Explosion of smoothness for conjugacies between multimodal maps

José F. Alves, Vilton Pinheiro and Alberto A. Pinto

Abstract

Let f and g be smooth multimodal maps with no periodic attractors and no neutral points. If a topological conjugacy h between f and g is C^1 at a point in the nearby expanding set of f, then h is a smooth diffeomorphism in the basin of attraction of a renormalization interval of f. In particular, if $f: I \to I$ and $g: J \to J$ are C^r unimodal maps and h is C^1 at a boundary of I, then h is C^r in I.

1. Introduction

There is a well-known theory in hyperbolic dynamics that studies properties of the dynamics and of the topological conjugacies that lead to additional regularity for the conjugacies. Mostow [21] proved that if \mathbb{H}/Γ_X and \mathbb{H}/Γ_Y are two closed hyperbolic Riemann surfaces covered by finitely generated Fuchsian groups Γ_X and Γ_Y of finite analytic type, and $\phi: \mathbb{H} \to \mathbb{H}$ induces the isomorphism $i(\gamma) = \phi \circ \gamma \circ \phi^{-1}$, then ϕ is a Möbius transformation if, and only if, ϕ is absolutely continuous. Shub and Sullivan [24] proved that for any two analytic orientation-preserving circle-expanding endomorphisms f and g of the same degree, the conjugacy is analytic if, and only if, the conjugacy is absolutely continuous. Furthermore, they proved that if f and g have the same set of eigenvalues, then the conjugacy is analytic. De la Llave [11] and Marco and Moriyon [14, 15] proved that if Anosov diffeomorphisms have the same set of eigenvalues, then the conjugacy is smooth. For maps with critical points, Lyubich and Milnor [12] proved that C^2 unimodal maps with Fibonacci combinatorics and the same eigenvalues are C^1 conjugate. De Melo and Martens [17] proved that if topological conjugate unimodal maps, whose attractors are cycles of intervals, have the same set of eigenvalues, then the conjugacy is smooth. Dobbs [2] proved that if a multimodal map f has an absolutely continuous invariant measure, with a positive Lyapunov exponent, and f is absolutely continuous conjugate to another multimodal map, then the conjugacy is C^r in the domain of some induced Markov map of f.

Here, we study the explosion of smoothness for topological conjugacies, that is, the conditions under which the smoothness of the conjugacy in a single point extends to an open set. Tukia [27] extended the result above of Mostow proving that if \mathbb{H}/Γ_X and \mathbb{H}/Γ_Y are two closed hyperbolic Riemann surfaces covered by finitely generated Fuchsian groups Γ_X and Γ_Y of finite analytic type, and $\phi: \mathbb{H} \to \mathbb{H}$ induces the isomorphism $i(\gamma) = \phi \circ \gamma \circ \phi^{-1}$, then ϕ is a Möbius transformation if, and only if, ϕ is differentiable at one radial limit point with non-zero
derivative. Sullivan [26] proved that if a topological conjugacy between analytic orientation-preserving circle-expanding endomorphisms of the same degree is differentiable at a point with non-zero derivative, then the conjugacy is analytic. Extensions of these results for Markov maps and hyperbolic basic sets on surfaces were developed by Faria [3], Jiang [8, 10] and Pinto, Rand and Ferreira [4, 22], among others. For maps with critical points, Jiang [5–7, 9] proved that quasi-hyperbolic one-dimensional maps are smooth conjugated in an open set with full Lebesgue measure if the conjugacy is differentiable at a point with uniform bound. In this paper, we define the nearby expanding set $NE(f)$ of a multimodal map f and characterize $NE(f)$ in terms of the basins of attraction of renormalization intervals. We prove that if a topological conjugacy between multimodal maps is C^1 at a point in the nearby expanding set $NE(f)$ of f, then the conjugacy is a smooth diffeomorphism in the basin of attraction of a renormalization interval.

2. Explosion of smoothness

Let I be a compact interval and $f : I \rightarrow I$ a C^{1+} map. By C^{1+}, we mean that f is a differentiable map whose derivative is Hölder. We say that c is a non-flat turning point of f, if there exist $\alpha > 1$ and a C^α diffeomorphism ϕ defined in a small neighbourhood K of 0 such that

$$f(c + x) = f(c) + \phi(|x|^\alpha) \quad \text{for every } x \in K.$$ \hspace{1cm} (2.1)

We say that α is the order of the turning point c and denote it by $\text{ord}_f(c)$. We say that f is a multimodal map if the next three conditions hold: (i) $f(\partial I) \subset \partial I$; (ii) f has a finite number of turning points that are all non-flat; and (iii) $\# \text{Fix}(f^n) < \infty$ for all $n \in \mathbb{N}$. A unimodal map $f : I \rightarrow I$ is a non-flat multimodal map with a unique turning point $c \in I$.

The non-critical backward orbit $O^-_{nc}(p)$ of p is the set of all points q such that there is $n = n(q) \geq 0$ with the property that $f^n(q) = p$ and $(f^n)'(q) \neq 0$. The non-critical alpha limit set $\alpha_{nc}(p)$ of p is the set of all accumulation points of $O^-_{nc}(p)$. A periodic point p with period $n \in \mathbb{N}$ is a repeller if $|Df^n(p)| > 1$. Let us denote by $\text{PR}(f)$ the set of all repeller periodic points of f. Let $O^-_{nc}(\text{PR}(f))$ be the union $\bigcup_{p \in \text{PR}(f)} O^-_{nc}(p)$ of the non-critical backward orbits $O^-_{nc}(p)$ for all repeller-periodic points of $p \in \text{PR}(f)$. Let $\alpha_{nc}(\text{PR}(f))$ be the union $\bigcup_{p \in \text{PR}(f)} \alpha_{nc}(p)$ of the non-critical alpha limit sets $\alpha_{nc}(p)$ for all repeller periodic points of $p \in \text{PR}(f)$.

A set $A \subset J$ is said to be forward invariant if $f(A) \subset A$. The basin $B(A)$ of a forward invariant set A is the set of all points $x \in A$ such that its omega limit set $\omega(x)$ is contained in A. An invariant compact set $A \subset J$ is called a (minimal) attractor, in Milnor’s sense [19, 20], if the Lebesgue measure of its basin is positive and there is no forward invariant compact set A' strictly contained in A such that $B(A')$ has non-zero measure. The attractors of a C^r non-flat multimodal map are of one of the following three types: (i) a periodic attractor; (ii) a minimal set with zero Lebesgue measure; or (iii) a cycle of intervals such that the omega limit set of almost every point in the cycle is the whole cycle (see [25]). According to van Strien and Vargas [25], if $f : I \rightarrow I$ is a C^r non-flat multimodal map, then there is a finite set of attractors $A_1, \ldots , A_t \subset I$ such that the union of their basins has full Lebesgue measure in I.

An open interval $J(c)$ containing a critical point c is a renormalization interval of a multimodal (respectively, unimodal) map f, if there is $n = n(J(c)) \geq 1$ such that $f^n(J(c))$ is also a multimodal (respectively, unimodal) map. Hence, the forward orbit of $J(c)$ is a positive invariant set. A multimodal map f is not renormalizable inside a renormalization interval $J(c)$, if there is not a renormalization interval strictly contained in J. A multimodal map f is infinitely renormalizable around a critical point c if there is an infinite sequence of renormalization intervals $J_1(c), J_2(c), \ldots$ such that $J_{n+1}(c)$ is strictly contained in $J_n(c)$ and
Definition 2.1 (Expanding and nearby expanding points). A point \(p \in I \) is called nearby expanding if there are

1. a sequence of points \(p_n \) converging to \(p \),
2. a sequence of open intervals \(V_n \) containing \(p_n \),
3. a sequence of positive integers \(k_n \) tending to infinity, and
4. \(\delta = \delta(p) > 0 \), with the following properties:

 i. \(f^{k_n} \big| V_n \) is a diffeomorphism and
 ii. \(f^{k_n} (V_n) = B_\delta(f^{k_n}(p_n)) \).

Furthermore, a point \(p \in I \) is called expanding if \(p \in I \) is a nearby expanding point with \(p_n = p \) for every \(n \in \mathbb{N} \).

The nearby expanding set \(\text{NE}(f) \) is the set of all nearby expanding points of \(f \) and the expanding set \(E(f) \) is the set of all expanding points of \(f \).

Lemma 2.2 (Fatness of \(E(f) \) and \(\text{NE}(f) \)). Let \(f \) be \(C^r \) a multimodal map with \(r \geq 3 \) and no periodic attractors or neutral periodic points. Then the following conditions are satisfied.

1. \(E(f) \supset O_{nc}(\text{PR}(f)) \) and \(\text{NE}(f) \supset \alpha_{nc}(\text{PR}(f)) \);
2. if \(f \) is infinitely renormalizable around a critical point \(c \), then there is a renormalization interval \(J(c) \) such that \(E(f) \) and \(\text{NE}(f) \) are dense in \(B(J(c)) \);
3. if \(f \) is not renormalizable inside a renormalizable interval \(J \), then \(E(f) \) is dense in \(B(J) \) and \(\text{NE}(f) \) contains \(B(J) \).

If \(f : I \to I \) is a unimodal map, then for every renormalization interval \(J \), \(\partial B(J) \) is uniformly expanding, \(\partial I \subset \partial B(J) \) and \(B(J) \) is an open set with full Lebesgue measure. Hence, by Lemma 2.2, if \(f \) is a unimodal map whose attractor is a cycle of intervals, then \(E(f) \) is dense in \(I \) and \(\text{NE}(f) = I \). Furthermore, if \(f \) is a unimodal map that is infinitely renormalizable, then \(E(f) \) and \(\text{NE}(f) \) are dense in \(I \).

Proof. Let \(f \) be infinitely renormalizable around a critical point \(c \). By Lemma A.5, there is a renormalization interval \(J(c) \) such that \(O_{nc}(\text{PR}(f)) \) is a dense set in \(J(c) \). Since \(E(f) \supset O_{nc}(\text{PR}(f)) \), we obtain that \(E(f) \) and \(\text{NE}(f) \) are dense in \(J(c) \).

Let \(f \) be not renormalizable inside a renormalizable interval \(J \). By Lemma A.5, \(\alpha_{nc}(\text{PR}(f)) \) contains \(J \). Hence, \(E(f) \) is dense in \(J \) and \(\text{NE}(f) \) contains \(J \).

Definition 2.3 (Puncture set \(P(J) \)). Let \(C_P(I) \) be the set of all critical points \(c \) whose non-critical alpha limit sets \(\alpha_{nc}(c) \) do not intersect the interior of \(I \). The puncture set \(P(I) \) of \(I \) is \(P(I) = \bigcup_{c \in C_P(I)} \partial O_{nc}(c) \). Let \(J \) be a renormalization interval and \(n \) the smallest integer such that \(F = f^n \big| J \) is a renormalization of \(f \). Let \(C_P(J) \) be the set of all critical points \(c \) whose non-critical alpha limit sets \(\alpha_{nc}(c) \) with respect to \(F \big| J \) do not intersect the interior of \(J \). The puncture set \(P(J) \) of \(J \) is \(P(J) = \bigcup_{c \in C_P(J)} \partial O_{nc}(c) \).

