Different Clinical Presentations and Outcomes of Disseminated Varicella in Children With Primary and Acquired Immunodeficiencies

Paul Bastard1,2, Aurélien Galerne11, Alain Lefevre-Utile1,3,4,†, Coralie Briand1, André Baruchel5,6, Philippe Durand6,7,8, Judith Landman-Parker9, Elodie Gouache9, Nathalie Boddart4,10,11, Despina Moshous2,4,11, Joel Gaudelus1,12, Robert Cohen13, Georges Deschenes14, Alain Fischer2,4,11,15, Stéphane Blanche2,4, Loïc de Pontual1,12 and Bénédicte Neven2,4,11∗

Primary infection with varicella-zoster virus (VZV) causes chickenpox, a benign and self-limited disease in healthy children. In patients with primary or acquired immunodeficiencies, primary infection can be life-threatening, due to rapid dissemination of the virus to various organs [lung, gastrointestinal tract, liver, eye, central nervous system (CNS)]. We retrospectively described and compared the clinical presentations and outcomes of disseminated varicella infection (DV) in patients with acquired (AID) (n = 7) and primary (PID) (n = 12) immunodeficiencies. Patients with AID were on immunosuppression (mostly steroids) for nephrotic syndrome, solid organ transplantation or the treatment of hemopathies, whereas those with PID had combined immunodeficiency (CID) or severe CID (SCID). The course of the disease was severe and fulminant in patients with AID, with multiple organ failure, no rash or a delayed rash, whereas patients with CID and SICD presented typical signs of chickenpox, including a rash, with dissemination to other organs, including the lungs and CNS. In the PID group, antiviral treatment was prolonged until immune reconstitution after bone marrow transplantation, which was performed in 10/12 patients. Four patients died, and three experienced neurological sequelae. SCID patients had the worst outcome. Our findings highlight substantial differences in the clinical presentation and course of DV between children with AID and PID, suggesting differences in pathophysiology. Prevention, early diagnosis and treatment are required to improve outcome.

Keywords: varicella, primary immunodeficiencies, steroids, innate immunity, disseminated varicella
INTRODUCTION

Primary infection with varicella-zoster virus (VZV), a ubiquitous, human-restricted double-strand DNA alpha-herpesvirus (1, 2), causes chickenpox. In non-vaccinated populations, seroprevalence for VZV increases with age in children, reaching more than 90% by the age of 18 years in most (3, 4), but not all countries (2). VZV reactivation after a quiescent phase in the sensory ganglia (3, 4) causes shingles. The most common clinical presentation of chickenpox is a pruritic vesicular rash, beginning about 2 weeks after exposure and progressing in flares over several days, as patients typically have lesions at different stages of development (5). In previously healthy children, chickenpox is generally a mild and self-limited disease, but VZV infection in patients with primary or acquired immunodeficiencies can be life-threatening in rare cases, due to rapid dissemination of the virus, causing respiratory, gastrointestinal, hepatic, ocular (retinitis, keratitis), and central nervous system (encephalitis, meningitis, cerebellitis, central nerve palsy, vasculopathy) involvement. These disseminated varicella infections (DV) result in high morbidity and mortality (6–8). In patients with acquired immunodeficiencies (AID), diagnosis is often delayed due to unusual initial presentations (6), such as the absence of a rash, or the presence of isolated abdominal pain, with a severe fulminant course. Susceptibility to VZV infection is variable in patients with primary immune deficiencies (PID), dependent on the immune functions affected. No difference in the clinical course and outcome of disseminated VZV infection has yet been described between patients with PID and those with AID. In France, global vaccination for VZV is not currently recommended and limited to at-risk groups. We thus retrospectively analyzed 19 cases of DV in French children with acquired or primary immunodeficiencies, from 2003 to 2016. We show that these two groups have very different initial clinical presentations and outcomes, suggesting that the pathophysiology of the disease depends on the underlying cause of immunosuppression.

