Deteriorating Quality of Life and a Desire to Stop Growing Tobacco Among Virginia and Burley Tobacco Farmers in Thailand

Chakkraphan Phetphum, DrPH1,2; Atchara Prajongjeep, MSc3; Orawan Keeratisiroj, PhD1; Saksin Simsin, MPH1; and Kanyarat Thawatchaijareonying, BPH2

Abstract

Purpose This study aimed to examine the quality of life of tobacco farmers and their desire to stop growing tobacco.

Methods A cross-sectional home-based survey was conducted between October 2021 and January 2022 among 2,970 Virginia and Burley tobacco farmers in Northern Thailand. Multivariate logistic regression models were used to determine the association between farmers’ characteristics and their quality of life and a desire to stop planting tobacco.

Results In total, 58.5% of the participants wanted to stop growing tobacco, and most had a lower quality of life than the mean. Nine independent variables were associated with a desire to stop tobacco farming: having a low level of economic quality of life (adjusted odds ratio [ORAdj], 5.42; 95% CI, 3.8 to 7.8); having a high environmental quality of life (ORAdj, 4.60; 95% CI, 3.3 to 6.5); belonging to the Tobacco Farmers’ Association (ORAdj, 3.04; 95% CI, 2.1 to 4.5); growing tobacco on their own land (ORAdj, 2.12; 95% CI, 1.8 to 2.6); having a low social quality of life (ORAdj, 1.69; 95% CI, 1.4 to 2.1); having a low health quality of life (ORAdj, 1.69; 95% CI, 1.4 to 2.1); having a low spiritual quality of life (ORAdj, 1.41; 95% CI, 1.2 to 1.7); being Burley tobacco farmers (ORAdj, 1.33; 95% CI, 1.0 to 1.8); and having a low family quality of life (ORAdj, 0.49; 95% CI, 0.4 to 0.6).

Conclusion The majority of the tobacco farmers had a declining quality of life, particularly economic and environmental quality of life, resulting in reducing growing tobacco. National and regional support are needed to help these farmers effectively grow alternative crops, and financial support to make such conversions.

INTRODUCTION

Tobacco farmers in Thailand are currently experiencing severe economic hardship as a result of continuous reductions in tobacco purchase quotas since 2017. Compared with 2014, the year with the highest sales of tobacco, the sales volume of Burley leaves has dropped from 38,060,038 to 20,571,445 kg.1 Likewise, the purchase volume of Virginian tobacco has decreased from 17,548,548 kg to only 11,149,255 kg.1 This was due to a misapplication of tax measures, which allowed foreign tobacco companies to lower their prices to compete with domestic cigarettes. Consequently, some smokers in Thailand increase their purchases of imported cigarettes, and domestically produced cigarettes are sold at a considerably lower rate. For this reason, the Tobacco Authority of Thailand has to reduce cigarette production, which lowers the demand for tobacco leaves.1 The situation regarding the continuous decline in the demand for tobacco leaves in Thailand is not different from other tobacco-growing countries around the world. Despite the fact that tobacco farmers appear to make a lot of money from bulk sales, the income generated is often insufficient to cover the cost of production, resulting in a shortage of finance, endless debts, and a poor standard of living for tobacco farmers.2-5 Apart from economic and financial issues, tobacco farmers are also at high risk for the health effects of tobacco cultivation and processing. One of the considerable health issues among tobacco farmers is green tobacco sickness, which involves skin-to-skin contact with nicotine poisoning from tobacco leaves that is absorbed and inhaled, causing symptoms such as dizziness, nausea, and vomiting.6-10 In addition, through the harvesting of tobacco leaves, they are likely to be at risk of exposure to toxins and accumulated pesticides,11 which were associated with an increased risk of cancer in farmers,12 development of mental health problems because of depression, and increases in suicide because of poverty, debt, and family stress.13
For these reasons, the WHO has mandated in Article of the WHO Framework Convention on Tobacco Control to support activities that are economically beneficial to tobacco cultivation as one of the combined measures to reduce tobacco demand sustainably and to ensure that the member states meet the requirements of the Convention. These efforts, however, have not been easy to achieve because tobacco farmers need encouragement to stop growing it for a variety of reasons. The following characteristics were found to be associated with tobacco farmers who had the opportunity to grow alternative crops to replace tobacco farming: obtaining high education, decrease in household income from tobacco cultivation, perceiving that tobacco cultivation can be harmful, having knowledge of tobacco crop replacement, recognizing the inefficiencies of growing tobacco compared with alternative crops, and believing that there will be a stable market for purchasing alternative crops to replace tobacco.

