A case of Myhre syndrome mimicking juvenile scleroderma

Barbara Jensen*, Rebecca James², Ying Hong¹, Ebun Omoymimí¹, Clarissa Pilkington³, Neil J. Sebire⁴, Kevin J. Howell⁵, Paul A. Brogan¹,³ and Despina Eleftheriou¹,³,⁶

Abstract

Background: Myhre syndrome is a genetic disorder caused by gain of function mutations in the SMAD Family Member 4 (SMAD4) gene, resulting in progressive, proliferative skin and organ fibrosis. Skin thickening and joint contractures are often the main presenting features of the disease and may be mistaken for juvenile scleroderma.

Case presentation: We report a case of a 13 year-old female presenting with widespread skin thickening and joint contractures from infancy. She was diagnosed with diffuse cutaneous systemic sclerosis, and treatment with corticosteroids and subcutaneous methotrexate recommended. There was however disease progression prompting genetic testing. This identified a rare heterozygous pathogenic variant c.1499 T > C (p.Ile500Thr) in the SMAD4 gene, suggesting a diagnosis of Myhre syndrome. Securing a molecular diagnosis in this case allowed the cessation of immunosuppression, thus reducing the burden of unnecessary and potentially harmful treatment, and allowing genetic counselling.

Conclusion: Myhre Syndrome is a rare genetic mimic of scleroderma that should be considered alongside several other monogenic diseases presenting with pathological fibrosis from early in life. We highlight this case to provide an overview of these genetic mimics of scleroderma, and highlight the molecular pathways that can lead to pathological fibrosis. This may provide clues to the pathogenesis of sporadic juvenile scleroderma, and could suggest novel therapeutic targets.

Keywords: Scleroderma, Myhre syndrome, SMAD4

Background

Myhre syndrome is a genetic disorder often presenting in infancy, caused by a gain of function mutation in the SMAD family member 4 (SMAD4) gene causing progressive, proliferative fibrosis, occurring spontaneously or following trauma, in addition to a unique set of clinical phenotypic features described below [1–4]. Clinical manifestations of Myhre syndrome include: cardiovascular involvement in up to 70% of patients (congenital heart defects, long- and short-segment stenosis of the aorta and peripheral arteries, pericardial effusion, constrictive pericarditis, restrictive cardiomyopathy, and arterial hypertension); respiratory manifestations (choanal stenosis, laryngotracheal narrowing, obstructive airway disease, or restrictive pulmonary disease); gastrointestinal symptoms (pyloric stenosis, duodenal strictures, severe constipation); hearing loss, mild to moderate development delay, dysmorphic features and skin involvement (skin sclerosis, particularly involving the hands and extensor surfaces) leading to joint contractures [1, 5–12]. Patients presenting with predominantly skin sclerosis and contractures, cardiovascular involvement may be misdiagnosed as a having systemic sclerosis (SSc) despite the presence of other atypical features for SSc such as hearing loss and developmental delay.
thus causing unnecessary exposure to immunosuppres-
sion. Herein, we present a case of a 13 year-old female
considered as having diffuse cutaneous systemic scler-
osis, who was subsequently identified to have Myhre
syndrome caused by a previously well described hetero-
ygous c.1499 T > C variant in SMAD4. We discuss the
therapeutic implications of establishing a genetic diagno-
sis in this case and provide an overview of genetic mimics of scleroderma.

Case presentation
A 13 year-old girl of Black African decent was referred
to the scleroderma services of the rheumatology depart-
ment at Great Ormond Street Hospital for Children
NHS Foundation Trust, London for a second opinion
with history of extensive skin thickening and widespread
joint contractures, which started in infancy at the age of
9 months (Fig. 1). The skin changes started in her lower
limps and over the course of 2 years spread to the arms
and trunk. The joint contractures were noted approxi-
mately 2 years after the initial skin changes were ob-
erved. There was history suggestive of mild Raynaud’s
phenomenon, but no digital ulceration, gastrointestinal,
or respiratory symptoms of note. She was born at term
with no neonatal complications. She had a past medical
history of valvar and supravalvar pulmonary artery sten-
osis requiring serial balloon dilatation; mild developmen-
tal delay; and conductive hearing loss. Microarray-based
comparative genomic hybridization was used to exclude
chromosomal abnormalities that could explain her pres-
entation and was normal. There was no history of cancer
in the immediate family.

Clinical examination revealed diffusely thickened skin
affected the full length of her limbs and trunk, but spar-
ing her face; weight 41 kg (25th centile for age), height
139 cm (2nd centile for age). She was normotensive at
time of review. Delayed puberty was noted and the pa-
tient had no menarche at the age of 13 years old. There
were multiple joint contractures, but no active arthritis.
Cutaneous telangiectasia, fingertip ulceration and calci-
nosis were absent. She was also noted to have mild dys-
morphic features: small eyes and ears, a broad nasal tip,
a long and prominent chin, bilateral clinodactyly and
mild two-three toe syndactyly. Nailfold capillaroscopy
was abnormal, with evidence of dilated capillary loops,
tortuosity, micro-bleeding, and widespread dropout in a
pattern compatible with scleroderma-spectrum connect-
tive tissue disease (Fig. 2). Digital thermography demon-
strated cold baseline cutaneous temperature of the
peripheries, with some of the fingers remaining cool
long after cold challenge. She tested weakly positive for
antinuclear antibodies (ANA at 1:160, homogenous pat-
tern); negative for dsDNA antibodies, rheumatoid factor
and extranuclear antibodies. Complement function (al-
ternate and classical pathways) was normal, as were
levels of C3, C4, and C1q. Erythrocyte sedimentation
rate and C-reactive protein were repeatedly within nor-
mal limits. Echocardiography revealed mild persistent
pulmonary stenosis, a small left pulmonary artery, mild
coarctation of the aorta, mild biventricular hypertrophy,
but no evidence of pulmonary hypertension. Barium
swallow was normal. A skeletal survey revealed advanced
bone age, but no evidence of skeletal dysplasia. A skin
biopsy was performed, with histology revealing hyper-
kretotic epidermis, and fibrotic dermis with areas of

