論文

環境汚染による人体への影響の定量的評価
—環境疫学の概念と最近の話題—

津田 敏秀1)・三野 善央1)・松岡 宏明1)
谷原 真一1)・馬場園 明2)・山本 英二3)

はじめに

環境汚染が人体に及ぼす影響については、今日、環境問題への関心が高まるようになるに連れて大きな関心がもたれてきた。また、今なお続く公害問題の法廷では、環境汚染による人体への影響の程度がどの様なものであるかについては大きな論点がおかされている。

議論が進むにつれて、近年では、環境汚染による人体影響に関して、以前の水銀中毒のハンター・ラッセル症状のような典型的・急性的症状から、慢性症状や発癌影響そして不全型の症状に注目されるようになってきた。例えば、飲用ヒ素が皮膚の色素沈着もしくは角化を起こすことは、あまり議論の余地がない。急性に（飲用後すぐに）生じて来る上に、頻度が高いからである。しかし飲用ヒ素が癌を起こす問題になると異論が生じやすい。

一方、人体への暴露物質の影響を定量的に評価するための方法論として、1970年代から80年代にかけて、疫学は急速に発展してきた。発達の要因としては、計算機の発達、生物学的相関発達、疫学自体の経験的な蓄積や理論の深化、などが挙げられる。このような発達により、臨床検査の疫学、癌の疫学、薬の有効性や副作用の評価など、広範囲に疫学的方法論が応用されてきた。環境疫学は、このような方法論の環境問題への応用である。

環境疫学の研究で推定された率比はリスクアセスメントの基礎資料となる。その結果は、報告書としてまとめられ、政策等に応用される。1993年初頭に出された米環境保護局（U.S.Environmental Protection Agency）の受動喫煙と肺癌に関する報告書は、その典型的な例といえる。

疫学の方法論をくわしく説明するには、1冊の教科書程のボリュームが必要であるので、疫学研究の考え方を先ず簡単に説明していき、次いで具体的な例としてラドン暴露と肺癌、飲用ヒ素と内臓癌、そして「再処理工場周辺の小児白血病」、「磁場と小児癌」という2つの最近話題の環境疫学の研究例を紹介する。

疫学研究の考え方（率比について）

疫学はその目的の1つに影響の推定があり、その影響の程度の指標として率比がある。率比とは、非暴露群における罹患率を基準にした暴露群における罹患率との比である。罹患率とし incidence と言い、連続確率分布理論のhazardに対応する。罹患というeventを死亡に置き換えると、死亡率になる。率比は、簡単に言うと非暴露群に比べると暴露群では「何倍」当該疫病が多発しているかの指標である。より広い意味で相対危険度も言える。なお疫学では、一般によく使

1) 岡山大学医学部衛生学教室 2) 九州大学健康科学センター 3) 岡山理科大学理学部応用数学

—56—
わるリスク（risk）についても定義を与えている。リスクはある一定期間の間に、全観察対象の中で新規罹患した人の割合である。全観察対象は、観察期間の開始時には罹患しておらず、かつ罹患する可能性がある人の集団である。生涯リスクとなると、計算方法は様々だが、観察期間は人の一生涯を想定している。これは、連続確率分布理論の累積確率分布（cumulative distribution function）に対応する。疫学では累積罹患率（cumulative incidence）と言うこともある。罹患率が小さく観察期間が短いとき、リスクは罹患率に、リスク比は罹患率比によって近似する。

罹患率比を推定するための研究デザインとして、大きく分けてコホート研究（cohort study）と症例対照研究（case−control study）がある。横断研究（cross-sectional study）も罹患率比の推定を念頭に置いているときには、症例対照研究と同様の処理をするので、これに含めておく。これらの研究デザインにより得られたオッズ比、標準化率比（SMRなど）などが率比の推定値である。

コホート研究は、観察期間の初めに実験研究と同様に暴露群と非暴露群を設定したのち、両群における発病を観察し、暴露群と非暴露群の疾病の罹患率を比較する。実験研究と違うのは暴露と非暴露を割り当てることである。

症例対照研究は、研究対象としている疾病を症例群とし、適当な对照群と、要因への暴露割合を比较する研究デザインである。対照群は、病気が発生する可能性を残している集団（population at risk）からのサンプリングする方法が、暴露に関係がないと仮定できる他の疾病の罹患者を選択する方法により選ばれる。影響の程度はオッズ比により定量される。

