Hypergeometric Euler numbers

Takao Komatsu
School of Mathematics and Statistics
Wuhan University
Wuhan 430072 China
komatsu@whu.edu.cn

Huilin Zhu
School of Mathematical Sciences
Xiamen University
Xiamen 361005 China
hlzhu@xmu.edu.cn

MR Subject Classifications: 11B68, 11B37, 11C20, 15A15, 33C20.

Abstract

In this paper, we introduce the hypergeometric Euler number as an analogue of the hypergeometric Bernoulli number and the hypergeometric Cauchy number. We study several expressions and sums of products of hypergeometric Euler numbers. We also introduce complementary hypergeometric Euler numbers and give some characteristic properties. There are strong reasons why these hypergeometric numbers are important. The hypergeometric numbers have one of the advantages that yield the natural extensions of determinant expressions of the numbers, though many kinds of generalizations of the Euler numbers have been considered by many authors.

Key words and phrases: Hypergeometric Euler numbers, Euler numbers, Bernoulli numbers, Hasse-Teichmüller derivative, sums of products, determinants.
1 Introduction

Euler numbers E_n are defined by the generating function

$$
\frac{1}{\cosh t} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}.
$$

(1)

One of the different definitions is

$$
\frac{2}{e^t + 1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}
$$

(see e.g. [3]). Generalizations of one or other of these definitions have previously been studied. For example, one kind of poly-Euler numbers is a typical generalization, in the aspect of L-functions ([21, 22, 23]). Other generalizations can be found in [5, 16] and the reference therein.

A different type of generalization is based upon hypergeometric functions. For $N \geq 1$, define hypergeometric Bernoulli numbers $B_{N,n}$ (see [9, 10, 11]) by

$$
\frac{1}{1F_1(1; N+1; t)} = \frac{t^N/N!}{e^t - \sum_{n=0}^{N-1} t^n/n!} = \sum_{n=0}^{\infty} B_{N,n} \frac{t^n}{n!},
$$

where

$$
1F_1(a; b; z) = \sum_{n=0}^{\infty} \frac{(a)^{(n)} z^n}{(b)^{(n)} n!}
$$

is the confluent hypergeometric function with $(x)^{(n)} = x(x+1) \cdots (x+n-1)$ ($n \geq 1$) and $(x)^{(0)} = 1$. When $N = 1$, $B_n = B_{1,n}$ are classical Bernoulli numbers defined by

$$
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.
$$

In addition, define hypergeometric Cauchy numbers $c_{N,n}$ (see [12]) by

$$
\frac{1}{2F_1(1, N; N+1; -t)} = \frac{(-1)^{N-1} t^N/N!}{\log(1+t) - \sum_{n=1}^{N-1} (-1)^{n-1} t^n/n!} = \sum_{n=0}^{\infty} c_{N,n} \frac{t^n}{n!},
$$

where

$$
2F_1(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)^{(n)} (b)^{(n)} z^n}{(c)^{(n)} n!}
$$

(see e.g. [3]). Generalizations of one or other of these definitions have previously been studied. For example, one kind of poly-Euler numbers is a typical generalization, in the aspect of L-functions ([21, 22, 23]). Other generalizations can be found in [5, 16] and the reference therein.

A different type of generalization is based upon hypergeometric functions. For $N \geq 1$, define hypergeometric Bernoulli numbers $B_{N,n}$ (see [9, 10, 11]) by

$$
\frac{1}{1F_1(1; N+1; t)} = \frac{t^N/N!}{e^t - \sum_{n=0}^{N-1} t^n/n!} = \sum_{n=0}^{\infty} B_{N,n} \frac{t^n}{n!},
$$

where

$$
1F_1(a; b; z) = \sum_{n=0}^{\infty} \frac{(a)^{(n)} z^n}{(b)^{(n)} n!}
$$

is the confluent hypergeometric function with $(x)^{(n)} = x(x+1) \cdots (x+n-1)$ ($n \geq 1$) and $(x)^{(0)} = 1$. When $N = 1$, $B_n = B_{1,n}$ are classical Bernoulli numbers defined by

$$
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.
$$

In addition, define hypergeometric Cauchy numbers $c_{N,n}$ (see [12]) by

$$
\frac{1}{2F_1(1, N; N+1; -t)} = \frac{(-1)^{N-1} t^N/N!}{\log(1+t) - \sum_{n=1}^{N-1} (-1)^{n-1} t^n/n!} = \sum_{n=0}^{\infty} c_{N,n} \frac{t^n}{n!},
$$

where

$$
2F_1(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)^{(n)} (b)^{(n)} z^n}{(c)^{(n)} n!}
$$

(see e.g. [3]). Generalizations of one or other of these definitions have previously been studied. For example, one kind of poly-Euler numbers is a typical generalization, in the aspect of L-functions ([21, 22, 23]). Other generalizations can be found in [5, 16] and the reference therein.

A different type of generalization is based upon hypergeometric functions. For $N \geq 1$, define hypergeometric Bernoulli numbers $B_{N,n}$ (see [9, 10, 11]) by

$$
\frac{1}{1F_1(1; N+1; t)} = \frac{t^N/N!}{e^t - \sum_{n=0}^{N-1} t^n/n!} = \sum_{n=0}^{\infty} B_{N,n} \frac{t^n}{n!},
$$

where

$$
1F_1(a; b; z) = \sum_{n=0}^{\infty} \frac{(a)^{(n)} z^n}{(b)^{(n)} n!}
$$

is the confluent hypergeometric function with $(x)^{(n)} = x(x+1) \cdots (x+n-1)$ ($n \geq 1$) and $(x)^{(0)} = 1$. When $N = 1$, $B_n = B_{1,n}$ are classical Bernoulli numbers defined by

$$
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.
$$

In addition, define hypergeometric Cauchy numbers $c_{N,n}$ (see [12]) by

$$
\frac{1}{2F_1(1, N; N+1; -t)} = \frac{(-1)^{N-1} t^N/N!}{\log(1+t) - \sum_{n=1}^{N-1} (-1)^{n-1} t^n/n!} = \sum_{n=0}^{\infty} c_{N,n} \frac{t^n}{n!},
$$

where

$$
2F_1(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)^{(n)} (b)^{(n)} z^n}{(c)^{(n)} n!}
$$

(see e.g. [3]). Generalizations of one or other of these definitions have previously been studied. For example, one kind of poly-Euler numbers is a typical generalization, in the aspect of L-functions ([21, 22, 23]). Other generalizations can be found in [5, 16] and the reference therein.
is the Gauss hypergeometric function. When $N = 1$, $c_n = c_{1,n}$ are classical Cauchy numbers defined by

$$\frac{t}{\log(1 + t)} = \sum_{n=0}^{\infty} c_n \frac{t^n}{n!}.$$

Our generalization is different from the generalizations in [14] and the references therein.

