CORRELATION BETWEEN HYPO-OSMOTIC SWELLING TEST (HOST) AND OTHER SEMINAL CHARACTERISTICS OF DECCANI RAM SEMEN

M. Rajashri1*, K Ramchandra Reddy1, G. Aruna Kumari1, N Nalini Kumari2 and Surabhi Kesharwani1

1Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, P.V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, India - 500030
2Department of Animal Nutrition, College of Veterinary Science, P.V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, India – 500030

Received – January 13, 2017; Revision – February 17, 2017; Accepted – April 09, 2017
Available Online – May 12, 2017

DOI: http://dx.doi.org/10.18006/2017.5(2).195.200

KEYWORDS
Sperm plasmalemma
Fertilization
Hypo-osmotic swelling test
Inter-relationship
Seminal characteristics

ABSTRACT

Integrity of sperm plasmalemma plays a pivotal role in the process of fertilization. The present study was undertaken to investigate the plasma membrane integrity by Hypo-osmotic swelling test (HOST) of Deccani ram sperm during liquid storage of semen (5ºC) and its inter-relation with other seminal characteristics (Acrosomal integrity, livability, motility, sperm abnormalities and methyl blue reduction test (MBRT)). Semen was collected from 8 Deccani rams (18 ejaculates/ram) and diluted (1:4; 200millions/ml) with egg yolk citrate extender (EYC) after assessment of semen volume (ml), concentration (millions/ml), colour, consistency and mass activity (0-5 scale). Seminal characteristics were evaluated immediately after dilution, after 24 and 48 h of storage at 5ºC. The Pearson’s (r) correlation test was used to calculate correlations between Hos-test and other sperm parameters (Motility, Livability, Acrosome integrity, abnormalities and MBRT). The findings of the present investigation showed highly significant positive correlation between HOS coiling and motility (P<0.01), sperm livability (P<0.01) and acrosome integrity (P<0.01) which indicate its efficiency as feasible screening method for evaluation of male fertility prior to Artificial insemination.
1 Introduction

The Plasma membrane integrity (PM) is essential for survival of sperm in the female reproductive tract and to maintain the fertilizing ability by acting as a selective barrier between components of the intracellular and extracellular environment (Gwathmey et al., 2006). Hypo-osmotic swelling test (HOST) is one of the simplest methods to evaluate the sperm cells plasmalemma stability (Pardik et al., 2012). This method complements with the routine sperm analysis (Nie & Wenzel, 2001). A positive correlation was reported between the results of the HOST and the non-return rate of female animals (Correa et al., 1997), which potentially makes it one of the most appropriate and simple methods for semen quality evaluation (Pardik et al., 2012). Reaction of spermatozoa against the HOS solution varies from animals to animals and it depending on animal species, composition, osmolality and time of incubation (Amorim et al., 2009).

Till now, the variation of plasma membrane integrity within Deccani breed when semen was cooled to 5°C was not investigated. The present investigation was aimed at assessment of the correlation between Hypo-osmotic swelling test (HOST) and other sperm quality parameters of Deccani ram semen.

2 Materials and methods

The present investigation was conducted after getting the approval of Institutional Animal Ethics Committee.

2.1 Semen collection

A total of 144 ejaculates (18 ejaculates/ram) was collected from January to May with the intensity of twice a week from eight Deccani rams (2-4 years age) selected from the sheep herd maintained at ILFC (Instructional Livestock Farm Complex), Rajendranagar (longitude: 78.4018° E, latitude: 17.3203° N) trained to serve an Artificial vagina (AV) at a temperature of 45°C. Each ram fed on green fodders along with concentrate feed (300 gm/day) throughout the experimental period.

2.2 Semen extension and Evaluation

Immediately after semen collection, macroscopic parameters like semen volume, colour, consistency and mass activity (0-5 score) were recorded. Semen was diluted with sodium citrate extender (2.9% aqueous solution of Sodium citrate dihydrate (Fisher scientific - 6132-04-3; 294.1g/mol); 20% (v/v) of egg yolk, streptomycin (1000 µg/ml) and penicillin (1000 IU/ml); pH - 6.8] (dilution rate- 1:4; final concentration- 200 million sperms/ml) and preserved at 5°C. Semen analysis was done immediately after dilution and after cooling (5°C) at 24 and 48 h of storage.

