HOMOMORPHISMS FROM AN ARBITRARY SPECHT MODULE TO ONE CORRESPONDING TO A HOOK

JOSEPH W. LOUBERT

Abstract. We use the presentation of the Specht modules given by Kleshchev-Mathas-Ram to derive results about Specht modules. In particular, we determine all homomorphisms from an arbitrary Specht module to a fixed Specht module corresponding to any hook partition. Along the way, we give a complete description of the action of the standard KLR generators on the hook Specht module. This work generalizes a result of James.

1. Introduction

Let H_d be an Iwahori-Hecke algebra for the symmetric group S_d with deformation parameter q, over a field F. Define e to be the smallest integer so that $1 + q + \cdots + q^{e-1} = 0$, setting $e = 0$ if no such value exists. To every partition λ of d, there is a corresponding Specht module S^λ over H_d. Brundan and Kleshchev show in [1] that H_d is isomorphic to a certain algebra $R_d^{A_0}$ known as a cyclotomic KLR (Khovanov-Lauda-Rouquier) algebra of type A_{e-1} when $e \neq 0$, and type A_∞ when $e = 0$. The Specht modules are described in [2] as modules over the cyclotomic KLR algebras. This result is extended by Kleshchev, Mathas, and Ram in [12], in which Specht modules for the (full) KLR algebras R_d are explicitly defined in terms of generators and relations. The purpose of this paper is to use this presentation to completely determine $\text{Hom}_{R_d}(S^\mu, S^\lambda)$ when μ is an arbitrary partition and λ is a hook. Of course, when $e = 0$ there are no nontrivial homomorphisms. Furthermore, our methods do not apply when $e = 2$, so we make the assumption that $e \geq 3$.

To state the main theorem, we need some notation. The element $z^\mu \in S^\mu$ is the standard cyclic generator of weight i^μ, see Definition 3.2. When the i^μ-weight space of S^λ is nonempty, it will turn out that its top degree component is one-dimensional. In this case we take $[\sigma^\mu] \in S^\lambda$ to be any non-zero vector of that component. For any weakly decreasing sequence of positive integers $a = (a_1, \ldots, a_N)$ we define its Garnir content $Gc(a) \in F$ by

\[Gc(a) = \text{gcd} \left\{ \binom{a_k}{k} \mid 1 \leq k \leq a_{i+1} - 1, \ 1 \leq i \leq N - 1 \right\} \]

with the convention that $\text{gcd}(\emptyset) = 0$.
Main Theorem. Let \(\mu \) be an arbitrary partition and \(\lambda = (d-k, 1^k) \) for \(k \geq 0 \). Then \(\text{Hom}_{R_d}(S^\mu, S^\lambda) \) is at most one-dimensional, spanned by a map satisfying \(\sigma_{\mu} \mapsto [\sigma_{\mu}] \), and \(\dim \text{Hom}_{R_d}(S^\mu, S^\lambda) = 1 \) if and only if one of the following conditions holds:

(i) there exist \(n \in \{1, \ldots, k+1\} \), \(a \in (\mathbb{Z}_{>0})^n \), and \(0 \leq m < e \) such that \(Gc(a) = 0 \) and \(\mu = (a_1 e, \ldots, a_{n-1} e, a_n e - m, 1^{k-n+1}) \),

(ii) \(e \) divides \(d \), there exist \(n \in \{1, \ldots, k\} \), \(a \in (\mathbb{Z}_{>0})^n \), and \(0 \leq m < e \) such that \(Gc(a) = 0 \) and \(\mu = (a_1 e, \ldots, a_{n-1} e, a_n e - m, 1^{k-n+2}) \), or

(iii) there exist \(n > k+1 \), \(a \in (\mathbb{Z}_{>0})^n \) and \(0 \leq m < e \) such that \(Gc(a) = 0 \) and \(\mu = (a_1 e, \ldots, a_k e, a_{k+1} e - 1, \ldots, a_{n-1} e - 1, a_n e - 1 - m) \).

This theorem generalizes James [7, Theorem 24.4], which corresponds to \(k = 0 \). Our Specht modules are the dual of the Specht modules defined in [7]. We note here that the main theorem also allows us to determine all homomorphisms between Specht modules when the source is a hook, as follows; see [12] for details. For any partition \(\nu \) we define \(\nu' \) to be the conjugate partition and \(S^\nu \) to be the dual of \(S^\nu \). There is an automorphism \(\text{sgn} \) of \(R_d \) such that \(S^\nu \cong (S^{\nu'})^{\text{sgn}} \), and so

\[
\text{Hom}_{R_d}(S^\mu, S^\lambda) \cong \text{Hom}_{R_d}(S^{\lambda'}, S^\mu) \cong \text{Hom}_{R_d}((S^\nu)^{\text{sgn}}, (S^\mu)^{\text{sgn}}) \\
\cong \text{Hom}_{R_d}(S^\lambda, S^{\mu'}).
\]

Clearly, \(\lambda \) is a hook if and only if \(\lambda' \) is.

Section 2 introduces the notation to be used throughout the paper. In addition, we collect a few elementary facts which will be necessary in later sections. Section 3 reviews the definitions of the affine and cyclotomic KLR algebras, and their universal Specht modules as introduced in [12]. Section 4 provides a study of the structure of the Specht modules \(S^\lambda \), where \(\lambda \) is a hook. Specifically, there is a basis for \(S^\lambda \) given by standard tableaux on \(\lambda \), and in Theorem 4.3 we determine how the generators of the KLR algebra act on this basis. In section 5, we look at homomorphisms from an arbitrary Specht module \(S^\mu \) to \(S^\lambda \), where \(\lambda \) is a hook. In section 6, we consider some examples.

2. Preliminaries

2.1. Lie theoretic notation. We collect some notation that will be used in the sequel; the interested reader is referred to [12] for more details. Let \(e \in \{3, 4, \ldots\} \) and \(I := \mathbb{Z}/e\mathbb{Z} \). Let \(\Gamma \) be the quiver with vertex set \(I \), with a directed edge from \(i \) to \(j \) if \(j = i - 1 \). Thus \(\Gamma \) is a quiver of type \(A^{(1)}_{e-1} \). We denote the simple roots by \(\{\alpha_i \mid i \in I\} \), and define \(Q_+ := \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i \). To
be the positive part of the root lattice. For \(\alpha \in Q_+ \) let \(\text{ht}(\alpha) \) be the height of \(\alpha \). That is, \(\text{ht}(\alpha) \) is the sum of the coefficients when \(\alpha \) is expanded in terms of the \(\alpha_i \)'s.

Let \(\mathfrak{S}_d \) be the symmetric group on \(d \) letters and let \(s_r = (r, r + 1) \), for \(1 \leq r < d \), be the simple transpositions of \(\mathfrak{S}_d \). Then \(\mathfrak{S}_d \) acts on the left on the set \(I^d \) by place permutations. If \(i = (i_1, \ldots, i_d) \in I^d \) then its weight is \(|i| := \alpha_{i_1} + \cdots + \alpha_{i_d} \in Q_+ \). The \(\mathfrak{S}_d \)-orbits on \(I^d \) are the sets

\[
\langle I \rangle_\alpha := \{ i \in I^d \mid \alpha = |i| \}
\]

parametrized by all \(\alpha \in Q_+ \) of height \(d \).

2.2. Partitions

Let \(\mathcal{P}_d \) be the set of all partitions of \(d \) and put \(\mathcal{P} := \bigsqcup_{d \geq 0} \mathcal{P}_d \). The Young diagram of the partition \(\mu \in \mathcal{P} \) is

\[
\{(a, b) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \mid 1 \leq b \leq \mu_a\}.
\]

The elements of this set are the nodes of \(\mu \). More generally, a node is any element of \(\mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \).

