A Measurement of Atmospheric Neutrino Flux Consistent with Tau Neutrino Appearance

K. Abe,1 Y. Hayato,1 T. Iida,1 K. Ishihara,1 J. Kameda,1 Y. Koshio,1 A. Minamino,1 C. Mitsuda,1 M. Miura,1 S. Moriyama,1 M. Nakahata,1 Y. Obayashi,1 H. Ogawa,1 M. Shiozawa,1 Y. Suzuki,1 A. Takeda,1 Y. Takeuchi,1 K. Ueshima,1 I. Higuchi,2 C. Ishihara,2 M. Ishitsuka,2 T. Kajita,2 K. Kaneyuki,2 G. Mitsuka,2 S. Nakayama,2 H. Nishino,2 K. Okumura,2 C. Saji,2 Y. Takenaga,2 Y. Totsuka,2 S. Clark,3 F. Dufour,4 E. Kearns,3 S. Likhoded,3 M. Litos,4 J. L. Raaf,4 J. L. Stone,4 L. R. Sulak,4 W. Wang,3 M. Goldhaber,4 D. Casper,3 J. P. Cravens,3 W. R. Kropp,3 D. W. Liu,3 S. Mine,5 C. Regis,5 M. B. Smy,5 H. W. Sobel,5 M. R. Vagins,5 K. S. Ganez,6 J. E. Hill,6 W. E. Keig,6 J. S. Lang,7 J. Y. Kim,7 I. T. Lim,7 K. Scholberg,8 N. Tanimoto,8 C. W. Walter,8 R. Wendell,8 R. W. Ellsworth,9 S. Tasaka,10 E. Guillian,11 J. G. Learned,11 S. Matsuno,11 M. D. Messier,12 A. K. Ichikawa,13 T. Ishida,13 T. Ishii,13 T. Iwashita,13 T. Kobayashi,13 T. Nakada,13 K. Nakamura,13 K. Nitta,13 Y. Oyama,13 A. T. Suzuki,14 M. Hasegawa,15 I. Kato,15 H. Maesaka,15 T. Nakaya,15 K. Nishikawa,15 T. Sasaki,15 H. Sato,15 Y. Yamamoto,15 M. Yokoyama,15 T. J. Haines,16 S. Dazeley,17 S. Hatakeyama,17 R. Svoboda,17 G. W. Sullivan,18 A. Habig,19 R. Gran,19 Y. Fukuda,20 T. Sato,20 Y. Itow,21 T. Koike,21 C. K. Jung,22 T. Kato,22 K. Kobayashi,22 M. Malek,22 C. McGrew,22 A. Sarrat,1,22 R. Terri,22 C. Yanagisawa,22 N. Tamura,23 M. Sakuda,24 M. Sugihara,24 Y. Kuno,25 M. Yoshida,25 S. B. Kim,26 J. Yoo,26 T. Ishizuka,27 H. Okazawa,28 Y. Choi,29 H. K. Seo,29 Y. Gando,30 T. Hasegawa,30 K. Inoue,30 H. Ishii,31 N. Inoue,31 K. Nishijima,31 H. Ishino,32 Y. Watanabe,32 M. Koshiba,33 D. Kielczewska,34,5 J. Zalipska,34 H. G. Berns,35 K. K. Shiraiishi,35 K. Washburn,35 and R. J. Wilkes35
(The Super-Kamiokande Collaboration)

1Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu, 506-1205, Japan
2Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
3Department of Physics, Boston University, Boston, MA 02215, USA
4Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA
5Department of Physics and Astronomy, California Institute of Technology, Irvine, Irvine, CA 92697-4575, USA
6Department of Physics, California State University, Dominguez Hills, Carson, CA 90747, USA
7Department of Physics, Chonnam National University, Kwangju 500-757, Korea
8Department of Physics, Duke University, Durham, NC 27708 USA
9Department of Physics, George Mason University, Fairfax, VA 22030, USA
10Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan
11Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA
12Department of Physics, Indiana University, Bloomington, IN 47405-7105, USA
13High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
14Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan
15Department of Physics, Kyoto University, Kyoto 606-8502, Japan
16Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
17Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
18Department of Physics, University of Maryland, College Park, MD 20742, USA
19Department of Physics, University of Minnesota, Duluth, MN 55812-2496, USA
20Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan
21Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601, Japan
22Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA
23Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan
24Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan
25Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
26Department of Physics, Seoul National University, Seoul 151-742, Korea
27Department of Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
28Department of Informatics in Social Welfare, Shizuoka University of Welfare, Yaizu, Shizuoka 425-8611, Japan
29Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
30Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
31Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
32Department of Physics, Tokyo Institute for Technology, Meguro, Tokyo 152-8551, Japan
33University of Tokyo, Tokyo 113-0033, Japan
34Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland
35Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
(Dated: March 21, 2018)

