TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity

Xiaojie Yu1✉, Sonya James1, James H. Felce2, Blanka Kellermayer2, David A. Johnston3, H. T. Claude Chan1, Christine A. Penfold1, Jinny Kim1, Tatyana Inzhelevskaya1, C. Ian Mockridge1, Yasunori Watanabe4, Max Crispin4, Ruth R. French1, Patrick J. Duriez5, Leon R. Douglas5, Martin J. Glennie1 & Mark S. Cragg1,6

Monoclonal antibodies (mAb) and natural ligands targeting costimulatory tumor necrosis factor receptors (TNFR) exhibit a wide range of agonistic activities and antitumor responses. The mechanisms underlying these differential agonistic activities remain poorly understood. Here, we employ a panel of experimental and clinically-relevant molecules targeting human CD40, 4-1BB and OX40 to examine this issue. Confocal and STORM microscopy reveal that strongly agonistic reagents induce clusters characterized by small area and high receptor density. Using antibody pairs differing only in isotype we show that hlgG2 confers significantly more receptor clustering than hlgG1 across all three receptors, explaining its greater agonistic activity, with receptor clustering shielding the receptor-agonist complex from further molecular access. Nevertheless, discrete receptor clustering patterns are observed with different hlgG2 mAb, with a unique rod-shaped assembly observed with the most agonistic mAb. These findings dispel the notion that larger receptor clusters elicit greater agonism, and instead point to receptor density and subsequent super-structure as key determinants.
ostimulatory tumour necrosis factor receptors (TNFRs) play important roles in immune activation and represent promising targets for next-generation cancer immunotherapeutics1-3. Selective TNFR activation has been shown to augment antitumor immunity and confer robust therapeutic benefits in animal models1 with TNFR-targeting mAbs and recombinant ligands showing promising antitumor activities in early phase trials1,4,5, although they remain behind checkpoint-blocking reagents in their development, likely due to a poorer understanding of how the activity is achieved and their multiple potential mechanisms of action6-7. These clinical candidates display a range of agonistic activities resulting from differential TNFR activation, with their level of agonism correlated positively with their pharmacodynamic properties in clinical trials8-13.

TNFR activation follows the paradigm of ligand-induced receptor oligomerization4,14. TNFR are type I transmembrane proteins characterised by the presence of 3–4 extracellular cysteine-rich domains (CRD) and signal via cytoplasmic association with TRAF, FADD or TRADD adaptor proteins4,15. Endogenous TNFR ligands are type II transmembrane proteins sharing the common extracellular TNF homology domain that drives non-covalent trimerization4. These membrane-bound ligands can undergo proteolysis to form soluble trimers detectable in circulation2. With a few exceptions16,17, most crystal structures of TNFR-ligand complexes infer a conserved mode of interaction underpinning activation whereby a trimeric ligand engages three receptor monomers, forming the basic unit of TNFR signalling10,16-23.

In contrast to their natural ligands, the oligomeric state of TNFRs remains unclear, with growing evidence suggesting that at least some TNFRs exist as pre-assembled oligomers on the cell surface. For example, chemical crosslinking of the cell surface indicates that TNFR1, TNFR2, Fas, TRAILR2 and CD40 can self-associate into non-covalent dimers or trimers, mediated by the pre-ligand assembly domain (PLAD) within CRD1 via homotypic interaction24-28. Super-resolution microscopy quantified TNFR1 to comprise 66% monomer and 34% dimer on the cell surface, shifting to 13% monomer, 64% trimer and 23% higher-order oligomer upon soluble TNF-α binding29. Moreover, a dysfunctional PLAD restricted TNFR1 to monomers even in the presence of TNF-α28. Further biophysical characterisations of recombinant PLADs of TNFR1 and TNFR2 detected some specific, albeit weak, PLAD–PLAD interactions30.

While the significance of the PLAD module in each TNFR continues to be unravelled, the concept of PLAD provides the mechanistic basis for a two-step model of ligand-induced TNF activation, which proposes that the initial formation of the trimeric receptor-ligand complex (step one) is followed by higher-order oligomerization via PLAD interactions between adjacent complexes (step two)4. TNFR ligands typically engage TNFRs via a conserved interface within CRD2 and CRD3; however, rules dictating agonistic anti-TNFR mAb activity are more complex4,14. We previously demonstrated that a complex interplay between epitope and isoform determines anti-TNFR mAb agonism, with the human IgG2 (hIgG2) isoform able to impart superior agonistic activity and convert CD40 antagonism to agonism8,9,31.

Although the two-step model and PLAD concept offer a molecular basis for TNFR activation, our understanding of the relationship between receptor clustering and agonistic activity has remained largely binary, unable to account for the range of agonism displayed by the variety of reagents so far explored in the clinic11-13,32. At least for some TNFR targets, a lack of agonism has been associated with subsequent clinical failure11,12, while excessive agonism has been linked to toxicity-related complications13,32. A better understanding of the molecular features that underlie differential TNFR agonism is critical for the generation of agonists with the desired level of agonistic activity needed to elicit therapeutic benefit. Here we employed a panel of clinically relevant mAbs and recombinant natural ligands targeting three different TNFRs (CD40, 4-1BB and OX40) to investigate features of receptor clustering that underlie differential agonism. We found that different agonists triggered distinct patterns of receptor clustering, with natural ligands and strong agonists inducing small clusters with higher receptor density. Receptors enclosed within these clusters were refractory to further molecular access. Moreover, a higher-order structure, manifested as distinct rod-shaped clusters, was uniquely observed for our most potent CD40 super-agonist. This work reveals that diverse TNFR agonism is achieved through distinct receptor clustering, which underlies the fundamental mechanism of TNFR activation.

