Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution

Nicolas Blaveta,1,4 Hua Yangb,1,4, Handong Suca,1,4, Pavel Solanskyc,4, Ryan N. Douglasd,4, Miroslava Karafiátováa,4, Lucie Simkováa,4, Jing Zhangf,4, Yalin Liuc,4, Jie Houd,4, Xiaowen Shib,4, Chen Chenb,4, Mohamed El-Walida,4, Morgan E. McCawb,4, Patrice S. Albertb,4, Zhi Gaba,4, Changzeng Zaob,4, Gil Ben-Zvi,4, Guy Kol,4,4, Jinghua Shif,4, Jan Vránaa,4, Hana Simkováa,4, Jonathan C. Lambb,4, Kathleen Newtonb,4, R. Kelly Daweb,4, Jaroslav Doležela,4, Tieming Jl,4, Kobi Baruch,4, Jianlin Chengd,4, Fangpu Hanf,4,4, James A. Birchlerb,4,4, and Jan Bartos3,4

*Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc 77900, Czech Republic; 1Division of Biological Sciences, University of Missouri, Columbia, MO 65211; 2State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; 3Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211; 4NRGene, Ness-Ziona 7403649, Israel; 5Bionano Genomics, San Diego, CA 92121; 6Bayer Crop Science, Chesterfield, MO 63017; 7Department of Plant Biology, University of Georgia, Athens, GA 30602; 8Department of Statistics, University of Missouri, Columbia, MO 65211; and 9College of Advanced Agricultural Science, University of Chinese Academy of Sciences, 100049 Beijing, China

Contributed by James A. Birchler, April 29, 2021 (sent for review March 5, 2021; reviewed by Luca Comai and Damon Lisch)

B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.

B chromosome | genetic drive | nondisjunction | preferential fertilization

Supernumerary chromosomes were first discovered in the leaf-footed plant bug Metapodius more than a century ago (1). Since then, they have been reported in numerous plant, animal, and fungal species (2). A common feature of these so-called B chromosomes is that they are nonessential and are present only in some individuals in the population of a particular species. Through their evolution, they have developed various modes of behavior, e.g., tissue-specific elimination in Aegilops (3), preferential fertilization in Zea (4), or sex manipulation in Nasonia (5). In many plant species, they undergo controlled nondisjunction—unequal allocation to daughter nuclei during postmeiotic divisions (6). Their effect on frequency and distribution of meiotic crossovers along the standard A chromosomes has also been described (7, 8). Despite the peculiar behavior and unclear origins, no high-quality B chromosome reference sequence has been previously obtained in any organism.

The B chromosome of maize is one of the most thoroughly studied supernumerary chromosomes (9–11) (Fig. 1). It can be found in numerous landraces and also in populations of Mexican teosinte, the maize wild relative (12). Despite being dispensable, it is maintained in populations by two properties: nondisjunction at the second pollen mitosis giving rise to unequal sperm and then preferential fertilization of the egg by the B chromosome-containing sperm (4, 13) (Fig. 1). This acrocentric chromosome is smaller than standard A chromosomes. Its long arm comprises proximal (PE) and distal euchromatin (DE), proximal heterochromatin (PH), and four large distal blocks of heterochromatin (DHI–4) (Fig. 1). Its short arm is minute. In a majority of genetic backgrounds, the

Significance

B chromosomes are nonvital chromosomes found in thousands of plants and animals that persist through various drive mechanisms. The drive mechanism of the maize B chromosome consists of mitotic nondisjunction at the second pollen division to produce two unequal sperm and then the sperm with the B chromosomes preferentially fertilizes the egg in double fertilization. A high-quality sequence of the maize B chromosome together with genetic analysis reveals the cis factor for nondisjunction is a B chromosome-specific repeat interspersed in and around the centromere. The gene and transposable element content of the B chromosome and relaxed purifying selection of transposed protein-encoding genes suggest that the chromosome has been present in the evolutionary lineage for millions of years.

Author contributions: N.B., H.Y., H. Su, R.N.D., X.S., M.E.-W., G.B.-Z., L.G., G.K., J.V., H. Simkova, J.C.L., K.N., R.K.D., J.D., T.J., K.B., J.C., F.H., J.A.B., and J.B. designed research; N.B., H.Y., H. Su, P.S., R.N.D., M.K., I.J., Y.L., J.H., M.E.-W., M.E.M., P.S.A., Z.E., C.Z., Z.B.-Z., L.G., G.K., J.S., J.V., H. Simkova, R.K.D., J.D., and J.B. performed research; J.H., C.C., and T.J. contributed new reagents/analytic tools; N.B., H.Y., H. Su, P.S., R.N.D., L.S., I.J., Y.L., J.H., X.S., M.E.-W., P.S.A., G.B.-Z., L.G., G.K., J.V., H. Simkova, K.N., R.K.D., J.D., K.B., J.C., F.H., J.A.B., and J.B. analyzed data; and N.B., H.Y., H. Su, P.S.A., F.H., J.A.B., and J.B. wrote the paper.

Reviewers: L.C., University of California, Davis; and D.L., Purdue University West Lafayette.

