MEASUREMENT OF $e^+e^-$ MULTIHADRONIC CROSS SECTIONS BELOW 4.5 GeV WITH BaBar

Achim Denig
Representing the BaBar collaboration
Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH)
Postfach 3640, D-76021 Karlsruhe, Germany
E-mail: achim.denig@iekp.fzk.de

We present a summary of the hadronic cross section measurements performed with BaBar at the PEP-II collider via radiative return. BaBar has performed measurements of exclusive final states containing 3, 4 and 6 hadrons via this complementary method, as well as a measurement of the proton form factor.

1. Initial State Radiation Physics at BaBar

At the particle factories DAΦNE and PEP-II the hadronic cross section $\sigma(e^+e^- \rightarrow \text{hadrons})$ is measured over a wide energy range by radiative return\textsuperscript{1,2}. In this new method only those events are considered, in which one of the beam electrons or positrons has emitted an initial state radiation (ISR) photon, lowering in such a way the effective invariant mass of the hadronic system. Precision measurements of the hadronic cross section are of utmost importance since they provide input to data-driven calculations of the hadronic contributions to the anomalous magnetic moment of the muon, $a_\mu$, and of the running fine structure constant $\alpha(m_Z^2)\textsuperscript{3,4}$. In this paper we present measurements of different exclusive final hadronic states in the mass range $< 4.5$ GeV, performed at the B-factory PEP-II ($\sqrt{s} = 10.6$ GeV) with the detector BaBar. At BaBar the ISR photon is required to be emitted at large polar angles with respect to the beam axis, allowing a kinematic closure of the event (tagging). Since the hadronic system is recoiling opposite to the ISR photon, a measurement of the cross sections with very high geometrical acceptance becomes possible. In order to extract the non-radiative cross section from the measured radiative cross section, one normalizes to a well-known radiator function\textsuperscript{5} and to the PEP-II integrated luminosity, or - alternatively - to the yield of $e^+e^- \rightarrow \mu^+\mu^-\gamma$ events.
Fig. 1. The BaBar measurement of the cross section for $e^+e^- \to \pi^+\pi^-\pi^+\pi^-$ (left) and $e^+e^- \to \pi^+\pi^-\pi^+\pi^0\pi^0$ (right) vs. $\sqrt{s}$ compared to the world data set.

2. Results

Three and four hadrons

BaBar has previously published measurements\textsuperscript{6,7} of the $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^+\pi^-$, $K^+K^-\pi^+\pi^-$, $K^+K^-K^+K^-$ final states with better precision and coverage than all previous experiments, using 89 fb\textsuperscript{-1} of data. The systematic accuracy of the 3$\pi$- and 4$\pi$-channels in the mass region 1 – 2 GeV is 5%. All states have been studied also in terms of their internal structures. In the $\pi^+\pi^-\pi^0$ analysis it was possible to improve significantly on the world’s knowledge the excited $\omega$ states, while in the $\pi^+\pi^-\pi^+\pi^-$ channel a very strong contribution from the two-body mode $a_1(1260)\pi$ was identified. Preliminary results from a data sample of 232 fb\textsuperscript{-1} are available for the $e^+e^- \to K^+K^-\pi^+\pi^-$ and $K^+K^-\pi^0\pi^0$ cross section\textsuperscript{8}. In the $\phi(1020)f_0(980)$ intermediate two-body state a vector resonance-like structure is seen near threshold with a mass of $(2175 \pm 10_{\text{stat}} \pm 15_{\text{syst}})$ MeV and a width of $(58 \pm 16_{\text{stat}} \pm 20_{\text{syst}})$ MeV.

Six hadrons

The six-hadron process\textsuperscript{9} has been studied in a data sample of 232 fb\textsuperscript{-1} in the channels $e^+e^- \to 3(\pi^+\pi^-), 2(\pi^+\pi^-\pi^0)$ and $2(\pi^+\pi^-)K^+K^-$. The cross sections for the first two channels are shown in fig. 1; large improvements over existing measurements are seen, as well as a much wider coverage of the mass range. In the all-charged mode very little substructures have been found; a simulation containing one $\rho^0$ and four pions distributed according to phase space is adequate to describe the internal structure. On the contrary the partly neutral state shows a much more complex structure with
signals for $\rho^0, \rho^\pm, \omega$ and $\eta$, and a substantial contribution from $\omega\eta$, which seems to be resonant. In both channels a structure at ca. 1900 MeV, which had previously been seen by DM2 and FOCUS\textsuperscript{10}, is clearly visible. Fits to the $3(\pi^+\pi^-)$ and $2(\pi^+\pi^-\pi^0)$ spectra, assuming a resonant structure over a continuum shape, give consistent results for the mass $M$ and width $\Gamma$ of the structure. For the channel $3(\pi^+\pi^-)$ we find $M = (1880 \pm 30)$ MeV and $\Gamma = (130 \pm 30)$ MeV, for the channel $2(\pi^+\pi^-\pi^0)$ $M = (1860 \pm 20)$ MeV and $\Gamma = (160 \pm 20)$ MeV.

