INTRODUCTION

If a tumor suppressor gene (TSG) is altered, the respective oncogenic pathway is modified, and the development of a more deregulated cell population leading to a more aggressive tumor could be possible. Many translocation-defined tumors share the same driver gene, and at the same time, they present different histomorphology...
and biology (Chiang, 2021; Collins et al., 2022; Croce et al., 2021; Dermawan et al., 2021; Gatalica et al., 2019; Jonna et al., 2019; Kuroda et al., 2020; Misove et al., 2021; Sharma et al., 2018). We can appreciate that gene fusion is just one part of a tumor genomic landscape by taking a broader view (Hanahan & Weinberg, 2011; Rheinbay, 2020; Vogelstein et al., 2013). Available molecular data present a very complex picture. It needs a comprehensive interpretation. Identifying crucial biomolecular information and defining useful descriptive parameters is the urgent task that pathologists face. It is conceivable that in this regard, sometimes a black-box approach is taken given the complexity of genetic events involved in fusion genes expression (which includes alteration of gene structure, upstream and downstream elements, transcriptional controls, etc.), a phenomenon of chromatin fragility, the stochastic nature of the DNA damage, and current technological limitations. This study aims to review chromosomal loci in human chromosomes harboring multiple tumor suppressor genes (TSGs). Also, it serves as a proof of concept study applying rudimentary genomic neighborhood analysis by using some high-quality data published on the NTRK (NTRK1; OMIM: 191315; NTRK2; OMIM: 600456; NTRK3; OMIM: 191316), NRG1 (OMIM: 142445), and RET (OMIM: 164761) rearranged tumors with recorded patient clinical outcomes. The idea is potentially expandable and may improve bioinformatic tools to predict biology and targeted therapy response in translocation-defined tumors.

2 MATERIAL AND METHODS

The curated TSG database (Zhao et al., n.d., 2013) data were regrouped based on individual genes loci by using Genecards information (Stelzer et al., 2016). The chromosomal loci harboring at least three known TSGs were listed (Table 1). The loci containing less than three TSGs were arbitrarily scored as 0. Due to the unique biology of the chromosomes X and Y, their respective loci were excluded from the analysis. The Pubmed database was searched for papers reporting targeted treatment of the NTRK, NRG1, and RET rearranged tumors containing tumor molecular analysis employing at least two methods, with NGS being one of them. The reported NTRK, NRG1, and RET translocation partners were listed. The locus information was rendered from the Genecards database for each enlisted gene. Subsequently, the number of known TSGs in a given chromosomal locus was added based on Table 1. The co-localized TSG count for both partner genes was summed up in each tumor. Individual fusion-defined tumor groups were analyzed. The patient outcome, tumor regression score, and total TSG count were correlated. The predictive and prognostic values of the total TSG count were discussed.

3 RESULTS

The curated Texas TSG database (Zhao et al., n.d., 2013) contains 1217 TSGs at the time of writing. We were able to identify 138 loci containing at least three TSGs (Table 1). These include 21 “extremely hot” spots, with 10 to 28 TSGs identified at a given locus (Table 2). Known NTRK1, NTRK2, NTRK3, and RET translocation partners described by papers included in this study (Drilon et al., 2018, 2020, 2021; Jones et al., 2019; Wirth et al., 2020) with respective loci and the TSG count for these loci are listed in Tables 3 and 4. The NRG1 rearranged cases are discussed separately. The individual chromosomal locus TSG count ranged from 0 to 28. It seems that most of the genes involved in gene fusions map to chromosomal loci containing more than three TSGs.

3.1 NTRK

Favorable-targeted therapy response was noticed in the vast majority of cases. Furthermore, it was associated with a total TSG count equal to or below 6 (mostly four and lower). Moreover, in patients developing NTRK rearranged tumors with fusion partner genes LMNA (OMIM: 150330), TPM3 (OMIM: 191030), and ETV6 (OMIM: 600618), six cases with unfavorable-targeted therapy responses were reported. There was no correlation between the total TSG count and the clinical outcome (Table 3).

3.2 RET

Overall, 162 selpercatinib treated patients with RET rearranged thyroid carcinomas were characterized by Wirth et al. (2020) Unfortunately, in Figure S9 partner gene information is not available for the reported maximum change in tumor size. Thus, the co-localized TSG count-based analysis could not be performed.