To each node \(A = (a, b) \) we associate its residue, which is the following element of \(I = \mathbb{Z}/e\mathbb{Z} \):

\[
\text{res} \ A = (b - a) \pmod{e}.
\]

An \(i \)-node is a node of residue \(i \). Define the residue content of \(\mu \) to be

\[
\text{cont}(\mu) := \sum_{A \in \mu} \alpha_{\text{res} \ A} \in Q_+.
\]

Denote

\[
\mathcal{P}_\alpha := \{ \mu \in \mathcal{P} \mid \text{cont}(\mu) = \alpha \} \quad (\alpha \in Q_+).
\]

A node \(A \in \mu \) is a removable node (of \(\mu \)) if \(\mu \setminus \{ A \} \) is (the diagram of) a partition. A node \(B \notin \mu \) is an addable node (for \(\mu \)) if \(\mu \cup \{ B \} \) is a partition. We use the notation

\[
\mu_A := \mu \setminus \{ A \}, \quad \mu_B := \mu \cup \{ B \}.
\]

2.3. Tableaux

Let \(\mu \in \mathcal{P}_d \). A \(\mu \)-tableau \(T \) is obtained from the diagram of \(\mu \) by inserting the integers \(1, \ldots, d \) into the nodes, allowing no repeats. If the node \(A = (a, b) \in \mu \) is occupied by the integer \(r \) in \(T \) then we write \(r = T(a, b) \) and set \(\text{res}_T(r) = \text{res} \ A \). The residue sequence of \(T \) is

\[
i(T) = (i_1, \ldots, i_d) \in I^d,
\]

where \(i_r = \text{res}_T(r) \) is the residue of the node occupied by \(r \) in \(T \) \((1 \leq r \leq d) \).

A \(\mu \)-tableau \(T \) is row-strict (resp. column-strict) if its entries increase from left to right (resp. from top to bottom) along the rows (resp. columns) of each component of \(T \). A \(\mu \)-tableau \(T \) is standard if it is row- and column-strict. Let \(\text{St}(\mu) \) be the set of standard \(\mu \)-tableaux.

Let \(\mu \in \mathcal{P} \), \(i \in I \), and \(A \) be a removable \(i \)-node of \(\mu \). We set

\[
d_A(\mu) = \# \{ \text{addable } i \text{-nodes of } \mu \text{ strictly below } A \} - \# \{ \text{removable } i \text{-nodes of } \mu \text{ strictly below } A \}.
\]
Given $\mu \in \mathcal{P}_d$ and $T \in \text{St}(\mu)$, the degree of T is defined in [2] section 3.5] inductively as follows. If $d = 0$, then T is the empty tableau \emptyset, and we set $\deg(T) := 0$. Otherwise, let A be the node occupied by d in T. Let $T_{<d} \in \text{St}(\mu_A)$ be the tableau obtained by removing this node and set
\[
\deg(T) := d_A(\mu) + \deg(T_{<d}).
\] (2.5)

The group S_d acts on the set of μ-tableaux from the left by acting on the entries of the tableaux. Let T^μ be the μ-tableau in which the numbers $1, 2, \ldots, d$ appear in order from left to right along the successive rows, working from top row to bottom row.

Set
\[
i^\mu := i(T^\mu).
\] (2.6)

For each μ-tableau T define permutations $w_T \in S_d$ by the equation
\[
w_T T^\mu = T.
\] (2.7)

2.4. Binomial coefficients. In this section, we state some elementary theorems about binomial coefficients that will be useful later. Let p be a fixed prime.

Definition 2.8. For $n \in \mathbb{Z}_{>0}$ we define

(i) $\nu_p(n) = \max\{i \mid p^i \text{ divides } n\}$

(ii) $\ell_p(n) = \min\{i \mid p^i > n\}$.

We also set $\ell_p(0) = -\infty$.

The following can be easily derived from [7, Lemma 22.4].

Lemma 2.9. For any $a, b \in \mathbb{Z}_{>0}$, one has
\[p \bigg| \binom{a}{k} \text{ for } k = 1, \ldots, b \quad \Leftrightarrow \quad \nu_p(a) \geq \ell_p(b).
\]

Recall the definition of $\text{Gc}(a_1, \ldots, a_N)$ from the introduction. Then

Corollary 2.10. We have $p \mid \text{Gc}(a_1, \ldots, a_N)$ if and only if
\[\nu_p(a_i) \geq \ell_p(a_{i+1} - 1) \text{ for } 1 \leq i \leq N - 1.
\]

2.5. Shuffles. In this section, we fix $e \in \{0, 3, 4, 5, \ldots\}$ and $I := \mathbb{Z}/e\mathbb{Z}$. Given $a, b \in \mathbb{Z}_{\geq 0}$ we define
\[\text{Sh}(a, b) := \{\sigma \in \mathcal{G}_{a+b} \mid \sigma(1) < \cdots < \sigma(a) \text{ and } \sigma(a+1) < \cdots < \sigma(a+b)\}.
\]

For $i \in I^a, i' \in I^b$ write $ii' \in I^{a+b}$ for their concatenation, and define
\[
\text{Shuf}(i, i') := \{\sigma \cdot ii' \mid \sigma \in \text{Sh}(a, b)\},
\]
\[
\text{Sh}(j; i, i') := \{\sigma \in \text{Sh}(a, b) \mid \sigma \cdot ii' = j\}, \text{ and}
\]
\[
H(i) := \langle s_m \mid s_m i = i, s_m i' = i' \rangle < \mathcal{G}_a.
\]
For $i \in I$, define the elements of I^a

\[
S^+(i, a) := (i, i + 1, \ldots, i + a - 1), \quad (2.11)
\]

\[
S^-(i, a) := (i, i - 1, \ldots, i - a + 1). \quad (2.12)
\]

Fix $j, k \in I, a, b \in \mathbb{Z}_{\geq 0}$, and write $S^+ := S^+(j, a)$ and $S^- := S^-(k, b)$. If $i \in \text{Shuf}(S^+, S^-)$ then i cannot contain three or more equal adjacent indices. In this case $H(i)$ is an elementary 2-subgroup of \mathfrak{S}_{a+b}.

Proposition 2.13. For every $i \in \text{Shuf}(S^+, S^-)$, there is a unique element $\sigma_i \in \text{Sh}(i; S^+, S^-)$ of minimal length. Furthermore, $\text{Sh}(i; S^+, S^-) = \{h\sigma_i \mid h \in H(i)\}$.

Proof. Write $S^+ = (j_1, \ldots, j_a)$ and $S^- = (k_1, \ldots, k_b)$, and for every integer $d \geq 1$ introduce the following notation. For $\sigma \in \mathfrak{S}_d$, define $E\sigma \in \mathfrak{S}_{d-1}$ by

\[
E\sigma(r) = \begin{cases}
\sigma(r), & \text{for } r = 1, \ldots, \sigma^{-1}(d) - 1; \\
\sigma(r + 1), & \text{for } r = \sigma^{-1}(d), \ldots, d - 1.
\end{cases}
\]

Similarly, for $i = (i_1, \ldots, i_d) \in I^d$, define $Ei = (i_1, \ldots, i_{d-1})$.

The proposition will be proved by induction on $a + b$. If $a + b = 1$ or 2, or if $a = 0$ or $b = 0$ the claim follows immediately. Suppose $a + b \geq 3$, with $a, b \geq 1$, and assume the induction hypothesis. Fix $i \in \text{Shuf}(S^+, S^-)$. We distinguish several cases based on the values of i_{a+b}, i_{a+b-1}, j_a, and k_b.

Case 1: $i_{a+b} = j_a$ and either $j_a \neq k_b$ or $i_{a+b-1} = i_{a+b} - 1$. Given $\sigma \in \text{Sh}(i; S^+, S^-)$, we must have $\sigma(a) = a + b$. Then the map

\[
\text{Sh}(i; S^+, S^-) \to \text{Sh}(Ei; ES^+, S^-), \quad \sigma \mapsto E\sigma
\]

is a bijection, and moreover $\ell(E\sigma) = \ell(\sigma) - b$ and $H(i) \cong H(Ei)$. We define σ_i by $E\sigma_i = E\sigma_i$, which completes the induction in this case.

Case 2: $i_{a+b} = k_b$ and either $j_a \neq k_b$ or $i_{a+b-1} = i_{a+b} + 1$. Here the map

\[
\text{Sh}(i; S^+, S^-) \to \text{Sh}(Ei; S^+, ES^-), \quad \sigma \mapsto E\sigma
\]

gives a bijection as above.

Case 3: $i_{a+b} = i_{a+b-1} = j_a = k_b$. We must either have $\sigma(a) = a + b$ and $\sigma(a + b) = a + b - 1$ or $\sigma(a) = a + b - 1$ and $\sigma(a + b) = a + b$. Thus, we get a well-defined map

\[
\text{Sh}(i; S^+, S^-) \to \text{Sh}(EEi; ES^+, ES^-), \quad \sigma \mapsto EE\sigma
\]

which is two-to-one, with $s_{a+b-1}\sigma$ and σ having the same image. This proves the claim, since $H(i) \cong H(EEi) \times \langle s_{a+b-1} \rangle$. \hfill \square

3. KLR algebras and universal Specht modules

3.1. KLR algebras. Let O be a commutative ring with identity and $\alpha \in Q_+$. There is a unital O-algebra $R_\alpha = R_\alpha(O)$ called a Khovanov-Lauda-Rouquier (KLR) algebra, first defined in [9][10][15]. We follow the notations and conventions of [12], so R_α is generated by elements

\[
\{e(i) \mid i \in \langle I \rangle_\alpha \} \cup \{y_1, \ldots, y_d \} \cup \{\psi_1, \ldots, \psi_{d-1} \}, \quad (3.1)
\]
subject to some explicit relations.