Fig. 1 Cutaneous and skeletal manifestations of the 13 year old patient with Myhre syndrome we describe in this report. a-b Multiple joint
contractures and clinodactyly. c Extensive skin thickening and muscle wasting of lower limbs in same patient.
hyalinization; adnexal structures were sparse with absence of pilosebaceous units (Fig. 3). These histological features are typically encountered in scleroderma histopathology with the exception of the hyperkeratotic epidermis, which is less often seen [11, 13, 14]. She was diagnosed with diffuse cutaneous systemic sclerosis, and treatment with oral prednisolone 2 mg/kg/day for 6 weeks, and subcutaneous methotrexate (15 mg/m²/week) started. There was deterioration in joint contractures (further loss of range of movement) and spreading of skin changes observed despite treatment. When reviewed for a second opinion at GOSH, a genetic diagnosis was suspected and genetic testing via Sanger sequencing was undertaken for some conditions that cause skin thickening, dysmorphic features and congenital heart disease. Genetic testing revealed a previously well described rare heterozygous c.1499 T > C (p.Ile500Thr) class 5 variant in SMAD4 [12], suggesting a diagnosis of Myhre syndrome. Testing for variants in other relevant genes pertinent to phenotype (including PTPN11, LMNA, and MMP14) revealed no other pathogenic variants [15–26]. Parental testing confirmed this variant arose de novo in the proband. All immunosuppression was subsequently stopped, genetic counselling was provided, and the prognosis of Myhre syndrome was discussed with the patient and family.

Discussion
We present the case of a 13 year-old with a scleroderma-like condition, ultimately diagnosed with Myhre syndrome, a genetic disorder that may mimic juvenile scleroderma (Supplemental Table 1). Securing a molecular diagnosis in this case allowed the cessation of immunosuppression thus reducing the burden of unnecessary toxic exposure to glucocorticoids, and other ineffective immunosuppressive treatments; and facilitated genetic counselling, and prognostication. This also had implications for long term follow up as patients with Myhre syndrome require close surveillance for detection of any malignancy in view of increased risk of cancer reported in these patients [5, 12, 27].
Therefore, highlight this case to raise awareness of a growing number of monogenic fibrotic disorders mimicking juvenile scleroderma which need to be considered in patients with cutaneous fibrosis beginning early in life (Table 1).

Myhre syndrome is caused by mutations in SMAD4 encoding for SMAD4 protein, a transducer mediating transforming growth factor β (TGF-β) signalling [2–4]. Skin fibroblasts from patients with Myhre syndrome show increased SMAD4 expression, impaired matrix deposition, and altered expression of genes encoding matrix metalloproteinases and related inhibitors. Losartan, an angiotensin-II type 1 receptor blocker but also a (lesser-known) TGF-β antagonist has been shown in vitro to normalize metalloproteinase and related inhibitor transcript levels, and to correct the extracellular matrix (ECM) deposition defect in fibroblasts from these patients [30]. Some patients with aortic pathology associated with Myhre syndrome have already been treated with losartan, with reports of stabilisation of their vasculopathy; but the effect on skin fibrosis has never been described [30–34]. We suggest that further studies could explore losartan (or other therapies acting on the SMAD4 pathway) as a potential targeted therapeutic option for cutaneous fibrosis associated with this rare genetic disease. At the time of writing this report losartan therapy is being considered for the patient described herein.

Several other conditions may also mimic juvenile scleroderma (Table 1). Skin thickening is common to all of these disorders, and may be localized (morphoea-like), or widespread (like diffuse scleroderma) [35–45]. Vasculopathy is frequently observed and should be actively screened for. We highlight for the first time in this case the abnormal nailfold capillaroscopy with similar findings to those observed in SSC. Degenerative cardiac or pulmonary manifestations may also exhibit a secondary inflammatory component, thus posing considerable diagnostic challenges and making it more likely that such patients could be exposed to ineffective but toxic immunosuppression, as illustrated by our case [1, 2, 4, 46–49]. On occasions, autoimmunity has also been described [50–53]. The management and long term outcome of these genetic scleroderma mimics is, however, entirely different and immunosuppression may not be required or may in fact be harmful in some cases [54, 55]. We therefore suggest that genetic testing should be considered in all patients with sclerodermatous skin disease of very young onset (infancy) and recommend screening for vasculopathy (including congenital heart disease and aortopathy) with echocardiography, and non-invasive angiography. Genetic screening for monogenic diseases should also be considered in older patients with scleroderma with atypical clinical course; and in those not responding to conventional immunosuppression.

Regarding the methodology of genetic screening, our case again illustrates the importance of next-generation sequencing (NGS) methodologies in this context. Mainly due to lack of routine NGS methods, initial routine genetic testing of candidate genes by Sanger was performed for this patient. This was a time consuming, costly, and mainly “clinician best guess” driven approach, which resulted in diagnostic delay of several months. Whole exome and genome sequencing and targeted gene panels now allow rapid, simultaneous detection of multiple genes, and are increasingly being used as diagnostic tools and to explore the pathogenesis of monogenic diseases [56–61]. These techniques are particularly useful for screening diseases with overlapping phenotypes. For instance, we (and many others) have used NGS to extensively study monogenic systemic inflammation, with significant diagnostic and therapeutic impact [60, 61]. Similarly, we anticipate that application of NGS genetic screening to cohorts of patients with juvenile scleroderma (in all its forms) may identify a proportion with monogenic disease, and that evidence of tissue inflammation and autoimmunity should not preclude the possibility of a genetic diagnosis for the reasons discussed above.