Hence, the puncture set \(P \) is either empty or a discrete set. Furthermore, we observe that the puncture set is not located in the central part of the dynamics, that is, (i) if \(f \) is infinitely renormalizable, then there is a renormalization interval \(J(c) \) such that \(P \cap J(c) = \emptyset \) and (ii) if the Milnor’s attractor \(A \) of \(f \) is a cycle of intervals, then \(P \cap A = \emptyset \), because \(\alpha_{nc}(c) \) is dense in \(A \) for every critical point \(c \) in the interior of \(A \).
Given a renormalization interval J, let $I(J)$ be the set of all points $x \in I$ whose forward orbit intersects J. Let $D(J)$ be the set of all connected components G of $I(J)$, that is,

$$I(J) = \bigcup_{G \in D(J)} G.$$

The open intervals $G \in D(J)$ are called the gaps of $I(J)$. We note that the boundary $\partial I(J)$ of $I(J)$ is totally disconnected. For every connected component $G \in D(J)$, let $m = m(G)$ be the smallest integer such that $f^m(G) \subset J$. If $m = 0$, then the puncture set $G_P \subset G$ of G is $G_P = P(J)$, and if $m > 0$, then the puncture set $G_P \subset G$ is the union of all points $x \in G$ such that (i) $(f^m)'(x) = 0$ or (ii) $(f^m)'(x) \in P(J)$. We observe that $G_P \cap G$ is either a discrete set or empty. The punctured basin of attraction $\mathcal{B}_P(J)$ of J is the union $\bigcup_{G \in D(J)} G \setminus G_P$. A renormalization domain $J = \bigcup_{c \in CR} J(c)$ of a multimodal map f is the union of renormalization intervals $J(c)$ for a given subset $CR \subset C_f$. Set $\mathcal{B}_P(J) = \bigcup_{c \in CR} \mathcal{B}_P(J(c))$. We observe that $\mathcal{B}_P(J) = \mathcal{B}(J)$.

Definition 2.4 (C^1 at a point). We say that a map $h : I \to I'$ is C^1 at a point $p \in I$, if

$$\lim_{x,y \to p, x \neq y} \frac{h(x) - h(y)}{x - y} = h'(p) \neq 0.$$

We observe that h is C^1 at every point belonging to an interval $K \subset I$ if, and only if, f is a C^1 local diffeomorphism in that interval K.

We say that a topological conjugacy $h : I \to L$ between $f : I \to I$ and $g : I' \to I'$ preserves the order of the critical points, if $\text{ord}_f(c) = \text{ord}_g(h(c))$ for every critical point $c \in C_f$.

Theorem 2.5 (Explosion of smoothness). Let f and g be C^r multimodal maps with $r \geq 3$ and no periodic attractors or neutral periodic points. Let h be a topological conjugacy between f and g preserving the order of the critical points. If h is C^1 at a point $p \in \text{NE}(f)$, then one of the two following conditions holds.

1. h is a C^r diffeomorphism in $I \setminus P(I)$; or
2. there is a unique maximal renormalization domain J such that h is a C^r diffeomorphism in $J \setminus P(J)$. Furthermore, we have the following properties.
 a. h is a C^r diffeomorphism in the punctured basin of attraction $\mathcal{B}_P(J)$;
 b. h is not C^r at any open interval contained in $I \setminus \mathcal{B}(J)$;
 c. h is not C^1 at any point in $E(f) \cap \partial \mathcal{B}(J)$.

We observe that Theorem 2.5 still holds if we replace the hypothesis of h being C^1 at a point $p \in E(f)$ by h being C^r in an open set. Dobbs [2] proved that if (i) a multimodal map f has an absolutely continuous invariant measure with a positive Lyapunov exponent and (ii) the conjugacy h between f and another multimodal map g is absolutely continuous, then h is C^r in an open set. Hence, Theorem 2.5 applies to this case.

The proof of Theorem 2.5 is given at the end of Section 6.

Corollary 2.6 (Full measure explosion of smoothness for unimodal maps). Let f and g be C^r unimodal maps with $r \geq 3$ and no periodic attractors or neutral periodic points. Let h be a topological conjugacy between f and g preserving the order of the critical points. If h is C^1 at a point $p \in \text{NE}(f)$, then one of the two following conditions holds.

1. h is a C^r diffeomorphism in the full interval I; or
(2) there is a unique maximal renormalization interval \(J \subseteq I \) such that we have the following properties.
(a) \(h \) is a \(C^r \) diffeomorphism in the basin \(B(J) \), and
(b) \(h \) is not \(C^1 \) at any point in \(\partial B(J) \).

We observe that if \(f : I \to I \) is a unimodal map, then (i) \(\partial B(J) \) is uniformly expanding, (ii) \(\partial I \subset \partial B(J) \) and (iii) \(B(J) \) is an open set with full Lebesgue measure in \(I \). By Corollary 2.6, the map \(h \) is \(C^1 \) at a point \(p \in \partial I \) if, and only if, \(h \) is a \(C^r \) diffeomorphism in \(I \).

3. Zooming pairs

In Theorem 5.6 and in its two corollaries, we will prove that the hypothesis that \(h \) is \(C^1 \) at a point \(p \) can be weakened to \(h \) being (u.a.a.) uniformly asymptotically affine at \(p \). We will define the zooming pairs that we will use to show that if \(h \) is u.a.a. at a point, then \(h \) and \(h^{-1} \) are \(C^r \) in small open sets.

Let \(h : I \to I' \) be a homeomorphism. For every \((x, y, z)\) of points \(x, y, z \in I \), such that \(x < y < z \), we define the logarithmic ratio distortion \(lrd(y, z) \) with respect to a sequence \(x, y \)\(\in \mathbb{R} \times \mathbb{R} \) such that \(y < z \) for all such \(p \in C \) are asymptotically affine for all \(\theta \) (3.4).

Definition 3.1 (u.a.a.). Let \(h : I \to I' \) be a homeomorphism. The map \(h \) is uniformly asymptotically affine (u.a.a.) at a point \(p \) if, for every \(C > 1 \), there is a continuous function \(\epsilon_C : \mathbb{R}_0^+ \to \mathbb{R}_0^+ \) with \(\epsilon_C(0) = 0 \), such that
\[
\operatorname{lrd}_h(x, y, z) \leq \epsilon_C(|x - p|) \tag{3.1}
\]
for all \(x < y < z \) with \(C^{-1} < |z - y|/|y - x| < C \).

Lemma 3.2 (\(C^1 \) implies u.a.a.). Let \(h : I \to I' \) be a homeomorphism. If \(h \) is \(C^1 \) at a point \(p \in I \), then \(h \) is u.a.a. at \(p \).

Proof. If \(h \) is \(C^1 \) at \(p \), then there is a sequence \(\theta_m \) converging to 0, when \(m \) tends to \(\infty \), such that
\[
\left| \log \frac{|h(y) - h(x)|}{|y - x|} - h'(p) \right| \leq O \left(\frac{1}{m} \right) \tag{3.2}
\]
for all \(x, y \in B_{\theta_m}(p) \). Hence, for all \(x, y, z \in B_{\theta_m}(p) \), we obtain
\[
\left| \log \frac{|h(z) - h(y)|}{|y - x|} - h'(p) \right| \leq O \left(\frac{1}{m} \right), \tag{3.3}
\]
and so \(h \) is u.a.a. at \(p \).

Definition 3.3 (\(\alpha \)-bounded distortion). We say that a \(C^r \) multimodal map \(f \) has \(\alpha \)-bounded distortion with respect to a sequence \(V_1, V_2, \ldots \) of intervals and a sequence of integers \(k_n \) tending to \(\infty \), if there is \(C \geq 1 \) such that
\[
\operatorname{lrd}_{f^{k_n}}(x, y, z) \leq C|f^{k_n}(z) - f^{k_n}(x)|^\alpha \tag{3.4}
\]
for all \(x, y, z \in V_n \), with \(x < y < z \), and all \(n \geq 1 \).

Definition 3.4 (Zooming pair \((p, V)\)). Let \(f : I \to I \) and \(g : I' \to I' \) be \(C^r \) maps, with \(r \geq 2 \), and \(h : I \to I' \) a topological conjugacy between \(f \) and \(g \). An \(\alpha \)-zooming pair \((p, V)\)
consists of a point \(p \in I \) and an open interval \(V \subset I \) such that (1) there is a sequence \(V_1, V_2, \ldots \) of intervals in \(I \) and (2) a sequence of integers \(k_n \) tending to \(\infty \), with the following properties:

1. \(\sup_{x \in V_n} |x - p| \to 0 \) when \(n \to \infty \);
2. \(f^{k_n}|V_n \) and \(g^{k_n}|h(V_n) \) are diffeomorphisms onto the intervals \(V \) and \(h(V) \), respectively;
3. \(f \) has \(\alpha \)-bounded distortion with respect to the sequences \(V_1, V_2, \ldots \) and \(k_1, k_2, \ldots \);
4. \(g \) has \(\alpha \)-bounded distortion with respect to the sequences \(h(V_1), h(V_2), \ldots \) and \(k_1, k_2, \ldots \).

An \(\alpha \)-central zooming pair \((p, V)\) is an \(\alpha \)-zooming pair \((p, V)\) with the property that \(p \in V_n \) for some \(n \in \mathbb{N} \).

Proposition 3.5 (Explosion of smoothness from \(p \) to \(V \)). Let \(f \) and \(g \) be \(C^r \) maps, with \(r \geq 3 \), topologically conjugated by a homeomorphism \(h \). Assume that \((p, V)\) is an \(\alpha \)-zooming pair for some \(0 < \alpha < 1 \). If \(h \) is u.a.a. at \(p \), then \(h|V \) is a \(C^{1+\alpha} \) diffeomorphism onto its image. Furthermore, if \((p, V)\) is an \(\alpha \)-central zooming pair, then \(h|V_0 \) is a \(C^{1+\alpha} \) diffeomorphism onto its image, for some open interval \(V_0 \) containing \(p \).

Proof. Given \(a, b, c \in V \), with \(a < b < c \), let \(a_n, b_n, c_n \in V_n \) be such that \(f^{k_n}(a_n) = a \), \(f^{k_n}(b_n) = b \) and \(f^{k_n}(c_n) = c \). Since \(f \) has \(\alpha \)-uniformly bounded distortion,

\[
|\text{lrd}_{f^{k_n}}(a_n, b_n, c_n)| \leq O(|c - a|^{\alpha}).
\]

(3.5)

Hence, there is \(C > 1 \) such that \(C^{-1} < |c_n - b_n|/|b_n - a_n| < C \) for every \(n \geq 1 \). Since \(g \) has \(\alpha \)-uniformly bounded distortion, we obtain

\[
|\text{lrd}_{g^{k_n}}(h(a_n), h(b_n), h(c_n))| \leq O(|h(c) - h(a)|^{\alpha}).
\]

(3.6)

By the definition of zooming, there is a sequence \(\sigma_n \to 0 \) such that, for all \(x \in V_n \),

\[
|x - p| < \sigma_n.
\]

(3.7)

Since \(h \) is (u.a.a.) at \(p \), by (3.1), we have

\[
|\text{lrd}_h(a_n, b_n, c_n)| \leq c_n(\sigma_n).
\]

Hence, by (3.7), there is \(n \) large enough such that

\[
|\text{lrd}_h(a_n, b_n, c_n)| \leq |c - a|.
\]

(3.8)

Combining (3.5), (3.6) and (3.8), we have

\[
|\text{lrd}_h(a, b, c)| \leq |\text{lrd}_{g^{k_n}}(h(a_n), h(b_n), h(c_n))| + |\text{lrd}_h(a_n, b_n, c_n)| + |\text{lrd}_{f^{k_n}}(a_n, b_n, c_n)| \leq O(|c - a|^{\alpha} + |h(c) - h(a)|^{\alpha}).
\]

(3.9)

Therefore, the homeomorphism \(h \) is quasi-symmetric in \(V \). Hence, there is \(\gamma > 0 \), such that \(h|V \) is \(\gamma \)-Hölder continuous. Thus, we obtain that (3.9) is bounded by \(C_1|c - a|^{\alpha \gamma} \) for some \(C_1 > 1 \). Hence, by Pinto and Sullivan [23], we obtain that \(h|V \) and \(h^{-1}|h(V) \) are \(C^{1+\alpha} \) maps. Therefore, \(|h(c) - h(a)| \leq O(|c - a|)\) and, so (3.9) is also bounded by \(C_2|c - a|^{\alpha} \) for some \(C_2 > 1 \). Hence, again by Pinto and Sullivan [23], we obtain that \(h|V \) and \(h^{-1}|h(V) \) are \(C^{1+\alpha} \) maps.

