Pharmacologically Controlled Protein Switch for ON-OFF Regulation of Growth Factor Activity

Maria Karlsson¹,³, Balder Rebmann¹,², Philipp S. Lienemann⁴,⁵, Natallia Sprossmann¹,², Martin Ehrbar⁴, Gerald Radziwill¹,² & Wilfried Weber¹,²,³

¹Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany, ²BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany, ³Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland, ⁴Department of Obstetrics, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland, ⁵Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Station 15, Bld A1 1109, 1015 Lausanne, Switzerland.

The precise manipulation of growth factor signaling is central to the progress of tissue engineering. Methods for direct time-resolved activation of signaling pathways through controlled receptor dimerization have been reported; however, these suffer from the risks associated with gene transfer. Here we present an alternative gene transfer-free approach in the form of a protein switch featuring pharmacologically controlled ON-OFF regulation of growth factor activity. The reversible operation of the switch enables stimulation of target processes within a defined period of time. The protein switch provides a means for both studying and manipulating signaling processes, and is thus believed to be a valuable tool for basic research as well as tissue engineering and biomedical applications.

Results

The switch consists of a chimeric protein with an engineered monomeric variant of the protein of interest (POI) fused to the inducible dimerization domain of the bacterial protein gyrase B (GyrB) (Fig. 1). In its default state the switch is OFF due to its monomeric structure, which prohibits dimerization and thereby activation of the protein receptor. The switch is turned ON upon the addition of coumermycin. Each coumarine ring of the coumermycin bind a GyrB, leading to dimerization of the protein and thus the activation of the receptor and downstream signaling processes. The switch is turned OFF by the administration of novobiocin, upon which the single coumarine ring of the novobiocin competitively inhibits binding of coumermycin to GyrB, returning the protein to its monomeric state.

In this study the vascular endothelial growth factor A isoform 121 (VEGF), essential for angiogenesis and vasculogenesis, was used as an example protein for the characterization of the switch. In order to generate a monomeric version of VEGF the cysteine residues on positions 51 (C51) and 60 (C60) responsible for the formation of two antiparallel intermolecular disulfide bonds were substituted with alanine residues (VEGF (C51-A, C60-A)) using site-specific mutagenesis. The resulting gene was fused to a flexible glycine-serine
encoding linker (gs-linker) followed by the gene encoding for the N-terminal domain of GyrB and the sequence for a hexahistidine tag (His6) (VEGFSWITCH: VEGF (C51-A, C60-A)-gs-linker-GyrB-His6) (Supplementary Information (SI) Fig. 1a). VEGFSWITCH was produced as a soluble cytoplasmatic protein in Escherichia coli and purified by immobilized-metal affinity chromatography (SI Fig 1b). The non-essential cysteine residue on position 116 is known to form a third interchain disulfide bridge, but was in this study not mutated since it is suggested to improve protein stability9. In order to avoid spontaneous dimerization, the free cysteines were alkylated and the monomeric fraction of the switch was subsequently isolated using size exclusion chromatography (SI Fig. 1c).

Inducible dimer- and monomerization of the switch were characterized by size exclusion chromatography. The molecular weight peak at 50 kDa shown in Fig. 2a confirms the monomeric nature of the switch (VEGFSWITCH-OFF). The addition of coumermycin shifts the molecular weight peak to 100 kDa, indicating an inducible transition to a dimeric state (VEGFSWITCH-ON). By subsequently adding an excess amount of novobiocin the molecular weight peak returns to its initial position at 50 kDa, which demonstrates the fully reversible operation of the switch (Fig. 2a). The binding affinity of the three VEGFSWITCH variants to the VEGF receptor 2 (VEGFR2) was examined by fitting the saturation curve \(y = xB_{\text{MAX}}/(K_D + x) \) to the experimentally determined receptor-bound protein fraction (y) versus the protein concentration (x). The relative binding parameters \(B_{\text{MAX}} \) and \(K_D \) are similar for the three different VEGFSWITCH variants, as seen in Fig. 2b.

In order to examine the bioactivity of the dimeric protein configuration (VEGFSWITCH-ON), its ability to stimulate VEGFR2-phosphorylation in human umbilical vein endothelial cells (HUVECs) was compared to that of intact VEGF without the GyrB domain (VEGF) and intact VEGF fused to GyrB (VEGF-GyrB) using Western blotting (Fig. 3a) with GyrB as a negative control. It can be seen that VEGFSWITCH-ON is bioactive, albeit at a lower level than VEGF and VEGF-GyrB at equal concentrations. However, by increasing the VEGFSWITCH-ON concentration similar activity levels as for VEGF and VEGF-GyrB were reached (Fig. 3a). In addition, the ability of VEGFSWITCH-ON to dose-dependently activate downstream protein expression in HUVECs was confirmed by examining the endogenous Delta-like ligand 4 (DLL4) levels in the cells after stimulation with VEGFSWITCH-ON at various concentrations (Fig. 3b).

