Systemic treatment of advanced/metastatic renal cell carcinoma in the context of SARS-CoV-2 pandemic: recommendations from the interdisciplinary working group for renal tumors (IAG-N)

Philipp Ivanyi1,2 · Carsten Grüllich3 · Nils Kroeger4,5 · Thomas Gauler6 · Manfred Johannsen7 · Jens Bedke8 · Viktor Grünwald9 · On behalf of the Interdisciplinary working group on renal tumors (IAG-N) of the German Cancer Society (DKG)

Received: 28 June 2020 / Accepted: 28 July 2020 / Published online: 20 August 2020 © The Author(s) 2020

Abstract
This letter summarizes recommendations from the interdisciplinary working group of renal tumors (IAG-N) of the German Cancer Society for the systemic treatment of advanced/metastatic renal cell carcinoma in the context of the current SARS-CoV-2 pandemic

Background
During the SARS-CoV-2 pandemic, oncologists faced several new challenges (Jones et al. 2020; Hanna et al. 2020; Lai et al. 2020). Data on SARS-CoV-2 in cancer patients suggested outstanding rates of severe clinical courses (39–75%) and mortality (up to 29%) upon SARS-CoV-2 infection, although methodological limitations of these observations are of concern (Desai et al. 2020; Liang et al. 2020; Yang et al. 2020; Zhang et al. 2020). However, oncological therapies might raise SARS-CoV-2-related morbidity and mortality (Desai et al. 2020; Liang et al. 2020; Yang et al. 2020; Zhang et al. 2020). Checkpoint inhibitors (CPI) could negatively interfere with the pathogenesis of SARS-CoV-2, and an overlap of symptoms of SARS-CoV-2 and cancer treatment related adverse events can be assumed which could result in a diagnostic challenge (Zhang et al. 2020; Bersanelli 2020; Rotz et al. 2017). In particular, interstitial pneumonia from SARS-CoV-2 cannot be differentiated from CPI-associated pneumonitis with certainty using CT images, and may present with overlapping features (Zhang et al. 2020; Bersanelli 2020). Pneumonitis in CPI-treated patients are rare with an incidence von 2–10% but accounts with treatment-related death rate of 35% (Wang et al. 2018; Naidoo et al. 2017). Effects of immune suppression due to supportive measure has also to be considered, although only preliminary data exist on effects of steroids in cancer patients during the SARS-CoV-2 pandemic (Yang et al. 2020).
As a result, use of CPI in advanced/metastatic renal cell carcinoma patients (mRCC) may be associated with a specific risk, and requires a critical risk–benefit assessment. Therefore, choosing the appropriate therapeutic regimen in mRCC is more challenging than ever.

Several recommendations focus on reducing the risk of SARS-CoV-2 exposures for patients, as well as for medical staff, as part of oncological routine and addresses mainly questions of resource allocation. Discussion about treatment-specific considerations remains scarce. Herein, we report a consensus of the interdisciplinary working group on renal tumors (IAG-N) of the German cancer society towards treatment of mRCC.

During the process of treatment evaluation, the assessment of treatment indication must be made on an individual basis. However, once selecting treatment, patient, and tumor-specific parameters, patient’s comorbidity and the availability of local caregiving facilities should be taken into account. In our opinion, two major scenarios according to systemic treatment have to be considered: initiation or change medication of a systemic treatment upon progressing diseases and measures taken during ongoing systemic treatment.

Considering urgency once initiating treatment upon advanced or metastatic RCC

For systemic treatment, the appropriate treatment should be selected based on patient-specific factors that take the overall picture into account when searching for treatment (Escudier et al. 2019). The indication for the systemic treatment of mRCC should be made strictly, taking active surveillance and deferred medical treatment into consideration (Escudier et al. 2019). This should minimize patient exposure to the at-risk medical care environment, as well potentially towards particular treatment-associated risk in terms of SARS-CoV-2 infection. Patients who do not require urgent systemic treatment should, therefore, primarily be offered active surveillance and deferred medical treatment. No validated tool that identifies indolent disease is established. However, various parameters are used by clinicians to identify the appropriate patient population for active surveillance. Table 1 represents a number of such variables, which are used by the authors.

Also, considering the CARMENA-discussion on palliative nephrectomy, in asymptomatic synchronous metastasized patients, cytoreductive nephrectomy should be considered critically, respecting the fact of reported nosocomial SARS-CoV-2 infection in cancer patients (28.6%), as well as a surprising high rate of SARS-CoV-2 diseases among cancer patients receiving surgery (Liang et al. 2020; Zhang et al. 2020).

