OBTENTION OF PROTEIN CONCENTRATE AND POLYPHENOLS FROM MACADAMIA (MACADAMIA INTEGRIFOLIA) WITH AQUEOUS EXTRACTION METHOD

LARA D1, VILCACUNDO E2, CARRILLO C1, CARPIO C1, SILVA M1, ALVAREZ M1, CARRILLO W1**

1Laboratory of Functional Foods, Faculty of Foods Science and Engineering, Technical University of Ambato, Av. Los Chasquis y Río Payamino, Campus Huachi, CP 1801334, Ambato-Ecuador. 2Faculty of Health and Human Sciences, Bolivar State University, Academic Campus “Alpachaca” Av. Ernesto Che Guevara s/n y Av. Gabriel Secaira, EC. 020150, Guaranda, Ecuador. Email: wi.carrillo@uta.edu.ec

ABSTRACT

Objective: The aim of this study was to obtain protein concentrates from Macadamia using alkaline pH at different pHs of precipitation with water to analyze the protein isolates using the native-polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate-PAGE (SDS-PAGE) electrophoresis, and reversed-phase high-performance liquid chromatography (RP-UHPLC) methods.

Methods: Macadamia protein concentrates were obtained using the isoelectric precipitation method at different pHs using water as solvent. Proteins were analyzed using the native-PAGE, SDS-PAGE electrophoresis, and RP-UHPLC methods.

Results: A yield of 36.57±0.17% of protein concentrate of defatted Macadamia flour at pH 6.0 with a 51.564% of protein was obtained using the Dumas method. Peptides profile was identified in the 11-63 kDa range. Total polyphenols content was high at pH 5.0 with a value of 367,340 mg gallic acid equivalent equivalents/100 g.

Conclusions: Macadamia seed is a good source of proteins. Native-PAGE, SDS-PAGE, and RP-UHPLC are good methods to identify the Macadamia protein isolate in the presence of water.

Keywords: Macadamia protein concentrate, Polyphenols, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Reversed-phase high-performance liquid chromatography.

INTRODUCTION

Tree nuts are dry fruits with one seed, in which the ovary wall becomes hard at maturity. Usually, consumable tree nuts include almond, Brazil nut, cashew, hazelnut, Macadamia, pecan, pine nut, pistachio, and walnut; the consumer definition also includes peanut, which is botanically legume, but has a nutrient profile similar to those of tree nuts and it is thus identified as part of the nut food group [1-3].

Macadamia is a genus of flowering plants in the family Proteaceae and is cultivated for its edible kernels. There are four species of Macadamia, and all occur in subtropical rainforests along the East coast of Australia. Only two of the species, Macadamia integrifolia and Macadamia tetraphylla, generate edible nuts and are of commercial importance. M. integrifolia, commonly known as the smooth-shell Macadamia, provides kernels with higher quality, whereas M. tetraphylla, known as the rough-shell Macadamia, is more adaptable and can grow more easily at low temperatures or over a wider range of temperatures [4,5]. The other two species, Macadamia ternifolia and Macadamia janseni, are inedible, as they contain cyanogenic glycosides which are toxic [6].

The Macadamia is the only Australian plant that has been domesticated on a commercial scale as a food crop. Macadamia is cultivated mainly in Australia, the USA (Hawai and California), and South Africa. There are also expanding industries in Brazil, Guatemala, and Kenya, and smaller industries in New Zealand, Malawi, Paraguay, Ecuador, and other countries [7-9]. The worldwide production of Macadamia sp. is approximately 44,000 metric tons (kernel), 86% of which come from Australia, South Africa, Kenya, the United States, and Malawi. Australia is the world’s largest producer, with approximately 14,100 metric tons [10]. M. integrifolia contains approximately 70% of oil and its oil is the most highly monounsaturated fatty acids, which possibly help lower blood cholesterol, and reduce the risk of heart disease and also containing 7.9% of protein [11,12]. Its defatted flours contain between 30.40% and 36.45% of protein. The Macadamia kernel is a rich source of lipids, proteins, and important micro nutrients. However, its chemical composition can vary considerably depending on the variety, seed maturity, location, and growth conditions [7]. The aim of this study was to obtain Macadamia protein concentrates using the isoelectric precipitation method and phenolic component using water as solvent.

