Introduction

In the environment, the gram-negative bacterium *Legionella pneumophila* colonizes biofilms and multiplies within various protozoa [1]. Upon transmission to the human lung, the bacteria replicate within alveolar macrophages, and may cause the severe pneumonia Legionnaires’ disease [2,3]. To establish its replicative niche, *L. pneumophila* prevents the fusion of its phagosome with lysosomes [4], and recruits early secretory vesicles. Here we analyze the role of host cell phosphoinositide (PI) metabolism during uptake and intracellular replication of *L. pneumophila*. Genetic and pharmacological evidence suggests that class I phosphatidylinositolinositol(3) kinases (PI3Ks) are dispensable for phagocytosis of wild-type *L. pneumophila* but inhibit intracellular replication of the bacteria and participate in the modulation of the LCV. Uptake and degradation of an icmT mutant strain lacking a functional Icm/Dot transporter was promoted by PI3Ks. We identified Icm/Dot–secreted proteins which specifically bind to phosphatidylinositolinositol(4) phosphate (PI(4)P) in vitro and preferentially localize to LCVs in the absence of functional PI3Ks. PI(4)P was found to be present on LCVs using as a probe either an antibody against PI(4)P or the PH domain of the PI(4)P-binding protein FAPP1 (phosphatidylinositolinositol(4) phosphate adaptor protein-1). Moreover, the presence of PI(4)P on LCVs required a functional Icm/Dot T4SS. Our results indicate that *L. pneumophila* modulates host cell PI metabolism and exploits the Golgi lipid second messenger PI(4)P to anchor secreted effector proteins to the LCV.

Legionella pneumophila Exploits PI(4)P to Anchor Secreted Effector Proteins to the Replicative Vacuole

Stefan S. Weber, Curdin Ragaz, Katrin Reus, Yves Nyfeler, Hubert Hilbi

Institute of Microbiology, ETH Zürich, Zürich, Switzerland

The causative agent of Legionnaires’ disease, *Legionella pneumophila*, employs the intracellular multiplication (Icm)/defective organelle trafficking (Dot) type IV secretion system (T4SS) to upregulate phagocytosis and to establish a replicative vacuole in amoebae and macrophages. *Legionella*-containing vacuoles (LCVs) do not fuse with endosomes but recruit early secretory vesicles. Here we analyze the role of host cell phosphoinositide (PI) metabolism during uptake and intracellular replication of *L. pneumophila*. Genetic and pharmacological evidence suggests that class I phosphatidylinositolinositol(3) kinases (PI3Ks) are dispensable for phagocytosis of wild-type *L. pneumophila* but inhibit intracellular replication of the bacteria and participate in the modulation of the LCV. Uptake and degradation of an icmT mutant strain lacking a functional Icm/Dot transporter was promoted by PI3Ks. We identified Icm/Dot–secreted proteins which specifically bind to phosphatidylinositolinositol(4) phosphate (PI(4)P) in vitro and preferentially localize to LCVs in the absence of functional PI3Ks. PI(4)P was found to be present on LCVs using as a probe either an antibody against PI(4)P or the PH domain of the PI(4)P-binding protein FAPP1 (phosphatidylinositolinositol(4) phosphate adaptor protein-1). Moreover, the presence of PI(4)P on LCVs required a functional Icm/Dot T4SS. Our results indicate that *L. pneumophila* modulates host cell PI metabolism and exploits the Golgi lipid second messenger PI(4)P to anchor secreted effector proteins to the LCV.

Citation: Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) *Legionella pneumophila* exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2(5): e46. DOI: 10.1371/journal.ppat.0020046

Introduction

In the environment, the gram-negative bacterium *Legionella pneumophila* colonizes biofilms and multiplies within various protozoa [1]. Upon transmission to the human lung, the bacteria replicate within alveolar macrophages, and may cause the severe pneumonia Legionnaires’ disease [2,3]. To establish its replicative niche, *L. pneumophila* prevents the fusion of its phagosome with lysosomes [4], and recruits early secretory vesicles at endoplasmic reticulum (ER) exit sites [5]. The resulting *Legionella*-containing vacuole (LCV) is characterized by the ER marker calnexin, the v-SNARE Sec22b, and the small GTPases Arf1 and Rab1 [6,7]. Moreover, the LCV undergoes a transition from a “tight” to a “spacious” vacuole [8,9] and eventually matures into an acidic compartment [10], wherein the bacteria multiply independently of the bacterial intracellular multiplication (Icm)/defective organelle trafficking (Dot) type IV secretion system (T4SS) [11]. The Icm/Dot T4SS is a conjugation apparatus that is encoded by 25 different genes and is required for formation of the LCV [12,13], as well as for modulation of phagocytosis [14,15].

To date, more than 30 different Icm/Dot–secreted proteins have been identified as putative effectors, many of which form families of between two and six paralogs [16–23]. The precise function of most of these proteins is not known, owing at least in part to the fact that *L. pneumophila* strains lacking even multiple family members do not show a phenotype with regard to intracellular replication [18,20,22]. However, the inability of icmT/dot mutants to direct phagocytosis and establish a LCV suggests that at least some Icm/Dot–secreted proteins interfere with host cell phagocytosis or vesicle trafficking. Indeed, the recently identified effectors LepA and LepB share homology with SNAREs and seem to promote the non-lytic release of vesicles containing *L. pneumophila* from amoeba [19]. The first Icm/Dot substrate to be functionally characterized, RalF, recruits the GTPase Arf1 to the LCV and acts as a guanine nucleotide exchange factor for the Arf family of small GTPases [16]. To subvert host cell trafficking, the large number of Icm/Dot–secreted proteins is likely organized in a complex spatial and temporal manner.

References

1. Isberg RR, Bessen DE (2000) The Legionella pneumophila type IV secretion system and its role in bacterial pathogenesis. Microbiol Mol Biol Rev 64:141–178.
2. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
3. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
4. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
5. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
6. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
7. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
8. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
9. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
10. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
11. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
12. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
13. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
14. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
15. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
16. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
17. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
18. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
19. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
20. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
21. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
22. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.
23. Craigie AJ, Isberg RR (2002) Legionnaires’ disease. Lancet 359:1713–1720.

Legionella pneumophila

Legionella pneumophila is a gram-negative bacterium that causes Legionnaires’ disease, a severe form of pneumonia. **Phagocytosis** is the process by which cells engulf particles, such as bacteria. The ability of *Legionella pneumophila* to manipulate host cell processes is key to its pathogenesis. This pathogen uses a type IV secretion system (T4SS) to inject effectors into the host cell, which modify the host cell environment to favor bacterial replication. One such effector, PI(4)P, is exploited by *Legionella pneumophila* to anchor secreted effectors to the replicative vacuole, facilitating bacterial replication within the host cell. This strategy is crucial for the bacterium’s survival and virulence. Further studies into the mechanisms by which *Legionella pneumophila* modulates host cell PI metabolism could provide insights into potential targets for therapeutic intervention in Legionnaires’ disease.
Synopsis

The bacterium *Legionella pneumophila* causes Legionnaires’ disease, a severe pneumonia. In the environment, *L. pneumophila* multiplies within amoebae. By inhaling contaminated water droplets, *L. pneumophila* is transmitted to the human lung and grows within immune cells (macrophages). Within amoebae and macrophages, *L. pneumophila* replicates with a similar mechanism by forming a membrane-bound compartment, the *Legionella*-containing vacuole (LCV). Formation of the LCV is not well defined, but requires that *L. pneumophila* injects proteins into the host cell via the intracellular multiplication (icm)/defective organelle trafficking (Dot) secretion system.

