Ultra-intense laser pulse characterization using ponderomotive electron scattering

Felix Mackenroth, Amol R Holkundkar and Hans-Peter Schlenvoigt

1 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
2 Department of Physics, Birla Institute of Technology and Science—Pilani, Rajasthan, 333031, India
3 Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, D-01328 Dresden, Germany
E-mail: mafelix@pks.mpg.de

Keywords: ultra-high intensity lasers, ponderomotive electron scattering, laser pulse characterization

Abstract
We present a new analytical solution for the equation of motion of relativistic electrons in the focus of a long laser pulse. We approximate the electron’s transverse dynamics in the averaged field of a long laser pulse focused to a Gaussian transverse profile. The resultant ponderomotive scattering is found to feature an upper boundary of the electrons’ scattering angles, depending on the laser parameters and the electrons’ initial state of motion. In particular, we demonstrate the angles into which the electrons are scattered by the laser scale as a simple relation of their initial energy to the laser’s amplitude. We find two regimes to be distinguished in which either the laser’s focusing or peak power are the main drivers of ponderomotive scattering. Based on this result, we demonstrate how the intensity of a laser pulse can be determined from a ring-shaped pattern in the spatial distribution of a high-energy electron beam scattered from the laser. We confirm our analysis by means of detailed relativistic test particle simulations of the electrons’ averaged ponderomotive dynamics in the full electromagnetic fields of the focused laser pulse.

1. Introduction
Recent technological advances in ultra-intense laser systems facilitate studies of particle dynamics in electromagnetic fields of unprecedented strength [1–9]. In particular, the dynamics of electrons in such ultra-strong fields has been an area of intense research over the past decades [10–13]. It was found, however, that except for specific, highly symmetric cases like plane waves [14, 15], the full electron dynamics cannot be solved in closed analytical expressions. In contrast to these analytical challenges, on the other hand, fully plane laser waves cannot be realized experimentally, but a laser always has a finite size, overlaying the transverse oscillations driven by the laser’s sub-cycle electromagnetic fields by complex envelope dynamics. Over long interaction times, however, the transverse laser field oscillations, are averaged out, leading, e.g. to an exact cancellation of the electrons’ energy gain in plane waves according to the Lawson–Woodward theorem [16, 17]. Hence, in an interaction that is significantly longer than the laser period it is often sufficient to only consider the envelope’s effect on the electrons quivering in the laser field. Such, so-called ponderomotive scattering of the electrons was subject of numerous previous publications [18–23]. In the relativistic regime, a generalized ponderomotive force equation was derived from a Hamiltonian approach [24] with many alternative derivations [25–34] and experimental confirmation [35, 36] following. These studies were later used in a series of technical and fundamental applications [37, 38]. Recently, the conventional averaging approach to deriving the ponderomotive potential was amended by a variational approach preserving the system’s Hamiltonian structure and facilitating the inclusion of higher order terms, which were found to affect dynamics, e.g. in flat-top pulses [39, 40].

Further applications, which are envisaged to be facilitated by a detailed understanding of electron dynamics in realistic laser fields, are reliable metrology schemes for the laser field. In particular, within the topic of ultra-intense laser physics, direct determination of peak intensity is, to date, an unsolved challenge. The typical route
for providing this key laser parameter is the combination of three different and distinct measurements: (a) pulse energy of the fully amplified, collimated beam; (b) pulse duration of a fraction of the collimated beam, typically not at full amplification; and (c) focus imaging of typically a not fully amplified and with attenuating elements transported beam. There is a number of shortcomings of this approach: (a) it does not necessarily yield the energy concentrated within the focus; (b) it may differ across the beam profile due to radial dispersion and further nonlinear effects [41, 42]. (c) It is a time- and spectrum-integrated measurement. Due to the previous effects as well as radial group delay and chromatic aberrations [43, 44], the pulse duration in the focus can be much longer than measured with (b) and exhibit time structures varying with the focal position. Hence, the typical procedure yields rather an upper limit of peak intensity.

Atomic effects have been proposed and employed to yield a measure of peak intensity [45–47], but were restricted to non-relativistic intensities. At higher intensity, atomic ionization is followed by significant electron acceleration which can also provide information on peak intensity and focus size [48, 49]. Experimental realizations of this concept were successfully implemented at mildly relativistic intensities [50, 51]. Relativistic, intensity-dependent plasma effects like ion acceleration [52–55], on the other hand, are not feasible since they are quite sensitive to the temporal contrast of the laser pulse [9, 56], as the plasma formation prior to the pulse peak strongly affects the energy conversion during the peak. Hence, measurements of laser-scattered electron distributions could be a reasonable alternative, especially when relying on beam profile measurements which are much simpler than spectral measurements.

Most previous proposed laser characterization schemes, however, made strongly simplified assumptions such as modeling the laser as a plane wave [57, 58], were focused on numerical simulations [59, 60] or combined the former approaches [12]. Additional insight could be gained from an improved analytical modeling of the electrons’ ponderomotive scattering in a more realistic field shape.

Here we present an according analytical treatment of electron dynamics in a focused laser field. Furthermore, as an exemplary application we demonstrate how key characteristics of an ultra-intense laser pulse can be determined from the spatial distribution of an electron bunch ponderomotively scattered off that laser field. Specifically, we study how the laser pulse amplitude can be read off from the maximal scattering angle of the scattered bunch, i.e. the width of the scattered electron distribution. To this end, we focus our study on cases in which the electron’s initial momentum p_0 is much larger than its laser-driven momentum p_fi. Hence, the transverse motion of an electron driven by a laser of wavelength λ, which is of order $\Delta x_\perp \sim \lambda p_0 / p_\text{fi} \ll \lambda$, is always confined to the laser’s focal volume, which is always larger than λ due to the diffraction limit of any focusing optic. Inside this volume, however, the strong sub-cycle oscillations average almost exactly out and an electron’s final state only negligibly depends on the laser’s polarization. Consequently, the electron bunch’s transverse distribution after the scattering will exhibit a cylindrical symmetry with a transverse size determined by the maximal scattering angle. This maximal scattering angle, on the other hand, is directly linked to the ratio of the laser’s peak field strength to the electron bunch’s peak energy, as was also found in studies of plane wave laser fields [57, 61–63]. Provided that the latter is well characterized, as is typically feasible for accelerator bunches, the laser intensity can hence be directly read off. Next to this, it can be expected that the scattering angle additionally depends on the laser’s spot size. We comment on such a dependence, which is indeed observed in our simulations and point out a path towards this quantity’s measurement from spatial distributions of laser-scattered electron bunches. This pulse characterization scheme hence further corroborates the use of radiation patterns of laser-driven electrons as tool for laser diagnostic [12, 57, 58, 64] and complements alternative uses such as laser diagnostics through atomic ionization [45–47, 49].

The paper is organized as follows. After this introductory section, we are going to devote section 2 to analytically deriving the formula for a laser-scattered electron’s final propagation angle. We will find that two distinctly different regimes exist, which we label focus and amplitude dominated, respectively. We will then discuss each of these regimes separately in sections 3 and 4, respectively. In section 5 we will then present numerical benchmarks and simulations of laser-driven electron bunches to confirm our analytical theory. Finally, we will present some considerations for an experimental implementation in section 6 and summarize our findings and conclude in section 7.