MATERIALS AND METHODS

Study Design and Participants

Patients with AID were recruited via a standardized survey sent to all specialists likely to have treated children hospitalized for DV in French university hospitals over a 13-year period (from 2003 to 2016). This call for collaboration was issued through the hospital data warehouse (9, 10). The inclusion criteria for all patients were: i) Child or adolescent aged 0 to 18 years, ii) receiving immunosuppressive therapy or with a PID (using ESID criteria, whether or not diagnosed at the time of VZV infection) iii) hospitalized for a proven DV (at least one organ other than the skin involved; with at least one sample testing positive for VZV). Extensive varicella infections (severe mucocutaneous involvement) complicated with hemorrhagic disease only and cases of chickenpox with secondary bacterial infections only were not included. Patients undergoing hematopoietic stem cell transplantation (HSCT), patients infected with the human immunodeficiency virus and PID patients on immunosuppressive drugs were excluded. The study protocol was approved by an independent local ethics committee (Comité Local d’Éthique pour la Recherche Clinique; reference: CLEA-2016-029, October 12, 2016).

Data Collection

We retrospectively reviewed the files of all patients with disseminated varicella infection and retrieved data for the patient’s personal and familial medical history, clinical and radiological features, treatment and outcome.

Statistical Analysis

Statistics were performed using R (CRAN) version 3.6.0. We described patient characteristics as numbers and percentages for categorical variables, and median or means with interquartile ranges for quantitative ones. Wilcoxon test was used to compare quantitative variables and the Fisher’s exact test for qualitative ones. Two-sided p-values < 0.05 were considered significant.

RESULTS

Between January 1, 2003 and January 1, 2016; 19 patients (seven with AID and 12 with PID) from six centers in France were included in the analysis. All patients had suffered from DV and satisfied the inclusion criteria. The characteristics of the patients are presented in Tables 1–3.

Disseminated Varicella Infection in Seven Patients With Acquired Immunodeficiencies

In patients with AID (Table 1), the mean age at DV diagnosis was 10 years (range: 4–16 years). All but one of the patients were male. The underlying conditions were steroid-dependent nephrotic syndrome (n=2), renal transplantation (n=1) and malignant hemopathies (n=4). Immunosuppressive treatments included corticosteroids, cyclophosphamide, tacrolimus and/or a combination of methotrexate and purinethol. The durations and doses of the immunosuppressive treatments are shown in Table 2. Four of the seven patients were on corticosteroids at DV onset, and all patients had received corticosteroids as part of their treatment during the preceding 6 months. The median duration of immunosuppressive therapy before DV was 36 months (range: 0.5–168 months). All patients were living in France and none had been vaccinated against VZV. The index case of varicella infection was identified for only one of these patients, who then received prophylactic acyclovir.
Case	Age	Sex	First symptom	Clinical and biological presentation	Medical history	VZV DNA +	Delay between onset and TTT initiation (hours)	Treatment	Outcome	
N01	16	M	Abdominal pain	Abdominal pain, seizures, skin rash, hemorrhages, hepatitis, DIC	Nephrotic syndrome, 3rd relapse	Steroids, Ciclosporin	Blood: + CSF: ND Skin: ND	38	Acyclovir IV + IgIV	Death
N02	14	M	Fever, vomiting	Fever, skin rash, coma, acute respiratory distress, hemorrhages, rhabdomyolysis, hepatitis	Nephrotic syndrome, 1st relapse	Steroids	Blood: + CSF: ND Skin: ND	52	Acyclovir/ Gancyclovir/ Foscavir IV + IgIV	Death
N03	12	M	Headache	Headache, convulsions, hepatitis, neutropenia, thrombopenia	Lymphoblastic lymphoma type B	Methotrexate, Purinethol	Blood: + CSF: + Skin: ND	46	Acyclovir IV, VZIG, IgIV	neurologic sequel
N04	6	M	Abdominal pain	Abdominal pain, skin rash, acute respiratory distress, hepatitis, renal failure, thrombopenia	Renal transplant for renal hypoplasia	Steroids, Tacrolimus	Blood: + CSF: ND Skin: ND	78	Acyclovir IV, VZIG, IgIV	Favorable
N05	6	M	Abdominal pain	Abdominal pain, fever, acute respiratory distress, hepatitis, OID, thrombopenia	ALL type B	Methotrexate, Purinethol	Blood: + CSF: ND Skin: ND	96	Acyclovir IV, VZIG	Favorable
N06	4	F	Abdominal pain	Abdominal pain, hemorrhage, fever, hepatitis, OID, thrombopenia, skin rash	ALL pre-B	Steroids, Chemotherapy	Blood: ND CSF: ND Skin: ND	90	Acyclovir IV, IgIV	Favorable
N07	10	M	Skin rash	Abdominal pain, respiratory distress, fever, hepatitis, skin rash	ALL type B	Methotrexate, Purinethol	Blood: + CSF: ND Skin: +	35	Acyclovir IV	Favorable

