SINGULARITY CONTENT

MOHAMMAD E. AKHTAR AND ALEXANDER M. KASPRZYK

ABSTRACT. We show that a cyclic quotient surface singularity σ can be decomposed, in a precise sense, into a number of elementary T-singularities together with a cyclic quotient surface singularity called the residue of σ. A normal surface X with isolated cyclic quotient singularities $\{\sigma_i\}$ admits a Q-Gorenstein partial smoothing to a surface with singularities given by the residues of the σ_i. We define the singularity content of a Fano lattice polygon P: this records the total number of elementary T-singularities and the residues of the corresponding toric Fano surface X_P. We express the degree of X_P in terms of the singularity content of P; give a formula for the Hilbert series of X_P in terms of singularity content; and show that singularity content is an invariant of P under mutation.

1. Introduction

Let C be a two-dimensional rational cone and let X_C denote the corresponding affine toric surface singularity. Let u, v be primitive lattice points on the rays of C. Let ℓ, the local index of C, denote the lattice height of the line segment uv above the origin and let w, the width of C, denote the lattice length of $v-u$. Write $w = n\ell + \rho$ for $n, \rho \in \mathbb{Z}_{\geq 0}$ with $0 \leq \rho < \ell$. Then X_C is a T-singularity if and only if $\rho = 0$, and we say that X_C is an elementary T-singularity if $n = 1$ and $\rho = 0$ (so $w = \ell$); these correspond to singularities of the form $\frac{1}{n\ell^2}(1, n\ell c - 1)$ and $\frac{1}{\ell}(1, \ell c - 1)$, respectively. Choose a decomposition of C into a cone R, of width ρ and local index ℓ, and n other cones, each of width and local index ℓ. Then, up to lattice isomorphism, R depends only on C and not on the decomposition chosen (Proposition 2.3) and we give explicit formula for R in terms of C. There is a Q-Gorenstein deformation of X_C such that the general fibre is the affine toric surface singularity X_R (Proposition 2.7). We call X_R the residue of C, and write it as $\text{res}(C)$. Given a normal surface X with isolated cyclic quotient singularities $\{X_{C_i} : i \in I\}$ there exists a Q-Gorenstein deformation of X such that the general fibre is a surface with isolated singularities $\{\text{res}(C_i) : i \in I\}$ (Corollary 2.8).

Let P be a Fano polygon and let X_P denote the corresponding toric Fano surface defined by the spanning fan Σ of P. For a cone C_i of Σ with width w_i and local index ℓ_i, write $w_i = n_i\ell_i + \rho_i$ with $0 \leq \rho_i < \ell_i$. The singularity content of P is the pair (n, B) where $n = \sum n_i$ and B is the cyclically-ordered list $\{\text{res}(C_i)\}_i$ with empty residues omitted. We compute the degree of X_P in terms of the singularity content of P (Proposition 3.3) and express the Hilbert series of X_P, in the style of [Rei87], as the sum of a leading term controlling the order of growth followed by contributions from the elements of B (Corollary 3.4). The singularity content of P is invariant under mutation [ACGK12].

2. Singularity content of a cone

Let N be a lattice of rank two, and consider a (strictly convex) two-dimensional cone $C \subset N_Q := N \otimes \mathbb{Z} \mathbb{Q}$. Let u and v be the primitive lattice vectors in N defined by the rays

2010 Mathematics Subject Classification: 14M25 (Primary); 14B05, 14J45 (Secondary).
of \(C \). Define the width \(w \in \mathbb{Z}_{>0} \) of \(C \) to be the lattice length of \(v - u \), and the local index \(\ell \in \mathbb{Z}_{>0} \) of \(C \) to be the lattice height of the line segment \(uv \) above the origin.