一度、率比の推定値が得られれば、これは諸研究を統合するメタアナリシスにも使えるし、リスクアセスメントの基礎的資料となる。

ラドン暴露と肺癌

住居におけるラドン222は、ほとんどの国において電磁放射線への暴露源の主たるものとされてきた。Pershagenらは、住居から放出されるラドンによる放射線被爆が肺癌発生におよぼす影響を評価するために、スウェーデン全体を対象に症例対照研究を施した3）。1980年から1984年の間に、スウェーデンで診断された35歳から74歳の586人の女性、774人の男性肺癌患者が症例として選択された。対照群の選択は二種類の方法で一般人口集団から行われた。総計1,380人の女性、1,467人の男性が対照群として選択された。これらの人々が1947年以降居住した8,992の住居のラドンレベルが測定され、喫煙歴などの他の肺のリスク要因に関する情報は質問表により集められた。

測定されたラドンレベルは対数正規分布に従っており、幾何平均で1.6ピコキュリー/リットル、算術平均で2.9ピコキュリー/リットル（それぞれ60.5と106.5ベクレル/立方メートル）であった。ラドン暴露の時間加龍平均50ベクレル/立方メートル以下の肺癌発生率を基準にした時、140−400ベクレル/立方メートルの暴露の人は1.3倍、400ベクレル/立方メートル以上の暴露の人は1.8倍の肺癌の多発が推定された。この結果は鉱山でのラドン暴露と肺癌に関する研究結果の多くにいただけた一致した。

喫煙との相乗作用も観察され、最低暴露レベルの非喫煙者に対して最高レベル暴露（400ベクレル/立方メートル）の喫煙者は30倍以上の肺癌の罹患率になることが推定された。また、開けた窓の近くで寝るようにしていた人々にとっては、ラドン暴露と関係した肺癌発生の増加は観察されなかった。
ヒ素飲用と発症をめぐる議論

ヒ素は古くから皮膚癌の原因として知られていた。これは当初症例報告の集積により示されたが、疫学的にその関係が示されたのは、1968年に台湾の大規模なヒ素汚染地域での疫学調査結果が発表されたときであった。その台湾では1985年に、皮膚癌だけでなく膀胱癌や腎臓癌、肺癌などの内臓癌も多発していることを示す調査結果が示された。

Smithらは、台湾のデータを利用して、ヒ素のリスクアセスメントを行っている。結果は表に示す通りである。表には他の代表的な環境発病暴露である、受動喫煙とラドン暴露の数値も併記してある。このリスクの推定法は、台湾のデータから得られた癌に関する年齢調整死亡率に、結核のない直線モデルを当てはめ、一日あたりの飲用水量を1リットルと仮定し、その飲用水中のヒ素濃度を0.05ppmとした時の癌別の死亡率比（RR）を算出している。この過剰分（RR－1）をアメリカの一般人口集団の生涯リスクに掛けることによって、ヒ素暴露による生涯リスクを求めている。

表1 アメリカ合衆国における環境発癌物質への暴露による癌による死亡の生涯リスク。

（Smith et al. 1992）

Carcinogen	Risk
Environmental tobacco smoke (passive smoking)	
Low exposure (not married to a smoker)	4/1,000
High exposure (married to a smoker)	10/1,000
Radon in homes	
Average exposure	3/1,000
High exposure (1－3% of homes)	20/1,000
Arsenic in drinking water (1.6L/day)	
2.5micrograms/L (U.S. estimated average)	1/1,000
50micrograms/L (U.S. water standard)	21/1,000

Smithらのリスクアセスメントの方法には異論も表明されているが、飲用ヒ素が内臓癌を起こすかどうかの因果関係に関する議論は、世界の他の地域での調査結果がそれを支持している。

イギリス核再処理工場周辺の小児白血病の多発

1983年にヨークシャー・テレビが、イギリスのセラフィールド核再処理工場から3キロ離れたシースケール村で、小児の白血病が多発していることを報道して以来、イギリス政府は、実態調査を行うために2度にわたって調査委員会を組織した（委員長の名前をとってブラック委員会とポブロウ委員会）。ブラック委員会の結果は、シースケール村の子供が白血病で死亡する確率は期待値に対し10倍（観察値6、期待値6）であるが、他の多発している地域もある。"というものであった。

その「他地域」にも原子力施設があったのでポブロウ委員会は、「この両地域の周辺で若年層に白血病の過剰死亡が明らかに示されたことは、偶然では説明できない。」また、不確定なところがあるものの「若年層の白血病の過剰危険に結び付く施設のなんらかと関連があるという仮説を、この両地域の白血病の多発は支持する。」と結論した。このようななかで、ポブロウ委員会のメンバーの1人、Gardnerらがシースケールのある西カンブリアにおいて症例対照研究を行った。