2. Derivation of the scattering-angle formula

We are going to consider the scattering of a bunch of electrons (mass m, charge $-e < 0$) from a laser pulse of potential A and frequency ω, focused to a Gaussian transverse profile of spot size w_0. We restrict the following analysis to long laser pulses, in particular, to ensure that at least a part of the electron bunch passes through the laser’s focus while the laser field remains effectively unchanged. The transit time of a near-luminal electron through the focal length of a laser pulse of typical μm-focusing, i.e. the lower bound for the laser pulse duration, can be estimated to be $\tau_L \gtrsim 100$ fs. And, employing units where the speed of light is $c = 1$, we are going to
assume the electron’s energy \(\varepsilon \) to be much larger than the laser-induced momentum gain \(m a_0 \), where
\[a_0 = \sqrt{\varepsilon A^2 / m^2} \]
is the dimensionless laser amplitude. We focus on the relativistic regime \(a_0 \gg 1 \), also implying \(\varepsilon \gg m \), indicating highly relativistic electrons. We checked that for the parameters studied in this work the electron’s momentum along its initial propagation direction \(p_\parallel \) will be largely unaffected by the laser pulse. In accordance with typical laser–particle collision setups, we are going to consider the electron bunch to be collimated and to be dilute, such that space charge effects are negligible and we can consider a single test particle. Specifically, for space charge effects to be negligible, one needs to ensure that the ponderomotive force dominates over the Coulomb repulsion of an electron bunch magneto-optically focused into the laser’s focal volume. Below we will see that inside this volume the ponderomotive force scales as \(F_{\parallel}^p \sim 2a_0^2 \rho^2 r / \varepsilon w_0^2 \), where \(r \) is the radial distance from the laser axis. On the other hand, the space charge of a long bunch of electrons with number density \(\rho \) scales as \(F_{\parallel}^s = 2e^2 \pi \rho^2 \). Consequently, one needs to limit the analysis to bunch densities \(\rho \ll a_0^2 / e^2 \pi w_0^2 \gamma \). For typical parameters studied in this work (see section 6) this translates to a numerical value \(\rho \ll 10^6 \text{ m}^{-3} \) or a limiting particle current of \(j = \rho \pi w_0^2 \gamma = a_0^2 m / e^2 \gamma \ll 10^{23} \text{ s}^{-1} \) through the laser focus for space charge effects to be negligible. Next, we choose a reference frame in which the laser pulse propagates along the negative direction \(x_\parallel \) and the electron bunch collides head-on with it. Furthermore, as argued above, under these assumptions sub-cycle electron oscillations are averaged out in long pulses and the electron dynamics can be modeled by the envelope ponderomotive effect. Hence, we model the electron’s momentum \(p \) to change according to the relativistic generalization of the ponderomotive force equation averaged over the fast oscillations of the scattering laser field \[\frac{dp}{dt} = -\frac{e^2}{2m^2} \nabla |A|^2, \] (1)
where \(A_\parallel \) indicates the two transverse components of the laser’s vector potential with respect to \(x_\parallel \) and \(\tau^2 = 1 + \left[\left| p_\perp + eA_\parallel \right|^2 + p_\parallel^2 \right] / m^2 \), where the overline indicates temporal averaging of the potential’s fast oscillations on time scales \(\mathcal{O}(\omega^{-1}) \). As stated above, we consider the electrons’ initial energy to be the largest energy scale in the scattering, whence the bunch will be scattered only into small angular deflections by the laser, despite the latter being high-power. We can then approximate the slowly oscillating electron energy to be given by \(\tau \approx \sqrt{1 + a_0^2 + \left(\varepsilon / m \right)^2} \approx \text{const.} \), where \(a_0 \) is the laser’s peak amplitude and we additionally respected that the electron’s longitudinal momentum will only be negligibly affected by the laser throughout the scattering. In order to estimate the laser’s ponderomotive effect on the electron dynamics according to equation (1), we use the perpendicular potential components of a Gaussian laser focus \[A_\perp = A_\perp(w_0) \exp \left\{ - \left(\frac{x_\perp}{w(x_\parallel)} \right)^2 \right\}, \] (2)
where \(A = |A_\perp|, w(x_\parallel) = w_0 \sqrt{1 + \left(x_\parallel / l_\parallel \right)^2} \) with \(l_\parallel = \pi w_0^2 / \lambda \) being the Rayleigh length of a laser with wavelength \(\lambda = 2\pi / \omega \), \(x_\parallel = x_{\perp,1}^2 + x_{\perp,2}^2 \), with the two coordinate directions \(x_{\perp,1}, x_{\perp,2} \) perpendicular to the laser’s propagation direction, \(\eta = \omega(t + x_\parallel) \) is the laser phase and for the sake of simplicity we neglect the Gouy phase and the phase factor accounting for wave front curvature. We see that the potential is independent of the laser’s azimuthal angle \(\varphi = p_{\perp,1} / p_{\perp,1} \), such that \(dp_{\varphi} / dt \equiv 0 \). Then, due to the potential’s cylindrical symmetry it is favorable to express the resulting ponderomotive force in cylindrical coordinates with the laser’s focal axis as polar direction \(x_\parallel \). The ponderomotive force is then expressed as
\[\frac{dp_\parallel}{dt} = \frac{e^2 A^2 x_\parallel}{m \tau^2} \left[\frac{w_0}{w(x_\parallel)} \right] \exp \left\{ -2 \left(\frac{x_\parallel}{w(x_\parallel)} \right)^2 \right\}, \] (4)
\[\frac{dp_{\perp}}{dt} = \frac{e^2 A^2 w_0^2}{m \tau^2 w(x_\parallel)} \left[2 \frac{x_\perp^2}{w^2(x_\parallel)} - 1 \right] \left[\frac{\partial}{\partial x_\perp} w(x_\parallel) \right] \exp \left\{ -2 \left(\frac{x_\perp}{w(x_\parallel)} \right)^2 \right\}. \] (5)
For the above specified head-on collision geometry, the electron’s initial momentum components will be given by \(p_{\perp,0} \equiv (0, 0), p_{\parallel,0} \gg m \). Due to \(dp_{\varphi} / dt \equiv 0 \) in this configuration the electron momentum’s azimuthal angle will remain constant \(\varphi = \text{const.} \) and the interaction of an initially cylindrically symmetric electron bunch with the laser field will result in a cylindrically symmetric scattering pattern. We can hence confine our analytical analysis to a planar cut through the laser focus containing its focal axis, which we choose to be the \((x_\parallel, x_{\perp}) \)-plane. We note that in our calculations the \(x_{\perp} \)-axis does not necessarily coincide with the laser’s polarization axis in case of linear polarization, as the ponderomotive scattering is independent of polarization \[29 \]. To model a bunch we can then consider single electrons initially distributed according to
the electron will pass through the focal plane at the time origin that obtained from the radial step pro-

In order to decouple the electron and the laser

of inverse trigonometric functions

In order to evaluate the resulting dynamics, it is instructive to note that

We will now be transitioning to the new variables

time dependence of

i.e. a second order nonlinear differential equation with variable coef-

By setting the laser amplitude to this constant smaller than unity inside the laser focus we compensate best

averaged radially over the focal volume, computed as

The constant assumed for the laser amplitude inside the focal radius is equal to the amplitude of the laser

By setting the laser amplitude to this constant smaller than unity inside the laser focus we compensate best

for an overestimation of the laser’s radial push that would result from neglecting the laser’s radial damping and setting its amplitude to unity inside the focus. We checked numerically that the trajectory of an electron ponderomotively scattered from a laser focus with full Gaussian radial profile is virtually indistinguishable from that obtained from the radial step profile introduced in equation (6) with the field amplitude properly reduced by a factor ∼0.75. We furthermore note that it is crucial that the radial step-profile approximation in equation (6) is made only after the gradient in equation (1) is evaluated, in order to obtain the non-trivial pre-exponential factor. This pre-exponential namely dominates the transverse dynamics for $x_\perp \lesssim w(x_\parallel)$. We can then write the differential equation for the electron’s transverse position as

$$\frac{d^2 x_\perp}{dt^2} = \frac{2e^2 A_0^2 x_\perp}{m^2 \gamma^2} \left(\frac{w_0}{w^2(x_\parallel)} \right)^2,$$

i.e. a second order nonlinear differential equation with variable coefficients. Taking into account the presumed time dependence of $x_\parallel = ct$ this can then be rewritten to

$$\left(1 + \left(\frac{ct}{l_R} \right)^2 \right) \frac{d^2 x_\parallel}{dt^2} = \frac{2e^2 A_0^2 x_\parallel}{\gamma^2 w_0^2} x_\perp.$$

We will now be transitioning to the new variables

$$\tau = \int_{t_0}^{t'} \frac{1}{1 + \left(\frac{ct'}{l_R} \right)^2} \, dt',$$

$$\xi_\perp = \frac{x_\perp}{\sqrt{1 + \left(\frac{ct}{l_R} \right)^2}}.$$

In order to evaluate the resulting dynamics, it is instructive to note that τ has an explicit representation in terms of inverse trigonometric functions

$$\tau = l_R \left[\arctan \left(\frac{t}{l_R} \right) + \frac{\pi}{2} \right].$$

