Chemical Compositions of Essential Oils and Antimicrobial Activity of *Hyptis suaveolens* (L.) Poit. (Lamiaceae) from Vietnam

Nguyen Thanh Chung¹, Le Thi Huong²*, Do Ngoc Dai³ and Isiaka Ajani Ogunwande⁴*

¹Vietnam Academy of Science and Technology, Graduate University of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 1000, Vietnam.
²School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City, Nghe An Province, Vietnam.
³Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, 51-Ly Tu Trong, Vinh City 4300, Nghe An Province, Vietnam.
⁴Foresight Institute of Research and Translation, Ibadan, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors LTH and DND designed the study and wrote the protocol. Author IAO performed the statistical analysis while author NTC managed the analysis of the study. Author IAO wrote the first and final drafts of the manuscript. Authors IAO and DND managed the literature searches. All authors read and approved the final manuscript.

ABSTRACT

Aims: This present study described the chemical constituents and antimicrobial activity of essential oils hydrodistilled from the leaves and flowers of *Hyptis suaveolens* (L.) Poit.

Study Design: This research was designed to accommodate different stages such as collection of authentic sample of *Hyptis suaveolens*, obtain essential oil by hydrodistillation, chemical analysis of the oil samples by gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC/MS) and screening of the essential oils for antimicrobial activity.
1. INTRODUCTION

Plants are part of our daily life and their essential oils have been extracted from over 3000 different species that have domestic, industrial and medicinal uses [1]. Essential oils as part of natural products are well known for their various biological and pharmacological effects. These activities are normally related to the chemical substances mostly terpenes and non-terpenes present in the essential oils [2]. In recent years, greater attention has been paid to the screening of antimicrobial activity from essential oil as source of developing new antimicrobial agents to combat microbial resistance. Review articles describing the antimicrobial potentials of essentia[3]. The potency of essential oils derived from plants grown world over including Vietnam as antimicrobial agents have been documented. For example, in Vietnam essential oils from the rhizome oil of *Amomum rubidium* Lamxay & N. S. Lý exhibited antimicrobial activity against *Escherichia coli* (ATCC 25922) and *Fusarium oxysporum* (ATCC 48112) with MIC of 50 µg/mL [4]. The antimicrobial activity of essential oils from the leaf [5] and rhizome [6] of *Zingiber zerumbet* (L.), Smith, the leaf and wood of *Taxus chinensis* (Rehder & EH Wilson) Rehder [7], the rhizomes of *Alpinia tonkinensis* Gagnep and *Alpinia globosa* Hour [8] and the pseudo-stem of *Zingiber castaneum* Škorničk. & Q.B. [9] were recently evaluated and reported.

Hyptis suaveolens (L.) Poit is one of the important traditional medicinal plants belonging to family Lamiaceae. It is commonly called Bush mint, Bush tea, Pignut, or Chan. The plant is native to the tropics of America and now considered as a weed worldwide. *H. suaveolens* is a fast-growing perennial and aromatic herb, 0.4-2 m tall with hairy stems and leaves, having branches and usually woody at the base. The leaves are weak, oval in outline, tip and broadly pointed [10]. Phytochemical analysis of the plant led to the characterization of quercetin 3-O-β-D-glucopyranoside, apigenin, sorbilin, quercetin, kaempferol, genkwanin, rosmarinic acid, methyl rosmarinate, podophyllotoxin and picropodophyllotoxin [11].

The chemical constituents of essential oil from *H. suaveolens* have been reported from a different origin. However, the oils from *H. suaveolens* differ in composition according to the geographic origin (genotype) of the plants. Different terpene compounds have been described from the essential oils analyzed fromm various parts of *H. suaveolens*. There are oil samples in which caryophyllene features as the main component differ in composition according to the geographic origin.

Chung et al.; EJMP, 31(8): 114-123, 2020; Article no.EJMP.56800

Keywords: *Hyptis suaveolens; leaves; flowers; essential oil; terpenes; antimicrobial activity.*
The constituents of a sample oil of *H. suaveolens* from Nigeria [13] were Caryophyllene (20.643%) and sabinene (16.711%). The oil composition of immature leaf of *H. suaveolens* [14] revealed the abundance of β-caryophyllene (22.3%), α-phellandrene (10.6%) and Caryophyllene oxide (10.3%). β-Caryophyllene (34.65%) and germacrene-D (10.32%) were the main compounds from Indonesia sample [15]. A sample of *H. suaveolens* described from India [16] contains β-Caryophyllene (25.18%) and sabinene (14.68%).

There are some compositional pattern in which caryophyllene, although present, was not the predominant constituents. The stem oil of *H. suaveolens* from Nigeria [17] was dominated by β-pinene (20.9%), estragole (16.3%) and β-caryophyllene (11.1%). The main components of sample from Brazil [18] were identified as sabinene (7.3-31.3%), eucalyptol (14.0-24.6%), β-caryophyllene (6.9-12.7%), 1,8-cineole (11.5%) and β-phellandrene (10.2%). The major identified compounds from Benin Republic [19] were 1,8-cineole (14.0%) and β-caryophyllene (9.8%). The *H. suaveolens* oil from Italy contains sabinene (34%), β-caryophyllene (11.2%), terpinolene (10.7%) [20].

