Fully Implicit Runge-Kutta Schemes for Ideal Elastoplasticity

Bettina Schröder1,∗ and Detlef Kuhl1,**

1 Institute of Mechanics and Dynamics, University of Kassel, Mönchebergstraße 7, 34109 Kassel

The present paper derives a multifield formulation of ideal elastoplasticity to enable the consistent application of higher order accurate Runge-Kutta schemes. With the help of an axisymmetric model problem the appearing time discretization errors of distinct schemes are determined and compared.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Motivation

Industrial manufacturing strategies are often characterized by high speed process steps where dynamic effects within plastic deformations can’t be neglected any longer, cf. [5]. Hence, the application of high order time discretization schemes and the assessment of corresponding errors are of great importance. A first step in that direction is the reformulation of plasticity as a multifield problem.

2 The Principle of Jourdain for Dynamic Ideal Elastoplasticity

The principle of Jourdain for dissipative continua is based on the stationarity of the balance of energy

$$\sup_{u, \varepsilon_p} \inf_{\sigma, \gamma \geq 0} P(\dot{u}, \ddot{u}, \varepsilon_p, \varepsilon_p, \sigma, \gamma)$$

with

$$P = \dot{K} + \dot{E} + P^* + D. \quad (1)$$

Equation (1) consists of the rate of kinetic energy \(K\), the rate of internal energy \(E\), the power of external loads \(P^*\) and the pseudopotential \(D\) characterizing plastic effects, cf. [2, 4]. It furthermore depends on the stress tensor \(\sigma\), the plastic multiplier \(\gamma\), the displacement vector \(\dot{u}\), the plastic strain tensor \(\varepsilon_p\) as well as on corresponding first and second time derivatives. Evaluating Equation (1), performing a spatial discretization, and applying an anti-symmetric Newton method yields the linearized semidiscrete form

$$M \Delta \dot{w} + D \Delta w + K_1 \Delta w = R_1^t - R_1, \quad K_2 \Delta w = -R_2, \quad \gamma^{i,k+1} = 0 \quad \forall i \in I^k, \quad (2)$$

$$A^{k+1} := \{i|\gamma_i^{i,k+1} + d \tau^{i,k+1}_2 > 0\}, \quad \mathcal{T}^{k+1} := \{i|\gamma_i^{i,k+1} + d \tau^{i,k+1}_2 \leq 0\}.$$

Therein the vector of unknowns \(w = [u, \dot{u}, \varepsilon_p, \gamma]\), the generalized mass matrix \(M\), the generalized damping matrix \(D\), the generalized stiffness matrices \(K_1, K_2\), the generalized residual load vectors \(R_1, R_2\), the external load vector \(R_1^t\) and the inactive as well as active set \(\mathcal{I}, \mathcal{A}\) are included. Moreover, \(\tau^{i,k+1}_2\) represents the nodal evaluation \(i\) of the von Mises yield function at iteration \(k + 1\) and \(d \geq 0\) an arbitrary constant, cf. [3, 4].

3 Runge-Kutta Schemes in Multifield Plasticity

For a temporal solution of Equation (2) higher order stiffly accurate fully implicit Runge-Kutta integrators can be applied. Therefore, the time interval of interest \([0, T]\) is split into time steps \(\Delta t = t_{n+1} - t_n\) and the stages \(t_{ni} = t_n + c_i \Delta t\) with \(c_i \in [0, 1]\) and \(i = 1, \ldots, s\) are introduced. At the latter points in time Equation (2) is solved simultaneously. Therefore, the link

$$w_t = w_{t,n} + \Delta t A_t w_t$$

with

$$A_t = \begin{bmatrix} a_{11} & \cdots & a_{11} & a_{12} & \cdots & a_{12} & \cdots & a_{1s} & \cdots & a_{1s} \\ a_{21} & \cdots & a_{21} & a_{22} & \cdots & a_{22} & \cdots & a_{2s} & \cdots & a_{2s} \\ \vdots & \ddots & \vdots & \ddots \\ a_{s1} & \cdots & a_{s1} & a_{s2} & \cdots & a_{s2} & \cdots & a_{ss} & \cdots & a_{ss} \end{bmatrix} \quad (3)$$

is established, whereby the matrix \(A_t\) represents an extension of the Runge-Kutta coefficients \(a_{ij}\), cf. [1]. Furthermore, the stage values are aggregated in the vector \(w_t = [w_{t,1}, \ldots, w_{t,s}]\), the corresponding time derivatives in \(\dot{w}_t\) and the vector \(w_{t,n}\) consists of \(s\) copies of \(w_t\). Inserting the linearization of Relation (3) into Equation (2), yields the linear system of equations

