Relativistic double-ionization equation-of-motion coupled-cluster method: Application to low-lying doubly ionized states

Himadri Pathak,1, a) Sudip Sasmal,1, b) Kaushik Talukdar,2, c) Malaya K. Nayak,3 Nayana Vaval,1 and Sourav Pal4, 2, d)
1) Electronic Structure Theory Group, Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411 008, India
2) Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
3) Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
4) Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India

(Dated: 25 February 2020)

The article deals with the extension of the relativistic double-ionization equation-of-motion coupled-cluster (DI-EOMCC) method [H. Pathak et al. Phys. Rev. A 90, 010501(R) (2014)] for the molecular systems. The Dirac-Coulomb (DC) Hamiltonian with four-component spinors is considered to take care of the relativistic effects. The implemented method is employed to compute a few low-lying doubly ionized states of noble gas atoms (Ar, Kr, Xe, and Rn) and Cl2, Br2, HBr, and HI. Additionally, we presented results with two intermediate schemes in the four-component relativistic DI-EOMCC framework to understand the role of electron correlation. The computed double ionization spectra for the atomic systems are compared with the values from the non-relativistic DI-EOMCC method with spin-orbit coupling (SOC) [Z. Wang et al. J. Chem. Phys. 142, 144109 (2015)] and the values from the National Institute of Science and Technology (NIST) database. Our atomic results are found to be in good agreement with the NIST values. Further, the obtained results for the molecular systems agree well with the available experimental values.

I. INTRODUCTION

There has been considerable progress in the last few decades in the experimental techniques for the study of di-cationic ions.1–6 The doubly charged ions are highly reactive, and they play an important role in ionized gases, excimer lasers, plasmas, and interstellar clouds, which attracted much attention from both experimentalists and theoreticians.7–10

The unambiguous theoretical prediction of the double-ionization spectra demands a reliable theory. The correctness and authenticity of the calculated values depend on the quality of the wavefunction in describing the quantum systems. Therefore, it is obligatory to have a highly correlated method that can provide a better description of the ionized states. Besides, electron correlation, relativistic effects has a significant contribution to describe the simultaneous removal of two electrons. Thus, concurrent treatment of both the effects of relativity and electron correlation is mandatory due to their intertwined nature.11,12

The self-consistent-field (SCF) solution considering Dirac-Coulomb Hamiltonian with four-component spinors provides the best possible single determinantal description of the effects of relativity in a quantum many-body calculations. On the other hand, coupled-cluster theory13–15 becomes the most acceded many-body method while dealing with the electron correlation. Therefore, the development of a relativistic coupled-cluster theory will be the means to engage with these problems.

Kaldor and coworkers extensively worked on the relativistic coupled-cluster theory.16–22 They extended the Fock-space multireference coupled-cluster theory (FSMRCC)23–30 to the relativistic framework to calculate transition energies.17,20–22 The effective Hamiltonian variant of the FSMRCC theory encounters convergence difficulty with an increase in the size of the model space. The intermediate Hamiltonian Fock-space multireference coupled-cluster (IHFSMRCC) theory31–33 and the MRCC theory based on eigenvalue independent partitioning (EIP-MRCC)34,35 are quite impressive in predicting spectroscopic properties in an intruder-free manner.

As an alternative, the equation-of-motion coupled-cluster (EOMCC) method42–60 becomes popular due to its simple CI-like eigenvalue structure, hassle-free convergence, and the possibility of obtaining shake-up states those are important in explaining photoionization spectra,61 and various radiation-less decay mechanism.62 Furthermore, the EOMCC method directly provides the eigenstates contrary to the propagator based approaches,63,64 even though these methods share similar EOM structure. We would like to emphasis that the EOMCC method works well at the noninteracting limit; however, it lacks the rigorous definition of

