A comparative investigation of using microbial- and CO₂-induced carbonate minerals in sustainable soil improvement

Alireza Zangani
 Imam Khomeini International University

Hamed Abdeh Keykha (✉ hamed.a.keykha@gmail.com)
 Imam Khomeini International University
 https://orcid.org/0000-0001-8125-2223

Hadi Mohamadzadeh Romiani
 Imam Khomeini International University

Afshin Asadi
 Auckland international college

Satoru Kawasaki
 Hokkaido University: Hokkaido Daigaku

Niloofar Radmanesh
 Azad University: Islamic Azad University

Research Article

Keywords: MICP, CO₂ capture, Carbonate mineral, Soil improvement

Posted Date: February 1st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1207809/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The structure and shape of carbonate crystals formed by microbial activity and carbon dioxide reaction were investigated in this work. The mineral carbonates treated sandy soil was subsequently determined using unconfined compression tests (UCS). *Sporosarcina pasteurii* bacteria were used to produce an aqueous solution of free carbonate ions (CO$_3^{2-}$) under laboratory circumstances called microbial-induced carbonate precipitation (MICP). In CO$_2$-induced carbonate precipitation, carbon dioxide was added to a sodium hydroxide solution to form free carbonate ions (CO$_3^{2-}$) (CICP). Different carbonate mineral compositions were then provided by adding Fe$^{2+}$, Mg$^{2+}$, and Ca$^{2+}$ ions to carbonate ions (CO$_3^{2-}$). In the MICP and CICP procedures, the results of scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) revealed a distinct morphology of carbonate minerals. Vaterite (CaCO$_3$), siderite (FeCO$_3$), magnesium carbonate hydrate, or Nesquehonite (MgCO$_3$(H$_2$O)$_3$) and dolomite (CaMg(CO$_3$)$_2$) were produced in MICP. Calcite (CaCO$_3$), siderite (FeCO$_3$), magnesium carbonate hydrate or Nesquehonite (MgCO$_3$(H$_2$O)$_3$), and high-Mg calcite (CaMg(CO$_3$)$_2$) were produced in CICP. The results of UCS showed that siderite and high-Mg calcite/dolomite had more efficiency in soil strength. The lowest value of strength was related to magnesium carbonate hydrate treated soils. Mineral-treated soils in CICP showed a slightly higher UCS strength than MICP, which could be attributable to greater crystal particle sizes and particle interlocking.

1. Introduction

Sustainable precipitation of carbonate minerals may provide green means of mitigating some geotechnical challenges associated with soils. Microbial-induced carbonate precipitation (MICP) and CO$_2$-induced carbonate precipitation (CICP) can induce interparticle cementation and mineral precipitation in soil pore space to address geotechnical problems such as soil erosion and slope instability (Keykha et al. 2017, Keykha et al. 2018a, Romiani et al. 2021).

Biomineralization is the chemical modification of an environment that comes about within the precipitation of minerals by microbial activity which may be extracellular precipitation. The carbonate precipitation as a result of extracellular mineralization is a well-known phenomenon in all classes of living organisms. (Lowenstam and Weiner 1989). While precipitation of carbonate as an inorganic chemical reaction is difficult in natural environments, bacteria can cause mineral precipitation in microenvironments by (1) changing surrounding environmental conditions, and (2) acting as nucleation sites (Sánchez-Román et al. 2011). The negative surface charge of bacterial cells absorbs divalent cations (e.g. Ca$^{2+}$, Mg$^{2+}$) at neutral pH, making them suitable nucleation sites for calcite deposition. (Ferris et al. 1997; Stocks-Fischer et al. 1999). Microbial-induced carbonate precipitation (MICP) is a biogeochemical process that precipitates calcium carbonate as extracellular mineralization. MICP treatment is a CaCO$_3$ precipitation technology that biologically uses ureolytic bacteria to hydrolyze urea to carbonate by producing urease enzyme release. (Ivanov and Chu 2008). However, the CaCO$_3$ formation of bacteria is challenging in the soil environment as the mineralization is occurring by a living organism.
MICP can produce different polymorphs of CaCO$_3$ such as aragonite, calcite, and vaterite, as well as hydrated crystalline phases such as hexahydrocalcite (CaCO$_3$·6H$_2$O), monohydrocalcite (CaCO$_3$·H$_2$O), and amorphous calcium carbonate (Chen et al. 2009; Gebauer et al. 2010). The culture media can affect crystal morphology because different bacterial species precipitate different types and shapes of carbonate crystals from the same medium (Ferrer et al. 1988; Hammes and Verstraete 2002; Dhami et al. 2013). Depending on the polymorph of CaCO$_3$ crystals (i.e. calcite, vaterite, or aragonite), the strength of biocemented soil can be affected (Al-Thawadi 2013; Dhami et al. 2013). Less information is available concerning the usage of other carbonate minerals for soil improvement.

The precipitation of carbonate minerals by CO$_2$ transformation is considered a promising option for carbon capture and storage (CCS) since (i) CO$_2$ can be accumulated permanently and (ii) industrial disposals (i.e. cement and lime kiln dust, steel, and stainless-steel slags, etc.) can be recycled into carbonate materials by controlling polymorphs and properties of the mineral carbonates (Chang et al. 2017). CO$_2$ may be stored and converted to carbonate minerals for a long time such as CaCO$_3$ and MgCO$_3$ because they are stable forms of carbon (Smit et al. 2014). In addition, mineral carbonation also has unique advantages because allows the utilization of industrial wastes (with hazardous effects), and given this providing an appropriate method for disposal or recycling is a significant environmental issue. According to a recent study, CICP improves soil characteristics by precipitating carbonate minerals between soil particles in an environmentally friendly method. (Romiani et al. 2021). It entails capturing carbon dioxide (carbon sink) and producing carbonate minerals as a result (e.g. siderite, magnesite, and calcite). The carbonate minerals are environmentally safe and have the potential to physically and chemically bind soil particles. The developed CICP and their application in soil improvement is a promising result for new efforts because carbon dioxide is a contributing factor to the major global warming projected in future decades.

