The yeast protein Gdt1p transports Mn\(^{2+}\) ions and thereby regulates manganese homeostasis in the Golgi

Louise Thines, Antoine Deschamps, Palanivelu Sengottaiyan, Oksana Savel, Jiri Stribny, and Pierre Morsomme

From the Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Running title: Gdt1p-mediated manganese transport

*To whom correspondence should be addressed: Pierre Morsomme: Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; pierre.morsomme@uclouvain.be; Tel. 3210472623; Fax: 3210473872.

Keywords: Gdt1p, Yeast, UPF0016, Golgi, Manganese, Transport, Calcium, Cation, Ion homeostasis, Superoxide dismutase.

ABSTRACT

The uncharacterized protein family 0016 (UPF0016) is a family of secondary ion transporters implicated in calcium homeostasis and some diseases. More precisely, genetic variants of the human UPF0016 ortholog transmembrane protein 165 (TMEM165) have been linked to congenital disorders of glycosylation (CDG). The Saccharomyces cerevisiae ortholog Gdt1p has been shown to be involved in calcium homeostasis and protein glycosylation. Moreover, plant and bacterial UPF0016 members appear to have putative roles in Mn\(^{2+}\) homeostasis. Here, we produced the yeast UPF0016 member Gdt1p in the bacterial host Lactococcus lactis. Using Mn\(^{2+}\)-induced quenching of Fura-2-emitted fluorescence, we observed that Gdt1p mediates Mn\(^{2+}\) influx, in addition to its previously reported regulation of Ca\(^{2+}\) influx. The estimated \(K_M\) values of Gdt1p of 15.6 ± 2.6 \(\mu M\) for Ca\(^{2+}\) and 83.2 ± 9.8 \(\mu M\) for Mn\(^{2+}\) indicated that Gdt1p has a higher affinity for Ca\(^{2+}\) than for Mn\(^{2+}\). In yeast cells, we found that Gdt1p is involved in the resistance to high Mn\(^{2+}\) concentration and controls total Mn\(^{2+}\) stores. Lastly, we demonstrated that GDT1 deletion affects the activity of the yeast Mn\(^{2+}\)-dependent Sod2p superoxide dismutase, most likely by modulating cytosolic Mn\(^{2+}\) concentrations. Taken together, we obtained first evidence that Gdt1p from yeast directly transports manganese, which strongly reinforces the suggested link between the UPF0016 family and Mn\(^{2+}\) homeostasis and provides new insights into the molecular causes of human TMEM165-associated CDGs. Our results also shed light on how yeast cells may regulate Golgi intraluminal concentrations of manganese, a key cofactor of many enzymes involved in protein glycosylation.

Introduction

The uncharacterized protein family 0016 (UPF0016) gathers highly conserved membrane proteins which are widely distributed among kingdoms and defined by the presence of one or two copies of the E-x-G-D-(KR)-(TS) motif (1). It was previously reported that specific mutations in the human UPF0016 member transmembrane protein 165 (TMEM165) cause congenital disorders of glycosylation (CDGs) (2). As the exact function of the UPF0016 members is not deciphered yet, the causal link between a mutated TMEM165 and CDGs remains unclear. Based on previous studies, the UPF0016 members were hypothesized to act as Ca\(^{2+}\)/H\(^{+}\) antiporters. This hypothesis arose, among others, from studies carried out on the Saccharomyces cerevisiae UPF0016 member Gdt1p. Indeed, we previously reported that Gdt1p localizes at the yeast Golgi membrane and that this protein is required for (i) Ca\(^{2+}\) tolerance, (ii) proper Ca\(^{2+}\) response after exposure to salt stress, and (iii) proper proteins glycosylation in the presence of a high calcium concentration (3,4). Transport of
Ca\(^{2+}\) by Gdt1p was further demonstrated by producing Gdt1p in the bacterial host \textit{Lactococcus lactis} and using the fluorescent Ca\(^{2+}\)-sensitive Fura-2 probe (4). The acidic and polar uncharged amino acids of the conserved motif E-x-G-D-(KR)-(TS) found in Gdt1p were additionally demonstrated to be essential for proper Ca\(^{2+}\) tolerance and Ca\(^{2+}\) response to salt stress (5).

Besides this role in calcium homeostasis, recent studies on other UPF0016 members suggested an implication of these proteins in manganese homeostasis. Among others, Wang et al. (6) and Schneider et al. (7) reported an implication of the \textit{Arabidopsis thaliana} CCHA1 in resistance to high concentrations of Ca\(^{2+}\) and Mn\(^{2+}\) and to pH changes. The UPF0016 members of the bacterium \textit{Vibrio cholerae} and of the cyanobacterial model strain \textit{Synechocystis} sp. PCC 6803 were additionally suggested to function as Mn\(^{2+}\) transporters (8-10). Interestingly, members of the photosynthetic \textit{A. thaliana} and \textit{Synechocystis} both localize to the thylakoid membrane and are essential for proper photosynthesis, most likely due to the required presence of Mn\(^{2+}\) in the oxygen-evolving complex of photosystem II (6-8,10). Regarding the yeast Gdt1p, we previously reported that the glycosylation defects observed in a \textit{gdt1A} strain grown in the presence of a high calcium concentration were suppressed when manganese was additionally present in the culture medium (4,11). Manganese cations were also demonstrated to restore glycosylation in TMEM165-deficient cells (11). Interestingly, TMEM165 and a Myc-tagged version of Gdt1p were both reported to be degraded in the presence of high extracellular manganese concentration (12,13). However, while these studies all established a clear functional link between the UPF0016 members and manganese homeostasis, none of them provided direct evidence for Mn\(^{2+}\) transport.

