Sharp inequalities of various metrics on the classes of functions with given comparison function

Abstract. For any $q > p > 0$, $\omega > 0$, $d \geq 2\omega$, we obtain the following sharp inequality of various metrics

$$\|x\|_{L^q(I_d)} \leq \frac{\|\varphi + c\|_{L^q(I_{2\omega})}}{\|\varphi + c\|_{L^p(I_{2\omega})}} \|x\|_{L^p(I_d)}$$

on the set $S_\varphi(\omega)$ of $d$-periodic functions $x$ having zeros with given the sine-shaped $2\omega$-periodic comparison function $\varphi$, where $c \in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$ is such that

$$\|x\pm\|_{L^p(I_d)} = \|(\varphi + c)\pm\|_{L^p(I_{2\omega})}.$$ 

In particular, we obtain such type inequalities on the Sobolev sets of periodic functions and on the spaces of trigonometric polynomials and polynomial splines with given quotient of the norms $\|x\|_{L^p(I_d)}/\|x\|_{L^p(I_d)}$.

Key words: Inequality of various metrics, a class of functions with given comparison function, Sobolev class of functions, polynomial, spline.
1. Introduction. Let $G \subset \mathbb{R}$. We will consider the spaces $L_p(G)$, $0 < p \leq \infty$, of all measurable functions $x : G \to \mathbb{R}$ such that $\|x\|_p = \|x\|_{L_p(G)} < \infty$, where

$$\|x\|_p := \left( \int_G |x(t)|^p \, dt \right)^{1/p}, \quad \text{if} \quad 0 < p < \infty,$$

$$\|x\|_\infty := \sup_{t \in G} |x(t)|.$$

Let $d > 0$ and $I_d$ denote the circle which is realized as the interval $[0, d]$ with coincident endpoints.

For $r \in \mathbb{N}$, $G = \mathbb{R}$ or $G = I_d$, denote by $L_r^\infty(G)$ the space of all functions $x \in L_\infty(G)$ for which $x^{(r-1)}$ is locally absolutely continuous and $x^{(r)} \in L_\infty(G)$. 

MSC2020: Pri 41A17, Sec 41A44, 42A05, 41A15
Let $\varphi_r(t), r \in \mathbb{N}$, be the shift of the $r^{th}$ 2π-periodic integral with zero mean value on a period of the function $\varphi_0(t) = \text{sgn} \sin t$ satisfying $\varphi_0(0) = 0$ and $\varphi'_0(0) > 0$.

**Theorem A** [1]. Let $r \in \mathbb{N}, q > p > 0$. For any function $x \in L^r_\infty(I_{2\pi})$ having zeros the inequality

$$
\|x\|_q \leq \sup_{c \in [0,K_r]} \left\|\frac{\varphi_r + c}{\varphi_r + c}\right\|_q \|x\|_p \|x^{(r)}\|_\infty^{1-a},
$$

holds true, where $\alpha = \frac{r+1/q}{r+1/p}$, $K_r := \|\varphi_r\|_{\infty}$.

In addition, the inequality

$$
\|x_\pm\|_q \leq \left\|\frac{(\varphi_r + c)_\pm}{(\varphi_r + c)_\pm}\right\|_q \|x_\pm\|_p \|x^{(r)}\|_\infty^{1-a}
$$

is proved in [1] for any function $x \in L^r_\infty(I_{2\pi})$ having zeros, where $c \in [-K_r,K_r]$ satisfying

$$
\frac{\|x_+\|_p}{\|x_-\|_p} = \left\|\frac{(\varphi_r + c)_+}{(\varphi_r + c)_-}\right\|_p.
$$

In this paper we generalize the inequalities (1.1) and (1.2) on the classes of the functions with given comparison function.

We need the following definitions.

A function $f \in L^1_\infty(\mathbb{R})$ is called a comparison function for $x \in L^1_\infty(\mathbb{R})$ if there exists a constant $c \in \mathbb{R}$ satisfying

$$
\min_{t \in \mathbb{R}} f(t) + c \leq x(t) \leq \max_{t \in \mathbb{R}} f(t) + c, \quad t \in \mathbb{R},
$$

and from $x(\xi) = f(\eta) + c, \ \xi, \eta \in \mathbb{R}$, the inequality $|x'(\xi)| \leq |f' (\eta)|$ follows (if corresponding derivatives exist).

Let $0 < \omega < 0$. By definition, $S$-function is a 2ω-periodic function $\varphi \in L^1_\infty(I_{2\omega})$ that has the following properties: vanishes at 0, is odd about 0, is even about $\omega/2$, is positive and concave on $(0,\omega)$, and strictly increasing on $[0,\omega/2]$.

