LncRNA EGOT decreases breast cancer cell viability and migration via inactivation of the Hedgehog pathway
Shuang Qiu, Guobing Chen, Juan Peng, Jia Liu, Jumin Chen, Jianjun Wang, Li Li, Kunxian Yang*
Department of Breast and Thyroid Surgery, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
*Corresponding author: Kunxian Yang, Department of Breast and Thyroid Surgery, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming 650032, Yunnan Province, China; Tel: +86-18184831028; Fax: +86-0871-63636821; E-mail: d765ap@163.com
Running title: The role of EGOT in the progression of breast cancer

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2211-5463.12833
FEBS Open Bio (2020) © 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Abbreviations:

LncRNA: long non-coding RNA; EGOT: Eosinophil Granule Ontogeny Transcript; Hh: Hedgehog pathway; qRT–PCR: Real–time Quantitative Polymerase Chain Reaction.
Abstract

The long non-coding RNA Eosinophil Granule Ontogeny Transcript (EGOT) has been reported to inhibit the proliferation and migration of glioma cells and promote the development and progression of gastric cancer through the Hedgehog (Hh) signaling pathway. This study was conducted to assess the role of EGOT in the progression of breast cancer. We observed that EGOT is significantly downregulated in breast cancer tissues and cell lines and EGOT expression is negatively correlated with the Ki67 expression. Overexpression of EGOT in BT549 cells decreased cell viability and migration. Additionally, overexpression of EGOT resulted in decreases in expression of key genes in the Hh pathway, including Gli1, SMO, PTCH1 and HHIP. Breast cancer tissues exhibited an increase in Gli1 expressions. Altered expression of Gli1, SMO, PTCH1, and HHIP caused by EGOT overexpression were fully restored in cells transfected with pcDNA-EGOT and treated with purmorphamine, an agonist of the Hh pathway. Cell viability and migration were also restored under by purmorphamine. We conclude that lncRNA EGOT may inhibit breast cancer cell viability and migration via inactivation of the Hh pathway.

Keywords: LncRNA EGOT, breast cancer, cell proliferation, cell migration, Hedgehog pathway.
Introduction

Breast cancer is a malignant tumor caused by a malignant tumor invasion and destruction of normal breast tissue. The global death toll of breast cancer accounts for 14% of all cancer deaths and is the second most common cancer among women. According to cancer statistics, there were more than 2.3 million new cases of invasive breast cancer worldwide in 2015, with 402,000 women having died from breast cancer [1]. In recent years, surgery, chemotherapy, and radiotherapy have become the main methods of breast cancer treatment with the continuous development of various treatment methods [2]. However, 4 to 10 percent of breast cancer patients in China are found with distant metastasis every year, with clinical treatments bringing poor results [3]. Early screening and treatment are both essential in preventing and helping to alleviate breast cancer.

Long non-coding RNA (LncRNA) is a type of non-coding RNA of more than 200 nt, which is also a product of the RNA polymerase II transcription and lacks an open reading frame. The initial study concluded that IncRNA has biological functions. In recent years, studies have found that IncRNA can be involved in the development of tumors as a carcinogenic or tumor suppressor, with its abnormal expression being closely related to tumor cell proliferation, metastasis, and apoptosis [4]. Aberrant expressions in IncRNA also play an important role in the development of breast cancer. Current studies have shown that HOTAIR [5], GAS5 [6], PVT1 [7], MALAT1 [8], and other IncRNAs, have strong effects on breast cancer cell proliferation, apoptosis, and migration. The IncRNA Eosinophil Granule Ontogeny Transcript (EGOT), a human gene, is located in 3p26.1 and is highly conserved at the nucleic acid level. Wagner et al. have found that EGOT is involved in the development of eosinophils and is expressed in mature eosinophils. They also have demonstrated that EGOT is not related to ribosomes, and is likely to function as a non-coding RNA through sucrose density gradients. Wagner et al. also additionally reported that EGOT is highly expressed in bone marrow and plays an important role in bone marrow hematopoietic stem cells [9]. For some tumors, such as renal cell carcinoma, EGOT is a tumor suppressor and is likely a potential prognostic biomarker for kidney cancer [10]. Moreover, Wu et al. have found that EGOT inhibits the proliferation and migration of glioma cells and promotes apoptosis in human gliomas [11].

The Hedgehog gene (Hh) was first discovered in Drosophila in 1980 [12] with the family of proteins having crucial functions in embryonic development and cell proliferation [13]. The Hh signaling pathway has been well known as an important signaling pathway and therapeutic target in various kinds of cancers [14]. The protein patched homolog 1
(PTCH) receptor prevents high expressions and activity of the smoothened protein (SMO) without the Hh ligand, while the repression of SMO is relieved when Hh is bound, which thus leads to the activation of GLI transcription factors. These include activators Gli1 and Gli2 along with repressor Gli3. Activated GLI then controls transcriptions of Hh targeted genes [15,16]. GLI can also be activated in a nonclassical way without the Hh ligand and SMO, via receptors in tumor-associated cytokines. This largely occurs with transforming growth factor β (TGF-β) and stromal-derived factor 1 (SDF-1) [17].

