Study of Nasal Polyps in a Tertiary Care Hospital

Lekshmi Rajeev¹, Lulu Ibrahim¹, Muhsina AM¹, Madhumita Kumar², Merin Babu¹, Uma Devi P*¹
¹Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
²Department of ENT, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India

Article History:
Received on: 05 Nov 2020
Revised on: 11 Dec 2020
Accepted on: 16 Dec 2020

Keywords:
Allergy, Corticosteroids, Inflammation, Nasal Polyps, Surgery

INTRODUCTION

Nasal polyps are non-cancerous oedematous masses arising from the nasal sinuses mucosa characterized by yellow or pink soft tissue, (Soltankhah et al., 2015) which affects either one or both parts of the nose openings to the ethmoidal sinuses descending between the middle turbinate and lateral nasal wall into the nasal cavity (Newton and Ah-See, 2008; Maharjan et al., 2017). The causes of these lesions are unknown till date. Few theories have stated that these lesions occur as a result of chronic inflammation in nose and nasal sinuses (Bateman et al., 2003). Elevated levels of interleukin-5 (IL-5) have been observed in patients with nasal polyps (Bachert et al., 1997). The prevalence of nasal polyposis in the general population is around 4%. The disease is predominantly evident among the adults especially patients above the age of 20. Rarely the polyposis is seen in children less than 10 years of age. Preponderance of male to female ratio (2:1) is seen among the population. Asthmatic patients are among the one-third of nasal polyp patients (Settipane, 1996). Classic symptom of nasal polyp is nasal obstruction but varies according to the site and size of the polyps seen. Watery rhinorrhea, postnasal drip, anosmia or
hyposmia with alteration in taste are other symptoms reported by the patients (Lee, 1997). Clinical examination using rhinoscopy shows single or multiple pale, grey polypoid masses consisting of loose connective tissue, oedema, inflammatory cells, capillaries and glands. The inflammatory cells present are the eosinophils and neutrophilic cells (Bachert et al., 2003). Management of nasal polyps is individualized, involving a combination of observation, medical and surgical therapy. Elimination or reducing the size of the nasal polyps present is the main goal of the physicians thereby providing relief of nasal obstruction, increased sinus drainage, restore the taste and smell (Mygind, 1999). Medical treatment is often started with the application of nasal steroids either as drops or sprays (Badia and Lund, 2001). Recently, leukotriene receptor antagonists are found effective (Kieff and Busaba, 2005). Antihistamines have been shown to effectively reduce the symptoms of nasal polyps (Haye et al., 1998). In the present study, majority of the patients were male and in the age group of 41-60 years. In a retrospective cross-sectional study, nasal polyps commonly affected men, and mean age of the patients was 39.49±16.63 years (Jahromi and Pour, 2012). All age groups are prone to be affected with nasal polyps (Moloney and Collins, 1977; Fechner, 1990). Males appear to be more prone to the development of nasal polyps (Sreeparvathi et al., 2017; Larsen and Tos, 2002). Majority of the patients in our study had sinonasal polyps, which is consistent with previous reports. In our study, bilateral nasal masses were present in 68% patients, while the remaining patients had unilateral nasal masses. In a study by

Table 1: General characteristics of the patients with nasal polyps.

Variable	Number of patients (%)
Age (Years)	
<17	10 (8)
18-40	39 (31.2)
41-60	55 (44)
>60	21 (16.8)
Gender	
Male	81 (64.8)
Female	44 (35.2)
Type of polyp	
Sinonasal polyposis	96 (76.8)
Antrochoanal polyp	24 (19.2)
Ethmoidal polyp	5 (4)
Location of nasal polyp	
Both	85 (68)
Right	20 (16)
Left	20 (16)
Histopathology of nasal polyp	
Inflammatory polyp	67 (53.6)
Allergic polyp	26 (20.8)
Inflammatory allergic polyp	9 (7.2)

In the present study, majority of the patients were male and in the age group of 41-60 years. In a retrospective cross-sectional study, nasal polyps commonly affected men, and mean age of the patients was 39.49±16.63 years (Jahromi and Pour, 2012). All age groups are prone to be affected with nasal polyps (Moloney and Collins, 1977; Fechner, 1990). Males appear to be more prone to the development of nasal polyps (Sreeparvathi et al., 2017; Larsen and Tos, 2002). Majority of the patients in our study had sinonasal polyps, which is consistent with previous reports. In our study, bilateral nasal masses were present in 68% patients, while the remaining patients had unilateral nasal masses. In a study by
Table 2: Signs and symptoms of nasal polyps.