For 2ω-periodic $S$-function $\varphi$ denote by $S_\omega(\varphi)$ the class of functions $x \in L^1_\infty(\mathbb{R})$ for which $\varphi$ is the comparison function. Note that the classes $S_\omega(\varphi)$ were considered in [2], [3]. Examples of such classes $S_\omega(\varphi)$ are the Sobolev classes $\{x \in L^r_\infty(I_d) : \|x^{(r)}\|_{\infty} \leq 1\}$, the bounded subsets of the space $T_n$ of all trigonometric polynomials of order at most $n$, and the same subsets of the space $S_{n,r}$ of polynomial splines of order $r$ having defect 1 with knots at the points $k\pi/n, k \in \mathbb{Z}$.

In this paper we prove the inequality of various metrics on the classes $S_\omega(\varphi)$ of $d$-periodic functions with given quotient of the norms $\|x_+\|_{L^p(I_d)}/\|x_-\|_{L^p(I_d)}$ (Theorem 1). In particular, we obtain such type inequalities for a function $x \in L^r_\infty(I_{2\pi})$ (Theorem 2) and for functions in spaces $T_n$ and $S_{n,r}$ (Theorem 3 and Theorem 4) with given quotient of the $L_p$-norms positive and negative parts of a function.

2. The inequalities of various metrics on the classes $S_\omega(\varphi)$. 

13
Theorem 1. Let $q, p > 0$, $q > p$ and $\varphi$ is $2\omega$-periodic $S$-function. If for $d$-periodic function $x \in S_\varphi(\omega)$ having zeros there exists the number $c \in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$ such that
\[
\|x_\pm\|_{L_p(I_d)} = \|\varphi + c\|_{L_p(I_{2\omega})},
\]
then the inequality
\[
\|x\|_{L_q(I_d)} \leq \|\varphi + c\|_{L_q(I_{2\omega})}\|x\|_{L_p(I_d)}
\]
holds true.

For fix $c \in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$ the inequality (2.2) is the best possible on the set of functions $x \in S_\varphi(\omega)$ having zeros and satisfying the condition (2.1). The inequality (2.2) becomes equality for the function $x(t) = \varphi(t) + c$.

For proving Theorem 1 we require the following lemmas.

Lemma 1. Under the conditions of Theorem 1
\[
\|x_\pm\|_\infty \leq \|\varphi + c\|_\infty,
\]
and
\[
d \geq 2\omega.
\]

Proof. Fix a function $x \in S_\varphi(\omega)$ and a number $c \in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$ satisfying the conditions of Theorem 1. Let us suppose that the statement (2.3) is false. Since $\varphi$ is comparison function for function $x$, then $\|x_+\|_\infty + \|x_-\|_\infty \leq \|\varphi + c\|_\infty + \|\varphi + c\|_\infty$. So exactly one of the inequalities (2.3) is false. Let for example
\[
\|x_+\|_\infty \leq \|\varphi + c\|_\infty, \quad \|x_-\|_\infty > \|\varphi + c\|_\infty.
\]

Then there is an $a > 0$ satisfying
\[
\|(x + a)_+\|_\infty \leq \|(\varphi + c)_+\|_\infty, \quad \|(x + a)_-\|_\infty = \|(\varphi + c)_-\|_\infty.
\]

It is clear that $x + a \in S_\varphi(\omega)$. Let $m$ be a point of maximum of the spline $\varphi + c$ and let $t_1(t_2)$ be closest to the left (right) of $m$ zero of the spline. In view of the second relation (2.5) there is an shift $x(t + \tau)$ of the function $x$ such that $x(m + \tau) + a = \varphi(m) + c$. Since $\varphi + c$ is the comparison function for function $x$, then
\[
x(t + \tau) + a \leq \varphi(t) + c < 0, \quad t \in (t_1, t_2).
\]

By virtue of the inequality $a > 0$, this implies the estimate
\[
\|x_-\|_{L_p(I_d)} > \|(x + a)_-\|_{L_p(I_d)} \geq \|(\varphi + c)_-\|_{L_p(I_{2\omega})},
\]
that contradicting (2.1). The inequality (2.3) is proved. Since $x \in S_\varphi(\omega)$, the relation (2.4) follows immediately from (2.1) and (2.3).

Lemma 1 is proved.

For a function $f \in L_1(I_d)$ denote by $r(f, t)$, $t \in [0, d]$, the decreasing rearrangement (see, for example, [4, §1.3]) of the restriction of the function $|f|$ on $[0, d]$. Set $r(f, t) = 0$ for $t > d$. 

