The odd Weibull-Topp-Leone-G power series family of distributions: model, properties, and applications

Broderick Oluyedea, Fastel Chipepaa,b,*, Divine Wandukuc

aDepartment of Mathematical Statistics, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana.
bDepartment of Applied Mathematics and Statistics, Midlands State University, P. Bag 9055, Gweru, Zimbabwe.
cDepartment of Mathematical Sciences, Georgia Southern University, GA 30460, USA.

Abstract

A new generalization of the odd Weibull-Topp-Leone-G family of distributions called the odd Weibull-Topp-Leone-G power series family of distributions is developed. Statistical properties of the new distribution were derived. We also derive the maximum likelihood estimates of the proposed model. Some special cases for the new family of distributions were also considered. We conducted a simulation study to evaluate the consistency of the maximum likelihood estimates. Two real data examples were also considered to demonstrate the usefulness of the newly proposed family of distributions.

Keywords: Odd Weibull-Topp-Leone-G, odd Weibull-G, Topp-Leone-G distribution, power series distribution.

2020 MSC: 62E99, 60E05.

1. Introduction

Power series distributions are widely used in finance and actuarial science. Power series generalizations include the double bounded Kumaraswamy-power series class of distributions by [7], complementary extended Weibull power series class of distributions by [15], compound class of Weibull and power series distributions by [26], generalized exponential power series distributions by [24], compound class of linear failure rate power series distributions by [25], Burr XII power series distributions by [31], generalized linear failure rate power series distribution by [19], compound class of extended Weibull power series distributions by [30].

Some generalizations of the Topp-Leone distribution includes the Topp-Leone-G family by [5], Topp-Leone generated Weibull distribution by [6], transmuted Topp-Leone Weibull lifetime distribution [20], Topp-Leone generalized inverted exponential distribution [4] and Topp-Leone-Marshall-Olkin-G by [11]. Odd generalized families includes the odd Lindley-G distribution by [16], odd generalized half logistic Weibull-G by [10], odd log-logistic Lindley-G by [3], odd exponentiated half logistic Burr XII distribution by [2], to mention a few.
Recently, [8] developed a new family of distributions called the odd Weibull-Topp-Leone-G (OW-TL-G) family of distributions using the generalized Weibull family by [18] and the Topp-Leone-G distribution. The generalized Weibull family distribution have cumulative distribution function (cdf) and probability density function (pdf) given by
\[G(x; \alpha, \gamma, \xi) = 1 - \exp[-\alpha H(x, \xi)] \] (1.1)
and
\[g(x; \alpha, \gamma, \xi) = \alpha \exp[-\alpha H(x; \xi)] h(x; \xi), \]
respectively for a parameter vector \(\xi \). The Topp-Leone-G (TL-G) family of distributions by \[5\] have cdf given by
\[G_{\text{TL-G}}(x, \gamma, \xi) = [1 - \xi^2(x; \xi)]^\gamma, \]
for \(\gamma > 0 \) and parameter vector \(\xi \). In the OW-TL-G family of distributions \(\alpha H(x; \xi) \) in equation (1.1) was replaced by \([1 - G(x; \xi)]^\alpha \) (the exponentiated odds of the TL-G distribution), so that the survival function of the OW-TL-G family of distributions is given by
\[F(x; \alpha, \gamma, \xi) = \exp[-t], \] (1.2)
where \(t = \left[\frac{[1 - G(x; \xi)]^\gamma}{[1 - (1 - G(x; \xi)]^\gamma} \right]^\alpha \), for \(\alpha, \gamma > 0 \) and parameter vector \(\xi \).

In this note, we are motivated by the desirable properties exhibited by the power series generalizations in terms of data fitting, to develop a new odd Weibull-Topp-Leone-G power series family of distributions. The new proposed distribution exhibit flexibility in data fitting as the hazard rate function takes both monotonic and non-monotonic shapes. We hope the new distribution will receive attention from other researchers in the field of science and engineering. The distribution fit lifetime and reliability data well as demonstrated in this paper.

Let \(N \) be a discrete random variable following a power series distribution assumed to be truncated at zero, whose probability mass function (pmf) is given by
\[P(N = n) = \frac{a_n \theta^n}{C(\theta)}, \quad n = 1, 2, \ldots, \]
where \(C(\theta) = \sum_{n=1}^{\infty} a_n \theta^n \) is finite, \(\theta > 0 \), and \(\{a_n\}_{n\geq1} \) a sequence of positive real numbers. The power series family of distributions includes binomial, Poisson, geometric and logarithmic distributions [21]. Table 1 shows some useful quantities including \(a_n, C(\theta), C^{-1}(\theta), C'(\theta) \) and \(C''(\theta) \) for the binomial, Poisson, geometric, and logarithmic distributions.

Distribution	\(C(\theta) \)	\(C'(\theta) \)	\(C''(\theta) \)	\(a_n \)	Parameter Space	
Binomial	\((1 + \theta)^{m-1} \)	\(m(1 + \theta)^{m-1} \)	\(m(1 + \theta)^{m-2} \)	\(\frac{(\theta - 1)^{m-1}}{(1 + \theta)^{m-1}} \)	\(m \)	\((0, 1) \)
Poisson	\(e^\theta - 1 \)	\(e^\theta \)	\(e^\theta \)	\(\log(1 + \theta) \)	\((n!)^{-1} \)	\((0, \infty) \)
Geometric	\(\theta(1 - \theta)^{-2} \)	\((1 - \theta)^{-2} \)	\(2(1 - \theta)^{-3} \)	\(\theta(1 + \theta)^{-1} \)	1	\((0, 1) \)
Logarithmic	\(-\log(1 - \theta) \)	\((1 - \theta)^{-1} \)	\((1 - \theta)^{-2} \)	\(1 - e^{-\theta} \)	\(n^{-1} \)	\((0, 1) \)

Let \(X = Y_{(1)} = \min(Y_1, \ldots, Y_N) \). The conditional distribution of \(X \) given \(N = n \) is given by
\[G_{X|N=n}(x) = 1 - \prod_{i=1}^{n} (1 - G(x)) = 1 - S^n(x), \]
where \(G(x) = G(x; \alpha, \gamma, \xi) \) is the OW-TL-G cdf. The cdf of the life length of the whole system, \(X, F(\theta) \), is given by
\[F(\theta) = 1 - \frac{C(\theta S(x))}{C(\theta)}, \] (1.3)
where \(S(x) \) is the survival function of the OW-TL-G family of distributions. The corresponding probability density function (pdf) is given by
\[
f_\theta(x) = \frac{dF_\theta(x)}{dx} = \frac{\theta g(x)C'(\theta S(x))}{C(\theta)}.
\] (1.4)

The hazard and reverse hazard rate functions are given by
\[
h_\theta(x) = \frac{f_\theta(x)}{S_\theta(x)} = \theta g(x)\frac{C'(\theta S(x))}{C(\theta)} \quad \text{and} \quad \tau_\theta(x) = \frac{f_\theta(x)}{F_\theta(x)} = \theta g(x)\frac{C'(\theta S(x))}{C(\theta) - C(\theta S(x))}.
\]
respectively.

The rest of the paper is organized as follows. We develop the new model and statistical properties in Section 2. We do maximum likelihood estimation in Section 3. Some special families are presented in Section 4. A simulation study is conducted in Section 5. We present two real data examples in Section 6 and concluding remarks in Section 7.

2. The model and properties

A new power series family of distributions, namely, the odd Weibull-Topp-Leone-G power series (OW-TL-GPS) family of distributions is developed in this section. Some statistical properties for the proposed distribution are also presented.

2.1. The model

We derive the new family of distributions from the generalizations given in equations (1.2), (1.3), and (1.4). Therefore, the cdf and pdf of the OW-TL-GPS distribution are given by
\[
F_\theta(x) = \sum_{n=1}^{\infty} \alpha_n \theta^n \left[1 - \exp(-t) \right] = 1 - \frac{\theta C(\theta \exp(-t))}{C(\theta)}
\]
and
\[
f_\theta(x) = \frac{2\theta \gamma x g(x; \xi) \bar{G}(x; \xi) [1 - \bar{G}^2(x; \xi)]^{\gamma \alpha - 1}}{[1 - (1 - \bar{G}^2(x; \xi))^{\alpha + 1}] \exp(-t) \frac{C'(\theta \exp(-t))}{C(\theta)}},
\] (2.1)
respectively, for \(\alpha, \gamma, \theta > 0 \), \(G(x; \xi) \) is the baseline distribution with parameter vector \(\xi \), and \(\bar{G}(x; \xi) = 1 - G(x; \xi) \). Other sub-families of the OW-TL-GPS family of distributions are obtained by changing the baseline distribution function \(G(x; \xi) \) and the power series distribution.

