Electronic, Optic and Dynamic Properties of Rhombohedral BiTeBr

M N Secuk1 and H Akkus2
1Yuzuncu Yil University, Van, TURKEY
2Yuzuncu Yil University, Van, TURKEY

E-mail: 1m.nurullahsecuk@yyu.edu.tr
2harunakkus@yyu.edu.tr

Abstract. Electronic, optic and thermodynamic properties of rhombohedral BiTeBr crystal were investigated under the local density approximation (LDA) using the density functional theory. No spin-orbit interaction (SOI) were taken into account during calculations and band gap of 0.946 eV was found as which is different from experimental results but in good agreement with previous theoretical studies without SOI. For this new type ferroelectric BiTeBr from ground states features lattice parameters, electronic total density of states (TDOS), partial density of states (PDOS) and electronic band structure, from optical properties dielectric function, refraction index, extinction, reflection and absorption coefficients, number of effective valence electrons, volume and surface loss functions, among thermodynamic properties change in Helmholtz free energy, internal energy, entropy and constant volume specific heat as a function of temperature were studied.

1. Introduction

There exist many studies on structural, electronic, elastic, dynamic, thermodynamic and optic properties of crystalline structures [1-9]. Ferroelectric crystals are being used in industrial fields extensively due to their dielectric, piezoelectric and pyroelectric properties and especially semiconductors which inherently owns ferroelectric features are being utilized in memory materials, sound sonar detectors, convertors, etc [10, 17]. Among ferroelectric materials BaTiO\textsubscript{3} is the first invented one, then SbSI group of AVBVICVII semiconductors which are extremely sensitive in photoconductivity were found and studied [18]. The need for multi-functional, cheaper materials of high efficiency, caused an increase in interest for new types of ferroelectrics [19-26]. Among the type new ferroelectric semiconducting materials of AVBVICVII bismuth tellurohalids (BiTeCl, BiTeBr, BiTel) are of high importance because they own potential of being a part of spintronic studies because of giant Rashba split, as memory materials and they are topological insulators (insulating in the bulk and conducting at the surface), surfaces can be of n or p type semiconductor depending on the outermost layer of surface after the cut[27, 28].
Thus we investigated structural properties of rhombohedral BiTeBr crystal using density functional theory under the local density approximation.

Shevelkov et al [29] found crystalline structure of bismuth tellurobromide as rhombohedral of point group -\(3\text{m}\) and space group 156 (P-\(3\text{m}1\)) and with lattice parameters of \(a=8.062\) and \(c=12.259\) Bohr and unit cell volume of \(V_0=689.996\) (Bohr\(^3\)) given Figure 1. We firstly optimized structure of BiTeBr by total energy optimization with respect to cutoff kinetic energy of plane waves (\(E_{\text{cut}}\)) and number grids for \(k\) points (\(n_{gkpt}\)), then by atomic optimization for lattice parameters, unit cell volume and reduced coordinates and finally by a two steps volume optimization for lattice parameters and unit cell volume with and without optimized reduced coordinates. We found 40 Ha for \(E_{\text{cut}}\), 12x21x12 for \(n_{gkpt}\), 186 \(k\) points and best results we found in volume optimization with optimized reduced coordinates as 634.223 (Bohr\(^3\)). Nearest calculated value of volume to the experimental one is of the step of volume optimization by reduced coordinates found in atomic optimization as 634.223 (Bohr\(^3\)). So, remaining calculations were done by using results of this step where we optimized lattice parameters as 7.809 and 12.006 Bohr.

![Figure 1. Crystal structure of double layer bismuth tellurochloride [43].](image)

2. Computational Method

Electronic, optic and thermodynamic properties of rhombohedral BiTeBr crystal were investigated via ABINIT [31] under density functional theory. Calculations were performed within LDA by the FHI98PP self-consistent pseudopotentials [32] with the Ceperley-Alder-Perdew-Wang scheme which considers the exchange-correlation effects [33, 34].