VEGF-governed endothelial cell migration is a complex process that relies on the coordination between numerous signaling pathways10. As this process is a key component in angiogenesis, methods enabling the study and regulation of endothelial cell migration are highly valuable for both basic research and tissue engineering. Here we demonstrate the use of VEGFSWITCH for time-resolved stimulation of three-dimensional migration of HUVECs assembled into microtissues under \textit{in vivo}-like conditions. As shown in Fig. 4a, only background migration of the cells from the microtissue is observed when the switch is in its default OFF-state, i.e. without any inducer. The addition of coumermycin turns the switch ON, resulting in stimulated cell migration (Fig. 4b). Fig. 4c and Fig. 4d show the microtissues after turning the switch OFF by administrating
but fail to activate it are known to function as antagonists. In potential in vivo applications we therefore expect excess amounts of VEGFSWITCH to outcompete endogenous VEGF as it binds to its receptor in both the monomeric OFF-state and in the induced dimeric ON-state. The present switch design may serve as a blueprint for the construction of a wide range of protein switches using other dimeric growth factors, primarily those found in the cysteine-knot superfamily. The precise ON-OFF operation of the switch illustrates its potential as a tool for elucidating the complex temporal orchestration of the signaling pathways underlying endothelial cell migration, as well as for the guidance of angiogenic processes in tissue engineering.

Methods

Construction of expression vectors. The vascular endothelial growth factor isoform 121 (VEGF) was amplified from plasmid pBM043 and the cysteine residues on amino acid positions 51 and 60 were replaced with alanine residues using site-specific mutagenesis. The encoding sequence for the N-terminal domain of the bacterial GyrB protein and the sequence for a hexahistidine tag (His6) were amplified from plasmid pWW87. The two fragments were fused together via a glycine-serine flexible encoding linker sequence (gs-linker) and cloned into the vector pWW301, resulting in the bacterial plasmid pLMK500 for the production of VEGFSWITCH (VEGF-gs-linker-GyrB-His6) with the following amino acid sequence:

MAPMAEGGGQNHHEVVKFMVDVTQKYSCHPIETLVDIHFQYPDEYEFKPS
AVPLMLMRGCGGACNGEMSAVPNTNEETMQMDRKRPIKQLCDNALQHC
CRPKKDKRAGDEKCDKPRKDGGGSGGGGGSGASARMSNYSYDDSSIKVLK
GLDAVRRKPRGMYIGDTDDGTLGHMMVFTEVVNDAINSAPALAGHCEKHTVI
HADNNSVQDDGRGFPITGHPCGGVSAEVMTYLHAGKFDNNSKYV
SGLGHLPWVSVPNLSQKLELVQIEGKEQHRXHEHIPQAPLAIVGETEK
TGTMVRFWPSLETFTNVTEFEYELARKRLFNSGVLSRDKDRKDGEDK
HFFYGHHHHHH.

VEGF, bold and italics; Mutations, bold, italics and underlined; GS-linker, underlined; GyrB, bold; his6, italics.

The expression vector for a non-mutated version of the fusion protein was cloned in the same way as plasmid pLMK500 except that the site-specific mutagenesis was excluded, resulting in the plasmid pLMK619 for the expression of VEGF (VEGF-gs-linker-GyrB-His6). The construction of the VEGF15,16 and the GyrB13 expression vectors has been described previously. Details regarding protein production and size exclusion chromatography are given in the Supplementary Information.

Inducible dimerization and monomerization of VEGFSWITCH. The monomeric structure, inducible dimerization, and reversible monomerization of the switch were characterized by incubating the protein (40 ng ml⁻¹) at room temperature with, respectively, dimethyl sulfoxide alone (DMSO, Pan Biotech, Aidenbach, Germany, cat. no. 96-36720100) (0.2% v/v) for 60 min, 1 ng ml⁻¹ coumermycin (Sigma-Aldrich, München, Germany, cat. no. C9270) dissolved in DMSO, or with 1 ng ml⁻¹ coumermycin for 30 min followed by 30 min with 1.8 µg ml⁻¹ novobiocin (Carl Roth, Karlsruhe, Germany, cat. no. C247.3) added. The protein molecular weights resulting from the different incubation conditions were subsequently analyzed by size exclusion chromatography according to the above described protocol. The VEGF concentrations in the fractions eluted between 62.5 ml and 92.5 ml were assessed using the VEGFR2 detection antibody and the avidin-HRP conjugate antibody from the BioSource ELISA (Peprotech, Hamburg, Germany, cat. no. 900-K10). The coumermycin and novobiocin concentrations given above were used in all subsequent experiments.

