A mobile robot system following smartphone users using global following based on Wi-Fi and local following based on walking matching

Naomichi Otake*1 and Kazuyuki Morioka*2

*1 Graduate School of Advanced Mathematical Sciences, Meiji University
4-21-1 Nakano, Nakano-ku, Tokyo 160-0016, Japan

*2 School of Interdisciplinary Mathematical Sciences, Meiji University
4-21-1 Nakano, Nakano-ku, Tokyo 160-0016, Japan

Abstract
This paper introduces a mobile robot system that follows a human target, in particular, a robot system designed to follow a smartphone user. The proposed system integrates a global following method based on Wi-Fi radio intensity maps and a local following method based on matching walking states. “Global following” means that the robot follows the global trajectory of the human target. Because it is important to keep following when the target is lost in a crowded environment, we propose a global following system that uses Wi-Fi radio intensity and occupancy grid maps. This paper presents some experimental results for a robot being called to follow a human target using a Wi-Fi radio intensity map. “Local following” means that the robot always keeps close to the human target and keeps tracking the target without losing it. The human target is detected by cross-correlating the signals indicating the target’s walking motion, including vertical acceleration data measured by the target user’s smartphone and the horizontal velocity of the legs measured by an LRF installed in the robot. The results show that the system produces a higher cross-correlation coefficient for the human target than for other pedestrians in the vicinity. The paper introduces a method for calculating the cross-correlation coefficients online and presents experimental results which show that the target can be identified from an online calculation of the cross-correlation coefficients.

Keywords: Human following robot, Smartphone, Laser range finder, Wi-Fi positioning, Acceleration

1. 緒 言

近年、ロボット技術の進展により人間の日常生活において人間を支援するロボットはより広く普及し始めている。人間を支援するロボットのひとつとして、人間を発見して人間の歩行などの動きに追従する人間追従ロボットが挙げられる。案内や運搬用として人間に随行する支援ロボットだけでなく、スーツケースやベビーカーなどといった移動を伴うデバイスの多くが人間追従ロボット化していくことが期待される。

多くの人間追従ロボットは、赤外線タグなどのデバイスを装着した人間の検出および追跡を行う。Koyama らの研究では、対象の人が装着した赤外線タグの特定の発光パターンに基づいて人間を識別している (Koyama et al., 2016)。LRF(Laser Range Finder) や RGBD カメラなど、ロボットに取り付けられた外はセンサを使用する人間追従ロボットの例も多くある。Jung らは、LRF を用いて人間の検出を行い、走っている人間を追跡する移動ロボット
Fig. 1 The proposed human-following robot system. The proposed system integrates two methods: Global following and local following. Two complementary following systems provide a human-following robot that is stable across a wide area.

を開発した (Jung et al., 2014)。このシステムでは、追従対象のユーザは特別なデバイスを着用する必要なく、屋外環境において障害物を回避しながら人間を追従するシステムを実現しているとしている。Yan らは、3D-LiDARを含む複数のセンサを、オンライン学習を用いたサービスロボットによる人間の追従を提案している (Yan et al., 2018)。外界センサのみに大きく依存するシステムは、一度対象を見失った場合に追従を継続することは困難であるため、対象を再度発見するための対策が必要となる。

一方、ロボットを利用環境に様々なセンサを配置、ネットワーク化して人間を検出し追従するシステムを、人間追従ロボットに適用した例もある。混雑した博物館において、LRFを用いて人間を追従するシステムが提案されている (Rashed et al., 2017)。環境内のセンサと移動ロボットをネットワーク化し、協調的に追従を行うシステムも提案されている (Morioka et al., 2012)。このようなシステムの多くは、ロボット単体による追従システムと比較して移動ロボットの人間追従を安定して達成することに成功している。しかし、環境構築のために多くのセンサを設置する必要があり、多くの時間と労力を要するため、街中や公共施設などにおいて広く普及するためには現実的ではない。

本研究では、図 1 に示すように、大域的な人間追従 (Global following) と局所的な人間追従 (Local following) の 2 つの追従手法を組み合わせて、ロボットとペアリングしたスマートフォンを所持する人間を追従することができるように人間追従ロボットシステムを提案する。人が追従ロボットのために特殊なデバイスを装着することなく、人間追従ロボットの広域普及のためには好ましくないが、誰もが一般的に所持するスマートフォンを用いることは、十分に活用可能である。提案システムにおける大域的な人間追従とは、ロボットがスマートフォンを有する Wi-Fiアクセスポイント情報に基づいて得られた人間の大まかな位置からて行進路を計画し、追従対象に接近することを意味する。局所的な人間追従とはロボットが追従対象付近に接近後に、ロボットの外設センサとスマートフォンの測定に基づいて対象を特定し追従し続けることを意味する。提案システムは、環境に設置された Wi-Fi アクセスポイントの活用という点では、これまでに有用性が示されている環境側の情報を用いたシステムであるものの、新たな環境整備を必要としない。また、外設センサだけでなく、スマートフォンのセンサ測定を活用することで、追従対象の特定を容易にできるシステムとなっている。大域的および局所的な追従のいずれもスマートフォンを用いることで、 2 つのシステムを組み合わせたシステム構成をシンプルに実現できるという利点もある。本システムは、Wi-Fi アクセスポイントが点在する屋外はもちろん、ショッピングモールや美術館などの屋内施設において、フロントケースやガイドロボットの様々な形で利用することを目指している。本論文では、2 章において提案システムの概要を述べ、3 章において Wi-Fi 電波強度マップを用いた大域的人間追従について、4 章においてロボットおよびユーザーのスマートフォンの測定を比較した追従対象の局所的な特定について、5 章において大域的追従、局所的追従を統合したシステムについて、それぞれ実験結果を示す。

© The Japan Society of Mechanical Engineers
Fig. 2 The proposed global following robot system. Global following is based on Wi-Fi. The approximate location of the target is estimated based on the Wi-Fi signal strength received by the smartphone and the Wi-fi radio intensity map.

