Comparative metabolomics analysis of milk components between Italian Mediterranean buffaloes and Chinese Holstein cows based on LC-MS/MS technology

Xiang Yuan¹, Wen Shi¹*, Jianping Jiang², Zhipeng Li¹, Penghui Fu¹, Chunyan Yang¹, Saif ur Rehman¹, Alfredo Pauciullo³*, Qingyou Liu¹*, Deshun Shi¹*

¹ State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China, 2 Guangxi Engineering Technology Research Center of Chinese Medicinal Materials Stock Breeding, Guangxi Botanical Garden of Medicinal Plants, Nanning, China, 3 Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy

* These authors contributed equally to this work.

Afrefdo.pauciullo@unito.it (AP); qyliu2002@126.com (QL); ardsshi@gxu.edu.cn (DS)

Abstract

Buffalo and cow milk have a very different composition in terms of fat, protein, and total solids. For a better knowledge of such a difference, the milk metabolic profiles and characteristics of metabolites was investigated in Italian Mediterranean buffaloes and Chinese Holstein cows were investigated by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in this study. Totally, 23 differential metabolites were identified to be significantly different in the milk from the two species of which 15 were up-regulated and 8 down-regulated in Italian Mediterranean buffaloes. Metabolic pathway analysis revealed that 4 metabolites (choline, acetylcholine, nicotinamide and uric acid) were significantly enriched in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, as well as purine metabolism. The results provided further insights for a deep understanding of the potential metabolic mechanisms responsible for the different performance of Italian Mediterranean buffaloes’ and Chinese Holstein cows’ milk. The findings will offer new tools for the improvement and novel directions for the development of dairy industry.

1. Introduction

Milk and dairy products demanded as an important source of energy and nutrients for human nutrition has changed in the last decades, pointing to healthier products with higher nutritional values and immunological benefits. Among domestic ruminants, buffalo and cow differ in their milk composition in terms of fat and total solids, especially protein content (4.3% vs 3%) [1–4]. Italian Mediterranean buffalo (Bubalus bubalis) is an excellent buffalo breed with the highest milk yield (2000–2400 kg in 305 days of milking) [5–9], and relative high fat content (8%-9%) and protein content (4%-5%) (http://www.gxbri.com/index.htm). One of the most famous Italian dairy products “Mozzarella di bufala Campana” is processed from Italian
Mediterranean buffalo milk, which is honored by the Protected Designation of Origin (PDO) label since 1996 [10, 11]. Meanwhile, buffalo has been traditionally considered also less susceptible than cattle to inflammatory diseases such as mastitis [12, 13].

The particular biological characteristics between the two kinds of milk may be due to the differences in metabolic mechanisms of the two species (buffalo vs cow), and there is desire to investigate these differences in the light of new available technologies. In this respect, along with the development of informatics in support of new analytical methods, metabolomics has revolutionized the metabolite profiling and biomarker identification [14]. Investigations have demonstrated that the metabolites, as the products of metabolism, are involved in essential biological process, such as immune disease, nutrition, etc. [14]. Moreover, metabolic profiles have provided insight into the mechanism that underlying various economic traits, including the milk production [15, 16], heat stress [17], feed efficiency [18, 19], flavor [20] and negative energy balance [21]. Earlier evidences have proved that metabolites had strong correlation with milk composition traits in dairy cattle [15, 22, 23], and several metabolites, such as choline and succinic acid could represent biomarkers to distinguish the Holstein milk from those of Jersey, buffalo, yak, and goat [24, 25]. These findings indicated that the intrinsic metabolic status could enlighten important metabolic processes and essential cellular functions.

In the present study, we adopted a metabolomics approach to investigate the milk metabolic profiles of Italian Mediterranean buffaloes and Chinese Holstein cows aiming to detect the metabolites associated with milk content, which could provide valuable information to illustrate the metabolic mechanism at the basis of the different milk performances of the two species.

2. Materials and methods

2.1. Ethics statement

All the research work was conducted were in compliance with the institutional guidelines and under a protocol approved by the Animal Experimental Ethical Inspection committee of Guangxi University (Gxu-2021-111).

2.2. Animals

A total of thirty individuals of Italian Mediterranean buffaloes (n = 15) and Chinese Holstein cows (n = 15) were chosen from Guangxi Huaxu Buffalo Biological Technology Co., Ltd. and the dairy farm of Guangxi University, respectively. All the selected animals were of similar parity (2 or 3) were in middle lactation (100-150d) and housed in the same living, management and feeding conditions for an adjustment period of 20 days before experimental milk collections. All animals were milked and fed twice a day (6:00–9:00 am and 14:00–15:00 pm) with the nutrient diet (S1 Table), whereas water was always available during the whole experimental period. Milk samples were collected in 50 mL sterilized tubes kept on ice bath, then transported to laboratory, divided into 2 mL aliquots and stored at -80˚C for further analysis.

