Identification of antibiotics for use in selection of the chytrid fungi *Batrachochytrium dendrobatidis* and *Batrachochytrium salamandrivorans*

Kristyn A. Robinson, Mallory Dunn, Shane P. Hussey, Lillian K. Fritz-Laylin*

The University of Massachusetts Amherst, Department of Biology, Amherst, MA 01003

*Correspondence: lfritzlaylin@umass.edu

ABSTRACT

Global amphibian populations are being decimated by chytridiomycosis, a deadly skin infection caused by the fungal pathogens *Batrachochytrium dendrobatidis (Bd)* and *B. salamandrivorans (Bsal)*. Although ongoing efforts are attempting to limit the spread of these infections, targeted treatments are necessary to manage the disease. Currently, no tools for genetic manipulation are available to identify and test specific drug targets in these fungi. To facilitate the development of genetic tools in *Bd* and *Bsal*, we have tested five commonly used antibiotics with available resistance genes: Hygromycin, Blasticidin, Puromycin, Zeocin, and Neomycin. We have identified effective concentrations of each for selection in both liquid culture and on solid media. These concentrations are within the range of concentrations used for selecting genetically modified cells from a variety of other eukaryotic species.
INTRODUCTION

Chytrids are early diverging fungi that are commonly found in aquatic and moist environments.\(^1\) They play key ecological roles, particularly by cycling carbon between trophic levels.\(^2,3\) Chytrids have a biphasic life cycle characterized by motile and sessile stages (Fig. 1).\(^4-6\) They begin their life as motile “zoospores,” which use a flagellum to swim through water and, for some species, actin-based motility to crawl along surfaces.\(^7,8\) Zoospores then transition to a sessile growth stage by retracting their flagellum and building a cell wall in a process referred to as encystation. Encysted spores, known as sporangia, develop hyphal-like structures called rhizoids and grow rapidly. Each sporangium produces many zoospores that exit via discharge papillae to begin the life cycle anew.

Many chytrids are pathogens that infect protists, plants, algae, fungi, and vertebrates.\(^2\) The most infamous chytrids are the vertebrate pathogens *Batrachochytrium dendrobatidis* (Bd) and *B. salamandrivorans* (Bsal). Both pathogens cause chytridiomycosis, a skin disease plaguing amphibians worldwide.\(^4,6\) Recent estimates indicate that *Bd* has affected several hundred amphibian species and has been recorded on every continent except for Antarctica.\(^9-11\) *Bsal* was more recently discovered in 2013 after a steep decline in fire salamander populations in Belgium.\(^6\)

Management strategies for these pathogens have been developed and implemented in limited contexts, but implementation in real world settings remains a challenge. To develop better treatments, we need to understand the biology of chytrids in order to identify targets for drug development. However, studying the molecular mechanisms driving pathogenesis remains challenging due to the lack of genetic tools available for chytrid fungi. The recent success in
A key step to genetic tool development is the identification of methods for selection of successful transformants. The most commonly used selection method is antibiotic resistance: incorporating a gene that provides specific drug resistance allows transformed cells to survive exposure to the antibiotic while all of the other cells are killed. Distinct classes of antibiotics are commonly used for selection, each with their own molecular targets and corresponding organismal specificity. In addition to testing whether a given antibiotic kills cells of interest, it is important to pay attention to the effective concentration of each antibiotic. This is because a low concentration will not apply sufficient selective pressure and a high concentration could produce off-target effects and kill cells indiscriminately.

In this paper, we examine five antibiotics used in fungal and animal systems and identify the effective inhibitory concentration(s) necessary to prevent cell growth in liquid and solid media. Hygromycin, Blasticidin, and Puromycin inhibit protein translation in both bacterial and eukaryotic cells. Hygromycin inhibits protein synthesis by binding to the small ribosomal subunit and stabilizing the tRNA in the A site, preventing the progression of translation. Blasticidin inhibits the terminating step of translation while Puromycin causes the ribosome to prematurely detach from mRNA. Although neomycin targets the prokaryotic 30S ribosomal subunit and causes codon misreading and mistranslation, it has been used in eukaryotes because of the similarity between mitochondrial and chloroplast ribosomes and bacterial ribosomes. Zeocin intercalates in the DNA of both bacteria and eukaryotes and introduces double-stranded breaks, ultimately causing cell death.
RESULTS

To establish appropriate selection compounds for use with *Bd* and *Bsal*, we first identified antibiotics commonly used for selection with both mammalian and fungal systems. We chose five compounds (Hygromycin, Blasticidin, Puromycin, Zeocin, and Neomycin) to test based on the mechanism of action of each compound, their proven efficacy for use with both animal and fungal cells, and the availability of resistance genes (*Table 1*). We next tested the ability of these five compounds to inhibit the growth of *Bd* and *Bsal* cells in liquid culture. Although solid agar media is typically used for colony selection in chytrid and other fungi, we chose to use liquid culture to identify initial working concentrations because measuring zoospore release in liquid media is rapid and easily quantified.

