GSTP1 and TNF Gene Variants and Associations between Air Pollution and Incident Childhood Asthma: The Traffic, Asthma and Genetics (TAG) Study

Elaina A. MacIntyre,1,2 Michael Brauer,1 Erik Melén,3,4 Carl Peter Bauer,3 Mario Bauer,4 Dietrich Berdel,2 Anna Bergström,3 Bert Brunekreef,5,8 Moira Chan-Yeung,16 Claudia Klümper,1 Elaine Fuertes,1,2 Ulrike Gehring,6 Anna Gref,7 Joachim Heinrich,6 Olf Jerath,7 18 Göran Pershagen,3 Dirkje S. Postma,7,18 Elisabeth Thieringer,2 Carla M.T. Tiesler,1,2 and Christopher Carlsen,10 for the TAG Study Group

1School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; 2Institute of Epidemiology I, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany; 3Department of Pediatrics, Stockholm University Children's Hospital, Stockholm, Sweden; 4Sachs' Children's Hospital, Technical University of Munich, Munich, Germany; 5Department for Environmental Immunology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany; 6Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany; 7Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; 8Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; 9Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 10Leibniz Research Institute for Environmental Health, University of München, Munich, Germany; 11Leibniz Research Institute for Environmental Medicine, Medical University of Graz, Graz, Austria; 12Institute of Environmental Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 13Leibniz Research Institute for Environmental Health, Graz, Austria; 14Leibniz Research Institute for Environmental Medicine, University of Graz, Graz, Austria; 15Department of Pulmonology, University Medical Center Groningen, Groningen, the Netherlands; 16Division of Pulmonology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; 17Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada; 18School of Public Health, University of Alberta, Edmonton, Alberta, Canada; 19University of Groningen, Department of Pulmonology, University Medical Center Groningen, Groningen, the Netherlands; 16GRiAC, Groningen, the Netherlands; 18Division of Metabolic Diseases and Nutritional Medicine, Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Munich, Germany

BACKGROUND: Genetics may partially explain observed heterogeneity in associations between traffic-related air pollution and incident asthma.

OBJECTIVE: Our aim was to investigate the impact of gene variants associated with oxidative stress and inflammation on associations between air pollution and incident childhood asthma.

METHODS: Traffic-related air pollution, asthma, wheeze, gene variant, and potential confounder data were pooled across six birth cohorts. Parents reported physician-diagnosed asthma and wheeze from birth to 7–8 years of age (confirmed by pediatric allergist in two cohorts). Individual estimates of annual average air pollution [nitrogen dioxide (NO₂), particulate matter ≤ 2.5 μm (PM₂.₅), PM₁.₅ absorbance, ozone] were assigned to each child’s birth address using land use regression, atmospheric modeling, and ambient monitoring data. Effect modification by variants in GSTP1 and TNF were investigated.

RESULTS: Data on asthma, wheeze, potential confounders, at least one SNP of interest, and NO₂ were available for 4499 children. GSTP1 rs1138727 and TNF rs1800629 SNPs were associated with asthma and wheeze, respectively. In relation to air pollution exposure, children with one or more GSTP1 rs1138727 minor allele at increased risk of current asthma [odds ratio (OR) = 2.59; 95% CI: 1.43, 4.68 per 10 μg/m³ NO₂ and ever asthma (OR = 1.64; 95% CI: 1.06, 2.53) compared with homoyzgous major allele carriers (OR = 0.95; 95% CI: 0.68, 1.32 for current and OR = 1.20; 95% CI: 0.98, 1.48 for ever asthma; Bonferroni-corrected interaction p-values 0.48 and 0.01, respectively). Similarly, for GSTP1 rs1695, associations between NO₂ and current and ever asthma had ORs of 1.43 (95% CI: 1.03, 1.98) and 1.36 (95% CI: 1.08, 1.70), respectively, for minor allele carriers compared with ORs of 0.82 (95% CI: 0.52, 1.32) and 1.12 (95% CI: 0.84, 1.49) for homoyzgous major allele carriers (Bonferroni-corrected interaction p-values 0.48 and 0.09). There were no clear differences by TFN genotype.

CONCLUSIONS: Children carrying GSTP1 rs1138727 or rs1695 minor alleles may constitute a susceptible population at increased risk of asthma associated with air pollution.

CITATION: MacIntyre EA, Brauer M, Melén E, Bauer CP, Bauer M, Berdel D, Bergström A, Brunekreef B, Chan-Yeung M, Klümper C, Fuertes E, Gehring U, Gref A, Heinrich J, Herbarth O, Jerath M, Koppelman GH, Kozyrskyj AL, Pershagen G, Postma DS, Thieringer E, Tiesler CM, Carlsen C, TAG Study Group. 2014. GSTP1 and TNF gene variants and associations between air pollution and incident childhood asthma: the traffic, asthma and genetics (TAG) Study. Environ Health Perspect 122:418–424; http://dx.doi.org/10.1289/ehp.1307459

Introduction

Evidence supporting an association between traffic-related air pollution and incident childhood asthma is growing although published estimates highlight variability across different populations. (Anderson et al., 2013; Gehring et al., 2010; Nordling et al., 2008). Genetic variation could be one explanation for this observed heterogeneity and gene–environment studies may help identify those children most susceptible to air pollution (Bräább and Forberg, 2009). Large studies that combine multiple birth cohorts are ideal for examining gene–environment interactions in the development of childhood asthma, particularly where there are similar assessments of air pollution and asthma across cohorts (London, 2007).

