Structural and magnetic characterization of the complete delafossite solid solution \((\text{CuAlO}_2)_{1-x} \ (\text{CuCrO}_2)_x\)

Phillip T Barton\(^1\), Ram Seshadri\(^1\), Andrea Knöller\(^2\) and Matthew J Rosseinsky\(^3\)

\(^1\) Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
\(^2\) Institut für Materialwissenschaft, Universität Stuttgart, 70569, Germany
\(^3\) Department of Chemistry, University of Liverpool, L69 7ZD, UK

E-mail: pbarton@mrl.ucsb.edu, seshadri@mrl.ucsb.edu and M.J.Rosseinsky@liverpool.ac.uk

Received 4 October 2011, in final form 9 November 2011
Published 2 December 2011
Online at stacks.iop.org/JPhysCM/24/016002

Abstract

We have prepared the complete delafossite solid solution series between diamagnetic \(\text{CuAlO}_2\) and the \(t_{\text{3g}}^3 \) frustrated antiferromagnet \(\text{CuCrO}_2\). The evolution with composition \(x \) in \(\text{CuAl}_{1-x}\text{Cr}_x\text{O}_2 \) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végar law and increase with \(x \) as expected. The \(\mu_{\text{eff}} \) is equal to the \(\text{Cr}^{3+} \) spin-only \(S = 3/2 \) value throughout the entire solid solution. \(\Theta_{\text{CW}} \) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant \(J_{\text{BB}} \) was estimated by mean-field theory to be 3.0 meV. Despite the sizable \(2\mu_{\text{eff}} \), long-range antiferromagnetic order does not develop until \(x \) is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda \textit{et al.}, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in \(\text{CuCrO}_2 \) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

(Some figures may appear in colour only in the online journal)

1. Introduction

\(\text{CuAlO}_2 \) and \(\text{CuCrO}_2 \) are p-type transparent conducting oxides (TCO) that are of significant interest for their intrinsic p-type behavior \cite{1,2}. \(\text{CuCrO}_2 \) is also an \(S = 3/2 \) Heisenberg triangular lattice antiferromagnet (TLA), which makes it a promising candidate for studying magnetic frustration. Recent study of \(\text{CuCrO}_2 \) has been spurred by its multiferroic behavior which arises from its spiral spin order \cite{3}, and has been extensively investigated by Kimura \textit{et al} \cite{4}.

Neutron diffraction studies have been essential in explaining the magnetism and multiferroic behavior of \(\text{CuCrO}_2 \). The first neutron study by Kadowaki \textit{et al} revealed that \(\text{CuCrO}_2 \) has an antiferromagnetic out-of-plane 120° spin structure and short correlation length along the \(c \) axis \cite{5}. Further study by Poienar \textit{et al} narrowed the magnetic structure...
possibilities to either helicoidal or cycloidal, and investigated the effect of Mg substitution [6]. Soda et al confirmed a noncollinear helical magnetic structure through triple-axis spin-polarized neutron scattering experiments on a single crystal [7]. Such a magnetic structure also occurs for CuFeO$_2$ under an applied magnetic field or with Al substitution, and was found to give rise to ferroelectricity [8]. This is consistent with a theoretical model proposed by Arima, which shows that a noncollinear helical spin structure and spin–orbit coupling give rise to the multiferroic behavior [9]. Similarly to other TLA's, the presence of two magnetic transitions in CuCrO$_2$ was revealed by a careful further examination of a single crystal [10]. Additional study of CuCrO$_2$ included inelastic neutron scattering to map out the spin dynamics of the system [11]. The results are consistent with the work of Kimura et al [4], and reinforce the critical role of next-nearest-neighbor exchange interactions in stabilizing magnetic order.

