Genomic analysis of European bovine Staphylococcus aureus from clinical versus subclinical mastitis

Jurriaan Hoekstra1,2, Aldert L. Zomer2, Victor P. M. G. Rutten2, Lindert Benedictus1, Arjan Stegeman1, Mirlin P. Spaninks1, Torben W. Bennedsgaard3, Andrew Biggs4, Sarne De Vliegher5, Demetrio Herrera Mateo6, Reglindis Huber-Schlenstedt7, Jørgen Katholm8, Péter Kovács9, Volker Krömker10, Guillaume Lequeux11, Paolo Moroni12, Luis Pinho13, Sebastian Smulski14, Karlien Supré15, Jantijn M. Swinkels16, Mark A. Holmes17, Theo J. G. M. Lam18, & Gerrit Koop1

Intramammary infections (IMI) with Staphylococcus aureus are a common cause of bovine mastitis and can result in both clinical (CM) or subclinical mastitis (SCM). Although bacterial isolates of S. aureus differ in their virulence potential it is largely unclear which bacterial virulence factors are responsible for increased clinical severity. We performed a genome wide association study and used a generalized linear mixed model to investigate the correlation between gene carriage, lineage and clinical outcome of IMI in a collection of S. aureus isolates from cattle with CM (n = 125) and SCM (n = 151) from 11 European countries. An additional aim was to describe the genetic variation of bovine S. aureus in Europe. The dominant lineages in our collection were clonal complex (CC) 151 (81/276, 29.3%), CC97 (54/276, 19.6%), CC479 (32/276, 11.6%) and CC398 (19/276, 6.9%). Virulence and antimicrobial resistance (AMR) gene carriage was highly associated with CC. Among a selection of nine virulence and AMR genes, CC151, CC479 and CC133 carried more virulence genes than other CCs, and CC398 was associated with AMR gene carriage. Whereas CC151, CC97 were widespread in Europe, CC479, CC398 and CC8 were only found in specific countries. Compared to CC151, CC479 was associated with CM rather than SCM (OR 3.62; 95% CI 1.38–9.50) and the other CCs were not. Multiple genes were associated with CM, but due to the clustering within CC of carriage of these genes, it was not possible to differentiate between the effect of gene carriage and CC on clinical outcome of IMI. Nevertheless, this study demonstrates that characterization of S. aureus CC and virulence genes helps to predict the likelihood of the occurrence of CM following S. aureus IMI and highlights the potential benefit of diagnostics tools to identify S. aureus CC during bovine mastitis.

Mastitis is responsible for significant financial losses on dairy farms due to reduced milk yield, milk unsuitable for consumption, treatment costs and culling of animals1,2. The main causes of bovine mastitis are bacterial...
intramammary infections (IMI), with *Staphylococcus aureus* being one of the most relevant pathogens. Infections with *S. aureus* mostly result in subclinical mastitis (SCM), but can also lead to clinical mastitis (CM). The *S. aureus* clones responsible for bovine mastitis predominantly belong to bovine-associated clonal complexes (CC), such as CC151, CC97, CC133, CC479 and CC771. The genomic content of *S. aureus* clones can differ greatly due to their accessory genome, which makes up approximately 25% of the total genome. The accessory genome of *S. aureus* predominantly consists of genes introduced by horizontal gene transfer (HGT), with *S. aureus* CM and SCM have been mainly on a national scale, whereas the genetic makeup of bovine *lukM-lukF* certain genes was larger than for SCM. Therefore, identification of *S. aureus* isolates from cattle with CM or SCM in 11 European countries. A second aim was to describe the variation in lineages, virulence gene and AMR genes among isolates was related to CC (Table 1). The CC151, CC479 and CC133 strains had high carriage of virulence genes but lacked AMR genes. All these three CCs carried the *blaZ* gene, whereas CC398 isolates lacked *mccA*. Although most SSLs were detected in all *S. aureus* lineages, differences in SA carriage were the high number of SAs (up to 12 different SAs) genes carried by CC151, whereas CC398 isolates lacked SAs. Although most SSLs were detected in all *S. aureus* isolates, CC398 S. aureus lacked all these virulence factors but did have a high carriage rate of the AMR genes *blaZ* (8/19, 42%), *tetM* (19/19, 100%) and *mccA* (11/19, 58%) (Table 1). The CC97 displayed a moderate carriage of both virulence gene *lukM-lukF* (16/54, 30%) and the AMR gene *blaZ* (16/54, 30%) (Table 1).

Results

Bovine S. aureus CCs differ in their carriage of immune evasion and AMR genes. After selection of isolates and quality control of WGS results, 276 genomes were available of *S. aureus* isolates obtained from bovine mastitis cases originating from 254 unique herd in eleven different European countries. There was an approximately even distribution of CM (125/276, 45%) and SCM (151/276, 55%) isolates, and *S. aureus* in the collection belonged to eighteen different CCs. The most prevalent CCs were CC151 (81/276, 29.3%), CC97 (54/276, 19.6%), CC479 (32/276, 11.6%), CC133 (25/276, 9.1%), CC398 (19/276, 6.9%), CC1 (14/276, 5.1%), CC20 (11/276, 4.0%) and CC8 (11/276, 4.0%), and carriage of a selection of nine key virulence and AMR genes among isolates was related to CC (Table 1). The CC151, CC479 and CC133 strains had high carriage of virulence genes but lacked AMR genes. All these three CCs carried the *lukM-lukF* genes and CC479, CC151 also possessed SA genes. In addition, CC479, CC133 S. aureus carried the SaPI encoded *vWFbp* gene (Table 1). In contrast, CC398 S. aureus lacked all these virulence factors but did have a high carriage rate of the AMR genes *blaZ* (8/19, 42%), *tetM* (19/19, 100%) and *mccA* (11/19, 58%) (Table 1). The CC97 displayed a moderate carriage of both virulence gene *lukM-lukF* (16/54, 30%) and the AMR gene *blaZ* (16/54, 30%) (Table 1).

