Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
ABSTRACT

Purpose: The field of HIV-1 vaccinology has evolved during the last 30 years from the first viral vector HIV gene insert constructs to vaccination regimens using a myriad of strategies. These strategies now include germline-targeting, lineage-based, and structure-guided immunogen design. This narrative review outlines the historical context of HIV vaccinology and subsequently highlights the scientific discoveries during the last 6 years that promise to propel the field forward.

Methods: We conducted a search of 2 electronic databases, PubMed and EMBASE, for experimental studies that involved new HIV immunogen designs between 2013 and 2019. During the title and abstract reviews, publications were excluded if they were written in language other than English and/or were a letter to the editor, a commentary, or a conference-only presentation. We then used ClinicalTrials.gov to identify completed and ongoing clinical trials using these strategies.

Findings: The HIV vaccinology field has undergone periods of significant growth during the last 3 decades. Findings elucidated in preclinical studies have revealed the importance of the interaction between the cellular and humoral immune system. As a result, several new rationally designed vaccine strategies have been developed and explored in the last 6 years, including native-like envelope trimers, nanoparticle, and mRNA vaccine design strategies among others. Several of these strategies have shown enough promise in animal models to progress toward first-in-human Phase I clinical trials.

Implications: Rapid developments in preclinical and early-phase clinical studies suggest that a tolerable and effective HIV vaccine may be on the horizon. (Clin Ther. 2020;42:499–514) © 2020 Elsevier Inc. All rights reserved.
early-phase HIV-1 vaccine studies using recombinant HIV-1 gp160 or gp120 subunit proteins as immunogens. Results of these trials were generally discouraging because they suggested tolerability but not efficacy.13–15 Regardless, some immunogens proceeded toward efficacy trials as early as 1999.

In the early 2000s, the results from the earliest efficacy trials became available. In particular, the San Francisco–based VaxGen Inc completed 2 Phase IIb/III trials in men who have sex with men and women (VAX004) and intravenous drug users (VAX003). Both studies assessed a protein-based vaccine (AIDSVAX) that contained gp120 proteins from various HIV-1 subtypes.16,17 The results of VAX004 were again disappointing, with an HIV-1 infection rate of 6.7\% in the vaccinated group compared with 7.0\% in the placebo group. As in VAX003, there was no demonstrable efficacy, and neither had a significant effect on viral load or CD4\(^+\) T-lymphocyte cell counts in those persons who did become infected with HIV-1.16,17 Despite these discouraging results, there was pressure to advance vaccine science for HIV-1, including the establishment of the Dale and Betty Bumpers Vaccine Research Center (VRC) at the National Institutes of Health in Bethesda, Maryland, and programs to incentivize commercial vaccine development.18 In this political environment, a decision was made to undertake the RV144 Phase III efficacy trial, which was designed to reassess AIDSVAX in a heterologous prime-boost strategy.19,20 This trial involved priming the immune system with a canarypox-based vector that contained genetically engineered versions of HIV-1 env, gag, and pol genes (ALVAC) and boosting with ALVAC and the alum-adjuvanted protein vaccine AIDSVAX. This trial was highly controversial because multiple early-phase clinical trials revealed that the components were poorly immunogenic when given in isolation.21–25 Proponents argued that the trial provided an opportunity to test the feasibility of the prime-boost design and to test for cellular immune correlates of protection,22 whereas opponents emphasized the excessive cost of the trial and the high likelihood of failure because of its use of immunogens that had previously induced only modest T-cell and humoral responses with no evidence of broad virus neutralization when administered alone or in combination.22,23 There was little optimism that this strategy would succeed.

When early vaccine candidates failed to elicit broadly protective antibody responses, the HIV-1 vaccine field shifted its focus to vaccines that would stimulate protective CD4\(^+\) and CD8\(^+\) T-cell responses. Several animal studies suggested that vaccine strategies that targeted cellular responses might be successful in preventing infection.26–29 In one such study, simian immunodeficiency virus (SIV)–infected macaques with suppressed SIV replication experienced increased replication when their CD8\(^+\) T cells were depleted,30 suggesting that this subset of T cells was important for controlling viral replication. HIV-infected elite controllers provided further impetus for pursuing this strategy because it was discovered that their impressive viral control was associated with potent and broad cellular responses.31,32

This work gave preclinical support for the HIV Vaccine Trials Network (HVTN)–led Phase IIb trials, STEP (HVTN 502) and Phambili (HVTN 503), which were designed to stimulate the cellular response.33 In both trials, healthy HIV-1–uninfected adults who were considered high risk for HIV-1 acquisition were immunized with a replication-deficient human adenovirus serotype 5 (Ad5) vector with clade B HIV-1 gene inserts (gag, pol, and nef).29,34 Interim analysis of the STEP trial revealed higher rates of HIV-1 transmission in the vaccine group compared with the placebo group despite evidence of a robust humoral immune response,29 leading to early termination of both trials.34 Disappointment in the field,33 and fear in the volunteer community.35 Post hoc analysis found that the subgroups of uncircumcised males and persons with preexisting Ad5 neutralizing antibodies had increased HIV-1 infection rates.36,37

Two years later, the 2009 report of RV144 trial results restored a sense of optimism because the regimen had a modest vaccine efficacy of 31\% at 3.5 years after vaccination, with a vaccine efficacy as high as 61\% during the first year.38,39 However, the findings were controversial because protection occurred despite lack of development of neutralizing antibodies or CD8\(^+\) cytotoxic T-cell responses.38 Nonneutralizing IgG antibodies that targeted the HIV Env variable loops 1 and 2 (V1V2) were identified as correlates of protection, whereas high levels of Env-specific IgA antibodies were associated with a lack of protection.40 The high cost of these human efficacy
trials combined with the unanticipated results led the field to undertake a more nuanced study of the immunologic response to both vaccination and HIV-1 infection in vaccinees to extract more information from otherwise disappointing studies. These immunologic studies provided clues about which parts of the immune response might be contributing to vaccine-mediated protection. For example, sieve analysis of HIV-1–infected vaccine recipients identified which portions of the immune response appeared to be placing pressure on the virus, and these results have now begun to drive immunogen design.41–43 Several ongoing efficacy trials are being conducted to better understand the results of the RV144 trial, including HVTN 702 and 705. The HVTN 702 study aims to enroll >5000 participants to assess the tolerability and immune response to ALVAC and bivalent subtype C gp120 adjuvanted with MF59 (ClinicalTrials.gov identifier NCT02968849), and The HVTN 705 study (Imbokodo, Bloemfontein, South Africa) aims to assess a heterologous prime boost regimen using Ad26.Mos4.HIV and Clade C gp140 adjuvanted with aluminum phosphate (ClinicalTrials.gov identifier NCT03060629).

