Evaluating Morphological Asymmetry in Three Species of the Genus *Hydrocynus* from the White Nile in Sudan

Elagba H.A. Mohamed, Wigdan A.S. Al-Awadi
Institute of Environmental Studies, University of Khartoum, Sudan

Corresponding author Email: elagba@ymail.com

International Journal of Aquaculture, 2018, Vol.8, No.1 doi: 10.5376/ija.2018.08.0001

Received: 06 Nov., 2017
Accepted: 29 Nov., 2017
Published: 05 Jan., 2018

Copyright © 2018 Mohamed and Al-Awadi, This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Preferred citation for this article:
Mohamed E.H.A., and Al-Awadi W.A.S., 2018, Evaluating morphological asymmetry in three species of the genus *Hydrocynus* from the White Nile in Sudan, International Journal of Aquaculture, 8(1): 1-7 (doi: 10.5376/ija.2018.08.0001)

Abstract The present study aimed to determine and evaluate the level of fluctuating asymmetry (FA) of morphological characters for three species of *Hydrocynus* from the White Nile. In *H. vittatus* 41% of morphological characters fluctuated to the right side and 59% to left side. In *H. brevis* 50% fluctuated to right and 50% to left side, while in *H. forskalii* 34% fluctuated to right and 66% fluctuated to left side. More scales were recorded along the lateral line on the right side of *H. vittatus* and *H. brevis* compared to *H. forskalii*, while more gill rakers were recorded on the left side of *H. vittatus*. The smallest asymmetry index was found for PVFL of the three species and the largest index was found for POL of *H. brevis*. Mean asymmetry index was (3.5%) in *H. forskalii*, (5.1%) and (4.9%) in *H. vittatus* and *H. brevis*, respectively. Absolute asymmetry values were significantly correlated with character size for the number of lateral line scales, head length, pectoral fin length and ventral fin length (P<0.05) and highly correlated for snout length and caudal peduncle length (P<0.001) in the three species. Correlations between means of bilateral characters and body size were significant (P<0.05) for the head length, pelvic fin length and pectoral spine length of the three species. This study is the first of its kind in species of the Nile fish. The present result can be a base line for further study of fluctuating asymmetry in fish and as indicators to detect the level of pollutants in the Nile and the condition of the environment and the organisms.

Keywords Fluctuating asymmetry; *Hydrocynus*; Meristic; Morphometric; Sudan; White Nile

1 Background
The level of fluctuating asymmetry (FA) is most often used to estimate developmental instability of individuals and populations of fish, when bilateral traits show some variations in the size or counts of the two sides 'left-right asymmetry', where phenotypic traits of left or right individuals differ asymmetrically (Moller, 1997). When environmental stressors of the environment affects the total morphology of the organisms, the overall symmetry and developmental stability will be disturbed (Daloso, 2014). Many zoologists studying fish morphology may regard fish bodies as being laterally symmetric. However, Palmer and Strobeck (1986) showed that there is a high index of fluctuating asymmetry in various fish populations under strong environmental pressure. Hence, it can give rise to decreased developmental stability of individuals, which may result in reduced performance of fitness components (Clarke, 1995; Moller and Swaddle, 1997). Asymmetry in fishes was first described in scale-eating cichlids from Lake Tanganyika, in the form of bilateral dimorphism when opening their mouths (Mboko et al., 1998). Recently, however, asymmetry of morphological traits has been documented (Almeida et al., 2008; Lutterschmidt et al., 2016). Bilateral asymmetry, in individual and population levels of fish, was found to relate positively to a wide range of abiotic, biotic and genetic stresses (Allenbach et al., 1999; Franco et al., 2002; Estes et al., 2006), and could be sensitive to different levels of individual density in captive conditions (Leary et al., 1991) or increases under genetic stresses such as hybridization, inbreeding and loss of genetic variation (Mazzi et al., 2002; Dongen, 2006), particularly in reared fishes (Palma et al., 2001; Fessehaye et al., 2007).