Lemma 2. Under the conditions of Theorem 1

\[ \int_0^\xi r^p(\bar{x}_\pm, t)dt \leq \int_0^\xi r^p(\bar{\varphi}_\pm, t)dt, \quad \xi > 0, \]  

(2.6)

where \( \bar{x} \) is the restriction of the function \( x \) on \( I_d \), and \( \bar{\varphi} \) is the restriction of the function \( \varphi + c \) on \( I_{2\omega} \). In particular,

\[ \|x_\pm\|_{L^q(I_d)} \leq \|\varphi_\pm\|_{L^q(I_{2\omega})}. \]  

(2.7)

**Proof.** For proving (2.6) note that by virtue of (2.3) for any \( y_\pm \in (0, \|\bar{x}_\pm\|_\infty) \) there are the points

\[ t_i^\pm \in I_d, \quad i = 1, 2, \ldots, m, \quad m \geq 2, \quad y_j^\pm \in I_{2\omega}, \quad j = 1, 2, \]

such that

\[ y_\pm = \bar{x}_\pm(t_i^\pm) = \varphi_\pm(y_j^\pm). \]

Since \( \varphi + c \) is comparison function for function \( x \), then

\[ |\bar{x}_\pm'(t_i^\pm)| \leq |\varphi_\pm'(y_j^\pm)|. \]

Show that if the points \( \theta_1^\pm \in [0, d] \) and \( \theta_2^\pm \in [0, 2\omega] \) are chosen so that

\[ y_\pm = r(\bar{x}_\pm, \theta_1^\pm) = r(\varphi_\pm, \theta_2^\pm), \]

then

\[ |r'(\bar{x}_\pm, \theta_1^\pm)| \leq |r'(\varphi_\pm, \theta_2^\pm)|. \]

Indeed, this immediately follows from the theorem on the derivative of the rearrangement (see, for example, [4, the statement 1.3.2]). By this theorem

\[ |r'(\bar{x}_\pm, \theta_1^\pm)| = \left[ \sum_{i=1}^m \left| \bar{x}_\pm'(t_i) \right|^{-1} \right]^{-1} \leq \left[ \sum_{j=1}^2 \left| \varphi_\pm'(y_j^\pm) \right|^{-1} \right]^{-1} = |r'(\varphi_\pm, \theta_2^\pm)|. \]

Moreover, (2.3) implies the relation

\[ r(\bar{x}_\pm, 0) = \|\bar{x}_\pm\|_\infty \leq \|\varphi_\pm\|_\infty = r(\varphi_\pm, 0). \]

Therefore, the difference \( \Delta^\pm(t) := r(\bar{x}_\pm, t) - r(\varphi_\pm, t) \) changes sign on \([0, \infty)\) at most once (from minus to plus). The same is true for the difference \( \Delta^\pm_p(t) := r^p(\bar{x}_\pm, t) - r^p(\varphi_\pm, t) \).

Set \( I_\pm(\xi) := \int_0^\xi \Delta^\pm_p(t)dt \). Then, \( I_\pm(0) = 0 \) and since the rearrangement is \( L^p \)-norm-preserving, by (2.1) and (2.4) we have

\[ I(d) = \|\bar{x}_\pm\|_{L^p(I_d)} - \|\varphi_\pm\|_{L^p(I_{2\omega})} = 0. \]
Besides, \( I_\pm^\pm(\xi) = \Delta_\pm^\pm(\xi) \) changes sign on \([0, \infty)\) at most once (from minus to plus). Therefore, \( I(\xi) \leq 0, \xi > 0 \). This is equivalent to (2.6). From (2.6) by virtue of the Hardy-Littlewood-Polya theorem (see, for example, [4], theorem 1.3.1) follows the inequality (2.7).

Lemma 2 is proved.

\textbf{Proof of Theorem 1.} Fix any \( d \)-periodic function \( x \in S_\varphi(\omega) \) and a number \( c \in [-\|\varphi\|_\infty \|\varphi\|_\infty] \) satisfying the conditions of Theorem 1. Then by virtue of Lemma 1, the inequality (2.7) holds true. The relations (2.1) and (2.7) immediately implies the inequality (2.2). Its accuracy is obvious.

Theorem 1 is proved.

