A COSMOLOGY-INDEPENDENT CALIBRATION OF GAMMA-RAY BURST LUMINOSITY RELATIONS AND THE HUBBLE DIAGRAM

NAN LIANG,¹ WEI KE XIAO,¹ YUAN LU,¹ AND SHUANG NAN ZHANG¹²³
Received 2008 February 28; accepted 2008 June 4

ABSTRACT

An important concern in the application of gamma-ray bursts (GRBs) to cosmology is that the calibration of GRB luminosity/energy relations depends on the cosmological model, due to the lack of a sufficient low-redshift GRB sample. In this paper, we present a new method to calibrate GRB relations in a cosmology-independent way. Since objects at the same redshift should have the same luminosity distance, and since the distance moduli of Type Ia supernovae (SNe Ia) obtained directly from observations are completely cosmology independent, we obtain the distance modulus of a GRB at a given redshift by interpolating from the Hubble diagram of SNe Ia. Then we calibrate seven GRB relations without assuming a particular cosmological model and construct a GRB Hubble diagram to constrain cosmological parameters. From the 42 GRBs at 1.4 < z < 6.6, we obtain ΩM = 0.25 ± 0.04, ΩΛ = 0.75 ± 0.05 for the flat ΛCDM model, and for the dark energy model with a constant equation of state w0 = −1.05 ± 0.27, which is consistent with the concordance model in a 1σ confidence region.

Subject headings: cosmology: observations — gamma rays: bursts

Online material: color figures

1. INTRODUCTION

In the past decade, observations of Type Ia supernovae (SNe Ia; Riess et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999), cosmic microwave background (CMB) fluctuations (Bennett et al. 2003; Spergel et al. 2003, 2007), and large-scale structures (LSS; Tegmark et al. 2004, 2006) have been used to explore cosmology extensively. These observations are found to be consistent with the so-called concordance cosmology, in which the universe is spatially flat and contains pressureless matter and dark energy, with fractional energy densities of ΩM = 0.27 ± 0.04 and ΩΛ = 0.73 ± 0.04 (Davis et al. 2007). Observations of SN Ia provide a powerful probe in modern cosmology. Phillips (1993) found that there is an intrinsic relation between the peak luminosity and the shape of the light curve of SNe Ia. This relation and other similar luminosity relations make SNe Ia standard candles for measuring the geometry and dynamics of the universe. However, the maximum redshift of the SNe Ia which we can currently use is only about 1.7, whereas fluctuations of the CMB provide cosmological information from last scattering surface at z = 1089. Therefore, the earlier universe at higher redshift may not be well-studied without data from standardized candles in the “cosmological desert” from the SNe Ia redshift limit to z ~ 1000.

Gamma-ray bursts (GRBs) are the most intense explosions observed so far. Their high-energy photons in the gamma-ray band are almost immune to dust extinction, whereas in the case of SN Ia observations, there is extinction from the interstellar medium when optical photons propagate toward us. Moreover, GRBs are likely to occur in the high-redshift range up to at least z = 6.6 (Krimm et al. 2006); higher redshift GRBs up to z = 10 should have already been detected, although none have been identified (Lamb & Reichart 2000; Bromm & Loeb 2002, 2006; Lin et al. 2004). Thus, by using GRBs, we may explore the early universe in the high-redshift range, which is difficult to access by other cosmological probes. These advantages make GRBs attractive for cosmology research.

