Longitudinal Increases in Adiposity Contribute to Worsening Adipokine Profile over Time in Mexican Americans

Mary Helen Black1, Yu-Hsiang Shu1, Jun Wu1, Corinna Koebnick1, Adrienne MacKay2, Richard M. Watanabe2,3,4, Thomas A. Buchanan3,4,5, and Anny H. Xiang1

Objective: Limited studies have assessed the relationship between longitudinal changes in adiposity and changes in multiple adipokines over time. This study examined changes in BMI, total body fat, and trunk fat associated with changes in 16 circulating adipokines in Mexican Americans at risk for type 2 diabetes.

Methods: Participants included 1,213 individuals with cross-sectional data and a subset of 368 individuals with follow-up measures (mean 4.6 ± 1.5 years from baseline). Joint multivariate associations between 3 adiposity measures and 16 adipokines were assessed by canonical correlation analysis.

Results: Longitudinal increases in adiposity were most strongly associated with increasing leptin, C-reactive protein (CRP), and interleukin 1 receptor antagonist (IL-1Ra) and decreasing adiponectin and secreted frizzled protein 5 (SFRP5) over time. Participants with BMI ≥ 30 kg/m² at baseline had greater increases in leptin, CRP, IL-1Ra, and interleukin 6 (IL-6) and greater decreases in adiponectin and SFRP5, associated with increasing adiposity over follow-up, than those with BMI < 30 kg/m². Associations between adiposity and adipokines were most accounted for by leptin; adjustment for leptin greatly reduced the magnitude of all associations between adiposity and remaining adipokines.

Conclusions: Increasing adiposity contributes to a worsening imbalance of pro- and anti-inflammatory adipokines over time, in which leptin may have an important role as a key mediator of metabolic disease risk in Mexican Americans.

Obesity (2018) 26, 703-712. doi:10.1002/oby.22128

Introduction

Adipose tissue has long been recognized as an endocrine organ capable of synthesizing and secreting a variety of hormones, collectively referred to as adipokines (1). Adipokines have autocrine and paracrine effects on adipocytes and the surrounding stromal-vascular fraction, in which they modulate adipogenesis, immune cell migration into adipose tissue, and adipocyte metabolism and function (2). In circulation, adipokines also have an endocrine role, regulating biological processes in various target organs and tissues, such as the brain, liver, muscle, vasculature, heart, and pancreatic β cells (2).

Obesity is associated with increased adipose tissue mass and size (3). In response to positive energy balance, preadipocytes differentiate into mature adipocytes, promoting hyperplastic expansion of adipose tissue, and mature adipocytes increase in size, becoming hypertrophic (4). Over time, weight gain due to a high-fat diet and sedentary lifestyle results in adipose tissue expansion accompanied by inflammation, fibrosis, and an altered adipokine profile that ultimately leads to obesity-mediated metabolic dysfunction (5).

It is thought that altered secretion of adipokines in obesity is characterized by upregulation of proinflammatory adipokines and downregulation of anti-inflammatory adipokines. However, much of the evidence for these relationships is derived from analysis of only one or a small number of adipokines, using cross-sectional designs (6,7). Although longitudinal data from relatively short-term intervention trials are available (8-15), assessment of long-term changes in adipokines related to changes in adiposity over time is more limited.
The present study examined the effects of longitudinal changes in multiple measures of adiposity on changes in 16 adipokines over time, using multivariate analytical techniques that leverage their underlying correlations, in a large Mexican-American cohort enriched with individuals at high risk for T2DM. As intervention trial data are primarily based on weight or body composition changes among individuals with obesity, we further assessed whether the observed associations between long-term changes in adiposity and adipokine profile varied by baseline obesity status.

Methods

Subject recruitment

Participants of this study were from BetaGene, a family-based study of obesity, insulin resistance, and β-cell dysfunction in Mexican Americans. Details regarding recruitment for the initial cohort have been previously described (23). Briefly, probands qualified for participation if they (1) were of Mexican ancestry (both parents and at least three-quarters of grandparents were Mexican or of Mexican descent), (2) had a confirmed diagnosis of gestational diabetes mellitus (GDM) or normal glucose levels (no GDM) during a pregnancy within the 5 years of study enrollment, and (3) had no evidence of β-cell autoimmunity by glutamic acid decarboxylase-65 testing. GDM and non-GDM probands were identified from the patient populations of Los Angeles County/University of Southern California Medical Center, Kaiser Permanente Southern California, and obstetrical/gynecological clinics at local southern California hospitals and were frequency matched on age, BMI, and parity. Family members of probands were also invited to participate. Protocols for BetaGene were approved by the institutional review boards of each institution, and all participants provided written informed consent prior to study enrollment.

Phenotyping for BetaGene was performed on 2 separate visits to the General Clinical Research Center and has also been previously described (23). Participants with fasting glucose less than 126 mg/dL (<7 mmol/L) obtained at the first visit were invited for a second visit, which included a dual-energy x-ray absorptiometry (DXA) scan for body composition. All GDM probands, their siblings and first cousins, and non-GDM probands (n = 1,247; 72% female; mean ± SD age, 34.7 ± 8.2 years) underwent the full phenotyping protocol.

