Physical boundary state for the quantum tetrahedron

Etera R Livine1 and Simone Speziale2

1 Laboratoire de Physique, ENS Lyon, 46 Allée d’Italie, 69364 Lyon, France
2 Perimeter Institute, 31 Caroline St. N, Waterloo, ON N2 L 2Y5, Canada

E-mail: etera.livine@ens-lyon.fr and sspeziale@perimeterinstitute.ca

Received 20 November 2007, in final form 13 February 2008
Published 26 March 2008
Online at stacks.iop.org/CQG/25/085003

Abstract
We consider stability under evolution as a criterion to select a physical boundary state for the spinfoam formalism. As an example, we apply it to the simplest spinfoam defined by a single quantum tetrahedron and solve the associated eigenvalue problem at leading order in the large spin limit. We show that this fixes uniquely the free parameters entering the boundary state. Remarkably, the state obtained this way gives a correlation between edges which runs at leading order with the inverse distance between the edges, in agreement with the linearized continuum theory. Finally, we give an argument why this correlator represents the propagation of a pure gauge, consistently with the absence of physical degrees of freedom in 3d general relativity.

PACS number: 04.60.Pp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

LQG is a background-independent approach to the quantization of General Relativity (GR) [1]. In its covariant spinfoam formulation, it provides us with a regularized expression for the path integral of the full theory. The state of the art in spinfoams is the proposal for computing the graviton propagator in non-perturbative quantum gravity [2–8]. One works with a bounded region of spacetime and introduces a semiclassical state peaked on a given boundary geometry. This boundary state gauge-fixes the spinfoam amplitude [9] and allows us to compute the (two-point) correlations for the gravitational field [2], thus effectively inducing a non-trivial bulk geometry. This can be seen as the proper way to introduce a background metric in this context of background independent quantum gravity. It further allows a perturbative expansion (in the inverse of the observation length scale) with a leading order corresponding to a flat spacetime metric at large scale. The hope is that this will allow in the long run to perform calculations in quantum gravity and extract useful phenomenological predictions.
This program has produced a number of interesting results. First, the graviton propagator point of view allowed a criticism and a detailed description of the shortcomings of the Barrett–Crane model [10], which has been the most studied spinfoam model up to now [4, 7, 11] and spurred the developments of promising alternatives [12]. Besides this, a detailed analysis of the perturbative expansion, with both analytical and numerical computations, was performed in the context of 3d quantum gravity [3, 5]. Also many mathematical and technical tools have been developed to compute and study the 4d spinfoam correlations [4, 6] and there has been a preliminary computation of the three-point correlation functions [13]. Finally, there has been a thorough numerical study of the 4d correlations for the Barrett–Crane model, which confirmed the semiclassical behaviour at large scale but also allowed us to study the short-scale behaviour and show that the correlations get dynamically regularized at the Planck scale [8].

The boundary state is a key ingredient of this approach. The original ansatz [2] is a Gaussian state with a phase factor in the Hilbert space of boundary spin networks. This ansatz has been improved in [5, 6] to allow an easier study of the perturbative expansion. These choices do lead to the right behaviour for the correlations in the semiclassical limit, but leave two important questions open.

(i) There are free parameters in the Gaussian ansatz. Can we fix these parameters dynamically?

(ii) The Gaussian state can only be a first-order approximation of some physical state in the full theory. How can we characterize the full boundary state?

We believe that both questions can be addressed taking seriously the fact that we need to work with a physical state, that is gauge invariant spin network states that solve the quantum gravity constraints (scalar and momentum constraints). This issue has not been addressed yet in the literature. We expect that such a dynamical selection of the boundary state will help to characterize it in the full theory, thus addressing point (ii), but more importantly we expect it to uniquely fix the parameters of the Gaussian ansatz at leading order, thus addressing point (i) and increasing the predicting power of the theory.

In this paper, we address these issues in 3d Riemannian quantum gravity. The theory is indeed much simpler in three spacetime dimensions. Gravity is topological and we know how to spinfoam quantize it exactly as the Ponzano–Regge model [14, 15]. We can solve this toy model explicitly and we know the physical states (spin network functionals on the space of flat connections up to diffeomorphisms). It thus seems to be the perfect arena to address the problem before tackling it in the framework of 4d spinfoam models.

To keep things simple and explicit, we consider the smallest 3d triangulation that is a single tetrahedron. The corresponding Ponzano–Regge spinfoam amplitude is simply Wigner’s $\{6j\}$ symbol for the unitary group SU(2). Following the setting introduced in [3, 5], we consider the ‘time-fixed’ tetrahedron: out of its six edges, we study the correlations between the fluctuations of two opposite edges while freezing the lengths of the remaining four edges. The fixed-length edges define the time interval associated with that piece of 3d spacetime, while the two fluctuating edges are distinguished as the initial and final edges. Carefully defining a physical state as a wavefunction unaffected by time evolution, we show that the phased Gaussian ansatz actually turns out to be a true physical state at first order in the asymptotical regime.

More precisely, the physical state criterion uniquely fixes the width of the Gaussian. First it fixes the (leading order) scaling of the Gaussian width with the observation length scale, which turns out to be the right scaling in order to recover a flat metric in the semi-classical regime [3, 5, 16]. Second it fixes the exact factor in front of the scaling, which turns out to be
such that the leading order of the graviton propagator goes precisely as the inverse distance between the edges.

Finally, we look at the tetrahedron from a covariant point of view. There is a unique physical state, namely the flat connection boundary state. We discuss the gauge-fixing procedure to go down to the ‘time-fixed’ tetrahedron. We also address the issue that there is actually no graviton in 3d gravity (since it is a topological theory without local degree of freedom) and argue that the 3d spinfoam graviton correlations come entirely from the choice of gauge fixing.

2. From the propagation kernel to the boundary state

To better understand the physics behind this paper, let us briefly recall some basic facts of quantum mechanics and quantum field theory, concerning the propagation kernel and the vacuum state, in addition to their physical interpretation. These objects incorporate key aspects of the interpretative problems of background independent quantum gravity.