Peng et al. have demonstrated that EGOT promotes the development and progression of gastric cancer through the Hh signaling pathway and can be used as a biomarker for the diagnosis and prognosis of gastric cancer [18]. For breast cancer in particular, Xu et al. point out that a down-regulation of EGOT is associated with malignancy and a poor prognosis of breast cancer through clinical breast cancerous tissues and adjacent noncancerous tissues [19]. They suggest, moreover, that antisense intronic long noncoding RNA (ai-lncRNA) EGOT enhancing autophagy have sensitized paclitaxel cytotoxicity via an up-regulation of ITPR1 expression by RNA-RNA and protein-RNA interactions in breast cancer [20]. Whether EGOT aberrant expressions have an effect on biological activities through Hh signals in breast cancer cells is still unclear.

The aim of this study, therefore, has been to confirm the expression pattern of EGOT in breast cancer cells and adjacent tissues in order to explore the effects of abnormal expressions in lncRNA EGOT, along with the viability and migration of breast cancer cell lines and the Hh signaling pathway.

Material and methods

Tissue collection

From October 2016 to July 2018, a total of 50 paired breast tumor and adjacent normal tissues were collected after surgery at the First People’s Hospital of Yunnan Province, China. Tissues were washed in phosphate buffer saline (PBS) and frozen in liquid nitrogen before being stored at -80 °C. Each patient provided a signed informed consent form. This study was approved by the Ethics Committee of the First People’s Hospital of Yunnan Province. The study conformed to the guidelines set by the Declaration of Helsinki.

Cell lines and culture

Breast cancer cell lines, including BT549, MDA-MB-231, MCF7, SKBr3 and HEK293 were purchased from ATCC.
BT549 cells were cultured with RPMI 1640 (Gibco, Thermo Fisher Scientific, Inc) containing 10% fetal bovine serum (FBS). MDA-MB-231 and SKBr3 cell lines were cultured in the Dulbecco's Modified Eagle's Medium (Gibco, Thermo Fisher Scientific, Inc) with 10% FBS. MCF-7 was cultured in the MEM including 10% FBS, and HEK293 was also cultured in the MEM with 10% FBS. All the cells were cultured in the constant temperature and humidity chamber at 37 °C with 5% carbon dioxide.

Plasmids, cell transfection and purmorphamine treatment

PcDNA-EGOT plasmids were purchased from GenePharma (Shanghai, China). Plasmids were transfected into BT549 cells using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. Purmorphamine (Abcam, 120933), the agonist of the Hh pathway, was dissolved in dimethyl sulfoxide (DMSO) for this project; the substance was then formulated into a 1 μM solution. After a transfection with pcDNA-EGOT or pcDNA (empty vector), cells were treated with 1 μM purmorphamine of DMSO, and treatment with DMSO served as a control.

MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide) assay

After cells were counted, cell density was adjusted to 1×10^5 cell/mL with a serum-free medium. 100 μL cells per well were added to a 96-well plate, and then cultured with 5% CO₂ at 37 °C for 24, 48, 72 and 96 hours, respectively. MTT was configured as a 5 mg/mL solution in PBS, and 10 μL was added for incubation another four hours; the OD value was further read at 490 nm by a microplate reader [21].

Migration Transwell

Cells were collected and prepared into a cell suspension of 1×10^5 cells/mL. A 600 μL medium containing 10% FBS was added to the lower chamber, while a 200 μL cell suspension was added to the upper chamber and incubated for 24 hours—the liquid from the upper and lower chambers were then discarded. The cells of the lower chamber were fixed by 4% paraformaldehyde for 30 minutes. After this, the paraformaldehyde was removed, and the cells which did not pass through the membrane were wiped clean with a cotton swab. The lower chamber was stained with 0.1% crystal violet for 10 minutes while the chamber was washed three times with PBS. Migrated cells were then observed and counted under a microscope [22].

Wound healing assay

Horizontal lines across the well were drawn with a marker pen and ruler on the back of a 6-well plate, while every well passed at least five times. Cell suspensions at the concentration of 1×10^6 was prepared, and 1×10^6 cells were
added to each well. Vertical lines to the back lines were drawn with the smaller pipettor and a ruler. Cells were then washed three times with PBS solution, while floating cells were removed completely and serum-free medium was added. These cells were cultured at 37 °C with 5% CO$_2$ for 24 hour; following this, pictures were taken for examination purposes [23].