Phosphoinositide (PI) lipids are central mediators of membrane dynamics in amoebae and mammalian cells. In this study, the researchers report that phosphatidylinositolinositol(3) kinases (enzymes that add a phosphate residue to PIs) are dispensable for uptake of *L. pneumophila*, but affect the formation of the LCV, as well as uptake and degradation of mutant *L. pneumophila* lacking a functional icm/Dot system. Icm/Dot–secreted proteins were identified which specifically bind to phosphatidylinositol(4) phosphate (PI(4)P), a marker of the Golgi organelle in the secretory pathway, which is also present on the LCV. These findings indicate that *L. pneumophila* exploits PI(4)P to anchor secreted effector proteins to the LCV, thus subverting host cell PI metabolism to establish its replicative niche.

The metabolism of phosphoinositide (PI) lipids is pivotal for the regulation of membrane dynamics during phagocytosis, endocytosis, and exocytosis [24,25]. Depending on phosphorylation at positions 3, 4, and/or 5 of the D-xylo-inositol ring, PIs recruit specific effectors to distinct membranes in a time- and organelle-dependent manner, thus coordinating intracellular membrane trafficking and actin remodeling, as well as receptor-mediated signal transduction. The central role of PI second messengers is exploited by a number of intracellular bacterial pathogens [26], e.g., *Shigella flexneri* [27] and *Salmonella enterica* [28,29] employ type III-secreted PI phosphatases to modulate host cell PI metabolism during bacterial entry and intracellular replication.

PI metabolism is well characterized in the social amoeba *Dictyostelium discoideum* [30,31], which supports Icm/Dot–dependent intracellular replication of *L. pneumophila* [32–34]. Here, we use a *Dictyostelium* strain lacking the class I phosphatidylinositolinositol(3) kinase (PI3K)-1 and –2 (ΔPI3K1/2; [35]) to demonstrate a role for PI metabolism in phagocytosis, trafficking, and intracellular replication of *L. pneumophila*. Furthermore, we identify Icm/Dot–secreted proteins, which specifically bind to phosphatidylinositol(4) phosphate (PI(4)P), thus providing a mechanistic link between PI metabolism and the subversion of host cell trafficking by *L. pneumophila*.

Results

PI3Ks Are Dispensable for Phagocytosis of Wild-Type *L. pneumophila*

Phagocytosis of *L. pneumophila* by *Dictyostelium* was quantified by flow cytometry using bacteria constitutively expressing gfp. Approximately ten times more amoebae showed increased fluorescence if infected with wild-type *L. pneumophila* compared to an icmT mutant strain (ΔicmT), which lacks a functional Icm/Dot T4SS (Figure 1). This result indicates that at least ten times more wild-type *L. pneumophila* were phagocytosed compared to ΔicmT. Icm/Dot–dependent phagocytosis was observed at a multiplicity of infection (MOI) ranging from 1 to 100 and blocked by inhibitors of actin polymerization (latrunculin B, 20 μM; cytochalasin A, 10 μM), or by performing the infection at 4°C.

Wild-type *L. pneumophila* was only slightly less efficiently phagocytosed by *Dictyostelium* ΔPI3K1/2 (~4%), or by wild-type *Dictyostelium* treated with the PI3K inhibitors wortmannin (WM, ~19%) or LY294002 (LY, ~33%), respectively (Figures 2A and S1A). Thus, genetic and pharmacological data indicate that phagocytosis of *L. pneumophila* by *Dictyostelium* does not require PI3Ks. This result is in agreement with the finding that the uptake of *L. pneumophila* by macrophage-like cells occurs via a WM-insensitive pathway [36]. Contrarily, phagocytosis of ΔicmT was reduced by 77%–88% upon deletion or inhibition of PI3Ks, corresponding to reports that *Dictyostelium* PI3K1 and PI3K2 are involved in phagocytosis of *E. coli* [37]. The addition of PI3K inhibitors to ΔPI3K1/2 did not further diminish phagocytosis of ΔicmT, suggesting that other *Dictyostelium* class I PI3Ks present in the genome [38] are not involved in uptake.

PI3Ks Are Involved in Intracellular Replication of Wild-Type *L. pneumophila* and Degradation of ΔicmT

The effect of PI3Ks on intracellular replication of *L. pneumophila* was quantified by determining colony-forming units (CFUs) released from lysed *Dictyostelium* into the supernatant of infected cultures. Compared to wild-type *Dictyostelium*, a factor of approximately 100 more wild-type *L. pneumophila* were released within 6–8 d from ΔICM12 (Figure 2B) or amoebae treated with LY (Figure 2C), indicating that functional PI3Ks restrict intracellular replication of *L. pneumophila*. To test intracellular growth of *L. pneumophila* more directly, we analyzed *Dictyostelium* infected with green fluorescent protein (GFP)–labeled *L. pneumophila* by flow cytometry (Figure 2D). In this assay, GFP-labeled *L. pneumophila* grew earlier and more efficiently within ΔICM12 or wild-type *Dictyostelium* treated with LY compared to untreated wild-type amoebae. Treatment of ΔICM12 with LY did not enhance intracellular replication further, suggesting that no other class I PI3K is involved. Quantification by flow cytometry of GFP-labeled wild-type *L. pneumophila* released from *Dictyostelium* showed that *L. pneumophila* emerged earlier from *Dictyostelium* lacking PI3Ks, yet apparently grew at similar rates (Figure S1B). In a “single round” growth assay, where the amoebae were selectively lysed with saponin, *L. pneumophila* started to grow after just 1 d in the absence of PI3Ks, while at the same time in wild-type *Dictyostelium* the numbers of wild-type *L. pneumophila* still decreased (Figure S1C).

While ΔicmT did not replicate within *Dictyostelium* in the presence or absence of PI3Ks (Figure 2B), the mutant bacteria were killed approximately twice more slowly within ΔICM12 (Figure 3; Table S1). These results are in agreement with a requirement of PI3Ks for the endocytic degradative pathway [24].

We also tested the effects of PI3K inhibitors on intracellular replication of *L. pneumophila* within macrophage-like cell lines. Treatment with 1 μM WM or 25 μM LY had no effect or slightly (3- to 5-fold) decreased the number of *L. pneumophila* released from murine RAW 264.7 cells or from differentiated human HL-60 macrophage-like cells (unpublished data).
Trafficking of \textit{L. pneumophila} Is Altered in the Absence of Functional PI3Ks

The finding that \textit{L. pneumophila} replicates more efficiently in the absence of PI3Ks suggests that vesicle trafficking and formation of the LCV are altered. As a marker for LCVs, we used the ER membrane protein calnexin fused to GFP, which within 2 h co-localizes with about 65\% LCVs harboring wild-type \textit{L. pneumophila} but not at all with ΔicmT-containing LCVs (unpublished data; \cite{6,9}). Calnexin does not profoundly affect trafficking of \textit{L. pneumophila}, since intracellular replication within wild-type \textit{Dictyostelium} was similar to replication in \textit{Dictyostelium} mutants lacking calnexin, calreticulin, calnexin/calreticulin (Figure S2A), or \textit{Dictyostelium} expressing calnexin-GFP (Figure S2B).

In \textit{Dictyostelium} wild-type and in strains lacking PI3Ks, the LCVs acquired calnexin-GFP with similar kinetics (unpublished data), suggesting that initial docking and fusion of ER-derived vesicles with the \textit{Legionella} phagosome is not affected by PI3Ks. However, the morphological dynamic of the LCV was altered, as the transition from “tight” to “spacious” vacuoles was severely impaired in \textit{Dictyostelium} lacking functional PI3Ks (Figure 4A). In wild-type \textit{Dictyostelium}, 25\% of the LCVs appeared spacious as early as 15 min post-infection and, within 2 h, 40\% spacious vacuoles were scored (Figure 4B). Contrarily, in \textit{Dictyostelium} lacking PI3Ks, the portion of spacious LCVs was less than 5\% at 15 min post-infection, reached only 10\% (ΔPI3K1/2) or 20\% (LY-treated wild-type \textit{Dictyostelium}) within 2 h, and remained below the level observed in wild-type \textit{Dictyostelium} throughout the 6-h observation period. At later time points, the morphological assessment of the vacuoles became difficult, since infected \textit{Dictyostelium} easily detached from the substratum, and LCVs harboring replicating bacteria appeared spacious in the presence or absence of PI3Ks. In summary, these results indicate that class I PI3Ks play a role in the dynamic modulation of the LCV and the formation of a replication-permissive vacuole.

