ZEB1-regulated inflammatory phenotype in breast cancer cells

Akihiro Katsura1, Yusuke Tamura1,‡, Satoshi Hokari1,2, Mayumi Harada1,3, Masato Morikawa1, Tsubasa Sakurai1, Kei Takahashi1, Anna Mizutani1,‡, Jun Nishida1, Yuichiro Yokoyama1, Yasuyuki Morishita1, Takashi Murakami4, Shogo Ehata1, Kohei Miyazono1 and Daizo Koinuma1

1 Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
2 Department of Respiratory Medicine and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Japan
3 Department of Metabolic Care and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Japan
4 Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama, Japan

Keywords
IL-6; IL-8; TGF-β; ZEB1; ZEB2

Correspondence
D. Koinuma, Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Fax: +81 3 5841 3354
Tel: +81 3 5841 3356
E-mail: d-koinuma@umin.ac.jp

†Present address
Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
‡These authors contributed equally to this work
(Received 5 May 2017, accepted 4 June 2017, available online 11 July 2017)
doi:10.1002/1878-0261.12098

Zinc finger E-box binding protein 1 (ZEB1) and ZEB2 induce epithelial-mesenchymal transition (EMT) and enhance cancer progression. However, the global view of transcriptional regulation by ZEB1 and ZEB2 is yet to be elucidated. Here, we identified a ZEB1-regulated inflammatory phenotype in breast cancer cells using chromatin immunoprecipitation sequencing and RNA sequencing, followed by gene set enrichment analysis (GSEA) of ZEB1-bound genes. Knockdown of ZEB1 and/or ZEB2 resulted in the downregulation of genes encoding inflammatory cytokines related to poor prognosis in patients with cancer, including IL6 and IL8, therefore suggesting that ZEB1 and ZEB2 have similar functions in terms of the regulation of production of inflammatory cytokines. Antibody array and ELISA experiments confirmed that ZEB1 controlled the production of the IL-6 and IL-8 proteins. The secretory proteins regulated by ZEB1 enhanced breast cancer cell proliferation and tumor growth. ZEB1 expression in breast cancer cells also affected the growth of fibroblasts in cell culture, and the accumulation of myeloid-derived suppressor cells in tumors in vivo. These findings provide insight into the role of ZEB1 in the progression of cancer, mediated by inflammatory cytokines, along with the initiation of EMT.

Abbreviations
ATCC, American Type Culture Collection; BM, bone marrow; CCL, CC chemokine ligand; CCLE, Cancer Cell Line Encyclopedia; CD, cluster of differentiation; CDH1, cadherin-1; ChIP-seq, chromatin immunoprecipitation sequencing; CSF2 (GM-CSF), granulocyte-macrophage colony-stimulating factor; CSF3 (G-CSF), granulocyte colony-stimulating factor; CXCL, chemokine (C-X-C motif) ligand; DMEM, Dulbecco’s modified Eagle’s medium; EDTA, ethylenediaminetetraacetic acid; ELISA, enzyme-linked immunosorbent assay; EMT, epithelial-mesenchymal transition; ER, estrogen receptor; ESRP, epithelial splicing regulatory protein; FBS, fetal bovine serum; FPKM, fragments per kilobase of exon per million mapped reads; FSC, forward scatter; GFP, green fluorescent protein; GSEA, gene set enrichment analysis; HBSS, Hanks’ balanced salt solution; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HER2, human epidermal growth factor receptor 2; ICAM-1, intercellular adhesion molecule 1; IDO, indoleamine 2,3-dioxygenase; IL, interleukin; JCRB, Japanese Collection of Research Bioresources; MDSC, myeloid-derived suppressor cell; Mo, monocytic; NEAA, nonessential amino acids; NES, normalized enrichment score; PAI-1, plasminogen activator inhibitor-1; PLAU, plasminogen activator, urokinase receptor; PMN, polymorphonuclear; PR, progesterone receptor; RNA-seq, RNA sequencing; RPMI, Roswell Park Memorial Institute; S.D., standard deviation; SDS, sodium dodecyl sulfate; STAT, signal transducer and activator of transcription; TGF-β, transforming growth factor-β; ZEB, zinc finger E-box binding protein.
1. Introduction

Breast cancer is a leading cause of cancer death in female patients. It is a heterogeneous disease, similar to cancers of other organs (Badve et al., 2011), and it is an especially troubling disease because healthy young women without any previous history of disease are often affected and show poor prognosis (Anders et al., 2008). In particular, triple-negative breast cancers that do not express the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are associated with very poor prognosis because they have a strong ability to metastasize, a high risk for relapse, and are refractory to chemotherapy (Anders and Carey, 2009).

Among several subtypes of breast cancer, basal-type breast cancer accounts for most triple-negative breast cancers and shows a mesenchymal phenotype that is accompanied by high expression of mesenchymal genes including vimentin, and genes involved in the induction of epithelial-mesenchymal transition (EMT; Neve et al., 2006; Sarrio et al., 2008).

Zinc finger E-box binding protein 1 (ZEB1) and ZEB2 (also known as δEF-1 and SIP-1, respectively) are well-known transcriptional regulators that induce EMT, which plays important roles in both normal physiological and pathological processes (Eger et al., 2005; Vandewalle et al., 2005; Zhang et al., 2015). While ZEB1 and ZEB2 have many similar properties in transcriptional regulation, they are different in their expression profiles, some molecular and biological functions, including regulation of cell differentiation and disease progression (Postigo and Dean, 2000; Wakamatsu et al., 2001). Epithelial cells lose their adhesive property and become migratory and invasive as they become mesenchymal cells during the EMT process (Nieto et al., 2016; Thiery et al., 2009). Transforming growth factor-β (TGF-β) is one of the main cytokines that promotes the EMT (Heldin et al., 2012; Lamouille et al., 2014). Specifically, TGF-β binds to type I and type II receptors and transduces signals through Smad and non-Smad signaling pathways (Derynck and Zhang, 2003; Heldin et al., 1997; Massague, 2012). The TGF-β type I receptor is activated by ligand stimulation and induces the phosphorylation of the receptor-regulated Smads (R-Smads), Smad2 and Smad3, which form trimeric complexes with the common-partner Smad, Smad4. These Smad complexes translocate into the nucleus where they regulate the transcription of various target genes in cooperation with other transcription factors. While expression of ZEB1 and ZEB2 is suppressed by epithelial miR-200 family of miRNA (Gregory et al., 2008), TGF-β induces their expression in addition to some other EMT-related transcription factors, including Snail, and Slug, in certain types of normal and cancer cells (Gregory et al., 2011; Heldin et al., 2012; Miyazono et al., 2012; Xu et al., 2009).

We reported previously that TGF-β decreases the expression of E-cadherin through the induction of ZEB1 and ZEB2 in mouse mammary epithelial cells (Shirakihara et al., 2007). We also reported that it induces isoform switching of fibroblast growth factor receptors by alternative splicing, which occurs through downregulation of the expression of epithelial splicing regulatory proteins (ESRPs) by ZEB1 and ZEB2 (Horiguchi et al., 2012). Furthermore, the expression profiles of ZEB1 and ZEB2 are inversely correlated with those of ESRPs in human breast cancer cell lines and tumor specimens (Horiguchi et al., 2012). Consistent with the relationships between the EMT and cancer malignancy, high expression of ZEB1 is associated with poor prognosis of many types of cancer, including breast cancer (Chu et al., 2013; Jang et al., 2015). ZEB2 expression is also reported to be associated with poor prognosis of several types of cancer, although less frequently than ZEB1 (Fang et al., 2013; Prislei et al., 2015). It was recently reported that the EMT is involved in cancer malignancy by contributing not only to metastasis but also to the acquisition of cancer stem cell properties and chemoresistance (Fischer et al., 2015; Ye and Weinberg, 2015; Ye et al., 2015; Zheng et al., 2015). A recent genome-wide analysis of EMT-related transcription factor binding regions in pancreatic cancer cells suggested that ZEB1 plays a role in inducing the mesenchymal phenotype by suppressing enhancers that regulate the expression of epithelial genes (Diaferia et al., 2016). However, that analysis focused only on epithelial gene expression that was related to the EMT. Thus, the detailed mechanisms by which ZEB1 and ZEB2 contribute to poor prognosis in cancer remain to be elucidated.