This research aims to evaluate the structure and morphology of carbonate crystals that form as a result of microbial activity and CO$_2$ reaction, as well as to compare the effects of minerals on soil treatment.

2. Materials And Methods

2.1. Microbial induced- ammonium free carbonate production

The *Sporosarcina pasteurii* (PTCC 1645) a urease-producing bacterium was used in this study. S. pasteurii was harvested using NH$_4$ -YE, a medium made up of 20.0 g yeast extract in 100 ml distilled water, 10.0 g (NH$_4$)$_2$SO$_4$ in 100 ml distilled water, and 0.13 mol/lit tris buffer (pH = 9.0). After that, the materials were autoclaved separately (121°C for 15 minutes), cooled, and then blended in an Erlenmeyer flask. The bacteria medium was cultured at a pH of 9.0, which is ideal for the growth of S. pasteurii. The bacteria were thereafter moved to the medium broth in an incubator (30°C) and shaken at 200 rpm under aerobic conditions for 2–3 days. The bacterium was extracted from an overnight culture by centrifugation.
(Sartorius AG, sigma 3-18 K, Germany) at 8000 g for 10 min with an optical density of 1.6 at 600 nm (Labomed UVD 2950). During cultivation, cell concentration was obtained about 10^8 cells ml$^{-1}$ by measuring the OD600 using a spectrophotometer (Thermo Electron Corporation, Madison, WI).

To prepare a free carbonate solution, 100 ml urea (1M) was added to 100 ml of the culture bacteria. The bacteria were exposed to the urea and produced carbonate ions (CO_3^{2-}) according to equation 1. To separate the carbonate-producing bacteria, after 2 days, the solution was centrifuged at 10000 g for 8 min. The remaining solution (supernatant) was collected with a pipette and passed through a Millipore HPLC Syringe Filter (0.25 µm). The concentration of carbonate ion in the cementation solution was measured by Thomas Combination Carbonate Ion-Selective Electrode (ISE).

$$\text{Bacterial cells} + \text{CO (NH}_2\text{)}_2 + 2\text{H}_2\text{O} \rightarrow \text{CO}_3^{2-} + 2\text{NH}_4^+ \text{ (equation 1)}$$

In the next step, natural zeolite (sodium-potassium form, Pars Chemical industry) was used to reduce the ammonium ions according to the method developed by Keykha et al. (2018 b). In this study, different masses of zeolite powder were added to carbonate solution and remained for 3 days. The solution then was passed through filter paper and the ammonium concentration was measured using an Orion ion-selective ammonia probe (model no. 9512HPBNWP).

2.2. CO$_2$ induced-carbonate production

To produce free carbonate ions (CO_3^{2-}) in this study, a 2.5 kg industrial cylinder of CO$_2$ gas with relative density and solubility in water of 1.5 and 2000 mg/l was used respectively. Sodium hydroxide (NaOH) with molar masses of 39.99 g/mol and a density of 2.13 g/cm3 (as powder) was also used.

Free carbonate ions (CO_3^{2-}) were produced through laboratory-scale carbon capture technology (Inoue et al. 2010). To prepare free carbonate ions (CO_3^{2-}), the CO$_2$ gas was injected into a solution of sodium hydroxide (2 molars) at a 5 ml/min rate for a period of 72 h. In this process, when CO$_2$ reacts with water, in the presence of sodium hydroxide (NaOH), it forms Na$_2$CO$_3$ according to equation 2. The concentration of carbonate ions was eventually measured by Thomas Combination Carbonate Ion-Selective Electrode (ISE) at the end of the process.

$$\text{CO}_2 + \text{NaOH} + 2\text{H}_2\text{O} \rightarrow \text{NaHCO}_3 \text{ (aq) (equation 2a)}$$

$$\text{NaHCO}_3 \text{ (aq) + NaOH (aq) } \rightarrow \text{Na}_2\text{CO}_3 \text{ (equation 2b)}$$

$$\text{Na}_2\text{CO}_3 \rightarrow 2\text{Na}^+ \text{ (aq) + CO}_3^{2-} \text{ (aq) (equation 2C)}$$

2.3. Carbonate minerals production

A schematic diagram of the carbonate mineral precipitation techniques is shown in Figure 1. Ferrous sulfate (FeSO$_4$), magnesium sulfate (MgSO$_4$), and calcium chloride (CaCl$_2$) were used to extract the ion
components of Fe$^{2+}$, Mg$^{2+}$, and Ca$^{2+}$, respectively. The chemical characteristics of the materials utilized are listed in Table 1.