Table 2 shows some special cases of the OW-TL-GPS distribution. The hazard and reverse hazard rate functions of the OW-TL-GPS family of distributions are given by
\[
h_\theta(x) = \frac{2\gamma \theta x g(x; \xi) \bar{G}(x; \xi) [1 - \bar{G}^2(x; \xi)]^{\gamma \alpha - 1}}{[1 - (1 - \bar{G}^2(x; \xi))^{\alpha + 1}] \exp(-t) \frac{C'(\theta \exp(-t))}{C(\theta \exp(-t))}
\]
and
\[
\tau_\theta(x) = \frac{2\gamma \theta x g(x; \xi) \bar{G}(x; \xi) [1 - \bar{G}^2(x; \xi)]^{\gamma \alpha - 1}}{[1 - (1 - \bar{G}^2(x; \xi))^{\alpha + 1}] \exp(-t) \frac{C'(\theta \exp(-t))}{C(\theta) - C(\theta \exp(-t))},
\]
respectively.

Distribution	\(\alpha_n \)	\(C(\theta) \)	cdf
OW-TL-G Poisson	\((n!)^{-1}\)	\(e^\theta - 1\)	\(1 - \frac{\exp(-t)}{\exp(-t)}\)
OW-TL-G Geometric	\(1\)	\(\theta(1 - \theta)^{-1}\)	\(1 - \frac{\exp(-t)}{(1 - \theta \exp(-t))}\)
OW-TL-G Logarithmic	\(n^{-1}\)	\(-\log(1 - \theta)\)	\(1 - \frac{\log(1 - \theta \exp(-t))}{\log(1 - \theta \exp(-t))}\)
OW-TL-G Binomial	\((m!)/n!\)	\((1 + \theta)^m - 1\)	\(1 - \frac{(1 + \theta \exp(-t))^{m-1}}{(1 + \theta)^{m-1}}\)
2.2. Expansion of the density function

In this section, we derive the linear representation of the OW-TL-GPS family of distributions. Equation (2.1) can be written as

\[f_{\theta}(x) = \sum_{n=1}^{\infty} \frac{n \alpha_n \theta^n}{C(\theta)} 2 \gamma \alpha g(x; \xi) \mathcal{G}(x; \xi) \left[1 - \mathcal{G}^2(x; \xi) \right]^{\gamma \alpha - 1} \left[1 - \mathcal{G}(x; \xi) \right]^{\gamma} \exp \left\{ -n \left[\frac{1 - \mathcal{G}^2(x; \xi)}{1 - \mathcal{G}(x; \xi)} \right]^\alpha \right\}. \]

Considering the following expansions

\[\exp \left\{ -n \left[\frac{1 - \mathcal{G}^2(x; \xi)}{1 - \mathcal{G}(x; \xi)} \right]^\alpha \right\} = \sum_{l=0}^{\infty} \frac{(-1)^l n^l}{l!} \left[\frac{1 - \mathcal{G}^2(x; \xi)}{1 - \mathcal{G}(x; \xi)} \right]^{\gamma \alpha l} \left[1 - \mathcal{G}(x; \xi) \right]^{\gamma} \left[1 - \mathcal{G}^2(x; \xi) \right]^\gamma, \]

\[[1 - \mathcal{G}^2(x; \xi)]^{\gamma} \left[\mathcal{G}(x; \xi) \right]^{\gamma \alpha (1+1)+1} = \sum_{w=0}^{\infty} (-1)^{w} \left[\mathcal{G}(x; \xi) \right]^{\gamma w}, \]

\[(1 - \mathcal{G}^2(x; \xi))^{\gamma} \left[\mathcal{G}(x; \xi) \right]^{\gamma w - 1} = \sum_{h=0}^{\infty} (-1)^{h} \left[\mathcal{G}(x; \xi) \right]^{\gamma w - 1}, \]

and

\[\mathcal{G}(x; \xi)^{2h+1} = \sum_{m=0}^{\infty} (-1)^{m} \left(\frac{2h+1}{m} \right) \mathcal{G}^m(x; \xi), \]

yields

\[f_{\theta}(x) = \sum_{l,w,h,m=0}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{l+w+h+m+1} \gamma \alpha \alpha_n \theta^n}{l! C(\theta)} \left[-\left(\mathcal{G}(x; \xi) \right)^{\gamma} \alpha (1+1)+1 \right]^{w} \left[\mathcal{G}(x; \xi) \right]^{\gamma w - 1} \left(\frac{2h+1}{m} \right) \mathcal{G}^m(x; \xi), \]

(2.2)

where

\[\Phi_m = \sum_{l,w,h=0}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{l+w+h+m+1} \gamma \alpha \alpha_n \theta^n}{l! (m+1) C(\theta)} \left[-\left(\mathcal{G}(x; \xi) \right)^{\gamma} \alpha (1+1)+1 \right]^{w} \left[\mathcal{G}(x; \xi) \right]^{\gamma w - 1} \left(\frac{2h+1}{m} \right) \mathcal{G}^m(x; \xi), \]

(2.3)

and \(g_m(x; \xi) = (m+1) g(x; \xi) \mathcal{G}^m(x; \xi) \) is an exponentiated-G (Exp-G) density with power parameter \(m \). Thus, the OW-TL-GPS density can be expressed as a linear combination of Exp-G densities. Therefore, we can derive other statistical properties of the OW-TL-GPS distribution directly from the statistical properties of the Exp-G distribution.

2.3. Quantile function

The quantile function of the OL-GPS distribution is obtained by inverting \(f_{\theta}(x) = u, 0 \leq u \leq 1 \). Note that

\[u = 1 - \mathcal{C}(\theta) \left(\exp \left\{ -\left[\frac{1 - \mathcal{G}^2(x; \xi)}{1 - \mathcal{G}(x; \xi)} \right]^{\gamma} \right\} \right)^\alpha, \]

simplifies to

\[\ln \left(\frac{\mathcal{C}^{-1}(\theta)(1-u)}{\theta} \right) = -\left[\frac{1 - \mathcal{G}^2(x; \xi)}{1 - \mathcal{G}(x; \xi)} \right]^\alpha, \]

which further simplifies to

\[\mathcal{G}^2(x; \xi) = 1 - \left[\frac{\left(-\ln \left(\frac{\mathcal{C}^{-1}(\theta)(1-u)}{\theta} \right) \right)^{1/\alpha}}{1 + \left(-\ln \left(\frac{\mathcal{C}^{-1}(\theta)(1-u)}{\theta} \right) \right)^{1/\alpha}} \right]^{1/\gamma}. \]
such that

\[
G(x; \xi) = 1 - \left(1 - \left(\frac{\left[- \ln \left(\frac{C^{-1}(C(\theta)(1-u))}{\nu} \right) \right]^{1/\alpha}}{1 + \left[- \ln \left(\frac{C^{-1}(C(\theta)(1-u))}{\nu} \right) \right]^{1/\alpha}} \right)^{1/\gamma} \right)^{1/2}.
\]

Hence, we obtain the quantile values of the OW-TL-GPS family of distributions by solving the non-linear equation

\[
Q_F(u) = G^{-1} \left(1 - \left(1 - \left(\frac{\left[- \ln \left(\frac{C^{-1}(C(\theta)(1-u))}{\nu} \right) \right]^{1/\alpha}}{1 + \left[- \ln \left(\frac{C^{-1}(C(\theta)(1-u))}{\nu} \right) \right]^{1/\alpha}} \right)^{1/\gamma} \right)^{1/2} \right)
\]

using numerical methods with the aid of statistical software such as R, SAS, and MATLAB. Table 3 shows the quantile values for the odd Weibull-Topp-Leone-log logistic Poisson (OW-TL-LLoGP) distribution.