GRB luminosity/energy relations are connections between measurable properties of the prompt gamma-ray emission and the luminosity or energy. In recent years, several empirical GRB luminosity relations have been proposed as distance indicators (see, e.g., Ghirlanda et al. 2006a; Schaefer 2007 for reviews), such as the luminosity–spectral lag (L–τlag) relation (Norris et al. 2000), the luminosity-variability (L–V) relation (Fenimore & Ramirez-Ruiz 2000; Reichart et al. 2001), the isotropic energy–peak spectral energy (Eiso–Ep) relation (i.e., the so-called Amati relation; Amati et al. 2002), the collimation-corrected energy–peak spectral energy (Empcorr–Ep) relation (i.e., the so-called Ghirlanda relation; Ghirlanda et al. 2004a, 2004b; Firmani et al. 2005, 2006, 2007; Liang & Zhang 2005; Xu et al. 2005; Wang & Dai 2006; see also e.g., Ghirlanda et al. 2006a and Schaefer 2007 for reviews). Schaefer (2003b) derived the luminosity distances of nine GRBs with known redshifts by using two GRB luminosity relations to construct the first GRB Hubble diagram. Dai et al. (2004) considered the Ghirlanda relation with 12 bursts and proposed another approach to constrain cosmological parameters. Liang & Zhang (2005) constrained cosmological parameters and the transition redshift using the Eiso–Ep–t90 relation. More recently, Schaefer (2007) used five GRB relations calibrated with 69 GRBs by assuming two adopted cosmological models to obtain the derived distance moduli for plotting
the Hubble diagram, and joint constraints on the cosmological parameters and dark energy models have been derived in many works by combining the 69 GRB data with SNe Ia and the other cosmological probes, such as the CMB anisotropy, the baryon acoustic oscillation (BAO) peak, the X-ray gas mass fraction in clusters, the linear growth rate of perturbations, and the angular diameter distances to radio galaxies (Wright 2007; Wang et al. 2007; Li et al. 2008a; Qi et al. 2008; Daly et al. 2008). However, an important point related to the use of GRBs for cosmology is the dependence on the cosmological model in the calibration of GRB relations. In the case of SN Ia cosmology, the calibration is carried out with a sample of SNe Ia at very low redshift, where the luminosities of SNe Ia are essentially independent of any cosmological model (i.e., at \(z \leq 0.1 \), the luminosity distance has a negligible dependence on the choice of the model). However, in the case of GRBs, the observed long-GRB rate falls off rapidly at low redshifts, and some nearby GRBs may be intrinsically different (e.g., GRB 980425, GRB 031203; Norris 2002; Soderberg et al. 2004; Guetta et al. 2004; Liang & Zhang 2006a). Therefore, it is very difficult to calibrate the relations with a low-redshift sample. The relations of GRBs presented above have been calibrated by assuming a particular cosmological model (e.g., the ΛCDM model). In order to investigate cosmology, the relations of standard candles should be calibrated in a cosmological model—indeed, necessary, because the circularity problem cannot easily be avoided. Many of the works mentioned above treat the circularity problem with a statistical approach. A simultaneous fit of the parameters in the calibration curves and the cosmology is carried out to find the optimal GRB relation and the optimal cosmological model in the sense of a minimum scattering in both the luminosity relations and the Hubble diagram. Firmani et al. (2005) has also proposed a Bayesian method to get around the circularity problem. Li et al. (2008b) presented another new method to deal with the problem, using Markov chain Monte Carlo (MCMC) global fitting analysis. Instead of a hybrid sample over the whole redshift range of GRBs, Takahashi et al. (2003) first calibrated two GRB relations at low redshift \((z \leq 1) \), where distance-redshift relations have been already determined from SN Ia; they then used GRBs at high redshift \((z > 1) \) as a distance indicator. Bertolami & Silva (2006) considered the use of GRBs at \(1.5 < z < 5 \) calibrated with the bursts at \(z \leq 1.5 \) as distance markers to study the unification of dark energy and dark matter in the context of the generalized Chaplygin gas model. Schaefer (2007) made a detailed comparison between the Hubble diagram calibrated only with 37 bursts at \(z < 2 \) and the one calibrated with the data from all 69 GRBs to show that the results from fits to the GRB Hubble diagram calibrated with the hybrid sample are robust. The calibration methods above, carried out with the sample at low redshifts, have been derived from the ΛCDM model. However, we note that the circularity problem cannot be circumvented completely by means of statistical approaches, because a particular cosmology model is required in doing the joint fitting. This means that the parameters of the calibrated relations are still coupled to the cosmological parameters derived from a given cosmological model. In principle, the circularity problem can be avoided in two ways (Ghirlanda et al. 2006a): (1) through a solid physical interpretation of these relations that would fix their slope independently from cosmological model, or (2) through the calibration of these relations by several low-redshift GRBs. Recently, the possibility of calibrating standard candles using GRBs in a low dispersion in redshift near a fiducial redshift has been proposed (Lamb et al. 2005; Ghirlanda et al. 2006b). Liang & Zhang (2006b) elaborated this method further based on Bayesian theory. However, the GRB sample available now is far from what is needed to calibrate the relations in this way.

As analyzed above, due to the lack of low-redshift GRBs, the methods used in GRB luminosity relations for cosmology are different from the standard Hubble diagram method used in SN Ia cosmology. In this work, we present a new method to calibrate the GRB relations in a cosmological model—indeed, necessary, because the circularity problem cannot easily be avoided. Many of the works mentioned above treat the circularity problem with a statistical approach. A simultaneous fit of the parameters in the calibration curves and the cosmology is carried out to find the optimal GRB relation and the optimal cosmological model in the sense of a minimum scattering in both the luminosity relations and the Hubble diagram. Firmani et al. (2005) has also proposed a Bayesian method to get around the circularity problem. Li et al. (2008b) presented another new method to deal with the problem, using Markov chain Monte Carlo (MCMC) global fitting analysis. Instead of a hybrid sample over the whole redshift range of GRBs, Takahashi et al. (2003) first calibrated two GRB relations at low redshift \((z \leq 1) \), where distance-redshift relations have been already determined from SN Ia; they then used GRBs at high redshift \((z > 1) \) as a distance indicator. Bertolami & Silva (2006) considered the use of GRBs at \(1.5 < z < 5 \) calibrated with the bursts at \(z \leq 1.5 \) as distance markers to study the unification of dark energy and dark matter in the context of the generalized Chaplygin gas model. Schaefer (2007) made a detailed comparison between the Hubble diagram calibrated only with 37 bursts at \(z < 2 \) and the one calibrated with the data from all 69 GRBs to show that the results from fits to the GRB Hubble diagram calibrated with the hybrid sample are robust. The calibration methods above, carried out with the sample at low redshifts, have been derived from the ΛCDM model. However, we note that the circularity problem cannot be circumvented completely by means of statistical approaches, because a particular cosmology model is required in doing the joint fitting. This means that the parameters of the calibrated relations are still coupled to the cosmological parameters derived from a given cosmological model. In principle, the circularity problem can be avoided in two ways (Ghirlanda et al. 2006a): (1) through a solid physical interpretation of these relations that would fix their slope independently from cosmological model, or (2) through the calibration of these relations by several low-redshift GRBs. Recently, the possibility of calibrating standard candles using GRBs in a low dispersion in redshift near a fiducial redshift has been proposed (Lamb et al. 2005; Ghirlanda et al. 2006b). Liang & Zhang (2006b) elaborated this method further based on Bayesian theory. However, the GRB sample available now is far from what is needed to calibrate the relations in this way.

