Human Papillomavirus types prevalence and their association with cervical dysplasia among HIV and non-HIV infected women attending reproductive health clinics in Eastern Kenya

Njue James Kinotia¹, Margaret Muturib¹, Lucy Kamauc¹, Raphael Lwembed²

1. Department of Medical Laboratory Sciences, Kenyatta University.
2. Centre for Virus Research, Kenya Medical Research Institute (KEMRI).

Abstract

Background: Human Papillomavirus (HPV) causes over 99% of all cervical cancer globally. In 2019, it was responsible for 3,286 deaths in Kenya. Understanding the epidemiological distribution of HPV genotypes by cervical dysplasia and HIV infection is important in designing prevention strategy and management of cervical cancer.

Objective: To determine HPV genotypes prevalence and their distribution by cervical dysplasia, social-demographic and risk factors associated with cervical cancer among HIV-infected women aged 18-48 years seeking reproductive healthcare in Eastern Kenya.

Methods: Cervical specimens were obtained for cytology, HPV-genotyping, histology while social-demographic factors were collected using a questionnaire and analysed using Pearson chi-square test.

Results: 317 women cases: 161 (50.8%); control 156 (49.2%), mean age: 34.3, range 18-46 years were recruited. Thirteen HPV genotypes associated with cervical dysplasia were: CIN1 {cases: HPV81[12(3.8%), HPV11[2(0.6%); control: HPV53 and HPV66[1(0.3%)}, CIN2 {cases: HPV11, HPV16, HPV66[1(0.3%), HPV816[1.9%] and single case[0.3%] of HPV9, HPV11, HPV16, HPV44, HPV66, HPV81 HPV88, HPV53 and HPV58; control: HPV81[2(0.6%)} and invasive cancer {cases: HPV16[1(0.3%) and HPV81[3(0.9%); control: HPV16 and HPV66[1(0.3%).

Conclusions: Cervical dysplasia was associated with more mixed-lr/hr HPV genotypes among HIV-infected than HIV-uninfected women. The finding adds to the pool of knowledge the epidemiological data required in determining the population at risk for cervical cancer.

Keywords: Human Papillomavirus; cervical dysplasia; HIV; Eastern Kenya.

DOI: https://dx.doi.org/10.4314/ahs.v22i1.14

Cite as: Kinotia NJ, Muturib M, Kamauc L, Lwembed R. Human Papillomavirus types prevalence and their association with cervical dysplasia among HIV and non-HIV infected women attending reproductive health clinics in Eastern Kenya. Afri Health Sci. 2022;22(1):106-14. https://dx.doi.org/10.4314/ahs.v22i1.14

Introduction

Human Papillomavirus (HPV) is primarily responsible for 99.7% of cervical cancers globally. It is sexually-transmitted and causes cervical neoplastic changes leading to cervical cancer; the second most common type of cancer in women aged 15-44 years in Kenya. It was responsible for 311,365(8.2%) annual global mortality and 3,250(12.8%) in Kenya in 2019¹. Cervical-screening rate in Kenya is only 3.2% for women aged over 18 years¹².

Human Papillomavirus is grouped based on their oncogenicity as Group I: Carcinogenic: HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59, Group 2A: possibly-carcinogenic: HPV26, 53, 54, 85 and 97, Group 2B: possibly-carcinogenic: HPV6 and 11 and Group 3: unclassifiable to carcinogenicity³,⁴,⁵. Their oncogenicity is increased by Human Immuno-deficiency virus (HIV) infection, long-term exposure to hormonal-contraceptives which favor tumorigenic effects of HPV-genome and weakens the immune system responsible of clearing cancer cells. Other risk factors include early sex-debut and long-term inflammation caused by recurrent genital infections.⁴,⁵,⁷.

This study therefore aimed at determining HPV type’s prevalence and their association with cervical dysplasia by HIV-serostatus. The genotype’s prevalence was determined by social demographic and risk-factors associated with HPV oncogenicity.