Now, for $N \geq 0$ define hypergeometric Euler numbers $E_{N,n}$ $(n = 0, 1, 2, \ldots)$ by

$$\frac{1}{\mathbf{1}_F_2(1; N + 1, (2N + 1)/2; t^2/4)} = \sum_{n=0}^{\infty} E_{N,n} \frac{t^n}{n!},$$

where $\mathbf{1}_F_2(a; b, c; z)$ is the hypergeometric function defined by

$$\mathbf{1}_F_2(a; b, c; z) = \sum_{n=0}^{\infty} \frac{(a)_{(n)}}{(b)_{(n)}(c)_{(n)}} \frac{z^n}{n!}.$$

It is seen that

$$\cosh t - \sum_{n=0}^{N-1} \frac{t^{2n}}{(2n)!} = \frac{t^{2N}}{(2N)!} \sum_{n=0}^{\infty} \frac{(2N)!n! (t^2)^n}{(2n + 2N)! n!}$$

$$= \frac{t^{2N}}{(2N)!} \mathbf{1}_F_2(1; N + 1, \frac{2N + 1}{2}; t^2/4).$$

When $N = 0$, then $E_n = E_{0,n}$ are classical Euler numbers defined in (1). In [13], the truncated Euler polynomial $E_{m,n}(x)$ is introduced as a generalization of the classical Euler polynomial $E_n(x)$. The concept is similar but without hypergeometric functions.

We list the numbers $E_{N,n}$ for $0 \leq N \leq 6$ and $0 \leq n \leq 12$ in Table 1. From (3) we see that $E_{N,n} = 0$ if n is odd. Similarly to poly-Euler numbers ([21, 22, 23]), hypergeometric Euler numbers are rational numbers, though the classical Euler numbers are integers.
Table 1: The numbers $E_{N,n}$ for $0 \leq N \leq 6$ and $0 \leq n \leq 14$

n	0	2	4	6	8	10	12	14
$E_{0,n}$	1	-1	5	-61	1385	-50521	2702765	-19936981
$E_{1,n}$	1	-1/6	1/10	-5/42	7/30	-15/22	7601/2730	-91/6
$E_{2,n}$	1	-1/15	13/1050	-1/350	-31/173250	1343/750750	-6137/2388750	3499/6693750
$E_{3,n}$	1	-1/28	17/5880	-29/362208	-863/6420960	6499/131843712	6997213/156894017280	-68936107/917226562560
$E_{4,n}$	1	-1/45	7/7425	53/2027025	-443/22052250	-10157/4873547250	556599021/126395447928750	39045649/62503243481250
$E_{5,n}$	1	-1/66	25/66066	47/2966964	-16945/5300012718	-475767/492312292472	71844009/268802511689712	1162911391/4483980359834976
$E_{6,n}$	1	-1/91	29/1655620	1205/153728484	-2279/4467168888	-6430761/25339270989032	-17675104079/4917799642149532320	837155624457/2458899821074766100
From (2) and (3), we have
\[
\frac{t^{2N}}{(2N)!} = \left(\sum_{n=N}^{\infty} \frac{t^{2n}}{(2n)!} \right) \left(\sum_{n=0}^{\infty} \frac{E_{N,n} t^n}{n!} \right)
= t^{2N} \left(\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{2} \frac{t^n}{(n + 2N)!} \right) \left(\sum_{n=0}^{\infty} \frac{E_{N,n} t^n}{n!} \right)
= t^{2N} \sum_{n=0}^{\infty} \sum_{i=0}^{n} \frac{1 + (-1)^{n-i}}{2} \frac{E_{N,i}}{(2N + n - i)!} t^n.
\]

Hence, for \(n \geq 1 \), we have
\[
\sum_{i=0}^{n} \frac{1 + (-1)^{n-i}}{(2N + n - i)!} E_{N,i} = 0.
\]

Thus, we have the following proposition. Note that \(E_{N,n} = 0 \) when \(n \) is odd.

Proposition 1.
\[
\sum_{i=0}^{n/2} \frac{1}{(2N + n - 2i)! (2i)!} E_{N,2i} = 0 \quad (n \geq 2 \text{ is even})
\]
and \(E_{N,0} = 1 \).

By using the identity in Proposition 1 or the identity
\[
E_{N,n} = -n! (2N)! \sum_{i=0}^{n/2-1} \frac{E_{N,2i}}{(2N + n - 2i)! (2i)!}, \tag{4}
\]
we can obtain the values of \(E_{N,n} \) \((n = 0, 2, 4, \ldots) \). We record the first few values of \(E_{N,n} \):

\[
E_{N,2} = -\frac{2}{(2N + 1)(2N + 2)},
\]
\[
E_{N,4} = -\frac{2 \cdot 4!(4N + 5)}{(2N + 1)^2(2N + 2)^2(2N + 3)(2N + 4)},
\]
\[
E_{N,6} = -\frac{4 \cdot 6!(8N^3 - 2N^2 - 65N - 61)}{(2N + 1)^3(2N + 2)^3(2N + 3)(2N + 4)(2N + 5)(2N + 6)},
\]
\[
E_{N,8} = \frac{16 \cdot 8!}{(2N + 1)^4(2N + 2)^4(2N + 3)^2(2N + 4)^2(2N + 6)(2N + 7)(2N + 8)} \times (16N^6 - 44N^5 - 516N^4 - 667N^3 + 1283N^2 + 3126N + 1662).
\]
We have an explicit expression of $E_{N,n}$ for each even n:

Theorem 1. For $N \geq 0$ and $n \geq 1$ we have

$$E_{N,2n} = (2n)! \sum_{r=1}^{n} (-1)^r \sum_{\begin{subarray}{c} i_1 + \cdots + i_r = n \\ i_1, \ldots, i_r \geq 1 \end{subarray}} \frac{((2N)!)^r}{(2N + 2i_1)! \cdots (2N + 2i_r)!}.$$

Proof. The proof is done by induction for n. If $n = 1$, then

$$E_{N,2} = 2!(-1)\frac{(2N)!}{(2N + 2)!} = -\frac{2}{(2N + 1)(2N + 2)}.$$
Assume that the result is valid up to \(n - 1 \). Then by Proposition 1

\[
E_{N,2n} = -(2n)!(2N)! \sum_{i=0}^{n-1} \frac{E_{N,2i}}{(2N + 2n - 2i)!(2i)!}
\]

\[
= -(2n)!(2N)! \sum_{i=1}^{n-1} \frac{1}{(2N + 2n - 2i)!} \sum_{r=1}^{i} (-1)^r
\]

\[
\times \sum_{\substack{i_1 + \cdots + i_r = i \\ i_1, \ldots, i_r \geq 1}} \frac{(2N)!)^r}{(2N + 2i_1)! \cdots (2N + 2i_r)!}
\]

\[
- (2n)!(2N)! \frac{1}{(2N + 2n)!}
\]

\[
= -(2n)!(2N)! \sum_{r=1}^{n-1} (-1)^r ((2N)!)^r \sum_{i=r}^{n-1} \frac{1}{(2N + 2n - 2i)!}
\]

\[
\times \sum_{\substack{i_1 + \cdots + i_r = i \\ i_1, \ldots, i_r \geq 1}} \frac{1}{(2N + 2i_1)! \cdots (2N + 2i_r)!}
\]

\[
- (2n)!(2N)! \frac{1}{(2N + 2n)!}
\]

\[
= (2n)! \sum_{r=2}^{n} (-1)^r ((2N)!)^r \sum_{\substack{i_1 + \cdots + i_r = n \\ i_1, \ldots, i_r \geq 1}} \frac{1}{(2N + 2i_1)! \cdots (2N + 2i_r)!}
\]

\[
- (2n)!(2N)! \frac{1}{(2N + 2n)!} \quad (n - i = i_r)
\]

\[
= (2n)! \sum_{r=1}^{n} (-1)^r \sum_{\substack{i_1 + \cdots + i_r = n \\ i_1, \ldots, i_r \geq 1}} \frac{(2N)!)^r}{(2N + 2i_1)! \cdots (2N + 2i_r)!}.
\]
2 Determinant expressions of hypergeometric numbers