The field also investigated the viral and host factors that contributed to the formation of bNAb s, humoral responses that neutralize multiple HIV-1 clades simultaneously,44 as well as other mechanisms that might have contributed to protection or altered the course of infection, such as antiviral nonneutralizing antibodies.45 This work resulted in the isolation of numerous HIV-1 bNAb s from persons living with HIV-1, such as the Vaccine Research Center’s VRC01, one of a class of CD4-binding site bNAb s that potently neutralize 91% of known HIV-1 isolates.46,47 Parallel work on acutely infected persons in which investigators isolated co-evolving bNAb s and HIV-1 isolates resulted in the first generation of germline-targeting vaccine designs48–50 based on structures of the HIV-1 Env complexed with bNAb s. Potent bNAb s that targeted the membrane-proximal external region of gp41 had even greater neutralization breadth than VRC01,51–55 and in recent years more potent next-generation bNAb s have produced neutralization breadth as high as 96% of viruses tested.36,36,37 This understanding has allowed researchers to use the structural conformation of antibodies and their target antigens to guide structure-based immunogen design58 and use lineage-based vaccine design to target the unmutated common ancestor and intermediate antibodies of bNAb lineages.59

The purpose of this narrative review is to describe some of the most innovative HIV-1 vaccine strategies that have emerged during the last 6 years. Given these restrictions, this review is not exhaustive but instead focuses on those immunogens that are currently under investigation in human studies (see Table) or are most likely to advance toward inclusion in Phase I human clinical trials in the near future.

METHODS
We searched PubMed and EMBASE using the terms HIV vaccine, HIV immunization, human vaccine trials, SOSIP vaccine, mRNA vaccine, protein vaccine, peptide vaccine, trimer vaccine, AIDS, vaccination, immunization, viral vectors, and bNAb s to capture protein/peptide, mRNA, vector-based HIV vaccine experimental studies and passive immunization strategies. Studies that were published from January 1, 2013, to January 1, 2019, were included in this narrative review. After the initial electronic database search, we identified and removed duplicate publications. The remaining studies then underwent title and abstract review at which time publications were excluded if they were written in a language other than English and/or a letter to the editor, a commentary, or a conference-only presentation. Although quality assessments of the studies were not conducted, all studies included in the full-text review of this study met minimum standards of technical quality and observed protocols mandated by the Animal Welfare Act. We then used ClinicalTrials.gov to identify ongoing clinical trials using these strategies. The complete electronic database search results and citations are listed in the references.

CURRENT INNOVATIONS
Native-like Env trimers
The mature, cleaved HIV-1 Env spike is a metastable glycoprotein (gp) heterotrimer of gp120, a surface protein that binds the CD4+ receptor, and gp41, a transmembrane protein involved in fusion of the virion to the host cell.50 On the basis of the coevolution work that resulted in germline-targeting vaccine designs, the structure of recombinantly
produced Env is thought to be critical to HIV-1 vaccine design because it can display bNAb epitopes in a conformation-dependent manner that may stimulate the bNAb unmutated common ancestors.45,61 For a vaccine to successfully prevent infection with HIV-1, a virus with high antigenic diversity, it must elicit bNAbs with wide neutralization breadth and/or HIV-1 specific antibodies that mediate antibody-dependent cellular cytotoxicity62 or other effector functions.63 Studies have found that HIV-1 virions may be grouped into 4 ranks or tiers based on their pattern of sensitivity to antibody-mediated neutralization, which is associated with the structural configuration of the Env trimer (open, closed, or intermediate).64 Tier 1A (open) and 3 (closed) viruses are less commonly isolated from infected persons, and these virus isolates have the highest and lowest sensitivity to neutralization, respectively.64,65 Most HIV-1 strains isolated from acutely infected persons have the tier 2 (closed) phenotype; thus, isolates with that phenotype are the primary targets for immunogen design. The challenge for HIV-1 immunogen design is inducing bNAbs capable of eliciting protection against heterologous
neutralization-resistant (tier 2) viruses or viruses with high resistance profiles. ⁶⁶

Various strategies have been used to design stabilized recombinant Env gp140 trimers that mimic the conformation of native Env trimers. ⁶¹,⁶⁷,⁶⁸ One approach involves stabilizing the gp120-gp41 interactions with an intermolecular disulfide bond (SOS gp140), modified with an isoleucine to proline (I559P) substitution to improve trimerization (SOSIP gp140). ⁶⁹–⁷¹ Researchers designed native-like trimers derived from a subtype A transmitted/founder virus isolated from an HIV-infected infant, BG505. ⁷²–⁷⁴ Autologous neutralizing antibodies elicited by BG505 SOSIP trimers target epitopes exposed by holes in the glycan shield. ⁷⁵–⁷⁷ It is currently unclear whether neutralizing antibodies elicited in this manner may evolve to accommodate glycans in heterologous Env s and develop breadth or if they can be directly elicited by SOSIP immunization. To better elucidate this, researchers are evaluating the immunogenicity of SOSIPs with glycan holes filled. ⁷⁸ Immunogenicity studies using soluble BG505 SOSIP.664 trimers have found successful bNAb production and neutralization of autologous tier 2 viruses in rabbits, ⁷⁹ something not previously observed with Env-based immunogens. Currently, a Phase I clinical trial is under way to assess the tolerability and immunogenicity of BG505 SOSIP.664 gp140 in healthy, HIV-1—uninfected participants using a dose escalation strategy. The study is expected to close to accrual in 2020 (ClinicalTrials.gov identifier NCT03699241).

In the past few years, various new trimer designs with enhanced antigenicity and thermostability have been developed. ⁸⁰–⁸² One such construct called single-chain gp140 was designed to make the Env cleavage—dependent by replacing the cleavage site between gp120 and gp41 with glycine/serine linkers. ⁸³ Another strategy, similar to the single-chained gp140 design, substitutes a flexible glycine/serine linker (G₄S) for the cleavage site to yield cleavage-independent Env mimics called native flexibly linked (NFL) trimers. ⁸⁴,⁸⁵ The addition of an interpromoter disulfide bond and an L555P substitution in the gp41 heptad repeat region provides improved stability and antigen exposure. ⁸⁵ Preclinical studies in rabbits, guinea pigs, and nonhuman primates have all found successful autologous tier 2 neutralization responses. ⁸⁶–⁸⁸ Manufacturing concerns have previously limited large-scale production of NFL trimers, but a recent study found that these challenges may be overcome with a simplified, large-scale production platform that has successfully produced homogenous BG505 NFL trimers using a Chinese hamster ovary cell line. ⁸⁹

The NFL and single-chained gp140 trimer strategies, although promising, have often resulted in fusion intermediate states for uncleaved trimers. ⁹⁰ To address this and improve stability, researchers replaced the cleavage site with long linkers, resulting in uncleaved prefusion-optimized (UFO) trimers that assume a native-like conformation similar to that of a SOSIP trimer. ⁹⁰ Furthermore, UFO trimers based on a modified group M consensus sequence called CONSOSL.UFO.750 (stabilized, membrane-bound) and CONSOSL.UFO.644 (soluble) were recently evaluated in preclinical immunogenicity studies. One of the constructs (CONSOSL.UFO.750) had binding to tested bNAbs except for PGT151, whereas the other construct (CONSOSL.UFO.644) induced autologous tier 2 neutralization responses in rabbits after 2 immunizations, although these responses decreased after the third immunization. ⁹¹ There are no registered human clinical trials evaluating NFL or UFO trimers at this time, although planning is under way. Although many advances have been made in native-like Env trimer design for vaccine development, there are ongoing hurdles in producing and formulating an ideal construct that is both stable and immunogenic.