The Icm/Dot–Secreted \textit{L. pneumophila} Protein SidC Localizes to Tight and Spacious Vacuoles

To correlate the morphology of the LCV with the presence of a putative \textit{L. pneumophila} effector protein, we stained for the Icm/Dot-secreted protein SidC (Substrate of Icm/Dot...
transporter [18]). The function of SidC is unknown. However, the protein localizes to LCVs in Legionella-infected macrophages and is exposed to the cytoplasmic side of the vacuolar membrane. Immuno-staining of M45-tagged SidC within Legionella-infected Dictyostelium amoebae revealed its presence on spacious as well as tight LCVs (Figure 4C). Similar to LCVs labeled with calnexin-GFP, the majority of M45-SidC–labeled LCVs formed in wild-type Dictyostelium after 75 min appeared spacious, while at the same time the LCVs in ΔPI3K1/2 were all tight-fitting (unpublished data). Some punctate background staining was also visible in uninfected Dictyostelium and thus is not due to association of SidC with cellular organelles. As even upon overexpression, M45-tagged SidC localized exclusively to the LCV, but not to other cellular vesicles, SidC anchors with high affinity and specificity to the LCV membrane.

In spacious vacuoles, L. pneumophila was frequently found to attach to the membrane of the LCV via its pole(s) (Figure 4A and 4C). Moreover, Icm/Dot substrates such as SidC, LidA, and the SidE family members have been reported to localize after secretion near the poles of L. pneumophila [17,18,39]. These findings suggest that L. pneumophila connects to the LCV membrane via Icm/Dot secretion system(s) localizing to the bacterial poles.

SidC and SdcA Directly and Specifically Bind to PI(4)P In Vitro

Intracellular replication of L. pneumophila depends on PI metabolism, as well as on the Icm/Dot T4SS. A direct link between these host cell and pathogen factors would exist if secreted L. pneumophila proteins bind to PIs on the LCV. SidC is an attractive candidate to test this hypothesis, since the protein binds to the LCV membrane, yet no transmembrane helices are predicted from its primary sequence. To determine whether SidC interacts with PIs in vitro, we assayed binding of an N-terminal GST-SidC fusion protein to PIs and other lipids immobilized on nitrocellulose membranes. Under these conditions, SidC directly and almost exclusively bound to PI(4)P and, to a much weaker extent, to PI(3)P but not to other PIs or lipids (Figure 5A). Estimated from binding of SidC to PIs arrayed in 2-fold serial dilutions, the affinity of SidC for PI(4)P was a factor of 50–100 higher than for PI(3)P.

The SidC paralog SdcA (72% identity on an amino acid level) also specifically bound to PI(4)P and, to a lesser extent, to PI(3)P.
PI(3)P; yet compared with SidC, SdcA bound with apparently lower affinity to PI(4)P and higher affinity to PI(3)P.

We also tested GST fusion proteins of SidD and SdhB for binding to PIs (Figure 5A). SdhB is a paralog of SidH [18] and is predicted with low stringency by the "scansite" algorithm (http://scansite.mit.edu) to contain an ANTH domain putatively binding PI(4,5)P2. While the GST-SidD fusion protein did not bind to any of the lipids tested in vitro, the GST-SdhB fusion protein bound very weakly only to PI(3)P but not to other lipids.

To investigate the binding specificity of SidC to PIs incorporated into phospholipid (PL) vesicles, we incubated GST-SidC with PL vesicles composed of phosphatidylcholine (PC, 65%), phosphatidylethanolamine (30%), and 5% either PI(4)P, PI(3)P, or PI(4,5)P2. GST-SidD was used as a putative negative control. The PL vesicles were incubated with GST-SidC or GST-SidD, centrifuged, and washed several times prior to analyzing binding of the GST fusion proteins by Western blot with an anti-GST antibody (Figure 5B). Under the conditions used, SidC almost exclusively bound to PI(4)P, while binding to PI(3)P was negligible. Binding of SidC to PI(4,5)P2 was in the range observed for SidD and thus was considered unspecific. Estimated by densitometry, about 200 times more SidC bound to PL vesicles harboring PI(4)P compared to vesicles containing PI(3)P or PI(4,5)P2. Taken together, using two different biochemical assays, SidC was found to specifically bind to PI(4)P in vitro.

Figure 3. A Role for PI3Ks in Degradation of L. pneumophila ΔicmT

Quantification by flow cytometry of intracellular degradation of GFP-labeled L. pneumophila ΔicmT (MOI 100, MOI 500) within wild-type Dictyostelium or ΔPI3K1/2. In the absence of PI3Ks, ΔicmT is less efficiently phagocytosed and degraded.

DOI: 10.1371/journal.ppat.0020046.g003

PI(3)P; yet compared with SidC, SdcA bound with apparently lower affinity to PI(4)P and higher affinity to PI(3)P.

We also tested GST fusion proteins of SidD and SdhB for binding to PIs (Figure 5A). SdhB is a paralog of SidH [18] and is predicted with low stringency by the "scansite" algorithm (http://scansite.mit.edu) to contain an ANTH domain putatively binding PI(4,5)P2. While the GST-SidD fusion protein did not bind to any of the lipids tested in vitro, the GST-SdhB fusion protein bound very weakly only to PI(3)P but not to other lipids.

To investigate the binding specificity of SidC to PIs incorporated into phospholipid (PL) vesicles, we incubated GST-SidC with PL vesicles composed of phosphatidylcholine (PC, 65%), phosphatidylethanolamine (30%), and 5% either PI(4)P, PI(3)P, or PI(4,5)P2. GST-SidD was used as a putative negative control. The PL vesicles were incubated with GST-SidC or GST-SidD, centrifuged, and washed several times prior to analyzing binding of the GST fusion proteins by Western blot with an anti-GST antibody (Figure 5B). Under the conditions used, SidC almost exclusively bound to PI(4)P, while binding to PI(3)P was negligible. Binding of SidC to PI(4,5)P2 was in the range observed for SidD and thus was considered unspecific. Estimated by densitometry, about 200 times more SidC bound to PL vesicles harboring PI(4)P compared to vesicles containing PI(3)P or PI(4,5)P2. Taken together, using two different biochemical assays, SidC was found to specifically bind to PI(4)P in vitro.

SidC Preferentially Binds to LCVs in the Absence of Functional PI3Ks

To address the question of whether SidC binds to PI(4)P on LCVs in infected Dictyostelium amoebae, we analyzed whether altering the ratio of cellular PIs affects the amount of SidC bound to LCVs. In Dictyostelium ΔPI3K1/2, the level of the PI3K products PI(3,4)P2 and PI(3,4,5)P3 is decreased, while the level of the PI3K substrate PI(4)P is increased compared to the complemented strain [37]. Accordingly, if the level of PIs on LCVs mirrors the cellular levels of PI, SidC is predicted to preferentially bind to LCVs in the absence of PI3Ks. To test whether PI3Ks affect the amount of SidC on LCVs, SidC bound to LCVs was quantified by immunofluorescence using an affinity-purified antibody (Figure 6A). SidC and calnexin-GFP always and strictly co-localized on LCVs regardless of whether PI3Ks were present or not. However, we found that with high statistical significance (p < 10^{-6}), approximately a factor of 1.5 more SidC localized to LCV membranes in ΔPI3K1/2 or in wild-type Dictyostelium treated with LY, compared to LCVs formed in wild-type Dictyostelium (Figure 6B). This result is in agreement with the notion that, in the absence of functional PI3Ks, the amount of cellular and vacuolar PI(4)P is increased, allowing more SidC to bind to the LCV in L. pneumophila-infected host cells.

