When Weaker Can Be Tougher: The Role of Oxidation State (I) in P- vs N-Ligand-Derived Ni-Catalyzed Trifluoromethylthiolation of Aryl Halides

Indrek Kalvet,† Qianqian Guo,‡ Graham J. Tizzard,§ and Franziska Schoenebeck*,†

†Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
‡Institute of Inorganic Chemistry, X-ray Crystallography, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
§EPSRC National Crystallography Service, School of Chemistry, University of Southampton, University Road, SO17 1BJ Southampton, United Kingdom

ABSTRACT: The direct introduction of the valuable SCF₃ moiety into organic molecules has received considerable attention. While it can be achieved successfully for aryl chlorides under catalysis with Ni₀(cod)₂ and dppf, this report investigates the Ni-catalyzed functionalization of the seemingly more reactive aryl halides ArI and ArBr. Counterintuitively, the observed conversion triggered by dppf/Ni₀ is ArCl > ArBr > ArI, at odds with bond strength preferences. By a combined computational and experimental approach, the origin of this was identified to be due to the formation of (dppf)NiI, which favors β-F elimination as a competing pathway over the productive cross-coupling, ultimately generating the inactive complex (dppf)Ni(SCF₂)₂ as a catalysis dead end. The complexes (dppf)Ni⁻Br and (dppf)Ni⁻I were isolated and resolved by X-ray crystallography. Their formation was found to be consistent with a ligand-exchange-induced comproportionation mechanism. In stark contrast to these phosphine-derived Ni complexes, the corresponding nitrogen-ligand-derived species were found to be likely competent catalysts in oxidation state I. Our computational studies of N-ligand derived NiI complexes fully support productive NiI/Ni₃⁺ catalysis, as the competing β-F elimination is disfavored. Moreover, N-derived NiI complexes are predicted to be more reactive than their Ni₀ counterparts in catalysis. These data showcase fundamentally different roles of NiI in carbon–heteroatom bond formation depending on the ligand sphere.

KEYWORDS: nickel, cross-coupling, DFT, fluorine, mechanisms, ligand

INTRODUCTION

The past decade has seen numerous impressive advances in the area of homogeneous nickel catalysis. The limits of the oxidative addition step have continuously been pushed back to some of the least activated bonds, such as the recent breakthrough of aryl ether functionalizations, for example. In addition, nickel catalysis features a rich mechanistic portfolio, which ranges from the ability to more readily interchange among oxidation states 0, I, II, and III to the possibility for electron transfer processes (Figure 1) in cross-coupling. While capitalization on these diverse mechanistic possibilities has allowed the development of rich and novel synthetic organic chemistry in recent years, the very same mechanistic diversity also poses challenges in achieving the desired key features of modern and sustainable catalytic transformation: e.g. efficiency, low catalyst loading, recyclability, catalyst robustness, generality in substrate, and high functional group tolerance. To achieve high efficiency and generality, catalyst deactivation processes and side reactions will need to be overcome. This in turn requires a fundamental understanding of their origins. In this context, the role and potential catalytic competence of the odd oxidation state I has been questioned.

Interestingly, while NiI species derived from N ligands have been postulated as catalytically competent intermediates in alkyl–alkyl couplings, e.g. in recent photoredox applications as well as in cross-coupling reactions of challenging electrophiles, for phosphine-ligand-derived NiI complexes, there are limited mechanistic data available. The latter complexes have been observed in reactions that employed Ni₀ as catalyst but suggested to be catalytically inactive or reported to be less active than Ni₀. On the other hand, Martin recently presented detailed mechanistic data supporting NiI as an active species in the activation of C–OMe bonds. Matsubara and Louie observed activities in Kumada and Suzuki couplings with NHC-
bound Ni\(^{0}\) complexes. To shine a light on these contrasting observations, we undertook a combined computational and experimental study of the nickel-catalyzed trifluoromethylthiolation reactions of aryl halides as a case study.

