Inhibition survey with phenolic compounds against the \(\delta \)- and \(\eta \)-class carbonic anhydrases from the marine diatom *thalassiosira weissflogii* and protozoan *Plasmodium falciparum*

Siham A. Alissa\(^a\), Hanan A. Alghulikhah\(^a\), Zeid A. ALothman\(^b\), Sameh M. Osman\(^b\), Sonia Del Pretec\(^c\), Clemente Capasso\(^d\), Alessio Nocentini\(^d\) and Claudiu T. Supuran\(^d\)

\(^a\)Chemistry Department, College of Science, Princess Nourah bint Abdullahman University, Riyadh, Saudi Arabia; \(^b\)Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia; \(^c\)Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy; \(^d\)NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutrizionate, Sezione di Scienze Farmaceutiche e Nutrizionate, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy

ABSTRACT

The inhibition of \(\delta \)- and \(\eta \)-class carbonic anhydrases (CAs; EC 4.2.1.1) was poorly investigated so far. Only one \(\delta \)-CA, TweCA from the diatom *Thalassiosira weissflogii*, and one \(\eta \)-CA, PICA, from *Plasmodium falciparum*, have been cloned and characterised to date. To enrich \(\delta \)- and \(\eta \)-CAs inhibition profiles, a panel of 22 phenols was investigated for TweCA and PICA inhibition. Some derivatives showed effective, sub-micromolar inhibition of TweCA (K\(\text{I}_\text{S} \) 0.81–65.4 \(\mu \text{M} \)) and PICA (K\(\text{I}_\text{S} \) 0.62–78.7 \(\mu \text{M} \)). A subset of compounds demonstrated a significant selectivity for the target CAs over the human physiologically relevant ones. This study promotes the identification of new potent and selective inhibitors of TweCA and PICA, which could be considered as leads for finding molecular probes in the study of carbon fixation processes (in which TweCA and orthologue enzymes are involved) or drug candidates in the treatment of malaria.

1. Introduction

Carbonic anhydrases (CAs; EC 4.2.1.1) compose a superfamily of metalloenzymes that owe the role of speeding up the carbon dioxide hydration to bicarbonate and proton. Crucial biological processes in most organisms of tree of life are related to such a reversible reaction: respiration, photosynthesis, pH regulation, CO\(_2\) and HCO\(_3\)\(^-\) transport, biosynthetic processes, production of body fluids, bone resorption, etc. Eight evolutionarily unrelated CA classes have been identified to date, which are named as \(x \)-, \(\beta \)-, \(\gamma \)-, \(\delta \)-, \(\zeta \)-, \(\eta \)-, \(\theta \)- and \(i \)-CAs. The \(x \)-CAs are present in vertebrates, protozoa, algae, corals, bacteria and cytoplasm of green plants. Human, in particular, encode only for \(x \)-class isozymes. The \(\beta \)-CAs have been identified in bacteria, fungi, Archaea, algae and chloroplasts of both mono- and dicotyledons. The \(\gamma \)-CAs are encoded in Archaea, bacteria and plants. \(\delta \)-CAs have been discovered in marine phytoplankton, such as haptophytes, dinoflagellates, diatoms and chlorophyptic prasinophytes, while \(\zeta \)-CAs appear to be present only in marine diatoms. A unique \(\eta \)-CA has been identified to date in the protozoa *Plasmodium falciparum*. \(\theta \)-CAs have been recently discovered in the marine diatom *Phaeodactylum triacanthum*. A first specimen of \(i \)-CAs was recently labelled from the marine diatom *Thalassiosira pseudo-nanum*. A unique \(\delta \)-CA, TweCA, from the diatom *Thalassiosira weissflogii* was cloned and characterised in detail to date, though orthologues of this enzyme have been identified in most diatoms from natural phytoplankton assemblages and are responsible (along with other CAs) for CO\(_2\) fixation by marine organisms. TweCA is upregulated by low pCO\(_2\) and, under Zn-limited conditions, the zinc ion at the active site can be substituted by Co(II) in vivo. TweCA is a protein of 281 amino acid residues. A subunit molecular mass of 32.0 kDa was estimated by SDS-PAGE, while the molecular mass of 32.2 kDa was calculated from the amino acid sequence. TweCA does not share any sequence homology to any other known CAs. The alignment of the amino acid sequence of TweCA with the polypeptide chain of the bovine \(x \)-CA (isoform bCA II) shows the low degree of identity with the mammalian \(x \)-CA. Nonetheless, it was shown that the active site of TweCA is similar to that of mammalian \(x \)-CA, with the metal coordination pattern formed by three histidines as found in \(x \) and \(\gamma \)-CAs (Figure 1). Unfortunately, no structural data are available on \(\delta \)-CAs. A phylogenetic analysis carried out using \(x \), \(\gamma \) and \(\delta \)-CAs from different prokaryotic and eukaryotic organisms showed that the \(x \)-CAs appear closely related to the \(\delta \)-CAs, but clustered in a branch distinct from that of \(\gamma \)-CAs. CA inhibitors, such as sulphonamides, inorganic anions, mono- and dithiocarbamates were screened as TweCA inhibitors with the aim to uncover molecular probes to investigate the role of this enzyme in the carbon fixation processes in marine diatoms that are responsible for removing large amounts of CO\(_2\) from the atmosphere.

