CTBP1/CYP19A1/estradiol axis together with adipose tissue impacts over prostate cancer growth associated to metabolic syndrome

Cintia Massillo, Guillermo Nicolás Dalton, Juliana Porretti, Georgina Daniela Scalise, Paula Lucía Farré, Flavia Piccioni, Florencia Secchiari, Natalia Pascuali, Colin Clyne, Kevin Gardner, Paola De Luca and Adriana De Siervi

1Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
2Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
3Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
4Cancer Drug Discovery Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
5Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY

Metabolic syndrome (MeS) increases prostate cancer (PCa) risk and aggressiveness. C-terminal binding protein 1 (CTBP1) is a transcriptional co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. Previously, our group established a MeS and PCa mice model that identified CTBP1 as a novel link associating both diseases. We found that CTBP1 controls the transcription of aromatase (CYP19A1), a key enzyme that converts androgens to estrogens. The aim of this work was to investigate the mechanism that explains CTBP1 as a link between MeS and PCa based on CYP19A1 and estrogen synthesis regulation using PCa cell lines, MeS/PCa mice and adipose co-culture systems. We found that CTBP1 and E1A binding protein p300 (EP300) bind to CYP19A1 promoter and downregulate its expression in PC3 cells. Estradiol, through estrogen receptor beta, released CTBP1 from CYP19A1 promoter triggering its transcription and modulating PCa cell proliferation. We generated NSG and C57BL/6 MeS mice by chronically feeding animals with high fat diet. In the NSG model, CTBP1 depleted PCa xenografts showed an increase in CYP19A1 expression with subsequent increment in intratumor estradiol concentrations. Additionally, in C57BL/6 mice, MeS induced hypertrophy, hyperplasia and inflammation of the white adipose tissue, which leads to a proinflammatory phenotype and increased serum estradiol concentration. Thus, MeS increased PCa growth and Ctbp1, Fabp4 and IL-6 expression levels. These results describe, for the first time, a novel CTBP1/CYP19A1/Estradiol axis that explains, in part, the mechanism for prostate tumor growth increase by MeS.

Introduction
Prostate cancer (PCa) remains the most prevalent cancer among men and the second leading cause of cancer death worldwide.1 There is increasing evidence showing that diet and lifestyle play a crucial role in PCa risk and progression2–5

Metabolic syndrome (MeS) is a cluster of pathophysiological

Key words: CYP19A1, prostate cancer, CTBP1, metabolic syndrome, adipose tissue

Abbreviations: 5’UTR: 5’untranslated region; ACTB: β-actin; AT: adipose tissue; CCND1: Cyclin D1; CD: control diet; ChIP: chromatin immunoprecipitation; CLS: crown like structures; CTBP: C-terminal binding protein; CYP19A1: Cytochrome P450 Family 19 Subfamily A Member 1; E2: estradiol; EP300: E1A binding protein p300; ER: estrogen receptor; FABP4: Fatty acid binding protein 4; gWAT: gonadal white adipose tissue; H&E: hematoxylin and eosin; HBB: β-globin; HFD: high fat diet; IHC: immunohistochemistry; IL6: interleukin 6; IRS: immunoreactive score; MCP1: Monocyte chemoattractant protein 1; MeS: metabolic syndrome; mWAT: mesenteric white adipose tissue; NSG: NOD scid gamma; PCa: prostate cancer; PEI: polyethylenimine; PPAR γ: Peroxisome proliferator activated Receptor Gamma; qPCR: quantitative polymerase chain reaction; RELA: RELA proto-oncogene, NF-kB subunit; RIA: radioimmunoassay; RT: retrotranscription; SFI: Steroidogenic factor-1; STAT3: Signal transducer and activator of transcription 3; TF: transcription factor; TNF-α: Tumor necrosis factor-alpha; TSS: transcriptional start site; WAT: white adipose tissue; ZEB1: Zinc finger E-box binding homeobox 1.

Additional Supporting Information may be found in the online version of this article.

Conflict of interest: The authors declare no conflicts of interest.
Grant sponsor: ANPCYT; Grant numbers: PICT 2014 324PICT 2015 1345
DOI: 10.1002/ijc.31773
History: Received 13 Apr 2018; Accepted 20 Jul 2018; Online 28 Aug 2018
Correspondence to: Adriana De Siervi, Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina, Tel.: +5411-4783-2869, ext. 206, Fax: +5411-4786-2564; E-mail: adesiervi@dna.uba.ar

Int. J. Cancer: 144, 1115–1127 (2019) © 2018 UICC
disorders that comprises, at least, three of the following factors: visceral adiposity, high triglycerides, low High Density Lipoprotein (HDL) cholesterol levels, high blood pressure and high glucose levels. Recently, a meta-analysis revealed that MeS is linked to poor prognosis in PCa patients, increased tumor aggressiveness and biochemical recurrence.