These hypergeometric numbers have one of the advantages that yield the natural extensions of determinant expressions of the numbers, though many kinds of generalizations of the Euler numbers have been considered by many authors.

By using Proposition 1 or the relation (4), we have a determinant expression of hypergeometric Euler numbers ([13]).

Proposition 2. The hypergeometric Euler numbers $E_{N,2n}$ ($N \geq 0$, $n \geq 1$) can be expressed as

$$E_{N,2n} = (-1)^n (2n)! \begin{vmatrix}
\frac{(2N)!}{(2N+2)!} & 1 & \cdots & \cdots \\
\frac{(2N)!}{(2N+4)!} & \cdots & \cdots & 1 \\
\vdots & \cdots & \cdots & \vdots \\
\frac{(2N)!}{(2N+2n)!} & \cdots & \frac{(2N)!}{(2N+4)!} & \frac{(2N)!}{(2N+2)!}
\end{vmatrix}.$$

In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli, Cauchy and Euler numbers. When $N = 0$, the determinant in Proposition (2) is reduced to a famous determinant expression of Euler numbers (cf. [6, p.52]):

$$E_{2n} = (-1)^n (2n)! \begin{vmatrix}
\frac{1}{2!} & \frac{1}{2!} & 1 \\
\vdots & \cdots & \cdots & \vdots \\
\frac{1}{(2n-2)!} & \frac{1}{(2n-4)!} & \cdots & \frac{2!}{2!} & 1 \\
\frac{1}{(2n)!} & \frac{1}{(2n-2)!} & \cdots & \frac{2!}{2!} & \frac{1}{2!}
\end{vmatrix}.$$

In [1], the hypergeometric Bernoulli numbers $B_{N,n}$ ($N \geq 1$, $n \geq 1$) can be expressed as

$$B_{N,n} = (-1)^n n! \begin{vmatrix}
\frac{N!}{(N+1)!} & \frac{1}{N!} \\
\vdots & \cdots & \cdots & \vdots \\
\frac{N!}{(N+n-1)!} & \frac{N!}{(N+n-2)!} & \cdots & \frac{N!}{(N+1)!} & 1 \\
\frac{N!}{(N+n)!} & \frac{N!}{(N+n-1)!} & \cdots & \frac{N!}{(N+2)!} & \frac{N!}{(N+1)!}
\end{vmatrix}.$$
When $N = 1$, we have a determinant expression of Bernoulli numbers ([6, p.53]):

$$B_n = (-1)^n n! \begin{vmatrix} 1 & \frac{1}{2!} & \cdots & \frac{1}{n!} \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{1}{n+1} & \frac{1}{(n+1)!} & \cdots & \frac{1}{(n+1)!} \end{vmatrix}.$$ \hspace{1cm} (5)

In [2], the hypergeometric Cauchy numbers $c_{N,n}$ ($N \geq 1$, $n \geq 1$) can be expressed as

$$c_{N,n} = n! \begin{vmatrix} \frac{N}{N+1} & \frac{1}{N+1} & \cdots & \frac{1}{N+1} \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{1}{N+1} & \frac{1}{N+1} & \cdots & \frac{1}{N+1} \end{vmatrix}.$$ \hspace{1cm} (6)

When $N = 1$, we have a determinant expression of Cauchy numbers ([6, p.50]):

$$c_n = n! \begin{vmatrix} \frac{1}{3} & \frac{1}{2} & \cdots & \frac{1}{2} \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{1}{n+1} & \frac{1}{n+1} & \cdots & \frac{1}{n+1} \end{vmatrix}.$$ \hspace{1cm} (6)

In [13], the complementary Euler numbers \hat{E}_n and their hypergeometric generalizations (defined below) have also determinant expressions.

3 Hasse-Teichmüller derivative

We define the Hasse-Teichmüller derivative $H^{(n)}$ of order n by

$$H^{(n)} \left(\sum_{m=R}^{\infty} c_m z^m \right) = \sum_{m=R}^{\infty} c_m \binom{m}{n} z^{m-n}$$

for $\sum_{m=R}^{\infty} c_m z^m \in \mathbb{F}((z))$, where R is an integer and $c_m \in \mathbb{F}$ for any $m \geq R$.

The Hasse-Teichmüller derivatives satisfy the product rule [24], the quotient rule [7] and the chain rule [8]. One of the product rules can be described as follows.
Lemma 1. For $f_i \in \mathbb{F}[[z]]$ $(i = 1, \ldots, k)$ with $k \geq 2$ and for $n \geq 1$, we have
\[
H^{(n)}(f_1 \cdots f_k) = \sum_{i_1, \ldots, i_k \geq 0 \atop i_1 + \cdots + i_k = n} H^{(i_1)}(f_1) \cdots H^{(i_k)}(f_k).
\]

The quotient rules can be described as follows.

Lemma 2. For $f \in \mathbb{F}[[z]] \setminus \{0\}$ and $n \geq 1$, we have
\[
H^{(n)} \left(\frac{1}{f} \right) = \sum_{k=1}^{n} (-1)^k \frac{1}{f^{k+1}} \sum_{i_1, \ldots, i_k \geq 1 \atop i_1 + \cdots + i_k = n} H^{(i_1)}(f) \cdots H^{(i_k)}(f) = \sum_{k=1}^{n} \binom{n+1}{k} \frac{(-1)^k}{f^{k+1}} \sum_{i_1, \ldots, i_k \geq 0 \atop i_1 + \cdots + i_k = n} H^{(i_1)}(f) \cdots H^{(i_k)}(f). \tag{7}
\]
\[
= \sum_{k=1}^{n} \frac{n+1}{k+1} \frac{(-1)^k}{f^{k+1}} \sum_{i_1, \ldots, i_k \geq 0 \atop i_1 + \cdots + i_k = n} H^{(i_1)}(f) \cdots H^{(i_k)}(f). \tag{8}
\]

By using the Hasse-Teichmüller derivative of order n, we shall obtain some explicit expressions of the hypergeometric Euler numbers.

