Ed). InTech, pp. 143-170.

[26] Frisvad, J. C., Smedsgaard, J., Larsen, T. O. and Samson, R. A. (2004). Mycotoxins, drugs and other extrolites produced by species in *Penicillium* subgenus *Penicillium*. *Studies in Mycology* **9**: 201–242.

[27] Gong, Y. Y., Egal, S., Hounsa, S., Hall, A. J., Cardwell, K. F. and Wild C. P. (2003). Determinants of aflatoxin exposure in young children from Benin and Togo, West Africa: the critical role of weaning. *International Journal of Epidemiology* **32**: 556–562.

[28] Gong, Y., Turner, P. C., Hall, A. J. and CP, W. (2008). Aflatoxin exposure and impaired child growth in West Africa: An unexplored international public health burden? In: Mycotoxins: Detection Methods, Management, Public Health and
Agricultural Trade, Leslie, J. F, Bandyopadhyay, R. and Visconti, A. (Eds). Oxfordshire, UK CAB International, pp. 53-65.

[29] Goto, T., Wicklow, D. T. and Ito, Y. (2013). Aflatoxin and cyclopiazonic acid production by a sclerotium-producing *Aspergillus tamarii* strain. *Applied Environmental Microbiology* 62: 4036-4038.

[30] Hawksworth, D. L. (2006). The fungal dimension of biodiversity: magnitude, significance, and conservation. *Mycology Research* 95: 641–655.

[31] Hesseltine, C. W. (1976). Conditions Leading to Mycotoxin Contamination of Foods Feeds. In: Mycotoxins, Other Fungal Related Food Problems. Joseph, V. R. (Ed), American Chemical Society, Washington D. C. pp. 1-22.

[32] Hsieh, D. P., Lin, M. T., Yao, R. C. and Singh, R. (1976). Biosynthesis of aflatoxin. Conversion of norsolorinic acid and other hypothetical intermediates into aflatoxin B1. *Journal of Agriculture and Food Chemistry* 24: 1170–1174.

[33] Huffman, J., Gerber, R. and Du, L. (2010). Recent advancement in the biosynthetic mechanism for polyketide-derived mycotoxins. *Biopolymers* 93: 764-776.

[34] Hussein, H. S. and Brassel, J. M. (2001). Toxicity, metabolism and impact of mycotoxins on humans and animals. *Toxicology* 167: 101-134.

[35] International Agency for Research on Cancer (IARC) (1993). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins, Vol 56. IARC, Lyon, France, pp. 489-521.

[36] International Agency for Research on Cancer (IARC) (2002). Traditional herbal medicines, some mycotoxins, naphthalene and styrene. *Monographs on the evaluation of the carcinogenic risks to humans. IARC* 82: 82-17.

[37] Jackson, L. S. and Al-Taher, F. (2008). Factors Affecting Mycotoxin Production in Fruits. In: Mycotoxins in Fruits and Vegetables, Barkai-Golan, R. and Paster, N. (Eds). Academic Press, Elsevier, pp. 75-104.

[38] Jarvis, B. B. (2002). Chemistry and toxicology of molds isolated from water-damaged mycotoxins and food safety. *Advances in Experimental Medicine and Biology Journal* 504: 43-52.

[39] Jiujiang, Yu. (2012). Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination. *Toxins* 4: 1024-1057.

[40] Jonathan, G., Ajayi, I. and Omitade, Y. (2011). Nutritional compositions, fungi and aflatoxins detection in stored ‘gbodo’ (fermented *Dioscorea rotundata*) and ‘elubo ogede’ (fermented *Musa parasidiaca*) from South western Nigeria. *African Journal of Food Science* 5(2): 105-110.

[41] Kensler, T. W., Roeckuck, B. D., Wogan, G. N. and Groopman, J. D. (2011). Aflatoxin: A 50-Year odyssey of mechanistic and translational toxicology. *Toxicological Science* 120(1): 28-48.

[42] Kibe, E. N. (2015). Occurrence of Mycotoxigenic Fungi in Maize from Food Commodity Markets in Kenya, p. 28.

[43] Makun, H. A., Anjorin, S. T., Moronfuye, B., Adejo, F. O., Afolabi, O. A., Fagbayibo, G., Balogun, B. O. and Surajudeen, A. A. (2010). Fungal and aflatoxin contamination of some human food commodities in Nigeria. *African Journal of Food Science* 4(4): 127-135.

