Beyond the cell

The cell biology of fat expansion

Joseph M. Rutkowski,1 Jennifer H. Stern,1 and Philipp E. Scherer1,2

1Touchstone Diabetes Center, Department of Internal Medicine, and 2Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390

Adipose tissue is a complex, multicellular organ that profoundly influences the function of nearly all other organ systems through its diverse metabolite and adipokine secretome. Adipocytes are the primary cell type of adipose tissue and play a key role in maintaining energy homeostasis. The efficiency with which adipose tissue responds to whole-body energetic demands reflects the ability of adipocytes to adapt to an altered nutrient environment, and has profound systemic implications. Deciphering adipocyte cell biology is an important component of understanding how the aberrant physiology of expanding adipose tissue contributes to the metabolic dysregulation associated with obesity.

Fat—properly defined as adipose tissue—is a biological caloric reservoir that expands in response to overnutrition and releases lipids in response to energy deficit. Adipocytes represent the primary cell type of adipose tissue and are responsible for storing excess calories as triglycerides in their cellular lipid droplets without the common lipotoxicity experienced by other cells under these conditions (Konige et al., 2014). This unparalleled capacity for lipid storage and release upon systemic metabolic demand links the cell biology of the adipocyte and adipose tissue physiology to whole body metabolism (Fig. 1).

Adipocytes exist in a spectrum of subtypes, identified by color, from white to brown (Box 1). White adipocytes, which are the focus of this review, constitute the classical fat cell and represent the majority of cells in visceral and subcutaneous adipose depots—the depots most noted for expansion with obesity. Brown adipocytes encompass smaller brown fat depots that play a role in thermogenesis in most mammalian species. Changes in adipocyte metabolism and nutrient handling are the basis for much of the pathophysiology associated with the metabolic syndrome, a condition encompassing multiple metabolic abnormalities including obesity, dyslipidemia (elevated circulating lipids), hyperglycemia (elevated blood glucose), hyperinsulinemia (elevated circulating insulin), and insulin resistance (Deng and Scherer, 2010; Sun et al., 2011). Adipocytes are also highly active secretory cells, producing proteins and hormones that function far beyond metabolism. An array of adipocyte-secreted factors contribute to immunity, inflammation, vasculogenesis, and matrix remodeling (Sun et al., 2011). Subcutaneous adipose tissue also serves as an immune barrier (Box 2) and secretes molecules, such as complement factors, that play a role in innate immunity (MacLaren et al., 2008; Caspar-Bauguil et al., 2009). Individual factors in the adipocyte secretome, termed adipokines (such as leptin and adiponectin), have a broad range of system-wide actions. Leptin, for example, signals in the hypothalamus to mediate food intake and adiponectin induces insulin sensitivity through action in the liver and skeletal muscle. Adipokines also correlate with multiple pathological states aside from the metabolic syndrome, such as cancer and osteoporosis (for review see Blüher, 2014; Deng and Scherer, 2010; Xia et al., 2014). Increased focus on the biogenesis of adipokines has identified basic mechanisms within the secretory machinery of the adipocyte that regulate the translation and release of factors from the cell (Box 3). The metabolic and redox states of the individual adipocyte dictate the composition of this secretome, and changes in the adipose tissue adipokine secretion profile occur with altered metabolic demand and fat expansion or reduction (Cao, 2014). Local adipocyte physiology is thus communicated systemically with potentially beneficial or detrimental effects.

The adipocyte in the maintenance of systemic energy homeostasis

Adipose tissue is remarkably flexible in terms of energy storage and release. Responding to hormonal and energetic cues, it serves as source of energy-rich fatty acids during times of negative energy balance, reducing its lipid store and releasing fatty acids to target tissues in need of energy. In contrast, adipocyte lipid uptake, esterification, and storage in the form of triglyceride within the lipid droplet allows for expansion of adipose...
tissue, a beneficial, adaptive response to overnutrition that can prevent ectopic lipid deposition and lipotoxicity in other cell types. Once thought to be an inert storage site for lipid, we now know that the lipid droplet is an active player in maintaining systemic energy homeostasis. The large, unilocular lipid droplet occupies the majority of the adipocyte, placing the droplet’s borders within close proximity of the ER and mitochondria, where triglycerides are esterified and hydrolyzed, respectively.

Adipose tissue lipolysis and mitochondrial fatty acid oxidation. Triglyceride stored within the lipid droplet is hydrolyzed to fatty acids and released to fuel peripheral tissues upon metabolic demand (Fig. 2). The lipid droplet surface contains structural proteins and metabolic enzymes specific to the adipocyte that respond to hormonal stimulation of lipolysis by increasing expression and through recruitment of additional proteins required for lipolysis (Brasaemle et al., 2004). The second messenger cAMP activates lipolytic enzymes via stimulation of the cAMP-dependent kinase, also referred to as protein kinase A (PKA), and thus plays a crucial role in the regulation of lipolysis (Zechnner et al., 2005). β-Adrenergic (β-AR) signaling stimulates lipolysis through multiple signaling pathways, each of which is dependent on the phosphorylation of the lipid droplet membrane protein perilipin 1 (Plin1). Originally identified as a scaffolding protein, Plin1 is highly enriched in white adipocytes. As a mediator of protein–protein interactions during lipolysis, Plin1 plays a central role in regulating the hydrolysis of triglyceride molecules (Dalen et al., 2004; Takahashi et al., 2013). In fact, adipocytes isolated from Plin1-null mice display constitutively active lipolysis that is nonresponsive to isoproterenol, a β-AR agonist (Tansey et al., 2001). In the basal or anabolic state, lipolysis is inhibited by insulin and Plin1 is bound to comparative gene identification-58 (CGI-58), the coactivator of adipose triglyceride lipase (ATGL), the rate-limiting enzyme of lipolysis. Upon β-AR signaling and PKA activation, Plin1 is phosphorylated by PKA, which stimulates the release of CGI-58, activating ATGL that moves to the lipid droplet surface to hydrolyze the first fatty acid from the triglyceride (Lass et al., 2011). Also phosphorylated by PKA, hormone-sensitive lipase (HSL) binds Plin1 and hydrolyzes the resulting diacylglycerol to a monoacylglycerol, which is subsequently hydrolyzed, producing a third fatty acid and glycerol molecule. Fatty acids and glycerol are released from adipose tissue for systemic utilization.

The metabolism of fatty acids to acetyl-coA for subsequent generation of energy (ATP and NADH) occurs primarily in the mitochondrial matrix of all oxidative tissues, but has been underappreciated as a significant part of white adipocyte metabolism. White adipocytes undergo mitochondrial expansion and exhibit increased β-oxidative capacity during differentiation, as indicated by increased expression of PGC1α, a regulator of mitochondrial biogenesis (Wilson-Fritch et al., 2004; Hao et al., 2010; Lu et al., 2010). Before entering the mitochondria for β-oxidation, fatty acids are activated to form fatty acyl-CoAs and are subsequently transported through the outer mitochondrial membrane via carnitine palmitoyl transferase-1 (CPT-1), the rate-limiting step of β-oxidation. Importantly, the activity of CPT-1 is inhibited by malonyl-CoA, an intermediate substrate of de novo lipogenesis. This prevents the oxidation of fatty acids when the cell is in a lipogenic state. Adipocytes lose oxidative capacity and insulin sensitivity in the obese and diabetic state (Choo et al., 2006; Keller and Attie, 2010), and targeting the oxidative metabolism of the adipocyte has demonstrated...
efficacy in treating type 2 diabetes. For example, peroxisome proliferator-activated receptor γ (PPARγ), a master transcriptional regulator of the adipogenic gene program, is the target of insulin-sensitizing thiazolidinedione drugs. Agonism of PPARγ has been shown to increase adipocyte oxidative potential and mitochondrial biogenesis (Wilson-Fritch et al., 2004; Bolten et al., 2007). Furthermore, transgenic mice lacking PGC1α, the coactivator of PPARγ, demonstrate reduced oxidative capacity and insulin resistance (Kleiner et al., 2012).

