Purely coclosed G_2-structures on nilmanifolds

Giovanni Bazzoni1 | Antonio Garvín2 | Vicente Muñoz3

1Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Como, Italy
2Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Campus de Teatinos, Universidad de Málaga, Málaga, Spain
3Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Campus de Teatinos, Málaga, Spain

Correspondence
Vicente Muñoz, Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Campus de Teatinos, s/n, 29071 Málaga, Spain.
Email: vicente.munoz@ucm.es

Abstract
We classify seven-dimensional nilpotent Lie groups, decomposable or of nilpotency step at most 4, endowed with left-invariant purely coclosed G_2-structures. This is done by going through the list of all seven-dimensional nilpotent Lie algebras given by Gong, providing an example of a left-invariant 3-form φ which is a pure coclosed G_2-structure (i.e., it satisfies $d + \varphi = 0, \varphi \wedge d \varphi = 0$) for those nilpotent Lie algebras that admit them; and by showing the impossibility of having a purely coclosed G_2-structure for the rest of them.

KEYWORDS
purely coclosed G_2-structures, $SU(3)$-structures, nilmanifolds

MSC (2020)
Primary: 53C15; Secondary: 22E25; 53C38; 17B30

1 | INTRODUCTION

A seven-dimensional smooth manifold M admits a G_2-structure if the structure group of its frame bundle reduces to the exceptional Lie group $G_2 \subset SO(7)$. Equivalently (see [6]), M admits a G_2-structure if and only if it is orientable and spin. Further, a G_2-structure is equivalent to the existence of a positive 3-form φ (see Section 2 for details), which defines a unique Riemannian metric g_φ and an orientation vol_φ on M. When φ is parallel with respect to the Levi–Civita connection of g_φ, then the identity component of its holonomy group is contained in G_2; Fernández and Gray proved that this happens if and only if φ is closed and coclosed [12]. In this case, g_φ is Ricci-flat. A G_2-structure is called closed if $d \varphi = 0$, and coclosed if $d + * \varphi = 0$, where $* \varphi$ is the Hodge star operator associated with g_φ and vol_φ. These two classes of G_2-structures are very different in nature; for instance, the closed condition is quite restrictive (see the recent survey [14]), while coclosed G_2-structures exist on any closed, oriented spin manifold, since they satisfy an h-principle, as proved by Crowley and Nordström in [8, Theorem 1.8].

As it is the case for general G-structures, the non-integrability of a G_2-structure is governed by its intrinsic torsion τ, see [22]. In this particular case, τ has four components $\tau_0, \tau_1, \tau_2,$ and τ_3, with $\tau_i \in \Omega^i(M)$, determined by the equations

$$
\begin{align*}
 d \varphi &= \tau_0 * \varphi + 3 \tau_1 \wedge \varphi + * \tau_3 \\
 d + * \varphi &= 4 \tau_1 \wedge * \varphi + \tau_2 \wedge \varphi.
\end{align*}
$$

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2023 The Authors. Mathematische Nachrichten published by Wiley-VCH GmbH.

2236 | www.mn-journal.org Math. Nachr. 2023;296:2236–2257.
see [6, Proposition 1]. According to the vanishing of the various torsion components, one obtains 16 classes of G_2-structures, see [12]. We recognize closed G_2-structures as those for which $\tau_0 = \tau_1 = \tau_3$; on the other hand, coclosed G_2-structures are characterized by $\tau_1 = \tau_2 = 0$. A G_2-structure is of pure type if all the torsion components vanish, but one. Thus, closed G_2-structures are of pure type, while coclosed G_2-structures are not. A G_2-structure is locally conformally parallel (see [19]) if $\tau_0 = \tau_2 = \tau_3 = 0$, that is, if $d\varphi = 3\tau_1 \wedge \varphi$ and $d \ast \varphi \neq 0$. In this case, locally there is a function f such that $e^f \varphi$ is a parallel G_2-structure. Nearly parallel G_2-structures (see [16]) are another important pure class; they are characterized by $\tau_1 = \tau_2 = \tau_3 = 0$, that is, $d\varphi = \tau_0 \ast \varphi$, where τ_0 is a constant. In this case, the induced metric g_φ is Einstein with positive scalar curvature.

In this paper, we focus on the last pure class of G_2-structures, called purely coclosed G_2-structures; these are given by the conditions $\tau_0 = \tau_1 = \tau_2 = 0$, that is, $d\varphi = \ast \varphi$ and $d \ast \varphi = 0$, or, equivalently [9], by

$$d \ast \varphi = 0 \quad \text{and} \quad \varphi \wedge d\varphi = 0;$$

clearly, they are a subclass of coclosed G_2-structures. The second one is an equality of 7-forms, hence it imposes a single extra condition. It is not clear whether there is an h-principle for purely coclosed G_2-structures.

A nilmanifold is a compact quotient $M = \Gamma \backslash G$, where G is a connected, simply connected, nilpotent Lie group, and $\Gamma \subset G$ is a lattice. By Mal’cev Theorem [20], a lattice $\Gamma \subset G$ exists if and only if the Lie algebra \mathfrak{g} of G has a basis with respect to which the structure constants are rational numbers. A nilmanifold is parallelizable, hence it is spin for any Riemannian metric. Thanks to the aforementioned results, every nilmanifold has a coclosed G_2-structure.

We are interested on nilmanifolds endowed with left invariant G_2-structures. Since left-invariant differential forms on $\Gamma \backslash G$ are uniquely determined by forms on \mathfrak{g}, one can restrict the attention to seven-dimensional real nilpotent Lie algebras, which have been classified by Gong in [17]. Conti and Fernández classified nilpotent Lie groups endowed with a left-invariant closed G_2-structure, see [7]. Nilmanifolds cannot carry locally conformally parallel G_2-structures. Indeed, by a result of Ivanov, Parton and Piccinni [19], a compact manifold M endowed with a locally conformally parallel G_2-structure fibers over the circle with fiber a compact, simply connected 6-manifold, hence $b_1(M) = 1$, while the first Betti number of a nilmanifold is at least 2. Also, non-toral nilmanifolds cannot have left-invariant nearly parallel G_2-structures. In fact, as we noticed above, the induced metric is Einstein in this case, and this never happens for nilmanifolds, due to a result of Milnor [21, Theorem 2.4]. As for left-invariant coclosed G_2-structures, there is an unpublished classification by Bagaglini [3], which does not seem to be complete. In [4], Bagaglini, Fernández and Fino determined which nilpotent Lie groups admit left-invariant coclosed G_2-structures in two cases: when the Lie algebra is decomposable, and when it is 2-step. The authors also showed that one can always choose the G_2-structure in such a way that the induced metric is a nilsoliton. In [15], Freibert obtained all nilpotent almost-Abelian Lie algebras with a coclosed G_2-structure. In [9], del Barco, Moroianu and Raffer obtained 2-step nilpotent Lie groups admitting left-invariant purely coclosed invariant G_2-structures. Their approach has a theoretical flavor and does not rely on the classification of seven-dimensional nilpotent Lie algebras.

In this paper, we study the existence of left-invariant purely coclosed G_2-structures on seven-dimensional decomposable nilpotent Lie groups and on indecomposable nilpotent Lie groups with nilpotency step ≤ 4. We determine those which admit a left-invariant purely coclosed G_2-structures. For this, we go by exhaustion through the list of nilpotent Lie algebras of [17]. For each Lie group, in the positive case we provide an explicit example of a left-invariant purely coclosed G_2-structure. In the negative case, we show that it is not possible to find such G_2-structure by showing that there are suitable obstructions that forbid this to happen; such obstructions are described in Section 5. The results are summarized in Theorems 6.2, 6.5–6.7. In particular, we have the following.

Theorem. Every seven-dimensional decomposable nilpotent Lie algebra admitting a coclosed G_2-structure also admits a purely coclosed one, except for $\mathfrak{h}_3 \oplus \mathbb{R}^4$, where \mathfrak{h}_3 is the Heisenberg Lie algebra. Every seven-dimensional indecomposable nilpotent Lie algebra of nilpotency step ≤ 4 admitting a coclosed G_2-structure also admits a purely coclosed one.

In future work, we shall address the remaining nilpotency steps.

In order to present our computations, we provide a worksheet for each Lie algebra. When it admits a left-invariant purely coclosed G_2-structure, we exhibit explicitly the relevant forms, and list the commands needed in order to verify that they indeed define a purely coclosed G_2-structure. In the negative case, we comment all the steps needed to show that the existence of a coclosed G_2-structure is obstructed. The worksheets can be found at [5]. For the ease of the verification, we use SageMath [11]: it is a free software, based on Python, which allows a number of computations in Mathematics.
Propositions 3.1 and 3.3 are mostly interesting because they allow to use SageMath in order to check that the forms in question define an SU(3)-structure. Our routines are freely available to anyone who may be interested in such computations.

2 | GENERALITIES ON G_2-STRUCTURES

Let V be a seven-dimensional vector space. Given a 3-form $\varphi \in \Lambda^3(V^*)$, we define a symmetric bilinear form $b_{\varphi} : V \times V \to \Lambda^7(V^*)$ by $b_{\varphi}(x, y) := \frac{1}{6} i_x \varphi \wedge i_y \varphi \wedge \varphi$. We have that φ is non-degenerate if $\varepsilon(\varphi) := (\det(b_{\varphi}))^{1/9} \neq 0$. Then

$$g_{\varphi} := \varepsilon(\varphi)^{-1} b_{\varphi}$$

(2.1)

is also a symmetric bilinear form on V. If it is positive definite, then φ is a positive 3-form. By definition this is called a G_2-form. Then, there is a g_{φ}-orthonormal frame $\{e_1, \ldots, e_7\}$ such that

$$\varphi = e_{127} + e_{347} + e_{567} + e_{135} - e_{146} - e_{236} - e_{245},$$

where $\{e^1, \ldots, e^7\}$ is the dual coframe and $e^{ij} := e^i \wedge e^j$, $e^{ijk} := e^i \wedge e^j \wedge e^k$, and so on.

Recall that a seven-dimensional smooth manifold M is said to admit a G_2-structure if there is a reduction of the structure group of its frame bundle from $GL(7, \mathbb{R})$ to the exceptional Lie group G_2, which can actually be viewed naturally as a subgroup of $SO(7)$. Thus, a G_2-structure determines a Riemannian metric and an orientation on M. In fact, the presence of a G_2-structure is equivalent to the existence of a 3-form φ (the G_2-form) on M, which is positive on each tangent space $T_pM, p \in M$.

By Equation (2.1), a G_2-form φ induces both an orientation vol_φ and a Riemannian metric g_φ on M, given by

$$6 g_\varphi(X, Y) \text{vol}_\varphi = i_X \varphi \wedge i_Y \varphi \wedge \varphi,$$

(2.2)

for vector fields X, Y on M. Let \ast_{φ} be the Hodge star operator determined by g_{φ} and vol_φ. We say that a manifold M has a coclosed G_2-structure if there is a G_2-structure on M such that the G_2-form φ is coclosed, that is, $d \ast_{\varphi} \varphi = 0$. The G_2-structure is called purely coclosed if, in addition, $\varphi \wedge d \varphi = 0$.

3 | LINEAR $SU(3)$-STRUCTURES

One way to understand G_2-structures on 7-manifolds is in terms of $SU(3)$-structures on 6-manifolds. In fact, both structures can be described coherently using spinors, as it was shown in [1].

Let V be a six-dimensional vector space. Define the set

$$\Lambda_0(V^*) = \{ \omega \in \Lambda^2(V^*) \mid \omega^3 \neq 0 \}.$$

Given $\omega \in \Lambda_0(V^*)$, we orient V declaring $\omega^3 > 0$.

For every $\tau \in \Lambda^3(V^*)$, we have a map $k_\tau : V \to \Lambda^5(V^*)$ given by $k_\tau(x) = i_x \tau \wedge \tau$, where i_x denotes the contraction. Recall the natural isomorphism $V \otimes \Lambda^6(V^*) \to \Lambda^5(V^*)$, given by $(v, \omega) \mapsto v \omega$. Its inverse is $\mu : \Lambda^5(V^*) \to V \otimes \Lambda^6(V^*)$; if we fix a basis $\{u_1, \ldots, u_6\}$ of V, with dual basis $\{v^1, \ldots, v^6\}$, then $\mu(\xi) = \sum u_\ell \otimes (v^\ell \wedge \xi)$, for $\xi \in \Lambda^5(V^*)$. Composing k_τ with μ we obtain a map

$$K_\tau := \mu k_\tau : V \to V \otimes \Lambda^6(V^*).$$

In turn, this determines a function $\lambda : \Lambda^3(V^*) \to (\Lambda^6(V^*))^{\otimes 2}$ by

$$\lambda(\tau) = \frac{1}{6} \text{tr} \left((K_\tau \otimes 1_{\Lambda^6(V^*)}) \circ K_\tau \right) \in (\Lambda^6(V^*))^{\otimes 2}.$$
Set

\[\Lambda_{\pm}(V^*) := \{ \tau \in \Lambda^3(V^*) \mid \pm \lambda(\tau) > 0 \} . \]

Note that this condition is independent of orientations.

