Measurement of antiproton production in pHe collisions at $\sqrt{s_{NN}} = 110$ GeV

LHCb collaboration†

Abstract
The cross-section for prompt antiproton production in collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest is measured with the LHCb experiment from a data set corresponding to an integrated luminosity of 0.5 nb$^{-1}$. The target is provided by injecting helium gas into the LHC beam line at the LHCb interaction point. The reported results, covering antiproton momenta between 12 and 110 GeV/c, represent the first direct determination of the antiproton production cross-section in pHe collisions, and impact the interpretation of recent results on antiproton cosmic rays from space-borne experiments.

Submitted to Phys. Rev. Lett.

© 2018 CERN for the benefit of the LHCb collaboration. [CC-BY-4.0 licence]

†Authors are listed at the end of this Letter.
The antiproton fraction in cosmic rays has been long recognized as a sensitive indirect probe for exotic astrophysical sources of antimatter, such as dark matter annihilation [1–5]. A substantial improvement in experimental accuracy for the measurement of the antiproton, \(\bar{p}\), over proton, \(p\), flux ratio has recently been achieved by the space-borne PAMELA [6] and AMS-02 [7] experiments. Antiproton production in spallation of cosmic rays in the interstellar medium, which is mainly composed of hydrogen and helium, is expected to produce a flux ratio of \(O(10^{-4})\). The observed excess of \(\bar{p}\) yields over current predictions for the known production sources [8–11] can still be accommodated within the current uncertainties. In the 10–100 GeV \(\bar{p}\) energy range, these uncertainties are dominated by the limited knowledge of the \(\bar{p}\) production cross-section in the relevant processes. To date, no direct measurements of \(\bar{p}\) production in \(pHe\) collisions have been made, and no data are available at a nucleon-nucleon center-of-mass energy of \(\sqrt{s_{\text{NN}}} \sim 100\) GeV, relevant for the production of cosmic antiprotons above 10 GeV.

This Letter reports the first measurement of prompt \(\bar{p}\) production in \(pHe\) collisions carried out with the LHCb experiment at CERN using a proton beam with an energy of 6.5 TeV impinging on a helium gas target. The forward geometry and particle identification (PID) capabilities of the LHCb detector are exploited to reconstruct antiprotons with momentum, \(p\), ranging from 12 to 110 GeV/c and transverse momentum, \(p_T\), between 0.4 and 4.0 GeV/c. The integrated luminosity is determined from the yield of elastically scattered atomic electrons.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5\), described in detail in Refs. [12, 13], conceived for heavy-flavor physics in \(pp\) collisions at the CERN LHC. The momentum of charged particles is measured to better than 1.0% for \(p < 110\) GeV/c. The silicon-strip vertex locator (VELO), which surrounds the nominal \(pp\) interaction region, allows the measurement of the minimum distance of a track to a primary vertex (PV), the impact parameter (IP), with a resolution of \((15 + 29/p_T)\) \(\mu m\), where \(p_T\) is in GeV/c. Different types of charged hadrons are distinguished using two ring-imaging Cherenkov detectors (RICH) [14], whose acceptance and performance define the \(\bar{p}\) kinematic range accessible to this study. The first RICH detector has an inner acceptance limited to \(\eta < 4.4\) and is used to identify antiprotons with momenta between 12 and 60 GeV/c. The second detector covers the range \(3 < \eta < 5\) and can actively identify antiprotons with momenta between 30 and 110 GeV/c. The scintillating-pad (SPD) detector and the electromagnetic calorimeter (ECAL) included in the calorimeter system are also used in this study.

The SMOG (System for Measuring Overlap with Gas) device [15, 16] enables the injection of gases with pressure of \(O(10^{-7})\) mbar in the beam pipe section crossing the VELO, allowing LHCb to operate as a fixed-target experiment. This analysis is performed on data specifically acquired for this measurement in May 2016. Helium gas was injected when the two beams circulating in the LHC accelerator [17] consisted of a small number, between 52 and 56, of proton bunches. The proton-beam energy of 6.5 TeV corresponds to \(\sqrt{s_{\text{NN}}} = 110.5\) GeV. To avoid background from \(pp\) collisions, the events used for this measurement were recorded when a bunch in the beam pointing toward LHCb crosses the nominal interaction region without a corresponding colliding bunch in the other beam. The online event selection consists of a hardware stage, which requires activity in the SPD detector, and a software stage requiring at least one reconstructed track in the VELO. An unbiased control sample of randomly selected events is acquired independently of this online selection.
Simulated data samples are generated for pHe collisions with EPOS-LHC [18], and for pe− normalization events with ESEPP [19]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [20] as described in Ref. [21]. Simulated collisions are uniformly distributed along the nominal beam direction z in the range $-1000 < z < +300$ mm, where $z = 0$ mm is the nominal collision point.

Events with antiproton candidates must have a reconstructed primary vertex within the fiducial region $-700 < z_{PV} < +100$ mm, where high reconstruction efficiencies are achieved for both pHe and pe− collisions. The PV position must be compatible with the beam profile and events must have fewer than 5 tracks reconstructed in the VELO with negative pseudorapidity. This selection is $(99.8 \pm 0.2)\%$ efficient for simulated reconstructed pHe vertices, while suppressing vertices from interactions with material, decays, and particle showers produced in beam-gas collisions occurring upstream of the VELO. The overlap of these backgrounds with a pHe collision, an effect not accounted for by the simulation, causes an additional inefficiency of $(2.3 \pm 0.2)\%$, measured using the unbiased control sample. The PV reconstruction efficiency for the signal events is estimated from simulation and varies with z_{PV} from 66% in the most upstream region to 97% around $z_{PV} = 0$ mm. This efficiency is sensitive to the PV track multiplicity, the angular distribution of primary tracks and the average position and profile of the beam. Imperfections in these simulated distributions are accounted for by weighting simulated events to improve the agreement with the distributions observed in data. From the resulting variations of the PV reconstruction efficiency, a relative systematic uncertainty is assigned, ranging from 1.6% to 3.3%, depending on the p kinematics.

