Abstract and References. Applied Physics

DOI: 10.15587/1729-4061.2021.247720

DEVELOPMENT OF A METHOD FOR PRODUCING EFFECTIVE CdS/CdTe/Cu/Au SOLAR ELEMENTS ON A FLEXIBLE SUBSTRATE DESIGNED FOR BACKUP SUPPLYING SYSTEMS PREVENTION OF EMERGENCY SITUATIONS (p. 6–11)

Iryna Borysenko
Central Research Institute of the Armed Forces of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-7198-7541

Oleksandr Burmenko
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-5014-2678

Natalya Deyneko
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0001-8438-0618

Oleksandr Zobenko
Chornobyl Heroes of National University of Civil Protection of Ukraine, Cherkasy, Ukraine
ORCID: https://orcid.org/0000-0001-9641-2779

Yuriy Yivzenko
State Scientific Institution «Institute of Education Content Modernization», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-5879-0226

Gennady Kamyshentsev
Administration of the State Border Guard Service of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-5780-3539

Volodymyr Muraviov
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-3682-7435

Yuliia Mykhailivska
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-1090-3033

Valerii Khrystych
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-5900-7042

Svitlana Kryvonis
National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-1938-293X

The technology of forming film solar cells based on CdS / CdTe configuration of the “superstrate” type on a flexible substrate has been improved. To increase the efficiency of the developed solar cells on a flexible substrate, a chemical etching procedure in a nitrogen-phosphorus mixture was added to the traditional “chemical treatment”. The conducted studies of the output parameters of the developed device structures showed that the highest values are observed in the case of chemical etching, both before the “chloride treatment” and after it. In the course of the study, it was found that a mandatory procedure in the formation of effective device structures is chemical etching in a nitrogen-phosphorus mixture both before the “chloride treatment” and after it. Carrying out the described procedures made it possible to obtain solar cells on a flexible substrate with an efficiency of 13.1 %. The increase in the efficiency of solar cells with two-stage chemical etching can be explained by the formation of excess tellurium on the surface, which leads to a decrease in resistance and, therefore, to a more efficient penetration of chlorine during the subsequent chloride treatment. Analysis of the transverse cleavage of the investigated device structures demonstrates significant grain growth and surface smoothness of the base layer, which ensures good adhesion with back contact. A study of the degradation resistance of the developed device structures during operation has been carried out. It was found that the obtained solar cells based on CdTe on a flexible substrate have a high degradation resistance and after 10 bending cycles there is no decrease in the output parameters. Thus, it has been established that chemical etching in a nitrogen-phosphorus mixture is a mandatory procedure for the formation of efficient solar cells on a flexible substrate.

Keywords: film photocell, flexible substrate, micromodule, solar cell, cadmium telluride, current-voltage characteristic.

References
1. Bonnet, D., Rabenhorst, H. (1972). New results on the development of a GaAs solar cell. Solar Energy, 14, 63–70. doi: 10.1016/0038-092X(72)90074-5
2. Yang, D., Yin, H. (2011). Energy Conversion Efficiency of a Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization. IEEE Transactions on Energy Conversion, 26 (2), 662–670. doi: https://doi.org/10.1109/tec.2011.2112363
3. Leading Solar PV Manufacturers Based on Module Shipments in 2018 and 2019. Available at: https://www.statista.com/statistics/858456/global-companies-for-pv-cell-and-module-shipments/
4. Bühler, S. (2016). Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy, 130, 139–147. doi: https://doi.org/10.1016/j.solener.2016.02.015
5. Bulbas, O., Deyneko, N., Yeremenko, S., Kyrylova, O., Myrgorod, O., Soshinsky, O. et al. (2019). Degradation of CdTe SC during operation: modeling and experiment. Eastern-European Journal of Enterprise Technologies, 6 (12 (102)), 46–51. doi: https://doi.org/10.15587/1729-4061.2019.185628
6. Deyneko, N., Kovalov, P., Semkiv, O., Khmyrov, I., Shevchenko, R. (2019). Development of a technique for restoring the efficiency of film ITO/CdS/CdTe/Cu/Au SCs after degradation. Eastern-European Journal of Enterprise Technologies, 5 (5 (97)), 6–12. doi: https://doi.org/10.15587/1729-4061.2019.156565
7. First Solar sets world record for CdTe solar cell efficiency. Available at: https://investor.firstsolar.com/news/press-release-details/2014/First-Solar-Sets-World-Record-for-CdTe-Solar-Cell-Efficiency/default.aspx
8. Wu, X., Dhere, R. G., Albin, D. S., Gessert, T. A., DeHart, C., Keane, J. C. et al. (2001). High-Efficiency CTO/ZTO/CdS/CdTe Polycrystalline Thin-Film Solar Cells. To be presented at the NCPV Program Review Meeting Lakewood, Colorado. Available at: https://www.nrel.gov/docs/fy02osti/31025.pdf
9. First Solar: Record 21.5 Percent Conversion Efficiency Research Cell Validates Technology Roadmap. Available at: https://www.sommenseite.com/en/energy/first-solar-record-21-5-percent-conver- sion-efficiency-research-cell-validates-technology-roadmap/
10. Green, M. A., Dunlop, E. D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X. (2020). Solar cell efficiency tables (version 56). Progress in Photovoltaics: Research and Applications, 28 (7), 629–638. doi: https://doi.org/10.1002/pip.3303
11. Van de Kaas, G., Rezaei, J., Kamp, L., de Winter, A. (2014). Photovoltaic technology selection: A fuzzy MCDM approach. Renewable and Sustainable Energy Reviews, 32, 662–670. doi: https://doi.org/10.1016/j.rser.2014.01.044
12. Guan, H., Zeng, X., Liu, Y., Li, S., Li, W., Liang, H. (2013). The effect of irradiation on the mechanism of charge transport of CdTe solar cell. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). doi: https://doi.org/10.1109/pvsc.2013.6745034

