Flapping and powering characteristics of a flexible piezoelectric nanogenerator at Reynolds number range simulating ocean current

Joonkyeong Moon1, Giho Kang1, Busi Im1, Jihoon Kim2, Dae-Hyun Cho3,4*, & Doyoung Byun1,2*

For effective ocean energy harvesting, it is necessary to understand the coupled motion of the piezoelectric nanogenerator (PENG) and ocean currents. Herein, we experimentally investigate power performance of the PENG in the perspective of the fluid–structure interaction considering ocean conditions with the Reynolds number (Re) values ranging from 1 to 141,489. A piezoelectric polyvinylidene fluoride micromesh was constructed via electrohydrodynamic (EHD) jet printing technique to produce the β-phase dominantly that is desirable for powering performance. Water channel was set to generate water flow to vibrate the flexible PENG. By plotting the Re values as a function of nondimensional bending rigidity (K_B) and the structure-to-fluid mass ratio (M^*), we could find neutral curves dividing the stable and flapping regimes. Analyzing the flow velocities between the vortex and surroundings via a particle image velocimetry, the larger displacement of the PENG in the chaotic flapping regime than that in the flapping regime was attributed to the sharp pressure gradient. By correlating M^*, Re, K_B, and the PENG performance, we conclude that there is critical K_B that generate chaotic flapping motion for effective powering. We believe this study contributes to the establishment of a design methodology for the flexible PENG harvesting of ocean currents.

Researchers have attempted to replace fossil fuel consumption by harvesting perpetual energy. Nature provides perpetual energy sources in multiple forms, such as ocean currents, tides, wind, and sunlight. According to the International Energy Agency, the total global power generated by tides and marine currents is estimated to be up to 1100 TWh1. In particular, ocean energy has advantages over solar and wind energy owing to its reliable and continuous energy supply capability. To convert mechanical energy driven by ocean currents, researchers have regarded the piezoelectric effect as a suitable mechanism for harvesting ocean currents because it can be utilized without intricate components, such as a magnetic field, contract-separation layer, and separate voltage source2. Applying a strain to a piezoelectric material or structure increases the electric potential difference between the stretched and compressed components due to the relative movement between the cations and anions in the crystals. Accordingly, the simple underlying mechanism of the piezoelectric effect allows us to conveniently design an energy harvesting device, namely the piezoelectric nanogenerator (PENG), without technical difficulty.

The fluid flow induces the flapping motion of a flexible PENG, generating electricity. Accordingly, to generate more electricity, understanding the coupled motion of the elastic structure and fluid flow has been a longstanding topic, namely the study of fluid–structure interaction (FSI). In the field of PENG engineering, the dynamics of a flexible sheet, which is the simplest type of PENG structure, have been studied to enhance the flapping motion by vortex-induced vibration (VIV)1–4. Vortex shedding occurs near a bluff body with a fluid flow. The high-frequency vibration of flexible PENG sheets owing to vortex shedding is desirable for powering.

1Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea. 2Coastal & Ocean Engineering Division, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Busan Metropolitan City 49111, Korea. 3Department of Mechatronics Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea. 4Department of Energy System Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongnam 52828, Republic of Korea. *email: cho@gnu.ac.kr; dybyun@skku.edu
Electrohydrodynamic (EHD) jet printing. An electrohydrodynamic (EHD) jet printing technique was employed to construct a 10 μm PVDF fiber mesh pattern on a spin-coated polydimethylsiloxane (PDMS) substrate. An EHD jet printer manufactured by NP-Expert (Enjet Inc., South Korea) with a metal nozzle (NanoNC) was used.
To stably eject the Taylor cone jet, a flow rate of 700 nL/min was maintained using a micro syringe pump (Harvard, New PHD UltraTM Nanonomite). The working distance and applied voltage values between the printing nozzle and PDMS substrate were 2200 μm and ranged from 1.6 to 2 kV, respectively. The printing speed was set to 300 mm/s.