To measure the effect of each antibiotic on *Bd* and *Bsal* growth, we added a wide range of antibiotic concentrations to cultures of age matched zoospores and allowed them to grow for one full life cycle: three (*Bd*) or four (*Bsal*) days. We then measured the concentration of released zoospores in each culture. Initial concentrations were selected based on known inhibitory concentrations for other organisms (*Table 1*) and spanned many orders of magnitude. Based on these preliminary experiments (not shown), we then identified possible working concentration ranges for each antibiotic in both species and tested intermediate concentrations using three biological replicates separated in time (*Fig. 2 and 3*). To enable comparison of zoospore release from replicate experiments conducted on different days, we normalized counts for each replicate to its antibiotic-free control.
We identified antibiotic concentrations that consistently prevented growth in all three biological replicates - the successful concentrations are highlighted in orange in each figure. We found Hygromycin, Zeocin, Blasticidin and Neomycin could inhibit *Bd* growth in liquid culture (Fig. 2), while all of the tested antibiotics inhibited *Bsal* growth (Fig. 3). In *Bd*, Hygromycin has the lowest minimum inhibitory concentration (0.1 µg/ml), followed by Blasticidin (1 µg/ml), Zeocin (5 µg/ml), and Neomycin (600 µg/ml). Puromycin did not inhibit growth in *Bd* with the concentrations tested. In *Bsal*, Zeocin prevented growth at 1 µg/ml, followed by Blasticidin (2 µg/ml), Hygromycin (10 µg/ml), Puromycin (50 µg/ml), and Neomycin (250 µg/ml).

Having identified working concentrations of these compounds for use with liquid media, we next tested their efficacy on solid media. Growing cells on solid media allows for colony formation, which is useful for isolating successful and independent genetic transformants by “picking” colonies that grow under selection. To identify useful concentrations for selection on solid media, we inoculated zoospores on nutrient agar plates containing varying antibiotic concentrations. After a full growth cycle on selective media (three days for *Bd*, four days for *Bsal*), we compared zoospore release to antibiotic-free control cultures by flooding plates with water and looking for motile zoospores *(Supplemental Videos 1 and 2)*. We defined successful concentrations as those which yielded no zoospore release in either replicate. We found at least one concentration for each antibiotic that prevented zoospore release in the timeframe of a typical growth cycle (Fig. 4 and 5).

Because detection of colony formation often requires multiple growth cycles, we evaluated the efficiency of growth inhibition by growing plates with no zoospore release for 14 days. We found that all of the tested antibiotics inhibited *Bd* growth on solid media, but only Hygromycin, Blasticidin and Zeocin inhibited growth in *Bsal*. For *Bd*, Hygromycin has the lowest minimum
concentration at 0.1 µg/ml, with Blasticidin and Zeocin both following at 10 µg/ml, Puromycin at 100 µg/ml, and Neomycin at 1 mg/ml (Fig. 4). In Bsal, Hygromycin, Blasticidin, and Zeocin all prevented growth for at least 14 days at a concentration of 10 µg/ml, while Puromycin and Neomycin did not prevent growth on solid media (Fig. 5). The recommended concentrations for selection are highlighted in orange on the tables in both figures (Fig. 4B, 5B).

DISCUSSION

This study identified drug concentrations that reproducibly inhibited Bd and Bsal growth in either liquid culture or on solid media. When a drug worked in both liquid culture and solid media, the solid media typically required a higher concentration of antibiotic. This may be because of the additional minerals found in the agar not present in the liquid media. Hygromycin, Zeocin, and Blasticidin worked well for both species and at concentrations within the typical range used for genetic selection in other species (Table 1). Puromycin and Neomycin were both able to inhibit growth of Bd and Bsal, but required higher concentrations than are used for animal cell lines. Although Hygromycin, Zeocin, and Blasticidin are all effective for preventing growth of Bd and Bsal, we recommend first using Hygromycin for genetic selection because it has been successfully used for selection of transformants in the nonpathogenic chytrid Spizellomyces punctatus, and is widely used for other fungal species.