Heatmaps of the BLAST score ratio (BSR) of all *S. aureus* genes annotated as (putative) SAs or SSLs by prokka demonstrated that bovine *S. aureus* CCs differ in their carriage of these immune evasion factors (Supplementary Figs. S1, S2). Notable differences in SA carriage were the high number of SAs (up to 12 different SAs) genes carried by CC151, whereas CC398 isolates lacked SAs. Although most SSLs were detected in all *S. aureus*, the BSR of these SSLs differed between *S. aureus* CCs. However, the SSL-7, SSL-8, SSL-9 genes were only absent in CC479 *S. aureus*. Furthermore, two genes that were annotated as unnamed SAs (GenBank references: WP_143564871.1 and WP_124375191) were exclusively found among CC97 isolates (Supplementary Fig. S2).

To screen for target genes that could differentiate between major ruminant CCs in a PCR-based assay, the presence of potential CC exclusive genes was also investigated (Supplementary Fig. S3, Supplementary Table S1). The highest number of CC-exclusive genes were found for CC479 (n = 17), followed by CC20 (n = 4), CC151 (n = 3), CC8 (n = 2) and CC133 (n = 2). For CC97, CC398, only a single unique gene was identified and no CC exclusive genes were found for CC1 isolates.

Heterogeneous spatial distribution of CCs across Europe. There was a significant difference in the distribution of *S. aureus* CCs between different countries (Fisher’s Exact Test, *p* < 0.001). Whereas CC151 (10 out 11 countries) and CC97 (9 out 11) *S. aureus* were detected in almost all countries, CC398 (6 out 11) and CC479 (5 out 11) were considerably less widespread in our collection (Table 2). The CC398 lineage was predominantly
Table 1. Number and percentage of isolates positive for a selection of virulence and antimicrobial resistance genes per clonal complex and number and proportion of clinical mastitis of 276 *S. aureus* isolates obtained from bovine clinical and subclinical mastitis in 11 European countries. a Clonal complex. b Carriage of genes determined using pangenome data from Roary. c Number and percentage of clinical mastitis cases per CC. d Cluster-specific odds ratio of the isolate being cultured from CM versus SCM from a generalized linear mixed model with country as a random effect. e Reference class for variable CC within the generalized linear mixed model. f Only CCs with n > 10 were included in model. g Significance of class within the variable CC.

CCa	n	%	Virulence genes n (%)	Antimicrobial resistance genes n (%)	Manifestation of mastitis
			lukM-	lukF b	
			lukF′	scn	
			scn	sel	
			selL	tset-1	
			tset-1	blaZ	
			tetM	mecA	
			CM	Odds ratiod (95% CI)	
				Pg	
151	81	29.3	81 (100)	0 (0)	80 (99) 19 (23)
97	54	19.6	16 (30)	7 (13)	0 (0) 0 (0)
479	32	11.6	30 (94)	32 (100)	0 (0) 0 (0)
133	25	9.1	23 (92)	21 (84)	0 (0) 2 (8)
398	19	6.9	0 (0)	10 (52)	0 (0) 0 (0)
1	14	5.1	9 (64)	0 (0)	0 (0) 0 (0)
20	11	4.0	0 (0)	0 (0)	7 (64) 0 (0)
8	11	4.0	0 (0)	0 (0)	0 (0) 0 (0)
9	5	1.8	0 (0)	0 (0)	0 (0) 0 (0)
50	5	1.8	0 (0)	0 (0)	0 (0) 0 (0)
49	4	1.4	1 (25)	0 (0)	0 (0) 0 (0)
7	4	1.4	0 (0)	0 (0)	0 (0) 0 (0)
5	4	1.4	0 (0)	0 (0)	0 (0) 0 (0)
45	3	1.1	0 (0)	0 (0)	0 (0) 0 (0)
101	1	0.4	0 (0)	0 (0)	0 (0) 0 (0)
22	1	0.4	0 (0)	0 (0)	1 (100) 0 (0)
30	1	0.4	0 (0)	0 (0)	0 (0) 0 (0)
425	1	0.4	0 (0)	0 (0)	0 (0) 0 (0)
Total	276		160 (58)	38 (14)	57 (21) 125 (45)

Table 2. Number and percentage of bovine *S. aureus* of 276 *S. aureus* isolates per clonal complex ranked per country or contributing region obtained from bovine clinical and subclinical mastitis in 11 European countries. a Clonal complex. b Lower Saxony region in Germany. c Bavaria region in Germany.