Genes related to oxidative stress are of special interest because of the biological mechanisms thought to underlie both the toxicity of traffic-related air pollution and the development of asthma (Kelly, 2003). GSTP1 (the glutathione S-transferase pi gene) codes for an enzyme that metabolizes reactive oxygen species in the lung, and, despite considerable study, associations with atopic disease have not been consistent (Piacentini et al., 2013), possibly because of additional host and environment factors such as age (Salam et al., 2007).

To date, GSTP1 polymorphisms have been reported to modify the association between traffic-related air pollution and allergic sensitization (Melén et al., 2008), persistent wheeze (Schroer et al., 2009), and asthma (Carlsen et al., 2007).

Address correspondence to C. Carlsen, Vancouver General Hospital, 2775 Laurel St., 7th Floor, Vancouver, British Columbia, VS1M9 Canada. Telephone: (604) 875-4729. E-mail: carlsen@mail.ubc.ca

Initial discussions regarding the TAG collaboration took place at the AllerGen NCE workshop “Genes and the Environment: The Genetics of Childhood and Allergy” in 2009. We thank K. de Hoogh for providing the ozone exposure estimates from the APMoSPHERE project. We thank all children and parents for their cooperation. We also thank technical and administrative support staff and the medical and fieldwork teams.

Funding for the TAG study was provided by the AllerGen Network of Centers of Excellence. The BAMSE study was supported by the Swedish Research Council, the Swedish Research Council FORMAS (for Environment, Agricultural Sciences and Spatial Planning), the Swedish Heart–Lung Foundation, Stiftelsen Frimurare Barnhuset i Stockholm, the Stockholm County Council, the Swedish Environmental Protection Agency, and the Swedish Society for Medical Research. The PIAMA study is supported by the Netherlands Organization for Health Research and Development, the Bronchial Asthma and COPD (GriAC) Research Fund, the Netherlands Ministry of Spatial Planning, Housing, and the Environment, and the Netherlands Ministry of Health, Welfare, and Sport. The GINplus study was funded by Helmholtz Zentrum München and grants from the Federal Ministry for Education, Science, Research and Technology 292 (01 EE 94014). The LI-Suplus study was funded by Helmholtz Zentrum München, Munich Center of Health (MC Health) and partly by grants from the Federal Ministry for Education, Science, Research and Technology (01 EG 9705/2 and 01EZ9732). Both GINplus and LI-Suplus co-funded by the German Network of Competency on Asthma and the Federal Ministry for Education and Research (BMBF). The LISAplus study was supported by the Canadian Institute of Health Research, the British Columbia Lung Association, and the Manitoba Medical Service Foundation. The SAGE study was supported by the Canadian Institute of Health Research. É.F. was supported by the AllerGen NCE (Canadian Allergy and Immune Diseases Advanced Training Initiative) and the Canadian Institutes of Health Research (St Frederick Banting and Adie Best Canada Graduate Scholarship). The authors declare they have no actual or potential competing financial interests. Received: 2 August 2013; Accepted: 24 January 2014; Advance Publication: 24 January 2014; Final Publication: 1 April 2014.
et al. 2011a) in individual birth cohorts; and in one study these strata-specific findings were further attenuated by TNF (tumor necrosis factor) polymorphisms (Melén et al. 2008). TNF mediates inflammation and is expressed in response to environmental pollutants (Wu et al. 2007). TNF polymorphisms have been associated with asthma (Aoki et al. 2006; Panasevich et al. 2010) and wheeze (Wu et al. 2007) and were previously reported to modify the association between ozone and asthma in healthy young adults (Yang et al. 2008).

We initiated an international collaboration, the Traffic, Asthma and Genetics Study (TAG), to examine the influence of specific candidate genes on the relationship between traffic-related air pollution and the development of childhood asthma.

Methods

The Canadian Asthma Primary Prevention Study (CAPPS) is a randomized controlled study of high-risk children (Carlsten et al. 2011b). The Study of Asthma, Genes and the Environment (SAGE) is a Canadian population-based birth cohort (Kozyrskyj et al. 2009). The Children, Allergy, Milieu, Stockholm, Epidemiological Survey (BAMSE) is a population-based Swedish birth cohort (Melén et al. 2008). The German Infant Nutrition Intervention Study plus environmental and genetic influences on allergy (GINI) is a population-based birth cohort (Morgenstern et al. 2008). The Influence of Life-Style Factors on the Development of the Immune System and Allergies in East and West Germany plus the influence of traffic emissions and genetics (LISA) study is a population-based birth cohort (Morgenstern et al. 2008). The Prevention and Incidence of Asthma and Mite Allergy (PIAMA) study is a population-based birth cohort (Brunekeeff et al. 2002). Detailed cohort descriptions are provided in the Supplemental Material. Appendix 1, and additional details on the TAG study have been previously published (Maclntyre et al. 2013). Parents participating in each cohort provided informed consent, and protocols were approved by all relevant ethical review boards.

