A GLOBAL BOUND FOR THE SINGULAR SET OF AREA-MINIMIZING HYPERSURFACES

NICK EDELEN

Abstract. We give an a priori bound on the \((n-7)\)-dimensional measure of the singular set for an area-minimizing \(n\)-dimensional hypersurface, in terms of the geometry of its boundary.

Area-minimizing surfaces in general will not be smooth, and a basic question in minimal surface theory is to understand the size and nature of the singular region. The cumulative works of many (Federer, De Giorgi, Allard, Simons, to name only a few) prove that for absolutely-area-minimizing \(n\)-dimensional hypersurfaces in \(\mathbb{R}^{n+1}\) ("codimension-one area-minimizing integral currents"), the interior singular set is at most \((n-7)\)-dimensional. This dimension bound is sharp, and is directly tied to the existence of low-dimensional, non-flat minimizing cones.

[HS79] proved that for such codimension-one area-minimizers, if the boundary is known to be \(C^{1,\alpha}\) and multiplicity-one, then in fact no singularities lie within a neighborhood of the boundary. Combined with interior regularity, this theorem gives a very nice structure of these minimizing hypersurfaces.

Recently [NV17], [NV15] quantified the interior partial regularity, by demonstrating effective local (interior) bounds on the \(\mathcal{H}^{n-7}\) measure of the singular set. Their methods also prove \((n-7)\)-rectifiability of the singular set, which was originally established through an entirely different approach by [Sim95].

In this short note, we obtain obtain a global, effective a priori estimate on the singular set of an area-minimizing hypersurface in terms of the boundary geometry. Our results are loosely analogous to the a priori bounds of [AL88] (see also the recent works [MMS18b], [MMS18a]).

We work in \(\mathbb{R}^{n+1}\), for \(n \geq 7\). Let us write \(\mathcal{I}_n(U)\) for the space of integral \(n\)-currents acting on forms supported in the open set \(U\). Given an \(n\)-dimensional, oriented manifold \(E\), write \([E]\) for the current induced by integration. Let \(\eta_\lambda(x) = \lambda x\), and \(\tau_y(x) = x + y\).

If \(T \in \mathcal{I}_n(U)\), we say \(T\) is area-minimizing if \(||T\|_W \leq ||T + S\|_W\) for every open \(W \subset U\), and every \(S \in \mathcal{I}_n(U)\) satisfying \(\partial S^* = 0\).
spt$S \subset W$. The regular set $\text{reg}T$ is the (open) set of points where $\text{spt}T$ is locally the union of embedded $C^{1,\alpha}$ manifolds. The singular set is $\text{sing}T = \text{spt}T \setminus \text{reg}T$. Write $||T||$ for the mass measure of T.

Given an k-manifold S, and $x \in S$, let $r_{1,\alpha}(S, x)$ be the largest radius r, so that $(S - x)/r$ is the graph of a $C^{1,\alpha}$ function u, with $|u|_{1,\alpha} \leq 1$. Define $r_{1,\alpha}(S) = \inf_{x \in S} r_{1,\alpha}(S, x)$.

Our main Theorem is the following.

Theorem 0.1. There is a constant $c = c(n, \alpha)$ so that the following holds. Let T be a area-minimizing integral n-current in \mathbb{R}^{n+1}. Suppose ∂T is a multiplicity-one, compact, oriented $C^{1,\alpha}$ manifold S, and assume that S is contained in the boundary of some convex set. Then

$$H^{n-7}(\text{sing}T) \leq c(n, \alpha) \frac{||T||(\mathbb{R}^{n+1})}{r_{1,\alpha}(S)^7}.$$

In particular, we have

$$H^{n-7}(\text{sing}T) \leq c'(n, \alpha) \frac{H^{n-1}(S)^{\frac{n}{n-7}}}{r_{1,\alpha}(S)^7}.$$

I believe Theorem 0.1 should hold for more general S, but there are subtleties even in the idealized case when S is a line. See the discussion below.

