Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

Kaiyu Fu†,‡,† and Paul W. Bohn*,†,‡,†

†Department of Chemistry and Biochemistry and ‡Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States

ABSTRACT: Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present.

INTRODUCTION

Chemical measurement science benefited tremendously from the post-1960 emergence of sophisticated instruments coupled with automatic data analysis, which enabled researchers to separate, identify, and quantify targets at unprecedented levels. Nowadays, the extensive overlap between fundamental research and practical applications has brought within reach the ultimate goal of measurements which simultaneously exhibit ultrahigh sensitivity and selectivity in physical formats of reasonable cost and complexity.

One powerful approach to realizing this ideal is to introduce mass-limited samples in ultrasmall confined volumes, sort the resulting mixtures, and quantify each entity one-by-one. Nanopores are biomimetic architectures that mimic the behavior of ion channels by confining targets to nanoscale volumes from which measurable signals can be generated in situ, thus recapitulating the key features of an ideal detection system. In this Introduction, we trace the histories of nanopores and nanoelectrodes, the merging of the two streams in the early 2000s, and finally the genesis of nanopore electrode systems.

Pore-based analysis originated in 1953 with the resistive pulse detection scheme of Wallace Coulter, which made possible the analysis of sub-μm particles and macromolecules in the Coulter Counter. Soon after, the quest to characterize single biomolecules stimulated researchers to use nanopores commensurate in size with target analytes. The human genome project then triggered the development of fast, cheap, and label-free DNA detection, and in 1996, Kasionowicz et al. detected single DNA strands using an α-hemolysin nanopore. Follow-up work led to the emergence of solid-state nanopore sensors exhibiting performance characteristics comparable to those of biological nanopores. Subsequently, Bayley and co-workers achieved single-nucleobase discrimination leading Oxford Nanopore Technologies to launch a portable real-time DNA sequencing platform in 2014.

At the same time, enhanced understanding of nanofluidics opened the way to controlling molecular transport at unprecedented levels. Rice and Whitehead first described electrokinetic transport in nanoscale capillaries, and the theory of potential driven flow was developed by Levine and co-workers. During the 1980s and 1990s, fabrication of nanochannels became easier, less expensive, and more versatile. In 1999, Ramsey and co-workers demonstrated the first in-plane nanoporous structure for sample preconcentration and later surface charge in nanocapillary array membranes was exploited to effect digital nanofluidic coupling between microfluidic channels. In 2004, Dekker and co-workers developed ion transport platforms that were governed by nanochannel surface charge. Then, Yang and Majumdar developed ionic diodes, i.e., rectified nanofluidic ion currents. Recently, Jiang and co-workers reported a biomimetic nanochannel sensing platform in which the response to ions and molecules is controlled by surface functionalization.

During the 1980s and 1990s, fabrication of nanochannels became easier, less expensive, and more versatile.

In contrast, nanoelectrodes (so-called ultramicroelectrodes) were developed in the 1980s, when electrochemists started...
using them to detect trace analytes and perform transient electrochemical measurements.25–27 During the 1990s Martin’s group developed a robust synthesis of pore-based nanomaterials;28 Bard and Fan designed an elegant purely electrochemical detection of a single molecule;29 and Murray’s group observed the charging of gold nanoparticles (quantized capacitors).30 Inevitably, nanopores and nanoelectrodes were combined to yield single nanopore electrodes, by Zhang and White in 2004.31 Later, single nanopore electrodes and nanopore electrode arrays with well-defined, reproducible pore geometry and size were fabricated lithographically.32,33 Compared with early work, in which electrodes were embedded in track-etched or anodic aluminum oxide membranes, these well-defined nanopore electrodes enabled an additional level of control over transport and reactivity that was exploited to yield enhanced nanoscale electrochemical measurements. Subsequently, the term “nanoelectrochemistry” was coined to describe phenomena ranging from fabrication and characterization of nanoelectrodes to the applications of nanoelectrodes as ultrasensitive tools for electroanalysis.34–38
Here, we examine the overlapping regimes of nanopore sensing, nanoscale transport, and nanoelectrochemistry, shown in Figure 1. We start by introducing the core characteristics of the nanopore electrode, review progress over the past decade, and finally discuss the remaining limits and challenges and propose the outlook for next-generation nanopore electrodes and electrode arrays. Because solid-state nanopores, unlike biological nanopores, can take advantage of mature nanofabrication processes, flexible choice of materials, and easily altered functionality, they will be the focus of this outlook.