In yeast, the mechanisms by which cells regulate their Ca\(^{2+}\) and Mn\(^{2+}\) homeostasis are not fully characterized yet. This statement also applies to the Golgi where a proper maintenance of the homeostasis of these two ions is known to be essential for numerous cellular processes including glycosylation. Calcium, well-described to regulate the intra-vesicular trafficking between the different organelles, indirectly contributes to glycosylation as the transport of proteins along the secretory pathway is affected by calcium concentration (14). Ca\(^{2+}\) is additionally described as essential for the activity and stability of enzymes involved in glycosylation (15,16). On the other hand, the mannosyltransferases Och1p, Mnn9p, Mnn1p, Mnn2p, and Mnn5p, all implicated in N-glycosylation, require Mn\(^{2+}\) as cofactor (17-20). A tight regulation of both Ca\(^{2+}\) and Mn\(^{2+}\) concentrations in the Golgi is therefore essential. By now, the P-type ATPase Pmr1p is the only reported yeast Golgi transporter of Ca\(^{2+}\) and Mn\(^{2+}\). By analyzing the contribution of Pmr1p and Gdt1p in the Golgi glycosylation process, Dulary et al. (13) suggested that the abundance and function of Gdt1p is dependent on the function of Pmr1p, thereby creating a functional link between these two Golgi proteins. Our study highly reinforces the hypothesis that Gdt1p and Pmr1p act in concert in the regulation of the yeast Ca\(^{2+}\) and Mn\(^{2+}\) homeostasis.

In this paper, we combined approaches in bacteria as a system to carry out direct transport assays and in yeast for a better understanding of the physiological role of Gdt1p. First, in bacteria, we (i) directly showed transport of Mn\(^{2+}\) by Gdt1p, (ii) highlighted a competition between manganese and calcium for transport by Gdt1p, and (iii) estimated a higher affinity of the transporter for calcium than for manganese. Second, in yeast, we (i) demonstrated that Gdt1p is involved in resistance to high Mn\(^{2+}\) concentration and controls the total Mn\(^{2+}\) stores, and (ii) showed that the activity of the Mn\(^{2+}\)-dependent Sod2p is modulated by a deletion of \textit{GDT1}. Altogether, this study undeniably demonstrates that Gdt1p, and most likely other UPF0016 members involved in essential cellular processes like glycosylation or photosynthesis, are directly involved in Mn\(^{2+}\) transport. Additionally, this study places Gdt1p as a novel yeast Golgi protein which, together with Pmr1p, tightly regulates the Ca\(^{2+}\) and Mn\(^{2+}\) concentrations at the Golgi level.
Results

Gdt1p mediates Mn2+ influx in L. lactis

To determine whether Gdt1p is able to transport Mn2+, we took advantage of the fact that the fluorescence emitted by Fura-2 is quenched by manganese (Figure S1). The transport assays were carried out in the L. lactis DML1 strain which was previously reported to be suitable for heterologous production of Gdt1p (4). More precisely, the fluorescence intensity was monitored over time on Fura-2 loaded L. lactis DML1 cells expressing GDT1 or containing the corresponding empty plasmid. The excitation wavelength was set at 360 nm, the Fura-2 isosbestic point at which its properties are independent on the Ca2+ concentration (Figure S1), in order to reflect only Mn2+ transport. Addition of MnCl\textsubscript{2} at a concentration of 10 µM (Figure 1A) and 25 µM (Figure 2B) in the extracellular medium led to a significantly more pronounced decrease of the fluorescence signal over time for the cells producing Gdt1p compared to the ones transformed with the empty plasmid. While the slight signal decrease observed for the negative control most likely reflects transport of Mn2+ by L. lactis endogenous transporters, the quenching observed to a greater extent for the clone producing Gdt1p indicates that it mediates Mn2+ influx in L. lactis. Interestingly, the Gdt1p-dependent quenching of the fluorescence emitted by Fura-2 occurred to a greater extent in the presence of 25 µM than of 10 µM of manganese, thereby indicating a dose-dependent response. Similar transport measurements were carried out in the presence of 25 µM of Co2+, Cu2+, and Ni2+, all three ions being also known to quench the fluorescence emitted by Fura-2. In those cases, no significant difference in signal decrease could be observed between the negative control and the cells producing Gdt1p (Figure 1C), suggesting that these three ions are not transported by Gdt1p and strengthening that the effect observed for manganese on Figures 1A and 1B is well specific to Gdt1p.

Ca2+ and Mn2+ compete for transport by Gdt1p

We previously reported that Gdt1p mediates Ca2+ influx when produced in L. lactis (4). To highlight a putative competition between calcium and manganese for Gdt1p, we carried out transport assays in the presence of a fixed MnCl\textsubscript{2} concentration (25 µM) and variable CaCl\textsubscript{2} concentrations (0 to 50 µM) with an excitation wavelength at the isosbestic point of the probe (360 nm) to mainly reflect Mn2+ transport. As shown in Figure 2A, the higher the CaCl\textsubscript{2} concentration, the lesser the quenching rate, most likely reflecting Mn2+ influx to a lesser extent. Inversely, the transport of Ca2+ (25 µM) was recorded in the presence of Mn2+ (0 to 100 µM) in a ratiometric mode (excitation wavelengths of 340 and 380 nm, emission wavelength of 510 nm), this latter being routinely used to monitor Ca2+ transport with Fura-2. In that case, the ratio of the fluorescence emitted at 510 nm after excitations at 340 and 380 nm (340/380 ratio), mainly reflecting the intracellular free Ca2+ concentration, increased to a lesser extent when the MnCl\textsubscript{2} concentration added in the extracellular medium increases (Figure 2B). These results reinforce the conclusion that Ca2+ and Mn2+ are both transported by Gdt1p and suggest that these two cations compete for transport by Gdt1p. Additionally, it indicates that the protein is capable of transporting the two ions in the same direction under the conditions of gradients tested in this study.