Real–time Quantitative Polymerase Chain Reaction (qRT–PCR)

RNA extraction in the tissues and cells was performed by Trizol Reagent (Invitrogen, Carlsbad, CA, USA) based on the manufacturer’s instructions, with the concentration of RNA being measured by the nanodrop. Genomic DNA was removed and a reverse transcription of 1 μg of RNA was performed using a Transcriptor First Strand cDNA Synthesis Kit. Following this, the EGOT relative level was tested by the lncRNA qPCR kit (SYBR Green, WH0125-GUQ) while other genes at the mRNA level were measured using the ABI 7500 Fast Real-Time PCR System (Invitrogen). A 2$^{-\Delta\Delta C_t}$ method was used to calculate relative levels.

Western blotting

After cells were disrupted, the total protein from cells was extracted. Protein quantification was performed using a BCA kit, and a SDS-PAGE electrophoresis was conducted. The protein from SDS-PAGE gel was transferred onto a PVDF membrane. Following this, the PVDF membrane was blocked with 5% non-fat dry milk for 2 hours at room temperature. The primary antibodies we used in our research were incubated at a temperature of 4 °C overnight, while PVDF membranes were rinsed three times by PBST. The antibodies of Gli1 (ab134906), SMO (ab113438), PTCH1 (ab53715) and HHIP (ab39208) were provided by Abcam. After PVDF membranes were washed once more, they were incubated with the corresponding secondary antibody, while the membranes were washed three times with PBST. Finally, an ECL kit was used to treat the membrane for color reaction.

Statistical analysis

Data was shown as average ± standard deviation (SD). A t-test, Spearman correlation, and one-tailed ANOVA analysis were implemented using the latest SPSS version, 20.0. Relative expression levels were plotted using a GraphPad Prism 6. Quantitative data were expressed as mean ± SD (standard deviation) based on three independent experiments. Comparisons between two groups were analyzed using Student's t-test. Multiple comparisons among groups were analyzed using Bonferroni post-tests followed two-way ANOVA. Results were defined at a significance of p <0.05.
Results

LncRNA EGOT is downregulated in breast cancer tissues and cell lines

The relative EGOT level was significantly reduced in breast cancer tissues compared with adjacent tissues (\(P < 0.0001\), Fig. 1A). We examined the correlation between EGOT and a Ki67 expression and discovered a negative correlation between the two genes. This most likely indicates one glaring insight—the higher the malignancy of the tumor and the larger the Ki67 value, the lower the expression of EGOT (\(P < 0.0001\), Fig. 1B). The qRT-PCR results exhibited that the relative level of EGOT expression was significantly downregulated in breast cancer cell lines BT549, MDA-MB-231, MCF7 and SKBr3, compared with control cell lines in HEK293 (Fig. 1C).

Overexpression of EGOT impedes cell proliferation and migration

The expression of EGOT from BT549 was the lowest among these breast cancer cell lines, with BT549 being used for further functional experiments. When the EGOT overexpression system was established, results from the pcDNA-EGOT transfection revealed that EGOT was clearly enhanced in the pcDNA-EGOT group compared with the control group (Fig. 2A). MTT assays were conducted to evaluate cell viability, with results revealing that cell viability is greatly inhibited in the pcDNA-EGOT group compared to pcDNA (Fig. 2B). Cell migration was then detected using a Transwell migration and wound healing assay, with results revealing that the migration ability of cells transfected with pcDNA-EGOT was tremendously impaired compared with the pcDNA group (Fig. 2C, D).

Gli1 is up-regulated in the breast cancer tissues, and Gli1, SMO, PTCH1, and HHIP were all down-regulated after an EGOT overexpression

Interestingly, we found that Gli1 was significantly elevated at the mRNA level in breast cancer tissues compared with adjacent tissues (Fig. 3A). Not only this, but the expression of Gli1, SMO, PTCH1, and HHIP at mRNA and protein levels was either detected in the pcDNA-EGOT or pcDNA group (Fig. 3B,3C). These results demonstrated that Gli1, SMO, PTCH1, and HHIP were all reduced at transcriptional and translational levels in cells transfected with pcDNA-EGOT. We therefore speculate that lower EGOT expression levels may be related to the Hh pathway.

Purmorphamine restores the expression of key genes in the Hh signaling pathway in breast cancer cell line BT549 overexpressing EGOT

We further discovered that validating the role of the Hh pathway in EGOT overexpressions triggered inhibitive effects.
on cell viability and migration. Purmorphamine, the agonist of the Hh pathway, was used to treat cells with an overexpression of EGOT. The results showed that there was no significant difference at mRNA and protein levels in PTCH1 and HHIP in the pcDNA group with or without purmorphamine molecules. The mRNA and protein level of Gli1 and SMO were upregulated with purmorphamine in the pcDNA empty vector group. However, there was an obvious increase in mRNA and protein levels in PTCH1, Gli1, SMO, and HHIP in pcDNA-EGOT cells with purmorphamine compared with those who only had pcDNA-EGOT cells (Fig. 4A, B).

