Measurement of the branching fraction and time-dependent CP asymmetry for $B^0 \to J/\psi \pi^0$ decays

B. Pal, 6 A. J. Schwartz, 6 H. Aihara, 83 S. Al Said, 77, 35 D. M. Asner, 3 H. Atmacan, 73 V. Aulchenko, 4, 62 T. Aushev, 52 R. Ayad, 77 I. Badhrees, 77, 34 S. Bahinipati, 19 V. Bansal, 64 P. Behera, 22 C. Beleño, 11 B. Bhuyan, 20 T. Bilka, 5 J. Biswal, 30 A. Bozek, 59 M. Bracko, 16, 30 L. Cao, 31 D. Červenkov, 5 V. Chekelian, 47 A. Chen, 56 B. G. Cheon, 13 K. Chilikin, 41 K. Cho, 36 Y. Choi, 75 S. Choudhury, 21 D. Cinabro, 87 S. Cunliffe, 7 N. Dash, 19 S. Di Carlo, 59 Z. Doležal, 5 S. Eidelman, 4, 62, 41 D. Epifanov, 4, 62 J. E. Fast, 64 B. G. Fulsom, 64 R. Garg, 65 V. Gaur, 86 A. Garmash, 4, 62 M. Gelb, 31 A. Girli, 21 P. Goldenzweig, 41 B. Golob, 12, 30 Y. Guan, 23, 15 T. Hara, 15, 12 K. Hayasaka, 61 H. Hayashii, 35 T. Higuchi, 52 W.-S. Hou, 58 C.-L. Hsu, 76 K. Inami, 53 A. Ishikawa, 81 R. Itoh, 15, 12 M. Iwasaki, 63 Y. Iwasaki, 15 W. W. Jacobs, 23 S. Jia, 2 D. Joffe, 33 T. Julinius, 48 G. Karyan, 7 D. Y. Kim, 72 K. T. Kim, 37 S. H. Kim, 13 K. Kinoshita, 6 P. Kodyš, 5 S. Korpar, 16, 30 D. Kotchetkov, 14 P. Križan, 42, 30 R. Kroeger, 49 P. Krokovny, 4, 62 R. Kulasiri, 33 R. Kumar, 68 A. Kuzmin, 4, 62 Y.-J. Kwon, 89 K. Lalwani, 45 S. C. Lee, 38 L. K. Li, 24 Y. B. Li, 66 L. Li Giori, 47 J. Libby, 22 P.-C. Lu, 58 M. Masuda, 82 T. Matsuda, 50 D. Matvienko, 4, 62, 41 M. Merola, 27, 54 M. Miyabayashi, 55 H. Miyata, 61 R. Mizuk, 41, 51, 52 G. B. Mohanty, 78 T. Mori, 53 E. Nakano, 63 M. Nakao, 15, 12 K. J. Nath, 20 Z. Natkaniec, 59 M. Nayak, 87, 15 S. Nishida, 87, 15 S. Ogawa, 88, 60, 61 G. Pakhlova, 41, 52 S. Pardi, 27 H. Park, 38 S. Paul, 79 T. K. Pedlar, 44 R. Pestotnik, 30 L. E. Pihlonen, 86 V. Popov, 41, 52 E. Principe, 17 M. V. Purohit, 74 M. Ritter, 43 G. Russo, 27 D. Sahoo, 78 Y. Sakai, 15, 12 S. Sandilya, 6 L. Santelj, 15 T. Sanuki, 81 V. Savinov, 67 O. Schneider, 40 G. Schnell, 74, 18 J. Schuler, 14 C. Schwanda, 25 Y. Seino, 61 K. Senyo, 88, 80 O. Seon, 53 M. E. Sevior, 48 T.-A. Shibata, 64 F. Simon, 47 A. Sokolov, 20 E. Solovieva, 41, 52 M. Starić, 30 M. Sumihama, 19 T. Sumiyoshi, 85 M. Takizawa, 71, 16, 69 U. Tamponi, 28 K. Tanida, 92 Y. Tao, 8 F. Tenchini, 7 K. Trabelsi, 15, 12 M. Uchida, 84 S. Uehara, 15, 12 T. Uglov, 41, 52 Y. Unno, 13 S. Uno, 15, 12 S. E. Vahsen, 14 R. Van Tonder, 31 G. Varner, 14 K. E. Varvell, 76 V. Vorobyev, 4, 62, 41 B. Wang, 6 C. H. Wang, 57 M. Z. Wang, 58 P. Wang, 24 X. L. Wang, 9 E. Widmann, 74 E. Won, 37 J. Yelton, 8 J. H. Yim, 24 Z. P. Zhang, 70 V. Zhilich, 4, 62 and V. Zhukova 41

