Lateral variations of electrical conductivity in the lower mantle

constrained by Swarm and CryoSat-2 missions

Jakub Velímský and Ondřej Knopp, Department of Geophysics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic,
jakub.velimsky@mff.cuni.cz

Preprint submitted to Earth, Planets and Space on October 19, 2020
Abstract

The electrical conductivity is an important geophysical parameter connected to the thermal, chemical, and mineralogical state of the Earth’s mantle. In this paper we apply the previously developed methodology of forward and inverse EM induction modelling to the latest version of satellite-derived spherical harmonic coefficients of external and internal magnetic field, and obtain the first 3-D mantle conductivity models with contributions from Swarm and CryoSat-2 satellite data. We recover degree 3 conductivity structures which partially overlap with the shape of the large low-shear velocity provinces in the lower mantle.

Keywords

EM induction, mantle electrical conductivity, Swarm, CryoSat-2

Introduction

The electrical conductivity is an important geophysical parameter connected to the thermal, chemical, and mineralogical state of the Earth’s mantle. A traditional technique to study the distribution of electrical conductivity in deep regions of the Earth is the electromagnetic induction (EMI) method. On the global planetary scale, the natural sources of electromagnetic energy with the largest potential to probe the deep Earth structure are present in the magnetosphere, the ionosphere, and in the Earth’s oceans. An excellent overview of recent advances in the area of global EMI forward and inverse modelling is given by Kuvshinov (2015).

In the last two decades, the low-orbit satellite missions dedicated to measurements of the Earth’s magnetic fields, such as CHAMP, Ørsted, SAC-C, and Swarm, have provided invaluable insight into the structure and dynamics of various physical processes from the dynamo in the Earth’s core to the magnetosphere (Stolle et al. 2018). Recently, these datasets have been extended by careful processing and calibration of platform magnetometer records from other missions, such as CryoSat-2 (Olsen et al. 2020).

In the area of global EM induction, spherically symmetric (1-D) conductivity models based on satellite data were obtained (Kuvshinov and Olsen 2006; Velímský 2010; Püthe et al. 2015; Civet et al. 2015; Grayver et al. 2017) among others). The global three-dimensional (3-D) inverse problem represents a
significant challenge in terms of input data processing, efficient implementation of the forward solver, and balanced regularization. So far, only ground observatory data were inverted in terms of 3-D mantle conductivity models [Kelbert et al. 2009; Tarits and Mandéa 2010; Semenov and Kuvshinov 2012; Sun et al. 2015]. The main challenge in the 3-D inversion of satellite data is the separation of the primary, inducing components, and the secondary, induced fields observed by a small number of fast moving platforms with sufficient spatial and temporal resolution. One possible path that we follow here, is to isolate the time series of external and internal spherical harmonic (SH) coefficients by the process of Comprehensive Inversion [Sabaka et al. 2013]. These time series are provided as a Swarm mission Level 2 product by the European Space Agency. Since the rather critical assessment of the early versions of this product by Martinec et al. (2018), the situation has improved significantly [Sabaka et al. 2018, 2020]. In this paper we apply the methodology developed by Velímský (2013) and Maksimov and Velímský (2017) to the latest version of satellite-derived SH coefficients, and obtain the first 3-D mantle conductivity models with contributions from Swarm and CryoSat-2 satellite data.

Methods

Detailed descriptions and tests of the forward solver, the inverse solver, and the sensitivity calculations in the context of global 3-D EM induction problem in the time domain are presented in Velímský and Martinec (2005), Velímský (2013), and Maksimov and Velímský (2017), respectively. Our approach to the 3-D mantle conductivity inversion builds on the process of Comprehensive Inversion (CI). Here we provide only a short summary of the method, and refer the reader to the detailed description in the works of the original authors [Sabaka et al. 2013, 2018, 2020].

