Revascularization of a Nonvital, Immature Permanent Tooth Using Amniotic Membrane: A Novel Approach

NB Nagaveni1, P Poornima2, Meghna Bajaj3, Mebin G Mathew4, Ashu J Soni5

ABSTRACT

Aim: To evaluate the clinical and radiological results of a revascularization treatment done in a nonvital, immature permanent tooth using the amniotic membrane.

Case description: A 12-year-old boy reported with a complaint of pain in the lower left back tooth since 1 month due to dental caries. On clinical examination, the mandibular left second premolar was tender on percussion and discolored due to dental caries. Radiographic examination of the same tooth revealed open apex, thin root dentinal walls, and periodontal ligament widening. An access opening was prepared, necrotic pulp extirpated completely followed by thorough irrigation. After drying the canal, closed dressing with the 3-mix antibacterial paste was given for 15 days. After 15 days, the paste was removed and the amniotic membrane was placed inside the canal extending 1 mm beyond the apex and mineral tri-oxide aggregate was placed over this followed by sealing of the cavity. The patient was followed up at 1, 3, and 6 months for clinical and radiographic evaluation.

Conclusion: After 6 months, clinically the tooth found asymptomatic. Radiographic examination showed continued root elongation, closure in the periapical opening, thick root dentinal walls with narrowing of the canal space, and normal periodontal architecture.

Clinical significance: Amniotic membrane can be used as a scaffold for revascularization in nonvital immature teeth.

Keywords: Amniotic membrane, Immature teeth, Pulp necrosis, Revascularization.

International Journal of Clinical Pediatric Dentistry (2019): 10.5005/jp-journals-10005-10005

INTRODUCTION

Dental caries or trauma to the permanent teeth leading to pulp necrosis and cessation in root development is the most commonly seen clinical problem in younger children. Arrest in root growth makes the tooth with open apex, fragile root dentin walls, and poor crown–root ratio which all together pose a great challenge in the management of such teeth.1 Revascularization is the proven therapy in the treatment of immature, necrotic teeth and which needs three pivotal components like signaling molecules, stem cells, and a physical scaffold for its success.2 Different authors have used various scaffolds like natural blood clot,3–5 platelet-rich plasma,6 or platelet-rich fibrin7–8 for a revascularization procedure. However, these physical scaffolds are found with various pitfalls and contradictory issues.

Amnion is a membrane surrounding the amniotic sac that has been widely used in the field of tissue engineering as it satisfies the biological properties of scaffold material.3,10 Literature review showed no data pertaining to the application of amniotic membrane for pulp revascularization therapy. Therefore, the aim of this paper is to present a case of revascularization done in an immature, nonvital premolar tooth using amniotic membrane as a new scaffold material.

CASE DESCRIPTION

A 12-year-old boy reported to the Department of Pedodontics and Preventive Dentistry complaining of pain in the lower left back tooth since 1 month. On intraoral examination, the mandibular left second premolar had a deep caries involving pulp with mild discoloration and the tooth was tender on percussion. The medical status was noncontributory. The tooth did not respond to cold and electric pulp tests and also exhibited deep periodontal pocket on the distal side. On intraoral periapical radiographic examination, the same tooth revealed deep intrabony defect on the distal side. The tooth also showed an immature root, thin dentinal walls, and open apex.
Amniotic membrane in revascularization procedure

Fig. 1: Picture of amniotic membrane

The ammion is a membrane developing from the fetal tissue consisting of three important layers such as an epithelial layer, a basement membrane, and an avascular mesenchyme. It does not contain nerves, lymphatics, or muscles and could be easily separated from the underlying chorion. Human-derived placental tissues are rich in regenerative cytokines and have been studied in randomized clinical trials and showed potential for healing of chronic wounds. This membrane has been extensively used in the field of tissue engineering because of the favorable biological properties for being a scaffolding material.

The first usage of the fetal membrane was done by Davis in 1910 for the transplantation of skin. As the technology in processing and storage methods improved over the time, the use of the amniotic membrane revolutionized in various fields of medicine like for reconstruction of the bladder and the vagina, in the treatment of burns, tympanoplasty, and arthroplasty. Pertaining to dentistry, this multipurpose membrane has been used extensively in the field of periodontics, prosthodontics, and oral and maxillofacial surgery. However, there is an absence of documentation regarding the use of this membrane as a scaffold material for the regenerative endodontic procedures. This tempted us to use the amniotic membrane in revascularization of the necrotic premolar of the patient described here.