CCa	N (%)	Be n (%)	Dk n (%)	Fr n (%)	Ge (L4) n (%)	Ge (By) n (%)	Hu n (%)	It n (%)	NL n (%)	Po n (%)	Pt n (%)	Ex n (%)	Uk n (%)		
151	81 (29)	13 (43)	5 (18)	3 (11)	1 (4)	4 (17)	10 (34)	8 (27)	3 (16)	6 (20)	14 (64)	0 (0)	2 (29)	2 (17)	14 (52)
97	54 (20)	4 (13)	1 (6)	7 (30)	4 (14)	6 (20)	7 (37)	9 (30)	0 (0)	5 (16)	0 (0)	2 (17)	9 (33)		
479	32 (12)	8 (27)	0 (0)	0 (0)	2 (7)	8 (27)	0 (0)	3 (10)	8 (36)	0 (0)	3 (43)	0 (0)	0 (0)		
133	25 (9)	4 (13)	4 (25)	2 (9)	7 (24)	2 (7)	0 (0)	2 (7)	0 (0)	1 (3)	0 (0)	3 (25)	0 (0)		
398	19 (7)	0 (0)	0 (0)	1 (4)	2 (7)	0 (0)	1 (5)	1 (3)	0 (0)	10 (32)	0 (0)	4 (33)	0 (0)		
1	14 (5)	1 (3)	1 (4)	0 (0)	0 (0)	0 (0)	2 (11)	1 (3)	0 (0)	7 (23)	0 (0)	0 (0)	2 (7)		
20	11 (4)	0 (0)	0 (0)	4 (17)	1 (3)	0 (0)	5 (26)	0 (0)	0 (0)	0 (0)	1 (8)	0 (0)			
8	11 (4)	0 (0)	0 (0)	0 (0)	0 (0)	5 (17)	0 (0)	6 (20)	0 (0)	0 (0)	0 (0)	1 (8)	0 (0)		
9	5 (2)	0 (0)	1 (6)	0 (0)	0 (0)	0 (0)	0 (0)	1 (3)	0 (0)	1 (3)	2 (29)	0 (0)	0 (0)		
50	5 (2)	0 (0)	5 (31)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
5	4 (1)	0 (0)	0 (0)	2 (9)	0 (0)	0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	1 (4)			
49	4 (1)	0 (0)	0 (0)	1 (4)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3 (10)	0 (0)	0 (0)			
7	4 (1)	0 (0)	0 (0)	0 (0)	3 (10)	0 (0)	1 (5)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
45	3 (1)	0 (0)	0 (0)	1 (4)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2 (6)	0 (0)	0 (0)			
101	1 (0.5)	0 (0)	0 (0)	0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
22	1 (0.5)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
30	1 (0.5)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
425	1 (0.5)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)		
Total	276	30	16	24	29	30	19	30	22	31	7	12	27		
found in isolates from Poland and Spain. Isolates belonging to CC8 originated exclusively from either Italy or Bavaria region in Germany. Also, all CC50 isolates originated from Denmark (Table 2).

Pangenome of bovine *S. aureus* and phylogenetic analysis. To investigate the phylogeny of our bovine *S. aureus* isolates, the pangenome of the entire collection was determined (n = 5720 genes) and a phylogenetic tree was constructed based on a super-alignment of the 1953 genes in the core genome (genes present in >99% of isolates) (Fig. 1). A second phylogenetic tree was built based on the binary presence or absence of genes in the accessory genome (Fig. 2). Within both phylogenetic trees, isolates clustered within CC and two
major clusters of CCs could be identified. The largest cluster, labeled as cluster A consisted of CC151, CC479, CC133, CC425, CC49 and CC50 isolates and second largest cluster B included CC97, CC8, CC1, CC20, CC9, CC7, CC5, CC30 and CC101. (Figs. 1, 2). There was uneven distribution of CM and SCM isolates between clusters, with more CM isolates being present in Cluster A (81/148, 55%) compared to cluster B (38/103, 36%) (Pearson’s Chi-squared test p < 0.01).

In general, the phylogenetic tree based on the core genome was similar to the tree based on the accessory genome. In addition, the phylogenetic tree shows considerable variation in accessory gene content, most notably within CC151 and CC97, but almost no variation in accessory gene carriage was observed among CC479 and CC133 Staphylococcus aureus isolates (Fig. 2).

Staphylococcus aureus CC479 is associated with CM. In order to further study the association between S. aureus CC and clinical outcome of IMI, a generalised linear mixed model (GLMM) was built with CM versus SCM as the outcome variable, CC as predictor variable and the country of origin of isolates as a random effect. For this model, isolates belonging to CCs with n < 10 (CC9, CC50, CC49, CC7, CC45, CC5, CC101, CC22, CC30, and CC425) were clustered together in a single category labeled as ‘other’. Including CC improved the fit over the model compared to the model with only random effects (ANOVA, p = 0.003) and isolates belonging to CC479 were more likely to originate from CM than from SCM (OR 3.62; 95% CI 1.38–9.50, p < 0.01)

Figure 2. Maximum-likelihood phylogenetic tree based on presence or absence of genes of the accessory genome (n = 2023 genes) of 276 S. aureus isolates obtained from bovine clinical or subclinical mastitis from 11 European countries. Dark and light grey shading displays Clonal Complex (CC). The phylogenetic tree was rooted with the CC22 clade and visualized using iTOL v3.6.
compared to the reference category (CC151). In addition, there was a trend for CC8 (OR 0.22; 95% CI 0.04–1.1; p = 0.06) and CC1 (OR 0.30; 95% CI 0.07–1.23; p = 0.10) to originate from SCM (Table 1).