Furthermore, if \((p, V)\) is a central zooming pair, then there is an open interval \(V_0 \) containing \(p \) and an integer \(n \) such that \(f^n|V_0 \) is a \(C^r \) diffeomorphism and \(f^n(V_0) \subset V \). Hence, \(h|V_0 = (g^n|h(V_0))^{-1} \circ h \circ f^n \) is a \(C^{1+\alpha} \) diffeomorphism.

Lemma 3.6 (Building up smoothness from \(C^{1+\alpha} \) to \(C^r \)). Let \(f \) and \(g \) be \(C^r \) maps, with \(r \geq 3 \), topologically conjugated by a homeomorphism \(h \). If \(h|V \) is a \(C^{1+\alpha} \) diffeomorphism in some open set \(V \), then \(h|W \) is a \(C^r \) diffeomorphism for some open set \(W \subset V \).
Proof. By Lemma A.5, there is a repeller \(p \in I \) and integers \(m \) and \(l \) such that \(p \in \text{int}(f^m(V)) \) and \(f^l(p) = p \). Since \(p \) is a repeller there is an open interval \(W \subset \text{int}(f^n(V)) \) with \(p \in W \) such that \(|(f^n)'(x)| > \lambda > 1 \) for all \(x \in W \). Let \(W_0, W_1, \ldots \) be a sequence of open intervals contained in \(W \) such that (i) \(f^l(W_{n+1}) = W_n \), (ii) \(W_{n+1} \subset W_n \) and (iii) \(|W_n| \to 0 \) for every \(n \geq 0 \). Let \(i_n : W_n \to (0,1) \) be the affine map with the property that \(i_n(W_n) = (0,1) \) and let \(f_n = i_0 \circ f^{nl} \circ i_n^{-1} \). By Pinto, Rand and Ferreira [22, Lemma E13], there is \(b > 0 \) such that \(\| \ln d_{\gamma}(n) \|_{C^{\gamma}} \leq b \) for every \(n \geq 0 \). Hence, by Pinto, Rand and Ferreira [22, Lemma E15], there is a small \(\epsilon > 0 \) and a subsequence \(_{m}k_n \) converging to a \(C^{\gamma} \) diffeomorphism \(h \) in the \(C^{\gamma-\epsilon} \) norm.

Let \(W'_n = h(W_n) \) and let \(j_n : W'_n \to (0,1) \) be the affine map with the property that \(j_n(W'_n) = (0,1) \) for every \(n \geq 1 \). Let \(g_n = j_0 \circ g^{nl} \circ j_n^{-1} \). By Pinto, Rand and Ferreira [22, Lemma E13], there is \(b > 0 \) such that \(\| \ln d_{\gamma}(n) \|_{C^{\gamma}} \leq b \) for all \(n \geq 1 \). Hence, by Pinto, Rand and Ferreira [22, Lemma E15], there is a small \(\epsilon > 0 \) and a subsequence \(m_n \) of the sequence \(k_n \) such that \(g_{m_n} \) converges to a \(C^{\gamma} \) diffeomorphism \(g \) in the \(C^{\gamma-\epsilon} \) norm.

Let \(h_n = j_n \circ h \circ j_n^{-1} \). Since \(h \) is a \(C^{\gamma+\alpha} \) diffeomorphism, there is a sequence \(\lambda_n \) tending to 1 such that
\[
\frac{|h_n(z) - h_n(y)|}{|y - x|} \leq \lambda_n
\]
for all \(x, y, z \in (0,1) \). Hence, \(h = \lim h_n \) is an affine map.

We note that \(h|W_0 = j_0^{-1} \circ g_n \circ h_n \circ f_n^{-1} \circ i_0 \) for every \(n \geq 1 \). Hence,
\[
h|W_0 = \lim j_0^{-1} \circ g_{m_n} \circ h_{m_n} \circ f_{m_n}^{-1} \circ i_0 = j_0^{-1} \circ g \circ h \circ f^{-1} \circ i_0.
\]
Since, \(g, h \) and \(f \) are \(C^\gamma \) diffeomorphisms, we obtain that \(h|W_0 \) is a \(C^\gamma \) diffeomorphism. \(\square \)

4. Nearby expanding set

We will prove that for every nearby expanding point \(p \in \text{NE}(f) \) there is an open set \(V \) such that \((p, V) \) is a 1-zooming pair.

Given any \(K \subset \mathbb{R} \) and \(r > 0 \), set \(B_r(K) = \bigcup_{p \in K} B_r(p) \), where \(B_r(p) = (p-r, p+r) \).

Recall that the Schwarzian derivative of \(f \) in the complement of the critical points is defined by
\[
Sf := \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)} \right)^2.
\]

Proposition 4.1 (Nearby expanding point originates a zooming pair). Let \(f \) and \(g \) be \(C^3 \) multimodal maps topologically conjugated by \(h \), with no periodic attractors and no neutral periodic points. For every \(x \in \text{NE}(f) \), there is an interval \(V \) such that \((x, V) \) is a 1-zooming pair. Furthermore, for every \(x \in E(f) \), there is an interval \(V \) such that \((x, V) \) is a central 1-zooming pair.

Proof. By van Strien and Vargas [25], there is \(\gamma > 0 \) such that, for every point \(x \in I \), with
\[
f^n(x) \in \bigcup_{c \in C(f)} B_\gamma(c) \quad \text{and} \quad g^n(h(x)) \in \bigcup_{c \in C(f)} h(B_\gamma(c)),
\]
we have \(Sf^{n+1}(x) < 0 \) and \(Sg^{n+1}(h(x)) < 0 \).

By Lemma A.4, one finds \(\gamma_0 < \gamma_1 < \gamma_2 < \gamma_3 < \gamma_4 \) and nice sets \(J_0, J_1, J_2 \) such that
\[
B_{\gamma_0}(C_f) \subset J_0 \subset B_{\gamma_1}(C_f) \subset B_{\gamma_2}(C_f) \subset J_1 \subset B_{\gamma_3}(C_f) \subset B_{\gamma_4}(C_f) \subset J_2 \subset B_{\gamma}(C_f).
\]

Let \(J_i = \bigcup_{c \in C_i} J_i(c), c \in J_i(c) = (a_i(c), b_i(c)) \) for every \(c \in C_f \) and \(i = 0, 1, 2 \).
Given $x \in \text{NE}(f)$, for some small $\delta > 0$, take a sequence of points $x_j \to x$ and intervals $W_j^0 \ni x_j$ such that $f^{m_j}(W_j^0)$ is a diffeomorphism and $f^{m_j}(W_j^0) = B_{2\delta}(f^{m_j}(x_j))$ for $m_j \to \infty$. Let $W_j \subset W_j^0$ be the interval such that $f^{m_j}(W_j) = B_\delta(x_j)$ and let L_j^0, R_j^0 be the connected components of $W_j^0 \setminus W_j$.

For every $j \geq 1$, define n_j as follows: if $f^i(x_j) \notin J_1$ for every $0 \leq i < m_j$, then take $n_j = -1$; otherwise, take $n_j < m_j$ as the biggest integer such that $f^{n_j}(x_j) \in J_1$.

Our goal is to obtain a sequence $j_i \to +\infty$ and intervals $V_{j_i} \subset W_j^0$ containing x_{j_i}, with the following properties: $\inf_j |f^{m_j}(V_{j_i})| > 0$ and the ratio distortion of $f^{m_j}|V_{j_i}$ is uniformly bounded. If $n_j = -1$, then take $V_j = W_j$. In this case, $|f^{m_j}(V_j)| = 2\delta$ and the boundedness of the ratio distortion follows from Theorem A.1, because $J_1 \supset B_{2\gamma_2}(C_f)$. Thus, we assume from now on that $n_j \neq -1$.

If $\lim \inf_j m_j - n_j < \infty$, then let V_j be the maximal interval such that $x_j \in V_j \subset W_j$ and $f^{n_j}(V_j) \subset J_2$. Taking a subsequence, we assume that there is $K > 0$ such that $m_j - n_j \leq K$ for every j.

Since $Df^{m_j} \neq 0$ in W_j and $f^{n_j}(W_j) \cap J_1 \neq \emptyset$ and by maximality of V_j, if $W_j \neq V_j$, then

$$f^{m_j}(V_j) \supset (c_j - \gamma_4, c_j - \gamma_3) \quad \text{or} \quad f^{m_j}(V_j) \supset (c_j + \gamma_3, c_j + \gamma_4)$$

for some $c_j \in C_f$. In particular, $|f^{n_j}(V_j)| \geq \gamma_4 - \gamma_3$. Thus, there is $\varepsilon > 0$ such that, for every j, $|f^{m_j}(V_j)| > \varepsilon > 0$, $|f^{m_j}(V_j)| = |f^{m_j}(W_j)| = 2\delta$ or $f^{m_j}(V_j)$ is a finite iteration of an interval with length greater than $\gamma_4 - \gamma_3$. Furthermore, since

$$|f^{m_j}(L_j)|/|f^{m_j}(W_j)| = |f^{ni}(R_j)|/|f^{m_j}(W_j)| = \frac{1}{2} \quad \text{for every } j,$$

we obtain

$$\frac{|f^{n_j+1}(L_j)|}{|f^{n_j+1}(V_j)|} \geq \frac{|f^{n_j+1}(L_j)|}{|f^{n_j+1}(W_j)|}$$

and

$$\frac{|f^{n_j+1}(R_j)|}{|f^{n_j+1}(V_j)|} \geq \frac{|f^{n_j+1}(R_j)|}{|f^{n_j+1}(W_j)|}$$

are bounded away from zero. Since $Sf^{n_j+1}(z) < 0$ for every

$$z \in f^{-n_j}(B_{\gamma_5}(C_f)) \supset f^{-n_j}(B_{\gamma_5}(C_f)) \supset f^{-n_j}(J_2) \supset V_j,$$

then the ratio distortion of $f^{n_j+1}(V_j)$ is uniformly bounded ($V_j \subset W_j$). Thus, the ratio distortion of $f^{m_j}(V_j)$ is also uniformly bounded and $|f^{m_j}(V_j)| > \varepsilon > 0$ for every j.

Let us consider the case $\lim \inf_j m_j - n_j = \infty$. Taking a subsequence, if necessary, we assume $\lim_j m_j - n_j = \infty$.

Claim 4.2. $f^{n_j}(W_j^0) \subset J_2$ for every $j \in \mathbb{N}$.

Proof of the claim. Let V_j^0 be the maximal interval such that

$$x_j \in V_j^0 \subset W_j^0 \quad \text{and} \quad f^{n_j}(V_j^0) \subset J_2.$$

We will show $W_j^0 = V_j^0$.

