Bounding the torsion in CM elliptic curves

Dipendra Prasad and C S Yogananda

February 13, 2020

Contents

1 Introduction 1
2 Preliminary Lemmas 3
3 Proof of the main theorem 4
4 A conjecture about torsion 5

1 Introduction

In [6] A. Silverberg, using the main theorem of complex multiplication of Shimura and Taniyama, has obtained a bound for the order of a point of finite order in a CM abelian variety over a number field in terms of only the degree of the number field and the dimension of the abelian variety. As a corollary she obtains the following result for elliptic curves: Let \(E \) be an elliptic curve over a number field \(K \) of degree \(d \) with CM by an order \(\mathcal{O} \) in an imaginary quadratic field \(k \). Suppose \(P \in E(K) \) is a point of order \(N \). Then \(\varphi(N) \leq \delta \mu d \) where \(\mu \) is the number of roots of unity in \(\mathcal{O} \) and \(\delta = 1/2 \) or 1 depending on whether \(k \) is contained in \(K \) or not. Her results also imply a bound on the full torsion subgroup of CM elliptic curves.

The aim of this paper is to give an estimate on the order of the torsion subgroup of a CM elliptic curve over a number field using only the result of Deuring about supersingular primes, and elementary algebraic number theory. To state our theorem, we need the following notation: if \(M = p_1^{e_1} \cdots p_r^{e_r} \) is the
prime factorisation of M let $M' = l_1^{(j_1+\delta_1)/2} \cdots l_r^{(j_r+\delta_r)/2}$ where $\delta_i = 0$ if j_i is even and $\delta_i = 1$ if j_i is odd.

Theorem 1.1 Let E be an elliptic curve over a number field K of degree d with CM by an order in an imaginary quadratic field k. Then if M is the order of the torsion subgroup of $E(K)$ we have:

1. $\varphi(M) \leq 2d$ if $K \cap k = \mathbb{Q}$;

2. $\varphi(M') \leq 2d$ if $k \subseteq K$ but $k \neq \mathbb{Q}(i), \mathbb{Q}(\omega)$, ($\omega$ being a third root of unity).

When $k = \mathbb{Q}(i), \mathbb{Q}(\omega)$ our method gives an extra factor of $2^{d(M)+1}$ where $d(M)$ is the number of distinct prime divisors of M.

Remark 1: A. Silverberg has remarked that one can easily give an estimate to the order of the full torsion subgroup of a CM elliptic curve which is the same as our case (i) from her theorem in [9]. Her estimate is better than ours in case (ii). In case (i), this follows as the torsion subgroup on an elliptic curve is always of the form $\mathbb{Z}/a \times \mathbb{Z}/b$ where $a|b$. If the torsion subgroup of $E(K)$ contains $\mathbb{Z}/r \times \mathbb{Z}/r$ for $r > 2$, it follows from [10] that the field of complex multiplication ($= k$) must be contained in K. Therefore if $K \cap k = \mathbb{Q}$, then the torsion subgroup is either \mathbb{Z}/N or $\mathbb{Z}/N \times \mathbb{Z}/2$, where N is the maximum order of a torsion point, achieving the same bound that we obtain for the order of the torsion subgroup of $E(K)$ from the maximal order of a torsion element.

There is a large amount of literature on the torsion subgroup of elliptic curves over number fields. In [4] Merel has shown that the order of the torsion subgroup of an elliptic curve over a number field K can be bounded in terms of only the degree, d, of K over \mathbb{Q}. The bound thus obtained (first by Merel and then improved by Oesterlé) is exponential in d. The initial motivation for this note was to investigate as to what could be the ‘right bound’ by looking at the CM case when we discovered that Silverberg has already done this. We also refer to the paper of Olson [8] which deals with elliptic curves with complex multiplication.

Acknowledgement: We are grateful to Prof. J. Oesterlé whose wonderful lectures on Merel’s work and his own refinement at the Mehta Research Institute and at the ICTP, Trieste, stimulated our interest in working out the CM case. We are grateful to Prof. J. Alperin for providing us with the proof of Lemma 2.3 and to Prof. A. Silverberg for remark 1. This work was done while the second author was visiting Mehta Research Institute whose hospitality he gratefully acknowledges.
2 Preliminary Lemmas

Lemma 2.1 Let k be a quadratic extension of \mathbb{Q} and K an extension of \mathbb{Q} of degree d with $K \cap k = \mathbb{Q}$. Then the set of primes p in \mathbb{Q} which remain inert in k and have the property that there is at least one prime of degree 1 in K above p is of density at least $1/(2d)$.