Table 3: Table of quantiles for selected parameters of OW-TL-LLoGP distribution.

u	(0.5,1,5,0.5,1.5)	(0.5,1,0.5,1.2)	(1.1,2,5,0.5,2.5)	(0.5,1.5,0.5,0.5)	(1.1,0.9,1,1.1)
0.1	0.0557	0.0079	0.5244	0.0002	0.0450
0.2	0.0974	0.0246	0.5828	0.0009	0.0907
0.3	0.1353	0.0480	0.6224	0.0025	0.1410
0.4	0.1722	0.0779	0.6545	0.0051	0.1980
0.5	0.2096	0.1147	0.6830	0.0092	0.2642
0.6	0.2493	0.1604	0.7102	0.0155	0.3441
0.7	0.2935	0.2185	0.7378	0.0253	0.4451
0.8	0.3467	0.2972	0.7683	0.0417	0.5837
0.9	0.4214	0.4217	0.8073	0.0748	0.8090

2.4. Moments

If \(Y_m \) is an Exp-G distribution with power parameter \(m \), then we obtain the \(r \)th moment of the OW-TL-GPS family of distributions from equation (2.2) as follows:

\[
E(X^r) = \sum_{m=0}^{\infty} \phi_m E(Y_m^r),
\]

where \(E(Y_m^r) \) is the \(r \)th moment of \(Y_m \) which follows an Exp-G distribution with power parameter \(m \) and \(\phi_m \) is given by equation (2.3). The incomplete moments are obtained from the equation

\[
I_X(t) = \int_0^t x^r f_\theta(x; \xi) \, dx = \sum_{m=0}^{\infty} \phi_m I_m(t),
\]

where \(I_m(t) = \int_0^t x^r g_m(x; \xi) \, dx \) is the incomplete moment of the Exp-G distribution and \(\phi_m \) is given by equation (2.3). The moment generating function (mgf) of \(X \) is given by

\[
M_X(t) = \sum_{m=0}^{\infty} \phi_m E(e^{tY_m}),
\]

where \(E(e^{tY_m}) \) is the mgf of the Exp-G distribution and \(\phi_m \) is as defined in equation (2.3). The characteristic function and is given by \(\psi(t) = E(e^{itX}) \), where \(i = \sqrt{-1} \), that is

\[
\psi(t) = \sum_{m=0}^{\infty} \phi_m \psi_m(t),
\]
Bonferroni and Lorenz curves are given by
\[\frac{\beta(y)}{\alpha(y)} \]
and
\[\frac{\beta(y)}{\alpha(y)} \]
where \(\psi_m(t) \) is the characteristic function of Exp-G distribution and \(\phi_m \) is as defined in equation (2.3).

We can readily obtain the following measures: coefficient of skewness (CS), coefficient of variation (CV), coefficient of kurtosis (CK), variance (\(\sigma^2 \)), and standard deviation (SD=\(\sigma \)). Mathematically, \(\text{CS} = \frac{E[(X-\mu)^3]}{[E(X-\mu)^2]^{3/2}} \), \(\text{CV} = \frac{\mu}{\sigma} = \sqrt{\frac{\mu^2}{\mu^2}} = \sqrt{\frac{\mu^2}{\mu^2}} - 1 \), \(\text{CK} = \frac{E[(X-\mu)^4]}{[E(X-\mu)^2]^2} = \frac{\mu_4^2 - 4\mu_2^2\mu_1^2 + 6\mu_2^4 - 3\mu_2^4}{(\mu_2^2)^2} \), and \(\sigma^2 = \mu_2^2 - \mu_2^2 \), respectively. The \(r \)th cumulant of the random variable \(X \) is obtained from the recursive relationship: \(\kappa_r = \mu_r - \sum_{i=1}^{r} (\frac{r+1}{s}) \kappa_s \), where \(\mu_r = E(X - \mu_1)^r \), so that the CS and CK are given by \(\gamma_1 = \frac{\kappa_3}{\kappa_2^2} \) and \(\gamma_2 = \frac{\kappa_4}{\kappa_2^2} \). We present moments, SD, CV, CS, and CK for selected parameter values for the OW-TL-LLoGP distribution in Table 4.

Table 4: Moments of the OW-TL-LLoGP distribution for some parameters values.

	(0.5,1,5,0.5,1.2)	(0.5,1,0.5,1.2)	(1,1.2,5,0.5,2.5)	(0.5,1,0.5,0.5,0.5)	(1,1,0.9,1,1.1)
\(E(X) \)	0.2269	0.1705	0.6729	0.0265	0.2913
\(E(X^2) \)	0.0709	0.0592	0.4650	0.0026	0.1458
\(E(X^3) \)	0.0265	0.0279	0.3288	0.0004	0.0913
\(E(X^4) \)	0.0112	0.0158	0.2370	0.0001	0.0646
\(E(X^5) \)	0.0052	0.0100	0.1738	0.0000	0.0493
SD	0.1395	0.1736	0.1109	0.0434	0.2470
CV	0.6148	1.0181	0.1647	1.6373	0.8480
CS	0.5933	1.4377	-0.5081	3.3610	0.8792
CK	2.8968	4.9772	3.2482	19.9252	2.9314

2.5. Mean deviation, Lorenz, and Bonferroni curves

Let \(X \sim \text{OW-TL-LLoGPS}(\alpha, \gamma, 0, \xi) \), the mean deviation about the mean and about the median are defined by
\[
\delta_1(x) = \int_0^\infty x - \mu| f_\alpha(x) dx \quad \text{and} \quad \delta_2(x) = \int_0^\infty |x - M| | f_\alpha(x) dx, \]
respectively, where \(\mu = E(X) \) and \(M = \text{Median}(X) \). The deviations can also be expressed as
\[
\delta_1(x) = 2\mu F_\alpha(x) - 2\int_0^x |x - \mu| f_\alpha(x) dx = 2\mu F_\alpha(x) - 2 \sum_{m=0}^{\infty} \phi_m I_m^*(t),
\]
and
\[
\delta_2(x) = \mu - 2\int_0^M |x - \mu| f_\alpha(x) dx = \mu - \sum_{m=0}^{\infty} \phi_m I_m^*(t).
\]

Bonferroni and Lorenz curves are given by
\[
B(p) = \frac{1}{p\mu} \int_0^t \sum_{m=0}^{\infty} x \phi_m g_m(x; \xi) dx = \frac{1}{p\mu} \sum_{m=0}^{\infty} \phi_m I_m^*(t),
\]
and
\[
L(p) = \frac{1}{\mu} \int_0^t \sum_{m=0}^{\infty} x \phi_m g_m(x; \xi) dx = \frac{1}{\mu} \sum_{m=0}^{\infty} \phi_m I_m^*(t),
\]
where \(I_m^*(t) = \int_0^t x g_m(x; \xi) dx \), is the first incomplete moment of the Exp-G distribution and \(\phi_m \) is as given in equation (2.3).

2.6. Distribution of order statistics

We obtain the pdf of the \(i \)th order statistics from the OW-TL-GPS family of distributions using the equation
\[
f_{i:n}(x) = \frac{f_\alpha(x)}{B(i, n-i+1)} \sum_{j=0}^{n-j} \binom{n-1}{j} f_\alpha(x) \Gamma(i+j-1),
\]
where \(B(\cdot, \cdot) \) is the beta function. Substituting the cdf of the OW-TL-GPS family of distributions, we have

\[
f_{i:n}(x) = \frac{f(x)}{B(i, n - i + 1)} \sum_{j=0}^{n-j} \binom{n-i}{j} \left(1 - C\left(\theta \left(\exp \left\{ \frac{\left[1 - \overline{G}^2(x; \xi; \gamma) \right]}{C(\theta)} \right\} \right) \right) \right)^{j+1-1}.
\]

Considering the expansion

\[
\left(1 - C\left(\theta \left(\exp \left\{ \frac{\left[1 - \overline{G}^2(x; \xi; \gamma) \right]}{C(\theta)} \right\} \right) \right) \right)^{j+1-1} = \sum_{l=0}^{j+1-1} (-1)^l \binom{j+1-1}{l} \times \left(C\left(\theta \left(\exp \left\{ \frac{\left[1 - \overline{G}^2(x; \xi; \gamma) \right]}{C(\theta)} \right\} \right) \right) \right)^l
\]

yields

\[
f_{i:n}(x) = \frac{f_0(x)}{B(i, n - i + 1)} \sum_{l=0}^{j+1-1} \sum_{j=0}^{n-j} (-1)^l \binom{n-i}{j} \binom{j+1-1}{l} \left(C\left(\theta \left(\exp \left\{ \frac{\left[1 - \overline{G}^2(x; \xi; \gamma) \right]}{C(\theta)} \right\} \right) \right) \right)^l
\]

which simplifies to

\[
f_{i:n}(x) = \frac{f_0(x)}{B(i, n - i + 1)} \sum_{l=0}^{j+1-1} \sum_{j=0}^{n-j} (-1)^l \binom{n-i}{j} \binom{j+1-1}{l} \times \sum_{z=0}^{\infty} d_{z,1} \theta^z \exp \left\{ -z \left[\frac{[1 - \overline{G}^2(x; \xi; \gamma)]}{[1 - \overline{G}^2(x; \xi; \gamma)]} \right]^\alpha \right\},
\]