Fabrication of PENG. Figure S1(a) presents a schematic illustration of the PENG fabrication process. A piezoelectric PVDF-based mesh was constructed using the EHD jet printing technique on the flexible PDMS layer. The AgNP mesh electrodes were printed with a mismatch of a rotation angle of 45° with the PVDF mesh. This mismatch was inevitable when minimizing the overlapping area. The Taylor cone jet of the AgNP ink became unstable when propelled directly onto the PVDF. After printing the AgNP mesh electrodes, a conductive wire was connected to the edge for a power measurement. Finally, the PDMS layer was deposited on top to block the water. Optical images of the fabricated PENG are displayed in Fig. S1(b). The output of the PENG was measured using a picoammeter (6485/E, Keithley Instruments Inc., USA) and electrometer (6514/E, Keithley Instruments Inc., USA). The topographical profiles of the printed AgNPs and PVDF-based mesh were gathered using a 3D profiler (NanoView Inc., Daejeon, Korea) to determine the width and thickness.

Results and discussion

An increase in the specific surface area of micro/nanostructured piezoelectric materials enhances the output performance of PENGs owing to an increase in the trapping region for charge transfer. To increase the specific surface area of the piezoelectric PVDF mesh, we employed the EHD jet printing technique, allowing a higher printing resolution compared to the conventional inkjet printing techniques that operate with a thermal or piezoelectric printing module. By applying an electric field, ink droplets are propelled from the nozzle onto a target substrate in the EHD printing mode, enabling the formation of a high-resolution Taylor cone jet down to the micrometer scale or lower. PVDF-based mesh patterns with a width of 13 μm and thickness of 1.54 μm [Fig. S2(a)] were achieved. For the PVDF-based mesh patterns, AgNP-based grid electrodes with a width of 18 μm and thickness of 1.19 μm [Fig. S2(b)] were constructed using the EHD printing technique.

PVDF can have α-, β-, γ-, and δ-phases, among which the β-phase is desirable for PENG applications owing to its spontaneous polarization behavior. However, PVDF tends to crystallize into the α-phase rather than the

Figure 1. (a) Schematic of the water channel system configuration. (b) Actual operation image and specifications.
β-phase. Hence, additional processes to change the α-phase to the β-phase are generally required. Nevertheless, according to Ye et al., the EHD jet-printed PVDF mesh exhibits a dominant β-phase. Moreover, the FTIR spectra analysis shown in Fig. S3 confirms that the β-phase was dominant in the printed piezoelectric PVDF. Therefore, we did not conduct any additional processes to change the α-phase to the β-phase.

Vortex shedding occurs when fluid blows past a bluff body, producing a sinusoidal force. This is the origin of the vibration of the flexible sheet-type PENGs. If the vortex shedding frequency approaches the frequencies of the PENG structure, then flapping or chaotic flapping motion of the PENG, which is desirable for powering, can occur. In the case of a two-dimensional sheet with a high longitudinal stiffness and low bending stiffness, the structural restoring force of the sheet is governed by flow-induced tension. Accordingly, the sheet’s dynamic effect, surface vortex formation, wake vortex propagation, structural inertia, and changing force of the main body due to bending stiffness must be considered to predict the sheet’s mechanical response to vortex shedding. Therefore, \(R_e, K_B, \) and \(M^* \) were regarded as the key parameters governing the mechanical response of the sheet.

\[R_e = \frac{\rho_f u L}{\mu_f}, \quad K_B = \frac{E h^3}{12(1 - \nu^2)} \frac{1}{\rho_f u^2 L^3}, \quad M^* = \frac{\rho_s h}{\rho_f L} \]

where \(E, \nu, h, \rho_f, \rho_s, u, L, \) and \(\mu_f \) denote the Young’s modulus (MPa), Poisson’s ratio, thickness (m), fluid density (kg/m³), material density (kg/m³), flow velocity (m/s), two-dimensional body of length (m), and fluid viscosity (kg/m s), respectively. According to Lumpkin et al., the global distribution of the flow velocity in the Pacific, Atlantic, and Indian Oceans ranges from 0.031 to 0.656 m/s, and the corresponding \(R_e \) values range from 6200 to 131,200. We set the \(R_e \) range from 1 to 141,489 in the present water channel experiments to simulate the ocean currents.