Results

TNFR agonists induce receptor clustering. Clinically relevant TNFR agonists, comprising mAbs and recombinant natural ligands, exhibit a range of antitumor activities in cancer patients. To dissect the molecular mechanisms underlying such differential TNFR activation, we first investigated CD40 as a paradigm and explored receptor clustering on Jurkat cells expressing human CD40 extracellular domain (ECD) coupled to GFP. Cells lacking the CD40 intracellular domain were employed initially to reduce complexity arising from potential signalling activities within the cell. We assessed a panel of clinically relevant CD40 agonists possessing a range of agonistic activities8,31, spanning non-agonistic (24.2.1) to super-agonist (341G2 hlgG2) mAb, as agonistic as CD40L. 341G2 hlgG2 is 4 times more potent than CP870,893 the most agonistic anti-CD40 mAb so far examined in the clinic31 (Supplementary Fig. 1). We previously demonstrated that the wild type hlgG2 isoform typically imparts stronger agonistic potential compared to hlgG18,9 and so examined mAb in both isoforms. Confocal microscopy showed that these various reagents induced distinct patterns of receptor clusters varying in size and shape (Fig. 1a). Overall, clustering in these Jurkat cells directly correlated with agonism as measured by CD23 upregulation on human CD40 transgenic (hCD40Tg) B cells lacking FcγRs (Fig. 1a, histograms). This association between receptor clustering and agonism was evident for mAb that lacked activity in any isoform (24.2.1), those that were active following isotype switching to hlgG2 (exemplified by 341G2) and those active in both isoforms including the previously reported “super-agonist” CP870,893 (Fig. 1a). Nonetheless, as before we observed the wild type hlgG2 isoform conferred greater activity and clustering for the majority of mAb. Importantly, such receptor clustering was recapitulated in Jurkat cells expressing full-length CD40 (Supplementary Fig. 2a) and in a heterologous CHO-k1 cell system expressing CD40ECD-GFP (Supplementary Fig. 2b); indicating that the degree of clustering reflects inherent cross-linking/clustering properties of the mAb, rather than a particular cell system context. F(ab′)\textsubscript{2}, but not Fab fragments of 341G2 hlgG2 and CP870,893 hlgG2 both induced similar receptor clustering as the full-length IgG (Supplementary Fig. 2c), consistent with our previous findings that hlgG2-mediated agonism requires bivalency but is Fc-independent8,9,31.

To confirm these observations in physiologically relevant cell populations, we stained CD40-expressing immune cells with labelled anti-CD40 mAbs or CD40L. Consistent with the data above, the same differential receptor clustering was recapitulated on Ramos malignant B cells (Supplementary Fig. 2d,) normal human B cells (Fig. 1b), murine hCD40Tg B cells (Fig. 1c), and human monocyte-derived dendritic cells (DCs) (Fig. 1d). To further examine the profound ability of the wild type hlgG2 isoform to elicit receptor clustering, we co-stained Jurkat
CD40ECD-expressing cells with differentially labelled hIgG1 and hIgG2 variants of 341G2 and found that the hIgG2 isotype, regardless of the fluorescent label, induced distinct clusters while hIgG1 exhibited more dispersed staining throughout the same cell surface (Fig. 1e, f and Supplementary Fig. 2e), demonstrating that hIgG2-mediated clustering does not relate to any unanticipated property of the fluorochrome and that it does not elicit clustering of all available surface CD40 molecules.

We previously documented that hyper-crosslinking provided by secondary antibodies or accessory cells over-expressing FcγR can obviate the inherent agonistic potential of anti-mouse or anti-human CD40 mAb to deliver powerful agonism. To explore this observation with respect to receptor clustering, we co-incubated Jurkat CD40ECD-GFP cells with CHO-k1 cells over-expressing human FcγRIA, FcγRIIA or FcγRIIB. All three cell-types, but not native CHO-k1 cells, conferred extensive receptor redistribution to the cell-cell interface, concurrent with maximal NFκB activation with all hIgG1 mAb (Supplementary Fig. 3) irrespective of inherent activity, including with the native antagonist 24.2.1.

As endogenous CD40 activation occurs through engagement with CD40L on activated CD4 T cells, we also examined receptor
clustering after co-culturing activated CD40L-expressing human CD4+ T cells (Supplementary Fig. 4a) with various CD40-expressing cells including Jurkat CD40ECD-GFP cells (Supplementary Fig. 4b), monocyte-derived DCs (Supplementary Fig. 4c) and normal human B cells (Supplementary Fig. 4d), and observed significant clustering at the cell-cell interface akin to that induced by FcγR-expressing CHO-k1 cells (Supplementary Fig. 3a). Moreover, such clusters were inhibited by the antagonist 24.2.1 (which binds within the CD40L binding site) but not ChiLob 7/4 (which does not) (Supplementary Fig. 4b).

To investigate whether the hlgG2-mediated differential receptor clustering is a conserved feature among TNFRs, we generated Jurkat cells stably expressing h4-1BB or hOX40, two additional important targets for cancer immunotherapy. Similar to CD40, three different mAbs targeting h4-1BB induced differential receptor clustering, with hlgG2 conferring more prominent clustering than hlgG1 (Fig. 2a). Moreover, hlgG2 mAb stimulated higher levels of NFκB activation (Fig. 2b) and T cell proliferation (Fig. 2c) than hlgG1 and overcame Treg-mediated suppression of CD8+ T cell proliferation (Fig. 2d). A similar correlation between clustering and agonism3 was shown for hOX40 mAb (Fig. 2e, f). Furthermore, FcγR over-expressing CHO-k1 cells were able to induce significant h4-1BB and hOX40 clustering and NFκB activation in an epitope-independent but isotype-dependent manner (Supplementary Fig. 5). Accordingly, clustering and agonism were afforded for hlgG1 mAb by CHO-k1 cells expressing any of the three FcγRs, whereas only FcγR2A-expressing CHO-k1 cells provided strong effects for hlgG2, in keeping with the known FcγR binding properties of these isoforms.

Together, these data provide evidence from multiple agonists spanning three different TNFRs that functional agonism correlates with distinct patterns of receptor clustering, with hlgG2 resulting in more prominent clustering and agonism.

Natural TNFR ligands and agonistic mAbs induce distinct receptor clusters. The absence of receptor clustering correlated with a lack of agonistic activity (Figs. 1a and 2a–d), consistent with the paradigm that receptor oligomerization is required for TNFR activation. Our initial expectation was that the size of the receptor cluster and/or degree of receptor clustering would positively correlate with agonistic activity; with the strongest agonists displaying the largest and/or most extensive clusters. However, our confocal microscopy data indicated this was not correct. CD40 agonists displaying strong agonisms such as CP870,893 and CD40L induced notably smaller clusters than weaker agonists such as ChiLob 7/4 and SGN40 hlgG2 (Fig. 1a). Similarly, Urelumab hlgG2 evoked smaller clusters than SAP1.3 hlgG2 and yet was more agonistic (Fig. 2a, b, d). To investigate the receptor clustering features underpinning agonistic activity in more detail, we employed super-resolution stochastic optical reconstruction microscopy (STORM). Furthermore, to better preserve the native structure of receptor clusters, we fixed cells using a milder fixative, paraformaldehyde, instead of methanol. STORM-derived localisations were grouped into clusters using the hierarchical density-based spatial clustering of applications with noise algorithm (HDBSCAN), which revealed that receptor clusters observed under confocal microscopy further comprised substructures (Fig. 3a). The number of localisations detected within each cluster provided a quantitative measure of receptor abundance. We found that the strong agonist CP870,893 induced clusters characterised by small area and high receptor density compared with weaker agonists ChiLob 7/4 hlgG2 and CFZ533 hlgG2 (Fig. 3b, c, d). Interestingly, the cluster area exhibited an inverse correlation with receptor density for all mAbs (Fig. 3e).

STORM analysis also identified a higher-order structure induced by the super-agonist 341G2 hlgG2 characterised by an elongated rod shape, which was absent in all other agonists characterised across different TNFRs (Fig. 3a).