Nanoparticles

In preclinical animal models, nanoparticle HIV-1 immunogens have successfully induced neutralizing antibodies, ⁸⁸,⁹²,⁹³ activated low-affinity germline precursor B cells, ⁹³–⁹⁶ and activated follicular T-helper cells. ⁹³,⁹⁷,⁹⁸ These next-generation vaccine immunogens are designed to activate and select for rare B-cell precursors with the potential to mature into bNAbs, a strategy called germline targeting. ⁹⁹ To develop a germline-targeting immunogen prime that binds and activates VRC01-class precursor B cells, Schief et al., ¹⁰⁰ at the Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, created an engineered outer domain (eOD) of the Env gp120 CD4 binding site. The eOD was simultaneously able to activate select germline-targeting B cells and guide early somatic mutation toward mature bNAb development. ⁹⁵ The team's
self-assembling nanoparticles displayed 60 copies of the eOD in an effort to improve B-cell activation and lymph node trafficking. The sixth iteration of this germline-targeting construct was successful in activating germline and mature VRC01-class B cells, and a newer variant, germline targeting version 8 (eOD-GT8), had higher affinity for VRC01 class B-cell precursors. In a transgenic mouse model, almost 30% of mice were able to activate VRC01 B-cell precursors and produce a VRC01-class memory response after receiving one immunization using eOD-GT8. Subsequent *in vitro* studies with human samples had the ability of eOD-GT8 to prime the human B-cell repertoire. Because eOD-GT8 has such a high affinity for VRC01-like B cells, it is possible that this immunogen could drive the expulsion of these B cells from germinal centers and force maturation into the short-lived plasma cell compartment. Should this occur, primed B cells would not be able to reenter germinal centers and undergo affinity maturation to develop neutralization breadth. Previous work with eOD-GT2, a lower-affinity version, highlighted potential issues with lower-affinity immunogens because this construct resulted in the development of a substantial endogenous mouse B-cell response that outcompeted the VRC01~gHL~ cells. The eOD-GT8–displaying nanoparticle is currently being evaluated in a Phase I clinical trial sponsored by the International AIDS Vaccine Initiative and is estimated to close to accrual in 2020 (ClinicalTrials.gov identifier NCT03547245).

B-cell Lineage

There is an increasing consensus that homologous prime-boost immunizations may not be effective in inducing bNAbs against HIV-1 because of the protracted evolutionary pathways that bNAbs undergo in HIV-1–infected persons. In addition, some bNAb characteristics suggest that a successful vaccine will need to overcome host immunoregulatory mechanisms that hinder formation of bNAbs, including, but not limited to, down selection of B-cells due to autoreactivity with host antigens. B-cell lineage vaccine strategies re-create the coevolutionary events of the Env and the humoral response by priming the immune system with an early transmitted form of Env and boosting with sequentially evolved Env variants to drive affinity maturation and bNAb development to select for rare lineages. The first of these designs was based on data from an HIV-1–infected individual, CH505, where the co-evolution of the virus and the CH103 CD4-binding site bNAb lineage was observed; this bNAb lineage neutralized 55% of tested HIV-1 isolates and had a lower level of somatic hypermutation compared with other bNAb lineages, making it an attractive vaccine target. The initial vaccine strategy used Env gp120 proteins that reacted most optimally with each step of the CH103 lineage (TF, week 53, week 78, and week 100). This concept is currently being evaluated in HVTN115, a 2-part study designed to assess the tolerability and immunogenicity of the EnvSeq-1 vaccine (CH505TF, week 53, week 78, and week 100) adjuvanted with glucopyranosyl lipid adjuvant formulated in a stable emulsion. In part A, participants were randomly assigned to 1 of 4 groups in a dose escalation test of the initial CH505TF immunogen, whereas in part B, participants are being randomly assigned to additive and sequential Env immunization strategies. This study design complements similar studies previously reported in rabbits and is expected to complete accrual in 2022 (ClinicalTrials.gov identifier NCT03220724).

Further B-cell lineage designs are being pursued based on similar data from other bNAb lineages, and studies are also evaluating beneficial vaccine outcomes that rely on other antibody functions. For example, the RV144 HIV-1 trial found a reduced risk of infection associated with antibodies that bound Env regions V1V2 and neutralizing antibodies to the V2 apex antigenic Env region, meaning that bNAb strategies that target the same region could also have antibody-dependent cellular cytotoxicity or other activities in addition to bNAb activity. Some evidence suggests that this class of bNAbs may be easier to elicit because they are the most prevalent in studies of HIV-1–infected persons, and this class protects macaques challenged with chimeric simian HIV, making them attractive vaccine targets.

RNA-based Vaccines

Nucleic acid–based vaccines, particularly those using mRNA, continue to generate significant excitement as technological advances have recently made this a feasible vaccine strategy. Their benefits include the lack of infectious risk, ability to
modify immunogenicity through different formulations, and ease of manufacturing.114 Naked mRNA vaccines are not effective because of extracellular RNases that rapidly degrade the genetic material.114,115 However, chemical and structural modifications to the mRNA and the addition of carrier molecules, including lipid nanoparticles (LNPs), protect the mRNA from degradation and facilitate cellular uptake.116 This has been used successfully in Zika virus vaccine development,117,118 and similar mRNA-LNP vaccine designs have elicited potent immune responses to influenza virus in animal and human studies.119

One preclinical study found that immunization of humanized mice with low doses of mRNA-LNPs encoding VRC01 bNAb yielded high levels of protective antibodies against HIV-1 infection.120 This group later found that a single immunization with a low dose of mRNA-LNP vaccine produced strong CD4+ T cells, in particular T follicular-helper cells, and anti-gp120 IgG responses in mice and rhesus macaques.121 T follicular-helper cell responses are thought to be critical for eliciting antigen-specific, durable B-cell responses; thus, this vaccine strategy is considered particularly promising.121 Immunization with self-amplifying mRNA encoding a clade C Env glycoprotein is another mRNA-based vaccine strategy that has produced potent humoral and cellular immune responses in animal models.122 One research team used a self-amplifying mRNA vector to deliver a mosaic of 6 highly conserved regions of HIV-1 gag and pol in a mouse model.123 The results suggested that this method could induce potent and durable CD4+ and CD8+ T-cell responses in those mice who had been primed with the self-amplifying mRNA vector and boosted with a viral vector (modified vaccinia virus Ankara).123 At this time, Phase I clinical trials are ongoing to assess mRNA vaccines against various infections, including Zika virus and cytomegalovirus, but mRNA-based human vaccine trials have not yet started for HIV-1.