Antiproton candidates are selected from negatively charged tracks within the acceptance of at least one of the RICH detectors. Additionally, \bar{p} candidates are required to originate from the primary vertex by requiring $\chi^2_{IP} < 12$, where χ^2_{IP} is defined as the difference in the vertex-fit χ^2 of the PV reconstructed with and without the track under consideration. The reconstruction efficiency for prompt antiprotons, ϵ_{rec}, including the detector acceptance and the tracking efficiency, is determined from simulation in three-dimensional bins of p, p_T and z_{PV}. The width of the momentum bins increases as a power law of p to have approximately an equal number of candidates in each of 18 bins. Ten p_T bins are chosen with the same criterion, while 12 uniform bins are used in z_{PV}. Bins in which ϵ_{rec} is below 25% are not used in order to reduce systematic uncertainties, effectively shortening the z_{PV} fiducial region for kinematic bins at the edges of the detector acceptance. The average value of ϵ_{rec} in the remaining bins is 61%. The tracking efficiency obtained from the simulation is corrected by a factor determined from calibration samples in pp-collision data. This correction factor is consistent with unity in all kinematic bins within its systematic uncertainty of 0.8% [22]. The z_{PV} dependence of the tracking efficiency is checked using $K^0 \rightarrow \pi^+\pi^−$ decays in the pHe sample where one of the tracks is reconstructed without using VELO information. No significant differences between data and simulation are observed. A systematic uncertainty, varying between 1.0% and 4.0% depending on η, accounts for \bar{p} hadronic interactions in the detector material, whose rate is known with 10% accuracy [22]. The efficiency of the χ^2_{IP} requirement is parameterized as a function of p_T and p, averaging to 96.1%, with a 1.0% uncertainty from the parameterization accuracy. The online selection efficiency is unity, within 10^{-5}, as determined from the unbiased control sample.

Based on studies of simulated pHe collisions, the sample of negatively charged tracks is
dominated by π^-, K^- and \bar{p} hadrons. In a small fraction of cases, 1.7% in the simulation, tracks do not correspond to the trajectories of real charged particles and are labelled as fake tracks. Particle identification is based on the response of the RICH detectors, from which two quantities are determined: the difference between the log likelihood of the proton and pion hypotheses, $\text{DLL}_{p\pi}$, and that between the proton and kaon hypotheses, DLL_{pK} [14].

Three sets of templates for each particle species are determined from simulation, from pHe data, and from pp data collected in 2016. The pHe calibration samples consist of selected $K^0_s \to \pi^+\pi^-$ decays for pions, $\Lambda \to p\pi^- (\bar{\Lambda} \to \bar{p}\pi^+)$ for (anti)protons and $\phi \to K^+K^-$ for kaons. Calibration samples in pp data also include $D^{\pm \mp} \to D^{0}(K^\mp\pi^\pm)\pi^{\mp}$ decays.

Simulation is used for the template of fake tracks. Two methods are used to determine the p fraction in each kinematic bin: a two-dimensional binned extended-maximum-likelihood fit, illustrated in Fig. 1, and a cut-and-count method [23], which uses exclusive high-purity samples selected with tight requirements for each particle species. The probability P_{ij} that a candidate of species i is classified as species j is obtained from the templates. The $4 \times 4 P_{ij}$ matrix is then inverted to derive the yield of each particle species. For each kinematic bin, the central value for the p fraction is obtained from the average of the two methods using the templates from simulation, while half the difference is used to estimate the systematic uncertainty. Bias from the imperfections of the simulated RICH response, which are visible in Fig. 1, is estimated from the average differences among the results using the three available template sets, which are used to assign an additional uncertainty, correlated among bins. The total uncertainty is typically a few percent, although larger uncertainties affect the bins at the edges of the detector acceptance.

In the simulation, the non-prompt antiprotons surviving the χ^2_{p} requirement constitute a fraction of the selected p sample varying between 1% and 3% depending on p_T. These are due to hyperon decays, in 90% of cases, or secondary interactions. This fraction is corrected by a factor 1.5 ± 0.3, to account for differences between simulation and data as determined in the region of the χ^2_p distribution dominated by hyperon decays. The resulting correction to the p yield averages to -2.4%.

Collisions on the residual gas in the LHC beam vacuum, with a pressure of $\mathcal{O}(10^{-9})$ mbar and unknown composition, can contribute to the p yield. Residual-gas analysis, performed in the absence of beam, indicates that the contamination is $\mathcal{O}(1)\%$ and is dominated by hydrogen. To evaluate this background source, including a possible beam-induced component, a control sample of beam-gas collisions was acquired before injection of the helium gas. Data collected with and without helium gas have the same vacuum pumping configuration and thus identical residual gas composition and pressure. The yield of selected events in data without helium gas, scaled according to the corresponding number of protons on target, is subtracted from the result leading to an average correction of $(-0.6 \pm 0.1)\%$, where the uncertainty accounts for the background variation over time. The average PV track multiplicity is found to be smaller in collisions without injected gas, confirming that the residual gas is dominated by hydrogen.

