Induced mass in $N = 2$ super Yang-Mills theories

Sortelano Araujo Diniz$^{(a,b)}$ and Olivier Piguet$^{(c)}$ *

(a) Centro Brasileiro de Pesquisas Físicas (CBPF),
Coordenação de Teoria de Campos e Partículas (CCP),
Rua Dr. Xavier Sigaud 150 - 22290-180 - Rio de Janeiro - RJ - Brazil
(b) Universidade Vale do Rio Doce
Faculdade de Engenharia – FAENG Campus II
35020-220 - Capim, Governador Valadares - MG - Brazil.
(c) Universidade Federal do Espírito Santo (UFES),
Departamento de Física,
Campus Universitário de Goiabeiras - 29060-900 - Vitória - ES - Brazil.
E-mails: sortelano@univale.br, piguet@cce.ufes.br

Abstract: The masses of the matter fields of $N = 2$ Super-Yang-Mills theories can be defined as parameters of deformed supersymmetry transformations. The formulation used involves central charges for the matter fields. The explicit form of the deformed supersymmetry transformations and of the invariant Lagrangian in presence of the gauge supermultiplet are constructed. This works generalizes a former one, due to the same authors, which presented the free matter case.

Keywords: Extended supersymmetry, Gauge theories; PACS: 11.30.PB, 11.15.-q.

*Supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq – Brazil.
1. Introduction

As is well known [1, 2], a superspace description of supersymmetric theories has to be formulated in terms of constrained superfields. In the case of gauge theories with $N = 2$ extended supersymmetry, the constraints are those on torsion and curvature of the gauge superfield [3, 4, 5, 6] and on the matter superfields (Fayet hypermultiplets) [7, 8, 9, 10], inclusive on their central charge dependence. Our aim is to show that a generalization of the Sohnius central charge constraint [9] for the hypermultiplet generates a mass for the corresponding matter particles, this mass appearing as a parameter Λ in the generalized central charge constraint and in the resulting deformed supersymmetry transformations of the component fields. A preliminary version of this work [11] dealt with the case of the free hypermultiplet only.

We shall extend here the construction to the general case of matter hypermultiplets coupled to gauge fields. We shall present the (deformed) supersymmetry transformations of the component fields, as well as the construction of the invariant
action, using for the matter part an algorithm due to Hasler [12]. The gauge supermultiplet component field content corresponds to a gauge of the Wess-Zumino type, the gauge degree of freedoms being reduced to those of a usual Yang-Mills theory.

Our result reproduces in a purely algebraic way that of [13, 14]. The latter indeed showed that the masses of the matter particles may be generated by coupling the matter fields to a constant Abelian super-Yang-Mills field strength, the values of the masses being proportional to the value of this field strength. Thus, the mass generation via a generalized central charge constraint as proposed in the present paper offers an alternative way of generating the masses, with the parameter \(\Lambda \) replacing the constant field strength. The interest of this alternative way is that it appears more natural, being purely algebraic.

Independent of these considerations, the explicit construction of the theory with central charge dependent matter supermultiplets as performed here, presents its own interest and, in the best of our knowledge, has not yet been shown in the literature.

The plan of the paper is the following. After recalling some basic notions for \(n = 2 \) superspace in Section 2 and reviewing the implementation of the generalized Sohnius constraint in the free case [11] in Section 3, we consider the case of the coupling with a gauge supermultiplet in Section 4. Our conclusions are presented in Section 5.

2. \(N = 2 \) Central charge superspace

Flat \(N = 2 \) superspace with central charge\(^1\) [8, 10, 4, 5, 6] will be described by the coordinates \(\{ X^A \} = \{ x^a, \theta^i_\alpha, \bar{\theta}^i_{\dot{\alpha}}, z, \bar{z} \} \), respectively the space-time coordinates \(x^a \), a complex Weyl spinor - isospinor \(\theta^i_\alpha \) and a complex central charge \(z \). The spinor coordinates \(\theta \) are Grassmann (i.e. anticommuting or ”fermionic”) numbers, the remaining ones are ordinary (i.e. commuting or ”bosonic”) numbers, so the manifold coordinates satisfy the (anti)commutation rules:

\[
X^A X^B = (-)^{ab} X^B X^A
\]

where the grading \(a = 0 \) if \(X^A \) is bosonic, and \(a = 1 \) in the fermionic case.

\(N = 2 \) supersymmetry is defined by the Wess-Zumino superalgebra [8, 9]

\[
\{ \mathcal{P}_A, \mathcal{P}_B \} = T^C_{AB} \mathcal{P}_C ,
\]

where \(\mathcal{P}_A = \{ P_a, Q^i_\alpha, \bar{Q}_{i\dot{\alpha}}, Z, \bar{Z} \} \) is the set of infinitesimal generators: the translations \(P_a \) \((a = 0, \cdots, 3) \), the supersymmetry generator \(Q^i_\alpha \), its hermitian conjugate \(\bar{Q}_{i\dot{\alpha}} \) \((\alpha \) and \(\dot{\alpha} = 1, 2 \) = spin indices; \(i = 1, 2 = SU(2) \) (isospin) index) and the complex central charge generator \(Z \). Under Lorentz transformations, \(P_a \) transforms

\(^1\)Our notations and conventions are given in the Appendix.
as a vector; Q and \bar{Q} as Weyl spinors, respectively in the $(\frac{1}{2},0)$ and $(0,\frac{1}{2})$ representations; Z and \bar{Z} transform as scalars. Moreover Q and \bar{Q} transform as doublets of the isospin group SU(2), the remaining generators being singlets.

The generators P, Z and \bar{Z} are bosonic, whereas Q and \bar{Q} are fermionic. Accordingly, the bracket (\cdot,\cdot) in the l.h.s. of (2.2) is an anticommutator if both entries are fermionic, and a commutator otherwise.