Purmorphamine restores viability and migration in breast cancer cell line BT549, with an overexpression of EGOT

As shown in Fig. 5A, the viability of cells transfected with pcDNA-EGOT and incubated with DMSO pcDNA was lower than that in pcDNA + DMSO groups, though the viability of these cells as enhanced after cells with EGOT overexpression were treated with purmorphamine. Moreover, the results of cell viability and migration showed a similar tendency to the cell viability during two other methods of treatment: the wound healing test (Fig. 5B) and the Transwell assay (Fig. 5C).

Discussion

With advances in RNA sequencing and transcriptome analysis, researchers have surprisingly found that up to 76% of the human genome can be transcribed into RNA molecules, including lncRNAs [24,25]. According to the latest version of lncRNA database LNCipedia 5.2, there are 127,802 transcripts and 56,946 human annotated lncRNAs [26]. In the past decades, lncRNAs have been discovered to be aberrantly expressed, regulating the development and progression of tumors [27,28]. A number of lncRNAs have been deregulated in cancers, controlled by epigenetic, genetic, and transcriptional factors [29]. Up until to now, moreover, there have been numerous abnormal expression lncRNAs found in breast cancer that are specifically involved in the cancer’s initiation and development [30-34].

In our study, lncRNA EGOT was detected in breast cancer tissues and cell lines (Fig. 1), which was further consistent with Xu et al.’s results [19], whereby the expression of EGOT was negatively correlated with Ki67. As expected, overexpression in EGOT negatively affected cell proliferation and migration (Fig. 2). Therefore, the role of EGOT in breast cancer progression has been identified as a tumor suppressor.

In recent publications, aberrant expressed lncRNAs were reported to strengthen cancer progression via activation of
the Hh signaling pathway, including gastric cancer, prostate cancer, breast cancer, and pancreatic cancer [16,18,35,36]. To further uncover the role of EGOT in breast cancer, we studied the relationship between EGOT and the Hh signaling pathway. As the terminal effector of the typical Hh signaling pathway, the Gli1 family functions as a transcription factor, and abnormal regulation of Gli1 protein leads to tumorigenesis [37,38]. Interestingly, we found that Gli1 was significantly upregulated in breast cancer tissues, while PTCH1, SMO, Gli1, and HHIP at mRNA and protein levels, were all down-regulated after controlling for EGOT overexpressions (Fig. 3). We hypothesize that an overexpression of EGOT decreased the expression of PTCH1, thus suppressing its binding to the Hh ligand, which has proven to lead to low expressions of SMO and Gli1. As a result, the expression of the Hh interacting protein HHIP in nucleus was downregulated. According to these results, we deduce that the Hh signaling pathway may be involved in breast cancer progression.

Onishi et al. [39] and Rubin et al. [14] have concluded that abnormal activation in the Hh signaling pathway is closely correlated with the initiation and development of various cancers. Purmorphamine is an Hh agonist that directly targets SMO transmembrane proteins [40]. Activation of Hh signaling by purmorphamine promotes the transcription of various genes, including Gli1, PTCH1, and alkaline phosphatase (Alp) [34]. To confirm whether purmorphamine can reverse the expression of genes in the Hh signaling pathway caused by an overexpression in EGOT in breast cancer, BT549 cells were transfected with pcDNA-EGOT or pcDNA. After this, cells were treated with purmorphamine. The results demonstrate that purmorphamine reversed the expression of PTCH1, SMO, Gli1, and HHIP in the overexpression system of EGOT (Fig. 4), which was consistent with the finding by Plaisant et al [34]. Purmorphamine inhibited osteoblast differentiation in human multipotent adipose-derived stem cells (hMASCs) and MSCs from bone marrow by activating the Hh signaling pathway [41]. Purmorphamine was then used to measure cell proliferation and migration ability in the overexpression system of EGOT. Results indicated that purmorphamine reversed cell proliferation and migration abilities in breast cancer (Fig. 5).

According to the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2), breast cancer is identified as four molecular subtypes: basal like; HER-2 positive; luminal A; and luminal B, with the first two subtypes from negative ER tumors and the last two from positive ER tumors [42]. The basal like tumors are mainly composed of triple-negative breast cancer (TNBC), tumors that lack expression of ER, PR, and HER-2 [43]. We collected a total of 50 breast cancer samples, 18 of which were TNBC tumors, 9 HER-2
tumors, 13 luminal A tumors, and 10 luminal B tumors. TNBC takes up 15–20% in all invasive breast cancers and occurs more frequently in young woman, meanwhile the survival rate of TNBC is the worst [44]. In our study, BT549 and MDA-MB-231 cells belong to the TNBC subtype, while MCF7 is a luminal A subtype and SKBr3 is an HER-2 positive subtype. In experiments involved in the Hh signaling pathway, the cell line BT549 was used to further real molecular mechanisms in this aggressive subtype of breast cancer.