The algebras R_α have \mathbb{Z}-gradings determined by setting $e(i)$ to be of degree 0, y_r of degree 2, and $\psi_r e(i)$ of degree $-a_{ir,i_r+1}$ for all r and $i \in \langle I \rangle_\alpha$.

For a graded vector space $V = \oplus_{n \in \mathbb{Z}} V_n$, with finite dimensional graded components its graded dimension is $\dim_q V := \sum_{n \in \mathbb{Z}} (\dim V_n) q^n \in \mathbb{Z}[\{q,q^{-1}\}]$.

3.2. Universal Specht modules. Fix $\mu \in \mathcal{P}_\alpha$. In this section we define the Specht module S^μ over R_α, mostly following [12]. A node $A = (x,y) \in \mu$ is called a Garnir node of μ if also $(x,y+1) \in \mu$. We define the Garnir belt of A to be the set B^A of nodes of μ containing A and all nodes directly to the right of A, along with the node directly below A and all nodes directly to the left of this node. Explicitly,

$$B^A = \{(x,z) \in \mu \mid y \leq z \leq \mu_x\} \cup \{(x+1,z) \in \mu \mid 1 \leq z \leq y\}.$$

We define an A-brick to be a set of e successive nodes in the same row

$$\{(w,z),(w,z+1),\ldots,(w,z+e-1)\} \subseteq B^A$$

such that $\text{res}(z,w) = \text{res}(A)$. Let $k \geq 0$ be the number of bricks in B^A. We label the bricks

$$B_1^A, B_2^A, \ldots, B_k^A$$

going from left to right along row x, and then from left to right along row $x+1$. Define C^A to be the set of nodes in row x of B^A not contained in any A-brick, and D^A to be the set of nodes in row $x+1$ of B^A not contained in any A-brick. Define f to be the number of A-bricks in row x of B^A.

Let $u,u+1,\ldots,v$ be the values in B^A in the standard tableau T^μ. We obtain a new tableau T^A by placing the numbers $u,u+1,\ldots,v$ from left to right in the following order: $D^A, B_1^A, B_2^A, \ldots, B_k^A, C^A$. The rest of the numbers are placed in the same positions as in T^μ. Define $i^A := i(T^A)$.

Assume that $k > 0$, and let $n = T^A(A)$. Define

$$w_r^A = \prod_{z=n+re-e}^{n+re-1} (z,z+e) \in \mathfrak{S}_d \quad (1 \leq r < k).$$

Informally, w_r^A swaps the bricks B_r^A and B_{r+1}^A. The elements $w_1^A, w_2^A, \ldots, w_{k-1}^A$ are Coxeter generators of the group

$$\mathfrak{S}^A := \langle w_1^A, w_2^A, \ldots, w_{k-1}^A \rangle \cong \mathfrak{S}_k.$$

By convention, if $k = 0$ we define \mathfrak{S}^A to be the trivial group.

Recall that f is the number of A-bricks in row x of B^A. Let \mathcal{D}^A be the set of minimal length left coset representatives of $\mathfrak{S}_f \times \mathfrak{S}_{k-f}$ in $\mathcal{D}^A \cong \mathfrak{S}_k$.

Define the elements of R_α

$$\sigma_r^A := \psi_w e(i^A) \quad \text{and} \quad \tau_r^A := (\sigma_r^A + 1) e(i^A).$$

Let $u \in \mathcal{D}^A$ with reduced expression $u = w_{r_1}^A \ldots w_{r_a}^A$. Since every element of \mathcal{D}^A is fully commutative, the element $\tau_u^A := \tau_{r_1}^A \ldots \tau_{r_a}^A$ does not depend
upon this reduced expression. We now define the Garnir element to be

\[g^A := \sum_{u \in \mathcal{P}^A} \tau_u \psi^A \in R_\alpha. \]

Definition 3.2. Let \(\alpha \in Q_+ \), \(d = \text{ht}(\alpha) \), and \(\mu \in \mathcal{P}_\alpha \). Define the following left ideals of \(R_\alpha \).

(i) \(J_1^\mu = (e(j) - \delta_{j,i^\mu} \mid j \in \langle I \rangle_\alpha) \);
(ii) \(J_2^\mu = \langle y_r \mid r = 1, \ldots, d \rangle \);
(iii) \(J_3^\mu = \langle \psi_r \mid r \) and \(r + 1 \) appear in the same row of \(T^\mu \);
(iv) \(J_4^\mu = \langle g^{\lambda A} \mid \text{Garnir nodes } A \in \mu \rangle \).

Let \(J^\mu = J_1^\mu + J_2^\mu + J_3^\mu + J_4^\mu \) and define the universal graded Specht module \(S^\mu := R_\alpha/J^\mu \langle \text{deg}(T^\mu) \rangle \). Define \(z^\mu := 1 + J^\mu \in S^\mu \).

4. Specht modules corresponding to hooks

For the rest of the paper, we assume that \(e \geq 3 \). In this section we fix two integers \(d \geq k \geq 0 \). We set \(\lambda := (d-k,1^k) \) and \(\alpha := \text{cont}(\lambda) \). We write \(\text{Sh}^\lambda \) for the image of \(\text{Sh}(d-k-1,k) \) under the embedding \(\bar{S}_{d-1} \rightarrow \bar{S}_d \) determined by \(s_i \mapsto s_{i+1} \). For \(\sigma \in \text{Sh}^\lambda \), we define \([\sigma] := \psi_\sigma z^\lambda \in S^\lambda \) of weight \(i_\sigma := \sigma \lambda^\lambda \). Note that \(\text{Sh}^\lambda = \{ \sigma \in \bar{S}_d \mid \sigma T^\lambda \text{ is standard} \} \). Therefore, by \[12 \], Corollary 6.24, the set \(\{ [\sigma] \mid \sigma \in \text{Sh}^\lambda \} \) is a basis of \(S^\lambda \).

Remark 4.1. Recall that in order to define the element \(\psi_\sigma \in R_\alpha \) we needed to fix a reduced decomposition for \(\sigma \). However, every \(\sigma \in \text{Sh}^\lambda \) is fully commutative, and so the element \(\psi_\sigma \) is independent of this choice. Thus \([\sigma] \in S^\lambda \) only depends on \(\sigma \).

Definition 4.2. Given \(\sigma \in \text{Sh}^\lambda \), the strands in the braid diagram of \(\sigma \) beginning at positions \(2,3,\ldots,d-k \) are called arm strands, and we define \(\text{Arm}(\sigma) = \{ \sigma(2),\ldots,\sigma(d-k) \} \). Similarly, the strands beginning at positions \(d-k+1,\ldots,d \) are called leg strands, and \(\text{Leg}(\sigma) = \{ \sigma(d-k+1),\ldots,\sigma(d) \} \).

The following theorem tells us how the KLR generators act on the standard basis of \(S^\lambda \).

