Histamine H$_2$-Receptor Plays Only a Minor Role in Histamine-Induced Wheal Response in the Squirrel Monkey and Guinea Pig

Hidenobu Yuki, Keiji Miyata, Takeshi Kamato, Akito Nishida, Hiroyuki Ito, Masaaki Takeda and Kazuo Honda
Neuroscience & Gastrointestinal Research Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Received March 1, 1993 Accepted June 17, 1993

ABSTRACT—We examined the contribution of the histamine H$_2$-receptor to the histamine-induced wheal response in squirrel monkeys and guinea pigs. Intradermal injection of histamine, 2-pyridylethylamine (a selective H$_1$-agonist), and dimaprit (a selective H$_2$-agonist) dose-dependently induced the wheal response in squirrel monkeys and guinea pigs, although the reaction to dimaprit was much weaker than that to the other agonists. Chlorpheniramine dose-dependently depressed the wheal response in squirrel monkeys and guinea pigs at doses of 0.03–1 mg/kg and 0.03–3 mg/kg, p.o., respectively. However, famotidine, ranitidine and cimetidine had no effect at doses up to 30, 100 and 300 mg/kg, p.o. in guinea pigs and up to 1, 10 and 400 mg/kg, p.o. in squirrel monkeys, respectively. Cimetidine (3–300 mg/kg, p.o.) dose-dependently potentiated the inhibitory effects of chlorpheniramine (0.1 mg/kg, p.o.) in guinea pigs, but had no effects in squirrel monkeys. Famotidine and ranitidine did not alter the response to chlorpheniramine in either animal. These results suggest that the histamine H$_2$-receptor plays only a minor role in the histamine-induced wheal response in squirrel monkeys and guinea pigs.

Keywords: Wheal response, Histamine H$_2$-receptor, Squirrel monkey

Histamine directly dilates the microvasculature and increases vascular permeability, when it is intradermally injected. Vascular dilation appears as a localized red spot around the injection site, and the increase in vascular permeability appears as a wheal reaction. These cutaneous histamine responses have been well examined, and the presence and function of histamine H$_1$- and H$_2$-receptors in the cutaneous vasculature have been confirmed. Vascular dilatation is mediated by both H$_1$- and H$_2$-receptors. On the other hand, increased vascular permeability is mainly mediated by H$_1$-receptors (1), and the involvement of H$_2$-receptors remains to be clarified. Histamine H$_2$-receptors have been reported to mediate the histamine-induced wheal response in humans (2–4), rhesus monkeys (5) and Japanese monkeys (6), but not that in guinea pigs (7–9), rats (10) and mice (11).

To examine more closely the involvement of histamine H$_2$-receptors in the wheal reaction to histamine, we investigated the effects of H$_1$- and H$_2$-receptor antagonists on the histamine-induced wheal response in squirrel monkeys, which are small, convenient animals that have recently been used in several kinds of investigations, and in guinea pigs.

MATERIALS AND METHODS

Animals
Male Hartley guinea pigs weighing 250–350 g were used. The fur of the back was clipped the day before the experiment.

Squirrel monkeys of both sexes weighing 500–750 g were also used. They were anesthetized with ketamine at an intramuscular dose of 10 mg/kg and maintained with further injections of 2–5 mg/kg as required. Prior to the experiment, the abdomen was carefully shaved to avoid flare. Squirrel monkeys were used repeatedly after recovery for at least a week.

For oral administration of the test drugs, the animals were fasted for 18 hr prior to the experiment but allowed free access to water.

Effects of histamine and histamine H$_1$- and H$_2$-receptor agonists
One milliliter of 2% Evans blue solution was injected intravenously into guinea pigs, and 1 ml of 0.5% Evans blue solution was injected intravenously into squirrel monkeys. At the same time, intradermal injections of seri-
al dilutions of histamine or histamine-receptor agonists were applied to the shaved site of each animal. The injection volume was 0.1 ml in guinea pigs and 0.05 ml in squirrel monkeys. Guinea pigs were killed, and the diameters of the blue edema areas on the reflected skin surface were measured at 5, 10, 20 and 40 min after intradermal injection. For squirrel monkeys, the greatest orthogonal diameters of the blue edema area were measured in mm at 5, 10, 20 and 40 min after intradermal injection. The wheal area was expressed as the area of an ellipse calculated from the orthogonal diameters of the blue area (mm²).

