Patient-specific functioning related to dizziness and balance problems after traumatic brain injury – A cross-sectional study using an ICF perspective

Beate Storløs¹, Kirsti Skavberg Roaldsen²,³,⁴, Helene Lundgaard Soberg³,⁴ and Ingerid Kleffelgaard³

Abstract: To describe patient-specific problems in functioning related to dizziness and balance problems in patients with mild to moderate traumatic brain injury (TBI) in a biopsychosocial context. A cross-sectional study where data from the Patient-Specific Functional Scale (PSFS) was linked to the International Classification of Functioning, Disability and Health (ICF). Data from 60 patients were classified into second-level ICF categories, using the ICF linking rules. The 60 patients included 73% women; mean age, 39 (SD 12.9) years with mild to moderate TBI (mean GCS 14.5, SD 1.3). The patients predominantly reported problems representing the activities and participation components of the ICF; mobility-related problems were most frequently reported by 42%. In addition, vestibulo-ocular and hearing problems, attention functions, domestic activities, recreation, leisure and...
environmental factors were frequently (≥10%) reported as barriers to functioning. The median severity of problems on the PSFS Numeric Rating Scale (0–10 worst to best) was 3 (IQR 1–5) points. The PSFS provided a unique set of problems in functioning most relevant to each patient resulting in a diversity of functional limitations. The patient-specific problems were all represented in the ICF, supporting a biopsychosocial perspective on problems related to dizziness and balance problems after TBI.

Subjects: Rehabilitation Medicine; Neurological Rehabilitation; Physiotherapy

Keywords: Traumatic brain injury; dizziness; balance problems; patient-specific functional scale; international classification of disability; functioning and health

1. Introduction

Dizziness and balance problems are common complaints after mild to moderate traumatic brain injury (TBI), with a reported prevalence of 39% 6 weeks after the injury (Hartvigsen et al., 2014). Although the symptoms may reduce to 25% within 1 year of the injury (Hartvigsen et al., 2014), they can persist for more than 4 years (Kleffelgaard et al., 2012; Marcus et al., 2019). The aetiology of dizziness and balance problems is varied, and multiple causes are found in 46% of patients after TBI (Arshad et al., 2017). Thus, it represents a complex phenomenon that affects recovery after trauma (Cassidy et al., 2014; Chamelian & Feinstein, 2004; Marcus et al., 2019).

Dizziness and balance problems has been shown to interfere with activities and participation in daily life (Maskell et al., 2007), can prevent return to work, and can cause anxiety, depression and problems in psychosocial functioning after TBI (Chamelian & Feinstein, 2004; Marcus et al., 2019). Thus, dizziness and balance problems can have a negative impact on functioning and quality of life (Voormolen, Haagsma et al., 2019; Voormolen, Polinder et al., 2019). However, there is a lack of information on patient-specific functioning as a result of dizziness and balance problems after mild to moderate TBI. Performance-based measures combined with self-reported measures have been used to investigate dizziness and balance problems in patients with mild to moderate TBI (Alsalalheen et al., 2010; Kleffelgaard et al., 2017, 2019). However, standardized measures do not necessarily represent the actual functional limitations relevant to the individual patient. The patients’ perspective is crucial to enhance an understanding of the limitations and restrictions related to the post-injury functioning and to facilitate individually tailored interventions.

The Patient-Specific Functional Scale (PSFS) is a patient-specific outcome measure, which asks the patients to identify problems in functioning due to a health condition (Stratford et al., 1995). This results in a unique set of problems in functioning from each patient. It focuses on issues most relevant to the patient and provides information explicitly from the patients’ perspective. The PSFS is used increasingly in patients with neurological conditions (Evensen et al., 2020), however the patient-specific limitations in functioning that patients with dizziness and balance problems experience after mild to moderate TBI have not been explored.