by applying the power series raised to a positive integer by [17], where \(d_{z,1} = (zb_0)^{-1} \sum_{h=1}^{z} [l(h + 1) - z]b_h d_{z-h,1} \) and \(d_{0,1} = b_0 \). Furthermore, applying the following expansions

\[
\exp \left\{ -z \left[\frac{[1 - \overline{G}^2(x; \xi; \gamma)]}{[1 - \overline{G}^2(x; \xi; \gamma)]} \right]^\alpha \right\} = \sum_{p=0}^{\infty} \frac{(-1)^p z^p}{p!} \frac{(1 - \overline{G}^2(x; \xi; \gamma))^\alpha_p}{[1 - (1 - \overline{G}^2(x; \xi; \gamma))]},
\]

\[
[1 - (1 - \overline{G}^2(x; \xi; \gamma))]^{-\alpha_p} = \sum_{s=0}^{\infty} (-1)^s \binom{-\alpha_p}{s} (1 - \overline{G}^2(x; \xi; \gamma))^s,
\]

\[
(1 - \overline{G}^2(x; \xi; \gamma))^{\gamma(\alpha_p + s)} = \sum_{r=0}^{\infty} (-1)^r \binom{\gamma(\alpha_p + s)}{r} \overline{G}^{2r}(x; \xi),
\]

and

\[
\overline{G}^{2r}(x; \xi) = \sum_{q=0}^{\infty} (-1)^q \binom{2r}{q} G^q(x; \xi),
\]

we get

\[
f_{i:n}(x) = \frac{1}{B(i, n - i + 1)} \sum_{z,p,s,r,q=0}^{\infty} \sum_{l=0}^{j+1-1} \sum_{j=0}^{n-j} (-1)^{l+z+p+s+r+q} \frac{z^p \theta^z}{p!C^l(\theta)} d_{z,1} \binom{n-i}{j} \binom{j+1-1}{l}
\]

B. Oluyede, F. Chipepa, D. Wanduku, J. Nonlinear Sci. Appl., 14 (2021), 268–286 274
Using results in equation (2.2) for $f_\theta(x)$, we get

$$f_{i,n}(x) = \frac{1}{B(i, n-i+1)} \sum_{p,s,r,q,m=0}^{\infty} \frac{(-1)^{l+z+p+s+r+q} \theta^z}{p!C^l(\theta)} \sum_{i=0}^{n-j} \sum_{j=0}^{n-j} \binom{n-i}{j} \binom{j+i-1}{l} \phi_{z,m}(2r)(m+1)g(x; \xi)G^{q+m}(x; \xi) = \sum_{q,m=0}^{\infty} \phi_{q,m}^* g_{q+m}(x; \xi),$$

where

$$\phi_{q,m} = \frac{1}{B(i, n-i+1)} \sum_{p,s,r,q,m=0}^{\infty} \frac{(-1)^{l+z+p+s+r+q} \theta^z}{p!C^l(\theta)} \sum_{i=0}^{n-j} \sum_{j=0}^{n-j} \binom{n-i}{j} \binom{j+i-1}{l} \phi_{z,m}(2r)(m+1)g(x; \xi)G^{q+m}(x; \xi)$$

and $g_{q+m}(x; \xi) = (q + m + 1)g(x; \xi)G^{q+m}(x; \xi)$ is the Exp-G distribution with power parameter $(q + m)$.

2.7. Rényi entropy

Entropy is a measure of variation of uncertainty for a random variable X with pdf $f(x)$. There are two popular measures of entropy, namely Shannon entropy and Rényi entropy. Shannon entropy is due to [29] and Rényi entropy is due to [28]. Rényi entropy is defined by

$$I_\alpha = (1 - \alpha)^{-1} \log \left[\int_0^\infty f^\alpha(x) \, dx \right], \alpha \neq 1, \alpha > 0,$$

and Shannon entropy is given by $E[-\log[f(x)]]$. Shannon entropy is a special case of Rényi entropy, and therefore, derive expressions for Rényi entropy for the OW-TL-GPS distribution. Substituting the pdf of the OW-TL-GPS family of distributions, we have $f^\alpha(x)$ given by

$$f^\alpha_\theta(x) = \frac{(2\theta \gamma \alpha)^\frac{\alpha}{\gamma} g^\frac{1}{\gamma}(x; \xi)\sum_{i=0}^{\infty} \frac{[1 - \xi^2(x; \xi)]^{\alpha \gamma - 1}}{[1 - (1 - \xi^2(x; \xi))]^{\gamma (\alpha + 1)}} \exp \left\{ -\theta \frac{[1 - \xi^2(x; \xi)]^{\gamma \alpha}}{[1 - (1 - \xi^2(x; \xi))]^{\gamma \alpha}} \right\}^{\frac{1}{\gamma}}}{\gamma} \times \left(\frac{C^l(\theta)}{\theta} \left(\left[1 - \xi^2(x; \xi) \right]^{\gamma} \right)^{\alpha} \right)^\gamma.$$
where

\[(1 - G^2(x; \xi))^{\gamma} - (\alpha(p + v) + v) = \sum_{s=0}^{\infty} (-1)^s \left((\alpha(p + v) + v) \right)^s (1 - G^2(x; \xi))^s, \]

and

\[G(x; \xi)^{2r + v} = \sum_{m=0}^{\infty} (-1)^m \left(\frac{2r + v}{m} \right) G^m(x; \xi), \]

yields

\[f_0^\gamma(x) = \sum_{z,p,s,r,m=0}^{\infty} \frac{(2\gamma\alpha)^{\gamma^v + z} (1 - G^2(x; \xi))^p}{C^v(\alpha(p + v) + v)^s} \left(\frac{\alpha\gamma(p + v) + \gamma s - v}{r} \right)^{2r + v} g^v(x; \xi)G^m(x; \xi). \]

Therefore, the Rényi entropy of the OW-TL-GPS family of distributions is given by

\[I_R(\nu) = (1 - \nu)^{-1} \log \left(\sum_{m=0}^{\infty} \psi_m e^{(1-\nu)I_{\text{REG}}} \right), \]

where

\[\psi_m = \sum_{z,p,s,r=0}^{\infty} \frac{(2\gamma\alpha)^{\gamma^v + z} (1 - G^2(x; \xi))^p}{C^v(\alpha(p + v) + v)^s} \left(\frac{\alpha\gamma(p + v) + \gamma s - v}{r} \right)^{2r + v} g^v(x; \xi) \]

and

\[I_{\text{REG}} = \int_0^\infty \left(\frac{m}{\nu} + 1 \right) g(x; \xi) |G(x; \xi)| \frac{d\xi}{\nu} \] is the Rényi entropy of Exp-G distribution with parameter \(\frac{m}{\nu} \).

3. Maximum likelihood estimation

Let \(X_i \sim OW - TL - GPS(\alpha, \gamma, \theta; \xi) \) and \(\Phi = (\alpha, \gamma, \theta; \xi)^T \) be the parameter vector. The log-likelihood \(\ell = \ell(\Phi) \) based on a random sample of size \(n \) is given by

\[
\ell = \ell(\Phi) = n \log(2\theta\alpha) + \sum_{i=1}^{n} \log(g(x_i; \xi)) + \sum_{i=1}^{n} \log(G(x_i; \xi)) + (\gamma\alpha - 1) \sum_{i=1}^{n} \log[1 - G^2(x_i; \xi)] \\
- (\alpha + 1) \sum_{i=1}^{n} \log[1 - (1 - G^2(x_i; \xi))^\gamma] - \sum_{i=1}^{n} t - \sum_{i=1}^{n} \log[C(\theta)] + \sum_{i=1}^{n} \log[C'(\theta)(\exp(-t))].
\]

