Gaps between classes of matrix monotone functions

Frank Hansen, Guoxing Ji and Jun Tomiyama *

April 16, 2002

1 Introduction

Almost seventy years have passed since K. Löwner [8] proposed the notion of operator monotone functions. A real, continuous function $f : I \to \mathbb{R}$ defined on an (non trivial) interval I is said to be matrix monotone of order n if

$$x \leq y \implies f(x) \leq f(y) \quad (1)$$

for any pair of self-adjoint $n \times n$ matrices x, y with eigenvalues in I. We denote by $P_n(I)$ the set of such functions. A function $f : I \to \mathbb{R}$ is said to be operator monotone if it is matrix monotone of arbitrary orders. We evidently have $P_{n+1}(I) \subseteq P_n(I)$ for each natural number n, and

$$P(I) = \bigcap_{n=1}^{\infty} P_n(I)$$

is the set of operator monotone functions defined on I. If (1) holds for any pair of self-adjoint elements x, y in a C^*-algebra A with spectra contained in I, then we say that f is A-monotone.

Löwner characterized the set of matrix monotone functions of order n in terms of positivity of certain determinants (the so called Löwner determinants and the related Pick determinants) and proved that a function is operator monotone if and only if it allows an analytic continuation to a Pick function, that is an analytic function defined in the complex upper half plane.

*The second author was partially supported by the National Natural Science Foundation of China(No.10071047) and the Excellent Young Teachers Program of MOE, P.R.C.
with non-negative imaginary part. Dobsch continued Löwner’s investigation and gave an alternative characterization of matrix monotonicity which we shall use in this paper.

Forty years after Löwner’s work W. Donoghue published a comprehensive book on the subject in which he refined Dobsch’ necessary and sufficient condition for a function on an interval to be matrix monotone of order n ([3, Chapter 7, Theorem VI and Chapter 8, Theorem V]. Donoghue then asserted ([3, p. 84] that with this insight one may recognize that the classes $P_n(I)$ are all distinct for different values of n. We shall denote this as the (asserted) existence of gaps between the different classes of matrix monotone functions.

However, both Löwner’s and Dobsch’ conditions for matrix monotonicity of order n are very hard to check even for $n = 3$, and explicit examples of functions showing such gaps are given by Donoghue only for $n = 1$ and $n = 2$. Now another almost thirty years have passed after Donoghue’s work and there are still, to our knowledge, no examples in the literature showing the gaps between $P_n(I)$ and $P_{n+1}(I)$ for arbitrary natural numbers n. The purpose of this article is to prove exactly the existence of such gaps for every n. We also characterize, for any natural number n, the C*-algebras A with the property that any function $f \in P_n(I)$ is A-monotone. It is interesting to notice that this question is closely connected to the problem of matricial structure of operator algebras with respect to positive linear maps.

2 The gap between $P_n(I)$ and $P_{n+1}(I)$

For a positive integer n let $g_n(t)$ be the polynomial defined by

$$g_n(t) = t + \frac{1}{3}t^3 + \cdots + \frac{1}{2n-1}t^{2n-1}.$$ \hspace{1cm} (2)

Following the notations in ([3) we consider the matrix valued function associated with $g_n(t)$ and given by

$$M_n(g_n; t) = \left(\frac{g_n^{(i+j-1)}(t)}{(i+j-1)!} \right)_{i,j=1}^n.$$ \hspace{1cm} (2)

The following lemma is an application of standard arguments from the theory of moment problems for Hankel matrices.