The International Classification of Functioning, Disability and Health (ICF) is a useful framework and classification tool to construct a biopsychosocial perspective of post-injury functioning (International Classification of Functioning, Disability and Health (ICF) [updated, 2018; Laxe et al., 2013; Sveen et al., 2013]. To our knowledge, no study specifically applied a patient-specific measure to describe problems in functioning related to dizziness and/or balance problems after mild to moderate TBI in a biopsychosocial context. Hence, the primary aim of this study was to describe limitations and restrictions in patient-specific functioning related to dizziness and balance problems after mild to moderate TBI using ICF as a framework and classification tool. A secondary aim was to identify the severity of the limitations and restrictions in functioning due to dizziness and balance problems after mild to moderate TBI.
2. Methods
This was a cross-sectional study involving secondary analyses of data obtained from the baseline assessments in a randomized controlled trial designed to explore the effects of a vestibular rehabilitation programme on dizziness-related disability in patients with mild to moderate TBI (Clinical Trials registration number: NCT01695577) (Kleffelgaard et al., 2019). The study was approved by the Regional Committee for Medical Research Ethics in Norway (no. 2012/195b 20,120,306). Written informed consent was obtained from all participants. The current study analysed problems in functioning reported on the PSFS by linking it to the ICF classification.

2.1. Participants
Data from 60 patients aged between 16 and 60 years with dizziness and/or balance problems at a mean of 3.8 months (SD, 2.1 months) after TBI (ICD-10 diagnosis S06.0–S06.9) were included. The patients were recruited from the outpatient clinic at the Department of Physical Medicine and Rehabilitation at Oslo University Hospital between January 2013 and October 2015. One physiotherapist (IK) administered the PSFS for all participants.

2.2. Measurements and procedures
The PSFS is a patient-specific measure whereby the patients identify activities they are unable to perform or have difficulty in performing related to their health condition; in the current study, the health issues were dizziness and balance problems after mild to moderate TBI (Evensen et al., 2020; Stratford et al., 1995). The patients were asked to rate the current level of difficulty associated with each activity by using a Numeric Rating Scale (NRS) ranging from 0 (unable to perform the activity) to 10 (able to perform the activity with no difficulty or as before the injury). The PSFS was used in an interview setting as part of the clinical subjective assessment at baseline in the original study.

The ICF classification system comprises the following components: body functions (b), body structures (s), activities and participation (d), environmental factors (e) (International Classification of Functioning, Disability and Health (ICF) [updated, 2018]

Within each component there are chapters containing categories of functioning and environmental factors, altogether 1454 categories (International Classification of Functioning, Disability and Health (ICF) [updated, 2018]. Personal factors are presented in the ICF model, but not included in the classification system.

The text data consisting of meaningful units from the patients’ problems on the PSFS forms were analysed according to the ICF linking rules as presented by Cieza et al. into main and additional concepts (Cieza et al., 2019, 2005). They were linked to the second-level ICF categories (Table 1). The ICF browser and manual (International Classification of Functioning, Disability and Health (ICF) [updated, 2018] were used to guide the coding process. The linking was performed by a physiotherapist (BS). To increase the reliability of the ICF linking, an experienced linker (HLS) undertook independent linking of 10% of the PSFS items, randomly selected by the Statistical Package for the Social Sciences (SPSS). The agreement between the two linkers on the ICF codes was 88%. Disagreements in linking were discussed and consensus was reached.

2.3. Data analysis
The patient demographics, clinical characteristics and injury-related data are presented by descriptive statistics. Relative proportions (%) of the ICF components (body functions, body structures, activities and participation, and environmental factors) represented in the PSFS were calculated. The main concepts identified according to the ICF linking rules were further analysed, and the second-level categories reported by ≥10% are presented as frequencies (n) and proportions (%) of the second-level ICF categories in descending order. The 10% cut-off was arbitrarily set, aiming at a broad presentation and preserving data richness. In addition, low frequency (reported by <10%) second-level ICF categories are presented according to ICF chapters.
Table 1. Example of the ICF linking procedure

PSFS item extracted from identified problem	Main concept	Additional concept	
Step 1: extracting meaningful text units	Vacuum cleaning, avoiding bending over too far	Bending	Vacuum cleaning
Step 2: linking to the ICF	Chapter: d4 mobility (first-level category); d410 changing basic body position (second-level category)	Chapter: d6 domestic life (first-level category); d640 doing housework (second-level category)	

ICF, International Classification of Functioning, Disability and Health; PSFS, Patient-Specific Functional Scale.