DNA-based Vaccines

DNA-based vaccines, first developed in the early 1990s, are now experiencing a resurgence because of their excellent immunogenicity in animals and ease of manufacture, scalability, and storage.124 Early studies revealed that naked DNA plasmid HIV-1 vaccines were poorly immunogenic in humans.125 However, immunogenicity can now be improved with intradermal delivery using electroproporation, a technique that applies transient electrical pulses to cells to increase the permeability of the cell membrane and allow the nucleic acid to enter, or administration in conjunction with molecular adjuvants, such as interleukin 12.126,127 These adjustments encouraged stimulation of both the cellular and humoral arms of the immune system.127 HVTN 087 was a Phase I trial designed to assess the effect of increasing doses of plasmid DNA IL-12 adjuvant in conjunction with an HIV-1 multiantigen DNA vaccine delivered via electroproporation. The study found that this combination was tolerable and resulted in increased CD8+ T-cell responses but decreased CD4+ responses.128,129

Nonreplicating Viral Vector—based Vaccines

Human Ad5 was used for some early viral vector vaccines, but the cellular and humoral immune responses to vaccine inserts were inhibited by preexisting neutralizing antibodies to the vector.130 To overcome this challenge, researchers shifted to vectors based on other serotypes with lower seroprevalence, such as Ad26 and Ad35,131 chimeric forms of adenovirus to prevent immune recognition (Ad5H3) using the antigen capsid-incorporation technique,132 and the chimpanzee-adenovirus vector to which most humans have not been previously exposed.133 In the antigen capsid—incorporation strategy, chimeric Ad5H3 was created by adding a polyhistidine sequence (His6) into the hexon3 (H3) capsid protein of Ad5. The resultant chimeric vector was fit and was not neutralized by Ad5 sera, suggesting its ability to overcome the problem of preexisting immunity.132 The chimpanzee-adenovirus vector strategy has been similarly successful in inducing antigen-specific humoral and cellular immune responses for various pathogens, including Middle East respiratory syndrome coronavirus, Lassa fever, Ebola, and HIV-1.134–136 There have now been several Phase I clinical trials using an Ad26, Ad35, or chimpanzee adenovirus vector to deliver HIV-1 vaccines, but none using the chimeric vectors to date.

Replicating Viral Vector—based Vaccines

Although live attenuated viral vaccines successfully induce high levels of protective antibodies for a number of human infections, including measles and
smallpox, concerns about tolerability have hindered the development of a live attenuated HIV-1 vaccine because they can retain pathogenicity in humans. One attractive alternative that retains the benefits of a replicating viral vector without the risks of HIV-1 infection is recombinant cytomegalovirus (CMV). Unlike other viral vectors, preexisting immunity does not appear to limit the immunogenicity of recombinant CMV vectors. One prototype vaccine using a rhesus CMV vector induced durable SIV-specific effector CD8+ T-cell responses in rhesus macaques and provided aviremic control of infection after mucosal inoculation in 50% of the vaccinees for at least 52 weeks. Further analysis revealed that this vector stimulated a unique effector CD8+ T-cell response that recognized diverse epitopes, including those restricted by class II major histocompatibility complex molecules, and had significantly more breadth than that of traditional vaccines. Because human CMV infection of pregnant women can be associated with birth defects, there are concerns about whether this strategy can be made tolerable for wide-scale deployment; thus, this strategy is not yet in human clinical trials.

Mosaic Vaccines

One hurdle for HIV vaccinology is the design of immunogens that will elicit heterologous neutralization breadth. One approach is a mosaic vaccine in which genetic material from global HIV strains has been computationally analyzed and designed into a polyvalent mosaic immunogen to elicit cellular immune responses against genetically diverse circulating strains of HIV. Mosaic antigens administered by replication-incompetent Ad26 vectors or DNA prime-recombinant vaccinia boost regimens elicit CD8+ T-cell responses and enhance recognition of HIV strain diversity in nonhuman primates. Animals vaccinated with Ad/modified vaccinia Ankara or Ad/Ad vector–based vaccines expressing bivalent HIV-1 mosaic env, gag, and pol had a robust T-cell response, elicited neutralizing and functional nonneutralizing antibodies, and a reduction in acquisition of infection after several mucosal viral challenges. Early-phase clinical studies using the mosaic vaccine strategy found strong humoral and cellular HIV-1 immune responses, particularly with mosaic Ad26 as the prime and Ad26*gp140 (high dose) as the boost. These studies set the stage for the current efficacy trial, HVTN 706 (MOSAICO), which was designed to assess a regimen of Ad26.Mos4.HIV and adjuvanted Clade C gp140 and Mosaic gp140. Enrollment for this study began in 2019 (ClinicalTrials.gov identifier NCT03964415).

Passive Immunization

Almost a decade ago, a National Institutes of Health VRC-led research team reported the discovery of 2 broadly neutralizing antibodies, VRC01 and VRC02, which were isolated from a person living with HIV-1. As previously mentioned, this bNAb class neutralized 91% of HIV-1 isolates against which it was tested, leading to the launch of a series of Phase I human trials, which found that the infusions were tolerable when received intravenously or subcutaneously every 2–4 weeks. Importantly, VRC01 in participant sera after infusion was active in vitro against virus strains. This concept has now transitioned into the antibody mediated prevention (AMP) studies—Phase IIb efficacy trials to assess antibody-mediated prevention, being led jointly by the HVTN and the HIV Prevention Trials Network. VRC01 was one of the earliest identified and isolated bNAb with exceptional breadth and potency, but advances in antibody isolation and design are driving new strategies for passive immunization. Mutations have been introduced into VRC01 to alter the amino acid sequence (M428L and N434S) of the constant region of the heavy chain to create VRC01-LS, a form that exhibits a 3-fold longer half-life in serum, longer persistence in mucosal tissue, and 11-fold higher binding affinity to the neonatal Fc receptor without negatively affecting the effector function. VRC01-LS was successfully evaluated in a Phase I clinical trial and found to be well tolerated via the subcutaneous and intravenous routes. In addition, because of the extended half-life, VRC01-LS could be administered less frequently than VRC01, making this a more feasible tool for HIV prevention.

Investigators have isolated several additional bNabs, including, but not limited to, 3BNC117, 101074, and 10E8. Multiple antibodies that target different epitopes on HIV-1 Env are likely going to be needed for any widely deployable passive immunotherapy program because, much like combination antiretroviral therapy is required to
successfully suppress HIV-1, it has become clear that a single monoclonal antibody will likely not be sufficient to prevent infection.156 Studies are assessing the safety and pharmacokinetic profiles of infusing combinations of bNAbs for the prevention of HIV-1 infection (ClinicalTrials.gov identifier NCT02824536) and the effects on viral loads in persons living with HIV-1 (ClinicalTrials.gov identifiers NCT02825797 and NCT03526848). However, there are manufacturing and safety challenges that arise when bNAbs are physically combined, so researchers have also explored bispecific and trispecific antibody designs that have the ability to recognize and neutralize several antigenic targets concurrently.157,158 One group designed 4 bispecific antibodies, of which the combination of VRC07 (which targeted the CD4-binding site) and PG9-16 (which targeted the V1V2 apex) was the most promising, with high potency and a neutralization breadth of 97\% of all viruses tested.157 More recently, a trispecific antibody VRC01/PGDM1400-10E8v4, which targeted the CD4-binding site, membrane-proximal external region, and the V1V2 glycan site, was engineered to explore whether these antibodies could effectively engage multiple effector targets via a 3:1 ratio (trispecific antibody–protein). Trispecific antibodies had higher breadth and potency and neutralized approximately 99\% of viruses tested.159 When evaluated in a rhesus macaque simian HIV challenge model, those animals infused with the trispecific antibodies were 100\% protected, in contrast to the 25\% protection rate seen with VRC01 alone.159 In the coming years, we anticipate several additional trials in the antibody-mediated prevention family to test these concepts.