Take \(V_e = \langle e_1, e_2, e_3, e_4, e_5, e_6 \rangle \), and consider copies \(V_f = \langle f_1, f_2, f_3, f_4, f_5, f_6 \rangle \), \(V_g = \langle g_1, g_2, g_3, g_4, g_5, g_6 \rangle \), and \(V_h = \langle h_1, h_2, h_3, h_4, h_5, h_6 \rangle \). Given \(\tau \in \Lambda^3(V^*) \), denote by \(\tau_e \) (resp. \(\tau_f, \tau_g, \tau_h \)) the corresponding elements in \(\Lambda^3(V^e) \) (resp. \(\Lambda^3(V^f), \Lambda^3(V^g), \Lambda^3(V^h) \)). A \((1,2,3)\)-shuffle is a collection \(\sigma = \{ \{i\}, \{j, k\}, \{r, s, t\} \} \) which is a permutation of \(\{1, \ldots, 6\} \) with \(j < k \) and \(r < s < t \). The sign of a \((1,2,3)\)-shuffle \(\sigma \), \((-1)^\sigma\), is its sign as permutation. Consider the element

\[C_{xyz} = \sum_{\sigma} (-1)^\sigma x^i \wedge y^j \wedge y^k \wedge z^r \wedge z^s \wedge z^t , \]

for \(x, y, z = e, f, g, h \), where the sum runs over all \((1,2,3)\)-shuffles. We have the following:

Proposition 3.1. Let \(\tau \in \Lambda^3(V^*) \). Then

\[\tau_e \wedge C_{gfe} \wedge \tau_f \wedge \tau_h \wedge C_{fgh} \wedge \tau_g = -6\lambda(\tau) \text{vol}_{efgh} \]

Proof. There is an easy equality

\[C_{gfe} \wedge \tau_e = -\sum_{\ell=1}^{6} g_{\ell}^{e} \wedge 1_{f_{\ell}} \tau_f \wedge \text{vol}_{e} , \]

from which one has

\[\tau_e \wedge C_{gfe} \wedge \tau_f = -\sum_{\ell=1}^{6} g_{\ell}^{e} \wedge k_{\tau_f}(f_{\ell}) \wedge \text{vol}_{e} . \] (3.1)

This implies

\[\tau_e \wedge C_{gfe} \wedge \tau_f \wedge \tau_h \wedge C_{fgh} \wedge \tau_g = \sum_{\ell, m=1}^{6} g_{\ell}^{e} \wedge k_{\tau_f}(f_{\ell}) \wedge f^m \wedge k_{\tau_g}(g_{m}) \wedge \text{vol}_{eh} \]

\[= -\sum_{\ell, m=1}^{6} g_{\ell}^{e} \wedge k_{\tau_g}(g_{m}) \wedge f^m \wedge k_{\tau_f}(f_{\ell}) \wedge \text{vol}_{eh} . \]

Recall that \(K_{\ell} = \mu_{k_{\tau}} \), so that \(K_{\tau_g}(g_{m}) = \sum g_{\ell} \otimes g_{\ell}^{e} \wedge k_{\tau_g}(g_{m}) \). Hence, \(k_{\ell, m} \), the entry \((\ell, m)\) of the matrix of \(K_{\tau_g} \), is determined by \(k_{\ell, m} \text{vol}_{g} = g_{\ell}^{e} \wedge k_{\tau_g}(g_{m}) \). This implies that the above sum is

\[-\sum_{\ell, m=1}^{6} g_{\ell}^{e} \wedge k_{\tau_g}(g_{m}) \wedge f^m \wedge k_{\tau_f}(f_{\ell}) = -\sum_{\ell, m=1}^{6} k_{\ell, m} k_{\tau_g}(g_{m}) \text{vol}_{gf} = -\text{tr}(K_{\tau}^2)\text{vol}_{gf} = -6\lambda(\tau)\text{vol}_{gf} , \]

and the result follows. \(\square \)

We implement this computation in SageMath as follows:

D.<e1,e2,e3,e4,e5,e6,f1,f2,f3,f4,f5,f6,g1,g2,g3,g4,g5,g6,h1,h2,h3,h4,h5,h6> = GradedCommutativeAlgebra(QQ)
N= D.cdg_algebra()
N.inject_variables()
psie=-e2*e4*e6+e1*e3*e6+e1*e4*e5+e2*e3*e5
psif=-f2*f4*f6+f1*f3*f6+f1*f4*f5+f2*f3*f5
The next result relates elements in $\Lambda_0(V^*)$ and $\Lambda_- (V^*)$ with SU(3)-structures on V (see [18, 23]).

Theorem 3.2. Let $(\omega, \psi_-) \in \Lambda_0(V^*) \times \Lambda_- (V^*)$ such that

$$\omega \wedge \psi_- = 0.$$ \hspace{1cm} (3.2)

Let $I = |K(\psi_-)|^{-1/2} K \psi_-$. If the tensor $h(x, y) = \omega(x, J y)$ is positive definite, then (J, ω) defines an SU(3)-structure on V, and every SU(3)-structure is obtained in this way. Taking $\psi_+ = - J^* \psi_-$, we have that $\psi := \psi_+ + i \psi_-$ is the complex volume form.

To apply Theorem 3.2, we have to check that the quadratic form $h(x) = \omega(x, J(x))$ is positive definite. Equivalently, we look at $\hat{h}(x) = \omega(x, K(x))$, where $K = K \psi_-, \psi = \psi_-$. This is allowed since J is a positive multiple of K. Associated with $\omega = \sum c_{ijkl} e^i e^j$, we define the tensor

$$\omega_{ef} = \sum c_{ijkl} (e^i \wedge f^j - e^j \wedge f^i) \in V^*_e \otimes V^*_f.$$

Proposition 3.3. We have

$$\hat{h}(x) \text{vol}_{e,f} = - \psi_e \wedge C_{x,fe} \wedge \psi_f \wedge \omega_{fx},$$

where e, f are odd-degree variables, and x is of even degree.

Proof. It is enough to prove this for $\omega = x^{ab}$, since the statement is linear in ω. Let $x = \sum \alpha_i x_i \in V_x$, and let $K(x) = \sum k_{ij} \alpha_j x_i$. So

$$\hat{h}(x) = \omega(x, K(x)) = \sum_{\ell} (\alpha_g \alpha_{\ell} \kappa_{b,\ell} - \alpha_b \alpha_{\ell} \kappa_{g,\ell}).$$ \hspace{1cm} (3.3)
By Equation (3.1), we have $\psi_e \wedge C_{xfe} \wedge \psi_f = -\sum x^f \wedge k(f_e) \wedge \text{vol}_e$. By formula (3.4), we have $k(f_e) \wedge f^a = -\kappa_{ae} \text{vol}_f$, where $K(g_m) = \sum \kappa_{\ell m} g_{\ell}$. Therefore

$$\psi_e \wedge C_{xfe} \wedge \psi_f \wedge f^a = \sum x^f \kappa_{ae} \text{vol}_{ef}.$$

Finally,

$$\psi_e \wedge C_{xfe} \wedge \psi_f \wedge \frac{1}{2}(f^a \wedge x^b - f^b \wedge x^a) = \sum (x^f b \kappa_{ae} - x^f a \kappa_{be}) \text{vol}_{ef}. $$

Looking at Equation (3.3), we get the result. Recall that $x^f b = \frac{1}{2}(x^f \otimes x^b + x^b \otimes x^f)$ by convention on symmetric tensors. □

We implement this in SageMath as follows. Note that for setting even degree, we set the degree equal to two (since it is not allowed to have zero-degree variables).

```sage
D.<e1,e2,e3,e4,e5,e6,f1,f2,f3,f4,f5,f6,x1,x2,x3,x4,x5,x6> =
GradedCommutativeAlgebra(QQ,degrees=(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2))
N=D.cdg_algebra()
N.inject_variables()
psie=-e2*e4*e6-e1*e3*e6+e1*e4*e5-e2*e3*e5
psif=-f2*f4*f6-f1*f3*f6+f1*f4*f5-f2*f3*f5
omegafx=f1*x2-f3*x4+f5*x6-f2*x1+f4*x3-f6*x5
Cxfe=[...]
1/2*psie*Cxfe*psif*omegafx
```

We will also need to compute ψ_+ explicitly out of ω, ψ_-. We do this as follows. Suppose that $V = \langle x_1, ..., x_6 \rangle$ is a six-dimensional vector space. The complex structure is $J = cK$, where $c = |\lambda(\psi_-)|^{-1/2}$, and $K = K_{\psi_-}$. So $\psi_+ = -J^* \psi_- = -c^3 K^* \psi_-$.

By Proposition 3.1, $K(g_m) = \sum \kappa_{\ell m} g_{\ell}$, where

$$\kappa_{\ell m} \text{vol}_g = g_{\ell} \wedge k_{\psi_-}(g_m).$$ \hfill (3.4)

For the action on forms, which is the dual one, we have $K^*(g^f) = \sum \kappa_{\ell m} g^m$, so that $K^*(g^f) \text{vol}_g = \sum g^m (g^f \wedge k_{\psi_-}(g_m))$. This means that for a 1-form α, and writing the map in different variables for source and target, $K^*: V_x \rightarrow V_h$, it is

$$K^*(\alpha) \text{vol}_x = \sum h^m (\alpha \wedge k_{\psi_-}(x_m)).$$

For a 3-form $\tau = \sum a_{ijk} x^{ijk}$, we write

$$\tau_{xyz} = \sum a_{ijk} x^i \wedge y^j \wedge z^k.$$

Then,

$$(K^* \tau) \text{vol}_{xyz} = \sum h^{abc} \wedge k_{\psi_-}(x_a) \wedge k_{\psi_-}(y_b) \wedge k_{\psi_-}(z_c) \wedge \tau_{xyz}.$$

Using this for $\tau = \psi_-$ and formula (3.1), we have

$$\psi_+ = -c^3 (K^* \psi_-) \text{vol}_{xyzefg}$$

$$= -c^3 \psi_e \wedge C_{hxe} \wedge \psi_x \wedge \psi_f \wedge C_{hyf} \wedge \psi_y \wedge \psi_g \wedge C_{hzg} \wedge \psi_z \wedge \psi_{xyz}$$

where we have abbreviated $\psi = \psi_-$. The normalization can be obtained by means of

$$\psi_- \wedge \psi_+ = \frac{2}{3} \omega^3.$$
We implement this computation in SageMath as follows:

\[
D. <e_1, \ldots, h_6, x_1, x_2, x_3, x_4, x_5, y_1, y_2, y_3, y_4, y_5, y_6, z_1, z_2, z_3, z_4, z_5, z_6> = \text{GradedCommutativeAlgebra}(\mathbb{Q})
\]
\[
N = D.\text{cdg_algebra}()
\]
\[
N.\text{inject_variables}()
\]
\[
\psi_1 = -e_2^*e_4^*e_6^* + e_1^*e_3^*e_6^* + e_1^*e_4^*e_5^* + e_2^*e_3^*e_5^*
\]
\[
\psi_2 = -z_2^*z_4^*z_6^* + z_1^*z_3^*z_6^* + z_1^*z_4^*z_5^* + z_2^*z_3^*z_5^*
\]
\[
\psi_{xyz} = -x_2^*y_4^*z_6^* + x_1^*y_3^*z_6^* + x_1^*y_4^*z_5^* + x_2^*y_3^*z_5^*
\]
\[
\chi_x = \ldots
\]
\[
\chi_y = \ldots
\]
\[
\chi_z = \ldots
\]
\[
\psi_1^*\chi_x^*\psi_2^*\psi_{xyz}
\]

4 | LEFT-INvariant G₂-STRUCTURES AND SU(3)-STRUCTURES ON LIE GROUPS

Let \(G \) be a seven-dimensional simply connected Lie group with Lie algebra \(\mathfrak{g} \). Then, a \(G_2 \)-structure on \(G \) is left-invariant if the corresponding 3-form is left-invariant. According to the discussion of Section 2, a left-invariant \(G_2 \)-structure on \(G \) is defined by a positive 3-form \(\varphi \in \Lambda^3(\mathfrak{g}^*) \), which can be written, in some orthonormal coframe \(\{e^1, \ldots, e^7\} \) of \(\mathfrak{g}^* \), as

\[
\varphi = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}.
\]

We call this a \(G_2 \)-structure on \(\mathfrak{g} \). In this coframe, then,

\[
*\varphi \varphi = e^{1234} + e^{1256} + e^{1367} + e^{1457} + e^{2357} - e^{2467} + e^{3456}.
\]

A \(G_2 \)-structure on \(\mathfrak{g} \) is coclosed if \(\varphi \) is coclosed, that is, if

\[
d *\varphi \varphi = 0,
\]

where \(d \) denotes the Chevalley–Eilenberg differential on \(\mathfrak{g}^* \). A \(G_2 \)-structure on \(\mathfrak{g} \) is said to be purely coclosed if

\[
d *\varphi \varphi = 0 \quad \text{and} \quad \varphi \wedge d\varphi = 0.
\]

We explain next how to construct a \(G_2 \)-structure on a seven-dimensional Lie algebra, starting with a certain type of \(SU(3) \)-structure on a codimension 1 subspace and some extra data.