Age is expressed in years. M, male; F, female; ALL, acute lymphoblastic leukemia; DIC, disseminated intravascular coagulopathy, ICU, intensive care unit, BAL, bronchoalveolar lavage; IV, Intravenous; TTT, treatment; VZIG, immunoglobulins against varicella-zoster virus; IgIV, intravenous immunoglobulins.
Symptoms of Disseminated Varicella Infection in Patients With Acquired Immunodeficiency

The first symptom was abdominal pain in four of the seven patients, and all patients presented abdominal pain during the course of infection; five had bilateral hypoxic varicella pneumonia requiring oxygen therapy, and two presented seizures (one with confirmed VZV encephalitis). Five of the seven patients had a skin rash, but with an onset at least 48 h after the first symptom in all but one case, this last patient presenting a rash at onset. High liver enzyme levels were noted in all cases, and four patients developed fulminant hepatitis with acute liver failure. High pancreatic enzyme levels were also recorded in four cases, but there were no cases of severe pancreatitis. Two children had disseminated intravascular coagulopathy, including one with severe hemorrhagic syndrome. Two instances of concomitant infections were noted (Candida albicans sepsis and Pseudomonas aeruginosa sepsis, in one patient each). All patients were admitted to an intensive care unit (ICU), for a median of 11 days (range: 2–27 days). The median time between disease onset and treatment initiation was 52 h (range: 35–96 h). All patients received intravenous acyclovir for 14 to 21 days (500 mg/m²/8 h in all cases). Six patients also received immunoglobulins: specific anti-VZV immunoglobulins (n=1), polyvalent immunoglobulins (n=3), or both (n=2). Immunosuppressive drugs were suspended in all cases. Two patients died from multiple organ failure, nine and 30 days after disease onset. Outcome was favorable in four patients, who made a full recovery, and one patient survived but experienced neurological sequelae.

Disseminated Varicella Infection in 12 Patients With A Primary Immunodeficiency

In patients with a PID (Table 3), median age at DV onset was 0.9 years (range: 0.2–12). Four of the patients were female and eight were male. In all patients, DV led to the diagnosis of the PID. Six patients suffered from severe combined immune deficiency (SCID) (γC deficiency n= 1, IL-7 receptor deficiency n= 1, JAK 3 deficiency n= 1, RAG-1 deficiency n= 2 and RAG-2 deficiency n= 1), and six had a combined immune deficiency (MHC class II deficiency n= 1, ZAP-70 deficiency n= 2, hypomorphic ARTEMIS deficiency n= 1, and combined immune deficiency with an unknown molecular diagnosis n= 2). None of the 12 patients or their relatives had been vaccinated against VZV.

Table 2: Treatments of patients with PID.

Patient	Steroid molecule	Daily steroid dosage during varicella infection	Total cumulative steroid dose	Time between steroid initiation and varicella infection	Other immunosuppressive treatments (and doses)
N01	Oral prednisone	2 mg/kg/day	NA	1 month	Cyclosporine (oral, 165 mg/m²/day)
N02	Oral prednisone	0	NA	1 month	None
N03	Oral prednisone	1.2 mg/kg/day	NA	2 years	Tacrolimus (oral, 0.23 mg/kg/day)
N04	None (stopped 5 months before)	0	1800 mg/m² (60 mg/m²/ day for 1 month)	6 months	Methotrexate (oral, NS) and purinethol (oral, NS)
N05	None	0	NA	NA	Methotrexate (oral, 25 mg/m²/week) and purinethol (oral, 75 mg/m²/day)
N06	Oral prednisone (7 days, at 60 mg/m²/day) followed by IV dexamethasone (7 days)	6 mg/m²/day of IV dexamethasone + 400 mg/m²/day prednisone equivalent	420 mg/m²/day	14 days	Intrathecal methotrexate (14 days before varicella infection); IV vincristine (7 days before varicella infection); IV L-asparaginase (2 and 4 days before varicella infection)
N07	None (stopped 9 months before)	0	1800 mg/m² over a 6-month period	15 months	Methotrexate (oral, 25 mg/m²/week) and purinethol (oral, 75 mg/m²/day)