The ability to select for genetically transformed cells will allow for tractable genetic models to facilitate hypothesis testing in Bd and Bsal. The identification of useful selection agents and appropriate working concentrations is an important first step in developing genetic tools for use with Bd and Bsal. The natural step forward will be the design of selection cassettes, most
commonly in the form of transformation plasmids. We look forward to the development of these and related molecular tools that will help us answer questions about the basic cell biology of chytrids, fungal evolution, and amphibian pathology.

METHODS

Cell growth and synchronization

Batrachochytrium dendrobatidis (*Bd*) isolate JEL 423 was grown in 1% (w/v) tryptone (Apex Cat. 20-251) in tissue culture treated flasks (Cell Treat 229340) at 24 °C for three days. *B. salamandrivorans* (*Bsal*) isolate AMFP 1 was grown in half-strength TGhL liquid media (0.8% Tryptone, 0.2% gelatin hydrolysate, 0.1% lactose (w/v) in tissue culture treated flasks at 15 °C for four days. For both species, we synchronized the release of motile zoospores by gently washing the flask three times with fresh growth media and then incubating with 10 mL of media for 2 hours. Age matched zoospores were then collected by centrifugation at 2000 rcf for 5 mins, resuspended in media, counted, and used for experiments as outlined below.

Drug treatments and quantitation for cells grown in liquid media

Neomycin (Fisher Cat. AAJ67011AE), Hygromycin B (Fisher Cat. AAJ60681MC), Blasticidin (Fisher Cat. BP2647100), Puromycin (Fisher Cat. BP2956100), and Zeocin (Fisher Cat. AAJ671408EQ), were screened for growth inhibition of *Bd* and *Bsal*. Cells were diluted to a starting concentration of 5x10^5 cells/mL and 250 µL of cells were added to each well of a sterile tissue culture treated 24-well plate (Cell Treat 229123). 250 µl of appropriately diluted antibiotics were added to each well and mixed thoroughly. Plates were sealed with parafilm and grown at either 24 °C for three days (*Bd*), or 15 °C for four days (*Bsal*). For each of three biological
replicates spaced in time, the concentration of released zoospores was estimated using a

hemocytometer. Zoospore concentrations were normalized to the no drug control and data

plotted using Prism (GraphPad v8).

Drug Treatments and Quantitation for cells grown on solid media

We added 1% agar to 50 mL batches of 1% tryptone (w/v) and half-strength TGlH then

autoclaved. Each antibiotic was added to a separate, pre-cooled, 50 mL batch of media, and 10

mL of the solution added to one of five 15 mm² plates (VWR 25384-090) and allowed to solidify.

Plates were wrapped in parafilm and aluminum foil, and stored at 4 °C. Plates were inoculated

by evenly spreading 5.0 x 10⁶ zoospores across the agar and incubated at 24 °C for three days

(Bd) or 15 °C for four days (Bsal). Zoospore release was evaluated by imaging each plate for 20

seconds at one second intervals using a Nikon Ti2-E inverted microscope equipped with 10x

PlanApo objective and sCMOS 4mp camera (PCO Panda) using white LED transmitted light.

Approximate zoospore activity was assessed as: 0 (no visible zoospores), + (< 25% zoospore

activity of control plates lacking antibiotic), ++ (~50% zoospore activity of control plates), or +++

(equivalent zoospore activity to control plates). To determine the lowest antibiotic concentration

that could completely inhibit growth, plates that yielded “0” growth were allowed to grow for 14

days at the appropriate incubation temperature and reassessed as above.

REFERENCES

1. Grossart, H.-P., Wurzbacher, C., James, T. Y. & Kagami, M. Discovery of dark matter fungi
in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic
fungi. *Fungal Ecol.* **19**, 28–38 (2016).
2. Kagami, M., Miki, T. & Takimoto, G. Mycooop: chytrids in aquatic food webs. *Front. Microbiol.* **5**, (2014).

3. Gleason, F. H. *et al.* Zoosporic true fungi in marine ecosystems: a review. *Mar. Freshw. Res.* **62**, 383–393 (2011).

