Multiplexed digital spatial protein profiling reveals a unique protein signature for advanced liver fibrosis

Jaejun Lee
Catholic University of Korea College of Medicine: Catholic University of Korea School of Medicine

Chang Min Kim
CbsBioscience, Inc.

Jung Hoon Cha
The Catholic University of Korea

Jin Young Park
CbsBioscience, Inc.

Yun Suk Yu
CbsBioscience, Inc.

Hee Jung Wang
Inje University Haeundae Paik Hospital

Pil Soo Sung (pssung@catholic.ac.kr)
Catholic University of Korea College of Medicine: Catholic University of Korea School of Medicine
https://orcid.org/0000-0002-5780-9607

Eun Sun Jung
Catholic University of Korea College of Medicine: Catholic University of Korea School of Medicine

Si Hyun Bae
Catholic University of Korea College of Medicine: Catholic University of Korea School of Medicine

Research Article

Keywords: multiplexed digital spatial protein profiling, protein signature, liver fibrosis, single-cell analysis, scar-associated macrophage.

Posted Date: July 26th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1850279/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background and Aims:

Intrahepatic mononuclear phagocytes (MPs) are critical for the initiation and progression of liver fibrosis. In this study, using multiplexed digital spatial protein profiling, we aimed to derive a unique protein signature predicting advanced liver fibrosis.

Methods

Snap-frozen liver tissues from various chronic liver diseases were subjected to spatially defined protein-based multiplexed profiling (Nanostring GeoMX™). Single-cell RNA sequencing analysis was performed using Gene Expression Omnibus (GEO) datasets from normal and cirrhotic livers.

Results

Sixty-four portal regions of interest (ROIs) were selected for the spatial profiling. Combined analysis of single-cell RNA sequencing data from GEO datasets (GSE136103) and spatially-defined, protein-based multiplexed profiling revealed that most proteins upregulated in F0–F2 livers in portal CD68+ cells were specifically marked in tissue monocytes whereas proteins upregulated in F3 and F4 livers were marked in SAMacs and tissue monocytes. Internal validation using mRNA expression data with the same cohort tissues demonstrated that mRNA levels TREM2, CD9, and CD68 are significantly higher in livers with advanced fibrosis. Using the results from the CD68+ area, a highly sensitive and specific immune-related protein signature (CD68, HLA-DR, OX40L, phospho-raf-RAF, STING, and TIM3) was developed to predict advanced (F3 and F4) fibrosis.

Conclusions

In patients with advanced liver fibrosis, portal MPs consist heterogeneous populations composed of SAMacs, Kupffer cells, and tissue monocytes. Using digital spatial protein profiling, the protein signature with high accuracy in predicting advanced fibrosis was developed.

Introduction

Liver fibrosis can eventually progresses to cirrhosis, which is a major concern to cause approximately 2% of deaths globally. [1] Non-resolving liver injury or liver fibrosis can cause cirrhosis, a condition that can progress to hepatocellular carcinoma. Furthermore, decompensated liver cirrhosis is accompanied by serious complications resulting from portal hypertension and/or opportunistic infections and leads to shorter life expectancy and deterioration in quality of life. [2] In an effort to alleviate the burden of chronic liver disease, many studies have sought to find novel biomarkers of advanced liver fibrosis. [3] A very recent study from our group also recently presented a promising immune-related gene signature for predicting advanced fibrosis. [4] Although several approaches to reduce fibrosis are still under investigation, no drug has yet been demonstrated to be effective in reversing fibrosis.

Liver fibrosis involves many non-parenchymal cells (NPCs) including immune cells, endothelial cells, and mesenchymal cells. [5] These cells interplay with each other in a scarring tissue, also known as the fibrotic niche. Among immune cells, intrahepatic mononuclear phagocytes (MPs) are thought to play a crucial role in exacerbating hepatic inflammation and fibrosis. The mononuclear phagocytic system (MPS) is comprised of circulating monocytes, dendritic cells, and tissue-resident macrophages, also known as Kupffer cells (KC) in the liver. [6] KCs, which reside in hepatic sinusoids, are ontogenically different from other circulating monocytes. Originating from the embryonic yolk sac, they are capable of self-renewing independently of circulating monocytes. [7] KCs play an important role in innate immunity as gatekeepers and drive the inflammatory response to liver injury. By contrast, circulating monocytes are likely dispensable for replenishing intrahepatic macrophages in homeostasis. However, in the setting of hepatic inflammation, massive infiltration of monocyte-derived macrophages (MoMFs) to the liver is triggered. [8] MoMFs, which originate from bone marrow, are recruited from the portal triad to the injured liver by cytokines or chemokines secreted by activated KCs including IL-1β, tumor necrosis factor α, CCL2, and CCL5. [9] As inflammation prolongs, MoMFs then may differentiate into pro-fibrogenic TREM+ CD9+ scar-associated macrophages (SAMacs) and participate in the process of scarring, which leads to liver fibrosis. [10] SAMacs is known to play a critical role in the initiation and progression of liver fibrosis and continue to expand in the fibrotic liver while fibrosis proceeds. Overall, these findings suggest that MPs play a critical role in the process of liver fibrosis, thus it is feasible to find out biomarkers based on the MPs-associated transcriptomes.