Figure 2a presents the flapping responses of the PENG at \(R_e = 40,000 \) when \(K_B = 0.00124 \) and \(M^* = 0.01 \), and at \(R_e = 60,000 \) when \(K_B = 0.000046 \) and \(M^* = 0.003 \), demonstrating that the flapping and chaotic flapping motion can be achieved in the water channel. Figure S4 demonstrates the response regime map as a function of \(M^* \) versus \(R_e \), demonstrating stable and flapping modes. The initial neutral mode was found at \(M^* = 0.005 \) and \(R_e = 10,000 \), and the boundary was distributed at a higher \(M^* \) as \(R_e \) increased. Figure 2b presents the neutral curves between the stable (i) and flapping motions (ii and iii), demonstrating that a \(K_B \) value below 0.0024 can flap regardless of the \(R_e \) range. Gurugubelli et al. reported that the neutral curve for a conventional foil appeared at a \(K_B \) value of approximately 0.001 at \(R_e < 5000 \), which is in good agreement with our observations. In addition, the regime in which the flapping motion is dominant can be divided into flapping (ii) and chaotic flapping (iii) regimes.

As shown in Fig. 3, PIV was used to represent the vortex distribution and component velocity at \(t = 0, 0.2, \) and 0.4 s under flapping \((R_e = 40,000, K_B = 0.00124, M^* = 0.01) \) and chaotic flapping regimes \((R_e = 60,000, K_B = 0.000046, M^* = 0.003) \). Regardless of the PENG response, the flow velocities of the vortexes exhibited a comparable level of 0.013 m/s. However, in the case of the chaotic flapping regime, there were significant differences in the flow velocities between the vortex and surroundings, resulting in a pressure gradient along the y-axis. In contrast, the difference in the flow velocities was insignificant in the flapping regime. The sharp pressure

Figure 2. (a) Flapping sequence images of PENG deformation at each condition captured with a high-speed camera. (b) Regime map representing the PENG responses induced by the vortex shedding.
gradient owing to the significant difference in the flow speed can be attributed to the larger displacement of the PENG in the chaotic flapping regime than that in the flapping regime.

Figure 4 presents the output voltages and currents generated from the PENG under the stable, flapping, and chaotic flapping regimes. A schematic model of PENG interaction with water flow is displayed in Fig. S5(a). A schematic illustration of measurement circuit and electron flows depending on the PENG behaviors are given in Fig. S5(b) and (c). The acquired currents are sinusoidal due to the repetitive bending of the PENGs as displayed in Fig. S5(d).

As expected, Fig. 4 demonstrates that there was no output voltage or current in the stable regime owing to the absence of vibrations. In the flapping and chaotic flapping regimes, the PENG can generate electricity. The outputs generated in the chaotic flapping regime (17 mV and 8 nA) were greater than those in the flapping regime (9 mV and 4 nA), indicating that the PENG harvesting ocean current energy needs to be designed to exhibit a chaotic flapping response from the perspective of powering.

Figure 5a presents a plot of the current density as a function of K_B measured in the Re range of 40,000–60,000, which was chosen because it covers the flapping and chaotic flapping regimes with a change in the K_B. A sharp increase from approximately 0.889 to 2.354 μA/m2 was observed in the current density below a K_B value of 0.001, which can be attributed to both the resonance between the vortex shedding and the increase in the displacement of the PENG owing to the increase in its compliance. To test our hypothesis, we plotted the vortex shedding frequency and K_B value as a function of Re (Fig. 5b), and the natural frequency of the PENG and the vortex shedding frequency as a function of K_B (Fig. 5c). With Re ranging from 40,000 to 60,000, Fig. 5b demonstrates that the vortex shedding frequency and K_B values are distributed in the ranges of 5–25 and 0.000051–0.00062,
respectively. Figure 5c demonstrates that the natural frequency of PENG mode 2 approached the vortex shedding frequency as K_B approached 0.00052. In contrast, the mode 1 frequency did not approach the vortex shedding frequency, indicating that the mode 2 resonance occurred more dominantly compared to mode 1. This analysis is in good agreement with the PIV image displayed in Fig. 2a, which presents mode 2 flapping. The current density sharply increased (Fig. 5a) below a K_B value of 0.00042, although the natural frequency of the PENG and the vortex shedding frequency receded into the distance. As previously indicated, we assumed that the large displacement of the PENG with a low K_B value may have led to the origin of the sharp increase in the power. The frequency of the output voltage in the chaotic flapping region displayed in Fig. 4 is approximately 4.33 Hz, which does not match the vortex shedding frequency (> 6.67 Hz). This indicates that the resonance between the vortex shedding and PENG is not the origin of the sharp increase in the current density. Therefore, the large displacement of the compliant PENG with a K_B below 0.00042 is the major contributor to the high current. Our observations indicate that the flexible sheet-type PENG should be designed to have a K_B value below the critical value for exhibiting chaotic flapping and generating significant power.