13. Deyneko, N., Yeremenko, S., Kamyshentsev, G., Kryvulkin, I., Matiushenko, M., Myroshnyk, O. et. al. (2021). Development of a method for obtaining a CdS/CdTe/Cu/Au module on a flexible substrate designed for backup supplying systems prevention of emergency situations. Eastern-European Journal of Enterprise Technologies, 1 (5 (109)). 31–36. doi: https://doi.org/10.15587/1729-4061.2021.225694

14. Mathew, X., Enriquez, J. P., Romeo, A., Tiwari, A. N. (2004). CdTe/CdS solar cells on flexible substrates. Solar Energy, 77 (6). 831–838. doi: https://doi.org/10.1016/j.solener.2004.06.020

15. Tiwari, A. N., Romeo, A., Baetzner, D., Zogg, H. (2001). Flexible CdTe solar cells on polymer films. Progress in Photovoltaics: Research and Applications, 9 (3). 211–215. doi: https://doi.org/10.1002/pip.374

16. Deyneko, N. (2020). Study of Methods for Producing Flexible Solar Cells for Energy Supply of Emergency Source Control. Materials Science Forum, 1006, 267–272. doi: https://doi.org/10.4028/www.scientific.net/MSF.1006.267

17. Burmenko, A., Deyneko, N., Hrebtsova, I., Kryvulkin, I., Prokopenko, O., Shevchenko, R., Tarasenko, O. (2020). Investigating an alternative electricity supply system for preventing emergencies under conditions of limited capacity. Eastern-European Journal of Enterprise Technologies, 3 (12 (165)). 56–61. doi: https://doi.org/10.15587/1729-4061.2020.206395

18. Major, J. D., Trehan, R. E., Phillips, L. J., Durso, K. (2014). A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature, 511 (7509). 334–337. doi: https://doi.org/10.1038/nature13435

19. Green, M. A., Emer, K., Hishikawa, Y., Warta, W., Dunlop, E. D. (2015). Solar cell efficiency tables (version 46). Progress in Photovoltaics: Research and Applications, 23 (7). 805–812. doi: https://doi.org/10.1002/pip.2637

20. Kestner, J. M., McElvain, S., Kelly, S., Ohno, T. R., Woods, L. M., Wolden, C. A. (2004). An experimental and modeling analysis of vapor transport deposition of cadmium telluride. Solar Energy Materials and Solar Cells, 83 (1). 55–65. doi: https://doi.org/10.1016/j.solmat.2004.02.013

21. Deyneko, N., Sensik, O., Knyurov, I., Khryapynskyy, A. (2018). Investigation of the combination of ITO/CdS/CdTe/Cu/Au solar cells in microassembly for electrical supply of field cables. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)). 18–23. doi: https://doi.org/10.15587/1729-4061.2018.124575

22. Deyneko, N., Kryvulkin, I., Matiushenko, M., Tarasenko, O., Khmyrov, I., Knyurov, A., Shevchenko, R. (2019). Investigation of photoelectric converters with a base cadmium telluride layer with a decrease in its thickness for tandem and two-sided sensitive instrument structures. EUREKA: Physics and Engineering, 5. 73–80. doi: https://doi.org/10.21305/2461-4282.2019.001002

23. Lewis, J. (2006). Material challenge for flexible organic devices. Materials Today, 9 (4). 38–45. doi: https://doi.org/10.1016/s1369-7021(06)71446-8

DOI: 10.15587/1729-4061.2021.244897

DESIGN OF AN INFORMATION-MEASURING SYSTEM FOR MONITORING DEFORMATION AND DISPLACEMENT OF ROCK MASSIF LAYERS BASED ON FIBER-OPTIC SENSORS (p. 12–27)

Vyacheslav Yugay
Karaganda Technical University, Karaganda, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-7249-2345

Ali Mekhiriev
S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-2633-3976

Yelena Neshina
Karaganda Technical University, Karaganda, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-9073-2958

Bakhrytkul Aubakirova
M. Kozybaev North-Kazakhstan University, Petropavlovsk, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-7205-6455

Raushan Aimagambetova
Republic State Enterprise «Kazakhstan Institute of Standardization and Metrology» of the Committee of Technical Regulation and Metrology of the Ministry of Trade and Integration of the Republic of Kazakhstan, Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-4429-953X

Aigul Kozhas
Karaganda Buketov University, Karaganda, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-9309-9229

Ailya Alkina
Karaganda Technical University, Karaganda, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-4879-0593

Madiyar Musagazhinov
S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-4521-8172

Alexandr Kovtun
Military Engineering Institute of Radio Electronics and Communications, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-3013-1944

This paper reports a study into designing an information-measuring system that could be used in coal mines that are dangerous in terms of the explosion of coal dust and methane gas. The results of reviewing technical advancements in the field of fiber-optic system development are given. To solve the set task, prototypes of a fiber-optic sensor of a new type and a hardware-software complex were constructed. The research aims to improve the safety of workers at coal enterprises. The result of the theoretical research has established that additional losses related to a micro bending should be taken into consideration while analyzing the effect of photoelasticity. The fundamental difference between the idea reported here and existing analogs is the development of a hardware-software complex capable of working with a single-mode optical fiber of great length with a significant noise level. The data processing unit is equipped with a television matrix and can analyze changes in the pixels of a light spot. The proposed system is quasi-distributed; it controls individual points within a rock massif. The designed hardware-software system provides high noise immunity of measuring channels when the external temperature changes. The research results helped develop an information-measuring system for monitoring the deformation and displacement of rock massif layers based on fiber-optic sensors, capable of operating in an explosive environment. The system makes it possible to control several layers located in the roof of the workings, while the fiber-optic sensor may contain two or three sensitive elements that are connected to different channels. With a sharp fluctuation in pressure and an increase in the displacement parameter, the system triggers a warning signal about the danger.