Recently, single-cell RNA sequencing (scRNA-seq) has improved our understanding of cellular diversity and function in liver diseases. Hence, an atlas of liver NPCs has been proposed in various studies by applying single-cell RNA-sequencing in vitro and in vivo. [11–14] Ramachandran et al. reported a discrepancy in NPC phenotypes between normal liver cells and cirrhotic liver cells from humans. [15] In addition to the contribution of single-cell analysis in the field of molecular biology, spatial transcriptomics technology has also enhanced perspective in intrahepatic molecular biology. Digital spatial profiling (DSP) (Nanostring GeoMX™) is a spatially-defined protein-based multiplexed profiling, which has recently been developed for detecting RNA and/or proteins in regions of interest (ROIs). [16] DSP is capable of detecting single cell sensitivity within a ROI at a protein level using an antibody readout and has been used in various cancer-based studies. [17] Recently, a study was conducted using a combined modality for Nanostring GeoMX™ DSP and gene expression analysis, which yielded better predictive values for detecting response rate to immunotherapy for melanoma and opened up new possibilities for this field. [18]

Despite these technological advances, no study has explored the phenotypes of intrahepatic portal MPs in different stages of liver fibrosis. Here, using such a combined modality, namely multiplexed digital spatial profiling and single-cell RNA-sequencing, we aimed to identify the phenotypes portal MPs according to the fibrosis stages and find out the potential protein biomarkers for advanced fibrosis. Moreover, despite much efforts, tissue protein biomarkers with high
accuracy to predict liver fibrosis are still lacking. Here, using multiplexed digital spatial profiling, we aimed to find out the novel monocyte/macrophage-based protein biomarkers for advanced fibrosis.

Methods

Patients

This study included benign liver tissues from 83 patients who underwent surgical resection for hepatocellular carcinoma. All tissues were obtained between 1996 and 2015 at the Ajou Medical Center (AjouMC). The inclusion criteria were as follows: (1) benign liver tissues with chronic liver diseases (2) tissues collected during the surgical procedures such as liver resection. The retrospective study protocol was approved by the Institutional Review Boards of Ajou Medical Center (AJIRB-BMR-KSP-18-444) and The Catholic University of Korea (XC20EEDI0034). The fibrosis stages of every tissue sample enrolled in this study were determined by one pathologist (E.S.J), using the METAVIR scoring system.

RNA extraction and gene expression assay

Total RNA was extracted from the liver tissues using a RNeasy Mini Kit (QIAGEN, Hilden, Germany) with DNase I treatment (QIAGEN). Gene expression profiles were analyzed using nCounter MAX (NanoString Technologies, Seattle, WA, USA). The nCounter PanCancer Immune Profiling Panel (NanoString Technologies) was used for gene set profiling as previously described. [4]

Tissue microarray (TMA) construction

TMAs were constructed using 2-mm diameter cores punched from formalin-fixed, paraffin-embedded (FFPE) blocks. The TMA blocks were sectioned 5-mm-thick. Six TMA slides were constructed with 15 cores placed in a 5×3 arrangement on each slide, and its representative ROIs are presented in figure 2a.

Digital spatial profiling (DSP) assay

Protein expression profiles were analyzed using GeoMx DSP (NanoString Technologies, Seattle, WA, USA). The TMA slides were stained with a mixture of detection and morphological markers. Morphological markers included Syto13 for nuclei, CD68 for macrophages, CD3 for T cells, and alpha-SMA for smooth muscle. The detection antibodies comprised one core panel and six modules of the GeoMx assay (GeoMx immune cell profiling panel, GeoMx io drug target module, GeoMx immune activation status module, GeoMx immune cell typing module, GeoMx pan-tumor module, GeoMx cell death module, and GeoMx MAPK signaling module). In total, 88 ROIs were selected around the portal tract. Each ROI was divided into CD68+, CD3+, and SMA+ areas. Probes attached to the detection antibodies were collected sequentially from the CD68+, CD3+, and SMA+ areas.

Analysis of DSP data and validation of the protein signatures

The left part of the figure 1 shows a flowchart of protein signature development. Differentially expressed proteins were analyzed by comparing fibrosis stages 0, 1, 2, 3, and 4 in CD68+ areas of samples. Of the differentially expressed proteins, those that were significantly different in the logistic regression analysis were included in the protein combination. For the derivation of protein signatures, logistic regression coefficients for each protein were identified and weighted according to protein expression values. Candidate protein signatures (AUC > 0.85, accuracy > 90%, P < 0.05) were validated by k-fold cross-validation to identify the optimal protein combination. The patients were randomly separated by 2-folds (training and test sets) 300 times.

Single-cell RNA sequencing analysis

The right part of figure 1 depicts a flow diagram of the scRNA-seq analysis. The analysis was performed using the GSE136103 dataset and the Seurat package version 4.0.5 (https://satijalab.org/seurat/index.html). Pre-processing followed the GSE136103 method. For shared nearest neighbor clustering, variable features were determined using the variance stabilizing transformation (VST) of the selection method and 2,000 variable counts. After scaling the data, principal component analysis (PCA) was performed using the identified variable features. With the analyzed principal components, the optimal dimensions were analyzed using an elbow plot. According to the determined dimensions and principal components, single cells were clustered and visualized as a t-distributed stochastic neighbor embedding (t-SNE) graph. Clusters were identified using markers used to divide the clusters. Primary clustering was performed using data from five healthy and five cirrhotic patients. Secondary clustering was performed using cells presumed to be MPAs. To identify the distribution in which cells express genes that code for differentially expressed proteins detected by DSP, the corresponding genes were marked in the secondary cluster using SCINA (Semi-supervised Category Identification and Assignment).