A follow-up study was subsequently designed to recall 400 participants for assessment of longitudinal changes in anthropometric and metabolic traits (24). Participants with a fasting glucose level >7.0 mmol/L were ineligible for follow-up testing. A total of 390 individuals (74% female; mean ± SD age: 39.5 ± 8.4 years; mean ± SD follow-up time: 4.6 ± 1.5 years) completed follow-up phenotyping. Due to follow-up study eligibility criteria, those who returned for follow-up had slightly lower median fasting and 2-hour glucose levels than those who did not participate (P = 0.09 and P = 0.04, respectively); no other significant differences between these 2 groups were observed. We report results from 1,213 cross-sectional and 368 recall study participants for whom complete adipokine data were available.

Assays

Sixteen adipokines were measured in fasting plasma samples. Adiponectin, interleukin 1 beta (IL-1β), interleukin 6 (IL-6), leptin, lipocalin, monocyte chemoattractant protein 1 (MCP-1), resistin, and tumor necrosis factor alpha (TNF-α) were assayed using 2 Millipore multiplex kits with magnetic bead panels (Millipore, Billerica, Massachusetts). Assay sensitivity for adiponectin, lipocalin, and resistin is 11, 1.7, and 2.2 pg/mL, respectively. Intra- and interassay variations are <10% and <15%, respectively, and accuracy ranged from 87% to 91% for all adipokines in the panel. Sensitivities for leptin, IL-1β, IL-6, MCP-1, and TNF-α are 4.7, 0.5, 0.4, 1.1, and 0.1 pg/mL, respectively. Intra- and interassay variations are <15%, and accuracy is >90% for all adipokines in the panel. ELISA was used to measure C-reactive protein (CRP) (Millipore, Billerica, Massachusetts), apelin, dipeptidyl peptidase 4 (DPP-IV), IL-18, visfatin (Ray Biotechn, Norcross, Georgia), interleukin 1 receptor antagonist (IL-1Ra) (AssayBiotech, Sunnyvale, California), secreted frizzled protein 4 (SFRP4), and secreted frizzled protein 5 (SFRP5) (USCN Life Science, Wuhan, China). Assay sensitivity for CRP, apelin, DPP-IV, IL-18, visfatin, IL-1Ra, SFRP4, and SFRP5 is: 0.004 ng/mL, 29.1 pg/mL, 14.8 pg/mL, 0.5 pg/mL, 0.78 ng/mL, 23 pg/mL, 26.6 pg/mL, and 0.60 ng/mL. Intra- and interassay variations are <10% and <15%, respectively, for all adipokines. Accuracy was >95% for most adipokines; accuracy for SFRP4 and SFRP5 ranged from 85 to 95%.

Data analysis

Cohort characteristics are described by the median and corresponding 25th and 75th percentiles. Measures of adiposity and adipokines were log-transformed to approximate univariate normality for cross-sectional analyses. The rates of change in adiposity variables and adipokines were computed as the difference between the log of the follow-up value and the log of the baseline value divided by the total follow-up time and were approximately normally distributed. Linear mixed-effects kinship models (LMKMs), which appropriately account for relatedness due to family structure, were used to estimate cross-sectional univariate associations between each adiposity phenotype and adipokine, adjusted for age and sex. Similarly, LMKMs were used to assess longitudinal associations between the rate of change in each adiposity phenotype and rate of change in each adipokine, adjusted for age, sex, and baseline body fat, for the subset of participants in the follow-up cohort. To evaluate the strength of univariate association across adipokines, data were standardized by dividing each individual value by the cohort standard deviation prior to the LMKM analyses, yielding regression coefficients that are scale independent and directly comparable. To determine whether univariate associations between rates of change in body fat percentage and adipokines significantly varied by baseline obesity status (BMI ≥30 kg/m² vs. <30 kg/m²), we included a multiplicative interaction term for the product between rate of change in body fat percentage and baseline obesity in the LMKMs.
To assess the joint multivariate associations between 3 adiposity measures and 16 adipokines, we performed canonical correlation analysis (CCA). CCA is a multivariate analysis of cross-correlations among 2 sets of continuous variables, wherein each set contains multiple variables that are themselves highly correlated. CCA identifies linear combinations of each set that maximize the correlations between them; a loading coefficient is estimated for each variable that represents its contribution to its specific set (25,26). To properly account for family structure, we performed CCA on the kinship-adjusted covariance of age- and sex-adjusted cross-sectional phenotypes, and on age-, sex-, and baseline body fat–adjusted rates of change for longitudinal phenotypes. CCA was also repeated for the longitudinal cohort, stratified by baseline obesity status. Given the large contribution of leptin to the adipokines component that was observed in all models, we also examined the residual multivariate association between adiposity traits and the remaining adipokines by additionally adjusting phenotypes for baseline leptin (cross-sectional analyses) or the rate of change in leptin (longitudinal analyses) and by re-estimating the CCA models. All analyses were performed by using R version 3.3.0.