Here, we employed chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) to investigate the transcriptional program that is regulated by ZEB1 in several basal-type breast cancer cell lines. We found that ZEB1 directly upregulated the production of inflammatory cytokines in the basal-type breast cancer cell lines MDA-231-D (a highly metastatic clone of MDA-MB-231; Ehata et al., 2007) and Hs578T. ZEB2 partially showed similar function, including the induction of interleukin (IL)-6 and IL-8 production. Our findings suggested that ZEB1 promotes the proliferation of cancer cells and contributes
to the formation of the tumor microenvironment by regulating the expression of inflammatory cytokines. The ZEB1-regulated inflammatory phenotype identified in this study provides insights into a mechanism that is critical for cancer progression and helps explain the poor prognosis of basal-type breast cancer.

2. Materials and methods

2.1. Cell culture

The MDA-231-D human basal-type breast cancer cell line, a highly bone metastatic clone of MDA-MB-231, was described previously (Ehata et al., 2007) and cultured in Dulbecco’s modified Eagle’s medium (DMEM; #11965, Thermo Fisher Scientific, Waltham, MA, USA). Hs578T human basal-type breast cancer cells were obtained for use in this study from the American Type Culture Collection (ATCC, Manassas, VA, USA) and cultured in RPMI1640 (#11875, Thermo Fisher Scientific) with 0.01 mg/mL of insulin (12585-014, Thermo Fisher Scientific). HCC1954-Luc human basal-type breast cancer cells were obtained for use in this study from the Japanese Collection of Research Bioresources (JCRB) Cell Bank (Ibaragi, Osaka, Japan) and cultured in RPMI1640. MCF7 human luminal-type breast cancer cells were obtained from JCRB and cultured in DMEM with 0.01 mg/mL of insulin. 4T1 mouse breast cancer cells were obtained from the ATCC and cultured in high-glucose DMEM. WI-38 and IMR-90 human lung fibroblast cells were obtained from the ATCC for use in this study and cultured in high-glucose DMEM. Hs578T, HCC1954-Luc, MCF7, WI-38, and IMR-90 cells were used within 6 months of passage after purchase. All culture media included 10% fetal bovine serum (FBS), 100 units/mL penicillin G, and 100 µg/mL streptomycin. All cells were maintained in a 5% CO2 atmosphere at 37 °C.

2.2. Antibodies and reagents

The following antibodies were used for immunoblotting: anti-pSTAT3 Tyr705 (D3A7, #9145; Cell Signaling Technology, Danvers, MA, USA), anti-STAT3 (124H6, #9139; Cell Signaling Technology), anti-FLAG M2 (F3165; Sigma-Aldrich, St. Louis, MO, USA), anti-α-tubulin (DM1A, T6199; Sigma-Aldrich), anti-β-actin (AC-15, A5441; Sigma-Aldrich), anti-ZEB1 (NBP1-05987; Novus Biologicals, Minneapolis, MN, USA), and anti-ZEB2 antibodies (A302-474A; BETHYL Laboratories, Montgomery, TX, USA). The anti-ZEB1 antibody (NBP1-05987) was also used for chromatin immunoprecipitation. Recombinant human TGF-β (TGF-β3) and human IL-6 were obtained from R&D systems (Minneapolis, MN, USA). LY364947 was from Calbiochem, Merck Millipore (Billerica, MA, USA). Cells were not serum-starved during ligand stimulation.

2.3. RNA interference

Transfection of Stealth Select siRNA (Thermo Fisher Scientific) was performed according to the recommended protocol using Lipofectamine RNAiMAX (Thermo Fisher Scientific). We used two sets of ZEB1, ZEB2, and IL-6 siRNA: ZEB1 (HSS110548 and HSS186235), ZEB2 (HSS114854 and HSS190654), and IL-6 (HSS105338 and HSS105339). Control siRNA (Medium GC Complex #2: 12935-112) was purchased from Thermo Fisher Scientific.

2.4. RNA-seq and data analysis

RNA-seq was performed as described previously (Iso-gaya et al., 2014; Mizutani et al., 2016). cDNA libraries were prepared using the RNeasy Mini Kit with the On-Column DNase Digestion Set (QIAGEN, Venlo, The Netherlands), Dynabeads mRNA DIRECT Purification Kit, and the Ion Total RNA-Seq Kit v2 (Thermo Fisher Scientific).

2.5. Chromatin immunoprecipitation, ChIP-seq, and data analysis

MDA-231-D, Hs578T, and MCF7 cells were cultured in 10-cm plates, and ChIP and ChIP-seq were performed as described previously (Koinuma et al., 2009; Murai et al., 2015). Data were obtained using the Ion Proton sequencer (Thermo Fisher Scientific). Unfiltered 50-bp sequence reads were aligned against the human reference genome (NCBI Build 36, hg19). Public anti-ZEB1 ChIP-seq data were obtained from GEO (GSM1574278, GSM1010809, GSM803411; ENCODE Project Consortium, 2012). Peaks were called using MACS2 (Zhang et al., 2008). CisGenome software was used to assign a binding site to the nearest gene within 50 kb of a peak (Ji et al., 2011).

2.6. RNA isolation and quantitative RT-PCR (qRT-PCR)

Total RNA was extracted using the RNeasy Mini Kit (QIAGEN). First-strand cDNA synthesis was performed using PrimeScript2 reverse transcriptase and oligo dT primers (TaKaRaBio, Shiga, Japan).
according to the manufacturer’s instructions. qRT-PCR was performed using the ABI PRISM7500 Fast Real-Time PCR System or the StepOnePlus Real-Time PCR system (Thermo Fisher Scientific) and the Fast Start Universal SYBR Green Master Mix with ROX (Roche Diagnostics, Basel, Switzerland). Mouse and human GAPDH were used for normalization. The primer sequences are shown in Table S1. Data are reported as the means of two technical replicates unless otherwise indicated in the figure legends.

2.7. Preparation of conditioned medium and enzyme-linked immunosorbent assay (ELISA)

MDA-231-D cells and Hs578T cells were seeded (2 × 10^5 per well in six-well plates for IL-6 experiments and 1 × 10^5 per well in 12-well plates for IL-8 experiments). After overnight incubation, siRNA was transfected as described previously, followed by TGF-β incubation (1 ng·mL⁻¹), LY364947 treatment (1 μM), or a medium change (2 mL per well for six-well plates and 1 mL per well for 12-well plates) on the next day of transfection. The supernatant was collected after incubation for 48 h. To prepare the supernatant from HCC1954-Luc cells, the cells were seeded on a six-well plate (1 × 10^5 per well), followed by TGF-β stimulation, LY364947 (3 μM) treatment, or a medium change (2 mL) the next day. After 48 h of incubation, the supernatant was collected. The concentrations of IL-6 and IL-8 were measured using the human IL-6 Quantikine ELISA Kit and the human CXCL8/IL-8 Quantikine ELISA Kit (R&D systems), respectively, according to the manufacturer’s instructions. Data are reported as the means of two biological replicates.

2.8. Lentiviral vector preparation and infection, and construction of plasmids

Lentiviral expression vectors were obtained from Hiroyuki Miyoshi (RIKEN BioResource Center; present address: Keio University, Tokyo, Japan). Lentiviral vectors were prepared by cotransfection of 293FT cells with pCSII-EF-mZEB1 or pCS-CDF-CG-PRE (for EGFP expression) and packaging vectors (pCAG-HIVgag and pCMV-VSV-G-RSV-Rev). The medium was changed after 24 h of transfection, and the culture media containing virus particles were collected after incubation for an additional 48 h. cDNAs encoding mouse ZEB1 and human ZEB2 were cloned into lentiviral expression vector or pcDEF3 expression vector. These plasmids were introduced into cells using Lipofectamine 2000 or Lipofectamine 3000 (Thermo Fisher Scientific) according to the recommended protocols.