Conclusion

EGOT was greatly downregulated in breast cancer tissues and cell lines, and the relative level of EGOT was negatively correlated with the expression of Ki67. As we inferred, the overexpression of EGOT impaired cell viability and migration in BT549 cell lines. Furthermore, the expression of Gli1 was significantly increased in breast cancer tissues. The relative expressions of PTCH1, SMO, Gli1, and HHIP at both mRNA and protein levels were reduced in the overexpression of EGOT. Pursmorphamine molecules were used to treat cells with an overexpression of EGOT to ensure two things, the first, that the Hh pathway was activated, and the second, to find the roles of Hh signaling in EGOT-induced inhibitive effects on breast cancer cells. The results found that the relative expression of PTCH1, SMO, Gli1, and HHIP and cell viability and migration caused by an overexpression of EGOT were reversed by pursmorphamine. In total, lncRNA EGOT is proved to inhibit triple negative breast cancer cell viability and migration via modulation of the Hh pathway. Our present research supports helpful evidence to anti-oncogene of EGOT in breast cancer and may extend novel knowledge of therapeutic methods for triple negative breast cancer.

Acknowledgements

This study was supported by Joint Program of Applied Basic Research of Yunnan Provincial Department of Science and Technology - Kunming Medical University (Grant No.: 2017FE467(-153)).

Author contribution statement

SQ and GBC conducted experiments and were responsible for data acquisition and manuscript writing; JP, JL and JMC were responsible for data interpretation and data analysis; JJW and LL helped for statistical analysis; KXY
conceived and designed the study, and revised the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Conflicts of Interest

We confirm that we have no any financial or non-financial conflict of interest.
References

1. Siegel RL, Miller KD & Jemal A (2015) Cancer statistics, 2015. *CA: a cancer journal for clinicians* **65**:5-29. doi:10.3322/caac.21254

2. Swain SM, Baselga J, Kim S-B, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero JM, Schneeweiss A, Heeson S, Clark E, Ross G, Benyunes MC & Cortés J (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. *The New England journal of medicine* **372**:724-734. doi:10.1056/NEJMoa1413513

3. Fredholm H, Magnusson K, Lindström LS, Garmo H, Fält SE, Lindman H, Bergh J, Holmberg L, Pontén F, Frisell J & Fredriksson I (2016) Long-term outcome in young women with breast cancer: a population-based study. *Breast cancer research and treatment* **160**:131-143

4. Chen YM, Liu Y, Wei HY, Lv KZ & Fu PF (2016) Large intergenic non-coding RNA-ROR reverses gemcitabine-induced autophagy and apoptosis in breast cancer cells. *Oncotarget* **7**:59604-59617. doi:10.18632/oncotarget.10730

5. Xue X, Yang YA, Zhang A, Fong KW, Kim J, Song B, Li S, Zhao JC & Yu J (2016) LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. *Oncogene* **35**:2746-2755. doi:10.1038/onc.2015.340

6. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F & Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. *Oncogene* **28**:195-208. doi:10.1038/onc.2008.373

7. Guan Y, Kuo W-L, Stilwell JL, Takano H, Lapuk AV, Fridlyand J, Mao J-H, Yu M, Miller MA, Santos JL, Kalloger SE, Carlson JW, Ginzinger DG, Celniker SE, Mills GB, Huntsman DG & Gray JW (2007) Amplification of PVT1 Contributes to the Pathophysiology of Ovarian and Breast Cancer. *Clinical Cancer Research* **13**:5745-5755. doi:10.1158/1078-0432.ccr-06-2882

8. Cho SF, Chang YC, Chang CS, Lin S-F, Liu YC, Hsiao HH, Chang JG & Liu TC (2014) MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression. *BMC cancer* **14**:809. doi:10.1186/1471-2407-14-809

9. Wagner LA, Christensen CJ, Dunn DM, Spangrude GJ, Georgelas A, Kelley L, Esplin MS, Weiss RB & Gleich GJ (2007) EGO, a novel, noncoding RNA gene, regulates eosinophill granule protein transcript expression. *Blood*
109:5191-5198

10. Jin L, Quan J, Pan X, He T, Hu J, Li Y, Gui Y, Yang S, Mao X, Chen Y & Lai Y (2017) Identification of lncRNA EGOT as a tumor suppressor in renal cell carcinoma. *Molecular medicine reports* **16**:7072-7079. doi:10.3892/mmr.2017.7470

11. Wu Y, Liang S, Xu B, Zhang R, Zhu M, Zhou W, Zhang S, Guo J, Xu L & Zhu H (2017) Long noncoding RNA eosinophil granule ontogeny transcript inhibits cell proliferation and migration and promotes cell apoptosis in human glioma. *Exp Ther Med* **14**:3817-3823. doi:10.3892/etm.2017.4949

12. Nüsslein-Volhard C & Wieschaus E (1980) Nusslein-Volhard, C.W.E. Mutations affecting segment number and polarity in Drosophila. Nature **287**:795-801. doi:10.1038/287795a0

13. McMahon AP (2000) More Surprises in the Hedgehog Signaling Pathway. *Cell* **100**:185-188. doi:10.1016/S0092-8674(00)81555-X