Let \(\mathfrak{g} \) be a seven-dimensional Lie algebra with non-trivial center \(\mathfrak{z}(\mathfrak{g}) \). Let \(V \subset \mathfrak{g} \) be a codimension 1 subspace, cooriented by \(X \in \mathfrak{z}(\mathfrak{g}) \); thus, \(X \) is a central vector with non-zero projection to \(\mathfrak{g}/V \). Let \(\omega \in \Lambda^2\mathfrak{g}^* \) and \(\psi_- \in \Lambda^3\mathfrak{g}^* \) be such that

- \(i_X\omega = 0; \)
- \(i_X\psi_- = 0; \)
- they define an \(SU(3) \)-structure on \(V \).

Hence, denoting by \(\bar{\omega} \) and \(\bar{\psi}_- \) the pull-back to \(V \) of the above tensors, we have \(\bar{\omega} \in \Lambda_0(V^*), \bar{\psi}_- \in \Lambda_-(V^*), \) and \(\bar{\omega} \wedge \bar{\psi}_- = 0. \) This determines \(\bar{\psi}_+ \in \Lambda^3(V^*) \). Extend \(\bar{\psi}_+ \) to an element \(\psi_+ \in \Lambda^3\mathfrak{g}^* \) by declaring \(i_X\bar{\psi}_+ = 0. \) Finally, let \(\eta \in \mathfrak{g}^* \) be such that \(\eta(X) \neq 0. \)

It follows that \(\varphi = \omega \wedge \eta + \psi_+ \) is a \(G_2 \)-form on \(\mathfrak{g} \); moreover, if \(h \) denotes the induced \(SU(3) \)-metric on \(V \), then the \(G_2 \)-metric on \(\mathfrak{g} \) is \(g = g_\varphi = h + \eta \wedge \eta. \) Clearly, \(*\varphi \varphi = \frac{\omega^2}{2} + \psi_- \wedge \eta. \) We want to find sufficient conditions on \((\omega, \psi_-, \eta) \) in order for the \(G_2 \)-structure to be (purely) coclosed.

Theorem 4.1. In the above setting, the \(G_2 \)-structure is coclosed if
1. \(d\psi_- = 0 \);
2. \(\omega \wedge d\omega = \psi_- \wedge d\eta \).

Furthermore, the coclosed \(G_2 \)-structure is pure if

3. \(\omega^2 \wedge d\eta = -2\psi_+ \wedge d\omega \).

Proof. We compute

\[
d^* \varphi = \omega \wedge d\omega + d\psi_- \wedge \eta - \psi_- \wedge d\eta = (\omega \wedge d\omega - \psi_- \wedge d\eta) + d\psi_- \wedge \eta = 0 .
\]

The \(G_2 \)-form is \(\varphi = \omega \wedge \eta + \psi_+ \), so that \(d\varphi = d\omega \wedge \eta + \omega \wedge d\eta + d\psi_+ \). Hence,

\[
\varphi \wedge d\varphi = (\omega \wedge \eta + \psi_+) \wedge (d\omega \wedge \eta + \omega \wedge d\eta + d\psi_+) =
\]
\[
(\omega^2 \wedge d\eta + \psi_+ \wedge d\omega + d\psi_+ \wedge \omega) \wedge \eta + \psi_+ \wedge \omega \wedge d\eta + \psi_+ \wedge d\psi_+ .
\]

Now \(\psi_+ \wedge \omega = 0 \) and hence \(d\psi_+ \wedge \omega = \psi_+ \wedge d\omega \). Also, since \(X \) is central, \(i_X d\psi_+ = 0 \), hence \(i_X (\psi_+ \wedge d\psi_+) = 0 \) and so \(\psi_+ \wedge d\psi_+ = 0 \) since it is a 7-form. All in all, this implies that

\[
\varphi \wedge d\varphi = (\omega^2 \wedge d\eta + 2\psi_+ \wedge d\omega) \wedge \eta = 0 ,
\]

and the result follows. \(\square \)

The next example shows how to apply Theorem 4.1 in practice.

Example 4.2. Let us consider the Lie algebra \(\mathfrak{g} = 37B = (0, 0, 0, 0, 12, 23, 34) \) in the notation of [17]; this means that \(\mathfrak{g} \) is seven-dimensional and that it admits a basis \(\{ e_1, \ldots, e_7 \} \) such that, in terms of the dual basis \(\{ e_1, \ldots, e_7 \} \), the Lie algebra structure is given by \(de_j = 0 \), \(j = 1, \ldots, 4 \), \(de_5 = e_12 \), \(de_6 = e_23 \) and \(de_7 = e_34 \). Consider the subspace \(V = \text{span}(e_1, e_2, e_3, e_4, e_6, e_7) \subset \mathfrak{g} \) and the central vector \(X = e_5 \). Set

\[
\begin{align*}
\omega &= e_1^{13} + e_2^{24} - e_6^{7} ; \\
\psi_- &= e_1^{127} - e_1^{146} + e_2^{36} - e_3^{47} ; \\
\eta &= e_5 + e_7 .
\end{align*}
\]

Then, \((\omega, \psi_-) \) defines an SU(3)-structure on \(V \) with induced metric \(h = \sum_{i \leq 5} e^i \otimes e^i \), and \(\psi_+ = e_1^{126} + e_1^{147} - e_3^{46} - e_2^{37} \).

Hence, \(\varphi = \omega \wedge \eta + \psi_+ \) defines a \(G_2 \)-structure on \(\mathfrak{g} \) with \(G_2 \)-metric \(g_\varphi = \sum_{i=1}^6 e^i \otimes e^i + 2e^7 \otimes e^7 + e^5 \otimes e^7 + e^7 \otimes e^5 \).

Since conditions 1–3. of Theorem 4.1 are satisfied, the \(G_2 \)-structure is purely coclosed: \(d^* \varphi = 0 \) and \(\varphi \wedge d\varphi = 0 \).

4.1 | Nilpotent Lie algebras and nilmanifolds

A nilmanifold is a compact manifold of the form \(\Gamma \setminus G \), where \(G \) is a connected, simply connected, nilpotent Lie group and \(\Gamma \) is a cocompact discrete subgroup (a lattice). By a result of Mal’cev [20], we know that if \(\mathfrak{g} \) is nilpotent with rational structure constants, then the associated connected, simply connected nilpotent Lie group \(G \) admits a lattice \(\Gamma \). Therefore, a left-invariant \(G_2 \)-structure on \(G \) determines a \(G_2 \)-structure on the nilmanifold \(\Gamma \setminus G \). Moreover, if the left-invariant \(G_2 \)-structure on \(G \) is coclosed (resp. purely coclosed), the same holds for the induced \(G_2 \)-structure on \(\Gamma \setminus G \). The left-invariant forms on \(G \) are given by the corresponding forms on \(\Lambda^*(\mathfrak{g}^*) \), so the computations can be done on the Lie algebra. Note that a nilpotent Lie algebra (NLA) has non-trivial center.

We use Gong’s classification [17] of seven-dimensional nilpotent Lie algebras that appears in the Appendix. We translate the Lie algebra brackets into the differential graded algebra (DGA) structure for \(\Lambda(\mathfrak{g}^*) \) for each of them. Gong’s classification [17] of seven-dimensional nilpotent Lie algebras is done over the real numbers. For those nilpotent Lie algebras that have a single representative, the structure constants are actually rational numbers, so they define nilmanifolds. For
those nilpotent Lie algebras that appear in families depending on a real parameter \(\lambda \), it is not clear that \(\lambda \) must be rational in order to define a nilmanifold, since a different choice of generators may have rational structure constants. By [10], if a family of nilpotent Lie algebras \(\{ \mathfrak{g}_\lambda \} \), which depends on a parameter \(\lambda \), satisfies that \(\mathfrak{g}_\lambda \cong \mathfrak{g}_{\lambda'} \) only if \(\lambda = \lambda' \), then the Lie algebra \(\mathfrak{g}_\lambda \) has a basis with rational structure constants if and only if \(\lambda \) is rational. In any case, we do not care about this issue, since we produce \(G_2 \)-structures for all values of the parameter \(\lambda \). When there are special values to be treated separately, these are always rational.

Note that the forms \(\omega, \psi_, \eta \) can be defined with real coefficients, and that it is only the structure constants of the DGA that should be rational to have a nilmanifold with a (purely coclosed) \(G_2 \)-structure.

5 | Obstructions for Coclosed \(G_2 \)-Structures on NLAs

We use a converse of Theorem 4.1, which follows from [23, Chapter 1, Proposition 4.5] and [4, Proposition 3.1]. First of all, suppose \(\varphi \) is a \(G_2 \)-structure on a seven-dimensional Lie algebra and let \(g_\varphi \) be the \(G_2 \)-metric. Pick a vector \(X \) of length 1. It follows from that \(X^\perp \) has an SU(3)-structure \((\omega, \psi_-)\) given by \(\omega := i_X \varphi \) and \(\psi_- := -i_X \phi \), where \(\phi = \ast \varphi \). Let \(\eta \) be the metric dual of \(X \). Then \(\phi = \frac{1}{2} \omega^2 + \psi_- \wedge \eta \). We have the following.

Proposition 5.1. Let \(\mathfrak{g} \) be a seven-dimensional Lie algebra with non-trivial center and let \(X \) be a unit central vector. Let \(\mathfrak{h} = \mathfrak{g} / \langle X \rangle \) be the quotient six-dimensional Lie algebra. If \(\varphi \) is a 3-form defining a coclosed \(G_2 \)-structure on \(\mathfrak{g} \), then it determines an SU(3)-structure \((\omega, \psi_-)\) on \(\mathfrak{h} \) such that

\[
\begin{align*}
d\psi_- &= 0, \\
\omega \wedge d\omega &= \psi_- \wedge d\eta .
\end{align*}
\]

In this section, we obtain obstructions to the existence of coclosed \(G_2 \)-structures. In the next subsections, we shall provide three of them.

5.1 | First obstruction

For the first obstruction we use the following result, which appears in [4, Lemma 3.3].

Lemma 5.2. Let \(\mathfrak{g} \) be a seven-dimensional Lie algebra. If for every closed 4-form \(\kappa \) on \(\mathfrak{g} \) there are linearly independent vectors \(X \) and \(Y \) in \(\mathfrak{g} \) such that \((i_X i_Y \kappa)^2 = 0\), then \(\mathfrak{g} \) does not admit coclosed \(G_2 \)-structures.

This is used in the following form:

Corollary 5.3. Let \(\mathfrak{g} \) be a seven-dimensional Lie algebra. Take the cohomology \(H^4(\Lambda(\mathfrak{g}^*)) = \langle \{ z_\alpha \} \rangle \). Suppose that there exist linearly independent vectors \(X, Y \in \mathfrak{g} \), with \(Y \in \mathfrak{z}(\mathfrak{g}) \), such that \(i_X i_Y z_\alpha \in U \) for a subspace \(U \subset \Lambda^2 \mathfrak{g}^* \) such that \(\Lambda^2 U = 0 \). Then, \(\mathfrak{g} \) does not admit any coclosed \(G_2 \)-structure.

