On the Relationship between Heterophily and Robustness of Graph Neural Networks

Jiong Zhu
University of Michigan
jiongzhu@umich.edu

Junchen Jin
Northwestern University
mark.jin@u.northwestern.edu

Donald Loveland
University of Michigan
dlovelan@umich.edu

Michael T. Schaub
RWTH Aachen University
schaub@cs.rwth-aachen.de

Danai Koutra
University of Michigan
dkoutra@umich.edu

Abstract

Empirical studies on the robustness of graph neural networks (GNNs) have suggested a relation between the vulnerabilities of GNNs to adversarial attacks and the increased presence of heterophily in perturbed graphs (where edges tend to connect nodes with dissimilar features and labels). In this work, we formalize the relation between heterophily and robustness, bridging two topics previously investigated by separate lines of research. We theoretically and empirically show that for graphs exhibiting homophily (low heterophily), impactful structural attacks always lead to increased levels of heterophily, while for graph with heterophily the change in the homophily level depends on the node degrees. By leveraging these insights, we deduce that a design principle identified to significantly improve predictive performance under heterophily—separate aggregators for ego- and neighbor-embeddings—can also inherently offer increased robustness to GNNs. Our extensive empirical analysis shows that GNNs adopting this design alone can achieve significantly improved empirical and certifiable robustness compared to the best-performing unvaccinated model. Furthermore, models with this design can be readily combined with explicit defense mechanisms to yield improved robustness with up to 18.33% increase in performance under attacks compared to the best-performing vaccinated model.

1 Introduction

Graph neural networks (GNNs) aim to translate the enormous empirical success of deep learning to data defined on non-Euclidean domains, such as manifolds or graphs [6], and have become important tools to solve a variety of learning problems for graph structured and geometrically embedded data. However, recent works show that GNNs—much like their “standard” deep learning counterparts—have a high sensitivity to adversarial attacks: intentionally introduced minor changes in the graph structure can lead to significant changes in performance. This finding, first articulated by [48] and [10], has triggered studies that investigated different attack scenarios [38, 37, 22, 27].

A different aspect of GNNs that has been scrutinized recently is that most GNNs do not perform well with many heterophilous datasets. GNNs generally perform well under homophily (or assortativity), i.e., the tendency of nodes with similar features or class labels to connect [31, 43]. Such datasets are thus called homophilous (or assortative). While homophilous datasets dominate the study of networks, homophily is not a universal principle; certain networks, such as romantic relationship networks or predator-prey networks in ecology, are mostly heterophilous (or disassortative). Employing a GNN
which does not account for heterophily can lead to significant performance loss in heterophilous settings [1][43][2]. Previous works have thus proposed architectures for heterophilous data.

While previous work has focused on naturally-occurring heterophily, heterophilous interactions may also be introduced as adversarial noise: as many GNNs exploit homophilous correlation, they can be sensitive to changes that render the data more heterophilous. A natural follow-up question is if and how this observation manifests itself in previously proposed attacking strategies on GNNs. In this work, we thus investigate the relation between heterophily and robustness of GNNs against adversarial perturbations of graph structure, focusing on semi-supervised node classification tasks.

More specifically, our main contributions are:

- **Formalization:** We formalize the relation between adversarial structural attacks and the change of homophily level in the underlying graphs with theoretical (§3.1) and empirical (§5.1) analysis. Specifically, we show that on homophilous graphs, effective structural attacks lead to increased heterophily, while, on heterophilous graphs, they alter the homophily level contingent on node degrees. To our knowledge, this is the first formal analysis of such kind.

- **Heterophily-inspired Design:** We show how the relation between attacks and heterophily can inspire more robust GNNs by demonstrating that a key architectural feature in handling heterophily, separate aggregators for ego- and neighbor-embeddings, also improves the robustness of GNNs against attacks (§3.2).

- **Extensive Empirical Analysis:** We show the effectiveness of the heterophilous design in improving empirical (§2.2) and certifiable (§2.3) robustness of GNNs with extensive experiments on real-world homophilous and heterophilous datasets. Specifically, we compare GNNs with this design, which we refer to as heterophily-adjusted GNNs, to non-adjusted models, including state-of-the-art models designed with robustness in mind. We find that heterophily-adjusted GNNs are up to 5 times more certifiably robust and have stronger performance under attacks by up to 32.92% compared to non-adjusted, standard models. Moreover, this design can be combined with existing vaccination mechanisms, yielding up to 18.33% higher accuracy under attacks than the best non-adjusted vaccinated model.

2 Notation and Preliminaries

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ be a simple graph with node set \mathcal{V}, edge set \mathcal{E} and node attributes \mathbf{X}. The one-hop neighborhood $N(v) = \{u : (u, v) \in \mathcal{E}\}$ of a node $v \in \mathcal{V}$ is the set of all nodes directly adjacent to v; the k-hop neighborhood of $v \in \mathcal{V}$ is the set of nodes reachable by a shortest path of length k.

We represent the graph \mathcal{G} algebraically by an adjacency matrix $\mathbf{A} \in \{0, 1\}^{\mathcal{V} \times \mathcal{V}}$ and node feature matrix $\mathbf{X} \in \mathbb{R}^{\mathcal{V} \times F}$. We use $\mathbf{A}_s = \mathbf{A} + \mathbf{I}$ to denote the adjacency matrix with self-loops added, and denote the corresponding row-stochastic matrices as $\mathbf{A} = \mathbf{D}^{-1}\mathbf{A}$ and $\mathbf{A}_s = \mathbf{D}_s^{-1}\mathbf{A}_s$, respectively, where \mathbf{D} is a diagonal matrix with $D_{ii} \equiv \sum_j A_{ij}$ (\mathbf{D}_s is defined analogously). We further assume that there exists a vector y, which contains a unique class label y_v for each node v. Given a training set $\mathcal{T}_y = \{(v_1, y_1), (v_2, y_2), \ldots\}$ of labeled nodes, the goal of semi-supervised node classification is to learn a mapping $f : \mathcal{V} \rightarrow \mathcal{Y}$ from the nodes to the set \mathcal{Y} of class labels.

Graph neural networks (GNNs). Most current GNNs operate according to a message passing paradigm where a representation vector r_v is assigned to each node $v \in \mathcal{V}$ and continually updated by K layers of learnable transformations. These layers first aggregate representations over neighboring nodes $N(v)$ and then update the current representation via an encoder ENC. For prevailing GNN models like GCN [13] and GAT [36], each layer can be formalized as $r_v^{(k)} = \text{ENC} \left(\text{AGGR} \left(\left\{ r_u^{(k-1)} : u \in N(v) \cup \{v\} \right\} \right) \right)$, where AGGR is the mean function weighted by node degrees (GCN) or an attention mechanism (GAT), and ENC is a learnable (nonlinear) mapping.

Adversarial attacks on graphs. Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ and a GNN f that processes \mathcal{G}, an adversarial attacker tries to create a perturbed graph $\mathcal{G}' = (\mathcal{V}, \mathcal{E}', \mathbf{X})$ with a modified edge-set \mathcal{E}' such that the performance of the GNN f is maximally degraded. The information available to the attacker can vary under different scenarios [16][33]. Here, we follow the gray-box formalization by Zügner et al. [48], where the attacker knows the training set \mathcal{T}_y, but not the trained GNN f. The attacker thus considers a surrogate GNN and picks perturbations that maximize an attack loss $L_{\text{atk}} [48][45]$, assuming that attacks to the surrogate model are transferable to the attacked GNN. For node classification, the attack loss L_{atk} quantifies how the predictions $z_v \in [0, 1]^{\mathcal{Y}}$ made by the
GNN f differ from the true labels y. For a targeted attack of node v with class label $y_v \in \mathcal{Y}$, we adopt the negative classification margin (CM-type) [48, 38]: $\mathcal{L}_\text{atk} = -\Delta_v = - (z_{v:y_v} - \max_{y \neq y_v} z_{v:y})$. The attacker usually has additional constraints, such as a limit on the size of the perturbations allowed [48, 45].

Taxonomy of attacks. We follow the taxonomy of attacks introduced in [16, 33]. For node classification, the attacker may aim to change the classification of a specific node $v \in \mathcal{V}$ (targeted attack), or to decrease the overall classification accuracy (untargeted attack). Attacks can also happen at different stages of the training process: we refer to attacks introduced before training as (pre-training) poison attacks, and attacks introduced after the training process (and before potential retraining on perturbed data) as (post-training) evasion attacks. While our theoretical analysis ([43]) mainly considers targeted evasion attacks, we consider other attacks in our empirical evaluation ([35]).

Characterizing homophily and heterophily in graphs. We characterize the types of connections in a graph which contribute to its overall level of homophily and heterophily as follows:

Definition 1 (Homo/Heterophilous path and edge) A k-hop homophilous path from node w to u is a length-k path between endpoint nodes with the same class label $y_w = y_u$. Otherwise, the path is called heterophilous. A homophilous or heterophilous edge is a special case with $k = 1$.

Following [43, 25], we define the homophily ratio h as:

Definition 2 (Homophily ratio) The homophily ratio is the fraction of homophilous edges among all the edges in a graph: $h = |\{(u, v) \in \mathcal{E} | y_u = y_v\}| / |\mathcal{E}|$.

When the edges in a graph are wired randomly, independent to the node labels, the expectation of h for balanced classes [25]. For simplicity, we informally refer to graphs with homophily ratio $h \geq 1/|\mathcal{Y}|$ as homophilous graphs (which have been the focus in most prior works), graphs with homophily ratio $h \ll 1/|\mathcal{Y}|$ as heterophilous graphs, and graphs with homophily ratio $h \approx 1/|\mathcal{Y}|$ as weakly heterophilous graphs.

3 Relation between Graph Heterophily & Model Robustness

In this section, we first show theoretical results on the relation between adversarial structural attacks and the change in the homophily level of the underlying graphs. Though empirical analyses from previous works have suggested this relation on homophilous graphs [37, 16], to our knowledge, we are the first to formalize it with theoretical analysis and address the case of heterophilous graphs. As an implication of the relation, we then discuss how a key design that improves predictive performance of GNNs under heterophily can also help boost their robustness.

3.1 How Do Structural Attacks Change Homophily in Graphs?

Homophilous Graphs: Structural Attacks are Mostly Heterophilous Attacks. Our first result shows that, for homophilous data, effective structural attacks on GNNs (as measured by loss \mathcal{L}_atk) always result in a reduced level of homophily where either new heterophilous connections are added or existing homophilous connections are removed. It also states that direct perturbations on 1-hop neighbors of the target nodes are more effective than indirect perturbations (so-called influencer attacks [48]) on multi-hop neighbors. For simplicity, akin to previous works [48] we establish our results for targeted evasion (post-training) attacks in a stylized learning setup with a linear GNN. However, our findings generalize to more general attack types and datasets as we show in our experiments ([5, 1]).

Theorem 1 Let $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ be a d-regular, self-loop-free graph with adjacency matrix \mathbf{A} and node features $\mathbf{x}_v = p \cdot \text{onehot}(y_v) + \frac{1}{|\mathcal{Y}|} \cdot 1$ for each node v, where 1 is an all-1 vector, and p is a parameter that regulates the signal strength of the one-hot class label compared to uniform noise. Also assume that a fraction h of each node’s neighbors belong to the same class, while a fraction $\frac{1-h}{|\mathcal{Y}|-1}$ belongs uniformly to any other class. Consider a 2-layer linear GNN $f^{(2)}(\mathbf{A}, \mathbf{X}) = \mathbf{A}^2 \mathbf{XW}$ trained on a training set \mathcal{T}_Y with at least one node from each class $y \in \mathcal{Y}$. If $h > \frac{1}{|\mathcal{Y}|}$, the following statements hold for a unit perturbation of the adjacency matrix that targets an arbitrary node v:
1. the CM-type attack loss L_{atk} (§2) increases only for actions increasing heterophily, i.e., when removing a homophilous edge or path, or adding a heterophilous edge or path to node v;
2. direct perturbations on edges (or 1-hop paths) incident to the target node v lead to greater increase in L_{atk} than indirect perturbations on multi-hop paths to target node v.

We give the proof in App. C.2. Intuitively, the relative inability of existing GNNs to make full use of heterophilous data [31, 43] can be exploited by inserting heterophilous connections in graphs where homophilous ones are expected. Though the theorem shows that effective attacks on homophilous graphs necessarily reduce the homophily level, the converse is not true: not all perturbations which reduce the homophily level are effective attacks [28].

Heterophilous Graphs: Structural Attacks Can Be Homophilous or Heterophilous, depending on Node Degrees. When a graph displays heterophily, our analysis shows a more complicated picture on how the level of homophily in the graph is changed by effective structural attacks: in heterogeneous case, the direction of change is dependent on the node degrees present in the graph. Specifically, if the degree d is low, attacks increasing the heterophily are still effective; however, if the degree d is high, attacks decreasing the heterophily will be effective. Similar to the homophilous case, we formalize our results below for targeted evasion attacks in a stylized learning setup.

Theorem 2 Under the setup of Thm. 1, if $h < 1/|Y|$, the following statements hold for a direct unit perturbation of the adjacency matrix that targets an arbitrary node v:
1. when $0 < d < 2(|Y| - 1)/(1 - h|Y|)$, the attack loss L_{atk} (§2) increases only under actions increasing heterophily in the graph, i.e., when removing a homophilous edge or adding a heterophilous edge to node v;
2. when $d > 2(|Y| - 1)/(1 - h|Y|)$, the attack loss L_{atk} (§2) increases only under actions reducing heterophily in the graph, i.e., when adding a homophilic edge or removing a heterophilic edge to node v.

We give the proof in App. C.2. We note that this theorem is derived under specific assumptions, which may not hold in large, real-world datasets. However, it still helps explain the mixture of homophilous and heterophilous changes in real-world heterophilous graphs by adversarial attacks, as we observe in §5.4.

3.2 Boosting Robustness with A Simple Heterophilous Design

A natural follow-up question is whether GNNs with better performance under heterophily are also more robust against structural attacks. We deduce that a key design for improving GNN performance for heterophilous data—separate aggregators for ego- and neighbor-embeddings—can also boost the robustness of GNNs by enabling them to better cope with adversarially-introduced changes in heterophily.