Methods

Study design and participants
This cross-sectional study involved 317 women aged 18-46 years in County Referral Hospital’s (Isiolo, Kirinyaga, Meru, Tharaka-Nithi, and Embu) Reproductive
Health clinics of eastern Kenya in 2019. A sample size was calculated by infection rate of 2.8%\(^1\) and distributed by 2017 clinic’s attendance. Stratified sampling by county of residence and simple-random sampling per county were used to recruit participants.

Social-demographic data collection

Social-demographic data on residence, age, education level, parity, sexual-orientation, and family-planning method were collected by a nurse using a translated (Swahili) questionnaire.

HIV determination

HIV serostatus was determined using the national algorithm\(^8\); Base-line test (Alere Determine®-HIV-1/2-Ab-bort), confirmatory test (First-Response®-HIV1-2-Premier, Medical Corporation) and tie-breaker test (Uni-Gold™ Recombigen® HIV-1/2 by Trinity Biotech).

Collection and storage of cervical exfoliated cell samples

External genitalia and cervical opening (os) were examined with a speculum while the participant lay in a lithotomic position. Cervical cytological specimens were collected using a cervical brush (Dacron\(^\text{TM}\) cervical brush; Digene Corporation, Maryland), spread and fixed immediately on a clean glass slide. The brush was stored and transported at 1-4ºC in Digene Specimen Transport Medium for HPV-genotyping.

Cytology

Pap smears were reported by a cytopathologist using Bethesda 2014 guidelines\(^9,10\) as normal or abnormal. Atypical Cells of Unknown Significance (ASCUS), Low-grade squamous intraepithelial lesion (LSIL), High-grade squamous intraepithelial lesion (HSIL), atypical squamous cells, cannot exclude HSIL (ASC-H) or Atypical glandular cells (AGC). Unknown inflammation and cervical infections (candidiasis, cervicitis, trachomatis, and bacterial vaginitis) were also reported.

HPV DNA genotyping

The following procedures were used for HPV genotyping:

a. DNA extraction

A 96-well format HighPrep\(^\text{TM}\) Viral-DNA/RNA, Mag-Bio Genomics, USA/Canada Lysis kit was used. Samples stored at 1-4ºC were thawed, vortexed (5 min utes) then centrifuged (10000r/min-5 minutes) to extract cytological material from the brush into media.

b. HPV DNA PCR

HPV detection was achieved by amplifying an L1 portion of the HPV genome that is relatively conserved through nested PCR in the ABI-thermocycler Model 9600; Applied Biosystems® using HPV consensus primary primers PGMY09: GCAAGGGACATAACATGG and PGMY11: CGTCCCAAGGAAACTGATC targeting 450bp and secondary primers MGP5+: ACCTGGGTAGTGTTCTTACGTGTGGATAC and MGP6+: ACCTGGGATGGAAAAATAACTGTAAATCATATTCCCT targeting~160bp in L1 genome ORF\(^11,12,13,14\). 5µM working stock of each primer was prepared by adding 50µL biotinylated PGMY09 100µM to 350µL nanopure-water and 50µL PGMY11 100µM primers to 750µL nanopure water. They were later distributed each 5µM working stock in 45–90µL aliquots and stored at -20ºC.

A mastermix containing PCR buffer (1X), 2.0mM MgCl2, 100µM dNTPs, 0.13 parts Taq polymerase-enzyme, 500mM of respective forward and reverse primary and secondary primers. 5µl of the DNA extract was used in primary PCR while 5µl of primary PCR product was used in nested PCR. First reaction: 4 minutes at 95ºC (initial denaturation) then 30cycles of 20 seconds at 95ºC, 40 seconds at 56ºC then 2 minutes at 72ºC. Nested reaction: 4 minutes at 95ºC (initial denaturation) then 30cycles of 20 seconds at 95ºC and 40 seconds at 60ºC then extension (7 minutes) at 72ºC. Positive control of known CIN2+ and negative control (distilled water) were incorporated in both reactions.

c. Gel electrophoresis and UV visualization

Tris-Borate-EDTA 10X was prepared by dissolving 162g Tris-base, 50g boric acid, 9.5g EDTA in 1 liter nanopure water (pH8.8). 5µl PCR-product in 4% agarose was used in gel-electrophoresis\(^12,14\). The positive PCR-product was purified using the QIAquick DNA purification kit\(^\text{TM}\) (Qiagen, Germany).