The delafossite structure is also of interest because it hosts both metallic and insulating behavior, as is well exemplified by the metal–insulator transition in a partial solid solution between AgNiO$_2$ and AgCoO$_2$ [12]. To investigate the nature of such behavior, the electronic structures of many delafossites have been investigated by density functional theory (DFT) calculations, and particular interest has been paid to the Cu-containing p-type TCOs. Evidence has been shown that these derive their p-type conductivity from Cu vacancies that form because of the easy oxidation of Cu$^{+}$ to Cu$^{2+}$ [13]. Additionally, the extent of M–M bonding in delafossites has been examined with DFT for a multitude of different A and B cations [14, 15]. In these studies the authors noted that both the A and B site cations contribute to the electronic structure near the Fermi level. They also found that the A site d_{z^2} orbitals are responsible for the highly disperse bands and may be important for stabilizing metallic ground states. Relevant to the systems of interest here, Scanlon et al studied the effect of Cr substitution on the electronic structure of CuAlO$_2$ [16].

The effects of spin dilution and doping on the magnetism of CuCrO$_2$ have been extensively investigated by Okuda et al through magnetometry, electrical transport [17], heat capacity measurements [18], and neutron diffraction [19]. Mg substitution sharpens the antiferromagnetic transition and thus demonstrates that hole carriers are relevant to the magnetic ground state of CuCrO$_2$ [17]. Al substitution blurs the transition, causes the evolution of spin-glass behavior, and causes a crossover from 3D to 2D magnons as evidenced by heat capacity data [19]. It also causes a gradual suppression of the CuCrO$_2$ magnetic peaks in neutron diffraction patterns.

In this contribution, we investigate the complete delafossite solid solution between diamagnetic CuAlO$_2$ and the t^3_2 frustrated antiferromagnet CuCrO$_2$. While many chemical substitutions have been performed on both endmember compounds, this is the first time a complete solid solution has been prepared. This work follows a recent study of a perovskite solid solution [20], where we used magnetic dilution to probe the ferromagnet SrRuO$_3$. This study is also guided by previous work on magnetic frustration in MCr$_2$O$_4$ spinels, where Cr sits on the pyrochlore B-sublattice [21, 22]. In CuAl$_{1-x}$Cr$_x$O$_2$, the addition of Cr introduces localized spins that are randomly distributed on the B site. These spins begin interacting as their concentration is increased, and frustration arises due to the triangular topology of the delafossite crystal structure. Powder x-ray diffraction and magnetometry results on CuAl$_{1-x}$Cr$_x$O$_2$ support the fact that a well-behaved solid solution is formed. Throughout the solid solution, μ_{dip} is equal to the Cr$^{3+}$ spin-only $S = 3/2$ value. The strength of the mean-field antiferromagnetic interactions markedly increases with Cr content, though glassy long-range order does not occur until $x \approx 0.75$. Magnetic saturation does not occur in isothermal magnetization sweeps, and antiferromagnetic interactions are evident by the sub-Brillouin behavior of all samples. A scaled Curie plot reveals the presence of short-range interactions that occur due to frustration and chemical disorder.

2. Experimental details

Polycrystalline CuAl$_{1-x}$Cr$_x$O$_2$ pellets were prepared using solid-state reactions at high temperatures. Stoichiometric amounts of Cu$_2$O, Al$_2$O$_3$, and Cr$_2$O$_3$ powders were ground with an agate mortar and pestle, pressed at 100 MPa, and heated in air to a certain temperature for 24 h, and again for 48 h with an intermediate grinding, and then allowed to cool to room temperature. The furnace was heated and cooled at a rate of 2 °C min$^{-1}$, and in accordance with previous preparations, the firing temperatures were 1000°C for CuCrO$_2$ [24], 1200°C for CuAlO$_2$ [23], and between the two for intermediate compositions. The pellets were placed on beds of powder of the same composition to avoid reaction with the Al$_2$O$_3$ crucible. Structural characterization by room-temperature laboratory x-ray diffraction was performed on a Philips X'Pert diffractometer with Cu Kα radiation. Selected samples were also examined by high-resolution powder synchrotron x-ray diffraction at the 11-BM beamline at the Advanced Photon Source, Argonne National Laboratory. Rietveld refinement [25] was performed using the XND Rietveld code [26]. The crystal structures were visualized using VESTA [27]. The magnetization was measured using a Quantum Design MPMS 5XL SQUID magnetometer.

