Antiviral treatment for COVID-19: ensuring evidence is applicable to current circumstances

Corinne M. Hohl MD MHSc, Andrew D. McRae MD PhD

In related research, Pitre and colleagues present the findings of a network meta-analysis that sought to establish the relative efficacy of oral antiviral therapies in reducing the risk of hospital admission or death in patients with mild-to-moderate COVID-19. This is an important patient population to enroll in randomized trials, as most patients with COVID-19 have mild disease and are treated as outpatients. The authors conclude that there is compelling evidence supporting the efficacy of nirmatrelvir–ritonavir and molnupiravir in reducing the risk death or hospital admission.

The challenge lies in applying the findings to current patients with COVID-19. The largest trial on nirmatrelvir–ritonavir, EPIC-HR, which was included in the network meta-analysis, enrolled unvaccinated participants who were infected with the Delta variant and had no evidence of previous SARS-CoV-2 infection. Yet, currently, 83% of eligible people in Canada have received 2 doses of SARS-CoV-2 vaccine, which confers a high degree of protection against the same outcomes as these therapies have been shown to prevent. Many people who acquire SARS-CoV-2 now have had a previous infection, and most recent cases have been infected with Omicron subvariants, which are less virulent than Delta.

Nirmatrelvir–ritonavir is likely less effective in the real-world setting than suggested by the findings of the related network meta-analysis. Indeed, the manufacturer of nirmatrelvir–ritonavir recently terminated a trial that included vaccinated patients who were enrolled during the Omicron wave after an interim analysis found no statistically significant reduction in hospital admissions or deaths. A recent observational study examining the effectiveness of nirmatrelvir–ritonavir among vaccinated patients infected with Omicron and without evidence of previous infection concluded that it was effective in reducing severe COVID-19; however, estimates of its effectiveness in preventing severe COVID-19 or death was lower than was observed in the EPIC-HR trial. Indeed, the study suggested that vaccination alone was as or more effective than nirmatrelvir–ritonavir, and that the effectiveness of nirmatrelvir–ritonavir did not vary by vaccination status.

Applying available evidence to clinical and policy decisions as the virus and population characteristics evolve is challenging. This is reflected in current Canadian guidelines for the use of novel antiviral drugs, which vary by province in terms of the age groups and comorbidities that define “high risk” to determine eligibility for publicly funded oral antiviral therapy. These therapeutic decisions would benefit from additional evidence from randomized controlled trials (RCTs), but this evidence is unlikely to emerge soon.

In a search of clinicaltrials.gov, the World Health Organization International Clinical Trials Registry Platform and the Cochrane CENTRAL register, we identified only 4 RCTs of molnupiravir or nirmatrelvir–ritonavir with clinical outcomes that were recently completed or actively recruiting, with 1 additional trial in children underway. None of these trials specifically addressed high-risk subgroups (e.g., older adults, immunocompromised people, pregnant patients), which were underrepresented in preapproval trials. The PANORAMIC adaptive platform trial, based in the United Kingdom, is evaluating COVID-19 therapeutics in patients with mild-to-moderate COVID-19 and only recently added nirmatrelvir–ritonavir to its list of study medications.

Coordinated national and international approaches to rapidly generate the evidence required to guide clinical and policy decisions for COVID-19 therapeutics are sorely needed. National and international adaptive platform trials, which allow researchers to

Key points

- Evidence from randomized controlled trials has shown that nirmatrelvir–ritonavir and molnupiravir likely reduce the risk of severe COVID-19, hospital admission and death in unvaccinated patients infected with early variants of SARS-CoV-2.
- Whether these novel antiviral drugs will have similar effectiveness for preventing serious outcomes in vaccinated patients or in those infected with more recent SARS-CoV-2 variants of concern, however, remains unclear.
- Adaptive platform trials, which iteratively integrate novel therapies, and large-scale observational studies using linked administrative health care data, which can estimate outcome risks in important clinical subgroups, represent the best options for rapidly evaluating the effectiveness of novel antiviral drugs and other COVID-19 therapeutics as both the virus and population characteristics evolve.
- These trials can be conducted successfully in Canada, but they require dedicated funding support, policy changes to facilitate data sharing by administrative data custodians, and integration of trial enrolment at the point of care.
Commentary

is required to inform clinical and policy decisions. Adaptive platform trials and large observational studies offer the best opportunities to generate timely evidence on the effectiveness of COVID-19 therapeutics. These studies can be completed in Canada, but need to be supported by Canadian research funders, health care institutions, data custodians, health care providers and patients.