The forward problem

In the spherical Earth G of radius a with 3-D distribution of electrical conductivity $\sigma(r) > 0$, and under magneto-quasistatic approximation, the magnetic field $B(r; t)$ is governed by the EM induction equation,

$$\nabla \times \left[\frac{1}{\sigma(r)} \nabla \times B(r; t) \right] + \mu_0 \frac{\partial B(r; t)}{\partial t} = 0, \quad \text{for } r \leq a. \quad (1)$$

Here $r = (r, \Omega) = (r, \vartheta, \varphi)$ stands for the position vector described by the radial coordinate r, colatitude ϑ, longitude φ, t is time, and μ_0 is the magnetic permeability of vacuum. In the surrounding insulating atmosphere, the magnetic field is fully described by a scalar magnetic potential $U(r; t)$, satisfying the
homogeneous Laplace equation,
\[\nabla^2 U(r; t) = 0, \quad \text{for } r \geq a. \] (2)

On the surface \(r = a \), continuity of the magnetic field is required,
\[B(r = a, \Omega; t) = -\nabla U(r, \Omega; t)|_{r=a}, \] (3)

The solution of the Laplace equation (2) can be written in terms of SH series,
\[U(r; t) = \sum_{j=1}^{\infty} \sum_{m=-j}^{j} \left[G_{jm}^{(e)}(t) \left(\frac{r}{a} \right)^j + G_{jm}^{(i)}(t) \left(\frac{a}{r} \right)^{j+1} \right] Y_{jm}(\Omega), \] (4)

where \(G_{jm}^{(e)}(t) \) and \(G_{jm}^{(i)}(t) \) are the SH coefficients describing respectively the external (primary, inducing) and internal (secondary, induced) magnetic field. Here we use fully normalized, real spherical harmonics \(Y_{jm}(\Omega) \). The spherical harmonic-finite element approach to global time-domain EM induction introduced by Velímský and Martinec (2005) uses the external boundary condition. The time series of external field coefficients \(G_{jm}^{(e)}(t_i) \), truncated at a finite degree \(j_{\text{max}}^{(e)} \), and using constant sampling in time,
\[t_i = i \Delta t, \quad i = 1 \ldots N, \] (5)

are prescribed in the discretized linear system of equations corresponding to formulation (1–3). For a given conductivity distribution \(\sigma(r) \), the method integrates equation (1) using the Crank-Nicolson scheme. Besides the complete solution \(B(r; t) \), it provides also the series of internal field coefficients \(G_{jm}^{(i)}(t_i) \), using the same time sampling, and truncated at \(j_{\text{max}}^{(i)} \geq j_{\text{max}}^{(e)} \).

Observatory, Swarm and CryoSat-2 data

The CI is based on fitting of a complex parameterization of individual magnetic field constituents into observatory and satellite data, including the along-track and cross-track gradients. The parameterization deals specifically with the core field and its secular variations, the lithospheric field, the ionospheric, magnetospheric, and oceanic tidal fields, and their induced counterparts. The rotation angles between the common reference frame of each spacecraft, and the reference frame of individual magnetometers are also co-estimated. The data selection is restricted to night-side, quiet-time signals, defined by the limiting values of \(Kp \) index, and rate of change of the \(Dst \) index Sabaka et al. 2013, 2018, 2020.

For our purpose, the second phase of the CI processing is crucial. Here, the observatory and satellite data from all times, including the disturbed periods, are assembled. The core, lithospheric, and in most cases also the ionospheric signals obtained by the CI are subtracted, and the resulting residua are further
downweighted, or completely removed in the polar areas. The SH coefficients of external and internal field up to a specified degree and order are then obtained by SH analysis of data in bins of selected duration τ, typically several hours with distinct values used for the dipole terms $(1,0)$, and the remaining spherical harmonics. Table 1 gives an overview of various datasets from the CI, and respective settings. Although the 3-D mantle conductivity inversion was carried out for all of them, we limit the graphic presentation of the results to only two cases in this paper. The dataset 0513 is based on 5 years of data, including the data from the CryoSat-2 platform magnetometers. The dataset 0604 extends the length of the time series to 6 years, however, without the inclusion of CryoSat-2 data.

Three additional remarks deserve the attention of the reader. First, the external and internal field SH coefficients provided by the CI use the traditional Schmidt’s semi-normalization, and must be converted to fully normalized values using formulas (5-6) from Velímský (2013). Second, the higher sampling rate of the dipolar coefficients is not exploited in our modelling, as the forward and inverse solvers require the same constant time step for all spherical harmonics. Therefore, the dipolar coefficients are downsampled by averaging to the same sampling rate as the remaining coefficients. The renormalization and time-averaging can be combined into a single linear operator Γ,

$$G = \Gamma g,$$ \hspace{1cm} (6)

where g represents a vector arrangement of the CI-based, Schmidt semi-normalized SH coefficients in the original time sampling, and G is a similar arrangement of the fully normalized, time-averaged harmonics. Figure 1 shows the time series of the external and internal field coefficients for the 0513 dataset, after such processing.