Proof: Let L be a Galois extension of \mathbb{Q} containing K and k, and let $G = \text{Gal}(L/\mathbb{Q})$. Further let H_K and H_k be the subgroups of G corresponding to the subfields K and k, respectively, of L. It is easy to see that the set of prime ideals p in L, such that the prime ideal $p \cap K$ is of degree 1 is precisely those for which the corresponding Frobenius element σ in G belongs to H_K. The prime $p = p \cap \mathbb{Q}$ is inert in k if and only if σ does not belong to H_k. So, the primes p in \mathbb{Q} as desired in the lemma are precisely those for which there is a prime p in L above p for which the Frobenius element belongs to $(G \setminus H_k) \cap H_K$. Since the cardinality of $(G \setminus H_k) \cap H_K$ is $|H_K|/2$, it follows from the Cebotarev density theorem that the density of p in \mathbb{Q} as desired in the lemma is at least $1/(2d)$. \square

Lemma 2.2 Let K be a number field of degree d containing an imaginary quadratic field k. Then the set of primes p in \mathbb{Q} which are inert in k and have a prime of degree 2 in K over p is of density at least $1/d$.

Proof: Let L be a Galois extension of \mathbb{Q} containing K and $G = \text{Gal}(L/\mathbb{Q})$. Further let H_K and H_k be the subgroups of G corresponding to the subfields K and k, respectively, of L. The set of primes p as desired in the lemma are precisely those for which the corresponding Frobenius substitution σ does not belong to H_k but whose square is in H_K. Since k is imaginary quadratic, the complex conjugation does not belong to H_k. The following lemma combined with the Cebotarev density theorem completes the proof of our lemma. \square

Lemma 2.3 Let G be a finite group, N a subgroup of G of index 2 in G and H a subgroup of N. Suppose that there is an element of order 2, say c, in G which is not in N. Then the set of elements in G which do not belong to N but whose square belongs to H has cardinality at least that of H.

3
Proof: (due to J. Alperin) We need to count elements \(n \cdot c \) with \(n \in N \) whose square belongs to \(H \). Clearly \(HeH \) is a subset of \(NcN = Nc \). We will prove that there are exactly \(|H| \) elements in \(HeH \) whose square belongs to \(H \) which will prove our lemma. To prove this let \(A = H \cap cHc^{-1} \), and let \(X \subset H \) be a set of left coset representatives of \(A \) in \(H \) so that every element of \(H \) can be written uniquely in the form \(x \cdot a \) with \(x \in X \) and \(a \in A \). From this it is easy to see that an element of \(HcH \) can be uniquely written in the form \(xch \) with \(x \in X, h \in H \). Now \((xch)^2 = xchxch \) belongs to \(H \) if and only if \(chxc \) belongs to \(H \) which happens if and only if \(hx \) belongs to \(cHc^{-1} \). Since both \(x \) and \(h \) belongs to \(H \), we find that \((xch)^2 \) belongs to \(H \) if and only if \(hx \) belongs to \(A = H \cap cHc^{-1} \). For each \(x \), this means that \(h \) belongs to \(Ax^{-1} \). So for each \(x \), there are \(|A| \) many choices for \(h \) such that \((xch)^2 \) belongs to \(H \). Therefore the total number of elements in \(HcH \) whose square belongs to \(H \) is

\[
|A| \cdot \frac{|H|}{|A|} = |H|,
\]

proving the lemma.

\(\Box\)

3 Proof of the main theorem

The proof of our main theorem will be a simple consequence of the lemmas in the previous section, Cebotarev density theorem, and the well known theorem about elliptic curves with complex multiplication that a prime \(p \) in \(K \) which is a prime of good reduction for \(E \) over \(K \) is a prime of supersingular reduction if and only if \(p \cap \mathbb{Q} = p \) is inert or ramified in \(k \) (see \([3]\)).

Case 1: \(K \cap k = \mathbb{Q} \). We consider the set of rational primes \(p \) coprime to \(M \) which are inert in \(k \) and have a split factor in \(K \), i.e., there is a prime of degree 1, say \(p \) in \(K \) which divides \(p \). Denote by \(F_p \) the residue field associated to the prime ideal \(p \) of \(K \). Then the torsion subgroup of \(E \) over \(K \) will inject into \(E_p(F_p) \) which has cardinality \(p + 1 \) since \(p \) is a prime of supersingular reduction of \(E \) and \(F_p \) is a finite field with \(p \) elements; hence \(M|(p + 1) \). By Lemma 2.1 the density of such primes \(p \) is at least \(1/(2d) \) whereas by Cebotarev density theorem, the density of primes \(p \) which are congruent to \(-1 \) modulo \(M \) is \(1/\varphi(M) \). Therefore we must have \(1/(2d) \leq 1/\varphi(M) \) and so \(\varphi(M) \leq 2d \).

