Review of Nanomaterials in Construction

C Vinodhini¹, V Rajeshkumar¹, S Anandraj¹, R Kavitha¹, S Logsehwaran¹ and C Kapildev¹
¹Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore
Plan castle associates, Tirupur
vinodhini.c@kpriet.ac.in¹, rajeshkumar.v@kpriet.ac.in¹, anandraj.s@kpriet.ac.in¹,
kavitha.r@kpriet.ac.in¹, manikandan.p@kpriet.ac.in¹, kapilcivil26492@gmail.com²

Abstract. Nano particles are minute materials ranging sizes from 1 to 100 nm. The different classes of nano particle are classified based on their sizes, shapes and properties. The fame of Nanomaterials (NMs) in methodological advancements due to their biological, chemical and physical properties are developing based on their performance. The superiority of using the different types of nanoparticles in the construction field are immense, resulting in extraordinary performance in chemical and physical properties of the modified construction material. Commonly used nanoparticles in the construction sector are copper, carbon nanotubes, titanium dioxide, silica, aluminium oxide and clay. The development of nanoparticles is observed in construction reflecting in adoptive industries, demand and production. The main objective is to analyse and study the history, types, applications and uses in construction.

Keywords: nanoparticles, construction materials, environmental implications, nanomaterial classification.

1. Introduction
In 1959, the famous physicist Richard Feynman introduced the concept of nanotechnology in the American Physical Society meeting held at the California Institute of Technology. He discussed the possibility of using atoms and converting them into nano products. Feynman discussed various ideas which was unnoticed until 1974, then the word “nanotechnology” was introduced by Norio Taniguchi about production engineering at the International Conference [1]. He initiated “top -down” approach, which means cutting of bulk material and transforming them into nanosized particles. A book was published in the title “Engines of Creation: The Coming Era of Nanotechnology”. The publications of nanotechnology strategy, inventions, discoveries, intensification of research increased after norio presented the “bottom -down” approach: creating the various forms like molecule by molecule, atom by atom [2]. Some other properties of nanomaterials are large fraction of atoms, bulk materials, low imperfections, spatial confinements and high energy.

2. Nanoparticle Classification
The different sorts of nanoparticles are classified supported the morphology, sizes, physical and chemical properties, the assorted sorts square measure supermolecule
- ceramic nanoparticles
• carbon-based nanoparticles
• semiconductor nanoparticles
• compound nanoparticles
• metal nanoparticles
• liquid nanoparticles.

2.1. Carbon-Based Nanoparticles
The two main type of materials in Carbon-based nanoparticles are: fullerenes and carbon nanotubes (CNTs) [3]. The carbon nano tubes square measure honey comb atom sheet rolled in the form of tube principally used for structural reinforcement as a result of one hundred times stronger than steel type of materials [4].
Carbon nanoparticles categorized into
• multi-walled carbon nanotubes (MWCNTs).
• single-walled carbon nanotubes (SWCNTs)
They possess difference in showing their thermal characteristics along length in conductive and through tube in nonconductive [5]. Fullerenes square measure the birthstone of carbon having a structure filled with lot of carbon atoms or cage of hollow sixty. fullerene is the structure of C-60 hollow soccer [6]. The presence of carbon atoms in the structure is the arrangement of pentangular and polygonal shape of various industrial applications measure electrical physical phenomenon, structure, high strength, and lepton affinity [7]. Figure 1 and Figure 2 shows Carbon based nanomaterial and unique form of buck balls.

![Figure 1. Carbon based nanomaterial](image1)

![Figure 2. unique form of buck balls /fullerenes (1) C_{60} and (2) C_{70}](image2)

2.2 Lipid-Based Nanoparticle
These types of nanoparticles having a diameter 10 to 100 nm spherical in form. The solid core product and matrix within soluble isotropic particles [8]. The outer core part of these nanoparticles is stabilized by emulsifiers and reactants. This type of nanoparticles shows their application in the treatment of cancer and drug usage in the medical field [9]. Figure 3 shows Lipid-Based Nanoparticle.