2.2.1 Sperm concentration

Sperm concentration in semen was determined by using improved Neubauer counting chamber after a dilution of semen with 1:200 with a diluting fluid [2% eosin y-solution dissolved in 1%(v/v) formalin, Saturated Nacl solution (1%w/v), Distilled water] and expressed in millions/ml.

2.2.2 Individual Motility

10μl semen was mixed with 200μl normal saline on a clean glass slide and motility was observed under high power at 400X magnification and expressed in terms of percentage of progressively (0-100) motile sperms.

2.2.3 Supravital staining

Semen smears were made by mixing it with Eosin-nigrosin stain (Eosin -1.67 gm, Nigrosin -10 gm, Distilled water -100 ml) and examined under high power (1000X) objective. Minimum of 200 spermatozoa were counted for determining the livability of the spermatozoa.

2.2.4 Acrosomal Integrity

Acrosome integrity was assessed using Giemsa staining procedure (Watson, 1975) with slight modifications. Semen smeared glass slides were put into 5% formaldehyde solution for fixing at 37°C for 30 min. After washing and air drying, smeared slides of spermatozoa were put into the working solution (Giemsa’s stock-3 ml, Sorenson’s phosphate buffer-2 ml and dist. water-45 ml) and kept at 37°C for 3 hrs. Sperm with intact, partially damaged and fully damaged acrosome were determined at 1000X magnification.

2.2.5 Sperm abnormalities assessment by Rose bengal staining

One drop of diluted semen was placed on glass slide and air dried, this was followed by the staining with 3% rosebengal stain (3 gm - Rose Bengal powder, 1ml- Formalin added to 100 ml Distilled water) for 15-20 minutes. Then, observed under light microscopy at 1000X magnification. Atleast 100 sperms were counted.

2.2.6 Hypo-osmotic Swelling Test (HOST)

1 ml of pre-incubated (at 37°C) hypo-osmotic solution (7.35 g sodium citrate trihydrate, 13.51 g fructose in 1,000 ml of distilled water; 150 mOsm/L) was mixed with extended semen (0.1 ml) in a test tube. Simultaneously, control solution (1ml; 300 mOsm/L) was prepared and added with 0.1 ml of same semen in another test tube. The test tubes were incubated for 30 minutes (37°C). 2 drops of 2% eosin Y solution was added to the test tubes for better visualisation of spermatozoa. A drop of incubated semen was examined at 1000X magnification and observed for curling pattern of sperm tails.

The proportion of swollen spermatozoa was determined by method given by Sharma et al. (2012)
Host reactive spermatozoa (%) = Proportion of swollen spermatozoa in hypo-osmotic solution (150 mOsm/L) - Proportion of swollen spermatozoa in control sample (300 mOsm/L)

2.2.7 Methylene Blue Reduction Test (MBRT)

To 1ml of diluted semen, 100 μl of 1 % methylene blue solution (50mg of methylene blue dissolved in 100ml of 2.9% sodium citrate dihydrate solution) was added and then mixed gently. Mineral oil (1cm thick) was layered above the mixture to ensure anaerobic condition and then incubated in a water bath at 47°C. The time required for the change of semen colour was recorded.

2.3 Statistical analysis

The data obtained from conventional parameters were analysed by ANOVA (Analysis of Variance) for diluted (0 h) and chilled semen (24 and 48 h). Data was statistically analyzed by using Statistical Package for Social Science (SPSS, version 16). Duncans test was used to compare the means at a probability level of 5%. The Pearson’s (r) correlation test was used to calculate correlations between HOST and other sperm parameters (Motility, Livability, Acrosome integrity, abnormalities and MBRT).

3 Results

The Deccani ram semen characteristics like colour, volume, consistency, mass activity, concentration which were analysed immediately after collection was represented in Table 1.

Seminal traits	Mean ± S.E (n=144)
Volume	0.63 ± 0.27
concentration	10825.00 ± 537
Mass activity	3.64±0.58
Colour	Creamy white
Consistency	Thick

[Values in parenthesis are the no. of ejaculates collected from the eight rams]

The mean percentage of acrosomal integrity obtained in the present study was in accordance with that of Pathanwadi ram semen of India (Kakadiya et al., 1995) and was lower compared to that of Churra ram semen of Spain (Mata-Campuzano et al., 2014). The variation in acrosome integrity might be due to difference in the age of the rams, season, breed and extender (Paulenz et al., 2002).