The elements of the score vector \(U = (\frac{\partial \ell}{\partial \alpha}, \frac{\partial \ell}{\partial \gamma}, \frac{\partial \ell}{\partial \theta}, \frac{\partial \ell}{\partial \xi}) \) are

\[
\frac{\partial \ell}{\partial \alpha} = \frac{n}{\alpha} + \gamma \sum_{i=1}^{n} \log[1 + \log(1 - G^2(x_i; \xi))] - \sum_{i=1}^{n} \log[1 - (1 - G^2(x_i; \xi))^\gamma] \\
- \sum_{i=1}^{n} \frac{C''(\theta(\exp(-t)))}{C'(\theta(\exp(-t)))} \theta(\exp(-t)) t \log \left[\frac{1 - G^2(x_i; \xi)}{1 - (1 - G^2(x_i; \xi))^\gamma} \right],
\]

\[
\frac{\partial \ell}{\partial \gamma} = \frac{n}{\gamma} + \alpha \sum_{i=1}^{n} \log[1 - G^2(x_i; \xi)] + (\alpha + 1) \sum_{i=1}^{n} \log[1 - G^2(x_i; \xi)] - \sum_{i=1}^{n} \log[1 - (1 - G^2(x_i; \xi))^\gamma] \\
- \sum_{i=1}^{n} \frac{1}{1 - G^2(x_i; \xi)} \log[1 - G^2(x_i; \xi)].
\]
The odd Weibull-Topp-Leone-log-logistic power series distribution

respectively. The maximum likelihood estimates of the parameters, denoted by \(\hat{\Phi} \) is obtained by solving the nonlinear equation \(\left(\frac{\partial \ell}{\partial \theta_1}, \frac{\partial \ell}{\partial \theta_2}, \ldots, \frac{\partial \ell}{\partial \theta_q} \right)^T = \mathbf{0} \), using a numerical method such as Newton-Raphson procedure. The Fisher information matrix is given by

\[
I(\Phi) = \left[I_{ij}(\Phi) \right]_{(3+q) \times (3+q)} = E \left(-\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j} \right), \quad i, j = 1, 2, \ldots, 3 + q
\]

where \(q \) is the number of components in the vector of parameters \(\mathbf{\xi} \). Note that for a given set of observations, the matrix given in equation (3.1) is obtained after the convergence of the Newton-Raphson procedure via NLMIXED in SAS or R software.

4. Some special cases

We consider some special cases when the baseline distribution is log-logistic distribution. The cdf and pdf of the log logistic distribution are given by

\[
G(x; \lambda) = 1 - (1 + x^\lambda)^{-1} \quad \text{and} \quad g(x; \lambda) = \lambda x^{\lambda-1} (1 + x^\lambda)^{-2}, \quad \text{for} \quad \lambda > 0.
\]

4.1. The odd Weibull-Topp-Leone-log-logistic power series distribution

We present the odd Weibull-Topp-Leone-log-logistic power series (OW-TL-LLoGPS) distribution. The OW-TL-LLoGPS distribution has its \(\text{cdf and pdf} \),

\[
f_\theta(x) = \frac{2\gamma \alpha \lambda x^{\lambda-1} (1 + x^\lambda)^{-3} [1 - (1 + x^\lambda)^{-2}]^{\gamma-1}}{[1 - (1 + x^\lambda)^{-2}]^{\gamma \alpha + 1}} \exp \left\{ - \left[\frac{[1 - (1 + x^\lambda)^{-2}]^{\gamma}}{[1 - (1 + x^\lambda)^{-2}]^{\gamma \alpha + 1}} \right] \right\} \times \frac{C'(\exp \left\{ - \left[\frac{[1 - (1 + x^\lambda)^{-2}]^{\gamma}}{[1 - (1 + x^\lambda)^{-2}]^{\gamma \alpha + 1}} \right] \right\})}{C(\exp \left\{ - \left[\frac{[1 - (1 + x^\lambda)^{-2}]^{\gamma}}{[1 - (1 + x^\lambda)^{-2}]^{\gamma \alpha + 1}} \right] \right\})},
\]

respectively, for \(\alpha, \lambda, \gamma, \theta > 0 \).
4.1.1. Sub-models of the OW-TL-LLoGPS distribution

We present three sub-models of the OW-TL-LLoGPS distribution, namely, OW-TL-LLoG Poisson (OW-TL-LLoGP), OW-TL-LLoG logarithmic (OW-TL-LLoGL) and OW-TL-LLoG geometric (OW-TL-LLoGG) distributions in this section.

- **OW-TL-LLoGP distribution:** The OW-TL-LLoGP distribution has its cdf and pdf given by

\[
F_{\text{OW-TL-LLoGP}}(x; \alpha, \lambda, \gamma, \theta) = 1 - \frac{\exp\left(\theta\left(\exp\left\{-\left[\frac{1-(1+x^\lambda)^{-2}}{1-(1+x^\lambda)^{-2}}\right]^\gamma\right\}\right)^\alpha\right)}{\exp(\theta)-1}
\]

and

\[
f_{\text{OW-TL-LLoGP}}(x; \alpha, \lambda, \gamma, \theta) = \frac{2\theta\gamma\alpha\lambda^{-1}(1+x^\lambda)^{-3}(1-(1+x^\lambda)^{-2})^\gamma\alpha^{-1}}{[1-(1-(1+x^\lambda)^{-2})^\gamma]^{\alpha+1}} \times \exp\left\{-\left[\frac{1-(1+x^\lambda)^{-2}}{1-(1+x^\lambda)^{-2}}\right]^\gamma\right\}^{\alpha}
\]

\[
\times \frac{\exp\left(\theta\left(\exp\left\{-\left[\frac{1-(1+x^\lambda)^{-2}}{1-(1+x^\lambda)^{-2}}\right]^\gamma\right\}\right)^\alpha\right)}{\exp(\theta)-1}
\]

respectively, for \(\alpha, \lambda, \gamma, \theta > 0\).

![Figure 1: pdfs and hrfs plots for OW-TL-LLoGP distribution.](image)

The pdf of the OW-TL-LLoGP distribution can handle data that is almost symmetric, reverse-J, left or right-skewed. Also, the hazard rate function of the distribution exhibit both monotonic and non-monotonic shapes.

- **OW-TL-LLoGL distribution:** The cdf and pdf of the OW-TL-LLoGL distribution are given by

\[
F_{\text{OW-TL-LLoGL}}(x; \alpha, \lambda, \gamma, \theta) = 1 - \frac{\log\left(1 - \left(\theta\left(\exp\left\{-\left[\frac{1-(1+x^\lambda)^{-2}}{1-(1+x^\lambda)^{-2}}\right]^\gamma\right\}\right)^\alpha\right)\right)}{\log(1-\theta)}
\]

and

\[
f_{\text{OW-TL-LLoGL}}(x; \alpha, \lambda, \gamma, \theta) = \frac{2\theta\gamma\alpha\lambda^{-1}(1+x^\lambda)^{-3}(1-(1+x^\lambda)^{-2})^\gamma\alpha^{-1}}{[1-(1-(1+x^\lambda)^{-2})^\gamma]^{\alpha+1}} \times \exp\left\{-\left[\frac{1-(1+x^\lambda)^{-2}}{1-(1+x^\lambda)^{-2}}\right]^\gamma\right\}^{\alpha}
\]

\[
\times \left(1 - \left(\theta\left(\exp\left\{-\left[\frac{1-(1+x^\lambda)^{-2}}{1-(1+x^\lambda)^{-2}}\right]^\gamma\right\}\right)^\alpha\right)\right)^{-1}
\]

\[
\times \frac{1-\exp\left(\theta\left(\exp\left\{-\left[\frac{1-(1+x^\lambda)^{-2}}{1-(1+x^\lambda)^{-2}}\right]^\gamma\right\}\right)^\alpha\right)}{1-\log(1-\theta)}
\]
respectively, for $\alpha, \lambda, \gamma > 0$ and $0 < \theta < 1$. The pdf of the OW-TL-LLoGL distribution can handle data that is almost symmetric, reverse-J, left or right-skewed. Also the hazard function of the distribution exhibit decreasing, increasing, uni-modal and upside bathtub followed by bathtub shapes.

- **OW-TL-LLoGG distribution**: The cdf and pdf of the OW-TL-LLoGG distribution are given by

$$F_{\text{OW-TL-LLoGG}}(x; \alpha, \lambda, \gamma, \theta) = 1 - \frac{(1 - \theta) \exp \left\{ - \left[\frac{[1 - (1 + x^\lambda)^{-2}]^{\gamma}}{[1 - (1 + x^\lambda)^{-2}]^{\gamma}} \right]^\alpha \right\}}{1 - \theta \exp \left\{ - \left[\frac{[1 - (1 + x^\lambda)^{-2}]^{\gamma}}{[1 - (1 - (1 + x^\lambda)^{-2})^{\gamma}]} \right]^\alpha \right\}}$$

and

$$f_{\text{OW-TL-LLoGG}}(x; \alpha, \lambda, \gamma, \theta) = \frac{2(1 - \theta)\gamma \alpha \lambda x^{\lambda - 1}(1 + x^\lambda)^{-3}[1 - (1 + x^\lambda)^{-2}]^{\gamma\alpha - 1}}{[1 - (1 - (1 + x^\lambda)^{-2})^{\gamma}]^{\alpha + 1}} \times \exp \left\{ - \left[\frac{[1 - (1 + x^\lambda)^{-2}]^{\gamma}}{[1 - (1 - (1 + x^\lambda)^{-2})^{\gamma}]} \right]^\alpha \right\} \times \left(1 - \left(\theta \exp \left\{ - \left[\frac{[1 - (1 + x^\lambda)^{-2}]^{\gamma}}{[1 - (1 - (1 + x^\lambda)^{-2})^{\gamma}]} \right]^\alpha \right\} \right) \right)^{-2},$$

respectively, for $\alpha, \lambda, \gamma > 0$ and $0 < \theta < 1$. The pdf of the OW-TL-LLoGG distribution can handle data that is almost symmetric, reverse-J, left or right-skewed. Also the hazard function of the distribution exhibit reverse-J, J, increasing, uni-modal and upside bathtub shapes.
5. Simulation study