To highlight the more common problems reported on the PSFS related to dizziness and balance problems after TBI, the second-level ICF categories were pooled into five groups related to overarching intertwined aspects of functioning. The severity of the reported problems was analysed by calculating the median NRS and interquartile range (IQR) in each group.

IBM SPSS Statistics for Windows, version 23 (IBM Corp., Armonk, NY, USA) was used for the statistical analyses.

3. Results
Of the 60 patients with mild to moderate TBI included in this study, 73% were women, with a mean age of 39 (SD 12.9) years. Most had mild TBI with a mean Glasgow Coma Scale score of 14.5 (SD 1.3). Demographic and injury-related data are summarized in Table 2.

The 60 patients reported a total of 240 PSFS activities they had problems performing (mean pr. patient, 3.9; SD 1.4). A total of 491 meaningful concepts were derived from the 240 PSFS items and could be linked to the ICF as main (n = 309 items) or additional concepts (n = 182). Figure 1.

Within the main and additional concepts, the patients reported problems in body functions (b), activities and participation (d), and environmental factors (e). Problems related to activities and participation (d) were reported most frequently (65%), followed by body functions (b) (31%) and problems with environmental factors (e) (4%). Figure 2.

Within the 309 main concepts, 17 second-level ICF categories were reported by >10% of the patients (Table 3). The four most frequent second-level ICF categories reported by more than 30% of the patients were moving around (d455), seeing functions (b210), watching (d110), and recreation and leisure (d920). Environmental factors that were considered problems in functioning were, for example, shopping centres, escalators and heights, and were identified in 10% of the patients (Table 3).

The most frequently reported categories which were described by ≥ 10% of the patients were pooled into five groups: mobility (chapters b4, d4, b7), vestibulo-ocular and hearing functions (chapter b2), attention functions (chapters b1, d1), domestic activities, recreation and leisure factors (chapters d6 and d9) and environmental factors (chapter e1). An overview of the most commonly reported problems in each group is presented in Table 4. The severity of the problems reported on the PSFS across all five pooled group categories varied from a median score on the NRS of 2 to 4 points (IQR, 1–5 points) (Table 4), interpreted as moderate to severe difficulties in performing the patient-specific activities. The low frequency (reported by <10%) second-level ICF
4. Discussion
In this study, we used the ICF as a framework and classification tool to explore patient-specific problems in functioning reported on the PSFS due to dizziness and balance problems after mild to moderate TBI. The main findings of the present study are that patients with dizziness and
balance problems report problems particularly within the ICF components activities and participation. A range of difficulties were described and assessed as disabling, primarily related to four areas of functioning: 1) mobility (including control of movement and exercise tolerance functions); 2) vestibulo-ocular and hearing functions; 3) attention functions (including reading and watching); and 4) domestic activities, recreation and leisure functions. The problems with performing the patient-specific activity reported on the PSFS were moderate to severe.

The results of this study show that items of the PSFS can be mapped to the ICF and thereby inform on various aspects of problems in functioning in people with dizziness and balance problems after mild to moderate TBI. Interestingly, among the coded main concepts, only three categories (13%) (Attention functions, Recreation and leisure and Control of voluntary movement functions) are present in the Brief ICF Core Set for TBI, whereas most main concepts are present in the Comprehensive Core Set (World Health Organization ICF CORE SETS, 2021). In contrast, the Brief ICF Core Set for Vertigo entails one third (31%) of the ICF categories among the main concepts found in the current study. This points to the breadth of problems in functioning in patients with dizziness and balance problems after TBI, as the symptomatology is specific to both TBI and vertigo. The current study underscores the need for competence in assessment and treatment of TBI and vertigo/dizziness as described in a previous study by our group (Kleffelgaard et al., 2019).