In contrast to previous studies, we used the amniotic membrane as a scaffold material for revascularization of the pulp tissue in a necrotic, immature tooth as it is a therapeutic potential for soft tissue repair and hard tissue regeneration. It contains many key proteins such as laminin, proteoglycans, fibronection, collagen types IV, V, and VII, and glycosaminoglycans. It contains a variety of cytokines like vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, and transforming growth factor beta. Another advantageous property of this tissue as an ideal physical scaffold is that it not only provides a matrix for cellular migration and proliferation but also encourages soft tissue healing. Moreover, it is a nonimmunogenic,
Amniotic membrane in revascularization procedure

reduces inflammation, has antibacterial properties, reduces pain at the site of application, and acts as a natural biological barrier. All these properties together make it an interesting biological approach for the application in regenerative endodontic therapy.

On radiographic evaluation, the necrotic premolar treated with the amniotic membrane showed excellent root lengthening, continued thickening of dentinal walls, and regression in the periodontal widening and favorable periapical closure after 6 months. Reasons for this success could be attributed to the presence of angiogenic growth factors retaining biological activity, promotes amplification of angiogenic cues by inducing endothelial cell proliferation and migration and by upregulating the production of endogenous angiogenic growth factors by endothelial cells, and can support the formation of blood vessels. In addition to this, Chen et al. also showed that the amniotic membrane matrix is capable of providing a preferential environment for driving the osteogenic differentiation of human dental apical papilla cells with proven stem cell characteristics. This membrane potentiates the induction effect of osteogenic supplements such as ascorbic acid, β-glycerophosphate, and dexamethasone and enhances the osteogenic differentiation of apical papilla cells. Therefore, as no bleeding was induced in the present case, we can firmly state whatever the further root growth occurred is due the presence of amniotic membrane within the canal.

From this case, it is evident that an amniotic membrane is a promising pulp care therapeutic matrix with the potential to promote revascularization and tissue healing within poorly vascularized immature, nonvital teeth. This case paves a way for further researches for its application in regenerative endodontic treatment. However, a large number of clinical trials exploring the potential of this scaffold are highly essential in comparison with other scaffold materials before to testify it a boon for regenerative endodontic therapy.

