Genomic and phenotypic characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Durban, South Africa

John Osei Sekyere¹ *, Daniel Gyamfi Amoako²,³

¹ Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, KNUST, Kumasi, Ghana, ² Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa, ³ Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal; Durban, South Africa

* jod14139@gmail.com

Abstract

Resistance to fluoroquinolones (FQ) is being increasingly reported and found to be mediated by efflux pumps, plasmid-mediated quinolone resistance genes (PMQR) and mutations in gyrA, gyrB, parC and parE. However, studies reporting on FQ resistance mechanisms (FQRM), particularly in Africa, are focused mostly on Salmonella. This study used a whole-genome-based approach to describe FQRM in forty-eight clinical Enterobacteriaceae isolates comprising of Klebsiella pneumoniae (n = 21), Serratia marcescens (n = 12), Enterobacter spp. (n = 10), Citrobacter freundii (n = 3), Escherichia coli (n = 1), and Klebsiella michiganensis (n = 1) with reduced susceptibility to FQ in Enterobacteriaceae. All the isolates exhibited exceptionally high-level resistance (MIC of 4-512mg/L) to all three FQs, which could not be reversed by carbonyl cyanide m-chlorophenyl hydrazine (CCCP), verapamil (VRP) or reserpine (RSP). PMQR genes such as oqxAB (n = 43), aac(6')-Ib-cr (n = 28), and qnr(S1, B1, B2, B9, B49, B66) (n = 23) were identified without transposons or integrons in their immediate environments. Multiple and diverse mutations were found in gyrA, gyrB, parC and parE, which were clonally specific. There were vertical and horizontal transmission of high-level FQ resistance in Enterobacteriaceae in hospitals in Durban, South Africa, which are mediated by efflux, PMQR genes, and gyrA, gyrB, parC and parE mutations.

1. Introduction

Until recently, fluorquinolones (FQ), which were made from the first quinolone called nalidixic acid (NAL), (a by-product of chloroquine synthesis) were very potent and were the most prescribed broad-spectrum antibiotic class for treating fatal bacterial infections [1,2]. They are the only antibiotic class that directly inhibits DNA synthesis/replication by inhibition of DNA gyrase (encoded by gyrA and gyrB) and topoisomerase IV (encoded by parC and parE) [1,2]. However, their increased overuse has led to increased resistance among both Gram-negative and Gram-positive bacteria, making them less effective [1,2]. Hence, they are used more in
combination therapies with last line antibiotics such as carbapenems, colistin and tigecycline than as monotherapy [3,4].

Contrary to β-lactams that are hydrolysed by β-lactamases to cause resistance [5–7], resistance to FQ is largely mediated by point mutations in the quinolone resistance determining regions (QRDR) of gyrA, gyrB, parC and parE [1,8]. In addition, extrusion by intrinsic efflux pumps and horizontal acquisition of the plasmid-mediated quinolone resistance (PMQR) genes such as qepA, qnr, oqxAB and aac(6’)-Ib-cr have been also implicated in low-level resistance to FQ [1,2,9]. Thus, studies describing FQ resistance mechanisms (FQRM) largely focuses on finding the presence of PMQR genes, evaluating the effect of efflux on FQ resistance as well as determining the presence of mutations in gyrA, gyrB, parC and parE [1,10–12].

Although there are numerous studies characterising the prevalence and molecular epidemiology of FQRM, such studies are largely focused on Salmonella enterica and to a lesser extent, Escherichia coli and Vibrio cholerae through the use of PCR and pulsed field gel electrophoresis (PFGE)-based typing, particularly in Africa and South Africa [1,11–13]. Thus the ability to compare FQ-resistant strains between different countries in Africa is limited and a true genomic characterisation and epidemiology of FQRM, specifically among Enterobacteriaceae is scarce [1]. Due to the ability of enteric bacteria to associate in biofilms and share plasmids among themselves, it is imperative to broaden the scope of research beyond Salmonella to identify other Enterobacteriaceae that are reservoirs of FQ resistance. To our knowledge, there is no study using whole-genome sequencing to (WGS) describe FQRM in Enterobacteriaceae in South Africa and to a large extent, in Africa.

To provide a comprehensive description of FQRM among Enterobacteriaceae in Durban, South Africa, this study was undertaken using a large collection of diverse Enterobacteriaceae species with the view of providing a bedrock to facilitate comparative analysis in future studies and enhance meaningful epidemiological conclusions and resolutions. Moreover, an in-depth description of the transfer mechanisms of FQ resistance is important for the arrest and control of FQ-resistant strains in hospitals.

2. Results

2.1 MICs of CIP, NOR, and NAL with and without the inhibitors

The MICs of ciprofloxacin (CIP), norfloxacin (NOR) and nalidixic acid (NAL) were determined for all the isolates and controls both in the absence and presence of efflux pump inhibitors (EPIs) to assess the role of efflux pumps in FQs resistance. The MICs of NAL was very high (>512mg/L) for all the isolates whilst that of CIP and NOR ranged from 4 to 512mg/L, which makes all the isolates very resistant per the EUCAST (2016) breakpoints; MIC of >1 mg/L is defined as resistant (Table 1 and S1 Table) [14]. Most of the isolates had CIP and NOR MICs above 128mg/L.

An MIC fold change of ≥8 was adopted as significant [15]. Hence, none of the inhibitors viz., carbonyl cyanide-m-chlorophenylhydrazine (CCCP), verapamil (VRP) and reserpine (RSP) could affect the MICs of NAL (Table 1 and S1 Table) significantly i.e. had a fold change of ≥8, albeit fold changes of 2–4 were recorded in S. marcescens, Enterobacter spp., C. freundii and K. michiganensis. CCCP, followed by VRP, had the least effect on the MICs of the antibiotics in all the species whilst RSP had the most effect; majority of the MIC fold changes effected by RSP were significant (Table 1 and S1 Table). RSP resulted in more significant MIC fold changes in NOR (n = 24) than in CIP (n = 16) and was the only EPI that effected a consistently significant MIC fold-change reduction in all the isolates except for NAL (S1 Table).

Among the species, E. coli had no significant MIC fold change and only RSP resulted in significant MIC fold changes in K. pneumoniae; however, both RSP and VRP resulted in significant
Table 1. Results of norfloxacin (NOR) and ciprofloxacin (CIP) MIC changes upon adding carbonyl cyanide-m-chlorophenylhydrazone (CCCP), verapamil (VRP) and reserpine (RSP).