The \(\eta \)-class of CAs was firstly described in 2015 by analysis of the amino acid sequences of CAs from *Plasmodia*, parasitic protozoa responsible of malaria in humans and other animals. The first and unique member of the family to be characterised in *in vitro* to
date was PfCA, a protein of 600 amino acid residues, identified in Plasmodium falciparum, one of the five species causing malaria in humans. Interestingly, PfCA was initially described as an α-CA enzyme, due to significant similarities with members of this class, but was subsequently reclassified into a new CA class, the η, due to some peculiar features. In particular, the zinc coordination pattern of PfCA is formed by two histidines and one glutamate, distinctly from α-CAs, and many insertions and deletions in the protozoan enzyme were identified with respect to common α-CAs: insertions were observed in PfCA at the N-terminus and in the middle of the protein (69 additional residues after residue 152 of hCA II, chosen as reference protein). A three-dimensional model of PfCA was built by homology using the structure of Thermovibrio ammonificans CA (TaCA) as template. Because of low sequence homology only 267 residues (198–327 and 397–535) out of the 600 of the full-length protein could be modelled. A folding similar to that of α-CAs was found with the active site located in a large cavity with the zinc ion on the bottom (Figure 1), coordinated by His299, His301 and Gln320. The 69 residues insertion was located at the edge of the active site cleft, being presumably implicated in the catalysis.

A significant interest is being dedicated to PfCA, because the enzyme has been recognised as possible target for the development of antimalarial drugs based on innovative mechanism of action. Indeed, a crucial role was suggested for PfCA in the Plasmodium parasites, being involved in the production of HCO₃⁻/CO₂-bisynthetic pathway. Its targeting to block this pathway could thus represent an efficient strategy for the development of new pharmacological agents against malaria. In 1998, Sein and Aikawa showed that addition of carbonic anhydrase inhibitors (CAIs) to a culture of P. falciparum provoked a remarkable reduction in parasitemia. Successive reports illustrated that specific CA inhibition in P. falciparum and in the rodent parasite P. berghei produced the death of the parasite in in vitro cultures. Starting from these data, the search of new PfCA inhibitors has started with sulphonamides and inorganic anions, and, though encouraging results have been obtained, more efforts are still necessary to obtain candidate drug molecules.

Here, a series of phenolic derivatives (1–22, Figure 1) was assessed for the inhibition of TweCA and PfCA to extend such isoforms inhibition profiles, in search of novel leads for drug candidates or molecular probes which show the selective modulation of CAs from diatoms and protozoa over human isozymes.

2. Methods
2.1. Chemistry
Phenols 1–22 were commercially available from Sigma-Aldrich (Milan, Italy) and were used without further purification (purity >95%). All other reagents, salts, buffers and solvents were the highest purity available ones from Sigma-Aldrich (Milan, Italy).
many of which are clinically used as diuretics, antiglaucoma, antiepileptic or in clinical trials for the management of advanced, hypoxic solid tumors. In fact, whether sulphamides directly coordinate the Zn(II) ion from the CA active site replacing the coordinated water molecule/hydroxide ion by a hydrogen bond network. Up to now, phenolic derivatives, among which compounds 1–22 investigated here (Figure 2), were assayed as inhibitors of the human CA I, II, IX and XII, of β-CAs, from the fungi Saccharomyces cerevisiae, Candida albicans, Cryptococcus neoformans and Malassezia Globoza, or from the bacteria Mycobacterium tuberculosis and Pseudomonas gingivalis, Vibrio cholerae and from the Antarctic bacteria Pseudodatheromonas haloplanktis and Colwellia psychrerythraea.