Receptor clustering causes epitope shielding. To further understand the properties of receptor clusters driving powerful agonism, we took advantage of the unique properties of the hlgG1:hlgG2 anti-CD40 system; notably that these mAbs have defined binding epitopes, identical between hlgG1:hlgG2 pairs and yet distinct levels of clustering and agonism. Therefore, we selected a range of anti-CD40 mAbs across the agonism range (spanning hlgG2-conditional super-agonists such as 341G2 and isotype-agonistic-agonists such as CP870,893 as well as weak agonists such as ChiLob 7/4 and non-agonists such as 24.2.1) and compared their antigen-binding properties. Importantly, both hlgG1 and hlgG2 forms of each mAb bound similarly to CD40 when immobilised on an SPR chip (Fig. 4a). However, significant differences in binding to cell surface-expressed CD40 was observed for each mAb isotype pair as detected by secondary polyclonal anti-Fc antibody staining using flow cytometry (Fig. 4b). Notably, the hlgG2 variant of the super-agonist 341G2 bound significantly less than its hlgG1 variant whereas the non-agonist 24.2.1 showed equal binding for both isotypes (Fig. 4b). The reduced hlgG2 binding was also observed for ChiLob 7/4 but absent for CP870,893 (Fig. 4b). These differences largely recapitulated whether or not mAb induced large CD40 clusters (Fig. 1). Importantly, such differential binding was recapitulated when different secondary detection reagents (monoclonal anti-light chain (Fig. 4c) or anti-Fc (Fig. 4d)) were used, excluding epiphenomenon associated with a particular detection reagent. Similar to anti-CD40 mAb, the hlgG2 variants of mAbs targeting h4-1BB and hOX40 also exhibited reduced binding to cell surface-expressed h4-1BB and hOX40, respectively, according to their ability to induce receptor clustering (Supplementary Fig. 6a, b).

We hypothesised that such differences in receptor binding arose from isotype-specific differences in mAb-antigen binding stoichiometry; or that receptor clustering inherently shielded receptors from further molecular accessibility from secondary antibody detection. Size exclusion chromatography-multi-angle laser light scattering (SEC-MALS) allows the determination of the precise molecular weight of protein complexes, and showed that both hlgG1 and hlgG2 variants of 341G2 bound the same number of CD40 molecules in solution (Fig. 5a); discounting the first hypothesis. However, being in-solution, SEC-MALS is not entirely representative of cell surface binding due to the absence of steric factors. Therefore, to conclusively establish the level of mAb bound to the cell surface without the use of a secondary antibody, we generated anti-CD40 mAbs recombiantly fused with the fluorescent protein mCherry at the C-terminus of each heavy chain; thereby establishing the same 2:1 mCherry:mAb ratio for each mAb. Binding studies with these mAbs indicated that 341G2 hlgG1-mCherry and hlgG2-mCherry bound to the same extent on the cell surface (Fig. 5b); however, significantly less 341G2 hlgG2-mCherry was detected when using a secondary antibody, similar to results shown above with naked mAb (Fig. 5c). Together, these results indicate that receptor clustering impairs the ability of the secondary antibody to detect bound agonistic mAb.

We next hypothesised that agonist-induced TNFR clustering on the cell surface sterically hinders the receptor-agonist complex from further molecular access (e.g. from secondary detection agents). Indeed, in paraformaldehyde-fixed cells where receptor clustering is disabled due to prior receptor chemical cross-linking,
the differential binding of hlgG2 versus hlgG1 341G2 no longer occurs (Supplementary Fig. 6c). This is also supported by the similar levels of hlgG1 and hlgG2 detected by Western blot where the non-covalent receptor–mAb complex was disrupted by detergent, permitting equivalent secondary antibody access (Supplementary Fig. 6d). To further test the hypothesis that receptor clustering causes epitope shielding, we pre-treated Ramos cells with the hlgG1 or hlgG2 variants of mAb designed to differentially induce receptor clustering (341G2) or not (24.2.1), and then added directly labelled-ChiLob 7/4 hlgG1 or CP870,893 hlgG1, which have different, non-competitive, binding epitopes than 341G2 and 24.2.18,31 (Supplementary Fig. 7), to examine the effect of clustering on their binding. As shown in Fig. 5d, while the non-clustering hlgG1 variant of 341G2 did not influence the subsequent binding of ChiLob 7/4 or CP870,893, the cluster-inducing hlgG2 dose-dependently inhibited the binding of both ChiLob 7/4 and CP870,893, akin to the activity of CD40L (Fig. 5d), and resulted in reduced antibody-mediated

Fig. 2 4-1BB and OX40 agonists induce differential receptor clustering.

- **a** Jurkat-h4-1BBECD-GFP cells were treated with 10 µg/mL anti-4-1BB mAbs of either h1 or h2 isotype as indicated for 1 h, and then fixed with methanol, nucleus stained with DAPI and imaged using a Leica SP8 confocal microscope. All images are representative of at least 10 images from at least 2 experiments. Scale bar, 4 µm.

- **b** Jurkat-NFκB-GFP reporter cells expressing h4-1BB were incubated with serially diluted anti-4-1BB mAbs as indicated for 6 h. The level of NFκB activation was then quantified by GFP expression assessed by flow cytometry. Means ± SEM, n = 3, data representative of 3 independent experiments.

- **c** Purified human CD8+ T cells were activated with plate-bound anti-CD3 mAb for one day and then treated with various anti-4-1BB mAbs for 1 or 2 days before 3H thymidine was added at 1 µCi per well for the last 18 h to assess T cell proliferation.

- **d** CD4+ CD127lowCD25+ Tregs were purified from human PBMC and cocultured with CFSE-labelled human PBMC at a 1:4 Treg:PBMC ratio in the presence of suboptimal anti-CD3 mAb and various anti-4-1BB mAbs as indicated. Cells were incubated for 4 days and CD8+ T cell proliferation assessed by CFSE dilution using flow cytometry. Representative dot plots are shown. Right panel: mAb activity was normalised against isotype control and 4-1BBL activity was normalised against the average of both isotype controls. Each dot represents one donor. The paired Student t-test for comparing h1 and h2 mAbs. One-way ANOVA followed by Tukey’s post hoc test for comparing 4-1BBL with isotype controls. Means ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001.

- **e** Jurkat-hOX40ECD-GFP cells were treated with 10 µg/mL anti-OX40 mAbs of either h1 or h2 isotype as indicated for 1 h, and then fixed with methanol, nucleus stained with DAPI and imaged using a Leica SP8 confocal microscope. All images are representative of at least 10 images from at least 2 independent experiments. Scale bar, 4 µm.