Thirdly, the CI also provides the inverse covariance matrices D_{MMA}, relating the information on the uncertainties of the SH coefficients. Without going into the detailed structure of Γ, we can use it also to obtain the inverse covariance matrix of the fully-normalized time-averaged coefficients as

$$D = (\Gamma D_{\text{MMA}}^{-1} \Gamma^T)^{-1}. \hspace{1cm} (7)$$

In the synthetic tests performed in Velímský (2013) only the diagonal terms of the inverse covariance matrix were used. Here we take the next step by including the terms relating the SH coefficients of different degree and order $(j,m), (j',m')$ that belong to the same time bin of length τ. The elements of
D then satisfy
\[D_{jm,j'm'}^{ii'} = \begin{cases}
\neq 0 & \text{for } t_i \mod \tau = t_{i'} \mod \tau, \\
= 0 & \text{otherwise},
\end{cases} \tag{8} \]

where \(\mod \) denotes the integer division operator. Since \(i \) and \(i' \) are used as the outer indices, the inverse covariance matrix has block-diagonal structure. Figure 2 shows an example of one such block for the 0513 dataset, corresponding to time level 2018.0. Note that the diagonal terms dominate, and the higher degree terms are slightly upweighted due to normalization. Although the matrix is positive definite, small negative weights do appear off the diagonal.

The inverse problem

The purpose of the inverse problem is to reconstruct the conductivity distribution \(\sigma(r) \) from the time series of external and internal field coefficients \(G_{jm}^{(e,obs)}(t_i), G_{jm}^{(i,obs)}(t_i) \) obtained by processing of observatory and satellite data; the \(obs \) superscript now differentiates the observation-based time series from the predictions of the forward solver. Because of inherent non-uniqueness of the inverse problem, the class of admissible conductivity models is restricted by regularization. In our case, the inversion is defined over a finite-dimensional manifold \(\mathcal{M} \). Since the electrical conductivity is positive-valued, a natural choice is to parameterize its (decimal) logarithm
\[
- \log \frac{\sigma(r)}{\sigma_0} = \sum_{k=1}^{K} \sum_{j=0}^{j^\text{max}} \sum_{m=-j}^{j} \rho_{jm}^{k} \xi_{k}(r) Y_{jm}(\Omega), \tag{9}
\]

where \(\sigma_0 = 1 \Omega/m \) is used to preserve correct dimensionality, and the negative sign stems from the internal representation of the model by means of resistivity, rather than conductivity. The radial discretization is defined on \(K \) layers, where \(\xi_{k}(r) = 1 \) in the \(k \)-th layer \(r_k \leq r \leq r_{k+1} \), and zero otherwise. The lateral resolution is governed by the truncation degree \(j^\text{max}_m \leq j^\text{(ii)}_{jm} \). The real parameters \(\rho_{jm}^{k} \) are arranged into a vector \(\mathbf{m} \in \mathcal{M} \) with dimension \(M = K(j^\text{max}_m + 1)^2 \). The parameterization \(\text{(9)} \) is used for all \(r < a - \delta \).

In the uppermost layer of thickness \(\delta = 13 \text{ km} \), the electrical conductivity is not included in the model vector \(\mathbf{m} \), but fixed to an a-priori distribution, taking into account the conductivities of igneous rocks, seawater, continental, coastal, and ocean sediments, along the lines of Everett et al. (2003).

Following Velímský (2013) we solve the regularized inverse problem by finding the minimum of a penalty function
\[
F(\mathbf{m}; \lambda) = \chi^2(\mathbf{m}) + \lambda R^2(\mathbf{m}) \tag{10}
\]
over \(\mathcal{M} \). Here \(\chi^2(\mathbf{m}) \) is the data misfit, measuring the distance between observed data and prediction of
Model	Max. ext. degree/order	Max. int. degree/order	Time sampling	Series length	Data source	Data selection	Comment
0501	2/2	3/3	1.5 h/6 h	5 yr	O, S		Official ESA product
0502	2/1	3/3	1.5 h/6 h	5 yr	O, S		
0503	2/2+3/0	3/3	1.5 h/6 h	5 yr	O, S		
0513	2/2+3/0	3/3	1.5 h/6 h	5 yr	O, S, C		CUP20-OSC5
0601	2/2	3/3	1.5 h/6 h	6 yr	O, S		DW55GM
0602	2/2	3/3	1.5 h/6 h	6 yr	O, S		R50
0603	2/2	3/3	1.5 h/6 h	6 yr	O, S		DW50
0604	2/2+3/0	3/3	1.5 h/6 h	6 yr	O, S		DW55
0605	2/2+3/0	3/3	1.6 h/8 h	6 yr	O, S		CUP-OS6
0606	2/2+3/0	3/3	1.5 h/12 h	6 yr	O, S		DW55
0612	2/2	3/3	1.5 h/6 h	6 yr	O, S, NS, R55		
0613	2/2	3/3	1.5 h/6 h	6 yr	O, S, NS, R55, NI		