The term “nanoelectrochemistry” was coined to describe phenomena ranging from fabrication and characterization of nanoelectrodes to the applications of nanoelectrodes as ultrasensitive tools for electroanalysis.

■ DEFINING CHARACTERISTICS

Benefits of Nanoelectrodes. Nanoscale electrodes exhibit enhanced mass transport, enhanced faradaic currents, and negligible Ir drop during electrochemical measurements. As shown in Figure 2a, the benefits of nanopore electrodes can be classified as follows. (1) Nanopore electrodes provide small confinement volumes, which significantly enhance collision frequencies with the electrode surface. A molecule with a diffusion coefficient of $10^{-5} \text{ cm}^2/\text{s}$ will collide with the wall of a 1000 nm3 nanopore millions of times more frequently than in a 1000 μm3 micropore. (2) Mass transport driven by unscreened electric fields is efficient and tunable at the nanoscale. For example, the field strength between two electrodes with a 10 nm gap is 10^5 V/cm at $\Delta E = 1 \text{ V}$. In addition, the direction of mass transport can be easily switched. Nanopores can be fabricated to be size-commensurate with the Debye length, producing strong coupling between the solution ion distribution and the nanopore surface charge, i.e., permselectivity. Producing strong coupling between the solution ion distribution and the nanopore surface charge, i.e., permselectivity, and correlated photonic and electrochemical measurements, to name a few. Rather than an exhaustive review, here we highlight a few of the forward-looking nanopore electrode-enabled measurements that exhibit transformational new capabilities.

Nanopore Electrode Capabilities

The dramatic increase in research focused on nanopore electrodes and electrode arrays has resulted in a plethora of new and exciting capabilities for the chemical sciences—single entity electrochemistry, current and molecular rectification, sensing ion conductance mapping, concentration polarization, permselectivity, and correlated photonic and electrochemical measurements, and other capabilities. Here, we examine the overlapping regimes of nanopore sensing, nanoscale transport, and nano-elec-
useful kinetic information that can be used, for example, to develop more powerful electrocatalysts.69,70 Second, material released from vesicles or droplets provides a natural \textit{ex vivo} mimic of extracellular release processes, e.g., neurotransmitters released from neurons.71,72 Early work addressing single nanoparticle collisions was conducted on ultramicroelectrodes by Bard et al.73 and others.74–76 Since these early reports, it has become possible to sequester a few nanoparticles, or even one.77,78 Recently, Long et al. reported an innovative nanopore bipolar electrode to control the dynamic self-assembly of gold nanoparticles,79 Figure 3c. Similarly, White and co-workers proposed a super-resolution imaging method to map the trajectories of fluorescent nanoparticles around the tip of a nanopipette,80 Figure 3d. These are just a few examples.
Outlook

The dramatic increase in research focused on nanopore electrodes and electrode arrays has resulted in a plethora of new and exciting capabilities for the chemical sciences—single entity electrochemistry, current and molecular rectification, scanning ion conductance mapping, concentration polarization, permselectivity, and correlated photonic and electrochemical measurements, to name a few.

![Image](68x362 to 292x749)

Figure 3. (a) Schematic illustration of a nanopore electrode immersed into Hg. The limiting current values of cyclic voltammograms correspond to zero (black), one (orange), two (blue), three (green), and four (red) molecules. (b) Schematic illustration of four electrode configuration, where the molecules are confined within the nanogap electrochemical cell. Current−time plots are from carbon working electrode (red line) and substrate working electrode (black line), where symmetric peaks indicate a single molecule event based on highly efficient redox cycling. (c) Schematic illustration of the self-assembly of gold nanoparticles (AuNPs) at the tip of a nanopore electrode, where the dark-field (20 μm scale) and TEM (20 nm scale) images present several and a cornel of microcyclic AuNP structures, respectively. (d) Schematic illustration of the manipulation of the fluorescent nanoparticle by nanopipettes, where the trajectories of each nanoparticle are captured in real time by the electron multiplied CCD detector for three-dimensional super-resolution imaging. Panel a reproduced with permission from ref 41. Copyright 2008 American Chemical Society. Panel b reproduced with permission from ref 42. Copyright 2015 American Chemical Society. Panel c reproduced with permission from ref 79. Copyright 2017 Wiley-VCH. Panel d reproduced with permission from ref 80. Copyright 2017 American Chemical Society.

