LETTER

Carbon accumulation in Amazonian floodplain lakes: A significant component of Amazon budgets?

Luciana M. Sanders,1,2* Kathryn H. Taffs,1 Debra J. Stokes,3 Christian J. Sanders,2 Joseph M. Smoak,4 Alex Enrich-Prast,5 Paul A. Macklin,2 Isaac R. Santos,2 Humberto Marotta6,7

1Southern Cross Geoscience, Southern Cross University, Lismore, New South Wales, Australia; 2National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia; 3Marine Ecology Research Centre, Southern Cross University, Lismore, New South Wales, Australia; 4Department of Environmental Science, University of South Florida, St. Petersburg, Florida, USA; 5Department of Environmental Change, Linköping University, Linköping, Sweden; 6Ecosystems and Global Change Laboratory (LEMG-UFF) / International Laboratory of Global Change (LINCGlobal), Biomass and Water Management Research Center (NAB-UFF), Graduated Program in Geosciences (Environmental Geochemistry), Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil; 7Sedimentary and Environmental Processes Laboratory (LAPSA-UFF), Department of Geography, Graduated Program in Geography, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil

Abstract

The Amazon floodplains cover approximately 10% of the Amazon Basin and are composed of predominantly anoxic sediments that may store large amounts of carbon. Our study combines 210Pb derived sedimentation rates from four recently analyzed sediment cores (n = 4) with previously published organic carbon (OC) burial estimates (n = 18) to provide a broad, first order estimate of carbon accumulation in Amazon floodplain lakes. The OC burial rates were 266 ± 57 g C m⁻² yr⁻¹. This rate is several folds greater than those reported for lakes in arctic, boreal, temperate, and tropical regions. The large amount and spatial variation of OC burial rates in these floodplain lakes highlights the need for increased sampling efforts to better measure these potentially important components of the Amazon Basin carbon budget.

*Correspondence: l.sanders.13@student.scu.edu.au

Author Contribution Statement: LMS, KT, DS, CJS and HM designed and planned study; AEP and HM performed the sampling in the field; LMS, CJS, PAM, and JMS did the laboratory analysis; PAM made Fig. 1. LMS wrote the paper. All authors reviewed and edited the manuscript.

Data Availability Statement: Data are available in the Figshare repository at https://figshare.com/s/627a46f1183ed8a65724.

Additional Supporting Information may be found in the online version of this article.

This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
The forest of the Amazon Basin assimilates 14% of the world’s CO₂ via annual gross photosynthesis (Song-Miao et al. 1990; Zhao and Running 2010). Much of this organic matter remains within the Amazon Basin as plant biomass and soil carbon (Moreira-Turcq et al. 2004; Junk 2013; Zocatelli et al. 2013; Espírito-Santo et al. 2014). Indeed, almost half of the carbon across the Amazon Basin may be stored underground as roots and soils (Zhao and Running 2010; Espírito-Santo et al. 2014; Whitaker et al. 2014). During periods of intense rain and flooding, organic material is exported from catchments via leaching and runoff (Mayorga et al. 2005; Ward et al. 2013). Rivers within the Amazon Basin carry megatons of organic material, a large portion of which is deposited on the floodplains and in floodplain lakes when the seasonal flooding subsides (Hedges et al. 1986; Aalto et al. 2003; Moreira-Turcq et al. 2004; Mortillaro et al. 2012; Moreira-Turcq et al. 2013; Sobrinho et al. 2016). As a result, the floodplains and their lakes may be significant carbon sinks in the Amazon Basin because of slow organic material decomposition in mostly anaerobic sediments (Mertes 1994; Hamilton et al. 2002; Dong et al. 2012; Ferland et al. 2014).

