The usefulness of Shock Index and Modified Shock Index in predicting outcome of COVID-19 patients

Erdem KURT¹*, Suphi BAHADIRLI²

¹Department of Emergency Medicine, Istanbul Training and Research Hospital, Istanbul, Turkey
²Department of Emergency Medicine, Beylikduzu State Hospital, Istanbul, Turkey

*Corresponding Author: Erdem KURT, M.D.; E-mail: erdemkurt8@gmail.com

Orcid IDs of Authors:
Erdem KURT: https://orcid.org/0000-0002-7877-5231
Suphi BAHADIRLI: https://orcid.org/0000-0003-3635-6722

Author Contributions
Concept: EK; Design: SB,EK.; Supervision: SB.; Materials: EK; Data: EK,SB.; Analysis: SB,EK; Literature search.:EK,SB.; Writing: EK,SB; Critical revision: SB,EK

Running Title: Usefulness of Shock Index and Modified Shock Index in COVİD-19

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflicts of Interest
Authors declare that they have no conflicts of interest.
Abstract

Objective: The aim of this study is to investigate the accuracy of shock index (SI) and modified shock index (mSI) in predicting intensive care unit (ICU) requirement and in-hospital mortality among COVID-19 patients who admitted to the emergency department (ED). Likewise, the effects of patients’ conditions such as age, gender and comorbidity on prognosis will be analyzed.

Methods: The files were retrospectively scanned for all COVID-19 patients over the age of 18 who were admitted to the ED and hospitalized between January 1, 2021 and March 15, 2021. The area under the receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to assess each scoring system discriminatory for predicting in-hospital mortality and ICU admission.

Results: There were 464 patients included in this study. The mean age of the patients was 62.4±16.7, of which 245 were men and 219 were women. The most common comorbidity in patients was hypertension 200 (43.1%), followed by chronic obstructive pulmonary disease 174 (37.5%) and coronary artery disease 154 (33.2%). In terms of in-hospital mortality, the AUC of SI, and mSI were 0.719, and 0.739, respectively. In terms of ICU requirement, the AUC of SI, and mSI were 0.704, and 0.729, respectively.

Conclusion: In this study, it was concluded that SI and mSI are useful in predicting in-hospital mortality and ICU requirement in COVID-19 patients. In addition, it is another important result of the study that advanced age, male gender and hypertension may be associated with poor prognosis.

Keywords: COVID-19, shock index, modified shock index, intensive care units, mortality
1. **INTRODUCTION**

In December 2019, a new coronavirus emerged in Wuhan, China, identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); and it quickly spread around the world\(^1\). The World Health Organization named this infection as COVID-19 and announced a pandemic\(^2\). The epidemic caused a serious mortality and morbidity problem worldwide, causing approximately 140 million cases and as a result 3 million deaths as of April 24, 2021\(^3\). The clinical spectrum of COVID-19 infection can change from asymptomatic to the most severe disease (acute respiratory distress syndrome [ARDS], acute heart injury and acute kidney injury, etc.)\(^4\). While 32\% of all patients with test-positive, require an ICU, many of these patients may die\(^5\). Early recognition is important in patients at risk of serious illness and who may have potentially life-threatening conditions. Therefore, it is important to early diagnosis of patients who will require critical care.

Shock index (SI) is a ratio that obtained by dividing heart rate by systolic blood pressure, a simple and easy-to-use formula to determine the changes in cardiovascular performance prior to systemic hypotension. Allgöwer and Buri first introduced this ratio in 1967 as a simple and effective way of measuring the degree of hypovolemia in cases of hemorrhagic and infectious shock\(^6\). Although SI is a non-invasive measurement, it is an important marker for the early evaluation of hemodynamics and tissue perfusion.

Ye-Cheng Liu et al, in their study, considering that SI uses only systolic blood pressure and has an undeniable importance in determining the clinical severity of the patient in diastolic blood pressure, they defined the Modified Shock Index (mSI) in 2012, by adding diastolic blood pressure to SI\(^7\).

The aim of this study is to investigate the accuracy of SI and mSI in predicting ICU requirement and in-hospital mortality in COVID-19 patients admitted to the ED. Additionaly, the effects of patients’ conditions such as age, gender and comorbidity on prognosis will be analyzed.
2. MATERIALS AND METHODS

2.1. STUDY DESIGN
In this study, patients who were admitted to the Beylikdüzü Public Hospital ED between January 1, 2021 and March 31, 2021 and were diagnosed with COVID-19 were examined retrospectively. The institutional review board approved the analysis and issued a waiver of consent.