Conclusion

Considering ocean conditions, we set a water channel system generating water flow with Re values ranging from 1 to 141,489. By plotting M^* and K_B as a function of Re, we can draw neutral curves by dividing the stable and flapping regions. Depending on Re, it was found that the threshold values of M^* and K_B exhibited a flapping motion. In particular, the sheet-type PENG with a K_B below 0.0024 can flap regardless of the Re range. We also observed that the PENG can generate significant power when it operates under a chaotic flapping regime. Using PIV, we observed rapid changes in the flow velocities around the PENG, causing a significant pressure gradient. We conclude that the significant pressure gradient is the origin of the large displacement of the PENG and efficient powering. In particular, in the Re range of 40,000 to 60,000, the current density of the PENG with K_B below 0.001 sharply increased as K_B decreased. By comparing the natural frequency of the PENG, vortex shedding frequency, and K_B, we concluded that the sharp increase in the current density below a K_B value of 0.001 can be attributed to both the resonance between the vortex shedding and the increase in the displacement of the PENG owing to the increase in its compliance. From the perspective of efficient powering, we propose that the sheet-type PENG should be designed to have a K_B below the critical value under specific M^* and Re conditions. Future studies should aim to replicate our findings under the real ocean condition. The reason is that the salinity, the pressure, etc. can affect the performance and the reliability of the PENGs. This is an important key component in future attempts to design effective and reliable PENGs with a K_B below the critical value under the real ocean condition.
Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Received: 25 April 2022; Accepted: 19 September 2022
Published online: 01 October 2022