3. The inequality of various metric for the functions \( x \in L^r_\infty(I_{2\pi}) \). Recall that \( \varphi_r(t), r \in \mathbb{N}, \) is the shift of the \( r \)th 2\( \pi \)-periodic integral with zero mean value on a period of the function \( \varphi_0(t) = \text{sgn} \sin t \) satisfying \( \varphi_r(0) = 0 \), and \( K_r := \|\varphi_r\|_\infty \) is the Favard constant. For \( \lambda > 0 \) set \( \varphi_{\lambda,r}(t) := \lambda^{-r} \varphi_r(\lambda t) \). Obviously the spline \( \varphi_{\lambda,r}(t) \) is \( 2\pi/\lambda \)-periodic \( S \)-function.

For \( r \in \mathbb{N}, p > 0, f_p \in [0, \infty] \) set

\[
\{ x \in L^r_\infty(I_{2\pi}) : \| x_+ \|_p = f_p \}.
\]

Obviously, for given \( p, f_p \) there is unique \( c \in [-K_r, K_r] \) such that

\[
\varphi_r + c \in f_p L^r_\infty(I_{2\pi}). \quad (3.1)
\]

\textbf{Theorem 2.} Let \( r \in \mathbb{N}, p, q > 0, q > p, f_p \in [0, \infty] \). Then for any function \( x \in f_p L^r_\infty(I_{2\pi}) \) having zeros we have

\[
\| x \|_q \leq \| \varphi + c \|_q \| x^{(r)} \|_\infty^{1-\alpha}, \quad (3.2)
\]

where \( \alpha = \frac{r+1/q}{p+1} \) and \( c \) satisfies (3.1).

The inequality (3.2) is sharp on the class \( f_p L^r_\infty(I_{2\pi}) \) having zeros and becomes equality for the function \( x(t) = \varphi_r(t) + c \).

\textbf{Proof.} Fix a function \( x \in f_p L^r_\infty(I_{2\pi}) \) having zeros. In view of homogeneity of the inequality (3.2) we can assume that

\[
\| x^{(r)} \|_\infty = 1. \quad (3.3)
\]

Choose \( \lambda > 0 \) satisfying

\[
\| x \|_p = \| \varphi_{\lambda,r} + \lambda^{-r} c \|_{L^p(I_{2\pi}/\lambda)}. \quad (3.4)
\]

Then (3.1) and (3.4) in view of the definition of the class \( f_p L^r_\infty(I_{2\pi}) \) implies that

\[
\| x_\pm \|_p = \| (\varphi_{\lambda,r} + \lambda^{-r} c)_\pm \|_{L^p(I_{2\pi}/\lambda)}. \quad (3.5)
\]
Show that
\[ \|x\|_\infty \leq \|(\varphi_{\lambda,r} + \lambda^{-r}c)\|_\infty. \]  
(3.6)

Let us suppose that the inequality (3.6) is false. Then \( \|x\|_\infty = \|\varphi_{\omega,r} + \omega^{-r}c\|_\infty \) for some \( \omega \in (0, \lambda) \). Let for example
\[ \|x_+\|_\infty = \|\varphi_{\omega,r} + \omega^{-r}c\|_\infty, \quad \|x_-\|_\infty = \|\varphi_{\omega,r} + \omega^{-r}c\|_\infty. \]  
(3.7)

Passing, if necessary, to the shift of the function \( x \), we can assume that
\[ \|x_+\|_\infty = x(m) = \varphi_{\omega,r} + \omega^{-r}c(m), \]
where \( m \) is the maximum point of the spline \( \varphi_{\omega,r} \). By virtue of (3.7) and (3.3) the conditions of the Kolmogorov theorem [5] are satisfied. By this theorem the spline \( \varphi_{\omega,r} \) is comparison function for function \( x \). Therefore,
\[ x(t) \geq \varphi_{\omega,r} + \omega^{-r}c(t), \quad t \in (m - \pi/\omega, m + \pi/\omega) \]

and
\[ \|x_+\|_p \geq \|\varphi_{\omega,r} + \omega^{-r}c\|_{L_p(I_{2\pi/\omega})} > \|\varphi_{\lambda,r} + \lambda^{-r}c\|_{L_p(I_{2\pi/\lambda})}, \]
which contradicts (3.5). The inequality (3.6) is proved. By virtue of (3.6) and (3.3) the conditions of the Kolmogorov theorem [5] are satisfied. By this theorem the spline \( \varphi_{\lambda,r} \) is comparison function for function \( x \). So \( x \in S_{\varphi}^{(\pi/\lambda)} \). Then (3.5) in view of Lemma 2 implies that
\[ \|x\|_q \leq \|\varphi_{\lambda,r} + \lambda^{-r}c\|_{L_q(I_{2\pi/\lambda})}. \]  
(3.8)

Combining (3.4) and (3.8), and also taking into account the obvious equality
\[ \|\varphi_{\lambda,r} + \lambda^{-r}c\|_{L_p(I_{2\pi/\lambda})} = \lambda^{-(r+1/p)}\|\varphi_r + c\|_p, \quad p > 0, \]
we get
\[ \frac{\|x\|_q}{\|x\|_p} \leq \frac{\|\varphi_{\lambda,r} + \lambda^{-r}c\|_{L_q(I_{2\pi/\lambda})}}{\|\varphi_{\lambda,r} + \lambda^{-r}c\|_p} = \frac{\|\varphi_r + c\|_q}{\|\varphi_r + c\|_p}. \]

This estimate implies the inequality (3.2) by virtue of (3.3). Its accuracy is obvious.