Theorem 4.3. Let \(\sigma \in \text{Sh}^\lambda \) and write \(i_\sigma = (i_1,\ldots,i_d) \). Then

(i) For \(j \in \langle I \rangle_\alpha \), \(e(j)[\sigma] = \delta_{i_\sigma,j}[\sigma] \).
(ii) For \(1 \leq r \leq d \),

\[y_r[\sigma] = \begin{cases}
-\{s_r,\sigma\}, & \text{if } i_r = i_{r+1}, r \in \text{Leg}(\sigma), \text{ and } r + 1 \in \text{Arm}(\sigma) \\
\{s_{r-1},\sigma\}, & \text{if } i_{r-1} = i_r, r - 1 \in \text{Leg}(\sigma), \text{ and } r \in \text{Arm}(\sigma) \\
0, & \text{otherwise.}
\end{cases} \]
(iii) We have \(\psi_1[\sigma] = 0 \), and for \(2 \leq r \leq d-1 \),

\[
\psi_r[\sigma] = \begin{cases}
[s_r \sigma] , & \text{if } r \in \text{Arm}(\sigma) \text{ and } r + 1 \in \text{Leg}(\sigma) , \text{ or if } i_r \neq i_{r+1} \\
[s_{r+1} s_r \sigma] , & \text{if } r \in \text{Leg}(\sigma) , r + 1 , r + 2 \in \text{Arm}(\sigma) , \text{ and } i_r \rightarrow i_{r+1} \\
-[s_r s_{r+1} \sigma] , & \text{if } r - 1 , r \in \text{Leg}(\sigma) , r + 1 \in \text{Arm}(\sigma) , \text{ and } i_r \leftarrow i_{r+1} \\
[s_r s_{r-1} \sigma] , & \text{if } r - 1 \in \text{Leg}(\sigma) , r , r + 1 \in \text{Arm}(\sigma) , \text{ and } i_r = i_{r-1} \\
- [s_{r-1} s_r \sigma] , & \text{if } r , r + 1 \in \text{Leg}(\sigma) , r + 2 \in \text{Arm}(\sigma) , \text{ and } i_{r+1} = i_{r+2} \\
0 , & \text{otherwise}.
\end{cases}
\]

Proof. (i) Immediate from the definitions.

(ii) We define \(\operatorname{Sh}^h(i) = \{ \tau \in \operatorname{Sh}^h \mid \operatorname{wt}([\tau]) = i \} \). By Proposition 2.13 there is a unique element \(\tau \in \operatorname{Sh}^h(i_\sigma) \) of minimal length, and \(\sigma = h \tau \) for some \(h \in H(i_\sigma) \). Choosing any reduced decomposition \(h = s_{r_1} \ldots s_{r_a} \), it follows that [\(\sigma] = \psi_{r_1} \ldots \psi_{r_a} [\sigma_i] \]. Moreover \(\deg([\tau]) = \deg([\sigma]) = 2a \), and so \([\tau] \) is the unique vector of weight \(i_\sigma \) with largest degree. In particular, \(y_s[\tau] = 0 \) for \(1 \leq s \leq d \). Since \(H(i_\sigma) \) is commutative, at most one of \(r - 1 \) and \(r \) is an element of \(\{ r_1 , \ldots , r_a \} \).

Suppose that \(r \in \{ r_1 , \ldots , r_a \} \). This is equivalent to \(i_r = i_{r+1} , r \in \text{Leg}(\sigma) \) and \(r+1 \in \text{Arm}(\sigma) \). Since the \(\psi_{r_1} \) commute with each other, we may assume that \(r = r_1 \). We compute

\[
y_r[\sigma] = y_r \psi_r \psi_{r_2} \ldots \psi_{r_a} [\sigma_i] = (\psi_r y_{r+1} - 1) \psi_{r_2} \ldots \psi_{r_a} [\sigma_i] = \psi_r \psi_{r_2} \ldots \psi_{r_a} y_{r+1} [\sigma_i] - \psi_{r_2} \ldots \psi_{r_a} [\sigma_i] = - \psi_{r_2} \ldots \psi_{r_a} [\sigma_i] = -[s_r \sigma].
\]

Similarly, \(r - 1 \in \{ r_1 , \ldots , r_a \} \) is equivalent to \(i_{r-1} = i_r , r - 1 \in \text{Leg}(\sigma) \), and \(r \in \text{Arm}(\sigma) \). An argument similar to the above shows that \(y_r[\sigma] = [s_{r-1} \sigma] \). If neither \(r \) nor \(r - 1 \) is among \(\{ r_1 , \ldots , r_a \} \), then \(y_r \) commutes with each \(\psi_{s_r} \), and thus \(y_r \psi_{s_{r-1}} \ldots \psi_{s_{r}} [\sigma_i] = \psi_{r_1} \ldots \psi_{r_a} y_r [\tau] = 0 \).

(iii) Observe that \(\operatorname{wt}([\sigma]) \) begins with either \((0,1,\ldots) \) or \((0,e-1,\ldots) \). By weight, we must have \(\psi_1[\sigma] = 0 \). We break down the rest of the proof into many cases.

Case 1: Assume \(r \in \text{Arm}(\sigma) \) and \(r + 1 \in \text{Leg}(\sigma) \). Clearly \(\psi_r[\sigma] = [s_r \sigma] \).

Case 2: Assume \(r \in \text{Leg}(\sigma) \), \(r + 1 \in \text{Arm}(\sigma) \). Then \([\sigma] = \psi_r [s_r \sigma] \), and so \(\psi_r[\sigma] = \psi_r^2 [s_r \sigma] \). If \(i_r \neq i_{r+1} \) then \(\psi_r^2 [s_r \sigma] = [s_r \sigma] \), and if \(i_r = i_{r+1} \) then \(\psi_r^2 [s_r \sigma] = 0 \).

If \(i_r \rightarrow i_{r+1} \), then \(\psi_r^2 [s_r \sigma] = (y_r - y_{r+1}) [s_r \sigma] \). Since \(r \in \text{Arm}(s_r \sigma) \), part (ii) of this theorem shows that if \(y_r [s_r \sigma] = 0 \) then \(r - 1 \in \text{Leg}(s_r \sigma) \) and \(i_{r-1} = i_{r+1} \). This is seen to be impossible by considering weights, and so \(y_r [s_r \sigma] = 0 \). Similarly, \(r + 1 \in \text{Leg}(s_r \sigma) \), so part (ii) says that \(y_{r+1} [s_r \sigma] = 0 \) unless \(r + 2 \in \text{Arm}(s_r \sigma) \) and \(i_r = i_{r+2} \). But \(r + 2 \in \text{Arm}(s_r \sigma) \) if and only if \(r + 2 \in \text{Arm}(\sigma) \), in which case \(i_{r+2} = i_{r+1} + 1 = i_r \). We then conclude that
Furthermore, the second term is zero unless \(i \) finds that \(r \). We have thus proved the induction step.

An argument similar to the above shows that

\[
\psi_r[\sigma] = \begin{cases}
[s_r s_{r+1} \sigma], & \text{if } r + 2 \in \text{Arm}(\sigma) \\
0, & \text{otherwise}.
\end{cases}
\]

Now suppose \(i_r \leftrightarrow i_{r+1} \). Case 3: Assume \(r, r+1 \in \text{Arm}(\sigma) \). We prove the following statement by induction on \(t \): If \(\tau \in \text{Sh} \) satisfies \(t, t+1 \in \text{Arm}(\tau) \) we have

\[
\psi_t[\tau] = \begin{cases}
[s_t s_{t+1} \sigma], & \text{if } t - 1 \in \text{Leg}(\tau) \text{ and } i_{t-1} = i_t \\
0, & \text{otherwise}.
\end{cases}
\]

The base case of \(t = 1 \) has been shown above. We proceed with the induction, fixing \(t > 1 \), \(\tau \in \text{Sh} \) with \(t, t+1 \in \text{Arm}(\tau) \) and assuming the claim holds for all smaller values of \(t \). Let \(u \) be the largest value of \(\text{Leg}(\tau) \) which is less than \(t \). If no such value exists, then \(\psi_t[\tau] = \psi_t \psi_r z^\lambda = \psi_r \psi_t z^\lambda = 0 \). Otherwise, there is a reduced expression for \(\tau \) beginning with \(s_u \ldots s_{t-1} s_t \). Write \(\tau' = s_t s_{t-1} \ldots s_u \tau \). Then

\[
\psi_t[\tau] = \psi_t (\psi_u \ldots \psi_{t-2}) \psi_{t-1} \psi_t [\tau'] = (\psi_u \ldots \psi_{t-2}) \psi_t \psi_{t-1} \psi_t [\tau']
\]

Assume that \(t - 1 \in \text{Arm}(\tau) \). Then the first term is zero by induction. Furthermore, the second term is zero unless \(i_t = i_u \) and (by induction) \(u = t - 2 \), \(t - 3 \in \text{Leg}(\tau) \), and \(i_{t-3} = i_{t-1} \). But since \(i_{t-1} = i_t - 1 \) and \(i_{t-3} = i_u + 1 \), this is impossible. Therefore the second term is zero as well.

Now suppose that \(u = t - 1 \). We can see that the first term is zero using an argument similar to the above. If the second term appears, it is visibly nonzero. We have thus proved the induction step.