As the δ- and η-CAs active sites are narrower than those of α-CAs, only phenyl derivatives, and not complex natural polyphenols, were considered. A large variety of electron donating and electron withdrawing groups were investigated as substituents on the phenolic scaffold to uncover on the role of acidity of the electron withdrawing groups were investigated as substituents on the phenolic scaffold to uncover on the role of acidity of the phenol scaffold led to light worsening of inhibitory action of the anchoring group in the inhibitory activity (Table 2).

3.2. δ- and η-class carbonic anhydrases inhibition

Phenols 1–22 were assayed as inhibitors of the unique δ- and η-class CAs identified to date, specifically from the marine diatom T. weissflogii and protozoan P. falciparum, respectively. A stopped flow CO2 hydrase assay was used including acetazolamide (AAZ) as standard inhibitor. The inhibition profiles against the human ubiquitous CAs I and II are displayed for comparison. The following structure–activity relationships (SAR) can be drawn up from the inhibition data reported in Table 2.

As a general trend, it can be stated that phenolic compounds are able to interfere with the CO2 hydrase activity of δ- and η-class CAs in the micromolar range. Inhibition constants (KIs) spanned, in fact, between 0.81 and 65.4 μM against TweCA and 0.62 and 78.7 μM against PICA, while compounds 13 and 14 did not show inhibition below 100 μM.

It is fair to immediately stress that even carboxylic acids can act as CAIs, and can do that by two distinct mechanisms of action: coordination of the metal(II) ion or anchorage to the zinc-bound nucleophile. As a result, one cannot exclude that compounds 10, 11, 18–22, which bear both phenolic and carboxylic groups, produce CA inhibition by the COOH function in place of the OH group.

Most substitutions at the phenol 1 scaffold produce enhancement in the inhibition of both TweCA and PICA, with the exception of m-substituents of the amine type (6 and 13) and an o-chlorine atom (14), that presumably induce significant steric hindrance for the binding in the active site. Also a p-CN group at the phenol scaffold led to light worsening of inhibitory action of 9 against TweCA in comparison to the lead 1 (Ks of 52.3 and 56.9 μM, respectively).

As for TweCA, a consistent subset of derivatives showed Ks lower than 10 μM (Ks in the range 0.81–7.9 μM). In particular, 1,2-diols 1 and 5 exhibited the most potent TweCA inhibition (Ks of 4.5 and 2.0 μM) among those compounds possessing solely OH and not COOH groups. On the other hand, swapping the second aromatic OH group to the m- or p-position did not produce a consistent increase of TweCA inhibition which settled for 3 and 4 at 48.2 and 34.9 μM. The substitution of hydrogens with fluorine atoms on the phenol scaffold increased the inhibition of TweCA by 15–17 (Ks in the range 13.8–30.7 μM) with respect to the

Figure 2. Structures of phenolic compounds 1–22.
lead 1. In contrast, all benzoic derivatives reported lower to submicromolar activity. Precisely, the 2-hydroxy-benzoic acids 10 and 20 resulted to be the best TweCA inhibitors with submicromolar K_i of 0.95 and 0.81 μM. The presence of COOH group of the cinnamic acid type, such as in 21 or 22 did not elicit the same inhibition increased observed with benzoic acids, though the presence of a 1,2-diol portion in 22 drove its K_i against TweCA below 10 μM. None of the assayed compounds provoked as inhibitory effect as the reference AAZ (K_i of 83 nM).

As anticipated above, a superimposable inhibitory trend was measured for PICA with phenols 1–22 (Table 2). The 1,2,4-trioli 5 showed inhibition of the plasmoidal CA in the submicromolar range (K_i of 0.83 μM) reaching almost the same efficacy of benzoic acid derivatives with respect to those observed for TweCA. As sole exceptions, carboxylates 18, 20 and 21 showed a significant selectivity of action with SI settling between 5 and 10 over both CA I and II. Also the trifluorophenol 17 displayed an interesting selectivity against TweCA over human CA isozymes (SI of 7).

