CRITICAL SET OF THE MASTER FUNCTION AND CHARACTERISTIC VARIETY OF THE ASSOCIATED GAUSS-MANIN DIFFERENTIAL EQUATIONS

A. VARCHENKO

Department of Mathematics, University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3250, USA

Abstract. We consider a weighted family of \(n \) parallelly transported hyperplanes in a \(k \)-dimensional affine space and describe the characteristic variety of the Gauss-Manin differential equations for associated hypergeometric integrals. The characteristic variety is given as the zero set of Laurent polynomials, whose coefficients are determined by weights and the associated point in the Grassmannian \(\text{Gr}(k, n) \). The Laurent polynomials are in involution.

An intermediate object between the differential equations and the characteristic variety is the algebra of functions on the critical set of the associated master function. We construct a linear isomorphism between the vector space of the Gauss-Manin differential equations and the algebra of functions. The isomorphism allows us to describe the characteristic variety. It also allowed us to define an integral structure on the vector space of the algebra and the associated (combinatorial) connection on the family of such algebras.

Contents

1. Introduction 2
2. Arrangements 4
2.1. Affine arrangement 4
2.2. Orlik-Solomon algebra 4
2.3. Aomoto complex 5
2.4. Flag complex, see [SV] 5
2.5. Euler characteristic of \(U(C) \) 5
2.6. Duality 6
2.7. Contravariant map and form, see [SV] 6
2.8. Generic weights 6
2.9. Differential forms 6
2.10. Master function 7
2.11. Isolated critical points 7
2.12. Residue 7
2.13. Canonical element 8
2.14. Canonical isomorphism 8
2.15. Orthogonal projection 9
2.16. Proof of Theorems 2.12 and 2.16 10
2.17. Integral structure on \(O(C_c,a) \) and \(\text{Sing}_a F^k(C) \) 10
2.18. Skew-commutative versus commutative 11
2.19. Combinatorial connection 11

E-mail: anv@email.unc.edu, supported in part by NSF grant DMS-1362924
1. Introduction

There are three places, where a flat connection depending on a parameter appears:

- KZ equations, \(\kappa \frac{\partial I}{\partial z_i} = K_i I, \ i = 1, \ldots, n \). Here \(\kappa \) is a parameter, \(I(z_1, \ldots, z_n) \) a \(V \)-valued function, where \(V \) is a vector space from representation theory, \(K_i : V \to V \) are linear operators, depending on \(z \). The connection is flat for all \(\kappa \), see, for example, [EFK, V2].

- Quantum differential equations, \(\kappa \frac{\partial I}{\partial z_i} = p_i * z I, \ i = 1, \ldots, n \). Here \(p_1, \ldots, p_n \) are generators of some commutative algebra \(H \) with quantum multiplication \(*_z\) depending on \(z \). The connection is flat for all \(\kappa \). These equations are a part of the Frobenius structure on the quantum cohomology of a variety, see [D, M].

- Differential equations for hypergeometric integrals associated with a family of weighted arrangements with parallelly transported hyperplanes, \(\kappa \frac{\partial I}{\partial z_i} = K_i I, \ i = 1, \ldots, n \). The connection is flat for all \(\kappa \), see, for example, [V1, OT1].

If \(\kappa \frac{\partial I}{\partial z_i} = K_i I, \ i = 1, \ldots, n,\) is a system of \(V \)-valued differential equations of one of these types, then its characteristic variety is

\[
\text{Spec} = \{(q, p) \in T^* \mathbb{C}^n \mid \exists v \in V \text{ with } K_j(q)v = p_j v, \ j = 1, \ldots, n\}.
\]

It is known that the characteristic varieties of the first two types of differential equation are interesting objects. For example, the characteristic variety of the quantum differential equation of the flag variety is the zero set of the Hamiltonians of the classical Toda lattice, see [G, GK], and the characteristic variety of the \(\mathfrak{g} \mathfrak{l}_N \) KZ equations with values in the tensor power of the vector representation is the zero set of the Hamiltonians of the classical Calogero-Moser system, see [MTV2].
In this paper we describe the characteristic variety of the Gauss-Manin differential equations for hypergeometric integrals associated with an arbitrary weighted family of \(n \) parallely transported hyperplanes in \(\mathbb{C}^k \). This description generalizes [V7] Corollary 4.2, where such a description was obtained for a weighted generic family of parallely transported hyperplanes. The characteristic variety is given as the zero set of Laurent polynomials, whose coefficients are determined by weights and the associated point in the Grassmannian \(\text{Gr}(k, n) \). The Laurent polynomials are in involution.

It is known that the KZ differential equations, as well as some quantum differential equations, can be identified with certain symmetric parts of the Gauss-Manin differential equations of weighted families of parallely transported hyperplanes, see [SV, TV]. Therefore, the results of this paper on the characteristic variety is a step to studying characteristic varieties of more general KZ and quantum differential equations, which admit integral hypergeometric representations.

Our description of the characteristic variety is based on the fact [V4], that the characteristic variety of the Gauss-Manin differential equations is generated by the critical point equations; the space \(H^k(\mathcal{F}(\mathcal{C}), d) \) is a combinatorial object defined by the matroid of the arrangement \(\mathcal{C} \), the isomorphism \(\mathcal{E} \) is given by a \(k \)-dimensional integral. Our first main result, Theorem 2.16, gives an elementary isomorphism \(\{S^{(a)}\} : H^k(\mathcal{F}(\mathcal{C}), d) \to \mathcal{O}(C_{\mathcal{C},a}) \) such that \(\{S^{(a)}\} \circ \mathcal{E} = (-1)^k \). Theorem 2.16 allows us to bring to \(\mathcal{O}(C_{\mathcal{C},a}) \) the combinatorial structures on \(H^k(\mathcal{F}(\mathcal{C}), d) \). In particular, we construct a set \(\{w_{\alpha_0,\ldots,\alpha_k}\} \) of marked elements of \(\mathcal{O}(C_{\mathcal{C},a}) \), labeled by flags of edges of \(\mathcal{C} \), which spans the vector space \(\mathcal{O}(C_{\mathcal{C},a}) \). We give the linear relations between the marked elements, the relations are with integer coefficients and depend only on the matroid of \(\mathcal{C} \), see Corollary 2.18.

In Section 3 we consider a family of weighted arrangements \((\mathcal{C}(x), a) \) of \(n \) affine hyperplanes in \(\mathbb{C}^k \), parameterized by \(x \in \mathbb{C}^n \). The hyperplanes of \((\mathcal{C}(x), a) \) are transported parallelly as \(x \) changes. Each of the arrangements has the algebra \(\mathcal{O}(C_{\mathcal{C}(x),a}) \) of functions on the critical set \(C_{\mathcal{C}(x),a} \) of the associated master function. We define the discriminant \(\Delta \subset \mathbb{C}^n \) so that the combinatorics of \(\mathcal{C}(x) \) does not change when \(x \) runs through \(\mathbb{C}^n - \Delta \). The constructions of Section 2 provide us with the vector bundle of algebras \(\bigcup_{x \in \mathbb{C}^n - \Delta} \mathcal{O}(C_{\mathcal{C}(x),a}) \to \mathbb{C}^n - \Delta \), whose fibers are canonically identified with the help of the marked elements. The multiplication in \(\mathcal{O}(C_{\mathcal{C}(x),a}) \) depends on \(x \). The isomorphism \(H^k(\mathcal{F}(\mathcal{C}(x)), d) \to \mathcal{O}(C_{\mathcal{C}(x),a}) \) of Section 2 allows us to describe the multiplication in \(\mathcal{O}(C_{\mathcal{C}(x),a}) \) combinatorially, see Corollary 3.8.
We describe the Gauss-Manin differential equations associated with the weighted family of arrangements as a system of differential equations on the bundle of algebras.

In Section 4.1 for given k-dimensional vector subspace $Y \subset \mathbb{C}^n$ and weight $a \in (\mathbb{C}^*)^n$, we define a Lagrangian variety $L_{Y,a} \subset \mathbb{C}^n \times (\mathbb{C}^n)^*$. We consider the projection $\pi_{L_{Y,a}} : L_{Y,a} \rightarrow \mathbb{C}^n$ and the algebras of functions $\mathcal{O}(L_{Y,a}(x))$ on fibers of the projection. We describe $L_{Y,a}$ as the zero set of Laurent polynomials in involution.

In Section 4.3, for the family of arrangements $\mathcal{C}(x)$ considered in Section 3, we define a Lagrangian variety $L_{\mathcal{C}(x),a}$ and the algebras of functions $\mathcal{O}(L_{\mathcal{C}(x),a}(x))$ on fibers of the projection. We describe $L_{\mathcal{C}(x),a}$ as the zero set of Laurent polynomials in involution.

In Section 4.4 we describe the ratio of the Hessian element in $\mathcal{O}(L_{\mathcal{C}(x),a}(x))$ and in Corollary 4.10 we identify the standard residue form on $\mathcal{O}(C_{\mathcal{C}(x),a})$, defined by a k-dimensional integral, with a residue form on $\mathcal{O}(L_{\mathcal{C}(x),a}(x))$, defined by an n-dimensional integral. In Section 4.5 we consider the vector bundle of algebras $\mathbb{C}^{n-\Delta}$ and construct an isomorphism $\Psi_{\mathcal{C}(x),a}^* : \mathcal{O}(L_{\mathcal{C}(x),a}(x)) \rightarrow \mathbb{C}^{n-\Delta}$. The isomorphism $\Psi_{\mathcal{C}(x),a}^*$ allows us to identify the fibers of the bundle and describe the Gauss-Manin differential equations with values in that bundle. They have the form $
abla_{\Psi T}(x) = [p_j]^* x$, $j = 1, \ldots, n$, where p_1, \ldots, p_n are coordinates on \mathbb{C}^n, p_1, \ldots, p_n are the dual coordinates on $(\mathbb{C}^*)^*$, $[p_j]^* x$ is the multiplication by p_j in $\mathcal{O}(L_{\mathcal{C}(x),a}(x))$.

In Section 4.6 we observe a rather unexpected ‘reality’ property of the Lagrangian variety $L_{\mathcal{C}(x),a}$, which is similar to the reality property of Schubert calculus, see [MTV2, MTV3, So].

In Theorem 5.1 we identify the characteristic variety of the Gauss-Manin differential equations associated with the family of arrangements considered in Section 3 and the Lagrangian variety $L_{\mathcal{C}(x),a}$ defined in Section 4.3.

The author thanks V. Tarasov for collaboration. The proof of Theorem 2.10 is the result of joint efforts. The author thanks B. Dubrovin and A. Veselov for helpful discussions.

2. Arrangements

2.1. Affine arrangement. Let k, n be positive integers, $k < n$. Denote $J = \{1, \ldots, n\}$.

Consider the complex affine space \mathbb{C}^k with coordinates t_1, \ldots, t_k. Let $\mathcal{C} = (H_j)_{j \in J}$, be an arrangement of n affine hyperplanes in \mathbb{C}^k. Denote $U(\mathcal{C}) = \mathbb{C}^k - \bigcup_{j \in J} H_j$, the complement. An edge $X_\alpha \subset \mathbb{C}^k$ of \mathcal{C} is a nonempty intersection of some hyperplanes of \mathcal{C}. Denote by $J_\alpha \subset J$ the subset of indices of all hyperplanes containing X_α. Denote $l_\alpha = \operatorname{codim}_{\mathbb{C}^k} X_\alpha$.

We assume that \mathcal{C} is essential, that is, \mathcal{C} has a vertex, an edge which is a point.

An edge is called dense if the subarrangement of all hyperplanes containing it is irreducible: the hyperplanes cannot be partitioned into nonempty sets so that, after a change of coordinates, hyperplanes in different sets are in different coordinates. In particular, each hyperplane of \mathcal{C} is a dense edge.

2.2. Orlik-Solomon algebra. Define complex vector spaces $\mathcal{A}^p(\mathcal{C})$, $p = 0, \ldots, k$. For $p = 0$, we set $\mathcal{A}^p(\mathcal{C}) = \mathbb{C}$. For $p \geq 1$, $\mathcal{A}^p(\mathcal{C})$ is generated by symbols $(H_{j_1}, \ldots, H_{j_p})$ with $j_i \in J$, such that:

(i) $(H_{j_1}, \ldots, H_{j_p}) = 0$ if H_{j_1}, \ldots, H_{j_p} are not in general position, that is, if the intersection $H_{j_1} \cap \ldots \cap H_{j_p}$ is empty or has codimension less than p.
(ii) \((H_{j_{\sigma(1)}}, \ldots, H_{j_{\sigma(p)}}) = (-1)^{\sigma_1}(H_{j_1}, \ldots, H_{j_p})\) for any element \(\sigma\) of the symmetric group \(\Sigma_p;\)

(iii) \(\sum_{i=1}^{p+1} (-1)^i (H_{j_1}, \ldots, \hat{H}_{j_i}, \ldots, H_{j_{p+1}}) = 0\) for any \((p+1)\)-tuple \(H_{j_1}, \ldots, H_{j_{p+1}}\) of hyperplanes in \(C\) which are not in general position and such that \(H_{j_1} \cap \ldots \cap H_{j_{p+1}} \neq \emptyset\).