Consider a scalar \(\phi \) in the Schrödinger picture \([17–19]\) and introduce two spacelike hyperplanes in Minkowski spacetime, separated by a time \(T \). Denote by \(\phi_1 \) and \(\phi_2 \) two classical field configurations associated with these planes, and \(\psi_n[\phi] \) a complete basis of energy eigenstates. Given a state \(\psi[\phi_1] = \sum_n c_n \psi_n[\phi_1] \) on the initial plane, the evolution to the final state can be written in terms of the propagation kernel \(K[\phi_1, \phi_2, T] \) through

\[
\psi(\phi_2, T) = \int D\phi_1 K[\phi_1, \phi_2, T] \psi(\phi_1, 0) = \sum_n c_n e^{-iE_n T} \psi_n[\phi_2, 0].
\] (1)

The second equality shows that the kernel (that can be evaluated as a path integral with \(\phi_1 \) and \(\phi_2 \) as boundary data) can be decomposed as

\[
K[\phi_1, \phi_2, T] = \sum_n e^{-iE_n T} \psi_n[\phi_1] \psi_n[\phi_2].
\] (2)

Among the \(n \)-particle states in (2), the vacuum \(\psi_0[\phi] \) is characterized by having the minimal energy. It can be extracted directly from the kernel using a Wick rotation to Euclidean time \(T_E = i T \),

\[
\lim_{T \to +\infty} K[\phi, 0, -iT_E] = \psi_0[\phi].
\] (3)

Finally, using the kernel (2) and vacuum (3) one can formally rewrite the 2-point function as

\[
W(x_1, x_2) = \frac{1}{N} \int D\phi D\phi_1 K[\phi_1, \phi_2, T] e^{-S[\phi_1]} e^{-S[\phi_2]} = \frac{1}{N} \int D\phi_1 D\phi_2 \phi_1(x_1) \phi_2(x_2) \psi_0[\phi_1] \psi_0[\phi_2] K[\phi_1, \phi_2, T].
\] (4)

For the sake of the following discussion, let us stress that this gives the 2-point function in vacuum, \(\langle 0 | \phi(x_1) \phi(x_2) | 0 \rangle \). The same formalism can be applied to more general cases, such as for instance the 2-point function at finite temperature \(\tau \), in which case instead of \(\psi_0[\phi] \) in (4) one should use the appropriate thermal state \(\psi_\tau[\phi] \). A case of interest in the following is when the state is a coherent state of the theory.

These are all well-known results from QFT that crucially use the presence of the Minkowski background. In particular, they can be extended to linearized GR around Minkowski, using the temporal gauge \([19]\). On the other hand, the situation is more subtle in full GR, where all the physical states have to solve the Hamiltonian constraint and thus have
zero energy. Therefore, the kernel cannot have a decomposition like (2), but rather of the following type:

$$K[g_1, g_2] = \sum_n \psi_n[g_1] \psi_n[g_2].$$

(5)

Here n labels a complete basis of physical eigenstates, and it could be a continuous label (in which case the summation above is truly an integration). In this expression, the physical time is contained in the metric.3 Consequently, the evolution equation (1) becomes a stability condition that any physical state has to satisfy,

$$\psi_{\text{ph}}[g_2] = \int Dg_1 K[g_1, g_2] \psi_{\text{ph}}[g_1].$$

(6)

From a canonical point of view, (6) is the condition that physical states are annihilated by the Hamiltonian constraint.

Equations like (5) or (6) encode the core of GR, and a successful theory of quantum gravity should be able to realize them explicitly. The spinfoam formalism provides us with a definition of the non-perturbative path integral which can be used to investigate (5) and (6). Here we provide a simple toy model in which we can realize them exactly. Furthermore, this explicit model will allow us to address another key issue, which concerns the interpretation of (4) in quantum gravity. As thoroughly discussed in [4], in full GR there is no special vacuum state singled out from the kernel; thus, we cannot apply the definition (4) straightforwardly. It is more sensible to consider the 2-point function on a semiclassical state $\Psi_1[q]$, defined as a physical state peaked around a classical metric q. Then one can use a formula like (4), where instead of the ambiguous vacuum state $\psi_0[g]$, one uses a semiclassical state,

$$W_q(x_1, x_2) = \frac{1}{\mathcal{N}} \int Dg_1 Dg_2 g_1(\vec{x}_1) g_2(\vec{x}_2) \Psi_q[g_1] \Psi_q[g_2] K[g_1, g_2].$$

(7)

Upon suitable gauge-fixing,4 this is a well-defined prescription, and indeed one can consider the 2-point function on a semiclassical state also in conventional QFT. However, this prescription requires explicit knowledge of Ψ_q. To be a physical semiclassical state, it has to (i) satisfy (6), and (ii) be peaked around a classical geometry q with minimal uncertainty. As discussed in [2], such a state should be peaked around both the intrinsic $R_{ij}(q)$ and extrinsic $K_{ij}(q)$ curvatures of q, so formally

$$\langle \hat{R}_{ij} \rangle \equiv \int Dg \Psi_q[g] \hat{R}_{ij} \Psi_q[g] = R_{ij}(q), \quad \langle \hat{K}_{ij} \rangle \equiv \int Dg \Psi_q[g] \hat{K}_{ij} \Psi_q[g] = K_{ij}(q).$$

(8)

The latter are in general complicated equations to define and attempt to solve. To by-pass this difficulty, an interesting alternative is to find the analogue of (3) in background-independent quantum gravity, so to be able to extract the boundary state directly from the kernel.

In the rest of this paper, we investigate these ideas in the simple toy model provided by a 3d Riemannian quantum tetrahedron. Using the spinfoam formalism, we study equations like (5) or (6), and discuss the relation between the kernel and the boundary state, as well as its consequences on (7).

3 Assuming that (5) is peaked on a classical trajectory $g_{\mu\nu}$ between g_1 and g_2, the physical time can be computed evaluating the g_{00} component along a geodesic, see discussion in [19].

4 The issue of gauge-fixing is explicitly under control in the linearized theory [19]. There one evaluates the kernel and boundary states in the temporal gauge. Then the presence in (7) of the field insertions requires an additional time-independent gauge-fixing, such as the Coulomb gauge.
3. The tetrahedron

We consider the quantum tetrahedron introduced in [3, 20], see figure 1. Given a tetrahedron of edge lengths ℓ_e, we fix four opposite ones to j, and the remaining two to a and b. We orient it as in figure 1 in such a way that we can think of it as representing the evolution of the edge a into the edge b, in a ‘time’ j.

The dynamics of this model was studied at both the classical and quantum levels in [20]. The classical dynamics is encoded in the Regge action

$$S_R(a,b,j) = \sum e \ell_e \theta_e(\ell),$$

where θ_e are the dihedral angles of the tetrahedron. The quantum dynamics can be studied in the manner of Ponzano–Regge [14], making the ansatz that the lengths in the quantum theory can only have half-integer values $\ell_e = j_e + \frac{1}{2}$ with $j_e \in \mathbb{N}/2$, and associating with the tetrahedron the amplitude:

$$K[a,b,j] = \sqrt{d_a d_b} \{a j j \} \{b j j \}.$$

In this expression $d_a \equiv 2^a + 1$ is the dimension of the spin-a representation of SU(2) and $\{6j\}$ is Wigner’s 6j-symbol for the recoupling theory of SU(2). In this system, we have chosen a clock variable, j. The quantum evolution with respect to this physical time is then generated by a real Hamiltonian, not a constraint. Nevertheless, we are interested in those states which still satisfy a stability condition such as (6)

$$\psi(b) = \sum a K[a,b,j] \psi(a).$$

This is a condition that selects a particular class of physical states which are stationary under the Hamiltonian with respect to the time j.