Even higher SI were calculated against PICA over both hCAs I and II (Table 3). 1,2-Diols 2 and 5 showed the most selective and promising inhibition of the target PICA with respect to human CAs. While the SI of 2 settled at 70 and 4 over hCA I and II, respectively, those of 5 were even higher than 100 in both cases. The hCAs/PICA SI values were also increased with most benzoic acid derivatives with respect to those observed for TweCA. As sole exceptions, carboxylates 18, 20 and 21 should be cited, since reported specificity of action for the human isozyme over the target ones (SI < 1). Analogue selectivity trend was observed for most other phenols (not showing COOH groups), such as 13 and 14, which were particularly selective against hCAs over the plasmoidal and diatom isozymes.

Table 2: Inhibition data of TweCa and PICA with phenols 1–22 and the standard sulphamamide inhibitor acetazolamide (AAZ) by a stopped flow CO2 hydrase assay.

Cmpd	R	TweCa	PICA	CA IA	CA IB
1	H	52.3	68.1	10.2	5.5
2	2-OH	4.5	1.4	>100	5.5
3	3-OH	48.2	26.9	>100	9.4
4	4-OH	34.9	21.0	10.7	0.1
5	2,4-diOH	2.0	0.83	>100	>100
6	3-NH2	65.4	78.7	4.9	4.7
7	4-NH2	17.6	33.8	>100	>100
8	4-NHCOCH3	7.9	26.4	10.0	6.2
9	4-CN	56.9	36.9	>100	0.1
10	2-COOH	0.95	0.72	9.9	7.1
11	4-COOH	1.4	0.90	9.8	10.6
12	4-CH2OH	35.9	47.1	68.9	95.3
13	3-NH2-4-Cl	>100	>100	6.3	4.9
14	4-NH2-2-Cl	>100	>100	57.8	57.5
15	2,5-diF	30.7	41.3	>100	>100
16	3,5-diF	21.0	32.7	38.8	33.9
17	2,4,6-triF	13.8	22.8	>100	>100
18	4-COOH-2-OH	4.9	1.6	1.1	0.5
19	2-COOH-3-OH	2.7	2.5	5.7	5.2
20	2-COOH-4-OH	0.81	0.62	4.2	4.1
21	4-(CH2COOH)	14.5	5.7	1.1	1.3
22	2-OH-4-(CH2COOH)	5.9	11.2	2.4	1.6
AAZ	–	0.08	0.36	0.25	0.01

aMean from 3 different assays, by a stopped flow technique (errors were in the range of ±5–10% of the reported values)
bData from ref.33

Table 3. Selectivity index (SI) for target CA over the off-target hCA I and II.

Cmpd	R	I/TweCA	II/TweCA	PICA/I	PICA/II
1	H	0.2	0.1	0.1	0.08
2	2-OH	>22.2	1.2	71.4	3.9
3	3-OH	>2.0	0.2	>3.7	0.3
4	4-OH	0.3	0.01	0.5	<0.01
5	2,4-diOH	>50	>50	>100	>100
6	3-NH2	0.07	0.06	0.05	
7	4-NH2	>5.6	>5.6	>2.9	>0.6
8	4-NHCOCH3	1.2	0.8	0.4	0.2
9	4-CN	>1.7	<0.01	>2.7	>0.01
10	2-COOH	10.4	7.4	13.7	9.8
11	4-COOH	7.0	7.5	10.9	11.8
12	4-CH2OH	1.9	2.6	1.4	2.0
13	3-NH2-4-Cl	<0.06	<0.05	<0.06	
14	4-NH2-2-Cl	<0.6	<0.5	<0.6	<0.6
15	2,5-diF	>3.2	>3.2	>2.4	>2.4
16	3,5-diF	1.8	1.6	1.1	1.0
17	2,4,6-triF	>7.2	>7.2	>4.3	>4.3
18	4-COOH-2-OH	0.2	0.1	0.6	0.3
19	2-COOH-3-OH	2.1	1.9	2.3	2.1
20	2-COOH-4-OH	5.2	5.0	6.8	6.2
21	4-(CH2COOH)	0.07	0.09	0.2	0.2
22	2-OH-4-(CH2COOH)	0.4	0.3	0.2	0.1
AAZ	–	3.1	0.1	0.7	0.03

4. Conclusions
CAs of α- and γ-classes have not been extensively characterised from the inhibitory standpoint in comparison to α- and β-class isozymes. A unique α-CA, TweCA, from the diatom Thalassiosira weissflogii was cloned and characterised in detail to date, though orthologues of this enzyme have been identified in most diatoms from natural phytoplankton assemblages and are responsible,
along with other CAs for CO₂ fixation by marine organisms. The identification of selective inhibitors of these isoforms is of significant importance to uncover molecular probes to investigate the role of this enzyme in the carbon fixation processes of marine diatoms that are responsible for removing large amounts of CO₂ from the atmosphere.