(The Belle Collaboration)

1 University of the Basque Country UPV/EHU, 48080 Bilbao
2 Beihang University, Beijing 100191
3 Brookhaven National Laboratory, Upton, New York 11973
4 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5 Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6 University of Cincinnati, Cincinnati, Ohio 45221
7 Deutsches Elektronen–Synchrotron, 22607 Hamburg
8 University of Florida, Gainesville, Florida 32611
9 Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
10 Gifu University, Gifu 501-1193
11 H. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
12 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
13 Hanyang University, Seoul 133-791
14 University of Hawaii, Honolulu, Hawaii 96822
15 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
16 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
17 Forschszentrum Jülich, 52425 Jülich
18 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
19 Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
20 Indian Institute of Technology Guwahati, Assam 781039
21 Indian Institute of Technology Hyderabad, Telangana 502285
22 Indian Institute of Technology Madras, Chennai 600036
23 Indiana University, Bloomington, Indiana 47408
24 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
25 Institute of High Energy Physics, Vienna 1050
26 Institute for High Energy Physics, Protvino 142281
27 INFN - Sezione di Napoli, 80126 Napoli
28 INFN - Sezione di Torino, 10125 Torino
29 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
30 J. Stefan Institute, 1000 Ljubljana
31 Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
We measure the branching fraction and time-dependent CP-violating asymmetry for $B^0 \rightarrow J/\psi \pi^0$ decays using a data sample of 711 fb$^{-1}$ collected on the $\Upsilon(4S)$ resonance by the Belle experiment running at the KEKB e^+e^- collider. The branching fraction is measured to be $B(B^0 \rightarrow J/\psi \pi^0) = [1.62 \pm 0.11 \text{ (stat)} \pm 0.06 \text{ (syst)}] \times 10^{-5}$, which is the most precise measurement to date. The measured CP asymmetry parameters are $S = -0.59 \pm 0.19 \text{ (stat)} \pm 0.03 \text{ (syst)}$ and $A = -0.15 \pm$
At the quark level, the decay $B^0 \rightarrow J/\psi \pi^0$ proceeds via $b \rightarrow c \bar{s}d$ “tree” and “penguin” amplitudes, as shown in Fig. 1. Both amplitudes are suppressed in the Standard Model (the first one is color- and Cabibbo-suppressed), and thus the branching fraction is small. The tree-level amplitude has the same weak phase as that of the $b \rightarrow c \bar{s}d$ amplitude governing, e.g., $B^0 \rightarrow J/\psi K_S^0$ decays, while the penguin amplitude has a different weak phase. The former dominates mixing-induced CP violation, while the addition of the latter gives rise to direct CP violation.

Physically allowed region, but the uncertainties are large. The previous result from Belle was based on 535×10^6 $B\bar{B}$ pairs [8]. Here we update that measurement using the final Belle data set of 772×10^6 $B\bar{B}$ pairs. We also update the $B^0 \rightarrow J/\psi \pi^0$ branching fraction, for which our previous measurement used only 32×10^6 $B\bar{B}$ pairs [10]. In addition to more data, the analysis presented here also uses improved tracking and photon reconstruction.

The Belle detector is a large-solid-angle magnetic spectrometer consisting of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters, a barrel-like arrangement of time-of-flight scintillation counters, and an electromagnetic calorimeter (ECL) comprising CsI(Tl) crystals. These detector components are located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return (KLM) located outside the coil is instrumented to detect K_L^0 mesons and to identify muons. Two inner detector configurations were used: a 2.0 cm radius beam pipe and a three-layer SVD were used for the first 152×10^6 $B\bar{B}$ pairs of data, while a 1.5 cm radius beam pipe, a four-layer SVD, and a small-cell inner drift chamber were used for the remaining 620×10^6 $B\bar{B}$ pairs of data. The detector is described in detail in Ref. [11]. Event selection requirements are optimized using Monte Carlo (MC) simulation. MC events are generated using EVTGEN [12], and the detector response is modeled using GEANT3 [13]. Final-state radiation is taken into account using the Photos package [14].