Applying this to case 3, we have

\[
\psi_r[\sigma] = \begin{cases}
[s_r s_{r-1} \sigma], & \text{if } r - 1 \in \text{Leg}(\sigma), \text{ and } i_r = i_{r-1} \\
0, & \text{otherwise}.
\end{cases}
\]

Case 4: Assume \(r, r+1 \in \text{Leg}(\sigma) \). This situation is entirely analogous to case 3, except now induction runs backwards from \(t = d - 1 \) to \(t = 2 \). We find that

\[
\psi_r[\sigma] = \begin{cases}
-[s_{r-1} s_r \sigma], & \text{if } r + 2 \in \text{Arm}(\sigma), \text{ and } i_{r+1} = i_{r+2} \\
0, & \text{otherwise}.
\end{cases}
\]

□
Corollary 4.4. Suppose that \(e(i)S^\lambda \neq 0 \). Then
\[
\{ v \in e(i)S^\lambda \mid y_rv = 0 \text{ for } r = 1, \ldots, d \} = \mathcal{O}[\sigma_i].
\]

Proof. By Theorem 4.3 we have \(y_r[\sigma_i] = 0 \) for \(r = 1, \ldots, d \). Suppose given
\[
v = \sum_{\sigma \in Sh^\lambda} c_\sigma[\sigma] \in e(i)S^\lambda,
\]
and let \(h = s_{r_1} \ldots s_{r_m} \in H(i) \) be a reduced expression for an element of maximal length for which \(c_{h\sigma_i} \neq 0 \). Apply Theorem 4.3 to obtain
\[
y_{r_1} \ldots y_{r_m}v = (-1)^m c_{h\sigma_i}[\sigma_i] \neq 0.
\]
Therefore \(v \) is killed by every \(y_r \) if and only if \(v \in \mathcal{O}[\sigma_i] \). \(\square \)

5. Homomorphisms into \(S^\lambda \)

We again fix two integers \(d > k \geq 0 \), \(\lambda := (d - k, 1^k) \) and \(\alpha := \cont(\lambda) \). We also fix \(\mu = (\mu_1, \ldots, \mu_N) \) a partition of \(d \). The goal of this section is to determine \(\text{Hom}_{\mathbb{Z}[S]}(S^\mu, S^\lambda) \), and the answer is given in Theorem 5.1. In order for a nonzero homomorphism to exist \(\tilde{\mu} \) must be a weight of \(S^\lambda \). We assume this, so in particular we are able to define \(\sigma_\mu := \sigma_{\tilde{\mu}} \). This determines a mapping from \(\mu \) to \(\lambda \) in which the node containing \(r \) in \(T^\mu \) is sent to the node containing \(r \) in \(\sigma_\mu T^\lambda \). We define arm nodes and leg nodes of \(\mu \) to be the nodes which under this map are sent to the arm or the leg of \(\lambda \), respectively.

Theorem 5.1. There is a homomorphism \(S^\mu \to S^\lambda \) satisfying \(z^\mu \mapsto v \) for \(v \neq 0 \) if and only if

(i) there exist \(c \in \{1, \ldots, k+1\} \), \(a \in (\mathbb{Z}_{>0})^c \), and \(0 \leq m < e \) such that
\[
v \in \text{Ann}_{\mathcal{O}}(\text{Gc}(a))[\sigma_\mu] \text{ and } \\
\mu = (a_1 e, \ldots, a_{c-1} e, a_c e - m, 1^{k-c+1}),
\]

(ii) \(e \) divides \(d \), there exist \(c \in \{1, \ldots, k\} \), \(a \in (\mathbb{Z}_{>0})^c \), and \(0 \leq m < e \) such that
\[
v \in \text{Ann}_{\mathcal{O}}(\text{Gc}(a))[\sigma_\mu] \text{ and } \\
\mu = (a_1 e, \ldots, a_{c-1} e, a_c e - m, 1^{k-c+2}), \text{ or }
\]

(iii) \(N > k + 1 \), there exist \(a \in (\mathbb{Z}_{>0})^N \) and \(0 \leq m < e \) such that
\[
v \in \text{Ann}_{\mathcal{O}}(\text{Gc}(a))[\sigma_\mu] \text{ and } \\
\mu = (a_1 e, \ldots, a_k e, a_{k+1} e - 1, \ldots, a_{N-1} e - 1, a_N e - 1 - m).
\]

The proof of this will follow from several lemmas. Recall the ideals \(J_i^\mu \) of Definition 3.2.

Lemma 5.2. A nonzero \(v \in S^\lambda \) satisfies \((J_1^\mu + J_2^\mu + J_3^\mu)v = 0 \) if and only if \(v \in \mathcal{O}[\sigma_\mu] \), and all leg nodes of \(\mu \) are in the first column of its Young diagram.

Proof. Assume that \((J_1^\mu + J_2^\mu + J_3^\mu)v = 0 \). Corollary 4.4 implies that \(v = \gamma[\sigma_\mu] \) for some \(\gamma \in \mathcal{O} \). By considering weights we see that \((1,2)\) cannot be a leg node. Suppose that \((a,b) \neq (1,2)\) is a leg node of \(\mu \) with \(b \geq 2 \), and define \(r = T^\mu(a,b) \). Then since \(J_3^\mu v = 0 \) we must have \(\psi_{r-1}v = 0 \). Furthermore
whereas if they were both leg nodes we would have \(i_r = i_{r-1} + 1 \), whereas if they were both leg nodes we would have \(i_r = i_{r-1} - 1 \). By Theorem 4.3 we have \(\psi_r \gamma[s_{r-1} \sigma] \neq 0 \), a contradiction.

Conversely, assume that \(\nu = \gamma[\sigma] \) and all leg nodes of \(\mu \) are in the first column. Suppose that \(r \) and \(r+1 \) are in the same row of \(T^\mu \), and so in particular \(r+1 \) is an arm node. If the node of \(\mu \) containing \(r \) in \(T^\mu \) is a leg node then by considering Theorem 4.3 we see that \(\psi_r v = 0 \) unless the node containing \(r-1 \) is also a leg node. But then the nodes containing \(r-1 \) and \(r \) are both in the first column of \(T^\mu \) forcing \(r+1 \) (and every subsequent node) to also be in the first column. This contradicts the assumption that \(r \) and \(r+1 \) appear in the same row of \(T^\mu \), and so necessarily \(\psi_r v = 0 \).

If the node of \(\mu \) containing \(r \) in \(T^\mu \) is an arm node, then write \(i_r = (i_1, \ldots, i_d) \). Referring again to Theorem 4.3 we see that \(\psi_r v = 0 \) unless the node containing \(r-1 \) is a leg node, and furthermore \(i_{r-1} = i_r \). But if the node containing \(r-1 \) is a leg node, then by assumption it is in the first column. Once again the assumption that \(r \) and \(r+1 \) are in the same row of \(T^\mu \) forces the node containing \(r-1 \) to be directly to the left of the node containing \(r \). But in this case \(i_{r-1} = i_r - 1 \) and once again we see that \(\psi_r v = 0 \).

\[\square \]

Proposition 5.3. If there is a nonzero element \(v \in S^\lambda \) with \(J^\mu v = 0 \), then the leg nodes of \(\mu \) are precisely \((2, 1), (3, 1), \ldots, (k+1, 1)\).

Proof. Let \(v = \gamma[\sigma] \) be such an element. By Lemma 5.2, the leg nodes appear in the first column of \(\mu \). Suppose that \((a,1)\) is a leg node. Then \(a \neq 1 \), and so we may consider the Garnir node \(A = (a-1, 1) \). Define \(r = T^\mu(a-1, 1) \) and \(s = T^\mu(a, 1) \). It is clear that \(g^A = \psi_r \gamma^A = \psi_{(r,r+1, \ldots, s)} \) where \((r,r+1, \ldots, s)\) is a cycle of the entire Garnir belt. In particular, if \(a \geq 3 \) and \((a-1, 1)\) is not a leg node, then \(g^A[\sigma] = (r,r+1, \ldots, s)[\sigma] \).

But this is a nonzero basis element by Lemma 5.2, contradicting \(J^\mu v = 0 \). This contradiction shows that for every leg node \((a, 1)\) with \(a \geq 3 \), the node \((a-1, 1)\) is also a leg node, which is equivalent to the statement of the proposition.

\[\square \]

As a consequence of this proposition, we see that the leg nodes of \(\mu \) are mapped to exactly the same nodes of \(\lambda \), and therefore that \(\sigma^A \) is the tableau obtained by moving all of the arm nodes of \(T^\mu \) to the first row. This suggests the following definition.