Previously, our group identified C-terminal binding protein 1 (CTBP1) as a molecular linker associating PCa and MeS. CTBP1 is a transcriptional co-repressor of tumor suppressor genes that is activated with much higher affinity by NADH (>100-fold) compared to NAD+. Hence, we developed a MeS mouse model by chronically feeding animals with high fat diet (HFD) and found that CTBP1 depletion in MeS mice markedly decreased PCa and breast cancer growth. Moreover, we identified a new molecular mechanism linking PCa and MeS based on CTBP1 and miR-196b-5p molecules that might act as key factors in the progression and onset of this disease. Additionally, we previously reported that CTBP1 depletion in androgen insensitive PCa xenografts from HFD-fed mice markedly decreased PCa and breast cancer growth.10

Previously, our group identified C-terminal binding protein 1 (CTBP1) as a molecular linker associating PCa and MeS. CTBP1 is a transcriptional co-repressor of tumor suppressor genes that is activated with much higher affinity by NADH (>100-fold) compared to NAD+. Hence, we developed a MeS mouse model by chronically feeding animals with high fat diet (HFD) and found that CTBP1 depletion in MeS mice markedly decreased PCa and breast cancer growth. Moreover, we identified a new molecular mechanism linking PCa and MeS based on CTBP1 and miR-196b-5p molecules that might act as key factors in the progression and onset of this disease.11

Additionally, we previously reported that CTBP1 depletion in androgen insensitive PCa xenografts from HFD-fed mice induced hormone biosynthesis and metabolism-related genes, including the aromatase enzyme, which is involved in the estradiol synthesis by conversion from testosterone.9

CYP19A1 expression deregulation plays an important role in breast and endometrial cancer.12 It was reported that estrogens induce tumors in several organs.13 Although there is a growing body of evidence demonstrating that estrogens have effects in the progression of prostatic disease, the expression levels of CYP19A1 and the role of estrogens in PCa remains controversial.14,15 The dual role of estrogen, favorable and unfavorable, appears to be mediated through an opposite action between the estrogen receptors ER-α and ER-β. The activation of ER-α leads to aberrant proliferation, inflammation and the development of premalignant lesions, while in contrast, the activation of ER-β mediates the antiproliferative, anti-inflammatory and, potentially, anticarcinogenic effects of estrogens.14 Thus, it is important to investigate the synthesis and regulation of estrogen production, mediated by aromatase, in the prostate and the subsequent effects on prostate disease.15 Human CYP19A1 is encoded by a single copy of the CYP19A1 gene, localized at chromosome 15q21.2.16 The human CYP19A1 gene is expressed in a tissue- and cell type-specific manner, and the complex expression and regulation of CYP19A1 gene is achieved through the use of multiple exons that encode the 5’ UTR region.17

Visceral adiposity is one of the main aspects of MeS. Adipose tissue (AT) can be classified in brown adipose tissue (BAT) and subcutaneous and visceral white adipose tissue (WAT). Epidemiological studies correlated visceral adiposity with an increased risk of developing certain types of cancer, including colorectal, breast and endometrial.18 WAT is an active endocrine organ secreting local and systemic hormones (leptin and adiponectin), cytokines (TNF-α and interleukin-6 [IL-6]) and growth factors (insulin-like growth factor [IGF-I], insulin-like growth factor-binding protein [IGFBPs] and transforming growth factor [TGF-β]).19 In men, WAT is the main site of endogenous estrogen synthesis from androgens by the aromatase enzyme located in adipocytes.19 Adiposity deposition caused by MeS is associated to an increase in aromatase activity and in free circulating estrogen levels, and a decrease in free testosterone levels.20 Thus, estrogen could be responsible for more aggressive prostate tumors.

The aim of this work was to investigate the mechanism that explains CTBP1 as a link between MeS and PCa based on aromatase and estrogen synthesis regulation. We found that CTBP1 and EP300 (E1A binding protein p300) bound directly to CYP19A1 promoter and downregulated its expression in PCa cells. In turn, estradiol through ER-β released CTBP1 from CYP19A1 promoter, induced its transcription and modulated PCa cell proliferation. Moreover, we developed a NSG (NOD Scid gamma) and C57BL/6J MeS mouse model by chronically feeding animals with HFD. We observed that CTBP1-depleted PCa xenografts in NSG mice showed an increase in CYP19A1 expression, with the consequent increment in intratumor estradiol concentrations. Additionally, MeS induced hypertrophy, hyperplasia and inflammation of WAT, which leads to a proinflammatory phenotype, serum estradiol concentration increase and PCa growth in C57BL/6J mice. Altogether, our study describes for the first time a novel CTBP1/CYP19A1/estradiol axis that provides an important link between MeS and PCa.

**Materials and Methods**

**Cell culture, transfections and treatments**

PC3 (ATCC: CRL-1435), 22Rv1 (ATCC: CRL-2505), LNCaP (ATCC: CRL-1740), C4-221 cell lines and its stable derivatives...
were grown in RPMI-1640 (Invitrogen, Carlsbad, CA) supplemented with 10% of fetal bovine serum (FBS) and antibiotics in a 5% CO₂ humidified atmosphere at 37°C. These cell lines were recently validated at MDA Cancer Center (Texas). PC3. shCTBP1 and its control (PC3.pGIPZ) stable cell lines were previously described.⁹

TRAMP-C1 cell line (ATCC: CRL-2730) was grown in DMEM medium (GIBCO, Thermo Scientific, Massachusetts, EE.UU) supplemented with 10% of FBS and antibiotics and 250 U/μl human recombinant insulin.

