Capping of vesicular stomatitis virus pre-mRNA is required for accurate selection of transcription stop–start sites and virus propagation

Tomoaki Ogino*

Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA

Received August 6, 2014; Revised September 15, 2014; Accepted September 16, 2014

ABSTRACT

The multifunctional RNA-dependent RNA polymerase L protein of vesicular stomatitis virus catalyzes unconventional pre-mRNA capping via the covalent enzyme-pRNA intermediate formation, which requires the histidine–arginine (HR) motif in the polyribonucleotidyltransferase domain. Here, the effects of cap-defective mutations in the HR motif on transcription were analyzed using an in vitro reconstituted transcription system. The wild-type L protein synthesized the leader RNA from the 3′-end of the genome followed by 5′-capped and 3′-polyadenylated mRNAs from internal genes by a stop–start transcription mechanism. Cap-defective mutants efficiently produced the leader RNA, but displayed aberrant stop–start transcription using cryptic termination and initiation signals within the first gene, resulting in sequential generation of ~40-nucleotide transcripts with 5′-ATP from a correct mRNA-start site followed by a 28-nucleotide transcript and long 3′-polyadenylated transcript initiated with non-canonical GTP from atypical start sites. Frequent transcription termination and re-initiation within the first gene significantly attenuated the production of downstream mRNAs. Consistent with the inability of these mutants in in vitro mRNA synthesis and capping, these mutations were lethal to virus replication in cultured cells. These findings indicate that viral mRNA capping is required for accurate stop–start transcription as well as mRNA stability and translation and, therefore, for virus replication in host cells.

INTRODUCTION

Non-segmented negative strand (NNS) RNA viruses (e.g. rabies, measles, Ebola) belonging to the Mononegavirales order possess their multifunctional RNA-dependent RNA polymerase (RdRp) large (L) proteins, which catalyze all enzymatic reactions required for viral mRNA synthesis and processing (1–12). Virion-associated RdRp holoenzymes that are composed of the catalytic L protein and co-factor phosphoprotein (P or its counterpart) initiate primary transcription using their negative strand genomic RNAs encapsidated with nucleoproteins (N or NP) as templates in infected cells. Historically, vesicular stomatitis virus (VSV), an animal virus belonging to the Rhabdoviridae family, has been used as a prototypic model virus to investigate the fundamental molecular mechanisms of NNS RNA viral mRNA synthesis and processing.

The VSV genome of ~11 kilo nucleotides (knt) is preceded and followed by the short 3′-leader and 5′-trailer sequences, respectively, and includes internal N, P, M, G and L genes arranged in tandem from the 3′- to the 5′-end. Each gene contains the conserved gene-start (3′-UUGUCDNUAG; D: A, U or G; N: any nucleotide) and gene-end (3′-MUACUUUUUUU; M: A or C) sequences, which serve as transcription initiation and termination signals, respectively. Earlier studies using in vitro transcription systems have shown that the VSV RdRp complex initiates transcription at the 3′-end of the genomic RNA to synthesize the 47-nt uncapped leader RNA (13–15) and then sequentially produces five 5′-capped and 3′-polyadenylated mRNAs from the internal genes by a stop–start mechanism (16–21). Reduction in the efficiency of transcription re-initiation at each gene-start sequence results in the generation of a gradient in transcript abundance in the following order: leader > N > P > M > G > L (18–21).

All VSV mRNAs are transcribed from each gene-start sequence, and 5′-capped and methylated (when 5′-adenosylmethionine is present) during in vitro transcription, generating a common 5′-terminal sequence with a cap 1 structure, m3GpppAmACAG-, in which 7-methylguanosine (m7G) is linked to 2′-O-methyladenosine (Am) via a 5′-5′ triphosphate bridge (16,22). In the absence of 5′-adenosylmethionine, VSV mRNAs with a 5′-cap core structure (GpppA) are synthesized in a methyltion-
independent manner (17). These capped mRNAs are co-transcriptionally polyadenylated at their 3′-ends by polymerase slippage on the poly(U) tract in the gene-end sequence (21,23–26).

In eukaryotic cells, the 5′-terminal mRNA cap structure (m′GpppN′) is formed by nuclear mRNA capping enzyme having the RNA 5′-triphosphatase (RTTase) and guanosine 5′-triphosphate (GTP):RNA guanylyltransferase (GTase) activities followed by mRNA cap (guanine-N7)-methyltransferase and plays essential roles in various steps of gene expression including mRNA splicing, translation and degradation (27–29). The mechanisms of VSV mRNA capping are distinctly different from those of eukaryotic mRNA capping (30,31). Using an in vitro capping assay with an oligo-RNA substrate, it has been demonstrated that the VSV L protein (241 kDa, 2109 amino acids) catalyzes a unique RNA capping reaction by the sequential action of the guanosine 5′-triphosphatase (GTase) and RNA:guanosine 5′-diphosphate (GDP) polyribonucleotidyltransferase (PRNTase) activities (4,6,32).

In the first step of the VSV cap formation, the GTase activity removes the γ-phosphate from GTP to produce GDP (4,32). Then, the PRNTase domain in the L protein specifically recognizes the 5′-triphosphorylated conserved mRNA-start sequence (5′-pppACAG-), but not leader RNA-start sequence (5′-pppACGA-), to form a covalent enzyme (L)-pRNA intermediate (4,6). In the L-pRNA intermediate, the 5′-phosphate group of the RNA is attached to the N2 position of a histidine residue at position 1227 (H1227) in the histidine–arginine (HR) motif of the VSV L protein with a phosphoamide bond (6). The L-pRNA intermediate subsequently transfers pRNA to GDP to liberate a 5′-capped RNA (GpppRNA) (6).

The HR motif is essential for the L-pRNA intermediate formation with the VSV and Chandipura virus L proteins and strikingly conserved in the L proteins of NNS RNA viruses belonging to different families (5,6,30,33), suggesting that it plays a fundamental role in NNS RNA viral mRNA capping. The R1221 residue of the VSV L protein as well as its counterpart of the Chandipura virus L protein is also required for the mRNA capping activity in the step of the L-pRNA intermediate formation, and its counterpart is conserved in the L proteins of vesiculoviruses (e.g. VSV, Chandipura virus), lyssaviruses (e.g. rabies virus) and ephemeroviruses (e.g. bovine ephemeral fever virus) belonging to the Rhabdoviridae family, but not in other NNS RNA viral L proteins (5,6,30,31).