Proof. Thanks to Lemma 5.2, it suffices to check that for any \(\kappa \in \Lambda^4 \mathfrak{g}^* \) closed we have \(i_Y i_Y \kappa \in U \), and hence \((i_Y i_Y \kappa)^2 = 0\). Any such \(\kappa \) is a linear combination of the \(z_\alpha \)‘s and an exact 4-form. For the former, the result holds by assumption. If \(\kappa \) is an exact 4-form, then \(i_Y \kappa = 0 \), because \(Y \in \mathfrak{z}(\mathfrak{g}) \).

5.2 | Second obstruction

The second obstruction uses the following result, which appears in [4, Lemma 3.4].

Lemma 5.4. Let \((h, J)\) be an almost Hermitian structure on a six-dimensional oriented vector space \(V \), with orthogonal complex structure \(J \), Hermitian metric \(h \) and fundamental 2-form \(\omega \). Then, for any \(J \)-invariant four-dimensional subspace \(W \subset V \), we have that \((\ast \omega)|_W \neq 0\).
We use it in the following form.

Corollary 5.5. Let \(\mathfrak{g} \) be a seven-dimensional nilpotent Lie algebra and let \(\{e_1, \ldots, e_7\} \) be a nilpotent basis, with dual basis \(\{e^1, \ldots, e^7\} \). Take a list of generators of the space of closed 4-forms \(z_\alpha \in \Lambda^4(\mathfrak{g}^*) \). Suppose that \(z_\alpha \in \langle e^1, e^2 \rangle \wedge \Lambda^3(\mathfrak{g}^*) \). Then, \(\mathfrak{g} \) does not admit coclosed \(G_2 \)-structures.

Proof. Suppose that \(\varphi \) is a coclosed \(G_2 \)-structure, and let \(\phi = \ast \varphi \varphi \), so that \(d\phi = 0 \). Then, \(\phi \in \Lambda^4(\mathfrak{g}^*) \) is a closed 4-form. We fix \(X = e_7 \), and consider the quotient algebra \(\mathfrak{h} = \mathfrak{g} / \langle X \rangle \). By Proposition 5.1, the forms \(\omega = i_X \varphi \) and \(\psi_- = -i_X \phi \) determine an SU(3)-structure on \(\mathfrak{h} = \langle e_1, e_2, e_3, e_4, e_5, e_6 \rangle \). Then, \(\psi_- = -i_X \phi \in \langle e^1, e^2 \rangle \wedge \Lambda^2(\mathfrak{h}^*) \).

Let us see that \(W = \langle e_3, e_4, e_5, e_6 \rangle \) is a complex subspace of \(\mathfrak{h} \). It is enough to see that \(K = K \psi_- \) leaves \(W \) invariant, since \(J \) is a multiple of it. Recall that \(k(x) = \iota_x \psi_- \wedge \psi_- \) and \(K = \mu \circ k \). To check that \(W \) is invariant, we need to check that \(k(\phi) \wedge e^1 = 0 \), \(k(\phi) \wedge e^2 = 0 \), for \(j = 3, \ldots, 6 \). This is clear since both \(\iota_x \psi_- \) and \(\psi_- \) contain at least one \(e^1, e^2 \), and hence a product with \(e^1 \) or \(e^2 \) kills it.

By Lemma 5.2, it must be \(\omega^2|_W \neq 0 \). This means that \(\omega^2(e_3, e_4, e_5, e_6) \neq 0 \); in other words, \(\omega^2 \) contains the monomial \(e^{3456} \). By Proposition 5.1, we have \(\omega^2 = 2(\phi - \psi_- \wedge \eta) \), where \(\eta \) is a 1-form with a component \(e^7 \). By assumption, \(\phi \) cannot contain \(e^{3456} \) (it always contains either \(e^1 \) or \(e^2 \)), and \(\psi_- \) also contains \(e^1 \) or \(e^2 \). Thus, \(e^{3456} \) cannot appear in \(\omega^2 \). This is a contradiction. \(\square \)

5.3 Third obstruction

This method is based on the last equation of Proposition 5.1. We fix \(X = e_7 \). We compute a basis \(\{z_\alpha\} \) of the closed 3-forms in \(\mathfrak{h}^* = \langle e^1, \ldots, e^6 \rangle \). Therefore for a closed 3-form, we can write \(\tau = \sum a_\alpha z_\alpha \).

Proposition 5.6. Suppose we have elements \(w_1, \ldots, w_\ell \in \Lambda^3(\mathfrak{h}^*) \), and let \(W \) be a subspace such that \(\Lambda^3(\mathfrak{h}^*) = W \oplus \langle w_1, \ldots, w_\ell \rangle \). Suppose furthermore that for any closed 2-form \(\beta \) and closed 3-form \(\tau \) on \(\mathfrak{h}^* \), we have

\[
\beta \wedge d\beta, \tau \wedge de^j \in W, \quad j = 1, \ldots, 6.
\]

Then, define the linear subspace

\[
H = \left\{ (a_\alpha) \mid \sum a_\alpha z_\alpha \wedge de^7 \in W \right\}.
\]

If \(\lambda(\sum a_\alpha z_\alpha) \geq 0 \) for all \((a_\alpha) \in H \), then there is no coclosed \(G_2 \)-structure on \(\mathfrak{g} \).

Proof. If \(\varphi \) is a coclosed \(G_2 \)-structure on \(\mathfrak{g} \), then \(\psi_- \) is closed and thus \(\psi_- = \sum a_\alpha z_\alpha \). Next, \(\eta \) must have the form \(\sum_{i=1}^7 b_i e^i \), with \(b_7 \neq 0 \). Hence,

\[
\psi_- \wedge de^7 = b_7^{-1} \left(\omega \wedge d\omega - \sum_{i=1}^6 b_i \psi_- \wedge de^i \right) \in W,
\]

by assumption. Hence, \((a_\alpha) \in H \), and so \(\lambda(\psi_-) \geq 0 \), which is a contradiction. \(\square \)

6 SEVEN-DIMENSIONAL NILPOTENT LIE ALGEBRAS WITH PURELY COCLOSED \(G_2 \)-STRUCTURES

6.1 Decomposable nilpotent Lie algebras

Seven-dimensional decomposable nilpotent Lie algebras are listed in Tables A1 and A2. In [4], the authors identify seven-dimensional decomposable nilpotent Lie algebras that admit a coclosed \(G_2 \)-structure. The following result summarizes Proposition 4.1, Proposition 4.2, and Theorem 4.3 in [4].
Table 1

NLA	Purely coclosed G_2-structures on decomposable NLAs.
n_1	$e^{12} + e^{34} + e^{56}$
n_2	$e^{12} + e^{34} + e^{56}$
n_3	$e^{12} + e^{34} + e^{56}$
n_4	$e^{12} + e^{14} - 2e^{34} - e^{56}$
n_5	$e^{11} + e^{24} + e^{56}$
n_6	$e^{12} + e^{34} + e^{56}$
n_7	$e^{12} + e^{24} - e^{56}$
n_8	$-e^{12} + e^{15} - e^{26} - 2e^{34} + 3e^{36} - e^{45}$
n_9	$-e^{14} + e^{15} + 14e^{26} + e^{34} - 7e^{35} - e^{45}$
n_{10}	$e^{12} - 2e^{21} - e^{45} + \frac{4}{5}(e^{27} - e^{13}) + \frac{3}{5}(e^{37} - e^{15})$
n_{11}	$e^{16} + e^{24} - e^{35} - e^{45}$
n_{12}	$5e^{12} + 10e^{14} - 3e^{16} - 3e^{21} + e^{37} - 4e^{35}$
n_{13}	$e^{12} + e^{13} + \frac{1}{2}e^{16} + \frac{1}{2}e^{26} + e^{34} + 2e^{36} - 2e^{45}$
n_{14}	$e^{12} + e^{15} - e^{26} - 2e^{34} + 3e^{36} - e^{45}$
n_{15}	$-e^{14} + e^{15} + 14e^{26} + e^{34} - 7e^{35} - e^{45}$
n_{16}	$3e^{13} + e^{14} + e^{16} - e^{25} + e^{34} - e^{36} - e^{45}$
n_{17}	$3e^{13} + e^{14} + e^{16} - e^{25} + e^{34} - e^{36} - e^{45}$
n_{18}	$-e^{13} + e^{24} - e^{35} - 3e^{36} - e^{45}$
n_{19}	$5e^{13} + e^{25} + e^{46} + \frac{1}{2}(e^{12} + e^{24} + e^{34} + e^{56})$
n_{20}	$5e^{12} + 5e^{25} + e^{36} + \frac{1}{2}(e^{16} + e^{26} + e^{34} + e^{45})$
n_{21}	$-e^{14} + e^{15} + e^{26} + e^{35} + e^{36} + e^{45}$
n_{22}	$e^{15} + e^{24} + e^{36}$
n_{23}	$e^{13} + e^{24} + e^{36}$
n_{24}	$-e^{14} + e^{25} + e^{36} - e^{56}$

Theorem 6.1

Among the 35 decomposable nilpotent Lie algebras of dimension 7, those that have a coclosed G_2-structure are n_i, $i = 1, \ldots, 24$, and those who do not admit any coclosed G_2-structure are g_i, $i = 1, \ldots, 8$ and l_i, $i = 1, 2, 3$.

We refer to Table 1 for the structure equations of these Lie algebras. The 24 decomposable nilpotent Lie algebras which admit a coclosed G_2-structure have the form $n = h \oplus \mathbb{R}$, where h is a six-dimensional Lie algebra, generated by $\{e_1, \ldots, e_6\}$, endowed with a half-flat SU(3)-structure (ω, ψ_\perp), that is, $d(\omega^2) = 0$ and $d\psi_\perp = 0$. The G_2-metric is $g_\psi = h + e^7 \otimes e^7$, where h is the SU(3)-metric on h and e_7 is a generator of the factor \mathbb{R}. Then, $\ast_\psi \varphi = \frac{1}{2} \omega^2 + \psi_\perp \wedge e^7$ is automatically coclosed; indeed, conditions 1. and 2. of Theorem 4.1 are satisfied with $\eta = e^7$, which is closed. Condition 3, however, need not hold. Nevertheless, we prove the following result.

Theorem 6.2

Every seven-dimensional decomposable nilpotent Lie algebra admitting a coclosed G_2-structure also admits a purely coclosed one, except for n_2.

Proof. We apply Theorem 4.1 to each of the Lie algebras n_i, $i = 1, 3, \ldots, 24$, and exhibit explicitly the required tensors ω, ψ_\perp, and η satisfying conditions 1–3. The results are contained in Table 1. That $n_2 = h_3 \oplus \mathbb{R}^4$ admits no purely coclosed G_2-structure follows from [9, Corollary 4.3].

Remark 6.3. As we shall see, n_2 is the only seven-dimensional nilpotent Lie algebra of nilpotency step ≤ 4 which admits a coclosed G_2-structure but no purely coclosed structures. It turns out that n_2 admits the following purely coclosed G_2^*-structure:

$$\ast_\psi \varphi = -e^{1234} + e^{2386} + e^{1436} + e^{1357} + e^{2457} - e^{1367} + e^{2467}.$$
TABLE 2 Purely coclosed G_2-structures on indecomposable 2-step NLAs.

NLA	ω	ψ	η
17	$-e^{12} + \frac{1}{2}e^{34} - e^{56}$	$e^{135} + e^{146} - e^{236} + e^{245}$	e^7
37A	$-e^{12} + e^{34} - e^{56}$	$-e^{136} + e^{145} - e^{235} - e^{246}$	$-e^7 + e^5$
37B	$e^{13} + e^{24} - e^{67}$	$e^{127} + e^{146} + e^{236} + e^{247}$	$2e^5$
37B1	$-e^{12} - 2e^{34} + e^{67}$	$-e^{137} + e^{146} + e^{236} + e^{247}$	e^5
37C	$e^{12} - e^{34} + e^{67}$	$e^{136} - e^{147} + e^{237} + e^{246}$	e^5
37D	$-e^{12} + e^{34} - e^{67}$	$e^{136} - e^{147} + e^{237} - e^{246} + 2e^5$	e^5
37D1	$e^{12} + e^{34} + e^{67}$	$e^{136} + e^{147} + e^{236} = e^{247}$	e^5

The following routine computes $\omega \wedge \psi_-$ and $\psi_- \wedge \psi_+ - \frac{2}{3} \omega^3$ to ensure that (ω, ψ_-) defines a normalized SU(3)-structure via Theorem 3.2. It also computes $d\psi_-, \omega \wedge d\omega - \psi_- \wedge d\psi_+ + 2\psi_+ \wedge d\omega$ to check that the G_2-structure $\varphi = \omega \wedge \eta + \psi_+$ is purely coclosed, via Theorem 4.1.