In RET rearranged lung NSCLCs Drilon reported on clinical outcomes following selpercatinib-targeted therapy in 105 cases (Drilon et al., 2020). Tumor regression of 80% to 100% was associated with a total TSG count of 9 to 15. Interestingly, KIF5B-RET (KIF5B; OMIM: 602809) fusion with the total TSG count of 10 was associated with cases presenting up to 90% tumor regression and the others showing up to 15% tumor progression (Table 4).
3.3 | NRG1

Drilon reported on 20 patients with NRG1 rearranged NSCLC treated with afatinib (Drilon et al., 2021). The clinical outcome data on progression-free and overall survival are partly summarized in Figures 1 and 2. Based on these, statistically significant conclusions related to the total TSG count could not be made due to different

Chr. No.	Locus	Number of TSG	Chr. No.	Locus	Number of TSG	Chr. No.	Locus	Number of TSG
1	1p22	3	6	6q22	4	12	12q13	11
	1p32	5	6q23	5	12q14	3		
	1p33	3	6q24	3	12q21	3		
	1p35	6	6q25	6	12q23	8		
	1p36	17	6q27	3	12q24	12		
	1q21	3	7	7p15	3	13	13q12	12
	1q32	4	7q11	3	13q14	13		
	1q41	3	7q21	4	13q21	3		
	1q42	3	7q22	11	13q22	3		
	2p11	4	7q31	7	13q31	4		
	2p13	4	7q32	6	14	14q11	3	
	2p21	6	7q34	4	14q13	4		
	2q11	4	7q35	5	14q23	6		
	2q23	3	7q36	3	14q24	4		
	2q24	3	8	8p11	4	14q32	16	
	2q32	3	8p12	4	15	15q15	3	
	2q33	6	8p21	13	15q21	5		
	2q34	4	8p22	9	15q22	3		
	2q35	5	8p23	9	15q26	5		
3	3p21	17	8q22	4	16	16p11	7	
	3p25	5	8q24	7	16p12	4		
	3q13	4	9	9p13	5	16p13	13	
	3q23	3	9q21	6	16q12	4		
	3q26	5	9q24	4	16q13	4		
4	4q12	3	9q21	4	16q21	3		
	4q21	4	9q22	12	16q22	6		
	4q22	3	9q31	3	16q23	4		
	4q24	4	9q33	6	16q24	6		
	4q25	3	9q34	8	17	17p13	18	
	4q26	4	10p11	4	17q11	4		
	4q31	3	10p11	6	17q12	4		
	4q35	3	10q21	3	17q21	14		
5	5p13	3	10q22	4	17q25	3		
	5p15	5	10q23	4	18	18p11	4	
	5q13	3	10q24	7	18q11	4		
	5q21	4	10q25	7	18q21	9		
	5q31	16	10q26	5	19	19p13	22	
	5q32	3	11p11	6	19q13	28		
	5q35	8	11p13	4	20	p11	3	(Continues)
Table 1 (Continued)

Chr. No.	Locus	Number of TSG	Chr. No.	Locus	Number of TSG	Chr. No.	Locus	Number of TSG
6p12		4	11p15		11	q11	7	
6p21		9	11q13		11	q13	17	
6p22		3	11q22		5	21	5	
6p23		3	11q23		10	q22	5	
6p24		4	11q24		3	22	6	
6q14		3	12p12		7	q12	7	
6q21		5	12p13		6	q13	10	

Notes: In the human genome (excluding X, Y chromosomes), there are 138 TSG hot spots containing at least three TSGs identified in a curated database of 1217 TSGs. (The University of Texas, School of Biomedical Informatics TSG database, accessed December 2021).