Several studies suggested that pre-mRNA capping occurs at an early stage of mRNA chain elongation (20,34–36) and is required for production of full-length mRNAs (37–39). Li et al. (38,39) showed that cap-defective VSV L mutants terminate mRNA synthesis at various sites to produce heterogeneous 3′-truncated transcripts with 100–500 nt and are not able to polyadenylate mRNAs at 3′-ends, suggesting that pre-mRNA capping is required for processive elongation and polyadenylation of mRNA. However, pre-mRNA capping with a transcribing modular L protein regulates each step of mRNA production still remains largely unknown.

To elucidate the molecular mechanisms of VSV mRNA synthesis and processing, an in vitro reconstituted transcription system with highly purified viral components (the N–RNA complex and the recombinant L and P proteins) has been developed (4,40). In this system, the wild-type L protein together with the P protein efficiently synthesizes the 47-nt uncapped leader RNA and full-length mRNAs (N, P, M and G) with a cap structure and a poly(A) tail (40). Here, using this in vitro system, the effects of cap-defective mutations in the HR motif (6) on transcription were re-evaluated. The cap-defective mutants synthesized the leader RNA, but exhibited unexpected aberrant stop–start transcription using cryptic transcription signals within the 3′-proximal N gene, resulting in sequential and discontinuous production of non-overlapping 5′-terminal (38 and 40 nt), internal (28 nt) and 3′-terminal (1.2 knt, 3′-polyadenylated) fragments of N mRNA with a 5′-triphosphate group. The latter two RNAs were found to be initiated with GTP, instead of canonical adenosine 5′-triphosphate (ATP), at different unusual start sites. These results indicate that the pre-mRNA capping activity of the L protein is required for accurate selection of transcription termination and re-initiation signals to synthesize full-length mRNAs by the stop–start mechanism, rather than increases in processibility of mRNA chain elongation and polyadenylation. Higher rates of incorrect transcription termination and re-initiation within the N gene resulted in a dramatic attenuation of synthesis of downstream mRNAs. Furthermore, this study, for the first time, shows that these cap-defective mutations are lethal to VSV replication in host cells, suggesting that the unique mRNA capping enzyme domain of NNS RNA viral L proteins is a potential target for developing anti-viral agents.

MATERIALS AND METHODS

In vitro transcription and capping with the VSV L protein

In vitro transcription was performed with the recombinant L protein, recombinant P protein and N–RNA complex as described previously (4,40), with some minor modifications (see the Supplementary Methods). Mutant L proteins including the HR-RH mutant were prepared as described previously (6). 32P-labeled transcripts were analyzed by electrophoresis in polyacrylamide gels containing 7-M urea [urea-polyacrylamide gel electrophoresis (PAGE)] followed by autoradiography (4,40). Unlabeled transcripts were analyzed by northern blotting with 5′-end-32P-labeled oligo-DNA probes as described (40,41) (see the Supplementary Methods). Unlabeled transcripts, synthesized with the HR-RH mutant L protein, were capped with the transcription-defective D714A L mutant (3,6) in the presence of [α-32P]GDP as described previously (40) (see the Supplementary Methods). Cap-labeled RNAs were digested with nuclease P1 (Sigma), and the resulting digests were analyzed along with cap analogs (GpppA and GpppG; New England Biolabs) by thin layer chromatography (TLC) on a polyethyleneimine (PEI) cellulose plate as described (40).

Enzymatic sequencing of transcripts

Unlabeled transcripts were synthesized with the wild-type or the HR-RH mutant L protein (6) and capped with vaccinia virus mRNA capping enzyme (Epicenter) in the
The presence of [α-32P]GTP as detailed in the Supplementary Methods. Major cap-labeled short RNAs were purified by urea-PAGE and subjected to partial digestions with RNase T1 or RNase A, essentially as described by Kuchino and Nishimura (42) (see the Supplementary Methods). The resulting digestes were resolved on 20% polyacrylamide sequencing gels containing 7-M urea.

5′-RACE (rapid amplification of cDNA ends) analysis

Unlabeled transcripts, synthesized with the wild-type or HR-RH mutant L protein (see the Supplementary Methods), were incubated with or without 1 unit of calf intestine alkaline phosphatase (CIAP; Roche Applied Science) at 37°C for 30 min. After inactivation of CIAP, the RNAs were further incubated with or without 2.5 units of tobacco acid pyrophosphatase (TAP, Epicenter) at 37°C for 1 h. Then, 5′-monophosphate ends of the RNAs were ligated to a partially double-stranded adapter oligo-RNA with T4 RNA ligase 2 (New England Biolabs) according to the protocol described by Clepet (43). The resulting ligated RNAs were reverse-transcribed with AccuScript Hi-Fi reverse transcriptase (Agilent Technologies) and an oligo(dT) primer in 20-μM reaction mixtures. One-half-microliter aliquots of the resulting first-strand cDNAs were subjected to 28 cycles of polymerase chain reaction (PCR) amplification with KOD Hot Start DNA polymerase (Toyobo, Japan) and an oligo(dT) primer. The resulting PCR products were separated by electrophoresis on a 2% agarose gel containing ethidium bromide and purified from the gel using QIAquick Gel Extraction Kit (Qiagen). The purified PCR products were digested with EcoRI and HindIII, inserted into the EcoRI and HindIII sites of the pUC18 vector and sequenced with the M13 RV-M primer.

Primer extension analysis

Unlabeled transcripts, synthesized with the wild-type or HR-RH mutant L protein (see the Supplementary Methods), were subjected to primer extension reactions at 50°C for 10 min with 0.03 units of Maxima H Minus reverse transcriptase (Thermo Scientific) and a 5′-di- or tri-phosphate end, transcripts were synthesized by the wild-type or mutant L protein. Internally 32P-labeled transcripts were deadenylated and analyzed by 5% (for mRNAs) or 20% (for the leader RNA) urea-PAGE. Complete results with the previously prepared recombinant L proteins with mutations in the HR motif (called HR mutants) or other residues are available in Supplementary Figure S1.