Access to ArSCF\(_3\) compounds is of pharmaceutical and agrochemical significance due to their associated advantageous lipophilicity properties.\(^{12}\) Direct catalytic access is of particular interest.\(^{13,14}\) Aryl iodides and bromides can be converted to ArSCF\(_3\) via Pd\(^{0}\)\(^{15}\) and Pd\(^{0}\)\(\text{PdI}^{-}\) catalysis with (Me\(_4\)N)SCF\(_3\) or alternative nucleophilic SCF\(_3\) sources.\(^{16}\) In the context of Ni catalysis, Vicic has shown that a Ni(cod)\(_2\)/bipyridine\(^{17}\) system allows for functionalization of aryl iodides and selected bromides, but not aryl chlorides. These in turn can be transformed with a phosphine-based catalyst system, Ni(cod)\(_2\)/dppf, that forms [(dppf)Ni\(^{0}\)(cod)] in situ.\(^{7,18}\)

In this report, we will show that [(dppf)Ni\(^{0}\)(cod)], in contrast to a bipyridine-derived Ni catalyst, counterintuitively leads to much lower conversions for those aryl halides that have weaker bonds: i.e., aryl iodides and bromides. We will unravel this reactivity behavior herein, unambiguously assigning the role of Ni\(^{0}\) for P- vs N-derived ligands in trifluoromethylthiolation, and uncover the pathways of their origins.

RESULTS AND DISCUSSION

We started our investigations with the systematic comparison of the efficiency of C\(-\)SCF\(_3\) bond formation of 4-methoxy-substituted aryl halides in toluene at 45 °C with (Me\(_4\)N)SCF\(_3\) under Ni(cod)\(_2\)/dppf (10 mol %) catalysis conditions. While 4-chloroanisole was converted to the corresponding ArSCF\(_3\) in 52% yield, the generally more reactive aryl bromide gave only a 24% yield and the corresponding iodide as little as 16% of the trifluoromethylthiolated product (see Figure 2). These reactivities are at odds with the expected intrinsic ease of the aryl halides toward oxidative addition by a [Ni\(^{0}\)] catalyst, as reinforced by the computed activation barriers of oxidative addition (see Figure 2). Our calculations at the M06L level of theory\(^{19}\) showed that the barrier to oxidatively add an aryl iodide to [(dppf)Ni\(^{0}\)(cod)] is 7 kcal/mol lower in energy than that of the seemingly more reactive aryl chloride.

To assess the inherent preference for C\(-\)SCF\(_3\) bond formation in greater detail, we subsequently undertook intra- and intermolecular competition experiments (C\(-\)I vs C\(-\)Cl), with Figure 2 presenting the results. While the selectivity followed the expected ease of oxidative addition, showing exclusive functionalization of the C\(-\)I site, the overall conversion to product was low (5% for intramolecular and 22% for intermolecular competition). Thus, the lower yields obtained in the reactions with the weaker C\(-\)halogen bond substrates do not correlate with the intrinsic reactivities toward oxidative addition but instead must arise from alternative factors that render the catalysis nonproductive.

To gain deeper insight, we performed \(^{19}\)F and \(^{31}\)P NMR spectroscopic analyses of the reaction mixtures after 15 h. These indicated that the characteristic signals of [(dppf)Ni\(^{0}\)(cod)] had disappeared, and instead a new species had formed that gives two triplets in the \(^{31}\)P NMR (resonating at 30.8 ppm (\(J = 23.0\) Hz) and at 22.1 ppm (\(J = 37.6\) Hz)) and a dd in the \(^{19}\)F NMR spectrum (at \(-44.8\) ppm (\(J = 37.6, 23.0\) Hz)). While we had observed this species also in our previous studies,\(^{20}\) we had not previously been able to assign its structure or explain its origin. However, we now succeeded in the isolation and characterization of single crystals, unambiguously confirming that the thiocarbonyl-bound [Ni\(^{0}\)] complex 1 was formed (Figure 3). Attempts to react ArI, ArBr, and ArCl with (Me\(_4\)N)SCF\(_3\) and complex 1 showed no reaction, suggesting that 1 was catalytically inactive and therefore a product of catalyst deactivation.\(^{20}\) Computational analysis further indicates that the S\(-\)CF\(_2\) ligand is very strongly bound to the Ni center—ligand exchange with 1,5-cyclooctadiene is predicted to be endothermic by 21.3 kcal/mol.\(^{19}\)
Species 1 could in principle arise from the trapping of a potential decomposition side product (F,C==S) of the employed (Me3N)SCF3 reagent by the [NiI] catalyst.21 However, our separate subjection of (Me3N)SCF3 to Ni-dppf at 45 °C indicated that this would be unlikely, as 1 was not formed. Moreover, there was no indication of the formation of F2C==S in solution, as judged by 19F NMR analysis. Instead, 1 is likely derived directly from an alternative Ni intermediate.