Insulin action on the adipocyte
Glucose transporter type 4 (GLUT-4)-mediated glucose transport. Insulin signaling plays an important regulatory role in adipocyte metabolism by promoting the synthesis and storage of macronutrients and inhibiting their catabolism. In the fed state, high levels of circulating insulin bind to its receptor on adipocytes and signal the translocation of GLUT-4 transporters from the cytosol to the cell membrane, thereby allowing enhanced flux of glucose into the cell (Kahn and Cushman, 1985). Insulin affects GLUT-4 trafficking in three ways: increased exocytosis, decreased endocytosis, and increased GLUT-4 recycling at the cell surface (Stöckli et al., 2011). Insulin-stimulated GLUT-4 appears to be the predominant glucose transporter in the adipocyte despite the constitutive presence of GLUT-1 transporters on the adipocyte membrane. In fact, adipose tissue–specific deletion of GLUT-4 induces hepatic and skeletal muscle insulin resistance in mice (Abel et al., 2001), demonstrating the crucial role that adipocyte GLUT-4–mediated glucose uptake plays in maintaining systemic glucose homeostasis. Genetic or pharmacologic manipulations of the insulin receptor signaling cascade, such as targeting AMPK (Yamaguchi et al., 2005) or the use of thiazolidinedione drugs (Wu et al., 1998), alters the efficacy of insulin signaling and GLUT-4 expression and localization, exerting profound effects on adipocyte metabolism. As such, glucose is more than just a source of ATP to the adipocyte. Dihydroxyacetone phosphate, generated during glycolysis, is converted to glycerol-3-phosphate (G3P), and serves as the backbone for triglyceride synthesis and storage (Fig. 2). A study examining glucose and triglyceride turnover in adipose tissue (Combs et al., 2005) demonstrated that 20–25% of the glucose taken up into adipocytes is subsequently used for triglyceride synthesis (Frayn and Humphreys, 2012). Although free glycerol is generated during lipolysis, adipocytes lack glycerol kinase, the enzyme that phosphorylates glycerol to G3P. Hence, glucose uptake and the reaction generating G3P are critical to adipocyte lipid packaging (Guan et al., 2002; Tan et al., 2003). For example, mice with adipocyte-specific deletion of insulin receptor are resistant to diet-induced and age-related obesity. Reduced adipocyte glucose uptake and triglyceride storage contribute to this phenotype (Blüher et al., 2002). Furthermore, increased adipocyte GLUT4 expression in transgenic mice enhances glucose uptake and leads to adipocyte hyperplasia via enhanced fatty acid esterification (Shepherd et al., 1993; Herman et al., 2012). When cellular glucose levels are low, however, adipocytes can use noncarbohydrate precursors such as lactate or amino acids to generate G3P via glyceroneogenesis (Forest et al., 2003).
Lipid droplet–associated proteome has been investigated in adipocytes. However, upon closer inspection, there are examples that suggest the adipocyte has the ability to rapidly respond through triggered exocytic events. For example, β3-adrenergic stimulation of murine adipose tissue rapidly triggers the release of insulin from the pancreatic β cell within 2–5 min (Grubisic et al., 1997). It is at this time not resolved whether this includes the release of a soluble factor from the adipocyte or whether the rapid kinetics are caused by neuronally mediated effects in the tissue. We know that the adipocyte has devised “alternative” approaches to triggered rapid release of proteins. For both lipoprotein lipase and adiponectin, significant intracellular stores exist in the late ER or early Golgi compartments (Roh et al., 2001; Wang et al., 2007) that could undergo a triggered release. For example, FGF21 rapidly triggers a burst of release of adiponectin from the adipocyte. This reserve shortens the response time; transcriptional activation, translation, and translocation into the ER followed by assembly of higher-order complexes would take adiponectin 10–45 min to reach the plasma membrane (Holland et al., 2013).

Upon transport into the adipocyte, NEFAs are esterified to triglyceride and stored within the lipid droplet, yielding expansive adipose tissue. Nonesterified fatty acids (NEFAs) are taken up from the extracellular pool through several fatty acid binding and transport proteins. CD36 and several members of the fatty acid transport protein (FATP) family are highly expressed in adipocytes and are essential for fatty acid sequestration. Mice with global deletion of CD36, for example, take up only 30–40% of labeled fatty acids compared with control littermates (Coburn et al., 2000). Adipocytes with reduced FATP1 levels exhibit a 25% reduction in fatty acid uptake in vitro (Lobo et al., 2007), and insulin-stimulated long chain fatty acid uptake is absent from FATP1-null adipocytes (Wu et al., 2006).

Upon transport into the adipocyte, NEFAs are esterified to a glycerol backbone, thus forming the triglyceride for storage within the lipid droplet of the adipocyte. Enzymes that catalyze the esterification of fatty acids to triglyceride are regulated within the lipid droplet of the adipocyte. Enzymes that catalyze the esterification of fatty acids to triglyceride are regulated through PPARγ (Festuccia et al., 2009), and genetically manipulating the expression of these enzymes leads to significantly impaired lipid accumulation and reduced adipogenic gene expression in 3T3-L1 adipocytes (Shan et al., 2010). Humans and rodents with impaired enzymatic activity for fatty acid esterification are lipodystrophic, highlighting the importance of this process to retain metabolically flexible adipose tissue expansion and function (Agarwal and Garg, 2003; Vergnes et al., 2006; Agarwal et al., 2011).

Box 3. Does the adipocyte have a triggered exocytic pathway?

Despite the resemblance between Glu4 vesicular trafficking and a triggered exocytic pathway analogous to neurotransmitter release, to date there is very little direct evidence that such a classical triggered exocytic pathway even exists in adipocytes. However, upon closer inspection, there are examples that suggest the adipocyte has the ability to rapidly respond through triggered exocytic events. For example, β3-adrenergic stimulation of murine adipose tissue rapidly triggers the release of insulin from the pancreatic β cell within 2–5 min (Grubisic et al., 1997). It is at this time not resolved whether this includes the release of a soluble factor from the adipocyte or whether the rapid kinetics are caused by neuronally mediated effects in the tissue. We know that the adipocyte has devised “alternative” approaches to triggered rapid release of proteins. For both lipoprotein lipase and adiponectin, significant intracellular stores exist in the late ER or early Golgi compartments (Roh et al., 2001; Wang et al., 2007) that could undergo a triggered release. For example, FGF21 rapidly triggers a burst of release of adiponectin from the adipocyte. This reserve shortens the response time; transcriptional activation, translation, and translocation into the ER followed by assembly of higher-order complexes would take adiponectin 10–45 min to reach the plasma membrane (Holland et al., 2013).