One new strategy is to use a viral vector to transfer bNAb genes directly to the host. Adenoassociated viruses are attractive candidates for this strategy because they are nonpathogenic, integrate into the host genome, and can infect both quiescent and dividing cells.160,161 Recombinant adenoassociated viruses have already been successfully used to deliver individual bNAbs that protected against repeated viral mucosal challenges in humanized mouse models.162 Current work is focused on determining the best combination of bNAbs to counter escape mutations and preexisting resistance. As with other infectious diseases, such as diphtheria and hepatitis B where passive immunotherapy and active vaccination were combined to enhance protection, recombinant adenoassociated viruses and other passive therapies combined with active vaccination are likely to become important parts of a successful HIV vaccine strategy.

CONCLUSIONS

In recent years, our understanding of the host immune response to HIV-1 has become more nuanced and has propelled the field of HIV-1 vaccinology forward. We have learned that manipulating host controls of bNAb induction and displaying antigenic diversity to obtain neutralization breadth are all keys to developing a successful HIV-1 vaccine. One of the most substantial limitations to vaccine development is that we have not yet clearly defined the primary immune correlate(s) of protection against HIV-1 infection, although several potential correlates have been identified, including V1V2-specific IgG antibodies.40 What we have learned thus far is that the successful vaccine candidate will likely use a heterologous prime-boost strategy that engages both the humoral and cellular immune systems to provide neutralization breadth or include nonneutralization protective immune responses and durability. Even then, such vaccines may be only one piece of a complex puzzle that may involve a combination of active and passive immunization tools.

DISCLOSURES

The authors have indicated that they have no conflicts of interest regarding the content of this article.

ACKNOWLEDGMENTS

All authors conceptualized and designed the manuscript. L.D. Jones and A.B. Thompson curated and analyzed the data and drafted the original manuscript. A.B. Thompson and M.A. Moody critically reviewed and revised the manuscript. All authors approved the final manuscript as submitted. L.D. Jones has received funding from the Ruth L. Kirschstein National Research Service Award (NRSA), an NIH funded program (T32 AI007392), M.A. Moody has received funding from the Consortium for HIV/AIDS Vaccine Development (CHAVD), an NIH funded program (UM1 AI144371) and the HIV Vaccine and Research
Design, NIH funded program (5P01 AI110485), A.B. Thompson has received funding from the Duke University Center for AIDS Research (CFAR), an NIH funded program (5P30 AI064518).

REFERENCES

1. Bonsignori M, Liao HX, Gao F, et al. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. *Immune Rev.* 2017;275:145–160.

2. Dhillon AK, Donners H, Pantophlet R, et al. Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. *J Virol.* 2007;81:6548–6562.

3. Kepler TB, Munshaw S, Wiehe K, et al. Reconstructing a B-cell clonal lineage. II. Mutation, selection, and affinity maturation. *Front Immunol.* 2014;5:170.

4. Rappuoli R. Vaccines: science, health, longevity, and wealth. *Science.* 2003;299:118–121.

5. Willis NJ. Edward Jenner's Inquiry; a bicentenary analysis. *Vaccine.* 1999;17:301–307.

6. Frantz S. Scientists slam rationale behind largest HIV vaccine trial. *Science.* 2004;305:171–180. author reply 177–180.

7. Burton DR, Desrosiers RC, Doms RW, et al. Public health: a sound rationale needed for phase III HIV-1 vaccine trials. *Science.* 2004;303:316.

8. Baxby D. Edward Jenner’s Inquiry; a bicentenary analysis. *Vaccine.* 1999;17:301–307.

9. Willis NJ. Edward Jenner and the eradication of smallpox. *Scott Med J.* 1997;42:118–121.

10. LaCasse RA, Follis KE, Trahey M, Scarborough JD, Littman DR, Nunberg JH. Fusion-competent vaccines: broad neutralization of primary isolates of HIV. *Science.* 1999;283:357–362.

11. Berman PW, Gregory TJ, Riddle L, et al. Protection of chimpanzees from infection by HIV-1 after vaccination with recombinant glycoprotein gp120 but not gp160. *Nature.* 1990;345:622–625.

12. Learmont JC, Geczy AF, Mills J, et al. Public health: a sound rationale needed for phase III HIV-1 vaccine trials. *Science.* 2004;303:316.

13. Bonsignori M, Liao HX, Gao F, et al. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. *Immune Rev.* 2017;275:145–160.

14. Wright PF, Lambert JS, Gorse GJ, et al. Immunization with envelope MN gp120 vaccine in human immunodeficiency virus-infected pregnant women. *J Infect Dis.* 1999;180: 1080–1088.

15. Belshe RB, Stevens C, Gorse GJ, et al. Safety and immunogenicity of a canarypox-vectored human immunodeficiency virus Type 1 vaccine with or without gp120: a phase 2 study in higher- and lower-risk volunteers. *J Infect Dis.* 2001;183:1343–1352.

16. Flynn NM, Ermold DL, Harro CD, et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. *J Infect Dis.* 2003;191:654–665.

17. Pititsutich K, Gilbert P, Gurrith M, et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. *J Infect Dis.* 2006;194:1661–1671.

18. Padamsee TJ. Fighting an epidemic in political context: thirty-five years of HIV/AIDS policy making in the United States. *Soc Hist Med.* 2018;hky108.

19. Lu S. Heterologous prime-boost vaccination. *Curr Opin Immunol.* 2009;21:346–351.

20. The moon landing of HIV vaccine research: RV144, ten years later [press release]. MedPage Today; 2019.

21. Burton DR, Desrosiers RC, Doms RW, et al. Public health: a sound rationale needed for phase III HIV-1 vaccine trials. *Science.* 2004;303:177–180. author reply 177–180.

22. Frantz S. Scientists slam rationale behind largest HIV vaccine trial. *Nat Rev Drug Discov.* 2004;3:195.

23. Baxby D. Edward Jenner’s Inquiry; a bicentenary analysis. *Vaccine.* 1999;17:301–307.

24. Frantz S. Scientists slam rationale behind largest HIV vaccine trial. *Science.* 2004;305:177–180. author reply 177–180.

25. Bonsignori M, Liao HX, Gao F, et al. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. *Immune Rev.* 2017;275:145–160.

26. Lithman DR, Nunberg JH. Fusion-competent vaccines: broad neutralization of primary isolates of HIV. *Science.* 1999;283:357–362.

27. Liang X, Casimiro DR, Schleif WA, et al. Vectored Gag adenoviral vaccine vectors expressing Gag. *J Virol.* 2006;80:5875–5885.

28. Casimiro DR, Wang F, Schleif WA, et al. Attenuation of simian immunodeficiency virus 89.6P challenge in Mamu-A*01-negative rhesus monkeys. *J Virol.* 2005;79:12321–12331.