Type of material	Molar mass (g/mole)	Density (g/cm3)	Ingredient rations	Type of mineral deposition
FeSO$_4$.7H$_2$O	278	2.84	Fe$^{2+}$: CO$_3^{2−}$	1:1 FeCO$_3$
MgSO$_4$.7H$_2$O	246.48	2.66	Mg$^{2+}$: CO$_3^{2−}$	1:1 MgCO$_3$
CaCl$_2$.2H$_2$O	147.02	2.15	Ca$^{2+}$:CO$_3^{2−}$	1:1 CaCO$_3$
MgSO$_4$/ CaCl$_2$	246.4/147.02	2.66/2.15	Mg$^{2+}$/ Ca$^{2+}$: CO$_3^{2−}$	1:1 CaCO$_3$ & CaMg(CO$_3$)$_2$

In this study, the carbonate minerals were precipitated by adding Fe$^{2+}$, Mg$^{2+}$, and Ca$^{2+}$ ions to free carbonate ions (CO$_3^{2−}$) produced by microbial-induced carbonate precipitation (MICP) and CO$_2$-induced carbonate precipitation (CICP). The FeCO$_3$ (siderite) was precipitated by adding ferrous sulfate solution (1 molar) to free carbonate ions (CO$_3^{2−}$) produced by microbial induced carbonate or CO$_2$ induced carbonate precipitation (eq 3a). The MgCO$_3$ (magnesite) was precipitated by adding magnesium sulfate solution (1 molar) to free carbonate ions (CO$_3^{2−}$) (eq 3b). The CaCO$_3$ (calcite) was precipitated by adding calcium chloride solution (1 molar) to free carbonate ions (CO$_3^{2−}$) (eq 3c). In addition, a blend of magnesium sulfate and calcium chloride (1 molar) with rate 1:1 was added to free carbonate ions (CO$_3^{2−}$) to precipitate CaCO$_3$ (calcite) and CaMg(CO$_3$)$_2$ (dolomite) together (eq 3d). The carbonate solutions were centrifuged at 8000 g for 10 min and were eventually filtered by filter paper to obtain a condensed carbonate minerals solution with moisture contents in the range of 30-40%. The produced carbonate minerals from two different methods (Microbial-induced mineral carbonates and CO$_2$-induced mineral carbonate) were used to test for SEM analysis and soil engineering properties in the next steps.

FeSO$_4$ (aq) + CO$_3^{2−}$ (aq) → FeCO$_3$ (equation 3a)

MgSO$_4$ (aq) + CO$_3^{2−}$ (aq) → MgCO$_3$ (equation 3b)

CaCl$_2$ (aq) + CO$_3^{2−}$ (aq) → CaCO$_3$ (equation 3c)

MgSO$_4$ (aq) + CaCl$_2$ (aq) + CO$_3^{2−}$ (aq) → CaCO$_3$ + CaMg (CO$_3$)$_2$ (equation 3d)

2.4. Scanning electron microscope (SEM)
The size, shape, and crystalline formation of the mineral crystals were examined using scanning electron microscopy (SEM) on the various mineral products from MICP and CICP. The specimens were gold-coated to make them conductive. For these trials, the accelerating voltages were chosen between 10 and 15 kV.

2.5. Green soil improvement using carbonate minerals

In this experiment, clean silica Firoozkuh sand was employed. The sand grain size distribution curve is shown in Figure 2. The sand had a specific gravity of 2.65, a uniformity coefficient of 2.75, and maximum and minimum void ratios of 0.91 and 0.57, respectively.

The soil specimens were prepared by mixing condensed carbonate minerals (i.e., siderite, magnesite, calcite, and calcite/dolomite). To obtain condensed carbonate minerals, the solutions were centrifuged at 8000 g for 10 min and were eventually filtered by a filter paper (Keykha et al. 2021). The carbonate minerals (with a water content of about 100%) were used as soil stabilizing agents in the unconfined compression tests.

2.5.1 Unconfined compressive strength test

The unconfined compression test was used for obtaining the approximate strength of the soil specimens. To perform the unconfined compression tests, the pre-weighed amount of sand was mixed with condensed carbonate minerals and placed in the two-piece split mold by slightly tamping to obtain a homogenous specimen of 50mm diameter and 100 mm length by dry density equal to about 19.2 kN/m3. Before the unconfined compressive strength tests, the specimens were allowed to cure at room temperature for 7 days. Table 2 shows a summary of the testing program and specifications of specimens.
Table 2
Testing program and specimens specifications

Sample Code	Mineral Type	Carbonate mineral (%)	γ_d (kN/m3)	w (%)
Mg-MICP	MgCO$_3$	11.7	19.09	11.5
Mg-CICP	MgCO$_3$	13.2	19.35	9.7
Ca- MICP	CaCO$_3$	12.5	19.23	8.2
Ca- CICP	CaCO$_3$	12.7	19.26	9.3
Fe- MICP	FeCO$_3$	12	19.14	9.2
Fe- CICP	FeCO$_3$	12.3	19.19	10.1
(Ca-Mg)- MICP	(Ca-Mg)CO$_3$	13.7	19.43	9.5
(Ca-Mg)- CICP	(Ca-Mg)CO$_3$	13.4	19.38	10.6

The unconfined compression tests were repeated three times for each type of mineral and production method. The accuracy analysis was performed for parallel tests. The unconfined compressive strength (UCS) was taken as the peak stress with the corresponding axial strain at failure in the stress-strain curve (ASTM D2166/D2166M-16, 2016).

The carbonate mineral percentage of the samples was determined by using an acid washing technique (Keykha et al. 2018a). The soil samples were soaked into an acid solution (HCl 5 M). The dissolved carbonates and acid wash solution were filtered through a filter paper several times, allowing the dissolved salts to be rinsed from the soil while the soil was retained. Before and after the acid washing technique, the oven-dried mass of the soil samples across the specimen was measured. The mass of
carbonate minerals was calculated as the difference between the two observed masses. Table 2 shows the results that were achieved.