As analyzed above, due to the lack of low-redshift GRBs, the methods used in GRB luminosity relations for cosmology are different from the standard Hubble diagram method used in SN Ia cosmology. In this work, we present a new method to calibrate the GRB relations in a cosmological model—indepenedent way. In the case of SN Ia cosmology, the distance of nearby SNe Ia used to calibrate the luminosity relations can be obtained by measuring Cepheid variables in the same galaxy, and with other distance indicators. Thus, Cepheid variables have been regarded as the first-order standard candles for calibrating SNe Ia, the second-order standard candles. It is obvious that objects at the same redshift should have the same luminosity distance in any cosmology. For calibrating GRBs, there are so many SNe Ia (e.g., 192 SNe Ia used in Davis et al. 2007) that we can obtain the distance moduli (also the luminosity distance) at any redshift in the redshift range of SNe Ia by interpolating from SN Ia data in the Hubble diagram. Furthermore, the distance moduli of SNe Ia obtained directly from observations are completely cosmological model independent. Therefore, in the same sense as Cepheid variables and SNe Ia, if we regard SNe Ia as the first-order standard candles, we can obtain the distance moduli of GRBs in the redshift range of SNe Ia and calibrate GRB relations in a completely cosmological model—indepenedent way. Then, if we further assume that these calibrated GRB relations are still valid in the whole redshift range of GRBs, just as for SNe Ia, we can use the standard Hubble diagram method to constrain the cosmological parameters from the GRB data at high redshift obtained by utilizing the relations.

The structure of this paper is arranged as follows. In § 2, we calibrate seven GRB luminosity/energy relations with the sample at \(z \leq 1.4 \) obtained by interpolating from SN Ia data in the Hubble diagram. In § 3, we construct the Hubble diagram of GRBs obtained by using the interpolation methods and constrain cosmological parameters. Conclusions and a discussion are given in § 4.

2. CALIBRATION OF THE LUMINOSITY RELATIONS OF GRBs

We adopt the data for 192 SNe Ia (Riess et al. 2007; Wood-Vasey et al. 2007; Astier et al. 2006; Davis et al. 2007), shown in Figure 1. It is clear that for GRBs in the redshift range of SNe Ia, there are enough SN Ia data points, and the redshift intervals of the neighboring SN Ia data points are also small enough, to be able to use interpolation methods to obtain the distance moduli of GRBs. Since there is only one SN Ia point at \(z > 1.4 \) (the redshift of SN 1997ff is \(z = 1.755 \)), we initially exclude it from our SN Ia sample used to interpolate the distance moduli of GRBs in the redshift range of the SN Ia sample (191 SN Ia data at \(z \leq 1.4 \)). As the distance moduli of SN Ia data in the Hubble diagram are obtained directly from observations, with the sample at \(z \leq 1.4 \), by interpolating from the Hubble diagram of SNe Ia, we can therefore calibrate GRB luminosity relations in a completely cosmology-independent way.

In this section, we calibrate seven GRB luminosity/energy relations with the sample at \(z \leq 1.4 \), i.e., the \(\tau_{lag}-L \) relation, the \(V-L \) relation, the \(L-E_p \) relation, the \(E_{iso}^{-1}E_p \) relation, the \(\tau_{RT}-L \) relation, where \(\tau_{RT} \) is the minimum rise time in the GRB light curve (Schaefer 2007), the \(E_{iso}^{-1}E_p \) relation, and the \(E_{iso}^{-1}E_p^{-1/3} \) relation. The isotropic luminosity of a burst is calculated by

\[
L = 4\pi d_L^2 P_{bolo}.
\]
where d_L is the luminosity distance of the burst and P_{bolo} is the bolometric flux of gamma-rays in the burst. The isotropic energy released from a burst is given by

$$E_{iso} = 4\pi d_L^2 S_{bolo}(1 + z)^{-1},$$

where S_{bolo} is the bolometric fluence of gamma-rays in the burst at redshift z. The total collimation-corrected energy is then calculated by

$$E_b = F_{beam}E_{iso},$$

where the beaming factor, F_{beam} is $(1 - \cos \theta_{\phi b})$, with the jet opening angle ($\theta_{\phi b}$), which is related to the break time (t_b).