Statistical analysis

Continuous data are presented in means with standardized deviation and categorial variables are expressed as number and percentage. The categorial variables between fibrosis stage and clinicopathological variables were assessed using the chi-squared test or Fisher's exact test and continuous variables between groups were evaluated using Wilcoxon rank-sum test. The predictive accuracy of the threshold values for classifying fibrosis stages 0–2 and stages 3 and 4 was assessed using receiver operating characteristic (ROC) curve analysis. The independence of the protein signature was analyzed using logistic regression analysis of the protein signature and clinicopathological variables. Statistical significance was set at P < 0.05 (two-tailed). All statistical analyses were performed using R version 3.3.3 (R Development Core Team, https://www.r-project.org/[Accessed on February 16th, 2022]).

Results

Patient characteristics
Of the 88 ROIs, 64 with low CD3 expression were presumed to be "non-inflammatory" regions whereas 24 ROIs with high CD3 were classified as "inflammatory" regions (figure 1). We excluded inflammatory ROIs because the phenotypes of the immune cells may not actually reflect the fibrogenesis process but the liver injury process. The baseline characteristics of the enrolled patients are shown in Table 1. A total of 31 ROIs from the enrolled patients were classified as having early stage fibrosis (seven as F0, 17 as F1, and 7 as F2), and 33 ROIs were classified as having advanced fibrosis (15 as F3 and 18 as F4). The enrolled patients were predominantly male, and the mean ages were 54.23 and 50.91 years for patients with fibrosis stages 0–2 or stages 3-4, respectively. The most common etiology of chronic liver disease was hepatitis B infection, which accounted for 67.74% and 75.76% of patients with fibrosis stages 0–2 or stage 3-4, respectively. Because nucleotide/side analogs for HBV therapy are reimbursed for patients with HBV DNA > 2000 IU/mL during cirrhosis in Korea, a larger proportion of patients with advanced fibrosis received antiviral therapy compared to those with early fibrosis (9.68% vs. 24.24%, \(p=0.2255 \)). There were no significant differences between the early and advanced fibrosis groups regarding albumin, AST, ALT, and platelet levels.

Multiplexed DSP of protein expression level according to the fibrosis stage

Representative ROIs stained with CD3, CD68, and SMA according to the fibrosis stage are depicted in Figure 2A. There were liver tissues with various fibrosis grades, namely F0 (n = 7), F1 (n = 17), F2 (n = 7), F3 (n = 15), and F4 (n = 18). A volcano plot for protein marker expression is depicted in Figure 2B. The figure compares protein expression levels in early (F0, F1, and F2) and advanced (F3 and F4) fibrosis. The results are summarized in Table 2. Compared to early stage fibrosis, advanced fibrosis showed upregulation of CD68 and HLA-DR, which were highly expressed in the livers with advanced fibrosis with 1.50- and 1.32-fold changes, respectively. By contrast, protein markers other than CD68 and HLA-DR, such as phospho-c-RAF, stimulator of interferon genes (STING), OX40 ligand (OX40L), V-domain IgG suppressor of T cell activation (VISTA), pan RAS, and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) were downregulated in fibrosis stages 3 and 4, with fold changes up to 2.65 (Table 2).

Validation of DSP protein analysis using mRNA expression data from snap-frozen livers using NanoString nCounter MAX system

We also applied NanoString nCounter MAX mRNA expression analysis using the same liver tissues (snap-frozen) used in DSP analysis to validate our protein data. Figure 3 delineates the differentially expressed genes between fibrosis stage 0–2 and stages 3-4. A Previous report demonstrated that TREM2 and CD9 are selectively upregulated in SAMacs and can be used as protein markers for this MP subset. [15] In our NanoString nCounter MAX mRNA expression analysis, TREM2, and CD9 were also shown to be upregulated in F3-4 than F0-2 (TREM2, fold change=1.70, \(p=0.16 \); CD9, fold change=1.36, \(p=5.54 \times 10^{-4} \)). Moreover, CD68, a protein that was newly identified to be upregulated in MPs in advanced fibrosis by DSP analysis, was also significantly upregulated by mRNA expression analysis (fold change=1.29, \(p=1.84 \times 10^{-4} \)). CD74, also known as HLA-DR antigens-associated invariant chain, showed a tendency of higher expression in advanced fibrosis compared to early fibrosis although statistical significance was not met.

