Laparoscopic Partial Gastrectomy for Large Gastric GISTs

Amr Abouzid1 · Ahmed Setit1 · Adel Fathi1 · Mosab Shetiwy1

Accepted: 23 June 2021 / Published online: 10 July 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Background Gastrointestinal stromal tumors (GISTs) are considered the most common mesenchymal tumors in the gastrointestinal tract and the stomach is the most frequently site affected (50–60%). The safety and feasibility of laparoscopic surgery for gastric GISTs of sizes larger than 5 cm remains unclear. It depends on the surgical skills, tumor location, and the learning curve of the surgeons.

Methods Between December 2013 and January 2021, 30 patients diagnosed with gastric GISTs underwent laparoscopic partial gastrectomy. This is a retrospective study done in Surgical Oncology unit, Oncology Center, Mansoura University, Egypt.

Results The most common tumor location was in the greater curvature in (46.7%). The mean tumor size was 9.5 cm (range 5–17 cm). All of the patients underwent laparoscopic partial gastrectomy. Associated splenectomy was done for only one patient. The mean operative time was 152.67 min and the estimated blood loss (EBL) was 139.33 ml. The mean hospital stay was 3.53 days. The mean follow-up period was 32.4 months.

Conclusion Laparoscopic resection for gastric GISTs has become a feasible method. Patients with large tumors have the same favorable outcomes as small tumors. Large-sized GISTs may receive neoadjuvant therapy to downstage the disease and make it amenable for laparoscopic resection.

Keywords Gastrointestinal stromal tumors · Laparoscopic gastrectomy · Gastric tumors

Introduction
Gastrointestinal stromal tumors (GISTs) are considered the most common mesenchymal tumors in the gastrointestinal tract [1] and the stomach is the most frequently site affected (50–60%), followed by the small intestines (20–30%) and rectum (10%) [2]. GISTs originates from interstitial cells of Cajal, which are implicated in the regulation of gut peristalsis [3]. Active mutations of KIT or platelet-derived growth factor receptor alpha (PDGFRA) gene are leading to uncontrolled cell proliferation by continuous tyrosine kinase activity [4]. They are ranged clinically, from small, localized, slowly-growing lesions to very aggressive tumors with high metastatic potentials [5]. Treatment of early tumors includes surgical removal with safety margins from the surrounding healthy tissue [6]. Removal of the regional lymphatic tissue is not indicated, as lymph node metastasis is rarely observed [7].

In the last three decades, laparoscopy use in surgical oncology has gained much popularity in the treatment of both benign and malignant tumors. Laparoscopic resection of a gastric GIST was first done in 1992 [8]. Several studies and meta-analyses have shown that laparoscopic treatment for gastric GISTs is a safe and effective method with less blood loss, less morbidity, and early recovery [9]. The main obstacles to perform minimally invasive resection of gastric GISTs include tumor size larger than 5 cm, invasion into adjacent vital organs, and certain locations such as gastroesophageal junction [10]. Most cohort studies focused on laparoscopic surgery for smaller gastric GISTs; few have been designed for large-sized GISTs (> 5 cm) [11].

The safety and feasibility of laparoscopic surgery for gastric GISTs sized > 5 cm remains unclear. It depends on the surgical skills, tumor location, and the learning curve of the surgeons [12]. Few Asian studies reported that laparoscopic resection is superior to open surgery for gastric GIST. However, most of these studies were conducted in patients with lower BMI, compared to the Western population. Our study...
aims to assess the feasibility and efficacy of laparoscopic surgery in patients with gastric GISTs and its application for large-sized tumors.

Patient and Methods

Study Design

This is a retrospective study done in the Surgical Oncology Unit, Oncology Center, Mansoura University, Egypt. After obtaining approval from the Institutional Review Board (IRB) of Faculty of Medicine, Mansoura University code (R.21.03.1266), 30 patients with gastric GISTs were enrolled in this study between December 2013 and January 2021. Patients were diagnosed by Computerized Tomography (CT) of the chest and abdomen, endoluminal ultrasound (EUS) with fine needle aspiration biopsy. Patient with sizable GISTs not amenable to laparoscopic resection received neoadjuvant tyrosine kinase inhibitors to downsize the tumor. Patients with metastatic GISTs were excluded from this study. Informed consent was obtained from all patients before inclusion in this study. Laparoscopic partial gastrectomy was performed without lymphadenectomy. The resected specimens were sent for pathological examination and assessment of the free surgical margins. High-risk tumors with aggressive criteria of recurrence received adjuvant imatinib according to the NCCN Guidelines.