Separate Aggregators for Ego- and Neighbor-embeddings. This design uses separate GNN aggregators for ego-embedding r_v and neighbor-embeddings $\{r_u : u \in N(v)\}$. Formally, the representation learned for node v in the k-th layer is:

$$r_v^{(k)} = ENC\left\{AGGR1(r_v^{(k-1)}, r_u^{(k-2)}, ..., r_v^{(0)}), AGGR2(\{r_u^{(k-1)} : u \in N(v)\})\right\},$$

(1)

where $AGGR1$ and $AGGR2$ are separate aggregators, such as averaging functions (GCN), attention mechanisms (GAT), or other pooling mechanisms [15]. The ego-aggregator $AGGR1$ may also introduce skip connections [39] to the ego-embeddings aggregated in previous layers as shown in Eq. (1). This design has been utilized in existing GNN models (see §D.1 for details), and has been shown to significantly boost the representation power of GNNs under natural heterophily [43].

Intuition. The key design changes, as compared to the GCN formulation in §2, allow for the ego-embedding r_v to be aggregated and weighted separately from the neighbor-embeddings $\{r_u : u \in N(v)\}$, as well as for the use of skip connections to ego-embeddings of previous layers. Intuitively, ego-embeddings of feature vectors at the first layer are independent of the graph structure and thus unaffected by adversarial structural perturbations. Hence, a separate aggregator and skip connections can provide better access to unperturbed information, and helps mitigate the effects of the attacks.

Theoretical Analysis. We formalize the above intuition using a stylized linear analysis in line with Thm. 1 that shows how separate aggregators for ego- and neighbor-embeddings enable GNN layers to reduce the attack loss.
Theorem 3 Under the setup of Thm. 1, consider two alternative layers from which a two-layer linear GNN is built: (1) a layer defined as \(f_s(A, X) = \tilde{A}XW \); and (2) a layer formulated as \(f(A, X; \alpha) = (1 - \alpha)\tilde{A} + \alpha I \) \(XW \), which mixes the ego- and neighbor-embedding linearly under a predefined weight \(\alpha \in [0, 1] \). Then, for \(h > 1/|Y| \), \(\alpha > 1/(1 + d) \), and a unit perturbation increasing \(\mathcal{L}_{\text{atk}} \) as in Thm. 1, outputs of layer \(f \) lead to a strictly smaller increase in \(\mathcal{L}_{\text{atk}} \) than \(f_s \).

We provide the proof in App. C.3; note that for \(\alpha = 1/(1 + d) \), the two layers are the same: \(f(A, X; \alpha) = f_s(A, X) \). Theorem 3 shows that an increase to the weights of ego-embedding improves the robustness of the GNN \(f \) for a homophily ratio \(h > 1/|Y| \). Though aggregators and encoders are stylized in the theorem, the empirical analysis in §5.2 confirms that GNNs with more advanced aggregators and encoders also benefit from separate aggregators. Specifically, we find that such GNNs outperform methods without this design by up to 33.33% and 48.88% on homophilous and heterophilous graphs, respectively, while performing comparably on clean datasets.

4 Related Work

Adversarial Attacks and Defense Strategies for Graphs Since NETTACK [48] and RL-S2V [10] first demonstrated the vulnerabilities of GNNs against adversarial perturbations, a variety of attack strategies under different scenarios have been proposed, including adversarial attacks on the graph structure [10, 38, 32, 7], node features [46, 27], or combinations of both [48, 45, 37]. On the defense side, various techniques for improving the GNN robustness against adversarial attacks have been proposed, including: adversarial training [38, 45, 4]; RGCN [42], which adopts Gaussian-based embeddings and a variance-based attention mechanism; low-rank approximation of graph adjacency [12] against Nettack [48]; Pro-GNN [17], which estimates the unperturbed graph structure in training with the assumptions of low-rank, sparsity, and homophily of node features; GCN-Jaccard [37] and GNNGuard [41], which assume homophily of features (or structural embeddings) and train GNN models on a pruned graph with only strong homophilous links; and Soft Medoid [13], an aggregation function with improved robustness. Other recent works have looked into the certification of nodes that are guaranteed to be robust against certain structural and feature perturbations [46, 4, 47], including approaches based on model-agnostic randomized smoothing [9, 19, 5]. Interested readers are referred to the recent surveys [16, 33] for a comprehensive review of the literature.

GNNs & Heterophily Recent works [31, 26, 43, 28] have shown that heterophilous datasets can lead to significant performance loss for popular GNN architectures (e.g., GCN [18], GAT [36]). This issue is also known in classical semi-supervised learning [30]. To address this issue, several GNN designs for handling heterophilous connections have been proposed [1, 31, 43, 11, 23, 44, 2]. Yan et al. [40] recently discussed the connection between heterophily and oversmoothing for GNNs, and proposed designs to simultaneously address both issues. However, the formal connection between heterophily and robustness of GNNs has received little attention. Here we focus on a simple yet powerful design that significantly improves performance under heterophily [43], and can be readily incorporated into GNNs.

5 Empirical Evaluation

Our analysis seeks to answer the following questions: (Q1) Does our theoretical analysis on the relations between adversarial attacks and changes in heterophily level generalize to real-world datasets? (Q2) Do heterophily-adjusted GNNs, i.e., models with separate aggregators for ego- and neighbor-embeddings, show improved robustness against state-of-the-art attacks? (Q3) Does the identified design improve the certifiable robustness of GNNs?

First, we describe the experimental setup and datasets that we use to answer the above questions.

Attack Setup. We consider both targeted and untargeted attacks [2], generated by NETTACK [48] and Metattack [45], respectively. For each attack method, we consider poison (pre-training) and evasion (post-training) attacks, yielding 4 attack scenarios in total. We focus on robustness against structural perturbations and keep the node features unchanged. We randomly generate 3 sets of perturbations per attack method and dataset, and consistently evaluate each GNN model on them. We provide more details in App. D.2.
GNN Models. To show the effectiveness of our identified design, we evaluate four groups of models against adversarial attacks: (1) Models with this heterophilous design only: GraphSAGE [15], H₂GCN [43], CPGNN [44], GPR-GNN [8] and FAGCN [2]; we discuss how these models instantiate this design in App. D. (2) State-of-the-art “vaccinated” architectures designed with robustness in mind: ProGNN [17], GNNGuard [41] and GCN-SVD [12]; (3) Models with both the heterophilous design and explicit robustness-enhancing mechanisms based on low-rank approximation: H₂GCN-SVD and GraphSAGE-SVD; (4) Models without any vaccination, including some of the most popular methods: GCN [18], GAT [30], and the graph-agnostic multilayer perceptron (MLP) which relies only on node features. We discuss the implementations and parameters used for the models in App. D.

Datasets & Evaluation Setup. We consider two standard datasets with strong homophily, Cora [29] and Citeseer [32], complemented with one weakly and one strongly heterophilous graph, introduced by Lim et al. [25]: FB100 [35] and Snap Patents [21,20]. We report summary statistics in Table 1 and provide more details in App. D.5. For computational tractability, we subsample the Snap Patents data via snowball sampling [14], where we keep 20% of the neighbors for each traversed node (see App. D.5 for details). We follow the evaluation procedure of [48] and [17], where we split the nodes of each dataset into training (10%), validation (10%) and test (80%) data, and determine the model parameters using the training and validation splits. We report the average performance and standard deviation on the 3 sets of generated perturbations. For targeted attacks with Nettack, we report the classification accuracy on the target nodes; for untargeted attacks with Metattack, we report it over the whole test data.

Robustness Certificates. We adopt randomized smoothing for GNNs [5] to evaluate the certifiable robustness, with parameter choices as detailed in App. D.2. We only consider structural perturbations in the randomization scheme. Following Geisler et al. [13], we measure the certifiable robustness of GNN models with the accumulated certifications (AC) and the average maximum certifiable radii for edge additions (r_a) and deletions (r_d) over all correctly predicted nodes. More specifically, AC is defined as $-R(0,0) + \sum_{r_a,r_d \geq 0} R(r_a,r_d)$, where $R(r_a,r_d)$ is the certifiably correct ratio, i.e., the ratio of the nodes in the test splits that are both predicted correctly by the smoothed classifier and certifiably robust at radius (r_a, r_d). In addition, we report the accuracy of each model with randomized smoothing enabled on the test splits of the clean datasets, which is equal to $R(0,0)$. We report the average and standard deviation of each statistic over the 3 different training, validation and test splits.

5.1 (Q1) Structural Attacks are Mostly Heterophilous: Empirical Validation

To show that our theoretical analysis in §3.1 generalizes to more complex settings, we list in Table 2 the changes in homophily-related graph statistics before and after targeted/untargeted attacks. Since targeted attacks create different perturbations for each target node, we report the average homophily ratio over the perturbed graphs for each target node. Likewise, the number of edge additions or deletions is the average over those perturbations for each node.

Homophilous Networks. For the strongly homophilous Cora and Citeseer graphs, almost all changes in the graph structure that are introduced by attacks follow the conclusion of Thm. 1: they overwhelmingly reduce homophily (increase heterophily) by adding heterophilous edges or removing homophilous edges. The effects of these changes are also shown in the significant reduction of h_t for Nettack, and h for Metattack. These results show that despite the simplified analysis, the takeaway of Thm. 1 can be generalized to real-world datasets. In addition, the attacks tend to introduce, rather than prune, edges, suggesting that attacks adding outlier edges to the graph are more powerful than attacks removing informative existing edges. These observations in our experiments are consistent with the observations from previous works [16,13]. Furthermore, we note that there are differences between adversarially-introduced heterophily and naturally-occurring heterophily: the heterophilous connections introduced by targeted attacks like Nettack are local and affect the homophily level h_t within the neighborhood of the target nodes; in contrast, most naturally-heterophilous graphs exhibit heterophilous connections globally.
Table 2: Changes in homophily-related graph statistics before and after attacks. All statistics are reported as mean and standard deviation over the 3 sets of perturbations generated as described in §3. h_t stands for the average homophily ratio within the 1-hop neighborhood of the target nodes. We also report the percentages of perturbations that lead to increased heterophily (i.e., additions of heterophilous edges and deletions of homophilous edges).

Dataset		Graph	Target Node h_t	Edge Addition	Edge Deletion							
	Before	After	Before	After	Total	Hete. %	Total	Homo. %				
NETTACK	Cora	0.80	0.80	0.83	0.41	3.5	100.00	0.5	94.15	23.84		
	Citeseer	0.74	0.74	0.66	0.33	3.4	99.68	0.5	96.08	17.98		
	FB100	0.53	0.53	0.51	0.17	46.5	97.03	3.5	83.99	44.16		
	Snap	0.13	0.13	0.13	0.16	5.6	82.55	0.1	11.11	3.25		
Metaattack	Cora	0.80	0.68	-	-	831.0	2.64	99.16	0.25	93.25	2.22	
	Citeseer	0.74	0.62	-	-	709.0	1.36	96.19	0.42	90.75	1.79	
	FB100	2	0.53	0.53	-	1804.3	27.86	32.48	0.5	1274.3	24.71	0.38
	Snap	0.13	0.16	-	-	2166.3	5.21	71.28	0.5	250.3	3.95	1.62

Table 3: Benchmark study: mean accuracy ± stddev against poison attacks. Accuracy is reported on target nodes for NETTACK, and on full test splits for Metattack. Best GNN model is highlighted in blue per dataset, and in gray per model group. MLP is immune to structural attacks and not considered as a GNN model. Detailed results are listed in Table 7 and 8 and the setup in §5.

	Heterophilous graphs	Homophilous graphs							
	Cora	Citeseer	FB100	Snap	Cora	Citeseer	FB100	Snap	
H-GCN-SVD	✓ ✓	7000.0	6500.0	59.44	261.1	67.87	70.42	56.72	25.60
GraphSAGE-SVD	✓ ✓	7167.0	6787.0	600.0	267.0	68.86	69.10	55.76	26.58
GCN	✓ ✓	38.89	27.22	1.37	27.78	12.78	12.78	9.97	24.14
GraphSAGE	✓ ✓	36.67	31.67	0.00	33.89	16.74	16.74	9.97	24.14
CP-GNN	✓ ✓	47.22	40.56	0.00	44.94	21.67	21.67	9.97	24.14
GPR-GNN	✓ ✓	21.67	24.44	2.00	2.78	4.44	4.44	9.97	24.14
FAGCN	✓ ✓	26.11	25.56	0.00	6.11	8.33	8.33	9.97	24.14
GNNGuard	✓ ✓	33.69	32.40	0.00	9.44	9.44	9.44	9.97	24.14
ProGNN	✓ ✓	48.89	32.78	0.00	33.89	17.78	17.78	9.97	24.14
GCN-SVD	✓ ✓	53.33	28.89	0.00	41.67	25.00	25.00	9.97	24.14
GAT	✓ ✓	33.69	32.40	0.00	9.44	9.44	9.44	9.97	24.14
GCN	✓ ✓	1.67	4.44	2.00	0.56	2.22	2.22	9.97	24.14
MLP	✓ ✓	64.44	70.56	3.00	57.18	30.00	30.00	9.97	24.14

Heterophilous Networks. For heterophilous graphs FB100 ($h \approx 1/|Y|$) and Snap ($h < 1/|Y|$), the attacks introduce a mix of changes; some changes introduce more heterophily to the graph, while others introduce additional homophily. This observation aligns with the implications of Thm. 2. Effective attacks on heterophilous graphs can be a combination of both types of perturbations.

5.2 (Q2) Benchmark Study of GNN Models: Heterophilous Design Leads to Improved Empirical Robustness

To answer (Q2) on whether heterophily-adjusted GNN models show improved performance against state-of-the-art attacks, we conduct a comprehensive benchmark study. We consider all four categories of GNN models mentioned in §3 and evaluate their robustness against both targeted and untargeted attacks. We report the hyperparameters for each method in App. D.4. Table 3 shows the performance of each method under poison (pre-training) attacks, and Fig. 1 visualizes the corresponding performance changes relative to the clean datasets. For conciseness, we report further results under evasion (post-training) attacks and on clean (unperturbed) data in the Appendix (Table 7 for NETTACK; Table 8 for Metattack). Also, in App. E.4, we discuss how our simple heterophilous design leads to only minor computational overhead compared to existing vaccination mechanisms.

Targeted attacks by NETTACK. 1. *Poison attacks.* Under targeted poison attacks, Table 3 (left) shows that GraphSAGE-SVD and H_2GCN-SVD, which combine our identified design with a low-rank vaccination approach adopted in GCN-SVD [12] (details in App. D.3), outperform state-of-the-art methods across all datasets by up to 13.34% in homophilous settings and 18.33% in heterophilous settings.

