ALMOST STRONG PROPERNESS

RAHMAN MOHAMMADPOUR

Abstract. We introduce the forcing property “almost strong properness” which sits between properness and strong properness. As an application, we introduce a simple forcing with finite conditions to force MRP.

Introduction

The Mapping Reflection Principle (MRP) was discovered and shown to be a consequence of PFA by Moore [1] using a proper forcing with countable conditions. This is a strong reflection principle which decides the value of the continuum to be \(\aleph_2 \), and implies, among other things, both the Singular Cardinal Hypothesis and the failure of square principle, see [2]. In this note, we introduce a subclass of proper forcing notions which contains strongly proper forcings, we shall observe that almost strongly proper forcings preserve c.c.c.-ness and have the \(\omega_1 \)-approximation property, and hence they preserve Suslin trees. We then demonstrate how to force MRP using an almost strongly proper forcing with finite conditions. Consequently, MRP holds under Todorčević's forcing axiom PFA(S). This fact was first proved by Teruyuki Yorioka and Tadatoshi Miyamoto in [3]. In the same paper, they introduced also the notion of an almost strongly proper forcing for another purpose, but it is apparently different from ours.

1. Almost Strong Properness

Let us recall the definition of a strongly generic condition due to Mitchell [4]. Suppose \(\mathbb{P} \) is a forcing, and that \(X \) is a set. A condition \(p \in \mathbb{P} \) is called \((X, \mathbb{P})\)-strongly generic if and only if for every \(q \leq p \) there is \(q \restriction_{X} \in X \cap \mathbb{P} \) such that every \(r \in X \cap \mathbb{P} \) with \(r \leq q \restriction_{X} \) is compatible with \(q \). The notion of strong properness is defined in an obvious way.

Definition 1.1 (Almost Strong Genericity). Suppose \(\mathbb{P} \) is a forcing, and \(M \prec H_{\theta} \) contains \(\mathbb{P} \). A condition \(p \in \mathbb{P} \) is called \((M, \mathbb{P})\)-almost strongly generic if and only if for every \(q \leq p \),

\[
S_q(M) := \{X \in [\mathbb{P}]^{\omega} : \exists q \restriction_{X} \in X \ such \ that \ \forall r \in X, r \leq q \restriction_{X} \Rightarrow r \approx q\}
\]

2010 Mathematics Subject Classification. 03E05, 03E35, 03E57.

Key words and phrases. MRP, PFA, Side condition, Suslin tree.
is M-stationary i.e for every algebra\footnote{Recall that an algebra over a set Z is a function from $[Z]^<\omega$ to Z.} $F \in M$ over \mathbb{P}, there is some $A \in M \cap S_q(M)$ which is F-closed.

It is clear that every (M, \mathbb{P})-strongly generic condition is (M, \mathbb{P})-almost strongly generic, and that every (M, \mathbb{P})-almost strongly generic condition is (M, \mathbb{P})-generic.

Definition 1.2 (Almost Strong Properness). A forcing notion \mathbb{P} is called almost strongly proper (a.s.p. for short), if for every sufficiently large regular cardinal θ, there is a club of countable models $M \prec H_\theta$ containing \mathbb{P} such that every condition $p \in M \cap \mathbb{P}$ can be extended to an (M, \mathbb{P})-almost strongly generic condition.

The following easy lemma appears frequently in applications.

Lemma 1.3. A condition $p \in \mathbb{P}$ is (M, \mathbb{P})-almost strongly generic if and only if for every $U \in M$ which is unbounded in $[\mathbb{P}]^\omega$, we have that $U \cap S_p(M) \cap M \neq \emptyset$.