Finally, the structure constants of the superalgebra (2.2) – the “torsions” – are given by:

$$T^i_{\alpha \beta} = 2i \varepsilon^{ij} \varepsilon_{\alpha \beta}, \quad T^a_{\alpha \beta} = 2i \varepsilon^{ij} \sigma^a_{\alpha \beta}, \quad T^i_{\dot{\alpha} \dot{\beta}} = -2i \varepsilon^{ij} \sigma^a_{\dot{\alpha} \dot{\beta}}, \quad T^i_{\alpha \dot{\beta}} = 2i \varepsilon^{ij} \sigma^a_{\alpha \dot{\beta}} , \quad T^a_{\dot{\alpha} \dot{\beta}} = -2i \varepsilon^{ij} \sigma^a_{\dot{\alpha} \dot{\beta}},$$

all the other torsion coefficients vanishing.

Representations of the Wess-Zumino superalgebra (2.2) are defined as superfields. A superfield $\phi(X)$ is a function in superspace transforming under the generators of the superalgebra as follows:

$$P_a \phi = \partial_a \phi , \quad Q^i_{\alpha} \phi = \left(\partial^i_{\alpha} - i \sigma^a_{\alpha \beta} \bar{\theta}^\beta \partial_a + \theta^i_{\alpha} \partial_z \right) \phi , \quad \bar{Q}_{\dot{i} \dot{\alpha}} \phi = \left(-\bar{\partial}_{\dot{i} \dot{\alpha}} + i \theta_{\dot{i}}^\alpha \sigma^a_{\alpha \dot{\beta}} \partial_a - \bar{\theta}^\beta \partial_z \right) \phi , \quad (2.4)$$

$$Z \phi = \partial_z \phi , \quad \bar{Z} \phi = \partial_{\bar{z}} \phi .$$

with $\partial_a = \partial / \partial x^a$, $\partial^i_{\alpha} = \partial / \partial \theta^i_{\alpha}$, $\bar{\partial}_{\dot{i} \dot{\alpha}} = \partial / \partial \bar{\theta}^\beta$, etc. This provides the superfield representation of the superalgebra (2.2).

The covariant derivatives D_A are superspace derivatives defined such that $D_A \phi$ transforms in the same way as the superfield ϕ itself. They are given by

$$D_a \phi = \partial_a \phi , \quad D^i_{\alpha} \phi = \left(\partial^i_{\alpha} + i \sigma^a_{\alpha \beta} \bar{\theta}^\beta \partial_a - \theta^i_{\alpha} \partial_z \right) \phi , \quad \bar{D}_{\dot{i} \dot{\alpha}} \phi = \left(-\bar{\partial}_{\dot{i} \dot{\alpha}} - i \theta_{\dot{i}}^\alpha \sigma^a_{\alpha \dot{\beta}} \partial_a + \bar{\theta}^\beta \partial_z \right) \phi , \quad (2.5)$$

$$D_z \phi = \partial_z \phi , \quad \bar{D}_{\bar{z}} \phi = \partial_{\bar{z}} \phi .$$

and obey the same (anti)commutation rules as the generators, up to the sign of the right-hand sides:

$$(D_A, D_B) = -T^C_{AB} D_C , \quad (2.6)$$

the torsion coefficients T^C_{AB} being given in (2.3).

The components of the supermultiplet corresponding to the superfield ϕ are the coefficients of its expansion in powers of θ and $\bar{\theta}$. A generic component can be written as

$$C_n = (D)^n \phi | , \quad (2.7)$$

where $(D)^n$ is some product of D^i_{α} and $\bar{D}_{\dot{i} \dot{\alpha}}$ derivatives, and where the symbol $|$ means that the expression is evaluated at $\theta = \bar{\theta} = 0$. It follows from the explicit
transformation rules (2.4), that the action of the supersymmetry generators on the components can be written as [9]

\[Q_i^a C_n = D_i^a (D)^n \phi \quad , \quad \bar{Q}_{\dot{i} \dot{a}} C_n = D_{\dot{i} \dot{a}} (D)^n \phi \] \quad (2.8)

3. The generalized central charge constraint for the free \(N = 2 \) Fayet hypermultiplet

The Fayet hypermultiplet

\[\phi_i \equiv (\phi_i, \chi_{\alpha}, \bar{\psi}_{\dot{\alpha}}, F_i) \] \quad (3.1)

is formed by two SU(2) doublets of Lorentz scalars \(\phi_i, F_i \) and two SU(2) singlets of Weyl spinors \(\bar{\psi}_{\dot{\alpha}}, \chi_{\alpha} \). It will represent the matter sector of an \(N = 2 \) supersymmetric Yang-Mills theory but, in the present section, we shall only consider a brief review of our previous work [11] on the free Fayet hypermultiplet. The latter is defined by an SU(2) doublet superfield

\[D_i \phi ^i + D_{\dot{i}} \phi ^{\dot{i}} = 0 \quad , \quad \bar{D}_{\dot{i}} \phi ^{\dot{i}} + \bar{D}_i \phi ^{i} = 0 \] \quad (3.2)

3.1 Central charge constraints and supersymmetry transformations

However, in order to define a finite supersymmetry representation, one has to impose a constraint which restricts the dependence of the superfield \(\phi_i(\phi^i) \) on the central charge coordinates \(z \) and \(\bar{z} \). The constraint introduced in [11] reads

\[(\partial_z - \partial_{\bar{z}}) \phi_i = i \Lambda \phi_i \quad , \quad (\partial_{\bar{z}} - \partial_z) \phi^i = i \Lambda \phi^i \] \quad (3.3)

It is a generalization of Sohnius’ one [9], introducing a new real parameter \(\Lambda \) of dimension of a mass.

Remark. The constraint actually considered in [11] had \(\Lambda \) complex \(^3\) and involved a factor \(\exp(-v) \), with \(v \) a real parameter, in front of the \(\bar{z} \) derivative in the first equation (and of the \(z \) derivative in the second one). However it turned up that the existence of an invariant action implied the reality of \(\Lambda \) and the vanishing of \(v \). This means that we would not be able to get a dynamics if \(\Lambda \) were complex or \(v \) nonvanishing, although we still would have a representation of the superalgebra (2.2). The reader may see [11] for more details.