Lipid droplet expansion. The fundamental mechanisms that regulate adipocyte lipid droplet formation and expansion are conserved across mammalian cells (Sturley and Hussain, 2012). The lipid monolayer membrane derives from the ER membrane. The mechanisms by which membrane-associated proteins target the newly formed droplet and how the droplet membrane mechanically functions are questions that are still being elucidated (Digel et al., 2010). However, the lipid droplet–associated proteome has been investigated in detail, and adipocyte-specific proteins, such as the previously discussed Plin1, are crucial for the metabolic flexibility of adipocyte lipid storage and metabolism (Brasaemle et al., 2004; Digel et al., 2010). Fat-specific protein (FSP) 27/Cidec (Fsp27) plays an important role in lipid droplet formation (Puri et al., 2007). A recent report found that Plin1 serves as an Fsp27 activator, increasing Fsp27-mediated lipid exchange, lipid transfer, and droplet growth (Sun et al., 2013a). This dual role of Plin1 in the regulation of adipose tissue lipolysis and lipid droplet expansion highlights the importance of lipid droplet proteins in the maintenance and the regulation of adipocyte metabolism. Indeed, mice with adipocyte-specific deletion of the Fsp27 gene have impaired lipid storage capacity, as indicated by small adipocyte size, resistance to weight gain upon high fat feeding, hepatic steatosis (fat accumulation in the liver), dyslipidemia, and systemic insulin resistance (Tanaka et al., 2015). This study supports the notion that expansion of the lipid droplet, and thus adipose tissue as a whole, can be protective against the metabolic abnormalities associated with excess caloric intake. Additional studies have demonstrated that the ability of adipocytes to expand the lipid droplet while maintaining insulin sensitivity conveys a protective, adaptive role (Kusminski et al., 2012). An area of great interest, and much debate, is adipocyte hyperplasia, or adipogenesis, in addition to hypertrophy as a mechanism for increased lipid sequestration and fat expansion (Box 4). As such, these states of increased fat mass with preserved metabolic fitness have been referred to as “healthy” expansion of adipose tissue.

Box 4. Hypertrophy versus hyperplasia.

Expanding fat mass requires either increased adipocyte size (hypertrophy) or increased adipocyte number (hyperplasia). Mechanisms that regulate adipocyte lipid storage permit hypertrophy with increased nutrient load. However, large, hypertrophic adipocytes face limits of expansion based on multiple factors, including hypoxia and differential matrix mechanics (Halberg et al., 2009) that result in dysfunction of adipocytes. Genetic mouse models to test these expansion limits by targeting HIF1α targets (Sun et al., 2013a), reducing ECM deposition (Khan et al., 2009), or protecting adipocytes from fatty acid oxidation (Kusminski et al., 2012) have been successful in demonstrating “healthy” hypertrophy. Alternatively, adipocyte hyperplasia may present a mechanism for healthy fat storage capacity (Zeve et al., 2009). Mature adipocytes are terminally differentiated cells. However, adipocyte precursors have been identified in adipose tissue that differentiate into fully mature white adipocytes under metabolic stimulation or PPARγ activation, both in vitro and in the mouse (Rodeheffer et al., 2008; Tang et al., 2008; Gupta et al., 2012). Although the relative turnover rate of mature adipocytes or induction of adipogenesis in the adult may be low (Spalding et al., 2008), an increasing genetic toolkit for lineage tracing experiments will permit advanced studies of the conditions and depots most primed for healthy expansion through hyperplasia (Lee et al., 2012; Wang et al., 2013).
The cell biology of fat expansion • Rutkowski et al.

Adipocyte triglyceride storage (Franckhauser et al., 2002; Tordjman et al., 2003). Eliminating PPARγ binding sites in the PEPCK gene leads to reduced PEPCK levels in adipocytes and was associated with profound insulin resistance, demonstrating that adipocyte glycerogenesis is protective (Millward et al., 2010). Silencing mitochondrial PEPCK lowered circulating glucose and triglyceride, as well as adipose tissue mass in the rat (Stark et al., 2014). Similarly, a reduction in adipocyte mitochondrial membrane potential through overexpressing the mitochondrial protein mitoNEET led to reduced fatty acid oxidation, increased PEPCK expression, increased adipocyte triglyceride storage, and insulin sensitivity in obese mice (Kusminski et al., 2012). Other disruptions in adipocyte mitochondrial function have also led to adipocyte triglyceride accumulation (Vankoningsloo et al., 2006; Wang et al., 2010). Despite the advantages of an exacerbating systemic insulin resistance. In fact, such dysregulated adipocyte lipolysis is implicated as the primary source of NEFA flux to the liver, which promotes nonalcoholic fatty liver disease (NAFLD) and hepatic insulin resistance, leading to an impairment of insulin actions to inhibit gluconeogenesis (Samuel et al., 2004).

Recent studies have shown that obesity-associated insulin resistance, hepatic steatosis, fibrosis, and systemic inflammation can be prevented by manipulating energy metabolism in the adipocyte to drive lipid droplet expansion. Adipose tissue overexpression of phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in glyceroneogenesis (Forest et al., 2003), leads to obesity without associated insulin resistance in the mouse by increasing glycerol-3-phosphate substrate for re-esterification, thereby reducing NEFA release and increasing adipocyte triglyceride storage (Franckhauser et al., 2002; Tordjman et al., 2003). Eliminating PPARγ binding sites in the PEPCK gene leads to reduced PEPCK levels in adipocytes and was associated with profound insulin resistance, demonstrating that adipocyte glycerogenesis is protective (Millward et al., 2010). Silencing mitochondrial PEPCK lowered circulating glucose and triglyceride, as well as adipose tissue mass in the rat (Stark et al., 2014). Similarly, a reduction in adipocyte mitochondrial membrane potential through overexpressing the mitochondrial protein mitoNEET led to reduced fatty acid oxidation, increased PEPCK expression, increased adipocyte triglyceride storage, and insulin sensitivity in obese mice (Kusminski et al., 2012). Other disruptions in adipocyte mitochondrial function have also led to adipocyte triglyceride accumulation (Vankoningsloo et al., 2006; Wang et al., 2010).
The precise underlying antiretroviral protease inhibitors used to combat HIV infection common cause of acquired lipodystrophy was early generation 2003; Reue and Dwyer, 2009; Garg, 2011). Interestingly, a fied as causing familial lipodystrophies (Agarwal and Garg, mation, such as caveolin-1 (Cav1; Box 5), have all been identi- regulated with fasting to enhance fatty acid trafficking, and Cav1-null cells are more susceptible to lipotoxicity (Messelum et al., 2011). Failure to up-regulate adipocyte caveolin-1 in a mouse model of type I diabetes resulted in severe dyslipidemia and rapid adipose wasting and death (Ye et al., 2014). Cav1-null adipocytes also exhibit increased ROS (Asterholm et al., 2012) and reduced mitochondrial biogenesis (Ding et al., 2014). In addition to nutrient handling, cave- olae are also sites of membrane receptor clustering, e.g., for insulin, β-AR, and adiponectin signaling (Pilch and Liu, 2011; Wang et al., 2014). Adipocytes may, therefore, serve as a model for better understanding the many roles of caveolae that are highly relevant across other areas of cell biology. The image is a transmission electron micrograph of caveolae at the adipocyte plasma membrane.

