Supplementary Information

Sequential ammonia and carbon dioxide adsorption on pyrolyzed biomass to recover waste stream nutrients

Leilah Krounbi¹, Akio Enders¹, Christopher R. Anderton², Mark H. Engelhard², Rachel Hestrin¹, Dorisel Torres-Rojas¹, James J. Dynes³, Johannes Lehmann¹,⁴*

¹Soil and Crop Sciences, College of Agriculture and Life Sciences, Cornell University, 306 Tower Road, Ithaca, NY 14853, USA
²Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, 902 Battelle Boulevard, Richland, WA, 99354, USA
³Canadian Light Source, 44 Innovation Blvd, Saskatoon, SK, S7N 2V3, Canada
⁴Atkinson Center for a Sustainable Future, 200 Rice Hall, Cornell University, Ithaca, NY 14853, USA

*corresponding author, Email: CL273@cornell.edu

Number of Pages: 38
Number of Figures: 11
Number of Tables: 14
Table of Contents

Section	Page
Conversion of wood chips and human solid waste into biochar	S4
Adsorption experiment with NH$_3$ and CO$_2$	S4
Preparation of materials for heat of CO$_2$ adsorption	S5
Fitting Avrami model to adsorption data	S5
FTIR spectral processing	S6
Processing of NanoSIMS data	S7
NEXAFS spectral processing	S8
XPS instrument settings and data analyses	S9
Table S1. Experimental treatment structure	S11
Figure S1. Adsorption isotherms of CO$_2$ on py-HSW and py-ox wood	S12
before and after exposure to NH$_3$ at three temperatures 0 °C, 25 °C, 35 °C.	
Table S2. Avrami model parameters	S13
Table S3. FTIR wavenumber range assignments	S14
Table S4. Nitrogen forms and corresponding Gaussian peak assignments for NEXAFS	S15
Figure S2. Normalized XPS spectra of standard compounds	S16
Table S5. Binding energies and full-width at half-maximum values of	S17
standard compounds measured with XPS	
Table S6. The binding energy (BE) peak range assignments for XPS	S18
using standard compounds	
Table S7. R software packages used	S19
Figure S3. Thermograms of the weight of change with exposure to CO$_2$ and NH$_3$	S20
Table S8. Nanoscale secondary ion mass spectrometry ion ratios	S21
Figure S4. Isotopic enrichment at depth using NanoSIMS	S22
Figure S5. NanoSIMS images of py-ox wood	S23
Figure S6. NanoSIMS images of py-ox NH$_3$	S24
Figure S7. NanoSIMS images of py-ox wood NH$_3$+CO$_2$	S25
Figure S8. NanoSIMS images of py-HSW controls, unexposed to NH$_3$ or CO$_2$	S26
Figure S9. NanoSIMS images of py-HSW CO$_2$+NH$_3$	S27
Table S9. Chemical and physical properties of py-ox wood and py-HSW	S28
Figure S10. Wide-scan XPS spectra in the N1s and Si1s and Si2p regions	S29
Table S10. Proportion of nitrogen bond forms determined by NEXAFS
Table S11. Nitrogen forms measured with N K-edge NEXAFS and full-width at half-maximum values
Table S12. Proportion of C, N, and O measured with XPS and determined from a deconvolution model using standards
Table S13. Binding energies and full-width at half-maximum values of samples determined with XPS
Table S14. Carbon, nitrogen, and oxygen contents determined by IRMS and XPS
Figure S11. Narrow scan XPS spectra in the C1s region
Supplementary references
Supplementary Methods

Conversion of wood chips and human solid waste into biochar

Human solid waste (HSW) was collected from five urine-diversion Fresh Life latrines in the informal settlement of Mukuru in Nairobi, Kenya, in which sawdust was not provided as a cover material. The latrine design allows for separation of urine and feces, which are collected in separate containers. Each latrine is visited by about 50 people daily. About 3 kg of (wet) raw HSW was randomly subsampled from waste barrels the day after removal from latrines in Mukuru. Raw HSW was sun-dried to a gravimetric water content below 30% (Kern PCB 2500, Kern & Sohn GmbH, Balinger, Germany).

Maple wood (*Acer rubrum* L.) chips were obtained from Robinson Lumber sawmill in Owego, New York. Both HSW and wood chip feedstocks were pyrolyzed under argon at 500 °C for 30 min in a modified muffle furnace (Fisher Isotemp Model 126, Thermo Fisher Scientific, Waltham, MA). The resulting materials were ground and sieved to a particle size range of 149-850 µm.