In line with earlier research, limitations and restrictions reported on the PSFS were most frequently reported in the activities and participation domain of the ICF (Fairbairn et al., 2012; Sveen et al., 2013). The standardized phrasing in the PSFS may have contributed to this because the patients were specifically asked to describe activities. However, many of the assessments and outcome measures used for dizziness in the TBI population are standardized outcome measures focusing on symptoms and body function, therefore the results confirm that the PSFS is an important supplement to these instruments, representing mainly the activity and participation domains. Moreover, in accordance with a study by Maskell et al. (Maskell et al., 2007) the range of
Table 3. Main concepts from the patient-specific functional scale items with high-to-moderate frequency (≥ 10%) linked to second-level ICF categories of problems in functioning and environmental factors

ICF second-level categories	Number of patients (%) reporting ICF category (from the main concepts)	Example of problems in functioning reported by the patients
d455^m Moving around	25 (42)	Going down stairs, running, swimming, dancing
b210^e Seeing functions	20 (33)	Vision gets blurry at the end of the day
d110^d Watching	19 (32)	Watching television
d920^d Recreation and leisure	18 (30)	Going to the movies
d475^m Driving	17 (28)	Driving a car, cycling
d460^m Moving around in different locations	16 (27)	Walking the dog, going for a walk
d640^d Doing housework	15 (25)	Emptying the dishwasher, vacuum cleaning
d166^e Reading	15 (25)	Reading
b235^d Vestibular functions	13 (22)	Head movements
b760^m Control of voluntary movement functions	13 (22)	Pilates
d410^m Changing basic body positions	11 (18)	Yoga: bending forward
b455^m Exercise tolerance functions	11 (18)	Exercise
b140^e Attention functions	9 (15)	Multi-tasking
b230^e Hearing functions	8 (13)	Loud noise, music
d430^m Lifting and carrying objects	8 (13)	Collecting objects from cupboards
d465^m Moving around using equipment	7 (12)	Skiing
e150^d Design, construction and building products and technology of buildings for public use	6 (10)	Shopping centres, escalators, heights

b, body functions; d, activities and participation; e, environmental factors. Superscripts indicate pooled group categories: ^mICF category related to mobility, ^eICF category related to vestibulo-ocular function and hearing, ^dICF category related to attention, ^oICF category related to domestic activities, and recreation and leisure, *environmental factors.

Table 4. Commonly reported problems in the pooled group categories and severity of problems according to the PSFS Numeric Rating Scale (NRS)

ICF chapter, first level	Groups of most frequently reported problems	Commonly reported problems within each group	PSFS NRS score, median (IQR)*
d4, b7, b4	Mobility	Running, swimming, driving a car, going for a walk, yoga, skiing	3 (1–5)
b2	Vestibulo-ocular function and hearing	Head movements, blurred vision, loud noise	3 (1.5–5)
b1, d1	Attention functions	Multi-tasking, reading, watching	2 (1–4)
d6, d9	Domestic activities, and recreation and leisure	Doing housework, going to the movies	3 (1–5)
e1	Environmental factors	Shopping centres, escalators, heights	4 (3–5)

b, body functions; d, activities and participation; e, environmental factors.
*0 (unable to perform the activity) to 10 (able to perform the activity with no difficulty/as before the injury).
problems confirms the diversity in reduced functioning in relation to dizziness and balance problems in this population. Some of the activities reported on the PSFS were common among several patients (e.g., running and going down stairs, vacuum cleaning and reading), whereas others were reported by only one patient (e.g., hair washing). Hence, the PSFS identifies specific and individualized problems experienced by patients with dizziness and balance problems after mild to moderate TBI and can be of great value in establishing meaningful rehabilitation goals and individually tailored (vestibular) rehabilitation programmes for the patients.

As shown in earlier research, the results of the current study confirms that dizziness and balance problems after mild to moderate TBI frequently lead to difficulties and challenges in mobility (Bland et al., 2011; Fino et al., 2018; Kleffelgaard et al., 2017; Marcus et al., 2019). In addition, the current study shows the individual variation and range of the mobility problems these patients experience. Mobility problems varied from daily activities, such as descending stairs, carrying objects, and changing body position, to higher-level mobility functions such as running, exercising, and dancing. Activities with fast speed and rapidly changing visual inputs and head movements such as driving a car, or cycling were frequently reported as difficult. However, this might also pertain to injury and dysfunction of the vestibular and visual sensory systems, which are common after mild to moderate TBI (Marcus et al., 2019; Mucha et al., 2018; Wallace & Lifshitz, 2016), and also reflected in the ICF Core Sets of TBI and vertigo (World Health Organization ICF CORE SETS, 2021).