d. HPV DNA sequencing

DNA sequencing was performed in ABI-thermocycler Model 9600 (Applied Biosystems) for 20 reaction cycles of 1µL positive PCR-product, 1µL of 5µM GP6+ primer, 1µL BigDye® Terminator, 3.5µL buffer (5x), 13.5ml nanopure water according to the protocol. Sep column (Princeton Separations, Adelphia, NJ) was used for dye-terminator cleanup followed by sequencing in ABI3130 four-capillary Genetic Analyzer.
e. **HPV genotyping and phylogenetic analysis**

Sequences were edited with CHROMAS software Version 2.4.3 then blasted in NCBI http://blast.ncbi.nlm.gov/blast.cgi. HPV type-sequences with unique divergence were phylogenically analysed and referenced from GenBank. Representative sequences and their references in input file underwent multiple alignments with CLUSTAL W in MEGA X software. The Maximum Likelihood method and the Tamura-Nei model were used to infer evolutionary history. Neighbor-Join and BioNJ algorithms were used to construct initial trees for the heuristic search of the matrix of pairwise distances by the Maximum Composite Likelihood (MCL) method by selecting the topology with superior log likelihood value. Eighty-six nucleotide sequences were involved while codon positions were 1st+2nd+3rd.

Histology

Colposcopy examination and histological analysis of biopsy tissues collected within 1-2 weeks following abnormal Pap smear results (LSIL, HSIL, ASC-H and AGC) were reported as Carcinoma-in-Situ (CIS), Invasive cervical cancer (ICC) or Cervical Intraepithelial Neoplasia (CIN); CIN1, CIN2 or CIN3 depending on the abnormal-epithelium thickness of $\frac{1}{3}$, $\frac{2}{3}$, or entire thickness respectively.

Ethics approval

KEMRI Scientific Ethical Review Unit approved the study (KEMRI/SERU/CVR/004/3342). Participants were consented orally and data collected was confidentially stored by the Principle Investigator. Mentally-incompetent participants were excluded.

Results

a. **Distribution of HPV genotypes among HIV and non-HIV infected women (n=106).**

Thirteen HPV types detected were low-risk HPV9, HPV11, HPV81, HPV66, HPV87, HPV88, high-risk HPV16, HPV53, HPV61, HPV45, HPV52, and HPV58 (p<0.001) (Figure 1).

b. **Distribution of low/and high-risk HPV genotypes as single on multiple infection among HIV and non-HIV infected women**

A total of 62 (19.2%) HIV-infected women had single HPV type infection compared to (93.2%) HIV-uninfected women while 73 (23.03%) were infected by multiple HPV types compared with 13 (4.1%) HIV-uninfected women (p<0.001) (Table 1).
A total of 317 mean age: 34.3 years, SD±10.4, range: 18-64.

Table 1. Total HPV genotypes prevalence identified as single or multiple infections

Infection type	N(%)	HIV negative	HIV positive	p-value
Single HPV type infection				
low-risk type	67(21.1)	9(2.8); HPV 81	27(8.6); HPV 16	<0.001**
high-risk type	4(1.3)	3(0.1); HPV 18	4(1.3); HPV 16	<0.001**
Total (single HPV types)	71(22.4)	9(3.2)	62(19.2)	

Table 2: HPV infection-rate by socio-demographic and HPV associated risk factors among HIV and non-HIV infected women

A total of 317 mean age: 34.3 years, SD±10.4, range: 18-64 women were recruited. Overall HPV prevalence was 27.1%[(86/317); cases: 23.2% (73/317); control: 41% (13/317)]. There was significant association between HPV infection and age, parity, education level and reported number of sex partners (Table 2).