By contrast, tobacco farmers who are reluctant to discontinue tobacco cultivation or who have a very limited chance of switching to tobacco alternatives have the following characteristics: believing that tobacco is a higher-income crop than other crops, believing that the buying market of tobacco is more stable than that of other alternative crops, receiving tobacco crop-related facilities from tobacco companies, and having geographical limitations (eg, low rainfall and poor soil conditions), resulting in difficulty in growing alternative crops. Lessons from the People’s Republic of China confirm that the information on the factors correlating with the demand for stopping tobacco crops as mentioned above is vital and essential for strategic planning to determine a plan to promote alternative crop cultivation and a successful tobacco substitute career.

Thailand currently has approximately 16,000 farmers in Virginia and Burley tobacco, who are at risk of deteriorating quality of life because of the decline in tobacco purchases. In turn, this may lead to reluctance and a desire to stop growing tobacco, which needs government assistance and supports. The purpose of this study was to investigate the quality of life and the desire to quit tobacco-growing among Virginia and Burley tobacco farmers in Thailand in an environment where the demand for tobacco is declining.

METHODS

This was cross-sectional survey research, conducted between October 2021 and January 2022. It was approved by the Ethics Committee in Human Research, Naresuan University, Project Number: COA No. 140/2021, IRB No. P3-0087/2564, certification date: April 24, 2021.

Sample Size and Sampling

The samples were tobacco-growing farmers in the northern region of Thailand who grew Virginia and Burley tobacco and registered as farmers with the Chiang Mai, Phrae, and Sukhothai Provincial Agriculture Office. The sample size was estimated by using the finite population proportion: N = 16,300, P = .322 (on the basis of a pilot survey among Burley tobacco farmers in a community, which found that 32.2% of people voluntarily planted tobacco alternatives), delta = 0.0161 (5% of P), alpha = .05, Z (0.975) = 1.96. When calculated by the formula, a sample of 2,700 people was obtained and to prevent nonresponse and incomplete responses, a 10% was added to the calculated sample number. Therefore, the total number of samples was 2,970 people. Stratified random sampling was used to distribute sample sizes proportionally to Burley framers (N = 11,685 people) and Virginia framers (N = 4,615 people). A systematic random sampling approach was then conducted using the ordinal numbers according to the list of farmers registered with the Chiang Mai, Phrae, and Sukhothai Agricultural Offices. A sample random sampling approach (lottery) was used to draw the first representative of the random number table.

Measurement

Data were collected by using a self-reported questionnaire, developed by the researchers. The desire of tobacco farmers to quit growing tobacco is the dependent variable,
 Desire to Stop Growing Tobacco Among Tobacco Farmers in Thailand

Data Collection
A total of 30 data collectors were informed and trained in a 1-day workshop before the survey regarding (1) the research objectives, (2) the data collection process (protocol), (3) the compensation, and (4) the skills required to collect field data. After receiving signed consent from all participants, data were collected using a face-to-face home-based survey within the restrictions of the COVID-19 prevention measures. The researchers acted as mentors, offering advice and monitoring progress via their mobile phones daily. At the final step, a total of 2,816 questionnaires were returned to the researchers with a 94.81% response rate.