Clinical manifestation of mastitis is associated with a large number of different genes. To study genetic differences that could underlay variation in pathogenity of bovine S. aureus isolates, we performed a genome wide association study (GWAS) and 153 genes were associated with CM isolates. In agreement with the results from the GLMM, genes exclusively present in the CC479 isolates (n = 59) had the highest OR, ranging from 4.6 to 5.6 [Benjamini–Hochberg Procedure (BHP); p-values < 0.05]. Among the CM-associated genes, a total of 20 genes matched our inclusion criteria for significant genes of interest (best pairwise comparison p < 0.1; BHP p < 0.1) and the OR of these genes ranged from 1.95 to 3.42 (Table 3). Among these genes, the hypothetical potentially bacteriophage derived DUF3310 domain-containing protein (OR 2.35) was the only gene associated with CM that was detected among all main lineages. Carriage of SA genes seM, seN, seI, seG, seO

Table 3. Odds Ratio, carriage rate per clonal complex and GenBank references of genes associated with clinical mastitis based on a genome wide association study performed on 276 S. aureus isolates obtained from bovine clinical and subclinical mastitis in 11 European countries. a Gene annotation by prokka and confirmed using BLAST search of gene sequence. b Carriage rate of gene per clonal complex. c Odds Ratio of causing clinical rather than subclinical mastitis from the Genome wide association study. 5 Includes isolates belonging to CC9, CC50, CC5, CC49, CC7, CC45, CC101, CC20, CC30 and CC425. d Best pairwise comparison P value from GWAS performed using scoary.

Genea	Odds Ratiob	Best pairwise comparison p	Other Cs (%)c	Weighted average (%)	GenBank reference				
DUF3310 domain-containing protein	2.35	< 0.001	82 60	97 74	95 79	80 30	50 75	WP_001624706.1	
DUF2483 domain-containing phage protein	2.36	0.01	43 35	97 12	0 7	0 11	10 33	WP_001077279.1	
NAD-specific glutamate dehydrogenase	2.83	0.01	100 0	97 60	0 0	0 0	0 30	50 50	PAO39939.1
phiPVL ORF50-like protein	2.23	0.02	98 77	100 0	0 14	0 30	0 17	59 59	ARB21348.1
Staphylococcal enterotoxin type Cl/U	2.21	0.03	98 0	100 0	0 0	0 0	0 66	44 44	WP_109164118.1
Staphylococcal enterotoxin type G	1.95	0.04	98 0	100 0	0 0	100 0	43 49	WP_141060424.1	
Staphylococcal enterotoxin type N	1.95	0.04	98 0	100 0	0 0	100 0	43 49	WP_109164119.1	
Staphylococcal enterotoxin type I	1.95	0.04	98 0	100 0	0 0	100 0	43 49	QCW39073.1	
Multidrug transporter protein (SaPIbov3)	2.31	0.04	99 77	100 0	0 14	30 0	17 59	WP_065935972.1	
Intramembrane metalloprotease/ (SaPIbov3)	2.31	0.04	99 77	100 0	0 14	30 0	17 59	WP_07000870.1	
Hypothetical protein (SaPIbov3)	2.31	0.04	99 77	100 0	0 14	30 0	17 59	WP_000921697.1	
Staphylococcal enterotoxin type M	2.07	0.06	98 0	100 0	0 0	0 0	20 43	WP_109162116.1	
SAS066 AgrD (type II)	2.52	0.06	98 0	100 0	0 0	0 0	47 46	SCU54394.1	
Accessory gene regulator protein B4 (type II)	2.52	0.06	98 0	100 0	0 0	0 0	47 46	CZQ66246.1	
Hypothetical protein	2.83	0.06	100 13	100 0	0 0	0 0	3 44	WP_000389772.1	
TloX/Sxy family protein	2.83	0.06	100 13	100 0	0 0	0 0	3 44	WP_000179903.1	
Arsenate reductase	1.97	0.06	99 0	100 100	0 0	0 0	100 66	WP_000163240.1	
Trypsin-like serine protease	2.61	0.06	0 0	100 0	0 0	0 0	50 17	WP_043054986.1	
SACOL0901 pathogenicity island protein	2.82	0.07	98 88	100 84	0 14	30 28	27 71	WP_109183239.1	
DUF1433 domain-containing protein	3.42	0.07	98 98	100 100	0 0	100 0	63 79	WP_031900638.1	
and seU, as well as the accessory gene regulator (agr) D type II gene was associated with CM and these genes were present in all CC479 isolates and the majority of CC151 isolates (Table 3). In addition, three genes from within the *S. aureus* pathogenicity island bovine 3 (SaPIbov3) were also associated with CM and were carried by all CC151, CC479 and 77% of CC97 isolates.

Furthermore, 61 genes were associated with SCM (i.e. an OR < 1), from which 10 genes matched our selection criteria and the OR of these genes ranged between 0.09 and 0.44 (Table 4). Most genes (8/10) coded for hypothetical proteins and the genes with predicted function were identified as an antitoxin Ye zG family protein (OR 0.32) and a putative DNA binding protein (OR 0.29). The SCM-associated genes were mostly carried by CC1, CC20, and CC8 *S. aureus*, but were always absent from CC479 and most CC151 isolates (Table 4).