PC3 cells were exposed for 48 or 96 hrs to estradiol (10 nM, 1 and 10 μM) or ethanol as vehicle in phenol red-free RPMI-1640 medium (GIBCO) supplemented with 10% charcoalated FBS.

PC3.pCDNA3 and pcDNA3 CTBP1 cells were generated by transient transfection using 6 μg of plasmid and polyethyleneimine methodology (PEI, Polysciences INC, Warrington, EE. UU) with PEI:DNA ratio 2:1.

Plasmids
CTBP1 plasmid and its control (pcDNA3) were previously described.¹⁰ pGLO3 plasmids with different lengths of the I.4 and PI1 CYP19A1 promoter were previously described.²²,²³ ZEB1 (Zinc finger E-box binding homeobox 1), EP300, E2F1 (E2F transcription factor 1) and RELA (RELA proto-oncogene, NF-κB subunit) plasmids were previously reported.²⁴–²⁷ STAT3 (Signal transducer and activator of transcription 3), ER-β, ER-α and SFI (Steroidogenic factor-1) plasmids were kindly provided by James Darnell (Rockefeller University, New York City, NY), Christopher K. Glass (University of California, United States), Rodolfo Rey (CEDIE, Argentina) and Ken-ichirou Morohashi (Kyushu University, Japan), respectively.

Luciferase reporter assay
PC3 cells were transfected in 12-well plates in triplicate using PEI and 1 μg of each plasmid. After 48 hrs of transfection, luciferase activity was determined by the Luciferase Assay System (Promega, Madison, Wisconsin, EE.UU) according to the manufacturer’s instructions using a GloMax 96 Microplate Luminometer (Promega). Data were normalized to total protein (determined by Bradford assay) and control.

For estradiol treatment, PC3 cells were transfected with the indicated plasmids and grown in RPMI without phenol red supplemented with charcoalated 10% FBS. After 24 hrs, cells were exposed to estradiol (1 and 10 μM) or vehicle for 48 hrs, and luciferase activity was determined as described above.

RNA isolation, cDNA synthesis and qPCR (RT-qPCR)
Total RNA from cells, tumor xenograft, tumor allografts or gWAT was isolated using TRIzol® (Molecular Research Center, Cincinnati, EE.UU). cDNA synthesis was performed using 2 μg of RNA and RevertAid First Strand kit (Thermo Scientific, Massachusetts, EE.UU). Real-time PCR (qPCR) was performed using TAQ Pegasus (Productos Bio-Lógicos, Quilmes, Argentina) in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad). Data were normalized to β-actin (ACTB) and control. Primer sequences are shown in Supporting Information Table S1.

Chromatin immunoprecipitation (ChiP)
PC3 cells were exposed to estradiol (1 or 10 μM) or vehicle by 96 hrs and fixed in 1% formaldehyde for 10 min on ice, quenched with 125 mM glycine for 15 min on ice and washed twice in PBS containing PMSF (0.5 mM) and NaF (375 μM). Cell pellets (7.5 × 10⁶ cells) were thawed on ice, resuspended in 0.5 ml of lyses buffer (50 mM Tris–HCl [pH 7.4], 1% SDS) with 1X protease inhibitor mix (Sigma-Aldrich, Misuri, EE.UU) and sonicated for 10 min (30 s “on” and 30 s “off”) at high power using a Bioruptor II Sonicator. This yields DNA fragments from 200 to 500 bp in length, with the bulk of the chromatin at 300 bp. Chromatin was immunoprecipitated from 2 × 10⁶ cells (130 μl of the sonicate) by using specific antibodies: 4 μg for CTBP1 (Santa Cruz Biotechnology Inc., Texas, EE.UU), 2 μg for EP300²⁶ or 0.5 μg for nonspecific Gal4 antibody (Santa Cruz Biotechnologies) with recombinant protein G beads (Invitrogen) preblocked with BSA (2 mg/ml) and sperm salmon DNA (2 mg/ml) (Invitrogen). The beads were washed with 1 ml of ice-cold high-salt IP buffer (500 mM NaCl, 50 mM Tris–HCl [pH 7.4], 5 mM EDTA [pH 8.0], 0.5% Nonidet P-40 and 1% Triton X-100) once and three times with 1 ml of low-salt IP buffer (50 mM NaCl, 50 mM Tris–HCl [pH 7.4], 5 mM EDTA [pH 8.0], 0.5% Nonidet P-40 and 1% Triton X-100) (400g, 2–3 min) and rinsed with 1 ml of TE buffer (10 mM Tris–HCl [pH 8.0], 1 mM EDTA). Then, 300 μl of buffer TE was added to the washed bead pellet, briefly vortexed and reverse crosslinked with 0.2 mg/ml Proteinase K (Invitrogen) and 0.5% SDS at 65°C for 16 hrs. Samples were centrifuged (400g, 3 min, 4°C) and ChiP-DNA in the supernatant was isolated with phenol-chloroform isooamyl, resuspended in 100 μl of H₂O and amplified by qPCR using specific primers (Supporting Information Table S1). Fold enrichment was calculated normalizing data to input and Gal4. The ΔΔCt method was used to calculate the fold change expression of each promoter of interest. Propagation of error was handled using standard root mean square methods.