Table 2

A summary of 21 “extremely hot” chromosomal loci with 10 to 28 individual tumor suppressor genes (TSG) co-localized to a given locus (Sourced from The University of Texas, School of Biomedical Informatics TSG database, accessed December 2021)

Locus	No of TSGs	Co-localized TSGs
1p36	17	RUNX3, E2F2, EPHA2, EXT1L, TCEB3, NR0B2, SFN, ALPL, EPHB2, RAP1GAP, RPL11, SDHB, PRDM2, ZBTB48, TP73, TNFRSF18, DFRA
3p21	17	GNAT1, MST1, ACY1, BAPI, HOA, MLH1, MST1R, SEMA3F, SEMA3B, LIMD1, DLEC1, LTF, PRKCD, SMARCC1, TDGF1, WNT5A, PLCd1
5q31	16	PCDHG3C, TGFBI, HDAC3, CXCL14, KDM3B, CSF2, EGR1, IRF1, PPP2CA, PDLM4, HINT1, MZB1, PAIP2, CXXC5, SPRY4, SPARC
7q22	11	CDK6, ACHE, EPHB4, TPFP2, AGZP1, CUX1, ARMC10, FBX13, NAPAFLD, HBP1, RINT1
8p21	13	BNP3L, EXT3L, TNFRSF10A, NKKX3-1, TRIM35, PPP3CC, DOK2, RHOBTB2, PIWIL2, MIR320A, CLU, TNFRSF10B, PDSFPL
9q22	12	GAS1, NINJ1, ROR2, SYK, NR4A3, GADD45G, FBP1, PTCH1, WNK2, MIRLET7A1, MIRLET7D, MIRLET7F1
11p15	11	ARNTL, ST5, TSG101, SAA1, ILK, PHLDA2, EIF3F, CDKN1C, NUP98, RNH1, TSPAN32
11q13	10	CSTM6, GSTP1, MEN1, PLCB3, PPP1CA, RBM4, PHOX2A, FADD, AIP, UVRAG, WNT11
11q23	10	ATM, PGR, RARRE53, SDHD, ZBTB16, PPP2R1B, TAGLN, CBL, H2AFX, THY1
12q13	11	ITGA5, CDK2, NR4A1, ITGA7, LIMA1, VDR, CBX5, ZC3H10, GLI1, GLS2, MYO1A
12q24	12	RASAL1, PRDM4, PTPN11, SH2B3, TBX5, TCHP, RIT1A, PEBP1, HS990B1, CDK2AP1, DIABLO, CHFR
13q12	12	GJB2, FLT3, KL, PDX1, IFT88, LATS2, TPT2, USP12, RASL11A, BRCA2, CDX2, PDSSB
13q14	13	TSC22D1, TRIM13, FOXO1, RB1, ARL1, KCNQG, MIR15A, MIR16-1, DLEU2, DLEU1, OLFM4, INT5S6, THSD1
14q32	16	DLK1, MEG3, Dicer1, MIR127, MIR136, MIR370, MIR493, PPP2R5C, MIR134, MIR329-1, MIR409, MIR410, MIR494, MIR487B, MIR203A
16p13	13	SOCS1, LITAF, EMP2, GRIN2A, CREBBP, IGFALS, PKD1, TSC2, AXIN1, DNAJA3, STUB1, TNFRSF12A, SLX4
17p13	18	TNFSF12, ALOX15B, SOX15, TP53, TNK1, GABARAP, XAF1, ZBTB4, ALOX15, DPH1, HIC1, MNT, PAFAH1B1, PNN1, RPA1, MYBPP1A, VPS33, SMYD4
17q21	14	BRCA1, JUP, PHB, BECN1, IKZF3, EZH1, IGFBP4, KRT19, HOXB13, NME1, STAT3, IGBP3, SPOP, NGFR
19p13	22	PIN1, MIR181C, DNMT1, DJNA1B1, SMARCA4, GADD45GIP1, MIR199A1, CN1, NOTCH3, AMH, DAPK3, GADD45B, STK11, TCF3, TNFSF9, SAFB2, ANGPT14, FZRI, SIRT6, PLK5, DnRAS1, SAFB
19q13	28	ERF, KLK10, SIRT2, CEBPA, TGFBI, ZFP36, SPINT2, PDCD5, ZNF382, ZFP82, MAP4K1, CEACAM1, LGALS7, MIA, CIC, KL6, GLTSCR2, GLTSCR1, CADM4, MIR150, BAX, IRF3, BBC3, CNOT3, PEG3, BRK1, MIRLET7E, MIR125A
20q13	17	PTPRT, HNF4A, NCOA5, ZFAS1, PTPN1, NFATC2, SALL4, CDH4, RBM38, CTCFL, MIR296, DIDO1, GATA5, MIR1-1, MIR124-3, MIR133A2, MIR941-1
22q13	10	PRR5, MYH9, ST13, MIR33A, BIK, FBLN1, PPARA, MIRLET7A3, MIRLET7B, PANX2
therapeutic regimes administered to a relatively low number of patients. The analyzed gene loci: CD74 (OMIM: 142790), SDC4 (OMIM: 600017), SLC3A2 (OMIM: 158070) contain 0, 17, and 0 TSGs, with a total TSG count of 4, 21, and 4, respectively. Jones reported on two patients with NRG1 rearranged pancreaticobiliary carcinoma with follow-up data (Jones et al., 2019) showing significant tumor regression associated with the fusion partner genes ATP1B1 (OMIM: 182330) (patient 45) and APP (OMIM: 104760) (patient 46). Those gene loci contain 0 and 5 TSGs, with a total TSG count of 4 and 9, respectively.