To check that the forms in Tables 1 satisfy the required conditions, we use a SageMath worksheet [11]. The worksheets are available in [5]. We include the worksheet for the Lie algebra \mathfrak{n}_{15}. A. $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \rangle = \text{GradedCommutativeAlgebra}(\mathbb{Q})$

M = A.cdg_algebra(x4:x1*x2, x5:x1*x3, x6: x1*x4+x3*x5)

M.inject_variables()

omega = x1*x7+x2*x3+2*x3*x4-x1*x4+x3*x5+x2*x7-4*x1*x5

psi = x1*x2*x4-x1*x2*x5+x1*x4*x7+x1*x5*x7+x2*x3*x4+x2*x3*x5-x3*x5*x7

psiplus = -2*(3*x1*x2*x4-x2*x3*x4+5*x1*x2*x5+3*x2*x3*x5-x1*x4*x7+2*x3*x4*x7+3*x1*x5*x7)

eta = x6

omega*psi

psi*psiplus-(2/3)*omega^3

psi.differential()

omega*omega.differential()-psi*eta.differential()

omega^2*eta.differential()+2*psiplus*omega.differential()
TABLE 3 Purely coclosed G_2-structures on indecomposable 3-step NLAs – 1.

NLA	ω	ψ_-	η
137A	$e^{13} - e^{24} + e^{56}$	$e^{126} - e^{145} - e^{235} - e^{345} + e^{346}$	e^7
137A₁	$e^{12} + e^{14} + e^{56}$	$-e^{246} + e^{135} + e^{145} + e^{235}$	e^7
137B	$e^{11} - \frac{3}{4} e^{24} + e^{56} - \frac{1}{2} (e^{15} + e^{36})$	$e^{126} - e^{145} - e^{235} - e^{345} + e^{346}$	e^7
137B₁	$e^{12} + e^{35} + e^{56}$	$2e^{136} + e^{145} + e^{235} - e^{346}$	$-\frac{1}{2} e^7$
137C	$e^{12} + \frac{2}{7} e^{13} - e^{24} - e^{34} + e^{56}$	$e^{126} - e^{145} - e^{235} + e^{346}$	$e^7 - e^5$
137D	$e^{13} - e^{25} + e^{56}$	$-e^{123} - 2e^{126} + e^{145} - e^{234} + e^{246} - e^{356}$	$-\frac{1}{2} (e^7 + e^5)$
147A	$e^{13} + e^{26} + e^{34} - e^{23}$	$e^{124} + e^{126} + e^{145} + e^{345} + e^{346} + e^{356}$	$-\frac{1}{3} (e^7 + e^5)$
147A₁	$e^{11} + e^{25} - e^{66}$	$-e^{123} - 2e^{126} + e^{145} - e^{234} + e^{246} - e^{356}$	$e^7 - 2e^4$
147B	$-e^{11} + e^{14} + e^{16} - e^{23}$	$e^{124} + e^{126} + e^{145} + e^{345} + e^{346} + e^{356}$	$-\frac{1}{3} (e^7 + e^5)$
147D	$-2e^{12} - 6e^{23} - 3e^{25} + e^{26} - e^{34} - 4e^{26} - e^{35} - 3e^{56}$	$-e^{123} - 2e^{134} - e^{136} + e^{154} + e^{234} + e^{235} - e^{236} - e^{245}$	$\frac{1}{7} (e^7 - 2e^5) - e^4$
157E(\(\lambda\))	$e^{13} - e^{25} + e^{34} + e^{45}$	$-e^{123} - 2e^{125} - e^{126} + e^{145} + e^{234} + e^{235} + e^{236} - e^{245}$	$e^7 - 2e^3$
157E₁(\(\lambda\))	$e^{13} + e^{26} + e^{34} - e^{35}$	$e^{123} + 2e^{126} + e^{145} + e^{234} + e^{235} + e^{236}$	$-\frac{1}{2} e^7 - e^6$
247A	$e^{12} + e^{35} + e^{56}$	$e^{123} - e^{124} - 2e^{125} - e^{126} + e^{134} + e^{135}$	$e^7 + e^6$
247B	$e^{12} + e^{26} + e^{35}$	$-e^{123} - e^{124} - 2e^{125} - e^{126} + e^{134} + e^{135}$	$e^7 + e^6$
247C	$e^{13} + e^{25} + e^{37}$	$e^{124} - e^{157} + e^{237} + e^{345}$	$e^6 + e^4$
247D	$e^{12} - e^{34} - e^{56}$	$e^{136} + e^{145} + e^{235} + e^{246}$	$e^7 + e^4$
247F	$e^{15} + e^{16} - e^{23} + e^{24} + e^{56}$	$e^{123} + e^{124} + e^{125} + e^{235} + e^{236} - e^{245}$	$3e^7 - e^4$
247F₁	$e^{13} - e^{16} + \frac{1}{2} e^{23} + e^{26} - e^{45}$	$e^{125} + e^{126} - e^{134} + e^{135}$	$e^7 - e^5$
247I	$e^{15} + \frac{1}{2} e^{16} + e^{23} - \frac{1}{2} (e^{24} - e^{45})$	$e^{126} + e^{134} + e^{245}$	$e^7 + e^4$
247J	$e^{13} - e^{24} + e^{57}$	$-e^{124} + e^{126} - e^{134} + e^{135}$	$e^6 + 6e^5$
247L	$e^{13} - e^{24} + e^{57}$	$e^{125} + e^{134} + e^{147} + e^{237}$	$\frac{1}{2} e^6$

We have the following result (see Tables 3 and 4):

Theorem 6.6. All seven-dimensional indecomposable 3-step nilpotent Lie algebra admit a purely coclosed G_2-structure, except for: $247E$, $247E_1$, $247G$, $247H_1$, $247K$, $247L$, $247R$, $247R_1$, $357B$, $357C$.

For the families $147E(\lambda)$ and $147E_1(\lambda)$, we cannot use the usual Sage worksheets, since the DGA package does not admit parameters in the definition of the differential. Instead we work with the following worksheet, inspired by [2], that implements an older way to deal with DGAs, less user-friendly, but that allows variables in the definition of the differential. For instance, $147E(\lambda)$ is implemented as follows:

```
E = ExteriorAlgebra(SR, 'x', 8)
l=var('l')
str_eq = (1,2):E.gens()[4], (2,3):E.gens()[5], (1,3):-E.gens()[6], (1,5):-E.gens()[7],
(2,6):l*E.gens()[7], (3,4):(1-l)*E.gens()[7]
d=E.coboundary(str_eq); d
print([d(b) for b in E.gens()])
omega=E.gens()[1]*E.gens()[3]-E.gens()[2]*E.gens()[6]-E.gens()[3]*E.gens()[4]
+E.gens()[4]*E.gens()[5]
psi=-E.gens()[1]*E.gens()[2]*E.gens()[3]-2*E.gens()[1]*E.gens()[2]*E.gens()[5]
+E.gens()[1]*E.gens()[4]*E.gens()[6]+E.gens()[2]*E.gens()[4]*E.gens()[5]
+E.gens()[3]*E.gens()[5]*E.gens()[6]
eta=(1/(l-1))*E.gens()[7] - E.gens()[6]
```
TABLE 4 Purely coclosed G_2-structures on indecomposable 3-step NLAs -2.

NLA	ω	ψ_-	η
247M	$e^{15} + e^{23} + e^{35} - 2e^{46}$	$-2e^{124} - 2e^{126} - e^{134} - 2e^{136} - e^{145}$	$e^7 + 2e^5$
		$+e^{156} + e^{234} + e^{236} + e^{245} + e^{345}$	$-2e^4$
247N	$-e^{14} - e^{25} - e^{37} - \frac{1}{2}(e^{17} + e^{34})$	$-e^{123} + e^{157} - e^{247} + e^{345}$	e^6
247O	$e^{12} + e^{13} + e^{15} - e^{29} - \frac{1}{2}(e^{27} - e^{45}) + e^{57}$	$e^{125} + e^{145} + e^{147} + e^{237} + e^{245} - e^{357}$	$\frac{5}{4}e^6$
247P	$e^{17} + e^{23} + e^{45}$	$e^{125} + e^{237} + e^{134} - e^{157}$	$-2e^6$
247P1	$\frac{1}{2}(e^{15} + e^{27}) + e^{17} + e^{23} + e^{35} - e^{34} + \frac{1}{8}e^{45}$	$e^{125} + e^{237} + e^{134} - e^{157}$	$e^6 - \frac{1}{8}e^5$
247Q	$e^{14} + e^{31} + e^{37}$	$e^{125} - e^{137} + e^{247} + e^{345}$	$-e^6$
257A	$-(e^{12} + e^{31} - e^{46})$	$e^{136} - e^{145} - e^{235} - e^{246}$	e^7
257C	$e^{13} + e^{14} + e^{25} - e^{36} - e^{56} + 3e^{46}$	$e^{124} + e^{156} + e^{236} + e^{345}$	$2e^7 - e^6 - 2e^3$
257F	$-2e^{15} - e^{16} + 3e^{24} + e^{35} + e^{36}$	$e^{134} + e^{236} - e^{456} - e^{246} + e^{235}$	$-4e^7$
257I	$e^{12} - e^{35} - e^{45} + e^{46}$	$e^{134} + e^{156} - e^{236} - e^{245} - e^{26}$	$-e^7 - e^3$
257I1	$e^{13} + e^{25} + e^{46}$	$-e^{124} + e^{156} - e^{236} - e^{345}$	$e^7 + e^3$
357A	$-e^{15} + e^{26} + \frac{1}{2}(e^{123} + e^{135} + e^{346})$	$e^{124} + e^{136} - e^{234} - e^{256} - e^{345}$	$-\frac{1}{8}e^7 + \frac{1}{4}e^6 - \frac{1}{8}e^4$
		$-e^{12} + e^{246} + e^{156} - e^{345}$	$e^7 + e^5$

\[
\omega \ast \psi \ni \\
\psi \ast \psi_{+} - (2/3) \ast \omega^3 \\
d(\psi) \\
\omega \ast d(\omega) - \psi \ast d(\eta) \\
\omega^2 \ast d(\eta) + 2 \ast \psi_{+} \ast d(\omega)
\]

6.4 Indecomposable 4-step nilpotent Lie algebras

We deal next with 7D indecomposable four-step nilpotent Lie algebras. According to Gong [17] there are 43 of them, listed in Tables A7, A8, A9. Four of them (1357\textit{M}(\lambda), 1357\textit{N}(\lambda), 1357\textit{QRS}(\lambda) and 1357\textit{S}(\lambda)) depend on a real parameter \(\lambda\); there are conditions on the value of the parameter, which are included in Appendix A. Table A8.

We have the following result (see Tables 5, 6, 7):

Theorem 6.7. All seven-dimensional indecomposable 4-step nilpotent Lie algebra admit a purely coclosed G_2-structure, except for: 1357\textit{E}, 1457\textit{A}, 1457\textit{B} and 1357\textit{N}(−2).

In the Lie algebras 1357\textit{M}(\lambda), 1357\textit{N}(\lambda) (\lambda \neq -2) and 1357\textit{QRS}(\lambda), \psi_-$ depends on the parameter \(\lambda\). To check that \(\psi_- \in \Lambda_-(\mathfrak{h}^*)\), we use the commands of Section 6.2, adding an extra variable. However, we are not allowed to set its degree as 0, so we set it equal to 2 (any even degree would do).

Summarizing, the proofs of Theorems 6.5, 6.6 and 6.7 have two parts:

- Using Theorem 4.1, we exhibit an explicit purely coclosed G_2-structure on each indecomposable NLA which is not mentioned in the statements of the theorems. These are given in Tables 3, 4, 5, 6 and 7. For the convenience of the reader, we provide SageMath worksheets [5] which can be used as in Section 6.2.
- We use the obstructions of Section 5 to prove that the Lie algebras mentioned in the statements of Theorems 6.5–6.7 do not admit any coclosed G_2-structure.

As a consequence of the results of this section, we get the following result:

Corollary 6.8. Every seven-dimensional indecomposable nilpotent Lie algebra of nilpotency step \(\leq 4\) admitting a coclosed G_2-structure also admits a purely coclosed one.
TABLE 5 Purely coclosed G_2-structures on indecomposable 4-step NLAs – 1.