PI(4)P Is a Lipid Marker of LCVs Harboring Icm/Dot–Proficient L. pneumophila

SidC specifically binds to PI(4)P in vitro and to the membrane of the LCV, suggesting that PI(4)P is a constituent of the LCV. To test whether PI(4)P is indeed a lipid marker of the LCV, we used as probes a PI(4)P-specific antibody or the PH domain of FAPP1 (phosphatidylinositol(4) phosphate adaptor protein-1) fused to GST. FAPP1 is required for transport from the trans Golgi network to the plasma membrane and has been shown to specifically bind PI(4)P [40,41]. The PI(4)P-specific antibody, as well as the GST-
is the 100-kDa transmembrane subunit of the vacuolar H+-translocating adenosine triphosphatase (V-ATPase), which is excluded from LCVs harboring wild-type *L. pneumophila* but is delivered to LCVs containing ΔicmT by fusion with endolysosomes [9,19]. One hour post-infection, only 15% of wild-type but 41% of ΔicmT mutant *L. pneumophila* resided within vacuoles staining positive for VatM-GFP. Interestingly, however, 42% of the VatM-GFP–positive LCVs harboring wild-type *L. pneumophila* stained positive for PI(4)P, compared to only 6% of VatM-positive LCVs containing ΔicmT (Figure 7B and 7C). These results indicate that the presence of PI(4)P on LCVs is Icm/Dot–dependent.

The mechanism of intracellular replication of *L. pneumophila* within amoebae and macrophages appears to be very similar. To test whether LCVs formed in macrophages also contain PI(4)P, we used RAW264.7 cells. *L. pneumophila* grows within these macrophages [1,42] and, therefore, the corresponding LCVs represent replication-permissive compartments. In lysates of RAW264.7 macrophages infected with *L. pneumophila*, the LCVs were labeled by an anti-PI(4)P antibody as well as by an anti-SidC antibody (Figure 7D). As expected, upon omission of the anti-PI(4)P antibody, only SidC was detected on the LCV. These results demonstrate that PI(4)P is also a lipid component of the LCV in macrophages, and the results further underscore the structural similarity of LCVs within amoebae and macrophages. Similar to *Dictostelium*, in intact *L. pneumophila*-infected macrophages, the PI(4)P probes led to a punctate staining pattern on the cytoplasmic membrane and in the cytoplasm (unpublished data).

Discussion

The Icm/Dot T4SS is well established as a pivotal virulence determinant of *L. pneumophila*, which governs phagocytosis as well as intracellular trafficking of the bacteria. Contrarily, the activities and host cell targets of most of the Icm/Dot–secreted effector proteins remain obscure. Here, we analyze the role of host cell PI3Ks during phagocytosis and intracellular replication of *L. pneumophila* and identify Icm/Dot–secreted proteins that directly engage PI(4)P.

Wild-type *L. pneumophila* upregulates phagocytosis by *Dictostelium* (Figures 1 and 2) and by macrophages or *Acanthamoeba castellanii* [14]. PI3Ks were found to be dispensable for phagocytosis of wild-type *L. pneumophila* by *Dictostelium* but were found to be involved in phagocytosis and degradation of an *L. pneumophila* ΔicmT mutant. Therefore, *L. pneumophila* apparently employs a specific phagocytic pathway, which bypasses a requirement for PI3Ks. This pathway is distinct from PI3K-dependent phagocytosis of non-invasive or other pathogenic bacteria, including *Listeria monocytogenes* or uropathogenic *E. coli* [26].

We provided genetic and pharmacological evidence that class I PI3Ks are involved in intracellular replication and trafficking of wild-type *L. pneumophila* in *Dictostelium* (Figures 2 and 4). In the absence of PI3Ks, *L. pneumophila* replicated more efficiently and, at the same time, the transition from tight to spacious vacuoles was inhibited. Contrarily, in a *Dictostelium rtaA* mutant, the defective transition of LCVs from tight to spacious vacuoles coincided with a decreased efficiency of intracellular replication of *L. pneumophila* [8]. Our results suggest that the “maturation” of tight to spacious vacuoles is not required for formation of a replication-

Figure 4. Trafficking of *L. pneumophila* within *Dictostelium* Lacking Functional PI3Ks

(A) Confocal laser scanning micrographs of calnexin-GFP–labeled *Dictostelium* (green) wild-type Ax3 (WT denotes untreated or treated with 20 μM LY) or ΔPI3K1/2 (denoted by ΔPI3K) infected with DsRed-Express–labeled wild-type *L. pneumophila* (red) for 1 h or 2.5 h, respectively. Representative examples of spacious vacuoles (WT) and tight vacuoles (WT/LY, ΔPI3K) are shown. DNA was stained with DAPI (blue). Bar denotes 2 μm.

(B) Quantification over time of spacious LCVs in calnexin-GFP–labeled *Dictostelium* wild-type (filled squares denote untreated; filled triangles denote LY) or ΔPI3K1/2 (open squares) infected with DsRed-Express–labeled wild-type *L. pneumophila*. Data represent means and standard deviations of the percentage of spacious vacuoles from 50–200 total vacuoles per time point scored in four independent experiments.

(C) Confocal laser scanning micrographs of *Dictostelium* wild-type or ΔPI3K1/2, infected for 75 min with wild-type *L. pneumophila* expressing M45-tagged SidC. Infected amoebae were stained with rhodamine-conjugated anti- *L. pneumophila* antibody (red), FITC-conjugated anti-M45-tag antibody (green), and DAPI (blue), respectively. Bar denotes 2 μm.

DOI: 10.1371/journal.ppat.0020046.g004
permissive vacuole. PI3Ks have been implicated in homotypic phagosome fusion and formation of spacious phagosomes [43]. Accordingly, PI3K-dependent formation of spacious phagosomes might represent a host cell process which does not support (or which even counteracts) the formation of a replication-permissive LCV.

Formation of the LCV takes place at ER exit sites and requires the evasion of the endosomal pathway and a functional early secretory pathway [5–7]. Since class I PI3Ks play a role in endosomal degradation of \(\text{D} \text{icmT} \) (Figure 3) and the modulation of the LCV (Figure 4A and 4B), an absence of PI3Ks might contribute to a more efficient intracellular replication of \(L. \text{pneumophila} \) in two synergistic ways: (i) by rendering the degradative endocytic pathway less efficient, and (ii) by promoting interactions of the LCV with the secretory pathway. The PI3K products PI(3,4,5)P3 and PI(3)P have been shown to promote phagocytosis, endocytosis, and bacterial degradation [24]. An absence of these PIs might therefore account for the observed defects in degradation of \(\text{D} \text{icmT} \) and render evasion of the degradative pathway by wild-type \(L. \text{pneumophila} \) more efficient. On the other hand, the effect of PI3Ks on trafficking of LCVs along the secretory pathway perhaps involves PI(4)P, which in the absence of PI3Ks is more abundant in \(\text{D} \text{ictyostelium} \) [37] and thus might

Figure 5. Binding of \(L. \text{pneumophila} \) icm/Dot–Secreted Proteins to PIs In Vitro

(A) Binding of affinity-purified GST fusion proteins of SidC, SdcA, SidD, or SdhB (160 pmol) to different lipids (100 pmol; left panels) or 2-fold serial dilutions of PIs (100–1.56 pmol; right panels) immobilized on nitrocellulose membranes was analyzed by a protein-lipid overlay assay using an anti-GST antibody. Lysophosphatidic acid is denoted by LPA; lysophosphocholine is denoted by LPC; sphingosine-1-phosphate is denoted by SP; phosphatidic acid is denoted by PA; and phosphatidylserine is denoted by PS. The experiment was reproduced at least three times with similar results.