2.3. Analysis of milk composition and extraction of metabolites

Milk composition and somatic cell count (SCC) were analyzed by MilkoScanTM FT120 (Foss Electric A/S, Hillerød, Denmark). Metabolites were extracted using the method previously described [26, 27]. Briefly, milk samples were thawed at room temperature, then 50 μL from each sample was mixed with 350 μL of chilled extraction liquid, Methanol: Methyl-tert-butyl ether (MTBE) in the ratio 1:1 (vol: vol), containing Vitamin E acetate (25 ppm) as internal standard. The mixture was vortexed for 3 min, subsequently incubated at 4 °C for 10 min and centrifuged at 14,000 g for 15 min at 4 °C. The supernatant was transferred to a 0.22 μm filter.
(Corning, SLC, USA), and centrifuged at 14,000 g for 5 min at 4 °C. Finally, clear supernatant was used for analysis.

2.4. LC–MS/MS analysis

LC-MS/MS analysis was performed based on the Dionex UltiMate 3000 UHPLC system equipped with Q Exactive mass spectrometer (Thermo Fisher Scientific, CA, USA) operating in data-dependent acquisition (DDA) mode. Samples were injected onto a Hypersil GOLD HPLC column (50×2.1 mm, 1.9 μm). The mobile phase consisted of a gradient system of (A) 10 mM ammonium formate in water and (B) 10 mM ammonium formate in methanol: 0–2 min, 5% B; 2–13 min, 5–95% B; 13–16 min, 95% B; 16.1–18 min, 5% B; delivered at 0.3 mL/min.

The electrospray ionization (ESI) source parameters were set as follows: spray voltage of Q-Exactive mass spectrometer was set at 3.5 kV/3.2 kV in positive/negative polarity mode and capillary temperature was 320 °C. Sheath and aux gas flow rates were set as 30 psi and 10 arb, respectively. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) was operated with full scan + data dependent MS2 mode. The MS data was obtained with a scan range from 100–1000 m/z at a resolution of 70,000. The automatic gain control (AGC) target value was 300,000 and the maximum ion injection time was 100 ms. MS2 fragmentation was carried out with a resolution of 17,500 with AGC target value at 100,000 and dynamic exclusion for 10 s. Stepped collision energy (CE) fragmentation was achieved in the HCD cell at three values of normalized collision energy (NCE), namely, 40–60–80 NCE in positive mode and negative mode.

Raw LC-MS/MS data were analyzed by Compound Discoverer v. 3.0 (Thermo Fisher Scientific, CA, USA) with an untargeted metabolomics workflow: spectra selection, blank subtraction, peak picking and retention time (RT) alignment, candidate comparison with the mzCloud and ChemSpider database.

2.5. Data analysis

The milk composition data were statically analyzed by using Student’s t-test by SPSS version 22.0 (IBM Corp., Armonk, NY). Multivariate statistical analysis including principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) was executed to visualize the metabolic variations using SIMCA-P v.14.1 (Umetrics, Umeå, Sweden) after pareto (Par) scaling. The quality of OPLS-DA model was evaluated by cumulative parameters R²X, R²Y, and Q² in cross-validation, and adopting a permutation test with 200 permutations.

Differential metabolites were identified using the variable influence on projection (VIP) values > 1, P < 0.05 and |log2 (fold change)| > 1. Hierarchical cluster analysis (HCA) was performed by applying RStudio v.1.4.1106 (package pheatmap). Afterward, correlation network analysis and metabolic pathway enrichment were carried out according to annotation in Kyoto Encyclopedia of Genes and Genomes (KEGG) through MetaboAnalyst v.4.0 (https://www.metaboanalyst.ca/) [28]. The correlation analysis between metabolites and milk compositions was performed with single-Y Orthogonal extension of Partial Least-Squares (OPLS) regression using SIMCA-P v.14.1 (Umetrics, Umeå, Sweden).

3. Results

3.1. Milk composition of Italian Mediterranean buffaloes and Chinese Holstein cows

Descriptive statistical analysis evidenced that milk fat percentage, protein percentage and total solid of Italian Mediterranean buffaloes were higher than those of Chinese Holstein cows,
otherwise with lower SCC of Italian Mediterranean buffaloes; whereas, as expected, the content of lactose did not show differences between milk of Italian Mediterranean buffaloes and Chinese Holstein cows (Table 1).

3.2. Metabolic profiles and multivariate analysis

Totally, 990 and 222 peaks were acquired in positive and negative ion modes, respectively. PCA analysis was conducted to determine the global differences between the metabolic profiles of the two groups. As depicted in Fig 1A and 1B, a clear separation between buffaloes and cows was detected. The $R^2_X (\text{cum})$ and Q^2 ranged from 0.787 to 0.827 and from 0.448 to 0.576, respectively. Subsequently, OPLS-DA models demonstrated a distinct discrimination between the two groups (Fig 1C and 1D). The satisfactory values for the intercepts (in the positive ion mode, $R^2_X (\text{cum}) = 0.651$, $R^2_Y (\text{cum}) = 0.973$, $Q^2 = 0.935$; in the negative ion mode, $R^2_X (\text{cum}) = 0.815$, $R^2_Y (\text{cum}) = 0.976$, $Q^2 = 0.923$) indicated that OPLS-DA models were stable and valid. Then, model cross-validation through permutation tests (200 times) generated the intercepts of R^2 and Q^2 (positive ion mode, 0.547 and -0.597; negative ion mode, 0.588 and -0.763, respectively) (S1 Fig). The data presented herein demonstrated that a clear and

Table 1. Descriptive data of milk composition and SCC of buffaloes and cows.

