Polymerase chain reaction with sequence-specific primers-based genotyping of the human Dombrock blood group DO1 and DO2 alleles and the DO gene frequencies in Chinese blood donors

G.-G. Wu1, S.-Z. Jin1, Z.-H. Deng1 & T.-M. Zhao2

1Shenzhen Institute of Transfusion Medicine, Shenzhen, China, 2National Institutes of Health, Bethesda, MD, USA

The Dombrock blood group system (ISBT 014, DO) was discovered 36 years ago and has been associated with haemolytic transfusion reactions [1,2]. Two common antigens, DO1 (Doα) and DO2 (Doβ), and other three high-incidence antigens – DO3 (Gya), DO4 (Hy) and DO5 (Joα) – were identified using serological methods [1,3–5]. Usually it is difficult to obtain monospecific DO-typing reagents and there are only limited DO gene-frequency studies, especially in the Chinese population [2,6]. As serological DO typing has severe limitations, establishing a DNA-based DO genotyping technique appears to be essential. Recently in a linkage study the DO locus was assigned to chromosome 12p12.3-p13.2 (chromosome 12, short arm, region 1, band 2, sub-band 3, through band 3, sub-band 2) [7]. More recently, the DO gene has been successfully cloned, ending a long period of searching for the molecular basis of the DO1/DO2 polymorphism [8]. Homology studies suggested that the DO molecule is a member of the adenosine 5’-diphosphate (ADP)-ribosyltransferase ecto-enzyme gene family [8]. DO1 and DO2 alleles are the result of a single nucleotide substitution causing an amino acid change within an encoded arginine–glycine–aspartic acid (RGD) motif of the molecule [8]. On the basis of these findings, we have developed, for the first time, a polymerase chain reaction with sequence-specific primers (PCR–SSP)-based DO1 and DO2 genotyping method using newly designed allele-specific primers.

Table 1 Primers for DO typing and amplification of DO exon 2

Detection of:	Primera	Nucleotide sequence (5’–3’)	Positionb	Primer mix	PCR product size (bp)
DO1	DO1R	TGAATCAACTCTGACAGAATT	51210 to 51230	DOF/DO1R	162
DO2	DO2R	GACCTCAACTCTGACAGA TT	51210 to 51230	DOF/DO2R	161
DO1/DO2 alleles	DOF	CAGGAGTTTGGGAACCAGA AC	51371 to 51382	DOF/DO1R	162
DO exon 2	51979F	GTTCCAAAGAAGAGACCTACC	51979 to 51958	DOF/DO1R	162
51122R	GACCCAGTGTCTGCTGACCTG	51122 to 51142	DOF/DO2R	161	
HGF	HGF	GCCCTCCACCATCCTCCCTA	893 to 913	HGF	427
HGR	HGR	TACCAGATTTCCTGTGTTGTTCA	1319 to 1298	HGR	427

aF and R indicate forward and reverse primers, respectively.
bNumbering of DO was according to a sequenced BAC clone (GenBank acc. no.: AC007655); HGF numbering was according to clone HGF-N (GenBank acc. no.: M13438).
The complete validity of this method was verified by sequencing analysis. In addition, the concordance rate of 100% was observed. In addition, the sequences (data not shown), further supporting the validity of this typing method.

In conclusion, here we described a simple, accurate and inexpensive method of DO genotyping, which does not require the additional steps of probe hybridization or restriction enzyme digestion. The typing results can be visualized on a single photograph within 3 h, making this reliable method suitable for large-scale typing of potential blood donors without serological backup.

References

1. Daniels GL, Aanestad DJ, Carton JP, Dahr W, Isbitt PD, Jørgensen J, Kornstad L, Levene C, Lomas-Francis C, Lubenko A, Mallory D, Moulds JJ, Okubo Y, Overbeeke M, Reid ME, Rouger P, Seidl S, Sistonen P, Wendel S, Woodfield G, Zelinski T: Blood Group Terminology 1995: From the ISBT Working Party on Terminology for Red Cell Surface Antigens. Vox Sang 1995; 69:285–279

© 2001 Blackwell Science Ltd. Vox Sanguinis (2001) 81, 49–51
3 Swanson J, Polesky HF, Tippett P, Sanger R: A ‘new’ blood group antigen, Do. Nature 1965; 206:313
4 Molthan L, Crawford MN, Tippett P: Enlargement of the Dombrock blood group system: the finding of anti-Do. Vox Sang 1973; 24:382–384
5 Banks JA, Hemming N, Poole J: Evidence that the Gya, Hy and Jo antigens belong to the Dombrock blood group system. Vox Sang 1995; 68:177–182
6 Strupp A, Cash K, Uehlinger J: Difficult in identifying antibodies in the Dombrock blood group system in multiply alloimmunized patients. Transfusion 1998; 38:1022–1035
7 Mauthe J, Coghlan G, Zelinski T: Confirmation of the assignment of the Dombrock blood group locus (DO) to chromosome 12p: narrowing the boundaries to 12p12.1-p13.2. Vox Sang 2000; 79:53–56
8 Guhin AN, Njoroge JM, Wojda U, Pack SD, Rios M, Reid ME, Miller JL: Identification of the Dombrock blood group glycoprotein as a polymorphic member of the ADP-ribosyltransferase gene family. Blood 2000; 96:2621–2627

Tong-Mao Zhao
Molecular and Cellular Immunogenetics Section
NIAID
National Institutes of Health
Building 9, Room 1E124
9000 Rockville Pike
Bethesda
MD 20892
USA
E-mail: tzhao@niaid.nih.gov

© 2001 Blackwell Science Ltd. Vox Sanguinis (2001) 81, 49–51