Since the injected gas pressure is not precisely known, the integrated luminosity of the data sample is determined from the yield of electrons from elastic scattering of the proton beam. Scattered electrons are simulated in the polar angle range $3 < \theta < 27$ mrad, outside of which they cannot be reconstructed in LHCb. The corresponding cross-section is calculated to be $184.8 \pm 1.8 \mu b$ [19], where the uncertainty is due to the proton form factors and radiative corrections. Scattered electrons are selected from events with a
Figure 1: Two-dimensional template fit to the PID distribution of negatively charged tracks for a particular bin ($21.4 < p < 24.4$ GeV/c, $1.2 < p_T < 1.5$ GeV/c). The (DLL_{pK}, $DLL_{p\pi}$) distribution, shown in the top plot, is fitted to determine the relative contribution of π^-, K^- and p particles, using simulation to determine the template distributions and the fraction of fake tracks (which are barely visible). In the bottom plot, the result of the fit is projected into the variable $\arg(DLL_{pK} + i DLL_{p\pi})$.

single reconstructed track. The electron candidate is required to have $p < 15$ GeV/c, $p_T < 0.12$ GeV/c, a polar angle in the range $11 < \theta < 21$ mrad, and to originate from the fiducial region. The longitudinal position of the scattering vertex z_{pe^-} is determined from the position of minimum approach to the beam line, with a resolution of 9 cm. The track reconstruction efficiency in the selected z_{pe^-} and θ ranges is determined from simulation to be 16.3%. A loose requirement is placed on the energy deposited in the ECAL to identify
the track as an electron. Background events that could mimic this signature, primarily from central exclusive production, are expected to be charge-symmetric, and their yield is determined from events with a single positron candidate.

Background is further suppressed by two multivariate classifiers, implemented using a BDT algorithm [24]. The first exploits the geometric and kinematic properties of the candidate electron. The second uses multiplicity variables to veto any extra activity in the event. In both cases the classifiers are trained using pe− simulated events for the signal and single-positron events from data for the background. Loose requirements are placed on the response of the BDT discriminants, with a combined efficiency of 96% for simulated pe− events. The overlap of a pe− event with another beam-gas interaction causes an additional inefficiency, measured to be (9.4 ± 0.7)% in the unbiased control sample. All distributions in background-dominated regions are consistent with the hypothesis of a charge-symmetric background. A possible asymmetry from the residual contribution of inelastic collisions, estimated from the EPOS simulation, leads to a systematic uncertainty of 1.9%. As is done for the p candidates, the unbiased control events are used to measure the online selection efficiency, (98.3 ± 0.3)%, and the data without helium gas are used to determine the contribution from scattering on residual gas, (1.0 ± 0.3)%.

The momentum distributions of the selected candidates are shown in Fig. 2 where a good agreement with the simulated pe− signal is observed after background subtrac-
tion. The low reconstruction efficiency, due to the fact that the observed electrons are predominantly produced at the edges of the LHCb acceptance and are subject to relevant energy losses by bremsstrahlung when crossing the detector material, is the major source of systematic uncertainty on the luminosity. The stability of the result is checked against additional requirements on the most critical variables, notably the number of reconstructed VELO hits and the azimuthal angle, whose distribution is strongly affected by the spectrometer magnetic field. The largest variation of the result, a relative 5.0%, is assigned as systematic uncertainty on the electron reconstruction efficiency. Taking also into account an uncertainty of 2.3% from the beam and VELO simulated geometry, the total systematic uncertainty on the luminosity is 6.0%.

The integrated pHe luminosity is determined from the efficiency-corrected yield, divided by the product of the pe\(^-\) cross-section and the helium atomic number. Gas ionization effects are found to be negligible. Avoiding any assumption on the \(z\) dependence of the gas density, the integrated luminosity is calculated with 12 \(z_{pe^-}\)-bins across the fiducial region, resulting in \(484 \pm 7 \pm 29 \mu b^{-1}\), where the first uncertainty is statistical and the second is systematic. From the knowledge of the number of delivered protons, the target gas pressure is found to be \(2.6 \times 10^{-7}\) mbar, which is compatible with the expected helium pressure.

Table 1 presents the list of uncertainties on the \(\bar{p}\) cross-section measurement, categorized into correlated and uncorrelated sources among kinematic bins. The correlated systematic uncertainty is dominated by the uncertainty on the luminosity determination. The net effect of migration between kinematic bins due to resolution effects is found to be negligible. A major difference between the fixed-target configuration and the standard pp-collision data taking in LHCb is the extension of the luminous region. As a consequence, the result is checked to be independent of \(z_{PV}\) within the quoted uncertainty in all kinematic bins.

Table 1: Relative uncertainties on the \(\bar{p}\) production cross-section. The ranges refer to the variation among kinematic bins.

Source	Range
Statistical	
\(\bar{p}\) yields	0.5 – 11% (< 2% for most bins)
Luminosity	1.5 – 2.3%
Correlated systematic	
Luminosity	6.0%
Event and PV selection	0.3%
PV reconstruction	0.4 – 2.9%
Tracking	1.3 – 4.1%
Non-prompt background	0.3 – 0.5%
Target purity	0.1%
PID	3.0 – 6.0%
Uncorrelated systematic	
Tracking	1.0%
IP cut efficiency	1.0%
PV reconstruction	1.6%
PID	0 – 36% (< 5% for most bins)
Simulated sample size	0.4 – 11% (< 2% for most bins)
Furthermore, the results do not show any significant dependence on the time of data taking.

The \(\bar{p} \) production cross-section is determined in each kinematic bin from a sample of 33.7 million reconstructed pHe collisions, yielding 1.5 million antiprotons as determined from the PID analysis. In Fig. 3 the results, integrated in different kinematic regions, are compared with the prediction of several models: EPOS-LHC, the pre-LHC EPOS version 1.99 [25], HIJING 1.38 [26], the QGSJET model II-04 [27] and its low-energy extension QGSJETII-04m, motivated by \(\bar{p} \) production in cosmic rays [28]. The results are also compared with the PYTHIA6.4 [29] prediction for \(2 \times [\sigma(pp \to pX) + \sigma(pn \to pX)] \), not including nuclear effects. Numerical values for the double-differential cross-section \(d^2\sigma/dpdp_T \) in each kinematic bin are available in Appendix A.