a)Electronic mail: hmdrpthk@gmail.com
b)Electronic mail: sudipsasmal.chem@gmail.com
c)Electronic mail: talukdar.kaushik797@gmail.com
d)Electronic mail: s.pal@iiserkol.ac.in
Atom/ Molecule	Basis	Virtual Cutoff (a.u.)	Spinor	Correlation Energy		
			Occupied	Virtual	MBPT(2)	CCSD
Ar	dyall.cv3z36	500.0	18	146	-0.59324132	-0.60681938
Kr	dyall.acv3z37	500.0	36	230	-1.46015195	-1.39817620
Xe	dyall.acv3z37	500.0	54	242	-1.62810633	-1.53775344
Rn	dyall.acv4z37	200.0	86	364	-2.38266005	-2.16144919
Cl₂	dyall.av3z36	500.0	34	242	-0.71772024	-0.74479386
Br₂	dyall.cv3z37	500.0	70	402	-2.88914902	-2.75863049
HBr	H: aug-cc-pVTZ38, Br: dyall.av3z37	500.0	36	222	-0.95277980	-0.91704702
HI	H: aug-cc-pVTZ38, I: dyall.ae3z37	500.0	54	308	-2.27780739	-2.16475927

TABLE II. Comparison of DIP values (in eV) of Kr with various schemes in the EOMCCSD approximation
Scheme
basis: aug-cc-pVTZ30
contracted basis, point nucleus, No of virtual spinor=82
ECPDS10MDFSF60 (spin free)
ECPDS10MDFS060 (spin orbit)
Dirac-Coulomb (1$s^22s^22p^53p^1/23p^1/2$ core frozen)
Dirac-Coulomb
basis: Dyall.av3z37
finite nucleus, virtual cutoff =500 Hartree, No of virtual spinor=170
Dirac-Coulomb
Dirac-Coulomb-Gaunt
basis: Dyall.acv3z37
finite nucleus, virtual cutoff =500 Hartree, No of virtual spinor=230
Dirac-Coulomb
Dirac-Coulomb-Gaunt
basis: Dyall.ae3z37
finite nucleus, virtual cutoff =500 Hartree, No of virtual spinor=244
Dirac-Coulomb
Dirac-Coulomb-Gaunt
no virtual cutoff, No of virtual spinor=326
Dirac-Coulomb
Dirac-Coulomb-Gaunt
NIST41

the size-extensivity. The values computed by the FSM-RCC theory and the EOMCC method cease to agree with each other beyond the principal peaks of the one-valence sector. Coupled-cluster linear response theory (CCLRT)65–68 and symmetry adapted cluster configuration interaction (SAC-CI) method69–71 are the alterna-
It is desirable to introduce the effects of relativity in the electronic structure calculations by choosing an appropriate relativistic Hamiltonian. The use of relativistic effective-core-potential (RECP) with spin-orbit coupling (SOC) is the most common in molecular relativistic calculations. A wide range of RECPs are available, depending on how the RECPs are optimized. It helps to exclude a large number of chemically inert electrons from the SCF calculations to reduce the computational costs for the correlation calculation as compared to the fully relativistic counterparts. The effects of SOC has been introduced in different variants of the EOMCC method. However, the inclusion of the SOC with RECP does not address the intricate coupling between the relativistic and correlation effects. Therefore, it is essential to have a more robust theory considering relativistic Hamiltonian with four-component wavefunction and a highly correlated method for the treatment of the electron correlation. Further, we would like to categorically point out that the SOC effect is naturally taken care of by the Dirac-Hamiltonian. The use of Dirac-Coulomb Hamiltonian is most common in relativistic electronic structure calculation where the two-body Coulomb operator is added with the one-body Dirac-Hamiltonian. The mathematical form of the Coulomb operator is the same as in the non-relativistic theory; however, the physical meaning is different as it takes care of the spin-same orbit interaction. The relativistic Hamiltonian containing up to Coulomb term is sufficient for almost all chemical purposes. However, if unprecedented accurate results are sought especially for the fine-structure splitting from the deep core orbitals, in such a case consideration of the spin-other-orbit interaction and spin-spin interaction become relevant which require full inclusion of the Breit part of the two-body interaction.