Predicting related immune cells in different fibrosis stage using single cell RNA sequencing database

Next, we tried to visualize our marker proteins from the DSP results in a t-SNE map derived from a publicly available scRNA-seq dataset (GSE136103). By utilizing the non-parenchymal liver cell atlas established by Ramachandran et al. [15], we have marked our DSP driven proteins into the atlas to specify the upregulated subpopulation of MPs. We reanalyzed the dataset and classified MPs into ten clusters, as depicted in Figure 3A. Each cluster showed high similarities to the t-SNE map previously presented by Ramachandran et al. [15] Most protein markers upregulated in MPs of F0-2 by DSP were marked in clusters of tissue monocytes, as shown in left panel of figure 3B. Most protein markers upregulated in MPs of F3-4 by DSP were marked in clusters of SAMacs1, KCS, and tissue monocytes (figure 3B, right panel). The scaled gene expression in each cluster of MPs is shown in Figure 3C. CD68 and CD74, which were two genes that showed higher protein expression levels in advanced fibrosis in our DSP analysis, were also highly expressed in SAMacs1 and SAMacs2 rather than in tissue monocytes.

Protein signatures for the advanced fibrosis derived from the DSP analysis

Using the DSP results from the CD68+ area, we identified unique immune-related protein signatures that reflect the advanced fibrosis. Table 3 shows the candidate protein signatures derived from the DSP. Of the five candidate protein signatures, one that was composed of the genes CD68, HLA-DR, OX40L, phospho-c-RAF, STING, and TIM3 showed the highest positive predictive value for the advanced fibrosis, with an AUC in the ROC curve of 0.873 (0.791–0.955). The \(p \) value of the protein signature by logistic regression analysis was \(2.53 \times 10^{-4} \). The positive predictive value of the developed protein signatures was 93.10, and the negative predictive value was 82.86. The sensitivity and specificity of this protein signature were 81.82% and 93.55%, respectively (Table 3).

We also evaluated the factors associated with high-grade fibrosis using logistic regression analysis (Table 4). Variables such as clinical parameters, pathological states, and protein signatures were included in the analysis. In the univariate analysis, the protein signature was the only factor associated with predicting advanced fibrosis (\(p=1.16 \times 10^{-8} \)). Two variables with acceptable \(p \)-values, the protein signature and BMI, were included in the multivariate analysis. In multivariate analysis, both protein signature (odds ratio=112.63, 95% CI: 15.45–821.07, \(p=3.15 \times 10^{-6} \)) and BMI (\(\leq 25 \text{ kg/m}^2 \text{ vs. } >25 \text{ kg/m}^2 \)) (odds ratio=8.66, CI: 1.37–54.91, \(p=0.0220 \)) were found to be significantly associated with advanced fibrosis.

Discussion

In this study, using multiplexed DSP protein profiling, we have identified a novel protein signature that predicted advanced fibrosis with a high reliability. Moreover, using scRNA-seq database, we demonstrated the phenotypical heterogeneity of portal MPs according to the fibrosis stages.

Liver fibrosis is a common pathological consequence of most chronic liver diseases. Fibrosis is associated with many NPCs, including inflammatory, endothelial, and mesenchymal cells. Numerous reports have elucidated the different phenotypes of NPCs depending on the presence or absence of liver fibrosis. [19, 20] In addition, different roles of the MPs according to fibrosis stage have been suggested in several previous studies. [15] KCS, which dominate
the hepatic macrophage pool, are central to intrahepatic immunological tolerance and provide an anti-inflammatory micromilieu to the liver during
homeostasis. [9, 21] However, in acute or chronic liver injury, KCs secrete CCL2 and thereby recruit circulating monocytes to the liver, which then differentiate
into MoMFs. These MoMFs prevail during liver injury and stimulate stellate cells. [22] This results in excessive deposition of extracellular matrix, which leads
to hepatic fibrosis. MacParland et al. mapped the cellular landscape of the human liver via scRNA-seq and reported that CD68+ macrophages have two
distinct phenotypes that are classified as having pro-inflammatory or immune-regulatory roles. [12] Moreover, recent studies using scRNA-seq demonstrated
that TREM2+ CD9+ SAMacs were derived from circulating monocytes and demonstrated a pro-fibrogenic phenotype. [15, 23] Collectively, these studies proposed
distinct phenotypes of intrahepatic cell populations through scRNA-seq and suggested that the pro-inflammatory phenotype of intrahepatic macrophage
switch to anti-inflammatory or pro-fibrogenic phenotype during the process of liver fibrosis.

To the best of our knowledge, this is the first study to show the different phenotypes of MPs between the early and late stages of liver fibrosis using spatially
defined protein-based multiplexed profiling. The DSP transcriptome in our study was matched and analyzed using the publicly available RNA-seq dataset
(GSE136103) from Ramachandran et al. [15] Tissue monocytes appeared to be highly abundant in the portal area of livers with fibrosis stage 0–2 whereas
KCs, SAMacs, and tissue monocytes were writing abundant in the portal area of livers with fibrosis stage 3 and 4. In addition, mRNA expression analysis using
nCounter gene expression assay showed higher expression level of representative markers of SAMacs, namely TREM2, CD68, and CD9 in advanced fibrosis,
supporting the DSP results. These results are consistent with previous reports demonstrating the pro-fibrogenic phenotype of SAMacs, which are thought to be
derived from circulating monocytes.