In this section, a simulation study is conducted to examine the performance of the maximum likelihood estimates. We simulated 1000 samples for the following sets of parameters: I: \(\alpha = 1.5, \lambda = 0.5, \gamma = 0.05, \theta = 1.0 \), II: \(\alpha = 1.5, \lambda = 0.5, \gamma = 1.5, \theta = 1.0 \), III: \(\alpha = 1.5, \lambda = 0.5, \gamma = 0.5, \theta = 1.0 \), IV: \(\alpha = 1.5, \lambda = 1.0, \gamma = 0.5, \theta = 0.5 \), V: \(\alpha = 1.5, \lambda = 1.0, \gamma = 1.5, \theta = 0.5 \), VI: \(\alpha = 1.5, \lambda = 1.0, \gamma = 0.5, \theta = 1.0 \). We considered the sample sizes (n = 25, 100, 200, 400, 800). We calculated the mean, root mean square error (RMSE) and average bias. The bias and RMSE are given by the following formulae:

\[
\text{Bias}(\hat{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{\theta}_i - \theta),
\]

\[
\text{RMSE}(\hat{\theta}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{\theta}_i - \theta)^2},
\]

respectively. We observe that as the sample size increases, the mean approximates the true parameters values, the RMSE and average bias decay toward zero for all parameters values.

n	Mean	RMSE	Bias	RMSE	Bias	RMSE
25	0.788835	0.886993	0.080894	0.350989	0.230950	0.120906
100	1.886316	0.639349	0.286316	1.742124	0.570593	0.242124
400	1.127106	0.162207	0.066123	1.143169	0.202194	0.092198
1600	0.682250	0.038109	0.032250	0.629198	0.032198	0.012198

6. Applications

In this section, we present two real data examples to demonstrate the applicability of the OW-TL-LOGP distribution. We use the maximum likelihood estimation technique to estimate the model parameters. We also make use of the R software for data fitting and model diagnostics. We present the parameters estimates (standard errors in parentheses) and the various goodness of fit statistics in Tables 6 and 7. We considered the following goodness-of-fit statistics to evaluate model performance: -2loglikelihood.
for \(\alpha \), \(\beta \), \(\gamma \), \(\theta \), \(\lambda > 0 \),

\[
f_{\text{KOL-LLoG}}(x; a, b, \lambda, c) = ab \left[\frac{\lambda^2 e^{-\lambda x^c}}{(1 + \lambda)(1 + x^c)^c} \exp \left\{ -\lambda \frac{1 - (1 + x^c)^{-1}}{((1 + x^c)^{-1})} \right\} \right]
\times \left[1 - \frac{\lambda + ((1 + x^c)^{-1})}{(1 + \lambda)(1 + x^c)^c} \exp \left\{ -\lambda \frac{1 - (1 + x^c)^{-1}}{((1 + x^c)^{-1})} \right\} \right]^{a-1}
\times \left[1 - \frac{\lambda + ((1 + x^c)^{-1})}{(1 + \lambda)(1 + x^c)^c} \exp \left\{ -\lambda \frac{1 - (1 + x^c)^{-1}}{((1 + x^c)^{-1})} \right\} \right]^{b-1},
\]

for \(a, b, \lambda, c > 0 \),

\[
f_{\text{BW}}(x; a, b, \alpha, \beta) = \frac{\beta a^\beta}{B(a, b)} x^{\beta-1} e^{-b(ax)\beta} (1 - e^{-(ax)\beta}) a^{-1},
\]

for \(a, b, \alpha, \beta > 0 \),

\[
f_{\text{KwW}}(x; a, b, \alpha, \beta) = ab \alpha^\beta x^{\beta-1} e^{-(ax)\beta} (1 - e^{-(ax)\beta}) a^{-1}(1 - (1 - e^{-(ax)\beta}) a)^{b-1},
\]

for \(a, b, \alpha, \beta > 0 \),

\[
f_{\text{BOL-U}}(x; a, b, \lambda, \theta) = \frac{1}{B(a, b)} \left[1 - \frac{\lambda + (1 - x/\theta)}{(1 + \lambda)(1 - x/\theta)} \exp \left\{ -\lambda \frac{x}{(\theta - x)} \right\} \right]^{a-1}
\times \left[\frac{\lambda + (1 - x/\theta)}{(1 + \lambda)(1 - x/\theta)} \exp \left\{ -\lambda \frac{x}{(\theta - x)} \right\} \right]^{b-1}
\times \frac{\lambda^2 e^{\theta x}}{(1 + \lambda)(1 - x)^3} \exp \left\{ -\lambda \frac{x}{(\theta - x)} \right\},
\]

for \(a, b, \lambda > 0 \) and \(0 < x < \theta \),

\[
f_{\text{OEHLBXII}}(x; \alpha, \lambda, a, b) = \frac{2\alpha \lambda abx^{a-1} \exp(\lambda(1 - (1 + x)^a)) (1 - \exp(\lambda(1 - (1 + x)^a))) a^{-1}}{(1 + x)^{b-1}(1 + \exp(\lambda(1 - (1 + x)^a))) a^{+1}},
\]

for \(\alpha, \lambda, a, b > 0 \),

\[
f_{\text{TLMO-W}}(x; \delta, \lambda, \gamma) = \frac{2b\delta^2 \lambda \gamma e^{-\lambda x^\gamma} (1 - e^{-2\lambda x^\gamma})}{(1 - \delta e^{-\lambda x^\gamma})^3} \left[1 - \frac{\delta^2 e^{-2\lambda x^\gamma}}{(1 - \delta e^{-\lambda x^\gamma})^2} \right]^{b-1},
\]

for \(\delta, \lambda, \gamma > 0 \).
for $b, \delta, \lambda, \omega > 0$,

$$f_{\text{EPGW}}(x; \lambda, \gamma, \alpha, \beta) = \frac{\alpha \beta \gamma x^{\gamma-1} (1 + \lambda x)^{\alpha-1} \exp(1 - (1 + \lambda x)^\alpha)}{(1 - \exp(1 - (1 + \lambda x)^\alpha))^{(1-\beta)}},$$

for $\lambda, \gamma, \alpha, \beta > 0$ and $x > 0$,

$$f_{\text{BOL-E}}(x; a, b, \lambda, \theta) = \frac{1}{B(a, b)} \left[1 - \frac{\lambda + e^{-\theta x}}{(1 + \lambda) e^{-\theta x}} \exp \left\{ -\lambda \left(\frac{1 - e^{-\theta x}}{e^{-\theta x}} \right) \right\} \right]^{a-1} \times \left[\frac{\lambda + e^{-\theta x}}{(1 + \lambda) e^{-\theta x}} \exp \left\{ -\lambda \left(\frac{1 - e^{-\theta x}}{e^{-\theta x}} \right) \right\} \right]^{b-1} \frac{\lambda^2}{(1 + \lambda)} \left(\frac{\theta e^{-\theta x}}{e^{-3\theta x}} \right)^{\lambda^2} \exp \left\{ -\lambda \left(\frac{1 - e^{-\theta x}}{e^{-\theta x}} \right) \right\},$$

for $a, b, \lambda, \theta > 0$. For the ELOLLOW distribution we considered a case when $\alpha = 1$.

6.1. Chemotherapy treatment data

The first data set are survival times in years of cancer patients receiving chemotherapy treatment alone. The data set is reported by [1]. The data are 0.47, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.053.

