Efficient induction of probabilistic word classes with LDA

Grzegorz Chrupala

Saarland University

IJCNLP 2011
Word classes

- Berlin Bangkok Tokyo Warsaw
- Sarkozy Merkel Obama Berlusconi
- Mr Ms President Dr

Groups of words sharing syntax/semantics
Useful for generalization and abstraction
Word classes as features

Have been successfully used in

- Named Entity recognition
- Syntactic parsing
- Sentence retrieval
Brown clustering

- Brown et al propose their algorithm in 1992
- Agglomerative, hard clustering algorithm
- Minimizes MI between adjacent classes
- Still most commonly used word class type
Brown’s weaknesses

1. Time complexity:

\[O(K^2V) \]
Brown’s weaknesses

1. Time complexity:

\[O(K^2V) \]

2. Hard clustering

- Each word form assigned to only one class
- Need separate classes for:
 - first name
 - last name
 - first name OR last name
 - last name OR city

G. Chrupala (Saarland Uni)
Word class induction with LDA addresses both issues
LDA for topic modeling

- For each topic z draw ϕ_z from a Dirichlet
- For each document d
 - Draw a topic distribution θ_d from a Dirichlet
 - Repeat until generated all the words in d
 - Draw a topic z from θ_d
 - Draw a word w from the ϕ_z
LDA

\[\alpha \rightarrow \theta \rightarrow z \rightarrow w \rightarrow N \]

\[\beta \rightarrow \phi \rightarrow K \]

G. Chrupala (Saarland Uni) Efficient word classes with LDA IJCNLP 2011
Topic vs word classes

Topics	Word classes
Documents	Word types
Words	Context features
Krzysztof argues that director edits said Bledowski Kieslowski Kieslowski Rutkowski Sikorski and.
Generative process

- For each class z draw ϕ_z from a Dirichlet.
- For each word type d
 - Draw a class distribution θ_d from a Dirichlet.
 - Repeat
 - Draw a word class z from θ_d
 - Draw a context feature w from the ϕ_z.
Induced distributions

- θ_d: class distribution given word type
- ϕ_z: feature distribution given class
Soft clustering

chief Gingrich Martin Newt Van Scott Roberts
Mr. Ms. John Robert President Dr. David
Street General Texas Fidelity State California
Newt, Speaker • executive, operating
says, Chairman • Clinton, Dole, J.
Wall, West, East • County, AG, Journal
Efficiency

- Brown: $O(K^2V)$
- LDA: $O(KN)$
- Scaling feature counts by $\frac{1}{m}$ reduces LDA runtime m times
Testing efficiency in practice

- 60M words of North American News Text
- LDA, Brown: 100, 200, 500, 1000 classes
- LDA counts scaled by $\frac{1}{3}$
Runtimes

- **brown**
- **lda**

Runtime hours

![Graph showing runtimes for brown and lda models.](image-url)
Semi-supervised learning performance

- Use word classes as features
- Brown
 - different levels of hierarchy
- LDA
 - class distributions and context information
- Explore several class granularities
Fine-grained NER on BBN

ANIMAL CARDINAL AGE DATE DURATION
DISEASE BUILDING HIGHWAY-STREET CITY
COUNTRY STATE-PROVINCE LAW CONTINENT
REGION MONEY NATIONALITY POLITICAL
ORDINAL CORPORATION EDUCATIONAL
GOVERNMENT PERCENT PERSON PLANT VEHICLE
WEIGHT CHEMICAL DRUG FOOD TIME
F1 error
Morphological analysis

Token	Lemma	MSD	Gloss
Pero	pero	cc	but
cuando	cuando	cs	when
era	ser	vsii3s0	he was
niño	niño	ncms000	boy
le	el	pp3csd00	to him
gustaba	gustar	vmii3p0	it pleased
MA results with Morfette

- **Brown**: 500 classes
- **LDA**: 50 classes on Spanish, 100 on French

![Graph showing comparison between Baseline, Brown, and LDA for Spanish and French languages.](chart.png)

- **Baseline**: Blue
- **Brown**: Green
- **LDA**: Red

G. Chrupala (Saarland Uni) | Efficient word classes with LDA | IJCNLP 2011 22 / 29
Semantic relation classification

- Task defined at Semeval 2007 and 2010
- *The bowl was full of apples, pears and oranges*
- CONTENT-CONTAINER(*pears, bowl*)
Relation inventory

- CAUSE-EFFECT
- INSTRUMENT-AGENCY
- PRODUCT-PRODUCER
- CONTENT-CONTAINER
- ENTITY-ORIGIN
- ENTITY-DESTINATION
- COMPONENT-WHOLE
- MEMBER-COLLECTION
- COMMUNICATION-TOPIC
Relation classification results

- 500 Brown classes, 100 LDA classes
• LDA RC would rank third in Semeval 2010
• **Without** PropBank, FrameNet, WordNet, NomLex, Text Runner, Cyc...
To conclude:

- **Efficient** induction of
- **Probabilistic** word classes which
- **Match or improve** on hierarchical Brown classes
Thank you
Relation classification

- **baseline**
- **lda**