Comment on “On the nature of magnetic stripes in cuprate superconductors,” by H. Jacobsen et al., arXiv:1704.08528v2

Manfred Bucher
Physics Department, California State University, Fresno,
Fresno, California 93740-8031

(Dated: May 15, 2017)

Abstract
Dynamics reduces the orthorhombicity of magnetic stripes in La_2CuO_{4+y}. The measured stripe incommensuration can be used to determine the oxygen content of the sample.
With elastic and inelastic neutron-scattering experiments on La_2CuO_{4+y} Jacobsen et al. have provided a valuable contribution to clarify the longstanding puzzle of static vs. dynamic stripes in the pseudogap state of cuprate superconductors. The authors’ main finding is a discrepancy between the incommensuration $\tilde{\delta}_j(\epsilon)$ of dynamic magnetic density waves (MDWs), extrapolated to vanishing energy ϵ, and the value $\tilde{\delta}_j$ from static MDWs,

$$\tilde{\delta}_j(\epsilon \to 0) \equiv \tilde{\delta}_j^0 \neq \tilde{\delta}_j \quad (j = h, k).$$

(1)

Here h and k label the components of unidirectional MDWs, approximately along the $Cu-O$ bonds in the CuO_2 plane, with respect to the orthorhombic a and b axes. The values are listed in Table I, reproduced from Ref. 1 (supplementary material). The purpose of this comment is twofold: (1) To show that a modified display of the data, Table II, provides more insight into similarities and differences of dynamic vs. static MDWs and qualitatively suggests a plausible explanation. (2) To determine the level of super-oxygenation y from the measured (average) incommensuration δ_{hk}.

Neutron scattering	Peak position	MDW mode	δ_h (r.l.u.)	δ_k (r.l.u.)
Elastic (010)	static	0.1233(3)	0.0950(5)	
Inelastic (010)	static	0.1038(15)	0.1147(8)	
Elastic (100)	static	0.1102(2)	0.1237(3)	
Inelastic (100)	dynamic	0.1093(2)	0.1173(3)	

TABLE I: Incommensuration $\tilde{\delta}_j$ and $\tilde{\delta}_j^0$ ($j = h, k$) of static and dynamic magnetic density waves, respectively, in La_2CuO_{4+y}, expressed in orthorhombic coordinates. Error bars are denoted in parentheses.

Scattering (Peak)	Average δ_{hk}	Deviation $\Delta \delta_h$	Deviation $\Delta \delta_k$	Orthorhombicity Ω
Elastic (010)	δ_h , δ_k = 0.1102	- 0.0135	+ 0.0135	0.12
Inelastic (010)	δ_h , δ_k = 0.1093	- 0.0055	+ 0.0055	0.05
Elastic (100)	δ_h , δ_k = 0.1092	+ 0.0141	- 0.0141	0.13

TABLE II: Incommensuration $\tilde{\delta}_j$ and $\tilde{\delta}_j^0$ of Table I expressed in terms of their average, $\delta_{hk} \equiv (\delta_h + \delta_k)/2$, deviation from the average, $\delta_j = \delta_{hk} + \Delta \delta_j$ ($j = h, k$), and orthorhombicity $\Omega \equiv |\Delta \delta/\delta_{hk}|$.

2
1. Magnetic density waves. The cross components of the incommensurations at the symmetry-related elastic peaks in Table I are found so close to be essentially equal, $\delta_h(100) \simeq \delta_k(010) \simeq 0.0959(5)$, and vice versa, $\delta_k(100) \simeq \delta_h(010) \simeq 0.1235(3)$. In contrast, a clear difference exists between the static and extrapolated dynamic values, $|\delta_h - \tilde{\delta}_h| = 0.07$ and $|\delta_k - \tilde{\delta}_k| = 0.09$, taken at the (100) peak, with the static values bracketing the dynamic ones. This is the surprising result of Ref. 1.

Using the average, $\delta_{hk} \equiv (\delta_h + \delta_k)/2$, and the deviation from the average, $\Delta \delta_j$ ($j = h, k$), the same data are displayed in Table II, to be viewed as $\delta_j = \delta_{hk} + \Delta \delta_j$. It now becomes obvious that the static and dynamic averages are essentially equal, $\overline{\delta_{hk}} \simeq \overline{\tilde{\delta}_{hk}} \simeq 0.1095$, suggesting a commonality of static and dynamic MDWs. The average δ_{hk} would be the tetragonal approximation of the orthorhombic incommensurations. The deviations from δ_{hk} mark their orthorhombicity, $\Omega \equiv |\Delta \delta/\delta_{hk}|$, being considerably larger for static MDWs than for dynamic ones, $\overline{\Omega}/\overline{\Omega^0} \simeq 2.5$.