2.9. Antibody array

The Human Cytokine Antibody Array C2000 (Ray Biotech, Norcross, GA, USA) was used according to the manufacturer’s instructions. The LAS-4000 lumino-image analyzer (GE Healthcare, Buckinghamshire, UK) was used for chemiluminescence detection, and the strength of each spot was measured using the line profile function of MultiGauge software (FUJIFILM, Tokyo, Japan) and analyzed using the Analysis Tool for AAH-CYT-2000 (Ray Biotech).

2.10. Immunoblotting

RIPA buffer (50 mM Tris/HCl (pH 8.0), 150 mM NaCl, 1% NP-40, 0.1% SDS, and 0.5% sodium deoxycholate) or NP-40 lysis buffer (1% NP-40, 150 mM NaCl, 20 mM Tris/HCl pH 7.5) that included Complete EDTA-free protease inhibitor cocktail (Roche Diagnostics) and Phosphatase Inhibitor Cocktail (EDTA-free; Nacalai Tesque, Kyoto, Japan) was used for cell lysis. The same amount of proteins was applied to the gels for protein analysis. SDS gel electrophoresis and immunoblotting were performed as described previously (Koinuma et al., 2011), and the signals were analyzed using the LAS-4000 lumino-image analyzer. Membranes were incubated with the primary antibodies at 4 °C overnight.

2.11. Tissue array

A tissue array of multiple organ tumors (MC6163) was purchased from US Biomax (Rockville, MD, USA). The paraffin-embedded array was deparaffinized and rehydrated followed by antigen retrieval using 10 mM sodium citrate buffer (pH 6.0). Endogenous peroxidase activity was blocked by 3.0% hydrogen peroxide. The array was then blocked with Blocking One reagent (Nacalai Tesque) and incubated with anti-ZEB1 antibody (NBP1-05987; Novus Biologicals) and human IL-6 antibody (R&D systems). Anti-rabbit Alexa488 and anti-goat Alexa594 were used as the secondary antibodies. The array was mounted with DAPI-containing mounting medium. Tile scanning was performed using the Leica DM16000 B inverted microscope with adaptive focus control (Leica Microsystems, Wetzlar, Germany). The signal intensity of each array spot was scored by two researchers (A.K. and Y.T.).

2.12. Tumor model

All animal experiments were performed in accordance with the policies of the animal ethics committee of the
University of Tokyo. HCC1954-Luc cells (4 × 10⁵) were injected into the mammary fat pads of 6-week-old female BALB/c nude mice, and 4T1 cells (5 × 10⁵) were injected subcutaneously into BALB/c mice. The lengths and widths of the resulting tumors were measured using calipers, and the tumor volume was calculated as follows: 0.5 × (major axis) × (minor axis)².

2.13. Senescence-associated β-galactosidase (SA-βGal) staining

Senescent cells were detected using the Senescence β-Galactosidase Staining Kit (Cell Signaling Technology) according to the manufacturer’s instructions.

2.14. Flow cytometry

Primary tumors were isolated from mice, cut into pieces, and digested in RPMI1640 containing 200 U·mL⁻¹ of collagenase, type I (Worthington, Lakewood, NJ, USA) and 10 μg·mL⁻¹ of DNaseI (Roche Diagnostics) for 60 min at 37 °C on a shaking platform. The samples were then washed and filtered through a cell strainer (100-μm nylon; Corning, Corning, NY, USA). Red blood cells were lysed in Red Blood Cell Lysis Buffer (Roche Diagnostics). The collected cells were incubated with FcR blocking reagent, mouse (Miltenyi Biotec, Bergisch Gladbach, Germany), for 15 min on ice. For flow cytometry, the cells were stained with the following antibodies for 30 min on ice in the dark: CD11b-APC (M1/70) and Ly6C-PE (HK1.4) from eBioscience (San Diego, CA, USA), Ly6G-PE/Cy7 (1A8) and CD45-Alexa Fluor 700 (30-F11) from BioLegend (San Diego, CA, USA), and Gr-1-FITC (RB6-8C5) from BD Biosciences (San Jose, CA, USA). The cells were analyzed by Gallios Flow Cytometer (Beckman Coulter, Fullerton, CA, USA) and were further analyzed using FLOWJO software (TreeStar software, Ashland, OR, USA).

2.15. Isolation and stimulation of mouse bone marrow cells

The femurs and tibias of 6- to 8-week-old C57BL/6J mice were isolated, and the marrow was flushed with HBSS using a 27-gauge needle (Thermo Fisher Scientific). Then, the cells were filtered through a cell strainer (100-μm nylon), and the red blood cells were lysed. Cells (2.5 × 10⁶) were incubated with RPMI1640 supplemented with 2 mM l-glutamine (Thermo Fisher Scientific), 10 mM HEPES (Thermo Fisher Scientific), 20 μM 2-mercaptoethanol (Thermo Fisher Scientific), 100 units·mL⁻¹ penicillin G, 100 μg·mL⁻¹ streptomycin, and nonessential amino acids (NEAA; Sigma-Aldrich) plus 50% HCC-GFP- or HCC-ZEB1-conditioned media. After 20 min, the cells were lysed and subjected to immunoblot analysis.

2.16. Statistical analysis

Student’s t-test was used for two-sample analyses, and the Tukey–Kramer test was used for multisample analyses. Mann–Whitney U-test was used for in vivo data.

3. Results

3.1. Identification of ZEB1 target genes in breast cancer cells

To determine the genome-wide distribution of ZEB1-binding regions in MDA-231-D and Hs578T basal-type breast cancer cells, we performed ChIP-seq analysis using a validated ZEB1 antibody that did not cross-react with ZEB2 (Fig. S1A; Horiguchi et al., 2012). We also obtained ChIP-seq data in MCF7 luminal-type breast cancer cells. Data were obtained from TGF-β-treated cells based on the known functional interaction between Smad signaling and ZEB1 and ZEB2 (Postigo, 2003; Postigo et al., 2003; Verschueren et al., 1999). We identified 32 907 binding regions in MDA-231-D cells, 13 514 regions in Hs578T cells, and 281 regions in MCF7 cells that had q-values < 0.05. Using a more stringent threshold for peak calling, 14 811, 3131, and 108 binding regions were identified in MDA-231-D, Hs578T, and MCF7 cells, respectively (q < 10⁻⁴). Significant peaks were found at known binding sites (ESRP2 and CDH1 gene loci) in the basal-type breast cancer cells (Horiguchi et al., 2012), but not at the HBB gene locus, which served as a negative control (Fig. 1A and data not shown). No peaks were found at the ESRP2 and CDH1 gene loci in MCF7 cells, which likely reflected the low expression of ZEB1 in luminal-type breast cancer cells (Horiguchi et al., 2012). One of the de novo predicted common motifs in the ZEB1-binding regions in MDA-231-D cells matched the known ZEB1-binding motif, which contained ‘CACCT’ (q = 0.0289) and was found in 38% of the 14 811 binding regions (Fig. 1B). The identified motif was also enriched toward the peak summit positions of ZEB1-binding regions, supporting the validity of the obtained ChIP-seq data (Fig. 1C).

Our data were then compared to all of the publically available human ZEB1-binding data for human pancreatic carcinoma Panc-1, human hepatoblastoma HepG2, and the Gm12878 B-lymphoblastic cell lines using the same read aligner, peak caller, and
We found that MDA-231-D cells and HepG2 cells had distinct profiles in terms of their ZEB1-binding regions and that Hs578T and Panc-1 cells, but not Gm12878 cells, shared ZEB1-binding regions with MDA-231-D cells (Fig. 1D). Many of the ZEB1-binding regions in...
Hs578T and Panc-1 cells overlapped with those in MDA-231-D cells (69.8% and 71.7%, respectively). In contrast, Gm12878 cells shared only 29.3% of their ZEB1-binding regions with MDA-231-D cells, and most of the remaining regions were shared with HepG2 cells, indicating that ZEB1-binding regions were relatively conserved in basal-type breast cancer cells, but not in other types of cancer cells.

