The gene regulatory network in different brain regions of neuropathic pain mouse models

CURRENT STATUS: UNDER REVIEW

Xia Li
First Hospital of Jiaxing

Long-Sheng Xu
First Hospital of Jiaxing

Yu-Fen Xu
First Hospital of Jiaxing

Qi Yang
First Hospital of Jiaxing

Zhi-Xian Fang
First Hospital of Jiaxing

Xiao-Dong Lv
First Hospital of Jiaxing

Ming Yao
First Hospital of Jiaxing

Wen-Yu Chen
chwyjx@163.com
First Hospital of Jiaxing

Corresponding Author

ORCID: 0000-0001-8768-0042

DOI: 10.21203/rs.2.11047/v1

SUBJECT AREAS

Neurology

KEYWORDS

neuropathic pain, spared nerve injury model, functional association network, Random Walk with Restart, cross talk
Abstract

Neuropathic pain is the direct result caused by lesions or somatosensory nervous system diseases that are associated with emotional regulation. The incidence of neuropathic pain in the general population is 7-10% and the mechanisms of neuropathic pain are largely unknown. It is often related to structural and functional abnormalities in multiple brain regions. The forebrain, including nucleus accumbens (NAc), medial prefrontal cortex (mPFC) and periaqueductal gray (PAG) have been shown to correspond with the regulation of neuropathic pain. To investigate the molecular mechanism of neuropathic pain across different brain regions, we identified the differentially expressed genes between the spared nerve injury model (SNI) mice of neuropathic pain and the control Sham mice in NAc, mPFC and PAG and mapped these genes onto comprehensive functional association network. With Random Walk with Restart (RWR) analysis, we identified more novel neuropathic pain genes in NAc, mPFC and PAG, such as Asic3, Cd200r1 and MT2, beside well known Capn11 and CYP2E1. What’s more, we discovered their interactions or cross talks. Our results provided novel insights of neuropathic pain and provided therapeutic targets for treating neuropathic pain.

Background

Neuropathic pain is defined by the International Association for the Study of Pain (IASP) as the direct result caused by lesions or somatosensory nervous system diseases that are associated with emotional regulation. The incidence of neuropathic pain in the general population is 7-10% and the mechanisms of neuropathic pain are heterogeneous. Many patients with neuropathic pain are also experienced depression and anxiety disorders and reduced quality of life. Currently, recommended treatments for neuropathic pain is pharmacological, such as the
use of antidepressants, anticonvulsants and topical anesthetics \(^7,8\). In some cases, however, medical therapy alone cannot fully control chronic pain. Some non-pharmacological approaches, including psychological approaches, physical therapy, interventional therapy and surgical procedures have been shown to be effective for neuropathic pain \(^8\). In addition, the distinction between nociceptive and neuropathic pain is also important because different treatment methods are usually required for different types of pain.

Chronic pain is often related to structural and functional abnormalities in the brain \(^9,10\). Previous studies have shown that an increase in activity of the forebrain neurons results in enhanced inflammatory and neuropathic pain \(^11,12\). The forebrain, including nucleus accumbens (NAc), medial prefrontal cortex (mPFC) and paraventricular nucleus (PVN) have been shown to correspond with the regulation of neuropathic pain \(^13,14\). Nucleus accumbens (NAc) is known to be related to emotional dysfunctions following neuropathic pain regulation as a key component of the brain reward system \(^15-17\). Experiments made by Goffer et al. demonstrated that chronic pain induced depressive behaviors in rats and selectively increases the level of AMPA-type glutamate receptors in the NAc, suggesting a crucial role for NAc in the regulation of neuropathic pain-induced depression \(^18\).

It has been reported that neuropathic pain leads to morphological and functional changes in the mPFC and its important role in the regulation of emotional processes and chronic pain has also been identified \(^19,20\). Animal and human imaging studies have proved that synaptic changes in the PFC occur in both chronic pain and acute models \(^21,22\). The key output target for the PFC is the nucleus accumbens (NAc). Functional connections between NAc and mPFC were also reported to predict the prognosis of chronic pain after medical
Lee et al. suggested that the activation of mPFC-NAc projections could regulate the affective symptoms of neuropathic pain.

Patients with chronic pain also exhibit brain abnormalities in descending modulation of pain, especially in the periaqueductal gray (PAG), which may be associated with dysfunctions of pain regulation. Neuropathic pain activates neurons in the periaqueductal gray (PAG), the neurons projecting to the rostral ventromedial medulla (RVM) and then projected to the spinal cord to inhibit or facilitate the pain.

