Seismic Analysis of High-Rise Building Having lateral Load Resisting Elements with and without base isolation

Abhilashnaik*1, Dr. Savitamaru*2
*1 Dept. Of Civil Engineering, Ujjain Engineering College, Ujjain, M.P., India.
*2 Professor, Dept. of Civil Engineering, Ujjain Engineering College, Ujjain, M.P., India.

ABSTRACT

In present work linear dynamic analysis (i.e. Response spectrum) of high-rise building is done and base isolation is analyzed with lateral force resisting elements like shear wall and bracing, effect of all these structural components is calculated and analyzed on high rise structure having height G+30, G+35 & G+40. Structure is located in Earthquake Zone IV. Analysis is done with the help of ETABS 19 software. Base isolation bifurcates the structure from foundation so the structure remains unharmed from shocks and motion at the time of seismic action. Base isolation is broadly used as a load resisting system which is provided to strengthen high-rise buildings. But literature survey of base isolation shows that Lead Rubber Base Isolation is proved to be an optimal solution. With the increase in urbanization use of multi stories building is now in trending because of its high utility in commercial as well as residential. In northern part of India, maximum places are susceptible to earthquakes so that no damage to the life takes places. One among various methods of earthquake resistant design is the use of Lead Rubber Base Isolation. Various studies were carried out to check the behavior of different parameters like time period, drift, Storey displacement and overturning moment etc. with various types of base isolation. Use of LRB isolation system for high rise buildings was suggested. In the present study lead rubber bearing is used for base isolation with structure having shear wall and bracings. G+30, G+35 and G+40 storey structure are analyzed. Static, lineardynamic (response spectrum) is performed to study the behavior of the building with lead rubber base isolation system. ETABS v2019 is used to perform the analysis and design. Comparison of fixed base building with LRB is shown and suitability concerns is provided. It was observed from the study that Lead Rubber Base Isolation is more effective for earthquake prone zones.

I. INTRODUCTION

Earthquake is a natural earth movement that causes calamity and damages to the structures. Seismic activity occurs in the earth's crust, forming waves. These waves transmit to structures through foundation. Thus due to this earthmovements, inertia force is invoked in structure resulting in damaging the whole or part of structure. On the other hand, earthquakes provide architects and engineers with anumber of important design criteria which are unknown to the normal design process. Engineers can employ ductility to generate more displacement on a structure than the normally permissible elastic limit. The elastic limit refers to the maximum deformation of a structure before it reverts to its original shape. Cracks will develop in the structure if the building deforms more than its elastic limit. If the structure is in or near a seismic zone, the risk of an earthquake damage is quite high and unpredictable. In order to save lives and to minimize the damage structural engineers are required who can help in doing so. Base isolation is the recent development for seismic resistant design, this may not totally control the ground movement but helps in minimizing the impact of ground movement. By extending the time of vibration of the structure, base isolation helps to reduce earthquake forces. Also the structural response accelerations are less than the ground acceleration because of base isolation. It helps in limiting the effects and aftershocks of earthquake and that's why it is widely accepted in the world.
oleworldasoneofthemosteffectiveapproachesinpastfewyears.

II. OBJECTIVE
In this thesis 3 cases (G+30, G+35 & G+40) are considered in each case 4 combinations are formed i.e. shear wall + fixed base, shear wall + bracing + fixed base, and in above two case fixed base is replaced by LRB base. Dynamic analysis (Response Spectrum method) is done using CSI ETBASv19 software.

The objectives of this thesis are:
1. To determine the effect of base isolation on time period, base shear, overturning moment, Storey displacement, Storey drift.
2. To determine the behavior of Fixed base vs LRB base in Response Spectrum analysis.
3. To determine the seismic performance of LRB base as compared to Fixed structure.
4. To compare the result for LRB and Fixed base in G+30, G+35 & G+40 storey.

III. MODELLING AND ANALYSIS
To study seismic behavior and performance of multi-storied building, three configurations are used, i.e. 30-storied, 35-storied and 40-storeied building. Each configuration is further divided into 4 cases on basis of variation of base and bracing:

1. Frame with shear wall and fixed base
2. Frame with shear wall, bracing and fixed base
3. Frame with shear wall and LRB base
4. Frame with shear wall, bracing with LRB base

To study the behavior, parameters selected are storey drift, storey displacement and storey shear.