Category	N(%)	Total HPV prevalence	HIV negative [n(%)]	HIV positive [n(%)]	p-value
Residence					
Embu	85(28.8)	27(8.5); HPV 81	13(4.1); HPV 16	13(4.1); HPV 18	<0.001**
Isiolo	64(20.2)	18(5.7); HPV 81	11(3.5); HPV 16	11(3.5); HPV 18	<0.001**
Kirinyaga	56(17.7)	12(3.8); HPV 81	7(2.2); HPV 16	7(2.2); HPV 18	<0.001**
Meru	81(26.6)	26(8.2); HPV 81	16(5.1); HPV 16	16(5.1); HPV 18	<0.001**
T.Nitis	31(10.2)	9(2.8); HPV 81	5(1.6); HPV 16	5(1.6); HPV 18	<0.001**
Age [mean: 34.3, range 18-48]					
<20	8(2.5)	2(0.6); HPV 81	1(0.3); HPV 16	1(0.3); HPV 18	<0.001**
20-29	94(32.2)	31(9.9); HPV 81	20(6.3); HPV 16	20(6.3); HPV 18	<0.001**
30-39	111(39.0)	37(11.7); HPV 81	21(6.6); HPV 16	21(6.6); HPV 18	<0.001**
≥40	98(32.0)	25(7.9); HPV 81	17(5.4); HPV 16	17(5.4); HPV 18	<0.001**
Religion					
Christian	256(80.6)	70(22.1); HPV 81	43(13.5); HPV 16	43(13.5); HPV 18	<0.001**
Muslim	62(19.4)	20(6.3); HPV 81	12(3.8); HPV 16	12(3.8); HPV 18	<0.001**
Education level					
primary	96(30.3)	20(6.3); HPV 81	13(4.1); HPV 16	13(4.1); HPV 18	<0.001**
secondary	135(42.6)	39(12.3); HPV 81	26(8.2); HPV 16	26(8.2); HPV 18	<0.001**
college	67(21.1)	21(6.6); HPV 81	13(4.1); HPV 16	13(4.1); HPV 18	<0.001**
university	16(5.0)	6(1.9); HPV 81	3(1.0); HPV 16	3(1.0); HPV 18	<0.001**
Contraceptive use					
oral	223(70.3)	66(20.8); HPV 81	35(11.1); HPV 16	35(11.1); HPV 18	<0.001**
injectable	94(29.7)	20(6.3); HPV 81	15(5.0); HPV 16	15(5.0); HPV 18	<0.001**
parity					
<3	68(21.5)	16(5.0); HPV 81	9(2.9); HPV 16	9(2.9); HPV 18	<0.001**
≥3	249(78.5)	70(22.1); HPV 81	43(13.5); HPV 16	43(13.5); HPV 18	<0.001**
Marital status					
married	226(71.3)	65(20.0); HPV 81	117(36.9); HPV 16	117(36.9); HPV 18	<0.001**
separated	32(10.1)	8(2.5); HPV 81	13(4.1); HPV 16	13(4.1); HPV 18	<0.001**
single	41(12.9)	12(3.8); HPV 81	17(5.4); HPV 16	17(5.4); HPV 18	<0.001**
divorced	6(1.8)	3(0.9); HPV 81	2(0.6); HPV 16	2(0.6); HPV 18	<0.001**
widowed	12(3.8)	2(0.6); HPV 81	3(1.0); HPV 16	3(1.0); HPV 18	<0.001**
Number of sex partners					
1	186(58.7)	43(13.6); HPV 81	91(28.7); HPV 16	91(28.7); HPV 18	<0.001**
≥1	131(41.3)	43(13.6); HPV 81	58(18.3); HPV 16	58(18.3); HPV 18	<0.001**
Total	317(100.0)	86(27.1); HPV 81	143(45.1); HPV 16	143(45.1); HPV 18	<0.001**

N: negative; P: positive; **: the probability at the 0.001 level; *: the probability at the 0.005 level
d. Distribution of HPV genotypes among HIV and non HIV infected women.

HPV type's distribution among HIV-infected women was significantly associated with residence, age, parity, family planning method and number of sex partners (Table 3).