Since the brain region corresponding to chronic pain is between the ventromedial PFC and PAG in humans, and mPFC-PAG in rodents, we would like to identify the genes that repose to neuropathic pain and investigate the molecular mechanisms of neuropathic pain. The differentially expressed genes in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the periaqueductual grey (PAG) of the spared nerve injury model (SNI) were mapped onto gene regulatory network. Novel neuropathic pain gene in different brain regions were identified using Random Walk with Restart (RWR) algorithm and their interactions or cross talks were analyzed.

Methods

The differentially expressed genes between SNI and Sham mice in NAc, mPFC and PAG

Descalzi et al. RNA-sequenced the NAc, mPFC and PAG gene expression profiles in SNI mice and Sham mice. SNI mice was the mouse model for neuropathic pain and Sham mice was used as control. There were six Sham NAc, six Sham PAG, six Sham PFC, six SNI NAc, six SNI PAG and six SNI PFC samples. Their RPKM (Reads Per Kilobase per Million mapped reads) gene expression level can be found in GEO (Gene Expression Omnibus) under accession number of GSE91396. A strict threshold of differentially expressed fold change greater than 1.5 and p value smaller than 0.05 was applied to get the differentially
expressed genes between SNI mice and Sham mice in NAc, mPFC and PAG. The p value was calculated using function voom from R package of limma. The differentially expressed genes between SNI mice and Sham mice in NAc, mPFC and PAG were mapped onto STRING network \(^{34}\) for further analysis. STRING is a comprehensive protein functional association network.

The network expansion of NAc, mPFC and PAG neuropathic pain genes based on RWR analysis

As we mentioned before, we would like to investigate the interactions or cross-talks among different brain regions that were responsive to neuropathic pain. The differentially expressed genes between SNI mice and Sham mice in NAc, mPFC and PAG were a good start for such network analysis. Therefore, we mapped these three gene lists onto the comprehensive functional association network of STRING \(^{34}\), a widely used network for bioinformatics studies \(^{35-38}\). Only the high confidence interactions of STRING were included, in other words, the confidence score of the interaction must be greater than 0.900.

To explore the cross talk between brain regions, we applied Random Walk with Restart (RWR) algorithm \(^{35,39-42}\). To illustrate how RWR can reveal the cross talk, let us denote the STRING network as a graph comprised of a set of genes and a set of interactions. The whole interaction network can be represented with an adjacency matrix. The total number of genes was \(_{\text{}}\). The value in row and column was 1 if gene and gene had interactions and was 0 if they did not interact.

(1) Normalization. The adjacency matrix will be column-wise normalized

Due to technical limitations, Equation 1 has been placed in the Supplementary Files section.
(2) Iteration. Then, a rank walk step will be iterated. In each round of iteration, the state probabilities at time was based on previous state and the initial state. Due to technical limitations, Equation 2 has been placed in the Supplementary Files section.

where was previous state probabilities at time , was the restart probability and was the initial state probabilities which was a column vector with for the seed genes (NAc, mPFC, PAG neuropathic pain genes, respectively) and to 0 for other genes on the network.

(3) Converge. The iteration process will stop when the difference between two states was smaller than 1×10^{-6}.

After the RWR analysis, each gene on the network will be given a probability of being visited by the seed genes.

The NAc, mPFC and PAG neuropathic pain genes were considered as seed genes, respectively.

To evaluate how significant the probability was, we randomly chose the same number of seed genes 1000 times and calculated the RWR probabilities. If there were more than 50 times that the permutation proverbialities were greater than the actual proverbiality, the permutation p value for that gene was greater than $50/1000 = 0.05$ and that gene will be excluded.

With the permutation p value, we identified the novel neuropathic pain genes in NAc, mPFC and PAG based on RWR analysis. Such expanded NAc, mPFC and PAG neuropathic pain genes can be overlapped to show the cross talk among NAc, mPFC and PAG under neuropathic pain.

Results

The neuropathic pain genes in NAc, mPFC and PAG identified by differential expression
The gene expression profiles of NAc, mPFC and PAG in SNI and Sham mice were analyzed and the differentially expressed genes between SNI and Sham mice in NAc, mPFC and PAG were identified. There were 123, 89 and 795 differentially expressed genes in NAc, mPFC and PAG, respectively.