The direct sum \(\mathcal{A}(C) = \bigoplus_{p=1}^{\infty} \mathcal{A}_p^p(C)\) is the Orlik-Solomon algebra with respect to multiplication \((H_{j_1}, \ldots, H_{j_p}) \cdot (H_{j_{p+1}}, \ldots, H_{j_{p+q}}) = (H_{j_1}, \ldots, H_{j_p}, H_{j_{p+1}}, \ldots, H_{j_{p+q}})\).

2.3. **Aomoto complex.** Fix a point \(a = (a_1, \ldots, a_n) \in (\mathbb{C}^\times)^n\) called the *weight*. Then the arrangement \(C\) is *weighted*: for \(j \in J\), we assign weight \(a_j\) to hyperplane \(H_j\). For an edge \(X_\alpha\), define its weight \(\omega_\alpha = \sum_{j \in I_\alpha} a_j\). We define \(\omega^{(a)}(\alpha) = \sum_{j \in J} a_j \cdot (H_j) \in \mathcal{A}^1(C)\). Multiplication by \(\omega^{(a)}\) defines the differential \(d^{(a)} : \mathcal{A}^p(C) \to \mathcal{A}^{p+1}(C), x \mapsto \omega^{(a)} \cdot x\), on \(\mathcal{A}(C)\), \((d^{(a)})^2 = 0\).

The complex \((\mathcal{A}(C), d^{(a)})\) is called the Aomoto complex.

2.4. **Flag complex, see [SV].** For an edge \(X_\alpha\), \(l_\alpha = p\), a *flag* starting at \(X_\alpha\) is a sequence \(X_{\alpha_0} \supset X_{\alpha_1} \supset \cdots \supset X_{\alpha_p} = X_\alpha\) of edges such that \(l_{\alpha_j} = j\) for \(j = 0, \ldots, p\). For an edge \(X_\alpha\), we define \((\mathcal{F}_\alpha)_\mathbb{Z}\) as the free \(\mathbb{Z}\)-module generated by the elements \(\overline{F}_{\alpha_0, \ldots, \alpha_p} = \alpha\) labeled by the elements of the set of all flags starting at \(X_\alpha\). We define \((\mathcal{F}_\alpha)_\mathbb{Z}\) as the quotient of \((\mathcal{F}_\alpha)_\mathbb{Z}\) by the submodule generated by all the elements of the form

\[
\sum_{\beta, \alpha_{\beta-1} \supset \alpha_{\beta} \supset \alpha_{\beta+1}} \overline{F}_{\alpha_0, \ldots, \alpha_{\beta-1}, \beta, \alpha_{\beta+1}, \ldots, \alpha_p}.
\]

Such an element is determined by \(j \in \{1, \ldots, p-1\}\) and an incomplete flag \(X_{\alpha_0} \supset \cdots \supset X_{\alpha_{j-1}} \supset X_{\alpha_{j+1}} \supset \cdots \supset X_{\alpha_p} = X_\alpha\) with \(l_{\alpha_i} = i\).

We denote by \(F_{\alpha_0, \ldots, \alpha_p}\) the image in \((\mathcal{F}_\alpha)_\mathbb{Z}\) of the element \(\overline{F}_{\alpha_0, \ldots, \alpha_p}\). For \(p = 0, \ldots, k\), we set \((\mathcal{F}_p(C))_\mathbb{Z} = \bigoplus_{X_\alpha} X_{\alpha_0} \cdot (\mathcal{F}_\alpha)_\mathbb{Z}\), \(\mathcal{F}_p(C) = (\mathcal{F}_p(C))_\mathbb{Z} \otimes \mathbb{C}\), \(\mathcal{F}(C) = \bigoplus_{p=1}^{\infty} \mathcal{F}_p(C)\). We define the differential \(d^p : (\mathcal{F}_p(C))_\mathbb{Z} \to (\mathcal{F}_{p+1}(C))_\mathbb{Z}\) by

\[
d^p : F_{\alpha_0, \ldots, \alpha_p} \mapsto \sum_{\beta, \alpha_\beta} X_\beta \cdot X_{\alpha_p} \overline{F}_{\alpha_0, \ldots, \alpha_p, \beta},
\]

\(d^p = 0\). Tensoring \(d^p\) with \(\mathbb{C}\), we obtain the differential \(d : \mathcal{F}^p(C) \to \mathcal{F}^{p+1}(C)\). In particular, we have

\[
H^p(\mathcal{F}(C), d) = H^p((\mathcal{F}(C))_\mathbb{Z}, d^p) \otimes \mathbb{C}.
\]

Theorem 2.1 ([SV Corollary 2.8]). *We have \(H^p(\mathcal{F}(C), d) = 0\) for \(p \neq k\) and \(\dim H^k(\mathcal{F}(C), d) = |\chi(U(C))|\), where \(\chi(U(C))\) is the Euler characteristic of the complement \(U(C)\).*

\(\square\)

2.5. **Euler characteristic of \(U(C)\).** A formula for the Euler characteristic \(\chi(U(C))\) in terms of the matroid, associated with \(C\), see in [STV Proposition 2.3]. The condition \(\chi(U(C)) \neq 0\) is discussed in [C Theorem 2], cited as Theorem 2.4 in [STV]. On the equality of the absolute value \(|\chi(U(C))|\) and the number of bounded components of the real part of \(U(C)\) see, for example, [V2].
2.6. **Duality.** The vector spaces $\mathcal{A}^p(\mathcal{C})$ and $\mathcal{F}^p(\mathcal{C})$ are dual, see [SV]. The pairing $\mathcal{A}^p(\mathcal{C}) \otimes \mathcal{F}^p(\mathcal{C}) \to \mathbb{C}$ is defined as follows. For H_{j_1}, \ldots, H_{j_p} in general position, set $F(H_{j_1}, \ldots, H_{j_p}) = F_{a_0, \ldots, a_p}$, where $X_{a_0} = \mathbb{C}^k$, $X_{a_1} = H_{j_1}$, \ldots, $X_{a_p} = H_{j_1} \cap \cdots \cap H_{j_p}$. Then we define $\langle (H_{j_1}, \ldots, H_{j_p}), F_{a_0, \ldots, a_p} \rangle = (-1)^{|a|}$, if $F_{a_0, \ldots, a_p} = F(H_{j_{\sigma(1)}}, \ldots, H_{j_{\sigma(p)}})$ for some $\sigma \in S_p$, and $\langle (H_{j_1}, \ldots, H_{j_p}), F_{a_0, \ldots, a_p} \rangle = 0$ otherwise.

An element $F \in \mathcal{F}^k(\mathcal{C})$ is called *singular* if F annihilates the image of the map $d^{(a)} : \mathcal{A}^{k-1}(\mathcal{C}) \to \mathcal{A}^k(\mathcal{C})$, see [V4]. Denote by $\text{Sing}_a \mathcal{F}^k(\mathcal{C}) \subset \mathcal{F}^k(\mathcal{C})$ the subspace of all singular vectors.

2.7. **Contravariant map and form, see [SV].** The weights a determines the contravariant map

$$S^{(a)} : \mathcal{F}^p(\mathcal{C}) \to \mathcal{A}^p(\mathcal{C}), \quad F_{a_0, \ldots, a_p} \mapsto \sum a_{j_1} \cdots a_{j_p} (H_{j_1}, \ldots, H_{j_p}),$$

where the sum is taken over all p-tuples $(H_{j_1}, \ldots, H_{j_p})$ such that $H_{j_1} \supset X_{a_1}, \ldots, H_{j_p} \supset X_{a_p}$.

Identifying $\mathcal{A}^p(\mathcal{C})$ with $\mathcal{F}^p(\mathcal{C})^*$, we consider the map as a bilinear form, $S^{(a)} : \mathcal{F}^p(\mathcal{C}) \otimes \mathcal{F}^p(\mathcal{C}) \to \mathbb{C}$. The bilinear form is called the *contravariant form*. The contravariant form is symmetric. For $F_1, F_2 \in \mathcal{F}^p(\mathcal{C})$,

$$S^{(a)}(F_1, F_2) = \sum_{(j_1, \ldots, j_p) \subset J} a_{j_1} \cdots a_{j_p} \langle (H_{j_1}, \ldots, H_{j_p}), F_1 \rangle \langle (H_{j_1}, \ldots, H_{j_p}), F_2 \rangle,$$

where the sum is over all unordered p-element subsets.

Lemma 2.2 ([SV Lemma 3.2.5]). The contravariant map (2.4) defines a homomorphism of complexes $S^{(a)} : (\mathcal{F}(\mathcal{C}), d) \to (\mathcal{A}(\mathcal{C}), d^{(a)})$. \hfill \Box

2.8. **Generic weights.**

Theorem 2.3 ([SV Theorem 3.7]). If the weight a is such that none of the dense edges has weight zero, then the contravariant form is nondegenerate. In particular, we have an isomorphism of complexes $S : (\mathcal{F}(\mathcal{C}), d) \to (\mathcal{A}(\mathcal{C}), d^{(a)})$. \hfill \Box

Theorem 2.4 ([SV YI OT2]). If the weight a is such that none of the dense edges has weight zero, then $H^p(\mathcal{A}^*(\mathcal{C}), d^{(a)}) = 0$ for $p \neq k$ and $\dim H^k(\mathcal{A}^*(\mathcal{C}), d^{(a)}) = |\chi(U(\mathcal{C}))|$. \hfill \Box

Theorem 2.2 is a corollary of Lemma 2.2 and Theorems 2.1 and 2.3.

Corollary 2.5. If the weight a is such that none of the dense edges has weight zero, then the dimension of $\text{Sing}_a \mathcal{F}^k(\mathcal{C})$ equals $|\chi(U(\mathcal{C}))|$.

Notice that none of the dense edges has weight zero if all weights are positive.

2.9. **Differential forms.** For $j \in J$, fix defining equations $f_j = 0$ for the hyperplanes H_j, where $f_j = b_j^1 t_1 + \cdots + b_j^k t_k + z_j$ with $b_j, z_j \in \mathbb{C}$. Consider the logarithmic differential 1-form $\omega_j = df_j / f_j$ on \mathbb{C}^k. Let $\mathcal{A}(\mathcal{C})$ be the exterior \mathbb{C}-algebra of differential forms generated by 1 and $\omega_j, j \in J$. The map $\mathcal{A}(\mathcal{C}) \to \mathcal{A}(\mathcal{C}), (H_j) \mapsto \omega_j$, is an isomorphism. We identify $\mathcal{A}(\mathcal{C})$ and $\mathcal{A}(\mathcal{C})$.

For $I = \{i_1, \ldots, i_k\} \subset J$, denote $d_I = d_{i_1, \ldots, i_k} = \text{det}_{i=1}^{k} (b_{i_i}^i)$. Then

$$\omega_{i_1} \wedge \cdots \wedge \omega_{i_k} = \frac{d_{i_1, \ldots, i_k}}{f_{i_1} \cdots f_{i_k}} dt_1 \wedge \cdots \wedge dt_k.$$

Lemma 2.6. The functions $(1/f)_{j \in J}$ separate points of $U(\mathcal{C})$. \hfill \Box
2.10. Master function. The master function of the weighted arrangement \((C, a) \) is

\[
\Phi_{C,a} = \sum_{j \in J} a_j \log f_j,
\]

a multivalued function on \(U(C) \). We have \(d\Phi_{C,a} = \sum_{j \in J} a_j j = \omega(a) \in A^1(C) \). Let \(C_{C,a} = \{ u \in U(C) \mid \frac{\partial \Phi_{C,a}}{\partial t_i}(u) = 0 \text{ for } i = 1, \ldots, k \} \) be the critical set of \(\Phi_{C,a} \). The critical point equations can be reformulated as the equation \(\omega(a)|_u = 0 \). Notice that

\[
\frac{\partial \Phi_{C,a}}{\partial t_i} = \sum_{j=1}^n b_{ij} \frac{a_j}{f_j} \quad \text{and} \quad \frac{\partial \Phi_{C,a}}{\partial z_j} = \frac{a_j}{f_j}.
\]

Define the Hessian of the master function, \(\text{Hess}_{C,a} = \det_{i,j=1}^k \left(\frac{\partial^2 \Phi_{C,a}}{\partial t_i \partial t_j} \right) \). A critical point \(u \in C_{C,a} \) is nondegenerate if \(\text{Hess}_{C,a}(u) \neq 0 \). We have the formula in [V4]:

\[
\text{Hess}_{C,a} = (-1)^k \sum_{I \subseteq J, |I| = k} d_I^2 \prod_{i \in I} \frac{a_i}{f_i^2}.
\]

2.11. Isolated critical points.

Theorem 2.7 ([V2], OT1, SI). For generic exponent \(a \in (\mathbb{C}^*)^n \), all critical points of \(\Phi_{C,a} \) are nondegenerate and the number of critical points equals \(|\chi(U(C))| \).