Physician-diagnosed asthma and wheeze symptoms were collected from parental questionnaires. CAPPS and SAGE children were also evaluated by a pediatric allergist to confirm asthma. Current asthma and current wheeze were ascertained at 8 years (6 years for GINI/LISA wheeze; 7 years for CAPPS asthma/wheeze). Ever asthma and ever wheeze were defined using every available follow-up to 8 years. Children missing ≥2 follow-ups were excluded. Data were collected at slightly different time points, and there were minor differences in question wording across the cohorts (Maclntyre et al. 2013).

Annual average nitrogen dioxide (NO₂) was estimated using traffic-related land use regression (LUR) models, except for the BAMSE cohort, which used dispersion modeling (Bellander et al. 2001). LUR models developed for PIAMA and LISA/GINI Munich (Germany) were based on data collected in 1999–2000 (Brauer et al. 2003). LISA/GINI Wesel (Germany) in 2003, LISA/GINI Leipzig (Germany) in 2004/2005 (Hochadel et al. 2006), CAPPS Vancouver (BC, Canada) in 2003 (Henderson et al. 2007), and SAGE and CAPPS Winnipeg (MB, Canada) in 2007 (Allen et al. 2010). For all study sites, integrated 14-day sampling campaigns were repeated over a 12-month period to capture seasonal patterns in air pollution. Protocols were specifically developed to spatially model long-term average pollutant concentrations. Potential predictors for traffic were screened based on their correlation with measured pollutants. Final models were assessed based on the coefficient of determination and root mean square error from cross-validation. LUR estimated PM₂.₅ (particulate matter with diameter ≤2.5 μm) and PM₂.₅ absorbance (a measure of elemental carbon estimated from filter reflectance measurements) were available for a subset of the combined cohort. For BAMSE, emission data for traffic-generated nitrogen oxides (NOₓ) were collected for the years 1990 and 2000; and dispersion was estimated using a dilution model based on wind speed, direction, and precipitation (Nordling et al. 2008). Additionally, ozone was estimated for the European cohorts using APMoSHERE (Air Pollution Modelling for Support to Policy on Health and Environmental Risk in Europe) (Beelen et al. 2009), and for CAPPS/SAGE using inverse distance weighting of the closest three ambient monitors (within 50 km). NO₂ was the only air pollution metric that was measured for all populations available across all six cohorts. The PIAMA study collected buccal swabs or blood at 4–8 years and used Competitive Allele-Specific PCR (polymerase chain reaction) using KASP® assay genotyping chemistry (KBiosciences, Hoddesdon, UK) (Koopman et al. 2002). The German studies and BAMSE used matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectrometry (Sequenom, San Diego, CA, USA) following the manufacturer’s protocol [GINI/LISA: blood samples were collected at 6–10 years; BAMSE: blood samples were collected at 4 years (Melén et al. 2008)]. The German studies additionally used the restriction fragment length polymorphism approach for GSTP1 rs1695 (Slama et al. 2010) and high-resolution melting-PCR using LightSNIP hybridization probe for GSTP1 rs1138272 (TIB MolBiol, Berlin, Germany).

Data transfer and harmonization occurred in several stages. First, each cohort sent data dictionaries (translated to English, where applicable) to the main study center at the University of British Columbia. From each of the data dictionaries, a list of key variables was compiled and sent to each cohort to request data extraction. Data extracts were then prepared by each cohort and sent to the main study center for harmonization and merging. Data were collected at different time points across the cohorts, with differences in questionnaire wording and case definitions [see Maclntyre et al. (2013) for additional information]. In the pooled data set, new variables for this analysis were derived from data common to all cohorts.

Statistical analysis. We examined the main effect estimate for each SNP using dominant genetic models. Effect modification was examined in adjusted analyses of NO₂ (per 10-μg/m³ increase) and asthma/wheeze, stratified by genotype. Interactions between genotype and NO₂ were investigated using the log likelihood ratio for models with and without product interaction terms. Models were adjusted for potential confounders available across each cohort: study, city, infant sex, birth weight (<2,500, 2,500–4,000, >4,000 g), parental history of allergy (yes/no), maternal age at birth (≤24, 25–29, 30–34, ≥35 years), maternal smoking reported anytime during pregnancy (yes/no), environmental tobacco smoke reported in the home (yes/no), and intervention (yes/no). All pooled analyses used weighted logistic regression to adjust for inclusion of case–control data (Richardson et al. 2007). Sensitivity analyses investigated additional exposure metrics available for only a subset of pooled data (PM₂.₅, 4–8 years; PM₂.₅, 4–8 years). All p-values were corrected for multiple testing using Bonferroni adjustment, and adjusted p-values.
Results
Table 1 describes the population characteristics for children included in at least one analyses (N_{total} = 5,115). The population used for TAG had a lower prevalence of low birth weight (< 2,500 g) babies (3% vs. 12%), fewer mothers < 25 years of age (6% vs. 9%), more parents with reported atopy (55% vs. 47%), and fewer mothers who smoked during pregnancy (14% vs. 17%), compared to the total recruited population for each cohort.