Table 3

Partner gene	Locus	TSG count	Driver gene	Total TSG	Tumor size change
LMNA	1q22	0	NTRK1 1q23.1 (TSG 0)	0	(+50% to −100%)
GON4L	1q22	0	NTRK1 1q23.1 (TSG 0)	0	NA
TPR	1q31	0	NTRK1 1q23.1 (TSG 0)	0	−20%
TPM3	1q21.3	3	NTRK1 1q23.1 (TSG 0)	3	(+45% to −100%)
IRF2BP2	1q42.3	3	NTRK1 1q23.1 (TSG 0)	3	−60%
PDE4DIP	1q21.2	3	NTRK1 1q23.1 (TSG 0)	3	−60%
PLEKHA6	1q32.1	4	NTRK1 1q23.1 (TSG 0)	0	NA
STRN	2p22.2	0	NTRK2 9q21.33 (TSG 4)	4	−55%
ETV6	12p13.2	6	NTRK3 15q25.3 (TSG 0)	6	(+30% to −100%)
SQSTM1	5q35.3	8	NTRK1 1q23.1 (TSG 0)	8	−90%
PPL	16p13.3	13	NTRK1 1q23.1 (TSG 0)	13	−65%
CTRC	1p36.21	17	NTRK1 1q23.1 (TSG 0)	17	−32%
TRIM63	1p36.11	17	NTRK1 1q23.1 (TSG 0)	17	−100%
TPM4	19p13.12–13.11	22	NTRK3 15q25.3 (TSG 0)	22	−75%

Abbreviation: NA, non analyzable.

Table 4

Partner gene	Locus	TSG count	Driver gene	Total TSG	Tumor size change
PRKAR1A	17q24.2	0	RET 1q11.21 (TSG 6)	6	−50%
CCDC6	10q21.2	3	RET 1q11.21 (TSG 6)	9	(−30% to −100%)
KIF5B	10p11.22	4	RET 1q11.21 (TSG 6)	10	(+15% to −90%)
RBPM4	8q12	4	RET 1q11.21 (TSG 6)	10	−90%
TRIM24	7q33-q34	4	RET 1q11.21 (TSG 6)	10	−45%
DOCK1	10q26.2	5	RET 1q11.21 (TSG 6)	11	−90%
NCOA4	10q11.22	6	RET 1q11.21 (TSG 6)	12	−80%
ARHGAPI2	10p11.22	6	RET 1q11.21 (TSG 6)	12	−60%
ERC1	12p13.33	6	RET 1q11.21 (TSG 6)	12	NA
RELCH	18q21.33	9	RET 1q11.21 (TSG 6)	15	−80%
CCDC88	11q13.1	11	RET 1q11.21 (TSG 6)	17	−35%
CLIP	12q24.31	12	RET 1q11.21 (TSG 6)	18	−70%

Assuming that the occurrence of gene fusion itself could be the “marker” of the chromothripsis-type event taking place precisely at a given gene locus, it is conceivable that chromosomal instability could lead to the alteration and dysfunction of other genes, including TSGs sharing the same chromosomal locus. Chromothripsis is a poorly understood complex genetic mechanism characterized by multiple DNA breaks leading to severe chromatin damage, including gene breaks and amplifications. It was initially reported in hematologic malignancies by Rausch
et al. (2012), Stephens et al. (2011) and recently thoroughly reviewed by Voronina et al. (2020). Presumably, it consists of different types of chromosomal events co-occurring in different genomic regions, and including extrachromosomal circular DNA recombination of an oncogene followed by the amplicon reinsertion into the human

FIGURE 1 The progression-free survival (months) of individual cases for partner genes (CD74, SDC4, and SLC3A2) of the neuregulin 1 (NRG1) rearranged non-small cell lung carcinomas (NSCLC) in larotrectinib-treated patients.