Consider the projective space \(\mathbb{P}^k \) compactifying \(\mathbb{C}^k \). Assign the weight \(a_\infty = -\sum_{j \in J} a_j \) to the hyperplane \(H_\infty = \mathbb{P}^k - \mathbb{C}^k \). Denote by \(C^v \) the arrangement \((H_j)_{j \in J \cup \infty} \) in \(\mathbb{P}^k \). The weighted arrangement \((C, a) \) is called *unbalanced* if the weight of any dense edge of \(C^v \) is nonzero, see [V3]. For example, \((C, a) \) is unbalanced if all weights \((a_j)_{j \in J} \) are positive. The unbalanced weights form a Zarisky open subset in the space of all weights \(a \in (\mathbb{C}^*)^n \).

Lemma 2.8 ([V3], Section 4). If \((C, a) \) is unbalanced, then all critical points of \(\Phi_{C,a} \) are isolated and the sum of their Milnor numbers equals \(|\chi(U(C))| \).

2.12. Residue. Let \(\mathcal{O}(U(C)) \) be the algebra of regular functions on \(U(C) \) and \(I_{C,a} = \langle \frac{\partial \Phi_{C,a}}{\partial t_i} \mid i = 1, \ldots, k \rangle \subset \mathcal{O}(U(C)) \) the ideal generated by the first derivatives of \(\Phi_{C,a} \). Let \(\mathcal{O}(C_{C,a}) = \mathcal{O}(U(C))/I_{C,a} \) be the algebra of functions on the critical set and \(\lbrack \lbrack : \mathcal{O}(U(C)) \to \mathcal{O}(C_{C,a}), f \mapsto [f] \), the projection. The algebra \(\mathcal{O}(C_{C,a}) \) is finite-dimensional, if all critical points are isolated. In that case, \(\mathcal{O}(C_{C,a}) = \bigoplus_{u \in C_{C,a}} \mathcal{O}(C_{C,a})_u \), where \(\mathcal{O}(C_{C,a})_u \) is the local algebra corresponding to the point \(u \).

Lemma 2.9 ([V3], Lemma 2.5). If the algebra \(\mathcal{O}(C_{C,a}) \) is finite-dimensional, then the elements \([1/f_j], j \in J, \) generate \(\mathcal{O}(C_{C,a}) \).

Let \(\mathcal{R}_u : \mathcal{O}(C_{C,a})_u \to \mathbb{C} \) be the Grothendieck residue,

\[
[f] \mapsto \frac{1}{(2\pi i)^k} \text{Res}_u \frac{f}{\prod_{i=1}^k \frac{\partial \Phi_{C,a}}{\partial t_i}} = \frac{1}{(2\pi i)^k} \int_{\Gamma_u} f \frac{dt_1 \land \cdots \land dt_k}{\prod_{i=1}^k \frac{\partial \Phi_{C,a}}{\partial t_i}}.
\]

Here \(\Gamma_u \) is the real \(k \)-cycle located in a small neighborhood of \(u \) and defined by the equations \(\frac{\partial \Phi_{C,a}}{\partial t_i} = \epsilon_i, \ i = 1, \ldots, k, \) where \(\epsilon_i \) are sufficiently small positive numbers. The cycle is oriented by the condition \(d \arg \frac{\partial \Phi_{C,a}}{\partial t_1} \land \cdots \land d \arg \frac{\partial \Phi_{C,a}}{\partial t_k} > 0 \), see [GH].
Denote by $[\text{Hess}_{C,a}]_u$ the image of the Hessian in $\mathcal{O}(C_{C,a})_u$. We have

\begin{equation}
\mathcal{R}_u : [\text{Hess}_{C,a}]_u \mapsto \mu_u,
\end{equation}

where $\mu_u = \dim_{\mathbb{C}} \mathcal{O}(C_{C,a})_u$, the Milnor number, see [AGV]. Define the bilinear form on $\mathcal{O}(C_{C,a})_u$,

\begin{equation}
([f],[g])_u = \mathcal{R}_u([f][g]).
\end{equation}

If $\mathcal{O}(C_{C,a})$ is finite-dimensional, we define the residue bilinear form $(.,.)_{C_{C,a}}$ on $\mathcal{O}(C_{C,a})$ as

$$(.,.)_{C_{C,a}} = \bigoplus_{u \in C_{C,a}} (.,.)_u.$$

This form is nondegenerate, see [AGV], and $(\{f\}[g],[h])_{C_{C,a}} = ([f],[g][h])_{C_{C,a}}$ for all $[f],[g],[h] \in \mathcal{O}(C_{C,a})$. In other words, the pair $(\mathcal{O}(C_{C,a}),(.,.)_{C_{C,a}})$ is a Frobenius algebra.

2.13. **Canonical element.** A differential k-form $H \in \mathcal{A}^k(\mathcal{C})$ can be written as $H = f_H dt_1 \wedge \cdots \wedge dt_k$, where $f_H \in \mathcal{O}(U(\mathcal{C}))$. Define a map $F : U(\mathcal{C}) \to \mathcal{F}^k(\mathcal{C})$ which sends $u \in U(\mathcal{C})$ to the element $F(u) \in \mathcal{F}^k(\mathcal{C})$ such that $(H,F(u)) = f_H(u)$ for any $H \in \mathcal{A}^k(\mathcal{C})$. The map F is called the specialization map, the vector $F(u)$ is called the special vector at u, see [V4]. In the theory of quantum integrable systems special vectors are called the Bethe vectors.

Let $(F_m)_{m \in M}$ be a basis of $\mathcal{F}^k(\mathcal{C})$ and $(H^m)_{m \in M} \subset \mathcal{A}^k(\mathcal{C})$ the dual basis. We have $H^m = f_H dt_1 \wedge \cdots \wedge dt_k$ for some $f_H \in \mathcal{O}(U(\mathcal{C}))$. The element

\begin{equation}
E = \sum_{m \in M} f_H^m \otimes F_m \in \mathcal{O}(U(\mathcal{C})) \otimes \mathcal{F}^k(\mathcal{C})
\end{equation}

is called the canonical element. For $u \in U(\mathcal{C})$, we have

\begin{equation}
F(u) = \sum_{m \in M} f_H^m(u) F_m.
\end{equation}

Let $[E]$ be the image of the canonical element in $\mathcal{O}(C_{C,a}) \otimes \mathcal{F}^k(\mathcal{C})$.

Lemma 2.10 ([V4 Lemma 2.6]). We have $[E] \in \mathcal{O}(C_{C,a}) \otimes \text{Sing}_a \mathcal{F}^k(\mathcal{C})$.

Theorem 2.11 ([V4]). For $u \in U(\mathcal{C})$, we have

\begin{equation}
S^{(a)}(F(u),F(u)) = (-1)^k \text{Hess}_{C,a}(u).
\end{equation}

Moreover, if $u^1,u^2 \in U(\mathcal{C})$ are distinct isolated critical points of $\Phi_{C,a}$, then the special singular vectors $F(u^1),F(u^2)$ are orthogonal,

\begin{equation}
S^{(a)}(F(u^1),F(u^2)) = 0,
\end{equation}

cf. [MV] [V5].

2.14. **Canonical isomorphism.** Assume that the algebra $\mathcal{O}(C_{C,a})$ is finite-dimensional. Define the linear map

\begin{equation}
\mathcal{E} : \mathcal{O}(C_{C,a}) \to \text{Sing} \mathcal{F}^k(\mathcal{C}), \quad [g] \mapsto ([g],[E])_{C_{C,a}}.
\end{equation}

Theorem 2.12 ([V5]). If the weight $a \in (\mathbb{C}^\times)^n$ is unbalanced, then the map \mathcal{E} is an isomorphism of vector spaces. The isomorphism \mathcal{E} identifies the residue form on $\mathcal{O}(C_{C,a})$ and the contravariant form on $\text{Sing} \mathcal{F}^k(\mathcal{C})$ multiplied by $(-1)^k$,

\begin{equation}
(f,g)_{C_{C,a}} = (-1)^k S^{(a)}(\mathcal{E}(f),\mathcal{E}(g)) \quad \text{for all } f,g \in \mathcal{O}(C_{C,a}).
\end{equation}
The map \mathcal{E} is called the *canonical* isomorphism. We provide a proof of Theorem 2.12 in Section 2.16.

Corollary 2.13 ([V3]). The restriction of the contravariant form $S^{(a)}$ to the subspace $\text{Sing} \mathcal{F}^k(\mathcal{C})$ is nondegenerate. \hfill \square

On the restriction of $S^{(a)}$ to the subspace $\text{Sing} \mathcal{F}^k(\mathcal{C})$ see also [FaV].

If all critical points are nondegenerate, then

\begin{equation}
(2.18) \quad \mathcal{E} : [g] \mapsto \sum_{u \in C_{C,a}} \sum_m \frac{g(u)f_{H_m}(u)}{\text{Hess}_{C,a}(u)} f_m = \sum_{u \in C_{C,a}} \frac{g(u)}{\text{Hess}_{C,a}(u)} F(u),
\end{equation}

see (2.10).

Remark. If the weight $a \in (\mathbb{C}^\times)^n$ is unbalanced, then the canonical isomorphism \mathcal{E} induces a commutative associative algebra structure on $\text{Sing}_a \mathcal{F}^k(\mathcal{C})$. Together with the contravariant form $S^{(a)}|_{\text{Sing}_a \mathcal{F}^k}$ it is a Frobenius algebra. The algebra of multiplication operators on $\text{Sing}_a \mathcal{F}^k(\mathcal{C})$ is an analog of the *Bethe algebra* in the theory of quantum integrable models, see, for example, [MTV] [V5].

2.15. Orthogonal projection.

Lemma 2.14. It the weight $a \in (\mathbb{C}^\times)^n$ is unbalanced, then $d \mathcal{F}^{k-1}(\mathcal{C}) = \text{Sing}_a \mathcal{F}^k(\mathcal{C})^\perp$, where $d \mathcal{F}^{k-1}(\mathcal{C}) \subset \mathcal{F}^k(\mathcal{C})$ is the image of the differential defined by (2.2) and $\text{Sing}_a \mathcal{F}^k(\mathcal{C})^\perp \subset \mathcal{F}^k(\mathcal{C})$ is the orthogonal complement to $\text{Sing}_a \mathcal{F}^k(\mathcal{C})$ with respect to $S^{(a)}$.

Proof. We have $d \mathcal{F}^{k-1}(\mathcal{C}) \subset \text{Sing}_a \mathcal{F}^k(\mathcal{C})^\perp$ by Lemma 2.2 and the definition of $\text{Sing}_a \mathcal{F}^k(\mathcal{C})$. But $\dim d \mathcal{F}^{k-1}(\mathcal{C}) = \dim \text{Sing}_a \mathcal{F}^k(\mathcal{C})^\perp$ by Theorem 2.1 and Corollary 2.5. \hfill \square

Corollary 2.15. If the weight $a \in (\mathbb{C}^\times)^n$ is unbalanced, the orthogonal projection $\pi^\perp : \mathcal{F}^k(\mathcal{C}) \to \text{Sing}_a \mathcal{F}^k(\mathcal{C})$ establishes the isomorphism $H^k(\mathcal{F}(\mathcal{C}), d) \cong \text{Sing}_a \mathcal{F}^k(\mathcal{C})$.

Define the map

\begin{equation}
(2.19) \quad [S^{(a)}] : \mathcal{F}^k(\mathcal{C}) \to \mathcal{O}(C_{C,a}), \quad F \mapsto [F],
\end{equation}

where $S^{(a)}(F) = f dt_1 \wedge \cdots \wedge dt_k$. Clearly, $[S^{(a)}]|_{\text{Sing}_a \mathcal{F}^k(\mathcal{C})^\perp} = [S^{(a)}]|_{d \mathcal{F}^{k-1}(\mathcal{C})} = 0$. In particular, $[S^{(a)}]$ induces the map

\begin{equation}
(2.20) \quad [S^{(a)}] : H^k(\mathcal{F}(\mathcal{C}), d) \to \mathcal{O}(C_{C,a}).
\end{equation}

Theorem 2.16. If the weight $a \in (\mathbb{C}^\times)^n$ is unbalanced, then the map

\begin{equation}
(2.21) \quad [S^{(a)}]|_{\text{Sing}_a \mathcal{F}^k(\mathcal{C})} : \text{Sing}_a \mathcal{F}^k(\mathcal{C}) \to \mathcal{O}(C_{C,a})
\end{equation}

is an isomorphism of vector spaces and

\begin{equation}
(2.22) \quad \mathcal{E} \circ [S^{(a)}]|_{\text{Sing}_a \mathcal{F}^k(\mathcal{C})} = (-1)^k.
\end{equation}

Identity (2.22) was conjectured in [V5]. It was proved in [V5] that the left-hand side in (2.22) is a nonzero scalar operator, if \mathcal{C} is a generic arrangement.