Before proceeding, note that if we view this tetrahedron as part of a triangulation of flat 3d space between the two planes, we can also introduce the ‘asymptotic time’

$$T(j) = t_2 - t_1 = \frac{6V(a,b,j)}{ab},$$

where

$$V(a,b,j) = \frac{1}{12} \sqrt{4a^2b^2j^2 - a^4b^4 - a^4b^2}$$

is the volume of the tetrahedron. In the isosceles case $a = b = j_0$, we have $T = (2j^2 - j_0^2)/2$ and $V = j_0^2 T/6$. The latter quantities will frequently enter our calculations below. Note that fixing the bulk edges (to j) we did not fix the asymptotic time T, but we indeed fixed the way T depends on the (intrinsic and extrinsic) boundary geometry. This fixing can then be viewed as the analogue of the temporal gauge fixing used to define (5) in full GR, see [19].
3.1. Diagonalizing the kernel

Consider the kernel as a d_j-by-d_j matrix $K_{ab}[j] = K[a, b, j]$. Unexpectedly, this matrix satisfies $K^2 \equiv I$ for all j; thus, the evolution generated by it is unitary. As $K^2 \equiv I$, the real matrix K is diagonalizable and all its eigenvalues are $\epsilon_n = \pm 1$. Using the notation $\psi_n(a) = \langle a|n \rangle$ to indicate the nth eigenvector in the basis a, we have

$$K_{ab}[j] = \sum_{n=0}^{2j} \epsilon_n \psi_n(a) \psi_n(b).$$ \hspace{1cm} (12)

This is an intriguing formula: in spite of the simplicity of the model, it gives a non-trivial and explicit realization of (5) in quantum gravity. With respect to (5), note the presence here of two possible eigenvalues ± 1. This is the usual manifestation of the fact that the PR model sums over both orientations of the tetrahedron.

The next step is to work out the eigenvectors solving the associated eigenvalue problem:

$$\sum_{b=0}^{2j} K_{ab}[j] \psi_j(b) = \pm \psi_j(a).$$ \hspace{1cm} (13)

The eigenvectors can be derived acting with the projectors $P_{\pm ab} = \frac{1}{2} (\delta_{ab} \pm K_{ab})$ on any (possibly overcomplete) basis. It is easy to show that for any value of j, $\psi_0(a) = \sqrt{d_a}$ is an eigenvector with eigenvalue $\epsilon_0 = 1$. This can be done using the integral representation of $[6j]$:

$$\begin{pmatrix} a & j & j \\ b & j & j \end{pmatrix} = \int dg_1 dg_2 \chi_a(g_1) \chi_b(g_2) \chi_j(g_1 g_2) \chi_j(g_1 g_2^{-1}).$$ \hspace{1cm} (14)

Then, using the fact that $\sum_b d_b \chi_b(g) = \delta(g)$, one can immediately show that $\sum_b W_{ab} \psi_0(b) = \psi_0(a)$. Similarly one can show that $\psi_1(a) = (-1)^a/\sqrt{d_a}$ is an eigenvector with eigenvalue $\epsilon_1 = (-1)^j$. The remaining eigenvectors can also be found on a case-by-case basis for fixed j. For instance for the case $j = 1$ we have

$$\psi_0(a) = (1, \sqrt{3}, \sqrt{5}), \quad \psi_1(a) = \left(1, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{5}} \right)$$

with eigenvalue 1, and $\psi_2(a) = \epsilon_{abc} \psi_0(b) \psi_1(c)$ with eigenvalue -1.

For the general case, we can rewrite the eigenvalue problem (13) as an integral equation using expression (14) as shown in appendix A. However at this stage, we do not have explicit solutions, so we cannot study exact physical semiclassical states as linear combinations of eigenstates. In the next section, we show how to solve it approximately.

3.2. Semiclassical states

The perturbative expansion we consider is the large spin limit (in which the half-integers approximate real lengths), where $[6j]$ symbol is dominated by exponentials of the Regge action:

$$[6j] \sim \frac{1}{\sqrt{12\pi V(a, b, j)}} \cos \left(S_{6j}[a, b, j] + \frac{\pi}{4} \right).$$ \hspace{1cm} (15)

This is indeed the property that makes it possible to show that the quantum theory based upon $[6j]$ has a sensible semiclassical limit [3, 5, 14, 22, 23].

5 This might generate some confusion, as it is often stated that evolution in quantum gravity cannot be unitary, due to the absence of a physical clock variable. However, the model here considered has a preferred clock variable built in it, and the evolution is unitary with respect to it.
The lowest order of Ψ_q should satisfy (13) with the linearized kernel and be peaked around q. In the simple setting considered here, the intrinsic geometry and extrinsic geometry of q are specified giving a value j_0 for edge length and a value θ_0 for its dihedral angle. We choose the latter in such a way that the complete background tetrahedron is given by the isosceles configuration $a = b = j_0$. For the exterior dihedral angles associated with j_0 and j, elementary geometry gives respectively

$$\cos \theta_0 = -\frac{4j^2 - 3j_0^2}{4j^2 - j_0^2}, \quad \cos \theta = -\frac{j_0^2}{4j^2 - j_0^2}. \quad (16)$$

By analogy with the continuum, we expect (8) to be implemented in this approximation by a Gaussian state around $q = (j_0, \theta_0)$, for which we make the following ansatz:

$$\Psi_q(a) = N \exp \left\{ -\frac{1}{4\sigma} (a - j_0)^2 \right\} \cos \left(\frac{da}{2} \theta_0 + \phi \right). \quad (17)$$

Here N is the normalization, $\sigma \in \mathbb{R}^+$ the width and ϕ is a phase that we leave undetermined for the moment. For σ scaling linearly with the spins, this Gaussian is peaked on q in the large spin limit (e.g. [16]). This kind of state has been extensively used as ansatz for leading-order semiclassical states in the recent spinfoam literature [2–7, 13, 16, 21]. Yet, a semiclassical state typically has a precise width uniquely fixed by the dynamics (e.g. the factor ω in the exponent of the vacuum Gaussian of the harmonic oscillator). Thus a crucial question is whether also in spinfoams the width can be fixed requiring the state to solve the dynamics. Here we address the question in the specific model (13) and find a positive answer: as we show below, (17) is an eigenstate of the kernel for a unique choice of the width, given by

$$\sigma = \frac{4j^2 - j_0^2}{8j} = -\frac{j_0^2}{8j} \cos \theta > 0, \quad (18)$$

and for two choices of ϕ, corresponding to eigenvalues ± 1:

$$\sum_a K[a, b, T] \Psi_q(a) \simeq \Psi_q(b) \quad \text{for} \quad \phi = d_1 \theta + \frac{1}{4}(\pi - \theta), \quad (19)$$

$$\sum_a K[a, b, T] \Psi_q(a) \simeq -\Psi_q(b) \quad \text{for} \quad \phi = d_1 \theta + \frac{1}{4}(\pi - \theta) + \frac{\pi}{2}. \quad (20)$$

Here \simeq means at first order in the large spin limit. The presence of both eigenvalues could be anticipated from (12) and show that both approximate eigensolutions can be constructed as linear superposition of exact eigenvectors restricted to the same eigenvalue. Note that the phases differ by a shift of $\pi/2$. Therefore, the two states are in phase opposition, hence orthogonal.