In order to decouple the electron and the laser field before scattering completely, we are going to consider $t_0 \to -\infty$ such that we find the following asymptotic properties of the rescaled variables (10), (11)

$$\tau \xrightarrow{t \to t_0} 0, \quad \tau \xrightarrow{t \to \infty} l_R \pi,$$

$$\xi \xrightarrow{t \to t_0} 0, \quad \frac{d}{d\tau} \xi \xrightarrow{t \to \infty} -\frac{x_\perp}{l_R}.$$
Then, with the following differentiation property

$$\frac{d\xi_\perp}{d\tau} = \sqrt{1 + \left(\frac{c}{l_k}\right)^2} - \frac{c^2\xi_\perp}{l_k^2},$$

we see that in the new variables (10), (11) the transverse dynamics are governed by a second order differential equation with constant coefficients

$$\frac{d^2\xi_\perp}{d\tau^2} = \left(\frac{2a_0^2}{\tau w_0^2} - \frac{1}{l_k^2}\right)\xi_\perp,$$

where we put $c = 1$ again. For this equation it is reasonable to define the frequency parameter

$$\Omega = \sqrt{1 - \frac{2}{\tau w_0^2} \left(\frac{a_0 l_k}{\tau w_0}\right)^2}.$$

(15)

For the solution of equation (14) obviously the relative size of the two addends is decisive. Please note here that a_0, w_0 and l_k are experimentally not independent and a_0^2/w_0^2 can be expressed by the laser pulse power. Hence for given electron energy ε, the first addend grows only with laser pulse power, whereas $1/l_k^2$ grows just with spatial focus tightness.

Equivalently, also the ratio of the two terms $\sqrt{2} a_0/\tau$ and w_0/l_k is decisive. Respecting that for $\varepsilon \gg m a_0$, the ratio $\sqrt{2} a_0/\tau$ determines an electron’s scattering angle θ from the laser field. It will be instructive to compare this angle to the divergence angle of a Gaussian laser beam in the far-field $\arctan(\lambda l_k/\pi w_0)$.

We note that it always holds $\theta_L < 1$ for a paraxially focused Gaussian laser pulse. Now, one may distinguish two cases, see figure 1: (i) For $\sqrt{2} a_0/\tau \leq w_0/l_k$ the electron will typically be scattered by the laser pulse to angles within the laser’s focusing cone, $\theta \leq \theta_L$ (see also below). Furthermore, equation (14) indicates that in this case $d^2\xi_\perp/d\tau^2/\xi_\perp \leq 0$. Since the relation between rescaled transverse position and acceleration in this case is dominated by the focusing of the laser pulse, we term this regime the focus dominated. (ii) On the other hand, for $\sqrt{2} a_0/\tau \geq w_0/l_k$, the electron will typically be scattered to angles outside of the laser’s focal cone, $\theta > \theta_L$, and it holds $d^2\xi_\perp/d\tau^2/\xi_\perp \geq 0$. Based on the same argument as before, the laser pulse power dominates and we term this regime amplitude dominated.

Before we turn to quantitative solutions of equation (14) in these two cases, we note that interestingly, under our rough approximations it appears that there exists an equilibrium between the laser’s focusing and intensity on the one hand and the electron’s initial energy on the other: for a balanced relation $w_0/l_k = \sqrt{2} a_0/\tau$ an electron initially propagating parallel to the laser axis will be driven from this propagation state by the strongly simplified second order differential equation $d^2\xi_\perp/d\tau^2 \equiv 0$. Hence, the electron will experience linear deflection by the laser and, in this case, we read off from equation (14) the general solution for the equilibrium transverse displacement

$$\tan \theta_L = \frac{w(x)}{x_L} \bigg|_{x_L=\infty} = \frac{w_0}{l_k} = \frac{\lambda}{\pi w_0}.$$

(16)
In the case of Focus dominated ponderomotive scattering being slightly out of the laser field distribution within the beam will not permit this symmetry to be perfect but for not too tight focusing it might still be approximately observable.

3. Focus dominated ponderomotive scattering

In the case \(\lambda / l_\text{R} \leq \sqrt{2} a_0 / \pi \) what is equivalent to a too low laser power compared to \(\tau \), equation (14) turns into a harmonic oscillator equation which is canonically solved by

\[
\xi_z(t) = \alpha \sin \left(\frac{\Omega}{l_\text{R}} t \right) + \beta \cos \left(\frac{\Omega}{l_\text{R}} t \right),
\]

(25)
Consequently, the electron’s perpendicular coordinate is given by

\[
x_{\perp}(t) = \alpha \sqrt{1 + \left(\frac{t}{l_k}\right)^2} \sin \left[\Omega \left(\arctan \left(\frac{t}{l_k}\right) + \frac{\pi}{2}\right)\right]
+ \beta \sqrt{1 + \left(\frac{t}{l_k}\right)^2} \cos \left[\Omega \left(\arctan \left(\frac{t}{l_k}\right) + \frac{\pi}{2}\right)\right].
\]

The constant coefficients in the focus dominated regime of equation (25) are again obtained by imposing boundary conditions. Analogously to the above discussion, it is favorable to first impose the assumption of vanishing initial transverse velocity, i.e. that the electron initially propagates along the laser’s propagation axis

\[
v_{\perp}(t) = \frac{\alpha}{l_k} \sin \left[\Omega \left(\arctan \left(\frac{t}{l_k}\right) + \frac{\pi}{2}\right)\right]
+ \frac{\beta}{l_k} \cos \left[\Omega \left(\arctan \left(\frac{t}{l_k}\right) + \frac{\pi}{2}\right)\right].
\]

We hence see that \(\beta \equiv 0\) is required to fulfill \(v_{\perp}(t_0) = 0\). In order to fix the prefactor \(\alpha\) we need to impose the electrons initial transverse displacement \(x_{\perp}(t_0) = x_{\perp,0}\). Since we chose \(t_0 = -\infty\) formally \(x_{\perp}(t_0)\) is undefined. We can, however, circumvent this complication by considering the limit \(t \to t_0\) and taking into account

\[
\lim_{t \to t_0} \arctan(x \to -\infty) = -\pi/2 - 1/x \quad \text{as well as} \quad \sin(x \to 0) \to x.
\]

Then, we find for the electron’s perpendicular coordinate at times approaching \(t_0\)

\[
x_{\perp}(t \to t_0) \equiv \alpha \Omega \equiv x_{\perp,0}.
\]

Consequently, the free parameter is \(\alpha = x_{\perp,0}/\Omega\) and the transverse electron dynamics are explicitly given by

\[
x_{\perp}(t) = \frac{x_{\perp,0}}{\Omega} \sqrt{1 + \left(\frac{t}{l_k}\right)^2} \sin \left[\Omega \left(\arctan \left(\frac{t}{l_k}\right) + \frac{\pi}{2}\right)\right].
\]

It is interesting to note that equation (19) obviously is the \(\Omega \to 0\) expansion of this general solution. This could have been expected as the equilibrium condition \(w_0/l_k = \sqrt{2} a_0/\pi\) precisely translates to \(\Omega \equiv 0\), which is superficially divergent in (29). The electron’s transverse velocity is then given by

\[
v_{\perp}(t) = -\frac{x_{\perp,0}}{\Omega \sqrt{R^2 + t^2}} \left(\frac{t}{l_k}\right) \sin \left[\Omega \left(\arctan \left(\frac{t}{l_k}\right) + \frac{\pi}{2}\right)\right]
+ \Omega \cos \left[\Omega \left(\arctan \left(\frac{t}{l_k}\right) + \frac{\pi}{2}\right)\right].
\]

Analogous to the above discussion, we obtain the electron’s propagation angle as a function of time by studying \(v_{\perp}(t)\). Any electron scattered into angles \(\theta(t) \geq \theta_f\) will leave the focal volume at some time. To estimate this time, we note that the ratio of the electron’s perpendicular position to the beam’s radius to be given by

\[
x_{\perp}(t) = \frac{x_{\perp,0}}{w_0 \Omega} \sin \left[\Omega \left(\arctan \left(\frac{t}{l_k}\right) + \frac{\pi}{2}\right)\right]
\]

whence we conclude that, in accordance with the above discussion of the focus dominated regime, the electron will never exit the laser beam for initial displacements smaller than the maximal value

\[
x_{\perp,0} \leq x_{\perp,0}^{\max} = w_0 \Omega.
\]

(32)

(recall that it always holds \(\Omega \leq 1\) in the focus dominated regime). Consequently, in the focus dominated regime and for electrons staying inside the laser’s focal volume for all time, i.e. for \(x_{\perp,0} \leq [0, w_0 \Omega]\), the final scattering angle \(\theta_f\) can be determined to be

\[
\theta_f := \theta(t \to \infty) = \frac{x_{\perp,0}}{l_k R} \sin [\pi \Omega] \leq \frac{w_0}{l_k}.
\]

(33)

In this equation, the fact that \(\theta_f(x_{\perp,0} = 0) = 0\) is consistent with the well-known fact that when propagating exactly on axis a particle will not experience any ponderomotive scattering due to the potential envelope’s radial symmetry around this axis. On the other hand, the fact that the scattering angles are linear in the initial displacement \(x_{\perp,0}\) is an unphysical artifact of modeling the laser’s transverse intensity profile as flat within its beam diameter in equation (6). Including the exponential factor in that equation will most likely introduce a non-trivial \(x_{\perp,0}\) dependence in equation (33) but also complicates equation (8) to an exponentially nonlinear second order differential equation.