The total yield of pHe inelastic collisions which are visible in LHCb is determined from the yield of reconstructed primary vertices and is found to be compatible with EPOS-LHC: \(\sigma_{\text{LHCb vis}}^{\text{EPOS-LHC}} = 1.08 \pm 0.07 \pm 0.03 \), where the first uncertainty is due to the luminosity and the second to the PV reconstruction efficiency. The result indicates that the significant excess of \(\bar{p} \) production over the EPOS-LHC prediction, visible in Fig. 3, is mostly due to the \(\bar{p} \) multiplicity.

In summary, using a pHe collision data sample, corresponding to an integrated luminosity of 0.5 nb\(^{-1}\), the LHCb collaboration has performed the first measurement of antiproton production in pHe collisions. The precision is limited by systematic effects and is better than a relative 10% for most kinematic bins, well below the spread among models describing \(\bar{p} \) production in nuclear collisions. The energy scale, \(\sqrt{s_{\text{NN}}} = 110 \text{ GeV} \), and the measured range of the antiproton kinematic spectrum are crucial for interpreting the precise \(\bar{p} \) cosmic ray measurements from the PAMELA and AMS-02 experiments by improving the precision of the secondary \(\bar{p} \) cosmic ray flux prediction [11,30].

Acknowledgements

We are grateful to our colleagues from the cosmic ray community, O. Adriani, F. Donato, L. Bonechi and A. Tricomi, for suggesting this measurement, to T. Pierog and S. Ostapchenko for their advice on the theoretical models for antiproton production, and to B. Ward and A. V. Gramolin for their advice on the model and uncertainty for pe\(^-\) scattering. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and
Figure 3: Antiproton production cross-section as a function of momentum, integrated over various p_T regions. The data points are compared with predictions from theoretical models. The uncertainties on the data points are uncorrelated only, while the shaded area indicates the correlated uncertainty.
OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (USA).
A Numerical results

The numerical results for the antiproton production cross-section in each kinematic bin are reported in Table 2.

The cross-section for pHe inelastic collisions whose primary vertex can be reconstructed in LHCb (at least three primary tracks within the acceptance of the VELO detector) is measured to be

$$\sigma_{\text{vis}}^{\text{LHCb}} = (71.9 \pm 4.5 \pm 2.3) \text{mb},$$

where the first uncertainty is due to the luminosity and the second to the reconstruction efficiency. The EPOS-LHC prediction is 66.6 mb for this visible cross-section, and 118 mb for the total inelastic cross-section. The fraction of events not reconstructible in LHCb varies between 33 and 44% among the EPOS-LHC, QGSJETII-04 and HIJING models.

Table 2: Numerical results for the measured prompt \(\bar{p} \) production cross-section. The reported values are the double-differential cross-section \(\frac{d^2\sigma}{dp\,dp_T} \) in the laboratory frame, averaged over the given kinematic range of each bin. The uncertainty is split into an uncorrelated uncertainty \(\delta_{\text{uncorr}} \), and an uncertainty \(\delta_{\text{corr}} \) which is fully correlated among the kinematic bins. For both uncertainties, the systematic uncertainty, dominant for most bins, and the statistical uncertainty, are added in quadrature. The average value within each bin is also reported for \(p, p_T \) and \(x_F = \frac{2p_T^*}{\sqrt{s}} \), where \(p_T^* \) is the longitudinal \(\bar{p} \) momentum in the center-of-mass system. These average values are obtained from simulation, to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra.