29. Buell SP, Mehrotra DV, Duerr A, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. *Lancet.* 2008;372:1881–1893.
30. Reynolds MR, Weiler AM, Weisgrau KL, et al. Macaques vaccinated with live-attenuated SIV control replication of heterologous virus. *J Exp Med.* 2008;205:2537–2550.
31. Bernard NF, Pederson K, Chung F, Ouellet L, Wainberg MA, Tsoukas CM. HIV-specific cytotoxic T-lymphocyte activity in immunologically normal HIV-infected persons. *AIDS.* 1998;12:2125–2139.
32. Pontesilli O, Klein MR, Kerkhof-Garde SR, et al. Longitudinal analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte responses: a predominant gag-specific response is associated with nonprogressive infection. *J Infect Dis.* 1998;178:1008–1018.
33. STEP study: disappointing, but not a failure. *Lancet.* 2007;370:1655–1659.
34. Gray GE, Moodie Z, Metch B, et al. Recombinant adenovirus type 5 gag/pol/nef vaccine in South Africa: unblinded, long-term follow-up of the phase 2b HVTN 503/Phambili study. *Lancet Infect Dis.* 2014;14:388–396.
35. Newman PA, Yim S, Daley A, et al. Once Bitten, Twice Shy*: participant perspectives in the aftermath of an early HIV vaccine trial termination. *Vaccine.* 2011;29:451–458.
36. Gray G, Buchbinder S, Duerr A. Overview of STEP and Phambili trial results: two phase IIb test-of-concept studies investigating the efficacy of MRK adenovirus type 5 gag/pol/nef subtype B HIV vaccine. *Curr Opin HIV AIDS.* 2010;5:357–361.
37. Janes HE, Cohen KW, Frahm N, et al. Higher T-cell responses induced by DNA/rAd5 HIV-1 preventive vaccine are associated with lower HIV-1 infection risk in an efficacy trial. *J Infect Dis.* 2017;215:1376–1385.
38. Rerks-Ngarm S, Pitsutthithum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. *N Engl J Med.* 2009;361:2209–2220.
39. Robb ML, Rerks-Ngarm S, Nitayaphan S, et al. Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. *Lancet Infect Dis.* 2012;12:531–537.
40. Haynes BF, Gilbert PB, McElrath MJ, et al. Immune correlates analysis of an HIV-1 vaccine efficacy trial. *N Engl J Med.* 2012;366:1275–1286.
41. Tomaras GD, Haynes BF. Advancing toward HIV-1 vaccine efficacy through the intersections of immune correlates. *Vaccines (Basel).* 2014;2:15–35.
42. Tomaras GD, Plotkin SA. Complex immune correlates of protection in HIV-1 vaccine efficacy trials. *Immunol Rev.* 2017;275:245–261.
43. Corey L, Gilbert PB, Tomaras GD, Haynes BF, Pantaleo G, Fauci AS. Immune correlates of vaccine protection against HIV-1 acquisition. *Sci Transl Med.* 2015;7:310ra317.
44. Walker LM, Huber M, Doores KJ, et al. Broad neutralization coverage of HIV-1 by multiple highly potent antibodies. *Nature.* 2011;477:466–470.
45. Burton DR, Mascola JR. Antibody responses to envelope glycoproteins in HIV-1 infection. *Nat Immunol.* 2015;16:571–576.
46. Burton DR, Hangartner L. Broadly neutralizing antibodies to HIV and their role in vaccine design. *Annu Rev Immunol.* 2016;34:635–659.
47. Wu X, Yang ZY, Li Y, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. *Science.* 2010;329:856–861.
48. Zhou T, Lynch RM, Chen L, et al. Structural repertoire of HIV-1 neutralizing antibodies targeting the CD4 supersite in 14 donors. *Cell.* 2015;161:1280–1292.
49. Huang J, Kang BH, Ishida E, et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. *Immunity.* 2016;45:1108–1121.
50. Liao HX, Lynch R, Zhou T, et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. *Nature.* 2013;496:469–476.
51. Wang H, Yuan T, Li T, et al. Evaluation of susceptibility of HIV-1 CRF01_AE variants to neutralization by a panel of broadly neutralizing antibodies. *Arch Virol.* 2018;163:3303–3315.
52. Stefic K, Bouvin-Pley M, Essat A, et al. Sensitivity to broadly neutralizing antibodies of recently transmitted HIV-1 clade CRF02_AG viruses with a focus on evolution over time. *J Virol.* 2019;93(2), e01492-18.
53. Liu M, Yang G, Wiehe K, et al. Polyreactivity and auto-reactivity among HIV-1 antibodies. *J Virol.* 2015;89:784–798.
54. Cheedarla N, Precilla KL, Babu H, et al. Broad and potent cross clade neutralizing antibodies with multiple specificities in the plasma of HIV-1 subtype C infected individuals. *Sci Rep.* 2017;7:46557.
55. Chukwuma VU, Kose N, Sather DN, et al. Increased breadth of HIV-1 neutralization achieved by diverse antibody clones each with limited neutralization breadth. *PLoS One.* 2018;13, e0209437.
56. Burton DR, Poignard P, Stanfield RL, Wilson IA. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. *Science.* 2012;337:183–186.
57. Rudicell RS, Kwon YD, Ko SY, et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. *J Virol.* 2014;88:12669–12682.
58. Graham BS, Gilman MSA, McElrnan JS. Structure-based vaccine antigen design. Annu Rev Med. 2019;70:91–104.

59. Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol. 2012;30:423–433.

60. Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science. 1998;280:1884–1888.

61. de Taeye SW, Moore JP, Sanders RW. HIV-1 envelope glycoprotein trimer antigens. stabilizes native-like HIV-1 envelope conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat Struct Mol Biol. 2015;22:522–531.

62. Alsaha et al. Chemical cross-linking studies of a cleaved, stabilized envelope trimer derived from subtype A HIV-1. Vaccine. 2009;27: 5120–5132.

63. Beddows S, Schulke N, Kirschner M, et al. Evaluating the immunogenicity of a disulfide-stabilized, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J Virol. 2005;79:8812–8827.

64. Beddows S, Franti M, Dey AK, et al. A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120. Virology. 2007;360:329–340.

65. Sanders RW, Derking R, Cupo A, et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. Plos Pathog. 2013;9, e1003618.

66. Khayat R, Lee JH, Julien JP, et al. Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers. J Virol. 2013;87:9865–9872.

67. Wu X, Parast AB, Richardson BA, et al. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J Virol. 2006;80:835–844.

68. Schieppi T, de Val N, Russell RA, et al. Chemical cross-linking stabilizes native-like HIV-1 envelope glycoprotein trimer antigens. J Virol. 2016;90:813–828.

69. Kang YK, Andjelic S, Binley JM, et al. Structural and immunogenicity studies of a cleaved, stabilized envelope trimer derived from subtype A HIV-1. Virus. 2009;27:5120–5132.

70. Beddows S, Franti M, Dey AK, et al. A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120. Virology. 2007;360:329–340.

71. Sanders RW, Derking R, Cupo A, et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. Plos Pathog. 2013;9, e1003618.

72. Khayat R, Lee JH, Julien JP, et al. Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers. J Virol. 2013;87:9865–9872.

73. Wu X, Parast AB, Richardson BA, et al. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J Virol. 2006;80:835–844.

74. Schieppi T, de Val N, Russell RA, et al. Chemical cross-linking stabilizes native-like HIV-1 envelope glycoprotein trimer antigens. J Virol. 2016;90:813–828.