3. Results And Discussion

3.1. Induced carbonate production (CO$_3^{2-}$)

In this study, the free carbonate ions (CO$_3^{2-}$) produced by microbial-induced carbonate (MICP) and CO$_2$-induced carbonate (CICP) were compared in Figure 3. As it can be seen from the figure, a value of 42.1 and 34.8 g/lit were obtained for CICP and MICP methods, respectively.

The effect of Zeolite treatment on ammonium concentration for MICP to generate an ammonium-free carbonate solution is shown in Figure 4. The ammonium content of the solution was initially around 1.39g/lit, as seen in the figure. After 15 percent Zeolite treatment, the ammonium concentration dropped to an average of 3.4 105 g/lit. The concentration meets the requirement specified by some drinking-water standards (e.g. lower than 5 ×10$^{-4}$ g/lit, Australian Drinking Water Guidelines and Guidelines for Drinking-water Quality Management for New Zealand, 2016).

3.2 Carbonate mineral production

Carbonate minerals precipitated by MICP and CICP techniques are shown in Figure 5. The results demonstrate that the carbonate minerals precipitated by CICP had higher values than those precipitated by MICP. The most carbonate minerals content were FeCO$_3$ (55g/lit) and Ca-Mg (CO$_3$) (58g/lit) precipitated by the CICP. The precipitation of CaCO$_3$ and Ca-Mg (CO$_3$) in MICP were identical (25 g/lit). In MICP, the highest level of carbonate precipitation was found in FeCO$_3$ (40g/lit), whereas the lowest level was found in MgCO$_3$ (8g/lit). As can be seen from the results in Figure 5, MICP deposited fewer carbonate minerals than CICP. It is generally accepted that this microbial activity can be influenced by several physicochemical and biological parameters, and it is correlated to both metabolic activities and cell surface structures (Zhong et al. 2016; Bazylnski and Moskowitz 2018). Multiple studies revealed that fresh bacterial cells are an essential step to keep the fast rate of precipitation, as desirable in certain applications (Murugan et al. 2021). CICP is a method based on the fixation of CO$_2$ in the form of inorganic carbonates, also known as 'mineral carbonation'. Since carbonate is the lowest energy state of carbon, these carbonation reactions are exothermic and the formation of carbonates is favored at low temperature and low pressure (Lead 2005).

3.4 Carbonate mineral characterization

Figure 6 illustrates the crystal morphology of CaCO$_3$ which was produced by MICP and CICP methods. As it can be seen, the CaCO$_3$ crystals have been grown spherical with diameters of 2-10 µm in MICP (Fig. 6a), while crystals were in rhombohedral shape and smooth with diameters of 2-6 µm in CICP (Fig. 6b). Figure 7 shows EDS and XRD analysis of CaCO$_3$ deposition. The EDS layered image presents the distribution of
C, O, and Ca elements in the test area. The result of XRD justified vaterite minerals (100%) (Fig. 7a) and calcite (100%) (Fig. 7b) in MICP and CICP, respectively. In CICP, deposition and morphology of CaCO₃ are dependent on additives such as CO₂ and Ca²⁺ which are precipitated in three anhydrous polymorphic modifications (calcite, aragonite, and vaterite) and mostly is calcite (Kralj et al. 2004). MICP is largely dependent on metabolic processes by ureolytic bacteria that influence crystal growth (Rahman and Oomori 2009; Marvasi et al. 2010; Wei et al. 2015; Bielak et al. 2021). It has also been reported that the amino acid (Glu (red) and Asp (blue)) in the urease enzyme favored the formation of vaterite (Sondi and Salopek-Sondi 2005).

Figure 8 shows the crystal morphology of FeCO₃ which was produced by MICP and CICP methods. There was a similar crystal shape (spherical) for both of them. The particle size of FeCO₃ in MICP was with diameters of 0.5-3 µm while the particle size was bigger (2-6 µm) in CICP. Figure 9 shows EDS and XRD analysis of FeCO₃ samples. The EDS layered image presents the distribution of C, O, Mg, and Fe elements in the test area. The result of XRD justified siderite minerals (100%) for MICP and CICP. Less information is available concerning the mineralization or morphogenesis of iron carbonates (siderite). This is probably because natural siderite is often associated with other coexisting elements (e.g., Mn, Mg, and Ca), and contains a small amount of hematite (Fe₂O₃) due to partial oxidation in natural air (French 1971; Isambert et al. 2003). The biological aspects of iron biomineralization have been investigated by studying iron-bearing biominerals, owing to their significance in identifying microbe-sediment-water interactions, as well as mineral and biogenic origins (Frankel and Bazylinski 2003; Dong et al. 2009).

Figure 10 shows the crystal morphology of calcium magnesium carbonate which is produced by a mixture of magnesium and calcium ions with free carbonate ions (CO₃²⁻). As it can be seen from the figure, there was a botryoidal crystal shape of calcium magnesium carbonate in the MICP method (Fig. 10a) while a flower-like shape was observed in the CICP method (Fig. 10b). There was the main difference between the shape and size of crystals in both methods. The calcium magnesium carbonate was precipitated with diameters of 5-16 µm and 2-5 µm in MICP and CICP, respectively. Minerals deposited in a larger size in MICP than in CICP, as can be seen plainly. The EDS layered image presents the distribution of C, O, Mg, and Ca elements in the test area. XRD analysis of samples showed Ca-Mg (CO₃) deposition while was as dolomite (40%) and calcite (60%) in MICP (Fig. 11a) and high-Mg calcite (61%) and magnesium carbonate hydrate (Nesquehonite) (39%) in CICP (Fig. 11b), respectively.