3. Results and discussion

3.1. Structure

Room-temperature laboratory and synchrotron powder x-ray diffraction demonstrate that the entire solid solution between CuAlO$_2$ and CuCrO$_2$ can be assigned to the rhombohedral 3R delafossite crystal structure, space group $R\overline{3}m$ (No. 166). All of the observed Bragg peaks in the laboratory data are accounted for by the 3R structure and support the single phase nature of the samples (figure 1). The refined unit cell parameters and volume are tabulated in table 1 and the composition dependence is displayed graphically in figure 2. Upon substituting Cr into CuAlO$_2$, the a and c parameters
Figure 1. The left panel displays the ABO$_2$ delafossite crystal structure with A in blue, B in gray, and O in orange. The middle panel shows room-temperature laboratory powder x-ray diffraction data for CuAl$_{1-x}$Cr$_x$O$_2$. The right panel shows a close-up of the (10$ar{4}$) peak as it evolves across the solid solution.

Table 1. Unit cell parameters and cell volume for CuAl$_{1-x}$Cr$_x$O$_2$ obtained from Rietveld refinement of laboratory powder x-ray diffraction data in space group $Rar{3}m$ (No. 166). Cu sits at (0, 0, 0), (Al/Cr) at (0, 0, 0.5) and O at (0, 0, z).

x	0.00	0.05	0.15	0.30	0.50	0.75	1.00
a (Å)	2.856(8)	2.864(0)	2.876(8)	2.897(6)	2.919(8)	2.948(5)	2.973(6)
c (Å)	16.94(4)	16.95(3)	16.96(3)	16.98(2)	17.01(1)	17.05(6)	17.09(7)
V (Å3)	138.2(8)	139.0(5)	140.3(9)	142.5(8)	145.0(2)	148.2(8)	151.1(8)

3.2. Magnetism

In CuAl$_{1-x}$Cr$_x$O$_2$, magnetism evolves as we alloy a diamagnet with an antiferromagnet, and is complicated by the geometrically induced magnetic frustration of the delafossite crystal structure. Important magnetic characteristics of the solid solution, including Curie–Weiss effective moment μ_{eff}, theoretical magnetic ordering temperature Θ_{CW}, B site nearest-neighbor magnetic exchange J_{BB}, and M at 5 K and 5 T, are summarized graphically in figure 5 and are tabulated in table 2. Zero-field cooled (ZFC) and field-cooled (FC) magnetization data were collected between 2 and 380 K under a 100 Oe DC magnetic field and are presented in figure 3. We observe an antiferromagnetic cusp in the magnetization of CuCrO$_2$ at 25 K, in accord with previous characterization [24]. From Curie–Weiss analysis, we find that, as expected for octahedral Cr$^{3+}$, μ_{eff} is nearly equal to the spin-only $S = 3/2$ value of 3.82 μ_B throughout the solid solution. As evidenced by the negative Θ_{CW}, the dominant magnetic interactions are antiferromagnetic. The magnitude of Θ_{CW} is small for samples with low Cr content, but it quickly increases with x as Cr–O–Cr superexchange interactions become more prevalent. The
Figure 2. Unit cell parameters a and c of the 3R delafossite crystal structure for CuAl$_{1-x}$Cr$_x$O$_2$ as determined by Rietveld refinement. Linear fits to the data demonstrate that the Végard law is followed. Error bars are included, but are smaller than the symbol size for most data points.

Figure 3. Zero-field cooled and field-cooled magnetic susceptibility as collected under a DC magnetic field of 100 Oe.

Figure 4. Magnetization as a function of applied DC magnetic field at 5 K. The data were acquired in a loop from 0 T, to 5 T, to -5 T, and back to 0 T, though only the first quadrant is shown as no significant hysteresis was observed.