We also have a version of Theorem 0.1 in the case when T has free-boundary. Given open sets U, Ω, we say $T \in \mathcal{I}_n(U)$ is area-minimizing with free-boundary in Ω if: $\text{spt}T \subset \overline{\Omega}$, and $||T||(W) \leq ||S + T||(W)$ for all $W \subset\subset U$, and every $S \in \mathcal{I}_n(U)$ satisfying $\text{spt}S \subset \overline{\Omega} \cap W$ and $\text{spt} \partial S \subset \partial \Omega$. [Gru87] proved boundary singularities have dimension at most $n - 7$.

Theorem 0.2. Let Ω be a domain with C^2-boundary, and $\infty > r_{1,1}(\partial \Omega) > 0$. Let T be a compactly supported, area-minimizing current with free-boundary in Ω, with $\partial T \setminus \Omega = 0$. Then

$$H^{n-7}(\text{sing}T) \leq c(n) \frac{||T||(\Omega)}{r_{1,1}(\partial \Omega)^7}.$$

The key to proving both Theorems is the observation that Naber-Valtorta's technique gives the following linear interior bound on the singular set: if T is area-minimizing in $U \subset \mathbb{R}^{n+1}$, with $\partial T \setminus U = 0$, then for every $\epsilon > 0$, we have:

$$H^{n-7}(\text{sing}T \cap U \setminus B_\epsilon(\partial U)) \leq c(n) \epsilon^{-7} ||T||(U \setminus B_{\epsilon/2}(\partial U)).$$

For the Neumann problem (Theorem 0.2), we can adapt the techniques of [NV15] to prove a priori estimates on the singular set in a
neighborhood of the barrier. Unfortunately, it’s not clear that a good Dirichlet boundary version of Naber-Valtorta exists, in any more generality than is considered in Theorem 0.1. The problem is that there is not necessarily a good relationship between regularity and symmetry. If there exists a singular, minimizing hypersurface with Euclidean area growth and linear boundary, then by [HS79] any blow-down sequence would preclude an inclusion like $\text{sing} T \subset S_{n-7}^{n-7}$ (here S_{n-7}^{n-7} being the $(n - 7, \epsilon)$-strata of [CN13]).

Instead, for Theorem 0.1 we can prove an effective version of [HS79], which says that the singular set is some uniform distance away from the boundary curve. It’s tempting to think an ineffective, quantitative version of [HS79] might hold for more general Dirichlet setups, but the problem is the same as above.

Remark 0.3. The following variant of Theorem 0.1 holds for almost-area-minimizers. Let $T \in \mathcal{I}_n(\mathbb{R}^{n+1})$ be almost-area-minimizing, in the sense that

$$||T||(B_r(x)) \leq ||T + S||(B_r(x)) + c_0 r^{n+2\alpha},$$

for any $S \in \mathcal{I}_n(\mathbb{R}^{n+1}), \partial S = 0, \text{spt} S \subset B_r(x)$, and some fixed c_0. Suppose $\partial T = [S]$ is an oriented, embedded, multiplicity-one $C^{1,\alpha}$-manifold S, and suppose there is a $C^{1,\alpha}$ domain Ω so that $\text{spt} T \subset \overline{\Omega}$, $S \subset \partial \Omega$. Then

$$\mathcal{H}^{n-7}(\text{sing} T) \leq c(n, \alpha) \max\{\frac{1}{2\alpha}, r_{1,\alpha}(\partial \Omega)^{-7}, r_{1,\alpha}(S)^{-7}\} ||T||(\mathbb{R}^{n+1}).$$

The same proof works, using [DS02], [Bom82] in place of [HS79], [All72], and a minor modification of [NV15].

The following examples illustrates some of the problems in extending our proof of Theorem 0.1 to more general settings.

Example 0.4. Both the half-helicoid and half of Enneper’s surface ([Whi96], [Per07]) are area-minimizing 2-dimensional currents in \mathbb{R}^3. (For the half-helicoid, just observe that by rotating the half-helicoid about the z-axis, one obtains a smooth foliation of $\mathbb{R}^3 \setminus z$-axis by oriented minimal surfaces). It would be interesting to know if there exists an example of a singular minimizing hypersurface bounding a multiplicity-one line.

