Extracorporeal membrane oxygenation and COVID-19: The causes of failure

Zargham Hossein Ahmadi MD1 | Alireza Jahangirifard MD1 | Behrooz Farzanegan MD2 | Payam Tabarsi MD3 | Zahra Abtahian MD4 | Atefeh Abedini MD4 | Mehrzad Sharifi MD1 | Amir Naser Jadbabaei MD1 | Yadollah Mafhumi RN4 | Ali Moslem RN4 | Marjan Sistani RN4 | Sahar Yousefian PharmD4,5 | Ali Saffaei PharmD6 | Farzaneh Dastan PhD4,5

1Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
3Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
4Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
5Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
6Student Research Committee, Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Correspondence
Farzaneh Dastan, PhD, Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Daarabad St, Tehran 19575154, Iran.
Email: fzh.dastan@gmail.com

1 | INTRODUCTION

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 is a healthcare concern causing extensive mortality worldwide.1,2 Venousenous extracorporeal membrane oxygenation (VV-ECMO) support may be used as a therapeutic strategy for the management of patients with coronavirus disease 2019 (COVID-19) and acute respiratory distress syndrome (ARDS).3 There are inconclusive data regarding the use of VV-ECMO during the outbreaks of COVID-19. VV-ECMO was used to treat ARDS caused by 2009 influenza A (H1N1)
During the implantation of VV-ECMO, the efficacy and safety of VV-ECMO in patients with COVID-19-induced ARDS are still unclear, here we report seven patients with COVID-19-induced ARDS who underwent VV-ECMO.

2 | CASE SERIES

2.1 | ECMO center protocol

This is a single-center study, based on a retrospective cohort analysis of cases treated at the Dr. Masih Daneshvari Hospital, Tehran, Iran, which is the main referral center for patients with COVID-19 in Iran. This study was approved by the ethics committee of Shahid Beheshti University of Medical Sciences (IR.SBMU.NRITLD.REC.1399.010). The operation team had experience with more than 150 VV-ECMO procedures during the last 10 years, and had successful experience with about 20 cases of H1N1. This center is the main referral center for ECMO in Iran, however there are some other centers in Iran, which have good clinical experience in this regard (eg, Rajaie Heart Center). Medical records of seven patients with COVID-19 treated between 1st March and 30th March 2020 were retrospectively evaluated to determine the clinical outcomes of VV-ECMO in such cases. The patients’ demographic characteristics, VV-ECMO settings, treatment modalities, clinical response, and complications during VV-ECMO were retrieved. Descriptive statistics were performed to summarize the patients’ characteristics.

The VV-ECMO procedure was the same for all patients. In all patients with refractory hypoxemia not responding to noninvasive ventilation, endotracheal intubation was performed, using low tidal volume, with a maximum plateau airway pressure of 30 cm H2O. When necessary, the respiratory rate was increased to a maximum of 30 breath/min, which was the mainstay of lung protective ventilation. Patients with a PaO2/FiO2 ratio inferior to 80 for 6 hours, or a PaO2/FiO2 ratio inferior to 50 was the mainstay of lung protective ventilation. Patients with a PaO2/fraction of oxygen lower than 50%, VA-ECMO would be applied. The patient died after 3 days because of sudden hypoxia due to oxygenator failure of the VV-ECMO.

The console of the VV-ECMO was centrifugal pump system (Liva Nova Deutschland GmbH, Munich, Germany). The oxygenator was hollow fiber oxygenator intended for long duration procedures (Liva Nova, Modena, Italy). The drainage femoral cannula was RAP FV two stage 23 out of 25 (Liva Nova), which was inserted by close Seldinger’s maneuver in the left or right femoral vein. The return cannula was a 23-F Easy Flow DUO arterial femoral cannula (Liva Nova), inserted by close Seldinger’s maneuver in the right internal jugular vein. The position of the cannula was verified by chest x-ray, as well as by evaluating the efficacy of the system, by increasing the arterial oxygen saturation and partial pressure of arterial oxygen. The bolus dose of heparin (50 units/kg) was injected before cannulation. ECMO was initiated if activated clotting time (ACT) was in the range of 150 to 180 seconds. The heparin infusion would be continued at dose of 10 to 20 units/kg to maintain aPTT between 50 to 70 seconds. The rate of infusion was adjusted according to aPTT result, which was checked every 6 hours.