Figure 5. Magnetic characteristics (a) μ_{eff}, (b) Θ_{CW}, (c) J_{BB}, and (d) M (2 K, 5 T) as a function of composition. In (a), the dashed horizontal line indicates the expected S-only value for Cr$^{3+}$. The dotted lines in the other panels are guides to the eye.

nearest-neighbor magnetic exchange coupling J_{BB} can be estimated using a mean-field Heisenberg model according to $J = 3k_B/2Z_{\text{eff}}S(S + 1)$, where $Z_{\text{eff}} = 6x$ is the number of nearest-neighbor interactions. Such analysis reveals that J_{BB} is close to 3.0 meV for dilute Cr compositions and decreases with increasing x. This decrease is a result of the mean-field approximation breaking down as Cr composition increases and next-nearest-neighbor interactions become important. The magnitude of J_{BB} is similar to previous studies of Cr–O–Cr exchange in structurally similar spinels with edge-sharing octahedra of Cr [21, 29, 30]. A zfc–fc splitting occurs in the $x = 0.75$ sample below 8 K, which is consistent with splittings seen in low Al content samples studied by Okuda et al [19]. Such behavior is attributed to chemical disorder that results in spin-glass behavior. The dependence of the magnetization M on field for CuAl$_{1-x}$Cr$_x$O$_2$ at 5 K is displayed in figure 4. None of the samples reach magnetic saturation. All of the M–H traces are sub-Brillouin, indicating significant antiferromagnetic exchange which increases in
behavior in all of the Al-substituted samples which is revealed by the presence of short-range uncompensated behavior well above its Néel temperature. While Curie–Weiss analysis shows that the dominant long-range interactions in CuAl\textsubscript{1−x}Cr\textsubscript{x}O\textsubscript{2} are antiferromagnetic, the scaled Curie plot reveals the presence of short-range uncompensated behavior in all of the Al-substituted samples which is likely a result of chemical disorder. The behavior of the small x samples follows the ideal Curie–Weiss line until low temperatures at which their behavior deviates below the line. The x = 0.75 sample displays a more complex behavior, however, as upon cooling it first displays short-range antiferromagnetic interactions, similar to CuCrO\textsubscript{2}, and only at low temperatures does uncompensated behavior emerge. When taken in combination with the slight zfc–fc splitting and small H\textsubscript{C}, this behavior may be consistent with a tendency toward an antiferromagnetic ground state that is disrupted by the freezing of spins into a spin-glass where uncompensated moments are present.

4. Conclusion

We prepared a complete delafossite solid solution between diamagnetic CuAlO\textsubscript{2} and the t\textsubscript{2g}3g frustrated antiferromagnet CuCrO\textsubscript{2} and characterized its structural and magnetic properties. All the observed laboratory x-ray diffraction peaks correspond to the delafossite 3R crystal structure. A true solid solution forms, as evidenced by the adherence of the unit cell parameters to the Végard law and by the magnetic behavior. µ\textsubscript{eff} is equal to the Cr3+ spin-only S = 3/2 value throughout the solid solution, while Θ\textsubscript{CW} is negative and its magnitude increases with x. J\textsubscript{BB} was estimated by mean-field theory to be 3.0 meV for dilute Cr compositions. Magnetic saturation does not occur at 5 K and 5 T, and the sub-Brillouin behavior is consistent with strong antiferromagnetic interactions. Inspection of a scaled inverse magnetic susceptibility plot reveals that significant short-range antiferromagnetic interactions exist in CuCrO\textsubscript{2} above T\textsubscript{N}, while uncompensated short-range behavior is present in the Al-substituted samples. These observations can be explained by magnetic frustration and chemical disorder. The results are relevant for understanding magnetic frustration and for the tuning of physical properties through chemical substitution.