The $\Upsilon(4S)$ is produced with a Lorentz boost of $\beta\gamma = 0.425$ along the $+z$ axis, which is defined as anti-parallel to the e^+ beam direction. Since the B^0 and \bar{B}^0 mesons are approximately at rest in the $\Upsilon(4S)$ center-of-mass (CM) system, Δt is determined from the displacement in z between the two B decay vertices: $\Delta t = \Delta z/c\beta\gamma$.

The reconstruction of $B^0 \rightarrow J/\psi \pi^0$ proceeds by first reconstructing $\pi^0 \rightarrow \gamma\gamma$ candidates. An ECL cluster not matched to any track is identified as a photon candidate. Such candidates are required to have an energy greater than 50 MeV in the barrel region and greater than 100 MeV in the end-cap regions, where the barrel region covers the polar angle $32^\circ < \theta < 130^\circ$ and the end-cap regions cover the ranges $120^\circ < \theta < 320^\circ$ and $130^\circ < \theta < 157^\circ$. We require that the $\gamma\gamma$ invariant mass be within 20 MeV/c^2 (about 3.5σ in resolution) of the π^0 mass [15]. To improve the π^0 momentum resolution, we perform a mass-constrained fit and require that the resulting χ^2 be less than 30. This requirement is relatively loose, retaining more than 99% of events.

We subsequently combine π^0 candidates with J/ψ candidates, which are reconstructed in the e^+e^- and $\mu^+\mu^-$
decay channels. All charged tracks are required to have a minimum number of SVD hits: ≥ 2 in the beam direction, and ≥ 1 in the transverse direction. Electron identification is based on the ratio of the ECL cluster energy to the particle momentum as measured in the CDC, as well as the position and shape of the electromagnetic shower in the ECL. In order to account for radiative energy loss in e^+e^- decays, we include up to two bremsstrahlung photons that lie within 50 mrad of each of the reconstructed tracks when calculating the e^+ and e^- four-momenta. Muons are identified by corresponding hit positions and the track penetration depth in the KLM. The reconstructed J/ψ invariant masses $M_{ee(\gamma)}$ and $M_{\mu\mu}$ are required to satisfy $-150 \text{ MeV}/c^2 < M_{ee(\gamma)} - m_{J/\psi} < 36 \text{ MeV}/c^2$ and $-60 \text{ MeV}/c^2 < M_{\mu\mu} - m_{J/\psi} < 36 \text{ MeV}/c^2$, where $m_{J/\psi}$ is the nominal J/ψ mass $[15]$. The asymmetric mass ranges account for the radiative tail, which biases the reconstructed mass towards lower values. For selected J/ψ candidates, vertex- and mass-constrained fits are performed to improve the momentum resolution.

Candidate B^0 mesons are identified using the beam-energy-constrained mass $M_{bc} = \sqrt{E^2_{\text{beam}} - |\vec{p}_B|^2}/c^2$, and the energy difference $\Delta E = E_B - E_{\text{beam}}$, where E_{beam} is the beam energy, and E_B and \vec{p}_B are the reconstructed energy and momentum, respectively, of the B^0 candidate. All quantities are evaluated in the CM frame. Events satisfying $M_{bc} > 5.24 \text{ GeV}/c^2$ and $-0.20 \text{ GeV} < \Delta E < 0.10 \text{ GeV}$ are retained for further analysis. To calculate the signal yield, we define a smaller signal region: $5.27 \text{ GeV}/c^2 < M_{bc} < 5.29 \text{ GeV}/c^2$ and $-0.10 \text{ GeV} < \Delta E < 0.05 \text{ GeV}$. In order to suppress “continuum” background arising from light quark production ($e^+e^- \rightarrow q\bar{q}$, $q = u, d, s, c$), we require that the event shape variable R_2, which is the ratio of second to zeroth Fox-Wolfram moments $[16]$, satisfies $R_2 < 0.4$.

After applying all selection criteria, 2.9% of events have multiple B^0 candidates in the signal region. For these events, we retain the candidate having the smallest sum of χ^2 values obtained from the $q\bar{q}$ and $\gamma\gamma$ mass-constrained fit and the $J/\psi \rightarrow \ell^+\ell^-$ vertex- and mass-constrained fit. According to MC simulations, this criterion selects the correct B^0 candidate in 74% of multiple-candidate events.