Signs and symptoms	No of patients	Percentage (%)
Nasal block	111	88.8
Nasal discharge	50	40
Headache	46	36.8
Hyposmia	30	24
Nasal drip	29	23.2
Epistaxis	27	21.6
Breathing difficulty	27	21.6
Anosmia	25	20
Allergy	23	18.4
Sneezing	21	16.8
Upper respiratory tract infection	21	16.8
Ear problem	15	12
Facial pain	14	11.2
Snoring	11	8.8
Throat pain	7	5.6

Table 3: Co-morbidities among nasal polyps patients.

Co-morbidities	No. of patients	Percentage (%)
Hypertension	27	21.6
Diabetes mellitus	16	12.8
Asthma	14	11.2
Rhinitis	14	11.2
Dyslipidemia	13	10.4
Sinusitis	5	4
Hypothyroidism	4	3.2
Coronary artery disease	3	2.4
Tuberculosis	3	2.4

Table 4: Procedure done for nasal polyps.

Procedure	No. of patients	Percentage (%)
Bilateral functional endoscopic sinus surgery	88	70.4
Unilateral functional endoscopic sinus surgery	26	20.8
Functional endoscopic sinus surgery	2	1.6
Caldwell Luc surgery	1	0.8
Not done	8	6.4

Hadfield et al., in 46% patients with polyposis, the polyps were unilateral. In a study by Lathi et al., unilateral nasal masses were present in 47.7% patients, while the remaining had bilateral nasal masses (Sharma et al., 2017). In our study, nasal block was the most common (88.8%) presenting complaint, followed by nasal discharge (40%) and headache (36.8%). These findings compare favorably with other studies (Lathi et al., 2011; Chukuezi, 1994). Inflammatory (53.6%) and allergic (20.8%) were the most common non-neoplastic mass reported in our study, which is consistent with other report (Keith, 1997). In a study by Lathi et al. allergic (62.5%) and inflammatory (25%) polyps were the most common non-neoplastic mass. Hypertension (21.6%), diabetes mellitus (12.8%), asthma and rhinitis (11.2%) each were the major comorbidities seen in our study. In a study by (Rugina et al., 2002) 10.4% patients had asthma while 7.4% had allergic rhinitis. Corticosteroids remain
the main treatment option for allergic condition. Improvement of nasal breathing, symptoms of rhinitis and size of nasal polyps are observed during steroid treatment (Unni et al., 2015). In a retrospective study conducted by Lathi et al., clinical improvement in patients with nasal polyps with topical nasal steroid therapy was reported. Corticosteroid treated group showed lower activated eosinophil in the tissues of stromal layer as compared to the non-treated patients. Surgical treatments are usually reserved for refractory cases of nasal polyps. FESS is the most commonly used surgical procedure. In our study, majority of patients had undergone bilateral FESS for the complete removal of polyp from nasal cavity. (Klossek et al., 1997) study have highlighted the surgical management of nasal polyps to minimize the complications and recurrence.

CONCLUSIONS

Nasal polyps appear to be associated with inflammatory and may be an allergic response. Most of the patients require surgery while few can be managed with anti-inflammatory and/or anti-allergic drugs.

ACKNOWLEDGEMENT

The authors are grateful to Amrita School of Pharmacy and Amrita Institute of Medical Sciences and Research Centre, Kochi for providing the research facilities for this research work.

Funding support

The authors declare that they have no funding support for this study.

Conflict of interest

The authors declare that they have no conflict of interest for this study.

REFERENCES

Bachert, C., et al. 1997. IL-5 synthesis is upregulated in human nasal polyp tissue. Journal of Allergy and Clinical Immunology, 99(6):837–842.

Bachert, C., et al. 2003. An update on the diagnosis and treatment of sinusitis and nasal polyposis. Allergy, 58(3):176–191.