Understanding the genetic basis of these genetic diseases with sclerodermatous features is not only crucial to secure diagnoses, improve prognostication and to facilitate genetic counselling but may also provide clues to the pathogenesis of sporadic cases. For instance, several of the genetic mimics of scleroderma involve the TGF-β pathway [2, 62–64]. At the cellular level, TGF-β plays potent roles in proliferation, differentiation and apoptosis of many cell types, and therefore unsurprisingly germline mutations in the TGF-β signalling pathway cause various phenotypes affecting the skeletal, muscular, and/or cardiovascular systems [2, 62–65]. TGF-β has also been identified as a regulator of pathological fibrogenesis in juvenile and adult onset systemic sclerosis [64–68]. A wide range of drugs targeting the TGF-β signalling pathways are now available [69–73], and need to be tested for their ability to modulate the phenotypes of both these inherited scleroderma mimics but possibly also for efficacy in addition to anti-inflammatory medication in sporadic systemic sclerosis, given their overlapping pathomechanisms.

Conclusion

Myhre syndrome is a rare genetic disorder that causes skin thickening and joint contractures, and may be misdiagnosed as juvenile scleroderma (systemic sclerosis). Many other genetic conditions can similarly mimic the clinical manifestations of juvenile scleroderma and should be considered in the differential diagnosis of juvenile scleroderma. Onset in infancy and comorbidities such as structural heart disease, large vessel vasculopathy, dysmorphic features, developmental delay, and
Table 1: Monogenic disorders with a scleroderma-like phenotype. The clinical features have been summarised as described by the Online Mendelian Inheritance in Man (OMIM) [28] and Genetics Home Reference databases [29].

Disease	Inheritance	Gene	Clinical Features
Hutchinson-Gilford Progeria	AD, AR	LMNA	**Skin:** Sclerodermatous skin disease, loss of subcutaneous fat (lipodystrophy)
Skeletal: Osteoporosis, joint restrictions, joint abnormalities			
Cardiovascular: Atherosclerosis			
Other: Prematurely aged appearance, postnatal onset growth retardation, hair loss (alopecia)			
Werner syndrome	AR	WRN	**Skin:** Sclerodermatous skin disease, subcutaneous calcification, ulceration
Skeletal: Osteoporosis			
Cardiovascular: Premature arteriosclerosis			
Endocrine: Diabetes mellitus, hypogonadism			
Other: Prematurely aged appearance, short stature, alopecia, juvenile cataracts			
Rothmund Thomson syndrome	AR	RECQL4	**Skin:** Erythematous thickened skin lesions in infancy, poikiloderma (atrophic plaques with telangiectasia), telangiectasia, atrophy, sun sensitivity
Skeletal: Osteoporosis			
Central Nervous System: Mental retardation (rare)			
Endocrine: Hypogonadism			
Other: Prematurely aged appearance, short stature, alopecia, premature greying of hair, increased risk of malignant disease			
Mandibular hypoplasia, deafness, progeroid features and lipodystrophy syndrome	AD	POLD1	**Skin:** Sclerodermatous skin disease, telangiectasias, atrophy, lipodystrophy
Skeletal: Osteoporosis, joint contractures			
Endocrine: Insulin resistance, diabetes mellitus			
Other: Prematurely aged appearance, mandibular hypoplasia, sensorineural deafness, hepatomegaly, hepatic steatosis			
Nestor-Guillermo Progeria Syndrome	AR	BANF1	**Skin:** Sclerodermatous skin disease (patchy) and hyperpigmentation
Skeletal: Joint stiffness, joint contractures, osteoporosis, osteolysis			
Cardiovascular: Sinus tachycardia, prominent subcutaneous venous patterning, pulmonary hypertension			
Other: Prematurely aged appearance, short stature, lipoatrophy			
Keppen-Lubinsky syndrome	AD	KCNJ6	**Skin:** Lipodystrophy, wrinkled appearance
Skeletal: Joint contractures			
Central Nervous System: Severe mental retardation, delayed psychomotor development, hypertonia, hyperreflexia			
Other: Prematurely aged appearance, generalised lipodystrophy			
Fontaine Progeroid Syndrome	AD	SLC25A24	**Skin:** Wrinkled skin, lipodystrophy, sclerodermatous skin disease
Skeletal: Low bone density, delayed bone age			
Cardiovascular: Pulmonary artery hypertension, aortic ectasia			
Other: Prematurely aged appearance, short stature, intrauterine growth retardation			
Cockayne Syndrome, Type A	AR	ERCC8	**Skin:** Cutaneous photosensitivity, scarred, pigmented, atrophy, reduced subcutaneous adipose tissue, sclerodermatous skin disease
Skeletal: Flexion contractures, mild-to-moderate joint limitations			
Cardiovascular: Hypertension			
Neurological: Impaired or delayed neural development, mental retardation			
Other: Prematurely aged appearance, cachectic dwarfism, intrauterine growth retardation, sensorineural hearing loss, vision complications, tooth decay, hepatomegaly, splenomegaly, decreased subcutaneous adipose tissue			
Ataxia-telangiectasia	AR	ATM	**Skin:** Sclerodermatous skin disease, progeric skin changes, cutaneous telangiectasia, cafe-au-lait spots
Respiratory: Bronchitis, bronchiectasis
Neurological: Cerebellar ataxia, cerebellar cortical degeneration, oculomotor abnormalities, seizures, choreoathetosis, dystonia, reduced/absent deep tendon reflexes |
Table 1: Monogenic disorders with a scleroderma-like phenotype. The clinical features have been summarised as described by the Online Mendelian Inheritance in Man (OMIM) [28] and Genetics Home Reference databases [29].