Given the formal loss of a fluorine atom, a β-fluoride elimination step is mechanistically required. Literature precedence suggests that β-fluoride elimination from [NiII] intermediates would be feasible.22 Thus, to gain insight whether stronger C−F versus stronger C−F bond could unambiguously assign as [NiI] upon X-ray crystallographic analyses. While the oxidative addition to ArCl7 and ArBr, and ArCl in the absence of (Me4N)SCF3. We observed the likely origin of [NiI] formation via ligand exchanges on a [NiII] intermediate.11 As illustrated in Figure S5, following the oxidative addition of [NiI] to ArX, ligand exchange from [(dppf)NiII(X)(Ph)] to [(dppf)NiII(X)2] and [(dppf)NiIIPh2] may likely occur, followed by reductive elimination of biaryl from [NiII] and subsequent comproportionation of the resulting [NiI] with [NiI] (see Figure S5).29 The formation of [(dppf)NiIIX2] as an intermediate was also unambiguously confirmed through its isolation (in addition to NiI) and characterization (via 1H NMR and X-ray crystallography) from the reaction of NiI and PhI in benzene.30 Our computational data indicate that the ligand exchange step from [(dppf)NiIIX2] to [(dppf)NiIIPh2] is favorable, being exergonic for all halides (ΔG° = −7.5, −5.9, and −3.3 kcal/mol for X = Cl, Br, I, respectively; see Figure S5). Subsequent reductive elimination of biphenyl and formation of [(dppf)NiIIPh2] is also thermodynamically favored (by 17.1 kcal/mol). Finally, comproportionation of [(dppf)NiIIPh2] and [(dppf)NiIIX2] is also exergonic for all halides, with ΔG = −1.5, −2.2, and −1.5 kcal/mol for X = Cl, Br, I, respectively (relative to the NiI and NiI complexes). As such, the steps leading from [(dppf)-NiIIPh2] to [NiI] are thermodynamically favored (see Figure S5).

These data are in line with the pioneering and seminal studies by Kochi on the oxidative addition of NiI(PEt3)4 to aryl halides.30 Kochi proposed an electron transfer mechanism as origin of [NiII]. However, we detected the formation of biaryl products in all cases, suggesting that a different mechanism for the formation of [NiI] may be operative. As an alternative for the electron transfer mechanism there have been reports on [NiI] formation via ligand exchanges on a [NiII] intermediate.11

Figure 4. Computational comparison of β-F elimination and reductive elimination pathways from NiI. Shown are the ΔΔG° values in kcal/mol, calculated at the CPCM(toluene)M06/def2TZVP/ωB97XD/6-31G(d)(SDD) level of theory suggests β-F elimination is disfavored by ΔΔG° = 7.5 kcal/mol.23

Figure 5. Likely mechanism of [NiI] formation and calculated free energy changes (in kcal/mol) of the ligand exchange and reductive elimination + comproportionation steps (a) and crystal structures of (dppf)NiI bromide (b) and iodide (c).19 f,27

In line with these calculations are the following experimental observations: while subjection of the product ArSCF3 to Ni(cod)/dppf will eventually give rise to the deactivation complex 1, this process occurs on a slower time scale in comparison to that observed for the forward reactions.24 Moreover, given the higher propensity for subsequent oxidative addition of the liberated [NiI] to either ArI or ArBr (in comparison to ArCl) upon oxidative elimination of ArSCF3 under catalysis conditions, the unproductive reverse reaction with the product, ArSCF3, can also be ruled out as the predominant cause of the catalysis dead end, or perhaps remain a different mechanism for the formation of [NiI] that we observed ultimately generate ArI > ArBr > ArCl.