Measurement of poly(A) tail length

Poly(A) tail lengths were measured essentially as described (44). Unlabeled transcripts were annealed with an oligo-DNA complementary to positions +1107 to +1126 of N mRNA in the presence or absence of oligo(dT) and digested with 0.3 units of RNase H at 37°C for 3 min. The resulting 3′-end fragments (200 nt) with or without a poly(A) tail were analyzed by northern blotting with a 5′-end-32P-labeled oligo-DNA probe complementary to positions +1241 to +1268 of N mRNA.

Generation of recombinant VSVs

Recombinant VSVs with the wild-type or mutant L gene were generated using the reverse genetics system as described by Lawson et al. (45) and Schnell et al. (46) with some modifications (see the Supplementary Methods). Viral titers were determined by a standard plaque assay.

RESULTS

Cap-defective mutant L proteins frequently use cryptic transcription termination and initiation signals within the N gene to produce aberrant short transcripts

It has been previously shown that the capping activity of the VSV L protein is abolished by mutations in the conserved HR motif (H1227 and R1228) in the step of the L-pRNA intermediate formation (6). Here, to explore the effects of these cap-defective mutations in the VSV L protein on RNA synthesis, transcription reactions were reconstituted with the N–RNA complex, the recombinant P protein and the wild-type or mutant L protein. Internally 32P-labeled transcripts were deadenylated and analyzed by 5% (for mRNAs) or 20% (for the leader RNA) urea-PAGE. Complete results with the previously prepared recombinant L proteins with mutations in the HR motif (called HR mutants) or other residues are available in Supplementary Figure S1. Figure 1 shows a typical result using the HR-RH mutant, which possesses an RH sequence instead of the HR motif (6) and exhibits the highest RNA synthesis activity among the HR mutants, as a representative. As reported (40), the wild-type L protein synthesized 1.7-knt G, 1.3-knt N and 0.8-knt P/M mRNAs (Figure 1A, lane 2) and the leader RNA with ~50 nt (Figure 1B, lane 2). In contrast, the HR-RH mutant showed an extremely weak mRNA synthesis activity (5% of the wild-type activity) (Figure 1A, lane 3), although its leader RNA synthesis activity was comparable to that of the wild-type L protein (Figure 1B, lane 3). Other HR mutants also showed similar transcription phenotypes to that of the HR-RH mutant (see Supplementary Figure S1B and C). These results indicate that the HR motif is not essential for leader RNA synthesis, but it appears to be required for efficient mRNA synthesis. Interestingly, all these cap-defective HR mutants were found to produce characteristic short RNAs (bands I and II, ~40 nt; band III, ~30 nt) and 1.2-knt RNA beside 1.3-knt N mRNA-like RNA (Figure 1A and Supplementary Figure S1).

To define a defective step(s) in mRNA synthesis by the HR mutants, short transcripts produced by these mutants (see Figure 1B, bands I, II and III) were further analyzed. First, in order to investigate whether these short transcripts have a 5′-di- or tri-phosphate end, transcripts were synthesized with the HR-RH mutant in the presence of unlabeled NTPs and then capped in the presence of [α-32P]GTP with vaccinia virus capping enzyme. This conventional capping enzyme with the GTap and RTPase domains is known to cap 5′-di- or tri-phosphorylated RNAs without strict RNA sequence specificity (47). As shown in Figure 2A (lane 2), the leader RNA in transcripts synthesized by the wild-type L protein was mainly capped with vaccinia virus capping enzyme, indicating that the leader RNA is a major RNA product with a 5′-di- or tri-phosphate end. In the case of tran-
In order to measure the exact lengths of these cap-labeled transcripts (see Figure 2A) and to obtain their partial RNA sequences, they were subjected to limited digestion (42,48) with alkali (Figure 2C–G, OH− lanes), RNase T1 (lane 2), which specifically cleaves RNA after G residues, or RNase A (lane 3), which cleaves RNA after pyrimidine residues. As expected, an RNase T1-digestion pattern of the leader RNA with 47 nt synthesized by the HR-RH mutant (Figure 2D, lane 2) as well as the wild-type L protein (Figure 2C, lane 2) matched a theoretical digestion pattern of the leader RNA (13). RNase A-digestion of the leader RNA produced some of the expected fragments (Figure 2C and D, lanes 3), but RNase A did not cleave all pyrimidine residues in the leader RNA as reported for other RNAs (48). It was found that RNase-digestion patterns of 40-nt (band I, Figure 2E) and 38-nt (band II, Figure 2F) RNAs, synthesized by the HR-RH mutant, matched theoretical digestion patterns of the N mRNA-5′-terminal sequence, but not with those of the leader RNA- or other mRNA-5′-terminal sequences. These results indicate that these 5′-(ppp)A-initiated RNAs correspond to 5′-terminal fragments of N mRNA with residues +1 to +40 and +1 to +38 (designated as N1−40 and N1−38, respectively). Interestingly, the major 28-nt RNA in band III, synthesized by the HR-RH mutant, was suggested to be a 5′-(ppp)G-initiated RNA with residues +41 to +68 of N mRNA (referred to as N41−68) on the basis of its RNase-digestion patterns (Figure 2G, lanes 2 and 3).

As shown in Figure 2H (lane 1) as well as in Figure 2A (lane 3), vaccinia virus capping enzyme capped (ppp)RNAs (e.g. leader RNA, N1−40, N1−38 and N41−68), synthesized by the HR-RH mutant, in a sequence-independent manner. In contrast, the VSV L protein (PRNTase) preferentially caps 5′-triposphorylated, but not 5′-diphosphorylated, RNAs with a 5′-terminal ARCGN sequence (R: A or G), in which the first A and third pyrimidine (C > U) residues are essential (4,32). To highlight RNAs with the 5′-pppARCNG sequence (e.g. pppARCAG-) in transcripts synthesized by the HR-RH mutant, they were capped in the presence of [α−32P]GDP with the transcription-defective D714A mutant L protein, which retains the PRNTase activity (6). As shown in Figure 2H (lane 2), N1−40 and N1−38 RNAs (group i) and minor RNAs with 28–30 nt (group ii) were capped with GDP, indicating that these RNAs are initiated with pppARCNG. To confirm their first bases are adenine, capped RNAs in groups i and ii were digested with nucleases PI and CIAP, and the resulting digests were analyzed by PEI-cellulose TLC (Figure 2I). As expected, GpppA, but not GpppG, was detected in both digests (lanes 1 and 2). Further analyses of N1−40 and N41−68 RNAs revealed that these RNAs have exclusively a triphosphate group at their 5′-termini (Supplementary Figure S2). These results indicate that the unique short transcripts (bands I, II and III) produced by the HR-RH mutant are 5′-triposphorylated N1−40, N1−38 and N41−68 RNAs.