2．提案システム構成

2.1 スマートフォンを活用した人間追従ロボット

本研究では、環境に設置された既存の Wi-Fi アクセスポイントを用いた大域的な追従と、ロボットの外界センサとスマートフォンの測定に基づいた局所的な追従対象の特定を組み合わせた、人間追従ロボットシステムを提案する。大域的追従により、広い混雑した空間においてもロボットは追従対象に接近することができ、人間の大きさ位置を見失うことはない。一方で、局所的追従によりロボットの周囲にある人間の中から追従すべき対象を選択するシステムであるが、大域的追従との補完により追従対象を常に検出し続ける必要はない。このように、2つの相補的な追従システムを組み合わせることで、広域環境における安定した人間追従ロボットを実現するのが本研究の目的である。なお、本システムは、屋内外問わず、Wi-Fi アクセスポイントが点在する環境で使用されることを想定している。また、追従対象は Wi-Fi オンのスマートフォンを所持しているものとする。

2.2 Wi-Fi 電波強度マップを用いた大域的追従システム

現在、占有格子地図に基づいた移動ロボットの自律走行システムの有効性が広く知られており、様々なシステムに適用されている。一般的な自律走行システムでは、環境地図上で設定されたウェイポイントを経由し、局所的な経路計画を行ながらロボットは走行するが、人間追従ロボットにおいては、人間の歩行経路を目標経路として走行することになる。そのため人間追従ロボットでは、追従対象となる人間の大域的な位置を推定することが求められる。本研究では、環境に多数配置されている既存の Wi-Fi アクセスポイントの情報から、屋内外において大域的に人間の歩行経路を取得して追従する走行システムを提案する。スマートフォンの自己位置推定には GPS も使用されているが、屋内では測位できないため、本研究では Wi-Fi を利用した方式を採用した。

これまで、人間位置をスマートフォンを用いて、Wi-Fi や BLE (Bluetooth Low Energy) ビークン (Dickinson et al., 2016) によって測定するシステムが提案されている。BLE ビークンを使用した測位システムや、利用環境に多くのセンサを設置する必要がある。一方で Wi-Fi を用いた測位システムでは、既に数多く Wi-Fi アクセスポイントがある地域等に設置されているため、新たにセンサ等を設定して環境整備する必要はない。複数の Wi-Fi アクセスポイントによる、三角測量の要領で人間位置を測定するシステムが提案されている (Sawada et al., 2016)。Wi-Fi による測位システムでは、Wi-Fi アクセスポイントの RSSI から得られる推定距離に基づいて測位を行うことが多いが、この場合、一般的に測位の精度が不安定であり、ロボットによる追従走行には不十分である。近年では Chronos のように高精度の測位を実現した Wi-Fi ベースの測位システムも提案されている (Vasisht et al., 2016)。しかしこれらの測位システムでは、各 Wi-Fi アクセスポイントの世界座標系における位置が既知である必要がある。この制約は、既存の不特定多数の Wi-Fi アクセスポイントを利用し、測位を行う上で現実的ではない。

図 2 に Wi-Fi アクセスポイントに基づいた大域的追従の概要を示す。このシステムは移動ロボットの占有格子地図に基づく自律走行システムと Wi-Fi 電波強度マップを用いた構成になっている。Wi-Fi 電波強度マップは、移動ロボットの自律走行に用いる一般的な占有格子地図に、ロボットの走行経路中の各地点において最も強く受信される既存の Wi-Fi アクセスポイントを保存したものである。追従対象の位置はスマートフォンの Wi-Fi 電波強度に基づいて、最も近くにある Wi-Fi アクセスポイントを決定
Fig. 3 The proposed local following robot system. In local following, walking motion signals from the target are measured with both a smartphone sensor and a robot-mounted sensor. If similar walking motion signals are detected by both sensors, the robot can identify the target out of multiple humans around the robot.

Fig. 3 The proposed local following robot system. In local following, walking motion signals from the target are measured with both a smartphone sensor and a robot-mounted sensor. If similar walking motion signals are detected by both sensors, the robot can identify the target out of multiple humans around the robot.

2.3 行歩動作マッッチングに基づいた局所的追従システム

局所的追従システムにおいても、大域的追従システムと同様にユーザのスマートフォンを利用。スマートフォンの加速度センサおよび移動ロボットの外従センサを用いて人間の歩行を測定し、それに基づいてロボットは周囲にいる人間の中から追従すべき対象を選択し、局所的追従を行う。局所的追従システムの概要を図3に示す。追従対象の歩行動作は追従対象の持つスマートフォンのセンサと、ロボット搭載のセンサの双方から測定される。双方のセンサから類似した歩行動作を行う人間が検出し、ロボットは周囲にいる複数の人間の中から追従すべき対象を特定する。