Competing interest statement: G.B.-Z., L.G., and K.B. are employees of NRGene. J.C.L. is an employee of Bayer Crop Science.

This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

Published June 4, 2021.
De-NovoMAGIC software resulted in nearly 67,000 scaffolds were generated (formation capture (Hi-C). In total, 597 Gb of DNA sequence by Bionano optical mapping, and high-throughput chromatin con-

The maize B chromosome introgressed into the B73 inbred line using a combination of nondisjunction at the second pollen mitosis and preferential fertilization comprise the drive mechanism of the B chromosome.

process of double fertilization. The fertilized egg develops into the next generation embryo and the fertilized central cell develops into the endosperm. Thus, most mature pollen grains contain two sperm (S) with only one containing the B chromosomes.

proximal heterochromatin (PH), proximal euchromatin (PE), four blocks of distal heterochromatin (DH1-4), and the distal euchromatin (DE). The B-specific chromosome repeat in and around the centromere with a minor representative at the distal tip of the B long arm. Green signal identifies several chro-

The maize B chromosome. (A) Root tip metaphase spread of a line possessing nine B chromosomes (red signal). The red signal identifies the ZmBs B chromosome repeat in and around the centromere with a minor representative at the distal tip of the B long arm. Green signal identifies several chro-

Results and Discussion
Sequencing and Assembly of the Maize B Chromosome. We sequenced genomic DNA of those lines using Illumina technology to a low coverage, mapped reads to B chromosome-specific scaffolds, and determined the presence or absence of each scaffold in the segment of the B chromosome carried by a particular line (SI Appendix, Fig. S4). Using this approach, we successfully combined 21 scaffolds into a pseudomolecule of the B chromosome (chrB v1.0) with a total length of 106.6 Mb (Dataset S1). The pseudomolecule begins at the centromere and spans the bulk of the long arm of the chromosome. Thirteen scaffolds were assigned to the short arm of the chromosome by the deficiency mapping approach, of which 11 comprise only variants of the ZmBs repeat sequence, one contains both ZmBs and the centromeric retrotransposon CRM1, and one additional scaffold with no predicted genes. The

Verification of the B Assembly and Pseudomolecule Construction. In the absence of genetic landmarks as guidance for the construction of the B chromosome pseudomolecule, we used lines of maize carrying only a portion of the chromosome in the form of B-A translo-

2o f1 1 | PNAS Blavet et al.
Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution
final B chromosome sequence is available at MaizeGDB (https://www.maizegdb.org/assembly/ Zm-B73_B_CHROMOSOME-MBSC-1.0).

Annotation of Transposable Elements and Genes. We performed comprehensive annotation to reveal the molecular organization of the B chromosome. We used multiple tools to assess the abundance of transposable elements (TEs) in the B chromosome yielding 15,145 distinct elements (Dataset S2). All TE types were equally dispersed along the B chromosome (Fig. 2) with the exception of the region close to the centromere (i.e., 5′ pseudomolecule end; see below for centromere definition), where the TEs are underrepresented and tandem repeats predominate. Most abundant are long terminal repeat (LTR) retrotransposons from the gypsy superfamily (Fig. 2). In total, TEs occupy 60% of the B chromosome length (SI Appendix, Table S4), which is comparable to their abundance in the maize A chromosomes (24). In order to determine the contribution of organellar sequences inserted into the B chromosome, we aligned our assembly against sequences of both organelles. This analysis identified a total of 712 kb organellar DNA in the assembled chrB v1.0 pseudomolecule, which represents about 0.6% of the B chromosome assembly. While the contribution of chloroplast sequences was small (67 kb), several insertions of mitochondrial DNA were recognized unambiguously. Mitochondrial sequences were located predominantly in the proximal euchromatin (PE), distal heterochromatin 3 (DH3), and distal euchromatin (DE) of the B chromosome (SI Appendix, Fig. S5). We confirmed these results by cytogenetic mapping using fluorescence in situ hybridization (FISH) (SI Appendix, Fig. S5).

For decades, B chromosomes were believed to be composed of repetitive DNA only. Recently, actively transcribed genes were reported in several studies (33–35). We annotated genes of the B chromosome using a modified Maker P pipeline and obtained a working set of 1,781 genes and 3,504 transcripts. After depletion of TE protein-encoding genes, we identified 785 gene sequences, each of them represented by the longest transcript in a filtered gene set (Fig. 2). There might be additional genes that encode long noncoding and microRNAs. To investigate the level of expression of the predicted genes on the B chromosome, we analyzed leaf transcriptomes of maize B73 inbred lines without B (0B), B73 + 1B (1B), and B73 + 6B (6B) (36). The reads from RNA sequencing (RNA-seq) from plants with 1B and 6B chromosomes without B (0B) and 0B and 6B chromosomes, respectively (Dataset S3). For comparison, the average expression of 15,574 genes localized on the standard A chromosomes is 12.68 RPM and is similar in all three samples because the A chromosomes are present in the same dose (Dataset S4). We found significant Log2-fold change (P value 0.05) for 26, 76, and 88 B chromosome genes between the transcriptomes from plants with 0B and 1B, 1B and 6B, and 0B and 6B chromosomes, respectively (Dataset S3). Further, we performed Gene Ontology (GO) analysis to investigate whether the B chromosome gene repertoire is preserved as the most specific (SI Appendix, Table S5 and Fig. S6). Several GO terms overrepresented on the B that we have identified could be related to its drive. The most promising include “condensed nuclear chromosome, centromeric region” (GO:0000780); “spindle microtubule” (GO:0005876); “regulation of cytokinesis” (GO:0032465); “histone-serine phosphorylation” (GO:0035404); and “chromosome segregation” (GO:0007059). As described below, the gene content of the B consists of randomly transposed genes from the A chromosomes, followed by generalized degradation for most genes, which suggests that the GO enrichment represents selection of genes involved in B chromosome maintenance.