The four-component relativistic EOMCC method has been implemented for the computation of ionization potential, electron affinity, and excitation energies of closed-shell heavy atomic systems, as well as for highly charged ions. The atomic relativistic calculations enjoy the exploitation of the spherical symmetry, which permits separate computation of the radial and angular part to work with the numerically evaluated reduced matrix elements. On the other hand, in the spherical atomic implementation, the use of the antisymmetrized two-body matrix elements is not feasible due to the appearance of the different angular factors for the direct and exchange part of the two-body matrix elements. Thus, this non-separability of radial and angular part in the non-spherical case makes molecular relativistic calculations onerous. The EOMCC methods for the calculations of ionization potentials, and electron affinities of molecular systems considering both four-component, as well as exact two-component (X2C) formalism have been implemented and shed light on the non-additivity of the relativistic effects and electron correlation effects through calculations. Further, we have implemented the open-shell reference four-component EOMCC method and applied to calculate ionization potential of super-heavy atomic and molecular systems using DC Hamiltonian. Recently, Shee et al. used Dirac-Coulomb-Gaunt Hamiltonian in their implementation of the EOMCC method.

The simultaneous removal of two electrons is a serious multireference problem. The EOMCC method for double ionization potentials (DIPs) and double electron affinities (DEAs) has been developed to deal with the complex multireference problem within a single-reference description. However, those works are in the non-relativistic framework. Further, we have implemented four-component relativistic DI-EOMCC method for closed-shell atomic systems and employed to calculate valence DIP values of alkaline earth metal atoms where valence electrons are well separated from the other inner electrons.

In this work, we extend the four-component DI-EOMCC method using DC Hamiltonian based on antisymmetrized actual two-body matrix elements applicable to both atomic and molecular systems starting from their closed-shell configuration. We have employed to calculate a few low-lying doubly-ionized states of noble gas atoms (Ar, Kr, Xe, Rn) and molecular systems (Cl2, Br2, HBr, and HI).

The ground state reference wavefunction is defined at the coupled-cluster single- and double- excitation level (CCSD) and the EOM matrix constructed in the 2h and 3h-1p space. Further, two intermediate schemes have been designed to analyse the roles of correlation contributions; one uses the ground state description of the second-order many-body perturbation theory [MBPT(2)], and in the later the EOM matrix is constructed only in the 2h space.

The outline of this paper is as follows. A brief description of the DI-EOMCC method is presented in Sec. II, Sec. III and Sec. IV are allocated for details of the computational parameters and about the discussion of the obtained results in our calculations, respectively. Finally, we convey our concluding thoughts in Sec. V. Atomic units are consistently used unless otherwise stated.

II. METHOD

The wavefunction in the EOMCC method is defined as $\text{Re}^T|\Phi_0\rangle$, where $e^T|\Phi_0\rangle$ is the coupled-cluster ground state wavefunction and $|\Phi_0\rangle$ is the restricted closed-shell reference determinant. T is the usual cluster operator and the R is a linear-operator. The R operator acts upon the coupled-cluster ground state wavefunction and generates the excited state configurations. The second-
quantization form of the cluster-operator T and the EOM operator R is as follows,

$$T = T_1 + T_2 + \ldots = \sum_{i,a} t_{ia} a_i^\dagger a_i + \sum_{a,b \atop i<j} t_{ij} a_i^\dagger a_j + \ldots \tag{1}$$

$$R = R_2 + R_3 + \ldots = \sum_{i<j} r_{ij} a_i a_j + \sum_{i<j<k} r_{ijk} a_i^\dagger a_k a_j a_i + \ldots \tag{2}$$