We compared these three differentially expressed gene lists (Table S1) and plotted their Venn Diagram in Figure 1. It can be seen that only two genes, Capn11 and Cyp2e1, were overlapped. Obviously, these two genes played important roles in neuropathic pain.

Capn11 (Calpain 11) encodes an intracellular calcium-dependent cysteine protease that has protease activity and calcium-binding capacity. Calpains were reported to participate in some neuronal processes, including synaptic plasticity, neurodegeneration, signal transduction and enhancement. The expression of calpains can be observed in several cell types in the central nervous system (CNS), such as spinal cord neurons, cortical neurons, and glial cells. According to previous studies, the activities of calpains were markedly increased in neurodegenerative diseases, traumatic brain injury and neuropathic pain. Blocking calpain signaling by its inhibitor MDL28170 or silencing calpain-1 levels of the spinal cord attenuates the neuropathic pain and inflammation following peripheral nerve injury. Mahajan et al. investigated that calpain also mediates the editing of AMPA receptor subtypes. Depression is a well-known emotional feature of chronic neuropathic pain. Yossef et al. discovered that chronic pain can increase the AMPA-type glutamate receptor expression levels at the synapses of NAc in a rat model of chronic neuropathic pain with depression-like behaviors. In addition, the increased level of GluA1 leads to the formation of calcium-permeable AMPA receptors.
(CPARs) and the inhibition of these CPARs in the NAc increases depressive symptoms associated with neuropathic pain \(^{18}\). Therefore, CPARs may present a novel therapeutic target for the treatment of depressive symptoms of neuropathic pain.

CYP2E1 (Cytochrome P450 2E1) is a member of the cytochrome P450 superfamily of genes involved in the brain metabolism of ethanol \(^{54-56}\). CYP2E1 can be considered as the second enzymatic system in importance for ethanol metabolism in brain \(^{57-59}\). This enzyme is widely expressed in various cell types and human brain regions, including the hippocampus, substantia nigra and medulla \(^{60-62}\). Further studies are needed to identify the role of Cyp2e1 in chronic pain and sensory symptoms of pain. Toselli et al. found that CYP2E1 was expressed in human AMG and PFC and may influence the drug effects in those regions \(^{63}\).

As shown above, these two genes functions through complex pathways and regulatory mechanisms, there were many missing genes that facilitate the neuropathic pain responses in different brain regions. To find these hidden genes, we mapped these differentially expressed genes onto functional association network of STRING. The novel neuropathic pain genes in NAc, mPFC and PAG identified by RWR analysis on the functional association network.

To identify more novel neuropathic pain genes in NAc, mPFC and PAG and find their hidden links or cross talks, we mapped the differentially expressed genes onto network and performed RWR analysis on the network. By considering the differentially expressed genes in NAc, mPFC and PAG as seed genes and permuting them 1000 times, we identified the significant novel neuropathic pain genes in NAc, mPFC and PAG with permutating p value smaller than 0.05. There were 623, 888 and 507 novel neuropathic pain genes in NAc, mPFC and PAG, respectively. These novel neuropathic pain genes in NAc, mPFC and
PAG were given in Table S2.

The Venn Diagram among these novel neuropathic pain genes in NAc, mPFC and PAG on the network was shown in Figure 2. There were 25 overlapped genes and they were shown in Table 1. These 25 overlapped genes showed great promise in linking the three brain regions and revealing the potential cross talk mechanisms among NAc, mPFC and PAG for neuropathic pain. We will discuss their functions in the next section.

Discussion

Among the 25 genes in Table 1, many of them were involved in pathways or functions associated with neuropathic pain genes. The following three genes were most promising.

Asic3 (Acid-sensing ion channels, ASICs) was cationic channel expressed principally in central (CNS) and peripheral (PNS) nervous systems. Ion channel modulation is a main approach to achieve novel neuropathic pain management. Evidence from many experiments have suggested the involvement of ASICs in pain sensation. Among the ASICs, ASIC3 is known to regulate inflammatory pain, ischemic pain and mechanical pain. Inflammation is one of the pain symptoms that induces a significant increase of ASIC3 channel expression in sensory neurons, which demonstrate the crucial role of ASIC3 in the generation of pain associated with inflammation. Therefore, inhibition of ASIC3 channel at the sensory system could obviously help to alleviate pain. In addition, Jeong et al. suggested that ASIC3 may be associated with the antinociceptive effects of amiloride and benzamil, inhibitors for ASIC channels, in neuropathic pain and blocking ASIC3 channel may be a novel therapeutic strategy in neuropathic pain treatment.