![Fig. 2. Repetitive sequences in the B chromosome.](https://doi.org/10.1073/pnas.2104254118)
B Chromosome Centromere. The pseudomolecule starts at the centromere of the B chromosome; its tiny short arm remains fragmented in scaffolds not in the pseudomolecule. The centromere was identified using a combination of deficiency mapping, presence of centromeric repeats, and association with the centromere-specific histone CENH3, a component of functional centromeric chromatin. In total, these sequences represent ~574 kb, which is close to the previous cytological estimate (29). A major fraction of this sequence is comprised of the CenC satellite and the Centromere Retrotransposons of Maize (CRM), which are also typical of the centromeres of A chromosomes. We identified functional components of the B chromosome centromere using CENH3-ChIP-seq data (37). The analysis showed that midpoint positions of CENH3 nucleosomes on centromeric repeats in the B chromosome did not differ from those on A chromosomes (Fig. 3), indicating that there is no difference in the loading of CENH3. Similarly, no significant differences were observed in the positions of CENH3 nucleosomes on CRM elements between A and B chromosomes (Fig. 3). In agreement with previous cytogenetic observations (38), clusters of CenC units are also interspersed on the long arm of the B, but do not associate with CENH3. Further, the CenC copies in the centromere are similar to those in the A centromeres but those in the long arm are more divergent (Fig. 3). In addition, we identified two major and three minor peaks of CENH3 nucleosome positions in the proximal euchromatin. This chromosome was capable and function similar to that of the A chromosomes.

Elements of B Chromosome Drive. One of the components of the drive mechanism is that the B chromosome regularly undergoes nondisjunction at the second pollen mitosis. During this division, sister chromatids do not separate at the centromeric region. We refer to the factor required for the adhesion of sister chromatids as a cis factor for nondisjunction. The adhesion is further dependent on trans-acting factors on the B chromosome long arm; one of them is a very distal tip (trans factor #1) (39, 40) and another in the proximal euchromatin region (41). Among the B-deficiency-carrying lines we used, one comprises a mini B chromosome #20. Because mini B#20 undergoes nondisjunction when supplied with the trans-acting factors on a full-sized B chromosome (31, 42) (Fig. 4), it must contain the cis factor.

We identified 4 Mb of sequence representing mini B#20 and showed that it is composed mainly of the centromere region and the ZmBs repeats, a repetitive unit unique to the B chromosome and the heterochromatin 180-bp knob repeat (Fig. 4). These two repeat types are related on the sequence level (23). Further, 12 genes were found in this particular region.

Evidence from previous genetic studies of nondisjunction in centromeric aberrations and their molecular analysis, coupled with the sequence data presented here, provide insight into the cis factor. W. R. Carlson recovered a pseudoisochromosome from TB-9Sb (43) that contains one arm similar to the original B long arm but the other arm joined a break in the centromere with a region in the proximal euchromatin. This chromosome was capable of nondisjunction and preferential fertilization. From the pseudoisochromosome, he further recovered telocentric chromosomes from centromere misdivision that consisted of either arm of the original. The telocentric with the normal B long arm containing the proximal heterochromatin had near normal levels of nondisjunction. However, the telocentric chromosome from the other arm that is missing the proximal heterochromatin, including the knob region, had extremely low levels of nondisjunction. Nevertheless, the frequency of nondisjunction of this chromosome could be increased in some genetic configurations, indicating a retention of the ability to undergo nondisjunction (44). Indeed, when an iso-chromosome from an additional centromere misdivision was recovered from the latter telocentric chromosome, the frequency of nondisjunction increased substantially but did not achieve normal levels. Thus, the knob region can be eliminated as the sole determinant of nondisjunction because chromosomes missing it altogether are still capable of nondisjunction to some degree. This conclusion is further supported by the finding that an inactive B centromere, which is incapable of organizing a kinetochore and is translocated to the tip of chromosome arm 9S, has very little knob repeat remaining (SI Appendix, Figs. S2 and S4), but is capable of attempting or achieving nondisjunction of chromosome 9 in the presence of normal B chromosomes that supply the trans-acting factors (45). The fact that centromere misdivision derivatives, or their further derivatives that eliminate one side or the other region adjacent to the centromere, are capable of nondisjunction, makes the involvement of single copy genes highly unlikely.