Keywords: optical fiber, rock displacement, roofing, mining workings, fiber-optic sensors.
References

1. Liu, X., Wang, C., Liu, T., Wei, Y., Lx, J. (2009). Fiber Grating Water pressure sensor and system for mine. ACTA Photonica Sinica, 38, 112–114. Available at: https://www.researchgate.net/publication/292872640_Fiber_grating_water_pressure_sensor_and_sys

2. Kumar, A., Kumar, D., Singh, U. K., Gupta, P. S., Shankar, G. (2011). Optimizing fibres optics for coal mine automation. International Journal of Control and Automation, 4 (3), 19–30. Available at: http://article.nadiapub.com/IJCA/vol4_no3/2.pdf

3. Naruse, H., Uehara, H., Deguchi, T., Fujihashi, K., Oushi, M., Espanoza, R. et al. (2007). Application of a distributed fibre optic strain sensing system to monitoring changes in the state of an underground mine. Measurement Science and Technology, 18 (10), 3202–3210. doi: http://doi.org/10.1088/0957-0233/18/10/s23

4. Chotchaev, Kh. O. (2016). Control of the mountainous area stress-strained state by the sounding and geophysical methods. Geologiya i geofizika yuga Rossi, 3, 129–140. Available at: https://www.elibrary.ru/item.asp?id=2179265

5. Buzinets, M. Ya. et al. (2011). Printsipy postroeniya intellektualnykh volokonno-opticheskih datchikov. Foton-Ekspress, 6 (43), 38–39.

6. Buimistrystuyk, G. (2013). Volokonno-opticheskie datchiki dlya ekstremalnykh uslovii. Control engineering Rossii, 3 (45), 34–40. Available at: http://controleng.ru/wp-content/uploads/cc_46_p34_vol

7. Kim, S., Park, Y., Park, S., Cho, K., Cho, J.-R. (2015). A Sensor-Type PC Strand with an Embedded FBG Sensor for Monitoring Prestress Forces. Sensors, 15 (1), 1060–1070. doi: http://doi.org/10.3390/s150101060

8. Liu, T., Wei, Y., Guangdong Song, Li, Y., Jinyu Wang, Yamong Ning, Yicheng Lu. (2013) Advances of optical fiber sensors for coal mine safety monitoring applications. 2013 International Conference on Microwave and Photonics (ICMAP), 102–111. doi: http://doi.org/10.1109/icmap.2013.6733455

9. Zhao, Y., Zhang, N., Si, G. (2016). A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining. Sensors, 16 (10), 1759. doi: http://doi.org/10.3390/s16101759

10. Volchikhin, V. I., Murashkina, T. I. (2001). Problemy sozdaniya volokonno-opticheskih datchikov. Datchiki i sistemy. Izmerneniya, kontrol, avtomatizatsiya, 7, 54–58. Available at: http://nankarus.com/problemy-sozdaniya-volokonno-opticheskih-datchikov.

11. Liu, J., Gu, J., Wei, S., Li, Y., Zhu, L., Qiu, B. (2008). Theoretical and experimental study on fiber Bragg grating sensing of rock strata settlement deformation. Journal of Coal Science and Engineering (China), 14 (3), 394–398. doi: http://doi.org/10.1007/s12404-008-0087-0

12. Kamenev, O. T., Kulchin, Yu. N., Petrov, Yu. S., Khizhnyak, R. V. (2014). Primenenie volokonno-opticheskogo interferometra Makha–Tendera dlya sozdaniya dlinnobarovskh deformometrov. Pisma v ZHTF, 40 (3), 49–56. Available at: http://journals.ioffe.ru/articles/viewPDF/27305

13. Kulchin, Yu. N., Kamenev, O. T., Petrov, Yu. S., Kolechinski, V. A. (2016). Volokonno-opticheskie interferometricheskie priemniki slabo sluchaynykh signalov. Vestnik DVO RAN, 4, 56–59.

14. Shumkovskaya, D. B., Levchenko, A. E. (2011). Speсialnuye volokonno svetovody. Perm: Izd-vo Perm. nats. issled. politekn.un-ta, 178. Available at: https://psru.ru/files/file/FPM/M/6658086_shumkovskaya_specialnye_volokonno_svetovody.pdf

15. Buimistrystuyk, G. Ya. (2004). Informatsionno – izmeritelnyaya tekhnika i tekhnologiya na osnove volokonno-opticheskih datchikov i sistem. Saint Petersburg IVA, GROTS Minatoma, 198. Available at: https://www.twirpx.com/file/102146/

16. Osorio, J. H., Chesini, G., Serrao, V. A., Franco, M. A. R., Cordeiro, C. M. B. (2017). Simplifying the design of microstructured optical fibre pressure sensors. Scientific Reports, 7 (1). doi: http://doi.org/10.1038/s41598-017-03206-w