Procedures

All patients were operated in the supine position with their legs apart (French position). A 12-mm infraumbilical trocar was placed for the camera and 2 additional ports were used (working ports) and one additional 12-mm trocar was used for liver retraction especially in lesser curvature tumors. The tumor location was identified by mobilization and dissection of the stomach away from any adhesion (Fig. 1a). Traction was applied on the omentum surrounding the tumor or the stomach wall to avoid tumor spillage (Fig. 1b). Two intracorporeal stay sutures for traction on the proximal and distal attachments of the tumor were sometimes used (Fig. 1c).

An articulating laparoscopic linear stapler (Echelon® flex 60 mm) was used for gastric resection (Fig. 1d). After

Fig. 1 Steps of laparoscopic partial gastrectomy for large gastric GISTs. **a** Dissection of the tumor from the surrounding tissue. **b** Traction on the gastric wall for tumor mobilization. **c** Two intracorporeal stay sutures on the nearby gastric wall for tumor traction. **d** Laparoscopic resection of the gastric GISTs using linear stapler (Echelon® flex 60 mm)
resection intracorporeal seromuscular sutures were placed and the specimen was retrieved by the Endocatch® through extension of the infraumbilical port (Fig. 2).

Study Outcomes

Patient demographics and tumor characteristics, surgical outcomes, postoperative outcomes, and patient’s follow-up were collected and assessed.

Statistical Analysis

Analysis of data was performed using Statistical Package for Scientific Studies (SPSS) v.26 for MacOS v11.3. Numerical data was expressed as means ± standard deviation (SD). The Kaplan–Meier method was used to estimate the disease-free survival (DFS).

Results

Study Population

Between December 2013 and January 2021, 30 patients with gastric GISTs underwent laparoscopic partial gastrectomy in the Oncology Center, Mansoura University. The mean age was 53.67 years, and the mean BMI was 32.50 kg/m² (Table 1). Most patients were male (56.7%) and had ASA score I (93.3%). DM, hypertension, and liver disease were the common comorbidities with 10% each. Half of the patients in this study complained from dyspepsia (50%). The mean preoperative tumor size was 9.50 cm (range 5–17 cm). Eleven patients have received neoadjuvant imatinib and the mean tumor size after neoadjuvant treatment was 8.8 cm (range 6–14 cm).

![Fig. 2 Delivery of the mass within the Endocatch® through the extended infraumbilical port](image)

Table 1 Baseline characteristics of the patients who underwent laparoscopic partial gastrectomy for large gastric GISTs
Patients, n = 30 (%)
Age, years (mean ± SD)
BMI, kg/m² (mean ± SD)
ASA score
I
II
Gender
Male
Female
Comorbidities
None
DM
HTN
Hepatic
Combined
Complaint
Asymptomatic (incidental)
Dyspepsia
Bleeding
Neoadjuvant treatment
No
Yes
Tumor size at diagnosis, cm; mean (range)
Tumor size after neoadjuvant imatinib, cm; mean (range)

The bold value was the tumor sizes after neoadjuvant treatment. The bold also used for abbreviation

Intraoperative Parameters

The operative details are shown in Table 2. The commonest tumor location was in the greater curvature in 46.7%. All of
the patient underwent laparoscopic partial gastrectomy and associated splenectomy was needed in only one patient with tumor infiltrating the splenic hilum. There was no conversion to laparotomy. The mean operative time was 152.67 min and the estimated blood loss (EBL) was 139.33 ml. Blood transfusion was needed in one patient and there was no intraoperative complication or intrabdominal tumor rupture.

Postoperative Outcome

In total of 30 patients, two patients had grade II postoperative morbidities (according to Clavien and Dindo classification) requiring blood transfusion due to anemia (Table 3).