(B) PL vesicles (20 \(\mu \text{l}, 1 \text{ mM lipid} \)) composed of PC (65%), PE (30%), and 5% (1 nmol) either PI(4)P, PI(3)P or PI(4,5)P2 were incubated with affinity-purified GST-SidC or GST-SidD (40 pmol), centrifuged, and washed. Binding of GST fusion proteins to PL vesicles was assayed by Western blot with an anti-GST antibody. Similar results were obtained in three separate experiments.

DOI: 10.1371/journal.ppat.0020046.g005

Figure 6.

(A) and (B) illustrate the binding of \(L. \text{pneumophila} \) icm/Dot–Secreted Proteins to PIs In Vitro.
accumulate locally on LCVs. The discovery that the Icm/Dot–secreted proteins SidC and SdcA bind PI(4)P in vitro (Figure 5) and anchor to the LCV in infected Dictyostelium preferentially in the absence of PI3Ks (Figure 6) supports this hypothesis.

To account for their effect on the morphological dynamics of LCVs, PI3Ks might be recruited and act in cis, or the absence of PI3Ks might affect the modulation of LCVs in trans by increasing the cellular concentration of PI(4)P. The mechanism regulating PIs on the LCV is expected to be complex and likely involves other PI-metabolizing host cell enzymes, as well as additional Icm/Dot–secreted bacterial proteins. The finding that PI3K inhibitors assist intracellular replication of L. pneumophila in Dictyostelium, but not in macrophages, suggests that in protozoan and metazoan cells PI3Ks are inhibited with different efficiencies and is consistent with the hypothesis that other PI kinases are also involved in the process. It is noteworthy that the PI3K inhibitors WM and LY also inhibit type III PI4Ks [44]. PI3Ks and PI4Ks are expected to affect the amount of PI(4)P on LCVs in opposite ways, providing a possible explanation for the apparently inconsistent results obtained with the pharmacological inhibitors. In any case, the mechanism by which

Figure 6. PI3Ks Affect the Amount of SidC Bound to LCVs in Dictyostelium
(A) Confocal laser scanning micrographs of calnexin-GFP–labeled Dictyostelium wild-type strain Ax3 (green), infected with DsRed-Express–labeled wild-type L. pneumophila (red) for 1 h (left panel), and immuno-labeled for SidC (blue) with an affinity-purified primary and Cy5-conjugated secondary antibody (middle panel). To quantify fluorescence intensity (right panel), the averaged fluorescence intensity of background areas (B1, B2, and B3) was subtracted from the intensity of the sample area (S). Bar denotes 2 μm.

(B) Dot plot of SidC fluorescence (average and variance) on LCVs within Dictyostelium wild-type (untreated, n = 135; 20 μM LY, n = 94) or ΔPI3K1/2 (n = 86). The data shown are combined from six independent experiments, each normalized to 100% (average SidC fluorescence on LCVs in wild-type Dictyostelium).
DOI: 10.1371/journal.ppat.0020046.g006

Figure 7. PI(4)P Is a Lipid Marker of LCVs Harboring Icm/Dot–Proficient L. pneumophila
(A, B, and D) Confocal micrographs of LCVs in lysates of (A) calnexin-GFP–labeled Dictyostelium, (B) VatM-GFP–labeled Dictyostelium, or (D) RAW264.7 macrophages infected with DsRed-Express–labeled L. pneumophila are shown. The lysates were prepared with a ball homogenizer, and PI(4)P was visualized on the LCVs using as probes either the PH domain of the PI(4)P-binding protein FAPP1 fused to GST, an antibody against PI(4)P, or GST-SidC. Using GST alone or omission of the anti-PI(4)P antibody did not label the LCVs. Bar denotes 2 μm (magnification of all images is identical).

(C) Quantification of PI(4)P-positive calnexin-GFP–labeled (n = 300) or VatM-GFP–labeled (n = 100) LCVs in Dictyostelium wild-type strain Ax3.
DOI: 10.1371/journal.ppat.0020046.g007
Table 1. Strains and Plasmids.

Strain/Plasmid	Name	Relevant Characteristics	References
L. pneumophila	JR32	Salt-sensitive derivative of virulent *L. pneumophila* Philadelphia-1 serogroup 1	[54]
	GS3011	*L. pneumophila* icmT3011:Kan⁺	[55]
E. coli	TOP10	Invitrogen (Carlsbad, California, United States)	Novagen (Madison, Wisconsin, United States)
	BL21(ED3)	NCIH Top 10 Invitrogen (Carlsbad, California, United States)	Novagen (Madison, Wisconsin, United States)
Dictyostelium	Ax3	Wild-type	[35]
	ΔIp3k1/2	Ax3 ΔIp3k1/2	[35]
	Ax2	Wild-type	[56]
	HG1769	Δact15, Δcalreticulin, blasticidin-s³ (Bl^s)	[56]
	HG1770	Δact15, Δcalnexin, Bl^s	[56]
	HG1773	Δact15, Δcalnexin/calreticulin, Bl^s, G418^B	[56]
Plasmids	pCalnexin-GFP	Calnexin-A-RSSKLK-GFP (S65T), P_{T7}, G418^B	This study
	pCR1	His-SidC in pET28a(-)	Novagen
	pCR2	GST-SidC in pGEX-4T-1	This study
	pCR8	GST-SdcA in pGEX-4T-1	This study
	pCR10	GST-SidC in pGEX-4T-1	This study
	pCR16	GST-SdcA in pGEX-4T-1	This study
	pCR33	pMMB207C-RBS-M45	This study
	pCR34	pMMB207C-RBS-M45-SidC	This study
	pET28A(-)	Expression of N-terminal His fusions; P_{T7}	Novagen
	pGEX-4T-1	Expression of N-terminal GST fusions; P_{T7}	Amersham Biosciences
	pMMB207C	Legionella expression vector, Amp^R, no RNA	This study
	pMMB207C-Km14-GFP	pMMB207C-Km14, ΔlacF^C, constitutive GFP	This study
	pMMB207C-RBS-LccC	Expression vector for LccC, RBS (= pUA26)	[42]
	pMMB207C-RBS-IcsC	Expression vector for IcsC, RBS, ΔmobA, RBS	This study
	pMMB207C-RBS-M45	Expression vector, ΔmobA, RBS, M45 (Gly₃)	This study
	pSW001	pMMB207C, ΔlacF^C, constitutive DsRed	[57]
	pVatM-GFP	VatM-(GlyAla)₅-GFP (S65T), P_{T7}, G418^B	[58]

DOI: 10.1371/journal.ppat.0020046.t001

L. pneumophila subverts host cell PI metabolism is probably conserved in amoebae and mammalian cells, since LCVs in either host cell harbor PI(4)P (Figure 7).

The identification of Icm/Dot–secreted *L. pneumophila* proteins specifically binding to PI(4)P suggested that PI(4)P is a lipid marker of LCVs. PI(4)P accumulates in the GST-FAPP1-PH probe, we could directly confirm that PI(4)P is a constituent of the LCV. Using an anti-PI(4)P antibody or a proteins specifically binding to PI(4)P suggested that this PI Owing to its high degree of specificity, the PI(4)P-binding domain of SidC/SdcA might serve as a selective PI(4)P probe in biochemical and cell biological assays.