Disease	Inheritance	Gene	Clinical Features
Myhre syndrome	AD	SMAD4	**Skin**: Sclerodermatous skin disease
Skeletal: Skeletal abnormalities, joint restrictions			
Cardiovascular: Hypertension, congenital heart defects, aortic stenosis, aortic coarctation, pericardial fibrosis			
Respiratory: Laryngotracheal stenosis, respiratory failure			
Neurological: Mental retardation, delayed language and motor skill development, behavioral issues (autistic-like)			
Other: Dystrophic facial features, short stature, hearing loss, generalized muscle hypertrophy			
Stiff skin syndrome	AD	FBN1	**Skin**: Sclerodermatous skin disease (diffuse), lipodystrophy
Skeletal: Joint restrictions, flexion contractures			
Other: Muscle weakness			
Pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID)	AR	SLC29A3	**Skin**: Hyperpigmented and hypertrichotic skin lesions on lower body, sclerodermatous skin disease
Skeletal: Joint contractures (elbows, fingers and toes)			
Abdomen: Hepatomegaly, diabetes mellitus (insulin-dependent), splenomegaly			
Other: Short stature, hearing loss			
Reynolds syndrome	AD	LBR	**Skin**: Sclerodermatous skin disease (tightened and shiny skin over the forearms and hands), sclerodactyly, calcinosis cutis, generalized darkening
Other: Raynaud phenomenon, hepatomegaly, primary biliary cirrhosis, splenomegaly, esophageal dysfunction			
Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome /Nakajo-Nishimura Syndrome	AR	PSMB8	**Skin**: Erythematous nodular skin lesions and plaques on the face and extremities, dry, stiff, lipodystrophy
Skeletal: Joint contractures (elbow, finger/hand, toes, feet), joint pain			
Muscle: Lipodystrophy, muscle weakness			
Other: Poor growth, hepatomegaly, splenomegaly			
Mucolipidosis III gamma	AR	GNPTG	**Skin**: Sclerodermatous skin disease
Skeletal: Joint restrictions, joint stiffness, joint pain			
Cardiovascular: Aortic valve thickening, aortic stenosis			
Neurological: Mental retardation			
Other: Short stature			
Hurler-Scheie syndrome / Mucopolysaccharidosis Ih/s	AR	IDUA	**Skin**: Sclerodermatous skin disease
Skeletal: Joint stiffness, dysostosis multiplex			
Cardiovascular: Thickened mitral valve leaflets, aortic valve thickening, dilated left atrium, dilated left ventricle, mild pulmonary hypertension			
Respiratory: Frequent respiratory infections, nasopharyngeal obstruction, tracheal stenosis			
Abdomen: Umbilical hernia, hepatomegaly, splenomegaly			
Neurological: Pachymeningitis cervicis			
Other: Short stature, corneal clouding			
Zimmermann-Laband Syndrome 1	AD	KCNH1	**Skin**: Dry, sclerodermatous skin disease
Skeletal: Scoliosis, hypoplastic distal phalanges (hands and feet), hyperextensible joints			
Abdomen: Hepatosplenomegaly, splenomegaly, umbilical hernia			
Cardiovascular: Cardiomyopathy, patent ductus arteriosus, aortic root dilatation, aortic arch dilatation			
Muscle: Poor muscle bulk			
Neurological: Hypotonia, seizures, mental retardation			
Other: Gingival fibromatosis, dysplastic or absent nails, hirsutism, abnormalities of the cartilage of the nose and/or ears			
Buschke-Ollendorff syndrome	AD	LEMD3	**Skin**: Subcutaneous nontender firm nodules, subcutaneous connective tissue nevi, elastin-rich connective tissue nevi (elastoma), collagen-rich connective tissue nevi (dermatofibrosis lenticularis disseminata)
Skeletal: Osteopoikilosis, joint stiffness, osteosclerosis, |
Table 1 Monogenic disorders with a scleroderma-like phenotype. The clinical features have been summarised as described by the Online Mendelian Inheritance in Man (OMIM) [28] and Genetics Home Reference databases [29] (Continued)