Hydrocynus vittatus (Castelnau, 1861), *H. brevis* (Cuvier and Valenciennes, 1849) and *H. forskalii* (Cuvier, 1819) are three species of the Nile fishes in the family Alestidae. These species are abundant in varied freshwater environments, including the White Nile, Blue Nile and the main Nile and Lake Nubia, but *H. forskalii* is the commonest species (Bailey, 1994). The synonymy of *H. forskalii* with *H. vittatus* was revised by Brewster (1986). However, while examining samples of fish for taxonomic revision of the three species (Elagba and Wigdan, 2015),
surprisingly we noticed some alteration in external morphology and level of ‘left-right asymmetry’, where some morphological characters (metric and meristic) of left and right sides differed asymmetrically in some specimens. These observations prompted us to measure and evaluate the morphological asymmetry (Fluctuating asymmetry, FA) in the three species of Hydrocynus. The aim of the present study is to determine and evaluate the level of FA of morphological characters (9 metric and 5 meristic) of the three species of Hydrocynus. This study is the first of its kind in species of the Nile fish. It is an attempt to explain the causes and relationship of this morphological asymmetry with the environmental stress caused by different environmental conditions in the Nile. The result of the study is expected to be a base line for further study of fluctuating asymmetry in fish and can be employed to detect the level of pollutants in the Nile environment, in evaluating the condition of the environment and the organisms and as a potential indicator for describing developmental instability of the Nile fishes.

2 Materials and Methods

2.1 Fish collection
The study was carried out for thirty specimens of Hydrocynus species, were obtained from the White Nile at Jebel Aula Dam, 45 Km South of Khartoum. Comparative material included 10 from each of H. vittatus, H. brevis and H. forskalii. Each individual specimen was identified according to the original description of Boulenger (1907). The institutional abbreviations followed Daget and Grosse (1984).

2.2 Morphological characters
Nine paired bilateral morphometric characters (Length of the head (HL), eye diameter (ED), post-orbital length (POL), length of the snout (SNL), length of pectoral fin (PFL), ventral fin (VFL), pelvic fin (PVFL), pectoral spine (PSL) and caudal peduncle (CPL); and five meristic (number of pectoral fin rays (PFR), number of scales along the lateral line (LLS), scale rows above (DLS) and below lateral line (VLS), and number of gill rakers (GR) were used to estimate fluctuating asymmetry of the three species of Hydrocynus, following Holcik et al. (1989). Metric characters were measured to the nearest 0.01 mm, using a fine dial caliper. Every character was estimated as mean of three repeated measures of each variable. Meristic characters were chosen due to their functional importance as sensory (lateral line), structural (scale rows), locomotive (fins) and feeding (gill rakers) traits.

2.3 Fluctuating asymmetry (FA) analysis
Character size was calculated as the average between both sides [(R+L)/2]. Measure of individual fluctuating asymmetry (FA) was calculated as the signed mean differences between left and right measures and estimated using the formula of Palmer and Strobeck (1986): (FA = Ri−Li), where (Ri) is right side and (Li) left side of morphological character. Because metric characters and FA values may be positively influenced by body size (Pertoldi and Kristensen, 2015), the relationship between each metric character and body size was analyzed by performing regressions of FA against standard body length. The magnitude of absolute FA was assessed as the unsigned difference between the measurements of the right and left sides (| R−L |). Spearman rank and Pearson correlations were performed between absolute values of FA for meristic and morphometric characters, respectively and character size. An index of asymmetry was calculated as follows (R−L/R) %, according to (Rossi et al., 2003). For individuals with R>L their right sides dominated over the left, and the index was assigned a positive value. In contrast, for individuals with R<L the index was assigned a negative index value.

3 Results
The results of asymmetry analysis for the measured morphological characters of the population of H. vittatus (1), H. brevis (2) and H. forskalii (3) showed that most investigated individuals of the three species expressed same degree of asymmetry as shown in (Figure 1; Figure 2). The magnitude of fluctuating asymmetry was different in the three species although H. forskalii showed more tendency towards the left side. The snout of all specimens of the three species was longer on the left side compared to right side, indicating fluctuation to the left side “lefty”. More scales were recorded along the lateral line on the right side of H. vittatus and H. brevis compared to H. forskalii, while more gill rakers were also recorded on the left side of H. vittatus compared to the right one. The smallest asymmetry index (0.1 to 0.4%) was found for PVFL of the three species and the largest index (4.5%) was found for POL of H. brevis (Table 1). Although the three species had almost same means of characters size, mean
asymmetry index was lower in *H. forskalii* (3.5%) compared to (5.1%) and (4.9%) in *H. vittatus* and *H. brevis*, respectively. In *H. vittatus* 41% of then measured morphological characters fluctuated to the right side and 59% to left side. In *H. brevis* 50% fluctuated to the right side and 50% to left side, while in *H. forskalii* 34% fluctuated to the right and 66% fluctuated to the left side.