Previous laboratory research revealed that aerobic bacteria may have a role in the creation of high-magnesium calcite or dolomite, in the microenvironment around the cell (Sánchez-Román et al. 2009; Sánchez-Román et al. 2011; Al Disi et al. 2017). The increase of Mg²⁺ concentration (and the Mg²⁺:Ca²⁺ ratio) can also cause precipitation of dolomite and magnesite (Balci et al. 2016; Al Disi et al. 2019). Bacteria can adsorb Mg²⁺ on their membranes during induce dolomite formation, while calcite precipitation is induced by preferential adsorption of Ca²⁺. González-Muñoz et al. (2010) found that Mg probably plays a key role in the development of the morphologies of the precipitates since these morphologies had never been observed in the absence of Mg. CaCO₃ mineral that has precipitated from
seawater changes from calcite to aragonite was experimentally determined as a function of temperature and additives. Results indicate precipitation of high-Mg calcite and dolomite is largely dependent on Mg:Ca ratio over a relatively small temperature range in an aqueous solution (Morse et al. 1997). In conclusion, the morphology, type, and size of calcium magnesium carbonate minerals are influenced by the chemical and biochemical environment in CICP and MICP.

Figure 12 illustrates the crystal morphology of MgCO$_3$ which was produced by MICP and CICP methods. As it can be seen, the MgCO$_3$ crystals have been grown in the radial needle (Fig. 12 (a, c)) and radial blades shape (Fig. 12 (b, d)) by MICP and CICP, respectively. There was the main difference between the sizes of crystals in both methods. The thickness of radial needle crystals was diameters of 1-10 µm in MICP, while it was precipitated in a greater thickness of about 5-20 µm as radial blades in CICP. It was clearly shown that the potential of CICP to precipitate MgCO$_3$ is more than MICP. Figure 13 shows EDS and XRD analysis of MgCO$_3$ samples. The EDS layered image presents the distribution of C, O, and Mg elements in the test area. The result of XRD explained the mineralization of magnesium carbonate hydrate (Nesquehonite) for both methods (Fig. 13). The magnesium carbonate (as hydrate) can display four different morphologies during the reaction process such as needle, sheet, rose, and nest-like with different carbonation temperatures (Zhang et al. 2007; Chen et al. 2020). Gautier et al. (2014) have studied the growth process of hydromagnesite by calculating its growth kinetics in an aqueous solution from 25 to 75°C. A previous study showed a similar morphology and type of MgCO$_3$ (H$_2$O)$_3$ (Nesquehonite) that precipitated MICP (Zhao and Zhao 2017) and CICP (Glasser et al. 2016).

The mean size distribution of minerals was measured by SEM photos. Figure 14 shows the average size of carbonate minerals produced by MICP and CICP methods. As can be seen from the results, the average size of crystals was larger in CICP. Although there was only a small difference in calcium magnesium carbonate precipitation in MICP compared to CICP. The largest crystals in CICP, however, were for magnesium carbonate hydrate (Nesquehonite). In this work, CICP demonstrated a great capacity for precipitating carbonate minerals with larger sizes. The minerals that develop during biomineralization are frequently characterized by low crystallinity, structural well-ordering, and a limited size range. (Frankel and Bazylinski 2003). Under the same environmental conditions, biologically induced mineralization is equal to inorganic mineralization, and the minerals are expected to contain crystal-chemical characteristics that are indistinguishable from minerals formed by inorganic chemical reactions. However, cell walls of bacterial surfaces including biofilms, dormant spores, and slim sheaths can act as important sites for the adsorption of ions for growth and nucleation minerals (Bäuerlein 2003).

A summary of the characterization of carbonate minerals produced by MICP and CICP techniques is shown in Table 3. In both procedures, all carbonate minerals were precipitated in various sizes, shapes, and types.
Table 3
Characterization of produced carbonate minerals by MICP and CICP

Name	Method	Type of Mineral	Size (µm)	Crystal Shape
Calcium carbonate	MICP	Vaterite	2-10	Spherical
	CICP	Calcite	2-6	Rhombohedral
Ferrous carbonate	MICP	Siderite	0.5-3	Spherical
	CICP	Siderite	2-6	Spherical
Magnesium calcium carbonate	MICP	Dolomite	5-16	Botryoidal
	CICP	High-Mg calcite	2-5	Flower-like
Magnesium carbonate	MICP	Nesquehonite	1-10	Radial needle
	CICP	Nesquehonite	5-20	Radial blades

Less information is available concerning the usage of other carbonate minerals for soil improvement. The solubility of carbonate minerals decreases by more than two orders of magnitude on transformation from Ca- to Mg-rich (Farsang et al. 2021). Mg carbonates such as magnesite and dolomite are semi-soluble and hydrophilic (Wonyen et al. 2018). Long et al. (2014) showed that the increase of Mg ions in the Mg-containing calcite improves the mechanical properties of biogenic minerals. As well as, ferrous carbonate has low solubility in an aqueous solution (Sun et al. 2009). It seems that carbonate minerals with substitution elements such as Mg and Fe affect on strengthens behavior of crystals in the soil improvement. Depending on the polymorph of CaCO$_3$ crystals (i.e. calcite, vaterite, or aragonite), the strength of biocemented soil can be affected (Al-Thawadi 2013; Dhami et al. 2013). It appears that calcite crystals with rhombohedral shape and high-Mg calcite with flower-like shape in CICP have the capability of interlocking due to their surface roughness.