NA, not applicable or unknown.
Case	Age	Sex	First symptom	Clinical and biological presentation	Medical history	VZV DNA +	Treatment	IRIS/time post HSCT/organs	Outcome	
N08	1.5	M	Skin rash	Skin rash, stroke 6 months after the initial VZV infection	CID: MHC II deficiency	Blood	Acyclovir IV HSCT (MUD)	No	A.W. mild Neurological sequelae	
N09	12	M	Skin rash	Bilateral interstitial pneumonia, impetiginized skin rash	CID: ARTEMIS deficiency	Blood, lungs (BAL), skin	Acyclovir IV HSCT (geniod)	No	A.W.	
N10	0.5	M	Skin rash	Impetiginized skin rash, respiratory distress	CID: ZAP-70 deficiency	Blood, lungs (BAL)	Acyclovir IV HSCT (MUD)	Yes (M24) Encephalitis, pericarditis, skin lesions	A.W. keloid scar	
N11	4	M	Skin rash	Severe skin rash, respiratory distress (bilateral pneumonia)	CID: ZAP 70 deficiency	Skin	Acyclovir IV	No HSCT	No	A.W.
N12	3	F	Skin rash	Severe skin rash, bilateral VZV pneumonia	CID (unidentified)	Blood, lungs (BAL)	Acyclovir IV	No HSCT	No	A.W. Ketoid scar
N13	0.8	F	Skin rash	Respiratory distress, skin rash	CID (unidentified)	Blood, lungs (BAL)	Acyclovir IV HSCT (MMRD)	No	No	A.W.
N14	1.3	M	Skin rash	Skin rash, ARDS, keratitis, meningoencephalitis	SCID: JAK 3 deficiency	Blood, lungs (BLA), skin, CSF, vitreous fluid	Acyclovir IV + Foscavir IV intra-vitreous Foscavir HSCT (MMRD)	Yes (M3) pneumonitis, retinitis	Death from suspected IRIS	
N15	1	M	Skin rash	Severe skin rash, bilateral interstitial pneumonia	SCID : RAG 2	Blood	Acyclovir IV + Foscavir IV HSCT (MMRD)	Yes (M2) encephalitis	Death from suspected IRIS	
N16	0.7	F	Skin rash	Skin rash, bilateral interstitial pneumonia, radiculo-neuritis	SCID: RIL-7alpha	Blood, CSF	Acyclovir IV + Foscavir IV 2 HSCT (MMRD)	Yes (M4) Pneumonitis	Death from suspected IRIS	
N17	0.2	M	Skin rash	Severe skin rash, meningoencephalitis	SCID : RAG 1	Blood, CSF	Acyclovir IV HSCT (geniod)	Yes (M1) Encephalitis	A.W., mild Neurological sequelae	
N18	0.4	F	Meningitis	Respiratory distress, neurological involvement (meningitis, retinitis)	SCID: γC	Blood, CSF	Acyclovir IV + Gancyclovir IV followed by Foscavir and Cidofovir. HSCT (MMRD)	No	Severe Neurological and ocular sequelae	
N19	0.5	M	Skin rash	Severe skin rash, neurological involvement, hepatitis	SCID: RAG 1	Blood, CSF	Acyclovir IV HSCT (MMRD)	No	Death from VZV encephalitis 2M after HSCT	

Age is expressed in years. M, male; F, female; ALL, acute lymphoblastic leukemia; SCID, severe combined immunodeficiency; CID, combined immunodeficiency; HSCT, hematopoietic stem cell transplantation; RAG, recombination-activating genes; ARTEMIS, Artemis protein, encoded by the DCLRE1C gene; ZAP, 70 kb zeta chain-associated protein kinase; BAL, bronchoalveolar lavage; IV, intravenous; TTT, treatment (500 mg acyclovir/m²/8 h).
patient had neurological sequelae and two had keloid scars, whereas the other three of these patients had no sequelae. Of note, ten PID patients underwent HSCT, and IRIS was suspected in five of these patients after HSCT.