Remark. The map $[S^{(a)}]|_{\text{Sing}_a \mathcal{F}^k(\mathcal{C})} : \text{Sing}_a \mathcal{F}^k(\mathcal{C}) \to \mathcal{O}(C_{C,a})$ is elementary. The map $\mathcal{E} : \mathcal{O}(C_{C,a}) \to \text{Sing}_a \mathcal{F}^k(\mathcal{C})$ is transcendental: it is given by a k-dimensional integral. Formula (2.22) says that the inverse map to the transcendental map is elementary.
Corollary 2.17. If the weight \(a \in (\mathbb{C}^\times)^n \) is unbalanced, then the map \([S^{(a)}] : H^k(F, d) \to \mathcal{O}(C_{c,a})\) is an isomorphism of vector spaces.

2.16. Proof of Theorems 2.12 and 2.16. First assume that the weight \(a \) is generic and all critical points of \(\Phi_{c,a} \) are nondegenerate. Then the special vectors \((F(u))_{u \in C_{c,a}}\) form a basis of \(\text{Sing}_a \mathcal{F}^k(C) \) by Theorems 2.11, 2.7 and Corollary 2.5. (In the theory of quantum integrable systems this fact is called the completeness of the Bethe ansatz method, see [V3] [V4].)

Theorem 2.11 and formula (2.10) applied to the basis \((F(u))_{u \in C_{c,a}}\) show that \(S^{(a)} \) restricted to \(\text{Sing}_a \mathcal{F}^k(C) \) is nondegenerate and \(E : \mathcal{O}(C_{c,a}) \to \text{Sing} \mathcal{F}^k(C) \) is an isomorphism of vector spaces that identifies the residue form on \(\mathcal{O}(C_{c,a}) \) and the contravariant form on \(\text{Sing} \mathcal{F}^k(C) \) multiplied by \((-1)^k\).

The orthogonal projection \(\mathcal{F}^k(C) \to \text{Sing}_a \mathcal{F}^k(C) \) is defined by the formula

\[
(2.23) \quad F \mapsto \sum_{u \in C_{c,a}} S^{(a)}(F, F(u)) F(u) = (-1)^k \sum_{u \in C_{c,a}} \frac{S^{(a)}(F, F(u))}{Hess_{c,a}(u)} F(u).
\]

Let \(S^{(a)}(F) = f dt_1 \wedge \cdots \wedge dt_k \) and \(u \in U(C) \), then \(f(u) = S^{(a)}(F, F(u)) \) by the definitions of \(F(u), S^{(a)}, S^{(a)} \). Hence the map \([S^{(a)}] \) defined in (2.19) sends \(F \) to the element of \(\mathcal{O}(C_{c,a}) \) which equals \(S^{(a)}(F, F(u)) \) at every \(u \in C_{c,a} \). Applying formula (2.18) to this element we obtain

\[
(2.24) \quad \mathcal{E} \circ [S^{(a)}] : F \mapsto \sum_{u \in C_{c,a}} \frac{S^{(a)}(F, F(u))}{Hess_{c,a}(u)} F(u).
\]

These two formulas prove Theorem 2.16 if all critical points are nondegenerate.

Assume now that the weight \(a \) is unbalanced. Then all critical points of \(\Phi_{c,a} \) are isolated and the sum of the corresponding Milnor numbers equals \(|\chi(U(C))| \). We deform the weight \(a \) to make it generic and to make all critical points nondegenerate. Then \(\text{Sing}_a \mathcal{F}(C) \) and \(S^{(a)}|_{\text{Sing}_a \mathcal{F}(C)} \) continuously depend on the deformation as well as \(\mathcal{O}(C_{c,a}) \) and \((\cdot)_{C_{c,a}} \). The maps \([S^{(a)}]|_{\text{Sing}_a \mathcal{F}(C)} \) and \(\mathcal{E} \) also continuously depend on the deformation. This implies that for the initial unbalanced weight \(a \), we have the identity \(\mathcal{E} \circ [S^{(a)}]|_{\text{Sing}_a \mathcal{F}^k(C)} = (-1)^k \) and the fact that \(\mathcal{E} \) identifies the residue form on \(\mathcal{O}(C_{c,a}) \) and the contravariant form on \(\text{Sing} \mathcal{F}^k(C) \) multiplied by \((-1)^k\). This proves Theorems 2.16 and 2.12.

2.17. Integral structure on \(\mathcal{O}(C_{c,a}) \) and \(\text{Sing}_a \mathcal{F}^k(C) \). If the weight \(a \) is unbalanced, the formula \(H^p(F(C), d) = H^p((\mathcal{F}(C))_Z, dz) \otimes \mathbb{C} \) and the isomorphism \([S^{(a)}]|_{\text{Sing}_a \mathcal{F}^k(C)} : H^k(F, d) \to \mathcal{O}(C_{c,a}) \) define an integral structure on \(\mathcal{O}(C_{c,a}) \). More precisely, for a \(k \)-flag of edges \(X_{a_0} \supset X_{a_1} \supset \cdots \supset X_{a_k} \), let \(S^{(a)}(F_{a_0, \ldots, a_k}) = f_{a_0, \ldots, a_k} dt_1 \wedge \cdots \wedge dt_k \). Denote by \(w_{a_0, \ldots, a_k} \) the element \([f_{a_0, \ldots, a_k}] \in \mathcal{O}(C_{c,a}) \).

Corollary 2.18. If the weight \(a \) is unbalanced, then the set of all elements \(\{w_{a_0, \ldots, a_k}\} \), labeled by all \(k \)-flag of edges of \(C \), spans the vector space \(\mathcal{O}(C_{c,a}) \). All linear relations between the elements of the set are corollaries of the relations

\[
(2.25) \quad \sum_{X_{a_0} \supset X_{a_1} \supset \cdots \supset X_{a_k} \supset X_{a_{j+1}}} w_{a_0, \ldots, a_{j-1}, a_j, a_{j+1}, \ldots, a_p = a} = 0,
\]

\[
\sum_{X_{a_0} \supset X_{a_1} \supset \cdots \supset X_{a_k} \supset X_{a_{j+1}}} w_{a_0, \ldots, a_p, a_{j+1}} = 0.
\]
Similarly, for a k-flag of edges $X_{a_0} \supset X_{a_1} \supset \cdots \supset X_{a_k}$, let v_{a_0,\ldots,a_k} be the orthogonal projection of F_{a_0,\ldots,a_k} to Sing$_a F^k(C)$.

Corollary 2.19. If the weight a is unbalanced, then the set of all elements $\{v_{a_0,\ldots,a_k}\}$, labeled by all k-flag of edges of C, spans the vector space Sing$_a F^k(C)$. All linear relations between the elements of the set are corollaries of the relations

$$
\sum_{X_\beta,X_{a_j-1}\supset X_{a_j}} v_{a_0,\ldots,a_j-1,\beta,a_{j+1},\ldots,a_k} = 0,
$$

$$
\sum_{X_\beta,X_{a_p}\supset X_{\beta}} v_{a_0,\ldots,a_p,\beta} = 0,
$$

cf. formulas (2.1), (2.2).

We have

$$
[S^{(a)}]: v_{a_0,\ldots,a_k} \mapsto w_{a_0,\ldots,a_k}, \quad \mathcal{E}: w_{a_0,\ldots,a_k} \mapsto (-1)^k v_{a_0,\ldots,a_k}.
$$

The elements $\{w_{a_0,\ldots,a_k}\} \subset \mathcal{O}(C_{C,a})$ and $\{v_{a_0,\ldots,a_k}\} \subset$ Sing$_a F^k(C)$ will be called the marked elements. The relations (2.25), (2.26) will be called the marked relations.

Remark. An interesting problem is to express $1 \in \mathcal{O}(C_{C,a})$ as a linear combination of the marked elements w_{a_0,\ldots,a_k}, see [V6], where such a formula is given for a generic arrangement. Notice, that if all points of the critical set $C_{C,a}$ are nondegenerate, then

$$
\mathcal{E}(1) = \sum_{u \in C_{C,a}} F(u)/\text{Hess}_{C,a}(u),
$$

see [MTV1], where such sums were studied.

2.18. Skew-commutative versus commutative.

If a is unbalanced, then

$$
H^k(A(C), d^{(a)}) \cong H^k(F(C), d) \cong \mathcal{O}(C_{C,a})
$$

as vector spaces. The first space is a cohomology space of a skew-commutative graded algebra $A(C)$. The last space is the vector space of a commutative algebra. Isomorphisms (2.28) identify these skew-commutative and commutative objects. It is interesting to identify the multiplication operators on the last space with suitable operators on the first two spaces. It turns out that those operators appear in the associated Gauss-Manin (hypergeometric) differential equations, see Section 3.7 and [MTV1, V4, V5].

Another identification of skew-commutative and commutative objects of an arrangement see in [GV, P].

2.19. Combinatorial connection.

Consider a deformation $C(s)$ of the arrangement C, which preserves the combinatorics of C. Assume that the edges of $C(s)$ can be identified with the edges of C so that the elements in formula (2.1) and the differential in formula (2.2) do not depend on s. Assume that the deformed arrangement $C(s)$ has a deformed weight $a(s)$, which remains unbalanced. Then for every s, the elements $\{w_{a_0,\ldots,a_k}(s)\}$ span $\mathcal{O}(C_{C(s),a(s)})$ as a vector space with linear relations (2.25) not depending on s. This allows us to identify all the vector spaces $\mathcal{O}(C_{C(s),a(s)})$. In particular, if an element $w(s) \in \mathcal{O}(C_{C(s),a(s)})$
is given, then the derivative \(\frac{dw}{dt} \) is well-defined. This construction is called the combinatorial connection on the family of algebras \(\mathcal{O}(C_c(a(s))) \), see [V6]. Similarly on can define the combinatorial connection on the family of vector spaces \(\text{Sing}_{a(s)} F^k(C(s)) \).

2.20. **Arrangement with normal crossings.** An essential arrangement \(C \) is with normal crossings, if exactly \(k \) hyperplanes meet at every vertex of \(C \). Assume that \(C \) is an essential arrangement with normal crossings. A subset \(\{ j_1, \ldots, j_p \} \subset J \) is called independent if the hyperplanes \(H_{j_1}, \ldots, H_{j_p} \) intersect transversally.

A basis of \(\mathcal{A}^p(C) \) is formed by \((H_{j_1}, \ldots, H_{j_p}) \), where \(\{ j_1 < \cdots < j_p \} \) are independent ordered \(p \)-element subsets of \(J \). The dual basis of \(\mathcal{F}^p(C) \) is formed by the corresponding vectors \(F(H_{j_1}, \ldots, H_{j_p}) \). These bases of \(\mathcal{A}^p(C) \) and \(\mathcal{F}^p(C) \) are called standard. We have

\[
F(H_{j_1}, \ldots, H_{j_p}) = (-1)^{\sigma} F(H_{j_{\sigma(1)}}, \ldots, H_{j_{\sigma(p)}}), \quad \text{for } \sigma \in \Sigma_p.
\]

For an independent subset \(\{ j_1, \ldots, j_p \} \), we have \(S^{(a)}(F(H_{j_1}, \ldots, H_{j_p}), F(H_{j_1}, \ldots, H_{j_p})) = a_{j_1} \cdots a_{j_p} \) and \(S^{(a)}(F(H_{j_1}, \ldots, H_{j_p}), F(H_{i_1}, \ldots, H_{i_k})) = 0 \) for distinct elements of the standard basis. If \(a \) is unbalanced, then the marked elements in \(\mathcal{O}(C_c,a) \) are

\[
w_{i_1,\ldots,i_k} = d_{i_1,\ldots,i_k} \langle a_{i_1} \cdot \cdots \cdot a_{i_k} \rangle,
\]

where \(\{ i_1, \ldots, i_k \} \) runs through the set of all independent \(k \)-element subsets of \(J \). We have

\[
w_{i_{\sigma(1)},\ldots,i_{\sigma(k)}} = (-1)^{\sigma} w_{i_1,\ldots,i_k}, \quad \text{for } \sigma \in \Sigma_k.
\]

We put \(w_{i_1,\ldots,i_k} = 0 \) if the set \(\{ i_1, \ldots, i_k \} \) is dependent. The marked relations are labeled by independent subsets \(\{ i_2, \ldots, i_k \} \) and have the form

\[
\sum_{j \in J} w_{j,i_2,\ldots,i_k} = 0.
\]

The marked elements \(v_{i_1,\ldots,i_k} \) in \(\text{Sing}_{a} F^k(C) \) are orthogonal projections to \(\text{Sing}_{a} F^k(C) \) of the elements \(F(H_{i_1}, \ldots, H_{i_k}) \) with the skew-symmetry property

\[
v_{i_{\sigma(1)},\ldots,i_{\sigma(k)}} = (-1)^{\sigma} v_{i_1,\ldots,i_k}, \quad \text{for } \sigma \in \Sigma_k.
\]

and the marked relations

\[
\sum_{j \in J} v_{j,i_2,\ldots,i_k} = 0
\]

labeled by independent subsets \(\{ i_2, \ldots, i_k \} \).