ZEB1 acts as both a transcriptional activator and repressor (Lehmann et al., 2016; Sanchez-Tillo et al., 2011). To clarify the global view of ZEB1-regulated transcription, we performed RNA-seq using MDA-231-D cells. To examine the function of ZEB1 in the context of the EMT, MDA-231-D cells were transfected with a combination of siRNA targeting ZEB1 and ZEB2 and were then left untreated or were stimulated with TGF-β. The amounts of ZEB1 and ZEB2 proteins were efficiently decreased by the siRNA in MDA-231-D cells (Fig. S1B) and the specificity of the siRNA was confirmed (Fig. S1C). The ZEB1-binding regions were present within 50 kb of the transcriptional start site of 14,900 genes, which accounted for 64.0% of the total number of genes analyzed. Of the ZEB1-bound genes, 5975 were expressed at 10 or more FPKM (fragments per kilobase of exon per million mapped reads), and the number of genes that were either upregulated or downregulated by ZEB1/2 knockdown was similar (Fig. 1E).

We then evaluated the effect of ZEB1/2 siRNA on TGF-β-induced changes in the expression of ZEB1-bound genes. Focusing on the ZEB1-target genes that were either up- or downregulated more than 2-fold by TGF-β, we found that knockdown of ZEB1/2 largely upregulated the expression of genes that were downregulated by TGF-β (Fig. 1F). This tendency was not observed for genes that were upregulated by TGF-β.

### 3.2. ZEB1 regulates the expression of inflammatory response genes

To identify the functional signatures of ZEB1-bound genes that were enriched in MDA-231-D cells, gene set enrichment analysis (GSEA) was conducted using MDA-231-D cell gene expression data (Fig. 2A). The most notable finding was that the expression of inflammatory response genes was downregulated by the knockdown of ZEB1 and ZEB2 in the TGF-β-untreated condition (Fig. 2B). The downregulated genes that were categorized as inflammatory response genes are listed in Table S2, along with positional information about ZEB1 binding. A similar tendency was observed in the TGF-β-treated condition; remarkably, the *IL1A, CCL20, IL6, SERPINE1, IL8,* and *IL1B* genes were commonly and strongly downregulated in both conditions (Fig. 2C). Focusing on the ZEB1 ChIP-seq data, peaks were found at the promoter or enhancer regions of the identified genes, including *IL6, IL8,* and *CSF2,* in MDA-231-D and Hs578T cells, but not in MCF7 cells (Fig. 2D), suggesting that ZEB1 binds and regulates the expression of inflammatory response genes in basal-type breast cancer cells.

Based on these findings, we focused on ZEB1-regulated secretory proteins. An antibody array detected 174 human cytokines in the conditioned culture media of MDA-231-D cells that were transfected with ZEB1/2 siRNA. ZEB1/2 siRNA downregulated secreted
ZEB1-regulated inflammatory phenotype

A. Katsura et al.

A. Result of GSEA: hallmarks

| NAME                                | NES | NAME                                | NES |
|-------------------------------------|-----|-------------------------------------|-----|
| Hallmark inflammatory response      | 2.40| Hallmark estrogen response lat      | -1.97|
| Hallmark IL6 Jak Stat3 signaling    | 1.85| Hallmark estrogen response early    | -1.86|
| Hallmark TGFβ signaling            | 1.78| Hallmark Wnt β catenin signaling   | -1.84|
| Hallmark allograft rejection        | 1.74| Hallmark apical junction           | -1.62|
| Hallmark epithelial mesenchymal transition | 1.64|                                 |     |
| Hallmark coagulation                | 1.58|                                    |     |
| Hallmark complement                 | 1.50|                                    |     |

B. Enrichment score

siNC vs siZEB1/2-1

C. Downregulated genes by siZEB1/2-1

(-) TGF-β

130

71

204

IL1A, CCL20, IL6, SERPINE1, IL8, IL1B

D. MDA-231-D

Hs578T

MCF7

Panc-1

HepG2

Gm12878

IL6

IL8

CSF2

E. RNAseq-based fold

F. MDA-231-D

IL-6

IL-8

G. Hs578T

IL-6

IL-8
IL-1β, IL-8, and IL-1α proteins in MDA-231-D cells. The expression levels of the CCL20, PLAUR (plasminogen activator, urokinase receptor), CSF3 (granulocyte colony-stimulating factor, G-CSF), and CSF2 (granulocyte-macrophage colony-stimulating factor, GM-CSF) proteins were also regulated by ZEB1 (Fig. 2E). Of note, reduction in secreted IL-6 protein by ZEB1/2 siRNA was not observed because of the saturated signals in both control siRNA- and ZEB1/2 siRNA-treated conditions. We then used two sets of ZEB1/2 siRNA to quantitatively evaluate the effects of ZEB1/2 siRNA on IL-6 and IL-8 secretion by MDA-231-D cells and Hs578T cells using ELISA and found a similar tendency as in the RNA-seq analysis (Fig. 2F and G). Notably, the amounts of proteins secreted by MDA-231-D cells were comparable to the levels secreted by inflammatory cells, suggesting that IL-6 and IL-8 were produced at functional levels (Nastasi et al., 2015; Pazmandi et al., 2012).

3.3. ZEB1 and ZEB2 have similar functions in the regulation of inflammatory cytokine expression

While both ZEB1 and ZEB2 suppress the expression of CDH1 and induce EMT, previous reports have also revealed some different functions between them. We thus evaluated whether ZEB1 and ZEB2 have similar functions in the production of inflammatory cytokines. We knocked down the expression of ZEB1 or ZEB2 and obtained RNA-seq data from MDA-231-D cells. Knockdown of ZEB1 or ZEB2 did not strongly affect each other’s protein expression (Fig. S1C). GSEA analysis suggested that siRNA against either ZEB1 or ZEB2 downregulated the expression of inflammatory response genes, including IL6 and IL8, although normalized enrichment score (NES) of inflammatory response genes in one of the ZEB2 siRNA was not more than 1.5 (NES = 1.34; Fig. 3A and Fig. S1D). qRT-PCR analysis also revealed that expression of IL6 and IL8 was decreased by knockdown of either ZEB1 or ZEB2 (Fig. 3B). Therefore, ZEB1 and ZEB2 have essentially similar functions in the regulation of inflammatory response gene expression, especially IL6 and IL8, in the basal-type breast cancer cells.

3.4. TGF-β affects the production of cytokines and chemokines that are regulated by ZEB1

ZEB1 functions as a transcriptional activator by binding to Smad1, Smad2, and Smad3 and supports their transcriptional activities (Postigo, 2003; Postigo et al., 2003), while ZEB2 inhibits TGF-β signaling (Verschueren et al., 1999). Based on the similar functions of ZEB1 and ZEB2 on the expression of inflammatory cytokines, we then investigated whether ZEB1 and ZEB2 regulate the expression of inflammatory response genes induced by TGF-β stimulation. Of the basal-type breast cancer cell lines, MDA-231-D and Hs578T expressed ZEB1 and ZEB2, while HCC1954-Luc cells showed only small amounts of ZEB1 and ZEB2 proteins (Fig. S2A; Horiguchi et al., 2012). In agreement with the immunoblot data, quantitative evaluation using RNA-seq data in MDA-231-D cells suggested that the expression of ZEB2 was lower than that of ZEB1 (Fig. 4A). Of note, ZEB1 and ZEB2 expression was not upregulated by TGF-β in MDA-231-D cells (Fig. S2B).

We found that TGF-β increased the expression of IL6 and IL8, while LY364947, which is a TGF-β type I receptor kinase inhibitor, decreased their baseline expression.
expression levels (Fig. 4B). The effect of TGF-β on the expression of IL6 and IL8 was not observed in the absence of ZEB1 and ZEB2. A similar tendency was observed regarding the TGF-β-induced expression of CSF2 and CXCL5 (Fig. S2B). Significant induction of IL1B by TGF-β could not be seen; however, the effect of LY364947 on IL1B expression in the control siRNA-transfected cells was inhibited by ZEB1/2 siRNA. Consistent results were not obtained regarding the effect of ZEB1/2 siRNA on TGF-β-induced CXCL1 expression.