17. Yurchenkov, A. V., Mechetnev, A. D., Bulatbayev, F. N., Neshina, Y. G., Alkina, A. D. (2018). The Model of a Fiber-Optic Sensor for Monitoring Mechanical Stresses in Mine Workings. Russian Journal of Nondestructive Testing, 54 (7), 528–533. doi: http://doi.org/10.1134/s1063830918070094

18. Mekhtiev, A. D., Yurchenkov, A. V., Ozhigin, S. G., Neshina, E. G., Alkina, A. D. (2021). Quasi-Distributed Fiber-Optic Monitoring System for Overlying Rock Mass Pressure on Roofs of Underground Excavations. Fiziko-Tekhnicheskiye Problemy Razrabotki Poleznikh Yskopaemikh, 2, 192–198. doi: http://doi.org/10.15372/fprpr20210919

19. Mekhtiev, A. D., Yurchenkov, A. V., Neshina, E. G., Alkina, A. D. (2020). Using G-652 Optical Fiber to Control Mountain Massives of Coal Mines. Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics, 20 (1), 144–153. doi: http://doi.org/10.14329/ctcr200114

DOI: 10.15587/1729-4061.2021.247658

INCREASING QUALITY OF THE WIRELESS MODULE FOR MONITORING AND SUPERVISION OF SOUND SERIES OF THE EXPANDED PURPOSE (p. 28–40)

Zhan Byelozyorov
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
ORCID: https://orcid.org/0000-0002-3216-8153
Alexandr Trunov
Petro Mohyla Black Sea National Universit, Mykolaiv, Ukraine
ORCID: https://orcid.org/0000-0002-8524-7840

The sound series are considered as an addition to visual and thermal imaging information flows when using computerized monitoring systems (CS). A minimum complete structure of spaced microphones for collecting data on sound rows, which is suitable for calibrating, isolating and transmitting data on sound anomalies (SA), is proposed. Duplication of the data transmission channel by wire and Wi-Fi module for recording and determining the type and coordinates of the SA is provided.

An experimental receiving module has been assembled, which includes microphones, amplifiers and signals matching boards for digital and analog forms, an ARDUINO UNO WIFI REV2 controller with an integrated Wi-Fi module. It is presented that its addition with a personal computer and a smartphone with the Android operating system forms a CS for remote wireless control of the course of the experimental analysis of sound series. It has been confirmed experimentally that its structure is minimally complete. An algorithm was developed and a software package was written in C/C++ languages. It is shown that the number of microphones is selected from the conditions of the problem from 1 to 5, but their number is limited to five digital inputs of the ARDUINO UNO WIFI REV2 board. A wave representation of the law of temporal changes in intensity and the integral norm of the SA is applied. The possibilities of calibrating all data of sound series in analog and digital form are demonstrated. The article presents the suitability of testing the algorithms for determining the phases of echograms from time series data, containing SAs of different origins and recorded by three different microphones. The effect of connecting a Wi-Fi module on reducing the voltage drop by 0.5–1 V is shown. The necessity of an additional registration condition for all microphones is demonstrated. The software interfaces for the calibration of the receiving module and the operation of the mobile application have been developed.

Keywords: computerized system, modular structure, reception algorithm, software, system testing.

References

1. Lo, K. W., Ferguson, B. G. (2015). Acoustic ranging of small arms fire using a single sensor node collocated with the target. The Journal
A study of the functioning of reed switches under the influence of a magnetic field created by a current in a conductor in a transient mode with the presence of an aperiodic component has been carried out. A well-known method for determining current using reed switches was implemented. At the same time, it was determined that the originally formulated method did not give the required result within the limits of errors. This is most likely due to the peculiarities of the mechanism of movement of the reed switch contacts. Alternatively, the measurements were taken to take the return currents instead of the pick-up currents and the time between the return times. They are more stable. Simulation is performed, experimental determination of the value of surge current by measuring time is carried out. The main element of the created installation was the power transformer coil with low active and high inductive resistance. As part of the study, the reed switches were placed in a magnetic field with an aperiodic component, as in the transient mode. This study will show the applicability of reed switches for the construction of relay protection devices that will not need current transformers to obtain information about the primary current in the conductor. In the course of the research, it was found that the error in determining the magnitude of current was no more than 10%. Using microprocessors, it is possible to build relay protection devices with a speed of up to 20 ns. This result makes it possible to build new devices. Since in the well-known developments, it was only said about determining the magnitude of current in a steady state. When building relay protection devices on reed switches, without using current transformers, it will be possible to build backup protections that duplicate not only the devices themselves, but also the primary measuring transformers with other sensitive elements. This will improve the reliability of the power supply.

Keywords: relay protection, reed switch, microprocessor, surge current, time measurement, magnetic field, transient.