Table 3.1 Plan Dimensions

SNO	Particulars	Dimension/Value
1	Plandimension	25 x 25 m
2	Height of the storey	3 m
3	Height of parapet	1.2 m
4	Thickness of slab	180 mm
Table 3.2: Detail of Lateral Load Resisting Elements

Members	Size of Member (in mm)
Column (M 30)	1000*1000
Beam (M 30)	300*500
Bracing (M 30)	300*500

3.1.1 Design Data for LRB

For LRBG+30 For load of 23500 KN

Parameter	Value
Rotational Inertia	2.222146677 kN/m
For U1 Effective Stiffness	35514478.63 kN/m
For U2 & U3 Effective Stiffness	35514.4786 kN-m
For U2 & U3 Effective Damping	0.15
For U2 & U3 Distance from End-J	0.00490 m
For U2 & U3 Stiffness	271465.7674 kN/m
For U2 & U3 Yield Strength	1330.778648 kN

For LRBG+30 For load of 38400 KN

Parameter	Value
Rotational Inertia	2.637942354 kN/m
For U1 Effective Stiffness	38633313.86 kN/m
For U2 & U3 Effective Stiffness	38633.3139 kN-m
For U2 & U3 Effective Damping	0.15
ForU2 &U3 Distance from End-J
0.00490 m

ForU2 &U3 Stiffness
295305.5374 kN/m

ForU2 &U3 Yield Strength
1447.645895 kN

For LRB of G+40 load of 41500 KN

Table 3.4 Design Data for LRB for lateral load of 41500 KN

Rotation Inertia	3.089726619 kN/m
For U1 Effective Stiffness	41752149.1 kN/m
For U2 & U3 Effective Stiffness	41752.1491 kN/m
For U2 & U3 Effective Damping	0.15
For U2 & U3 Distance from End-J	0.00490 m
For U2 & U3 Stiffness	319145.3073 kN/m
For U2 & U3 Yield Strength	1564.513141 kN

IV. RESULTS AND DISCUSSION

4.1 TIMEPERIOD

According to IS regulations, the overall height of the building and the base dimension of the building are related by a time period formula. The design of earthquake-resistant constructions is heavily influenced by that. According to the IS standards, the fundamental period of vibration is calculated using the building’s overall height or the number of storeys.

Fig. 4.1 Time period of all model with fixed base and base isolation
Time period for G+30 storey building in case of model having shear wall + fixed base is 5.12 and in case of modal with shear wall + bracing + fixed base is 4.34 while time period is observed to decrease in modal with shear wall + isolation to 5.9392 & in modal with shear wall + bracing + isolation is 5.7856.

Time period for G+35 storey building in case of model having shear wall + fixed base is 5.00305 and in case of modal with shear wall + bracing + fixed base is 4.495306 while time period is observed to decrease in modal with shear wall + isolation to 5.798944 & in modal with shear wall + bracing + isolation is 5.304461.

Time period for G+40 storey building in case of model having shear wall + fixed base is 5.876 and in case of modal with shear wall + bracing + fixed base is 4.968 while time period is observed to decrease in modal with shear wall + isolation to 5.00305 & in modal with shear wall + bracing + isolation is 6.7574.

The model time period of LRB base as compared to fixed base is 5.876 and in case of modal with shear wall + isolation is 6.7574.

4.2 Storey Displacement

The lateral displacement of the story in relation to the base is called story displacement. Response spectrum analysis of uniform and optimized sections are performed. Storey drift is the difference of displacements between two consecutive storeys divided by the height of that storey and Storey displacement is the absolute value of displacement of the storey under action of the lateral forces. The displacement result of this analysis is shown in graph.

Max Storey displacement for G+30 storey building in case of model having shear wall + fixed base is 153.37 mm and in case of modal with shear wall + bracing + fixed base is 89.34 mm while Storey displacement is observed to increase in modal with shear wall + isolation to 173.05 mm & in modal with shear wall + bracing + isolation is 113.6 mm.

Storey displacement for G+35 storey building in case of model having shear wall + fixed base is 191.305 mm and in case of modal with shear wall + bracing + fixed base is 110.97 mm while Max storey displacement is observed to increase in modal with shear wall + isolation to 219.235 mm & in modal with shear wall + bracing + isolation is 125.51 mm.
Max storey displacement for G+40 storey building in case of modal with shear wall + fixed base is 158.954 mm while Max storey displacement is observed to increase in modal with shear wall + isolation to 304.75 mm & in modal with shear wall + bracing + isolation is 183.75 mm. The storey displacement of LRB base as compared...
to fixed base is increased, and increase in displacement is observed because base isolation makes structure more ductile, due to this ductility in the structure tends to displace.

4.3 STOREY DRIFT

The storey shear and storey drift graphs are useful when analysing the effect of lateral loading on a multi-story building due to seismic or wind loads. The storey drift ratio is defined as the storey drift divided by storey height. Storey drift is the lateral displacement between two adjacent floors. The storey drift ratio is a useful quantity that can be directly compared to the code requirements because seismic loading rules often impose limits on storey drift as a percentage of the storey height.