Table 1. Overview of various datasets for which the 3-D conductivity inversion is attempted. The datasets vary by the truncation degree and order of the external field, time sampling (the first value corresponds to the external and internal dipole terms 1/0, the second value to all other terms), the length of series, the inclusion of observatory, Swarm, and CryoSat-2 data (O, S, and C, respectively), and data selection. DW55GM: data polewards of dipole latitude 55° down-weighted by \(\sin(\vartheta_{GM})/100 \); DW50, DW55: data polewards of dipole latitude 50° or 55° down-weighted by \(\sin(\vartheta_{GC})/100 \); R50, R55: data polewards of dipole latitude 50° or 55° removed, NS: only night-side data, when the Sun is at least 10° below horizon are used; NI: the Comprehensive model of the ionosphere is not subtracted from data. \(\vartheta_{GM} \) and \(\vartheta_{GC} \) stand for geomagnetic (dipole) and geocentric colatitudes, respectively.

In the forward problem. Let \(G_{jm}^{(i)}(m; t_i) \) be the solution of the forward problem, excited by the series of external field coefficients \(G_{jm}^{(e)}(t_i) = G_{jm}^{(e, obs)}(t_i) \), and using the conductivity model \(\sigma(m; r) \) obtained from a particular realization of \(m \in M \) using equation (9). The data misfit is then defined as

\[
\chi^2(m) = \sum_{ijm} \sum_{ij'm'} N_{jj'} \left(G_{jm}^{(i)}(m; t_i) - G_{jm}^{(i, obs)}(t_i) \right) D_{jj'm'm'} \left(G_{jm}^{(i)}(m; t_i') - G_{jm}^{(i, obs)}(t_i') \right),
\]

where

\[
N_{jj'} = \sqrt{(2j+1)(j+1)(2j'+1)(j'+1)} / 8\pi \bar{N}
\]

(11)
The regularization function $R^2(m)$ in the present work constrains the L_2 norm of the first spatial derivative of the log-conductivity over the volume $G_δ$, which excludes the uppermost layer,

$$R^2(m) = \frac{1}{a} \int_{G_δ} \left| \nabla \log \frac{\sigma(m; r)}{\sigma_0} \right|^2 dV.$$ \hspace{1cm} (13)

Thus, the fixed near-surface conductivity map, and its interface with the underlying mantle do not contribute to the regularization value. Other options were also explored (e.g., constraining the second derivatives of log-conductivity, or using different weighting of radial and lateral parts of the smoothing operators), but the results do not convey any substantially different information, and are not presented here.

The penalty function $F(m; \lambda)$ defined in equation (10) is minimized for a series of 15 regularization coefficients $\lambda = (5, 2, 1, 0.5, 0.2, 0.1, \ldots, 0.0001)$, providing a series of models

$$\hat{m}(\lambda) = \arg \min_{m \in M} F(m; \lambda).$$ \hspace{1cm} (14)

The first run for $\lambda = 5$ is started from $m = 0$, corresponding to a homogeneous sphere with unit conductivity, and each subsequent run is initiated at the minimum obtained for the nearest larger λ. The minimization algorithm is based on the limited-memory quasi-Newton method with Broyden-Fletcher-Goldfarb-Shanno formula (Press et al. 1992, Section 10.7) used for gradual updates of the approximate Hessian. The gradient of the data misfit in the model space $\nabla m \chi^2(m)$ is evaluated using the adjoint approach (Velímský 2013; Maksimov and Velímský 2017). Finally, the data misfits $\chi^2(\hat{m}(\lambda))$ are plotted versus the regularizations $R^2(\hat{m}(\lambda))$, in the form of L-curve (Hansen 1992). The optimal regularization parameter $\hat{\lambda}$ and corresponding model $\hat{m}(\hat{\lambda})$ are then chosen visually near the maximum inflection point, thus balancing the data misfit and the regularization function. Figure 3 presents the L-curves obtained for the two inversion runs described in detail below.