It was expected that problems in functioning related to vestibulo-ocular and hearing functions were frequently reported in the current study, a relationship also shown in other studies (Kleffelgaard et al., 2017; Wallace & Lifshitz, 2016). The vestibulo-ocular and hearing functions are aspects of functioning of the sensory organs important for dizziness and balance problems and especially the vestibulo-ocular reflex (VOR). The VOR is known to be sensitive and vulnerable to all
These patient-related problems could result in reduced community re-integration (Hassett et al., 2016) and would, in many cases, lead to problems with spatial orientation and gaze stability during movement, which in turn affects higher-level mobility (Peterson, 2010).

Attention problems have been related to dizziness in patients with TBI in earlier research (Maskell et al., 2007) and have also been connected to vestibulo-ocular dysfunction (Ventura et al., 2014). Attention is an essential component in the maintenance of balance, which is complex and requires the integration of information from multiple systems (Kleiner et al., 2018). Attention functions are important in dual- and multi-tasking, and also have a bi-directional effect on balance and dizziness. Problems in visual functioning, more specifically related to reading and use of computers or mobile phones, were also reported with high frequency and the visual dysfunction could further intensify the dizziness and balance problems.

Difficulties related to recreation, leisure and domestic activities were also frequently reported in the current study. Several patients reported physical exercising as a problem. This could also be related to aerobic capacity or tolerance of physical activity which is increasingly described in this patient population by Leddy et al. (Leddy et al., 2018). Patients with TBI are at risk of not maintaining optimal levels of physical activity, resulting in decreased cardio-vascular fitness (Hassett et al., 2017). Furthermore, avoiding exercising often equates to low participation in leisure and recreation and thereby risking reduced community re-integration (Hassett et al., 2016). The challenges reported on the PSFS also pertain to other activities, such as going to the movies, socializing, dancing and playing football. These findings are supported by the study of Maskell et al. (Maskell et al., 2007) suggesting that some patients would likely withdraw from participating at home and in the community due to dizziness and balance problems after TBI. In this context, problems with domestic activities, such as gardening or vacuum cleaning, were also reported. These activities require change of body positions and head movements, which suggest a connection to the vestibular system and dizziness as discussed earlier.

The fact that the patient-specific activities reported were interpreted as moderate to severe could partly be explained by the severity of the injuries, and many of the patients had complicated mild injuries with difficulties performing their regular pre-injury activities. It has been shown that more severe mild injuries report more symptoms post-injury (Voormolen, Haagsma et al., 2019). Furthermore, many of the participants were in a chronic phase post-injury, were still on sick leave and some had not yet returned to or tried their usual activities. However, in line with the results from the study by Maskell et al., many of the patients reported few activities that they absolutely could not do, but many activities that was harder for them to do or had to be modified (Maskell et al., 2007).

With regard to environmental factors, the patients typically reported problems related to busy and more complex environments outside their homes (e.g., shopping centres). This is in accordance with earlier research (Maskell et al., 2007). Moreover, elevators, escalators, heights, kerbs and uneven ground were reported as barriers to functioning due to dizziness. The self-reported difficulty related to environmental factors shows that these factors can be moderate barriers to functioning and is important to consider during assessment and rehabilitation of these patients.

4.1. Limitations
This study has some strengths and limitations that should be addressed. A strength of this study was that the ICF linking rules were followed (Cieza et al., 2019) and that a random 10% of the meaningful concepts were linked by an expert linker (HLS), which indicated 88% agreement in the linking process.
A limitation of the study is that the population was a selected cohort with dizziness and balance problems from a university hospital, representing a subgroup of the more severely injured population with mild TBI. Most of the participants were women (73%), which is in contrast to the gender distribution in the general TBI population. However, women are more likely to report dizziness and balance problems in general, and also after mild to moderate TBI (Styrke et al., 2013). These factors and the relatively small sample size limit the generalizability of the results.

Another limitation is that the PSFS has not yet undergone reliability and validity testing in patients with TBI. However, it is intended for use for a variety of conditions and has been shown to be applicable for patients with acquired brain injury (Evensen et al., 2020).