For \(x_{\perp,0} \geq w_0 \Omega\), on the other hand, we need to distinguish the cases \(\Omega \leq 1/2\) and \(\Omega > 1/2\), respectively. In the former case, the electron will reach its closest approach to the focal boundary \(w(x_f)\) only for \(t \to \infty\). In this case the sine in equation (31) will not reach its maximum and \(x_{\perp}(t)/w(x_f)\) hence be a monotonically increasing function of time. Consequently, the electron will only reach its nearest approach to the focal volume’s boundary at asymptotic times \(t \to \infty\). Hence, in this regime the electron will stay inside the laser focus only if it started at initial transverse displacements smaller than
\[x_{\perp,0} \leq x_{\perp,0}^{\max} = -\frac{w_0 \Omega}{\sin[\pi \Omega]} \]

\((34)\)

We can then define a unique time at which the electron leaves the laser’s focal region by solving equation \((31)\) for \(x_{\perp}(t)/w(x_{\perp}) \equiv 1\), resulting in

\[t_{\max} = \frac{l_R \tan}{\sqrt{2}} \left(\arcsin \frac{w_0 \Omega}{x_{\perp,0}} - \frac{\pi}{2} \right). \]

\((35)\)

Consequently, neglecting re-entry into the focal volume, for an electron leaving the laser’s focal volume the final scattering angle will not be determined by the limit \(t \to \infty\), as the electron will not be accelerated up to that time, but only until \(t_{\max}\) according to equation \((35)\). Hence, the electrons’ scattering angle will be given by

\[\theta(t_{\max}) = \frac{w_0}{l_R} \sqrt{\left(\frac{x_{\perp,0}}{w_0} \right)^2 - \Omega^2 \sin(g(x_{\perp,0})) - \cos(g(x_{\perp,0}))}, \]

\((36)\)

where we defined the argument of the trigonometric functions \(g(x_{\perp,0}) = \arcsin[w_0 \Omega/x_{\perp,0}] / \Omega\), satisfying \(\theta'(x_{\perp,0}) = -1/x_{\perp,0} \sqrt{w_0 \Omega / \sin[\pi \Omega]} \), i.e. monotonically falling in the regime \(\Omega \leq 1/2\) where it holds \(x_{\perp,0} \leq w_0 \Omega / \sin[\pi \Omega]\) and hence \(g(x_{\perp,0}) \in [\pi, 0]\). We again recognize \((22)\) to be the \(\Omega \to 0\) expansion of \((36)\). Comparing \((33)\) and \((36)\) we see that for \(\Omega \leq 1/2\) at an initial displacement \(x_{\perp,0} = x_{\perp,0}^{\max}\), right at the boundary between the regimes where an electron stays inside or leaves the laser’s focal volume, it holds \(t_{\max}(x_{\perp,0} \to x_{\perp,0}^{\max}) \to \infty\) such that \(\theta(t_{\max}(x_{\perp,0}^{\max})) = w_0/l_R = x_{\perp,0}^{\max} / \sin[\pi \Omega] / l_R \). Hence, the analytical result predicts a continuous distribution of scattering angles, irrespective of whether the electron leaves or remains inside the focal volume. Furthermore, we can study, whether for a particular initial displacement, there exists a maximum in the scattering angle. To this end, we note that for electrons leaving the focal volume, the scattering angle changes as a function of initial transverse displacement according to

\[\frac{d}{dx_{\perp,0}} \theta(t_{\max}) = -\frac{w_0 \sin(g(x_{\perp,0}))}{x_{\perp,0}^R} \left[\frac{x_{\perp,0}^2}{w_0^2} - 1 \right] \sqrt{\left(\frac{x_{\perp,0}}{w_0} \right)^2 - \Omega^2} - \cot(g(x_{\perp,0})) \]

\((37)\)

From the above considerations on the domain of \(g(x_{\perp,0})\) we conclude that the prefactor is strictly positive in the regime \(\Omega \leq 1/2\), whence the scattering angle can only exhibit a maximum if the term in brackets vanishes. In analogy to the discussion following equation \((22)\) we find that for finite \(\Omega \in [0, 1/2]\) the maximal scattering angle will be determined by the more complicated equation

\[\tan \left(\frac{\arcsin(\Omega \nu' / \Omega)}{\Omega} \right) = \frac{\nu \sqrt{1 - (\Omega \nu' / \Omega)^2}}{1 - \nu^2 / (\Omega^2)}, \]

\((38)\)

where we recall \(\nu(\Omega) = w_0 / x_{\perp,0}(\Omega)\). This equation is again not solvable analytically, but we can expect that for small \(\Omega \lesssim 1/2\) the solution \(\nu(\Omega)\) will scale quadratically in \(\Omega\) at most. Solving the defining equation for \(\nu(\Omega)\) we find again a behavior independent of \(w_0\) and the two limits \(x_{\perp,0}^{\max}(\Omega = 0) \approx w_0 / 2.74\) (see discussion before \((22)\) and following) and \(x_{\perp,0}^{\max}(\Omega = 1/2) \approx w_0 / 2\) (see below) well reproduced (see figure 2). Analytically, the peak position is well approximated by \(x_{\perp,0}^{\max}(\Omega) \approx w_0(0.37 - 8 \times 10^{-2} \Omega + 0.64 \Omega^2)\), i.e. a modified quadratic scaling as conjectured above.

Additionally, it is important to note that for large initial transverse displacements \(x_{\perp,0} \to \infty\), the exit time diverges as \(t_{\max} \to -\infty\). Inserting this relation into equation \((36)\), on the other hand, we see, that for large initial transverse displacements the scattering angle vanishes \(\theta(x_{\perp,0} \to \infty) = 0\). Hence, it appears that for \(\Omega \leq 1/2\) the maximum scattering angle will be reached for initial displacements \(x_{\perp,0} \approx x_{\perp,0}^{\max}\).

For the latter case \(\Omega > 1/2\), on the other hand, the electron will reach its maximal approach to the focal boundary at a finite time, and then retreat from it again. As a consequence, the maximal initial transverse displacement at which an electron will still remain inside the laser’s focal volume throughout the scattering is given by \((32)\) and \((35)\) will possibly have multiple solutions. Of these we naturally have to consider the earlier time, as we do not wish to consider re-entry into the focal volume. Comparing \((33)\) and \((36)\) we find that in this case of \(\Omega > 1/2\) the analytical result does not predict a continuous distribution of scattering angles for varying initial displacements \(x_{\perp,0}\) but is discontinuous at \(x_{\perp,0}^{\max}\). To see this, it is sufficient to note that in this regime \(x_{\perp,0}^{\max} \sin(\pi / \Omega) / l_R = \sin(\pi / \Omega) w_0 / l_R\). On the other hand, the time at which the electron leaves the laser’s focal region is finite even for \(x_{\perp,0} = x_{\perp,0}^{\max}\) and given by \(t_{\max}(x_{\perp,0}^{\max}) = l_R \tan((1/\Omega - 1) \pi / 2)\). We hence conclude that in the regime \(\Omega > 1/2\) the electron will leave the laser’s focal volume always at times \(t_{\max} \leq t_{\max}(x_{\perp,0}^{\max})\). The
corresponding scattering angle is given by

\[
\theta(t_{\text{max}}(x_{\perp,0}^{\text{max}})) = \sin \left[\frac{\pi}{2} \left(\frac{1}{\Omega} - 1 \right) \right] w_0 / l_R \leq x_{\perp,0}^{\text{max}} \sin [\pi \Omega] / \Omega l_R.
\]

Consequently, in this regime the maximal scattering angle will be reached for initial transverse displacements of

\[
x_{\perp,0} = x_{\perp,0}^{\text{max}} = x_{\perp,0}^{\text{max}}. \sin \left(\frac{\pi}{2} \right) / \Omega l_R.
\]

The derived discontinuous behavior is an artifact of our model assumption to neglect reentry of the electrons into the focal volume. We will see below, however, that the analytical formulas still capture the main qualitative features of the ponderomotive scattering. Furthermore, from evaluating \((37)\) we find that the scattering angle is monotonically decreasing for increasing \(x_{\perp,0}\), in contrast to the above case \(\Omega \leq 1 / 2\), whence it is obvious that the maximal scattering angle to be reached for electrons with initial displacement \(x_{\perp,0} = x_{\perp,0}^{\text{max}}\).