3. **Family of parallelly transported hyperplanes**

3.1. **Arrangement in** \(\mathbb{C}^n \times \mathbb{C}^k \). Recall that \(J = \{1, \ldots, n\} \). Consider \(\mathbb{C}^k \) with coordinates \(t_1, \ldots, t_k \), \(\mathbb{C}^n \) with coordinates \(z_1, \ldots, z_n \), the projection \(\pi : \mathbb{C}^n \times \mathbb{C}^k \rightarrow \mathbb{C}^n \). Fix \(n \) nonzero linear functions on \(\mathbb{C}^k \), \(g_j = b^j_1t_1 + \cdots + b^j_kt_k, j \in J \), where \(b^j_j \in \mathbb{C} \). We assume that the functions \(g_j, j \in J \), span the dual space \((\mathbb{C}^k)^* \).

Define \(n \) linear functions on \(\mathbb{C}^n \times \mathbb{C}^k \), \(f_j = g_j + z_j = b^j_1t_1 + \cdots + b^j_kt_k + z_j, j \in J \). We consider in \(\mathbb{C}^n \times \mathbb{C}^k \) the arrangement of hyperplanes \(C = \{H_j\}_{j \in J} \), where \(H_j \) is the zero set of \(f_j \), and denote by \(U(C) = \mathbb{C}^n \times \mathbb{C}^k - \cup_{j \in J} H_j \) the complement.
Lemma 3.1. For any linear relation $\sum_{j=1}^{n} \beta_j g_j = 0$ we have the relation
\begin{equation}
\sum_{j=1}^{n} \beta_j (z_j - f_j) = 0.
\end{equation}

For every $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$, the arrangement \mathcal{C} induces an arrangement $\mathcal{C}(x)$ in the fiber $\pi^{-1}(x)$. We identify every fiber with \mathbb{C}^k. Then $\mathcal{C}(x)$ consists of hyperplanes $\{H_j(x)\}_{j \in J}$, defined in \mathbb{C}^k by the equations $g_j + x_j = 0$. Thus $\{\mathcal{C}(x)\}_{x \in \mathbb{C}^n}$ is a family of arrangements in \mathbb{C}^k, whose hyperplanes are transported parallelly as x changes. We denote by $U(\mathcal{C}(x)) = \mathbb{C}^k - \bigcup_{j \in J} H_j(x)$ the complement.

For almost all points $x \in \mathbb{C}^n$, the arrangement $\mathcal{C}(x)$ is with normal crossings. Such points form the complement in \mathbb{C}^n to the union of suitable hyperplanes called the discriminant.

3.2. Discriminant. The collection $(g_j)_{j \in J}$ induces a matroid structure on J. A subset $C = \{i_1, \ldots, i_r\} \subset J$ is a circuit if $(g_i)_{i \in C}$ are linearly dependent but any proper subset of C gives linearly independent g_i’s. Denote by \mathcal{E} the set of all circuits in J.

For a circuit $C = \{i_1, \ldots, i_r\}$, let $(\lambda_i^C)_{i \in C}$ be a nonzero collection of complex numbers such that $\sum_{i \in C} \lambda_i^C g_i = 0$. Such a collection is unique up to multiplication by a nonzero number. For every circuit C we fix such a collection and denote $f_C = \sum_{i \in C} \lambda_i^C z_i$. The equation $f_C = 0$ defines a hyperplane H_C in \mathbb{C}^n. It is convenient to assume that $\lambda_i^C = 0$ for $i \in J - C$ and write $f_C = \sum_{i \in J} \lambda_i^C z_i$.

Lemma 3.2. Any linear relation $\sum_{j \in J} c_j g_j = 0$ is a linear combination of relations $\sum_{i \in C} \lambda_i^C g_i = 0$ associated with circuits $C \in \mathcal{E}$. \hfill \square

For any $x \in \mathbb{C}^n$, the hyperplanes $\{H_i(x)\}_{i \in C}$ in \mathbb{C}^k have nonempty intersection if and only if $x \in H_C$. If $x \in H_C$, then the intersection has codimension $r - 1$ in \mathbb{C}^k. The union $\Delta = \bigcup_{i \in C} H_i(x)$ is called the discriminant. The arrangement $\mathcal{C}(x)$ in \mathbb{C}^k has normal crossings if and only if $x \in \mathbb{C}^n - \Delta$, see [V5].

3.3. Combinatorial connection. For any $x^1, x^2 \in \mathbb{C}^n - \Delta$, the spaces $\mathcal{F}^p(\mathcal{C}(x^1))$, $\mathcal{F}^p(\mathcal{C}(x^2))$ are canonically identified if a vector $F(H_{j_1}(x^1), \ldots, H_{j_p}(x^1))$ of the first space is identified with the vector $F(H_{j_1}(x^2), \ldots, H_{j_p}(x^2))$ of the second. In other words, we identify the standard bases of these spaces.

Assume that a weight $a \in (\mathbb{C}^*)^n$ is given. Then each arrangement $\mathcal{C}(x)$ is weighted. The identification of spaces $\mathcal{F}^p(\mathcal{C}(x^1))$, $\mathcal{F}^p(\mathcal{C}(x^2))$ for $x^1, x^2 \in \mathbb{C}^n - \Delta$ identifies the corresponding subspaces $\text{Sing}_a \mathcal{F}^k(\mathcal{C}(x^1))$, $\text{Sing}_a \mathcal{F}^k(\mathcal{C}(x^2))$ and contravariant forms.

Assume that the weighted arrangement $(\mathcal{C}(x), a)$ is unbalanced for some $x \in \mathbb{C}^n - \Delta$, then $(\mathcal{C}(x), a)$ is unbalanced for all $x \in \mathbb{C}^n - \Delta$. The identification of $\text{Sing}_a \mathcal{F}^k(\mathcal{C}(x^1))$ and $\text{Sing}_a \mathcal{F}^k(\mathcal{C}(x^2))$ also identifies the marked elements $v_{j_1, \ldots, j_k}(x^1)$ and $v_{j_1, \ldots, j_k}(x^1)$, see Section 2.20. For $x \in \mathbb{C}^n - \Delta$, denote $V = \mathcal{F}^k(\mathcal{C}(x)), \text{Sing}_a V = \text{Sing}_a \mathcal{F}^k(\mathcal{C}(x)), v_{j_1, \ldots, j_k} = v_{j_1, \ldots, j_k}(x)$. The triple $(V, \text{Sing}_a V, S^{(a)})$, with marked elements v_{j_1, \ldots, j_k}, does not depend on x under the identification.

As a result of this reasoning we obtain the canonically trivialized vector bundle
\begin{equation}
\bigcup_{x \in \mathbb{C}^n - \Delta} \mathcal{F}^k(\mathcal{C}(x)) \to \mathbb{C}^n - \Delta,
\end{equation}
with the canonically trivialized subbundle $\bigcup_{x \in \mathbb{C}^n - \Delta} \text{Sing}_a \mathcal{F}^k(\mathcal{C}(x)) \to \mathbb{C}^n - \Delta$ and the constant contravariant form on the fibers. This trivialization identifies the bundle in (3.2) with
the bundle \((\mathbb{C}^n - \Delta) \times V \to \mathbb{C}^n - \Delta\) and the subbundle \(\sqcup_{x \in \mathbb{C}^n - \Delta} \text{Sing}_a \mathcal{F}^k(C(x)) \to \mathbb{C}^n - \Delta\) with the subbundle

\[(3.3) \quad (\mathbb{C}^n - \Delta) \times (\text{Sing}_a V) \to \mathbb{C}^n - \Delta.
\]

The bundle in (3.3) will be called the **combinatorial bundle**, the flat connection on it will be called **combinatorial**, see \[\text{V5} \text{ V6}]$, cf. Section 2.19

3.4. **Operators** \(K_j \in (\text{End} V) \otimes \mathcal{O}(\mathbb{C}^n - \Delta), \ j \in J\). For a circuit \(C = \{i_1, \ldots, i_r\} \subset J\), we define the linear operator \(L_C : V \to V\) as follows. Let \(C_m = C - \{i_m\}\). Let \(F(H_{i_1}, \ldots, H_{j_k})\) be an element of the standard basis. We set \(L_C : F(H_{i_1}, \ldots, H_{j_k}) \mapsto 0\) if \(|\{j_1, \ldots, j_k\} \cap C| < r - 1\). If \(\{j_1, \ldots, j_k\} \cap C = C_m\), then by (2.29) we have \(F(H_{i_1}, \ldots, H_{j_k}) = \pm F(H_{i_1}, H_{i_2}, \ldots, H_{i_{r-1}}, H_{i_r}, H_{s_1}, \ldots, H_{s_{k-r+1}})\) with \(\{s_1, \ldots, s_{k-r+1}\} = \{j_1, \ldots, j_k\} - C_m\). We set

\[(3.4) \quad L_C : F(H_{i_1}, \ldots, \widehat{H_{i_m}}, \ldots, H_{i_r}, H_{s_1}, \ldots, H_{s_{k-r+1}}) \mapsto (-1)^m \sum_{l=1}^{r} (-1)^l a_{i_l} F(H_{i_1}, \ldots, \widehat{H_{i_l}}, \ldots, H_{i_r}, H_{s_1}, \ldots, H_{s_{k-r+1}}).
\]

Consider on \(\mathbb{C}^n \times \mathbb{C}^k\) the logarithmic 1-forms \(\omega_C = \frac{dz}{f_C}, \ C \in \mathfrak{C}\). Recall \(f_C = \sum_{j \in J} \lambda_j^C z_j\). We set

\[(3.5) \quad K_j = \sum_{C \in \mathfrak{C}} \frac{\lambda_j^C}{f_C} L_C \in (\text{End} V) \otimes \mathcal{O}(\mathbb{C}^n - \Delta).
\]

We have

\[(3.6) \quad \sum_{C \in \mathfrak{C}} \omega_C \otimes L_C = \sum_{j \in J} dz_j \otimes K_j.
\]

Theorem 3.3 (\[\text{V5}\]). For any \(j \in J\) and \(x \in \mathbb{C}^n - \Delta\), the operator \(K_j(x)\) preserves the subspace \(\text{Sing}_a V \subset V\) and is a symmetric operator, \(S^{(a)}(K_j(x)v, w) = S^{(a)}(v, K_j(x)w)\) for all \(v, w \in V\).

3.5. **Corollary of Theorem 3.3**. We obtain formulas for the action of \(K_j\) on the marked elements \(v_{j_1, \ldots, j_k} \in \text{Sing}_a V\) from formulas for the action of \(L_C\).

Let \(C = \{i_1, \ldots, i_r\}\) be a circuit and \(v_{j_1, \ldots, j_k} \in \text{Sing}_a V\) a marked element. If \(|\{j_1, \ldots, j_k\} \cap C| < r - 1\), then \(L_C(v_{j_1, \ldots, j_k}) = 0\). If \(\{j_1, \ldots, j_k\} \cap C = C_m\), then by (2.33) we have \(v_{j_1, \ldots, j_k} = \pm v_{i_1, i_2, \ldots, \iota_m, \iota_{r-1}, i_r, s_1, \ldots, s_{k-r+1}}\) with \(\{s_1, \ldots, s_{k-r+1}\} = \{j_1, \ldots, j_k\} - C_m\). We have

\[(3.7) \quad L_C : v_{i_1, i_2, \ldots, \iota_m, \iota_{r-1}, i_r, s_1, \ldots, s_{k-r+1}} \mapsto (-1)^m \sum_{l=1}^{r} (-1)^l a_{i_l} v_{i_1, \ldots, \iota_l, \iota_{r-1}, i_r, s_1, \ldots, s_{k-r+1}}.
\]

3.6. **Gauss-Manin connection** on \((\mathbb{C}^n - \Delta) \times (\text{Sing}_a V) \to \mathbb{C}^n - \Delta\). The master function of \((\mathcal{C}, a)\) is \(\Phi_{\mathcal{C}, a} = \sum_{j \in J} a_j \log f_j\), a multivalued function on \(U(\mathcal{C})\). Let \(\kappa \in \mathbb{C}^\times\). The function \(e^{\Phi_{\mathcal{C}, a}/\kappa}\) defines a rank one local system \(\mathcal{L}_\kappa\) on \(U(\mathcal{C})\) whose horizontal sections over open subsets of \(U(\mathcal{C})\) are univalued branches of \(e^{\Phi_{\mathcal{C}, a}/\kappa}\) multiplied by complex numbers, see, for example, [SV] [V2]. The vector bundle

\[(3.8) \quad \sqcup_{x \in \mathbb{C}^n - \Delta} H_k(U(\mathcal{C}(x)), \mathcal{L}_\kappa|_{U(\mathcal{C}(x))}) \to \mathbb{C}^n - \Delta
\]

is called the **homology bundle**. The homology bundle has a canonical flat Gauss-Manin connection.
For a fixed \(x \), choose any \(\gamma \in H_k(U(C(x)), \mathcal{L}_\kappa|_{U(C(x))}) \). The linear map

\[
(3.9) \quad \{ \gamma \} : \mathcal{A}^k(C(x)) \to \mathbb{C}, \quad \omega \mapsto \int_\gamma e^{\Phi_{\kappa, a}/\kappa} \omega,
\]
is an element of \(\text{Sing} \mathcal{F}^k(C(x)) \) by Stokes’ theorem. It is known that for generic \(\kappa \) any element of \(\text{Sing} \mathcal{F}^k(C(x)) \) corresponds to a certain \(\gamma \) and in that case this construction gives the integration isomorphism

\[
(3.10) \quad H_k(U(C(x)), \mathcal{L}_\kappa|_{U(C(x))}) \to \text{Sing}_a \mathcal{F}^k(C(x)),
\]
see [SV]. The precise values of \(\kappa \), such that (3.10) is an isomorphism, can be deduced from the determinant formula in [VI].