症例の把握は、西カンブリア保健地域内住む、0才から24才の白血病がリンパ腫と診断された患者を1950年1月から1985年12月までを集めた。さらに、症例の把握をより完全にするため、ブラック委員会で把握した症例、西カンブリア病院での剖検記録、死亡診断書、西カンブリアの癌登録、西カンブリアの一般医への回診、西カンブリア登録における登校前の既往歴報告などを調べ、西カンブリアで生まれて診断を受けた症例のみを分析し、そこで52例の白血病、22例のnon－Hodgkinリンパ腫、23例のHodgkinリンパ腫が同定された。

対照は国勢調査の事務所にある出生記録を調べ、性と年齢を合わせて1症例について4例ずつ2種類の対照を選んだ。結局97例の症例に対し、
1,001例の対照を選んだ。
両親から情報を得るために家庭医に登録させて、一般医を通じて連絡した。また、症例の診断と症例と対照の産科記録を確かめるために病院も調べた。産科記録では腹部へのX線照射や感染記録なども調べられた。妊娠中の診療については質問表を通して母親にも尋ねられ、居住歴や食習慣なども同時に質問表に盛り込まれた。
まず、居住地の再処理工場からの距離毎にオッズ比が算出された。その結果4 km以内が最もオッズ比が高く、工場から離れるに従ってオッズ比が低くなっていた。その程度は約3から5分の1に方法であった。
次に、症例群と対照群の中でセラフィールドの父親が工場労働者に限って調査が行われた。個々の労働者の被爆線量は、工場から提供を受けた正確なものであった。その結果は表2に示すようなものであった。
non-Hodgkinリッパ腫では、数が少ないにもかかわらず白血病と同様の結果が観察されたが、Hodgkinリッパ腫では特に関係がなかった。ほとんどの母親はセラフィールドで働いておらず、働いていた母親もおもに放射線無線についていた。出生前X線検査では以前の研究と同様の結果が得られた。
6年余りにわたり3,000人以上を対象とし、暴露情報もかなり総合的に集められた大調査は、再処理工場の周辺での白血病の発症というシェッキングな側面ばかりではなく、比較的低レベルでの、しかも父親の放射線暴露によりその子供に白血病が多発するという、従来の放射線の被爆への影響に関する考え方の見直しを迫るものであった。同様の施設を持った他地域での、同様な調査が望まれる。

Radiation dose (milliSieverts)	Cases	Local controls	Relative risk	95% confidence interval
Total before conception				
0	38	236	1	
>0–49	3	26	0.8	0.2–3.0
50–99	1	11	0.8	0.1–7.7
>100	4	3	8.4	1.4–52.0
6 month before conception				
0	38	246	1	
>0–4	3	24	1.1	0.3–4.9
5–9	1	3	3.0	0.3–32.6
>10	4	3	8.2	1.6–41.7

磁場による発症
1979年にWertheimerとLeeper 31が、磁場レベルが高いと想定される家に住んでいる子供に癌が多発すると報告し、1982年にMilhamが、磁場レベルが高い職場で働いている人に白血病のリスクが増加している事を報告して 32以来、磁場と白血病の関係についての調査研究が盛んに行われ出した。ここでは、スウェーデンのカリンスカ研究所の症例対照研究 33を紹介する。
1960年から1985年の220kVと400kVの送電線の300メートル以内に住んでいた16歳以下の全ての住民を対象（Base）とした。142例の癌症例（39例の白血病、33中枢神経系の腫瘍を含む）がスウェーデンの癌登録から同定され、558例の対照がBaseからランダムに選択された。暴露、点測定および送電線からの距離などを考慮して計算された。時間的な積算も診断日まで計算された。小児白血病に関して、0.1と0.2マイクロテラストラの閾値として評価すると、0.2マイクロテラストラ以上は、相対危険度（オッズ比）は2.7（95%信頼区間1.0–6.3）であった。0.3マイクロテラストラ以上では、3.8（95%信頼区間1.4–9.3）であった。これらは交絡要因を考慮した後でもあまり変化がなかった。中枢神経腫瘍、リッパ腫、全般的癌では特に関係は観察されなかった。
ラドン暴露と肺癌に関する研究もそうであるが、スウェーデンでの癌に関する環境疫学の研究は、この国がよく整備された癌登録を持っているために、非常に質が高いと考えられる。この問題は、いま全米で最も関心のある健康問題の一つとされ、カロリンスカ研究所の研究結果がAmerican Journal of Epidemiology誌上に掲載後、クリントン大統領も記者会見で関心を示した。白血病以外の癌についての関係を示唆する論文もあり10，今後さらに研究が必要である。

まとめ
これまで疫学研究への懐疑主義が、迅速な環境対策や建設的な議論の障害となってきた感がある。疫学理論の進歩によって、今日では、環境汚染が人体に及ぼす影響を定量的に評価できるようになってきている。今後環境問題を考える場合には、疫学研究を考慮することが不可欠となるであろう。
United States Environmental Protection Agency: Respiratory health effects of passive smoking: Lung cancer and other disorders. Washington, U.S. Environmental Protection Agency, 1992.