References

1. Cho, R. Tapping into Ocean Power, https://news.climate.columbia.edu/2017/02/14/tapping-into-ocean-power/ (2017).
2. Sezer, N. & Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567 (2021).
3. Pandey, R., Khandelwal, G., Palani, I. A., Singh, V. & Kim, S. J. A La-doped ZnO ultra-flexible flutt-piezoelectric nanogenerator for energy harvesting and sensing applications: A novel renewable source of energy. Nanoscale 11, 14032–14041 (2019).
4. Binyet, E. M., Chang, J.-Y. & Huang, C.-Y. Flexible plate in the wake of a square cylinder for piezoelectric energy harvesting—Parametric study using fluid-structure interaction modeling. Energies 13, 2645 (2020).
5. Elahi, H. et al. Performance evaluation of a piezoelectric energy harvester based on flag-flutter. Micromachines 11, 933 (2020).
6. Allen, J. & Smits, A. Energy harvesting eel. J. Fluids Struct. 15, 629–640 (2001).
7. Tang, L. & Pan, M. P. On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vib. 305, 97–115 (2007).
8. Tang, L., Paidoussis, M. P. & Jiang, J. Cantilevered flexible plates in axial flow: Energy transfer and the concept of flutter-mill. J. Sound Vib. 236, 263–279 (2009).
9. Shelley, M., Vandenberghe, N. & Zhang, J. Heavy flags undergo spontaneous oscillations in flowing water. Phys. Rev. Lett. 94, 094302 (2005).
10. Connell, B. S. & Yue, D. K. Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 33–67 (2007).
11. Alben, S. & Shelley, M. J. Flapping states of a flag in an inviscid fluid: Bistability and the transition to chaos. Phys. Rev. Lett. 100, 074301 (2008).
12. Pan, F., Xu, Z., Jin, L., Pan, P. & Gao, X. Designed simulation and experiment of a piezoelectric energy harvesting system based on vortex-induced vibration. IEEE Trans. Ind. Appl. 53, 3890–3897 (2017).
13. Orrego, S. et al. Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy 194, 212–222 (2017).
14. Lim, S. H. & Park, S. G. Numerical analysis of energy harvesting system including an inclined inverted flag. Phys. Fluids 34, 013601 (2022).
15. Bae, J. et al. Flutter-driven triboelectrofickrciation for harvesting wind energy. Nat. Commun. 5, 1–9 (2014).
16. Du, X. et al. Enhancement of the piezoelectric cantilever beam performance via vortex-induced vibration to harvest ocean wave energy. Shock Vib. 2020, 1–11 (2020).
17. Wang, J. et al. Enhancement of low-speed piezoelectric wind energy harvesting by bluff body shapes: Spindle-like and butterfly-like cross-sections. Aerosp. Sci. Technol. 103, 105898 (2020).
18. Song, R., Shan, X., Li, F., Li, J. & Xie, T. A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water. Appl. Sci. 5, 1942–1954 (2015).
19. Liu, F.-R., Zou, H.-X., Zhang, W.-M., Peng, Z.-K. & Meng, G. Y-type three-blade bluff body for wind energy harvesting. Appl. Phys. Lett. 112, 233903 (2018).
20. Wang, J., Zhou, S., Zhang, Z. & Yurchenko, D. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manag. 181, 645–652 (2019).
21. Sedat, Y., Sümeyya, A. & Mehmet, O. A case study on piezoelectric energy harvesting with using vortex generator plate modeling for fluids. Renew. Energy 157, 1243–1253 (2020).
22. Xinyu, A., Baowei, S., Wenlong, T. & Congcong, M. Design and CFD simulations of a vortex-induced piezoelectric energy converter (VIPEC) for underwater environment. Energies 11, 330 (2018).
23. Erik M.-M.-R., Montserrat C.-V., Carles F.-F., Antoni M.-L. & Daniel M. T. Piezoelectric energy harvesting from induced vortex in water flow. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 624–627 (2012).
24. Seyyedeh, F. N., Anoooshiravan, F. & Aref, A. Novel piezoelectric-based ocean wave energy harvesting from offshore buoys. Appl. Ocean Res. 76, 174–183 (2018).
25. Thielicke, W. & Sonntag, R. Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 9, 12 (2021).
26. Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020).
27. Kim, Y.-J., Kim, S.-Y., Lee, J.-S., Hwang, J. & Kim, Y.-J. On-demand electrohydrodynamic jetting with meniscus control by a piezoelectric actuator for ultra-fine patterns. J. Micromech. Microeng. 19, 107001 (2009).
28. Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983).
29. Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. Multinat. J. 18, 143–211 (1989).
30. Meng, N., Zhu, X., Maor, R., Reece, M. J. & Bilotti, E. Nanoscale interfae electroactivity in PVDF/PVDF-TrFe blended films with enhanced dielectric and ferroelectric properties. J. Mater. Chem. C 5, 3296–3305 (2017).
31. Chang, C., Tran, V. H., Wang, J., Puh, Y.-K. & Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010).
32. Liu, Z., Pan, C., Lin, L. & Lai, H. Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens. Actuators A 193, 13–24 (2013).
33. Ye, Y., Jiang, Y., Wu, Z. & Zeng, H. Phase transitions of poly (vinylidene fluoride) under electric fields. Integr. Ferroelectr. 80, 245–251 (2006).
34. Lampkin, R. & Johnson, G. C. Global ocean surface velocities from drifters: Mean, variance, El Niño-Southern Oscillation response, and seasonal cycle. J. Geophys. Res. Oceans 118, 2992–3006 (2013).
35. Gurugubelli, P. S. & Jaiman, R. K. Self-induced flapping dynamics of a flexible inverted foil in a uniform flow. J. Fluid Mech. 781, 657–694 (2015).

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) (Grant No. 2017R1E1A1A01075353 and 2018R1C1B3008634) and the Technology Innovation Program (20009618) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
Author contributions
J.K.M. contributed to write the main manuscript and to manage the entire experiment progress. G.H.K. designed and prepared the test platform. B.S.I. performed the electrical performance evaluation. J.H.K. built the setup and developed the visualization experiments. D.H.C. and D.Y.B. revised the entire process and feedback the progress as corresponding authors. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-20836-x.

Correspondence and requests for materials should be addressed to D.-H.C. or D.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[Open Access](http://creativecommons.org/licenses/by/4.0/) This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022