References
1. Kletsel, M. (2016). Travelling Protection of Two Parallel Lines without Voltage Path. Przegląd Elektrotechniczny, 1 (2), 170–172. doi: https://doi.org/10.15199/48.2016.02.43
2. KLETSAL, M. (2017). Differential protection of three and four parallel lines of idling current control. Przegląd Elektrotechniczny, 1 (10), 111–114. doi: https://doi.org/10.15199/48.2017.10.26
3. Sarwade, A. N., Katti, P. K., Gholdekar, J. G. (2016). Use of Rogowski Coil for accurate measurement of secondary current contaminated with CT saturation in distance protection scheme. 2016 IEEE 6th International Conference on Power Systems (ICPS). doi: https://doi.org/10.1109/icps.2016.7584210
4. Abdulrahid, A. H., Shaorong Wang (2016). A busbar differential protection based on fuzzy reasoning system and Rogowski-coil current sensor for microgrid. 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). doi: https://doi.org/10.1109/appeec.2016.7779496
5. Huang, G.-J., Chen, N., Chen, K.-L. (2016). Self-calibration method for coreless Hall effect current transformer. 2016 IEEE Power and Energy Society General Meeting (PESGM). doi: https://doi.org/10.1109/pesgm.2016.7741826
6. Liang, C.-T., Chen, K.-L., Tsai, Y.-P., Chen, N. (2015). New electronic current transformer with a self-contained power supply. 2015 IEEE Power & Energy Society General Meeting, doi: https://doi.org/10.1109/pesgm.2015.7285637
7. Kojovic, L. A. (2013). New protection schemes based on novel current sensors for up-to-date grid. 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013). doi: https://doi.org/10.1049/cp.2013.1129
8. Non-conventional instrument transformers for improved substations design. Session materials. Available at: https://e-cigre.org/publication/B3-101_2016
9. Nurmansah, A. P., Hidayat, S. (2017). Design and testing PCB Rogowski-coil current sensor for high current application. 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS). doi: https://doi.org/10.1109/schveps.2017.8225897
10. Weiss, R., Itzke, A., ReitenspieB, J., Hoffmann, I., Weigel, R. (2019). A Novel Closed Loop Current Sensor Based on a Circular Array of Magnetic Field Sensors. IEEE Sensors Journal, 19 (7), 2517–2524. doi: https://doi.org/10.1109/jsen.2018.2887302
11. Neftissov, A. V., Andreyeva, O. A., Sarinova, A. Z. (2021). Investigation of the properties of reed switches in devices for resource-saving relay protection of the electrical part of power plants. THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020). doi: https://doi.org/10.1063/5.0046558
12. Zhantlesova, A. B., Kletsel, M. Y., Maishev, P. N., Neftisov, A. V. (2014). Characterizing a sustained short-circuit current with the use of reed relays. Russian Electrical Engineering, 85 (4), 210–216. doi: https://doi.org/10.1007/s10683-014-9401-3
13. Kletsel, M. Ya. (2008). Pat. No. 21539 KZ. Sposob izmereniya toka korotkogo zamykaniya. No. 2008/0628.1; declared: 26.05.2008; published: 15.06.2009, Bul. No. 6. Available at: https://patentweb.com/3-ip21539-sposob-izmereniya-toka-korotkogo-zamykaniya.html
14. Kletsel, M. J., Zhantlesova, A. B., Neftissov, A. V., Majesh, P. N. (2014). Pat. No. 2575139 RU. Method for measuring fault current. 2014138514/28; declared: 23.09.2014; published: 10.02.2016, Bul. No. 4. Available at: https://patentou.ru/patent/RU2575139C1.pdf
15. Ulyanov, S. A. (1970). Elektromagnitnye perehodnye processy v elektricheskikh sistemah. Moscow: Energia, 58–65. Available at: http://pdf.lib.vntu.edu.ua/books/2016/Ulyanov_1970_520.pdf
16. Andreyeva, O., Neftissov, A., Mileiko, A. (2021). Method of diagnostics of the short-circuited rotor damage on point induction converters. THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020). doi: https://doi.org/10.1063/5.0046565
This paper substantiates the pulse method for determining the time parameter for fire detectors with a thermoreisitive sensing element – the time constant. The method is based on using the Joule-Lenz effect, which manifests itself when an electric current pulse passes through the thermoreisitive sensing element of fire detectors. Thermal processes in such a sensing element are described by a mathematical model that belongs to the class of equations of mathematical physics. The solution to the differential equation of this class was derived using the Hankel integral transformation and is represented as a series relative to the Bessel functions. The resulting solution is used to construct a mathematical model of a thermoreisitive sensing element in the form of a transfer function, which takes the form of the transfer function of the inertial link. To trigger the thermoreisitive sensing element of fire detectors, a single pulse of electric current in the shape of a rectangular triangle is used. The integral Laplace transformation was applied to mathematically describe the response of a thermoreisitive sensing element to the thermal effect of such a test influence. To obtain information about the time parameter of fire detectors with a thermoreisitive sensing element, the ratio of its output signals is used, which are measured in the priori defined moments. A two-parametric expression was built to determine the time parameter of fire detectors; a verbal interpretation of the pulse method to determine it was provided. The implementation of this method ensures the invariance of the time parameter of fire detectors with a thermoreisitive sensing element relative to the amplitude of a single pulse of an electric current, as well as relative to the parameter that is included in its transfer coefficient.

Keywords: fire detector, thermoreisitive sensing element, Joule-Lenz effect, time parameter.