Disease	Inheritance	Gene	Clinical Features
Growth Retardation, Alopecia, Pseudoanodontia and Optic Atrophy (GAPO) Syndrome	AR	ANTXR1	**Skin:** Sclerodematous skin disease, redundant, prominent scalp veins, epidermal inclusion cyst
Skeletal: Delayed bone age			
Other: Growth retardation, alopecia, pseudoanodontia, umbilical hernia, hepatomegaly			
Crouzon Syndrome with acanthosis nigricans	AD	FGFR3	**Skin:** Hyperpigmentation, acanthosis nigricans, melanocytic nevi, hypertrophy, sclerodematous skin disease, redundant skin folds
Skeletal: Craniosynostosis			
Frontometaphyseal dysplasia 2	AD	MAP 3 K7	**Skin:** Keloid formation, sclerodematous skin disease
Skeletal: Skeletal abnormalities, joint contractures			
Cardiovascular: Patent ductus arteriosus, bicuspid aortic valve, aortic root dilation, pulmonary valve stenosis			
Respiratory: Congenital stridor, subglottic stenosis, tracheal stenosis			
Premature aging syndrome, Penttinen type	AD	PDGFRB	**Skin:** Progressive cutaneous atrophy, thin translucent skin with prominent venous patterning, hypertrophic keloid-like lesions, skin retraction, sclerodematous skin disease, lipoatrophy
Skeletal: Delayed bone maturation, osteopenia, joint contractures			
Farber Lipogranulomatosis	AR	ASAH1	**Skin:** Early-onset subcutaneous nodules, lipogranulomatosis
Skeletal: Painful and progressively deformed joints, arthritis			
Respiratory: Laryngeal nodules			
Abdomen: Hepatomegaly, splenomegaly			
Neurological: Irritability, motor retardation, mental retardation			
Other: Hoarseness by laryngeal involvement			
Amyloidosis, Primary Localised cutaneous, 3 (PLCA3)	AR	GPWMB	**Skin:** Amyloid disposition in the skin, hyper- and hypo-pigmented macules, mild pruritis, dry skin
Carney Complex, Type 1	AD	PRKAR1A	**Skin:** Cutaneous tumors, profuse pigmented skin lesions, nevi
Cardiovascular: Tumors (atrial), ventricular myxoma, congestive heart failure			
Endocrine: Tumors, pigmented micronodular adrenal dysplasia, Cushing disease, acromegaly, thyroid follicular hyperplasia			
Other: Neoplasia, thyroid subcutaneous tumors, primary adenocortical nodular hyperplasia, testicular Sertoli cell tumor (calcified), pituitary adenoma, mammary ductal fibroadenoma, schwannoma, psammomatosus melanotic schwannomas, thyroid carcinoma, pheochromocytoma			
Porphyria cutanea tarda, Porphyria, hepatoerythropoietic	AD, AR	UROD	**Skin:** Sclerodematous skin disease (diffuse), increased mechanical skin fragility after sunlight exposure (photosensitivity), vesicles, bullae and blisters on exposed areas of skin, hyperpigmentation on sun-exposed skin
Abdomen: Hepatic hemosiderosis, hepatic cirrhosis, liver biopsy shows red autofluorescence and needle-like cytoplasmic inclusion bodies			
Other: Neoplasia, increased incidence of hepatocellular carcinoma			
Phenylketonuria, non-PKU mild Hyperphenylalaninemia	AR	PAH	**Skin:** Sclerodematous skin disease, pale pigmentation, dry, eczema
Neurological: Seizures, delayed development, mental retardation, behavioural problems and psychiatric disorders			
Other: Head, microcephaly, cataracts			
Porphyria, congenital erythropoietic	AR	UROS	**Skin:** Sclerodematous skin disease, photosensitivity, blistering and scarring, hyperpigmentation, hypopigmentation
Skeletal: Osteolysis, osteopenia, finger contractures			
Other: Short stature, conjunctivitis, corneal scarring, hypertrichosis, alopecia, porphyrin-rich gallstones, splenomegaly			
Multicentric osteolysis, nodulosis and arthropathy (MCNA)	AR	MMP2	**Skin:** Subcutaneous nodules (interphalangeal joints, knees, feet, elbows, pretibial), hyperpigmented erythematous lesions
Table 1 Monogenic disorders with a scleroderma-like phenotype. The clinical features have been summarised as described by the Online Mendelian Inheritance in Man (OMIM) [28] and Genetics Home Reference databases [29] (Continued)

Disease	Inheritance	Gene	Clinical Features
Winchester syndrome	AR	MMP14	**Skeletal:** Osteoporosis, flexion contractures
			Skin: Scleroderma (patchy, dark, leathery)
			Skeletal: Osteopenia, osteoporosis, arthropathy, joint restrictions
			Cardiovascular: Heart abnormalities
			Other: Corneal opacity, hypertrichosis, overgrowth of the gums, coarse facial features
Multisystemic fibrosis-like hereditary fibrosing poikilodermatous skin	AD	FAM11B	**Skin:** Congenital poikiloderma (face and exposed skin), telangiectatic lesions, eczema-like lesions, epidermal atrophy
with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP)			**Respiratory:** Interstitial pulmonary fibrosis
			Muscle: Tendon contractures, muscle weakness, myopathy
			Other: Congenital poikiloderma on face
Weill–Marchesani syndrome 1	AR	ADAM	**Skin:** Scleroderma (face)
		TS10	**Skeletal:** Joint stiffness, joint restrictions
			Cardiovascular: Heart defects, aortic valve stenosis, pulmonary valve stenosis, ductus arteriosus, ventricular septal defect
			Neurological: Mild mental retardation
			Other: Short stature, brachydactyly, eye anomalies
Weill–Marchesani syndrome 4 (WMS-like syndrome)	AR	ADAM	**Skin:** Scleroderma (face)
		TS17	**Skeletal:** Joint stiffness
			Cardiovascular: Cardiac defects (uncommon)
			Other: Short stature, severe myopia, acute and/or chronic glaucoma, cataract
Frank-Ter Haar Syndrome	AR	SH3PXD2B	**Skin:** Scleroderma (face), acne conglobata
			Skeletal: Osteolysis, osteopenia, osteoporosis, shortened bowed long bones, flexion deformities of fingers
			Other: Growth retardation, glaucoma, brachycephaly, wide fontanels, prominent forehead, hypertelorism, prominent eyes, malocclusion
Geleophysic dysplasia 3	AD	LTBP3	**Skin:** Scleroderma (face)
			Skeletal: Joint restrictions, delayed bone age
			Cardiovascular: Pulmonary hypertension
			Respiratory: Dyspnea, tracheal stenosis, respiratory failure
			Other: Short stature, marked brachydactyly, hepatomegaly
Geleophysic dysplasia 1	AR	ADAM	**Skin:** Scleroderma (face)
		TSL2	**Skeletal:** Osteopenia, shortened long tubular bones, short hands and feet, joint contractures, joint restrictions, delayed bone age
			Cardiovascular: Progressive cardiac valvular thickening, cardiac failure, mitral stenosis, tricuspid stenosis, aortic stenosis
			Respiratory: Tracheal stenosis, respiratory insufficiency
			Neurological: Developmental delay, seizures
			Other: Short stature, ‘happy’ appearance with full cheeks, shortened nose, wide mouth, hepatomegaly
Mucolipidosis II Alpha/Beta	AR	GNPTAB	**Skin:** Scleroderma skin disease, cavernous hemangioma
			Skeletal: Skeletal abnormalities, moderate joint restrictions, osteopenia
			Cardiovascular: Cardiomegaly, congestive heart failure, hypertrophic cardiomyopathy, cardiac murmur, aortic insufficiency
			Respiratory: Recurrent bronchitis, recurrent pneumonia
			Abdomen: Umbilical hernia, hepatomegaly
			Neurological: Developmental delay, severe psychomotor retardation
			Other: Progressive failure to thrive, Hurler-like body configuration, marked growth retardation, coarse facial features, abdominal protuberance, hoarse voice
Hypertrophic Osteoarthropathy, Primary, Autosomal Recessive 1 / Cranioosteoarthropathy	AR	HPGD	**Skin:** Scleroderma skin disease, pachyderma, furrowed, oily, seborrhea, redundant, palmoplantar hyperkeratosis, eczema
			Skeletal: Digital clubbing, osteoarthropathy, arthralgia, arthritis, swollen joints, decreased joint mobility, osteopenia,
hearing loss are important clues to a genetic diagnosis. Clinical application of NGS is likely to transform the genetic diagnostic approach to young patients with scleroderma-like diseases and suggest targeted therapies for some cases. Therapeutic targets for sporadic cases of juvenile scleroderma are also likely to emerge, given the overlapping disease mechanisms for all these conditions leading to vasculopathy, skin and organ fibrosis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12969-020-00466-1.