Results

Among the participants of the baseline BetaGene cohort (n = 1,213; 357 probands, 565 siblings, 291 first cousins), 72% were female, and the median (interquartile range [IQR]) age was 34.4 (10.3) years (Table 1). Most (78%) had overweight or obesity; the median (IQR) BMI was 28.7 (7.3), and the body fat percentage was 35.8 (11.9). The median level of CRP was indicative of moderate cardiovascular disease risk, and 26% exceeded the threshold for high risk (27,28), both of which are consistent with CRP levels in the US adult population (28). Baseline demographics and anthropometrics for participants of the follow-up study (n = 368; 107 probands, 181 siblings, 80 first cousins) were generally similar to those of the initial cohort.

TABLE 1 Cohort characteristics

	Baseline cohort, n = 1,213	Follow-up subgroup, n = 368
Female (%)	874 (72.1)	272 (73.5)
Age, y	34.4 (29.2, 39.5)	34.7 (29.3, 40.4)
Anthropometrics		
BMI (kg/m²)	28.7 (25.4, 32.7)	28.7 (25.2, 32.8)
Normal weight (%)	261 (21.5)	84 (22.7)
Overweight (%)	459 (37.8)	136 (36.8)
Obesity (%)	493 (40.6)	150 (40.5)
Body fat percentage	35.8 (28.6, 40.5)	36.2 (28.5, 40.3)
Trunk fat (kg)	12.9 (9.7, 17.1)	12.7 (9.8, 17.0)
Adipokines		
Adiponectin (μg/mL)	10.4 (7.2, 16.8)	9.2 (6.2, 14.5)
Apelin (ng/mL)	1.1 (0.7, 1.7)	0.9 (0.5, 1.4)
CRP (ng/mL)	1.4 (0.6, 3.2)	1.3 (0.6, 3.4)
DPP-IV (pg/mL)	264.9 (210.3, 339.9)	294.6 (222.5, 374.6)
IL-18 (pg/mL)	177.4 (67.7, 301.2)	126.6 (15.7, 301.2)
IL-1β (pg/mL)	0.6 (0.5, 0.9)	0.7 (0.6, 1.0)
IL-1Ra (pg/mL)	11.5 (6.9, 18.5)	12.7 (7.7, 19.2)
IL-6 (pg/mL)	2.9 (1.7, 5.1)	3.0 (1.8, 5.3)
Leptin (ng/mL)	14.1 (6.6, 24.9)	14.0 (6.7, 26.0)
Lipocalin (ng/mL)	63.2 (52.4, 76.6)	62.1 (50.7, 76.7)
MCP-1 (pg/mL)	107.6 (84.6, 132.7)	110.7 (89.9, 138.6)
Resistin (ng/mL)	18.0 (14.3, 23.6)	19.4 (15.0, 27.4)
SFRP4 (ng/mL)	76.1 (54.2, 107.7)	90.5 (61.9, 126.1)
SFRP5 (ng/mL)	14.6 (9.3, 22.5)	13.9 (8.4, 20.9)
TNF-α (pg/mL)	2.9 (2.1, 4.0)	3.3 (2.5, 4.5)
Visfatin (ng/mL)	13.8 (10.6, 17.9)	15.7 (12.1, 22.5)

Values shown are median (25th percentile, 75th percentile), unless otherwise noted

*Significant at P < 0.05 by Wilcoxon signed rank test.
TABLE 2 Covariate-adjusted correlations among cross-sectional (right, upper) and longitudinal rate of change (left, lower) in adipokine measures