We tag (identify) the flavor of the accompanying B meson using inclusive properties of particles not associated with the signal $B^0 \rightarrow J/\psi \pi^0$ decay. The algorithm for flavor tagging is described in Ref. $[17]$. Two parameters, q and r, are used to represent the tagging information. The former is the implied flavor of the signal B decays as used in Eq. 1. The latter is an event-by-event MC-determined quality factor that ranges from $r = 0$ for no flavor discrimination to $r = 1$ for unambiguous flavor assignment. It is used for sorting candidate events into seven r ranges. For events having $r > 0.10$, we determine the wrong-tag fractions ω_l ($l = 1, 7$) and their differences $\Delta\omega_l$ between B^+ and B^- decays from a control sample of self-tagged semileptonic and hadronic $b \rightarrow c$ decays $[18, 19]$. If $r < 0.10$, the wrong tag fraction is set to 0.5.

The vertex position for the $B^0 \rightarrow J/\psi \pi^0$ decay is reconstructed using lepton tracks from J/ψ decays. We perform a vertex fit with a constraint to the interaction point (IP) profile. A vertex position for f_{tag} is obtained using tracks that are not assigned to the $B^0 \rightarrow J/\psi \pi^0$ candidate, plus the IP constraint. This constraint allows for reconstruction of an f_{tag} vertex even in cases when only one track candidate satisfies the requirement on SVD hits. The fraction of single-track vertices for f_{tag} is approximately 12%, estimated from MC. To reject events with poorly reconstructed vertices, we require $\sigma_z < 200 \mu$m and $h < 50$ for multi-track vertices, and $\sigma_z < 500 \mu$m for single-track vertices, where σ_z is the error on the vertex z coordinate, and h is the χ^2 value calculated in three-dimensional space without using the IP constraint $[19]$. We retain events in which both J/ψ and f_{tag} vertices are reconstructed and satisfy $|\Delta t| < 70$ ps.

To extract the signal yield, we perform a two dimensional unbinned maximum likelihood fit to the variables M_{bc} and ΔE. The probability density function (PDF) of signal events consists of two parts: one for candidates that are correctly reconstructed, and one for those incorrectly reconstructed, i.e., at least one daughter originates from the other (tag-side) B. For the former case, both the M_{bc} and ΔE distributions are modeled with Crystal Ball (CB) functions $[20]$. For the latter case, the correlated two-dimensional $M_{bc}\Delta E$ distribution is modeled with a non-parametric PDF $[21]$. The fraction of incorrectly reconstructed decays (~10% in the signal region) is taken from MC simulation. The CB parameters that describe the lower tail of the M_{bc} and ΔE distributions are also fixed to MC values.

The remaining background is small and dominated by $B\bar{B}$ events in which one of the B mesons decays into a final state containing a J/ψ. We divide this background into three categories: (a) $B^0 \rightarrow J/\psi K^0_L$, (b) $B^0 \rightarrow J/\psi K^0_S$, and (c) $B \rightarrow J/\psi X$ other than $B^0 \rightarrow J/\psi K^0_L$. We use two-dimensional non-parametric PDFs $[21]$ to model the $M_{bc}\Delta E$ distributions for all three categories. We fix the background yields to those expected based on MC simulation: 10.8 $J/\psi K^0_L$ events, 10.0 $J/\psi K^0_S$ events, and 17.5 other $J/\psi X$ events in the $M_{bc}\Delta E$ signal region. The remaining background comes from continuum $q\bar{q}$ events. We model the M_{bc} and ΔE distributions of continuum background with an ARGUS $[22]$ function having its endpoint fixed to 5.29 GeV/c2, and a first-order polynomial, respectively. Background coming from $B\bar{B}$ not containing a real J/ψ is negligible. From the fit we obtain 330.2 \pm 22.1 signal events and 16.3 \pm 3.5 continuum events. The purity of the signal is 86% in the signal
region. Projections of the fit are shown in Fig. 2.