For generic \(\kappa \) the fiber isomorphisms (3.10) defines an isomorphism of the homology bundle and the combinatorial bundle (3.3). The Gauss-Manin connection induces a connection on the combinatorial bundle. That connection on the combinatorial bundle will also be called the Gauss-Manin connection.

Thus, there are two connections on the combinatorial bundle: the combinatorial connection and the Gauss-Manin connection depending on \(\kappa \). In this situation we consider the differential equations for flat sections of the Gauss-Manin connection with respect to the combinatorially flat standard basis. Namely, let \(\gamma(x) \in H_k(U(C(x)), \mathcal{L}_\kappa|_{U(C(x))}) \) be a flat section of the Gauss-Manin connection. Let us write the corresponding section \(I_\gamma(x) \) of the bundle \((\mathbb{C}^n - \Delta) \times \text{Sing}_a V \to \mathbb{C}^n - \Delta \) in the combinatorially flat standard basis,

\[
(3.11) \quad I_\gamma(x) = \sum_{\text{independent}} I_{j_1 \ldots j_k}^{j_1 \ldots j_k}(x) F(H_{j_1}, \ldots, H_{j_k}), \quad I_{j_1 \ldots j_k}^{j_1 \ldots j_k}(x) = \int_{\gamma(x)} e^{\Phi_{\kappa, a}/\kappa} \omega_{j_1} \wedge \cdots \wedge \omega_{j_k}.
\]

By Theorem 3.3 we can also write

\[
(3.12) \quad I_\gamma(x) = \sum_{\text{independent}} I_{j_1 \ldots j_k}^{j_1 \ldots j_k}(x) v_{j_1 \ldots j_k}.
\]

For \(I = \sum_{j = j_1 \ldots j_k} I_{j_1 \ldots j_k}^{j_1 \ldots j_k} v_{j_1 \ldots j_k} \) and \(j \in J \), we denote \(\frac{\partial I}{\partial z_j} = \sum \frac{\partial I_{j_1 \ldots j_k}}{\partial z_j} v_{j_1 \ldots j_k} \). This formula defines the combinatorial connection on the combinatorial bundle.

Theorem 3.4 ([V2, V5]). The section \(I_\gamma \) satisfies the differential equations

\[
(3.13) \quad \kappa \frac{\partial I}{\partial z_j}(x) = K_j(x) I(x), \quad j \in J,
\]

where \(K_j(x) \) are the linear operators defined in (3.5). \(\square \)

3.7. Critical set

Denote by \(C_{\kappa, a} \) the critical set of \(\Phi_{\kappa, a} \) in the \(\mathbb{C}^k \)-direction,

\[
(3.14) \quad C_{\kappa, a} = \{(x, u) \in U(C) \subset \mathbb{C}^n \times \mathbb{C}^k \mid \frac{\partial \Phi_{\kappa, a}}{\partial t_i}(x, u) = 0 \quad \text{for} \quad i = 1, \ldots, k\}.
\]

Lemma 3.5. If \(C_{\kappa, a} \) is nonempty, then it is a smooth \(n \)-dimensional subvariety of \(U(C) \).
Theorem 3.7

Let \((V^5) \) induce two connections on the bundle (3.16) which will also be called the combinatorial and Gauss-Manin connections on the bundle (3.3). Theorem 3.7 says that under the isomorphism \(V \) and the combinatorial and Gauss-Manin connections on the bundle (3.3), \(C \) is the operator defined in (3.18) and we obtain the vector bundle of algebras

\[
\bigoplus_{x \in \mathbb{C}^n - \Delta} \mathcal{O}(C(x),a) \rightarrow \mathbb{C}^n - \Delta.
\]

For \(x \in \mathbb{C}^n - \Delta \), consider the canonical element \(E(x) \) of the arrangement \(C(x) \) and its image \([E(x)]\) in \(\mathcal{O}(C(x),a) \otimes \text{Sing}_a V \), see Lemma 2.10. Recall the canonical isomorphism (2.16),

\[
\mathcal{E}(x) : \mathcal{O}(C(x),a) \rightarrow \text{Sing}_a V.
\]

This fiber isomorphism establishes an isomorphism \(\mathcal{E} \) of the bundles (3.16) and (3.3). The isomorphism \(\mathcal{E} \) and the combinatorial and Gauss-Manin connections on the bundle (3.3) induce two connections on the bundle (3.16) which will also be called the combinatorial and Gauss-Manin connections, respectively.

Theorem 3.7 ([V5]). If the pair \((C(x),a) \) is unbalanced for \(x \in \mathbb{C}^n - \Delta \), then for all \(j \in J \), we have

\[
\mathcal{E}(x) \circ \left[\frac{a_j}{f_j} \right]_{x} = K_j(x) \circ \mathcal{E}(x),
\]

where \(\left[\frac{a_j}{f_j} \right]_{x} \) is the operator of multiplication by \(\left[\frac{a_j}{f_j} \right] \) in \(\mathcal{O}(C(x),a) \) and \(K_j(x) : \text{Sing}_a V \rightarrow \text{Sing}_a V \) is the operator defined in (3.3).

Remark. Recall that \(a_j/f_j = \partial \Phi_{C,a}/\partial z_j \) and the elements \([a_j/f_j], j \in J \), generate the algebra \(\mathcal{O}(C(x),a) \). Theorem 3.7 says that under the isomorphism \(\mathcal{E}(x) \) the operators of multiplication \([a_j/f_j]_{x} \) in \(\mathcal{O}(C(x),a) \) are identified with the operators \(K_j(x) \) in the Gauss-Manin differential equations (3.13), cf. Section 2.18. The correspondence of Theorem 3.7 defines a commutative algebra structure on \(\text{Sing}_a V \), the structure depending on \(x \). The multiplication in this commutative algebra is generated by the operators \(K_j(x), j \in J \). The
correspondence of Theorem 3.7 also defines the Gauss-Manin differential equations on the bundle of algebras in terms of the multiplication in the fiber algebras.

3.8. Formulas for multiplication. For $x \in \mathbb{C}^n - \Delta$ and a circuit $C = \{i_1, \ldots, i_r\} \subset J$, we define the linear operator $L_C : \mathcal{O}(C(x), a) \to \mathcal{O}(C(x), a)$ as follows. Let $w_{j_1, \ldots, j_k} \in \mathcal{O}(C(x), a)$ be a marked element. If $\{j_1, \ldots, j_k\} \cap C < r - 1$, then we set $L_C(w_{j_1, \ldots, j_k}) = 0$. If $\{j_1, \ldots, j_k\} \cap C = C_m$, then by (2.31) we have $w_{j_1, \ldots, j_k} = \pm w_{i_1, i_2, \ldots, i_{n-1}, i_r, s_1, \ldots, s_{k-r+1}}$ with $\{s_1, \ldots, s_{k-r+1}\} = \{j_1, \ldots, j_k\} - C_m$. We set

$$L_C(w_{i_1, i_2, \ldots, i_{n-1}, i_r, s_1, \ldots, s_{k-r+1}}) = (-1)^n \sum_{l=1}^{r} (-1)^l a_{i_l} w_{i_1, \ldots, \hat{i}_l, \ldots, i_{n-1}, i_r, s_1, \ldots, s_{k-r+1}}.$$

cf. formula (3.7).

For $j \in J$, we define the operator $K_j(x) : \mathcal{O}(C(x), a) \to \mathcal{O}(C(x), a)$ by the formula

$$K_j(x) = \sum_{C \in \mathcal{C}} \lambda_j^C f_C(x) L_C,$$

cf. formula (3.5).

Corollary 3.8. If the pair $(C(x), a)$ is unbalanced for $x \in \mathbb{C}^n - \Delta$, then the operator of multiplication $[\alpha_j f_j] \ast_x$ in $\mathcal{O}(C(x), a)$ equals the operator $K_j(x) : \mathcal{O}(C(x), a) \to \mathcal{O}(C(x), a)$ defined in (3.20). \hfill \Box

3.9. Corollary of Theorem 3.7. For a section $I = \sum_{j_1, \ldots, j_k} I_{j_1, \ldots, j_k} w_{j_1, \ldots, j_k}$ of the bundle of algebras (3.16) and $j \in J$, we define $\frac{\partial I}{\partial z_j} = \sum \frac{\partial I_{j_1, \ldots, j_k}}{\partial z_j} w_{j_1, \ldots, j_k}$. This formula defines the combinatorial connection on the bundle of algebras (3.16).

Theorem 3.9 (VQ). If a section I of the bundle of algebras (3.16) is flat with respect to the Gauss-Manin connection, then it satisfies the differential equations

$$\kappa \frac{\partial I}{\partial z_j}(x) = [\alpha_j f_j] \ast_x I(x), \quad j \in J. \hfill \Box$$

Notice that solutions of these differential equations are given by the hypergeometric integrals

$$I_\gamma(x) = \sum_{\text{independent} \{j_1 < \cdots < j_k\} \subset J} I_{j_1, \ldots, j_k}^\gamma(x) w_{j_1, \ldots, j_k},$$

where $\gamma(x) \in H_k(U(\mathcal{C}(x)), \mathcal{L}^\kappa_{U(\mathcal{C}(x))})$ is a flat section of the Gauss-Manin connection on the homology bundle and $I_{j_1, \ldots, j_k}^\gamma(x) = \int_{\gamma(x)} e^{\phi_{c,a}/\kappa} \omega_{j_1} \wedge \cdots \wedge \omega_{j_k}$.

Notice the similarities between the differential equations in (3.21) and the standard differential equations associated with Frobenius structures, see [D] [M].

4. Langrangian variety and critical set

4.1. Langrangian variety. Consider \mathbb{C}^n with coordinates q_1, \ldots, q_n and the dual space $(\mathbb{C}^n)^\ast$ with the dual coordinates p_1, \ldots, p_n. The space $\mathbb{C}^n \times (\mathbb{C}^n)^\ast$ has symplectic form $\omega = \sum_{j=1}^{n} dp_j \wedge dq_j$. Two functions M, N on $\mathbb{C}^n \times (\mathbb{C}^n)^\ast$ are in involution if $\{M, N\} = \sum_{j=1}^{n} \left(\frac{\partial M}{\partial q_j} \frac{\partial N}{\partial p_j} - \frac{\partial M}{\partial p_j} \frac{\partial N}{\partial q_j} \right) = 0$.
For a k-dimensional vector subspace $Y \subset \mathbb{C}^n$, denote by $Y^\perp \subset (\mathbb{C}^n)^*$ the annihilator of Y. The n-dimensional vector space $Y \times Y^\perp$ is a Lagrangian subspace of $\mathbb{C}^n \times (\mathbb{C}^n)^*$ with defining equations

\begin{equation}
F_\alpha := \sum_{j=1}^n \alpha_j p_j = 0, \quad \alpha = (\alpha_1, \ldots, \alpha_n) \in Y,
\end{equation}

\begin{equation}
G_\beta := \sum_{j=1}^n \beta_j q_j = 0, \quad \beta = (\beta_1, \ldots, \beta_n) \in Y^\perp.
\end{equation}

The set of all functions $\{F_\alpha, G_\beta\}$ is in involution.