Notation 2.1. Given \(C, u, v \) as above, and a non-negative integer \(m \) such that \(m \leq w/\ell \), we define a sequence of lattice points \(v_0, v_1, \ldots, v_{n+1} \) on \(uv \) as follows:

(i) \(v_0 = u \) and \(v_{n+1} = v \);

(ii) \(v_{i+1} - v_i \) is a non-negative scalar multiple of \(v - u \), for \(i \in \{0, 1, \ldots, n\} \);

(iii) \(v_{i+1} - v_i \) has lattice length \(\ell \) for \(i \in \{0, \ldots, m, \ldots, n\} \);

(iv) \(v_{m+1} - v_m \) has lattice length \(\rho \), with \(0 \leq \rho < \ell \).

The sequence \(v_0, \ldots, v_{n+1} \) is uniquely determined by \(m \) and the choice of \(u \). Note that \(w = n\ell + \rho \). We consider the partition of \(C \) into subcones \(C_i := \text{cone}\{v_i, v_{i+1}\}, 0 \leq i \leq n \).

Lemma 2.2 ([AK13] Proof of Proposition 3.9]). If the cone \(C \subset \mathbb{N}_Q \) has singularity type \(\frac{1}{2}(a, b) \) then \(w = \gcd\{r, a, b\} \) and \(\ell = r/\gcd\{r, a + b\} \).

Proposition 2.3. Let \(C \subset \mathbb{N}_Q \) be a two-dimensional cone of singularity type \(\frac{1}{2}(1, a - 1) \). Let \(u, v \) be the primitive lattice vectors defined by the rays of \(C \), ordered such that \(u, v, \) and \(w^{-1}u + \frac{1}{r}v \) generate \(N \). Let \(v_0, \ldots, v_{n+1} \) be as in Notation 2.1. Then:

(i) The lattice points \(v_0, \ldots, v_{n+1} \) are primitive;

(ii) The subcones \(C_i, 0 \leq i < m \), are of singularity type \(\frac{1}{2}(1, \frac{\alpha}{w} - 1) \);

(iii) If \(\rho \neq 0 \) then the subcone \(C_m \) is of singularity type \(\frac{1}{2}\rho(1, \frac{\alpha}{w} - 1) \);

(iv) The subcones \(C_i, m < i \leq n \), are of singularity type \(\frac{1}{2}(1, \frac{a}{w} - 1) \).

Here \(\bar{a} \) is an integer satisfying \((a - 1)(\bar{a} - 1) \equiv 1 \pmod{r} \), and so exchanging the roles of \(u \) and \(v \) exchanges \(a \) and \(\bar{a} \). Note that the singularity type of \(C_m \) depends only on \(C \).

Proof. Without loss of generality we may assume that \(u = (0, 1) \), that \(v = (r, 1 - a) \), and that \(m \neq 0 \). The primitive vector in the direction \(v - u \) is \((\alpha, \beta) := (\ell, -a/w) \). Thus \(v_1 = (\alpha^2, 1 + \alpha\beta) \), and so \(v_1 \) is primitive. There exists a change of basis sending \(v_1 \) to \((0, 1) \) and leaving \((\alpha, \beta) \) unchanged. This change of basis sends \(v_i \) to \(v_{i-1} \) for each \(1 \leq i \leq m \). It follows that the lattice points \(v_i, 1 \leq i \leq m \), are primitive, and that the cones \(C_i, 1 \leq i \leq m \), are isomorphic. Since

\[
\frac{1}{\alpha^2}(\alpha^2, 1 + \alpha\beta) - \frac{1 + \alpha\beta}{\alpha^2}(0, 1) = (1, 0),
\]

we have that \(C_1 \) has singularity type \(\frac{1}{\alpha^2}(1, -1 - \alpha\beta) = \frac{1}{\alpha}(1, \frac{\alpha}{w} - 1) \). Since \(r = w\ell \) (Lemma 2.2) we have that \(\frac{\ell(a + kr)}{w} - 1 \equiv \frac{a}{w} - 1 \pmod{\ell^2} \) for any integer \(k \), so that the singularity only depends on the equivalence class of \(a \) modulo \(r \). This proves (i). Switching the roles of \(u \) and \(v \) proves (ii) and (iii).