We then exogenously expressed ZEB1 and ZEB2 in HCC1954-Luc cells by transfection of expression plasmids (Fig. S2C), and found that ZEB1, and to a lesser extent ZEB2, increased the IL6 and IL8 expression. We also established HCC-1954-Luc cells stably
expressing ZEB1 (HCC-ZEB1; Fig. S2D). Analysis of secreted proteins from HCC-ZEB1 cells using an antibody array revealed that ZEB1 induced the production of IL-6 and CSF2, but not IL-8, in this cell line (Fig. 4C). 

IL6 expression in HCC1954-Luc cells was significantly increased by exogenous ZEB1 expression, similar to its effect in MDA-231-D cells (Fig. 4D). In addition, TGF-β increased the expression of IL6 in the presence of ZEB1 in HCC-1954-Luc cells (Fig. 4D). These results suggested that ZEB1 and possibly ZEB2 played a central role in IL6 and IL8 transcription independent of TGF-β signaling, and simultaneously, they were required for the induction of IL6 and IL8 by TGF-β. These results also suggested that
production of inflammatory cytokines by ZEB1 and ZEB2 is induced in a context-dependent manner and that expression of ZEB1 and ZEB2 is not sufficient to induce some of the target proteins.

### 3.5. Correlation of the expression of IL-6 and IL-8 with ZEB1 expression in various types of cancer

To evaluate the regulatory functions of ZEB1 in other types of breast cancer cells and cancer tissues, we obtained expression microarray data from the Cancer Cell Line Encyclopedia (CCLE; Barretina et al., 2012) and analyzed the relationship of the expression of ZEB1 with that of inflammatory cytokines, that is, IL6 and IL8, in breast cancer cells. We found that a small subset of the cell lines was ‘double-positive’ for the expression of ZEB1 and IL6 and/or IL8 (Fig. 5A). In contrast, the expression of ZEB2 was generally low in breast cancer cells compared to THP-1 cells, an acute myelogenous leukemia cell line with known ZEB2 function (Li et al., 2017), and showed weaker correlation with IL6 and IL8 expression than that of ZEB1 (Fig. S3A). We also examined the relationship between ZEB1 and IL-6 in other types of cancers using a tissue array of 448 cancer tissues from multiple organs and found other double-positive cancers (Fig. 5B and Fig. S3B,C). These findings suggested that the transcriptional activation of IL6 by ZEB1 is
not restricted to breast cancer cells and tissues and found in a subset of other types of ZEB1-expressing tumors. We then examined the prognostic importance of IL6 and IL8, which are regulated by ZEB1 using publically available meta-analysis database (Kaplan–Meier plotter, http://kmplot.com/analysis/; Fig. 5C). High expression of IL6 and IL8 was significantly correlated with poor survival in breast cancer and lung cancer, which is consistent with a previous report (Hartman et al., 2013).

3.6. ZEB1 promotes HCC1954-Luc cell proliferation and tumor growth

Next, we used HCC-GFP and HCC-ZEB1 cells to investigate the biological importance of ZEB1-induced cytokines. Phosphorylation of STAT3 was observed in the absence of IL-6 expression, suggesting the activation of STAT3 by other pathways, and was moderately enhanced in ZEB1-expressing HCC1954-Luc cells (Fig. 6A). ZEB1 promoted the proliferation of HCC1954-Luc cells (Fig. 6B), and this effect was attenuated by IL6 siRNA (Fig. 6C). Conditioned medium from HCC-ZEB1 cell culture enhanced the proliferation of the parental HCC1954-Luc cells (Fig. 6D). These results suggested that secreted factors, especially IL-6, contributed to the growth of ZEB1-expressing HCC-ZEB1 cells in an autocrine manner. We also found that ZEB1 enhanced tumor growth when HCC1954-Luc cells were grafted into nude mice (Fig. 6E).

IL-6, IL-8, and some other ZEB1-regulated secretory proteins are related to the senescence-associated secretory phenotype (Perez-Mancera et al., 2014). However, the induction of cellular senescence in MDA-231-D cells by irradiation or doxorubicin treatment, followed by SA-βGal staining, failed to show a significant correlation between ZEB1 expression and cellular senescence (Fig. 6F and G).

3.7. Conditioned medium from ZEB1-expressing MDA-231-D cells increases fibroblast growth in a paracrine manner

We further studied the functional relationship between cancer cells and fibroblasts and found that conditioned media from HCC-ZEB1 and MDA-231-D cells upregulated phosphorylated STAT3 in IMR90 and WI38 human fibroblasts (Fig. 7A). Although conditioned medium from HCC-ZEB1 cells did not increase the growth of IMR90 and WI38 cells (Fig. 7B), conditioned medium from ZEB1/2-silenced MDA-231-D cells significantly decreased the growth of IMR90 and WI38 cells (Fig. 7C). Taken together, these results suggested that ZEB1 expressed in cancer cells contributes to the growth of fibroblasts in paracrine and context-dependent manners.

3.8. ZEB1 induces myeloid cells that express markers characteristic of polymorphonuclear myeloid-derived suppressor cells (MDSCs) within tumors

Because ZEB1 regulated the production of inflammatory cytokines, including IL-6, IL-8, IL-1β, CXCL1, and CXCL5, we evaluated the paracrine effect of ZEB1-regulated secretory proteins in terms of their antitumor immune functions. MDSCs comprise heterogeneous cell populations that have the potential for immunosuppressive activity. MDSCs induce immune tolerance in the tumor microenvironment by suppressing cytotoxic T-lymphocyte activity (Gabrilovich et al., 2012; Ugel et al., 2015). They are defined as CD11b+ Gr-1+ cells in mouse and are categorized as polymorphonuclear (PMN)-MDSCs and monocytic (Mo)-MDSCs. PMN-MDSCs are defined as CD11b+ Ly6C<sub>low</sub> Ly6G<sub>high</sub> cells that express high levels of arginase 1. In contrast, Mo-MDSCs are defined as CD11b+ Ly6C<sub>high</sub> Ly6G<sub>low</sub> cells that express high levels of Nos2 (iNOS; Talmadge and Gabrilovich, 2011). The number of MDSCs in tumor tissue is associated with disease stage in patients with breast cancer (Markowitz et al., 2013). To examine the effect of ZEB1-regulated secretory proteins on the accumulation and maturation of MDSCs in vivo, we established murine breast cancer 4T1 cells that overexpressed mouse ZEB1 (4T1-ZEB1). We confirmed the increased expression of Il6, Il8, and Il1b mRNA in 4T1-ZEB1 cells versus 4T1-GFP cells (Fig. 8A).

STAT3 has been reported to be related to the accumulation and expansion of MDSCs (Condamine and Gabrilovich, 2011). To determine whether ZEB1-regulated secretory proteins affect MDSC development, we focused on STAT3 phosphorylation in mouse bone marrow (BM) cells using conditioned medium from HCC-ZEB1 cells. We found that STAT3 phosphorylation was enhanced by conditioned medium from HCC-ZEB1 cells (Fig. 8B).

4T1-ZEB1 cells were then used in a syngeneic tumor model in immunocompetent BALB/c mice. Tumor size and lung metastasis were not significantly different between 4T1-ZEB1 cells and 4T1-GFP cells, possibly because of the highly aggressive nature of 4T1 cells. We then evaluated the accumulation and maturation of MDSCs in the tumor sites by flow cytometry and
found that the percentage of Gr-1-positive cells was increased in the 4T1-ZEB1 tumors compared to 4T1-GFP tumors (Fig. 8C). To characterize the increased MDSCs in more detail, we also evaluated the expression of Ly6C and Ly6G on the cells obtained from tumors to identify PMN-MDSCs (CD11b+ Ly6Clow...
Ly6G+ and Mo-MDSCs (CD11b+ Ly6C<sup>high</sup> Ly6G−; Fig. 8D). We found that the percentage of PMN-MDSCs in the CD11b+ FSC+ CD45+ population of the cells was significantly increased in 4T1-ZEB1 tumors, while the percentage of Mo-MDSCs was not (Fig. 8E). Together with the findings from a report showing the immunosuppressive activity of Ly6G<sup>+</sup> PMN-MDSCs from 4T1 tumor-bearing mice (Kim et al., 2014), these findings suggested that ZEB1 expression in tumor cells increases the PMN-MDSC population in CD11b+ cells.