Essential oils from *H. suaveolens* containing low contents or near absence of caryophyllene have been defined. The fruits oil of *H. suaveolens* from Nigeria [17] contained high amounts of 1, 8-cineole (29.5%) and fenchone (17.2%). Previously, the composition of essential oil the aerial parts of *H. suaveolens* from Vietnam were eugenol (68.2%) and germacrene D (11.0%) were the major constituents of the oil [21]. The main constituents of essential oils obtained from the leaves and flowers of *H. suaveolens* collected from Venezuela [22] were 1,8-cineole (19.1% leaves, flowers 13.3%), fenchone (18.5% leaves, flowers 16.1%), bicyclogermacrene (12.7% leaves, flowers 18.8%), D-germacrene (6.3% leaves, flowers 10.0%). Another analysis reported the abundance of β-elemene (39.71%), γ-elemene (8.82%) and bicyclogermacrene (8.52%) in the essential oil of *H. suaveolens* [23]. The sample from Brazil (24) contained low amount of β-caryophyllene (4.69%) and high content of eucalyptol (47.64%). There are several other minor constituents which differ from one another depending on the origin of the sample being analyzed.

Essential oils from *H. suaveolens* have previously displayed antimicrobial activities against a number of pathogens including *Mucor* sp. [12], *Aspergillus* sp. [24], among others. The essential oil from Venezuela displayed antibacterial activity against *Escherichia coli* ATCC 25922, *Klebsiella pneumoniae* ATCC 23357, and *Salmonella typhi* with minimum inhibitory concentration (MIC) ranging between 300 μL/mL and 450 μL/mL [22]. The essential oil from the leaves of *H. suaveolens* was effective on *Staphylococcus aureus* Meti-R and *S. aureus* ATCC 25923 with MIC values of 5.37 mg/mL [25]. The essential oil of *H. suaveolens* also showed anti-mycobacterium activity when tested on strain 7H9/ADC with MIC of 3.13% [26]. The MIC range of between 0.5 mL/mm and 0.125 mL/mm were reported for essential oil *H. suaveolens* [23]. Essential oils of *H. suaveolens* showed mortality towards *Trypanosoma congoles* [13], *Tenebroides mauritanicus* [19], *Sitophilus granaries* [20], *Callosobruchus maculatus* [23] and *Anopheles gambiae* [27]. The antioxidant and antimicrobial activities of essential oil from *H. suaveolens* have been reported [28].

Although the chemical constituents of *H. Suaveolens* grown in Vietnam were previously reported, there is no information about the antimicrobial of *H. suaveolens*, analyzed from Vietnam. As part of our ongoing research aimed at the identification of the chemical constituents and biological activities of essential oils from plants grown in Vietnam [4-8] aimed at sourcing for potentials chemicals for control of diseases, we obtained essential oils from leaf and flowers of *H. suaveolens*, analysed the compounds present therein and examined the antimicrobial activity.

2. MATERIALS AND METHODS

2.1 The Leaves and Flowers of *H. suaveolens*

The leaves and flowers of *H. suaveolens* used for this study were gotten from Đông Văn commune, Pù Hoạt nature reserve, Vietnam. The samples were collected in the month of December 2018. About 1.5 kg of each of the leaf and flower samples was collected from the mature plants planted in the park. The identification of the sample was done by Dr. Đai DN of the Faculty of Agriculture, Nghe An College of Economics, Vinh City, Vietnam. For the future reference, a voucher specimen coded NTC 742 was deposited at the Botany Museum, Nghe An College of Economics, Vietnam.
2.2 Hydrodistillation of the Essential Oils from the Leaves and Flowers of *H. suaveolens*

To obtain essential oil, the leaves and flowers of *H. suaveolens* were air-dried under the laboratory for few days. Thereafter the samples were grinded to reduce the surface area for easy volatilization of the oil. For the hydrodistillation experiment, 1.2 kg of each of the leaf and flower was subjected to hydrodistillation according to specification [29], using a Clevenger-type apparatus. The samples were carefully packed inside a 5 L flask to which distilled water was added and ensured that the sample was completely covered. The time used for distillation was 3 h and at normal pressure. The essential oil was stored in weighed sample bottle and kept refrigerated (4°C) until the time of chemical and biological analyses. The hydrodistillation process was done in triplicates.