Another proof of Theorem 1. Put
\[
F : = _1F_2 \left(1; N+1, \frac{2N+1}{2}; \frac{t^2}{4} \right) = \sum_{n=0}^{\infty} \frac{(2N)!}{(2N+2n)!} \frac{t^{2n}}{4^n}
\]
for simplicity. Note that
\[
H^{(i)}(F) \big|_{t=0} = \sum_{j=0}^{\infty} \frac{(2N)!}{(2N+2j)!} \left(\frac{2j}{i} \right) \frac{t^{2j-i}}{i^{2j-i}} \bigg|_{t=0} = \begin{cases} (2N)!/(2N+i)! & \text{if } i \text{ is even;} \\ 0 & \text{if } i \text{ is odd.} \end{cases}
\]
Hence, by using Lemma 2 (7), we have
\[
\frac{E_{N,n}}{n!} = H^{(n)} \left(\frac{1}{F} \right) \bigg|_{t=0} = \sum_{k=1}^{n} (-1)^k \frac{1}{F^{k+1}} \sum_{i_1, \ldots, i_k \geq 0 \atop i_1 + \cdots + i_k = n} H^{(i_1)}(F) \big|_{t=0} \cdots H^{(i_k)}(F) \big|_{t=0}
\]
\[
= \sum_{k=1}^{n} (-1)^k \sum_{i_1, \ldots, i_k \geq 0 \atop 2(i_1 + \cdots + i_k) = n} \frac{(2N)!^k}{(2N+2i_1)! \cdots (2N+2i_k)!}.
\]
We can express the hypergeometric Euler numbers also in terms of the binomial coefficients. In fact, by using Lemma 2 (8) instead of Lemma 2 (7) in the above proof, we obtain a little different expression from one in Theorem 1.

Proposition 3. For \(N \geq 0 \) and even \(n \geq 2 \),

\[
E_{N,n} = n! \sum_{k=1}^{n} (-1)^k \binom{n+1}{k+1} \sum_{i_1, \ldots, i_k \geq 0 \atop i_1 + \cdots + i_k = n/2} \frac{(2N)!^k}{(2N + 2i_1)! \cdots (2N + 2i_k)!}.
\]
For example, when \(n = 4 \), we get

\[
E_4 = 4! \left(-\binom{5}{2} \frac{1}{4!} + \binom{5}{3} \left(\frac{2}{4!} + \frac{1}{2!2!} \right) \\
- \binom{5}{4} \left(\frac{3}{4!} + \frac{3}{2!2!} \right) + \binom{5}{5} \left(\frac{4}{4!} + \frac{6}{2!2!} \right) \right)
\]

\[= 5, \]

\[
E_{1,4} = 4! \left(-\binom{5}{2} \frac{1}{6!} + \binom{5}{3} 2^2 \left(\frac{2}{6!2!} + \frac{1}{4!4!} \right) \\
- \binom{5}{4} 2^3 \left(\frac{3}{6!2!2!} + \frac{3}{4!4!2!} \right) + \binom{5}{5} 2^4 \left(\frac{4}{6!2!2!2!} + \frac{6}{4!4!2!2!} \right) \right)
\]

\[= \frac{1}{10}, \]

\[
E_{2,4} = 4! \left(-\binom{5}{2} \frac{1}{8!} + \binom{5}{3} (4!)^2 \left(\frac{2}{8!4!} + \frac{1}{6!6!} \right) \\
- \binom{5}{4} (4!)^3 \left(\frac{3}{8!4!4!} + \frac{3}{6!6!4!} \right) + \binom{5}{5} (4!)^4 \left(\frac{4}{8!4!4!4!} + \frac{6}{6!6!4!4!} \right) \right)
\]

\[= \frac{13}{1050}, \]

\[
E_{3,4} = 4! \left(-\binom{5}{2} \frac{1}{10!} + \binom{5}{3} (6!)^2 \left(\frac{2}{10!6!} + \frac{1}{8!8!} \right) \\
- \binom{5}{4} (6!)^3 \left(\frac{3}{10!6!6!} + \frac{3}{8!8!6!} \right) + \binom{5}{5} (6!)^4 \left(\frac{4}{10!6!6!6!} + \frac{6}{8!8!6!6!} \right) \right)
\]

\[= \frac{17}{5880}. \]

4 Some hypergeometric Euler numbers

If \(N = 1 \), we have the following relation between hypergeometric Euler numbers and Bernoulli numbers.

Theorem 2. For \(n \geq 1 \) we have

\[
E_{1,n} = -(n - 1)B_n.
\]
Proof. The result is clear for \(n = 0, 1 \) and odd numbers \(n \). By using the following Lemma 3 and Proposition 1, we get the result.

Lemma 3. For \(n \geq 1 \) we have

\[
\sum_{i=0}^{n} \frac{(i-1)B_i}{(n-i+2)!/i!} = \begin{cases}
0 & \text{if } n \text{ is even;} \\
-B_{n+1}/n! & \text{if } n \text{ is odd.}
\end{cases}
\]

Proof. Firstly,

\[
\sum_{n=0}^{\infty} \sum_{i=0}^{n} \frac{(i-1)B_i}{(n-i+2)!/i!} x^n
\]

\[
= \left(\sum_{k=0}^{\infty} \frac{x^k}{(k+2)!} \right) \left(\sum_{i=0}^{\infty} \frac{(i-1)B_i x^i}{i!} \right)
\]

\[
= \left(\frac{1}{x^2} \sum_{k=0}^{\infty} \frac{x^{k+2}}{(k+2)!} \right) \left(-2 \sum_{i=0}^{\infty} \frac{B_i x^i}{i!} + \frac{d}{dx} \sum_{i=0}^{\infty} \frac{B_i x^{i+1}}{i!} \right)
\]

\[
= \frac{e^x - 1 - x}{x^2} \left(-\frac{2x}{e^x - 1} + \frac{2x(e^x - 1) - x^2 e^x}{(e^x - 1)^2} \right)
\]

\[
= \frac{e^x (x + 1 - e^x)}{(e^x - 1)^2}.
\]

On the other hand,

\[
-\frac{1}{2} - \sum_{n=0}^{\infty} B_{2n+2} \frac{x^{2n+1}}{(2n+1)!}
\]

\[
= -\frac{1}{2} - \frac{d}{dx} \left(\sum_{n=0}^{\infty} B_n \frac{x^n}{n!} - B_0 - B_1 x \right)
\]

\[
= -\frac{1}{2} - \frac{d}{dx} \left(\frac{x}{e^x - 1} - 1 + \frac{x}{2} \right)
\]

\[
= \frac{e^x (x + 1 - e^x)}{(e^x - 1)^2}.
\]

Comparing the coefficients of \(x^n \), we get the result. \(\Box \)
5 Sums of products of hypergeometric Euler numbers

It is known that
\[\sum_{i=0}^{n} \binom{2n}{2i} E_{2i} = 0 \]
with \(E_0 = 1 \), and \(E_{2i-1} = 0 \) (\(i \geq 1 \)).