NLA	ω	ψ_-	η
1357A	$-e^{12} + e^{34} - e^{56}$	$e^{135} + e^{136} - e^{145} + e^{146} + e^{235} + e^{246}$	$e^{7} - 2e^{4}$
1357B	$-e^{13} - e^{24} + \frac{1}{4}e^{45} - e^{56}$	$2e^{126} + e^{145} + \frac{1}{2}e^{156} - e^{235} - \frac{1}{2}e^{346}$	$e^{7} - 4e^{4}$
1357C	$-\frac{1}{2}e^{12} + 2e^{13} - 4e^{25} - 6e^{35}$	$-2e^{124} + 2e^{134} + 4e^{145} + 2e^{156}$	$-2e^{7} + 4e^{5}$
1357D	$e^{12} - e^{13} + e^{56}$	$e^{136} + e^{145} - e^{235} + e^{246} + e^{246}$	$e^{7} + 2e^{3}$
1357F	$e^{12} + 2e^{13} + e^{35}$	$e^{132} - e^{125} + 2e^{126} + e^{136} + e^{145}$	$e^{7} + 2e^{3}$
1357F1	$e^{12} - e^{13} + e^{35}$	$-e^{134} + e^{145} + e^{246}$	$e^{7} + e^{6}$
1357G	$e^{12} - e^{34} - e^{56}$	$e^{136} + e^{145} - e^{235} - e^{246} + \frac{3}{4}e^{246}$	$e^{7} + \frac{1}{2}e^{3}$
1357H	$-e^{12} + 2e^{34} - e^{56}$	$e^{135} + e^{145} + e^{235} - e^{236} + 2e^{245}$	$e^{7} - \frac{1}{2}e^{3}$
1357I	$e^{12} + e^{23} + 4e^{24} + e^{36} + e^{46}$	$2e^{123} + 3e^{124} - 2e^{125} + e^{136} + e^{146}$	$e^{7} - 2e^{5}$
1357J	$-e^{13} + 2e^{23} + e^{25}$	$2e^{135} - \frac{3}{2}e^{136} - e^{146} - e^{235} - 3e^{245} + e^{246}$	$e^{7} - 3e^{6} + \frac{1}{2}e^{3}$
1357M(\lambda)	$\lambda < -1$	$e^{12} - e^{13} + e^{34} - e^{56}$	$e^{7} + \frac{3}{2}e^{3}$
1357M(\lambda)	$\lambda = -1$	$e^{135} - e^{146} - e^{235} - \lambda e^{236} - (\lambda + 1)e^{245} + e^{246}$	$e^{7} - \frac{3}{2}e^{3}$
1357M(\lambda)	$-1 < \lambda < 0$	$e^{235} + 2e^{145} - e^{36} + e^{46}$	$e^{7} - \frac{3}{2}e^{3}$
1357M(\lambda)	$\lambda > 0$	$e^{135} - e^{146} - \lambda e^{236} - (\lambda + 1)e^{245} + e^{246}$	$e^{7} - \frac{3}{2}e^{3}$

TABLE 6 Purely coclosed G_2-structures on indecomposable 4-step NLAs – 2.

NLA	ω	ψ_-	η	
1357N(\lambda)	$\lambda + 2)e^{12} + (\lambda + 2)e^{14} + e^{34} - e^{56}$	$-2\lambda(\lambda - 2)(e^{126} - e^{134} - e^{146} + e^{245}) + 4e^{135} + 2e^{156}$	$-\frac{2}{\lambda + 2}e^{7} - \frac{3\lambda - 10}{3\lambda}e^{6} + \frac{7}{3}e^{3}$	
1357N(\lambda)	$\lambda e^{12} + e^{14} + (\lambda + \frac{1}{2})e^{23} + e^{36}$	$-\frac{5}{2}\lambda^{2}e^{123} - e^{135} + 2e^{136} + 6e^{135}$	$-\frac{5}{2}\lambda^{2}(e^{7} - e^{3}) - 2\frac{\lambda^{2} + 8\lambda + 8}{\lambda^{2} + 2\lambda + 2}e^{6}$	
1357N(\lambda)	$\lambda e^{12} + e^{14} + (\lambda + \frac{1}{2})e^{23} + e^{36}$	$-\frac{5}{2}\lambda^{2}e^{123} - e^{135} + 2e^{136} + 6e^{135}$	$-\frac{5}{2}\lambda^{2}(e^{7} - e^{3}) - 2\frac{\lambda^{2} + 8\lambda + 8}{\lambda^{2} + 2\lambda + 2}e^{6}$	
1357N(0)	$e^{14} + e^{33} + e^{56}$	$e^{132} - e^{135} - 2e^{126} + 2e^{135}$	$e^{7} + \frac{16}{25}e^{6} + e^{2} = 3e^{3}$	
1357N(\lambda)	$2\lambda e^{12} + (\lambda + 2)e^{14} + \lambda e^{34} + e^{36}$	$-2\lambda(e^{126} - e^{134} - e^{146} - e^{246}) - 4e^{135} + 2e^{136} + 2(\lambda + 2)e^{245}$	$\frac{4\lambda^{2}(1 + \lambda)(\lambda + 2)}{4\lambda^{2}(1 + \lambda)(\lambda + 2)}e^{6} + \frac{4\lambda^{2}(1 + \lambda)(\lambda + 2)}{4\lambda^{2}(1 + \lambda)(\lambda + 2)}e^{6}$	
1357O	$e^{12} - e^{34} - e^{56}$	$e^{136} + 5e^{145} + \frac{1}{2}e^{146} + e^{235} + e^{236} + e^{245} + e^{246}$	$e^{7} = \frac{11}{4}e^{3}$	
1357P	$e^{12} + e^{34} - e^{56}$	$-e^{135} + e^{146} - e^{235} + e^{236} + 2e^{245} + e^{246}$	$e^{7} = 2e^{3}$	
1357P1	$e^{12} + 2e^{34} + 2e^{56}$	$e^{145} + e^{136} + e^{235} + e^{246}$	$-2e^{7} = e^{3}$	
1357Q	$e^{12} + e^{34} + e^{56}$	$-e^{135} + e^{146} + e^{235} + e^{245} + e^{246}$	$e^{7} = 2e^{3}$	
1357Q1	$-e^{12} + e^{34} + 2e^{56}$	$-e^{135} + 2e^{145} - e^{235} + e^{246} + e^{245}$	$e^{7} + \frac{153}{8}e^{3}$	
1357QRS(\lambda)	$\lambda > 0$	$e^{12} + \lambda e^{34} + \lambda e^{56}$	$-e^{135} + 2e^{145} + \lambda e^{146} + \lambda e^{235} + 2e^{245} + e^{246} - \lambda e^{246}$	$\lambda e^{7} + \frac{1}{2}(3\lambda + 1)e^{3}$
Table 7 Purely coclosed G_2-structures on indecomposable 4-step NLAs $- 3$.

NLA λ	ω	ψ_-	η
$1357QRS\lambda$	$-e^{12} + \lambda e^{34} - \lambda e^{56}$	$-e^{135} + 2e^{145} + \lambda e^{146} + e^{235}$	$-\lambda e^7 + \frac{1}{2}(3\lambda + 1)e^3$
$\lambda < 0$	$+e^{236} + e^{245} - \lambda e^{246}$		
$1357R$	$-e^{12} - e^{34} + e^{56}$	$-e^{135} - e^{145} + e^{235} + e^{245} + e^{246}$	$e^7 + e^3$
$1357S(0)$	$-e^{12} - 3e^{34} + e^{56} - e^{35} + 2e^{46}$	$-e^{145} + e^{136} - e^{245} - e^{235} - 2e^{246}$	
$1357S\lambda$	$\lambda \neq 0$	$e^{135} - e^{125} - e^{146} + e^{235} + e^{246}$	$\frac{1}{\lambda} e^7 - \left(\frac{1}{\lambda} + \frac{4}{3}\right)e^3$
$2357A$	$e^{13} - e^{24} + e^{37}$	$-e^{125} - e^{137} - e^{237} - e^{345}$	$3e^6$
$2357B$	$e^{13} + e^{24} - e^{57}$	$-e^{125} - e^{137} - e^{237} - e^{345}$	$-3e^6$
$2357C$	$e^{15} + e^{24} + e^{37}$	$-e^{125} + e^{127} - e^{237} - e^{345}$	$3e^6$
$2357D$	$3e^{13} - e^{24} + e^{37} + e^{12} - e^{34} + e^{14} - e^{23}$	$-e^{125} + e^{127} - e^{237} - e^{345}$	$-e^7 + 3e^6 - 2e^4$
$2357D_1$	$e^{13} + e^{24} - e^{37} + \frac{1}{2}(e^{15} - e^{37})$	$e^{125} + e^{147} - e^{237} - e^{345}$	$3e^6 - \frac{1}{2}e^4$
$2457A$	$e^{15} + e^{24} + e^{36}$	$e^{125} - e^{146} + e^{256} + e^{345}$	e^7
$2457B$	$2e^{15} - e^{24} - e^{36} + e^{13} - e^{56}$	$e^{125} - e^{146} - e^{256} - e^{345}$	$e^7 - e^6 + e^4$
$2457C$	$e^{15} + e^{24} - e^{36}$	$-e^{125} + e^{146} + e^{256} + 2e^{345}$	e^7
$2457D$	$2e^{15} - e^{23} + 2e^{26}$	$e^{124} + e^{136} + e^{256} + 2e^{235} + e^{345}$	$10e^7 + 6e^3$
$2457E$	$e^{15} - e^{23} + e^{47}$	$e^{124} + e^{137} + e^{257} + e^{345}$	$-e^6 + e^4$
$2457F$	$-e^{14} - e^{23} - 2e^{46} - e^{56}$	$e^{124} + e^{125} + e^{136} - e^{256} - e^{345}$	$-e^7$
$2457G$	$2e^{15} - e^{23} + e^{47}$	$e^{124} + e^{137} + e^{257} + e^{345}$	$-2e^6$
$2457H$	$e^{12} - e^{13} + e^{46}$	$e^{136} + e^{145} + e^{234} + e^{256}$	$-e^7 + e^4$
$2457I$	$e^{15} + e^{23} - e^{46} - e^{56} + \frac{1}{2}(e^{13} + e^{25})$	$e^{124} + e^{125} + e^{136} - e^{256} - e^{345}$	$\frac{1}{2}e^7 + e^4$
$2457J$	$e^{15} + e^{23} - e^{46} - e^{56}$	$e^{124} + e^{125} + e^{136} - e^{256} - e^{345}$	$-e^7 - e^4$
$2457K$	$e^{15} + e^{23} - e^{46}$	$e^{124} + e^{145} + e^{234} + e^{256}$	$-e^7 + e^4 + e^3$
$2457L$	$e^{15} + e^{24} + e^{36}$	$e^{123} + e^{134} - e^{146} + e^{235} + 2e^{256} + 2e^{345}$	$18e^7$
$2457L_1$	$-e^{14} + 2e^{25} + e^{37}$	$-e^{123} + e^{135} + e^{157} + e^{234} + e^{247} - 2e^{345}$	$\frac{2}{3}e^6$
$2457M$	$2e^{15} + e^{24} + e^{37}$	$e^{123} - e^{147} + e^{257} + e^{345}$	$\frac{2}{3}e^6$

We expect that all indecomposable seven-dimensional nilpotent Lie algebras carrying a coclosed G_2-structure also admit a purely coclosed one. Indeed, besides the ad hoc argument which allows to rule out \mathfrak{n}_2 from the list of Lie algebras admitting a purely coclosed G_2-structure (see [9, Corollary 4.3]), no general obstruction to the existence of a purely coclosed G_2-structure is known. However, it is difficult to deduce the existence of a purely coclosed G_2-structure directly from the existence of a coclosed one, under the indecomposability assumption.

For the sake of completeness, we give an example of a seven-dimensional indecomposable nilpotent Lie algebra of nilpotency step 5 admitting a purely coclosed G_2-structure.

Example 6.9. Consider the Lie algebra $12357B = (0, 0, 0, 12, 14 + 23, 15 - 34, 16 + 23 - 35)$ from [17]. Set $V = \text{span}(e_1, \ldots, e_6)$ and

- $\omega = -2e^{12} - \frac{7}{4}e^{13} + e^{14} - e^{23} - e^{26} + e^{45} - e^{56};$
- $\psi_- = -e^{124} - 2e^{125} + e^{145} - e^{146} - 2e^{234} - e^{235} - e^{236} - e^{345};$
- $\eta = e^7 + e^6 + \frac{1}{2}e^5 + 2e^4.$

Then, (ω, ψ_-) defines an SU(3)-structure on V, hence $\varphi = \omega \wedge \eta + \psi_-$ defines a G_2-structure on $12357B$. Also, conditions 1–3 of Theorem 4.1 are satisfied, and the G_2-structure is purely coclosed.