14. Rubin LL & de Sauvage FJ (2006) Targeting the Hedgehog pathway in cancer. *Nat Rev Drug Discov* **5**:1026-1033

15. Jiang J & Hui CC (2008) Hedgehog signaling in development and cancer. *Dev Cell* **15**:801-812. doi:10.1016/j.devcel.2008.11.010

16. Stanton BZ & Peng LF (2010) Small-molecule modulators of the Sonic Hedgehog signaling pathway. *Mol Biosyst* **6**:44-54. doi:10.1039/b910196a

17. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S & Serman L (2018) The role of the Hedgehog signaling pathway in cancer: A comprehensive review. *Bosn J Basic Med Sci* **18**:8-20. doi:10.17305/bjbms.2018.2756

18. Peng W, Wu J, Fan H, Lu J & Feng J (2019) LncRNA EGOT Promotes Tumorigenesis Via Hedgehog Pathway in Gastric Cancer. *Pathology oncology research : POR* **25**:883-887. doi:10.1007/s12253-017-0367-3

19. Xu SP, Zhang JF, Sui SY, Bai NX, Gao S, Zhang GW, Shi QY, You ZL, Zhan C & Pang D (2015) Downregulation of the long noncoding RNA EGOT correlates with malignant status and poor prognosis in breast cancer. *Tumour Biol* **36**:9807-9812. doi:10.1007/s13277-015-3746-y

20. Xu S, Wang P, Zhang J, Wu H, Sui S, Zhang J, Wang Q, Qiao K, Yang W, Xu H & Pang D (2019) Ai-lncRNA EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions in human cancer. *Molecular cancer* **18**:89. doi:10.1186/s12943-019-1017-z

FEBS Open Bio (2020) © 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
21. van Meerloo J, Kaspers GJ & Cloos J (2011) Cell sensitivity assays: the MTT assay. *Methods Mol Biol* 731:237-245. doi:10.1007/978-1-61779-080-5_20

22. Justus CR, Leffler N, Ruiz-Echevarria M & Yang LV (2014) In vitro cell migration and invasion assays. *J Vis Exp*. doi:10.3791/51046

23. Rodriguez LG, Wu X & Guan JL (2005) Wound-healing assay. *Methods Mol Biol* 294:23-29. doi:10.1385/1-59259-860-9:023

24. Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, Gnirke A & Meissner A (2015) Transcription factor binding dynamics during human ES cell differentiation. *Nature* 518:344-349. doi:10.1038/nature14233

25. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee B-K, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shores N, Simon JM, Song L, Trinkle ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Dunham I, Ernst J, Furey TS, Gerstein M, Giardine B, Greven M, Hardison RC, Harris RS, Herrero J, Hoffman MM, Iyer S, Kellis M, Khatun J, Kheradpour P, Kundaje A, Lassmann T, Li Q, Lin X, Marinov GK, Merkel A, Mortazavi A, Parker SCJ, Reddy TE, Rozowsky J, Schlesinger F, Thurman RE, Wang J, Ward LD, Whitfield TW, Wilder SP, Wu W, Xi HS, Yip KY, Zhuang J, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M, Pazin MJ, Lowdon RF, Dillon LAL, Adams LB, Kelly CJ, Zhang J, Wexler JR, Green ED, Good PJ, Feingold EA, Bernstein BE, Birney E, Crawford GE, Dekker J, Elnitski L, Farnham PJ, Gerstein M, Giddings MC, Gingeras TR, Green ED, Guigó R, Hardison RC, Hubbard TJ, Kellis M, Kent WJ, Lieb JD, Margulies EH, Myers RM, Snyder M, Stamatoyannopoulos JA, Tenenbaum SA, Weng Z, White KP, Wold B, Khatun J, Yu Y, Wrobel J, Risk BA, Gunawardena HP, Kuiper HC, Maier CW, Xie L, Chen X, Giddings MC, Bernstein BE, Epstein CB, Shores N, Ernst J, Kheradpour P, Mikkelsen TS, Gillespie S, Goren A, Ram O, Zhang X, Wang L, Issner R, Coyne MJ, Durham T, Ku M, Truong T, Ward LD, Altshuler RC, Eaton ML, Kellis M, Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Batut P, Bell I, Bell K, Chakrabortty S, Chen X, Chrust J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena HP, Howald C, Jha S, Johnson R, Kapranov P, King B,
Kingswood C, Li G, Luo OJ, Park E, Preall JB, Presaud K, Ribeca P, Risk BA, Robyr D, Ruan X, Sammeth M, Sandhu KS, Schaeffer L, See L-H, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Hayashiaki Y, Harrow J, Gerstein M, Hubbard TJ, Reymond A, Antonarakis SE, Hannon GJ, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR, Rosenbloom KR, Sloan CA, Learned K, Malladi VS, Wong MC, Barber GP, Cline MS, Dreszer TR, Heitner SG, Karolchik D, Kent WJ, Kirkup VM, Meyer LR, Long JC, Maddren M, Raney BJ, Firey TS, Song L, Grasfeder LL, Giresi PG, Lee B-K, Battenhouse A, Sheffield NC, Simon JM, Showers KA, Safi A, London D, Bhide AA, Shestak C, Schaner MR, Ki Kim S, Zhang ZZ, Mieczkowski PA, Mieczkowska JO, Liu Z, McDaniel LL, Ni Y, Rashid NU, Kim MJ, Adar S, Zhang Z, Wang T, Winter D, Keefe D, Birney E, Iyer VR, Lieb JD, Crawford GE, Li G, Sandhu KS, Zheng M, Wang P, Luo OJ, Shahab A, Fullwood MJ, Ruan X, Ruan Y, Myers RM, Pauli F, Williams BA, Gertz J, Marinov GK, Reddy TE, Vielmetter J, Partridge E, Trout D, Varley KE, Gasper C, The EPC, Overall c, Data production l, Lead a, Writing g, management Np, Principal i, Boise State U, University of North Carolina at Chapel Hill Proteomics g, Broad Institute G, Cold Spring Harbor UoGCfGRBRSIUoLGIoSg, Data coordination center at UCSC, Duke University EBIoTAuNC-CHg, Genome Institute of Singapore g & HudsonAlpha Institute CUCISg (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57-74. doi:10.1038/nature11247