2.3 Chemical Analysis of Essential Oils

The techniques of gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS) were used to analyze the constituents of the essential oils. In the GC analysis, an HP 7890A Plus Gas chromatograph (Agilent Technologies) having a flame ionization detector (FID) and fitted with HP-5MS column of dimension 30 m x 0.25 mm and a film thickness of 0.25 µm was used. The analytical conditions used for the GC include H2 as the carrier gas at a flow rate of 1 mL/min, injector temperature of 250°C and a detector temperature of 260°C. The column was temperature programmed from 60°C (held for 2 min) to 220°C (10 min hold isothermally) at 4°C/min. Essential oil (1.0 µL) was injected by splitting at ratio of 10:1 using inlet pressure of 6.1 kPa. Quantification was done by external standard method using calibration curves generated by running GC analysis of representative compounds.

The GC/MS analysis was conducted with the same GC used above interfaced with a mass spectrometer HP 5973 MSD. The GC conditions were as described above except that He (1 mL/min) was used as the carrier gas. The mass spectrometer was operated by using ionization voltage of 70eV and emission current of 40 mA. The mass spectral was obtained with acquisition scan mass range of 35-350 amu and at a sampling rate of 1.0 scan/s.

The constituents of the essential oils were identified from the GC/MS spectral obtained from *H. suaveolens*. This was made possible by comparison of their retention indices (RI) with homologous series of n-alkanes. For few of the constituents, the method of co-injection with known compounds which were run with the same GC conditions was employed. The identity of the mass fragmentation patterns of each compound was checked and compared with known essential oil composition [30]. Moreover, the fragmentation patterns were also compared with literature data as described in previous studies [4-8].

2.4 Screening of the Essential Oils for Antimicrobial Activity

The antimicrobial activity of the essential oils of the leaves and flowers of *H. suaveolens* was evaluated using three strains of Gram-positive test bacteria, *Enterococcus faecalis* (ATCC299212), *Staphylococcus aureus* (ATCC25923), *Bacillus cereus* (ATCC14579), three strains of Gram-negative test bacteria, *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC27853), *Salmonella enterica* (ATCC13076) and one strain of yeast, *Candida albicans* (ATCC 10231). The minimum inhibitory concentration (MIC) and median inhibitory concentration (IC50) values were measured by the microdilution broth susceptibility assay [31] by preparing the stock solutions of the oils in dimethylsulfoxide (DMSO). Dilution series were prepared from 16.384 to 2 µg/mL (2^4 to 2^11), 2^10, 2^8, 2^7, 2^6, 2^5, 2^4 and 2^3 µg/mL) in sterile distilled water in micro-test tubes from where they were transferred to 96-well microtiter plates. Bacteria grown in double-strength Mueller-Hinton broth or double-strength tryptic soy broth, and fungi grown in double-strength Sabouraud dextrose broth were standardized to 5 × 10^5 and 1 × 10^5 CFU/mL, respectively. The last row, containing only the serial dilutions of sample without microorganisms, was used as a positive (no growth) control. Sterile distilled water and medium served as a negative (no antimicrobial agent) control. Streptomycin was used as the standard for antibacterial, while nystatin and cycloheximide were used as standards for antifungal. The plates were incubated for 24 h at 37°C. Afterwards, the MIC values were determined as the lowest concentration of essential oils of the leaf and flowers of *H. suaveolens* which completely inhibited the growth of microorganisms. The IC50 values were determined by the percentage of microorganisms that inhibited the growth based on the turbidity measurement data of EPOCH2C.
RESULTS

The yields of the essential oils were 0.11% and 0.16% (v/w) respectively, calculated on a dry weight basis. Both samples of essential oil were light-yellow coloured. Table 1 depicts the identities of the compounds, percent composition and the retention indices on HP-5MS column. Thirty-six compounds accounting for 92.3% of the oil contents were identified in the leaf oil. Sesquiterpene hydrocarbons (42.6%), oxygenated sesquiterpenes (34.6%) and diterpene (9.9%) were the abundant classes of compounds present in the leaf oil. Monoterpene compounds are less common (ca. 4.4%). The main constituents of the oil were β-caryophyllene (31.1%), caryophyllene oxide (17.6%) and phytol (9.9%). There are sizeable amounts of α-humulene (6.7%), guaia-1,3,8-triene (3.8%), ar-turmeronene (3.3%), β-bisabolene (2.8%) and humulene oxide II (2.1%). Among the forty-six compounds (90.5%) that makes up the flower oil, monoterpene hydrocarbons (22.3%), sesquiterpene hydrocarbons (46.0%), oxygenated sesquiterpenes (11.5%) and diterpenes (9.9%) were representative classes of compounds identified. The major compounds of the flower oil were β-caryophyllene, phytol (9.9%), myrcene (8.7%), α-pinene (8.3%), α-humulene (6.6%).