Western blot (WB)
Cells were lysed and immunoblotted as previously described²⁸ using specific antibodies: anti-CTBP1 (Santa Cruz Biotechnology Inc.), anti-CYP19 (Santa Cruz Biotechnology Inc.) and anti-β-actin (Cell Signaling Technology, Massachusetts, EE. UU). Reactions were detected by horseradish peroxidase-conjugated secondary antibodies and enhanced chemiluminescence (Pierce) following the manufacturer’s directions. Protein quantitation was performed using ImageJ 1.48 software (http://rsb.info.nih.gov, National Institutes of Health).
**Cell viability and cell cycle analysis**

PCa cells were grown in media without phenol red (GIBCO) supplemented with charcoal-stripped 1 or 10% FBS. After 24 hrs, cells were exposed to estradiol (10 nM, 1 μM and 10 μM) or vehicle for 96 hrs. Cell viability was assayed by MTS (Cell-Titer-96-wells Aqueous non-Radioactive Cell-Proliferation Assay, Promega) following the manufacture instructions. For cell cycle analysis, cells were fixed and stained with propidium iodide (PI) and analyzed by flow cytometry (FC) as previously described.

**Immunosuppressed PCa xenograft and MeS murine model**

Four-weeks-old male C57BL/6J mice (N = 24) were housed under pathogen-free conditions following the IBYME’s animal care guidelines. Mice were randomized into two dietary groups and fed ad libitum during 16 weeks with CD (3,120 kcal/kg, 5% fat) or HFD (4,520 kcal/kg, 37% fat). Body weight was monitored once a week. After 12 weeks of diet, mice were randomly distributed into two groups and injected subcutaneous (s.c.) with PC3.pGIPZ or PC3.shCTBP1 cells (4.8 × 10⁶). Depletion of CTBP1 in PC3 cells was achieved by stably transfecting cells with a CTBP1 shRNA (sc-35122 Santa Cruz Biotechnology) vector. CTBP1 shRNA is a pool of three target-specific 19–25 nt siRNAs designed to knock down gene expression as previously described. Tumor volume was determined three times a week and calculated as previously described. Animals were sacrificed in the 16th week and tumor, liver, AT and blood samples were collected.

**Nonimmunodeficient PCa allografts and MeS murine model**

Four-weeks-old male C57BL/6f mice (N = 12) were housed under pathogen-free conditions following the IBYME’s animal care guidelines. Mice were randomized into two dietary groups and fed ad libitum during 27 weeks as described above. After 15 weeks of diet, mice were randomly distributed into two groups and injected s.c. with TRAMP-C1 (3 × 10⁶) cell line. Tumor volume was determined as described above. Animals were sacrificed in the 27th week and tumor, liver, AT and blood samples were collected. Mice serum glucose, cholesterol and triglycerides levels were determined as previously described.

**Histological and immunohistochemical (IHC) analysis**

Tissue samples collected from PCa allografts and MeS mice described above were formalin-fixed and paraffin embedded (FFPE). For histological analysis, 4 μm microscopic sections were stained with hematoxylin–eosin (H&E) and examined by light microscopy. For IHC analysis of CTBP1, anti-CTBP antibody (1,400; 621042, BD Bioscience, San Jose, CA) was used. The procedure was completed using a streptavidin-biotin complex method (VECTASTAIN Universal Elite ABC Kit, Vector Laboratories, Maravi LifeSciences, US) with 3,3'-diaminobenzidine (DAB) as chromogen and examined by light microscopy. IHC evaluation was performed by a pathologist without the knowledge of grouping information, using the Immunoreactive Score (IRS). The IRS gives a range of 0–12 as a product of multiplication between positive cells proportion score (0–4) and staining intensity score (0–3).

**Measurement of intratumor and serum estradiol by radioimmunoassay (RIA)**

Serum and intratumor estradiol levels were measured by RIA after ether extraction of steroids from 0.25 g of PC3.pGIPZ or PC3.shCTBP1 tumors developed in HFD NSG mice or serum from C57BL/6f CD or HFD mice, as previously described. Under these conditions, the intra- and inter-assay variations were 7.2% and 12.5%, respectively. The values are expressed as pg hormone/mg of tissue for tumors and ng/ml for serum.

**Ex vivo co-culture of gWAT with TRAMP-C1 cells**

TRAMP-C1 cells were plated in DMEM complete medium into 24-well culture plates at a density of 1.5 × 10⁴ cells/well. After 24 hrs, medium was refreshed and 150 mg of gWAT obtained from CD or HFD C57BL/6f mice were placed onto cell-culture inserts (3.0 μm pore size, high-density membrane) in M199 (Sigma-Aldrich) complete medium. The experiment was conducted for a period of 48 hrs. Then, TRAMP-C1 cells and gWAT were collected in TriReagent for RNA isolation and RT-qPCR. As a control, TRAMP-C1 cells were incubated in DMEM complete media without the addition of gWAT. Data were normalized to control and represent an N = 6 from three different mice per group.

**Enzyme-linked immunosorbent assay (ELISA)**

Conditioned media from the co-culture were tested by competitive ELISA assay using BD OptEIA Set Mouse IL-6 (BD Bioscience, CA) to quantify IL-6 levels following the manufacturer recommendations.