Adiponectin	Apelin	CRP	DPP-IV	IL-18	IL-1β	IL-1Ra	IL-6	Leptin	Lipocalin	MCP-1	Resistin	SFRP4	SFRP5	TNF-α	Visfatin
Adiponectin	0.026	-0.023	-0.181	-0.082	-0.031	0.013	-0.196	0.111	-0.047	0.019	-0.193	0.785	-0.025	-0.110	
Apelin	0.076	0.076	-0.094	0.073	0.007	0.084	0.061	0.116	0.006	0.053	-0.126	0.011	-0.103	0.043	-0.124
CRP	-0.103	0.130	-0.077	0.115	-0.028	0.251	0.325	0.392	0.207	0.075	0.140	0.251	-0.167	0.161	-0.040
DPP-IV	-0.411	-0.026	-0.048	-0.036	-0.019	-0.085	-0.043	-0.043	-0.170	0.007	-0.045	-0.079	-0.029	0.019	0.116
IL-18	-0.076	0.082	0.033	0.083	-0.032	0.128	0.023	0.159	0.100	0.041	0.041	0.038	-0.084	0.147	-0.082
IL-1β	-0.099	-0.089	0.022	-0.008	0.070	0.197	0.423	-0.019	0.042	0.068	0.075	0.038	-0.012	0.310	0.012
IL-1Ra	0.062	0.242	0.270	-0.236	0.136	0.149	0.323	0.287	0.206	0.135	0.125	0.207	-0.207	0.270	-0.091
IL-6	-0.184	-0.052	0.286	0.072	0.127	0.484	0.141	0.224	0.130	0.167	0.083	0.154	-0.146	0.441	0.003
Leptin	-0.035	0.146	0.187	-0.133	0.078	0.059	0.247	0.118	0.091	0.228	0.089	0.217	-0.235	0.181	-0.061
Lipocalin	0.416	0.309	0.163	-0.368	0.083	0.022	0.316	-0.079	0.214	-0.003	0.530	0.142	-0.011	0.143	-0.176
MCP-1	0.066	0.002	0.006	-0.042	0.258	0.050	0.125	0.002	0.263	0.066	-0.020	0.070	-0.041	0.267	0.036
Resistin	0.303	0.114	0.181	-0.181	-0.043	0.005	0.113	-0.033	0.080	0.581	-0.020	0.128	-0.047	0.125	0.020
SFRP4	-0.165	-0.149	0.069	-0.038	-0.127	0.042	0.035	0.066	-0.072	-0.115	0.007	0.002	-0.023	-0.204	0.081
SFRP5	0.563	-0.164	-0.167	-0.166	0.015	-0.153	-0.157	-0.178	-0.017	0.058	-0.030	-0.056	-0.062	0.016	
TNF-α	0.053	0.037	0.226	-0.048	0.253	0.335	0.167	0.327	0.079	0.159	0.276	0.163	0.084	0.028	0.038
Visfatin	-0.315	-0.298	-0.095	0.422	0.025	-0.072	-0.294	0.070	-0.157	-0.494	0.022	-0.169	-0.002	-0.034	-0.024

Values shown are Pearson correlations (P value); bolded values significant at $P < 0.05$. Cross-sectional correlations ($n = 1,203$) adjusted for age and sex; longitudinal correlations ($n = 366$) adjusted for age, sex, and baseline body fat percentage.
	Adiponectin	Apelin	CRP	DPP-IV	IL-18	IL-1Ra	IL-6	Leptin	Lipocalin	MCP-1	Resistin	SFRP4	SFRP5	TNF-α	Visfatin
BMI															
Cross-sectional	−0.327	0.126	0.483	0.001	0.139	−0.018	0.401	0.299	0.605	0.102	0.146	0.098	0.302	−0.296	0.129
(P < 0.001)	(0.005)	(0.001)	(0.98)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.40)
Longitudinal	−0.360	0.035	0.292	0.036	0.086	−0.004	0.184	0.144	0.615	0.001	0.058	0.036	0.104	−0.372	0.058
(P < 0.001)	(0.51)	(0.001)	(0.49)	(0.11)	(0.94)	(0.001)	(0.006)	(0.001)	(0.99)	(0.28)	(0.50)	(0.048)	(0.001)	(0.28)	(0.77)
Body fat percentage															
Cross-sectional	−0.301	0.171	0.565	−0.063	0.167	−0.005	0.472	0.356	0.888	0.133	0.168	0.149	0.333	−0.282	0.181
(P < 0.001)	(0.001)	(0.001)	(0.19)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.10)
Longitudinal	−0.259	0.127	0.281	−0.038	0.012	−0.042	0.318	0.111	0.569	0.141	0.093	0.109	0.110	−0.267	−0.002
(P < 0.001)	(0.023)	(0.001)	(0.50)	(0.84)	(0.45)	(0.001)	(0.046)	(0.001)	(0.001)	(0.10)	(0.052)	(0.046)	(0.001)	(0.98)	(0.025)
Trunk fat															
Cross-sectional	−0.348	0.144	0.472	−0.029	0.136	−0.014	0.419	0.289	0.649	0.118	0.134	0.115	0.278	−0.308	0.143
(P < 0.001)	(0.001)	(0.001)	(0.36)	(0.001)	(0.64)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.09)
Longitudinal	−0.312	0.152	0.312	−0.015	0.019	−0.022	0.313	0.124	0.652	0.108	0.103	0.074	0.116	−0.375	0.005
(P < 0.001)	(0.007)	(0.001)	(0.79)	(0.74)	(0.70)	(0.001)	(0.027)	(0.001)	(0.058)	(0.07)	(0.19)	(0.038)	(0.001)	(0.94)	(0.09)

Significant associations (P < 0.05) denoted in bold font.

aAdjusted for age and sex.
bAdjusted for age, sex, and baseline body fat percentage.
The covariate-adjusted correlations among 16 adipokines are provided in Table 2. Among cross-sectional measures, leptin was moderately correlated with CRP ($\rho = 0.39$), IL-1Ra ($\rho = 0.30$), MCP-1 ($\rho = 0.23$), adiponectin ($\rho = -0.23$) and IL-6 ($\rho = 0.22$), whereas adiponectin was strongly correlated with SFRP5 ($\rho = 0.79$) and weakly correlated with all other adipokines except leptin. The longitudinal rate of change in leptin was modestly correlated with rates of change in MCP-1 ($\rho = 0.26$) and IL-1Ra ($\rho = 0.25$) but shared only weak or no correlation with most other adipokine changes over time. The rate of change in adiponectin was most strongly correlated with the rate of change in SFRP5 ($\rho = 0.56$) and was not correlated with the rate of change in leptin ($\rho = -0.04$). Pairwise adipokine correlations were similar when stratified by baseline obesity status, although correlations between cross-sectional leptin and CRP, IL-1Ra, IL-6, and TNF-α were slightly stronger among participants with obesity compared with those without obesity (Supporting Information Tables S1-S2: right, upper section). Correlations between longitudinal changes in leptin and CRP, IL-1Ra, IL-6, TNF-α, adiponectin, and SFRP5 were also appreciably stronger for individuals with obesity than for those without obesity (Supporting Information Tables S1-S2: left, lower section).