Storey drift for G+30 storey building in case of model having shear wall + fixed base is 0.00217 and in case of model with shear wall + bracing + fixed base is 0.00129 while storey drift is observed to increase in model with shear wall + isolation to 0.00228 while in model with shear wall + bracing + isolation is 0.00126.

Storey drift for G+35 storey building in case of model having shear wall + fixed base is 0.00234 and in case of model with shear wall + bracing + fixed base is 0.00165 while storey drift is observed to increase in model with shear wall + isolation to 0.00251 and in model with shear wall + bracing + isolation is 0.00147.

Storey drift for G+40 storey building in case of model having shear wall + fixed base is 0.00271 and in case of model with shear wall + bracing + fixed base is 0.00153 while storey drift is observed to increase in model with shear wall + isolation to 0.00273 and in model with shear wall + bracing + isolation is 0.0016.

Fig. 4.3 Storey drift vs storey height

![Fig. 4.3 Storey drift vs storey height](image-url)
4.4 BASESHEAR

The maximum expected lateral stress on the base of the structure caused to seismic activity is called base shear. It is calculated using the seismic zone, soil material, and building code lateral force equation, it is observed that as shear at the bottom of the storey is maximum and critical so the base shear of all the model with linear dynamic analysis is carried out and result obtained are plotted in below graph.

Fig. 4.4 baseshear of different models at base in KN

The Baseshear of LRB base as compared to fixed base reduces, this reduction in baseshears due to base isolation effect of earthquake forces has been reduced significantly on to the structure also it provides damping effect to the base, and reduction in base shear is as follows:

Base shear for G+30 storey building in case of model having shear wall + fixed base is 3621 and in case of modal with shear wall + bracing + fixed base is 2670 while base shear is observed to decrease in modal with shear wall + isolation to 2111.76 and in modal with shear wall + bracing + isolation is 1694.38.

Base shear for G+35 storey building in case of model having shear wall + fixed base is 4099 and in case of modal with shear wall + bracing + fixed base is 3438.25 while base shear is observed to decrease in modal with shear wall + isolation to 2516.78 and in modal with shear wall + bracing + isolation is 2253.42.

Base shear for G+40 storey building in case of model having shear wall + fixed base is 4369.81 and in case of modal with shear wall + bracing + fixed base is 4041.907 while base shear is observed to decrease in modal with shear wall + isolation to 2875.33 and in modal with shear wall + bracing + isolation is 2837.41.

4.5 OVERTURNING MOMENT

By multiplying the story shear by the distance to the centre of mass above the height in concern, the overturning moments can be calculated. As storey shear of the building increases from top to base floor overturning moment also increases from top to base.

Responses spectrum analysis of all the structures for all the models are performed. The story overturning moment result of this analysis is shown in graph.

Overturning moment for G+30 storey building in case of model having shear wall + fixed base is 141250.7 KN-m and in case of modal with shear wall + bracing + fixed base is 169218.3 KN-m while overturning moment is observed to decrease in modal with shear wall + isolation to 99412.22 KN-m and in modal with shear wall + bracing + isolation is 124273.9 KN-m.

Overturning moment for G+35 storey building in case of model having shear wall + fixed base is 225747.2 KN-m and in case of modal with shear wall + bracing + fixed base is 268639.2112 KN-m while overturning moment is observed to decrease in modal with shear wall + isolation to 141250.7 KN-m and in case of modal with shear wall + bracing + isolation is 169218.3 KN-m.
modal with shear wall + isolation to 164343.988 KN-m & in modal with shear wall + bracing + isolation is 205132.9 KN-m
Overturning moment for G+40 storey building in case of model having shear wall + fixed base is 305247.6837 KN-m and in case of modal with shear wall + bracing + fixed base is 305247.6837 KN-m while overturning moment is observed to decrease in modal with shear wall + isolation to 223441.3 KN-m & in modal with shear wall + bracing + isolation is 217014.3 KN-m.

It is observed that overturning moment is reduced in LRB case as compared to fixed base as the base shear values are reduced significantly and moment generated by the earthquake forces is observed to be reduced significantly which results in reduction of overturning moment.