![Figure 3. Lipid-Based Nanoparticle.](image)

2.3 Ceramic Nanoparticles
The inorganic solids of ceramic nanoparticles contain oxides, carbides, carbonates and phosphates. They reflect often with chemical moment and show heat of resistance very high [10]. The implementation of ceramic nanoparticles shows in putrefaction of dyes, distribution of drugs, photocatalysis and mapping. They act as a drug delivery agent by dominating the characters of ceramic nanoparticles [11]. The various characters of ceramic nanoparticles like porosity, size, volume extraction relation. For a drug delivery system nanoparticle used to cure diseases like cancer, glaucoma, cancer etc. Metal nanoparticles originated from metal precursors. These types are synthesized by chemical, chemistry and chemical science strategies [12]. Metal nanoparticles reducing metal ion precursors with the help of chemical reducing agents. Their high energy nature tends to absorb little molecules [13]. Their applications are analysis areas, detection and imaging in the environmental area [14]. The various bioanalytical applications are detected and imagined. For example, gold nanoparticles area wants to be coated with the sample before analyzing SEM. Gold nanoparticles can be reinforce with electronic stream which helps the nation of America to show pictures in SEM quality. Figure 4 shows Ceramic Nanoparticle.

![Figure 4. Ceramic Nanoparticles](image)

2.4 Semiconductor Nanoparticles
Non-metals and metals are the properties of semiconductor nanoparticles. These properties show different properties in the standardization. They are available within the table in teams III-V, II-VI and IV-VI. They are utilized in water ripping applications, photocatalysis, natural philosophy devices and
photo-optics. Some examples of these type of nanoparticles square measure InAs, GaN, GaP, InP belong to cluster III-V, CdTe, ZnS, CdSe, ZnO, CdS, square measure II-VI belong to semiconductor type of nanoparticle and element square measure from cluster IV. Figure 5 shows Semiconductor nanoparticles

![Semiconductor nanoparticles](image)

Figure 5. Semiconductor nanoparticles

2.5. **Polymeric Nanoparticle**
Nano capsular or nanospheres structures of polymeric nanoparticle which is organic square-based type of nanoparticles supported in tactic preparation. A nanosphere molecule includes a grid shaped structure while the nano capsular particle has core-nut structure. The active compounds in the former and also compound square measure uniform distribution whereas within the latter the active compounds square measure trapped and interned with a compound shell. The deserving chemical compound nanoparticles square measure controlled unleash, covers the drug molecules, capacity to mix medical care and mapping, specific focusing and lot of things needed in implementing the various applications of drug delivery in medical zone. The issues of drug with chemical compound nanoparticles square measure extremely perishable and biocompatible. Figure 6 shows Semiconductor nanoparticles.

![Polymeric Nanoparticles](image)

Figure 6. Semiconductor nanoparticles

3. **Applications of tiny materials in the field**

3.1. **Carbon nanotubes**
The main advantage of carbon nanotubes is tough in mechanical property and obstruction of cracks in cement. They enhance thermal and mechanical properties of ceramics, real-time structural observance in MEMS/NEMS and results in negatron mediation of star cells.

3.2. **Silicon dioxide nanoparticle**
The advantages are high mechanical strength during the reinforcement in concrete, coolant, transmission is lightweight, and resistance of fire in ceramics. In windows, flame – proofing and anti-reflection.

3.3. **Iron chemical compound nanoparticles**
The advantages are abrasion resistant in concrete and additionally to extend compressive strength.

3.4. Titanium dioxide nanoparticles
The advantages are speedy association, inflated, and self-cleaning in concrete. The various different edges embrace anti-fogging, non-utility of electricity generation in solar cells, superhydrophilicity and fouling-resistance in windows.

3.5. Copper nanoparticles
The advantages were weldability, corrosion resistance, and formability of steel structure. Silver nanoparticles- the advantages are biocides activity in coatings and paints.

The one specific area in housing industry is concrete, specifically analysis the way to reinforce concrete to boost its mechanical performance has to be viewed.

3.6. Carbon nanotubes
The benefits of using carbon nanotubes are crack prevention in cement and mechanical durability. They enhance thermal and mechanical in real-time structural monitoring in NEMS/MEMS, ceramics, and in solar cells by detecting their effective electron mediation.

3.7. Silicon dioxide nanoparticle
They are coolant, light transmission and resist fire in ceramics. They increase with the mechanical strength of concrete. In windows, anti-reflection and flame–proofing.

3.8. Titanium dioxide nanoparticles
They increase with the properties of compressive strength, hydration level, and self-cleaning in concrete. Other types of usage are resistance of fouling in windows and formation of generating electricity in solar cells, super hydrophilicity and anti-fogging.