![Graph showing proton form factor and ratio of electric to magnetic form factor as a function of mass](image)

**Proton form factor**

$\text{BaBar}$ has also measured the cross section $e^+e^- \rightarrow p\bar{p}$ using 240 fb\textsuperscript{-1} of data\textsuperscript{11}; the corresponding effective form factor is shown in fig. 2 (left), along with previous data from $e^+e^-$ and $p\bar{p}$ experiments. We find an overall good consistency. The mass dependence shows a significant threshold enhancement, as well as two structures featuring sharp drops at 2.25 and 3.0 GeV, which illustrate the power of data from one single experiment over a wide range with no point-to-point uncertainties. Measuring the proton helicity angle $\theta_P$ in the $p\bar{p}$ rest frame, one can separate the ratio of the electric and magnetic form factor $|G_E/G_M|$, since both show a different functional behaviour in $\theta_P$. The $\text{BaBar}$ measurement of this ratio is shown in fig. 2 (right) for six different mass bins of $M_{p\bar{p}}$; a previous LEAR measurement\textsuperscript{12} is in disagreement with $\text{BaBar}$. Our data shows a significant increase of the
ratio $|G_E/G_M|$ towards threshold, while the two form factors are consistent at larger masses.

3. Conclusions

Measurements of the hadronic cross section at PEP-II have improved the knowledge of the hadronic spectrum above 1 GeV. Thanks to the ISR-method, for the first time it becomes possible to cover the entire mass range of interest from threshold to 4.5 GeV in one single experiment. $\text{BaBar}$ has not only performed precision measurements for exclusive hadronic states containing proton-antiproton, 3 pions and 4 and 6 hadrons, but has also measured 16 $J/\psi$ and $\psi(2S)$ branching ratios, out of which 10 are better than world average. Ongoing analyses are measuring the final states $\pi^+\pi^−$, $K^+K^−$, $\pi^+\pi^-\pi^0\pi^0$ and many more channels, which will further improve the standard model predictions for the muon anomaly $\alpha_\mu$ and for the running fine structure constant $\alpha(m_Z^2)$.

References

1. A. Aloisio et al. [KLOE collaboration], Phys. Lett. B606 (2005) 12
2. A. Denig, The Radiative Return: a Review of Experiments, Proceedings of the International Workshop on $e^+e^−$ Collisions from $\phi$ to $\Psi$, Novosibirsk (Russia), Feb./March 2006, hep-ex/0611024
3. S. Eidelman and F. Jegerlehner, Z. Phys. C67 (1995) 585
4. M. Davier, S. Eidelman, A. Höcker and Z. Zhang, Eur. Phys. J. C31 (2003) 503
5. S. Binner, J.H. Kühn and K. Melnikov, Phys. Lett. B 459 (1999) 279; G. Rodrigo, A. Gehrmann-De Ridder, M. Guilleaume and J.H. Kühn, Eur. Phys. J. C22, (2001) 81; G. Rodrigo, H. Czyż, J.H. Kühn and M. Szopa, Eur. Phys. J. C24 (2002) 71; H. Czyż, A. Grzelinska, J.H. Kühn and G. Rodrigo, Eur. Phys. J. C27, (2003) 563; H. Czyż, A. Grzelinska, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C33, (2004) 333; H. Czyż, A. Grzelinska, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C39, (2005) 411; H. Czyż and E. Nowak-Kubat, Phys. Lett. B634 (2006) 493
6. B. Aubert et al. [BABAR collaboration], Phys. Rev. D70 (2004) 072004
7. B. Aubert et al. [BABAR collaboration], Phys. Rev. D71 (2004) 052001
8. B. Aubert et al. [BABAR collaboration], A Structure at 2175 MeV in $e^+e^-\rightarrow \phi f_0(980)$ observed via Initial State Radiation, accepted for publication in Phys. Rev. D, hep-ex/0610018
9. B. Aubert et al. [BABAR collaboration], Phys. Rev. D73 (2006) 052003
10. P.L. Frabetti et al. [E687 collaboration], Phys. Lett. B514 (2001) 240
11. B. Aubert et al. [BABAR collaboration], Phys. Rev. D73 (2006) 012005
12. G. Bardin et al. [PS170 collaboration], Nucl. Phys. B411 (1994) 3