$i, j, k \ldots (a, b, c, \ldots)$ are hole (particle) indices that are occupied and unoccupied in the reference determinant, respectively. We have restricted our DI-EOMCC implementation up to $T = T_1 + T_2$ and $R = R_2 + R_3$ excitation level. The first step for the EOMCC calculation is the solution of the cluster amplitudes in Eq. 1. These amplitudes are obtained by iterative solution of the following nonlinear-simultaneous equations,

$$\langle \Psi_i^a | e^{-T} H e^T | \Phi_0 \rangle = 0, \quad \langle \Psi_i^{ab} | e^{-T} H e^T | \Phi_0 \rangle = 0 \tag{3}$$

where $| \Psi_i^a \rangle$ and $| \Psi_i^{ab} \rangle$ are the single and double excited configurations with respect to the reference determinant. The ground-state energy obtained by solving equation for the energy,

$$E = \langle \Phi_0 | e^{-T} H e^T | \Phi_0 \rangle \tag{4}$$

Here, H is the Dirac-Coulomb Hamiltonian and is of the following form,

$$H_{DC} = \sum_A \sum_i [c(\vec{\alpha} \cdot \vec{p})_i + (\beta - 1) m_0 c^2 + V_{iA}] + \sum_{i>j} \frac{1}{r_{ij}} \tag{5}$$

α and β are the usual Dirac matrices. V_{iA} is the potential energy operator for the i^{th} electron in the field of nucleus A. $m_0 c^2$ is the rest mass energy of the free electron, where c stands for the speed of light. The energy as well as the R operator is determined by solving the following equation:

$$\hat{H} R | \Phi_0 \rangle = E R | \Phi_0 \rangle \tag{6}$$

where $\hat{H} = e^{-T} H e^T$ and E is the energy of the doubly ionized state.

The above equation is projected onto the set of excited determinants $(| \Psi_{ij} \rangle)$ and $(| \Psi_{ij}^{ab} \rangle)$ to obtain the following equations,

$$\langle \Psi_{ji} | [\hat{H}, R_{\nu}] | \Phi_0 \rangle = \Delta E_{\nu} r_{ji}, \tag{7}$$

$$\langle \Psi_{kji}^{ab} | [\hat{H}, R_{\nu}] | \Phi_0 \rangle = \Delta E_{\nu} r_{kji}^{ab}, \tag{8}$$

Where ΔE_{ν} is the amount of energy required to expel two electrons simultaneously from any given reference configuration. The commutative property of the T and R is assumed in deriving the above equations. The algebraic expression of the left hand sides of Eq. 7 and Eq. 8 are as follows,

$$\Delta E_{\nu} r_{ji} = -\hat{P}(ij) \sum_k \hat{f}_{ij} r_{ki} + 0.5 \sum_{l,k} \hat{V}_{lj} r_{lk} + \sum_k \hat{f}_{ji} r_{kj} - 0.5 \hat{P}(ij) \sum_{l,k,a} \hat{V}_{ljk} r_{lk} \quad \forall \ j < i \tag{9}$$

$$\Delta E_{\nu} r_{kji}^{ab} = -\hat{P}(i|jk) \sum_l \hat{V}_{lk}^a r_{li} - \hat{P}(ij|k) \sum_l \hat{V}_{lk}^b r_{li} + 0.5 \hat{P}(i|jk) \sum_{l,m} \hat{V}_{lm}^a r_{li} \quad \forall \ (a, k < j < i) \tag{10}$$

Here \hat{f}, \hat{V} and $t_{lkm}^a V_{lm}^{bc}$ stand for one-body, two-body and three-body intermediate matrix elements constructed by contracting appropriate one-body and two-body Hamiltonian matrix elements and the converged amplitudes from the coupled-cluster ground-state calculation as described in the Ref. $\hat{P}(i|j|\ldots|j|\ldots)$ stands for the cyclic permutation operator. The above equations can be expressed in the matrix form as $\hat{H} R = R \Delta E_{\nu}$. The size of the \hat{H} matrix is large enough ($nh^2 + nb^2 np, nh^2 + nb^3 np, nh$ and np stand for the number of holes and particles, respectively) to follow a full diagonalization algorithm in a reasonable basis. Therefore, we have used David-son diagonalization algorithm for the diagonalization of the non-Hermitian matrix. The DI-EOMCC method is prone to slow convergence. Therefore, to obtain a smooth and faster convergence, we have used eigenvectors obtained from the full diagonalization of 2h block as an initial guess for the iterative procedure. The intermediate scheme MBPT(2) approximates CCSD ground state wavefunction at the second-order many-body perturbation theory level and for the 2h scheme, the dimension of the EOM matrix is reduced to (nh^2, nh^2), by ignoring contribution from the $3h - 1p$ block.
TABLE III. Experimental and theoretical DIP values (in eV) in EOMCC approximation