In order to investigate whether other cap-defective mutants produce N1−40, N1−38 and N41−68 RNAs in addition to the leader RNA, short transcripts synthesized by selected mutants (H1227R, R1228H, HR-RH, R1221A and R1221K) were analyzed by northern blotting with 32P-labeled oligo-DNA probes complementary to the 5′-
Figure 2. The cap-defective HR-HR mutant L protein produces aberrant short transcripts using cryptic signals within the N gene. (A) Transcripts, synthesized by the wild-type (WT), cap-defective (HR-RH) or transcription-defective (D714A) L protein, were post-labeled by vaccinia virus capping enzyme in the presence of $[^{32}P]GTP$ and analyzed by 20% urea-PAGE. Lane 1 indicates no L protein. (B) Cap-labeled short RNAs [Le, leader RNA; bands I–III, see panel (A)] were purified and digested with nuclease P1. The resulting digests were analyzed by PEI-cellulose TLC. The positions of standard cap analogs are shown on the right. (C–G) Purified cap-labeled short RNAs (lane 1) were partially digested with RNase T1 (lane 2) or RNase A (lane 3). The resulting digests were analyzed by 20% urea-PAGE followed by autoradiography. The OH− lanes indicate alkaline RNA ladders. The positions of digestion products with 3′-terminal Gp or Yp (Up or Cp) are indicated on the right. (H) Transcripts synthesized by the HR-RH mutant L protein were capped with vaccinia virus capping enzyme in the presence of $[^{32}P]GTP$ (lane 1, Vaccinia) or with the transcription-defective D714A mutant L protein in the presence of $[^{32}P]GDP$ (lane 2, VSV), and analyzed by 20% urea-PAGE. Short RNAs capped with the D714A mutant were grouped into i (∼40 nt) and ii (∼30 nt). (I) Capped short RNAs [groups i and ii; see panel (H)] were purified and digested with nuclease P1. The digests were analyzed as in panel (B).

downloaded from https://academic.oup.com/nar/article-abstract/42/19/12112/2903128 by guest on 27 July 2018
with 1.3 and 1.2 knt (referred to as N1 and N2, respectively) (Figure 3B–E, lane 2). To reduce signal intensities from hybridized wild-type mRNAs (lanes 2), its 20-fold dilution was also analyzed on the same blots (lanes 3–5). As expected, the detection of wild-type L protein, were analyzed by northern blotting to detect the leader RNA (B), N1–40 RNA (C) and N41–68 RNA (D) with 32P-labeled oligo-DNA probes complementary to their 5′-terminal 28-nt sequences. Lane 1 indicates no L protein. Putative N1–28 and N1–30 RNAs are marked by arrowheads (C). Asterisks represent unidentified transcripts (~70 nt) detected with the (−)N41–68 probe (D).

As shown in Figure 4B (lane 9), the size of N mRNA lacking poly(A) tail, hybridized with (−)N40–428, was 1.3 knt, which is in agreement with its reported size (1326 nt). Interestingly, using the (−)N40–428 probe, two discrete RNAs with 1.3 and 1.2 knt (referred to as N1 and N2, respectively) were detected in transcripts synthesized by the cap-defective HR mutants (lanes 3–5). In contrast, the wild-type L protein produced no detectable N2 RNA (lane 9). Although the R1221A mutant showed a very low N1 RNA synthesis activity, it produced a trace amount of N2 RNA (lane 6, lower panel). The R1221K exhibited ~10% of the wild-type N1 mRNA synthesis activity, but it also synthesized a small amount of N2 mRNA (lane 7). It is interesting to note that the N1-to-N2 ratios were different among these cap-defective mutants (H1227R, 4 to 6; R1228H, 8 to 2; HR-RH, 6 to 4; R1221A, 9 to 1; R1221K, 9 to 1).

The cap-defective HR mutants retained 1–2% of the wild-type P mRNA synthesis activities (Figure 4C, lanes 3–5), but did not produce detectable amounts of M and G mRNAs (Figure 4D and E, lanes 3–5). While the R1221A mutant did not synthesize detectable amounts of P, M and G mRNAs (Figure 4C–E, lanes 6), the R1221K mutant with a weak co-transcriptional capping activity (see Supplementary Figure S1D) retained the activity to synthesize all these mRNAs (Figure 4C–E, lanes 7), although to significantly lesser extents than the wild-type L protein.

In order to locate the 5′ and 3′-ends of N1 and N2 RNAs synthesized by the cap-defective HR-RH mutant, northern blotting was carried out with 32P-labeled oligo-DNA probes, such as (−)N1–28, (−)N81–108, (−)N1291–1326, complementary to different regions of N mRNA (1326 nt) (Figure 5A). N1 RNA synthesized by the HR-RH mutant (lanes 2, 4, 6 and 8) as well as the wild-type L protein (lanes 1, 3, 5 and 7) was detected with all these probes, whereas N2 RNA was detected only in the HR-RH transcripts with (−)N161–188 (lane 6) or (−)N1291–1326 (lane 8), but not with (−)N1–28 (lane 2) or (−)N81–108 (lane 4). These results suggest that N1 and N2 RNAs are full-length N mRNA and its 5′-truncated form, respectively.

To identify 5′-terminal sequences of N1 and N2 RNAs, 5′-RACE analyses were performed using transcripts produced by the wild-type or HR-RH mutant L protein (Figure 5B). These transcripts were treated with TAP to generate a 5′-monophosphate end from a GpppN-cap, triphosphate or diphosphate end (lanes 2 and 5). In lanes 3 and 6, in order to determine the presence or absence of the cap structure on transcripts, they were pre-treated with CIAP to remove unblocked phosphate groups, and then their CIAP-resistant cap structure was converted into a 5′-monophosphate group with TAP. Five prime-monophosphorylated RNAs in untreated (lanes 1 and 4), TAP-treated (lanes 2 and 5) or CIAP- and TAP-treated (lanes 3 and 6) samples were ligated to a partially double-stranded oligo-RNA adapter with T4 RNA ligase 2, and 5′-adapter-ligated transcripts with a poly(A) tail were reverse-transcribed using an oligo(dT) primer to generate first-strand cDNAs. Then, 5′-cDNA ends were amplified using an adapter-specific forward primer and an N gene-specific reverse primer (complementary to positions +479 to +500 of N mRNA) and analyzed by agarose gel electrophoresis.