Since the covariant derivatives \(D \) and \(\bar{D} \) (2.3) commute with \(\partial_z \) and \(\partial_{\bar{z}} \), the constraints above hold for the superfield \(\phi_i(\phi^i) \) and all its derivatives, in particular the derivatives which define the component fields (2.7).

\(^2\)The same symbol \(\phi \) represents the multiplet (3.1), the corresponding superfield, as well as the first component of the latter, i.e. its value at \(\theta = \bar{\theta} = 0 \).

\(^3\)Note that the present parameter \(\Lambda \) corresponds to \(-i \) times the parameter \(\lambda \) of [11].
Having defined the components of the hypermultiplet by
\[\phi_i \equiv \phi_i \mid , \quad \chi^a \equiv \frac{1}{2\sqrt{2}} D^a \phi_i \mid , \quad \bar{\psi}_a \equiv \frac{1}{2\sqrt{2}} \bar{D}_a \phi_i \mid \quad F^i \equiv \frac{i}{\sqrt{2}} D^{i\alpha} D_{\alpha} \phi \mid = \partial_{\xi} \phi \mid . \]

we found the following \(\Lambda \)-dependent supersymmetry and central charge transformation laws:
\[
\begin{align*}
Q^i_\alpha \phi_j &= \sqrt{2} \delta^i_j \chi^\alpha , \\
Q^i_\alpha \chi^\beta &= -\sqrt{2} i \varepsilon^i_{\alpha \beta} F^i , \\
Q^i_\alpha \bar{\psi}_\beta &= \sqrt{2} i \partial_{\alpha \dot{\beta}} \phi^i , \\
Q^i_\alpha F_j &= \sqrt{2} \delta^i_j (\partial_{a\dot{a}} \bar{\psi}^a + i \Lambda \chi^a) , \\
Z \phi^i &= F^i , \\
Z \chi^\alpha &= \partial_{a\dot{a}} \bar{\psi}^a + i \Lambda \chi^a , \\
Z \bar{\psi}^\beta &= \partial_{a\dot{a}} \chi^a , \\
Z F^i &= \Box \phi^i + i \Lambda F^i ,
\end{align*}
\]

and similarly for the conjugate components. The algebra of these transformations closes as a representation of the superalgebra (2.2).

3.2 The free Fayet Lagrangian

The construction of an invariant Lagrangian in [11] is based on a proposition due to Hasler [12]:

Proposition. Let be a superfield polynomial \(L^{ij} \) – called the “kernel” – satisfying the conditions of zero symmetric derivatives
\[
D^{(i} L^{jk)} = 0 \quad D_{(i} L^{jk)} = 0 . \tag{3.7}
\]

Then the superfields
\[
L \equiv -D^a L^k , \quad \bar{L} \equiv -\bar{D}_a \bar{L}^k , \quad \tag{3.8}
\]

where
\[
\Lambda^k_a \equiv D_{i a} L^k , \quad \bar{\Lambda}^{k\dot{a}} \equiv \bar{D}^{i \dot{a}} L^k ,
\]

transform under supersymmetry – with infinitesimal parameters \(\xi, \bar{\xi} \) – as
\[
\begin{align*}
\delta L &= i \partial_i (\xi^a \Lambda^i_a + \bar{\xi}_{i\dot{a}} \bar{\Lambda}^{i\dot{a}}) - 2 i \partial_{\dot{a}} (\bar{\xi}_{i\dot{a}} \tilde{\sigma}^{a\dot{a}} \Lambda^i), \\
\delta \bar{L} &= -i \partial_{\dot{i}} (\bar{\xi}^{\dot{a}} \bar{\Lambda}^{\dot{a} \dot{i}} + \xi_{i\dot{a}} \Lambda^{i\dot{a}}) - 2 i \partial_{a} (\xi_{i a} \tilde{\sigma}^{a} \bar{\Lambda}^{i\dot{a}}), \tag{3.9}
\end{align*}
\]
Let us apply this proposition to the kernel used in [11],

\[L^{ij} = \partial_x \phi^j \phi^i + \bar{\partial}_z \phi^j \phi^i \, . \]

(3.10)

The central charge constraint (3.3) implies that \((\partial_x - \partial_z)L^{ij}\) is a total space-time derivative. Then the free Lagrangian defined by

\[L_{\text{free}} = \frac{-1}{24}(L + \bar{L}) \, , \]

(3.11)

\(L\) being defined by (3.8), is indeed supersymmetry invariant up to a total space-time derivative. Explicitly:\footnote{See [13] for the summation conventions.}

\[L_{\text{free}} = \bar{F}F - \partial_a \bar{\phi} \partial^a \phi - i \chi \bar{\phi} \bar{\psi} - i \psi \phi \bar{\psi} - i A \left(\bar{F} \phi + i \bar{\psi} \bar{\psi} + i \psi \chi - \phi \bar{F} \right) \, , \]

(3.12)

with the notation \((\bar{\partial} \bar{\psi})_{\alpha} = \partial_{\alpha \dot{\beta}} \bar{\psi}^\dot{\beta} = \sigma_{\alpha \dot{\beta}}^a \partial_a \bar{\psi}^\dot{\beta}\).

The terms in \(\Lambda\) are mass terms, which have been induced from the supersymmetry transformation rules written above. Writing down the equations of motion \([11]\) indeed shows that \(\Lambda/2\) represents the value of the mass of the propagating fields \(\phi^i\), \(\chi\) and \(\psi\), the field \(F^i\) being auxiliary.

Of course, it is still possible to add a mass term “by hand”. This can be done with the help of Hasler’s proposition, too, and leads to the independent invariant mass Lagrangian

\[L_{\mu} = \mu \left(\bar{F} \phi + \bar{\phi} F + i \bar{\psi} \bar{\psi} - i \psi \chi \right) \, , \]

(3.13)

where \(\mu\) is a real mass parameter.

