Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO2 decrease using a large ensemble of modern plausible parameter sets

Journal Item

How to cite:
Kemppinen, Krista M. S.; Holden, Philip B.; Edwards, Neil R.; Ridgwell, Andy and Friend, Andrew D. (2019). Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO2 decrease using a large ensemble of modern plausible parameter sets. Climate of the Past, 15 pp. 1039–1062.

For guidance on citations see FAQs.

© 2019 The Authors

Version: Supplementary Material

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.5194/cp-15-1039-2019

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Supplement of

Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO$_2$ decrease using a large ensemble of modern plausible parameter sets

Krista M. S. Kemppinen et al.

Correspondence to: Krista M. S. Kemppinen (krista.kemppinen@asu.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
The ensemble was integrated for another 10 kyr after stage 3 (yielding 20 kyr of LGM climate in total) to simply verify, by analysing a subset of the ensemble, that the sediments (being the slowest component in the model) were in equilibrium by 10 kyr.

ENS\textsubscript{315} has a mean atmospheric CO\textsubscript{2} concentration of 278.1 ± 1.3 ppmv (standard deviation). The ensemble mean and range for the eight modern climate plausibility metrics of Holden et al., 2013a are shown in Table S2.1. The ensemble response is additionally reported in Table S2.2 for the annual average global ocean carbon inventory, sea surface temperature and sea ice area, and compared with observations. The ensemble mean ocean carbon inventory is close to the 36,000 PgC equilibrium preindustrial ocean carbon inventory predicted by GENIE-1 in Lenton et al. (2006), below reconstructed estimates of ca. 38,000 PgC (Houghton et al., 1990), largely attributable to an underestimated ocean volume at our low resolution (Lenton et al 2006). The ensemble mean sea surface temperature (SST) exceeds observations but the error is still comparable to that associated with previous model predictions (e.g. Kim et al., 2003). The ensemble mean sea ice area (SIA) lies within the range of observed estimates.

Table S2.1. The eight modern climate plausibility metrics. The first two columns show the mean (plus minus one standard deviation) and range of ENS\textsubscript{315}, the second and third, the same metrics but for the Holden et al. (2013a), H13, ensemble (Table 2). All values are annual averages, except for the Antarctic sea ice area.

Metric	ENS\textsubscript{315} mean	ENS\textsubscript{315} range	H13 Mean	H13 range
Global surface air temperature (°C)	13.7 ± 1.1	11.8 to 16.2	13.6 ± 1.1	11.7 to 16.2
Atlantic overturning stream function maximum (Sv)	17.5 ± 3.2	8.4 to 25.8	17.5 ± 3.2	10.0 to 25.8
Atlantic overturning stream function minimum (Sv)	-4.1 ± 1.0	-6.9 to -0.9	-4.1 ± 1.0	-6.8 to -1.0
31st December Antarctic sea ice area (million km2)	6.7 ± 2.7	1.2 to 13	6.8 ± 2.8	1.2 to 12.9
Global VegC (PgC)	499.9 ± 94.5	328.6 to 765.5	492 ± 94	326 to 762
Global SoilC (PgC)	1329.7 ± 279.2	896.1 to 2353.2	1351 ± 308	896 to 2430
Surface sediment wt% CaCO\textsubscript{3}	34.4 ± 7.9	19.1 to 51.5	34.1 ± 7.8	20.0 to 50.0
Global ocean O\textsubscript{2} (μm kg-1)	164.1 ± 19.3	121.8 to 217.5	165 ± 20	117 to 216
Table S2.2. Preindustrial ocean carbon inventory, sea surface temperature and sea ice area. All values are annual averages.

	ENS$_{315}$ mean	ENS$_{315}$ range	Observations
Global ocean carbon inventory (PgC)	36056.2 ± 252.4	35280.5 to 36655.7	38000
Global sea surface temperature (°C)	18.9 ± 1.2	16.4 to 21.9	15.9
Global sea ice area (million km2)	23 ± 4.2	16.3 to 38.6	19 to 27

References

Holden, P. B., Edwards, N. R., Oliver, K. I. C., Lenton, T. M. and Wilkinson, R. D.: A probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE-1, Clim. Dyn., 35(5), 785–806, doi:10.1007/s00382-009-0630-8, 2010a.

Holden, P. B., Edwards, N. R., Müller, S. A., Oliver, K. I. C., Death, R. M., and Ridgwell, A.: Controls on the spatial distribution of ocean δ13CDIC, Biogeosciences, 10, 1815-1833, https://doi.org/10.5194/bg-10-1815-2013, 2013a.

Houghton, J. T., Jenkins, G. J., Ephraums, J. J.: Climate Change. The IPCC Scientific Assessment. Cambridge University Press, Cambridge, 1990.

Kim, S.-J., Flato, G., and Boer, G.: A coupled climate model simulation of the Last Glacial Maximum, Part 2: approach to equilibrium, Clim. Dyn., 20, 635-661, https://doi.org/10.1007/s00382-002-0292-2, 2003.

Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., and Zhang, T.: Observations: Changes in Snow, Ice and Frozen Ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.

Lenton, T. M., Williamson, M. S., Edwards, N. R., Marsh, R., Price, A. R., Ridgwell, A. J., Shepherd, J. G., and Cox, S. J.: Millennial timescale carbon cycle and climate change in an efficient Earth system model, Clim. Dyn., 26(7-8), 687-711, doi:10.1007/s00382-006-0109-9, 2006.

NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2015, published online January 2016, retrieved on May 24, 2019 from https://www.ncdc.noaa.gov/sotc/global/201513.