移動する人間側センサと外従センサによる対象の特定に関する研究は数多く行われている。ユーザのWi-FiデバイスとWi-Fiアクセスポイント間のWi-Fi電波強度に基づく人間の識別が提案されている(Shiomi et al., 2014)。ユーザのWi-Fiデバイスで測定された電波強度と、Wi-Fiアクセスポイントからの距離に基づいて予測される電波強度と比較を行う。アクセスポイントからのユーザまでの距離は、別途LRFで測定される。しかし、大域的追従の項で述べたように、Wi-Fiの電波強度は一般に安定である。

多くのシステムでは、対象となる人間のウェアラブルデバイスの慣性センサを使用する。LRFやカメラなどの外従センサを使用した人間の測定値と、ウェアラブルデバイスの加速度測定値を直接比較することで対象を特定する例がある。カメラ画像から計算した対象の間の加速度を使用し(Maki et al., 2010)(Stein and McKenna, 2012)、ウェアラブルデバイスの加速度データと対象検出用の画像から得られた加速度の間の相関関係を評価することにより、追従対象を特定する。また、加速度を直接比較するのではなく、高次のデータに処理したものを比較する例もある。例えば、人間の姿勢に基づく識別が提案されている(Belmonte-Hernandez et al., 2017)。このシステムでは、Kinectに基づく骨格の検出と、プレスレット型センサの3次元加速度の測定値に基づく姿勢推定が行われている。また、人間の離散的な歩行パターンや動作に基づいたマッチングを提案されている(Takigawa and Morioka, 2011)。この手法では、ウェアラブルデバイスの加速度センサと、LRFが設置された知能化空間によって、それぞれ人間の歩行パターンが検出される。対象の人間は歩行パターンの適合度により同定を行う。脚の移動タイミング
に基づく識別の研究も提言されている (Koide and Miura, 2016)。このシステムでは脚が振り動かされるタイミングがロボットと、ユーザーの持ちスマートフォンの双方で測定される。最も近いタイミングで脚が振り動かされた人間が、対応する人間であると評価される。また他にも、ウェアラブルデバイスと LiDAR, RGBD カメラなどの環境に配置されたセンサで停止、移動などの動作を評価している (Shiomi and Hagita, 2015)。

Takigawa らの文献 (Takigawa and Morioka, 2011) にも示されているように、歩行時の加速度を計測することにより追従対象を検出することが可能である。そのため本研究では、スマートフォンで得られた人間の加速度信号を直接用いたシステムとする。ただし、外観センサで追従対象の加速度を安定して取得することは困難であるが、加速度に代わる比較可能な信号を取得して、スマートフォンおよびロボットの外観センサでの信号の比較による追従対象の特定を実現する。自律移動ロボットの外観センサとして一般的な、LRF を用いた構成とした。

2.4 システムの実装

図 4 に提案システムのソフトウェア構成を示す。提案システムのソフトウェアは、スマートフォンアプリケーションと ROS ベースの移動ロボットの自律走行システムで構成されている。開発したスマートフォンアプリケーションは、Wi-Fi アクセスポイントのスキャン、人間の歩行動作に伴う加速度の測定、ロボットを制御する ROS プラットフォームとの通信を行う。スキャナした Wi-Fi アクセスポイントの BSSID, RSSI、および加速度の測定値は、ROS トピックとして rosbridge を介してロボットへ送信される。大域的追従、局所的追従時は、ROS により提供されているパッケージを用いて、壁や障害物を避けながら自律走行を行う。この時使用するパッケージは主に、A*アルゴリズムによる大域的経路計画と、DWA(Dynamic Window Approach) による局所的経路計画を行う move_base, MCL、アルゴリズムによる自己位置推定を行える amcl がある。

Wi-Fi のスキャンおよび加速度の測定は OS が Android 7.0 のスマートフォン、タブレットを使用する。移動ロボットは Wi-Fi 電波強度マップとスマートフォンからの Wi-Fi スキャンデータに基づいて、追従対象人間の歩行経路に近いウェイポイントを経由して走行する。歩行動作の加速度データも ROS トピックとしてロボットへ送信され、局所的追従のための追従対象の判別に用いられる。また、スマートフォンアプリケーションの Wi-Fi スキャンは大域的追従時のみではなく、後述するように Wi-Fi 電波強度マップの作成にも使用する。移動ロボットは i-Cart mini ベースで作成し、サイズは幅 40cm、長さ 50cm、高さ 47cm である。LRF は UTM-30LX を用いており、ロボットの前方部、高さ 15cm の位置に水平方向をスキャンするように設置されている。これはロボットの自律走行における障害物検知や自己位置推定、局所的追従における人間の脚の検出に使用される。

3. Wi-Fi 電波強度マップによる大域的追従

3.1 電波強度マップの概要

移動ロボットが所持する占有格子地図や自己位置推定の機能を活用して、各アクセスポイントからスマートフォンまでの距離が未知であった場合位置の推定が行える。Wi-Fi 電波強度マップを作成することにより位置同定を

© The Japan Society of Mechanical Engineers
行うこととした。Wi-Fi 電波強度マップとは、ロボットが走行する環境に設置された各 Wi-Fi アクセスポイントの電波が最も強く受信できる位置をウェイポイントの候補として記録した地図のことであり、追従対象が持つスマートフォンで最も強い電波強度のアクセスポイントを選択し、移動ロボットはこのアクセスポイントに対応するウェイポイントをマップから参照し、移動する。これにより追従対象への大域的な位置同定、追従が実現される。