It remains to prove (iv). As before, we may assume that \(u = (0, 1) \) and \(v = (r, 1 - a) \). Consider the change of basis described above. After applying this \(m \) times, the cone \(C_{m+1} \) has primitive generators \((0, 1)\) and \((\rho\alpha, 1 + \rho\beta)\). Since

\[
\frac{1}{\rho^2}(\rho\alpha, 1 + \rho\beta) - \frac{1 + \rho\beta}{\rho^2}(0, 1) = (1, 0),
\]

we see that \(C_{m+1} \) has singularity type \(\frac{1}{\rho^2}(1, -1 - \rho\beta) = \frac{1}{\rho}(1, \frac{\alpha}{w} - 1) \). Since \(r/w = \ell \) (again by Lemma 2.2) we see that \(\frac{\rho(a + kr)}{w} - 1 \equiv \frac{a}{w} - 1 \pmod{\rho\ell} \) for any integer \(k \), hence the singularity only depends on \(a \) modulo \(r \).
Next, we need to show that (iii) is well-defined: that is, that the quotient singularities \(\frac{1}{\rho}(1, \frac{a}{w} - 1) \) and \(\frac{1}{\rho}(1, \frac{\bar{a}}{w} - 1) \) are equivalent. It is sufficient to show that

\[
\left(\frac{\rho a}{w} - 1 \right) \left(\frac{\rho\bar{a}}{w} - 1 \right) \equiv 1 \pmod{\rho \ell}.
\]

Let \(k, c \in \mathbb{Z}_{\geq 0}, 0 \leq c < \rho \ell \) be such that

\[
\left(\frac{\rho a}{w} - 1 \right) \left(\frac{\rho\bar{a}}{w} - 1 \right) = k\rho\ell + c.
\]

From Lemma 2.2 we see that \(0 \leq c < \rho \ell \), and (2.1) becomes

\[
\left(a - 1 - \frac{nra}{d} \right) \left(\bar{a} - 1 - \frac{n\bar{a}}{d} \right) = kr - \frac{knr^2}{d} + c, \quad \text{where} \quad d := \gcd\{r, a\} \cdot \gcd\{r, \bar{a}\}.
\]

Multiplying through by \(d \) and reducing modulo \(r \) we obtain \(d(a - 1)(\bar{a} - 1) \equiv dc \pmod{r} \).

Suppose that \(d \not\equiv 0 \pmod{r} \). Since \((a - 1)(\bar{a} - 1) \equiv 1 \pmod{r} \), we conclude that \(c = 1 \).

Finally, suppose that \(d \equiv 0 \pmod{r} \). Writing \(a = a' \cdot \gcd\{r, a\} \) and \(\bar{a} = \bar{a}' \cdot \gcd\{r, \bar{a}\}, \) we obtain

\[
1 \equiv (a' \cdot \gcd\{r, a\} - 1)(\bar{a}' \cdot \gcd\{r, \bar{a}\} - 1) \equiv 1 - a - \bar{a} \pmod{r},
\]

and hence \(a \equiv -\bar{a} \pmod{r} \). But this implies that \(1 \equiv (a - 1)(-a - 1) \equiv 1 - a^2 \pmod{r} \) and so \(a \mid r \). Hence \(w = r, \ell = 1 \), and the singularity in (iii) is equivalent to \(\frac{1}{\rho}(1, \rho - 1) \).

Notice that the quantities \(a/w \) and \(\bar{a}/w \) appearing in Proposition 2.3 are integers by Lemma 2.2.

Definition 2.4. Let \(C \subset \mathbb{N} \) be a cone of singularity type \(\frac{1}{r}(1, a - 1) \). Let \(\ell \) and \(w \) be as above, and write \(w = n\ell + \rho \) with \(0 \leq \rho < \ell \). The **residue** of \(C \) is given by

\[
\text{res}(C) := \begin{cases} \frac{1}{\rho}(1, \frac{a}{w} - 1) & \text{if} \ \rho \neq 0, \\ \emptyset & \text{if} \ \rho = 0. \end{cases}
\]

The **singularity content** of \(C \) is the pair \(\text{SC}(C) := (n, \text{res}(C)) \).