Lemma 1 The matrix $M_n(g_n; 0)$ is positive definite.
Proof. We set
\[b_k = \frac{1}{2} \int_{-1}^{1} t^k dt \quad \text{for} \quad k = 0, 1, 2, \ldots \]
and calculate
\[b_k = \begin{cases} \frac{1}{k+1} & \text{if} \ k \ \text{is even}, \\ 0 & \text{if} \ k \ \text{is odd}. \end{cases} \]
Hence, we can write \(g_n \) as
\[g_n(t) = b_0 t + b_1 t^2 + \cdots + b_{2n-2} t^{2n-1} \]
and therefore obtain
\[g_n^{(i+j-1)}(0) = (i+j-1)! \cdot b_{i+j-2} \quad i, j = 1, \ldots, n. \]
Consequently
\[M_n(g_n; 0) = \left(b_{i+j-2} \right)_{i,j=1}^{n}. \]
Now take a vector \(c = (c_1, c_2, \ldots, c_n) \in \mathbb{C}^n \) and calculate
\[
\left(M_n(g_n; 0) c \mid c \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i+j-2} c_j \overline{c_i} \\
= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{-1}^{1} t^{i+j-2} c_j \overline{c_i} dt \\
= \frac{1}{2} \int_{-1}^{1} \left| \sum_{i=1}^{n} c_i t^{i-1} \right|^2 dt.
\]
It follows that the matrix \(M_n(g_n; 0) \) is positive semidefinite. Moreover, if \(M_n(g_n; 0)c = 0 \) we see that
\[\sum_{i=1}^{n} c_i t^{i-1} = 0 \quad \text{a.e.} \]
Since this is a polynomial, it is identically zero on the interval \([-1, 1]\). All entries of the vector \(c \) are therefore zero and the matrix \(M_n(g_n; 0) \) is positive definite. QED

With this lemma we can show the existence of a gap between \(P_n(I) \) and \(P_{n+1}(I) \) for any positive integer \(n \) and any nontrivial interval \(I \) different from the whole real line.
Theorem 2 For any natural number \(n \) there exists a real number \(\alpha_n > 0 \) and a function \(g_n : [0, \alpha_n] \to \mathbb{R} \) such that

1. \(g_n \) is matrix monotone of order \(n \) on \([0, \alpha_n]\).
2. \(g_n \) is not matrix monotone of order \(n + 1 \) on \([0, \alpha_n]\), nor is it matrix monotone of order \(n + 1 \) on any subinterval.

Proof. Consider the polynomial \(g_n(t) \) introduced in the proof of Lemma 1. By the continuous dependence of eigenvalues of matrices as a function of their entries, there exists by Lemma 1 a positive number \(\alpha_n \) such that the matrix function \(M_n(g_n; t) \) is positive definite for \(t \in [0, \alpha_n] \). Since \(g_n(t) = \frac{2n - 3}{2n - 1} + (n - 1)t^2 \) is positive and convex on \([0, \alpha_n]\) we conclude, cf. [3, Chap. 8, Theorem V], that the function \(g_n \) is matrix monotone of order \(n \) on the interval \([0, \alpha_n]\).

The last principal matrix of order 3 of the matrix \(M_{n+1}(g_n; t) \) is given by

\[
\begin{pmatrix}
\frac{1}{2n - 3} + (n - 1)t^2 & t & \frac{1}{2n - 1} \\
t & \frac{1}{2n - 1} & 0 \\
\frac{1}{2n - 1} & 0 & 0
\end{pmatrix}
\]

and this matrix has determinant \(-(2n - 1)^{-3}\) regardless of the value of \(t \). The matrix \(M_{n+1}(g_n; t) \) is thus not positive semi-definite and the function \(g_n \) is not matrix monotone of order \(n + 1 \) on any subinterval \(J \subseteq [0, \alpha_n] \). This completes the proof. QED

Consider the concrete function \(g_n \) defined in equation 2. A calculation shows that the largest possible value of \(\alpha_2 \) is 1. It is exceedingly difficult to calculate the largest possible value for \(n \geq 3 \).

Proposition 3 Let either \(I = [a, b] \) or \(I = [a, \infty[\) for real numbers \(a < b \) and take \(\alpha > 0 \). Then there exists a bijection \(h : [0, \alpha[\to I \) such that both \(h \) and the inverse map are operator monotone. Likewise, with \(J =]a, b[\) or \(J =]-\infty, b] \), there exists a bijection \(g :]0, \alpha] \to J \) such that both \(g \) and the inverse map are operator monotone.