Furthermore, the copy number of the B-specific repeat in and around the centromere was quantified in all of the mentioned misdivision chromosomes (28). The quantity of the B repeat number is related to the frequency of nondisjunction of the respective chromosomes. Collectively, the results indicate that the cis factor for nondisjunction is divisible and therefore repetitive as well as dependent on the copy number of the B repeat.

As mentioned above, apart from the functional centromere, the mini B#20 consists of tandem repeats of ZmBs interspersed in and around the active centromere together with a distal block of 180-bp knob repeats (43). We further noted that the ZmB repetitive arrays are the only sequences unique to the mini B#20 chromosome (Fig. 4) and that the 180-bp knob repeats are common on the A chromosomes, which do not undergo nondisjunction. Together with the previous findings noted above that the chromosomes lacking the knob are still capable of nondisjunction (28, 43, 44), those results suggest that the B chromosome-specific ZmB repeats act as the cis factor mediating nondisjunction. The collective data suggest that the B repeat unit has become concentrated in and around the B centromere and confers upon it in a quantitative manner the cis component of the chromosomal drive mechanism.

Trans-Acting Factor for Nondisjunction. The very tip of the long arm of the B chromosome has been shown to be required to be in the same nucleus as the centromere in order for nondisjunction to occur (17, 46). It need not be present on the same chromosome and thus acts as a trans factor. Previous analysis showed that the B-3Sb chromosome, which lacks only a tiny distal segment of the B chromosome, fails to nondisjoin itself at the second pollen mitosis (46). Using deficiency mapping, we identified the missing part of B-3Sb with a size of about 2.7 Mb. We identified 34 predicted protein-coding genes in this region as candidates for trans factor #1 (SI Appendix, Table S6). It is also possible that the trans-acting effect in this region is not due to a protein-encoding gene.

Preferential Fertilization. In addition to nondisjunction, preferential fertilization, in which the sperm with B chromosomes preferentially fertilizes the egg at a higher frequency than the polar nuclei in the process of double fertilization, is the second major component of the maize B chromosome drive mechanism. Together these two processes are necessary for the enhanced frequency of B chromosome transmission from one generation to the next. Various translocations between the B chromosome and others (Fig. 4). We further show that one of the A chromosomes (27) retain the property of preferential fertilization and can be used to delimit the factor underlying it. With these translocations, the B-A chromosome, which has the B centromere, is the chromosome that is different between the two sperm following nondisjunction, while the A-B chromosome is present in both sperm. Thus, the centromere proximal region of the chromosome must contain the region responsible for preferential fertilization. We showed that the B-8Lc chromosome (SI Appendix, Fig. S2) has the smallest segment of B chromosome among them consisting...
essentially of the (peri)centromeric region (SI Appendix, Fig. S4).

It is represented by 8.7 Mb in our assembly and 29 predicted genes were identified in the region (Zm00044a000001 to Zm00044a000029; see Dataset S5 for additional information about genes). Preferential fertilization can be affected by the female parent (47), so it is more difficult to assign a responsible region than for nondisjunction. Nevertheless, it is clear that an involvement of a region in close proximity to the cis factor for nondisjunction, if not identical to it, ensures that the two components of the drive mechanism will seldom, if ever, be separated by recombination in the B chromosome, which is known to occur (48).

Fig. 3. Characterization of the B chromosome centromere. (A) Snapshot of the distribution of centromere-specific repeats and CENH3 nucleosomes in the B chromosome pseudomolecule (chrB: 0 to 250,000 bp) and scaffold12456, the largest in the centromeric region. This scaffold maps between the breakpoints of the centromere misdistributions of miniB876 and isoTB-6Lc (Dataset S9). The horizontal scale marks the centromere locus in kilobases. The tracks from the Top to the Bottom are: CENH3-ChIP-seq; input; B-specific repeat ZmBs; centromeric satellite CentC; centromeric retrotransposon CRM. (B) Midpoint positions of CENH3-ChIP-seq (red) and input (blue) reads along the ZmB sequences. Two major and three minor CENH3 nucleosome positions (arrows) are indicated by alignment of the CENH3-ChIP-seq reads. Only two major CENH3 nucleosome positions are observed in the input reads. (C) Characterization of CentC satellite repeats in maize. Violin plot of the sequence identity to the CentC consensus sequence as sampled in the maize A and B chromosomes by the CENH3-ChIP-seq and input reads. **P < 0.001 (two-tailed Student’s t test). The greater difference between the violin plots of CENH3-B versus input-B compared to CENH3-A versus input-A indicates that the CentC in the B centromere is more similar to those in the A centromeres than the dispersed CentC copies in the B long arm. (D) Distribution of the midpoint positions of CENH3-ChIP-seq and input reads from the maize A and B chromosomes along the trimer of CentC satellite consensus sequence. (E and F) Distribution of the midpoint positions of CENH3-ChIP-seq and input reads from maize A and B chromosomes along the CRM1 (E) and CRM2 (F) sequence.
Evolutionary History of the B Chromosome. To uncover the B chromosome evolutionary history, we first performed comparative analysis of transposable elements in the B chromosome and A chromosomal complement. We clustered LTR-TEs based on 5′ LTR similarity and identified 42 distinct families that have at least 10 members on the B chromosome (the largest of them containing 1,104 members). While 16 families are overrepresented on the B chromosome compared to chromosome (the largest of them containing 1,104 members). While we found a significant variation among the age of copy number reads for disomic B-A translocations, similar in principle to the deficiency mapping but instead documenting regions of increased sequencing reads, indicates that no region of the maize genome has a recognizable syntenic region with high homology to the B chromosome (Fig. 5). The sequence read copy number for the translocated A chromosomal regions illustrates that two-fold changes with the copy number of regions present can be recognized but the additional B chromosomal regions in the genome have degenerated beyond recognition. Because preservation of synteny has been observed were investigated in more detail (Dataset S7). We estimated the divergence time between A and B chromosome gene copies in a range from 0.24 to 12.5 million years (Dataset S8). The results indicate a continuous and gradual introduction of new genes into the B chromosome. Comparison of K_s/K_a among homologs in the maize B chromosome, the maize A chromosomes, and sorghum revealed that genes on the maize B chromosome are accumulating more nonsynonymous mutations in general than genes in the sorghum genome and maize A chromosomal complement (Fig. 5), suggesting a relaxed purifying selection for B-encoded genes. Further, we show that homologs of B chromosome genes are widely dispersed on all A chromosomes (Fig. 5).