By the maximality of V_j^0, if $W_j^0 \neq V_j^0$, then there is $p_{2,j} \in \partial J_2 \cap \partial(f^{n_j}(V_j^0))$. On the other hand, since $f^{n_j}(x_j) \in J_1$, there is $p_{1,j} \in \partial J_1$ such that

$$f^{n_j}(V_j^0) \supset (p_{1,j}, p_{2,j}) \quad \text{or} \quad f^{n_j}(V_j^0) \supset (p_{2,j}, p_{1,j}).$$

If $p_{1,j} < p_{2,j}$, then take $T_j = (p_{1,j}, p_{2,j})$; otherwise, take $T_j = (p_{2,j}, p_{1,j})$. Since J_1 and J_2 are nice sets with $J_1 \subset J_2$, it follows that $f^k(\partial T_j) \cap J_1 = \emptyset$ for every $k \geq 0$. Hence, if $\ell_j \geq 0$ is the smaller integer such that $f^{\ell_j}(T_j) \cap J_1 \neq \emptyset$, then $f^{\ell_j}(T_j) \cap J_1(c_j) \neq \emptyset$ for some $c_j \in C_f$.

Furthermore, \(f^{\ell_i}(T_j) \supset J_i(c_j) \). However, since \(Df^{m_j} \neq 0 \) on \(W_j^0 \), we obtain \(\ell_j \geq m_j - n_j \). Thus, it follows from Theorem A.1 that

\[
4\delta = |f^{m_j}(W_j^0)| \geq |f^{m_j}(V_j^0)| \geq |f^{m_j-n_j}(T_j)| \geq C\lambda^{m_j-n_j}|T_j| \\
\geq C\lambda^{m_j-n_j}(|\gamma_4 - \gamma_3|) \to \infty \text{ (for a subsequence)}.
\]

Hence, we get a contradiction. \(\square \)

By Theorem A.1, if \(f^i(W_j^0) \cap J_0 = \emptyset \) for every \(n_j < i < m_j \), then \(f^{m_j-(n_j+1)} \) has uniformly bounded distortion on \(f^{n_j+1}(W_j^0) \) not dependent upon \(j \). In particular,

\[
|f^{n_j+1}(L_j)|/|f^{n_j+1}(W_j)| \text{ and } |f^{n_j+1}(R_j)|/|f^{n_j+1}(W_j)|
\]

are bounded away from zero. Since \(f^{m_j}(W_j^0) \subset B_j(C_f) \) and \(Sf^{n_j+1}(z) < 0 \) for every \(z \in W_j^0 \), the ratio distortion of \(f^{n_j+1}|W_j \) is uniformly bounded. Thus, taking \(V_j = W_j \), the ratio distortion of \(f^{m_j}|V_j \) is uniformly bounded and \(|f^{m_j}(V_j)| = 2\delta \) for every \(j \).

From now on, we will assume not only that \(m_j - n_j \to \infty \), but also that \(f^i(W_j^0) \cap J_0 \neq \emptyset \) for some \(n_j < i < m_j \).

Let \(k_j \) be the smallest integer \(\ell > n_j \) such that \(f^\ell(W_j^0) \cap J_0 \neq \emptyset \), that is,

\[
k_j = \min\{\ell > n_j : f^\ell(W_j^0) \cap J_0 \neq \emptyset\}.
\]

Claim 4.3. There is \(K > 0 \) such that \(m_j - k_j \leq K \) for every \(j \in \mathbb{N} \).

Proof of the claim. Since \(f^\ell(x_j) \notin J_1 \) for all \(n_j < j < m_j \), there is a connected component \(T_j \) of \(J_1 \setminus \bar{J}_0 \) such that \(T_j \subset f^{k_j}(W_j^0) \). Since \(J_0 \) and \(J_1 \) are nice sets with \(J_0 \subset J_1 \), it follows that

\[
f^i(\partial T_j) \cap J_0 = \emptyset
\]

for all \(i \geq 0 \). Let \(\ell_j \geq 0 \) be the smaller integer such that

\[
f^{\ell_j}(T_j) \cap J_0 \neq \emptyset,
\]

that \(f^{\ell_j}(T_j) \cap J_0(c_j) \neq \emptyset \), for some \(c_j \in C_f \). Thus, \(f^{\ell_j}(T_j) \supset J_0(c_j) \). Since \(f^{m_j}|W_j^0 \) is a diffeomorphism, we obtain \(\ell_j \geq m_j - k_j \). Thus, from Theorem A.1, it follows that

\[
4\delta = |f^{m_j}(W_j^0)| \geq |f^{m_j-n_j}(T_j)| \geq C\lambda^{m_j-n_j} |T_j| \geq C\lambda^{m_j-n_j} (|\gamma_2 - \gamma_1|)
\]

for every \(j \in \mathbb{N} \). Since \(\lambda > 1 \), we necessarily have \(m_j - k_j \) bounded. \(\square \)

Using Theorem A.1, we conclude that \(f^{k_j-(n_j+1)} \) has uniformly bounded distortion on \(f^{n_j+1}(W_j^0) \) (not dependent upon \(j \)). Since \(0 \leq m_j - k_j \leq K \) and \(f^{m_j}|W_j^0 \) is a diffeomorphism, we obtain that \(f^{m_j-(n_j+1)} \) has uniformly bounded distortion on \(f^{n_j+1}(W_j^0) \) (also not dependent upon \(j \)). Thus,

\[
|f^{n_j+1}(L_j)|/|f^{n_j+1}(W_j)| \text{ and } |f^{n_j+1}(R_j)|/|f^{n_j+1}(W_j)|
\]

are bounded away from zero. Since \(Sf^{n_j+1}(z) < 0 \), the ratio distortion of \(f^{n_j+1}|W_j \) is uniformly bounded for all \(z \in W_j^0 \). Again, taking \(V_j = W_j \), the ratio distortion of \(f^{m_j}|V_j \) is uniformly bounded and \(|f^{m_j}(V_j)| = 2\delta \) for all \(j \).

Thus, replacing \(j \) by a subsequence, we get intervals \(V_j \subset W_j^0 \) containing \(x_j \) with the following properties: \(\inf_j |f^{m_j}(V_j)| > 0 \), the ratio distortion of \(f^{m_j}|V_j \) is uniformly bounded and the ratio distortion of \(g^{m_j}|h(V_j) \) is also uniformly bounded.

By compactness, taking a subsequence, there is an open interval \(V \) and a sequence of intervals \(x_j \in V_j \) such that \(f^j(V_j) = V \) for all \(j \). Thus, \((x, V)\) is a 1-zooming pair. Similarly, if \(x \in E(f) \), then there is an interval \(V \) such that \((x, V)\) is a central 1-zooming pair. \(\square \)
Lemma 4.4 (Explosion of smoothness at expanding points). Let f and g be C^3 multimodal maps topologically conjugated by h, with no periodic attractors and no neutral periodic points. Let the conjugacy h be C^3 at a point x. If $x \in \text{NE}(f)$, then there is an open interval V such that $h|V$ is C^r.

Proof. By Proposition 4.1, if $x \in \text{NE}(f)$, then there is an interval V such that (x, V) is a 1-zooming pair. Since h is C^3 at x, then by Lemma 3.2 we have that h is u.a.a. at x. Thus, it follows from Proposition 3.5 that $h|V$ is a $C^{3+\alpha}$ diffeomorphism. Hence, by Lemma 3.6, $h|W$ is a C^r diffeomorphism for some $W \subset V$.

5. Smooth conjugacy and renormalization intervals

In this section, we assume that f and g are C^r multimodal maps with $r \geq 3$ and no periodic attractors or neutral periodic points. Furthermore, we assume that h is a topological conjugacy between f and g preserving the order of the critical points. We define

$$s = \min_{\{c \in C_f\}} \{\text{ord}_f(c), r\}.$$

Definition 5.1 (Smooth conjugacy domain). For $s \leq t \leq r$, the t-smooth conjugacy interval V is an open set V such that $h|V$ is a C^t diffeomorphism. The set $C^t_f \subseteq C_f$ consists of all critical points c such that there is a t-smooth conjugacy open interval V containing $c \in V$. For every $c \in C^t_f$, the s-smooth conjugacy maximal interval $J^s(c)$ of c is the maximal open interval $J^s(c)$ containing c such that h is C^s in $J^s(c)$. The s-smooth conjugacy domain J^s is

$$J^s = \bigcup_{c \in C^t_f} J^s(c).$$

We say that a critical point $c \in C_f$ is s-recurrent if there is $n = n(c, s) \geq 1$ such that $J^s(c) \cap f^n J^s(c) \neq \emptyset$. Let $CR^s \subset C_f$ be the set of all s-recurrent critical points and let

$$J^s_R = \bigcup_{c \in CR^s} J^s(c).$$

Lemma 5.2 (Spreading smooth conjugacy intervals). Let h be a topological conjugacy between f and g and let $s \leq t \leq r$. Then we have the following properties.

1. if V is a t-smooth conjugacy interval, then $\text{int}(f(V))$ is a t-smooth conjugacy interval;
2. if V is a t-smooth conjugacy interval, then the connected components of $f^{-1}(V) \setminus (f^{-1}(V) \cap C_f)$ are t-smooth conjugacy intervals;
3. if V is an s-smooth conjugacy interval, then $f^{-1}(V)$ is an s-smooth conjugacy interval;
4. if $c \in C_f$ and, for some small open interval V containing c and some n such that $f^n(V) \subset J^s$, then $c \in C^s_f$ and
5. if $c \in C_f$ and, for some small open interval $V \subset C^r$ and some n, $c \in \text{int}(f^n(V))$, then $c \in C^r_f$.

Proof. Since f is a multimodal map, the interior of $f(V)$ is an open interval and for every $x \in f(V)$ there is an open interval W such that $x \in f(W)$ and $f|W$ is a C^r diffeomorphism. Hence, $h|f(W) = g \circ h \circ (f|W)^{-1}$ is a C^r diffeomorphism.

For every $x \in f^{-1}(V) \setminus (f^{-1}(V) \cap C_f)$, there is an open interval W such that $x \in W$ and $f|W$ is a C^r diffeomorphism. Hence, $h|W = (g|h(W))^{-1} \circ h \circ f$ is a C^r diffeomorphism.
Let \(c \in f^{-1}(V) \cap C_f \). Recall that in a small open neighbourhood \(V \) of \(h(c) \), for every \(h(c) + x \in V \),
\[
g(h(c) + x) = g(h(c)) + \psi(|x|^\alpha).
\]
For every \(y \in g(V) \), we define
\[
g_-(y) = h(c) - [\psi^{-1}(y - g(h(c)))]^{1/\alpha}
\]
and
\[
g_+(y) = h(c) + [\psi^{-1}(y - g(h(c)))]^{1/\alpha}.
\]
Hence,
\[
g^{-1}(y) = \{g_-(y), g_+(y)\}.
\]
Recall that in a small open neighbourhood \(W \) of \(c \), for every \(c + x \in W \),
\[
f(c + x) = f(c) + \phi(|x|^\alpha).
\]
Hence,
\[
h(c + x) = \begin{cases} g_- \circ h \circ f(c + x) = h(c) - [\psi^{-1}(-g(c') + h(f(c) + \phi(|x|^\alpha)))]^{1/\alpha}, & x \leq 0, \\ g_+ \circ h \circ f(c + x) = h(c) - [\psi^{-1}(-g(c') + h(f(c) + \phi(|x|^\alpha)))]^{1/\alpha}, & x \geq 0. \end{cases}
\]
The map \(\psi^{-1}(-g(h(c)) + h(f(c) + w)) \) is a \(C^r \) diffeomorphism with \(\psi^{-1}(-g(h(c)) + h(f(c))) = 0 \). Hence, by Taylor’s theorem, there is a constant \(\epsilon \) and a \(C^r \) diffeomorphism \(\theta \) such that
\[
\psi^{-1}(-g(h(c)) + h(f(c) + w)) = w(\epsilon + \theta(w)).
\]
Therefore,
\[
h(c + x) = h(c) + x(\epsilon + |x|^\alpha \theta(|x|^\alpha))^{1/\alpha}.
\]
Hence, \(h|W \) is a \(C^r \) diffeomorphism. \(\)

Following Martens [16], a union \(J = \bigcup J_i \) of pairwise disjoint open intervals \(J_1, J_2, \ldots \) is a nice set if the forward orbit of the boundaries \(\bigcup_{i=1}^j \partial J_i \) of \(J \) do not intersect \(J \). Denoting by \(p \) and \(q \) the points that form the boundary of an interval \(V \), the interval \(V \) is dynamically symmetric if either \(f(p) = f(q) \) or \(f(p) \) and \(f(q) \) form the boundary of \(f(V) \).