Example 2.5. Let \(C \) be a cone corresponding to the singularity \(\frac{1}{100}(1, 23) \). Then \(w = 12, \ell = 5, \) and \(\rho = 2 \). Setting \(m = 1 \) we obtain a decomposition of \(C \) into three subcones: \(C_0 \), singularity type \(\frac{1}{25}(1, 9) \), \(C_1 \) of singularity type \(\frac{1}{10}(1, 3) \), and \(C_2 \) of singularity type \(\frac{1}{25}(1, 4) \). In particular, \(\text{res}(C) = \frac{1}{100}(1, 3) \).

Recall that a \(T \)-singularity is a quotient surface singularity which admits a \(\mathbb{Q} \)-Gorenstein one-parameter smoothing; \(T \)-singularities correspond to cyclic quotient singularities of the form \(\frac{1}{ndc}(1, ndc - 1) \), where \(\gcd\{d, c\} = 1 \) [KSBSS Proposition 3.10]. We now show that \(T \)-singularities are precisely the cyclic quotient singularities with empty residue.

Corollary 2.6. Let \(C \subset \mathbb{N} \) be a cone and let \(w, \ell \) be as above. The following are equivalent:

1. \(\text{res}(C) = \emptyset; \)
2. There exists an integer \(n \) such that \(w = n\ell; \)
3. There exists a crepant subdivision of \(C \) into \(n \) cones of singularity type \(\frac{1}{\ell}(1, \ell c - 1), \gcd\{\ell, c\} = 1; \)
4. \(C \) corresponds to a \(T \)-singularity of type \(\frac{1}{nd}(1, n\ell c - 1), \gcd\{\ell, c\} = 1. \)
Proof. (i) and (ii) are equivalent by definition. (iii) follows from (i) by Proposition 2.3 and (i) follows from (iii) by Lemma 2.2. Assume (iii) and let the singularity type of C be $\frac{1}{R}(1, A-1)$. The width of C is n times the width of a given subcone. Since $\gcd\{\ell, c\} = 1$, Lemma 2.2 implies that
$$\gcd\{R, A\} = w = n \cdot \gcd\{\ell^2, \ell c\} = n\ell.$$
The local index of a given subcone coincides, by construction, with the local index of C. By Lemma 2.2 we see that
$$R = \ell \cdot \gcd\{R, A\} = n\ell^2.$$Finally, Proposition 2.3 gives that $\ell A/w = \ell c$, hence $A = n\ell c$, and so (iii) implies (iv). □

2.1. Residue and deformation. Define the residue of a cyclic quotient singularity σ to be the residue of C, where C is any cone of singularity type σ. The residue encodes information about \mathbb{Q}-Gorenstein deformations of σ.

Proposition 2.7. A cyclic quotient singularity σ admits a \mathbb{Q}-Gorenstein smoothing if and only if $\text{res}(\sigma) = \emptyset$. Otherwise there exists a \mathbb{Q}-Gorenstein deformation of σ such that the general fibre is a cyclic quotient singularity of type $\text{res}(\sigma)$.

Proof. By definition, σ admits a \mathbb{Q}-Gorenstein smoothing if and only if it is a T-singularity. Thus the first statement follows from Corollary 2.6. Assume σ is not a T-singularity and let ω, ℓ, and ρ be as above. By Corollary 2.6 we must have $\rho > 0$. Now $\sigma = \frac{1}{R}(1, a-1)$ has index ℓ and canonical cover
$$\frac{1}{\omega}(1, -1) = (xy - z^\omega) \subset \mathbb{A}^3_{x,y,z}.$$Taking the quotient by the cyclic group μ_ℓ, and noting that $\omega \equiv \rho \pmod{\ell}$, we have:
$$\frac{1}{\ell}(1, a - 1) = (xy - z^\omega) \subset \frac{1}{\ell}(1, \frac{\rho}{\omega} - 1, \frac{a}{\omega}).$$A \mathbb{Q}-Gorenstein deformation is given by
$$(xy - z^\omega + tz^\rho) \subset \frac{1}{\ell}(1, \frac{\rho}{\omega} - 1, \frac{a}{\omega}) \times \mathbb{A}^1_t,$$and the general fibre of this family is the cyclic quotient singularity $\frac{1}{\ell t}(1, \frac{\rho}{\omega} - 1)$. □