**Statistical analysis**

All results are given as mean and standard deviation (SD) of three independent experiments unless stated otherwise. Student’s t-tests or two-way ANOVA followed by Tukey’s test were performed. Shapiro–Wilk and Levene tests were used to assess normality and homogeneity of variances. *p < 0.05; **p < 0.01; ***p < 0.001.

**Results**

CTBP1 protein binds to CYP19A1 promoter and represses its transcription

Based in our previous finding, showing that CTBP1 repressed CYP19A1 in PCa xenografts, in this work we focused on the underlying mechanism of this regulation. First, we determined CYP19A1 gene expression in a panel of PCa cell lines,
including the androgen sensitive LNCaP cells, its derived C4-2 and the androgen insensitive PC3 and 22Rv1 cells. We found that PC3 showed the highest CYP19A1 expression (Fig. 1a).

Moreover, CTBP1 overexpression decreased CYP19A1 mRNA and protein levels in PC3 cells (Figs. 1b and 1c). Accordingly, CYP19A1 mRNA was induced after CTBP1 depletion (Fig. 1d). CTBP1 overexpression and depletion was confirmed by RT-qPCR and/or WB (Figs. 1b–1d).

Several tissue-specific promoter regions were previously described for CYP19A1. Including the proximal promoter PII. However, in PCa, CYP19A1 is expressed within the epithelial tumor cells, as well as in the stromal cells, and is aberrantly regulated by promoters I.4, PII and I.3. To further investigate CYP19A1 promoter activity regulation by CTBP1, I.4 and PII reporter constructs, containing different lengths of CYP19A1 promoter regions from the TSS, were co-transfected with CTBP1 or control (pcDNA3) plasmids into PC3 cells, and luciferase activity was determined. Bars indicate mean and SD of two independent experiments with three replicates. (f) ChiP-qPCR using CTBP1 or non-specific (Gal4) antibodies and primers located at −0.2 and 0 Kb upstream of the TSS of CYP19A1 or −0.2 Kb upstream of the HBB TSS promoter region. Fold enrichment was calculated normalizing data to input and Gal4. Bars represent the average and SD from one representative experiment.

Figure 1. CTBP1 represses CYP19A1 transcription in PC3 cell line. (a) CYP19A1 mRNA levels in PCa cell lines measured by RT-qPCR. (b) CYP19A1 and CTBP1 gene expression levels by RT-qPCR from CTBP1 overexpressed PC3 cells. (c) CYP19A1, CTBP1 and β-actin protein levels from CTBP1 overexpressed PC3 cells by WB. Quantification and normalization to β-actin protein levels and pcDNA3 are shown under each band. One representative experiment from two biological replicates is shown. (d) CYP19A1 and CTBP1 gene expression levels by RT-qPCR from PC3.pGIPZ and PC3.shCTBP1 stable cell lines. Bars indicate mean and SD of two independent experiments. (e) Plasmids with different length of the I.4 (PG1 to PG10) or PII CYP19A1 promoters were co-transfected with CTBP1 or control (pcDNA3) plasmids in PC3 cells, and luciferase activity was determined. Bars indicate mean and SD of two independent experiments with three replicates. (f) ChiP-qPCR using CTBP1 or non-specific (Gal4) antibodies and primers located at −0.2 and 0 Kb upstream of the TSS of CYP19A1 or −0.2 Kb upstream of the HBB TSS promoter region. Fold enrichment was calculated normalizing data to input and Gal4. Bars represent the average and SD from one representative experiment.
CTBP1/CYP19A1 modulates PCa growth associated to MeS

Int. J. Cancer: 144, 1115–1127 (2019) © 2018 UICC
Additionally, we determined that CTBP1 bound specifically to both CYP19A1 promoter regions, I.4 and PII by ChIP (Fig. 1f). Hence, CTBP1 associates to CYP19A1 promoter and represses its transcription in PC3 cell line.

**EP300 binds to CYP19A1 promoters and co-represses its transcription together with CTBP1**

To determine potential transcription factors (TF) that co-regulate CYP19A1 transcription with CTBP1, we co-transfected CYP19A1 reporters with a panel of TFs that potentially interact with CTBP1 protein. We found that E2F1, STAT3, RELA and SF1 had no effect on CYP19A1 promoter activity; however, EP300 repressed while ZEB1 induced its activity in PC3 cells (Fig. 2a). Furthermore, CYP19A1 I.4 and PII promoters’ activity repression by CTBP1 was synergistically increased by EP300 (Fig. 2b). More importantly, using ChIP we determined that EP300 protein was physically associated to both CYP19A1 promoters (Fig. 2c).

Although ZEB1 induced CYP19A1 promoter activity, this activation was not influenced by CTBP1 co-transfection, suggesting that both factors act independently on CYP19A1 transcription (Supporting Information Fig. S1a).