In univariate analyses of cross-sectional phenotypes, we observed that a higher BMI significantly associated with lower adiponectin ($\beta = -0.33$) and SFRP5 ($\beta = -0.30$) and higher apelin ($\beta = 0.13$), CRP ($\beta = 0.48$), IL-18 ($\beta = 0.14$), IL-1Ra ($\beta = 0.40$), IL-6 ($\beta = 0.30$), leptin ($\beta = 0.61$), lipocalin ($\beta = 0.10$), MCP-1 ($\beta = 0.15$), resistin ($\beta = 0.10$), SFRP4 ($\beta = 0.30$), and TNF-α ($\beta = 0.13$) (Table 3). No associations between BMI and DPP-IV, IL-1β, or visfatin were observed. Results were similar for DXA-measured total body fat percentage and trunk fat. Of the 13 adipokines significantly associated with baseline adiposity, we observed longitudinally increasing BMI significantly associated with rates of change in 7 adipokines: decreasing adiponectin ($\beta = -0.36$) and SFRP5 ($\beta = -0.37$) and increasing CRP ($\beta = 0.29$), IL-1Ra ($\beta = 0.18$), IL-6 ($\beta = 0.14$), leptin ($\beta = 0.62$), and SFRP4 ($\beta = 0.10$). Increasing body fat percentage and trunk fat were similarly associated with these changes in adipokines over time, although longitudinal increases in both total body and trunk fat were also significantly or marginally associated with increasing apelin ($\beta = 0.13$ and $\beta = 0.15$, respectively), lipocalin ($\beta = 0.14$ and $\beta = 0.11$, respectively), and visfatin ($\beta = -0.12$ and $\beta = -0.09$, respectively).

Multivariate analysis with CCA revealed that the observed cross-sectional univariate associations were well captured by the top canonical variate, which explained 82.6% of the shared variation between the 3 adiposity variables and the 16 adipokines (canonical correlation = 0.81, $P < 0.0001$; Figure 1A). The top adiposity component was well represented by BMI, total body fat, and trunk fat (canonical loadings $\rho = 0.92$ to 0.98), whereas the adipokine component was most represented by leptin ($\rho = 0.94$), CRP ($\rho = 0.51$), IL-1Ra ($\rho = 0.43$), adiponectin ($\rho = -0.43$), SFRP4 ($\rho = 0.34$), IL-6 ($\rho = 0.31$), and SFRP5 ($\rho = -0.28$). The joint multivariate association between adiposity and adipokines was most accounted for by

![Figure 1](https://www.obesityjournal.org/content/26/4/708/F1){:width=500}

Figure 1 Helioplots of the top canonical correlations demonstrating the joint multivariate association between adipokines (left) and adiposity (right) for (A) cross-sectional and (B) longitudinal cohorts. Plots the canonical loadings, which are analogous to the linear correlation coefficients between adipokines and the first canonical variate (left) and between adiposity and the first canonical variate (right). Length of each bar represents the strength of these correlations ranging from 1 (outer circle) to -1 (inner circle). Filled bars represent positive and open bars represent negative correlations. (A) Plot indicates that cross-sectional BMI, body fat percentage, and trunk fat are all strongly positively correlated with the first canonical variate and that CRP, IL-1Ra, IL-6, leptin, and SFRP4 are strongly positively correlated, whereas adiponectin and SFRP5 are strongly negatively correlated, with the first canonical variate. (B) Plot indicates that longitudinal changes in BMI, percent body fat, and trunk fat are all strongly positively correlated with the first canonical variate and that CRP, IL-1Ra, and leptin are strongly positively correlated, whereas adiponectin and SFRP5 are strongly negatively correlated, with the first canonical variate.
leptin, followed by CRP, IL-1Ra, and adiponectin. Greater adiposity was most associated with higher leptin, CRP, and IL-1Ra and lower adiponectin.