Proof. An affine map of the form \(t \to ct + d \) with \(c > 0 \) is operator monotone, and so is the inverse map \(t \to c^{-1}(t-d) \). We may therefore assume that \(\alpha = 1 \), \(I = [0, 1[\) or \(I = [0, \infty[\), and \(J =]0, 1] \) or \(J =]-\infty, 0] \). The function

\[
h(t) = t(1+t)^{-1} \quad \text{with inverse} \quad h^{-1}(t) = t(1-t)^{-1}
\]
is a bijection of $[0, \infty] \to [0, 1]$. Likewise is the function

$$g(t) = (1 - t)^{-1} \quad \text{with inverse} \quad h^{-1}(t) = 1 - t^{-1}$$

a bijection of $[\infty, 0]$ to $[0, 1]$. The assertion follows since h, h^{-1}, g, g^{-1} are all operator monotone functions, cf. [1, 6]. QED

Notice that we cannot find a bijection $h : [0, 1] \to \mathbb{R}$ such that both h and h^{-1} are operator monotone. An operator monotone function defined on the whole real line is necessarily affine, cf. [3]. Its range is therefore either a constant or the whole real line.

Corollary 4 Let $I = [a, b]$ or $I = [a, \infty[$ for real numbers $a < b$. For any natural number n there exists a function $f_n : I \to \mathbb{R}$ such that

1. f_n is matrix monotone of order n on I.

2. f_n is not matrix monotone of order $n+1$ on I, nor is it matrix monotone of order $n + 1$ on any subinterval.

Let I be any open real interval and take $t_0 \in I$. Bendat and Sherman proved in [1, Theorem 3.2] that a function $f : I \to \mathbb{R}$ is matrix convex of order n, if and only if the function

$$F(t) = \frac{f(t) - f(t_0)}{t - t_0}$$

is matrix monotone of order n. Notice that f, for $n \geq 2$, automatically is differentiable and $F(t_0) = f'(t_0)$. One may set $F(t_0) = (f(t_0)_+ + f(t_0)_-)/2$ for $n = 1$. We also have $f(t) = f(t_0) + F(t)(t - t_0)$.

Corollary 5 Let $I = [a, b]$ or $I = [a, \infty[$ for real numbers $a < b$. For any natural number n there exists a function $f_n : I \to \mathbb{R}$ such that

1. f_n is matrix convex of order n on I.

2. f_n is not matrix convex of order $n+1$ on I, nor is it matrix convex of order $n + 1$ on any subinterval.

The statement follows by combining Bendat and Sherman’s result with Corollary [4].
3 Characterization of C^*-algebras in terms of matrix monotone functions

As we have discussed in [7], we may regard the question of monotonicity of functions as a kind of nonlinear version of the problem of matricial structure of operator algebras. Recall that a positive linear map τ from a C^*-algebra A to a C^*-algebra B is said to be n-positive if the map

$$\tau_n : (a_{ij})_{i,j=1}^n \rightarrow (\tau(a_{ij}))_{i,j=1}^n$$

is a positive map from $M_n(A)$ to $M_n(B)$. If τ is n-positive for all positive integers, then it is said to be completely positive.

Although the introduction of these notions by Stinespring [9] is of a much later date than the work of Löwner, they have turned out to be very important notions for the matricial structure of operator algebras i.e. C^*-algebras and von Neumann algebras. One may simply recognize this aspect by the recent publication [4] by Effros and Ruan. Meanwhile examples of n-positive maps which are not $(n+1)$-positive had been investigated, and it had been discussed for which types of C^*-algebras A every n-positive map from or to A for an another C^*-algebra B is also $(n+1)$-positive. In this sense, gaps between $P_{n+1}(I)$ and $P_n(I)$ are nonlinear versions of the above sort of problems. We are thus naturally led to the problem of the characterization of those C^*-algebras A on which every matrix monotone functions of order n is A-monotone. The following theorem is a generalization of a previous result [1], Theorem 1] where the two last authors essentially treated the gap between $P_1(I)$ and $P_2(I)$. In this investigation we reach the same kind of C^*-algebras as in the study of positive linear maps by the third author [11].