**Estradiol releases CTBP1 protein from CYP19A1 promoters triggering its transcription while EP300 remains attached**

We investigated CYP19A1 expression regulation by estradiol in PC3 cells. In a panel of PCa cell lines, we found that PC3 cells expressed higher levels of ER-α and ER-β compared to the other cell lines (Supporting Information Fig. S2). Furthermore, we found that estradiol induced CYP19A1 mRNA levels and promoter activity, which was markedly enhanced by transfection with ER-β plasmid (Figs. 2d and 2e) while ER-α did not modify CYP19A1 promoter activity (Fig. 2e). Moreover, we co-transfected PC3 cells with I.4 or PII luciferase plasmids plus CTBP1, ER-β or pcDNA3 vectors and, after 24 hrs, cells were exposed to estradiol or vehicle during 48 hrs, in order to detect luciferase activity. As shown in Figure 2f, CTBP1 repressed CYP19A1 promoter activity, even after estradiol exposure. Notably, CTBP1 attenuated CYP19A1 promoter activity induction by ER-β and estradiol (Fig. 2f). Additionally, using ChIP we determined that CTBP1 and EP300 bound to I.4 and PII CYP19A1 promoters, while estradiol exposure released CTBP1 protein from both promoters while the co-regulator EP300 remain attached (Fig. 2g).

Altogether, these results elucidate a novel function of estradiol in PCa, showing for the first time that both proteins, CTBP1 and EP300, assemble at CYP19A1 promoter to repress its transcription. Estradiol exposure, through ER-β, releases CTBP1 from CYP19A1 promoter triggering its expression in androgen-insensitive PCa cells.

**Estradiol modulates the viability and cell cycle progression of PCa cell lines**

Estradiol effects on PCa cell lines have been poorly investigated. Hence, we assessed the viability of a panel of PCa cell lines after exposure to estradiol. As shown in Figure 3a, different doses of estradiol significantly increased LNCaP and C4-2 viability; however, it decreased PC3 viability, while no changes were found in 22Rv1 cell line.

In addition, we measured the percentage of LNCaP and PC3 cells at the different cell cycle phases after estradiol exposure. We found that estradiol increased 5% the percentage of S phase cells and 6% of G2/M cells in LNCaP cells (Fig. 3b). Moreover, estradiol increased 5% the G0/G1 phase PC3 cells (Fig. 3b).

Altogether, these results show that estradiol induces proliferation of androgen-sensitive cells, while it diminishes proliferation of androgen-insensitive cell lines suggesting that estradiol, ER-β, CTBP1 and EP300 constitute key regulators of CYP19A1 expression and activity in PCa.

**CTBP1 depletion markedly increases CYP19A1 expression and estradiol levels in xenografts from HFD fed mice**

Based on our previous results showing that CTBP1 regulated CYP19A1 expression in PC3 xenografts developed in nude mice fed with HFD, we further investigated whether this...
regulation impacts over intratumor estradiol production. NSG male mice fed with HFD or CD during 12 weeks were inoculated with control (PC3.pGIPZ) or CTBP1-depleted (PC3.shCTBP1) PC3 stable cell lines. After 4 to 6 weeks from cell inoculation, mice were sacrificed, tumor excised and analyzed.

HFD fed mice developed MeS-like disease evidenced by dyslipidemia and liver steatosis at the end of the experiment (data not shown), as we previously reported for nude mice model.9 Moreover, CTBP1 depletion significantly induced CYP19A1 expression only in HFD group (Fig. 3c). CTBP1 depletion was confirmed in the animals by RT-qPCR (Fig. 3c). Interestingly, xenografts generated from PC3.shCTBP1 cell line showed significantly increased intratumor estradiol levels compared to PC3.pGIPZ xenografts in HFD fed mice (Fig. 3d).

HFD increases TRAMP-C1 allograft tumor growth and serum estradiol levels while induces Ctbp1, Fabp4 and IL-6 gene expression

Given that MeS increases serum estradiol levels, which impacts on breast tumor development,31 we investigated the effect of MeS on estrogens levels and PCa development. We generated a non-immunodecient murine model of MeS and PCa using C57BL/6J male mice and PCa TRAMP-C1 cells. Even though aromatase expression was undetectable in TRAMP-C1 cells by RT-qPCR before animal inoculation (data not shown), we found that low concentrations of estradiol significantly induced Ctbp1, Fabp4 and IL-6 gene expression generated in HFD fed mice (Fig. 4b). Moreover, we injected s.c. TRAMP-C1 cells into C57BL/6J male mice chronically fed with HFD or CD. Interestingly, HFD significantly increased tumor growth and serum estradiol in mice (Figs. 4b and 4c). It is noteworthy that C57BL/6J mice also developed MeS-like disease after prolonged HFD intake, as they showed dyslipidemia, hyperglycemia, overweight and liver steatosis at the end of the experiment (Supporting Information Figs. S3a–S3c).

Surprisingly, molecular analysis of allograft showed that endogenous Ctbp1 mRNA levels were markedly induced by HFD without changes in Ctbp2 gene expression (Fig. 4d). Moreover, CTBP1 IHC and IRS quantitation obtained from these allografts, demonstrated that CTBP1 protein levels was significantly higher in HFD (IRS = 5) compared to CD (IRS = 3) mice (Fig. 4e).
addition, HFD increased the expression of other genes: $Fabp4$ (Fatty Acid Binding Protein 4), involved in fatty acid uptake, transport and metabolism$^{32}$, and the pro-inflammatory cytokine $IL-6$ (Fig. 4f). No changes in $Er-\alpha$ or $Er-\beta$ gene expression were observed in the allograft from CD compared to HFD fed mice (Fig. 4f).