[(dppf)NiIIX2] and [(dppf)NiII(Ph)2] may likely occur, followed by reductive elimination of biaryl from [NiII] and subsequent comproportionation of the resulting [NiI] with [NiI] (see Figure S5).29 The formation of [(dppf)NiIIX2] as an intermediate was also unambiguously confirmed through its isolation (in addition to NiI) and characterization (via 1H NMR and X-ray crystallography) from the reaction of NiI and PhI in benzene.30 Our computational data indicate that the ligand exchange step from [(dppf)NiIIX2](Ph) to [(dppf)NiII(Ph)2] is favorable, being exergonic for all halides (ΔG° = −7.5, −5.9, and −3.3 kcal/mol for X = Cl, Br, I, respectively; see Figure S5). Subsequent reductive elimination of biphenyl and formation of [(dppf)NiIIPh2] is also thermodynamically favored (by 17.1 kcal/mol). Finally, comproportionation of [(dppf)NiIIPh2] and [(dppf)NiIIX2] is also exergonic for all halides, with ΔG° = −1.5, −2.2, and −1.5 kcal/mol for X = Cl, Br, I, respectively (relative to the NiI and NiI complexes). As such, the steps leading from [(dppf)NiIIPh2] to [NiI] are thermodynamically favored (see Figure S5).

Would the [NiI] species that we observed possibly become generative 1, leading to a catalysis dead end, or perhaps remain a competent species for the generation of ArSCF3? To test this, we initially subjected (Me3N)SCF3 to [(dppf)NiI(Cl)]. This
led to rapid formation of the deactivated thiocarbonyl-bound [Ni\(^0\)] complex 1, as judged by \(^{19}\)F NMR analysis, suggesting that if any [(dppf)Ni\(^{\text{II}}\)(SCF\(_2\))] species were to be generated upon halogen to SCF\(_3\) exchange, facile β-fluoride elimination would take place (Figure 6). In line with this, our calculations thereby generated [(dppf)NiI(F)] complex could subsequently upon halogen to SCF\(_3\) exchange, facile this process is relatively facile (Figure 6). In line with this, our calculations with the Ni−S and C−F distances (in Å).

Figure 6. Facile reactivity of [Ni\(^0\)] to form 1 (P-P = dppf).

Reactivity of [(dppf)Ni\(^{\text{II}}\);X]: facile β-F elimination

\[
\begin{align*}
\text{Ni}^{\text{II}} - \text{Cl} & \quad \text{(Me}_2\text{N)}\text{SCF}_3 \\
\text{Ni}^{\text{II}} - \text{SCF}_2 & \quad \text{Toluen, r.t., 1 h} \\
\text{Toluene, r.t.} & \quad \text{(50%) Ni}^{\text{II}} - \text{F} \\
\text{dppf} & \quad \text{(50%) Ni}^{\text{II}} - \text{F}
\end{align*}
\]

Figure 7. Calculated β-F elimination transition state structures from Ni\(^0\) (a) and Ni\(^{\text{II}}\) (b), shown with the Ni−S and C−F distances (in Å).