A GRB luminosity relation can be generally written in the form

$$\log y = a + b \log x,$$

where a and b are the intercept and slope of the relation, respectively; y is the luminosity (L in units of erg s$^{-1}$) or energy (E_{iso} or E_b in units of erg); x is the GRB parameters measured in the rest frame, e.g., $\tau_{90}(1 + z)^{-1}/(0.1 \text{ s})$, $V(1 + z)/0.02$, $E_p(1 + z)/(300 \text{ keV})$, $\tau_{90}(1 + z)^{-1}/(0.1 \text{ s})$, $E_p(1 + z)/(300 \text{ keV})$, for the 6 two-variable relations above. We adopt the data for these quantities from Schaefer (2007). For the one multivariable relation (i.e., E_{iso}-E_{iso}-t_b), the calibration equation is

$$\log y = a + b_1 \log x_1 + b_2 \log x_2,$$

where x_1 and x_2 are $E_p(1 + z)/(300 \text{ keV})$, $t_b/(1 + z)$ (1 day), respectively, and b_1 and b_2 are the slopes of x_1 and x_2, respectively. The error of the interpolated distance modulus of a GRB must account for the original uncertainties of the SNe Ia as well as for the uncertainties of the interpolation. When the linear interpolation is used, the error can be calculated by

$$\sigma_{\mu} = \left[\left(\frac{z_{i+1} - z}{z_{i+1} - z_i} \right)^2 \sigma_{\mu,i}^2 + \left(\frac{z - z_i}{z_{i+1} - z_i} \right)^2 \sigma_{\mu,i+1}^2 \right]^{1/2},$$

where σ_{μ} is the error of the interpolated distance modulus, μ is the interpolated distance modulus of a source at redshift z, $\sigma_{\mu,i}$ and $\sigma_{\mu,i+1}$ are errors of the SNe, and μ_i and μ_{i+1} are the distance moduli of the SNe at nearby redshifts z_i and z_{i+1}, respectively. When the cubic interpolation is used, the error can be calculated by

$$\sigma_{\mu} = (\Delta \mu_i^2 + \Delta \mu_{i+1}^2 + \Delta \mu_{i+2}^2 + \Delta \mu_{i+3}^2)^{1/2},$$

where $\Delta \mu_i$, $\Delta \mu_{i+1}$, $\Delta \mu_{i+2}$, and $\Delta \mu_{i+3}$ are errors of the SNe; and μ_i, μ_{i+1}, μ_{i+2}, and μ_{i+3} are the distance moduli of the SNe at the nearby redshifts z_i, z_{i+1}, z_{i+2}, and z_{i+3}:

$$\Delta \mu_i = (z_{i+1} - z)(z_{i+2} - z)(z_{i+3} - z)$$

$$\Delta \mu_{i+1} = (z_i - z)(z_{i+2} - z)(z_{i+3} - z)$$

$$\Delta \mu_{i+2} = (z_i - z)(z_i - z_{i+1})(z_{i+2} - z_{i+1})$$

$$\Delta \mu_{i+3} = (z_i - z)(z_i - z_{i+1})(z_{i+2} - z_{i+1}).$$

We determine the values of the intercept (a) and the slope (b) with their 1 σ uncertainties calibrated with the GRB sample at $z \leq 1.4$ by using two interpolation methods (the linear interpolation methods and the cubic interpolation method). For the 6 two-variable relations we use the same method (the bisector of the two ordinary least-squares) as used in Schaefer (2007), and for the one multivariable relation, the multiple variable regression analysis is used. The bisector of the two ordinary least-squares fit (Isobe et al. 1990) does not take the errors into account; but the use of weighted least-squares, taking into account the measurable uncertainties, results in almost identical best fits. However, taking into account the measurable uncertainties in the regression, when they are smaller than the intrinsic error, indeed will not change the fitting parameters significantly (for further discussion, see Schaefer 2007). The calibration results are summarized in Table 1, and we plot the GRB data at $z \leq 1.4$ with the distance moduli obtained by using the two interpolation methods from SN Ia data in Figure 1 for comparison. In the previous treatment, the distance moduli of GRBs are obtained by assuming a particular cosmological model with a hybrid sample in the whole redshift range of GRBs to calibrate the relations. Therefore, for comparison in Table 1 we also list the results calibrated with the same sample ($z \leq 1.4$) assuming the ΛCDM model ($w = -1$) or the Riess cosmology4 ($w = -1.31 + 1.48z$; Riess et al. 2004), which were used to calibrate the five GRB relations in Schaefer (2007). The calibration results obtained by using the interpolation methods are carried out with the data for only 27 GRBs at $z \leq 1.4$, namely, using data from 13, 19, 25, 12, 24, 12, and 12 GRBs for the $\tau_{90, L}$, $V(1 + z)/0.02$, E_p, E_{bolo}, t_b, E_{iso}-E_{iso}-t_b, and

4 Here we follow Schaefer (2007) in calling this particular parameterization of the equation of state the “Riess cosmology.”
Table 1
Calibration Results