DISCUSSION

This study highlights substantial differences in the clinical presentations and outcomes of DV between patients with AID (due to corticosteroids and/or other immunosuppressive drugs) and patients with PID (i.e. T-cell deficiency in this series). Indeed, we observed a significantly older age in patients with AID. The disease also followed a more fulminant course in AID patients, with an early abdominal pain but a delayed rash as previously described (8, 11, 12), whereas patients with T-cell deficiency presented a more typical rash, with wide dissemination, persistent infection, a higher rate of sequelae and IRIS-related complications during immune reconstitution after HSCT. Mortality was high in both groups. It is not possible to draw definitive epidemiological conclusions from this study due to its retrospective nature and the potential underreporting or underdiagnosis of cases, particularly in AID patients.

These significant differences may be due to the underlying defect of immunity. Two distinct viremic phases occur after the natural acquisition of VZV. The initial phase is asymptomatic in immunocompetent hosts, occurs 5–7 days after inoculation, and engages innate immune responses, especially type I interferon production. The second phase of viremia begins after 11–21 days
TABLE 4 | Comparison of clinical characteristics between patients with DV and AID or PID.

	Acquired ID	Primary ID	Statistical analysis*	Test used
Age (mean)	9.2	0.9	0.002	#
Sex (M/F)	6/1	8/4	0.6	*
Clinical and biological manifestations:				
Abdominal	7/7	0/12	p < 0.0001	*
Neurological	3/7	6/12	NS	*
Cutaneous	3/7	12/12	p < 0.01	*
Hepatitis	7/7	1/12	p < 0.001	*
Treatment				
>1 antiviral drug	6/7	4/12	p = 0.057	*
ICU	7/7	3/12	p = 0.003	*
Outcome:				
Sequeleae	0/5	5/8	p = 0.075	*
Death	2/7	4/12	NS	*

Age, expressed in years. M, male; F, female; DIC, disseminated intravascular coagulopathy; ICU, intensive care unit. *Wilcoxon rank sum test with continuity correction. *Fisher’s Exact Test for Count Data.

(5), when the skin rash occurs, and corresponds to the onset of specific adaptive immune responses. Early innate responses are important for triggering and amplifying the adaptive immune response leading to the acquisition of specific anti-VZV T cells, which are essential to prevent dissemination, ensure the resolution of acute infection and prevent reactivation. Among all PID described to date (13), susceptibility to VZV infection is heterogeneous (14). SCID and CID confer a high level of susceptibility to VZV as part of a broad predisposition to infection, further highlighting the major role of cellular immunity against VZV. CID constitute a large group of diseases, including some associated with a higher risk of extensive or disseminated varicella infection, such as autosomal recessive (AR) DOCK8 deficiency (15) and other PIDs related to actin-cytoskeleton abnormalities (16) (due to T-cell homing defect), in diseases with NK cell deficiencies among broader cellular deficiencies (AD GATA2 deficiency or AR MCM4 or GINS1 deficiencies) (17–19), AR DOCK2 deficiency, a PID that affect both innate and adaptive immunities, in which disseminated and fulminant varicella has been reported (20–22). A new PID conferring a narrow susceptibility to VZV has recently been described in patients with AR POLR3A and POLR3C deficiencies. The patients present a defective IFN type I and III production upon VZV infection (23) and displayed disseminated VZV with CNS or lung involvement.

Glucocorticoids have very broad immunosuppressive functions affecting both innate and adaptive immunity (24), which may account for the rapid dissemination of VZV and the severity of the infection in the AID group during the initial viremic phase, before the occurrence of a skin rash. The abdominal pain may be due to VZV replication in the digestive system (visceral varicella), as described in previous studies (25, 26). In our series, no DV has been reported in patients on chemotherapy for solid cancers. We cannot exclude an underreporting of such cases. However, the immunosuppressive effect of chemotherapies used in these conditions is probably weaker than that of current chemotherapy treatments for lymphoma and leukemia, which include steroids at various stages (27, 28). Indeed, the use of corticosteroids for immunosuppression was identified as a major risk factor for DV (22, 29).

