Identification of neural networks preferentially engaged by epileptogenic mass lesions: A lesion network mapping analysis

Authors:

Alireza Mansouri MD MSc
Jürgen Germann, M.Sc.
Alexandre Boutet, M.D.
Gavin J. B. Elias, B.A.
Karim Mithani BSc MEng
Clement T. Chow BKin
Brij Karmur BSc
George M. Ibrahim MD PhD
Mary Pat McAndrews PhD
Andres Lozano MD PhD
Gelareh Zadeh MD PhD
Taufik A. Valiante MD PhD

*Corresponding author: Alireza Mansouri / amansouri@pennstatehealth.psu.edu

1 Department of Neurosurgery, Penn State Health, Hershey, PA
2 University Health Network, Toronto, ON
3 Joint Department of Medical Imaging, University of Toronto, Toronto, ON
4 Faculty of Medicine, University of Toronto, Toronto, ON
5 Associate Scientist, Program in Neuroscience and Mental Health, Sickkids Research Institute, Toronto, ON
6 Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON
7 Institute of Biomaterials and Biomedical Engineering, Department of Surgery, University of Toronto, ON
8 Department of Neuropsychology, University Health Network, Toronto, ON
9 Division of Neurosurgery, University Health Network, Toronto, ON
Supplementary Table 1. Clinical and tumor characteristics of lesions identified from the literature for external validation

Author (year)	Age (years)	Sex	Tumor Type	Grade	Impacted structure	Seizure Type	Seizure Duration (years)
Aaron (1984)	21	M	Neoplasm	NA	Right temporal lobe	Partial, complex	20
	45	M	Astrocytoma	3	Left temporal lobe	Generalized	0.25
Alimohamadi (2016)	30	F	Glioma	2	Left temporal lobe	NA	0.33
Anneken (2006)	48	F	Astrocytoma	2	Left frontotemporal lobe	Generalized tonic-clonic	7
Bai (2015)	26	F	Astrocytoma	2	Left inferior temporal lobe	Complex partial	0.04
Buklina (2014)	23	M	Astrocytoma (anaplastic)	3	Left inferior precentral gyrus	Clonic seizure (tongue)	0.66
Buklina (2014)	52	M	Astrocytoma	2	Left superior & middle temporal gyri	Generalized	12
Chowdhury (2010)	41	M	Ganglioma (anaplastic)	3	Right amygdala	NA	NA
Duffau (2006)	38	F	Oligoastrocytoma	2	Right insula, temporal pole, mesiotemporal lobe	Generalized	4
Duffau	39	M	Glioma	2	Right frontal pole	NA	0.66
Year	Age	Gender	Diagnosis	Lobe	Epilepsy	Duration	
------------	-----	--------	---------------------------------	---	------------------------------------	----------	
Garcia Pulido (2013)	38	F	Oligodendroglialoma (multicentric)	Left frontal, parietal, occipital lobes	Generalised tonic-clonic	27	
Harmsen (2019)	25	M	Glioma (angiocentric)	Right frontal lobe	NA	2	
Henry (1994)	24	F	Astrocytoma	Right frontal, inferior temporal lobes, insula	Complex partial	16	
Hoque (2009)	67	M	Astrocytoma	Left lateral perirolandic cortex	Simple partial, clonic (tongue)	NA	
Kennedy (2013)	38	M	Oligodendroglioma	Right temporal lobe	NA	NA	
Maesawa (2016)	24	M	Pleomorphic xanthoastrocytoma	Left deep parietal operculum, transverse parietal gyrus	Medically refractory daily	7	
Majores (2008)	45	M	Ganglioma (anaplastic)	Left temporo-mesial lobe	Single, generalized	NA	
	60	M	Ganglioma (atypical)	Right frontocentral lobe	Refractory epilepsy	NA	
	37	M	Ganglioma (atypical)	Left frontal lobe, insula, basal ganglia	Single, generalized	NA	
Marucci	27	M	Intracerebral hamartoma	Left frontal lobe	Tonic seizure	20	
Year	Age	Gender	Tumor Type	Tumor Location	MRI Description	Other Details	
------	-----	--------	------------	----------------	----------------	--------------	
2011	27	NA	Astrocytoma	Left temporo-mesial lobe	Intractable complex partial	9.6 (mean)	
Vajkoczy (1998)	27	NA	Astrocytoma	Left temporo-mesial lobe	Intractable complex partial	9.6 (mean)	
28	F	Astrocytoma (anaplastic)	Right mid-rolandic cortex	Partial Left sensory	0.66		
Whittle (1992)	28	F	Astrocytoma (anaplastic)	Right mid-rolandic cortex	Partial Left sensory	0.66	
Supplementary Table 2. Anatomical areas with the greatest likelihood of being functionally connected with epileptogenic versus non-epileptogenic lesions (AAL Atlas)

Brain Region	Mean Voxelwise Odds Ratio
Right Medial Frontal Gyrus	4.227846
Left Medial Frontal Gyrus	4.010104
Right Parahippocampal Gyrus	3.993287
Right Temporal Pole	3.828816
Right Inferior Parietal Lobe	3.745296
Right Middle Frontal Gyrus	3.736978
Left Parahippocampal Gyrus	3.696352
Left Temporal Pole	3.64159
Left Fusiform Gyrus	3.469102
Right Anterior Cingulate Cortex	3.426886
Right Superior Frontal Gyrus	3.244597
Left Inferior Temporal Lobe	3.230719
Right Fusiform Gyrus	3.176906
Left Calcarine Fissure	3.140045
Left Cuneus	3.127826
Left Caudate Nucleus	3.124714
Right Supramarginal Gyrus	3.102246
Left Inferior Parietal Lobe	3.086116
Left Globus Pallidus	3.064151
Supplementary Table 3. Anatomical areas with the greatest likelihood of being functionally connected with non-epileptogenic versus epileptogenic lesions (AAL Atlas)

Brain Region	Mean Voxelwise Odds Ratio
Right Cerebellum	9.581622
Left Cerebellum	5.37431
Right Precuneus	2.988474
Left Precuneus	2.922513
Right Rolandic Operculum	2.831945
Left Anterior Cingulate Cortex	2.620148
Right Precentral Gyrus	2.404755
Left Precentral Gyrus	2.349517
Left Rolandic Operculum	2.111296
Supplementary Table 4. Resting-state networks with the greatest likelihood of being functionally connected with epileptogenic versus non-epileptogenic lesions.\(^{31}\)

Functional Network	Mean Voxelwise Odds Ratio
Limbic Network	1.92
Frontoparietal Network	2.04
Supplementary Table 5. Resting-state networks with the greatest likelihood of being functionally connected with non-epileptogenic versus epileptogenic lesions (Rojas et al.)\(^{31}\)

Functional Network	Mean Voxelwise Odds Ratio
Dorsal Attention	2.12
Ventral Attention	1.52
Default	2.08