The half-helicoid structure could be seen locally for finite S, if one does not assume a priori area bounds on S. For example, one can imagine a connected boundary curve S, which is composed of line segment L, and a curve that wraps around L many times. By taking the wrapping curve to go further and further out, one can arrange S to satisfy $r_{1,\alpha}(S) \geq 1$, but take the separation along L of the wrappings
to zero. The minimizing integral current T spanning S will look very much like a compressed half-helicoid near the line segment. We cannot decompose this T near L into pieces of uniformly bounded area.

I thank Otis Chodosh for several illuminating conversations, and pointing out the half-helicoid is area-minimizing. This work was supported in part by NSF grant DMS-1606492.

0.5. Proof of Theorem 0.1. The following quantifies Hardt-Simon’s boundary regularity.

Lemma 0.6. There is a constant $\epsilon_1(n, \alpha)$, so that the following holds. Let T and S be as in Theorem 0.1. Then for all $x \in \text{sing} T$, we have

$$\inf_{y \in S} \frac{|x - y|}{r_{1, \alpha}(S, y)} \geq \epsilon_1(n, \alpha).$$

Proof. Towards a contradiction, suppose we have minimizing currents T_i, with boundary curves S_i, each contained the boundary of the convex set Ω_i, and $x_i \in \text{sing} T_i$, and $y_i \in S_i$, so that

$$\text{dist}(x_i, S_i) \leq r_{1, \alpha}(S, y_i)/i.$$

By the maximum principle, $\text{spt} T_i \subset \overline{\Omega_i}$, and by [HS79], $\text{dist}(x_i, S_i) > 0$. Since $r_{1, \alpha}(S, y) \leq r_{1, \alpha}(S, y_i)/2$ for $y \in B_{r_{1, \alpha}(S, y_i)/2}(y)$, there is no loss in generality in assuming that y_i realizes the distance in S to x_i.

After a rotation, dilation, translation, we can assume $y_i = 0$, $r_{1, \alpha}(S, y_i) = 2$, and e_1 is a choice of vector so that $\Omega_i \subset \{ x : x \cdot e_1 < 0 \}$. Moreover, we can take $S_i \cap B_1$ to be the graph of a function u_i, define on the line $L = \{ x_1 = x_{n+1} = 0 \}$, with $|u_i|_{1, \alpha} \leq 1$. Notice that $\text{dom}(u_i) \supset B_1 \cap L$, and that $x_i \rightarrow 0$. Let us assume $x_i \in B_1/2$ for all i.

Let $h(t, x) : [-1, 1] \times (L \cap B_1/2) \rightarrow \mathbb{R}^{n+1}$ be defined as

$$h(t, x) = \begin{cases} x + tu_i(x) & t \geq 0 \\ x - t\sqrt{1 - |x|^2}e_1 & t \leq 0 \end{cases},$$

and let $R_i = (h_i)_{\sharp}([-1, 1] \times [L \cap B_1/2])$. Then, as an element of $\mathcal{I}_n(B_1/2)$, $\partial R_i = [S_i] \cap B_1/2$. In particular, $T_i - R_i \in \mathcal{I}_n(B_1/2)$ has no boundary. By standard decomposition of codimension-one currents [Sim83], we can find open sets $E_{i,j} \subset E_{i,j+1} \subset \ldots B_1/2$, so that $[E_{i,j}] \in \mathcal{I}_n(B_1/2)$ satisfies:

$$T_i - R_i = \sum_j \partial [E_{i,j}], \quad ||T_i - R_i|| = \sum_i ||\partial [E_{i,j}]||.$$
Since \((T_i - R_i)_t \Omega^m = (-R_i)_t \Omega^m\), and the \(E_{i,j}\) are nested, we have spt\(\partial[E_{i,j}] \subset \overline{\Omega}\) for all but one \(j = j_i\). Therefore, we have
\[
||T_i|| = ||\partial[E_{i,j_i}] + R_i|| + \sum_{j \neq j_i} ||\partial[E_{i,j}]||,
\]
and hence \(\partial[E_{i,j_i}] + R_i\) and each \(\partial[E_{i,j}]\) (\(j \neq j_i\)) are area-minimizing. By volume comparison against balls, and the estimate \(||R_i||(B_r) \leq c(n)r^n\), we get that
\[
||\partial[E_{i,j}]||(B_r) \leq c(n)r^n \quad \forall r < 1/4.
\]

We break into two cases. First, assume that \(x_i \in \text{spt}(\partial[E_{i,j_i}] + R_i)\) for all \(i\). Let \(\lambda_i = |x_i|^{-1}\), and consider the dilates
\[
T'_i := \partial[(\eta_{\lambda_i})_t E_{i,j_i}] + (\eta_{\lambda_i})_t R_i.
\]
So that \(T'_i\) has a singularity at distance 1 from \(\lambda_i S_i\).