Relation	Linear Interpolation Method	Cubic Interpolation Method	\(\Lambda\)CDM Model	Riess Cosmology	Schaefer (2007)					
\(\tau_{\text{iso}}-L\)	\(a = 52.22 \pm 0.09\)	\(b = -1.07 \pm 0.14\)	\(a = 52.22 \pm 0.09\)	\(b = -1.07 \pm 0.13\)	\(a = 52.15 \pm 0.10\)	\(b = -1.11 \pm 0.14\)	\(a = 52.13 \pm 0.09\)	\(b = -1.10 \pm 0.13\)	\(a = 52.26 \pm 0.06\)	\(b = -1.01 \pm 0.05\)
\(V-L\)	\(a = 52.58 \pm 0.13\)	\(b = 2.04 \pm 0.26\)	\(a = 52.59 \pm 0.13\)	\(b = 2.05 \pm 0.27\)	\(a = 52.48 \pm 0.13\)	\(b = 2.04 \pm 0.30\)	\(a = 52.47 \pm 0.13\)	\(b = 2.02 \pm 0.30\)	\(a = 52.49 \pm 0.22\)	\(b = 1.77 \pm 0.12\)
\(L-E_p\)	\(a = 52.25 \pm 0.09\)	\(b = 1.68 \pm 0.11\)	\(a = 52.26 \pm 0.09\)	\(b = 1.69 \pm 0.11\)	\(a = 52.15 \pm 0.09\)	\(b = 1.66 \pm 0.12\)	\(a = 52.15 \pm 0.09\)	\(b = 1.64 \pm 0.12\)	\(a = 52.21 \pm 0.13\)	\(b = 1.68 \pm 0.05\)
\(E_{\text{iso}}-E_p\)	\(a = 50.70 \pm 0.06\)	\(b = 1.77 \pm 0.17\)	\(a = 50.71 \pm 0.07\)	\(b = 1.79 \pm 0.18\)	\(a = 50.59 \pm 0.06\)	\(b = 1.75 \pm 0.19\)	\(a = 50.59 \pm 0.06\)	\(b = 1.73 \pm 0.19\)	\(a = 50.57 \pm 0.09\)	\(b = 1.63 \pm 0.03\)
\(r_{\text{BB}}-L\)	\(a = 52.63 \pm 0.11\)	\(b = -1.31 \pm 0.15\)	\(a = 52.64 \pm 0.11\)	\(b = -1.31 \pm 0.15\)	\(a = 52.52 \pm 0.10\)	\(b = -1.30 \pm 0.15\)	\(a = 52.51 \pm 0.10\)	\(b = -1.29 \pm 0.15\)	\(a = 52.54 \pm 0.06\)	\(b = -1.21 \pm 0.06\)
\(E_{\text{iso}}-E_p\)	\(a = 52.99 \pm 0.16\)	\(b = 1.88 \pm 0.23\)	\(a = 53.00 \pm 0.17\)	\(b = 1.90 \pm 0.23\)	\(a = 52.88 \pm 0.16\)	\(b = 1.84 \pm 0.21\)	\(a = 52.88 \pm 0.15\)	\(b = 1.81 \pm 0.20\)	\(a = 52.89 \pm 0.14\)	\(b = 1.76 \pm 0.20\)
\(E_{\text{iso}}-E_p-t_b\)	\(a = 52.83 \pm 0.10\)	\(b = 2.26 \pm 0.30\)	\(a = 52.83 \pm 0.10\)	\(b = 2.28 \pm 0.30\)	\(a = 52.73 \pm 0.10\)	\(b = 2.19 \pm 0.30\)	\(a = 52.73 \pm 0.10\)	\(b = 2.16 \pm 0.30\)	\(a = 52.74 \pm 0.10\)	\(b = 2.13 \pm 0.21\)

Note.—Calibration results (for \(a = \) intercept, \(b = \) slope), with 1\(\sigma\) uncertainties, for the seven GRB luminosity/energy relations with the sample at \(z \leq 1.4\), using two interpolation methods (the linear interpolation method and the cubic interpolation methods) directly from SN Ia data and by assuming a particular cosmological models (the \(\Lambda\)CDM model or the Riess cosmology). Only the data available from Table 4 in Schaefer (2007) are used to calibrate the seven GRB relations. For comparison, calibration results with the 69 GRBs obtained by assuming the \(\Lambda\)CDM model for the five GRB relations in Schaefer (2007) are given in the last column.

* In the slope values for the \(E_{\text{iso}}-E_p-t_b\) relation, the first line is \(b_1\), and the second line is \(b_2\).
E_{iso}-E_p-tb relations, respectively\(^5\); therefore, the uncertainties of the results are somewhat larger than those with the hybrid GRB sample.\(^6\) The linear correlation coefficients of the calibration with the sample at $z \leq 1.4$ using the cubic interpolation methods are -0.88, 0.65, 0.89, 0.94, -0.75, and 0.68 for the above 6 two-variable relations, respectively, and 0.94 for E_{iso} vs. the combined variable ($b_1 \log [E_p/(1+z)] + b_2 \log [tb/(1+z)]$) for the E_{iso}-E_p-tb relation, which shows that these correlations are significant.

From Table 1 and Figure 1, we find that the calibration results obtained using the linear interpolation methods are almost identical to the results calibrated by using the cubic interpolation method. We also find the results obtained by assuming the two cosmological models with the same sample differ only slightly from, but are still fully consistent with, those calibrated using our interpolation methods. The reason for this is easy to understand, since both cosmological models are fully compatible with SN Ia data. Nevertheless, it should be noted that the calibration results obtained using the interpolation methods directly from SN Ia data are completely cosmology independent.