Definition 5.4. Let \(\mu = (\mu_1, \ldots, \mu_N) \) be a partition of \(d \) with \(N \geq k+1 \). Define \(T^\lambda_{\mu} \) to be the \(\lambda \)-tableau obtained as follows. Let \(S = \{ T^\mu(A) \mid A \in \mu \setminus \lambda \} \). We fill in the rows of \(\lambda \) from left to right and from top to bottom using the following procedure. Let \(A \in \lambda \) and suppose we have filled in all of the nodes to the left of \(A \) or in a previous row. If \(A \in \mu \) then define \(T^\lambda_{\mu}(A) = T^\mu(A) \). Otherwise define \(T^\lambda_{\mu}(A) \) to be the smallest element of \(S \), and then delete this value from \(S \). Repeat this process until all nodes have been filled. Furthermore, define \(\sigma^\lambda_{\mu} := w_{T^\lambda_{\mu}}^A \in S_n \).
If we have a nonzero homomorphism $S^\mu \to S^\lambda$, then Corollary 1.3 tells us it must send z^μ to a multiple of $[\sigma_\mu]$. On the other hand, Proposition 5.3 requires the image of z^μ to be a multiple of $[\sigma_\mu]$. Since $[\sigma_\mu]$ and $[\sigma_\mu]$ are elements of an O-basis of S^λ, a necessary condition for a homomorphism is that $[\sigma_\mu] = [\sigma_\mu]$. The next two results tell us when this happens.

Lemma 5.5. Let $\mu = (\mu_1, \ldots, \mu_N)$ be a partition of d such that $N \geq k + 1$. Then $[\sigma_\mu]$ has weight i^μ if and only if μ is of one of the following three forms.

(i) $N = k + 1$, and there exist $c \in \{1, \ldots, k + 1\}$, $a_1, \ldots, a_c \in \mathbb{Z}_{\geq 0}$ and $0 \leq m < e$ such that $\mu = (a_1 e, \ldots, a_{c-1} e, a_c e - m, 1^{k-c+1})$.

(ii) $N > k + 1$ and $\mu_{k+1} = 1$, and there exist $c \in \{1, \ldots, k\}$, $a_1, \ldots, a_c \in \mathbb{Z}_{\geq 0}$ and $0 \leq m < e$ satisfying $m + c \equiv k + 2 \pmod{e}$ such that $\mu = (a_1 e, \ldots, a_{c-1} e, a_c e - m, 1^{k-c+1}, 1)$.

(iii) $N > k + 1$ and $\mu_{k+1} > 1$, and there exist $a_1, \ldots, a_N \in \mathbb{Z}_{>0}$ and $0 \leq m < e$ such that $\mu = (a_1 e, \ldots, a_k e, a_{k+1} e - 1, \ldots, a_N e - 1, a_N e - 1 - m)$.

Proof. Define $(i_1, \ldots, i_d) := \text{wt}([\sigma_\mu])$ and $(j_1, \ldots, j_d) := i^\mu$. Define $r_x = T^\mu(x + 1, 1)$ for $x = 1, 2, \ldots, d$. Since $r_x = T^\mu(x + 1, 1) = T^\mu(x + 1, 1)$, it is immediate that $i_{r_x} = j_{r_x}$ for $x = 1, \ldots, d$. Letting $S = \{1, 2, \ldots, d\} \setminus \{r_1, \ldots, r_k\}$, we therefore have that $\text{wt}([\sigma_\mu]) = i^\mu$ if and only if $i_s = j_s$ for all $s \in S$.

For $p = 1, 2, \ldots, n - k$, let s_p be the pth element of the set S (under the usual ordering). It is clear that $s_p = T^\mu(1, p)$. In particular, we see that $i_{s_p+1} = i_{s_p} + 1$ for $p = 1, \ldots, d - k - 1$. Since $j_{s_1} = i_{s_1}$, we have $\text{wt}([\sigma_\mu]) = i^\mu$ if and only if $j_{s_p+1} = j_{s_p} + 1$ for $p = 1, \ldots, d - k - 1$.

Set $r_0 = 0$. Note that the condition $r_1 \neq r_0 + 1$ is automatically satisfied, so $x_0 = \max\{x \mid r_x \neq r_{x-1} + 1 \text{ where } 1 \leq x \leq k\}$ is well defined. We divide S as follows

$$(s_1, s_2, \ldots, s_{n-k}) = (1, 2, \ldots, r_1 - 1, r_1 + 1, \ldots, r_2 - 1, \ldots, r_{x_0-1} + 1, \ldots, r_{x_0} - 1, r_k + 1, \ldots, d).$$

Now, $(r_{x-1} + 1, \ldots, r_x - 1) = (T^\mu(1, 2), \ldots, T^\mu(x, \mu_x))$ for $x \leq x_0$, so it is clear that $j_{p+1} = j_p + 1$ when $r_{x-1} + 1 \leq p \leq r_x - 2$. Furthermore, for $x < x_0$ we have $r_x - 1 = T^\mu(x, \mu_x)$ while $r_x + 1 = T^\mu(x + 1, 2)$. If we let $i = \text{res}(x, 1)$, then $j_{r_x - 1} = \text{res}(x, \mu_x) \equiv i + \mu_x - 1 \pmod{e}$, and $j_{r_x + 1} = \text{res}(x + 1, 2) = i$. Thus $j_{r_x + 1} = j_{r_x - 1} + 1$ if and only if $\mu_x = a_x e$ for some $a_x \in \mathbb{Z}_{>0}$.

At this point we have shown that $i_p = j_p$ for $p = 1, \ldots, r_k$ if and only if for every $x < x_0$ there exist $a_x \in \mathbb{Z}_{>0}$ such that $\mu_x = a_x e$.

Suppose that $N = k + 1$. If $r_k = d$, then we set $c = x_0$ choose a_c, m so that $\mu_c = a_c e - m$. This clearly is of the form in part (i) of the Lemma. Otherwise, $x_0 = k$ and $r_k + 1, \ldots, d$ are all on row $k + 1$ of T^μ. The same analysis as above shows that $[\sigma_\mu^\lambda]$ has weight i if and only if for every $x \leq k$ there exist $a_x \in \mathbb{Z}_{>0}$ such that $\mu_x = a_x e$. In this case we set $c = k + 1$ and choose a_c, m as required. We have established part (i) of the Lemma.

Suppose that $N > k + 1$ and $\mu_{k+1} = 1$. Set $c = x_0$ choose a_c, m so that $\mu_c = a_c e - m$. Then $(r_k + 1, \ldots, d) = (T^\mu(k + 2, 1), \ldots, T^\mu(N, 1))$. Let $i = \text{res}(c, 1)$. Then $j_{r_k-1} = \text{res}(c, \mu_c) \equiv i + \mu_c - 1 \pmod{e}$, and $j_{r_k+1} \equiv i + k + 1 - c \pmod{e}$. Thus $j_{r_k+1} = j_{r_k-1} + 1$ if and only if $\mu_c \equiv k + 1 - c \pmod{e}$. But $\mu_c = a_c e - m$, so this is equivalent to $c + m \equiv k + 1 \pmod{e}$. This is exactly the requirement in part (ii) of the Lemma. Finally, suppose that $N \geq k + 3$. Then $r_k + 1 = T^\mu(k + 2, 1)$ and $r_k + 2 = T^\mu(k + 3, 1)$. In this case we see that $j_{r_k+2} = j_{r_k+1} - 1 \neq j_{r_k+1} + 1$. Thus part (ii) of the Lemma is finished.

Finally, suppose that $N > k + 1$ and $\mu_{k+1} > 1$. Then $x_0 = k$. Once again the analysis of the $N = k + 1$ case shows that $i_p = j_p$ for $p = 1, \ldots, r_k + 1$ if and only if for every $x \leq k$ there exist $a_x \in \mathbb{Z}_{>0}$ such that $\mu_x = a_x e$. Furthermore, a similar analysis shows that $i_p = j_p$ for $p = 1, \ldots, d$ if and only if additionally for every $k + 1 \leq x < N$ there exist $a_x \in \mathbb{Z}_{>0}$ such that $\mu_x = a_x e - 1$. This is exactly the situation of part (iii). □

Corollary 5.6. If μ is as in Lemma 5.5, then $(J_2^\mu + J_3^\mu)[\sigma_\mu^\lambda] = 0$. In particular, $[\sigma_\mu^\lambda] = [\sigma_\mu]$.