HFD increases AT amount, adipocyte size and CLS in mice while induces expression of genes involved in adipogenesis and inflammation

Based on the important role of peri-prostatic AT over prostate tumor cell proliferation and migration,$^{33}$ we aimed to elucidate the role of WAT in PCa. First, we determined the
Figure 5. MeS induces alterations of gWAT which induces TRAMP-C1 cell proliferation and Ctbp1/IL6 gene expression. (a) Mesenteric and gonadal/epididymal fat depots weight from CD or HFD fed C57BL/6 mice. (b) H&E of gWAT from CD or HFD fed C57BL/6 mice. Arrows indicate representative adipocytes. Box plot represents adipocyte size quantitation calculated by ImageJ. (c) H&E of gWAT from CD or HFD fed C57BL/6 mice showing in high magnification CLS. Magnification 100x and 400x. Bars represent media and SD of the CLS counts per mm². (d–f) RT-qPCR from gWAT samples obtained from CD or HFD fed C57BL/6 mice using specific primers for the indicated genes. Data were normalized to ACTB and control. (g) TRAMP-C1 cancer cells were counted after being co-cultured with gWAT obtained from CD or HFD C57BL/6 fed mice for 48 h. As control, TRAMP-C1 cells were incubated in DMEM complete media without the addition of gWAT. Data were normalized to control and represent mean and SD of three independent experiments with six replicates. (h) RT-qPCR from TRAMP-C1 cells obtained from the co-culture using specific primers for the indicated genes. Data were normalized to ACTB and control and represent mean and SD of two independent experiments with three replicates. (i) RT-qPCR from gWAT obtained from the co-culture using specific primers for the indicated genes. Data were normalized to AGCT and control and represent mean and SD of two independent experiments with three replicates. (j) IL-6 production was measured in supernatant from the co-cultures. Bars represent average and SD of three independent experiments with three replicates. [Color figure can be viewed at wileyonlinelibrary.com]
amount of gonadal/epididymal (gWAT) and mesenteric (mWAT) AT from CD and HFD fed C57BL/6J mice. We observed a significant accumulation of both ATs in HFD fed mice compared to CD (Fig. 5a). A similar result in gWAT was found in HFD NSG mice (Supporting Information Fig. S4a).

As gWAT is typically the largest and most accessible fat pad in C57BL/6J mice, we continued working with this subtype of AT. Adipocyte hypertrophy was found in gWAT from HFD compared to CD fed mice, as was determined by H&E staining (Fig. 5b).

Macrophage infiltration, determined by the presence of crown-like structures (CLS), induces chronic mild inflammation, widely considered as a causative factor for insulin resistance.34 Thus, by H&E staining we found that CLS were prevalent in gWAT from HFD fed compared to CD fed mice (Fig. 5c). In summary, the increase in the amount of AT, the adipocyte hypertrophy and the high CLS density exhibited in HFD mice, recapitulate MeS-like disease in this animal model and allow us to understand CTBP1 as a link between PCA and MeS.

In addition, we isolated RNA from HFD and CD gWAT and analyzed gene expression by RT-qPCR. We found that Ctbp1, Ctbp2 and Ccnd1 were significantly decreased in gWAT obtained from HFD fed mice (Fig. 5d). Although no significant changes were observed in Cyp19a1 gene expression in gWAT from HFD fed mice, the dramatic increase in the amount and size of the adipocytes might suggest an increase in the concentration of estradiol which supports the serum estradiol increase in these mice (Fig. 5). Ctbp1 and Ccnd1 gene expression were also reduced, while no changes were observed in Cyp19a1 expression in gWAT from HFD NSG mice (Supporting Information Fig. S4b). Interestingly, gWAT from HFD fed mice showed an induction in the expression of adipogenesis and inflammation markers, including Fabp4, Pparg (Peroxisome Proliferator Activated Receptor Gamma), Tnf-α (Tumor Necrosis Factor α) and Mcp1 (Monocyte Chemoattractant Protein-1) (Figs. 5e and 5f and Supporting Information Fig. S4c).

Gonadal/epididymal AT explants from HFD fed mice induced TRAMP-C1 cell proliferation and Ctbp1/IL6 gene expression

To further understand the role of gWAT over prostate tumor cell proliferation and gene expression, we co-cultured gWAT from HFD fed mice or CD fed mice with TRAMP-C1 cells. Surprisingly, gWAT from HFD fed mice induced TRAMP-C1 proliferation and Ctbp1 and IL6 gene expression in these cells (Figs. 5g and 5h), similarly to the allografts developed in HFD C57BL/6J mice. Additionally, Ctbp1, Fabp4 and Pparg expressions were markedly diminished in the co-cultured gWAT from HFD fed mice (Fig. 5i). Moreover, IL-6 protein levels were increased in the conditioned medium from TRAMP-C1 cells co-cultured with gWAT from HFD fed mice respect to CD (Fig. 5j).
Discussion
In this report, we provide evidence of a striking link between CTBP1/CYP19A1/estradiol and MeS/PCa. Our goal was to understand CTBP1 role and the mechanism for PCa risk increase by MeS. Based in our previous studies, showing CTBP1 as an important link that associates PCa and MeS,\textsuperscript{9,11} we investigated CYP19A1 regulation by CTBP1 using several PCa cell lines and mice models. We found that CTBP1 assembles with EP300 to CYP19A1 proximal promoter region and inhibits its transcription in PCa cells. Estradiol exposure, through ER-β, disrupts this binding and displaces CTBP1 protein from CYP19A1 promoter, triggering its transcription. All these data are highly relevant as there are few reports showing transcriptional regulation of CYP19A1 expression in PCa.\textsuperscript{12,15}

Another important finding from this work was observed after estradiol treatment of a panel of PCa cell lines. Accordingly to Carruba and colleagues results,\textsuperscript{35} we found that estradiol decreased the viability and cell cycle progression of PCa androgen insensitive cells, while it increased the viability of androgen sensitive cells.