4. Longcore, J. E., Pessier, A. P. & Nichols, D. K. *Batrachochytrium dendrobatidis* gen. et sp. nov., a chytrid pathogenic to amphibians. *Mycologia* **91**, 219–227 (1999).

5. Berger, L., Hyatt, A., Speare, R. & Longcore, J. Life cycle stages of the amphibian chytrid *Batrachochytrium dendrobatidis*. *Dis. Aquat. Organ.* **68**, 51–63 (2005).

6. Martel, A. *et al.* Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. *Proc. Natl. Acad. Sci.* **110**, 15325–15329 (2013).

7. Fritz-Laylin, L. K., Lord, S. J. & Mullins, R. D. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. *J. Cell Biol.* **216**, 1673–1688 (2017).

8. Medina, E. M. *et al.* Genetic transformation of Spizellomyces punctatus, a resource for studying chytrid biology and evolutionary cell biology. *eLife* **9**, e52741 (2020).

9. Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. *Proc. R. Soc. B Biol. Sci.* **283**, 20152454 (2016).

10. Olson, D. H. *et al.* Mapping the Global Emergence of *Batrachochytrium dendrobatidis*, the Amphibian Chytrid Fungus. *PLoS ONE* **8**, e56802 (2013).

11. Scheele, B. C. *et al.* Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. *Science* **363**, 1459–1463 (2019).

12. Smith, H. O., Danner, D. B. & Deich, R. A. Genetic Transformation. *Annu. Rev. Biochem.* **50**, 41–68 (1981).

13. Stepanenko, A. A. & Heng, H. H. Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. *Mutat. Res. Mutat. Res.* **773**, 91–103 (2017).

14. Borovinskaya, M. A., Shoji, S., Fredrick, K. & Cate, J. H. D. Structural basis for hygromycin B inhibition of protein biosynthesis. *RNA* **14**, 1590–1599 (2008).
15. Svidritskiy, E., Ling, C., Ermolenko, D. N. & Korostylev, A. A. Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome. *Proc. Natl. Acad. Sci.* **110**, 12283–12288 (2013).

16. Pestka, S. Inhibitors of Ribosome Functions. *1971* **25**, 487–562 (1971).

17. Mehta, R. & Champney, W. S. Neomycin and Paromomycin Inhibit 30S Ribosomal Subunit Assembly in *Staphylococcus aureus*. *Curr. Microbiol.* **47**, 237–243 (2003).

18. Chankova, S. G., Dimova, E., Dimitrova, M. & Bryant, P. E. Induction of DNA double-strand breaks by zeocin in *Chlamydomonas reinhardtii* and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. *Radiat. Environ. Biophys.* **46**, 409–416 (2007).

19. de Groot, M. J. A., Bundock, P., Hooykaas, P. J. J. & Beijersbergen, A. G. M. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. **16**, 4 (1998).

20. Bundock, P., den Dulk-Ras, A., Beijersbergen, A. & Hooykaas, P. J. Trans-kingdom T-DNA transfer from *Agrobacterium tumefaciens* to *Saccharomyces cerevisiae*. *EMBO J.* **14**, 3206–3214 (1995).

21. Tam, J. P., Lu, Y.-A. & Yang, J.-L. Correlations of Cationic Charges with Salt Sensitivity and Microbial Specificity of Cystine-stabilized β-Strand Antimicrobial Peptides. *J. Biol. Chem.* **277**, 50450–50456 (2002).

22. Cullen, D., Leong, S. A., Wilson, L. J. & Henner, D. J. Transformation of *Aspergillus nidulans* with the hygromycin-resistance gene, hph. *Gene* **57**, 21–26 (1987).

23. Brown, S. & Lorenz, A. Single-step Marker Switching in *Schizosaccharomyces pombe* Using a Lithium Acetate Transformation Protocol. *BIO-Protoc.* **6**, (2016).

24. Goldstein, A. L. & McCusker, J. H. Three new dominant drug resistance cassettes for gene disruption in *Saccharomyces cerevisiae*. *Yeast* **15**, 1541–1553 (1999).

25. Robinson, K. A. *et al.* Isolation and maintenance of *Batrachochytrium salamandrivorans* cultures. *Dis. Aquat. Organ.* **140**, 1–11 (2020).
26. Jiang, H. et al. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. *Proc. Natl. Acad. Sci.* **93**, 9160–9165 (1996).

27. Buchschacher, G. L. & Panganiban, A. T. Human Immunodeficiency Virus Vectors for Inducible Expression of Foreign Genes. *J. Virol.* **66**, 9 (1992).