However, imposing invariance under the parity transformations\footnote{The 4-component Dirac spinor \(\Psi = (\chi_\alpha, \bar{\psi}^\dot{\alpha})\) then transforms as \(\Psi \rightarrow \gamma^0 \Psi\).}

\[
(x^0, x) \rightarrow (x^0, -x) ,
\]

\[(\phi^i, \chi_\alpha, \bar{\psi}^\dot{\alpha}, F^i) \leftrightarrow (\bar{\phi}_i, \bar{\chi}_\dot{\alpha}, \psi^\dot{\alpha}, -\bar{F}_i) , \]

(3.14)

rules out the mass Lagrangian (3.13). Thus parity invariance insures that the mass is completely determined by the parameter \(\Lambda\).

4. Coupling with an \(N = 2\) gauge supermultiplet

4.1 Gauge transformations and covariant derivatives in superspace

The construction of \(N=2\) supersymmetric Yang-Mills theory is based on a SU(2) doublet of Fayet hypermultiplets of matter fields, described by the superfields \(\phi^i, i = 1, 2\) and now belonging to some representation \(R\) of a compact Lie group \(G\), the gauge group. The conjugate superfield field \(\phi_i\) belongs to the conjugate representation \(\bar{R}\).
These superfields are subjected to a generalization of the constraints shown in the previous section, and which will be introduced in the next subsection. The generators of G in the representation R are antihermitean matrices T_r obey the Lie algebra commutation rules

$$[T_r, T_s] = f_{rs}^t T_t . \quad (4.1)$$

Local gauge invariance requires the introduction of a gauge connection superfield

$$\Phi_A = \Phi^r_A T_r , \quad A = a, i \alpha, i \dot{\alpha}, z, \bar{z} . \quad (4.2)$$

with the antihermicity conditions

$$(\Phi^a)^+ = -\Phi^a, \quad (\Phi_i^{\dot{\alpha}})^+ = -\Phi_i^{\dot{\alpha}}, \quad (\Phi^z)^+ = +\Phi_{\bar{z}} . \quad (4.3)$$

The infinitesimal gauge transformations read

$$\delta \phi^i = \Omega \phi^i , \quad \delta \bar{\phi}^i = \bar{\phi}^i \Omega , \quad \delta \Phi_A = D_A \Omega + [\Omega, \Phi_A] , \quad (4.4)$$

where the infinitesimal parameter $\Omega = \Omega^r T_r$ is an antihermitean superfield, subjected to some restrictions because of the constraints on the Fayet superfield ϕ^i, as it will be shown in the next subsection. The covariant derivatives

$$D_A \phi^i = D_A \phi^i - \Phi_A \phi^i , \quad D_A \bar{\phi}^i = D_A \bar{\phi}^i + \bar{\phi}^i \Phi_A , \quad (4.5)$$

with D_A the ordinary superspace covariant derivative (2.5), transform in the same way as ϕ and $\bar{\phi}$ in (4.4). Note that $\bar{\phi}^i \phi_i$ being gauge invariant, we have

$$D_A \left(\bar{\phi}^i \phi_i \right) = D_A \left(\bar{\phi}^i \phi_i \right) . \quad (4.6)$$

The super Yang-Mills curvature \cite{1}

$$F_{AB} = T_{AB}^C \Phi_C + D_A \Phi_B - (-)^{bc} D_B \Phi_A - (\Phi_A, \Phi_B) , \quad (4.7)$$

where the torsion coefficients T_{AB}^C are the same as in the free case (2.3), transforms covariantly, in the adjoint representation:

$$\delta F_{AB} = [\Omega, F_{AB}] . \quad (4.8)$$

Its covariant derivative is

$$D_A F_{BC} = D_A F_{BC} - (\Phi_A, F_{BC}) . \quad (4.9)$$

where we recall that the symbol $\{ \cdot, \cdot \}$ is an anticommutator if both entries are fermionic, and a commutator otherwise. The commutation rules of the gauge covariant superspace derivatives (4.5) or (4.9) yields the supercurvature, e.g.:

$$\{ D_A, D_B \} \Phi_D = -T_{AB}^C D_C \Phi_D - (F_{AB}, \Phi_D) . \quad (4.10)$$
4.2 The gauge supermultiplet

As usual [1, 8, 3], the gauge superfields Φ_A must be constrained in order to get a sensible gauge theory. In the present case of central charge superspace, the natural constraints consist in the vanishing of all the supercurvature components with spinor indices $[10, 4, 5]$:.

$$F^i_{\alpha j} = F^i_{\dot{\alpha} j} = F^i_{\alpha \dot{\beta}} = 0 \quad (4.11)$$

Adding the constraint of central charge independence for the gauge superfields:

$$\partial_z \Phi_A = \partial_{\bar{z}} \Phi_A = 0 \quad (4.12)$$

one can use the Bianchi identities [8]

$$\sum_{\text{cyclic}(ABC)} (D_A F_{BC} - T_{AE}^E F_{CE}) = 0 \quad (4.13)$$

in order to show [4] that all the nonvanishing curvature components may be expressed in terms of the gaugino superfield Φ^i_α and its conjugate:

$$F^i_{\alpha} = i\sigma^{a}_{\alpha \dot{\beta}} \Phi^{\dot{\alpha}}_i \quad , \quad F^{i}_{\dot{\alpha}} = -i\sigma^{a\dot{\alpha}}_\alpha \Phi_i^\alpha$$

$$F^{i}_{\dot{\alpha}} = -i \Phi^\alpha, \quad F^i_{\alpha \dot{\beta}} = 4 \Phi^i_\alpha$$

$$F_{ab} = \frac{1}{16} \left(\sigma^{ab}_{\alpha \beta} D_{\alpha \beta} + \sigma^{ab}_{\dot{\alpha} \dot{\beta}} D_{\dot{\alpha} \dot{\beta}} \right), \quad \text{with} \quad D_{\alpha \beta} \equiv \left(D^k_{\alpha} D_{k \beta} + D^k_{\beta} D_{k \alpha} \right)$$

$$F_{\bar{z} \dot{\alpha} i} = -4 \Phi^\dot{\alpha}, \quad F_{\bar{z} \dot{\alpha} i} = -i \Phi^i \bar{\alpha} \quad (4.14)$$