2.2. SELECTION OF PATIENTS
All patients who were admitted to the ED with COVID-19 complaints, who had oropharyngeal/ nasopharyngeal swabs, and who were hospitalized between January 1 and March 31, 2021, were included in the study. Patients whose reverse transcriptase polymerase chain reaction (RT-PCR) test results were negative and whose SI and mSI could not be calculated were excluded from the study. In addition, patients who were admitted to the ED due to cardiac arrest and those who received inotropic support at the time of the admission were not included in the study.

2.3. MEASUREMENTS
Data were collected from electronic medical hospital records and patients' ambulance forms. Data collected included age, sex, vital signs [body temperature, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), respiratory rate (RR), mean arterial pressure (MAP), blood oxygen saturation (spO2), body temperature (Temp)] and SI-mSI. MAP was calculated as follows: MAP= [SBP + (2 X DBP)]/3. SI was calculated as the ratio of HR to SBP (SI = HR / SBP). The mSI was calculated as the ratio HR to MAP (mSI= HR / MAP). The formulas were calculated using the vital findings at the time of first admission to the ED.

2.4. OUTCOMES
The primary outcome was in-hospital mortality. The secondary outcome is to determine the relationship between SI-mSI and ICU requirement. Outcomes were retrospectively assessed by reviewing of the hospital medical database. For the in-hospital mortality, active cases were excluded from the analysis. For the ICU requirement, all the patients in the cohort at the cutoff date were included in the analysis.

2.5. STATISTICAL ANALYSIS
Categorical variables were presented as frequency and percentage. Continuous variables were presented as mean±standard deviation. The compliance of the data with normal distribution
was checked with Kolmogorov-Smirnov and Shapiro-Wilk tests. Patients were divided into two groups according to ICU admission requirement. All variables were compared for these two groups using the Pearson’s chi-square, Fisher's exact test, Student’s t-test and Mann–Whitney U test as appropriate. Receiver operating characteristic (ROC) analyses were performed to determine the predictive power of indexes. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of both cutpoints were found. The cut-off point that achieves the maximum Youden’s index is referred to as the optimal cutpoint. The odds ratios of indexes with the determined cut-off points were calculated for the outcomes. The area under the curve (AUC) of ROC curves of indexes were compared with DeLong’s test. A 2-sided P-value of 0.05 was regarded as statistically significant. All data analyses were performed using SPSS version 23.0 software (SPSS Inc., Chicago, IL, USA).

2.6 ETHICAL APPROVAL AND AVAILABILITY OF DATA AND MATERIALS

The principles outlined in the Declaration of Helsinki have been followed. This study was approved by the local ethics committee. Written informed consent was not required because no patient data has been included in the manuscript.

The data and materials in the manuscript are available from the authors.

3. RESULTS

After applying the inclusion and exclusion criteria, the study was completed with 464 patients. The mean age of the patient group included in the study was 62.4 ± 16.7, which 245 (52.8%) were male and 219 (47.2%) were female. In-hospital mortality was observed in 73 (15.7%) of the patients. ICU was required in 165 (35.6%) of the patients. The mean age of the ICU requirement group was 74.5 ± 13.0, while the mean age of the ICU non-requirement group was 55.8 ± 14.7. The mean age of between the two groups was significantly higher in the ICU requirement group (<0.001).

The most common comorbidity in the patients was hypertension (200; 43.1%), followed by chronic obstructive pulmonary disease (174; 37.5%) and coronary artery disease (154; 33.2%). Other demographic and comorbidity data of the study population are presented in Table 1.

According to Youden’s index, the optimal cut-off value for predicting in-hospital mortality was 0.72 for SI (sensitivity; 71.2, specificity; 69.6, PPV; 30.4, NPV; 92.8, AUC; 0.719),
while it was 1 for mSI (sensitivity; 74, specificity; 72.4, PPV; 33.3, NPV; 93.7, AUC; 0.739) (Table 2).

The optimal cut-off values obtained for both scores were found to be significant in predicting in-hospital mortality (odd's ratio SI 5.660-mSI 7.395) (p <0.001) (Table 3).

The optimal cut-off value for the ICU requirement for SI was 0.73 (sensitivity; 61.2, specificity; 78.3, PPV; 60.8, NPV; 78.5, AUC; 0.704), while it was 0.98 for mSI (sensitivity; 65.5, specificity; 78.9, PPV; 63.2, NPV; 80.6, AUC; 0.729). The optimal cut-off values obtained for both scores are significant in predicting the ICU requirement (odd’s ratio SI 5.681-MSI 7.098) (p <0.001).