Cd200r1 encodes a membrane glycoprotein of the immunoglobulin superfamily that is highly expressed on neurons in the central nervous system while its receptor CD200R is
restricted to the surfaces of myeloid lineage cells like macrophages and microglia \(^{73,74}\). The CD200-CD200R interaction has been reported to be closely associated with the macrophage-mediated damage in autoimmune disease and various neuroinflammatory diseases \(^{75-78}\). Animal models have also shown that loss of immunosuppression through CD200 has significant impact on neuroinflammation and neurodegeneration \(^{79,80}\). Hernangomez et al. \(^{80}\) reported that the CD200/CD200R regulatory system can suppress the neuroinflammatory reactions associated with peripheral neuropathic pain. CD200/CD200R may be a target for treating neuropathic pain.

\textbf{MT2} (Metallothioneins II) is a major neuroprotective protein with a high affinity for metals \(^{81,82}\). MT2 has been found in many CNS (central nervous system) regions \(^{83,84}\), such as cortex, hippocampus, brainstem and spinal cord \(^{85}\). A series of evidence suggests that metallothioneins (MTs) is essential for the recovery from CNS damage \(^{83,86}\). Hidalgo et al. have investigated that MT-I/-II is capable of decreasing inflammatory responses associated with CNS injury and provided credible evidence suggesting that MT-I/-II protects neurons from death \(^{87-89}\). Kwon et al. evaluated the expression of MT-I/II in the spinal cord in rat models with inflammatory and neuropathic pain and the results showed that increased MT-I/II participate in the initiation of inflammatory and neuropathic pain \(^{90}\).

Conclusions

As a common nervous system disease with an incidence of 7-10% in the general population, the mechanisms of neuropathic pain are largely unknown. It is a complex disease involving the structural and functional abnormalities in multiple brain regions. The forebrain, including nucleus accumbens (NAc), medial prefrontal cortex (mPFC) and periaqueductal gray (PAG), all correspond to the response of neuropathic pain. To
investigate the molecular mechanism of neuropathic pain across different brain regions, we identified the differentially expressed genes between SNI mice which was a widely used model for neuropathic pain and the Sham mice which was used as control. The differentially expressed genes in NAc, mPFC and PAG were mapped onto STRING network. Using Random Walk with Restart (RWR) analysis, more novel neuropathic pain genes in NAc, mPFC and PAG were revealed based on network structure and more overlapped genes among them had emerged. These overlapped novel neuropathic pain genes in NAc, mPFC and PAG can help us understand how different brain regions communicate with each other and coordinate the regulation of neuropathic pain. These genes worth to be further validated and investigated as therapeutic target.

Abbreviations

NAc: nucleus accumbens
mPFC: medial prefrontal cortex
PAG: periaqueductal gray
SNI: spared nerve injury
RWR: Random Walk with Restart
IASP: International Association for the Study of Pain
PVN: paraventricular nucleus
RVM: rostral ventromedial medulla
RPKM: Reads Per Kilobase per Million mapped reads
GEO: Gene Expression Omnibus
CNS: central nervous system
PNS: peripheral nervous system
CPARs: calcium-permeable AMPA receptors
ASICs: acid-sensing ion channels
MT2: Metallothioneins II
CYP2E1: Cytochrome P450 2E1
Capn11: Calpain 11

Declarations

Ethics approval and consent to participate
This article does not contain any studies with animals and human performed by any of the authors.

Consent to publish
Not applicable.

Availability of data and materials
The data and materials in the current study are available from the corresponding author on reasonable request.

Competing Interests
None.

FUNDING
This study was supported by the Key Discipline of Jiaxing Respiratory Medicine Construction Project (No. 04-Z-11), the Early Diagnosis and Comprehensive Treatment of Lung Cancer Innovation Team Building Project, Zhejiang North Regional Anesthesia Special Disease Center, Clinical Research Project in Medical Committee of Zhejiang Province (No.2013ZYC-A89) and Talent Cultivation in Science and Technology Innovation Project of The First Hospital of Jiaxing (No.2016-CX-04, 2016-CX-05). All these funders provided
financial support.