A comparative analysis of the present study with data reported for the essential oils of H. suaveolens from other parts of the world plants revealed some quantitative and qualitative variations. The abundant of β-caryophyllene in the present leaf and flower oils of H. suaveolens confer similarity with data obtained from samples analyzed from Tanzania [12], Nigeria [13,14], Indonesia [15] and India [16] among others. The present oil samples belong to the group in which β-caryophyllene along with other terpene were the major compounds. However, the compositions of essential oils were different from a previous sample analyzed from Vietnam [21]. The major constituents of the aerial parts of H. suaveolens previously from Vietnam, namely eugenol was conspicuously absent in the present oil samples. In addition, the content of germacrene D in the present investigated flower oil sample was much lower than reported earlier for the aerial part, while germacrene D was not identified in the leaf oil under study. The oil samples of H. suaveolens from Vietnam could be assumed to belong to different chemotypes. The amount and the composition of the bioactive substances may vary among the same or different plant species, and according to different factors such as the extraction methods, the geographic and the growing conditions, the harvest time etc. [32].

3.2 Antimicrobial Activity of the Oil

The results of the antimicrobial study are presented in Table 2. Both essential oils exhibited activity towards the gram-positive pathogens. The essential oil from the leaf oil of H. suaveolens displayed stronger antimicrobial activity against Enterococcus faecalis ATCC299212 (MIC of 16.0 µg/mL), Candida albicans ATCC10231 (MIC of 16.0 µg/mL) and Bacillus cereus ATCC14579 (MIC 32.0 µg/mL respectively). The IC_{50} values of 5.78, 6.78 and 9.35 µg/mL, respectively were recorded by the same organisms. The flower oil on the other hand, exhibited activity towards the same organisms with MIC values of 64.0, 16.0 and 64.0 µg/mL, respectively, while the IC_{50} values were 20.45, 6.78 and 26.78 µg/mL, respectively.

\[
\text{IC}_{50} = \frac{\text{High}_{\text{conc}}}{(\text{High}_{\text{h}} - \text{Low}_{\text{h}}) \times (\text{High}_{\text{conc}} - \text{Low}_{\text{conc}})}
\]

where OD is the optical density, control(−) are the cells with medium but without antimicrobial agent, test agent corresponds to a known concentration of antimicrobial agent, control(+) is the culture medium without cells, High_{conc}/Low_{conc} is the concentration of test agent at high concentration/low concentration and High_{inh}/Low_{inh} is the % inhibition at high concentration/% inhibition at low concentration.

2.4.1 Statistical analysis

The Microsoft excel program 2003 was used to evaluate the differences between mean values obtained for experimental groups. This standard deviation (SD) was calculated as a mean of four independent measurements.
Table 1. Volatile constituents of the leaves and flowers of *H. suaveolens*

Sr. no	Compounds*	RIa	RIb	Leaves	Flowers
1	α-Thujene	930	926	-	0.2
2	α-Pinene	939	932	0.9	8.3
3	Camphene	955	946	0.3	0.5
4	Sabine	978	972	0.5	0.7
5	β-Pinene	984	980	0.6	2.0
6	Myrcene	992	988	0.3	8.7
7	δ-3-Carene	1016	1014	0.2	-
8	α-Cymene	1029	1022	0.8	0.7
9	Limonene	1034	1032	0.3	0.7
10	γ-Terpinene	1063	1060	-	0.2
11	Terpinolene	1094	1089	-	0.3
12	(E)-4,8-Dimethylphene-1,3,7-triene	1118	1118	0.2	0.3
13	Fenchyle acetate	1228	1228	0.2	0.1
14	Bornyl acetate	1294	1292	0.3	0.2
15	δ-Elemene	1348	1346	0.2	0.3
16	α-Copaene	1389	1387	0.2	0.7
17	cis-β-Elemene	1403	1402	0.9	1.1
18	β-Caryophyllene	1438	1437	31.1	33.7
19	Aromadendrene	1457	1457	-	0.2
20	(Z)-β-Farnesene	1461	1461	-	0.1
21	α-Humulene	1471	1470	6.7	6.6
22	ar-Curcumene	1493	1494	0.2	0.1
23	Germacrene D	1499	1498	-	0.8
24	β-Selinene	1505	1506	0.2	0.2
25	(E,E)-Farnesene	1513	1510	-	0.5
26	α-Selinene	1514	1413	0.3	-
27	Bicyclogermacrene	1514	1515	-	0.7
28	β-Bisabolene	1518	1520	2.8	0.5
29	β-Sesquiphellandrene	1534	1534	-	0.1
30	δ-Cadinene	1537	1535	-	0.4
31	(E)-Nerolidol	1571	1572	0.9	0.7
32	Spathulolene	1598	1598	0.8	0.4
33	Caryophyllene oxide	1605	1606	17.6	3.9
34	Guaiol	1612	1612	3.8	-
35	Humulene oxide I	1620	1620	0.3	-
36	Humulene oxide II	1632	1632	2.1	0.4
37	1-epi-Cubenol	1648	1648	1.7	0.4
38	Caryophylla-(3(15),7(14)-dien-6-ol	1659	1660	0.8	0.2
39	α-Cadinol	1673	1675	0.4	0.4
40	ar-Tranenone	1678	1678	3.3	3.4
41	14-Hydroxy-9-epi-(E)-caryophyllene	1692	1690	0.5	-
42	Curcione	1716	1714	0.4	1.2
43	1-Phenyl-hepta-1,3,5-triyn	1744	1746	0.6	-
44	α-Oxobisabolene	1762	1762	0.2	0.1
45	6,10,14-Trimethylpentadecan-2-one	1849	1851	0.8	0.4
46	Isopimara-8,15-diene	2044	2044	-	0.4
47	Manool	2084	2082	-	1.0
48	Abietatriene	2086	2086	-	0.9
49	Heneicosane	2100	2100	-	0.2
50	Abietadiene	2116	2118	-	4.7
51	Phytol	2119	2119	9.9	2.7
52	Abien-8(14),13(15)-diene	2186	2186	-	0.2
Total		92.3	90.5		