Additional file 1 Supplemental Table 1. Features of juvenile localised scleroderma, juvenile systemic sclerosis and Myhre syndrome.

Abbreviations
ANA: Anti-nuclear antibodies; ECM: Extracellular Matrix; dsDNA: Double-stranded DNA; NGS: Next generation sequencing; SSC: Systemic sclerosis; TGF-β: Transforming growth factor type beta

Acknowledgments
Dr. Eleftheriou, Professor Sebire and Professor Brogan acknowledge the National Institute of Health Research (NIHR) Biomedical Research Centre at UCL, London, UK.

Disclaimer
The views expressed are those of the authors and not necessarily those of the NHS, NIHR, or Department of Health.

Authors’ contributions
BJ, RJ, PB and DE conceived the study, obtained and analysed data and drafted the manuscript. YH, EO, CP, NS and KH obtained and analysed data and drafted the manuscript. All authors read and approved the final manuscript.

Funding
No funding sources. Dr. Jensen was supported by GOSH Children’s Charity Grant (CP_RSRCH_003) and Rosetrees Trust Grant (A2584) Dr. Eleftheriou and Dr. Hong were supported by Versus Arthritis (grants 20164, 21593, and 21791). Professor Brogan is supported by the Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. Dr. Eleftheriou, Professor Sebire and Professor Brogan acknowledge the Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. The centre for Adolescent Rheumatology for Versus Arthritis at UCL, London, UK.

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analysed.

Ethics approval and consent to participate
Formal written consent for publication was obtained from the patient’s mother and is available on request.

Consent for publication
Formal written consent for publication was obtained from the patient’s mother.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. 2 Paediatric Rheumatology Department, Queensland Children’s Hospital, Brisbane, Australia. 3 Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. 4 Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. 5 Microvascular Diagnostics, UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, UK. 6 Centre for Adolescent Rheumatology Versus Arthritis at UCL, London, UK.

Received: 5 May 2020 Accepted: 3 September 2020
Published online: 11 September 2020

Table 1 Monogenic disorders with a scleroderma-like phenotype. The clinical features have been summarised as described by the Online Mendelian Inheritance in Man (OMIM) [28] and Genetics Home Reference databases [29] (Continued)

Disease	Inheritance	Gene	Clinical Features
Cardiovascular: Congenital heart disease, patent ductus arteriosus			
Other: Marfanoid habitus, coarse facial features, furrowed forehead, ptosis, thickened eyelids, turtle-backed nails, digital clubbing			