3.5 Unconfined compressive strength

Figure 15 shows the results of the UCS tests carried out on carbonate minerals-treated soil. As can be seen from the figure, the treated specimens with condensed Ca-Mg(CO$_3$) and FeCO$_3$ minerals, produced by the MICP method gained about 58.5 kPa and 63.0 kPa UCS strength respectively (Fig. 15). Moreover, MgCO$_3$ minerals, produced by the MICP method had the lowest strength of about 25 kPa. The treated specimens with CaCO$_3$ content gained higher compressive strength compared to the specimens with MgCO$_3$ content in this study. The treated specimens with the CICP method gained higher compressive strength compared to the specimens treated with the MICP method. The minerals produced by the CICP method have a 15 to 28 percent higher compressive strength than those produced by the MICP method, according to the data.

The results of UCS showed that siderite and calcium magnesium carbonate (i.e. High-Mg calcite and dolomite) had more efficiency in soil strength as it seems to be because of the stability of Fe and Mg carbonate crystals. The treated soils by siderite in CICP had slightly more strength more than MICP which
may be due to the larger particle size of siderite crystals. While the higher strength of high-Mg calcite in CICP is related to surface roughness and more interlocking of particles. The strength of calcite-treated soil in CICP was slightly more than vaterite-treated soil in MICP as well as may be related to the surface roughness of particles. The UCS result of magnesium carbonate hydrate (Nesquehonite) treated soil was lower than other carbonate minerals in this study. However, Nesquehonite (because of blade structure) had higher efficiency in clay soil in the previous study (Romiani et al. 2021). Moreover, the effect of Nesquehonite by CICP with more thickness was more than needle minerals in MICP in the UCS test.

4. Conclusion

Microbial-induced carbonate precipitation (MICP) and CO$_2$-induced carbonate precipitation (CICP) methods were used to create free carbonate ions (CO$_3^{2-}$). The various carbonate minerals were precipitated by adding Fe$^{2+}$, Mg$^{2+}$, and Ca$^{2+}$ ions to carbonate ions (CO$_3^{2-}$). The carbonate minerals precipitated by CICP were more precipitated than those precipitated by MICP, according to the findings. Carbonate minerals with distinct morphology in form and size crystals precipitated by MICP and CICP were observed using SEM and XRD. Vaterite (CaCO$_3$), siderite (FeCO$_3$), magnesium carbonate hydrate or Nesquehonite (MgCO$_3$ (H$_2$O)$_3$), and dolomite (CaMg(CO$_3$)$_2$) were produced in MICP. Calcite (CaCO$_3$), siderite (FeCO$_3$), magnesium carbonate hydrate or Nesquehonite (MgCO$_3$ (H$_2$O)$_3$), and high-Mg calcite (CaMg(CO$_3$)$_2$) were produced in CICP. The findings of UCS tests demonstrated an increase in strength for treated sandy soils by siderite and high-Mg calcite/dolomite that was more than treated soils by calcite/vaterite and magnesium carbonate hydrate (or Nesquehonite). Mineral-treated soils in CICP were marginally stronger than MICP, likely due to larger crystal particle sizes or particle interlocking.

Declarations

Acknowledgment

This work has been supported by the Centre for International Scientific Studies& Collaboration (CISSC), Ministry of Science Research and Technology.

References

1. Al-Thawadi SM (2013) Consolidation of sand particles by aggregates of calcite nanoparticles synthesized by ureolytic bacteria under non-sterile conditions. J Chem Sci Technol 2(3):141–146
2. Al Disi ZA, Jaoua S, Bontognali TR, Attia ES, Al-Kuwari HA, Zouari N (2017) Evidence of a role for aerobic bacteria in high magnesium carbonate formation in the evaporitic environment of Dohat Faishakh Sabkha in Qatar. Frontiers in Environmental Science Feb 3:51. https://doi.org/10.3389/fenvs.2017.00001
3. Al Disi ZA, Bontognali TR, Jaoua S, Attia E, Al-Kuwari HA, Zouari N (2019) Influence of temperature, salinity and Mg$^{2+}$: Ca$^{2+}$ ratio on microbially-mediated formation of Mg-rich carbonates by
Virgibacillus strains isolated from a sabkha environment. Scientific reports Dec 23; 9((1):1–2. https://doi.org/10.1038/s41598-019-56144-0

4. ASTM D2166, A (2016) Standard test method for unconfined compressive strength of cohesive soil

5. Balci N, Demirel C, Seref Sonmez M, Kurt MA (2016) Apr Effect of Mg/Ca ratios on microbially induced carbonate precipitation. InEGU General Assembly Conference Abstracts (pp. EPSC2016-4291

6. Bäuerlein E (2003) Biominalization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano-and microstructures. Angewandte Chemie International Edition10; 42(6):614-41. https://doi.org/10.1002/anie.200390176

7. Bazylnski DA, Moskowitz BM (2018) Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance. https://doi.org/10.1515/9781501509247-008. Geomicrobiology17:181-224

8. Bielak K, Różycka MO, Zoglowek A, Ożyhar A, Dobrzychucki P (2021) Counter-Diffusion System as an in Vitro Model in the Investigation of Proteins Involved in the Formation of Calcium Carbonate Biominerals. Cryst Growth Des 28; 21((3):1389–1400. https://doi.org/10.1021/acs.cgd.0c01695