Conjugate gradient minimization method [35] was utilized to solve Kohn-Sham equations [36] and plane augmented waves were used as basis set for electronic wave functions. True valance electrons were chosen as 6s\(^2\)6p\(^3\) for Bi, 5s\(^2\)5p\(^4\) for Te and 4s\(^2\)4p\(^5\) for Br. Structural optimizations were done to a good convergence at 40 Hartree of cutoff energy and 186 \(k\) points using 12x12x12 Monkhorst-Pack mesh grid [37] in BiTeBr crystal, but for better results higher values of were used in electronical and optical calculations.
3. Electronic Properties

This step was performed without SOI by pseudo potential method within LDA based on density functional theory (DFT). A grid of 24x24x24 was chosen and producing 1872 k points were found for best convergence. BiTeBr crystal has 9 valence bands and additional 9 conduction bands were used for calculations of electronic band structure where Fermi level was set to zero and as it is seen in figure 2 BiTeBr crystal has a direct band gap at high symmetry point of A with a value of 0.946 eV which is near to and better than those calculations done without SOI (1.1 eV) [38] but deviates from experiment because of not considering SOI and Rashba split.

![Figure 2. Electronic band structure and DOS for BiTeBr with E_F adjusted to 0 eV.](image)

Some of existing experimental and theoretical results on band gap of BiTeBr are given in table 3. The difference between experimental results and calculated ones originates from two main factors as utilizing pseudo-potential method and ignoring SOI. Pseudo-potential method and inherent intractability of density functional theory can cause different estimations of band gaps up to 50 % error, mostly underestimated [39], but sometimes overestimated band gaps can be gathered in calculations [38]. Overestimation in band gap is attributed to the nature of pseudo-potentials used and large spin orbit coupling (SOC) effect of Bi atom [41], which causes Rashba splitting in real crystal and band gap decreases.

![Figure 3. High symmetry points and paths in first Brillouin zone in reciprocal space [42].](image)

Ref. [30] (Exp.)	Ref. [38] (Teo.)	Present work (Teo)
0.62	1.1	0.946
As it is seen in figure 2 the paths of Γ-M-K-Γ and L-H-A are non-degenerate but the Γ-A path is highly degenerate.

4. Dynamic Properties
In bismuth tellurobromide crystal, unit cell contains 3 atoms at zero pressure. In the end of crystallization of BiTeI at zero pressure, Bi atoms are located at points of (0, 0, 0), Te atoms are located at (2/3, 1/3, 0.6928) while Br atoms are at (1/3, 2/3, 0.2510) in the reduced coordinates, inside the unit cell.

Figures below show the phonon band structure and phonon density of states for BiTeBr.

![Phonon band structure and PHDOS](image)

There are 3 atoms per unit cell the crystal, 9 phonon branches totally appear. While three of them are the acoustic branches, the remaining six are optical ones. Degeneracy exists especially between high symmetry points of G-A in Brillouin zone of BiTeBr crystal. As expected, acoustic phonon dispersion curves are linear as a function of k for small values of k.

Calculated frequency values of LO modes at the center of BZ are 2.37, 3.17 and 3.33 THz, while those of TO modes are at 3.60, 4.08 and 5.05 THz for BiTeBr.

There is a gap between the acoustic and the optic phonon branches. So, BiTeBr is a phononic crystal.

5. Optic Properties
20x20x20 M.P. mesh grid with 770 k points for optical calculations of BiTeBr crystal which is an optic crystal exhibiting symmetry of the point group -3m. Therefore the linear frequency dependent dielectric tensor for BiTeBr crystal has two non-zero and independent components in X and Z axes and calculated imaginary (ε_1) and real (ε_2) parts of these components are given in figures 5a and 5b for two axis separately.

![Imaginary and real parts of dielectric functions of BiTeBr](image)

Figure 5. Imaginary and real parts of dielectric functions of BiTeBr in a) X and b) Z directions.
As seen from these figures, real parts of linear dielectric functions, ε_2, reaches maximum values at 2.07 and 2.25 eV of photon energies for 11 (X) and 33 (Z) directions and the static dielectric constants for X and Z directions are 10.76 and 12.86, respectively.

The main peak values in the imaginary parts of linear dielectric functions, ε_1, (calculated in present work) are at 2.98 and 7.82 eV for X, and 3.34, 7.21 and 8.28 eV for Z directions, respectively. All of these values are at violet and near ultraviolet regions of spectrum.

For X direction, regions of 0-2 eV, 4.30-7.45 eV and above 8.60 eV, for Z direction 0-2.27 eV, 4.32-8.03 and above 9.23 eV are of normal dispersion where ε_2 increases as photon energy increases. Regions of transmition are 0-1.24 eV and above 17 eV, while 1.36-5.60 eV region is where reflection is strong and 5.60-17 eV is the region of absorption for Z axis while same regions for X axis are 0-1.60 eV and above 12 eV, 1.60-6.44 eV and 6.44-12 eV, respectively.