Gaida [10] has shown that all curvature components only depend on the components Φ_z and $\Phi_{\bar{z}}$ of the gauge connection, through the identities

$$\Phi^i_\alpha = -D^i_{\alpha \beta} \Phi_{\beta}, \quad \Phi^\dot{i} = -D^\dot{i} \Phi_{\bar{z}}$$

(4.15)

In order to keep consistence with the condition (4.12), we must take the infinitesimal parameter Ω of the gauge transformations (4.4) independent of z and \bar{z}. We then note that Φ_z and $\Phi_{\bar{z}}$ transform covariantly under the gauge transformations. Moreover, due to (4.13) and (4.14), they obey to the covariantized chirality conditions

$$D^i_{\alpha} \Phi_z = 0, \quad D^\dot{i} \Phi_{\bar{z}} = 0 \quad (4.16)$$

Supersymmetry transformations of the chiral superfield Φ_z generate the components of the gauge supermultiplet, which consists of a scalar X, an SU(2) doublet, spinor X^i_α (the gaugino), an SU(2) triplet $X^{(ij)}$ and a Lorentz triplet $X_{(\alpha \beta)}$, defined by

$$X = -\Phi_z$$

$$X^i_\alpha = -D^i_{\alpha \beta} \Phi_{\beta}$$

$$X^{(ij)} = - D^{ij} \Phi_{\beta} \quad , \quad \text{with} \quad D^{ij} \equiv D^{i\alpha} D^j_{\alpha} + D^{j\alpha} D^i_{\alpha}$$

$$X_{(\alpha \beta)} = - D_{\alpha \beta} \Phi_{\bar{z}} \quad , \quad \text{with} \quad D_{\alpha \beta} \equiv \left(D^k_{\alpha} D_{k \beta} + D^k_{\beta} D_{k \alpha} \right)$$

(4.17)
The SU(2) triplet obeys the condition of reality:

\[(X^{ij})^+ = -X_{ij})\,.

The Lorentz triplet and its conjugate are linked to the Yang-Mills curvature \(\mathcal{F}_{ab} = \partial_a A_b - \partial_b A_a - [A_a, A_b] \), where \(A_a = \Phi_a \) by:

\[X_{\alpha\beta} = 8i\sigma^{ab}_{\alpha\beta} \mathcal{F}_{ab} \, , \quad \bar{X}_{\dot{\alpha}\dot{\beta}} = 8i\sigma^{ab}_{\dot{\alpha}\dot{\beta}} \mathcal{F}_{ab} \, , \]
or, conversely:

\[\mathcal{F}^{ab} = -\frac{i}{16} (\sigma^{ab}_{\alpha\beta} X_{\alpha\beta} + \sigma^{ab}_{\dot{\alpha}\dot{\beta}} \bar{X}_{\dot{\alpha}\dot{\beta}}) \, , \tag{4.18} \]

The transformation laws of the gauge supermultiplet are obtained using the definition (4.17) of the components and Equation (2.8) with the ordinary superspace spinor derivatives \(\bar{D}^i_{\dot{\alpha}}, \bar{D}^i_{\dot{\alpha}} \) replaced by the covariant derivatives \(\bar{D}^i_{a}, \bar{D}^i_{\dot{a}} \). The result is:

\[Q^i_{\alpha} X = X^i_{\alpha} \]
\[Q^i_{\alpha} X^j_{\beta} = -i\varepsilon^{ij} \varepsilon_{\alpha\beta} [\bar{X}, X] + \frac{1}{4} \varepsilon_{\alpha\beta} X^{ij} - \frac{1}{3} \varepsilon^{ij} X_{\alpha\beta} \]
\[Q^i_{\alpha} X^{jk} = 4i \bar{D}_{a} \varepsilon^{ij} (\varepsilon^{jk} \bar{X}^\beta - \varepsilon^{jk} \bar{X}^\beta) - 4i [\varepsilon^{ij} X^k + \varepsilon^{jk} X^i, \bar{X}] \]
\[Q^i_{\alpha} X_{\beta\gamma} = 4i (\varepsilon_{\alpha\beta} D_{\beta\dot{\gamma}} + \varepsilon_{\alpha\gamma} D_{\beta\dot{\gamma}}) \bar{X}_{i\dot{a}} \]
\[Q^i_{\alpha} = 0 \]
\[\bar{Q}_{\dot{k}\dot{\alpha}} X^j_{\dot{\beta}} = -2i \delta^j_{k} \bar{D}_{\dot{\beta}\dot{\alpha}} X \]
\[\bar{Q}_{\dot{k}\dot{\alpha}} X^{ij} = 4i D_{\beta\dot{a}} (\delta_{\dot{a}}^{ij} X^{j\beta} + \delta_{\dot{a}}^{ij} X^{i\beta}) - 4i [\delta_{\dot{a}}^{ij} \bar{X}_{\dot{a}}^{j} + \delta_{\dot{a}}^{ij} \bar{X}_{\dot{a}}^{i}, X] \]
\[\bar{Q}_{\dot{k}\dot{\alpha}} X_{\alpha\beta} = -4i (D_{a\dot{a}} X_{\alpha\beta} + D_{\beta\dot{a}} X_{\alpha\dot{a}}) \]

and similar transformations for the conjugated multiplet \(\bar{X} = (\bar{X}, \bar{X}_{i\dot{a}}, \bar{X}_{ij}\bar{X}_{\alpha\dot{\beta}}) \) In the equations above, \(D_{\beta\dot{a}} \equiv \sigma_{\beta\dot{a}}^{a} D_{a} = \sigma_{\beta\dot{a}}^{a} (\partial_{a} - [A_{a},]) \).