Floodplain lakes are inundated year-round and behave as organic matter producers as well as potential carbon storage systems along the Amazon Basin (Moreira-Turcq et al. 2004; Dong et al. 2012; Getirana and Paiva 2013). Although the importance of floodplains for carbon cycling has been addressed (Zocatelli et al. 2013; Abril et al. 2014; Marotta et al. 2014), the contribution of the Amazon floodplain lakes to the Amazon, and therefore the global carbon cycle, has not been taken into full consideration (Abril et al. 2014). Our objective of this study was to quantify and compile measures of organic carbon (OC) burial rates in a wide range of Amazonian floodplain lakes along gradients of size and location and compare them to published values from other lakes across the globe. The dataset includes floodplain lakes of various sizes, positioned in close proximity to the major rivers of the Amazon Basin (Madeira, Negro, Amazon, Tapajós and Solimões Rivers; Fig. 1) and in regions within the major water types (white, black, and clearwater; Table 1). All OC burial rate estimates included in this dataset are based on sediment accumulation rates derived from 210Pb dating methods, representing the past century.

Methods

Sediment cores from our 2012 field survey were collected in four floodplain lakes within the Amazon Basin (Table 1). The dataset included in this work include these cores from our own survey (n = 4) and carbon accretion rates reported in the literature (n = 18), encompassing a broad range of floodplain lakes in the Amazon Basin. The total dataset of 22 cores include sampling locations in proximity to the major rivers of the Basin (e.g., Madeira, Solimões, Amazon, Negro, and Tapajós), which also represent three different river water types (white, black, and clearwater; Table 1).
The four sediment cores in our own survey (Table 1) were collected with a 7 cm diameter and 50 cm (length) acrylic tube by means of percussion and rotation to minimize compression. Sediment cores were then sectioned in 2 cm intervals in the field until the bottom of each core (~ 40 cm depth). The sediment cores were subsequently analyzed for radionuclide concentrations in an HPGe gamma detector and sediment dates were calculated using the 210Pb dating method (Appleby and Oldfield 1992).

Freeze dried and ground sediments were packed and sealed in gamma tubes. The 210Pb and 226Ra activities were calculated by using a factor that includes the gamma detector efficiency, as previously determined from certified reference material IAEA-300 (Baltic Sea Sediment) and the gamma-ray intensity. The 210Pb and 226Ra activities were measured using the 46.5 KeV and 351.9 KeV gamma peaks, respectively. Prior to radionuclide measurements, samples were set aside for at least 3 weeks, to allow for 222Rn to ingrow and establish secular equilibrium between 226Ra and its granddaughter 214Pb. The excess 210Pb activities were determined by subtracting the 226Ra concentrations (i.e., supported 210Pb) from the total 210Pb concentrations. The sediment accumulation rates (cm yr$^{-1}$), taken from the 210Pb constant initial concentration (CIC) dating method, and the dry bulk density (g cm$^{-3}$) in each interval (cm) were used to determine mass accumulation rates (Appleby and Oldfield 1992). OC was determined either through the dry combustion method at 550°C for 2 h, using a conversion factor of 1.724 (Schumacher 2002) and/or Flash Elemental Analyzer, along with a ratio mass spectrometer (IRMS) (Thermo Fisher Delta) (see Table 1). OC accumulation rates were determined from the sediment accretion rates (cm yr$^{-1}$), dry bulk densities (g cm$^{-3}$) and OC content, following procedures detailed elsewhere (Sanders et al. 2016).

Our dataset compilation includes work that contained the minimal parameters to determine carbon burial rates in the Amazon floodplain lakes. Carbon burial data was taken from peer reviewed literature that used the 210Pb dating method and that contained organic material or OC content data along with dry bulk densities (Table 1). We found a total of 18 sediment cores from four peer reviewed papers that contained these parameters (Table 1). An analysis of variance at a confidence level of 0.05 was performed to test whether types of lakes were different. Once differences were encountered, a two tailed Tukey-Kramer was performed to separate individual pairs of lake types at 95% level of confidence.

There are currently no accurate estimates on floodplain lake areal extents. However, of the approximately 840,000 km2 of the Amazon floodplain wetlands, between 56,000 and 73,000 km2 may be classified as permanently

Table 1. Description of samples used to calculate average organic carbon burial in floodplain lakes of the Amazon Basin. Refer to the Supporting Information Metadata and Figure 1 for location of sites.