4.1.1. Conclusion
In this study, the 60 patients predominantly reported problems representing activities and participation component of the ICF. Mobility-related problems were the most frequently reported. In addition, problems related to vestibulo-ocular and hearing functions, attention functions, domestic activities and recreation and leisure were frequently reported. Environmental factors that were mainly physical barriers to functioning were reported. The severity of problems on the PSFS were rated as moderate to severe, meaning that the patients still had difficulties performing activities important to them 3 months after injury. The results of this study indicate that patients with dizziness and balance problems experience difficulties in a wide range of activities after TBI. The functional limitations relevant to the individual patient described on the PSFS, were all represented in the ICF, supporting a biopsychosocial perspective on problems related to dizziness and balance problems after TBI. This indicates that clinicians could use the PSFS to get a more individual description of the functional limitations post-injury and use this in addition to other outcome measures to guide goal setting and individually adapted rehabilitation interventions. However, further research is required to fully understand the functional limitations experienced by this population.

References
Alsalooheen, B. A., Mucha, A., Morris, L. O., Whitney, S. L., Furman, J. M., Camilo-Reddy, C. E., Collins, M. W., Lovell, M. R., Sparto, P. J. (2010). Vestibular rehabilitation for dizziness and balance disorders after concussion. JNeuroPhysTher, 36(2), 87–93. https://doi.org/10.1097/NPT.0b013e3181d6e568
Arshad, Q., Roberts, R. E., Ahmad, H., Lobo, R., Patel, M., Ham, T., Sharp, D. J., & Seemungal, B. M. (2017). Patients with chronic dizziness following traumatic head injury typically have multiple diagnoses involving combined peripheral and central vestibular dysfunction. Clinical Neurology and Neurosurgery, 155, 17–19. https://doi.org/10.1016/j.clineuro.2017.01.021
Bland, D. C., Zampieri, C., & Domiano, D. L. (2011). Effectiveness of physical therapy for improving gait and balance in individuals with traumatic brain injury: A systematic review. Brain Injury, 25(7–8), 664–679. https://doi.org/10.3109/02699052.2011.576306
Cassidy, J. D., Concierri, C., Carroll, L. J., Cote, P., Hincopie, C. A., Holm, L. W., Hartvigsen, J., Donovan, J., Nygren-de Bossard, C., Kristman, V. L., & Borg, J. (2014). Systematic review of self-reported prognosis in adults after mild traumatic brain injury: Results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Archives of physical medicine and rehabilitation, 95(6), S1-S28. https://doi.org/10.1016/j.arch Physmed.2013.09.017

Funding
The authors received no direct funding for this research.

Author details
Beate Storløs1
Kirsti Skavberg Roaldsen2,3
ORCID ID: http://orcid.org/0000-0003-0933-3875
Helene Lundgaard Soberg4
ORCID ID: http://orcid.org/0000-0001-6908-7480
Ingerid Kieflgaard1
E-mail: uxinf@ous-hf.no
ORCID ID: http://orcid.org/0000-0002-4994-7292

1 Traumatic Brain Injury Unit, Sunnaas Rehabilitation Hospital, 1453 Bjørnemyr, Norway.
2 Department of Research, Sunnaas Rehabilitation Hospital, 1453 Bjørnemyr, Norway.
3 Department of Physical Medicine and Rehabilitation, Oslo University Hospital, 0450 Oslo, Norway.
4 Department of Physiotherapy, Faculty of Health Sciences, Oslo Metropolitan University, Box 4, St. Olavsplass, 0130 Oslo, Norway.
5 The Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, 23 100, 141 83 Huddinge, Sweden.

Declaration of interest statement
No potential conflict of interest was reported by the author(s).