[44] Masoero, F., Gallo, A., Moschini, M., Piva, G. and Díaz, D. (2007). Carryover of aflatoxin from feed to milk in dairy cows with low or high somatic cell counts. *Animal* 1: 1344–1350.
[46]avor, J. W. and Harold, H. W. (1966). General Biology Sixth Edition collier. Macmillan London-New York, pp. 4-12.
[47]McCormick, S. P., Bhatnagar, D. and Lee, L. S. (1987). Averufanin is an aflatoxin B1 precursor between averantin and averufin in the biosynthetic pathway. Applied Environmental Microbiology 53: 14–16.
[48]Mišićević, D. R., Skrinjar, M. and Baltić, T. (2010). Real and Perceived Risks for Mycotoxin Contamination in Foods and Feeds: Challenges for Food Safety Control. Toxins 2: 572-592.
[49]Miller, J. D. (1999). Fungi and mycotoxins in grain: Implications for stored products research. Proceedings of the 6th International Working Conference on Stored Product Research Vol. 2, pp. 971-977.
[50]Moss, M. O. (1991). Influence of agricultural biocides on mycotoxin formation in cereals. Developments in food science, vol. 26 In: Cereal grain: mycotoxins, fungi and quality in drying and storage, Chelkowski, J. (Ed.). Developments in food science, vol. 26. Elsevier science publishers by Amsterdam, Netherlands, pp. 281-295. ISBN 0-444-88554-4.
[51]Moss, M. O. (1996). Centenary review. Mycotoxins in Mycology Resistance 100: 513 -523.
[52]Mueller, G. M. and Schmit, J. P. (2006). Fungal biodiversity: what do we know? What can we predict? Biodiversity Conservation 16: 1–5.
[53]Mycotoxin Information. (2013). Mode of action, toxicology and metabolism of mycotoxins. Scientist Veterinarian www.mycotoxins.info – Scientist / Veterinarian.
[54]Okigbo, R. N. (2003). Fungi Associated with Peels of post-harvest Yams in Storage. Global Journal of Pure and Applied Sciences 9(1): 19-23.
[55]Padonou, S. W., Hounhouigan, J. D and Nago, M. C. (2009). Physical, Chemical and Microbiological Characteristics of Lafun Produced in Benin. African Journal of Biotechnology 8(14): 3320-3325.
[56]Parkin, M. D., Bray, F., Ferlay, J. and Pisani, P. (2005) Global cancer statistics, 2002. A Cancer Journal for Clinicians 55(2): 74-108.
[57]Pitt, J. I. and Hocking, A. D. (1997). Fungi and Food Spoilage, 2nd ed. Aspen Publishers, Gaithersburg, Maryland, USA, pp. 209–220.
[58]Puel, O., Galtier, P. and Oswald, I. P. (2010). Biosynthesis and Toxicological Effects of Patulin. Toxins 2: 613-631.
[59]Reddy, K. R. N., Salleh, B., Saab, B., Abbas, H. K., Abel, C. A. and Shier, W. T. (2010.) An overview of mycotoxin contamination of foods and its implication for human health. Toxin Review 29(1): 3-26.
[60]Rustom, I. Y. S. (1997). Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chemistry 59: 57–67.
[61]Saleemullah, A. I., Khalil, I. A. and Shah, H. (2006). Aflatoxin contents of stored and artificially inoculated cereals and nuts. Food Chemistry 98: 699-703.
[62]Sancho, L. G., de la Torre, R., Horneck, G., Ascaso, C., de Los Rios, A., Pintado, A., Wierzchos, J. and Schuster, M. (2007). "Lichens survive in space: Results from the 2005 LICHENS experiment". Astrobiology 7(3): 443-454.
[63]Smith, J. E. and Moss, M. O. (1985). Mycotoxins, Formation, Analysis and Significance. Journal of Basic Microbiology 26(5): 148.
[64]Sorrenti, S., Di Giacomo, C., Aquivivq, R., Barbagallo, J., Bognanno, M. and Galrano, F. (2013). Toxicity of Ochratoxin A and its modulations by antioxidants: a review. Toxins 5: 1742-1766.
[65]Strosnider, H., Azziz-Baumgartner, E., Banziger, M., Bhat, R. V. and Breiman, R. (2006). Public Health Strategies for Reducing Aflatoxin Exposure in
Developing Countries: A Workgroup Report. *Environmental Health Perspectives* **12**: 1898-1903.

[66] Talbot, P. H. B. (1971). Introduction on the nature and importance of fungi. In: Principles of Fungal Taxonomy. Macmillan London, pp. 3-10.

[67] Van soestbergen, A. A. and Ching, H. L. (1969). Pou Plates or Streak Plates? *Applied Microbiology* **18**: 1092-1093.

[68] Wheeler, K. A., Hurdman, B. F. and Pitt, J. I. (1991). Influence of pH on the growth of some toxigenic species of *Aspergillus*, *Penicillium* and *Fusarium*. *International Journal of Food Microbiology* **12**: 141-150.

[69] Williams, J., Phillips, T. D., Jolly, P. E., Stiles, J. K., Jolly, C. M. and Aggarwal, D. (2004). Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. *American Journal of Clinical Nutrition* **80**: 1106–1122.

[70] Wogan, G. N and Busby, W. F. (1980). Natural occurring carcinogens. In: Toxic Constituents in Plant Foodstuffs. Liener, I. E, (Ed.). Academic Press New York., pp: 502.

[71] Wu, F., and Khlangwiset, P. (2010). Health economic impacts and cost-effectiveness of aflatoxin reduction strategies in Africa: Case studies in biocontrol and postharvest interventions. *Food Additives and Contaminants* **27**: 496-509.

[72] Yazar, S. and Omurtag, G. Z. (2008). Fumonisins, trichothecenes and zearalenone in cereals. *International Journal of Molecular Science* **9**: 2062-2090.

[73] Zain, M. E. (2011). Impact of mycotoxins on humans and animals. *Journal of Saudi Chemical Society* **15**: 129-144.