Absolute asymmetry values were significantly correlated with character size for the number of lateral line scales, head length, pectoral fin length and ventral fin length (Spearman correlation, P>0.05) and highly correlated for snout length and caudal peduncle length (Pearson correlation, P>0.001) in the three species. By Spearman and Pearson correlations between means of bilateral characters and standard length, we found pelvic fin length ($r^2 = 0.7$), head length ($r^2 = 0.6$), pectoral spine length ($r^2 = 0.6$), snout length ($r^2 = 0.5$) and ventral fin length ($r^2 = 0.5$) of the three species to be positively influenced by standard length, P < 0.05.

Figure 1 Mean asymmetry index (R-L/R) % of metric characters for individuals of *H. vittatus* (1), *H. brevis* (2) and *H. forskalii* (3)

Figure 2 Mean asymmetry index (R-L/R) % of meristic characters for individuals of *H. vittatus* (1), *H. brevis* (2) and *H. forskalii* (3)
Table 1 Mean of character size and the asymmetry indexes of H. vittatus (1), H. brevis (2) and H. forskalii (3)

Character	Character size (R+L)/2	Asymmetry index (R-L/R)%				
	Fish 1	Fish 2	Fish 3	Fish 1	Fish 2	Fish 3
HL	6.5	6.3	6.5	0.6	0.6	0.6
ED	2.1	2	2.2	0.4	2.4	0.9
POL	3.4	3.3	3.8	0.6	4.5	0.8
SNL	2.8	2.6	2.9	10.7	9.5	5.8
PFL	1.8	1.8	1.9	2.7	0	1.1
VFL	1.7	1.6	1.8	1	2.5	5.7
PVFL	14.7	11.7	13	0.1	0.2	0.4
PSL	4.6	4.3	4.6	0.2	1.9	1.2
CPL	3	2.9	3.2	1.2	1.8	0.6
PFR	14.1	13.45	12.05	4.4	0.8	2.5
LLS	57.1	55.6	54.3	2.1	2.2	1.7
DLS	9.8	10.5	11.3	3.8	5.5	4.1
VLS	6.5	5.7	6.2	7.8	4.3	0.3
GR	55.4	54.9	56.6	2.5	0.8	0.8
Mean	24.5	23.6	24.1	5.1	4.9	3.5

4 Discussion

In this study significant difference in the degree of FA among the populations of the three species was detected. Occurrence of FA in a single individual may prove meaningful biologically in identifying environmental stressors within the Nile water. The Different degrees of FA among individuals of fish in each population may identify environmental instability. Individual specimens sampled could have experienced different developmental conditions during their development. Differences in the percentage of FA may be attributed to the ability of the traits to buffer developmental alterations (Lens et al., 2002). Therefore, environmental condition takes part for the overall condition of the species and may enhance its fitness to resist alterations. According to Allan (2004), Richards et al. (1996) and Roy et al. (2003), human activities along the Nile can have some impacts on water quality, habitat, and aquatic biota and can play a significant role in defining Nile condition and thus create developmental stressors resulting in FA. In addition, pesticides and fertilizers are main factors to contamination of water and aquatic natural resources (Manjare et al., 2010). However, water chemistry may have a more direct influence on FA and may be a more powerful predictor of developmental stress. Other factors such as nutrition, chemical contaminants and pH have also been shown to increase FA (Allenbach, 2011). Annual variability in temperature and water levels could also impact a variety of stressors contributing to increase variability among individuals. Many studies have shown FA to be a reliable bio-indicator of environmental stress (Hardersen, 2000; Seixas et al., 2016).

Since, asymmetry in the morphology of fish specimens was observed, it might be a sign that fishes in the sampling area underneath environmental disturbances. Observed fluctuating asymmetry would be an indication of existing pollutants within the fish habitat which consequently affected its morphology. The continuity of the fishes in the polluted and disturbed environment will likely affect fish morphology and cause asymmetry. The present data shows the indication for FA of the fishes that can be a result of a stressed environment probably from different types of aquatic pollutants. The polluted ecosystem will eventually cause morphological variation as these effluents interfere during its growth and development (Bonada and Williams, 2002).