By combining Proposition 2.7 above with the proof of Proposition 3.4 and the Remark immediately following it from [Tzi09], which tells us that there are no local-to-global obstructions, we obtain:

Corollary 2.8. Let H be a normal surface over \mathbb{C} with isolated cyclic quotient singularities. There exists a global \mathbb{Q}-Gorenstein smoothing of H to a surface H^{res} with isolated singularities such that $\text{Sing}(H^{\text{res}}) = \{\text{res}(\sigma) \mid \sigma \in \text{Sing}(H), \text{res}(\sigma) \neq \emptyset\}$.

3. Singularity content of a complete toric surface

Definition 3.1. Let Σ be a complete fan in $N_\mathbb{Q}$ with two-dimensional cones C_1, \ldots, C_m, numbered cyclically, with $\text{SC}(C_i) = (n_i, \text{res}(C_i))$. The singularity content of the corresponding toric surface X_Σ is
$$\text{SC}(X_\Sigma) := (n, B),$$where $n := \sum_{i=0}^m n_i$ and B is the cyclically ordered list $\{\text{res}(C_1), \ldots, \text{res}(C_m)\}$, with the empty residues $\text{res}(C_i) = \emptyset$ omitted. We call B the residual basket of X_Σ.
Notation 3.2. We recall some standard facts about toric surfaces; see for instance [Ful93]. Let \(X \) be a toric surface with singularity \(\frac{1}{r}(1, a-1) \). Let \([b_1, \ldots, b_k]\) denote the Hirzebuch–Jung continued fraction expansion of \(r/(a-1) \), having length \(k \in \mathbb{Z}_{>0} \). For \(i \in \{1, \ldots, k\} \), define \(\alpha_i, \beta_i \in \mathbb{Z}_{>0} \) as follows: Set \(\alpha_1 = \beta_k = 1 \) and set
\[
\alpha_i/\alpha_{i-1} := [b_{i-1}, \ldots, b_1], \quad 2 \leq i \leq k, \\
\beta_i/\beta_{i+1} := [b_{i+1}, \ldots, b_k], \quad 1 \leq i \leq k-1.
\]
If \(\pi : \tilde{X} \to X \) is a minimal resolution then
\[
K_{\tilde{X}} = \pi^*K_X + \sum_{i=1}^{k} d_i E_i,
\]
where \(E_i = -b_i \) and \(d_i = -1 + (\alpha_i + \beta_i)/r \) is the discrepancy.

Proposition 3.3. Let \(X \) be a complete toric surface with singularity content \((n, B)\). Then
\[
K_X^2 = 12 - n - \sum_{\sigma \in B} A(\sigma), \quad \text{where } A(\sigma) := k_\sigma + 1 - \sum_{i=1}^{k_\sigma} d_i b_i + 2 \sum_{i=1}^{k_\sigma-1} d_i d_{i+1}.
\]

Proof. Let \(\Sigma \) be the fan in \(N_\mathbb{Q} \) of \(X \). If \(C \in \Sigma \) is a two-dimensional cone whose rays are generated by the primitive lattice vectors \(u \) and \(v \) then, possibly by adding an extra ray through a primitive lattice vector on the line segment \(uv \), we can partition \(C = S \cup R_C \), where \(S \) is a (possibly smooth) \(T \)-singularity or \(S = \emptyset \), and \(R_C = \text{res}(C) \). Repeating this construction for all two-dimensional cones of \(\Sigma \) gives a new fan \(\tilde{\Sigma} \) in \(N_\mathbb{Q} \). If \(\tilde{X} \) is the toric variety corresponding to \(\tilde{\Sigma} \) then the natural morphism \(\tilde{X} \to X \) is crepant. In particular \(K_{\tilde{X}}^2 = K_X^2 \). Notice that \(\text{SC}(X) = (n, B) = \text{SC}(\tilde{X}) \).