References

1. Wadoud, A. A., El Eissawi, H. M., Saleh, A. A. (2017). Protection of High Ceiling Nuclear Facilities Using Photoelectric Sensors and Infrared Fire Detectors. Arab Journal of Nuclear Science and Applications, 50 (1), 194–203. Available at: http://www.esma-eq.com/download/researchFiles/19%20%20%20%20%20123-15.pdf
2. Dinh, T. Pham, H.-P. Qamar, A. Woodfield, P. Nguyen, N.-T., Dao, D. V. (2017). Thermoreisitive Effect for Advanced Thermal Sensors: Fundamentals, Design Considerations, and Applications. Journal of Microelectromechanical Systems, 26 (5), 966–986. doi: https://doi.org/10.1109/jmems.2017.2710354
3. Szelmanowski, A., Zieja, M., Puzar, A., Glyda, K. (2019). Studying the Dynamic Properties of Thermoelectric Fire Detectors in Terms of False Tripping of an Air Fire Suppression System. Engineer of the XXI Century, 103–120. doi: https://doi.org/10.1007/978-3-030-13321-4_10
4. Choi, M.-S., Lee, K.-O. (2018). Study on Influence of Air Flow of Ceiling Type Air Conditioner on Fire Detector Response. Fire Science and Engineering, 32 (5), 40–45. doi: https://doi.org/10.10731/kifs.2018.32.5.040
5. Jevtić, R., Blagovečić, M. (2017). Smoke and heat detectors arrangement in hallways. Safety Engineering, 7 (2): doi: https://doi.org/10.7562/se/2017.7.02.04
6. Kalchenko, Y., Abramov, Y. (2018). Methods of heat detectors technical condition control. Problemy pozhizhno bezpeky, 44, 44–48. Available at: https://nuczu.edu.ua/sciencearchive/ProblemsOfFireSafety/vol14/Kalchenko.pdf
7. Ljugovkin, V. V., Zhuravlev, S. Y., Bulatova, V. V. (2019). Mathematical Simulation of Thermal Sensor Operation at Various Temperature Conditions of Controlled Media. 2019 International Russian Automation Conference (RusAutoCon). doi: https://doi.org/10.1109/rusautoccon.2019.8867603
8. Lu, K. H., Mao, S. H., Wang, J., Lu, S. (2017). Numerical simulation of the ventilation effect on fire characteristics and detections in an aircraft cargo compartment. Applied Thermal Engineering, 124, 1441–1446. doi: https://doi.org/10.1016/j.applthermaleng.2017.06.128
9. Kushnir, A., Kopchak, B., Gavryliuk, A. (2021). Operational algorithm for a heat detector used in motor vehicles. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 6–18. doi: https://doi.org/10.15587/1729-4061.2021.231894
10. Kushnir, A., Kopchak, B., Gavryliuk, A. (2020). The Development of Operation Algorithm of Heat Detector with Variable Response Parameters. 2020 IEEE XVIIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). doi: https://doi.org/10.1109/memstech95384.2020.9109436
11. Gülküre, Y., Çelik, R. N. (2020). FireAnalyst: An effective system for detecting fire geolocation and fire behavior in forests using mathematical modeling. Turkish Journal of Agriculture and Forestry, 44 (2), 127–139. doi: https://doi.org/10.3906/tar-1907-11
12. Wang, J., Li, G., Shi, L., Xie, Q., Zhang, S. (2018). A mathematical model for heat detector activation time under ship fire in a long-narrow space. Ocean Engineering, 159, 305–314. doi: https://doi.org/10.1016/j.oceaneng.2018.04.012
13. Sharma, S., Sharma, A., Vishwakarma, P., Sharma, M. (2021). A theoretical framework representing seminal fire detection system design using shape memory polymer embedded with carbon nanotubes sponge. Materials Today: Proceedings. 44, 1617–1620. doi: https://doi.org/10.1016/j.matpr.2020.11.816
14. Yuan, L., Thomas, R. A., Rowland, J. H., Zhou, L. (2018). Early fire detection for underground diesel fuel storage areas. Process Safety and Environmental Protection, 119, 69–74. doi: https://doi.org/10.1016/j.psep.2017.08.022
15. Sharma, V., Varma, A. S., Singh, A., Singh, D., Yadav, B. P. (2018). A Critical Review on the Application and Problems Caused by False Alarms. Intelligent Communication, Control and Devices, 371–380. doi: https://doi.org/10.1007/978-981-10-3903-2_38
16. Malychina, G. F., Guseva, A. I., Miltisyn, A. V. (2017). Early fire prevention in the plant. 2017 International Conference on Fire Safety, Engineering, Applications and Manufacturing (ICFSEAM). doi: https://doi.org/10.1109/icfseam.2017.8075275
17. Saed, F., Paul, A., Karthigakumar, P., Nayar, A. (2019). Convolutional neural network based early fire detection. Multimedia Tools and Applications, 79 (13-14), 9083–9099. doi: https://doi.org/10.1109/multitools.2019.887785-w
18. Soraw, R., Ampadu, K. O., Ofoli, A. R., Kouamdi, K., Mills, G. A., Nortey, J. (2019). A Fire-Detection and Control System in Automobiles: Implementing a Design That Uses Fuzzy Logic to Anticipate and Respond. IEEE Industry Applications Magazine, 25 (2), 57–67. doi: https://doi.org/10.1109/mia.2018.2875189
19. Jung, H.-Y., Hwang, C.-H. (2020). Test Method Using Shield-cup for Evaluating Response Characteristics of Fire Detectors. Fire Science and Engineering, 34 (4), 36–44. doi: https://doi.org/10.10731/kifs.80695ef9
20. Hong, S. H., Kim, D. S., Choi, K. O. (2017). A Study on the Classification of Domestic Fire Detector using Response Time Index. Journal of the Korean Society of Safety, 32 (2), 46–51. doi: https://doi.org/10.14346/JKOSOS.2017.32.2.46
21. Yoon, G.-Y., Han, H.-S., Mun, S.-Y., Park, C.-H., Hwang, C.-H. (2020). DB Construction of Activation Temperature and Response Time Index for Domestic Fixed-temperature Heat Detectors in Ceiling Jet Flow. Fire Science and Engineering, 34 (3), 35–42. doi: https://doi.org/10.10731/kifs.1065ea8
22. Abramov, Yu. O., Kalchenko, Ya. Yu. (2016). Teplovye pozhezhni spo-vishhuvachi ta yikh vyprobuvannia. Kharkiv: NUTsZU, 120.
Vadim Chumack
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-1780-9548