All the PID patients with DV in our series had defective or absent T-cell immunity (CID or SCID). Almost all presented with an extended skin rash as the first symptom, but dissemination and prolonged infection were the general rule in this group of patients. We can, thus, speculate that, despite the intact innate immune responses engaged during the first phase of viremia, defective adaptive immune responses account for the dissemination and the lack of resolution of the infection, which followed a prolonged course. DV is rare in SCID patients (six out of 101 SCID patients diagnosed during the study period in the immune-hematology unit of Necker), but is a severe event. Mortality and the risk of sequelae were high. Because we included only cases of disseminated varicella infection, it may have introduced a selection bias towards the patients with the most marked PID.

The prompt diagnosis of varicella infection is of the utmost importance in these populations of patients at high risk, but is particularly challenging in patients with AID, in whom the clinical presentation differs from that classically observed (29, 30). The standard treatment for DV in immunocompromised patients includes prompt intravenous acyclovir treatment, initiated as soon as possible (31). Early treatment may improve prognosis (32). The addition of interferon-alpha, early in infection, may also improve outcome by helping to control of the initial viremia.

The prevention of VZV infection in the population at risk, with underlying PID or AID, is of considerable importance. Vaccination has been widely implemented in many countries and seems to have reduced the incidence of complications in otherwise healthy patients, and also in immunocompromised patients, through herd immunity (33). Unfortunately, the varicella vaccine currently available is a live vaccine that can cause infections in patients with profound T-cell immunodeficiency, as previously reported (34–36). The current recommendation in France is to propose anti-VZV vaccination to siblings and relatives of immunocompromised
patients, with preventive treatment in cases of contact. Unfortunately, these recommendations are not fully applied, and are only partly efficient. In particular, for patients with PID, varicella infection may precede or lead to the diagnosis of PID. Neonatal screening for SCID should prevent primary infection in such patients before HSCT or gene therapy (37).

In conclusion, we highlight here major differences in the clinical presentations and outcomes of DV in patients with AID and PID, suggesting differences in the pathophysiology of the disease in these two groups. Abdominal pain is a major symptom in patients with AID, a prompt blood VZV PCR should be performed in the population at risk and acyclovir treatment initiated until the infection is ruled out, especially if liver enzymes are elevated. In the PID group, the prognosis of DV was worse for patients with SCID than for those with CID. The high mortality in this group of patients may reflect uncontrolled infection but IRIS, occurring at the time of infection may precede or lead to the diagnosis of PID. Neonatal immune recovery, should not be overlooked. The prevention of DV in these two groups. Abdominal pain is a major symptom in patients with AID, a prompt blood VZV PCR should be performed in the population at risk and acyclovir treatment initiated until the infection is ruled out, especially if liver enzymes are elevated. In the PID group, the prognosis of DV was worse for patients with SCID than for those with CID. The high mortality in this group of patients may reflect uncontrolled infection but IRIS, occurring at the time of immune recovery, should not be overlooked. The prevention of VZV infection in this high-risk population is of the utmost importance.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Comité Local d’Ethique pour la Recherche Clinique; reference: CLEA-2016-029, October 12, 2016. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