Fig. 4.5 Overturning moment vs storey height
V. CONCLUSION & FUTURE SCOPE

4.3 CONCLUSION

1. The results of analyzed LRB base and fixed base for G+30, G+35 & G+40 storey are represented in this chapter. Comparing the results of FIXED and LRB base models, the results show, the LRB base structure option is better than the fixed base. LRB base structure for high-rise buildings is the best of all options, the displacement values of the floors are within the allowable limit according to the code’s limits. LRB base gives more ductility to the structure than Fixed base most suitable under the action of lateral force. Also, the performance of LRB base is good compared to Fixed base. Effect of earthquake on the structure is reduced which helps to reduce the cost of the foundation, due to less overturning moment. Base isolated structures are the best solution for tall structures in earthquake-prone zones.

2. Considering the earthquakes, due to inherent flexibility properties of lead and rubber, LRB will perform better than conventional fixed base structures.

3. After analysis of model and results are discussed in previous chapter. Some concluded points are listed below.

4.4 FUTURE SCOPE

The following conclusions are drawn from the results within the scope of this project:

1. The maximum Storey displacement of LRB base for response spectrum analysis of 30, 35 and 40 storey building in X-direction, are 10.68-16.8% times more as compared to fixed base, which suggests that building has gained some flexibility which will result in absorbing more earthquake energy.

2. The above points conclude that use of LRB isolation system in low storey structure is more suitable than high rise structure.

3. Average percentage reduction in base shear of LRB building w.r.t. fixed base buildings is 29.80% to 41.68% in 30, 35, and 40 storey building with respective lateral supporting elements, which will result in reducing steel reinforcement of the building.

4. Time period of building can be adequately increased by using LRB base compared to fixed base which will result in reducing natural frequency of the building.

5. Intermittent storey drift can be reduced and it will help in enhancing human comfort criteria of the building.

REFERENCES

[1]. Ghodke, R.B. and Admane, S.V. (2015), “effect of Base Isolation for buildings systems.” worldwide magazine technology, Engineering and era research (IJSETR), four(four), 971-974.

[2]. IBC (2000). “international constructing Code”, worldwide Code Council, Inc., Virginia, U.S.A.

[3]. IS:13920 (2016). “Ductile layout and detailing for reinforced concretesystems subjected to seismic forces—code of practice.” Bureau of Indian requirements, New Delhi, India.

[4]. IS: 1893 (element 1, 2002). “standards for earthquake resistant layout of systems, element 1: general provisions and buildings [CED:9:Earthquake Engineering],” Bureau of Indian standards, New Delhi, India.

[5]. IS:1893 (part 1, 2016). “standards for earthquake resistant design of systems, component: trend provisions and homes [CED:9: Earthquake Engineering],” Bureau of Indian standards, New Delhi, India.

[6]. IS:456, (2000). “simple and reinforced concrete code of practice”, Bureau of Indian standards, New Delhi, India.

[7]. Jain, S. okay. and Thakkar, S.K. (2004). “application of Base Isolation for flexible buildings.” 13thWCEE, Aug 1-6, Vancouver, B.C., Canada.

[8]. Desai, M. and John, R. (2015). “Seismic performance of base isolated multi-storey building.” worldwide journal of scientific & Engineering studies, 6 (12), 84-89.

[9]. Min, T.X. and Ming, L.U. (2008). “layout of Base-remoted structure with Rubber-Bearing.” 14th WCEE, Oct 12-17, Beijing, China.

[10]. Nassani, D.E. and Abdulmajeed, M.W. (2015). “Seismic Base Isolation in reinforced Concrete structures.” international magazine of studies studies in technology, Engineering andera, 2(2), 1-thirteen.

[11]. Naeim, F. and Kelly, J.M. (1999). layout of Seismic isolated structure: From idea to Practice, John Wiley and Sons, Inc., big apple.

[12]. Majage, S. C. and Phadatare, N. P. (2018). “layout of excessive damping rubberIsolatorforRC Multistoried structuresan d its Comparative Seismic” global research magazine of Engineering and era (IRJET), five(8), 553-558.

[13]. Rastandi, J. I., Rahim, S.A., Lase, Y. and
Yan, H. (2019). “Comparative analysis of constant base and isolated structures in “L” shaped plan with time history evaluation primarily based on ASCE 7-sixteen” IOP Conf. collection: material technology and engineering, 473, 012027.
1. Salic, R.B., Garevski, M.A. and Milutinovic, Z.V. (2008). “Reaction of Lead-Rubber Bearing isolated shape.” 14th WCEE, Oct 12-17, Beijing, China.

2. Shirol, S. and Kori, J.G. (2017). “Seismic Base Isolation of Reinforced Concrete Structures with and without Infill” global research journal of Engineering and generation (IRJET), 4(6), 1783-1792.

3. Sedig, M., and Amani, K. (2019). “Comparative evaluation of T shape eight Storey uneven RCC structure with and without Base Isolation.” global journal of Engineering research & generation (IRJET), 8(6), 537-540.