Figure 6. The calculated extinction coefficient (k), reflection (R) and absorption coefficients (α), number of effective valance electrons (N_{eff}), energy loss functions for both volume and surface, and refractive index (n) functions for BiTeBr in 11 (X) and in 33 (Z) directions.
Variations of some of optical properties as a function of energy (a-g) and of wavelength (h) are given above in figure 6. There are some different results in literature compared to ours which can be due to ignoring SOI and discrepancy of DFT [40].

6. Conclusions
Electronic, optic ad dynamic properties of BiTeBr were investigated by using ABINIT [31] code within the local density approximation in the density functional theory. Calculated lattice parameters and experimental ones are in agreement and calculated thermodynamic features are found as expected. Phonon band graph is very similar to the study of Sklyadneva [44] et al.

Acknowledgments
The calculations reported in this paper were partially done at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) and Theoretical Physics Lab. of Physics Department at Yuzuncu Yil University.

References
[1] Alward J F, Fong C Y, El-Batanouny M and Wooten F 1978 Electronic and optical properties of SbSBr, SbSI and SbSeI Solid State Comm. 25 307
[2] Edwardson P J, Boyer L L, Newman R L, Fox D H, Hardy J R, Flocken J W, Guenther R A and Mei W 1989 Ferroelectricity in perovskitelike NaCaF₃ predicted ab initio Phys. Rev. B 39 9738
[3] Akkus H and Erdinc B 2009 First-principles study of NaCdF₃ Phys. Status Solidi B 246 1334
[4] Flocken J W, Guenther R A, Hardy and J R and Boyer L L 1985 First-principles study of structural instabilities in halide-based perovskites: Competition between ferroelectricity and ferroelasticity Phys. Rev. B 31 7252
[5] Bingol S, Erdinc B and Akkus H 2015 Electronic band structure, optical, dynamical and thermodynamic properties of cesium chloride (CsCl) from first-principles International Journal for Simulation and Multidisciplinary Design Optimization (IJSMDO) 6: A7
[6] Gulebaglan S E 2012 The bowing parameters of CaₓMg₁₋ₓO ternary alloys Modern Physics Letters B 26 1250199–8
[7] Erdinc B, Soyalp F and Akkus H 2011 First-principles investigation of structural, electronic, optical and dynamical properties in CsAu Cent. Eur. J. Phys. 9 (5) 1315-20
[8] Erdinc B, Akkus H and Goksen K 2010 Electronic and optical properties of GaS: A firstprinciples study Gazi University Journal of Science (GUJ Sci) 23(4):413–22
[9] Erdinc B, Aycibin M, Secuk M N, Gulebaglan S E, Doğan E K and Akkus H 2014 Theoretical Study of Rhombohedral NaCaF₃ Crystal in the predicted ferroelectric phase Gazi University Journal of Science GUJ Sci) 27(4):1093–97
[10] Akkus H and Mamedov A 2006 Ab-initio calculation of band structure and linear optical properties of SbSI in para- and ferroelectric phases Open Physics 5(1) 25–34
[11] Akkus H, Kazempour A, Akbarzadeh H and Mamedov A M 2007 Band structure and optical properties of SbSeI: density-functional calculation Physica Status Solidi B 244 (10) 3673–83
[12] Akkus H, Mamedov A, Kazempour A and Akbarzadeh H 2008 Band structure and optical properties of antimony-sulfobromide: density functional calculation Open Physics 6(1) 64–75
[13] Koe H, Akkus H and Mamedov A M 2012 Band structure and optical properties of BiOCl: Density functional calculation Gazi University Journal of Science (GUJ Sci) 25(1) 9–17
[14] Akkus H, Cabuk S and Mamedov A M 2010 Linear and nonlinear optical susceptibilities in some ferroelectrics: Ab-initio calculation Int. J. Nanoelectronics and Materials 3 53–67
[15] Akkus H 2009 Density functional calculation of the electronic structures of some A²B³C²-type crystals International Journal of Modern Physics B 23 (1) 97–104
[16] Scott J F, Araujo C A and Mcmillan L D 1989 Ferroelectric Memory Applications IEEE 1989 Ultrasonics Symposium: Proceedings Vols 1 and 2 299–308
[17] Uchino K 2000 Ferroelectric Devices (New York: Marcel Dekker Inc.)
[18] Fatuzzo E, Harbeke G, Merz W J, Nitsche R, Roetschi H and W. Ruppel 1962 Ferroelectricity in SbSI Phys. Rev. 127 2036
[19] Duran D, Erdine B, Aycibin M and Akkus H 2015 Linear optical properties of ferroelectric semiconductor Bi$_2$NbO$_5$F crystal Ferroelectrics 486 25–32
[20] Ota Y, Abe T and Inushima T 2011 Phophon frequencies of ferroelectric semiconductor SbSBr by first principle calculation Ferroelectrics 414 113
[21] Audzijonis A, Zegas L and Kvedaravicious A 2012 The nature of anharmonicity and anomalous piezoelectric properties of ferroelectric SbSBr crystal Physica B 407 774