この手法の利点は、まず、前述の三角測量の手法と異なり、追従対象の位置を直接測定しないため、各アクセスポイントの正確な位置を把握する必要がない点で、壁などの遮蔽物が与える電波の増幅・減衰の影響も少ない。また、電波強度マップは追従動作をしながらロボットが自動で更新可能である。マッピングを自動化することで、ロボットが走行しながら定期的にマップ更新することも容易であり、アクセスポイントの設置場所が変わること、電波状況の変化にも対応しやすいという利点もある。

3.2 電波強度マップの作成

電波強度マップ作成の概要を図 5 に示す。電波強度マップの作成では、自律移動を行う移動ロボットにスマートフォンを搭載し、Wi-Fi のスキャンを行う。その際、電波強度が上位 5 つのアクセスポイントの BSSID、RSSI と amcl によって推定されたロボットの自己位置を保存する。一般的に、SSID はユーザによって任意に変更がなされるため、アクセスポイントの識別には BSSID を利用する。BSSID は通常、アクセスポイントの MAC アドレスと同一であるため、同じ SSID のアクセスポイントが複数存在しても区別することが可能である。作成された Wi-Fi 電波強度マップの一例を図 6 に示す。マップ中の計測点は、50cm 間隔でロボットの自己位置を取得し、3 秒間隔で受信した Wi-Fi 電波強度を取得し、双方が更新されるように、このマップには、各地点において最も RSSI が大きい値を示したアクセスポイントが、BSSID 毎に色分けしてプロットされている。これは各アクセスポイントが、最も強く受信できる範囲を表している。実際に追従を行う際には、図 7 に示すように、図 6 中における各アクセスポイントの電波強度が最大となる点が、追従動作時のウェイポイント候補として使用される。電波強度マップの作成時は、環境に応じた代表的な経路を移動ロボットに走行させ、基地局と地図上の位置の対応付けをしておくことで大まかな追従走行が可能となる。二次元的に走行可能な広い場所でも、電波強度マップ作成時にロボットに環境全体を網羅して走行させることで大域的追従としての機能を果たすことができる。

3.3 追従走行時のウェイポイント選択

ユーザーの持つスマートフォンと Wi-Fi 電波強度マップに基づいてウェイポイントを選択する選択を除外するだけではなく、移動ロボットによるウェイポイントの選択に 2 つの制約を設定することで、追従走行の性能を向上させる。1 つ目は、ウェイポイント選択の位置的制約である。図 8 に位置制約の概要を示す。あるウェイポイントが目的地に設定された際に、その付近にある他のウェイポイントは次の目的地には設定されない制限を設けた。これにより、従来のウェイポイント間で目的地が頻繁に変更されることがなくなり、ロボットは追従をより円滑に行うことが可能となる。Wi-Fi 電波強度マップを用いた測位システムでは、追従対象の大きな変更を得られれば十分であるため、この位置的制約を適用することができる。現在のシステムでは、4 m 以内に位置す
Fig. 6 Wi-Fi radio intensity map. Wi-Fi access points with maximum RSSI are plotted at each point on the map.

Fig. 7 Waypoint candidates based on the Wi-Fi radio intensity map. When the robot actually follows a human, the point that has the highest Wi-Fi radio intensity at each access point in Fig. 6 is used as a waypoint candidate.

Fig. 8 Positional restrictions on waypoint selection. As a result, the destination point is not changed frequently between adjacent waypoints, and the robot can follow the target more smoothly.

Fig. 9 Radio intensity restrictions on waypoint selection. The Wi-Fi signal strength changes frequently even if measurement is continued at the same point. Therefore, the destination point of the mobile robot may change frequently. In order to prevent this, the destination point of the robot is updated only when there is an access point that is clearly stronger than other access points.

3.4 スマートフォンを用いたロボット呼び出し実験

Wi-Fi 電波強度マップを利用し、実際に人間を追従することが可能であるかを確認する実験を行った。場所は明治大学中野キャンパス11階の廊下にて行う。建物は15階建てで鉄筋コンクリート構造である。環境地図はあらかじめ作成済みであるものとする。追従対象はスマートフォンを手に持った状態で実験を行った。
まずは、スマートフォンを携帯する追従対象がロボットをランダムな位置から呼び出す実験を行なった。この実験では、ロボットがWi-Fi電波強度マップに基づいて追従対象の人間位置を大まかに推定、その地点まで移動することが可能であるかどうかを確認した。図10に、ロボットを呼び出した際のスマートフォンアプリ画面とWi-Fi電波強度マップに基づいたウェイポイント候補地図。ロボットの呼び出し後の移動位置を示すRvizの表示画面を示す。スマートフォンアプリ側では、BSSID "6c:f3:7e:4:bf:9*"のアクセスポイントが最も強く受信されている。この時のRvizの画面を見ると、電波強度マップに対応した位置まで移動ロボットが移動した。このように、移動ロボットが追従対象の呼び出した位置まで移動することが可能であることを確認した。

3.5 大域的追従実験

大域的追従は先述した呼び出し動作を継続して行うことで実現する。これによりロボットに歩行者の追従を行わせる実験を行なった。追従対象である人間と移動ロボットの移動経路を図11に示す。

3.5.1 ウェイポイント選択の制約無し大域的追従実験

実験1として、ロボットによるウェイポイント選択の制約を設けず、スマートフォンの電波強度のみに基づいて追従目標位置を取得して走行させる。この場合、図11に示すように、ロボットは追従対象を安定して追従走行することができなかった。一例を挙げると、ロボットは追従対象の移動方向に反して引き返してしまうことがしばしば生じていた。他にも、ロボットが移動を行わず、その場で停止し続けることも生じていた。ロボットの目的位置が安定せず、結果として頻繁に停止するあるいは引き返してしまっていた。これらの問題は主に、Wi-FiのRSSIが不安定であるために、マップ中の各追従対象の人間位置の選択結果も変動することが原因である。Wi-Fiのスキャンを行う度に追従対象の目標位置が変化してしまい、ロボットが移動している最中に目的位置もまた頻
Results of a following experiment with improved waypoint selection. The improved system was able to follow the target human smoothly along the same path without the robot turning back and getting stuck.