Sensitivity analysis

We use the methodology described by Maksimov and Velímský (2017) to calculate the data Hessian matrix in the final, optimally-regularized model $\hat{m}(\hat{\lambda})$,

$$H_\chi = \left. \nabla_m \nabla m \chi^2(m) \right|_{m = \hat{m}(\hat{\lambda})}.$$ \hspace{1cm} (15)

for each dataset. The efficient algorithm based on the combination of the forward, adjoint, forward scatter, and adjoint scatter problems allows the assembly of the entire matrix at the cost equivalent
to $2M + 2$ forward runs. The Hessian matrix provides a useful insight into the sensitivity of data to individual model parameters. Figure 7 shows the data Hessians for the models presented in this paper, and detailed discussion is presented in the next section.

Inversion settings

The input settings used for the CUP20-OSC5 and CUP20-OS6 runs are summarized in Table 2, together with the respective diagnostics results. The radial parameterization of the conductivity model is selected closely to the previous 3-D inversions by Semenov and Kuvshinov (2012, further referenced as ETH12) and Sun et al. (2015, further referenced as OSU15). The layer interfaces are placed at the depths of 40, 250, 410, 520, 670, 900, 1200, 1600, 2400, and 2891.2 km. The lateral resolution of the forward solver is set to $j_{\text{max}} = 8$, and the layers from the inverse model are further discretized into 192 radial nodes, comprising also the near-surface layer, and the core with constant conductivity of $2 \times 10^5 \text{S/m}$.

Parameter	$j^{(c)}_{\text{max}}$	$j^{(i)}_{\text{max}}$	j^ρ_{max}	K	$\tau = \Delta t$	M	N	$\bar{\lambda}$	$\chi^2 \left(\tilde{m}(\bar{\lambda}) \right)$	$R^2 \left(\tilde{m}(\bar{\lambda}) \right)$
CUP20-OSC5	3	3	3	10	6 hrs	160	7447	0.01	22.2668	33.4675
CUP20-OS6	3	3	3	10	6 hrs	160	9273	0.01	22.9205	34.7972

Table 2. The input settings, and the diagnostics outputs (regularization parameter, data misfit, and regularization value) of the 3-D runs presented in this paper.

Results

We start this section by comparison of the 1-D, spherically symmetric part of the recovered 3-D models. It is governed only by the ρ_{600}^k components of the model vector \mathbf{m}. Figure 4 shows the 1-D profiles for all 3-D inversion runs of various CI datasets. The CUP20-OSC5 and CUP20-OS6 models are marked respectively by thick red and blue lines. In addition, we show by thick black line the 1-D conductivity profile MIN1DM0501, which was obtained by joint regularized inversion of satellite-derived C-responses and M_2 tidal signals (Grayver et al. 2017). Although this approach uses different datasets, model parameterization and regularization, and the forward modelling is based on the integral-equation method in the frequency domain, there is remarkable agreement between the 1-D profiles below 250 km. Our models fail to resolve the low-conductivity layer below the lithosphere-asthenosphere boundary, but this is expected as the periods shorter than 6 hrs are filtered out from our input datasets. Use of alternative settings of the data processing in the CI has the largest impact on the 1-D conductivity profiles in the
upper mantle. Below 900 km the spherically symmetric parts of all models are in good agreement.

Figures 5 and 6 compare the lateral cross-sections of CUP20-OSC5, CUP20-OS6, OSU15-j3, and ETH12-j3 models in the upper and lower mantle, respectively. In order to compare only the large-scale features of all models, we have low-pass filtered the OSU15 and ETH12 models by least-squares fitting of the SH series up to degree $j_\rho^{\text{max}} = 3$ from equation (9) into the grid values of log-conductivity in each layer, hence the -j3 appendage. The lateral variations in the ETH12-j3 model start only below the depth of 520 km. We can observe some systematic features in the CUP20-OSC5, CUP20-OS6, OSU15-j3, and ETH12-j3 models throughout the transition zone of the upper mantle. All four models prefer increased conductivity below Euroasia, the southern Pacific and the Indian Ocean, and lower conductivity below the western Pacific. The largest disagreement between the models is below South America. Here both CUP20 models, and to a lesser extent also the ETH12-j3 model, infer a conductivity increase from the Pacific coast, across the continent, and further into the South Atlantic, while the OSU15-j3 model shows rather weaker lateral dependence, and in the opposite direction. The ETH12-j3 model is significantly more conductive in the lowest part of the transition zone, and shows less lateral variations.