Effects of several kinds of receptor antagonists

In the first series of experiments, the histamine H₁-receptor antagonist chlorpheniramine or one of the histamine H₂-receptor agonists, famotidine, ranitidine or cimetidine, was given orally 60 min before intradermal injection of histamine in squirrel monkeys and guinea pigs.

In the second series of experiments, histamine H₂-receptor antagonists in combination with chlorpheniramine were dosed orally 60 min before intradermal injection of histamine.

In the third series of experiments, chlorpheniramine, famotidine, atropine, phentolamine or propranolol was injected intravenously 10 min before the intradermal injection of dimaprit.

Statistical analyses

All values represent the mean ± standard error of the mean (S.E.M). Statistical significance was determined by analysis of variance (ANOVA). Probabilities of less than 5% (P<0.05) were considered significant.

Drugs

Famotidine, 2-pyridylethylamine dihydrochloride (2PEA), dimaprit dihydrochloride, 4-methylhistamine dihydrochloride and thioperamide were prepared at Yamanouchi Pharmaceutical Co., Ltd. The following were obtained from commercial sources: histamine dihydrochloride, cimetidine, ranitidine hydrochloride and chlorpheniramine maleate (Sigma, St. Louis MO, USA); atropine sulfate (Tanabe Seiyaku, Osaka); phentolamine mesylate (Ciba-Gaigy, Basel, Switzerland); propranolol hydrochloride (ICI, Macelesfield, UK); and ketamine hydrochloride (Sankyo, Tokyo). Methysergide was the kind gift of Sandoz, Ltd. (Basel, Switzerland).

Histamine, 2PEA, dimaprit and 4-methylhistamine were dissolved in 0.9% (w/v) sodium chloride solution (saline). All drugs, when given orally, were suspended in 0.5% methylcellulose solution. In experiments using intravenous injection, famotidine, cimetidine and thioperamide were dissolved in N/10 hydrochloric acid and diluted with saline, with the pH adjusted to 6.5–7.0. Atropine, phentolamine and propranolol were diluted with saline, and the other drugs were dissolved in saline.

RESULTS

Skin reaction to intradermal injection of histamine-receptor agonists

We first performed time-course studies on the wheal responses to histamine, 2PEA and dimaprit. In the guinea pig, histamine (0.25, 2 µg) and 2PEA (100 µg) produced maximal whealing at 20 min after intradermal injection (Fig. 1). A high dose of histamine (8 µg) produced the maximal wheal at 40 min after intradermal injection, but the outline of this wheal was indistinct. The maximal wheal response to dimaprit was observed at 10 min after intradermal injection. To unify the experimental conditions, the wheal area was measured at 20 min after intradermal injection. In the squirrel monkey, maximal wheal responses to 2PEA (500 µg) and dimaprit (500 µg) were observed at 20 min after intradermal injection. In the squirrel monkey, maximal wheal responses to 2PEA (500 µg) and dimaprit (500 µg) were observed at 20 min after intradermal injection. Although the maximal wheal

Fig. 1. Time-course of the wheal reaction induced by histamine, 2PEA and dimaprit in the squirrel monkey and guinea pig. Each point represents the mean ± S.E.M. for 4 to 5 animals. Guinea pig: saline (○); histamine, 0.25 (△), 2 (■), 8 µg (●); 2PEA, 50 µg (□); dimaprit, 500 µg (▲). Squirrel monkey: saline (○); histamine, 50 µg (●); 2PEA, 500 µg (□); dimaprit, 500 µg (▲).
response to histamine (50 μg) was measured at 40 min after intradermal injection, its outline was indistinct and the blue area of skin surface was faded compared with that measured at 20 min after injection (Fig. 1). The wheal was therefore measured at 20 min after injection in the following experiments.