References

1. Pitre T, Van Alstine R, Chick G, et al. Antiviral drug treatment for nonsevere COVID-19: a systematic review and network meta-analysis. CMAJ 2022;194:E369-80.
2. Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med 2022;386:1397-408.
3. What share of the population has completed the initial vaccination protocol? Canada: Our World in Data; 2022 June 26. Available: https://ourworldindata.org/coronavirus/country/canada?country=~CAN#how-many-covid-19-vaccine-doses-have-been-administered-in-total (accessed 2022 June 26).
4. McKeigue PM, McAlister DA, Hutchison SJ, et al. Vaccine efficacy against severe COVID-19 in relation to delta variant (B.1.617.2) and time since second dose in patients in Scotland (REACT-SCOT): a case-control study. Lancet Respir Med 2022;10:566-72.
5. Sheikh A, Robertson C, Taylor B. BNT162b2 and ChAdOx1 nCov-19 vaccine effectiveness against death from the delta variant. N Engl J Med 2021;385:2195-7.
6. Bouzid D, Visseaux B, Kassasseya C, et al. Comparison of patients infected with Delta versus Omicron COVID-19 variants presenting to Paris emergency departments: a retrospective cohort study. Ann Intern Med 2022;175:831-7.
7. Pfizer reports additional data on PAXLOVID supporting upcoming new drug application submission to U.S. FDA [media release]. New York: Pfizer; 2022 June 14. Available: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-reports-additional-data-paxlovid-supporting (accessed 2022 July 6).
8. Najjar-Debbiny R, Gronich N, Weber G, et al. Effectiveness of Paxlovid in reducing severe COVID-19 and mortality in high-risk patients. Clin Infect Dis 2022 June 2;ciac443 [Epub ahead of print]. doi: 10.1093/cid/ciac443.
9. New antiviral, Paxlovid, added to PANORAMIC study [news release]. Oxford (UK): PANORAMIC; 2022 Apr. 12. Available: https://www.panoramictrial.org/news/new-antiviral-paxlovid-added-to-panoramic-study (accessed 2022 June 29).
10. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021;384:693-704.
11. Ali K, Ather Z, Baqi M, et al. Rendesivir for the treatment of patients in hospital with COVID-19 in Canada: a randomized controlled trial. CMAJ 2022;194:E429-51.
12. WHO Solidarity Trial Consortium; Pan H, Peto R, Henao-Restrepo AM, et al. Repurposed antiviral drugs for Covid-19 — interim WHO Solidarity trial results. N Engl J Med 2021;384:497-511.
13. Morty S, Fowler RA, Laupacis A. How Canada can better embed randomized trials into clinical care. CMAJ 2020;192:E928-9.
14. McRae AD, Archambault P, Fok P, et al. Reducing barriers to accessing administrative data on SARS-CoV-2 vaccination for research. CMAJ 2022;194:E943-7.

Competing interests: Corinne Hohl reports grants from the COVID-19 Immunity Task Force, the Canadian Institutes for Health Research, Genome BC, the Michael Smith Health Research Foundation and the Canadian Association of Emergency Physicians. She is chair of the Canadian COVID-19 Emergency Department Rapid Response Network. Andrew McRae reports grants from the Canadian Institutes of Health Research and Roche Diagnostics Canada, and honoraria from Western University and Servier Pharmaceuticals. No other competing interests were declared. This article was solicited and has not been peer reviewed.

Affiliations: Department of Emergency Medicine (Hohl), University of British Columbia; Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC; Departments of Emergency Medicine and Community Health Sciences (McRae), University of Calgary, Calgary, Alta.

Contributors: Both authors contributed to the conception and design of the work, drafted the manuscript, revised it critically for important intellectual content, gave final approval of the version to be published and agreed to be accountable for all aspects of the work.

Content licence: This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY-NC-ND 4.0) licence, which permits use, distribution and reproduction in any medium, provided that the original publication is properly cited, the use is noncommercial (i.e., research or educational use) and no modifications or adaptations are made. See: https://creativecommons.org/licenses/by-nc-nd/4.0/

Disclaimer: Andrew McRae is an associate editor for CMAJ and was not involved in the editorial decision-making process for this article.

Correspondence to: Andrew McRae, amcrae@ucalgary.ca