Sample	Fat/%	Protein/%	Lactose/%	TS/%	SCC
Buffaloes	8.60±0.44a	4.38±0.13a	5.10±0.07a	18.88±0.51a	6.40±1.00a
Cows	4.18±0.26b	2.95±0.10b	5.03±0.05a	12.70±0.30b	12.39±1.63b

1 a, b Mean values in the same column with different superscripts ($P < 0.05$) differ between the two groups.

2 TS: Total solid.
significant separation existed between Italian Mediterranean buffaloes and Chinese Holstein cows by multivariate analyses (PCA and OPLS-DA).

3.3. Identification of differential metabolites

We identified 23 significantly differential metabolites between the two groups based on the screening criteria with VIP > 1, \(P < 0.05 \) and \([\log FC] > 1\). In particular, 15 metabolites were up-regulated and 8 were down-regulated in Italian Mediterranean buffalo vs Chinese Holstein cows (Table 2). Hierarchical clustering analysis showed that each type of the two groups exhibited a distinct metabolic pattern (Fig 2).

3.4. Correlation network and metabolic pathway analyses

To investigate the interactions of the significantly different metabolites, we performed correlation network analysis. Five differential metabolites had strong correlation (S2 Fig), whereas the pathway analysis of the complete set of 23 differentially were enriched with four main biochemical pathways. Two metabolites (choline and acetylcholine) were involved in glycerophospholipid metabolism. Each metabolite was in three pathways (nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism and purine metabolism) (Fig 3). Consequently, a hypothesized pathway map based on the above four key pathways, including the corresponding differentially regulated metabolites, was integrated and proposed (Fig 4).

Table 2. Significantly different milk metabolites up- and down-regulated in Italian Mediterranean buffaloes vs Chinese Holstein cows.

No.	Metabolites	MW(Da)	RT(min)	Log2FC	P-value	VIP
Up	DL-Carnitine	161.105	0.477	2.31	2.71E-02	7.36
	Acetyl-β-methylcholine	159.125	0.507	2.17	4.39E-02	6.04
	Acetylcholine	145.109	0.482	2.94	3.03E-03	4.51
	Glyceryl 1,2-Dicaprate	400.317	14.845	1.72	2.07E-03	4.51
	N-(tert-Butyloxycarbonyl)-L-leucine	231.146	2.394	3.17	1.76E-04	4.42
	(2S)-2,3-Dihydroxypropyl (11Z,14Z)-11,14-icosadienoate	382.307	14.834	2.08	1.20E-04	3.46
	(R)-3-hydroxybutyrylcarnitine	247.141	0.697	3.11	8.69E-04	2.55
	salinosporamide B	279.146	5.272	5.57	7.25E-08	2.38
	2-methylbutyrylcarnitine	245.162	4.98	2.58	3.05E-04	1.87
	Glycerophospho-N-palmitoyl ethanolamine	453.284	14.014	3.75	6.78E-08	1.76
	glycidyl oleate	338.281	14.966	1.30	3.38E-03	1.35
n17	1-oleoyl-sn-glycero-3-phosphoethanolamine	479.300	14.373	3.74	4.83E-07	3.50
n36	1-stearoyl-sn-glycero-3-phosphoethanolamine	481.316	14.294	3.82	5.58E-08	3.04
n64	2-[(5-Amino-1, 3, 4-thiadiazol-2-yl)thio]-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)acetamide	313.102	2.595	6.31	6.00E-11	2.00
n123	1-linoleoyl-sn-glycero-3-phosphoethanolamine	477.285	14.042	3.18	1.33E-05	1.09
Dw	Choline	103.100	0.468	-2.03	2.57E-03	3.68
	Ethanoic anhydride	102.031	0.504	-1.84	3.78E-02	2.04
	N-Acetyl-α-D-glucosamine	180.062	0.504	-2.00	1.49E-02	1.90
	Trigonelline	137.047	0.504	-1.32	3.98E-02	1.86
p765	3-Hydroxy-5-methoxy-6-methyl-2,3-dihydro-4H-pyran-4-one	158.057	3.916	-6.67	7.34E-03	1.71
p937	Nicotinamide	122.048	0.66	-1.33	3.69E-03	1.33
n22	Uric acid	168.027	0.639	-3.37	9.58E-04	4.00
n23	Indole-3-carboxilic acid-O-sulphate	241.004	5.38	-2.27	1.78E-02	2.47