Next, it is instructive to study the scaling properties of the scattering angles. Since we assumed the electron’s initial energy to be the dominating energy scale in the problem, we can always assume \(a_0 / \tau \ll 1\) and expand all solutions in this small parameter. We then find \(\Omega \approx 1 - (a_0 l_R / \tau w_0)^2\) and hence

\[
\theta_f \approx \pi x_{\perp,0} \left(\frac{a_0}{\tau} \right)^2,
\]

for scattering being determined by the focusing. We hence see that the final scattering angle should scale as \(\theta_f \sim (a_0 / \tau)^2\). We thus see that for lower energies \(\varepsilon\) and larger amplitudes \(a_0\) the scattering becomes more pronounced, as it has to be. Consequently, the opening angle of the scattered electron bunch can obviously serve to infer information about the scattering laser’s intensity. We note that the scaling of the scattering angle with changing \(w_0\) cannot be derived from the above discussion, due to the strongly simplifying assumption of a step-like transverse laser profile, which masks the nature of \(w_0\) as the exponential decay length of the transverse profile.

4. Amplitude dominated ponderomotive scattering

In the amplitude dominated regime \(w_0 / l_R \leq \sqrt{2} a_0 / \tau\), in contrast to the discussion of the previous section, equation \((14)\) turns into an exponentially accelerated second order differential equation which is canonically solved by

\[
\xi_{\perp}(t) = \alpha \sinh \left[\frac{\Omega t}{l_R} \right] + \beta \cosh \left[\frac{\Omega t}{l_R} \right].
\]

In analogy to the analysis in the focus dominated regime, from imposing boundary conditions on this general solution, the transverse dynamics turn out to be given by

\[
x_{\perp}(t) = x_{\perp,0} \left(\frac{t}{l_R} \right)^{1 / 2} \sinh \left[\Omega \left(\frac{t}{l_R} + \frac{\pi}{2} \right) \right],
\]

where we recognize the only difference to equation \((29)\) to be the hyperbolic sine replacing its trigonometric counterpart. This replacement, however, implies the possibility for unbounded growth of the perpendicular coordinate, whence many physical properties of the solution will change. The electron’s transverse velocity in this case is given by

\[
\frac{dx_{\perp}}{dt} = x_{\perp,0} \left(\frac{t}{l_R} \right)^{1 / 2} \cosh \left[\Omega \left(\frac{t}{l_R} + \frac{\pi}{2} \right) \right].
\]
we conclude that in the amplitude dominated regime

\[v_1(t) = \frac{x_{1,0}}{\Omega \sqrt{l_k^2 + t^2}} \left(\frac{t}{l_k} \sinh \left[\Omega \left(\arctan \left(\frac{t}{l_k} \right) + \frac{\pi}{2} \right) \right] + \Omega \cosh \left[\Omega \left(\arctan \left(\frac{t}{l_k} \right) + \frac{\pi}{2} \right) \right] \right) \]

(42)

Next, we again wish to establish a connection between the electron’s transverse velocity and its scattering angle. We recall again that within the limits of the above derivation the transverse velocity is numerically equivalent to the electron’s instantaneous propagation angle \(v_1(t) = v_1(t)/v(t) = \theta(t) \). In order to estimate the time at which an electron will leave the laser’s focal volume, we again consider the electron’s perpendicular position in units of the laser beam’s radius

\[\frac{x_{1}(t)}{w(x)} = \frac{x_{1,0}}{w_0 \Omega} \sinh \left[\Omega \left(\arctan \left(\frac{t}{l_k} \right) + \frac{\pi}{2} \right) \right] \]

(43)

Here we note that in the amplitude dominated regime \(\Omega \) is not bounded but can, in principle, grow arbitrarily large. Hence, the electron will only remain within the laser’s focal volume provided

\[x_{1,0} \leq x_{1,0}^{\text{max}} = \frac{w_0 \Omega}{\sinh(\pi \Omega)} \]

(44)

Provided this prerequisite is satisfied, the final scattering angle is given by

\[\tan \theta_f := \lim_{t \to \infty} \tan \theta(t) = \frac{x_{1,0}}{l_k} \sinh(\pi \Omega) \]

(45)

Combining equations (44), (45) we find that the maximal scattering angles of electrons remaining within the laser’s focal volume is reached by electrons with initial transverse displacement \(x_{1,0}^{\text{max}} \) and is given by

\[\tan \theta_f^{\text{max}} = \frac{w_0}{l_k}, i.e. \text{the laser’s divergence angle}. \]

This result, however, had again to be expected, as \(\theta_f = w_0/l_k \) is the maximal deflection angle for which an electron can asymptotically remain inside the laser’s focal volume.

For \(x_{1,0} \geq x_{1,0}^{\text{max}} \), on the other hand, independent of the value of \(\Omega \), the electron will leave the laser’s focal volume. In close analogy to the discussion connected to equations (35), (36) the maximal propagation time is given by

\[t_{\text{max}} = l_k \arcsin \left[\frac{\frac{w_0 \Omega}{x_{1,0}^{\text{max}}}}{\Omega} \right] - \frac{\pi}{2} \]

(46)

An electron leaving the laser’s focal volume at this time will propagate towards an angle \(\tan \theta(t_{\text{max}}) = \left(t_{\text{max}} w_0/l_k + \sqrt{x_{1,0}^{\text{max}}^2 + (w_0 \Omega)^2} \right)/\sqrt{l_k^2 + t_{\text{max}}^2} \). Upon insertion of (46) into this expression we find the maximal scattering angle for electrons leaving the focal volume in the amplitude dominated regime to be formally equivalent to (36)

\[\tan \theta(t_{\text{max}}) = \frac{w_0}{l_k} \sqrt{\frac{x_{1,0}^{\text{max}}^2}{w_0^2} + \Omega^2 \sin \left(\frac{\pi}{2} x_{1,0}^{\text{max}} \right) - \cos \left(\frac{\pi}{2} x_{1,0}^{\text{max}} \right)} \]

(47)

albeit with an altered argument of the trigonometric functions in the amplitude dominated regime \(\tilde{g}(x_{1,0}) = \arcsinh \left[w_0 \Omega/x_{1,0}^{\text{max}} \right] / \Omega \), satisfying \(\tilde{g}(x_{1,0}) = -1/x_{1,0}^{\text{max}} \sqrt{w_0^2 \Omega^2 + \Omega^2} \). In analogy to the focus dominated regime from \(x_{1,0} \in [w_0 \Omega/\sinh(\pi \Omega), \infty] \) it follows \(g(x_{1,0}) \in [\pi, 0] \).

Analogous to the case \(\Omega \leq 1/2 \) in the focus dominated regime, from comparing (45) and (47) we find that in the amplitude dominated regime for an initial displacement \(x_{1,0} = x_{1,0}^{\text{max}} \), right at the boundary between the regimes where an electron stays inside or leaves the laser’s focal volume, it holds \(\tan \theta(t_{\text{max}}(x_{1,0}^{\text{max}})) = w_0/l_k = x_{1,0}^{\text{max}} \sinh(\pi \Omega) / \Omega l_k \). Hence, the analytical result again predicts a continuous distribution of scattering angles, irrespective of whether the electron leaves or remains inside the focal volume.