Discussion

There is a large diversity in the carriage of virulence and AMR genes between bovine *S. aureus* lineages, but it is unclear which genetic differences underly the observed variation in pathogenicity following bovine IMI. Therefore, this study aimed to identify genetic differences between *S. aureus* isolated from CM and SCM in dairy cattle. A secondary goal of the study was to describe the diversity of bovine *S. aureus* lineages in Europe and their carriage of immune evasion factors. We found CC479 to be strongly associated with CM rather than SCM cases.

Although eighteen different CCs were present in our isolate collection, most *S. aureus* belonged to a limited number of CCs, with the five CCs (CC151, CC97, CC479, CC133 and CC398) making up more than 75% of all isolates. These CCs have previously been associated with bovine mastitis, and the distribution of *S. aureus* CCs differed between geographical locations. Although the isolates in our collection were not a random sample, they did originate from 254 unique herds with a maximum of one CM and one SCM isolate from the same herd. The prevalence of *S. aureus* CCs per country from our study is in line with studies performed in Denmark, Germany and The Netherlands. Nevertheless, these isolates cannot be expected to fully represent the genetic diversity of bovine *S. aureus* on a national level. Because in addition to a relative low number of isolates, there likely was some clustering within certain regions in several of the countries, which may have resulted in an underestimation of the true genetic diversity in the population. We must also note that the aim of our sampling

Table 4. Odds Ratio, carriage rate per clonal complex and GenBank references of genes associated with subclinical mastitis based on a genome wide association study performed on 276 *S. aureus* isolates obtained from bovine clinical and subclinical mastitis in 11 European countries. *Gene annotation by prokka and confirmed using BLAST search of gene sequence. **Odds Ratio of causing clinical rather than subclinical mastitis from the Genome wide association study. *Best pairwise comparison P value from GWAS performed using scoary. *Carriage rate of gene per clonal complex. *Includes isolates belonging to CC9, CC50, CC5, CC49, CC7, CC45, CC101, CC20, CC30 and CC425.

Genea	Odds ratio b	Best pairwise comparison Pc	CC151 (%)d	CC97 (%)	CC479 (%)	CC133 (%)	CC398 (%)	CC1 (%)	CC20 (%)	CC8 (%)	Other CCs (%)e	Weighted average (%)	GenBank reference	
Putative DNA-binding protein	0.29	<0.01	2	22	0	16	42	64	82	18	7	18	AUM57693.1	
Hypothetical protein	0.40	<0.01	0	94	0	0	0	100	100	100	100	34	42	WP_000375476.1
Hypothetical protein	0.27	0.02	0	0	0	0	0	100	100	100	100	34	24	WP_000070812.1
Probable antitoxin Ye zG	0.32	0.03	0	0	0	0	100	0	0	100	0	3	15	WP_000142094.1
Hypothetical protein	0.38	0.03	0	0	0	0	0	100	100	100	100	34	27	WP_078068548.1
Hypothetical protein	0.44	0.03	0	98	0	0	0	100	100	100	100	62	39	WP_072426418.1
Hypothetical protein	0.32	0.04	0	50	0	0	0	100	7	0	91	52	26	WP_000431307.1
Hypothetical protein	0.09	0.06	0	0	0	0	8	32	0	0	9	14	5	WP_000993183.1
Hypothetical protein	0.26	0.06	0	0	0	0	0	100	0	100	100	34	13	ETO57257.1
Hypothetical protein	0.43	0.06	1	0	0	0	100	100	100	100	86	39	WP_078370397.1	
design was to collect isolates from an equal number of clinical and subclinical cases. This does not reflect the true population of *S. aureus* isolates in dairy herds, as the prevalence of subclinical infections is substantially higher than of clinical infections. Since CM and SCM are both expressions of *S. aureus* IMI and as SCM can develop into CM and vice versa, isolates may have been misclassified, biasing any associations between CM versus SCM and *S. aureus* genotype towards the null-effect. Still, our study, as well as other studies using a similar classification of mastitis,

A key finding of the current study was the association between *S. aureus* belonging to CC479 and CM. This corresponds with a previous study which reported that experimental infection with CC479 *S. aureus* results in more severe clinical signs and a higher bacterial load than infection with a CC151 *S. aureus* strain.

The results from our GLMM suggest that CC8 and CC1 are less likely to cause CM in cows and most of the genes that were associated with CM by GWAS were present in CC479 isolates. However, the latter CC had an approximately even distribution of isolates originating from CM (51%) and SCM (49%). Since CC151 and CC479 share most CM-associated genes, these genes are likely spuriously associated to CM, due to confounding by other factors within CC479. Differences in gene expression are more likely causes of the increased virulence of CC479, in line with our hypothesis regarding the non-functional *rot* gene.

We confirmed that this mutation was present in all CC479 isolates within our collection (results not shown). It is possible that the presence of these genes in CC associated with SCM indicates it is likely that differential gene expression rather than gene carriage affects clinical presentation of IMI. This study shows that the type of infection *S. aureus* influences the clinical outcome of IMI in dairy cattle.