4. Discussion

Expanding and differential roles of ZEB1 and ZEB2 have been identified in various types of cancers in recent years (Chaffer et al., 2013; Krebs et al., 2017; Mejlvang et al., 2007; Morel et al., 2017; Si et al., 2015; Spaderna et al., 2008). ZEB1 is expressed primarily in nonepithelial cells, and a genome-wide analysis of ZEB1-binding regions performed in an adipogenesis model clearly shows its physiological importance (Gubelmann et al., 2014). Therefore, it is not surprising that the main consequence of the ectopic expression of ZEB1 differs greatly between cancer cell types. This is because transcription factor binding regions are affected by the epigenetic environment in the cells, which is dynamically regulated by TGF-β and other extracellular stimuli (Ostuni et al., 2013). The observation that ZEB1 has differential effects on the expression of genes that are either downregulated or upregulated by TGF-β in MDA-231-D cells also supports the importance of cellular context. In addition, Hs578T and Panc-1 cells showed very similar

Fig. 7. The effect of ZEB1-regulated secretory factors on fibroblast growth. (A) Tyrosine phosphorylation of STAT3 in IMR90 and WI38 fibroblasts after the addition of conditioned media. Cells were collected 20 min after stimulation, and the cell lysates were subjected to immunoblot analysis as indicated. CM, conditioned medium; rhIL-6, recombinant human IL-6 (100 ng·mL<sup>−1</sup>). (B, C) The effect of conditioned medium from cultured breast cancer cells on fibroblast cell growth. The number of IMR90 and WI38 cells was counted after 72 h of incubation using the trypan blue exclusion assay. Conditioned media were obtained from ZEB1-overexpressing HCC1954-Luc cells and control cells (HCC-GFP) (B), or from ZEB1/2-silenced MDA-231-D cells and control cells (C). siZEB1/2-1, siZEB1-1 + siZEB2-1; siZEB1/2-2, siZEB1-2 + siZEB2-2. Conditioned medium was replenished every 24 h. In panel (C), data are shown as the means of three (IMR90) or four (WI38) biological replicates. CM, conditioned medium; n.s., not significant; *P < 0.05.
Thus, apart from its general role as an EMT inducer, ZEB1 and ZEB2 may have multiple functions that will be elucidated by analyses in specific cancer types in the future.

Inflammatory cytokines play crucial roles in various aspects of cancer, including cancer development, progression, treatment resistance, and prognosis. IL-1β promotes colon cancer cell stemness and invasiveness (Li et al., 2012). IL-8 is also associated with cancer stem cell-like properties, and its expression correlates with poor prognosis in human pancreatic cancer (Chen et al., 2014). Of these inflammatory cytokines, IL-6 is reported to play especially important roles in the development of lung and breast cancers (Gao et al., 2007; Sansone et al., 2007). With regard to the effect of these cytokines on the EMT, previous reports focused mainly on the regulation of EMT-related downstream factors, with ZEB1 reported as a target gene of certain inflammatory cytokines (Liu et al., 2015; Peinado et al., 2007). A recent report suggested that inflammation induces disseminated, dormant cancer cells to form metastatic tumors through functions of ZEB1 (De Cock et al., 2016). It is also reported that ZEB2 is induced by inflammation (Katoh and Katoh, 2009). However, the induction of IL-6 and IL-8 by ZEB1 and ZEB2, an inverse relationship that was revealed in this study, has not been investigated in detail.

It is widely accepted that cancer cells show EMT-like phenotypes due to the production of various

**Fig. 8.** ZEB1-regulated secretory factors regulate intratumor MDSC populations. (A) qRT-PCR analysis of the expression of Il6, Il8, and Il1b in ZEB1-overexpressing mouse breast cancer 4T1 cells. Values were normalized to Gapdh. Error bars, S.D. *P < 0.05 by Student’s t-test. (B) Tyrosine phosphorylation of STAT3 in mouse BM cells after incubation in conditioned media from control GFP (HCC-GFP) or ZEB1-overexpressing (HCC-ZEB1) HCC1954-Luc cells for 20 min in cell culture. Cell lysates were subjected to immunoblot analysis as indicated. Recombinant human IL-6 (rhIL-6: 40 ng·mL⁻¹) was used as a positive control. BM, bone marrow. (C–E) BALB/c mice were injected subcutaneously with ZEB1-overexpressing 4T1 cells (4T1-ZEB1). Twenty-one days after injection, the tumor was removed and analyzed by flow cytometry. 4T1-GFP, GFP-expressing control 4T1 cells. (C) Gr-1-positive MDSCs (%) in CD11b⁺ FSC⁺ CD45⁺ gated cells. (D) Quantification of the subpopulation of MDSCs. The gates used to quantify Mo-MDSCs and PMN-MDSCs are shown. (E) The percentages of PMN-MDSCs and Mo-MDSCs in CD11b⁺ FSC⁺ CD45⁺ gated cells. Data are shown as the medians ± S.D. for the five tumors. **P < 0.01 by Mann–Whitney U-test.
cytokines. For example, elevated expression of IL6 and other chemoresistance-related genes accompanies the EMT in a mouse breast cancer model (Fischer et al., 2015). Our finding that ZEB1 and ZEB2 are inducers of inflammatory cytokines is supported by a report by Suarez-Carmona et al. (2015) that Slug, Snail, and other EMT-related transcription factors regulate the production of soluble factors, such as IL-8, IL-6, sICAM-1, PAI-1, and GM-CSF/CSF2. Taken together, these data indicate that inflammatory cytokines induce EMT-related transcription factors and vice versa in certain cancer cells to enhance tumor progression. These processes can be targeted by molecular therapies.

Our findings indicated that ZEB1 and partly ZEB2 regulated the characteristic inflammatory phenotype of breast cancer cells, in part through IL-6 and IL-8. The ZEB1-regulated inflammatory phenotype identified in this study was characterized by enhanced breast cancer cell growth, fibroblast proliferation, and PMN-MDSC accumulation, although each of these was observed only in certain cell types and was context dependent. The correlation between IL-6 production and cancer proliferation has been reported in various types of cancers, including lung, prostate, and breast cancers (Gao et al., 2007; Giri et al., 2001; Sansone et al., 2007; Yamaji et al., 2004). IL-6 secreted by cancer cells activates STAT3, and induces downstream events, including cancer cell proliferation and apoptosis inhibition. Our results support these reports and revealed that IL-6, as a central soluble factor that was positively regulated by ZEB1, constantly activated STAT3 in HCC1954-Luc cells and exhibited cell-proliferating potency both in cell culture and in vivo. IL-6, which was regulated by ZEB1 and ZEB2 in breast cancer cells, also induced the proliferation of fibroblasts in a context-dependent manner, suggesting that ZEB1 and ZEB2 regulate the production and function of cancer-associated fibroblasts, which are the main constituents of tumor microenvironments, thereby enhancing tumor growth (Kalluri and Zeisberg, 2006; Xing et al., 2010).

In terms of MDSCs, IL-6 strongly induces their accumulation and maturation. IL-6 is reported to restore the impaired accumulation of MDSCs and tumor progression in tumor-bearing mice lacking IL-1β or indoleamine 2,3-dioxygenase (IDO; Bunt et al., 2007; Smith et al., 2012). Activated STAT3 is the main regulator of IL-6 in MDSCs, inducing cell survival, cell proliferation (Xin et al., 2009), and immunosuppressive activity (Kujawski et al., 2008). IL-8 also enhances PMN-MDSC infiltration into tumor tissues (Kumar et al., 2016; Sandhu et al., 2000). Furthermore, IL-1β is reported to induce the accumulation of MDSCs (Bunt et al., 2007; Elkabets et al., 2010). In addition to IL-6, IL-8, and IL-1β, another ZEB1-regulated cytokine, G-CSF/CSF3, also enhances the accumulation of MDSCs (Talmadge and Gabrilovich, 2013). ZEB1 also regulates the expression of the chemokines CXCL1 and CXCL5, which are the ligands for the CXCR2 receptor, and increases the infiltration of PMN-MDSCs (Acharyya et al., 2012; Katoh et al., 2013; Toh et al., 2011). Although the present study showed no additional effect of ZEB1 on tumor progression or on the metastasis of 4T1 cells, which may be due to the aggressive nature of the parental 4T1 cells, these observations suggest that inflammatory cytokines induced by ZEB1 play critical roles in the progression of cancer in a context-dependent manner.