Adsorption experiment with NH$_3$ and CO$_2$

Samples of py-HSW and py-ox wood were exposed to pure NH$_3$ (99% NH$_3$; 10 atom% (AT%) 15N/14N, Sigma Aldrich, St. Louis, Mo) and pure CO$_2$ (99% CO$_2$; 10 AT% 13C/12C, Sigma Aldrich, St. Louis, MO) within a thermogravimetric analyzer (TGA; Q50 EGA furnace, TA instruments) at 30 °C in different sequences described in the main manuscript, and outlined in Table S1. Sample mass and temperature were recorded every 4.6 seconds. Using both elemental stoichiometry and the mass change with adsorption was important for accurately determining N and C uptake, as adsorption of the relatively heavy 16O from CO$_2$ alters the original weight of the material with respect to the sorbing atom of interest, C or N.

The microbalance used to monitor sample mass was continually flushed with argon (Instrument grade, Airgas, Ithaca, NY). Purge lines for NH$_3$ and CO$_2$ were routed through an external mass flow
controller (MFC; MKS 247D 4-channel, MKS Instruments Andover, MA) directly into the TGA furnace. Flow rates were lowered to 1 L min\(^{-1}\) through the microbalance and 9 mL min\(^{-1}\) through the furnace to minimize static charging of samples. A 100-μL platinum pan was used for all experiments. Before exposure to CO\(_2\) or NH\(_3\), samples were degassed a second time within the TGA under argon at 105 °C for 30 min. The argon purge continued at 30 °C until achieving a stable weight. The weight of adsorption during gas exposure within the TGA (\(g_{\text{adsorption}}\)) was calculated as the difference between the average of the final 10 minutes during the final argon purge (\(g_{\text{final}}\)) and the average of the final 10 minutes of the initial argon purge prior to CO\(_2\) or NH\(_3\) exposure (\(g_{\text{initial}}\)) (Equation S1).

Equation S1

\[g_{\text{adsorption}} = g_{\text{final}} - g_{\text{initial}} \]

For all samples, between each gas exposure event, the TGA furnace was purged with argon for one hour to prevent residual CO\(_2\) and NH\(_3\) from reacting and precipitating in flow lines.

Preparation of materials for heat of CO\(_2\) adsorption

To assure clean surfaces for isotherms, samples were degassed twice at 150 °C for 12 hours under vacuum first on the degas port and subsequently on the sample port\(^1\). Sample tubes were immersed in ice water for isotherms at 0 °C while heating jackets were used for isotherms at 25 °C at 35 °C. The ASAP 2020 porosimeter was set in manual mode to control the temperature.

Fitting Avrami model to adsorption data

Equilibrium CO\(_2\) adsorption at 30 °C (\(q_e\)) was equated to the maximum CO\(_2\) uptake during an adsorption isotherm at 25 °C. For NH\(_3\) sorption on py-ox wood, equilibrium adsorption (\(q_e\)) for the first exposure interval was inferred by fitting a non-linear pseudo second order equation (Equation S2) to sorption (\(q_t\)) using measured NH\(_3\) sorption data (\(q_t\)) over a time scale (t) of 500 minutes; our actual
experiment lasted only one hour and we were unable to reach equilibrium NH$_3$ adsorption. We took the maximal values from the second and third NH$_3$ exposure intervals as the NH$_3$ equilibrium point for py-ox wood.

Equation S2

$$q_t = \frac{k_A q_e^2 t}{1 + k_A q_e t}$$

Model parameters n_A and k_A, along with the percent root mean squared error (RMSE (%), Equation S3) of the model fit to the measured percent increase in sample weight with adsorption are presented in Table S2. The RMSE was calculated for each modeled value (\hat{y}) and measured value (y) of NH$_3$ adsorption, using Equation S3.

Equation S3

$$\text{RMSE} (%) = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n - 1}} \times 100$$

FTIR spectral processing

An atmospheric compensation algorithm was applied to spectra to remove water vapor interference and instrumental drift. Spectra were baseline corrected using the rubber-band method followed by a min-max normalization according to Equation S4, where x_i are unnormalized spectral counts, min(x) are minimum counts values per spectra, max(x) are maximum counts per spectra, and z_i are normalized counts.

Equation S4

$$z_i = \frac{x_i - \text{min (x)}}{\text{max (x)} - \text{min (x)}}$$
Processing of NanoSIMS data

Secondary ions $^{12}\text{C}^{12}\text{C}^-$, $^{12}\text{C}^{13}\text{C}^-$, $^{12}\text{C}^{14}\text{N}^-$, and $^{12}\text{C}^{15}\text{N}^-$ were measured, and isotope ratios are reported in standard delta (δ) notation in units of per mille (‰):

Equation S5

$$\delta = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000\%,$$

where R_{sample} is the measured $^{13}\text{C}^{12}\text{C}^-/^{12}\text{C}^{12}\text{C}^-$ or $^{12}\text{C}^{15}\text{N}^-/^{12}\text{C}^{14}\text{N}^-$ ratio of a sample and R_{standard} values are ion ratios measured in a yeast standard that has been calibrated for $\delta^{13}\text{C}$ using bulk isotope ratio analysis relative to VPDB\(^2\). Images of 30 µm x 30 µm containing 256 pixels x 256 pixels provided lateral resolution approximately the size of the primary ion beam diameter, ~115 nm. Images were acquired over multiple scan planes, varying in number between 6-12. Hue Saturation Intensity (HSI) images were generated from ion ratios across each pixel and color-scaled across the minimum and maximum delta values measured for all samples.