Lemma 5.3 (Nice \(J^* \)). If the topological conjugacy \(h \) is a \(C^s \) diffeomorphism in an open set \(V \), then the \(s \)-conjugacy maximal domain \(J^* \) is non-empty and there is \(n \geq 0 \) such that \(\text{int}(f^n(V)) \subset J^* \). Furthermore, the following conditions are satisfied:

1. if \(c \in C_f^* \) then the set \(J^*(c) \) is dynamically symmetric;
2. for all \(c_1, c_2 \in C_f^* \) the sets \(J^*(c_1) \) and \(J^*(c_2) \) are either disjoint or equal; and
3. the \(s \)-conjugacy maximal domain \(J^* \) is a nice set.

Proof. Let us assume that \(h \) is a \(C^s \) diffeomorphism in an open set \(V \). It follows from Lemma A.2 that there is an \(n \in \mathbb{N} \) and \(c \in C_f \) such that \(f^n|V \) is a diffeomorphism \(C^r \) and \(c \in \text{int}(f^n(V)) \). Hence, by Lemma 5.2(1), \(h \) is a \(C^s \) diffeomorphism in \(f^n(V) \). Therefore, \(J^*(c) \supset f^n(V) \) and so \(J^*(c) \) is a non-empty closed interval.

Let us denote \(J^* \) by \(J \). Let us denote by \(p \) and \(q \) the boundary points of \(J(c) \). Let us prove that the interval \(J(c) \) is dynamically symmetric, that is, either \(f(p) = f(q) \), or \(f(p) \) and \(f(q) \) form the boundary of \(f(J(c)) \). Let us suppose, in contradiction, that there is \(z \in \text{int} J(c) \) that is not a critical point such that \(f(z) = f(q) \) (or, similarly, \(f(z) = f(p) \)). Let \(V_z \) and \(V_q \) be small neighbourhoods of \(z \) and \(q \), respectively, such that \(f|V_z \) is a \(C^r \) diffeomorphism and
Let $G \cap J$ is a small open interval by Lemma 5.2, then $\partial G = J(1)$. Let us prove that the set J is nice. Let us suppose, in contradiction, that there is a point $p \in \partial J(c)$ and $n \geq 0$ such that $f^n(p) \in J$ and $f^m(p) \notin J$ for all $0 < m < n$. Hence, there is a small neighbourhood V of p such that $f^n(V) \subset J$. By Lemma 5.2(1) and (3), h is a C^s diffeomorphism in V, which is absurd.

The proof that for all $c_1, c_2 \in C'_f$ the sets $J^{s}(c_1)$ and $J^{s}(c_2)$ are either disjoint or equal follows from a similar argument to the one above.

Given a nice set J, let $I(J)$ be the set of all points $x \in I$ whose forward orbit intersects J. Let $D(J)$ be the set of all connected components G of $I(J)$, that is,

$$I(J) = \bigcup_{G \in D(J)} G.$$

The open intervals $G \in D(J)$ are called the gaps of $I(J)$. We note that the boundary $\partial I(J)$ of the basin $I(J)$ is totally disconnected.

Lemma 5.4 (The basin of attraction of J^s). Let $\emptyset \neq J^s \subset \text{int}(I)$. For every $G \in D(J^s)$ with $G \cap J^s = \emptyset$, there is $n = n(G) \geq 1$ such that the following properties hold.

1. $f^n|G$ is a diffeomorphism;
2. there is $c \in C^s_f$ such that $f^n(G) = J^s(c)$;
3. $f^j(G) \cap J^s = \emptyset$ for every $0 \leq j < n$.

Proof. For every $x \in I(J) \setminus J$, let $n(x) > 1$ be such that $f^n(x) \in J$ and $f^j(x) \notin J$ for every $0 \leq j < n$. Let $E = \{x, \ldots, f^{-1}(x)\}$. By Lemma 5.3, $E \cap C_f = \emptyset$ and so there is a small open set V such that $f^n|V$ is a C^r diffeomorphism and $f^n(V) \subset J$. Let us prove, by contradiction, that there is a small open interval $W \subset V$ containing x such that $n(y) = n(x)$ for every $y \in W$. If there is not a small open interval $W \subset V$ containing x such that $n(y) = n(x)$ for every $y \in W$, then there is a sequence of points $x_n \in V$ converging to x with $n(x_n) = j < n(x)$. Hence, $f^j(x) \notin \partial J$. Since J is nice, $f^{n-j}(f^j(x)) \cap J = \emptyset$, which is a contradiction. Let $V = (x, a)$ be the maximal open interval containing x such that $n(y) = n(x)$ for every $y \in V$. Let us prove, by contradiction, that $f^n(a) \in \partial J$. By the above argument, if $f^n(a) \in J$, then there is an open interval W_a such that $n(y) = n(a)$ for every $y \in W_a$ which is absurd by maximality of V. Hence, for every $x \in I(J) \setminus J$, there is a maximal open interval G such that $n(y) = n(x)$ for every $y \in G$, and $f^n(G) \subset \partial J$. Hence, $f^n|G$ is a C^r diffeomorphism and $f^n(G) = J(c)$ for some c.

Recall from Definition 5.1, the definition of the domain J^s_R.

Lemma 5.5 (J^s_R is a renormalization domain). Let $\emptyset \neq J^s \subset \text{int}(I)$. For every $c \in C^s_f$, there is $n(c)$ and $c' \in C^s_f$ with the following properties:

1. $f^n(c)(J^s(c)) \subset (J^s(c'))$;
2. $\partial f^n(c)(J^s(c)) \subset \partial J^s(c')$;
3. $f^i(J^s(c)) \cap J^s = \emptyset$ for every $1 \leq i < n(c)$;
4. J^s_R is a renormalization domain;
5. $\overline{B(J^s_R)} \subset I(J^s)$ and $\overline{B(J^s_R)} = I(J^s)$.

Proof. By Lemma 5.4, for every gap \(G \in D(J) \), there are \(n = n(G) \geq 1 \) and \(c(G) \in C_f \cap J \) such that \(f^n(G) = J(c(G)) \), \(f^n|G \) is a \(C^r \) diffeomorphism and \(f^n(G) \cap J = \emptyset \) for every \(0 \leq i < n \).

For every \(c \in C_f \), either (A) \(\text{int}(f(J(c))) \cap \partial I(J) = \emptyset \); or (B) \(\text{int}(f(J)) \cap \partial I(J) \neq \emptyset \).

Case (I). Since \(\text{int}(f(J(c))) \cap \partial I(J) = \emptyset \), there is an open interval \(K \), that is, \((i) \) an interval \(J(c') \) or \((ii) \) a gap \(G \), such that \(f(J(c)) \subset K \). In case (i), this lemma follows from noting that \(J \) is nice, and so \(\partial f(J(c)) \subset \partial J(c') \). In case (ii), there is \(n = n(G) \geq 1 \) such that \(f^{n+1}(J(c)) \subset J(c(G)) \) and \(f^{i+1}(J(c)) \cap J = \emptyset \) for every \(0 \leq i < n \). Furthermore, since \(J \) is nice, \(f^{n+1}(\partial J(c)) \subset \partial J(c(G)) \) which proves this lemma in case (ii).

Case (II). Let us suppose that there is a point \(z \in \partial I(J) \cap \text{int}(f(J(c))) \). Let \(V \) be a small neighbourhood contained in \(J(c) \) such that \(f|V \) is a \(C^r \) diffeomorphism and \(x \) is contained in the interior of \(f(V) \). Since \(\partial I(J) \) is a totally disconnected set, there are gaps \(G_y \) and \(G_y' \) with a boundary point \(y \in f(V) \). Let \(z \in V \) be such that \(f(z) = y \) and take a smaller neighbourhood \(V_0 \subset V \) of \(z \) such that \(f(V_0 \setminus \{z\}) \subset G_y \cup G_y' \). By Lemma 5.2, if there is

\[
w \in f^{n(G_y)+1}(V_0 \setminus \{z\}) \cap \partial J(c(G_y))\]

then there is an open interval \(W \subset f^{n(G_y)+1}(V_0 \setminus \{z\}) \) containing \(w \) such that \(h|W \) is a \(C^r \) diffeomorphism. Since \(w \in \partial J(c(G_y)) \), we obtain a contradiction. Hence, for some \(0 \leq i < n(G_y) \), there is a critical point \(c_y \in C_f \) such that \(c_y = f^i(y) \). Therefore, \(J(c(G_y)) = J(c(G_y')) \) and \(n(G_y) = n(G_y') \). Since the set of critical points is finite, \(\partial I(J) \cap \text{int}(f(J(c))) \) is also finite and for every \(w \in \partial I(J) \cap \text{int}(f(J(c))) \), there are gaps \(G_w \) and \(G_w' \) with \(w \in \partial G_w \cap \partial G_w' \) such that

\[
J(c(G_w)) = J(c(G_w')) = J(c(G_y)) \quad \text{and} \quad n(G_w) = n(G_y).
\]

Furthermore, since \(J \) is nice, \(f^{n(G_y')}(\partial J(c)) \subset \partial J(c(G_y)) \), which proves this lemma in case (B).

Hence, Lemma 5.5(1) and (2) hold. Therefore, \(J_h \) is a renormalization domain. Lemma 5.5(1) and (2) also imply that for every gap \(G \subset I(J^s) \) there is a gap \(G' \subset B(J_h) \) such that \(G \setminus G' \) is either empty or it is a finite set of points \(S_G = G \setminus G' \) with the following properties: for every \(x \in S_G \) there is \(i = i(x) \) and \(j = j(x) \) such that (1) \(0 \leq i < j \), (2) \(f^i(x) \in C_f^s \), (3) \(f^i(x) \notin J_h \), and (4) \(f^j(x) \in \partial J_h \). Hence, Lemma 5.5(4) holds.

Theorem 5.6 (Explosion of smoothness). Let \(f \) and \(g \) be \(C^r \) multimodal maps with \(r \geq 3 \) and no periodic attractors and no neutral periodic points. Let \(h \) be a topological conjugacy between \(f \) and \(g \) preserving the order of the critical points. If \(h \) is \(C^1 \) at a point \(p \in \text{NE}(f) \), then one of the following two conditions holds.