28. Jin, Q., Marsh, J., Cornetta, K. & Alkhatib, G. Resistance to human immunodeficiency virus type 1 (HIV-1) generated by lentivirus vector-mediated delivery of the CCR5Δ32 gene despite detectable expression of the HIV-1 co-receptors. *J. Gen. Virol.* **89**, 2611–2621 (2008).

29. Cheng, N., He, R., Tian, J., Ye, P. P. & Ye, R. D. Cutting Edge: TLR2 Is a Functional Receptor for Acute-Phase Serum Amyloid A. *J. Immunol.* **181**, 22–26 (2008).

30. Ukekawa, R., Miki, K., Fujii, M., Hirano, H. & Ayusawa, D. Accumulation of multiple forms of lamin A with down-regulation of FACE-1 suppresses growth in senescent human cells. *Genes Cells* **12**, 397–406 (2007).

31. Huang, J., Dibble, C. C., Matsuzaki, M. & Manning, B. D. The TSC1-TSC2 Complex Is Required for Proper Activation of mTOR Complex 2. *Mol. Cell. Biol.* **28**, 4104–4115 (2008).

32. Grueneberg, D. A. et al. Kinase requirements in human cells: I. Comparing kinase requirements across various cell types. *Proc. Natl. Acad. Sci.* **105**, 16472–16477 (2008).

33. Mesnil, M., Piccoli, C., Tiraby, G., Willecke, K. & Yamasaki, H. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. *Proc. Natl. Acad. Sci.* **93**, 1831–1835 (1996).

34. Sakurai, K. et al. Efficient integration of transgenes into a defined locus in human embryonic stem cells. *Nucleic Acids Res.* **38**, e96 (2010).

35. Moore, J. C. et al. Efficient, high-throughput transfection of human embryonic stem cells. *Stem Cell Res. Ther.* **1**, 23 (2010).
36. Yang, C. et al. A Key Role for Telomerase Reverse Transcriptase Unit in Modulating Human Embryonic Stem Cell Proliferation, Cell Cycle Dynamics, and In Vitro Differentiation. STEM CELLS 26, 850–863 (2008).

37. Drobinskaya, I. et al. Scalable Selection of Hepatocyte- and Hepatocyte Precursor-Like Cells from Culture of Differentiating Transgenically Modified Murine Embryonic Stem Cells. STEM CELLS 26, 2245–2256 (2008).

38. Chow, M. Z. Y. et al. Epigenetic Regulation of the Electrophysiological Phenotype of Human Embryonic Stem Cell-Derived Ventricular Cardiomyocytes: Insights for Driven Maturation and Hypertrophic Growth. Stem Cells Dev. 22, 2678–2690 (2013).

39. Sato, M., Ohtsuka, M., Miura, H., Miyoshi, K. & Watanabe, S. Determination of the Optimal Concentration of Several Selective Drugs Useful for Generating Multi-Transgenic Porcine Embryonic Fibroblasts. Reprod. Domest. Anim. 47, 759–765 (2012).

40. Harrison, S. J. et al. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2, 19 (2006).

41. Rashid, A. Comparison of a kanamycin versus hygromycin resistance gene in transgenic plant selection of Arabidopsis thaliana L. J. Cell Sci. Mutat. 01, (2017).

42. Tamura, K., Kimura, M. & Yamaguchi, I. Blasticidin S Deaminase Gene (BSD): a new selection marker gene for transformation of Arabidopsis thaliana and Nicotiana tabacum. Biosci Biotech Biochem 59, 2336–2338 (1995).

43. Van Hove, J., Fouquaert, E., Smith, D. F., Proost, P. & Van Damme, E. J. M. Lectin activity of the nucleocytoplasmic EUL protein from Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 414, 101–105 (2011).

44. Egelhoff, T. T., Brown, S. S., Manstein, D. J. & Spudich, J. A. Hygromycin resistance as a selectable marker in Dictyostelium discoideum. Mol. Cell. Biol. 9, 1965–1968 (1989).

45. Thompson, C. R. L. & Kay, R. R. The Role of DIF-1 Signaling in Dictyostelium Development. Mol. Cell 6, 1509–1514 (2000).
Li, G., Alexander, H., Schneider, N. & Alexander, S. Molecular basis for resistance to the anticancer drug cisplatin in Dictyostelium. 9 (2019).