To observe changes in isotopic enrichment with depth, samples were sputtered in a single location with a Cs\(^+\) beam of more than double the current used for image rastering, ~3.6 pA. The sputtering rates of our materials were between maximum and minimum values based on the sputtering rate range reported for biological samples, 1-2.5 (nm mm pA\(^{-1}\) s\(^{-1}\))\(^2,3,4\). The beam area was determined by measuring the sputtering hole in samples using Image J. The average over four beam area measurements was used in this work, 0.3685 µm\(^2\).

Images were processed using OpenMIMS, an Image J software plugin\(^5\). Spatial alignment of images was first adjusted using the ‘Autotrack’ function. A deadtime correction was then applied, and data across multiple scan planes were summed into a single image. We generated average isotope ratios for each image by averaging over twenty circular regions of interest (ROIs) comprised of 12 pixels each. ROIs were chosen on flat, prominent regions within each image (Figure S5 to S9), the ion counts of which best represented surface chemistry. Ions $^{12}\text{C}^{12}\text{C}^-$, $^{12}\text{C}^{14}\text{N}^-$, $^{12}\text{C}^{15}\text{N}^-$, $^{16}\text{O}^-$, and ratios $^{12}\text{C}^{15}\text{N}^-/^{12}\text{C}^{14}\text{N}^-$...
and $^{16}\text{O}^{12}\text{C}^{12}\text{C}^{-}$ were evaluated for py-ox wood and py-ox wood NH$_3$. For py-HSW and py-HSW CO$_2$+NH$_3$ we used ions $^{12}\text{C}^{12}\text{C}^{-}$, $^{12}\text{C}^{13}\text{C}^{-}$, $^{12}\text{C}^{14}\text{N}^{-}$, $^{12}\text{C}^{15}\text{N}^{-}$, $^{31}\text{P}^{-}$, and ratios $^{12}\text{C}^{15}\text{N}^{-}$/$^{12}\text{C}^{14}\text{N}^{-}$ and $^{12}\text{C}^{13}\text{C}^{-}/^{12}\text{C}^{12}\text{C}^{-}$.

NEXAFS spectral processing

Water-suspended samples were deposited onto gold-coated silicon wafers that were mounted onto sample holders with carbon tape. Following exposure with 10^{11} photons s$^{-1}$, N Kα fluorescence emitted between 350 and 450 eV was acquired in the slew scanning mode of a spherical grating monochromator (SGM) at the Canadian Light Source (CLS) in Saskatoon, Canada. Samples were scanned in 50 different locations for 60 seconds each, which helped minimize the signal to noise ratio and safeguard against beam damage. Partial fluorescence data were collected in four different silicon drift detectors. For each sample, for each detector, partial fluorescence counts from 50 scans were summed and normalized by the beamline incidence flux on a gold mesh.

The energy scale of sample spectra was calibrated from N$_2$ adsorption spectrum for ammonium sulfate (400.807 eV)6,7 by right-shifting by 0.15 eV. The pre- and post-edge of calibrated spectra were then background corrected, merged over all four detectors, and normalized to an edge step of one unit (Athena 0.8.056, Bruce Ravel; Ifeffit 1.2.11, Matt Newille, University of Chicago, Chicago). Normalized spectra were deconvoluted into constituent N-species through iterative fitting to curves associated with known N-containing compounds$^{6-9}$ with Fityk software (Fityk 0.9.8)10. Although absorbance was observed in both π^* and σ^* orbitals in N-containing standard compounds, only the $\pi \rightarrow \pi^*$ transition is discussed because of the high degree of peak overlap in σ^* regions. Peak assignments for N-bonds from standard compounds6 are presented after averaging, normalization, and deconvolution in Table S4.
The fitting of Gaussian curves associated with model N-compounds was carried out with the non-linear least-squares Levenberg-Marquardt algorithm. An arctangent function bounded curve height and the cumulative area of curves in the $\pi \rightarrow \pi^*$ transition region. Arctangent parameters were optimized for the edge-step energy and the height between pre- and post-edge regions across all samples ($a_1=0.33$, $a_2=404.5$, $a_3=1.5$, $a_4=0.5$); the same arctan function was used for each spectrum.

For each sample spectrum, our model first optimized the peak height of fitted Gaussian curves corresponding to N-bonds in standard compounds (Table S4), while keeping peak center and half-width at half-maximum (HWHM) fixed. After each model run, curves with peak areas below 0.1 were removed from the model, and the model was re-fit. This process was reiterated until the area of all remaining curves was greater than 0.1. A new model was then executed on curves with areas greater than 0.1 in which the HWHM and peak height were floated according to a sin function (Equation S6 for $\pi \rightarrow \pi^*$ transition regions).