A final remark concerns the existence of exact purely coclosed G_2-structures: these are purely coclosed G_2-structures whose 4-form $\varphi = \ast \varphi$ is exact. Note that there are examples of exact coclosed G_2-structures: it suffices to consider a nearly parallel G_2-structure, for which $d\varphi = \ast \varphi \varphi = \varphi$. All the purely coclosed G_2-structures we constructed in this paper turn...
out not to be exact. The same question has been asked in the context of closed G_2-structures. A G_2-structure is exact if its defining 3-form φ is exact. It was recently proved that no compact quotient of a Lie group by a discrete subgroup admits an exact G_2-structure which is left-invariant (see [13, Theorem 1.1]).

Conjecture 6.10. No compact quotient of a Lie group by a discrete subgroup admits an exact purely coclosed G_2-structure.

7 7D NILPOTENT LIE ALGEBRAS WITH NO COCLOSED G_2-STRUCTURES

We prove that the following algebras do not have coclosed G_2-structures:

- $27A, 27B$
- $247E, 247E_1, 247G, 247H, 247H_1, 247K, 247R, 247R_1$
- $257B, 257D, 257E, 257G, 257H, 257K, 257L$
- $357B, 357C$
- $1357E, 1357N(−2)$
- $1457A, 1457B$

In order to prove this, we use three different types of obstructions. We list in order:

- We use Corollary 5.3 to cover the families 27, 247, 257, as well as 1357E. For instance, for 27A, we have the following worksheet:

 A. $<x_1, x_2, x_3, x_4, x_5, x_6, x_7> = \text{GradedCommutativeAlgebra}(\mathbb{Q})$

 $M=\text{A.cdg_algebra}(x_6: x_1*x_2, x_7: x_1*x_5 + x_2*x_3)$

 M.inject_variables()

 M.cohomology(4)

 Defining $x_1, x_2, x_3, x_4, x_5, x_6, x_7$

 Free module generated by $[x_1*x_2*x_3*x_6], [x_1*x_2*x_4*x_6], [x_1*x_3*x_4*x_6], [x_2*x_3*x_4*x_6],$

 $[x_1*x_2*x_5*x_6], [x_1*x_4*x_5*x_6], [x_2*x_4*x_5*x_6], [x_3*x_4*x_5*x_6-x_2*x_3*x_5*x_7],$

 $[x_1*x_3*x_4*x_7], [x_2*x_3*x_4*x_7], [x_1*x_3*x_5*x_7], [x_1*x_4*x_5*x_7], [x_2*x_4*x_5*x_7],$

 $[x_3*x_4*x_5*x_7], [x_1*x_3*x_6*x_7] \text{ over Rational Field}$

 Recall that in the worksheet we write x_i for e^i. We use $X = e_6, Y = e_7$, and the space $U = \langle e^{13} \rangle$. Using the list of representatives of the cohomology classes, we see that $t_{i_6, i_7, z_{a_6}} \in U$. Also $\Lambda^2 U = 0$, as required.

- We use Corollary 5.5 for the algebras 357B and 357C. In the Sage worksheet, we find the closed 4-forms by computing the degree 4 cohomology and the exact 4-forms, explicitly.

- We use Proposition 5.6 for the algebras 1357N(−2), 1457A, and 1457B. The Sage worksheets are self-commented and constructive. Bases of the spaces of closed 2-forms β and closed 3-forms τ are found. Then, the conditions $\beta \wedge d\beta, \tau \wedge d\tau$ are checked. The computation of $\lambda(\sum a_\alpha z_\alpha)$ is done using parameters and the implementation of the condition $\lambda(\sum a_\alpha z_\alpha) \in W$ gives linear equations among (a_α) that reduces the expression of $\lambda(\sum a_\alpha z_\alpha)$ to a square in each case.

ACKNOWLEDGMENTS

We thank Marisa Fernández, Anna Fino, Alberto Raffero, and Jonas Deré for their comments and references. We also thank the anonymous referee for her/his useful comments. We have taken as a starting point the (unfortunately incomplete) preprint of Leonardo Bagaglini [3]. Part of our search for forms has been shortened by this. The second and third authors were partially supported MINECO (Spain) grant PID2020-118452GB-I00.
REFERENCES

[1] I. Agricola et al., Spinorial description of SU(3)- and G2-manifolds, J. Geom. Phys. 98 (2015), 535–555. arXiv preprint https://doi.org/10.1016/j.geomphys.2015.08.023.

[2] D. Angella, SageMath experiments in differential and complex geometry, (2017). arXiv preprint https://arxiv.org/abs/1704.04175.

[3] L. Bagaglini, Invariant cocalibrated G2-structures on nilmanifolds, (2015). arXiv preprint https://arxiv.org/abs/1509.01971.

[4] L. Bagaglini, M. Fernández, and A. Fino, Coclosed G2-structures inducing nilsolitons, Forum Math. 30 (2018), no. 1, 109–128. https://doi.org/10.1515/forum-2016-0238.

[5] G. Bazzoni, A. Garvín, and V. Muñoz, SageMath worksheets for purely coclosed G2-structures on indecomposable nilpotent Lie algebras, (2021). Ancillary files https://www.ucs.ucsb.edu/~vicente_munoz/file/sage-worksheets.

[6] R. L. Bryant, Some remarks on G2-structures, Proceedings of Gökova Geometry-Topology Conference, (GGT), Gökova, 2005, pp. 75–109.

[7] D. Conti and M. Fernández, Nilmanifolds with a calibrated G2-structure, Differential Geom. Appl. 29 (2011), no. 4, 493–506. https://doi.org/10.1016/j.difgeo.2011.04.030.

[8] D. Crowley and J. Nordström, New invariants of G2-structures, Geom. Topol. 19 (2015), no. 5, 2949–2992. https://doi.org/10.2140/gt.2015.19.2949.

[9] V. del Barco, A. Moroianu, and A. Raffero, Purely coclosed G2-structures on 2-step nilpotent Lie groups, (2020). arXiv preprint https://arxiv.org/abs/2006.15925.

[10] J. Deré, The structure of underlying Lie algebras, Linear Algebra Appl. 581 (2019), no. 2, 471–495.

[11] T. S. Dévelopers, SageMath, the Sage Mathematics Software System (Version 9.3), (2021). https://www.sagemath.org/.

[12] M. Fernández and A. Gray, Riemannian manifolds with structure group G2, Ann. Mat. Pura Appl. (4) 132 (1982), 19–45. https://doi.org/10.1007/BF01760975.

[13] A. Fino, L. Martín-Merchán, and A. Raffero, Exact G2-structures on compact quotients of Lie groups, Rev. Mat. Complut. 35 (2022), no. 2, 323–359.

[14] A. Fino and A. Raffero, Recent results on closed G2-structures (2020). https://arxiv.org/abs/2006.13931.

[15] M. Freibert, Cocalibrated structures on Lie algebras with a codimension one Abelian ideal, Ann. Global Anal. Geom. 42 (2012), no. 4, 537–563. https://doi.org/10.1007/s10455-012-9326-0.

[16] F. Schulte-Hengesbach, Half-flat structures on Lie groups, Ph.D. thesis, 2010. https://www.math.uni-hamburg.de/home/schulte-hengesbach/diss.pdf.

How to cite this article: G. Bazzoni, A. Garvín, and V. Muñoz, Purely coclosed G2-structures on nilmanifolds, Math. Nachr. 296 (2023), 2236–2257. https://doi.org/10.1002/mana.202100665

APPENDIX A: 7D NILPOTENT LIE ALGEBRAS OF NILPOTENCY STEP ≤ 4

In this Appendix, we list seven-dimensional nilpotent Lie algebras of nilpotency step ≤ 4 using differentials. The Chevalley–Eilenberg differential \(d : \mathfrak{g}^* \to \Lambda^2 \mathfrak{g}^* \) is dual to the bracket \([\cdot,\cdot] : \Lambda^2 \mathfrak{g} \to \mathfrak{g} \). The list of Gong [17] is given in terms of a nilpotent frame \(\{e_1, \ldots, e_7\} \) of \(\mathfrak{g} \); we give the structure constants in terms of the nilpotent coframe \(\{-e^1, \ldots, -e^7\} \) of \(\mathfrak{g}^* \).

- In the family 147E(\(\lambda \)), two Lie algebras 147E(\(\lambda_1 \)) and 147E(\(\lambda_2 \)) are isomorphic if and only if \(\frac{(1-\lambda_1+\lambda_2^3)}{\lambda_2^3(\lambda_2-1)^2} = \frac{(1-\lambda_2+\lambda_1^3)}{\lambda_1^3(\lambda_1-1)^2} \);

- in the family 1357QRS(\(\lambda_1 \)), two Lie algebras 1357QRS(\(\lambda_1 \)) and 1357QRS(\(\lambda_2 \)) are isomorphic if and only if \(\lambda_1 + \lambda_2^{-1} = \lambda_2 + \lambda_1^{-1} \), that is, if and only if \(\lambda_2 = \lambda_1 \) or \(\lambda_2 = \frac{1}{\lambda_1} \).
Table A1: Seven-dimensional decomposable nilpotent Lie algebras – 1.

NLA	Structure equations	NLA	Structure equations
n₁	(0,0,0,0,0,0,0)	n₂	(0,0,0,0,12,0)
n₃	(0,0,0,0,12,34,0)	n₄	(0,0,0,12,13,0)
n₅	(0,0,0,12,14,23,0)	n₆	(0,0,0,12,14 + 23,0)
n₇	(0,0,0,12,15 + 34,0)	n₈	(0,0,0,12,15 + 25,0)
n₉	(0,0,0,12,23,14 + 35,0)	n₁₀	(0,0,0,12,14,15 + 34,0)
n₁₁	(0,0,12,13,14 + 35,0)	n₁₂	(0,0,0,12,12,13,14 + 35,0)
n₁₃	(0,0,0,12,13,14 + 35,0)	n₁₄	(0,0,0,12,14,15 + 24 + 23,0)
n₁₅	(0,0,0,12,13,14 + 35,0)	n₁₆	(0,0,0,12,13,14 + 23,0)
n₁₇	(0,0,12,13,14 + 23,0)	n₁₈	(0,0,0,12,12,13,14 + 23,0)

Table A2: Seven-dimensional decomposable nilpotent Lie algebras – 2.

NLA	Structure equations	NLA	Structure equations
n₁₉	(0,0,12,14,15 + 23,0)	n₂₀	(0,0,0,12,14 − 23,15 + 34,0)
n₂₁	(0,0,12,13,23,14 + 25,0)	n₂₂	(0,0,12,13,23,14 − 25,0)
n₂₃	(0,0,12,13,23,14,0)	n₂₄	(0,0,12,13,14 + 23,15 + 24,0)
g₁	(0,0,0,12,15,0)	g₂	(0,0,0,23,34,36)
g₂	(0,0,0,12,13,14,0)	g₄	(0,0,0,12,14,24,0)
g₃	(0,0,12,13,14,35 + 23,0)	g₅	(0,0,12,13,14 + 23,34 − 25,0)
g₄	(0,0,12,13,14,23,14 + 23,0)	g₆	(0,0,12,13,14,15 + 23,0)
g₅	(0,0,12,13,14,23,14 + 23,0)	g₇	(0,0,12,13,14,34 − 25,0)
g₆	(0,0,12,13,14,23,14 + 23,0)	g₈	(0,0,12,13,14 + 23,34 − 25,0)
l₁	(0,0,0,12,13 − 24,14 + 23,0)	l₂	(0,0,0,12,14,13 − 24,0)
l₃	(0,0,0,12,14,13 + 24,0)		

Table A3: Seven-dimensional indecomposable 2-step nilpotent Lie algebras.

NLA	Structure equations	Center	NLA	Structure equations	Center
17	(0³, 12 + 34 + 56)	⟨e₇⟩	27A	(0⁵, 12, 14 + 35)	⟨e₆, e₇⟩
27B	(0³, 12 + 34, 15 + 23)	⟨e₆, e₇⟩	37A	(0⁵, 12, 23,24)	⟨e₅, e₆, e₇⟩
37B	(0³, 12, 23,34)	⟨e₅, e₆, e₇⟩	37B₁	(0⁵, 12 − 34, 13 + 24,14)	⟨e₅, e₆, e₇⟩
37C	(0³, 12 + 34, 23,24)	⟨e₅, e₆, e₇⟩	37D	(0⁵, 12 + 34, 13,24)	⟨e₅, e₆, e₇⟩
37D₁	(0³, 12 − 34, 13 + 24,14 + 23)	⟨e₅, e₆, e₇⟩			

Table A4: Seven-dimensional indecomposable 3-step nilpotent Lie algebras – 1.