4.3 Gauge Lagrangian

The gauge field supermultiplet being chiral, the corresponding gauge invariant Lagrangian, supersymmetric up to a total derivative, may be defined as

\[\mathcal{L}_{\text{gauge}} = \frac{1}{3} \cdot 29 \text{Tr} \left(D^{ij} D_{ij} (\Phi_{\varepsilon})^2 + \text{c.c.} \right) \, , \tag{4.20} \]

with \(D^{ij} \) defined in (4.17). Using the transformations laws (4.19) and equation (4.18) we explicitly get

\[\mathcal{L}_{\text{gauge}} = \frac{1}{4} \text{Tr} \left(D^{a\dot{a}} D_{a\dot{a}} \bar{X} X + \frac{1}{4} \bar{X} D_{a} D^{a} X - \frac{i}{8} (D_{a\dot{a}} \bar{X}^{i\dot{a}}) X_{i} + \frac{i}{8} \bar{X}^{i\dot{a}} (D_{a\dot{a}} X^{i\alpha}) - \frac{1}{4} \mathcal{F}^{ab} \mathcal{F}^{ab} + \frac{1}{256} X^{ij} X_{ij} + \frac{i}{8} \bar{X} \{ X^{\alpha i}, X_{\alpha i} \} + \frac{i}{8} \{ \bar{X}_{\dot{a}}, \bar{X}_{\dot{a}} \} X + \frac{1}{8} [X, \bar{X}] \bar{X} X \right) \, . \tag{4.21} \]
4.4 Generalized Fayet-Sohnius constraints. Supersymmetry transformations of the hypermultiplet

The natural extension of the condition (3.2) defining ϕ^i as a Fayet hypermultiplet, in the presence of a gauge connection, is given by:

$$
D^i_\alpha \phi^j + D^j_\alpha \phi^i = 0, \quad D^i_\alpha \phi^j + D^j_\alpha \phi^i = 0,
$$
(4.22)

and the conjugate equations. The use of the covariant derivative guarantees the compatibility of this condition with gauge covariance.

For what concerns the generalized central charge constraint on the Fayet superfield, necessary in order to get a finite supermultiplet, we shall use the same condition (3.3) as in the free case:

$$
(\partial - \partial) \phi_i = i\lambda \phi_i, \quad (\partial - \partial) \phi_i = i\lambda \phi_i,
$$
(4.23)

The compatibility of this constraint with gauge covariance relies on the fact that the z and \bar{z} components of the connection, namely \bar{X} and x (see (4.17)), are covariant, which implies the covariance of the partial derivatives $\partial/\partial z$ and $\partial/\partial \bar{z}$. Let us mention that a slightly more general condition is possible here, too, as we have noted in Section 3 for the free case, but which as well in the present interactive case would prejudicate the existence of an invariant action.

The definition of the hypermultiplet components in the presence of the gauge connection is a covariant extension of the definition (3.4) proposed in the free case:

$$
\phi_i = \phi_i|, \quad \chi^a = \frac{1}{2\sqrt{2}}D^i_\alpha \phi_i|, \quad \bar{\psi}_\dot{\alpha} = \frac{1}{2\sqrt{2}}\bar{D}^i_\dot{\alpha} \phi_i|,
$$
$$
F^i = \partial_i \phi^j | = \left(\frac{i}{8}D^{j\alpha}D_{i\alpha} \phi^j + \Phi_i \phi^j\right) |,
$$
(4.24)

and similarly for the conjugated hypermultiplet $\bar{\phi}^i$. Let us note that the component F^i is defined as the simple partial derivative $\partial/\partial z$ instead of the covariant one. The latter and its conjugate then read, at $\theta = 0$,

$$
D_z \phi^i | = (\partial_z - \Phi_z) \phi^i | = F^i + \bar{X} \phi^i,
$$
$$
D_{\bar{z}} \phi^i | = (\partial_{\bar{z}} - \Phi_{\bar{z}}) \phi^i | = F_i + (X - i\lambda) \phi^i
$$
(4.25)

The supersymmetry transformations of the components are then defined by the covariantized expressions (2.8). Using the definitions above, the curvature conditions (4.11), the Fayet constraints (4.22) and the central charge constraints (4.23) we find, with the help of the Bianchi identities (4.13), the following supersymmetry transfor-
mation laws of the hypermultiplet:

\[
\begin{align*}
Q^i_\alpha \phi_j &= \sqrt{2}\delta^i_j \chi_\alpha , & \bar{Q}_{i\dot{\alpha}} \phi^j &= -\sqrt{2} \delta^i_j \bar{\psi}_{\dot{\alpha}} , \\
Q^i_\beta \chi_\alpha &= -\sqrt{2} \epsilon_{\beta\gamma} (F^i + \bar{X} \phi^j) , & \bar{Q}_{i\dot{\alpha}} \chi_\beta &= -\sqrt{2} i \mathcal{D}_{\beta\dot{\alpha}} \phi_i , \\
Q^i_\beta \bar{\psi}_\dot{\beta} &= \sqrt{2} i \mathcal{D}_{\beta\dot{\beta}} \phi^j , & \bar{Q}_{i\dot{\alpha}} \bar{\psi}_{\dot{\beta}} &= \sqrt{2} \epsilon_{\dot{\alpha}\dot{\beta}} (F^i - (i\Lambda - X) \phi_i) , \\
Q^i_\alpha F_j &= \sqrt{2} \delta^i_j (\mathcal{D}_{a\dot{a}} \bar{\psi}^{\dot{a}} + (i\Lambda - X) \chi_\alpha - X^k_\alpha \phi_k) , & \bar{Q}_{i\dot{a}} F^j &= -\sqrt{2} \delta^i_j (\mathcal{D}_{a\dot{a}} \chi^a - \bar{X} \bar{\psi}_a + \bar{X} \phi_k) .
\end{align*}
\]

In the same way one finds the central charge transformations

\[
\begin{align*}
Z \phi^j &= F^i + \bar{X} \phi^i , & \bar{Z} \phi^j &= F^i - (i\Lambda - X) \phi^i , \\
Z \chi_\alpha &= \mathcal{D}_{a\dot{a}} \bar{\psi}^{\dot{a}} + (i\Lambda - X + \bar{X}) \chi_\alpha - X^k_\alpha \phi_k , & \bar{Z} \chi_\beta &= \mathcal{D}_{a\dot{a}} \bar{\psi}^{\dot{a}} - \sqrt{2} X^k_\alpha \phi_k , \\
Z \bar{\psi}_{\dot{\alpha}} &= \mathcal{D}_{a\dot{a}} \chi^a + \bar{X} \phi_k , & \bar{Z} \bar{\psi}_{\dot{\alpha}} &= \mathcal{D}_{a\dot{a}} \chi^a + \bar{X} \phi_k - (i\Lambda - X + \bar{X}) \bar{\psi}_{\dot{\alpha}} , \\
ZF^i &= \Box \phi^j + (i\Lambda + \bar{X}) F^i , & \bar{Z} F^i &= \Box \phi^j + XF^i
\end{align*}
\]

and similar transformations for the conjugated hypermultiplet $\bar{\phi}^i$. In these equations, $\mathcal{D}_{a\dot{a}} = \sigma^a_{a\dot{a}} \mathcal{D}_a = \sigma^a_{a\dot{a}} (\partial_a - A_a)$.