Nicolussi, A. et al. Secreted heme peroxidase from Dictyostelium discoideum: Insights into catalysis, structure, and biological role. J. Biol. Chem. 293, 1330–1345 (2018).

Biebinger, S., Elizabeth Wirtz, L., Lorenz, P. & Christine Clayton. Vectors for inducible expression of toxic gene products in bloodstream and procyclic Trypanosoma brucei. Mol. Biochem. Parasitol. 85, 99–112 (1997).

Wirtz, E., Leal, S., Ochatt, C. & Cross, George A. M. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89–101 (1999).

Brooks, D. R., McCulloch, R., Coombs, G. H. & Mottram, J. C. Stable transformation of trypanosomatids through targeted chromosomal integration of the selectable marker gene encoding blasticidin S deaminase. FEMS Microbiol. Lett. 186, 287–291 (2000).

Roper, J. R. et al. The Suppression of Galactose Metabolism in Procylic Form Trypanosoma brucei Causes Cessation of Cell Growth and Alters Procyclin Glycoprotein Structure and Copy Number. J. Biol. Chem. 280, 19728–19736 (2005).

Erben, E. D., Fadda, A., Lueong, S., Hoheisel, J. D. & Clayton, C. A Genome-Wide Tethering Screen Reveals Novel Potential Post-Transcriptional Regulators in Trypanosoma brucei. PLoS Pathog. 10, e1004178 (2014).

Niemirowicz, G. T., Cazzulo, J. J., Álvarez, V. E. & Bouvier, L. A. Simplified inducible system for Trypanosoma brucei. PLoS ONE 13, (2018).

Hasnain, S. E., Manavathu, E. K. & Leung, W. C. DNA-mediated transformation of Chlamydomonas reinhardi cells: use of aminoglycoside 3'-phosphotransferase as a selectable marker. Mol. Cell. Biol. 5, 3647–3650 (1985).
55. Berthold, P., Schmitt, R. & Mages, W. An Engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. *Protist* **153**, 401–412 (2002).

56. Liu, P. & Lechtreck, K. F. The Bardet–Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. *Proc. Natl. Acad. Sci.* **115**, E934–E943 (2018).

57. López-Paz, C., Liu, D., Geng, S. & Umen, J. G. Identification of *Chlamydomonas reinhardtii* endogenous genic flanking sequences for improved transgene expression. *Plant J.* **92**, 1232–1244 (2017).

58. Dong, Y. *et al.* Activation of Dormant Secondary Metabolite Production by Introducing Neomycin Resistance into the Deep-Sea Fungus, Aspergillus versicolor ZBY-3. *Mar. Drugs* **12**, 4326–4352 (2014).

59. Han, G. *et al.* An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus. *J. Microbiol.* **56**, 356–364 (2018).

60. Bureik, M., Bruck, N., Hubel, K. & Bernhardt, R. The human mineralocorticoid receptor only partially differentiates between different ligands after expression in fission yeast. *FEMS Yeast Res.* **5**, 627–633 (2005).

61. Zhang, X.-R., He, J.-B., Wang, Y.-Z. & Du, L.-L. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast. *G3amp58 GenesGenomesGenetics* **8**, 2067–2077 (2018).

62. Kimura, M., Kamakura, T., Zhou Tao, Q., Kaneko, I. & Yamaguchi, I. Cloning of the blasticidin S deaminase gene (BSD) from Aspergillus terreus and its use as a selectable marker for Schizosaccharomyces pombe and Pyricularia oryzae. *Mol. Gen. Genet. MGG* **242**, 121–129 (1994).

63. Benko, Z. & Zhao, R. Zeocin for selection of bleMX6 resistance in fission yeast. *Biotechniques* **51**, (2011).
64. Shimma, Y.-I. & Uno, I. Isolation and characterization of neomycin-sensitive mutants in Saccharomyces cerevisiae. *J. Gen. Microbiol.* **136**, 1753–1761 (1990).

65. Fukuda, H. & Kizaki, Y. A new transformation system of Saccharomyces cerevisiae with blasticidin S deaminase gene. 3 (1999).

66. Cary, G. A. *et al.* Identification and characterization of a drug-sensitive strain enables puromycin-based translational assays in Saccharomyces cerevisiae. *Yeast* **31**, 167–178 (2014).
Figure 1. Life cycle of chytrid fungi. As illustrated here with images of Bsal, chytrid fungi have a biphasic life cycle characterized by a stationary growth phase called a sporangium (top) and a motile dispersal phase called a zoospore (bottom). Images taken at 100X using differential interference contrast (DIC) microscopy.
Figure 2

A. Hygromycin

B. Zeocin

C. Blasticidin

D. Puromycin

E. Neomycin

% Growth vs. Concentration (µg/ml)
Figure 2.