A total of 5,115 children had complete data on asthma, wheeze, potential confounders, NO_{2}, and at least one SNP (4,596 with GSTT1 rs1138272, 4,748 with GSTP1 rs1695, 4,483 with TNF rs1800629); 22% were part of an intervention, 52% were male, 29% were exposed to environmental tobacco smoke in the home, 55% had parental history of atopy, and 19% were born to mothers ≥ 35 years of age. Parents of 7.5% of the children reported current asthma (ranging from 2.3% to 40.5% in individual cohorts), 18% reported ever asthma (4.6–41.6%), 12.5% reported current wheeze (7.0–69.0%), 45% ever wheeze (35.2–69.0%), and 7.6% reported both ever asthma and current wheeze (‘active asthma’); 2.8–46.6%.

Table 2 describes pollutant distributions for NO_{2}, PM_{2.5}, PM_{10}, absorbance, and ozone. Data are presented for the pooled data set and by cohort or combinations of cohorts in which an identical LUR model was used in two different cohorts (Munich, Wesel, and Winnipeg). In general, the mean NO_{2} concentrations for Germany and the Netherlands were similar, whereas those for one of the Canadian locations (Winnipeg) and Sweden were lower. For the 2,743 children in sensitivity analyses, NO_{2} was correlated with PM_{2.5} absorbance (r = 0.72), weakly correlated with PM_{2.5} (r = 0.23), and inversely correlated with ozone (r = −0.19). The inverse correlation between NO_{2} and ozone was attributable to the atmospheric chemistry unique to each pollutant; and the weak correlation between PM_{2.5} and PM_{10} absorbance was likely attributable to differences in the composition and sources of air pollution in each region.

The population distribution and number of asthma cases by genotype are presented in Table 3. All SNPs satisfied Hardy–Weinberg equilibrium based on chi-square statistics (p < 0.05).

Main effect estimates. Table 4 shows the main effect estimates for associations of the genotypes and air pollution exposures with the respiratory outcomes based on the pooled data for all cohorts combined. Effect estimates were calculated for homozygous and heterozygous minor allele carriers versus homozygous major allele carriers. The adjusted
The adjusted OR for \(\text{TNF} \) rs1800629 and current asthma was 1.20 (95% CI: 0.92, 1.57). The association between ever wheeze and \(\text{TNF} \) rs1800629 was not statistically significant after adjusting for multiple testing (OR = 1.18; 95% CI: 1.02, 1.37; corrected \(p\)-value = 0.087). Statistically significant associations were estimated for \(\text{NO}_2 \) and current asthma (OR = 1.23; 95% CI: 1.03–1.46 per 10-μg/m³ increase; corrected \(p\)-value = 0.019) and for \(\text{PM}_2.5 \) and current asthma (OR = 2.08; 95% CI: 1.35–3.19 per 4-μg/m³ increase; corrected \(p\)-value = 0.003).

Table 3. Population distribution by minor allele carriers and homozygous major allele carriers for \(\text{GSTP1} \) and \(\text{TNF} \) (pooled data).

SNP genotype	No. of children	Current asthma cases [n(%)]	Children in the highest tertile of \(\text{NO}_2 \)[n]	Children with current asthma in the highest tertile of \(\text{NO}_2 \)[n(%)]
\(\text{GSTP1} \) rs1138272				
TT/TC	799	80 (10.1)	224	15 (6.7)
CC	3,807	267 (7.5)	1,144	57 (5.0)
\(\text{GSTP1} \) rs11695				
GG/GA	2,740	199 (7.3)	873	34 (3.9)
AA	2,008	170 (8.5)	818	39 (6.3)
\(\text{TNF} \) rs1800629				
AA/AG	1,411	119 (8.4)	421	31 (7.4)
GG	3,072	244 (7.9)	917	40 (4.4)

Table 4. Main genetic and environmental effect estimates for \(\text{GSTP1} \), \(\text{TNF} \), and \(\text{NO}_2 \) for asthma and wheeze at school age (pooled data).

SNP, exposure	Current asthma	Ever asthma	Current wheeze	Ever wheeze	Current asthma and current wheeze
\(\text{GSTP1} \) rs1138272 TT/TC v. CC	4,596	1.57	0.012	4,465	1.49
\(\text{GSTP1} \) rs11695 GG/GA v. AA	4,748	0.67	0.152	4,635	0.91
\(\text{TNF} \) rs1800629 AA/AG vs. GG	4,483	1.20	0.258	4,356	1.04
Traffic-related \(\text{NO}_2 \) (per 10-μg/m³ increase)	5,115	1.14	0.322	4,965	1.23
Ozone (per 10-μg/m³ increase)	2,743	0.81	0.351	2,671	0.96
Traffic-related \(\text{PM}_{2.5} \) (per 10-μg/m³ increase)	2,743	2.08	0.001	2,671	1.17
Traffic-related \(\text{PM}_{10} \) (per 0.5-μg/m³ increase)	2,743	1.24	0.041	2,671	1.10

aOR, adjusted odds ratio.