Proof. Suppose $U \in M$ is an unbounded subset of $[\mathbb{P}]^\omega$. Let \overline{U} be the closure of U under \subseteq-increasing sequences. Thus \overline{U} is a club in $[\mathbb{P}]^\omega$ belonging to M. Since p is (M, \mathbb{P})-almost strongly generic, and \overline{U} is in M, there is some $X \in \overline{U} \cap M \cap S_p(M)$. Thus there is $p \upharpoonright X \in X$ with the property that all its extensions in X are compatible with p. Since $X \in \overline{U}$, there is a \subseteq-increasing sequence $(X_n)_{n<\omega}$ of elements in U such that $\bigcup_{n<\omega} X_n = X$, moreover such a sequence can be chosen form M, by elementarity. Now, $p \upharpoonright X \in X_n$ for some $n < \omega$. Obviously, every extension of $p \upharpoonright X$ in X_n is compatible with p, and that $X_n \in M \cap U$. Consequently, $X_n \in U \cap M \cap S_p(M)$. The other direction is trivial.

Recall that a forcing notion \mathbb{P} has the ω_1-approximation property if for every V-generic filter $G \subseteq \mathbb{P}$, the pair $(V, V[G])$ has the ω_1-approximation property i.e every set $x \in V[G]$ with the property that $x \cap a \in V$ for every countable $a \in V$, should be in V (see [5]).

The following is well-known and easy to prove.

Lemma 1.4. No forcing with the ω_1-approximation property can add new cofinal branches through tress of height ω_1.

Proposition 1.5. Every a.s.p. forcing has the ω_1-approximation property.

Proof. Assume that \mathbb{P} is an a.s.p. forcing. Suppose that $p_0 \in \mathbb{P}$ forces $\dot{f} : \gamma \to 2$ to be a countably approximated function, where γ is an ordinal. We shall show that the set of conditions below p_0 deciding \dot{f} is dense below p. Fix $p \leq p_0$. Suppose that $\theta < \theta^*$ are
sufficiently large regular cardinals. Let $M \prec H_{\theta^*}$ be countable and contain the relevant objects, in particular p. Let $q \leq p$ be an (M, \mathbb{P})-almost strongly generic condition. One can extend q further to make sure that $q \Vdash \dot{f} \upharpoonright M \in V$. Therefore, we may assume without loss of generality that there is, in V, some function $g : M \cap \gamma \to 2$ such that $q \Vdash g = \dot{f} \upharpoonright M$. Let

$$\mathcal{U} = \{ N \cap \mathbb{P} : \mathbb{P}, \gamma, \dot{f} \in N \prec H_\theta \text{ and } N \text{ is countable} \}.$$

\mathcal{U} is unbounded in $[\mathbb{P}]^\omega$ and belongs to M. We now use the almost strong genericity of q and Lemma 1.3 to pick some $N \prec H_\theta$ in M with $\dot{f}, \gamma, \mathbb{P} \in N$ for which there exists $q \upharpoonright N$ so that every condition in N extending $q \upharpoonright N$ is compatible with q. We are done if $q \upharpoonright N$ decides \dot{f}. Suppose this is not the case thus there are, by elementarity, $\zeta \in \gamma \cap N$ (and hence in M) and $q_0, q_1 \in N$ extending $q \upharpoonright N$ such that $q_0 \Vdash \dot{f}(\zeta) = 0$ and $q_1 \Vdash \dot{f}(\zeta) = 1$, but this is impossible since $q \Vdash \dot{f}(\zeta) = g(\zeta)$; otherwise either q_0 or q_1 is incompatible with q; a contradiction!

Proposition 1.6. Every a.s.p. forcing preserves c.c.c-ness.

Proof. Suppose \mathbb{Q} is a c.c.c forcing, and that \mathbb{P} is an a.s.p. forcing. Choose a sufficiently large regular cardinals $\theta < \theta^*$ so that $\mathbb{P}, \mathbb{Q} \in H_\theta$. Suppose \mathcal{C} is a club in $[H_\theta]^\omega$ witnessing the almost strong properness of \mathbb{P}. Let $M \prec H_{\theta^*}$ in \mathcal{C} contain \mathbb{P} and \mathbb{Q}. It is enough to show that for every $q \in \mathbb{Q}$ and every (M, \mathbb{P})-almost strongly generic condition $p \in \mathbb{P}$, (p, q) is $(M, \mathbb{P} \times \mathbb{Q})$-generic2. Let $D \in M$ be a dense subset of $\mathbb{P} \times \mathbb{Q}$. Consider

$$\mathcal{U} = \{ N \cap \mathbb{P} : \mathbb{P}, \mathbb{Q}, D \in N \prec H_\theta \text{ and } N \text{ is countable} \}.$$