The latter would ultimately trap S (Figure 6). Consistent with this mechanism, our quantitative by the longer C−F distance (2.12 Å for Ni\(^3\) and 1.88 Å for Ni\(^0\)). This suggests a greater stabilization in the TS derived from Ni\(^3\), which is reflected also in the shorter Ni−S distance in case of Ni\(^3\) (3.08 Å for Ni\(^3\) vs 3.31 Å for Ni\(^0\)) as well as the presence of a free coordination site.\(^{23}\)

These results are a clear indicator that [(dppf)Ni\(^{\text{II}}\)SCF\(_3\)] is a competent and very potent source of the catalytically inactive complex 1.\(^{22}\) The generation of [Ni\(^0\)] therefore is detrimental to trifluoromethylthiolation. The origin of lower conversions of aryl iodides and aryl bromides in comparison to the generally less reactive aryl chlorides can be unambiguously correlated to their relative propensity to form [Ni\(^0\)]. The key to productive catalysis in (dppf)Ni\(^{\text{II}}\)-derived catalysis is therefore a low concentration of the [(dppf)Ni\(^{\text{II}}\)(X)(Ar)] intermediate that is formed upon oxidative addition to prevent ligand exchanges, as well as a rapid transmetalation and follow-up reaction. Transmetalation generally follows M\(^{\text{II}}\)−Cl > M\(^{\text{II}}\)−Br > M\(^{\text{II}}\)−I (for M = Pd, Ni),\(^{33}\) paralleling the observed efficiencies of C−SCF\(_3\) bond formation.

Many powerful Ni-catalyzed synthetic methods employ N-derived ligands, such as pyridine derivatives, instead of the otherwise more donating P-based ligands. In line with this, Vicic and co-workers elegantly showed that Ni(cod)\(_2\) along with dmby (=4,4’-dimethoxybipyridine) as a ligand results in the trifluoromethylthiolation of aryl iodides and certain bromides, but not chlorides.\(^{47}\) In light of our above observations with P-derived Ni\(^0\), there hence appear to be fundamental reactivity differences between N- and P-coordinated Ni catalysts. Given that N-derived ligands led to the opposite reactivity (X = I, efficient; X = Cl, no conversion), this implies that for N-based ligands either the formation of Ni\(^0\) is suppressed or the competing β-F elimination is no longer favorable, therefore avoiding catalyst deactivation products.

We thus also computationally assessed the dmbpy/Ni(cod)\(_2\)-catalyzed trifluoromethylthiolation of aryl iodides.\(^{35}\) The obtained data suggest that, in stark contrast to Ni\(^0\)/dppf, the corresponding Ni\(^0\)/dmbpy system does not proceed via Ni\(^0\)/Ni\(^{\text{II}}\) catalysis but instead by Ni\(^{\text{II}}\)/Ni\(^{\text{II}}\) (see Figure 8). Interestingly, the Ni\(^0\)/Ni\(^{\text{II}}\) catalytic cycle is disfavored primarily due to a high-barrier reductive elimination step of ArSCF\(_2\), from [(dmby)Ni\(^{\text{II}}\)(SCF\(_3\))][Ph] (ΔG\(^\ddagger\) = 33.1 kcal/mol). In contrast, a Ni\(^{\text{II}}\)/Ni\(^{\text{II}}\) pathway is characterized by much lower activation free energy barriers of 12.9 kcal/mol for oxidative addition and 16.1 kcal/mol for reductive elimination (Figure 8b). These data also agree with previous studies highlighting facile oxidative addition to (N-N)Ni\(^0\) complexes.\(^{60,34}\)