*Adjusted for study, city, intervention, infant sex, maternal age at birth, maternal smoking during pregnancy, environmental tobacco smoke in the home, birth weight, and parental atopy. FC-Values were corrected for multiple testing using the Bonferroni method.

Table 5. Association between traffic-related \(\text{NO}_2 \) during the first year of life and asthma and wheeze at school age (pooled data).

Gene	n	\(\text{aOR}^{(95\% \text{ CI})} \)	\(p^2 \)	\(\text{aOR}^{(95\% \text{ CI})} \)	\(p \)	\(\text{aOR}^{(95\% \text{ CI})} \)	\(p^2 \)
\(\text{GSTP1} \) rs1138272	789	2.59 (1.43, 4.68)	0.006	769	1.64 (1.06, 2.53)	0.075	772
CC	3,807	0.95 (0.68, 1.32)	0.766	3,696	1.20 (0.98, 1.48)	0.140	3,711
Interaction*	0.039	0.012	0.006	0.024	0.180		
\(\text{GSTP1} \) rs11695	2,704	1.43 (1.03, 1.98)	0.096	2,677	1.36 (1.08, 1.70)	0.048	2,695
AA	2,008	0.82 (0.52, 1.32)	0.626	1,958	1.12 (0.84, 1.49)	0.432	1,964
Interaction*	0.048	0.087	0.167	0.026	0.436		
\(\text{TNF} \) rs1800629	1,411	1.30 (0.65, 2.00)	0.448	1,372	1.29 (0.94, 1.78)	0.143	1,383
GG	3,072	1.07 (0.72, 1.57)	0.567	2,984	1.21 (0.97, 1.52)	0.140	2,988
Interaction*	0.210	0.345	0.006	0.337	0.436		

aOR, adjusted odds ratio.

*For a 10-μg/m³ increase in \(\text{NO}_2 \). Adjusted for study, city, intervention, infant sex, maternal age at birth, maternal smoking during pregnancy, environmental tobacco smoke in the home, birth weight, and parental atopy. FC-Values were corrected for multiple testing using the Bonferroni method.
4.34 per 10 μg/m³ NO₂; p = 0.005) and ever asthma (OR = 1.57; 95% CI: 1.04, 2.37; p = 0.032); analyses in remaining GSTP1 rs1138272/rs1695 strata (rs1138272 TT/TC and rs1695 AA; rs1138272 CC and rs1695 GG/GA; rs1138272 CC and rs1695 AA) were nonsignificant (data not shown).

Sensitivity analyses. Sensitivity analyses are presented in the Supplemental Material, Tables S1–S12. The following cohorts (or cohort subsets) had assigned ozone, PM₁₂.₅, and PM₂.₅ absorbance; CAPPS Vancouver, LISA, GINI, and PIAMA. A total of 2,743 children had complete data on asthma, wheeze, potential confounders, NO₂, ozone, PM₁₂.₅, PM₂.₅ absorbance, and at least one SNP of interest (n = 2,367 with GSTP1 rs1138272; n = 2,559 with GSTP1 rs1695; n = 2,318 with TNF rs1800629). Pooled estimates were recalculated for these additional air pollution metrics (see Supplemental Material, Tables S1–S3, respectively). In analyses stratified by genotype, there was an association between ozone and current wheeze (OR = 3.67; 95% CI: 1.05, 12.7; p = 0.005) and ever asthma, and provided an unprecedented opportunity to identify populations genetically at risk for asthma development in relation to traffic-related air pollution. Our findings suggest that children with variant GSTP1 genotypes may constitute a susceptible population at increased risk of asthma associated with air pollution.

The purpose of this work was to estimate the effect of two oxidative stress and inflammation genes on the relationship between traffic-related air pollution and the development of asthma in childhood. Asthma was associated with GSTP1 rs1138272 in the study population. In analyses of NO₂ and respiratory outcome, stratified by genotype, minor allele carriers for GSTP1 rs1138272 and GSTP1 rs1695 appeared to be more susceptible to the harmful effects of air pollution than their homozygous major allele–carrying counterparts. The interaction between GSTP1 rs1138272 and NO₂ was statistically significant in models for current asthma, ever asthma, and ever wheeze.

In this study we used data from six birth cohorts. Five of these cohorts have previously reported associations between traffic-related air pollution and respiratory outcomes during childhood (Carlsten et al. 2011b; Gehring et al. 2010; Morgenstern et al. 2008; Nordling et al. 2008); and three have previously reported gene–air pollution interactions in the development of childhood asthma (Carlsten et al. 2011a; Melén et al. 2008; Nordling et al. 2008). The BAMSE cohort reported a statistically significant association between NO₂ and asthma at 4 years of age in children who were both minor allele carriers for GSTP1 rs1695 and homozygous major allele carriers for TNP rs1800629 (OR = 2.9; 95% CI: 1.0–8.2 for a 44-μg/m³ increase in NO₂). We did not find strong evidence for a gene–environment interaction in the pooled data set, although effect estimates were similar to those reported by Melén et al. (2008). The CAPPS study, which was particularly limited by sample size and did not have any homozygous minor allele carriers for GSTP1 rs1138272, reported a negative but statistically significant association between NO₂ and asthma at 7 years of age in children who were heterozygous for GSTP1 rs1138272 (OR = 0.76; 95% CI: 0.18–3.30 for a 7.2-μg/m³ increase in NO₂; N_total = 25) (Carlsten et al. 2011a). Finally, the PIAMA study has previously reported effect modification by interaction analyses for multiple TLR2 and TLR4 SNPs in the association between air pollution (using the same LUR models we presented) and childhood asthma in a subset of the PIAMA cohort (N_total = 916; Kerkhof et al. 2010); but the current study is the first examination of GSTP1 and TNP.