4 Discussions

The individual motility percentage of native rams semen of Bangladesh (75.3%) (Pervage et al., 2009) was higher compared to the present study. The period of semen collection and ejaculation frequency may cause some variation in sperm motility (Yotov et al., 2011). The overall mean live spermatozoa percentage of Deccani ram semen was lower compared to the Churra ram semen of Spain diluted with Tris based extender (75%) (Mata-Campuzano et al., 2014). The variation may be due to variation in extender used, breed, storage x extender interaction (Soltanpour et al., 2014) and semen collection method (Matthews et al., 2003). The sperm abnormalities percentage obtained in the present study was comparable to that of Bangladesh ram semen (6.63%) (Pervage et al., 2009) and Awassi ram semen of Iraq (Azawi & Ismaeel, 2012). While Akkaraman ram semen of Turkey obtained higher percentage of sperm abnormalities (Kulaksiz et al., 2012). The variation may be due to breed (Gil et al., 2003) and age of the rams.

The mean percentage of acrosomal integrity obtained in the present study was in accordance with that of Pathanwadi ram semen of India (Kakadiya et al., 1995) and was lower compared to that of Churra ram semen of Spain (Mata-Campuzano et al., 2014). The variation in acrosome integrity might be due to difference in the age of the rams, season, breed and extender (Paulenz et al., 2002).
Table 2 Different microscopic examination parameters and HOS test characteristics of diluted semen (0 h) of Deccani Rams

Parameters	Fresh semen diluted	24 hr	48 hr	Overall mean
Individual Motility (%)	70.93±1.86	58.43±1.69	47.70±1.27	58.85±1.23
Live spermatozoa (%)	77.00±1.34	66.66±1.26	47.18±1.19	63.61±1.26
Acrosome Integrity (%)	93.58±0.58	88.64±0.74	82.50±0.79	88.24±0.55
Sperm Abnormalities (%)	4.72±0.23	4.95±0.19	5.41±0.21	5.03±0.12
HOS test Reactive sperm (%)	69.22±1.88	60.20±1.18	44.64±0.92	58.02±1.16
MBRT (min)	1.57±0.06	3.59±0.07	6.17±0.08	3.78±0.16

Given values in table are average of eighteen replicates; Mean ± S.E value followed by different letter in same horizontal rows are significantly different according to Duncan’s multiple range test (p<0.05)

Table 3 Correlation matrix showing coefficients of correlation among seminal attributes of Deccani ram semen diluted in Egg yolk citrate (EYC) extender

Motility	Livability	Acrosome integrity	Host	Sperm abnormalities	MBRT
Motility					
Livability	0.581**				
Acrosome integrity	0.381**	0.676**			
Host	0.513**	-0.132	-0.183*	-0.119	-0.167*
Sperm abnormalities	-0.665**	-0.832**	-0.708**	-0.738**	0.207*
MBRT	-0.665**	-0.832**	-0.708**	-0.738**	0.207*

Significant at **p<0.01,*p<0.05 level

Figure 4 Graph representing the significant positive correlation between HOS coiling % age and motility % age of spermatozoa of Deccani ram species

Figure 5 Graph representing the significant positive correlation between HOS coiling % and livability % of spermatozoa of Deccani ram species

Figure 6 Graph representing the significant positive correlation between HOS coiling % and acrosome integrity % of spermatozoa of Deccani ram species

Figure 7 Graph representing the negative correlation between HOS coiling % and abnormalities % of spermatozoa of Deccani ram species
HOST is used to characterize the plasma membrane integrity of ram semen by means of “curling” pattern of sperm tail, which occurs due to influx of water when maintained under hypotonic environment. Nalley & Arifiantini (2013) evaluated plasma membrane integrity of Indonesian Garut ram semen (fresh) and reported 69.47% of swollen sperm when subjected to HOST. In the present study, the mean percentage of the sperm positive to HOST was lower compared to that of Indigenous ram semen of Bangladesh (69%) diluted with Tris based extender (Azizunnesa et al., 2014). The variation might be due to difference in the seminal plasma biochemical constituents (Barrios et al., 2000). Higher values of mean MBRT time (min) was obtained in ArkharMerino x Moghani and Baluchi x Moghani ram semen (Moghaddam et al., 2012) while compared to that of the present study. The difference was attributed to the variation in motility, livability and metabolic activity of spermatozoa.