Table 2 Surgical characteristics of patients who underwent laparoscopic partial gastrectomy for large gastric GISTs	Patients, n = 30 (%)
Tumor location	
Cardia	7 (23.3%)
Lesser curvature	7 (23.3%)
Greater curvature	14 (46.7%)
Antrum	2 (6.7%)
Extent of gastrectomy	
Partial gastrectomy	29 (96.7%)
Partial gastrectomy and splenectomy	1 (3.3%)
Conversion rate	0 (0%)
Operation time (min; mean ± SD)	152.67 ± 56.213
EBL (ml; mean ± SD)	139.33 ± 58.128
Blood transfusion	
No	29 (96.7%)
Yes	1 (3.3%)
Operative complications	
No	30 (100%)

Histopathological Outcomes

The common pathological tumor size was (5–10 cm) in (66.7%), while four patients (13.3%) had a tumor size larger than 10 cm. The largest tumor size was 13 cm (Table 4). Spindle cell tumors were the commonest morphological type (63.3%) with low mitotic index in the majority of patients (83.3%). Tumor necrosis was found in only three patients (10%). Immunohistochemical markers (CD117, CD34, DOG1) were reported positive in 96.7%, 93.3%, and 100%, respectively. According to

Table 4 Histopathological characteristics of the patients who underwent laparoscopic partial gastrectomy for large gastric GISTs	Patients, n = 30 (%)
Tumor size	
≤2 cm	0 (0%)
2–5 cm	6 (20%)
5–10 cm	20 (66.7%)
>10 cm	4 (13.3%)
Tumor morphology	
Spindle	19 (63.3%)
Epithelioid	3 (10%)
Mixed	7 (23.3%)
Mitotic index per 50 HPF	
Low (<5/5 mm)	25 (83.3%)
High (>5/5 mm)	5 (16.7%)
Necrosis	
No	27 (90%)
Yes	3 (10%)
CD117	
Negative	1 (3.3%)
Positive	29 (96.7%)
CD34	
Negative	2 (6.7%)
Positive	28 (93.3%)
DOG1	
Positive	30 (100%)
NIH risk	
Very low	0 (0%)
Low	7 (23.3%)
Intermediate	16 (53.3%)
High	7 (23.3%)

NIH National Institute of Health, *HPF* high-power field
Follow-up data were summarized in Table 5. The mean follow-up period was 32.4 months. Postoperative (adjuvant) therapy with imatinib was administered in 23 (76.7%) patients; ten of them received neoadjuvant treatment. The mean duration of adjuvant treatment was 20.78 months. The disease-free survival (DFS) was 32.13 months (Fig. 3). Local recurrence developed in one patient (3.3%) with hepatic and peritoneal disease after 48 months of the primary diagnosis.

Table 5 Follow-up data of the patients who underwent laparoscopic partial gastrectomy for large gastric GISTs

Patients, n = 30 (%)	
Adjuvant treatment	
No	7 (23.3%)
Yes	23 (76.7%)
Adjuvant duration (months; mean ± SD)	20.78 ± 14.541
Overall survival (months; mean ± SD)	32.40 ± 22.269
Disease-free survival (months; mean ± SD)	32.13 ± 22.023
Recurrence	
No	29 (96.7%)
Yes	1 (3.3%)

Discussion

This study demonstrates the feasibility of laparoscopic partial gastrectomy for gastric GISTs. The large-sized GISTs that are not feasible for laparoscopic resection or may be associated with multi-organ resection may receive neoadjuvant therapy to be downsized, thus making them suitable for resection and avoid intrabdominal spillage and dissemination.

Laparoscopic resection of gastric GISTs has been recently adopted, because the prognosis of GISTs depends mainly on the tumor size and morphological features rather than the wide margins of resection [13].

Laparoscopic surgeries have many advantages over the traditional open surgery. Laparoscopy reduces the intraoperative blood loss, postoperative pain, and allows the early recovery of the patient with the oral intake and shorten the hospital stay [14].

The European Society for Medical Oncology (ESMO) indicated laparoscopic resection of small-sized GISTs. The treatment of large-sized tumors with minimally invasive surgeries is not preferred due to the risk of intra-operative spillage [15], which is considered a significant factor for tumor recurrence.

Recent data from the National Comprehensive Cancer Network (NCCN) have indicated laparoscopic or laparoscopic-assisted resection of gastric GISTs larger than 5 cm [16]. Nowadays, there is no cutoff tumor size for safe laparoscopic surgery. It is suggested to be around 4–5 cm for safe laparoscopic resection especially in non-experienced centers.
In a study by Melstrom et al. [17], the mean tumor size in 17 patients was 4.3 cm (range 1.5–9.1 cm). In the current study, the mean tumor size was 9.50 cm (range 5–17 cm) and all patients underwent total laparoscopic resection without single intra-operative tumor rupture.