Similarly, the top canonical variate of the longitudinal analysis explained 78.7% of the shared variation between rates of change in adiposity and adipokines (canonical correlation = 0.71, \(P < 0.0001 \); Figure 1B). The top adiposity component was well-captured by rates of change in the 3 adiposity measures (\(\rho = 0.81-0.97 \)), and the adipokine component was most represented by rates of change in leptin (\(\rho = 0.79 \)), adiponectin (\(\rho = -0.50 \)), SFRP5 (\(\rho = -0.44 \)), CRP (\(\rho = 0.43 \)), and IL-1Ra (\(\rho = 0.32 \)). The multivariate association between changes in adiposity and adipokines over time was most accounted for by changes in leptin, followed by adiponectin, CRP, SFRP5, and IL-1Ra. Longitudinal increases in adiposity were associated with increases in leptin, CRP, and IL-1Ra and decreases in adiponectin and SFRP5 over time. Analysis of leptin-adjusted adipokines and adiposity measures confirmed the strong contribution of leptin to the multivariate association between adipokines and adiposity. After adjusting for leptin, the canonical correlation from CCA analysis in the cross-sectional and longitudinal cohorts fell from 0.81 and 0.71 to 0.49 and 0.53, respectively.

As shown in Table 1, ~40% of follow-up study participants had obesity at baseline. During follow-up, 62% increased body fat (77%, 63%, and 53% of those with normal weight, overweight, or obesity at baseline, respectively). Over time, the median (IQR) rate of change in body fat percentage for participants with normal weight, overweight, and obesity was 0.34 (0.03, 0.66), 0.13 (−0.20, 0.47), and 0.07 (−0.42, 0.43) per year, respectively (\(P < 0.001 \)). Trend for weight gain, overall and within each baseline weight status group, was similar to that for increasing body fat over time. Given the large proportion of participants with obesity at the beginning of the study and the variation in changes in weight and body fat observed by baseline BMI, we examined the univariate and multivariate association between longitudinal changes in adipokines and adiposity, stratified by baseline obesity status.

The univariate association between the rate of change in body fat percentage and the rate of change in CRP, IL-6, adiponectin, and SFRP5 significantly varied by baseline obesity status (all interaction \(P < 0.035 \); Figure 2). The interaction between the rate of change in body fat percentage and obesity status were marginally associated with rate of change in leptin and IL-1Ra (interaction \(P = 0.10 \) and 0.12, respectively; Figure 2). Increases in leptin, CRP, IL-1Ra, and
IL-6 and decreases in adiponectin and SFRP5 associated with an increasing body fat percentage over time were greater for participants with obesity than for those without obesity at baseline. The univariate longitudinal associations between each adiposity measure and each adipokine are presented in Supporting Information Table S3 (participants with obesity) and in Supporting Information Table S4 (participants without obesity). Results of the multivariate CCA analysis also indicate that the joint associations between changes in all adiposity measures and adipokines were substantially different for individuals who had obesity (Figure 3A) compared with those who did not have obesity at baseline (Figure 3B). In both groups, the top adiposity component was well characterized by rates of change in the 3 adiposity measures (obesity: r = 0.90-1.0; nonobesity: r = 0.81-0.95), although slightly less so among those in the nonobesity group, due to the greater variation in body composition changes in that group over time (median [IQR] rate of change in body fat percentage for nonobesity: 0.19 [−0.12, 0.55] per year).

The first adipokine component among individuals with obesity was most represented by rates of change in 7 adipokines: increasing leptin (r = 0.88), CRP (r = 0.70), IL-1Ra (r = 0.57), IL-6 (r = 0.34), and apelin (r = 0.30) and decreasing adiponectin (r = −0.61) and SFRP5 (r = −0.37). However, the top adipokine component among subjects without obesity was represented mainly by rates of change in only 3 adipokines: increasing leptin (r = 0.76) and decreasing SFRP5 (r = −0.44) and adiponectin (r = −0.31), with weak contributions by all other adipokines (all r < 0.12). As observed among all participants in the cross-sectional and longitudinal samples, the change in leptin most strongly contributed to the multivariate association between rates of change in adipokines and adiposity; after adjustment for leptin, the canonical correlation from CCA in the obesity and nonobesity groups fell from 0.87 and 0.62 to 0.64 and 0.46, respectively.

Discussion

In this large, Mexican-American cohort primarily composed of individuals with overweight or obesity who were at risk for T2DM, multivariate analyses of longitudinal changes in 3 adiposity measures and 16 circulating adipokines revealed that increases in adiposity were most strongly associated with increasing leptin, followed by decreasing adiponectin and SFRP5 and increasing CRP and IL-1Ra over time. Leptin, CRP, IL-1Ra, and adiponectin were also most strongly associated with adiposity measures in the cross-sectional multivariate analysis. We also observed that increasing adiposity in individuals with existing obesity was more strongly associated with a multitude of increasing pro- and decreasing anti-inflammatory adipokines than in those without obesity, supporting the notion that an adipokine imbalance continues to worsen with growing obesity over time. Furthermore, multivariate cross-sectional and longitudinal associations between adipokines and adiposity were greatly attenuated after adjustment for leptin, indicating an important role for leptin in the modulation of adipokines and their changes over time in response to increasing obesity.