In this study, we also proposed a novel protein signature derived from DSP data for advanced liver fibrosis. The proposed protein signature was composed of
six different proteins: CD68, HLA-DR, OX40L, phospho-cRaf, STING, and TIM3. CD68 and HLA-DR were upregulated in fibrosis stages 3 and 4 whereas the
other four proteins were downregulated in the advanced stages compared to stages 1 and 2. CD68, a type 1 transmembrane glycoprotein of 110 kDa, is a
representative macrophage marker. A recent study using mice livers demonstrated increase in CD68+ macrophages in advanced liver fibrosis or cirrhosis
compared to normal liver. It also found that CD68+ macrophages were predominantly concentrated in scars during advanced fibrosis, suggesting its
pro-fibrogenic role in the process of liver fibrosis. [4, 24] HLA-DR is routinely used to identify macrophage lineages such as Kuffer cells and circulating
macrophages. [25] HLA-DR is also a typical marker for macrophages and is widely present in antigen-presenting cells. It is known to be upregulated upon
immune stimulation and is proposed to be a monocyte activation marker. [26] Our very recent study demonstrated higher level of HLA-DR in intrahepatic
monocytes in human NASH livers with advanced fibrosis than that with early fibrosis. [22] OX40L, phospho-cRaf, STING and Tim3, which are shown to be
downregulated in the advanced stage of fibrosis, are known to be related to the inflammatory change of intrahepatic monocytes. OX40L, a member of the
tumor necrosis factor superfamily, interacts with OX40 and is associated with the secretion of pro-inflammatory cytokines in the setting of non-alcoholic
steatohepatitis in mice. [27] Raf kinase is thought to promote cell growth through the direct phosphorylation of mitogen-activated protein kinase (MAPK) and
activation of its downstream signaling. [28, 29] In terms of STING, it is an important innate immune protein that coordinates with multiple immune responses,
including the induction of interferons. [30, 31] In addition, many studies on the role of STING in the activation of Kupffer cell and non-alcoholic fatty liver
disease (NAFLD) have been proposed. [32–34] Luo et al. [32] and Yu et al. [33] have demonstrated STING upregulation in mice NASH livers and have
suggested its possible role as a therapeutic target on the liver fibrosis. Lastly, TIM3 is a surface marker for terminally differentiated T-cells, is also expressed in
monocytes, and is thought to have a regulatory role in liver fibrosis. [35] Several studies have shown that expression level of TIM3 in monocytes are decreased
in cirrhosis and also suggested that high level of TIM3 blocks monocyte activation. [36, 37]

The protein signatures are tissue driven biomarkers and for that reason, are difficult to apply in the everyday clinical practice. However, they can be considered
as bridges in establishing liquid biopsy biomarkers to predict advanced fibrosis. Blood-based biomarkers may be identified by analyzing the miRNAs or gene
signatures associated with our tissue-driven protein signatures.

This study developed the novel protein signature predicting advanced fibrosis with high reliability. Using DSP, we have specified the region of protein analysis
to the perportal area where MPs are abundant. Furthermore, this is the first study that used spatially defined protein-based multiplexed profiling to show the
critical difference in the phenotypes of portal MPs between livers with early- or late-stage fibrosis, and the results were validated using internal gene expression
data and publicly available scRNA-seq database. Further studies are essential to validate the proposed protein signature and to recreate the differences in the
phenotype of MPs between early- and late-stage fibrosis.

Abbreviations
digital spatial profiling, DSP; gene expression omnibus, GEO; Kuffer cell, KC; LC3-associated phagocytosis, LAP; meta-analysis of histological data in viral
hepatitis, META VIR; monocyte-derived macrophage, MoMF; mononuclear phagocyte, MP; mononuclear phagocytic system, MPS; non-alcoholic fatty liver
disease, NAFLD; non-parenchymal cell, NPC;OX40 ligand, OX40L; principal component analysis, PCA; region of interest, ROI; scar-associated macrophage,
SAMac; single-cell RNA sequencing, scRNA-seq; Stimulator of interferon genes, STING; T cell immunoglobulin and mucin domain-containing protein 3, TIM3;
tissue microarray, TMA; t-distributed stochastic neighbor embedding, t-SNE; V-domain IgG suppressor of T cell activation, VISTA.

Declarations

Conflicts of interest
The authors declare that they have no conflicts of interest. The funders had no role in the study design; collection, analyses, or interpretation of data; writing of
the manuscript; or decision to publish the results.

Author Contributions:
S.H.B., P.S.S. and E.S.J were responsible for conceptualization, methodology and supervision of the overall study. J.L. and C.M.K were responsible for visualization and writing the original manuscript. H.J.W. was responsible for resources. J.H.C., J.Y.P. and Y.S.Y. were responsible for formal analysis, investigation and data curation. All authors have read and agreed to the final version of the manuscript.

Financial Support

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2020R1A2C3011569).