Moreover, the corresponding β-F elimination from [(dmby)Ni\(^{\text{II}}\)(SCF\(_3\))] is significantly less favored (ΔG\(^\ddagger\) = 23.6 kcal/mol) than the productive pathway: oxidative addition of [(dmby)Ni\(^{\text{II}}\)SCF\(_3\)] to ArI occurs preferentially (ΔΔG\(^\ddagger\) = 10.7 kcal/mol). While the β-F eliminations are comparable in magnitude for N- and P-derived Ni\(^0\) species, the N-based system is overall more effective, as the barriers for the productive Ni\(^{\text{II}}\)/Ni\(^{\text{II}}\) pathway are significantly lower. In comparison, the direct oxidative addition of iodobenzene to [(dppf)Ni\(^{\text{II}}\)(SCF\(_3\))] is calculated to proceed with a barrier of 32.8 kcal/mol, being significantly greater (ΔΔG\(^\ddagger\) = 12.2 kcal/mol) than the barrier of the competing β-F elimination pathway. The observed trends are likely related to the different steric properties of the dmby and dppf ligands. The smaller bipyridine ligand would still allow facile oxidative addition to the tricoordinate Ni\(^{\text{II}}\)-SCF\(_3\), while the lack of steric bulk would stabilize the Ni\(^{\text{II}}\) species and thus not allow facile reductive
(a) Reductive elimination from (N-N)Ni\\(^{II}\\) unfavorerd. With dppf, on the other hand, the steric bulk of the phenyl groups readily allows reductive elimination from Ni\\(^{III}\\) but hampers oxidative addition to Ni\\(^{I}\\).

Overall, these data strongly indicate that (dppf)Ni\\(^{I}\\) primarily is a less competent catalyst than (dppf)Ni\\(^{II}\\), as it suffers from a relatively high oxidative addition barrier to ArX, which renders the competing β-F elimination favored, ultimately giving the catalytically inactive complex 1. In stark contrast, bipyridine-ligand-derived Ni\\(^{I}\\) shows much lower barriers for productive catalysis, rendering the competing processes disfavored. The β-F elimination therefore has served as a mechanistic probe to differentiate between the divergent reactivities of the various plausible oxidation states (0, I, and II) as a function of ligand, using a combination of experiments and computation. Such unambiguous differentiations are otherwise challenging to accomplish.

(b) Ni\\(^{I}\\)/Ni\\(^{II}\\) catalytic cycle favored over β-F elimination. Elimination from Ni\\(^{II}\\) more readily over productive catalysis, leading to [(dppf)-Ni\\(^{I}\\)(SCF\\(_{3}\\))] complex 1, which is catalytically incompetent and a catalysis dead end. Our mechanistic data support that [(dppf)Ni\\(^{I}\\)] is derived from Ni\\(^{II}\\) precursors via a concomitant formation of biaryl, not through reductive electron transfer pathways. The reverse was observed for the nitrogen-based Ni/dmbpy system: the corresponding [Ni\\(^{I}\\)] species promotes efficient Ni\\(^{I}\\)/Ni\\(^{III}\\) catalysis, rendering unproductive β-F elimination from Ni\\(^{I}\\) disfavored. In contrast, a Ni\\(^{II}\\)/Ni\\(^{III}\\) cycle suffers from high activation barriers at the elementary steps (oxidative addition and reductive elimination) with bipyridine as ligand. These data highlight the prerequisites for selective Ni-catalyzed couplings of aryl halides and showcase the potential and reactivity of Ni\\(^{I}\\) as a catalyst for different ligands. Our future efforts are directed at exploring the full potential of catalysis at Ni\\(^{I}\\).

REFERENCES

(1) (a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062–5085. (b) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004. (c) Tamaru, Y., Introductory Guide to Organonickel Catalyzed Cross-Coupling Reactions. In Modern Organonickel Chemistry. In Modern Organonickel Chemistry; Wiley-VCH: Weinheim, Germany, 2005, pp 1–40.

(2) For reviews, see: (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346–1416. (b) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem. 2013, 2013, 19–30. (c) Milburn, R. R.; Snieckus, V. Angew. Chem., Int. Ed. 2004, 43, 888–891. (d) Gavryushin, A.; Kofink, C.; Manolikakos, G.; Knochel, P. Org. Lett. 2005, 7, 4871–4874. (e) Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 14468–14470. (f) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130, 14422–14423. (g) Ehe, A. R.; Zhou, Q.; Watson, M. P. Org. Lett. 2012, 14, 1202–1205. (h) Ge, S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 12837–12841.
(3) For Ni-catalyzed functionalization of C—O electrophiles, see:
(a) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc. Chem. Res. 2010, 43, 1486–1495.
(b) Muto, K.; Yamaguchi, J.; Lei, A.; Itami, K. J. Am. Chem. Soc. 2013, 135, 16384–16387.
(c) Cornella, J.; Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43, 8081–8097.
(d) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717–1726.
(e) Dankwardt, J. W. Angew. Chem., Int. Ed. 2004, 43, 2428–2432.
(f) Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed. 2008, 47, 4866–4869.
(g) Liu, X.; Hisao, C.-C.; Kalvet, I.; Leidhekker, M.; Guo, L.; Schoenebeck, F.; Rueping, M. Angew. Chem. Int. Ed. 2016, 55, 6903–6908.