Polymorphisms in genes related to oxidative stress (NQO1, GSTM1, and GSTP1) have been associated with increased risk of asthma. Previous work has reported reductions in GSTP1 expression among rs1138272 and rs1695 minor allele carriers (Moyer et al. 2008). Minor allele carriers of rs1695 were found to be at increased risk for asthma in numerous different study populations (Tamer et al. 2004), particularly when children were exposed to environmental tobacco smoke (Palmer et al. 2006) or living in areas with high air pollution (Romieu et al. 2006); and impaired lung function was observed in schoolchildren living in areas of high urban air pollution (Reddy et al. 2012). It has also been suggested that GST genes may modify the lung response after co-exposure to diesel exhaust and allergen (Gilliland 2009). Conversely, the rs1695 SNP has been negatively associated with asthma (Aynacioglu et al. 2004; Fryer et al. 2000) and was associated with a lower risk of incident asthma with exercise in communities with high (vs. low) levels of ozone (Islam et al. 2009). Few studies have had the opportunity to evaluate GSTP1 rs1138272 and air pollution, partly because of the low frequency of minor allele carriers.

The inflammatory response gene TNP (rs1800629) has been reported to modify the relationship between ozone and asthma (Yang et al. 2008) and indoor home dampness and asthma (Tsai et al. 2011); however, similar to our results, no effect modification was noted in the association between traffic-related NO₂ and adult-onset asthma (Castro-Giner et al. 2009).

In the present study we pooled data across six cohorts; but unfortunately, of the many SNPs associated with oxidative stress and inflammation, only three were typed across all cohorts. It is possible that this study was underpowered; however, homozygous and heterozygous minor allele carriers were combined into one category for all analyses (Melén et al. 2008; Salam et al. 2007), and three of the TAG cohorts intentionally increased the proportion of children with asthma or wheeze through study design.

NO₂ is especially useful as a marker of within-city variability in exposure to
Traffic-related pollution and has been used as a marker of traffic pollution exposure in previous epidemiological investigations (Brunekreef et al. 2007; Clark et al. 2010; Emens et al. 2003; Gehring et al. 2010). Our results were not fully replicated in the subset ($n = 2,743$) of children with available data on additional markers of traffic-related (PM$_{2.5}$ and PM$_{10}$ absorbance) and regional (ozone) air pollution. The air pollution metrics examined were considered only as markers for traffic-related air pollution; and the goal of this work was not to highlight the importance of one metric over another, but instead to highlight the significant potential impact of this air pollution source.

The TAG cohorts are unique in that they have individually assigned exposures with high spatial resolution for the first year of life based on residential address at birth—thus capturing the important exposure window during early life (Clark et al. 2010; Gehring et al. 2010). Although measurements for the LUR models were not originally taken during the first year of life, detailed investigations, including two conducted in our study areas, found the spatial distribution of traffic-related pollutants to be stable for up to 12 years (Eeftens et al. 2011; Gulliver et al. 2013; Wang et al. 2012). LUR model estimates were temporally adjusted using fixed-site monitoring data collected during the actual first year of life for cohorts that completed NO$_x$ monitoring campaigns > 8 years after the birth year (CAPPS and SAGE).

An additional strength of the cohorts we included is that each recruited pregnant women or newborns and was therefore able to assess the development of asthma from birth. Ascertainment of physician-diagnosed asthma and wheeze symptoms via parental questionnaire is reasonably accurate (Burr 1992), particularly in countries with universal health care, where lack of insurance does not hinder access to health care. Further, the two cohorts with the highest prevalence of asthma (SAGE and CAPPS) also completed examinations by a pediatric allergist to confirm parent-reported asthma diagnoses. Further, although there were slight differences in questionnaire wording for asthma and predictors for air pollutant models, the general consistency in effect estimate direction and magnitude across analyses stratified by cohort or land use regression model (see Supplemental Material, Tables S5–S10) is reassuring and supports our findings.