In guinea pigs, histamine (0.125–64 μg), 2PEA (1–1000 μg) and dimaprit (30–1000 μg) produced wheal responses in a dose-dependent manner, but the maximal wheal area to dimaprit was 38% of that to histamine (Fig. 2). Because the outline of the wheal to high doses of histamine (16–64 μg) was unclear, in the following experiments, doses of histamine and agonists were limited to cause wheals of less than 300 mm². Histamine (1–100 μg), 2PEA (100–1000 μg) and dimaprit (100–1000 μg) also induced wheals in a dose-dependent fashion in the squirrel monkey (Fig. 2). We did not determine the wheal response at higher doses of histamine and agonists in order to avoid skin injury, because the squirrel monkey was used repeatedly.

Effects of histamine receptor antagonists on the wheal response to histamine in guinea pigs

In the guinea pig, chlorpheniramine at 0.01–1 mg/kg, p.o. shifted the histamine wheal dose-response curve to the right in a dose-related, parallel fashion. On the other hand, famotidine (0.3–30 mg/kg, p.o.), ranitidine (1–100 mg/kg, p.o.) and cimetidine (3–300 mg/kg, p.o.) did not affect the wheal response to histamine (Fig. 3).
In combination studies, cimetidine at 3–300 mg/kg, p.o. potentiated the inhibitory effects of chlorpheniramine (0.1 mg/kg, p.o.) on the histamine-induced wheal, whereas famotidine (0.3–30 mg/kg, p.o.) and ranitidine (1–100 mg/kg, p.o.) did not alter the response to chlorpheniramine (Fig. 4).

Effects of histamine receptor antagonists on the wheal response to histamine in squirrel monkeys

Chlorpheniramine (0.03–3 mg/kg, p.o.) dose-dependently and significantly depressed the histamine wheal response in squirrel monkeys, but famotidine (0.3 and 1 mg/kg, p.o.), ranitidine (3 and 10 mg/kg, p.o.) and cimetidine (12 and 400 mg/kg, p.o.) had no effect (Fig. 5).

Moreover, neither famotidine (0.3 mg/kg, p.o.), ranitidine (3 mg/kg, p.o.) nor cimetidine (12 mg/kg, p.o.) al-

Fig. 4. Effects of famotidine, ranitidine and cimetidine in combination with chlorpheniramine (0.1 mg/kg) on the wheal response to histamine (2 μg) in the guinea pig. Each point represents the mean±S.E.M. for 5 animals. MC: 0.5% methylcellulose solution, CP: chlorpheniramine. *P<0.05, **P<0.01, vs. chlorpheniramine-treated group (open column).

Fig. 5. Effects of chlorpheniramine, famotidine, ranitidine and cimetidine on the wheal response to histamine in the squirrel monkey. Each point represents the mean±S.E.M. for 6 animals. All drugs and MC (0.5% methylcellulose solution) were dosed orally 60 min before intradermal injection of histamine. Chlorpheniramine: MC (○), 0.03 (▲), 0.3 (■), 3 mg/kg (●). Famotidine: MC (○), 0.3 (▲), 1 mg/kg (■). Ranitidine: MC (○), 3 (▲), 10 mg/kg (■). Cimetidine: MC (○), 12 (▲), 40 mg/kg (■).
tered the response to chlorpheniramine (0.3 mg/kg, p.o.) when each was given together with this agent (Fig. 6).

Effects of some kinds of antagonists on the wheal response to dimaprit in squirrel monkeys

The dimaprit-induced wheal reaction was not affected by intravenous histamine-receptor antagonists, chlorpheniramine (0.3 mg/kg), famotidine (0.1 mg/kg), the combination of famotidine and chlorpheniramine, or thioperamide (3 mg/kg) (Fig. 7). Neither atropine (1 mg/kg), phentolamine (1 mg/kg), propranolol (1 mg/kg) nor methysergide (3 mg/kg) affected the wheal reaction to dimaprit (Fig. 8).