Theorem 2 is proved.

Let
\[ E_0^\pm(x)_p := \inf_{c \in \mathbb{R}} \{\|x - c\|_p : \forall t \pm (x(t) - c)\| \geq 0\} \]
be the best one-sided approximations by constants of the function \( f \) in \( L_p(I_{2\pi}) \).

**Corollary 1.** Let \( r \in \mathbb{N}; p, q > 0, q > p, \alpha = \frac{r+1/q}{r+1/p} \), and let the number \( \bar{c} \in [0, K_r] \) implements the upper bound
\[ \sup_{c \in [0, K_r]} \|\varphi_r + c\|_q \|\varphi_r + c\|_p. \]
Then, for any function $x \in L^{r}_{\infty}(I_{2\pi})$, having zeros, the inequality
\[ \|x\|_{q} \leq \frac{\|\varphi_{r} + \bar{c}\|_{q}}{\|\varphi_{r} + \bar{c}\|_{p}} \|x(r)\|_{\infty}^{1-\alpha} \]
holds true and, for any function $x \in L^{r}_{\infty}(I_{2\pi})$, we have
\[ E_{\pm}^{\infty}(x)_{q} \leq \frac{\|\varphi_{r} + K_{r}\|_{q}}{\|\varphi_{r} + K_{r}\|_{p}} E_{\pm}^{\infty}(x)^{\alpha}_{p} \|x(r)\|_{\infty}^{1-\alpha}. \]

Both inequalities are sharp on the respective classes and turn into equalities for the splines $\varphi_{r}(t) + \bar{c}$ and $\varphi_{r}$ respectively.

Remark. Theorem 2 and Corollary 1 are proved in [1].

4. The inequality of various metric for trigonometric polynomials. Let us recall that $T_{n}$ is the space of all trigonometric polynomials of degree at most $n$. For $p > 0$, $f_{p} \in [0, \infty]$ set
\[ f_{p} T_{n} := \left\{ T \in T_{n} : \frac{\|T_{+}\|_{p}}{\|T_{-}\|_{p}} = f_{p} \right\}. \]

Theorem 3. Let $n, m \in \mathbb{N}$, $m \leq n$; $p, q > 0$, $q > p$, $f_{p} \in [0, \infty]$. For any trigonometric polynomial $T \in f_{p} T_{n}$ with minimal period $2\pi/m$, having zeros, the inequality
\[ \|T\|_{q} \leq \left( \frac{n}{m} \right)^{\frac{1}{q} - \frac{1}{p}} \|\sin(\cdot) + c\|_{q} \|T\|_{p}, \tag{4.1} \]
holds true, where $c \in [-1, 1]$ is the constant satisfying
\[ \sin(\cdot) + c \in f_{p} T_{n}. \tag{4.2} \]

The inequality (4.1) is sharp for $m = 1$ in the sense
\[ \sup_{n \in \mathbb{N}} \sup_{T \in f_{p} T_{n}} \frac{\|T\|_{q}}{n^{1/p} \|T\|_{p}} = \frac{\|\sin(\cdot) + c\|_{q}}{\|\sin(\cdot) + c\|_{p}}. \]

Proof. Fix a polynomial $T \in f_{p} T_{n}$ with minimal period $\frac{2\pi}{m}$ having zeros. Set $\varphi(t) := \sin nt$, $\psi(t) := \varphi(t) + c$, $t \in \mathbb{R}$. In view of homogeneity of the inequality (4.1) we can assume that
\[ \|T\|_{L_{p}(I_{2\pi/m})} = \|\psi\|_{L_{p}(I_{2\pi/n})}. \tag{4.3} \]
Then, by virtue of (4.2) and the definition of the class $f_{p} T_{n}$, we have
\[ \|T_{\pm}\|_{L_{p}(I_{2\pi/m})} = \|\psi_{\pm}\|_{L_{p}(I_{2\pi/n})}, \tag{4.4} \]
Show that
\[ \|T_{\pm}\|_{\infty} \leq \|\psi_{\pm}\|_{\infty}. \tag{4.5} \]
Let us suppose that the inequality (4.5) is false. Then, there is $\gamma \in (0, 1)$ such that
$\|\gamma T_+\|_\infty \leq \|\psi_+\|_\infty$, moreover, one of these inequalities turns into equality. Let, for example,
$\|\gamma T_+\|_\infty \leq \|\psi_+\|_\infty$, $\|\gamma T_-\|_\infty = \|\psi_-\|_\infty$.