Badia, L., Lund, V. 2001. Topical Corticosteroids in Nasal Polyposis. Drugs, 61(5):573–578.

Bateman, N. D., et al. 2003. Nasal polyps: Still more questions than answers. The Journal of Laryngology & Otology, 117(1):1–9.

Chukuezi, A. B. 1994. Nasal polyposis in a Nigerian district hospital. West African Journal of Medicine, 13(4):231–233.

Fechner, R. E. 1990. Upper respiratory tract and ear. Pathology, 2.

Fokkens, W., et al. 2007. European position paper on rhinosinusitis and nasal polyps. A summary for otorhinolaryngologists. Rhinology, 45(2):97–101.

Hadfield, P. J., et al. 2000. The prevalence of nasal polyps in adults with cystic fibrosis. Clinical Otolaryngology, 25(1):19–22.

Haye, R., et al. 1998. The effect of cetirizine on symptoms and signs of nasal polyposis. Journal of Laryngology & Otology, 112(11):1042–1046.

Jahromi, A. M., Pour, A. S. 2012. The epidemiological and clinical aspects of nasal polyps that require surgery. Iranian journal of otorhinolaryngology, 24(67):75–78.

Keith, P. 1997. Allergy and nasal polyposis. Inflammator y disease and its treatment, pages 68–77.

Kennedy, D. W., et al. 2001. Diseases of sinuses, diagnosis and management. B.C. Decker: Pages: 430.

Kieff, D. A., Busaba, N. Y. 2005. Efficacy of montelukast in the treatment of nasal polyposis. Annals of Otology, Rhinology & Laryngology, 114(12):941–945.

Klossek, J.-M., et al. 1997. Diffuse nasal polyposis: postoperative long-term results after endoscopic sinus surgery and frontal irrigation. Otolaryngology Head and Neck Surgery, 117(4):355–361.

Larsen, K., Tos, M. 2002. The estimated incidence of symptomatic nasal polyps. Acta Otolaryngologica, 122(2):179–182.

Lathi, A., et al. 2011. Clinico-pathological profile of sinonasal masses: a study from a tertiary care hospital of India. Acta Otorhinolaryngologica Italica Head and Neck Surgery, 31(6):372–377.

Lee, A. B. D. 1997. Nasal polyps. In: Kerr AG, Mackay AS, Bull TR (eds), Scott-Brown’s Otolaryngology. Rhinology, 4:1–16.

Maharjan, S., et al. 2017. Nasal Polyposis: A Review. Global Journal of Otolaryngology, 8(2):1–3.

Messerklinger, W. 1987. Role of the lateral nasal wall in the pathogenesis, diagnosis and therapy of recurrent and chronic rhinosinusitis. Laryngologie, Rhinologie, Otologie, 66(6):293–299.

Moloney, J. R., Collins, J. 1977. Nasal polyps and bronchial asthma. British Journal of Diseases of the Chest, 71:1–6.

Mygind, N. 1999. Advances in the medical treatment of nasal polyps. Allergy, 54:12–16.

Newton, J. R., Ah-See, K. 2008. A review of nasal polyposis. Therapeutics and clinical risk management, 4(2):507–512.
Rugina, M., et al. 2002. Epidemiological and clinical aspects of nasal polyposis in France; the ORLI group experience. *Rhinology*, 40(2):75–79.

Settipane, G. A. 1996. Epidemiology of Nasal Polyps. *Allergy and Asthma Proceedings*, 17(5):231–236.

Sharma, R., et al. 2017. A clinicopathological study of masses of nasal cavity paranasal sinuses and nasopharynx. *International Journal of Otorhinolaryngology and Head and Neck Surgery*, 3(2):253–258.

Soltankhah, M. S., et al. 2015. Medical treatment of nasal polyps: a review. *Reviews in Clinical Medicine*, 2(1):24–27.

Sreeparvathi, A., et al. 2017. Significance of blood eosinophil count in patients with chronic rhinosinusitis with nasal polyposis. *Journal of clinical and diagnostic research*, 11(2):8–11.

Unni, A., et al. 2015. Drug utilization pattern in chronic obstructive pulmonary disease inpatients at a tertiary care hospital. *International Journal of Pharmacy and Pharmaceutical Sciences*, 7(11):389–391.