Repeating the above search for the maximum scattering angle as a function of initial transverse displacement, we find the derivative of (47)

\[\frac{d}{dx_{1,0}} \tan \theta(t_{\text{max}}) = -\frac{w_0}{x_{1,0}} \sin \left(\frac{\pi}{2} x_{1,0}^{\text{max}} \right) \left[\frac{x_{1,0}^{\text{max}}}{w_0^2} - \frac{1}{\Omega^2 \sqrt{\left(\frac{x_{1,0}^{\text{max}}}{w_0} \right)^2 + \Omega^2} - \cot \left(\frac{\pi}{2} x_{1,0}^{\text{max}} \right) \right]. \]

(48)

From the above considerations on the domain of \(\tilde{g}(x_{1,0}) \) we conclude that in the amplitude dominated regime the maximal scattering angle will be determined by the equation

\[\tan \left(\frac{\arcsinh(\Omega \sqrt{\Omega^2})}{\Omega} \right) = \sqrt{1 - (\Omega \sqrt{\Omega^2})^2} \]

(49)
5. Numerical benchmarks

In the following we are going to test the analytical predictions of equations (33), (36), (45), (47) by numerical simulations. First, we recall that we modeled the transverse laser profile by a step function. As argued in equation (7), the assumed constant laser amplitude inside the focal volume will result in an overestimation of the laser’s radial push. On the other hand, such an overestimation is unlikely to change qualitative features of the transverse scattering but can be modeled as an effective reduction of the parameter \(a_{0\text{eff}} = \sqrt{\pi / 4 \ \text{erf}(1)} a_0 \). In order to test this approximation, we study the ponderomotive scattering of an electron bunch from a Gaussian laser focus according to the full equation (4). The electron bunch is modeled by \(10^7 \) numerical particles, initially located far away from the laser’s focal plane \(-t_0 = -x_{0,0} \gg l_0 \) where \(l_0 < 0 \) is the start time of the simulation running until \(t = -t_0 \). In transverse direction the electrons will be modeled as randomly distributed in a disk. And we will focus this work on parameter regimes in which effects of radiation reaction are negligible, which, on the other hand would be in conflict with the initial assumption of \(\tau \gg a_0 \), whence we will not consider this limit in this study.

We begin by studying a test case in the focus dominated regime, choosing \(a_0 = 10, \varepsilon_0 = 200 \text{ m} \) and \(\lambda = 800 \text{ nm} \), resulting in \(\sqrt{2} a_{0\text{eff}} / (\tau a_0) \approx 0.7 \). We wish to stress that at the considered focusing, non-paraxial effects do not significantly influence the scattering of an ultra-relativistic electron, as considered here [66]. We will furthermore study an electron disk of initial size \(x_{1,0} \ll 10 a_0 \) in order to account for scattering of particles that will both stay within and leave the laser’s focal volume. First, we study the analytically predicted scattering angles as a function of initial transverse displacement. In fact, from numerical checks we find our above conjecture confirmed that in the focus dominated regime those electrons are scattered into the largest angles that are initially at a transverse displacement \(x_{0,0}^\text{peak} = a_0 / \nu (\Omega) \) and that the peak scattering angle is accordingly well reproduced by equation (33). Next, from a full numerical propagation of the electron trajectories according to equation (4) we find that at asymptotic times after the interaction with the laser focus the distribution of transverse velocities, which is equivalent to the distribution of scattering angles, is indeed confined to a circular disk (see figure 4(a)). However, using the above parameter \(a_0 = 10 \) in (33) we find a theoretical prediction of the maximal scattering angle larger than the numerically obtained scattering angles, which we attribute to an effective overestimation of \(a_{0\text{eff}} \), as discussed above. To correct for this effect, we used the effective laser amplitude \(a_{0\text{eff}} \approx 0.75 a_0 \), as derived in equations (6), (7). Using this analytically derived correction in (33) we found a
theoretically predicted value of $\theta_f^{\text{max}} \approx 4.4 \times 10^{-2}$ rad in reasonable agreement with the numerical simulation (see figure 4(a)). In order to simulate the signal on an electron detector, we assume the detector to be placed 20 cm from the laser focus, resulting in a scattered electron bunch radius of approximately 8 mm (see figure 4(b)). Interestingly, the analytical prediction of the maximal scattering angle θ_f^{max} yields a good agreement with the electrons’ spatial distribution, indicating that the assumed detector distance of 20 cm is sufficient to have the electrons reach their asymptotic propagation state. Finally, in order to emulate the real signal of a pixelated detector, we binned the electrons into a 32×32 array, corresponding, e.g. to CCD pixels of 0.75×0.75 mm2 size, and find that discarding the saturated detector spot in the bunch center there is still a clear bunch boundary discernible at the analytically predicted cutoff angle (see figure 4(c)).

Next, we study an exemplary case in the amplitude dominated regime. Specifically, we choose $a_0 = 15$, $\gamma = 200$ and $w_0 = 5 \mu m$, resulting in $\sqrt{2} a_0 \omega_0 / w_0 \gamma \approx 2.1$. We will again consider the electrons to be initially distributed in a disk of initial size $x_{\perp,0} = 10w_0$. Studying again the analytically predicted scattering angles as a function of initial transverse displacement, we find that in the amplitude dominated regime, as well, those electrons are scattered into largest angles that are initially at a transverse displacement $x_{\perp,0}^{\text{peak}} = w_0 / \gamma$ (see figure 5). More importantly, we note that even the shape of the numerically simulated electron’s scattering angle distribution agrees very well with the analytically derived form, further corroborating our above conjecture that the difference between the model and an experiment can be modeled by an effectively reduced laser peak amplitude.

Also, in analogy to the above discussion, we find that at asymptotic times the transverse electron distribution is confined to a circular disk of opening angle $\theta_f^{\text{max}} \approx 0.11$ rad (see figure 6(a)), larger than the maximal angle obtainable from equation (45). Hence, we conclude that as conjectured above, even in the amplitude dominated regime the largest angle scattering is experienced by electrons initially with a transverse displacement $x_{\perp,0}^{\text{peak}} w_0 \sinh \gamma > w_0 / \gamma$. Inserting the corresponding value $x_{\perp,0}^{\text{peak}} = w_0 / \gamma$ into (47) we obtain
\[\tan \theta(t_{\text{max}}) \approx 0.11 \] in exceptional agreement with the simulated value (see figure 6(a)). Hence, in the amplitude dominated regime we do not need to consider an effectively reduced peak amplitude. The reason for this is most probably that due to the laser’s large amplitude the electrons are deflected already long before they reach the laser’s focal plane. Far from the laser’s focus, however, its transverse Gaussian shape is less significant, rendering the above approximation of it being a step-function more realistic. Assuming again a detector placed at a distance of 20 cm from the laser focus, we observe the scattered electron bunch radius to be approximately 7 mm (see figure 6(b)). Again, the agreement between this spatial distribution and the analytical prediction of the maximal scattering angle indicates that at the assumed detector distance the electrons have reached their asymptotic propagation state. Binning the electron distribution again onto a 32 \times 32 array we can confirm the existence of a clear bunch boundary discriminable at the analytically predicted cutoff angle (see figure 6(c)).

Naturally, it is imperative to test our predictions also beyond the ponderomotive approximation. To this end, we now have to compare the analytical predictions of the purely ponderomotive effect to a numerical simulation of the electron dynamics in the full electrodynamic fields of a Gaussian focused laser. All numerical examples presented in the following are direct numerical solutions of the full electromagnetic equations of motion in the exact fields of such a laser. To model the laser field we use a non-paraxial field approximation. This model was shown to yield excellent agreement with a full vector-beam model of a laser field with \(w_0 \geq 1 \mu m \) and \(\lambda = 800 \text{ nm} \), when simulating back-scattered Thomson radiation, which directly traces the electron dynamics studied here. For tighter focusing longitudinal laser field components become relevant, whence the ponderomotive approximation becomes less reliable. We simulate an electron bunch of \(10^3 \) particles, initially placed at a longitudinal position \(x_{0,0} = 500 \lambda \) and numerically propagate them through the full electromagnetic field of a focused Gaussian laser pulse, also taking into account radiation reaction effects of radiative losses on their dynamics. On the other hand, we explicitly checked that these latter effects do not measurably affect the electron dynamics. We begin by testing the predicted scaling laws of the scattering angle. We are again going to study the maximal scattering angles of electrons inside the bunch, which, as demonstrated above, determine the spatial size of the electron bunch’s image on a detector, of an electron bunch scattered by the full electromagnetic laser fields of a Gaussian focused laser pulse as functions of different interaction parameters. Studying the maximal scattering angle of an electron with initial energy \(\varepsilon = 200 \text{ m} \) from a laser pulse with focal spot size \(w_0 = 2 \mu m \) as a function of the laser amplitude \(a_0 \), we observe clear reproductions of the above derived scaling laws \(\theta^{\text{max}}_f \sim a_0^2 \) (see figure 7(a)). Studying the same scattering for a laser pulse with \(a_0 = 10 \) and the same focal spot size \(w_0 = 2 \mu m \) as a function of initial electron energy \(\varepsilon \), we find the predicted \(\theta^{\text{max}}_f \sim \varepsilon^{-2} \) scaling well reproduced (see figure 7(b)). In fact, from a fit to the numerical data, we obtain scalings \(\theta_f \sim 0.33(a_0/\gamma)^2 \) (solid lines in figures 7), in reasonable agreement with the above derived analytical prediction of equations (33), (45), corrected for the reduced laser amplitude.