In Figure 6 we summarize the results of the four conductivity models for the lower mantle. Note that the color scale changes with respect to the one used in Figure 5. However, it remains consistent across the models. In the uppermost part of the lower mantle we observe good agreement between both CUP20 models and the ETH12-j3 model in the position of the lateral conductivity heterogeneities, although in the latter case more suppressed by regularization. Increased conductivity is observed below the South America, and Eurasia, and there is also a less distinct conductive patch below the southern Pacific. This feature also occurs in the OSU15-j3 model. On the other hand, a large negative conductivity anomaly is present below both Americas only in the OSU15-j3 model.

Proceeding below the depths of 1000 km, the OSU15-j3, and the ETH12-j3 models show almost no large-scale lateral conductivity variations. However, in the case of CUP20 models, it is interesting to compare the lower-mantle conductivity features with the distribution of the large low shear-wave velocity provinces (LLSVP) observed by seismic tomography (Lekic et al. 2012). A conductive feature similar in its shape and size to the African LLSVP, although partially shifted to the east, is present in both of our models, spanning from the Eurasia to the southern Indian Ocean. A second conductive feature overlaps well with the Pacific LLSVP, although it seems to extend further below the South America, which is not observed in the tomography models. A resistive area spanning the entire depth of the lower mantle in the CUP20
models is located below the Australia. This feature is consistent with the inversion of monthly mean
values from geomagnetic observatories by Tarits and Mandea (2010) not shown here).

Finally, the sensitivity of the datasets used in the inversions to individual model parameters of CUP20-
OS6 and CUP20-OSC5 is assessed by studying the respective Hessians in Figure 7. Note that the
sensitivities provide only a relative information, and they can be artificially bolstered in thicker layers
covering more volume. In both cases, the largest sensitivities are observed below the transition zone, and
slowly decreasing down to 2400 km. A second, less distinct sensitivity maximum, is present just above the
transition zone, especially for the CUP20-OS6 model. A detailed analysis shows that the regularization
plays a relatively large role at these depths. Throughout the models, there are significant correlations
and anticorrelations between the SH coefficients of the same degree and order across neighbouring layers,
which quickly fall off for more distant layers. Within each layer, the diagonal sensitivities dominate, and
they decrease with increasing SH degree.

Conclusions

Together with the accompanying paper [Kuvshinov et al. submitted], our work represents the first attempt
to obtain the three-dimensional image of mantle conductivity using satellite data. Small number of
satellites is the main limiting factor in these studies. As we deal with the transient signals originating in
the magnetosphere, and their induced counterparts, the separation of temporal and spatial variations from
observations on a moving platform becomes a challenging problem with some necessary trade-offs. So far,
the process of CI has been able to recover the time series of external and induced field coefficients up to
degree and order 3, with time resolution starting at 6 hrs. Hence, the 3-D conductivity inversion must be
focused on the lower mantle, and only large-scale, averaged features can be reconstructed from the data.
The 3-D conductivity models discussed in the preceding section have recovered robust features which have
only small sensitivity to the changes in model parameterizations and data filtering settings in the CI. The
inclusion of CryoSat-2 platform magnetometer data had only small influence on the inversion results, it
did allow for a slightly larger reduction of the data misfit in the CUP20-OSC5 inversion. However, it is
not sufficient to significantly increase the spatial resolution of the inversion. It remains an open question,
whether inclusion of additional platform magnetometer data with Swarm-derived calibration will enable
us to progress to SH degree 5 or beyond in the near future.
Availability of data and materials

The time series of external and internal field coefficients used in this study are available either from the webserver of the European Space Agency https://swarm-diss.eo.esa.int/, or from the Swarm ESL ftp server ftp://ftp.space.dtu.dk/data/magnetic-satellites/Swarm/SCARF/CI/. The OSU15 model is provided by IRIS, https://ds.iris.edu/ds/products/emc-globalem-2015-02x02 and the ETH12 model is kindly provided by its authors on request. The models CUP20-OSC5 and CUP20-OS6 are available from the authors on request.