Inhibition of Bd growth in liquid media. Percent of Bd growth in liquid media supplemented with (A) Hygromycin, (B), Zeocin, (C) Blasticidin, (D) Puromycin, and (E) Neomycin as compared to an antibiotic free control for three temporally isolated replicates (circle, square, and triangle, shades of blue). Orange symbols indicate concentrations at which no growth occurred after three days in all three replicates.
Figure 3

A. Hygromycin

B. Zeocin

C. Blasticidin

D. Puromycin

E. Neomycin
Figure 3. Inhibition of Bsal growth in liquid media. Percent of Bsal growth in liquid media supplemented with (A) Hygromycin, (B) Zeocin, (C) Blasticidin, (D) Puromycin, and (E) Neomycin as compared to an antibiotic free control for three temporally isolated replicates (circle, square, and triangle, shades of blue). Orange symbols indicate concentrations at which no growth occurred after four days in all three replicates.
Figure 4

A

![Image of cell cultures](image)

B

Antibiotic	Concentration (μg/ml)	Rep 1	Rep 2
Hygromycin			
0.01	++	++	
0.1	0	0	0
1	0	0	0
10	0	0	0
100	0	0	0
1000	0	0	0
Zeocin			
0.1	+	++	
1	0	+	
10	0	0	0
100	0	0	0
1000	0	0	0
Blasticidin			
0.01	++	++	
0.1	+	+	
1	0	0	0
10	0	0	0
100	0	0	0
1000	0	0	0
Puromycin			
0.1	+++	+++	
1	+++	+++	
10	++	+++	
100	0	0	0
1000	0	0	0
Neomycin			
0.1	+++	+++	
1	+++	+	
10	+	+++	
100	+	+	
1000	0	0	0
Figure 4. Inhibition of Bd growth on solid media. (A) Examples of Bd growth after three days on antibiotic selection plates. The ‘+‘ demonstrates the relative zoospore activity of each plate compared to an antibiotic-free control plate. The box highlights zoospores, which appear as small dots while the bracket highlights sporangia. The zoospores in the ‘0’ image are immotile (see Supp Video 1). Scale bar 50 µm. (B) Bd growth on antibiotic selection plates. Concentrations highlighted in bold and orange are the lowest concentrations that prevent growth for at least 14 days post zoospore plating.
Figure 5

Antibiotic	Concentration μg/ml	Rep 1	Rep 2
Hygromycin	0.001	+++	+++
	0.01	+++	++
	0.1	++	+
	1	0	0
	10	0	0
Zeocin	0.01	++	++
	0.1	0	0
	1	0	0
	10	0	0
	100	0	0
Blasticidin	0.01	+	++
	0.1	+	0
	1	0	0
	10	0	0
	100	0	0
Puromycin	0.1	+++	+++
	1	++	+++
	10	++	+
	100	+	0
	500	0	0
Neomycin	0.1	++	++
	1	++	++
	10	++	+++
	100	+	+
	1000	0	0
Figure 5. Inhibition of Bsal growth on solid media. (A) Examples of Bsal growth after four days on antibiotic selection plates. The ‘+’ demonstrates the relative zoospore activity of each plate compared to a no antibiotic control plate. The box highlights zoospores, which appear as small dots while the bracket highlights sporangia. The zoospores in the ‘0’ image are immotile (see Supp Video 1). Scale bar 50 µm. (B) Bsal growth on antibiotic selection plates. Concentrations highlighted in bold and orange are the lowest concentrations that prevent growth for at least 14 days post zoospore plating.
TABLE AND SUPPLEMENTAL VIDEOS LEGENDS

Table 1. Antibiotic concentrations used to select for gene expression in select eukaryotes. This table lists the key features of the antibiotics used in this study: the drug class, the target, known resistance genes, the current listed price per gram from Millipore Sigma, and the concentrations used in select eukaryotes. Species include representatives from plants (*Arabidopsis thaliana* and *Chlamydomonas reinhardtii*), protozoa (*Trypanosoma brucei*), amoebae (*Dictyostelium discoideum*), fungi (*Aspergillus* spp., *Schizosaccharomyces pombe, Saccharomyces cerevisiae*), and animals (human) in addition to the two species tested in this study. The lowest concentrations of each antibiotic which inhibited growth in liquid and solid media for *Bd* and *BsAl* are listed from our findings in this study.