Isolate	MIC of Norfloxacin (NOR) (mg/L)	MIC of Ciprofloxacin (CIP) (mg/L)							
	NOR	NOR + CCCP (Δ)	NOR + VRP (Δ)	NOR + RSP (Δ)	CIP	CIP + CCCP (Δ)	CIP + VRP (Δ)	CIP + RSP (Δ)	
E. coli ATCC 25922	0.03	0.03	0.03	0.03	0.0075	0.0075	0.004	0.0075	
K. oxytoca ATCC 13178	0.25	0.25	0.125	0.25	0.03	0.03	0.015	0.03	
K. pneumoniae	C(UNN39_S3)	512	512	512	64 (8)	512	512	512	128 (4)
	D(UNN40_S4)	>512	512	512	128 (4)	512	512	512	128 (4)
	I(UNN45_S9)	8	8	8	2 (4)	4	4	4	2 (2)
	J(UNN46_S10)	512	512	512	128 (4)	256	256	256	64 (4)
	3_S2	256	128 (2)	512	64 (8)	256	128 (2)	256	32 (8)
	12_S5	>512	512	512	128 (4)	512	512	512	128 (4)
	13_S6	128	128	128	64 (2)	128	128	128	32 (4)
	15_S8	>512	512	>512	256 (>2)	512	256 (2)	512	128 (4)
	18_S10	256	128 (2)	512	64 (8)	256	128 (2)	256	32 (8)
	20_S11	128	128	128	16 (8)	64	64	64	8 (4)
	21_S12	512	512	512	128 (4)	256	256	256	64 (4)
	29_S13	512	512	512	128 (4)	256	256	256	64 (4)
	30_S14	256	128	128	32 (4)	256	256	256	64 (4)
	32_S15	>512	512	512	128 (4)	512	512	512	128 (4)
	34_S16	256	128 (2)	512	64 (8)	256	128 (2)	256	32 (4)
	35_S17	256	128 (2)	512	64 (8)	256	256	256	64 (4)
	36_S18	128	128	128	64 (2)	128	128	128	32 (4)
	38_S19	>512	512	>512	128 (4)	256	128 (2)	256	64 (4)
	47_S22	512	256 (2)	512	64 (8)	256	256	256	64 (4)
	52_S26	128	128	128	64 (2)	128	128	128	32 (4)
	53_S27	512	256 (2)	512	64 (8)	256	256	256	64 (4)
S. marcescens	B(UNN38_S2)	512	256 (2)	512	16 (32)	256	128 (2)	128 (2)	16 (16)
	E(UNN41_S5)	>512	512	512	128 (4)	512	256 (2)	256 (2)	64 (8)
	G(UNN43_S7)	512	512	512	32 (16)	256	128 (2)	256	64 (4)
	K(UNN47_S11)	512	512	512	128 (4)	256	256	256	64 (4)
	L(UNN48_S12)	256	128 (2)	256	16 (16)	256	128 (2)	256	16 (16)
	7_S3	512	256 (2)	64 (8)	16 (32)	256	256	32 (8)	32 (8)
	45_S21	64	64	64	4 (4)	32	16 (2)	32	4 (8)
	56_S29	512	512	512	128 (4)	256	256	256	64 (4)
	59_S30	256	128 (2)	256	128 (2)	128	128	128	32 (4)
	67_S33	512	256 (2)	64 (8)	16 (32)	256	256	32 (8)	32 (8)
	68_S34	256	256	16 (16)	64	32 (2)	64	8 (8)	
	71_S36	512	512	512	128 (4)	256	256	256	64 (4)

Enterobacter species

A (UNN37_S1)	256	64 (4)	64 (4)	4 (64)	64	32 (2)	64	2 (32)
F (UNN42_S6)	512	512	512	8 (64)	256	256	256	16 (16)
H (UNN44_S8)	512	512	512	32 (16)	256	256	256	64 (4)
1_S1	8	8	4 (2)	2 (4)	8	8	8	2 (4)
16_S9	512	512	64 (8)	32 (16)	128	64 (2)	32 (4)	8 (16)
43_S20	8	8	4 (2)	2 (4)	8	8	8	2 (4)
49_S24	32	16 (2)	16 (2)	4 (8)	32	16 (2)	16 (2)	2 (16)

(Continued)
fold changes in the remaining species. None of the inhibitors could reverse resistance to any of the antibiotics. The MICs (of either CIP and/or NOR) of only 25 isolates were significantly affected by both VRP and RSP (Table 1).

2.2 Species frequency and distribution of plasmid-mediated quinolone resistance (PMQR) genes

The presence and frequency distribution of each PMQR gene was assessed in each isolate's genome sequence. No qepA gene was found in any of the isolates. Moreover, no PMQR gene Table 1. (Continued)

Isolate	MIC of Norfloxacin (NOR) (mg/L)	MIC of Ciprofloxacin (CIP) (mg/L)								
	NOR	NOR + CCCP (Δ)	NOR + VRP (Δ)	NOR + RSP (Δ)	CIP	CIP + CCCP (Δ)	CIP + VRP (Δ)	CIP + RSP (Δ)		
55_S28	128	128	128	8 (16)	64	64	64	4 (16)		
63_S31	8	8	4 (2)	2 (4)	8	8	8	2 (4)		
65_S32	512	512	512	128 (4)	256	256	256	64 (4)		
E. coli	10_S4	512	512	256 (2)	128 (4)		512	512	512	128 (4)
C. freundii	14_S7	512	256 (2)	64 (8)	16 (32)		256	256	32 (8)	32 (8)
148_S23	512	256 (2)	64 (8)	16 (32)	256	256	256	32 (8)	32 (8)	
51_25	256	256	256	16 (16)	64	32 (2)	64	8 (8)		
K. michaenesis	69_S35	128	64 (2)	8 (16)	4 (32)		64	64	8 (8)	4 (16)

1 MICs were interpreted per EUCAST breakpoints for 2016: CIP and NOR Resistance > 1 mg/L
2 See Table 2 for species breakdown

https://doi.org/10.1371/journal.pone.0178888.t001

Fig 1. Frequency and distribution of plasmid-mediated quinolone resistance genes in Enterobacteriaceae isolates