Data Analysis
The data were analyzed using the statistical package SPSS version 17.0 (Chicago, IL). Descriptive statistics such as number, percentage, mean, and standard deviation were used to describe the independent and dependent variables. Binary logistic regression statistics were used to determine predictors related to the desire to stop tobacco farming among the Burley and Virginian tobacco farmers. A total of seven dichotomous variables were entered into an initial model. The continuous variables were then converted to be measured on a dichotomous scale (ordinal scale) using their means as the cutoff point, including ages (mean = 52.01 years) annual income from tobacco farming (mean = 155,891 Baht), tobacco-growing experience (mean = 20.82 years), the size of tobacco-planting areas (mean = 6.58 rai), economic quality of life (mean = 10.96 points), health quality of life (mean = 11.73 points), spiritual quality of life (mean = 9.89 score), family quality of life (mean = 9.28 score), and environmental quality of life (mean = 9.60 score).

Each reformulated variable was then entered into a model to test the initial correlation between the independent and dependent variables by chi-square statistic. Each variable with a \(P < .05 \) was entered into the initial model with a crude analysis by analyzing the relationship between the independent and dependent variables. Only the variables that had a \(P < .05 \) were then analyzed by multivariate logistic regression with the backward Wald method to control the effect of variables that had relationships until the adjusted odds ratio (ORAdj) was obtained. The statistical results were presented as crude OR, ORAdj, 95% CI, and \(P \) with a statistical confidence level of 95%.

RESULTS
Demographic Characteristics
Overall, 2,816 tobacco farmers, classified as 2,000 Burley tobacco growers and 816 Virginia tobacco growers, completed the questionnaire. The participants were primarily male (53.7%) and did not have formal education or completed primary school (65.4%). The mean age was 52 years. The mean household income from tobacco-growing was 155,891 Baht per year, the

Desire to Stop Growing Tobacco Among Tobacco Farmers in Thailand

Content validity was verified using the index of item-objective congruence by three experts. It was found that every question had an index of item-objective congruence value of more than 0.5. The questionnaire was then tried out with a total of 35 tobacco farmers who were not in the sample group in Phetchabun province to test the questionnaire’s reliability using the Cronbach’s alpha coefficient. A reliability value of 0.70 or greater was found for all six aspects of the quality-of-life questionnaire (economy = 0.80, health = 0.92, spirituality = 0.88, family = 0.85, society = 0.88, and environment = 0.96).

Data Collection
A total of 30 data collectors were informed and trained in a 1-day workshop before the survey regarding (1) the research objectives, (2) the data collection process (protocol), (3) the compensation, and (4) the skills required to collect field data. After receiving signed consent from all participants, data were collected using a face-to-face home-based survey within the restrictions of the COVID-19 prevention measures. The researchers acted as mentors, offering advice and monitoring progress via their mobile phones daily. At the final step, a total of 2,816 questionnaires were returned to the researchers with a 94.81% response rate.

Data Analysis
The data were analyzed using the statistical package SPSS version 17.0 (Chicago, IL). Descriptive statistics such as number, percentage, mean, and standard deviation were used to describe the independent and dependent variables. Binary logistic regression statistics were used to determine predictors related to the desire to stop tobacco farming among the Burley and Virginian tobacco farmers. A total of seven dichotomous variables were entered into an initial model. The continuous variables were then converted to be measured on a dichotomous scale (ordinal scale) using their means as the cutoff point, including ages (mean = 52.01 years) annual income from tobacco farming (mean = 155,891 Baht), tobacco-growing experience (mean = 20.82 years), the size of tobacco-planting areas (mean = 6.58 rai), economic quality of life (mean = 10.96 points), health quality of life (mean = 11.73 points), spiritual quality of life (mean = 9.89 score), family quality of life (mean = 9.28 score), and environmental quality of life (mean = 9.60 score).

Each reformulated variable was then entered into a model to test the initial correlation between the independent and dependent variables by chi-square statistic. Each variable with a \(P < .05 \) was entered into the initial model with a crude analysis by analyzing the relationship between the independent and dependent variables. Only the variables that had a \(P < .05 \) were then analyzed by multivariate logistic regression with the backward Wald method to control the effect of variables that had relationships until the adjusted odds ratio (ORAdj) was obtained. The statistical results were presented as crude OR, ORAdj, 95% CI, and \(P \) with a statistical confidence level of 95%.

