Response to tyrosine kinase inhibitors in myeloid neoplasms associated with PCM1-JAK2, BCR-JAK2 and ETV6-ABL1 fusion genes

Juliana Schwaab1 | Nicole Naumann1 | Johannes Luebke1 | Mohamad Jawhar1 | Tim C.P. Somervaille2,3 | Mark S. Williams2,3 | Rebecca Frewin4 | Philipp J. Jost5 | Felix S. Lichtenegger6 | Paul La Rosée7 | Nicola Storch8 | Torsten Haferlach9 | Hans-Peter Horny10 | Alice Fabarius1 | Claudia Haferlach9 | Andreas Burchert11 | Wolf-Karsten Hofmann1 | Nicholas C.P. Cross12,13 | Andreas Hochhaus14 | Andreas Reiter1 | Georgia Metzgeroth1

1Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
2Department of Haematology, The Christie NHS Foundation Trust, Manchester, UK
3Cancer Research UK Manchester Institute, Manchester, UK
4Department of Pathology, Gloucester Royal Hospital, Gloucester, UK
5III. Medical Department, Hematology and Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Bayern, Germany
6Department of Medicine III, University Hospital LMU Munich, Munich, Germany
7Klinik für Innere Medizin II, Schwarzwald-Baar-Klinikum, Villingen-Schwenningen, Germany
8Department of Hematology and Oncology, St. Vincenz Medical Centre, Limburg, Germany
9Munich Leukemia Laboratory, Munich, Germany
10Department of Pathology, University of Munich, Munich, Germany
11Department of Hematology, Oncology and Immunology, Philipp University Marburg, and University Medical Center Giessen and Marburg, Marburg, Germany
12Faculty of Medicine, University of Southampton, Southampton, UK
13Wessex Regional Genetics Laboratory, Salisbury, UK
14Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany

Abstract
We report on 18 patients with myeloid neoplasms and associated tyrosine kinase (TK) fusion genes on treatment with the TK inhibitors (TKI) ruxolitinib (PCM1-JAK2, n = 8; BCR-JAK2, n = 1) and imatinib, nilotinib or dasatinib (ETV6-ABL1, n = 9). On ruxolitinib (median 24 months, range 2-36 months), a complete hematologic response (CHR) and complete cytogenetic response (CCR) was achieved by five of nine and two of nine patients, respectively. However, ruxolitinib was stopped in eight of nine patients because of primary resistance (n = 3), progression (n = 3) or planned allogeneic stem cell transplantation (allo SCT, n = 2). At a median of 36 months (range...
1 | INTRODUCTION

More than 70 different tyrosine kinase (TK) fusion genes with recurrent involvement of at least 6 TK genes (PDGFRα, PDGFRβ, FGFR1, JAK2, ABL1, FLT3) have been identified in clinically and morphologically distinct myeloid neoplasms with or without eosinophilia. Patients may present in chronic phase (CP) or blast phase (BP) of myeloid or lymphoid origin. The WHO 2017 classification defines some frequently identified in infants and children with acute lymphoblastic leukemia rearrangements involving chromosomal band 12p13 and 9q34. It is most frequently identified in infants and children with acute lymphoblastic leukemia (ALL, incidence <0.5%). Beside ALL, the phenotype may resemble the majority of patients have died. We conclude that responses on ruxolitinib may only be transient in the majority of JAK2 fusion gene positive patients with allo SCT being an important early treatment option, and (b) nilotinib or dasatinib may be more effective than imatinib to induce durable complete remissions in ETV6-ABL1 positive patients.

4-78 months) from diagnosis, five of nine patients are alive: four of six patients after allo SCT and one patient who remains on ruxolitinib. In ETV6-ABL1 positive patients, a durable CHR was achieved by four of nine patients (imatinib with one of five, nilotinib with two of three, dasatinib with one of one). Because of inadequate efficacy (lack of hematological and/or cytogenetic/molecular response), six of nine patients (imatinib, nilotinib, n = 5; nilotinib, n = 1) were switched to nilotinib or dasatinib. At a median of 23 months (range 3-60 months) from diagnosis, five of nine patients are in CCR or complete molecular response (nilotinib, n = 2; dasatinib, n = 2; allo SCT, n = 1) while two of nine patients have died. We conclude that responses on ruxolitinib may only be transient in the majority of JAK2 fusion gene positive patients with allo SCT being an important early treatment option, and (b) nilotinib or dasatinib may be more effective than imatinib to induce durable complete remissions in ETV6-ABL1 positive patients.

We therefore sought to evaluate the clinical characteristics and response to various TKI in 18 patients with myeloid neoplasms and associated PCM1-JAK2, BCR-JAK2 or ETV6-ABL1 fusion genes. In an extended analysis, we integrated our data into the reports of 40 patients with JAK2 fusion genes (PCM1-JAK2, n = 28) or BCR-JAK2 (n = 12) and 14 patients with TKI-treated ETV6-ABL1 positive chronic myeloid neoplasms. This analysis provides a comprehensive overview of responses to TKIs in patients with these rare fusions.

2 | MATERIALS AND METHODS

2.1 | Patients

Eighteen patients with PCM1-JAK2 (n = 8), BCR-JAK2 (n = 1) [patients 6 and 7 were previously published,] and ETV6-ABL1 (n = 9) fusion genes were identified within the “German Registry for Disorders of Eosinophils and Mast Cells "and in cooperation with hematology centers in the UK (n = 3), Switzerland (n = 1) and USA (n = 1). All patients were treated with one or more TKIs for at least part of their clinical course. Patient demographics, disease characteristics, therapies, responses and follow-up data were collected. Data collection was compliant with the Declaration of Helsinki and approved by the ethics committee of the Medical Faculty Mannheim at the University Heidelberg, Germany. For supplementary analyses (eg, overall survival [OS], prognosis, impact of distinct treatment modalities), 40 patients with the JAK2 fusion gene (PCM1-JAK2, n = 28; BCR-JAK2, n = 12) (all >18 years) and 14 patients with a TKI-treated ETV6-ABL1 positive myeloid neoplasm and sufficient follow-up data were included from the literature.

2.2 | Cytogenetic and molecular analysis

Cytogenetic analysis and fluorescence in situ hybridization (FISH) were performed on bone marrow (BM) according to standard
RNAseq analysis.

2.3 Statistical analyses

All clinical and laboratory parameters are expressed as median and range. The OS was determined from date of diagnosis and calculated by using the Kaplan-Meier method and compared using the log-rank test. All statistical analyses were performed using GraphPad Prism Software, Inc. version 7.

3 RESULTS

3.1 Disease characteristics of patients with JAK2 fusion genes

At diagnosis, the median age of the nine patients (1-9) was 63 years (range 29-73 years), eight of nine patients were male. Seven patients presented in CP, and two patients in primary BP (myeloid BP/AML, n = 1; lymphoid BP/ALL, n = 1). Notable clinical and morphological characteristics included: leukocytosis (nine of nine patients, median 29 × 10^9/L, range 10-55), eosinophilia ≥1.5 × 10^9/L in three of eight (38%) patients with eosinophils between 0.5 and 1.5 × 10^9/L in two of eight patients (25%), splenomegaly (six of eight patients, 75%), hypercellular BM (seven of eight patients, 87%) with left-shifted granulopoiesis (seven of eight patients, 87%), dysplastic erythropoiesis with giant immature erythrons (six of eight patients, 75%), eosinophilia (five of eight patients, 62%) and fibrosis (seven of eight patients, 87%). Initial histomorphological diagnoses prior to identification of the JAK2 fusions were MDS/MPN-U (n = 5, including the BCR-JAK2 positive patient), CML-like MPN-U (n = 2), myeloid BP/AML (n = 1) and lymphoid BP/ALL (n = 1) (Table 1). Cytogenetic analyses revealed a t(8;9)(p22;p24) in six patients, a t(8;9)(p22;p24)+6,+8,+22, a t(8;9;9) (p22;p24;p13), and a t(9;18)(p24;q12);t(14;18)(q21;q23) in one patient each. In the latter patient, a BCR-JAK2 fusion was identified by RNAseq analysis.9

3.2 Treatment of patients with JAK2 fusion genes

All patients received monotherapy with ruxolitinib as first line treatment. Analogous to treatment in myelofibrosis, the initial dose was chosen according to platelets and adjusted to hematological toxicity. The last administered doses were 5 mg BID (patients no. 2, 4, 7), 15 mg BID (patient no. 9) and 20 mg BID (patients no. 1, 3, 5, 6, 8). After median 4 months (range 2-18 months), five of nine patients (no. 2, 3, 5, 6, 7) achieved a complete hematological response (CHR) on ruxolitinib (median treatment duration 24 months; range 2-36 months). Complete cytogenetic response (CCR, patient no. 7) or complete molecular response (CMR, patient no. 6) was observed in one patient each. Patient no. 1 developed a fatal myeloid BP within 1 month on ruxolitinib. Patient no. 2 is in complete CHR on ruxolitinib for 26 months (Figure 1A). Patient no. 8 was treated with azacitidine after primary resistance to ruxolitinib but finally died because of progressive disease. Five patients (no. 3, 4, 5, 6, 7) underwent allo SCT because of progressive disease (n = 1; patient no. 3), cytogenetic relapse/clonal evolution (n = 2; patients no. 5, 7) or planned allo SCT (n = 2; patients no. 4, 6) after a median of 26 months (range 2-38 months) on ruxolitinib. After allo SCT, four of six patients (no. 3, 4, 6, 7) are disease-free for a median of 40 months (range 5-46 months) while two of six patients died. Patient no. 5 developed a high-grade Burkitt-like B-cell lymphoma in the BM with a complex karyotype including a t(8;9)(p22; p24), a rearrangement of JAK2 by FISH analysis and a PCM1-JAK2 fusion gene by RT-PCR. This indicated a relapse in terms of a lymphoid BP and patient no. 5 died at month +5 after allo SCT. Patient no. 9 with an initial diagnosis of BP died because of relapse which was also ruxolitinib-resistant at month +6. Patient no. 4 developed a PCM1-JAK2 negative early stage Hodgkin’s lymphoma at month +43 while in CCR and achieved a complete remission on chemotherapy. Median 36 months (range 4-78 months) from diagnosis, five of nine patients are alive after allo SCT (n = 4) or on ruxolitinib only (n = 1), respectively (Figure 1A).

3.3 Inclusion of PCM1-JAK2 and BCR-JAK2 positive patients from the literature

The median age of the 49 patients with JAK2 fusion genes was 50 years (range 22-84 years) with a marked male predominance (39/49, 80%). Overall, 17 of 49 (35%) patients were diagnosed with primary BP (n = 11; myeloid BP/AML; n = 7; lymphoid BP/ALL; n = 4) or progressed to secondary BP (n = 6; myeloid; n = 5; lymphoid; n = 1) at a median of 20 months (range 7-72 months) from diagnosis.8,14,41,50 Treatment with ruxolitinib for 16, 26 and 46 months, respectively, has only been reported in three further patients who achieved CHR (n = 3) or CCR (n = 2).12-15 After a median follow-up of 12 months (range 0-204 months), 21/49 (43%) patients died. The OS was significantly different between CP and BP (90.0 months, range 0-204 months, vs 18.2 months, range 0-180 months, P = .03). With censoring for allo SCT, OS was not different for patients treated with or without ruxolitinib (Figure 2). An allo SCT was performed in 18/49 (37%) patients.8,31,33,36,38,42,46,49,50,52,56 Two further patients underwent an autologous SCT (auto SCT) after intensive chemotherapy for ALL.33,56 When both transplant cohorts were combined, the median survival was significantly improved compared to not transplanted patients (median not reached, range 0-204 months, vs 22 months, range 3-78 months; P = .02).
TABLE 1 Clinical characteristics of 18 patients with PCM1-JAK2 \((n = 8, \text{ no. 1-5 and 7-9})\), BCR-JAK2 \((n = 1, \text{ no. 6})\) and ETV6-ABL1 \((n = 9, \text{ no. 10-18})\) fusion gene

No.	Male (M)/female (F)	Age at diagnosis (y)	Karyotype	Fusion gene	WBC \(\times 10^9/L\)	Eos \(\times 10^9/L\), (%)	Plt/nL	Bone marrow	Phase	Diagnosis	Months after diagnosis	Outcome	
1	M	76	t(8;9)(p22:p24)	PCM1-JAK2	28.7	1.43 (5)	126	0	Left-shifted GP, dysplastic EP, Eo, MP, MC, MFII°	CP	CML-like, MPN	4	1
2	M	70	t(8;9)(p22:p24)	PCM1-JAK2	29.8	0.30 (1)	118	1	Left-shifted GP, dysplastic EP, Eo, MP, MC, MFII°	CP	MDS/MPN, aCML	34	0
3	M	49	t(8;9)(p22:p24;p13)	PCM1-JAK2	25.6	n.a.	96	1	Left-shifted GP, dysplastic EP, Eo, MP, MC, MFII°	CP	MDS/MPN	46	0
4	M	29	t(8;9)(p22:p24)	PCM1-JAK2	21.7	2.38 (11)	67	1	no BM histology	CP	CML-like MPN	53	0
5	M	50	t(8;9)(p22:p24)	PCM1-JAK2	12.7	1.65 (13)	263	1	Left-shifted GP, dysplastic EP, Eo, MP, MC, MFII°	CP	MDS/MPN	36	1
6	M	69	t(9;18)(p24;q12)(14;18)(q21;q23)	BCR-JAK2	36.6	1.10 (3)	1254	1	Left-shifted GP, dysplastic EP, Eo, dysplastic MP, MC, MFII°	CP	MDS/MPN-eo	78	0
7	M	51	t(8;9)(p22:p24)	PCM1-JAK2	48.8	2.44 (5)	70	1	Left-shifted GP, dysplastic EP, Eo, blasts 10%, dysplastic MP, MC, MF°	AP	MDS/MPN	78	0
8	F	69	+6,+8,t(8;9)p22p24;+22	PCM1-JAK2	10.5	0.10 (1)	236	0	MFII° osteosclerosis, blasts 20%	BP	AML-M4	15	1
9	M	63	t(8;9)p22p24)	PCM1-JAK2	55.2	no	57	0	Sheets of blasts, no MF	BP	Pre-B-ALL	18	1
10	M	54	46,XY,der(12)(12;13)p11;11;21),der(13)	ETV6-ABL1	143.0	7.15 (5)	165	1	Hypercellular, GP, dysgranulopoiesis, Eo, MC, MF no	CP	aCML	40	0
11	M	20	46,XY t(9;12)(q34;p13)[10]	ETV6-ABL1	85.5	5.64 (7)	73	1	Hypercellular, GP, dysgranulopoiesis, Eo, MC, MF°	CP	aCML	20	0
12	M	61	46, XY,del(6)(p11 p25),del(9)t(9;12)(q34;p13;der(12)ins(12;9)p13; q34q34)	ETV6-ABL1	38.6	6.56 (17)	878	n.a.	Hypercellular, GP, dysgranulopoiesis, Eo, MC, MF°	CP	MDS/MPN-(CMML)	15	0
13	M	30	46,XY[20]	ETV6-ABL1	20.9	2.00 (10)	301	0	Hypercellular, GP, Eo, MC, MF n.a.	CP	MPN-eo	20	1
14	F	46	46,XX,t(9;12)(q34;p13)	ETV6-ABL1	83.7	2.50 (3)	591	1	Hypercellular, GP, Eo, MC, MF II-III°	CP	aCML	58	0
3.4 Disease characteristics of patients with an ETV6-ABL1 fusion gene

At diagnosis, median age (n = 9, patients no. 10-18) was 46 years (range 20-68 years); seven of nine patients were male. Six patients presented in CP, three patients in BP (myeloid/AML, n = 2; T-lymphoblastic lymphoma, n = 1). Relevant clinical and morphological characteristics included: left-shifted leukocytosis (six of seven patients; median 84 \times 10^9/L, range, 21-143 \times 10^9/L), eosinophilia ≥ 1.5 \times 10^9/L in nine of nine patients (median 6.1 \times 10^9/L, range 2.0-7.1 \times 10^9/L), splenomegaly (four of five patients), hypercellular BM (nine of nine patients) and fibrosis (six of seven patients) (Table 1). In CP, histomorphological diagnoses included aCML (n = 3), chronic eosinophilic leukemia (CEL, n = 2), and MDS/MPN-U (n = 1). The 3 BP patients were diagnosed with myeloid BP/AML (n = 2) or CEL and concomitant T-cell lymphoblastic lymphoma (T-LBL, n = 1). Cytogenetic analyses revealed a t(9;12)(q34;p13) in four patients, a complex karyotype in three patients, and a normal karyotype in one patient. In all cases, the ETV6-ABL1 fusion was confirmed by FISH analysis and/or RT-PCR.