PMQR genes occurred in all isolates except E. coli. oqxAB genes were the most common occurring PMQR gene(s) followed by aac(6’)-Ib-cr and qnr genes. oqxAB was common in K. pneumoniae whilst aac(6’)-Ib-cr and qnr were dominant in Enterobacteriaceae spp.

https://doi.org/10.1371/journal.pone.0178888.g001

https://doi.org/10.1371/journal.pone.0178888
was found in the *E. coli* strain. OqxAB, aac(6′)-Ib-cr, and qnr(S1, B1, B2, B9, B49, B66), were found in 43, 28, and 23 isolates respectively (Fig 1, Table 2). OqxA occurred in 20 isolates whilst oqxB was found in 43; hence, whilst oqxB alone was found in 23 isolates, oqxA was always found alongside oqxB. OqxA and oqxB occurred together in 20 isolates, 10 of which were *Enterobacter spp.*, 9 were *K. pneumoniae* and one was *K. michiganensis* (Fig 1, Table 3). There was no oqxA in *C. freundii* and no oqxA was present in *S. marcescens*. Aac(6′)-Ib-cr was commonest in *Enterobacter spp.* (n = 9), *K. pneumoniae* (n = 8), and *S. marcescens* (n = 7) respectively. Qnr genes were commonly found in *Enterobacter spp.* (n = 11 qnr genes), *C. freundii* (n = 6 qnr genes) and *K. pneumoniae* (n = 4 qnr genes), with qnrS1 (n = 7), qnrB1 (n = 6) qnrB49 (n = 4) being the most common variants (Tables 2 and 3).

No transposon or integron was found in the immediate environment of the PMQR genes to particular plasmids or replicon/incompatibility types.

2.3 Multi locus sequence typing (MLST) and *S. marcescens* typing

The MLST of the isolates are shown in Table 2 and it can be seen that the isolates were very multiclonal, albeit many *K. pneumoniae* strains (n = 14) were of sequence type (ST) 101. The MLST of *K. michiganensis* was determined using that of *K. oxytoca* due to misidentification of the former as *K. oxytoca*.

Alignment of the dnaA, fusA, gyrB, leuS, pyrG, rplB, and rpoB housekeeping genes of all the 12 *S. marcescens* isolates resulted in 10 of the isolates being classified into the same clone (i.e. SA1) and two of the remaining being grouped into SA2 clone. Isolates of each clone showed no variation from the reference sequences of housekeeping genes of their respective clones. The SA2 clone only differed from SA1 clone at the nucleotide level in *dnaA* and *leuS* by a single (T106C) and double (A7G and A91G) silent single nucleotide polymorphisms (SNPs) respectively.

2.4 Mutations in gyrA, gyrB, parC and parE

The sequences of gyrA, gyrB, parC and parE were analysed to determine the presence of mutations that could account for the high-level FQ resistance as mutations in these four genes have been incriminated in high-level FQ resistance. The mutations in gyrA, gyrB, parC and parE mostly occurred in a manner that reflected the clonality of the strains i.e. the mutations in all the genes were mostly clonally related. For instance, *K. pneumoniae* ST101 and ST2017 had the same mutations in all the genes except for parC at which only three ST101 strains (J, D and C) differed. The mutations in *K. pneumoniae* ST1478, ST323 and ST14 were unique. The clonal nature of the mutations was more obvious with *S. marcescens* in which all SA1 and all SA2 clones had the same mutations for these genes within their members. The close relation between SA1 and SA2 clones were further underscored by the similarity and few differences in the mutations observed in their gyrA, gyrB, parC and parE genes. This observation corroborated the correctness of our typing system. Within the *Enterobacter spp.* and *C. freundii* isolates, the uniqueness of their gyrA, gyrB, parC and parE mutations was but a reflection of their different species or clones. However, *C. freundii* isolates 51_S25 and 48_S23, except isolate 14_S7, had same mutations in gyrB, parC and parE. Positions 83 in gyrA was a common mutation position in many isolates and species whilst mutations at position 80 in parC was common in *C. freundii*, *E. coli*, *Enterobacter spp.*, *K. pneumoniae* and *K. michiganensis*. No parE mutations were found in *K. pneumoniae* (except in 47_S22), *S. marcescens*, *C. freundii* and *K. michiganensis* (Table 2).
Isolate (clone)	Specimen type	Plasmid-mediated fluoroquinolone resistance genes	Chromosomal mutations	ParC	parE
K. pneumoniae					
52_S27 (ST101)	Urine	aa(6')-ib-cr, OqxA, OqpB, OqxB	S83Y, D87G, D553V	S80I	N304S
52_S26 (ST101)	Pus	aa(6')-ib-cr, OqxA, OqpB		S80I	N304S
47_S22 (ST147B)	Artine	aa(6')-ib-cr, OqxA, OqpB, QnrB66	V85A, M146, E145S, L173H, S698A, L605M, S591V, H682R, K656S, H699Q	S438D, D475E, L496Q, Q692R, V691I	
38_S19 (ST101)	Urine	aa(6')-ib-cr, OqxA, OqpB, QnrS1	V85A, M146, E145S, L173H, S698A, L605M, S591V, H682R, K656S, H699Q	S438D, D475E, L496Q, Q692R, V691I	
36_S18 (ST101)	Sputum	OqxB			
35_S17 (ST101)	Urine	OqxB			
34_S16 (ST101)	Pus swab (Trachea)	OqxB			
32_S15 (ST101)	Catheter tip	aa(6')-ib-cr, OqpB			
31_S14 (ST101)	Urine	OqxB			
29_S13 (ST2017)	Abdominal swab	OqxB			
21_S12 (ST2017)	Urine	OqxB			
20_S11 (ST2017)	Tracheal fluid	OqxA, OqxB			
18_S10 (ST101)	Urine	OqxB			
15_S9 (ST201)	Pus swab (eng)	OqxB			
13_S8 (ST2016)	X	aa(6')-ib-cr, OqpB			
12_S7 (ST101)	Blood culture	OqxB			
3_S6 (ST14)	Urine	Aac(6')-ib-cr, OqpB, OqxA, OqxB, QnrB66	S83Y, D87G, D553V	S438D, D475E, L496Q, Q692R, V691I	
68_S4 (SA1)	Blood	OqxB			
67_S3 (SA1)	CVP Tip	OqxB			
59_S2 (SA2)	urine	aa(6')-ib-cr, OqpB, QnrB66, OqxB	S83Y, D87G, D553V	S438D, D475E, L496Q, Q692R, V691I	
56_S2 (SA2)	urine	aa(6')-ib-cr, OqpB, OqxB	S83Y, D87G, D553V	S438D, D475E, L496Q, Q692R, V691I	
45_S1 (SA1)	Tracheal fluid	aa(6')-ib-cr, OqpB			
7_S1 (SA1)	X	OqxB			
5_S5 (SA1)	Sputum	aa(6')-ib-cr, OqpB			
3_UNN48_S12	Blood	aa(6')-ib-cr, OqpB			
2_UNN47_S1	Blood	aa(6')-ib-cr, OqpB			
1_UNN43_S7	Blood	aa(6')-ib-cr, OqpB			
1_UNN41_S5	CVP Tip	OqxB			
8_UNN38_S2	Tracheal fluid	OqxB			
S. marcescens					
55_S2 (SA1)	X	aa(6')-ib-cr, OqxA, OqxB, QnrB66	S83Y, D87G, D553V	S438D, D475E, L496Q, Q692R, V691I	
54_S1 (SA1)	CVC(11) Tip	OqxA, OqxB			
53_S0 (SA1)	Urine	aa(6')-ib-cr, OqpB, OqxB, QnrB66	T83I, G405A, A411V	H173L, K206R, T746E	
52_S2 (SA1)	Eta(13) Urine	aa(6')-ib-cr, OqpB, OqxA, OqxB, QnrB66	T83I, G405A, A411V	H173L, K206R, T746E	