Site	Core id	Main river	Water type	Soil OC (%)	OC burial (g m$^{-2}$ yr$^{-1}$)	OC method	Source
Santa Ninha	TA11	Amazon	White water	0.8	91	IRMS	Cordeiro et al. (2008)
Calado Site 1a		Solimoes	Black water	12.6	70	CHN analyzer	Smith et al. (2002)
Calado Site 3a		Solimoes	Black water	6.8	49	CHN analyzer	Smith et al. (2002)
Calado Site 4a		Solimoes	Black water	2.2	25	CHN analyzer	Smith et al. (2002)
Calado Site 1b		Solimoes	Black water	12.5	55	CHN analyzer	Smith et al. (2002)
Calado Site 3b		Solimoes	Black water	6.7	56	CHN analyzer	Smith et al. (2002)
Calado Site 4b		Solimoes	Black water	2.3	11	CHN analyzer	Smith et al. (2002)
Pacoval Site 1a	PA02	Amazon	White water	1.5	100	IRMS	This work
Lago Verde Site	PA09	Tapajos	Clear water	3.7	475	IRMS	This work
Acarabixi Site 1	PA04	Negro	Black water	25.0	265	IRMS	Cordeiro et al. (2008)
Demaracao Site 1		Machado	Black water	6.9	500	LOI	This work
Cristalino Site		Negro	Black water	2.5	28	CHN analyzer	Devol et al. (1988)
Jacaretinga Site		Madeira	White water	2.5	43	CHN analyzer	Devol et al. (1988)
Paca Site 1		Jamari	Clear water	7.8	193	LOI	This work
Paca Site 2	2B	Jamari	Clear water	9.4	385	LOI	Bonotto and Vergotti (2015)
Araca Site 1	3B	Jamari	Clear water	5.7	1123	LOI	Bonotto and Vergotti (2015)
Brasileira Site	4B	Jamari	Clear water	5.0	260	LOI	Bonotto and Vergotti (2015)
Tucunare Site	5B	Jamari	Clear water	3.6	551	LOI	Bonotto and Vergotti (2015)
Nazare Site 1	6B	Madeira	Black water	3.5	158	LOI	Bonotto and Vergotti (2015)
Conceicao Site 1	7B	Madeira	Black water	7.7	662	LOI	Bonotto and Vergotti (2015)
S. Catarina Site	8B	Madeira	Black water	6.1	390	LOI	Bonotto and Vergotti (2015)
Demaracao Site 2	9B	Machado	Black water	7.6	365	LOI	Bonotto and Vergotti (2015)
flooded open water systems during low and high waters, respectively (Hess et al. 2015). In order to provide conservative upscaling to the entire Amazon, we assumed a minimum permanently flooded open water area (56,000 km²) to represent a broad, first order estimate of the Amazon floodplain lake areal extent.

Results and discussion

A downcore decrease in 210Pb activity was found in the four sediment cores from the surface to a depth of 29 cm (Fig. 2). Estimated OC burial rates from these cores ranged from 100 g m$^{-2}$ yr$^{-1}$ to 500 g m$^{-2}$ yr$^{-1}$ (Table 1). We combined our OC burial rates with those reported in other Amazon studies, giving an average rate of 266 (± 57) g C m$^{-2}$ yr$^{-1}$ over the past century, with median and geometric means at 175 g C m$^{-2}$ yr$^{-1}$ and 145 g C m$^{-2}$ yr$^{-1}$, respectively. The OC burial rates values ranged from 11 g C m$^{-2}$ yr$^{-1}$ to 1123 g C m$^{-2}$ yr$^{-1}$, with a true population mean from 154 to 378 (95% C.I.). These rates are several fold greater and significantly higher (Tukey-Kramer; $p < 0.05$) than those reported for lakes in other climatic regions, including arctic (Sobek et al. 2009), boreal (Ferland et al. 2014), temperate (Dietz et al. 2015) and tropical (Alcocer et al. 2014) lakes (6 g C m$^{-2}$ yr$^{-1}$, 2 g C m$^{-2}$ yr$^{-1}$, 33 g C m$^{-2}$ yr$^{-1}$, and 24 g C m$^{-2}$ yr$^{-1}$, respectively) (see Fig. 3 for details), and in subtropical floodplain lakes (15 g C m$^{-2}$ yr$^{-1}$) (Dong et al. 2012). Therefore, in spite of large spatial variability, OC burial rates in the Amazon lakes are clearly several fold greater than those reported for other lacustrine systems worldwide (Fig. 3).