PB and AG collected the clinical data. LP and BN supervised the work. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Strauss SE, Ostrove JM, Inchauspé G, Felser JM, Freifeld A, Croen KD, et al. NIH conference. Varicella-zoster virus infections. Biology, natural history, treatment, and prevention. Ann Intern Med (1988) 108:221–37. doi: 10.7326/0003-4819-108-2-221
2. Rimselienė G, Vainio K, Gibory M, Salamanca BV, Flem E. Varicella-zoster virus susceptibility and primary healthcare consultations in Norway. BMC Infect Dis (2016) 16:254. doi: 10.1186/s12879-016-1581-4
3. Hyman RW, Ecker JR, Tenser RB. Varicella-zoster virus RNA in human trigeminal ganglia. Lancet Lond Engl (1983) 2:814–6. doi: 10.1016/S0140-6736 (83)90736-5
4. Sadzot-Delvaux C, Arvin AM, Rentier B. Varicella-zoster virus IE63, a virion component expressed during latency and acute infection, elicits humoral and cellular immunity. J Infect Dis (1998) 178(Suppl 1):543–47. doi: 10.1086/514259
5. Heininger U, Seward JF. Varicella. Lancet Lond Engl (2006) 368:1365–76. doi: 10.1016/S0140-6736(06)69561-5
6. Morgan ER, Smalley LA. Varicella in immunocompromised children. Incidence of abdominal pain and organ involvement. Am J Dis Child 1960 (1983) 137:883–5. doi: 10.1001/archpedi.1983.02140350057014
7. Feldman S, Hughes WT. Daniel CB. Varicella in children with cancer: Seventy-seven cases. Pediatracta (1975) 56:388–97.
8. Wiegeringer V, Schick J, Beer M, Weissbrich B, Gattenloher S, Girschick HJ, et al. Varicella-zoster virus infections in immunocompromised patients - a single centre 6-years analysis. BMC Pediatr (2011) 11:31. doi: 10.1186/1471-2431-11-31
9. Garcelon N, Neuraz A, Salomon R, Faour H, Benoit V, Delapalme A, et al. A clinician friendly data warehouse oriented toward narrative reports: Dr. Warehouse. J Biomed Inform (2018) 80:52–63. doi: 10.1016/j.jbi.2018.02.019
10. Garcelon N, Neuraz A, Salomon R, Bahi-Buisson N, Amiel J, Picard C, et al. Next generation phenotyping using narrative reports in a rare disease clinical data warehouse. Orphanet J Rare Dis (2018) 13:85. doi: 10.1186/s13023-018-0830-6
11. Okuma HS, Kobayashi Y, Makita S, Kitahara H, Fukuhara S, Munakata W, et al. Disseminated herpes zoster infection initially presenting with abdominal pain in patients with lymphoma undergoing conventional chemotherapy: A report of three cases. Oncol Lett (2016) 12:809–14. doi: 10.3892/ol.2016.4683
12. Vinzio S, Lioure B, Goichot B. Varicella in immunocompromised patients. Lancet Lond Engl (2006) 368:2208. doi: 10.1016/S0140-6736(06)69888-7
13. Bousifha A, Béziat V, Mogensen TH, Casanova J-L, Tangye SG, Zhang S-Y, et al. Human Inborn Errors of Immunity: 2019 Update of the IUUIS Phenotypical Classification. J Clin Immunol (2020) 40:46–61. doi: 10.1007/s10475-020-00758-x
14. Jouanguy E, Béziat V, Mogensen TH, Casanova J-L, Tangye SG, Zhang S-Y. Human inborn errors of immunity to herpes viruses. Curr Opin Immunol (2020) 62:106–22. doi: 10.1016/j.coi.2020.01.004
15. Engelhardt KR, Gertz ME, Keles S, Schäffer AA, Sigmund EC, Glocker C, et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol (2015) 136:402–12. doi: 10.1016/j.jaci.2014.12.1945
16. Tangye SG, Buciol G, Casas-Martín J, Pillay B, Ma CS, Moens L, et al. Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunol Cell Biol (2019) 97:389–402. doi: 10.1111/imcb.12243
17. Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest (2012) 122:821–32. doi: 10.1172/JCI61014
18. Hughes CR, Guasti L, Meimaridou E, Chuang C-H, Schimenti JC, King PJ, et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest (2012) 122:814–20. doi: 10.1172/JCI60224
19. Cottineau J, Kottemann MC, Lach FP, Kang Y-H, Vély F, Deenick EK, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest (2017) 127:1991–2006. doi: 10.1172/JCI90727
20. Dobbs K, Dominguez-Conde C, Zhang S-Y, Parolini S, Audry M, Chou J, et al. Inherited DOCK2 Deficiency in Patients with Early-Onset Invasive Infections. N Engl J Med (2015) 372:2409–22. doi: 10.1056/NEJMoa1413462
21. Moens L, Gouwy M, Bosch B, Pastukhov O, Nieto-Patlán A, Siler U, et al. Human DOCK2 Deficiency: Report of a Novel Mutation and Evidence for Neutrophil Dysfunction. J Clin Immunol (2019) 39:298–308. doi: 10.1007/s12026-019-01063-w
22. Alizadeh Z, Maziani M, Shakerian L, Nabavi M, Fadollahi MR. DOCK2 Deficiency in a Patient with Hyper IgM Phenotype. J Clin Immunol (2018) 38:10–2. doi: 10.1007/s12026-017-0468-5
23. Ogunjimi B, Zhang S-Y, Sørensen KB, Skipper KA, Carter-Timofte M, Kerner G, et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J Clin Invest (2017) 127:3543–56. doi: 10.1172/JCI92280
24. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol (2017) 17:233–47. doi: 10.1038/nri5717.1
25. Han SB, Seo YE, Kim S-K, Lee JW, Lee D-G, Chung N-G, et al. Varicella with rapidly progressive hepatitis presenting with multiple hepatic nodules in a child with acute leukemia. *J Infect Chemother* Off J Jpn Soc Chemother (2016) 22:822–5. doi: 10.1016/j.jiac.2016.07.005