Gdt1p displays a higher affinity for Ca2+ than for Mn2+

In order to determine the affinity of Gdt1p for Ca2+ and Mn2+, we carried out in vivo transport measurements in L. lactis in the presence of various concentrations of these ions (from 2.5 to 200 µM CaCl\textsubscript{2} and from 5 to 500 µM MnCl\textsubscript{2}). We then determined the initial slope of the fluorescence signal over time after addition of thecation for each concentration and plotted them according to the free substrate concentration. A Michaelis constant \(K_M\) was determined for each cation as the concentration at which half of the maximal initial slope was observed. Figure 3A illustrates the time-course measurements at various CaCl\textsubscript{2} and MnCl\textsubscript{2} concentrations, from which the initial slopes were determined, while Figure 3B shows the Michaelis-Menten curves that were fitted to the experimental data. The \(K_M\) calculated for Ca2+ and Mn2+ are respectively of 15.6 ± 2.6 and 83.2 ± 9.8 µM, suggesting that the affinity of Gdt1p towards Ca2+ is greater than the one towards Mn2+ in L. lactis.

Gdt1p is involved in yeast cellular manganese homeostasis

Our data suggest that Gdt1p could be a new actor involved in Mn2+ transport in yeast.
To further assess the implication of Gdt1p in regulating yeast Mn$^{2+}$ homeostasis, the total Mn$^{2+}$ levels of the wild-type strain and of strains deleted for GDT1, PMR1, or both were evaluated using inductively coupled plasma atomic emission spectrometry (ICP-AES). The results, shown in Figure 4A, indicate that deletion of GDT1 led to a 3.5-fold increase of the yeast total Mn$^{2+}$ content compared to the wild-type. The pmr1A strain showed a higher cellular Mn$^{2+}$ content, with a 20-fold increase compared to the wild-type. Interestingly, the gdt1Apmr1A strain displayed a higher total Mn$^{2+}$ content than the pmr1A strain. Additionally, expression of GDT1 from a plasmid in the gdt1A strain under the control of the endogenous promoter or of the strong TPI1 promoter partially or totally rescued the wild-type phenotype, respectively (Figure 4B). The partial complementation by GDT1 under the control of its endogenous promoter correlates with an intermediate level of Gdt1p production, between the wild-type and the gdt1A strain, while the full complementation using the TPI1 promoter results from a higher level of Gdt1p production than in the wild-type. Using the same methodology, we previously reported Gdt1p-dependant effects on calcium accumulation in yeast (4). As a control, the intracellular levels of an ion not transported by Gdt1p, i.e. cobalt, were measured. No effect of the deletion of GDT1 could be observed for this ion (data not shown). These results support the conclusion that Gdt1p, in addition to Pmr1p, controls the total Ca$^{2+}$ and Mn$^{2+}$ content in yeast. To further evaluate the involvement of Gdt1p in Mn$^{2+}$ tolerance, we monitored growth of the four strains in the presence or not of MnCl$_2$ in the extracellular medium. We could not detect any growth difference between the wild-type and the gdt1A strain when exposed to MnCl$_2$ concentrations of up to 10 mM, higher concentrations being lethal for the wild-type (data not shown). Interestingly, when exposed to 400 µM MnCl$_2$, a sub-lethal concentration for pmr1A, we identified a more pronounced growth defect for gdt1Apmr1A than for pmr1A (Figure 4C), thereby indicating that Gdt1p is involved in Mn$^{2+}$ tolerance in a pmr1A background. These growth defects correlate with the fact that the highest Mn$^{2+}$ accumulations were recorded in the pmr1A and double deletant strain. Most likely, Mn$^{2+}$ accumulation in these strains reaches a threshold from which it becomes toxic for the cell. Similarly to what was observed for the ICP-AES analyses, expression of GDT1 under the TPI1 promoter could complement the growth defect of the gdt1Apmr1A in the presence of manganese. Taken together, these results show that, in complement to Pmr1p, Gdt1p plays a role in yeast cellular manganese homeostasis.

Deletion of GDT1 restores the Sod2p activity in a smf2A background

Sod2p encodes a superoxide dismutase that localizes in the mitochondrial matrix and that catalyzes the breakdown of superoxide radicals to dioxygen and hydrogen peroxide. This enzyme requires Mn$^{2+}$ as a cofactor (21). Luk and Culotta (22) previously reported that Smf2p, a yeast Nramp Mn$^{2+}$ transporter found in intracellular Golgi-like vesicles (23), is required for acquisition by Sod2p of its cofactor. They additionally reported that the Sod2p activity defect was corrected when either growing cells in the presence of manganese or generating an increased intracellular manganese concentration through deletion of PMR1. In this study, we evaluated whether deletion of GDT1 could also restore the activity of Sod2p in the smf2A strain. To do so, cell lysates of the wild-type, smf2A, gdt1A, and pmr1A strains, as well as of the double deletants gdt1AΔsmf2A and pmr1AΔsmf2A, were loaded on a native polyacrylamide gel on which the Sod2p activity was monitored by staining with nitro blue tetrazolium (24,25). As reported by Luk and Culotta (22), we observed a decreased activity of Sod2p in the smf2A strain that could be restored by deleting PMR1 and by growing cells with 40 or 60 µM MnCl$_2$ (Figures 5A and 5B). The activity of Sod2p could also be restored by addition of MnCl$_2$ (40 mM) to the cell lysates, thereby indicating that the decreased activity of Sod2p does not result from in vivo protein degradation (Figure 5C). Luk and Culotta (22) also verified by Western blotting that deleting SMF2 does not affect the abundance of Sod2p. Interestingly, while neither Gdt1p nor Pmr1p seem to be critical for delivery of manganese to Sod2p, deletion of GDT1 in the smf2A strain led to a Sod2p activity level similar to the one of the wild-type. This result shows that, like PMR1, deletion of GDT1 leads to a better bioavailability of Mn$^{2+}$ for Sod2p, most likely...
through an increased cellular manganese content in the smf2Δ strain. This latter statement was verified by quantifying by ICP-AES the total manganese content of the strains for which the Sod2p activity was monitored. By doing so, we observed a 5-fold and 35-fold increase of the cellular manganese content respectively in the gdt1Δsmf2Δ and the pmr1Δsmf2Δ strain compared to the smf2Δ strain (Figure 5D). As the effects of deleting GDT1 or PMR1 are observed in the same direction both in terms of cellular manganese content and restoration of the Sod2p activity in an smf2Δ strain, this suggests that the direction of transport of Mn^{2+} is identical for these two proteins, i.e. from the cytosol to the Golgi.