Next to these scaling laws, we also study the maximal scattering angles as functions of the electrons’ initial transverse displacement and laser spot sizes (see figure 8). We find the analytically motivated conjecture that electrons at \(x_{0,0} = w_0/2 \) experience the strongest scattering confirmed over a wide range of laser spot sizes. Furthermore, we observe that the for increasing laser spot sizes the maximal deflection angle decreases according to \(\theta_f \sim 1/w_0 \). While, as argued above, this scaling cannot be derived from our simplified analytical model, it is easily explained by the observation that according to equation (4), depending on the electrons’ transverse position, they experience radial forces of order \(dp_x/dt \sim (x_0/w_0^2) \exp[-2(x_0/w_0)^2] \). This force is peaked at \(x_0 \approx 0.71 w(x_0) \), close to its focal...
plane, where \(w(x_1) \approx w_0 \), but still pushes electrons to larger \(x_\perp \) before they reach this plane. Hence, we expect electrons to experience the strongest radial deflection which start at \(x_\perp,0 \approx 0.71w_0 \). As a consequence, we see that the maximal transverse force close to the focal plane scales as \(\frac{dp_\perp}{dt} \sim \frac{1}{w_0} \).

6. Experimental realization

For an experimental implementation of ponderomotive electron scattering for a reliable \(a_0 \)-measurement, the interaction must take place in the amplitude-dominated regime. Otherwise, the scattered electrons would not leave the focusing cone of the laser beam and hit—due to the head-on geometry—the focusing optic of the laser. In the following we will show that for any realistic experimental use, this implies a maximum initial electron energy, determined by the laser power and, as a minor correction, by the focusing strength that can be used. We will also argue towards an optimum electron energy, such that the electrons’ scattering angles are sufficiently large for them to significantly separate from the laser cone, facilitating a safe measurement of their scattered profile, reasonably unaffected by the laser’s optics.

Assuming the unfocused laser beam to have a Gaussian profile with waist \(w_{\text{beam}} \), the beam size in the focus \(w_0 \) is obtained via optics with a focal length \(f \) given by \(w_0 = \frac{\lambda f}{\pi w_{\text{beam}}} \). It can be shown that \(d \approx 3w_{\text{beam}} \) is a useful diameter of the focusing optics (or effective beam diameter). Then, the intensity on the optics’ boundary is about 1% of the peak intensity and the laser energy loss due to clipping is also about 1%, which can be considered as negligible. Consequently, from the \(F \)-number of the laser focusing \(F_{\mu} \equiv f/d \) we derive the focus spot size to be given by \(w_0 = 3\lambda F_{\mu}/\pi \).

Next, the experimentalist’s expression of \(a_0 \), connecting a linearly polarized laser’s rms intensity \(I \) with its peak field amplitude \(a_0 \), is

\[
a_0 = 0.85 \frac{\lambda}{\mu\text{m}} \sqrt{\frac{I}{10^{15} \text{ W cm}^{-2}}}.
\]

(50)

Figure 7. (a) Maximal scattering angle as a function of the laser amplitude \(a_0 \). (b) Maximal scattering angle as a function of the electron energy \(\varepsilon \) (other parameters in the text).

Figure 8. Scattering angles as function of initial transverse displacement \(r_k \) and laser focus spot size \(w_0 \). As a guide to the eye a 1/\(w_0 \) scaling curve (blue) is placed at the position of strongest electron deflection at \(r_k = w_0/2 \).
Using \(I = P / (2 \pi w_0^2) \) with the laser power \(P \) and the above expression for \(w_0 \), one can find

\[
a_0^2 = 100 \left(\frac{0.85}{3 F_{\|}} \right)^2 \frac{\pi}{2} \frac{P}{\text{TW}}.
\]

We now recall from equation (14) that the amplitude-dominated case requires \(\sqrt{2} a_0 / \tau > w_0 / l_w \) where the Lorentz factor \(\gamma \) was assumed to be constant and to decompose as \(\pi \gamma^2 = \gamma_0^2 + a_0^2 \) with \(\gamma_0 = \sqrt{1 + (\epsilon/m)^2} \) the initial Lorentz factor before the scattering. Now, this condition for the parameter set to lie in the amplitude dominated regime can be solved for \(\gamma_0 \) with the previous relations to

\[
\gamma_0^2 < (\gamma_{0\max}^2)^2 = 100 \pi (0.85)^2 \frac{P}{\text{TW}} \left(1 - \frac{1}{2(3 F_{\|})^2} \right),
\]

setting an upper limit for the initial electron energy.

Next, we recall that for the derivation of the scattering angles, see section 2, the constraints were both \(\gamma_0 \gg a_0 \) and \(\gamma_0 \gg 1 \), forming a set of lower limits. For typical focusing systems with \(2 < F_{\|} < 20 \), the correction due to \(F_{\|} \) is of percent-level or below and can be neglected. Hence the maximum initial Lorentz factor can be approximated to

\[
\gamma_{0\max} \approx 15 \sqrt{\frac{P}{\text{TW}}}
\]

which, for relevant multi-TW to PW laser systems, is of the order of \(\gamma_{0\max} \approx 50 \ldots 500 \). Hence, \(\gamma_0 \gg 1 \) can be easily fulfilled without violating equation (52). Only for weak laser powers of TW-level or below one would transit from the amplitude-dominated regime to the focus-dominated regime with too shallow scattering angles for detection.

On the other hand, also \(\gamma_0 \approx a_0 \) must hold for the discussed scattering process (regardless the regime), effectively setting the lower limit for \(\gamma_0 \). Equations (51), (52) show that \(\gamma_{0\max} \approx 3 \sqrt{2} F_{\|} a_0 \). As result, the window for the initial electron energy is given by

\[
a_0^2 \ll \gamma_0^2 < 18 F_{\|}^2 a_0^2.
\]

The longer the \(F \)-number, the larger the range for \(\gamma_0 \) is: for relatively tight focusing with \(F_{\|} = 2.35 \), there is just a factor 10 range for \(\gamma_0 \) to be between \(\gamma_0 = a_0 \) and \(\gamma_0 = \gamma_{0\max} \). For \(F_{\|} = 10 \), the range is already a factor 40 and both conditions \(\gamma_0 \gg a_0 \) and \(\gamma_0 \ll \gamma_{0\max} \) can be easily fulfilled.

We stress, however, that despite this obvious necessity to optimize the interaction parameters, the above studied case used \(a_0 = 15 \) and for a loose focusing of \(F_{\|} = 10 \) already satisfied \(\gamma_0 = 200 \ll \gamma_{0\max} \approx 636 \). The resulting scattering angles were found to be \(\theta_{\text{peak}}^{\text{new}} \approx 0.1 > \arctan[(2/3 F_{\|})] \approx 0.06 \), where the arctan expression assumes the optic’s mount to add 1/3 of the optic’s size to the blocked solid angle. This indicates that the above studied numerical example carries the potential of experimental observation with the electron scattered into angles large enough for them to decouple from required focusing optics.

7. Conclusion

We have derived a novel solution of the ponderomotive scattering of ultra-relativistic electrons off intense focused laser pulses. We demonstrated and verified numerically that an electron’s scattering angle is determined by a simple ratio of the laser’s field amplitude to the electron’s initial energy. Hence, we could provide simple scaling laws that may possibly allow to read off a focused laser’s intensity from the spatial scattering distribution of an externally accelerated electron bunch brought into collision with the laser pulse.