\(p \) range [GeV/c]	\(p_T \) range [GeV/c]	\((p) \) [GeV/c]	\((p_T) \) [GeV/c]	\((x_F) \)	\(\frac{d^2\sigma}{dp\,dp_T} \) \[\mu b \, c^2 \, GeV^{-2} \]	\(\delta_{\text{uncorr}} \) \[\mu b \, c^2 \, GeV^{-2} \]	\(\delta_{\text{corr}} \) \[\mu b \, c^2 \, GeV^{-2} \]
12.0 – 14.0	0.6 – 0.7	12.99	0.62	-0.050	324	7	26
12.0 – 14.0	0.7 – 0.8	12.99	0.75	-0.057	241	27	19
12.0 – 14.0	0.8 – 0.9	12.99	0.85	-0.063	188	22	15
12.0 – 14.0	0.9 – 1.1	12.99	0.97	-0.073	122	15	10
12.0 – 14.0	1.1 – 1.2	12.99	1.12	-0.085	80	10	5
12.0 – 14.0	1.2 – 1.5	12.99	1.32	-0.106	38.5	2.7	2.6
12.0 – 14.0	1.5 – 2.0	12.99	1.67	-0.149	8.7	0.7	0.6
12.0 – 14.0	2.0 – 2.8	12.99	2.21	-0.236	0.77	0.11	0.05
14.0 – 16.2	0.6 – 0.7	15.09	0.62	-0.042	312	7	25
14.0 – 16.2	0.7 – 0.8	15.09	0.75	-0.048	245	7	20
14.0 – 16.2	0.8 – 0.9	15.09	0.85	-0.054	195.1	4.9	15.4
14.0 – 16.2	0.9 – 1.1	15.09	0.97	-0.062	135.2	3.4	10.6
14.0 – 16.2	1.1 – 1.2	15.09	1.12	-0.073	80.9	3.1	5.4
14.0 – 16.2	1.2 – 1.5	15.09	1.32	-0.091	40.0	1.3	2.6
14.0 – 16.2	1.5 – 2.0	15.09	1.67	-0.128	9.33	0.39	0.62
14.0 – 16.2	2.0 – 2.8	15.09	2.21	-0.202	1.10	0.11	0.07
p range	p_T range	$\langle p \rangle$	$\langle p_T \rangle$	$\langle x_F \rangle$	$\frac{d^2\sigma}{dpdp_T}$	δ_{uncorr}	δ_{corr}
-----------	--------------	-----------------	-----------------	-----------------	------------------	-----------------	-----------------
[GeV/c]	[GeV/c]	[GeV/c]	[GeV/c]	[GeV/c]	[μb/GeV²]	[μb/GeV²]	[μb/GeV²]
16.2 – 18.7	0.6 – 0.7	17.43	0.62	−0.036	281	10	22
16.2 – 18.7	0.7 – 0.8	17.43	0.75	−0.041	234	6	19
16.2 – 18.7	0.8 – 0.9	17.43	0.85	−0.046	190.2	4.7	15.1
16.2 – 18.7	0.9 – 1.1	17.43	0.97	−0.053	133.5	3.3	10.6
16.2 – 18.7	1.1 – 1.2	17.43	1.12	−0.062	81.0	2.2	5.4
16.2 – 18.7	1.2 – 1.5	17.43	1.32	−0.078	39.2	1.1	2.6
16.2 – 18.7	1.5 – 2.0	17.43	1.68	−0.110	10.44	0.40	0.69
16.2 – 18.7	2.0 – 2.8	17.43	2.21	−0.174	1.03	0.09	0.07
18.7 – 21.4	0.6 – 0.7	20.03	0.62	−0.031	277	19	22
18.7 – 21.4	0.7 – 0.8	20.03	0.75	−0.035	221	5	18
18.7 – 21.4	0.8 – 0.9	20.03	0.85	−0.039	179.1	4.5	14.2
18.7 – 21.4	0.9 – 1.1	20.03	0.97	−0.045	128.3	3.2	10.2
18.7 – 21.4	1.1 – 1.2	20.03	1.12	−0.054	82.2	2.2	5.5
18.7 – 21.4	1.2 – 1.5	20.03	1.32	−0.067	40.1	1.1	2.7
18.7 – 21.4	1.5 – 2.0	20.03	1.68	−0.095	10.44	0.39	0.69
18.7 – 21.4	2.0 – 2.8	20.03	2.22	−0.151	1.16	0.08	0.07
21.4 – 24.4	0.6 – 0.7	22.88	0.62	−0.026	278	6	22
21.4 – 24.4	0.7 – 0.8	22.88	0.75	−0.030	213	5	17
21.4 – 24.4	0.8 – 0.9	22.88	0.85	−0.034	167.2	4.2	13.3
21.4 – 24.4	0.9 – 1.1	22.88	0.97	−0.039	119.5	3.0	9.5
21.4 – 24.4	1.1 – 1.2	22.88	1.12	−0.046	78.0	2.1	5.3
21.4 – 24.4	1.2 – 1.5	22.88	1.32	−0.058	37.7	1.1	2.6
21.4 – 24.4	1.5 – 2.0	22.88	1.68	−0.083	10.38	0.36	0.68
21.4 – 24.4	2.0 – 2.8	22.88	2.22	−0.132	1.19	0.09	0.08
24.4 – 27.7	0.4 – 0.6	26.02	0.47	−0.019	519	185	44
24.4 – 27.7	0.6 – 0.7	26.02	0.62	−0.022	289	13	24
24.4 – 27.7	0.7 – 0.8	26.02	0.75	−0.025	205	5	16
24.4 – 27.7	0.8 – 0.9	26.02	0.85	−0.029	156.2	3.9	12.4
24.4 – 27.7	0.9 – 1.1	26.02	0.97	−0.033	110.6	2.7	8.8
24.4 – 27.7	1.1 – 1.2	26.02	1.12	−0.040	72.8	1.9	4.9
24.4 – 27.7	1.2 – 1.5	26.02	1.32	−0.050	37.0	1.0	2.5
24.4 – 27.7	1.5 – 2.0	26.02	1.68	−0.072	9.94	0.33	0.67
24.4 – 27.7	2.0 – 2.8	26.02	2.23	−0.116	1.29	0.08	0.08
27.7 – 31.4	0.4 – 0.6	29.52	0.47	−0.015	451	116	38
27.7 – 31.4	0.6 – 0.7	29.52	0.62	−0.018	318	45	27
27.7 – 31.4	0.7 – 0.8	29.52	0.75	−0.021	219	5	18
27.7 – 31.4	0.8 – 0.9	29.52	0.85	−0.024	152.2	3.8	12.2
27.7 – 31.4	0.9 – 1.1	29.52	0.97	−0.028	103.5	2.6	8.2
27.7 – 31.4	1.1 – 1.2	29.52	1.12	−0.034	67.8	1.8	4.6
27.7 – 31.4	1.2 – 1.5	29.52	1.33	−0.043	33.9	1.0	2.3
27.7 – 31.4	1.5 – 2.0	29.52	1.68	−0.062	9.89	0.32	0.67
27.7 – 31.4	2.0 – 2.8	29.52	2.23	−0.101	1.28	0.08	0.08
p range	p_T range	$\langle p \rangle$	$\langle p_T \rangle$	$\langle x_F \rangle$	$\frac{d^2\sigma}{dp_T}$	δ_{uncorr}	δ_{corr}
[GeV/c]	[GeV/c]	[GeV/c]	[GeV/c]	[GeV/c]	[μb/GeV²]	[μb/GeV²]	[μb/GeV²]
---	---	---	---	---	---	---	---
31.4 – 35.5	0.4 – 0.6	33.41	0.47	−0.012	339	75	31
31.4 – 35.5	0.6 – 0.7	33.41	0.62	−0.015	274	54	23
31.4 – 35.5	0.7 – 0.8	33.41	0.75	−0.018	195	15	16
31.4 – 35.5	0.8 – 0.9	33.41	0.85	−0.020	136.4	3.7	11.0
31.4 – 35.5	0.9 – 1.1	33.41	0.97	−0.024	95.0	2.4	7.6
31.4 – 35.5	1.1 – 1.2	33.41	1.12	−0.029	62.5	1.7	4.2
31.4 – 35.5	1.2 – 1.5	33.41	1.33	−0.037	32.0	0.9	2.2
31.4 – 35.5	1.5 – 2.0	33.41	1.68	−0.054	9.58	0.31	0.64
31.4 – 35.5	2.0 – 2.8	33.41	2.23	−0.088	1.40	0.07	0.09
35.5 – 40.0	0.4 – 0.6	37.71	0.47	−0.010	267	39	25
35.5 – 40.0	0.6 – 0.7	37.71	0.62	−0.012	240	11	21
35.5 – 40.0	0.7 – 0.8	37.71	0.75	−0.015	177	13	16