METHODS

Protein concentrates from Macadamia nuts

Commercial Macadamia nuts (Rey Macadamia) were purchased at the supermarket in Ecuador. Macadamia protein concentrate was prepared according to Martínez and Añón (1996) [13] with modifications. The defatted flour was suspended in water in a 1:10 w/v, and the suspension was adjusted at pH 8.0 by adding 2M NaOH. The suspension was stirred during 1 hrs and then centrifuged at 4500 g for 30 minutes at 25°C. The supernatant was adjusted at pHs 2.0, pH 3.0, pH 4.0, pH 5.0, and pH 6.0 with 2 NHCl and centrifuged for 20 minutes at 4500 g. The pellet was suspended in a small volume of water, neutralized with 0.1 M NaOH, lyophilized and then frozen at −20°C. The content of protein isolate was determined using the Dumas method (VELP NDA 701 Dumas Nitrogen Analyzer). The factor used to calculate the percentage of protein was (% Nx pf=% PROT): 5.70 [14].
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

Native-PAGE and SDS-PAGE electrophoresis of Macadamia protein concentrates were carried out according to the method proposed by Laemmli (1970) [15] using 4-8% and 4-12% polyacrylamide gel in a Mini-ProTAGE electrophoresis system (Bio-Rad, Hercules, CA, USA). Polypeptide bands were stained in Coomassie Brilliant Blue G-250 for 12 hrs. Relative molecular masses of protein were determined by a comparison to molecular weight markers (Bio-Rad, Hercules, CA, USA).

Extraction of polyphenols

After the precipitation of proteins from Macadamia using water at different pHs, the supernatants were lyophilized during 48 h. Then, the dry samples were stored at −20°C.

Determination of total polyphenols

Total phenolics in the obtained extracts were estimated by a colorimetric assay based on the procedures described by Singleton and Rossi (1965) [16] with some modifications. Briefly, 1 mL of sample was mixed with 1 mL of Folin and Ciocalteu’s phenol reagent. After 3 minutes, 1 mL of saturated sodium carbonate solution was added to the mixture and adjusted to 10 mL with distilled water. The reaction was kept in the dark for 90 minutes. Then, the absorbance was read at 725 nm using a spectrophotometer (Thermo Scientific Evolution 200). Gallic acid was used for constructing the standard curve (0-0.075 mg/mL). The results were expressed as mg of gallic acid equivalents (GAEs)/100 g of dried sample.

Analysis of concentrate Macadamia protein using reversed-phase high-performance liquid chromatography (RP-UHPLC)

All concentrate Macadamia proteins were analyzed using RP-UHPLC on Agilent 1200 infinity series UHPLC System (Agilent Technologies, Waldbronn, Germany). The variable wavelength detector was 280 nm. The column used was EC C18 (Agilent Poroshell 120, 4.6 × 50 mm × 2.7 μm of particle size). Samples were eluted at 1.0 mL/minutes with a linear gradient from 0% to 70% of solvent B (acetonitrile and trifluoroacetic acid [TFA], 100:0.270 v/v) in solvent A (water and TFA, 1000: 0.370 v/v) during 10 minutes. The injection volume was 100 μL for each duplicated sample.

Statistical analysis

Results are presented as means±standard deviation (SD) from the three replicates of each experiment. Differences between mean values were determined using the analysis of variance (ANOVA). The post-hoc analysis was performed with the Tukey’s test. All tests were considered significant at p<0.05. Statistical analyses were performed using the software package Prism 4 for Windows, version 4.3 (GraphPad Software Inc., www.graphpad.com).