Data availability statement
The data that support the findings of this study are available from the corresponding author, [I.K.], upon reasonable request.
Chamelian, L., & Feinstein, A. (2004). Outcome after mild to moderate traumatic brain injury: The role of dizziness. ArchPhysMedRehabil, 85(10), 1662–1666. https://doi.org/10.1016/j.apmr.2004.02.012

Cieza, A., Fayad, N., Bickenbach, J., & Prodinger, B. (2019). Refinements of the ICF Linking Rules to strengthen their potential for establishing comparability of health information. Disability and rehabilitation, 41(5), 574–583. https://doi.org/10.3109/09638288.2016.1145258

Cieza, A., Geyh, S., Chatterji, S., Kostanjsek, N., Ustün, B., & Stucki, G. (2005). ICF linking rules: An update based on lessons learned. Journal of Rehabilitation Medicine, 37(4), 212–218. https://doi.org/10.1080/16501970510040263

Evensen, J., Soberg, H. L., Sven, U., Hestad, K. A., & Bronken, B. A. (2020). The Applicability of the Patient-Specific Functional Scale (PSFS) in Rehabilitation for Patients with Acquired Brain Injury (ABI) - A Cohort Study. J Multidiscip Healthc. 2020 Oct 9, 13, 1121–1132. https://doi.org/10.2147/jmdh. 92592111 ecollection2020

Fairbairn, K., May, K., Yang, Y., Balasundar, S., Hefford, C., & Abbott, J. H. (2012). Mapping Patient-Specific Functional Scale (PSFS) items to the International Classification of Functioning, Disability and Health (ICF). Physical Therapy, 92(2), 310–317. https://doi.org/10.2522/ptj.20090382

Fino, P. C., Parrington, L., Pitt, W., Martini, D. N., Chesnutt, J. C., Chou, L. S., & King, L. A. (2018). Detecting gait abnormalities after concussion or mild traumatic brain injury: A systematic review of single-task, dual-task, and complex gait. Gait & Posture, 62, 157–166. https://doi.org/10.1016/j.gaitpost.2018.03.021

Hartvigsen, J., Boyle, E., Cassidy, J. D., & Carroll, L. J. (2016). Mild traumatic brain injury after motor vehicle collisions: What are the symptoms and who treats them? A population-based 1-year inception cohort study. Archives of Physical Medicine and Rehabilitation, 95(3 Suppl), S286–94. https://doi.org/10.1016/j.apmr.2013.07.029

Hassett, L., Moseley, A., & Harmer, A. (2016). The Aetiology of Reduced Cardiorespiratory Fitness Among Adults with Severe Traumatic Brain Injury and the Relationship with Physical Activity: A Narrative Review. Brain Impairment, 17(1), 43–54. https://doi.org/10.17117/BrImp.2015.28

Hassett, L., Moseley, A. M., & Harmer, A. R. (2017). Fitness training for cardiorespiratory conditioning after traumatic brain injury. The Cochrane database of systematic reviews, 12(12), Cd006123. https://doi.org/10.1002/14651858.CD006123.pub3

World Health Organization: International Classification of Functioning, Disability and Health (ICF) [updated 2018; cited 2021. Available from: https://www.who.int/classifications/icf]

Kleefeldgaard, I., Longhammer, B., Hellström, T., Sandhoug, M, Tamber, A. L., & Soberg, H. L. (2017). Dizziness-related disability following mild-moderate traumatic brain injury. Brain Injury, 31(11), 1436–1444. https://doi.org/10.1080/02699052.2017.1377348

Kleefeldgaard, I., Roe, C., Soberg, H. L., & Bergland, A. (2012). Associations among self-reported balance problems, post-concussion symptoms and performance-based tests: A longitudinal follow-up study. DisabilRehabil, 34(9), 788–794. https://doi.org/10.3109/09638288.2011.619624

Kleefeldgaard, I., Soberg, H. L., Tamber, A. L., Bruusgaard, K. A., Pripp, A. H., Sandhauge, M., & Longhammer, B. (2019). The effects of vestibular rehabilitation on dizziness and balance problems in patients after traumatic brain injury: A randomized controlled trial. Clinical rehabilitation, 33(1), 74–84. https://doi.org/10.1177/0269215518791274

Kleiner, M., Wong, L., Dubé, A., Wnuk, K., Hunter, S. W., & Graham, L. J. (2019). Dual-Task Assessment Protocols in Concussion Assessment: A Systematic Literature Review. Journal of Orthopaedic & Sports Physical Therapy, 48(2), 87–103. https://doi.org/10.2519/jospt. 2018.7432