1. \(h \) is a \(C^s \) diffeomorphism in the full interval \(I \) or in its interior \(\text{int}(I) \); or
2. there is a unique maximal renormalization domain \(J \subset I \) such that \(h \) is a \(C^s \) diffeomorphism in \(J \) Furthermore,
 (a) \(h \) is a \(C^s \) diffeomorphism in the basin of attraction \(B(J) \);
 (b) \(h \) is not \(C^s \) at any open interval contained in \(I \setminus B(J) \);
 (c) \(h \) is not \(C^1 \) at any point in \(E(f) \cap \partial B(J) \).

Proof. By Lemma 4.4, there is an open interval \(W \) such that \(h|W \) is \(C^s \) and so the \(s \)-smooth conjugacy maximal domain \(J^s \neq \emptyset \). If \(h \) is not a \(C^s \) diffeomorphism in \(I \) or \(\text{int}(I) \), then, by Lemma 5.5, there is a renormalization domain \(J_h^s \) such that (i) \(h|B(J_h^s) \) is a \(C^s \) diffeomorphism and (ii) there is no open interval \(V \subset I \setminus B(J_h^s) = I \setminus \text{int}(J^s) \) such that \(h|V \) is a \(C^s \) diffeomorphism. Let us prove, by contradiction, that \(h \) is not \(C^1 \) at any point in \(E(f) \cap \partial B(J) \). By Lemma 4.4, if \(h \) is \(C^1 \) at some point \(x \in E(f) \cap \partial B(J) \), then there is an open interval \(W \) containing \(x \) such that \(h|W \) is \(C^s \), which is a contradiction.
Theorem 5.7 gives a criterion for non-smoothness of the conjugacy when the conjugacy does not preserve the order of the critical points. The non-critical forward orbit $O^+_nc(p)$ of p is the set of all points q such that there is $n = n(q) \geq 0$ with the property that $f^n(p) = q$ and $(f^n)'(p) \neq 0$. The non-critical omega limit set $\omega_{nc}(p)$ of p is the set of all accumulation points of $O^+_nc(p)$.

Theorem 5.7 (Implosion of non-smoothness). Let f and g be C^r multimodal maps with $r \geq 3$ and no periodic attractors and no neutral periodic points. Let h be a topological conjugacy, between f and g, not preserving the order of the critical points c_f and $c_g = h(c_f)$. The conjugacy h is not C^1 simultaneously at (i) a point belonging to $E(f) \cap \alpha_{nc}(c_f)$ and (ii) a point belonging to $E(f) \cap \omega_{nc}(c_f)$.

If f is a Collet–Eckmann map with negative Schwarzian derivative, then $E(f) \cap \omega_{nc}(c_f) \neq \emptyset$ and $\alpha_{nc}(c_f)$ contains Milnor’s attractor cycle.

Proof. Let us prove, by contradiction, that h is not C^1 at any point belonging to $E(f) \cap \alpha(c_f)$. If h is C^1 at a point $x \in E(f) \cap \alpha_{nc}(c_f)$, then, by Lemma 4.4, there is an open interval V_1 containing x such that $h|V_1$ is C^r. Since $x \in \alpha_{nc}(c_f)$, there is an integer n such that $c \in \text{int}(f^n(V_1))$. Hence, by Lemma 5.2, h is a C^r diffeomorphism in an open set V_c containing c.

If h is C^1 at a point $x \in E(f) \cap \omega_{nc}(c_f)$, then, by Lemma 4.4, there is an open interval W_1 containing x such that $h|W_1$ is C^r. Since $x \in \omega_{nc}(c_f)$, there is an open set $W_{f(c)}$ containing $f(c)$ and an integer n such that $f^n(W_{f(c)}) \subset W_1$ and $f^n|W_{f(c)}$ is a C^r diffeomorphism. Hence, by Lemma 5.2, $h|W_{f(c)}$ is a C^r diffeomorphism.

Since h does not preserve the order of the critical points c_f and $c_g = h(c_f)$, h cannot be C^1 at c_f and $f(c_f)$ simultaneously, which is absurd.

\[6. \quad C^r \text{ smoothness of the conjugacy} \]

In this section, we prove Theorem 2.5.

Lemma 6.1 (K(c) $\subseteq J^c_R$ is a renormalization interval). Let h be a C^r diffeomorphism in an open set V_1. There is a maximal renormalization interval $K(c) \subseteq J^c_R$ and a puncture set $P(c) \subset K(c)$ such that

1. h is a C^r diffeomorphism in $K(c) \setminus P(c)$, and
2. $\text{int}(V_1 \cap \mathcal{B}(K(c))) \neq \emptyset$.

Furthermore, $\partial K(c) \subset E(f)$ and h is not C^1 at the boundary $\partial K(c)$.

Proof. Using Lemma A.2, there is a sequence of open sets V_1, V_2, V_3, \ldots such that (i) $V_{i+1} \cap C_f \neq \emptyset$; (ii) $f^m(V_i) \supset V_{i+1}$ and (iii) $|V_i| \to 0$. Since C_f is finite, (i) there is $c' \in C_f \cap J$ and (ii) a subsequence $V_{n_1}, V_{n_2}, V_{n_3}, \ldots$ such that $f^m_i(V_{n_i}) \supset V_{n_i+1}$, where $m_i = \sum_{j=n_i}^{n_i+1-1} n_j$ and (iii) $c' \in V_{n_i}$ for every $i \geq 1$. By Lemma 5.2, $h|\text{int}(f^m_i(V_{n_i}))$ is a C^r diffeomorphism and so $h|V_{n_i+1}$ is also a C^r diffeomorphism. By Lemma 5.5, there is a non-empty maximal renormalization interval $J = J^c(c) \subseteq J^c_R$ containing V_{n_i} for all i. Let l be the smallest integer such that $F = f^l|J$ is a renormalization of f restricted to J.

Let C (possibly empty) be the set of all critical points $c \in C_F$ of $F|J$ such that there is no open interval $V_c \subset J$ with the property that $c \in V_c$ and $h|V_c$ is a C^r diffeomorphism. For every $c \in C$, the $\alpha_{nc}(c)$ is the non-critical alpha limit set of c with respect to $F|J$. Set $\alpha_{nc}(C) = \bigcup_{c \in C} \alpha_{nc}(c)$.

Let us prove that the open connected component H of $J \setminus \alpha_{nc}(C)$ we have containing c' is a renormalization interval for F. Let us start proving, by contradiction, that H is non-empty. If $H = \emptyset$, then there are (i) $c_1 \in C$, (ii) an open interval $U \subset V_{n_1}$ and (iii) an integer l
such that $c_1 \in \text{int} F^l(U)$. By Lemma 5.2, $c_1 \in C_F^r$ which is absurd. Take i_0 large enough such that, for every $i \geq i_0$, $c' \in V_{n_i} \subset H$ and $c' \in V_{n_{i+1}} \subset H$. Since $f^{m_i}(V_{n_i}) \supset V_{n_{i+1}}$, there is l_i such that (i) $F^{l_i}(V_{n_i}) = f^{m_i}(V_{n_i})$ and (ii) $F^{l_i}(V_{n_i}) \cap H \neq \emptyset$. Since $\alpha_{nc}(C)$ is forward invariant, $\partial F^{l_i}(H) \subset \alpha_{nc}(C)$. Let us prove, by contradiction, that (i) $\partial F^{l_i}(H) \subset \partial H$ and (ii) $F^{l_i}(H) \subset \bar{H}$. If $F^{l_i}(H) \not\subset \bar{H}$, then there is $x \in \partial H$ such that $x \in \text{int}(F^{l_i}(H))$. Hence, by Lemma 5.2, h is C^r in an open set containing x which is a contradiction. Hence, $F^{l_i}(H) \subset \bar{H}$ and, by forward invariance of $\alpha_{nc}(C)$, we have $\partial F^{l_i}(H) \subset \partial H$. Thus, H is a renormalization interval for F. Take the smallest integer such that $F_1 = F^k|H$ is a renormalization of F restricted to H.

For every open interval $H_1 \subset H$, let C_{H_1} be the set of all critical points $c \in H_1$ of $F_1|H$ such that there is no open interval $V_c \subset H$ with the property that $c \in V_c$ and $h|V_c$ is a C^r diffeomorphism. For every $c \in C_{H_1}$, let $\mathcal{O}_{nc}(c)$ be the non-critical backward orbit of c with respect to $F_1|H$. Set $\mathcal{O}_{nc}(C_{H_1}) = \bigcup_{c \in C_{H_1}} \mathcal{O}_{nc}(c)$. Since the accumulation set of $\mathcal{O}_{nc}(C_{H_1})$ is contained in $\alpha_{nc}(C)$, the set $\mathcal{O}_{nc}(C_{H_1})$ is a discrete set of H, for every open interval $H_1 \subset H$.

Now, let $H_1 \subset H$ be the maximal open set such that $h|H_1 \setminus \mathcal{O}_{nc}(C_{H_1})$ is C^r. Either (i) $H_1 = H$, or (ii) $H_1 \neq H$ is non-empty.

Case (i). The interval $K(c') = H$ is the maximal interval of renormalization containing c' and $P(c') = \mathcal{O}_{nc}(C_{H_1})$ is the punctured set of $K(c')$ with the property that $h|K(c') \setminus P(c')$ is C^r. Furthermore, $\text{int}(V_1 \cap \mathcal{B}(K(c'))) \neq \emptyset$.

Case (ii). There is a large enough such that $V_{n_1} \subset H_1$ and $F_1(V_{n_1}) \cap H_1 \neq \emptyset$.

Let us prove, by contradiction, that $\partial H_1 \cap \mathcal{O}_{nc}(C_{H_1}) = \emptyset$. If $x \in \partial H_1 \cap \mathcal{O}_{nc}(C_{H_1})$, then take the smallest m such that $F^m_1(x) \in C_{H_1}$. Let a and b be close enough to x such that (i) either (a, x) or (x, b) is contained in H_1, (ii) $F^{m+1}(a) = F^{m+1}(b)$, (iii) $F^m(a, b), F^{m+1}(a, x)$ and $F^{m+1}(x, b)$ are diffeomorphisms. Hence, $(a, b) \subset H_1$, which is a contradiction.

Let us prove, by contradiction, that if $x \in \partial H_1$, then x is not contained in the pre-orbit of a critical point. Take the smallest m such that $F^m_1(x) = c$ is a critical point. Since $c \notin \mathcal{O}_{nc}(C_{H_1})$, there is a small open set W containing c such that $h|W$ is a C^r diffeomorphism. Furthermore, there is a small enough open set V such that V contains x, (i) $F^m_1|V$ is a diffeomorphism and (iii) $F^m_1(V) \subset W$. Thus, by Lemma 5.2, $h|V$ is also a C^r diffeomorphism, which is a contradiction.

Let us prove, by contradiction, that $F_1(\partial H_1) \cap H_1 = \emptyset$. If $x \in \partial H_1$ and $F_1(x) \in H_1$, then there are small enough open sets V and W such that (i) V contains x, (ii) $F^m_1|V$ is a diffeomorphism because x is not a critical point of F_1, (iii) $F_1(V) = W_i$, (iv) $W_i \subset H_1$ and (v) $h|W_i$ is a C^r diffeomorphism. Hence, $h|V$ is also a C^r diffeomorphism, which is a contradiction.