In summary, this study identified that a limited number of *S. aureus* CCs are responsible for bovine mastitis in Europe and that CC479 is strongly associated with CM. Although our analysis showed specific genes are associated with CM, the presence of these genes in CC associated with SCM indicates it is likely that differential gene expression rather than gene carriage affects clinical presentation of IMI. This study shows that the type of infection *S. aureus* influences the clinical outcome of IMI in dairy cattle. Therefore, identification of *S. aureus* CC can help predict the likelihood of the occurrence of CM following *S. aureus* IMI and highlights the potential benefit of diagnostics tools to identify *S. aureus* CC during bovine mastitis.

Methods

Bovine mastitis isolates. Twelve mastitis research groups or diagnostic labs from eleven countries (Belgium, Denmark, France, Germany, Hungary, Italy, Poland, Portugal, Spain, The Netherlands and United Kingdom) were asked to submit a convenience sample of approximately 30 *S. aureus* isolates obtained from cases of...
bovine mastitis. Participants were asked to submit a maximum of one CM and one SCM isolate per herd with as much as possible an equal number of CM and SCM isolates, coming from different regions in their country. The sample size was based on what was considered feasible to be collected within a reasonable period of time, while giving a good impression on the situation in a country. No formal sample size calculations were performed. For each isolate the sampling date, farm ID, geographical location of farm (city and/or region), cow ID, clinical manifestation (CM/SCM) was reported in a pre-structured Excel workbook (Microsoft Corp., Redmond, WA, USA).

Clinical mastitis was defined as visible signs of inflammation of the udder, indicated by a hard swollen quarter and/or abnormal milk; SCM was defined as a high somatic cell count (> 200,000 cells/mL) while no clinical signs of mastitis could be observed. The definitions were communicated to all participating researchers and were stated in a workbook to ensure that a uniform definition of CM and SCM was applied by all participants. No constraints were put on duration or chronicity of infections. The clinical status (CM or SCM) was observed and recorded at the moment of sampling.

Isolates were recultured from their transport media onto sheep blood agar plates, and incubated overnight at 37 °C. Next, single colonies were picked and grown in 2 mL Todd Hewitt Broth (THB) (Sigma, St. Louis, MO, USA) for 16 h at 37 °C with agitation. Bacterial glycerol stocks (25% glycerol) were made by adding 0.5 mL of bacterial broth to 0.5 mL 50% glycerol solution in distilled water. Furthermore, DNA was extracted using a simple boiling protocol to confirm bacterial species by PCR targeting the S. aureus specific femA gene, as described by Hoekstra et al. Isolates that were negative for the femA PCR or lacked mandatory metadata were excluded from the final collection. For each herd, a maximum of one isolate from a CM case and one from a SCM case was allowed and if multiple CM or SCM isolates were donated from the same herd, one was selected using the random number function of Excel 2015 (Microsoft, Redmond, WA, USA).

DNA extraction, genome sequencing and multilocus sequence typing. DNA for whole genome sequencing was extracted using the DNeasy UltraClean Microbial Kit (Qiagen, Venlo, The Netherlands) according to the manufacturer’s instructions. Purity and DNA yield were measured by spectrophotometry and whole-genome sequencing was performed using Illumina HiSeq sequencing (Illumina Inc., San Diego, CA, United States). Multilocus sequence type was determined based on genome data. Each sequence type was assignment to a CC based on eBURST analysis using PHYLOViZ Online.

Annotation of genomes, pan-genome analysis and phylogenetic analyses. After quality control of whole genome sequence results, genomes were annotated using prokka v1.11 and the pan/core genome (genes present in 99% < of genomes) determined using roary v3.12. Alignment of the core genome was performed using MAFFT v7.407 and the phylogenetic trees was built with Fasttree v2.1.40. Subsequently, trees were visualized using iTOL v3.641 and trees were rooted using the CC22 clade. The large-scale BLAST score ratio (LS-BSR) pipeline was used to obtain matrices with BLAST score ratio of each annotated gene25. For each isolate, the presence of the genes encoding leukocidin LukMF′ (lukM, GenBank accession: 1262967; lukF′, GenBank accession: 1262954), ruminant-specific Staphylococcal complement inhibitor variant (scn, Genbank accession: ADN53665.1), SaPI encoded ruminant specific wFbp variant (SaPI wFbp, Genbank accession: HM234507.1), enterotoxin type I (sel, Genbank accession: EFC00985.1), enterotoxin L (sel L, Genbank accession: BAO65763.1), toxic shock syndrome toxin 1 (tst-1, Genbank accession: WP_001035596.1), penicillin-hydrolyzing class A beta-lactamase (blaZ, Genbank accession: WP_000733621.1), tetracycline resistance protein type M (tetM, Genbank accession: AKI94996.1) and penicillin binding protein 2A (mecA, Genbank accession: WP_104447100.1) was determined using LS-BSR output. Genes were identified using a threshold value of BSR of >0.9 compared to the reference gene. In addition, a heatmap of LS-BSR score of isolates was created for genes annotated as SLL or SA by prokka using the pheatmap package of the R statistical software version 3.5.4.

Statistical analysis. The GLMM analysis was performed using the lme4 package of the R statistical software version 3.5.4. The model used clinical manifestation of mastitis (SCM, CM) as outcome variable and CC of S. aureus was a fixed effect. The country of origin of isolates was used as a random effect in the model. To reduce the number of levels within the variable CC, CCs represented by < 10 isolates were grouped together into a category ‘Other’. Furthermore, the association between CC and country of origin of mastitis isolates was investigated by Fisher’s exact test and association between genetic cluster and clinical manifestation was investigated using the Pearson’s Chi-squared test. Both tests were performed using the R statistical software version 3.5.4.