Volodymyr Bazenov
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-1863-3058

Oksana Tymoshchuk
Institute of Applied System Analysis, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-2422-7455

Mykhailo Kovalenko
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-5602-2001

Serhii Tsyvinskyi
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-6700-6709

Iryna Kovalenko
Institute of Renewable Energy of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-1957-2041

Igor Tkachuk
LLC «AS MEDIA», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-3717-2458

The paper presents the results of testing and research of the characteristics of a controlled autonomous magnetoelectric synchronous generator with a magnetic shunt. Structurally, the studied generator is a modified asynchronous machine in which the rotor is made with permanent magnets and an additional system in the form of a magnetic shunt. By adjusting the winding current of the magnetic shunt, the output voltage of the generator is regulated. The following characteristics were investigated: the no-load characteristic during operation with permanent magnets and when the winding current of the magnetic shunt changes with forward and reverse polarity. Also, the external characteristic for active and active-inductive loads; the control characteristic when the load current changes at a constant generator voltage.

Analysis of the obtained characteristics makes it possible to determine the limits of regulation of the external characteristic, which is ±40% relative to the main magnetic flux. The obtained regulation depth allows maintaining the stability of the external characteristic for power factors not exceeding 0.9, which is the usual passport value for autonomous power plants based on synchronous generators. Comparison of the data of research conducted on the experimental setup shows sufficient convergence for engineering and practical tasks. The maximum quantitative difference is 0.3%, which suggests the adequacy of the previously developed mathematical model. The control characteristic, constructed experimentally at constant generator voltage, is the control law of the magnetic shunt winding for the studied generator.

The investigated version of a synchronous generator with a magnetic shunt should be used for autonomous power plants, renewable energy systems, and autonomous power supply systems.

Keywords: magnetic shunt, generator voltage regulation, magnetizing winding, magnetoelectric excitation, permanent magnets, experimental research.

References
1. Bernatt, J., Gawron, S. A., Glinka, M. (2012). Experimental Validation of Hybrid Excited Permanent Magnet Synchronous Generator. Przegląd elektrotechniczny, 88 (12A, 2012), 66–70. Available at: http://pe.org.pl/articles/2012/12A/14.pdf
2. Asfrane, S., Hlioui, S., Amara, Y., Gabi, M. (2019). Study of a Hybrid Excitation Synchronous Machine: Modeling and Experimental Validation. Mathematical and Computational Applications, 24 (2), 34. doi: https://doi.org/10.3390/mca24020034
3. Wardach, M., Bonislawski, M., Palka, R., Paplicki, P., Prajzendane, P. (2019). Hybrid Excited Synchronous Machine with Wireless Supply Control System. Energies, 12 (16), 3153. doi: https://doi.org/10.3390/en12163153
4. Sabioni, C. L., Ribeiro, M. F. O., Vasconcelos, J. A. (2018). Robust Design of an Axial-Flux Permanent Magnet Synchronous Generator Based on Many-Objective Optimization Approach. IEEE Transactions on Magnetics, 54 (5), 1–4. doi: https://doi.org/10.1109/tmag.2017.2766229
5. Nedjar, B., Hlioui, S., Amara, Y., Vido, L., Gabi, M., Lecrivain, M. (2011). A New Parallel Double Excitation Synchronous Machine. IEEE Transactions on Magnetics, 47 (9), 2252–2260. doi: https://doi.org/10.1109/tmag.2011.2134864
6. Chumack, V., Tsvinskyi, S., Kovalenko, M., Ponomarev, A., Tkachuk, I. (2020). Mathematical modeling of a synchronous generator with combined excitation. Eastern-European Journal of Enterprise Technologies, 1 (5 (103)), 30–36. doi: https://doi.org/10.15587/1729-4061.2020.193495
7. Chumak, V., Petrenko, A., Kovalenko, M., Ponomarev, A. (2016). The operated independent synchronous permanent magnet generator with the magnetic shunt for power supply of the agricultural complex. Naukovyi visnyk Natsionalnoho universytetu biorezursiv i pryrodokorystuvannia Ukrainy. Seriya: Tekhnika ta enerhetyka, 88 (12a/2012), 66–70. Available at: http://journals.nubip.edu.ua/index.php/Tekhnica/article/view/7996/7658
8. Hua, H., Zhu, Z. Q., Zhan, H. (2016). Novel Consequent-Pole Hybrid Excited Machine with Separated Excitation Stator. IEEE Transactions on Industrial Electronics, 1–1. doi: https://doi.org/10.1109/tie.2016.2539447
9. Wardach, M., Paplicki, P., Palka, R. (2018). A Hybrid Excited Machine with Flux Barriers and Magnetic Bridges. Energies, 11 (3), 676. doi: https://doi.org/10.3390/en11030676
10. Asfrane, S., Hlioui, S., Amara, Y., Gabi, M. (2019). Study of a Hybrid Excitation Synchronous Machine: Modeling and Experimental Validation. Mathematical and Computational Applications, 24 (2), 34. doi: https://doi.org/10.3390/mca24020034
Розглянуто звукові ряди як доповнення візуальних та тепловізійних потоків інформації при застосуванні комп'ютеризованих систем. Підтверджено експериментально, що її структура є мінімально-повною. Розроблено навігаційний приймальний модуль, який входять мікрофони, підсилювачі та узгоджувачі цифрового і а날огового сигналу, контролер ARDUINO UNO WIFI REV2 з інтегрованим Wi-Fi модулем. Проведено дослідження розробленого апаратно-програмного комплексу для вирішення задачі контролю та здійснення вивчення звукових рядів.