https://doi.org/10.1371/journal.pone.0262878.t002
4. Discussion

In the last decades, the interest and demand for the buffalo milk has increased worldwide due to its high-quality characteristics with a higher content of fat, protein, and total solids [3, 4] and better dairy processing performances compared to bovine milk [29, 30]. Despite of these positive aspects, buffaloes produce lower milk yield. The understanding of the biological mechanisms behind these differences between the buffaloes and bovines gives rise to the interest of many researchers [31, 32]. Previously, potential protein markers and intestinal microbiome have been positively associated with differences in milk components between buffaloes and cows [33]. Inspite of the increasing advance metabolomics technologies application, still very limited information is available on the metabolic mechanism addressing the
Fig 3. Metabolic pathways for 23 significantly differential regulated metabolites. The x-axis represents the pathway effect, and the y-axis represents the pathway name. Large sizes and dark colors represent the number of metabolites and p-value, respectively.

https://doi.org/10.1371/journal.pone.0262878.g003
phenomenon. Therefore, in the present study, we established the milk metabolic profiles of Italian Mediterranean buffaloes and Chinese Holstein cows, and identified 23 differential metabolites between the two groups.

The analysis demonstrated that four metabolic pathways, including glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, as well as purine metabolism that might subsequently affect milk content. Notably, four differentially regulated metabolites (acetylcholine, choline, nicotinamide and uric acid) might be potential biomarkers for the prediction of milk content.

The acetylcholine is one of the metabolites synthesized by choline [34]. Several studies have stated that acetylcholine, acting as a neurotransmitter or an immune modulator, has beneficial effects on the reduction of the oxidative stress, inflammation and apoptosis in a variety of

Fig 4. Hypothesized pathway map of the different milk performance between Italian Mediterranean buffaloes (red histograms) and Chinese Holstein cows (green histograms). Metabolites with bars were identified in current study, among them, * Asterisks represent metabolites those significantly different between two groups with p<0.05; Up-regulated and down-regulated metabolites screened by selection criteria are also indicated in red or green font, metabolites with black font were with VIP<1. Four metabolic pathways are shown in boxes. The dotted line represents the indirect regulatory relationship and the solid line represents the direct regulatory relationship. Additionally, in the histogram, red on the x-axis represents Italian Mediterranean buffaloes, whereas green represents Chinese Holstein cows. The y-axis stands for the relative concentration of metabolites between the two groups.

https://doi.org/10.1371/journal.pone.0262878.g004
human diseases [35, 36]. A recent study also suggested that acetylcholine is required for the acute inflammatory response [37]. In our study, the content of this metabolite was higher in buffalo milk than cow milk which might a higher resistance of buffaloes for the mastitis [13] and confirm that acetylcholine might have an essential role in mammary immune response, a higher concentration of acetylcholine in milk might act as an anti-inflammatory agent for maintaining the health status of mammary gland.

Generally, choline is synthesized in the liver and released into blood. It has various functions in biological processes such as cellular maintenance, cell growth and development [38]. However, it was reported that choline is also synthesized in mammary gland and located in the bilayer membrane of the milk fat globule [39, 40]. Furthermore, independent studies have proved that choline is an essential compound for hepatic lipid metabolism in dairy cattle [41, 42]. Investigations on dairy performance of lactating cows showed that milk composition was affected by choline supplementation [43, 44]. Furthermore, a previous study has reported that the relative concentration of choline in Holstein milk was higher than buffalo milk, which is consistent with our observation [45]. Besides, choline as a potential metabolic biomarker has a central role in mammary immune response and it was positively correlated with mastitis [40, 46].

The nicotinamide was differentially regulated between Italian Mediterranean buffalo and Chinese Holstein was the nicotinamide. This metabolite acts as an important precursor of NAD+ in milk [47], and it can interacted with NAD+ and NADP+ to play a fundamental role in the glycolysis and the TCA cycle [48]. Cervantes et al. (1996) investigated the role of the nicotinamide on the improvement of milk traits in dairy cows. This metabolite could increase the production of milk and protein, decrease fat percentage, but had no effect on either production of Fat-corrected Milk (FCM) and percentage of protein [49]. Later on, Zak et al. (2006) observed the involvement of the nicotinamide in lipid metabolism [50], whereas more recently a strong positive correlation was detected between the nicotinamide and milk protein yield in Holstein dairy cows [51]. These findings seem to confirm that a higher content of nicotinamide might provide more energy for milk production and explain the differences found between the Chinese Holstein cows and the Italian Mediterranean buffaloes.

Uric acid, as one of the purine derivative elements, has considered a reliable indicator to comprehensively assess cows’ healthy status and mammary energy status [52–54]. Furthermore, as an antioxidant entity, uric acid contributes to increase the oxidative stability of milk [55]. In relation to milk production, previous researches indicated that uric acid was linearly associated with milk yield in dairy cows [56, 57]. Giesecke et al. already in the 1994, have detected a strongly positive correlation between energy intake and uric acid excretion in milk, thus indicating the increasingly conversion rate of mammary purine with higher milk yield of dairy cows [58]. Therefore, our findings confirmed that the uric acid might be considered as an important metabolite supporting a higher milk fat content in Chinese Holstein cows vs Italian Mediterranean buffaloes.