Receptor-ligand binding affinity. The receptor-ligand binding affinity experiment was performed by ELISA. VEGF2 (Life Technologies, Karlsruhe, Germany, cat. no. PV3660) was diluted in Tris-buffered saline (TBS; 50 mM Tris pH 7.8 and 150 mM NaCl) to a final concentration of 4 ng ml⁻¹ and 100 µl were added to each well of a 96-well ELISA plate (Corning, Lowell, MA, cat. no. 3590) after which the plate was washed. The various VEGFSWITCH variants were diluted in TBS containing 5% BSA of which 100 µl were added to each well. The plate was washed three times with TBS containing 0.05% (v/v) Tween-20; the same procedure was used for all subsequent washing steps. Specific binding sites were blocked by incubation for 2 h with 300 µl blocking buffer (TBS containing 5% (v/v) bovine serum albumin (BSA, Fluka, Buchs, Switzerland, cat. no. 05479)) after which the plate was washed. The various VEGFSWITCH variants were diluted in TBS containing 5% BSA of which 100 µl were added to each well. The plate was washed after 2 h of incubation at room temperature. The receptor-bound proteins were detected according to the manufacturer’s protocol using the VEGF detection antibody and the avidin-HRP conjugate antibody from the VEGF ELISA. After washing, the ELISA was developed by adding 100 µl per well of 2, 2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) reagent (0.03%, w/v, Sigma-Aldrich, cat. no. A1888), and H₂O₂ (0.03%, v/v) in sodium citrate buffer (50 mM sodium citrate, pH 4.0). The absorbance at 405 nm was determined using a Synergy M4 multi-mode microplate reader (BioTek® Instruments, Inc., Winooski, VT). The binding curve $y = x/[K_0 + x]$ was fitted to the saturation data in
order to determine the relative maximum specific binding \(B_{\text{MAX}} \) and the dissociation constant \(K_D \) of the VEGF\textsubscript{SWITCH} variants.

VEGFR2 phosphorylation and stimulation of DLL4 expression. Human umbilical vein endothelial cells (HUVECs, Promocell, Heidelberg, Germany, cat. no. C-12200) were cultivated in endothelial growth medium II (Lonza, Basel, Switzerland, cat. no. C-22210). For VEGF\textsubscript{SWITCH} phosphorylation experiments, 150,000 cells were seeded in 1 ml of endothelial growth medium (Lonza, Basel, Switzerland, cat. no. C-22010) per well of a 12-well plate and grown to confluence over 2 days. Subsequently, the cells were starved in FCS-free endothelial growth medium containing 0.1% (w/v) BSA for

Figure 3 | VEGF\textsubscript{SWITCH-ON} bioactivity. (a) Comparison of VEGFR2 phosphorylation induced by VEGF\textsubscript{SWITCH-ON}, VEGF and VEGF\textsubscript{GyrB} with GyrB as a negative control. HUVECs were stimulated for 15 min with the indicated protein concentrations after which whole-cell extracts were subjected to SDS-PAGE followed by Western blot analysis using an antibody against phosphorylated VEGFR2 (P-VEGFR2 (Tyr 1175))\(^{18}\). Subsequently, the same membrane was re-probed with an anti-VEGFR2 antibody\(^{18}\) for detection of the total levels of VEGFR2. (b) Stimulation of DLL4 expression. HUVECs were stimulated for 4 days with the indicated VEGF\textsubscript{SWITCH-ON} concentrations after which whole-cell extracts were resolved by SDS-PAGE followed by Western blot analysis. After transfer of the proteins to a PVDF-membrane, the membrane was cut into two pieces. The upper part of the membrane (containing proteins with a molecular weight larger than 60 kDa) was probed with an anti-DLL4 antibody\(^{19}\). As a loading control, the levels of \(\beta \)-actin on the lower part of the membrane (containing proteins with a molecular weight below 60 kDa) were detected using an anti-\(\beta \)-actin antibody\(^{20}\).
Formation of endothelial microtissues. HUVECs were cultivated in endothelial growth medium (Lonza, Basel, Switzerland, cat. no. CC-3162) supplemented with 10% (v/v) foetal calf serum (FCS, Gibco Life Technologies, Karlsruhe, Germany, cat. no. 10500). For microtissue formation, 25,000 cells ml⁻¹ were suspended in 0.2% (w/v) methyl cellulose (Sigma-Aldrich, cat. no. M0512) in DMEM:EBM (4 parts DMEM/F-12 + GlutaMAX™ (Gibco Life Technologies, cat. no. 31331-028) and 1 part endothelial basal medium 2 (EBM-2, Lonza, cat. no. CC-3156) supplemented with 1% (v/v) penicillin/streptomycin solution (Gibco Life Technologies, cat. no. 15140-122) and 10% (v/v) FCS). Droplets of 3 μl were placed in non-adhesive cell culture dishes (Greiner Bio-One, Frickenhausen, Germany, cat. no. 633180) and cultured overnight as hanging drops. The resulting spheroids were harvested in DMEM:EBM, washed once with DMEM:EBM, and embedded into the hydrogels.