GWAS. Based on the pangenome analysis in roary, GWAS was performed using scoroay v1.6.16. Default settings of scoary were used during our analysis with an initial threshold of naïve p < 0.01. Genes that matched our inclusion criteria (BHP p < 0.1; best pairwise comparison p value of p < 0.1) were considered significant results of interest.

Received: 28 July 2020; Accepted: 9 October 2020
Published online: 23 October 2020

References
1. Aghamohammadi, M. et al. Herd-level mastitis-associated costs on Canadian dairy farms. Front. Vet. Sci. 5, 100 (2018).
2. Halasa, T., Huijps, K., Østerås, O. & Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 29, 18–31 (2007).
3. Peton, V. & Le Loir, Y. *Staphylococcus aureus* in veterinary medicine. *Infect. Genet. Evol.* 21, 602–615 (2014).
4. Wellnitz, O. & Bruckmaier, R. M. The innate immune response of the bovine mammary gland to bacterial infection. *Vet. J.* 192, 148–152 (2012).
5. żadoks, R. N., Middleton, J. R., McDougall, S., Katholm, J. & Schukken, Y. H. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. *J. Mammary Gland Biol. Neoplasia* 16, 357–372 (2011).
6. Schlottke, K. et al. Leukocidin genes luk-P83 and lukM are associated with *Staphylococcus aureus* clonal complexes 151, 479 and 133 isolated from bovine udder infections in Thuringia, Germany. *Vet. Res.* 43, 42 (2012).
7. Lindsay, J. A. & Holden, M. T. G. Understanding the rise of the superbug: Investigation of the evolution and genomic variation of *Staphylococcus aureus*. *Funct. Integr. Genom.* 6, 186–201 (2006).
8. Magro, G. et al. Virulence genes of *S. aureus* from dairy cow mastitis and contagiousness risk. *Toxins (Basel)*. 9, 195 (2017).
9. Monistero, V. et al. *Staphylococcus aureus* isolates from bovine mastitis in eight countries: Genotypes, detection of genes encoding different toxins and other virulence genes. *Toxins (Basel)*. 10, 247 (2018).
10. Koymans, K. J., Vrielings, M., Gorham, R. D. Jr. & van Stripp, J. A. Staphylococcal immune evasion proteins: Structure, function, and host adaptation. *Carr. Top. Microbiol. Immunol.*. https://doi.org/10.1007/82_2015_5017 (2016).
11. Zhao, Y. et al. *Staphylococcus* superantigen-like protein 13 activates neutrophils via formyl peptide receptor 2. *Cell. Microbiol.* 20, e12941 (2018).
12. Viana, D. et al. Adaptation of *Staphylococcus aureus* to ruminant and equine hosts involves SaPi-carried variants of von Willebrand factor-binding protein. *Mol. Microbiol.* 77, 1583–1594 (2010).
13. Vrielings, M. et al. Bovine *Staphylococcus aureus* secretes the leukocidin LukMF′ to kill migrating neutrophils through CCRI. *MBio* 6, e00335 (2015).
14. Oliver, S. F. & Murinda, S. E. Antimicrobial resistance of mastitis pathogens. *Vet. Clin. N. Am. Food Anim. Pract.* 28, 165–185 (2012).
15. Grumann, D., Nübel, U. & Bröker, B. M. *Staphylococcus aureus* toxins—Their functions and genetics. *Infect. Genet. Evol.* 21, 583–592 (2014).
16. Bar-Gal, G. K. et al. Host-specificity of *Staphylococcus aureus* causing intramammary infections in dairy animals assessed by genotyping and virulence genes. *Vet. Microbiol.* 176, 143–154 (2015).
17. Moller, A. G., Lindsay, J. A. & Read, T. D. Determinants of phage host range in *Staphylococcus* species. *Appl. Environ. Microbiol.* 85, e00209-19 (2019).
18. Cooper, L. P. et al. DNA target recognition domains in the Type I restriction and modification systems of *Staphylococcus aureus*. *Nucleic Acids Res.* 45, 3395–3406 (2017).
19. Schmidt, T., Kock, M. M. & Ehlers, M. M. Molecular characterization of *Staphylococcus aureus* isolated from bovine mastitis and close human contacts in South African dairy herds: Genetic diversity and inter-species host transmission. *Fronit. Microbiol.* 8, 511 (2017).
20. Hoekstra, J. et al. High production of LukMF in *Staphylococcus aureus* field strains is associated with clinical bovine mastitis. *Toxins (Basel)*. 10, 200 (2018).
21. Haveri, M., Roslöf, A., Rantalä, I. & Pyörälä, S. Virulence genes of bovine *Staphylococcus aureus* from persistent and nonpersistence intramammary infections with different clinical characteristics. *J. Appl. Microbiol.* 103, 993–1000 (2007).
22. Pichette-Jollete, S. et al. Partial prediction of the duration and the clinical status of *Staphylococcus aureus* bovine intramammary infections based on the phenotypic and genotypic analysis of isolates. *Vet. Microbiol.* 228, 188–195 (2019).
23. Huijs, K., Lam, T. J. G. M. & Hogevreen, H. Costs of mastitis: Facts and perception. *J. Dairy Res.* 75, 113–120 (2008).
24. Peters, M. D. P., Silveira, I. D. B. & Fischer, V. Impact of subclinical and clinical mastitis on sensitivity to pain of dairy cows. *Animal* 9, 2024–2028 (2015).
25. Sah, J. W., Caporaso, J. G., Rasko, D. A. & Keim, P. The large-scale blast score ratio (LS-BSR) pipeline: A method to rapidly compare genetic content between bacterial genomes. *PeerJ* 2, e332 (2014).
26. Seemann, T. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 30, 2068–2069 (2014).
27. Artursson, K., Soderlund, R., Liu, L., Monecke, S. & Schelin, J. Genotyping of *Staphylococcus aureus* in bovine mastitis and correlation to phenotypic characteristics. *Vet. Microbiol.* 193, 156–161 (2016).
28. Ross, R. et al. Bovine *Staphylococcus aureus*: Subtyping, evolution, and zoonotic transfer. *J. Dairy Sci.* 99, 515–528 (2016).
29. Ronco, T. et al. Genomic investigation of *Staphylococcus aureus* isolates from bulk tank milk and dairy cows with clinical mastitis. *Vet. Microbiol.* 215, 35–42 (2018).
30. Ikwatry, R. et al. Characterization of Dutch *Staphylococcus aureus* from bovine mastitis using a multiple locus variable number tandem repeat analysis. *Vet. Microbiol.* 136, 277–284 (2009).
31. Rainard, P. et al. Knowledge gaps and research priorities in *Staphylococcus aureus* mastitis control. *Transbound. Emerg. Dis.* 65, 149–165 (2017).
32. Vrielings, M. et al. LukMF′ is the major secreted leukocidin of bovine *Staphylococcus aureus* and is produced in vivo during bovine mastitis. *Sci. Rep.* 6, 37759 (2016).
33. Leuenberger, A. et al. Genotypes of *Staphylococcus aureus* isolates from bulk tank milk and dairy cows with clinical mastitis. *Sci. Rep.* 6, 37759 (2016).
34. van den Borne, B. H. P. et al. A longitudinal study on transmission of *Staphylococcus aureus* genotype B in Swiss communal dairy herds. *Prev. Vet. Med.* 136, 65–68 (2017).
35. Cosandey, A. et al. *Staphylococcus aureus* genotype B and other genotypes isolated from cow milk in European countries. *J. Dairy Sci.* 99, 529–540 (2016).
36. De Vliegher, S., Fox, L. K., Piepers, S., McDougall, S. & Barkema, H. W. Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. *J. Dairy Sci.* 95, 1025–1040 (2012).
37. Archer, S. C., Bradley, A. J., Cooper, S., Davies, P. L. & Green, M. J. Prediction of *Streptococcus uberis* clinical mastitis risk using Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) in dairy herds. *Prev. Vet. Med.* 144, 1–6 (2017).
38. Ribeiro-Gonçalves, B., Francisco, A. P., Vaz, C., Ramirez, M. & Carriço, J. A. PHYLVOIZ Online: Web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees. *Nucleic Acids Res.* 44, W246–W251 (2016).
39. Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis. *Bioinformatics* 31, 3691–3693 (2015).
40. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. *Mol. Biol. Evol.* 26, 1641–1650 (2009).
41. Letunic, I. & Bork, P. Interactive Tree Of Life v2: Online annotation and display of phylogenetic trees made easy. *Nucleic Acids Res.* 39, W475–W478 (2011).
42. Kolde, R. CRAN—Package pheatmap. https://cran.r-project.org/web/packages/heatmap/index.html (2019).
43. R Development Core Team 3.0.1. *A Language and Environment for Statistical Computing*, R Foundation for Statistical Computing vol. 2. https://www.r-project.org (2013).
44. Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. *J. Stat. Softw.* 67, 1–48 (2015).
45. Visas, D., Dückel, M., Böker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. *J. Stat. Softw.* 67, 1–48 (2015).