First, let us consider the sums of products of hypergeometric Euler numbers:
\[Y_{N,2}(n) = \sum_{i=0}^{n} \binom{2n}{2i} E_{N,2i} E_{N,2n-2i} \]

It is clear that
\[\sum_{i=0}^{n} \binom{n}{i} E_{N,i} E_{N,n-i} = 0 \]
if \(n \) is odd.

If \(N = 0 \), then
\[Y_{0,2}(n) = \frac{2^{2n+2}(2^{2n+2} - 1)B_{2n+2}}{2n+2} \quad (n \geq 0) \].

Indeed,
\[\{Y_{0,2}(n)\}_{n \geq 0} = 1, -2, 16, -272, 7936, -353792, 22368256, -1903757312, \ldots \]
The numbers taking their absolute value are called the tangent numbers or the zag numbers ([20 A000182]). Thus, we also have
\[Y_{0,2}(n) = \sum_{k=1}^{2n+2} \sum_{j=0}^{k} \binom{k}{j} \frac{(-1)^{j+1}(k - 2j)^{2n+2}}{2^k \sqrt{-1}^k k} \].

In other words, they appear as numerators in the Maclaurin series of \(\tan x \):
\[\tan x = \sum_{n=0}^{\infty} (-1)^n Y_{0,2}(n) \frac{x^{2n+1}}{(2n+1)!} \].
Put

\[F := \binom{1}{N + 1, \frac{2N + 1}{2}; \frac{t^2}{4}} = \sum_{n=0}^{\infty} \frac{(2N)!}{(2N + 2n)!} t^{2n} \]

for simplicity again. Then by

\[\frac{d}{dt} F = \sum_{n=0}^{\infty} \frac{(2n)(2N)!}{(2N + 2n)!} t^{2n-1}, \]

we have

\[2NF + t \frac{d}{dt} F = 2N \cdot \binom{1}{N + \frac{2N + 1}{2}; \frac{t^2}{4}}. \] \hspace{1cm} (9)

For further simplicity, we put for \(k = 1, 2, \ldots, 2N \)

\[F_{(2N-k)} = \binom{1}{\left\lfloor \frac{k+2}{2} \right\rfloor, \left\lfloor \frac{k+1}{2} \right\rfloor + 1; \frac{t^2}{4}} \]

with \(F(0) = F \). Then, in general, we obtain for \(k = 1, 2, \ldots, 2N \)

\[kF_{(2N-k)} + t \frac{d}{dt} F_{(2N-k)} = kF_{(2N-k+1)}. \] \hspace{1cm} (10)

Proposition 4. For \(k = 0, 1, \ldots, 2N \) we have

\[\cosh t = \sum_{i=0}^{k} \frac{t^i}{i!} \binom{k}{i} \frac{d^i}{dt^i} F_{(2N-k)}. \]

Proof. For \(k = 0 \), we get

\[F_{(2N)} = \sum_{n=0}^{\infty} \frac{t^{2n}}{(2n)!} = \cosh t. \]
Assume that the result holds for some $k \geq 0$. Then by (10)

\[
\sum_{i=0}^{k} \frac{t^i}{i!} \binom{k}{i} \frac{d^i}{dt^i} F_{2N-k} = \sum_{i=0}^{k} \frac{t^i}{i!} \binom{k}{i} \left(F_{2N-k-1} + \frac{t}{k+1} \frac{d}{dt} F_{2N-k-1} \right)
\]

\[
= \sum_{i=0}^{k} \frac{t^i}{i!} \binom{k}{i} \left(\frac{d^i}{dt^i} F_{2N-k-1} + \frac{i}{k+1} \frac{d^i}{dt^i} F_{2N-k-1} + \frac{t}{k+1} \frac{d^{i+1}}{dt^{i+1}} F_{2N-k-1} \right)
\]

\[
= \sum_{i=0}^{k} \frac{t^i}{i!} \binom{k}{i} \frac{k+i+1}{k+1} \frac{d^i}{dt^i} F_{2N-k-1}
\]

\[
+ \sum_{i=1}^{k+1} \frac{t^{i-1}}{(i-1)!} \binom{k}{i-1} \frac{t}{k+1} \frac{d^i}{dt^i} F_{2N-k-1}
\]

\[
= \sum_{i=0}^{k+1} \frac{t^i}{i!} \binom{k+1}{i} \frac{d^i}{dt^i} F_{2N-k-1}.
\]

\[\square\]

We introduce the \textit{complementary hypergeometric Euler numbers} $\hat{E}_{N,n}$ by

\[
\frac{t^{2N+1}/(2N + 1)!}{\sinh t - \sum_{n=0}^{N-1} t^{2n+1}/(2n + 1)!} = \sum_{n=0}^{\infty} \hat{E}_{N,n} \frac{t^n}{n!}
\]
as an analogue of (2). When $n = 0$, $\hat{E}_n = \hat{E}_{0,n}$ are the \textit{complementary Euler numbers} defined by

\[
\frac{t}{\sinh t} = \sum_{n=0}^{\infty} \hat{E}_n \frac{t^n}{n!}
\]
as an analogue of (1). In [18], they are called \textit{weighted Bernoulli numbers}, but this naming means different in other literatures. Since

\[
F^* : = \sum_{n=0}^{\infty} \frac{(2N-1)!}{(2N+2n-1)!} t^{2n}
\]

\[16\]
and
\[\frac{d}{dt} F = -F^2 \frac{d}{dt} F, \] \hspace{1cm} (11)

by (9) we have
\[\frac{1}{F^2} = \frac{1}{F^*} \left(\frac{1}{F} - t \frac{d}{dt} \frac{1}{F} \right). \] \hspace{1cm} (12)

Since
\[\frac{1}{F^*} = \frac{t^{2N-1}}{(2N-1)! \sum_{n=0}^{\infty} \frac{t^{2N+2n-1}}{(2N+2n-1)!}} \]
\[= \sum_{n=0}^{\infty} \hat{E}_{N-1,n} \frac{t^n}{n!}, \]

and
\[\frac{1}{F} - t \frac{d}{dt} \frac{1}{F} = \sum_{n=0}^{\infty} \frac{E_{N,n} t^n}{n!} - \frac{t}{2N} \sum_{n=1}^{\infty} \frac{E_{N,n} t^{n-1}}{(n-1)!} \]
\[= \sum_{n=0}^{\infty} \frac{2N-n}{2N} E_{N,n} \frac{t^n}{n!} \]

we have
\[\frac{1}{F^*} \left(\frac{1}{F} - t \frac{d}{dt} \frac{1}{F} \right) = \left(\sum_{n=0}^{\infty} \hat{E}_{N-1,n} \frac{t^n}{n!} \right) \left(\sum_{k=0}^{\infty} \frac{2N-k}{2N} E_{N,k} \frac{t^k}{k!} \right) \]
\[= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \frac{2N-k}{2N} E_{N,k} \hat{E}_{N-1,n-k} \frac{t^n}{n!}. \]

Comparing the coefficients, we obtain a result about the sums of products.