Authors’ Contributions

Dr LX, XS and XF contributed to the study design. CY conducted the literature search. YM, YQ, FX and LD acquired the data. LX and XS wrote the article. XF performed data analysis. YM drafted. YQ, FX and LD revised the article and gave the final approval of the version to be submitted. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. *Annual review of neuroscience*. 2009;32:1-32.

2. Nishinaka T, Nakamoto K, Tokuyama S. Early life stress induces sex-dependent increases in phosphorylated extracellular signal-regulated kinase in brains of mice with neuropathic pain. *European journal of pain (London, England)*. 2016;20(8):1346-1356.

3. van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain in the general population: a systematic review of epidemiological studies. *Pain*. 2014;155(4):654-662.

4. Widerstrom-Noga E. Neuropathic Pain and Spinal Cord Injury: Phenotypes and Pharmacological Management. *Drugs*. 2017;77(9):967-984.

5. Bannister K, Qu C, Navratilova E, et al. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain. *Pain*. 2017;158(12):2386-2395.
6. Yalcin I, Barthas F, Barrot M. Emotional consequences of neuropathic pain: insight from preclinical studies. *Neuroscience and biobehavioral reviews*. 2014;47:154-164.

7. Xu L, Zhang Y, Huang Y. Advances in the Treatment of Neuropathic Pain. *Advances in experimental medicine and biology*. 2016;904:117-129.

8. Kerstman E, Ahn S, Battu S, Tariq S, Grabois M. Neuropathic pain. *Handbook of clinical neurology*. 2013;110:175-187.

9. Becerra L, Borsook D. Signal valence in the nucleus accumbens to pain onset and offset. *European journal of pain (London, England)*. 2008;12(7):866-869.

10. Scott DJ, Heitzeg MM, Koepppe RA, Stohler CS, Zubieta JK. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2006;26(42):10789-10795.

11. Wei F, Wang GD, Kerchner GA, et al. Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. *Nature neuroscience*. 2001;4(2):164-169.

12. Descalzi G, Fukushima H, Suzuki A, Kida S, Zhuo M. Genetic enhancement of neuropathic and inflammatory pain by forebrain upregulation of CREB-mediated transcription. *Molecular pain*. 2012;8:90.

13. Neugebauer V, Galhardo V, Maione S, Mackey SC. Forebrain pain mechanisms. *Brain research reviews*. 2009;60(1):226-242.

14. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. *Nature reviews Neuroscience*. 2013;14(7):502-511.

15. Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. *Neuron*. 2008;60(4):570-581.

16. Lammel S, Ion DI, Roeper J, Malenka RC. Projection-specific modulation of dopamine
neuron synapses by aversive and rewarding stimuli. *Neuron*. 2011;70(5):855-862.

17. Navratilova E, Porreca F. Reward and motivation in pain and pain relief. *Nature neuroscience*. 2014;17(10):1304-1312.

18. Goffer Y, Xu D, Eberle SE, et al. Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like behaviors in the chronic neuropathic pain state. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2013;33(48):19034-19044.

19. Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. *Proceedings of the National Academy of Sciences of the United States of America*. 2009;106(7):2423-2428.

20. Arnsten AF, Wang MJ, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. *Neuron*. 2012;76(1):223-239.

21. Hung KL, Wang SJ, Wang YC, Chiang TR, Wang CC. Upregulation of presynaptic proteins and protein kinases associated with enhanced glutamate release from axonal terminals (synaptosomes) of the medial prefrontal cortex in rats with neuropathic pain. *Pain*. 2014;155(2):377-387.

22. Lee M, Manders TR, Eberle SE, et al. Activation of corticostriatal circuitry relieves chronic neuropathic pain. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2015;35(13):5247-5259.

23. Kaneko H, Zhang S, Sekiguchi M, et al. Dysfunction of Nucleus Accumbens Is Associated With Psychiatric Problems in Patients With Chronic Low Back Pain: A Functional Magnetic Resonance Imaging Study. *Spine*. 2017;42(11):844-853.

24. Baliki MN, Geha PY, Fields HL, Apkarian AV. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic
pain. *Neuron*. 2010;66(1):149-160.

25. Fields HL. Pain modulation: expectation, opioid analgesia and virtual pain. *Progress in brain research*. 2000;122:245-253.

26. Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. *Trends in neurosciences*. 2002;25(6):319-325.

27. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. *Annals of neurology*. 2011;70(5):838-845.