As expected, an ~0.5-kb N1 cDNA end (band I) was amplified from the TAP-treated (Figure 5B, lane 2) or CIAP- and TAP-treated (lane 3) transcripts, but not from the untreated transcripts (lane 1), synthesized by the wild-type L protein, suggesting that N1 RNA is full-length N mRNA with a CIAP-resistant cap structure. In contrast, an ~0.5-kb N1 (band I) and ~0.35-kb N2 (band II) cDNA ends were efficiently amplified from the TAP-treated transcripts (lane 5), but not from the untreated (lane 4) or CIAP- and TAP-treated transcripts (lane 6), synthesized by the HR-RH mutant, suggesting that the majority of these N1 and N2 RNAs have a 5′-di- or tri-phosphate end. Thus, N2 RNA, synthesized by the HR-RH mutant, is not a degradation product.
Figure 4. Cap-defective mutant L proteins are not able to synthesize mRNAs from downstream genes efficiently. mRNAs were synthesized with the wild-type (WT) or mutant L protein and deadenylated with RNase H in the presence of oligo(dT). Northern blotting [see panel (A)] was carried out to detect N (B), P (C), M (D) and G (E) mRNAs with 32P-labeled oligo-DNA probes complementary to positions +401 to +428 of respective mRNAs. Lane 1 indicates no L protein. In lane 9, one-twelfth of the RNA amount used in lane 2 was analyzed. The lower panels show portions of autoradiograms after a longer exposure. N1 and N2 indicate full-length N mRNA (1.3 knt) and its truncated form (1.2 knt), respectively.

product of N mRNA, which should have a 5′-hydroxyl or monophosphate end. Consistent with these observations, vaccinia virus capping enzyme efficiently capped N1, N2 and P RNAs synthesized by the HR-RH mutant, but not any mRNAs synthesized by the wild-type L protein (Supplementary Figure S3). Taken together, these results indicate that mRNAs synthesized by the wild-type L protein are capped, whereas N1, N2 and P RNAs synthesized by the HR-RH mutant possess a 5′-di- or tri-phosphate end.

Sequencing analyses of cloned 5′-cDNA ends revealed that the transcription initiation site for N2 RNA is located 157 nt downstream of that for N mRNA (N1 RNA) and its initiator nucleotide is non-canonical GTP (Figure 5B, lower panels; see Supplementary Figure S4). Primer extension analyses also demonstrated that the HR-RH (Figure 5C) and other cap-defective mutants (Supplementary Figure S5) initiate transcription at position +157 as well as +41 at higher frequencies than the wild-type L protein. Although the 5′-RACE analyses suggested that the HR-RH mutants use other minor transcription initiation sites within the N gene (Supplementary Figure S4), the primer extension analyses could not detect any of these putative minor transcripts (Figures 5C and Supplementary Figure S5). The 5′-RACE analysis of 3′-polyadenylated N RNAs did not detect cDNAs starting at position +41, suggesting that transcripts initiated at position +41 are not elongated to the N mRNA 3′-end or not polyadenylated.

In order to determine the presence or absence of the 3′-poly(A) tail on long transcripts synthesized by the cap-defective mutants, sizes of their transcripts were compared with those after deadenylation with RNase H in the presence of oligo(dT) (Figure 6A and B). Untreated mRNAs synthesized by the wild-type L protein migrated as a broad smear (Figure 6A, lanes 1), while deadenylated mRNAs were separated into three bands with 1.3 (N), 0.8 (P/M) and 1.7 (G) knt (Figure 6A, lanes 2), indicating that these wild-type mRNAs were co-transcriptionally polyadenylated as reported (40). Similarly, as shown in lanes 3–12, long transcripts with heterogeneous lengths (>0.8 knt) synthesized by these HR and R1221 mutants were found to be digested with RNase H in the presence of oligo(dT) into discrete RNA species (e.g. N1, N2, P). In contrast, sizes of short transcripts including the leader RNA, N1–40, N1–38 and N41–68 synthesized by the mutants were not different before and after RNase H treatment in the presence of oligo(dT) (Figure 6B). Thus, it was shown that mRNAs synthesized by the cap-defective mutants are efficiently polyadenylated during transcription.

To measure the length of poly(A) tails generated on N transcripts by the wild-type or HR-RH mutant L protein, they were digested with RNase H in the presence of an oligo-DNA complementary to positions +1107 to +1126 of N mRNA [(−)N1107–1126], and the resulting 3′-terminal N mRNA fragments (200 nt) with different poly(A) tail lengths were analyzed by northern blotting with a 32P-labeled antisense probe [(−)N1241–1268] (see Figure 6C). As shown in Figure 6D (lanes 3 and 7), poly(A) tails generated by the wild-type and HR-RH mutant L proteins showed very broad size distributions ranging from 0.1 to 2 knt. The presence of long poly(A) tails on N1 (N mRNA) and N2 RNAs or on their 3′-fragments was confirmed by RNase H digestion of poly(A) tails in the presence of oligo(dT) (Figure 6D, lanes 2, 4, 6 and 8). These results indicate that the cap-defective mutants efficiently polyadenylate N1 and N2 RNAs at their 3′-termini.
Figure 5. The cap-defective HR-RH mutant L protein uses another cryptic transcription initiation site to synthesize 1.2-knt N2 RNA. (A) Deadenylated RNAs, synthesized by either the wild-type (WT) or HR-RH mutant L protein (see Figure 4B, lanes 9 and 5), were analyzed by northern blotting with 32P-labeled oligo-DNA probes complementary to different regions of N mRNA. (B) Transcripts, synthesized by either the WT or HR-RH mutant L protein, were pretreated with or without calf intestine alkaline phosphatase (CIAP) followed by tobacco acid pyrophosphatase (TAP). After ligation of an adapter RNA to 5'-monophosphate ends of RNAs, first-strand cDNAs were synthesized with reverse transcriptase using oligo(dT) as a primer. The 5'-cDNA ends were amplified by PCR using an adapter-specific primer and an N gene-specific primer. The resulting PCR products were analyzed by 2% agarose gel electrophoresis. Lane 7 indicates no template. The amplified cDNA ends for N1 (band I) and N2 (band II) RNAs were purified from an agarose gel and cloned into a plasmid. Sequences of the adapter-ligated 5'-cDNA ends for N1 and N2 RNAs, synthesized by the HR-RH mutants, are shown with positions of their 5'-end residues in the N gene above electropherograms. (C) In vitro transcription was performed with the WT or HR-RH mutant L protein. Lane 3 indicates no L protein. Transcripts were subjected to reverse transcription with a 5'-end-32P-labeled primer complementary to positions +168 to +188 of N mRNA. Primer-extended products were analyzed along with sequencing ladders (G, A, T and C) by 8% urea-PAGE. DNA sequences complementary to 5'-terminal sequences of transcripts are shown at the positions of primer-extended products.
Cap-defective mutations are lethal to VSV replication in host cells