Monoterpane hydrocarbons (Sr. No. 1-11) 3.9 22.3
Oxigenated monoterpenes (Sr. No. 13, 14) 0.5 0.3
Sesquiterpane hydrocarbons (Sr. No. 5-30) 42.6 46.0
Oxigenated sesquiterpenes (Sr. No. 31-45) 34.6 11.5
Diterpenes (Sr. No. 46-52) 9.9 9.9
Non-terpenes (Sr. No. 12, 49) 8.6 0.5

* Retention order on HP-5MS column; Retention indices on HP-5 column; Literature retention indices (NIST, 2018); Identification included co-injection with authentic compounds; S/N, Serial Number; * Not identified
However, both essential oils showed moderate activity towards *Staphylococcus aureus* ATCC25923 with MIC of 256.0 µg/mL. The oil samples, however, did not inhibit the growth of gram-negative bacteria, *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC27853) and *Salmonella enterica* (ATCC13076). The antimicrobial activity of the present oil samples competes favorably with data reported for *H. suaveolens* essential oil samples from other parts of the world screened for their activities through inhibition of the growth of some tested microorganisms.

The antimicrobial activities of essential oils of some *H. suaveolens* species were reported previously. A notable observation was that the oils under investigation were ineffective against the strain of *E. coli* ATCC 25922 contrary to the data reported for Venezuela sample [22]. In addition, the oil samples displayed a lesser activity against *S. aureus* ATCC 25923 compared with sample from Benin Republic [25] tested for antimicrobial activity.

The observed antimicrobial activities of essential oils from *H. suaveolens* are in tandem with the antimicrobial activity of essential oils from some other plants grown in Vietnam. The leaf and flower oils of *H. suaveolens* and the leaf and wood of oils *T. chinensis* exhibited similar action against *Enterococcus faecalis* ATCC299212. The leaf oil of *T. chinensis* and the flower oil of *H. suaveolens* showed similar MIC (64.0 µg/mL) towards *Bacillus cereus* ATCC 14579, but lesser than the activity of pseudo-stem oil of *Z. zerumbet* with MIC of 50.0 µg/mL [4]. The investigated oil samples displayed lesser activity towards strains of *Staphylococcus* when compared with wood oil of *T. chinensis* [7] and the rhizome oils of *A. globosa* and *A. tonkinensis* [8]. The oils of *H. suaveolens* were more potent towards *C. albicans* ATCC10231 than the other mentioned essential oils. However, essential oils from the rhizome *A. rubidium* [4], the wood of *T. chinensis* [7] as well the rhizomes of *A. globosa* and *A. tonkinensis* [8] were more effective against *Escherichia coli* (ATCC 25922) when compared with *H. suaveolens* which showed no activity. In addition, the pseudo-stem oil of *Z. castaneum* [9] was also more potent towards *P. aeruginosa* ATCC 25923 than the oils of *H. suaveolens*. Essential oils analyzed from Vietnam have also displayed antimicrobial activity towards a number of pathogens. The rhizome oil of *A. rubidium* exhibited antimicrobial activity against *Fusarium oxysporum* (ATCC 48112) with MIC of 50 µg/mL [4]. The leaf [5] and rhizome [6] oils of *Z. zerumbet* both inhibited the growth of *Aspergillus niger* (ATCC 9763) with MIC of 50.0 µg/mL [5]. The rhizome essential oil of *A. tonkinensis* also inhibited the growth of *Saccharomyces cerevisiae* ATCC 16404 with MIC value of 25.0 µg/mL, while both *A. globosa* and *A. tonkinensis* essential oils displayed antimicrobial activity towards *Staphylococcus aureus* subsp. *aureus* ATCC 11632 and *Fusarium oxysporum* ATCC 48112 with MIC value of 50.0 µg/mL [8]. The pseudo-stem oil of *Z. castaneum* showed antimicrobial activity against *A. niger* ATCC 9763 and *F. oxysporum* ATCC 48112 with MIC values of 12.5 µg/mL and 50 µg/mL respectively [9]. In summary plant products especially essential oils from Vietnam have proven to be sources of antimicrobial agents. These essential oils can exploited further and developed as antimicrobial agents.