28. Desouza DD, Moayedi M, Chen DQ, Davis KD, Hodaie M. Sensorimotor and Pain Modulation Brain Abnormalities in Trigeminal Neuralgia: A Paroxysmal, Sensory-Triggered Neuropathic Pain. *PloS one*. 2013;8(6):e66340.

29. Kucyi A, Moayedi M, Weissman-Fogel I, et al. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2014;34(11):3969-3975.

30. Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. *Current opinion in supportive and palliative care*. 2014;8(2):143-151.

31. Yu R, Gollub RL, Spaeth R, Napadow V, Wasan A, Kong J. Disrupted functional connectivity of the periaqueductal gray in chronic low back pain. *NeuroImage Clinical*. 2014;6:100-108.

32. Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R. Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. *The Journal of comparative neurology*. 2000;422(4):556-578.

33. Descalzi G, Mtsi V, Purushothaman I, et al. Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression.
34. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. *Nucleic acids research.* 2015;43(Database issue):D447-452.

35. Chen L, Zhang Y-H, Zhang Z, Huang T, Cai Y-D. Inferring Novel Tumor Suppressor Genes with a Protein-Protein Interaction Network and Network Diffusion Algorithms. *Molecular Therapy - Methods & Clinical Development.* 2018;10:57-67.

36. Chen L, Xing ZH, Huang T, Shu Y, Huang G, Li H-P. Application of the Shortest Path Algorithm for the Discovery of Breast Cancer-Related Genes. *Current Bioinformatics.* 2016;11(1):51-58.

37. Chen L, Zhang Y-H, Li J, et al. Deciphering the Relationship between Obesity and Various Diseases from a Network Perspective. *Genes.* 2017;8(12):392.

38. Chen L, Pan H, Zhang YH, et al. Network-Based Method for Identifying Co-Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues. *Genes.* 2017;8(10).

39. Li J, Chen L, Wang S, et al. A computational method using the random walk with restart algorithm for identifying novel epigenetic factors. *Mol Genet Genomics.* 2018;293(1):293-301.

40. Zheng G, Huang T. The Reconstruction and Analysis of Gene Regulatory Networks. In: Huang T, ed. *Computational Systems Biology: Methods and Protocols.* New York, NY: Springer New York; 2018:137-154.

41. Li L, Wang Y, An L, Kong X, Huang T. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière's disease. *PLoS ONE.* 2017;12(8):e0182592.

42. Chen L, Zhang Y-H, Huang T, Cai Y-D. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence
similarities. *Molecular Genetics and Genomics.* 2016;291(2):913-934.

43. Wu HY, Lynch DR. Calpain and synaptic function. *Molecular neurobiology.* 2006;33(3):215-236.

44. Baudry M, Chou MM, Bi X. Targeting calpain in synaptic plasticity. *Expert opinion on therapeutic targets.* 2013;17(5):579-592.

45. Liu J, Liu MC, Wang KK. Physiological and pathological actions of calpains in glutamatergic neurons. *Science signaling.* 2008;1(23):tr3.

46. Ma M. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. *Neurobiology of disease.* 2013;60:61-79.

47. Hamakubo T, Kannagi R, Murachi T, Matus A. Distribution of calpains I and II in rat brain. *The Journal of neuroscience : the official journal of the Society for Neuroscience.* 1986;6(11):3103-3111.

48. Perlmutter LS, Gall C, Baudry M, Lynch G. Distribution of calcium-activated protease calpain in the rat brain. *The Journal of comparative neurology.* 1990;296(2):269-276.

49. Vosler PS, Brennan CS, Chen J. Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. *Molecular neurobiology.* 2008;38(1):78-100.

50. Saatman KE, Creed J, Raghupathi R. Calpain as a therapeutic target in traumatic brain injury. *Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics.* 2010;7(1):31-42.

51. Zhou HY, Chen SR, Byun HS, et al. N-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+Cl- cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain. *The Journal of biological chemistry.* 2012;287(40):33853-33864.

52. Kunz S, Niederberger E, Ehnert C, et al. The calpain inhibitor MDL 28170 prevents inflammation-induced neurofilament light chain breakdown in the spinal cord and
reduces thermal hyperalgesia. *Pain.* 2004;110(1-2):409-418.

53. Mahajan SS, Thai KH, Chen K, Ziff E. Exposure of neurons to excitotoxic levels of glutamate induces cleavage of the RNA editing enzyme, adenosine deaminase acting on RNA 2, and loss of GLUR2 editing. *Neuroscience.* 2011;189:305-315.

54. Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF. Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. *British journal of pharmacology.* 2003;138(7):1376-1386.

55. Hipolito L, Sanchez-Catalan MJ, Polache A, Granero L. Induction of brain CYP2E1 changes the effects of ethanol on dopamine release in nucleus accumbens shell. *Drug and alcohol dependence.* 2009;100(1-2):83-90.

56. Ledesma JC, Miquel M, Pascual M, Guerri C, Aragon CM. Induction of brain cytochrome P450 2E1 boosts the locomotor-stimulating effects of ethanol in mice. *Neuropharmacology.* 2014;85:36-44.

57. Sanchez-Catalan MJ, Hipolito L, Guerri C, Granero L, Polache A. Distribution and differential induction of CYP2E1 by ethanol and acetone in the mesocorticolimbic system of rat. *Alcohol and alcoholism (Oxford, Oxfordshire).* 2008;43(4):401-407.

58. Projean D, Dautrey S, Vu HK, Groblewski T, Brazier JL, Ducharme J. Selective downregulation of hepatic cytochrome P450 expression and activity in a rat model of inflammatory pain. *Pharmaceutical research.* 2005;22(1):62-70.

59. Hakkola J, Hu Y, Ingelman-Sundberg M. Mechanisms of down-regulation of CYP2E1 expression by inflammatory cytokines in rat hepatoma cells. *The Journal of pharmacology and experimental therapeutics.* 2003;304(3):1048-1054.

60. Farin FM, Omiecinski CJ. Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. *Journal of toxicology and environmental health.* 1993;40(2-3):317-335.
61. Hansson T, Tindberg N, Ingelman-Sundberg M, Kohler C. Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system. *Neuroscience*. 1990;34(2):451-463.

62. Upadhya SC, Tirumalai PS, Boyd MR, Mori T, Ravindranath V. Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. *Archives of biochemistry and biophysics*. 2000;373(1):23-34.

63. Toselli F, de Waziers I, Dutheil M, et al. Gene expression profiling of cytochromes P450, ABC transporters and their principal transcription factors in the amygdala and prefrontal cortex of alcoholics, smokers and drug-free controls by qRT-PCR. *Xenobiotica; the fate of foreign compounds in biological systems*. 2015;45(12):1129-1137.

64. Deval E, Noel J, Lay N, et al. ASIC3, a sensor of acidic and primary inflammatory pain. *The EMBO journal*. 2008;27(22):3047-3055.

65. Dube GR, Elagoz A, Mangat H. Acid sensing ion channels and acid nociception. *Current pharmaceutical design*. 2009;15(15):1750-1766.

66. Colombo E, Francisconi S, Faravelli L, Izzo E, Pevarello P. Ion channel blockers for the treatment of neuropathic pain. *Future medicinal chemistry*. 2010;2(5):803-842.

67. Sun WH, Chen CC. Roles of Proton-Sensing Receptors in the Transition from Acute to Chronic Pain. *Journal of dental research*. 2016;95(2):135-142.

68. Lin JH, Chiang YH, Chen CC. Research strategies for pain in lumbar radiculopathy focusing on acid-sensing ion channels and their toxins. *Current topics in medicinal chemistry*. 2015;15(7):617-630.

69. Mazzuca M, Heurteaux C, Alloui A, et al. A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. *Nature neuroscience*. 2007;10(8):943-945.
70. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. *Nature*. 1997;386(6621):173-177.

71. Voilley N, de Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2001;21(20):8026-8033.

72. Jeong S, Lee SH, Kim YO, Yoon MH. Antinociceptive effects of amiloride and benzamil in neuropathic pain model rats. *Journal of Korean medical science*. 2013;28(8):1238-1243.

73. Koning N, Bo L, Hoek RM, Huitinga I. Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. *Annals of neurology*. 2007;62(5):504-514.

74. Dentesano G, Serratosa J, Tusell JM, et al. CD200R1 and CD200 expression are regulated by PPAR-gamma in activated glial cells. *Glia*. 2014;62(6):982-998.

75. Wang XJ, Ye M, Zhang YH, Chen SD. CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson's disease. *Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology*. 2007;2(3):259-264.

76. Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF. Decreased expression of CD200 and CD200 receptor in Alzheimer's disease: a potential mechanism leading to chronic inflammation. *Experimental neurology*. 2009;215(1):5-19.