The estimated variance-covariance matrix is given by

$$
\begin{pmatrix}
0.2045 & -0.6991 & 0.0066 & 0.0101 \\
-0.6991 & 2.4133 & -0.0609 & -0.0354 \\
0.0066 & -0.0609 & 0.3729 & 0.0122 \\
0.0101 & -0.0354 & 0.0122 & 0.0142
\end{pmatrix}
$$

and the 95% confidence intervals for the model parameters are given by $\alpha \in [0.3632 \pm 0.8864], \lambda \in [1.4446 \pm 3.0448], \gamma \in [3.2819 \pm 1.1970]$ and $\theta \in [9.7836 \times 10^{-7} \pm 0.2337]$. Based on the values of the goodness-of-fit statistics $-2\log L, \text{AIC}, \text{AICC}, \text{BIC}, W^*, \Lambda^*$, KS and its p-value, we conclude that the OW-TL-LLoGP model performs better on chemotherapy treatment survival times data set than the several non-nested models considered in this paper. Also, using the results shown in Table 8, we conclude that the OW-TL-LLoGP model performs better than its nested models on chemotherapy treatment survival times data set.

6.2. Active repair times data

The second data set represents active repair times (hours) for an airborne communication transceiver. The data was also analyzed by [22]. The data are 0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 3.40, 4.00, 4.50, 4.70, 5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.

The estimated variance-covariance matrix is given by

$$
\begin{pmatrix}
0.0132 & -0.0387 & -0.2559 & 5.4524 \times 10^{-5} \\
-0.0387 & 0.1248 & 0.7048 & -0.0002 \\
-0.2559 & 0.7048 & 9.0625 & 3.6190 \times 10^{-5} \\
5.4524 \times 10^{-5} & -0.0002 & 3.6190 \times 10^{-5} & 0.0004
\end{pmatrix}
$$

and the 95% confidence intervals for the model parameters are given by $\alpha \in [0.2875 \pm 0.2259], \lambda \in [1.2106 \pm 0.6924], \gamma \in [11.6130 \pm 5.9003]$ and $\theta \in [3.1074 \times 10^{-8} \pm 0.0378]$. Furthermore, based on the values of the goodness-of-fit statistics $-2\log L, \text{AIC}, \text{AICC}, \text{BIC}, W^*, \Lambda^*$, KS and its p-value, we conclude that the OW-TL-LLoGP model performs better on repair times data set than the several non-nested models considered in this paper. Also, using the results shown in Table 8, we conclude that the OW-TL-LLoGP model performs better than its nested models on repair times data set.
Table 6: Parameter estimates and goodness-of-fit statistics for various models fitted for chemotherapy data set.

Model	Estimates	Statistics	-2 log L	AIC	AVC	BIC	W*	A*	KS	ps-value		
OW-TL-LLoGP	0.3632	1.4446	3.2819	9.7836 $\times 10^{-7}$	114.2	122.2	123.2	129.4	0.0438	0.3294	0.0871	0.8550
OW-TL-LLoGP(α, γ, θ)	0.4066	1	1.1287	3.6928 $\times 10^{-9}$	149.8	155.8	156.4	161.2	0.0867	0.5758	0.3573	1.1970 $\times 10^{-5}$
OW-TL-LLoGP(α, λ, θ)	0.0706	7.5060	1.0000	3.6584 $\times 10^{-4}$	137.1	143.1	143.7	148.5	0.1881	1.1638	0.2615	0.0033
OW-TL-LLoGP(λ, θ)	0.0706	1	1.0000	3.6584 $\times 10^{-4}$	137.1	143.1	143.7	148.5	0.1881	1.1638	0.2615	0.0033
OW-TL-LLoGP(α, γ)	0.4606	1	1.1287	3.6928 $\times 10^{-9}$	149.8	155.8	156.4	161.2	0.0867	0.5758	0.3573	1.1970 $\times 10^{-5}$
OW-TL-LLoGP(α, λ)	0.0706	7.5060	1.0000	3.6584 $\times 10^{-4}$	137.1	143.1	143.7	148.5	0.1881	1.1638	0.2615	0.0033
OW-TL-LLoGP(λ, θ)	0.0706	1	1.0000	3.6584 $\times 10^{-4}$	137.1	143.1	143.7	148.5	0.1881	1.1638	0.2615	0.0033
OW-TL-LLoGP(α, γ)	0.4606	1	1.1287	3.6928 $\times 10^{-9}$	149.8	155.8	156.4	161.2	0.0867	0.5758	0.3573	1.1970 $\times 10^{-5}$
OW-TL-LLoGP(α, λ)	0.0706	7.5060	1.0000	3.6584 $\times 10^{-4}$	137.1	143.1	143.7	148.5	0.1881	1.1638	0.2615	0.0033
OW-TL-LLoGP(λ, θ)	0.0706	1	1.0000	3.6584 $\times 10^{-4}$	137.1	143.1	143.7	148.5	0.1881	1.1638	0.2615	0.0033

Figure 4: Fitted densities and probability plots for chemotherapy data set.
Table 7: Parameter estimates and goodness-of-fit statistics for various models fitted for active repair times data set.

Model	Estimates	Statistics												
	α	λ	γ	θ	$-2\log L$	AIC	AICC	BIC	W^*	$\ast\ast$	$\ast\ast$	$\ast\ast$	$\ast\ast$	
OW-TL-LLoGP (α, γ, θ)	0.2875	1.2106	11.6130	3.1074×10^{-2}	199.8	209.8	208.8	213.1	0.0267	0.1964	0.0639	0.9918		
	(0.1153)	(0.3533)	(3.0104)	(0.00193)										
OW-TL-LLoGP $(\alpha, \lambda, \theta)$	0.258	1	3.2473	2.3476×10^{-10}	266.3	272.3	272.9	277.8	0.1279	0.8730	0.5718	1.7140 $\times 10^{-13}$		
	(0.3171)	(0.3813)	(0.0017)											
OW-TL-LLoGP $(\lambda, \gamma, \theta)$	0.2458	1.1157	1	3.1762×10^{-9}	273.8	279.8	280.3	285.3	0.1486	1.0047	0.6002	8.1050 $\times 10^{-15}$		
	(0.0506)	(6.2383)	-	(0.0081)										
OW-TL-LLoGP (λ, θ)	1	0.2142	1	2.0769	8.092×10^{-8}	409.2	413.2	413.5	416.9	0.0829	1.0047	0.6002	8.1050 $\times 10^{-15}$	
	(0.0226)	(0.0015)												
OW-TL-LLoGP (γ, θ)	0.2616	1	14.7853	1.8048	442.7	446.7	447.0	450.4	0.1382	0.9388	0.6101	2.6650 $\times 10^{-15}$		
	(0.9218)	(0.5746)												
TTL-W (α, λ)	0.4255	0.8883	1.3940	0.1166	116.0	124.0	125.0	131.3	0.0733	0.4953	0.1568	0.1966		
	(0.4183)	(0.7586)	(2.0105)	(0.0384)										
TTL-W (α, γ)	97.1294	0.1904	159.0913	0.0000	199.2	207.2	208.2	214.6	0.0650	0.4295	0.9714	0.0000		
	(22.2807)	(0.0186)	(26.1871)	(0.0043)										
KOL-LLoG $(\alpha, \lambda, \theta)$	10.0147	0.2197	4.2849	0.5625	199.1	207.1	208.1	214.4	0.0409	0.2792	0.0890	0.8990		
	(7.8294)	(0.3227)	(2.3212)	(0.1963)										
BW $(\alpha, \lambda, \theta)$	284.5	84.2640	392.94	0.0588	200.2	208.2	209.2	215.5	0.0537	0.3426	0.0975	0.7747		
	(2332.4)	(6.1781)	(0.0063)											
TLM-O-W $(\alpha, \lambda, \theta)$	11.2910	0.0988	0.6171	0.3938	198.9	206.9	207.9	214.2	0.0412	0.2571	0.0753	0.9569		
	(0.0016)	(0.1983)	(0.9128)	(0.1880)										
BOL-E $(\alpha, \lambda, \gamma)$	0.9318	42.540	72.0250	0.1235	209.9	217.9	218.9	225.2	0.1298	0.9099	0.1458	0.8276		
	((1.817 $\times 10^{-7}$)	(2.616 $\times 10^{-11}$)	(1.565 $\times 10^{-12}$)	(1.304 $\times 10^{-7}$)										
BOL-U $(\alpha, \lambda, \gamma, \beta)$	0.9311	1.2493	1.5868	7.0599	209.9	217.9	218.9	225.3	0.1441	0.9997	0.1499	0.2519		
	(0.1797)	(0.2487)	(4.081 $\times 10^{-4}$)	(8.001 $\times 10^{-13}$)										
ELOLLW $(\alpha, \lambda, \gamma)$	1.9748 $\times 10^{-5}$	0.0576	4.3375	0.8986	208.9	216.9	217.9	224.3	0.1298	0.9009	0.1204	0.5170		
	(1.5701)	(0.0259)	(4.275 $\times 10^{-4}$)	(0.0058)										
KwW $(\alpha, \lambda, \gamma)$	11.1289	0.2329	9.5744	0.5748	198.9	206.9	207.9	214.3	0.0389	0.2637	0.0942	0.8093		
	(10.4798)	(0.3015)	(8.8584)	(0.0201)										
EPGW $(\alpha, \lambda, \gamma)$	0.5175	77.6080	42.7070	0.3682	199.1	207.2	208.2	214.6	0.0449	0.2751	0.0795	0.9331		
	(0.0091)	(5.7273 $\times 10^{-5}$)	(2.097 $\times 10^{-4}$)	(0.0040)										
OEHLBXII $(\alpha, \beta, \lambda, \gamma)$	0.1711	0.0498	11.0701	0.1235	206.5	214.5	215.4	221.8	0.0551	0.3817	0.0922	0.8286		
	(0.0065)	(0.0055)	(5.2751)	(0.0043)										

Figure 5: Fitted densities and probability plots for repair times data.