Equation S6

\[HWHM = 0.4 + 0.2 \times \sin (\sim 0) \]

The same elimination procedure was applied until remaining curves had areas greater than 0.1. The relative area for each N species in standard compounds was calculated for $\pi \rightarrow \pi^*$ transition regions and is listed in Table S10. The absolute area and full-width at half-maximum (FWHM) values of experimental samples are listed in Table S11.

XPS instrument settings and data analyses

The XPS instrument used a focused monochromatic Al Kα X-ray (1486.7 eV) source for excitation and a spherical section analyzer and has a 32-element multichannel detection system. The X-ray beam was incident normal to the sample and the photoelectron detector was at 45 ° off-normal.
High energy resolution (narrow scan) spectra were collected using a pass-energy of 69.0 eV with a step size of 0.125 eV. For the Ag 3d$_{5/2}$ line, these conditions produced a full-width-half-maximum (FWHM) of 0.92 eV ± 0.05 eV. The binding energy (BE) scale is calibrated using the Cu 2p$_{3/2}$ feature at 932.62 ± 0.05 eV and Au 4f$_{7/2}$ at 83.96 ± 0.05 eV. To minimize charging, low energy electrons at ∼1 eV, 20 μA and low energy Ar$^+$ ions were sputtered over the samples.

Narrow scan spectra for the C1s, N1s, and O1s core-level regions were deconvoluted with Gaussian and Lorentzian functions after Shirley background subtraction (CasaXPS, version 2.3.19PR1.0). Narrow scan spectra was also used for quantifying C, N, and O surface atomic concentrations of py-ox wood samples while wide scan spectra was used for py-HSW. Potassium (K) surface concentration in py-HSW was quantified using wide-scan data. Atomic concentrations were corrected with relative sensitivity factors (RSFs) for each element derived under extant XPS operating conditions pertaining to the instrument transmission function and source angle corrections.

Spectra and associated functional group chemistry of five standard compounds, ammonium carbonate ((NH$_4$)$_2$CO$_3$)$^{2+}$), ammonium bicarbonate (NH$_4$$^+HCO_3^-$), urea, proline, and valine helped inform BE ranges for C, N and O bonds during deconvolution and peak-fitting of experimental samples (Figure S2, Tables S5 and S6), along with online and published literature$^{11-15}$. For deconvolution, the FWHM of curves within each spectrum were constrained to be equal. Spectra for standards and experimental samples were calibrated through charge-referencing of the C1s carbon (C-C, C=C) peak at 294.6 eV.
Table S1. Experimental treatment structure.

Treatment name	Pyrolysis feedstock	Oxidation	Gas	Exposure time
py-ox wood	wood	yes	none	none
py-ox wood NH\(_3\)	wood	yes	\(^{15}\)NH\(_3\)	1 hour
py-ox wood NH\(_3\)+CO\(_2\)	wood	yes	\(^{15}\)NH\(_3\)→\(^{13}\)CO\(_2\)→\(^{14}\)NH\(_3\)→\(^{12}\)CO\(_2\)→\(^{15}\)NH\(_3\)→\(^{13}\)CO\(_2\)	1 hour (each)
py-HSW	HSW	none	none	none
py-HSW CO\(_2\)+NH\(_3\)	HSW	none	\(^{13}\)CO\(_2\)→\(^{15}\)NH\(_3\)	1 hour (each)
Figure S1. Adsorption isotherms of CO\textsubscript{2} on py-HSW and py- ox wood before and after exposure to NH\textsubscript{3} at three temperatures 0 °C, 25 °C, 35 °C. Samples were exposed to unlabeled NH\textsubscript{3} for one hour within a TGA at 30 °C. Prior to isotherms, samples were degassed twice at 150 °C for 12 hours under vacuum first on the degas port and subsequently on the sample port.
Table S2. Avrami model parameters describing CO$_2$ and NH$_3$ adsorption kinetics (n = 3) and the root mean squared error (RMSE) of the model fit to measurements of the percent weight change with adsorption.