A search for the appearance of tau neutrinos from $\nu_\mu \leftrightarrow \nu_\tau$ oscillations in the atmospheric neutrinos has been performed using 1489.2 days of atmospheric neutrino data from the Super-Kamiokande-I experiment. A best fit tau neutrino appearance signal of 138 ± 48 (stat.) ± 78 (sys.) events is obtained with an expectation of 78 ± 26 (sys.). The hypothesis of no tau neutrino appearance is disfavored by 2.4 sigma.

PACS numbers: 14.60.Pq, 95.55.Vj, 95.85.Ry
Atmospheric neutrino oscillations have been observed by several experiments \cite{1, 2, 3, 4, 5}. In particular, Super-Kamiokande (Super-K) has reported the first evidence for the sinusoidal signature of muon neutrino disappearance \cite{6} and made measurements of the oscillation parameters \cite{7}. The Super-K atmospheric neutrino data favor $\nu_\mu \leftrightarrow \nu_\tau$ oscillations and have excluded $\nu_\mu \leftrightarrow \nu_e$ \cite{8} and pure $\nu_\mu \leftrightarrow \nu_{\text{sterile}}$ oscillations \cite{9} as a dominant source of the deficit of muon neutrinos from the atmospheric neutrino flux, with no explicit observation of the appearance of tau neutrinos and their charged-current (CC) weak interactions. In this letter, we analyze the Super-K atmospheric neutrino data in an attempt to demonstrate the appearance of ν_τ interactions in the detector.

Detection of CC ν_τ interactions in the atmospheric neutrinos is challenging for two reasons. First, the neutrino energy threshold for tau lepton production is 3.5 GeV. The atmospheric neutrino flux above this energy is relatively low. Assuming two flavor maximal mixing of $\nu_{\mu e}$, we expect one CC ν_τ event is expected to occur in an atmospheric neutrino detector per kiloton-year of exposure. This corresponds to an estimated total of 78 ν_τ events in the data sample presented. Second, the tau lepton has a short lifetime (290 femtoseconds) and decays immediately into many different final states. These final states consist of electrons, muons, or one or more pions (plus always a tau neutrino). The recoiling hadronic system may also produce multiple particles. Water Cherenkov detectors such as Super-K are not suited for identifying individual CC ν_τ interactions as there are generally multiple Cherenkov rings with no easily identified leading lepton. Thus, we employ likelihood and neural network techniques to discriminate tau neutrino events from atmospheric neutrino events on a statistical basis.

Super-Kamiokande is a 50-kton water Cherenkov detector, with a rock overburden of 2700 m water equivalent, located in Kamioka, Gifu prefecture in Japan. The detector consists of two concentric opticaly separated detector regions; the inner detector (ID) instrumented with 11,146 inward facing 20-inch diameter photomultiplier tubes (PMT) and the outer detector (OD) instrumented with 1,885 outward facing 8-inch PMTs. The details of the detector, calibrations, data reduction, and detector simulation can be found in Refs. \cite{7, 9}.

In this letter, the atmospheric neutrino data accumulated during the Super-K-I period (from May, 1996 to July, 2001; 1489.2 live-day exposure) are analyzed. The atmospheric neutrino events in Super-K are classified as fully-contained (FC), partially-contained (PC), and upward-going muon events \cite{9}. In the present analysis, only FC events are used. FC events deposit all of their Cherenkov light inside the ID, from which the direction and the momentum of charged particles are reconstructed. The particle type is identified as "e-like (showering)" or "μ-like (non-showering)" for each Cherenkov ring based on the light-pattern \cite{9}.

Both tau neutrino and atmospheric neutrino (ν_τ and ν_μ) interactions in Super-K are modeled using a Monte Carlo (MC) simulation, NEUT \cite{7, 10}. In our ν_τ MC, only CC ν_τ interactions are simulated. CC ν_τ interactions are mostly deeply-inelastic scattering (approximately 63%) due to the high energy threshold for tau lepton production. The decays of tau leptons are simulated by the tau decay library, TAUOLA (Version 2.6) \cite{12}. The polarization of tau leptons produced via CC ν_τ interactions is also implemented from calculations by Hagihara et al. \cite{13}.