RESULTS
Demographic Characteristics
Overall, 2,816 tobacco farmers, classified as 2,000 Burley tobacco growers and 816 Virginia tobacco growers, completed the questionnaire. The participants were primarily male (53.7%) and did not have formal education or completed primary school (65.4%). The mean age was 52 years. The mean household income from tobacco-growing was 155,891 Baht per year, the

Desire to Stop Growing Tobacco Among Tobacco Farmers in Thailand

Content validity was verified using the index of item-objective congruence by three experts. It was found that every question had an index of item-objective congruence value of more than 0.5. The questionnaire was then tried out with a total of 35 tobacco farmers who were not in the sample group in Phetchabun province to test the questionnaire’s reliability using the Cronbach’s alpha coefficient. A reliability value of 0.70 or greater was found for all six aspects of the quality-of-life questionnaire (economy = 0.80, health = 0.92, spirituality = 0.88, family = 0.85, society = 0.88, and environment = 0.96).
Independent Variable	Total, No. (%)	Want to Stop, No. (%)	Not Want to Stop, No. (%)	\(P \)
Cultivated tobacco varieties (n = 2,802)				< .001*
Virginia	806 (28.8)	352 (43.7)	454 (56.3)	
Burley	1,996 (71.2)	1,286 (64.4)	710 (35.6)	
Sex (n = 2,792)				.489
Male	1,499 (53.7)	866 (57.8)	633 (42.2)	
Female	1,293 (46.3)	764 (59.1)	529 (40.9)	
Age, years (n = 2,802)				.740
< 60	1,937 (69.1)	1,128 (58.2)	809 (41.8)	
\(\geq 60 \)	865 (30.9)	510 (59.0)	355 (41.0)	
Education level (n = 2,788)				.029*
No formal education/completed primary school	1,823 (65.4)	1,038 (56.9)	785 (43.1)	
Higher than primary school	965 (34.6)	591 (61.2)	374 (38.8)	
Household annual income from tobacco farming, Baht (n = 2,802)				.876
Less than or equal to the mean	1,638 (58.5)	960 (58.6)	678 (41.4)	
Higher than the mean	1,164 (41.5)	678 (58.2)	486 (41.8)	
Tobacco growing experience, years (n = 2,802)				.100
Less than or equal to the mean	1,679 (59.9)	1,003 (59.7)	676 (40.3)	
Higher than the mean	1,123 (40.1)	635 (56.5)	488 (43.5)	
Size of tobacco farming land, rai (n = 2,802)				.970
Less than or equal to the mean	1,738 (62.0)	995 (57.2)	743 (42.8)	
Higher than the mean	1,064 (38.0)	643 (60.4)	421 (39.6)	
Sources of tobacco farming quota (n = 2,784)				.667
Tobacco Authority of Thailand	1,138 (40.9)	672 (59.1)	466 (40.9)	
Private company/dealer	1,646 (59.1)	958 (58.2)	688 (41.8)	
Tobacco land ownership (n = 2,801)				< .001*
Own land	1,876 (67.0)	1,278 (68.1)	598 (31.9)	
Rented land	925 (33.0)	360 (38.9)	565 (61.1)	
Member of the Tobacco Farmers Association (n = 2,788)				< .001*
Yes	2,541 (91.1)	1,539 (60.6)	1,002 (39.4)	
No	247 (8.9)	90 (36.4)	157 (63.6)	
Debt (n = 2,797)				.038*
Yes	2,697 (96.4)	1,587 (58.8)	1,110 (41.2)	
No	100 (3.6)	48 (48.0)	52 (52.0)	
Economic quality of life (n = 2,799)				< .001*
Less than or equal to the mean	1,705 (60.9)	1,079 (63.3)	626 (36.7)	
Higher than the mean	1,094 (39.1)	556 (50.8)	538 (49.2)	
Social quality of life (n = 2,799)				< .001*
Less than or equal to the mean	2,163 (77.3)	1,342 (62.0)	821 (38.0)	
Higher than the mean	636 (22.7)	293 (46.1)	343 (53.9)	
Spiritual quality of life (n = 2,799)				.043*
Less than or equal to the mean	2,128 (76.0)	1,266 (59.5)	862 (40.5)	
Higher than the mean	671 (24.0)	369 (55.0)	302 (45.0)	

(Continued on following page)
mean tobacco-growing experience was 21 years, and the mean tobacco growing area was 7 rai. Most of the participants received quotas for growing tobacco from private companies (59.1%) and the government (40.9%), grew tobacco on their own land (67%), were members of the Tobacco Farmers Association (91.1%), and had household debts (96.4%; Table 1).