Count	Material	Gas	Exposure interval	k_A	n_A	RMSE (%)
1	py-ox wood NH$_3$+CO$_2$	CO$_2$	1	0.03 ± 0.01	0.70 ± 0.10	8.77
2	py-ox wood NH$_3$+CO$_2$	CO$_2$	2	0.03 ± 0.01	0.77 ± 0.05	12.37
3	py-ox wood NH$_3$+CO$_2$	CO$_2$	3	0.03 ± 0.01	0.85 ± 0.05	12.91
4	py-ox wood NH$_3$+CO$_2$	NH$_3$	1	0.30 ± 0.01	0.54 ± 0.01	50.84
5	py-ox wood NH$_3$+CO$_2$	NH$_3$	2	0.41 ± 0.10	1.84 ± 1.04	68.74
6	py-ox wood NH$_3$+CO$_2$	NH$_3$	3	0.40 ± 0.19	0.58 ± 0.32	28.71
7	py-HSW CO$_2$+NH$_3$	CO$_2$	1	0.04 ± 0.03	0.54 ± 0.12	11.42
8	py-HSW CO$_2$+NH$_3$	NH$_3$	1	0.03 ± 0.00	0.79 ± 0.02	33.70
Table S3. The FTIR wavenumber range assignments depicted in Figure 3A in the main manuscript and associated functional groups\(^6\).

Peak number	Highlighted frequency \((\text{cm}^{-1})\)	Frequency range \((\text{cm}^{-1})\)	Functional group
1	2154	2200-2100	Alkynes C≡C
		2600-2200	Nitriles C≡N
		2240-2220	Aromatic cyanide
		2150-1990	Isothiocyanate -NCS
2	1709	1725-1700	Carboxylic acid
		1725-1705	Ketone
3	1570	1630-1575	Open chain azo -N=N-
		1615-1580	C=C-C aromatic ring stretch
		1650-1550	Primary or secondary amine NH bend
4	1435	1435-1460	Ammonium ion NH\(_4^+\)
5	1362	1350-1280	Aromatic secondary amine, CN stretch
		1360-1310	Aromatic tertiary amine CN stretch
6	1215	1200	Phenol C-OH stretch
7	1034	1055–1020	Silicone Si-O-Si
		1050-990	Aliphatic phosphates
		1090-1020	Primary amine C-N stretch
Table S4. Nitrogen forms and responding Gaussian peak center assignments used to deconvolute N K-edge NEXAFS spectra.

N Form	Peak Energy (eV) 1s→π*	Peak Energy (eV) 1s→σ*	Reference
NH$_3^+$ (putative)	397.88		17-19
C=N pyridine, pyrimidine (putative)	398.1		17-19
C=N pyridine, pyrimidine	398.76	408.01, 412.28	6-9
C=N pyrimidine with keto group	399.2	405.00, 408.40	6-9
C=N pyrimidine bonded to furan with keto groups	399.44	407.6	6-9
C=N imidazole and C=N nitrile	400.05	406.43, 410.87, 413.75	6-9
Quaternary C-N in pyridine	400.46	408.86	6-9
C=N pyridine with keto or phenol group	400.64	406.92	6-9
cyclic amide		401.15, 406.1	6-9
C=N imidazole	401.43		6-9
C=N imidazole	401.85		6-9
C=N pyrrole	402.4	407	6-9
C-NH$_2$ amine-substituted pyridine		403	19,6,8,9
C-NO$_2$ nitro bonded to pyridine or pyrimidine	403.65	412.79, 413.65	6-9
C=N in pyridine or pyrimidine	404.11		6-9
N-H		405	6-9
C-NH$_2$: aliphatic amine		406.58	6-9
Figure S2. Normalized XPS spectra for C1s, N1s, and O1s core-level electron excitations of five standard compounds. Spectral deconvolution is also displayed in the fitting of multiple Lorentzian-Gaussian curves to each spectrum. Assigned peak positions of C, N, and O bonds and the relative peak areas associated with those bonds are outlined in Tables S5 and S6.
Table S5. The proportion of C, N, and O bonds in five standard compounds, based on the binding energies (BE) and full-width at half-maximum values (FWHM) of deconvoluted curves and relative areas, as measured with XPS.

Bond level	Bond form	BE range (eV)	Ammonium carbonate	Urea	Ammonium bicarbonate	Proline	Valine		
		BE (eV)	FWHM area (%)	BE (eV)	FWHM area (%)	BE (eV)	FWHM area (%)	BE (eV)	FWHM area (%)
C1s	C-C, C≡C	284.0-285.0	284.5 1.28 57.37	248.4 1.89	284.5 1.31 57.34 284.1 1.69	37.21 284.3 1.65	45.77		
C1s	C-N	285.0-286.0	285.3 1.28 21.99	285.0 1.89 4.09	285.1 1.31 20.29 285.0 1.69	36.19 285.1 1.65	25.92		
C1s	C-O	286.0-287.0	286.3 1.28 13.01	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	
C1s	C-OH	286.0-287.0	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	
C1s	R-C≡O	287.0-287.5	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	
C1s	R-C=O	287.5-288.0	288.6 1.28 7.62	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	
C1s	(C=O)O	288.3-288.8	-- -- 0.00	-- -- 0.00	288.7 1.31 8.74	-- -- 0.00	-- -- 0.00	-- -- 0.00	
C1s	N-C=O	288.8-290.0	-- -- 0.00	-- -- 0.00	289.0 1.89 89.37	-- -- 0.00	-- -- 0.00	-- -- 0.00	