The event signatures of tau neutrinos are characterized by the decays of tau leptons produced in CC ν_τ interactions. In this analysis, we concentrate on the hadronic decays of tau leptons (approximately 65% of tau lepton decays). The shape of events containing the hadronic decays of tau leptons has a more spherical topology than that of backgrounds. Also, the extra pions produced in tau lepton decays can be tagged by looking for their decays and ring signatures in the Super-K detector. The primary backgrounds for ν_τ signals are atmospheric neutrinos producing multiple pions via deep-inelastic scattering interactions. The following ν_τ event selection criteria are applied to reduce the backgrounds: (1) The vertex must be reconstructed in the fiducial volume (2 m from the ID PMT surface) with no activity in the OD region, (2) Visible energy (E_{vis}) must be greater than 1.33 GeV, and (3) The most energetic ring must be e-like. These criteria can reduce the backgrounds by approximately 90% since the neutrino energy threshold in CC ν_τ interactions is higher than in most of atmospheric neutrino interactions and tau lepton decays have a high average multiplicity (resulting primarily in hadronic shower, i.e. e-like events). The effects of the event selection criteria are summarized in the top 3 lines of Table \ref{tab:1}.

In accordance with the event shape and characteristics of tau lepton decays, we define a set of five variables to further discriminate ν_τ signals from backgrounds, which are: (a) Visible energy, (b) Maximum distance between the primary interaction and electron vertices from pion and then muon decays, (c) Number of ring candidates, (d) Sphericity in the laboratory frame, and (e) Clustered sphericity in the center of mass frame (FIG. \ref{fig:1}). The first two variables are Super-K standard variables \cite{7}. The number of ring candidates is determined with a ring-finding algorithm, which is sensitive to ring-fragments, and the last two variables, sphericity and clustered sphericity.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Variable & Data & ν_μ, ν_e MC & BKG MC CC & ν_τ, MC \\
\hline
\hline
Generated in fiducial volume & 17135 (100%) & 78.4 (100%) & \ & \ \\
\hline
$E_{\text{vis}} > 1.33$ GeV & 2888 & 2943 (17.2%) & 51.5 (65.7%) & \ \\
\hline
Most energetic ring e-like & 1803 & 1765 (10.3%) & 47.1 (60.1%) & \ \\
\hline
Likelihood > 0 & 649 & 647 (3.8%) & 33.8 (43.1%) & \ \\
\hline
NN output > 0.5 & 603 & 577 (3.4%) & 30.6 (39.0%) & \ \\
\hline
\end{tabular}
\caption{Summary for the numbers of events in data, atmospheric neutrino ($\nu_{\mu e}$) background MC, and tau neutrino MC after applying each of ν_τ event selection criteria and either the likelihood or the neural network cut, which is applied separately for each analysis. Neutrino oscillation is considered in the MCs with the oscillation parameters: $\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$ and $\sin^2 2\theta = 1.0$, and the numbers are normalized by the live time of the data sample.}
\end{table}
are derived from a jet-based energy flow analysis. The energy flow analysis uses Cherenkov patterns to deconvolve the measured light distribution in Super-K. By associating the deconvoluted power spectrum with pseudo particles, “jets” are reconstructed, and event shape variables such as sphericity are obtained. Sphericity (0 < S < 1) measures the spherical symmetry of an event and has a quadratic momentum dependence giving more weight to higher momentum particles \[14, 15\]. Also, it is not invariant under the Lorentz transformation. Therefore, the sphericity calculated with different clustering and reference frames probes different event characteristics.

The expected distributions of each variable after applying the ν_τ event selection criteria for both signals and backgrounds are plotted in FIG. 1. The background MC is compared with downward-going data, where no ν_τ appearance signal is expected as the probability for ν_μ oscillating into ν_τ is very small for the given path length and the measured atmospheric Δm^2. The agreement of the downward-going data and background MC indicates the variables chosen for this analysis are well modeled by our MC simulation. The small discrepancy in log(Sphericity) between the data and the atmospheric neutrino MC is consistent with the systematic uncertainty in the vertex position.