In addition, an analysis of copy number reads for disomic haploid and monosomic diploid B-A translocations, similar in principle to the deficiency mapping but instead documenting regions of increased sequencing reads, indicates that no region of the maize genome has a recognizable syntenic region with high homology to the B chromosome (Fig. 5). The sequence read copy number for the translocated A chromosomal regions illustrates that two-fold changes with the copy number of regions present can be recognized but the additional B chromosomal regions in the genotypes show no similar increase on any A chromosome or segment. Two-fold changes with the copy number of regions present can be recognized but the additional B chromosomal regions in the genotypes show no similar increase on any A chromosome or segment. Two-fold changes with the copy number of regions present can be recognized but the additional B chromosomal regions in the genotypes show no similar increase on any A chromosome or segment.
over millions of years in the grass family for core genes (50), this result indicates that in the absence of purifying selection, the original gene repertoire has deteriorated. The diversity of the divergence times we estimated for paralogs on A and B chromosomes and the inability to recognize a progenitor synteny suggest that the current gene content of the B is a result of gradual transposition to this chromosome over time, indicating that the drive mechanism has propelled this degenerate chromosome through millions of years of evolution.

Concluding Remarks

The sequence of the supernumerary B chromosome of maize has narrowed the site for nondisjunction to the centromere and strongly suggests that the cis factor for nondisjunction is the B-specific repeat that is interspersed in and around the centromere. It is related to heterochromatic knob repeats (23) that have delayed replication in the cell cycle (51–53), which could potentially explain the failure of the sister chromatids of the B chromosome to separate at the second pollen mitosis. The localization of the breakpoints of B-A translocations on the B sequence also allowed the delineation of a region involved with preferential fertilization that is in close proximity to the centromere, if not coincident with it.

The GO term analysis suggests an overrepresentation of gene functions that could function in the maintenance of the B chromosome. As noted above, genetic experiments have defined at least two regions of the chromosome that are needed for nondisjunction of the centromeric region to occur and these operate in trans, suggesting a diffusible product. The most distally broken B-A translocation defines the region of the sequence that is implicated in nondisjunction. There are 34 predicted protein-encoding genes in this region but it is also possible that an RNA encoded therein is responsible.
From multiple lines of evidence, we failed to identify a region in the A chromosomes that has a syntenic region of homologous genes that might indicate a chromosome or chromosomal fragment that could have been a progenitor to the B chromosome. In contrast, transposable elements between the B and the A chromosomes show a similar spectrum. Together these two results suggest that the B chromosome predates the most ancient expansion of particular transposable elements that can be recognized but there is a lack of any identifiable syntenic gene sequences due to the absence of selection, given that the chromosome is dispensable. A survey sequence of the rye B chromosome was able to identify blocks of synteny in the barley genome (54), indicating that the maize B is much older, which is consistent with the fact that detrimental effects of the maize B emerge only at much higher copy number than such effects of the rye B (10, 55).

The lesser detrimental effects of the maize B suggests that it is generally devoid of dosage-sensitive genes. In vertebrates, three different homologous chromosome pairs have evolved into heteromorphic sex chromosomes with the loss of many genes (56). However, dosage-sensitive genes are retained between the chromosome pair, illustrating selection against a two-fold change in dosage. In the plant kingdom, genome fractionation following whole genome duplication shows a similar retention of dosage-sensitive genes (57).

The nonvital nature of the B chromosome and the tolerance of many copies (Fig. 1) suggest that the B is generally lacking dosage-sensitive genes and that the transposition of them to the B is selected against. This implies that the proportion of the B chromosome that would otherwise be tolerated with the degeneration and loss of others.