NLA	Structure equations	Center
137A	(0⁵, 12, 34, 15 + 36)	⟨e₇⟩
137A₁	(0⁵, 13 + 24, 14 − 23,15 + 26)	⟨e₇⟩
137B	(0⁵, 12, 34, 15 + 24 + 36)	⟨e₇⟩
137B₁	(0⁵, 13 + 24, 14 − 23,15 + 26 + 34)	⟨e₇⟩
137C	(0⁵, 12, 14 + 23,16 − 35)	⟨e₇⟩
TABLE A5 Seven-dimensional indecomposable 3-step nilpotent Lie algebras – 2.

NLA	Structure equations	Center
137D	\((0^4, 12, 14 + 23, 16 + 24 - 35)\)	\((e_7)\)
147A	\((0^4, 12, 13, 0, 16 + 25 + 34)\)	\((e_7)\)
147A₁	\((0^4, 12, 13, 0, 16 + 24 + 35)\)	\((e_7)\)
147B	\((0^4, 12, 13, 0, 14 + 26 + 35)\)	\((e_7)\)
147C	\((0^4, 12, 23, -13, 15 + 16 + 26 + 2 \cdot 34)\)	\((e_7)\)
147E(\(\lambda\))	\((0^3, 12, 23, -13, -15 + \lambda \cdot 26 + (1 - \lambda) \cdot 34), \lambda \neq 0, 1\)	\((e_7)\)
147E₁(\(\lambda\))	\((0^3, 12, 23, -13, -\lambda \cdot 16 + \lambda \cdot 25 + 2 \cdot 26 - 2 \cdot 34), \lambda > 1\)	\((e_7)\)
157	\((0^2, 12, 0, 0, 0, 13 + 24 + 56)\)	\((e_7)\)
247A	\((0^1, 12, 13, 14, 15)\)	\((e_6, e_7)\)
247B	\((0^1, 12, 13, 14, 35)\)	\((e_6, e_7)\)
247C	\((0^1, 12, 13, 14 + 35, 15)\)	\((e_6, e_7)\)
247D	\((0^1, 12, 13, 14, 25 + 34)\)	\((e_6, e_7)\)
247E	\((0^1, 12, 13, 14 + 15, 25 + 34)\)	\((e_6, e_7)\)
247E₁	\((0^1, 12, 13, 14, 24 + 35)\)	\((e_6, e_7)\)
247F	\((0^1, 12, 13, 24 + 35, 25 + 34)\)	\((e_6, e_7)\)
247F₁	\((0^1, 12, 13, 24 - 35, 25 + 34)\)	\((e_6, e_7)\)
247G	\((0^1, 12, 13, 14 + 15 + 24 + 35, 25 + 34)\)	\((e_6, e_7)\)
247H	\((0^1, 12, 13, 14 + 24 + 35, 25 + 34)\)	\((e_6, e_7)\)
247H₁	\((0^1, 12, 13, 14 + 24 - 35, 25 + 34)\)	\((e_6, e_7)\)
247I	\((0^1, 12, 13, 25 + 34, 35)\)	\((e_6, e_7)\)
247J	\((0^1, 12, 13, 15 + 35, 25 + 34)\)	\((e_6, e_7)\)
247K	\((0^1, 12, 13, 14 + 35, 25 + 34)\)	\((e_6, e_7)\)
247L	\((0^1, 12, 13, 14 + 23, 15)\)	\((e_6, e_7)\)
247M	\((0^1, 12, 13, 14 + 23, 35)\)	\((e_6, e_7)\)
247N	\((0^1, 12, 13, 15 + 24, 23)\)	\((e_6, e_7)\)
247O	\((0^1, 12, 13, 14 + 35, 15 + 23)\)	\((e_6, e_7)\)
TABLE A6 Seven-dimensional indecomposable 3-step nilpotent Lie algebras – 3.

NLA	Structure equations	Center
247\(P\)	\((0^1, 12, 13, 23, 25 + 34)\)	\(\langle e_6, e_7 \rangle\)
247\(P_1\)	\((0^1, 12, 13, 23, 24 + 35)\)	\(\langle e_6, e_7 \rangle\)
247\(Q\)	\((0^1, 12, 13, 14 + 23, 25 + 34)\)	\(\langle e_6, e_7 \rangle\)
247\(R\)	\((0^1, 12, 13, 14 + 15 + 23, 25 + 34)\)	\(\langle e_6, e_7 \rangle\)
247\(R_1\)	\((0^1, 12, 13, 14 + 23, 24 + 35)\)	\(\langle e_6, e_7 \rangle\)
257\(A\)	\((0^1, 12, 0, 0, 13 + 24, 15)\)	\(\langle e_6, e_7 \rangle\)
257\(B\)	\((0^1, 12, 0, 13, 14 + 25)\)	\(\langle e_6, e_7 \rangle\)
257\(C\)	\((0^1, 12, 0, 0, 13 + 24, 25)\)	\(\langle e_6, e_7 \rangle\)
257\(D\)	\((0^1, 12, 0, 0, 13 + 24, 14 + 25)\)	\(\langle e_6, e_7 \rangle\)
257\(E\)	\((0^1, 12, 0, 0, 13 + 45, 24)\)	\(\langle e_6, e_7 \rangle\)
257\(F\)	\((0^1, 12, 0, 0, 23 + 45, 24)\)	\(\langle e_6, e_7 \rangle\)
257\(G\)	\((0^1, 12, 0, 0, 13 + 45, 15 + 24)\)	\(\langle e_6, e_7 \rangle\)
257\(H\)	\((0^1, 12, 0, 0, 13 + 24, 45)\)	\(\langle e_6, e_7 \rangle\)
257\(I\)	\((0^1, 12, 0, 0, 13 + 14, 15 + 23)\)	\(\langle e_6, e_7 \rangle\)
257\(J\)	\((0^1, 12, 0, 0, 13 + 24, 15 + 23)\)	\(\langle e_6, e_7 \rangle\)
257\(J_1\)	\((0^1, 12, 0, 0, 13 + 14 + 25, 15 + 23)\)	\(\langle e_6, e_7 \rangle\)
257\(K\)	\((0^1, 12, 0, 0, 13, 23, 14)\)	\(\langle e_6, e_7 \rangle\)
257\(L\)	\((0^1, 12, 0, 0, 13 + 24, 23 + 45)\)	\(\langle e_6, e_7 \rangle\)
357\(A\)	\((0^1, 12, 0, 13, 24, 14)\)	\(\langle e_5, e_6, e_7 \rangle\)
357\(B\)	\((0^1, 12, 0, 13, 23, 14)\)	\(\langle e_5, e_6, e_7 \rangle\)
357\(C\)	\((0^1, 12, 0, 13 + 24, 23, 14)\)	\(\langle e_5, e_6, e_7 \rangle\)

TABLE A7 Seven-dimensional indecomposable 4-step nilpotent Lie algebras – 1.

NLA	Structure equations	Center
1357\(A\)	\((0^1, 12, 14 + 23, 0, 15 + 26 - 34)\)	\(\langle e_7 \rangle\)
1357\(B\)	\((0^1, 12, 14 + 23, 0, 15 - 34 + 36)\)	\(\langle e_7 \rangle\)
1357\(C\)	\((0^1, 12, 14 + 23, 0, 15 + 24 - 34 + 36)\)	\(\langle e_7 \rangle\)
1357\(D\)	\((0^1, 12, 0, 23, 24, 16 + 25 + 34)\)	\(\langle e_7 \rangle\)
1357\(E\)	\((0^1, 12, 0, 23, 24, 25 + 46)\)	\(\langle e_7 \rangle\)
1357\(F\)	\((0^1, 12, 0, 23, 24, 13 + 25 - 46)\)	\(\langle e_7 \rangle\)
TABLE A8 Seven-dimensional indecomposable four-step nilpotent Lie algebras – 2.

NLA	Structure equations	Center
1357F₁	\((0^5, 12, 0, 23, 24, 13 + 25 + 46)\)	\((e_7)\)
1357G	\((0^5, 12, 0, 23, 14, 16 + 25)\)	\((e_7)\)
1357H	\((0^5, 12, 0, 23, 14, 16 + 25 + 26 - 34)\)	\((e_7)\)
1357I	\((0^5, 12, 0, 23, 14, 25 + 46)\)	\((e_7)\)
1357J	\((0^5, 12, 0, 23, 14, 13 + 25 + 46)\)	\((e_7)\)
1357L	\((0^5, 12, 0, 13 + 24, 14, 15 + 23 + \frac{1}{2} \cdot 26 + \frac{1}{2} \cdot 34)\)	\((e_7)\)
1357M(\(\lambda\))	\((0^5, 12, 0, 13 + 24, 14, 15 + \lambda \cdot 26 + (1 - \lambda) \cdot 34), \lambda \neq 0\)	\((e_7)\)
1357N(\(\lambda\))	\((0^5, 12, 0, 13 + 24, 14, 15 + \lambda \cdot 23 + 34 + 46)\)	\((e_7)\)
1357O	\((0^5, 12, 0, 13 + 24, 23, 16 + 25)\)	\((e_7)\)
1357P	\((0^5, 12, 0, 13 + 24, 23, 15 + 26 + 34)\)	\((e_7)\)
1357P₁	\((0^5, 12, 0, 13 + 24, 23, 15 - 26 + 34)\)	\((e_7)\)
1357Q	\((0^5, 12, 0, 13, 23 + 24, 15 + 26)\)	\((e_7)\)
1357Q₁	\((0^5, 12, 0, 13, 23 + 24, 15 - 26)\)	\((e_7)\)
1357QRS(\(\lambda\))	\((0^5, 12, 0, 13 + 24, 14, 15 + 23 + 26 + (1 - \lambda) \cdot 34), \lambda \neq 0\)	\((e_7)\)
1357R	\((0^5, 12, 0, 13, 23 + 24, 16 + 25 + 34)\)	\((e_7)\)
1357S(\(\lambda\))	\((0^5, 12, 0, 13, 23 + 24, 15 + 26 + 34, \lambda \neq 1\)	\((e_7)\)
1457A	\((0^5, 12, 13, 0, 0, 14 + 56)\)	\((e_7)\)
1457B	\((0^5, 12, 13, 0, 0, 14 + 23 + 56)\)	\((e_7)\)
2357A	\((0^5, 12, 14 + 23, 23, 15 - 34)\)	\((e_6, e_7)\)
2357B	\((0^5, 12, 14 + 23, 13, 15 - 34)\)	\((e_6, e_7)\)
2357C	\((0^5, 12, 14 + 23, 24, 15 - 34)\)	\((e_6, e_7)\)
2357D	\((0^5, 12, 14 + 23, 13 + 24, 15 - 34)\)	\((e_6, e_7)\)
2357D₁	\((0^5, 12, 14 + 23, 13 - 24, 15 - 34)\)	\((e_6, e_7)\)
2457A	\((0^5, 12, 13, 0, 14, 15)\)	\((e_6, e_7)\)
2457B	\((0^5, 12, 13, 0, 25, 14)\)	\((e_6, e_7)\)
2457C	\((0^5, 12, 13, 0, 14 + 25, 15)\)	\((e_6, e_7)\)
2457D	\((0^5, 12, 13, 0, 14 + 23 + 25, 15)\)	\((e_6, e_7)\)
2457E	\((0^5, 12, 13, 0, 23 + 25, 14)\)	\((e_6, e_7)\)
2457F	\((0^5, 12, 13, 0, 14 + 23, 15)\)	\((e_6, e_7)\)
2457G	\((0^5, 12, 13, 0, 15 + 23, 14)\)	\((e_6, e_7)\)
2457H	\((0^5, 12, 13, 0, 23, 14 + 25)\)	\((e_6, e_7)\)

TABLE A9 Seven-dimensional indecomposable four-step nilpotent Lie algebras – 3.

NLA	Structure equations	Center
2457I	\((0^5, 12, 13, 0, 14 + 23, 25)\)	\((e_6, e_7)\)
2457J	\((0^5, 12, 13, 0, 14 + 23, 23 + 25)\)	\((e_6, e_7)\)
2457K	\((0^5, 12, 13, 0, 15 + 23, 14 + 25)\)	\((e_6, e_7)\)
2457L	\((0^5, 12, 13, 23, 14 + 25, 15 + 24)\)	\((e_6, e_7)\)
2457L₁	\((0^5, 12, 13, 23, 14 - 25, 15 + 24)\)	\((e_6, e_7)\)
2457M	\((0^5, 12, 13, 23, 15 + 24, 14)\)	\((e_6, e_7)\)