6.2.1. Likelihood ratio test results

Table 8 shows the results of the likelihood ratio test.
Model	Chemotherapy Data Set	Repair Times Data Set
OW-TL-LLoGP\((\alpha, \gamma, \theta)\)	1	35.6 (*0.00001)
OW-TL-LLoGP\((\alpha, \lambda, \theta)\)	1	22.9 (*0.00001)
OW-TL-LLoGP\((\lambda, \theta)\)	2	119.4 (*0.00001)
OW-TL-LLoGP\((\alpha, \theta)\)	2	41.8 (*0.00001)
OW-TL-LLoGP\((\gamma, \theta)\)	2	41.5 (*0.00001)

We conclude from the likelihood ratio test that the OW-TL-LLoGP model performs better than its nested models on chemotherapy treatment survival times and repair times data sets.

7. Conclusions

A new generalization of the odd Weibull-Topp-Leone-G family of distributions called the odd Weibull-Topp-Leone-G power series (OW-TL-GPS) family of distributions is developed. Statistical properties of the new distribution were also derived. We also derive the maximum likelihood estimates of the proposed model. Some special cases for the new family of distributions were also considered. We conducted a simulation study to evaluate consistency of the maximum likelihood estimates. Two real data examples were also considered to demonstrate usefulness of the new proposed family of distributions. The new distribution performs better than several non-nested models.

Acknowledgment

We are grateful to the editor and referees for the improved version of this paper.

References

[1] O. O. Aalen, *Heterogeneity in Survival Analysis*, Statistics in Medicine, 7 (1988), 1121–1137. 6.1
[2] M. A. D. Aldahlan, A. Z. Afify, *The odd exponentiated half-logistic Burr XII distribution*, Pak. J. Stat. Oper. Res., 14 (2018), 305–317. 1, 6
[3] M. Alizadeh, A. Z. Afify, M. S. Eliwa, S. Ali, *The Odd Log-Logistic Lindley-G Family of Distributions: Properties, Bayesian and Non-Bayesian Estimation with Applications*, Comput. Stat., 35 (2020), 281–308. 1
[4] Z. A. Al-Saiary, R. A. Bakoban, *The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications*, Entropy, 22 (2020), 15 pages. 1
[5] A. Al-Shomrani, O. Arif, A. Shawky, S. Hanif, M. Q. Shahbaz, *Topp-Leone family of distributions: Some properties and application*, Pak. J. Stat. Oper. Res., 12 (2016), 443–451. 1, 1
[6] R. G. Aryall, E. M. Ortega, G. G. Hamedani, H. M. Yousof, *The Topp-Leone Generated Weibull Distribution: Regression Model, Characterizations and Applications*, Int. J. Stat. Prob., 6 (2017), 126–141. 1
[7] H. Bidram, V. Nekoukhou, *Double Bounded Kumaraswamy-Power Series Class of Distributions*, SORT, 37 (2013), 211–230. 1
[8] F. Chipepa, B. Oluyede, S. Chamunorwa, *The odd Weibull-Topp-Leone-G Family of Distributions: Model, Properties and Applications*, To Appear, (2020). 1
[9] F. Chipepa, B. O. Oluyede, B. Makubate, *A New Generalized Family of Odd Lindley-G Distributions with Application*, Int. J. Stat. Prob., 8 (2019), 1–23. 6
[10] F. Chipepa, B. Oluyede, B. Makubate, *The Odd Generalized Half-Logistic Weibull-G Family of Distributions: Properties and Applications*, J. Stat. Model. Theor. Appl., 2020 (2020), 25 Pages. 1
[11] F. Chipepa, B. Oluyede, B. Makubate, *The Topp-Leone-Marshall-Olkin-G Family of Distributions with Applications*, Int. J. Stat. Prob., 9 (2020), 15–32. 1, 6
[12] F. Chipepa, B. Oluyede, B. Makubate, A. Fagbamigbe, *The Beta Odd Lindley-G Family of Distributions with Applications*, J. Prob. Stat. Sci., 17 (2019), 51–84. 6
[13] G. M. Cordeiro, A. E. Gomes, C. Q. da-Silva, E. M. M. Ortega, *The Beta Exponentiated Weibull Distribution*, J. Stat. Comput. Simul., 83 (2013), 114–138. 6
[14] G. M. Cordeiro, E. M. M. Ortega, S. Nadarajah, The Kumaraswamy Weibull Distribution with Application to Failure Data, J. Franklin Inst., 347 (2010), 1399–1429. 6
[15] G. M. Cordeiro, R. B. Silva, The Complementary Extended Weibull Power Series Class of Distributions, Ciência e Natura, 36 (2014), 1–13. 1
[16] F. Gomes-Silva, A. Percontini, E. de Brito, M. W. Ramos, R Venâncio, G. M. Cordeiro, The odd Lindley-G family of distributions, Aust. J. Stat., 46 (2017), 65–87. 1
[17] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, Sixth edition, Academic Press, San Diego, (2000). 2.6, 2.7
[18] M. R. Gurvich, A. T. DiBenedetto, S. V. Ranade, A New Statistical Distribution for Characterizing the Random Strength of Brittle Materials, J. Mat. Sci., 32 (1997), 2559–2564. 1
[19] S. S. Harandi, M. H. Alamatsaz, Generalized Linear Failure Rate Power Series Distribution, Comm. Statist. Theory Methods, 45 (2016), 2204–2227. 1
[20] M. Ibrahim, H. Yousof, Transmuted Topp-Leone Weibull Lifetime Distribution: Statistical Properties and Different Method of Estimation, Pak. J. Stat. Oper. Res., 16 (2020), 501–515. 1
[21] N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, John Wiley & Sons, New York, (1994). 1
[22] B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution, Springer-Verlag, New York, (1982). 6.2
[23] M. C. Korkmaz, H. M. Yousof, G. G. Hamedani, The Exponential Lindley Odd Log-Logistic-G Family: Properties, Characterizations and Applications, J. Stat. Theory Appl., 17 (2018), 554–571. 6
[24] E. Mahmoudi, A. A. Jafari, Generalized Exponential-Power Series Distributions, Comput. Statist. Data Anal., 56 (2012), 4047–4066. 1
[25] E. Mahmoudi, A. A. Jafari, The Compound Class of Linear Failure Rate-Power Series Distributions: Model, Properties, and Applications, Comm. Statist. Simulation Comput., 46 (2017), 1414–1440. 1
[26] A. L. Morais, W. Barreto-Souza, A Compound Class of Weibull and Power Series Distributions, Comput. Statist. Data Anal., 55 (2011), 1410–1425. 1
[27] F. A. Pena-Ramirez, R. R. Guerra, G. M. Cordeiro, P. R. D. Marinho, The Exponentiated Power Generalized Weibull: Properties and Applications, An. Acad. Brasil. Cienc., 90 (2018), 2553–2577. 6
[28] A. Rényi, On Measures of Entropy and Information, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Univ. California Press, Berkeley, 1961 (1961), 547–561. 2.7
[29] C. E. Shannon, Prediction and Entropy of Printed English, The Bell System Technical J., 30 (1951), 50–64. 2.7
[30] R. B. Silva, M. Bourguignon, C. R. B. Dias, G. M. Cordeiro, The Compound Class of Extended Weibull Power Series Distributions, Comput. Statist. Data Anal., 58 (2013), 352–367. 1
[31] R. B. Silva, G. M. Cordeiro, The Burr XII Power Series Distributions: A New Compounding Family, Braz. J. Probab. Stat., 29 (2015), 565–589. 1

Appendix

https://drive.google.com/file/d/1swmGfP4uBhnnzIAVMMmQTEaXHx94z3keB/view?usp=sharing