Based on single and total metabolites pathways and their differential regulation, we manually integrated an overview pathway map and linked the information together (Fig 4). Results indicated that four significant pathways including glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, purine metabolism, were interacted together. This was in line with the result of correlation network analysis of the identified metabolites. Therefore, we hypothesized that the alteration of the four metabolic pathways could have significant impact on this milk content trait. Definitely, further investigation on the four key-metabolites should be conducted to consider their concrete role in milk metabolism and to develop an integrated metabolic biomarker map for the understanding and improvement of milk performances of dairy animals. However, taken together, our results
provided for the first-time useful information to elucidate the metabolic mechanisms of two dairy species with very different milk performances for both milk yield and composition.

5. Conclusions
This study investigated the milk metabolic profiles of Italian Mediterranean buffaloes and Chinese Holstein by LC-MS/MS. Four metabolites, including acetylcholine, choline, nicotinamide and uric acid are related to the differences in milk content traits between Italian Mediterranean buffaloes and Chinese Holstein. This finding will provide a new route to improve the milk content traits in dairy species.

Supporting information
S1 Fig. OPLS-DA permutation test in positive (A) and negative ion mode (B). (DOCX)
S2 Fig. Correlation network of 24 significantly differential regulated metabolites between Italian Mediterranean buffaloes and Chinese Holstein cows. (DOCX)
S1 Table. Feed composition and nutrient levels of diets, % (air-dry basis). (DOCX)

Acknowledgments
The LC-MS/MS was supported by Core Facilities Center of the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources.

Author Contributions
Conceptualization: Qingyou Liu, Deshun Shi.
Data curation: Saif ur Rehman.
Formal analysis: Xiang Yuan, Wen Shi, Jianping Jiang.
Funding acquisition: Qingyou Liu, Deshun Shi.
Investigation: Penghui Fu.
Methodology: Xiang Yuan, Wen Shi.
Project administration: Qingyou Liu, Deshun Shi.
Resources: Chunyan Yang.
Software: Jianping Jiang.
Supervision: Alfredo Pauciullo, Qingyou Liu, Deshun Shi.
Validation: Zhipeng Li, Penghui Fu, Chunyan Yang.
Visualization: Jianping Jiang.
Writing – original draft: Xiang Yuan.
Writing – review & editing: Alfredo Pauciullo, Qingyou Liu, Deshun Shi.
References

1. Zicarelli L. Buffalo milk: its properties, dairy yield and mozzarella production. Veterinary research communications. 2004; 28 Suppl 1:127–35. https://doi.org/10.1023/b:verc.0000045390.81982.46 PMID: 15372941

2. Li S, Li L, Zeng Q, Liu J, Ren D. Separation and quantification of milk casein from different buffalo breeds. The Journal of dairy research. 2016; 83(3):317–25. https://doi.org/10.1017/s0022029916000455 PMID: 27600986

3. Gu M, Cosenza G, Nicoile I, Bota A, Guo Y, Di Stasio L, et al. Transcript analysis at DGAT1 reveals different mRNA profiles in river buffaloes with extreme phenotypes for milk fat. Journal of dairy science. 2017; 100(10):8265–76. https://doi.org/10.3168/jds.2017-12771 PMID: 28780112

4. Manuelian CL, Visentin G, Boselli C, Giangolini G, Cassandro M, De Marchi M. Short communication: Prediction of milk coagulation and acidity traits in Mediterranean buffalo milk using Fourier-transform mid-infrared spectroscopy. J Dairy Sci. 2017; 100(9):7083–7. https://doi.org/10.3168/jds.2017-12707 PMID: 28668534

5. Medhammar E, Wijesinha-Bettoni R, Stadlmayr B, Nilsson E, Charrondiere UR, Burlingame B. Composition of milk from minor dairy animals and buffalo breeds: a biodiversity perspective. Journal of the science of food and agriculture. 2012; 92(3):445–74. https://doi.org/10.1002/jsfa.4690 PMID: 22083874

6. Nasr M. The impact of cross-breeding Egyptian and Italian buffalo on reproductive and productive performance under a subtropical environment. Reproduction in domestic animals = Zuchthygiene. 2017; 52(2):214–20. https://doi.org/10.1111/rra.12881 PMID: 27859854

7. Deng T, Liang A, Liang S, Ma X, Lu X, Duan A, et al. Integrative Analysis of Transcriptome and GWAS Data to Identify the Hub Genes Associated With Milk Yield Trait in Buffalo. Frontiers in genetics. 2019; 10:36. https://doi.org/10.3389/fgene.2019.00036 PMID: 30804981