Fix a weight $\alpha \in (\mathbb{C}^*)^n$. Consider the invertible rational symplectic map $r_\alpha : \mathbb{C}^n \times (\mathbb{C}^n)^* \to \mathbb{C}^n \times (\mathbb{C}^n)^*$, Denote

\begin{equation}
L_{Y,\alpha} = r_\alpha(Y \times Y^\perp) \subset \mathbb{C}^n \times (\mathbb{C}^n)^*.
\end{equation}

Lemma 4.1. Assume that for every $j \in J$, the subspace Y does not lie in the hyperplane $q_j = 0$ and the subspace Y^\perp does not lie in the hyperplane $p_j = 0$, then $L_{Y,\alpha}$ is an irreducible smooth n-dimensional Lagrangian subvariety in $\mathbb{C}^n \times \{y \in (\mathbb{C}^n)^* \mid \prod_{j=1}^n p_j(y) \neq 0\}$ defined by equations

\begin{equation}
F_\alpha := \sum_{j=1}^n \alpha_j p_j = 0, \quad \alpha = (\alpha_1, \ldots, \alpha_n) \in Y,
\end{equation}

\begin{equation}
G_{\beta,\alpha} := \sum_{j=1}^n \beta_j(q_j - a_j/p_j) = 0, \quad \beta = (\beta_1, \ldots, \beta_n) \in Y^\perp.
\end{equation}

The set of all functions $\{F_\alpha, G_{\beta,\alpha}\}$ is in involution. \hfill \square

Let $I = \{i_1, \ldots, i_k\} \subset J$ be a k-element subset and \bar{I} its complement.

Lemma 4.2. Under hypotheses of Lemma 4.1 assume that I is such that the functions $q_I = \{q_i \mid i \in I\}$ form a coordinate system on Y. Then the functions q_I and $p_{\bar{I}} = \{p_j \mid j \in \bar{I}\}$ form a coordinate system on $L_{Y,\alpha}$.

Proof. The functions $p_{\bar{I}}$ are expressed in terms of p_I with the help of equations $F_\alpha = 0$. The functions q_I are expressed in terms of $q_I, p_{\bar{I}}$ with the help of equations $G_{\beta,\alpha} = 0$. \hfill \square

We order the functions of the coordinate system $q_I, p_{\bar{I}}$ according to the increase of the index. For example, if $k = 3, n = 6, I = \{1, 3, 6\}$, then the order is $q_1, q_2, q_3, p_4, p_5, q_6$.

Fix a basis $b^i = (b^i_1, \ldots, b^i_n), i = 1, \ldots, k$, of Y. Let $t = (t_1, \ldots, t_k)$ be the associated coordinate system on Y. Then $q_I|_Y = \sum_{i=1}^k b^i_I t_i$. For $I = \{i_1, \ldots, i_k\} \subset J$, we denote $d_I = d_{i_1,\ldots,i_k} = \det_{i,\bar{i}=1}^k (\hat{b}^i_{\bar{i}})$, cf. Section 2.9

Lemma 4.3. Let $I = \{i_1, \ldots, i_k\}$ and $I' = \{i'_1, \ldots, i'_{k_1}\}$ be subsets of J each satisfying the hypotheses of Lemma 4.2. Consider the corresponding ordered coordinate systems $q_I, p_{\bar{I}}$ and $q_{I'}, p_{\bar{I}'}$ on $L_{Y,\alpha}$. Express the coordinates of the second system in terms of coordinates of the first system and denote by $\text{Jac}_{I,\bar{I}}(q_I, p_I)$ the Jacobian of this change. Then

\[\text{Jac}_{I,\bar{I}}(q_I, p_{\bar{I}}) = (d_{i_1,\ldots,i_k}/d_{i'_1,\ldots,i'_{k_1}})^2. \]
Theorem 4.4. The function $d_I^2 \text{Jac}_I$ on $L_{Y,a}$ does not depend on the choice of I and

$$d_I^2 \text{Jac}_I = (-1)^{n-k} \sum_{M \subseteq J, |M| = n-k} d_M^2 \prod_{j \in M} \frac{a_j}{p_j}. \tag{4.4}$$

Proof. The function $d_I^2 \text{Jac}_I$ does not depend on I by Lemma 4.3. Formula (4.4) is proved in [V6] Theorem 3.8 under the assumption that $Y \subseteq \mathbb{C}^n$ is a generic subspace with respect to the coordinate system $(\mathbb{C}^n)^* \rightarrow \mathbb{C}^n$. Let $\text{Jac}_I(q_I, p_I)$ be the Jacobian of $\pi_{L_{Y,a}}$ with respect to the chosen coordinate systems.

4.2. Fibers of $\pi_{L_{Y,a}}$. For $x \in \mathbb{C}^n$, denote $C_{Y,a}(x) = \pi_{L_{Y,a}}^{-1}(x)$, the fiber of the projection $\pi_{L_{Y,a}}$. The fiber is defined in $(\mathbb{C}^\times)^n$ with coordinates p_1, \ldots, p_n by the equations

$$\sum_{j=1}^n \alpha_j p_j = 0, \quad \alpha = (\alpha_1, \ldots, \alpha_n) \in Y,$$

$$\sum_{j=1}^n \beta_j (x_j - a_j/p_j) = 0, \quad \beta = (\beta_1, \ldots, \beta_n) \in Y^\perp,$$

cf. [4.3]. Let $I_{L_{Y,a}}$ be the ideal in $\mathcal{O}((\mathbb{C}^\times)^n)$ generated by the left-hand sides of equations (4.5). Set

$$\mathcal{O}(L_{Y,a}(x)) = \mathcal{O}((\mathbb{C}^\times)^n)/I_{L_{Y,a}}. \tag{4.6}$$

4.3. Arrangement in $\mathbb{C}^n \times \mathbb{C}^k$. Return to the objects and notations of Section 3 and consider \mathbb{C}^k with coordinates t_1, \ldots, t_k, \mathbb{C}^n with coordinates z_1, \ldots, z_n, the projection $\pi : \mathbb{C}^n \times \mathbb{C}^k \to \mathbb{C}^n$ and n nonzero linear functions on \mathbb{C}^k, $g_j = b_j^1 t_1 + \cdots + b_j^k t_k, j \in J$. As in Section 3 we assume that $g_j, j \in J$, span the dual space $(\mathbb{C}^k)^*$. We consider the linear functions $f_j = g_j + z_j = b_j^1 t_1 + \cdots + b_j^k t_k + z_j$ on $\mathbb{C}^n \times \mathbb{C}^k$ and the arrangement of hyperplanes $\mathcal{C} = \{H_j\}_{j \in J}$ in $\mathbb{C}^n \times \mathbb{C}^k$, where H_j is defined by the equation $f_j = 0$. We assume that a weight $a \in (\mathbb{C}^n)^\times$ is given and consider the critical set $C_{\mathcal{C},a}$ defined by (3.14).

In the rest of the paper we denote by

$$Y = Y(\mathcal{C}) \tag{4.7}$$

the k-dimensional subspace of \mathbb{C}^n spanned by the vectors $b^i = (b_i^1, \ldots, b_i^n), i = 1, \ldots, k$.

Theorem 4.5. Assume that for any $j \in J$, the subspace Y^\perp does not lie in the hyperplane $p_j = 0$. Assume that the critical set $C_{Y,a}$ is nonempty. Then the map

$$\Psi_{\mathcal{C},a} : U(\mathcal{C}) \to \mathbb{C}^n \times (\mathbb{C}^n)^*, \quad (x, u) \mapsto (x, y(x, u)), \tag{4.8}$$
where
\[
y(x, u) = \left(\frac{\partial \Phi_{C,a}}{\partial z_1}(x, u), \ldots, \frac{\partial \Phi_{C,a}}{\partial z_n}(x, u) \right),
\]
restricted to \(C_{C,a} \) is a diffeomorphism of the critical set \(C_{C,a} \) onto the Lagrangian variety \(L_{Y,a} \).

Lemma 4.6. We have \(\Psi_{C,a}(C_{C,a}) \subset L_{Y,a} \).

Proof. If \(\alpha \in Y \) and \((x, u) \in C_{C,a}\), then the equation \(F_{\alpha}(\frac{\partial \Phi_{C,a}}{\partial z_1}(x, u), \ldots, \frac{\partial \Phi_{C,a}}{\partial z_n}(x, u)) = 0 \) is a linear combination of the equations \(\frac{\partial \Phi_{C,a}}{\partial z_i}(x, u) = 0, i = 1, \ldots, k \), see (2.7). If \(\beta \in Y^\perp \) and \((x, u) \in C_{C,a}\), then the equation \(G_{\beta,a}(x, \frac{\partial \Phi_{C,a}}{\partial z_1}(x, u), \ldots, \frac{\partial \Phi_{C,a}}{\partial z_n}(x, u)) = 0 \) is just the equation (3.1). \(\blacksquare \)

Lemma 4.7. The map \(\Psi_{C,a} \) sends distinct points of \(U(C) \) to distinct points of \(\mathbb{C}^n \times (\mathbb{C}^n)^* \).

Proof. It is enough to check that \(\Psi_{C,a}(x, u) \neq \Psi_{C,a}(x, u') \) if \(x \neq x' \), but this follows from Lemma 2.6. \(\blacksquare \)

Lemma 4.8. The Jacobian of the map \(\Psi_{C,a}|_{C_{C,a}} : C_{C,a} \to L_{Y,a} \) is never zero.

Proof. The lemma follows from Lemmas 4.1, 3.5, 4.7. \(\blacksquare \)

Lemma 4.9. We have \(\Psi_{C,a}(C_{C,a}) = L_{Y,a} \).

Proof. Let \(\Psi_{C,a}(C_{C,a}) \neq L_{Y,a} \) and \((x^0, y^0) \in L_{Y,a} - \Psi_{C,a}(C_{C,a})\), where \(x^0 \in \mathbb{C}^n \) and \(y^0 \in (\mathbb{C}^n)^* \). We have \(\dim(L_{Y,a} - \Psi_{C,a}(C_{C,a})) < n \) by Lemmas 4.1, 3.5, 4.8. Hence there exists a germ of an analytic curve \(\iota : (\mathbb{C}, 0) \to (L_{Y,a}, (x^0, y^0)) \) such that \(\iota(s) \in \Psi_{C,a}(C_{C,a}) \) for \(s \neq 0 \). Consider the curve \(s \mapsto (\Psi_{C,a})^{-1}(\iota(s)) \) for \(s \neq 0 \). Let \((\Psi_{Y,a})^{-1}(\iota(s)) = (x(s), u(s)) \), where \(x(s) \in \mathbb{C}^n \) and \(u(s) \in \mathbb{C}^k \). We have \(\lim_{s \to 0} \gamma(s) = x^0 \). Since for any \(j \in J \), the function \(\frac{\partial \Phi_{C,a}}{\partial z_j}(x(s), y(s)) \) has a finite limit, there is a finite nonzero limit \(u^0 := \lim_{s \to 0} u(s) \) in \(U(C(x^0)) \). Clearly \((x^0, u^0) \in C_{C,a} \) and \(\Psi_{C,a} : (x^0, u^0) \mapsto (x^0, y^0) \). We get a contradiction which proves the lemma. \(\blacksquare \)

Lemmas 4.6, 4.9 prove Theorem 4.5.

4.4. **Hessian and Jacobian.** Recall the Hessian of the master function \(\Phi_{C,a} \), see Section 2.10. Under the diffeomorphism \(C_{C,a} \to L_{Y,a} \) of Theorem 4.5, we may consider the Hessian as a function on \(L_{Y,a} \). Then
\[
(4.10) \quad \text{Hess}_{C,a} = (-1)^k \sum_{I \subset J, |I|=k} d_I^2 \prod_{i \in I} \frac{p_i^2}{a_i}.
\]

Corollary 4.10. Let \(I \subset J \) satisfy the hypotheses of Lemma 4.2. Then
\[
(4.11) \quad \text{Hess}_{C,a} = (-1)^{|I|} d_I^2 \text{Jac}_I \prod_{j \in J, a_j} \frac{p_j^2}{a_j}.
\]

Proof. Formula (4.11) follows from formulas (4.3) and (4.10). \(\blacksquare \)

Notice that the ratio of \(\text{Hess}_{C,a} \) and \(d_I^2 \text{Jac}_I \) is never zero.
4.5. Corollaries of Theorem 4.5 The map $\Psi_{C,a}$ of Theorem 4.5 establishes an isomorphism

$$
\Psi^*_{C,a} : \mathcal{O}(L_{Y,a}) \to \mathcal{O}(C_{C,a}), \quad [q_j] \mapsto [z_j], \quad [p_j] \mapsto \left[\frac{\partial \Phi_{C,a}}{\partial z_j} \right],
$$

for all $j \in J$, and for any $x \in \mathbb{C}^n$, the isomorphism

$$
\Psi^*_{C(x),a} : \mathcal{O}(L_{Y,a}(x)) \to \mathcal{O}(C_{C(x),a}), \quad [p_j] \mapsto \left[\frac{\partial \Phi_{C,a}}{\partial z_j} \right], \quad j \in J.
$$

In particular, if the weight a is such that $(C(x), a)$ is unbalanced, then the number of solutions of system (4.5), counted with multiplicities, equals $|U(C(x))|$ and can be calculated in terms of the matroid associated with the arrangement $C(x)$, see Lemma 3.6.