Discussion

Several recent studies suggested an implication of UPF0016 members in manganese homeostasis. However, no direct evidence of manganese transport by a UPF0016 member has been reported up to now. In this study, using transport assays in the bacterium *L. lactis*, we demonstrated that the yeast Gdt1p mediates Mn^{2+} transport across membranes. The role of Gdt1p in regulating manganese homeostasis was further shown in yeast. As supported by the competition assays carried out in this study, this Mn^{2+} transport activity adds up to the Gdt1p Ca^{2+} transport activity which was previously demonstrated with a similar in vivo assay in *L. lactis* (4). Since Gdt1p was also reported to be involved in pH regulation (4,26), we hypothesize that this protein acts as a Ca^{2+}-Mn^{2+}/H^{+} antiporter. However, stronger evidence for proton transport by Gdt1p still needs to be obtained.

This study therefore places Gdt1p as a novel protein implicated in both calcium and manganese yeast Golgi and/or cytosol homeostasis. The well-characterized Golgi P-type ATPase Pmr1p is known to also regulate the homeostasis of these two ions at the Golgi level. Gdt1p and Pmr1p therefore most likely act in concert in order to correctly balance the concentration of Ca^{2+} and Mn^{2+} within the Golgi and the cytosol. However, our results suggest that the contribution of Gdt1p in regulating the yeast Mn^{2+} homeostasis is lower than the one of Pmr1p in the conditions tested in this study. Indeed, compared to a pmr1Δ strain, the absence of solely GDT1 does not cause any growth reduction in the presence of 400 µM Mn^{2+} and leads to a less pronounced increase of the total Mn^{2+} content. Additionally, a comparison of the affinity of Gdt1p for calcium and manganese cations estimated via the in vivo transport assays (K_M of respectively 15.6 µM and 83.2 µM) to the ones reported in the literature for Pmr1p (K_M of 0.1 µM for Ca^{2+} (27) and of 0.02 µM for Mn^{2+} (28)) highly suggests a higher affinity of Pmr1p for these two ions. To our knowledge, no data regarding the affinity of other yeast manganese transporters is currently available. We however noticed that the affinity of Gdt1p for calcium is similar to the one reported for the vacuolar Ca^{2+}/H^{+} antiporter Vcx1p (K_M of 25 µM (29)).

While it is well known that Pmr1p transports Ca^{2+} and Mn^{2+} from the cytosol to the Golgi, the question of the direction of transport of these two ions by Gdt1p remains open. Provided that Gdt1p functions as a Ca^{2+}-Mn^{2+}/H^{+} antiporter, transport of Ca^{2+} and Mn^{2+} from the cytosol to the Golgi or in the opposite direction could both be considered. Gdt1p could also work reversely depending on the neighboring gradients or Ca^{2+} and Mn^{2+} could be transported in opposite directions. In this study, the effects of the absence of Gdt1p or Pmr1p on the cellular manganese content and on Sod2p activity in the smf2Δ strain were both observed in the same direction, thereby suggesting manganese transport in the same direction for these two proteins, from the cytosol to the Golgi. The increased cellular manganese content observed in the gdt1Δ and pmr1Δ strains would hence result from the inability to send Mn^{2+} to the Golgi lumen for further exit from the cell through secretary pathway vesicles. On the other hand, suppression of the Sod2p activity defects by deleting GDT1 or PMR1 in an smf2Δ background would result from an increased manganese concentration in the cytosol from which it can be sent to the mitochondrial matrix. More generally, according to this hypothesis of direction of transport, Gdt1p would provide the Golgi with calcium and manganese cations and/or detoxify the cytosol in case of excess of these cations, in complement to Pmr1p. Based on the evaluation of the glycosylation process efficiency as an indicator of the Golgi Mn^{2+} concentration, the same direction of manganese transport was suggested by Dulary et al. (13). The entry of Mn^{2+} in the Golgi would then be controlled by an ATPase, Pmr1p, and by a
Gdt1p-mediated manganese transport

secondary transporter, Gdt1p. While the ATPases are generally associated with a high affinity but a low capacity of transport, the secondary transporters usually show a low affinity and a high capacity of transport. By comparing the K_M values obtained for Gdt1p to the ones reported in the literature for Pmr1p, we confirmed this trend in terms of affinity. The fact of having two transporters with different transport characteristics most likely enables a tight regulation of Mn$^{2+}$ homeostasis at the Golgi level in a wide range of stresses and concentration gradients thanks to a complementary action of the two transporters.