The branching fraction is calculated from the formula

\[
B(B^0 \to J/\psi \pi^0) = \frac{Y_{\text{sig}}}{\varepsilon \times N_{B\bar{B}} \times B_{J/\psi} \times B_{\pi^0}},
\]

where \(Y_{\text{sig}}\) is the fitted signal yield; \(N_{B\bar{B}} = (772 \pm 11) \times 10^6\) is the number of \(B\bar{B}\) events; \(\varepsilon = (22.3 \pm 0.1)\%\) is the signal efficiency (for \(e^+e^-\) and \(\mu^+\mu^-\) combined) as obtained from MC simulation; \(B_{J/\psi}\) is the branching fraction of \(J/\psi \to \mu^+\mu^-\) and \(B(J/\psi \to e^+e^-)\) \[15\]; and \(B_{\pi^0}\) is the branching fraction of \(\pi^0 \to \gamma\gamma\) \[15\]. In Eq. (2) we assume equal production of \(B^0\bar{B}^0\) and \(B^+\bar{B}^-\) pairs at the \(Y(4S)\) resonance. The result is

\[
B(B^0 \to J/\psi \pi^0) = (1.62 \pm 0.11 \pm 0.06) \times 10^{-5},
\]

where the first uncertainty is statistical and the second is systematic.

![Graph](image)

FIG. 2. Projections of the two-dimensional fit: (a) \(M_{bc}\) in the \(\Delta E\) signal region, and (b) \(\Delta E\) in the \(M_{bc}\) signal region. The points are data, the (green) dashed curves show the signal, the (red) dot-dashed curves show the q\(\bar{q}\) background, the (magenta) dotted curves show the \(B\bar{B}\) background, and the (blue) solid curves show the total PDF.

The systematic uncertainty on \(B(B^0 \to J/\psi \pi^0)\) arises from several sources, as listed in Table 1. The uncertainty due to the fixed parameters in the PDF is estimated by varying each parameter individually according to its statistical uncertainty. The resulting changes in the branching fraction are added in quadrature and the result is taken as the systematic uncertainty. The non-parametric shapes are also varied by changing their smoothing, and the associated systematic uncertainty is found to be negligible. We assign a 1.5% systematic uncertainty due to \(\pi^0\) reconstruction, as determined from a study of \(\tau^- \to \pi^-\pi^0\nu_\tau\) decays \[23\]. The uncertainty due to charged track reconstruction is 0.35% per track, as determined from a study of partially reconstructed \(D^+ \to D^0\pi^+, D^0 \to K^0_S\pi^+\pi^-\) decays. We assign a 2.1% uncertainty due to lepton identification, as obtained from a study of two-photon \(\gamma\gamma \to e^+e^-\) production events. The uncertainty due to the estimated fraction of incorrectly reconstructed signal events is obtained by varying this fraction by \(\pm 100\%\). As \(B \to J/\psi (K^0_S, K^0_L, X)\) decays are well measured, we evaluate the uncertainty due to their estimated amounts by varying them by \(\pm 20\%\). The uncertainty due to the number of \(B\bar{B}\) pairs is 1.4%, and the uncertainty on the reconstruction efficiency \(\varepsilon\) due to the MC sample size is 0.4%. The total systematic uncertainty is obtained by summing all individual contributions in quadrature.

TABLE 1. Fractional systematic uncertainties for \(B(B^0 \to J/\psi \pi^0)\).

Source	Uncertainty (%)
PDF parametrization	0.1
\(\pi^0\) reconstruction	1.5
Tracking	0.7
Lepton-ID selection	2.1
Incorrectly reconstructed signal events	0.8
\(B \to J/\psi (K^0_S, K^0_L, X)\) background	\(+1.8\)
MC statistics	0.4
Secondary branching fractions	0.8
Number of \(B\bar{B}\) pairs	1.4
Total	\(+3.5\)