Quality of Life of Tobacco Farmers

Quality-of-life assessment results (Table 1) were divided into two groups: those with a quality of life below or equal to the mean and those with a quality of life above the mean. It was found that most of the participants had a lower level of quality of life than the mean in almost all aspects (four out of six). The highest quality-of-life scores among those who had lower quality of life than the mean was the social aspect, which accounted for 77.3%, followed by spiritual, family, and economic aspects, representing 76.1%, 61.2%, and 60.9%, respectively. Among the same group, health and environmental quality of life had the lowest score, representing 49.1% and 34.0%, respectively.

Desire to Stop Growing Tobacco

A total of 1,638 respondents (58.5%) had a desire to stop growing tobacco. The reasons behind this were because the decrease in the purchase price of tobacco, the reduction in tobacco cultivation quotas, poor health, impacts of natural disasters such as droughts and floods, and a lack of children pursuing their careers. Tobacco farmers had proposed government assistance in the transition to tobacco replacement crops, including providing a market for purchasing products and securing a price for alternative crops, providing low-interest loans to invest in alternative crops or practice alternative occupations, providing a market for purchasing products, and arranging training and field trips to practice occupations in place of tobacco production (Table 2).

Factors Related to the Desire to Stop Growing Tobacco

The results of the preliminary correlation test between independent variables and dependent variables by chi-square statistic (Table 1) revealed that a total of 11 out of 17 independent variables were significantly related to the desire to stop growing tobacco at the 95% confidence level. After all variables were entered into the initial model, a crude analysis revealed that all variables were associated with a desire to quit growing tobacco ($P < .05$). According to the multivariate logistic regression analysis using the backward Wald (Table 3), a total of nine independent variables were associated with a desire to stop tobacco farming, in order from the variable with the highest to the lowest ORAdj: having a low

Independent Variable	Total, No. (%)	Want to Stop, No. (%)	Not Want to Stop, No. (%)	P
Health quality of life (n = 2,799)				< .001*
Less than or equal to the mean	1,374 (49.1)	977 (71.1)	397 (28.9)	
Higher than the mean	1,425 (50.9)	658 (46.2)	767 (53.8)	
Family quality of life (n = 2,799)				< .001*
Less than or equal to the mean	1,713 (61.2)	845 (49.3)	868 (50.7)	
Higher than the mean	1,086 (38.8)	790 (72.7)	296 (27.3)	
Environmental quality of life (n = 2,799)			.021*	
Less than or equal to the mean	952 (34.0)	585 (61.4)	367 (38.6)	
Higher than the mean	1,847 (66.0)	1,050 (56.8)	797 (43.2)	

* $P < .05$.
TABLE 3. Crude OR and Adjusted OR of Factors Related to the Desire to Stop Growing Tobacco