26. Volders PJ, Anckaert J, Verheggen K, Nuytens J, Martens L, Mestdagh P & Vandesompele J (2019) LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res 47:D135-D139. doi:10.1093/nar/gky1031

27. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, Zeng M & Song E (2015) A cytoplasmic NF-kB interacting long noncoding RNA blocks IxB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27:370-381. doi:10.1016/j.ccell.2015.02.004

28. Yang F, Zhang L, Huo Xs, Yuan JH, Xu D, Yuan SX, Zhu N, Zhou WP, Yang GS, Wang YZ, Shang JL, Gao CF, Zhang FR, Wang F & Sun SH (2011) Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology (Baltimore, Md) 54:1679-1689. doi:10.1002/hep.24563

29. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21:1253-1261. doi:10.1038/nm.3981

FEBS Open Bio (2020) © 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
30. Iacoangeli A, Lin Y, Morley EJ, Muslimov IA, Bianchi R, Reilly J, Weedon J, Diallo R, Böcker W & Tiedge H (2004) BC200 RNA in invasive and preinvasive breast cancer. *Carcinogenesis* **25**:2125-2133

31. Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, Dugimont T & Curgy JJ (2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. *Carcinogenesis* **23**:1885-1895

32. Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M & Mo YY (2014) Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). *Cell death & disease* **5**:e1008. doi:10.1038/cddis.2013.541

33. Hansji H, Leung EY, Baguley BC, Finlay GJ, Cameron-Smith D, Figueiredo VC & Askarian-Amiri ME ZFAS1: a long noncoding RNA associated with ribosomes in breast cancer cells. *Biology Direct* **11**:62

34. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, Wang C, Hawke DH, Wang S, Zhang Y, Wei Y, Ma G, Park PK, Zhou J, Zhou Y, Hu Z, Zhou Y, Marks JR, Liang H, Hung MC, Lin C & Yang L (2016) The LINK-A IncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. *Nature Cell Biology* **18**:213. doi:10.1038/ncb3295

35. Zhou M, Hou Y, Yang G, Zhang H, Tu G, Du Y-e, Wen S, Xu L, Tang X, Tang S, Yang L, Cui X & Liu M (2016) LncRNA-Hh Strengthen Cancer Stem Cells Generation in Twist-Positive Breast Cancer via Activation of Hedgehog Signaling Pathway. *Stem Cells* **34**:55-66. doi:10.1002/stem.2219

36. Katoh Y & Katoh M (2005) Hedgehog signaling pathway and gastric cancer. *Cancer biology & therapy* **4**:1050-1054

37. Gupta S, Takebe N & Lorusso P (2010) Targeting the Hedgehog pathway in cancer. *Ther Adv Med Oncol* **2**:237-250. doi:10.1177/1758834010366430

38. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S & Serman L (2018) The role of the Hedgehog signaling pathway in cancer: A comprehensive review. *Bosn J Basic Med Sci* **18**. doi:10.17305/bjbms.2018.2756

39. Onishi H & Katano M (2011) Hedgehog signaling pathway as a therapeutic target in various types of cancer. *Cancer science* **102**:1756-1760. doi:10.1111/j.1349-7006.2011.02010.x

40. Sinha S & Chen JK (2006) Purmorphamine activates the Hedgehog pathway by targeting Smoothened. *Nat Chem Biol* **2**:29-30

41. Plaisant M, Fontaine C, Cousin W, Rochet N, Dani C & Peraldi P (2009) Activation of hedgehog signaling
inhibits osteoblast differentiation of human mesenchymal stem cells. *Stem Cells* **27**:703-713. doi:10.1634/stemcells.2008-0888