\mathcal{U} is unbounded in $[\mathbb{P}]^\omega$ and belongs to M. By the almost strong genericity of p and Lemma 1.3, one can choose $N \prec H_\theta$ in M with $\mathbb{P}, \mathbb{Q}, D \in M$ so that there is $p \upharpoonright N \in N$, for which every stronger condition in $N \cap \mathbb{P}$ is compatible with p. Set

$$E = \{ q' \in \mathbb{Q} : \exists p' \leq p \upharpoonright X \text{ with } (p', q') \in D \}.$$

It is easily seen that E is a dense subset of \mathbb{Q} in \mathcal{N}. Clearly E is in N, and hence in M. Now since \mathbb{Q} is c.c.c., there is $q' \in N \cap E$ such that q' is compatible with q, by the definition of E and the elementarity of N, there is $p' \leq p \upharpoonright X$ in N so that $(p', q') \in D \cap N$, but then (p', q') is compatible with (p, q). On the other hand $(p', q') \in N \cap D \subseteq M \cap D$, and thus (p, q) is (M, \mathbb{P})-generic.

Corollary 1.7. Every a.s.p. forcing preserves Suslinity.

2Recall that a forcing notion is c.c.c if and only if the maximal condition is generic for unboundedly many elementary submodel in some H_θ big enough.
Proof. Assume that \mathbb{P} is an a.s.p. forcing. Suppose S is a Suslin tree. Let $G \subseteq \mathbb{P}$ be V-generic filter. By Lemma 1.4 and Proposition 1.5, S does not have cofinal branches in $V[G]$. Now, Consider the corresponding Suslin forcing of S, say \mathbb{S} which is \mathbb{S} is c.c.c. By Proposition 1.5, \mathbb{S} remains c.c.c., and hence Suslin in $V[G]$.

2. Mapping Reflection Principle

Definition 2.1 (Ellentuck Topology). Let X be an uncountable set. The Ellentuck topology on $[X]^\leq\omega$ is the topology generated by the following sets as basic open sets:

\[[a, A] := \{ x \subseteq X : a \subseteq x \subseteq A \}, \text{ where } a \text{ is finite and } A \subseteq X \text{ is countable}. \]

The following definitions are due to Moore, [1].

Definition 2.2 (M-stationarity). Suppose M and X are sets. A set $\Sigma \subseteq [X]^\leq\omega$ is called M-stationary if for every algebra $F \in M$ over X, there is some countable set $A \in M \cap \Sigma$ closed under F.

Definition 2.3 (Open and Stationary Mapping). A function Σ is called open and stationary mapping if there are a regular cardinal $\theta = \theta_\Sigma$ and an uncountable set $X = X_\Sigma$ with $X \in H_\theta$ such that:

1. $\text{dom}(\Sigma)$ is the collection of countable elementary submodels of H_θ containing X.
2. For each $M \in \text{dom}(\Sigma)$, $\Sigma(M)$ is M-stationary, and also open in $[X]^\leq\omega$ with respect to the Ellentuck topology.

Definition 2.4 (Reflection). An open stationary mapping Σ reflects if there is a continuous \in-chain $\langle M_\xi : \xi < \omega_1 \rangle$ of models in $\text{dom}(\Sigma)$ such that for every $\xi < \omega_1$, there is $\zeta < \xi$ so that for every $\eta \in \xi \setminus \zeta$, $M_\eta \cap X \in \Sigma(M_\xi)$. The sequence $\langle M_\xi : \xi < \omega_1 \rangle$ is called a reflecting sequence for Σ.

Definition 2.5 (MRP). The Mapping Reflection Principle (MRP) states that every open stationary mapping reflects.