Acknowledgments

We acknowledge support through a Materials World Network Award from the NSF (DMR 0909180) in Santa Barbara, and from the EPSRC (EP/G065314/1) in Liverpool. PTB is supported by the NSF Graduate Research Fellowship Program. AK is supported by the IMI Program of the National Science Foundation under Award No. DMR 0843934, and the UCSB–MPG Program for International Exchange in Materials Science. The research carried out here made extensive use of shared experimental facilities of the Materials Research Laboratory: an NSF MRSEC, supported by NSF Award from the NSF (DMR 0909180) in Santa Barbara, and from the EPSRC (EP/G065314/1) in Liverpool. PTB is supported by the NSF Graduate Research Fellowship Program. AK is supported by the IMI Program of the National Science Foundation under Award No. DMR 0843934, and the UCSB–MPG Program for International Exchange in Materials Science. The research carried out here made extensive use of shared experimental facilities of the Materials Research Laboratory: an NSF MRSEC, supported by NSF DMR 1121053. The MRL is a member of the NSF-supported Materials Research Facilities Network (www.mrfn.org). Use of data from the 11-BM beamline at the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
References

[1] Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H and Hosono H 1997 Nature 389 939
[2] Nagarajan R, Draeseke A D, Sleight A W and Tate J 2001 J. Appl. Phys. 89 8022
[3] Tokura Y and Seki S 2010 Adv. Mater. 22 1554
[4] Kimura K, Nakamura H, Kimura S, Hagiwara M and Kimura T 2009 Phys. Rev. Lett. 103 107201
[5] Kadowaki H, Kikuchi H and Aijiro Y 1990 J. Phys.: Condens. Matter 2 4485
[6] Poienar M, Damay F, Martin C, Hardy V, Maignan A and André G 2009 Phys. Rev. B 79 014412
[7] Soda M, Kimura K, Kimura T, Matsuura M and Hirota K 2009 J. Phys. Soc. Japan 78 124703
[8] Kimura T, Lasheley J C and Ramirez A P 2006 Phys. Rev. B 73 220401
[9] Arima T 2007 J. Phys. Soc. Japan 76 073702
[10] Kimura K, Nakamura H, Ohgushi K and Kimura T 2008 Phys. Rev. B 78 140401
[11] Poienar M, Damay F, Martin C, Robert J and Petit S 2010 Phys. Rev. B 81 104411
[12] Shin Y J, Doumerc J P, Dordor P, Pouchard M and Hagenmuller P J 1993 Solid State Chem. 107 194
[13] Scanlon D O and Watson G W 2011 J. Mater. Chem. 21 3655
[14] Seshadri R, Felser C, Thieme K and Tremel W 1998 Chem. Mater. 10 2189
[15] Kandpal H C and Seshadri R 2002 Solid State Sci. 4 1045
[16] Scanlon D O, Walsh A, Morgan B J, Watson G W, Payne D J and Egdell R G 2009 Phys. Rev. B 79 035101
[17] Okuda T, Jufuku N, Hidaka S and Terada N 2005 Phys. Rev. B 72 144403
[18] Okuda T, Beppu Y, Fujii Y, Onoe T, Terada N and Miyasaka S 2008 Phys. Rev. B 77 134423
[19] Okuda T, Uto K, Seki S, Onose Y, Tokura Y, Kajimoto R and Matsuda M 2011 J. Phys. Soc. Japan 80 014711
[20] Barton P T, Seshadri R and Rosseinsky M J 2011 Phys. Rev. B 83 064417
[21] Melot B C, Drewes J E, Seshadri R, Stoudenmire E M and Ramirez A P 2009 J. Phys.: Condens. Matter 21 216007
[22] Shoemaker D P and Seshadri R 2010 Phys. Rev. B 82 214107
[23] Ishiguro T, Kitazawa A, Mizutani N and Kato M 1981 J. Solid State Chem. 40 170
[24] Doumerc J-P, Wichainchai A, Ammar A, Pouchard M and Hagenmuller P 1986 Mater. Res. Bull. 21 745
[25] Rietveld H M 1969 J. Appl. Crystallogr. 2 65
[26] Béhar J and Baldinozzi G 1998 IUCr-CPD Newsletter. 20 3
[27] Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653
[28] Shannon R D and Prewitt C T 1969 Acta Crystallogr. B 25 925
[29] Ederer C and Komelj M 2007 Phys. Rev. B 76 064409
[30] Lawes G, Melot B, Page K, Ederer C, Hayward M A, Proffen Th and Seshadri R 2006 Phys. Rev. B 74 024413