Independent Variables	Desire to Stop Tobacco Farming	Crude OR	Adjust OR				
	No. (%)	OR	95% CI	P	OR	95% CI	P
Cultivated tobacco varieties							
Virginia	352 (43.7)	1		1	1.33	1.0 to 1.8	.047*
Burley	1,286 (64.4)	2.34	2.0 to 2.8	<.001*	1.33	1.0 to 1.8	.047*
Education level							
No formal education/completed primary school	1,038 (56.9)	1		1	1.33	1.0 to 1.8	.047*
Higher than primary school	591 (61.2)	1.20	1.0 to 1.4	.028*	1.20	0.9 to 1.5	.075
Tobacco land ownership							
Renting	360 (38.9)	1		1	1.33	1.0 to 1.8	.047*
Owner	1,278 (68.1)	3.35	2.9 to 4.0	<.001*	2.12	1.8 to 2.6	<.001*
Member of the Tobacco Farmers Association							
No	90 (36.4)	1		1	1.33	1.0 to 1.8	.047*
Yes	1,539 (60.6)	2.68	2.0 to 3.5	<.001*	3.04	2.1 to 4.5	<.001*
Debt							
No	48 (48.0)	1		1	1.33	1.0 to 1.8	.047*
Yes	1,587 (58.8)	1.55	1.0 to 2.0	.032*	1.24	0.8 to 2.0	.385
Economic quality of life							
Higher than the mean	556 (50.8)	1		1	1.33	1.0 to 1.8	.047*
Less than or equal to the mean	1,079 (63.3)	1.67	1.4 to 2.0	<.001*	5.42	3.8 to 7.8	<.001*
Social quality of life							
Higher than the mean	293 (46.1)	1		1	1.33	1.0 to 1.8	.047*
Less than or equal to the mean	1,342 (62.0)	1.91	1.6 to 2.30	<.001*	1.69	1.4 to 2.1	<.001*
Spiritual quality of life							
Higher than the mean	369 (55.0)	1		1	1.33	1.0 to 1.8	.047*
Less than or equal to the mean	1,266 (59.5)	1.20	1.0 to 1.4	.039*	1.41	1.2 to 1.7	.001*
Health quality of life							
Higher than the mean	658 (46.2)	1		1	1.33	1.0 to 1.8	.047*
Less than or equal to the mean	977 (71.1)	2.87	2.5 to 3.4	<.001*	1.69	1.4 to 2.1	<.001*
Family quality of life							
Higher than the mean	790 (72.7)	1		1	1.33	1.0 to 1.8	.047*
Less than or equal to the mean	845 (49.3)	0.37	0.3 to 0.4	<.001*	0.49	0.4 to 0.6	<.001*
Environmental quality of life							
Higher than the mean	1,050 (56.8)	1		1	1.33	1.0 to 1.8	.047*
Less than or equal to the mean	585 (61.4)	1.21	1.0 to 1.4	.019*	4.60	3.3 to 6.5	<.001*

Abbreviation: OR, odds ratio.
*P < .05.

According to the results of this study, most Virginia and Burley tobacco farmers in Thailand had the below-mean quality of life in almost every aspect, especially in social, economic quality of life (ORAdj, 5.42; 95% CI, 3.8 to 7.8), having a high environmental quality of life (ORAdj, 4.60; 95% CI, 3.3 to 6.5), belonging to the Tobacco Farmers Association (ORAdj, 3.04; 95% CI, 2.1 to 4.5), growing tobacco on their own land (ORAdj, 2.12; 95% CI, 1.8 to 2.6), having a low social quality of life (ORAdj, 1.69; 95% CI, 1.4 to 2.1), having a low health quality of life (ORAdj, 1.69; 95% CI, 1.4 to 2.1), having a low spiritual quality of life (ORAdj, 1.41; 95% CI, 1.2 to 1.7), being Burley tobacco farmers (ORAdj, 1.33; 95% CI, 1.0 to 1.8), and a low family quality of life (ORAdj, 0.49; 95% CI, 0.4 to 0.6).

DISCUSSION

According to the results of this study, most Virginia and Burley tobacco farmers in Thailand had the below-mean quality of life in almost every aspect, especially in social,
spiritual, family, and economic quality. In line with a number of findings, the majority of tobacco farmers do not earn enough money from tobacco leaf sales to offset the cost of production, especially labor, which is the major factor causing them to become poor, in debt, and have poor living standards. However, major tobacco farmers still rated their health as having a high level of quality.