During the index period, patients with severe ARDS were referred to our institution. We evaluated seven COVID-19 cases that underwent VV-ECMO because of severe ARDS. The median age of patients at the time of hospitalization was 45 years (range, 26-71 years). One patient was female and the rest were male. All patients complained of high-grade fever, cough, and dyspnea at admission time. The median time from symptom onset to hospitalization was 7 days (range, 5-12 days). All patients had at least one underlying disease.

A combination of hydroxychloroquine and lopinavir/ritonavir were administered to all patients according to Iranian national guideline.5 During the implantation of VV-ECMO, all patients had severe hypoxemia (peripheral oxygen saturation between 30%-60%). Only 1 patient was discharged with a stable condition. Clotting formation in the oxygenator was seen in four patients, in first 5-day of VV-ECMO. Patients' details are summarized in Table 1 and the chest x-ray findings of patients at first day of VV-ECMO starting is shown in Figure 1.

2.2 | Case 1

A 26-year-old male nurse with severe COVID-19 pneumonia was referred to the hospital. He complained of fever, cough, and dyspnea from 12 days before admission. For 3 days, he was intubated for invasive mechanical ventilation due to severe ARDS. His medical history showed a diagnosis of influenza H1N1 3 months before. He developed a worsening hypoxemia refractory to conventional ventilation. Chest x-ray showed a severe bilateral infiltration in both upper and lower lobes; therefore, he was treated with VV-ECMO. The patient died after 3 days because of sudden hypoxia due to oxygenator failure of the VV-ECMO, causing clotting and subsequent cardiac arrest.

2.3 | Case 2

A 71-year-old man diagnosed with severe COVID-19 pneumonia was referred to the hospital. He complained of fever, cough, dyspnea, myalgia, and diarrhea from 7 days before. At admission, patient had severe hypoxemia and he was intubated for invasive mechanical ventilation due to ARDS. Chest x-ray showed a severe bilateral infiltration in both upper and lower lobes. After 2 days of invasive mechanical ventilation, hypoxemia persisted. The patient became oliguric (urine output less than 20 mL/h) and developed hemodynamic instability. Serum creatinine increased to 2.8 mg/dL. He was treated with VV-ECMO and continuous renal replacement therapy. Then, oxygen saturation increased to 90%, whereas creatinine decreased to 2.6 mg/dL. However, after 7 days, the serum creatinine increased again from 2.6 mg/dL to 3.7 mg/dL, serum lactate dehydrogenase (LDH) increased to 3171 U/L, hemoglobin decreased to 7.6 mg/dL, and platelet decreased to 8700/L. The patient died due to multisystem organ failure.
Table 1

Characteristics of patients with severe ARDS caused by COVID-19, treated with venovenous extracorporeal membrane oxygenation (VV-ECMO)

Demographics	P1	P2	P3	P4	P5	P6	P7
Age, y	26	71	56	37	37	51	45
Sex	Male	Male	Female	Male	Male	Male	Male
Symptoms	Fever						
Cough	Cough	Cough	Cough	Cough	Cough	Cough	Cough
Dyspnea	Myalgia						
Diarrhea	12	7	9	5	11	6	5
Symptoms onset, d	Before COVID-19	Influenza (H1N1)	3 mo before				
Underlying diseases diagnosed	HTN	HTN	DM	Dyplipidemia	HTN	None	
Weight, Kg	74	73	75	68	85	71	66

Pre-ECMO clinical status	ICU length of stay pre-ECMO, d	Vasopressors required	Duration of VV-ECMO, d										
	0	Yes	5	Yes	3	Yes	2	Yes	4	Yes	5	Yes	9