Parameters	Favorable	Unfavorable
Patient-related	Oligometastasis glandular involvement	High tumor load polytopic bone metastases and/or multiple organ systems
Tumor-related	Clear cell RCC	Sarcomatoid subtype, medullary subtype, non-clear cell subtypes
Prognosis according to the IMDC	Favorable risk	Intermediate and poor risk

How should I treat a patient with favorable risk?

Suitable systemic treatment is selected based on its marketing authorization, principle recommendations, as well as on published data. The strengths and weaknesses of a treatment regime should be weighed against its suitability for the best possible application. In order to minimize the treatment risk and if the clinical course is indolent, the necessity for systemic therapy is low and active surveillance is our preferred option. Re-staging is recommended in 2–3 months’ time. Based on these considerations, the feasibility of an active monitoring strategy or initiation of a therapeutic measure should be evaluated.

In light of CheckMate214, JAVELINRenal 101 and Keynote-426 studies, no significant overall survival (OS) benefit was gained by any of the immune combinations for patients with a favorable risk profile (HR for OS: ipilimumab/nivolumab vs. sunitinib: 1.19 (95% CI 0.77–1.85), axitinib/pembrolizumab vs. sunitinib: 0.94 (95% CI 0.43–2.07), axitinib/avelumab vs. sunitinib: 0.812 (95% CI 0.336–1.960) (Motzer et al. 2020; Keytruda-EMEA 2020; Choueiri et al. 2020). A major limitation of these data are the short follow-up duration, which limits the data interpretation. However, at the current state, there is no signal that a specific combination is superior in OS expectations when compared to single agent sunitinib. This is supported by molecular findings, wherein IMDC favorable risk is associated with pro-angiogenic dependency (McDermott et al. 2018). However, a proportion of patients exert an inflamed tumor type, which may identify a patient population with potential clinical benefit from
Table 2

IMDC risk groups	1. Selection	Option
Favorable	Active surveillance	TKI
Intermediate	Axitinib + avelumab	Active surveillance (restaging in 3 months)
	Axitinib + pembrolizumab	cabozantinib
Unfavorable	Axitinib + avelumab	Ipilimumab + nivolumab
	Axitinib + pembrolizumab	Cabozantinib

The list is shown in alphabetical order. When selecting treatment, the individual patient and tumor characteristics listed in Table 2 should be considered.

CPI treatment. Today, there is no clinical test available to identify such patients. The best treatment strategy in these patients’ remains has not been defined and data is scarce. The identification of indolent disease and the absence of a survival signal for combinations in this patient population should caution treatment intensification and puts active monitoring and single agent TKI as preferred treatment options in the treatment algorithm of this patient cohort.

How should I treat a patient at intermediate or poor risk?

In cases who exert favorable clinical parameters depicted Table 1, patients with intermediate risk may receive active monitoring and deferred medical treatment as an alternative strategy to upfront medical treatment. However, most patients require systemic treatment and clinical benefits outweighs risk of immune-related adverse events/SARS CoV-2.

Patients with an intermediate or unfavorable risk profile had longer OS when taking immune combinations than patients taking TKI alone, which is why they should be used preferentially [HR for OS: ipilimumab/nivolumab vs. sunitinib: 0.66 (95% CI 0.55–0.8); axitinib/pembrolizumab intermediate prognosis: 0.53 (95% CI 0.35–0.82), poor prognosis: 0.43 (95% CI 0.23–0.81); axitinib/avelumab: intermediate prognosis: 0.86 (95% CI 0.61–1.202), poor prognosis: 0.57 (95% CI 0.363–0.895); Cabozantinib vs. sunitinib: 0.80 (0.53–1.21)] (Motzer et al. 2020; Keytruda-EMEA2020; Choueiri et al. 2018, 2020). To minimize the risk of immune-mediated adverse events, as well as high dose steroids application due to immune related adverse events, a careful patients based valuing is demanded to choose the best treatment regimen (Table 2). Overall, if clinical parameters in this cohort are favorable, the TKI cabozantinib reflects a therapeutic option. Otherwise, an immune combination represents the preferred form of treatment, in particular in poor prognosis patients, wherein the clear harm of the mRCC and the oncological efficacy overweight’s the risk of pandemic associated concerns.

What to conclude in SARS-CoV-2 pandemic for mRCC

Although precise guidelines according to mRCC treatment reflects best efficacy and QoL, data, within the SARS-CoV-2 pandemic a patient-centered treatment choice, which is adapted to the local pandemic situation is warranted (s. Table 2). Reflecting SARS-CoV-2-related comorbidity, patient’s and tumor characteristic’s, adverse events and hospitalization rates seem to be useful parameters to adjust risk/benefit ratio pandemic-adapted mRCC treatment choice. However, expanding real-world register data will answer the question which concerns where the right one, over- or under-treatment.