Ключові слова: звукові ряди, інформаційно-вимірювальна система, контролер ARDUINO UNO WIFI REV2.
В. В. Чумак, В. А. Баженов, О. Л. Тимощук, М. А. Коваленко, С. С. Цивинський, І. Я. Коваленко, І. В. Ткачук

МАГНІТНИМ ШУНТОМ ТА ЗБУДЖЕННЯ ВІД ПОСТІЙНИХ МАГНІТІВ

СПОВІЩУВАЧІ ІЗ ТЕРМОРЕЗИСТИВНИМ ЧУТЛИВИМ ЕЛЕМЕНТОМ (с. 41–48)

ЗАХИСТУ НА ГЕРКОНАХ І МІКРОПРОЦЕСОРАХ (c. 49–55)

СТАБІЛІЗАЦІЯ НАПРУГИ КЕРОВАНОГО АВТОНОМНОГО МАГНІТОЕЛЕКТРИЧНОГО ГЕНЕРАТОРА З МАГНІТНИМ ШУНТОМ ТА ЗБУДЖЕННЯМ ВІД ПОСТІЙНИХ МАГНІТІВ (c. 56–62)

†Анотацiї. Applied physics

алгоритм та написано комплект програмного забезпечення (ПЗ) на C/C++ мовах. Показано, що кількість мікрофонів обиратися із умов задачі від 1 до 5, але їх число обмежено п’ятьма цифровими входами плати ARDUINO UNO WIFI REV2.

Застосовано хвилявої метод настройку значення часового зміни інтенсивності та інтегральної норми ЗА. Показано, що величина магнітного індуктивного току обертання ракета магнітного шунта виконується регулювання вихідної напруги генератора. Досліджуються наступні характеристики:

в якій ротор виконано із постійними магнітами та додатковою системою у вигляді магнітного шунта. За допомогою регулювання синхронного генератора з магнітним шунтом відносно параметра, який входить до його коефіцієнта передачі.

Проведено дослідження функціонування герконів під впливом магнітного поля, створеного струмом в провіднику в перехідному режимі з наявністю аперіодичної складової. Був реалізований відомий спосіб визначення струму за допомогою герконів.

При цьому було визначено, що спочатку сформульований спосіб не дав необхідного результату в рамках похабок. Пов'язане це, звичайно за все, з особливостями механізму руху контактів геркона, які відрізняються в перехідному і розрідженому режимах. Дане дослідження дозволяє показати застосованість герконів для побудови пристроїв релейного захисту, які не потребуватимуть трансформаторів струму для отримання інформації про первинний струм в провіднику. В ході досліджень встановлено, що похибка визначення величини струму склала не більше 10 %. Із застосуванням мікропроцесорів можлива побудова пристроїв релейного захисту з швидкодією до 20 мсек.

Показано вплив підключення Wі-Fi модуля на зниження спаду напруги на 0,5–1 В. Підходи до реалізації ефективного методу для визначення величини ударного струму за допомогою мікрофона в трьох різних експериментальних умовах. Однак ефективність використання мікрофонів обмежена вимогами до ушкіднів. Основним ефектом є індуктивна зміна напруги, яка відбувається через відповідну кількість циклів.

Розроблено інтерфейси ПЗ калібрування приймального модулю і роботи мобільного додатку. Показано вплив моделювання закону часових змін інтенсивності та інтегральної норми ЗА. Продемонстровано можливість використання алгоритму для відображення випадків випробування мікрофонів.

Ключові слова: терморезистивний чутливий елемент, ефект Джоуля-Ленца, часовий параметр.
холостого ходу при роботі від постійних магнітів і при зміні струму обмотки магнітного шунта при прямій та зворотній полярності. Також, зовнішня характеристика для активного та активно-індуктивного навантаження; регулювальна характеристика при зміні струму навантаження за постійної напруги генератора.

Аналіз отриманих характеристик дає можливість визначити межі регулювання зовнішньої характеристики, яка становить ≈40 %, відносно основного магнітного потоку. Отримана глибина регулювання дозволяє підтримувати стабільність зовнішньої характеристики для коефіцієнтів потужності не більше 0,9, що є звичайною паспортною величиною для автономних енергетичних установок на основі синхронних генераторів. Норівняння даних досліджень, проведених на експериментальній установці, показує достатню, для інженерних і практичних завдань, збіжність. Максимальна кількісна відмінність становить 9,3 %, що дозволяє стверджувати про адекватність розробленої рішення математичної моделі. Регулювальна характеристика, побудована експериментальним шляхом при незмінній напрузі генератора, є законом управління обмоткою магнітного шунта для конкретно досліджуваного генератора.

Досліджений варіант виконання синхронного генератора з магнітним шунктом доцільно використовувати для автономних енерго- установок, систем відновлювальних джерел енергії та систем автономного енергопостачання.

Ключові слова: магнітний шунт, регулювання напруги генератора, підмагнічуюча обмотка, магнітоелектричне збудження, постійні магніти, експериментальне дослідження.