By resolving singularities on all the nonempty cones \(R_C \), we obtain a morphism \(Y \to \tilde{X} \) where the toric surface \(Y \) (whose fan we denote \(\Sigma_Y \)) has only \(T \)-singularities. Thus by Noether’s formula [HP10, Proposition 2.6]
\[
(3.1) \quad K_Y^2 + \rho_Y + \sum_{\sigma \in \text{Sing}(Y)} \mu_{\sigma} = 10,
\]
where \(\rho_Y \) is the Picard rank of \(Y \), and \(\mu_{\sigma} \) denotes the Milnor number of \(\sigma \). But \(\rho_Y + 2 \) is equal to the number of two-dimensional cones in \(\Sigma_Y \), and the Milnor number of a \(T \)-singularity \(\frac{1}{ndc}(1, ndc - 1) \) equals \(n - 1 \), hence
\[
(3.2) \quad \rho_Y + \sum_{\sigma \in \text{Sing}(Y)} \mu_{\sigma} = -2 + n + \sum_{\sigma \in B} (k_\sigma + 1),
\]
where \(k_\sigma \) denotes the length of the Hirzebuch–Jung continued fraction expansion \([b_1, \ldots, b_{k_\sigma}]\) of \(\sigma \in B \). With notation as in Notation 3.2
\[
(3.3) \quad K_Y^2 = K_{\tilde{X}}^2 + \sum_{\sigma \in B} \left(-\sum_{i=1}^{k_\sigma} d_i^2 b_i + 2 \sum_{i=1}^{k_\sigma-1} d_i d_{i+1} \right).
\]
Substituting (3.2) and (3.3) into (3.1) gives the desired formula. \(\square \)

Remark 3.4. If \(X \) has only \(T \)-singularities, or equivalently if \(B = \emptyset \), then Proposition 3.3 gives \(K_X^2 = 12 - n \).
The m-th Dedekind sum, $m \in \mathbb{Z}_{\geq 0}$, of the cyclic quotient singularity $\frac{1}{r}(a, b)$ is
\[\delta_m := \frac{1}{r} \sum (1 - \varepsilon(a))(1 - \varepsilon(b)), \]
where the summation is taken over those $\varepsilon \in \mu_r$ satisfying $\varepsilon^a \neq 1$ and $\varepsilon^b \neq 1$. By Proposition 3.3 and [Rei87, §8] we obtain an expression for the Hilbert series of X in terms of its singularity content:

Corollary 3.5. Let X be a complete toric surface with singularity content (n, B). Then the Hilbert series of X admits a decomposition
\[\text{Hilb}(X, -K_X) = \frac{1 + (K_X^2 - 2)t + t^2}{(1 - t)^3} + \sum_{\sigma \in B} Q_\sigma(t), \]where $Q_\sigma(a, b) := \sum_{i=0}^{r-1} (\delta(a+b)i - \delta_0)t^i$.

3.1. Singularity content and mutation

A lattice polygon in \mathbb{Q}^n is called Fano if 0 lies its strict interior, and all its vertices are primitive; see [KN12] for an overview. The *singularity content* of a Fano polygon P is $\text{SC}(P) := \text{SC}(X_\Sigma)$, where Σ is the spanning fan of P; that is, Σ is the complete fan in \mathbb{Q}^n with cones spanned by the faces of P.

Under certain conditions, one can construct a Fano polygon $Q := \text{mut}_h(P, F) \subset \mathbb{Q}^n$ called a (combinatorial) mutation of P. Here $h \in M := \text{Hom}(N, \mathbb{Z})$ is a primitive vector in the dual lattice, and $F \subset \mathbb{Q}^n$ is a point or line segment satisfying $h(F) = 0$. For the details of this construction see [ACGK12].

Proposition 3.6. Let $Q := \text{mut}_h(P, F)$. Then $\text{SC}(P) = \text{SC}(Q)$. In particular, singularity content is an invariant of Fano polygons under mutation.