Table 2. Sources and fluoroquinolone/quinolone resistance mechanisms of the Enterobacteriaceae isolates.

(Continued)
Table 2. (Continued)

Isolate (clone)	Specimen type	Plasmid-mediated fluoroquinolone resistance genes	Chromosomal mutations	gyrA	gyrB	ParC	parE
49_S24^{VI}	Urine	aac(6')-Ib-cr, OqxA, OqxB, QnrB49	S83I, I144L, Q146T, D159E, E161D, N293S, E358K, G362A, N370S, M371L, D443N, Q51A, A572T, G586V, T590A, V591A, S635T, E636D, N673S, G685S, I691L, E740K	G409A, H147V	Same as 64_S1, A717T	NM	NM
43_S20 (ST433)^{VI}	Abdominal fluid	aac(6')-Ib-cr, OqxA, OqxB, QnrB49	S83I, I144L, Q146T, D159E, E161D, N293S, E358K, G362A, N370S, M371L, D443N, Q51A, A572T, G586V, T590A, V591A, S635T, E636D, N673S, G685S, I691L, E740K	E305D, T426N, S437T, V440A, M452L, P453A, V463L, S486T, L498K, H502T	NM	NM	
16_S2^{VI}	Urine	aac(6')-Ib-cr, OqxA, OqxB	Same as 49_S24	Same as 49_S24	Same as 49_S24	NM	NM
1_S1 (ST108)	CVP tip	Aac(6')-Ib-cr, OqxA, OqxB, QnrB49	S83I, I144L, Q146T, D159E, E161D, N293S, E358K, G362A, N370S, M371L, D443N, Q51A, A572T, G586V, T590A, V591A, S635T, E636D, N673S, G685S, I691L, E740K, G747D	E305D, T426N, S437T, V440A, M452L, P453A, V463L, S486T, L498K, H502T	NM	NM	
HUN44 (S24)^{VI}	Urine	aac(6')-Ib-cr, OqxA, OqxB	S83I, I144L, Q146T, D159E, E161D, N293S, E358K, G362A, N370S, M371L, D443N, Q51A, A572T, G586V, T590A, V591A, S635T, E636D, N673S, G685S, I691L, E740K, G747D	E305D, T426N, S437T, V440A, M452L, P453A, V463L, S486T, L498K, H502T	NM	NM	
FUJ44 (S24)^{VI}	Urine	aac(6')-Ib-cr, OqxA, OqxB	Same as 1_S1 above plus S83I, D661E	Same as 1_S1 above plus S83I, D661E	Same as 1_S1 above plus S83I, D661E	NM	NM
ALN027 (S1)^{VI}	Urine	aac(6')-Ib-cr, OqxA, OqxB, QnrB49, QnrS1	G409A, H147V	G409A, H147V	G409A, H147V	NM	NM

^V K. pneumoniae ATCC 13883 (PRJNA244567) was used as reference strain in the comparative genomics analysis.

^{VI} Data missing; ^{VI} No mutation

^{VII} S. marcescens strain CDC-813-6 (ATCC 13890) (JOM00000000/ PRJNA244355) was used as reference strain to find amino acid mutations

^{VIII} Unless otherwise stated in footnote, E. coli ATCC 13047 (CP001918.1) was used as reference strain in the comparative genomics

^{IX} Central venous catheter

^{IX} Enterobacter asburiae: Enterobacter asburiae L1 (CP007546.1) was used as reference strain for the comparative genomics to find amino acid mutations

^X Enterobacter kobei: E. kobei strain 35730 (JZYS010000016.1) or E. coli ATCC 13047 (CP001918.1) served as reference strains for amino acid mutations

^X Endotracheal aspirate

^X Enterobacter asburiae: Enterobacter asburiae L1 (CP007546.1) was used as reference strain for the comparative genomics to find amino acid mutations

^{XI} Enterobacter cloacae complex "Hoffman cluster IV"

^{XII} Enterobacter kobei: E. kobei strain 35730 (JZYS010000016.1) or E. coli ATCC 13047 (CP001918.1) served as reference strains for amino acid mutations

^{XI} Enterobacter cloacae complex "Hoffman cluster III"

^{XI} Enterobacter species

^{XIV} Enterobacter asburiae: Enterobacter asburiae L1 (CP007546.1) was used as reference strain for the comparative genomics to find amino acid mutations

^{XV} C. freundii ATCC 8090 = MTCC 1658 (PRJNA177199) was used as reference strain for the comparative genomics to find amino acid mutations

^{VI} MLST unknown

^{XX} Escherichia coli ATCC 25922 (CP000972) was used as subject in the comparative genomics analysis to find the amino acid mutations.