Illustrating the broad interest in single entity electrochemistry, readers may refer to recent comprehensive reviews for additional details.81−84

High Density Nanopore Sensing Array. The experiments above highlight the push to single entity level detection in a single nanopore electrode. A natural extension is multiple nanopore electrodes on one device, i.e., nanopore electrode arrays (NEAs), either to enhance signal without losing the unique features of nanoscale electrode or to operate as multiplex sensors.85,86 In order to avoid the problem of overlapping diffusion profiles in high density nanopore arrays,87 Bohn and co-workers fabricated high density NEAs with two closely placed intrapore electrodes, Figure 4a, so that reversible redox couples undergo coupled reduction and oxidation reactions at oppositely biased top and bottom electrodes. The collection efficiency of redox species for both electrodes is close to 100%,88 which results in both greatly enhanced redox cycling and selectivity.89−91 Figure 4b. Furthermore, electrochemical events can be efficiently converted to optical, e.g., fluorescence, readout by coupling the redox cycling signal to a distal reporter cell with a bipolar electrode.92 Recently, a high porosity permselective membrane was integrated with an NEA to mediate molecular transport, enhancing the selectivity to analytes of different charge.93 The permselective membrane serves as an ideal ion gate, controlling the access of charged analytes to the nanopore. Rectified redox cycling currents have also been observed raising the possibility of ionic diode functionality.

Correlated Electrochemical and Optical Detection. Direct electronic detection of quantized events characterized by the passage of a few electrons is limited by the Johnson noise floor. In contrast, shifting to the more tractable problem of photon detection would allow the sensitivity issue at low analyte numbers to be addressed.94−97 To achieve this, the bottom ring of dual-ring NEAs can be used both as a working electrode and as the optical cladding layer of a zero mode waveguide (ZMW).98,99 To achieve this, the bottom ring of dual-ring NEAs can be used both as a working electrode and as the optical cladding layer of a zero mode waveguide (ZMW).98,99 The resulting electrochemical ZMWs (E-ZMWs) are ideal systems to investigate the singe molecule spectroelectrochemistry,100 and have been used to probe single molecule dynamics of immobilized enzymes101 and freely diffused enzymes102,103 of the fluorogenic flavoenzyme monomeric sarcosine oxidase, by modulating the fluorescence ON and OFF with applied potential, Figure 4c. The electrochemical and fluorescence signals are correlated, revealing single molecule fluctuations across the nanopore array. This method holds great promise for the study of vectorially coupled enzyme reactions at single molecule sensitivity.

CHALLENGES AND LIMITS

As successful as nanopore electrochemical structures have been, there exist both practical and fundamental limits to perform-
structures with sub-10 nm feature sizes. Direct-write techniques, such as FIB and EBL, are limited to lab-scale structures. In addition, FIB milling implants conductive impurities, leading to current leakage problems, especially at high frequencies.107,108 EBL is limited by e-beam scattering during exposure, the development of e-beam resists after exposure, and subsequent pattern transfer to the under-layer.109,110 Nanotemplate-based parallel processing approaches, e.g., nanoimprint lithography, nanosphere lithography, and block copolymer nanotemplates, are promising, but they need further development to provide high precision nanopatterning at production size scales.111–114

Specificity and Multiplex Sensing. Another significant factor affecting performance of nanopore electrode systems is the specificity between target and interferences. One straightforward approach is to exploit biomolecular recognition at the surface of a nanopore.115,116 However, surface modification inside the ultrasmall confined volume of a nanopore is still tedious and inefficient, and nanopore electrode sensing constructs must ensure efficient electron transfer, even after surface modification—a particularly challenging problem for biorecognition motifs, such as enzymes.117,118 If these problems can be solved, then multiple sensing units may be realized within a single nanopore to effect vectorially coupled reactions, or alternatively to differentially modify different regions of nanopore arrays for high throughput multiplex sensing.