Many authors demonstrated their experience of safe laparoscopic resection of large-sized GISTs > 5 cm without any complications [12]. Large tumor resection requires longer operative times, and may be associated with more significant blood loss. Tumor size is not the only difficulty with laparoscopic resection of gastric GISTs, but also the tumor location as in the gastroesophageal junction, the gastric antrum, or posterior gastric wall. The most common tumor location in our study was in the greater curvature of the stomach (46.7%), which made it easier for laparoscopic resection.

Bischof et al. [18] reported a mean operative time of 157 min which is comparable to that in our study (153 min). Roggin and Posner presented results from five reports on the laparoscopic resection of GISTs and the conversion rates ranged from 0 to 6.5% [19]. However, we reported no intra-operative complications nor conversion into laparotomy in our study.

Oral intake was started in most of the patients in our study in POD 1; thus, the mean hospital stay was 3.53 days. In the study by Chi et al., oral intake was 3.5 days but the mean hospital stay was 6.1 days [20]. In our series, patients had a smooth postoperative course apart from blood transfusion for two cases due to anemia and another had pneumothorax necessitating chest tube insertion. We had no postoperative mortality in our study. Gertsen et al. [21] reported that 6 patients (27%) had postoperative morbidity. One patient was re-operated for anastomotic leakage. Two patients developed pneumonia, one had postoperative cardiac complications, and another had urologic complication. There was no postoperative mortality.

Most of the tumors in our study were pathologically large-sized (5 to 10 cm) and only four patients had a tumor size more than 10 cm. The largest tumor size was 13 cm (2 patients) and the mean tumor size was 7.2 cm. All patients had total laparoscopic resection with delivery of specimens through extension of the infraumbilical port without the need for a mini-laparotomy. Immunohistochemical examination was done for all patients revealing positive CD117, CD34, and DOG1 for 96.7%, 93.3%, and 100% patients, respectively, and most of the tumors were of intermediate risk. In another study, the tumor size was 4 cm and the largest was 5.5 cm and the immunohistochemical examination was CD 117 (97.1%), CD 34 (70.6%), and DOG1 (26.5%).

Adjuvant therapy was given to 23 patients, in our study. These patients were with intermediate and high-risk tumor features. Patients were followed up within a mean period of 32.4 months. Clinical and radiological assessment were done. Local recurrence developed in one patient (3.3%) with hepatic and peritoneal disease after 48 months. This patient had a tumor with high-risk features (mitotic index > 5) and received both neoadjuvant and adjuvant therapy. The recurrence rate after laparoscopic resection of gastric GISTs was reported to be ranged from 4.8 to 18% [23].

Another study found no significant difference in terms of disease-free survival and overall survival between the laparoscopic and the open resections for gastric GISTs. In the laparoscopic group, six patients had either local recurrence or distant metastasis and four of these patients died, while, in the open group, ten had either local recurrence or distant metastasis and five of them died. These results indicate that laparoscopic surgery for gastric GISTs has oncologic outcomes similar to that of open surgery [20].

Conclusion

This study demonstrated the feasibility of laparoscopic resection for large gastric GISTs. Patients with large tumors have the same favorable outcomes as small tumors. However, large-sized GISTs may benefit from neoadjuvant therapy making them more amenable to laparoscopic resections.

Author Contribution All authors have made substantial contributions to conceptualization, methodology, validation, formal analysis, investigation, writing original draft, review and editing, visualization, and project administration. All authors have approved the submitted version of the article.

Declarations

Ethics Approval Approval is from the Institutional Review Board (IRB) of Faculty of Medicine, Mansoura University code (R.21.03.1266).

Conflicts of Interest The authors declare no competing interests.

References

1. Koh YX, Chok AY, Zheng HL, Tan CS, Chow PK, Wong WK, Goh BK. A systematic review and meta-analysis comparing laparoscopic versus open gastric resections for gastrointestinal stromal tumors of the stomach. Ann Surg Oncol. 2013;20(11):3549–60.
2. DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg. 2000;231(1):51.
3. Nishida T, Hirota S. Invited reviews—biological and clinical review of stromal tumors in the gastrointestinal tract. Histol Histopathol. 2000;15(4):1293–302.
4. Shinomura Y, Kinoshita K, Tsutsui S, Hirota S. Pathophysiology, diagnosis, and treatment of gastrointestinal stromal tumors. J Gastroenterol. 2005;40(8):775–80.
5. Wałędziak M, Różańska-Wałędziak A, Kowalewski PK, Janik MR, Bragoszewski J, Paśniak K. Bariatric surgery and incidental gastrointestinal stromal tumors—a single-center study: VSJ Competition, 1st place. Videosurgery and Other Minimally Invasive Techniques. 2017;12(3):325.