^{XXI} No PMQR (plasmid-mediated quinolone resistance) gene found

^{XXII} Klebsiella michiganensis KCTC 1686 (CP003218.1) was used as reference strain for this comparative genomics analysis to find amino acid mutations.

https://doi.org/10.1371/journal.pone.0178888.t002
3. Discussion

The importance of this study is underscored by the discovery that there is a substantial number of high-level fluoroquinolone resistance among clonal and multiclonal Enterobacteriaceae circulating in hospitals in Durban, South Africa. This is evinced by the exceptionally high-level of MICs, mostly from 64mg/L to >512mg/L that was recorded among isolates of all species (Table 1 and S3 Table). To our knowledge, no study in South Africa or Africa has discovered such a number of high-level FQ-resistant Enterobacteriaceae with multiple mechanisms of FQ resistance, albeit not all the collected 82 isolates were analysed. This is a rather disturbing observation given the importance of FQ in the management of several bacterial infections in South Africa and the importance of South Africa as a destination for many medical tourists from Africa and Europe [1,4].

To determine the role of efflux pumps as mechanisms underlying this high-level FQ resistance, the isolates were grown in the presence of sub-MICs of CCCP, RSP and VRP. Interestingly, CCCP, a protonophore that indirectly reduce efflux pumps activity by reducing ATP production and unbalancing the electrochemical gradient could not significantly affect the isolates’ MICs. Gram-negative bacteria, including Enterobacteriaceae, are known to have ABC-type efflux pumps that are directly powered/energised by ATP hydrolysis and secondary transporters (sodium-proton symporters) such a MATE-, SMR-, MFS- and RND-type efflux pumps that are powered by the proton motive force (PMF) [16–18]. Hence, the inability of CCCP to reduce the FQ MICs is rather surprising but it shows that efflux pumps affected by CCCP were not involved in resistance to CIP, NOR and NAL.

VRP has been shown recently to affect MATE-type efflux pumps by directly blocking the pumps channels [17,15]. Subsequently, we are convinced that MATE-type efflux pumps were involved in conferring resistance to CIP (n = 5) and NOR (n = 6) in a few of the isolates affected by VRP (Table 1). Moreover, it can be concluded that RSP, which is believed to affect RND-type efflux pumps in Gram-negative bacteria [15,19,20], was mostly involved in reducing the MICs of CIP (n = 16) and NOR (n = 24) significantly in many of the isolates. Nevertheless, it must be borne in mind that in all a total of 25 isolates, which is approximately half of the total sample size, were affected by the inhibitors, suggesting that efflux as a mechanism of FQ resistance, was present in one out of every two isolates.

This implicating of efflux as a FQRM in approximately half of the isolates is comparable to five studies involving FQ resistance, three of which involved Salmonella [9,10,21], one involved Vibrio cholerae [13]and the last involved Aeromonas veronii and A. hydrophila [12].
Out of these five studies, efflux was implicated as a FQRM in three [9,10,13] whilst they were found not to be involved in two studies [12,21]. Thus, efflux is not always a mechanism of resistance to FQ, albeit an important one. That the inhibitors were unable to reverse FQ resistance in any of the isolates is a testimony that other mechanisms other than efflux was involved [21].

Annotation of the WGS data showed that the most predominant PMQR was \textit{oqxAB}, which has never been reported as a FQRM in any study in South Africa or Africa as far as we are concerned [1]. This is possibly because PCR has been used in gene-targeted amplification and sequencing, which has not involved the search for \textit{oqxAB} genes; this stresses the need to incorporate WGS into antibiotic resistance research in Africa [1]. Interestingly, \textit{oqxA} were not as prevalent as \textit{oqxB} in the isolates and a pattern or correlation could not be established between their presence and the MICs of the isolates. However, as suggested by other authors [22,23], we also hypothesise that \textit{oqxB} can work through \textit{acrA} in the absence of \textit{oqxA} as \textit{oqxAB} has been shown to be a supplementary resistance mechanism to \textit{acrAB} [22,23]. Hence, \textit{oqxAB} is adding up to other mechanisms to increase the FQ resistance in the isolates and cannot be a major mechanism, particularly when equally or much higher MICs were recorded in strains (e.g. \textit{E. coli} and \textit{C. freundii} vis-à-vis \textit{S. marcescens} and \textit{Enterobacter spp.}) in which they were absent (Table 2).

The second most dominant PMQR gene was \textit{aac-(6')-Ib-cr}, which makes this the first study to report on the presence of this gene as a FQRM in Enterobacteriaceae in South Africa. However, this gene has been implicated in FQ resistance in \textit{E. coli} in Nigeria and a few other African countries [1]. The \textit{qnr} genes were the least prevalent of the PMQR genes although they are the only PMQR genes to have been reported already in S. Africa and are commonly identified in other African countries [1,12,21]. The commonest variants of the \textit{qnr} gene identified in this study were the \textit{qnrS1}, \textit{qnrB1} and \textit{qnrB49}, which agrees with a study by Smith et al. [10] involving Salmonella and by Chenia [12] involving \textit{A. veronii} and \textit{A. hydrophila} that found only \textit{qnrS1} and \textit{qnrB} and \textit{qnrS} respectively. However, Chenia found a higher percentage of \textit{qnrB} (41%) than \textit{qnrS} (24%) from freshwater fish whilst we found \textit{qnrS1} to be higher than \textit{qnrB} in clinical samples. There is the need to undertake further surveillance and molecular epidemiology to assess the possibility of these \textit{qnr} genes being transferred from freshwater foods to humans or of human activities being the source of these resistance genes in freshwater and the environment as has been recently reported in China where PMQR genes in high numbers were found in \textit{Aeromonas spp.} from rivers contaminated by hospital and aquaculture effluents [2,12].

On the whole, more studies have implicated mutations in \textit{gyrA}, \textit{gyrB}, \textit{parC} and \textit{parE} as the major mechanism of FQ resistance as the PMQR genes only mediate low-level FQ resistance [9–11,13]. This can be seen in our findings in which mutations in these four genes (except in \textit{parE} in most isolates) were found in all isolates as compared to the PMQR genes that were not found in all strains. The numerous nature of the mutations observed in the individual genes as well as collectively in all four genes will surely add up to make the strains highly resistant as recorded. The common mutations seen per clone testifies to the clonality of the isolates and authenticates our typing scheme, particularly in \textit{S. marcescens}. One of the commonest \textit{gyrA} mutation recorded in literature is Ser83lle or Ser83Tyr, which was also found in our strains (Table 2). Chenia [12] found Ser80lle in the \textit{parC} of her \textit{A. hydrophila/veronii} strains and this was also found among our isolates. As the mechanism of action of FQ involves the DNA gyrase and topoisomerase IV, it is reasonable that mutations in genes encoding these FQ targets should mediate high-level FQ resistance [1,2].