RESULTS

Nuts of Macadamia were used to obtain the defatted flour of Macadamia. The defatted Macadamia flour was used to obtain Macadamia concentrate protein using the isoelectric precipitation method at different pHs (pH 2.0; pH 3.0; pH 4.0; pH 5.0, and pH 6.0) with water as solvent. The highest yield was obtained at pH 6.0 with 36.57±0.17%. Yields for pH 2.0; pH 3.0; pH 4.0, and pH 6.0 presented no statistical differences. Only at pH 5.0, the treatment presented statistical differences with p<0.05 (Table 1). The contents of protein in the Macadamia concentrates protein were analyzed using the Dumas method. The treatments at pH 3.0; pH 4.0; pH 5.0, and pH 6.0 presented a higher content of protein. The best treatment identified was at pH 5.0 with a value of 52.962%. At pH 4.0 and pH 6.0, there are no statistical differences. Only at pH 5.0, the treatment presented a higher content of protein. The best treatment identified was at pH 5.0 with a value of 52.962%. At pH 4.0 and pH 6.0, there are no statistical differences. Only at pH 5.0, the treatment presented a higher content of protein. The best treatment identified was at pH 5.0 with a value of 52.962%. At pH 4.0 and pH 6.0, there are no statistical differences. Only at pH 5.0, the treatment presented a higher content of protein. The best treatment identified was at pH 5.0 with a value of 52.962%. At pH 4.0 and pH 6.0, there are no statistical differences. Only at pH 5.0, the treatment presented a higher content of protein. The best treatment identified was at pH 5.0 with a value of 52.962%. At pH 4.0 and pH 6.0, there are no statistical differences. Only at pH 5.0, the treatment presented a higher content of protein. The best treatment identified was at pH 5.0 with a value of 52.962%.
RP-UHPLC
All *Macadamia* protein concentrates were analyzed with the RP-UHPLC method during 12 minutes. The chromatograms show the profile of proteins obtained from *Macadamia* nuts. Fig. 4a and b show two peaks with high capacity of absorbance at 280 nm with low hydrophobicity. The peaks have the same time of retention. These proteins are acid proteins as proteins were obtained at low pH of precipitation. At pH 4.0; pH 5.0, and pH 6.0, the peaks present less intensity with 280 nm (Fig. 4c-e).

Content of polyphenols
The content of polyphenols presents in the supernatant after separation of *Macadamia* concentrate protein was evaluated. The content of polyphenols was determined using a colorimetric assay with the Folin and Ciocalteu's phenol reagent. The highest content of polyphenols was obtained at pH 5.0 with a value of 367,340 mg GAE/100 g protein of sample. At pH 6.0, the content was 289,150 mg GAE/100 g protein sample. At acid pHs, the content values of polyphenols were low (Table 2).

Values are means±SD of three determinations. Different letters show a statistical difference between the groups (<0.05) ANOVA and Tukey's test.

DISCUSSION
Protein concentrates are considered with a protein content of 35-80% on a dry basis. Protein isolates are defined to have protein content higher than 85%. Whey protein concentrate and Whey protein isolate are used in the food industry to obtain pure proteins, hydrolysates, and ingredients in many foods such as the production of infant formula [17,18]. In this study, it was possible to obtain *Macadamia* protein concentrates at pH 3.0; pH 4.0; pH 5.0, and pH 6.0. Only at pH 2.0, the *Macadamia* protein concentrate was difficult to obtain. The gel SDS-PAGE confirms that at pH 2.0 bands were very little stained. The best treatment was at pH 5.0 with a value of 52.962% protein content on a dry basis using the Dumas method.

Legumins, vicilins, and 2S albumins represent major seed storage of protein components of nuts. Vicilins, also called 7S globulins, comprise one well-known class of storage proteins and can constitute as much...
as 70±80% of the total seed protein [19,20]. Using the SDS-PAGE electrophoresis method with a reductor agent, it was possible to observe globulins and albumins. Albumins present low molecular weight with 11 kDa approximately.

Nuts contain high amounts of vegetable proteins and fat-soluble bioactive as unsaturated fatty acids, phytosterols, phospholipids, phytostanols, essential oils, sphingolipids, tocopherols, tococtrienols, terpenoids, and squalene. Nut seeds are rich in a variety of other nutrients and provide dietary fiber, vitamins (such as folic acid, niacin, vitamin B6, and vitamin E), minerals (such as calcium, magnesium, and potassium), and many other phytochemicals (such as phenolic acids, flavonoids, lignin, hydrolysable tannins, proanthocyanidins, carotenoids, alkaloids, coumestan, and phytates). A healthy diet supplemented with one daily serving of nuts prevents cardiovascular events and possibly the development of other chronic diseases, including Type II diabetes, cancer, high blood pressure, and neurodegenerative diseases. Tree nuts and their co-products (skin or testa, hard shell, green leafy cover, hull, and leaf, among others) are rich sources of phytochemicals that possess multifunctional aplotherapies such as antioxidant activities, anticarcinogenic, antimutagenic effects as well as antiproliferative potential [1,21]. In Macadamia nuts, it has been identified catechol, pyrogallol, and 3,4,5-trihydroxy phenolic compounds and its antioxidant activity in refined oil from Macadamia has been evaluated [22].