(4) (a) Montgomery, J., Organonickel Chemistry. In Organometallics in Synthesis; Wiley: Hoboken, NJ, 2013, pp 319–428. (b) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299–309.

(5) For phosphine ligands, NiI/NiII catalysis is generally assumed. The role of NiII is unclear.

(6) For N-type ligands and alkyl–alkyl and alkyl–aryl couplings, NiI is assumed to be catalytically intermediate: (a) Bacak, A.; Espenson, J. H. J. Am. Chem. Soc. 1986, 108, 719–723. (b) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R. E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 1234–1238.

(14) For selected examples of alternative indirect, electrophilic, or aryl couplings, NiI

(15) A. A.; Schoenebeck, F. Angew. Chem. Int. Ed. 2015, 54, 6809–6813. (c) Xu, C.; Shen, Q. Org. Lett. 2014, 16, 2046–2049.

(16) Alternatively, for a method with stoichiometric use of Cu, see: Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K.-W. Angew. Chem., Int. Ed. 2013, 52, 1548–1552.

(17) Zhang, C.-P.; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183–185.

(18) During the preparation of this paper a Ni-catalyzed directing-group-based approach for the coupling of aryl chlorides was reported: Nguyen, T.; Chiu, W.; Wang, X.; Satller, M. O.; Love, J. A. Org. Lett. 2015, 18, 5492–5495.

(19) (a) Calculations performed at the CPCM(toluene)M06L/def2TZVP/097X-D(3D) level of theory. (b) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalone, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Iyamov, A. P.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao; O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adom, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ̄O.; Foreman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc., Wallingford, CT, 2013. For the appropriateness of the chosen computational method, see: (c) Spenger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F. Chem. Rev. 2015, 115, 9532–9586. For synergistic studies employing computation and experiment, see: (d) Tsang, A. S. K.; Sanhueza, I. A.; Schoenebeck, F. Chem. - Eur. J. 2014, 20, 16432–16441. (e) Spenger, T.; Sanhueza, I. A.; Schoenebeck, F. Acc. Chem. Res. 2016, 49, 1311–1319. (f) We also performed comparisons between M06L and other methods for energy calculations, such as M06, PBE0-D3, and B3LYP-D3, and found all to give qualitatively the same trends in reactivities and preferred reaction pathways. For optimizations, we found the geometries resulting from oB97X-D to reproduce the crystal structures well.

(20) Durr, A. B.; Yin, G.; Kalvet, I.; Napolý, F.; Schoenebeck, F. Chem. Sci. 2016, 7, 1076–1081.

(21) (a) Taverner, S. J.; Adams, D. J.; Clark, J. H. J. Fluorine Chem. 1999, 95, 171–176. (b) Lu, J.-B.; Xu, X.-H.; Chen, Z.-H.; Qiu, F.-L. Angew. Chem., Int. Ed. 2014, 53, 897–900. (c) Baer, F.; Colombo, J.; Billard, T. Angew. Chem. Int. Ed. 2012, 51, 10382–10385.

(22) For β-fluoride elimination from NiI, see: (a) Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Angew. Chem., Int. Ed. 2014, 53, 7564–7568. (b) Ichitsuka, T.; Fujita, T.; Ichikawa, J. Catal. Sci. 2015, 5, 5947–5950. (c) Fujita, T.; Arita, T.; Ichitsuka, T.; Ichikawa, J. Dalton Trans. 2015, 44, 19460–19463. For DFT studies on β-fluoride elimination with Pd, see: (d) Zhao, H.; Ariafard, A.; Lin, Z. Organometallics 2006, 25, 812–819.