More than half of Thailand’s tobacco farmers (58.5%) had a desire to quit growing tobacco in the next year. The most influencing factor in the decision to quit growing tobacco is the economic quality of life. Tobacco farmers with an economic quality of life below or equal to the mean had 5.4 times more desire to quit growing tobacco than those with a higher average economic quality of life. This finding is consistent with previous research, which found that tobacco farmers who faced the problem of lower income from tobacco cultivation than in the past and had learnt that the income from growing tobacco is not economically cost-effective compared with other alternative crops had a greater chance of quitting tobacco cultivation. By contrast, it was found that tobacco farmers with an above-mean environmental quality of life had a 4.6 times greater desire to quit growing tobacco than tobacco farmers with lower or equal environmental quality of life than the mean. It is due to the fact that geographical limitations such as floods, droughts, or environmental conditions are so harsh that alternative crops cannot be grown instead of tobacco, which is more durable. Therefore, tobacco farmers are reluctant to decide to switch to other economic crops.

Most of the farmers proposed government assistance in growing successful tobacco substitutions by encouraging the cultivation of alternative economic crops, guaranteeing their pricing, and establishing confidence in the purchasing market to provide a feeling of security for tobacco farmers who are willing to stop growing tobacco. It has been confirmed that such confidence has a profound effect on decision making to grow alternative tobacco crops. In addition, they suggested relevant agencies organize training or field trips on the cultivation of replacement crops or alternative occupations to increase opportunities. This proposal is in line with the successful promotion of tobacco-alternative crops in China’s model communities. There are two limitations of this research. First, the research data in this study were collected during a global economic recession caused by the COVID-19 pandemic, which may pose a challenge to the application of the research findings in other contexts or conditions. Thailand should therefore conduct a regular survey of the quality of life and impacts of tobacco planting among tobacco farmers to use this information in planning and promoting the need to stop growing tobacco in line with the real problem and needs. Second, the quality of life of tobacco farmers was assessed from the perspectives and experiences of tobacco farmers themselves against personal expectations, which may differ from person to person or family. Consequently, the results of the quality-of-life assessment may be underestimated since the farmers expect the government to recognize the issues and raise tobacco prices. Therefore, future research should consider a collection of empirical data, for example, toxic residues in the bloodstream and occupational exposure to nicotine.

In conclusion, most tobacco farmers have a declining quality of life, particularly economic and environmental quality of life, resulting in reducing growing tobacco. Therefore, the government organizations such as the Tobacco Authority of Thailand, the Ministry of Finance, and the Tobacco Farmers Association should consider establishing concrete measures such as guaranteeing alternative crop prices and providing low-interest loans to encourage these farmers to stop growing tobacco and switch to grow alternative crops.

AFFILIATIONS

1. Department of Community Health, Faculty of Public Health, Naresuan University, Phitsanulok, Thailand
2. Tobacco Control Research Unit (Northern Region), Naresuan University, Phitsanulok, Thailand
3. Department of Community Public Health, Sririndhorn College of Public Health, Phitsanulok, Thailand

CORRESPONDING AUTHOR

Chakkraphan Phetphum, DrPH, Department of Community Health, Faculty of Public Health, Naresuan University, 99 Moo 9, Tha Pho Subdistrict, Mueang Phitsanulok District, Phitsanulok 65000, Thailand; e-mail: chakgarphanp@nu.ac.th.

SUPPORT

Supported by Tobacco Control Research and Knowledge Management Center (TRC), Thailand under Grant Number 63/P004004/23.

AUTHOR CONTRIBUTIONS

Conception and design: Chakkraphan Phetphum, Saksin Simsin
Financial support: Chakkraphan Phetphum, Kanyarat Thawatchaijareonying
Administrative support: Chakkraphan Phetphum, Kanyarat Thawatchaijareonying
Provision of study materials or patients: Chakkraphan Phetphum, Kanyarat Thawatchaijareonying
Collection and assembly of data: Chakkraphan Phetphum, Kanyarat Thawatchaijareonying
Data analysis and interpretation: Chakkraphan Phetphum, Atchara Prajongjeep, Orawan Keeratisiroj, Saksin Simsin
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member,
Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rcw or ascopubs.org/go/authors/author-center. Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

No potential conflicts of interest were reported.

ACKNOWLEDGMENT
The authors would like to thank the Virginia and Burley tobacco farmers in Northern Thailand for participating in this research.

