Retrospective investigation of IgM antibodies against Zika virus in serum from febrile patients in Mozambique, 2009–2015

Imelda Rogério Chelene1, Sadia Ali1, Flora Inalda Mula1, Argentina Felisbela Muianga1, Vanessa Onofre Monteiro1, John Oludele1, Inocêncio Salvador Chongo1, Américo José1, Nádia Alves Amade2, Virgílio Santo António1* and Eduardo Samo Gudo1

Abstract

Objective: Zika virus (ZIKV) has emerged as an important health problem worldwide. The aim of this study was to investigate the occurrence, geographical distribution and trend of immunoglobulin M (IgM) antibodies against ZIKV between 2009 and 2015 in Mozambique.

Results: The median age of participants was 3 years (interquartile range (IQR): 1.0–6.0 years) and 56.5% (480/850) of them were male. Of the 850 samples, 42 (4.9%) were positive for IgM antibodies against ZIKV. Positive samples were found in 9 provinces of the country. Frequency of IgM antibodies against ZIKV was slightly higher in patients aged 5–9 years old, and in the north region of the country.

Keywords: Zika, Mozambique, Febrile patient

Introduction

Zika virus (ZIKV) belongs to the genus Flavivirus, family Flaviviridae [1, 2]. The virus is mostly transmitted through the bite of infected Aedes mosquitoes. The primary Aedes species vector of Zika virus worldwide is Ae. aegypti and recent research found that Ae. aegypti is the most abundant Aedes species in Mozambique [1, 3]. Transmission can also occur from mother to child during pregnancy or spread through sexual contact and blood transfusion [1, 4].

Most of ZIKV infections are asymptomatic and only 20–25% of the infected people develop a mild and self-limited illness. Zika viral infection may present the following symptoms: fever, joint pain, rash and conjunctivitis (at a lesser frequency), retro-orbital pain, headache, myalgia, edema, and vomiting [1, 5]. In few patients, ZIKV can cause severe disease, namely, neurological diseases, such as Guillain–Barré syndrome in infected adults and microcephaly in infants born to ZIKV-infected women [1, 2, 4]. For the first 60 years, ZIKV was confined to an equatorial zone across Africa and Asia, however, over the last decade the virus has experienced an unprecedented global spread to affect other regions, followed by an explosive spread in South America in 2016 [1, 4]. In the sub-Saharan Africa region, sporadic cases of ZIKV were reported in several countries since its discovery [6, 7]. Neutralizing antibodies against ZIKV were found for the first time in Mozambique 1957 [8] and since then, no other study was conducted and the virus remained mostly neglected in the country. As a consequence, most of the recent literature consistently excluded Mozambique from the list of countries with potential circulation of ZIKV [4, 9, 10]. Due to the potential risk of current circulation of the virus, there is an urgency to investigate its occurrence in Mozambique. In this context, we

*Correspondence: vsa.co.mz@gmail.com
1 Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela nº3943, Maputo, Mozambique
Full list of author information is available at the end of the article

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

BMC Research Notes
conducted this investigation aiming at retrospectively investigate the occurrence, geographical distribution and trend of IgM antibodies against ZIKV in samples from a serum bank of measles and rubella surveillance collected between 2009 and 2015 in Mozambique.

Main text

Methods

Study design, settings, and samples

In this study, we retrieved 850 samples from the serum bank stored at the Serology Laboratory of the National Institute of Health in Mozambique. These samples were collected as part of the routine case-based surveillance for measles in Mozambique across multiple districts in the country. In Mozambique, measles surveillance follows WHO guidelines and are eligible for measles surveillance patient with fever and one of the following symptoms: rash and cough, coryza or conjunctivitis [11]. Only samples from patients recruited between 2009 and 2015 with measles and rubella negative results were eligible. These samples were tested for ZIKV because fever and rash are common symptoms of infection by ZIKV [5, 12]. All samples with insufficient serum volume, inappropriate labeling, without demographic data in the database or deteriorated were excluded.

Laboratory testing

Serum samples (n = 850) were screened for Zika antibodies (IgM) using commercially available ELISA kit (Euroimmun Lübeck, Germany) at Virus Isolation Laboratory (LIV), in Maputo, Mozambique following the manufacturer’s instructions.

Statistical analysis

For each sample, demographic information was retrieved from the electronic database of the measles surveillance available at the Serology laboratory of the National Institute of Health which was developed using Epi Info 3 version 3.5.1. The variables retrieved from this database were: age, gender, district, province, date of onset, date of specimen collection and year.

Data was analyzed using the statistical software package SPSS 20.0. A p-value < 0.05 was considered statistically significant.