Hence, we conclude that high-level FQ resistance in Enterobacteriaceae in South Africa is mainly mediated by numerous and diverse mutations in \textit{gyrA}, \textit{gyrB}, \textit{parC} and \textit{parE}, in synergy
with efflux upregulation and PMQR genes, and that these highly resistant strains are being disseminated vertically by clonal and multiclonal expansion and horizontally via plasmids in hospitals. Given that the use of other antibiotics can select for PMQR genes [8], the need for antibiotic stewardship is exceptionally important to prevent further escalation of this menace.

4. Materials and methods

4.1 Ethical approval

The Biomedical Research Ethics Committee of the University of KwaZulu-Natal approved this study under the reference number BE040/14.

4.2 Bacterial strains

From a collection of 82 Enterobacteriaceae isolates with reduced susceptibility to FQ, which were collected from a private pathology laboratory in Durban, South Africa between 2012 and 2013, 48 isolates comprising of Klebsiella pneumoniae (n = 21), Serratia marcescens (n = 12), Enterobacter spp. (n = 10), Citrobacter freundii (n = 3), Klebsiella michiganensis (n = 1), and Escherichia coli (n = 1) that were fully FQ-resistant per further micro-broth dilution (MIC) testing, were selected. Disc diffusion with ciprofloxacin (CIP), norfloxacin (NOR), and nalidixic acid (NAL) was used to identify and collate these 82 isolates in the pathology laboratory, where all isolates with reduced susceptibility to FQ were included; however, further confirmatory testing with MIC showed that only 48 were fully FQ-resistant per EUCAST (2016) breakpoints [14,24]. Hence, only the 48 isolates were included. The isolates were presented by 10 different hospitals to the private pathology laboratory and were obtained from patients of both sex between the ages of 2 months and 83 years. E. coli ATCC 25922 and K. oxytoca ATCC 13178 were used as controls in the antibiotic sensitivity testing/screening (S2 Table).

Identification of the isolates were initially done with Vitek II and confirmed by NCBI BLAST and NCBI’s ANI report of the whole genome sequence of the isolates. Thus, the Enterobacter spp. were identified as Enterobacter cloacae (n = 2), E. asburiae (n = 3), E. kobei (n = 2), Enterobacter cloacae complex “Hoffman cluster IV” (n = 1), Enterobacter cloacae complex “Hoffman cluster III” (n = 1), and Enterobacter sp. (n = 1).

4.3 Minimum inhibitory concentrations (MICs) of CIP, NOR, NAL in the absence and presence of CCCP, reserpine (RSP) and verapamil (VRP): Evaluating the effect of efflux on fluoroquinolone resistance

Pure powders of CIP, NOR, NAL, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), reserpine (RSP) and verapamil (VRP) were purchased from Sigma Aldrich (St. Louis, MO, USA) and used for the broth micro dilution assays. MIC determination and results interpretation for CIP, NOR and NAL were done according to EUCAST guidelines and breakpoints (2016) [14]. Deionized water was used to make VRP solutions whilst RSP was prepared in dimethyl sulfoxide (DMSO) and CCCP in 50% methanol (v/v) [25]. Cation-adjusted Mueller Hinton broth was used to determine the minimum inhibitory concentrations (MICs) of CIP, NOR, NAL, and VRP. All solutions were prepared on the day of the experiment and kept protected from the light.

In determining the effect of CCCP, RSP and VRP on CIP, NOR and NAL MICs, a sub-MIC (i.e. 0.5 × MIC) of CCCP, RSP and VRP viz., 8, 256 and 256mg/L were used respectively whilst serially increasing the concentrations of the antibiotics to determine the change in MICs (Table 1 and S1 Table). A sub-MIC was used to reduce the possibility of CCCP, RSP and VRP killing the cells and interfering with the true MIC of the antibiotic-inhibitor combination.
CCCP was used as a protonophore to assess its effects on the antibiotics’ MICs through a reduction in efflux activity and disruption of the transmembrane electrochemical potential/gradient. It acts by unbalancing the transmembrane proton gradient, reducing ATP production and indirectly inhibiting efflux activity [16]. RSP and VRP are broad spectrum efflux inhibitors that are commonly used in efflux inhibition experiments. They were used in this study to assess their effect on the antibiotics’ MIC through inhibition of RND and MATE efflux pumps respectively [16,17,19,20].

4.4 Genomic DNA extraction, library preparation and whole genome sequencing

Genomic DNA (gDNA) of the isolates were extracted using the GenElute Bacterial Genomic DNA kit (Sigma Aldrich, St. Louis, MO, USA) per the manufacturer’s instructions. The Qubit and Nanodrop were used to determine the concentrations and purity of extracted gDNA. The quality and integrity of the purified gDNA were confirmed by performing gel electrophoresis before proceeding to library generation. Libraries were quantified on the Bioanalyzer (Agilent Technologies) and combined in an equimolar mixture. A nanogram of gDNA was used as input for the Nextera XT kit (Illumina) to generate 300 bp paired-end libraries followed by sequencing on an Illumina MiSeq platform; a genome coverage of 20-90x was generated for all the isolates [6,26,27] (S3 Table).

4.4 Genomic sequencing analysis

Raw sequence reads of the isolates were adaptor- and quality-trimmed using Trimmomatic [28] and deposited at sequence read archive (SRA) under project number PRJNA287968. The raw reads were assembled with SPAdes 3.9 (https://cge.cbs.dtu.dk/services/SPAdes/) and contigs smaller than 200 bps were removed. The resulting fasta files were deposited at Genbank under the bioproject PRJNA287968. Annotation of the whole genome to determine plasmid-mediated fluoroquinolone resistance (PMQR) genes and chromosomal-born gyrA, gyrB, parC and parE genes was done with ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/) and Prokaryotic Genome Annotation Pipeline (PGAP) (https://www.ncbi.nlm.nih.gov/genome/annotation_prok/) respectively [6,29].