References

1. Cheemrelap S, Balakrishnan M. Global Epidemiology of Chronic Liver Disease. Clin Liver Dis (Hoboken). 2021;17:365–370.
2. KASL clinical practice guidelines for liver cirrhosis. Varices, hepatic encephalopathy, and related complications. Clin Mol Hepatol. 2020;26:83–127.
3. Odagiri N, Matsubara T, Sato-Matsubara M, Fuji H, Enomoto M, Kawada N. Anti-fibrotic treatments for chronic liver diseases: The present and the future. Clin Mol Hepatol. 2021;27:413–424.
4. Sung PS, Kim CM, Cha JH, Park JY, Yu YS, Wang HJ, et al. A Unique Immune-Related Gene Signature Represents Advanced Liver Fibrosis and Reveals Potential Therapeutic Targets. Biomedicines 2022;10.
5. Roehlen N, Crouch E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020;9.
6. Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60:1090–1096.
7. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–551.
8. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17:306–321.
9. Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol. 2016;13:316–327.
10. Sung PS. Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma. Clin Mol Hepatol 2021.
11. Aizaran N, Saviano A, Sagar, Mailly L, Durand S, Herman JS, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019;572:199–204.
12. MacParland SA, Liu J, Ma XZ, Innes BT, Bartczak AM, Gage BK, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 2018;9:4383.
13. Krenkel O, Hundertmark J, Ritz TP, Weiskirchen R, Tacke F. Single Cell RNA Sequencing Identifies Subsets of Hepatic Stellate Cells and Myofibroblasts in Liver Fibrosis. Cells 2019;8.
14. Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR, Henderson NC. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat Rev Gastroenterol Hepatol. 2020;17:457–472.
15. Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512–518.
16. Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020;38:586–599.
17. Nerurkar SN, Goh D, Cheung CCL, Nga PQY, Lim JCT, Yeong JPS. Transcriptional Spatial Profiling of Cancer Tissues in the Era of Immunotherapy: The Potential and Promise. Cancers (Basel) 2020;12.
18. Vathiotis IA, Yang Z, Reeves J, Toki M, Aung TN, Wong PF, et al. Models that combine transcriptomic with spatial protein information exceed the predictive value for either single modality. npj Precision Oncology. 2021;5:45.
19. Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP, Portman JR, et al. Single-Cell Transcriptomics Uncovers Zonation of Function in the Mesenchyme during Liver Fibrosis. Cell Rep. 2019;29:1832–1847.e1838.
20. Tamburini BAJ, Finlon JM, Gillen AE, Kriss MS, Riemondy KA, Fu R, et al. Chronic Liver Disease in Humans Causes Expansion and Differentiation of Liver Lymphatic Endothelial Cells. Front Immunol. 2019;10:1036.
21. Zhang L, Bansal MB. Role of Kuuppy Cells in Driving Hepatic Inflammation and Fibrosis in HIV Infection. Front Immunol. 2020;11:1086.
22. Sung PS, Park DJ, Roh PR, Mun KD, Cho SW, Lee GW, et al. Intrahepatic inflammatory IgA(+)PD-L1(high) monocytes in hepatocellular carcinoma development and immunotherapy. J Immunother Cancer 2022;10.
23. Jophlin LL, Cao S, Shah VH. The Transcriptome of Hepatic Fibrosis Revealed by Single-Cell RNA Sequencing. Hepatology. 2020;71:1865–1867.
24. Beljaars L, Schippers M, Reker-Smit C, Martinez FO, Helming L, Poelstra K, et al. Hepatic Localization of Macrophage Phenotypes during Fibrogenesis and Resolution of Fibrosis in Mice and Humans. Frontiers in Immunology 2014;5.
25. Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN, Bobryshev YV. CD68/macro2l: not just a histochemical marker. Lab Invest. 2017;97:4–13.
26. Bemsmeyer C, van der Merwe S, Périanin A. Innate immune cells in cirrhosis. J Hepatol. 2020;73:186–201.
27. Sun G, Jin H, Zhang C, Meng H, Zhao X, Wei D, et al. OX40 Regulates Both Innate and Adaptive Immunity and Promotes Nonalcoholic Steatohepatitis. Cell Rep. 2018;25:3786–3799.e3784.
28. Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, et al. Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta. 2007;1773:1196–1212.

29. Takahashi M, Li Y, Dillon TJ, Kariya Y, Stork PJS. Phosphorylation of the C-Raf N Region Promotes Raf Dimerization. Mol Cell Biol. 2017;37:e00132-00117.

30. Pokatayev V, Yang K, Tu X, Dobbs N, Wu J, Kalb RG, et al. Homeostatic regulation of STING protein at the resting state by stabilizer TOLLIP. Nat Immunol. 2020;21:158–167.

31. Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013;14:19–26.

32. Luo X, Li H, Ma L, Zhou J, Guo X, Woo SL, et al. Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice. Gastroenterology. 2018;155:1971–1984.e1974.

33. Yu Y, Liu Y, An W, Song J, Zhang Y, Zhao X. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J Clin Investig. 2019;129:546–555.

34. Wang X, Rao H, Zhao J, Wee A, Li X, Fei R, et al. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Lab Invest. 2020;100:542–552.

35. Zhao L, Yu G, Han Q, Cui C, Zhang B. TIM-3: An emerging target in the liver diseases. Scand J Immunol. 2020;91:e12825.

36. Shi Y, Wu W, Yang Y, Yang Q, Song G, Wu Y, et al. Decreased Tim-3 expression is associated with functional abnormalities of monocytes in decompensated cirrhosis without overt bacterial infection. J Hepatol. 2015;63:60–67.

37. Han G, Chen G, Shen B, Li Y. Tim-3: an activation marker and activation limiter of innate immune cells. Front Immunol. 2013;4:449.