Then, the polynomial $\psi$ is the comparison function for the polynomial $\gamma T$ (see the proof of the theorem 8.1.1 in [6]). Let $m$ be a minimum point of the function $\psi$ and let $t_1(t_2)$ be closest to the left (right) of $m$ zero of the function $\psi$. Passing, if necessary, to the shift of the polynomial $\gamma T$, we can assume that
$\|\gamma T_-\|_\infty = -\gamma T(m)$.

Since the polynomial $\psi$ is the comparison function for the polynomial $\gamma T$, then
$\gamma T(t) \leq \psi(t) < 0$, $t \in (t_1, t_2)$.

This implies the estimate
$\|T_+\|_{L_p(2\pi/m)} > \|\gamma T_-\|_{L_p(2\pi/m)} \geq \|\psi_-\|_{L_p(2\pi/n)}$,
which contradicts (4.4). The inequality (4.5) is proved.

It follows from the inequality (4.5) and the proof of the theorem 8.1.1 in [6] that $\varphi(t) = \sin nt$ is the comparison function for the polynomial $T$. So $T \in S_\varphi(\frac{\pi}{n})$. Therefore, by virtue of (4.4), the polynomial $\gamma T$ satisfies the conditions of Theorem 1, and hence, the conditions of Lemmas 1 and 2. According to the inequality (2.7) of Lemma 2, we have
$\|T\|_{L_q(2\pi/m)} \leq \|\varphi + c\|_{L_q(2\pi/n)}$.

From this inequality, due to the $2\pi/m$-periodic of the polynomial $T$ and $2\pi/n$-periodic of the polynomial $\varphi$, we obtain
$\|T\|_q \leq \left(\frac{m}{n}\right)^{1/q} \|\varphi + c\|_q$. (4.6)

Similarly, the condition (4.4) implies the equality
$\|T\|_p = \left(\frac{m}{n}\right)^{1/p} \|\varphi + c\|_p$. (4.7)

From (4.6) and (4.7) follows the inequality (4.1). The sharpness of (4.1) is obvious.

Theorem 3 is proved.

Corollary 2. Let $n, m \in \mathbb{N}$, $m \leq n$; $q, p > 0$, $q > p$, and let the number $\bar{c} \in [0, 1]$ implements the upper bound
$\sup_{c \in [0, 1]} \frac{\|\sin(\cdot) + c\|_q}{\|\sin(\cdot) + c\|_p}$.
Then, for any trigonometric polynomial \( T \in T_n \) with minimal period \( 2\pi/m \), having zeros, the inequality
\[
\|T\|_q \leq \left( \frac{n}{m} \right)^{\frac{1}{p} - \frac{1}{q}} \|\sin(\cdot) + \bar{c}\|_q \cdot \|T\|_p
\]
holds, and for any trigonometric polynomial \( T \in T_n \) with minimal period \( 2\pi/m \), we have
\[
E_0^\pm(T)_q \leq \left( \frac{n}{m} \right)^{\frac{1}{p} - \frac{1}{q}} \|\sin(\cdot) + 1\|_q \cdot E_0^\pm(T)_p.
\]
Both inequalities are sharp for \( m = 1 \) in the sense
\[
\sup \sup_{n \in \mathbb{N} \ T \in T_n} \frac{\|T\|_q}{n^{1/p - 1/q} \|T\|_p} = \frac{\|\sin(\cdot) + \bar{c}\|_q}{\|\sin(\cdot) + \bar{c}\|_p},
\]
where \( T_n \) is the set of polynomials \( T \in T_n \) having zeros, and
\[
\sup \sup_{n \in \mathbb{N} \ T \in T_n} \frac{E_0^\pm(T)_q}{n^{1/p - 1/q} E_0^\pm(T)_p} = \frac{\|\sin(\cdot) + 1\|_q}{\|\sin(\cdot) + 1\|_p}.
\]