We can pass to a subsequence (also denoted \(i\)), so that \((\eta_{\lambda_i})_t E_{i,j_i} \to [E]\), for some open set \(E\). Since \(\lambda_i S_i \to L\) in \(C^1,\alpha\), we have \((\eta_{\lambda_i})_t R_i \to [H]\), where \(H = \{x_{n+1} = 0, x_1 > 0\}\) and \([H]\) is endowed with the orientation so that \(\partial[H] = L\).

In particular, we have \(T'_i \to T = \partial[E] + [H]\), where \(\partial T = [L]\). Since each \(T'_i\) is minimizing, \(T\) is minimizing also, and \(T'_i\) converge as both currents and measures. By construction, \(T\) has a singularity at distance 1 from \(L\), \(T\) has Euclidean volume growth, and spt\(T \subset \{x : x \cdot e_1 \leq 0\}\).

Since \(T\) is minimizing with Euclidean volume growth, we can take a tangent cone \(C\) at infinity (as both currents and varifolds). \(C\) satisfies \(\partial[C] = [L]\), and so by [HS79] \(C\) is planar. Since we can write \(C = \partial[F] + [H]\) for some open set \(F\), and spt\(C \subset \{x : x \cdot e_1 \leq 0\}\), in fact \(C\) must be a multiplicity-one half-plane. By monotonicity we must have that \(T\) is a multiplicity-one half-plane also, and hence \(T\) is regular. This is a contradiction.

We are left with the second case: for all \(i\), \(x_i \in \text{spt}\partial[E_{i,j}]\) for some \(j \neq j_i\). Write \(E_i = E_{i,j}\) for the open set, for which \(x_i \in \text{spt}\partial E_i\). Consider the dilates \(E'_i = \lambda_i E_i\). Then we can pass to a subsequence, to get convergence as currents \([E'_i] \to [E]\), convergence as currents and measures \(\partial[E'_i] \to \partial[E]\), for \(0 \neq [E] \in \mathcal{I}_{n+1}(\mathbb{R}^{n+1})\) satisfying: a) \(\partial[E]\) is minimizing; b) \(\partial[E]\) has a singularity at distance 1 from the origin; and c) \(E \subset \{x : x \cdot e_1 \leq 0\}\).

Properties a), c) imply that any tangent cone at infinity of \(\partial[E]\) is a multiplicity-one plane, and hence \(\partial[E]\) is a multiplicity-one plane. This contradicts property b), and therefore completes the proof of Lemma [L.6] \(\Box\).
Lemma 0.7. Let $T \in \mathcal{I}_n(B_1)$ be area-minimizing, with $\partial T = 0$. Then we have

$$\mathcal{H}^{n-7}(\text{sing} T \cap B_{1/2}) \leq c(n) ||T|| \cdot (B_1).$$

Proof. We can decompose $T = \sum_i \partial [E_i]$, for $E_i \subset E_{i+1} \subset \ldots \subset B_1$, so that $||T|| = \sum_i ||\partial [E_i]||$, and hence each $\partial [E_i] \in \mathcal{I}_n(B_1)$ is minimizing

Since $||\partial [E_i]|| \cdot (B_1) \leq ||\partial [E_i \cup B_{3/4}]|| \cdot (B_1)$, we have $||\partial [E_i]|| \cdot (B_{3/4}) \leq c(n)$. On the other hand, by monotonicity, if $\text{spt} \partial [E_i] \cap B_{1/2} \neq \emptyset$, then $||\partial [E_i]|| \cdot (B_1) \geq 1/c(n)$. From the estimates of [NV15], we have

$$\mathcal{H}^{n-7}(\text{sing} \partial [E_i] \cap B_{1/2}) \leq c(n) \leq c(n) ||\partial [E_i]|| \cdot (B_1).$$