AD: Autosomal dominant, AR: Autosomal recessive, SSC: Systemic sclerosis |

References
1. Myhre SA, Ruvalcaba RH, Graham CB. A new growth deficiency syndrome. Clin Genet. 1981;20(1):1–5.
2. Le Goff C, Mahaut C, Abbyannaka A, Le Goff W, Serre V, Afenjar A, et al. Mutations at a single codon in mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet. 2012;44(1):85–8.
3. Caputo V, Bocchinfuso G, Castori M, Traversa A, Pizzi A, Stella L, et al. Novel SMAD4 mutation causing Myhre syndrome. Am J Med Genet A. 2014 Jul 16(47):1835–40.
4. Caputo V, Cianetti L, Niceta M, Carta C, Cillo F, Bocchinfuso G, et al. A restricted spectrum of mutations in the SMAD4 tumor-suppressor gene underlies Myhre syndrome. Am J Hum Genet. 2012 Jan 30(1):161–9.
5. Lin AE, Michot C, Cornier-Daire V, L’Ecuyer TJ, Matherne GP, Barnes BH, et al. Gain-of-function mutations in SMAD4 in patients with Myhre syndrome. Clin Genet. 2016;170(10):2617–31.
6. Garavelli L, Miani I, Baccilieri F, Ivanovski I, Pollazzon M, Rosato S, et al. Natural history and life-threatening complications in Myhre syndrome and review of the literature. Eur J Pediatr. 2016;175(10):1307–15.
7. Starr L, Grange DK, Delaney JW, Yetman AT, Hammel JM, Sannmann JN, et al. Myhre syndrome: clinical features and restrictive cardiopulmonary complications. Am J Med Genet A. 2015;167(2):2893–901.
8. McGowan R, Gulati R, McHenry P, Cooke A, Butler S, Keng WT, et al. Clinical features and respiratory complications in Myhre syndrome. Eur J Pediatr. 2011;170(1):653–9.
9. Michot C, Le Goff C, Mahaut C, Afenjar A, Brooks AS, Campeau PM, et al. Myhre and LAP3 syndromes: clinical and molecular review of 32 patients. Eur J Hum Genet. 2014;22(11):1272–7.
10. van Steensel MAM, Wreeburg M, Steijlen PM, de Die-Smulders C. Myhre syndrome in a female with previously undescribed symptoms: further delineation of the phenotype. Am J Med Genet A. 2005;139A(2):127–30.
11. Titomanlio L, Marzano MG, Rossi E, D’Andrissi G, De Brasi D, Vega GR, et al. Case of Myhre syndrome with autism and peculiar skin histological findings. Am J Med Genet A. 2001;103(2):161–5.
12. Starr L, Lindor NM, Lin AE. Myhre syndrome. In: GeneReviews®. Seattle: University of Washington; 2017.
13. Torres JE, Sánchez JL. Histopathologic differentiation between localized and systemic scleroderma. Am J Dermatopathol. 1998;20(3):242–5.
14. McNiff JM, Glusac EJ, Lazova RZ, Carroll CB. Morphea limited to the superficial reticular dermis: an underrecognized histologic phenomenon. Am J Dermatopathol. 1999;21(4):315–9.
15. Tartaglia M, Meher EL, Goldberg R, Zampino G, Brunner HG, Kremer H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29(4):465–8.

16. Allanson JE. Noonan syndrome. J Med Genet. 1987;24(1):9–13.

17. Shairland M, Burch M, McKenna WM, Patton MA. A clinical study of Noonan syndrome. Arch Dis Child. 1992;67(2):178–83.

18. Szajner Y, Keren B, Baumann C, Perezia S, Alberti C, Elbon J, et al. The spectrum of cardiac anomalies in Noonan syndrome as a result of mutations in the PTPN11 gene. Pediatrics. 2007;119(6):e1325–31.

19. Ferrero GB, Baldassarre G, Delmonaco AG, Biamino E, Banardi E, Carta C, et al. Clinical and molecular characterization of 40 patients with Noonan syndrome. Eur J Med Genet. 2008;51(6):556–72.

20. DelBuk FL. The Hutchinson-Gilford progeria syndrome: report of 4 cases and review of the literature. J Pediatr. 1972;80(4):697–724.

21. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, et al. Recurrent de novo point mutations in Lamin a cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293–8.

22. Cao H, Hegele RA. LMNA is mutated in Hutchinson-Gilford progeria (MMIM 176670) but not in Wiedemann-Rutenrauch progeroid syndrome (MMIM 264000). J Hum Genet. 2003;48(5):271–4.

23. Winchester P, Grossman H, Lim WN, Danes BS. A new acer mucopolysaccharidosis with skeletal deformities simulating rheumatoid arthritis. Am J Roentgenol. 1969;106(1):121–8.

24. Hollister DW, Rimo DL, Lachman RS, Cohen AH, Reed WB, Westin GW. The Winchester syndrome: a nonsyndromal connective tissue disease. J Pediatr. 1974;84(5):701–8.

25. Prapansch J, Jorgensen RJ, Langlais RP, Nummikoski PV. Winchester syndrome: a case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol. 1992;74(5):671–7.

26. Evans BR, Mosig RA, Lobl M, Martinetti CR, Camacho C, Grum-Tokars V, et al. Mutation of membrane Type-1 metalloproteinase, MT1-MMP, causes the multicentric Osteoradion and arthritis disease Winchester syndrome. Am J Hum Genet. 2012;91(3):572–6.

27. Lin AE, Alali A, Starr LJ, Shah N, Beavis A, Pereira EM, et al. Gain-of-function pathogenic variants in SMAD4 are associated with neoplasia in Myhre syndrome. Am J Med Genet A. 2020;182(2):328.

28. Online Mendelian Inheritance in Man Database, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). Available from: https://omim.org/ [cited 2019 Jun 4].

29. Genetics Home Reference Database. National Library of Medicine (US). Bethesda (MD). Available from: https://ghr.nlm.nih.gov/ [cited 2019 Jun 4].

30. Piccolo P, Mithbaakar P, Sabatino V, Tolmei J, Melis D, Schifano MC, et al. SMAD4 mutations causing Myhre syndrome result in disorganization of extracellular matrix improved by losartan. Eur J Hum Genet. 2014;22(8):988–94.

31. Groenink M, den Hartog AW, Franken R, Radonic T, de Waard V, Timmemaas J, et al. Losartan reduces aortic dilation rate in adults with Marfan syndrome: a randomized controlled trial. Eur Heart J. 2013;34(35):3491–500.

32. Araujo AQ, Aretas E, Ianni BM, Gryn LV, Singer J, Scott L, et al. The stiff skin syndrome associated with systemic lupus erythematosus. N Engl J Med. 2008;359(11):1163–7.

33. Shimada YJ, Passeri JJ, Baggish AL, Ong J, et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol. 1992;74(5):671–7.

34. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis. 2007;66(7):940–4.

35. Arrigo AD, Sichieri É, Selvaggio V, Caprilli R, Sibilia M, Ciccarelli M, et al. Postnatal and sporadic Porphyria Cutanea Tarda: clinical and biochemical features and risk factors in 152 patients. Medicine (Baltimore). 2010;89(2):69–74.

36. Dyndall AJ, Bannert B, Vonk M, Airo P, Cozzì F, Careaite PE, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR scleroderma trials and research (EUSTAR) database. Ann Rheum Dis. 2010;69(10):1809–15.