Materials and Methods

Growth of bacteria, Dictyostelium, and macrophages. The *L. pneumophila* strains used in this study were wild-type strain JR32 (a salt-sensitive derivative of a streptomycin-resistant Philadelphia-1 strain), the isogenic Δact₁₅ deletion mutant GS3011, which lacks a functional Icm/Dot T4SS, and corresponding strains constitutively producing enhanced GFP or the red fluorescent protein DsRed-Express (Table 1). *L. pneumophila* was routinely grown for 3 d on charcoal yeast extract (CYE) agar plates, buffered with N-(2-acetamido)-2-aminoethane-sulfonic acid [47]. Liquid cultures were inoculated in AYE medium supplemented with BSA (0.5%) [48] at an OD₆₀₀ of 0.1 and grown for 21 h at 37 °C (post-exponential growth phase) to maintain plasmids, chloramphenicol (cam) was added at 5 μg/ml. As “input” controls, 20 μl of a 10^7/ml bacterial solution was plated and counted after 3 d incubation in all phagocytosis and intracellular growth experiments.

L. pneumophila was routinely grown for 3 d on charcoal yeast extract (CYE) agar plates, buffered with N-(2-acetamido)-2-aminoethane-sulfonic acid [47]. Liquid cultures were inoculated in AYE medium supplemented with BSA (0.5%) [48] at an OD₆₀₀ of 0.1 and grown for 21 h at 37 °C (post-exponential growth phase) to maintain plasmids, chloramphenicol (cam) was added at 5 μg/ml. As “input” controls, 20 μl of a 10^7/ml bacterial solution was plated and counted after 3 d incubation in all phagocytosis and intracellular growth experiments.

D. discoideum wild-type strain Ax3 and the *PI3K1/2* double mutant (ΔIP3K1/2) were a gift from R. Firtel (University of California San Diego, San Diego, California, United States). The ΔIP3K1/2 mutant is lacking two PI3Ks that are related to the mammalian p110 catalytic subunit of class I PI3Ks. The mutant strain shows morphological, developmental, and chemotactic phenotypes and is defective for vegetative growth in axenic medium and on bacterial lawns [35,37,43,49]. Specifically, ΔIP3K1/2 is smaller than the isogenic wild-type strain and is impaired for (i) phagocytosis of live or autoclaved bacteria, (ii) pinocytosis of fluid markers, (iii) maturation of phagosomes to “spacious” phagosomes via homotypic fusion, and (iv) possibly exocytosis. A biochemical analysis of the PI profile of ΔIP3K1/2 compared to the complemented strain revealed that the levels of PI(3,4)P₂ and PI(3,4,5)P₃ were reduced while the level of PI(4,5)P was not predicted to contain a PH or other PI-binding domains, and therefore, likely harbor a novel PI(4)P-binding domain. Owing to its high degree of specificity, the PI(4)P-binding domain of SidC/SdcA might serve as a selective PI(4)P probe in biochemical and cell biological assays.
PI(4)P was elevated, and that PI(3,5)P2, as well as PI(4,5)P2, remained unchanged [37].

Dictyostelium amoebae were grown axenically at 25 °C in 75 cm² tissue culture flasks in HL5 liquid medium (10 g of glucose, 5 g of yeast extract, 5 g of proteose peptone, 5 g of thiamine *E. coli* peptone, 2.5 mM Na2HPO4, 2.5 mM KH2PO4, in 1 l of H2O [pH 6.5]), supplemented with 5% (w/v) of glucose (unpublished data). Mycelia were split once or twice a week and fed with fresh HL5 medium 24 h before use. For viability assays, *Dictyostelium* was plated together with Klebsiella pneumoniae on SM/5 agar plates, and plaque-forming units (PFU) were counted after 5–25 d incubation at 37 °C [50].

Murine RAW264.7 macrophages and human HL-60 cells were cultivated in RPMI1640 medium supplemented with 10% FCS and 2 mM l-glutamine at 37 °C in a humidified atmosphere of 5% CO2. The HL-60 cells were differentiated into macrophage-like cells by incubation for 2 d with 100 ng/ml of phorbol 12-myristate 13-acetate.

Plasmid, fusion protein purification, and antibody production. Translationally gt fusions of sidC, sidA, sidC, and sidB, were constructed by PCR amplification of the putative open reading frames (ORFs) using the primers listed in Table S2. For sidA, the ATG at position 12 downstream of a TIG in ORF was used as a starting codon. The PCR fragments were cut with BamHI and SalI and ligated into plasmid pGEX-4T-1 yielding pCR2, pCR16, pCR10, and pCR8, respectively (Table 1). All constructs were sequenced. Production of the fusion proteins in *E. coli* BL21(DE3) was induced at a cell density (OD600) of 0.6 with 0.5 mM isopropyl-β-thiogalactoside (IPTG) for 3 h at 30 °C in LB medium. In all cases, this protocol resulted in a significant portion of soluble fusion protein of the expected size (132 kDa, 132 kDa, 79 kDa, and 239 kDa, respectively). All constructs were sequenced. Production of His6-SidC by *E. coli* BL21(DE3) was induced with 1 mM IPTG, and the cells were centrifuged, and the infected amoebae were incubated at 25 °C. At the time points indicated, the number of bacteria released into the supernatant was quantified by plating aliquots (10–20 μl) of appropriate dilutions on CYE plates. *L. pneumophila* did not grow in LB medium. Rather, the CFUs decreased by two to three orders of magnitude throughout these conditions (unpublished data).

Intracellular bacterial growth before host cell lysis was quantified by counting CFUs after selectively lysing infected *Dictyostelium* with saponin (“single-round replication”). At the time points indicated, the KB medium was replaced by 100 μl of 0.8% saponin and incubated for 15 min. The cells were lysed by pipetting, and aliquots were plated.

Intracellular replication of GFP-labeled wild-type *L. pneumophila* or killing of GFP-labeled *Acinetobacter baylyi* was also directly determined by flow cytometry. Here, the fluorescence intensity falling into a *Dictyostelium* scatter gate was quantified. Alternatively, the number of GFP-labeled *L. pneumophila* released into 120 μl of *Dictyostelium* supernatant was quantified by flow cytometry using a scatter gate adjusted for bacteria.

To determine the effect of PI3K inhibitors on intracellular growth of *L. pneumophila*, *Dictyostelium* was incubated for 1 h in MB medium containing 5 μM WM or 10–20 μM LY, respectively. The medium was not exchanged prior to infection with *L. pneumophila*, leaving the inhibitors throughout the experiment. Since WM is unstable in buffered aqueous solutions [52], LY was used preferentially. In some experiments, the inhibitors were added fresh every second day of the incubation period, yet this protocol did not alter the results of the experiments. The PI3K inhibitors did not have an effect on *L. pneumophila* in MB medium (unpublished data).

Dictyostelium Ax3 wild-type cells treated with 5 μM WM or 10 μM LY were as viable as untreated wild-type or *A. baylyi*2/2 for up to 5 or 6 d in MB medium (unpublished data). At later time points, cells treated with LY showed a reduced viability as determined by PFU on lawns of *K. pneumoniae*, and therefore, intracellular growth of *L. pneumophila* in the presence of PI3K inhibitors was analyzed for only up to 6 d.

Intracellular trafficking of *L. pneumophila* and composition of LCVs analyzed by immunofluorescence. For immunofluorescence, *Dictyostelium* or macrophages were split and fed 2 d prior to an experiment, seeded on sterile coverslips in 24-well plates at 2.5 × 104 per well in 0.5 ml of HL5 medium (*Dictyostelium*) or RPMI medium (macrophages), and allowed to grow overnight. The medium was renewed every 1 h before the infection and contained 20 μM LY where indicated. The *L. pneumophila* strains used for the infections were grown for 21 h (OD600 of the inoculum: 0.1) in 3 ml of AYE/BSA containing 5 μg/ml of cam and 0.5 mM IPTG when required. Bacterial cultures were diluted in HL5 medium (for *Dictyostelium* Ax3 and amoeba-adapted *L. pneumophila*) to a concentration of 5 × 109/ml and 100 μl of the suspension was added to the phagocytes (MOI = 100). The infection was synchronized by centrifugation, and the cells were washed twice with HL5 medium (**Dictyostelium**) or PBS (macrophages), respectively.