N1s	Pyridinic N	398.0-398.9	398.3 1.09 7.68	398.7 1.31 21.98	398.0 1.41 2.27	-- -- 0.00	-- -- 0.00		
N1s	C-NH₂	399.0-399.5	399.1 1.09 59.02	399.5 1.31 45.4	399.2 1.41 45.32	399.6 1.84	47.9	399.5 1.99	6.78
N1s	C-O-NH₂⁺	399.5-400.0	399.9 1.09 20.57	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	
N1s	N-C≡N	400.0-400.5	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	400.1 1.84	52.1	-- -- 0.00
N1s	N-(C=O)	400.0-400.9	-- -- 0.00	400.6 1.31 26.6	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	
N1s	N-(C=O)	400.5-400.9	400.8 1.09 7.39	-- -- 0.00	400.9 1.41 34.02	-- -- 0.00	400.7 1.99	93.22	
N1s	NH₂⁺	401.0-403.0	401.7 1.09 5.34	401.2 1.31 6.02	401.8 1.41 18.39	-- -- 0.00	-- -- 0.00		

O1s	529.5-530.0	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	529.8 1.74	73.69	-- -- 0.00
O1s	530.5-530.5	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	530.4 1.69	71.51	
O1s	530.5-531	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	530.7 1.74	26.31	-- -- 0.00
O1s	531.0-531.3	-- -- 0.00	-- -- 0.00	-- -- 0.00	-- -- 0.00	531.2 1.69	28.49	
O1s	C=O	531.3-532.0	531.7 1.61 52.39	531.5 2.09 100 531.6 1.63 60.25	-- -- 0.00	-- -- 0.00	-- -- 0.00	
O1s	C-O	532.0-533.3	533.1 1.61 47.61	-- -- 0.0	533.0 1.63 39.75	-- -- 0.00	-- -- 0.00	-- -- 0.00
Table S6. The binding energy (BE) peak range assignments for the XPS C1s, N1s, and O1s core levels used for our deconvolution model11,12,20.

Core level	Bond form	BE (eV)
C1s	C-C, C=C (low)	283.0-284.0
C1s	C-C, C=C	284.0-285.0
C1s	C-N	285.0-286.0
C1s	C-O	286.0-287.0
C1s	C-OH	286.0-287.0
C1s	R-C=O (R aromatic)	287.0-287.5
C1s	R-C=O	287.5-288.0
C1s	(C=O)-O	288.3-288.5
C1s	(C=O)-OH	288.5-288.8
C1s	N-C=O	288.8-290.5
N1s	N pyridine	398.0-398.9
N1s	C-NH\textsubscript{2}	399.0-399.5
N1s	C-O--NH\textsubscript{4} +	399.5-400.0
N1s	N=C-(C=O)-	400.0-400.5
N1s	N-(C=O)-	400.5-400.9
N1s	NH\textsubscript{3} +	401.0-403.0
O1s	R-C=O (R aromatic)	529.5-530.0
O1s	R-C=O	530.5-530.5
O1s	R-C-OH (R aromatic)	530.5-531.0
O1s	R-C-OH	531.0-531.3
O1s	C=O	531.3-532.0
O1s	C-O	532.0-533.3
O1s	H\textsubscript{2}O, OH	533.5-536.0
Table S7. R software packages used for data organization, analysis, and presentation.

Count	R package	Reference
1	broom	21
2	cowplot	22
3	data.table	23
4	devtools	24
5	dplyr	25
6	GGally	26
7	ggplot2	27
8	ggpmisc	28
9	grid	29
10	lattice	30
11	lsmeans	31
12	multcomp	32
13	plotly	33
14	plyr	34
15	reshape2	35
16	stringr	36
17	stats	30
18	tidyverse	37
19	xlsx	38
20	xlsxjars	39
Figure S3. (A) Three replicate thermograms depicting the weight change with exposure to CO₂ (orange) followed by NH₃ (blue), separated an argon purge (gray). (B) Three replicates of gravimetrically-measured CO₂ and NH₃ adsorption onto py-HSW (blue) overlaid with modeled adsorption curves using Avrami’s fractional order model (black line). (C) Three replicates of gravimetrically-measured CO₂ and NH₃ adsorption at three sequential exposure intervals (1,2,3) onto py-ox wood (colors) overlaid with modeled adsorption curves using Avrami’s fractional order model. CO₂ adsorption does not differ between each consecutive exposure, even though NH₃ adsorption decreases from the first to the consecutive exposure and remains significant.
Table S8. Nanoscale secondary ion mass spectrometry ion ratios detected on sample surfaces averaged over 20 regions of interest per image, for replicate images shown in Figures S5-S9.