Proof. The dual polygon $P^\vee \subset M_\mathbb{Q}$ is an intersection of cones
\[P^\vee = \bigcap (C_L^\vee - v_L), \]where the intersection ranges over all facets L of P. Here $C_L \subset \mathbb{Q}^n$ is the cone over the facet L and v_L is the vertex of P^\vee corresponding to L.

If P is a point then $P \cong Q$ and we are done. Let F be a line segment and let P_{max} and P_{min} (resp. Q_{max} and Q_{min}) denote the faces of P (resp. Q) at maximum and minimum height with respect to h. By assumption the mutation Q exists, hence P_{min} must be a facet, and so there exists a corresponding vertex $v_0 \in M$ of P^\vee. P_{max} can be either facet or a vertex. The argument is similar in either case, so we will assume that P_{max} is a facet with corresponding vertex $v_1 \in M$ of P^\vee.

The inner normal fan of F, denoted Σ, defines a decomposition of $M_\mathbb{Q}$ into half-spaces Σ^+ and Σ^-. The vertices v_0 and v_1 of P^\vee lie on the rays of Σ; any other vertex lies in exactly one of Σ^+ or Σ^-. Mutation acts as an automorphism in both half-spaces. Thus the contribution to $\text{SC}(Q)$ from cones over all facets excluding Q_{max} and Q_{min} is equal to the contribution to $\text{SC}(P)$ from cones over all facets excluding P_{max} and P_{min}. Finally, mutation acts by exchanging T-singular subcones between the facets P_{max} and P_{min}, leaving the residue unchanged. Hence the contribution to $\text{SC}(Q)$ from Q_{max} and Q_{min} is equal to the contribution to $\text{SC}(P)$ from P_{max} and P_{min}.

Example 3.7. If two Fano polygons are related by a sequence of mutations then the corresponding toric surfaces have the same anti-canonical degree [ACGK12, Proposition 4]. The Fano polygons $P_1 := \text{conv}\{(0, 1), (5, 4), (-7, -8)\}$ and $P_2 := \text{conv}\{(0, 1), (3, 1), (-112, -79)\}$
correspond to \(\mathbb{P}(5,7,12) \) and \(\mathbb{P}(3,112,125) \), respectively. These both have degree \(48/35 \), however their singularity contents differ:

\[
\text{SC}(P_1) = \left(12, \left\{ \frac{1}{3}(1,1), \frac{1}{7}(1,1) \right\} \right), \quad \text{SC}(P_2) = \left(5, \left\{ \frac{1}{11}(1,9), \frac{1}{125}(1,79) \right\} \right).
\]

Hence they are not related by a sequence of mutations.

Lemma 3.8. Let \(P \) be a Fano polygon with \(\text{SC}(P) = (n, \mathcal{B}) \), and let \(\rho_X \) denote the Picard rank of the corresponding toric surface. Then \(\rho_X \leq n + |\mathcal{B}| - 2 \).

Proof. The cone over any facet of \(P \) admits a subdivision (in the sense of Notation 2.1) into at least one subcone. Therefore we must have that \(|\text{vert}(P)| \leq n + |\mathcal{B}| \). Recalling that \(\rho_X = |\text{vert}(P)| - 2 \) we obtain the result. \(\square \)

Since singularity content is preserved under mutation, Lemma 3.8 gives an upper bound on the rank of the resulting toric varieties.

Example 3.9. In [AK13] we classified one-step mutations of (fake) weighted projective planes. It is natural to ask how much of the graph of mutations of a given (fake) weighted projective plane is captured by the graph of one-step mutations. Lemma 3.8 shows that the two graphs coincide if the singularity content of the (fake) weighted projective plane in question satisfies \(n + |\mathcal{B}| = 3 \). For example the full mutation graph of \(\mathbb{P}^2 \) is isomorphic to the graph of solutions of the Markov equation \(3xyz = x^2 + y^2 + z^2 \) [AK13, Example 3.14]. More interestingly, the weighted projective plane \(\mathbb{P}(3,5,11) \) does not admit any mutations [AK13, Example 3.5].

Acknowledgements. We thank Tom Coates, Alessio Corti, and Diletta Martinelli for many useful conversations. This research is supported by EPSRC grant EP/I008128/1.