Proving these results is straightforward, as in the large spin limit the eigenvalue problem (13), using (15) and the ansatz (17), amounts to a simple evaluation of Gaussian integrals. However, there is a clear restriction that should be kept in mind: formula (15) holds only if the volume V appearing in it is real, namely if V^2 defined in (11) is positive. For a generic configuration (a, b, j) this is not always the case. The quantum range of a and b is $[0, 2j]$, and the condition $V^2 > 0$ is violated when the endpoints are approached by one of the variables. Specifically, we have $V^2 \sim 0$ for a and/or b close to zero, and $V^2 < 0$ for a and/or b close to $2j$. In both cases, the asymptotics are not (15) (we report the relevant formulae in appendix B for completeness). The calculations shown below thus only apply in the regime $a \sim b \sim j$ where we can use (15).\(^6\)

\(^6\) A more thorough approach could also be possible: in [24] a unique expression that interpolates between the three regimes ($V^2 > 0$, ~ 0, < 0) was given. However, it leads to a more complicated analysis, which we do not attempt here.
The modulus of this quantity exactly cancels the contribution (25), so (24) reads
\[
\sum_a K[a, b, T] \Psi_q(a) \simeq \frac{N}{4} \sum_{\epsilon, \eta = \pm} \int da \, \sqrt{\frac{d_\epsilon \, d_{\eta}}{12\pi V(a, b, j)}} \times \exp \left\{ i \left(\frac{\epsilon}{4} - \frac{\epsilon}{4} \right) (a - j_0)^2 + i\eta \left(\frac{d_\epsilon}{2} \theta_0 + \phi \right) \right\}.
\]
Next, we expand the Regge action around the background \(g \) to quadratic order, obtaining
\[
S_R(a, b, T) = 2d_j \theta + \frac{d_\epsilon}{2} \theta_0 + \frac{d_\eta}{2} \theta_0 + \frac{1}{2} G_{lm} \delta j_l \delta j_m,
\]
where we introduced the shorthand notation \(\delta j_l = (a - j_0, b - j_0) \). The second derivatives of the Regge action where computed for instance in [5], and evaluated on \(g \) give \(G_{11} = G_{22} = \cos \theta/T \) and \(G_{12} = G_{21} = -1/T \), where we recall \(T = \sqrt{(2j_2 - j_0^2)/2} \).

The first three terms of (22) contribute to the overall phase of (21), which reads
\[
i \left[(\epsilon + \eta) \frac{d_\epsilon}{2} \theta_0 + \epsilon \left(\frac{d_\epsilon}{2} \theta_0 + 2d_j \theta + \frac{\pi}{4} \right) + \eta \phi \right].
\]
The presence of a phase term in \(\psi \) exponentially suppresses the summation in (21). Therefore, the configurations \(\eta = -\epsilon \) for which the \(\alpha \)-phase vanishes dominate (21), and we can write
\[
\sum_a K[a, b, T] \Psi_q(a) \simeq \frac{N}{4} \sum_{\epsilon, \eta = \pm} \int da \, \sqrt{\frac{d_\epsilon \, d_{\eta}}{12\pi V(a, b, j)}} \times \exp \left\{ i \left[\frac{d_\epsilon}{2} \theta_0 + 2d_j \theta + \frac{\pi}{4} - \phi \right] - \frac{1}{4\sigma} (a - j_0)^2 + \frac{\epsilon}{2} G_{lm} \delta j_l \delta j_m \right\}.
\]
This is a Gaussian integral whose leading order is obtained at
\[
\sqrt{\frac{d_\epsilon \, d_{\eta}}{12\pi V(a, b, j)}} \bigg|_{a=b=j_0} = \sqrt{\frac{2}{\pi T}}.
\]
Then
\[
\int da \, \exp \left\{ -\frac{1}{4\sigma} (a - j_0)^2 + \frac{\epsilon}{2} G_{lm} \delta j_l \delta j_m \right\} = 2\sqrt{\frac{\sigma \pi}{1 - 2i \sigma \epsilon G_{11}}} \exp \left\{ -\frac{1}{4\sigma'} (b - j_0)^2 \right\}
\]
where \(\sigma' \) is a complex function of \(\sigma, \epsilon, G_{11}, \) and \(G_{12} \) that can be easily computed. In particular, requiring \(\sigma' \) to be real implies \(4\epsilon^2 = 4\sigma^2 = (G_{12}^2 - G_{11}^2)^{-1} = T^2/\sin^2 \theta \), independently of \(\epsilon \). Plugging the values for the second derivatives of the Regge action given above, we obtain the result (18). Using this result, a little algebra gives
\[
\sqrt{\frac{\sigma \pi}{1 - 2i \sigma \epsilon G_{11}}} = \sqrt{\frac{\pi T}{2}} \exp \left\{ i \left(\frac{\pi}{4} - \frac{\theta}{2} \right) \right\}.
\]
The modulus of this quantity exactly cancels the contribution (25), so (24) reads
\[
\sum_a K[a, b, T] \Psi_q(a) \simeq \frac{N}{2} \sum_{\epsilon, \eta = \pm} \exp \left\{ i \left[\frac{d_\epsilon}{2} \theta_0 + 2d_j \theta + \frac{\pi}{4} - \phi \right] - \frac{1}{4\sigma} (b - j_0)^2 \right\}.
\]
Thanks to the independence of \(\sigma \) from \(\epsilon \) the summation in (27) gives a cosine and we finally get
\[
\sum_a K[a, b, T] \Psi_q(a) \simeq N \exp \left\{ -\frac{1}{4\sigma} (b - j_0)^2 \right\} \cos \left(\frac{d_\epsilon}{2} \theta_0 + 2d_j \theta + \frac{\pi}{4} - \phi \right).
\]
Figure 2. Numerical study of the ratio between (28) (with φ giving the positive eigenvalue) and (17) in the equilateral \(j_0 = j \) case, with \(j = 80 \). In the left panel, a wide range of admissible values of \(a \) is shown. The behaviour is constantly around 1 only in a region with \(a \) around 80. For very small \(a \), we enter the \(V^2 \approx 0 \) regime, and (28) is no longer equal to (17), as shown by the presence of the oscillations. Similarly the \(a \approx 2j \) regime shows a (still oscillating) exponential decay. The region where the approximation is valid is shown in the right panel.

At this point, it is easy to fix \(\phi \) to obtain a result proportional to (17): the choice \(\phi = d_j \theta + (\pi - \theta)/4 \) leads to an eigenstate with eigenvalue +1, whereas the choice \(\phi = d_j \theta + (\pi - \theta)/4 + \pi/2 \) leads to an eigenstate with eigenvalue −1. With these values of \(\phi \) and with \(\sigma \) given in (18), (17) are approximate eigensolutions of (13) in the large spin limit.