In either transport direction, Gdt1p is involved in the crucial regulation of both calcium and manganese, notably in the Golgi where part of the glycosylation process takes place. Due to the implication of the UPF0016 members, including the human TMEM165, in glycosylation, it is of specific interest to examine the link between Gdt1p and glycosylation in the light of its novel manganese transport activity. Indeed, Colinet et al. (4) previously reported Gdt1p-dependent glycosylation defects in yeast. More recently, Dulary et al. (13) analyzed the structural glycosylation abnormalities observed in a gdt1A strain cultured in the presence of a high external calcium concentration and reported defects in the α-1,3 and α-1,2 mannose branchings that correspond to deficiencies in late Golgi glycosyltransferases like Mnn2, Mnn5, and Mnn1. Interestingly, these three mannosyltransferases all require Mn$^{2+}$ as cofactor (18,20). The Gdt1p-dependent glycosylation defects could be explained by the fact that, in the presence of high external Ca$^{2+}$ concentration, Pmr1p would mainly transport Ca$^{2+}$, thereby resulting in an excess of Ca$^{2+}$ that could compete with Mn$^{2+}$ for the cofactor binding site of the mannosyltransferases. This illustrates the importance of ensuring tight regulation of this Ca$^{2+}$/Mn$^{2+}$ ratio for proper protein maturation.

In conclusion, we propose that Gdt1p regulates the calcium and manganese yeast cytosolic and Golgi homeostasis in concert with Pmr1p, through its ability to transport both Ca$^{2+}$ and Mn$^{2+}$ cations. Our results suggest a direction of manganese transport from the cytosol to the Golgi. Confirming the direction of transport of Ca$^{2+}$ and Mn$^{2+}$ by Gdt1p would definitely constitute the next step towards a better understanding of its physiological role.

Additionally, the results show for the first time direct Mn$^{2+}$ transport by a UPF0016 member, thereby opening new ways to fully unravel the exact function of this protein family involved in essential cellular processes like photosynthesis in plants and cyanobacteria as well as glycosylation in yeast and human.

Experimental procedures

Strains and culture media

The Saccharomyces cerevisiae strains used in this study are listed in Table 1. Non-transformed yeast cells were routinely cultured at 28 °C in YD medium (2% yeast extract KAT, 2% glucose) under agitation. Cells transformed with plasmids were grown in MD minimal medium (0.7% yeast nitrogen base without amino acids (Difco), 2% glucose, supplemented with all amino acids except those used as a selection marker for plasmid maintenance). Solid media were produced by addition of 2% agar to the mixture. The Lactococcus lactis DML1 strain was kindly provided by B. Poolman (Groningen, Holland). L. lactis cells were grown in M17 broth acc. to Terzaghi (Merck Millipore) supplemented with 1% glucose at 28°C. Cells transformed with the pNZ8048 plasmid were grown in the presence of 10 µg/ml chloramphenicol. Expression of genes under the control of the pNisA promoter was induced by 2.5 µg/l nisin at the log phase (OD$_{600}$ 0.4–0.5).

in vivo transport measurements

The in vivo transport measurements were carried out using the fluorescent dye Fura-2/AM according to the method previously described by Colinet et al. (4) with slight modifications. Briefly, L. lactis DML1 cells transformed with the empty or GDT1-containing pNZ8048 plasmid were grown in M17 broth. At an OD$_{600}$ of 0.5, induction was initiated by adding 2.5 µg/l nisin in the extracellular medium. After a post-induction time of 2 h, cells were harvested (3,000 g - 7 min) and washed twice with the washing buffer (50 mM Tris-HCl, pH 7.4, 100 mM KCl, 1 mM MgCl$_2$). Washed cells were resuspended in the same buffer supplemented with 0.2 mM EDTA (pH 8) and incubated for 10 min. The harvested cells were then incubated with the washing buffer supplemented with 10 µM Fura-2/AM and 1.7 mM probenecid for 2 h at 28°C under agitation. Cells were subsequently washed twice in the presence of 1 mM EGTA.
and the final pellet was resuspended in 10 ml of the washing buffer supplemented with 1.7 mM probenecid. Prior to measurements, this latter solution was treated with Calcium sponges (BAPTA chelator coupled to a polymer matrix, Invitrogen). The signal was recorded either with a single excitation wavelength of 360 nm (quenching measurements) or with two excitation wavelengths of 340 and 380 nm (ratiometric measurements), the emission wavelength being set at 510 nm. MnCl$_2$ or CaCl$_2$ were added in the extracellular medium at the indicated concentrations. Data were recorded using a JASCO FP8500 fluorometer controlled by the Spectra Manager software.

ICP-AES analyses

For determination of the total Mn$^{2+}$ content of yeast mutant strains, cells were grown in YD or minimal medium to an OD$_{600}$ of 3. Cells were then collected by vacuum filtration using membrane filters (Millipore, 0.45 µm pore size) and washed twice with 2 ml of 1 mM EGTA (pH 8) and twice with 2 ml H$_2$O. Cells were collected in heat-resistant beakers in 10 ml H$_2$O, and dried at 95 °C overnight and then in a dessicator for 24 h. The dry matter was mineralized by heating at 500°C overnight. The ashed sample was subsequently dissolved in 10 ml 6.5% HNO$_3$ for analysis on an ICAP 6500 spectrometer (Thermo Scientific).

Western blotting

For Western blotting, 40 µg of proteins were separated on SDS-PAGE gels and Western blotting was carried out as previously described (3). The primary rabbit antibodies against Gdt1p were previously produced in our lab (3). Horseradish peroxidase-coupled anti-rabbit IgG antibodies were purchased from IMEX.