System	State	Ref.	MBPT(2)	2h	CCSD	NIST
Ar	3P_2	43.481	48.955	43.448	43.389	
	3P_1	43.629	49.129	43.596	43.527	
	3P_0	43.690	49.191	43.657	43.584	
	1D_2	45.307	50.710	45.241	45.126	
	1S_0	47.793	51.771	47.694	47.514	
Kr	3P_2	38.657	42.880	38.421	38.359	
	3P_1	39.211	43.572	39.123	39.028	
	3P_0	39.308	43.552	39.135	39.018	
	1D_2	40.466	44.835	40.218	40.175	
	1S_0	42.791	46.127	42.566	42.461	
Xe	3P_2	33.406	36.742	33.016	33.105	
	3P_1	34.597	38.202	34.268	34.319	
	3P_0	34.413	37.586	34.065	34.133	
	1D_2	35.516	39.187	35.222	35.225	
	1S_0	37.897	41.017	37.659	37.581	
Rn	3P_2	29.972	33.070	29.837	32.149	
	3P_1	33.814	37.900	33.887	33.941	
	3P_0	31.329	34.077	31.215	31.215	
	1D_2	34.573	38.578	34.641	34.641	
	1S_0	39.276	43.773	39.557	39.557	

III. COMPUTATIONAL CONSIDERATIONS

The SCF solution using DC Hamiltonian and the required one-body and two-body matrix elements for the correlation calculations are obtained from the DIRAC14 program package.111 Consideration of finite size nuclear model is most suited for the relativistic electronic structure calculations. Therefore, the Gaussian charge density distribution nuclear model is taken into account to mimic the effects of the finite size nucleus. All the parameters for this model are taken as default.112 The contribution from the high-lying orbitals in a correlation calculation is inconsequential due to their large energy values. Therefore, we have restricted the number of virtual orbitals on the basis of energy criteria. The orbitals above a threshold value are discarded from the correlation calculations. The details of the basis set, threshold energy cutoff for the virtual orbitals including the number of occupied and virtual spinors are reported in Tab. I. The two-body matrix elements below 10−12 are neglected in all our calculations due to their negligible contribution in the correlation calculations. SCF calculations are performed with a cutoff of 10−7 for the norm of the error vector. The ground state coupled-cluster calculations uses convergence cutoff of 10−9 and a DIIS space of 6. The DI-EOMCC method uses convergence threshold of 10−5. Scalar real Gaussian functions constitute the finite atomic orbital basis and are used in our calculations in an uncontracted fashion. Dyall.cv3z36 basis is chosen for Ar. We opted Dyall.acv3z37 for Kr and Xe and dyall.acv4z37 basis for the Rn atom. For the molecular systems, dyall.acv3z36 basis is chosen for Cl in Cl\textsubscript{2}, and dyall.cv3z37 basis is for Br atom in Br\textsubscript{2}. aug-cc-pVTZ38 basis is chosen for the H atom in both HBr and HI. Dyall.av3z37 basis is used for Br in HBr and dyall.ae3z37 basis has opted for I in HI. We have used experimental bond-length of 1.9870\,\textmu A, 2.2810\,\textmu A, 1.4140\,\textmu A, and 1.6090\,\textmu A for Cl\textsubscript{2}, Br\textsubscript{2}, HBr, and HI respectively and these values are taken from the Ref.113

IV. RESULTS AND DISCUSSION

The correlation energies from MBPT(2) and CCSD calculations are reported in Tab. I. The obtained correlation energies are compared with the values from the DIRAC14111 to test the correctness of the implementation of the ground state calculations. Our results from the correlation calculations match with the DIRAC14 values up to 8-digit after the decimal point. We have carried out several calculations and found that the agreement is irrespective of the chemical systems or basis sets. The discrepancy beyond this limit is due to the use of different convergence algorithm or the cutoff used in the storage of the two-body matrix elements.