Proof. Let $(i_1, \ldots, i_d) = \text{wt}([\sigma_\mu^\lambda])$. It is clear that in each of the cases above if $i_r = i_{r+1}$ then $r \in \text{Arm}(\sigma_\mu^\lambda)$ and $r + 1 \in \text{Leg}(\sigma_\mu^\lambda)$. This implies that $J_2^\mu[\sigma_\mu^\lambda] = 0$. In turn, this implies that $[\sigma_\mu^\lambda] = [\sigma_\mu]$, by Corollary 4.4. Lemma 5.2 now shows us that $J_3^\mu[\sigma_\mu^\lambda] = 0$. □

As expected, the Garnir relations are the most difficult to verify.

Lemma 5.7. Suppose that μ has one of the forms in Lemma 5.5 and let $A = (x, y) \in \mu$ be a Garnir node. Define r, s, t and t to be the values in T^μ of the nodes $(x, y), (x + 1, 1)$, and $(x + 1, y)$ respectively so that the Garnir belt is as in the following picture

![Diagram of Garnir belt with nodes r, s, t, and t labeled](image-url)
Then
\[
\psi^T_A[\sigma^\lambda] = \begin{cases}
(t + 1, t, \ldots, s)\sigma^\lambda, & \text{if } x \leq k, y \equiv 0 \pmod{e}, \text{ and } y < \mu_{x+1} \\
(r, r + 1, \ldots, s)\sigma^\lambda, & \text{if } x \leq k, y \equiv 1 \pmod{e}, \text{ and } y > 1 \\
[\sigma^\lambda], & \text{if } x > k \text{ and } y \equiv 0 \pmod{e} \\
0, & \text{otherwise}
\end{cases}
\]

Proof. We begin with the case \(x \leq k\) and \(y \equiv 0 \pmod{e}\). Define \(s_p = s + pe\) for \(p \in \mathbb{N}\). Using braid diagrams, we compute \(\psi^T_A[\sigma^\lambda]\).

The second term is zero by Theorem 4.3(iii), and the first is equal to

using the defining relations of \(R_\alpha\) and Theorem 4.3(ii). We note that this is of the same form as (5.8) above. An easy induction argument allows us to conclude that this is equal to

Given our assumptions in this case, it is easy to see that the condition \(t + 1 \in \text{Arm}(\sigma^\lambda)\) is equivalent to \(y < \mu_{x+1}\). If this holds, then Theorem 4.3
says the above element is equal to
\[\sigma_{\lambda}^{\mu} \]
as claimed. Otherwise, we get zero.

We next consider the case that \(A = (x, y) \) with \(1 \leq x \leq k \) and \(y = 1 \). If \(x = 1 \), then \(\psi^{TA}[\sigma_{\lambda}^{\mu}] = 0 \) by the Garnir relation for the node \((1, 1) \in \lambda\).

Otherwise \(A \) is a leg node, and so is \((x + 1, 1)\). Therefore, \(\psi^{TA}[\sigma_{\lambda}^{\mu}] \) takes the following form.

\[\sigma_{\lambda}^{\mu} \]
\[\psi^{TA} \]
\[\sigma_{\lambda}^{\mu} \]
\[\psi^{TA} \]
which is zero by Theorem 4.3 (iii).

Suppose now that \(A = (x, y) \) with \(1 \leq x \leq k \), \(y \equiv 1 \mod e \), and \(y \neq 1 \). Here, \(\psi^{TA}[\sigma_{\lambda}^{\mu}] \) takes the following form.

\[\sigma_{\lambda}^{\mu} \]
\[\psi^{TA} \]
\[\sigma_{\lambda}^{\mu} \]
\[\psi^{TA} \]
which is \([r, r + 1, \ldots, s)\sigma_{\lambda}^{\mu}]\).

Consider now the case \(A = (x, y) \in \mu \) is a Garnir node with \(1 \leq x \leq k \), and \(y \neq 0, 1 \mod e \). If \(\mu \) is as in Lemma 5.5 (i) or (ii) then the requirement that \(A \) is Garnir and \(y \neq 1 \mod e \) together imply that \(x \leq c \). Therefore \(\mu_x = a_x e \), and it is easy to deduce from this that \(C^{A} \) and \(D^{A} \) each contain at least two nodes. The portion of \(\psi^{TA}[\sigma_{\lambda}^{\mu}] \) showing the crossing between
C^A and D^A is depicted in the following picture

which is zero by Theorem 4.3(iii).

We next check the special case that $A = (k+1,1)$. If μ is as in Lemma 5.5(ii), then the picture we have is as follows.

If μ is of the third type, then the picture is as follows

Suppose now that $A = (x,y)$ with $x > k$ and $y \not\equiv 0 \pmod{e}$. Furthermore assume that $A \neq (k+1,1)$. We see that C^A is nonempty, and so $\psi^{TA}[\sigma^A]$ is as in the following picture

Finally, if we choose $A = (x,y)$ with $x > k$ and $y \equiv 0 \pmod{e}$ one may easily see that $T^A = T^\mu$. Clearly then $\psi^{TA} = 1$, and so $\psi^{TA}[\sigma^A] = [\sigma^A]$. □
Lemma 5.9. Suppose that μ is as in Lemma [7.3] and let $A \in \mu$ be a Garnir node. Let r,s,t be as in Lemma [5.7]. Then for $1 \leq f \leq a_{x+1} - 1$ we have

$$g^A[\sigma^\lambda_\mu] = \begin{cases}
\binom{a_x}{f}[(t+1,t,\ldots,s)\sigma^\lambda_\mu], & \text{if } A = (x,fe) \text{ with } x \leq k \\
\binom{a_y}{f}[(r,r+1,\ldots,s)\sigma^\lambda_\mu], & \text{if } A = (x,fe+1) \text{ with } x \leq k \\
\binom{a_y}{f}[\sigma^\lambda_\mu], & \text{if } A = (x,fe) \text{ with } x > k \\
0, & \text{otherwise.}
\end{cases}$$

Proof. If $\psi^A[\sigma^\lambda_\mu] = 0$ there is nothing to show, so assume otherwise.

Recall the definitions of σ^A_p and τ^A_p from Section [3.2]. In each of the three cases in Lemma [5.7] for which $\psi^A[\sigma^\lambda_\mu] \neq 0$, one sees that multiplying σ^A_p with $\psi^A[\sigma^\lambda_\mu]$ has the effect of shuffling e arm strands past e arm strands.

By Theorem [4.3] we have that $\sigma^A_p \psi^A[\sigma^\lambda_\mu] = 0$. Thus $\tau^A_p \psi^A[\sigma^\lambda_\mu] = \psi^A[\sigma^\lambda_\mu]$ for all p. This furthermore implies that $\tau^A_w \psi^A[\sigma^\lambda_\mu] = \psi^A[\sigma^\lambda_\mu]$ for all $w \in G^A$.

Therefore

$$g^A[\sigma^\lambda_\mu] = \sum_{u \in G^A} \tau^A_u \psi^A[\sigma^\lambda_\mu] = \sum_{u \in G^A} \psi^A[\sigma^\lambda_\mu] = |G^A| \psi^A[\sigma^\lambda_\mu].$$

The problem is reduced to calculating $|G^A|$ in each of the three cases above, which follows immediately from the definitions. \hfill \square

Proof of Theorem 5.7 By the discussion preceding Lemma [5.5] any homomorphism $S^\mu \rightarrow S^\lambda$ is of the form $z^\mu \mapsto \gamma[\sigma^\lambda_\mu]$ for some $\gamma \in O$. By the discussion preceding Lemma [5.5] if there is a nonzero homomorphism, then $[\sigma_\mu] = [\sigma^\lambda_\mu]$. Lemma [5.5] tells us for which partitions this happens.

Suppose now that μ is as in Lemma [5.5]. Corollary [5.6] ensures that $(J_1^\mu + J_2^\mu + J_3^\mu)\gamma[\sigma^\lambda_\mu] = 0$. By Lemma [5.9] $J_1^\mu \gamma[\sigma^\lambda_\mu] = 0$ if and only if for each $x = 1,\ldots,N-1$, we have $\binom{a_y}{f} = 0$ for $f = 1,\ldots,a_{x+1} - 1$. But $Gc(a)$ is the greatest common divisor of these binomial coefficients. Therefore $\gamma[\sigma^\lambda_\mu]$ satisfies the Garnir relations if and only if $Gc(a)\gamma = 0$. This is exactly the claim of the theorem. \hfill \square

6. Examples

We now present some examples of Theorem 5.1. We will restrict our attention to the case that O is a torsion-free algebra over either \mathbb{Z} or \mathbb{F}_p for some prime $p \geq 3$. In this case for any $r \in \mathbb{Z}$ the submodule $\text{Ann}_O(r)$ is either (0) or O, and so in Theorem 5.1 all of our homomorphism spaces will be free O-modules. In particular, we can talk about their dimensions.