DISCUSSION

Intradermal histamine increases vascular permeability by the contraction of papillary endothelium, resulting in the leakage of plasma proteins, dye and liquid components, which appears as a wheal response. The involvement of histamine receptors in the wheal response to histamine has been well examined in many animal species including humans. It is apparent that histamine H1-receptor plays an important role in the histamine-induced wheal response, whereas it still remains to be confirmed whether the H2-receptor is involved in the wheal response to histamine (2-4). This may be caused by histamine H2-receptor antagonists. Previous studies concerning the role of histamine H2-receptors have been almost entirely restricted to using cimetidine and metiamide. These H2-receptor antagonists are devoid of significant H1-receptor antagonistic activity (12), but their H2-receptor antagonistic activity is not so potent. Moreover, cimetidine has been reported to interact with other drugs. The mechanisms by which cimetidine causes drug interaction have been demonstrated as follows: cimetidine binds reversibly to the hepatic cytochrome P-450 system, resulting in decreased metabolism of drugs, and cimetidine decreases the hepatic blood flow with resultant reduction of hepatic clearance of drugs (13, 14). Structurally, metiamide as well as cimetidine is a 4,5-substituted imidazole, and many drugs with this structure demonstrate an ability to inhibit hepatic microsomal drug metabolism. Therefore, metiamide is also suggested to interact with other drugs.

Out of previous reports which suggest the involvement
of H2-receptors in the histamine-induced wheal response, only Marks and Greaves showed that cimetidine alone significantly inhibited the histamine-induced wheal response in healthy volunteers (2); and in any of the other reports, the participation of histamine H2-receptors was demonstrated only after H1-receptors were antagonized (3, 4). Recently, Sussman et al. reported that higher serum concentration of hydroxyzine, a histamine H1-receptor antagonist, was observed following both hydroxyzine and cimetidine administration, and that the enhancement of efficacy against chronic urticaria was noted compared to when hydroxyzine was given alone in patients (but the differences in efficacy were not statistically significant) (15), suggesting that cimetidine-induced enhancement of efficacy is attributable to drug interaction rather than H1-receptor blocking.

Histamine H2-receptor antagonists-induced significant potentiation of the inhibitory effect of H1-receptor antagonists on intradermal histamine-induced wheal response has been reported solely in guinea pigs (16) besides in human. In rhesus monkeys, a species closely related to humans, Hutchcroft et al. reported that cimetidine showed a tendency to potentiate the efficacy of chlorpheniramine (P<0.1) (5); and Ohmi et al. reported that metiamide alone inhibited the histamine-induced wheal response in the Japanese monkey, although it was not statistically significant (P<0.1) (6). Therefore, in the present study, we examined the involvement of H2-receptors in the intradermal histamine-induced wheal response using squirrel monkeys, which has never been evaluated, and compared the results with those in guinea pigs. In addition to examining the effects of cimetidine on the wheal response, we also investigated the effects of two other compounds, famotidine and ranitidine, both which possessed more potent H2-receptor blocking activity than cimetidine but did not interact with other drugs.

This study showed that famotidine and ranitidine had no effect on the histamine-induced wheal response and did not affect the inhibitory effect of an H1-receptor antagonist, chlorpheniramine, on the wheal response to histamine in squirrel monkeys at doses sufficient to block histamine-stimulated gastric acid secretion in rats, dogs and humans (17–20). Moreover, as mentioned above, although metiamide alone showed the inhibitory effect on the histamine-induced wheal response in Japanese monkey (6) and cimetidine potentiated the inhibitory effect of chlorpheniramine on the wheal response to histamine in rhesus monkey (5), these were not statistically significant (P<0.1). Taken all together, histamine H2-receptors may not be involved in the histamine-induced wheal response in monkeys.