These results can be confirmed numerically, see figure 2. We consider the simple equilateral configuration \(j_0 = j \), for which note that \(\cos \theta_0 = \cos \theta = -1/3 \).

Before concluding this section, some comments are in order.

1. We started with a Gaussian with a generic width \(\sigma \). Requiring the stability of this Gaussian under quantum evolution leads to a unique choice for the width. So the width can be fixed dynamically. This is independent of the phase term in (17).

Furthermore, note that this choice is precisely that made in [3, 5] in order to obtain the correlation of an harmonic oscillator. Here we show that this choice arises naturally from a dynamical requirement.

2. The choice of a real phase (the cosine) is rather natural given the form of the kernel asymptotics (15). On the other hand, a complex phase of the type \(\exp\{i \theta dj / 2\} \) has been more commonly used in the literature. This choice has the advantage of selecting only one of the two exponentials in (15), thus introducing a notion of ‘observer-induced’ orientation.

Concerning this choice, the reader can easily check that an ansatz of the type

\[
\Psi_q(a) = N \exp \left\{ -\frac{1}{4\sigma} (a - j_0)^2 + \frac{d_j \theta_0 + i \phi}{2} \right\} \tag{29}
\]

cannot solve the eigenvalue problem (13).\(^7\) On the other hand, one can show proceeding as above that (29) with \(\sigma \) given in (18) and \(\phi \) in (19) satisfies the equation

\[
\sum_a K[a, b, T] \Psi_q(a) = \Psi_q(b). \tag{30}
\]

We can read the above equation as a stability condition where the state is turned into its complex conjugate. This can also be compared with the semiclassical tetrahedron used in [16].

\(^7\) Indeed, if we act on (29) with the \(P^\pm \) projectors defined above, we obtain states of the type (17).
As shown in [5], the modified Bessel functions of the first kind $I_\nu(z)$ satisfy

$$\frac{I_{|j-\nu|}((2\sigma j_0) - I_{|j+\nu+1|}(2\sigma j_0))}{I_{0}(4\sigma j_0) - I_{2+j_0+1}(4\sigma j_0)} \simeq N \exp \left\{ -\frac{1}{4\sigma} (d - j_0)^2 \right\}. \quad (31)$$

This means that also this Bessel state approximately solves the eigenvalue problem. However, it does not solve it exactly. The advantage of this boundary state is that it admits a simple SU(2) Fourier transform, which was used in [6] to cast the 4d graviton into an integral representation.

The consequences of choosing the physical boundary state computed here in the evaluation of the graviton propagator are discussed in section 5.

4. Physical state in the general boundary formalism

In this section, we discuss a more speculative construction. Above we computed the leading-order approximation of a state that (i) solves (6) and (ii) is peaked around a semiclassical geometry, but we were not able to extend this result to the non-perturbative theory. However, the situation becomes somewhat simpler in the so-called general boundary formalism, where the four bulk edges are also varied freely. Then the boundary state has to carry information on the background value of the (intrinsic and extrinsic) geometry of all six edges, and correlations between all six of them can be computed. Such a general boundary formalism has been advocated to be the most natural area for quantum gravity [25] and is indeed the setting used for the 4d spinfoam graviton calculations [2, 4, 6, 8].

In general, we might expect the general boundary problem to be more complicated to deal with than the fixed-time setting. Yet in the particular 3d case, the fact that the theory is topological strongly simplifies the analysis, because once the topology and the triangulation are fixed, there is a single physical state. Assuming trivial topology, the latter is given in the group representation by

$$\psi = \prod_{\text{ind f}} \delta(g_f) \quad (32)$$

where $g_f = \prod_{\tilde{\partial} f \neq f} g_{0}$ represents the gravitational holonomy on a closed path $\tilde{\partial} f$. The product is over the independent faces, and the condition $F = 0$ is ensured everywhere. The spin representation of (32) can be obtained projecting it on the spin network basis

$$\Psi_{\{j\}}(g_1, \ldots, g_6) = \prod_n \delta_n \prod_l D^{(j_l)}(g_l). \quad (33)$$

In the case considered here, the triangulation is given by a single tetrahedron, and (32) is a product of four deltas ensuring the flatness of each face. Only three faces are independent, so we can get rid of one delta. We fix the orientation of the edges as in figure 3. Choosing to neglect $\delta(g_1 g_5 g_1)$ we can simply write the state

$$\tilde{\psi}_0(g_1, \ldots, g_6) = \delta(g_3 g_2 g_4^{-1}) \delta(g_5 g_4 g_6) \delta(g_2 g_6 g_1^{-1}). \quad (34)$$

This state is physical: it satisfies $F = 0$ everywhere and it is thus a solution of the Hamiltonian constraint.

To obtain the spin representation of this state, we project it on the spin network basis

$$\Psi_{\{j\}}(g_1, \ldots, g_6) = \sum_{m_1, n_1} D^{(j_1)}_{m_1, n_1}(g_1) \cdots D^{(j_6)}_{m_6, n_6}(g_6) (m_1 m_2 m_3) (n_1 n_2 n_3 n_4 n_5) (m_6 n_4 n_2) (m_4 n_3 m_5).$$
where the \((m_1, m_2, m_3)\) are normalized Clebsch–Gordan coefficients. A straightforward calculation then gives the projection

\[
\psi_0(j_1, \ldots, j_6) = \int dg_1, \ldots, dg_6 \tilde{\psi}_0(g_1, \ldots, g_6) \psi_{(g_1, \ldots, g_6)} = \left\{ j_1 j_2 j_3 \right\}. \tag{35}
\]

We see that the physical boundary state coincides with the kernel, so that correlations (see the next section) now read

\[
W_{ab} = \frac{1}{j_0^2 N} \sum_k \mathbb{H}(j_a) \mathbb{H}(j_b) \prod_j d_j \left\{ j_1 j_2 j_3 \right\}^2. \tag{36}
\]

This result might look surprising at first, but it can be understood as follows. The boundary state \(\psi_0(j_1, \ldots, j_6)\) is the state induced by the (exterior) bulk geometry onto the tetrahedron. We have assumed a trivial boundary topology (homomorphic to \(S^2\)) and a trivial bulk topology. Therefore, we obtained a spinfoam amplitude in \(\{6j\}^2\) which is naturally associated with the triangulation of the closed \(S^3\) manifold with two tetrahedra. In this context, it is a natural result.

Note that to go back to the time-gauge setting used in the previous section, it suffices to gauge-fix four opposite representations of the spin network state to \(j\). We can interpret this gauge-fixed spin network state with the four representations fixed to \(j\) as if it was induced by a non-trivial bulk topology. Indeed, we can imagine topological defects on each of these edges inducing non-trivial holonomies around these edges. These are in turn interpreted as particles travelling along these edges and \(j\) is the proper time along the particle trajectory \([22, 26]\).