Methods merely employing the identified design also show significantly improved robustness, though there are differences in the amount of robustness improvement due to architectural differences. Specifically, these methods outperform the best unvaccinated method (GAT) on all datasets by up to 32.92% in average, despite having comparable performance on clean datasets.
FB100, methods with the heterophilous design also show comparable or even better robustness than state-of-the-art vaccinated GNNs like ProGNN and GCN-SVD.

2. Evasion attacks. Under evasion attacks (Table 7), we observe similar trends as in poison attacks: GraphSAGE-SVD and H2GCN-SVD are up to 20.55% more accurate than the GCN-SVD baseline, and methods featuring the identified design alone achieve up to 24.45% gain in average performance against the best unvaccinated baseline. We note that GNNGuard and ProGNN are not capable of addressing evasion attacks. In summary, these observations show that the heterophily-inspired design is orthogonal to existing vaccination mechanisms for improving the robustness of GNNs.

Untargeted attacks by Metattack.

1. Poison attacks. We also test the robustness of each method against untargeted attacks. Table 8 (right) shows the performance under poison attacks. Though our theoretical analysis in §3 focuses on the effect of the heterophilous design under targeted attacks, we observe similar improvements in robustness against untargeted attacks in the poison setup. GNNs with the identified design show mostly improved robustness compared to unvaccinated models, while having similar performance on the clean datasets. Specifically, CPGNN shows exceptional robustness, outperforming the best unvaccinated model by up to 32.85%. Moreover, models combining the identified design with low-rank approximation show more than 10% improvement accuracy compared to GCN-SVD, which uses only low-rank approximation, and ProGNN. We note that GNNGuard, which uses a similarity-based defense strategy, also shows more competitive robustness under untargeted attacks. This is in line with existing works showing that low-rank based approach does not adapt well to untargeted attacks [17]. Nevertheless, methods combining a heterophilous design and low-rank approximations still outperform GNNGuard on two datasets.

2. Evasion attacks. We present the performance under evasion attacks and on clean datasets in Table 9 in the Appendix. Unlike the poison attacks, the evasion setup only leads to a slight decrease in average accuracy of less than 2% for most models. Moreover, there appears to be no clearly increased robustness for vaccinated models (with the identified design or other vaccination mechanisms) compared to unvaccinated models. This can be attributed to the reduced effectiveness of evasion vs. poison attacks (as in NETTACK), and the increased challenges of untargeted attacks.

5.3 (Q3) Heterophily-adjusted GNNs are Certifiably More Robust

It is worth noting that robustness against specific attacks such as NETTACK and Metattack does not guarantee robustness towards other possible attacks. To overcome this limitation, robustness certificates provide guarantees (in some cases probabilistically) that attacks within a certain radius cannot change a model’s predictions. Complementary to our evaluation on empirical robustness, we further demonstrate that heterophily-adjusted GNNs featuring our identified design are certifiably more robust than methods without it, thus answering (Q3). For GNN models, we include H2GCN, GraphSAGE, CPGNN, GPR-GNN, FAGCN, GAT and GCN in this analysis. We exclude other models that either learn to rewrite the graph structure through the training process or require a recalculation of the low-rank approximation for every randomized perturbation as sampling on these models is infeasible. We use the same hyperparameters as in the benchmark study in §5.2.

Table 4 shows multiple metrics of certifiable robustness of each GNN model under a randomization scheme allowing for both addition and deletion of edges; we additionally report results under randomization schemes allowing only addition or deletion in Table 9. For the scheme allowing both addition and deletion, we observe that all heterophily-adjusted methods have better certifiable robustness compared to methods without the design. Specifically, on homophilous datasets (Cora...
We formalized the relation between heterophily and adversarial structural attacks, and showed while we focus on the structural attacks, GNNs are also vulnerable to other types of attacks such as feature perturbations. In addition, the graph-agnostic MLP, which is immune to structural attacks, on some datasets outperforms all GNNs against attacks; this calls for further works in understanding of the nature of the attacks and also for effective defense strategies upon our discoveries.

Table 4: Accumulated certifications (AC), average certifiable radii (r_a and r_d) and accuracy of GNNs with randomized smoothing enabled (i.e., $f(\phi(s))$) on the test splits of the clean datasets, with a randomization scheme ϕ allowing both addition and deletion (i.e., $p_+ = 0.001$, $p_- = 0.4$). For each statistic, we report the mean and stdev across 3 runs. Best results highlighted in blue per dataset, and in gray per model group. For results with other randomization schemes, see Table 9.

Model	AC	r_a	r_d	Acc. %	AC	r_a	r_d	Acc. %	
HGCN	✓	3.91 ± 0.21	0.46 ± 0.00	3.88 ± 0.23	79.43 ± 0.01	2.98 ± 0.01	0.34 ± 0.02	3.29 ± 0.03	71.43 ± 0.02
FAGCN	✓	2.12 ± 0.04	1.12 ± 0.00	2.41 ± 0.04	79.43 ± 0.01	2.25 ± 0.01	0.20 ± 0.02	2.59 ± 0.02	73.34 ± 0.03
GPR-GNN	✓	1.87 ± 0.07	0.14 ± 0.00	2.24 ± 0.04	75.37 ± 0.01	2.03 ± 0.01	0.11 ± 0.00	2.52 ± 0.01	73.48 ± 0.04
FAGCN	✓	34.42 ± 0.45	0.63 ± 0.00	4.35 ± 0.22	74.90 ± 0.01	4.63 ± 0.01	0.81 ± 0.00	4.92 ± 0.01	66.33 ± 0.00
GAT	✓	3.30 ± 0.07	0.57 ± 0.00	4.25 ± 0.24	76.49 ± 0.01	4.07 ± 0.01	0.58 ± 0.00	4.23 ± 0.00	71.82 ± 0.00
GCN	✓	1.70 ± 0.00	0.07 ± 0.00	1.83 ± 0.00	79.68 ± 0.00	1.70 ± 0.00	0.08 ± 0.00	1.82 ± 0.00	72.87 ± 0.00
FAGCN	✓	8.12 ± 0.00	1.76 ± 0.00	8.14 ± 0.00	57.38 ± 0.01	1.44 ± 0.01	0.59 ± 0.00	3.79 ± 0.00	26.97 ± 0.00
FAGCN	✓	6.98 ± 0.00	1.50 ± 0.00	7.32 ± 0.00	56.72 ± 0.00	0.70 ± 0.01	0.19 ± 0.00	2.16 ± 0.04	26.84 ± 0.00
FAGCN	✓	6.80 ± 0.00	1.41 ± 0.00	7.05 ± 0.00	59.00 ± 0.01	1.45 ± 0.01	0.81 ± 0.00	3.89 ± 0.01	26.71 ± 0.02
FAGCN	✓	5.81 ± 0.00	1.11 ± 0.00	5.95 ± 0.00	61.99 ± 0.00	0.52 ± 0.01	0.11 ± 0.00	1.70 ± 0.02	26.31 ± 0.00
FAGCN	✓	7.45 ± 0.01	1.53 ± 0.01	7.40 ± 0.00	59.76 ± 0.01	1.41 ± 0.01	0.56 ± 0.00	3.81 ± 0.01	27.07 ± 0.00
FAGCN	✓	34.30 ± 0.20	0.77 ± 0.00	4.72 ± 0.00	61.56 ± 0.00	0.28 ± 0.00	0.04 ± 0.00	0.95 ± 0.00	27.12 ± 0.00
FAGCN	✓	3.93 ± 0.00	0.64 ± 0.00	4.24 ± 0.00	65.54 ± 0.00	0.35 ± 0.00	0.03 ± 0.00	1.17 ± 0.00	26.79 ± 0.00

6 Conclusion

We formalized the relation between heterophily and adversarial structural attacks, and showed theoretically and empirically that effective attacks gravitate towards increasing heterophily in homophilous graphs, but can also introduce homophily in heterophilous graphs. Using these insights, we showed that a key design addressing heterophily, namely separate aggregators for ego- and neighbor-embeddings, can lead to competitive improvement on empirical and certifiable robustness, with only small influence on clean performance. Finally, we compared the design with state-of-the-art vaccination mechanisms under different attack scenarios for various datasets, and illustrated that they are complementary and that their combination can lead to more robust GNN models. We note that while we focus on the structural attacks, GNNs are also vulnerable to other types of attacks such as feature perturbations. In addition, the graph-agnostic MLP, which is immune to structural attacks, on some datasets outperforms all GNNs against attacks; this calls for further works in understanding of the nature of the attacks and also for effective defense strategies upon our discoveries.

For reproducibility, we describe the experimental setups in \S 5 with additional details in App. D.2, including the implementation and the hyperparameter settings used for each method, and the hardware specifications. We provide anonymized code and datasets in the supplementary material with instructions for replicating the experiments, and will make them publicly available upon acceptance.

Acknowledgments

This material is based upon work supported by the National Science Foundation under CAREER Grant No. IIS 1845491, Army Young Investigator Award No. W911NF1810397, an Adobe Digital Experience research faculty award, an Amazon faculty award, a Google faculty award, and AWS Cloud Credits for Research. We gratefully acknowledge the support of NVIDIA Corporation with and Citeseer), methods with the identified design achieve an up to 1.6 times relative improvement in accumulated certification. On heterophilous datasets (FB100 and Snap), they outperform the baselines by a factor of 4.4. In the more challenging case with the addition only scheme, methods with the design also show up to 1.2 times relative increase in AC on the homophilous datasets and 5.0 times relative increase in AC on the heterophilous datasets compared to the baselines. For the deletion only scheme, unvaccinated models like GCN already have decent certifiable robustness in this scenario. This is commensurate with our discussions in \S 5 that deletions create less severe perturbations. Overall, our results show that models featuring our identified design achieve significantly improved certifiable robustness compared to models lacking this design. However, like in our empirical robustness evaluation, architectural differences lead to some variability of robustness; the results also show tradeoffs between accuracy and robustness. We also observe that the robustness rankings for methods under certifiable and empirical robustness are different, as in the previous results from Geisler et al. \[13\]; we discuss possible reasons in App. E.3.
the donation of the Quadro P6000 GPU used for this research. MTS received funding from the Ministry of Culture and Science (MKW) of the German State of North Rhine-Westphalia (“NRW Rückkehrprogramm”) and the Excellence Strategy of the Federal Government and the Länder. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or other funding parties.

References

[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolution architectures via sparsified neighborhood mixing. In International Conference on Machine Learning (ICML), 2019.

[2] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph convolutional networks. arXiv preprint arXiv:2101.00797, 2021.

[3] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via graph poisoning. In Proceedings of the 36th International Conference on Machine Learning, ICML. Proceedings of Machine Learning Research. PMLR, 2019.

[4] Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In Neural Information Processing Systems, NeurIPS, 2019.

[5] Aleksandar Bojchevski, Johannes Klicpera, and Stephan Günnemann. Efficient robustness certificates for discrete data: Sparsity-aware randomized smoothing for graphs, images and more. In International Conference on Machine Learning, pp. 1003–1013. PMLR, 2020.

[6] Michael Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[7] Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu, and Junzhou Huang. A restricted black-box adversarial framework towards attacking graph embedding models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 3389–3396, 2020.

[8] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph neural network. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=n6j7fLxrP.

[9] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized smoothing. In International Conference on Machine Learning, pp. 1310–1320. PMLR, 2019.

[10] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph structured data. In International conference on machine learning, pp. 1115–1124. PMLR, 2018.

[11] Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. Graph neural networks with adaptive frequency response filter. arXiv preprint arXiv:2104.12840, 2021.

[12] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos A Papalexakis. All you need is low (rank) defending against adversarial attacks on graphs. In Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 169–177, 2020.

[13] Simon Geisler, Daniel Zügner, and Stephan Günnemann. Reliable graph neural networks via robust aggregation. Advances in Neural Information Processing Systems, 33, 2020.

[14] Leo A. Goodman. Snowball Sampling. The Annals of Mathematical Statistics, 32(1):148–170, 1961. doi: 10.1214/aoms/1177705148. URL https://doi.org/10.1214/aoms/1177705148.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in neural information processing systems (NeurIPS), pp. 1024–1034, 2017.
[16] Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial attacks and defenses on graphs: A review and empirical study. arXiv preprint arXiv:2003.00653, 2020.

[17] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 66–74, 2020.

[18] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (ICLR), 2017.

[19] Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi Jaakkola. Tight certificates of adversarial robustness for randomly smoothed classifiers. Advances in Neural Information Processing Systems, 32:4910–4921, 2019.

[20] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data June 2014.

[21] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification laws, shrinking diameters and possible explanations. 08 2005. doi: 10.1145/1081870.1081893.

[22] Jia Li, Honglei Zhang, Zhichao Han, Yu Rong, Hong Cheng, and Junzhou Huang. Adversarial attack on community detection by hiding individuals. In Proceedings of The Web Conference 2020, pp. 917–927, 2020.

[23] Sean Li, Dongwoo Kim, and Qing Wang. Beyond low-pass filters: Adaptive feature propagation on graphs. arXiv preprint arXiv:2103.14187, 2021.

[24] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial attacks and defenses, 2020.

[25] Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. arXiv preprint arXiv:2005.14612, 2020.

[26] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph convolutional networks. In International Conference on Learning Representations (ICLR), 2020. URL https://openreview.net/forum?id=S1e2agrFvS.

[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[28] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S Yu, Lifang He, and Bo Li. Adversarial attack and defense on graph data: A survey. arXiv preprint arXiv:1812.10528, 2020.

[29] Tsubasa Takahashi. Indirect adversarial attacks via poisoning neighbors for graph convolutional networks. In 2019 IEEE International Conference on Big Data (Big Data), pp. 1395–1400. IEEE, 2019.

[30] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook networks. Physica A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012. ISSN 0378-4371. doi: https://doi.org/10.1016/j.physa.2011.12.021. URL https://www.sciencedirect.com/science/article/pii/S0378437111009186
[36] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph Attention Networks. *International Conference on Learning Representations (ICLR)*, 2018. URL https://openreview.net/forum?id=rJXMpiKCZ.

[37] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial examples for graph data: Deep insights into attack and defense. In *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19*, pp. 4816–4823. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/669. URL https://doi.org/10.24963/ijcai.2019/669.

[38] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin. Topology attack and defense for graph neural networks: An optimization perspective. *arXiv preprint arXiv:1906.04214*, 2019.

[39] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In *Proceedings of the 35th International Conference on Machine Learning, ICML*, volume 80, pp. 5449–5458. PMLR, 2018.