75. Kwon YD, Pancera M, Acharya P, et al. Crystal structure, immunization of rabbits with HIV-1 envelope glycoprotein SOSIP.664 trimers from clades A, B and C. Plos Pathog. 2016;12, e1005864.

76. Klasse PJ, Ketas TJ, Cottrell CA, et al. Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. Plos Pathog. 2018;14, e1006913.

77. Ringe RP, Pugach P, Cottrell CA, et al. Closing and opening holes in the glycan shield of HIV-1 envelope glycoprotein SOSIP trimers can redirect the neutralizing antibody response to the newly unmasked epitopes. J Virol. 2019;93, e01656-18.

78. Sanders RW, van Gils MJ, Derking R, et al. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science. 2015;349:aae4223.

79. Julien JP, Lee JH, Ozorowski G, et al. Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens. Proc Natl Acad Sci U S A. 2015;112:11947–11952.

80. Whitaker N, Hickey JM, Kaur K, et al. Developability assessment of physicochemical properties and stability profiles of HIV-1 BG505 SOSIP.664 and BG505 SOSIP.v4.1-GT1.1 gp140 envelope glycoprotein trimers as candidate vaccine antigens. J Pharm Sci. 2019;108:2264–2277.

81. Sullivan JT, Sulli C, Nilo A, et al. High-throughput protein engineering improves the antigenicity and stability of soluble HIV-1 envelope glycoprotein SOSIP trimers. J Virol. 2017;91(22), e00862-17.

82. Georgiev IS, Joyce MG, Yang Y, et al. Single-chain soluble BG505.SOSIP gp140 trimers as structural and antigenic mimics of mature closed HIV-1 Env. J Virol. 2015;89:5318–5329.

83. Sharma SK, de Val N, Bale S, et al. Cleavage-independent HIV-1 Env
trimers engineered as soluble native spike mimetics for vaccine design. *Cell Rep.* 2015;11:539–550.

85. Yang L, Sharma SK, Cottrell C, et al. Structure-guided redesign improves NFL HIV Env trimer integrity and identifies an inter-protomer disulfide permitting post-expression cleavage. *Front Immunol.* 2018;9:1631.

86. Feng Y, Tran K, Bale S, et al. Thermostability of well-ordered HIV spikes correlates with the elicitation of autologous tier 2 neutralizing antibodies. *Plos Pathog.* 2016;12, e1005767.

87. Dubrovskaya V, Guenaga J, de Val N, et al. Targeted N-glycan deletion at the receptor-binding site retains HIV Env NFL trimer integrity and accelerates the elicited antibody response. *Plos Pathog.* 2017;13, e1006614.

88. Martinez-Murillo P, Tran K, Guenaga J, et al. Particulate array of well-ordered HIV clade C Env trimers elicits neutralizing antibodies that display a unique V2 cap approach. *Immunity.* 2017;46:804–817 e807.

89. Bale S, Martine A, Wilson R, et al. Cleavage-independent HIV-1 trimers from CHO cell lines elicit robust autologous tier 2 neutralizing antibodies. *Front Immunol.* 2018;9:1116.

90. Kong L, He L, de Val N, et al. Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. *Nat Commun.* 2016;7:12040.

91. Aldon Y, McKay PF, Allen J, et al. Rational design of DNA-expressed stabilized native-like HIV-1 envelope trimers. *Cell Rep.* 2018;24:3324–3338, e3325.

92. Sliepen K, Ozorowski G, Burger JA, et al. Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. *Retrovirology.* 2015;12:82.

93. Ingale J, Stano A, Guenaga J, et al. High-density array of well-ordered HIV-1 spikes on synthetic liposomal nanoparticles efficiently activate B cells. *Cell Rep.* 2016;15:1986–1999.

94. Steichen JM, Kulp DW, Tokatlian T, et al. HIV Vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. *Immunity.* 2016;45:483–496.

95. Jardine J, Julien JP, Menis S, et al. Rational HIV immunogen design to target specific germline B cell receptors. *Science.* 2013;340:711–716.

96. Abbott RK, Lee JH, Menis S, et al. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. *Immunity.* 2018;48:133–146 e136.

97. Tokatlian T, Kulp DW, Mutafyan AA, et al. Enhancing humoral responses against HIV envelope trimers via nanoparticle delivery with stabilized synthetic liposomes. *Sci Rep.* 2018;8:16527.

98. Bale S, Goebrecht G, Stano A, et al. Covalent linkage of HIV-1 trimers to synthetic liposomes elicits improved B cell and antibody responses. *J Virol.* 2017;91, e00443-17.

99. Jardine JG, Kulp DW, Havenar-Daughton C, et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. *Science.* 2016;351:1458–1463.

100. Pejchal R, Dooris KJ, Walker LM, et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. *Science.* 2011;334:1097–1103.

101. Sok D, Briney B, Jardine JG, et al. Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. *Science.* 2016;353:1557–1560.

102. Havenar-Daughton C, Sarkar A, Kulp DW, et al. The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. *Sci Transl Med.* 2018;10, eaat0381.

103. Prabhu S, Cockburn IA, Vinuesa CG. HIV immunogens: affinity is key. *Immunity.* 2018;48:11–13.

104. Mascola JR, Haynes BF. HIV-1 neutralizing antibodies: understanding nature’s pathways. *Immunol Rev.* 2013;254:225–244.

105. Haynes BF, Fleming J, St Clair EW, et al. Cardiolipin polyclonal autoreactivity in two broadly neutralizing HIV-1 antibodies. *Science.* 2005;308:1906–1908.

106. Schmidt AG, Xu H, Khan AR, et al. Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. *Proc Natl Acad Sci U S A.* 2013;110:264–269.

107. Saunders KO, Verkoczy LK, Jiang C, et al. Vaccine induction of heterologous tier 2 HIV-1 neutralizing antibodies in animal models. *Cell Rep.* 2017;21:3681–3690.

108. Xiao X, Chen W, Feng Y, et al. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. *Biochem Biophys Res Commun.* 2009;390:404–409.

109. Mouquet H, Scheid JF, Zoller MJ, et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. *Nature.* 2010;467:591–595.

110. Walker LM, Simek MD, Priddy F, et al. A limited number of antibody specificities mediate
broad and potent serum neutralization in selected HIV-1 infected individuals. Plos Pathog. 2010;6, e1001028.

111. Landais E, Huang X, Havenar-Daughton C, et al. Broadly neutralizing antibody responses in a large longitudinal sub-Saharan HIV primary infection cohort. Plos Pathog. 2016;12, e1005369.

112. Georgiev IS, Doria-Rose NA, Zhou T, et al. Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization. Science. 2013;340:751—756.

113. Julg B, Tartaglia LJ, Keele BF, et al. Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Sci Transl Med. 2017;9, eaal1321.

114. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines: a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261—279.

115. Tsui NB, Ng EK, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002;48:1647—1653.

116. Coolen AL, Lacroix C, Mercier-Gouy P, et al. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials. 2019;195:23—37.

117. Pardi N, Hogan MJ, Pelc RS, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543:248—251.

118. Richner JM, Himansu S, Dowd KA, et al. Modified mRNA vaccines protect against Zika virus infection. Cell. 2017;168:1114—1125 e1110.