9. Chang R, Kim S, Lee S, Choi S, Kim M, Park Y (2017) Calcium carbonate precipitation for CO₂ storage and utilization: a review of the carbonate crystallization and polymorphism. Frontiers in Energy Research 10:5:17. https://doi.org/10.3389/fenrg.2017.00017

10. Chen L, Shen Y, Xie A, Huang B, Jia R, Guo R, Tang W (2009) Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Crystal Growth and Design 4;9((2):743–754. https://doi.org/10.1021/cg800224s

11. Chen Q, Hui T, Sun H, Peng T, Ding W (2020) Synthesis of magnesium carbonate hydrate from natural talc. Open Chemistry 1; 18 ((1):951–961. https://doi.org/10.1515/chem-2020-0154

12. Dhrami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J Microbiol Biotechnol 23(5):707–714. https://doi.org/10.4014/jmb.1212.11087

13. Dong H, Jaisi DP, Kim J, Zhang G (2009) Microbe-clay mineral interactions. American Mineralogist. 1;94 (11-12):1505-19. https://doi.org/10.2138/am.2009.3246

14. Farsang S, Louvel M, Zhao C, Mezouar M, Rosa AD, Widmer RN, Feng X, Liu J, Redfern SA (2021) Deep carbon cycle constrained by carbonate solubility. Nature Communications 14;12(1):1-9. https://doi.org/10.1038/s41467-021-24533-7

15. Frankel RB, Bazylnski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 3;54 ((1):95–114. https://doi.org/10.2113/0540095

16. Ferrer MR, Quevedo-Sarmiento J, Bejar V, Delgado R, Ramos-Cormenzana A, Rivadeneyra MA (1988) Calcium carbonate formation by Deleya halophila: effect of salt concentration and incubation temperature. Geomicrobiology Journal 1;6(1):49-57. https://doi.org/10.1080/01490458809377821

17. Ferris FG, Stehmeier LG, Kantzas A, Mourits FM (1977) Bacteriogenic mineral plugging. J Can Pet Technol. https://doi.org/10.2118/97-09-07. 1;36(09
18. French BM (1971) Stability relations of siderite (FeCO3) in the system Fe-CO. Am J Sci 1;271((1):37–78
19. Gautier Q, Bénézeth P, Mavromatis V, Schott J (2014) Hydromagnesite solubility product and growth kinetics in aqueous solution from 25 to 75 C. Geochimica et Cosmochimica Acta 1;138:1-20. https://doi.org/10.1016/j.gca.2014.03.044
20. Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43(7):2348–2371. https://doi.org/10.1039/C3CS60451A
21. Glasser FP, Jauffret G, Morrison J, Galvez-Martos JL, Patterson N, Imbabi MS (2016) Sequestering CO2 by mineralization into useful nesquehonite-based products. Frontiers in Energy Research 11:4:3. https://doi.org/10.3389/fenrg.2016.00003
22. González-Muñoz MT, Rodriguez-Navarro C, Martínez-Ruiz F, Arias JM, Merroun ML, Rodríguez-Gallego M (2010) Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation. Geological Society, London, Special Publications 1;336(1):31-50. https://doi.org/10.1144/SP336.3
23. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1(1):3–7. https://doi.org/10.1023/A:1015135629155
24. Inoue R, Ueda S, Wakuta K, Sasaki K, Ariyama T (2010) Thermodynamic consideration on the absorption properties of carbon dioxide to basic oxide. ISIJ international 15;50(11):1532-8. https://doi.org/10.1144/SP336.3
25. Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/Technology 7(2):139–153. https://doi.org/10.1007/s11157-007-9126-3
26. Keykha HA, Asadi A, Zareian M (2017) Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil. Geomicrobiol J 26;34((10):889–894. https://doi.org/10.1080/01490451.2017.1291772
27. Keykha HA, Asadi A, Huat BB, Kawasaki S (2018a) Microbial induced calcite precipitation by Sporosarcina pasteurii and Sporosarcina aquimarina. Environmental Geotechnics 22;6(8):562-6. https://doi.org/10.1680/jenge.16.00009
28. Keykha HA, Romania HM, Zebardast E, Asadi A, Kawasaki s (2021) CO2-induced carbonate minerals as soil stabilizing agents for dust suppression. Aeolian Res. https://doi.org/10.1016/j.aeolia.2021.100731
29. Isambert A, Valet JP, Gloter A, Guyot F (2003) Stable Mn-magnetite derived from Mn-siderite by heating in air. Journal of Geophysical Research: Solid Earth 108. B6).https://doi.org/10.1029/2002JB002099
30. Keykha HA, Mohamadzadeh H, Asadi A, Kawasaki S (2018b) Ammonium-free carbonate-producing bacteria as an ecofriendly soil biostabilizer. Geotech Test J 9;42((1):19–29. https://doi.org/10.1520/GTJ20170353
31. Kralj D, Kontrec J, Brečević L, Falini G, Nöthig-Laslo V (2004) Effect of inorganic anions on the morphology and structure of magnesium calcite. Chemistry–A European Journal 2;10(7):1647-56. https://doi.org/10.1002/chem.200305313

32. Lead C (2005) Mineral carbonation and industrial uses of carbon dioxide. CARBON DIOXIDE CAPTURE AND STORAGE. 10;319.

33. Long X, Ma Y, Qi L (2014) Biogenic and synthetic high magnesium calcite–A review. Journal of Structural Biology 1;185(1):1-4. https://doi.org/10.1016/j.jsb.2013.11.004

34. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

35. Marvasi M, Gallagher KL, Martinez LC, Molina Pagan WC, Rodríguez Santiago RE, Castilloveitía Vega G, Visscher PT (2012) Importance of B4 medium in determining organomineralization potential of bacterial environmental isolates. Geomicrobiology Journal 1;29(10):916-24. https://doi.org/10.1080/01490451.2011.636145

36. Morse JW, Wang Q, Tsio MY (1997) Influences of temperature and Mg: Ca ratio on CaCO₃ precipitates from seawater. Geology 1;25(1):85-7. https://doi.org/10.1130/0091-7613(1997)025

37. Murugan R, Suraishkumar GK, Mukherjee A, Dhami NK (2021) Insights into the influence of cell concentration in design and development of microbially induced calcium carbonate precipitation (MICP) process. PLoS ONE 16(7):e0254536. https://doi.org/10.1371/journal.pone.0254536

38. Rahman MA, Oomori T (2009) In vitro regulation of CaCO₃ crystal growth by the highly acidic proteins of calcitic sclerites in soft coral, Sinularia polydactyla. Connective Tissue Research 1;50(5):285-93. https://doi.org/10.1080/03008200802714933

39. Romiani HM, Keykha HA, Talebi M, Asadi A, Kawasaki S (2021) Green soil improvement: using carbon dioxide to enhance the behaviour of clay. Proceedings of the Institution of Civil Engineers-Ground Improvement 15:1-26. https://doi.org/10.1680/jgrim.20.00073

40. Sánchez-Román M, Vasconcelos C, Warthmann R, Rivadeneyra M, McKenzie JA, Swart P (2009) Microbial dolomite precipitation under aerobic conditions: results from Brejo do Espinho Lagoon (Brazil) and culture experiments. Assoc Sediment Spec Publ 20:40:167–178. https://doi.org/10.1002/9781444312065.ch11

41. Sánchez-Román M, Romanek CS, Fernández-Remolar DC, Sánchez-Navas A, McKenzie JA, Pibernat RA, Vasconcelos C (2010) Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments. Chemical Geology. 2011 Feb 24;281(3-4):143-50. https://doi.org/10.1016/j.chemgeo.2010.11.020

42. Smit B, Reimer JA, Oldenburg CM, Bourg IC (2014) Introduction to carbon capture and sequestration. World Scientific; 10

43. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO₃. Soil Biology and Biochemistry 1;31(11):1563-71. https://doi.org/10.1016/S0038-0717(99)00082-6

44. Sun W, Nešić S, Woollam RC (2009) The effect of temperature and ionic strength on iron carbonate (FeCO₃) solubility limit. Corrosion Science 1;51(6):1273-6.
45. Wei S, Cui H, Jiang Z, Liu H, He H, Fang N (2015) Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology 46(2):455–464. http://dx.doi.org/10.1590/S1517-838246220140533

46. Wonyen DG, Kromah V, Gibson B, Nah S, Chelgani SC (2018) A review of flotation separation of Mg carbonates (dolomite and magnesite). Minerals 8(8):354. https://doi.org/10.3390/min8080354

47. Zhang Z, Zheng Y, Zhang J, Zhang Q, Chen J, Liu Z, Liang X (2007) Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres. Crystal growth & design 7;7(2):337-42. https://doi.org/10.1021/cg060544y

48. Zhao Y, Zhao H (2017) Biomineralization of Calcium and Magnesium Carbonate Minerals Induced by Bacillus licheniformis and Its Application in Water Softening. https://doi.org/10.20944/preprints201701.0096.v1

49. Zhong X, Qi J, Li H, Dong L, Gao D (2016) Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmos Environ 1:140:506–513. https://doi.org/10.1016/j.atmosenv.2016.06.034

Figures
Figure 1

Schematic diagram of carbonate mineral production
Figure 2

Particle size distribution of Firoozkuh silica sand
Figure 3

Concentration of CO_3^{2-} for MICP and CICP
Figure 4

Concentration of ammonium per different zeolite percentage
Figure 5
Carbonate minerals precipitation by MICP and CICP methods

Figure 6
SEM morphologies of CaCO₃ mineral (a) spherical shape by MICP (b) rhombohedral shape by CICP

Figure 7
EDS and XRD of CaCO₃ minerals (a) Vaterite by MICP (b) Calcite by CICP
Figure 8

SEM morphologies of FeCO$_3$ mineral with spherical shape in (a) MICP and (b) CICP

Figure 9

EDS and XRD of FeCO$_3$ mineral (a) Siderite by MICP (b) Siderite by CICP
Figure 10

SEM morphologies of Ca-Mg (CO$_3$) mineral (a) botryoidal shape by MICP (b) flower-like shape by CICP

Figure 11

EDS and XRD of Ca-Mg (CO$_3$) minerals (a) Dolomite and Calcite by MICP (b) High-Mg calcite and magnesium carbonate hydrate by CICP
Figure 12

SEM morphologies of MgCO$_3$ minerals (a) radial (c) needle shape crystals by MICP and (b) radial (d) blade shape by CICP
Figure 13

EDS and XRD of MgCO$_3$ minerals (a) magnesium carbonate hydrate (Nesquehonite) by MICP (b) Nesquehonite by CICP
Figure 14

The average size of precipitated carbonate minerals by MICP and CICP methods.
Figure 15

Unconfined compressive strength of treated specimens with different carbonate minerals