At the time points indicated, the infected amoebae were washed with SorC buffer (Dictyostelium) or PBS (macrophages) and fixed with 4% paraformaldehyde for 30 min at 4 °C. The fixed cells were washed three times, permeabilized (0.1% Triton X-100, 100
using a monoclonal anti-GST antibody (Sigma) and a secondary goat anti-mouse peroxidase-labeled antibody (Sigma). The final experiments were carried out with commercially available Pip-strips and Pip-arrays (Echelon Biosciences), using GST-tagged PH domains of PLCδ1 (PI3P, G1p, Echelon Biosciences) and LL5x (MultiPIP Grip, Echelon Biosciences) as control reagents for the presence of PI(4,5)P2 or all PIPs on the nitrocellulose membranes. To test whether SidC binds to PIs incorporated into PL vesicles, we used affinity-purified GST fusion proteins (GST-SidC or GST-SidD) and commercially available PL vesicles (1 mM lipid) composed of 65% PC, 29% phosphatidylethanolamine (PE), 1% biotinylated PE, and 3% either Pl-3P, Pl(3,5)P2, or Pl(4,5)P2 (PolyPIPosomes, Echelon Biosciences). The PL vesicles (20 µl, 1 nmol Pl) were incubated for 20 min at 4°C with GST-SidC or GST-SidD fusion proteins (40 pmol) in a total of 1 ml of binding buffer (50 mM Tris, 150 mM NaCl, 0.05% Noniut P40 [pH 7.6]). The liposomes were subsequently centrifuged (10 min, 20,900 g) and washed five times with 1 ml of binding buffer. Finally, the pellet was resuspended in 25 µl of loading buffer, boiled, and separated on an 8% SDS polyacrylamide gel. GST fusion proteins were visualized by Western blot with a monoclonal anti-GST antibody (Sigma).

Supporting Information

Figure S1. A Role for PI3Ks in Intracellular Replication but Not Phagocytosis of Wild-Type L. pneumophila

(A) Phagocytosis by Dictostelium wild-type Ax3 or ΔIckT1/2 (untreated or treated with 20 µM LY) or ΔPI3K1/2 was quantified by immunofluorescence using affinity-purified anti-SidC and Cy5-conjugated secondary antibodies. The fluorescence intensity of an area equatorial through the bacteria were chosen. The homogenate was clearly detached, leaving a space between the membrane and the bacterium; all other LCVs observed were scored as “tight.”

Figure S2. Calnexin or Calreticulin Do Not Affect Intracellular Replication of L. pneumophila

(A) Release of intracellularly grown L. pneumophila (C) Intracellular L. pneumophila quantified by flow cytometry. The data shown are means and standard deviations of duplicates and are representative of at least three independent experiments.

(B) Release of GFP-labeled wild-type L. pneumophila from wild-type Dictostelium (filled squares denote untreated; filled triangles denote LY, ΔPI3K1/2 (open squares denote untreated; open triangles denote LY) was quantified by flow cytometry. As a control for viability, expression of gfp by JR32 in the absence (filled diamonds) or in the presence (open diamonds) of LY was determined during the experiment.

(C) Intracellular L. pneumophila quantified by CFU after lysis of Dictostelium with 0.8% saponin. Filled squares denote Dictostelium wild-type Ax3/JR32; open squares denote ΔPI3K1/2; JR32; filled triangles denote Ax3/ΔLY/JR32; filled circles denote Ax3+/ΔLY, open triangles denote ΔIckT1/2ΔLY; and open triangles denote Ax3/ΔLY ΔIckT1.

Found at DOI: 10.1371/journal.ppat.0020046.sg001 (7.8 MB TIF).

Figure S1. A Role for PI3Ks in Intracellular Replication but Not Phagocytosis of Wild-Type L. pneumophila

(A) Release of intracellularly grown L. pneumophila wild-type (denoted by filled symbols) from Dictostelium or killing of ΔIckT1 (denoted by open symbols) by Dictostelium wild-type Ax2 (filled and open squares), or Ax2-derived mutant strains lacking calnexin (filled and open diamonds), calreticulin (filled and open triangles), or calnexin/calreticulin (filled and open circles) is shown. The results were reproduced in four independent experiments.

(B) Release of intracellularly grown L. pneumophila JR32 from wild-type Dictostelium strain Ax3 (filled squares) or Ax3 expressing calnexin-GFP (filled diamonds). The average of two independent experiments, each carried out in triplicate, is shown.

Found at DOI: 10.1371/journal.ppat.0020046.sg002 (6.7 MB TIF).

Table S1. Degradation of L. pneumophila ΔicmT by Dictostelium Wild-Type Ax3 or ΔPI3K1/2

Found at DOI: 10.1371/journal.ppat.0020046.s001 (54 KB DOC).

Table S2. Oligonucleotides Used in This Study

Found at DOI: 10.1371/journal.ppat.0020046.s002 (49 KB DOC).

Accession Numbers

The GenBank [http://www.ncbi.nlm.nih.gov/Genbank] accession numbers for the proteins discussed in this paper are Dictostelium calnexin (AF073837), Dictostelium PI3K1 and PI3K2 (U23476 and U23477, respectively), human FAPP1 (AF286162), L. pneumophila IcmDot T4SS conjugation apparatus (Y15041), SidC (AY504673), and SidC paralog SdcA (AY504674).

Legionella Effectors Anchor to PI(4)P

min) and blocked with 2% normal human AB serum in SorC or PBS for 30 min. The coverslips were incubated for 1 h at room temperature on parafilm with 30 µl of primary antibodies diluted in blocking buffer (rhodamine-conjugated rabbit anti-L. pneumophila Philadelphia-1 serogroup 1, 1:100 [m-Tech, Monoclonal Technologics, http://www.mtech.com]; mouse anti-MAP45 hybridoma supernatant [53]; mouse anti-rabbit anti-SidC; 1:200 [Sigma, St. Louis, Missouri, United States]; affinity-purified rabbit anti-SidC, 1:1000 [see above]; and mouse IgM anti-Pl4(3)p, 1: 200 [Echelon Biosciences, http://www.echelon-inc.com]) and washed three times with blocking buffer after each antibody. The coverslips were then incubated for 30 min, washed twice and mounted using Vectashield (Vector Laboratories http://www.vectorlabs.com).

The amount of SidC on LCVs harboring DsRed-Express–labeled L. pneumophila in calnexin-GFP–labeled wild-type Dictostelium was quantified by immunofluorescence using affinity-purified anti-SidC and Cy5-conjugated secondary antibodies. The fluorescence intensity of an area identical for all samples and covering the LCV was quantified using Quantify software (Improve, http://www.improvement.com). The homogenate was immobilized by centrifugation (10 min, 850 g) and blocked with 2% normal human AB serum in SorC or PBS for 5 min, and the coverslips were incubated with the fusion proteins (approximately 120 pmol/ml blocking buffer) overnight at 4°C. Binding of the GST-effector fusion proteins to lipids was visualized by ECL (Amersham Biosciences)

The homogenate was immobilized by centrifugation (10 min, 850 g) in SorC or PBS for 5 min, and the coverslips were incubated with the fusion proteins (approximately 120 pmol/ml blocking buffer) overnight at 4°C. Binding of the GST-effector fusion proteins to lipids was visualized by ECL (Amersham Biosciences)
Acknowledgments

We thank Richard A. Firtel (University of California San Diego, San Diego, California, United States) for supplying *Dictyostelium* strains, Margaret Clarke (Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States) for the VAT-M-GFP plasmid, and Andrea Müller-Taubenböck and Günther Gerisch (MPI for Biochemistry, Martinsried, Germany) for *Dictyostelium* strains and the calnexin-GFP expression plasmid. GST-FAPPI constructs were obtained from Maria Antonietta De Matteis (Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy) and Dario R. Alessi (University of Dundee, Dundee, United Kingdom). We acknowledge Thomas Spirig and Sandra Fumia (ETH Zürich) and Xiao Dan Li (Paul Scherrer Institut, Villingen, Switzerland) for help with cloning and purification of antibody or His-SidC. Wolf-Dietrich Hardt (ETH Zürich) and his group kindly assisted with confocal microscopy.