Acknowledgements

Open Access funding provided by Projek Deal.
Sanofi-Aventis, Pfizer, Roche. Participation in a company sponsored speaker’s bureau: Not applicable. Stock shareholder: Not applicable. Spouse/partner: Not applicable. Support (please specify): Travel Expense: Not applicable. MJ: Receipt of grants/research supports: Not applicable. Receipt of honoraria or consultation fees: BMS, Bayer, Eisai, EUSA, Hexal, Jansen, Merck Sermo, Medac, MSD, Pfizer, Roche. Participation in a company sponsored speaker’s bureau: Not applicable. Stock shareholder: Not applicable. Spouse/partner: Not applicable. Support (please specify): Travel Expense: Astellas, Bayer, Pfizer. JB: Receipt of grants/research supports (inst.): Eisai, Ipsen, MSD, Novartis, Roche, Pfizer. Receipt of honoraria or consultation fees: AstraZeneca, Astellas, BMS, Eisai, Ipsen, MSD, Novartis, Roche, EUSA Pharma, Nektar, Pfizer. Participation in a company sponsored speaker’s bureau: Not applicable. Stock shareholder: Not applicable. Spouse/partner: Not applicable. Support (please specify): Travel Expense: AstraZeneca, BMS, Ipsen, Pfizer, Roche, Bayer.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. You may not use the material for any purpose other than that permitted by the licence. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bersanelli M (2020) Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Immunotherapy. 12(5):269–273. https://doi.org/10.2217/imt-2020-0067

Choueiri TK, Hessel C, Halabi S, Sanford B, Michaelson MD, Hahn O et al (2018) Caborzantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): PROGRESSION-free survival by independent review and overall survival update. Eur J Cancer [Internet] 94:115–125

Choueiri TK, Motzer RJ, Rini BI, Haanen J, Campbell MT, Venugopal B et al (2020) Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann Oncol. 31(8):1030–1039. https://doi.org/10.1016/j.annonc.2020.04.010

Desai A, Sachdeva S, Parekh T, Desai R (2020) COVID-19 and cancer: lessons from a pooled meta-analysis. JCO Glob Oncol 6:557–559

Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V et al (2019) Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol [Internet] 30(5):706–720

Hanna TP, Evans GA, Booth CM (2020) Cancer, COVID-19 and the precautionary principle: prioritizing treatment during a global pandemic. Nat Rev Clin Oncol 17(5):268–270

Jones D, Neal RD, Duffy SRG, Scott SE, Whitaker KL, Brain K (2020) Comment Impact of the COVID-19 pandemic on the symptomatic diagnosis of cancer: the view from primary care. Lancet Oncol [Internet] 2045(20):19–20

Lai AG, Pasea L, Banerjee A, Denaxas S, Katsoulis M, Chang WH et al (2020) Estimating excess mortality in people with cancer and multimorbidity in the COVID-19 emergency. https://doi.org/10.1111/2050-3121.15005

Liang W, Guan W, Chen R, Wang W, Li J, Xu K et al (2020) Cancer patients in SARS-CoV-2 infection a nationwide analysis in China. Lancet Oncol. 21(3):335–337. https://doi.org/10.1016/S1470-2045(20)30096-6

McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B et al (2018) Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 24(6):749–757

Naidoo J, Wang X, Woo KM, Iyriboz T, Halpenny D, Cunningham J et al (2017) Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol 35(7):709–717

Motzer RJ, Escudier B, McDermott DF, Arén Frontera O, Melichar B, Powles T et al (2020) Survival outcomes and independent response assessment with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma: 42-month follow-up of a randomized phase 3 clinical trial. J Immunother Cancer 8(2):e000891. https://doi.org/10.1136/jitc-2020-000891

Rotz SJ, Leino D, Szabo S, Mangino JL, Turpin BK, Pressey JG (2017) Severe cytokine release syndrome in a patient receiving PD-1-directed therapy. Pediatr Blood Cancer 64(12). https://doi.org/10.1002/bpc.26642

Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F et al (2018) Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol 4(12):1721–1728

Yang F, Shi S, Zhu J, Shi J, Dai K, Chen X (2020) Clinical characteristics and outcomes of cancer patients with COVID-19. J Med Virol. https://doi.org/10.1002/jmv.25972

Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R et al (2020) Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan. China. Annal oncol 31(7):894–901

24/03/2020 Keytruda-EMEA/H/C/003820 - R/0081. https://www.ema.europa.eu/en/documents/product-information/keytruda-epar-product-productinformation_en.pdf. Accessed 10 May 2020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.