3. HUBBLE DIAGRAM OF GRBs

If we further assume that GRB luminosity/energy relations do not evolve with redshift, we are able to obtain the luminosity (L) or energy (E_{iso} or E_p) of each burst at high redshift ($z > 1.4$) by utilizing the calibrated relations. Therefore, the luminosity distance (d_L) can be derived from equations (1)–(3). The uncertainty of the value of the luminosity or energy deduced from a GRB relation is

$$\sigma^2_{\log_y} = \sigma^2_a + (\sigma_b \log x)^2 + (0.4343 b \sigma_s / x)^2 + \sigma^2_{\text{sys}},$$

where σ_a, σ_b, and σ_s are 1σ uncertainty of the intercept, the slope, and the GRB measurable parameters, and σ_{sys} is the systematic error in the fitting that accounts for the extra scatter of the luminosity relations. The value of σ_{sys} can be estimated by finding the value such that a χ^2 fit to the calibration curve produces a value of reduced χ^2 of unity (Schaefer 2007). A distance modulus can be calculated as $\mu = 5 \log d_L + 25$ (where d_L is in Mpc). The propagated uncertainties will depend on whether P_{bolo} or S_{bolo} is used:

$$\sigma_\mu = [(2.5 \sigma_{\log L})^2 + (1.086 \sigma_{P_{bolo}} / P_{\text{bolo}})^2]^{1/2},$$

or

$$\sigma_\mu = [(2.5 \sigma_{\log E_{iso}})^2 + (1.086 \sigma_{S_{bolo}} / S_{\text{bolo}})^2]^{1/2},$$

and

$$\sigma_\mu = \left[(2.5 \sigma_{\log E_p})^2 + \left(\frac{1.086 \sigma_{S_{bolo}}}{S_{\text{bolo}}} \right)^2 + \left(\frac{1.086 \sigma_{F_{\text{beam}}}}{F_{\text{beam}}} \right)^2 \right]^{1/2}.$$

We use the same method as used in Schaefer (2007) to obtain the best estimate μ for each GRB, which is the weighted average of all available distance moduli. The derived distance modulus for each GRB is

$$\mu = \frac{\sum_i \mu_i / \sigma^2_{\mu_i}}{\sum_i \sigma^2_{\mu_i}},$$

with its uncertainty $\sigma_\mu = \left(\sum_i \sigma^2_{\mu_i} \right)^{-1/2}$, where the summations run from 1 to 5 over the five relations used in Schaefer (2007) with available data.

We have plotted the Hubble diagram of the 69 GRBs obtained using the interpolation methods in Figure 1. The 27 GRBs at $z \leq 1.4$ are obtained using two interpolation methods directly from SNe Ia data. The 42 GRB data at $z > 1.4$ are obtained by utilizing the five relations calibrated with the sample at $z \leq 1.4$ using the cubic interpolation method.

Then the cosmological parameters can be fitted by the minimum χ^2 method. The definition of χ^2 is

$$\chi^2 = \sum_{i=1}^N \frac{(\mu_{\text{th},i} - \mu_{\text{obs},i})^2}{\sigma^2_{\mu_i}},$$

where $\mu_{\text{th},i}$ is the theoretical value of distance modulus, and $\mu_{\text{obs},i}$ is the observed distance modulus with its error σ_{μ_i}. The theoretical value of the distance modulus (μ_{th}) depends on the theoretical value of luminosity distance. For the ΛCDM model, the luminosity distance is calculated by

$$d_L = \frac{c(1+z)}{H_0 \sqrt{|\Omega_k|}} \times \sinh \left[\sqrt{|\Omega_k|} \int_0^z \frac{dz}{\sqrt{(1+z)^2(1+\Omega_m z) - (z(2+z)\Omega_k)}} \right],$$

where $\Omega_k = 1 - \Omega_m - \Omega_\Lambda$, and $\sinh(x)$ is sinh for $\Omega_k > 0$, \sin for $\Omega_k < 0$, and x for $\Omega_k = 0$. For the dark energy model with a constant equation of state (w_0), the luminosity distance in a flat universe is

$$d_L = \frac{c(1+z)}{H_0} \int_0^z \frac{dz}{\sqrt{(1+z)^3 \Omega_m + (1-\Omega_m)(1+z)^{3(1+w_0)}}},$$

were we adopt $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$.

Figure 2a shows the joint confidence regions for $(\Omega_M, \Omega_\Lambda)$ in the ΛCDM model from the 42 GRB data ($z > 1.4$) obtained by utilizing the five relations calibrated with the sample at $z \leq 1.4$ using the cubic interpolation method. The 1 σ confidence region is $(\Omega_M, \Omega_\Lambda) = (0.25^{+0.07}_{-0.08}, 0.68^{+0.04}_{-0.04})$ with $\chi^2_{\text{min}} = 44.40$ for 40 degrees of freedom. For a flat universe, we obtain $\Omega_M = 0.25^{+0.04}_{-0.05}$ and $\Omega_\Lambda = 0.75^{+0.05}_{-0.04}$, which is consistent with the concordance model $(\Omega_M = 0.27, \Omega_\Lambda = 0.73)$ in the 1 σ confidence region. From equation (14), it is obvious that for the ΛCDM model, the theoretical value of the luminosity distance mainly depends on Ω_M at higher redshift, and strongly depends on Ω_Λ at lower redshift. Therefore, we can find that the shape of the likelihood contour of GRBs at higher redshift is almost vertical to the horizontal axis (Ω_M) compared to that of SNe Ia at lower redshift. To understand the shape of the confidence regions in the $(\Omega_M, \Omega_\Lambda)$ plane, Firmani et al. (2007) explored the behavior of the luminosity distance d_L at different redshifts z in a given cosmological parameter space. The stripe where d_L varies by 1% at $z = 3$,\(^5\)

\(^5\) For the seven relations, only data from Table 4 in Schaefer (2007) are used for the calibration. However, we note that there are more GRB data available to calibrate the E_{iso}-E_p-tb relation.