The genes that are detected on the B chromosome have a wide range of sequence divergences with their paralogs on the A chromosomes, which are dispersed across the genome. A comparison of these gene pairs indicates that the copies on the B chromosome have relaxed purifying selection as a group. While the majority of genes transposed to the B chromosome go there to die, the others have the opportunity to evolve specific new functions as duplicate genes to foster the perpetuation of the B chromosome with regard to nondisjunction (13), preferential fertilization (4), stabilizing the B chromosome transmission as a univalent (18, 19), increasing recombination in meiosis across the genome in heterochromatic regions to foster its own transmission (7, 16, 40), and modulating gene expression on other chromosomes (36), which are all properties to ensure the transmission of this chromosome despite being dispensable. The B sequence reported here provides a reference to investigate these properties.

Materials and Methods

Plant Material

Plants of Z. mays (L.) inbred line B73 containing various numbers of B chromosomes were used for the majority of the experiments. Plants with two B chromosomes were used for chromosome sorting, with 6, 8, 10, and 12 chromosomes for estimation of B chromosome size, and with 10 to 15 B chromosomes, were further used for whole genome sequencing and Bionano scaffolding.

Comparison of Assembly to the Maize B73 Genome and Identification of B-Specific Scaffolds

Genome assembly was conducted using De-NovoMAGIC software version 2.0 platform (NRGene), a De Bruijn graph-based assembler, designed to efficiently extract the underlying information in the raw reads to solve the complexity of the De Bruijn graph due to genome polyploidy, heterozygosity, and repetitiveness. This task is accomplished using accurate reads-based traveling in the graph that iteratedly connected consecutive phased contigs over local repeats to generate long phased scaffolds (60).

In brief, the algorithm is composed of the following steps: 1) Preprocessing of reads; PCR duplicates, Illumina adaptor AGATCGGAAGAGC, and Nextera linkers (for mate-pair libraries) were removed. The pair-end (2 × 265 bp) overlapping reads were used to merged with Illumina HiSeq2500 as 2 × 160 bp reads (using the v4 Illumina chemistry). Raw data were submitted to the National Center for Biotechnology Information (NCBI)-Sequence Read Archive (SRA) as BioProject PRJNA633287.

In the plant kingdom, genome fractionation following whole genome duplication shows a similar retention of dosage-sensitive genes (57).

In the plant kingdom, genome fractionation following whole genome duplication shows a similar retention of dosage-sensitive genes (57).

High molecular weight DNA was prepared with the Bionano Inprep Plant Tissue Isolation Kit (RE-012-10; Bionano) from a pool of seven seedlings from a B73 derivative with 10 to 15 B chromosomes. The DNA was labeled with NTBspQI using the Inprep Nick, Label, Repair, and Stain labeling kit (RE-012-10; Bionano). A total of 186 Gb filtered data (∼150 kb) were collected on a single Bionano Inchip with an average molecule length of 259 kb. Molecules that aligned to the B73 genome were first removed.

The remaining 11 Gb (∼37.3 × coverage of the B chromosome) were assembled with IrysView software (version 2.5.1) set to “optArgument.human.” Bionano Solve software was then used to create hybrid scaffolds using the assembled cmaps and NRgene sequence assembly.

For the final assembly improvement, Hi-C technology was used (66). Nuclei from young leaves of a B73+1OB plant were isolated and proximity ligation was performed using the Dovetail Hi-C Kit (Dovetail Genomics). A sequencing library was subsequently prepared with Dovetial Library Module for Illumina (Dovetail Genomics, Scaffolding). Scaffolding was performed using HiRise (Dovetail Genomics) with Hi-C linked reads and Bionano-hybrid scaffolds as input.

Comparison of Assembly to the Maize B73 Genome and Identification of B-Specific Scaffolds

Compared final scaffolds were assigned to the A chromosome complement and B chromosome as follows: 1) Scaffolds with Illumina (Bionano) sequences were aligned to pseudomolecules of the 10 chromosomes of the B73 inbred line (24) using nucmer (67) (SI Appendix, Fig. S7 and Table S7). 2) Scaffolds not mapping to any A chromosome were checked for a B-specific signature using a Kmer profiling. Suffix array was created with
suppressor, a part of genome tools v1.5.1 (88) for sorted B chromosome reads equivalent to 20x and B73 genome (with parameters -tis -suf -scp -des -ssp sds dna). A 49-mer index for each suffix array was then created using tallymer mkindex (with parameter -minocc 1 -counts -p). Finally, each scaffold was profiled using tallymer indexes with tallymer search (with parameters -output qseqnum qpos counts). Profile with B73 index was used to identify repetitive regions along the scaffolds and profile with 20x B chromosome data was used to assign scaffolds to the B chromosome when nonrepetitive regions were covered (SI Appendix, Fig. 58).