Meanwhile a significant interest has been dedicated to PfCA, the unique specimen of η-CA, which was identified in Plasmodium falciparum, one of the five species causing malaria in humans. The research of PfCA inhibitors has started with sulphonamides and inorganic anions, and, though encouraging results have been obtained, more efforts are still necessary to obtain candidate drug molecules.

To extend TweCA and PfCA inhibition profiles, in search of novel leads for drug candidates or molecular probes selectively modulating these CAs over human isoforms, a panel of 22 phenols was investigated for these isoforms’ inhibition. The exploration of the chemical space around the main functional group led to the discovery of a number of such derivatives showing effective, sometimes sub-micromolar, inhibition against TweCA (Kᵢₛ 0.81 and 65.4 μM) and PfCA (Kᵢₛ 0.62 and 78.7 μM). A subset of compounds even demonstrated a significant selectivity for the target CAs over the human physiologically relevant isoforms CA I and II. This study improves the knowledge on the modulation of CAs belonging to uncommon classes such as δ and η. As a result, it promotes the identification of new potent and selective inhibitors against diatom and plasmodial isoforms over human off-target CAs, which could be adopted as leads for finding molecular probes in the study of carbon fixation processes or drug candidates in the treatment of malaria.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, through the Research Groups Programme Grant no. [RGP-1440–0024].

ORCID

Clemente Capasso http://orcid.org/0000-0003-3314-2411
Claudiu T. Supuran http://orcid.org/0000-0003-4262-0323

References

1. (a) Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov 2019;14:1175–97. (b) Supuran CT. Carbon-versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors? J Enzyme Inhib Med Chem 2018;33:485–95.
2. (a) Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature Rev Drug Discov 2008;7:168–81. (b) Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 2016;31:345–60.
3. (a) Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112:4421–68. (b) De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:117–29.
4. Supuran CT. Structure and function of carbonic anhydrases. Biochem J 2016;473:2023–32.
5. Xu Y, Feng L, Jeffrey PD, et al. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 2008;452:56–61.
6. Lane TW, Saito MA, George GN, et al. Biochemistry: a cadmium enzyme from a marine diatom. Nature 2005;435:42.
7. Del Prete S, Vullo D, Fisher GM, et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—the η-carbonic anhydrases. Bioorg Med Chem Lett 2014;24:4389–96.
8. Jensen EL, Clement R, Kosta A, et al. A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J 2019;13:2094–06.
9. Verson TM, Alber BE, Kisker C, et al. A closer look at the active site of gamma-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 2000;39:9222–31.
10. Kikutani S, Nakajima K, Nagasato C, et al. Thylakoid luminal δ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Pnas 2016;113:9828–33.
11. Cox EH, McLendon GL, Morel FM, et al. The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Biochemistry 2000;39:12128–30.
12. McGinn PJ, Morel FM. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol Plant 2008;133:78–91.
13. Lane TW, Morel FM. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol 2000;123:345–52.
14. Del Prete S, Vullo D, De Luca V, et al. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii. TweCA. J Enzyme Inhib Med Chem 2014;29:906–11. Dec
15. Vullo D, Del Prete S, Osman SM, et al. Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii. Bioorg Med Chem Lett 2014;24:275–9.
16. Bua S, Bozdag M, Del Prete S, et al. Mono- and di-thiocarbamate inhibition studies of the δ-carbonic anhydrase TweCAδ from the marine diatom Thalassiosira weissflogii. J Enzyme Inhib Med Chem 2018;33:707–13.
17. De Simone G, Di Fiore A, Capasso C, Supuran CT. The zinc coordination pattern in the eta-carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorg Med Chem Lett 2015;25:1385–9.
18. Del Prete S, De Luca V, De Simone G, et al. Cloning, expression and purification of the complete domain of the eta-carbonic anhydrase from Plasmodium falciparum. J Enzyme Inhib Med Chem 2016;31:54–9.
19. Del Prete S, Vullo D, De Luca V, et al. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the eta-carbonic anhydrase from...
29. (a) Nocentini A, Trallori E, Singh S, et al. 4-Hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isofoms IX and XII showing hypoxia-enhanced antiproliferative profiles. J Med Chem 2018;61:10860–74. (b) Nocentini A, Moi D, Balboni G, et al. Discovery of thiazolin-4-one-based aromatic sulfamates as a new class of carbonic anhydrase isofoms I, II, IV, and IX inhibitors. Bioorg Chem 2018;77:293–99. (c) Entezari Heravi Y, Bua S, Nocentini A, et al. Inhibition of Malassezia globosa carbonic anhydrase with phenols. Bioorg Med Chem 2017;25:2577–82.