Hydrogel formation. PEG-based matrix metalloprotease-sensitive hydrogels were synthesized as described previously. In brief, stoichiometric amounts (final concentration: 1% (w/v)) of 8-PEG-MMP-sensitive Lys and 8-PEG-Gln were mixed with 50 μM Gln-RGD peptide, 400 spheroids ml⁻¹, and 10 U ml⁻¹ thrombin-activated factor XIIIa in 50 mM Tris-HCl (pH 7.6) supplemented with 50 mM CaCl₂. Droplets of 20 μl were placed between two siliconized glass slides (Sigmacote, Sigma-Aldrich, cat. no. SL2) using 1-mm-thick spacers. In order to prevent spheroid sedimentation, the glass slides were slowly rotated at room temperature until the onset of gelation, and subsequently incubated for 30 min at 37 °C. The hydrogels were thereafter released and transferred into a 24-well plate. The final gels were incubated for 15 h for 8% (w/v) DMEM:EBM medium at 37 °C and 5% CO₂ in the presence of 1 μg ml⁻¹ VEGFSWITCH and either only DMSO, 25 ng ml⁻¹ comerrin dissolved in DMSO, or 25 ng ml⁻¹ comerrin and 45 μg ml⁻¹ novobiocin.

Analytics. Z-stack phase contrast images (200 μm depth) were acquired at 10 × magnification using a Zeiss Axiovert 200 M. HUVECs migration was quantified by measuring the migration distance from the microtissue center. Cells with a migration distance larger than 75 μm were considered in the statistical analysis. The results were evaluated by a t-test, where p-values < 0.05 were considered to be statistically significant.
16. Zisch, A. H., Schenk, U., Schense, J. C., Sakiyama-Elbert, S. E. & Hubbell, J. A. Covalently conjugated VEGF–fibrin matrices for endothelialization. *Journal of controlled release: official journal of the Controlled Release Society* **72**, 101–113 (2001).

17. Ehrbar, M. et al. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. *Biomacromolecules* **8**, 3000–3007, doi:10.1021/bm070228f (2007).

18. Holmqvist, K. et al. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. *The Journal of biological chemistry* **279**, 22267–22275, doi:10.1074/jbc.M312729200 (2004).

19. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. *Nature* **445**, 776–780, doi:10.1038/nature05571 (2007).

20. Palozza, P. et al. Lycopene regulation of cholesterol synthesis and efflux in human macrophages. *The Journal of nutritional biochemistry* **22**, 971–978, doi:10.1016/j.jnutbio.2010.08.010 (2011).

Acknowledgments
The authors thank Aida Kurmanavicius and Karelia Velez for excellent technical assistance. This work was supported by the INTERREG IV Upper Rhine project no. A20, the Swiss National Science Foundation (grant no. CR3213_125426) and the Excellence Initiative of the German Federal and State Governments (EXC 294).

Author contributions
The experiments were designed by M.K., B.R., P.S.L., M.E., G.R. and W.W. and the experimental work was performed by M.K., B.R., P.S.L. and N.S. The manuscript was written by M.K. and W.W.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Karlsson, M. et al. Pharmacologically Controlled Protein Switch for ON-OFF Regulation of Growth Factor Activity. *Sci. Rep.* **3**, 2716; DOI:10.1038/srep02716 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0