Competing interests

There are no competing interests.

Funding

This research is funded by the Grant Agency of the Czech Republic, project No. 20-07378S, and the Swarm DISC activities, ESA contract No. 4000109587. The computational resources were provided by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center — LM2015070”, project ID OPEN-18-46. OK acknowledges the support of the Student Grant of the Charles University.

Authors’ contributions

JV is the author of the 3-D forward and inversion modelling software, and responsible for most calculations, and writing the manuscript. OK contributed to the improvements of the regularization implementation, and was responsible for the calculations of Hessians.

Acknowledgments

We thank T. Sabaka, N. Olsen, and L. Tøffner-Clausen for making available the results of CI. This research depends on the continuous operation of the global network of geomagnetic observatories and data processing centers associated with Intermagnet, and on the operation of ESA satellite missions. Their contributions are greatly appreciated.
Civet, F., Thébault, E., Verhoeven, O., Langlais, B., and Saturnino, D. Electrical conductivity of the earth’s mantle from the first swarm magnetic field measurements. *Geophysical Research Letters*, 42(9):3338–3346, 2015. doi: 10.1002/2015GL063397. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL063397.

Everett, M. E., Constable, S., and Constable, C. Effects of near-surface conductance on global satellite induction responses. *Geophys. J. Int.*, 153:277–286, 2003.

Grayver, A. V., Munch, F. D., Kuvshinov, A. V., Khan, A., Sabaka, T. J., and Tøffner-Clausen, L. Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone. *Geophys. Res. Lett.*, 44:6074–6081, 2017.

Hansen, P. Analysis of discrete ill-posed problems by means of the L-curve. *SIAM Review*, 34:561–580, 1992.

Kelbert, A., Schultz, A., and Egbert, G. Global electromagnetic induction constraints on transition-zone water content variations. *Nature*, 460:1003–1005, 2009.

Kuvshinov, A. Global 3-D EM studies of the solid Earth: Progress status. In Spichak, V. V., editor, *Electromagnetic Sounding of the Earth’s Interior*, pages 1–21. Elsevier, Boston, second edition, 2015.

Kuvshinov, A. and Olsen, N. A global model of mantle conductivity derived from 5 years of champ, Ørsted, and sac-c magnetic data. *Geophys. Res. Lett.*, 33:L18301, 2006.

Kuvshinov, A., Grayver, A., Tøffner-Clausen, L., and Olsen, N. Mapping 3-D mantle electrical conductivity using 6 years of Swarm, Cryosat-2 and observatory data and exploiting matrix Q-responses approach. *Earth, Planets and Space*, submitted.

Lekic, V., Cottaar, S., Dziewonski, A., and Romanowicz, B. Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. *Earth and Planetary Science Letters*, 357-358:68 – 77, 2012. ISSN 0012-821X. doi: https://doi.org/10.1016/j.epsl.2012.09.014. URL http://www.sciencedirect.com/science/article/pii/S0012821X12005109.

Maksimov, M. A. and Velímský, J. Fast calculations of the gradient and the Hessian in the time-domain global electromagnetic induction inverse problem. *Geophys. J. Int.*, 210:270–283, 2017.

Martinec, Z., Velímský, J., Haagmans, R., and Šachl, L. A two-step along-track spectral analysis for estimating the magnetic signals of magnetospheric ring current from Swarm data. *Geophys. J. Int.*, 255(3):1978–1991, 2021.
Olsen, N., Albini, G., Bouffard, J., Parrinello, T., and Tøffner-Clausen, L. Magnetic observations from cryosat-2: calibration and processing of satellite platform magnetometer data. *Earth, Planets and Space*, 72(1), 2020. ISSN 1880-5981. doi: 10.1186/s40623-020-01171-9. URL https://doi.org/10.1186/s40623-020-01171-9.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. *Numerical recipes in Fortran. The art of scientific computing*. Cambridge University Press, Cambridge, 1992.

Püthe, C., Kuvshinov, A., Khan, A., and Olsen, N. A new model of Earth’s radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data. *Geophys. J. Int.*, 203(3):1864–1872, 2015. doi: 10.1093/gji/ggv407. URL http://dx.doi.org/10.1093/gji/ggv407.