In basal-type breast cancer cells, high ZEB1 expression was observed even in the absence of TGF-β (Horiguchi et al., 2012). Of note, in mammary carcinomas that do not express the TGF-β type II receptor, CXCL5 expression is increased, resulting in the recruitment of MDSCs (Yang et al., 2008). Thus, although TGF-β induces the expression of ZEB1 and ZEB2, which function as key transcription factors in the induction of the EMT in various types of epithelial cells, TGF-β signaling and ZEB1 and ZEB2 act in opposite ways in cancer cells in some contexts, including in the regulation of MDSCs, and they play distinct roles in cancer progression.

In conclusion, ZEB1 and ZEB2, through the induction of various cytokines, including IL-6 and IL-8, facilitate tumor growth both in autocrine and in paracrine manners in basal-type breast cancer cells. Future studies will focus on evaluating these extracellular proteins as potential anticancer targets to inhibit the progression of cancer.

Acknowledgements
We thank Yudai Hirano and Keiko Yuki for technical assistance and members of the Miyazono laboratory for helpful discussions, advice, and reagents. We also thank Drs. Hiroyuki Aburatani and Shuichi Tsutsumi (University of Tokyo) for suggestions regarding the ChIP-seq experiments. This work was supported by KAKENHI grants-in-aid for Scientific Research grants (C) ([15K06831] to DK) and (S) ([15H05774] to KM) from the Japan Society for the Promotion of Science (JSPS), and by a grant from the Japan Agency for Medical Research and Development (AMED) (to DK). This study was conducted as part of a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-Direct), AMED.
This work was also supported by the Princess Takamatsu Cancer Research Fund (14-24609 to DK). YT is supported by the Yoshida Scholarship Foundation and by the Graduate Program for Leaders in Life Innovation from the Japan Society for the Promotion of Science.

Availability of data and materials
The raw ChIP-seq and RNA-seq data are available at GEO (GSE89206).

Author contributions
AK and YT performed most of the in vitro experiments, together with SH, MH, JN, YY, and SE, AK, YT, TS, and KT performed the in vivo experiments. AK, YT, and YM performed the immunohistochemistry. AM and DK determined the experimental conditions for the ZEB1 ChIP-seq analysis. YT, AK, DK, and MM acquired and analyzed the high-throughput sequencing data. DK and KM designed experiments and analyzed data. TM established the HCC1954-Luc cells. YT, AK, MM, KM, and DK wrote the manuscript.

References
Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorokova K, Leversha M, Hogg N, Seshan VE et al. (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178.
Anders CK and Carey LA (2009) Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer 9(Suppl 2), S73–S81.
Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y, Wang Y, Marcom PK, Marks JR, Febbo PG et al. (2008) Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol 26, 3324–3330.
Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR et al. (2011) Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol 24, 157–167.
Barretina J, Caponigro G, Stranks N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D et al. (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607.
Bunt SK, Yang L, Sinha P, Clements VK, Leips J and Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67, 10019–10026.
Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D’Alessio AC, Young RA and Weinberg RA (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154, 61–74.
Chen L, Fan J, Chen H, Meng Z, Chen Z, Wang P and Liu L (2014) The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep 4, 5911.
Chu PY, Hu FW, Yu CC, Tsai LL, Yu CH, Wu BC, Chen YW, Huang PI and Lo WL (2013) Epithelial-mesenchymal transition transcription factor ZEB1/ ZEB2 co-expression predicts poor prognosis and maintains tumor-initiating properties in head and neck cancer. Oral Oncol 49, 34–41.
Condamine T and Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32, 19–25.
De Cock JM, Shibue T, Dongre A, Keckesova Z, Reinhardt F and Weinberg RA (2016) Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Res 76, 6778–6784.
Derynick R and Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584.
Diaferia GR, Balestrieri C, Prosperi E, Nicoli P, Spaggiari P, Zerbi A and Natoli G (2016) Dissection of transcriptional and cis-regulatory control of differentiation in human pancreatic cancer. EMBO J 35, 595–617.
Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H and Foisner R (2005) ßEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24, 2375–2385.
Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K, Ishikawa Y, Nomura K, Yokoo H, Shimizu T et al. (2007) Ki26894, a novel transforming growth factor-ß type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci 98, 127–133.
Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN and Vosshenrich CA (2010) IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40, 3347–3357.
Fang Y, Wei J, Cao J, Zhao H, Liao B, Qiu S, Wang D, Luo J and Chen W (2013) Protein expression of ZEB2 in renal cell carcinoma and its prognostic significance in patient survival. PLoS One 8, e62558.

Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J et al. (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476.

Gabrilovich DI, Ostrand-Rosenberg S and Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12, 253–268.

Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B et al. (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117, 3846–3856.

Giri D, Ozen M and Ittman M (2001) Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol 159, 2159–2165.

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10, 593–601.

Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY et al. (2011) An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 22, 1686–1698.

Gubelmann C, Schwalie PC, Raghav SK, Roder E, Delessa T, Kiehlmann E, Waszak SM, Corsinotti A, Udin G, Holcombe W et al. (2014) Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network. eLife 3, e03346.

Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q and Szallasi Z (2013) Online survival analysis tool to rapidly assess the effect of 22,277 genes on patient survival. PLoS One 8, e82241.

Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB et al. (2013) Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res 73, 3470–3480.

Heldin CH, Miyazono K and ten Dijke P (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471.

Heldin CH, Vanlandewijck M and Moustakas A (2012) Regulation of EMT by TGF-β in cancer. FEBS Lett 586, 1959–1970.

Hensen F, Cansiz S, Gerhold JM and Spellbrink JN (2014) To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins. Biochimie 100, 219–226.

Horiguchi K, Sakamoto K, Koinuma D, Semba K, Inoue A, Inoue S, Fujii H, Yamaguchi A, Miyazawa K, Miyazono K et al. (2012) TGF-β drives epithelial-mesenchymal transition through δEF1-mediated downregulation of ESRP. Oncogene 31, 3190–3201.

Isogaya K, Koinuma D, Tsutsumi S, Saito RA, Miyazawa K, Aburatani H and Miyazono K (2014) A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression. Cell Res 24, 994–1008.

Jang MH, Kim HJ, Kim EJ, Chung YR and Park SY (2015) Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome. Hum Pathol 46, 1267–1274.

Ji H, Jiang H, Ma W and Wong WH (2011) Using CisGenome to analyze ChIP-chip and ChIP-seq data. Curr Protoc Bioinformatics Chapter 2, Unit2 13.

Kalluri R and Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6, 392–401.

Katoh M and Katoh M (2009) Integrative genomic analyses of ZEB2: transcriptional regulation of ZEB2 based on SMADs, ETS1, HIF1α, POU/OCT, and NF-kB. Int J Oncol 34, 1737–1742.

Katoh H, Wang D, Daikoku T, Sun H, Dey SK and Dubois RN (2013) CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24, 631–644.

Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B et al. (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA 111, 11774–11779.

Koinuma D, Shinozaki M, Nagano Y, Ikushima H, Horiguchi K, Goto K, Chano T, Saitoh M, Imamura T, Miyazono K et al. (2011) RB1CC1 protein positively regulates transforming growth factor-β signaling through the modulation of Arkadia E3 ubiquitin ligase activity. J Biol Chem 286, 32502–32512.

Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M, Imamura T, Miyazono K and Aburatani H (2009) Chromatin
immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling. *Mol Cell Biol* **29**, 172–186.

Krebs AM, Mitschke J, Losada ML, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiasakos D, Reichardt W, Bronsert P et al. (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. *Nat Cell Biol* **19**, 518–529.

Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H and Yu H (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. *J Clin Invest* **118**, 3367–3377.

Kumar V, Patel S, Tcyganov E and Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. *Trends Immunol* **37**, 208–220.