The following can be proved in the same way as Lemma 1.3.

Lemma 2.6. Suppose $\Sigma \subseteq [X]^\leq\omega$ is open. Then Σ is M-stationary if and only if for every $U \in M$ which is unbounded in $[X]^\omega$, we have that $U \cap \Sigma \cap M \neq \emptyset$.

Theorem 2.7. Suppose that Σ is an open stationary mapping. Then there is an a.s.p. forcing \mathbb{P}_Σ with finite conditions which adds a reflecting sequence for Σ.

The rest of this section is devoted to the proof of Theorem 2.7. Suppose Σ is an open stationary mapping. Let $X = X_\Sigma$ and $\theta = \theta_\Sigma$.

Definition 2.8 (Forcing Poset). We let \mathbb{P}_Σ consist of triples $p = (\mathcal{M}_p, d_p, f_p)$, where

1. \mathcal{M}_p is a finite \in-chain of models in $\text{dom}(\Sigma)$.
2. $d_p : \mathcal{M}_p \to [H_\theta]^{<\omega}$ is a function such that if $M \in N$, then $d_p(M) \in N$.
3. f_p is a regressive function on \mathcal{M}_p, i.e. for every $M \in \mathcal{M}_p$, $f_p(M) \in [M]^{<\omega}$, such that whenever $P \in M$ are \mathcal{M}_p and $f_p(M) \in P$, then $P \cap X \in \Sigma(M)$.

We equip \mathbb{P}_Σ with the following ordering. We say q is stronger than p and write $q \leq p$, if

1. $\mathcal{M}_p \subseteq \mathcal{M}_q$.
2. For each $M \in \mathcal{M}_p$, $d_p(M) \subseteq d_q(M)$.
3. $f_p \subseteq f_q$.

For convention, we let \emptyset be in \mathcal{M}_p, for every $p \in \mathcal{M}_p$, and leave $f_p(\emptyset)$ undefined.

Lemma 2.9. Suppose p is a condition in \mathbb{P}_Σ. Let M be an element of $\text{dom}(\Sigma)$ containing p. Then there is a condition $p^M \leq p$ such that $M \in \mathcal{M}_p^M$.

Proof. We let p^M be defined as follows. Let \mathcal{M}_p^M be just $\mathcal{M}_p \cup \{M\}$, extend d_p as a function by letting $d_{p^M}(M) = \emptyset$, and also extend f_p as a function by letting $f_{p^M}(M)$ be some finite set in $M \setminus \mathcal{M}_p$. It is easily seen p^M is a condition and extends p.

Proposition 2.10. Suppose $\theta^* > \theta$ is a sufficiently large regular cardinal. Assume $M^* \prec H_\theta^*$ is countable and contains $\Sigma, X, \mathcal{P}(\theta)$. Let $M := H_\theta \cap M^*$. Suppose $p_0 \in \mathbb{P}_\Sigma$ is such that $M \in \mathcal{M}_{p_0}$. Then p_0 is (M^*, \mathbb{P}_Σ)-almost strongly generic.

Proof. Fix $p \leq p_0$. We aim to show that $S_p(M^*)$ is M^*-stationary, thus suppose $F \in M^*$ is an algebra on \mathbb{P}_Σ. Let $p \upharpoonright M = (\mathcal{M}_p \cap M, d_p \upharpoonright M, f_p \upharpoonright M)$. It is clear that $p \upharpoonright M$ is a condition in M. Set

$$X = \{(P, Q) \in \mathcal{M}_p \times \mathcal{M}_p : P \subseteq M, M \in Q \text{ and } f_p(Q) \in P \in Q\}.$$

If $(P, Q) \in X$, then there is a finite set b_p^Q in P, and hence in M, such that $[b_p^Q, P \cap X] \subseteq \Sigma(Q)$. Fix such sets. Set $b_p = \bigcup\{b_p^Q : (P, Q) \in X\}$ and $B = \{b_P : P \in \mathcal{M}_p\}$. Pick some regular cardinal μ with $\theta < \mu < \theta^*$ and consider the following set which is easily verified to be unbounded in $[X]^{<\omega}$ and belongs to M^*.

$$U = \{R \cap X : \{B, X, F, p \upharpoonright M, \Sigma, \theta\} \subseteq R \prec H_\mu \text{ and } R \text{ is countable }\}.$$

Since $X \in H_\theta$, every algebra on X belongs to H_θ, and hence $\Sigma(M)$ is also M^*-stationary.