Sabaka, T. J., Tøffner-Clausen, L., and Olsen, N. Use of the Comprehensive Inversion method for Swarm satellite data analysis. *Earth, Planets and Space*, 65:1201–1222, 2013.

Sabaka, T. J., Tøffner-Clausen, L., Olsen, N., and Finlay, C. C. A comprehensive model of Earth’s magnetic field determined from 4 years of Swarm satellite observations. *Earth, Planets and Space*, 70:130, 2018.

Sabaka, T. J., Tøffner-Clausen, L., Olsen, N., and Finlay, C. C. CM6: a comprehensive geomagnetic field model derived from both champ and swarm satellite observations. *Earth, Planets and Space*, 72:80, 2020.

Semenov, A. and Kuvshinov, A. Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses–II. Data analysis and results. *Geophys. J. Int.*, 191(3):965–992, 2012.

Stolle, C., Olsen, N., Richmond, A., and Opgenoorth, H., editors. *Earth’s Magnetic Field: Understanding Geomagnetic Sources from the Earth’s Interior and its Environment*. International Space Science Institute. Space Science Series. Springer, 2018. Originally published in Space Science Reviews, Volume 206, Issue 1-4, March 2017.

Sun, J., Kelbert, A., and Egbert, G. D. Ionospheric current source modeling and global geomagnetic induction using ground geomagnetic observatory data. *J. Geophys. Res. Solid Earth*, 120:6771–6796, 2015.

Tarits, P. and Mandéa, M. The heterogeneous electrical conductivity structure of the lower mantle. *Physics of the Earth and Planetary Interiors*, 183(1):115 – 125, 2010. ISSN 0031-9201. doi: https://doi.org/10.1016/j.pepi.2010.08.002. URL
http://www.sciencedirect.com/science/article/pii/S0031920110001561. Special Issue on Deep Slab and Mantle Dynamics.

Velímský, J. Determination of three-dimensional distribution of electrical conductivity in the Earth’s mantle from swarm satellite data: Time-domain approach. *Earth, Planets and Space*, 65:1239–1246, 2013.

Velímský, J. and Martinec, Z. Time-domain, spherical harmonic-finite element approach to transient three-dimensional geomagnetic induction in a spherical heterogeneous Earth. *Geophys. J. Int.*, 160:81–101, 2005.

Velímský, J. Electrical conductivity in the lower mantle: Constraints from CHAMP satellite data by time-domain EM induction modelling. *Physics of the Earth and Planetary Interiors*, 180:111–117, 2010.

Figure 1. Time series of external (top) and internal (bottom) field coefficients for CI model 0503, after normalization and time averaging.

Figure 2. One block of the inverse covariance matrix corresponding to time level 2018.0, CI model 0503, after normalization and time averaging.

Figure 3. Tradeoff plots between data misfit and regularization (the L-curves) for CUP20-OS6 (left) and CUP20-OCS5 (right) inversions, respectively.

Figure 4. Spherically symmetric electrical conductivity profiles. Models MIN1DM_0501, CUP20-OSC5, and CUP20-OS6 are shown respectively with black, red, and blue thick lines. The spherically symmetric parts of other models obtained by inversions of the remaining datasets in Table I are shown by thin lines of various colors without further distinction.
Figure 5. Cross-sections of electrical conductivity models CUP20-OS6, CUP20-OSC5, OSU15-j3, and ETH12-j3 in the upper mantle.

Figure 6. Cross-sections of electrical conductivity models CUP20-OS6, CUP20-OSC5, OSU15-j3, and ETH12-j3 in the lower mantle.

Figure 7. Hessians (second derivatives of data misfit) obtained for the final models CUP20-OS6 (top) and CUP20-OSC5 (bottom), respectively. The parameters on the horizontal and vertical axes are ordered from left to right, and top to bottom, respectively. The outer index corresponds to layers and depths, with individual layers separated by the gridlines. The inner joint degree-order index is similar to Figure with the addition of (0, 0) term at the beginning of each layer block. Only the degree is annotated.
Fig 1
Fig 2

$t = 2018.0$

\[D_{j m j'} m' \]
Fig3

CUP20–OS6

CUP20–OSC5
Fig 3

- σ (S/m)
- h (km)

Lines represent different models:
- MIN1DM_0501
- CUP20–OSC5
- CUP20–OS6
CUP20–OS6

CUP20–OSC5

Fig 7