From this perspective, the gauge-fixed spin network state with fixed \(j\) appears as a physical state for a non-trivial topology, or, equivalently, for the coupled system ‘gravity + particles’.

5. Graviton propagator revisited

The results presented so far give new inputs to the physical interpretation of the 3d graviton propagator computed in \([3, 5]\). Let us recall that in the time-gauge setting, (7) is realized as \([3]\)

\[
W(j_0, j) = \frac{1}{j_0^2 N} \sum_{a,b} \mathbb{H}(j_a) \mathbb{H}(j_b) \Psi_{\epsilon}[a, b] K_{ab}[j], \tag{37}
\]

where \(\mathbb{H}(j_a) = j_a(j_a + 1) - j_0(j_0 + 1)\) represents a field insertion. This quantity gives the quantum correlator between the two opposite edges and formally can be considered as a
projected component of the graviton propagator. The kernel is (9)\(^8\) and in [3] the generic Gaussian ansatz with a complex phase (29) was used. Here we want to study what happens when we use the physically determined unique boundary state. The leading order in the large spin limit can be easily computed following the same procedure as in section 3, and noting that \(h(j_0) \simeq 2j_0\delta j_0\). The result is a phased Gaussian integral whose evaluation gives

\[
W(j_0, j) = \frac{4}{j_0^2} \sum_{\epsilon=\pm} \exp \left\{ i \epsilon \left[\frac{\pi}{4} + 2d_j \theta - 2\phi \right] \right\} \left(A_\epsilon^{-1}\right)_{12} / \sqrt{\det A_\epsilon}
\]

(38)

where the quadratic matrix is

\[
A_\epsilon = \frac{1}{2\sigma} \begin{pmatrix}
1 - i\epsilon \cot \theta & i\epsilon \frac{1}{\sin \theta} \\
-i\epsilon \frac{1}{\sin \theta} & 1 - i\epsilon \cot \theta
\end{pmatrix}, \quad \det A_\epsilon = \frac{1}{2\sigma^2 \sin \theta} e^{i\epsilon(\theta - \frac{\pi}{2})}.
\]

(39)

Simple algebra shows that \(\phi\) exactly cancels the phases in (38) for both choices (19) and (20), and finally we get

\[
W(j_0, j) = \frac{4\sigma}{j_0} \cos \theta.
\]

(40)

Following [3], this can be interpreted as the real part of the correlator of an harmonic oscillator of frequency \(\omega = \theta/T\). However, the fact that we are now working with the real part allows us to have a direct interpretation in terms of the inverse distance travelled along the bulk edge. Indeed, using the explicit values (18) and (16) for \(\sigma\) and \(\cos \theta\), we have

\[
W(j_0, j) = -\frac{1}{2j},
\]

(41)

independently of \(j_0\) (although the very definition of the leading-order approximation is based on the presence of the background \(j_0\)). This remarkable result shows explicitly at leading order that the use of a physical boundary state leads to the correct behaviour of the correlations.

Yet to make a more precise connection between this correlation and the (projections of the free) graviton propagator, there are two crucial issues that have to be addressed: in the continuum theory the 3d propagator is (i) gauge-dependent, and (ii) a pure gauge quantity, consistently with the absence of local degrees of freedom of 3d GR. These issues were not addressed in [3, 5], and the question remained open for some time.

The answer to point (i) is rather simple: the expression (37) is defined in the time-gauge obtained fixing the bulk edges to \(j\). Consistently also the physical boundary state is evaluated in the time gauge. Now in the continuum the time gauge is only a partial gauge fixing (e.g. [19]), and one needs a further spacelike gauge fixing (such as the Coulomb gauge) in order to compute the 2-point correlation, which involves the insertion of the gauge-dependent quantities \(h_{\mu\nu}(x)\).

In (37) on the other hand, the correlations are studied via the gauge-independent observables \(h_\mu(x)\) (they are SU(2) Casimirs); thus, the time gauge is a full gauge-fixing, and the correlation (41) depends only on it.

Answering point (ii) is on the other hand more subtle. This question was addressed in [9], where it was shown in 3d Regge calculus on a infinite regular lattice that the propagator is a pure gauge, namely that the propagating quantity in the correlations comes entirely from the gauge-fixing term in the discrete action. It would be useful to extend those results to the spinfoam formalism considered here, however that calculation relies on the fact that one is working on an infinite lattice, and thus gauge degrees of freedom can be identified as

\(^8\) Up to factors \(dj\) irrelevant for the leading-order analysis.
translations on the lattice. This is not possible from the viewpoint of a single tetrahedron. As shown in [9], the left over gauge invariance on a single tetrahedron can be identified at the perturbative level as the global symmetry corresponding to the following global rescaling on the background ℓ_e,

$$\delta \ell_e \mapsto \delta \ell_e + N \ell_e. \quad (42)$$

When we choose the time gauge we clearly break this symmetry. However one has to show that it is precisely this gauge-fixing term that propagates in (41), and nothing else. To do so, we consider the general boundary formalism discussed above, where the symmetry (42) is present.

In the general boundary formalism, using the physical boundary state (35) leads to the formula (36) for the correlations between edges. The perturbative expansion of this quantity can be studied again using (15), which gives in the large spin limit:

$$\{6j\}^2 \sim \frac{1}{24\pi V(j_e)} [1 - \sin(2S_\mathcal{R}(j_e))]. \quad (43)$$

The constant first term in the square bracket shows immediately that the summand is divergent, consistent with the fact that we have not fixed the gauge. Furthermore, note that the dynamics is only encoded in the oscillatory second term. Imagine now gauge-fixing the symmetry (42) introducing in the manner of Faddeev–Popov terms like $\exp\{-\delta j^2\}$. If this gauge-fixing term has a non-diagonal structure, then it will give the dominant contribution to the correlations, with the Regge action in (43) exponentially suppressed. In this case, we can clearly claim that at least perturbatively the correlations are pure gauge. If on the other hand the gauge-fixing term has no off-diagonal structure, then the correlations would indeed come from the dynamical Regge term, but because of its oscillatory nature they would be completely suppressed at large scales. They would then be some sort of quantum noise of no semiclassical counterpart.

6. Conclusions

We considered the stability condition for physical states in quantum gravity. Within the simple toy model of a 3d Riemannian tetrahedron, we realized explicitly this condition as an eigenvalue problem in the spinfoam formalism, given in (13). We wrote this problem as an integral equation (see appendix A), and found some exact solutions. At leading order in the large spin limit, we were able to find a class of solutions which can also be interpreted as semiclassical states for the linearized theory around a fixed background. This class of solutions are Gaussian wavefunctions (17) with a width that is dynamically fixed to the value given in (18) by the stability condition. This result positively answers the question that one can fix the width of this semiclassical states looking at the spinfoam dynamics. Furthermore, in this specific toy model, the amplitude fixed in this way turns out to be exactly the one giving correlations which are at leading order in agreement with the discretization of the continuum linearized quantum theory. Finally, our results show that the PR model supports the dynamical propagation of stable wave packets of geometry.