Now by the M^*-stationarity of $\Sigma(M)$ and Lemma 2.6, one can find $A \in U \cap M^* \cap \Sigma(M)$. Since $M^* \prec H_\theta^*$, there is $R \in M^*$ with $\{B, X, F, p \upharpoonright M, \Sigma, \theta\} \subseteq R$ such that $A = R \cap X$.
Fix such R. Now using the openness of $\Sigma(M)$, there exists a finite set $b^M_R \subseteq A$ such that

$$[b^M_R, A]$$

is included in $\Sigma(M)$. We may assume that b_R contains, as subsets, all b_M^Q for $(M, Q) \in X$. We need to extend $p \upharpoonright M$ to a condition in R so that its extensions in R do not violate the third condition of Definition 2.8. To this end, let p^* be the same as $p \upharpoonright M$ except about d_{p^*}, where we let it be defined on $M_p \cap M$ by $d_{p^*}(P) = d_p(P) \cup b_{p^*}$, where P^+ is the next model of P in $(M_p \cap M) \cup \{R\}$. It is clear that p^* is a condition in R since $p \upharpoonright M, B, b_R \in H_\emptyset \cap R$. Now, suppose that $q \in R$ extends p^*. We shall show that q is compatible with p. Put $M_q = M_q \cup M_p$. Let also d_r be defined on M_q as follows

$$d_r(P) = d_q(P)$$

if $P \in M$, and $d_r(P) = d_p(P)$ otherwise. we simply put $f_r = f_p \cup f_q$. What remains to be shown is that whenever $P \in Q$ are in M_r with $f_r(Q) \in P$, we have that $P \cap X \in \Sigma(Q)$. To avoid the trivial case, we may assume that $Q \notin M$, and $P \in M_q \setminus M_p$. In this case there is $S \in M_p \cap M$ such that $S \in P \in S^+$. Now, if $(S^+, Q) \in X$, then

$$b^Q_{S^+} \subseteq b_{S^+} \in P.$$

Consequently, we have that $P \cap X \in [b^Q_{S^+}, S^+ \cap X] \subseteq \Sigma(Q)$. Otherwise

$$S^+ = R;$$

in this case if $Q = M$, then $P \cap X \in [b_R, A] \subseteq \Sigma(M)$, and if $M \neq Q$, then

$$P \cap X \in [b_R, M \cap X] \subseteq [b^Q_M, M \cap X] \subseteq \Sigma(Q).$$

Recall that $F \in R$, and hence $R \cap \mathbb{P}_\Sigma$ is closed under F, and that $R \cap \mathbb{P}_\Sigma$ is in $M^* \cap S_p(M^*)$. This concludes the proof.

Corollary 2.11. \mathbb{P}_Σ is a.s.p.

Proof. It is clear from Lemma 2.9 and Proposition 2.10.

For a V-generic filter $G \subseteq \mathbb{P}_\Sigma$, we let $M_G = \{M : \exists p \in G$ such that $M \in M_p\}$.

Lemma 2.12. Suppose G is a V-generic filter on \mathbb{P}_Σ. Then M_G is a continuous \in-chain.