Adipocyte plasma membranes are rich in caveolae, occupying up to 30% of the membrane surface (Ding et al., 2014). These microdo- main structures are up-regulated in the plasma membrane of adipocytes concurrent with adipogenesis (Scherer et al., 1994). Cav-1 and Cav1, which are both required for caveolae formation, are en- riched in adipocytes and critical for a host of its metabolic functions (Razani et al., 2002; Ding et al., 2014). Adipocyte Glu4 transloca- tion and insulin–glucose responsiveness are in part caveola-dependent (Shigematsu et al., 2003; Yuan et al., 2007), and Cav-1– and Cav1-null mice demonstrate insulin resistance with reduced adipocyte glucose uptake [Cohen et al., 2003; Liu et al., 2008]. Fatty acid bind- ing and transport proteins, such as CD36, localize to plasma mem- brane caveolae [Ring et al., 2006; Le Lay et al., 2009], and loss of caveolae reduces adipocyte fatty acid uptake [Li et al., 2008] and li- polysis [Cohen et al., 2004; Ding et al., 2014]. Caveolae are up- regulated with fasting to enhance fatty acid trafficking, and Cav1-null cells are more susceptible to lipotoxicity (Messelum et al., 2011). Failure to up-regulate adipocyte caveolin-1 in a mouse model of type 1 diabetes resulted in severe dyslipidemia and rapid adipose wasting and death (Ye et al., 2014). Cav-1 or Cav1, which are both required for a host of its metabolic functions

ER stress and the unfolded protein response (UPR). The ER plays important roles in protein and lipid synthesis, and its dysfunction/stress has been linked to perturbed cellular metabolism and local and systemic insulin resistance (Koves et al., 2008; Lim et al., 2009). Communication between the ER and mitochondria likely links ER stress and mitochondrial function (or dysfunction) in driving an increase in the cell’s UPR, increased ROS levels, and cellular insulin resistance (Kusminski and Scherer, 2012). Induction of ER stress activates PKA and results in increased lipolysis through Plin1 phosphorylation (Deng et al., 2012), a potential mechanism for increased NEFA release and systemic lipotoxicity. Conversely, ER stress may enhance lipid droplet formation in an attempt to further sequester lipid (Hamada et al., 2011). ER stress also reduces adipocyte insulin sensitivity (Xu et al., 2010) and regu- lates adiponectin oligomerization: increasing stress reduces high-molecular-weight forms of adiponectin (Huh et al., 2012). Reducing ROS reverses this response (Furukawa et al., 2004). As the relative abundance of adiponectin high-molecular-weight oligomers is better correlated with overall systemic insulin sen- sitivity than total adiponectin levels, this suggests a potential pathway by which adipocyte metabolic stress is communicated to other insulin-sensitive tissues.

Some degree of ER membrane–mediated UPR signal- ing may be necessary for adipogenesis and healthy function, but appears to be pathway dependent. Three distinct UPR pathways have been described. The PERK–eIF2α pathway leads to translational inhibition of adipogenesis, whereas the IRE and ATF6 pathways each appear to promote differentiation and lipid accumulation (Lowe et al., 2012; Han et al., 2013). Several interesting adipocyte functions have been recently attributed to IREα signaling of the UPR through Xbp1s. Although the Xbp1 pathway promotes adipogenesis (Cho et al., 2013), the posttranslational splicing of Xbp1 to Xbp1s specifically rescues adipogenesis in Xbp1 knockout cells (Sha et al., 2009). Xbp1s is also up-regulated in metabolically challenged adipocytes and in mammary adipose tissue during laktation (Gregor et al., 2013). Xbp1s expression in adipocytes increased insulin sensitivity in a transgenic mouse model (Sha et al., 2014). We recently uncovered an important role for Xbp1s as a stimulator of lipolysis in a variety of metabolic states (unpublished data). Thus, it is likely that Xbp1s function in the adipocytes stretches beyond glucose metabolism.

Adipocyte ceramide sequestration. Ceramides are a class of sphingolipids strongly implicated in insulin resis- tance. Ceramides are formed predominantly from long-chain fatty acyl-CoA through de novo synthesis during times of intracellular fatty acid excess (Holland and Summers, 2008). Much like ectopic lipid deposition, increased cellular ceramides have been linked to cellular stress responses and apoptosis (Holland et al., 2011a). The analysis of ceramide metabolism is compli- cated by a high flux rate through upstream and downstream enzymes. Whether adipocyte-specific ceramide accumulation may contribute to the anti-diabetic effects of healthy adipose tissue still requires further investigation.
The protective effects exerted by adipocytes through lipid handling makes them ideal for studying the pathophysiology of aberrant ceramide production. Human adipose tissue ceramide species concentrations as well as those of their regulatory enzymes are significantly altered in individuals with the metabolic syndrome (Blachnio-Zabielska et al., 2012; Blachnio-Zabielska et al., 2012). Ceramides directly induce cellular insulin “resistance” in adipocytes by limiting the effects of downstream insulin signaling, such as GLUT4 translocation (Summers et al., 1998). Suppressing ceramide production or depleting its levels prevents or even enhances insulin sensitivity during fatty acid challenges (Holland et al., 2007; Lahiri et al., 2009; Bikman et al., 2012; Mitsutake et al., 2012). One study suggested that ceramide content was reduced with adipocyte differentiation (Choi et al., 2011). This could simply reflect the ability of adipocytes under heightened insulin signaling to esterify and sequester fatty acids, thus limiting sphingolipid biosynthesis (Hage Hassan et al., 2014). Ceramide-driven insulin resistance may be dependent on the particular chain length species that are present, either due to dietary exposure or relative expression levels of chain-specific ceramide synthases or ceramidases (Barbarroja et al., 2014; Turpin et al., 2014). Adipose tissue C16:0 ceramide, for example, strongly induces systemic insulin resistance (Turpin et al., 2014). The cytoprotective and insulin-sensitizing effects of adiponectin have been linked to its induction of ceramidase activity and ceramide conversion to sphingosine-1-phosphate (Holland et al., 2011b; Holland and Scherer, 2013). Adiponectin receptor agonism may thus demonstrate potent antidiabetic effects (Okada-Iwabu et al., 2013). Future work manipulating sphingolipid enzymes specifically in adipocytes will further define the role adipocytes play in regulating systemic ceramide levels.

Adipocyte cytoskeletal remodeling, matrix communication, and adipose fibrosis. Another consequence of unhealthy adipose tissue expansion in obesity is the rapid induction of a dense extracellular matrix (Alligier et al., 2012; Sun et al., 2013b) with adipocytes expressing a profibrotic transcriptome (Henegar et al., 2008). Genetic mouse models with metabolically dysfunctional adipocytes often exhibit increased adipose ECM density (Davis et al., 2013; Ding et al., 2014). The mechanical interactions of adipocytes with this fibrous matrix have been identified as potential cues that drive adipocyte dysfunction. In tissue culture systems, adipocyte precursors and mature adipocytes both exhibit marked responses to mechanical stimulation (Levy et al., 2012; Shoham et al., 2012, 2014). Culturing human adipocytes on dense, fibrous matrices leads to increased β1-integrin–dependent pro-inflammatory gene expression and cytoskeletal strain-activated transcriptional responses (Pellegrinelli et al., 2014). In pre-adipocytes, cytoskeletal remodeling of actin fibers prevents the nuclear translocation of MLK1 and allows PPARγ-mediated differentiation (Nobusue et al., 2014). The coalescing mechanism of large lipid droplet formation is microtubule dependent (Ariotti et al., 2012), and interfering with cytoskeletal remodeling disrupts lipid droplet maintenance and dynamics during lipolysis (Orlicky et al., 2013). The dynamic size changes of adipocytes with expansion and reduction are thus critically dependent on the mechanical environment.