Deficiency Mapping and Pseudomolecule Construction. Genomic DNA extraction of various lines with B chromosome deficiencies and translocations was performed using Qiagen DNeasy Plant Mini Kit (Qiagen). DNA libraries were prepared with a TruSeq genomic DNA library preparation kit with no PCR amplification. Illumina single end sequencing was performed with 75bp length reads on an Illumina NextSeq 500 (sequence was provided by the DNA Core at University of Missouri; raw data were submitted to NCBI-SRA as BioProject PRJNA347423). The DNA sequencing data for each of the B chromosome deficiencies shown in SI Appendix, Fig. 52 were trimmed at the 3’ end of the sequences for ambiguous nucleotides (Ns) and for artificial poly Gs using cutadapt (69). Roughly, 6x coverage trimmed reads were aligned to the maize W22 reference genome (Zm-W22-REFERENCE-NRGENE-2.0) (25) or B73 reference genome plus mitochondria and chloroplast genomes (24) using Bowtie2 (70). Specifically, the B73, 9-Bic-1, and mini chromosomes that were produced from B chromosome breakage during the identification of 9-Bic(1) were reassembled to B73 using EnsemblGAP polymerase. The remaining aligned lines were assigned to the W22 genome. The threshold of maximum number of distinct alignments was set to 10. MULTICOM-MAP (71) was used to remove the reads mapped to a unique location on the maize W22 or B73 sequences with at most two mismatches. The remaining reads were aligned to the B chromosome assembly using Bowtie2. Only reads that mapped to a unique location with no mismatch were kept for calculation of scaffold coverage. The scaffolds were counted in the regions of 1 kb during each sequence and the results were plotted by ggplot2 in R (72). Scaffolds were oriented and combined into a pseudomolecule based on the location of the translocation breakpoints. Short scaffolds, which cannot be placed and oriented unambiguously, were not used for pseudomolecule construction; however, they were assigned to a particular chromosomal segment defined by two adjacent breakpoints (Dataset 59). Finally, the pseudomolecule was profiled for RNA-seq reads. The same way as for the scaffolds to verify its assembly (SI Appendix, Fig. 54). The B chromosome sequence is available at MaizeGDB under the name Zm-B73_B-CHROMOSOME-MBSC-1.0 with the identifier Zm000044a.

Gene Annotation. Annotation of the B chromosome was performed using the MAKER-P pipeline as described previously (24). The annotation was split into distinct steps. First, RepeatMasker v4.0.7 (73) was used to mask repetitive regions along the scaffolds and profile with 20x B chromosome sequence for each gene set. In order to compute K/Kr, ratios between B-specific and A chromosomal homologs, B-specific and S. bicolor homologs, and between maize A chromosomal and S. bicolor homologs, protein-guided nucleic alignments were generated using the R package seqinr (93). Subsequently the K/Kr was calculated for each pair of genes with KaKs_Calculator v2.0 and the Model Averaging method (94). K/Kr analysis was performed for gene sets with an estimate of divergence time between B chromosomal and A chromosomal homologs with the 95% highest posterior density interval ±10 million years, only.

Identification and Characterization of Centromeric Satellite Repeats and Retrotransposons. All individual units of B-specific repetitive sequence ZmBs (23), CentI satellite sequence (95), and centromeric retrotransposons CRM1 and CRM2 (96) (accesion nos. AC116034.3 and AY129008.1) and the respective sequence identities to consensus were retrieved via BLAST homology search (v2.8.1+) (82). The positions of identified repeats were converted to bed format and displayed in Integrative Genome Viewer v2.3.69 (IGV) (97).

The CENH3-Chip-seq datasets derived from TB-95d materials generated by Liu et al. (37) were downloaded from Gene Expression Omnibus (GEO) (98) database (accession no. GSE59124). The paired-end reads were mapped to the B73 v4 genome (24) supplemented with B chromosome assembly using bow v0.7.13 with mem algorithm and default parameters (99). The mapped reads with quality over 20 were treated as unique reads and used for further analysis (100). The alignment results were converted to bed format and CENH3-Chip-seq enrichment was calculated with bedtools v2.25.0 (101). The Chip-seq results were displayed and evaluated in Integrative Genome Viewer software (97).

To further characterize nucleosome positions in the centromere sequences, the paired-end reads from CENH3-Chip-seq datasets (see above) and Input-seq were merged using SeqPrep software with default parameters (https://github.com/jstjohn/SeqPrep). The Input-seq was generated from