[22] Akkus H and Mamedov A M 2007 Linear and nonlinear optical properties of SbSi: First-principle calculation Ferroelectrics 352 148
[23] Li J F, Viehland D, Bhalla A and Cross L E 1992 Pyro-optic studies for infrared imaging J. App. Phys. 71 2106
[24] Akkus H and Mamedov A M 2007 Ab initio calculations of the electronic structure and linear optical properties, including self-energy effects, for paraelectric SbSi J. Phys. Condens. Matter 19 116207
[25] Audzijonis A and Sereika R 2010 The thermodynamic functions of SbSBr crystal Phase Trans. 83 389
[26] Dogan E K, Aycibin M, Gulebaglan S E, Secuk M N, Erdine B and Akkus H 2013 Structural, thermodynamic and phonon properties of SbSi and SbSBr single crystals Journal of the Korean Physical Society 63 2133–37
[27] Sakano M et al 2013 Strongly spin-orbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors Phys. Rev. Lett. 110 107204
[28] Zhiyong Z, Cheng Y and Schwingenschlög U 2013 Orbital-dependent Rashba coupling in bulk BiTeCl and BiTeI New Journal of Physics 15 023010
[29] Shevelkov A V, Dikarev E V, Shpanchenko R V and Popovkin B A 1995 Crystal structures of bismuth tellurohalides BiTeX (X = Cl, Br, I) from X-Ray Powder Diffraction Data J. of Sol. Stat. Chem. 114 379–84
[30] Akrap A, Teyssier J, Magrez A, Bugnon P, Berger H, Kuzmenko A B, Marel van der D 2014 Optical properties of BiTeBr and BiTeCl Phys. Rev. B 90 035201
[31] Gonze X et al 2002 First-principles computation of material properties: the ABINIT software project Comput. Mat. Sci. 25 478
[32] Fuch M and Scheffler M 1999 Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density functional theory Comput. Phys. Commun. 119 67–98
[33] Perdew J P and Wang Y 1992 Accurate and simple analytic representation of the electron-gas correlation energy Phys. Rev. B 45 13244
[34] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865
[35] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients Rev. Mod. Phys. 64 1045
[36] Kohn W and Sham L J, 1965 Self-consistent equations including exchange and correlation effects Phys. Rev. 140 A1133
[37] Monkhorst H J and Pack J D 1976 Special points for Brillouin-zone integrations Phys. Rev. B 13 5188
[38] Zhou S, Long J and Huang W 2014 Theoretical prediction of the fundamental properties of ternary bismuth tellurohalides Materials Science in Semiconductor Processing 27 605–10
[39] Wang Z M 2014 MoS$_2$: Materials, Physics, and Devices, Lecture Notes in Nanoscale and Technology 21 58
[40] Jacimovic J et al 2014 Enhanced low-temperature thermoelectrical properties of BiTeCl grown by topotactic method *Scripta Materialia* **76** 69

[41] Zhiyong Z, Yingchun C and Schwingenschlögl U 2013 Orbital-dependent Rashba coupling in bulk BiTeCl and BiTel *New Journal of Physics* **15** 023010

[42] http://exciting-code.org/forum/t-222178/k-space-high-symmetry-points

[43] Eremeev S V, Rusinov I P, Nechaev I A and Chulkov E V 2013 Rashba split surface states in BiTeBr *New Journal of Physics* **15** (2013) 075015

[44] Sklyadneva I Y, Heid R, Bohnen K P, Chis V, Volodin V A, Kokh K A, Tereshchenko O E, Echenique P M and Chulkov E V 2012 Lattice dynamics of bismuth tellurohalides *Physical Review B* **86**, 094302