We can sum up contributions:

$$\mathcal{H}^{n-7}(\text{sing} T \cap B_{1/2}) \leq \sum_i \mathcal{H}^{n-7}(\text{sing} \partial [E_i] \cap B_{1/2})$$

$$\leq c(n) \sum_i ||\partial [E_i]|| \cdot (B_1)$$

$$= c(n) ||T|| \cdot (B_1).$$

Proof of Theorem 0.1. By scaling, there is no loss in assuming $r_{1, \alpha}(S) = 1$. Lemma 0.6 implies that $B_\epsilon(S) \cap \text{sing} T = \emptyset$, where $\epsilon = \epsilon_1(n, \alpha)$.

Let $\{x_j\}_j$ be a maximal ($\epsilon/2$)-net in $\text{spt} T \setminus B_\epsilon(S)$. Then the balls $\{B_{\epsilon/2}(x_j)\}_j$ cover $\text{spt} T \setminus B_\epsilon(S)$, and the balls $\{B_{\epsilon}(x_j)\}_j$ have overlap bounded by $c(n)$. For each j, $\partial T \cap B_{\epsilon}(x_j) = 0$, and so by Lemma 0.7 we have

$$\mathcal{H}^{n-7}(\text{sing} T \cap B_{\epsilon/2}(x_j)) \leq \frac{c(n)}{\epsilon^7} ||T|| \cdot (B_\epsilon(x_j)).$$

Using bounded overlap of the $\{B_\epsilon(x_j)\}_j$, and the isoperimetric inequality due to [FJA86], we deduce that

$$\mathcal{H}^{n-7}(\text{sing} T) = \mathcal{H}^{n-7}(\text{sing} T \setminus B_\epsilon(S))$$

$$\leq \sum_j \mathcal{H}^{n-7}(\text{sing} T \cap B_{\epsilon/2}(x_j))$$

$$\leq c(n, \alpha) \sum_j ||T|| \cdot (B_\epsilon(x_j))$$

$$\leq c(n, \alpha) ||T|| \cdot (\mathbb{R}^{n+1})$$

$$\leq c(n, \alpha) \mathcal{H}^{n-1}(S)^{n/(n-1)}. \quad \square$$
0.8. **Proof of Theorem 0.2.** We will show that the arguments of [NV15], [Gru87], and [GJ86] prove the following: there is an $\epsilon = \epsilon(n)$, so that for $x \in \text{spt}T \cap \partial\Omega$, and $r = r_{1,1}(\partial\Omega)$, we have

$$\mathcal{H}^{n-7}(\text{sing}T \cap B_{\epsilon r/2}(x)) \leq c(n)||T|||B_{\epsilon r}(x))$$

Given this estimate, the bound of Theorem 0.2 follows by a straightforward covering argument as in the proof of Theorem 0.1.

By scaling, we can and shall assume that $r_{1,1}(\partial\Omega) = 1/\Gamma$, for $\Gamma \leq \epsilon_2(n)$ chosen sufficiently small so that in $B_1(\partial\Omega)$ the nearest-point projection $\xi(x)$ to $\partial\Omega$ is well-defined and satisfies $|\xi|_{C^1} \leq 1$. Define the reflection function $\sigma(x) = 2\xi(x) - x$, and the linear reflection i_σ about $T_\xi(x) \partial\Omega$.