4. Thorat, V.R. and Talikoti, R.S. (2014). “Base Isolation in Seismic Structural Design” worldwidemagazine of Engineering studies & generation, three(7), 863-868

5. UBC (1997), “Uniform building Code”, worldwide conference of building officers, California, America.

6. Agrawal, P. and Shrikhande, M. (2010). Earthquake resistant design of systems, PHI Learning Private Constrained, New Delhi, India, edition 1.

7. Angelis, F.D., and Cancellara, D., (2019). “Dynamic evaluation and vulnerability reduction of asymmetric structures: constant base vs remoted machine.” ELSEVIER, 219(2019), 203-220.

8. Chandran, P.S., Vijayan, M. (2017). “Evaluation of Earthquake reaction on RC shape and without Base Isolation in one of kind Plan.” global research journal of Engineering and technology (IRJET), 4(5), 1634-1641.

9. Earthquake resistant layout with the aid of Pankajagarwal.

10. Rosinblueth and Holtz’s “Evaluation of Shear Walls in Tall Homes” (1960)

11. Clough, R., King I.P and Wilson E.I- “Structural evaluation of multi storied buildings” (1964)

12. Khan, F.R. and Sbrounis, J.A. (7) „Advent of shear wall with frames in concrete Sabrcounisstructure underneath lateral hundreds” (1964).

13. Girijavallabhan(2)- “Analysis of sheartpartitions” (1969)

27 Paulet, J. and Priestley, “Seismic layout of reinforced concrete and masonry homes” (1992).

28. Mo and Jost, “The seismic response of multi-story reinforced concrete framed shear walls: the usage of a nonlinear model” (1993).

29. Satish Annigiristudies student and Ashok Kay. Jain. "Torsional provisions for asymmetrical multi-story buildings in IS: 1893" (1994)

30. J.J-Humar and S. Yavari "design of concrete shear wall homes for earthquake precipitated torsion" (2002)
31. Su R.K.L., and Wong, “Seismic Behaviour of slim reinforced Concrete Shear walls beneath
32. Md. Arman Chowdhury and Wahid Hassan, Comparative takealook at of the Dynamic analysis of Multi-storey
irregular constructing with or without Base Isolator, Proc of IJSET, volume No.2, difficulty No. nine, 1. Sept. 2013,
pp : 909-912
33. Chauhan Kalpesh M and Dr. B.J. Shah, Excel Spreadsheet For design of Lead Rubber Bearing makes
use of For Seismic Isolation of Bridges, Proc of IJAERS, extent 2, problem No.3, April-June 2013
34. Hossein monfared, Ayoub shirvani and Sunny nwaubani, An research into the seismic base isolation from realistic perspective. Proc of international magazine of civil and structural engineering, extent three, issued three, March 2013
35. Rui C. Barros, H.Naderpour, S.M. Khatami, and A. Mortezaei, influence of Seismic Pounding on RC
buildings with and with out Base Isolation system challenge to near-Faultground Motions, Proc of journal of
Rehabilitation in Civil Engineering, Jan 2013
36. Satish Nagarajaiah and Xiaohong solar, Base-isolated FCC constructing: impact reaction In Northridge
Earthquake, Proc of Journal of structural engineering Vol. 127, trouble variety 9, September-2001
37. Byung-young Moon, Gyung-Ju Kang and Beom-Soo Kang, design of Elastomeric Bearing device and analysis of it Mechanical houses, KSME global journal, Vol. 18, trouble No. 1, pp. 20~29, 2004
38. Yozo Shinozaki, Osamu Hosozawa and Tsutomu Komuro, structural layout of base isolations systems
fortall buildings in japan, Proc of CTBUH, 2004
39. Radmila B. Salic, Mihail A. Garevski and Zoran V. Milutinovic, reaction of Lead Rubber Bearing remoteshape, Proc of The 14th world convention on Earthquake Engineering, October 12-17, 2008, Beijing, China
40. Khante S.N and Lavkesh R. Wankhade, study of seismic reaction of symmetric and uneven base isolated constructing with mass asymmetry in plan, Proc of IJCSE, volume 10, issue No. 10, 2010
41. Athamnia Brahimi and Ounis Abdelhafid, outcomes of seismic isolation within the discount of the seismic response of the shape, Proc of IJAER, quantity 2, trouble No. 2, 2011
42. S. Etedali and M. R. Sohrabi, Torsional Strengthening of Base-isolated asymmetric structures with the aid of growing the flexible aspect Stiffness of Isolation machine, Proc of IJENS, quantity 1 1, issue No. 02, April 2011