Since its discovery more than 20 years ago (29), leptin has been shown to be an important regulator of food intake and energy expenditure. Early hypotheses suggested that leptin deficiency was
associated with obesity, although subsequent studies demonstrated that the majority of individuals with obesity had markedly increased plasma leptin concentrations, reflecting adipose tissue expansion (30,31). It was later demonstrated that excess circulating leptin results in resistance to its action (31,32) and upregulation of the pro-inflammatory cytokines CRP, TNF-α, and IL-6 (33,34), which in turn downregulate expression of anti-inflammatory adiponectin (35). Indeed, our results support the hypothesis that obesity fosters a pro-inflammatory state, characterized by increased leptin, CRP, and IL-6 and decreased adiponectin. Interestingly, although IL-1Ra is an IL-1 antagonist with anti-inflammatory features, we observed increased IL-1Ra with increasing adiposity. We also observed positive cross-sectional and longitudinal correlations between leptin and IL-1Ra (ρ = 0.30 and 0.25, respectively). Both findings are supported by a prior gastric bypass study in which investigators proposed that higher IL-1Ra levels in patients with obesity contribute to leptin resistance, thereby reinforcing a vicious cycle of progressive obesity and resistance to leptin (11).

In addition, we found SFRP5, a more recently identified adipokine with anti-inflammatory properties (36), to be negatively associated with adiposity at a magnitude similar to adiponectin in both cross-sectional and longitudinal analyses. Consistent with these findings, the 2 small, short-term diet/lifestyle intervention studies that have examined changes in SFRP5 in humans reported increases in SFRP5 associated with weight loss, increasing adiponectin, and a decreasing leptin/adiponectin ratio (14,15). However, neither study examined additional adipokines for assessment of their pattern of changes over time. Our findings indicate that SFRP5 shares a moderate to strong correlation with adiponectin (ρ = 0.79 and 0.56 for cross-sectional and longitudinal, respectively), and modest negative correlation with leptin, SFRP4, IL-1Ra, IL-6, and CRP (cross-sectional and longitudinal ρ = −0.15 to −0.24). Although the precise mechanism underlying decreasing SFRP5 with increasing obesity over time remains to be elucidated, it has been shown that SFRP5 is an inhibitor of Wnt5a, a molecule expressed in adipose tissue with an important role in inflammatory macrophage activation and signaling (36). SFRP1, another secreted frizzled-related protein inhibitor of Wnt5a, has been shown to increase adiponectin and reduce IL-6 and MCP-1 expression in adipocytes (37). Further investigation is needed to determine the specific role of SFRP5 in modulating pro- and anti-inflammatory adipokine imbalance in the presence of obesity and rising leptin levels.

Although our study provides important insight into the long-term changes in multiple pro- and anti-inflammatory adipokines that result from changes in adiposity over time, and indicates a key role for leptin in this process, there are adipokines and cytokines that were not measured and therefore not accounted for in this analysis. As such, it is possible that other meaningful adipokine changes are not represented. Likewise, DXA provides a direct measure of overall and region-specific body fat (i.e., trunk, limbs, head), but not of omental and subcutaneous fat, which precluded our assessment of adipokine relationships with these specific compartments. Although our study is based on a large cohort of Mexican Americans at risk for T2DM, enabling analysis of both cross-sectional and longitudinal associations, our follow-up subset was modest in size. As such, we may have been able to detect cross-sectional relationships but had limited power for detecting longitudinal associations with the same adipokine(s) in univariate analyses. Nevertheless, as many of the adipokines interact in complex pathways, analysis of only individual adiposity-adipokine relationships does not provide insight into their relative importance or interpretation. We applied CCA to capture the underlying multivariate correlation among adipokines and adiposity in order to better understand their joint relationships. This approach led us to the observation that across a wide array of adipokines, longitudinal changes in leptin most strongly account for the relationship between changes in adiposity and adipokine levels, irrespective of baseline obesity status.

In conclusion, our findings suggest that increasing adiposity contributes to a growing imbalance in pro- and anti-inflammatory adipokines over time, in which leptin may have a particularly important role. Further investigation is necessary to better understand the extent to which these adipokines, with leptin as a key driver, directly and/or indirectly influence insulin sensitivity and β-cell function, thereby mediating metabolic disease risk in Mexican Americans.

Acknowledgments

The authors thank the families who participated in the BetaGene Study and also acknowledge the efforts of our recruiting and technical staff.