In addition, extracellular matrix remodeling is an important step in adipose expansion. Interactions with the matrix—and the matrix composition itself—regulate adipocyte health. Mice heterozygous for MMP14 exhibit a reduced capacity to remodel the matrix of expanding adipose tissue and thus have limited fat expansion (Chun et al., 2010), though this effect was not apparent in MMP-9 knockout mice (Van Hul et al., 2010). An inverse genetic model with specifically increased MMP activity has yet to be metabolically characterized; however, mice lacking TIMP-2 have reduced native MMP inhibition and exhibit expanded adipose tissue (Jaworski et al., 2011). A similar effect was noted in mice lacking collagen 6 (Col6), a matrix collagen highly enriched in adipose tissue. These mice gained more weight, and had increased adipose depot size and massively hypertrophic adipocytes, but were metabolically healthier than their littermates with reduced inflammation (Khan et al., 2009). Tissues from Col6 knockout mice have been used ex vivo to further demonstrate the intimate role of adipose tissue mechanical stability on adipocyte metabolic and cellular health (Lackey et al., 2014). Although adipose tissue fibrosis is unquestionably of profound physiological and clinical importance (Sun et al., 2013b), a recent study integrating ECM architecture and subclinical inflammation revealed a more complex relationship. Complete inhibition of local adipocyte inflammatory responses was associated with severe metabolic inflexibility and insulin resistance. We found that a minimal level of inflammation in the adipocyte microenvironment was required for extracellular matrix remodeling during expansion and that a failure to do so resulted in dysfunctional adipose tissue (Wernstedt Asterholm et al., 2014).

Hypoxia in fat expansion. As the adipocyte expands, adipose tissue interstitial oxygen tension decreases. Reduced oxygen tension has been directly measured in obese fat depots in mouse models and human subjects (Ye et al., 2007; Pasarica et al., 2009). HIF1α is a transcription factor that serves as an oxygen sensor in many cell types. Under normoxic conditions, HIF1α is rapidly degraded. However, hypoxic conditions stabilize HIF1α and permit up-regulation of genes containing HIF response elements as well as a distinct shift in the expression of a specific group of miRNAs, termed hypoxamirs (Nallamshetty et al., 2013). HIF1α protein is highly enriched in expanding adipocytes due to the need for increased adipose tissue vascularization. Because of the decreased oxygen availability in hypoxic conditions, glycolytic metabolic programs prevail under such conditions (Halberg et al., 2009; Regazzetti et al., 2010). In fact, local increases in fatty acids can uncouple the mitochondria and further increase oxygen consumption (Lee et al., 2014). Though HIF1α’s downstream targets should elicit a tissue response to improve oxygen supply, tissue vascularization effects have a complicated relationship with adipocyte health that is potentially both inhibitory or supportive, depending on the physiological state of the adipocyte (Sun et al., 2012). Direct inhibition of HIF1α improves adipose tissue health, further suggesting that other HIF1α responsive genes are more important for dysfunction than those that are specifically angiogenic.
The adipocyte remains a mysterious cell full of surprises. Uniquely positioned to take up, store, and release free fatty acids depending on systemic nutritional status, it can cope with high concentrations of lipids without experiencing the lipotoxicity that essentially every other mammalian cell type is subject to. Once prompted to release fatty acids upon demand, the adipocyte also produces and releases several anti-lipotoxic adipokines (Unger et al., 2013) to protect other tissues from the cytotoxic effects of high concentrations of fatty acids. The adipocyte is therefore a major producer of secreted products that regulate a wide range of physiological systems. In light of its unique position as a gate-keeper of high-energy reserves, the adipocyte is highly sensitive to hormonal cues (such as insulin), nutritional substrate-driven responses (such as glucose and lipids), and central signals conveyed through sympathetic innervation into the tissue. We unfortunately have tended to underestimate the function of the adipocyte as part of a more storage organ. We now increasingly appreciate it as an endocrine cell that is a key component in the maintenance of systemic energy homeostasis.

The authors were supported by the National Institutes of Health [grants R01-DK55758, R01-DK099110, and P01-DK088761 to P.E. Scherer] as well as a grant from the Cancer Prevention and Research Institute of Texas (CPRIT RP140415). J.H. Stern was supported by T32-DKO07307. J.M. Rutkowski was supported by the American Heart Association (12SDG12050287). Fig. 2 was illustrated by Richard Howdy, a certified medical illustrator, at Visually Medical. The authors declare no competing financial interests.

Submitted: 12 September 2014
Accepted: 9 February 2015

References

Abel, E.D., O. Peroni, J.K. Kim, Y.B. Kim, O. Boss, E. Hadro, T. Minnemann, G.I. Shulman, and B.B. Kahn. 2001. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 409:729–733. http://dx.doi.org/10.1038/35055375

Agarwal, A.K., and A. Garg. 2005. Congenital generalized lipodystrophy: significance of triglyceride biosynthetic pathways. Trends Endocrinol. Metab. 14:214–221. http://dx.doi.org/10.1016/S1043-2766(05)70007-8

Agarwal, A.K., S. Sukumaran, V.A. Cortés, K. Tunison, D. Mizrahi, S. Sankella, R.D. Gerard, J.D. Horton, and A. Garg. 2011. Human 1-acetylglucosamine-3-phosphate O-acetyltransferase isoforms 1 and 2: biochemical characterization and inability to rescue hepatic steatosis in Agpat2-/- gene lipodystrophic mice. J. Biol. Chem. 286:37670–37691. http://dx.doi.org/10.1074/jbc.M111.250449

Ahmed, K., S. Tunaru, C. Tang, M. Müller, A. Gille, A. Sassmann, J. Hanson, and S. Offermanns. 2010. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR31. Cell Metab. 11:311–319. http://dx.doi.org/10.1016/j.cmet.2010.02.012

Alligier, M., E. Meugnier, C. Debard, S. Lambert-Porcheron, E. Chaumeaux, M.-F. Goëffier, E. Lourouz, A.A. Hosain, J. Brozek, J.Y. Sossez, et al. 2012. Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J. Clin. Endocrinol. Metab. 97:E183–E192. http://dx.doi.org/10.1210/jc.2011-2314

Amole, B.O., M. Wittner, D. Hewlett, and H.B. Tanowitz. 1985. Trypanosoma brucei: infection in murine diabetes. Exp. Parasitol. 60:342–347. http://dx.doi.org/10.1016/0040-4200(85)90040-2

Apostolova, N., A. Blas-Garcia, and J.V. Esplugues. 2011. Mitochondrial toxicity in HAART: an overview of in vitro evidence. Curr. Pharm. Des. 17:2130–2144. http://dx.doi.org/10.2174/13816121179040731