The isomorphism $\Psi^*_{C(x),a}$ allows us to compare objects associated with $\mathcal{O}(C_{C(x),a})$ and objects associated with $\mathcal{O}(L_{Y,a}(x))$. For example, let q_I, p_I be an ordered coordinate system on $L_{Y,a}$ like in Lemma 4.2 Assume that $x \in \mathbb{C}^n$ is such that $\dim \mathcal{O}(L_{Y,a}(x))$ is finite. Consider the Grothendieck residue $\mathcal{R} : \mathcal{O}(L_{Y,a}(x)) \to \mathbb{C},$

$$
[f] \mapsto \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f \, dp_I \wedge dq_I}{\prod_{j=1}^n q_j},
$$

where the differentials are ordered as in the ordered coordinate system q_I, p_I, cf. (2.9). Define the nondegenerate bilinear form $(\cdot, \cdot)_{L_{Y,a}(x)}$ on $\mathcal{O}(L_{Y,a}(x))$ by the formula

$$
([f], [g])_{L_{Y,a}(x)} = \frac{(-1)^n}{d_I^2} \mathcal{R} \left([f][g] \prod_{j=1}^n \frac{a_j}{p_j} \right).
$$

Corollary 4.11. Assume that the weight a is generic in the sense of Lemma 3.6, then the isomorphism $\Psi^*_{C(x),a}$ identifies the form $(\cdot, \cdot)_{L_{Y,a}(x)}$ on $\mathcal{O}(L_{Y,a}(x))$ and the form $(\cdot, \cdot)_{C_{C(x),a}(x)}$ on $\mathcal{O}(C_{C(x),a})$.

Proof. For generic $x \in \mathbb{C}^n$, the corollary follows from Corollary 4.10. For all $x \in \mathbb{C}^n$, the corollary follows by continuity.

Remark. Notice that the form $(\cdot, \cdot)_{L_{Y,a}(x)}$ is given by an n-dimensional integral while the form $(\cdot, \cdot)_{C_{C(x),a}(x)}$ is given by a k-dimensional integral.

If $(C(x), a)$ is unbalanced for some $x \in \mathbb{C}^n - \Delta$, then we have the vector bundle of algebras

$$
\bigcup_{x \in \mathbb{C}^n - \Delta} \mathcal{O}(L_{Y,a}(x)) \to \mathbb{C}^n - \Delta.
$$

The fiber isomorphism $\Psi^*_{C(x),a}$ identifies this bundle of algebras with the bundle of algebras in (3.16). The combinatorial and Gauss-Manin connections on the bundle of algebras in (3.16) induce the corresponding connections on the bundle in (4.16).

For $x \in \mathbb{C}^n - \Delta$, we define the marked elements p_{i_1,\ldots,i_k} in $\mathcal{O}(L_{Y,a}(x))$ as the images under $\Psi^*_{C(x),a}$ of the marked elements w_{i_1,\ldots,i_k} in $\mathcal{O}(C_{C(x),a})$. By formula (2.30), we have

$$
p_{i_1,\ldots,i_k} = d_{i_1,\ldots,i_k} a_{i_1} \cdots a_{i_k} p_{i_1} \cdots p_{i_k}
$$

with the skew-symmetry property

$$
p_{i_{\sigma(1)},\ldots,i_{\sigma(k)}} = (-1)^\sigma p_{i_1,\ldots,i_k}, \quad \text{for } \sigma \in \Sigma_k.
$$
and the marked relations
\[\sum_{j \in J} p_{j, i_2, \ldots, i_k} = 0 \] (4.19)
labeled by independent subsets \(\{i_2, \ldots, i_k\} \). By Corollary (2.18), the marked elements \(p_{i_1, \ldots, i_k} \) span \(\mathcal{O}(C(x,a)) \) as a vector space and relations (4.18), (4.19) are the only linear relations between them. This fact defines an integral structure on \(\mathcal{O} \).

For a section \(I = \sum_{j_1, \ldots, j_n} I^{j_1, \ldots, j_n} p_{j_1, \ldots, j_n} \) of the bundle of algebras (4.16) and \(j \in J \), we define \(\frac{\partial I}{\partial q_j} = \sum \frac{\partial I^{j_1, \ldots, j_k}}{\partial q_j} p_{j_1, \ldots, j_k} \). This formula defines the combinatorial connection on (4.16).

Theorem 4.12. If a section \(I \) of the bundle of algebras (4.16) is flat with respect to the Gauss-Manin connection, then it satisfies the differential equations
\[\kappa \frac{\partial I}{\partial q_j}(x) = [p_j] *_x I(x), \quad j \in J, \] (4.20)
where \([p_j] *_x \) is the operator of multiplication by \([p_j]\) in \(\mathcal{O}(L_{Y,a}(x)) \).

Remark. Notice that solutions of these differential equations are given by the multidimensional hypergeometric integrals as in (3.22). Notice also the action of \([p_j] *_x \) on the marked elements \(p_{i_1, \ldots, i_k} \) can be identified with action on the marked elements \(w_{i_1, \ldots, i_k} \) of the operator \(K_j(x) \) from (3.20).

4.6. Real solutions.
Assume that for any \(j \in J \), the subspace \(Y^\perp \) does not lie in the hyperplane \(p_j = 0 \). Assume that all coordinates of the weight \(a \in (\mathbb{C}^\times)^n \) are positive. Assume that all entries of the matrix \((b^j_i)_{i=1,\ldots,k} \), defining \(Y \subset \mathbb{C}^n \) in (4.7), are real. Assume that the critical set \(C_{Y,a} \) is nonempty.

Corollary 4.13. Under these assumptions, if \(x \in \mathbb{R}^n \subset \mathbb{C}^n \), then all solutions of system (4.5) are real and nondegenerate, and the number of solutions equals \(|\chi(U(C(x)))| \).

Proof. If \(a \in (\mathbb{R}_{>0})^n \), \(x \in \mathbb{R}^n \), and \((b^j_i) \) are real, then all points of the critical set \(C_{C(x),a} \) are real, nondegenerate, and the number of points equals \(|\chi(U(C(x)))| \), see [V3]. Now the corollary follows from Theorem 4.5.

The reality property in Corollary 4.13 is similar to the reality property of Schubert calculus, see [MTV2, MTV3, So].

5. Characteristic variety of the Gauss-Manin differential equations
Consider the Gauss-Manin differential equations \(\kappa \frac{\partial I}{\partial q_j} = K_j I \) in (3.13). Define the characteristic variety of the \(\kappa \)-dependent \(D \)-module associated with the Gauss-Manin differential equations as
\[\text{Spec}_{C,a} = \{(x, y) \in (\mathbb{C}^n - \Delta) \times (\mathbb{C}^n)^* \mid \exists v \in \text{Sing}_a V \text{ with } K_j(x)v = y_j v, \ j \in J\}. \] (5.1)
Let \(\pi_{\text{Spec}_{C,a}} : \text{Spec}_{C,a} \to \mathbb{C}^n \) be the projection to \(\mathbb{C}^n \).

Recall the Lagrangian variety \(L_{Y,a} \subset \mathbb{C}^n \times (\mathbb{C}^n)^* \) introduced in Section 4.3 and the projection \(\pi_{L_{Y,a}} : L_{Y,a} \to \mathbb{C}^n \).

Theorem 5.1. Assume that the weight \(a \) is generic in the sense of Lemma 3.7, then \(\text{Spec}_{C,a} = \pi_{L_{Y,a}}^{-1}(\mathbb{C}^n - \Delta) \).
Proof. For generic $x \in \mathbb{C}^n - \Delta$, the special vectors $(F(u))_{u \in \mathcal{C}_a}$ form a basis of $\text{Sing}_a V$ by Theorem 2.11. This gives $\pi^{-1}_{\text{Spec}_{\mathcal{C}_a}}(x) = \pi^{-1}_{L_Y,a}(x)$ by Theorems 2.12 and 3.7. We get the equality $\pi^{-1}_{\text{Spec}_{\mathcal{C}_a}}(x) = \pi^{-1}_{L_Y,a}(x)$ for all $x \in \mathbb{C}^n - \Delta$ by continuity. \hfill \Box

Theorem 5.1 is proved in [V6] if \mathcal{C} is generic.

References

[AGV] V.I. Arnol’d, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differential Maps, Vol. I, Nauka, Moscow, 1982; also Birkhauser, 1985
[C] H. Crapo, A higher invariants for matroids, J. of Combinatorial Theory 2 (1967), 406–417
[D] B. Dubrovin, Geometry of 2D topological field theories, Integrable Systems and Quantum Groups, ed. Francaviglia, M. and Greco, S.. Springer lecture notes in mathematics, 1620, 120–348
[EFK] P. Etingof, I. Frenkel, A. Kirillov, Lectures on representation theory and Knizhnik-Zamolodchikov equations, Mathematical Surveys and Monographs, 58, AMS, 1998
[FaV] M. Falk, A. Varchenko, The contravariant form on singular vectors of a projective arrangement, In Configuration Spaces, Geometry, Combinatorics and Topology edited by A. Bjorner, F. Cohen, C. De Concini, C. Procesi, and M. Salvetti, CRM Series 2012, 255–272
[G] A. Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, Topics in singularity theory, AMS Transl. Ser. 2, 180 (1997), 103–115
[GH] Ph. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, 1994
[GK] A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168, n. 3 (1995), 455–675
[GV] I.M. Gelfand and A. Varchenko, On Heaviside Functions of Configuration of Hyperplane, Funk. Anal. i Prilozh., 21 (1987), no. 4, 1–18, 96
[M] Y.I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, vol. 47, AMS, Providence, RI, 1999
[MTV1] E. Mukhin, V. Tarasov, A. Varchenko, Bethe algebra of the \mathfrak{gl}_{N+1} Gaudin model and algebra of functions on the critical set of the master function, New trends in quantum integrable systems, 307–324, World Sci. Publ., Hackensack, NJ, 2011
[MTV2] E. Mukhin, V. Tarasov, A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bette ansatz, Ann. of Math. (2) 170 (2009), no. 2, 863–881
[MTV3] E. Mukhin, V. Tarasov, A. Varchenko, Schubert calculus and representations of the general linear group, J. Amer. Math. Soc. 22 (2009), no. 4, 909–940
[MTV4] E. Mukhin, V. Tarasov, A. Varchenko, KZ characteristic variety as the zero set of classical Calogero-Moser Hamiltonians, SIGMA 8 (2012), Paper 072, 11 pp.
[MV] E. Mukhin and A. Varchenko, Norm of a Bethe Vector and the Hessian of the Master Function, Compos. Math. 141 (2005), no. 4, 1012–1028
[OT1] P. Orlik, H. Terao, The number of critical points of a product of powers of linear functions, Invent. Math. 120 (1995), no. 1, 1–14
[OT2] P. Orlik, H. Terao, Arrangements and hypergeometric integrals, MSJ Memoir, 9 (2001), Math. Soc. Japan, Tokyo, ix + pp.112
[P] N. Proudfoot, The equivariant Orlik-Solomon algebra J. Algebra 305 (2006), no. 2, 1186–1196
[Si] R. Silvotti, On a conjecture of Varchenko, Invent. Math. 126 (1996), no. 2, 235–248
[So] F. Sottile, Frontiers of reality in Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 1, 31–71
[STV] V. Schechtman, H. Terao, A. Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, Journal of Pure and Applied Algebra, 100th issue (1995), 93–102
[SV] V. Schechtman and A. Varchenko, Arrangements of Hyperplanes and Lie Algebra Homology, Invent. Math. 106 (1991), 139–194
[TV] V. Tarasov, A. Varchenko, *Hypergeometric solutions of the quantum differential equation of the cotangent bundle of a partial flag variety*, Cent. Eur. J. Math. **12** (2014), no. 5, 694–710

[V1] A. Varchenko, *Beta-Function of Euler, Vandermonde Determinant, Legendre Equation and Critical Values of Linear Functions of Configuration of Hyperplanes*, I. Izv. Akademii Nauk USSR, Seriya Mat., 53:6 (1989), 1206–1235

[V2] A. Varchenko, *Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups*, Advanced Series in Mathematical Physics, **21**, World Scientific, 1995

[V3] A. Varchenko, *Critical points of the product of powers of linear functions and families of bases of singular vectors*, Compos. Math. **97** (1995), 385–401.

[V4] A. Varchenko, *Bethe Ansatz for Arrangements of Hyperplanes and the Gaudin Model*, Mosc. Math. J. **6** (2006), no. 1, 195–210, 223–224

[V5] A. Varchenko, *Quantum integrable model of an arrangement of hyperplanes*, SIGMA Symmetry Integrability Geom. Methods Appl. **7** (2011), Paper 032, 55 pp.

[V6] A. Varchenko, *Arrangements and Frobenius like structures*, Preprint (2012), 1–55, arXiv:1210.3802 to appear in Ann. Fac. Sci. Toulouse Math.

[V7] A. Varchenko, *Characteristic variety of the Gauss-Manin differential equations of a generic parallelly translated arrangement*, Preprint (2014), 1–13, arXiv:1402.0924 to appear in journal Mathematics

[Y] S. Yuzvinsky, *Cohomology of the Brieskorn-Orlik-Solomon algebras*, Communications in Algebra **23** (1995), 5339–5354