Tables
Table 1
Baseline characteristic of enrolled patients

	Fibrosis Stage 0–2 (N = 31)	Fibrosis Stage 3–4 (N = 33)	\(P \) value**
Sex			\(0.3217\)#
Male	20 (64.52)	26 (78.79)	
Female	11 (35.48)	7 (21.21)	
Mean age (± SD)	54.23 (± 11.30)	50.91 (± 8.16)	\(0.1862\)$
Hepatitis B			\(0.6638\)#
No	10 (32.26)	8 (24.24)	
Yes	21 (67.74)	25 (75.76)	
Hepatitis C			\(0.2307\)^
No	29 (93.55)	33 (100.00)	
Yes	2 (6.45)	0 (0.00)	
Diabetes			\(0.3260\)#
No	25 (80.65)	22 (66.67)	
Yes	6 (19.35)	11 (33.33)	
BMI			\(0.0854\)#
\(\leq 25 \text{ kg/m}^2 \)	25 (80.65)	19 (57.58)	
\(>25 \text{ kg/m}^2 \)	6 (19.35)	14 (42.42)	
ALT			\(1.0000\)#
<31 (F), <41 (M) IU/L	19 (61.29)	20 (60.61)	
\(\geq 31 \text{ (F), } \geq 41 \text{ (M) IU/L} \)	12 (38.71)	13 (39.39)	
AST			\(1.0000\)#
<31 (F), <37 (M) IU/L	12 (38.71)	13 (39.39)	
\(\geq 31 \text{ (F), } \geq 37 \text{ (M) IU/L} \)	19 (61.29)	20 (60.61)	
GGT			\(0.6330\)#
<50 (IU/L)	8 (25.81)	5 (21.21)	
\(\geq 50 \text{ (IU/L)} \)	18 (58.06)	19 (75.76)	
Albumin			\(0.6444\)#
<4.0 g/dL	14 (45.16)	12 (36.36)	
\(\geq 4.0 \text{ g/dL} \)	17 (54.84)	21 (63.64)	
Platelets			\(0.5426\)#
<150 x10^9/L	9 (29.03)	13 (39.39)	
\(\geq 150 \text{ x10}^9/L \)	22 (70.97)	20 (60.61)	
Cholesterol (mmol/L)	(2)		\(0.9420\)#
<200 mg/dl	24 (77.42)	26 (78.79)	
\(\geq 200 \text{ mg/dl} \)	5 (16.13)	7 (21.21)	
Antiviral treatment			\(0.2255\)#
No	28 (90.32)	25 (75.76)	
Yes	3 (9.68)	8 (24.24)	

Data are presented as n (%), mean ± SD. SD, standard deviation; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; gamma glutamyl transferase, GGT; Hepatitis B virus, HBV; Hepatitis C virus, HCV. #Chi squared test; ^Fisher's exact test; *Wilcoxon Rank Sum Test; $Student's t-Test
Table 2
List of the differentially expressed proteins according to the fibrosis stages (F0–2 vs. F3–4)

SEQ	Protein	N	Coef	Logistic Regression	Wilcoxon test	Fold Change	F0–2 (N=31)	F3–4 (N=33)
1	CD68	64	0.006494	2.78×10⁻²	1.96×10⁻²	1.50	118.62	178.04
2	HLA.DR	64	0.021397	4.62×10⁻²	3.83×10⁻²	1.38	35.41	48.82
3	Phospho.c.RAF	64	-1.060909	4.96×10⁻²	4.43×10⁻²	-1.27	1.23	0.97
4	Cleaved.Caspase.9	64	-0.108807	3.22×10⁻²	2.59×10⁻²	-1.28	14.62	11.46
5	CD127	64	-0.487340	2.09×10⁻²	1.57×10⁻²	-1.29	3.77	2.93
6	ARG1	64	-0.006934	4.21×10⁻²	3.52×10⁻²	-1.31	200.13	152.53
7	Beta.2.microglobulin	64	-0.111744	2.84×10⁻²	2.32×10⁻²	-1.31	12.67	9.63
8	X4.1BB	64	-1.283663	1.77×10⁻²	1.22×10⁻²	-1.35	1.41	1.04
9	LAG3	64	-0.945750	4.71×10⁻²	4.05×10⁻²	-1.37	1.17	0.85
10	B7.H3	64	-0.070864	3.41×10⁻²	2.50×10⁻²	-1.46	19.21	13.17
11	VISTA	64	-0.414980	2.02×10⁻²	1.27×10⁻²	-1.50	3.58	2.39
12	Tim.3	64	-0.506081	1.91×10⁻³	3.18×10⁻⁴	-1.51	5.56	3.68
13	pan.RAS	64	-1.753749	1.46×10⁻³	6.02×10⁻⁴	-1.70	1.69	1.00
14	OX40L	64	-1.139333	8.75×10⁻³	1.76×10⁻³	-2.60	2.69	1.03
15	STING	64	-0.095850	8.76×10⁻³	4.27×10⁻³	-2.65	19.19	7.26