Results

Demographical characteristics of participants and frequency of antibodies against ZIKV

The median age of participants was 3.0 years [interquartile range (IQR): 1.0–6.0 years] and 56.5% (480/850) of them were male. In terms of age distribution, the most frequent age category was 0–1 years old (37.4%, 318/850), followed by age category of 2–4 years old (28.2%, 240/850) and age category of 5–9 years old (21.8%, 186/850) (see Table 1). Frequency of participants from central region of Mozambique was 41.9% (356/850), followed by participants from north (35.4%, 301/850) and southern region (22.7%, 193/850).

Serum samples were mostly from 2015 (275/850; 32.4%), followed by 2013 (142/850; 16.7%) and 2010 (121/850; 14.2%).

Of the 850 samples, 42 (4.9%) were positive for IgM antibodies against ZIKV. In terms of geographical distribution, IgM antibodies against ZIKV were detected in 9 provinces of the country (see Fig. 1). No IgM antibodies against ZIKV was found in samples from Cabo Delgado, and Inhambane provinces.

Characteristics of IgM positive patients

The median age of IgM-positive participants was 3.0 years [IQR: 1.0–5.0 years] and 64.3% (27/42) were male. Frequency of IgM antibodies against ZIKV was higher in patients aged 5–9 years old (7.5; 95% CI 18.9–24.9) (see Table 1).

Frequency of IgM anti-ZIKV was higher in north region. No trend across years was noted, but the highest frequency of IgM anti-ZIKV was found in 2011 (see Table 1).

Discussion

In this study, we retrospectively found serological evidence of ZIKV in samples retrieved from the serum bank of febrile patients enrolled into measles surveillance in Mozambique between 2009 and 2015. This suggests that Mozambicans were silently exposed to the virus over the last decades. However, if ZIKV is circulating in the country since 1957 when it was for the first time reported in the country or if this represent a more recent re introduction is yet to be determined.

Our results suggest that cases of ZIKV are misdiagnosed and treated as measles, rubella, or other common acute febrile illness. These findings are important because: (i) recent publications addressing global risk of ZIKV exclude Mozambique from the list of countries with current presence of ZIKV infections [4, 9, 10] and (ii) ZIKV has been heavily neglected by the local authorities in Mozambique.

Frequency of IgM anti-ZIKV was higher in the north region of the country, which corroborates with findings from recent studies conducted in Mozambique showing that DENV and CHIKV occurs in the north and center of the country [13, 14]. Moreover, an outbreak of dengue virus
serotype 2 (DENV-2) was reported in 2014 in Nampula and Pemba cities, situated in northern Mozambique, and a prospective surveillance, found that DENV-2 have become endemic in northern Mozambique [15]. These findings indicates that arboviruses are co-circulating in north of the country, suggesting that the northern region of the country might be a hotspot for occurrence of arboviruses in Mozambique.

Cross reaction of ZIKV antibodies with other flavivirus antibodies is known to occur [16]. However, the EUROIMMUNE reagents used in this study are claimed to be sensitive and specific [16–18].

This is the first serological investigation of ZIKV in Mozambique since 1957 and found anti-ZIKV antibodies in serum of febrile patients in 9 provinces of the country from 2009 to 2015, suggesting that Mozambicans were silently exposed to the virus. Data from this study suggests that ZIKV should be considered in the differential diagnosis of fever. We recommend that a surveillance system for ZIKV should be established to monitor occurrence of ZIKV in the country.

Limitations

This study is based on serologic test using commercial kit ELISA, other approaches that include molecular tests, immunofluorescence or neutralizing assay will be of great relevance for next interventions.

Table 1 Demographic characteristics among cases with IgM anti-ZKV cases
Suspected cases reported (n)

Total
Sex
Male
Female
Age Median (IQR)
Age (years)
0–1
2–4
5–9
10–14
≥ 15
Regions
North
Central
South
Year of onset
2009
2010
2011
2012
2013
2014
2015

IgM+ measles suspected cases with positive result for IgM anti-Zika; CI confidence interval
Abbreviations
ZIKV: Zika virus; IgM: immunoglobulin M; ELISA: enzyme linked immunosorbent assay.

Acknowledgements
We would like to thank the team of Virus Isolation and Serology laboratories of the National Institute of Health of Mozambique for their collaboration during the investigation, serum bank storage and laboratory testing; the clinicians and laboratory technicians of the Health units throughout the country that participated in sample collection.

Authors’ contributions
ESG, NAA, SA, AFM, VOM, JO, IRC, FIM, JO, VSA and AJ designed the study protocol. ESG was responsible for obtaining funding. NAA, SA was responsible for field work supervision. AFM, VSA were responsible for laboratory supervision. IRC, FIM, JO, ISC performed ELISA tests. VOM, IRC, FIM, ISC, JO, were responsible for the clinical assessment, samples collection and database completion. IRC, FIM, AJ, VSA; ESG drafted the manuscript. All authors critically revised the manuscript for intellectual content. All authors read and approved the final manuscript.