30. (a) Supuran CT, Ilies MA, Scozzafava A. Carbonic anhydrase inhibitors. Part 29. Interaction of isozymes I, II and IV with benzolamide-like derivatives. Eur J Med Chem 1998:33: 739–52. (b) Köhler K, Hillebrecht A, Schulze Wischeler J, et al. Saccharin inhibits carbonic anhydrases: possible explanation for its unpleasant metallic aftertaste. Angew Chem Int Ed Engl 2007;46:7697–9. (c) Scozzafava A, Menabuoni L, Mincone F, et al. Carbonic anhydrase inhibitors: perfluoroalkyl/aryl-substituted derivatives of aromatic/heterocyclic sulfonamides as topical intraocular pressure-lowering agents with prolonged duration of action. J Med Chem 2000;43:4542–51. (d) Sentürk M, Gülçin I, Daştan A, et al. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg Med Chem 2009;17:3207–11.

31. (a) Durdagi S, Vullo D, Pan P, et al. Protein-protein interactions: inhibition of mammalian carbonic anhydrases I–XV by the murine inhibitor of carbonic anhydrase and other members of the transferrin family. J Med Chem 2012;55:5529–35. (b) Scozzafava A, Briganti F, Mincone G, et al. Carbonic anhydrase inhibitors: synthesis of water-soluble, aminoacyl- dipeptidyl sulfonamides possessing long-lasting intraocular pressure-lowering properties via the topical route. J Med Chem 1999:42:3690–700.

32. (a) Davis RA, Hofmann A, Osman A, et al. Natural product-based phenols as novel probes for mycobacterial and fungal carbonic anhydrases. J Med Chem 2011;54:1682–92. (b) Sarikaya SBÖ, Topal F, Şentürk M, et al. In vitro inhibition of ζ-carbonic anhydrase isozymes by some phenolic compounds. Bioorg Med Chem Lett 2011;21:4259–62.

33. (a) Bilgiler S, Unluer E, Gul HI, et al. Carbonic anhydrase inhibitors. Phenols incorporating 2- or 3-pyridyl-ethenylcarbonyl and tertiary amine moieties strongly inhibit Saccharomycetes cerevisiae β-carbonic anhydrase. J Enzyme Inhib Med Chem 2014;29:495–9. (b) Supuran CT, Clare BW. Carbonic anhydrase inhibitors. Part 57. Quantum chemical QSAR of a group of 1,3,4-thiadiazole and 1,3,4-thiadiazoline disulfonamides with carbonic anhydrase inhibitory properties. Eur J Med Chem 1999:34:41–50. (c) Cau Y, Mori M, Supuran CT, et al. Mycobacterial carbonic anhydrase inhibition with phenolic acids and esters: kinetic and computational investigations. Org Biomol Chem 2016;14:8322–30. (b) Supuran CT, Nicolae A, Popescu A. Carbonic anhydrase inhibitors. Part 35. Synthesis of Schiff bases derived from sulfanilamide and aromatic aldehydes: the first inhibitors with equally high affinity towards cytosolic and membrane-bound isozymes. Eur J Med Chem 1996:31:431–8. (d) Nocentini A, Osman SM, Del Prete S, et al. Extending the γ-class carbonic anhydrases inhibition profiles with phenolic compounds. Bioorg Chem 2019;93:103336.