Ariotti, N., S. Murphy, N.A. Hamilton, L. Wu, K. Green, N.L. Schieber, P. Li, S. Martin, and R.G. Parton. 2012. Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes. Mol. Biol. Cell. 23:1826–1837. http://dx.doi.org/10.1091/mbc.E11-10-0847

Asterholm, I.W., D.I. Mundy, J. Weng, R.G. Anderson, and P.E. Scherer. 2012. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab. 15:171–185. http://dx.doi.org/10.1016/j.cmet.2012.01.001

Asterholm, I.W., J.M. Rutkowski, T. Fujikawa, Y.R. Cho, M. Fukuda, C. Tao, Z.V. Wang, R.K. Gupta, J.K. Elmquist, and P.E. Scherer. 2014. Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice. Diabetologia. 57:1209–1218. http://dx.doi.org/10.1007/s00125-014-3210-3

Barbarrà, N., S. Rodriguez-Cuartero, H. Nygren, A. Camargo, A. Pirraco, J. Relat, I. Cuadrado, V. Pellegrinelli, G. Medina-Gomez, C. Lopez-Pedraza, et al. 2014. Increased dihydroceramide/ceramide ratio mediated by defective expression of degs1 impairs adipocyte differentiation and function. Diabetes. http://dx.doi.org/10.2337/db14-0359

Bikman, B.T., Y. Guan, G. Shui, M.M. Siddique, W.L. Holland, J.Y. Kim, G. Fabrías, M.R. Wenz, and S.A. Summers. 2012. Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis. J. Biol. Chem. 287:17426–17437. http://dx.doi.org/10.1074/jbc.M112.359950

Blachnio-Zabielska, A.U., C. Koutsari, T. Tchkonia, and M.D. Jensen. 2012. Sphingolipid content of human adipose tissue: relationship to adiponectin and insulin resistance. Obesity (Silver Spring). 20:2341–2347. http://dx.doi.org/10.1038/oby.2012.126

Blachnio-Zabielska, A.U., M. Pulkà, M. Baranowski, A. Nikołajuk, P. Zabielski, M. Gośka, and J. Górska. 2012. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. J. Cell. Physiol. 227:550–557. http://dx.doi.org/10.1002/jcp.22745

Blüher, M. 2014. Adipokines - removing road blocks to obesity and diabetes therapy. Mol. Metab. 3:230–240. http://dx.doi.org/10.1016/j.molmeta.2014.01.005

Blüher, M., M.D. Michael, O.D. Peroni, K. Ueki, N. Carter, B.B. Kahn, and C.R. Kahn. 2002. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell. 2:35–38. http://dx.doi.org/10.1016/S1534-5878(02)00199-5

Bolten, C.W., P.M. Blanner, W.G. McDonald, N.R. Staten, R.A. Mazzarella, G.B. Arhancet, M.F. Meier, D.J. Weiss, P.M. Sullivan, A.E. Hromockyj, et al. 2007. Insulin sensitizing pharmacology of thiazolidinediones correlates with mitochondrial gene expression rather than activation of PPAR gamma. Gene Regul. Syst. Biol. 1:73–82.

Bras难怪, D.L., G. Doltos, L. Shapiro, and R. Wang. 2004. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 280:342–347. http://dx.doi.org/10.1074/jbc.M409340200

Cao, H. 2014. Adipokynes in obesity and metabolic disease. J. Endocrinol. 220:T47–T59. http://dx.doi.org/10.1530/JOE-13-0339

Caspar-Bauguil, S., B. Cousin, S. Bour, L. Castella, L. Penicaud, and C. Carpéné. 2003. Adipose tissue lymphocytes: types and roles. J. Physiol. Biochem. 65:423–436. (published erratum appears in J. Physiol. Biochem. 2011. 67:497) http://dx.doi.org/10.1007/BF03185938

Cho, Y.M., D.H. Kim, S.N. Kwak, S.W. Jeong, and O.J. Kwon. 2013. X-box binding protein 1 enhances adipogenic differentiation of 3T3-L1 cells through the downregulation of Wnt10b expression. FEBS Lett. 587:1644–1649. http://dx.doi.org/10.1016/j.febslet.2013.04.005
Cohen, A.W., B. Razani, W. Schubert, T.M. Williams, X.B. Wang, P. Iyengar, Coburn, C.T., F.F. Knapp Jr., M. Febbraio, A.L. Beets, R.L. Silverstein, and N.A. Ferreira, A.V., M. Segatto, Z. Menezes, A.M. Macedo, C. Gelape, L. de Oliveira Feldmann, H.M., V. Golozoubova, B. Cannon, and J. Nedergaard. 2009. UCP1 Forest, C., J. Tordjman, M. Glorian, E. Duplus, G. Chauvet, J. Quette, E.G. Festuccia, W.T., P.G. Blanchard, V. Turcotte, M. Laplante, M. Sariahmetoglu, D.N. Digel, M., R. Ehehalt, and J. Füllekrug. 2010. Lipid droplets lighting up: in- Deng, J., S. Liu, L. Zou, C. Xu, B. Geng, and G. Xu. 2012. Lipolysis response to Choi, K.M., Y.S. Lee, M.H. Choi, D.M. Sin, S. Lee, S.Y. Ji, M.K. Lee, Y.M. Lee, Choi, S.M., D.F. Tucker, D.N. Gross, R.M. Easton, L.M. DiPilato, A.S. Dean, Choi, G., A.M. Seyfried, B. Effros, R.J. Kolesnick, J.P. Shannon, A. Shelly, M., C. Tatar, and J. Sun. 2013. Tirofiban inhibits platelet:DSCMC25 expression in adipose tissue leads to obesity without insulin resistance. J. Clin. Soc. Trans. 31:1125–1129. http://dx.doi.org/10.1042/BST0311125 Fragnelli, G., A.M. Seyfried, B. Effros, R.J. Kolesnick, J.P. Shannon, A. Shelly, M., C. Tatar, and J. Sun. 2013. Tirofiban inhibits platelet...
Holland, W.L., B.T. Bikman, I.P. Wang, G. Yuguaung, K.M. Sargent, S. Bulchand, T.A. Knotts, G. Shui, D.J. Clegg, M.R. Wenk, et al. 2011a. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. *J. Clin. Invest.* 121:1858–1870. http://dx.doi.org/10.1172/ JCI43378

Holland, W.L., R.A. Miller, Z.V. Wang, K. Sun, B.M. Barth, H.H. Bui, K.E. Davis, B.T. Bikman, N. Halberg, J.M. Rutkowski, et al. 2011b. Receptor-mediated activation of ceramide deactivation initiates the pleiotropic actions of adipocytokines. *Nat. Med.* 17:55–63. http://dx.doi.org/10.1038/nm.2277

Holland, W.L., A.C. Adams, J.T. Brozinick, H.H. Bui, Y. Miyaochi, C.M. Kusminski, S.M. Bauer, M. Wade, E. Singhal, C.C. Cheng, et al. 2013. An FPG21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. *Cell Metab.* 17:790–797. http://dx.doi.org/10.1016/j.cmet.2013.03.019

Huh, J.Y., E.Y. See, H.B. Lee, and H. Ha. 2012. Glucose-based peritoneal dialysis solution suppresses adiponectin synthesis through oxidative stress in an experimental model of peritoneal dialysis. *Perit. Dial. Int.* 32:20–28. http://dx.doi.org/10.3747/pdi.2009.00228