Theorem 6 Let A be a C^*-algebra, and let I be an interval of the form $I = [a, b]$ or $I = [0, \infty]$ for real numbers $a < b$. The following assertions are equivalent:

1. Every matrix monotone function of order n defined on I is A-monotone.

2. The dimension of every irreducible representation of A is less or equal to n.

3. Every n-positive linear map from/to A for another C^*-algebra B is completely positive.

Proof. (1) \Rightarrow (2): We first notice that we, without loss of generality, may choose the interval $I = [0, \infty]$. Suppose that A had an irreducible representation π on a Hilbert space H whose dimension is greater than n. Take an
(n + 1)-dimensional projector e in H. We then have $\pi(A)e = B(H)e$ by [11, Theorem 4.18], hence

$$e\pi(A)e = eB(H)e = B(eH) \cong M_{n+1}.$$

Let B be the C^*-subalgebra of A defined by setting

$$B = \{ a \in A \mid \pi(a)e = e\pi(a) \}.$$

By the theorem cited above, the restriction of π to B is a $*$-homomorphism onto $eB(H)e$. We choose a function f in $P_n(I)$ which is not matrix monotone of order $n + 1$, cf. Corollary [11]. Let c and d be arbitrary positive elements in $eB(H)e$ with $c \leq d$. It is easily verified that we can find positive elements a and b in B such that $a \leq b$, $\pi(a) = c$ and $\pi(b) = d$. Since $a \leq b$ we obtain $f(a) \leq f(b)$ by the assumption, whence

$$f(c) = f(\pi(a)) = \pi(f(a)) \leq \pi(f(b)) = f(\pi(b)) = f(d).$$

Therefore, f is matrix monotone of order $n + 1$ on I, a contradiction.

(2) \Rightarrow (1) : Take a function f in $P_n(I)$ and let a and b be self-adjoint elements in A with spectra contained in I such that $a \leq b$. We consider an irreducible representation π of A. Since also the spectra of $\pi(a)$ and $\pi(b)$ are contained in I, we obtain by the assumptions that

$$\pi(f(a)) = f(\pi(a)) \leq f(\pi(b)) = \pi(f(a)).$$

It follows that $f(a) \leq f(b)$, thus f is A-monotone.

(2) \Leftrightarrow (3) : The assertion is proved in [11]. QED

References

[1] J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc 79 (1955), 58-71.

[2] O. Dobsch, Matrixfunktionen beschränkter Schwankung, Math. Z. 43 (1937), 353-388.

[3] W. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer 1974.

[4] E.G. Effros and Z.-J. Ruan, Operator spaces, London Math. Soc. monograph vol. 23, 2000.
[5] F. Hansen, Operator monotone functions of several variables, Math. Inequal. Appl., (to appear).

[6] F. Hansen and G.K. Pedersen, Jensen’s inequality for operators and Löwner’s theorem, Math. Ann. 258 (1982), 229-241.

[7] G. Ji and J. Tomiyama, On characterizations of commutativity of C^*-algebras, preprint.

[8] K. Löwner, Über monotone Matrixfunktionen, Math. Zeit. 38 (1934), 177-216.

[9] W.F. Stinespring, Positive functions on C^*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.

[10] M. Takesaki, Theory of operator algebras I, Springer 1979.

[11] J. Tomiyama, On the difference of n-positivity and complete positivity in C^*-algebras, J. Funct. Anal. 49 (1982), 1-9.

[12] J. Tomiyama, On the geometry of positive maps in matrix algebras II, Linear Algebra Appl. 69 (1985), 169-177.

Frank Hansen (frank.hansen@econ.ku.dk)
Institute of Economics, Copenhagen University, Denmark.

Guoxing Ji (gxji@snnu.edu.cn)
College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062, P.R. China.

Jun Tomiyama (jtomiyama@fc.jwu.ac.jp)
Department of Mathematics and Physics, Japan Women’s University, Mejirodai Bunkyo-ku, Tokyo, Japan.