In characteristic 0 the situation simplifies. The following corollary covers in particular Hecke algebras over \mathbb{C} at a root of unity.

Corollary 6.1. Let μ be an arbitrary partition, and $\lambda = (d-k,1^k)$. Then $\text{Hom}(S^\mu, S^\lambda)$ is at most one-dimensional, and $\dim \text{Hom}(S^\mu, S^\lambda) = 1$ if and only if one of the following holds:
(i) \(\mu = \lambda \);
(ii) \(e \) divides \(d \) and \(\mu = (d - k - 1, 1^{k+1}) \);
(iii) \(k = 0 \) and there exist \(n \geq 0, a > 0, \) and \(0 \leq m < e \) such that
\[
\mu = (ae - 1, (e - 1)^n, m);
\]
(iv) \(k \geq 1, \) there exist \(0 \leq n < k, a \in \mathbb{Z}_{>0}, \) and \(1 \leq m \leq e \) such that
\[
\mu = (ae, e^n, 1^{k-n-1});
\]
(v) \(k \geq 1, \) there exist \(n > k + 1, a \in \mathbb{Z}_{>0} \) and \(1 \leq m < e \) such that
\[
\mu = (ae, e^{k-1}, (e - 1)^{n-k-1}, m);
\]
(vi) \(k \geq 2, \) \(e \) divides \(d, \) there exist \(0 \leq n \leq k - 2, a \in \mathbb{Z}_{>0}, \) and
\(1 \leq m \leq e \) such that
\[
\mu = (ae, e^n, 1^{k-n}).
\]

For the rest of the section we assume that \(\mathcal{O} \) is an \(\mathbb{F}_p \)-algebra, with \(p \geq 3, \) and we furthermore assume that \(e = p. \) This applies in the case of symmetric groups in positive characteristic.

6.1. The trivial module. Let \(\lambda = (d) \). The module \(S^\lambda \) is referred to as the trivial module. It is one-dimensional over \(\mathcal{O} \) having basis \(z^\lambda. \) We recover the following graded version of the result of James [7, Theorem 24.4].

Corollary 6.2. Let \(\mu = (\mu_1, \ldots, \mu_N) \) be a partition of \(d. \) Then \(\text{Hom}_{R_\alpha}(S^\mu, S^\lambda) = 0 \) unless there exist \(a_1, \ldots, a_N \in \mathbb{Z}_{>0} \) and \(m \in \{0, \ldots, p - 1\} \) such that \(\mu = (a_1p - 1, \ldots, a_{N-1}p - 1, a_Np - 1 - m), \) and furthermore \(\nu_p(a_x) \geq \ell_p(a_{x+1} - 1) \) for \(1 \leq x < N. \) In this case,
\[
\dim_q \text{Hom}_{R_\alpha}(S^\mu, S^\lambda) = q^r \quad \text{where} \quad r = N - \left\lceil \frac{N + m}{p} \right\rceil.
\]

Proof. Theorem 5.1(i) can only occur if \(\mu = \lambda, \) and Theorem 5.1(ii) never occurs because there are no valid choices for \(c. \) Therefore Theorem 5.1(iii) and Corollary 2.10 tell us the form that \(\mu \) must take.

To calculate the degree of the homomorphisms, we calculate the degrees of \(T^\lambda \) and \(T^\mu. \) For any partition \(\nu \) with \(M \) parts, we have \(\deg(T^\nu) = \sum_{x=1}^{M} [\ell_p a_x]. \)

In particular we get \(\deg(T^\mu) = \sum_{x=1}^{N} a_x - N \) and \(\deg(T^\lambda) = \sum_{x=1}^{N} a_x - \left\lceil \frac{N + m}{p} \right\rceil, \)

\[
\deg(T^\lambda) - \deg(T^\mu) = N - \left\lceil \frac{N + m}{p} \right\rceil.
\]

\[\square\]
6.2. The standard module. Let $\lambda = (d - 1, 1)$. Then S^λ is referred to as the standard or reflection module. We have the following Corollary.

Corollary 6.3. For any partition $\mu \neq \lambda$, $\dim \text{Hom}_R(S^\mu, S^\lambda) = 0$ with the following exceptions:

(i) if there are $a_1, a_2 \in \mathbb{Z}_{>0}$ and $0 \leq m < p$ such that
\[\mu = (a_1p, a_2p - m), \]
and furthermore $\nu_p(a_1) \geq \ell_p(a_2 - 1)$, then
\[\dim q \text{Hom}_R(S^\mu, S^\lambda) = \begin{cases} 1, & \text{if } p \mid d - 1 \\ q, & \text{otherwise}; \end{cases} \]

(ii) if p divides d and $\mu = (d - 2, 1, 1)$, then $\dim q \text{Hom}_R(S^\mu, S^\lambda) = q$;

(iii) if there are $0 \leq m < p$, $N \geq 3$, and $a_1, \ldots, a_N \in \mathbb{Z}_{>0}$ such that
\[\mu = (a_1p, a_2p - 1, a_3p - 1, \ldots, a_{N-1}p - 1, a_Np - 1 - m), \]
and furthermore $\nu_p(a_i) \geq \ell_p(a_{i+1} - 1)$ for $i = 1, \ldots, N - 1$, then
\[\dim q \text{Hom}_R(S^\mu, S^\lambda) = q^r \text{ where } r = N - \left\lfloor \frac{N + m}{p} \right\rfloor + \begin{cases} -1, & \text{if } p \mid d - 1 \\ 1, & \text{if } p \mid d \\ 0, & \text{otherwise}. \end{cases} \]

Proof. Everything follows directly from Theorem 5.1 and Corollary 2.10 except the degree calculations. The degree in cases (i) and (ii) is straightforward to calculate, and for case (iii) we can make the following calculations.

\[
\begin{align*}
\deg(T^\mu) &= \sum_{x=1}^{N} a_x - N + 1, \\
\deg(T^\lambda) &= \sum_{x=1}^{N} a_x - \left\lfloor \frac{N + m}{p} \right\rfloor, \\
\deg([\sigma_\mu]) &= \deg(T^\lambda) + \begin{cases} 0, & \text{if } p \mid d - 1 \\ 2, & \text{if } p \mid d \\ 1, & \text{otherwise}. \end{cases}
\end{align*}
\]

\[\square \]

References

[1] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, *Invent. Math.* **178** (2009), 451–484.

[2] J. Brundan, A. Kleshchev and W. Wang, Graded Specht modules, *J. reine angew. Math.* **655** (2011), 61–87.

[3] M. Fayers, An extension of James’ conjecture, *Int. Math. Res. Not. IMRN*, **10** (2007), 24 pp.

[4] J.J. Graham and G.I. Lehrer, Cellular Algebras, *Invent. math.*, **123** (1996), 1–34.
[5] D. Hemmer and D. Nakano, Specht Filtrations for Hecke Algebras of Type A, *J. London Math. Soc.*, 69 (2004), 623–638.

[6] J. Hu and A. Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A, *Adv. Math.*, 225 (2010), 598–642.

[7] G.D. James, *The representation theory of the symmetric groups*, Lecture Notes in Mathematics 682, Springer, Berlin, 1978.

[8] V. Kac, *Infinite dimensional Lie algebras*, Cambridge University Press, Cambridge, 1990.

[9] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups I, *Represent. Theory* 13 (2009), 309–347.

[10] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups II; *Trans. Amer. Math. Soc.* 363 (2011), no. 5, 2685-2700.

[11] A. Kleshchev, Representation Theory of Symmetric Groups and Related Hecke Algebras, *Bull. Amer. Math. Soc.* 47 (2010), no. 3, 419–481.

[12] A. Kleshchev, A. Mathas, A. Ram, Universal Graded Specht Modules for Cyclotomic Hecke Algebras; *Proc. Lond. Math. Soc. (3)* 105 (2012), no. 6, 1245-1289.

[13] A. Mathas, *Iwahori-Hecke algebras and Schur algebras of the symmetric group*, University Lecture Series 15, American Mathematical Society, Providence, RI, 1999.

[14] G. E. Murphy, On the representation theory of the symmetric groups and associated Hecke algebras, *J. Algebra* 152 (1992), 492–513.

[15] R. Rouquier, 2-Kac-Moody algebras; *arXiv:0812.5023*.

Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
E-mail address: loubert@uoregon.edu