Take $T \in \mathcal{I}_n(B_2)$ area-minimizing with free-boundary in Ω. Define $T' = T - \sigma_\tau T$, so that $\partial T' = 0$. Then we can decompose T' as

$$T' = \sum_i \partial[E_i], \quad ||T'|| = \sum_i ||\partial[E_i]||,$$

for nested open sets $E_i \subset E_{i+1}$. Moreover, since $T' \cup \Omega = T$ we can write

$$T = \sum_i \partial[E_i] \cup \Omega, \quad ||T|| = \sum_i ||\partial[E_i] \cup \Omega||.$$

From [1], we get that each $\partial[E_i] \cup \Omega$ is area-minimizing, with free-boundary in Ω. By comparison against $\partial[E_i \cup B_r(x) \cup \Omega$, we have the a priori mass bounds

$$||\partial[E_i] \cup \Omega||(B_r(x)) \leq c(n)r^n \quad \forall B_r(x) \subset B_2.$$

Additionally, [Gru87] showed T' admits a certain almost-minimizing property, in the following sense:

$$||T'||(B_r(x)) \leq ||T'| + S||(B_r(x)) + c(n)r||T'||(B_r(x)).$$

for every $S \in \mathcal{I}_n(B_2)$ with $\partial S = 0$, spt$S \subset B_r(x)$, and every $B_r(x) \subset B_2$ with $x \in \partial\Omega$.

[GJ86] define the following monotonicity. For $x \in B_1$, and $r < 1 - |x|$, let

$$\tilde{\theta}_T(x, r) = r^{-n}||T||(B_r(x)) + r^{-n}||T'||(\{y : |\sigma(y) - x| < r\}).$$

Notice that when Ω is a half-space, then $\tilde{\theta}_T(x, r) = \theta_T(x, r)$, and in general we have $\tilde{\theta}_T(x, r) = \theta_T(x, r)$ when $r < \text{dist}(x, \partial\Omega)$. Here $\theta_T(x, r) = r^{-n}||T||(B_r(x))$ for the usual Euclidean density ratio, and $\theta_T(x) = \lim_{r \to 0} \theta_T(x, r)$ whenever it exists.
For $0 < s < r < 1 - |x|$, [GJ86] prove

\begin{equation}
\int_{B_r(x) \setminus B_s(x)} |y - x|^{-n-2} \left(|(y - x)^{\perp}|^2 + |i(y - x)^{\perp}|^2 \right) d||T||(|y|) \leq \tilde{\theta}_T(x, r) - \tilde{\theta}_T(x, s) + c(n) \Gamma r \tilde{\theta}_T(n, r).
\end{equation}

Monotonicity (6) implies that the density $\tilde{\theta}_T(x) = \lim_{r \to 0} \tilde{\theta}_T(x, r)$ is a well-defined, upper-semi-continuous function on B_1, which is ≥ 1 on sptT.

The above discussion, and the works of [Gru87], [GJ86], give:

Lemma 0.9. Let Ω_i be a sequence of C^2 domains, with $r_{1,1} (\partial \Omega_i \cap B_2) \to \infty$, and $T_i \in T_\ast (B_2)$ a sequence of area-minimizing currents with free-boundary in Ω_i. Suppose $T_i \to T$. Then

1. T is area-minimizing, with free-boundary in a half-space, and $||T_i|| \to ||T||$.
2. $T_i' \to T'$ as currents and measures, and $\tilde{\theta}_{T_i}(x, r) \to \theta_{T'}(x, r)$ for all $x \in B_2$, and a.e. $0 < r < 2 - |x|$. Here $T_i' = T_i - (\sigma_i)_{2} T_i$, where σ_i is the reflection function associated to Ω_i.
3. If $x_i \to x \in B_2$, and $r_i \to 0$, then $\limsup_i \tilde{\theta}_{T_i}(x_i, r_i) \leq \tilde{\theta}_T(x) = \theta_{T'}(x)$.
4. If T' is regular, then the $T_i' \cap B_1$ are regular for i sufficiently large.

Proof. Since $\sigma_i \to \sigma$ in C^1, we have $T_i' \to T'$. The convergence of measures $||T_i'|| \to ||T'||$ is a standard argument using the almost-minimizing property (6). Convergence $||T_i|| \to ||T||$ then follows from the fact that $T_i' \cap \overline{\Omega_i} = T_i$.

Convergence of the $\tilde{\theta}_T$ follows because we can estimate

\[
||T_i|| \left(\{ y : |\sigma_i(y) - x| < r \} \right) - ||T_i|| \left(\sigma(B_r(x)) \right) \\
\leq c ||T_i|| \left(B_{(1+\kappa_i)} r(x) \setminus B_{(1-\kappa_i)} r(x) \right),
\]

where $\kappa_i \to 0$ as $i \to \infty$, and because $||T||(\partial B_r(x)) = 0$ for a.e. r. Upper-semi-continuity follows by convergence of $\tilde{\theta}_T(x, r)$, and monotonicity.