Laxé, S., Zasler, N., Selb, M., Tate, R., Tormos, J. M., & Bernabeu, M. (2021). Development of the International Classification of Functioning, Disability and Health core sets for traumatic brain injury: An International consensus process. Brain Injury, 27(4), 379–387. https://doi.org/10.3109/02699050.2012.750757

Loddé, J. J., Halder, M. N., Ellis, M., & Willer, B. S. (2019). Exercise is Medicine for Concussion. Current Sports Medicine Reports, 17(6), 262–270. https://doi.org/10.1249/JSM.0000000000000505

Marcus, H. J., Paine, H., Sargeant, M., Wolstenholme, S., Collins, K., Marroney, N., Ashad, Q., Tsang, K., Jones, B., Smith, R., Wilson, M. H., Rust, H. M., & Seemungal, B. M. (2019). Vestibular dysfunction in acute traumatic brain injury. Journal of neurology, 266(10), 2430–2433. https://doi.org/10.1007/s00415-019-09403-z

Maskell, F., Chiarelli, P., & Isles, R. (2007). Dizziness after traumatic brain injury: Results from an interview study. Brain Injury, 21(7), 741–752. https://doi.org/10.1080/0269215507071472109

Mucha, A., Fedor, S., & DeMarco, D. (2018). Vestibular dysfunction and concussion. Handbook of Clinical Neurology, 158, 135–144. https://doi.org/10.1016/b978-0-444-63954-7.00014-8

Petersen, M. D. (2018). A case-oriented approach exploring the relationship between visual and vestibular disturbances and problems of higher-level mobility in persons with traumatic brain injury. Journal of Head Trauma Rehabilitation, 25(3), 193–205. https://doi.org/10.1097/HTR.0b013e3181dc82fa

Stratford, P., Gill, C., Westaway, M., & Binkley, J. (1995). Assessing disability and change on individual patients: A report of a patient specific measure. Physiotherapy Canada, 47(4), 258–263. https://doi.org/10.3138/ptc.47.4.258

Styrke, J., Sojka, P., Björnstig, U., Bylund, P. O., & Stålnacke, B. M. (2013). Sex-differences in symptoms, disability, and life satisfaction three years after mild traumatic brain injury: A population-based cohort study. Journal of rehabilitation medicine, 45(8), 749–757. https://doi.org/10.2340/16501977-1215

Sveen, U., Ostensjo, S., Laxe, S., & Soberg, H. L. (2013). Problems in functioning after a mild traumatic brain injury within the ICF framework: The patient perspective using focus groups. DisabilRehabil, 35(9), 749–757. https://doi.org/10.3109/09638288.2012. 707741

Ventura, R. E., Balcer, L. J., & Galetto, S. L. (2014). The neuro-ophthalmology of head trauma. The Lancet Neurology, 13(10), 1006–1016. https://doi.org/10.1016/S1474-4422(14)70111-5

Voormolen, D. C., Haagsma, J. A., Polinder, S., Maas, A. I. R., Steyerberg, E. W., Vulekovic, P.,
Sewalt, C. A., Gravesteijn, B. Y., Covic, A., Andelic, N., Plass, A. M., & Von Steinbuechel, N. (2019). Post-concussion symptoms in complicated vs. uncomplicated mild traumatic brain injury patients at three and six months post-injury: Results from the CENTER-TBI study. Journal of clinical medicine, 8(11), 1921. https://doi.org/10.3390/jcm8111921

Voormolen, D. C., Polinder, S., Von Steinbuechel, N., Vos, P. E., Cnossen, M. C., & Haagsma, J. A. (2019). The association between post-concussion symptoms and health-related quality of life in patients with mild traumatic brain injury. Injury, 50 (5), 1068-1074. https://doi.org/10.1016/j.injury.2018.12.002

Wallace, B., & Lifshitz, J. (2016). Traumatic brain injury and vestibulo-ocular function: Current challenges and future prospects. Eye and brain, 8, 153–164. https://doi.org/10.2147/eb.s82670

World Health Organization ICF CORE SETS (cited 2021. Available from: https://www.icf-core-sets.org/.

© 2021 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Medicine (ISSN: 2331–205X) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com