The qualitative and quantitative variations of chemical constituents of essential oils do greatly contribute to the variations in the activity against different species of microorganisms. The antimicrobial activity of an essential oil on may be due to the main compounds of the essential oils or a synergy between some major and minor compounds.

Some compounds previously and reported for their antimicrobial efficiency were identified in the essential oils of *H. suaveolens* investigated in this study. Such compounds include α-pinene, β-pinene, sabine, 1,8-cineole, linalool, terpinen-4-ol, β-caryophyllene, bicyclogermacrene, germacrene D, (E)-nerolidol, phytol e.t.c were previously reported to inhibit significantly the growth and cell viability of

Table 2. Antimicrobial activity of *H. suaveolens* leaves and flowers oils

Microorganisms	MIC (µg/mL)	IC₅₀ (µg/mL)		
	Leaves	Flowers	Leaves	Flowers
E. faecalis ATCC299212	16.0 ± 0.00	64.0 ± 0.10	5.78 ± 0.00	20.45 ± 0.00
S. aureus ATCC25923	256.0 ± 0.00	256.0 ± 0.00	68.98 ± 0.00	100.56 ± 0.50
B. cereus ATCC14579	32.0 ± 0.00	64.0 ± 0.50	9.35 ± 0.50	26.78 ± 0.50
C. albicans ATCC10231	16.0 ± 0.00	64.0 ± 1.00	6.78 ± 0.50	6.78 ± 0.10

Means ± SD (n = 3)

The leaf oil of *H. suaveolens* is more effective against *Escherichia coli* (ATCC 25922) when compared with *H. suaveolens* which showed no activity. In addition, the pseudo-stem oil of *Z. castaneum* [9] was also more potent towards *P. aeruginosa* ATCC 25923 than the oils of *H. suaveolens*. Essential oils analyzed from Vietnam have also displayed antimicrobial activity towards a number of pathogens. The rhizome oil of *A. rubidium* exhibited antimicrobial activity against *Fusarium oxysporum* (ATCC 48112) with MIC of 50 µg/mL [4]. The leaf [5] and rhizome [6] oils of *Z. zerumbet* both inhibited the growth of *Aspergillus niger* (ATCC 9763) with MIC of 50.0 µg/mL [5]. The rhizome essential oil of *A. tonkinensis* also inhibited the growth of *Saccharomyces cerevisiae* ATCC 16404 with MIC value of 25.0 µg/mL, while both *A. globosa* and *A. tonkinensis* essential oils displayed antimicrobial activity towards *Staphylococcus aureus* subsp. *aureus* ATCC 11632 and *Fusarium oxysporum* ATCC 48112 with MIC value of 50.0 µg/mL [8]. The pseudo-stem oil of *Z. castaneum* showed antimicrobial activity against *A. niger* ATCC 9763 and *F. oxysporum* ATCC 48112 with MIC values of 12.5 µg/mL and 50 µg/mL respectively [9]. In summary plant products especially essential oils from Vietnam have proven to be sources of antimicrobial agents. These essential oils can exploited further and developed as antimicrobial agents.

The qualitative and quantitative variations of chemical constituents of essential oils do greatly contribute to the variations in the activity against different species of microorganisms. The antimicrobial activity of an essential oil on may be due to the main compounds of the essential oils or a synergy between some major and minor compounds.

Some compounds previously and reported for their antimicrobial efficiency were identified in the essential oils of *H. suaveolens* investigated in this study. Such compounds include α-pinene, β-pinene, sabine, 1,8-cineole, linalool, terpinen-4-ol, β-caryophyllene, bicyclogermacrene, germacrene D, (E)-nerolidol, phytol e.t.c were previously reported to inhibit significantly the growth and cell viability of
potential infectious of broad spectrum microorganisms [33]. The antibacterial activity of β-caryophyllene against S. aureus was reported recently [34]. Caryophyllene oxide [35] and phytol [36] are known for their biological potentials and were reported to be responsible for the antimicrobial activity of some essential oils.

4. CONCLUSION

The data presented herein showed that the compositions of essential oils of the leaf and lower of H. suaveolens were dominated by β-caryophyllene, caryophyllene oxide, phytol, myrcene and α-humulene. Both essential oils sample displayed activity towards E. faecalis ATCC299212, B. cereus ATCC14579, C. albicans ATCC10231 and S. aureus ATCC25923 with MIC comparable to other results. Conclusively, the study revealed the antimicrobial potentials of essential oils hydrodistilled from the leaf and flower of H. suaveolens.