The last property (4) is a direct consequence of the decomposition (4) and the Allard-type regularity theory of [GJ86]. \qed

We show the following variant of [NV15] (recall that $r_{1,1} (\partial \Omega) = 1/\Gamma$).

Theorem 0.10 (compare from [NV15]). There is an $\epsilon_3 = \epsilon_3(n, \Lambda)$, so that if $T \in T_\ast (B_2)$ is area-minimizing, with free-boundary in Ω, and
A GLOBAL BOUND FOR THE SINGULAR SET OF AREA-MINIMIZING HYPERSURFACES

\[||T|| \leq \Lambda, \text{ and } \Gamma \leq \epsilon_3, \text{ then} \]

\[\mathcal{H}^{n-7}(\text{sing} T \cap B_1) \leq c(n, \Lambda). \]

When \(T = \partial[E] \), we get \(\Lambda = c(n) \), and then using the decomposition (4) in an identical argument to Lemma 0.7 we deduce the required (3).

The argument of [NV15] requires only the monotonicity formula (6), and the following two theorems, which are essentially Lemmas 7.2, 7.3 and Theorem 6.1 in [NV15] (or Lemma 3.1, Theorem 5.1 in [EE17]).

The rest of [NV15] is entirely general (see e.g. [Edc]).

Theorem 0.11. There is an \(\eta_0 = \eta_0(n, \alpha, \Lambda, \gamma, \rho) \), so that the following holds. Take \(B_{6r}(x) \subset B_2 \). Let \(T \in \mathcal{I}_n(B_{6r}(x)) \) be an area-minimizer with free-boundary in \(\Omega \), and take \(\eta \leq \eta_0 \). Suppose

\[\tilde{\theta}_T(x, 6r) \leq \Lambda, \quad \Gamma \leq \eta, \quad \sup_{B_{3r}(x)} \tilde{\theta}_T(z, 3r) \leq E, \]

then at least one of the following occurs:

1. we have

\[\text{sing} T \cap B_r(x) \subset \{ z \in B_r(x) : \tilde{\theta}_T(z, \gamma \rho r) \geq E - \gamma \}, \text{ or} \]

2. there is an affine \((n - 8)\)-space \(p + L^{n-8} \), so that

\[\{ z \in B_r(x) : \tilde{\theta}_T(z, 3\eta r) \geq E - \eta \} \subset B_{\rho r}(p + L). \]

Theorem 0.12. There is a \(\delta(n, \alpha, \Lambda) \) so that the following holds. Take \(B_{10r}(x) \subset B_2 \). Let \(T \in \mathcal{I}_n(B_{10r}(x)) \) be an area-minimizer with free-boundary in \(\Omega \), and \(\mu \) a finite Borel measure. Suppose that

\[\tilde{\theta}_T(x, 10r) \leq \Lambda, \quad \Gamma \leq \delta, \quad \tilde{\theta}_T(x, 8r) - \tilde{\theta}_T(x, \delta r) < \delta, \quad x \in \text{sing}(T). \]

Then we have

\[\inf_{p + L^{n-7}} \frac{1}{r^{n-5}} \int_{B_{r}(x)} \text{dist}(z, p + L)^2 d\mu(z) \leq \frac{c(n, \alpha, \Lambda)}{r^{n-7}} \int_{B_{r}(x)} \tilde{\theta}_T(z, 8r) - \tilde{\theta}_T(z, r) + c(n) \Gamma d||T|||z|, \]

where the infimum is over affine \((n - 7)\)-planes \(p + L^{n-7} \).