$$\frac{1}{\Delta t^2} M A_t^{-1} A_t^{-1} + \frac{1}{\Delta t} D A_t^{-1} + K_1 \Delta w_t = R_{1,t}^t - R_{1,t}, \quad K_2 \Delta w_t = -R_{2,t}, \quad \gamma^{i,k+1} = 0 \quad \forall i \in I^k,$$
\[A_t^{k+1} := \{ i| r_{1,t}^{i,k+1} + d \mathbf{r}_{2,t}^{i,k+1} > 0 \}, \quad T_t^{k+1} := \{ i| r_{1,t}^{i,k+1} + d \mathbf{r}_{2,t}^{i,k+1} \leq 0 \}, \quad d > 0, \]

where the incorporated matrices are extended properly. For a final solution a solver for linear systems of equations is applied.

4 Time Discretization Error Analysis for an Axisymmetric Model Problem

With the preceding procedure at hand, a time discretization error analysis for the axisymmetric benchmark problem of Fig. 1, where a time dependent sinusoidal load is applied to a cylinder with LAME constants \(\lambda, \mu \), density \(\rho_0 \) and yield stress \(\sigma_y \), is performed, cf. [4]. Hence, at the end of each time interval the global \(h \)-error of a quantity \(\hat{X} \) is calculated by subtracting the numerically determined values \(X_{ns} \) from those obtained with a very small time step size \(X_{ns}^{\Delta t/16} \), while identical initial values are taken into account. The local \(h \)-error estimator, however, is obtained, by performing two calculations with two distinct step sizes simultaneously and comparing the results after each time step. Additionally, the results from the calculation using the bigger time step size are passed to the other one as initial condition for the next time step.

\[
e_{ns}^{glob} = ||X_{ns}^{\Delta t/16}(t_0) - X_{ns}(t_0)||, \quad e_{ns} = ||X_{ns}^{\Delta t/2} - X_{ns}||, \quad q^{loc/glob} = \text{mean} (\text{linear fit} (\log (\Delta t), \log (e_{ns}^{loc/glob}))). \tag{5}
\]

If these errors are determined for distinct time step sizes and collocated in vectors, expression (5) can be used to determine the order of convergence of the time discretization scheme. A more detailed explanation is given in [4, 6] and references therein. For distinct RUNGE-KUTTA schemes the orders of convergence for different field variables, obtained from the local and the global error, are shown in Table 1. Considering the local estimates, it becomes apparent that the Lobatto IIIIC(2) method is quite far away from its theoretical order of two. In contrast, the Lobatto IIIIC(3) scheme almost reaches its theoretical order of four for all considered field variables. A similar behavior can be recognized within the Radau IIA schemes. Analyzing the corresponding global measurements, however, yields a deviating picture. Apart from the Lobatto IIIIC(2) scheme, all methods are estimated to reach orders well above two but not more.

5 Conclusion and Outlook

In the present paper the applicability of higher order accurate fully implicit RUNGE-KUTTA schemes to ideal elastoplasticity using a multifield approach is demonstrated. With the help of a model problem time discretization errors and the linked orders of convergence for distinct time integrators are compared. Orders of convergence of about five are obtained if the local \(h \)-error estimator is considered. But for the global \(h \)-error estimator an order of convergence greater than three could not be determined. An explanation for this order reduction phenomenon is still missing and hence an open task for further investigations.

Acknowledgements Open access funding enabled and organized by Projekt DEAL.

References

[1] J. C. Butcher, Numerical Methods for Ordinary Differential Equations. (John Wiley & Sons, 2008).

[2] C. Miehe, J Mech Phys Solids, 59, p. 898-923.

[3] A. Popp, M. W. Gee, and W. A. Wall, Int J Numer Methods Eng, 79, p. 1354-1391.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
[4] B. Schröder, Consistent Higher Order Accurate Time Discretization Methods for Inelastic Material Models (Kassel University Press, 2019).

[5] K. Steinhoff, U. Weidig, and N. Saba, Investigation of Plastic Forming Under the Influence of Locally and Temporally Variable Temperature and Stress States, edited by K. Steinhoff, H. J. Maier, and D. Biermann, in: Functionally Graded Materials in Industrial Mass Production. (Verlag Wissenschaftliche Scripten, 2009), p. 353-364.

[6] K. Strehmel, R. Weiner, and H. Podhaisky, Numerik gewöhnlicher Differentialgleichungen. (Springer Spektrum, 2012).