Acknowledgments

Research at Perimeter Institute for Theoretical Physics is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MRI.
Appendix A. Analysing the \{6j\} kernel

We start from the integral expression (14). Expressing the group elements $g_{1,2}$ in terms of their class angles $\phi_{1,2}$ and their rotation axis $\hat{u}_{1,2} \in S^2$, this becomes

$$\begin{vmatrix} a & j & j \\ b & j & j \end{vmatrix} = \frac{2}{\pi^2} \int_0^\pi d\phi_1 d\phi_2 \sin^2 \phi_1 \sin^2 \phi_2 \chi_a(\phi_1) \chi_b(\phi_2) \int_{-1}^1 dy \chi_j(\phi_\pm) \chi_j(\phi_u),$$ \hspace{1cm} (A.1)

with the mixed class angles defined in terms of $y \equiv \hat{u}_1 \cdot \hat{u}_2$ as

$$\cos \phi_{\pm} = \cos \phi_1 \cos \phi_2 \mp y \sin \phi_1 \sin \phi_2.$$ \hspace{1cm} (A.2)

With $y = \cos \alpha$, note this can be re-written as

$$\cos \phi_- = \cos^2 \frac{\alpha}{2} \cos(\phi_1 - \phi_2) + \sin^2 \frac{\alpha}{2} \cos(\phi_1 + \phi_2),$$

$$\cos \phi_+ = \sin^2 \frac{\alpha}{2} \cos(\phi_1 - \phi_2) + \cos^2 \frac{\alpha}{2} \cos(\phi_1 + \phi_2),$$

which shows that the angles ϕ_{\pm} run between $(\phi_1 - \phi_2)$ and $(\phi_1 + \phi_2)$. Note also the constraint between the angles:

$$\cos \phi_- + \cos \phi_+ = \cos(\phi_1 - \phi_2) + \cos(\phi_1 + \phi_2) = 2 \cos \phi_1 \cos \phi_2.$$ \hspace{1cm} (A.3)

Using the relation between the SU(2) characters and the Chebyshev polynomials of the second type, $\chi_j(\phi) = \sin(2j + 1)\phi / \sin \phi = U_{2j}(\cos \phi)$, we can re-express \{6j\} as an integral of products of Chebyshev polynomials over $x_{1,2} = \cos \phi_{1,2}$ and y. For instance, we have

$$\begin{vmatrix} a & j & j \\ b & j & j \end{vmatrix} = \frac{2}{\pi^2} \int_0^1 dx_1 dx_2 dx_3 dx_4 \delta(x_- + x_+ - 2x_1 x_2) U_{2a}(x_1) U_{2b}(x_2) U_{2j}(x_-) U_{2j}(x_+).$$

Expression (A.1) suggests to study the eigenvalue problem (13) in terms of the following Fourier transform of ψ_u:

$$\tilde{\psi}(\phi) = \sum_{a \in \mathbb{N}} \sqrt{d_a} \chi_a(\phi) \psi_u.$$ \hspace{1cm} (A.4)

The eigenvalue equation then becomes a convolution equation,

$$\tilde{\psi}(\phi) = \pm \int_0^\pi d\phi_2 \sin^2 \phi_2 K(\phi, \phi_2, j) \tilde{\psi}(\phi_2),$$ \hspace{1cm} (A.5)

with kernel given by

$$K(\phi_1, \phi_2) = \int_{-1}^1 dy \chi_j(\phi_-) \chi_j(\phi_u), \hspace{1cm} \tilde{\delta}(\phi, \phi_1) = \sum_a d_a \chi_a(\phi_1) \chi_a(\phi).$$ \hspace{1cm} (A.6)

$K(\phi_1, \phi_2)$ can be evaluated exactly writing it in terms of Chebyshev polynomials while $\tilde{\delta}(\phi, \phi_1)$ is a distribution over SU(2) which can be directly evaluated using the explicit expression for the characters, $\chi_a(\phi) = \sin(2a + 1)\phi / \sin \phi$.

Exact solutions to the convolution equation are still under investigation. At least, we already know that Gaussian states on SU(2) will approximately solve it in the asymptotic limit for large spins since they are the Fourier transforms of the Gaussian states on the representation labels.
Appendix B. Extremal cases

The first and last rows of the matrix $K_{ab}[j]$ admit simple expressions, that we report here for completeness and future use. Note that these are cases for which V^2 is not positive so the asymptotics (15) do not hold.

Case $b = 0$.

In this case we have $V^2 = 0$ and

$$\begin{bmatrix} a & j & j \\ 0 & j & j \end{bmatrix} = \frac{(-1)^{2j+a}}{d_j}. \quad (B.1)$$

Therefore $g_j(a) \equiv K_{00}[j] = (-1)^{2j+a} \frac{\sqrt{d_j}}{d_j}$. This is a rather simple expression, plotted on the left panel of figure B1.

For generic $V^2 \simeq 0$ configurations, the asymptotics of $\{6j\}$ is [14]

$$\{6j\} \sim \frac{1}{\sqrt{64S}} [\cos \Phi \text{Ai}(z) + \sin \Phi \text{Bi}(z)], \quad (B.2)$$

where S is four times the product of the four triangle areas, Ai and Bi are Airy functions [27], and

$$\Phi = \sum_e \left(j_e - \frac{1}{2} \right) \text{Re} \theta_e, \quad z = \begin{cases} -(3V)^2 S^{-2}, & V^2 > 0 \\ (3|V|)^2 S^{-2}, & V^2 < 0 \end{cases} \quad (B.3)$$

Case $b = 2j$.

In this case we have $V^2 = -j^2 \frac{s^2}{36} < 0$ and

$$\begin{bmatrix} a & j & j \\ 2j & j & j \end{bmatrix} = \frac{4j^2 \Gamma(2j)^2}{p(a, j) \Gamma(2j + a) \Gamma(2j - a)} \quad (B.4)$$

where

$$p(a, j) = (2j + a)(2j - a)(2j + a + 1). \quad (B.5)$$

The function $f_j(a) \equiv K_{2j}[j]$ has more interesting behaviour, and a peak approximately at $\sqrt{j/2}$, see the right panel of figure B1. The position of the peak can be computed analytically:

$$\partial_a W_j(a) = -4j^2 \sqrt{\frac{4j + 1}{1}} \Gamma(2j)^2 q(a, j) - (2a + 1) p(a, j) \psi_0(2j - a) - \psi_0(2j + a)) \sqrt{2a + 1} p(a, j) \quad (B.6)$$
where
\[q(a, j) = 5a^3 + 8j^3 + 6a^2(j + 1) + 2a - 4aj(j - 1) \] (B.7)
and
\[\psi_0(n) = -\gamma_E + \sum_{k=1}^{n} \frac{1}{k} \] (B.8)
is the digamma function. Its power series for large values of the argument starts with
\[\ln(n - 1) + 1/2(n - 1). \] Using this approximation, the leading order for big \(j \) of the numerator of (B.6) vanishes at
\[2j - a(4a + 3) = 0 \] (B.9)
from which
\[a = \frac{1}{8} \left(\sqrt{9 + 32j} - 3 \right) \sim \sqrt{\frac{j}{2}}. \] (B.10)