8. Gu M, Cosenza G, Iannaccone M, Macciotta NPP, Guo Y, Di Stasio L, et al. The single nucleotide polymorphism g.133A>C in the stearoyl CoA desaturase gene (SCD) promoter affects gene expression and quality-quantitative properties of river buffalo milk. J Dairy Sci. 2019; 102(1):442–51. https://doi.org/10.3168/jds.2018-15059 PMID: 30391181

9. Rehman SU, Feng T, Wu SW, Luo XE, Lei A, Luobu BS, et al. Comparative Genomics, Evolutionary and Gene Regulatory Regions Analysis of Casein Gene Family in Bubalus bubalis. Front Genet. 2021; 12:662609. https://doi.org/10.3389/fgene.2021.662609 PMID: 33833782

10. Pisano MB, Scano P, Murgia A, Cosentino S, Caboni P. Metabolomics and microbiological profile of Italian mozzarella cheese produced with buffalo and cow milk. Food chemistry. 2016; 192:618–24. https://doi.org/10.1016/j.foodchem.2015.07.061 PMID: 26304391

11. Cosenza G, Iannaccone M, Gallo D, Pauciullo A. A fast and reliable polymerase chain reaction method based on short interspersed nuclear elements detection for the discrimination of buffalo, cattle, goat, and sheep species in dairy products. Asian-Australasian journal of animal sciences. 2019; 32(6):891–5. PMID: 30744372

12. Verma A, Ambatipudi K. Challenges and opportunities of bovine milk analysis by mass spectrometry. Clinical proteomics. 2016; 13:8. https://doi.org/10.1186/s12014-016-9110-4 PMID: 27095950

13. Rehman SU, Feng T, Wu SW, Luo XE, Lei A, Luobu BS, et al. Comparative Genomics, Evolutionary and Gene Regulatory Regions Analysis of Casein Gene Family in Bubalus bubalis. Front Genet. 2021; 12:662609. https://doi.org/10.3389/fgene.2021.662609 PMID: 33833782

14. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nature reviews Molecular cell biology. 2016; 17(7):451–9. https://doi.org/10.1038/nrm.2016.25 PMID: 26979502

15. Melzer N, Wittenburg D, Rispens D. Integrating milk metabolite profile information for the prediction of traditional milk traits based on SNP information for Holstein cows. PloS one. 2013; 8(8):e70256. https://doi.org/10.1371/journal.pone.0070256 PMID: 23990900

16. Caboni P, Murgia A, Porcu A, Manis C, Ibba I, Contu M, et al. A metabolomics comparison between sheep’s and goat’s milk. Food research international. 2019; 119:689–75. https://doi.org/10.1016/j.foodres.2018.10.071 PMID: 30884727

17. Min L, Zhao S, Tian H, Zhou X, Zhang Y, Li S, et al. Metabolic responses and “omics” technologies for elucidating the effects of heat stress in dairy cows. International journal of biometeorology. 2017; 61(6):1149–58. https://doi.org/10.1007/s00484-016-1283-z PMID: 27904969

18. Novais FJ, Pires PRL, Alexandre PA, Dromms RA, Iglesias AH, Ferraz JBS, et al. Identification of a metabolomic signature associated with feed efficiency in beef cattle. BMC genomics. 2019; 20(1):8. https://doi.org/10.1186/s12864-018-5406-2 PMID: 30616514

19. Wang X, Kadamiddeen HN. Metabolomics Analyses in High-Low Feed Efficient Dairy Cows Reveal Novel Biochemical Mechanisms and Predictive Biomarkers. Metabolites. 2019; 9(7). https://doi.org/10.3390/metabo9070151 PMID: 31340509
20. Wang W, Sun B, Hu P, Zhou M, Sun S, Du P, et al. Comparison of Differential Flavor Metabolites in Meat of Lubei White Goat, Jining Gray Goat and Boer Goat. Metabolites. 2019; 9(9).

21. Xu W, van Kne gs a1, Issac C, van Hoeij R, Kemp B, Vervoort J. Metabolomics of Milk Reflects a Negative Energy Balance in Cows. Journal of proteome research. 2020; 19(8):2942–9. https://doi.org/10.1021/acs.jproteome.9b00706 PMID: 32633519

22. Melzer N, Wittenburg D, Hartwig S, Jakubowski S, Kesting U, Willmitzer L, et al. Investigating associations between milk metabolite profiles and milk traits of Holstein cows. J Dairy Sci. 2013; 96(3):1521–34. https://doi.org/10.3168/jds.2012-5743 PMID: 23438684

23. Sundekilde UK, Gustavsson F, Poulsen NA, Grant M, Paulsen M, Larsen LB, et al. Association between the bovine milk metabolome and rennet-induced coagulation properties of milk. J Dairy Sci. 2014; 97(10):6076–84. https://doi.org/10.3168/jds.2014-8304 PMID: 25087032

24. Klein MS, Almstetter MF, Schlamberger G, Nurnberger N, Dettmer K, Oefner PJ, et al. Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation. J Dairy Sci. 2010; 93(4):1539–50. https://doi.org/10.3168/jds.2009-2563 PMID: 20338431