26. Smedegaard LM, Christiansen CB, Melchior LC, Poulsen A. Appendicitis Caused by Primary Varicella Zoster Virus Infection in a Child with DiGeorge Syndrome. *Case Rep Pediatr* (2017) 2017:6708046. doi: 10.1155/2017/6708046

27. Sutton SH. Infections associated with solid malignancies. *Cancer Treat Res* (2014) 161:371–411. doi: 10.1007/978-3-319-04220-6_13

28. Morrison VA. Infections in patients with leukemia and lymphoma. *Cancer Treat Res* (2014) 161:319–49. doi: 10.1007/978-3-319-04220-6_11

29. Hill G, Chauvenet AR, Lovato J, McLean TW. Recent steroid therapy increases severity of varicella infections in children with acute lymphoblastic leukemia. *Pediatrics* (2005) 116:e525–9. doi: 10.1542/peds.2005-0219

30. Dowell SF, Bresee JS. Severe varicella associated with steroid use. *Pediatrics* (1993) 92:223–8. doi: 10.1378/journal.pmed.1002024

31. Snoeck R, Andrei G, De Clercq E. Current pharmacological approaches to the therapy of varicella zoster virus infections: a guide to treatment. *Drugs* (1999) 57:187–206. doi: 10.1016/0091-6749(93)90165-C

32. Kim S-K, Kim MC, Han SB, Kim SK, Lee JW, Chung N-G, et al. Clinical characteristics and outcomes of varicella zoster virus infection in children with hematologic malignancies in the acyclovir era. *Blood* (2016) 128:249–55. doi: 10.2165/00042210-000000000-00005

33. Helmuth IG, Poulsen A, Suppli CH, Mølbak K. Varicella in Europe-A review of the epidemiology and experience with vaccination. *Vaccine* (2015) 33:2406–13. doi: 10.1016/j.vaccine.2015.03.055

34. Caniza MA, Hunger SP, Schrauder A, Valsecchi MG, Pui C-H, Masera G, et al. The controversy of varicella vaccination in children with acute lymphoblastic leukemia. *Pediatr Blood Cancer* (2012) 58:12–6. doi: 10.1016/j.pbc.2015.03.055

35. Bayer DK, Martinez CA, Sorte HS, Forbes LR, Demmler-Harrison GJ, Bayer IC, et al. Vaccine-associated varicella and rubella infections in severe combined immunodeficiency with isolated CD4 lymphocytopenia and mutations in IL7R detected by tandem whole exome sequencing and chromosomal microarray. * Clin Exp Immunol* (2014) 178:459–69. doi: 10.1002/ptr.22759

36. Dutmer CM, Asturias EJ, Smith C, Dishop MK, Schmid DS, Bellini WJ, et al. Late Onset Hypomorphic RAG2 Deficiency Presentation with Fatal Vaccine-Strain VZV Infection. *J Clin Immunol* (2015) 35:754–60.

37. Puck JM. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia. *Immunol Rev* (2019) 287:241–52. doi: 10.1007/s10875-015-0207-8

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.