For generic \(V^2 < 0 \) configurations, the asymptotics of \(\{6j\} \) is [14]
\[\{6j\} \sim \frac{1}{2\sqrt{12\pi V}} \cos \Phi e^{-|\Omega|}, \] (B.11)
with
\[\Phi = \sum_{e} \left(j_e - \frac{1}{2} \right) \text{Re} \theta_e, \quad \Omega = \sum_{e} j_e \text{Im} \theta_e. \] (B.12)

References

[1] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press)
[2] Rovelli C 2006 Graviton propagator from background-independent quantum gravity Phys. Rev. Lett. 97 151301 (Preprint gr-qc/0508124)
[3] Speziale S 2006 Towards the graviton from spinfoams: the 3d toy model J. High Energy Phys. JHEP05(2006)039 (Preprint gr-qc/0512102)
[4] Bianchi E, Modesto L, Rovelli C and Speziale S 2006 Graviton propagator in loop quantum gravity Class. Quantum Grav. 23 6989 (Preprint gr-qc/0604044)
[5] Livine E R, Speziale S and Willis J L 2007 Towards the graviton from spinfoams: higher order corrections in the 3d toy model Phys. Rev. D 75 024038 (Preprint gr-qc/0605123)
[6] Livine E R and Speziale S 2006 Group integral techniques for the spinfoam graviton propagator J. High Energy Phys. JHEP0611(2006)092 (Preprint gr-qc/0608131)
[7] Alesci E and Rovelli C 2007 The complete LQG propagator: I. Difficulties with the Barrett–Crane vertex Preprint 0708.0883
[8] Christensen J D, Livine E R and Speziale S 2007 Numerical evidence of regularized correlations in spin foam gravity Preprint 0710.0617
[9] Dittrich B, Freidel L and Speziale S 2007 Linearized dynamics from the 4-simplex Regge action Phys. Rev. D 76 104020 (Preprint 0707.4513)
[10] Barrett J W and Crane L 1998 Relativistic spin networks and quantum gravity J. Math. Phys. 39 3296 (Preprint gr-qc/9709028)
[11] Livine E R and Speziale S 2007 New spinfoam vertex for quantum gravity Phys. Rev. D 76 084028 (Preprint 0705.0674)
[12] Engle J, Pereira R and Rovelli C 2007 The loop-quantum-gravity vertex-amplitude Phys. Rev. Lett. 99 161301 (Preprint 0705.2388)
Engle J, Pereira R and Rovelli C 2007 Flipped spinfoam vertex and loop gravity Preprint 0708.1236
Engle J, Livine E, Pereira R and Rovelli C 2007 LQG vertex with finite Immirzi parameter Preprint 0711.0146
Livine E R and Speziale S 2007 Consistently solving the simplicity constraints for spinfoam quantum gravity Preprint 0708.1915
Freidel L and Krasnov K 2007 A new spin foam model for 4d gravity Preprint 0708.1595
[13] Bianchi E and Modesto L 2007 The perturbative Regge–Calculus regime of loop quantum gravity Preprint 0709.2051
[14] Ponzano G and Regge T 1968 Semiclassical limit of Racah coefficients Spectroscopy and Group Theoretical Methods in Physics ed F Bloch (Amsterdam: North-Holland)
[15] Rovelli C 1993 The basis of the Ponzano–Regge–Turaev–Viro–Ooguri quantum gravity model in the loop representation basis Phys. Rev. D 48 2702
[16] Rovelli C and Speziale S 2006 A semiclassical tetrahedron Class. Quantum Grav. 23 5861 (Preprint gr-qc/0606074)
[17] Symanzik K 1981 Schrödinger representation and Casimir effect in renormalizable quantum field theory Nucl. Phys. B 190 1
Luscher M, Narayanan R, Weisz P and Wolff U 1992 The Schrödinger functional: a renormalizable probe for nonAbelian gauge theories Nucl. Phys. B 384 168
[18] Rossi G C and Testa M 1980 The structure of Yang–Mills theories in the temporal gauge: 1. General formulation Nucl. Phys. B 163 109
Rossi G C and Testa M 1983 Ground state wave function from Euclidean functional integral: 1. Quantum mechanics Ann. Phys. 148 144
[19] Mattei F, Rovelli C, Speziale S and Testa M 2006 From 3-geometry transition amplitudes to graviton states Nucl. Phys. B 739 234 (Preprint gr-qc/0508007)
[20] Colosi D, Doplicher L, Fairbairn W, Modesto L, Noui K and Rovelli C 2005 Background independence in a nutshell: the dynamics of a tetrahedron Class. Quantum Grav. 22 2971 (Preprint gr-qc/0408079)
[21] Magliaro E, Perini C and Rovelli C 2007 Numerical indications on the semiclassical limit of the flipped vertex (Preprint 0710.5034)
[22] Freidel L and Livine E R 2006 Effective 3d quantum gravity and non-commutative quantum field theory Phys. Rev. Lett. 96 221301 (Preprint hep-th/0512113)
[23] Hackett J and Speziale S 2007 Grasping rules and semiclassical limit of the geometry in the Ponzano–Regge model Class. Quantum Grav. 24 1525 (Preprint gr-qc/0611097)
Speziale S 2007 Coupling gauge theory to spinfoam 3d quantum gravity (Preprint 0706.1534)
[24] Schulten K and Gordon R G 1975 Semiclassical approximations to 3j and 6j coefficients for quantum mechanical coupling of angular momenta J. Math. Phys. 16 1971
[25] Oeckl R 2003 A ‘general boundary’ formulation for quantum mechanics and quantum gravity Phys. Lett. B 575 318 (Preprint hep-th/0306025)
Conrady F, Doplicher L, Oeckl R, Rovelli C and Testa M 2004 Minkowski vacuum in background independent quantum gravity Phys. Rev. D 69 064019 (Preprint gr-qc/0307118)
Modesto L and Rovelli C 2005 Particle scattering in loop quantum gravity Phys. Rev. Lett. 95 191301 (Preprint gr-qc/0502036)
[26] Freidel L and Louapre D 2004 Ponzano–Regge model revisited: I. Gauge fixing, observables and interacting spinning particles Class. Quantum Grav. 21 5685–726 (Preprint hep-th/04040170)
Freidel L and Livine E R 2006 Ponzano–Regge model revisited: III. Feynman diagrams and effective field theory Class. Quantum Grav. 23 2021–62 (Preprint hep-th/0502106)
[27] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)