The findings presented here may have been confounded by exposures associated with oxidative stress or airway inflammation. We adjusted for environmental tobacco smoke and parental history of asthma or atopic disease, but it was not possible to adjust pooled analyses for the presence of allergens in the home or ethnicity. Smoking was associated with increased odds of disease in all pooled analyses; however, this finding was statistically significant only for “ever asthma” (data not shown). Sensitivity analyses excluding non-Caucasian children from the Canadian cohorts (< 80% Caucasian) were completed to ensure that our findings were not influenced by the ethnic composition of our population (Spialman et al. 2007); the proportion of Caucasian children in the European cohorts was very high (98%) and they were not restricted in the sensitivity. Finally, additional sensitivity analyses excluding children assigned to an intervention (Supplemental Material, Table S11; CAPPS, GINI, and PIAMA) were completed to ensure that our findings were not affected by preventive measures; this is particularly important because the CAPPS study has reported a protective effect (for children assigned to the intervention) on the development of childhood asthma up to 7 years of age (Chan-Yeung et al. 2000).

Our findings add to previous research by providing further insight into the complex relationship between genetics and environmental factors in the development of childhood asthma. We found the association between traffic-related air pollution and the development of childhood asthma to be influenced somewhat by GSTP1 polymorphisms (rs1138272 and rs1695), and these findings support the hypothesis that the oxidative stress response is important in the pathogenesis of childhood asthma, particularly in the presence of air pollution. We found no indication of effect modification by the inflammatory response gene TNF (rs1800629) on the association between traffic-related air pollution and childhood asthma. GSTP1 (rs1138272 and rs1695) minor allele carriers may be a susceptible population at increased risk of asthma in association with air pollution.

References

Allen RW, Amrad O, Wheeler A, Brauer M. 2010. The transferability of NO and NO$_x$ land use regression models between cities and pollutants. Atmos Environ 45:369–378.

Anderson HR, Favaro G, Atkinson RW. 2013. Long-term exposure to air pollution and the incidence of asthma: meta-analysis of cohort studies. Air Qual Atmos Health 6:47–56.

Aoki T, Hirota T, Tamiya M, Ichikawa K, Takeda K, Aitami T, et al. 2006. An association between asthma and TNP280/A polymorphism: meta-analysis. J Hum Genet 51:877–885.

Aynaciouglu AS, Nacak M, Filiz A, Ekinici E, Roots I. 2004. Protective role of glutathione S-transferase P1 (GSTP1) Val105Val genotype in patients with bronchial asthma. Br J Clin Pharmacol 57(2):213–217.

Beelen R, Hoek G, Peters E, Vienneau D, de Hoogh K, Brauer M. 2010. Traffic-related pollution and asthma in children: findings from recent cohort studies. Environ Health 9:17; doi:10.1186/1476-069X-9-17.

Brauer M, Hoek G, van Vliet P, Mielieffe K, Fischer P, Gehring U, et al. 2003. Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology 14(2):228–239.

Brunekreef B. 2007. Health effects of air pollution observed in cohort studies. J Expo Sci Environ Epidemiol 17(Suppl 2):S1–S5.

Brunekreef B, Smit J, de Jongste J, Neijens H, Gerritsen J, Postma D, et al. 2002. The Prevention and Incidence of Asthma and Mite Allergy (PIAMA) birth cohort study: design and first results. Pediatr Allergy Immunol 13(suppl 55–80).

Burr ML. 1992. Diagnosing asthma by questionnaire in epidemiological surveys. Clin Exp Allergy. 22(5):509–510.

Carlsen C, Dybunco A, Becker A, Chan-Yeung M, Brauer M. 2011a. GSTP1 polymorphism modifies risk for incident asthma associated with nitrogen dioxide in a high-risk birth cohort [Letter]. Occup Environ Med 68(4):308.

Carlsen C, Dybcyuno A, Becker A, Chan- Yeung M, Brauer M. 2011b. Traffic-related air pollution and incident asthma in a high-risk birth cohort. Occup Environ Med 68(4):291–295.

Castro-Giner F, Künzli N, Jacquemin B, Forsberg B, de Cid R, Sunyer J, et al. 2009. Traffic-related air pollution, oxidative stress genes, and adult asthma: a meta-analysis of four case-control studies. Environ Health Perspect 117:1919–1924; doi:10.1289/ehp.0900589.

Chan-Yeung M, Manfreda J, Dimich-Ward H, Ferguson A, Watson W, Becker A. 2000. A randomized controlled study on the effectiveness of an intervention program in the primary prevention of asthma in high-risk infants. Arch Pediatr Adolesc Med 154(7):657–663.

Clark NA, Demers PA, Karr CJ, Koehoorn M, Lencar C, Tamburic L, et al. 2010. Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect 118:284–290; doi:10.1289/ehp.0900916.

Eeftens M, Beelen R, Fischer P, Brunekreef B, Mielieffe K, Hoek G. 2011. Stability of measured and modelled spatial contrasts in NO$_x$ over time. Occup Environ Med 68:765–770.

Emenius G, Pershagen G, Berglund N, Kwon HJ, Lewne M, Nordwall U, et al. 2003. NO$_x$ as a marker of air pollution, and recurrent wheezing in children: a nested case-control study within the BAMSE birth cohort. Occup Environ Med 60:876–881.

Fryer AA, Bianco A, Haggie M, Jones PW, Stronge RC, Spieter MA. 2000. Polymorphism at the glutathione S-transferase GSTP1 locus. A new marker for bronchial hyperresponsiveness and asthma. Am J Respir Crit Care Med 161(5):1437–1442.