Fig. 12

3.5.2 ウェイポイント選択の制約あり大域的追従実験

実験2では、先述した2つの制約によるウェイポイント選択を適用し、その効果を確認するための評価実験を行う。まずは予備実験として前述したように、スマートフォンを持つ人が静止した状態でロボットを呼び出す実験を行った。追従対象が停止している時は移動ロボットも追従対象の近くで停止し続ける必要がある。ウェイポイント選択の制約を設定しない場合、移動ロボットの目標地点は頻繁に更新され、360 回変更がなされた。一方、制約を設定した場合、目標地点の更新は290 回に留まり、移動ロボットは安定して停止状態を維持していた。この手法を用いて呼び出し動作を連続的に行い、大域的な人間追従実験を行った。追従実験中に追従動作が不安定になるエリアの1つを図12に示す。改良後のシステムでは、追従実験中にロボットが引き返す。立ち往生することはなく、図12に示すように、同じ経路に沿ってスムーズに対象の人間を追従することができた。

4. 歩行動作マッピングに基づいた局所的追従

4.1 局所的追従システムの概要

ロボットが大域的追従により対象人間付近まで移動した後、追従対象を特定して局所的な追従動作を行う。本研究では、大域的な追従をスマートフォンを用いて行うと同時に、人間が持っているスマートフォンのセンサとロボットに取り付けられた外部センサを統合した局所的追従のためのシステムを構築する。ロボットは自身が持つLRFと、人が携帯するスマートフォンの加速度センサに目標とする人間を見つけ出し、その位置を追跡する。2種類のセンサをそれぞれ取得される歩行パターンに関する信号を評価する。各センサから類似の歩行パターンを行う人間を検出すると、近くのエリアにいる複数人の候補の中から目的の人間を識別することができる。なお、本追従システムは追従対象とロボットの間に他の人間が入り込むことが頻繁に生じない程度の間隔の開けた環境での使用を想定しているが、追従対象との間に障害物が入り込み追従対象を検出できない場合や、追従対象ではない人間を追従してしまうなどにより、局所的追従が正しく行われない場合がある。その場合は、先述した大域的追従システムで追従対象の現在位置をWi-Fi電波強度マップに基づいて再検討後、局所追従で追従を続けることができ、本章では、はじめにロボットに搭載されたLRFにより測定した人間の移動速度と、対象が携帯するスマートフォンで測定した加速度の信号の相関により、対象検出が可能であることを実験結果により示し、さらに実際のシステムへの実装を考慮した手法についても説明する。
4.2 Smartphoneで計測する歩行者の加速度データ

局所的な追跡を実現するために、スマートフォンで測定する歩行時の加速度データとロボットに搭載したLRFで得られる脚の移動データを比較する。加速度データは、歩行パターンが明確に表れる、鉛直方向の加速度をマッチングに利用するが、基本的にスマートフォン使用中の端末の姿勢は任意に変化するため、重力加速度を測定することによりスマートフォンの姿勢を推定し、傾斜補正を行うことで常に鉛直方向の加速度を取得する、傾斜補正後の加速度データを図13に示す。

なお、傾斜補正を行う際に加速度を用いているため、人間が歩行した際に生じる加速度が補正後の加速度に誤差を生じさせるが、歩行パターンのマッチングには周期が一致することが重要であるため、この誤差による大きな影響はないと考える。

4.3 LRFで計測する速度データ

LRFで取得できるデータは、センサの前方180度の範囲に存在する物体までの距離である。これをセンサ位置を原点とした2次元座標系に変換し、平面上での人間の脚の移動を測定する。図14に画像化したLRFの距離データを例として示す。オフラインの相関係数算出実験では、移動ロボットの前方約20×15mの範囲までを、1280×960のサイズで画像化し、オンラインの相関係数算出実験では、処理速度の向上のため、移動ロボットの前方約6×6mの範囲までを、600×600のサイズで画像化、脚の移動の測定に利用した。画像はLRFで取得した距離データを二次元の直交座標系の点に変換し、対応する画素を青で描画することで作成する。画像から得られた脚の位置データは、0.15秒間での移動距離の差分から速度へと変換する。変換した左右の脚それぞれの速度データの例を図15に示す。左右の脚の速度は交互にピークが表れているため、これらを合計することで、加速度の歩行データと周期が一致する。そのため、図16に示した。左右の合計速度データを相関係数の計算に用いる。なお、スマートフォンで計測する加速度と比較するために、LRFで得られる位置から加速度を算出することもできるが、
その誤差は大きく、歩行時の波形が明瞭に表れないため、左右の速度の合計値を用いることとした。

Fig. 15 Velocities of left and right legs. When walking, the left and right legs move alternately.

Fig. 16 Sum of velocity signals for left and right legs. Sum of the velocities of the left and right legs provides the same cycle signal as the acceleration data.