\(^6\) Calibration results with their 1 σ uncertainty for the five GRB relations with 69 GRBs ($0.1 < z \leq 6.6$) obtained by assuming the ΛCDM model in Schaefer (2007) are also given in Table 1, for comparison.
shown in the \((\Omega_M, \Omega_\Lambda)\) plane, was almost vertical to the \(\Omega_M\) axis, which corresponds roughly to the typical redshifts \((z \sim 3)\) of the GRB sample at \(z > 1.4\). If we add the one SN Ia point (SN 1997ff at \(z = 1.755\)) at \(z > 1.4\) into our SN Ia sample used to interpolate the distance moduli of GRBs, we can calibrate the GRB relations with 36 GRBs at \(z \leq 1.76\) by using the cubic interpolation method. We find that the fitting results from the 33 GRB data \((z > 1.76)\) obtained by utilizing the relations calibrated with the sample at \(z \leq 1.76\) using the cubic interpolation method is \(\Omega_M = 0.28^{+0.07}_{-0.06}\) for a flat universe (Fig. 2b), which is consistent with the result from the 42 GRB data \((z > 1.4)\) obtained by using the cubic interpolation method. However, if the relations are calibrated with the GRB sample at \(z \leq 1.4\) assuming a particular cosmological model, we find that the fitting results for the 42 GRB data \((z > 1.4)\) obtained assuming the \(\Lambda\)CDM model or the Riess cosmology are \(\Omega_M = 0.38^{+0.07}_{-0.06}\) (Fig. 2c) or \(\Omega_M = 0.39^{+0.07}_{-0.06}\) (Fig. 2d) for a flat universe, which are systematically higher than \(\Omega_M = 0.27^{+0.04}_{-0.04}\) beyond a 1 \(\sigma\) deviation.

Figure 3 shows likelihood contours in the \((\Omega_M, w_0)\) plane in the dark energy model with a constant \(w_0\) for a flat universe from the 42 GRB data \((z > 1.4)\) obtained by utilizing the five relations calibrated with the sample at \(z \leq 1.4\) using the cubic interpolation method. The best-fit values are \(\Omega_M = 0.25, w_0 = -0.95\) for a prior of \(\Omega_M = 0.27\), we obtain \(w_0 = -1.05^{+0.27}_{-0.40}\) which is consistent with the cosmological constant in a 1 \(\sigma\) confidence region.

4. SUMMARY AND DISCUSSION

With the basic assumption that objects at the same redshift should have the same luminosity distance, we can obtain the distance modulus of a GRB at given redshift by interpolating from the Hubble diagram of SNe Ia at \(z \leq 1.4\). Since the distance modulus of SN Ia is completely cosmological model independent, the GRB luminosity relations can be calibrated in a completely cosmology-independent way. Instead of a hybrid sample in the whole redshift range of GRBs used in most prior treatments, we choose the GRB sample only in the redshift range of SNe Ia to calibrate the relations. We find there are not significant differences between the calibration results obtained using our interpolation methods and those calibrated assuming one particular cosmological model (the \(\Lambda\)CDM model or the Riess cosmology) with the same sample at \(z \leq 1.4\). This is not surprising, since the two cosmological models are consistent with the SN Ia data. Therefore, the GRB luminosity relations calibrated from the cosmological models should not be far from the true ones. However, we stress again that the luminosity relations we obtain here are completely cosmological model independent.

In order to constrain the cosmological parameters, we have applied the calibrated relations to GRB data at high redshifts. Since our method does not depend on a particular cosmological model, when we calibrate the parameters of GRB luminosity relations, the so-called circularity problem can be completely avoided. We construct the GRB Hubble diagram and constrain cosmological parameters by the minimum \(\chi^2\) method, as in SN Ia cosmology. From the 42 GRB data \((z > 1.4)\) obtained by our interpolation method, we obtain \(\Omega_M = 0.25^{+0.04}_{-0.04}\) and \(\Omega_\Lambda = 0.75^{+0.04}_{-0.04}\) for the flat \(\Lambda\)CDM model, and for the dark energy model with a constant equation of state \(w_0 = -1.05^{+0.27}_{-0.40}\) for a flat universe, which is consistent with the concordance model within the statistical error. Our result suggests the concordance model \((w_0 = -1, \Omega_M = 0.27, \Omega_\Lambda = 0.73)\), which is mainly derived from observations of SNe Ia at lower redshift, is still consistent with the GRB data at higher redshift up to \(z = 6.6\).

For the calibration of SNe Ia, the luminosity relations could evolve with redshift, in such a way that local calibrations could introduce biases (Astier et al. 2006; Schaefer 2007). However, Riess et al. (2007) failed to reveal direct evidence for SN Ia evolution from an analysis of the \(z > 1\) sample-averaged spectrum. It is possible that some unknown biases of SN Ia luminosity relations may propagate into the interpolation results and thus the
calibration results of GRB relations. Nevertheless, the distance modulus of SN Ia are obtained directly from observations, and therefore the observable distance moduli of SNe Ia are used in our interpolation method to calibrate the relations of GRBs are completely independent of any given cosmological model.