37. Rubio-Rivas M, Royo C, Simeón CP, Corbella X, Fonollosa V. Mortality and survival in systemic sclerosis: systematic review and meta-analysis. Semin Arthritis Rheum. 2014;44(2):208–19.

38. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis. 2007;66(7):940–4.

39. Avila-Zubieta JA, Man A, Yurkovich M, Huang K, Sayre EC, Choi HK. Early cardiovascular disease after the diagnosis of systemic sclerosis. Am J Med. 2016;139(3):324–31.

40. Yan X, Jin J. Primary cutaneous amyloidosis associated with autoimmune hepatitis-primary biliary cirrhosis overlap syndrome and Sjögren syndrome: A case report. Medicine (Baltimore). 2018;97(8):e0004.

41. Kogure A, Ohshima Y, Watanabe N, Oba T, Miyata M, Ohara M, et al. A case of Werner’s syndrome associated with systemic lupus erythematosus. Clin Rheumatol. 1995;14(2):193–203.

42. Fritsch S, Wöckel AS, Schade L, Machota MM, Brenner FM, Paiva ES. Increased proliferative activity of pericytes mimicking juvenile idiopathic arthritis. J Inherit Metab Dis. 2010;33(5):1079–80.

43. Orteu CH, Ong VH, Denton CP. Scleroderma mimics – clinical features and management. Best Pract Res Clin Rheumatol. 2020;62:101489.

44. Frott R, Leonard R, Rondinone R, Di Giangi M, Leonetti C, Canova M, et al. Scleroderma-like disorders. Autoimmun Rev. 2008;7(4):331–9.

45. Rusmini M, Federici S, Caroli F, Grossi A, Baldi M, Obici L, et al. Next-generation sequencing and its initial applications for molecular diagnosis of systemic auto-inflammatory diseases. Ann Rheum Dis. 2016;75(9):1550–7.

46. Ortega-Moreno L, Giraldez BQ, Soto-Insauga V, Losada-Del Pozo R, Rodrigo-Moreno M, Alarcón-Morcillo C, et al. Molecular diagnosis of patients with epilepsy and developmental delay using a customized panel of epilepsy genes. PLoS One. 2017;12(11):e0188978.

47. Nijman LV, van Montfrans JM, Hoogstraat M, Boes ML, van de Corput L, Renner ED, et al. Targeted next-generation sequencing: A novel diagnostic tool for primary immunodeficiencies. J Allergy Clin Immunol. 2014;133(2):S95–343.e1.

48. Mak ACY, Tang PLF, Cleveland C, Smith MH, Kari Connolly M, Katsumoto TR, et al. Brief report: whole-exome sequencing for identification of potential causal variants for diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 2016;68(9):2257–62.

49. McCreary D, Omoymimi E, Hong Y, Mulhern C, Papadopoulou C, Casimir M, et al. Development and validation of a targeted next-generation sequencing gene panel for children with neuroinflammation. JAMA Netw Open. 2019;2(10):e1914274.

50. Omoymimi E, Standing A, Keylock A, Price-Kuehne F, Gomes SM, Rowczenio D, et al. Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis. PLoS One. 2017;12(7):e0181874.
62. Le Goff C, Morice-Picard F, Dargenau N, Wang LW, Perrot C, Crow YJ, et al. ADAMTS2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-β bioavailability regulation. Nat Genet. 2008;40(9):1119–23.

63. Loeys BL, Gerber EE, Rieget-Johnson D, Iqbal S, Whiteman P, McConnell V, et al. Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med. 2010;2(23):23ra20.

64. Bader-Meunier B, Bonafé L, Fraitag S, Breton S, Bodemer C, Baujat G. Mutation in MMP2 gene may result in scleroderma-like skin thickening. Ann Rheum Dis. 2016;75(1):e1.

65. Mori Y, Chen S-j, Varga J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum. 2003;48(7):1964–78.

66. Kawakami T, Ihn H, Xu W, Smith E, Leffroy C, Trojanowska M. Increased expression of TGF-β receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-β signaling to scleroderma phenotype. J Invest Dermatol. 1998;110(1):47–51.

67. Kubo M, Ihn H, Yamane K, Tamaki K. Up-regulated expression of transforming growth factor β receptors in dermal fibroblasts in skin sections from patients with localized scleroderma. Arthritis Rheum. 2001;44(3):731–4.

68. Sargent JL, Milano A, Bhattacharyya S, Varga J, Connolly MK, Chang HY, et al. A TGFβ-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J Invest Dermatol. 2010;130(3):694–705.

69. Mead AL, Wong TTL, Cordeiro MF, Anderson IK, Khaw PT. Evaluation of anti-TGF-β2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci. 2003;44(8):3394–401.

70. Lim D-S, Lutucuta S, Bachreddy P, Youker K, Evans A, Entman M, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation. 2001;103(6):789–91.

71. Yamada H, Tajima S, Nishikawa T. Tranilast inhibits collagen synthesis in normal, scleroderma and keloid fibroblasts at a late passage culture but not at an early passage culture. J Dermatol Sci. 1995;9(1):45–7.

72. Soria A, Cario-André M, Lepreux S, Revanri HR, Pasquet JM, Pain C, et al. The effect of imatinib (Glivec®) on scleroderma and normal dermal fibroblasts: a preclinical study. Dermatology. 2008;216(2):109–17.

73. Pannu J, Asano Y, Nakarakanit S, Smith E, Jablonska S, Blaszczzyk M, et al. Smad1 pathway is activated in systemic sclerosis fibroblasts and is targeted by imatinib mesylate. Arthritis Rheum. 2008;58(8):2528–37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.