FIGURE 2 The overall survival (months) of individual cases for partner genes (CD74, SDC4, and SLC3A2) of the neuregulin 1 (NRG1) rearranged non-small cell lung carcinomas (NSCLC) in larotrectinib-treated patients.
The human genome contains at least 138 TSG enriched loci. Of those, 21 contain more than 10 TSGs. By counting and investigating co-localized TSGs at respective loci, the genomic neighborhood of partner genes in the translocation-defined tumors can be assessed. This small pilot study failed to show that the total TSG count alone can predict tumor biology and targeted therapy response. Large scale studies and probably as well more detailed multifaceted genomic neighborhood analysis might further improve the predictive value of the fusion partner gene genomic neighborhood analysis. This approach of multi-modal data integration concurs with the aims of multidisciplinary molecular tumor boards and possible future AI development.

AUTHOR CONTRIBUTIONS

Elaheh Mosaieby performed data analysis, drafted the manuscript, and contributed to its final version. Petr...
Martinek consulted the study design and contributed to the final version of the manuscript. Ondrej Ondič conceived the study, performed data collection and analysis, drafted the manuscript, and contributed to its final version. All authors read and approved the final manuscript.

ACKNOWLEDGMENT
The authors are grateful for unlimited support and the inspiring working environment at Biopicklá laboratory, Pilsen.

CONFLICT OF INTEREST
All authors have no duality of interest to declare.

ETHICAL COMPLIANCE
The ethics committee approval was not necessary for this study.

ORCID
Ondrej Ondič https://orcid.org/0000-0002-4038-5641

REFERENCES

Chiari, S. (2021). Recent advances in smooth muscle tumors with PGR and PLAG1 gene fusions and myofibroblastic uterine neoplasms. Genes, Chromosomes & Cancer, 60(3), 134–146.

Collins, K., Ramalingam, P., Euscher, E. D., Reques Llanos, A., Garcia, A., & Malpica, A. (2022). Uterine inflammatory myofibroblastic neoplasms with aggressive behavior, including an epithelioid inflammatory myofibroblastic sarcoma: A clinicopathologic study of 9 cases. The American Journal of Surgical Pathology, 46(1), 105–117.

Croce, S., Hostein, I., & McCluggage, W. G. (2021). NTRK and other recently described kinase fusion positive uterine sarcomas: A review of a group of rare neoplasms. Genes, Chromosomes & Cancer, 60, 147–159.

Davoli, T., Xu, A. W., Mengwasser, K. E., Sack, L. M., Yoon, J. C., Park, P. J., & Elledge, S. J. (2013). Cumulative haploinsufficiency and triplosensitivity drive aneuploid patterns and shape the cancer genome. Cell, 155, 948–962.

Dermawan, J. K., Zou, Y., & Antonescu, C. R. (2021). Neuregulin 1 (NRG1) fusion-positive high-grade spindle cell sarcoma: A distinct group of soft tissue tumors with metastatic potential. Genes, Chromosomes & Cancer, 61, 123–130. https://doi.org/10.1002/gcc.23008

Drilon, A., Duruisseaux, M., Han, J. Y., Ito, M., Falcon, C., Yang, S. R., Murciano-Goroff, Y. R., Chen, H., Okada, M., Molina, M. A., Wislez, M., Brun, P., Duport, C., Branden, E., Rossi, G., Schrock, A., Ali, S., Gounant, V., Magne, F., ... Cadranel, J. (2021). Clinicopathologic features and response to therapy of NRG1 fusion-driven lung cancers: The eNRGy1 global multicenter registry. Journal of Clinical Oncology, 39(25), 2791–2802.