Yeast drop tests

For drop tests, yeast cells were precultured overnight in 5 ml minimal dextrose medium without uracil (MD-U). Each culture was then adjusted to an OD$_{600}$ of 0.3. Four µl of the adjusted culture and of successive ten-fold dilutions were spotted on YD solid medium with or without 400 µM MnCl$_2$. Plates were incubated for 2 days at 28°C.

Monitoring of Sod2p activity

To monitor Sod2p activity, cells were grown in YD medium to an OD$_{600}$ of 3, and washed before homogenization by glass-bead agitation in lysis buffer (10 mM sodium phosphate buffer, pH 7.8, 5 mM EDTA, 5 mM EGTA, 50 mM NaCl, 0.1% Triton X-100, 100 µg/ml PMSF, 4 µg/ml leupeptin, aprotinin, antipain, pepstatin, and chymostatin) (22). Proteins (200 µg) were loaded on a native PAGE gel and migration was carried out at 100 V for 4 h. After migration, the gel was immersed in a 1 mg/ml nitro blue tetrazolium solution for 15 min, followed by an incubation in a solution containing 100 mM potassium phosphate buffer, pH 7.8, 28 mM TEMED, 2.8*10$^{-2}$ mM riboflavin, and 5 mM KCN for 15 min. The gel was finally exposed to light for about 30 min (24,25). Colloidal blue gels were carried out in parallel as loading controls.

Acknowledgements: We dedicate this publication to the memory of André Goffeau. The authors thank B. Poolman for providing the DML1 strain, A. Iserentant for technical assistance with the ICP-AES measurements in yeast, and M. Boutry for helpful suggestions and critical reading of the manuscript.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: L.T., A.D., P.S., and P.M. designed the experiments; L.T., A.D., O.S., and J.S. performed research; L.T., A.D., and P.M. analyzed data; and L.T. and P.M. wrote the paper.
References

1. Demaegd, D., Colinet, A. S., Deschamps, A., and Morsonne, P. (2014) Molecular evolution of a novel family of putative calcium transporters. *PLoS ONE* 9

2. Foulquier, F., Amyere, M., Jaeken, J., Zeevaert, R., Schollen, E., Race, V., Bammens, R., Morelle, W., Rosnolet, C., Legrand, D., Demaegd, D., Buist, N., Cheillan, D., Guffon, N., Morsonne, P., Annaert, W., Freeze, H. H., Van Schaftingen, E., Vikkula, M., and Matthijs, G. (2012) TMEM165 deficiency causes a congenital disorder of glycosylation. *American Journal of Human Genetics* 91, 15-26

3. Colinet, A. S., Sengottaiyan, P., Deschamps, A., Colinet, M. L., Thines, L., Demaegd, D., Duchêne, M. C., Foulquier, F., Hols, P., and Morsonne, P. (2016) Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation. *Scientific Reports* 6

4. Colinet, A. S., Thines, L., Deschamps, A., Flémal, G., Demaegd, D., and Morsonne, P. (2017) Acidic and uncharged polar residues in the consensus motifs of the yeast Ca2+ transporter Gdt1p are required for calcium transport. *Cellular Microbiology* 19

5. Wang, C., Xu, W., Jin, H., Zhang, T., Lai, J., Zhou, X., Zhang, S., Liu, S., Duan, X., Wang, H., Peng, C., and Yang, C. (2016) A Putative Chloroplast-Localized Ca2+/H+ Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis. *Molecular Plant* 9, 1183-1196

6. Schneider, A., Steinberger, I., Herdean, A., Gandini, C., Eisenhut, M., Kurz, S., Morper, A., Hoecker, N., Rühle, T., Labs, M., Flügge, U. I., Geimer, S., Schmidt, S. B., Husted, S., Weber, A. P. M., Spetea, C., and Leister, D. (2016) The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis. *The Plant cell* 28, 892-910

7. Brandenburg, F., Schoffman, H., Kurz, S., Krämer, U., Keren, N., Weber, A. P. M., and Eisenhut, M. (2017) The Synechocystis manganese exporter mnx is essential for manganese homeostasis in cyanobacteria. *Plant Physiology* 173, 1798-1810

8. Fisher, C. R., Wyckoff, E. E., Peng, E. D., and Payne, S. M. (2016) Identification and Characterization of a Putative Manganese Export Protein in Vibrio cholerae. *Journal of bacteriology* 198, 2810-2817

9. Gandini, C., Schmidt, S. B., Husted, S., Schneider, A., and Leister, D. (2017) The transporter SynPAM71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in Synechocystis PCC6803. *New Phytologist* 215, 256-268

10. Potelle, S., Morelle, W., Dulary, E., Duvet, S., Vicogne, D., Spriet, C., Krzewinski-Recchi, M. A., Morsonne, P., Jaeken, J., Matthijs, G., De Bettignies, G., and Foulquier, F. (2016) Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis. *Human Molecular Genetics* 25, 1489-1500

11. Potelle, S., Dulary, E., Climer, L., Duvet, S., Morelle, W., Vicogne, D., Lebredonchel, E., Houdou, M., Spriet, C., Krzewinski-Recchi, M. A., Peanne, R., Klein, A., De Bettignies, G., Morsonne, P., Matthijs, G., Marquardt, T., Lupashin, V., and Foulquier, F. (2017) Manganese-induced turnover of TMEM165. *Biochemical Journal* 474, 1481-1493

12. Dulary, E., Yu, S.-Y., Houdou, M., de Bettignies, G., Decool, V., Potelle, S., Duvet, S., Krzewinski-Recchi, M.-A., Garat, A., Matthijs, G., Guerardel, Y., and Foulquier, F. (2017)
Investigating the function of Gdt1p in yeast Golgi glycosylation. *Biochimica et Biophysica Acta (BBA) - General Subjects*