References

1. Rafter M. Apexification: a review. Dent Traumatol 2005;21:1–8. DOI: 10.1111/j.1600-9657.2004.00284.x.
2. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod 2004;30:196–200. DOI: 10.1016/S0099-2399(04)00003-0.
3. Cotti E, Mereu M, et al. Regenerative treatment of an immature, traumatized tooth with apical periodontitis: report of a case. J Endod 2008;34:611–616. DOI: 10.1016/j.joen.2008.02.029.
4. Huang GT, Sonoyama W, et al. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 2008;34:645–651. DOI: 10.1016/j.joen.2008.03.001.
5. Jadhav G, Shah N, et al. Revascularization with and without platelet-rich plasma in nonvital, immature teeth: a pilot clinical study. J Endod 2012;38:1581–1587. DOI: 10.1016/j.joen.2012.09.010.
6. Keswani D, Pandey RK. Revascularization of an immature tooth with a necrotic pulp using platelet-rich fibrin: a case report. Int Endod J 2013;46:1016–1014. DOI: 10.1111/iej.12107.
7. Geeta IB, Galagali G, et al. A natural mellorator: revolutionary tissue engineering in endodontics. J Clin Diagn Res 2013;7:2644–2646. DOI: 10.1820/jcdr.2013.6915.3638.
8. Hotwani K, Sharma K. Platelet rich fibrin – a novel acumen into regenerative endodontic therapy. Rest Dent Endod 2014;39:1–6. DOI: 10.5395/rde.2014.39.1.1.
9. Chen YJ, Chung MC, et al. The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signalling in human dental apical papilla cells. Biomaterials 2010;31:455–463. DOI: 10.1016/j.biomaterials.2011.09.065.
10. Kubo M, Sonoda Y, et al. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 2001;42:1539–1546.
11. Ahn J, Pogrel MA. The effects of 2% lidocaine with 1:100,000 epinephrine on pulpal and gingival blood flow. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:197–202. DOI: 10.1016/S1079-2104(98)90426-7.
12. El Ashiry EA, Farsi NM, et al. Dental pulp revascularization of necrotic permanent teeth with immature apices. J Clin Pediatr Dent 2016;40:361–366.
13. Ilanchevan S, Moodley Y, et al. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 2009;30:2–10. DOI: 10.1016/j.placenta.2008.09.009.
14. John T. Human amniotic membrane transplantation: past, present and future. Ophthalmol Clin North Am 2003;16:43–65. DOI: 10.1016/S0896-1549(02)00110-4.
15. Niknejad H, Peirovi H, et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 2008;15:88–99. DOI: 10.22203/eCM.v015a07.
16. Steed DL, Trumper C, et al. Amnion-derived cellular cytokine solution: a physiological combination of cytokines for wound healing. Eplasty 2008;8:e18.
17. Fetterolf DE, Snyder RJ. Scientific and clinical support for the use of dehydrated amniotic membrane in wound management. Wounds 2012;24:299–307.
18. Ghabhroudi AA, Khorsand A, et al. Comparison of amnion allograft with connective tissue graft for root coverage procedures: a double-blind, randomized, controlled clinical trial. J Int Acad Periodontol 2013;15:101–112.
19. Faulk WP, Matthews R, et al. Human amnion as an adjunct in wound healing. Lancet 1980;1:1156–1158. DOI: 10.1016/S0140-6736(80)91617-7.
20. Toda A, Okabe M, et al. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharma Sci 2007;105:215–228. DOI: 10.1254/jps.20070034.
21. Uberti MG, Pierpont YN, et al. Amnion-derived cellular cytokine solution (ACCS) promotes migration of keratinocytes and fibroblasts. Annals Plastic Surg 2010;64:632–635. DOI: 10.1097/SAP.0b013e3181c39351.
22. Russo A, Bonci PL, et al. The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane. Cell Tissue Bank 2012;13:353–361. DOI: 10.1007/s10561-011-9261-5.
23. Forbes J, Fetterolf DE. Dehydrated amniotic membrane allografts for the treatment of chronic wounds: a case series. J Wound Care 2012;21:294–296. DOI: 10.12968/jowc.2012.21.6.290.
24. Kothari CR, Goudar G, et al. Use of amnion as a graft material in vestibuloplasty: a clinical study. Br J Oral Maxillofac Surg 2012;50:545–549. DOI: 10.1016/j.bjoms.2011.09.022.
25. Rohleder NH, Loefffelbein DJ, et al. Repair of oronasal fistulae by interposition of multilayered amniotic membraneallograft. Plast Reconstr Surg 2013;132:172–181. DOI: 10.1097/PRS.0b013e3182910b50.
26. Koike T, Yasuo M, et al. Cultured epithelial grafting using human amniotic membrane: the potential for using human amniotic epithelial cells as a cultured oral epithelium sheet. Arch Oral Biol 2011;56:1170–1176. DOI: 10.1016/j.archoralbiol.2011.04.009.
27. Karaman M, Tuncel A, et al. Amniotic membrane covering for facial nerve repair. Neural Regen Res 2013;8(11):975–982. DOI: 10.3969/j.issn.1673-5374.2013.11.002.
28. Tsuno H, Ari N, et al. Intracanal application of hyperdry amniotic membrane to surgically exposed bone surface. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2014;117(2):e83–e87. DOI: 10.1016/j.oooo.2012.05.014.
29. Brian G. A novel dehydrated amnion allograft for use in the treatment of gingival recession: an observational case series. J Implants Advan Clin Dent 2009;11:1–6. DOI: 10.5005/jp-journals-10004-1009.
30. Tsuno H, Ari N, et al. Intracanal application of hyperdry amniotic membrane to surgically exposed bone surface. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2014;117(2):e83–e87. DOI: 10.1016/j.oooo.2012.05.014.
31. Koob TJ, Rennert R, et al. Biological properties of dehydrated human amnio/chorion composite graft: implications for chronic wound healing. Int Wound J 2013;10:493–500. DOI: 10.1111/iwj.12140.