We determine \(S\) and \(A\) by performing an unbinned maximum likelihood fit to the \(\Delta t\) distribution of candidate events in the signal region. The PDF for the signal component, \(p_{\text{sig}}(\Delta t; S, A, q, \omega, \Delta \omega)\), is given by Eq. (1) with the parameters \(\tau_{B\bar{B}}\) and \(\Delta m_q\) fixed to the world-average values \[24\]. We modify this expression to take into account the effect of incorrect flavor assignment, which is parametrized by \(\omega\) and \(\Delta \omega\). This PDF is then convolved with the decay-time resolution function \(R_{\text{sig}}(\Delta t)\). The resolution function is itself a convolution of four components: the detector resolutions for \(z_{J/\psi \pi^0}\) and \(z_{\text{tag}}\); the shift of the \(z_{\text{tag}}\) vertex position due to secondary tracks from charmed particle decays; and the kinematic approximation that the \(B\) mesons are at rest in the CM frame \[19\]. The PDFs for \(B^0 \to J/\psi K^0_S\) and \(B^0 \to J/\psi K^0_L\) backgrounds are the same as \(p_{\text{sig}}\) but with \(CP\) parameters \(A\) and \(S\) fixed to the recent Belle
The PDF for $B \to J/\psi X$ background is taken to have the same form as P_{sig} but with A and S set to zero, and with an effective lifetime τ_{eff} determined from MC simulation. The PDF for continuum background is taken to be the sum of two Gaussian functions whose parameters are obtained by fitting events in the sideband region $5.20 \text{ GeV}/c^2 < M_{bc} < 5.26 \text{ GeV}/c^2$ and $0.10 \text{ GeV} < \Delta E < 0.50 \text{ GeV}$.

We assign the following likelihood for the i-th event:

$$P_i(\Delta t) = (1 - f_{\text{ol}}) \int d(\Delta t') \left[R_{\text{sig}}(\Delta t' - \Delta t) \times \left(f_{\text{sig}} P_{\text{sig}}(\Delta t') + f_{J/\psi K^0_S} P_{J/\psi K^0_S}(\Delta t') + f_{J/\psi X} P_{J/\psi X}(\Delta t') \right) \right] + f_{\text{ol}} P_{\text{ol}}(\Delta t_i),$$

where f_{sig}, $f_{J/\psi K^0_S}$, $f_{J/\psi X}$, and f_{ol} are the fractions of signal, $B^0 \to J/\psi K^0_S$, $B^0 \to J/\psi X$, and $q\bar{q}$ continuum background, respectively. All fractions depend on the flavor tagging quality r and are functions of ΔE and M_{bc}. The term $P_{\text{ol}}(\Delta t)$ is a broad Gaussian function that represents an outlier component with a small fraction $f_{\text{ol}} \approx 0.5\%$. The only free parameters in the fit are S and A: these are determined by maximizing the likelihood $L(S, A) = \prod_i P_i(\Delta t_i; S, A)$. Figure 3 shows the fitted Δt distribution and the time-dependent decay rate asymmetry A_{CP}, where $A_{CP} = (Y_{\text{sig}}^{(q+1)} - Y_{\text{sig}}^{(q-1)}) / (Y_{\text{sig}}^{(q+1)} + Y_{\text{sig}}^{(q-1)})$, where $Y_{\text{sig}}^{(q=\pm 1)}$ is the signal yield with $q = \pm 1$. The results of the fit are

$$S = -0.59 \pm 0.19 \pm 0.03,$$

$$A = -0.15 \pm 0.14 \pm 0.04,$$

where the first uncertainty is statistical and the second is systematic. The correlation between A and S is -0.005.

The systematic uncertainties for S and A are listed in Table II. They are small compared to the corresponding statistical uncertainties. The largest contributions to S arise from vertex reconstruction and the resolution function. The uncertainty due to the former includes uncertainties in the IP profile, charged track selection, vertex quality selection, and SVD misalignment. We vary each parameter of the resolution function by one standard deviation ($\pm 1\sigma$) and compare the resulting fit result with that of the nominal fit; the difference between the two is taken as the systematic uncertainty. Each physics parameter that is fixed to its world average value [24], e.g., τ_{D^0} and Δm_{c}, is varied by the corresponding error; the uncertainty is taken to be the resulting difference with the nominal fit result. The uncertainty due to possible fit bias is evaluated using large ensembles of MC signal events; the differences of the fit results with the MC inputs are assigned as systematic uncertainties. The uncertainties due to ω_i and $\Delta \omega_i$ are estimated by varying these parameters individually by $\pm 1\sigma$. The M_{bc} and ΔE shape parameters, and the fractions of signal and background, are varied to estimate their contributions to the systematic uncertainty. We vary each parameter in $P_{q\bar{q}}(\Delta t)$ and $P_{J/\psi X}(\Delta t)$ by $\pm 1\sigma$. For $P_{J/\psi K^0_S}(\Delta t)$ and $P_{J/\psi K^0_S}(\Delta t)$, we vary the CP asymmetry parameters by their statistical errors [19]. We include the effect of tag-side inter-

TABLE II. Absolute systematic uncertainties for S and A.