14. Chen, J. L., Ahluwalia, J. P., and Stamnes, M. (2002) Selective effects of calcium chelators on anterograde and retrograde protein transport in the cell. *The Journal of biological chemistry* **277**, 35682-35687

15. Antebi, A., and Fink, G. R. (1992) The yeast Ca(2+)-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. *Molecular biology of the cell* **3**, 633-654

16. Vallee, F., Lipari, F., Yip, P., Sleno, B., Herscovics, A., and Howell, P. L. (2000) Crystal structure of a class I alpha1,2-mannosidase involved in N-glycan processing and endoplasmic reticulum quality control. *The EMBO journal* **19**, 581-588

17. Rayner, J. C., and Munro, S. (1998) Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae. *The Journal of biological chemistry* **273**, 26836-26843

18. Romero, P. A., and Herscovics, A. (1989) Glycoprotein biosynthesis in Saccharomyces cerevisiae. Characterization of alpha-1,6-mannosyltransferase which initiates outer chain formation. *The Journal of biological chemistry* **264**, 1946-1950

19. Striebeck, A., Robinson, D. A., Schuttelkopf, A. W., and van Aalten, D. M. (2013) Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis. *Open biology* **3**, 130022

20. Wiggins, C. A., and Munro, S. (1998) Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. *Proc Natl Acad Sci U S A* **95**, 7945-7950

21. van Loon, A. P., Pesold-Hurt, B., and Schatz, G. (1986) A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. *Proc Natl Acad Sci U S A* **83**, 3820-3824

22. Luk, E. E., and Culotta, V. C. (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. *The Journal of biological chemistry* **276**, 47556-47562

23. Portnoy, M. E., Liu, X. F., and Culotta, V. C. (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. *Molecular and cellular biology* **20**, 7893-7902

24. Page, M. M., Salway, K. D., Ip, Y. K., Chew, S. F., Warren, S. A., Ballantyne, J. S., and Stuart, J. A. (2010) Upregulation of intracellular antioxidant enzymes in brain and heart during estivation in the African lungfish Protopterus dolloi. *Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology* **180**, 361-369

25. Flohe, L., and Otting, F. (1984) Superoxide dismutase assays. *Methods in enzymology* **105**, 93-104

26. Snyder, N. A., Stefan, C. P., Soroudi, C. T., Kim, A., Evangelista, C., and Cunningham, K. W. (2017) H(+) and Pi Byproducts of Glycosylation Affect Ca(2+) Homeostasis and Are Retrieved from the Golgi Complex by Homologs of TMEM165 and XPR1. *G3 (Bethesda, Md.)* **7**, 3913-3924

27. Sorin, A., Rosas, G., and Rao, R. (1997) PMR1, a Ca2+-ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane calcium pumps. *The Journal of biological chemistry* **272**, 9895-9901

28. Mandal, D., Woolf, T. B., and Rao, R. (2000) Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport. *The Journal of biological chemistry* **275**, 23933-23938
29. Ohsumi, Y., and Anraku, Y. (1983) Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. The Journal of biological chemistry 258, 5614-5617

FOOTNOTES

The work was supported by grants from the Fonds National de la Recherche Scientifique (FNRS, grant PDR-T.0206.16) and the Communauté française de Belgique–Actions de Recherches Concertées. L.T. is a research fellow at the ‘Fonds pour le Formation à la Recherche dans l’Industrie et dans l’Agriculture’.

The abbreviations used are: TMEM165, transmembrane protein 165; UPF0016, uncharacterized protein family 0016; CDG, congenital disorder of glycosylation; IPC-AES, inductively coupled plasma atomic emission spectrometry.
Table 1. Yeast strains used in this study.

Strain	Description	Source
BY4741	*Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0*	Euroscarf
BY4741 gdt1Δ	*Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 gdt1::KanMX4*	Euroscarf
BY4741 pmr1Δ	*Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 pmr1::KanMX4*	Euroscarf
BY4741 smf2Δ	*Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 smf2::KanMX*	Euroscarf
BY4742 sod2Δ	*MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 sod2::KanMX4*	Euroscarf
BY gdt1Δ pmr1Δ	*Mata his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 gdt1::KanMX4 pmr1::KanMX4*	(3)
BY smf2Δ pmr1Δ	*Mata his3Δ1 leu2Δ0 ura3Δ0 smf2::KanMX pmr1::KanMX*	This study
BY smf2Δ gdt1Δ	*Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 smf2::KanMX gdt1::KanMX*	This study
Gdt1p-mediated manganese transport

Figure 1. Gdt1p promotes Mn$^{2+}$ influx in *L. lactis*. (A) Time-course measurement of the quenching by Mn$^{2+}$ of the fluorescence emitted by Fura-2 in *L. lactis* DML1 cells transformed with the empty (C-) or *GDT1*-containing plasmid. Cells were grown to an OD$_{600}$ of 0.5 at which expression of *GDT1* was initiated by addition of 2.5 µg/l nisin. After a 2 h post-induction time, cells were washed and incubated for 2 h in the presence of Fura-2/AM. The fluorescence measurements were carried out in a calcium-depleted Tris buffer with an excitation and emission wavelength of 360 and 510 nm respectively. Ten µM MnCl$_2$ were added in the extracellular medium after 60 s of measurement (indicated by the arrow). Data are represented as the mean fluorescence normalized to the fluorescence at time 0 (n=3, ± SD).

(B) Time-course measurement of the quenching by Mn$^{2+}$ of the fluorescence emitted by Fura-2 in *L. lactis* DML1 cells in the presence of 25 µM MnCl$_2$ in the extracellular medium. Cells were treated and data are represented as described for (A).