3.5 Clinical course of ETV6-ABL1 positive patients

At a median of 3 months (range 0-6 months) from diagnosis, all nine patients were treated with a TKI (imatinib, n = 5; nilotinib, n = 3; dasatinib, n = 1) at standard doses. Prior to treatment with the various TKIs, five patients were treated with hydroxyurea (patients no. 10, 11, 12, 15, 18), one patient with hydroxyurea and cytarabine (patient no. 17) and one patient with intensive chemotherapy (patient no. 16). Two patients were primarily treated with a TKI (patients 13, 14). On imatinib (n = 5, patients no. 12-15, and 18), three of five patients (patients 12, 13, 14) achieved a CHR within 3 months which was rapidly lost in two patients after 5 (patient no. 14) and 9 months (patient no. 13). Two patients were primarily treated with a TKI and achieved a CHR, CCR and finally CMR after 3 and 10 months, respectively. Patient no. 15 showed persistent disease, and patient 16 presented with concurrent diagnosis of CEL and T-LBL. In CP, three patients in BP (myeloid/AML, n = 2; T-cell lymphoblastic lymphoma, n = 1) were diagnosed with myeloid BP/AML (n = 2) or CEL and concomitant T-cell lymphoblastic lymphoma (T-LBL, n = 1). Cytogenetic analyses revealed a t(9;12)(q34;p13) in four patients, a complex karyotype in three patients, and a normal karyotype in one patient. In all cases, the ETV6-ABL1 fusion was confirmed by FISH analysis and/or RT-PCR.

Table 1

No.	Male (M)/female (F)	Age at diagnosis (y)	Karyotype	Fusion gene	WBC × 10^9/L	Eos × 10^9/L (%)	Plt/nL	Spleno-megaly (yes, 1; no, 0)	Bone marrow	Phase	Diagnosis	Months after diagnosis	Outcome	alive, 0; death 1
15	M	61	46, XY,ins(12;9)(p12q34q22)(20)	ETV6-ABL1	n.a.	(17)	n.a.	n.a.	Hypercellular, GP, n, MF II*	CP	MPN-eo	57	0	
16	M	68	12p13 aberration	ETV6-ABL1	3.9	increased	n.a.	Blasts, Eo, dysplastic EP, MF II*	BP	sAML (from MDS)	3	0		
17	M	29	47,XY.del(1)(q21)+8der(16)(q16::16)(q24)(16)	ETV6-ABL1	62	6.20 (10)	16	Blasts 60%, Eo, MF 20%	BP	AML (monocytic)	4	0		
18	F	53	46,XX(9;12)(q34;p13)	ETV6-ABL1	7.00	n.a.	n.a.	GP, Eo, MF n.a.	BP	BM: MPN-eo; L: T-LBL	23	1		

Abbreviations: BP, blast phase; BM, bone marrow; CP, chronic phase; Eos, eosinophils; EP, erythropoiesis; GP, granulopoiesis; L, lymph node; MP, megakaryopoiesis; MC, mast cells; MDS/MPN, myelodysplastic/myeloproliferative neoplasm; MF, myelofibrosis; n.a., not available; Plt, platelets; sAML, secondary AML; †, increased; ‡, decreased.

aGiant erythroblastic erythrons.

bNo further morphological assessment possible.
On imatinib, none of five patients achieved a CCR or CMR (Figure 1B). On nilotinib (patient no. 11) or dasatinib (patient no. 10), two patients in CP achieved CHR within 3 months and CCR, or CMR after 5 (patient 11) and 18 months (patient 10), respectively. After median 23 months (range, 3-60 months), five patients remain in CCR (n = 2, patients no. 11, 12) and/or CMR (n = 3; patients no. 10, 14, 15) on a second-generation TKI (nilotinib n = 2, patients 11, 14; dasatinib, n = 2, patients 10, 15) or after allo SCT (n = 1, patient no. 12), two patients (no. 13, 18) died.

3.6 Inclusion of TKI treated ETV6-ABL1 positive patients from the literature

The median age of the 23 adult patients with ETV6-ABL1 positive MPN was 46 years (range 20-81 years) with a marked male predominance (17/23, 74%). When reported, leukocytosis (median 55 × 10⁹/L, range 4-238 × 10⁹/L) and eosinophilia (median 5.6 × 10⁹/L, range 1.6-30.9 × 10⁹/L) were present in 19/21 (90%) and 16/16 (100%) of patients, respectively. Initial histomorphological diagnoses in CP included MPN/MPN-eo (n = 7), aCML/CML-like disorder (n = 6) or MDS/MPN-U (n = 2). Four patients were diagnosed with primary BP, five patients developed secondary BP after median 14 months (range 6-36 months). The phenotype was myeloid in five and lymphoid in four patients.17,19,54