Many Studies showed that greater fluctuating asymmetry is the outcome of the species towards environmental situation (Ducos and Tubago, 2015). Other studies have also showed direct relationship between environmental stress and the increase of abnormalities (Taylor, 2001; Lemly, 2002; Hermita et al., 2013; Lutterschmidt et al.,
2016) and parasites in fishes (Schwaiger, 2001; Almeida et al., 2008). Tull and Brussard (2006) also found FA in the western fence lizard (Sceloporus occidentalis) to be greater among individuals exposed to off-highway vehicle disturbance, and Lajus et al. (2003) found FA in some characters of eelpout (Zoarces viviparous) to correlate with environmental conditions of salinity and temperature. Additionally Estes et al. (2006) found eastern mosquitofish (Gambusia holbrooki) from a stream with high levels of paper mill effluent to have greater FA than mosquitofish from streams free of effluent. Zakeyudin et al. (2012) investigated the spotted barb (Puntius binotatus) and used it as an essential bio-marker to environmental stress or the health condition of the aquatic habitat. Cabuga et al. (2017) also reported that the approach of FA and physico-chemical parameters is significant for evaluating environmental condition as well as species state of well-being. However, the present results of FA and our interpretation can serve as the foundational data for investigating the effects of pollution on the aquatic ecosystem and biodiversity of the Nile. Future investigation of FA within the Nile system can be focused on environmental water quality, microhabitat assessment, and changes in hydrology which may be more meaningful for predicting responses in FA. Species with greater responses in FA that could better serve as biological indicators of the health of a given habitat.

Authors’ contributions
Analysis of data and writing of manuscript were done by Dr. Elagba Mohamed while morphological measurements and counts were done by Wigdan Al-Awadi. All authors read and approved the final manuscript.

References
Allan J.D., 2004, Landscapes and riverscapes: The influence of land use on stream ecosystems. Ann. Rev. Ecol. Evolut. Syst., 35: 257 https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
Allenbach D.M., 2011, Fluctuating asymmetry and exogenous stress in fishes: A review. Rev. Fish Biol. Fish., 21: 355-376 https://doi.org/10.1007/s11101-011-9178-2
Ameida D., Almodôvar A., Nicola G.G., and Elvira B., 2008, Fluctuating asymmetry, abnormalities and parasitism as indicators of environmental stress in cultured stocks of goldfish and carp, Aquac., 279: 120-125 https://doi.org/10.1016/j.aquaculture.2008.04.003
Bailey R.G., 1994, Guide to the fishes of the River Nile in the Republic of the Sudan, J. Nat. Hist., 28: 94-948 https://doi.org/10.1080/00222939400770501
Bonada N., Williams D.D., 2002, Exploration of utility of fluctuating asymmetry as an indicator of river condition using larvae of caddisfly Hydropsychemorosa (Trichoptera: Hydropsychidae). Hydrobiol., 481: 147-156 https://doi.org/10.1023/A:1021297503935
Boulenger G.A., 1907, Zoology of Egypt, The Fishes of the Nile, Hugh Rees Ltd., London https://biodiversitylibrary.org/page/35727366
Brewster B., 1986, A review of the genus Hydrocynus Cuvier, 1819 (Teleostei: Characiformes), Bull. British Mus. Nat. Hist. (Zoology), 50(3): 153-206
Cabuga Jr. C.C., Apostado R.R.Q., Abelada J.I.Z., Calagai L.B., Presilda C.J.R., Angco M.K.A., Bual J.L., Lador J.E.O., Jumawan J.H., Jumawan J.C., Havana H.C., Requieron E.A., Torres M.A.J., 2017, Comparative fluctuating asymmetry of spotted barb (Puntius binotatus) sampled from the Rivers of Wawa and Tubay, Mindanao, Philippines. Comput. Ecol. Software, 7(1): 8-27 http://www.iaees.org/publications/journals/ces/articles/2017-7-1/fuctuating-asymmetry-of-spotted-barb.pdf
Clarke G.M., 1995, Relationships between developmental instability and fitness: application for conservation biology. Conserv. Biol., 9 (1): 18-24 https://doi.org/10.1046/j.1523-1739.1995.0010018.x
Daget J., and Grosse J.P., 1984, Distichodontidae. In: Daget J., Grosse J.P and Thys van den Audenarde D.F.F. (eds), Check-list of Freshwater Fishes of Africa, Vol. I, ORSTOM and MRAC, Tervuren, pp. 184-211
Daloso D.M., 2014, The ecological context of bilateral symmetry of organ and organisms, Nat. Sci., (6):184-190 https://doi.org/10.4236/ns.2014.64022
Dongen S.V., 2006, Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future, J. Evol. Biol., 19 (6): 1727-1743 https://doi.org/10.1111/j.1420-9101.2006.01175.x
PMid:17040371
Ducos M.B., and Tabugo S.R.M., 2015, Fluctuating asymmetry as bionindicator of stress and developmental instability in Gaffariram tumidum (ribbed venus clam) from coastal areas of Iligan Bay, Mindanao, Philippines, AACL Bioflux, 8(3): 292-300 http://www.bioflux.com.ro/docs/2015.292-300.pdf
Elagba H.A.M., and Wigdan A.S.A., 2015, Taxonomic revision of the tiger fish Hydrocynus vitatus (Castelnau, 1861), H. Brevis (Cuvier & Valencienne, 1849) and H. forskalii (Cuvier, 1819) from the Nile in Sudan, Int. J. Aquac., 5(5): 1-9 http://dx.doi.org/10.5376/ija.2015.05.0005
Estes E.C.J., Katholi C.R., and Angus R.A., 2006, Elevated fluctuating asymmetry in eastern mosquitofish (Gambusia holbrooki) from a river receiving paper mill effluent, Environ. Toxicol. Chem., 25: 1026-1033
https://doi.org/10.1897/05-079R1.1
PMid:16629141