Table 3: Distribution of HPV genotypes among HIV and non-HIV infected women

Category	HIV test	High-risk HPV types	Low-risk HPV types	total	p-value										
		16	45	53	56	9	11	44	52	61	81	87	88		
Residence															
Embu	N	(1.0)	(1.0)	(1.0)	4(3.8)	(6.7)	0.042*								
	P	3(2.8)	1(0.9)	2(1.9)	(1.0)	(10.5)	0.001**								
Isiolo	N	(1.0)	3(2.8)	3(2.8)	(1.0)	(10.5)	0.001**								
	P	(1.0)	3(2.8)	3(2.8)	(1.0)	(10.5)	0.001**								
Kirinyaga	N	(1.0)	(1.0)	(1.0)	1(0.9)	3(2.8)	0.007								
	P	(1.0)	(1.0)	(1.0)	1(0.9)	3(2.8)	0.007								
Meru	N	(1.0)	(1.0)	(1.0)	1(0.9)	3(2.8)	0.007								
	P	(1.0)	(1.0)	(1.0)	1(0.9)	3(2.8)	0.007								
T.Nithi	N	2(1.9)				6(5.7)	0.048*								
	P					6(5.7)	0.048*								
Age															
<20		(1.0)	(1.0)	(1.0)	(1.0)	2(1.8)	0.237								
	20-39	(2.8)	3(2.8)	3(2.8)	(1.0)	(10.5)	0.047*								
	30-39	(1.0)	(1.0)	(1.0)	1(0.9)	3(2.8)	0.004*								
	>40	(1.0)	(1.0)	(1.0)	1(0.9)	3(2.8)	0.017**								
Family planning															
hormonal	N	(1.0)	(1.0)	(1.0)	1(0.9)	3(2.8)	0.047*								
	P	(1.0)	(1.0)	(1.0)	1(0.9)	3(2.8)	0.047*								
other	N	(2.8)	1(0.9)	(1.0)	(1.0)	1(0.9)	1(0.9)	14(13.3)	1(0.9)	23(21.7)					
	P	(6.6)	1(0.9)	4(3.8)	7(6.6)	1(0.9)	1(0.9)	43(40.9)	1(0.9)	67(63.8)					
Parity															
<3	N	(1.0)	(1.0)	(1.0)	1(0.9)	3(2.8)	0.001**								
	P	(2.8)	(1.0)	(1.0)	1(0.9)	3(2.8)	0(0)	15(14.3)							
>3	N	(2.8)	(1.0)	(1.0)	(1.0)	(1.0)	1(0.9)	45(42.6)	1(0.9)	72(68.6)					
	P	(5.7)	(1.0)	(1.0)	(1.0)	(1.0)	1(0.9)	50(47.6)	1(0.9)	85(80.9)					
Number of sex partners															
one	N	3(2.8)	3(2.8)		4(3.8)	10(9.5)	0.001**								
	P	3(2.8)	3(2.8)		4(3.8)	10(9.5)	0.001**								
>one	N	(1.0)	(1.0)	(1.0)	(1.0)	10(9.5)	0.001**								
	P	(5.8)	1(0.9)	6(5.7)	(1.0)	4(3.8)	10(9.5)	25(23.8)	4(3.8)	10(9.5)	0.001**				
Total	N	4(3.8)	3(2.8)	1(0.9)	10(9.5)	9(8.6)	18(17.1)	0.001**							
	P	7(6.6)	1(0.9)	1(0.9)	10(9.5)	9(8.6)	18(17.1)	0.001**							

N: negative; P: positive; **: the probability at the 0.001 level; *: the probability at the 0.005 level

e. Association of cervical cytology with other clinical reproductive health ailments

A total of 96(30.3%) HIV-infected women had normal cytology as compared to 143(45.1%) HIV-uninfected, whereas 65(20.5%) HIV-infected women had abnormal cytology results compared with 13(4.1%) HIV-uninfected (p=0.001) (Figure 2).
f. Association of HPV genotypes with cervical histological results among women HIV infected and non-infected women

HPV genotypes detected by cervical histological results were: CIN117(5.4%), CIN216(5.0%), CIN36(1.8%) and invasive cancer5(1.5%) (p<0.001) (Table 4).