- **f** Jurkat-NFκB-GFP reporter cells expressing hOX40 were incubated with serially diluted anti-OX40 mAbs as indicated for 6 h. The level of NFκB activation was then quantified by GFP expression assessed by flow cytometry. Means ± SEM, n = 3, data representative of 3 independent experiments.
Phagocytosis (Fig. 5e). Moreover, the non-clustering 24.2.1 did not modulate ChiLob 7/4 and CP870,893 binding as either hIgG1 or hIgG2 (Fig. 5d). To explore further the clustering capacity of the hIgG2 mAb and its subsequent ramifications, we considered its natural function within an immune response.

The hlgG2 isotype confers high avidity antigen binding. The hlgG2 isotype dominates the humoral response to bacterial capsular polysaccharides and is known for its low affinity, high avidity characteristics.\(^{35-37}\). We, therefore, evaluated the potential impact of hlgG2 on anti-TNFR mAb avidity. Most anti-TNFR mAbs are selected for inherent high affinity for their targets, we utilised a series of CD40 mutants engineered to exhibit reduced affinity for the anti-CD40 mAb 341G2 to mimic the endogenous low-affinity hlgG2 response against polysaccharide. Surface plasmon resonance (SPR) shows that 341G2 hIgG1 and hIgG2 variants bound to the wild-type CD40 with similar kinetics;
however, compared to hIgG1, hIgG2 bound significantly better to all three of the low-affinity CD40 mutants tested (Fig. 6a). SPR sensorgrams indicated that the hIgG2 mAb binding to the low-affinity mutants comprised two distinct phases: an initial fast association phase shared by hIgG1, followed by a slow secondary association phase largely absent with hIgG1. A similar two-step dissociation phase, characterised by an initial fast off-rate followed by a slower off-rate, was also apparent (Fig. 6a). Notably, hIgG2 binding did not reach a plateau at the end of the 200-second association phase (Fig. 6a); therefore, we extended the length of association by 10 fold and found that hIgG2-associated binding continued to increase with time, leading to more divergent binding from hIgG1 (Supplementary Fig. 7b), indicating self-association. To exclude the possibility of existing antibody aggregate contributing to this phenomenon, we repeated experiments in which even more stringent size exclusion chromatography was performed to elicit nearly 0% aggregate, including immediate post-purification SPR analysis, and obtained identical results. For these reasons, we are confident these observations reflect dynamic self-association of individual hIgG2 molecules. Furthermore, the addition of hIgG2 Fc fragments, incapable of binding CD40, did not significantly impact binding to the SPR chip, either alone or in the presence of 341G2 h2, indicating that the observed self-association requires antigen binding. In contrast, 341G2 hIgG1 reached a plateau early during the association phase (Supplementary Fig. 7b). Such enhanced, hIgG2-mediated binding for low-affinity CD40 mutants was recapitulated by enzyme-linked immunosorbent assay (ELISA) (Fig. 6b). Furthermore, we generated cell lines transfected with these CD40 mutants to test if this hIgG2-mediated effect was also evident on the cell surface. Consistent with SPR and ELISA data, hIgG2 bound these cells significantly better than hIgG1 as assessed by flow cytometry (Fig. 6c) and Western blot (Fig. 6d). Moreover, the augmented binding was maintained when cells were pre-fixed, indicating that the enhanced effect is independent of receptor rearrangement on the cell surface (Fig. 6e).

Discussion

The human TNF–TNFR superfamily comprises 29 TNFRs and 19 TNF ligands that regulate many fundamental biological

Fig. 4 Differential receptor binding by anti-CD40 hlgG1 and hlgG2.

- **a** Recombinant hCD40ECD was immobilised onto CMS chip via amine coupling and various anti-CD40 mAbs as h1 or h2 were injected at 250, 50, 10, 2, 0.4, and 0 nM using a Biacore T200 instrument. Both association phase and dissociation phase lasted 300 s. KD values were calculated using Biacore Bioevaluation software and values represent the mean from three independent experiments.
- **b** Ramos cells were incubated with various anti-CD40 mAbs as h1 or h2 as indicated and then washed and bound hlgG was detected by polyclonal anti-human IgG Fc, m monoclonal anti-human kappa light chain (left panel histograms represent cell surface binding of 341G2 h1 or h2 at 20 µg/mL) or d monoclonal anti-hlgG Fc. Means ± SEM, n = 3, data representative of independent 3 experiments.
Genetic mutations within this superfamily lead to diseases such as cancer, autoimmunity and immune deficiency. Conversely, therapeutic exploitation of the TNF–TNFR axis has led to effective drugs such as adalimumab and etanercept for autoimmune diseases as well as promising antitumor agents targeting the costimulatory immune receptors. Current approaches in the latter category include stimulating antigen-presenting cells, reprogramming suppressive myeloid cells, activating cytotoxic T cells and selective depletion of regulatory T cells (Treg). Understanding the mechanism of TNFR activation and downstream signalling is key to devising optimal therapeutic interventions in each case.
Receptor oligomerization represents the paradigm for TNFR activation but the precise molecular process underpinning agonism is unclear. TNFRs lack intrinsic cytoplasmic enzymatic activity and rely on TRAFs or death domain-containing adaptors for downstream signalling. While TNF ligands are pre-activated and rely on TRAFs or death domain-containing adaptors for downstream signalling, yet exhibit greatly impaired lymphocyte apoptosis, leading to autoimmunity. Subsequent studies showed that the various APS mutations map to all parts of Fas except CRD1 and an intact CRD1 of a mutant dysfunctional Fas molecule is required to allow association with wild-type Fas via the PLAD to disable its regulatory element. The clinical significance of PLAD was demonstrated in autoimmune lymphoproliferative syndrome (ALPS). In ALPS, patients are only heterozygous for certain deleterious Fas mutations, yet exhibit greatly impaired lymphocyte apoptosis, leading to autoimmunity. Subsequent studies showed that the various ALPS mutations map to all parts of Fas except CRD1 and an intact CRD1 of a mutant dysfunctional Fas molecule is required to allow association with wild-type Fas via the PLAD to disable its signalling.

Establishing the oligomeric state of TNFRs is crucial for understanding the molecular mechanism of TNFR activation. The early sequential model predicted that a trimeric ligand initially engages one receptor monomer before sequentially recruiting additional receptors to form a trimer. The two-step model supersedes this by providing PLAD-mediated higher-order oligomerization of the initial receptor-ligand complex in adjacent complexes. A more recent model, based on the dimeric TNFR1 crystal structure, proposes that ligand-free TNFR dimers on the cell surface form hexagonal arrangements which expose three receptor binding sites to the trimeric ligand. Applying super-resolution microscopy to additional TNFRs will help establish the broader significance of pre-ligand receptor assembly among the TNFR superfamily members. To date, there remains no crystal structure of a bivalent mAb-TNFR complex due to technical challenges associated with the size of the complex and the flexible IgG hinge. However, a wealth of information has been generated on the functional requirements of agonistic mAb. For example, we previously demonstrated that the complex interplay between epitope, isotype and FcR availability determines the agonistic activity of anti-CD40 mAbs, and similar principles are being applied to other TNFRs.

