ON POINCARÉ, FRIEDRICHS AND KORNS INEQUALITIES ON DOMAINS AND HYPERSURFACES

R. Duduchava

I. Javakhishvili Tbilisi State University, Andreas Razmadze Mathematical Institute, Tamarashvili str. 6, Tbilisi 0177, Georgia; roland.duduchava@tsu.ge

2010 Mathematics Subject Classification: Primary 35J57; Secondary 74J35, 58J32. Key words and phrases: Poincaré inequality, Friedrichs inequality, Poincaré-Korns inequality, Friedrichs-Korns inequality, Open mapping theorem, Bessel potential space, Hypersurface

Abstract

The celebrated Poincaré and Friedrichs inequalities estimate the L^p-norm of a function by the L^p-norm of the gradient. We prove the Poincarné inequality for a domain $\Omega \subset \mathbb{R}^n$ and for a hypersurface $\mathcal{C} \subset \mathbb{R}^n$ based on open mapping theorem of Banach only. For a cylinder which has a hypersurface as a base, is prove stronger inequality, involving only the surface derivatives. Similar inequalities for the uniform C-norm are proved as well. We also estimate \mathbb{H}^m_p-norm of functions prove inequalities for some generalizations of the mentioned inequalities.

We also prove Poincaré-Korns and Friedrichs-Korns inequalities for vector-functions estimating the L^p-norm of a function by the L^p-norm of the deformation tensor only on domains and on hypersurfaces. The proofs are based on the paper [Du10] of the author on Korns inequalities. And again, the norm of the function in a cylinder is estimated by is the deformation tensor on the base of the cylinder.

Introduction

Let $1 \leq p \leq \infty$ and Ω be a bounded connected open subset of the n-dimensional Euclidean space \mathbb{R}^n with a Lipschitz boundary (a domain with the uniform cone property). Then there exists a constant C, depending only on Ω and p such that for every function φ in the Sobolev space $W^1_p(\Omega)$ the celebrated Poincaré inequality holds

$$\|\varphi - \varphi_\Omega\|_{L^p(\Omega)} \leq C\|\nabla \varphi\|_{L^p(\Omega)},$$

(1)

This work was supported by the Shota Rustaveli Georgian National Science Foundation No. GNSF/DI/10/5-101/12, Contract No. 13/14.
where
\[\varphi_\Omega := \frac{1}{\text{mes } \Omega} \int_\Omega \varphi(y) dy \] (2)
is the average value of \(\varphi \) over \(\Omega \). Here \(\text{mes } \Omega \) stands for the Lebesgue measure of the domain \(\Omega \) and the constant \(C \) depends on \(\Omega \) and \(p \) only. When \(\Omega \) is a ball, the above inequality is called a Poincaré inequality, while for more general domains \(\Omega \) inequality (1) is known as a Sobolev inequality (cf., e.g., [DL90]).

Let \(M_0 \) be a subset of the closed domain \(M_0 \subset \overline{\Omega} \) of co-dimension 1 and have non-trivial measure \(\text{mes } M_0 \neq 0 \) (can be a non-trivial part of the boundary). Let \(\varphi^+ \) denote the trace of \(\varphi \) on \(M_0 \). The following
\[\| \varphi \|_{L^p(\Omega)} \leq C \left(\| \nabla \varphi \|_{L^p(\Omega)}^p + \left| \int_{M_0} \varphi^+(x) d\sigma \right|^p \right)^{1/p}, \quad \varphi \in W^1_p(\Omega) \] (3)
is known as Friedrichs inequality for \(M_0 = \partial \Omega, p = 2 \) (see [Tr72, Theorem 6.28.2], [HW08, Theorem 4.1.7]).

If \(M_0 \) is the same as in (3), the next inequality
\[\| \varphi \|_{L^p(\Omega)} \leq C \| \nabla \varphi \|_{L^p(\Omega)} \] (4)
for a function \(\varphi \in \tilde{W}^1_p(\Omega, M_0) \) which vanish on \(M_0 \), is a variant of inequalities (1), (3) (see [Tr72 Theorem 6.28.2], [HW08 Theorem 4.1.7] and [Wl87 Theorem 7.6, Theorem 7.7]).

The inequalities (3) and (4) hold, of course, if \(M_0 \) is a subdomain of \(\Omega \).

In contrast to (1), in inequalities (3) and (4) the domain \(\Omega \) can also be unbounded (might have an infinite measure), provided \(\text{mes } M_0 < \infty \) in (3).

Moreover, for a cylinder \(\Omega := C \times [a, b] \) with a base \(C \) which is a hypersurface in \(\mathbb{R}^n \), we prove a stronger inequality, namely the following
\[\| \varphi \|_{L^p(\Omega)} \leq C \left(\| \nabla C \varphi \|_{L^p(\Omega)}^p + \left| \int_{M_0} \varphi^+(x) d\sigma \right|^p \right)^{1/p}, \quad \varphi \in \tilde{W}^1_p(C), \] (5)
\[\| \varphi \|_{L^p(\Omega)} \leq C \| \nabla C \varphi \|_{L^p(\Omega)} \], \quad \varphi \in \tilde{W}^1_p(\Omega, M_0), \] (6)
where \(\nabla C = (D_1, \ldots, D_n)^\top \) is the surface gradient and \(D_1, \ldots, D_n \) are the Gunter’s derivatives (see § 1), and \(\varphi \in \tilde{W}^1_p(\Omega, M_0) \) vanishes on a \((n - 1)\)-dimensional strip \(M_0 := \Gamma_0 \times [a, b] \) with \(\Gamma_0 \subset \overline{C} \) a \((n - 2)\)-dimensional subset of \(\overline{C} \) (can be a piece of the boundary \(\partial C \)). The inequality (5) is remarkable, because contains only the surface derivatives and does not contains the derivative with respect to the variable \(t \in [a, b] \) transversal to the surface \(C \).
For a cylinder $I_\omega := \omega \times I$, $I := [a, b]$, with a flat base $\omega \subset \mathbb{R}^{n-1}$, the inequalities (5) and (6) have the form

$$\|\varphi\|_{L_p(I_\omega)} \leq C \left[\|\nabla_\omega \varphi\|_{L_p(I_\omega)}^p + \|\varphi\|_{L_p(\Gamma_0 \times I)}^p \right]^{1/p}, \quad \varphi \in \mathbb{W}^1_p(I_\omega),$$

$$\|\varphi\|_{L_p(I_\omega)} \leq C \|\nabla_\omega \varphi\|_{L_p(I_\omega)}, \quad \varphi \in \mathbb{W}^1_p(I_\omega, \Gamma_0 \times I),$$

where $\nabla_\omega(U)$ is the gradient in ω (in \mathbb{R}^{n-1}) and contains only $(n - 1)$ derivatives.

Poincaré and Friedrichs inequalities also hold for a smooth surface

$$\|\varphi - \varphi_C \|_{L_p(C)} \leq C \|\nabla_C \varphi\|_{L_p(C)}, \quad \varphi \in \mathbb{W}^1_p(C),$$

$$\|\varphi\|_{L_p(C)} \leq C \left[\|\nabla_C \varphi\|_{L_p(C)}^p + \left(\int_{\Gamma_0} \varphi^+(x) \, d\sigma \right) \right]^{1/p}, \quad \varphi \in \mathbb{W}^1_p(C)$$

$$\|\varphi\|_{L_p(C)} \leq C \|\nabla_C \varphi\|_{L_p(C)}, \quad \varphi \in \mathbb{W}^1_C(C, \Gamma_0),$$

where φ_C denotes the average value of φ over C:

$$\varphi_C := \frac{1}{\text{mes} C} \int_C \varphi(y) \, d\sigma.$$

Γ_0 is a subset of the closed surface $\Gamma_0 \subset C$ of co-dimension 1 and has non-trivial measure $\text{mes} \Gamma_0 \neq 0$ (Γ_0 can be a non-trivial part of the boundary).

The inequalities (9) and (10) hold, of course, if Γ_0 is a subsurface of C.

The inequality (11) holds for surfaces of finite measure, while the inequality (12) does not needs such constraint and the surface C might have infinite measure.

The following

$$\|\varphi\|_{W^l_p(\Omega)} \leq C \left[\sum_{|\alpha|=m} \|\partial^\alpha \varphi\|_{L_p(\Omega)}^p \right]^{1/p} + \sum_{|\beta|<m} \left(\int_{\mathcal{M}_0} (\partial^\beta \varphi)^+(x) \, d\sigma \right)^{1/p}, \quad \varphi \in \mathbb{W}^m_p(\Omega),$$

$$\|\varphi\|_{W^l_p(\mathcal{M})} \leq C \left[\sum_{|\alpha|=m} \|\partial^\alpha \varphi\|_{L_p(\mathcal{M})}^p \right]^{1/p} + \sum_{|\beta|<m} \left(\int_{\Gamma_0} (\mathcal{D}^\beta \varphi)^+(x) \, d\sigma \right)^{1/p}, \quad \varphi \in \mathbb{W}^m_p(\mathcal{M}),$$

$$\|\varphi\|_{W^l_p(\Omega)} \leq C \left[\sum_{|\alpha|=m} \|\partial^\alpha \varphi\|_{L_p(\Omega)}^p \right], \quad \varphi \in \mathbb{W}^m_p(\Omega, \mathcal{M}_0),$$

$$\|\varphi\|_{W^l_p(\mathcal{M})} \leq C \left[\sum_{|\alpha|=m} \|\partial^\alpha \varphi\|_{L_p(\mathcal{M})}^p \right], \quad \varphi \in \mathbb{W}^m_p(\Omega, \mathcal{M}_0),$$
\[\| \varphi \|_{W^\ell_p(M)} \leq \| \varphi \|_{W^m_p(M)} \leq C \sum_{|\alpha| = m} \| \partial^\alpha \varphi \|_{L^p_p(M)} \quad \varphi \in \tilde{W}^m_p(M, \Gamma_0) \quad (16) \]

for \(\ell < m, m = 2, 3, \ldots \), generalize Poincaré inequalities \([1]\) and \([5]\), while the inequalities

\[\| \varphi \|_{W^\ell_p(\Omega)} \leq \| \varphi \|_{W^m_p(\Omega)} \leq C \left[\sum_{|\alpha| = m} \| \partial^\alpha \varphi \|_{L^p_p(\Omega)} \right]^{1/p} + \int_{\mathcal{M}_0} |\varphi^+(x)|^p d\sigma, \quad (17) \]

\[\varphi \in W^m_p(\Omega), \]

\[\| \varphi \|_{W^\ell_p(M)} \leq \| \varphi \|_{W^m_p(M)} \leq C \left[\sum_{|\alpha| = m} \| \partial^\alpha \varphi \|_{L^p_p(M)} \right]^{1/p} + \int_{\Gamma_0} |\varphi^+(x)|^p d\sigma, \quad (18) \]

\[\varphi \in W^m_p(M) \]

for \(\ell < m, m = 2, 3, \ldots \), generalize Friedrichs inequalities \([3]\) and \([10]\) (see \([13,2]\) Theorem 6.28.2], \([18] \) Theorem 4.1.7])

All above inequalities hold also for the space of 1-smooth functions \(C^1(\Omega) \)-just replace the \(L^p \)-norm by \(\| \varphi \|_{C^1(\Omega)} := \max_{x \in \Omega} |\varphi(x)| \) and \(W^1 \)-norm by \(\| \varphi \|_{C^1(\Omega)} := \max_{x \in \Omega} |\varphi(x)| + \max_{x \in \Omega} |\nabla \varphi(x)| \). For example, the inequality \([1]\) acquires the form

\[\max_{x \in \Omega} |\varphi(x) - \varphi_\Omega(x)| \leq C \max_{x \in \Omega} |\nabla \varphi(x)|. \quad (19) \]

There is only one essential difference: in analogues of inequalities \([1]\), \([12]\), \([9]\), \([13]\) and \([17]\) the sets \(\mathcal{M}_0 \) and \(\Gamma_0 \) can be one point sets.

It turned out, that for vector-functions \(U(x) = (U_1(x), \ldots, U_n(x))^\top \) on a domain \(\Omega \subset \mathbb{R}^n \) even gradient is superfluous in the inequalities \([1]\), \([4]\) and it suffices to take the deformation tensor:

\[\| U \|_{L^p_p(\Omega)} \leq C \left[\| \text{Def} U \|_{L^p_p(\Omega)} \right]^{1/p} + \| U \|_{Q_p^1(\Omega_0)} \], \quad U \in W_p^1(\Omega), (20) \]

\[\| U \|_{L^p_p(\mathcal{C})} \leq C \left[\| \text{Def}_c U \|_{L^p_p(\mathcal{C})} \right]^{1/p} + \| U \|_{Q_p^1(\Gamma_0)} \], \quad U \in W_p^1(\mathcal{C}), (21) \]

\[\| U \|_{L^p_p(\Omega)} \leq C \| \text{Def} U \|_{L^p_p(\Omega)}, \quad U \in \tilde{W}_p^1(\Omega, \mathcal{M}_0), (22) \]

\[\| U \|_{L^p_p(\mathcal{C})} \leq C \| \text{Def}_c U \|_{L^p_p(\mathcal{C})}, \quad U \in \tilde{W}_p^1(\mathcal{C}, \Gamma_0), (23) \]

where \(\mathcal{M}_0 \) and \(\Gamma_0 \) are the same as in \([3]\) and \([10]\), respectively. \(\text{Def}(U) \) and \(\text{Def}_c(U) \) are the domain and the surface deformation tensors, respectively (see \([9]\) and \([10]\)), and only \(\frac{n(n+1)}{2} < n^2 \) different linear combinations of the \(n^2 \) derivatives \(\partial_j U_k \) (of derivatives \(D_j U_k \), respectively; \(j, k = 1, \ldots, n \)) are involved.
For a cylinder $\Omega := C \times [a,b]$ with a base C which is a hypersurface in \mathbb{R}^n and a vector-function $U = (U_1, \ldots, U_n)^\top$, we prove a stronger inequality, namely the following

$$\|U\|_{L^p(\Omega)} \leq C \left\| \text{Def}_C(U) \right\|_{L^p(\Omega)}^p + \|U\|_{L^p(M_0)}^p \right\|^{1/p}, \quad U \in W^1_p(\Omega),$$

(24)

$$\|U\|_{L^p(\Omega)} \leq C \left\| \text{Def}_C(U) \right\|_{L^p(\Omega)}^p,$$

(25)

where $M_0 := \Gamma_0 \times [a,b]$ is a strip, $\Gamma_0 \subset \overline{C}$. The inequality (24) is remarkable, because estimates the vector-function U, instead of $n(n+1)$ derivatives $D_j U_k$, $j = 1, \ldots, n+1, k = 1, \ldots, n$ including the transversal derivatives $D_{n+1} U_k$, $k = 1, \ldots, n$, by only surface deformation tensor $\text{Def}_C(U)$.

For a cylinder $I_\omega := \omega \times I$, $I := [a,b]$, with a flat base $\omega \subset \mathbb{R}^{n-1}$, the inequalities (24) and (25) have the form

$$\|U\|_{L^p(I_\omega)} \leq C \left\| \text{Def}_\omega(U) \right\|_{L^p(I_\omega)}^p + \|U\|_{L^p(\Gamma_0 \times I)}^p \right\|^{1/p},$$

(26)

$$\|U\|_{L^p(I_\omega)} \leq C \left\| \text{Def}_\omega(U) \right\|_{L^p(I_\omega)}^p,$$

(27)

where $\text{Def}_\omega(U)$ is the deformation tensor in ω (in \mathbb{R}^{n-1}) and contains only $\frac{n(n-1)}{2}$ derivatives.

The inequalities (20)-(23) follow from Korns inequalities and we call: (20)-(21) Friedrichs-Korns inequalities and (22)-(23) Poincaré-Korns inequalities.

1 Auxiliaries

Throughout the present paper we will assume that C be a sufficiently smooth hypersurface in \mathbb{R}^n with the Lipschitz boundary $\Gamma := \partial C$ (a surface with the uniform cone property), defined by a real valued smooth function

$$C = \left\{ x \in \Omega : \Psi(x) = 0 \right\},$$

(1)

which is regular $\nabla \Psi(x) \neq 0$. The normalized gradient

$$\nu(x) := \frac{\nabla \Psi(x)}{|\nabla \Psi(x)|}, \quad x \in C$$

(2)

defines the unit normal vector field on C.

The collection of the tangential Günter’s derivatives are defined as follows (cf. [Gu53, KGBB79, DMM06, Du10, Du11])

$$D_j := \partial_j - \nu_j(x) \partial_\nu = \partial_{d_j}, \quad \nu_j(x) := \frac{\partial_j \Psi(x)}{|\nabla \Psi(x)|} \quad j = 1, \ldots, n,$$

(3)
where
\[e^1 = (1, 0, \ldots, 0)^T, \ldots, e^n = (0, \ldots, 0, 1)^T \] (4)
is the natural basis in \(\mathbb{R}^n \) and \(\partial_\nu := \sum_{j=1}^n \nu_j \partial_j \) denotes the normal derivative. For each \(1 \leq j \leq n \), the first-order differential operator \(D_j = \partial_{d^j} \) is the directional derivative along the tangential vector
\[d^j := \pi_S e^j, \quad \langle \nu(x), d^j(x) \rangle \equiv 0, \quad \sum_{j=1}^n \nu_k d^k = 0, \quad j = 1, \ldots, n, \] (5)
the projection of \(e^j \) on the space of tangential vector fields to \(S \).

The surface gradient \(\nabla_S \varphi \) is the collection of the Günter’s derivatives
\[\nabla_S \varphi := (D_1 \varphi, \ldots, D_n \varphi)^T \] (6)
and is an equivalent form of the surface gradient defined in the differential geometry by means of covariant metric tensor (see [DMM06, Du10, Du11]). The next Lemma 1.1 was proved in [Du10, Lemma 1.2].

Lemma 1.1 For \(\varphi \in C^1(\mathcal{S}) \) the surface gradient vanishes \(\nabla_S \varphi \equiv 0 \) if and only if \(\varphi(x) \equiv \text{const.} \)

\(W^{1,p}_p(\Omega) \) and \(W^{1,p}_p(\mathcal{C}) \), \(1 < p < \infty \), denote the Sobolev spaces on a domain \(\Omega \subset \mathbb{R}^n \) and the surface \(\mathcal{C} \) endowed with the norm:
\[\| \varphi \|_{W^{1,p}_p(\Omega)} := \left[\| \varphi \|_{L_p(\Omega)} + \sum_{j=1}^n \| \partial_j \varphi \|_{L_p(\Omega)} \right]^{1/p} \] (7)
and, respectively,
\[\| \varphi \|_{W^{m,p}_p(\mathcal{C})} := \left[\| \varphi \|_{L_p(\Omega)} + \sum_{j=1}^n \| D_j \varphi \|_{L_p(\mathcal{C})} \right]^{1/p} . \] (8)

Let us define the space \(\widetilde{W}^{1,p}_p(\Omega, \mathcal{M}_0) \) for a domain \(\Omega \subset \mathbb{R}^n \) with a Lipshitz boundary \(\mathcal{M} := \partial \Omega \) and a subsurface \(\mathcal{M}_0 \subset \mathcal{M} \) of non-zero measure as the closure in \(\mathcal{W}^{1,p}_p(\Omega) \) of the set \(C^\infty(\Omega, \mathcal{M}_0) \) of smooth functions \(\varphi(x) \) which have vanishing traces on \(\mathcal{M}_0 \), i.e. \(\varphi^+(x) = 0 \) for all \(x \in \mathcal{M}_0 \). The space \(\widetilde{W}^{1,p}_p(\Omega, \mathcal{M}_0) \) inherits the standard norm \(\| \varphi \|_{W^{1,p}_p(\Omega)} \) from the space \(W^{1,p}_p(\Omega) \) (see (7)).

If \(\mathcal{C} \) is a subsurface of a closed surface \(\mathcal{S} \) without boundary, \(\widetilde{W}^{1,p}_p(\mathcal{C}) \) denotes the space of functions \(\varphi \in W^{1,p}_p(\mathcal{S}) \), supported in \(\overline{\mathcal{C}} \). Let \(\mathcal{C}^c = \mathcal{S} \setminus \mathcal{C} \) be the complemented surface with the common boundary \(\partial \mathcal{C} = \partial \mathcal{C}^c = \Gamma \); The notation \(\widetilde{W}^{1,p}_p(\mathcal{C}) \) is used for
the factor space $W^1_p(C)/\overline{W}^1_p(C^c)$. The space $W^s_p(C)$ can also be interpreted as the space of restrictions $r_C\varphi := \varphi|_C$ of all functions $\varphi \in W^1_p(S)$ to the subsurface C.

Similarly are defined the spaces $\overline{W}^1_p(\Omega)$ and $W^1_p(\Omega)$ for a domain $\Omega \subset \mathbb{R}^n$.

We refer to [?, Du10, Du11] for details about these spaces.

For an n-vector-function $U(x) = (U_1(x), \ldots, U_n(x))^\top$ on a domain in the Euclidean space $\Omega \subset \mathbb{R}^n$ the deformation tensor reads

$$\text{Def}(U) = [D_{jk}(U)]_{n \times n}, \quad D_{jk}(U) := \frac{1}{2} [\partial_j U_k + \partial_k U_j].$$

The following form of the important deformation (strain) tensor on a surface \mathcal{C} was identified in [DMM06]:

$$\text{Def}_C(U) = [\mathcal{D}_{jk}(U)]_{n \times n}, \quad U = \sum_{j=1}^n U_j \mathbf{d}^j \in \mathcal{V}(\mathcal{C}), \quad j, k = 1, \ldots, n,$$

\begin{equation}
\mathcal{D}_{jk}(U) := \frac{1}{2} \left((D^S_{jk} U)_k + (D^S_{kj} U)_j \right) = \frac{1}{2} \left[D_k U_j + D_j U_k + \sum_{m=1}^n U_m D_m (\nu_j \nu_k) \right],
\end{equation}

where $(D^S_{jk} U)_k := \langle D^S_{jk} U, \mathbf{e}^k \rangle$ and $\mathcal{V}(\mathcal{C})$ is the linear space of all tangential vector-functions to the surface \mathcal{C}.

A vector $U \in \overline{W}^1_p(\Omega)$ is called a rigid motion if $\text{Def}(U) = 0$ and a vector $V \in W^1_p(\mathcal{C})$ is called a Killings vector field on the surface \mathcal{C} if $\text{Def}_C(V) = 0$.

The next Theorem 1.2 (Korns I inequality for domains “without boundary condition”) is well known (see [Ci00] for a simple proof when $p = 2, m = 1$ and see [Du10] Theorem 2.3 for a general case).

Theorem 1.3 is proved in [Du10] Theorem 2.3]. P. Ciarlet proved it in [Ci00] for the case $p = 2, m = 1$, manifold without boundary, for curvilinear coordinates and covariant derivatives.

Theorem 1.2 Let $1 < p < \infty$, $\Omega \subset \mathbb{R}^n$ be a domain with the Lipshitz boundary and

$$\|\text{Def}(U)\|_{L^p(\Omega)} := \left[\sum_{j,k=1}^n \|D_{jk}(U)\|_{L^p(\Omega)}^p \right]^{1/p}, \quad U \in \overline{W}^1_p(\Omega).$$

Then the inequality

$$\|U\|_{\overline{W}^1_p(\Omega)} \leq M \left[\|U\|_{L^p(\Omega)}^p + \|\text{Def}(U)\|_{L^p(\Omega)}^p \right]^{1/p}$$

holds with some constant $M > 0$ or, equivalently, the equality

$$\|U\|_{\overline{W}^1_p(\Omega)}_0 := \left[\|U\|_{L^p(\Omega)}^p + \|\text{Def}(U)\|_{L^p(\Omega)}^p \right]^{1/p}$$

defines an equivalent norm on the space $\overline{W}^1_p(\Omega)$.

A rigid motion U, $\text{Def}(U) = 0$, has the unique continuation property: if $U(x) = 0$ on a set \mathcal{M}_0 described in [33], than $U(x) = 0$ everywhere on Ω. 7
Theorem 1.3 Let $1 < p < \infty$, $C \subset \mathbb{R}^n$ be a Lipshitz hypersurface with or without boundary and (see (10) for the deformation tensor $\text{Def}_C(V)$)

$$\|\text{Def}_C(V)\|_{L^p(C)} := \left[\sum_{j,k=1}^n \|\mathcal{D}_{jk}(V)\|_{L^p(C)}^p \right]^{1/p}, \quad V \in W^1_p(C).$$

Then the inequality

$$\|V\|_{W^1_p(C)} \leq M \left[\|V\|_{L^p(C)}^p + \|\text{Def}_C(V)\|_{L^p(C)}^p \right]^{1/p}$$

holds with some constant $M > 0$ or, equivalently, the equality

$$\|V\|_{W^1_p(C)} := \left[\|V\|_{L^p(C)}^p + \|\text{Def}_C(V)\|_{L^p(C)}^p \right]^{1/p}$$

defines an equivalent norm on the space $W^1_p(S)$.

A Killing vector field V, $\text{Def}_C(V) = 0$, has the unique continuation property: if $V(x) = 0$ on a set Γ_0 described in (10), then $V(x) = 0$ everywhere on C.

For the proofs of the next Theorem 1.4 and Theorem 1.5 (Korns II inequality for domains “with boundary condition”) we refer to the same sources [Ci00, Du10] mentioned above.

Theorem 1.4 Let $1 < p < \infty$, $\Omega \subset \mathbb{R}^n$ be a domain with the Lipshitz boundary. Then the inequality

$$\|U\|_{W^1_p(\Omega)} \leq M \|\text{Def}(U)\|_{L^p(\Omega)}$$

holds with some constant $M > 0$ or, equivalently, the equality

$$\|U\|_{W^1_p(\Omega)} := \|\text{Def}(U)\|_{L^p(\Omega)}$$

defines an equivalent norm on the space $W^1_p(\Omega)$.

Theorem 1.5 Let $1 < p < \infty$, $C \subset \mathbb{R}^n$ be a Lipshitz hypersurface with boundary. Then the inequality

$$\|V\|_{W^1_p(C)} \leq M \|\text{Def}_C(V)\|_{L^p(C)}$$

holds with some constant $M > 0$ or, equivalently, the equality

$$\|V\|_{W^1_p(C)} := \|\text{Def}_C(V)\|_{L^p(C)}$$

defines an equivalent norm on the space $W^1_p(C)$.
Remark 1.6 A remarkable consequences of the foregoing theorems are the facts that the spaces $W^1_p(\Omega)$ and $\hat{W}^1_p(\Omega)$ (as well as the spaces $W^1_p(C)$ and $\hat{W}^1_p(C)$), where

$$\hat{W}^1_p(\Omega) := \left\{ \mathbf{U} = (U_1 \ldots, U_n)^\top : U_j, D_{jk}(\mathbf{U}) \in L^p(\Omega) \text{ for all } j, k = 1, \ldots n \right\}$$

$$\hat{W}^1_p(C) := \left\{ \mathbf{V} = (V_1 \ldots, V_n)^\top : V_j, D_{jk}(\mathbf{V}) \in L^p(C) \text{ for all } j, k = 1, \ldots n \right\}$$

are isomorphic (i.e., can be identified), although only $\frac{n(n+1)}{2} < n^2$ linear combinations of the n^2 derivatives $\partial_j U_k$ (of derivatives $D_j U_k$, respectively), $j, k = 1, \ldots n$ are involved in the definition of the equivalent norms in (13) and (13) (of the norms in (18) and (20), respectively).

The next Lemma 1.7 is a slight generalization of [Tr72, Theorem 6.28.2] proved there for $p = 2$.

Lemma 1.7 Let Ω be a bounded domain with the Lipschitz boundary (a surface with the uniform cone property), $m = 1, 2, \ldots$, $1 \leq p < \infty$ and let $F(\varphi)$ be a non-negative continuous functional on the Sobolev space $W^m(\Omega)$:

i. $F : W^m(\Omega) \to \mathbb{R}$ and $F(\lambda \varphi) = |\lambda| F(\varphi)$ for all complex $\lambda \in \mathbb{C}$ and all functions $\varphi \in H^m(\Omega)$;

ii. $0 \leq F(\varphi) \leq C \|\varphi\|_{W^m_p(\Omega)}$ for some constant $C > 0$ and $F(P) \neq 0$ for all polynomials of degree less than m.

Then the formula

$$\|\varphi\|_{W^m_p(\Omega)} := \left[\sum_{|\alpha| = m} \|\partial^\alpha \varphi\|_{L^p(\Omega)}^p + F^p(\varphi) \right]^{1/p}$$

(21)

defines an equivalent norm on the Sobolev space $W^m(\Omega)$.

Lemma is valid if we replace Ω by a hypersurface C and partial derivatives ∂^α by Günter derivatives D^α.

Proof: Let us note that $\|\varphi\|_{W^m_p(\Omega)}$ in (21) defines a norm on $W^m_p(\Omega)$ indeed. Since other properties are trivial to check, we will only check that $\|\varphi\|_{W^m_p(\Omega)} = 0$ implies $\varphi = 0$. Then $F(\varphi) = 0$ and all derivatives of order m vanish: $\partial^\alpha \varphi = 0$ for all $|\alpha| = m$. The latter means that the corresponding function is polynomial of order less than m, i.e., $\varphi(x) = \sum_{|\beta| < m} c_\beta x^\beta$. Since $F(\varphi) = 0$, we get $\varphi \equiv 0$ due to the property (ii).
Due to the condition (ii) holds the inequality
\[
\|\psi\|_{W^m_p(\Omega)} \leq \left[\sum_{\alpha=m} \|\partial^\alpha \varphi\|_{L^p(\Omega)} \right]^p + \|\psi\|_{W^m_p(\Omega)}^{1/p} \leq 2^{1/p} \|\psi\|_{W^m_p(\Omega)}.
\]

Therefore the embedding of the spaces \(W^1_p(\Omega) \subset W^1_{p,F}(\Omega)\), where \(W^1_{p,F}(\Omega)\) is the closure of \(C^m(\Omega)\) with respect to the norm \(\|\psi\|_{W^m_p(\Omega)}\), is continuous.

If we apply the open mapping theorem of Banach (see [Ru73, Theorem 2.11, Corollary 2.12.b]), we conclude that the inverse inequality
\[
\|\psi\|_{W^1_p(\Omega)} \leq C\|\psi\|_{W^1_{p,F}(\Omega)} := C\|\nabla \psi\|_{L^p(\Omega)}
\]
holds and accomplishes the proof. \(\square\)

2 Proofs of the basic inequalities

Proof of inequality (1): Let \(W^1_{p,\#}(\Omega)\) denote the subspace of \(W^1_{p,\#}(\Omega)\), consisting of functions with mean value zero:
\[
\varphi_{\Omega} := \frac{1}{\text{mes } \Omega} \int_\Omega \varphi(y)dy = 0.
\]

The formula
\[
\|\varphi\|_{W^1_{p,\#}(\Omega)} := \|\nabla \varphi\|_{L^p(\Omega)}
\]
defines an equivalent norm in the space \(W^1_{p,\#}(\Omega)\). Since other properties are trivial to check, we only have to check that \(\|\varphi\|_{W^1_{p,\#}(\Omega)} = \|\nabla \varphi\|_{L^p(\Omega)} = 0\) implies \(\varphi = 0\). Indeed, the trivial norm implies that the gradient vanishes \(\nabla \varphi = 0\), which means that the corresponding function is constant \(\varphi = C_0 = \text{const}\); since the mean value is zero \(\varphi_{\Omega} = C_0 = 0\) and \(\varphi \equiv 0\).

The inequality \(\|\psi\|_{W^1_{p,\#}(\Omega)} \leq \|\psi\|_{W^1_p(\Omega)}\), where
\[
\|\psi\|_{W^1_p(\Omega)} := \left[\|\psi\|_{L^p(\Omega)}^p + \|\nabla \psi\|_{L^p(\Omega)}^p \right]^{1/p}
\]
is the standard subspace norm on \(W^1_{p,\#}(\Omega)\) is trivial. Therefore the embedding \(W^1_{p,\#}(\Omega) \subset W^1_p(\Omega)\) with the appropriate norms is continuous and proper, since constants belong to \(W^1_p(\Omega)\) but not to \(W^1_{p,\#}(\Omega)\).

If we apply the open mapping theorem of Banach (see [Ru73, Theorem 2.11, Corollary 2.12.b]), we conclude that the inverse inequality
\[
\|\psi\|_{W^1_p(\Omega)} \leq C_1\|\psi\|_{W^1_{p,\#}(\Omega)} = C_1\|\nabla \psi\|_{L^p(\Omega)}
\]
holds with some constant $C_1 < \infty$ for all $\psi \in W^1_{p,\#}(\Omega)$ (see [1172 Theorem 6.28.2] for a similar proof).

Since $\varphi_0 := \varphi - \varphi_\Omega \in W^1_{p,\#}(\Omega)$, we have

$$\|\varphi - \varphi_\Omega \| W^1_p(\Omega) = \|\varphi - \varphi_\Omega \| L_p(\Omega) + \|\nabla\varphi \| L_p(\Omega) \leq C_1^p \|\nabla\varphi \| L_p(\Omega).$$

The claimed inequality (1) follows with the constant $C := (C_1^p - 1)^{1/p}$. □

Proof of inequalities (3), (4), (13) and (16): Inequalities (1) and (15) are particular cases of (13). Inequality (13) follows from (21) if the functional F is chosen as follows:

$$F(\varphi) := \left[\sum_{|\beta| < m} \left| \int_{\mathcal{M}_0} (\partial^\beta \varphi)^+(x) \, d\sigma \right|^p \right]^{1/p}.$$

The condition $F(\varphi) \leq C \|\varphi \| W^m_p(\Omega)$ (see Lemma [7] ii) holds due to the Sobolev’s continuous embeddings $W^m_{p-k-1/p}(\mathcal{M}_0) \subset L_p(\mathcal{M}_0)$, $k = 0, 1, \ldots, m - 1$, and the trace theorem

$$\|(\partial^\beta \varphi)^+ \| W^m_{p-k-1/p}(\mathcal{M}_0) \leq C_1 \|\varphi \| W^m_p(\Omega), \quad |\beta| < m. \quad \Box$$

Proof of inequalities (9), (10), (11), (14) and (16): Inequality (9) is proved verbatim to (1).

Inequalities (10), (11) and (16) follow from (14) (are particular cases). Inequality (14) follows from (21) for surfaces if the functional F is chosen as follows:

$$F(\varphi) := \left[\sum_{|\beta| < m} \left| \int_{\Gamma_0} (D^\beta \varphi)^+(x) \, d\sigma \right|^p \right]^{1/p}.$$

The condition $F(\varphi) \leq C \|\varphi \| W^m_p(\mathcal{C})$ (see Lemma [7] ii) holds due to the Sobolev’s continuous embeddings $W^m_{p-k-1/p}(\Gamma_0) \subset L_p(\Gamma_0)$, $k = 0, 1, \ldots, m - 1$, and the trace theorem

$$\|(D^\beta \varphi)^+ \| W^m_{p-k-1/p}(\Gamma_0) \leq C_1 \|\varphi \| W^m_p(\mathcal{C}), \quad |\beta| < m. \quad \Box$$

Proof of inequalities (5) and (6): Let $\Omega := C \times [a, b]$ and $\mathcal{M}_0 := \Gamma_0 \times [a, b]$. To prove the inequality (5) we proceed similarly: the formula

$$\|\varphi \| W^1_p(\Omega) := \left[\|\nabla\varphi \| L_p(\Omega) \right]^p + \int_{\mathcal{M}_0} |\varphi^+(x)|^p \, d\sigma \right]^{1/p}.$$
defines a norm in the space $W^1_p(C)$. Indeed, we have to check that $||\varphi||_{W^1_p(\Omega)} = 0$, which implies
\[
\nabla C \varphi(x, t) = 0 \quad \forall x \in C, \quad t \in [a, b], \quad \int_{M_0} |\varphi^+(\tau, t)|^p d\sigma = 0, \tag{3}
\]
gives $\varphi = 0$. But from the first equality in (3), due to Lemma 1.1, follows $\varphi(x, t) = \varphi(t)$ is independent of the surface variable. But since $\varphi(\tau, t) = 0$ on M_0 (see the second equality in (3)), the function vanishes on the entire level surface $C \times \{t\}$ for all $t \in [a, b]$. Then $\varphi = 0$ in Ω.

Due to Sobolev’s continuous embedding $W^{1-1/p}(\mathcal{M}_0) \subset L^p(\mathcal{M}_0)$ and the trace theorem
\[
||\varphi||_{W^{1/p}(\mathcal{M}_0)} \leq C_1 ||\varphi||_{W^1_p(\Omega)} \tag{4}
\]
(see [?]), the initial norm in the space $W^1_p(\Omega)$
\[
||\varphi||_{W^1_p(\Omega)} := [||\varphi||_{L^p(\Omega)} + ||\partial_t \varphi||_{L^p(\Omega)} + \|\nabla C \varphi||_{L^p(\Omega)}]^2]^{1/p}
\]
(see [Du10, Du11]) estimates, obviously, the introduced norm
\[
\|\nabla C \varphi||_{W^1_p(\Omega)} \leq C_2 ||\varphi||_{W^1_p(\Omega)}.
\]
Then from open mapping theorem of Banach follows the inverse inequality
\[
||\varphi||_{L^p(\Omega)} \leq ||\varphi||_{W^1_p(\Omega)} \leq C \|\varphi||_{W^1_p(\Omega)} = 0
\]
and this accomplishes the proof of (5).

The inequality (3) is a direct consequence of (5). □

Proof of inequalities (9): The proof is verbatim to the proof of inequality (11), using the standard norm (8) and the equivalent norm $||\nabla C \varphi||_{L^p(\Omega)}$ on the space $W^{1,p}(C)$. We also have to apply Lemma 1.1 to conclude that $\nabla C \varphi = 0$ for $\varphi \in W^1_p(C, \Gamma_0)$ implies $\varphi \equiv 0$. □

Proof of inequalities (10), (11) and (14): Inequality (11) is a particular case of (10) (and of (9)), while (10) is, in its turn, a particular case, $m = 1$, of (14). Inequality (14) follows from (21) if the functional F is chosen as follows:
\[
F(\varphi) := \left[\sum_{|\beta| < m} \int_{M_0} (\partial^\beta \varphi)^+(x) d\sigma \right]^{1/p}
\]
The condition $F(\varphi) \leq C ||\varphi||_{W^m_p(\Omega)}$ (see Lemma 1.7) holds due to the Sobolev’s continuous embeddings $W^{m-1/p}(\mathcal{M}_0) \subset L^p(\mathcal{M}_0)$ and the trace theorem
\[
||\varphi^+||_{W^{m-1/p}(\mathcal{M}_0)} \leq C_1 ||\varphi||_{W^m_p(\Omega)}.
\]

12
Proof of inequalities (17) and (18): These inequalities follow from (21) if the functional F is chosen as follows

$$F(\varphi) := \left[\int_{\mathcal{M}_0} |\varphi^+(x)|^p d\sigma \right]^{1/p}$$

for a domain Ω and

$$F(\varphi) := \left[\int_{\Gamma_0} |\varphi^+(x)|^p d\sigma \right]^{1/p}$$

for a hypersurface \mathcal{C} (see (4) for the justification of the condition $F(\varphi) \leq C\|\varphi\|_{H^m}$ in Lemma 1.7.ii).

Proof of inequality (19) (and of similar ones): For the space of smooth functions $C^1(\Omega)$ the proof is verbatim to the cases of the space $W^{1,p}(\Omega)$.

Proof of inequalities (20) and (21): Based on the unique continuation property (see Theorem 1.2 and Theorem 1.3), we prove easily that

$$\|U\|_{W^{1,p}_p(\Omega)} := \left[\|\text{Def} U\|_{L_p(\Omega)}^p + \|U^+\|_{L_p(\mathcal{M}_0)}^p \right]^{1/p},$$

$$\|U\|_{W^{1,p}_p(\mathcal{C})} := \left[\|\text{Def}_C U\|_{L_p(\mathcal{C})}^p + \|U^+\|_{L_p(\Gamma_0)}^p \right]^{1/p}$$

define norms in the spaces $W^{1,p}_p(\Omega)$ and in $W^{1,p}_p(\mathcal{C})$, respectively. Then the obvious inequalities

$$\|U\|_{W^{1,p}_p(\Omega)} \leq \|U\|_{W^{1,p}_p(\Omega)} \quad \text{and} \quad \|U\|_{W^{1,p}_p(\mathcal{C})} \leq \|U\|_{W^{1,p}_p(\mathcal{C})},$$

with the equivalent norms on the spaces $W^{1,p}_p(\Omega)$ and in $W^{1,p}_p(\mathcal{C})$ defined in (13) and (16) (see Theorem 1.4 and Theorem 1.5) and the open mapping theorem of Banach ensure that the inverse inequalities

$$\|U\|_{L_p(\Omega)} \leq C_1\|U\|_{W^{1,p}_p(\Omega)} \quad \text{and} \quad \|U\|_{L_p(\mathcal{C})} \leq C_1\|U\|_{W^{1,p}_p(\mathcal{C})},$$

hold and accomplish the proof.

Proof of inequalities (22) and (23): These inequalities are obvious consequences of (20) and (21).

Proof of inequalities (24) and (25): Inequality (24) is proved verbatim to inequality (3) by using, instead of Lemma 1.1, the unique continuation property of Killing’s vector fields, solutions to the equations system $\text{Def}_C U = 0$ (see Theorem 1.3).

Inequality (25) is an obvious consequence of (24).
References

[Ca00] P.G. Ciarlet, *Mathematical Elasticity, Vol. III: Theory of Shells*, Studies in Mathematics and Applications, 29, Elsevier, North-Holland, Amsterdam, 2000.

[DL90] R. Dautray, J.-L. Lions, *Mathematical Analysis and Numerical Methods for Science and Technology*, Springer-Verlag, Berlin 1990.

[Du10] R. Duduchava, Lions’s lemma, Korns inequalities and Lamé operator on hypersurfaces, *Operator Theory: Advances and Applications*, Vol. 210, 43-77, 2010 Springer AG, Basel.

[Du11] R. Duduchava, A revised asymptotic model of a shell. *Memoirs on Differential Equations and Mathematical Physics* 52, 2011, 65-108.

[DMM06] R. Duduchava, D. Mitrea, M. Mitrea, Differential operators and boundary value problems on surfaces. *Mathematische Nachrichten* 279, No. 9-10 (2006), 996-1023.

[Gu53] N. Günter, *Potential Theory and its Application to the Basic Problems of Mathematical Physics*, Fizmatgiz, Moscow 1953 (Russian. Translation in French: Gauthier-Villars, Paris 1994).

[HW08] G. C. Hsiao & W. L. Weendland, *Boundary Integral Equations*, Applied Mathematical Sciences, Springer-Verlag Berlin Heidelberg, 2008.

[KGBB79] V. Kupradze, T. Gegelia, M. Basheleishvili, T. Burchuladze, *Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoe-lasticity*, North-Holland, Amsterdam 1979 (Russian edition: Nauka, Moscow 1976).

[Ru73] W. Rudin, *Functional Analysis*, McGraw-Hill Company. New York 1973.

[Tr95] H. Triebel, *Interpolation Theory, Function Spaces, Differential Operators*, 2nd edition, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig 1995.

[Tr72] H. Triebel, *Höhere Analysis*, Dt. Verlag d. Wissenschaften, Berlin, 1972 (English translation: *Higher analysis*, Huthig Pub Limited, 1992).

[Wl87] J. Wloka, *Partial Differential Equations*, Cambridge University Press, Cambridge, 1987.