Theorem 3. For \(N \geq 1 \) and \(n \geq 0 \),
\[\sum_{i=0}^{n} \binom{n}{i} E_{N,i} E_{N,n-i} = \sum_{k=0}^{n} \binom{n}{k} \frac{2N-k}{2N} E_{N,k} \hat{E}_{N-1,n-k}. \]
Using (11) and (12) again, we have
\[
\frac{1}{F^3} = \frac{1}{F^*} \left(\frac{1}{F^2} - \frac{t}{2N} \frac{d}{dt} \frac{1}{F} \right) = \frac{1}{F^*} \left(\frac{1}{F^2} - \frac{t}{4N} \frac{d}{dt} \frac{1}{F^2} \right).
\]

Since
\[
\frac{1}{F^2} - \frac{t}{4N} \frac{d}{dt} \frac{1}{F^2} = \sum_{n=0}^{\infty} \frac{4N - n}{4N} \sum_{k=0}^{n} \binom{n}{k} \frac{2N - k}{2N} E_{N,k} \tilde{E}_{N-1,n-k} \frac{t^n}{n!},
\]
we have
\[
\frac{1}{F^*} \left(\frac{1}{F^2} - \frac{t}{4N} \frac{d}{dt} \frac{1}{F^2} \right) = \sum_{n=0}^{\infty} \frac{4N - n}{4N} \sum_{m=0}^{n} \binom{n}{m} \frac{2N - m}{2N} E_{N,k} \tilde{E}_{N-1,n-m} \frac{t^m}{m!} \frac{t^n}{n!},
\]
Comparing the coefficients, we get a result about the sums of products for trinomial coefficients.

Theorem 4. For \(N \geq 1 \) and \(n \geq 0 \),
\[
\sum_{i_1+i_2+i_3=n}^{i_1,i_2,i_3 \geq 0} \binom{n}{i_1,i_2,i_3} E_{N,i_1} E_{N,i_2} E_{N,i_3} = \sum_{m=0}^{n} \sum_{k=0}^{m} \binom{n}{m} \binom{m}{k} \frac{(4N-m)(2N-k)}{8N^2} E_{N,k} \tilde{E}_{N-1,n-m} \tilde{E}_{N-1,m-k} \frac{t^n}{n!}.
\]

5.1 Complementary hypergeometric Euler numbers

By using the similar methods in previous sections, the complementary hypergeometric Euler numbers satisfy the recurrence relation for even \(n \)
\[
\sum_{i=0}^{n/2} \frac{\tilde{E}_{N,2i}}{(2N + n - 2i + 1)!(2i)!} = 0
\]
or
\[
\hat{E}_{N,n} = -n!(2N + 1)! \sum_{i=0}^{n/2-1} \frac{\hat{E}_{N,2i}}{(2N + n - 2i + 1)!(2i)!}.
\]

By using the Hasse-Teichmüller derivative or by proving by induction, we have

Theorem 5. For \(N \geq 0\) and \(n \geq 1\) we have

\[
\hat{E}_{N,n} = n! \sum_{k=1}^{n} (-1)^k \sum_{\substack{i_1, \ldots, i_k \geq 1 \\colon i_1 + \cdots + i_k = n/2}} \frac{((2N + 1)!)^k}{(2N + 2i_1 + 1)! \cdots (2N + 2i_k + 1)!}.
\]

Some initial values of \(\hat{E}_{N,n}\) (\(n = 0, 2, 4, \ldots\)), we have

\[
\hat{E}_{N,2} = \frac{2}{(2N + 2)(2N + 3)},
\]

\[
\hat{E}_{N,4} = \frac{2 \cdot 4!(4N + 7)}{(2N + 2)^2(2N + 3)^2(2N + 4)(2N + 5)},
\]

\[
\hat{E}_{N,6} = \frac{4 \cdot 6!(8N^3 + 10N^2 - 61N - 93)}{(2N + 2)^3(2N + 3)^3(2N + 4)(2N + 5)(2N + 6)(2N + 7)},
\]

\[
\hat{E}_{N,8} = \frac{8 \cdot 8!}{(2N + 2)^4(2N + 3)^4(2N + 4)^2(2N + 5)^2(2N + 7)(2N + 8)(2N + 9)} \times (32N^6 + 8N^5 - 1132N^4 - 3538N^3 - 1063N^2 + 7280N + 6858).
\]

Put

\[
\hat{F} = \sum_{n=0}^{\infty} \frac{(2N + 1)!}{(2N + 2n + 1)!} t^{2n},
\]

so that

\[
\frac{1}{\hat{F}} = \sum_{n=0}^{\infty} \hat{E}_{N,n} \frac{t^n}{n!}.
\]

Since

\[
(2N + 1)\hat{F} + t \frac{d}{dt} \hat{F} = (2N + 1)F,
\]

19
we have
\[
\frac{1}{F^2} = \frac{1}{F} \left(\frac{1}{F} - \frac{t}{2N + 1} \frac{d}{dt} \frac{1}{F} \right)
\]
\[
= \left(\sum_{m=0}^{\infty} E_{N,m} \frac{t^m}{m!} \right) \left(\sum_{k=0}^{\infty} \frac{2N - k + 1}{2N + 1} \hat{E}_{N,k} \frac{t^k}{k!} \right)
\]
\[
= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{n}{k} \frac{2N - k + 1}{2N + 1} \hat{E}_{N,k} \hat{E}_{N,n-k} \frac{t^n}{n!}.
\]

Hence, as an analogue of Theorem 3, we have the following.

Theorem 6. For \(N \geq 1\) and \(n \geq 0\),
\[
\sum_{i=0}^{n} \binom{n}{i} \hat{E}_{N,i} \hat{E}_{N,n-i} = \sum_{k=0}^{n} \binom{n}{k} \frac{2N - k + 1}{2N + 1} \hat{E}_{N,k} \hat{E}_{N,n-k}.
\]

We then have
\[
\frac{1}{F^3} = \frac{1}{F} \left(\frac{1}{F^2} - \frac{t}{2(2N + 1)} \frac{d}{dt} \frac{1}{F^2} \right).
\]

Since
\[
\frac{1}{F^2} - \frac{t}{2(2N + 1)} \frac{d}{dt} \frac{1}{F^2} = \sum_{n=0}^{\infty} \frac{4N - n + 2}{2(2N + 1)} \sum_{k=0}^{n} \binom{n}{k} \frac{2N - k + 1}{2N + 1} \hat{E}_{N,k} \hat{E}_{N,n-k} \frac{t^n}{n!},
\]
we have the following result as an analogue of Theorem 4.