**Remark.** Theorem 3 and Corollary 2 for \( m = 1 \) are proved in [1].

5. The inequality of various metric for periodic polynomial splines. Let \( r, n \in \mathbb{N} \). Recall that \( S_{n,r} \) stands for the space of polynomial splines of order \( r \) having defect 1 with knots at the points \( k\pi/n, k \in \mathbb{Z} \). It is clear that \( S_{n,r} \subset L^r_\infty(\mathbb{R}) \). For \( p > 0, f_p \in [0, \infty] \) set
\[
f_p S_{n,r} := \left\{ s \in S_{n,r} : \frac{\|s\|_p}{\|s\|_p} = f_p \right\}.
\]

**Theorem 4.** Let \( n, m \in \mathbb{N} \), \( m \leq n \); \( p, q > 0, q > p, f_p \in [0, \infty] \). For a spline \( s \in f_p S_{n,r} \) with minimal period \( 2\pi/m \), having zeros, the inequality
\[
\|s\|_q \leq \left( \frac{n}{m} \right)^{\frac{1}{p} - \frac{1}{q}} \|\varphi_r + c\|_q \cdot \|s\|_p
\]
holds true, where \( c \in [-K_r, K_r] \) is the constant satisfying
\[
\varphi_{n,r} + n^{-r}c \in f_p S_{n,r}.
\]
The inequality (5.1) is sharp for \( m = 1 \) in the sense
\[
\sup \sup_{n \in \mathbb{N} \ s \in f_p S_{n,r}} \frac{\|s\|_q}{n^{1/p - 1/q} \|s\|_p} = \frac{\|\varphi_r + c\|_q}{\|\varphi_r + c\|_p}.
\]

**Proof.** Fix a spline \( s \in f_p S_{n,r} \) with minimal period \( 2\pi/m \) having zeros. Set \( \varphi(t) := \varphi_{n,r}(t), \psi(t) := \varphi_{n,r}(t) + n^{-r}c, t \in \mathbb{R} \). In view of homogeneity of the inequality (5.1) we can assume that
\[
\|s\|_{L_p(I_{2\pi/m})} = \|\psi\|_{L_p(I_{2\pi/m})}.
\]
SHARP INEQUALITIES OF VARIOUS METRICS

Then, by virtue of (5.2) and the definition of the class $f_p S_{n,r}$, we have

$$\|s\|_{L_p(I_{2\pi/m})} = \|\psi\|_{L_p(I_{2\pi/n})}.$$  

(5.4)

Show that

$$\|s\|_{\infty} \leq \|\psi\|_{\infty}.$$  

(5.5)

Let us suppose that the inequality (5.5) is false. Then, there is $\gamma \in (0, 1)$ such that

$$\|\gamma s\|_{\infty} \leq \|\psi\|_{\infty},$$

moreover, one of these inequalities turn into equality. Let, for example,

$$\|\gamma s\|_{\infty} = \|\psi\|_{\infty}.$$  

Then, $E_0(\gamma s, \infty) \leq E_0(\psi, \infty) = \|\varphi_{n,r}\|_{\infty}$ and, by the Tikhomirov inequality [7],

$$\|\gamma s(r)\|_{\infty} \leq \|s(r)\|_{\infty} \leq \frac{E_0(s, \infty)}{\|\varphi_{n,r}\|_{\infty}} = 1,$$

where $E_0(x, \infty)$ is the best uniform approximation of the function $x$ by constants.

Thus, the spline $\gamma s$ satisfies the coditions of the Kolmogorov comparison theorem [5]. By this theorem the spline $\varphi$ is the comparison function for the spline $s$. Let $m$ be a minimum point of the function $\psi$ and let $t_1(t_2)$ be closest to the left (right) of $m$ zero of the function $\psi$. Passing, if necessary, to the shift of the spline $\gamma s$, we can assume that

$$\|\gamma s\|_{\infty} = - \gamma s(m).$$

Since the spline $\psi$ is the comparison function for the spline $\gamma s$, then

$$\gamma s(t) \leq \psi(t) < 0, \quad t \in (t_1, t_2).$$

This implies the estimate

$$\|s\|_{L_p(2\pi/m)} > \|\gamma s\|_{L_p(2\pi/m)} \geq \|\psi\|_{L_p(2\pi/n)},$$

which contradicts (5.4). The inequality (5.5) is proved.