In the ROC analysis, which performed to evaluate the ability of indices to predict in-hospital mortality, the AUC value of SI was 0.719±0.037 (95% CI, 0.647-0.791), while that of mSI was 0.739±0.036 (95% CI, 0.669-0.809) (for both, p<0.001) (Figure 1).

When the predictive power of this outcome were compared, there was a statistically significant difference between the AUCs of the two indices, and the mSI was slightly better than SI (AUC difference: -0.020, p=0.003, DeLong’s test). In predicting the requirement of ICU admission, the AUC value of SI was 0.704 --0.027 (95% CI, 0.651 - 0.757), while the AUC value of mSI was 0.729±0.026 (95% CI, 0.677 - 0.781) (p < 0.001) (Figure 2).

Comparing the predictive power of SI and mSI for ICU requirement, there was again a significant difference between the two indexes and mSI was slightly more successful (AUC difference: -0.025, p <0.001, DeLong's test). The ROC analysis results for in-hospital mortality and ICU admissions of SI and mSI are presented in Table 4.

4. DISCUSSION

In this study, we compared the prognostic performance of SI and mSI in terms of in-hospital mortality and ICU admission in patients diagnosed and hospitalized with COVID-19. In this cohort, we concluded that both SI and mSI can be useful in predicting in-hospital mortality and ICU requirement.

Infections due to Covid-19 spread rapidly around the world, leading to a pandemic. The rapidly increasing case numbers and the high mortality-morbidity rate of the virus have caused widespread anxiety in the community. Descriptive data such as age and gender distributions of the cases will be useful in determining which populations the disease is more common in and risk groups, especially in cases where there are limited healthcare services.
In this study, we concluded that male gender is more associated with the ICU admission. There are articles in the literature reporting gender-related differences in terms of the prevalence and severity of COVID-19 infection (8,9). In studies conducted in China, it was reported that the disease is more common in males, since ACE2 expression is more dominant in Asian males and smoking is more common in males than in the females (10).

In-hospital mortality rate observed in our study was high (15.7%). This may be due to the advanced age of the patient (mean age 62.4 ± 16.7 years) and the high rate of comorbidity. The relationship of advanced 'age' with poor outcome due to COVID-19 has also been shown in previous studies (11,12). This may be attributed to the inability to control viral replication due to age-related defects in T-cell and B-cell functions, excessive production of type-2 cytokines, and prolonged proinflammatory responses (13).

Hypertension was in 43.1% of the patients in this study. There are studies in the literature examining the prognosis and comorbidity of COVID-19 patients. In a study of 5,700 cases of COVID-19 hospitalized in New York, it was reported that hypertension was the most common comorbidity followed by obesity and diabetes (14). In another study linking hypertension and COVID-19, it was emphasized that the immune system is disrupted by hypertension and COVID-19, and this disorder is exacerbated when blood pressure is not properly controlled (15). Therefore, blood pressure control seems very important in such patients.

Although SI is a non-invasive measurement, it is an important marker for early evaluation of hemodynamics and tissue perfusion (16). Although the term SI was initially investigated in shock situations, it has been studied as a prognostic tool in other critical disease conditions, especially those that are not in shock. The normal SI value is between 0.5 and 0.7. In addition to the trauma literature in which SI> 0.9 is defined as an early predictor of need for haemorrhagic shock, mortality and transfusion, SI has also been studied as the predictor of the hemodynamic instability, the morbidity and the predictor of mortality (pneumonia, myocardial infarction, gastrointestinal bleeding, etc.) (17). The mSI is obtained by adding diastolic tension to the SI. Patients with an mSI higher than 1.3 are more likely to be admitted to the ICU and the death. Both indexes were found to be associated with the increased mortality risk, the injury severity, and the time of staying in ICU (18). In a study examining the relationship between COVID-19 and SI, it was emphasized that advanced age and increased SI are related to mortality (19).
In this study, SI and mSI were found to be successful in predicting ICU requirement and in-hospital mortality in COVID-patients admitted to the ED and hospitalized. In the comparison of these two indexes, the predictive power of MSI is higher.

Limitations
As with any retrospective study, there are some limitations in this study. The sample size of this single center study was also relatively small. More studies with a larger sample size are essential to confirm these results.