We have constructed a likelihood function using the five variables described above. The data sample is divided into 5 energy bins: (1) $E_{\text{vis}} < 2.0$, (2) $2.0 \leq E_{\text{vis}} < 3.0$, (3) $3.0 \leq E_{\text{vis}} < 4.0$, (4) $4.0 \leq E_{\text{vis}} < 6.0$, (5) $6.0 \leq E_{\text{vis}} < 12.0$, (6) $12.0 \leq E_{\text{vis}} [\text{GeV}].$ The likelihood distributions for downward-going and upward-going events are shown in FIG. 2. The events for likelihood $L > 0$ or NN output > 0.5 are defined to be tau-like. The likelihood distributions of data and background MC events agree for downward-going events. The agreement validates our analysis method. Table I summarizes the number of data, atmospheric neutrino background MC, and tau neutrino MC events after applying all of the event selection criteria.

A neural network (NN) is also trained with the five variables. The network has 6 input neurons, 10 hidden neurons, and one sigmoid output neuron and is trained using back-propagation by use of the MLPFIT neural network package \[16\].

The distributions of the NN outputs are shown in FIG. 2. NN output > 0.5 is defined to be tau-like. The discrepancy between the data and MC just below the NN cut (NN output = 0.5) is consistent with the systematic uncertainty in the deep-inelastic scattering cross section near the threshold, which is included in the overall systematic uncertainty estimation described below.

After selecting the tau-enriched sample by applying the ν_τ event selection criteria with either the likelihood ($L > 0$) or the neural network (NN output > 0.5) cut, the zenith angle distribution is fitted with a combination of the expected tau neu-
trino signals resulting from oscillations and the predicted atmospheric neutrino background events including oscillations. The fitted zenith angle distribution and the χ^2, which is minimized, are

$$N_{\text{total}}(\cos \theta) = \alpha N_{\text{tau}} + \beta N_{\text{bkg}},$$ \hspace{1cm} (1)

$$\chi^2 = \sum_{i=1}^{10} \frac{(N_{\text{obs}}^i - \alpha N_{\text{tau}}^i - \beta N_{\text{bkg}}^i)^2}{\sigma_i^2},$$ \hspace{1cm} (2)

where N_{obs}^i is the number of the observed events, N_{tau}^i is the number of predicted tau neutrino events, N_{bkg}^i is the MC predicted number of atmospheric neutrino background events, and σ_i is the statistical error for the i-th bin. The sample normalizations, α and β, are allowed to vary freely, and the zenith angle distribution is divided into 10 bins, from -1 to 1 ($\cos \theta = -1$ ($\cos \theta = 1$) refers to upward-going (downward-going) events). The results of the fit are shown in FIG. 3.

The minimum χ^2 for the likelihood fit (the NN fit) is $\chi^2_{\text{min}} = 7.6/8$ DOF (9.8/8 DOF), and the χ^2 assuming no tau neutrino appearance is 16.3/9 DOF (18.2/9 DOF). The normalizations of the best fit for the likelihood fit (the NN fit) are $\alpha = 1.76$ (1.71) and $\beta = 0.90$ (0.99). After correcting for efficiencies, these correspond to a best fit tau neutrino appearance signal of 138 ± 48 (stat.) (134 ± 48 (stat.)) for the likelihood analysis (the NN analysis). As can be seen in FIG. 3, an excess of tau neutrino signals is observed in the upward-going direction, and the data distribution agrees better with the prediction including tau neutrino appearance estimated by MC. The backgrounds that remain after applying all of the ν_τ event selection criteria are mostly due to deep-inelastic scattering (CC DIS: 61.4% and NC DIS: 27.1%).

Approximately 82.9 ± 3.0% of events are in common to the tau-enriched samples selected by both analyses, for which Monte Carlo predicts 83.1% of events overlap. The results for the likelihood and the neural network analyses are consistent.

The systematic errors from Super-K atmospheric neutrino oscillation analysis are re-evaluated for the present analysis; however in this estimation, the uncertainty in the absolute normalization is assumed to be 20%. All error terms except for those affecting Sub-GeV, PC, and upward-going muon events are considered. A detailed description of these uncertainties can be found in Ref. [7]. In addition, the uncertainties related only to the present analysis such as the ν_τ cross section, ν_τ polarization, tau likelihood, etc. are considered. The systematic uncertainties for the expected number of ν_τ events are summarized in Table II.

An excess of tau-like events in the upward-going direction is shown in FIG. 3. As can be seen in FIG. 3, an excess of tau-like events in the upward-going direction is shown.

TABLE II: Summary of systematic uncertainties for the expected number of ν_τ events (top) and for the observed number of ν_τ events (bottom). The best fit values for each error term are listed for both likelihood (LH) and neural network (NN) analyses.