Lamouille S, Xu J and Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. *Nat Rev Mol Cell Biol* **15**, 178–196.

Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, Herr R, Brabletz S, Stemmler MP and Brabletz T (2016) ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. *Nat Commun* **7**, 10498.

Li H, Mar BG, Zhang H, Puram RV, Vazquez F, Weir BA, Hahn WC, Ebert B and Pellman D (2017) The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. *Blood* **129**, 497–508.

Li Y, Wang L, Pappan L, Galliher-Beckley A and Shi J (2012) IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. *Mol Cancer* **11**, 87.

Liu H, Ren G, Wang T, Chen Y, Gong C, Bai Y, Wang B, Qi H, Shen J, Zhu L et al. (2015) Aberrantly expressed Fra-1 by IL-6/STAT3 transactivation promotes colorectal cancer aggressiveness through epithelial-mesenchymal transition. *Carcinogenesis* **36**, 459–468.

Markowitz J, Wesolowski R, Papenfuss T, Brooks TR and Carson WE 3rd (2013) Myeloid-derived suppressor cells in breast cancer. *Breast Cancer Res Treat* **140**, 13–21.

Massague J (2012) TGFβ signalling in context. *Nat Rev Mol Cell Biol* **13**, 616–630.

Mijevska K, Kriajevska M, Vandewalle C, Chernova T, Sayan AE, Berx G, Mellon JK and Tulchinsky E (2007) Direct repression of cyclin D1 by SIPI attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. *Mol Biol Cell* **18**, 4615–4624.

Miyazono K, Ehata S and Koinuma D (2012) Tumor-promoting functions of transforming growth factor-β in progression of cancer. *Ups J Med Sci* **117**, 143–152.

Mizutani A, Koinuma D, Seimiya H and Miyazono K (2016) The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma. *Oncogene* **35**, 3514–3523.

Morel AP, Ginestier C, Pommier RM, Cabaud O, Ruiz E, Wicinski J, Devouassou-Shisheboran M, Comberat V, Finetti P, Chassot C et al. (2017) A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. *Nat Med* **23**, 568–578.

Murai F, Koinuma D, Shinozaki-Ushiku A, Fukayama M, Miyazono K and Ehata S (2015) EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway. *Cell Discov* **1**, 15026.

Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, Biagi E, Andersen MH, Brigidi P, Odum N et al. (2015) The effect of short-chain fatty acids on human monocyte-derived dendritic cells. *Sci Rep* **5**, 16148.

Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F et al. (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. *Cancer Cell* **10**, 515–527.

Nieto MA, Huang RY, Jackson RA and Thierry JP (2016) EMT: 2016. *Cell* **166**, 21–45.

Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, Curina A, Prosperi E, Ghiisletti S and Natoli G (2013) Latent enhancers activated by stimulation in differentiated cells. *Cell* **152**, 157–171.

Pazmandi K, Kumar BV, Szabo K, Boldogh I, Szoor A, Vereb G, Veres A, Lanyi A, Rajnavolgyi E and Bacsí A (2012) Ragweed subpollen particles of respirable size activate human dendritic cells. *PLoS One* **7**, e52085.

Peinado H, Olmeda D and Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? *Nat Rev Cancer* **7**, 415–428.

Perez-Mancera PA, Young AR and Narita M (2014) Inside and out: the activities of senescence in cancer. *Nat Rev Cancer* **14**, 547–558.

Postigo AA (2003) Opposing functions of ZEB proteins in the regulation of the TGF-β/BMP signaling pathway. *EMBO J* **22**, 2443–2452.

Postigo AA and Dean DC (2000) Differential expression and function of members of the Zfh-1 family of zinc finger/homeodomain repressors. *Proc Natl Acad Sci USA* **97**, 6391–6396.

Prislei S, Martinelli E, Zannoni GF, Petritto M, Filippetti F, Mariani M, Mozzetti S, Raspaglio G, Scambia G and Ferlini C (2015) Role and prognostic significance
of the epithelial-mesenchymal transition factor ZEB2 in ovarian cancer. Oncotarget 6, 18966–18979.
Sanchez-Tillo E, Siles L, de Barrios O, Cuatrecasas M, Vaquero EC, Castells A and Postigo A (2011) Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res 1, 897–912.
Sandhu JK, Privora HF, Wenckebach G and Birnboim HC (2000) Neutrophils, nitric oxide synthase, and mutations in the mutatute murine tumor model. Am J Pathol 156, 509–518.
Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paternini P, Marcu KB et al. (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117, 3988–4002.
Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G and Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68, 989–997.
Shirakihara T, Saitoh M and Miyazono K (2007) Differential regulation of epithelial and mesenchymal markers by E6F1 proteins in epithelial-mesenchymal transition induced by TGF-β. Mol Biol Cell 18, 3533–3544.
Si W, Huang W, Zheng Y, Yang Y, Liu X, Shan L, Zhou X, Wang Y, Su D, Gao J et al. (2015) Dysfunction of the reciprocal feedback loop between GATA3- and ZEB2-nucleated repression programs contributes to breast cancer metastasis. Cancer Cell 27, 822–836.
Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE, Boulden J, Sutanto-Ward E, Soler AP, Laury-Kleintop LD et al. (2012) IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov 2, 722–735.
Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A et al. (2008) The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68, 537–544.
Suarez-Carmona M, Bourcy M, Lesage J, Leroi N, Syne L, Blacher S, Hubert P, Ercpium C, Foidart JM, Delvenne P et al. (2015) Soluble factors regulated by epithelial-mesenchymal transition mediate tumour angiogenesis and myeloid cell recruitment. J Pathol 236, 491–504.
Talamida JE and Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13, 739–752.
The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74.
Thierry JP, Acloque H, Huang RY and Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890.
Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC, Kato M, Prevost-Blondel A, Thiery JP and Abastado JP (2011) Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 9, e1001162.
Ugel S, De Sanctis F, Mandruzzato S and Bronte V (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 125, 3365–3376.
Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F and Berx G (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 33, 6566–6578.
Verschueren K, Remacle JE, Collart C, Kraith H, Baker BS, Tylzanowski P, Nelts L, Wuytens G, Su MT, Bodmer R et al. (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J Biol Chem 274, 20489–20498.
Wakamatsu N, Yamada Y, Yamada K, Ono T, Nomura N, Taniguchi H, Kitoh H, Mutoh N, Yamanaka T, Mushiake K et al. (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27, 369–370.
Xin H, Zhang C, Herrmann A, Du Y, Figlin R and Yu H (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69, 2506–2513.
Xing F, Saidou J and Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed) 15, 166–179.
Xu J, Lamouille S and Derynck R (2009) TGF-β-induced epithelial to mesenchymal transition. Cell Res 19, 156–172.
Yamaji H, Izuza T, Koh E, Suzuki M, Otsuji M, Chang H, Motohashi S, Yokoi S, Hiroshima K, Tagawa M et al. (2004) Correlation between interleukin 6 production and tumor proliferation in non-small cell lung cancer. Cancer Immunol Immunother 53, 786–792.
Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC et al. (2008) Abrogation of TGF-β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35.
Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E and Weinberg RA (2015) Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256–260.
Ye X and Weinberg RA (2015) Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 25, 675–686.
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li
W et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.
Zhang P, Sun Y and Ma L (2015) ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14, 481–487.
Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS and Kalluri R (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induce chemoresistance in pancreatic cancer. Nature 527, 525–530.

Supporting information

Additional Supporting Information may be found online in the supporting information tab for this article:

Fig. S1. Specificity of ZEB1 and ZEB2 antibodies and the result of GSEA analysis showing the effect of ZEB1 or ZEB2 siRNA in MDA-231-D cells.
Fig. S2. The effect of ZEB1/2 siRNA on the expression of inflammatory response genes.
Fig. S3. Tissue array analysis of ZEB1 and IL-6 expression using fluorescent immunohistochemistry.
Fig. S4. Efficiency of IL6 siRNA and the amount of ZEB1 protein in 4T1 breast cancer cells.
Table S1. Sequences of the primers used for RT-PCR.
Table S2. A list of ZEB1-bound inflammatory response genes.