(C) Normalized fluorescence recorded 5 min after addition of 25 µM CoCl$_2$, CuCl$_2$, or NiCl$_2$ for the negative control (C-) and the clone producing Gdt1p. Cells were treated as described for (A). Results are shown as the mean relative fluorescence ± SD (n=3). ***P<0.001 (two-way ANOVA with Bonferroni post-hoc test).
Figure 2. Ca$^{2+}$ and Mn$^{2+}$ influx are both promoted by Gdt1p in *L. lactis*. (A) Time-course measurements of the quenching by Mn$^{2+}$ of the fluorescence emitted by Fura-2 in *L. lactis* DML1 cells producing Gdt1p in the presence of both MnCl$_2$ (fixed concentration of 25 µM) and CaCl$_2$ (variable concentration from 0 to 50 µM). Measurements were carried out with an excitation wavelength at the isosbestic point of Fura-2 (360 nm). Data are represented as the mean fluorescence normalized to the fluorescence at time 0. (B) Time-course measurements of the ratio of the fluorescence emitted at 510 nm after excitations at 340 and 380 nm (340/380) in the *L. lactis* DML1 clone in the presence of both CaCl$_2$ (fixed concentration of 25 µM) and MnCl$_2$ (variable concentration from 0 to 100 µM). In the two experiments, cells were treated as described for Figure 1A. MnCl$_2$ and CaCl$_2$ were added simultaneously after 60 sec of measurement (arrow) and curves are represented as means (n=3) ± SD.
Figure 3. The affinity of Gdt1p for Ca\(^{2+}\) is higher than the one for Mn\(^{2+}\) in *L. lactis*. (A) Time-course measurements of the fluorescence emitted at 510 nm after excitations at 340 and 380 nm (340/380) (left) or of the fluorescence emitted at 510 nm after excitation at 360 nm normalized to the initial fluorescence (right) in *L. lactis* DML1 cells transformed with the *GDT1*-containing plasmid. Cells were treated as described for Figure 1A. The indicated CaCl\(_2\) (left) or MnCl\(_2\) (right) concentration was added in the extracellular medium after 3 s of measurement. Data correspond to a representative set of three repetitions. (B) Values of the mean initial slopes (n=3, ± SD) as a function of the free Ca\(^{2+}\) or Mn\(^{2+}\) concentration (left and right respectively). Data were fitted to the Michaelis–Menten equation using GraphPad Prism.
Figure 4. Gdt1p regulates the homeostasis of Mn$^{2+}$ in yeast. (A) Cellular Mn$^{2+}$ content of the wild-type, gdt1Δ, pmr1Δ, and gdt1Δpmr1Δ strains. Cells were grown in YD medium to an OD$_{600}$ of 3 and the cellular Mn$^{2+}$ content was measured by ICP-AES. Data are shown as means ± SD (n=3). *P<0.05, ***P<0.001 (unpaired t tests). (B) (left) Cellular Mn$^{2+}$ content of the wild-type and gdt1Δ strains transformed with the empty plasmid (Ø) or the plasmid containing GDT1 under the control of the TPI1 or of the endogenous GDT1 promoter. The strains were grown in MD-U medium to an OD$_{600}$ of 3 and the cellular Mn$^{2+}$ content was measured by ICP-AES. Data are shown as means ± SD (n=3, excepted for gdt1Δ + pTPI-GDT1 where n=2). ***P<0.001 (one-way ANOVA with Bonferroni post-hoc test). (right) Production of Gdt1p in the corresponding strains. Total protein extracts of cells grown to an OD$_{600}$ of 3 were analyzed by Western blotting with antibodies directed against Gdt1p. Coomassie blue-stained polyvinylidene fluoride membranes were used as loading controls. (C) Growth of the wild-type, gdt1Δ, pmr1Δ, and gdt1Δpmr1Δ strains in rich solid medium supplemented or not with 400 µM Mn$^{2+}$. The strains transformed with the empty (Ø) or GDT1-containing pRS416 plasmid were pre-cultured in MD-U medium to an OD$_{600}$ of 0.3. Serial ten-fold dilutions of the culture were dropped on YD solid medium containing or not 400 µM MnCl$_2$. The ΔΔ+GDT1 strain corresponds to the gdt1Δpmr1Δ mutant expressing GDT1 under the control of the constitutive TPI1 promoter. Plates were incubated 2 days at 28°C.
Figure 5. Effect of a *gdt1Δ* mutation on Sod2p activity and manganese accumulation in an *smf2Δ* mutant. (A) Activity of the Mn$^{2+}$-dependent Sod2p in the indicated yeast strains. The seven yeast strains were grown to an OD$_{600}$ of 3. Cell lysates were loaded on a native PAGE gel in which the activity of Sod2p was monitored by nitro blue tetrazolium staining. Colloidal blue-stained gels were used as loading controls. (B) Activity of Sod2p in the wild-type and *smf2Δ* strain grown in the presence of 0, 40, or 60 µM MnCl$_2$. (C) Activity of Sod2p in cell lysates containing 0, 20, or 40 mM MnCl$_2$. (D) Cellular Mn$^{2+}$ content of the indicated strains. Cells were grown in YD medium to an OD$_{600}$ of 3 and the cellular Mn$^{2+}$ content was measured by ICP-AES. Data are shown as means ± SD (n=3). **P<0.01, ***P<0.001 (unpaired t tests).
The yeast protein Gdt1p transports Mn$^{2+}$ ions and thereby regulates manganese homeostasis in the Golgi

Louise Thines, Antoine Deschamps, Palanivelu Sengottaiyan, Oksana Savel, Jiri Stribny and Pierre Morsomme

J. Biol. Chem. published online April 9, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA118.002324

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts