The effectiveness of serious games in alleviating anxiety: A systematic review and meta-analysis

Alaa Abd-alrazaq, Mohannad Alajlani, Dari Alhuwail, Jens Schneider, Laila Akhu-Zaheya, Arfan Ahmed, Mowafa Househ

Submitted to: JMIR Serious Games on: August 31, 2021

Disclaimer: © The authors. All rights reserved. This is a privileged document currently under peer-review/community review. Authors have provided JMIR Publications with an exclusive license to publish this preprint on its website for review purposes only. While the final peer-reviewed paper may be licensed under a CC BY license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.
Table of Contents

Original Manuscript ... 5
Supplementary Files .. 34
Figures ... 35
 Figure 1 .. 36
 Figure 2 .. 37
 Figure 3 .. 38
 Figure 4 .. 39
 Figure 5 .. 40
 Figure 6 .. 41
Multimedia Appendixes ... 42
 Multimedia Appendix 1 .. 43
 Multimedia Appendix 2 .. 43
 Multimedia Appendix 3 .. 43
 Multimedia Appendix 4 .. 43
 Multimedia Appendix 5 .. 43
The effectiveness of serious games in alleviating anxiety: A systematic review and meta-analysis

Alaa Abd-alrazaq¹ PhD; Mohannad Alajlani² PhD; Dari Alhuwail³,⁴ PhD; Jens Schneider¹ PhD; Laila Akhu-Zaheya⁵ PhD; Arfan Ahmed¹ PhD; Mowafa Househ¹ PhD

¹Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Doha QA
²Institute of Digital Healthcare, WMG, University of Warwick Warwick GB
³Health Informatics Unit, Dasman Diabetes Institute Kuwait KW
⁴Information Science Department, College of Life Sciences, Kuwait University Kuwait KW
⁵Department of Adults Health Nursing, Nursing Faculty, Jordan University of Science and Technology, Irbid JO

Corresponding Author:
Mowafa Househ PhD
Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation P.O. Box 34110, Doha Al Luqta St, Ar-Rayyan Doha QA

Abstract

Background: Anxiety is one of the mental disorders characterized by apprehension, tension, uneasiness, and other related behavioral disturbances. One of the non-pharmacological treatments used for reducing anxiety is serious games, which are games that have a purpose other than entertainment. The effectiveness of serious games in alleviating anxiety was investigated by several systematic reviews, however, they are limited by design and methodological weaknesses.

Objective: This study aims to assess the effectiveness of serious games in alleviating anxiety through summarizing the results of previous studies and providing an up-to-date review.

Methods: We carried out a systematic review of randomized controlled trials (RCTs). We searched 7 databases: MEDLINE, CINAHL, PsycINFO, ACM Digital Library IEEE Xplore, Scopus, and Google Scholar. We also conducted backward and forward reference list checking of the included studies and relevant reviews. Two reviewers independently carried out the study selection, data extraction, risk of bias assessment, and quality of evidence appraisal. We used a narrative and statistical approach, as appropriate, to synthesize results of the included studies.

Results: Out of 935 citations retrieved, 33 studies were included in this review. Of those, 22 RCTs were eventually included in meta-analyses. Very low quality evidence from 9 RCTs and 5 RCTs showed no statistically significant effect of exergames (games entailing physical exercises) on the anxiety level as compared to conventional exercises (P=0.70) and no intervention (P=0.27), respectively. While 6 RCTs demonstrated a statistically and clinically significant effect of computerized cognitive behavioral therapy (CBT) games on the anxiety level when compared with no intervention (P=0.01), the quality of the evidence reported was low. Likewise, low quality evidence from 3 RCTs showed a statistically and clinically significant effect of biofeedback games on the anxiety level when compared with conventional video games (P=0.03).

Conclusions: This review shows that serious games have the potential in alleviating anxiety levels. However, our findings remain inconclusive mainly due to the high risk of bias in the individual studies included, the low quality of meta-analyzed evidence, few studies included in some meta-analyses, patients without anxiety recruited in most studies, and using purpose-shifted serious games in most studies. Therefore, serious games should be deemed as complementary to existing interventions. To have adequate and robust evidence, researchers should use serious games that are designed specifically to alleviate depression and deliver other therapeutic modalities, recruit a diverse population of patients with anxiety, and minimize the risk of bias by following the recommended guidelines for conducting and reporting RCTs.

(JMIR Preprints 31/08/2021:29137)
DOI: https://doi.org/10.2196/preprints.29137

https://preprints.jmir.org/preprint/29137 [unpublished, non-peer-reviewed preprint]
Preprint Settings

1) Would you like to publish your submitted manuscript as preprint?

✔ Please make my preprint PDF available to anyone at any time (recommended).
 Please make my preprint PDF available only to logged-in users; I understand that my title and abstract will remain visible to all users.
 Only make the preprint title and abstract visible.
 No, I do not wish to publish my submitted manuscript as a preprint.

2) If accepted for publication in a JMIR journal, would you like the PDF to be visible to the public?

✔ Yes, please make my accepted manuscript PDF available to anyone at any time (Recommended).
 Yes, but please make my accepted manuscript PDF available only to logged-in users; I understand that the title and abstract will remain visible.
 Yes, but only make the title and abstract visible (see Important note, above). I understand that if I later pay to participate in the PubMed Now! service, my accepted manuscript PDF will automatically be made openly available.

https://preprints.jmir.org/preprint/29137
[unpublished, non-peer-reviewed preprint]
Original Manuscript
The effectiveness of serious games in alleviating anxiety: A systematic review and meta-analysis
Alaa Abd-alrazaqa; Mohannad Alajlani; Dari Alhuwail; Jens Schneider; Laila Akhu-Zaheya; Arfan Ahmed; Mowafa Househ*

a Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
b Institute of Digital Healthcare, WMG, University of Warwick, Warwick, United Kingdom
c Information Science Department, College of Life Sciences, Kuwait University, Kuwait
d Health Informatics Unit, Dasman Diabetes Institute, Kuwait
e Department of Adults Health Nursing, Nursing Faculty, Jordan University of Science and Technology, Jordan

* Corresponding author.
Dr. Mowafa Househ
E-mail address: mhouseh@hbku.edu.qa
Abstract

Background: Anxiety is one of the mental disorders characterized by apprehension, tension, uneasiness, and other related behavioral disturbances. One of the non-pharmacological treatments used for reducing anxiety is serious games, which are games that have a purpose other than entertainment. The effectiveness of serious games in alleviating anxiety was investigated by several systematic reviews, however, they are limited by design and methodological weaknesses.

Objective: This study aims to assess the effectiveness of serious games in alleviating anxiety through summarizing the results of previous studies and providing an up-to-date review.

Methods: We carried out a systematic review of randomized controlled trials (RCTs). We searched 7 databases: MEDLINE, CINAHL, PsycINFO, ACM Digital Library IEEE Xplore, Scopus, and Google Scholar. We also conducted backward and forward reference list checking of the included studies and relevant reviews. Two reviewers independently carried out the study selection, data extraction, risk of bias assessment, and quality of evidence appraisal. We used a narrative and statistical approach, as appropriate, to synthesize results of the included studies.

Results: Out of 935 citations retrieved, 33 studies were included in this review. Of those, 22 RCTs were eventually included in meta-analyses. Very low quality evidence from 9 RCTs and 5 RCTs showed no statistically significant effect of exergames (games entailing physical exercises) on the anxiety level as compared to conventional exercises (P=0.70) and no intervention (P=0.27), respectively. While 6 RCTs demonstrated a statistically and clinically significant effect of computerized cognitive behavioral therapy (CBT) games on the anxiety level when compared with no intervention (P=0.01), the quality of the evidence reported was low. Likewise, low quality evidence from 3 RCTs showed a statistically and clinically significant effect of biofeedback games on the anxiety level when compared with conventional video games (P=0.03).

Conclusions: This review shows that serious games have the potential in alleviating anxiety levels. However, our findings remain inconclusive mainly due to the high risk of bias in the individual studies included, the low quality of meta-analyzed evidence, few studies included in some meta-analyses, patients without anxiety recruited in most studies, and using purpose-shifted serious games in most studies. Therefore, serious games should be deemed as complementary to existing interventions. To have adequate and robust evidence, researchers should use serious games that are designed specifically to alleviate depression and deliver other therapeutic modalities, recruit a diverse population of patients with anxiety, and minimize the risk of bias by following the recommended guidelines for conducting and reporting RCTs.

Keywords: Serious games; Exergames; Anxiety; Computerized cognitive behavioral therapy games; Biofeedback games; Systematic reviews; Meta-analysis

Introduction

Background

Mental disorders are conditions that can be episodic and occasional or chronic and long-lasting, thus affecting one’s mood, feelings, thinking, and behaviors [1]. Mental disorders are among the most significant causes of death worldwide [2]. There is a growing burden of disability-related to mental disorders [3]. The American Psychiatric Association estimated that as much as one-third of the population suffers from a mental disorder once in their lifetime [4]. Globally, the prevalence of mental disorders among the general population was estimated to be “28.0% for depression; 26.9% for anxiety; 24.1% for post-traumatic stress symptoms; 36.5% for stress; 50.0% for psychological distress; and 27.6% for sleep problems” [5].

Anxiety is a normal response to situations in human life. However, excessively, it may indicate
anxiety disorders, which are one of the mental disorders characterized by apprehension, tension, uneasiness, and other related behavioral disturbances. They are potentially coupled with other physiological symptoms such as shortness of breath, headaches, nausea, and abdominal pain [6, 7]. Anxiety disorders are among the most prevalent mental disorders globally. Anxiety disorders include separation anxiety disorder, phobia, social anxiety disorder, panic disorder, and substance/medication-induced anxiety disorder [8]. Anxiety disorders affect all age groups, including children and adolescents [9] and can be debilitating in nature causing significant impairment in one’s social and professional functioning [10]. Evidence revealed a strong association between anxiety and mortality rate among healthy individuals [11, 12]. Anxiety contributes to a decrease in the quality of life and other health-related problems [12]. Globally, over 45 million incidents are estimated to be attributed to anxiety disorders, which, in turn, are responsible for approximately 28.68 million disability-adjusted life years [13, 14].

Despite the prevalence of anxiety disorders, they often go undetected and undertreated [15]. Anxiety requires treatment and management because of stimulation of the sympathetic system that would lead to adverse effects. Treatment for anxiety disorders can be divided into pharmacological treatments (e.g., psychotropic medications) and non-pharmacological treatments (e.g., cognitive-behavioral therapy (CBT)) [16, 17]. Although the use of pharmacological treatments can be effective for the treatment of anxiety disorders, they could cause many adverse events and would not be effective for everyone. Therefore, non-pharmacological treatments have been used to reduce anxiety levels [18, 19].

One of the non-pharmacological treatments used for reducing anxiety is serious games, which are games that have a purpose other than entertainment [20-23]. In recent years, the popularity and adoption of serious games have been on the rise due to their ability to educate and influence change in one’s experience or behaviors [24, 25]. Evidence suggests that serious games can enable the player to experience more meaningful, engaging, and challenging learning compared to other traditional interventions or methods used for reliving anxiety [26].

Research Gap and Aim

Various studies assessed the effectiveness of serious games in alleviating anxiety. Examining and summarizing the evidence from these various studies is critical to reach informed conclusions about the effectiveness of serious games in the treatment of anxiety disorders. Two published reviews summarized the evidence about the effectiveness of serious games on anxiety [20, 21]. However, these reviews are undermined by certain shortcomings that limit the generalization of the findings. Specifically, these reviews (i) focused on only one type of serious games (i.e., exergames) [20], (ii) included non-randomized controlled trials (non-RCTs) [20, 21], (iii) focused on a specific age group (e.g., adolescents) [21], (iv) did not search main databases information technology and health fields (e.g., Medline, PsychInfo, IEEE Xplore, ACM Digital Library) [20, 21], or (v) did not conduct meta-analyses [21]. To address the existing gaps in the literature, this review aims to assess the effectiveness of serious games in alleviating anxiety through summarizing the results of previous studies and providing an up-to-date review.

Methods

We conducted a systematic review and meta-analyses in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Multimedia Appendix 1) [27]. The protocol for this review is registered at PROSPERO (ID: CRD42021264126).
Search Strategy

Search Sources

To retrieve the relevant studies, we searched the following bibliographic databases: MEDLINE (via Ovid), PsycInfo (via EBSCO), CINAHL (EBSCO), IEEE Xplore, ACM Digital Library, and Scopus. The first author searched these databases on 29 June 2021 by the first author. We also set up automatic alerts as needed in order to retrieve weekly searches for 12 weeks (ending on 28 August 2021). Furthermore, we also searched “Google Scholar” to identify grey literature. We considered only the first 10 pages (i.e., 100 hits) as Google Scholar retrieves a vast number of studies, and it orders them based on their relevance. Finally, we conducted backward and forward reference list checking (i.e., screening the reference lists of the included studies and relevant reviews and screening the studies that cited the included studies).

Search Terms

Two experts in digital mental health were consulted before developing the search query for this review, in addition, systematic reviews of relevance to this review were checked. The search terms were chosen based on the target intervention (e.g., serious games and exergames), target outcome (e.g., anxiety), and target study design (e.g., randomized controlled trial and clinical trial). Multimedia Appendix 2 summarized the search query that was used for searching each of the 8 databases.

Study Eligibility Criteria

Only RCTs that assessed the effectiveness of serious games in alleviating anxiety levels were included in this study. Specifically, the target intervention in this review was serious games that were delivered on any digital platforms such as computers, consoles (Xbox, PlayStation, etc.), mobile phones, tablets, handheld devices, or any other computerized devices. Further, gaming had to be an integral and primary component of the intervention. Serious games must be used for therapeutic or prevention purposes. Non-digital games and those used for other purposes such as monitoring, screening, and diagnosis were excluded. RCTs whether they are parallel RCTs, cluster RCTs, crossover RCTs, or factorial RCTs were all included but we excluded quasi-experiments, observational studies, and reviews.

The outcome of interest in this review is anxiety level regardless of the outcome measures. We included outcome data that was measured immediately after the intervention rather than follow-up data. Trials in the English language were eligible for inclusion in this review, excluding all other languages. We excluded conference abstracts and posters, commentaries, preprints, proposals, and editorials. RCTs published as journal articles, conference proceedings, and dissertations were included. No restrictions related to the population, year of publication, country of publication, comparator, and study settings were applied.

Study Selection

We identified relevant studies in the following steps. Firstly, we exported the retrieved studies into the EndNote software to identify and eliminate duplicate entries. In the second step, two reviewers independently screened the titles and abstracts of all retrieved studies. Finally, full texts of the studies included from the previous step were screened independently by two reviewers. The two reviewers resolved any disagreements by discussion. The inter-rater agreement (Cohen κ) in steps two and three were 0.81 and 0.93, respectively, indicating a perfect level of inter-rater agreement [28].

[unpublished, non-peer-reviewed preprint]
Data Extraction

Using Microsoft Excel, two independent reviewers extracted data from the included studies. Multimedia Appendix 3 shows the data extraction form that was used by the two reviewers to extract the data precisely and systematically from the included studies. We pilot tested the form using 5 included studies before proceeding. Disagreements between reviewers were resolved via discussion. We observed an inter-rater agreement of 0.86 indicating a perfect level of the agreement [28]. Where outcome data such as mean, standard deviation, and sample size were unavailable, we contacted the corresponding authors in an attempt to retrieve them. In this way, we managed to retrieve such information for an additional 5 studies.

Risk of Bias Appraisal

As recommended by Cochrane Collaboration [29], the risk of bias was assessed by two independent reviewers using the Risk-of-Bias 2 (RoB 2) tool. This tool appraises the risk of bias in 5 domains in RCTs: randomization process, deviations from intended interventions, missing outcome data, measurement of the outcome, and selection of the reported result [29]. The risk of bias judgments in these domains is used to determine the overall risk of bias for each included study. Disagreements in judgments between the two reviewers were resolved via discussion. Interrater agreement between the reviewers was perfect (Cohen κ=0.86) [28].

Data Synthesis

We used a narrative and statistical approach to synthesize the extracted data. Specifically, in our narrative synthesis, we describe the characteristics of the included studies, population, intervention, comparator, and outcome measures using texts and tables. The findings of the included studies were summarized and grouped according to the type of serious games (e.g., exergames, computerized cognitive behavioral therapy (CBT) games, biofeedback games). Where at least two studies of the same type of serious games reported enough data (i.e., mean, standard deviation, number of participants in each intervention group), we also conducted a meta-analysis. We used Review Manager (RevMan 5.4) to carry out the meta-analyses. The effect of each study and the overall effect was assessed using the standardized mean difference (SMD) (Cohen’s d) because the type of data for the outcome of interest (anxiety level) was continuous, and instruments used to evaluate the outcome were diverse amongst the included trials. We selected the random-effects model for the analysis due to the high clinical heterogeneity between the meta-analyzed studies in terms of serious game characteristics (e.g., its types, duration, frequency, and period), population characteristics (e.g., sample size, mean age, and health condition), and outcome measures (i.e., tools and follow-up period).

When meta-analysis showed a statistically significant difference between groups, we examined whether this difference was clinically important. We used the concept of “minimal clinically important difference” (MCID), which refers to the smallest change in a measured outcome that a patient would deem as worthwhile and substantial enough to warrant a change in a patient's therapy. MCID boundaries were calculated as ± 0.5 times the standardized mean difference (SMD) of the meta-analyzed studies.

We calculated I² and a chi-square P-value to examine the degree and statistical significance of heterogeneity, respectively, in the meta-analyzed studies. A chi-square P-value of 0.05 or less suggests heterogeneous meta-analyzed studies [30]. When I² ranged from 0% to 40%, 30% to 60%, 50% to 90%, 75% to 100%, the degree of heterogeneity was judged insignificant, moderate, substantial, or considerable, respectively [30].

We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the overall quality of evidence resulting from meta-analyses [31].
approach appraises the quality of evidence based on 5 domains: risk of bias, inconsistency (i.e. heterogeneity), indirectness, imprecision, and publication bias [31]. The overall quality of meta-analyzed evidence was appraised separately by two reviewers, and any differences in decisions were addressed by discussion. The reviewers' interrater agreement was deemed perfect (Cohen κ=0.96) [28].

Results

Search Results

As shown in Figure 1, we identified 935 records by searching the 7 electronic databases. Of these records, we identified and removed 198 duplicates using the software EndNote. Screening titles and abstracts of the remaining 737 records led to excluding 649 citations because (i) they did not use serious games (n=319), (ii) anxiety level was not a measured outcome (n=98), (iii) they were not RCTs (n=186), (iv) they were not peer-reviewed articles, theses, or conference proceedings (n=29), and (v) they were published in languages other than English (n=17). Reading the full text of the remaining 88 publications led to excluding 59 publications for the following reasons: (i) the intervention did not use serious games (n=25), (ii) anxiety level was not a measured outcome (n=19), (iii) they were not RCTs (n=13), and (iv) they were published in a language other than English (n=2). We identified 4 additional RCTs through backward and forward reference list checking. In total, 33 RCTs were included in the current review [32-64]. Of those, 22 RCTs were included in meta-analyses [32-50, 53-55].
Characteristics of Included Reviews

The included studies were published between 2012 and 2021 (Table 1). The year that witnessed the largest number of included studies was 2017 (n=8) followed by 2020 (n=6) and 2021 (n=6). The included studies were conducted in 16 different countries as shown in Table 1. The country that published the largest number of the included studies was the United States of America (n=6). All included studies were published in peer-reviewed journals except one that was a thesis. The trial type used in the most included studies was parallel RCTs (n=31).

The sample size in the included studies ranged from 30 to 709 with an average of 112.8. The mean age of participants reported in 31 studies ranged between 6.6 and 84.2 years, with an average of 34.7 years. The percentage of males reported in 31 studies ranged from 0% to 100%, with an average of 43.2%. Participants’ health conditions were varied between studies, and anxiety was the most common (n=7). Participants in most studies were recruited from clinical settings (n=22).

Table 1: Characteristics of studies and population

Study [Ref]	Year	Country	Publication type	RCT type	Sample size	Mean age (male)	Target group/condition	Setting
Adomaviciene [32]	2019	Lithuania	Journal article	Parallel	60	64.6 66.7%	Stroke	Clinical
Carvalho [33]	2020	Brazil	Journal article	Parallel	35	51.3 0.0%	Fibromyalgia	Educational
Meldrum [34]	2015	Ireland	Journal article	Parallel	71	54.1 38.0%	Unilateral peripheral vestibular loss	Clinical
Schumacher [35]	2018	Germany	Journal article	Parallel	42	56.3 59.5%	Hematopoietic stem cell transplantation recipients	Clinical
Ruivo [36]	2017	Ireland	Journal article	Parallel	32	59.9 81.3%	Cardiovascular diseases	Clinical, community, educational
Mazzoleni [37]	2014	Italy	Journal article	Parallel	40	71.2 N/R	Chronic respiratory diseases	Clinical
Polat [38]	2021	Turkey	Journal article	Parallel	40	44.8 0.0%	Fibromyalgia	Clinical
Lin [39]	2020	Taiwan	Journal article	Parallel	80	57.0 48.8%	Knee osteoarthritis	Clinical
Vieira [40]	2017	Portugal	Journal article	Parallel	46	57.7 N/R	Cardiovascular diseases	Clinical
Thomas [41]	2017	UK	Journal article	Parallel	30	49.3 10.0%	Multiple sclerosis	Clinical
Wagener [42]	2012	USA	Journal article	Parallel	41	14.0 33.3%	Obese adolescents	Clinical
Jahouh [43]	2021	Spain	Journal article	Parallel	80	84.2 44.0%	Elderly	Clinical
Collado - Mateo [44]	2017	Spain	Journal article	Parallel	83	52.5 0.0%	Fibromyalgia	Clinical
Cooney [45]	2017	Ireland	Journal article	Parallel	52	40.6 38.8%	Anxiety, depression, and/or intellectual disability	Clinical
Donker [46]	2019	Netherlands	Journal article	Parallel	193	41.3 33.2%	Acrophobia	Community
Fish [47]	2014	USA	Journal article	Parallel	59	30.0 49.2%	Depression	Clinical, educational
Fleming [48]	2012	New Zealand	Journal article	Parallel	130	32 44.0%	Depression	Educational
Merry [49]	2012	New Zealand	Journal article	Parallel	187	15.6 34.2%	Depression	Clinical, educational
Perry [50]	2017	Australia	Journal Cluster	Cluster	540	16.7 36.9%	Secondary students	Educational

Figure 1: Flow chart of the study selection process.
Serious games alone were used as interventions in 28 of the included studies, whereas the remainder used serious games combined with other interventions (Table 2). The most common game used in the included studies was Nintendo’s Wii Fit (n=5) followed by MindLight (n=4). We identified 8 types of serious games based on the therapeutic modality that they deliver: exergames (n=13), computerized cognitive behavioral therapy (CBT) games (n=6), biofeedback games (n=5), attention distraction games (n=3), brain-training games (n=2), social skills training games (n=2), exposure therapy games (n=1), and psychoeducation games (n=1). In 20 studies, games were designed with a “serious” purpose from the beginning (designed serious games), however, in the remaining 13 studies, they were not designed as serious games from the start but rather were used for a serious purpose (purpose-shifted games). The most common platforms used for playing the games were computers (n=17) and video game consoles (n=8). The duration of the games in the included studies ranged between 5 and 150 minutes, but it was 60 minutes or less in most studies (n=28). The frequency of playing the games varied between only one time throughout the study and once a day, but it ranged between once a week and 3 times a week in 24 studies. The period of interventions ranged from one week to 24 weeks, but it ranged from 1 to 10 weeks in 25 studies.
Table 2: Characteristics of interventions

Study [Ref]	Intervention	Serious game name	Serious game type	Serious game genre	Platform	Duration (minute)	Frequency (time/week)	Period (week)
Adomaviciene [32]	Serious game	N/R	Exergame	Designed	Computer, Kinect	45	Once a day	2
Carvalho [33]	Serious game	Wii Fit Plus	Exergame	Purpose-shifted	Wii console, balance board, Wii remote plus	60	3	7
Meldrum [34]	Serious game	Wii Fit Plus	Exergame	Purpose-shifted	Wii console, balance board, Frii Board	15	5	6
Schumacher [35]	Serious game	Wii Fit, Wii Sports	Exergame	Purpose-shifted	Wii console, balance board	30	5	2
Ruivo [36]	Serious game	Wii Sports	Exergame	Purpose-shifted	Wii console, Kinect	60	2	6
Mazzoleni [37]	Serious game + pulmonary rehabilitation program	Wii Fit Plus	Exergame	Purpose-shifted	Wii console, balance board, Wii remote plus	60	7	3
Polat [38]	Serious game + cycling activity	Kinect Sports (Beach Volleyball)	Exergame	Purpose-shifted	Computer, Kinect	35	3	4
Lin [39]	Serious game + hot packs + transcutaneous electrical nerve stimulation	Hot Plus	Exergame	Designed	Computer, sensing pad	20	3	4
Vieira [40]	Serious game	Kinect-RehabPlay	Exergame	Designed	Computer, Kinect	70-85	3	24
Thomas [41]	Serious game	Wii Fit Plus, Wii Sports, Wii Sports Resort	Exergame	Purpose-shifted	Wii console, balance board, Wii remote controls	27	2	24
Wagener [42]	Serious game	Dance Dance Revolution	Exergame	Purpose-shifted	Computer, sensing pad	40-75	3	10
Jahouh [43]	Serious game	Step, Nodding	Exergame	Purpose-shifted	Wii console	40-45	2-3	8
Designer	Serious game	Game title	Game type	Platform	Duration (min)	Frequency	Notes	
----------	--------------	------------	-----------	----------	---------------	-----------	-------	
Collado-Mateo [44]	Serious game	VirtualEx-FM	Exergame	Designed	Computer, Kinect	60	2	8
Cooney [45]	Serious game	Pesky Gnats: The Feel Good Island	CBT game	Designed	Computer	60	1	7
Donker [46]	Serious game	ZeroPhobia	CBT game	Designed	Smartphone, wearables (VR goggles)	5-40	2	3
Fish [47]	Serious game	Bejeweled II, Peggle, Bookworm Adventures	CBT game	Purpose-shifted	Computer	30	3	4
Fleming [48]	Serious game	SPARX	CBT game	Designed	Computer	30	1-2	5
Merry [49]	Serious game	SPARX	CBT game	Designed	Computer	20-40	1-2	4-7
Perry [50]	Serious game	SPARX-R	CBT game	Designed	Computer	20-30	1-2	5-7
Schoneveld [51]	Serious game	MindLight	Biofeedback game	Designed	Computer, wearables (EEG headset)	60	1	6
Tsui [52]	Serious game	MindLight	Biofeedback game	Designed	Computer	60	2	3
Schoneveld [53]	Serious game	MindLight	Biofeedback game	Designed	Computer, wearables (EEG headset)	60	2	3
Wijnhoven [54]	Serious game	MindLight	Biofeedback game	Designed	Computer, wearable (headset)	60	1	6
Scholten [55]	Serious game	Dojo	Biofeedback game	Designed	Computer	60	2	3
Marechal [56]	Serious game	N/R	Attention distraction game	Purpose-shifted	Tablet	20	One time throughout the study	N/A
Sakızci Uyar [57]	Serious game	Angry Birds, Subway Surfers, Snail Bob	Attention distraction game	Purpose-shifted	Tablet	20	One time throughout the study	N/A
Liu [58]	Serious game	SpaceBurgers	Attention distraction game	Designed	Wearables (VR goggles), hand-held	N/R	One time throughout	N/A
Study	Game Type	Game Name	Purpose Shifted	Controller	Times of Use (Tetris, EMDR)	Time per Session (min)		
------------------	---------------------------	---------------	-----------------	-----------------------------	-----------------------------	------------------------		
Butler [59]	Serious game + eye movement desensitization and reprocessing (EMDR) therapy	Tetris	Brain-training game	Purpose-shifted Nintendo DS XL console	120-150	6		
Bove [60]	Serious game	Band Togather	Brain-training game	Designed	Tablet	25		
Sanchez [61]	Serious game	Adventures	Social skills training game	Designed	Computer	25	1	9
Beidel [62]	Serious game	Pegasys-VR	Social skills training game (Social effectiveness therapy game)	Designed	Tablet	60-120	2	12
Haberkamp [63]	Serious game	Spider App	Exposure therapy game	Designed	Smartphone	12	2	1
Litvin [64]	Serious game	eQuoo	Psychoeducation game	Designed	Smartphone, tablet 10-15	1	5	

EEG: Electroencephalography; N/R: not reported; VR: Virtual reality
As shown in Table 3, the comparison groups received inactive interventions in 14 studies while they received active interventions in 21 studies (e.g., conventional exercises, CBT programs, video games, medication, and psychotherapy). Note that the numbers do not add up because 2 studies delivered both active and inactive interventions as comparators. The duration of the active comparators ranged between 10 and 180 minutes. The frequency of the active comparators varied between only one time throughout the study and once a day, but it ranged between once a week and 3 times a week in about half of the studies. The period of the active comparators varied between one week and 24 weeks. The outcome of interest (e.g., anxiety level) was measured using 15 different tools, but the most common tools used by the included studies were the Spence Children’s Anxiety Scale (SCAS) (n=8) and the Hospital Anxiety and Depression Scale (HADS) (n=7). The outcome of interest was measured immediately after the intervention in all included studies, and the most common follow-up period was 3 months (n=10). Participant attrition was reported in 32 studies and ranged from 0 to 335.

Table 3: Characteristics of comparators and outcomes

Study [Ref]	Comparator	Duration (minute)	Frequency (time/week)	Period (week)	Outcome measures	Follow up	Attrition
Adomaviciene [32]	Robot-assisted trainings	45	Once a day	2	HADS	Post-intervention	18
Carvalho [33]	Conventional exercises	60	3	7	FIQ	Post-intervention	14
Meldrum [34]	Conventional exercises	15	5	6	HADS	Post-intervention	9
Schumacher [35]	Conventional exercises (Physiotherapy)	30	5	2	HADS	Post-intervention, 30 & 100-day follow-up	11
Ruivo [36]	Conventional exercises	60	2	6	HADS	Post-intervention, 2-month follow-up	4
Mazzoleni [37]	Conventional exercises (pulmonary rehabilitation programme)	60	7	3	STAI	Post-intervention	1
Polat [38]	Conventional exercises + cycling activity	35	3	4	HADS	Post-intervention, 1-month follow-up	6
Lin [39]	Conventional exercises + hot packs + transcutaneous electrical nerve stimulation	20	3	4	HADS	Mid of intervention, Post-intervention, 1 & 3-month follow-up	1
Vieira [40]	Conventional exercises, control	70-85	3	24	DASS-21	Mid of intervention, Post-intervention	13
Thomas [41]	Control	N/A	N/A	N/A	HADS	Post-intervention	2
Wagener [42]	Control	N/A	N/A	N/A	BASC 2	Post-intervention	1
Jahouh [43]	Control	N/A	N/A	N/A	GADS	Post-intervention	N/A
Collado - Mateo [44]	Control	N/A	N/A	N/A	FIQ	Post-intervention	7
Study	Intervention Type	Control	Length	Focus	Follow-up	Outcome	Authors
-------	-------------------	---------	--------	-------	-----------	---------	---------
Cooney [45]	Control	N/A	N/A	N/A	GAS-ID	Post-intervention, 3-month follow-up	3
Donker [46]	Control	N/A	N/A	N/A	BAI, AQ	Post-intervention, 3-month follow-up	59
Fish [47]	Educational website	30	3	4	STAI	Post-intervention	0
Fleming [48]	Control	N/A	N/A	N/A	SCAS	Post-intervention	5
Merry [49]	Control	N/A	N/A	N/A	SCAS	Post-intervention, 3-month follow-up	17
Perry [50]	Control (Interactive online program)	20-30	1-2	5-7	SCAS	Post-intervention, 6 & 18-month follow-up	134
Schoneveld [51]	Conventional CBT	60-90	1	8	SCAS	Post-intervention, 3 & 6-month follow-up	36
Tsui [52]	Conventional CBT (Online CBT)	60	2	3	SCAS, STAI	Post-intervention, 3-month follow-up	19
Schoneveld [53]	Video game	60	2	3	SCAS	Post-intervention, 3-month follow-up	21
Wijnhoven [54]	Video game	60	1	6	SCAS	Post-intervention, 3-month follow-up	33
Scholten [55]	Video game	60	2	3	SCAS	Post-intervention, 3-month follow-up	9
Marechal [56]	Midazolam	N/A	N/A	N/A	m-YPAS	Post-intervention, 2-hour follow-up	3
Sakızçı Uyar [57]	Midazolam, watching an informative cartoon	N/A	One time throughout the study	N/A	m-YPAS	Post-intervention	4
Liu [58]	Control (topical analgesia)	N/A	N/A	N/A	SUDS	Post-intervention	0
Butler [59]	EMDR therapy	60-90	2	6	STAI	Post-intervention, 6-month follow-up	0
Bove [60]	Video game	25	5	6	STAI	Post-intervention, 2-month follow-up	4
Sanchez [61]	Control	N/A	N/A	N/A	SASC-R	Post-intervention	24
Beidel [62]	Social effectiveness therapy	60-180	2	12	SCAI-C	Post-intervention	4
Haberkamp [63]	Video game	12	2	1	Survey developed by the authors	Mid of intervention, Post-intervention	6
Litvin [64]	Conventional CBT, control	10	1	5	Survey developed by the authors	Mid of intervention, Post-intervention	355

AQ: Acrophobia Questionnaire; BAI: Beck Anxiety Inventory; BASC 2: Behaviour Assessment System for Children-2; CBT: Cognitive behavioral therapy; DASS-21: Depression, Anxiety and Stress Scale 21; EMDR: Eye movement desensitization and reprocessing; FIQ: Fibromyalgia Impact Questionnaire; GADS: Goldberg Anxiety and Depression Scale; GAS-ID: Glasgow Anxiety Scale for people with an Intellectual disability; HADS: Hospital Anxiety and Depression Scale; m-YPAS: Modified Yale Preoperative Anxiety Scale; N/A: Not applicable; N/R: Not reported; SASC-R: Social Anxiety Scale for Children-Revised; SCAS: Spence Children’s Anxiety Scale.
Results of Risk of Bias Appraisal

About 70% (n=23) of the included studies generated an appropriate random allocation sequence for the randomization process. The allocation sequence in 14 studies was concealed until participants were assigned to interventions. Groups were comparable at baseline in 29 studies. Based on these judgments, the risk of bias due to the randomization process was rated as low in 12 studies (Figure 2).

Participants and carers/people delivering the interventions were blinded to the assigned interventions during the trial in 4 and 5 studies, respectively. In 2 studies, there was a deviation from the intended intervention, which occurred due to the experimental contexts. An appropriate analysis (e.g., intention-to-treat or modified intention-to-treat analyses) was used in 26 studies to estimate the effect of the intervention. According to these judgments, the risk of bias due to the deviations from the intended interventions was low in 20 studies (Figure 2).

Only in 12 studies, missing outcome data was sufficiently small to make a significant difference to the estimated effect of the intervention. There was evidence that the findings were not biased by missing outcome data in only 7 studies. In 8 studies, the missing outcome data resulted from reasons that are documented and not related to the outcome. Accordingly, 27 studies were judged as having a low risk of bias in the “missing outcome data” domain.

Four studies assessed the outcome of interest (i.e., anxiety level) using inappropriate measures. Measurement methods were comparable across intervention groups in all included studies. The assessor of the outcome was aware of the assigned interventions in 20 studies. Given the outcome measure was subjective in all studies, assessment of the outcome could have been affected by knowledge of intervention received. Accordingly, only 9 studies were rated as low risk of bias in the “measuring the outcome” domain (Figure 2).

There was a pre-specified analysis plan (i.e., protocol) for 15 studies. Only three studies reported outcome measurements different from those specified in the analysis plan. In all studies, there is no evidence that they selected their results from many results produced from multiple eligible analyses of the data. Accordingly, the risk of bias due to the selection of the reported results was considered low in 15 studies (Figure 2).

In the last domain “overall bias”, the risk of bias was considered high in 21 studies as they were judged as having a high risk of bias in at least one domain. Ten studies were judged to raise some concerns in the domain of overall bias as they had some concerns in at least one of the domains and were not at high risk for any domain. The 2 remaining studies were judged to be at low risk of bias for the domain of overall bias given that it was rated to be at low risk of bias for all domains. Reviewers’ judgments about each ‘risk of bias’ domain for each included study are presented in Multimedia Appendix 4.

Figure 2: Review authors’ judgements about each ‘Risk of bias’ domain
Results of Studies

In this review, serious games were classified into 8 types based on the therapeutic modality that they deliver: exergames, computerized CBT games, biofeedback games, attention distraction games, brain-training games, social skills training games, exposure therapy games, and psychoeducation games. Results of the included studies were shown in the next subsections based on the types of serious games.

Exergames

Exergames are video games that entail physical exercises (e.g., fitness and balance exercises) as part of the intended game play. The intervention used exergames in 13 studies [32-44]. These studies compared exergames with conventional exercises and/or no intervention. The results of these comparisons were summarized in the next subsections.

Exergames versus conventional exercises

Nine studies compared the effect of exergames with conventional exercises on the level of anxiety [32-40]. While 7 studies did not find a statistically significant difference in anxiety level between the groups [34-40], the 2 remaining studies showed a statistically significant difference in the anxiety level between the groups (one of them favoring exergames over conventional exercises [33] while the other favoring conventional exercises over exergames [32]). Results of the 9 studies were meta-analyzed as shown in Figure 3. No statistically significant difference ($P=0.70$) in the anxiety level was found between the exergame group and conventional exercise group (SMD -0.07, 95% CI -0.45 to 0.30). The degree of heterogeneity of the evidence was substantial ($P=0.002; I^2 = 67\%$). The quality of the evidence was very low as it was downgraded by 6 levels due to a high risk of bias, heterogeneity, and imprecision (Multimedia Appendix 5).

Exergames versus no intervention

Five studies compared the effect of exergames to no intervention/inactive intervention on the anxiety level [40-44]. Whereas 4 studies did not find a statistically significant difference in anxiety level between the groups [40-43], the remaining study showed a statistically significant difference in the anxiety level between the groups, favoring exergames over no intervention [44]. A meta-analysis of the results of the 5 studies showed no statistically significant difference ($P=0.27$) in the anxiety level between the exergame group and no intervention group (SMD -
Computerized CBT games are video games that provide CBT for the users. Six studies compared the effect of computerized CBT games to no intervention on the anxiety level [45-50]. While 3 studies did not find a statistically significant difference in anxiety level between the groups [48-50], the 3 remaining studies showed a statistically significant difference in the anxiety level between the groups, favoring computerized CBT games over no intervention [45-47].

Results of these 6 studies were included in the meta-analysis. Three of these studies assessed the anxiety level using 2 different measures (AQ & BAI [46], STAI-State & STAI-Trait [47], and GAD & SA [50]). Therefore, we included the results of all these measures in the meta-analysis to form 9 comparisons (Figure 5). The meta-analysis showed a statistically significant difference in the anxiety level ($P=0.01$) between computerized CBT games and control groups, favoring computerized CBT games over no intervention (SMD -0.36, 95% CI -0.63 to -0.08). This difference was also clinically important as the overall effect was outside MCID boundaries (-0.18 to 0.18) and its CI neither crossed the ‘no effect’ line (Zero effect) nor any of the two MCID boundaries. For this outcome, MCID boundaries were calculated as ± 0.5 times the SMD value (-0.36). The statistical heterogeneity of the evidence was considerable ($P<0.001$, $I^2=84\%$). The quality of the evidence was very low as it was downgraded by 5 levels due to a high risk of bias, heterogeneity, and imprecision (Multimedia Appendix 5).

Biofeedback games

Biofeedback games are video games that utilize electrical sensors attached to the participant to receive information about the participant’s body state (e.g., electrocardiogram sensors) and seek to influence some of the player body’s functions (e.g., heart rate). Biofeedback games were used in interventions in 5 studies [54-58]. Two studies examined the effect of a biofeedback game (MindLight) and conventional CBT on anxiety level (measured by SCAS) among children with anxiety [51, 52]. Both studies found no statistically significant difference in the anxiety level between the biofeedback game group and the conventional CBT group [51, 52]. The 3 remaining studies examined the effect of biofeedback games and conventional video
Games on anxiety level (measured by SCAS) among children with anxiety [53-55]. While 2 studies did not find a statistically significant difference in anxiety level between the groups [54, 55], the remaining study showed a statistically significant difference in the anxiety level between the groups, favoring biofeedback games over conventional video games [53]. A meta-analysis of the results of these 3 studies demonstrated a statistically significant difference in the anxiety level ($P=0.03$) between the biofeedback game group and conventional CBT group, favoring biofeedback games over conventional video games (SMD -0.23, 95% CI -0.43 to -0.03). This difference was also clinically important as the overall effect was outside MCID boundaries (-0.115 to 0.115) and its CI neither crossed the ‘no effect’ line (Zero effect) nor any of the two MCID boundaries. For this outcome, MCID boundaries were calculated as ± 0.5 times the SMD value (-0.23). The heterogeneity of the evidence was judged as insignificant ($P=0.38$; $I^2=0\%$). The quality of the evidence was low as it was downgraded by 2 levels due to a high risk of bias and imprecision.

Attention distraction games

Attention distraction games are video games that are used to direct a user’s attention away from another focus or a given event. Distraction games were used as interventions in 3 studies. Attention distraction games were interventions in 3 studies [56-58]. While 2 studies found a statistically significant effect of the attention distraction games [57, 58], the remaining study did not [56]. Specifically, Marechal et al. [56] compared the effect of attention distraction games with medication (i.e., midazolam) on the anxiety level (measured by m-YPAS) among children undergoing general anesthesia for minor surgical procedures. No statistically significant difference ($P=0.99$) in the anxiety level was detected between the two groups [56]. The second study examined the effect of attention distraction games (Angry Birds, Subway Surfers, Snail Bob), medication (midazolam), and watching an informative cartoon on the anxiety level (measured by m-YPAS) among children undergoing adenoidectomy, adenotonsillectomy, and/or myringotomy [57]. The study showed a statistically significant difference ($P<0.001$) in the anxiety level between the groups, favoring the attention distraction games over medication (midazolam) and watching an informative cartoon. In the third study [58], the effect of an attention distraction game (SpaceBurgers) on the anxiety level (measured by SUDS) among children with otolaryngologic issues was compared to topical analgesia. The study found a statistically significant difference ($P<0.001$) in the anxiety level between the groups; favoring the attention distraction games over topical analgesia [58].

Brain-training games

Brain-training games are video games that aim to maintain or improve user's cognitive abilities such as working memory, executive function, processing speed, and attention. Brain-training games were interventions in 2 studies [59, 60]. The first study compared the effect of a brain-training game (Tetris) to eye movement desensitization and reprocessing (EMDR) therapy on the level of trait anxiety (measured by STAI) among patients with posttraumatic stress disorder [59]. The study did not detect any statistically significant difference ($P=0.81$) in the level of trait anxiety post-intervention [59]. The second study compared the effects of a brain-training game (Band Together) and traditional video games on the level of anxiety (measured by STAI) among patients with multiple sclerosis [60]. No statistically significant difference in the level of state anxiety ($P=0.95$) and trait anxiety ($P=0.75$) between the two groups was detected.

Social skills training games

Social skills training games were an intervention in 2 studies [61, 62]. The first study
investigated the effect of a social skills training game (Adventures) on the anxiety level (measured by SASC-R) among patients with social skills deficits in comparison with no intervention. The study showed no statistically significant difference ($P=0.104$) in the anxiety level between the groups. In the second study, the effect of a social skills training game (Pegasys-VR) and social effectiveness therapy on the anxiety level (measured by SPAI-C) among children with social anxiety was examined. The study demonstrated no statistically significant difference ($P=0.23$) in the anxiety level between the groups.

Other types of serious games

One study compared the effect of an exposure therapy game (Spider App) to an entertainment video game (Bubble Shooter) on the anxiety level among patients with arachnophobia [63]. No statistically significant difference in the anxiety level was detected between the groups post-intervention [63]. Litvin et al. [64] examined the effect of a psychoeducation game (eQuoo), conventional CBT, and no intervention on the anxiety level among healthy employees. The study did not find any statistically significant difference ($P=0.95$) in the anxiety level between the three groups [64].

Discussion

Principal Findings

This review examined the effectiveness of serious games on the anxiety level as reported by RCTs. Of the 33 RCTs included in the current review, 20 studies were included in 4 meta-analyses. While the review found no statistically significant effect of exergames on the anxiety level, it showed a statistically significant effect of computerized CBT games and biofeedback games on the anxiety levels. Due to the evidence paucity, no statistical analysis was carried out for other types of serious games included in this review.

Very low quality evidence from 9 RCTs showed no statistically significant effect of exergames on the anxiety level as compared to conventional exercises. This insignificant effect can be attributed to the fact that exergames are comparable to conventional exercises, thereby, it should not be surprising that comparing the effect of 2 very similar interventions did not produce a significant difference. This indicates that conventional exercises are at least as effective as conventional exercises. Our finding is similar to those of previous reviews [20, 65]. Specifically, a meta-analysis of 5 RCTs showed no statistically significant difference ($P=0.805$) in anxiety levels between the exergames group and the usual care group (i.e., conventional exercises) [20]. Likewise, no statistically significant difference ($P=0.12$) in depression levels between the exergames group and conventional exercises was found in another meta-analysis of 7 RCTs [65]. Comparing the effects of exergames on the anxiety level as opposed to no intervention, very low quality evidence from 5 RCTs showed no statistically significant effect. This finding is consistent with a previous review [20]. Specifically, a meta-analysis of 5 studies (3 RCTs and 2 quasi-experiments) showed no statistically significant difference ($P=0.939$) in anxiety level between the exergames group and the control group. In contrast, exergames do have a statistically and clinically significant effect on depression levels when compared to no intervention according to a meta-analysis of 8 studies [65]. The insignificant effect of exergames in the current review can be attributed to 2 reasons: (i) the exergames used in 3 of the 5 meta-analyzed studies were not designed specifically to alleviate anxiety, and (ii) participants in the 5 RCTs did not suffer from anxiety at baseline, thereby, the effect of serious games could not have been substantial.

Very low quality evidence from 6 RCTs demonstrated a statistically and clinically significant effect of computerized CBT games on the anxiety level when compared with no intervention.
However, this finding may not be generalizable to elderly people as participants in the 6 studies were younger than 41.3 years. To the best of our knowledge, no previous reviews examined the effect of computerized CBT games on anxiety although many reviews assessed the effect of computerized CBT in general (i.e., games are not part of the intervention) [66-69]. However, our findings are in line with a previous review focusing on depression, which found a statistically and clinically significant effect of computerized CBT games on the depression level according to a meta-analysis of 6 RCTs.

Low quality evidence from 3 RCTs showed a statistically and clinically significant effect of biofeedback games on the anxiety level when compared with conventional video games. It is worth mentioning that the studies used biofeedback games specifically for alleviating anxiety and recruited participants with anxiety. The generalizability of this finding may be limited due to the following reasons: (i) participants in the 3 studies were adolescents (10-13.3 years), (ii) all studies were conducted in the Netherlands, and (iii) there is a low number of studies included in the meta-analysis.

Meta-analyses were not conducted to assess the effect of other types of serious games due to the low number of studies. Individual studies found no statistically significant effect of brain-training games, social skills training games, exposure therapy games, and psychoeducation games on the anxiety level. However, other studies showed contradicting results regarding the effect of attention distraction games on the anxiety level.

Strengths and Limitations

Strengths

The current review can be considered more comprehensive than the two previous reviews [20, 21] because it was not restricted to a certain type of serious games, age group, or comparator, and it searched the main databases in health and information technology fields. This review was conducted according to highly recommended guidelines (i.e., PRISMA) and included only RCTs. Therefore, it can be considered a robust and high-quality review.

The risk of publication bias is not a concern in this review because we sought to retrieve as many relevant studies as possible through searching the most popular databases in information technology and health fields and grey literature databases, conducting backward and forward reference list checking, using a comprehensive search query, and not restricting our search to a certain country, year, setting, population, and comparator.

There is no concern about the risk of selection bias in this review given that two reviewers independently performed the study selection, data extraction, risk of bias assessment, and quality of evidence evaluation with a perfect interrater agreement for all processes. The quality of the evidence was appraised using the GRADE approach to enable the reader to draw more accurate conclusions. When possible, we synthesized data statistically, and this improved the power of studies and increased the estimates of the likely size of the effect of serious games on anxiety.

Limitations

This review excluded studies that used serious games delivered on non-digital platforms and those used for other purposes (e.g., screening or diagnosis). Therefore, this review cannot comment on the effectiveness of these types of serious games. This review focused on the effectiveness of serious games on anxiety only, thus, we cannot comment on the effectiveness of serious games on other diseases.

Numerous studies were excluded as they were quasi-experiments and/or written in non-English languages. Therefore, it is likely that we missed some relevant studies. We excluded these studies...
as quasi-experiments have lower internal validity than RCTs [70] and, owing to practical constraints, it was not possible to translate all non-English studies. Participants in most studies did not have anxiety before the intervention, thereby, the effect of serious games could not be significant.

This review meta-analyzed post-intervention data rather than follow-up data, thus, this review cannot comment on the long-term effect of serious games on anxiety. Postintervention outcome data was selected given that about half of the included studies did not follow up participants to measure the outcome data, and the follow-up period in the other half of the studies was not consistent between studies.

We used postintervention data for each group to assess the effect size for each meta-analyzed study rather than the pre-post intervention change for each group, thereby, it is likely that the effect size is overestimated or underestimated. We used postintervention outcome data because the majority of studies did not report the standard deviation for pre-postintervention change for each group, and preintervention outcome data was significantly different between groups in only two studies [40, 41].

Research and Practical Implications

Research Implications

While anxiety was one of the measured outcomes in all the included studies, only 6 studies targeted the recruitment of people suffering from anxiety. This may lead to a severe underestimation of the effect of serious games on anxiety levels. This finding is shared with a similar study investigating the effects of depression [65]. Likewise, we second the recommendation to purposefully recruit participants who suffer from anxiety and establish a baseline to objectively assess how effective are serious games in reducing anxiety levels.

We would like to point out that several studies recruited very small samples, with a minimum of only 30 patients. Gaining statistically reliable insights from such small samples can be difficult and may be an additional reason that our meta-analyses provide no conclusive answer to the question if serious games can improve or augment traditionally anxiety treatment. Thus, we encourage researchers to recruit a sample size that is enough to achieve a power of at least 80%. The majority of the included studies were conducted in clinical settings. While this could offer a controlled environment to run the studies, it could also introduce stress to the participants due to the nature of clinical settings. Conducting more studies in the community and educational settings could present different findings as people usually play games outside of the traditional clinical setting.

The current literature focused mainly on exergames and computerized CBT games while the effect of other types of serious games was investigated by no or a few studies. There are opportunities to enrich the body of evidence about the effectiveness of serious games delivered through other therapeutic modalities such as psychoeducation games, biofeedback games, exposure therapy games, and brain-training games.

Although serious games can be used for several purposes and for many diseases, we focused on serious games that were used for therapeutic or prevention purposes and for anxiety only. Researchers should conduct systematic reviews to assess the effectiveness of serious games used for other purposes (e.g., monitoring, screening, and diagnosing) and for other diseases.

In only 2 studies, the overall risk of bias was low given that most studies had issues in the randomization process, measurement of the outcome, and selection of the reported result. Outcome data was missing in several studies, thereby, they were not included in the meta-analyses. Accordingly, researchers should avoid the above-mentioned biases by conducting and
reporting RCTs according to recommended guidelines or tools (e.g., RoB 2 [29]).
Lastly, the majority of the include studies were conducted in developed countries, which, in turn, can limit the generalizability of our findings to developing nations. There is a need to conduct more studies in developing countries, especially given the varying nature of their cultures, socioeconomic conditions, and sources of stress and anxiety (e.g., war zones). Further, more studies are needed to determine any variance in the effectiveness of serious games that are designed specifically to reduce and alleviate anxiety levels intergenerationally.

Practical Implications

This review showed that exergames are as effective as conventional exercises in alleviating anxiety, and computerized CBT games and biofeedback games are more effective than no intervention and conventional video games, respectively. However, health professionals and decision makers should be careful when interpreting these findings for the following reasons: the quality of meta-analyzed evidence ranged from very low to low, the overall risk of bias was high in most included studies, the heterogeneity of the evidence was high in the 3 meta-analyses, participants in most studies did not have anxiety, and many studies did not use serious games that designed to specifically alleviate anxiety. Accordingly, psychologists and psychiatrists should consider offering serious games as complementary and not a substitute to existing interventions until further, more robust, evidence is available.

Although anxiety can be alleviated by many non-pharmaceutical interventions, there are no or few serious games that deliver non-pharmaceutical interventions other than exercises and CBT in this review. This may be attributed to the lack of such serious games in real life. Therefore, developers should consider developing serious games that deliver non-pharmaceutical interventions such as breathing techniques, mindfulness training, problem-solving, attention distraction, biofeedback, psychoeducation, relaxation-based exercises, rational emotive behavioral therapy.

Only a handful (n=7) of studies used mobile devices (smartphones and tablets) as the platform for their intervention. Mobile devices are particularly appealing since they are cheaper than computers and more pervasive than gaming consoles. As a direct implication of their mobility, people generally tend to carry these devices with them, irrespective of their anxiety levels. Moreover, mobile devices are more accessible than computers and gaming consoles; it is estimated that there are about 15 billion mobile devices and more than 7.1 mobile users worldwide in 2021 [71]. This could present a lucrative opportunity for app and game developers to develop serious games that target anxiety and can be played via mobile devices.

Few studies were conducted out in developing countries, and this may be attributed to the lack of serious games in these countries. Given that there is a greater shortage of mental health professionals in developing countries than in developed countries (0.1 per 1,000,000 people [72] vs. 90 per 1,000,000 people [73]), it is likely that individuals in developing countries are more in need of serious games than those in developed countries. Therefore, more serious games should be developed to alleviate anxiety among people in developing countries.

We would like to point out that a significant portion of the studies (n=12) investigated intervention methods using now-discontinued platforms: Wii (n=8, end of life in 2017), Kinect (n=5, end of life in 2017), Nintendo DS (n=1, end of life in 2014). Only in one case using Tetris [52], other platforms will readily fill the gap. For interventions using Microsoft’s Kinect sensor, computer-vision based pose estimation on mobile phones or desktop PCs could fill the gap but will result in a different setup. Finally, some of the included studies using WiiMotes (Wii Remote) and none of the more specialized Wii input devices could be recreated using newer Nintendo controllers. These considerations raise a few questions of practical importance: (1)
How well can studies relying on legacy, specialized hardware be reproduced? (2) How useful are interventions relying on platforms designed to undergo comparatively short life cycles? (3) Are off-the-shelf video games (purpose-shifted games) adequate intervention tools?
We believe that some of the included studies relying on legacy hardware could probably be salvaged, following the comments outlined above, but caution should be taken to fall victim to the novelty effect of emerging game controllers and proprietary input devices. The video game industry evolves quickly and is known to experiment with novel technology to attract games away from competitors. Consequently, purpose-shifted games are not only very prone to deprecate quickly, but the very same is true for the platforms they were designed for. Of particular concern in this context are studies that rely on platforms or devices that are already past their life cycle (n=7) since such findings run the risk of being purely academic in nature.
In addition, while we cannot rule out that off-the-shelf games that have undergone, first, a purpose-shift to become a serious game and yet another one to become part of a therapy (e.g., Tetris) have a measurable effect, we also have little reason to assume that they do. It seems tempting to explain the effects of serious games on anxiety by their distractive nature, but studies do not agree on this question either.
There is also an utter need for an inclusive approach when developing these apps and games to include professionals from the gaming industry as well as mental health experts. Technologists and developers are usually very aware of the afore-raised concerns but need medical professionals to avoid falling prey to the temptation of purpose-shifting existing games or designing games for goals different than anxiety relief.

Conclusion
Evidence from this study suggests that serious games have the potential in reducing anxiety levels. However, definitive conclusions regarding the effectiveness of serious games on reducing anxiety remain inconclusive mainly due to the high risk of bias in the individual studies included, the low quality of meta-analyzed evidence, low number of studies included in some meta-analyses, participants without anxiety in most studies, and using purpose-shifted serious games in most studies. Until further, more robust, evidence is available, serious games should be deemed as complementary to existing interventions and not and a substitute to them. To have adequate and robust evidence, researchers should use serious games that are designed specifically to alleviate depression and deliver other therapeutic modalities, recruit patients with anxiety, and minimize the risk of bias by recommended guidelines for conducting and reporting RCTs (e.g., RoB 2).

Conflicts of Interest
None declared

Funding
This review is not funded.

Abbreviations
AA: Alaa Abd-Alrazaq
AQ: Acrophobia Questionnaire

https://preprints.jmir.org/preprint/29137 [unpublished, non-peer-reviewed preprint]
BAI: Beck Anxiety Inventory
CBT: Cognitive behavioral therapy
DASS-21: Depression, Anxiety and Stress Scale 21
EEG: Electroencephalography
EMDR: Eye movement desensitization and reprocessing
FIQ: Fibromyalgia Impact Questionnaire
GADS: Goldberg Anxiety and Depression Scale
GAS-ID: Glasgow Anxiety Scale for people with an Intellectual disability
GRADE: Grading of Recommendations Assessment, Development and Evaluation
HADS: Hospital Anxiety and Depression Scale
m-YPAS: Modified Yale Preoperative Anxiety Scale
MA: Mohannad Alajlani
MCID: Minimal clinically important difference
N/A: Not applicable
N/R: Not reported
\(P \): P-value
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RCT: Randomized Controlled Trial
RoB 2: Risk-of-Bias 2
SASC-R: Social Anxiety Scale for Children-Revised
SCAS: Spence Children's Anxiety Scale
SMD: Standardized Mean Difference
STAI: State-Trait Anxiety Inventory
SUDS: Subjective Units of Distress
UK: United Kingdom
USA: United States of America

References
1. American Psychiatric Association. What Is Mental Illness? : American Psychiatric Publishing; 2015 [August 18, 2021]; Available from: https://www.psychiatry.org/patients-families/what-is-mental-illness.
2. Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA psychiatry. 2015 Apr;72(4):334-41. PMID: 25671328. doi: 10.1001/jamapsychiatry.2014.2502.
3. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet (London, England). 2013 Nov 9;382(9904):1575-86. PMID: 23993280. doi: 10.1016/s0140-6736(13)61611-6.

4. Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, et al. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013. International journal of epidemiology. 2014 Apr;43(2):476-93. PMID: 24648481. doi: 10.1093/ije/dyu038.

5. Nochaiwong S, Ruengorn C, Thavorn K, Hutton B, Awiphan R, Phosuya C, et al. Global prevalence of mental health issues among the general population during the coronavirus disease-2019 pandemic: a systematic review and meta-analysis. Scientific Reports. 2021;2021/05/13;11(10):10173. doi: 10.1038/s41598-021-89700-8.

6. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM–5). 5th ed. Virginia: American Psychiatric Publishing; 2013.

7. Testa A, Giannuzzi R, Sollazzo F, Petrongolo L, Bernardini L, Daini S. Psychiatric emergencies (part I): psychiatric disorders causing organic symptoms. European review for medical and pharmacological sciences. 2013 Feb;17 Suppl 1:55-64. PMID: 23436668.

8. American Psychiatric Association. What Are Anxiety Disorders? : American Psychiatric Publishing; 2015 [August 18, 2021]; Available from: https://www.psychiatry.org/patients-families/anxiety-disorders/what-are-anxiety-disorders.

9. Higa-McMillan CK, Francis SE, Rith-Najarian L, Chorpita BF. Evidence Base Update: 50 Years of Research on Treatment for Child and Adolescent Anxiety. Journal of clinical child and adolescent psychology : the official journal for the Society of Clinical Child and Adolescent Psychology, American Psychological Association, Division 53. 2016;45(2):91-113. PMID: 26087438. doi: 10.1080/15374416.2015.1046177.

10. White SW, Simmons GL, Gotham KO, Conner CM, Smith IC, Beck KB, et al. Psychosocial Treatments Targeting Anxiety and Depression in Adolescents and Adults on the Autism Spectrum: Review of the Latest Research and Recommended Future Directions. Current psychiatry reports. 2018;20(10):82-. PMID: 30155584. doi: 10.1007/s11920-018-0949-0.

11. Janszky I, Ahnve S, Lundberg I, Hemmingsson T. Early-onset depression, anxiety, and risk of subsequent coronary heart disease: 37-year follow-up of 49,321 young Swedish men. Journal of the American College of Cardiology. 2010 Jun 29;56(1):31-7. PMID: 20620714. doi: 10.1016/j.jacc.2010.03.033.

12. Tolmunen T, Lehto SM, Julkunen J, Hintikka J, Kauhanen J. Trait anxiety and somatic concerns associate with increased mortality risk: a 23-year follow-up in aging men. Annals of epidemiology. 2014 Jun;24(6):463-8. PMID: 24731699. doi: 10.1016/j.annepidem.2014.03.001.

13. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet (London, England). 2020 Oct 17;396(10258):1204-22. PMID: 33069326. doi: 10.1016/s0140-6736(20)30925-9.

14. Yang X, Fang Y, Chen H, Zhang T, Yin X, Man J, et al. Global, regional and national burden of anxiety disorders from 1990 to 2019: results from the Global Burden of Disease Study 2019. Epidemiol Psychiatr Sci. 2021;30:e36-e. PMID: 33955350. doi: 10.1017/s2045796021000275.

15. Quek TT, Tam WW, Tran BX, Zhang M, Zhang Z, Ho CS, et al. The Global Prevalence of Anxiety Among Medical Students: A Meta-Analysis. International journal of environmental research and public health. 2019 Jul 31;16(15). PMID: 31370266. doi: 10.3390/ijerph16152735.

16. Park SC, Oh HS, Oh DH, Jung SA, Na KS, Lee HY, et al. Evidence-based, non-pharmacological treatment guideline for depression in Korea. Journal of Korean medical science. 2014 Jan;29(1):12-22. PMID: 24431900. doi: 10.3346/jkms.2014.29.1.12.

17. Barlow DH. Clinical Handbook of Psychological Disorders: A Step-by-Step Treatment Manual.
18. Hardoerfer K, Jentschke E. Effect of Yoga Therapy on Symptoms of Anxiety in Cancer Patients. Oncology research and treatment. 2018;41(9):526-32. PMID: 30086538. doi: 10.1159/000488989.
19. Stephens I. Medical Yoga Therapy. Children (Basel, Switzerland). 2017 Feb 10;4(2). PMID: 28208599. doi: 10.3390/children4020012.
20. Viana RB, Dankel SJ, Loenneke JP, Gentil P, Vieira CA, Andrade MDS, et al. The effects of exergames on anxiety levels: A systematic review and meta-analysis. Scandinavian journal of medicine & science in sports. 2020 Jul;30(7):1100-16. PMID: 32171032. doi: 10.1111/sms.13654.
21. Barnes S, Prescott J. Empirical Evidence for the Outcomes of Therapeutic Video Games for Adolescents With Anxiety Disorders: Systematic Review. JMIR Serious Games. 2018 Feb 28;6(1):e3. PMID: 29490893. doi: 10.2196/games.9530.
22. Zayeni D, Raynaud J-P, Revet A. Therapeutic and Preventive Use of Video Games in Child and Adolescent Psychiatry: A Systematic Review. Front Psychiatry. 2020;11:36-. PMID: 32116851. doi: 10.3389/fpsyt.2020.00036.
23. Michael DR, Chen SL. Serious games: Games that educate, train, and inform. Michigan: Cengage Learning PTR; 2005. ISBN: 1592006221.
24. Dias LPS, Barbosa JLV, Vianna HD. Gamification and serious games in depression care: A systematic mapping study. Telematics and Informatics. 2018 2018/04/01/;35(1):213-24. doi: https://doi.org/10.1016/j.tele.2017.11.002.
25. Chatham RE. Games for training. Commun ACM. 2007;50(7):36–43. doi: 10.1145/1272516.1272537.
26. Lau HM, Smit JH, Fleming TM, Riper H. Serious Games for Mental Health: Are They Accessible, Feasible, and Effective? A Systematic Review and Meta-analysis. Front Psychiatry. 2017 2017-January-18;7(209). doi: 10.3389/fpsytl.2016.00209.
27. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. doi: 10.1136/bmj.b2700.
28. Landis JR, Koch GG. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics. 1977;33(2):363-74. doi: 10.2307/2529786.
29. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898.
30. Deeks JJ, Higgins JP, Altman DG. Chater 9: Analysing data and undertaking meta-analyses. In: Higgins J, Green S, editors. Cochrane handbook for systematic reviews of interventions. Sussex, UK: John Wiley & Sons; 2008. p. 243-96.
31. Schunemann HJ, Oxman AD, Vist GE, Higgins JP, Deeks JJ, Glasziou P. Chapter 12: Interpreting results and drawing conclusions. In: Higgins J, Green S, editors. Cochrane handbook for systematic reviews of interventions Sussex, UK: John Wiley & Sons; 2008. p. 359-87.
32. Adomavičienė A, Daunoravičienė K, Kubilius R, Varžaitytė L, Raistenskis J. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinet System. Medicina (Kaunas, Lithuania). 2019 Apr 9;55(4). PMID: 30970655. doi: 10.3390/medicina55040098.
33. Carvalho MS, Carvalho LC, Menezes FDS, Frazin A, Gomes EDC, Lunes DH. Effects of Exergames in Women with Fibromyalgia: A Randomized Controlled Study. Games for health journal. 2020 Oct;9(5):358-67. PMID: 32379982. doi: 10.1089/g4h.2019.0108.
34. Meldrum D, Herrman S, Vance R, Murray D, Malone K, Duffy D, et al. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial. Archives of physical medicine and rehabilitation. 2015 Jul;96(7):1319-28.e1. PMID: 25842051. doi: 10.1016/j.apmr.2015.02.032.
35. Schumacher H, Stüwe S, Kropp P, Diedrich D, Freitag S, Greger N, et al. A prospective, randomized evaluation of the feasibility of exergaming on patients undergoing hematopoietic stem cell
transplantation. Bone marrow transplantation. 2018 May;53(5):584-90. PMID: 29335629. doi: 10.1038/s41409-017-0070-8.

36. Ruivo J, Karim K, O’Shea R, Oliveira RCS, Keary L, O’Brien C, et al. In-class Active Video Game Supplementation and Adherence to Cardiac Rehabilitation. Journal of cardiopulmonary rehabilitation and prevention. 2017 Jul;37(4):274-8. PMID: 28350640. doi: 10.1097/hcr.0000000000000224.

37. Mazzoleni S, Montagnani G, Vagheggini G, Buono L, Moretti F, Dario P, et al. Interactive videogame as rehabilitation tool of patients with chronic respiratory diseases: preliminary results of a feasibility study. Respiratory medicine. 2014 Oct;108(10):1516-24. PMID: 25087837. doi: 10.1089/g4h.2020.0162.

38. Polat M, Kahveci A, Muci B, Günendi Z, Kaymak Karatas G. The Effect of Virtual Reality Exercises on Pain, Functionality, Cardiopulmonary Capacity, and Quality of Life in Fibromyalgia Syndrome: A Randomized Controlled Study. Games for health journal. 2021 Jun;10(3):165-73. PMID: 33689452. doi: 10.1089/g4h.2020.0162.

39. Lin YT, Lee WC, Hsieh RL. Active video games for knee osteoarthritis improve mobility but not WOMAC score: A randomized controlled trial. Annals of physical and rehabilitation medicine. 2020 Nov;63(6):458-65. PMID: 31981832. doi: 10.1016/j.rehab.2019.11.008.

40. Vieira Â, Melo C, Machado J, Gabriel J. Virtual reality exercise on a home-based phase III cardiac rehabilitation program, effect on executive function, quality of life and depression, anxiety and stress: a randomized controlled trial. Disability and rehabilitation Assistive technology. 2018 Feb;13(2):112-23. PMID: 28285574. doi: 10.1080/17483107.2017.1297858.

41. Thomas S, Fazakarley L, Thomas PW, Collyer S, Brenton S, Perring S, et al. Mii-vitaliSe: a pilot randomised controlled trial of a home gaming system (Nintendo Wii) to increase activity levels, vitality and well-being in people with multiple sclerosis. BMJ Open. 2017;7(9):e016966. doi: 10.1136/bmjopen-2017-016966.

42. Wagener TL, Fedele DA, Mignogna MR, Hester CN, Gillaspys SR. Psychological effects of dance-based group exergaming in obese adolescents. Pediatric obesity. 2012 Oct;7(5):e68-74. PMID: 22767495. doi: 10.1111/j.2047-6310.2012.00065.x.

43. Jahouh M, González-Bernal JJ, González-Santos J, Fernández-Lázaro D, Soto-Cámara R, Mielgo-Ayuso J. Impact of an Intervention with Wii Video Games on the Autonomy of Activities of Daily Living and Psychological-Cognitive Components in the Institutionalized Elderly. International journal of environmental research and public health. 2021 Feb 7;18(4). PMID: 33562249. doi: 10.3390/ijerph18041570.

44. Collado-Mateo D, Dominguez-Muñoz FJ, Adsuar JC, Garcia-Gordillo MA, Gusi N. Effects of Exergames on Quality of Life, Pain, and Disease Effect in Women With Fibromyalgia: A Randomized Controlled Trial. Archives of physical medicine and rehabilitation. 2017 Sep;98(9):1725-31. PMID: 28322760. doi: 10.1016/j.apmr.2017.02.011.

45. Cooney P, Jackman C, Coyle D, O’Reilly G. Computerised cognitive-behavioural therapy for adults with intellectual disability: randomised controlled trial. The British journal of psychiatry : the journal of mental science. 2017 Aug;211(2):95-102. PMID: 28592645. doi: 10.1192/bjp.bp.117.198630.

46. Donker T, Cornelisz I, van Klaveren C, van Straten A, Carlbring P, Cuijpers P, et al. Effectiveness of Self-guided App-Based Virtual Reality Cognitive Behavior Therapy for Acrophobia: A Randomized Clinical Trial. JAMA psychiatry. 2019 Jul 1;76(7):682-90. PMID: 30892564. doi: 10.1001/jamapsychiatry.2019.0219.

47. Fish MT, Russoniello CV, O’Brien K. The Efficacy of Prescribed Casual Videogame Play in Reducing Symptoms of Anxiety: A Randomized Controlled Study. Games for health journal. 2014 Oct;3(5):291-5. PMID: 26192483. doi: 10.1089/g4h.2013.0092.

48. Fleming T, Dixon R, Frampton C, Merry S. A pragmatic randomized controlled trial of computerized CBT (SPARX) for symptoms of depression among adolescents excluded from mainstream education. Behavioural and cognitive psychotherapy. 2012 Oct;40(5):529-41. PMID: 22137185. doi:
49. Merry SN, Stasiak K, Shepherd M, Frampton C, Fleming T, Lucassen MFG. The effectiveness of SPARX, a computerised self help intervention for adolescents seeking help for depression: randomised controlled non-inferiority trial. BMJ : British Medical Journal. 2012;344:e2598. doi: 10.1136/bmj.e2598.

50. Perry Y, Werner-Seidler A, Calear A, Mackinnon A, King C, Scott J, et al. Preventing Depression in Final Year Secondary Students: School-Based Randomized Controlled Trial. J Med Internet Res. 2017 Nov 2;19(11):e369. PMID: 29079357. doi: 10.2196/jmir.8241.

51. Schoneveld EA, Lichtwarck-Aschoff A, Granic I. Preventing Childhood Anxiety Disorders: Is an Applied Game as Effective as a Cognitive Behavioral Therapy-Based Program? Prevention science : the official journal of the Society for Prevention Research. 2018 Feb;19(2):220-32. PMID: 28956222. doi: 10.1007/s11121-017-0843-8.

52. Tsui T. The Efficacy of a Novel Video Game Intervention (MindLight) in Reducing Children's Anxiety. Canada: Queen's University; 2016.

53. Schoneveld EA, Malmberg M, Lichtwarck-Aschoff A, Verheijen GP, Engels RCME, Granic I. A neurofeedback video game (MindLight) to prevent anxiety in children: A randomized controlled trial. Computers in Human Behavior. 2016;63:321-33. doi: 10.1016/j.chb.2016.05.005.

54. Wijnhoven L, Creemers DHM, Vermulst AA, Lindauer RJL, Otten R, Engels R, et al. Effects of the video game 'Mindlight' on anxiety of children with an autism spectrum disorder: A randomized controlled trial. Journal of behavior therapy and experimental psychiatry. 2020 Sep;68:101548. PMID: 32155470. doi: 10.1016/j.jbtep.2020.101548.

55. Scholten H, Malmberg M, Lobel A, Engels RCME, Granic I. A Randomized Controlled Trial to Test the Effectiveness of an Immersive 3D Video Game for Anxiety Prevention among Adolescents. PLOS ONE. 2016;11(1):e0147763. doi: 10.1371/journal.pone.0147763.

56. Marechal C, Berthiller J, Tosetti S, Cogniat B, Desombres H, Bouvet L, et al. Children and parental anxiolysis in paediatric ambulatory surgery: a randomized controlled study comparing 0.3 mg/m² midazolam to tablet computer based interactive distraction. British Journal of Anaesthesia. 2017;118(2):247-53. doi: 10.1093/bja/aew436.

57. Sakizcu Uyar B, Polat R, Bolat M, Donmez A. Which is good for pre-operative anxiety? Midazolam, video games or teaching with cartoons: A randomised trial. European Journal of Anaesthesiology. 2021 Jul 1;38(7):744-50. PMID: 33186304. doi: 10.1097/eja.0000000000001384.

58. Liu KY, Ninan SJ, Laitman BM, Goldrich DY, Iloreta AM, Londino III AV. Virtual Reality as Distraction Analgesia and Anxiolysis for Pediatric Otalaryngology Procedures. The Laryngoscope. 2021;131(5):E1714-E21. doi: https://doi.org/10.1002/lary.29148.

59. Butler O, Herr K, Willmund G, Gallinat J, Kühn S, Zimmermann P. Trauma, treatment and Tetris: video gaming increases hippocampal volume in male patients with combat-related posttraumatic stress disorder. Journal of psychiatry & neuroscience : JPN. 2020 Jul 1;45(4):279-87. PMID: 32293830. doi: 10.1503/jpn.190027.

60. Bove R, Rowles W, Zhao C, Anderson A, Friedman S, Langdon D, et al. A novel in-home digital treatment to improve processing speed in people with multiple sclerosis: A pilot study. Multiple sclerosis (Houndmills, Basingstoke, England). 2021 Apr;27(5):778-89. PMID: 32584155. doi: 10.1177/1352458520930371.

61. Sanchez R, Brown E, Kocher K, DeRosier M. Improving Children's Mental Health with a Digital Social Skills Development Game: A Randomized Controlled Efficacy Trial of Adventures aboard the S.S. GRIN. Games for health journal. 2017 Feb;6(1):19-27. PMID: 28051877. doi: 10.1089/g4h.2015.0108.

62. Beidel DC, Tuerk PW, Spitalnick J, Bowers CA, Morrison K. Treating Childhood Social Anxiety Disorder With Virtual Environments and Serious Games: A Randomized Trial. Behavior Therapy. 2021 03/18/. doi: https://doi.org/10.1016/j.beth.2021.03.003.

63. Haberkamp A, Walter H, Althaus P, Schmuck M, Rief W, Schmidt F. Testing a gamified Spider App to reduce spider fear and avoidance. Journal of anxiety disorders. 2021 Jan;77:102331. PMID: 33166870.
64. Litvin S, Saunders R, Maier MA, Lüttke S. Gamification as an approach to improve resilience and reduce attrition in mobile mental health interventions: A randomized controlled trial. PloS one. 2020;15(9):e0237220-e. PMID: 32877425. doi: 10.1371/journal.pone.0237220.
65. Abd-Alrazaq A, Al-Jafar E, Alajlani M, Toro C, Alhuwail D, Ahmed A, et al. The effectiveness of serious games in alleviating depression: A systematic review and meta-analysis. Journal Of Medical Internet Research. 2021.
66. Adelman CB, Panza KE, Bartley CA, Bontempo A, Bloch MH. A meta-analysis of computerized cognitive-behavioral therapy for the treatment of DSM-5 anxiety disorders. The Journal of Clinical Psychiatry. 2014;75(7):0-.
67. Christ C, Schouten MJ, Blankers M, van Schaik DJ, Beekman AT, Wisman MA, et al. Internet and Computer-Based Cognitive Behavioral Therapy for Anxiety and Depression in Adolescents and Young Adults: Systematic Review and Meta-Analysis. J Med Internet Res. 2020;22(9):e17831. PMID: 32673212. doi: 10.2196/17831.
68. Newby JM, Twomey C, Yuan Li SS, Andrews G. Transdiagnostic computerised cognitive behavioural therapy for depression and anxiety: A systematic review and meta-analysis. Journal of Affective Disorders. 2016 2016/07/15/;199:30-41. doi: https://doi.org/10.1016/j.jad.2016.03.018.
69. Rooksby M, Elouafkaoui P, Humphris G, Clarkson J, Freeman R. Internet-assisted delivery of cognitive behavioural therapy (CBT) for childhood anxiety: Systematic review and meta-analysis. Journal of anxiety disorders. 2015 2015/01/01/;29:83-92. doi: https://doi.org/10.1016/j.janxdis.2014.11.006.
70. Bhattacherjee A. Social science research: Principles, methods, and practices: Textbooks Collection; 2012.
71. The Radicati Group. Mobile Statistics Report, 2021-2025. London: The Radicati Group 2020.
72. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England). 2012 Dec 15;380(9859):2197-223. PMID: 23245608. doi: 10.1016/s0140-6736(12)61689-4.
73. Oladeji BD, Gureje O. Brain drain: a challenge to global mental health. BJPsych International. 2016;13(3):61-3. doi: 10.1192/s2056474000001240.
Supplementary Files
Figures
Flow chart of the study selection process.
Review authors’ judgments about each ‘Risk of bias’ domain.
Forest plot of 9 studies comparing the effect of exergames to conventional exercises on the anxiety level.
Forest plot of 5 studies comparing the effect of exergames to no intervention on the anxiety level.
Forest plot of 6 studies (9 comparisons) comparing the effect of CBT games to no intervention on the severity of depressive symptoms.
Forest plot of 3 studies comparing the effect of biofeedback games to conventional video games on the anxiety level.
Multimedia Appendixes
PRISMA checklist.
URL: http://asset.jmir.pub/assets/04cbca3179ec2a21513d984589582f26.docx

Search strategy.
URL: http://asset.jmir.pub/assets/9a4feba19e2c54e8b884cb90ec157162.docx

Data extraction form.
URL: http://asset.jmir.pub/assets/a56098f1c52e9a27067cf62117d4092b.docx

Reviewers’ judgments about each “risk of bias” domain for each included study.
URL: http://asset.jmir.pub/assets/ccdf21297ab8c8104ebf6b70f2b5eca6.docx

GRADE Profile for comparison of Serious games to control or conventional exercises for Anxiety.
URL: http://asset.jmir.pub/assets/ed988bc81df8f9b23236adb80ad573dc.docx