Fluorescence microscopy has shown that TNF ligands and agonistic mAbs induced TNFR clustering on the cell surface; however, the requirement for secondary crosslinking remains unresolved. For example, both secondary crosslinking-dependent and independent clustering of Fas were reported for soluble FasL and agonistic anti-Fas mAbs. Such discrepancies may result from the different qualities of recombinant proteins and cell types used. Irrespective of these technical issues, mechanistic insight into TNFR activation remains limited beyond a known blanket requirement for receptor clustering, with data generated to date indicating a binary relationship between clustering and agonistic activity, and a detailed mechanism to account for the differential agonism exhibited by multiple mAb agonists remains lacking.

In this study, we employed a large panel of clinically relevant CD40 agonists exhibiting different isotypes, known to mediate differential levels of receptor agonism to explore this question in the absence of complications arising from the use of secondary crosslinking through additional antibodies, soluble receptors or cell surface receptors such as FcγR. Confocal microscopy indicated that the hlgG2 variant of ChiLob7/4, CFZ533, SGN40 and 341G2 induced greater receptor clustering compared with hlgG1, correlating with their enhanced agonistic activity. Similar hlgG2–facilitated receptor clustering and functional activity were evident for anti-4-1BB and anti-OX40 mAbs, suggesting a conserved mechanism of hlgG2-mediated enhancement among TNFRs. Non-agonistic mAbs failed to induce appreciable receptor clustering, whether as inert epitopes or inappropriate isotypes. These data confirm the absolute requirement for receptor clustering to drive agonism. The explicit isotype-conditional agonism demonstrated with 341G2 (highly agonistic as hlgG2 and totally inert as hlgG1) infers that Fab-induced conformational change is not responsible. Moreover, a unique higher-order structure was observed for the super-agonist 341G2 hlgG2. We previously observed both rounded and rod-shaped CD40 clusters induced by 341G2 hlgG2 when cells were fixed with methanol. In the current study, rod-shaped clusters represented the dominant structure when the milder fixative paraformaldehyde was used. While the mechanism remains unclear, the 341G2 epitope, unusually spanning both CRD1 and CRD2, may promote CD40 clustering in an unconventional geometry that supports this...
molecular arrangement leading to super-agonism. It should also be noted that although in our experience the hIgG2 isotype has evoked agonism for CD40 and other TNFRs, there are examples where the heavy chain of an anti-TNFR2 mouse IgG2b has been replaced with that of hIgG2 to provide a more powerful antagonist. It remains unclear if the Fc domain of these chimeric antibodies are required for their antagonistic function but indicates that the underpinning clustering geometry is important in each case.

Biologically, hIgG2 represents the dominant IgG isotype produced in response to carbohydrate antigens such as bacterial capsular polysaccharide and blood group antigens; however, the
functional significance of this isoform bias remains unresolved. Carbohydrate-specific antibodies generally possess lower affinity due to a lack of T-cell help during affinity maturation, which is thought to be compensated for by the repetitive nature of bacterial capsular polysaccharide, providing a structural basis for increased avidity. Therefore, we tested whether hlgG2 could similarly enhance avidity for TNFRs, by engineering mutated CD40 molecules with reduced avidity for 341G2 to mimic low-affinity anti-carbohydrate antibodies. Consistent with the notion that hlgG2 enhances antibody avidity for low-affinity antigens, 341G2 hlgG2 exhibited significantly higher binding to the CD40 mutants than hlgG1 in multiple assay formats. SPR sensograms indicated a biphasic association and dissociation for hlgG2. Moreover, hlgG2 binding failed to reach saturation despite an extended association phase, which suggests self-association.

The cross-species examination has identified mouse IgG3 and rat IgG2c as hlgG2 counterparts based upon their similar dominance in the anti-carbohydrate humoral response in vivo, and observations that mouse IgG3 was found to mediate similarly enhanced binding to carbohydrate antigens. Human IgG self-association upon antigen binding has also previously been reported for hlgG1 and hlgG4. Our finding that hlgG2 conferred high avidity for low-affinity TNFR variants offers an insight into the mechanism of hlgG2-mediated receptor clustering and agonistic activity and such self-association provides a mechanism through which additional receptor clustering could nucleate.

In addition to the strong hlgG2-mediated receptor clustering described above for 341G2, we observed that strong agonists CP870,893 and CD40L induced noticeably smaller clusters than the weaker hlgG2 agonists Chillob 7/4, CFZ353 and SGN40, which challenges the general notion that larger receptor clusters elicit stronger agonism. Further examination by STORM microscopy revealed that clusters induced by CP870,893 exhibited smaller, higher density receptor clusters than the weaker agonists. Small clusters with higher receptor density presumably allow more efficient recruitment and activation of TRAFs for downstream signalling. Crystal structures of the TRAF domain of human TRAF1-5 demonstrate a conserved trimeric mushroom-shaped structure comprising the TRAF-C domain that mediates interaction with TNFRs and the elongated TRAF-N domain which serves as the binding site for various signalling adaptors. The trimeric TRAF domain matches the trimeric state of most TNFR-ligand complexes, the basic unit of TNFR signalling, raising the possibility that the trimeric signalosome evolved for optimal TRAF-mediated signalling. Larger receptor clusters could potentially cause TRAF-N domain "overcrowding" that sterically hinders efficient recruitment of signalling adaptors, in a manner akin to receptor clustering-induced epitope shielding. Interestingly, our STORM analysis revealed a trend for smaller receptor clusters to possess higher receptor density, suggesting that small clusters are more amenable to receptor oligomerization and subsequent signalling. Given the complexity of TNFR signalling, it is likely that multiple factors including the cluster number, size and density combine to determine the magnitude of cellular response. Indeed, it is also clear that there are multiple ways to achieve effective clustering of the TNFRs to elicit downstream signalling (Supplementary Fig. 8).