Theorem 7. For \(N \geq 1\) and \(n \geq 0\),
\[
\sum_{i_1+i_2+i_3=n \atop i_1,i_2,i_3 \geq 0} \binom{n}{i_1,i_2,i_3} \hat{E}_{N,i_1} \hat{E}_{N,i_2} \hat{E}_{N,i_3}
\]
\[
= \sum_{m=0}^{n} \sum_{k=0}^{m} \binom{n}{m} \binom{m}{k} \frac{(4N - m + 2)(2N - k + 1)}{2(2N + 1)^2} \hat{E}_{N,k} \hat{E}_{N,n-m} E_{N,m-k}.
\]

One can continue to obtain the sum of four or more products, though the results seem to become more complicated.
6 Applications by the Trudi’s formula

We shall use the Trudi’s formula to obtain different explicit expressions for the
hypergeometric Euler numbers \(E_{N,n} \).

Lemma 4 (Trudi’s formula\[17, ?\]). For a positive integer \(m \), we have

\[
\begin{array}{c|cccc}
 a_1 & a_2 & \cdots & a_m \\
 a_0 & a_1 & \cdots & \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & a_1 & a_2 \\
 0 & 0 & \cdots & a_0 & a_1 \\
\end{array}
\]

\[
= \sum_{t_1+2t_2+\cdots+mt_m=m} \binom{t_1+\cdots+t_m}{t_1,\ldots,t_m} (-a_0)^{m-t_1-\cdots-t_m} a_1^{t_1} a_2^{t_2} \cdots a_m^{t_m},
\]

where \(\binom{t_1+\cdots+t_m}{t_1,\ldots,t_m} = \frac{(t_1+\cdots+t_m)!}{t_1! \cdots t_m!} \) are the multinomial coefficients.

This relation is known as Trudi’s formula\[19, \text{Vol.3, p.214}] and the case \(a_0 = 1 \) of this formula is known as Brioschi’s formula\[4,19, \text{Vol.3, pp.208–209}].

In addition, there exists the following inversion formula (see, e.g.\[17\]), which
is based upon the relation:

\[
\sum_{k=0}^{n} (-1)^{n-k} \alpha_k D(n-k) = 0 \quad (n \geq 1).
\]

Lemma 5. If \(\{\alpha_n\}_{n\geq0} \) is a sequence defined by \(\alpha_0 = 1 \) and

\[
\alpha_n = \begin{vmatrix}
R(1) & 1 \\
R(2) & \ddots & \ddots \\
\vdots & \ddots & \ddots & 1 \\
R(n) & \cdots & R(2) & R(1)
\end{vmatrix}, \quad \text{then} \quad R(n) = \begin{vmatrix}
\alpha_1 & 1 \\
\alpha_2 & \ddots & \ddots \\
\vdots & \ddots & \ddots & 1 \\
\alpha_n & \cdots & \alpha_2 & \alpha_1
\end{vmatrix}.
\]

Moreover, if

\[
A = \begin{pmatrix}
1 & \alpha_1 & & \\
& 1 & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
\alpha_n & \cdots & \alpha_1 & 1
\end{pmatrix}, \quad \text{then} \quad A^{-1} = \begin{pmatrix}
1 & R(1) & & \\
& 1 & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
& \alpha_n & \cdots & \alpha_2 & R(1) & 1
\end{pmatrix}.
\]

21
From Trudi’s formula, it is possible to give the combinatorial expression
\[\alpha_n = \sum_{t_1 + 2t_2 + \cdots + nt_n = n} \left(t_1 + \cdots + t_n \right) \left(-1 \right)^{n-t_1-\cdots-t_n} R(1)^{t_1} R(2)^{t_2} \cdots R(n)^{t_n}. \]

By applying these lemmata to Proposition \[\text{we obtain an explicit expression for the hypergeometric Euler numbers } E_{N,n}. \]

Theorem 8. For \(N \geq 0 \) and \(n \geq 1 \),
\[E_{N,2n} = (2n)! \sum_{t_1 + 2t_2 + \cdots + nt_n = n} \left(t_1 + \cdots + t_n \right) \left(-1 \right)^{t_1+\cdots+t_n} \times \left(\frac{(2N)!}{(2N+2)!} \right)^{t_1} \left(\frac{(2N)!}{(2N+4)!} \right)^{t_2} \cdots \left(\frac{(2N)!}{(2N+2n)!} \right)^{t_n}. \]

Moreover,
\[\frac{(-1)^n (2N)!}{(2N+2n)!} = \begin{vmatrix} E_{N,2}^2 & 1 & & & & & \\ \frac{E_{N,4}}{4!} & \ddots & \ddots & & & & \\ \vdots & \ddots & \ddots & 1 & & & \\ \frac{E_{N,2n}}{(2n)!} & \cdots & \frac{E_{N,4}}{4!} & -\frac{E_{N,2}}{2!} & 1 & \\ \end{vmatrix}^{-1}, \]

and
\[\begin{pmatrix} \frac{1}{2!} & \frac{E_{N,2}}{2!} & 1 & & & & \\ E_{N,4} & -\frac{E_{N,2}}{2!} & 1 & & & & \\ \vdots & \ddots & \ddots & \ddots & & & \\ (-1)^n \frac{E_{N,2n}}{(2n)!} & \cdots & \frac{E_{N,4}}{4!} & -\frac{E_{N,2}}{2!} & 1 & \\ \end{pmatrix} = \begin{pmatrix} \frac{(2N)!}{(2N+2)!} & 1 & & & & & \\ \frac{(2N)!}{(2N+4)!} & \frac{(2N)!}{(2N+2)!} & 1 & & & & \\ \vdots & \ddots & \ddots & \ddots & & & \\ \frac{(2N)!}{(2N+2n)!} & \cdots & \frac{(2N)!}{(2N+4)!} & \frac{(2N)!}{(2N+2)!} & 1 & \end{pmatrix}. \]

When \(N = 0 \) in Theorem \[\text{we have a different expression for the classical Euler numbers } E_n. \]
Corollary 1. For $n \geq 1$

$$E_{2n} = (2n)! \sum_{t_1 + 2t_2 + \cdots + nt_n = n} \left(t_1 + \cdots + t_n \right) (-1)^{t_1 + \cdots + t_n} \cdot \left(\frac{1}{2!} \right)^{t_1} \left(\frac{1}{4!} \right)^{t_2} \cdots \left(\frac{1}{(2n)!} \right)^{t_n}.$$

Moreover,

$$\frac{(-1)^n}{(2n)!} = \begin{vmatrix} \hat{E}_{2}^{\frac{2}{4!}} & 1 & \cdots & \cdots \\ \hat{E}_{4}^{\frac{2}{4!}} & \cdots & \cdots & 1 \\ \vdots & \cdots & \cdots & \vdots \\ \hat{E}_{2n}^{\frac{2}{4!}} & \cdots & \hat{E}_{2}^{\frac{2}{4!}} \\ \end{vmatrix}.$$

Similarly, by the results in [13], after applying Lemmata 4 and 5, we have a new expression of the complementary hypergeometric Euler numbers $\hat{E}_{N,n}$.