Case 2: \(k \subset K \). We consider primes \(p \) in \(\mathbb{Q} \) such that \(p \) is inert in \(k \) and has a prime factor \(p \) of degree 2 in \(K \) which is a prime of good reduction of
The elliptic curve will have supersingular reduction at such primes. The density of such primes is $1/d$ from lemma 2.2. Since \mathbb{F}_p is a finite field of order p^2, $|E_p(\mathbb{F}_p)| = 1 + p^2 + a_p$ where $a_p = 0, \pm p, \pm 2p$. The possibilities $a_p = 0, \pm p$ arises only for $k = \mathbb{Q}(i)$ and $k = \mathbb{Q}(\omega)$ respectively which we have omitted. Therefore we find that $|E_p(\mathbb{F}_p)|$ is either $(p + 1)^2$ or $(p - 1)^2$. Hence p is congruent to either 1 or -1 modulo M'. The density of such primes p is $2/\varphi(M')$, and as before we get

$$\frac{1}{d} \leq \frac{2}{\varphi(M')}$$

or $\varphi(M') \leq 2d$ completing the proof of the theorem.

Remark 2: The technique of using supersingular primes can be used in some situations to get better bounds for the order of the torsion subgroup when K, the field of definition of E, is a non-normal extension. For instance, if L is a Galois extension of \mathbb{Q} with Galois group $GL_2(\mathbb{F}_q)$ which is disjoint from the field of CM, k, and K is the fixed field of the diagonal torus, then $[K : \mathbb{Q}] = q(q + 1)$. The set of primes p in \mathbb{Q} with the property that there is a prime p in K of degree 1 above p corresponds to those Frobenius substitutions in $GL_2(\mathbb{F}_q)$ which have a conjugate which is diagonalisable over \mathbb{F}_q. The set of elements in $GL_2(\mathbb{F}_q)$ which are diagonalisable over \mathbb{F}_q can be easily seen to be of cardinality $[(q - 2)(q - 1)q(q + 1)]/2 + (q - 1)$. Therefore the set of primes p which are inert in k and have a prime in K of degree 1 above p is roughly of density $1/4$. By the arguments in theorem 1.1 this implies that the torsion in $E(K)$ is bounded by M with $\varphi(M) \leq 4$, implying that the set of possible values of M is $\{1, 2, 3, 4, 5, 6, 8\}$, instead of the much larger bound depending on q coming from theorem 1.1.

4 A conjecture about torsion

In this section we make a few general remarks and state a conjecture on the bound for the order of a torsion point of an elliptic curve defined over a number field.

Let X be a curve over \mathbb{Q} of genus ≥ 2. Let d be the gonality of X, i.e., d is the minimal integer among the degrees of maps from X to \mathbb{P}^1 and assume that d is realised for a map π defined over \mathbb{Q}. It is clear that any element x of $X(\overline{\mathbb{Q}})$ with $\pi(x) \in \mathbb{P}^1(\mathbb{Q})$ is defined over a number field of degree $\leq d$ and therefore
there are infinitely many points in $X(\mathbb{Q})$ defined over number fields of degree $\leq d$. Conversely, it has been proved by Debarre and Klassen in [2] that if X is a smooth plane curve then d is the maximal integer with the property that the number of points in $X(\mathbb{Q})$ defined over a number field of degree $< d$ is finite. We would like to believe that a suitably modified version of their theorem is valid also for modular curves $X_0(N)$ and $X_1(N)$. More precisely, we believe that these modular curves have no points, except for cusps, defined over an extension of \mathbb{Q} of degree $\leq Bd$, B a constant independent of N.

It has been proved in [1] that the gonality of $X_0(N)$ (resp. $X_1(N)$) is at least a constant times the degree of the standard map of $X_0(N)$ to \mathbb{P}^1; in fact, $d_0 \geq (7/800)N$ (a similar bound but quadratic in N for $X_1(N)$). Earlier heuristics therefore lead us to the following.

Conjecture: Let E be an elliptic curve defined over a number field K with a torsion point of order N in $E(K)$. Then there is a constant C independent of E and K such that $\varphi(N) \leq C[K: \mathbb{Q}]$.

References

[1] D. Abramovich: A linear lower bound on the gonality of modular curves. *Internat. Math. Res. Notices* 1996, no. 20, 1005–1011.

[2] O. Debarre and M. J. Klassen: Points of low degree on smooth plane curves, *J. Reine Angew. Math.* 446, 81-87 (1994).

[3] S. Lang: “Elliptic Functions”, Addison-Wesley, 1973.

[4] L. Merel: Bornes pour la torsion des courbes elliptiques sur le corps de nombres, *Invent. Math.* 124, 437-449 (1994).

[5] L. Olson: Points of finite order on elliptic curves with complex multiplication, *Manuscripta Math.* 14, 195-205 (1974).

[6] A. Silverberg: Points of finite order on Abelian Varieties, in “Contemp. Math.”, 133, 175-193 (1992).

[7] A. Silverberg: Fields of definition for homomorphisms of abelian varieties, *Journal of Pure and Applied Algebra*, vol. 77, 253-262 (1992).