NEXT-GENERATION NANOPORE ELECTRODES

Nanopore-based and nanopore electrode based sensors have benefited from the growth and maturation of nanotechnology. In linear succession, Wallace Coulter’s 1950s idea of counting particles in a fluid was followed by Richard Feynman’s oft-quoted 1959 essay “There is Plenty of Room at the Bottom,”119 which had a tremendous catalyzing impact on the scientific community. The technological developments flowing from these two seminal events were the intellectual ancestors to the human genome project, and after two decades the $1,000 genome has ushered in the era of personalized genomics and precision medicine.120 What will come next? Nanopore electrode systems are certainly poised to be integrated into contemporary point-of-care devices—not only reading DNA but identifying a range of proteomic and metabolomic biomarkers related to human health and wellness.121–123

Incorporating new passive and active electrode materials is one area for potential elaboration of nanopore electrode characteristics. Over the past decade, solid-state nanopores and two-dimensional nanopore arrays have advanced to exhibit excellent performance, in some cases competing with biological nanopores. However, the insertion of electronic components into nanopore systems has the potential to extend the contemporary capabilities to efficiently control molecular transport, directly monitor electron transfer processes, and
rapidly record electrical signals. Gold and carbon are dominant electrode materials in nanopore electrode systems, and there are a number of interesting examples using carbon nanotubes or, more recently, graphene as electrode materials in nanopores. However, there are now a myriad of newly characterized two-dimensional materials, e.g., molybdenum disulfide (MoS₂) and hexagonal boron nitride, promising candidates that exemplify new opportunities for nanopore sensing.

Lastly, the emergence of novel transport-reaction models suitable for application at the nanoscale and the development of powerful simulations together provide experimentalists with a direct way to predict the performance of new nanopore electrode sensors before testing as well as a way to assess performance afterward. The modeling of graphene-based nanopore sensors is just one example. Calculations can guide optimization of the number of graphene layers, pore diameter, and graft density of surface functional groups before fabricating graphene nanopores in the lab.

Nanopore electrode systems are certainly poised to be integrated into contemporary point-of-care devices—not only reading DNA but identifying a range of proteomic and metabolomic biomarkers related to human health and wellness.

The topics highlighted here necessarily represent only a small fraction of the innovative work at the nexus where nanopore electrodes connect electron transfer and molecular control. Overall, there is a great deal of synergy in the opportunities before the nanopore community, and the exciting new directions that nanopore electrochemistry is poised to take should lead to a bright future and even more transformative surprises.

■ AUTHOR INFORMATION

Corresponding Author
E-mail: pbohn@nd.edu. Tel: +1 574 631 1849. Fax: +1 574 631 8366.

ORCID
Kaiyu Fu: 0000-0002-7899-0388
Paul W. Bohn: 0000-0001-9052-0349

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work is supported by the National Science Foundation, Grant 1404744. We gratefully acknowledge Notre Dame Nanofabrication Facility and Integrated Imaging Facility for providing fabrication and structural characterization of the devices used in our studies in recent years. K.F. would like to thank Xin Zhang for her continued support of his research work.