Source	σ_S (%)	σ_A (%)
Vertex reconstruction	-1.36	-1.40
Resolution function	-1.75	-2.22
Physics parameters	-0.43	$+1.00$
Fit bias	-0.37	-0.91
Wrong tag fraction	$+0.04$	$+0.04$
M_{bc}, ΔE shapes	$+0.03$	$+0.03$
Signal and background fraction	-0.45	-0.48
Background Δt shape	-0.71	-0.72
Tag-side interference	-0.43	$+0.04$
Total	-1.34	-2.26
ference [29], which introduces a significant contribution to the systematic uncertainty for A. Tag-side interference is caused by interference between the two tree-level amplitudes contributing to $B \to DX$ decays.

In summary, we have measured the branching fraction and time-dependent CP asymmetry for $B^0 \to J/\psi \pi^0$ decays using the full Belle $T(4S)$ data set. The results are

$$B = (1.62 \pm 0.11 \pm 0.06) \times 10^{-5}$$

$$S = -0.59 \pm 0.19 \pm 0.03$$

$$A = -0.15 \pm 0.14 +0.04_{-0.03},$$

where the first uncertainty is statistical and the second is systematic. The measured value for the branching fraction is the most precise value to date and supersedes the previous measurement [10]. It is consistent with measurements made by other experiments [9, 26]. The measured CP asymmetries are consistent with, and supersede, our previous results [8]. The direct CP asymmetry A is consistent with zero. The mixing-induced CP asymmetry S differs from zero (i.e., no CP violation) by 3.0σ, and it differs from the BaBar result [9] (which is outside the physical region) by 3.2σ. The value is consistent with the value of $\sin 2\alpha$ measured using $b \to c\bar{c}s$ decays [15]. These results indicate that the penguin and any NP contribution to $B^0 \to J/\psi \pi^0$ are small.

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2015H1A2A1033649, No. 2016R1D1A1B01010135, No. 2016K1A3A7A09005 603, No. 2016R1D1A1B02012900, No. 2018R1A2B3003 643, No. 2018R1A6A1A06024970, No. 2018R1D1 A1B07047294; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Grant of the Russian Federation Government, Agreement No. 14.W31.31.0026; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Basque Government (No. IT956-16) and Ministry of Economy and Competitiveness (MINECO) (Juan de la Cierva), Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

[1] A. B. Carter and A. I. Sanda, CP violation in B meson decays, Phys. Rev. D 23, 1567 (1981); I. I. Y. Bigi and A. I. Sanda, Notes on the observability of CP violations in B decays, Nucl. Phys. B 193, 85 (1981).

[2] S. Faller, M. Jung, R. Fleischer and T. Mannel, The golden modes $B^0 \to J/\psi K_{3,4}$ in the era of precision flavor physics, Phys. Rev. D 79, 014030 (2009) [arXiv:0809.0842 [hep-ph]].

[3] M. Jung, Determining weak phases from $B \to J/\psi P$ decays, Phys. Rev. D 86, 053008 (2012) [arXiv:1206.2050 [hep-ph]].

[4] K. De Bruyn and R. Fleischer, A roadmap to control penguin effects in $B^0 \to J/\psi K_{3,4}$ and $B^0 \to J/\psi \phi$, JHEP 1503, 145 (2015) [arXiv:1412.6834 [hep-ph]].

[5] Z. Ligeti and D. J. Robinson, Towards more precise determinations of the quark mixing phase β, Phys. Rev. Lett. 115, 251801 (2015) [arXiv:1507.06671 [hep-ph]].

[6] M. Ciuchini, M. Pierini and L. Silvestrini, The Effect of penguins in the $B_d \to J/\psi K^0$ CP asymmetry, Phys. Rev. Lett. 95, 221804 (2005) [hep-ph/0507290].

[7] P. Frings, U. Nierste and M. Wiebusch, Penguin contributions to CP phases in $B_{d,s}$ decays to charmonium, Phys. Rev. Lett. 115, 061802 (2015) [arXiv:1503.00859 [hep-ph]].