42. Yersal O & Barutca S (2014) Biological subtypes of breast cancer: Prognostic and therapeutic implications. *World J Clin Oncol* **5**:412-424. doi:10.5306/wjco.v5.i3.412

43. William D. Foulkes IES, Jorge S. Reis-Filho (2010) triple negative breast cancer. *N Engl J Med* **363**:1938-1948. doi:10.1056/NEJMra1001389

44. Howlader N, Cronin KA, Kurian AW & Andridge R (2018) Differences in Breast Cancer Survival by Molecular Subtypes in the United States. *Cancer Epidemiol Biomarkers Prev* **27**:619-626. doi:10.1158/1055-9965.EPI-17-0627
Figure legends

Figure 1 LncRNA EGOT is downregulated in breast cancer tissues and cell lines. A, the relative EGOT level was measured in 50 paired breast cancer and adjacent tissues; B, a Spearman correlation analysis of EGOT and Ki-67 in 50 breast cancer tissues; C, relative EGOT levels were measured in breast cancer cell lines, including BT549, MDA-MB-231, MCF7 and SKBr3, and HEK293 was used as a control. Data shown are the mean ± SD for four independent experiments (n=5) per cell line. paired t-test was performed for the comparison between two groups, linear regression analysis was performed to analyze the correlation between EGOT and Ki-67; * P < 0.05, ** P < 0.01 vs HEK293 cells.

Figure 2 Overexpression of EGOT affects cell viability and migration. A, the relative level of EGOT in cells transfected with pcDNA-EGOT or pcDNA were detected by qRT-PCR; B, an MTT assay was conducted to assess cell viability; C-D, wound healing assays and Transwell migration assays were used to detect cell migration after an overexpression of EGOT. Scale bar: 200μm (C), 100μm (D). The results were the average from at least three independent experiments, mean ± SD; paired t-test was performed for the comparison between two groups; Bonferroni post-tests followed a two-way ANOVA were used to assess the cell viability, * P < 0.05, ** P < 0.01, *** P < 0.001 vs pcDNA.

Figure 3 Gli1 is upregulated in breast cancer tissues, and Gli1, SMO, PTCH1, and HHIP were downregulated after EGOT overexpression. A, the relative Gli1 mRNA level was measured by qRT-PCR in 50 breast cancer and adjacent tissues; B, the expression of Gli1, SMO, PTCH1, and HHIP at mRNA levels was detected in cells transfected with pcDNA-EGOT or pcDNA; C, the expression of Gli1, SMO, PTCH1, and HHIP at protein level was detected in cells transfected with pcDNA-EGOT or pcDNA. The results were the average from at least three independent experiments, mean ± SD; paired t-test was performed for the comparison between two groups; * P < 0.05, ** P < 0.01, *** P < 0.001 vs pcDNA.

Figure 4 Effects of EGOT overexpression on the Hh signaling pathway related genes in breast cancer cell line BT549. BT549 cells were transfected with pcDNA-EGOT or pcDNA, and then treated with purmorphamine or DMSO. A, the relative EGOT level was measured by qRT-PCR in various treatment groups; B, the expression of Gli1, SMO, PTCH1, and HHIP at protein levels was detected in these groups. The results were the average from at least three independent experiments, mean ± SD; Bonferroni post-tests followed a two-way ANOVA were used to compare the four groups,
** Effect of Hh signaling pathway on cell viability and migration in breast cancer cell line BT549. BT549 cells were transfected with pcDNA-EGOT or pcDNA, then treated with purmorphamine or DMSO. A, an MTT assay was used to measure cell viability in various treatment groups; B-C, wound healing (B) and (C) Transwell assays were used to detect cell migration in these groups, scale bar:200μm (B), 100μm(C). The results were the average from at least three independent experiments, mean ± SD; paired t-test was performed for the comparison between two groups; Bonferroni post-tests followed a two-way ANOVA were used to assess the cell viability, * \(P < 0.05 \), ** \(P < 0.01 \).
Figure A: Relative mRNA expression of PTCH1, HHIP, Smo, and Gli1 in different conditions: Empty vector + DMSO, Empty vector + Purmorphamine, pcDNA-EGOT + DMSO, pcDNA-EGOT + Purmorphamine. Significant differences are indicated by asterisks.

Figure B: Western blot images and relative protein expression of PTCH1, HHIP, Smo, and Gli1 under the same conditions as Figure A. NS indicates no significant difference. Significant differences are indicated by asterisks.
Figure A: Graph showing the OD (450 nm) over time for different treatments (Empty vector + DMSO, Empty vector + Purmorphamine, pcDNA-EGOT + DMSO, pcDNA-EGOT + Purmorphamine).

Figure B: Images of wound closure at 0 and 24 hours for different treatments.

Figure C: Images showing the cell number per field for different treatments (Empty vector + DMSO, Empty vector + Purmorphamine, pcDNA-EGOT + DMSO, pcDNA-EGOT + Purmorphamine).

feb4_12833_f5.jpg