■ REFERENCES

(1) Larive, C. K.; Sweedler, J. V. Celebrating the 75th Anniversary of the ACS Division of Analytical Chemistry: A Special Collection of the Most Highly Cited Analytical Chemistry Papers Published between 1938 and 2012. Anal. Chem. 2013, 85 (9), 4201−4202.
(2) Murray, R. W. An Editor’s View of Analytical Chemistry (the Discipline). Annu. Rev. Anal. Chem. 2010, 3 (1), 1−18.
(3) Sweedler, J. V.; Armstrong, D. W.; Baba, Y.; Desmet, G.; Dovichi, N.; Ewing, A.; Fenselau, C. C.; Kennedy, R. T.; Larive, C. K.; Ligler, F. S.; McCreery, R. L.; Niessner, R.; Pemberton, J. E.; Tan, W. H.; Walt, D. R.; Yates, J. R.; Zenobi, R.; Zhang, X. R. The Scope of Analytical Chemistry. Anal. Chem. 2015, 87 (13), 6425−6425.
(4) Hou, X.; Guo, W.; Jiang, L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40 (5), 2385−2401.
(5) Coulter, W. H. Means for counting particles suspended in a fluid. U.S. Patent 2,656,508 A, Oct 20, 1953.
(6) Bull, B. S.; Schneideman, M. A.; Brecher, G. Platelet counts with the Coulter counter. Am. J. Clin. Pathol. 1965, 44 (6), 678−688.
(7) DeBlois, R. W.; Bean, C. P. Counting and Sizing of Submicron Particles by the Resistive Pulse Technique. Rev. Sci. Instrum. 1970, 41, 909−916.
(8) Simon, S. M.; Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell 1991, 3 (3), 371−380.
(9) Bezrukov, S. M.; Vodyanoy, I.; Parsegian, V. A. Counting Polymers Moving through a Single-Ion Channel. Nature 1994, 370, 279−281.
(10) Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of Individual Polynucleotide Molecules Using a Membrane Channel. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770−13773.
(11) Li, J.; Stein, D.; McMullan, C.; Branton, D.; Aziz, M. J.; Golovchenko, J. A. Ion-Beam Sculpting at Nanometre Length Scales. Nature 2001, 412, 166−169.
(12) Storm, A. J.; Chen, J. H.; Ling, X. S.; Zandbergen, H. W.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2003, 2 (8), 537−540.
(13) Ashkenasy, N.; Sánchez-Quesada, J.; Bayley, H.; Ghadiri, M. R. Recognizing a Single Base in an Individual DNA Strand: A Step Toward DNA Sequencing in Nanopores. Angew. Chem., Int. Ed. 2005, 44 (9), 1401−1404.
(14) Clarke, J.; Wu, H. C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 2009, 4 (4), 265−270.
(15) Rice, C. L.; Whitehead, R. Electrokinetiic Flow in a Narrow Cylindrical Capillary. J. Phys. Chem. 1965, 69 (11), 4017−4024.
(16) Levine, S.; Marriott, J. R.; Robinson, K. Theory of electrophoretic flow in a narrow parallel-plate channel. J. Chem. Soc., Faraday Trans. 2 1975, 71 (0), 1−11.
(17) Tonucci, R. J.; Justus, B. L.; Campillo, A. J.; Ford, C. E. Nanochannel Array Glass. Science 1992, 258 (5083), 783−785.
(18) Masuda, H.; Fukuda, K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268 (5216), 1466−1468.
(19) Khandurina, J.; Jacobson, S. C.; Waters, L. C.; Foon, R. S.; Ramsey, J. M. Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis. Anal. Chem. 1999, 71 (9), 1815−1819.
(20) Kuo, T.-C.; Sloan, L. A.; Sweedler, J. V.; Bohn, P. W. Manipulating Molecular Transport through Nanoporous Membranes by Control of Electrophoretic Flow: Effect of Surface Charge Density and Debye Length. Langmuir 2001, 17 (20), 6298−6303.
(21) Stein, D.; Kruthoff, M.; Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93 (3), 035901.
(22) Karnik, R.; Fan, R.; Yue, M.; Li, D.; Yang, P.; Majumdar, A. Electrostatic Control of Ions and Molecules in Nanofluidic Transistors. Nano Lett. 2005, 5 (5), 943−948.
(23) Karnik, R.; Duan, C.; Castelino, K.; Daiguiji, H.; Majumdar, A. Rectification of Ionic Current in a Nanofluidic Diode. Nano Lett. 2007, 7 (3), 547−551.
(24) Hou, X.; Guo, W.; Xia, F.; Nie, F.-Q.; Dong, H.; Tian, Y.; Wen, L.; Wang, L.; Cao, L.; Yang, Y.; Xue, J.; Song, Y.; Wang, Y.; Liu, D.; Jiang, L. A Biomimetic Potassium Responsive Nanochannel: G-
Quadruplex DNA Conformational Switching in a Synthetic Nanopore.

(25) Wehmeyer, K. R.; Wightman, R. M. Cyclic Voltammetry and Anodic-Stripping Voltammetry with Mercury Ultramicroelectrodes.

(26) Bard, A. J.; Crayston, J. A.; Kittleson, G. P.; Varco Shea, T.; Wrighton, M. S. Digital-Simulation of the Measured Electrochemical Response of Reversible Redox Couples at Microelectrode Arrays - Consequences Arising from Closely Spaced Ultramicroelectrodes.

(27) Morris, R. B.; Franta, D. J.; White, H. S. Electrochemistry at platinum bane electrodes of width approaching molecular dimensions: breakdown of transport equations at very small electrodes.

(28) Martin, C. R. Nanomaterials: a membrane-based synthetic approach.

(29) Fan, F. R.; Bard, A. J. Electrochemical detection of single molecules.

(30) Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schauf, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Gold nanoelectodes of varied size: transition to molecule-like charging.