The data used for this study includes carbon burial rates in the main regions of the Amazon Basin, including lakes associated with whitewater ($n = 3$), blackwater ($n = 13$ cores), and clearwater ($n = 6$) river floodplains (Table 1). Our results show that lakes of the floodplain of white, black and clearwater rivers accumulated carbon at a rate of 78 ± 14, 203 ± 57 and 498 ± 124 (SE) g C m$^{-2}$ yr$^{-1}$, respectively (Fig. 3B). Clearwater floodplain lakes had significantly higher carbon burial rates than black and white water lakes (Tukey-Kramer; $p < 0.05$). Black and white river floodplain lakes were not significantly different ($p > 0.05$). Delineating the regions of different lake types is essential for decreasing uncertainty in calculating carbon burial in Amazon floodplain lakes. For instance, whitewater lakes contain large amounts of dissolved minerals and suspended particulates that originates from the Andes mountain range (Junk et al. 2015). These
waters are rich in clay, high in nutrients and very fertile (Guyot et al. 2007). In contrast, blackwater rivers originate from tropical forest runoff, and are high in humic material, have a low pH, suspended matter and are poor in nutrients (Abril et al. 2014). Clearwater rivers are considered intermediate in terms of fertility due to the low concentrations of dissolved minerals (Junk 2013) as these highly transparent waters drain regions of relatively low soil erosion.

Upscaling these OC burial rates to the Amazon Basin area is very challenging because of large uncertainties in the area of the lakes, their ephemeral nature and the variable sequestration rates reported in the literature. In order to provide conservative upscaling, we assumed a minimum Amazon floodplain lake area of 56,000 km². This estimate is related to a conservative value for open water systems during low waters, and does not include small lakes due to image resolution issues (Hess et al. 2015). Using this conservative first order estimate, Amazon floodplain lakes accumulate approximately 15 Tg yr⁻¹ of OC. While the permanent lakes included here are likely to have greater OC burial rates than ephemeral floodplains surrounding the lakes, some carbon is also expected to accumulate on the ephemeral floodplains not included in our upscaling exercise.

In summary, this study has established that the floodplain lakes located within the Amazon Basin accumulate significant quantities of carbon compared to other freshwater lakes, and are an important component of the carbon cycle in the Amazon Basin. However, our dataset cannot establish local variability in burial rates and the large variability likely reflects this dynamic system (Constantine et al. 2014). Indeed, OC burial may be driven by lake morphology (Blais and Kalff 1995), but very little information is available on lake morphology of the Amazon floodplain lakes. Our first order estimate implies that Amazon floodplain lakes may accumulate 266 (± 57 (SE) g C m⁻² yr⁻¹ which is in the same range as the net carbon sink of the Amazon forests (270 g C m⁻² yr⁻¹) (Ometto et al. 2005), and carbon evasion, CO₂ and CH₄ degassing, from the Amazon rivers and wetlands (120 g C m⁻² yr⁻¹) (Richey et al. 2002; Abril et al. 2014). The high OC burial rates of these floodplain lakes indicate that even though these systems only represent about 1% of the total Amazon Basin area, they may contribute disproportionately to the overall Amazon, and therefore, global carbon cycle. Because of the small sample size currently available (n = 22 lakes; Table 1), additional datasets are required to refine our estimates and decrease uncertainty when upscaling carbon burial rates.

References

Aalto, R., L. Maurice-Bourgoin, T. Dunne, D. R. Montgomery, C. A. Nittouer, and J. L. Guyot. 2003. Ephemeral sediment accumulation on Amazonian flood plains influenced by El Niño/Southern Oscillation. Nature 425: 493–497. doi:10.1038/nature02002

Abril, G., and others. 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505: 395–398. doi: 10.1038/nature12797

Alcocer, J., A. C. Ruiz-Fernández, E. Escobar, L. H. Pérez-Bernal, L. A. Oseguera, and V. Ardiles-Gloria. 2014. Deposition, burial and sequestration of carbon in an oligotrophic, tropical lake. J. Limnol. 73: 21–33. doi:10.4081/jlimnol.2014.783

Appleby, P. G., and F. Oldfield. 1992. Application of lead-210 to sedimentation studies, p. 731–783. In M. Ivanovich and S. Harmon [eds.], Uranium series disequilibrium: Application to earth, marine and environmental science. Oxford Science Publications.