In Tab. II, we reported results with various basis sets, and Hamiltonian and taken Kr as an example for comparison. A two-component description is needed.
Such treatment of the SOC operator database. It is in the EOMCC approximation.

System	State	MBPT(2)	2h	CCSD	Expt.
Cl₂	\(^3\Sigma^-\)	31.310	35.902	31.397	31.13₁¹¹⁴
	\(^1\Delta\)	31.827	36.293	31.907	31.74₁¹¹⁴
	\(^1\Sigma^+\)	33.210	36.475	32.294	32.12₁¹¹⁴
	\(^1\Sigma^-\)	33.217	37.418	33.319	32.97₁¹¹⁴
Br₂	\(^3\Sigma^-\)	28.752	32.380	28.473	28.53₁¹¹⁵
	\(^1\Delta\)	29.327	32.935	29.041	28.91₁¹¹⁵
	\(^1\Sigma^+\)	29.801	33.346	29.519	29.38₁¹¹⁵
	\(^1\Sigma^-\)	30.058	33.421	29.794	30.30₁¹¹⁵
HBr	\(^3\Sigma^\alpha\)	32.688	36.859	32.757	32.62₁¹¹⁶
	\(^1\Delta\)	34.109	38.245	34.143	33.95₁¹¹⁶
	\(^1\Sigma^+\)	35.400	38.942	35.429	35.19₁¹¹⁶
HI	\(^3\Sigma^\alpha\)	29.596	33.010	29.174	29.15₁¹¹⁷
	\(^1\Delta\)	29.837	33.399	29.412	29.37₁¹¹⁷
	\(^1\Sigma^\alpha\)	30.931	34.458	30.481	30.39₁¹¹⁷
	\(^1\Sigma^\alpha^\prime\)	32.238	35.367	31.801	31.64₁¹¹⁷

The numerical results of the lowest five double-ionized states calculated using the four-component relativistic DI-EOMCC method by simultaneously removing two-electrons from the closed-shell configuration are presented in Tab. III. Further, the results from the intermediate calculations using MBPT(2) and the 2h schemes are also compiled in the same table. All these methods are employed to noble gas atoms (Ar, Kr, Xe, and Rn). We have compared our results with the values from DI-EOMCC calculations with SOC effects. Finally, all these values are tested against the NIST database. It is observed that both MBPT(2) and the 2h scheme tend to overestimate DI-EOMCC results; however, the deviation is larger for the 2h scheme. 2h scheme lacks the contributions of the 3h – 1p block which is a major source of non-dynamical electron correlation. The ground state defined at the MBPT(2) level is rather a better approximation than the 2h scheme. The DI-EOMCC results are found to be very accurate in comparison to the NIST database for Ar, Kr, and Xe atoms, and there is a clear improvement over the DI-EOMCC results with SOC effects. The employed virtual subspace for the chosen basis set for the Rn atom is rather small and gives results similar to the values reported by Wang et al. In their work, the SOC effect is treated perturbatively for the post SCF part using a scalar-relativistic Hamiltonian. The RECPs are used for taking care of the relativistic effects, and the one-electron SOC operator is taken from the RECP operator. However, they disregarded the two-electron part of the SOC operator. Such treatment of the SOC operator leads to a gross overestimation of spin-orbit effects. There is a large deviation (2.4 eV) from the experimental value reported in the NIST database. We take note of the experimental value, which is reported with an uncertainty of 1.9 eV.

Further, we employed all the three schemes in the DI-EOMCC framework to molecular systems (Cl₂, Br₂, HBr, and HI) and compared with the available experimental values. These results are tabulated in Tab. IV. The reported values for all the states computed using DI-EOMCC scheme with CCSD as a reference wavefunction are found to be very accurate and relative deviation is well within 2.0% from the experimental values. The deviation of the MBPT(2) results are less in comparison to the 2h approximation from the experimental values. Therefore, MBPT(2) is a better approximation than the 2h method in the EOMCC framework.