* the organism had to be made susceptible for the antibiotic to work

‡ the *neo* resistance gene is also used for resistance to the drug G418 which was not tested in this study

Drug Class	Neomycin	Hygromycin	Blasticidin	Puromycin	Zeocin				
Target	Ribosome¹⁷	Ribosome¹⁴	Ribosome¹⁵	Ribosome¹⁶	DNA¹⁸				
Known Resistance Genes	*neo*‡	*hyg, hph*	*bsr, bls, bsd*	*pac*	*ble*				
List price per gram (MilliporeSigma)	$1.93/g	$998/g	$6280/g	$5340/g	$177/g (Invivogen)				
	Bd Liquid	*Bd* Solid	*Bsal* Liquid	*Bsal* Solid	HeLa Concentration	Human Embryonic stem cells Concentration	Fibroblasts Concentration	Arabidopsis thaliana Concentration	Dictyostelium discoideum Concentration
-------------------------	-------------	------------	---------------	--------------	--------------------	--	--------------------------	-------------------------------------	--------------------------------------
Lowest drug concentration for growth inhibition	600 µg/ml	1 mg/ml	5 µg/ml	100 µg/ml	100-200 µg/ml	40 µg/ml	15-50 µg/ml	25-40 µg/ml	100 µg/ml
for *Bd*	Liquid:	Solid:	Liquid:	Liquid:	100-200 µg/ml	40 µg/ml	15-50 µg/ml	25-40 µg/ml	100 µg/ml
	µg/ml	0.1 µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/L
** Lowest drug concentration for growth inhibition**	250 µg/ml	N/A µg/ml	10 µg/ml	N/A µg/ml	10-20 µg/ml	2.0 µg/ml	2.0 µg/ml	2.0 µg/ml	100 mg/L
for *Bsal*	Liquid:	Solid:	Liquid:	Liquid:	10-20 µg/ml	0.5-5 µg/ml	0.5-5 µg/ml	0.5-5 µg/ml	100 mg/L
	µg/ml	N/A µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/L
Concentration used for HeLa cells	-	-	100-200 µg/ml	100-200 µg/ml	10-20 µg/ml	1-2 µg/ml	1-2 µg/ml	1-2 µg/ml	50 µg/ml
Concentration used for Human Embryonic stem cells	-	-	40 µg/ml	40 µg/ml	40 µg/ml	8 µg/ml	2 µg/ml	2 µg/ml	800 µg/ml
Concentration used for Fibroblasts	-	-	2.0 µg/ml	100 µg/ml					
Concentration used for Arabidopsis thaliana	-	-	10 µg/ml	10 µg/ml	10 µg/ml	10 µg/ml	-	-	100 µg/ml
Concentration used for Dictyostelium discoideum	-	-	10 µg/ml	10 µg/ml	10 µg/ml	10 µg/ml	-	-	100 mg/L

CC-BY-NC-ND 4.0 International license available under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.
Concentration used for	Trypanosoma brucei	Chlamydomonas reinhardtii	Aspergillus spp	S. pombe	S. cerevisiae
-	5-50 µg/ml\(^{48,49}\)	1-20 µg/ml\(^{55}\)	100 µg/ml\(^{22}\)	0.375 g/L\(^{60}\)	6.25 mM\(^{64}\)
-	2-10 µg/ml\(^{50-52}\)	-	-	400 mg/L\(^{23}\)	300 µg/ml\(^{24}\)
-	0.1 µg/ml\(^{53}\)	-	-	30 µg/ml\(^{61,62}\)	10 mg/ml\(^{65}\)
-	-	5-15 µg/ml\(^{56,57}\)	100-125 µg/ml\(^{59}\)	-	*200 µM\(^{66}\)

\(^{372}\)

\(^{373}\)
Supplemental Video 1. *Bsal* zoospores with zero growth. Zoospores grown on antibiotic selection plates are labeled “0” if no zoospores are released or zoospores showed no growth and are immotile.

Supplemental Video 2. *Bsal* zoospores with “+++” growth. Zoospores grown on antibiotic selection plates are labeled “+++” if the zoospore release is comparable to the no antibiotic control.