Abbreviation: CD68, cluster of differentiation 68; HLA.DR, human leukocyte antigen-DR isotype; ARG1, arginase 1; LAG3, lymphocyte activation gene 3; B7.H3, B7 homolog 3 protein; VISTA, V-domain IgG suppressor of T cell activation; Tim.3, T cell immunoglobulin and mucin domain-containing protein 3; OX40L, OX40 ligand; STING, stimulator of interferon genes.
Table 3
Candidate protein signatures derived from DSP

SEQ	Protein	Logistic Regression Continuous p-value	AUROC	Logistic Regression Discrete p-value	threshold	Sensitivity	Specificity
1	CD68_HLA.DR_OX40L_Phospho.c.RAF_STING_Tim.3	1.16×10⁻⁶	0.873	2.53×10⁻⁴	-3.720623	81.82	93.55
2	ARG1_B7.H3_CD127_CD68_HLA.DR_OX40L_pan.RAS_STING_Tim.3	5.19×10⁻⁷	0.894	1.37×10⁻⁴	-8.988457	87.88	83.87
3	B7.H3_CD68_HLA.DR_OX40L_Phospho.c.RAF_STING_VISTA	5.19×10⁻⁷	0.874	5.68×10⁻⁴	-4.186445	87.88	83.87
4	Beta.2.microglobulin_CD127_CD68_HLA.DR_OX40L_Tim.3	5.06×10⁻⁷	0.878	1.96×10⁻⁴	-5.086145	84.85	87.10
5	CD68_HLA.DR_OX40L_pan.RAS_STING	5.06×10⁻⁷	0.870	1.47×10⁻⁴	-3.165732	84.85	87.10

Table 4
Uni/Multi-variate logistic regression analysis of factors associated with high-grade fibrosis

Variable	n	coefficient	se(coefficient)	z	p-value
CD68_HLA-DR_OX40L_Phospho-c-RAF_STING_Tim-3 (Low vs High)	64	4.1782	0.8593	4.863	1.16×10⁻⁶
Age (≤ 55 years vs > 55 years)	64	-0.9453	0.5434	-1.740	0.0819
Sex (Male vs Female)	64	-0.7143	0.5677	-1.258	0.2080
HBV (absent vs present)	64	0.3975	0.5591	0.711	0.4770
HCV (absent vs present)	64	-16.6953	1696.7344	-0.010	0.9920
BMI (≤ 25 kg/m² vs > 25 kg/m²)	64	1.1217	0.5751	1.951	0.0511
Diabetes (absent vs present)	64	0.7340	0.5857	1.253	0.2100
ALT (< 31(F), < 41(M) IU/L vs ≥ 31(F), ≥ 41(M) IU/L)	64	0.0288	0.5127	0.056	0.9550
AST (< 31(F), < 37(M) IU/L vs ≥ 31(F), ≥ 37(M) IU/L)	64	-0.0288	0.5127	-0.056	0.9550
GGT (< 50 IU/L vs ≥ 50 IU/L)	58	0.4620	0.6028	0.766	0.4430
Albumin (< 4.0 g/dL vs ≥ 4.0 g/dL)	64	0.3655	0.5111	0.715	0.4750
Platelets (< 150 x10⁹/L vs ≥ 150 x10⁹/L)	64	-0.4630	0.5324	-0.870	0.3840
Cholesterol (< 200 mg/dL vs ≥ 200 mg/dL)	62	0.2564	0.6504	0.394	0.6930

Variable	coefficient	Odds ratio (95% CI)	p-value
CD68_HLA-DR_OX40L_Phospho-c-RAF_STING_Tim-3 (Low vs High)	4.7241	112.63 (15.45-821.07)	3.15×10⁻⁶
BMI (≤ 25 kg/m² vs > 25 kg/m²)	2.1585	8.66 (1.37–54.91)	0.0220

Abbreviation: Hepatitis B virus, HBV; Hepatitis C virus, HCV; body mass index, BMI; ALT, alanine aminotransferase; AST, aspartate aminotransferase; gamma glutamyl transferase, GGT.
Figure 1
Flow chart of the DSP analysis and the single cell-DSP matching.

Figure 2
Multiplexed DSP of protein expression level according to the fibrosis stage. A) Representative ROIs according to the fibrosis stage. Each core was stained with CD3 (red), CD68 (yellow) and SMA (green) antibodies. B) Volcano plot describing the differentially expressed proteins in portal CD68+ areas between fibrosis stages 0-2 and stages 3-4. Proteins that are highly expressed in early stage fibrosis are indicated by red dots (TIM3, pan-RAS, OX40L, and STING) whereas proteins that are highly expressed in advanced stage fibrosis are indicated by blue dots (HLA-DR and CD68).

Figure 3

Combined analysis of scRNA-seq with DSP. A) Reconstituted t-SNE graph for intrahepatic MPs using GEO datasets (GSE136103). B) Marking differentially expressed proteins between early stage fibrosis and advanced stage fibrosis from DSP data to reconstituted t-SNE graph. Left panel is the graph that marked proteins highly expressed in F0-2, and right panel is the graph that marked proteins highly expressed in F3-4. C) Scaled gene expression across every cluster of MPs. D) Gene expression analysis with snap-frozen liver tissues using NanoString nCounter expression analysis. The expression levels of CD68, CD74, TREM2, and CD9 were compared between livers with early fibrosis and advanced fibrosis. Significance was indicated with **p value<0.01, ***p value<0.001.