We describe a case that resembled MIS, after vaccination with Ad26. The multisystem inflammatory syndrome (MIS) is a rare and sometime life-threatening post-infectious complication of coronavirus disease 2019 (Covid-19) in children and adults. To date, only a very few reports have associated such systemic reaction with SARS-CoV-2 vaccination.

Case report: We describe a case that resembled MIS, in a 46-year-old White man, 12 days after vaccination with Ad26. COV2. S vaccine (Johnson & Johnson/Janssen), a recombinant adenovirus serotype 26 vector encoding the SARS-CoV-2 spike glycoprotein. The patient experienced high grade fever, cutaneous rash, severe weakness, pericardial effusion and raised inflammatory markers, which met the criteria for definition of MIS. The symptoms improved with steroidal therapy.

Conclusions: Our case suggests that MIS could occur after SARS-CoV-2 vaccination.
Table 1
Criteria for definition of definitive cases of Multisystem Inflammatory Syndrome in adults (from ref. [9]).

AND	Fever ≥ 3 consecutive days
2 or more of the following clinical features:	
- Mucocutaneous (rash, erythema or cracking of the lips/mouth/pharynx, bilateral non-exudate conjunctivitis, erythema/edema of the hands and feet)	
- Gastrointestinal (abdominal pain, vomiting, diarrhea)	
- Shock/Hypotension	
- Neurologic (altered mental status, headache, weakness, paresthesias, lethargy)	
AND	Laboratory evidence of inflammation including any of the following:
- Elevated CRP, ESR, or procalcitonin	
2 or more measures of disease activity:	
- Elevated BNP or NT-ProBNP or troponin	
- Neutropenia, lymphopenia, or thrombocytopenia	
- Evidence of cardiac involvement by echocardiography or physical stigmata of heart failure	
- EKG changes consistent with myocarditis or myo-pericarditis	

Laboratory confirmed SARS-CoV-2 infection
OR Personal history of confirmed COVID-19 within 12 weeks
OR Close contact with known COVID-19 case within 12 weeks
OR Following SARS-CoV-2 vaccination

Discussion

MIS is a known rare complication of COVID-19 in children [1]. The syndrome has also been identified in adults with recent COVID-19 infection [2–4]. Working criteria for definition of MIS have been published [9], and the features of our patient met the definition of definitive cases (Table 1).

However, in this case no precedent COVID-19 infection was identified, and the symptoms onset 12 days after SARS-CoV-2 vaccination strongly suggest a cause-effect relationship. Interestingly enough, albeit our patient needed hospitalization, he never appeared severely ill, differently from most cases of COVID-19 or vaccine-related MIS in children and adults [1–3,5–8]. In ours and in other vaccine-related MIS, steroidal therapy and/or immunoglobulins proved to be efficacious, and no deaths were recorded. The mechanism by which the SARS-CoV-2 causes MIS is largely unknown to date [9]. One possibility is an aberrant interferon response leading to hyperinflammation [10]. Indeed, when cytokine profiles of severe COVID-19 were compared with MIS in children, patients in both groups had high interferon levels [11]. Differently from severe COVID-19, MIS in children is characterized by lower viral loads at presentation, as well as lower anti-S IgM, supporting the idea of a post-infectious phenomenon [11]. Several elements in MIS-Children patients suggest an endothelial dysfunction and microangiopathy, including a tendency to higher values of soluble complement components. This finding correlate with higher cytokine levels, suggesting that endothelial dysfunction may contribute to perpetuating inflammation [11]. In the case we present, the vaccine might have mimicked the effect of SARS-CoV-2. It is known indeed that vaccines can occasionally induce an acute autoimmune disease [12]. In conclusion, our case suggests that MIS could occur after SARS-CoV-2 vaccination. While this vaccination remains an absolute priority, clinicians should be aware of potential, albeit rare, side-effects of vaccines.

Ethics approval

This case report has obtained approval from the head of the Internal Medicine unit at the Department of Internal Medicine of the Azienda Ospedaliera di Cosenza (Italy).

Consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal on request.

Funding

This case report has been undertaken by the authors without any form of sponsorship or support from any individual of institution.

Conflict of Interest

Each author declares that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article.

CRediT authorship contribution statement

Bova C: Conception and design of study, drafting the manuscript. Vigna E, Gentile M: Review of the manuscript for important intellectual content.

References

[1] Son M, Murray N, Friedman K, Young CC, Newham MS, Feldstein LR, et al. Multisystem inflammatory syndrome in children - initial therapy and outcomes. New Engl J Med 2021;385:23–34. https://doi.org/10.1056/NEJMoa2102605
[2] Uwaydah A, Hassan N, Abou Ghoosh M, Shahin K. Adult multisystem inflammatory syndrome in a patient who recovered from COVID-19 postvaccination. BMJ Case Rep 2021;14(4):e242060. https://doi.org/10.1136/bcr-2021-242060
[3] Salzman M, Huang C, O’Brien C, Castillo R. Multisystem inflammatory syndrome after SARS-CoV-2 Infection and COVID-19 Vaccination. Emerg Infect Dis 2021;27(7):1944–8. https://doi.org/10.3201/eid2707.210594
[4] [https://www.cdc.gov/mis-c/mis-a.html]. Accessed on 22 June 2021.
[5] Nune A, Ivengar K, Goddard C, Ahmed A. Multisystem inflammatory syndrome in an adult following the SARS-CoV-2 vaccine (MIS-V). BMJ Case Rep 2021;14:e243888. https://doi.org/10.1136/bmjcase-2021-243888
[6] Choi YK, Moon JY, Kim J, Yoo IS, Kwon GY, Bae H, et al. Postvaccination multisystem inflammatory syndrome in adult with no evidence of prior SARS-CoV-2 Infection. Emerg Infect Dis 2021;28(2). https://doi.org/10.3201/eid2802.211938
[7] Stappers S, Ceuleers B, Van Brusselen D, Willems P, de Tavernier B, Verlinden A. A case of multisystem inflammatory syndrome (MIS-A) in an adult woman 18 days after COVID-19 vaccination. Acta Clin Belg 2021;1–6. https://doi.org/10.1080/17843286.2021.1977899
[8] Chai Q, Ngyaard U, Schmidt R, Zaremba T, Moller A, Thorvig C. Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-BioNTech COVID-19 vaccine. Acta Paediatr 2022;111(1):125–7. https://doi.org/10.1111/apa.14041
[9] Vogel TP, Top KA, Karatzios C, Hilmers DC, Tapia LJ, Moceri P, et al. Multisystem inflammatory syndrome in children and adults (MIS-C/A): case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2021;39(22):3037–49. https://doi.org/10.1016/j.vaccine.2021.01.054
[10] Lee PY, Platt CD, Weeks S, Grace RF, Mahler G, Guthrie K, et al. Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haplo-insufficiency of SOCS1. J Allergy Clin Immunol 2020;146(5):1194–200. https://doi.org/10.1016/j.jaci.2020.07.033
[11] Diorio C, Henrickson SE, Vella LA, McNerney KO, Chase J, Burudpakde C, et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J Clin Invest 2020;130(11):5967–75. https://doi.org/10.1172/JCI149070
[12] Tregonis JS, Brown ES, Cheeseeman HM, Flight KE, Higham SL, Lemm NM, et al. Vaccines for COVID-19. Clin Exp Immunol 2020;202(2):162–92. https://doi.org/10.1111/cei.13517