[40] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same coin: Heterophily and oversmoothing in graph convolutional neural networks. *arXiv preprint arXiv:2102.06462*, 2021.

[41] Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial attacks. *Advances in Neural Information Processing Systems*, 33, 2020.

[42] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks against adversarial attacks. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 1399–1407, 2019.

[43] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily in graph neural networks: Current limitations and effective designs. *Advances in Neural Information Processing Systems*, 33, 2020.

[44] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra. Graph neural networks with heterophily. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11168–11176, 2021.

[45] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta learning. In *International Conference on Learning Representations*, 2019.

[46] Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph convolutional networks. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 246–256, 2019.

[47] Daniel Zügner and Stephan Günnemann. Certifiable robustness of graph convolutional networks under structure perturbations. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 1656–1665, 2020.

[48] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks for graph data. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 2847–2856, 2018.
A Societal Impacts

A large number of popular GNN models are inherently based on homophily. Our work shows that such models may be less robust to adversarial perturbations, and thus when employed for decision-making these models may lead to undesirable, erroneous or biased results. For example, an inherently homophilous GNN model may lead to the so-called “filter bubble” phenomenon in a recommendation system in which existing beliefs or preferences are reinforced. Similarly, as homophily-based GNNs typically average over node neighborhoods, this may result in less visibility of minority groups in the network, thus reinforcing disparities. Heterophilous network design may improve some of these aspects, and also benefit from some additional robustness as shown in this work.

However, it should be noted that heterophilous GNNs on their own cannot fully solve the aforementioned issues. In particular, while heterophilous design can improve robustness, it is not (in general) constructed to ensure other important aspects such as fairness. Better understanding of GNNs and tailored auditing tools are necessary in order to deploy these learning algorithms in the context of decision-making affecting humans.

B Nomenclature

We summarize the main symbols used in this work and their definitions below:

Symbols	Definitions						
$\mathcal{G} = (\mathcal{V}, \mathcal{E}, X)$	graph \mathcal{G} with nodeset \mathcal{V}, edgeset \mathcal{E}, and $	\mathcal{V}	\times F$ node feature matrix X				
X	$	\mathcal{V}	\times F$ node feature matrix of \mathcal{G}, $X \in \mathbb{R}^{	\mathcal{V}	\times	\mathcal{V}	}$
A	adjacency matrix of \mathcal{G}, $A \in \{0, 1\}^{	\mathcal{V}	\times	\mathcal{V}	}$		
A_s	adjacency matrix with self-loops added, $A_s = A + I$						
D	diagonal matrix of degrees, with $D_{ii} = \sum_j A_{ij}$						
\bar{A}	row-stochastic matrix for A, $\bar{A} = D^{-1}A$						
\bar{A}_s	row-stochastic matrix for A_s, $\bar{A}_s = D^{-1}sA_s$						
\tilde{A}	low-rank approximation of the adjacency matrix A						
W	learnable weight matrix for GNN models						
x_v	F-dimensional feature vector for node v						
$N(v)$	direct (1-hop) neighbors of node v in \mathcal{G} without self-loops (i.e., excluding v)						
Y	set of class labels						
y_v	class label for node $v \in \mathcal{V}$						
y	$	\mathcal{V}	$-dimensional vector of class labels (for all the nodes)				
$\mathcal{T}_Y = \{(v_1, y_1), (v_2, y_2), \ldots\}$	training data for semi-supervised node classification						
$\mathcal{G}' = (\mathcal{V}', \mathcal{E}', X)$	graph \mathcal{G}' with modified edgeset \mathcal{E}'						
f	a certain GNN model that processes \mathcal{G}						
K	the number of layers of GNN f						
$r_v^{(k)}$	node representations learned by GNN f at round / layer k						
AGGR	function that aggregates node feature representations within a neighborhood						
ENC	learnable (nonlinear) mapping that generates latent representation						
z_v	label prediction by GNN f for node $v \in \mathcal{V}$, $z_v \in [0, 1]^{	Y	}$				
L_{atk}	attack loss that quantifies the mismatch between z and the true labels y						
α	a predefined weight scalar in Theorem 3, $\alpha \in [0, 1]$						
α_c	expectation for α on graphs with balanced classes, $\alpha_c = \frac{1}{	Y	}$				
d	the degree of each node in a regular graph						
p	parameter regulating the signal strength of one-hot class label vs. uniform noise						
h	edge homophily ratio, $h = \{(u, v) \in \mathcal{E}	y_u = y_v\} /	\mathcal{E}	$			
h_r	expectation for h on graphs with balanced classes, $h_r = \frac{1}{	Y	}$				
h_t	average homophily ratio within the 1-hop neighborhood of the targeted nodes						
C Proofs and Discussions of Theorems

C.1 Detailed Analysis of Theorem 1

Proof 1 (for Thm. 1) We give the proof in three parts: first, we analyze the training process of the GNN $f_s^{(2)}(A, X) = \hat{A}^2 X W$ on clean data and analytically derive the optimal weight matrix W, in a stylized learning setup; then, we construct a targeted evasion attack and calculate the attack loss for a unit structural attack; last, we summarize and validate the statements in the theorem.

Stylized learning on clean data. Given the 2-layer linearized GNN $f_s^{(2)}(A, X) = \hat{A}^2 X W$ and the training set T_V, the goal of the training process is to optimize the weight matrix W to minimize the cross-entropy loss function $L([z]_{T_v:}, [Y]_{T_v:})$, where predictions $[z]_{T_v:} = [\hat{A}^2 X]_{T_v:} W$ correspond to the predicted class label distributions for each node v in the training set T_V, and $[Y]_{T_v:}$ is the one-hot encoding of class labels provided in the training set.

Without loss of generality, we reorder T_V accordingly such that the one-hot encoding of labels for nodes in the training set $[Y]_{T_v:}$ is in increasing order of the class label y_v:

$$[Y]_{T_v:} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}_{|T_v| \times |Y|} \tag{2}$$

Now we look at the term $[\hat{A}^2 X]_{T_v:}$ in $[z]_{T_v:} = [\hat{A}^2 X]_{T_v:} W$, which are the feature vectors aggregated by the two GNN layers for nodes v in the training set T_V. As stated in the theorem, we assume that the graph is d-regular (i.e., all nodes have degree d), proportion h of their neighbors belong to the same class, while proportion $\frac{1-h}{|T_v|}$ of them belong to any other class uniformly, and for each node $v \in V$ the node features are given as $x_v = p \cdot \text{onehot}(y_v) + \frac{1-h}{|T_v|} \cdot 1$ for each node $v \in V$.

Then, after the first layer, we have:

$$[\hat{A}^2 X]_{T_v:} = \frac{1}{d+1} \begin{bmatrix} (hd+1)p & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \cdots & \frac{1-h}{|T_v|} dp \\ \vdots & \ddots & \ddots & \cdots & \ddots \\ \frac{1-h}{|T_v|} dp & (hd+1)p & \frac{1-h}{|T_v|} dp & \cdots & \frac{1-h}{|T_v|} dp \\ \vdots & \ddots & \ddots & \ddots & \cdots \\ \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & (hd+1)p \\
\vdots & \ddots & \ddots & \ddots & \cdots \\ \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & (hd+1)p \\ \vdots & \ddots & \ddots & \ddots & \cdots \\ \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp \\ \vdots & \ddots & \ddots & \ddots & \cdots \\ \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp & \frac{1-h}{|T_v|} dp \end{bmatrix}_{|T_v| \times |Y|} + \frac{1-p}{|Y|} \tag{3}$$
For Wang to find the Morrison formula, we can find its inverse as:

\[
[A^2\mathbf{X}]_{TV} = \frac{1}{(d+1)^2|\mathcal{Y}|(|\mathcal{Y}| - 1)} \begin{bmatrix}
S_1 & T_1 & T_1 & \cdots & T_1 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
S_1 & T_1 & T_1 & \cdots & T_1 \\
T_1 & S_1 & T_1 & \cdots & T_1 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
T_1 & T_1 & T_1 & \cdots & S_1 \\
\end{bmatrix} + \frac{1}{|\mathcal{Y}|}
\]

where \(S_1 = ((h|\mathcal{Y}| - 1)d + |\mathcal{Y}| - 1)^2 p, \) and \(T_1 = \frac{(h|\mathcal{Y}| - 1)d + |\mathcal{Y}| - 1)^2 p. \)

For \([\mathcal{Y}]_{TV} \) and \([A^2\mathbf{X}]_{TV} \), which we derived in Eq. (2) and (3), we can find the optimal weight matrix \(\mathbf{W}_* \) such that \([A^2\mathbf{X}]_{TV} : \mathbf{W}_* = [\mathcal{Y}]_{TV} \), making the cross-entropy loss \(\mathcal{L}([\mathcal{Z}]_{TV} : [\mathcal{Y}]_{TV}) = 0. \)

To find \(\mathbf{W}_* \), we can proceed as follows. First, sample one node from each class to form a smaller set \(T_S \subset T_V \). Therefore, we have:

\[
[\mathcal{Y}]_{T_S} = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
\end{bmatrix}_{|\mathcal{Y}| \times |\mathcal{Y}|}
\]

and

\[
[A^2\mathbf{X}]_{T_S} = \frac{1}{(d+1)^2|\mathcal{Y}|(|\mathcal{Y}| - 1)} \begin{bmatrix}
S_1 & T_1 & T_1 & \cdots & T_1 \\
T_1 & S_1 & T_1 & \cdots & T_1 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
T_1 & T_1 & T_1 & \cdots & S_1 \\
\end{bmatrix} + \frac{1}{|\mathcal{Y}|}.
\]

Note that \([A^2\mathbf{X}]_{T_S} \) is a specific circulant matrix, and therefore its inverse exists. Using the Sherman-Morrison formula, we can find its inverse as:

\[
([A^2\mathbf{X}]_{T_S})^{-1} = \frac{1}{p(-dh|\mathcal{Y}| + d - (|\mathcal{Y}| - 1)^2|\mathcal{Y}|)} \begin{bmatrix}
|\mathcal{Y}| - 1 & -1 & \cdots & -1 \\
-1 & |\mathcal{Y}| - 1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & |\mathcal{Y}| - 1 \\
\end{bmatrix} + \frac{1}{|\mathcal{Y}|}.
\]

Now, let \(\mathbf{W}_* = ([A^2\mathbf{X}]_{T_S})^{-1} \), then we have \([\mathcal{Z}]_{T_S} = [A^2\mathbf{X}]_{T_V} : \mathbf{W}_* = [\mathcal{Y}]_{T_S} = 0\). It is also easy to verify that \([\mathcal{Z}]_{T_V} = [A^2\mathbf{X}]_{T_V} : \mathbf{W}_* = [\mathcal{Y}]_{T_V} \). Since \(\mathbf{W}_* \) satisfies \(\mathcal{L}([\mathcal{Z}]_{T_V} : [\mathcal{Y}]_{T_V}) = 0 \), we know \(\mathbf{W}_* = ([A^2\mathbf{X}]_{T_S})^{-1} \) is the optimal weight matrix that we can learn under \(T_V \).

Attack loss under evasion attacks. Now consider an arbitrary target node \(v \in V \) with class label \(y_v \in \mathcal{Y} \) and a unit structural perturbation that would affect the predictions \(z_v \) of node \(v \) made by GNN \(f^{(2)} \). Without loss of generality, we assume node \(v \) has \(y_v = 1 \). As \(f^{(2)} \) contains 2 GNN layers with each layer aggregating feature vectors within neighborhood \(N(v) \) of each node \(v \), the perturbation must take place in the direct (1-hop) neighborhood \(N(v) \) or 2-hop neighborhood \(N_2(v) \) to affect the predictions \(z_v \). For the unit perturbation, the attacker can add or remove a homophilous edge or path to node \(v \), which we denote as \(\delta_1 = 1 \) for addition and \(\delta_1 = -1 \) for removal; alternatively, the attacker can add or remove a heterophilous edge or path to node \(v \), which we
denote as \(\delta_2 = \pm 1 \) analogously. We denote the perturbed graph adjacency matrix as \(\tilde{A}_v \), and \(z'_v = [A^2_v X]_v, W_v \).

(1) Unit perturbation in direct neighborhood \(N(v) \). We first consider a unit perturbation in the direct (1-hop) neighborhood \(N(v) \) of node \(v \). For simplicity of derivation, we assume that the perturbation does not change the row-stochastic normalization of \(A_v \), and only affects the aggregated feature vectors of the target node \(v \).

In the case of \(\delta_1 = \pm 1 \) and \(\delta_2 = 0 \), we have

\[
[\tilde{A}_v X]_{v} - [A_v X]_{v} = \frac{1}{d+1} \begin{bmatrix}
\delta_1 \left(\frac{1}{|v|} + p \right) \\
\delta_1 \left(\frac{1}{|v|} + p \right) \\
\cdots \\
\delta_1 \left(\frac{1}{|v|} + p \right)
\end{bmatrix}
\]

and

\[
[\tilde{A}_v^2 X]_{v} - [A_v^2 X]_{v} = \frac{1}{(d+1)^2 |v|} \begin{bmatrix}
S_2 \\
T_2 \\
\cdots \\
T_2
\end{bmatrix},
\]

where \(S_2 = \delta_1 (dp(h|Y| - 1) + d + 2(|Y| - 1)p + 2) \) and \(T_2 = \delta_1 (p(|Y| + dh + 2 + d + 2)|Y| - 1) \). By multiplying \([A^2_v X]_v \) by \(W_v \), we can get the predictions \(z'_v \) after perturbations as

\[
z'_v = [A^2_v X]_v, W_v = \frac{1}{(d+1)^2 (d|Y| - 1) + |Y| - 1} \begin{bmatrix}
1 + S_3 \\
T_3 \\
\cdots \\
T_3
\end{bmatrix}
\]

with

\[
S_3 = \delta_1 (d^3 (h + |Y| - 2)(h|Y| - 1) + 2d^2 (h + |Y| - 2)(h|Y| + |Y| - 2) + d(|Y| - 1)((h + 4)|Y| + 3h - 8) + 2(|Y| - 1)^2)
\]

and \(T_3 = d\delta_1 (h - 1)(d|Y|((d + 2)h + 2) - d(d + 4) + 3(|Y| - 1)) \).