4.5 The hypermultiplet Lagrangian minimally coupled to the gauge connection

The construction of the hypermultiplet Lagrangian minimally coupled to the gauge connection follows the same lines as in the free case, being based on Hasler’s proposition stated in Section 3.2. We first observe that the kernel L^{ij} (3.10) is gauge invariant as it reads. This way, we have

\[
D_A L^{ij} = \mathcal{D}_A L^{ij} , \quad \text{for all } A ,
\]

and so, the natural extension of Hasler’s procedure\(^6\) in order to get a gauge invariant Lagrangian, supersymmetry invariant up to a total derivative, is to substitute in every step the ordinary superspace derivative D_A used in the free case, by the gauge covariant derivatives \mathcal{D}_A, using the property

\[
D_A \text{Tr} (\bar{\varphi} \varphi') = \text{Tr} (\mathcal{D}_A \bar{\varphi} \varphi' + \bar{\varphi} \mathcal{D}_A \varphi') ,
\]

φ and φ' being the Fayet superfield or some of its covariant derivatives. Since the latter define the components of the hypermultiplet and their transformation rules through (4.24) and the covariantized form of (2.8), it is easy to compute the Lagrangian using the supersymmetry transformation laws (4.26). Thus, starting with

\(^6\)This procedure is detailed in [1].
the kernel (3.10), we get

\[L_{\text{hypermultiplet}} = \bar{F} F - i\psi^{\alpha} D_{\alpha\beta} \bar{\psi}^{\beta} + i\bar{\chi}^{\beta} D_{\alpha\beta} \chi^{\alpha} - D^a \bar{\phi} D_a \phi \]
\[+ i\bar{\psi} \chi - i\bar{\chi} \psi + \frac{i}{\sqrt{2}} \psi^{\alpha} X^k \phi_k - \frac{i}{\sqrt{2}} \bar{\phi} \bar{X} \psi^{\alpha} - \frac{i}{\sqrt{2}} \bar{\chi} \bar{X} \bar{\phi}^{\alpha} - \frac{i}{\sqrt{2}} \bar{\chi} \bar{X} \bar{\phi}^{\alpha} \]
\[- \frac{1}{2} \bar{\phi} (\bar{X} X + X \bar{X}) \phi + \frac{i}{\phi^i} X_{ij} \phi^j \]
\[- \frac{i}{2} \Lambda (\bar{F} \phi - \bar{\phi} F + i\psi \chi + i\bar{\chi} \bar{\psi} + \bar{\phi} X \phi + \bar{\phi} X \phi) , \]

(4.30)

As in the free case, an independent invariant mass Lagrangian may be added, in the form of the gauge invariant extension of the supersymmetric mass Lagrangian (3.13):

\[L = \mu (\bar{F} \phi + \phi F + i\psi \chi + \bar{\phi} X \phi + \bar{\phi} X \phi) , \]

(4.31)

with \(\mu \) a real mass parameter. However this mass Lagrangian again is ruled out by the requirement of invariance under the parity transformations

\((x^0, x) \rightarrow (x^0, -x) , \)

\((\phi^i, \chi^\alpha, \bar{\psi}_{\bar{\beta}}, F^i) \leftrightarrow (\bar{\phi}_i, \bar{\chi}_{\dot{\alpha}}, \psi^\beta, -\bar{F}_i) , \)

\((X, \bar{X}, X^k, \bar{X}^\dot{k}, X_{ij}) \rightarrow (-X^T, -X^T, -(\bar{X}^T)^\dot{k}, -(X^T)_{\dot{k}}, (X^T)_{ij}) \)

where the superscript T means transposição.

In order to complete the description of the model, we write down the field equations for the matter fields:

\[F_i - i M \phi_i = 0 , \]
\[D_a D^a \phi_i + i M F_i + (i M (\bar{X} - X) - \frac{1}{2} (\bar{X} X + X \bar{X})) \phi_i \]
\[- \frac{i}{\sqrt{2}} (\bar{X} i a \bar{\psi}^{\alpha} + X_{ia} X^{\alpha}) \phi_i + \frac{i}{\phi^i} X_{ik} \phi^k = 0 , \]
\[-i D_{\alpha\beta} \bar{\psi}^{\beta} + (M + i X) \chi^{\alpha} + \frac{i}{\sqrt{2}} X^k \phi_k = 0 , \]
\[i D^{\alpha\beta} \chi^{\alpha} - (M + i \bar{X}) \bar{\psi}^{\beta} - \frac{i}{\sqrt{2}} \bar{X} \bar{\phi}^{\alpha} = 0 \]

where the mass \(M \) is given by

\[M = \frac{\Lambda}{2} . \]

5. Conclusions

We have shown that the generalized central charge constraint proposed in [11] for the free Fayet hipermultiplet is working in the case of minimal coupling with a super-Yang-Mills connection. In this case, too, the constraint modifies the supersymmetry transformation rules with terms depending of a parameter having the dimension of a mass. This parameter indeed shows up in the resulting action as the mass of the hipermultiplet. Moreover the mass is totally induced by this mechanism if parity invariance is imposed, which lets us conclude to the possibility of a nonrenormalization theorem for the mass.
Acknowledgments

We are much grateful to Richard Grimm for his help and very interesting discussions, in particular during his visit in Brazil, made possible by a financial support of the CAPES/COPLAG, and during a month’s stay of one of the authors (O.P.) as Professor Invité at the Centre de Physique Théorique (CPT) of the Université de Aix-Marseille, France. O.P. would like to warmly thank the members of the CPT for their very kind invitation and for their hospitality.