It follows from (5.5) that $E_0(s, \infty) \leq E_0(\psi, \infty) = \|\varphi_{n,r}\|_{\infty}$ and, by the Tikhomirov inequality [7],

$$\|s(r)\|_{\infty} \leq \frac{E_0(s, \infty)}{\|\varphi_{n,r}\|_{\infty}} = 1.$$

Thus, the spline $s$ satisfies the coditions of the Kolmogorov comparison theorem [5]. By this theorem the spline $\varphi$ is the comparison function for the spline $s$. So $s \in S_{\varphi}^{(2\pi/n)}$. Therefore, by virtue of (5.4), the spline $s$ satisfies the conditions of Theorem 1, and hence, the conditions of Lemmas 1 and 2. According to the inequality (2.7) of Lemma 2, we have

$$\|s\|_{L_q(I_{2\pi/m})} \leq \|\varphi_{n,r} + n^{-r} c\|_{L_q(I_{2\pi/n})}.$$
From this inequality, due to the $2\pi/m$-periodic of the spline $s$ and $2\pi/n$-periodic of the spline $\varphi_{n,r}$, we obtain

$$
\|s\|_q \leq \left( \frac{m}{n} \right)^{1/q} \|\varphi_{n,r} + n^{-r}c\|_q .
$$

(5.6)

Similarly, the condition (5.4) implies the equality

$$
\|s\|_p = \left( \frac{m}{n} \right)^{1/p} \|\varphi_{n,r} + n^{-r}c\|_p .
$$

(5.7)

From (5.6) and (5.7) follows the inequality (5.1). The sharpness of (5.1) is obvious.

Theorem 4 is proved.

**Corollary 3.** Let $n, m \in \mathbb{N}$, $m \leq n; q, p > 0, q > p$, and let the number $\bar{c} \in [0, K_r]$ implements the upper bound

$$
\sup_{c \in [0, K_r]} \|\varphi_r + c\|_q \|\varphi_r + c\|_p .
$$

Then, for any splines $s \in S_{n,r}$ with minimal period $2\pi/m$, having zeros, the inequality

$$
\|s\|_q \leq \left( \frac{n}{m} \right)^{\frac{1}{p} - \frac{1}{q}} \|\varphi_r + \bar{c}\|_q \|\varphi_r + \bar{c}\|_p \cdot \|s\|_p
$$

holds, and for any splines $s \in S_{n,r}$ with minimal period $2\pi/m$, we have

$$
E^+_{0}(s)_q \leq \left( \frac{n}{m} \right)^{\frac{1}{p} - \frac{1}{q}} \|\varphi_r + K_r\|_q \|\varphi_r + K_r\|_p \cdot E^+_{0}(s)_p .
$$

Both inequalities are sharp for $m = 1$ in the sense

$$
\sup_{n \in \mathbb{N}} \sup_{s \in S^0_{n,r}} \frac{\|s\|_q}{n^{1/p - 1/q} \|s\|_p} = \frac{\|\varphi_r + \bar{c}\|_q}{\|\varphi_r + \bar{c}\|_p} ,
$$

where $S^0_{n,r}$ is the set of splines $s \in S_{n,r}$ having zeros, and

$$
\sup_{n \in \mathbb{N}} \sup_{s \in S_{n,r}} \frac{E^+_{0}(s)_q}{n^{1/p - 1/q} E^+_{0}(s)_p} = \frac{\|\sin(\cdot) + K_r\|_q}{\|\sin(\cdot) + K_r\|_p} .
$$

**Remark.** Theorem 4 and Corollary 3 for $m = 1$ are proved in [1].

**References**

1. Babenko V.F., Kofanov V.A. and Pichugov S.A.: Comparison of Rearrangements and Kolmogorov-Nagy type Inequalities for Periodic Functions. Approximation Theory: A volume dedicated to Blagovest Sendov (B. Bojanov, Ed.) Darba, Sofia (2002), 24 – 53.

2. Bojanov B., Naidenov N.: An extension of the Landau-Kolmogorov inequality. Solution of a problem of Erdös. Journal d’Analyse Mathematique 78 (1999), 263–280.
3. Kofanov V.A.: The sharp upper bounds of the norms of the functions and their derivatives on the classes of functions with given comparison function. Ukrainian Mathematical Journal 63 (2011), 969–984.

4. Korneichuk N.P., Babenko V.F., Ligun A.A.: Extremal Properties of Polynomials and Splines. Kiev, Naukova dumra, (1992).

5. Kolmogorov A.N.: On the inequalities between the upper bounds of consecutive derivatives of functions on infinite interval. Selected works. Mathematic and mechanics. Moscow, Nauka, (1985).

6. Korneichuk N.P., Babenko V.F., Kofanov V.A., Pichugov S.A.: Inequalities for Derivatives and its Applications. Kiev, Naukova dumra, (2003).

7. Tihomirov V.M.: The widths of the sets in the functions spaces. Uspehi mat. nauk 15, 3 (1960), 81–120.

Received: 31.01.2021. Accepted: 05.06.2021