The findings of the present investigation showed highly significant correlation between HOS coiling and motility (P<0.01) (Figure 4), sperm livability (P<0.01) (Figure 5) and acrosome integrity (P<0.01) (Figure 6) in deccani rams which was in accordance with that of the goat spermatozoa (Fonseca et al., 2005) and Nili-ravi Buffalo and sahiwal cow bull (Lodhi et al., 2008) semen samples, Jersey x local hill cattle crossbred Indian bull semen (Sharma et al., 2012) and ram (Bohlooli et al., 2012) semen samples. However the parameters HOST and Sperm liviability correlated well compared to HOST and motility which was of similar trend to that of crossbred cattle bull semen. In contrast, no correlation was found between sperm reactive to the hypoosmotic test and the other semen characteristics of goats (Oliveira et al., 2013) which might be due to species variation and difference in the sperm plasma membrane composition leading to the reduced response of the sperm to Hypo-osmotic solution. Highly significant negative correlation was found between Hos test and MBRT (P<0.01) (Figure. 8) indicating the reduced membrane integrity of sperm plasma membrane leading to loss of metabolic enzymes in the spermatozoa as the duration of storage increased. Low significant (P<0.05) negative correlation was observed between Hos-test and sperm abnormalities (0.167) (Figure. 7) indicating the impaired plasma membrane activity in the defective or abnormal spermatozoa.

Thus, the correlation of HOST with other seminal parameters indicates its efficacy as screening test for routine semen evaluation which is easy and inexpensive.

Conclusion

The present investigation demonstrates that the Deccani ram semen could maintain motility, viability and functional integrity of spermatozoa upto 48 h of storage when diluted with extender EYC and chilled at 5ºC and indicates the importance of the HOST in assessing the functionality of Deccani ram spermatozoa which can be used for screening of semen samples prior to artificial insemination.

Acknowledgments

Authors are thankful to Officer-in-charge, Instructional Livestock Farm Complex (ILFC), Rajendranagar, Hyderabad, India for providing animals to carry out the work.

Conflict of interest

Authors would hereby like to declare that there is no conflict of interests that could possibly arise.

References

Amorim EA, Torres CA, Graham JK, Amorim LS, Santos LV (2009) The hypoosmotic swelling test in fresh rabbit spermatozoa. Animal Reproduction Science 111: 338–343. doi: 10.1016/j.anireprosci.2008.02.015.

Azawi OL, Ismael MA (2012) Influence of addition of different antibiotics in semen diluent on viable bacterial count and spermzoal viability of Awassi ram semen. Veterinary World 5: 75-79.

Azizunnesa, Zohara BF, Bari FY, Alam GS (2014) Baseline Study of Reproductive Performances of Indigenous Rams in Bangladesh. IOSR Journal of Agriculture and Veterinary Science 7: 83-89.

Barrios B, Perez-Pe R, Gallego M, Tato A, Osada J, Muino-Blanco T, Cebríán-Pérez JA (2000) Seminal plasma proteins revert the cold-shock damage on ram sperm membrane. Biology of Reproduction 63 :1531-1537. doi: http://dx.doi.org/10.1095/biolreprod63.5.1531.

Bohlooli S, Cedden F, Bozoglu S, Razaghi-zadeh S, Pishjarg, J (2012) Correlation between conventional sperm assay
parameters in cryopreserved ram semen. Annals of Biological Research 3: 884 - 889.

Correa JR, Heerche Jr G, Zavos PM (1997) Sperm membrane functional integrity and response of frozen thawed bovine spermatozoa during the hypoosmotic swelling test incubation at varying temperatures. Theriogenology 47: 715–721. DOI: http://dx.doi.org/10.1016/S0093-691X(97)00290-0.

Fonseca JF, Torres CAA, Maffili VV, Borges AM, Santos ADF, Rodrigues MT, Oliveira RFM (2005) The hypoosmotic swelling test in fresh goat spermatozoa. Animal Reproduction 2 : 139-144.

Gil J, Lundeheim N, Soderquist L, Rodríguez-Martínez H (2003) Influence of extender, temperature, and addition of glycerol on post-thaw sperm parameters in ram semen. Theriogenology 59: 1241-1255. DOI: http://dx.doi.org/10.1016/S0093-691X(02)01177-9.