Seventeen patients (74%) were initially treated with imatinib and nine patients were switched to a second-generation TKI due to relapsed or progressive disease. Six patients were primarily treated with nilotinib or dasatinib. A CHR was achieved on first line TKI in 13 patients (imatinib, n = 7; nilotinib, n = 4; dasatinib, n = 1), a CCR in seven patients (imatinib, n = 5; median 4 months, range 1-12 months) and a CMR in four patients (nilotinib, n = 1; dasatinib, n = 3). CCR was
ongoing in two patients on imatinib after 4 and 60 months, respectively. In nine patients, imatinib was switched to dasatinib (n = 5), nilotinib (n = 3) or ponatinib (n = 1) due to loss of CHR (n = 2), adverse effects (n = 2), loss of CCR (n = 2, T315I mutation) or resistance/progression (n = 3). Of these nine patients, eight patients achieved a CHR, five patients a CCR and six patients a CMR.
After a median follow-up of 18 months (range 1-116 months), nine of 24 patients died because of BP (n = 6) or disease-unrelated (n = 3; pneumonia after allo SCT at month 11+, n = 1; GvHD after allo SCT at month 8+, n = 1; pancreatic carcinoma at month 116, n = 1) and six of nine patients due to progressive disease including one patient with a T315I mutation. Patients in BP (n = 9) and patients exclusively treated with imatinib (n = 8) had a significant shorter OS than patients in CP (11 months, range 2-23 months, vs not reached, range 1-116 months; \(P = .0002 \)) or patients treated with a second generation TKI (18 months, range 1-60 months, vs 116 months, range 12, 13 and 24) underwent an allo SCT.

\[\text{OS} = \text{Overall Survival} \]

\[P = .02; \text{Figure 2} \]

Three of 23 (13%) patients (no. 12, 13 and 24) achieved a CCR for more than 30 months.12-15 There was, however, no long-term beneficial effect upon ruxolitinib (Figure 2). The aggressive phenotype (approximately 40% of patients in primary or secondary BP) and poor prognosis (median survival without transplant <24 months) of JAK2 fusion gene positive myeloid neoplasms can possibly only be overcome by allo SCT and bridging with ruxolitinib should be considered. During follow-up, two patients developed a Burkitt-like B-cell lymphoma and an early stage Hodgkin lymphoma, respectively, which is noteworthy in the context of recent reports describing the development of high-grade B-cell lymphomas in ruxolitinib-treated patients.58,59 Analysis of the Burkitt-like B-cell lymphoma revealed a complex karyotype including a t(8;9)(p22;p24), a rearrangement of JAK2 by FISH analysis and a PCM1-JAK2 fusion gene by RT-PCR, indicating lymphoid BP of the original disease. The patient with the Hodgkin lymphoma had received ruxolitinib only for 2 months and developed the lymphoma 43 months after early allogeneic SCT, while the PCM1-JAK2 positive myeloid neoplasm was in complete remission. Lymphoma phenotype, short exposure to ruxolitinib and the late occurrence all call into question whether there is a causal relationship between ruxolitinib treatment and the lymphoma in this case.

The situation is different for ETV6-ABL1 fusion gene associated myeloid neoplasms. Approximately 70 cases have been reported but despite a number of striking similarities with FIP1L1-PDGFRα, for example, marked male predominance, eosinophilia in almost all patients, frequent mononcytosis, splenomegaly, narrow fibrosis, and presentation in either CP or primary/secondary BP, it has not been included in the WHO subgroup of MLN-eo. Imatinib is the obvious first-line treatment for ETV6-ABL1 positive patients; however, we observed lack of response and/or early progression in most patients. After a median of 2 years, durable complete remissions were only observed on nilotinib, dasatinib or after allo SCT. We identified an additional 14 cases in the literature [16-27,53,54] with adequate data on response to TKI and follow-up. In concordance with our findings, imatinib can induce but not maintain long-term remissions.25 Unfortunately, only limited data on TK-domain mutations are available which might explain the lack of response to and early progression on imatinib. However, second generation TKIs such as nilotinib and dasatinib are superior to imatinib with achievement of durable responses even after failure of imatinib. The overall rather poor prognosis of ETV6-ABL1 positive eosinophilia-associated myeloid neoplasms is strongly associated with stage of disease (CP vs primary/secondary BP) and response to treatment with TKI.