[8] S. E. Lee et al. (Belle Collaboration), Improved measurement of time-dependent CP violation in $B^0 \to J/\psi \pi^0$ decays, Phys. Rev. D 77, 071101 (2008) [arXiv:0708.0304 [hep-ex]].

[9] B. Aubert et al. (BaBar Collaboration), Evidence for CP violation in $B^0 \to J/\psi \pi^0$ decays, Phys. Rev. Lett. 101, 021801 (2008) [arXiv:0804.0896 [hep-ex]].

[10] K. Abe et al. (Belle Collaboration), Measurement of branching fractions and charge asymmetries for two-body B meson decays with charmonium, Phys. Rev. D 67,
032003 (2003) [hep-ex/0211047].

[11] A. Abashian et al. (Belle Collaboration), *The Belle detector*, Nucl. Instrum. Methods Phys. Res., Sect. A **479**, 117 (2002); also see the detector section in J. Brodzicka et al., *Physics achievements from the Belle experiment*, Prog. Theor. Exp. Phys. **2012**, 04D001 (2012).

[12] D. J. Lange, *The EvtGen particle decay simulation package*, Nucl. Instrum. Methods Phys. Res., Sect. A **462**, 152 (2001).

[13] R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1, 1984.

[14] P. Golonka and Z. Was, *Photos Monte Carlo: A Precision tool for QED corrections in Z and W decays*, Eur. Phys. J. C **45**, 97 (2006) [hep-ph/0506026].

[15] M. Tanabashi et al. (Particle Data Group), *Review of Particle Physics*, Phys. Rev. D **98**, 030001 (2018).

[16] G. C. Fox and S. Wolfram, *Observables for the analysis of event shapes in e^+ e^- annihilation and other processes*, Phys. Rev. Lett. **41**, 1581 (1978).

[17] H. Kakuno et al. (Belle Collaboration), *Neutral B flavor tagging for the measurement of mixing induced CP violation at Belle*, Nucl. Instrum. Meth. A **533**, 516 (2004) [hep-ex/0403022].

[18] K. Abe et al. (Belle Collaboration), *Improved measurement of CP-violation parameters sin2\(\phi_1\) and |\(\lambda_1\)|, B meson lifetimes, and \(B^0 - \bar{B}^0\) mixing parameter \(\Delta m_d\)*, Phys. Rev. D **71**, 072003 (2005) Erratum: [Phys. Rev. D **71**, 079903 (2005)] [hep-ex/0408111].

[19] I. Adachi et al. (Belle Collaboration), *Precise measurement of the CP violation parameter sin2\(\phi_1\) in \(B^0 \rightarrow (c\bar{c})K^0\) decays*, Phys. Rev. Lett. **108**, 171802 (2012) [arXiv:1201.4643 [hep-ex]].

[20] T. Skwarnicki, *A study of the radiative Cascade transitions between the Upsilon-prime and Upsilon resonances*, DESY-F31-86-02.

[21] K. S. Cranmer, *Kernel estimation in high energy physics*, Comput. Phys. Commun. **136**, 198 (2001) [hep-ex/0011057].

[22] H. Albrecht et al. (ARGUS Collaboration), *Search for hadronic \(b \rightarrow u\) decays*, Phys. Lett. B **241**, 278 (1990).

[23] S. Ryu et al. (Belle Collaboration), *Measurements of branching fractions of \(\tau\) lepton decays with one or more \(K_S^0\)*, Phys. Rev. D **89**, 072009 (2014) [arXiv:1402.5213 [hep-ex]].

[24] Y. Amhis et al. (Heavy Flavor Averaging Group Collaboration), *Averages of \(b\)-hadron, \(c\)-hadron, and \(\tau\)-lepton properties as of summer 2016*, Eur. Phys. J. C **77**, 895 (2017) [arXiv:1612.07233 [hep-ex]].

[25] O. Long, M. Baak, R. N. Cahn and D. P. Kirkby, *Impact of tag side interference on time dependent CP asymmetry measurements using coherent \(B^0\) \(\bar{B}^0\) pairs*, Phys. Rev. D **68**, 034010 (2003) [hep-ex/0303030].

[26] P. Avery et al. (CLEO Collaboration), *Study of exclusive two-body \(B^0\) meson decays to charmonium*, Phys. Rev. D **62**, 051101 (2000) [hep-ex/0004032].