The concept of ‘Cancer immunoediting’ has been refined, along with the understanding of the dual host-protective and tumor sculpting actions of immunity. This process is comprised of three phases, termed the ‘3 Es of Cancer immunoediting’: Elimination, Equilibrium, and Escape. Through these phases, tumor immunogenicity is edited, and immunosuppressive mechanisms that enable disease progression are acquired. Therefore, the clinical presence of a tumor suggests a failure in elimination, and progression to equilibrium or escape. Various forms of immunotherapies (e.g. vaccines, delivering effector cells, immune checkpoint blocking antibodies) are currently designed to shift the balance from equilibrium and escape to elimination. Yet, only a small proportion of patients may actually benefit from these treatment options as malignancies either respond poorly or are completely resistant. The precise timing of immunotherapy administration in combination with traditional cytotoxic approaches, as well as treatment duration, are still elusive and will require further optimization depending on the mechanisms of immune therapy.

How to synergize radiation and immunotherapy?

Optimal approaches to achieve tumor elimination will involve therapeutic combinations to promote immune activation and T cell priming, suppress immunosuppressive signals in the tumor microenvironment and sustain the presence of T cells within the tumor tissue. It is then tempting to tailor immunotherapies with RT to synergize innate and adaptive immunity against cancer cells as well as to bypass immune tolerance and exhaustion. While a plethora of ongoing clinical trials is presently assessing the efficacy and the safety of these combinations, the rationale of these associations is based mainly on few preclinical data and relies on individual properties of each modality. Nonetheless, from an arithmetic progression point of view, one can wonder whether the clinical potential of the radiotherapy–immunotherapy
combination should be defined as ‘5R + 3E’, suggesting an additive effect of the combo, or whether it should be further specified as ‘5R × 3E’, arguing that radio-immunotherapy acts in a synergistic manner. In this context, there are many logistical aspects that should be considered in order to better exploit the 5R and to unleash the 3E. At the time of confluence of radiotherapy with immunotherapy, are we at an inflection point for the use of conventional RT?

(1) At the level of fractionation and total dose: is daily irradiation obsolete and should it be substituted by hypofractionated schemes for longer periods or lower doses? In this combination setting, is there any rationale to maintain standard widths of margins?

(2) At the level of radiation delivery: should we expect more clinical benefit from particle-beam therapy using protons or carbon ions? There is some evidence showing that charged particles may be more immunogenic than photons because these species may distinctly mobilize cell death pathways and damage response pathway induction.

(3) At the level of site irradiation: is it time to abandon single site irradiation to move towards gross irradiation when multiple disease sites are present? Is the irradiation of draining lymph nodes optimal for triggering the immunogenic effects of radiation?

(4) At the level of immune activation: should sequential combinations of immunomodulators with RT be planned? Should we trigger immunogenic responses through partial tumor irradiation?

Many questions await answers such that we must ‘RE’-visit or ‘RE’-invent our basic principles of RT to guide innovative therapies capable of improving local tumor response to RT and of enhancing the abscopal effect through an in situ vaccination, as RT could act as a systemic treatment against distant metastasis.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Conflict of interest statement
The authors declare that there is no conflict of interest.

ORCID iD
Elisabeth Daguenet https://orcid.org/0000-0002-6101-1016

References
1. Steel GG, McMillan TJ and Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol 1989; 56: 1045–1048.
2. Burnette B and Weichselbaum RR. Radiation as an immune modulator. Semin Radiat Oncol 2013; 23: 273–280.
3. Schreiber RD, Old LJ and Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011; 331: 1565–1570.
4. Weichselbaum RR, Liang H, Deng L, et al. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 2017; 14: 365–379.
5. Tubin S, Popper HH and Brcic L. Novel stereotactic body radiation therapy (SBRT)-based partial tumor irradiation targeting hypoxic segment of bulky tumors (SBRT-PATHY): improvement of the radiotherapy outcome by exploiting the bystander and abscopal effects. Radiat Oncol 2019; 14: 21.