Author contributions. SSS, CR, KR, YN, and HH conceived and designed the experiments. SSS, CR, KR, and YN performed the experiments. SSS, CR, KR, YN, and HH analyzed the data. HH wrote the paper.

Funding. This work was supported by grants from the Swiss National Science Foundation (310030_605952), ETH Zürich (17T02-3), and the Velux Foundation.

Competing interests. A provisional US patent application has been granted to Hubert Hilbi (US60719,934; “Bacterial phosphoinositide probes and effectors”).

References

1. Fields BS (1996) The molecular ecology of *Legionella*. Trends Microbiol 4: 286–290.
2. McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, et al. (1977) Legionnaires’ disease: Isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297: 1197–1203.
3. Nash TW, Libby DM, Horwitz MA (1984) Interaction between the *Legionella pneumophila* and human alveolar macrophages. Influence of antibody, lymphokines, and hydrogen peroxide. J Clin Microbiol 24: 771–777.
4. Horwitz MA (1983) The Legionnaires’ disease bacterium (*Legionella pneumophila*) inhibits lysosome-phagosome fusion in human monocytes. J Exp Med 158: 2108–2120.
5. Kagan JC, Roy CR (2002) *Legionella* phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4: 945–954.
6. Derre I, Isberg RR (2004) *Legionella pneumophila* replication vacuole formation involves rapid recruitment of proteins of the early secretory pathway, EMBO J 23: 4056–4067.
7. Kagan JC, Stein MP, Pypaert M, Roy CR (2004) *Legionella* subvert the functions of rab1 and sec22 to create a replicative organelle. J Exp Med 199: 1201–1211.
8. Li Z, Solomon JM, Isberg RR (2005) *Dictyostelium* dendroides strains lacking the RtoA protein are defective for maturation of the *Legionella pneumophila* replication vacuole. Cell Microbiol 7: 431–442.
9. La H, Clarke M (2005) Dynamic properties of Legionella-containing phagosomes in *Dictyostelium amoebae*. Cell Microbiol 7: 995–1007.
10. Sturgili-Kovzsky S, Swanson MS (2000) *Legionella pneumophila* replication vacuoles mature into acidic, endocytic organelles. J Exp Med 192: 1261–1272.
11. Coers J, Monahan C, Roy CR (1999) Modulation of phagosome biogenesis of the *Legionnaires’ disease* bacterium (*Legionella pneumophila*) controlled by the Dot/Icm system and the mouse *Dictyostelium* system. Infect Immun 67: 3066–3075.
12. Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation requiring overlapting sets of genes within a 22-kb region of the *Legionella* genome. Proc Natl Acad Sci USA 95: 1669–1674.
13. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, et al. (2004) The genome of the social amoeba *Dictyostelium discoideum*, Nature 435: 65–72.
14. Zhou K, Takegawa K, Emr SD, Firtel RA (1995) A phosphatidylinositol (PI) kinase gene family in *Dictyostelium discoideum*: Biological roles of putative mammalian p110 and yeast Vps34 PI(3) kinase homologs during growth and development. Mol Cell Biol 15: 5645–5656.
15. Khelef N, Shuman HA, Maxfield FR (2001) Phagocytosis of wild-type *Legionella pneumophila* occurs through a wortmannin-insensitive pathway. J Cell Sci 114: 1283–1295.
16. Rupper AC, Rupper AC (2001) *p110*-related protein kinases control Golgi-to-cell-surface membrane traffic by binding to the virulence system of *Legionella pneumophila*. Science 279: 873–876.
17. Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, et al. (2004) *Dictyostelium* as a new host model system for intracellular pathogens of the genus *Legionella*. Cell Microbiol 6: 411–425.
18. Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation requiring overlapping sets of genes within a 22 kb region of the *Legionella pneumophila* genome. Proc Natl Acad Sci USA 95: 1669–1674.
19. Voelz JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by interbacterial protein transfer. Proc Natl Acad Sci U S A 95: 1669–1674.
20. Tomaras M, Derre I, Kirkby J, Gromovyy JD, Dietrich WF, et al. (2001) *Legionella pneumophila* is internalized by a macropinoscytic uptake pathway controlled by the Dot/Icm system and the mouse *lgr1* locus. J Exp Med 194: 1081–1096.
21. Chien M, Morozova I, Shi S, Sheng H, Chen J, et al. (2004) The genomic landscape of type III secretion substrates via *Legionella pneumophila* type IV secretion system. PLoS Pathogens 1: e460429.
47. Feeley JC, Gibson RJ, Gorman GW, Langford NC, Rasheed JK, et al. (1979) Charcoal-yeast extract agar: Primary isolation medium for *Legionella pneumophila*. J Clin Microbiol 10: 437–441.

48. Horwitz MA, Silverstein SC (1983) Intracellular multiplication of Legionnaires’ disease bacteria (*Legionella pneumophila*) in human monocytes is reversibly inhibited by erythromycin and rifampin. J Clin Invest 71: 15–26.

49. Buczynski G, Grove B, Nomura A, Kleve M, Bush J, et al. (1997) Inactivation of two *Dictyostelium discoideum* genes, *DdPIK1* and *DdPIK2*, encoding proteins related to mammalian phosphatidylinositol-3-kinases, results in defects in endocytosis, lysosome to postlysosome transport, and actin cytoskeleton organization. J Cell Biol 136: 1271–1286.

50. Sussman M (1987) Cultivation and synchronous morphogenesis of *Dictyostelium* under controlled experimental conditions. Methods Cell Biol 28: 9–29.

51. Harlow E, Lane D (1999) Immunoadfinity purification. In: Harlow E, Lane D, editors. Using antibodies: A laboratory manual. Plainview (New York): Cold Spring Harbor Laboratory Press. pp. 311–343.

52. Woscholski R, Kodaki T, McKinnon M, Waterfield MD, Parker PJ (1994) A comparison of demethoxyviridin and wortmannin as inhibitors of phosphatidylinositol 3-kinase. FEBS Lett 342: 109–114.

53. Obert S, O’Connor RJ, Schmid S, Hearing P (1994) The adenovirus E4-67 protein transactivates the E2 promoter by inducing dimerization of a heteromeric E2F complex. Mol Cell Biol 14: 1333–1346.

54. Sadosky AB, Wiater LA, Shuman HA (1993) Identification of *Legionella pneumophila* genes required for growth within and killing of human macrophages. Infect Immun 61: 5361–5373.

55. Segal G, Shuman HA (1998) Intracellular multiplication and human macrophage killing by *Legionella pneumophila* are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30: 197–208.

56. Müller-Taubenberger A, Lupas AN, Li H, Ecke M, Simmeth E, et al. (2001) Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J 20: 6772–6782.

57. Mampel J, Spirig T, Weber SS, Haagensen JA, Molin S, et al. (2006) Planktonic replication is essential for biofilm formation of *Legionella pneumophila* in complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72: 2885–2895.

58. Clarke M, Kohler J, Arana Q, Liu T, Heuser J, et al. (2002) Dynamics of the vacuolar H(+)-ATPase in the contractile vacuole complex and the endosomal pathway of *Dictyostelium* cells. J Cell Sci 115: 2895–2905.