4.4 相互相関係数を用いた歩行動作の照合

スマートフォンで測定した加速度データと、LRFで測定した距離データは、サンプリング間隔が異なり、加速度データの方が約1.5倍多いため、利用する加速度データを間引くことでデータ数を揃えている。また、加速度データと速度データは正規化を行い、データの平均値を0に合わせた上で相関係数を算出する。

追従対象の鉛直加速度と、両脚の水平速度の合計、2つのグラフを重ね合わせたグラフ、2つのデータの相互相関関数を図17に示す。追従対象が1歩進むごとに、スマートフォンによる鉛直加速度とLRFによる水平速度はほぼ同時に大きく変化し、それぞれ同じ周期で波形が表れていた。このように、2つのグラフから同一の歩行パターンが示されており、加速度データとLRFデータから追従する対象を特定することは十分に可能であると考える。しかし、図17に示すように、それぞれが生じるタイミングはわずかに異なる。この例では鉛直加速度は水準速度に対し、約635ms遅れて生じていたことを示している。相互相関係数を算出する際には、この遅延が大きく影響を及ぼすため、相関係数を評価するたびに位相のずれを補正することで、追従対象とそれ以外の歩行者との判别を行うことができると考える。

4.5 相互相関係数を用いた追従対象検出実験

追従対象とその他の歩行者の脚の動きを、スマートフォンで測定した加速度との相関を比較することで、追従対象を判別可能であるかどうかを確認するため、追従対象検出実験を行なった。追従対象はスマートフォンを手に持った状態で歩行を行い、加速度は60ms間隔で取得した。LRFを搭載したロボットは静止した状態で設置され、スマートフォンを所持した人間と、ロボットの前方180度を通った歩行者A、B、C、Dの5名の歩行時の脚の移動を140秒間計測し、鉛直加速度と各人間の脚の移動速度の相互相関関数を5秒毎、および10秒毎に算出した。歩行者A、B、C、Dは、移動ロボットを通りとした中で、様々な角度を観測する歩行者であるため、計測時間や歩行の方向などは歩行者によって異なる。LRFは人間の足首角の高さを観測するが、追従対象は、他の歩行者は、長ズボン、あるいは高さ15cmの高さにおいて着足の服装を着ており、脚の輪郭がLRFで観測可能な状態であった。なお、この実験ではLRFで得られる歩行者の速度は、手動で画像中の脚座標を取得することで算出した。また、先述した鉛直加速度と水平速度の遅延時間を、相互関相関数を用いて各相関関数を算出する際にその都度補正を行い、比較を行なった。位相差は0.5秒から0.8秒の範囲で水準速度をシフトし、最も関連が見られる位置で相関関数を算出することで補正を行っている。

図18では、追従対象と歩行者Aの、実験中の一部測定データを示す。追従対象は、スマートフォンで測定した鉛直加速度と連動して脚が移動していたことが見てとれる。それにに対し、歩行者Aは脚の移動の波形が加速度と似通った部分もあるが、全体としては連動しておらず、歩行の周期も異なっている。このように、一定時間各通行人の歩行パターンを観測することで、スマートフォンで測定する歩行パターンとの差が生じ、これにより、追従対象とそれ以外の人に間の判別が可能である。図19に追従対象の5秒毎、10秒毎の相互相関係数と各歩行者の5秒毎の相互相関関数の時間変化を示す。また、表1に追従対象と、その他の歩行者4名の相互相関係数を5秒毎、表2に対し10秒毎に相互相関関数を算出した平均値を示す。どちらの結果も、無関係な歩行者が平均0.1前後の相関係数であるのに対し、追従対象が平均0.4以上他と歩行者よりも高い相関を示していた。図19を見ると、他の歩行者の相関係数が追従対象を上回っている箇所もある。
Fig. 17 Cross-correlation of acceleration and velocity signals from both sensors. As the target walks one step, the vertical acceleration from the smartphone and the horizontal velocity from the laser range sensor changed almost synchronously. It is possible to specify the target by correcting the phase difference between the two signals and calculating the correlation.

Fig. 18 Comparison of the walking patterns of the target and other pedestrians. The horizontal velocity of the target being followed changes in conjunction with the vertical acceleration measured by the smartphone. On the other hand, the walking pattern of pedestrian A is not linked and the walking cycle is different.

Table 1 Average of cross-correlation coefficients calculated every 5 seconds.
	Target	Pedestrian A	Pedestrian B	Pedestrian C	Pedestrian D
	0.414	0.090	0.079	0.122	0.105

Table 2 Average of cross-correlation coefficients calculated every 10 seconds.
	Target	Pedestrian A	Pedestrian B	Pedestrian C	Pedestrian D
	0.405	0.074	0.097	0.077	0.136
Cross-correlation coefficients of walking patterns of five people. The target being followed shows a high overall cross-correlation coefficient. Therefore, it is possible to correctly specify the target being followed from the cross-correlation coefficient.

Template image and implementation of leg velocity calculation in the actual robot system. Each leg can be detected by image processing methods such as template matching. If the target is specified online during the following, the velocity of the center point of the yellow bounding box around both legs is used as the velocity signal for calculating the correlation coefficient, instead of tracking both legs individually. This makes implementation of the online system easier.