Drilon, A., Laetsch, T. W., Kummar, S., DuBois, S. G., Lassen, U. N., Demetri, G. D., Nathenson, M., Doebeler, R. C., Farago, A. F., Pappo, A. S., Turpin, B., Dowlati, A., Brose, M. S., Mascarenhas, L., Federman, N., Berlin, J., el-Deiry, W. S., Baik, C., Deeken, J., ... Hyman, D. M. (2018). Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. The New England Journal of Medicine, 378(8), 731–739.

Drilon, A., Oxnard, G. R., Tan, D. S., Loong, H. H., Johnson, M., Gainor, J., McCoath, C. E., Gautschi, O., Besse, B., Cho, B. C., & Peled, N. (2020). Efficacy of Selpercatinib in RET fusion-positive non-small-cell lung cancer. The New England Journal of Medicine, 383(9), 813–824.

Gatalica, Z., Xiu, J., Swensen, J., & Vranic, S. (2019). Molecular characterization of cancers with NTRK gene fusions. Modern Pathology, 32(1), 147–153.

Gonzalez, D., & Stenzinger, A. (2021). Homologous recombination repair deficiency (HRD): From biology to clinical exploitation. Genes, Chromosomes & Cancer, 60(5), 299–302.

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

Horak, P., Leichsenring, J., Goldschmid, H., Kreutzfeldt, S., Kazdal, D., Teleau, V., Endris, V., Geldon, L., Allgäuer, M., Volckmar, A. L., & Dikow, N. (2022). Assigning evidence to actionability: An introduction to variant interpretation in precision cancer medicine. Genes, Chromosomes & Cancer, 61, 303–313. https://doi.org/10.1002/gcc.22987

Jones, M. R., Williamson, L. M., Topham, J. T., Lee, M. K. G., Goytain, A., Ho, J., Denroche, R. E., Jang, G., Pleasance, E., Shen, Y., Karasinska, J. M., McGhie, J., Gill, S., Lim, H. J., Moore, M. J., Wong, H. L., Ng, T., Yip, S., Zhang, W., ... Renouf, D. J. (2019). NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clinical Cancer Research, 25(15), 4674–4681.

Jonna, S., Feldman, R. A., Swensen, J., Gatalica, Z., Korn, W. M., Borghaei, H., Ma, P. C., Nieva, J. J., Spira, A. I., Vanderwalde, A. M., Wozniak, A. J., Kim, E. S., & Liu, S. V. (2019). Detection of NRG1 gene fusions in solid tumors. Clinical Cancer Research, 25, 4966–4972.

Kuroda, N., Trpkov, K., Gao, Y., Tretiakova, M., Liu, Y. J., Ulamec, M., Takeuchi, K., Agaimy, A., Przybycin, C., Magi-Galluzzi, C., Fushimi, S., Kojima, F., Sibony, M., Hang, J. F., Pan, C. C., Yilmaz, A., Siadat, F., Sugawara, E., Just, P. A., ... Hes, O. (2020). ALK rearranged renal cell carcinoma (ALK-RCC): A multi-institutional study of twelve cases with identification of novel partner genes CLIP1, KIF5B and KIAA1217. Modern Pathology, 33(12), 2564–2579.

Misové, A., Vicha, A., Zapotocky, M., Malis, J., Balko, J., Nemec, T., Szabova, J., Kyncl, M., Novakova-Kodetova, D., Stolova, L., Jencova, P., Broz, P., & Krskova, L. (2021). An unusual fusion gene EML4-ALK in a patient with congenital mesoblastic nephroma. Genes, Chromosomes & Cancer, 60(12), 837–840.

Rausch, T., Jones, D. T. W., Zapatka, M., Stütz, A. M., Zichner, T., Weischenfeldt, J., Jäger, N., Remke, M., Shih, D., Northcott, P. A., Pfaff, E., Tica, J., Wang, Q., Massimi, L., Witt, H., Bender, S., Pleier, S., Cin, H., Hawkins, C., ... Korbel, J. O. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148, 59–71.

Rheinbay, E. (2020). The genomic landscape of advanced cancer. Nature Cancer, 1, 372–373.
How to cite this article: Mosaieby, E., Martinek, P., & Ondič, O. (2022). The significance of the fusion partner gene genomic neighborhood analysis in translocation-defined tumors. Molecular Genetics & Genomic Medicine, 10, e1994. https://doi.org/10.1002/mgg3.1994