On the perturbed graph, the CM-type attack loss is calculated as

\[
L^\text{CM}_{\text{atk}}(z'_v) = -(z'_{v,y} - \max_{y \neq y_v} z'_{v,y}) = \frac{-(1 + S_3 - T_3)}{(d + 1)^2 (d|Y| - 1) + |Y| - 1}.
\]

Since on clean data, \(L^\text{CM}_{\text{atk}}(z_v) = -1 \), the change in attack loss before and after attack is

\[
\Delta L^\text{CM}_{\text{atk}} = L^\text{CM}_{\text{atk}}(z'_v) - L^\text{CM}_{\text{atk}}(z_v) = \frac{T_3 - S_3}{(d + 1)^2 (d|Y| - 1) + |Y| - 1} = \frac{-\delta_1 (|Y| - 1)(dh|Y| - d + 2|Y| - 2)}{(d|Y| - 1) + |Y| - 1}.
\]

Solving following system of inequalities for \(\delta_1 \),

\[
\begin{align*}
\Delta L^\text{CM}_{\text{atk}} &> 0 \\
\delta_1 &\in [0, 1] \\
|Y| &\geq 2 \\
d, |Y| &\in \mathbb{Z}^+
\end{align*}
\]

we get the valid range of \(\delta_1 \) as

\[
\begin{align*}
\delta_1 &< 0, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } 0 < d < \frac{2 - 2|Y|}{h|Y| - 1} \\
\delta_1 &> 0, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } d > \frac{2 - 2|Y|}{h|Y| - 1} \quad \text{. (8)}
\end{align*}
\]

In the case of \(\delta_1 = 0 \) and \(\delta_2 = \pm 1 \), we have

\[
[\tilde{A}_v X]_{v} - [A_v X]_{v} = \frac{1}{d+1} \begin{bmatrix}
\delta_2 \left(\frac{1}{|v|} + q \right) \\
\delta_2 \left(\frac{1}{|v|} + p \right) \\
\cdots \\
\delta_2 \left(\frac{1}{|v|} + p \right)
\end{bmatrix}
\]

and

\[
[\tilde{A}_v^2 X]_{v} - [A_v^2 X]_{v} = \frac{1}{(d + 1)^2 |v|} \begin{bmatrix}
S_4 \\
T_4 \\
\cdots \\
T_4
\end{bmatrix}.
\]
where \(S_k = \delta_2(p(-|Y|(dh+2+d+2)+(d+2)(|Y|-1))) \) and \(T_k = \delta_2(dp(h|Y|-1)+d+2(|Y|-1)p+2). \) By multiplying \([\hat{A}_n^2X]_v\) with \(W_v\), we can get the predictions \(z'_v\) after the perturbations.

Following a similar derivation to that in the previous case, we can compute the change in the CM-type attack loss before and after attack as

\[
\Delta L_{\text{atk}}^{CM} = \frac{\delta_2(|Y|-1)(dh|Y|-d+2|Y|-2)}{(d(h|Y|-1)+|Y|-1)^2}.
\]

Solving the same system of inequalities as Eq. (7) for \(\delta_2 \), we obtain the valid range of \(\delta_2 \) as

\[
\begin{align*}
\delta_2 &> 0, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } 0 < d < \frac{2-2|Y|}{h|Y|-1} \\
\delta_2 &< 0, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } d > \frac{2-2|Y|}{h|Y|-1} \\
\delta_2 &> 0, \text{ when } \frac{1}{|Y|} \leq h \leq 1
\end{align*}
\]

(2) Unit perturbation in 2-hop neighborhood \(N_2(v) \). We now consider a unit perturbation in the 2-hop neighborhood \(N(v) \) of node \(v \). In this case we will have \([\hat{A}_n^2X]_v = [\hat{A}_nX]_v\).

In the case of \(\delta_1 = \pm 1 \) and \(\delta_2 = 0 \), we have

\[
[\hat{A}_n^2X]_v - [\hat{A}_n^2X]_v = \frac{1}{(d+1)^2|Y|} \begin{bmatrix} S_5 & T_5 & \cdots & T_5 \end{bmatrix},
\]

where \(S_5 = ((|h|+1)d+Y-p+d+1)\delta_1 \) and \(T_5 = ((-h|Y|p+|Y|+p-1)d-|Y|p+|Y|+p-1)\delta_1 \). By multiplying \([\hat{A}_n^2X]_v\) with \(W_v \), we can get the predictions \(z'_v \) after perturbations. Following a similar derivation as before, we can get the change in the CM-type attack loss before and after attack as

\[
\Delta L_{\text{atk}}^{CM} = -\frac{\delta_1(|Y|-1)}{(h|Y|-1)d + |Y|-1}.
\]

Solving the same system of inequalities as Eq. (7) for \(\delta_1 \), we get the valid range of \(\delta_1 \) as

\[
\begin{align*}
\delta_1 &< 0, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } 0 < d < \frac{1-|Y|}{h|Y|-1} \\
\delta_1 &> 0, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } d > \frac{1-|Y|}{h|Y|-1} \\
\delta_1 &< 0, \text{ when } \frac{1}{|Y|} \leq h \leq 1
\end{align*}
\]

For the case \(\delta_1 = 0 \) and \(\delta_2 = \pm 1 \), we have

\[
[\hat{A}_n^2X]_v - [\hat{A}_n^2X]_v = \frac{1}{(d+1)^2|Y|} \begin{bmatrix} S_6 & T_0 & \cdots & T_0 \end{bmatrix},
\]

where \(S_6 = \delta_2(d(h|Y|p+|Y|+p-1)-|Y|p+|Y|+p-1) \) and \(T_0 = \delta_2(p(d(h|Y|-1)+|Y|-1)+d+1) \). By multiplying \([\hat{A}_n^2X]_v\) with \(W_v \), we can get the predictions \(z'_v \) after perturbations. As before we can compute the change in the CM-type attack loss before and after attack as

\[
\Delta L_{\text{atk}}^{CM} = -\frac{\delta_2(|Y|-1)}{d(h|Y|-1)+|Y|-1}
\]

Finally, solving the same system of inequalities as Eq. (7) for \(\delta_2 \), we get the valid range of \(\delta_2 \) as

\[
\begin{align*}
\delta_2 &> 0, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } 0 < d < \frac{1-|Y|}{h|Y|-1} \\
\delta_2 &< 0, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } d > \frac{1-|Y|}{h|Y|-1} \\
\delta_2 &> 0, \text{ when } \frac{1}{|Y|} \leq h \leq 1
\end{align*}
\]

Summary and validation of theorem statements. Based on our derivations, we summarize and validate our statements in the theorem next.

(1) The attack losses \(L_{\text{atk}} \) (CM-type, §2) increase only by removing a homophilous edge or path, or adding a heterophilous edge or path to node \(v \). From Eq. (8), (10), (12), (14), we observe that for both direct attacks in 1-hop neighborhood \(N(v) \) and indirect attacks in 2-hop neighborhood \(N_2(v) \),
when \(h \geq \frac{1}{|\mathcal{Y}|} \), the attack loss increases only if \(\delta_1 < 0 \), which represents removal of a homophilous edge or path to node \(v \), or if \(\delta_2 > 0 \), which represents addition of a heterophilous edge or path to node \(v \).

\(\Box\)

Direct perturbations on edges (or 1-hop paths) of the target node \(v \) lead to greater increase in \(\mathcal{L}_{atk} \) than indirect perturbations on multi-hop paths to target node \(v \).

From Eq. (6) and Eq. (9), the change in the CM-type attack loss \(\Delta \mathcal{L}_{atk}^{CM}(z'_v) \) for direct perturbations on 1-hop neighborhood \(\mathcal{N}(v) \) of the target node \(v \) considering both \(\delta_1 \) and \(\delta_2 \) can be written as

\[
\Delta \mathcal{L}_{atk}^{CM,\text{direct}} = -\frac{\delta_1(|\mathcal{Y}| - 1)(dh|\mathcal{Y} - d + 2|\mathcal{Y} - 2) - \delta_2(|\mathcal{Y}| - 1)(dh|\mathcal{Y} - d + 2|\mathcal{Y} - 2)}}{(dh|\mathcal{Y} - 1) + |\mathcal{Y} - 1|^2}
\]

From Eq. (11) and Eq. (13), the change in the CM-type attack loss \(\Delta \mathcal{L}_{atk}^{CM,\text{indirect}} \) for indirect perturbations on 2-hop neighborhood \(\mathcal{N}_2(v) \) of the target node \(v \) considering both \(\delta_1 \) and \(\delta_2 \) is

\[
\Delta \mathcal{L}_{atk}^{CM,\text{indirect}} = -\frac{\delta_1(|\mathcal{Y}| - 1)}{(dh|\mathcal{Y} - 1)d + |\mathcal{Y} - 1|} + \frac{\delta_2(|\mathcal{Y}| - 1)}{d(h|\mathcal{Y} - 1) + |\mathcal{Y} - 1|}
\]

Note that when \(h > \frac{1}{|\mathcal{Y}|} \), we have

\[
\frac{dh|\mathcal{Y} - d + 2|\mathcal{Y} - 2)}{(dh|\mathcal{Y} - 1) + |\mathcal{Y} - 1|^2} = 1 + \frac{|\mathcal{Y} - 1)}{d(h|\mathcal{Y} - 1) + |\mathcal{Y} - 1|} > 1
\]

Therefore we will always have \(\Delta \mathcal{L}_{atk}^{CM,\text{direct}} > \Delta \mathcal{L}_{atk}^{CM,\text{indirect}} \) for an effective unit perturbation that increases attack loss \(\mathcal{L}_{atk}^{CM} \) (i.e., \(\delta_1 = -1 \) and \(\delta_2 = 0 \), or \(\delta_1 = 0 \) and \(\delta_2 = 1 \)) when \(h > \frac{1}{|\mathcal{Y}|} \).

\(\Box\)

C.2 Detailed Analysis of Theorem 2

Proof 2 (for Thm. 2) For a direct unit perturbation in the 1-hop neighborhood \(\mathcal{N}(v) \) of the target node \(v \), from Eq. (3) and (10) of Proof 1, we observe that when \(h < \frac{1}{|\mathcal{Y}|} \), the signs of \(\delta_1 \) and \(\delta_2 \) which increase the attack loss is contingent on node degree \(d \):

1. When \(0 < d < \frac{2(|\mathcal{Y} - 1)}{1 - h|\mathcal{Y}|} \), the attack loss increases only if \(\delta_1 < 0 \), which represents removal of a homophilous edge to node \(v \), or if \(\delta_2 > 0 \), which represents addition of a heterophilous edge to \(v \).
2. When \(d > \frac{2(|\mathcal{Y} - 1)}{1 - h|\mathcal{Y}|} \), the attack loss increases only if \(\delta_1 > 0 \), which represents addition of a homophilous edge to node \(v \), or if \(\delta_2 < 0 \), which represents removal of a heterophilous edge to \(v \).

\(\Box\)

C.3 Detailed Analysis of Theorem 3

Proof 3 (for Thm. 3) In this proof, we mainly focus on analyzing the increase in \(\mathcal{L}_{atk} \) for the GNN layer defined as \(f(\mathbf{A}, \mathbf{X}; \alpha) = ((1 - \alpha)\mathbf{A} + \alpha\mathbf{I})\mathbf{XW} \). We follow a similar process as in Proof 1 since the layer defined as \(f_s(\mathbf{A}, \mathbf{X}) = \mathbf{A}\mathbf{XW} \) is a special case of the previous formulation when \(\alpha = \frac{1}{1+d} \).

Layer \(f(\mathbf{A}, \mathbf{X}; \alpha) = ((1 - \alpha)\mathbf{A} + \alpha\mathbf{I})\mathbf{XW} \). We first derive the optimal weight matrix \(\mathbf{W}_* \) in a stylized learning setup as in Proof 1. Following a similar process, for this GNN layer we have

\[
[(1 - \alpha)\mathbf{A} + \alpha\mathbf{I})\mathbf{X}]_{T_s,::} = \frac{1 - p}{|\mathcal{Y}|} + \left[\begin{array}{cccc} S_7 & T_7 & T_7 & \cdots & T_7 \\ T_7 & S_7 & T_7 & \cdots & T_7 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ T_7 & T_7 & T_7 & \cdots & S_7 \end{array} \right]_{|\mathcal{Y}| \times |\mathcal{Y}|}
\]
where \(S_7 = p(\alpha + h - \alpha h) \), and \(T_7 = \frac{(\alpha-1)(h-1)p}{|Y| - 1} \), and
\[
[Y]_{\tau_S:} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}_{|Y| \times |Y|} = I_{|Y| \times |Y|}
\]

Using the Sherman-Morrison formula, we find its inverse:
\[
\left(\left[\left((1 - \alpha)A + \alpha I\right)X]\right]_{\tau_S:}\right)^{-1} = \frac{|Y| - 1}{p(\alpha(h-1)|Y| - h|Y| + 1)|Y|}
\begin{bmatrix} 1 - |Y| & 1 & 1 & \cdots & 1 \\ 1 & 1 - |Y| & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 - |Y| \end{bmatrix} + \frac{1}{|Y|}
\]

Assuming \(W_* = \left(\left[\left((1 - \alpha)A + \alpha I\right)X]\right]_{\tau_S:}\right)^{-1} \), we obtain
\[
[z]_{\tau_{S*:}} = \left(\left[\left((1 - \alpha)A + \alpha I\right)X]\right]_{\tau_S:}\right)_{\star} = \left[\left([\alpha]_{\tau_S:}\right)\left(Y]_{\tau_S:}\right)\right]
\]

Since \(W_* \) satisfies \(L([z]_{\tau_{S*:}}, [Y]_{\tau_{S*:}}) = 0 \), we know \(W_* \) is the optimal weight matrix that we can learn under \(T_{\alpha} \).

Now consider an arbitrary target node \(v \in Y \) with class label \(y_v \in Y \), and a unit structural perturbation that affects the predictions \(z_v \) of node \(v \) made by the GNN layer \(f(A, X; \alpha) = (1 - \alpha)A + \alpha I \) \(XW \). Without loss of generality, we assume node \(v \) has \(y_v = 1 \). Note that we will only discuss the case of direct structural perturbation to the 1-hop neighborhood \(N(v) \) of target node \(v \), as indirect perturbations do not affect the predictions \(z_v \), for node \(v \) produced by a single GNN layer. Denote \(\Delta A = \bar{A} - A \) as the change in the adjacency matrix \(A \) before and after the attack. Similar to Proof [1], for simplicity of derivation, we assume that the perturbation does not change the row-stochastic normalization of \(A \), and we use \(\delta_1 \) to denote addition \((\delta_1 = 1)\) or removal \((\delta_1 = -1)\) of a homophilous edge to node \(v \), and use \(\delta_2 \) to denote addition or removal of a heterophilous edge to node \(v \).