(31) Zhang, B.; Zhang, Y.; White, H. S. The Nanopore Electrode.

(32) Lemay, S. G.; van den Broek, D. M.; Storm, A. J.; Krapp, D.; Smeets, R. M. M.; Heering, H. A.; Dekker, C. Lithographically Fabricated Nanopore-Based Electrodes for Electrochemistry.

(33) Lanyon, Y. H.; De Marzi, G.; Watson, Y. E.; Quinn, A. J.; Gleeson, J. P.; Redmond, G.; Arrigan, D. W. M. Fabrication of Nanopore Array Electrodes by Focused Ion Beam Milling.

(34) Arrigan, D. W. M. Nanoelectrodes, nanoelectrode arrays and their applications.

(35) Murray, R. W. Nanochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores.

(36) Bae, J. H.; Han, J.-H.; Chung, T. D. Electrochemistry at Nanoelectrodes.

(37) Oja, S. M.; Wood, M.; Zhang, B. Nanoscopic Electrochemistry.

(38) Ying, Y.-L.; Ding, Z.; Zhan, D.; Long, Y.-T. Advanced electroanalytical chemistry at nanoelectrodes.

(39) Dekker, C. Solid-state nanopores.

(40) Miles, B. N.; Ivanov, A. P.; Wilson, K. A.; Dogan, F.; Japun, D.; Edel, J. B. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications.

(41) Sun, P.; Mirkin, M. V. Electrochemistry of Individual Molecules in Zeptoliter Volumes.

(42) Byers, J. C.; Edwards, M. A.; Luo, L.; Perera, B. T.; Wu, X. J.; Martin, C. R.; White, H. S. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.

(43) Siwy, Z. S.; Howorka, S. Engineered voltage-responsive nanopores.

(44) Lan, W. J.; Edwards, M. A.; Luo, L.; Perera, B. T.; Wu, X. J.; Martin, C. R.; White, H. S. Voltage-Rectified Current and Fluid Flow in Conical Nanopores. Acc. Chem. Res. 2016, 49 (11), 2605−2613.

(45) van der Heyden, F. H. J.; Bonthius, D. J.; Stein, D.; Meyer, C.; Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 2007, 7 (4), 1022−1025.

(46) van der Heyden, F. H.; Stein, D.; Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95 (11), 116104.
Electrochemistry: [NiFe]-Hydrogenase Protein Film Voltammetry at Nanoelectrodes. *ACS Nano* **2008**, *2* (12), 2497−2504.

(68) Rasaei, L.; Mathwig, K.; Kang, S.; Heering, H. A.; Lemay, S. G. Integrated Biocatalysis in a Nanofluidic Device. *ACS Nano* **2014**, *8* (8), 8278−8284.

(69) Li, Y.; Cox, J. T.; Zhang, B. Electrochemical Responses and Electrocatlysis at Single Au Nanoparticles. *J. Am. Chem. Soc.* **2010**, *132* (9), 3047−3054.

(70) Shan, X.; Diez-Pérez, I.; Wang, L.; Wiktor, P.; Gu, Y.; Zhang, L.; Wang, W.; Lu, J.; Wang, S.; Gong, Q.; Li, J.; Tao, N. Imaging the electrocatalytic activity of single nanoparticles. *Nat. Nanotechnol.* **2012**, *7*, 668.

(71) Phan, N. T. N.; Li, X.; Ewing, A. G. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. *Nat. Rev. Chem.* **2017**, *1*, 0048.

(72) Wang, K.; Xiao, T.; Yue, Q.; Wu, F.; Yu, P.; Mao, L. Selective Amperometric Recording of Endogenous Ascorbate Secretion from a Single Rat Adrenal Chromaffin Cell with Pretreated Carbon Fiber Microelectrodes. *Anal. Chem.* **2017**, *89* (17), 9502−9507.

(73) Xiao, X.; Bard, A. J. Observing Single Nanoparticle Collisions at an Ultramicroelectrode by Electrocatalytic Amplification. *J. Am. Chem. Soc.* **2007**, *129* (31), 9610−9612.

(74) Zhou, Y.-G.; Rees, N. V.; Compton, R. G. The Electrochemical Detection and Characterization of Silver Nanoparticles in Aqueous Solution. *Angew. Chem., Int. Ed.* **2011**, *50* (18), 4219−4221.