Blais, J. M., and J. Kalff. 1995. The influence of lake morphometry on sediment focusing. Limnol. Oceanogr. 40: 582–588. doi:10.4319/lo.1995.40.3.0582

Bonotto, D. M., and M. Vergotti. 2015. 210Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil. Appl. Radiat. Isot. 99: 5–19.

Constantine, J. A., T. Dunne, J. Ahmed, C. Legleiter, and E. D. Lazarus. 2014. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7: 899–903. doi:10.1038/ngeo2282

Cordeiro, R. C., B. Turcq, K. Suguiol, A. Oliveira da Silva, A. Sifeddine, and C. Volkmer-Ribeiro. 2008. Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with paleoclimate. Glob. Planet. Change 61: 49–62.

Devol, A. H., J. E. Richey, W. A. Clark, S. L. King, and L. A. Martinelli. 1988. Methane emissions to the troposphere from the Amazon floodplain. J. Geophys. Res. 93: 1583–1592.

Dietz, R. D., D. R. Engstrom, and N. J. Anderson. 2015. Patterns and drivers of change in organic carbon burial across a diverse landscape: Insights from 116 Minnesota lakes. Glob. Biogeochem. Cycles 29: 708–727. doi:10.1002/2014GB004952

Dong, X., N. J. Anderson, X. Yang, X. Chen, and J. Shen. 2012. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Glob. Change Biol. 18: 2205–2217. doi:10.1111/j.1365-2486.2012.02697.x

Espírito-Santo, F. D. B., and others. 2014. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 5: 1–6. doi:10.1038/ncomms4434

Ferland, M. E., Y. T. Prairie, C. Teodoru, and P. A. Del Giorgio. 2014. Linking organic carbon sedimentation, burial efficiency, and long-term accumulation in boreal lakes. J. Geophys. Res. Biogeosci. 119: 836–847. doi:10.1002/2013JG002345
Getirana, A. C. V., and R. C. D. Paiva. 2013. Mapping large-scale flood flow hydraulics in the Amazon Basin. Water Resour. Res. 49: 2437–2445. doi:10.1002/wrcr.20212

Guyot, J. L., J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillot, and C. Lagane. 2007. Clay mineral composition of river sediments in the Amazon Basin. Catena 71: 340–356. doi:10.1016/j.catena.2007.02.002

Hamilton, S. K., S. J. Sippel, and J. M. Melack. 2002. Comparison of inundation patterns among major South American floodplains. J. Geophys. Res. Atmos. 107: 5–1–5–14. doi:10.1029/2000JD000306

Hedges, J. I., W. A. Clark, P. D. Quay, J. E. Richey, A. H. Devol, and U. D. M. Santos. 1986. Compositions and fluxes of particulate organic material in the Amazon River. Limnol. Oceanogr. 31: 717–738. doi:10.4319/lo.1986.31.4.0717

Hess, L. L., J. M. Melack, A. G. Affonso, C. Barbosa, M. Gastill-Buhl, and E. M. L. Novo. 2015. Wetlands of the lowland Amazon Basin: Extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic-aperture radar. Wetlands 35: 745–756. doi:10.1007/s13157-015-0666-y

Junk, W. J. 2013. Current state of knowledge regarding South America wetlands and their future under global climate change. Aquat. Sci. 75: 113–131. doi:10.1007/s00227-012-0253-8

Junk, W. J., F. Wittmann, J. Schöngart, and M. T. F. Piedade. 2015. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol. Manage. 23: 677–693. doi:10.1007/s11273-015-9412-8

Marotta, H., L. Pinho, C. Gudasz, D. Bastviken, L. J. Tranvik, and A. Enrich-Prast. 2014. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Change 4: 467–470. doi:10.1038/nclimate2222