We conclude that myeloid neoplasms with an associated ETV6-ABL1 fusion gene are clear candidates for inclusion into the distinct subgroup of the WHO-classification “myeloid/lymphoid neoplasms with eosinophilia and rearrangement of a TK”. Nilotinib and dasatinib are superior to imatinib and the best option for allo SCT may be the absence of a durable response or resistance to nilotinib or dasatinib. The JAK2 fusions are associated with an aggressive phenotype and clinical course. Ruxolitinib can induce complete but frequently only transient remissions and early allo SCT should therefore be considered in all eligible patients.

ACKNOWLEDGMENTS

The authors thank all physicians who contributed clinical data of their patients into the “German Registry on Disorders of Eosinophils and Mast Cells”. In particular for this manuscript Judith Dirk, Peter Keller, Karsten Kratz-Albers, Claus-Henning Köhne, Annette Maschke, Stephanie Mayer, Anne S. Renteria, Bernd Schönberger and Andres Virchis. This work was supported by the “Deutsche José Carreras Leukämie-Stiftung e.V.” (Grant No. 01R/2018, Germany).

ORCID

Juliana Schwaab https://orcid.org/0000-0001-9208-5264

REFERENCES

1. Reiter A, Gottlib J. Myeloid neoplasms with eosinophilia. Blood. 2017; 129(6):704-714.

2. Metzgeroth G, Walz C, Score J, et al. Recurrent finding of the FIP1L1-PDGFRα fusion gene in eosinophilia-associated acute mye-loid leukemia and lymphoblastic T-cell lymphoma. Leukemia. 2007;21 (6):1183-1188.

3. Bain BJ, Horny HP, Arber DA, Tefferi A, Hasserjian RP. Myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRα, PDGFRB or
FGFR1, or with PCM1-JAK2. In: Swerdlow SH, Campo E, Harris NL, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: WHO Press; 2017:72-79.

4. Jawhar M, Naumann N, Schwaab J, et al. Imatinib in myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRB in chronic or blast phase. Ann Hematol. 2017;96(9):1463-1470.

5. Lotz J, Jools J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia. 2008;22(11):1999-2010.

6. Metzgeroth G, Schwaab J, Gosenca D, et al. Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFRB rearrangements in blast phase. Leukemia. 2013;27(11):2254-2256.

7. Cheah CY, Burbury K, Appleby JF, et al. Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long-term remissions with imatinib. Blood. 2014;123(23):3574-3577.

8. Reiter A, Walz C, Watmore A, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res. 2005;65(7):2662-2667.

9. Schwaab J, Knut M, Haferlach T, et al. Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1-JAK2 and BCR-JAK2 fusion genes. Ann Hematol. 2015;94(2):233-238.

10. Verstovsek S, Subbiah V, Masarova L, et al. Treatment of the myeloid/lymphoid neoplasm with FGFFR1 rearrangement with FGRFR1 inhibitor. Ann Oncol. 2018;29(8):1880-1882.

11. Bijn HJ, Ahmad S. Should myeloid and lymphoid neoplasms with PCM1-JAK2 and other rearrangements of JAK2 be recognized as specific entities? Br J Haematol. 2014;166(6):809-817.

12. Reiter A, Walz C, Watmore A, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res. 2005;65(7):2662-2667.

13. Rumi E, Milosevic JD, Sellelag D, et al. Efficacy of ruxolitinib in myeloid/lymphoid neoplasms with PCM1-JAK2 fusion gene. Ann Hematol. 2015;94(11):1927-1928.

14. Rumi E, Milosevic JD, Casetti I, et al. Efficacy of ruxolitinib in chronic eosinophilic leukemia associated with a PCM1-JAK2 fusion gene. J Clin Oncol. 2013;31(17):e269-e271.

15. Fatterer V, Schnittger S, Kern W, Haferlach T, Haferlach C. Hematologic malignancies with PCM1-JAK2 fusion gene share characteristics with myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRB, PDGFRB, and FGFR1. Ann Hematol. 2013;92(6):759-769.

16. Lierman E, Sellelag D, Smits S, Billet J, Vandenbergh P. Ruxolitinib inhibits transforming JAK2 fusion proteins in vitro and induces complete cytogenetic remission in t(8;9)(p22;p24)/PCM1-JAK2-positive chronic eosinophilic leukemia. Blood. 2012;120(7):1529-1531.