Funding
This manuscript was funded by the European Foundation Initiative Into African Neglected Tropical Diseases, with grant number 91488 to ESG and URL http://africa-and-sci ence.com/?p=1202. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The protocol of this study was approved by the National Bioethics Committee for Health from Mozambique (Ref# 24/CNBS/2014).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela nº3943, Maputo, Mozambique. 2 Centro de Colaboração em Saúde, Rua Damião de Goes, Maputo, Mozambique.

Received: 29 April 2019 Accepted: 23 July 2019
Published online: 31 July 2019

Fig. 1 Distribution of IgM anti-ZIKV cases
Chelene et al. BMC Res Notes (2019) 12:469

References

1. Song B-H, Yun S-I, Woolley M, Lee Y-M. Zika virus: history, epidemiology, transmission, and clinical presentation. J Neuroimmunol. 2017;308:50–64.
2. Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus infection. Lancet. 2017;390(10107):2099–109. https://doi.org/10.1016/S0140-6736(17)31450-2.
3. Abílio AP, Abudasse G, Kampango A, Candrinho B, Stoil S, Luciano J, et al. Distribution and breeding sites of Aedes aegypti and Aedes albopictus in 32 urban/peri-urban districts of Mozambique: implication for assessing the risk of arbovirus outbreaks. PLoS Negl Trop Dis. 2018;12(9):1–15.
4. Petersen LR, Jamieson DJ, Powers AW, Honein MA. Zika virus. N Engl J Med. 2016;374(16):1552–63.
5. Ali A, Wahid B, Rafique S, Idrees M. Advances in research on Zika virus. Asian Pac J Trop Med. 2017;10(4):321–31.
6. Gudo ES, Falk K, Ali S, Muianga AF, Monteiro V, Cliff J. A historic report of Zika in Mozambique: implications for assessing current risk. PLoS Negl Trop Dis. 2016;10(12):1–7.
7. Lourenço J, Monteiro M, Tomás T, Monteiro Rodrigues J,Pybus O, Rodrigues Faria N. Epidemiology of the Zika virus outbreak in the Cabo Verde Islands, West Africa. PLoS Curr. 2018;2014:1–7.
8. Kokernot RH. Neutralization tests with sera from individuals residing in Mozambique against specific viruses isolated in Africa, transmitted by arthropods. An Inst Med Trop. 1960;17:201–30.
9. Braack L, Almeida AP, Cornel AJ, Swaneveld R, Jagger C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites Vectors. 2018;11:929.
10. Ruckert C, Weger-lucarelli J, Garcia-luna SM, Young MC, Byas AD, Murrieta RA, et al. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat Commun. 2017;8:1–9.
11. WHO Regional Office for Africa. African regional guideline for measles and rubella surveillance. 2015; Revised (April 2015):1–82. http://www.afro.who.int/sites/default/files/2017-06/who-african-regional-measles-and-rubella-surveillance-guidelines_updated-draft-version-april-2015_.pdf. Accessed 22 July 2018.
12. Salehuddin AR, Haslan H, Mamilkutty N, Zaidun NH, Azmi MF, Senin MM, et al. Zika virus infection and its emerging trends in Southeast Asia. Asian Pac J Trop Med. 2017;10(3):211–9. https://doi.org/10.1016/j.apjtm.2017.03.002.
13. Mugabe VA, Ali S, Chelene I, Monteiro VO, Guiliche O, Muianga AF, et al. Evidence for chikungunya and dengue transmission in Quelimane, Mozambique: results from an investigation of a potential outbreak of chikungunya virus. PLoS ONE. 2018;13(2):e0192110.
14. Antonio VS,Muianga AF, Wieseler J, Pereira SA, Monteiro VO, Mula F, et al. Seroepidemiology of Chikungunya virus. Vector Borne Zoonotic Dis. 2018;18(6):311–6.
15. Oludelle J, Lesko B, Gundane IM, Bruycker-nogueira F, Ali S, Mula F, et al. Dengue virus serotype 2 established in northern Mozambique (2015–2016). Am Soci Trop Med Hyg. 2017;97(5):1418–22.
16. Huiller AG, Hamid-Allie A, Kristjanson E, Papageorgiou L, Hung S, Wong CF, et al. Evaluation of euromimmun anti-Zika virus IgM and IgG enzyme-linked immunosorbent assays for Zika virus serologic testing. J Clin Microbiol. 2017;55(8):2462–71.
17. Huylty D, Hanselmann I, Schmidt-Chanasit J, Panning M. High specificity of a novel Zika virus ELISA in European patients after exposure to different flaviviruses. Euro Surveill. 2016. https://doi.org/10.2807/1560-7917.ES.2016.21.16.30203.
18. Ohst C, Saschenbrecker S, Stiba K, Steinhagen K, Probst C, Radbrimski C, et al. Reliable serological testing for the diagnosis of emerging infectious diseases. Adv Exp Med Biol. 2018;1062:19–43. https://doi.org/10.1007/978-981-10-8727-1_3.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.