DISCLAIMER

The sample of H. suaveolens used in this study, instruments and other chemicals used to achieve the desired results are common and predominantly use products in the area of natural products and essential oil research. These are readily available in Vietnam. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Adorjan S, Buchbauer G. Biological properties of essential oils: An updated review. Flavour and Fragrance Journal. 2010;25(6): 407-426.
2. Elshafie E, Camele I. An overview of the biological effects of some Mediterranean essential oils on human health. BioMedical Research International; 2017. (Article ID 9268468)
3. DOI: doi.org/10.1155/2017/9268468
4. Huong LT, Viet NT, Sam LN, Giang CN, Hung NH, Dai DN, Ogunwande IA. Antimicrobial activity of essential oil from the rhizomes of Amomum rubidium growing in Vietnam. American Journal of Essential Oil and Natural Products. 2019; 7(4):11-14.
5. Huong LT, Chinh HV, Dai DN, Eresanya IO, Ogunwande IA. Antimicrobial activity and constituents of leaf and pseudo-stem essential oils of Zingiber zerumbet. In: Grace Q Chen, editor. Prime Archives in Plant Sciences. Hyderabad, India, vide Leaf. 2020;1-15.
6. Huong LT, Chinh HV, An NTG, Viet NT, Hung NH, Thuong NTH, Giwa-Ajeniya OA, Ogunwande IA. Zingiber zerumbet rhizome essential oil: Chemical compositions, antimicrobial and mosquito larvicidal activities. European Journal of Medicinal Plants. 2019b;30(4):1-12.
7. Huong LT, Thuong NTH, Chac LD, Dai DN, Ogunwande IA. Antimicrobial activity and chemical constituents of essential oils from the leaf and wood of Taxus chinensis (Rehder & EH Wilson) Rehder (Taxaceae) from Vietnam. Journal of Biologically Active Products from Nature. 2020;10(1): 8-17.
8. Dai DN, Huong LT, Hung NH, Chinh HV, Ogunwande IA. Antimicrobial activity and chemical constituents of essential oil from the leaves of Alpinia globosa and Alpinia tonkinensis. Journal of Essential Oil Bearing Plants; 2020.
9. Huong LT, Huong TT, Bich NT, Viet NT, Giwa-Ajeniya AO, Ogunwande IA. Antimicrobial efficacy and chemical constituents of pseudo-stem essential oils from Zingiber castaneum. Trends Phytochem. Res. 2020;4(2):93-100.
10. Devi PM. A review on the pharmacology and phytochemistry of folklore medicinal plant Hyptis suaveolens (L.) Poit.
11. Tang G, Liu X, Gong X, Lin XJ, Lai X, Wang D, Ji SG. Studies on the chemical compositions of *Hyptis suaveolens* (L.) Poit. Journal of Serbian Chemical Society. 2019;84(3):245-252.

12. Malele RS, Mutayabarwa CK, Mwangi JW, Thoithi GN, Lopez AG, Lucini EL, Zygadlo JA. Essential oil of *Hyptis suaveolens* (L.) Poit. from Tanzania: composition and antifungal activity. Journal of Essential Oil Research. 2003;15(6):438-440.

13. Kubmarawa D, Humphery HM, Runde M. Extraction, compositional analysis and trypanocidal activities of essential oils of four aromatic plants obtained from North-Eastern Nigeria. International Journal of innovative Research and Development. 2015;3(9):134-137.

14. Ogunbinu AO, Okeniyi SO, Flamini G, Cioni PL, Ogunwande IA, Olayinka ET. Essential oil-bearing plants from Nigeria: Studies on *Vernonia perrottetii* (leaf and stem bark), young leaves from *Eucalyptus decaisneana* and immature leaves of *Hyptis suaveolens*. Journal of Essential Oil Research. 2009;21(2):154-158.

15. Moralita C, Amri BM, Perri A. Chemical components of essential oils of the leaves of *Hyptis suaveolens* (L.) Poit. from Indoenisa. American Journal of Research Communication. 2014;2(10):30-38.

16. Vijay AJ, Pandiyarajan V, Petchimuthu K. Comparison of chemical composition of the essential oil of *Hyptis suaveolens* (L.) Poit leaves from different regions of Tamil Nadu. International Journal of Pharmaceutical Sciences and Research. 2011;11 (12):2822-2824.

17. Essien EE, Ime RE, Sampson DU, Choudhary Ml. *Hyptis suaveolens* (L.) Poit (Bush Tea): Volatile composition of fruits and stems essential oils. American Journal of Essential Oils and Natural Products. 2019;7(1):36-38.

18. Noudogbessi JP, Aghbangnan P, Yehouenou B, Adjalian E, Nonviho G, Osseni MA, Wotto V, Figueredo G, Chalchat JC, Sohounhoue D. Physico-chemical properties of *Hyptis suaveolens* essential oil. International Journal of Medicinal and Aromatic Plants. 2013;3(2):191-199.

19. Adjou ES, Daniel C, Mohamed MS. Insecticidal and repellent effects of essential oils from leaves of *Hyptis suaveolens* and *Ocimum canum* against *Tenebroides mauritanicus* (L.) isolated from peanut in post-harvest. Journal of Consumer Protection and Food Safety. 2019;14(1):25-30.