Gwathmey TM, Ignotz GG, Mueller JL, Manjunath P, Suarez SS (2006) Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-30-kDa share functional roles in storing sperm in the oviduct. Biology of Reproduction 75 : 501-507. DOI: https://doi.org/10.1095/biolreprod.106.053306.

Kakadiya PT, Suthar BN, Kavani FS (1995) Seminal attributes and their interrelationship in Patanwadi rams. Indian Journal of Animal Sciences 9 65: 662-665.

Kulaksiz R, Cigdem CEBI, Ergun, Akcay (2012) The effect of different extenders on the motility and morphology of ram sperm frozen or stored at 4 °C. Turkish Journal of Veterinary & Animal Sciences 36 : 177-182.

Lodhi LA, Zubair M, Qureshi ZI, Ahmad I, Jamil H (2008) Correlation between hypoosmotic swelling test and various conventional semen evaluation parameters in fresh Nili-Ravi buffalo and Sahiwal cow bull semen. Pakistan Veterinary Journal 28:186 - 188.

Mata-Campuzano M, Manuel Alvarez-Rodriguez, Julio Tamayo-Canal, Elena López-Uruena, Paulino de Paz, Luis Anel, Felipe Martínez-Pastor, Mercedes Alvarez (2014) Refrigerated storage of ram sperm in presence of Trolox and GSH antioxidants: Effect of temperature, extender and storage. Animal Reproduction Science. 151: 137–147. doi: 10.1016/j.anireprosci.2014.10.006.

Matthews N, Bester N, Schwallbach LMJ (2003) A Comparison Of Ram Semen Collected By Artificial Vagina and Electro-Ejaculation. SA Journal of Animal Science 4:28-30.

Moghaddam GH, Pourseif MM, Rafat SA (2012) Seasonal variation in semen quantity and quality traits of iranian crossbred rams. Slovak Journal of Animal Science 45 : 67-75.

Nalley WMM, Arifiantini RI (2013) The Hypo-osmotic swelling test in fresh garut Ram spermatozoa. Journal of the Indonesian Tropical Animal Agriculture 38 : 212-216.

Nie GJ, Wenzel JGW (2001) Adaptation of the hypoosmotic swelling test to assess functional integrity of stallion spermatozoal plasma membranes. Theriogenology 55: 1005-1018. DOI: https://doi.org/10.1016/S0093-691X(01)00461-7

Oliveira IRS, Alves, Heron Medeiros, Castelo, Souza T, Bezerra, Brillante FS, Bezerra, Suassuna ACD, Silva, Alexandre Rodrigues (2013) Correlations between hypoosmotic swelling test and the classical evaluation of goat semen. Ciência Animal Brasileira 14: 216-221. DOI: http://dx.doi.org/10.5216/cab.v14i2.12921.

Padrik P, Hallap T, Kaart T, Bulitko T, Jaakma U (2012) Relationships between the results of hypo-osmotic swelling tests, sperm motility, and fertility in Estonian Holstein dairy bulls. Czech Journal of Animal Science 57: 490–497.

Paulen H, Soderquist L, Perez-Pe R, Berg KA (2002) Effect of different extenders and storage temperatures on sperm viability of liquid ram semen. Theriogenology 57: 823-836. DOI: http://dx.doi.org/10.1016/S0093-691X(01)00683-5.

Pervage S, Hassan MR, Ershaduzzaman M, Khandoker, MAMY (2009) Preservation of liquid semen and Artificial Insemination in native sheep. Journal of the Bangladesh Agricultural University 7 : 305–308

Sharma M, Singh M, Kapoor S, Jasial S (2012) Interrelationship between some routine semen evaluation parameters in Jersey × local hill cattle crossbred bulls Open Veterinary Journal 2: 26 - 31.

Soltanpour F, Gholamali Moghaddam, Reza Asadpour, Sayyed Abbas Rafat (2014) Effect of Antioxidant combinations on sperm quality of cross breed rams during liquid storage. International Journal of Advanced Biological and Biomedical Research 2: 732-740.

Watson PF (1975) Use of Giemsa stain to detect the changes in the acrosome of frozen ram spermatozoa. Veterinary Record 97: 12-15.

Yotov S, Fasulkov I, Vassilev N (2011) Effect of ejaculation frequency on spermatozoa survival in diluted semen from Pleven Blackhead rams. Turkish Journal of Veterinary and Animal Sciences 35 : 117-122.