V. CONCLUSION

We have successfully implemented the relativistic DI-EOMCC method using four-component Dirac spinors for the calculation of double-ionization spectra. The implementation is a general one based on anti-symmetrized ac-

Note: The table contains experimental and theoretical DIP values for various systems, comparing different calculations and methods. The text elaborates on the methods used, the results obtained, and the conclusions drawn from these analyses.
tual two-body matrix elements. It supports both atomic and molecular systems starting from their closed-shell configuration. The implemented method is employed to compute a few low-lying doubly-ionized states of both atoms and molecules. The results of our relativistic DI-EOMCC method found to be very accurate in comparison to the available experimental values. The outcome of our computation suggests that the MBPT(2)-EOMCC method is a better approximation than the 2h-EOMCC scheme.

ACKNOWLEDGMENTS

Authors acknowledge the resources of the Center of Excellence in Scientific Computing at CSIR-NCL. K.T. gratefully acknowledges support from the CSIR for Senior Research fellowship.

1. F. Harris, International journal of mass spectrometry and ion processes 120, 1 (1992).
2. K. Vékey, Mass Spectrometry Reviews 14, 195 (1995).
3. A. Lahamam-Bennani, C. Dupré, and A. Duquet, Physical review letters 63, 1582 (1989).
4. W. a. Ackermann et al., Nature photonics 1, 336 (2007).
5. G. Sansone et al., Science 314, 443 (2006).
6. E. Goulielmakis et al., Science 320, 1614 (2008).
7. S. G. Cox et al., Physical Chemistry Chemical Physics 5, 663 (2003).
8. C. Le Sech, Phys. Rev. A 51, R2668 (1995).
9. S. Prasad and D. Furman, Journal of Geophysical Research 80, 1300 (1975).
10. S. Rosner, R. Cameron, T. Scholl, and R. Holt, Journal of molecular spectroscopy 189, 83 (1998).
11. I. P. Grant, Relativistic quantum theory of atoms and molecules: theory and computation Vol. 40 (Springer Science & Business Media, 2007).
12. K. G. Dyall and K. Fægri Jr, Introduction to relativistic quantum chemistry (Oxford University Press, 2007).
13. R. J. Bartlett and M. Musial, Reviews of Modern Physics 79, 291 (2007).
14. T. D. Crawford and H. F. Schaefer, Reviews in computational chemistry 14, 33 (2000).
15. H. G. Kümmer, International Journal of Modern Physics B 17, 5311 (2003).
16. E. Ilyabaev and U. Kaldor, Chemical physics letters 194, 95 (1992).
17. E. Ilyabaev and U. Kaldor, The Journal of chemical physics 97, 8455 (1992).
18. E. Ilyabaev and U. Kaldor, Physical Review A 47, 137 (1993).
19. L. Visscher, E. Eliav, and U. Kaldor, The Journal of Chemical Physics 115, 9729 (2001).
20. E. Eliav, U. Kaldor, and Y. Ishikawa, Physical Review A 52, 2765 (1995).
21. E. Eliav, U. Kaldor, Y. Ishikawa, and P. Pyynkö, Physical review letters 77, 5350 (1996).
22. L. F. Pašteka, E. Eliav, A. Borschevsky, U. Kaldor, and P. Schwedtfeger, Phys. Rev. Lett. 118, 023002 (2017).
23. I. Lindgren, International Journal of Quantum Chemistry 14, 33 (1975).
24. M. A. Haque and D. Mukherjee, The Journal of chemical physics 80, 5058 (1984).
25. Z. Stolarczyk and H. J. Monkhorst, Physical Review A 32, 725 (1985).
26. P. Pal, M. Ritthby, R. J. Bartlett, D. Sinha, and D. Mukherjee, Chemical physics letters 137, 273 (1987).
27. I. Lindgren and D. Mukherjee, Physics Reports 151, 93 (1987).