In guinea pigs, famotidine and ranitidine also had no effect on the histamine-induced wheal response and had no influence on the inhibitory effect of chlorpheniramine, whereas cimetidine potentiated the efficacy of chlorpheniramine without affecting the histamine-induced wheal response when given alone, like the results reported by Cheng et al. (16). The apparent discrepancies of the effect of cimetidine between squirrel monkeys and guinea pigs may be due to the difference in animal species, especially in the hepatic microsomal enzyme system. The recent development of gene technology has permitted quantitative comparison of the properties of cytochrome P-450, which is a family of enzymes playing major roles in the metabolism of a variety of drugs, among various species. The results indicate that monkeys show a low level of homology in the cDNA sequences of guinea pigs (21). Nevertheless, since potent and selective H2-receptor antagonists such as famotidine and ranitidine did not potentiate the efficacy of chlorpheniramine on the histamine-induced wheal response, cimetidine-induced potentiation in guinea pig is suggested not to be attributable to H2-receptor antagonistic activity.

2PEA is a relatively selective H1-receptor agonist, and the effect of 2PEA is approximately 18 times weaker than that of histamine in guinea pig ileum (H1-receptor) (22). In the present study, 2PEA was about 30 times weaker than histamine in the wheal reaction, indicating the result to be well consistent with that in guinea pig ileum. These data show that 2PEA as well as histamine induces the wheal via H1-receptors.

Dimaprit is a highly selective H2-receptor agonist, and the ratio of H1- to H2-potency is 710000 (22). It has been reported that dimaprit increases vascular permeability and edema volume (23) in rats and produces eosinophil chemotaxis in rabbits (24), and that histamine H2-receptors are not involved in these inflammatory responses to dimaprit. In the present studies, dimaprit induced wheal in squirrel monkeys, but its maximum area of the wheal was 38% that of histamine, and the dimaprit-histamine potency ratio differed from both results in guinea pig ileum (H1-receptors) and atrium (H2-receptors). Moreover, the wheal response to dimaprit was not affected by chlorpheniramine, famotidine, thioperamide, phenolamine, propranolol, atropine and methysergide, suggesting that the following types of receptors are not involved in the wheal induced by dimaprit: histamine H1, H2, H3; adrenergic α, β; muscarinic; and 5-HT1,2.

In summary, it is suggested that the histamine H2-receptor plays only a minor role in the wheal response to histamine in squirrel monkeys and guinea pigs, and that the potentiating effect of cimetidine on H1-receptor antagonists is attributable to drug interaction rather than H2-receptor antagonism.
REFERENCES

1 Douglas, W.W.: Histamine and 5-hydroxytryptamine (serotonin) and their antagonist. In Pharmacological Basis of Therapeutics, Seventh Edition, Edited by Gilman, A.G., Goodman, L.S., Rall, T.W. and Murad, F., p. 607, Macmillan Publishing Co., Inc., New York (1985)

2 Marks, R. and Greaves, M.W.: Vascular reactions to histamine and compound 48/80 in human skin: Suppression by a histamine H2-receptor blocking agent. Br. J. Clin. Pharmacol. 4, 364–369 (1977)

3 Harvey, R.P. and Schocket, A.L.: The effects of H1 and H2 blockade on cutaneous histamine response in man. J. Allergy Clin. Immunol. 65, 136–139 (1980)

4 Robertson, J. and Greaves, M.W.: Responses of human blood vessels to synthetic histamine analogues. Br. J. Clin. Pharmacol. 5, 319–322 (1978)

5 Hutchcroft, B.J., Moore, E.G. and Orange, R.P.: The effects of H1 and H2 receptor antagonism in the response of monkey skin to intradermal histamine, reverse type anaphylaxis, and passive cutaneous anaphylaxis. J. Allergy Clin. Immunol. 63, 376–382 (1979)

6 Ohmi, T., Mue, S., Tamira, S., Ishihara, T., Hoshi, S. and Takishima, T.: Inhibitory effects of histamine antagonists on the skin reaction with house dust allergen, histamine and compound 48/80 in Japanese monkeys. Tohoku J. Exp. Med. 140, 421–428 (1983)

7 Owen, D.A.A., Poy, E. and Woodward, D.F.: Evaluation of the role of histamine H1- and H2-receptors in cutaneous inflammation the guinea pig produced by histamine and mast cell degranulation, Br. J. Pharmacol. 69, 615–623 (1980)

8 Woodward, D.F., Spada, C.S., Hawley, S.G. and Nieves, A.L.: Histamine H1- and H2-receptor involvement in eosinophil infiltration and the microvascular changes associated with cutaneous anaphylaxis. Agents Actions 17, 121–125 (1985)