Exp.	Average of coefficient
1	0.485
2	0.399
3	0.375
Others	0.174

4.6 追従動作時のオンライン対象特定

前節までに局所的な対象特定のためには、スマートフォンおよびLRFでの歩行に関係する加速度および速度の相互相関係数が有効であることがわかった。実際に人間追従を行う際には、オンラインで速度を測定し、相関係数を算出する必要がある。図20に示すように、各脚はテンプレートマッチング等により検出できる。2本の脚が近くに検出された場合、それらは同じ人間の脚として見なされる。前節の方法で相関係数を算出するためには、同一人物の左右の脚の移動速度の累計値が必要となるが、複数人の左右の各脚を見失うことなく個別にトラッキングし、速度を算出し続けることは困難である。

そこで、追従動作時オンライン対象を特定する際には、両脚を個別に追従するのではなく、両脚を同時に検出して図20に示すように両脚を囲む黄色の枠の中心点の移動速度を相関係数の算出に用いる。

図21に、提案する方法によって計算された脚の移動速度データと、スマートフォンで計測された加速度データを示す。図21に示すように、中心点の速度は、スマートフォンで計測された鉛直加速度とほぼ同様の周期を持っている。このように、本手法で脚の移動速度を測定した場合でも、左右の脚の速度を合計したときと同様に、歩行の周期を取得することができる。この両脚の中心点を用いた手法では、左右の各脚をそれぞれ追従する必要がなく、オンラインでの速度測定に適していると考える。本節以降に述べる実験では、本節で述べた手法を用いて水平速度を算出する。

4.7 オンライン対象検出実験

ロボット周囲の人間の脚を自動検出し、相互相関係数をオンラインで算出する実験を行なった。ロボットは静止した状態で、追従対象の人間とその他の歩行者1名を同時に観測する。2名の歩行者はロボットの正面方向に並
Fig. 21 Leg velocities calculated by the proposed implementation. Even with this implementation method, it is possible to obtain a walking cycle that is almost the same as the sum of the velocity signals of the left and right legs.

Fig. 22 Cross-correlation coefficient in Experiment 1

Fig. 23 Cross-correlation coefficient in Experiment 2

Fig. 24 Cross-correlation coefficient in Experiment 3
係数が最大値をとる割合が大きい歩行者を追従対象とすることで、追従対象を検出することができる。また、間違った人間が追従対象として設定されてしまったとしても、大域的追従システムにより誤った人間を追従してい ることを検知することが可能である。

5. 大域的追従・局所的追従の統合

5.1 2つの追従システムの統合

これまで、大域的追従と局所的追従それぞれの手法について述べてきた。本稿では、これらを統合したシステムを用いた追従実験について述べる。2つの追従システムの切り替えは次のように実装した。前述の通り、追従対象の持つスマートフォンからは、アプリを通じて Wi-Fi アクセスポイントのスキャン結果と速度データが ROS へと送信される。移動ロボット側では、大域的追従システムと局所的追従システムの双方が起動しているものとする。以下の条件を満たすときには大域的追従システムによる追従が行われ、Wi-Fi 電波強度マップに基づいて移 動ロボットの目的地が設定される。

- 追従対象と移動ロボットの位置関係：追従対象のスマートフォンにおいて最も近いと判断された Wi-Fi アクセスポイントに対応する電波強度マップ上の位置と、移動ロボットの現在位置が 10m 以上離れている場合
- 局所的追従システムで追従失敗：局所的追従システムにより人間の脚が 5 秒間検出されない場合

一方、移動ロボットが大域的追従システムにより設定された目的地に到達（1 m 以内）した場合、局所的追従システムによる追従が行われる。このときは、最も高い相関係数が得られた脚のロボット座標系における位置を電波強度マップの座標系に変換し、移動ロボットから見て人間位置の 30cm 手前を目的地として設定する。局所的追従システムの目的地は 2 秒毎に更新される。局所的追従により、追従対象の対応付けに失敗し、追従対象ではない人間を追従した場合や、人間を検出できなかった場合には、上述した大域的追従システムの実行条件により失敗を検知し、大域的追従へ移行、改めて追従対象へと接近を行う。

5.2 大域的追従と局所的追従を組み合わせた人間追従実験

大域的追従システムと局所的追従システムを統合し、追従システムを切り替えで追従を行う実験を行った。実験は明治大学中野キャンパス11 階の廊下にて行った。図 25 に実験の概要を示す。本実験は統合システムの動作確認が目的のため、歩行者は追従対象 1 名で行った。移動ロボットは、追従対象から離れた開始位置に待機させ、追従対象はスマートアプリを通じて移動ロボットを呼び出す。追従対象はロボットが接近するまで移動開始位置で待機し、移動ロボットが大域的追従の目的地に到着後、歩行を行う。次に、移動ロボットは停止しながら 5 秒間観測範囲内の人の脚の動きを観測。これにより、大域的追従システムから局所的追従システムへの切り替え動作の確認と、局所的追従により Wi-Fi 電波強度マップ中でウェイポイントが存在しない地点への追従が可能であることを確認する。移動ロボットが追従の一時停止地点に到達後、追従対象は移動ロボットから観測されない、移動終了地点まで移動する。これにより、追従対象を見失う際に、再度大域的追従により追従を再開可能であるかを確認する。