Treatment	Replicate images	$\delta^{12}{C^{13}}{C^{12}}{C^{12}}$	$\delta^{12}{C^{15}}{N^{12}}{C^{14}}{N^{14}}$
py-ox wood	n = 2	34.11 ± 29.77	-6.49 ± 86.56
py-ox wood NH$_3$	n = 3	25.31 ± 57.44	15145.84 ± 619.20
py-ox wood NH$_3$ + CO$_2$	n = 3	6.03 ± 21.77	19094.43 ± 1349.11
py-HSW	n = 4	51.52 ± 15.92	-30.33 ± 62.33
py-HSW CO$_2$ + NH$_3$	n = 4	135.67 ± 75.27	2635.02 ± 159.34
Figure S4. Isotopic enrichment at the minimum and maximum depths for (A-C) three replicates of py-ox wood NH$_3$+CO$_2$, py-ox wood NH$_3$, and py-ox wood control (D-F) three replicates of py-HSW CO$_2$+NH$_3$ and py-HSW control, calculated using a sputtering rate range for biological materials2,3,4.
Figure S5. Two replicate NanoSIMS images of 12C12C$^-$ ions (A,B) 13C12C$^-$ (C,D) and 12C15N$^-$/12C14N$^-$ (E,F) ion ratios in py-ox wood. Images A and B display 20 ROIs used to calculate sample isotope ratios presented in Table S9.
Figure S6. Three replicate NanoSIMS images of $^{12}\text{C}^{12}\text{C}^-$ (A-C), $^{13}\text{C}^{12}\text{C}^-$ (D-F) and $^{12}\text{C}^{15}\text{N}^-/^{12}\text{C}^{14}\text{N}^-$ (G-I) ion ratios in py-ox NH$_3$. Images A, B, and C display 20 ROIs used to calculate sample isotope ratios presented in Table S9.
Figure S7. Three replicate NanoSIMS images of 12C12C$^-$ ions (A-C), 13C12C$^-$ (D-F) and 12C15N$^-$/12C14N$^-$ (G-I) ion ratios in py-ox wood NH$_3$+CO$_2$. Images A, B, and C display 20 ROIs used to calculate sample isotope ratios presented in Table S9.
Figure S8. Four replicate NanoSIMS images of $^{12}\text{C}^{12}\text{C}^-$ ions (A-D) $^{13}\text{C}^{12}\text{C}^-$ (E-H) and $^{12}\text{C}^{15}\text{N}^-/^{12}\text{C}^{14}\text{N}^-$ (I-L) ion ratios in py-HSW controls, unexposed to NH$_3$ or CO$_2$. Images A, B, C, and D display 20 ROIs used to calculate sample isotope ratios presented in Table S9.
Table S9. Four replicate NanoSIMS images of $^{12}\text{C}^{12}\text{C}^-$ ions (A-D), $^{13}\text{C}^{12}\text{C}^-$ (E-H) and $^{12}\text{C}^{15}\text{N}^-/^{12}\text{C}^{14}\text{N}^-$ (I-L) ion ratios in py-HSW CO$_2$+NH$_3$. Images A, B, C and D display 20 ROIs used to calculate sample isotope ratios presented in Table S9.

Image 1	Image 2	Image 3	Image 4
![Image 1](image1.png)	![Image 2](image2.png)	![Image 3](image3.png)	![Image 4](image4.png)
30x30 microns (256x256), 32-bit, 256k			

Figure S9. Four replicate NanoSIMS images of $^{12}\text{C}^{12}\text{C}^-$ ions (A-D), $^{13}\text{C}^{12}\text{C}^-$ (E-H) and $^{12}\text{C}^{15}\text{N}^-/^{12}\text{C}^{14}\text{N}^-$ (I-L) ion ratios in py-HSW CO$_2$+NH$_3$. Images A, B, C and D display 20 ROIs used to calculate sample isotope ratios presented in Table S9.
Table S9. Chemical and physical properties of py-ox wood and py-HSW.

	py-ox wood	py-HSW
pH in water	5.2	10.3
SSA (m2 g$^{-1}$)	275.7	74.0
Total N (%w w$^{-1}$)	0.91	4.8
Fixed C (%w w$^{-1}$)	63.9	46.2
Ash (%w w$^{-1}$)	0.7	39.0
Figure S10. Wide-scan XPS spectra for unexposed py-HSW depicting a prominent peak for nitrogen (N1s) and no peak features for silicon (Si 2s, Si 2p, Si 2p1/2, Si 2p3/2).
Table S10. Percent of nitrogen forms in experimental samples associated with Gaussian curve centers and relative areas in the $\pi \rightarrow \pi^*$ transition region, measured with N K-edge NEXAFS, and derived from a deconvolution procedure relying on standard compounds6 and shown in Table S4.