The Folin-Ciocalteu’s reagent assay is the common method used to determine the total phenolic content (TPC) of nuts. TPCs of nuts, expressed as mg of GAE/100 g of sample, were reported in Phenol-Explorer database [23-24] with a range between 47 and 3673. Chestnut contained the highest TPC (1580-3673 mg GAE/100 g), followed by pecan (1284-2016), walnut (1558-1625), pistachio (46-156), pine nut (32). In other studies, it was reported Kornsteiner et al. [25] that TPC of chestnut was highest followed by pecan (1284-2016), walnut (1558-1625), pistachio (46-156), pine nut (32-68). The TPCs of nuts range from 32 to 1650 mg GAE/100 g of sample, with pecan, walnut, and pistachio having the highest values [25,26]. In the study reported by Kornsteiner et al. (2006), TPC (expressed as mg of GAE/100 g fresh weight) of nuts decreased in the order of walnut (1625) >pecan (1284) >pistachio (867-657), hazelnut (291-835), almond (47-418), Chestnut contained the highest TPC (1580-3673 mg GAE/100 g), followed by pecan (1284-2016), walnut (1558-1625), pistachio (46-156), pine nut (32-68). The TPCs of nuts range from 32 to 1650 mg GAE/100 g of sample, with pecan, walnut, and pistachio having the highest values [25,26]. In the study reported by Kornsteiner et al. (2006), TPC (expressed as mg of GAE/100 g fresh weight) of nuts decreased in the order of walnut (1625) >pecan (1284) >pistachio (867) >peanut (420) >hazelnut (291) >almond (239) >Braz nut (112) >Macadamia (46) >pine nut (32). In another study, it was reported 86 mg GAE/100 g f sample from skin waste M. tetraphylla obtained with aqueous extraction [27]. In this study, the supernatant at pH 5.0 present 367,340 mg GAE/100 g protein of sample. Due to the above facts previously mentioned, Macadamia protein concentrate can be used as functional ingredients with bioactivity.

REFERENCES

1. Chang SK, Alasalvar C, Bolling BW, Shahidi F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits – A comprehensive review. J Funct Foods 2016;26:88-122.
2. Ros E. Health benefits of nut consumption. Nutrients 2010;2(7):652-82.
3. Ros E. Nuts and CVD. Br J Nutr 2015;113 Suppl 2:S111-20.
4. Leemmi UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227(5259):680-5.
5. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
6. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
7. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
8. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
9. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
10. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
11. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
12. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
13. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
14. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
15. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
16. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
17. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
18. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
19. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
20. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
21. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
22. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
23. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
24. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
25. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
26. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
27. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1972;23(2):144-54.
beverages and spices: Antioxidant activity and health effects – A review. J Funct Foods 2015;18:820-97.
22. Quinn LA, Tang HH. Antioxidant properties of phenolic compounds in macadamia nuts. J Am Oil Chem Soc 1996;73:1585-9.
23. Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’hiri N, García-Lobato P, et al. Phenol-explorer 3.0: A major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford) 2013;2013:bat070.
24. Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M, Knox C, Llorach R, Eisner R, et al. Phenol-explorer 2.0: A major update of the phenol-explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database 2012;2012:bas031.
25. Kornsteiner M, Wagner KH, Elmadfa I. Tocopherols and total phenolics in 10 different nut types. Food Chem 2006;98:381-7.
26. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 2004;52(12):4026-37.
27. Dailey A, Vuong QV. Optimization of aqueous extraction conditions for recovery of phenolic content and antioxidant properties from Macadamia (Macadamia tetraphylla) skin waste. Antioxidants (Basel) 2015;4(4):699-718.