© 2018 The Obesity Society

References

1. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89:2548-2556.
2. Bluher M. Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 2009;117:241-250.
3. Spalding KL, Arner E, Westerman PO, et al. Dynamics of fat cell turnover in humans. Nature 2008;453:783-787.
4. Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutrition Rev 2007;65:57-812.
5. Rodriguez A, Ezquerra S, Mendez-Gimenez L, Becerril S, Frühbeck G. Visiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol Endocrinol Metab 2015;309:E691-E714.
6. Rahl CE, Everhart JE. Leptin concentrations in the United States: relations with demographic and anthropometric measures. Am J Clin Nutr 2001;74:295-301.
7. Morimoto Y, Conroy SM, Offenberg JD, et al. Ethnic differences in serum adiponectin and C-reactive protein levels: the multiethnic cohort. Int J Obes (Lond) 2014;38:1416-1422.
8. Chang HM, Lee HJ, Park HS, et al. Effects of weight reduction on serum vaspin concentrations in obese subjects: modification by insulin resistance. Obesity (Silver Spring) 2010;18:2105-2110.
9. Mather KJ, Funahashi T, Matsuzawa Y, et al. Adiponectin, change in adiponectin, and progression to diabetes in the Diabetes Prevention Program. Diabetes 2008;57:980-986.
10. Zhang C, Luo H, Gao F, Zhang CT, Zhang R. A reduction in both visceral and subcutaneous fats contributes to increased adiponectin by lifestyle intervention in the Diabetes Prevention Program. Acta Diabetologica 2015;52:625-628.
11. Meier CA, Bobbioni E, Gabay C, Assimacopoulos-Jeannit F, Golay A, Dayer JM. IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptin? J Clin Endocrinol Metab 2002;87:1184-1188.
12. Wang X, You T, Murphy K, Lyles MF, Nicklas BJ. Addition of exercise increases plasma adiponectin and release from adipose tissue. Med Sci Sports Exerc 2015;47:2450-2455.
13. Ruth MR, Port AM, Shah M, et al. Consuming a hypercaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism 2013;62:1779-1787.
14. Schulze DM, Muller N, Neumann K, et al. Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects. PloS One 2012;7:e32437. doi:10.1371/journal.pone.003243
15. Tan X, Wang X, Chu H, Liu H, Yi X, Xiao Y. SFRP5 correlates with obesity and metabolic syndrome and increases after weight loss in children. Clin Endocrinol 2014;81:363-369.
16. Bluh M, Rudich A, Kloting N, et al. Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. *Diabetes Care* 2012;35:342-349.

17. Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. *N Engl J Med* 2011;365:1597-1604.

18. Fransson EI, Batty GD, Tabak AG, et al. Association between change in body composition and change in inflammatory markers: an 11-year follow-up in the Whitehall II Study. *J Clin Endocrinol Metab* 2010;95:5370-5374.

19. Lee CC, Lorenzo C, Haffner SM, et al. The association between change in body composition and change in inflammatory markers: an 11-year follow-up in the Whitehall II Study. *Diabetologia* 2010;53:112-120.

20. Hanley AJ, Wagenknecht LE, Norris JM, et al. Adiponectin and the incidence of type 2 diabetes in Hispanics and African Americans: the IRAS Family Study. *Diabetes Care* 2011;34:2231-2236.

21. Batsis JA, Sabahyan KR, Singh P, Bartels SJ, Somers VK, Lopez-Jimenez F. Leptin, adiposity, and mortality: results from the National Health and Nutrition Examination Survey III, 1988 to 1994. *Mayo Clin Proc* 2015;90:481-491.

22. Seven E, Husemoen LS, Sehested TS, et al. Adipocytokines, C-reactive protein, and cardiovascular disease: a population-based prospective study. *PloS One* 2015;10:e0128987. doi:10.1371/journal.pone.0128987

23. Black MH, Fingerlin TE, Allayee H, et al. Evidence of interaction between PPARG2 and HNF4A contributing to variation in insulin sensitivity in Mexican Americans. *Diabetes* 2008;57:1048-1056.

24. Xiang AH, Takayanagi M, Black MH, et al. Longitudinal changes in insulin sensitivity and beta cell function between women with and without a history of gestational diabetes mellitus. *Diabetologia* 2013;56:2753-2760.

25. Hotelling H. Relations between two sets of variates. *Biometrika* 1936;28:321-377.

26. Knapp TR. Canonical correlation analysis: a general parametric significance-testing system. *Psychol Bull* 1978;85:410-416.

27. Yeh ET, Willerson JT. Coming of age of C-reactive protein: using inflammation markers in cardiology. *Circulation* 2003;107:370-371.

28. Ridker PM. Cardiology Patient Page. C-reactive protein: a simple test to help predict risk of heart attack and stroke. *Circulation* 2003;108:e81-e85.

29. Zhang Y, Proença R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. *Nature* 1994;372:425-432.

30. Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. *N Engl J Med* 1996;334:292-295.

31. Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. *Cell* 1996;87:377-389.

32. Hamann A, Matthaei S. Regulation of energy balance by leptin. *Exp Clin Endocrinol Diabetes* 1996;104:293-300.

33. Chen K, Li F, Li J, et al. Induction of leptin resistance through direct interaction of C-reactive protein with leptin. *Nature Med* 2006;12:425-432.

34. Looffreda S, Yang SQ, Lin HZ, et al. Leptin regulates proinflammatory immune responses. *FASEB* 1998;12:57-65.

35. Bruun JM, Lin A, Verich C, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. *Am J Physiol Endocrinol Metab* 2003;285: E527-E533.

36. Ouchi N, Higuchi A, Ohashi K, et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. *Science* 2010;329:454-457.

37. Ehrlund A, Mejhert N, Lorente-Cebrian S, et al. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPs) in human adipose tissue. *J Clin Endocrinol Metab* 2013;98:E503-E508.