Finally, the effects of these cap-defective mutations in the L gene on recombinant VSV generation were studied using the reverse genetics system (45,46). Three independent experiments were carried out to generate recombinant VSVs from pVSV plasmids (45,46) encoding a full-length positive strand VSV genome with the wild-type or mutant L gene in BHK-21 cells at 30°C (Table 1). In addition to the wild-type pVSV plasmid, a pVSV plasmid to generate an attenuated temperature-sensitive VSV with the cap-methylation-defective D1671V mutation (8) was used as a positive control. On the other hand, a pVSV plasmid with the transcription-defective D714A mutation (3) was used as a negative control. At 30°C (Table 1) as well as at 37°C (data not shown), wild-type VSV was efficiently generated from the plasmid, whereas viruses with the cap-defective mutations in the HR motif (H1227R, R1228H and HR-RH) were not, suggesting that the HR motif is essential for virus growth in cultured cells. While the R1221A mutation was also lethal to VSV, highly attenuated viruses were generated from a plasmid with the R1221K mutation at 30°C. The majority of recombinant R1221K viruses in the passage 1 stock formed pinpoint plaques similar to those of the D1671V mutant viruses (Table 1). In contrast to the wild-type virus, the R1221K virus as well as the D1671V virus was not generated at 37°C (data not shown), suggesting that the mutation may confer a temperature sensitivity to the virus.
RT-PCR and sequence analyses of viral genomic RNAs showed that the majority of the R1221K viruses generated at 30°C carry the R1221K mutation in their genomes (Supplementary Figure S6B). However, after further passaging of the R1221K viruses, revertant viruses with the wild-type phenotype and genotype were generated (Supplementary Figure S6C and D). Taken together, these results indicate that the H1227, R1228 and R1221 residues are essential for VSV replication in host cells as well as in vitro mRNA synthesis and capping. Consistent with the reduced levels of mRNA synthesis and RNA capping activities of the R1221K mutant (see Supplementary Figure S1), recombinant VSV with this mutation is highly attenuated in cell culture, but this mutation appears to be unstable during virus replication (Supplementary Figure S6).

DISCUSSION

Despite the diversity of NNS RNA viruses, their RdRp L proteins share a general organization of putative domains with highly conserved regions (30,49,50), suggesting that they catalyze common enzymatic reactions required for viral mRNA biogenesis. Here, using VSV as a model, it was demonstrated, for the first time, that the active site HR motif of the mRNA capping enzyme (PRNTase) domain of the L protein is required for accurate stop-start transcription to produce full-length mRNAs and virus growth in cultured cells. Since the HR motif is highly conserved in the L proteins of NNS RNA viruses (except for fish novirhabdoviruses) including many human pathogens, such as rabies, measles, respiratory syncytial and Ebola viruses (6,30,33), its functions in viral mRNA biogenesis appear to be fundamental to replication of these NNS RNA viruses in eukaryotic cells.

The cap-defective mutations in the HR motif or its adjacent R1221 residue of the VSV L protein significantly decreased the accuracy of selection of transcription termination and initiation signals for mRNA synthesis during in vitro transcription together with the P protein, leading to sequential production of non-overlapping 5’-triphosphorylated N mRNA fragments, such as N1–40, N41–68 and N2 (5’-polyadenylated N157–1326) RNAs, as depicted in Figure 7. In the presence of the P protein, the wild-type L protein produced the leader RNA and N mRNA at a molar ratio of 1:0.4 under the standard transcription conditions, whereas the HR-RH mutant synthesized the leader, N1–38/N1–40, N41–68, N1 (N mRNA) and N2 RNAs at a molar ratio of 1:0.7:0.3:0.02:0.01. Erroroneous transcription termination and re-initiation using the cryptic signals within the N gene at higher frequencies resulted in a marked decrease in full-length N mRNA synthesis and attenuation of downstream mRNA production.

The P protein plays essential roles in the formation of the active RdRp complex, association of the complex with the N RNA template and RNA chain elongation (1,2,51,52). In the reconstituted transcription system used in this study, synthesis of the leader RNA and mRNAs with the wild-type L protein completely depends on the presence of the P protein (40). Since the cap-defective HR-RH mutant L protein produced the leader RNA to a similar level as the wild-type L protein, it appears to form an RdRp complex with the P protein as the wild-type L protein does. Although the P protein is not required for the RNA capping activity of the L protein (4), the role of the P protein in the recognition of transcription stop-start sites is currently not known.

It is suggested that the failure in pre-mRNA capping at an early stage of N mRNA synthesis induces premature termination of N mRNA synthesis at positions +38 and +40. The minimum lengths of capped pre-mRNAs synthesized during in vitro transcription were reported to be 23–37 nt (34–36). Thus, the transcribing RdRp complex might be paused at a checkpoint for pre-mRNA capping soon after early mRNA chain elongation by recognizing the 5’-end capping signal (pppAACAG) on a nascent transcript with the PRNTase domain. It has been shown that the HR motif is essential for the specific recognition of the capping signal to form the L-pRNA intermediate (6,40). If pre-mRNA is not properly capped at this checkpoint by failing to form the L-pRNA intermediate, the RdRp complex might stop transcription mainly at position +40 to release uncapped transcripts before the transition into processive elongation of mRNA chain. If the RdRp complexes accidently terminate transcription within a gene, a part of them might abnormally seek proximal cryptic transcription initiation sites resembling the gene-start sequence without dissociating from the template. Termination of transcription at position +40 within the N gene results in the release of the uncapped