Laboratory results	Creatinine, mg/dL (admission time/pre-ECMO/last time)	Bilirubin, μmol/L at admission time/pre-ECMO/last time	Hemoglobin, g/L at admission time/pre-ECMO/last time	WBC, ×10^9/L at admission time/pre-ECMO/last time	Platelet, 10^9/L at admission time/pre-ECMO/last time	CPK, U/L at admission time/pre-ECMO/last time	AST, U/L at admission time/pre-ECMO/last time	ALT, U/L at admission time/pre-ECMO/last time	ALP, U/L at admission time/pre-ECMO/last time	LDH, U/L at admission time/pre-ECMO/last time	Blood group	Oxygenator failure	Successful VV-ECMO	Decannulation	Survival to hospital discharge
	1.4-2.9-2.7	1.3-1.13-13	8.1-7.2-9.4	15.0-33.1-34.8	197-682-755	224-510-1668	95-8112-7262	67-4113-3546	141-332-349	959-19311-18841	AB+ A+ B+ A+ O+ A+ O+	No No Yes No No Yes Yes	No No No No No Yes No Yes		

Outcomes	Successful VV-ECMO	Decannulation	Survival to hospital discharge				
	No	No	No	No	No	Yes	Yes

| Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; ARDS, acute respiratory distress syndrome; AST, aspartate aminotransferase; COVID-19, coronavirus disease 2019; CPK, creatine phosphokinase; DM, diabetes mellitus; HTN, hypertension; ICU, intensive care unit; IHD, ischemic heart disease; LDH, lactate dehydrogenase; P, patient; WBC, white blood cell.|

2.4 Case 3

A 56-year-old woman with severe COVID-19 pneumonia was referred to the hospital. She complained of fever, cough, dyspnea, myalgia, and diarrhea from 3 days before admission. Dyspnea persisted for the next 2 days and chest x-ray revealed progressive infiltration. Because of severe persistent hypoxemia, the patient was intubated for invasive mechanical ventilation; however, due to progressive hypoxemia, the VV-ECMO was applied 2 days later, and oxygen saturation increased to 96%. In the 5th day of VV-ECMO, she showed gradual hypoxia and elevated d-dimer, and the oxygenator was changed in the 6th day. Hypoxia was reversed and the patient’s condition improved. After 8 days, she was weaned of VV-ECMO successfully. However, 24 hours after the removal of VV-ECMO, she...
suddenly developed subcutaneous emphysema and tension pneumothorax. A chest tube was inserted in each thoracic cavity; the patient developed renal failure and despite all efforts she died 48 hours later.

2.5 | Case 4

A 37-year-old man diagnosed with severe COVID-19 pneumonia was referred to the hospital. He complained of fever, cough, and dyspnea from 5 days before admission. He was intubated for invasive mechanical ventilation due to severe hypoxemia. However, hypoxemia persisted and he was treated with VV-ECMO. Chest x-ray showed a severe bilateral infiltration in both upper and lower lobes. After VV-ECMO was initiated, oxygen saturation increased to 92%. After 3 days, creatine phosphokinase (CPK) and LDH increased from 3,363 U/L to 8,999 U/L and 821 U/L to 4344 U/L, respectively. Liver enzymes also increased significantly on the 3rd day of VV-ECMO. He died 24 hours later, due to multisystem organ failure.

2.6 | Case 5

A 37-year-old man diagnosed with severe COVID-19 pneumonia was referred to the hospital. He complained of fever, cough, dyspnea, and myalgia from 11 days before admission. He was intubated due to severe ARDS. Chest X-ray showed a severe bilateral infiltration in both upper and lower lobes. Invasive mechanical ventilation failed to improve hypoxemia and patient was treated with VV-ECMO. Oxygen saturation increased to 90%. On the third day, the VV-ECMO oxygenator was clotted and changed immediately. After 7 days, the patient's clinical condition deteriorated and he died due to multisystem organ failure.