Functional Gene Annotation and GO Enrichment Analysis. To determine potential homologs of identified genes, a BLAST search (v2.9.0) (82) of translated protein sequences was performed against the NCBI nonredundant protein database restricted for Viridiplantae accession (txid 33090). InterProScan v5.36-75.055 was used to identify protein domains and families. GO terms for each gene were retrieved from the BLAST search and InterProScan results, and merged, and validated using Blast2GO v5.2.556. Protein descriptions were retrieved from BLAST search results using Blast2GO module Blast Description Annotation (BDA). An identical pipeline was repeated for the B73 RefGen_v4 maize reference annotation. GO enrichment analysis was performed with Blast2GO using annotated genes on the B chromosome as a test set and genes on the A chromosomal complement as a reference set and tested using the one-sided Fisher’s exact test with correction via FDR and P value threshold of 0.05. Phylogenetic Analysis and Estimation of Gene Duplication Time. Gene model transcripts were compared to A. distachyon, O. sativa, S. bicolor, and Z. mays (Bd, Os, Sb, and Zm, respectively) CDSs retrieved from the Ensembl Plants release 43 (76) by reciprocal best BLAST hits (82). Only genes having orthologs in all species were considered in the following analysis (Dataset 57). Each set of five genes (copies in the sequence of the maize Bd, Bd, Os, Sb, and Zm) was multiple aligned using MUSCLE v3.8.1551 (83). The alignments were converted in SeaView v4 (84) to PHYLIP format required by the subsequent phylogenetic analyses. Alignments served afterward as input to PartitionFinder v2.1.1 (85), which defined the best evolution model for each gene set using a Bayesian information criterion (BIC) model with optimization for BEAST software as model choice parameters in addition to the greedy algorithm. Phylogenetic trees and divergence times were calculated in BEAST v1.8.4 (86, 87). The input files were generated using the BEASTGen package (https://beast.community/beastgen) providing alignment from MUSCLE and the model from PartitionFinder as source data. Further, additional taxa were constructed to guide the tree topology: 1) Poacea, comprising genomes of all five species selected for phylogenetic analysis; 2) BED clade, comprising B. distachyon and O. sativa (set as monophyletic); and 3) Andropogoneae, comprising Z. mays and S. bicolor. The B chromosome gene copy was allowed to cluster freely in the tree. Divergence times were set to 55 ± 5 MYA for Poacea, 46 ± 1 MYA for BED clade, and 12 ± 5 MYA for Andropogoneae, following a normal distribution (88). A consensus tree was produced using TreeAnnotator with the output trees from BEAST after burning the hundred first trees. The final tree was then produced using R and the packages treeio, ggplot2, ggtree, ape, and tidytree (72, 89–92). Resulting trees were used to retrieve information about the time of divergence between homologs in the B chromosome and maize A chromosomal complement for each sequence gene set. In order to compute K/Kr, ratios between B-specific and A chromosomal homologs, B-specific and S. bicolor homologs, and between maize A chromosomal and S. bicolor homologs, protein-guided nucleic alignments were generated using the R package seqinr (93). Subsequently the K/Kr was calculated for each pair of genes with KaKs_Calculator v2.0 and the Model Averaging method (94). K/Kr analysis was performed for gene sets with an estimate of divergence time between B chromosomal and A chromosomal homologs with the 95% highest posterior density interval ±10 million years, only.
purified nuclei of young leaves of the B73 line possessing two B chromosomes digested with MNase as described previously (102). The MNase-digested DNA sample was sequenced using the illumina platform to generate pair-ended 150-bp sequence reads (data were submitted to NCBI-GEO under accession GSE152074). The joined reads were aligned to ZmBs, trimer of CentC satellite sequence, and CRM1 and CRM2 centromeric retrotransposons using bwa v0.7.13 with mem algorithm and the figures were plotted with R (104). Reads containing CentC were divided into A and B chromosome groups according to the mapping results to genome sequence. The sequence identity to CentC consensus was determined using BLAST. The full-length centromeric CRM2 centromeric retrotransposons using bwa v0.7.13 with mem algorithm were aligned to ZmBs, trimer of CentC satellite sequence, and CRM1 and CRM2 centromeric retrotransposons using bwa v0.7.13 with mem algorithm and default parameters (99), and the nucleosome midpoint position plots were generated according to Su et al. (103). Data processing and analysis were performed using Perl, and the figures were plotted with R (104).

Details of FISH, B chromosome size estimation, B chromosome sorting, annotation of repetitive sequences, TE family expansions, organellar DNA insertions, expression of B chromosomal genes, and tests of homology to A chromosomes are provided in SI Appendix.

Data Availability. Raw data used for sequence assembly of B73 line possessing B chromosome(s) and additional RNA-seq data used for B chromosome annotation are available in NCBI-SRA as BioProject PRJNA633287. Sequence reads for B-deficiency-carrying lines of maize are available in NCBI-SRA as BioProject PRJNA634743. Input-seq data are available in NCBI-GEO under accession GSE152074. The final B chromosome sequence and its annotation are available at MaizeGDB (https://www.maizegdb.org) under the name Zm-B73_B-CHROMOSOME-MBSC-1.0 with the identifier z2m00044a.

Acknowledgments. This work was supported by the Czech Science Foundation (grant award 18-12338Y). P.S., L.S., H. Simkova, J.D., and J.B. were supported by European Regional Development Fund project “Plants as a tool for sustainable global development” (CZ.02.01.01.00.01.00/16_19/00000827). Computational resources were supplied by the project "e-Infrastruktura CZ" (e-Infrastructure Program) of the Czech Academy of Sciences, project no. LM2018140) provided within the program Projects of Large Research, Development and Innovations Infrastructures. H.Y., R.N.D., J.H., X.S., C.C., M.E.-W., M.E.M., P.S.A., Z.G., C.Z., K.N., T.J., and J.A.B. were supported by grants from the NSF (DBI 070197, IOS 1444514, IOS 1339198, and IOS 1545780). R.K. and T.J. were supported by the National Science Foundation of China (31920103006). We thank Gernot Presting and Chris Pires for comments on the manuscript.

Blavet et al.