35.5 – 40.0	0.8 – 0.9	37.71	0.85	−0.017	125.1	3.3	10.9
35.5 – 40.0	0.9 – 1.1	37.71	0.97	−0.020	86.9	2.2	6.0
35.5 – 40.0	1.1 – 1.2	37.71	1.12	−0.024	57.7	1.6	3.9
35.5 – 40.0	1.2 – 1.5	37.71	1.33	−0.032	30.6	0.8	2.1
35.5 – 40.0	1.5 – 2.0	37.71	1.68	−0.047	9.11	0.29	0.61
35.5 – 40.0	2.0 – 2.8	37.71	2.23	−0.077	1.34	0.07	0.09
35.5 – 40.0	2.8 – 4.0	37.71	3.06	−0.139	0.065	0.012	0.004
40.0 – 45.0	0.6 – 0.7	42.46	0.62	−0.009	192	12	17
40.0 – 45.0	0.7 – 0.8	42.46	0.75	−0.012	148	5	13
40.0 – 45.0	0.8 – 0.9	42.46	0.85	−0.014	110	7	10
40.0 – 45.0	0.9 – 1.1	42.46	0.97	−0.016	79.4	2.1	6.9
40.0 – 45.0	1.1 – 1.2	42.46	1.12	−0.020	49.8	1.4	3.4
40.0 – 45.0	1.2 – 1.5	42.46	1.33	−0.027	27.4	0.7	1.8
40.0 – 45.0	1.5 – 2.0	42.46	1.69	−0.040	8.79	0.27	0.59
40.0 – 45.0	2.0 – 2.8	42.46	2.24	−0.067	1.26	0.06	0.08
40.0 – 45.0	2.8 – 4.0	42.46	3.08	−0.124	0.059	0.010	0.004
45.0 – 50.5	0.6 – 0.7	47.70	0.62	−0.007	151.4	3.9	14.0
45.0 – 50.5	0.7 – 0.8	47.70	0.75	−0.009	130.0	3.4	11.5
45.0 – 50.5	0.8 – 0.9	47.70	0.85	−0.011	100.8	3.4	9.0
45.0 – 50.5	0.9 – 1.1	47.70	0.97	−0.013	70.8	1.9	6.3
45.0 – 50.5	1.1 – 1.2	47.70	1.12	−0.016	45.5	2.4	3.2
45.0 – 50.5	1.2 – 1.5	47.70	1.33	−0.022	23.7	0.6	1.6
45.0 – 50.5	1.5 – 2.0	47.70	1.69	−0.034	8.38	0.26	0.56
45.0 – 50.5	2.0 – 2.8	47.70	2.24	−0.058	1.29	0.06	0.09
45.0 – 50.5	2.8 – 4.0	47.70	3.09	−0.109	0.059	0.009	0.004
50.5 – 56.7	0.7 – 0.8	53.54	0.75	−0.006	109.2	3.1	9.9
50.5 – 56.7	0.8 – 0.9	53.54	0.85	−0.008	86.6	2.4	7.6
50.5 – 56.7	0.9 – 1.1	53.54	0.97	−0.010	65.8	1.8	5.8
50.5 – 56.7	1.1 – 1.2	53.54	1.12	−0.013	40.3	1.2	3.5
50.5 – 56.7	1.2 – 1.5	53.54	1.33	−0.018	21.0	0.7	1.5
50.5 – 56.7	1.5 – 2.0	53.54	1.69	−0.029	7.56	0.23	0.51
50.5 – 56.7	2.0 – 2.8	53.54	2.24	−0.051	1.18	0.05	0.08
50.5 – 56.7	2.8 – 4.0	53.54	3.09	−0.096	0.070	0.010	0.005
\begin{tabular}{cccccccc}
\hline
p range & p_T range & $\langle p \rangle$ & $\langle p_T \rangle$ & $\langle x_F \rangle$ & $\frac{d^2 \sigma}{dp dp_T}$ & δ_{uncorr} & δ_{corr} \\
[GeV/c] & [GeV/c] & [GeV/c] & [GeV/c] & & [nb GeV2/cm2] & [nb GeV2/cm2] & [nb GeV2/cm2] \\
\hline
56.7 – 63.5 & 0.8 – 0.9 & 60.04 & 0.85 & -0.005 & 74.1 & 2.2 & 6.6 \\
56.7 – 63.5 & 0.9 – 1.1 & 60.04 & 0.97 & -0.007 & 57.8 & 1.6 & 5.1 \\
56.7 – 63.5 & 1.1 – 1.2 & 60.04 & 1.12 & -0.010 & 37.0 & 1.1 & 3.3 \\
56.7 – 63.5 & 1.2 – 1.5 & 60.04 & 1.33 & -0.014 & 18.7 & 0.5 & 1.6 \\
56.7 – 63.5 & 1.5 – 2.0 & 60.04 & 1.69 & -0.024 & 6.79 & 0.21 & 0.46 \\
56.7 – 63.5 & 2.0 – 2.8 & 60.04 & 2.24 & -0.043 & 1.22 & 0.06 & 0.08 \\
56.7 – 63.5 & 2.8 – 4.0 & 60.04 & 3.09 & -0.083 & 0.071 & 0.010 & 0.005 \\
63.5 – 71.0 & 0.8 – 0.9 & 67.18 & 0.85 & -0.002 & 64.6 & 2.4 & 6.2 \\
63.5 – 71.0 & 0.9 – 1.1 & 67.18 & 0.97 & -0.004 & 51.7 & 1.5 & 4.6 \\
63.5 – 71.0 & 1.1 – 1.2 & 67.18 & 1.12 & -0.007 & 35.2 & 1.1 & 3.1 \\
63.5 – 71.0 & 1.2 – 1.5 & 67.18 & 1.33 & -0.011 & 17.7 & 1.0 & 1.6 \\
63.5 – 71.0 & 1.5 – 2.0 & 67.18 & 1.69 & -0.019 & 6.25 & 0.20 & 0.43 \\
63.5 – 71.0 & 2.0 – 2.8 & 67.18 & 2.24 & -0.037 & 1.15 & 0.05 & 0.08 \\
63.5 – 71.0 & 2.8 – 4.0 & 67.18 & 3.09 & -0.072 & 0.081 & 0.012 & 0.005 \\
71.0 – 79.3 & 0.9 – 1.1 & 75.07 & 0.97 & -0.001 & 44.0 & 1.6 & 4.1 \\
71.0 – 79.3 & 1.1 – 1.2 & 75.07 & 1.12 & -0.004 & 29.6 & 0.9 & 2.6 \\
71.0 – 79.3 & 1.2 – 1.5 & 75.07 & 1.33 & -0.007 & 16.00 & 0.48 & 1.40 \\
71.0 – 79.3 & 1.5 – 2.0 & 75.07 & 1.69 & -0.015 & 5.23 & 0.17 & 0.46 \\
71.0 – 79.3 & 2.0 – 2.8 & 75.07 & 2.24 & -0.030 & 1.02 & 0.05 & 0.07 \\
71.0 – 79.3 & 2.8 – 4.0 & 75.07 & 3.10 & -0.063 & 0.069 & 0.009 & 0.005 \\
79.3 – 88.5 & 1.1 – 1.2 & 83.81 & 1.12 & -0.001 & 25.1 & 1.1 & 2.3 \\
79.3 – 88.5 & 1.2 – 1.5 & 83.81 & 1.33 & -0.004 & 14.64 & 0.46 & 1.30 \\
79.3 – 88.5 & 1.5 – 2.0 & 83.81 & 1.69 & -0.011 & 4.75 & 0.16 & 0.42 \\
79.3 – 88.5 & 2.0 – 2.8 & 83.81 & 2.25 & -0.025 & 0.93 & 0.04 & 0.07 \\
79.3 – 88.5 & 2.8 – 4.0 & 83.81 & 3.11 & -0.054 & 0.069 & 0.008 & 0.005 \\
88.5 – 98.7 & 1.2 – 1.5 & 93.50 & 1.33 & -0.001 & 13.43 & 0.49 & 1.21 \\
88.5 – 98.7 & 1.5 – 2.0 & 93.50 & 1.69 & -0.007 & 4.41 & 0.46 & 0.39 \\
88.5 – 98.7 & 2.0 – 2.8 & 93.50 & 2.25 & -0.019 & 0.81 & 0.04 & 0.06 \\
88.5 – 98.7 & 2.8 – 4.0 & 93.50 & 3.11 & -0.046 & 0.064 & 0.011 & 0.004 \\
98.7 – 110.0 & 1.2 – 1.5 & 104.23 & 1.33 & +0.003 & 10.8 & 1.5 & 1.0 \\
98.7 – 110.0 & 1.5 – 2.0 & 104.23 & 1.69 & -0.003 & 3.83 & 0.69 & 0.34 \\
98.7 – 110.0 & 2.0 – 2.8 & 104.23 & 2.25 & -0.014 & 0.68 & 0.07 & 0.06 \\
98.7 – 110.0 & 2.8 – 4.0 & 104.23 & 3.12 & -0.038 & 0.052 & 0.008 & 0.003 \\
\hline
\end{tabular}