Acknowledgments

AH acknowledges the Science and Engineering Research Board, Department of Science and Technology, Government of India for funding the project EMR/2016/002675. AH also acknowledges the local hospitality and the travel support of the Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.

ORCID iDs

Felix Mackenroth @ https://orcid.org/0000-0002-2456-5917
Amol R Holkundkar @ https://orcid.org/0000-0003-3889-0910
Hans-Peter Schlenvoigt @ https://orcid.org/0000-0003-4400-1315
References

[1] Danzon C et al 2004 Nucl. Fusion 44 5239
[2] Mourou G A, Tajima T and Bulanov S V 2006 Rev. Mod. Phys. 78 309–71
[3] Hooker C J et al 2008 Commissioning the astra gemini petawatt titanium:sapphire laser system Conf. Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Technologies (Optical Society of America) p ThB12
[4] Leemans W P, Durante R, Esarey E, Fournier S, Geddes C G R, Lockhart D, Schroeder C B, Toth C, Vay J and Zimmermann S 2010 AIP Conf. Proc. 1299 3–11
[5] Zou J et al 2015 High Power Laser Sci. Eng. 3 e2
[6] Kawakami I, Tsuchikimoto K, Yoshihara H, Fujioka K, Fujimoto Y, Tokita S, Iitsuuno T, Miyanaga N and Team G E D 2016 J. Phys.: Conf. Ser. 688 012044
[7] Gales S et al 2018 Rep. Prog. Phys. 81 094301
[8] Yu T, Lee S, Sung J, Yoon J, Jeong T and Lee J 2012 Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Titanium:sapphire laser Opt. Express 20 10807–185
[9] Schramm U et al 2017 J. Phys. Conf. Ser. 874 012028
[10] Di Piazza A, Mueller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177–228
[11] Arefi A V, Cochran G E, Schumacher D W, Robinson A P L and Chen G 2015 Phys. Plasmas 22 013103
[12] Mackenroth F and Holkundkar A R 2019 Sci. Rep. accepted (arXiv:1712.06898)
[13] Gong Z, Mackenroth F, Yan X Q and Arefi A V 2019 Sci. Rep. 9 17181
[14] Sarachik E S and Schpert G T 1970 Phys. Rev. D 1 2738–53
[15] Salamin Y I and Faisal F H M 1996 Rev. Mod. Phys. 54 4383–95
[16] Woodward P M 1946 J. Inst. Electr. Eng. IIA 93 1554–8
[17] Lawson D J 1979 IEEE Trans. Nucl. Sci. 26 4217–9
[18] Landau L and Lifshitz E M 1976 Mechanics (Oxford: Elsevier Butterworth-Heinemann)
[19] Schmidt G 2012 Physics of High Temperature Plasmas (Amsterdam: Elsevier)
[20] Boot H, Self S and R. Shersby-Harvie R 1958 J. Electron. Control 4 434–53
[21] Gaponov A and Miller M 1958 JETP J 168
[22] Kibble T W B 1966 Phys. Rev. 150 1060–9
[23] Hopf F, Meystre P, Scully M and Louissel W 1976 Phys. Rev. Lett. 37 1342–5
[24] Bauer D, Mulerz P and Steeb W H 1995 Phys. Rev. Lett. 73 4622–5
[25] Hartemann F V, Fuchs S N, Le Sage G P, Luhmann N C, Woodworth J G, Perry M D, Chen Y J and Kerman A K 1995 Phys. Rev. E 51 4833–43
[26] Mora P and Antonzen T M Jr 1997 Phys. Plasmas 4 217–29
[27] Salamin Y and Faisal F H M 1997 Phys. Rev. A 55 3678–83
[28] Hartemann F V, Van Meter J R, Troha A L, Landahl E C, Luhmann N C, Baldis H A, Gupta A and Kerman A K 1998 Phys. Rev. E 58 5001–12
[29] Quevnel B and Mora P 1998 Phys. Rev. E 58 3719–32
[30] Bituk D and Rand Fedorov M V 1999 J. Exp. Theor. Phys. 89 640–6
[31] Narochny N B and Fofanov M S 2000 J. Exp. Theor. Phys. 90 753–68
[32] Yu W, Xu M Y, Ma J X, Sheng Z M, Zhang J, Daido H, Liu S B, Xu Z Z and Li R X 2000 Phys. Rev. E 61 R2220–3
[33] Castillo A J and Milant ev V P 2014 Tech. Phys. 59 1261–6
[34] Shiryaev O 2019 Quantum Electron. 49 936
[35] Moore C I, Knauer J P and Meyerhofer D D 1995 Phys. Rev. Lett. 74 2439–42
[36] Malka G, Lebelvre E and Miquet J L I 1997 Phys. Rev. Lett. 78 3314–7
[37] Salamin Y I, Mocken G R and Keitel C H 2002 Phys. Rev. ST Accel. Beams 5 101301
[38] Liu Y, Zhang J, Wu H and Sheng Z 2008 J. Appl. Phys. 103 044905
[39] Iwata N and Kishimoto Y 2013 Plasma Fusion Res. 8 1201094
[40] Iwata N and Kishimoto Y 2013 Plasma Sources Sci. Technol. 22 083107
[41] Zhu P et al 2018 High Power Laser Sci. Eng. 6 68
[42] Bor Z 1989 Opt. Lett. 14 119–21
[43] Heuck H M, Neumayer P, Kühn T and Wittrock U 2006 Appl. Phys. B 84 421–8
[44] Wu Y P et al 2018 arXiv:1805.07031
[45] Link A et al 2006 Rev. Sci. Instrum. 77 10E723
[46] Smeenk C, Salviati J Z, Arislan L, Corkum P B, Hebeisen C T and Staudte A 2011 Opt. Express 19 9336–44
[47] Ciappina M F, Popruzhenko S V, Bulanov S V, D’mitre T, Korn G and Weber S 2019 Phys. Rev. A 99 043405
[48] Galkin A L, Kalashnikov M P, Klinkov V K, Korobkin V V, Romanovsky M Y and Shiryaev O B 2010 Phys. Plasmas 17 053105
[49] Krajevska K, Veze F C and Kamitski J I 2019 Plasma Phys. Control. Fusion 61 074004
[50] Kalashnikov M et al 2015 Laser Part. Beams 33 361
[51] Ivanov K A, Tsymalov I N, Vais E O, Bochkarev S G, Volkov R V, Bychenkov V Y and Savel’ev A B 2018 Plasma Phys. Control. Fusion 60 105011
[52] Fuchs J et al 2006 Nat. Phys. 2 48
[53] Daido H, Nishichiu M and Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401
[54] Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751–93
[55] Mackenroth F, Gomosov A and Marklund M 2017 Eur. Phys. J. 70 193
[56] Zell K, Kraft S D, Bock S, Bussmann M, Cowan T E, Kluge T, Metzkes J, Richter T, Sauerbrey R and Schramm U 2010 New J. Phys. 12 045015
[57] Mackenroth F, Di Piazza A and Keitel C H 2010 Phys. Rev. Lett. 105 063903
[58] Har-Shemesh O and Di Piazza A 2012 Opt. Lett. 37 1352
[59] Li J X, Chen Y Y, Hatsagortsyan K Z and Keitel C H 2018 Phys. Rev. Lett. 120 124803
[60] Harvey C N 2018 Phys. Rev. Accel. Beams 21 114001
[61] Bocca M and Florescu V 2009 Phys. Rev. A 80 033403
[62] Mackenroth F and Di Piazza A 2011 Phys. Rev. A 83 032106
[63] Mackenroth F and Di Piazza A 2013 Phys. Rev. Lett. 110 070402

16
[64] Vais O E and Bychenkov V Y 2018 Appl. Phys. B 124 211
[65] Di Piazza A, Hatsagortsyan K Z, and Keitel C H 2009 Phys. Rev. Lett. 102 254802
[66] Harvey C, Marklund M and Holkundkar A R 2016 Phys. Rev. Accel. Beams 19 094701
[67] Kravets Y, Noble A and Jaroszynski D 2015 Phys. Rev. E 88 011201
[68] Lin Q, Zheng J and Becker W 2006 Phys. Rev. Lett. 97 253902
[69] Popov K I, Bychenkov V Y, Rozmus W and Sydora R D 2008 Phys. Plasmas 15 013108