17. Keung YK, Beatty M, Steward W, Jackle B, Pettnati M. Chronic myelocytic leukemia with eosinophilia, t(9;12)(q34;p13), and ETV6-ABL fusion gene rearrangement: case report and review of the literature. Cancer Genet Cytogenet. 2002;138(2):139-142.

18. O’Brien SG, Vieira SA, Connors S, et al. Transient response to imatinib mesylate (STI571) in a patient with the ET6-ABL t(9;12) translocation. Blood. 2002;99(9):3455-3467.

19. Barbouri A, Ahlgren T, Johansson B, et al. Clinical and genetic studies of ET6V6/ABL1-positive chronic myeloid leukemia in blast crisis treated with imatinib mesylate. Br J Haematol. 2003;122(1):85-93.

20. Tirado CA, Sebastian S, Moore JO, Gong IJ, Goodman BK. Molecular and cytogenetic characterization of a novel rearrangement involving chromosomes 9, 12, and 17 resulting in ET6V (TEL) and ABL fusion. Cancer Genet Cytogenet. 2005;157(1):74-77.

21. Kawamata N, Dashi H, Lu D, et al. Chronic phase of ET6V6-ABL1 positive CML responds to imatinib. Genes Chromosomes Cancer. 2008;47 (10):919-921.

22. Kelly JC, Shahbaz N, Scheerle J, et al. Insertion (12;9)(p13;q34q34); a cryptic rearrangement involving ABL1/ETV6 fusion in a patient with Philadelphia-negative chronic myeloid leukemia. Cancer Genet Cytogenet. 2009;192(1):36-39.
neoplasm and myeloid sarcoma: first report in Korea. Ann Lab Med. 2016;36(1):79-81.

41. Griesinger F, Hennig H, Hillmer F, et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer. 2005;44(3):329-333.

42. Cirmena G, Aliano S, Fugazza G, et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11) in a patient with acute myeloid leukemia. Cancer Genet Cytogenet. 2008;183(2):105-108.

43. Angelova S, Spassova S, Toshkov S, Shivarov V. Chromosomal translocation t(9;22)(p24;q11) appears to be recurrently associated with myeloid malignancy with aggressive course. Leuk Lymphoma. 2011;52(9):1809-1810.

44. Xu Y, Yin J, Pan J, et al. A BCR-JAK2 fusion gene from ins(22;9)(q11;p13p24) in a patient with atypical chronic myeloid leukemia. Leuk Lymphoma. 2013;54(10):2322-2324.

45. Bellesso M, Santucci R, Dias DF, Centrone R, Elias RC. Atypical chronic myeloid leukemia with t(9;22)(p24,11.2), a BCR-JAK2 fusion gene. Rev Bras Hematol Hemoter. 2013;35(3):218-219.

46. Kantarcioglu B, Kaygusuz-Atagunduz I, Uzay A, Toptas T, Tuglular TF, Bayik M. Myelodysplastic syndrome with t(9;22)(p24;q11.2), a BCR-JAK2 fusion transcript: case report and review of the literature. Int J Hematol. 2015;102(3):383-387.

47. Chamseddine AN, Etancelin P, Penther D, et al. Transformation of an unclassified myeloproliferative neoplasm with a rare BCR-JAK2 fusion transcript resulting from the translocation (9;22)(p24;q11). Case Rep Hematol. 2015;2015:252357.

48. Duployez N, Nibourel O, Ducoumenou B, et al. Acquisition of genomic events leading to lymphoblastic transformation in a rare case of myeloproliferative neoplasm with BCR-JAK2 fusion transcript. Eur J Haematol. 2016;97(4):399-402.

49. Impera L, Loncone A, Fanfulla DA, et al. Two alternatively spliced 5′BCR/3′JAK2 fusion transcripts in a myeloproliferative neoplasm with a three-way t(9;18;22)(p13;q11.2) translocation. Cancer Genet. 2011;204(9):512-515.

50. He R, Greipp PT, Rangan A, et al. BCR-JAK2 fusion in a myeloproliferative neoplasm with associated eosinophilia. Cancer Genet. 2016;209(5):223-228.

51. Zhou MH, Gao L, Jing Y, et al. Detection of ETV6 gene rearrangements in adult acute lymphoblastic leukemia. Ann Hematol. 2012;91(8):1235-1243.