REFERENCES

1. Tobacco Control Research and Knowledge Management Centre (TRC): Thailand Report on the Situation of Tobacco Consumption in Thailand 2019: Chapter 3 Situation of Tobacco Cultivation in Thailand [in Thai]. Bangkok, Thailand, Sinthaveekit Printing Limited Partnership, 2020
2. Karemani A, Nuwaha F: Willingness to stop growing tobacco in Uganda. JCO Glob Oncol 5:1-7, 2019
3. Makoka D, Drope J, Appau A, et al: Costs, revenues and profits: An economic analysis of smallholder tobacco farmer livelihoods in Malawi. Tob Control 26:634-640, 2017
4. Jaroenathapornkul J: Return on tobacco production, economic cost of tobacco production, Burley tobacco [in Thai]. Naresuan Univ J Sci Technol 18:37-49, 2013
5. Chingsho R, Dare C, van Walbeek C: Tobacco farming and current debt status among smallholder farmers in Manicaland Province in Zimbabwe. Tob Control 30:610-615, 2021
6. Yoo SJ, Park SJ, Kim BS, et al: Airborne nicotine concentrations in the workplaces of tobacco farmers. J Prev Med Public Health 47:144-149, 2014
7. Fotedar S, Fotedar V: Green tobacco sickness: A brief review. Indian J Occup Environ Med 21:101-104, 2017
8. Saleeon T, Siriwong W, Maldonado-Pérez HL, et al: Green tobacco sickness among Thai traditional tobacco farmers, Thailand. Int J Occup Environ Med 6:169-176, 2015
9. Saleeon T, Siriwong W, Maldonado-Pérez HL, et al: Salivary cotinine levels as a biomarker for green tobacco sickness in dry tobacco production among Thai traditional tobacco farmers. Rocz Panstw Zakl Hig 67:121-130, 2016
10. Campos É, Costa VID, Alves SR, et al: Occurrence of green tobacco sickness and associated factors in farmers residing in Dom Feliciano Municipality, Rio Grande do Sul state, southern region of Brazil. Cad Saúde Publica 36:e00122719, 2020
11. Faria NM, Fassa AG, Meucci RD, et al: Occupational exposure to pesticides, nicotine and minor psychiatric disorders among tobacco farmers in southern Brazil. Neurotoxicology 45:347-354, 2014
12. Lemarchand C, Tual S, Boulanger M, et al: Prostate cancer risk among French farmers in the AGRICAN cohort. Scand J Work Environ Health 42:144-152, 2016
13. Cruzeiro Szortyka ALS, Faria NMX, Carvalho MP, et al: Suicidality among South Brazilian tobacco growers. Neurotoxicology 86:52-58, 2021
14. Bialous S, Da Costa e Silva VL: Where next for the WHO Framework Convention on Tobacco Control? Tob Control 31:183-186, 2022
15. Wan X, Jin J, Ran S, et al: Are farmers willing to substitute tobacco cultivation? Evidence from Lichuan City, China. Nicotine Tob Res 24:897-903, 2022
16. Ramos Campos R, Vargas MA: Crop Substitution and Diversification Strategies: Empirical Evidence From Selected Brazilian Municipalities. The World Bank, 2018. http://agris.fao.org/agris-search/search.do?recordID=US2012411083
17. Appau A, Drope J, Goma F, et al: Explaining why farmers grow tobacco: Evidence from Malawi, Kenya, and Zambia. Nicotine Tob Res 22:2238-2245, 2020
18. Appau A, Drope J, Witowel F, et al: Why do farmers grow tobacco? A qualitative exploration of farmers perspectives in Indonesia and Philippines. Int J Environ Res Public Health 16:2330, 2019
19. Natarajan N: Moving past the problematisation of tobacco farming: Insights from South India. Tob Control 27:272-277, 2018
20. Li VC, Wang Q, Xia N, et al: Tobacco crop substitution: Pilot effort in China. Am J Public Health 102:1660-1663, 2012
21. Li VC, Tang S: China’s new road for tobacco control: Tobacco crop substitution. Am J Public Health 108:1316-1317, 2018