Recently, there have been discussions of possible evolution effects and selection bias in GRB relations. Li (2007) used the Amati relation as an example to test the possible cosmic evolution of GRBs and found that the fitting parameters of the relation vary systematically and significantly with the mean redshift of the GRBs. However, Ghirlanda et al. (2008) found no sign of evolution with redshift of the Amati relation, and the instrumental selection effects do not dominate for GRBs detected before the launch of the Swift satellite. Massaro et al. (2008) investigated the cosmological relation between the GRB energy index and the redshift, and presented a statistical analysis of the Amati relation searching for possible functional biases. Tsutsui et al. (2008) reported a redshift dependence of the lag-luminosity relation in 565 BASTE GRBs. Oguri & Takahashi (2006) and Schaefer (2007) discussed the gravitational lensing and Malmquist biases of GRBs, and found that the biases are small. Butler et al. (2007) claimed that the best-fit of the Amati relation presented in the Swift sample is inconsistent with the best-fit pre-Swift relation at $>5 \sigma$ significance. Butler et al. (2008) showed that the Ghirlanda relation is effectively independent of the GRB redshifts. Nevertheless, further examinations should be required for considering GRBs as standard candles for cosmological use.

Because of the small GRB sample used to constrain the cosmology, the present method provides no more accurate cosmological parameter constraints than the previous works where the GRB and SN Ia samples were used jointly. For example, Wang et al. (2007) presented constraints on the cosmological parameters by combining the 69 GRB data with the other cosmological probes to get $\Omega_{M} = 0.27 \pm 0.02$. However, our main point is not on improvement of the “nominal statistical” error; rather, we emphasize that our method avoids the circularity problem more clearly than previous cosmology-dependent calibration methods. Therefore, our results for these GRB relations are less dependent on prior cosmological models.

We thank Hao Wei, Pu-Xun Wu, Rong-Jia Yang, Zi-Gao Dai, and En-Wei Liang for kind help and discussions. We also thank the referee for constructive suggestions and Yi-Zhong Fan for valuable comments and the mention of the reference Takahashi et al. (2003). This project was in part supported by the Ministry of Education of China, Directional Research Project of the Chinese Academy of Sciences under project KJCX2-YW-T03, and by the National Natural Science Foundation of China under grants 10521001, 10733010, and 10725313.

REFERENCES

Amati, L., et al. 2002, A&A, 390, 81
Astier, P., et al. 2006, A&A, 447, 31
Bennett, C. L., et al. 2003, ApJS, 148, 1
Bertolami, O., & Silva, P. T. 2006, MNRAS, 365, 1149
Bromm, V., & Loeb, A. 2002, ApJ, 575, 111
Bromm, V., & Loeb, A. 2006a, ApJ, 638, L67
Liang, E. W., & Zhang, B. 2005, ApJ, 633, 611
Liang, E. W., & Zhang, B. 2006a, ApJ, 638, L67
Liang, E. W., & Zhang, B. 2006b, MNRAS, 369, L37
Lin, J. R., Zhang, S. N., & Li T. P. 2004, ApJ, 605, 819
Massaro, F., et al. 2008, in AIP Conf. Proc. 1000, Gamma-Ray Bursts 2007 (Melville: AIP), 84
Norris, J. P. 2002, ApJ, 579, 386
Norris, J. P., Marani, G. F., & Bonnell, J. T. 2000, ApJ, 534, 248
Oguri, M., & Takahashi, K. 2006, Phys. Rev. D, 73, 123002
Perlmutter, S., et al. 1999, ApJ, 517, 565
Phillips, M. 1993, ApJ, 413, L105
Perlmutter, S., et al. 1999, ApJ, 517, 565
Schaefer, B. E. 2003a, ApJ, 583, L71
Schaefer, B. E. 2003b, ApJ, 583, L67
Schaefer, B. E. 2007, ApJ, 659, 98
Spergel, D. N., et al. 2003, ApJS, 148, 175
Soderberg, A. M., et al. 2004, Nature, 430, 648
Snedden, S. P., et al. 2004, ApJ, 603, 127
Soderberg, A. M., et al. 2004, Nature, 430, 648
Spergel, D. N., et al. 2003, ApJS, 148, 175
Takahashi, K., et al. 2003, preprint (astro-ph/0305260)
Tegmark, M., et al. 2004, Phys. Rev. D, 69, 103501
Tegmark, M., et al. 2004, Phys. Rev. D, 74, 123507
Tsutsui, R., et al. 2008, MNRAS, 386, L33
Wang, F. Y., & Dai, Z. G. 2006, MNRAS, 368, L37
Wang, F. Y., Dai, Z. G., & Zhou, Z. H. 2007, ApJ, 667, 1
Wood-Vasey, W. M., et al. 2007, ApJ, 666, 694
Wright, E. L. 2007, ApJ, 664, 633
Xu, D., Dai, Z. G., & Liang, E. W. 2005, ApJ, 633, 603
Yonetoku, D., et al. 2004, ApJ, 609, 935