Source of Uncertainty	Expected Events	Likelihood (%)	Neural Network (%)
Montecarlo predictions:	83.1%	82.9%	82.2%
Background	61.4%	61.0%	
Up/down asymmetry of energy calibration	0.1%	-0.1%	
MC sampling	20%	15%	
Systematic uncertainties for expected ν_τ oscillation analysis	12.0%	11.9%	
Total	22.9%	22.3%	
Systematic uncertainties for observed ν_τ oscillation analysis:	11.7%	11.5%	
Flux up/down ratio	6.5%	6.4%	
Flux horizontal/vertical ratio	5.7%	5.6%	
Flux K/\pi ratio	4.3%	4.2%	
NC/CC ratio	3.8%	3.7%	
Up/down asym. from energy calibration	1.4%	< 0.1%	
Total	8.7%	8.4%	
parameter region obtained by the L/E analysis from Super-K [6]. The uncertainty due to knowledge of the $\sin^2 2\theta_{13}$ is estimated using the limit obtained by the CHOOZ reactor neutrino experiment [17]. This systematic error is asymmetric because Multi-GeV electrons are expected to appear in the upward-going directions for non-zero θ_{13}, which would be backgrounds for ν_τ signals. Table III shows the summary of systematic uncertainties. We also performed a study to check dependency on Monte Carlo neutrino interaction models using another model, NUANCE [18]. The difference in the results is negligible.

Combining these errors with the fit result, we obtain a best fit tau neutrino appearance signal of 138 ± 48 (stat.) $^{+15}_{-32}$ (sys.) from the likelihood analysis, which disfavors the no tau neutrino appearance hypothesis by 2.4 sigma. This is consistent with the expected number of tau neutrino events, 78 ± 26 (sys.) for $\Delta m^2 = 2.4 \times 10^{-3}$ eV2, assuming the full mixing in $\nu_\mu \leftrightarrow \nu_\tau$ oscillations.

In conclusion, the search for the appearance of tau neutrinos from $\nu_\mu \leftrightarrow \nu_\tau$ oscillations in the atmospheric neutrinos has been carried out using atmospheric neutrino data observed in Super-Kamiokande-I. The tau neutrino excess events have been observed in the upward-going direction as expected. The Super-Kamiokande-I atmospheric neutrino data are consistent with $\nu_\mu \leftrightarrow \nu_\tau$ oscillations.

We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment has been built and operated from funding by the Japanese Ministry of Education, Culture, Sports, Science and Technology, the United States Department of Energy, and the U.S. National Science Foundation.

[1] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), hep-ex/9807003.
[2] Y. Fukuda et al. (Kamiokande), Phys. Lett. B335, 237 (1994).
[3] M. Ambrosio et al. (MACRO), Eur. Phys. J. C36, 323 (2004).
[4] W. W. M. Allison et al. (Soudan-2), Phys. Rev. D72, 052005 (2005), hep-ex/0507068.
[5] P. Adamson et al. (MINOS), Phys. Rev. D73, 072002 (2006), hep-ex/0512036.
[6] Y. Ashie et al. (Super-Kamiokande), Phys. Rev. Lett. 93, 101801 (2004), hep-ex/0404034.
[7] Y. Ashie et al. (Super-Kamiokande), Phys. Rev. D71, 112005 (2005), hep-ex/0510646.
[8] S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 85, 3999 (2000), hep-ex/0009001.
[9] Y. Fukuda et al., Nucl. Instrum. Meth. A501, 418 (2003).
[10] Y. Hayato, Nucl. Phys. Proc. Suppl. 112, 171 (2002).
[11] M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D70, 043008 (2004), astro-ph/0404457.
[12] S. Jadach, Z. Was, R. Decker, and J. H. Kuhn, Comput. Phys. Commun. 76, 361 (1993).
[13] K. Hagiwara, K. Mawatari, and H. Yokoya, Nucl. Phys. B668, 364 (2003), hep-ph/0305324.
[14] J. D. Bjorken and S. J. Brodsky, Phys. Rev. D1, 1416 (1970).
[15] G. Hanson et al., Phys. Rev. Lett. 35, 1609 (1975).
[16] B. Schwinding, J. Mansouli'e and O. Couet, MLPfit (2000), http://schwind.web.cern.ch/schwind/MLPfit.html.
[17] M. Apollonio et al., Eur. Phys. J. C27, 331 (2003), hep-ex/0301017.
[18] D. Casper, Nucl. Phys. Proc. Suppl. 112, 161 (2002), hep-ph/0208030.