There is x large enough such that $V_{n_1} \subset H_1$ and $c' \in F^r_1(V_{n_1})$, for some k, and so $F^r_1(H_1) \cap H_1 \neq \emptyset$. Hence, to prove that H_1 is a renormalization maximal interval it is enough to prove, by contradiction, that $F_1(\partial H_1) \subset \partial H_1$. If (i) $F_1(x) \notin \partial H_1$ and so $F_1(x) \notin H_1$, then (i) there is $y \in H_1$ such that $F_1(y) = x$ and (ii) open intervals V and W with the following properties: (i) V contains x, (ii) $W \subset H_1$ contains y, (iii) $F_1|W$ is a diffeomorphism, (iv) $F_1(W) = V$. Since $h|W$ is a C^r diffeomorphism, by Lemma 5.2, we get that $h|V$ is also a C^r diffeomorphism, which is a contradiction. Therefore, $K(c') = H_1$ is a renormalization interval containing c' and $P(c') = \mathcal{O}_{nc}(C_{H_1})$ is the punctured set of $K(c')$ such that $h|K(c') \setminus P(c')$ is C^r. Furthermore, $\text{int}(V_1 \cap \mathcal{B}(K(c'))) \neq \emptyset$. \hfill \Box

Proof of Theorem 2.5. By Lemma 4.4, there is an open interval V_1 such that $h|V_1$ is C^r. If h is not a C^r diffeomorphism in $I \setminus P$, then, by Lemma 6.1, there is a maximal renormalization interval $K(c')$ and a punctured set $P(c') \subset K(c')$ such that $h|K(c') \setminus P(c')$. By Lemma 5.2, h is a C^r diffeomorphism in the punctured basin of attraction $\mathcal{B}_P(J(c'))$.

Let C_f be the union of all critical points $c \in C_f$ such that $K(c) \neq \emptyset$ is a maximal renormalization interval and $P(c) \subset K(c)$ is a punctured subset such that h is a C^r diffeomorphism in $K(c) \setminus P(c)$. Let $J = \bigcup_{c \in C_f} K(c)$ be the maximal renormalization domain and $P = \bigcup_{c \in C_f} P(c)$.
the punctured set of J. By Lemma 5.2, h is a C^r diffeomorphism in the punctured basin of attraction $\mathcal{B}_p(J) = \bigcup_{c \in C_f^r} \mathcal{B}_p(J(c'))$.

Let us prove, by contradiction, that h is not a C^r diffeomorphism at any open interval $V \subset I \setminus \overline{\mathcal{B}(J)}$. If h is a C^r diffeomorphism at V, then, by Lemma 6.1, there is $c \in C_f^r$ such that $\text{int}(V \cap \mathcal{B}(K(c))) \neq \emptyset$, which is a contradiction.

Let us prove, by contradiction, that h is not C^1 at any point in $E(f) \cap \partial \mathcal{B}(J)$. By Lemma 4.4, if h is C^1 at some point $x \in E(f) \cap \partial \mathcal{B}(J)$, then there is an open interval W containing x such that $h|W$ is C^1, which is a contradiction. ■

Appendix. Properties of multimodal maps

A periodic point p with period $n \in \mathbb{N}$ is called a periodic attractor if there is an open set V with $p \in \partial V$ such that $\lim_{j \to +\infty} f^j(V) = p$. A periodic point p with period $n \in \mathbb{N}$ is called neutral if $|Df^n(p)| = 1$. A periodic point p with period $n \in \mathbb{N}$ is weakly repelling if p is neutral and there is an open set V with $p \in V$ such that $f^n|V$ is a diffeomorphism and $\lim_{j \to +\infty} (f^j|V)^{-j}(x) = p$ for all $x \in V$. Recall that a periodic point p with period $n \in \mathbb{N}$ is a repeller if $|Df^n(p)| > 1$. Let us denote by $\text{PR}(f)$ the set of all repeller periodic points of f.

Theorem A.1 (Mañé). Let $f : I \to I$ be a C^2 map without weak repelling periodic points and such that $\# \text{Fix}(f^n) < \infty$ for all $n \in \mathbb{N}$. For every $\gamma > 0$, there are $C > 0$ and $\lambda > 1$ with the following property:

1. If $J \subset I$ is an interval whose $\omega(J)$ does not intersect any periodic attractor, and
2. If $n \in \mathbb{N}$ is such that, for every $0 \leq j \leq n$, $f^j(J) \cap B_\gamma(C_f) = \emptyset$,

then

$$\text{Ird} f^n(x, y, z) \leq C |f^n(z) - f^n(x)| \quad \text{and} \quad |f^n(J)| \geq C \lambda^n |J|,$$

for every $x, y, z \in J$ with $x < y < z$.

Proof. It follows from Mañé’s theorem [13] and the fact that the logarithm of a C^2 map is locally Lipschitz outside the critical set. ■

Lemma A.2 (Forward capture of a critical point). Let $f : I \to I$ be a C^2 map and $\# \text{Fix}(f^n) < \infty$ for every $n \in \mathbb{N}$. For each interval $J \subset I$, whose $\omega(J)$ does not intersect a periodic attractor, there is $n \in \mathbb{N}$ such that the interior of $f^n(J)$ contains a critical point.

Proof. Let us suppose, in contradiction, that $f^n|\text{int}(J)$ is a diffeomorphism onto its image for every $n \in \mathbb{N}$. Since $\omega(J)$ does not intersect a periodic attractor and a C^2 map does not admit a wandering interval (see [1, 18]), there is $k > l > 0$ such that $f^k(J) \cap f^l(J) \neq \emptyset$. The closure D of the set $\bigcup_{n \geq 0} f^{kn-l}(J)$ is a forward invariant interval for f^{k-l}. Thus, $g = f^{2(k-l)}|D$ is a monotone map of D into itself. Thus, $\omega_g(x) \subset \text{Fix}(g)$ for every $x \in D$. Since $\# \text{Fix}(g) < \infty$, we get that there is an attracting fixed point $p \in D$ for g. Hence, $O_f^+(p)$ is an attracting periodic orbit for f intersecting $\omega_f(J)$, contradicting our hypothesis. ■

Lemma A.3 (Domain shrinking for iterated local diffeomorphisms). Let $f : I \to I$ be a C^2 map and $\# \text{Fix}(f^n) < \infty$ for every $n \in \mathbb{N}$. If $J_1, J_2, \ldots \in I$ is a sequence of open intervals such that $\bigcup_{n \geq 1} \omega(J_n)$ does not intersect a periodic attractor and $f^{m_n}|J_n$ are diffeomorphisms, with m_n tending to ∞, then $|J_n| \to 0$ when n tends to infinity.
Proof. Let us suppose, in contradiction, that there is $\delta > 0$ such that $|J_n| > \delta$ for every $n \geq 1$. Since I is compact, there is an interval L and an infinite subsequence J_{m_1}, J_{m_2}, \ldots of intervals such that $L \subset J_{m_n}$ for every $n \geq 1$. Hence, $f^\ell|L$ is a diffeomorphism, for every $\ell \geq 1$, which, by Lemma A.2, is a contradiction.

Following Martens [16], recall that a union $J = \bigcup_i J_i$ of pairwise disjoint open intervals J_1, J_2, \ldots is a nice set if the forward orbit of the boundaries $\bigcup_{i=1}^l \partial J_i$ of J do not intersect J.

Lemma A.4 (Nice infinitesimal neighbourhoods of critical points). Let $f : I \to I$ be a multimodal map without periodic attractors. For every small $\varepsilon > 0$, there is a nice set $J = \bigcup_{c \in \mathcal{C}_f}(p_c, q_c)$ such that $c \in (p_c, q_c) \subset B_{\varepsilon}(c)$ for all $c \in \mathcal{C}_f$.

We note that, if $\{J_k\}$ is the set of connected components of a nice set J, then

$$J' = \bigcup_{J_k \cap \mathcal{C}_f \neq \emptyset} J_k$$

is also a nice set. Let \mathcal{N} be the collection of all nice sets $J = \bigcup_k (p_k, q_k)$ such that $\mathcal{C}_f \subset J$ and $(p_k, q_k) \cap \mathcal{C}_f \neq \emptyset$ for all k. We note that if $U, V \in \mathcal{N}$, then $U \cap V \in \mathcal{N}$.

Proof. First, let us show that there is a nice set J such that $\mathcal{C}_f \subset J$. Consider the compact positive invariant set

$$\Lambda = \{x \in I; f^j(x) \notin B_{\varepsilon}(\mathcal{C}_f) \ \forall j \geq 0\}.$$

For every $c \in \mathcal{C}_f$, there is a connected component $J_{c, \Lambda} \supset B_{\varepsilon}(c)$ of $I \setminus \Lambda$. Let $J = \bigcup_{c \in \mathcal{C}_f} J_{c, \Lambda}$. Since $\partial J = \bigcup_{c \in \mathcal{C}_f} \partial J_{c, \Lambda} \subset \Lambda$, we get $f^j(\partial J) \subset \Lambda$ for every $j \geq 0$. Hence, $f^j(\partial J) \cap J = \emptyset$ for every $j \geq 0$, that is, J is a nice set and contains \mathcal{C}_f. Thus, \mathcal{N} is not an empty collection.

If $c \in \mathcal{C}_f$, then either $V \supset B_{\varepsilon}(c)$, for all $V \in \mathcal{N}$, or there exists $V(c) = \bigcup_{c \in \mathcal{C}_f} V_c(c) \in \mathcal{N}$ such that $V_c(c) \subset B_{\varepsilon}(c)$ and $\tilde{c} \in V_c(c)$ for all $\tilde{c} \in \mathcal{C}_f$.

Let \mathcal{C}_f^j be the set of $c \in \mathcal{C}_f$ such that $V \supset B_{\varepsilon}(c)$ for all $V \in \mathcal{N}$. For every $c \in \mathcal{C}_f^j$, let $H(c) = \text{int} \bigcap_{J \in \mathcal{N}} J_c$, where J_c is the connected component of J containing c. Hence, $H(c)$ is a nice interval and

$$H(c) \subset W$$

for all $W \in \mathcal{N}$. (A.1)

Claim A.1. If $c_0 \in \mathcal{C}_f$ is non-wandering, then $c_0 \notin \mathcal{C}_f^j$ for all $\varepsilon > 0$.

Proof of the claim. Let $\varepsilon > 0$ and $c_0 \in \mathcal{C}_f$ be a non-wandering point. Hence, take the smallest $n \geq 1$ such that $f^n(H(c_0)) \cap H(c_0) \neq \emptyset$.

Either (i) $f^n(H(c_0)) \not\subset H(c_0)$ or (ii) $f^n(H(c_0)) \subset H(c_0)$.

Case (i). Take $q \in H(c_0)$ such that $f^n(q) \in f^n(H(c_0)) \cap H(c_0)$ and there is a small interval V_q containing q such that $f^n|V_q$ is a diffeomorphism. For every $c \in \mathcal{C}_f$, let U_c be the connected component of $\text{int}(I) \setminus \{q, \ldots, f^{n-1}(q)\}$ containing c. We get that $U = \bigcup_{c \in \mathcal{C}_f} U_c$ belongs to \mathcal{N} and $H(c_0) \not\subset U_c$, because $q \in H(c_0)$ but $q \notin U_{c_0}$, contradicting (A.1).