Appendix. Notations and conventions

Space-time is Minkovskian, 4-vector components are labelled by latin letters $a, b, \ldots = 0, 1, 2, 3$, the metric is chosen as

$$\eta_{ab} = \text{diag}(-1, 1, 1, 1). \quad (A.1)$$

Weyl spinors are complex 2-component spinors $\psi_\alpha, \alpha = 1, 2$, in the $(\frac{1}{2}, 0)$ representation of the Lorentz group, or $\psi_\dot{\alpha}, \dot{\alpha} = 1, 2$, in the $(0, \frac{1}{2})$ representation. The $N = 2$ internal symmetry group is “isospin” SU(2), isospinors being denoted by $X^i, i = 1, 2$.

Isospin indices i are raised and lowered by the antisymmetric tensors ε^{ij} and ε_{ij}:

$$X^i = \varepsilon^{ij} X_j, \quad X^i = \varepsilon_{ij} X^j, \quad \text{with:} \quad \varepsilon^{ij} = -\varepsilon^{ji}, \quad \varepsilon^{12} = 1, \quad \varepsilon_{ij} \varepsilon^{jk} = \delta^k_i, \quad \varepsilon^{ij} \varepsilon_{kl} = \delta^j_k \delta^i_l - \delta^i_k \delta^j_l. \quad (A.2)$$

The same holds for the Lorentz spin indices, with the tensors $\varepsilon^{\alpha\beta}$ and $\varepsilon^{\dot{\alpha}\dot{\beta}}$ obeying to the same rules (A.2).

Multiplication of spinors and isospinors is done, if not otherwise stated, according to the convention

$$\psi \chi = \psi^\alpha \chi_\alpha, \quad \bar{\psi} \bar{\chi} = \bar{\psi}_\dot{\alpha} \bar{\chi}^{\dot{\alpha}}, \quad UV = U^i V_i. \quad (A.3)$$

Our conventions for the complex conjugation, denoted by *, are as follows:

$$(X^i_\alpha)^* = \bar{X}_{i\dot{\alpha}}, \quad (\bar{X}_{i\dot{\alpha}})^* = X^i_\alpha. \quad (A.4)$$

The matrices σ^a and $\bar{\sigma}^\dot{a}$ are defined by

$$\bar{\sigma}^{\dot{a}\dot{\alpha}} = \varepsilon^{\alpha\beta} \varepsilon^{\dot{\alpha}\dot{\beta}} \sigma_{\beta\dot{\beta}}^a, \quad \sigma^0 = \mathds{1}, \quad \sigma^i (i = 1, 2, 3) = \text{Pauli matrices}, \quad (A.5)$$

$$\bar{\sigma} = \mathds{1}, \quad \bar{\sigma}^i (i = 1, 2, 3) = -\text{Pauli matrices},$$

and obey the properties

$$\sigma^a \bar{\sigma}^b + \sigma^b \bar{\sigma}^a = -2\eta^{ab}, \quad \sigma^a_{\alpha\dot{\alpha}} \bar{\sigma}^{\dot{\beta}\beta} = -2\delta^\beta_{\dot{\beta}} \delta^\alpha_{\alpha}. \quad (A.6)$$
References

[1] J. Wess and J. Bagger, “Supersymmetry and Supergravity”, 2nd Rev., Princeton Series in Physics, Princeton Univ Press (1992).

[2] P. Binetruy, G. Girardi and R. Grimm, Phys. Rept. 343 (2001) 255 [hep-th/0005225].

[3] R. Grimm, M. Sohnius and J. Wess, Nucl. Phys. B 133 (1978) 275.

[4] A. Hindawi, B.A. Ovrut and D. Waldram, Phys. Lett. B 392 (1997) 85 [hep-th/9609016].

[5] R. Grimm, M.F. Hasler and C. Herrmann, Int. J. Mod. Phys. A A13 (1998) 1803 [hep-th/9706108].

[6] G. Akemann, R. Grimm, M.F. Hasler and C. Herrmann, Class. and Quant. Grav. 16 (1999) 1617 [hep-th/9812026].

[7] P. Fayet, Nucl. Phys. B 113 (1976) 135.

[8] P. West, “Introduction to Supersymmetry and Supergravity”, extended second edition, World Scientific (1990).

[9] M.F. Sohnius, Nucl. Phys. B 138 (1978) 109 [Phys. Lett. B 81 (1979) 1]; Phys. Rept. 128 (1985) 39.

[10] I. Gaida, Phys. Lett. B 373 (1996) 89 [hep-th/9512165]; I. Gaida, “The hypermultiplet in N = 2 superspace”, hep-th/9607216.

[11] S.A. Diniz and O. Piguet, “Mass of the fayet hypermultiplet induced by a central charge constraint”, J. High Energy Phys. 03 (2002) 006 [hep-th/0108028].

[12] M.F. Hasler, Eur.Phys.J. C1 (1998) 729 [hep-th/9606076].

M.F. Hasler, PhD thesis, Université de Marseille.

[13] I.L. Buchbinder and S.M. Kuzenko, Class. and Quant. Grav. 14 (1997) L157 [hep-th/9704002].

[14] E.A. Ivanov, S.V. Ketov and B.M. Zupnik, Nucl. Phys. B 509 (1998) 53 [hep-th/9706078].

N. Dragon and S.M. Kuzenko, Nucl. Phys. B 508 (1997) 229 [hep-th/9705027].

E.I. Buchbinder, I.L. Buchbinder, E.A. Ivanov and S.M. Kuzenko, Mod. Phys. Lett. A 13 (1998) 1071 [hep-th/9803176].

N. Dragon, E. Ivanov, S. Kuzenko, E. Sokatchev and U. Theis, Nucl. Phys. B 538 (1999) 411 [hep-th/9805152].

S. Eremin and E. Ivanov, Mod. Phys. Lett. A 15 (2000) 1853 [hep-th/9908054].