Jaworski, D.M., O. Sideleva, H.M. Stradecki, G.D. Langlois, A. Habibovic, L. Le Lay, S., C.M. Blouin, E. Hajduch, and I. Dugail. 2009. Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. *Biochim. Biophys. Acta.* 1791:514–518. http://dx.doi.org/10.1016/j.bibj.2008.10.008

Lee, Y.H., A.P. Perkova, E.P. Mottillo, and J.G. Granneman. 2012. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenergic receptor activation and high-fat feeding. *Cell Metab.* 15:480–491. http://dx.doi.org/10.1016/j.cmet.2012.03.009

Lee, Y.S., J.W. Kim, O. Osborne, Y. Oh, R. Sasaki, S. Schenk, A. Chen, H. Chiang, A. Murphy, et al. 2012. Decreased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. *Cell. 157:1339–1352. http://dx.doi.org/10.1016/j.cell.2014.05.012

Levy, A., S. Enzer, N. Shoham, U. Zaretzky, and A. Gfen. 2012. Large, but not small sustained tensile strains stimulate adipogenesis in culture. *Ann. Biomed. Eng.* 40:1052–1060. http://dx.doi.org/10.1007/s10439-011-0496-x

Lim, J.H., H.J. Lee, M. Ho Jung, and J. Song. 2009. Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. *Cell. Signal.* 21:169–177. http://dx.doi.org/10.1016/j.cellsig.2009.01.016

Liu, L., D. Brown, M. McKee, N.K. Lebrassere, D. Yang, K.H. Albrecht, K. Ravid, and P.F. Pilch. 2008. Deletion of Cavein/PTFR causes global loss of caveolae, dyslipidemia, and glucose intolerance. *Cell Metab.* 8:310–317. http://dx.doi.org/10.1016/j.cmet.2008.07.008

Lobo, S., B.M. Wiczer, A.J. Smith, A.M. Hall, and D.A. Bernlohr. 2007. Fatty acid metabolism in adipocytes: functional analysis of fatty acid transport proteins 1 and 4. *J. Lipid Res.* 48:699–620. http://dx.doi.org/10.1194/jlr.M600441-JLR200

Long, J.Z., K.J. Svensson, L. Tsi, X. Zeng, H.C. Rok, X. Kong, R.R. Rao, J. Lou, I. Lokurkar, W. Baur, et al. 2014. A smooth muscle-like origin for beige adipocytes. *Cell Metab.* 19:810–820. http://dx.doi.org/10.1016/j.cmet.2013.04.025

Lowe, C.E., R.J. Dennis, U. Obi, S. O’Rahilly, and J.J. Rochford. 2012. Investigating the involvement of the ATF6a pathway of the unfolded protein response in adipogenesis. *Int. J. Obes. (Lond).* 36:1248–1251. http://dx.doi.org/10.1038/ijo.2011.353

Lu, R.H., H. Ji, Z.G. Chang, S.S. Su, and G.S. Yang. 2010. Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. *Mol. Biol. Rep.* 37:2173–2182. http://dx.doi.org/10.1007/s11033-009-9695-z

MacLaren, R., W. Cui, and K. Cianflione. 2008. Adipokines and the immune system: an adipocentric view. *Adv. Exp. Med. Biol.* 632:1–21. http://dx.doi.org/10.1007/978-0-387-78952-1_1

Meshalum, T.M., R.R. Breen, L. Liu, R.G. Parton, and P.F. Pilch. 2011. Caveolins/ caveolea protect adipocytes from fatty acid-mediated lipotoxicity. *J. Lipid Res.* 52:1526–1532. http://dx.doi.org/10.1194/jlr.M016528

Millward, C.A., D. Desantis, C.W. Hsieh, J.D. Heaney, S. Pisano, Y. Olswang, R. Kuliawat, C.M. Kusminski, F.S. Machado, M.S. Desruisseaux, V.L. Braunstein, I. Dugail, L.A. Jelicks, P.E. Scherer, S. Mitsutake, S., T. Date, H. Yokota, M. Sugiura, T. Kohama, and Y. Igarashi. 2010. Control of ceramide abundance by the ATF6-dependent ceramide kinase 4 promotes adipocyte differentiation. *J. Biol. Chem.* 285:341–364. http://dx.doi.org/10.1074/jbc.M109.078271

Miller, R.A. 2007. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4. *Ann. Rev. Med.* 58:130–146. http://dx.doi.org/10.1146/annurev.med.58.032106.095107

Nagajyothi, F., D.M. Jaworski, D.A. Habibovic, D.L. Silver, M.S. Desruisseaux, P.E. Scherer. 2012. Mitochondrial function in white adipose tissue. *Trends Endocrinol. Metab.* 23:435–443. http://dx.doi.org/10.1016/j.tem.2012.06.004

Nagajyothi, F., C.M. Kusminski, and P.E. Scherer. 2012. Mitochondrial dysfunction in white adipose tissue. *Trends Endocrinol. Metab.* 23:435–443. http://dx.doi.org/10.1016/j.tem.2012.06.004

Nagajyothi, F., W.L. Holland, K. Sun, J. Park, S.B. Spurgin, Y. Lin, G.R. Askew, J.A. Simcox, D.A. McClain, C. Li, and P.E. Scherer. 2012. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. *Nat. Med.* 18:1539–1549. http://dx.doi.org/10.1038/nm.2899

Lackey, D.E., D.H. Burk, M.R. Ali, R. Mostaedi, W.H. Smith, J. Park, P.E. Scherer, S.A. Seay, C.S. McCon, P. Bonaldo, and S.H. Adams. 2014. Contributions of adipose tissue architecture and tensile properties toward defining healthy and unhealthy obesity. *Am. J. Physiol. Endocrinol. Metab.* 306:E233–E246. http://dx.doi.org/10.1152/ajpendo.00476.2013

Lahiri, S., H. Park, E.L. Laviad, X. Lu, R. Bittman, and A.H. Futterman. 2009. Ceramide synthesis is modulated by the spingolopine analog FYT20 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. *J. Biol. Chem.* 284:16900–16908. http://dx.doi.org/10.1074/jbc.M807348200

Lass, A., R. Zimmermann, M. Oberer, and R. Zechner. 2011. Lipolysis – a highly regulated multi-enzyme complex modulates catabolism of cellular fat stores. *Prog. Lipid Res.* 50:14–27. http://dx.doi.org/10.1016/j.plipres.2010.10.004

Le Lay, S., C.M. Blouin, E. Hajduch, and I. Dugail. 2009. Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. *Biochim. Biophys. Acta.* 1791:514–518. http://dx.doi.org/10.1016/j.bibj.2008.10.008

Downloaded from jcb.rupress.org on August 21, 2017
Regazzetti, C., F. Bost, Y. Le Marchand-Brustel, J.F. Tanti, and S. Giorgetti-Pilch, P.F., and L. Liu. 2011. Fat caves: caveolae, lipid trafficking and lipid metabolism. Biochim. Biophys. Acta 1813:943–949. http://dx.doi.org/10.1016/j.bbalip.2013.01.009

Nedergaard, J., and B. Cannon. 2013. UCP1 mRNA does not produce heat. Biochim. Biophys. Acta 1831:1065–1069. http://dx.doi.org/10.1016/j.bbalip.2013.01.009

Shan, D., J.L. Li, L. Wu, D. Li, J. Hurov, J.F. Tobin, R.E. Gimeno, and J. Cao. 2010. GPAT3 and GPAT4 are regulated by insulin-stimulated phosphorylation and play distinct roles in adipogenesis. J. Lipid Res. 51:1971–1981. http://dx.doi.org/10.1194/jlr.R800052-JLR200

Shigematsu, S., R.T. Watson, A.H. Khan, and J.E. Pessin. 2003. The adipocyte plasma membrane caveolin functional/structural organization is necessary for the efficient endocytosis of GLUT4. J. Biol. Chem. 278:10685–10690. http://dx.doi.org/10.1074/jbc.M208563200

Shepherd, P.R., L. Gnuti, E. Tozzo, H. Yang, F. Leach, and B.B. Kahn. 1993. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. Biol. Chem. 268:22233–22246.