3.9. Silver nanoparticles
The main use of biocides in paints and coatings.

3.10. Iron oxide nanoparticles
They increase with the compressive strength property and abrasion resistant in concrete.

3.11. Copper nanoparticles
They resist to corrosion, weldability, and steel structure formation. Concrete is the main focus relevant with nanotechnology in the industry. The specific work is reinforcing concrete to improve the mechanical performance.

4. Conclusion and Recommendations
In this paper, we tend to give a review regarding NPs, origins, their sorts, and applications. thanks to their little size, NPs have giant expanse, that create them appropriate candidate for varied applications. NPs are helpful for several applications, however there are some risk in using uncontrollable usage and discharge of natural atmosphere, that ought to be contemplate to create the utilization of NPs in the convenient way and eco-friendly manner.

The future work is to envision the supply of various sorts of nanomaterials in market and their usage. additional significantly environmental issued ought to be taken under consideration before victimization of these materials for any applications. any studies relevant with properties, techniques, shapes will be viewed seriously.

References
[1] Abd Ellah, N.H., Abouelmagd, S.A., 2016. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin. Drug Deliv. pp 1–14. http://dx.doi.org/10.1080/17425247.2016.1213238.
[2] Abouelmagd, S.A., Meng, F., Kim, B.-K., Hyun, H., Yeo, Y., 2016. Tannic acid-mediated surface functionalization of polymeric nanoparticles. ACS Biomater. Sci. Eng., 6b00497 http://dx.doi.org/10.1021/acsbiomaterials.6b004.

[3] Ahmed, S., Annu, S., Yudha, S.S., 2016. Biosynthesis of gold nanoparticles: a green approach. J. Photochem. Photobiol. B: Biol. 161, pp 141–153 http://dx.doi.org/10.1016/j.jphotobiol.2016.04.034.

[4] Akhavan, O., Azimirad, R., Safa, S., Hasani, E., 2011. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 21, 9634 http://dx.doi.org/10.1039/c0jm04364h.

[5] Balasaraswathi, M., Srinivasan, K., Udayakumar, L., Sivasakthiselvan, S. and Sumithra, M.G., 2020. Big data analytic of contexts and cascading tourism for smart city. Materials Today: Proceedings.

[6] Sivakumar, P., Boopathi, C.S., Sumithra, M.G., Singh, M., Malhotra, J. and Grover, A., 2020. Ultra-high capacity long-haul PDM-16-QAM-based WDM-FSO transmission system using coherent detection and digital signal processing. Optical and Quantum Electronics. 52(11), pp.1-18.

[7] Ali, S., Khan, I., Khan, S.A., Sohail, M., Ahmed, R., Rehman, A., Ur Ansari, M.S., Morsy, M.A., 2017. Electrocatalytic performance of Ni@Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. J. Electroanal. Chem. 795, pp 17–25 http://dx.doi.org/10.1016/j.jelechem.2017.04.040.

[8] Aqel, A., El-Nour, K.M.M.A., Ammar, R.A.A., Al-Warthan, A., 2012. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem. 5, pp 1-23 http://dx.doi.org/10.1016/j.arabjc.2010.08.022.

[9] AshaRani, P.V., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S., 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3, pp 279–290 http://dx.doi.org/10.1021/nn800596w.

[10] Astefanei, A., Nuñez, O., Galceran, M.T., 2015. Characterisation and determination of fullerenes: a critical review. Anal. Chim. Acta 882, pp 1–21 http://dx.doi.org/10.1016/j.aca.2015.03.025.

[11] Avasare, V., Zhang, Z., Avasare, D., Khan, I., Quraiash, A., 2015. Room-temperature synthesis of TiO2 nanospheres and their solar-driven photoelectrochemical hydrogen production. Int. J. Energy Res. 39, pp 1714–1719 http://dx.doi.org/10.1002/er.3372.

[12] Bahadur, H., Maqbool, F., Niazi, K., Abdollahi, M., 2016. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J. 20, pp 1–11 http://dx.doi.org/10.7508/ibj.2016.01.001.

[13] K.S. Elango and V. Revathi, Mechanical and durability studies on pervious concrete using different types of binders, Romanian Journal of Materials, 50 (2) pp. 258 -267, 2020.

[14] V. Kavinkumar, S. Elavarasan, S. Anandaraj, R. Dharmaraj, Development of subgrade layer using scrap tire and stabilised expansive soil, Materials Today Proceedings, DOI: https://doi.org/10.1016/j.matpr.2020.06.188