Mayorga, E., A. K. Aufdenkampe, C. A. Masiello, A. V. Krusche, J. I. Hedges, P. D. Quay, J. E. Richey, and T. A. Brown. 2005. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436: 538–541. doi:10.1038/nature03880

Mertes, L. A. K. 1994. Rates of flood-plain sedimentation on the central Amazon River. Geology 22: 171–174. doi:10.1130/0093-7163(1994)022<0171:ROFPO>2.3.CO;2

Moreira-Turcq, P., J. M. Jouanneau, B. Turcq, P. Seyler, O. Weber, and J. L. Guyot. 2004. Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: Insights into sedimentation rates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214: 27–40. doi:10.1016/j.palaeo.2004.06.013

Moreira-Turcq, P., M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler. 2013. Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River. Glob. Biogeochem. Cycles 27: 119–130. doi:10.1002/gbc.20022

Mortillaro, J. M., F. Rigal, H. Rybarczyk, M. Bernardes, G. Abril, and T. Meziane. 2012. Particulate organic matter distribution along the lower Amazon River: Addressing aquatic ecology concepts using fatty acids. PLoS One 7: e46141. doi:10.1371/journal.pone.0046141

Ometto, J. P. H. B., A. D. Nobre, H. R. Rocha, P. Artaxo, and L. A. Martinelli. 2005. Amazonia and the modern carbon cycle: Lessons learned. Oecologia 143: 483–500. doi:10.1007/s00442-005-0034-3

Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617–620. doi:10.1038/416617a

Sanders, C. J., and others. 2016. Examining 239+240Pu, 210Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay, Australia. J. Environ. Radioactiv. 151: 623–629. doi:10.1016/j.jenvrad.2015.04.018

Schumacher, B. A. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments, p. 1–25. United States Environmental Protection Agency, Ecological Risk Assessment Support Center Office of Research and Development.

Sobek, S., E. Durisch-Kaiser, R. Zurbrügg, N. Wongfun, M. Wessels, N. Pasche, and B. Wehrli. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol. Oceanogr. 54: 2243–2254. doi:10.4319/lo.2009.54.6.2243

Sobek, S., N. J. Anderson, S. M. Bernasconi, and T. Del Sontro. 2014. Low organic carbon burial efficiency in arctic lake sediments. J. Geophys. Res. Biogeosci. 119: 1231–1243. doi:10.1002/2014JG002612

Sobrinho, R. L., and others. 2016. Spatial and seasonal contrasts of sedimentary organic matter in floodplain lakes of the central Amazon basin. Biogeosciences 13: 467–482. doi:10.5194/bg-13-467-2016

Song-Miao, F., S. C. Wofsy, P. S. Bakwin, D. J. Jacob, and D. R. Fitzjarrald. 1990. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest. J. Geophys. Res. 95: 16851–16864. doi:10.1029/JD095iD10p16765

Smith, L. K., J. M. Melack, and D. E. Hammond. 2002. Carbon, nitrogen, and phosphorus content and 210Pb-derived burial rates in sediments of an Amazon floodplain lake. Amazoniana 17: 413–436.

Ward, N. D., and others. 2013. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 6: 530–533. doi:10.1038/ngeo1817

Whitaker, J., and others. 2014. Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J. Ecol. 102: 1058–1071. doi:10.1111/1365-2745.12247
Zhao, M., and S. W. Running. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329: 940–943. doi:10.1126/science.1192666

Zocatelli, R., P. Moreira-Turcq, M. Bernardes, B. Turcq, R. C. Cordeiro, S. Gogo, J. R. Disnar, and M. Boussafir. 2013. Sedimentary evidence of soil organic matter input to the Curuai Amazonian floodplain. Org. Geochem. 63: 40–47. doi:10.1016/j.orggeochem.2013.08.004

Acknowledgments

LMS is supported by an APA and IPRS scholarships. CJS and IRS were supported by the Australian Research Council (DE160100443, DP150103286, and LE140100083). HM and AEP are supported by FAPERJ, CNPq, and CAPES.

Submitted 17 April 2016
Revised 30 August 2016; 23 November 2016
Accepted 08 December 2016