(75) Dasari, R.; Robinson, D. A.; Stevenson, K. J. Ultrasensitive Electroanalytical Tool for Detecting, Sizing, and Evaluating the Catalytic Activity of Platinum Nanoparticles. *J. Am. Chem. Soc.* **2013**, *135* (2), 575−579.

(76) Fosdick, S. E.; Anderson, M. J.; Nletleton, E. G.; Crooks, R. M. Correlated Electrochemical and Optical Tracking of Discrete Collision Events. *J. Am. Chem. Soc.* **2013**, *135* (16), 5994−5997.

(77) Zhou, M.; Yu, Y.; Hu, K.; Xin, H. L.; Mirkin, M. V. Collisions of Ir Oxide Nanoparticles with Carbon Nanopipettes: Experiments with One Nanoparticle. *Anal. Chem.* **2017**, *89* (5), 2880−2885.

(78) Gao, R.; Ying, Y.-L.; Li, Y.-J.; Hu, Y.-X.; Yu, R.-J.; Lin, Y.; Long, Y.-T. A 30 nm Nanopore Electrode: Facile Fabrication and Direct Insights into the Intrinsic Feature of Single Nanoparticle Collisions. *Angew. Chem., Int. Ed.* **2017**, DOI: 10.1002/anie.201710201.

(79) Gao, R.; Lin, Y.; Ying, Y.-L.; Liu, X.-Y.; Shi, X.; Hu, Y.-X.; Long, Y.-T.; Tian, H. Dynamic Self-Assembly of Homogenous Microcyclic Structures Controlled by a Silver-Coated Nanopore. *Small* **2017**, *13* (25), 1700234.

(80) Yu, Y.; Sundaresan, V.; Bandyopadhyay, S.; Zhang, Y.; Edwards, M. A.; McKelvey, K.; White, H. S.; Willets, K. A. Three-Dimensional Super-resolution Imaging of Single Nanoparticles Delivered by Pipettes. *ACS Nano* **2017**, *11* (10), 10529−10538.

(81) Mathwig, K.; Aartsma, T. J.; Caneters, G. W.; Lemay, S. G. Nanoscale Methods for Single-Molecule Electrochemistry. *Annu. Rev. Anal. Chem.* **2014**, *7* (1), 383−404.

(82) Brasiliense, V.; Berto, P.; Combellas, C.; Tessier, G.; Kanoufi, F. Electrochemistry of Single Nanodomains Revealed by Three-Dimensional Holographic Microscopy. *Acc. Chem. Res.* **2016**, *49* (9), 2049−2057.

(83) Clausmeyer, J.; Schuhmann, W. Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging. *TrAC, Trends Anal. Chem.* **2016**, *79*, 46−59.

(84) Wang, Y.; Shan, X.; Tao, N. Emerging tools for studying single entity electrochemistry. *Faraday Discuss.* **2016**, *193* (0), 9−39.

(85) LaFratta, C. N.; Walt, D. R. Very high density sensing arrays. *Chem. Rev.* **2008**, *108* (2), 614−637.

(86) Wolfrum, B.; Kätelhön, E.; Yakushenko, A.; Krause, K. J.; Adly, N.; Hlucka, M.; Rinkin, P. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems. *Acc. Chem. Res.* **2016**, *49* (9), 2031−2040.

(87) Ma, C.; Contento, N. M.; Gibson, L. R.; Bohn, P. W. Redox Cycling in Nanoscale-Recessed Ring-Disk Electrode Arrays for Enhanced Electrochemical Sensitivity. *ACS Nano* **2013**, *7* (6), 5483−5490.
(108) Moberly, Chan, W. J.; Adams, D. P.; Aziz, M. J.; Hobler, G.; Schenkel, T. Fundamentals of Focused Ion Beam Nanostructural Processing: Below, At, and Above the Surface. *MRS Bull.* 2007, 32 (5), 424–432.

(109) Grigorescu, A. E.; Hagen, C. W. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art. *Nanotechnology* 2009, 20 (29), 292001.

(110) Chen, Y. Nanofabrication by electron beam lithography and its applications: A review. *Microelectron. Eng.* 2015, 135, 57–72.

(111) Henzie, J.; Barton, J. E.; Stender, C. L.; Odom, T. W. Large-Area Nanoscale Patternning: Chemistry Meets Fabrication. *Acc. Chem. Res.* 2006, 39 (4), 249–257.