図 26 に追従実験の結果を示す。移動ロボットは大域的追従システムにより、追従対象の移動開始地点付近まで移動し、局所的追従システムへと移行した。なお、本実験では、追従対象は移動ロボットの到着を待ち立ち止まって待機していたが、追従対象が移動を開始した場合も、局所的追従システムによる観測範囲内に追従対象が存在する限りは、問題なく局所的追従へ移行が可能である。観測範囲外に追従対象が移動した場合は、大域的追従の目的地が更新されるため、移動ロボットは大域的追従による追従対象への接近を継続する。その後は追従対象を直接追従し、追従の一時停止地点付近まで停止した。この停止した位置は、図 26 に示すように、大域的追従に用いる Wi-Fi 電波強度マップ上には記録されていない地点である。大域的追従により到達可能な地点は、Wi-Fi 電波強度マップ作成時に通過した経路中に限られるが、局所的追従を統合することにより、大域的追従では移動できない地点に移動することも可能となる。次に、追従対象は移動ロボットから観測が不可能な移動終了地点へ移動し、追従を再開させた。このとき、大域的追従システムにより 10m 以上離れた位置が目的地として指定されたため、移動ロボットは局所的追従から大域的追従へ再度移行し、追従対象の移動終了地点付近で停止した。

© The Japan Society of Mechanical Engineers
Fig. 25 Overview of human-following experiment integrating global and local following methods. This experiment confirms that the mobile robot can switch between the two following methods correctly using our integrated system.

Fig. 26 Results of human-following experiment integrating global and local following methods. The mobile robot was called with global following from a position where the target could not be observed. After approaching the target, it followed the target directly using local following.

このように、大域的追従と局所的追従の2つの追従手法を統合することで、移動ロボットは状況に応じて人間を追従することが可能となる。移動ロボットは追従対象を直接検出すできない位置から呼び出された場合や、一度追従対象を見失った場合は、大域的追従システムにより接近することができ、その後は局所的追従システムにより人間を直接追従し、あらかじめ用意した電波強度マップでのウェイポイント以外の地点まで移動することができる。

6. 結 言

本稿では、スマートフォンの計測データを基に、ユーザーの大域的な位置同定と局所的な追従を行う移動ロボットの人間追従システムについて述べてきた。大域的な追従は、Wi-Fi 電波強度マップに基づき、既存の Wi-Fi アクセスポイントを利用してスマートフォンを持つ人間の大きな位置を取得する。局所的な追従のためには、数多くいる人間の中から追従対象を特定する必要があるが、歩行者の加速度データと移動ロボットが取得する LRF から得られる速度データを照合し、追従対象の歩行パターンを特定する。提案システムにより、追従ロボットのためにセンサを設置するなどの環境構築や、ユーザー検出のためのデバイスを着用する必要なく、追従ロボットに対応
References

Belmonte-Hernandez, A., Solachidis, V., Theodoridis, T., Hernandez-Penaloza, G., Conti, G., Vretos, N., Alvarez, F. and Daras, P., Person tracking association using multi-modal systems, Proceedings of 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (2017).

Dickinson, P., Cielniak, G., Szymaneyzyk, O. and Mannion, M., Indoor positioning of shoppers using a network of bluetooth low energy beacons, Proceedings of 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (2016).

Jung, J.E., Lee, H.J., Yi, J.B., Park, J., Yuta, S. and Noh, T.S., Development of a Laser-Range-Finder-based human tracking and control algorithm for a marathoner service robot, IEEE/ASME Transactions on Mechatronics, Vol.19, No.6 (2014), pp.1963-1975.

Koide, K. and Miura, J., Person identification based on the matching of foot strike timings obtained by LRFs and a smartphone, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016), pp. 4187-4192.

Koyama, N., Tajima, R., Hirose, N. and Sukigara, K., IR tag detection and tracking with omnidirectional camera using track-before-detect particle filter, Advanced Robotics, Vol.30, No.13 (2016), pp.877-888.

Kuki, Y., Kagami, S. and Hashimoto, K., Accelerometer detection in a camera view based on feature point tracking, Proceedings of IEEE/SICE International Symposium on System Integration (2010), pp. 448-453.

Md. Rashed, G., Suzuki, R., Yonezawa, T., Lam, A., Kobayashi, Y. and Kuno, Y., Robustly tracking people with LIDARs in a crowded museum for behavioral analysis, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol.E100-A, No.11 (2017), pp.2458-2469.

Morioka, K., Oinaga, Y. and Nakamura, Y., Control of human-following robot based on cooperative positioning with an intelligent space, Electronics and Communications in Japan, Vol.95, No.1 (2012), pp.20-30.

Sawada, K., Hanada, Y. and Mori, S., User-installable indoor positioning system using a Wi-Fi beacon and PDR module, Journal of Information Processing, Vol.24, No.6 (2016), pp.843-852.

Shiomi, M. and Hagita, N., Finding a person with a wearable acceleration sensor using a 3D position tracking system in daily environments, Advanced Robotics, Vol.29, No.23 (2015), pp.1563-1574.

Shiomi, M., Kurumizawa, K., Kanda, T. and Ishiguro, H., Finding a person with a Wi-Fi device in a crowd of pedestrians, Advanced Robotics, Vol.28. No.7 (2014), pp.441-448.

Stein, S. and McKenna, J.S., Accelerometer localization in the view of a stationary camera, Proceedings of 2012 Ninth Conference on Computer and Robot Vision (2012), pp.109-116.

Takigawa, T. and Morioka, K., Identifying a person with an acceleration sensor using tracking system in an intelligent space, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2011), pp.7-12.

Vasisht, D., Kumar, S. and Katabi, D., Decimeter-level localization with a single WiFi access point, Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) (2016), pp.165-178.

Yan, Z., Sun, L., Duckett, T. and Bellotto, N., Multisensor online transfer learning for 3D LiDAR-based human detection with a mobile robot, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2018) (2018), pp. 7635-7640.