9 Rinkema, L.E., Bemis, K.G. and Fleisch, J.H.: Production and antagonism of cutaneous vascular permeability in the guinea-pig in response to histamine, leukotrienes and A23187. J. Pharmacol. Exp. Ther. 230, 550–557 (1984)

10 Owen, D.A.A., Pipkin, M.A. and Woodward, D.F.: Studies on cutaneous vascular permeability in the rat: increases caused by histamine and histamine-like agents. Agents Actions 14, 39–42 (1984)

11 Bhargava, K.P., Nath, R. and Palit, G.: Nature of histamine receptors concerned in capillary permeability. Br. J. Pharmacol. 59, 349–351 (1977)

12 Brimblecombe, R.W., Duncan, W.A.M., Durant, G.J., Emmett, J.C., Ganellin, C.R. and Parsons, M.E.: Cimetidine – a non-thiourea H2-receptor antagonist. J. Int. Med. Res. 3, 86–92 (1975)

13 Hajek, K.K., Cook, N.I. and Novak, R.F.: Mechanism of inhibition of microsomal drug metabolism by imidazole. J. Pharmacol. Exp. Ther. 223, 97–104 (1982)

14 Somogyi, A. and Ougler, R.: Drug interactions with cimetidine. Clin. Pharmacokinet. 7, 23–41 (1982)

15 Sussman, G.L., Simons, F.E.R. and Simons, K.J.: The effect of the H2-antagonist cimetidine (C) on the pharmacokinetics (PK) and pharmacodynamics (PD) of the H1-antagonist hydroxyzine (H) in patients with chronic urticaria. J. Allergy Clin. Immunol. 91, No. 1, Pt. 2, 247 (1993)

16 Cheng, H.C., Reavis, O.K., Jr., Munro, N.L. and Woodward, J.K.: Cutaneous vascular histamine H1 and H2 receptors in the guinea-pig: The histamine skin wheal as a cutaneous vascular model. Arch. Int. Pharmacodyn. Ther. 240, 214–219 (1979)

17 Pendleton, R.G., Cook, P.G., Shepherd-Rose, A. and Mangel, A.W.: Effects of H2-receptor antagonists upon physiological acid secretory states in animals. J. Pharmacol. Exp. Ther. 233, 64–69 (1985)

18 Miwa, M., Tani, N. and Miwa, T.: Inhibition of gastric secretion by a new H2-antagonist, YM-11170 in healthy subjects. Int. J. Clin. Pharmacol. Ther. Toxicol. 22, 214–217 (1984)

19 Daly, M.J., Humphray, J.M. and Stable, R.: Inhibition of gastric acid secretion in the dog by the H2-receptor antagonist, ranitidine, cimetidine, and metiamide. Gut 21, 408–412 (1980)

20 Sewing, K.-Fr., Billian, A. and Malchow, H.: Comparative study with ranitidine and cimetidine on gastric secretion in normal volunteers. Gut 21, 750–752 (1980)

21 Kamataki, T. and Komori, M.: New approach to the species difference of drug metabolism: Interspecies homology of cytochrome P-450 on the basis of cDNA sequences. Japan. J. Pharmacol. 61, Supp. I, 49P (1993)

22 Ganellin, C.R.: Chemistry and structure-activity relationships of drugs acting at histamine receptors. In Pharmacology of Histamine Receptors, Edited by Ganellin, C.R. and Parsons, M.E., p. 54, John Write & Sons, Ltd., Bristol (1982)

23 Khanna, N.K. and Metha, Y.R.: Dimaprit-induced inflammation: A new model to screen anti-inflammatory agents. Drugs Exp. Clin. Res. VII, 47–51 (1981)

24 Mindel, J.S., Friedman, A.H., Haimov, T., Kharlam, A.B. and Freilich, J.M.: Eosinophil chemotaxis and anterior uveitis from topical dimaprit and nordimaprit. Invest. Ophthalmol. Vis. Sci. 27, 1504–1511 (1986)