Shoham, N., R. Gottlieb, O. Sharabani-Yosef, U. Zaretsky, D. Benayahu, and A. Gelen. 2012. Static mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the MEK signaling pathway. Am. J. Physiol. Cell Physiol. 302:C429–C441. http://dx.doi.org/10.1152/ajpcell.00676.2011

Shoham, N., P. Girishvölgyi, R. Katzengold, N.T. Shaked, D. Benayahu, and A. Gefen. 2014. Adipocyte stiffness increases with accumulation of lipid droplets. Biochim. Biophys. Acta 1840:1461–1431. http://dx.doi.org/10.1016/j.bbapap.2014.01.045

Spalding, K.L., E. Arner, P.O. Westermark, S. Bernard, B.A. Buchholz, O. Bergmann, L. Blomqvist, J. Hoffstedt, E. Näslund, T. Britton, et al. 2008. Dynamics of fat cell turnover in vivo in humans. Nature 453:783–787. http://dx.doi.org/10.1038/nature06902

Stark, R., F. Guebre-Egziabher, X. Zhao, C. Feriod, J. Dong, T.C. Alves, S. Itoja, R.L. Ponzart, S. Bhanot, M. Roden, et al. 2011. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis. J. Biol. Chem. 286:7257–7263. http://dx.doi.org/10.1074/jbc.C111.344759

Stöckli, J., D.J. Fazakerley, and D.E. James. 2011. GLUT4 exocytosis. J. Cell. Sci. 124:4147–4159. http://dx.doi.org/10.1242/jcs.097063

Surley, S.L., and M.M. Hussain. 2012. Lipid droplet formation on opposing sides of the endoplasmic reticulum. J. Lipid Res. 53:1800–1810. http://dx.doi.org/10.1194/jlr.R028290

Summers, S.A., L.A. Garza, H. Zhou, and M.J. Birnbaum. 1998. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol. Cell. Biol. 18:5457–5464.

Sun, K., C.M. Kusminski, and P. Scherer. 2011. Adipose tissue remodeling and obesity. J. Clin. Investig. 121:2004–2011. http://dx.doi.org/10.1172/JCI45887

Sun, K., I. Wernstedt Astholm, C.M. Kusminski, A.C. Bueno, Z.V. Wang, J.W. Pollard, R.A. Breken, and P.E. Scherer. 2012. Distinctomus effects of VEGF-A on adipose tissue dysfunction. Proc. Natl. Acad. Sci. USA. 109:5874–5879. http://dx.doi.org/10.1073/pnas.1200471109

Sun, K., N. Halberg, M. Khan, U.J. Magalang, and P.E. Scherer. 2013a. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell. Biol. 33:904–917. http://dx.doi.org/10.1128/MCB.00951-12

Sun, K., J. Tordjman, K. Clément, and P.E. Scherer. 2013b. Fibrosis and adipose tissue dysfunction. Cell Metab. 17:480–477. http://dx.doi.org/10.1016/j.cmet.2013.06.016

Takahashi, Y., A. Shinoda, N. Furuya, E. Harada, N. Arimura, I. Ichii, Y. Fujisawa, J. Inoue, and R. Sato. 2013. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triglyceride accumulation. PLoS ONE 8:e66837. http://dx.doi.org/10.1371/journal.pone.0066837

Tanowitz, H.B., B. Amole, D. Hewlett, and M. Wittner. 1988. Trypanosoma cruzi infection in diabetic mice. Proc. Natl. Acad. Sci. USA. 85:556–564. http://dx.doi.org/10.1073/pnas.85.2.556

Tallquist, and J.M. Graff. 2008. White fat progenitor cells reside in the tissue dysfunction. J. Clin. Invest. 121:2004–2011. http://dx.doi.org/10.1172/JCI45887

Tozzo, H. Yang, F. Leach, and B.B. Kahn. 1993. Adipose tissue remodeling and resistance to diet-induced obesity. J. Biol. Chem. 268:8635–8647. http://dx.doi.org/10.1016/j.bbapain.2013.03.016

Trypanosoma cruzi infection in diabetic mice. Proc. Natl. Acad. Sci. USA. 85:556–564. http://dx.doi.org/10.1073/pnas.85.2.556

Tallquist, and J.M. Graff. 2008. White fat progenitor cells reside in the tissue dysfunction. J. Clin. Invest. 121:2004–2011. http://dx.doi.org/10.1172/JCI45887

Tozzo, H. Yang, F. Leach, and B.B. Kahn. 1993. Adipose tissue remodeling and resistance to diet-induced obesity. J. Biol. Chem. 268:8635–8647. http://dx.doi.org/10.1016/j.bbapain.2013.03.016

Trypanosoma cruzi infection in diabetic mice. Proc. Natl. Acad. Sci. USA. 85:556–564. http://dx.doi.org/10.1073/pnas.85.2.556

Tallquist, and J.M. Graff. 2008. White fat progenitor cells reside in the tissue dysfunction. J. Clin. Invest. 121:2004–2011. http://dx.doi.org/10.1172/JCI45887

Tozzo, H. Yang, F. Leach, and B.B. Kahn. 1993. Adipose tissue remodeling and resistance to diet-induced obesity. J. Biol. Chem. 268:8635–8647. http://dx.doi.org/10.1016/j.bbapain.2013.03.016

Trypanosoma cruzi infection in diabetic mice. Proc. Natl. Acad. Sci. USA. 85:556–564. http://dx.doi.org/10.1073/pnas.85.2.556

Tallquist, and J.M. Graff. 2008. White fat progenitor cells reside in the tissue dysfunction. J. Clin. Invest. 121:2004–2011. http://dx.doi.org/10.1172/JCI45887

Tozzo, H. Yang, F. Leach, and B.B. Kahn. 1993. Adipose tissue remodeling and resistance to diet-induced obesity. J. Biol. Chem. 268:8635–8647. http://dx.doi.org/10.1016/j.bbapain.2013.03.016

Trypanosoma cruzi infection in diabetic mice. Proc. Natl. Acad. Sci. USA. 85:556–564. http://dx.doi.org/10.1073/pnas.85.2.556

Tanowitz, H.B., B. Amole, D. Hewlett, and M. Wittner. 1988. Trypanosoma cruzi infection in diabetic mice. Proc. Natl. Acad. Sci. USA. 85:556–564. http://dx.doi.org/10.1073/pnas.85.2.556