Fessehaye Y., Komen H., Kezk M.A., Van Arendonk J.A.M., and Bovenhuis H., 2007, Effects of inbreeding on survival, body weight and fluctuating asymmetry (FA) in Nile tilapia, Oreochromis niloticus. Aquac., 264, 27-35
https://doi.org/10.1016/j.aquaculture.2006.12.038

Franco A., Malavasi S., Panoni F., Nasci C. and Torricelli P., 2002, Ethoxyresorufin Odeethylase (EROD) activity and fluctuating asymmetry (FA) in Zostera marina (Zosteraceae) as indicators of environmental stress in the Venice lagoon, J. Aquat. Ecosyst. Str. Recov., 9 (4): 239-247
https://doi.org/10.1023/A:1024010813669

Hadersen S., 2000, The role of behavioural ecology of damselflies in the use of fluctuating asymmetry as a bioindicator of water pollution, Ecol. Entomol., 25: 45-53
https://doi.org/10.1046/j.1365-2311.2000.00204.x

Hermita J.M., Gorospe J.G., Torres M.A.J., Lumasag J.L., and Demayo C.G., 2013, Fluctuating asymmetry in the body shape of the mottled spinefoot fish, Siganus fuscus (Houttuyn, 1782) collected from different bays in Mindanao Island, Philippines, Sci. Internat. (Lahore), 25(4): 857-861

Holčík J., Banarescu P., and Evans D., 1989, A general introduction to fishes, In: Holčík J. (ed.), The Freshwater Fishes of Europe. General Introduction to Fishes, Acipenseriformes, vol. 1, AULA-Verlag, Wiesbaden, pp. 18-147

Lajus D., Rainer K., and Brix O., 2003, Fluctuating asymmetry and other parameters of morphological variation of eelpout Zoarces viviparus (Zoarcidae, Teleostei) from different parts of its distributional range, Sarsia, 88: 247-260
https://doi.org/10.1080/00364820310001985

Leary R.F., Allendorf F.W., and Knudsen K.L., 1991, Effects of rearing density on meristics and developmental stability of rainbow trout, Copeia, 1: 44-49
https://doi.org/10.2307/1446247

Lens L., Van Dongen S., Kark S., and Matthysen E., 2002, Fluctuating asymmetry as an indicator of fitness: can we bridge the gap between studies, Biol. Rev. Camb. Philos. Soc., 77(1): 27-38
https://doi.org/10.1017/S1464793101005796
PMid:11911372

Lutterschmidt W.I., Samantha L.M., and Jacob F.Sch., 2016, Fluctuating asymmetry in two common freshwater fishes as a biological indicator of urbanization and environmental stress within the Middle Chattahoochee Watershed, Symmet., 8(124): 1-17
https://doi.org/10.3390/sym8110124

