Incidence of Adverse Reaction of Drugs used in COVID-19 Management: A Retrospective, Observational Study

JY Lee¹, ASY Ang², N Mohd Ali³, LM Ang⁴, A Omar⁵
¹Department of Pharmacy, Sungai Buloh Hospital, Ministry of Health Malaysia
²NMRR-20-1120-55048 [IIR]

Introduction

• A study by Sun et al. in China on COVID-19 patients with treatment (N = 217) recorded an adverse drug reaction (ADR) rate of 37.8%.¹
• Safety surveillance activity is important due to unestablished safety profile of off-label medications used in COVID-19.

Objectives

• Primary outcome: To establish the incidence of ADR due to off-label drugs used in COVID-19 management
• Secondary outcomes: To establish the type of ADRs occurred, to identify potential risk factors for ADR and to evaluate the reporting rate of ADR by healthcare professionals

Methods

Eligibility criteria
Patients > 12 years with suspected or confirmed COVID-19 diagnosis who were initiated on medications for COVID-19 from 1 March 2020 to 31 May 2020 in Sungai Buloh Hospital

Instrument
• Case report form to record patient’s demographics, COVID-19 drugs, lab parameters & details of suspected ADR
• Suspected ADRs were evaluated with a trigger tool of pre-defined laboratory values or documented undesirable effects listed in the product inserts

Data analysis
• Patient demographic, incidence & types of ADR, as well as ADR reporting rate were tabulated using descriptive analysis
• The association of risk factors for ADRs was evaluated using Chi-square test, as well as simple & multiple logistic regression

Discussion

• The most observed ADRs were diarrhea & hyperbilirubinaemia, which are known side effects for lopinavir/ritonavir and atazanavir, respectively.²
• Female gender is a potential risk factor due to differences in circulating hormonal levels, having more prescription drugs, & the higher dose used in relation to their body weight.³
• Patients who developed ADR were mostly diagnosed with COVID-19 stage 3 (39.3%) or stage 4 (36.1%), which could have been contributed by the use of protease inhibitors in this group of patients.
• Every addition of a COVID-19 drug to the treatment regime increases the risk of ADR by 3.38 times, possibly due to drug-drug interactions.⁴
• The underreporting rate was 80.1%, due to inexperience, insensitivity, & lack of training in pharmacovigilance among HCWs.⁵
• The study was limited by convenience sampling. Favipiravir & tocilizumab were not widely used during the study period, resulting in poor representation.

Results

Incidence & classification of ADR

217/1,080 patients (20.1%) experienced suspected ADR

Table 1: Classification of ADRs (n = 246 ADR events)

ADR according to system organ class	Incidence of ADR
Blood & lymphatic system disorders	Anaemia 2 (0.8%)
	Cardiac disorders 34 (13.8%)
	QT prolongation 4 (1.6%)
	Bradycardia 1 (0.4%)
	ST elevation 1 (0.4%)
Gastrointestinal disorders	Diarrhea 76 (30.9%)
	Nausea & vomiting 27 (11.0%)
	Abdominal pain 4 (1.6%)
Hepatobiliary disorders	Hyperbilirubinemia (without jaundice) 77 (31.3%)
	Elevated liver transaminases 6 (2.4%)
	Hyperbilirubinemia (with jaundice) 5 (2.0%)
	Elevated alkaline phosphatase 1 (0.4%)
Nervous system disorders	Giddiness 3 (1.2%)
	Headache 1 (0.4%)
Renal & urinary disorders	Acute kidney injury 2 (0.8%)
	Skin & subcutaneous tissue disorders 1 (0.4%)
	Rash 2 (0.8%)

Incidence of ADR is reported as n (%), where % is calculated by incidence of ADR/n.

Risk factors of ADR

Table 2: Independent risk factors of ADR

Variable	Multivariate analysis	Adjusted OR (95% CI)*	P value
Female	1.53 (1.06, 2.20)	0.024	
COVID-19 category			
Stage 3	2.58 (1.20, 5.55)	0.015	
Stage 4	4.17 (1.79, 9.73)	0.001	
No. of COVID-19 drug(s)	3.34 (2.51, 4.44)	<0.001	

*Forward & Backward LR applied. Hosmer & Lemeshow = 0.121. Classification table = 83.2. No multicollinearity was detected. ROC = 0.83 (0.79, 0.86; P value < 0.001). Only variables with P value < 0.05 were included in the adjusted OR.

Reporting rate of ADR by healthcare professionals

• Only 49 events (19.9%) were reported
• Most commonly reported ADRs were: - Hyperbilirubinemia (65.3%) - QT prolongation (28.6%)

Conclusion

20.1% of the patients experienced ADR from drugs used in COVID-19 management. Female, diagnosis of COVID-19 stage 3 and stage 4 (highest category during hospitalisation), and the number of COVID-19 drugs were identified as independent risk factors of ADR. More research is warranted in ADR surveillance to maximise patient safety.

Acknowledgement: We would like to thank the Director General of Health Malaysia for his permission to publish this poster.

Correspondence: Lee Ia Yin. leeiayin@moh.gov.my. Sungai Buloh Hospital. 03-6145 4126
Reference: 1. Sun J, et al. Clin Pharmacol Ther. 2020; 108(4): 791-7. 2. Ministry of Health Malaysia. Malaysian consensus guideline on antiretroviral therapy. 2017. 3. Zoefl Y, et al. Drug Saf. 2008; 31(9): 789-98. 4. Davies E, et al. PLoS ONE. 2009; 4(2): e4439. 5. Varallo FR, et al. Rev Esc Enferm USP. 2014; 48(1): 739-47.