Theorem 9. For $N \geq 0$ and $n \geq 1$,

$$\hat{E}_{N,2n}^{(r)} = (2n)! \sum_{t_1 + 2t_2 + \cdots + nt_n = n} \left(t_1 + \cdots + t_n \right) (-1)^{t_1 + \cdots + t_n} \cdot \left(\frac{(2N + 1)!}{(2N + 3)!} \right)^{t_1} \left(\frac{(2N + 1)!}{(2N + 5)!} \right)^{t_2} \cdots \left(\frac{(2N + 1)!}{(2N + 2n + 1)!} \right)^{t_n}.$$

Moreover,

$$\frac{(-1)^n(2N + 1)!}{(2N + 2n + 1)!} = \begin{vmatrix} \hat{E}_{N,2}^{\frac{2}{4!}} & 1 & \cdots & \cdots \\ \hat{E}_{N,4}^{\frac{2}{4!}} & \cdots & \cdots & 1 \\ \vdots & \cdots & \cdots & \vdots \\ \hat{E}_{N,2n}^{\frac{2}{4!}} & \cdots & \hat{E}_{N,4}^{\frac{2}{4!}} & \hat{E}_{N,2}^{\frac{2}{4!}} \\ \end{vmatrix},$$
and

$$\begin{pmatrix}
\frac{1}{\hat{E}_{N,2}} & \frac{1}{\hat{E}_{N,4}} & 1 \\
\frac{\hat{E}_{N,4}}{2!} & \frac{\hat{E}_{N,2}}{4!} & \cdots \\
\vdots & \frac{\hat{E}_{N,4}}{4!} & \cdots \\
\frac{(-1)^n \hat{E}_{N,2n}}{(2n)!} & \cdots & \frac{\hat{E}_{N,4}}{4!} - \frac{\hat{E}_{N,2}}{2!} \\
\end{pmatrix}^{-1} =
\begin{pmatrix}
1 & \frac{1}{(2N+1)!} & \frac{1}{(2N+3)!} & \frac{1}{(2N+1)!} & \frac{1}{(2N+5)!} & \frac{1}{(2N+3)!} & \frac{1}{(2N+5)!} & \frac{1}{(2N+3)!} & \cdots \\
\frac{1}{(2N+3)!} & \frac{1}{(2N+1)!} & \frac{1}{(2N+3)!} & \frac{1}{(2N+5)!} & \frac{1}{(2N+3)!} & \frac{1}{(2N+5)!} & \frac{1}{(2N+3)!} & \frac{1}{(2N+5)!} & \cdots \\
\vdots & \frac{1}{(2N+3)!} & \frac{1}{(2N+1)!} & \frac{1}{(2N+3)!} & \frac{1}{(2N+5)!} & \frac{1}{(2N+3)!} & \frac{1}{(2N+5)!} & \frac{1}{(2N+3)!} & \cdots \\
\frac{(-1)^n \hat{E}_{N,2n}}{(2n)!} & \cdots & \frac{\hat{E}_{N,4}}{4!} & \cdots & \frac{\hat{E}_{N,2}}{2!} & \cdots & \frac{\hat{E}_{N,4}}{4!} & \cdots & \frac{\hat{E}_{N,2}}{2!} \\
\end{pmatrix}.$$
References

[1] M. Aoki and T. Komatsu, Remarks on hypergeometric Bernoulli numbers, preprint.

[2] M. Aoki and T. Komatsu, Remarks on hypergeometric Cauchy numbers, preprint.

[3] T. M. Apostol, On the Lerch Zeta function, Pacific. J. Math. 1 (1951), 161–167.

[4] F. Brioschi, Sulle funzioni Bernoulliane ed Euleriane, Annali de Mat., i. (1858), 260–263; Opere Mat., i. pp. 343–347.

[5] R. B. Corcino, H. Jolany, C. B. Corcino and T. Komatsu, On generalized multi poly-Euler polynomials, Fibonacci Quart. 55 (2017), 41–53.

[6] J. W. L. Glaisher, Expressions for Laplace’s coefficients, Bernoullian and Eulerian numbers etc. as determinants, Messenger (2) 6 (1875), 49-63.

[7] R. Gottfert, H. Niederreiter, Hasse-Teichmüller derivatives and products of linear recurring sequences, Finite Fields: Theory, Applications, and Algorithms (Las Vegas, NV, 1993), Contemporary Mathematics, vol. 168, American Mathematical Society, Providence, RI, 1994, pp.117–125.

[8] H. Hasse, Theorie der höheren Differentiale in einem algebraischen Funktionskörper mit Vollkommenem Konstantenkörper bei beliebiger Charakteristik, J. Reine Angew. Math. 175 (1936), 50–54.

[9] A. Hassen and H. D. Nguyen, Hypergeometric Bernoulli polynomials and Appell sequences, Int. J. Number Theory 4 (2008), 767–774.

[10] A. Hassen and H. D. Nguyen, Hypergeometric zeta functions, Int. J. Number Theory 6 (2010), 99–126.

[11] K. Kamano, Sums of products of hypergeometric Bernoulli numbers, J. Number Theory 130 (2010), 2259–2271.

[12] T. Komatsu, Hypergeometric Cauchy numbers, Int. J. Number Theory 9 (2013), 545–560.

[13] T. Komatsu, Complementary Euler numbers, Period. Math. Hungar. 75 (2017), 302–314.
[14] T. Komatsu, F. Luca and C. de J. Pita Ruiz V., Generalized poly-Cauchy polynomials and their interpolating functions, Colloq. Math. 136 (2014), 13–30.

[15] T. Komatsu and C. de J. Pita Ruiz V., Truncated Euler polynomials, Math. Slovaca (to appear).

[16] T. Komatsu, J. L. Ramírez and V. Sirvent, A (p,q)-analogue of poly-Euler polynomials and some related polynomials, arXiv:1604.03787.

[17] T. Komatsu and J. L. Ramírez, Some determinants involving incomplete Fubini numbers, preprint.

[18] S. Koumandos and H. Laurberg Pedersen, Turán type inequalities for the partial sums of the generating functions of Bernoulli and Euler numbers, Math. Nachr. 285 (2012), 2129–2156.

[19] T. Muir, The theory of determinants in the historical order of development, Four volumes, Dover Publications, New York, 1960.

[20] The on-line encyclopedia of integer sequences, available at http://oeis.org.

[21] Y. Ohno and Y. Sasaki, On the parity of poly-Euler numbers, RIMS Kokyuroku Bessatsu B32 (2012), 271–278.

[22] Y. Ohno and Y. Sasaki, Periodicity on poly-Euler numbers and Vandiver type congruence for Euler numbers, RIMS Kokyuroku Bessatsu B44 (2013), 205–211.

[23] Y. Ohno and Y. Sasaki, On poly-Euler numbers, J. Aust. Math. Soc. 103 (2017), 126–144.

[24] O. Teichmüller, Differentialrechung bei Charakteristik p, J. Reine Angew. Math. 175 (1936), 89–99.

[25] N. Trudi, Intorno ad alcune formole di sviluppo, Rendic. dell’ Accad. Napoli, (1862), 135–143.

26