77. Gao S, Hao B, Yang XF, Chen WQ. Decreased CD200R expression on monocyte-derived macrophages correlates with Th17/Treg imbalance and disease activity in rheumatoid arthritis patients. *Inflammation research : official journal of the European Histamine Research Society [et al]*. 2014;63(6):441-450.

78. Meuth SG, Simon OJ, Grimm A, et al. CNS inflammation and neuronal degeneration is aggravated by impaired CD200-CD200R-mediated macrophage silencing. *Journal of*
neuroimmunology. 2008;194(1-2):62-69.

79. Koning N, Swaab DF, Hoek RM, Huitinga I. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. *Journal of neuropathology and experimental neurology.* 2009;68(2):159-167.

80. Hernangomez M, Klusakova I, Joukal M, Hradilova-Svizenska I, Guaza C, Dubovy P. CD200R1 agonist attenuates glial activation, inflammatory reactions, and hypersensitivity immediately after its intrathecal application in a rat neuropathic pain model. *Journal of neuroinflammation.* 2016;13:43.

81. Aschner M, Cherian MG, Klaassen CD, Palmiter RD, Erickson JC, Bush Al. Metallothioneins in brain--the role in physiology and pathology. *Toxicology and applied pharmacology.* 1997;142(2):229-242.

82. Hidalgo J, Aschner M, Zatta P, Vasak M. Roles of the metallothionein family of proteins in the central nervous system. *Brain research bulletin.* 2001;55(2):133-145.

83. Chung RS, Adlard PA, Dittmann J, Vickers JC, Chuah MI, West AK. Neuron-glia communication: metallothionein expression is specifically up-regulated by astrocytes in response to neuronal injury. *Journal of neurochemistry.* 2004;88(2):454-461.

84. Palmiter RD, Findley SD, Whitmore TE, Durnam DM. MT-III, a brain-specific member of the metallothionein gene family. *Proceedings of the National Academy of Sciences of the United States of America.* 1992;89(14):6333-6337.

85. Holloway AF, Stennard FA, Dziegielewska KM, Weller L, West AK. Localisation and expression of metallothionein immunoreactivity in the developing sheep brain. *International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience.* 1997;15(2):195-203.

86. Chung RS, West AK. A role for extracellular metallothioneins in CNS injury and repair.
87. Hidalgo J, Penkowa M, Giralt M, Carrasco J, Molinero A. Metallothionein expression and oxidative stress in the brain. *Methods in enzymology.* 2002;348:238-249.

88. Penkowa M, Giralt M, Carrasco J, Hadberg H, Hidalgo J. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. *Glia.* 2000;32(3):271-285.

89. Penkowa M, Hidalgo J. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE). *Experimental neurology.* 2001;170(1):1-14.

90. Kwon A, Jeon SM, Hwang SH, Kim JH, Cho HJ. Expression and functional role of metallothioneins I and II in the spinal cord in inflammatory and neuropathic pain models. *Brain research.* 2013;1523:37-48.

Tables

Table 1 - The 25 overlapped novel neuropathic pain genes in NAc, mPFC and PAG on the network

| Gene Symbol |
|-------------|-------------|-------------|-------------|-------------|
| Adat2 | Ap5b1 | Cd200r1 | Igcc3 | Prlh |
| Adat3 | Ap5s1 | Cic | Junb | Stomi3 |
| Adgr3 | Asic3 | Ctu1 | Mt1 | Ush2a |
| Adgrv1 | Atxn1 | Ctu2 | Mt2 | Vezt |
| Agt | Cd200 | Cyp2e1 | Prlh | Whrn |

Figures
The Venn Diagram of differentially expressed genes in NAc, mPFC and PAG Among the 123, 89 and 795 differentially expressed genes in NAc, mPFC and PAG, only two genes, Capn11 and Cyp2e1, were overlapped. These two genes played important roles in neuropathic pain, but there were many undiscovered neuropathic pain genes in the differentially expression analysis.
The Venn Diagram of novel neuropathic pain genes in NAc, mPFC and PAG on the network. Among the 623, 888 and 507 novel neuropathic pain genes in NAc, mPFC and PAG, 25 genes were overlapped. These genes linked the three brain regions and revealed the potential cross talk mechanisms among NAc, mPFC and PAG for neuropathic pain.

Supplementary Files
This is a list of supplementary files associated with the primary manuscript. Click to download.

TableS1.xlsx
TableS2.xlsx
Equation 1.png
Equation 2.png