In conclusion, it has been concluded that SI and mSI are useful in predicting in-hospital mortality and ICU requirement in COVID-19 patients. In addition, it is another important result of the study that the advanced age, the male gender and the hypertension may be associated with poor prognosis.
References

1. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506.

2. Grasselli, G., Pesenti, A., & Cecconi, M. (2020). Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. Jama, 323(16), 1545-1546.

3. https://www.worldometers.info/coronavirus/

4. Ciceri, F., Castagna, A., Rovere-Querini, P., De Cobelli, F., Ruggeri, A., Galli, L., ... & Zangrillo, A. (2020). Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clinical Immunology, 217, 108509.

5. Phua, J., Weng, L., Ling, L., Egi, M., Lim, C. M., Divatia, J. V., ... & Asian Critical Care Clinical Trials Group. (2020). Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. The Lancet Respiratory Medicine, 8(5), 506-517.

6. Allgöwer, M., & Burri, C. (1967). Schockindex. DMW-Deutsche Medizinische Wochenschrift, 92(43), 1947-1950.

7. Liu, Y. C., Liu, J. H., Fang, Z. A., Shan, G. L., Xu, J., Qi, Z. W., ... & Yu, X. Z. (2012). Modified shock index and mortality rate of emergency patients. World journal of emergency medicine, 3(2), 114.

8. Guan, WJ., et al., Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 2020.

9. Wei, X., et al., Sex Differences in Severity and Mortality Among Patients With COVID-19: Evidence from Pooled Literature Analysis and Insights from Integrated Bioinformatic Analysis. arXiv preprint arXiv:2003.13547, 2020.

10. Cai, H., Sex difference and smoking predisposition in patients with COVID-19. The Lancet Respiratory Medicine, 2020.

11. Stokes, E. K., Zambrano, L. D., Anderson, K. N., Marder, E. P., Raz, K. M., Felix, S. E. B., ... & Fullerton, K. E. (2020). Coronavirus disease 2019 case surveillance—United States, January 22–May 30, 2020. Morbidity and Mortality Weekly Report, 69(24), 759.

12. Du, R. H., Liang, L. R., Yang, C. Q., Wang, W., Cao, T. Z., Li, M., ... & Shi, H. Z. (2020). Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. European Respiratory Journal, 55(5).
13. Opal, S. M., Girard, T. D., & Ely, E. W. (2005). The immunopathogenesis of sepsis in elderly patients. *Clinical infectious diseases, 41*(Supplement_7), S504-S512.

14. Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., McGinn, T., Davidson, K. W., ... & Zanos, T. P. (2020). Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. *Jama, 323*(20), 2052-2059.

15. Guzik, T. J., Mohiddin, S. A., Dimarco, A., Patel, V., Savvatis, K., Marelli-Berg, F. M., ... & McInnes, I. B. (2020). COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. *Cardiovascular research, 116*(10), 1666-1687.

16. Olaussen, A., Blackburn, T., Mitra, B., & Fitzgerald, M. (2014). Shock index for prediction of critical bleeding post-trauma: a systematic review. *Emergency Medicine Australasia, 26*(3), 223-228.

17. Al Jalbout, N., Balhara, K. S., Hamade, B., Hsieh, Y. H., Kelen, G. D., & Bayram, J. D. (2019). Shock index as a predictor of hospital admission and inpatient mortality in a US national database of emergency departments. *Emergency Medicine Journal, 36*(5), 293-297.

18. Cannon, C. M., Braxton, C. C., Kling-Smith, M., Mahnken, J. D., Carlton, E., & Moncure, M. (2009). Utility of the shock index in predicting mortality in traumatically injured patients. *Journal of Trauma and Acute Care Surgery, 67*(6), 1426-1430.

19. Doğanay, F., Elkonca, F., Seyhan, A. U., Yılmaz, E., Batırel, A., & Ak, R. (2021). Shock index as a predictor of mortality among the Covid-19 patients. *The American journal of emergency medicine, 40*, 106-109.
Table 1. Baseline characteristics of the patients.

