Supporting Information

NMR-assisted prediction of secondary structure for RNA: Incorporation of direction-dependent NMR constraints limits folding space

Jonathan L. Chen1*, Stanislav Bellaousov2*, Jason D. Tubbs1, Scott D. Kennedy2, Michael J. Lopez1, David H. Mathews2,3, Douglas H. Turner1,3†

1 Department of Chemistry, University of Rochester, Rochester, New York, 14627, USA.

2 Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.

3 Center for RNA Biology, University of Rochester, Rochester, New York, 14627, USA.

jchen46@ur.rochester.edu, Stanislav_Bellaousov@urmc.rochester.edu, jtubbs41781@gmail.com, Scott_Kennedy@urmc.rochester.edu, mjlopez713@gmail.com, David_Mathews@urmc.rochester.edu, turner@chem.rochester.edu

*These authors contributed equally to this work.

†To whom correspondence should be addressed. Phone: (585) 275-3207. Fax: (585) 276-0205. E-mail: turner@chem.rochester.edu.

This work was supported by NIH Grant GM22939 (D.H.T.).
Figure S1 2D imino and NOESY walk region spectra of r(CUUGCUAG)₂.

Figure S2 2D imino and NOESY walk region spectra of r(AGGCUCUU)₂

Figure S3 NMR spectra of human HAR1 showing imino proton walks for helix P2.

Figure S4 NMR spectra of human HAR1 showing imino proton walks for helix P3.

Figure S5 NMR spectra of human HAR1 showing imino proton walks for helix P4.

Figure S6 NMR spectra of the 75-nt B. mori R2 retrotransposon pseudoknot showing an imino proton walk for base pairs G1:C57 to C5:G53.

Figure S7 NMR spectra of the 75-nt B. mori R2 retrotransposon pseudoknot showing an imino proton walk for base pairs G10:C29 to C14:G25 and C16:G23 to C17:G22.

Figure S8 NMR spectra of the 75-nt B. mori R2 retrotransposon pseudoknot showing an imino proton walk for base pairs G32:C75 to U35:G72.

Figure S9 NMR spectra of the 75-nt B. mori R2 retrotransposon pseudoknot showing an imino proton walk for base pairs G37:C71 to U42:G66 and A43:U52 to C44:G51, including a connection across coaxially stacked helixes.

Figure S10 Five structures without pseudoknots used to benchmark NAPSS.

Figure S11 Structures that NAPSS failed to predict.

Table S1 Acquisition parameters used in NMR experiments on HAR1.

Table S2 Chemical shift assignments for r(AGGCUCUU)₂.

Table S3 Chemical shift assignments for r(AGUCGAUU)₂.

Table S4 Chemical shift assignments for r(CUUGCUAG)₂.

Table S5 Chemical shift assignments for r(CAGUCGAUU)₂.

Table S6 Chemical shift assignments for r(CCGAAUUUUG)₂.

Table S7 Chemical shift assignments for r(CGAAAUUUCG)₂.

Table S8 Chemical shift assignments for r(CGUGAUUACG)₂.

Table S9 Chemical shift assignments for r(CGUGAUUACG)₂.

Table S10 Chemical shift assignments for r(UGGAAUUCG)₂.
Table S11 Chemical shift assignments for \(r(\text{GAGAGCUUU}UC)_2 \).
Table S12 Chemical shift assignments for \(r(\text{GAGGAUCUU}UC)_2 \).
Table S13 Chemical shift assignments for \(r(\text{GU}GAAUUU\text{U}AC)_2 \).
Table S14 Assigned \(^1\text{H} \) and \(^{15}\text{N} \) chemical shifts for HAR1.
Table S15 Assigned \(^1\text{H} \) and \(^{15}\text{N} \) chemical shifts for the 75-nt \(B. \text{mori} \) R2 retrotransposon pseudoknot.
Table S16 NMR constraints used to predict the structure of \(B. \text{mori} \) R2 retrotransposon pseudoknot (74-nt).
Table S17 NMR constraints used to predict the structure of \(B. \text{mori} \) R2 retrotransposon pseudoknot (75-nt).
Table S18 NMR constraints used to predict the structure of \(E. \text{coli} \) tmRNA pseudoknot.
Table S19 NMR constraints used to predict the structure of human hepatitis delta virus ribozyme pseudoknot.
Table S20 NMR constraints used to predict the structure of mouse mammary tumor virus modified frameshifting pseudoknot.
Table S21 NMR constraints used to predict the structure of pea enation mosaic virus pseudoknot.
Table S22 NMR constraints used to predict the structure of \(S. \text{pneumoniae} \) preQ\textsubscript{1-II} riboswitch.
Table S23 NMR constraints used to predict the structure of simian retrovirus-1 mutant frameshifting pseudoknot.
Table S24 NMR constraints used to predict the structure of simian retrovirus-1 wild type frameshifting pseudoknot.
Table S25 NMR constraints used to predict the structure of \(B. \text{subtilis pbuE} \) adenine riboswitch aptamer mutant.
Table S26 NMR constraints used to predict the structure of \(B. \text{subtilis} \) tRNA\textsubscript{Trp}.
Table S27 NMR constraints used to predict the structure of bovine tRNA\textsubscript{Trp}.

3
Table S28 NMR constraints used to predict the structure of influenza A segment 7 multibranch loop.

Table S29 NMR constraints used to predict the structure of Medaka telomerase RNA CR4/5 domain multibranch loop.

Table S30 NMR constraints used to predict the structure of moloney murine leukemia virus core encapsidation signal multibranch loop.

Table S31 NMR constraints used to predict the structure of *S. cerevisiae* group II intron *Sc.ai5γ* domain 1 κ-ζ multibranch loop.

Table S32 NMR constraints used to predict the structure of tobacco ringspot virus adenine-dependent hairpin ribozyme.

Table S33 NMR constraints used to predict the structure of *K. lactis* telomerase RNA pseudoknot.

Table S34 NMR constraints used to predict the structure of murine leukemia virus recording signal pseudoknot.
Spectral analysis of \textit{r(CUGGCUAG)}\textsubscript{2} and \textit{r(AGGC\textsubscript{U}U)}\textsubscript{2}

2D NOESY spectra for \textit{r(CUGGCUAG)}\textsubscript{2} were obtained with mixing times of 100 ms and 400 ms at 5 °C. The G3H1 and U6H3 protons were assigned according to their positions in the imino region of the 100 ms spectrum (Figure S1). Cross-peaks to G3H1 and U6H3 identified the G4H1 resonance while an NOE to A7H2 at around 7.12 ppm was used to identify U2H3. Cross-peaks between amino protons and H5 of C in NOESY spectra were used to differentiate their H5- H6 cross-peaks from those of U. The H5 of the terminal C1 residue is characteristically downfield from that of C5. H1’ to H6 and H8 resonances form a sequential walk, and the assignments of G3H1’ and G8H1’ were confirmed by interstrand and intrastrand NOE contacts, respectively, to A7H2 (Figure S1).

2D NOESY spectra for \textit{r(AGGC\textsubscript{U}U)}\textsubscript{2} were obtained with mixing times of 100 ms and 400 ms at 0 °C and 8 °C, respectively. The longer mixing-time 2D NOESY spectrum was acquired at 8 °C because aromatic peaks were well-resolved at this temperature among a series of 1D 11-echo spectra acquired at different temperatures. The G2H1 and U5H3 wobble pair and G3H1 imino protons were assigned according to their positions in the imino region in the 100 ms spectrum (Figure S2). Among the pyrimidine H5 protons, C4H5 has a cross-peak to C4H41/H42 and U5H5 has a cross-peak to G2H1. U6H5 was thereby assigned through process of elimination. Assignments for aromatic and H1’ peaks were confirmed with a sequential NOESY walk with the 400 ms spectrum (Figure S2). Within this region, G3H8 has a cross-peak to C4H5. H1’ cross-peaks to H2’ in the 400 ms spectrum were larger than those to H3’. Cross-peaks from A1H8 to its own H1’, H2’ and H3’ were used to differentiate A1H8 from A1H2.
Figure S1: 2D imino (top) and NOESY walk (bottom) region spectra of r(CUGCUAG)$_2$. The top spectrum was acquired with 100 ms mixing time at 5 °C and the bottom spectrum was acquired with 400 ms mixing time at 5 °C. Both spectra were acquired with a WATERGATE pulse to suppress water.
Figure S2: 2D imino (top) and NOESY walk (bottom) region spectra of r(AGGCUU)$_{2}$. The top spectrum was acquired with 100 ms mixing time at 0 °C and the bottom spectrum was acquired with 400 ms mixing time at 8 °C. Both spectra were acquired with a WATERGATE pulse to suppress water.
Figure S3: NMR spectra of human HAR1 showing imino proton walks for helix P2 (see Figure 9 for secondary structure). The top spectrum is a 1H-1H NOESY spectrum acquired at 25 °C with 125 ms mixing time. Colored lines depict imino proton walks for helix P2 and correspond to base pairs in Figure 9 with the same colors. Colored dots represent base pair type (red is GC). A sequence of dots for the imino proton walk is in the lower right of the spectrum. The red box around the sequence of dots corresponds to the red base pairs in Figure 9. The bottom spectrum is a 15N-1H HSQC spectrum acquired at 25 °C.
Figure S4: NMR spectra of human HAR1 showing imino proton walks for helix P3 (see Figure 9 for secondary structure). The top spectrum is a 1H-1H NOESY spectrum acquired at 25 °C with 125 ms mixing time. Colored lines depict imino proton walks for helix P3 and correspond to base pairs in Figure 9 with the same colors. Colored dots represent base pair type (red is GC, blue is AU, and green is GU). Sequences of dots for imino proton walks are in the lower right of the spectrum. Light blue, orange, and purple boxes around sequences of dots correspond to light blue, orange, and purple base pairs in Figure 9. The bottom spectrum is a 15N-1H HSQC spectrum acquired at 25 °C.
Figure S5: NMR spectra of human HAR1 showing imino proton walks for helix P4 (see Figure 9 for secondary structure). The top spectrum is a 1H-1H NOESY spectrum acquired at 15 °C with 60 ms mixing time. Colored lines depict imino proton walks for helix P4 and correspond to base pairs in Figure 9 with the same colors. Colored dots represent base pair type (blue is AU and green is GU). A sequence of dots for the imino proton walk is in the lower right of the spectrum. The box around the sequences of dots is colored according to the U79:G104 and U80:A103 base pairs in Figure 9. The bottom spectrum is a 15N-1H HSQC spectrum acquired at 25 °C.
Figure S6: NMR spectra of the 75-nt *B. mori* R2 retrotransposon pseudoknot showing an imino proton walk for base pairs G1:C57 to C5:G53 (see Figure 11 for secondary structure). The top spectrum was acquired at 25 °C with 200 ms mixing time. Colored lines depict imino proton for base pairs G1:C57 to C5:G53 and correspond to base pairs in Figure 11 with the same colors. Colored dots represent base pair type (red is GC). A sequence of dots for the imino proton walk is in the lower right of the spectrum. The box around the sequence of dots is colored according to base pairs G1:C57 to C5:G53 in Figure 11. The bottom is a 15N-1H HSQC spectrum acquired at 25 °C.
Figure S7: NMR spectra of the 75-nt B. mori R2 retrotransposon pseudoknot showing an imino proton walk for base pairs G10:C29 to C14:G25 and C16:G23 to C17:G22 (see Figure 11 for secondary structure). The top spectrum was acquired at 25 °C with 200 ms mixing time. Colored lines depict imino proton for base pairs G10:C29 to C14:G25 and C16:G23 to C17:G22 and correspond to base pairs in Figure 11 with the same colors. Colored dots represent base pair type (red is GC and blue is AU). Sequences of dots for the imino proton walk is in the lower right of the spectrum. Green, purple, and red boxes around the sequence of dots correspond to green, purple, and red base pairs in Figure 11. The bottom is a 15N-1H HSQC spectrum acquired at 25 °C.
Figure S8: NMR spectra of the 75-nt *B. mori* R2 retrotransposon pseudoknot showing an imino proton walk for base pairs G32:C75 to U35:G72 (see Figure 11 for secondary structure). The top spectrum was acquired at 25 °C with 200 ms mixing time. Colored lines depict imino proton for base pairs G32:C75 to U35:G72 and correspond to base pairs in Figure 11 with the same colors. Colored dots represent base pair type (red is GC and green is GU). A sequence of dots for the imino proton walk is in the lower right of the spectrum. The box around the sequence of dots is colored according to base pairs G32:C75 to U35:G72 in Figure 11. The bottom is a 15N-1H HSQC spectrum acquired at 25 °C.
Figure S9: NMR spectra of the 75-nt *B. mori* R2 retrotransposon pseudoknot showing an imino proton walk for base pairs G37:C71 to U42:G66 and A43:U52 to C44:G51, including a connection across coaxially stacked helixes (see Figure 11 for secondary structure). The top spectrum was acquired at 25 °C with 200 ms mixing time. Colored lines depict imino proton for base pairs G37:C71 to U42:G66 and A43:U52 to C44:G51 and correspond to base pairs in Figure 11 with the same colors. Colored dots represent base pair type (red is GC and blue is AU). A sequence of dots for the imino proton walk is in the lower right of the spectrum. The box around the sequence of dots is colored according to base pairs G37:C71 to U42:G66 and A43:U52 to C44:G51 in Figure 11. The bottom is a 15N-1H HSQC spectrum acquired at 25 °C.
Figure S10: Five structures without pseudoknots used to benchmark NAPSS-CS. Colored base pairs correspond to imino proton walks identified from literature NMR spectra (Tables S25 to S32). The sixth secondary structure, HAR1, is shown in Figure 9.
K. lactis telomerase RNA pseudoknot

Murine leukemia virus recording signal pseudoknot

Figure S11: Structures that NAPSS-CS failed to predict. Colored base pairs correspond to imino proton walks identified from literature NMR spectra (Tables S33 and S34).

| Table S1: Acquisition parameters used in NMR experiments on HAR1. |
|---|---|---|---|---|
| Experiment | Number of scans | Relaxation delay (s) | Direct | Indirect | Mixing time (s) |
| | | | complex data | complex data | |
| | | | points and spectral | points and spectral | |
| | | | width in t2 dimension | width in t1 dimension | |
| NOESY 60 | 512 | 0.07 | 15000 | 8550 | 0.06 |
| NOESY 125 | 512 | 0.07 | 15000 | 8550 | 0.125 |
| 13N-1H HSQC | 64 | 0.1 | 15000 | 1500 | |

Table S2: Chemical shift assignments for r(AGGCUU).