In the case of \(\delta_1 = \pm 1 \) and \(\delta_2 = 0 \), we have
\[
\left[\left((1 - \alpha)\Delta A + \alpha I\right)X\right]_{v,:} = \frac{(1 - \alpha)\delta_1}{d|Y|}\begin{bmatrix} (|Y| - 1)p + 1 & (1 - p) & \cdots & (1 - p) \end{bmatrix}
\]
and the change in the CM-type attack loss \(\Delta L_{cm}^{\text{atk}} \) before and after the perturbation can be derived as
\[
\Delta L_{cm}^{\text{atk}} = \frac{(1 - \alpha)(|Y| + \alpha - 1)\delta_1}{d(\alpha(h - 1) - h)|Y| + d}.
\] (18)

In the case of \(\delta_1 = 0 \) and \(\delta_2 = \pm 1 \), we have
\[
\left[\left((1 - \alpha)\Delta A + \alpha I\right)X\right]_{v,:} = \frac{(1 - \alpha)\delta_2}{d|Y|}\begin{bmatrix} (1 - p) & (|Y| - 1)p + 1 & \cdots & (|Y| - 1)p + 1 \end{bmatrix}
\]
and the change in the CM-type attack loss \(\Delta L_{cm}^{\text{atk}} \) before and after the perturbation can be derived as
\[
\Delta L_{cm}^{\text{atk}} = \frac{(\alpha - 1)(|Y| - 1)\delta_2}{d(\alpha(h - 1) - h)|Y| + d}.
\] (19)

From Eq. (18) and Eq. (19), the change in the CM-type attack loss \(\Delta L_{cm}^{\text{atk}} \) for GNN layer \(f(A, X; \alpha) \) considering both \(\delta_1 \) and \(\delta_2 \) can be written as
\[
\Delta L_{cm}^{\text{atk}, f} = \frac{(1 - \alpha)(|Y| + \alpha - 1)\delta_1}{d(\alpha(h - 1) - h)|Y| + d} + \frac{(\alpha - 1)(|Y| - 1)\delta_2}{d(\alpha(h - 1) - h)|Y| + d}.
\] (20)
Layer \(f_s(A, X) = \tilde{A}_sXW \). This formulation is a special case of the previously discussed \(f(A, X; \alpha) \) formulation when \(\alpha = \frac{1}{1+d} \).

In the case of \(\delta_1 = \pm 1 \) and \(\delta_2 = 0 \), from Eq. (18), we have the change in the CM-type attack loss \(L_{\text{atk}}^{\text{CM}} \) before and after the perturbation as

\[
\Delta L_{\text{atk}}^{\text{CM}} = -\frac{(|Y| - 1)\delta_1}{d(h|Y| - 1) + |Y| - 1}.
\]

(21)

In the case of \(\delta_1 = 0 \) and \(\delta_2 = \pm 1 \), from Eq. (19), we have the change in the CM-type attack loss \(L_{\text{atk}}^{\text{CM}} \) before and after the perturbation as

\[
\Delta L_{\text{atk}}^{\text{CM}} = \frac{(|Y| - 1)\delta_2}{d(h|Y| - 1) + |Y| - 1}.
\]

(22)

From Eq. (21) and Eq. (22), the change in the CM-type attack loss \(\Delta L_{\text{atk}}^{\text{CM},fs} \) for GNN layer \(f_s(A, X) \) considering both \(\delta_1 \) and \(\delta_2 \) can be written as

\[
\Delta L_{\text{atk}}^{\text{CM},fs} = -\frac{(|Y| - 1)\delta_1}{d(h|Y| - 1) + |Y| - 1} + \frac{(|Y| - 1)\delta_2}{d(h|Y| - 1) + |Y| - 1}.
\]

(23)

Comparison of increase in attack loss \(\Delta L_{\text{atk}}^{\text{CM}} \),

Solving the following system of inequalities for variable \(\alpha \)

\[
\begin{cases}
\Delta L_{\text{atk}}^{\text{CM},fs} > \Delta L_{\text{atk}}^{\text{CM},f} > 0 \\
\alpha, h \in [0, 1] \\
|Y| \geq 2 \\
d, |Y| \in \mathbb{Z}^+ \\
\delta_1, \delta_2 \in \{-1, 0, 1\}
\end{cases}
\]

(24)

we get the valid range of \(\alpha \) as

\[
\begin{cases}
\frac{1}{\frac{1}{1+d} + 1} < \alpha < 1, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } 0 < d < \frac{1-|Y|}{h|Y|-1} \text{ and } \delta_1 < \delta_2 \\
0 \leq \alpha < \frac{1}{\frac{1}{1+d} + 1}, \text{ when } 0 \leq h < \frac{1}{|Y|} \text{ and } d > \frac{1-|Y|}{h|Y|-1} \text{ and } \delta_1 > \delta_2 \\
\frac{1}{\frac{1}{1+d} + 1} < \alpha < 1, \text{ when } \frac{1}{|Y|} \leq h \leq 1 \text{ and } \delta_1 < \delta_2
\end{cases}
\]

(25)

From the solution in Eq. (25), we observe that when \(h > \frac{1}{|Y|} \), a unit perturbation increasing \(L_{\text{atk}} \) as discussed in Theorem 2(i.e. \(\delta_1 = -1 \) and \(\delta_2 = 0 \), or \(\delta_1 = 0 \) and \(\delta_2 = 1 \)) will satisfy the condition \(\delta_1 < \delta_2 \), and thus lead to a strictly smaller increase \(\Delta L_{\text{atk}}^{\text{CM},f} \) in the attack loss for layer \(f(A, X; \alpha) \) than the increase \(\Delta L_{\text{atk}}^{\text{CM},fs} \) for layer \(f_s(A, X) \) if \(\alpha > \frac{1}{\frac{1}{1+d} + 1} \).

\[\blacksquare\]
D Detailed Experimental Setups and Hyperparameters

D.1 Instantiations of Design on GNNs

We explicitly demonstrate how the heterophilous design outlined in Eq. (1) of §3.2 are instantiated in various GNN models used in our experiments. In particular, we highlight how these GNN architectures allow separate aggregations of the ego- and neighbor-embeddings.

- In H$_2$GCN, a final hidden representation is computed for each node $v \in V$ through $r^{(\text{final})}_v = \text{CONCAT}(r^{(0)}_v, r^{(1)}_v, \ldots, r^{(K)}_v)$, where $r^{(0)}_v$ is the non-linear ego-embedding of node features and $r^{(k)}_v$ are the intermediate representations aggregated in the k-th layer, where $k \in (1, \ldots, K)$. By interpreting the update rule’s CONCAT as the ENC operation, AGGR1 as the skip connection to the ego-embedding of node features, and the concatenation of the intermediate representations as AGGR2, the ego- and neighbor-embeddings are separately aggregated and the identified heterophilous design is recovered.

- Similarly, GraphSAGE (with mean aggregator) utilizes a concatenation-based encoding scheme through their update of

$$r^{(k)}_v = \sigma(\text{CONCAT}(r^{(k-1)}_v, \text{MEAN} \{r^{(k-1)}_u \forall u \in N(i)\}) \cdot W)$$

where AGGR1$(\cdot) = r^{(k-1)}_u$, AGGR2 is the mean function and ENC$(x_1, x_2) = \sigma(\text{CONCAT}(x_1, x_2) \cdot W)$.

- GPR-GNN embeds each node feature vector separately with a fully connected layer to compute $r^{(0)}_v$ (or $H^{(0)}$ as in the original paper), similar to H$_2$GCN, and then updates each node’s hidden representations through a weighted sum of all k-th hop layers around the ego-node, where $k \in (0, 1, \ldots, K)$. By interpreting the summation as the ENC operation as well as AGGR1$(\cdot) = \gamma_0 H^{(0)}$ and AGGR2$(\cdot) = \sum_{k=1}^K \gamma_k \tilde{A}^{k}_{\text{sym}} H^{(k-1)}$, where γ is a vector denoting the weights associated with each k-hop ego network, the aggregation of the ego- and neighbor-embeddings can be decoupled and thus GPR-GNN also satisfies the heterophilous design.

- FAGCN follows a similar update function to GPR-GNN with

$$h^{(l)}_i = \varepsilon h^{(0)}_i + \sum_{j \in N(i)} \frac{\alpha^{G}_{ij}}{\sqrt{d_id_j}} h^{(l-1)}_j$$

where $h^{(0)}_i$, equivalent to $r^{(0)}_i$ in Eq. (1), represents the non-linear ego-embedding and α^{G}_{ij} is a proportionality constant measuring the ratio of low and high frequency components. The relationship between FAGCN and the proposed heterophilous design can similarly be inferred by interpreting the sum as the ENC operation, AGGR1$(\cdot) = \varepsilon h^{(0)}_i$ as a weighted skip connection to the ego-embedding of feature vectors, and the weighted sum of embeddings within the neighborhood $N(i)$ of node $i \in V$ as AGGR2(\cdot).

- CPGNNformulates the update function of belief vectors $B^{(k)}$ after the k-th propagation layer as $B^{(k)} = B^{(0)} + AB^{(k-1)}H$, where $B^{(0)}$ consists of prior belief vectors for each node (which can be seen as the ego-embedding $r^{(0)}_i$ in Eq. (1)), and H is the linearized compatibility matrix. The heterophilous design can be recovered by letting AGGR1$(\cdot) = B^{(0)}$ as a skip connection to the prior belief, AGGR2$(\cdot) = A B^{(k-1)}H$, and the ENC operation as the summation.
D.2 More Details on the Experimental Setup

Benchmark Implementations. Our empirical framework is built on DeepRobust [24], Python Fire and signal[4]. We incorporated the following implementations of GNN models in our framework. For GNNGuard and GCN-SVD, there are some implementation ambiguities, which we discuss in the next paragraph.

Model	Implementation
H-GCN	https://github.com/GemLab/H-GCN
GraphSAGE	Implemented on top of https://github.com/GemLab/H-GCN
CPGN	https://github.com/GemLab/CPGN
GNNGuard	https://github.com/mims-harvard/GNNGuard
ProGN	https://github.com/ChambersSang/Pro-una
GCN	https://github.com/DSE-MSU/DeepRobust/blob/master/examples/graph/defense/gcn.py

Notes on the GNNGuard and GCN-SVD Implementations. We note that there are ambiguities in the implementations of GNNGuard [41] and GCN-SVD [12], which can lead to different variants with different performance and robustness, as we show in Table 6.

Table 6: Performance comparison between variants of GNNGuard and GCN-SVD: mean accuracy ± stdev across multiple sets of experiments.

Model	Clean Datasets	Poison Attacks						
	Cora	Citeseer	FB100	Snap	Cora	Citeseer	FB100	Snap
Homophilous graphs								
H-GCN (I)	75.56 ± 3.15	70.00 ± 2.24	68.89 ± 2.08	31.67 ± 0.80	79.58 ± 4.07	71.68 ± 3.10	65.31 ± 1.48	26.37 ± 0.70
H-GCN (II)	77.22 ± 2.29	67.78 ± 0.74	67.22 ± 2.08	28.33 ± 1.60	80.15 ± 3.01	72.61 ± 2.08	65.66 ± 1.04	26.51 ± 0.88
GCN-SVD (I)	66.67 ± 3.16	63.89 ± 0.50	51.67 ± 2.84	29.44 ± 0.79	69.33 ± 3.02	68.31 ± 3.34	52.95 ± 1.23	27.66 ± 0.65
GCN-SVD (II)	52.78 ± 2.83	35.00 ± 1.33	50.56 ± 1.27	25.00 ± 0.50	55.05 ± 3.37	41.47 ± 1.72	52.40 ± 0.68	25.84 ± 0.96
GCN-SVD (I) k=5	66.11 ± 3.16	65.00 ± 0.60	52.78 ± 1.40	28.89 ± 0.60	81.05 ± 3.01	69.19 ± 3.15	54.37 ± 1.61	27.57 ± 0.65
GCN-SVD (II) k=10	66.11 ± 3.16	45.00 ± 0.00	51.11 ± 2.08	22.22 ± 0.76	64.79 ± 2.34	52.17 ± 0.84	51.19 ± 0.41	25.45 ± 0.20
GCN-SVD (I) k=15	72.28 ± 0.01	63.38 ± 0.74	57.38 ± 1.30	28.89 ± 0.90	60.05 ± 1.01	61.51 ± 0.33	57.63 ± 0.70	27.61 ± 0.65
GCN-SVD (II) k=50	69.44 ± 2.60	46.67 ± 0.60	52.78 ± 1.55	21.67 ± 0.75	60.51 ± 1.01	60.55 ± 0.76	53.24 ± 0.65	26.63 ± 0.85
GCN-SVD (I) k=50	68.94 ± 2.60	66.87 ± 0.30	65.96 ± 2.00	31.11 ± 0.76	71.98 ± 2.03	68.28 ± 0.60	63.41 ± 0.12	27.81 ± 0.39
GCN-SVD (II) k=50	75.56 ± 0.19	54.11 ± 0.74	55.00 ± 0.50	27.28 ± 0.75	68.71 ± 1.02	66.90 ± 0.66	55.47 ± 0.23	25.62 ± 0.12

Table 6: Performance comparison between variants of GNNGuard and GCN-SVD: mean accuracy ± stdev across multiple sets of experiments.

For GNNGuard, the ambiguity comes from different interpretations of Eq. (4) in the original paper [41]: we consider the authors’ original implementation as variant (I), and the model described in the original paper as variant (II), which we implement by building on the authors’ implementation.

https://github.com/google/python-fire
https://signac.io
Table 6 shows that the differences in accuracy between the two variants are in most cases less than 2%, while in many cases variant (II) shows better accuracy compared to variant (I), especially in experiments against Metattack. Thus, we use variant (II) as the default implementation for the empirical evaluations in §5.

For GCN-SVD, the ambiguity comes from the order of applying the preprocessing and low-rank approximation for the adjacency matrix \(A \), which is not discussed in the original paper [12].