Proof. We show that if $(M_n)_{n<\omega}$ is a sequence in M_G, then $\bigcup_{n<\omega} M_n$ is also in M_G. This is equivalent to saying that if $M \in M_G$ is not the minimal member and is such that for every $P \in M_G$ below M, there is a model in M_G between P and M. Then M is the union of models below M in M_G. Thus suppose countable model $M \prec H_\emptyset$ is forced, by a condition p, to be in M_G with the above property. Without loss of generality, we may assume that M_p contains M and some model below M in M_G as well. Now let $x \in M$. If $q \leq p$ is an arbitrary condition, then one can extend q to a condition q_x such that $x \in d_{q_x}(Q_x)$ where Q_x is the largest model below M in M_{q_x}. It then implies that any extension of q_x which has a model above Q_x should contain x. This is possible as there is some model below M in M_q. This shows that the set of conditions r such that x belongs to some model below $M_r \cap M_r$ is dense below p. Thus for every $x \in M$, p forces that there is a model below M in M_G containing x. Therefore, M is the union of its predecessors in M_G, whenever G is a \mathbb{P}_Σ-generic filter containing p.

\[2.10\]
Let f_G be defined on \mathcal{M}_G by letting $f_G(M) = f_p(M)$ for some, or equivalently all, $p \in G$ with $M \in \mathcal{M}_p$.

Proposition 2.13. \mathbb{P}_Σ adds a reflecting sequence for Σ.

Proof. Let G be a V-generic filter on \mathbb{P}_Σ. By Lemma 2.12, \mathcal{M}_G is a continuous \in-chain of models. Let $\langle M_\xi : \xi < \omega_1 \rangle$ be the natural enumeration of \mathcal{M}_G, i.e. for each $\xi < \omega_1$, $M_\xi \in M_{\xi+1}$. We claim that this is a reflecting sequence for Σ. If $\xi < \omega_1$ is a limit ordinal, then $f_G(M_\xi)$ belongs to M_ξ, and thus by the continuity, there is $\zeta < \xi$ so that $f_G(M_\xi) \in M_\zeta$, and thus for each $\eta \in \xi \setminus \zeta$, $f_G(M_\xi) \in M_\eta$. It is enough to pick $q \in G$ such that $M_\xi, M_\eta \in M_q$, and hence $M_\eta \cap X \in \Sigma(M_\xi)$.

3. Conclusion

In [6], Todorčević introduced and studied the forcing axiom PFA(S), and showed its consistency as well. This forcing axiom states that S is a coherent Suslin tree, and if \mathbb{P} is a proper forcing which preserves the c.c.c-ness of S, and that if \mathcal{D} is a collection of dense subsets of \mathbb{P} with $|\mathcal{D}| \leq \aleph_1$, then there is a \mathcal{D}-generic filter on \mathbb{P}. Now by Proposition 1.6 alone, \mathbb{P}_Σ preserves the c.c.c-ness of S. Using standard arguments and Corollary 2.11, one can show that MRP holds under PFA(S).

ACKNOWLEDGMENT

Part of this note was discovered when the author was a PhD student under the supervision of Boban Veličković, in particular the notion of almost strong properness was obtained in a collaboration with him. The author would like to thank him for his support and his permission to include it here.

REFERENCES

[1] J. T. Moore, Set mapping reflection, J. Math. Log. 5 (1) (2005) 87–97. doi:10.1142/S0219061305000407.
[2] M. Viale, The proper forcing axiom and the singular cardinal hypothesis, J. Symbolic Logic 71 (2) (2006) 473–479. doi:10.2178/jsl/1146620153.
[3] T. Miyamoto, T. Yorioka, Some results in the extension with a coherent suslin tree, part ii, Forcing extensions and large cardinals (RIMS 2012) (1851) (2013) 49–61.
[4] W. J. Mitchell, Adding closed unbounded subsets of ω_2 with finite forcing, Notre Dame J. Formal Logic 46 (3) (2005) 357–371. doi:10.1305/ndjfl/1125409334.
[5] J. D. Hamkins, Extensions with the approximation and cover properties have no new large cardinals, Fundamenta Mathematicae 180 (3) (2003) 257–277. doi:10.4064/fm180-3-4.

[6] S. Todorčević, Forcing with a coherent souslin tree, preprint (2012).
URL http://www.math.toronto.edu/~stevo/todorcevic_chain_cond.pdf

Email address: rahmanmohammadpour@gmail.com
URL: https://sites.google.com/site/rahmanmohammadpour