Manjare S.A., Vhanalakar S.A., and Muley D.V., 2010, Analysis of water quality using physico-chemical parameters tamdalge tank in kolhapur distric, Maharashtra, Int. J. Adv. Biotechnol. Res., 1(2): 115-119
https://pdfs.semanticscholar.org/015c/735335-247247103891192984859729722958339f984556.pdf

Mazzi D., Largiader C.R., and Bakker T.C.M., 2002, Inbreeding and developmental stability in three-spined sticklebacks (Gasterosteus aculeatus L.), Heredity, 89: 293-299
https://doi.org/10.1038/sj.hdy.6800138
PMid:12242646

Mboko S.K., Masanori K., and Michino H., 1998, Asymmetry of mouth- opening of small herbivorous cichlid fish Telmatochromis temporalis in Lake Tanganyika, Zool. Sci., 15(3): 405-408
https://doi.org/10.2108/zsj.15.405
PMid:18466005

Moller A.P., 1997, Developmental stability and fitness: A review. Am. Nat., 149: 916-932
https://doi.org/10.1086/286030
PMid:18811255

Moller A.P., and Swaddle J.P., 1997, Asymmetry, developmental stability, and evolution. Oxford Series in Ecology and Evolution, Oxford University Press, New York, pp. 291
http://www.oup.com/catalog/9780198548942.html
PMid:9477007

Palma J., Alarcón J.A., Álvarez C., Zouros E., Magoulas A., and Andrade J.P., 2001, Developmental stability and genetic heterozygosity in wild and cultured stocks of gilthead sea bream (Sparus aurata), J. Mar. Biol. Assoc. UK, 81: 283-288
https://doi.org/10.1017/S0025315401003757

Palmer A.R., and Strobeck C., 1986, Fluctuating asymmetry: measurement, analysis, patterns, Annu. Rev. Ecol. Syst., 17: 391-421
https://doi.org/10.1146/annurev.es.17.110186.002135

Pertoldi C., and Kristensen T.N., 2015, A new fluctuating asymmetry index, or the solution for the scaling effect, Symmetry, 7: 327-335
https://doi.org/10.3390/sym7020327
Richards C., Johnson L.B., and Host G.E., 1996, Landscape-scale influences on stream habitats and biota, Can. J. Fish. Aquat. Sci., 53: 295-311
https://doi.org/10.1139/f96-006

Rossi M., Ribeiro E., and Smith R., 2003, Craniofacial asymmetry in development: an anatomical study, Angle Orthod., 73(4): 381-385
http://www.angle.org/doi/pdf/10.1043/0003-2820/73/4/381
PMid:12940558

Roy A.H., Rosemond A.D., Paul M.J., Leigh D.S., and Wallace J.B., 2003, Stream macroinvertebrate response to catchment urbanization (Georgia, USA), Freshw. Biol., 48: 329-346
https://doi.org/10.1046/j.1365-2427.2003.00979.x

Schwaiger J., 2001, Histopathological alterations and parasite infection in fish: indicators of multiple stress factors, J. Aquat. Ecosyst. Stress Recov., 8 (3-4): 231-240
https://doi.org/10.1023/A:1012954608541

Seixas L.B., Neves Dos Santos A.F.G., and Neves Dos Santos L., 2016, Fluctuating asymmetry: A tool for impact assessment on fish populations in a tropical polluted bay, Brazil, Ecol. Indic., 71: 522-532
https://doi.org/10.1016/j.ecolind.2016.07.024

Taylor D.S., 2001, Physical variability and fluctuating asymmetry in heterozygous and homozygous populations of *Rivulus marmoratus*, Can. J. Zool., 79: 766–778
https://doi.org/10.1139/z01-038

Tull J.C., and Brussard P.F., 2006, Fluctuating asymmetry as an indicator of environmental stress from off-highway vehicles, J. Wildl. Manag., 71: 1944-1948
https://doi.org/10.2193/2006-397

Zakeyudin M.S., Isa M.M., Md Rawi C.S., and Md Shah A.S., 2012, Assessment of suitability of Kerian River tributaries using length-weight relationship and relative condition factor of six freshwater fish species, J. Environ. Earth Sci., 2: 52-60