- **Variant (I):** Since the original authors’ implementation is not publicly available, we consider the implementation provided in DeepRobust [24] as variant (I): it first calculates the rank-\(k \) approximation \(\hat{A} \) of \(A \), and then generates the preprocessed adjacency matrix \(\hat{A}_\phi = \hat{D}^{-1/2} (\hat{A} + I) \hat{D}^{-1/2} \), which is then processed by a GCN [18]. However, as the identity matrix \(I \) is added into \(\hat{A} \) after the low-rank approximation, the diagonal elements of the resulting \(\hat{A}_\phi \) matrix (i.e., the weights for the self-loop edges in the graph) can become significantly larger than the off-diagonal elements, especially when the rank \(k \) is low. As a result, this order of applying the preprocessing and low-rank approximation inadvertently adopts Design 1 which we identified: we have shown in Theorem 3 that even merely increasing the weights \(\alpha \) for the ego-embedding in the linear combination Eq. (1) can lead to reduced attack loss \(L_{atk} \) under structural perturbations.

- **Variant (II):** In variant (II), we consider the opposite order where we first add the identity matrix \(I \) (self-loops) into the original adjacency matrix \(A \), then we perform the low-rank approximation, and finally we symmetrically normalize the low-rank matrix \(\hat{A}_\phi \) to generate the preprocessed \(\hat{A}_\phi \) used by a GCN model. This order allows the diagonal elements to be more on par in magnitude with the off-diagonal elements. As an example, on Citeseer, when using variant (I) with rank \(k = 5 \), the average magnitude of the diagonal elements of the resulting \(\hat{A}_\phi \) can be 22.3 times the average magnitude of the off-diagonal elements; when using variant (II) instead, the average magnitude of the diagonal elements is only 9.0 times that of the off-diagonal elements.

In Table 6 we report the performance of the two variants of GCN-SVD under the experimental settings considered in [5] with rank \(k \in \{5, 10, 15, 50\} \): Variant (I), with our first design implicitly built-in, has in most cases significantly higher performance than variant (II), especially on homophilous datasets and when rank \(k \) is low. These results further demonstrate the effectiveness of Design 1 that we identified. To enable a clear perspective of the performance and robustness improvement brought by Design 1, in our empirical analysis in §5 on top of the low-rank approximation vaccination we adopt variant (II) as the default implementation.

Attack Implementations. We incorporate the following implementations of attacks from DeepRobust [24] to our empirical framework.

Netattack [45] https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/targeted_attack/nettack.py
Metaattack [45] https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/global_attack/mettack.py

More Details on the Attack Setup. For Netattack, we randomly select 60 nodes from the graph as the target nodes for each set of perturbations, instead of the GCN-based target selection approach as in [48]: the approach in [48] only selects nodes that are correctly classified by GCN [18] on clean data, thus introducing unfair advantages towards GCN, especially on heterophilous datasets where GCN can exhibit significantly inferior accuracy to models like GraphSAGE [43]. We use an attack budget equal to a node’s degree and allow direct attacks on target nodes. For Metaattack, we budget the attack as 20% of the number of edges in each dataset, and we use the Meta-Self variant as it shows the most destructiveness [45].

More Details on Randomized Smoothing Setup. Following Bojchevski et al. [5], we similarly set the significance level \(\alpha = 0.01 \) (i.e., the certificates hold with probability \(1 - \alpha = 0.99 \)), using \(10^3 \) samples to estimate the predictions of the smoothed classifier \(f(\phi(s)) \) for input \(s \), and another \(10^6 \) samples to obtain multi-class certificates. For the randomization scheme \(\phi \), we only consider structural perturbations where with probability \(p_+ \) an new edge is added, and with probability \(p_- \) an existing edge is removed. We consider multiple sets of \((p_+, p_-) \) in our experiments for a finer-grained evaluation: (1) \(p_+ = 0.001, p_- = 0.4 \), where both addition and deletion are allowed; (2) \(p_+ = 0.001, p_- = 0 \), where only addition is allowed; and (3) \(p_+ = 0, p_- = 0.4 \), where only deletion is allowed.
Hardware Specifications. We use a workstation with a 12-core AMD Ryzen 9 3900X CPU, 64GB RAM, and a Quadro P6000 GPU with 24 GB GPU Memory.

D.3 Combining Heterophilous Design with Low-Rank Approximation

In this section, we provide more details on how we incorporate the low-rank approximation vaccination into the formulations of H^2GCN [43] and GraphSAGE [15] in order to form the hybrid methods, H^2GCN-SVD and GraphSAGE-SVD.

H^2GCN-SVD. From [43], each layer in the neighborhood aggregation stage of H^2GCN can be algebraically formulated as

$$R^{(k)} = \text{CONCAT} \left(\hat{A}^2 R^{(k-1)}, \hat{A} R^{(k-1)}, R^{(k-1)} \right),$$ \hspace{1cm} (26)

where $\hat{A} = D^{-1/2} A D^{-1/2}$ is the symmetrically normalized adjacency matrix without self-loops; $\hat{A}^2 = D^{-1/2} A^2 D^{-1/2}$ is the symmetrically normalized 2-hop graph adjacency matrix $A^2 \in \{0, 1\}^{|V| \times |V|}$, with $[A^2]_{u,v} = 1$ if v is in the 2-hop neighborhood $N_2(u)$ of node u. $R^{(k)}$ are the node representations after the k-th layer, and CONCAT is the column-wise concatenation function. For H^2GCN-SVD, we replace \hat{A} and \hat{A}^2 in Eq. (26) respectively with the low-rank approximations of \tilde{A} and \tilde{A}^2, which are both postprocessed to be symmetrically normalized.

GraphSAGE-SVD. From [15], each layer in GraphSAGE can be algebraically formulated as

$$R^{(k)} = \sigma \left(\text{CONCAT} \left(\bar{A} R^{(k-1)}, R^{(k-1)} \right) \cdot W^{(k-1)} \right),$$ \hspace{1cm} (27)

where \bar{A} is the row-stochastic graph adjacency matrix without self-loops; $R^{(k)}$ are the node representations after the k-th layer; CONCAT is the column-wise concatenation function; $W^{(k)}$ is the learnable weight matrix for the k-th layer, and σ is the non-linear activation function (ReLU). For GraphSAGE-SVD, we replace \bar{A} in Eq. (27) with the low-rank approximation of the adjacency matrix \tilde{A}, postprocessed by row-stochastic normalization. Note that we do not enable the neighborhood sampling function for the GraphSAGE and GraphSAGE-SVD models tested in this work, as noted in Appendix D.4.

D.4 Hyperparameters

• H^2GCN-SVD

 Initialization Parameters:
 - adj_svd_rank: best k chosen from $\{5, 50\}$ for each dataset

 Training Parameters:
 - early_stopping: Yes
 - train_iters: 200
 - patience: 100

• GraphSAGE-SVD

 Initialization Parameters:
 - adj_nhood: ['1']
 - network_setup: I-T1-G-V-C1-M64-R-T2-G-V-C2-M0-R
 - adj_norm_type: rw

 Training Parameters:
 - early_stopping: Yes
 - train_iters: 200
 - patience: 100

 adj_svd_rank:
 best k chosen from $\{5, 50\}$ for each dataset
• **H$_2$GCN**

 Initialization Parameters: (default parameters)

 Training Parameters:
 - `early_stopping`: Yes
 - `train_iters`: 200
 - `patience`: 100
 - `lr`: 0.01

• **GraphSAGE**

 Initialization Parameters:
 - `adj_nhood`: ['1']
 - `network_setup`: I-T1-G-V-C1-M64-R-T2-G-V-C2-M0-R
 - `adj_norm_type`: rw

 Training Parameters:
 - `early_stopping`: Yes
 - `train_iters`: 200
 - `patience`: 100
 - `lr`: 0.01

• **CPGNN**

 Initialization Parameters:
 - `network_setup`: M64-R-M0-E-BP2

 Training Parameters:
 - `early_stopping`: Yes
 - `train_iters`: 400
 - `patience`: 100
 - `lr`: 0.01

• **GPR-GNN**

 Initialization Parameters:
 - `nhid`: 64
 - `alpha`: 0.9, which is chosen from the best $\alpha \in \{0.1, 0.2, 0.5, 0.9\}$ on all datasets

 Training Parameters:
 - `train_iters`: 200
 - `lr`: 0.01

• **FAGCN**

 Initialization Parameters:
 - `nhid`: 64
 - `alpha`: 0.9, which is chosen from the best $\alpha \in \{0.1, 0.2, 0.5, 0.9\}$ on all datasets
 - `dropout`: 0.5

 Training Parameters:
 - `early_stopping`: Yes
 - `lr`: 0.01

• **GNNGuard**

 Initialization Parameters:
 - `nhid`: 64
 - `dropout`: 0.5
 - `base_model`: GCN for variant (I); GCN-fixed for variant (II) (default).

 Training Parameters:
 - `train_iters`: 81
 - `lr`: 0.01
• ProGNN

Initialization Parameters:
- nhid: 64
- dropout: 0.5

Training Parameters:
- epochs: 400
- lr: 0.01
- lr_adj: 0.01
- weight_decay: 5e-4
- alpha: 5e-4
- beta: 1.5
- gamma: 1
- lambda_: 0
- phi: 0
- outer_steps: 1
- inner_steps: 2

• GCN-SVD

Initialization Parameters:
- nhid: 64
- k: best k chosen from {5, 10, 15, 50} for each dataset
- dropout: 0.5
- svd_solver: eye-svd (for variant (II) only)

Training Parameters:
- train_iters: 200
- weight_decay: 5e-4
- lr: 0.01

• GCN

Initialization Parameters
(in class MultiLayerGCN):
- nhid: 64
- nlayer: 2

Training Parameters:
- train_iters: 200
- weight_decay: 5e-4

• GAT

Initialization Parameters
- nhid: 8
- heads: 8
- dropout: 0.5

Training Parameters:
- early_stopping: Yes
- train_iters: 1000
- patience: 100
- lr: 0.01
- weight_decay: 5e-4

• MLP

Initialization Parameters
(in class H2GCN):
- network_setup: M64-R-D0.5-M0

Training Parameters:
- early_stopping: Yes
- train_iters: 200
- patience: 100
- lr: 0.01
D.5 Datasets

Dataset and Unidentifiability.

• Heterophilous Datasets: FB100 [35] is a set of 100 university friendship network snapshots from Facebook in 2005 [25], from which we use one network. Each node is labeled with the reported gender, and the features encode education and accommodation. Data is sent to the original authors [25] in an anonymized form. Though the dataset contains limited demographic (categorical) information volunteered by users on their individual Facebook pages, we manually inspect the dataset and confirm that the anonymized dataset is not recoverable and thus not identifiable. Also, no offensive content is found within the data.

Snap Patents [21, 20] is a utility patent citation network. Node labels reflect the time the patent was granted, and the features are derived from the patent’s metadata. The dataset is maintained by the National Bureau of Economic Research, and is freely available for download. Neither personally identifiable information nor offensive content is identified when we manually inspect the dataset.

• Homophilous Datasets: Cora [29] and Citeseer [32] datasets are scientific publication citation networks, whose labels categorize the research field, and features indicate the absence or presence of the corresponding word from the dictionary. No personally identifiable information or offensive content is identified when we manually inspect both datasets.

Downsampling. For better computational tractability, we sample a subset of the Snap Patents data using a snowball sampling approach [14], where a random 20% of the neighbors for each traversed node are kept. We provide the pseudocode for the downsampling process in Algorithm 1.

Algorithm 1: Downsampling Algorithm For Snap Patents

Input: Graph to sample G
Number of nodes to sample N
Sampling ratio p

Output: Downsampled graph G'

1. initialization
 /* Initialize a queue bfsQueue for Breadth First Search, and a list nodesSampled for storing sampled nodes */
2. bfsQueue ← QUEUE()
3. nodesSampled ← LIST()
 /* Start BFS with a random node from the largest connected component in G; RANDOM(array, n) returns n elements from an array with equal probability without replacement */
4. nodeStarting ← RANDOM(LARGESTCONNECTEDCOMPONENT(G), 1)
5. push nodeStarting into bfsQueue
6. while LENGTH(nodesSampled) < N do
7. node ← bfsQueue-pop()
8. neighbors ← one hop neighbors of node
9. neighborsDrawn ← RANDOM(neighbors, $p \times$ LENGTH(neighbors))
10. for neighbor ∈ neighborsDrawn do
11. if neighbor \notin nodesSampled then
12. append neighbor to nodesSampled
13. push neighbor into bfsQueue
14. end
15. end
16. G' ← subgraph induced by nodesSampled
17. return G'

[35] https://www.nber.org/research/data/us-patents
E Detailed Experiment Results

E.1 Detailed Results for Evaluation on Empirical Robustness

Table 7: Detailed classification accuracy (and standard deviation) of each method for the target nodes attacked by NETTACK, calculated across different sets of perturbation.