20. Benelli G, Famini G, Canalei A, Molfetta I, Cioni PL, Conti B. Repellence of *Hyptis suaveolens* whole essential oil and major constituents against adults of the granary weevil *Sitophilus granarius*. Bulletin of Insectology. 2012;65(2):177-183.

21. Hac LV, Khoi TT, Dung NX, Mardarowicz M, Leclercq PA. A new chemotype of *Hyptis suaveolens* (L.) Poit. from the Nghe An province, Vietnam. Journal of Essential Oil Research. 1996;8(3):315-318.

22. Tesch NR, Yainez RM, Rojas XM, Rojas-Fermin L, Carrillo JV, Diaz T, Vivas FM, Colmenares CY, Gonzalez PM. Chemical composition and antibacterial activity of essential oil of *Hyptis suaveolens* (L.) Poit. (Lamiaceae) from the Venezuelan plains. Revista Peruana de Biologia. 2015;22(1):103-107. DOI: 10.15381/rpb.v22i1.11127

23. Olonisakin A, Abuav AV, Akinnifesi TA, Kolawole BO. Composition, insecticidal and antimicrobial activity of *Hyptis suaveolens* (L.) aerial parts. Nigerian Research Journal of chemical Sciences. 2018;4(1):77-87.

24. Moreira ACP, de Oliveira Lima E, Paulo AW, Egberto SC, de Souza EL. Chemical composition and antifungal activity of *Hyptis suaveolens* (L.) Poit leaves essential oil against *Aspergillus* species. Brazilian Journal of Microbiology. 2010;41(1):28-33. DOI: 10.1590/S1517-83822010000100006

25. Goly KRC, Soro Y, Dadie A, Kassi ABB, Marcellin DJE. Antibacterial activity of essential oils and extracts from the leaves of *Hyptis suaveolens* and *Lippia multiflora* on multi-resistant bacteria. Rasayan Journal of Chemistry. 2015;8(4):396-403.

26. Runde M, Kubmarawa D, Maina H. Compositional analysis and comparison between *Hyptis suaveolens* and *Antimyobacterium tuberculosis* activity of essential oil of *Hyptis suaveolens* Lamiaceae. Research Journal of Chemical Sciences. 2015;5(7):40-44.

27. Abagli AZ, Alavo TBC, Avlessi F, Mansourou M. Potential of the Bush mint, *Hyptis suaveolens* essential Oil for personal protection against mosquito biting. Journal of the American Mosquito Control Association. 2012;28(1):15-19.
28. Mihin HB, Somda MK, Kabore D, Souleymane S, Agbémébia Y, Zenaou S, Alfred ST, Aboubakar SO. Biopreservation of meat using the essential oil from *Hyptis suaveolens* Poit. (Lamiaceae) in Burkina Faso. African Journal of Biotechnology. 2019;18(29): 808-818. DOI:https://doi.org/10.5897/AJB2019.16888

29. Vietnamese Pharmacopoeia. Medical Publishing House, Hanoi, Vietnam; 2009.
30. National Institute of Science and Technology. Chemistry Web Book. Data from NIST Standard Reference Database. 2018;69.
31. Sahm DH, Washington JA. Antibacterial susceptibility tests: Dilution methods. In Manual of Clinical Microbiology; Balows, A, Hausler WJ, Herrmann HD, Isenberg HD, Eds.; American Society for Microbiology: Washington, DC, USA; 1991.
32. Sharifi-Rad M, Elena MV, Bahare S, Sharifi-Rad J, Karl RM, Seyed AA, Farzad K, Salam Al, Dima M, Zainul AZ, Sharifi-Rad M, Zubaida Y, Marcello I, Adriana B, Daniela R. Plants of the genus *Zingiber* as source of antimicrobial agents: From tradition to pharmacy. Molecules; 201722(12):2145-2162.
33. Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evidence Based Complementary and Alternative Medicine; 2016. [Article ID 3012462] DOI: 10.1155/2016/3012462
34. Dahham SS, Tabana YM, Iqbal MA, Ahamed MBK, Ezzat MO, Majid ASA, Maid AMSA. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of *Aquilaria crassna*. Molecules. 2015;20(7):11808-11829.
35. Bougatsos C, Ngassapa O, Runyoro DKB, Chinou IB. chemical composition and in vitro antimicrobial activity of the essential oils of two *Helichrysum* species from Tanzania. Zeitschrift fu NATurforschung C. 2004;59(4):368-372.
36. Ghaneian MT, Ehrampoush MH, jelball A, Hekmatimoghaddam S, Mahmoudi M. Antimicrobial activity, toxicity and stability of phytol as a novel surface disinfectant. Environmental Health Engineering and Management Journal. 2015;2(1):13-16.

© 2020 Chung et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/56800