Variables	Total n (%)	ICU (-) n (%)	ICU (+) n (%)	p
	mean±sd	mean±sd	mean±sd	
Number of patients	464 (100)	299 (64.4)	165 (35.6)	
Age, years	62.4±16.7	55.8±14.7	74.5±13.0	<0.001*
Gender				0.182**
Female	219 (47.2)	148 (49.5)	71 (43.0)	
Male	245 (52.8)	151 (50.5)	94 (57.0)	
Comorbidities				
Hypertension	200 (43.1)	111 (37.1)	89 (53.9)	<0.001***
Diabetes	53 (11.4)	37 (12.4)	16 (9.7)	0.385**
Chronic renal failure	41 (8.8)	18 (6.0)	23 (13.9)	0.004**
Neurological diseases	46 (9.9)	8 (2.7)	38 (23.0)	<0.001***
Ischemic heart disease	154 (33.2)	86 (28.8)	68 (41.2)	0.006**
COPD	174 (37.5)	74 (24.7)	100 (60.6)	<0.001***
Cancer	83 (17.9)	31 (10.4)	52 (31.5)	<0.001**
Number of Comorbidities	1.6±1.2	1.2±1.1	2.3±1.2	<0.001***
Body Temperature, °C	37.8±1.1	37.6±0.9	38.2±1.1	<0.001***
Systolic BP, mmHg	137.5±33.3	137.1±32.4	138.3±35.0	0.621***
Diastolic BP, mmHg	85.6±20.5	87.0±20.4	83.1±20.4	0.092***
Mean AP, mmHg	102.9±24.2	103.7±23.9	101.5±24.7	0.466***
Saturation O₂	88.4±7.6	92.6±2.8	80.7±7.5	<0.001***
Pulse, beat/min	87.3±21.8	79.2±15.4	92.7±23.4	<0.001***
Respiratory Rate, br/min	20.4±5.9	17.0±3.4	26.6±4.3	<0.001***
CRP, mg/dL	79.5±75.6	34.2±27.7	161.7±65.0	<0.001***
Shock Index	0.68±0.26	0.60±0.17	0.81±0.33	<0.001***
Modified Shock Index	0.91±0.35	0.79±0.23	1.10±0.44	<0.001***
In-Hospital Mortality	73 (15.7)	4 (1.3)	69 (41.8)	<0.001***

ICU: Intensive care unit, COPD: Chronic obstructive pulmonary disease, BP: Blood pressure, AP: Arterial pressure, br: Breath CRP: C-reactive protein,

*Student’s T-test, **Pearson Chi-Square, ***Mann-Whitney U
Table 2. Optimum cut-off points* for SI and mSI in predicting in-hospital mortality and ICU admissions

	Cut-off point	Sens (%)	Spec (%)	PPV (%)	NPV (%)	AUC	Youden’s Index
In-hospital mortality							
SI	0.72	71.2	69.6	30.4	92.8	0.719	0.408
mSI	1	74.0	72.4	33.3	93.7	0.739	0.464
ICU admissions							
SI	0.73	61.2	78.3	60.8	78.5	0.704	0.395
mSI	0.98	65.5	78.9	63.2	80.6	0.729	0.444

* Cut-off points with the highest Youden's index value were shown

SI: Shock index, mSI: Modified shock index, ICU: Intensive care unit, Sens: Sensitivity, Spec: Specificity, PPV: Positive predictive value, NPV: Negative predictive value AUC: Area under the curve
Table 3. Odds ratios of SI and mSI at optimal cut-off points.

	Cut-off	OR	95% CI	p
In-hospital mortality				
SI	0.72	5.660	3.263 to 9.816	< 0.001
mSI	1	7.395	4.190 to 13.049	< 0.001
ICU admissions				
SI	0.73	5.681	3.745 to 8.618	< 0.001
mSI	0.98	7.098	4.642 to 10.852	< 0.001

SI: Shock index, mSI: Modified shock index, ICU: Intensive care unit, OR: Odds ratio, CI: Confidence interval
Table 4. The ROC analysis for in-hospital mortality and ICU admissions of SI and mSI.

	AUC	SE	95% CI	p
In-hospital Mortality				
SI	0.719	0.037	0.647 to 0.791	<0.001
mSI	0.739	0.036	0.669 to 0.809	<0.001
Comparison^a SI-mSI	-0.020^b	-0.033 to -0.007	0.003	
ICU admissions				
SI	0.704	0.027	0.651 to 0.757	<0.001
mSI	0.729	0.026	0.677 to 0.781	<0.001
Comparison^a SI-mSI	-0.025^b	-0.034 to -0.016	<0.001	

^aDeLong’s test
^bAUC difference

Abbreviations: ROC: Receiver operating characteristics; ICU: Intensive care unit; AUC: Area under the curve; SE: Standard error; CI: Confidence interval; SI: Shock index; mSI: Modified shock index
Figure 1. The ROC curves of SI and mSI for in-hospital mortality
Figure 2. The ROC curves of SI and mSI for ICU admissions.