(112) Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured Plasmonic Sensors. *Chem. Rev.* 2008, 108 (2), 494–521.

(113) Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. *Chem. Rev.* 2011, 111 (6), 3736–3827.

(114) Claridge, S. A.; Liao, W.-S.; Thomas, J. C.; Zhao, Y.; Cao, H. H.; Cheunkar, S.; Serino, A. C.; Andrews, A. M.; Weiss, P. S. From the bottom up: dimensional control and characterization in molecular monolayers. *Chem. Soc. Rev.* 2013, 42 (7), 2725–2745.

(115) Zen, J. M.; Kumar, A. S.; Tsai, D. M. Recent updates of chemically modified electrodes in analytical chemistry. *Electroanalysis* 2003, 15 (13), 1073–1087.

(116) Labib, M.; Sargent, E. H.; Kelley, S. O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. *Chem. Rev.* 2016, 116 (16), 9001–9090.

(117) Léger, C.; Bertrand, P. Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies. *Chem. Rev.* 2008, 108 (7), 2379–2438.

(118) Noll, T.; Noll, G. Strategies for “wiring” redox-active proteins to electrodes to detect in biosensors, biofuel cells, and nanotechnology. *Chem. Soc. Rev.* 2011, 40 (7), 3564–3576.

(119) Feynman, R. P. *There's Plenty of Room at the Bottom.*

(120) Hayden, E. C. The $1,000 genome. *Nature* 2014, 507 (7492), 294–295.

(121) Wei, R.; Gatterdam, V.; Wieneke, R.; Tampé, R.; Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. *Nat. Nanotechnol.* 2012, 7, 257–263.

(122) Oshiro, T.; Tsutsui, M.; Yokota, K.; Furuhashi, M.; Taniguchi, M.; Kawai, T. Detection of post-translational modifications in single peptides using electron tunnelling currents. *Nat. Nanotechnol.* 2014, 9, 835–840.

(123) Zhao, Y.; Ashcroft, B.; Zhang, P.; Liu, H.; Sen, S.; Song, W.; Im, J.; Gyarfas, B.; Mannia, S.; Biswas, S.; Borges, C.; Lindsay, S. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. *Nat. Nanotechnol.* 2014, 9, 466–473.

(124) Nam, S. W.; Rooks, M. J.; Kim, K. B.; Rossnagel, S. M. Ionic field effect transistors with sub-10 nm multiple nanopores. *Nano Lett.* 2009, 9 (5), 2044–2048.

(125) Rutkowska, A.; Edel, J. B.; Albrecht, T. Mapping the ion current distribution in nanopore/electrode devices. *ACS Nano* 2013, 7 (1), 547–555.

(126) Ren, R.; Zhang, Y.; Nadappuram, B. P.; Akpinar, B.; Klenerman, D.; Ivanov, A. P.; Edel, J. B.; Korchev, Y. Nanopore extended field-effect transistor for selective single-molecule biosensing. *Nat. Commun.* 2017, 8 (1), 586.

(127) Merchant, C. A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M. D.; Venta, K.; Luo, Z.; Johnson, A. T. C.; Drndić, M. DNA Translocation through Graphene Nanopores. *Nano Lett.* 2010, 10 (8), 2915–2921.

(128) Traversi, F.; Raillon, C.; Benamer, S. M.; Liu, K.; Khlybov, S.; Tosun, M.; Krasnozhon, D.; Kis, A.; Radenovic, A. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. *Nat. Nanotechnol.* 2013, 8, 939–945.

(129) Heerema, S. J.; Dekker, C. Graphene nanodevices for DNA sequencing. *Nat. Nanotechnol.* 2016, 11, 127–136.

(130) Feng, J.; Liu, K.; Bulushev, R. D.; Khlybov, S.; Dumencu, D.; Kis, A.; Radenovic, A. Identification of single nucleotides in MoS2 nanopores. *Nat. Nanotechnol.* 2015, 10 (12), 1070–1076.

(131) Liu, S.; Lu, B.; Zhao, Q.; Li, J.; Gao, T.; Chen, Y.; Zhang, Y.; Liu, Z.; Fan, Z.; Yang, F.; You, L.; Yu, D. Boron Nitride Nanopores: Highly Sensitive DNA Single-Molecule Detectors. *Adv. Mater.* 2013, 25 (33), 4549–4554.