References

[1] T. K. Gaisser and E. H. Levy, *Astrophysical implications of cosmic-ray antiprotons*, Phys. Rev. D10 (1974) 1731.

[2] G. Steigman, *Observational tests of antimatter cosmologies*, Ann. Rev. Astron. Astrophys. 14 (1976) 339.

[3] J. Silk and M. Srednicki, *Cosmic-ray antiprotons as a probe of a photino-dominated Universe*, Phys. Rev. Lett. 53 (1984) 624.
[4] F. W. Stecker, S. Rudaz, and T. F. Walsh, *Galactic antiprotons from photinos*, Phys. Rev. Lett. 55 (1985) 2622.

[5] J. S. Hagelin and G. L. Kane, *Cosmic ray antimatter from supersymmetric dark matter*, Nucl. Phys. B263 (1986) 399.

[6] PAMELA collaboration, O. Adriani et al., *Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment*, JETP Letters 96 (2013) 621.

[7] AMS collaboration, M. Aguilar et al., *Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station*, Phys. Rev. Lett. 117 (2016) 091103.

[8] M. di Mauro, F. Donato, A. Goudelis, and P. D. Serpico, *New evaluation of the antiproton production cross section for cosmic ray studies*, Phys. Rev. D90 (2014) 085017, arXiv:1408.0288.

[9] G. Giesen et al., *AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for dark matter*, JCAP 09 (2015) 023, arXiv:1504.04276.

[10] R. Kappl, A. Reinert, and M. W. Winkler, *AMS-02 antiprotons reloaded*, JCAP 10 (2015) 034, arXiv:1506.04145.