25. Scano P, Murgia A, Pirisi FM, Caboni P. A gas chromatography-mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk. J Dairy Sci. 2014; 97(10):6057–66. https://doi.org/10.3168/jds.2014-8247 PMID: 25108860

26. Villasenor A, Garcia-Perez J, Garcia A, Posma JM, Fernandez-Lopez M, Nicholas AJ, et al. Breast milk metabolome characterization in a single-phase extraction, multiphase analytical approach. Analytical chemistry. 2014; 86(16):8245–52. https://doi.org/10.1021/ac501853d PMID: 25058331

27. Tian H, Zheng N, Wang W, Cheng J, Li S, Zhang Y, et al. Integrated Metabolomics Study of the Milk of Heat-stressed Lactating Dairy Cows. Scientific reports. 2016; 6:24208. https://doi.org/10.1038/srep24208 PMID: 27048914

28. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic acids research. 2018; 46(W1):W48–W94. https://doi.org/10.1093/nar/gky310 PMID: 29762782

29. Batool M, Nadeem M, Imran M, Khan IT, Bhatti JA, Ayaz M. Lipolysis and antioxidant properties of cow and buffalo cheddar cheese in accelerated ripening. Lipids Health Dis. 2018; 17. https://doi.org/10.1186/s12944-018-0871-9 PMID: 30285870

30. Khan IT, Nadeem M, Imran M, Khalique A. Impact of post fermentation cooling patterns on fatty acid profile, lipid oxidation and antioxidant features of cow and buffalo milk set yoghurt. Lipids Health Dis. 2020; 19(1). https://doi.org/10.1186/s12944-020-01263-1 PMID: 32293468

31. Li ZP, Lu SY, Cui KQ, Shafique L, Rehman SU, Luo C, et al. Fatty acid biosynthesis and transcriptional regulation of Stearoyl-CoA Desaturase 1 (SCD1) in buffalo milk. Bmc Genet. 2020; 21(1).

32. Bhattachar D, Dad R, Worku T, Xul ST, Ullah F, Zhang M, et al. The functions and mechanisms of sequence differences of DGAT1 gene on milk fat synthesis between dairy cow and buffalo. Journal of Dairy Research. 2020; 87(2):170–4. https://doi.org/10.1017/S0020299920000126 PMID: 32482199

33. Zhang J, Xu C, Huo D, Hu Q, Peng Q. Comparative study of the gut microbiome potentially related to milk protein in Murrah buffaloes (Bubalus bubalis) and Chinese Holstein cattle. Scientific reports. 2017; 7:42189. https://doi.org/10.1038/srep42189 PMID: 28176851

34. Gao X, Tang G, Su X. Optical detection of organophosphorus compounds based on Mn-doped ZnSe dot enzymatic catalytic sensor. Biosensors & bioelectronics. 2012; 36(1):75–80. https://doi.org/10.1016/j.bios.2012.03.042 PMID: 22534106

35. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003; 421(6921):75–80. https://doi.org/10.1038/nature01339 PMID: 12508119

36. Wang Z, Zibrila AI, Liu S, Zhao G, Li Y, Xu J, et al. Acetylcholine Ameliorated TNF-alpha-Induced Primary Trophoblast Malfunction via Muscarinic Receptors. Biology of reproduction. 2020.

37. Fragoso-Saavedra S, Iruegas-Nunez DA, Quintero-Villegas A, Garcia-Gonzalez HB, Nunez I, Carbajal-Morelos SL, et al. A parallel-group, multicenter randomized, double-blinded, placebo-controlled, phase 2/3, clinical trial to test the efficacy of pyridostigmine bromide at low doses to reduce mortality or invasive mechanical ventilation in adults with severe SARS-CoV-2 infection: the Pyridostigmine In Severe Covid-19 (PISCO) trial protocol. BMC infectious diseases. 2020; 20(1):765. https://doi.org/10.1186/s12879-020-05485-7 PMID: 33066761

38. Artegoitia VM, Middleton JL, Harte FM, Campagna SR, de Veth MJ. Choline and choline metabolite patterns and associations in blood and milk during lactation in dairy cows. PloS one. 2014; 9(8):e103412. https://doi.org/10.1371/journal.pone.0103412 PMID: 25157578
39. Lopez C, Briard-Bion V, Menard O, Rousseau F, Pradel P, Besle JM. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. Journal of agricultural and food chemistry. 2008; 56(13):5226–36. https://doi.org/10.1021/jf7036104 PMID: 18522410

40. Salama AAK, Contreras-Jodar A, Love S, Mehaba N, Such X, Caja G. Milk yield, milk composition, and milk metabolomics of dairy goats intramammary-challenged with lipopolysaccharide under heat stress conditions. Scientific reports. 2020; 10(1):5055. https://doi.org/10.1038/s41598-020-61900-8 PMID: 32193484