28. P. Pal, M. Ritthby, R. J. Bartlett, D. Sinha, and D. Mukherjee, The Journal of chemical physics 88, 4357 (1988).
29. B. Jeziorski and J. Paldus, The Journal of Chemical Physics 90, 2714 (1989).
30. D. Mukherjee and S. Pal, Use of cluster expansion methods in the open-shell correlation problem, in Advances in Quantum Chemistry Vol. 20, pp. 291–373, Elsevier, 1989.
31. F. Malrieu, P. Durand, and J. Daudet, Journal of Physics A: Mathematical and General 18, 809 (1985).
32. L. Meissner, The Journal of chemical physics 108, 9227 (1998).
33. A. Landau, E. Eliav, and U. Kaldor, Chemical physics letters 313, 399 (1999).
34. D. Sinha, S. Mukhopadhyay, R. Chaudhuri, and D. Mukherjee, Chemical Physics Letters 154, 544 (1989).
35. S. Chattopadhyay, A. Mitra, and D. Sinha, The Journal of Chemical Physics 125, 244111 (2006).
36. K. G. Dyall, Theoretical Chemistry Accounts 135, 128 (2016).
37. K. G. Dyall, Theoretical Chemistry Accounts 115, 441 (2006).
38. T. H. Dunning Jr, The Journal of chemical physics 90, 1007 (1989).
39. A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning Jr, The Journal of chemical physics 110, 7667 (1999).
40. K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Doig, The Journal of chemical physics 119, 11113 (2003).
41. https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html.
42. H. Sekino and R. J. Bartlett, Int. J. Quantum Chem. 26, 255 (1984).
43. J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
44. J. D. Watts and R. J. Bartlett, Spectrochim. Acta, Part A 55, 495 (1999).
45. S. A. Kucharski, M. Wloch, M. Musial, and R. J. Bartlett, J. Chem. Phys. 115, 8263 (2001).
46. K. Källay and J. Gauss, The Journal of chemical physics 121, 9257 (2004).
47. M. Musial, Mol. Phys. 103, 2055 (2005).
48. J. F. Stanton and J. Gauss, J. Chem. Phys. 101, 8938 (1994).
49. J. F. Stanton and J. Gauss, J. Chem. Phys. 111, 8785 (1999).
50. M. Musial, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 118, 1128 (2003).
51. M. Musial and R. J. Bartlett, Chem. Phys. Lett. 384, 210 (2004).
52. M. Kamiya and S. Hirata, J. Chem. Phys. 125, 074111 (2006).
53. M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 3629 (1995).
54. M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 6735 (1995).
55. M. Musial and R. J. Bartlett, J. Chem. Phys. 119, 1901 (2003).
56. A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).
57. J. R. Gour and P. Piecuch, The Journal of chemical physics 125, 234107 (2006).
58. J. R. Gour, P. Piecuch, and M. Wloch, The Journal of chemical physics 123, 134113 (2005).
59. J. F. Stanton and J. Gauss, The Journal of chemical physics 103, 1064 (1995).
60. S. V. Levchenko and A. I. Krylov, The Journal of Chemical Physics 120, 175 (2004).
61. J. H. D. Eland et al., Phys. Rev. Lett. 105, 213005 (2010).
62. L. S. Cederbaum, Y.-C. Chiang, P. V. Demekhin, and N. Mølseyev, Phys. Rev. Lett. 106, 123001 (2011).
63. J. Linderberg and Y. Öhrn, Propagators in quantum chemistry, 2004.
64. L. S. Cederbaum, W. Domcke, and J. Schirmer, Phys. Rev. A 22, 206 (1980).
65. J. H. Monkhorst, International Journal of Quantum Chemistry 12, 421 (1977).
66. D. Mukherjee and P. Mukherjee, Chemical Physics 39, 325 (1979).
67. H. Koch and P. Jørgensen, The Journal of Chemical Physics 93, 3333 (1990).
68. H. Koch et al., The Journal of Chemical Physics 92, 4924 (1990).