[11] A. Reinert and M. W. Winkler, *A precision search for WIMPs with charged cosmic rays*, JCAP 1801 (2018) 055, arXiv:1712.00002.

[12] LHCb collaboration, A. A. Alves Jr. et al., *The LHCb detector at the LHC*, JINST 3 (2008) S08005.

[13] LHCb collaboration, R. Aaij et al., *LHCb detector performance*, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.

[14] M. Adinolfi et al., *Performance of the LHCb RICH detector at the LHC*, Eur. Phys. J. C73 (2013) 2431, arXiv:1211.6759.

[15] C. Barschel, *Precision luminosity measurement at LHCb with beam-gas imaging*, PhD thesis, RWTH Aachen U., 2014, CERN-THESIS-2013-301.

[16] LHCb collaboration, R. Aaij et al., *Precision luminosity measurements at LHCb*, JINST 9 (2014) P12005, arXiv:1410.0149.

[17] L. Evans and P. Bryant, *LHC Machine*, JINST 3 (2008) S08001.

[18] T. Pierog et al., *EPOS LHC: test of collective hadronization with data measured at the CERN Large Hadron Collider*, Phys. Rev. C92 (2015) 034906, arXiv:1306.0121.

[19] A. V. Gramolin et al., *A new event generator for the elastic scattering of charged leptons on protons*, J. Phys. G41 (2014) 115001, arXiv:1401.2959.
[20] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270. Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

[21] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[22] LHCb collaboration, R. Aaij et al., Measurement of the track reconstruction efficiency at LHCb, JINST 10 (2015) P02007, arXiv:1408.1251.

[23] LHCb collaboration, R. Aaij et al., Measurement of prompt hadron production ratios in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV, Eur. Phys. J. C72 (2012) 2168, arXiv:1206.5160.

[24] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.

[25] T. Pierog and K. Werner, EPOS model and ultra high energy cosmic rays, Nucl. Phys. Proc. Suppl. 196 (2009) 102, arXiv:0905.1198.

[26] M. Gyulassy and X.-N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307, arXiv:nucl-th/9502021.

[27] S. Ostapchenko, Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model, Phys. Rev. D83 (2011) 014018, arXiv:1010.1869.

[28] M. Kachelriess, I. V. Moskalenko, and S. S. Ostapchenko, New calculation of antiproton production by cosmic ray protons and nuclei, Astrophys. J. 803 (2015) 54, arXiv:1502.04158.

[29] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.

[30] M. Korsmeier, F. Donato, and M. Di Mauro, Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments, Phys. Rev. D 97 (2018) 103019, arXiv:1802.03030.
8 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
9 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
10 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
11 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
12 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
13 School of Physics, University College Dublin, Dublin, Ireland
14 INFN Sezione di Bari, Bari, Italy
15 INFN Sezione di Bologna, Bologna, Italy
16 INFN Sezione di Ferrara, Ferrara, Italy
17 INFN Sezione di Firenze, Firenze, Italy
18 Università di Firenze, Firenze, Italy
19 INFN Laboratori Nazionali di Frascati, Frascati, Italy
20 INFN Sezione di Genova, Genova, Italy
21 INFN Sezione di Milano-Bicocca, Milano, Italy
22 INFN Sezione di Milano, Milano, Italy
23 INFN Sezione di Cagliari, Monserrato, Italy
24 INFN Sezione di Padova, Padova, Italy
25 INFN Sezione di Pisa, Pisa, Italy
26 INFN Sezione di Roma Tor Vergata, Roma, Italy
27 INFN Sezione di Roma La Sapienza, Roma, Italy
28 Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
29 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
30 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
31 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
32 National Center for Nuclear Research (NCBJ), Warsaw, Poland
33 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
34 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
35 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
36 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
37 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
38 Yandex School of Data Analysis, Moscow, Russia
39 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
40 Institute for High Energy Physics (IHEP), Protvino, Russia
41 ICCUB, Universitat de Barcelona, Barcelona, Spain
42 Instituto Galego de Física de Altas Enerxíase (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
43 European Organization for Nuclear Research (CERN), Geneva, Switzerland
44 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
45 Physik-Institut, Universität Zürich, Zürich, Switzerland
46 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
47 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
48 University of Birmingham, Birmingham, United Kingdom
49 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
50 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
51 Department of Physics, University of Warwick, Coventry, United Kingdom
52 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
53 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
54 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
55 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
56 Imperial College London, London, United Kingdom
57 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
58 Department of Physics, University of Oxford, Oxford, United Kingdom
59 Massachusetts Institute of Technology, Cambridge, MA, United States
60 University of Cincinnati, Cincinnati, OH, United States
University of Maryland, College Park, MD, United States
Syracuse University, Syracuse, NY, United States
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
University of Chinese Academy of Sciences, Beijing, China, associated to
School of Physics and Technology, Wuhan University, Wuhan, China, associated to
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to
Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia, associated to
Institut für Physik, Universität Rostock, Rostock, Germany, associated to
Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to
National Research Centre Kurchatov Institute, Moscow, Russia, associated to
National University of Science and Technology "MISIS", Moscow, Russia, associated to
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to
Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to
University of Michigan, Ann Arbor, United States, associated to
Los Alamos National Laboratory (LANL), Los Alamos, United States, associated to

Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Laboratoire Leprince-Ringuet, Palaiseau, France
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Vietnam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Università degli Studi di Milano, Milano, Italy
Università di Urbino, Urbino, Italy
Università della Basilicata, Potenza, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Modena e Reggio Emilia, Modena, Italy
MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
Novosibirsk State University, Novosibirsk, Russia
National Research University Higher School of Economics, Moscow, Russia
Sezione INFN di Trieste, Trieste, Italy
Escuela Agrícola Panamericana, San Antonio de Oriente, Honduras
School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China
Physics and Micro Electronic College, Hunan University, Changsha City, China

† Deceased