4.5 Bioinformatic analysis

MLST of the isolates were determined using MLST 1.7 pipeline at the Center for Genomic Epidemiology (https://cge.cbs.dtu.dk/services/MLST/). The PMQR genes ($\text{aac}(6')-\text{Ib-cr}$, qepA, qnr and oqxAB) were tabulated and their genetic support/environment, namely transposons and integrons, were searched for using the annotations provided by PGAP. Translated nucleotide Basic Local Alignment Search Tool [tBLASTn] was used to search for genetic elements in the immediate environment of the $\text{aac}(6')-\text{Ib-cr}$, and qnr genes.

Typing of the S. marcescens isolates was done in-house using seven house-keeping genes that had been used for typing Enterobacter cloacae: dnaA, fusA, gyrB, leuS, pyrG, rplB, and rpoB [30]. The same housekeeping genes in each S. marcescens isolate were aligned to each other in a gene-gene format using nucleotide BLAST [BLASTn] and SNPs were called for all seven genes. A single SNP in any of the genes was used as a cut-off for categorising the isolates into different clones.

Mutations in the chromosomal-born gyrA, gyrB, parC and parE genes were determined using tBLASTn to call SNPs in these genes. Fluoro-/quinolone susceptible reference/type strains that were used for each species were as follows: K. pneumoniae ATCC 13883 (PRJNA244567) for K. pneumoniae; S. marcescens strain CDC_813–60 (ATCC 13880)
Genomics of fluoroquinolone resistance in Enterobacteriaceae

(JOVM00000000/ PRJNA244355) for S. marcescens; E. cloacae ATCC 13047 (CP001918.1) for all Enterobacter spp. except E. asburiae and gyrA in E. kobei; Enterobacter asburiae L1 (CP007546.1) for E. asburiae; E. kobei strain 35730 (JZYS01000016.1) or E. cloacae ATCC 13047 (CP001918.1) for E. kobei; C. freundii ATCC 8090 = MTCC 1658 (PRJNA177199) for C. freundii; E. coli ATCC 25922 (CP009072) E. coli; Klebsiella michiganensis KCTC 1686 (CP003218.1) for K. michiganensis. For gyrB, parC and parE in E. kobei, E. cloacae type strain was used as the reference strain as the E. kobei's reference strain returned no gyrB, parC and parE genes when it was called/searched with BLAST+.

4.6 Data analysis

An MIC fold change was defined as the ratio of the MIC of antibiotic and inhibitor to that of the antibiotic alone. A fold change of ≥8 was deemed as significant and indicative of efflux activity [15]. Where the MIC was >512, an absolute value of 512 was used, specifically for NAL (S1 Table). The frequency and distribution of the PMQR genes per species were tabulated and translated into a graph (Fig 1).

Supporting information

S1 Table. MICs of inhibitors alone and of nalidixic acid (NAL) MIC changes upon adding carbonyl cyanide-m-chlorophenylhydrazine (CCCP), verapamil (VRP) and reserpine (RSP).

(DOC)

S2 Table. Antimicrobial susceptibility (disc diffusion) results for ciprofloxacin, norfloxacin and nalidixic acid on the Enterobacteriaceae isolates.

(DOC)

S3 Table. Genomic features of the sequenced Enterobacteriaceae isolates.

(DOC)

Acknowledgments

We acknowledge the contribution of the Norwegian Sequencing Centre, University of Oslo, and Center for Bioinformatics at UiT–The Arctic University of Norway for generating the sequence data. We appreciate Dr. Linda Bester of the Biomedical Resource Unit, UKZN, for her material aid.

Author Contributions

Conceptualization: JOS.
Data curation: JOS DGA.
Formal analysis: JOS DGA.
Investigation: JOS DGA.
Methodology: JOS DGA.
Project administration: JOS.
Software: JOS DGA.
Supervision: JOS.
Validation: JOS DGA.

Visualization: JOS.

Writing – original draft: JOS.

Writing – review & editing: JOS DGA.

References

1. Chattaway MA, Aboderin AO, Fashae K, Okoro CK, Opintan JA, Okeke IN. Fluoroquinolone-Resistant Enteric Bacteria in Sub-Saharan Africa: Clones, Implications and Research Needs. Front Microbiol. Frontiers Media SA; 2016; 7: 558. https://doi.org/10.3389/fmicb.2016.00558 PMID: 27148238

2. Wen Y, Pu X, Zheng W, Hu G, Adriaenssens N, Coenen S, et al. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China. Luo Y, editor. PLoS One. Public Library of Science; 2016; 11: e0159418. https://doi.org/10.1371/journal.pone.0159418 PMID: 27427763

3. Osei Sekyere J, Govinden U, Bester LA, Essack SY. Colistin and Tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods. J Appl Microbiol. 2016; 121: 601–617. https://doi.org/10.1111/jam.13169 PMID: 27153928

4. Osei Sekyere J. Current State of Resistance to Antibiotics of Last-Resort in South Africa: a Review From a Public Health Perspective. Front Public Heal. Frontiers; 2016; 4: 209. https://doi.org/10.3389/FPPUBH.2016.00209 PMID: 27747206

5. Osei Sekyere J, Govinden U, Essack S. Review of established and innovative detection methods for carbapenemase-producing Gram-negative bacteria. J Appl Microbiol. 2015; 119: 1219–33. https://doi.org/10.1111/jam.12918 PMID: 26251303

6. Osei Sekyere J, Pedersen T, Sivertsen A, Govinden U, Essack SY, Moodley K, et al. Molecular Epidemiology of Carbapenem, Colistin and Tigecycline Resistant Enterobacteriaceae in Durban, South Africa. ECCMID poster presentation. Amsterdam; 2016. 10.1186/1471-2164-21-164-402

7. Osei Sekyere J, Govinden U, Essack SY. Comparison of Existing Phenotypic and Genotypic Tests for the Detection of NDM and GES Carbapenemase-Producing Enterobacteriaceae. J Pure Appl Microbio. 2016; 10: 2585–2591.