We also found that agonism-mediated receptor clustering could lead to epitope shielding, due to the sequestration of the receptor-agonist complex from further external molecular access. Moreover, it is possible that the orientation of the Fab arm hinders the accessibility of the secondary antibody leading to reduced apparent detection. Given the short 30-min incubation during relevant assays and our previous report that receptor clustering did not lead to significant CD40 internalisation over this period, it is unlikely that the observed epitope shielding on the cell types studied was due to receptor internalisation. Indeed, CD40 was reported to be less endocytic than other receptors such as mannose receptors, DEC205 and CD207. Nevertheless, we could not completely exclude the possibility of antibody-mediated CD40 internalisation. Epitope shielding could represent a simple unevolved consequence of clustering-induced steric exclusion. However, as ligand-induced receptor clustering is a common mode of activation among other receptor classes such as receptor tyrosine kinases, it is possible that such sequestration of receptor-agonist complex represents a regulatory mechanism for cellular activation. For example, some TNFRs have multiple cognate ligands; upon specific ligand-induced receptor activation, epitope shielding could reduce receptor accessibility for other ligands to prevent unwanted signalling. While we did not find previous reports describing the phenomenon of clustering-induced epitope shielding, it could potentially explain some reported technical caveats related to flow cytometry. For example, when Foxp3-GFP transgenic Treg cells underwent vaccine-induced reprogramming, the Foxp3 protein became difficult to detect by flow cytometry using secondary antibodies but remained readily detectable by GFP fluorescence and Western blotting. It is possible that Treg activation leads to Foxp3 clustering/sequestration rendering it less amenable to detection by secondary antibodies.

In summary, our work demonstrates that anti-TNF agonists mediate a range of agonistic activities through distinct forms of receptor clustering. Strong agonists induced smaller clusters with higher receptor density, while the wild type hlgG2 isotype enhances the clustering of CD40, 4-1BB and OX40, through a mechanism that may involve improved antibody avidity. Furthermore, CD40 super-agonism was manifested alongside higher-order rod-shaped CD40 clusters. This work sheds light on the fundamental mechanism of TNFR activation and knowledge of the receptor sub-structures required for different levels of agonism, thereby guiding the development of future TNFR agonists.
Methods

Mice. hCD40 transgenic mice (hCD40Tg) were provided by Professor Randolph Rodde (King’s College, London)22. hCD40Tg/FcRγ null mice (hCD40Tg/FcRγ/e−/−/Fy−/−/R−/−) were generated as previously described21. Briefly, homozygous FcRγ null mice (Fy−/−/R−/−) were generated by breeding FcRγ−/− mice and hCD40Tg/FcγR null mice were generated by crossing hCD40Tg mice with homozygous Fcγ null mice. All animals were maintained and bred in-house. Mice were maintained on a 12 h light/dark cycle, and water and food were available at all times. Environmental enrichment was provided and temperature was maintained between 20-24 °C. Mice were visually checked daily to ensure healthy status. All experiments were conducted under UK Home Office licence numbers PBR4EE31, PDP0955, P5405CA98 and P3996EA27 and according to local ethical committee guidelines.

Human samples. Human PBMCs were isolated from healthy donor leucocyte cones obtained through Southampton National Blood Service with prior informed consent, and the use of human blood was approved by the East of Scotland Research Ethics Service, Tayside, UK.

Cell lines. Wild type Jurkat, Ramos and CHO-k1 cell lines were obtained from ATCC and maintained in a humidified incubator at 37 °C and 5% CO₂, cultured in RPMI supplemented with 10% heat-inactivated FBS (Sigma), 2 mM l-glutamine, 1 mM pyruvate, 100 U/ml penicillin, 100 μg/ml streptomycin (all from Thermo-fisher). Jurkat and Ramos cell culture media were additionally supplemented with 30 μg/ml β-mercaptoethanol (Sigma).

Antibodies and reagents. All anti-CD40 mAbs were generated as previously described23,24. ChLiO7/4, Lob 7/6, SAP1.3, SAP9 and SAP25.29 were generated in-house by conventional hybridoma method and their variable domain sequences were then synthesised by GeneArt and subcloned into the pDSG104 vector (IBA Life Sciences, Germany). Recombinant trimeric CD40L, OX40L and 4-1BBL were produced in-house by conventional hybridoma method and their variable domain sequences were then synthesised by GeneArt, cloned into the pOPINJ vector (Asp30-Asn341) was synthesised by GeneArt, cloned into the pOPINJ vector and transfected into E.coli BL21 (DE3) strain (Agilent, UK). DNA encoding the H₁s-tagged CD40EC domain was cloned into pcDNA3.1 vector and transfected into E.coli BL21 (DE3) strain for protein expression. E. coli BL21 (DE3) was then induced with 0.5 mM IPTG and the cell lysate was purified by nickel affinity column (GE Healthcare). Recombinant his-tagged CD40EC domain was cloned into pcDNA3 and pCIpuro vectors, respectively and stable clones were selected using 10 μg/ml puromycin and 1 mg/ml geneticin; hFcγR2a was expressed in pcDNA3 and stable clones were selected using 1 mg/ml geneticin. CHO-k1 cells expressing various anti-CD40 antibodies were generated using the pCIpuro vector and transfectants were selected in 10 μg/ml kanamycin for 1 hour at 37 °C and then fixed with methanol before DAPI staining of the nucleus. Confocal images were acquired using a Leica SP8 microscope and analysed using Leica Application Suite X (both from Leica).

Live cell wide-field fluorescence microscopy. CHO-k1 cells expressing hFcγR1A, hFcγR2A or hFcγR2B were generated as previously described85. Briefly, a chimeric FcγR1A and its associated gamma chain were encoded in pcDNA3 and pCIpuro vectors, respectively and stable clones were selected using 10 μg/ml puromycin and 1 mg/ml geneticin; hFcγR2a was expressed in pcDNA3 and stable clones were selected using 1 mg/ml geneticin. CHO-k1 cells expressing various anti-CD40 antibodies were generated using the pCIpuro vector and transfectants were selected in 10 μg/ml kanamycin for 1 hour at 37 °C and then fixed with methanol before DAPI staining of the nucleus. Confocal images were acquired using a Leica SP8 microscope and analysed using Leica Application Suite X (both from Leica).

Confocal microscopy. DNA encoding hCD40ECD-GFP, full-length hCD40-GFP, hOx40ECD-GFP or h4-1BBECD-GFP was cloned into pcPluro vector and then transfected into Jurkat cells using the Nucleofector Kit V (Lonza) or into CHO-k1 cells using GenePorter (Amsbio, UK). Stably Jurkat clones were selected using 1 μg/ml puromycin and stable CHO-k1 clones were selected using 10 μg/ml puromycin. The human B cell line BL41-FcRγ was cultured in hCD40Tg splenocytes isolated from human PBMC and hCD40Tg splenocytes, respectively using magnetic negative selection kit (StemCell Technologies, UK). To generate human immature DCs, CD14+ monoocytes were isolated from human PBMC by magnetic negative selection kit (Miltenyi Biotec, UK) and then cultured in media supplemented with 50 IU/mL SCF and 1000 IU/mL GM-CSF (both products in house) for 6 days as described before29. The identity of the DCs was confirmed by surface expression of CD11c (anti-human CD11c, 1550885S, ebioscience, 1/20) and DC-SIGN (anti-human DC-SIGN, 330106, Biolegend, used at 1/50) by flow cytometry (Supplementary Fig. 7c). Confocal microscopy was performed as previously described31. The live acceptor mAbs on CHO-k1 cell clustering, cells were fixed with 5 μg/mL mAb for one hour at 37 °C and then fixed with methanol before DAPI staining of the nucleus. Confocal images were acquired using a Leica SP8 microscope and analysed using Leica Application Suite X (both from Leica).