2. 津田敏秀，馬場園明，山本英二，三野善央，小河孝則，疫学の影響の指標としてのオッズ比。健康科学 17: 25-34, 1995.

3. G Pershagen, G. Akerblom, O Axelsson, B Clavensjo, L. Damber, G. Desai, A Enflo, F. Lagarde, H Mellander, M Svartengren, and GA Swedjemark, Residential radon exposure and lung cancer in Sweden. New Engl. J. Med. 330, 159-164, 1994.

4. WP Tseng, HM Chu, SW How, JM Fong, CS Lin, and S Yeh, Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Cancer Inst. 40: 453-463, 1968.

5. CJ Chen, YC Chuang, TM Lin, and HY Wu, Malignant neoplasms among residents of a Blackfoot Disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res. 45, 5895-5899, 1985.

6. MM Wu, TL Kuo, YH Hwang, CJ Chen, Dose-response relationship between arsenic concentration in well water and mortality from cancers and vascular diseases. Am. J. Epidemiol. 130, 1123-1132, 1989.

7. CJ Chen, TL Kuo, and MM Wu, Arsenic and cancers (letter). Lancet i: 414-415 (1988).

8. AH Smith, C Hoppenhain-Rich, MN Bates, HM Goeden, I Hertz-Picciotto, HM Duggan, R Wood, MJ Kosnett, and MT Smith, Cancer risks from arsenic in drinking water. Environmental Health Perspective 97 259-267, 1992.

9. H Carlson-Lynch, BD Beck, and PD Boardman, Arsenic risk assessment. Environmental Health Perspectives 102, 354-356, 1994.

10. T Tsuda, T Nagira, M Yamamoto, and Y Kume. An epidemiological study on cancer in certified arsenic poisoning patients in Toroku. Ind. Health 28, 53-62, 1990.

11. T Tsuda, A Babazono, E Yamamoto, N Kurumatani, Y Mino, T Ogawa, Y Kishi, and H Aoyama, Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. Am. J. Epidemiol. 141, 198-209, 1995.

12. J Cuzick, P Sasieni, and S Evans, Ingested arsenic, keratosis, and bladder cancer. Am. J. Epidemiol. 136,417-421,1992.

13. MJ Gardner, Childhood leukaemia around the Sellafield nuclear plant. in Gographical and Environmental Epidemiology: Methods for Small-Area Studies, eds. P Elliott, J Cuzick, D English, and R Stern, Oxford, Oxford, pp.291-309, 1993.

14. H Checkoway, and PA Demers, Occupational case-control studies. Epidemiologic Reviews 16, 151-162, 1994.

15. N Wertheimer and E Leeper, Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 109, 273-284, 1979.

16. SJ Milham, Mortality from leukemia in workers exposed to electrical and magnetic fields. (letter) New Engl. J. Med. 307, 249, 1982.

17. M Feychting and A Ahlbom, magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am. J. Epidemiol. 138, 467-481, 1993.

18. 齊藤豊信，送電線の電磁場暴露とガンの危険性に関する疫学的研究の総説。日本公衆衛生誌 40, 917-925, 1993.

19. DA Savitz, NE Pearce, C Poole, Methodological issues in the epidemiology of electromagnetic fields and cancer. Epidemiol. Rev. 11: 59-78, 1989.
Environmental Epidemiology
—Concept and recent topics—

Toshihide Tsuda, Yoshio Mino, Hiroaki Matsuoka,
Shinichi Tanihara, Akira Babazono, Eiji Yamamoto

Abstract

Concept and recent topics on environmental epidemiology have been introduced in the article. First, the authors presented the basic concept on epidemiology. Answers to the question "Is a particular exposure influent to human health?" can be obtained only from studies of human beings, using an epidemiologic approach. Environmental epidemiology is an application of epidemiology to environmental problem. Then, we presented four examples on environmental epidemiologic research. The four recent topics are residential radon exposure and lung cancer, ingested arsenic and cancer, increase incidence of childhood leukaemia around the English nuclear reprocessing facilities, and magnetic field and excess incidence of childhood leukaemia near Swedish high-voltage power lines.