8. Vien LTM, Minh NNQ, Thuong TC, Khuong HD, Nga TVT, Thompson C, et al. The Co-Selection of Fluoroquinolone Resistance Genes in the Gut Flora of Vietnamese Children. Battista JR, editor. PLoS One. Public Library of Science; 2012; 7: e42919. https://doi.org/10.1371/journal.pone.0042919 PMID: 22937000

9. Keddy KH, Smith AM, Sooka A, Ismail H, Oliver S. Fluoroquinolone-resistant typhoid, South Africa. Emerg Infect Dis. Centers for Disease Control and Prevention; 2010; 16: 879–80. https://doi.org/10.3201/eid1605.091917 PMID: 20409393

10. Smith AM, Govender N, Keddy KH, Jacoby GA, Chow N, et al. Quinolone-resistant Salmonella Typhi in South Africa, 2003–2007. Epidemiol Infect. Cambridge University Press; 2010; 138: 86. https://doi.org/10.1017/S0950268809990331 PMID: 19563699

11. Al-Emran HM, Eibach D, Krumkamp R, Ali M, Baker S, Biggs HM, et al. A Multicountry Molecular Analysis of Salmonella enterica Serovar Typhi With Reduced Susceptibility to Ciprofloxacin in Sub-Saharan Africa. Clin Infect Dis. 2016; 62: S42–S46. https://doi.org/10.1093/cid/civ786 PMID: 26933020

12. Chenia HY. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Aeromonas spp. isolated from South African freshwater fish. Int J Food Microbiol. 2016; 231: 26–32. https://doi.org/10.1016/j.ijfoodmicro.2016.04.030 PMID: 27180024

13. Ismail H, Smith AM, Sooka A, Keddy KH, Group for Enteric, Respiratory, and Meningeal Disease Surveillance in South Africa (GERMS-SA). Genetic characterization of multdrug-resistant, extended-spectrum-β-lactamase-producing Vibrio cholerae O1 outbreak strains, Mpumalanga, South Africa, 2008. J Clin Microbiol. American Society for Microbiology (ASM); 2011; 49: 2976–9. https://doi.org/10.1128/JCM.00293-11 PMID: 21653763

14. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, 2016. http://www.eucast.org [Internet]. 2016. pp. 1–78. Available: http://www.eucast.org

15. Osei Sekyere J, Amoako DG. Carbonyl Cyanide m-Chlorophenylhydrazine (CCCP) Reverses Resistance to Colistin, but Not to Carbapenems and Tigecycline in Multidrug-Resistant Enterobacteriaceae. Front Microbiol. 2017; 8. https://doi.org/10.3389/fmicb.2017.00228 PMID: 28265118
16. Li XZ, Pillesiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015; 28: 337–418. https://doi.org/10.1128/CMR.00117-14 PMID: 25788514

17. Radchenko M, Symersky J, Nie R, Lu M, Higgins CF, Fischbach MA, et al. Structural basis for the blockade of MATE multidrug efflux pumps. Nat Commun. Nature Publishing Group; 2015; 6: 7995. https://doi.org/10.1038/ncomms8995 PMID: 26246409

18. Opperman TJ, Nguyen ST. Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol. Frontiers Media SA; 2015; 6: 421. https://doi.org/10.3389/fmicb.2015.00421 PMID: 25999939

19. Ribera A, Jurado A, Ruiz J, Marco F, Del Valle O, Mensa J, et al. In vitro activity of clinafloxacin in comparison with other quinolones against Stenotrophomonas maltophilia clinical isolates in the presence and absence of reserpine. Diagn Microbiol Infect Dis. Elsevier; 2002; 42: 123–8. https://doi.org/10.1016/S0732-8893(01)00335-2 PMID: 11858908

20. Shinbarger DL, Zurenko GE, Hesje CK, Sanfilippo CM, Morris TW, Haas W. Evaluation of the Effect of Bacterial Efflux Pumps on the Antibacterial Activity of the Novel Fluoroquinolone Besifloxacin. J Chemother. Taylor & Francis; 2011; 23: 80–86. https://doi.org/10.1179/joc.2011.23.2.80 PMID: 21571623

21. Govender N, Smith AM, Karstaedt AS, Keddy KH. Plasmid-mediated quinolone resistance in Salmonella from South Africa. J Med Microbiol. Microbiology Society; 2009; 58: 1393–1394. https://doi.org/10.1099/jmm.0.009621-0 PMID: 19541785

22. Nielsen LE, Snesrud EC, Onmus-Leone F, Kwak YI, Aviles R, Steele ED, et al. IS5 element integration, a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2014/08/06. 2014; 58: 6151–6156. https://doi.org/10.1128/AAC.03053-14 PMID: 25092708

23. Veleba M, Schneider T. Tigecycline resistance can occur independently of the ramA gene in Klebsiella pneumoniae. Antimicrob Agents Chemother. American Society for Microbiology (ASM); 2012; 56: 4466–7. https://doi.org/10.1128/AAC.06224-11 PMID: 22644034

24. EUCAST. Media preparation for EUCAST disk diffusion testing and for determination of MIC values by the broth microdilution method. Diseases ES of CM and I, editor. 2013. pp. 1–4.

25. Pragasam AK, Sahni RD, Anandan S, Sharma A, Gopi R, Hadibasha N, et al. A Pilot Study on Carbapenemase Detection: Do We See the Same Level of Agreement as with the CLSI Observations. J Clin Diagn Res. JCDR Research & Publications Private Limited; 2016; 10: DC09–13. https://doi.org/10.7860/JCDR/2016/16417.8152 PMID: 27630840

26. Leekitcharonphon P, Raufu I, Nielsen MT, Rosenqvist Lund BS, Ameh JA, Ambali AG, et al. Investigating Salmonella Eko from Various Sources in Nigeria by Whole Genome Sequencing to Identify the Source of Human Infections. Cloeckaert A, editor. PLoS One. Public Library of Science; 2016; 11: e0156212. https://doi.org/10.1371/journal.pone.0156212 PMID: 27228329

27. Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, Chiu CY. Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance. PLoS One. Public Library of Science; 2016; 11: e0149541. https://doi.org/10.1371/journal.pone.0149541 PMID: 26890675

28. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30: 2114–20. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

29. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012; 67: 2640–2644. https://doi.org/10.1093/jac/dks261 PMID: 22782487

30. Miyoshi-Akiyama T, Hayakawa K, Ohmagari N, Shimojima M, Kirikae T, Sanders W, et al. Multilocus Sequence Typing (MLST) for Characterization of Enterobacter cloacae. Woo PCY, editor. PLoS One. Public Library of Science; 2013; 8: e66358. https://doi.org/10.1371/journal.pone.0066358 PMID: 23776664