41. da Silva RP, Kelly KB, Lewis ED, Leonard KA, Goruk S, Curtis JM, et al. Choline deficiency impairs intestinal lipid metabolism in the lactating rat. The Journal of nutritional biochemistry. 2015; 26(10):1077–83. https://doi.org/10.1016/j.jnutbio.2015.04.015 PMID: 26923711

42. de Veth MJ, Artegootia VM, Campagna SR, Lapiere H, Harte F, Girard CL. Choline absorption and evaluation of bioavailability markers when supplementing choline to lactating dairy cows. J Dairy Sci. 2016; 99(12):9732–44. https://doi.org/10.3168/jds.2016-11382 PMID: 27771079

43. Zom RL, van Baal J, Goselink RM, Bakker JA, de Veth MJ, van Vuuren AM. Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle. J Dairy Sci. 2011; 94(8):4016–27. https://doi.org/10.3168/jds.2011-4233 PMID: 21787937

44. Supriyati, Budiarsana IG, Praharini L, Krisnan R, Sutama IK. Effect of choline chloride supplementation on milk production and milk composition of Etawah grade goats. Journal of animal science and technology. 2016; 58:30. https://doi.org/10.1186/s40781-016-0113-5 PMID: 27504191

45. Yang YX, Zheng N, Zhao XW, Zhang YD, Han RW, Yang JH, et al. Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals. Journal of proteomics. 2016; 136:174–82. https://doi.org/10.1016/j.jprot.2015.12.031 PMID: 26779989

46. Lima FS, Sa Filho MF, Greco LF, Santos JE. Effects of feeding rumen-protected choline on incidence of diseases and reproduction of dairy cows. Veterinary journal. 2012; 193(1):140–5. https://doi.org/10.1016/j.tvjl.2011.09.019 PMID: 22178357

47. Trammell SA, Yu L, Redpath P, Migaud ME, Brenner C. Nicotinamide Riboside is a Major NAD+ Precursor Vitamin in Cow Milk. The Journal of nutrition. 2016; 146(5):957–63. https://doi.org/10.3945/jn.116.203007 PMID: 27052539

48. Bogen KL, Brenner C. NAD+ metabolism in health and disease. Trends in biochemical sciences. 2007; 32(1):12–9. https://doi.org/10.1016/j.tibs.2006.11.006 PMID: 17161604

49. Cervantes A, Smith TR, Young JW. Effects of nicotinamide on milk composition and production in dairy cows fed supplemental fat. J Dairy Sci. 1996; 79(1):105–13. https://doi.org/10.3168/jds.S0022-0302(96)76340-3 PMID: 8675772

50. Zak A, Zeman M, Vecka M, Tvrzicka E. [Nicotinic acid: an unjustly neglected remedy]. Casopis lekaru ceskych. 2006; 145(11):825–31. PMID: 17168412

51. Wu X, Sun H, Xue M, Wang D, Guan LL, Liu J. Serum metabolome profiling revealed potential biomarkers for milk protein yield in dairy cows. Journal of proteomics. 2018; 164:54–61. https://doi.org/10.1016/j.jprot.2018.06.005 PMID: 29913267

52. Larsen T, Moyes KM. Fluorometric determination of uric acid in bovine milk. The Journal of dairy research. 2010; 77(4):438–44. https://doi.org/10.1017/S0022029910000580 PMID: 20822564

53. Larsen T, Alstrup L, Weisbjerg MR. Minor milk constituents are affected by protein concentration and forage digestibility in the feed ration. The Journal of dairy research. 2016; 83(1):12–9. https://doi.org/10.1017/S0022029915000692 PMID: 26869107

54. Kaiser M, Jacobson M, Baekbo P, Dahl J, Jacobsen S, Guo YZ, et al. Lack of evidence of mastitis as a causal factor for postpartum dysgalactia syndrome in sows. Translational animal science. 2020; 4(1):250–63. https://doi.org/10.1093/tas/bzx159 PMID: 32704894

55. Ostdal H, Andersen HJ, Nielsen JH. Antioxidative activity of urate in bovine milk. Journal of agricultural and food chemistry. 2000; 48(11):5588–92. https://doi.org/10.1021/jf000658w PMID: 11087523

56. Tiemeyer W, Stohrer M, Giesecke D. Metabolites of nucleic acids in bovine milk. J Dairy Sci. 1984; 67(4):723–8. https://doi.org/10.3168/jds.S0022-0302(84)1361-2 PMID: 6539345

57. Tas BM, Susenbeth A. Urinary urine derivates excretion as an indicator of in vivo microbial N flow in cattle: A review. Livestock Science. 2007; 111(3):181–92.

58. Giesecke D, Ehrentreich L, Stangassinger M, Ahrens F. Mammary and renal excretion of purine metabolites in relation to energy intake and milk yield in dairy cows. J Dairy Sci. 1994; 77(8):2376–81. https://doi.org/10.3168/jds.S0022-0302(94)77180-0 PMID: 7962859