Experiment	Virus titer (pfu/ml)	Plaque size (mm)		
	1	2	3	
WT	1.8 × 10⁹	1.7 × 10⁹	3.2 × 10⁹	3.1 ± 0.6
H1227R	<10	<10	<10	<10
R1228H	<10	<10	<10	<10
HR-RH	<10	<10	<10	<10
R1221A	<10	<10	<10	<10
R1221K	2.2 × 10⁴	5.4 × 10⁵	1.1 × 10⁶	0.5 ± 0.2
D714A	<10	<10	<10	<10
D1671V	1.4 × 10⁷	1.3 × 10⁷	2.0 × 10⁷	0.7 ± 0.2

*Recombinant VSVs were generated from cDNAs encoding an anti-genome with the wild-type (WT) or mutant L gene using a reverse genetics system. Recovery of viruses was examined by a plaque assay. Three independent experiments were performed.

Thirty plaques of viruses, generated in Experiment 1, were randomly chosen to measure their sizes (the mean ± standard deviation).
Figure 7. The cap-defective mutations in the L protein cause aberrant stop–start transcription. The cap-defective mutant L protein (lower) as well as the wild-type L protein (upper) together with the P protein synthesizes the leader RNA from the 3'-end of the genomic RNA. After synthesis of the leader RNA, the wild-type L protein productively synthesizes 5'-capped and 3'-polyadenylated N mRNA using the gene-start and gene-end sequences as transcription initiation and termination/polyadenylation signals, respectively. In contrast, the cap-defective mutant L proteins (e.g. HR-RH, H1227R, R1228H) frequently use cryptic transcription signals within the N gene, resulting in the generation of large amounts of 5'-uncapped short transcripts (e.g. N1–40, N41–68) and a small amount of 5'-uncapped and 3'-polyadenylated N2 RNA. GDN and HR indicate active site motifs for the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyltransferase (PRNTase) domains, respectively.

40-nt RNA and triggers erroneous re-initiation at position +41 using GTP, a non-canonical initiator nucleotide. It is noteworthy that similar stop–start transcription occurs naturally at the leader-N gene junction to release the uncapped 47-nt leader RNA and re-initiate transcription at the N-gene-start sequence.

Pre-mRNA capping appears to be a critical event for the transition of the RdRp into the continuing elongation mode for long mRNA synthesis, which enables the RdRp to ignore cryptic termination and re-initiation signals. However, externally added vaccinia virus mRNA capping enzyme or the transcription-defective DT14A L protein with a full capping activity was not able to rescue the defect of the HR-RH mutant in mRNA synthesis (data not shown). Furthermore, the addition of a GpppA cap analog or capped 10-nt oligo-RNA with the 5'-terminal sequence of N mRNA in trans did not stimulate the production of full-length mRNAs with the cap-defective HR-RH mutant (data not shown). These observations suggest that a transcribing L protein must have the active PRNTase domain in the same molecule to produce capped full-length mRNAs via a concerted mechanism of stop–start transcription and co-transcriptional premRNA capping.

The wild-type L protein uses ATP as the initiator nucleotide to start mRNA synthesis from each gene-start sequence (3'-UUGUCDNUAG) (20), in which the first three nucleotides (3'-UYG sequence) are essential for efficient transcription initiation, mRNA 5'-end modifications and production of full-length mRNA (37,53). In this study, the cap-defective L proteins were found to initiate transcription with ATP at the N gene-start sequence, but also with non-canonical GTP using cryptic initiation signals at positions +41 and +157 at significantly higher frequencies when compared with the wild-type L protein. Interestingly, among RNA sequences surrounding these cryptic initiation sites and the gene-start sequences (correct mRNA initia-
tion site), there is a consensus sequence composed of an upstream AU-rich sequence (3′-UYUUWBWVA; Y: C or U; W: U or A; B: G, C or U; V: A, G or C) and 3′-YWGYU initiation sequence (see Supplementary Figure S7). Upstream AU-rich sequences have been found to significantly enhance transcription initiation from the gene-start sequence (34).

The VSV L protein is known to initiate transcription with GTP from suboptimal transcription initiation signals although to much lesser extents than with ATP (32,34,37,54,55). Schubert et al. (34) have shown that the VSV-associated RdRp complexes also infrequently terminate N mRNA synthesis at position +40 and re-initiate transcription at position +41 to synthesize 28-nt N41–68 mRNAs and to increase levels of viral 5′-triphosphorylated short RNAs, which are known to trigger anti-viral innate immunity through the RIG-I and IFIT pathways in virus-infected cells (57).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGMENTS
The author thanks Dr Amiya K. Banerjee (The Cleveland Clinic Foundation) for the reagents, helpful discussions and critical comments on the manuscript. Material was provided by Dr Amiya K. Banerjee with support from the NIH grant R01AI093569 to T.O. and NIH grant R01AI026585 to A.K.B. All rights, title and interest in the Material are owned by The Cleveland Clinic Foundation. The author also thanks Drs Ganes C. Sen and Donal S. Luse (Case Western Reserve University) for helpful discussions and Dr Timothy W. Nilsen (Case Western Reserve University) for critical comments on the manuscript. The author acknowledges Dr John K. Rose (Yale University) and Dr Sue A. Moyer (University of Florida) for the generous gifts of the plasmids.

FUNDING
National Institutes of Health (NIH) [AI093569]. Funding for open access charge: NIH [AI093569].

Conflict of interest statement. None declared.

REFERENCES
1. Emerson, S.U. and Yu, Y. (1975) Both NS and L proteins are required for in vitro RNA synthesis by vesicular stomatitis virus. J. Virol., 15, 1348–1356.
2. De, B.P. and Banerjee, A.K. (1985) Requirements and functions of vesicular stomatitis virus L and NS proteins in the transcription process in vitro. Biochem. Biophys. Res. Commun., 126, 40–49.
3. Sleat, D.E. and Banerjee, A.K. (1993) Transcriptional activity and mutational analysis of recombinant vesicular stomatitis virus RNA polymerase. J. Virol., 67, 1334–1339.
4. Ogino, T. and Banerjee, A.K. (2007) Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol. Cell., 25, 85–97.
5. Ogino, T. and Banerjee, A.K. (2010) The HR motif in the RNA-dependent RNA polymerase L protein of Chandipura virus is required for unconventional mRNA-capping activity. J. Gen. Virol., 91, 1311–1314.
6. Ogino, T.; Yadav, S.P. and Banerjee, A.K. (2010) Histidine-mediated RNA transfer to GDP for unique mRNA capping by vesicular stomatitis virus RNA polymerase. Proc. Natl Acad. Sci. U.S.A., 107, 3463–3468.
7. Horikami, S.M. and Moyer, S.A. (1982) Host range mutants of vesicular stomatitis virus defective in in vitro RNA methylation. Proc. Natl Acad. Sci. U.S.A., 79, 7694–7698.