6. Zhao X, Yue C. Gastrointestinal stromal tumor. J Gastrointest Oncol. 2012;3(3):189.

7. Sicklick JK, Lopez NE. Optimizing surgical and imatinib therapy for the treatment of gastrointestinal stromal tumors. J Gastrointest Surg. 2013;17(11):1997–2006.

8. Łukaszczyk JJ, Preletz RJ Jr. Laparoscopic resection of benign stromal tumor of the stomach. J Laparoendosc Surg. 1992;2(6):331–4.

9. Goh BK, Chow PK, Chok AY, Chan WH, Chung YFA, Ong HS, Wong WK. Impact of the introduction of laparoscopic wedge resection as a surgical option for suspected small/medium-sized gastrointestinal stromal tumors of the stomach on perioperative and oncologic outcomes. World J Surg. 2010;34(8):1847–52.

10. De Vogelaere K, Van Loo I, Peters O, Hoorens A, Haentjens P, Delvaux G. Laparoscopic resection of gastric gastrointestinal stromal tumors (GIST) is safe and effective, irrespective of tumor size. Surg Endosc. 2012;26(8):2339–45.

11. Lin J, Huang C, Zheng C, Li P, Xie J, Wang J, Lu J. Laparoscopic versus open gastric resection for larger than 5 cm primary gastric gastrointestinal stromal tumors (GIST): a size-matched comparison. Surg Endosc. 2014;28(9):2577–83.

12. Khoo CY, Goh BK, Eng AK, Chan WH, Teo MC, Chung AY, Wong WK. Laparoscopic wedge resection for suspected large (≥5 cm) gastric gastrointestinal stromal tumors. Surg Endosc. 2017;31(5):2271–9.

13. Dematteo RP, Heinrich MC, Wa’el MER, Demetri G. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol. 2002;33(5):466–77.

14. Pędziwiat M, Matlok M, Kisieleuski M, Major P, Migaczewski M, Budziński P, Budzińska A. Enhanced recovery (ERAS) protocol in patients undergoing laparoscopic total gastrectomy. Videosurgery and Other Minimally Invasive Techniques. 2014;9(2):252.

15. ESMO/European Sarcoma Network Working Group. Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology: Official J European Soc Med Oncol. 2014;25:i21–i36.

16. Demetri GD, Von Mehren M, Antonescu CR, DeMatteo RP, Ganjo KN, Maki RG, Wayne JD. NCCN Task Force report: update on the management of patients with gastrointestinal stromal tumors. J Nat Comprcancer Net. 2010;8(Suppl_2), S-1.

17. Melstrom LG, Phillips JD, Bentrem DJ, Wayne JD. Laparoscopic versus open resection of gastric gastrointestinal stromal tumors. Am J Clin Oncol. 2012;35(5):451–4.

18. Bischof DA, Kim Y, Dodson R, Jimenez MC, Behman R, Cocieru A, Pawlik TM. Open versus minimally invasive resection of gastric GIST: a multi-institutional analysis of short- and long-term outcomes. Ann Surg Oncol. 2014;21(9):2941–8.

19. Roggin KK, Posner MC. Modern treatment of gastric gastrointestinal stromal tumors. World J Gastroenterol: WJG. 2012;18(46):6720.

20. Melstrom LG, Phillips JD, Bentrem DJ, Wayne JD. Laparoscopic versus open resection for gastric gastrointestinal stromal tumors (GISTs): a size–location-matched case–control study. World J Surg. 2017;41(9):2345–52.

21. Gertsen EC, van Boxel GI, Brosens LA, Ruurda JP, van Hillegersberg R. Minimally invasive resection of large gastric gastrointestinal stromal tumors. Dig Surg. 2020;37(6):441–6.

22. Stanek M, Pisanska M, Budzyńska D, Rzepa A, Pędziwiat M, Major P, Budziński A. Gastric gastrointestinal stromal tumors: clinical features and short- and long-term outcomes of laparoscopic resection. Videosurgery and Other Minimally Invasive Techniques. 2019;14(2):176.

23. Cai JQ, Chen K, Mou YP, Pan Y, Xu XW, Zhou YC, Huang CJ. Laparoscopic versus open wedge resection for gastrointestinal stromal tumors of the stomach: a single-center 8-year retrospective cohort study of 156 patients with long-term follow-up. BMC Surg. 2015;15(1):1–10.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.