Residue	H1'	H2/H5	H6/H8	H1/H3	H41, H42 amino
A1	5.927	7.706	8.337	-	
G2	5.677	-	7.487	11.04	
G3	5.682	-	7.434	13.53	
C4	5.583	5.227	7.577	-	8.553, 7.024
U5	5.751	5.721	7.821	12.00	
U6	5.768	5.675	7.858	-	

H1', H6 and H8 resonances were assigned in 400 ms spectra at 8°C. Other resonances were assigned in 100 ms spectra at 0°C. *Assigned in 400 ms spectra at 8°C.*
Table S3: Chemical shift assignments for r(AGUCGAUU)$_2$.

Residue	H1'	H2/H5	H6/H8	H1/H3	H41, H42 amino
A1	6.031	7.859	8.391	-	
G2	5.731	-	7.713	11.75	
U3	5.521	5.290	7.772	14.44	
C4	5.624	5.590	7.900	-	8.200, 6.905
G5	5.650	-	7.529	12.00	
A6	5.910	7.757	7.690	-	
U7	5.368	5.334	7.468	11.75	
U8	5.823	5.580	7.790	-	

H1’, H6 and H8 resonances were assigned in 400 ms spectra at 12°C. Other resonances were assigned in 100 ms spectra at 1°C unless otherwise noted. * Assigned in 400 ms spectra at 12°C.

Table S4: Chemical shift assignments for r(CUGGCUAG)$_2$.

Residue	H1’	H2/H5	H6/H8	H1/H3	H41, H42 amino
C1	5.515	6.012	8.108	-	8.280, 7.274
U2	5.773	5.548	8.056	14.01	
G3	5.810	-	7.759	10.24	
G4	5.664	-	7.308	13.41	
C5	5.518	5.195	7.497	-	8.429, 7.019
U6	5.649	5.741	7.807	11.68	
A7	5.871	7.124	8.267	-	
G8	5.729	-	7.351	-	

H1’, H6 and H8 resonances were assigned in 400 ms spectra at 5°C. Other resonances were assigned in 100 ms spectra at 5°C.

Table S5: Chemical shift assignments for r(CAGUCGAUUG)$_2$.

Residue	H1’	H2/H5	H6/H8	H1/H3	H41, H42 amino
C1	5.490	6.004	8.133	-	8.370, 7.212
A2	6.079	7.186	8.270	-	
G3	5.638	-	7.040	11.74	
U4	5.460	5.115	7.655	14.42	
C5	5.578	5.584	7.877	-	8.251, 6.837
G6	5.626	-	7.518	11.98	
A7	5.905	7.749	7.731	-	
U8	5.266	5.375	7.553	11.74	
U9	5.574	5.525	7.943	14.00	
G10	5.869	-	7.706	12.66	

H1’, H6 and H8 resonances were assigned in 400 ms spectra at 5°C. Other resonances were assigned in 100 ms spectra at 5°C.
Table S6: Chemical shift assignments for r(CCGAAUUUGG)$_2$.

Residue	H1'	H2/H5	H6/H8	H1/H3	H41, H42 amino
C1	5.518	5.950	8.109	-	8.346, 7.162
C2	5.686	5.572	7.944	-	8.545, 6.892
G3	5.704	-	7.516	9.990	
A4	5.842	7.211	7.726	-	
A5	5.895	7.731	7.713	-	
U6	5.479	5.003	7.557	14.04	
U7	5.596	5.466	7.809	13.76	
U8	5.495	5.743	7.871	11.53	
G9	5.656	-	7.897	12.61	
G10	5.800	-	7.323	13.34	

H1', H6 and H8 resonances were assigned in 400 ms spectra at 20°C. Other resonances were assigned in 100 ms spectra at 5°C.

Table S7: Chemical shift assignments for r(CGGAAUUUCG)$_2$.

Residue	H1'	H2/H5	H6/H8	H1/H3	H41, H42 amino
C1	5.615	5.967	8.060	-	8.169, 7.131
G2	5.856	-	7.829	12.53	
G3	5.746	-	7.217	10.46	
A4	5.889	7.252	7.714	-	
A5	5.867	7.727	7.692	-	
U6	5.483	4.993	7.553	14.03	
U7	5.613	5.500	7.836	13.71	
U8	5.460	5.764	7.997	11.95	
C9	5.488	5.626	7.833	-	8.380, 6.833
G10	5.762	-	7.585	-	

H1', H6 and H8 resonances were assigned in 400 ms spectra at 20°C. Other resonances were assigned in 100 ms spectra at 5°C.

Table S8: Chemical shift assignments for r(CGGAUAUUCG)$_2$.

Residue	H1'	H2/H5	H6/H8	H1/H3	H41, H42 amino
C1	5.577	5.949	8.060	-	8.169, 7.070
G2	5.859	-	7.850	12.56	
G3	5.750	-	7.228	10.51	
A4	5.938	7.797	7.834	-	
U5	5.470	5.088	7.654	13.28	
A6	6.005	7.074	8.123	-	
U7	5.401	5.008	7.524	13.97	
U8	5.513	5.700	7.966	11.95	
C9	5.500	5.625	7.818	-	8.366, 6.795
G10	5.763	-	7.588	-	

H1', H6 and H8 resonances were assigned in 400 ms spectra at 20°C. Other resonances were assigned in 100 ms spectra at 5°C.
Table S9: Chemical shift assignments for r(CGUGAUUACG)$_2$.

Residue	H1'	H2/H5	H6/H8	H1/H3	H41, H42 amino
C1	5.169	5.851	7.877	-	8.219, 6.983
G2	5.749	-	7.724	13.03	
U3	5.579	5.157	7.713	13.74	
G4	5.737	-	7.609	9.884	
A5	5.801	7.722	7.760	-	
U6	5.387	4.965	7.439	14.01	
U7	5.423	5.735	7.912	11.56	
A8	5.802	7.158	8.383	-	
C9	5.323	5.195	7.468	-	8.197, 6.839
G10	5.748	-	7.485	-	

All resonances were assigned in 100 ms spectra at 0°C.

Table S10: Chemical shift assignments for r(CUGGAUUCAG)$_2$.

Residue	H1'	H2/H5	H6/H8	H1/H3	H41, H42 amino
C1	5.550	6.011	8.137	-	8.201, 7.272
U2	5.648	5.487	8.090	13.93	
G3	5.881	-	7.773	11.87	
G4	5.659	-	7.139	10.48	
A5	5.918	7.844	7.753	-	
U6	5.459	5.008	7.482	14.09	
U7	5.514	5.750	7.954	11.92	
C8	5.680	5.680	7.896	-	8.358, 6.891
A9	5.806	7.154	7.959	-	
G10	5.704	-	7.289	13.59	

H1’, H6 and H8 resonances were assigned in 400 ms spectra at 20°C. Other resonances were assigned in 100 ms spectra at 5°C.

Table S11: Chemical shift assignments for r(GAGAGCUUUC)$_2$.

Residue	H1'	H2/H5	H6/H8	H1/H3	H41, H42 amino
G1	5.670	-	8.015	-	
A2	6.129	7.408	8.091	-	
G3	5.665	-	6.934	10.62	
A4	5.887	7.509	7.628	-	
G5	5.665	-	7.205	13.43	
C6	5.527	5.147	7.607	-	8.561, 6.906
U7	5.561	5.423	7.789	14.04	
U8	5.470	5.789	8.003	11.76	
U9	5.529	5.629	8.106	14.49	
C10	5.806	5.681	7.724	-	8.221, 7.026

H1’, H6 and H8 resonances were assigned in 400 ms spectra at 20°C. Other resonances were assigned in 100 ms spectra at 5°C.
Table S12: Chemical shift assignments for r(GAGGAUCUUC)$_2$.

Residue	H1'	H2/H5	H6/H8	H1/H3	amino
G1	5.695	-	8.028	12.32	
A2	6.147	7.525	8.098	-	
G3	5.628	-	6.914	10.92	
G4	5.709	-	7.191	12.56	
A5	5.982	7.799	7.743	-	
U6	5.531	5.038	7.630	14.10	
C7	5.570	5.570	7.705	-	8.360, 6.955
U8	5.606	5.674	7.867	11.75	
U9	5.555	5.631	8.085	14.40	
C10	5.838	5.702	7.728	-	8.241, 7.070

H1’, H6 and H8 resonances were assigned in 400 ms spectra at 25°C. Other resonances were assigned in 100 ms spectra at 5°C.

Table S13: Chemical shift assignments for r(GUGAAUUUAC)$_2$.

Residue	H1'	H2/H5	H6/H8	H1/H3	amino
G1	5.708	-	8.048	-	
U2	5.776	5.163	7.949	14.11	
G3	5.789	-	7.725	9.885	
A4	5.769	7.156	7.713	-	
A5	5.880	7.716	7.742	-	
U6	5.480	4.965	7.580	14.02	
U7	5.595	5.480	7.834	13.70	
U8	5.386	5.780	7.966	11.56	
A9	5.857	7.342	8.369	-	
C10	5.645	5.239	7.369	-	8.175, 7.030

H1’, H6 and H8 resonances were assigned in 400 ms spectra at 12°C. Other resonances were assigned in 100 ms spectra at 5°C.
Residue	H1/H3	H2	N1/N3
G2	12.82		
G3	13.15	149.1	
U4	13.52	162.6	
G5	11.64	146.9	
A6		6.99	
A7		7.08	
A8		7.72	
G11	11.71	147.2	
A12		7.35	
G13	12.68	148.3	
G14	12.27	147.9	
G19/G30	13.10/12.65	149.0/148.0	
G36	12.83	148.3	
U38	11.52	158.7	
G44	11.57	146.5	
A45		7.68	
U46	11.26	158.9	
G49/G51	13.16/12.61	149.1/148.7	
G57	12.90	148.4	
G61	11.15	145.0	
U62	14.20	163.5	
G67	10.32	143.5	
G68	13.18	149.1	
U79	11.68b	158.8	
U80	14.05b		
A103		7.18b	
G104	10.55b	143.5	
U112	13.82	163.0	
G116	12.93	148.6	
U117	14.09	163.0	
U118	13.79	163.3	
U119	13.63	163.4	
A121		7.34	

1H chemical shifts were assigned at 25 °C unless otherwise noted. 15N chemical shifts were assigned at 20 °C. "Ambiguous. Assigned at 15 °C. Residue numbering in the structure reported in this work is shifted by three residues relative to the consensus sequence."
Table S15: Assigned 1H and 15N chemical shifts for the 75-nt *B. mori* R2 retrotransposon pseudoknot.

Residue	1H/H3	H2	15N/N3
G1	12.04	146.2	
G2	12.88	147.9	
G9	12.31	148.4	
G10	11.96	147.0	
A11	7.62		
G13	12.34	146.6	
G14	12.63	148.0	
G22	12.46	147.4	
G23	12.66	147.9	
G27	12.83	147.4	
U28	14.64	163.4	
A30	7.54		
G32	12.92	148.9	
U35	11.93	158.0	
G37	12.57	148.0	
A39	7.01		
G40	12.82	147.4	
G41	13.16	147.6/148.4a	
U42	13.23	160.8	
A43	6.94		
G49	10.15	143.8	
G50	13.05	147.6	
G51	13.12	148.8	
U52	14.14	163.1	
G53	12.97	147.4	
G54	13.51	148.8	
G55	13.30	149.1	
A66	7.54		
U69	13.32	162.0	
G70	12.45	146.9	
G72	10.42	143.3	
G73	13.14	148.4/147.6a	
G74	13.31	148.5	

1H and 15N chemical shifts were assigned at 25 °C. a Ambiguous.
Notes for Tables S16 to S34: Colors correspond to those in the secondary structure of Error! Reference source not found. and the imino proton walks shown in Error! Reference source not found.. Chemical shifts are submitted to NAPSS-CS as shown on the left and base pairs predicted by NAPSS-CS are shown on the right. Integers 5, 6, and 7 represent AU, GC, and GU pairs, respectively. Numbers in parentheses are chemical shifts for imino protons, respectively. For GU pairs, numbers in parentheses are chemical shifts of GH1, UH3, and UH5, respectively. For AU pairs, numbers in parentheses are chemical shifts of AH2, UH3, and UH5, respectively. For GC pairs, the first number in parentheses is the chemical shift of GH1. For GU and AU pairs, zero means an unavailable chemical shift. For GC pairs, the second two zeros are placeholders for absent chemical shift constraints.

Table S16: NMR constraints used to predict the structure of B. mori R2 retrotransposon pseudoknot (74-nt).

Constraints	Sequence of base pairs predicted by NAPSS-CS
66(12.93 0 0)6(13.29 0 0)6(13.50 0 0)6	G1:C57, G2:C56, C3:G55, C4:G54, C5:G53
65(7.547 14.39 0)6(12.75 0 0)6(12.34 0 0)6	G10:C29, A11:U28, C12:G27, G13:C26, G14:C25
66	G22:C17, G23:C16
66(12.43 0 0)5(6.927 13.27 0)6(12.80 0 0)6(13.07 0 0)5(7.558 13.33 0)5(6.874 14.25 0)6	G37:C71, C38:G70, A39:U69, G40:C68, G41:C67, U42:A66, A43:U52, C44:G51

Chemical shifts (Table S15) are from this work.

Table S17: NMR constraints used to predict the structure of B. mori R2 retrotransposon pseudoknot (75-nt).

Constraints	Sequence of base pairs predicted by NAPSS-CS
66(12.88 0 0)6(13.30 0 0)6(13.51 0 0)6	G1:C57, G2:C56, C3:G55, C4:G54, C5:G53
65(7.618 14.64 0)6	G10:C29, A11:U28, C12:G27
66	G13:C26, G14:C25
66	G22:C17, G23:C16
66(13.31 0 0)6(13.14 0 0)7	G32:C75, C33:G74, C34:G73, U35:G72
66(12.45 0 0)5(7.012 13.32 0)6(12.82 0 0)6(13.16 0 0)5(7.540 13.23 0)5(6.937 14.14 0)6	G37:C71, C38:G70, A39:U69, G40:C68, G41:C67, U42:A66, A43:U52, C44:G51

Table S18: NMR constraints used to predict the structure of E. coli tmRNA pseudoknot.

Constraints	Sequence of base pairs predicted by NAPSS-CS
65(13.4 0 0)6	G2:C18, A3:U17, G4:C16, G5:C15
66(13.1 0 0)6(12.2 0 0)6(13.6 0 0)7	G7:C30, C8:G29, G9:C28, G10:C27, U11:G26

Table S19: NMR constraints used to predict the structure of human hepatitis delta virus ribozyme pseudoknot.