Why have the dynamic incommensurations $\tilde{\delta}_{j}^0$ less orthorhombicity? A static MDW can be regarded a (magnetic) superlattice of lattice constants $D_j = 1/\delta_j$. A dynamic MDW, in contrast, can be considered a standing wave of oscillating magnetic dipoles with wavelength components $\tilde{\lambda}_{j}^0 = 1/\tilde{\delta}_{j}^0$. Generally, the motional aspect of dynamics promotes isotropy (here, in the CuO$_2$ plane). The oscillations of the dynamic MDWs then tend to tetragonalize their orthorhombic wavelengths $\tilde{\lambda}_{j}^0$, preventing a relaxation of the magnetic dipoles to a (static) superlattice of larger orthorhombicity. This notion is corroborated by still less orthorhombicity of dynamic MDWs with higher energy ϵ—albeit to a much lesser degree, $\Delta \tilde{\Omega}/\Delta \epsilon = -0.007$/meV (based on Fig. 3 of Ref. 1).

2. Oxygen content. A frequent problem with oxygen-enriched cuprates is uncertainty about the exact level of super-oxygenation y. In many cases samples are characterized by the superconducting transition temperature T_c instead of the value of y. The sample used in Ref. 1 has $T_c \simeq 40$ K, similar to the sample used by Lee et al. A thermogravitimetric analysis of the latter sample gave an estimate of oxygen enrichment $y = 0.12 \pm 0.01$. The main quantity of interest is, of course, the hole doping level p (per Cu atom in the CuO$_2$ plane) caused by super-oxygenation y. No such problem occurs in the much-studied companion lanthanum cuprates $La_{2-x}Ae_xCuO_4$ ($Ae = Sr, Ba$) that are hole-doped through infravalent cation doping x with a hole doping level $p = x$. In the latter materials MDWs
and charge-density waves (CDWs) appear together, called “stripes.” Their incommensuration, \(\delta(x) \propto \sqrt{x - x_0^N} \), depends on the cation doping \(x \), diminished by the Néel point \(x_0^N = 0.02 \) (collapse of 3D antiferromagnetism at \(T = 0 \)).

It is tempting to extend the incommensuration formula from the cation-doped to the oxygen-enriched \(La_2CuO_4 \) compounds. Assuming that each enriching oxygen atom in \(La_2CuO_{4+y} \) gives rise to two doped holes, \(p = 2y \), the formula for MDWs, expressed in terms of oxygen enrichment and orthorhombic coordinates (but in tetragonal approximation) becomes,

\[
\delta_{hk}(y) = \frac{1}{4}\sqrt{2y - x_0^N}.
\]

Solving for \(y = 8\delta_{hk}^2 + x_0^N/2 \) and using the average incommensuration \(\delta_{hk} = 0.1095 \) r.l.u. gives \(y = 0.105 \pm 0.005 \), comparable with the estimate by Lee et al., \(y = 0.12 \pm 0.01 \).

ACKNOWLEDGMENTS

I thank Sonja Lindahl Holm and Henrik Jacobsen for literature links and information about the oxygen content of the sample.

1. H. Jacobsen, S. L. Holm, M.-E. Lăcătușu, M. Bertelsen, M. Boehm, R. Toft-Petersen, J.-C. Grivel, S. B. Emery, L. Udby, B. O. Wells, and K. Lefmann, “On the nature of magnetic stripes in cuprate superconductors”, [arXiv:1704.08528v2](https://arxiv.org/abs/1704.08528v2)

2. Y. S. Lee, R. J. Birgeneau, M. A. Kastner, Y. Endoh, S. Wakimoto, K. Yamada, R. W. Erwin, S.-H. Lee, and G. Shirane, Phys. Rev. B **60**, 3643 (1999).

3. J. M. Tranquada, Physica B **407**, 1771 (2012).

4. M. Bucher, “Universality of density waves in \(p \)-doped \(La_2CuO_4 \) and \(n \)-doped \(Nd_2CuO_{4+y} \)”, [arXiv:1702.05364](https://arxiv.org/abs/1702.05364)