Using immune-suppressed mice, we not only confirmed the previous findings obtained in nude mice,\textsuperscript{9} but also demonstrated that CTBP1 depleted tumors had increased concentration of intratumor estradiol, which reinforced the idea of aromatase induction in these tumors by HFD and MeS-like disease.

Other colleagues have shown that PCa cells synthesize estrogens through aromatase.\textsuperscript{15} In this work, we have shown that there is a complex transcriptional regulation of this enzyme mediated by MeS and CTBP1. We demonstrated that estrogens increased proliferation of androgen sensitive PCa cells that do not express aromatase (LNCaP and TRAMP-C1). With this scenario, new questions arise: if the prostate tumor cell responds to estrogens, but is not capable of producing it, where do the estrogens come from? How does MeS increase serum estradiol levels? Is AT playing a role in estradiol levels increase?

To answer these questions, in this work we developed a non-immunodeficient MeS mice model (C57BL/6f) whose animals were inoculated with TRAMP-C1 cells. We first confirmed that TRAMP-C1 cells used for the in vivo model did not express aromatase and responded to estrogens. Moreover, when we injected TRAMP-C1 cells into C57BL/6f male mice chronically fed with HFD, we found significantly increased tumor growth and serum estradiol levels, supporting the idea that MeS increases serum estradiol levels impacting PCa development. Also, this model revealed that HFD fed mice showed an increased amount of AT, adipocyte hypertrophy, higher CLS density, with also adipogenesis and inflammation gene expression induction, which indicates chronic AT inflammation, an important feature of MeS. Although no significant changes were observed in Cyp19a1 gene expression from AT of HFD fed mice, the dramatic increase in the amount and size of adipocytes, and the high density of CLS, might explain the increased concentration of serum estradiol in these mice. More important, we described for the first time that endogen Ctbp1, Fabp4 and IL6 were transcriptional activated by HFD in tumors. These results validated our hypothesis showing CTBP1 as a molecular link that associates MeS and PCa growth. Moreover, co-cultures determined that AT from HFD fed mice induced proliferation, Ctbp1, Fabp4 and IL6 gene expression in TRAMP-C1 cells and increased IL-6 production compared to AT from CD fed animals. Furthermore, co-culture experiments revealed that AT from HFD fed mice co-cultured with TRAMP-C1 cells exhibited decreased Ctbp1 and Fabp4 expression levels compared to CD AT. FABP4 is a low molecular weight protein that transports long-chain fatty acids released from adipocytes and macrophages and can exert its metabolic action in a paracrine or exocrine manner. It is also implicated in tumorigenesis in different cancer types, including breast, prostate and ovarian cancer, and may have an active role in the interaction between tumor and AT.\textsuperscript{32} In fact, FABP4 is involved in lipid transfer between adipocytes and ovarian tumor cells, inducing the fatty acid oxidation pathway to fuel tumor growth.\textsuperscript{36} In addition, in breast cancer, the expression of FABP4 and other adipogenesis-related genes, were downregulated in AT adjacent to malignant breast tumors.\textsuperscript{37} This process is likely due to the active lipolysis and atrophy that AT undergoes when it is in contact with cancer tissue.\textsuperscript{37} This can be explained by the fact that FABP4 levels could be increased in peritumoral AT, but it could be quickly released from AT to extracellular media, to transport fatty acids to adjacent tumor cells.\textsuperscript{38}

Similarly to Wang et al., in the co-culture of PCa cells with gWAT from CD or HFD fed mice,\textsuperscript{37} we found that HFD increased the expression of Fabp4 in gWAT, but when AT was in contact with prostate tumor cells, there was a drastic decrease in Fabp4 expression, compared to gWAT from CD fed mice. Altogether, these data suggest that FABP4 could be more rapidly released from the adipocytes of HFD fed mice compared to CD for transport fatty acids to tumor cells. However, future experiments should be performed to address this concern.

In summary, these results explain for the first time the molecular mechanism for PCa risk increase by MeS (see Fig. 6 for hypothetical model). Thus, estradiol levels increase in serum and tumors through MeS/CTBP1/CYP19A1 mechanism, which directly impacts over PCa cells proliferation. In this context, AT also contributes to stimulate proliferation. In the future, after completely elucidate the important role of AT and CTBP1/CYP19A1/estradiol axis, MeS patients might be advise to modify lifestyle habits in order to reduce PCa risk.

Funding and acknowledgment
This research was supported by the Argentinean Agency of Science and Technology (ANPCyT PICT 2014-324; ANPCyT PICT 2015-1345). The authors thank the Fundación Williams (Argentina) for their support. This work was part of Ph.D. thesis of Cintia Massillo supported by CONICET fellowship from Argentina.