Gehring U, Wijs AH, Brauer M, Fischer P, de Jongste JC, Kerkhoff M, et al. 2010. Traffic-related air pollution and the development of asthma and allergies during the first years of life. Am J Respir Crit Care Med 181(1):603–609.

Gilliland FD. 2009. Outdoor air pollution, genetic susceptibility, and asthma management: opportunities for intervention to reduce the burden of asthma. Pediatrics 123(suppl 6):S568–S573.

Gulliver J, de Hoogh K, Hansell K, Vienneau D. 2013. Development and back-extrapolation of NO$_x$ land use regression models for historic exposure assessment in Great Britain. Environ Sci Technol 47(14):7804–7811.

Henderson SB, Beckerman B, Jerrett M, Brauer M. 2007. Application of land use regression to estimate ambient concentrations of traffic-related NO$_x$ and fine particulate matter. Environ Sci Technol 41(7):2422–2428.

Hochadel M, Heinrich J, Gehring U, Wijga AH, Brauer M, Fischer P, de Jongste JC, et al. 2003. An association between asthma and regional NO$_x$ concentrations of traffic-related NO$_x$ in Great Britain. Environ Sci Tech 41(7):2422–2428.

Kelly FJ. 2003. Oxidative stress in its role in air pollution and adverse health effects. Occup Environ Med 60(8):512–516.

Kerkhoff M, Postma DS, Brunekreef B, Reijmerink NE, Wijs AH, de Jongste JC, et al. 2010. Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax 65(8):690–697.

Koopman LP, van Strien RT, Kerkhoff M, Wijs A, Smith HA, de Jongste JC, et al. 2002. Placebo-controlled trial of Traffic, childhood asthma, and GSTP1.
house dust mite-impermeable mattress covers: effect on symptoms in early childhood. Am J Respir Crit Care Med 166(3):307–313.

Kozyrskyj AL, HayGlass KT, Sandford AJ, Paré PD, Chan-Yeung M, Becker AB. 2009. A novel study design to investigate the early-life origins of asthma in children (SAGE study). Allergy 64(8):1185–1193.

London SJ. 2007. Gene–air pollution interactions in asthma. Proc Am Thorac Soc 4(3):217–220.

MacIntyre EA, Carlsten C, MacNutt M, Fuertes E, Melén E, Tiesler CMT, et al. 2013. Traffic, asthma and genetics: combining international birth cohort data to examine genetics as a mediator of traffic-related air pollution’s impact on childhood asthma. Eur J Epidemiol 28(7):597–606.

Melén E, Nyberg F, Lindgren CM, Berglind N, Zucchelli M, Nordling E, et al. 2008. Interactions between glutathione S-transferase P1, tumor necrosis factor, and traffic-related air pollution for development of childhood allergic disease. Environ Health Perspect 116:1077–1084; doi:10.1289/ehp.11117.

Romieu I, Ramirez-Aguilar M, Sienra-Monge JJ, Moreno-Macias H, del Rio-Navarro BE, David G, et al. 2006. GSTM1 and GSTP1 gene variants and respiratory health in asthmatic children exposed to ozone. Eur Respir J 28(5):953–959.

Salam MT, Lin PC, Avol EL, Gauderman WJ, Gilliland FD. 2007. Microparticle epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. Thorax 62(12):1050–1057.

Schroer KT, Biagini Myers JM, Ryan PH, LeMasters GK, MacGregor DF, et al. 2009. Associations between multiple environmental exposures and glutathione S-transferase P1 on persistent wheezing in a birth cohort. J Pediatr 154(3):401–408. e1.

Slama R, Grabsch C, Lepeule J, Siroux V, Cyrys J, Sausenthaler S, et al. 2010 Maternal fine particulate matter exposure, polymorphism in xenobiotic-metabolizing genes and offspring birth weight. Reprod Toxicol 30(4):600–612.

Tamer L, Calikoglu M, Ates NA, Yildirim H, Erkan B, Saritas E, et al. 2004. Glutathione S-transferase gene polymorphisms (GSTM1, GSTM1, GSTP1) as increased risk factors for asthma. Respiratory 94(6):493–498.

Tsai CH, Tung KY, Chen CH, Lee YL. 2011. Tumour necrosis factor G-308A polymorphism modifies the effect of home dampness on childhood asthma. Occup Environ Med 68(16):771–776.

Wang R, Henderson SB, Shihi H, Allern RW, Brauer M. 2012. Temporal stability of land use regression models for traffic-related air pollution. Atmos Environ. 64:312–318.

Wu H, Romieu I, Sienra-Monge JJ, del Rio-Navarro BE, Anderson DM, Dunn EW, et al. 2007. Parental smoking modifies the relation between genetic variation in tumor necrosis factor-α (TNF) and childhood asthma. Environ Health Perspect 115:616–622; doi:10.1289/ehp.9740.

Yang IA, Wong KM, Zimmerman PV, Holgate ST, Holloway JW. 2008. Genetic susceptibility to the respiratory effects of air pollution. Thorax 63(6):555–563.