STORM microscopy. IBIDI glass-bottom chambers were washed successively with 70% ethanol, acetone and distilled water and then coated with poly-L-lysine (Sigma). Jurkat cells expressing hCD40ECD-GFP were incubated with 50 μg/ml Af647-labelled anti-CD40 mAb at 37 °C for 1 h and then washed and fixed with 4% PFA. Cells were imaged in IBIDI glass-bottom chambers pre-coated with poly-L-lysine. Immediately before STORM, the ONI Bicubed STORM buffer (ONI, UK) was added to the well. STORM images were acquired using the ONI Nanoimager equipped with a 640 nm laser and STORM1.6 software (ONI, UK). The illumination area was set to 52 × 52 square pixels and an area of 100 × 100 pixels was collected per field of view. Localisations were identified using the NimOS v1.6 software. Localisations were grouped into clusters using HDBSCAN81. The field of view corresponding to the STORM microscopy images detected 20,000 localisations per condition. The raw data of the STORM images were processed using STORM v1.6 software. The field of view was set to 300 × 300 pixels and one pixel corresponded to 20 nm. For diameter calculations, sensorgrams were fitted with the bivalent analyte binding model and the Equilibrium dissociation constant KD was calculated using Biacore.

Surface plasmon resonance. To compare the binding kinetics of h1 and h2 variants of anti-CD40 mAbs 24.2.1, ChLiO7/4, CP807,893 and 341G2 for WT hCD40, recombinant soluble hCD40ECD was immobilised onto a CM5 chip via amine coupling according to manufacturer’s protocol and mAbs were injected through the flow cells at 250, 50, 10, 0.4 and 0 nM in HBS-EP+ running buffer at a flow rate of 30 μl/min and injection time of 180 s and 200 s for dissociation. For affinity calculations, sensorgrams were fitted with the bivalent analyte binding model and the Equilibrium dissociation constant KD was calculated using Biacore.
Bioevaluation software. To compare 341G2 h1 and h2 binding to low-affinity hCD40ECD mutants, anti-His mAb was first immobilised onto CM5 chips via amine coupling according to the manufacturer protocol and 0.5 µL of His- tagged soluble hCD40ECD mutants were captured for 30 s. Afterwards, anti-CD40 mAbs were injected at 1000, 333, 111, 37, 12.4 and 4.1 nM; the association phase lasted for either 180 or 2100 s as specified in figure legends and the dissociation phase lasted for 300 s. The Biacore T200 instrument was used throughout, and all reagents and Biacore Bioevaluation software were from GE Healthcare, UK.

Enzyme-linked immunosorbent assay. Recombinant soluble WT or mutant CD40ECD proteins were coated onto MaxiSorp ELISA plates (Thermofisher) overnight at 5 µg/mL in PBS; the next day, plates were blocked with 1% bovine serum albumin and serially diluted 341G2 h1 and h2 were added to each well and incubated for 1 h. Plates were then washed and bound hIgG was detected by goat anti-hIgG-Fc-HRP (Abcam, UK). Plates were developed with o-phenylenediamine dihydrochloride substrate and absorbance at OD490 was measured using an Epoch microplate spectrophotometer (Biotek).

Flow cytometry. Flow cytometry experiments were performed using FACS Calibur, FACS Canto II, or LSR Fortessa machines (all from BD Biosciences). Flow cytometry data analysis was performed using FCS Express software Version 3 (De Novo Software) or Flowjo (BD). FACS gating strategies are included in Supplemental Fig. 10.

Assessment of antibody cell surface receptor binding. To compare anti-CD40 mAb h1 and h2 binding to CD40 expressed on the cell surface, Ramos or CHO-h1 cells expressing CD40 were incubated with serially diluted anti-CD40 mAb for 30 min at 37 °C and then washed and remaining bound hIgG detected by secondary PE-conjugated polyclonal goat Fab’ (Abcam, UK, 1/10,000). The mouse anti-human kappa light chain (clone TEB2I, in-house, 10 µg/mL) ELISA. To study epitope shedding, Ramos cells were pre-treated with the h1 or h2 variant of 341G2 or 24.2.1 for 30 min and then washed and stained with 1 µg/mL AF647-labelled ChLB 7/4 h1 or AF647-labelled CP h1. To compare anti-CD40 and anti-4-1BB mAb h1 and h2 binding to cell-surface-expressed OX40 and 4-1BB, respectively, stable Jurkat clones expressing OX40ECD or 4-1BB ECD were incubated with various mAbs for 1 h at 37 °C and then washed and bound hIgG was detected by secondary Dyl650-conjugated polyclonal goat Fab’ (Abcam, UK, 1/100). Cell samples were analysed using flow cytometry.

Size exclusion chromatography-multi angle light scattering (SEC-MALS). Anti-CD40 mAb 341G2 and recombinant soluble CD40ECD were co-incubated at 1:2 ratio at room temperature for 30 min and then loaded onto a Superdex 200 HR10/30 column (GE Healthcare) equilibrated with PBS and analysed by an in-line Dawn Heleos-II light scattering detector (Wyatt Technologies, UK) and an Optixlab-refs refractive index detector (Wyatt Technologies). Data analysis and molecular mass calculation were performed using ASTRA 6.1 (Wyatt Technologies). The curve above each peak corresponds to the calculated distribution of molecular mass of each protein measured by the MALS.

Western blotting. Totally, 10 x 10⁶ Ramos cells or 5 x 10⁶ CHO cells expressing various CD40 mutants were incubated with 20 µg/mL anti-CD40 mAb for 30 min before being washed three times with PBS and resuspended in RIPA buffer (150 mM NaCl, 1% Triton X-100, 0.5% Deoxycholate, 0.1% SDS, 50 mM Tris, pH 8) supplemented with 2 mM Na3VO4, 50 mM NaF, and 1× Protease Inhibitor Cocktail (Sigma, UK). Cell lysates were centrifuged and determined for their protein concentration using Bradford assay (Biorad, UK), and then 10 µg cell lysate was reduced and loaded onto 12% Bolt gel for SDS-PAGE (Thermofisher, UK). Proteins were then transferred to an iBlot 2 nitrocellulose membrane using the iBlot 2 Gel Transfer Device (both from Thermofisher) and the membrane was blocked using PBST 5% milk for 30 min. The membrane was then probed overnight at 4 °C with rabbit monoclonal (expressing the hCD40 intracellular signalling domain) or h4-1BB (expressing the hCD40 intracellular signalling domain) or h4-1BB-Actin (both from Thermo) (both from Thermo) and then treated with 5 µg/ml 341G2 h1-F(ab’)2 or 341G2 h2-F(ab’)2 for 15 min at 37 °C before osmoporation by various concentrations of ChLB 7/4 h1 or CP670,893 h1 for 30 min at 4 °C. Totally, 5 x 10⁶ target Ramos cells were added to each well containing HRMD and incubated for 1 h at 37 °C for phagocytosis. Samples were subsequently stained with anti-CD14-APC (Biolenged, 1/100) to distinguish hMDM from Ramos cells and assessed by flow cytometry. % Phagocytosis was calculated as: (CFSE- CD14⁺/total CD14⁺) x 100.