![Figure 2. Cervical cytology results](image_url)

Table 4. HPV types detected by Pap smear results

HIV status	HPV type of infection	Normal	Histological analysis of abnormal cytology samples (n=78)	p-value							
Negative			ASCUS	CIN1	CIN2	CIN3	ICC	Total			
Single type	HPV 81	3(0.9)	1(0.3)	2(0.6)	2(0.6)	1(0.3)	9(2.7)		0.001*		
Multiple types											
HPV 16,66	2(0.6)		1(0.3)						3(0.9)		
HPV 11,16,53,81,61									13(4.1)		
HPV Positive	6(1.9)	1(0.3)	2(0.6)	2(0.6)	1(0.3)	1(0.3)	14(4.5)		156(49.2)		
HPV Negative	137(43.2)	6(1.8)							161(50.8)		
Total		143(45.1)	7(2.1)	2(0.6)	2(0.6)	1(0.3)	1(0.3)				
Positive			ASCUS	CIN1	CIN2	CIN3	ICC	Total			
Single type	HPV 11	2(0.6)	1(0.3)	2(0.6)	2(0.6)	1(0.3)	7(2.2)		0.001*		
HPV 16	1(0.3)		1(0.3)						3(0.9)		
HPV 66	1(0.3)		1(0.3)						1(0.3)		
HPV 81	21(6.6)	5(1.6)	12(3.8)	6(1.9)	4(1.2)	3(0.9)	51(16.1)				
Multiple types											
HPV11, 66									1(0.3)		
HPV 81,44									1(0.3)		
HPV 81, 88									1(0.3)		
HPV 9,53									1(0.3)		
HPV 16,58									1(0.3)		
HPV 16,66									3(0.9)		
HPV 68,53									1(0.3)		
HPV 11,45,52,87									1(0.3)		
HPV Positive	28(8.8)	7(2.1)	15(4.7)	14(4.4)	5(1.6)	4(1.2)	73				
HPV Negative	68(21.4)	20(6.3)					88(27.9)				
Total			96(30.3)	27(8.5)	15(4.7)	14(4.4)	5(1.6)	4(1.2)	161(50.8)		

ASCUS: Atypical Cells of Unknown Significance; CIN: Cervical Intraepithelial Neoplasia; ICC: Invasive cervical cancer; *: the probability at the 0.001 level, § abnormal cytology samples: Atypical Cells of Unknown Significance (ASCUS), Low-grade squamous intraepithelial lesion (LSIL), High-grade squamous intraepithelial lesion (HSIL), atypical squamous cells, cannot exclude HSIL (ASC-H) or Atypical glandular cells (AGC).
Distribution of HPV genotypes among HIV and non-HIV infected women with cervical dysplasia

Phylogenetic tree of HPV samples marked in red aligned against the representation of the different HPV genotypes distributed worldwide. Most HPV81 clustered with those cases detected in Bangkok, Morocco and Thailand while HPV66 clustered with cases reported in Tunisia, Morocco, Iran and India (Figure 3).

Discussion

This study established an overall HPV infection-rate of 27.12% among HIV-infected (23.03%) and HIV-noninfected (4.1%) women. It disagrees with the overall HPV infection rate of 40.0% in Kenya11, 13.7% in Ethiopia12. Embu and Meru Counties had the highest overall HPV infection rate among HIV-infected women. This is indicator of the expected high burden of cervical neoplasia in the region. Women aged below 35 years had a high rate of mixed HPV genotypes and a significant association between HIV infection and abnormal cytology outcome which agrees with published observations1, 5,7. A possible explanation is that HIV infection may facilitate the progression of HPV infection to cancer in young women, and an inverse relationship of high-risk HPV prevalence and age has been described4,11,13.

Single HPV type’s infection in CIN1+ showed diversity compared with multiple HPV type’s infection by HIV-infection. HPV44(α10), HPV58, HPV81, and HPV88 do not feature in many studies as potential oncogenic types, and their dominance in cervical dysplasia increases with HIV infection18,18,19 as seen in this study. Members of (α7) and (α9) dominate malignant tissues coding for a hydrophobic E5, hence considered oncogenic. Furthermore, following HPV infection, an

Figure 3. Phylogenetic analysis of HPV detected in eastern Kenya.
Funding
This study was funded by NACOSTI. The funding institution had no role whatsoever in designing the study, sample and data analysis, or writing of the manuscript.