(23) We also investigated the potential of alternative mechanisms being at play, such as a phosphine participation in the C—F activation, in analogy to: Nova, A.; Reinhold, M.; Pirutzi, R. N.; Macgregor, S. A.; McCarty, J. E. Organometallics 2010, 29, 1824–1831. During the optimization of this TS, however, it collapsed back to our reported TS geometry, where the F atom is transferred directly to the Ni atom.

(24) Similarly, our attempts to “transmetallate” (CI/SCF) exchange to [(dpf)NiI(ClI)(o-tolyl)] to [(dpf)NiI(SCF)(o-tolyl)] also eventually formed the thiocarbonyl-bound species 1 (see Figure 3).

(25) The [(dpf)NiI(SCF)(Ar)] intermediate could also undergo ligand exchange to produce [(dpf)NiI(SCF)]3 and [(dpf)NiI(Ar)]. Upon reductive elimination of Ar-Ar, comproportionation of NiI and NiII could take place to form a “Ni—SCF” species which may then undergo the chemistry described in the article to give 1. While this alternative explains the formation of 1 from ArSCF, it does not explain the different reactivities observed, ArI < ArBr < ArCl, which is the focus of the discussion.

(26) The complexes were recrystallized from different solvents ([NiI—Br] from benzene and [NiI—Cl] from THF).
Our calculations of the spin density in the (dppf)NiIBr complex indicate that the unpaired electron is localized predominantly on the Ni center, suggesting that it is a NiI complex. Furthermore, we also compared the C−Fe distances in the ferrocene moieties of the obtained crystal structures with the corresponding distances in FeII (CCDC 1154857) and FeIII (CCDC 194434, 170258, 138350, and 1194362) ferrocenes. The data indicate that our NiII complexes are more similar to FeIII ferrocene, indicating that there is no substantial electronic exchange between the ferrocene and the Ni center. See the Supporting Information for further information.

Morrell, D. G.; Kochi, J. K. J. Am. Chem. Soc. 1975, 97, 7262–7270.

For feasibility of comproportionation of Ni0 and NiII, see:
(a) Velian, A.; Lin, S.; Miller, A. J. M.; Day, M. W.; Agapie, T. J. Am. Chem. Soc. 2010, 132, 6296–6297. (b) Beck, R.; Shoshani, M.; Krasikiewicz, J.; Hatnean, J. A.; Johnson, S. A. Dalton Trans. 2013, 42, 1461–1475.

It is likely that NiII precipitated from the reaction mixture due to its poor solubility in benzene. A single crystal grown from benzene/hexane yielded the NiII species, while from THF/hexane crystals of the NiI species were obtained.

The formation of I was initially accompanied by the appearance of a dark red precipitate, which ultimately (after ~1 h) turned bright green, and free dppf could then be detected by 31P NMR spectroscopic analysis. The free dppf may originate from the initially formed (dppf)NiF2, since our attempts to independently prepare (dppf)NiF2 from dppf and NiF2 turned out to be unsuccessful, as indicated by the lack of new signals in paramagnetic 1H NMR and quantitative recovery of free ligand, on the basis of 31P qNMR analysis.

In comparison, it takes more than 24 h at 45 °C to fully convert PhSCF3 + [Ni0] to [Ni(SCF2)].

(a) Casado, A. L.; Espinet, P. J. Am. Chem. Soc. 1998, 120, 8978–8985. (b) Ariaifard, A.; Lin, Z.; Fairlamb, I. J. S. Organometallics 2006, 25, 5788–5794.

Calculations were performed at the CPCM(THF)M06/def2TZVP//ωB97XD/6-31G(d)(SDD) level of theory.

Phapale, V. B.; Guisán-Ceinos, M.; Buñuel, E.; Cárdenas, D. J. Chem. - Eur. J. 2009, 15, 12681–12688.