Toxins (Basel) 6, e00335 (2015).
Acknowledgements
This study was supported by the Medical Research Council (UK) grant MR/N002660/1.
Torben W. Bennedsgaard, Andrew Biggs, Sarne De Vliegher, Demetrio Herrera Mateo, Reglindis Huber-Schlenstedt, Jørgen Katholm, Péter Kovács, Volker Krömker, Guillaume Lequeux, Paolo Moroni, Luis Pinho, Sebastian Smulski, Karlien Supré, Jantijn M. Swinkels, Theo J. G. M. Lam and Gerrit Koop are members of the European Mastitis Panel.

Author contributions
G.K. and T.L. conceived and supervised the study project. T.B., A.B. S.V., D.M., R.H., J.K., P.K., V.K., G.L., P.M., L.P., S.S., K.S., J.H. and T.L. collected bovine S. aureus isolates from their respective countries. M.P. and J.H. carried out the experimental work and M.H. assisted in the whole genome sequencing of bacterial isolates. J.H. performed analysis on the genomic data and visualized results. A.Z. assisted with the interpretation of results and provided additional computational expertise. J.H. wrote the original manuscript and G.K., T.L., L.B., V.R., A.S., P.M., A.Z. and J.S. provided a critical review of the manuscript. T.L. and G.K. contributed equally to the study project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-75179-2.
Correspondence and requests for materials should be addressed to J.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020