Availability of data and materials
The datasets are available from the corresponding author on reasonable request.

Authors’ contributions
NJK, MM, LK, and RL designed the study. NJK conducted the survey, laboratory analysis, interpreted the data, and wrote the main manuscript text. All authors reviewed the final manuscript.

Competing interests
The authors declare that they have no conflicting interests.

References
1. ICO HPV Information Centre. Human Papillomavirus and Related Diseases Report - World. HPV Inf Cent. 2019.
2. Omire A, Budambula N, Ochieng W, Baliach C, Kerosi D, Langat H (2020). Cervical Dysplasia, Infection, and Phylogeny of Human Papillomavirus in HIV-Infected and HIV-Uninfected Women at a Reproductive Health Clinic in Nairobi, Kenya, Hindawi BioMed Research International Volume 2020, Article ID 4945608, 10 pages https://doi.org/10.1155/2020/4945608
3. Chen, Z., Schiffman, M., Herrero, R., DeSalle, R., Anastos, K., Segondy, M., Sahasrabuddhe, V. V., Gravitt, P. E., Hsing, A. W., Chan, P., & Burk, R. D. (2018). Classification and evolution of human papillomavirus genome variants: Alpha-5 (HPV26, 51, 69, 82), Alpha-6 (HPV30, 53, 56, 66), Alpha-11 (HPV34, 73), Alpha-13 (HPV54) and Alpha-3 (HPV61). Virology, 516, 86–101. https://doi.org/10.1016/j.virol.2018.01.002
4. Park, K J (2020) Cervical adenocarcinoma: integration of HPV status, pattern of invasion, morphology and molecular markers into classification, Histopathology 76, 112–127. https://doi.org/10.1111/his.13995
5. Van Doorslaer, K., Chen, Z., Bernard, H. U., et al. (2018). ICTV virus taxonomy profile: Papillomaviridae, Journal of General Virology. DOI: 10.1099/ijv.0.001105
6. Yamada, T. Sasagawa, L. W Kirumbi et al., “Human papillomavirus infection and cervical abnormalities in Nairobi, Kenya, an area with a high prevalence of human immunodeficiency virus infection,” Journal of Medical Virology, vol. 80, no. 5, pp. 847–855, 2008.
7. Menon S, Wusiman A, Boily MC, Kariisa M, Mabeya H, Luchters S, et al. (2016) Epidemiology of HPV Genotypes among HIV Positive Women in Kenya: A Systematic Review and Meta-Analysis. PLoS ONE 11(10): e0163965. https://doi.org/10.1371/journal.pone.0163965

8. National AIDS Control Council (NACC), K. (2016). Kenya HIV County Profiles. NACC, Ministry of Health, Government of Kenya. https://doi.org/139789966038074.

9. Sias C, Guarrazi V, Minosse C, Lapa D, Nonno FD, Capobianchi MR, Garbuglia AR, Del Porto P and Paci P (2020). Human Papillomavirus Infections in Cervical Samples From HIV-Positive Women: Evaluation of the Presence of the Nonavalent HPV Genotypes and Genetic Diversity. Front. Microbiol. 11:603657. doi: 10.3389/fmicb.2020.603657

10. Davey, D. D., Souers, R. J., Goodrich, K., Mody, D. R., Tabbara, S. O., & Booth, C. N. (2019). Bethesda 2014 Implementation and Human Papillomavirus Primary Screening: Practices of Laboratories Participating in the College of American Pathologists PAP Education Program. Archives of Pathology & Laboratory Medicine, 143(10), 1196–1202. https://doi.org/10.5858/arpa.2018-0603-CP

11. Surriabre, P., Torrico, A., Vargas, T. et al. Assessment of a new low-cost, PCR-based strategy for high-risk human papillomavirus DNA detection for cervical cancer prevention. BMC Infect Dis 19, 842 (2019). https://doi.org/10.1186/s12879-019-4527-9