2.7 | Case 6

A 45-year-old physician diagnosed with severe COVID-19 pneumonia was referred to the hospital. He complained of fever, cough, dyspnea, and myalgia from 6 days before admission. He was
intubated due to severe ARDS. Chest x-ray showed a severe bilateral infiltration in both upper and lower lobes. The hypoxemia and lung infiltration progressed during hospitalization; therefore, the patient was treated with VV-ECMO. Oxygen saturation increased to 95%. On the 4th day of VV-ECMO, the oxygenator was changed due to decreased oxygenation and hypercarbia. After 7 days, the patient’s clinical condition improved and no metabolic disturbances occurred. He was decannulated from extracorporeal support, although he developed convulsions after decannulation of VV-ECMO. Convulsions were not controlled by pharmacological interventions and extensive cerebrovascular accident happened and finally the patient died despite all efforts.

2.8 | Case 7

A 45-year-old man, diagnosed with severe COVID-19 pneumonia was referred to the hospital. He complained of fever, cough, dyspnea, and myalgia from 3 days before admission. After 2 days of hospitalization, hypoxemia occurred, and oxygen saturation decreased to 60%. Chest x-ray showed a severe bilateral infiltration in both upper and lower lobes. Hence, the patient was intubated for invasive mechanical ventilation due to severe hypoxemia. However, hypoxemia persisted and he was treated with VV-ECMO. Following VV-ECMO, oxygen saturation increased to 95%. On the 5th day of VV-ECMO, oxygen saturation decreased and partial pressure of carbon dioxide increased. The oxygenator was changed immediately and the aPTT was maintained in therapeutic range. The patient tolerated 9 days of VV-ECMO, and no significant complications occurred. The tracheotomy was performed and patient was transferred to ward under acceptable medical conditions. The management of this patient was improved in comparison with previous cases due to achievement of more experiences. Coagulopathies and oxygenator failure did not occur and finally the patient was discharged after 5 days.

3 | DISCUSSION

In some patients with ARDS, positive pressure ventilation may worsen the clinical condition and even multisystem organ failure may occur. VV-ECMO will benefit a selected patient population, such as those with severe ARDS. VV-ECMO is a highly specialized and very expensive form of advance life support and there are some guidelines, such as EMPROVE protocol, with proven outcomes in this regard. The treatment of severe ARDS due to COVID-19 with VV-ECMO remains a challenge and controversial. Since some studies showed a higher mortality rate, compared with patients receiving only conventional respiratory care (100% vs 65%, respectively). The most important finding in these cases was the hypercoagulability state, with high rate of oxygenator failure, and the necessity to change it, which occurred at least twice in other studies. On the other hand, all patients were treated with continuous intravenous heparin to maintaining the aPTT between 70 and 90 seconds. Also, according to the results, our protocol changed and we suggest that for anticoagulation management of patients with COVID-19 under ECMO, aPTT should not be used. Instead of aPTT, ACT should be monitored and kept between 220 and 250 seconds. We examined this protocol in two patients with satisfactory results. Oxygenator dysfunction leading to oxygenator replacement was seen in 10% to 30% of VV-ECMO patients. Nevertheless, such rate was unusual, particularly among those without hepatic failure.

The fourth patient developed hepatic failure, probably due to a hypercoagulability state. The persistent hypoxemia in most patients might lead to rapid clinical deterioration, multi-system organ failure and death. Another main issue was the late diagnosis of oxygenator failure, due to excess work load of nurses. Most of our cases had non-O blood group, and the only survived case had O blood group. It has been demonstrated that non-O blood group has a higher risk of thromboembolic events, which can be an investigation subject for future studies and for risk stratification of COVID-19 cases. Moreover, it has been shown that in Chinese patients with COVID-19, abnormal coagulation parameters were associated with poor prognosis, and anticoagulation in patients decreased the mortality of COVID-19 patients with coagulopathy.

On the basis of our study, and considering the evidence from Chinese patients, we think that the hypercoagulability state might be a phenomenon among severe cases of COVID-19 that requires to be carefully monitored.

Previous studies showed that the mortality rate related to VV-ECMO could be reduced if VV-ECMO is introduced within the first 7 days of mechanical ventilation. In our cases, the high rate of mortality may be explained by the delayed implantation of VV-ECMO in patients under critical conditions. Future investigations should consider that since VV-ECMO is unlikely to improve patients’ overall outcomes, if potentially fatal complications cannot be prevented.