119. Bahl K, Senn JJ, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther. 2017;25:1316—1327.

120. Pardi N, Secreto AJ, Shan X, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630.

121. Pardi N, Hogan MJ, Naradikian MS, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med. 2018;215:1571—1588.

122. Bogers WM, Oostermeijer H, Mooij P, et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis. 2015;211:947—955.

123. Moyo N, Vogel AB, Buus S, et al. Efficient induction of T cells against conserved HIV-1 regions by mosaic vaccines delivered as self-amplifying mRNA. Mol Ther Methods Clin Dev. 2019;12:32—46.

124. Jin X, Morgan C, Yu X, et al. Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. Vaccine. 2015;33:2347—2353.

125. Kalams SA, Parker S, Jin X, et al. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults. PLoS One. 2012;7, e29231.

126. Kalams SA, Parker SD, Elizaga M, et al. Safety and comparative immunogenicity of an HIV-1 DNA vaccine in combination with plasmid interleukin-12 and impact of intramuscular electroporation for delivery. J Infect Dis. 2013;208:818—829.

127. Mann JF, McKay PF, Fiserova A, et al. Enhanced immunogenicity of an HIV-1 DNA vaccine delivered with electroporation via combined intramuscular and intradermal routes. J Virol. 2014;88:6959—6969.

128. Li SS, Kochar NK, Elizaga M, et al. DNA priming increases frequency of T-cell responses to a vesicular stomatitis virus HIV vaccine with specific enhancement of CD8 (+) T-cell responses by interleukin-12 plasmid DNA. Clin Vaccin Immunol. 2017;24,e00263-17.

129. Elizaga ML, Li SS, Kochar NK, et al. Safety and tolerability of HIV-1 multiantigen pDNA vaccine given with IL-12 plasmid DNA via electroporation, boosted with a recombinant vesicular stomatitis virus HIV Gag vaccine in healthy volunteers in a randomized, controlled clinical trial. PLoS One. 2018;13, e0202753.

130. Wu L, Zhang Z, Gao H, et al. Open-label phase I clinical trial of Ad5-EBOV in Africans in China. Hum Vaccin Immunother. 2017;13:2078—2085.

131. D’Souza MP, Yang OO. Adenovirus vectors as HIV-1 vaccines: where are we? what next? AIDS. 2015;29:395—400.

132. Gu L, Icyuz M, Krendelchtchikova V, Krendelchtchikov A, Johnston AE, Matthews QL. Development of an Ad5H3 chimera using the "antigen capsid-incorporation" strategy for an alternative vaccination approach. Open Virol J. 2016;10:10—20.

133. Emmer KL, Wieczorek L, Tuyshime S, Molnar S, Polonis VR, Ertl HC. Antibody responses to prime-boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors.
expressing HIV-1 gp140. AIDS. 2016;30:2405–2414.

134. Ewer K, Sebastian S, Spencer AJ, Gilbert S, Hill AVS, Lambe T. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum Vaccin Immunother. 2017;13:3020–3032.

135. Ledgerwood JE, DeZure AD, Stanley DA, et al. Chimpanzee adenovirus vector Ebola vaccine. N Engl J Med. 2017;376:928–938.

136. Hartnell F, Brown A, Capone S, et al. A Novel vaccine strategy employing serologically different chimpanzee adenoviral vectors for the prevention of HIV-1 and HCV coinfection. Front Immunol. 2018;9:3175.

137. Minor PD. Live attenuated vaccines: historical successes and current challenges. Virology. 2015;479:379–392.

138. Duer A, Wasserheit JN, Corey L. HIV vaccines: new frontiers in vaccine development. Clin Infect Dis. 2006;43:500–511.

139. Hansen SG, Vieville C, Whizin N, et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med. 2009;15:293–299.

140. Hansen SG, Ford JC, Lewis MS, et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature. 2011;473:523–527.

141. Hansen SG, Piatak Jr M, Ventura AB, et al. Immune clearance of highly pathogenic SIV infection. Nature. 2013;502:100–104.

142. Hansen SG, Sacha JB, Hughes CM, et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science. 2013;340:1237874.

143. Fischer W, Perkins S, Theiler J, et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat Med. 2007;13:100–106.

144. Santra S, Liao HX, Zhang R, et al. Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. Nat Med. 2010;16:324–328.

145. Hudgens MG, Gilbert PB, Mascola JR, Wu CD, Barouch DH, Self SG. Power to detect the effects of HIV vaccination in repeated low-dose challenge experiments. J Infect Dis. 2009;200:609–613.

146. Hudgens MG, Gilbert PB. Assessing vaccine effects in repeated low-dose challenge experiments. Biometrics. 2009;65:1223–1232.

147. Barouch DH, Stephenson KE, Borducchi EN, et al. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell. 2013;155:531–539.

148. Barouch DH, Alter G, Broge T, et al. Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys. Science. 2015;349:320–324.

149. Mayer KH, Seaton KE, Huang Y, et al. Safety, pharmacokinetics, and immunological activities of multiple intravenous or subcutaneous doses of an anti-HIV monoclonal antibody, VRC01, administered to HIV-uninfected adults: results of a phase 1 randomized trial. Plos Med. 2017;14, e1002435.

150. Zalesky J, Chamberlain AK, Horton HM, et al. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol. 2010;28:157–159.

151. Ko SY, Pegu A, Rudicell RS, et al. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature. 2014;514:642–645.

152. Gaudinski MR, Coates EE, Houser KV, et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a Phase 1 open-label clinical trial in healthy adults. Plos Med. 2018;15, e1002493.

153. Caskey M, Schoofs T, Gruell H, et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat Med. 2017;23:185–191.

154. Scheid JF, Horwitz JA, Bar-On Y, et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature. 2016;535:556–560.

155. Kwon YD, Georgiev IS, Ofek G, et al. Optimization of the solubility of HIV-1-neutralizing antibody 10E8 through somatic variation and structure-based design. J Virol. 2016;90:5899–5914.

156. Julg B, Liu PT, Waghi K, et al. Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Sci Transl Med. 2017;9:eaao4235.

157. Asokan M, Rudicell RS, Louder M, et al. Bispecific antibodies targeting different epitopes on the HIV-1 envelope exhibit broad and potent neutralization. J Virol. 2015;89:12501–12512.

158. Steinhardt JJ, Guenaga J, Turner HL, et al. Rational design of a trispecific antibody targeting the HIV-1 Env with elevated antiviral activity. Nat Commun. 2018;9:877.

159. Xu L, Pegu A, Rao E, et al. Trispecific broadly neutralizing HIV
antibodies mediate potent SHIV protection in macaques. Science. 2017;358:85–90.

160. Daya S, Berns KL. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21:583–593.

161. Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A. 1984;81:6466–6470.

162. Durost PA, Aryee KE, Manzoor F, et al. Gene therapy with an adeno-associated viral vector expressing human interleukin-2 alters immune system homeostasis in humanized mice. Hum Gene Ther. 2018;29:352–365.

Address correspondence to: Amelia B. Thompson, MD, MPH, 2 Genome Court, DUMC Box 103020, Durham, NC 27710, USA. E-mail: amelia.thompson@duke.edu