8. Grdzelishivili, V.Z., Smallwood, S., Tower, D., Hall, R.L., Hunt, D.M. and Moyer, S.A. (2005) A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation. J. Virol., 79, 7327–7334.

9. Li, J., Fontaine-Rodriguez, E.C. and Whelan, S.P. (2005) Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J. Virol., 79, 13373–13384.

10. Ogino, T., Kobayashi, M., Iwama, M. and Mizumoto, K. (2005) Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J. Biol. Chem., 280, 4429–4435.

11. Hunt, D.M. and Hutchinson, K.L. (1993) Amino acid changes in the L polymerase protein of vesicular stomatitis virus which confer aberrant polyadenylation and temperature-sensitive phenotypes. Virology, 193, 786–793.

12. Galloway, S.E. and Wertz, G.W. (2008) 5′-adenosyl homocysteine-induced hyperpolyadenylation of vesicular stomatitis virus mRNA requires the methyltransferase activity of L protein. J. Virol., 82, 12280–12290.

13. Colonno, R.J. and Banerjee, A.K. (1976) A unique RNA species contains polyadenylate by virion-associated RNA polymerase of vesicular stomatitis virus. J. Biol. Chem., 251, 197–204.

14. Colonno, R.J. and Banerjee, A.K. (1978) Complete nucleotide sequence of the leader RNA synthesized in vitro by vesicular stomatitis virus. Cell, 15, 93–101.

15. Emerson, S.U. (1982) Reconstitution studies detect a single polymerase entry site on the vesicular stomatitis virus genome. Cell, 31, 635–642.

16. Abraham, G., Rhodes, D.P. and Banerjee, A.K. (1978) The 5′ terminal structure of the methylated mRNA synthesized in vitro by vesicular stomatitis virus. Cell, 5, 51–58.

17. Abraham, G., Rhodes, D.P. and Banerjee, A.K. (1975) Novel initiation of RNA synthesis in vitro by vesicular stomatitis virus. Nature, 255, 37–40.

18. Abraham, G. and Banerjee, A.K. (1976) Sequential transcription of the genes of vesicular stomatitis virus. Proc. Natl Acad. Sci. U.S.A., 73, 1504–1508.

19. Ball, L.A. and White, C.N. (1976) Order of transcription of genes of vesicular stomatitis virus. Proc. Natl Acad. Sci. U.S.A., 73, 442–446.

20. Testa, D., Chanda, P.K. and Banerjee, A.K. (1980) Unique mode of transcription in vitro by vesicular stomatitis virus. Cell, 21, 267–275.

21. Iverson, L.E. and Rose, J.K. (1981) Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell, 23, 477–484.

22. Rhodes, D.P. and Banerjee, A.K. (1976) 5′-terminal sequence of vesicular stomatitis virus mRNAs synthesized in vitro. J. Virol., 21, 33–42.

23. Banerjee, A.K. and Rhodes, D.P. (1973) In vitro synthesis of RNA that contains polyadenylate by virion-associated RNA polymerase of vesicular stomatitis virus. Proc. Natl Acad. Sci. U.S.A., 70, 3566–3570.

24. Barr, J.N., Whelan, S.P. and Wertz, G.W. (1997) cis-Acting signals involved in termination of vesicular stomatitis virus mRNA synthesis include the conserved AUAC and the U7 signal for polyadenylation. J. Virol., 71, 8718–8725.

25. Hwang, L.N., Englund, N. and Pattnaik, A.K. (1998) Polyadenylation of vesicular stomatitis virus mRNA dictates efficient transcription termination at the intercistronic gene junctions. J. Virol., 72, 1803–1815.

26. Barr, J.N. and Wertz, G.W. (2001) Polymerase slippage at vesicular stomatitis virus gene junctions to generate poly(A) is regulated by the upstream 3′-AUAC-5′ tetranucleotide: implications for the mechanism of transcription termination. J. Virol., 75, 6901–6913.

27. Furuchi, Y. and Shatkin, A.J. (2000) Viral and cellular mRNA capping: past and prospects. Adv. Virus Res., 55, 135–184.

28. Shuman, S. (2001) Structure, mechanism, and evolution of the mRNA capping apparatus. Proc. Nucleic Acid Res. Mol. Biol., 66, 1–40.

29. Cougoit, N., Van Dijk, E., Babiak, S. and Seraphin, B. (2004) ‘Cap-tabolism’. Trends Biochem. Sci., 29, 436–444.

30. Ogino, T. and Banerjee, A.K. (2011) An unconventional pathway of mRNA cap formation by vesiculoviruses. Virus Res., 162, 100–109.
54. Hinzman, E. E., Barr, J. N. and Wertz, G. W. (2002) Identification of an upstream sequence element required for vesicular stomatitis virus mRNA transcription. *J. Virol.*, **76**, 7632–7641.
55. Rose, J. K. (1975) Heterogeneous 5′-terminal structures occur on vesicular stomatitis virus mRNAs. *J. Biol. Chem.*, **250**, 8098–8104.
56. Liuzzi, M., Mason, S. W., Cartier, M., Lawetz, C., McCollum, R. S., Dansereau, N., Bolger, G., Lapeyre, N., Gaudette, Y., Lagace, L. et al. (2005) Inhibitors of respiratory syncytial virus replication target cotranscriptional mRNA guanylylation by viral RNA-dependent RNA polymerase. *J. Virol.*, **79**, 13105–13115.
57. Rehwinkel, J. and Reis e Sousa, C. (2013) Targeting the viral Achilles’ heel: recognition of 5′-triphosphate RNA in innate anti-viral defence. *Curr. Opin. Microbiol.*, **16**, 485–492.