12. Ali, K.E., Mohammed, I.A., Difabachew, M.N. et al. Burden and genotype distribution of high-risk Human Papillomavirus infection and cervical cytology abnormalities at selected obstetrics and gynecology clinics of Addis Ababa, Ethiopia. BMC Cancer. 19, 768 (2019). https://doi.org/10.1186/s12885-019-5953-1

13. Torres-Poveda, K., Ruiz-Fraga, I., Madrid-Marina, V. et al. High risk HPV infection prevalence and associated cofactors: a population-based study in female ISSSTE beneficiaries attending the HPV screening and early detection of cervical cancer program. BMC Cancer 19, 1205 (2019). https://doi.org/10.1186/s12885-019-6388-4

14. Elmi Asha, Devendra Bansal, Anushree Acharya, Sini Skariah, Soha R. Dargham, Laith J. Abu-Radd ad, Nady MOHamed-Nady, Paul Amuna, Asma A. J. Al-Thani, Ali A. Sultan (2017). Human Papillomavirus (HPV) Infection: Molecular Epidemiology, Genotyping, Seroprevalence, and Associated Risk Factors among Arab Womenin Qatar.” PLoS One. vol. 12,1 e0169197. 3 Jan., DOI:10.1371/journal.pone.0169197

15. Orang’o, E.O., Were, E., Rode, O. et al. Novel concepts in cervical cancer screening: a comparison of VIA, HPV DNA test and p16INK4a/Ki-67 dual stain cytology in Western Kenya. Infect Agents Cancer. 15, 57 (2020). https://doi.org/10.1186/s13027-020-00323-6

16. World Health Organization. (2017). Guide to cancer early diagnosis. World Health Organization. https://apps.who.int/iris/handle/10665/254500. License: CC BY-NC-SA 3.0 IGO

17. Zhang, H. Y. et al. (2014) ‘The diversity of human papillomavirus infection among human immunodeficiency virus-infected women in Yunnan, China Other viruses (e.g. pox, papilloma, parvo, Reoviridae)’, Virology Journal. DOI: 10.1186/s12985-014-002-3

18. Innes, C. R., Sykes, P. H., Harker, D., Williman, J. A., Van der Griend, R. A., Whitehead, M., et al. (2018). Changes in human papillomavirus genotypes associated with cervical intraepithelial neoplasia grade 2 lesions in a cohort of young women (2013-2016). Papillomavirus Res. 6, 77–82. doi: 10.1016/j.pvr.2018.10.010

19. McClymont, E., Coutlée, F., Lee, M., Albert, A., Raboud, J., Walmsley, S., et al. (2020). Brief report: persistence of non-vaccine oncogenic HPV genotypes in quadrivalent HPV-vaccinated women living with HIV. J. Acquir. Immune. Defic. Syndr. 83, 230–234. doi: 10.1097/ qai.0000000000002258 PubMed Abstract | CrossRef Full Text | Google Scholar

20. World Health Organization. (2019). Global market study: HPV vaccines. World Health Organization. https://apps.who.int/iris/handle/10665/311275 License: CC BY-NC-SA 3.0 IGO

21. National cancer control strategy 2017-2022. Ministry of Health, Kenya. National Cancer Control Strategy. 2017.

22. Scherpenisse M, Schepp RM, Mollers M, Meijer CJ, Berbers GA, van der Klis FR. 2013. Characteristics of HPV-specific antibody responses induced by infection and vaccination: cross-reactivity, neutralizing activity, avidity, and IgG subclasses. PLoS One. 8:e74797. DOI:10.1371/journal.pone.0074797

23. Executive Board, 144. (2018). Accelerating cervical cancer elimination: report by the Director-General. World Health Organization. https://apps.who.int/iris/handle/10665/327520 License: CC BY-NC-SA 3.0 IGO

24. Mabeya, H., Menon, S., Weyers, S., et al. Uptake of three doses of HPV vaccine by primary school girls in Eldoret, Kenya; a prospective cohort study in a malaria-endemic setting. BMC Cancer. 2018.

African Health Sciences, Vol 22 Issue 1, March, 2022