Proof of Theorem 0.11 The proof consists of two contradiction arguments, verbatim to Theorem 5.1 in [EE17]. In place of the \(\epsilon \)-strata, we use the following consequence of Lemma 0.9. Suppose \(T_i \in \mathcal{I}_n(B_6) \) is a sequence of area-minimizers with free-boundary in \(\Omega_i \), so that \(r_{1,1}(\partial \Omega_i \cap B_6) \to \infty \) and \(T_i \to T \). If \(T'_\perp B_2 \) coincides with a cone, that is invariant along an \((n - 6)\)-space, then \(T_i \perp B_1 \) is regular for sufficiently large \(i \). \(\square \)
Proof of Theorem 0.12. The proof divides into two parts, which are verbatim to Lemma 6.2 and Proposition 6.6 in [NV15] (or Theorem 5.1 in [EE17]). The first part is a direct consequence of the monotonicity formula (6). The second part is a straightforward contradiction argument. The proof in [NV15] uses varifold convergence. For integral currents, one can use the fact for any \((n+1)\)-form \(\omega\) and any vector \(v\), we have
\[
< \bar{T}, \omega, v > = < v \wedge \bar{T}, \omega > \quad \text{and} \quad \| v \wedge \bar{T} \| = |\pi_{T^\bot}(v)|. \tag*{\blacksquare}
\]

References

[AL88] Frederick J. Almgren and Elliott H. Lieb. Singularities of energy minimizing maps from the ball to the sphere: Examples, counterexamples, and bounds. *Annals of Mathematics*, 128(3):483–530, 1988.

[All72] W. Allard. On the first variation of a varifold. *Ann. of Math. (2)*, 95:417–491, 1972.

[Bom82] E. Bombieri. Regularity theory for almost minimal currents. *Arch. Rational Mech. Anal.*, 78:99130, 1982.

[CN13] J. Cheeger and A. Naber. Lower bounds on ricci curvature and quantitative behavior of singular sets. *Invent. Math.*, 191(2):321–339, 2013.

[DS02] F. Duzaar and K. Steffan. Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. *J. reine angew. Math.*, 546:73138, 2002.

[Ede] N. Edelen. Notes on a measure theoretic version of Naber-Valtorta’s rectifiability theorem. http://math.mit.edu/~edelen/general-nv.pdf.

[EE17] N. Edelen and M. Engelstein. Quantitative stratification for some free-boundary problems. *Trans. Amer. Math. Soc.*, 2017. to appear.

[FJA86] Jr. F. J. Almgren. Optimal isoperimetric inequalities. *Indiana Univ. Math. J.*, 35:451–547, 1986.

[GJ86] M. Gruter and J. Jost. Allard type regularity results for varifolds with free boundaries. *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)*, 13:129–169, 1986.

[Gru87] M. Gruter. Optimal regularity for codimension one minimal surfaces with a free-boundary. *Manuscripta Math.*, 58:295–343, 1987.

[HS79] R. Hardt and L. Simon. Boundary regularity and embedded solutions for the oriented plateau problem. *Ann. of Math. (2)*, 110:439–486, 1979.

[MMS18a] K. Mazowiecka, M. Miskiewicz, and A. Schikorra. *On the size of the singular set of minimizing harmonic maps in dimension \(n \geq 4\)*, 2018. in preparation.

[MMS18b] K. Mazowiecka, M. Miskiewicz, and A. Schikorra. On the size of the singular set of minimizing harmonic maps into the sphere in dimension three. 2018. arXiv:1811.00515.

[NV15] A. Naber and D. Valtorta. The singular structure and regularity of stationary and minimizing varifolds. 2015. arXiv:1505.03428.

[NV17] A. Naber and D. Valtorta. Rectifiable-reifenberg and the regularity of stationary and minimizing harmonic maps. *Ann. of Math. (2)*, 185:131–227, 2017.
[Per07] J. Perez. Stable embedded minimal surfaces bounded by a straight line. *Calc. Var. Partial Differential Equations*, 29:267–279, 2007.

[Sim83] Leon Simon. *Lectures on geometric measure theory*, volume 3 of *Proceedings of the Centre for Mathematical Analysis, Australian National University*. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.

[Sim95] L. Simon. Rectifiability of the singular set of energy minimizing maps. *Calc. Var. Partial Differential Equations*, 3:1–65, 1995.

[Whi96] B. White. Half of enneper surface minimizes area. *Geometric analysis and the calculus of variations*, pages 361–367, 1996.

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

E-mail address: edelen@mit.edu