Constraints	Sequence of base pairs predicted by NAPSS-CS
76(13.40 0 0)6(13.21 0 0)56	G2:U37, G3:C36, G4:C35, U5:A34, C6:G33
67(11.60 11.94 0)56(12.40 0 0)6	G12:C63, G13:U62, U14:A61, C15:G60, C16:G59
66(12.67 0 0)6	G18:C30, C19:G29, C20:G28
556	A42:U51, U43:A50, C44:G49
Table S20: NMR constraints used to predict the structure of mouse mammary tumor virus modified frameshifting pseudoknot.	
Constraints	Sequence of base pairs predicted by NAPSS-CS
66(13.13 0 0)6	G1:C19, G2:C18, C3:G17
66	G4:C16, C5:G15
66(12.60 0 0)6	G9:C32, G10:C31, G11:C30

| Table S21: NMR constraints used to predict the structure of pea enation mosaic virus pseudoknot. |
Constraints	Sequence of base pairs predicted by NAPSS-CS
66(12.97 0 0)6(12.81 0 0)6	C6:G19, C7:G18, G8:C17, G9:C16
65(7.69 14.25 4.81)6	G12:C21, A13:U30, C14:G29

| Table S22: NMR constraints used to predict the structure of S. pneumoniae preQ1-II riboswitch. |
Constraints	Sequence of base pairs predicted by NAPSS-CS
66(13.485 0 0)5(7.369 13.937 5.308)5(6.683 13.099 5.55)6(11.922 0 0)6(13.172 0 0)5(7.087 14.117 5.032)6	G1:C28, C2:G27, U3:A26, U4:A25, G5:C24, G6:C23, U7:A22, G8:C21
55(7.41 14.362 5.377)6(12.759 0 0)7(10.463 11.972)5(7.55 13.865 5.359)6	G38:C49, C39:G48, G40:C47
A52:U19, A53:U18, G54:C17, G55:U16, A56:U15, G57:C14	

| Table S23: NMR constraints used to predict the structure of simian retrovirus k1 mutant frameshifting pseudoknot. |
Constraints	Sequence of base pairs predicted by NAPSS-CS
66(12.5 0 0)6(12.6 0 0)6(13.2 0 0)6(13.3 0 0)6	G3:C21, G4:C20, G5:C19, G6:C18, C7:G17, C8:G16
66(13.0 0 0)6(12.25 0 0)6(12.6 0 0)6	G10:C39, C11:G38, G12:C37, G13:C36, G14:C35

| Table S24: NMR constraints used to predict the structure of simian retrovirus k1 wild type frameshifting pseudoknot. |
Constraints	Sequence of base pairs predicted by NAPSS-CS
66(12.5 0 0)6(12.6 0 0)6(13.2 0 0)6	G3:C21, G4:C20, G5:C19, G6:C18, C7:G17
66(13.25 0 0)6(12.6 0 0)6(12.6 0 0)6	G10:C39, C11:G38, G12:C37, C13:G36, C14:G35

| Table S25: NMR constraints used to predict the structure of B. subtilis pbuE adenine riboswitch aptamer mutant. |
Constraints	Sequence of base pairs predicted by NAPSS-CS
66(12.95 0 0)6(11.94 0 0)5(7.35 13.96 0)6(13.31 0 0)5(7.11 13.57 0)5	G1:C67, C2:G66, G3:C65, A4:U64, G5:C63, U6:A62, A7:U61
66(12.64 0 0)5(7.29 13.95 0)6(11.47 0 0)5(7.57 12.91 0)5	C11:G31, C12:G30, U13:A29, C14:G28, A15:U27, A16:U26
65(7.07 13.90 0)6(12.92 0 0)6(12.40 0 0)5	C40:G58, A41:U57, G42:C56, G43:C55, A44:U54
Table S26: NMR constraints used to predict the structure of *B. subtilis* tRNA^{Trp}.¹	Constraints	Sequence of base pairs predicted by NAPSS-CS
66	G4:C67, G5:C66	
6557	G10:C24, U11:A23, U12:A22, U13:G21	
656(12.86 0 0)6	G26:C42, A27:U41, G28:C40, G29:C39	
657(10.00 11.33 0)6(12.68 0 0)6	G47:C63, U48:A62, G49:U61, G50:C60, G51:C59	

Table S27: NMR constraints used to predict the structure of bovine tRNA^{Trp}.²	Constraints	Sequence of base pairs predicted by NAPSS-CS
656(13.16 0 0)6(12.72 0 0)7(10.61 11.83 0)6(12.76 0 0)6	G1:C71, A2:U70, C3:G69, C4:G68, U5:G67, C6:G66, G7:G65	
66(13.22 0 0)6(12.96 0 0)6	G10:C24, C11:G23, G12:C22, C13:G21	
656	C27:G41, U28:A40, G29:C39	
76(12.91 0 0)6(12.65 0 0)56	G48:U64, C49:G63, G50:C62, U51:A61, G52:C60	

Table S28: NMR constraints used to predict the structure of influenza A segment 7 multibranch loop.³	Constraints	Sequence of base pairs predicted by NAPSS-CS
67	G2:C59, G3:U58	
67(10.92 12.24 0)6	C6:G55, U7:G54, C8:G53	
66(12.15 0 0)5	G11:C36, G12:C35, A13:U34	
66(12.02 0 0)6(13.08 0 0)5	G16:C31, G17:C30, U18:C29, C19:G28, U20:A27	

Table S29: NMR constraints used to predict the structure of Medaka telomerase RNA CR4/5 domain multibranch loop.⁴	Constraints	Sequence of base pairs predicted by NAPSS-CS
65(7.119 13.69 5.614)5(7.148 13.81 5.643)5(7.795 14.29 5.179)6	G2:C52, A3:U51, A4:U50, A5:U49, C6:G48	
66(12.77 0 0)7(10.64 11.95 5.758)6	G10:C29, C11:G28, G12:U27, G13:C26	
65	A16:U24, G17:C23	
65(7.629 14.22 5.486)6	G33:C43, A34:U42, G35:C41	

Table S30: NMR constraints used to predict the structure of moloney murine leukemia virus core encapsidation signal multibranch loop.⁵	Constraints	Sequence of base pairs predicted by NAPSS-CS
76	G2:U29, C3:G28	
76	G4:U27, G5:C26	
56(13.382 0 0)5(7.874 14.336 5.072)5	A10:U21, G11:C20, U12:A19, U13:A18	
66(12.718 0 0)6(13.162 0 0)5(7.759 13.883 5.213)6	G43:C71, G45:C70, G46:C69, U47:A68, G48:C67	
65(7.234 13.814 5.647)5(7.871 14.366 5.153)6(13.419 0 0)5	G49:C62, A50:U61, A51:U60, C52:G59, U53:A58	
65(7.028 13.4 5.779)6(11.913 0 0)6(12.558 0 0)6	C82:G97, U83:A96, G84:C95, G85:C94, G86:C93	
Table S31: NMR constraints used to predict the structure of *S. cerevisiae* group II intron Sc.ai5γ domain 1 κ-ζ multibranch loop.		

Constraints	**Sequence of base pairs predicted by NAPSS-CS**	
65(7.16 13.77 0)5	G2:C48, A3:U47, A4:U46	
66(13.474 0 0)5(7.571 14.37 0)6(12.526 0 0)5(7.562 14.108 0)6(11.596 0 0)5	G8:C41, C9:G40, U10:A39, C11:G38, U24:A37, C25:G36, A26:U35	
56	A13:U20, C14:G19	

Table S32: NMR constraints used to predict the structure of tobacco ringspot virus adenine-dependent hairpin ribozyme.
Constraints
66(12.3 0 0)5556(12.3 0 0)56
656
66(11.8 0 0)5
656
66

Table S33: NMR constraints used to predict the structure of *K. lactis* telomerase RNA pseudoknot.
Constraints
65(7.976 14.53 5.09)5(7.153 13.78 5.548)5
75
65
55(7.043 13.59 5.559)5(7.183 13.23 5.53)5(7.064 13.51 5.459)5(7.141 13.42 5.365)6(12.15 0 0)6

Table S34: NMR constraints used to predict the structure of murine leukemia virus recording signal pseudoknot.
Constraints
66(12.861 0 0)6(12.792 0 0)5(7.8316 13.744 4.975)6(11.948 0 0)5(7.077 13.688 5.466)6(13.066 0 0)6(12.488 0 0)6(11.771 0 0)6(12.392 0 0)6(13.054 0 0)6(12.288 0 0)6(12.446 0 0)6
Plasmid insert design for *in vitro* transcription of the 75-nt *B. mori* R2 retrotransposon pseudoknot by T7 RNA polymerase.

Cloning vector: pUC19

Intended sequence of the 75-nt pseudoknot:
5′GGCCCGAUUGGACGGACCGGACCGGACCGGUCAAGCCUAGGUACCUCUUCCGUGG GCCUUGC GAUACCUGCGGCC3′

Sequence of the insert:
5′GAATTCTAATACGACTCACTATAGGCCCGATGGACGGACCCGAGGACCGGACCGGAGGACGCGTCAAGCTAGCA GGTACCTTCGCGGTGGCCCTTCGGATACCTGCGGCCGCGCTAGCAAGCTT3′

Reverse complement of the insert:
5′AAGCTTGCTAGCGCCCGCAGGTATCGCAAGGCCAACCGAAGGTACCTGCTAGGCTTGACG GTCCTCGGCGTCGCTCCATCGGGCCTATAAGTAGTGACGTGTAGTAAGCTC3′

Notation:
EcoRI recognition sequence: 5′GAATTC3′
HindIII recognition sequence: 5′AAGCTT3′
NheI recognition sequence: 5′GCTAGC3′
RNA pseudoknot sequence
T7 RNA polymerase promoter
Accession codes and primary references from which direction-dependent chemical shift constraints were derived.

BMRB ID	Structure	Ref.
4125	*E. coli* RNase P 31-mer domain	19
4135	r(5’CGACUCAGG/3’CCUGCGUCG)	20
4175	HIV-1 SL3 hairpin	21
4226	Leadzyme	22
4247	r(GCAGUGGC)-r(GCCA)d(CTGC) duplex	23
4250	TYMV pseudoknot 3’ hairpin	24
4253	Bacteriophage T2 gene 32 mRNA pseudoknot	25
4345	*S. cerevisiae* L30 and its regulatory pre-mRNA complex	26
4346	*S. cerevisiae* L30 regulatory pre-mRNA	27
4745	RNA duplex with bulged adenosine	28
4750	Conserved internal loop in *E. coli* SRP	29
4780	HIV-1 SL2 of Ψ packaging signal	30
4816	Influenza A virus promoter	31
4867	Nucleolin recognition element	32
5007	*Neurospora* VS ribozyme stem-loop substrate	33
5046	HCV IRES stem-loop IIIc	34
5170	RNA binding site for histone stem-loop binding protein	35
5256	*E. coli* tRNAPhe unmodified anticodon stem-loop	36
5278	PEMV-1 P1-P2 frameshifting pseudoknot	37
5321	Human SRP RNA SRP19 binding site	38
5371	*S. cerevisiae* U6-A62G 3SL RNA	39
5394	r(5’GGUGψAGUA/3’UACUAACACC)	40
5395	r(5’GGUGUAGUA/3’UACUAACACC)	41
5528	Influenza A cRNA promoter	42
5530	Yeast ASLPhe-C\textsubscript{32,Gm\textsubscript{14,mC}}\textsubscript{40}	43
5553	Influenza A promoter, U4C mutant	44
5586	r(GGCPAGCCU)\textsubscript{2}	45
5587	r(GGCAPGCCU)\textsubscript{2}	46
5588	r(GGCPPGCCU)\textsubscript{2}	47
5614	r(GGCAAGCCU)\textsubscript{2}	48
5632	Human telomerase RNA P2b hairpin	49
5655	*S. cerevisiae* U6 ISL stem-loop, U80G	50
5703	*S. cerevisiae* U6 ISL stem-loop, S\textsubscript{r}-ISL	51
5705	14-mer hairpin with cUUCGg tetraloop	52
5834	HIV-1 frameshifting inducing stem-loop RNA	53
5852	*Neurospora* VS ribozyme SL1’ hairpin	54
5919	*S. oleracia* 5S rRNA loop E region	55
5932	Human telomerase RNA DCloop mutant P2b hairpin	56
5962	*S. cerevisiae* group II intron Sc.ai5γ domain 5	57
Accession codes and primary references from which direction-dependent chemical shift constraints were derived (continued).

BMRB ID	Structure	Ref.
5980	GBV-B IRES stem-loop IIc	55
6042	Coxsackievirus stem-loop D	55
6062	RSV residues 907-929	54
6076	Enterovirus IRES stem-loop IV domain, WT34	55
6077	Enterovirus IRES stem-loop IV domain, 10U	55
6094	MLV core encapsidation signal	2
6115	HRV-14 internal cis-acting replication element	56
6239	VS ribozyme stem-loop VI	57
6300	S. cerevisiae extended U6 ISL	58
6477	Human telomerase RNA P2h-P3 pseudoknot	59
6485	Human GluR-B R/G central loop	60
6509	SLYLV pseudoknot	61
6543	HIV-1 frameshift inducing element	62
6562	BEV1 cloverleaf 1 apical D-loop	63
6563	HIV-1 frameshifting signal	64
6565	GAAA tetraloop-receptor complex	65
6756	Domain 6 of a group II intron	66
6814	Class I GTP aptamer	67
6979	r(5'GGUGAAGGCUC/3'PCCGAAGCCG)	68
7090	Human PGY/MDR1 hairpin	69
7098	HIV-1 SL1 dimer	70
7230	r(5'GGCUAAGAC/3'CCGAAGCUG)	71
7403	Human telomerase RNA CR7 3′ terminal hairpin	72
7404	Human telomerase RNA U64 H/ACA snoRNA 3′ terminal hairpin	72
7405	Human telomerase RNA U85 C/D-H/ACA scaRNA 5′ terminal hairpin	72
10014	P. furiosus SRP RNA helix 6 tetraloop	73
10018	Eel UnaL2 LINE36 hairpin	74
11014	HIV-1 TAR and aptamer complex	75
15080	S. cerevisiae U2 snRNA stem I	76
15319	E. coli tRNA^{Val}_{UAC} unmodified anticodon stem-loop	77
15331	E. coli tRNA^{Val}_{UAC} anticodon stem-loop, cmo5U34 and M6A37	77
15342	E. coli tRNA^{Val}_{UAC} anticodon stem-loop, cmo5U34	77
15362	E. coli tRNA^{Val}_{UAC} anticodon stem-loop M6A37	77
15417	SIV frameshift-inducing stem-loop	78
15538	Anti-NF-κB aptamer	79
15571	r(5'GCAGAGAGCG/3'CGUCUCUCGC)	80
15572	r(5'GCAGAGAGCG/3'CGUCUCUCGC)	80
Accession codes and primary references from which direction-dependent chemical shift constraints were derived (continued).

BMRB ID	Structure	Ref.
15656	Duck HBV ε apical stem-loop	81
15697	GVB B IRES	82
15745	HBV post-transcriptional regulatory element stem-loop α	83
15780	r(5’GUCGAGCUG/3’CAGCCGAC)	84
15781	r(5’GUCGUGCU3’CAGCCGAC)	84
15786	Duck HBV ε primer loop	85
15858	S. cerevisiae group II intron Sc.ai5γ d3’ hairpin, including EBS1/IBS1	86
15859	S. cerevisiae group II intron Sc.ai5γ d3’ hairpin closed by GAAA tetraloop	86
15869	HIV-2 TAR	87
15915	Human tRNALys anticodon fragment bound to HIV-1 genome loop I	88
16431	HIV-2 TAR	89
16479	B. subtilis xpt-pbuX-mRNA guanine sensing riboswitch	90
16714	Xist RNA A-repeat AUCG tetraloop	91
16950	r(GACAAGUGUCA)\textsubscript{2}	92
16951	r(GACGAGCGUCA)\textsubscript{2}	92
16952	r(GACUAGAGUCA)\textsubscript{2}	92
16953	r(GGUAGGCCA)\textsubscript{2}	92
17188	Human telomerase RNA P2ab	95
17292	Neurospora VS ribozyme A730 loop	94
17309	Coronavirus SL2	95
17316	B. subtilis tyrS T-box leader specifier domain	96
17326	P. fluourescens hcnA Shine-Dalgarno sequence	97
17406	r(5’GUGAAGGCCGU/3’CGGAGGACACU)	98
17449	Human tRNALys UUU ASL	99
17566	TASL1 22-nt artificial stem-loop	97
17567	TASL2 26-nt artificial stem-loop	97
17568	TASL3 30-nt artificial stem-loop	97
17601	MLV read-through pseudoknot signal	10
17671	HIV-1 exon splicing silencer 3	100
17682	E. coli 16S rRNA helix 27	101
17860	Chimpanzee HAR1 helix h1 (c37)	102
17901	U6 snRNA 5’ stem-loop 30-nt construct	d
17921	GAAA tetraloop receptor variant	b
17941	CVB-3 IRES subdomain IV-B	c

a Butcher, S. E. and Clos, L. Unpublished.
b Vander Muelen, K., Davis, J., Clos, L., and Butcher, S. E. Unpublished.
c Ihle, Y., Zell, R., and Goerlach, M. Unpublished.
Accession codes and primary references from which direction-dependent chemical shift constraints were derived (continued).

BMRB ID	Structure	Ref.
17972	*S. cerevisiae* U2/U6 complex helix I	103
18239	BMV subgenomic stem-loop, WT	104
18240	BMV subgenomic stem-loop, del-A	104
18336	*B. subtilis* phage φ29 pRNA hairpin	105
18503	*S. cerevisiae* group II intron Sc.ai5γ K-ζ region	106
18515	Human HAR1 helix h1 (h37)	102
18838	*S. cerevisiae* group II intron Sc.ai5γ domain I ID3 stem-loop	107
18881	*S. cerevisiae* group II intron Sc.ai5γ d3′ hairpin, including EBS1:dIBS1 complex	108
18891	*T. thermophila* telomerase RNA stem-loop IV	109
18892	*T. thermophila* telomerase RNA helix II template boundary element	110
18974	*E. coli* 23S rRNA H69, modified	111
18975	*E. coli* 23S rRNA H69, unmodified	111
19081	CPEB3 ribozyme P4 domain	112
19260	*K. lactis* telomerase RNA pseudoknot	113
19634	Medaka telomerase RNA CR4/5 domain	114
19692	*Neurospora* VS ribozyme SLVI	115
19887	miR-21 stem-loop	116
25163	*Neurospora* VS ribozyme III-IV-V junction	117
25164	*Neurospora* VS ribozyme III-IV-V junction, PRE	118
	- HCV IRES IIIId fragment	119
	- HIV-1 packaging signal SL4	120
	- *E. coli* 23S rRNA helix 42 lower stem	121
	- *E. coli* 16S rRNA hairpin	122
	- r(GACGAGUGUCA)2	123
	- Hairpin with 5’GG/3’UU motif	124
	- TYMV pseudoknot	125
	- Bacteriophages T2 and T6 gene 32 pseudoknot	126
	- r(GAGGUCUC)2	127
	- *E. coli* 5S rRNA helix I	128
	- RNA I	129
	- CUUG hairpin	130
	- Hammerhead ribozyme-substrate complex	131
	- *T. Thermophila* group II intron P5 helix	132
	- *T. Thermophila* group II intron P5 helix with Co(NH3)6 ++	133
	- sTRSV hairpin ribozyme loop A	134
	- MMTV frameshifting pseudoknot	135
	- Group I intron P4/P6 domain	136

d Hart, J. M. Unpublished.
Accession codes and primary references from which direction-dependent chemical shift constraints were derived (continued).

BMRB ID	Structure	Ref.
	Bacillus RNase P P5.1 hairpin	129
	EIAV TAR	130
	HIV-1 TAR CUGGGA loop	131
	r(GAGUGCUC)₂	132
	r(GGCGUCUC)₂	132
	r(5′GAGGAAGGCGA/3′PCUCUAUUGCU)	e

* Znosko, B. M. Unpublished.
Accession codes and primary references of PDB NMR structures in which distances between imino protons of adjacent base pairs were measured.

PDB Code	Structure	Ref.
17RA	RNA I	123
1A60	TYMV pseudoknot	133
1BN0	HIV-1 SL3 hairpin	211
1BYX	r(GCAGUGGGC)-r(GCCA)d(CTGC) duplex	25
1C4L	r(5′CGACUCAGG/3′CCUGCGUCG)	20
1CQL	E. coli SRP domain IV	154
1EKA	r(5′GAGUGCUC)	132
1EKD	r(5′GGCGUGGCC)	132
1F6U	HIV-1 SL2 of Ψ packaging signal	29
1GUC	r(5′GAGGUGUCUC)	121
1HWQ	Neurospora VS ribozyme stem-loop substrate	52
1JO7	Influenza A virus promoter	50
1JOX	Bacillus RNase P P5.1 hairpin	129
1JTW	HIV-1 packaging signal SL4	116
1JU7	RNA binding site for histone stem-loop binding protein	54
1K5I	E. coli 16S rRNA hairpin	118
1K8S	RNA duplex with bulged adenosine	27
1KKA	E. coli tRNA\(^{\text{unmodified}}\) anticodon stem-loop	55
1L1W	Human SRP RNA SRP19 binding site	56
1LC6	S. cerevisiae U6-A62G ISL RNA	57
1LDZ	Leadzyme	135
1LMV	r(5′GGUGUAGUA/3′UACUAACACC)	38
1LPW	r(5′GGUGψAGUA/3′UACUAACACC)	38
1M82	Influenza A cRNA promoter	59
1MNX	S. oleracea 5S rRNA loop E region	20
1N8X	HIV-1 Ψ packaging signal SL1	130
1NA2	Human temolerase RNA P2b hairpin	44
1NC0	S. cerevisiae U6 ISL stem-loop, U80G	45
1NZ1	S. cerevisiae U6 ISL stem-loop, U80	46
1OW9	Neurospora VS ribozyme SL1′ hairpin	49
1PJY	HIV-1 framesshifting inducing stem-loop RNA	48
1Q75	Human telomerase RNA DCloop mutant P2b hairpin	51
1QES	r(5′GGAGUUC)	15/
1QET	r(5′GGAGUUGCC)	15/
1R2P	S. cerevisiae group II intron Sc.ai5γ domain 5	52
1R7W	Enterovirus IRES stem-loop IV domain, WT34	55
1R7Z	Enterovirus IRES stem-loop IV domain, 10U	55
1RFR	Coxackievirus stem-loop D	53
1S2F	RSV splicing suppressor pseudo-5′ splice site	54
1S34	RSV residues 907-929	54
Accession codes and primary references of PDB NMR structures in which distances between imino protons of adjacent base pairs were measured (continued).

PDB	Structure	Ref.
1S9S	MLV core encapsidation signal	2
1SCL	*E. coli* 28S rRNA sarcin/ricin loop	138
1SY4	*S. cerevisiae* U6 ISL stem-loop	46
1T28	HRV-14 internal cis-acting replication element	26
1TJZ	VS ribozyme stem-loop VI	57
1XHP	*S. cerevisiae* extended U6 ISL	58
1YG3	ScYLV pseudoknot	61
1YMO	Human telomerase RNA P2b-P3 pseudoknot	59
1YSV	Human GluR-B R/G central loop	60
1Z2J	HIV-1 frameshift inducing element	62
1Z30	BEV1 cloverleaf 1 apical D-loop	65
1ZC5	HIV-1 frameshifting signal	64
28SR	Conserved internal loop in *E. coli* SRP	28
2ADT	GAAA tetraloop-receptor complex	65
2AHT	Domain 6 of a group II intron	66
2AU4	Class I GTP aptamer	67
2B7G	*D. melanogaster* Smaug recognition element	139
2D17	HIV-1 bulge34 stem-bulge-stem region	140
2D18	HIV-1 loop25 extended-duplex dimer	140
2D19	HIV-1 loop25 kissing-loop dimer	140
2D1A	HIV-1 DIS-39 extended-duplex dimer	140
2D1B	HIV-1 DIS-39 kissing loop dimer	140
2F87	*P. furiosus* SRP RNA helix 6 tetraloop	75
2FDT	Eel UnaL2 LINE36 hairpin	74
2GM0	HIV-1 SL1 dimer	70
2GVO	Human PGY/MDR1 hairpin	69
2IHX	RSV µΨ RNA packaging signal	141
2IXY	HBV encapsidation signal apical stem-loop	142
2JR4	*E. coli* tRNA\(^{\text{Val}}\)\(_{UC}\) unmodified anticodon stem-loop	///
2JRG	*E. coli* tRNA\(^{\text{Val}}\)\(_{UC}\) anticodon stem-loop, cmo5U34 and M6A37	///
2JRQ	*E. coli* tRNA\(^{\text{Val}}\)\(_{UC}\) anticodon stem-loop, cmo5U34	///
2JSG	*E. coli* tRNA\(^{\text{Val}}\)\(_{UC}\) anticodon stem-loop M6A37	///
2JTP	SIV frameshift-induced stem-loop	78
2JWV	Anti-NF-κB aptamer	79
2JXQ	r(5’GCAGAGAGCG/3’CGUCUCUCGC)	80
2JXS	r(5’GCAGAGAGCG/3’CGUCUCUCGC)	80
2JYM	HBV post-transcriptional regulatory element stem-loop α	85
2K3Z	r(5’GUCGAGCGUG/3’CAGCCGAC)	84
2K41	r(5’GUCGUGCGUG/3’CAGCCGAC)	84
2K5Z	Duck HBV e apical stem-loop	143
Accession codes and primary references of PDB NMR structures in which distances between imino protons of adjacent base pairs were measured (continued).

PDB	Structure	Ref.
2K65	*S. cerevisiae* group II intron *Sc.ai5γ* d3' hairpin, including EBS1/IBS1	86
2K66	*S. cerevisiae* group II intron *Sc.ai5γ* d3' hairpin closed by GAAA tetraloop	86
2K7E	Human tRNA\textsuperscript{Lys\textsubscript{Lyk}}\textsuperscript{Lys\textsubscript{Lyk}} anticodon fragment bound to HIV-1 genome loop 1	88
2KOC	14-mer hairpin with cUUCGg tetraloop	144
2KRL	RBSE in 3' UTR of TCV	145
2KXZ	r(GACAAGUGUCU)\textsubscript{2}	92
2KY0	r(GACGAGCGUCA)\textsubscript{2}	92
2KY1	r(GACUAGAGUCA)\textsubscript{2}	92
2KYD	16-mer A-form RNA	146
2KZL	*B. subtilis* tyrS T-box leader specifier domain	96
2L1F	MoMuLV ΨC,ES site	147
2L3E	Human telomerase RNA P2ab	95
2L5Z	*Neurospora* VS ribozyme A730 loop	94
2L6I	Coronavirus SL2	95
2L8H	HIV-1 TAR and small molecule complex	148
2L8U	r(CGCUGCGG)\textsubscript{2}	149
2L9E	Human tRNA\textsuperscript{Lys\textsubscript{Lyk}}\textsuperscript{Lys\textsubscript{Lyk}} anticodon stem	99
2LA9	*B. subtilis* \(\psi_{39}\)-tRNA1yr	150
2LAC	*B. subtilis* unmodified tRNA1yr	150
2LBJ	*B. subtilis* tRNAGly,GCC anticodon stem-loop	151
2LBK	*S. epidermidis* tRNAGly,UCC anticodon stem-loop	151
2LBL	*B. subtilis* tRNAGly,UCC anticodon stem-loop	151
2LBQ	*B. subtilis* \(i6A_{37}\)-tRNA1yr anticodon arm	150
2LBR	*B. subtilis* \(i6A_{37}, \psi_{39}\)-tRNA1yr anticodon arm	150
2LC8	MLV read-through pseudoknot signal	10
2LDL	HIV-1 exon splicing silencer 3	100
2LDT	*E. coli* 16S rRNA helix 27	101
2LHP	Chimpanzee HAR1 helix h1 (c37)	102
2L14	*Y. enterocolitica* mgtA riboswitch antiterminator loop C, lower part	152
2LJJ	CVB-3 IRES subdomain IV-B	\(a\)
2LK3	*S. cerevisiae* U2/U6 complex helix I	103
2LP9	BMV subgenomic stem-loop, wild type	104
2LPA	BMV subgenomic stem-loop, del-A	104
2LQZ	*B. subtilis* phage φ29 pRNA hairpin	105
2LU0	*S. cerevisiae* group II intron *Sc.ai5γ* K-ζ region	\(a\)

\(a\) Ihle et al. Unpublished.
Accession codes and primary references of PDB NMR structures in which distances between imino protons of adjacent base pairs were measured (continued).

PDB	Structure	Ref.
2LUB	Human HAR1 helix h1 (h37)	102
2M12	*S. cerevisiae* group II intron Sc.ai5γ domain 1 ID3 stem-loop	106
2M10	*S. cerevisiae* group II intron Sc.ai5γ domain 1 ID3 stem	106
2M1V	*S. cerevisiae* group II intron Sc.ai5γ d3’ hairpin, including EBS1:dIBS1 complex	107
2M21	*T. thermophila* telomerase RNA stem-loop IV	108
2M22	*T. thermophila* telomerase RNA helix II template boundary element	109
2M23	*S. cerevisiae* group II intron Sc.ai5γ d3’ hairpin, including EBS1	86
2M24	*S. cerevisiae* group II intron Sc.ai5γ d3’ hairpin, including EBS1	86
2M5U	CPEB3 ribozyme P4 domain	111
2M8K	*K. lactis* telomerase RNA pseudoknot	9
2MEQ	*E. coli* 23S rRNA H69, unmodified	110
2MER	*E. coli* 23S rRNA H69, modified	110
2MHI	Medaka telomerase RNA CR4/5 domain	6
2MIS	*Neurospora* VS ribozyme SLVI	112
2MNC	miR-21 stem-loop	113
2MTJ	*Neurospora* VS ribozyme III-IV-V junction	114
2MTK	*Neurospora* VS ribozyme III-IV-V junction, PRE	114
2QH2	Human telomerase RNA CR7 3’ terminal hairpin	72
2QH3	Human telomerase RNA U64 H/ACA snoRNA 3’ terminal hairpin	72
2QH4	Human telomerase RNA U85 C/D-H/ACA scaRNA 5’ terminal hairpin	72
2RN1	HIV-1 TAR and aptamer complex	75
2TPK	Bacteriophage T2 gene 32 mRNA pseudoknot	25
2Y95	Xist RNA A-repeat AUCG tetraloop	91
3PHP	TYMV pseudoknot 3’ hairpin	24
4A4R	r(GGACCCGGCUAACGCUGGGGUCC)	153
4A4S	r(GGACCCGGCUACGCUGGGGUCC)	153
4A4T	r(GGACCCGGCUUACGCUGGGGUCC)	153
4A4U	r(GGACCCGGCUACGCUGGGGUCC)	153
Accession codes and primary references of PDB x-ray structures in which distances between imino protons of adjacent base pairs were measured.

PDB	Structure / Ref.
157D	r(CGCGAAUUAGCG)_2
259D	r(CCCCGGGG)_2
377D	r(CGUA)_2
397D	HIV-1 TAR RNA stem
406D	r(CACCGGAUGGU^{38}UGGUG)_2
420D	r(GCAGAGUUAAUCUGC)_2
434D	r(5’GGGGCUA/3’CCUCGAU)
435D	r(5’GGGGCUA/3’CCCCGAU)
437D	BWYV pseudoknot
439D	r(5’CUGGGCGG/3’GGUCCGCC)
464D	r(5’GGGGGUA/3’CCUCGAU)
466D	r(5’GGGGCUA/3’CCUCGAU)
472D	r(5’GUGUUUAC/3’CACCGAUG)
480D	*E. coli* 23S rRNA sarcin/ricin domain
1CSL	HIV-1 RRE high affinity binding site
1D4R	HSR particle helix 6
1DQH	r(5’GCCACCCUG/3’CGGCUGGAC)
1EHZ	Yeast tRNA^{phe}
1L2X	BWYV pseudoknot
1MSY	*E. coli* 23S rRNA sarcin/ricin domain GUAA tetraloop mutant
1NLC	HIV-1 DIS(Mal) duplex
1NUJ	Leadzyme
1Q96	Rat 28S rRNA sarcin/ricin domain mutant
1QC0	ColE1 plasmid 19-mer duplex
1QC1	ColE1 plasmid 18-mer duplex
1RXB	r(CCCCGGGG)_2
1T0E	2-aminopurine labeled bacterial decoding site RNA
1XE	HIV-1 subtype B genomic RNA DIS
1ZCI	HIV-1 DIS RNA subtype F- monoclinic form
2A43	Luteoviral RNA pseudoknot
2G3S	r(GGCGUGGC)_2
2G91	r(GGUGC^cc)_2
2G92	r(CG(NF2)AAUUAGCG)_2
2OEU	Hammerhead ribozyme with Mn^{2+} bound
2O1Y	HIV-1(Lai) DIS duplex form
2QEK	HIV-1 subtype F DIS RNA duplex form
2R20	r(GCGUUUUGAAACGC)_2
2R22	r(GCGUUUUGAAACGC)_2
2V6W	*E. coli* tRNA^{ser} acceptor stem

\(^a\) Shi, K., Pan, B., and Sundaralingam, M. Unpublished.
Accession codes and primary references of PDB x-ray structures in which distances between imino protons of adjacent base pairs were measured (continued).

PDB	Structure	Ref.
2V7R	Human tRNA^{Gly} microhelix	187
2VAL	*E. coli* tRNA^{Gly} microhelix	188
2VUQ	Human tRNA^{Gly} microhelix	189
2W89	*E. coli* tRNA^{Arg} isoacceptor stem	190
2XSL	*T. Thermophilus* tRNA^{Gly} acceptor stem microhelix	191
2ZY6	*E. coli* Thl truncated tRNA substrate	192
3CGP	Pseudouridylated yeast spliceosomal U2 snRNA-intron branch site duplex	193
3CGS	Pseudouridylated U2 snRNA and mammalian intron branch site sequences	193
3GVN	*E. coli* tRNA^{Ser} acceptor stem microhelix	194
3MEI	Human thymidylate synthase mRNA regulatory motif	195
3RG5	Mouse tRNA^{Sec}	196
3SJ2	Fragile X syndrome model of repeating r(CGG) transcript	197
3SYW	Myotonic dystrophy triplet repeat with a 1 x 1 nucleotide UU internal loop	198
4E5C	19-mer RNA duplex containing CUG/C GG-repeats	199
4E6B	19-mer RNA duplex p(CGG)₃C(CUG)₃	199
4FNJ	CUG helix attached to GAAA tetraloop/receptor	200
4J50	Expanded RNA CAG repeat	201
4MSB	10-mer duplex with two 2'-5' -linkages	202
4NFO	r(GCAGACUUAAGUCUGC)₂	203
4P5J	TYMV TLS	204
4PCJ	CUG repeat expansions with Ψ modification	205
4U37	r(5'UAGCUCC/3'AUCGAGG)	206
REFERENCES

1. Delfosse, V., Bouchard, P., Bonneau, E., Dagenais, P., Lemay, J.-F., Lafontaine, D. I. A., and Legault, P. (2010) Riboswitch structure: An internal residue mimicking the purine ligand, *Nucleic Acids Res.* 38, 2057-2068.

2. D'Souza, V., Dey, A., Habib, D., and Summers, M. F. (2004) NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus, *J. Mol. Biol.* 337, 427-442.

3. Yan, X., Xue, H., Liu, H., Hang, J., Wong, J. T.-F., and Zhu, G. (2000) NMR studies of *Bacillus subtilis* tRNA_{Trp} hyperexpressed in *Escherichia coli*, *J. Biol. Chem.* 275, 6712-6716.

4. Gong, Q., Guo, Q., Tong, K.-L., Zhu, G., Wong, J. T.-F., and Xue, H. (2002) NMR analysis of bovine tRNA_{Trp}, *J. Biol. Chem.* 277, 20694-20701.

5. Jiang, T., Kennedy, S. D., Moss, W. N., Kierzek, E., and Turner, D. H. (2014) Secondary structure of a conserved domain in an intron of influenza A M1 mRNA, *Biochemistry* 53, 5236-5248.

6. Kim, N.-K., Zhang, Q., and Feigon, J. (2013) Structure and sequence elements of the CR4/5 domain of medaka telomerase RNA important for telomerase function, *Nucleic Acids Res.* 42, 3395-3408.

7. Donghi, D., Pechlaner, M., Finazzo, C., Knobloch, B., and Sigel, R. K. O. (2013) The structural stabilization of the κ three-way junction by Mg(II) represents the first step in the folding of a group II intron, *Nucleic Acids Res.* 41, 2489-2504.

8. Buck, J., Li, Y.-L., Richter, C., Vergne, J., Maurel, M.-C., and Schwalbe, H. (2009) NMR spectroscopic characterization of the adenine-dependent hairpin ribozyme, *ChemBioChem* 10, 2100-2110.

9. Cash, D. D., Cohen-Zontag, O., Kim, N.-K., Shefer, K., Brown, Y., Ulyanov, N. B., Tzfati, Y., and Feigon, J. (2013) Pyrimidine motif triple helix in the *Kluyveromyces lactis* telomerase RNA pseudoknot is essential for function in vivo, *Proc. Natl. Acad. Sci. U.S.A.* 110, 10970-10975.

10. Houck-Loomis, B., Durney, M. A., Salguero, C., Shankar, N., Nagle, J. M., Goff, S. P., and D'Souza, V. M. (2011) An equilibrium-dependent retroviral mRNA switch regulates translational recoding, *Nature* 480, 561-564.

11. Beniaminov, A., Westhof, E., and Krol, A. (2008) Distinctive structures between chimpanzee and human in a brain noncoding RNA, *RNA* 14, 1270-1275.

12. Hart, J. M., Kennedy, S. D., Mathews, D. H., and Turner, D. H. (2008) NMR-assisted prediction of RNA secondary structure: Identification of a probable pseudoknot in the coding region of an R2 retrotransposon, *J. Am. Chem. Soc.* 130, 10233-10239.

13. Nameki, N., Chattopadhyay, P., Himeno, H., Muto, A., and Kawai, G. (1999) An NMR and mutational analysis of an RNA pseudoknot of *Escherichia coli* tmRNA involved in trans-translation, *Nucleic Acids Res.* 27, 3667-3675.

14. Tanaka, Y., Hori, T., Tagaya, M., Sakamoto, T., Kurihara, Y., Katahira, M., and Uesugi, S. (2002) Imino proton NMR analysis of HDV ribozymes: Nested double pseudoknot structure and Mg²⁺ ion-binding site close to the catalytic core in solution, *Nucleic Acids Res.* 30, 766-774.

15. Shen, L. X., and Tinoco, I. (1995) The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary-tumor virus, *J. Mol. Biol.* 247, 963-978.
16. Nixon, P. L., Rangan, A., Kim, Y. G., Rich, A., Hoffman, D. W., Hennig, M., and Giedroc, D. P. (2002) Solution structure of a luteoviral P1-P2 frameshifting mRNA pseudoknot, *J. Mol. Biol.* 322, 621-633.

17. Kang, M., Eichhorn, C. D., and Feigon, J. (2014) Structural determinants for ligand capture by a class II preQ₁ riboswitch, *Proc. Natl. Acad. Sci. U.S.A.* 111, E663-E671.

18. Du, Z. H., Holland, J. A., Hansen, M. R., Giedroc, D. P., and Hoffman, D. W. (1997) Base-pairings within the RNA pseudoknot associated with the simian retrovirus-1 gag-pro frameshift site, *J. Mol. Biol.* 270, 464-470.

19. Glemarec, C., Kufel, J., Foldesi, A., Maltseva, T., Sandstrom, A., Kirsebom, L. A., and Chattopadhyaya, J. (1996) The NMR structure of 31mer RNA domain of *Escherichia coli* RNase P RNA using its non-uniformly deuterium labelled counterpart [the 'NMR-window' concept], *Nucleic Acids Res.* 24, 2022-2035.

20. Tanaka, Y., Kojima, C., Yamazaki, T., Kodama, T. S., Yasuno, K., Miyashita, S., Ono, A., Kainosho, M., and Kyogoku, Y. (2000) Solution structure of an RNA duplex including a C-U base pair, *Biochemistry* 39, 7074-7080.

21. Pappalardo, L., Kerwood, D. J., Pelczer, I., and Borer, P. N. (1998) Three-dimensional folding of an RNA hairpin required for packaging HIV-1, *J. Mol. Biol.* 282, 801-818.

22. Legault, P., Hoogstraten, C. G., Metlitzky, E., and Pardi, A. (1998) Order, dynamics and metal-binding in the lead-dependent ribozyme, *J. Mol. Biol.* 284, 325-335.

23. Szyperski, T., Gotte, M., Billeter, M., Perola, E., Cellai, L., Heumann, H., and Wuthrich, K. (1999) NMR structure of the chimeric hybrid duplex r(gcaguggc) \cdot r(gcca)d(CTGC) comprising the tRNA-DNA junction formed during initiation of HIV-1 reverse transcription, *J. Biomol. NMR* 13, 343-355.

24. Kolk, M. H., van der Graaf, M., Fransen, C. T. M., Wijmenga, S. S., Pleij, C. W. A., Heus, H. A., and Hilbers, C. W. (1998) Structure of the 3′-hairpin of the TYMV pseudoknot: Preformation in RNA folding, *EMBO J.* 17, 7498-7504.

25. Holland, J. A., Hansen, M. R., Du, Z. H., and Hoffman, D. W. (1999) An examination of coaxial stacking of helical stems in a pseudoknot motif: The gene 32 messenger RNA pseudoknot of bacteriophage T2, *RNA* 5, 257-271.

26. Mao, H. Y., White, S. A., and Williamson, J. R. (1999) A novel loop-loop recognition motif in the yeast ribosomal protein L30 autoregulatory RNA complex, *Nat. Struct. Biol.* 6, 1139-1147.

27. Thiviyanathan, V., Guliaev, A. B., Leontis, N. B., and Gorenstein, D. G. (2000) Solution conformation of a bulged adenosine base in an RNA duplex by relaxation matrix refinement, *J. Mol. Biol.* 300, 1143-1154.

28. Schmitz, U., James, T. L., Lukavsky, P., and Walter, P. (1999) Structure of the most conserved internal loop in SRP RNA, *Nat. Struct. Biol.* 6, 634-638.

29. Amarasinghe, G. K., De Guzman, R. N., Turner, R. B., and Summers, M. F. (2000) NMR structure of stem-loop SL2 of the HIV-1 Ψ RNA packaging signal reveals a novel A-U-A base-triple platform, *J. Mol. Biol.* 299, 145-156.

30. Bae, S. H., Cheong, H. K., Lee, J. H., Cheong, C., Kainosho, M., and Choi, B. S. (2001) Structural features of an influenza virus promoter and their implications for viral RNA synthesis, *Proc. Natl. Acad. Sci. U.S.A.* 98, 10602-10607.

31. Allain, F. H. T., Bouvet, P., Dieckmann, T., and Feigon, J. (2000) Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin, *EMBO J.* 19, 6870-6881.
32. Flinders, J., and Dieckmann, T. (2001) A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA, *J. Mol. Biol.* **308**, 665-679.
33. Rijnbrand, R., Thiviyathan, V., Kaluarachchi, K., Lemon, S. M., and Gorenstein, D. G. (2004) Mutational and structural analysis of stem-loop IIIc of the hepatitis C virus and GB virus B internal ribosome entry sites, *J. Mol. Biol.* **343**, 805-817.
34. DeJong, E. S., Marzluff, W. F., and Nikonowicz, E. P. (2002) NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop binding protein, *RNA* **8**, 83-96.
35. Cabello-Villegas, J., Winkler, M. E., and Nikonowicz, E. P. (2002) Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of *Escherichia coli* tRNA^Phe^, *J. Mol. Biol.* **319**, 1015-1034.
36. Sakamoto, T., Morita, S., Tabata, K., Nakamura, K., and Kawai, G. (2002) Solution structure of a SRP19 binding domain in human SRP RNA, *J. Biochem.* **132**, 177-182.
37. Huppler, A., Nikstad, L. J., Allmann, A. M., Brow, D. A., and Butcher, S. E. (2002) Metal binding and base ionization in the U6 RNA intramolecular stem-loop structure, *Nat. Struct. Biol.* **9**, 431-435.
38. Newby, M. I., and Greenbaum, N. L. (2002) Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine, *Nat. Struct. Biol.* **9**, 958-965.
39. Park, C. J., Bae, S. H., Lee, M. K., Varani, G., and Choi, B. S. (2003) Solution structure of the influenza A virus cRNA promoter: Implications for differential recognition of viral promoter structures by RNA-dependent RNA polymerase, *Nucleic Acids Res.* **31**, 2824-2832.
40. Stuart, J. W., Koshlap, K. M., Guenther, R., and Agris, P. F. (2003) Naturally-occurring modification restricts the anticodon domain conformational space of tRNA^Phe^, *J. Mol. Biol.* **334**, 901-918.
41. Lee, M. K., Bae, S. H., Park, C. J., Cheong, H. K., Cheong, C., and Choi, B. S. (2003) A single-nucleotide natural variation (U4 to C4) in an influenza A virus promoter exhibits a large structural change: Implications for differential viral RNA synthesis by RNA-dependent RNA polymerase, *Nucleic Acids Res.* **31**, 1216-1223.
42. Znosko, B. M., Burkard, M. E., Krugh, T. R., and Turner, D. H. (2002) Molecular recognition in purine-rich internal loops: Thermodynamic, structural, and dynamic consequences of purine for adenine substitutions in 5'(rGGCAAGCCU)_2, *Biochemistry* **41**, 14978-14987.
43. Znosko, B. M., Burkard, M. E., Schroeder, S. J., Krugh, T. R., and Turner, D. H. (2002) Sheared A anti·A anti base pairs in a destabilizing 2 × 2 internal loop: The NMR structure of 5'(rGGCAAGCCU)_2, *Biochemistry* **41**, 14969-14977.
44. Theimer, C. A., Finger, L. D., Trantirek, L., and Feigon, J. (2003) Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA, *Proc. Natl. Acad. Sci. U.S.A.* **100**, 449-454.
45. Sashital, D. G., Allmann, A. M., Van Doren, S. R., and Butcher, S. E. (2003) Structural basis for a lethal mutation in U6 RNA, *Biochemistry* **42**, 1470-1477.
46. Reiter, N. J., Nikstad, L. J., Allmann, A. M., Johnson, R. J., and Butcher, S. E. (2003) Structure of the U6 RNA intramolecular stem-loop harboring an S-P-phosphorothioate modification, *RNA* **9**, 533-542.
47. Fürtig, B., Richter, C., Bermel, W., and Schwalbe, H. (2004) New NMR experiments for RNA nucleobase resonance assignment and chemical shift analysis of an RNA UUCG tetraloop, *J. Biomol. NMR* 28, 69-79.

48. Staple, D. W., and Butcher, S. E. (2003) Solution structure of the HIV-1 frameshift inducing stem-loop RNA, *Nucleic Acids Res.* 31, 4326-4331.

49. Hoffmann, B., Mitchell, G. T., Gendron, P., Major, F., Andersen, A. A., Collins, R. A., and Legault, P. (2003) NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site, *Proc. Natl. Acad. Sci. U.S.A.* 100, 7003-7008.

50. Vallurupalli, P., and Moore, P. B. (2003) The solution structure of the loop E region of the 5S rRNA from spinach chloroplasts, *J. Mol. Biol.* 325, 843-856.

51. Theimer, C. A., Finger, L. D., and Feigon, J. (2003) YNMG tetraloop formation by a dyskeratosis congenita mutation in human telomerase RNA, *RNA* 9, 1446-1455.

52. Sigel, R. K. O., Sashital, D. G., Abramovitz, D. L., Palmer, A. G., Butcher, S. E., and Pyle, A. M. (2004) Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif, *Nat. Struct. Mol. Biol.* 11, 187-192.

53. Ohlenschlager, O., Wohnert, J., Bucci, E., Seitz, S., Hafner, S., Ramachandran, R., Zell, R., and Gorlach, M. (2004) The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C, *Structure* 12, 237-248.

54. Cabello-Villegas, J., Giles, K. E., Soto, A. M., Yu, P., Mougin, A., Beemon, K. L., and Wang, Y. X. (2004) Solution structure of the pseudo-5' splice site of a retroviral splicing suppressor, *RNA* 10, 1388-1398.

55. Du, Z. H., Ulyanov, N. B., Yu, J. H., Andino, R., and James, T. L. (2004) NMR structures of loop B RNAs from the stem-loop IV domain of the Enterovirus internal ribosome entry site: A single C to U substitution drastically changes the shape and flexibility of RNA, *Biochemistry* 43, 5757-5771.

56. Thiviyanathan, V., Yang, Y., Kaluarachchi, K., Rijnbrand, R., Gorenstein, D. G., and Lemon, S. M. (2004) High-resolution structure of a picornaviral internal cis-acting RNA replication element (cre), *Proc. Natl. Acad. Sci. U.S.A.* 101, 12688-12693.

57. Flinders, J., and Dieckmann, T. (2004) The solution structure of the VS ribozyme active site loop reveals a dynamic "hot-spot", *J. Mol. Biol.* 341, 935-949.

58. Sashital, D. G., Cornilescu, G., and Butcher, S. E. (2004) U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction, *Nat. Struct. Mol. Biol.* 11, 1237-1242.

59. Theimer, C. A., Blois, C. A., and Feigon, J. (2005) Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function, *Mol. Cell* 17, 671-682.

60. Stefl, R., and Allain, F. H. T. (2005) A novel RNA pentaloop fold involved in targeting ADAR2, *RNA* 11, 592-597.

61. Cornish, P. V., Hennig, M., and Giedroc, D. P. (2005) A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated −1 ribosomal frameshifting, *Proc. Natl. Acad. Sci. U.S.A.* 102, 12694-12699.

62. Staple, D. W., and Butcher, S. E. (2005) Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element, *J. Mol. Biol.* 349, 1011-1023.

63. Ihle, Y., Ohlenschlager, O., Hafner, S., Duchardt, E., Zacharias, M., Seitz, S., Zell, R., Ramachandran, R., and Gorlach, M. (2005) A novel cGUUAg tetraloop structure with a
conserved yYNMGg-type backbone conformation from cloverleaf 1 of bovine enterovirus 1 RNA, *Nucleic Acids Res.* **33**, 2003-2011.

64. Gaudin, C., Mazauric, M. H., Traikia, M., Guittet, E., Yoshizawa, S., and Fourmy, D. (2005) Structure of the RNA signal essential for translational frameshifting in HIV-1, *J. Mol. Biol.* **349**, 1024-1035.

65. Davis, J. H., Tonelli, M., Scott, L. G., Jaeger, L., Williamson, J. R., and Butcher, S. E. (2005) RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex, *J. Mol. Biol.* **351**, 371-382.

66. Erat, M. C., Zerbe, O., Fox, T., and Sigel, R. K. O. (2007) Solution structure of domain 6 from a self-splicing group II intron ribozyme: A Mg$^{2+}$ binding site is located close to the stacked branch adenosine, *ChemBioChem* **8**, 306-314.

67. Carothers, J. M., Davis, J. H., Chou, J. J., and Szostak, J. W. (2006) Solution structure of an informationally complex high-affinity RNA aptamer to GTP, *RNA* **12**, 567-579.

68. Chen, G., Kennedy, S. D., Qiao, J., Krugh, T. R., and Turner, D. H. (2006) An alternating sheared AA pair and elements of stability for a single sheared purine-purine pair flanked by sheared GA pairs in RNA, *Biochemistry* **45**, 6889-6903.

69. Joli, F., Bouchemal, N., Laigle, A., Hartmann, B., and Hantz, E. (2006) Solution structure of a purine rich hexaloop hairpin belonging to PGY/MDR1 mRNA and targeted by antisense oligonucleotides, *Nucleic Acids Res.* **34**, 5740-5751.

70. Ulyanov, N. B., Mujeeb, A., Du, Z. H., Tonelli, M., Parslow, T. G., and James, T. L. (2006) NMR structure of the full-length linear dimer of stem-loop-1 RNA in the HIV-1 dimer initiation site, *J. Biol. Chem.* **281**, 16168-16177.

71. Shankar, N., Kennedy, S. D., Chen, G., Krugh, T. R., and Turner, D. H. (2006) The NMR structure of an internal loop from 23S ribosomal RNA differs from its structure in crystals of 50S ribosomal subunits, *Biochemistry* **45**, 11776-11789.

72. Theimer, C. A., Jady, B. E., Chim, N., Richard, P., Breece, K. E., Kiss, T., and Feigon, J. (2007) Structural and functional characterization of human telomerase RNA processing and Cajal body localization signals, *Mol. Cell* **27**, 869-881.

73. Okada, K., Takahashi, M., Sakamoto, T., Kawai, G., Nakamura, K., and Kanai, A. (2006) Solution structure of a GAAG tetraloop in helix 6 of SRP RNA from *Pyrococcus furiosus*, *Nucleos. Nucleot. Nucl.* **25**, 383-395.

74. Nomura, Y., Kajikawa, M., Baba, S., Nakazato, S., Imai, T., Sakamoto, T., Okada, N., and Kawai, G. (2006) Solution structure and functional importance of a conserved RNA hairpin of eel LINE UnaL2, *Nucleic Acids Res.* **34**, 5184-5193.

75. Van Melckebeke, H., Devany, M., Di Primo, C., Beaurain, F., Toulme, J. J., Bryce, D. L., and Boisbouvier, J. (2008) Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex, *Proc. Natl. Acad. Sci. U.S.A.* **105**, 9210-9215.

76. Sashital, D. G., Venditti, V., Angers, C. G., Cornilescu, G., and Butcher, S. E. (2007) Structure and thermodynamics of a conserved U2 snRNA domain from yeast and human, *RNA* **13**, 328-338.

77. Vendeix, F. A. P., Dziersgowska, A., Gustilo, E. M., Graham, W. D., Sproat, B., Malkiewicz, A., and Agris, P. F. (2008) Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding, *Biochemistry* **47**, 6117-6129.
78. Marcheschi, R. J., Staple, D. W., and Butcher, S. E. (2007) Programmed ribosomal frameshifting is SIV is induced by a highly structured RNA stem-loop, *J. Mol. Biol.* 373, 652-663.
79. Reiter, N. J., Maher, L. J., and Butcher, S. E. (2008) DNA mimicry by a high-affinity anti-NF-kB RNA aptamer, *Nucleic Acids Res.* 36, 1227-1236.
80. Popenda, L., Adamiak, R. W., and Gdaniec, Z. (2008) Bulged adenosine influence on the RNA duplex conformation in solution, *Biochemistry* 47, 5059-5067.
81. Ampt, K. A. M., Ottink, O. M., Girard, F. C., Nelissen, F., Tessari, M., and Wijmenga, S. S. (2008) 1H, 13C and 15N NMR assignments of Duck HBV apical stem loop of the epsilon encapsidation signal, *Biomol. NMR Assign.* 2, 159-162.
82. Tallet-Lopez, B., Aldaz-Carroll, L., Chabas, S., Dausse, E., Staedel, C., and Toulme, J. J. (2003) Antisense oligonucleotides targeted to the domain IIIId of the hepatitis C virus IRES compete with 40S ribosomal subunit binding and prevent in vitro translation, *Nucleic Acids Res.* 31, 734-742.
83. Schwalbe, M., Ohlenschlager, O., Marchanka, A., Ramachandran, R., Hafner, S., Heise, T., and Gorlach, M. (2008) Solution structure of stem-loop alpha of the hepatitis B virus post-transcriptional regulatory element, *Nucleic Acids Res.* 36, 1681-1689.
84. Popenda, L., Bielecki, L., Gdaniec, Z., and Adamiak, R. W. (2009) Structure and dynamics of adenosine bulged RNA duplex reveals formation of the dinucleotide platform in the C:G:A triple, *ARKIVOC* 3, 130-144.
85. van der Werf, R. M., Girard, F. C., Nelissen, F., Tessari, M., and Wijmenga, S. S. (2008) H-1, C-13 and N-15 NMR assignments of Duck HBV primer loop of the encapsidation signal epsilon, *Biomol. NMR Assign.* 2, 143-145.
86. Kruschel, D., Skilandat, M., and Sigel, R. K. O. (2014) NMR structure of the 5′ splice site in the group IIB intron Sc.ai5γ-conformational requirements for exon-intron recognition, *RNA* 20, 295-307.
87. Carlomagno, T., Amata, I., Williamson, J. R., and Hennig, M. (2008) NMR assignments of HIV-2 TAR RNA, *Biomol. NMR Assign.* 2, 167-169.
88. Bilbille, Y., Vendeix, F. A. P., Guenther, R., Malkiewicz, A., Ariza, X., Vilarrasa, J., and Agris, P. F. (2009) The structure of the human tRNA$^{Lys}_3$ anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs, *Nucleic Acids Res.* 37, 3342-3353.
89. Ferner, J., Suhartono, M., Breitung, S., Jonker, H. R. A., Hennig, M., Wohnert, J., Gobel, M., and Schwalbe, H. (2009) Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries, *ChemBioChem* 10, 1490-1494.
90. Ottink, O. M., Westerweele, I. M., Tessari, M., Nelissen, F. H. T., Heus, H. A., and Wijmenga, S. S. (2010) 1H and 13C resonance assignments of a guanine sensing riboswitch's terminator hairpin, *Biomol. NMR Assign.* 4, 89-91.
91. Duszczyk, M. M., Wutz, A., Rybin, V., and Sattler, M. (2011) The Xist RNA A-repeat comprises a novel AUCG tetraloop fold and a platform for multimerization, *RNA* 17, 1973-1982.
92. Hammond, N. B., Tolbert, B. S., Kierzek, R., Turner, D. H., and Kennedy, S. D. (2010) RNA internal loops with tandem AG pairs: The structure of the 5′GAGU/3′UGAG loop can be dramatically different from others, including 5′AAAGU/3′UGAA, *Biochemistry* 49, 5817-5827.
93. Zhang, Q., Kim, N.-K., Peterson, R. D., Wang, Z., and Feigon, J. (2010) Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA, Proc. Natl. Acad. Sci. U.S.A. 107, 18761-18768.
94. Desjardins, G., Bonneau, E., Girard, N., Boisbouvier, J., and Legault, P. (2011) NMR structure of the A730 loop of the Neurospora VS ribozyme: Insights into the formation of the active site, Nucleic Acids Res. 39, 4427-4437.
95. Lee, C. W., Li, L., and Giedroc, D. P. (2011) NMR structure of the A730 loop of the Neurospora VS ribozyme: Insights into the formation of the active site, Proc. Natl. Acad. Sci. U.S.A. 107, 18761-18768.
96. Wang, J., and Nikonowicz, E. P. (2011) Solution structure of the K-turn and specifier loop domains from the Bacillus subtilis tyrS T-Box leader RNA, J. Mol. Biol. 408, 99-117.
97. Aeschbacher, T., Schubert, M., and Allain, F. H.-T. (2012) A procedure to validate and correct the 13C chemical shift calibration of RNA datasets, J. Biomol. NMR 52, 179-190.
98. Lerman, Y. V., Kennedy, S. D., Shankar, N., Parisien, M., Major, F., and Turner, D. H. (2011) NMR structure of a 4 × 4 nucleotide RNA internal loop from an R2 retrotansposon: Identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions, RNA 17, 1664-1677.
99. Vendeix, F. A. P., Murphy IV, F. V., Cantara, W. A., Leszczyńska, G., Gustilo, E. M., Sproat, B., Malkiewicz, A., and Agris, P. F. (2012) Human tRNA$_{UUU}$ is pre-structured by natural modifications for cognate and wobble codon binding through keto-enol tautomerism, J. Mol. Biol. 416, 467-485.
100. Levenkood, J. D., Rollins, C., Mishler, C. H. J., Johnson, C. A., Miner, G., Rajan, P., Znosko, B. M., and Tolbert, B. S. (2012) Solution structure of the HIV-1 exon splicing silencer 3, J. Mol. Biol. 415, 680-698.
101. Spano, M. N., and Walter, N. G. (2011) Solution structure of an alternate conformation of helix27 from Escherichia coli 16S rRNA, Biopolymers 95, 653-668.
102. Ziegeler, M., Cevec, M., Richter, C., and Schwalbe, H. (2012) NMR studies of HAR1 RNA secondary structures reveal conformational dynamics in the human RNA, ChemBioChem 13, 2100-2112.
103. Burke, J. E., Sashital, D. G., Zuo, X., Wang, Y.-X., and Butcher, S. E. (2012) Structure of the yeast U2/U6 snRNA complex, RNA 18, 673-683.
104. Skov, J., Gaudin, M., Podbevšek, P., Olsthoorn, R. C. L., and Petersen, M. (2012) The subgenomic promoter of brome mosaic virus folds into a stem-loop structure capped by a pseudo-triloop that is structurally similar to the triloop of the genomic promoter, RNA 18, 992-1000.
105. Harjes, E., Kitamura, A., Zhao, W., Morais, M. C., Jardine, P. J., Grimes, S., and Matsuo, H. (2012) Structure of the RNA claw of the DNA packaging motor of bacteriophage φ29, Nucleic Acids Res. 40, 9953-9963.
106. Popović, M., and Greenbaum, N. L. (2014) Role of helical constraints of the EBS1-IBS1 duplex of a group II intron on demarcation of the 5′ splice site, RNA 20, 24-35.
107. Skilandat, M., and Sigel, R. K. O. (2014) The role of Mg(II) in DNA cleavage site recognition in group II intron ribozymes: Solution structure and metal ion binding sites of the RNA-DNA complex, J. Biol. Chem. 289, 20650-20663.
108. Richards, R. J., Wu, H., Trantirek, L., O'Connor, C. M., Collins, K., and Feigon, J. (2006) Structural study of elements of *Tetrahymena* telomerase RNA stem-loop IV domain important for function, *RNA* 12, 1475-1485.

109. Richards, R. J., Theimer, C. A., Finger, L. D., and Feigon, J. (2006) Structure of the *Tetrahymena thermophila* telomerase RNA helix II template boundary element, *Nucleic Acids Res.* 34, 816-825.

110. Jiang, J., Aduri, R., Chow, C. S., and SantaLucia, J., Jr. (2014) Structure modulation of helix 69 from *Escherichia coli* 23S ribosomal RNA by pseudouridylations, *Nucleic Acids Res.* 42, 3971-3981.

111. Skilandat, M., Rowinska-Zyrek, M., and Sigel, R. K. O. (2014) Solution structure and metal ion binding sites of the human CPEB3 ribozyme’s P4 domain, *J. Biol. Inorg. Chem.* 19, 903-912.

112. Bonneau, E., and Legault, P. (2013) NMR localization of divalent cations at the active site of the *Neurospora* VS ribozyme provides insights into RNA-metal-ion interactions, *Biochemistry* 53, 579-590.

113. Chirayil, S., Wu, Q., Amezcua, C., and Luebke, K. J. (2014) NMR characterization of an oligonucleotide model of the miR-21 pre-element, *PLoS One* 9, e108231.

114. Bonneau, E., and Legault, P. (2014) Nuclear magnetic resonance structure of the III-IV-V three-way junction from the Varkud Satellite ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement, *Biochemistry* 53, 6264-6275.

115. Klinck, R., Westhof, E., Walker, S., Afshar, M., Collier, A., and Aboul-Ela, F. (2000) A potential RNA drug target in the hepatitis C virus internal ribosomal entry site, *RNA* 6, 1423-1431.

116. Kerwood, D. J., Cavaluzzi, M. J., and Borer, P. N. (2001) Structure of SL4 RNA from the HIV-1 packaging signal, *Biochemistry* 40, 14518-14529.

117. Zhao, Q., Nagaswamy, U., Lee, H., Xia, Y. L., Huang, H. C., Gao, X. L., and Fox, G. E. (2005) NMR structure and Mg$^{2+}$ binding of an RNA segment that underlies the L7/L12 stalk in the *E.coli* 50S ribosomal subunit, *Nucleic Acids Res.* 33, 3145-3153.

118. Nagaswamy, U., Gao, X. L., Martinis, S. A., and Fox, G. E. (2001) NMR structure of a ribosomal RNA hairpin containing a conserved CUCAA pentaloop, *Nucleic Acids Res.* 29, 5129-5139.

119. Kolk, M., Wijmenga, S., Heus, H. A., and Hilbers, C. W. (1998) On the NMR structure determination of a 44n RNA pseudoknot: Assignment strategies and derivation of torsion angle restraints, *J. Biomol. NMR* 12, 423-433.

120. Du, Z., Giedroc, D. P., and Hoffman, D. W. (1996) Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: A model for a possible family of structurally related RNA pseudoknots, *Biochemistry* 35, 4187-4198.

121. McDowell, J. A., and Turner, D. H. (1996) Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: Solution structure of (rGAGGUCUC)$_2$ by two-dimensional NMR and simulated annealing, *Biochemistry* 35, 14077-14089.
122. White, S. A., Nilges, M., Huang, A., Brunger, A. T., and Moore, P. B. (1992) NMR analysis of helix I from the 5S RNA of *Escherichia coli*, *Biochemistry* 31, 1610-1621.

123. Smith, J. S., and Nikonowicz, E. P. (1998) NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein, *Biochemistry* 37, 13486-13498.

124. Jucker, F. M., and Pardi, A. (1995) Solution structure of the CUUG hairpin loop: A novel RNA tetraloop motif, *Biochemistry* 34, 14416-14427.

125. Simorre, J. P., Legault, P., Baidya, N., Uhlenbeck, O. C., Maloney, L., Wincott, F., Usman, N., Beigelman, L., and Pardi, A. (1998) Structural variation induced by different nucleotides at the cleavage site of the hammerhead ribozyme, *Biochemistry* 37, 4034-4044.

126. Colmenarejo, G., and Tinoco Jr., I. (1999) Structure and thermodynamics of metal binding in the P5 helix of a group I intron ribozyme, *J. Mol. Biol.* 290, 119-135.

127. Cai, Z., and Tinoco Jr., I. (1996) Solution structure of loop A from the hairpin ribozyme from tobacco ringspot virus satellite, *Biochemistry* 35, 6026-6036.

128. Nowakowski, J., and Tinoco Jr., I. (1996) Conformation of an RNA molecule that models the P4/P6 junction from group I introns, *Biochemistry* 35, 2577-2585.

129. Leeper, T. C., Martin, M. B., Kim, H., Cox, S., Semencheno, V., Schmidt, F. J., and Van Doren, S. R. (2002) Structure of the UGAGAU hexaloop that braces *Bacillus* RNase P for action, *Nat. Struct. Biol.* 9, 397-403.

130. Hoffman, D. W., and White, S. W. (1995) NMR analysis of the trans-activation response (TAR) RNA element of equine infectious anemia virus, *Nucleic Acids Res.* 23, 4058-4065.

131. Colvin, R. A., White, S. W., Garcia-Blanco, M. A., and Hoffman, D. W. (1993) Structural features of an RNA containing the CUGGGA loop of the human immunodeficiency virus type 1 trans-activation response element, *Biochemistry* 32, 1105-1112.

132. Chen, X. Y., McDowell, J. A., Kierzek, R., Krugh, T. R., and Turner, D. H. (2000) Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G·U pairs: One hydrogen bond for each G·U Pair in r(GGCGUGCC)₂ and two for each G·U Pair in r(GAGUGCUC)₂, *Biochemistry* 39, 8970-8982.

133. Kolk, M. H., van der Graaf, M., Wijmenga, S. S., Pleij, C. W. A., Heus, H. A., and Hilbers, C. W. (1998) NMR structure of a classical pseudoknot: Interplay of single- and double-stranded RNA, *Science* 280, 434-438.

134. Schmitz, U., Behrens, S., Freymann, D. M., Keenan, R. J., Lukavsky, P., Walter, P., and James, T. L. (1999) Structure of the phylogenetically most conserved domain of SRP RNA, *RNA* 5, 1419-1429.

135. Hoogstraten, C. G., Legault, P., and Pardi, A. (1998) NMR solution structure of the lead-dependent ribozyme: Evidence for dynamics in RNA catalysis, *J. Mol. Biol.* 284, 337-350.

136. Lawrence, D. C., Stover, C. C., Noznitsky, J., Wu, Z. R., and Summers, M. F. (2003) Structure of the intact stem and bulge of HIV-1 Ψ-RNA stem-loop SL1, *J. Mol. Biol.* 326, 529-542.
137. McDowell, J. A., He, L. Y., Chen, X. Y., and Turner, D. H. (1997) Investigation of the structural basis for thermodynamic stabilities of tandem GU wobble pairs: NMR structures of (rGGAGUUC) \(_2\) and (rGGAUGUCC)\(_2\), Biochemistry 36, 8030-8038.

138. Szewczak, A. A., Moore, P. B., Chang, Y. L., and Wool, I. G. (1993) The conformation of the sarcin/ricin loop from 28S ribosomal RNA, Proc. Natl. Acad. Sci. U.S.A. 90, 9581-9585.

139. Johnson, P. E., and Donaldson, L. W. (2006) RNA recognition by the Vts1p SAM domain, Nat. Struct. Mol. Biol. 13, 177-178.

140. Baba, S., Takahashi, K., Noguchi, S., Takaku, H., Koyanagi, Y., Yamamoto, N., and Kawai, G. (2005) Solution RNA structures of the HIV-1 dimerization initiation site in the kissing-loop and extended-duplex dimers, J. Biochem. 138, 583-592.

141. Zhou, J., Bean, R. L., Vogt, V. M., and Summers, M. (2007) Solution structure of the Rous sarcoma virus nucleocapsid protein: µΨ RNA packaging signal complex, J. Mol. Biol. 365, 453-467.

142. Flodell, S., Petersen, M., Girard, F., Zdunek, J., Kidd-Ljunggren, K., Schleucher, J., and Wijmenga, S. (2006) Solution structure of the apical stem-loop of the human hepatitis B virus encapsidation signal, Nucleic Acids Res. 34, 4449-4457.

143. Ampt, K. A. M., van der Werf, R. M., Nelissen, F. H. T., Tessari, M., and Wijmenga, S. S. (2009) The unstable part of the apical stem of duck hepatitis B virus epsilon shows enhanced base pair opening but not pico- to nanosecond dynamics and is essential for reverse transcriptase binding, Biochemistry 48, 10499-10508.

144. Nozinovic, S., Fürtig, B., Jonker, H. R., Richter, C., and Schwalbe, H. (2010) High-resolution NMR structure of an RNA model system: The 14-mer cUUCGg tetraloop hairpin RNA, Nucleic Acids Res. 38, 683-694.

145. Zuo, X. B., Wang, J. B., Yu, P., Eyler, D., Xu, H., Starich, M. R., Tiede, D. M., Simon, A. E., Kasprzak, W., Schwiers, C. D., Shapiro, B. A., and Wang, Y. X. (2010) Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3' UTR of turnip crinkle virus, Proc. Natl. Acad. Sci. U.S.A. 107, 1385-1390.

146. Tolbert, B. S., Miyazaki, Y., Barton, S., Kinde, B., Starck, P., Singh, R., Bax, A., Case, D., and Summers, M. (2010) Major groove width variations in RNA structures determined by NMR and impact of \(^{13}\)C residual chemical shift anisotropy and \(^1\)H-\(^{13}\)C residual dipolar coupling on refinement, J. Biomol. NMR 47, 205-219.

147. Miyazaki, Y., Irobalieva, R. N., Tolbert, B. S., Smalls-Mantey, A., Iyalla, K., Loeliger, K., D’Souza, V., Khant, H., Schmid, M. F., Garcia, E. L., Telesnitsky, A., Chiu, W., and Summers, M. F. (2010) Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography, J. Mol. Biol. 404, 751-772.

148. Davidson, A., Begley, D. W., Lau, C., and Varani, G. (2011) A small-molecule probe induces a conformation in HIV TAR RNA capable of binding drug-like fragments, J. Mol. Biol. 410, 984-996.

149. Parkesh, R., Fountain, M., and Disney, M. D. (2011) NMR spectroscopy and molecular dynamics simulation of r(CCGCUCGG)\(_2\) reveal a dynamic UU internal loop found in myotonic dystrophy type 1, Biochemistry 50, 599-601.
150. Denmon, A. P., Wang, J., and Nikonowicz, E. P. (2011) Conformation effects of base modification on the anticodon stem-loop of *Bacillus subtilis* tRNA_{Tyr}, *J. Mol. Biol.* 412, 285-303.

151. Chang, A. T., and Nikonowicz, E. P. (2012) Solution nuclear magnetic resonance analyses of the anticodon arms of proteinogenic and nonproteinogenic tRNA_{Gly}, *Biochemistry* 51, 3662-3674.

152. Korth, M. M. T., and Sigel, R. K. O. (2012) Unusually high-affinity Mg²⁺ binding at the AU-rich sequence within the antiterminator hairpin of a Mg²⁺ riboswitch, *Chem. Biodivers.* 9, 2035-2049.

153. Zhao, Q., Huang, H.-C., Nagaswamy, U., Xia, Y., Gao, X., and Fox, G. E. (2012) UNAC tetraloops: To what extent do they mimic GNRA tetraloops?, *Biopolymers* 97, 617-628.

154. Leonard, G. A., McAuley-Hecht, K. E., Ebel, S., Lough, D. M., Brown, T., and Hunter, W. N. (1994) Crystal and molecular structure of r(CGCGAAUUAGCG): An RNA duplex containing two G^{anti}-A^{anti} base pairs, *Structure* 2, 483-494.

155. Egli, M., Portmann, S., and Usman, N. (1996) RNA hydration: A detailed look, *Biochemistry* 35, 8489-8494.

156. Biswas, R., Mitra, S. N., and Sundaralingam, M. (1998) A 1.76 A structure of a pyrimidine start alternating A-RNA hexamer r(CGUAC)dG, *Acta Crystallogr. D* 54, 570-576.

157. Ippolito, J. A., and Steitz, T. A. (1998) A 1.3-A resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation, *Proc. Natl. Acad. Sci. U.S.A.* 95, 9819-9824.

158. Shah, S. A., and Brunger, A. T. (1999) The 1.8 Å crystal structure of a statically disordered 17 base-pair RNA duplex: principles of RNA crystal packing and its effect on nucleic acid structure, *J. Mol. Biol.* 285, 1577-1588.

159. Pan, B., Mitra, S. N., and Sundaralingam, M. (1999) Crystal structure of an RNA 16-mer duplex r(GCAGAGUUAACUCGC)₂ with nonadjacent G^{syn}-A^{anti} mispairs, *Biochemistry* 38, 2826-2831.

160. Mueller, U., Schubel, H., Sprinzl, M., and Heinemann, U. (1999) Crystal structure of acceptor stem of tRNA_{Ala} from Escherichia coli shows unique G.U wobble base pair at 1.16 Å resolution, *RNA* 5, 670-677.

161. Su, L., Chen, L., Egli, M., Berger, J. M., and Rich, A. (1999) Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot, *Nat. Struct. Biol.* 6, 285-292.

162. Perbandt, M., Vallazza, M., Lippmann, C., Betzel, C., and Erdmann, V. A. (2001) Structure of an RNA duplex with an unusual G.C pair in wobble-like conformation at 1.6 Å resolution, *Acta Crystallogr. D* 57, 219-224.

163. Mueller, U., Muller, Y. A., Herbst-Irmer, R., Sprinzl, M., and Heinemann, U. (1999) Disorder and twin refinement of RNA heptamer double helices, *Acta Crystallogr. D* 55, 1405-1413.

164. Deng, J. P., and Sundaralingam, M. (2000) Synthesis and crystal structure of an octamer RNA r(guguuuac)/r(guaggeac) with GG/UG tandem wobble base pairs: Comparison with other tandem G·U pairs, *Nucleic Acids Res.* 28, 4376-4381.
165. Correll, C. C., Wool, I. G., and Munishkin, A. (1999) The two faces of the
Escherichia coli 23S rRNA sarcin/ricin domain: the structure at 1.11 Å resolution, J.
Mol. Biol. 292, 275-287.
166. Ippolito, J. A., and Steitz, T. A. (2000) The structure of the HIV-1 RRE high
affinity rev binding site at 1.6 Å resolution, J. Mol. Biol. 295, 711-717.
167. Wild, K., Weichenrieder, O., Leonard, G. A., and Cusack, S. (1999) The 2 Å
structure of helix 6 of the human signal recognition particle RNA, Structure 7, 1345-
1352.
168. Xiong, Y., and Sundaralingam, M. (2000) Two crystal forms of helix II of
Xenopus laevis 5S rRNA with a cytosine bulge, RNA 6, 1316-1324.
169. Shi, H., and Moore, P. B. (2000) The crystal structure of yeast phenylalanine
tRNA at 1.93 Å resolution: A classic structure revisited, RNA 6, 1091-1105.
170. Egli, M., Minasov, G., Su, L., and Rich, A. (2002) Metal ions and flexibility in a
viral RNA pseudoknot at atomic resolution, Proc. Natl. Acad. Sci. U.S.A. 99, 4302-4307.
171. Correll, C. C., and Swinger, K. (2003) Common and distinctive features of GNRA
tetraloops based on a GUAA tetraloop structure at 1.4 Å resolution, RNA 9, 355-363.
172. Ennifar, E., Walter, P., and Dumas, P. (2003) A crystallographic study of the
binding of 13 metal ions to two related RNA duplexes, Nucleic Acids Res. 31, 2671-2682.
173. Wedekind, J. E., and McKay, D. B. (2003) Crystal structure of the leadzyme at
1.8 Å resolution: Metal ion binding and the implications for catalytic mechanism and allo
site ion regulation, Biochemistry 42, 9554-9563.
174. Correll, C. C., Beneken, J., Plantinga, M. J., Lubbers, M., and Chan, Y. L. (2003)
The common and the distinctive features of the bulged-G motif based on a 1.04 Å
resolution RNA structure, Nucleic Acids Res. 31, 6806-6818.
175. Klosterman, P. S., Shah, S. A., and Steitz, T. A. (1999) Crystal structures of two
plasmid copy control related RNA duplexes: An 18 base pair duplex at 1.20 Å resolution
and a 19 base pair duplex at 1.55 Å resolution, Biochemistry 38, 14784-14792.
176. Portmann, S., Usman, N., and Egli, M. (1995) The crystal structure of
r(CCCCGGGG) in two distinct lattices, Biochemistry 34, 7569-7575.
177. Shandrick, S., Zhao, Q., Han, Q., Ayida, B. K., Takahashi, M., Winters, G. C.,
Simonsen, K. B., Vourloumis, D., and Hermann, T. (2004) Monitoring molecular
recognition of the ribosomal decoding site, Angew. Chem. Int. Ed. 43, 3177-3182.
178. Ennifar, E., and Dumas, P. (2006) Polymorphism of bulged-out residues in HIV-1
RNA DIS kissing complex and structure comparison with solution studies, J. Mol. Biol.
356, 771-782.
179. Pallan, P. S., Marshall, W. S., Harp, J., Jewett III, F. C., Wawrzak, Z., Brown II,
B. A., Rich, A., and Egli, M. (2005) Crystal structure of a luteoviral RNA pseudoknot
and model for a minimal ribosomal frameshifting motif, Biochemistry 44, 11315-11322.
180. Jang, S. B., Hung, L.-W., Jeong, M. S., Holbrook, E. L., Chen, X., Turner, D. H.,
and Holbrook, S. R. (2006) The crystal structure at 1.5 Å resolution of an RNA octamer
duplex containing tandem G·U basepairs, Biophysical Journal 90, 4530-4537.
181. Xia, J., Noronha, A., Toudjarska, I., Li, F., Akinc, A., Braich, R., Frank-
Kamenetsky, M., Rajeev, K. G., Egli, M., and Manoharan, M. (2006) Gene silencing
activity of siRNAs with a ribo-difluorotolyl nucleotide, ACS Chem. Biol. 1, 176-183.
182. Martick, M., Lee, T. S., York, D. M., and Scott, W. G. (2008) Solvent structure
and hammerhead ribozyme catalysis, Chem. Biol. 15, 332-342.
183. Ennifar, E., Walter, P., and Dumas, P. (2010) Cation-dependent cleavage of the duplex form of the subtype-B HIV-1 RNA dimerization initiation site, *Nucleic Acids Res.* 38, 5807-5816.

184. Freisz, S., Lang, K., Micura, R., Dumas, P., and Ennifar, E. (2008) Binding of aminoglycoside antibiotics to the duplex form of the HIV-1 genomic RNA dimerization initiation site, *Angew. Chem. Int. Ed.* 47, 4110-4113.

185. Timsit, Y., and Bombard, S. (2007) The 1.3 Å resolution structure of the RNA tridecamer r(GCGUUUGAAACGC): Metal ion binding correlates with base unstacking and groove contraction, *RNA* 13, 2098-2107.

186. Förster, C., Brauer, A. B. E., Brode, S., Fürste, J. P., Betzel, C., and Erdmann, V. A. (2007) tRNA^{Ser} acceptor stem: conformation and hydration of a microhelix in a crystal structure at 1.8 Å resolution, *Acta Crystallogr. D* 63, 1154-1161.

187. Förster, C., Mankowska, M., Fürste, J. P., Perbandt, M., Betzel, C., and Erdmann, V. A. (2008) Crystal structure of a human tRNA^{Gly} microhelix at 1.2 Å resolution, *Biochem. Biophys. Res. Commun.* 368, 996-1001.

188. Förster, C., Brauer, A. B. E., Perbandt, M., Lehmann, D., Fürste, J. P., Betzel, C., and Erdmann, V. A. (2007) Crystal structure of an *Escherichia coli* tRNA^{Gly} microhelix at 2.0 Å resolution, *Biochem. Biophys. Res. Commun.* 363, 621-625.

189. Eichert, A., Perbandt, M., Schreiber, A., Fürste, J. P., Betzel, C., Erdmann, V. A., and Förster, C. (2009) Crystal structure of the human tRNA^{Gly} microhelix isoacceptor G9990 at 1.18 Å resolution, *Biochem. Biophys. Res. Commun.* 380, 503-507.

190. Eichert, A., Perbandt, M., Oberthur, D., Schreiber, A., Fürste, J. P., Betzel, C., Erdmann, V. A., and Förster, C. (2009) Crystal structure of the *E. coli* tRNA^{Arg} aminoacyl stem isoacceptor RR1660 at 2.0 Å resolution, *Biochem. Biophys. Res. Commun.* 385, 84-87.

191. Oberthur, D., Eichert, A., Erdmann, V. A., Fürste, J. P., Betzel, C., and Förster, C. (2011) The crystal structure of a *Thermus thermophilus* tRNA^{Gly} acceptor stem microhelix at 1.6 Å resolution, *Biochem. Biophys. Res. Commun.* 404, 245-249.

192. Tanaka, Y., Yamagata, S., Kitago, Y., Yamada, Y., Chimnaronk, S., Yao, M., and Tanaka, I. (2009) Deduced RNA binding mechanism of Thil based on structural and binding analyses of a minimal RNA ligand, *RNA* 15, 1498-1506.

193. Lin, Y., and Kielkopf, C. L. (2008) X-ray structures of U2 snRNA-branchpoint duplexes containing conserved pseudouridines, *Biochemistry* 47, 5503-5514.

194. Eichert, A., Fürste, J. P., Schreiber, A., Perbandt, M., Betzel, C., Erdmann, V. A., and Förster, C. (2009) The 1.2 Å crystal structure of an *E. coli* tRNA^{Ser} acceptor stem microhelix reveals two magnesium binding sites, *Biochem. Biophys. Res. Commun.* 386, 368-373.

195. Dibrov, S., McLean, J., and Hermann, T. (2011) Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA, *Acta Crystallogr. D* 67, 97-104.

196. Ganichkin, O. M., Anedchenko, E. A., and Wahl, M. C. (2011) Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse, *PLoS One* 6, e20032.

197. Kumar, A., Fang, P., Park, H., Guo, M., Nettles, K. W., and Disney, M. D. (2011) A crystal structure of a model of the repeating r(CGG) transcript found in fragile X syndrome, *ChemBioChem* 12, 2140-2142.
198. Kumar, A., Park, H., Fang, P., Parkesh, R., Guo, M., Nettles, K. W., and Disney, M. D. (2011) Myotonic dystrophy type 1 RNA crystal structures reveal heterogeneous 1 × 1 nucleotide UU internal loop conformations, *Biochemistry* 50, 9928-9935.

199. Tamjar, J., Katorcha, E., Popov, A., and Malinina, L. (2012) Structural dynamics of double-helical RNAs composed of CUG/CUG- and CUG/CGG-repeats, *J. Biomol. Struct. Dyn.* 30, 505-523.

200. Coonrod, L. A., Lohman, J. R., and Berglund, J. A. (2012) Utilizing the GAAA tetraloop/receptor to facilitate crystal packing and determination of the structure of a CUG RNA helix, *Biochemistry* 51, 8330-8337.

201. Yildirim, I., Park, H., Disney, M. D., and Schatz, G. C. (2013) A dynamic structural model of expanded RNA CAG repeats: A refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations, *J. Am. Chem. Soc.* 135, 3528-3538.

202. Sheng, J., Li, L., Engelhart, A. E., Gan, J., Wang, J., and Szostak, J. W. (2014) Structural insights into the effects of 2′-5′ linkages on the RNA duplex, *Proc. Natl. Acad. Sci. U.S.A.* 111, 3050-3055.

203. Phelps, K. J., Ibarra-Soza, J. M., Tran, K., Fisher, A. J., and Beal, P. A. (2014) Click modification of RNA at adenosine: Structure and reactivity of 7-ethynyl- and 7-triazolyl-8-aza-7-deazaadenosine in RNA, *ACS Chem. Biol.* 9, 1780-1787.

204. Colussi, T. M., Costantino, D. A., Hammond, J. A., Ruehle, G. M., Nix, J. C., and Kieft, J. S. (2014) The structural basis of transfer RNA mimicry and conformational plasticity by a viral RNA, *Nature* 511, 366-369.

205. deLorimier, E., Coonrod, L. A., Copperman, J., Taber, A., Reister, E. E., Sharma, K., Todd, P. K., Guenza, M. G., and Berglund, J. A. (2014) Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model, *Nucleic Acids Res.* 42, 12768-12778.

206. Sheng, J., Larsen, A., Heuberger, B. D., Blain, J. C., and Szostak, J. W. (2014) Crystal structure studies of RNA duplexes containing s²U:A and s²U:U base pairs, *J. Am. Chem. Soc.* 136, 13916-13924.