Homophilous graphs	Heterophilous graphs			
	Cora h=0.804	**Citeseer** h=0.736	**FB100** h=0.531	**Snap** h=0.134
Clean				
H₂GCN-SVD	74.44±3.12	70.00±2.72	61.67±2.36	30.56±2.08
GraphSAGE-SVD	77.22±4.78	70.00±1.36	60.00±4.08	27.22±5.50
H₂GCN	82.22±2.31	69.44±5.98	60.56±1.57	30.00±2.72
GraphSAGE	82.22±2.96	70.56±1.36	60.00±2.72	24.44±4.16
CPGNN	81.67±5.28	73.33±1.36	66.11±4.16	28.89±5.50
GPRGNN	82.22±7.49	67.78±2.08	56.67±4.91	27.78±3.42
FAGCN	83.33±8.16	70.56±1.15	58.33±5.93	29.44±0.79
GNNGuard	77.22±6.29	67.78±4.78	67.22±2.08	28.33±6.60
ProGNN	79.44±1.42	67.22±4.78	51.11±3.93	27.22±5.90
GCN-SVD	75.56±4.16	59.44±1.09	50.56±4.37	27.78±6.71
GAT	84.44±3.42	70.00±7.20	60.56±0.79	30.56±2.83
GCN	82.78±4.78	69.44±7.74	63.33±2.72	33.33±2.72
MLP	64.44±3.42	70.56±3.42	57.78±2.83	30.00±2.72
Poison (Pre-training)				
H₂GCN-SVD	70.00±2.72	65.00±3.60	59.44±3.42	28.89±3.42
GraphSAGE-SVD	71.67±2.36	67.78±3.42	60.00±1.36	26.67±6.80
H₂GCN	38.89±3.50	27.22±3.57	27.78±3.42	12.78±2.83
GraphSAGE	36.67±2.72	31.67±10.89	33.89±4.92	16.67±7.07
CPGNN	47.22±14.14	40.56±4.65	49.44±10.30	21.67±2.72
GPRGNN	21.67±2.72	24.44±4.08	2.78±0.79	4.44±2.08
FAGCN	26.11±6.14	25.56±6.43	6.11±2.83	8.33±3.60
GNNGuard	88.33±13.36	59.44±9.33	0.56±1.34	9.44±1.57
ProGNN	48.89±7.97	32.78±7.49	33.89±4.78	17.78±9.26
GCN-SVD	53.33±4.91	28.89±2.08	41.67±2.36	25.00±5.44
GAT	13.89±10.79	8.89±3.42	0.56±1.34	3.89±3.47
GCN	1.67±10.00	4.44±2.83	0.56±1.09	2.22±2.08
MLP	64.44±3.42	70.56±3.42	57.78±2.83	30.00±2.72
Evasion (Post-training)				
H₂GCN-SVD	70.56±3.42	66.11±4.78	60.00±2.72	28.89±3.14
GraphSAGE-SVD	70.56±2.08	68.33±3.60	59.44±2.83	26.11±6.85
H₂GCN	45.56±3.42	33.89±3.57	32.78±10.79	12.78±2.83
GraphSAGE	44.44±3.14	35.00±9.92	42.22±2.33	15.56±6.71
CPGNN	52.22±6.98	46.67±2.80	15.56±2.83	22.78±4.78
GPRGNN	29.44±3.14	32.22±0.79	9.44±2.83	3.33±1.36
FAGCN	38.893.671	37.78±4.78	12.78±2.83	10.00±2.36
GNNGuard	60.00±4.24	47.78±4.37	45.56±3.97	30.56±9.56
ProGNN	12.22±4.16	23.33±3.44	1.67±1.36	2.22±3.14
GCN	5.56±2.08	8.89±4.16	0.56±1.09	0.56±0.79
MLP	64.44±3.42	70.56±3.42	57.78±2.83	30.00±2.72
Table 8: Detailed classification accuracy (and standard deviation) for the unlabeled nodes of each method attacked by Metattack with budget as 20% of the total number of edges of each graph, calculated across different sets of perturbation.

	Homophilous graphs	Heterophilous graphs		
	Cora	Citeseer	FB100	Snap
	$h=0.804$	$h=0.736$	$h=0.531$	$h=0.134$
Clean				
H_2GCN-SVD	76.89 ± 0.37	73.42 ± 1.03	56.81 ± 0.77	27.63 ± 0.26
GraphSAGE-SVD	77.52 ± 0.29	72.16 ± 0.17	57.38 ± 0.86	26.72 ± 0.70
H_2GCN	83.94 ± 0.97	75.34 ± 0.90	56.95 ± 1.33	27.49 ± 0.05
GraphSAGE	82.21 ± 0.63	74.64 ± 0.93	56.60 ± 1.40	27.18 ± 0.84
CPGNN	80.67 ± 0.51	74.92 ± 0.62	60.17 ± 2.09	27.13 ± 0.63
GPGRGNN	81.84 ± 1.75	70.71 ± 0.46	62.40 ± 0.83	26.08 ± 0.31
FAGCN	81.59 ± 0.82	73.99 ± 0.63	59.64 ± 1.38	27.15 ± 0.23
GNNGuard	80.15 ± 0.55	72.61 ± 0.28	65.66 ± 0.60	26.51 ± 0.98
ProGNN	81.32 ± 0.43	71.82 ± 1.12	49.84 ± 0.03	27.49 ± 0.66
GCN-SVD	76.61 ± 0.31	66.90 ± 0.16	55.47 ± 0.23	26.63 ± 0.25
GAT	83.72 ± 0.24	73.40 ± 1.00	61.69 ± 0.92	27.30 ± 0.03
GCN	84.32 ± 0.32	74.27 ± 0.15	64.86 ± 0.79	27.30 ± 0.43
MLP	64.55 ± 1.38	67.67 ± 0.11	56.50 ± 0.58	26.25 ± 1.05
Poison (Pre-training)				
H_2GCN-SVD	67.87 ± 0.47	70.42 ± 0.46	56.72 ± 0.08	25.60 ± 0.14
GraphSAGE-SVD	68.86 ± 1.32	69.10 ± 0.52	55.76 ± 0.33	26.58 ± 0.30
H_2GCN	57.75 ± 6.61	54.34 ± 0.82	54.84 ± 0.76	25.34 ± 0.59
GraphSAGE	54.68 ± 2.56	59.74 ± 1.74	54.72 ± 0.83	24.14 ± 0.76
CPGNN	74.55 ± 1.23	68.07 ± 1.93	61.58 ± 1.50	26.76 ± 0.41
GPGRGNN	48.29 ± 5.23	35.25 ± 2.77	59.94 ± 0.60	21.06 ± 1.29
FAGCN	60.11 ± 4.82	53.18 ± 6.08	55.97 ± 1.81	24.04 ± 0.62
GNNGuard	74.20 ± 0.55	68.13 ± 0.74	60.89 ± 0.48	23.78 ± 0.67
ProGNN	45.10 ± 6.20	46.58 ± 1.02	53.40 ± 1.19	24.80 ± 1.09
GCN-SVD	47.82 ± 7.59	51.20 ± 1.78	55.00 ± 2.06	25.25 ± 0.91
GAT	41.70 ± 3.66	48.40 ± 2.17	50.37 ± 0.66	25.00 ± 0.73
GCN	37.46 ± 3.35	45.81 ± 2.99	51.82 ± 1.41	25.03 ± 0.68
MLP	64.55 ± 1.38	67.67 ± 0.11	56.50 ± 0.58	26.25 ± 1.05
Evasion (Post-training)				
H_2GCN-SVD	74.01 ± 0.35	71.54 ± 1.92	56.58 ± 0.63	27.26 ± 0.17
GraphSAGE-SVD	74.31 ± 0.40	70.22 ± 0.90	57.38 ± 0.88	26.77 ± 1.01
H_2GCN	82.86 ± 0.01	73.20 ± 2.04	57.05 ± 0.20	27.10 ± 0.06
GraphSAGE	80.57 ± 0.55	72.89 ± 1.72	56.91 ± 1.61	27.16 ± 0.78
CPGNN	79.06 ± 1.18	73.44 ± 0.99	60.19 ± 2.70	27.02 ± 0.75
GPGRGNN	80.80 ± 1.67	69.77 ± 0.42	61.91 ± 0.74	26.16 ± 0.25
FAGCN	80.70 ± 0.99	73.14 ± 1.02	59.39 ± 1.36	27.25 ± 0.30
GNNGuard	-	-	-	-
ProGNN	-	-	-	-
GCN-SVD	73.21 ± 1.68	59.34 ± 3.42	56.95 ± 0.33	25.29 ± 0.41
GAT	81.96 ± 0.31	70.70 ± 0.69	61.44 ± 0.94	27.45 ± 0.13
GCN	83.03 ± 0.69	73.06 ± 0.58	64.86 ± 0.47	27.15 ± 0.39
MLP	64.55 ± 1.38	67.67 ± 0.11	56.50 ± 0.58	26.25 ± 1.05
E.2 Detailed Results for Evaluation on Certifiable Robustness

Table 9: Accumulated certifications (AC), average certifiable radii (\bar{r}_a and \bar{r}_d) and accuracy of GNNs with randomized smoothing enabled (i.e., $\tilde{f}(\phi(s))$) on all nodes of the clean datasets, with a randomization scheme ϕ allowing addition only (i.e., $p_+ = 0.001, p_- = 0$) or deletion only (i.e., $p_+ = 0, p_- = 0.4$). For each statistic, we report the mean and stdev across 3 runs. Best results are highlighted in blue per dataset, and in gray per model group. For results with randomization scheme allowing both addition and deletion, see Table 4.

Model	Additon Only	Deletion Only						
	AC	\bar{r}_a	\bar{r}_d	Acc. %	AC	\bar{r}_a	\bar{r}_d	Acc. %
H2GCN	✓	0.42 ± 0.01	0.52 ± 0.03	80.85 ± 1.98	5.41 ± 0.23	6.44 ± 0.20	84.04 ± 1.55	
GraphSAGE	✓	0.28 ± 0.03	0.34 ± 0.01	81.05 ± 3.34	5.05 ± 0.12	6.12 ± 0.06	82.49 ± 1.06	
CPGNN	✓	0.17 ± 0.02	0.21 ± 0.01	78.34 ± 2.26	4.92 ± 0.33	6.17 ± 0.42	79.69 ± 0.81	
GPR-GNN	✓	0.43 ± 0.03	0.55 ± 0.03	76.96 ± 2.18	5.37 ± 0.14	6.58 ± 0.05	81.56 ± 1.59	
FAGCN	✓	0.43 ± 0.01	0.54 ± 0.01	79.04 ± 0.68	5.74 ± 0.04	7.03 ± 0.05	81.56 ± 0.80	
GAT	✓	0.19 ± 0.04	0.23 ± 0.04	81.62 ± 2.01	5.56 ± 0.12	6.58 ± 0.06	84.46 ± 1.08	
GCN	✓	0.19 ± 0.02	0.24 ± 0.02	81.52 ± 3.10	5.71 ± 0.07	6.70 ± 0.03	84.49 ± 1.84	

Model	Addition Only	Deletion Only						
	AC	\bar{r}_a	\bar{r}_d	Acc. %	AC	\bar{r}_a	\bar{r}_d	Acc. %
H2GCN	✓	0.29 ± 0.05	0.40 ± 0.06	72.93 ± 2.30	5.55 ± 0.10	7.29 ± 0.18	76.17 ± 0.48	
GraphSAGE	✓	0.33 ± 0.01	0.45 ± 0.01	74.66 ± 1.19	5.43 ± 0.07	7.15 ± 0.12	75.97 ± 0.47	
CPGNN	✓	0.15 ± 0.02	0.20 ± 0.02	74.62 ± 0.30	5.59 ± 0.22	7.54 ± 0.22	74.05 ± 0.84	
GPR-GNN	✓	0.40 ± 0.01	0.59 ± 0.02	67.52 ± 0.40	5.05 ± 0.05	7.21 ± 0.06	70.10 ± 0.15	
FAGCN	✓	0.38 ± 0.02	0.53 ± 0.02	72.41 ± 0.03	5.46 ± 0.03	7.42 ± 0.12	73.56 ± 0.18	
GAT	✓	0.09 ± 0.13	0.13 ± 0.00	74.07 ± 0.44	5.39 ± 0.16	7.29 ± 0.12	74.33 ± 0.43	
GCN	✓	0.18 ± 0.01	0.25 ± 0.00	74.07 ± 1.65	5.55 ± 0.10	7.42 ± 0.16	74.70 ± 0.72	

E.3 Comparison Between Certifiable and Empirical Robustness

While the evaluations on both empirical and certifiable robustness have shown that methods featuring the design have shown largely improved robustness compared to the best-performing unvaccinated method, we find that the robustness rankings for methods under certifiable and empirical robustness are different; previous results from Geisler et al. [13] have also shown discrepancy in certifiable and empirical robustness rankings.

We think this discrepancy may be attributed to multiple factors. Firstly, the radius on which certificates can be issued with randomized smoothing may not cover the radius of perturbations we allowed for NETTACK and Metattack in [32], which are more than tens of edges for Metattack and high-degree nodes in NETTACK (where we use an attack budget equal to the degree of the target node). Furthermore, even for low-degree nodes, attacks are much more inclined to introduce new edges instead of removing existing ones, as we have shown in [31] which can make it much harder to obtain certificates [3]. In our case, the methods we evaluated generally have $\bar{r}_a < 1$, meaning that for most nodes there are no certificates to cover even the addition of a single edge. Thus, methods which display higher certifiable robustness under smaller perturbations may not keep their robustness under larger perturbations by empirical attacks. Moreover, while we are evaluating on randomized smoothed models $\tilde{f}(\phi(s))$ to measure certifiable robustness, in empirical robustness we are evaluating...
on the robustness of the base models $f(s)$, which may differ from the robustness of the randomized smoothed models. Lastly, it is worth noting that the lack of certification for a model within certain radius does not imply a vulnerability to all adversarial attacks within that radius; the model may still be robust against many attacks within that radius. Similarly, it is also possible for existing certification approaches to miss some certifiable cases. Taking all these factors into account, we believe that while evaluations on certifiable robustness provide complementary perspectives to evaluations empirical robustness, at the current stage it cannot replace the evaluations on empirical robustness, and the relation between certifiable and empirical robustness remains as a question for future works.

E.4 Complexity and Runtime of Heterophilous Vaccination

Another benefit of adopting heterophily-inspired design for boosting robustness of GNNs is their smaller computational overhead compared to existing vaccination mechanisms, especially vaccinations based on low-rank approximation. As our identified design can be applied as simple architectural changes on top of an existing GNN, they usually maintain the same order of computational complexity as the base model. For example, adding the heterophilous design to GCN \cite{kipf2016semi} results in an architecture similar to GraphSAGE \cite{hamilton2017inductive}; both have the same order of computational complexity as $O(|V| + |E|)$ by leveraging the sparse connectivity of most real-world graphs. Low-rank approximation-based vaccination, on the other hand, approximates the adjacency matrix of a graph by an SVD, resulting in an adjusted low-rank adjacency matrix \tilde{A} based on which the GNN runs. However, not only is computing an SVD potentially costly ($O(|V|^3)$ in general), but in most cases it also results in a dense \tilde{A} (in contrast to the sparse original adjacency matrix), thus increasing the complexity of each iteration of the GNN.

Table 10: Runtime (in seconds) of 200 training iterations on Cora. See App. D for the implementation used for each method.

Model	GCN	GAT	GNNGuard	ProGNN	GCN-SVD	H$_2$GCN
GCN	2.17	2.98	39.63	220.30	134.81	16.54
GraphSAGE	17.24	1.91	2.66	24.08	62.33	55.45

Table 10 shows the runtime of 200 training iterations of each model. We observe that models with the heterophilous design have the smallest runtime among all vaccinated models. Even for methods based on the same implementation, H$_2$GCN and GraphSAGE are still 3-4 times faster than the corresponding H$_2$GCN-SVD and GraphSAGE-SVD methods. For fair runtime measurements, we measure the runtime of each model on an Amazon EC2 instance with instance type as p3.2xlarge, which features an 8-core CPU, 61 GB Memory, and a Tesla V100 GPU with 16 GB GPU Memory.