Statistics and reproducibility. Flow cytometry data analysis was performed using FCS Express software Version 3 (De Novo Software) or Flowjo (BD). All other data analysis was performed using GraphPad Prism 7.05 (GraphPad Software). A two-tailed, non-paired Student t test was used for most pairwise comparisons. One-way ANOVA followed by Tukey’s post hoc test or two-way ANOVA followed by Sidak’s test was used for multiple comparisons as specified in figure legends. Throughout *p < 0.05, **p < 0.01, ***p < 0.001, n.s. not significant. Reproducibility including technical replicates and independent biological experiments are stated in each figure legend.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. All data supporting the conclusions of this manuscript are included in this manuscript and supplementary information. Full Western blotting images are included in Supplementary Fig. 9. FACS gating strategies are included in Supplementary Fig. 10.

Received: 5 February 2021; Accepted: 4 June 2021; Published online: 23 June 2021

References.

1. Schäfer, D. A., Hirschhorn-Cymerman, D. & Wolchok, J. D. Targeting tumor necrosis factor receptor pathways for tumor immunotherapy. J. Immunother. Cancer 2, 7 (2014).

2. Bremer, E. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN Oncol. 2013, 371854 (2013).

3. Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17, 509–527 (2018).

4. Wajant, H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ. 22, 1727–1741 (2015).

5. Clauw, C. et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaw5989 (2019).

6. Buchan, S. L. et al Antibodies to cotranslational receptor 4-1BB enhance anti-tumor immunity via T regulatory cell depletion and promotion of CD8 T cell effector function. Immunity 49, 958–970 e957 (2018).

Mouse B cell activation assay. B cells were purified from hCD40Tg/FcγR null mouse spleens by magnetic negative selection kit (StemCell Technologies, UK). Total, 1 x 10⁶ B cells were incubated with various anti-CD40 mAbs at 10 µg/mL in 96-well round-bottom plates for 3 days and then analysed for surface expression of CD23 using PE-conjugated anti-mouse CD23 (clone B3B4, Biogened) by flow cytometry.

Human T cell proliferation assay. To assess the costimulatory activity of anti-4-1BB mAbs isolated from human PBMC by magnetic negative selection (StemCell Technologies, UK) and activated with plate-bound anti-CD3 mAb (OKT3, in-house, plated at 5 µg/mL) for 1 day. Cells were then treated with various anti-4-1BB mAbs for one or two days before 3H thymidine (Perkin Elmer) was added at 1 µCi per well for the last 18 h to assess T cell proliferation. To study the ability of anti-4-1BB mAbs to overcome Treg-mediated suppression of T cell proliferation, Tregs were isolated from human PBMC using the Human CD4 + CD127loCD25+ Regulatory T Cell Isolation Kit (StemCell Technologies, UK) and then added to CFSE-labelled human PBMC at a 1:4 Treg:PBMC ratio in the presence of 0.4 ng/mL or 0.8 ng/mL anti-CD3 mAb (OKT3, in-house). Cells were incubated for 4 days and then assessed for CD8+ T cell proliferation by CFSE dilution using flow cytometry.

Antibody-dependent cellular phagocytosis. Antibody-dependent cellular phagocytosis was performed as previously described82, using human monocyte-derived macrophages (hMDM) as the phagocyte and Ramos cells as the target. Briefly, hMDM were generated by culturing monocytes in the presence of 100 ng/mL M-CSF (in-house) for 6 days and then 1 x 10⁶ hMDM were plated onto 96-well flat-bottom plate overnight. The next day, Ramos cells were labelled with CFSE and then treated with 5 µg/ml 341G2 h1-F(ab’)2 or 341G2 h2-F(ab’)2 for 15 min at 37 °C before osmoporation by various concentrations of ChLB 7/4 h1 or CP670,893 h1 for 30 min at 4 °C. Totally, 5 x 10⁶ target Ramos cells were added to each well containing hMDM and incubated for 1 h at 37 °C for phagocytosis. Samples were subsequently stained with anti-CD14-APC (Biolenged, 1/100) to distinguish hMDM from Ramos cells and assessed by flow cytometry. % Phagocytosis was calculated as: (CFSE+ CD14+ cells)/(total CD14+ cells) x 100.

Data availability. All data supporting the conclusions of this manuscript are included in this manuscript and supplementary information. Full Western blotting images are included in Supplementary Fig. 9. FACS gating strategies are included in Supplementary Fig. 10.
Acknowledgements
We would like to thank the members of the Antibody and Vaccine group for useful discussions and the pre-clinical unit staff for animal husbandry. We also thank Professors Simon Davis, Marion Brown and Neil Barclay for helpful discussions. Funding was provided by CRUK grants A10834, A20537, A18087, A25139 and A25169 as well as EU FP7 grant 602622. M.C. acknowledges funding by Against Breast Cancer. The STORM microscopy work was made possible through the generous funding of an ONI Nanoimager by the Mark Benevolent Fund. X.Y. is funded by a Careertrack Fellowship provided by the Faculty of Medicine in conjunction with the Centre for Cancer Immunology Talent fund.

Author contributions
X.Y. designed and performed the experiments, analysed and interpreted data, and wrote the paper. S.I., J.F., B.K., D.A.J., H.T.C., C.P., J.K., T.I., I.M., Y.W., M.C., R.R.F., L.R.D. and P.J.D. generated or provided key reagents or performed and analysed the research. M.J.G. designed the study, supervised the data collection, discussed and interpreted the data. M.S.C. designed the study, supervised data collection, discussed and interpreted data, and wrote the paper with X.Y. All authors commented upon and approved the final paper.

Competing interests
Mark S. Cragg acts as a consultant for a number of biotech companies, being retained as a consultant for BioInvent and has received research funding from BioInvent, GSK, UCB, iTeos, and Roche. Martin J. Glennie acts as a consultant to a number of biotech companies and receives institutional payments and royalties from antibody patents and licences. This work is related to patient Family WO 2015/145360 protecting antibodies containing modified hlgG2 domains which elicit agonist or antagonistic properties.

Additional information
Supplementary information
The online version contains supplementary material available at https://doi.org/10.1038/s42003-021-02309-5.

Correspondence and requests for materials should be addressed to X.Y. or M.S.C.

Peer review information Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Theam Soon Lim and Karli Montague-Cardoso.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

...