Hypercoagulability state and oxygenator failure were the most important etiologies for VV-ECMO failure in COVID-19 patients with severe ARDS in our study. All patients with COVID-19 undergoing VV-ECMO should be monitored for such a phenomenon and managed meticulously to improve their survival. Moreover, the implementation of highly specialized healthcare team, state-of-the-art medical devices, and diagnostic laboratories are deemed indicated for enhancing care delivery.

ACKNOWLEDGMENT
The authors would like to thank Dr. Yousef Rezaei, Ms. Mandana Hosseinzadeh, and Miss Sepideh Nazari for their sincere cooperations.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS
All authors collected the clinical data, drafted and revised the manuscript.
ORCID
Zargham Hossein Ahmadi https://orcid.org/0000-0002-2982-9950
Alireza Jahangirifard https://orcid.org/0000-0002-5514-3768
Behrooz Farzanegan https://orcid.org/0000-0002-6353-5761
Payam Tabarsi https://orcid.org/0000-0002-4262-9873
Zahra Abtahian https://orcid.org/0000-0001-7167-8503
Atefeh Abedini https://orcid.org/0000-0002-4262-9873
Mehrzad Sharifi https://orcid.org/0000-0002-3105-041X
Amir Naser Jadabaei https://orcid.org/0000-0001-6955-0092
Yadollah Mafhumi https://orcid.org/0000-0002-5882-6425
Ali Moslem https://orcid.org/0000-0003-1414-4753
Marjan Sistani https://orcid.org/0000-0002-8062-6948
Sahar Yousefian https://orcid.org/0000-0003-0829-6136
Farzaneh Dastan http://orcid.org/0000-0001-7253-4333

REFERENCES
1. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146:110-118.
2. Dastan F, Saffaei A, Mortazavi SM, et al. Continues renal replacement therapy (CRRT) with disposable hemoperfusion cartridge: a promising option for severe COVID-19. J Glob Antimicrob Resist. 2020;52213-7165(2220):30116-30118.
3. Ramanathan K, Antognini D, Combes A, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020;8:518-526.
4. Pham T, Combes A, Rozé H, et al. Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)-induced acute respiratory distress syndrome. Am J Respir Crit Care Med. 2013;187(3):276-285.
5. Jamaati H, Dastan F, Tabarsi P, Marjani M, Saffaei A, Hashemian SM. A fourteen-day experience with coronavirus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS): an Iranian treatment protocol. Iranian J Pharm Res. 2020.
6. Grant AA, Hart VJ, Lineen EB, et al. The impact of an advanced ECMO program on traumatically injured patients. Artifi Organs. 2018;42(11):1043-1051.
7. Namendys-Silva SA. ECMO for ARDS due to COVID-19. Heart Lung. 2020;49:348-349.
8. Xie J, Covassin N, Fan Z, et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin Proc. 2020;95:1138-1147.
9. Mazzeffi MA, Tanaka K, Roberts A, et al. Bleeding, thrombosis, and transfusion with two heparin anticoagulation protocols in venoarterial ECMO patients. J Cardiothoracic Vasc Anesth. 2019;33(5):1216-1220.
10. Carter KT, Kutcher ME, Shake JG, et al. Heparin-sparing anticoagulation strategies are viable options for patients on veno-venous ECMO. J Surg Res. 2019;243:399-409.
11. Vasan SK, Rostgaard K, Majeed A, et al. ABO blood group and risk of thromboembolic and arterial disease. Circulation. 2016;133(15):1449-1457.
12. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847.
13. Zhang Z, Gu W-J, Chen K, Ni H. Mechanical ventilation during extracorporeal membrane oxygenation in patients with acute severe respiratory failure. Can Respir J. 2017;2017:1783857.

How to cite this article: Ahmadi ZH, Jahangirifard A, Farzanegan B, et al. Extracorporeal membrane oxygenation and COVID-19: The causes of failure. J Card Surg. 2020;35:2838-2843. https://doi.org/10.1111/jocs.14867