Case (ii). Since $f^n(H(c_0)) \subset H(c_0)$, then $q = f^n|H(c_0)$ is a multimodal map and $q(\partial H(c_0)) \subset \partial H(c_0)$. Since there is no periodic attractor for g, there is a periodic point $q \in H(c_0)$ for the map g. For every $c \in \mathcal{C}_f$, let U_c be the connected component of $\text{int}(I) \setminus \{q, \ldots, f^{m-1}(q)\}$ containing c, where m is the period of q with respect to f. We obtain that $U = \bigcup_{c \in \mathcal{C}_f} U_c$ belongs to \mathcal{N} and $H(c_0) \not\subset U_c$, because $q \in H(c_0)$ but $q \notin U_{c_0}$, contradicting (A.1).
Now, we consider the case of the wandering critical points. Let \(\varepsilon > 0 \) and \(q_0 \) be a wandering critical point. From Lemma A.2, there is \(n \geq 1 \) and a non-wandering \(\tilde{c} \in C_f \) such that \(\tilde{c} \in f^n(H(q_0)) \). By the claim above, \(\tilde{c} \notin C_f^\varepsilon \). Thus, there is \(V = \bigcup_{c \in C_f^\varepsilon} V_c \in \mathcal{N} \) such that \(\partial V_c \cap f^n(H(q_0)) \neq \emptyset \). Let \(q \in H(q_0) \) be such that \(f^n(q) \in \partial V_c \) and there is a small interval \(V_q \) containing \(q \) such that \(f^n|V_q \) is a diffeomorphism. For every \(c \in C_f \) consider \(U_c \) the connected component of \(V_c \setminus \{ q, \ldots, f^n(q) \} \) containing \(c \). Thus, \(U = \bigcup_{c \in C_f} U_c \in \mathcal{N} \) and \(H(q_0) \not\subseteq U_{c_0} \), contradicting (A.1).

Lemma A.5 (Fatness of repellers). Let \(f \) be a \(C^r \) multimodal map with \(r \geq 3 \) and no periodic attractors and no neutral points.

1. If \(f \) is infinitely renormalizable around a critical point \(c \), then there is a renormalization interval \(J(c) \) such that \(O_{nc}(\text{PR}(f)) \) is dense in \(B(J(c)) \).
2. If \(f \) is not renormalizable inside a renormalizable interval \(J \), then \(\alpha_{nc}(\text{PR}(f)) \) contains \(B(J) \).

Proof. Let us prove (1). Since \(f \) is infinitely renormalizable around \(c \), there is an infinite sequence of intervals \(J_1, J_2, \ldots \) such that \(J_{n+1} \) is strictly contained in \(J_n \) and there is a sequence \(m_1, m_2, \ldots \) such that \(f^{m_n}|J_n \) is a multimodal map and \(\alpha \in f^{m_n}(J_n) \). By taking \(J_1 \) sufficiently small, we assume that for every critical point \(c' \in J_1 \) with \(c' \neq c \), there is a sequence \(l_1, l_2, \ldots \) such that \(m_n l_n < m_{n+1} \) and \(c' \in f^{m_n l_n}(J_{n+1}) \). Let \(p_n \) be a periodic point contained in the boundary \(\partial J_n \) of \(J_n \). Hence, \(p_n \) is a repeller and the set \(S = \bigcup_{n \geq 1} \alpha_{nc}(p_n) \) contains \(c \in \partial S \). Let us prove that \(S \) is dense in the smallest interval set that contains \(S \). In contradiction, suppose that \(S \) is not a dense set. Hence, there is an open interval \(K \) such that \(K \subseteq J_1 \setminus S \) and \(\partial K \subseteq \partial S \).

By forward invariance of \(S \) under \(f^{m_1} \), then \(f^{m_1 k_1}(K) \subseteq J_1 \setminus S \) and \(f^{m_1 k_1} \subseteq \partial f^{m_1 k_1}(K) \subseteq S \) for every \(k \). By Lemma A.2, there is \(k_1 \) such that \(f^{m_1 k_1}(K) \) contains some critical point \(c' \in J_1 \). Hence, \(S \) is large enough and \(l_n \) such that \(f^{m_n l_n}(J_{n+1}) \subseteq f^{m_1 k_1}(K) \). Hence, there is \(k_2 \) such that \(f^{m_n l_n}(J_{n+1}) \subseteq f^{m_1 k_2}(K) \). Since \(c \in f^{m_n l_n}(J_{n+1}) \), we obtain \(c \in f^{m_1 k_2}(K) \). Noting that \(p_n \) converges to \(c \), we obtain that \(f^{m_1 k_2}(K) \) contains some \(p_n \), for \(n \) large, which contradicts that \(f^{m_1 k_2}(K) \subseteq J_1 \setminus S \). Hence, \(S \) is dense in the smallest interval set that contains \(S \). Since \(c \in \partial S \) is a turning point, \(S \) is dense in a small neighbourhood of \(c \). Hence, there is a renormalization interval \(J(c) \), small enough, containing \(c \), that is contained in the closure of \(S \).

Let us prove (2). Since \(J \) is a renormalization interval, there is \(m \) such that \(f^m|J \) is a multimodal map. Let \(p \in J \) be a periodic repeller with period \(k \) of the map \(f^m|J \). Since \(\alpha_{nc}(p) \) is a closed set, it is enough to prove that \(\alpha_{nc}(p) \) is dense in \(J \). In contradiction, suppose that \(\alpha_{nc}(p) \) is not a dense set. Hence, there is an open interval \(K \) such that \(K \subseteq J \setminus \alpha_{nc}(p) \) and \(\partial K \subseteq \alpha_{nc}(p) \). By forward invariance of \(\alpha_{nc}(p) \) under \(f^m \) then \(f^{mk}(K) \subseteq J_1 \setminus \alpha_{nc}(p) \) and \(\partial f^{mk}(K) \subseteq \alpha_{nc}(p) \) for every \(k \). By Lemma A.2, there is a sequence \(k_1, k_2, \ldots \) such that \(K_n = f^{mk_n}(K) \) contains some critical point \(c_n \in J \). Since the set of critical points in \(J \) is finite, there is a critical point \(c \in J \) and \(k_i < k_{i+1} \) such that \(K_{k_i} \) and \(K_{k_{i+1}} \) contain the critical point \(c \in J \). Hence, \(K_{k_i} \cap K_{k_{i+1}} = \emptyset \). Since

\[
\partial K_{k_i} \subseteq \alpha_{nc}(p), \quad \partial K_{k_{i+1}} \subseteq \alpha_{nc}(p), \quad K_{k_i} \cap \alpha_{nc}(p) = \emptyset \quad \text{and} \quad K_{k_{i+1}} \cap \alpha_{nc}(p) = \emptyset,
\]

we obtain \(K_{k_i} = K_{k_{i+1}} \). In particular, \(f^{mk_{i+1}}(K_{k_i}) \) is a multimodal map and \(K_{k_i} \) is strictly contained in \(J \), which contradicts that \(f \) is not renormalizable inside the renormalizable interval \(J \). Hence, \(\alpha_{nc}(p) \) contains the closure of \(J \). Hence, by definition of alpha limit, \(\alpha_{nc}(p) \) contains \(B(J) \).

References

1. A. M. Blokh and M. Yu. Lyubich, ‘Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems II. The smooth case’, *Ergodic Theory Dynam. Systems* 9 (1989) 751–758.
2. N. Dobbs, ‘Critical points, cusps and induced expansion in dimension one’, PhD Thesis of Université Paris-Sud-Orsay, 2006.
3. E. de Faria, ‘Quasisymmetric distortion and rigidity of expanding endomorphisms of S^1’, Proc. Amer. Math. Soc. 124 (1996) 1949–1957.
4. F. Ferreira and A. A. Pinto, ‘Explosion of smoothness from a point to everywhere for conjugacies between diffeomorphisms on surfaces’, Ergodic Theory Dynam. Systems 23 (2003) 509–517.
5. Y. Jiang, ‘On Ulam-von Neumann transformations’, Comm. Math. Phys. 172 (1995) 449–459.
6. Y. Jiang, ‘Smooth classification of geometrically finite one-dimensional maps’, Trans. Am. Math. Soc. 348 (1996) 2391–2412.
7. Y. Jiang, Renormalization and geometry in one-dimensional and complex dynamics, Advanced Series in Nonlinear Dynamics 10 (World Scientific Publishing Co. Pte. Ltd., Singapore, 1996).
8. Y. Jiang, ‘On rigidity of one-dimensional maps’, Contemp. Math. AMS Ser. 211 (1997) 319–431.
9. Y. Jiang, ‘Differentiable rigidity and smooth conjugacy’, Ann. Acad. Sci. Fenn. Math. 30 (2005) 361–383.
10. Y. Jiang, ‘Differential rigidity and applications in one-dimensional dynamics’, Dynamics, games and science II. Springer Proceedings in Mathematics Series (eds M. Peixoto, A. A. Pinto and D. Rand; Springer, Berlin, 2011) 487–502.
11. R. de la Llave, ‘Invariants for smooth conjugacy of hyperbolic dynamical systems II’, Commun. Math. Phys. 109 (1987) 369–378.
12. M. Lyubich and J. Milnor, ‘The Fibonacci unimodal map’, J. Amer. Math. Soc. 6 (1993) 425–457.
13. R. Mañe, ‘Hyperbolicity, sinks and measure in one dimensional dynamics’, Commun. Math. Phys. 100 (1985) 495–524 and Erratum. Commun. Math. Phys. 112 (1987) 721–724.
14. J. M. Marco and R. Moriyon, ‘Invariants for smooth conjugacy of hyperbolic dynamical systems I’, Commun. Math. Phys. 109 (1987) 681–689.
15. J. M. Marco and R. Moriyon, ‘Invariants for smooth conjugacy of hyperbolic dynamical systems III’, Commun. Math. Phys. 112 (1987) 317–333.
16. M. Martens, ‘Distortion results and invariant Cantor sets of unimodal maps’, Ergodic Theory Dynam. Systems 14 (1994) 331–349.
17. W. de Melo and M. Martens, ‘The multipliers of periodic points in one dimensional dynamics’, Nonlinearity 12 (1999) 217–227.
18. W. de Melo and S. van Strien, One-dimensional dynamics (Springer, Berlin, 1991).
19. J. Milnor, ‘On the concept of attractor’, Commun. Math. Phys. 99 (1985) 177–195.
20. J. Milnor, ‘On the concept of attractor: Correction and remarks’, Comm. Math. Phys. 102 (1985) 517–519.
21. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78 (Princeton University Press, Princeton NJ, 1972).
22. A. A. Pinto, D. A. Rand and F. Ferreira, Fine structures of hyperbolic diffeomorphisms. Springer Monograph in Mathematics (Springer, Berlin, 2009).
23. A. A. Pinto and D. Sullivan, ‘The circle and the solenoid’, DCDS-A 16 (2006) 463–504.
24. M. Shub and D. Sullivan, ‘Expanding endomorphisms of the circle revisited’, Ergodic Theory Dynam. Systems 5 (1985) 285–289.
25. S. van Strien and E. Vargas, ‘Real bounds, ergodicity and negative Schwarzian for multimodal maps’, J. Amer. Math. Soc. 17 (2004) 749–782.
26. D. Sullivan, Class notes at the CUNY Graduate Center, 1986.
27. P. Tukia, ‘Differentiability and rigidity of Möbius groups’, Invent. Math. 82 (1985) 557–578.

José F. Alves
Centro de Matemática
Universidade do Porto
Rua do Campo Alegre 687
4169-007 Porto
Portugal
jfalves@fc.up.pt
http://www.fc.up.pt/cmup/jfalves

Vilton Pinheiro
Departamento de Matemática
Universidade Federal da Bahia
Av. Ademar de Barros s/n
40170-110 Salvador
Brazil
viltonj@ufba.br
http://www.pgmat.ufba.br
Alberto A. Pinto
LIAAD-INESC TEC e Departamento de
Matemática
Faculdade de Ciências
Universidade do Porto
Rua do Campo Alegre 687
4169-007 Porto
Portugal
aapinto@fc.up.pt
http://www.liaad.up.pt/people/researchers-
ph.d./people/alberto-pinto-1