N form	Center	Peak number	py-HSW area %	py-HSW CO$_2$+NH$_3$ area (%)	py-ox wood NH$_3$ area (%)	py-ox wood NH$_3$+CO$_2$ area (%)
NH$_3^+$ (putative)	397.27-397.28	1	0.00	0.00	0.00	5.87
C=N pyridine, pyrimidine (putative)	398.08-398.36	2	17.75	15.87	21.69	6.36
C=N pyridine, pyrimidine	398.76	3	10.00	13.94	0.00	7.90
C=N pyrimidine with keto group	399.2	4	0.00	0.00	18.65	0.00
C=N pyrimidine	399.54-399.81	5	8.00	6.10	0.00	12.51
C=N imidazole, nitrile C=N	400.05	6	6.83	4.66	0.00	0.00
C=N pyridine, pyrimidine, keto-or alcohol-substituted	400.64	7	8.06	11.76	22.27	13.66
C=N imidazole	401.43	8	19.20	15.51	20.84	15.57
C=N pyrrole	402.4	9	11.82	15.77	0.00	14.98
C-NH$_3$ primary amine bonded to pyridine	403.24-403.49	10	10.71	8.66	16.55	12.41
C=N pyridine, pyrimidine	404.11	11	7.64	7.75	0.00	10.74

S30
Table S11. Nitrogen chemistry measured with N K-edge NEXAFS in py-ox wood and py-HSW before and after exposure to NH$_3$ and NH$_3$+CO$_2$ based on curve center energies and full-width-half-max (FWHM) values, relying on standard compounds6 and shown in Table S4.

Center (eV)	Peak number	py-HSW	py-HSW CO$_2$+NH$_3$	py-ox wood	py-ox wood NH$_3$	py-ox wood NH$_3$+CO$_2$						
NH$_3^+$ (putative)	397.27-397.28	0.00	0.00	0.00	0.00	1.20	0.17	0.79	0.13			
C=N pyridine, pyrimidine (putative)	398.08-398.36	1.20	0.62	1.20	0.61	0.57	0.39	0.95	0.19	0.82	0.21	
C=N pyridine, pyrimidine	398.76	0.95	0.35	1.10	0.54	0.00	0.00	0.90	0.23	0.78	0.17	
C=N pyrimidine with keto group	399.20	0.00	0.00	0.00	0.00	0.62	0.34	0.00	0.00	0.81	0.14	
C=N pyrimidine	399.54-399.81	0.86	0.28	0.62	0.24	0.00	0.00	0.99	0.37	0.78	0.27	
C=N imidazole, nitrile C≡N	400.05	0.96	0.24	0.65	0.18	0.00	0.00	0.00	0.00	0.00	0.00	
C=N pyridine, pyrimidine, keto-or alcohol-substituted	400.64	0.91	0.28	1.03	0.45	0.96	0.40	1.11	0.40	1.03	0.45	
C=N imidazole	401.43	1.13	0.67	1.11	0.60	1.20	0.38	1.20	0.46	1.06	0.44	
C=N pyrole	402.40	0.98	0.41	1.20	0.61	0.00	0.00	1.10	0.44	1.20	0.64	
C-NH$_2$ primary amine bonded to pyridine	403.24-403.49	0.98	0.37	1.04	0.33	0.63	0.30	0.96	0.37	0.94	0.48	
C=N pyridine, pyrimidine	404.11	0.94	0.27	1.12	0.30	0.00	0.00	1.08	0.32	0.90	0.35	
N-H amine	405.00	1.00	0.00	0.00	0.00	0.00	0.00	4.42	1.13	2.66	0.72	
C-N amide (secondary peak)	406.43	--	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.07	0.54	
C=N pyrole (secondary peak)	406.92	--	0.00	0.00	2.74	0.83	3.01	1.81	0.00	0.00	0.00	
C=N pyrole (secondary peak)	407.00	--	3.22	0.99	4.53	1.25	3.87	1.70	0.00	0.00	0.00	
C=N pyridine, pyrimidine (secondary peak)	408.01	--	3.94	0.35	2.34	0.25	4.96	2.14	3.73	0.73	3.53	0.93
C=N pyrole (secondary peak)	410.87	--	3.31	0.56	3.35	0.91	3.56	1.20	2.53	0.30	2.88	0.59
C=N pyrole (secondary peak)	412.28	--	0.00	0.00	0.00	0.00	3.81	1.33	2.49	0.19	2.00	0.15
C=N pyrole (secondary peak)	413.75	--	3.49	0.39	3.77	0.74	4.93	1.51	2.59	0.26	2.29	0.20
Table S12. The relative proportion of bond forms containing C, N, and O associated with the BE range of curve centers as measured with XPS. Deconvolution relied on standard compounds as well as online and published literature11-15 shown in Tables S5 and S6.

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
\text{Core level} & \text{Bond} & \text{BE range (eV)} & \text{Peak} & \text{py-HSW CO}_2=\text{NH}_3 & \text{py-HSW CO}_2=\text{NH}_3 & \text{py-ox wood CO}_2=\text{NH}_3 & \text{py-ox wood NH}_3 & \text{py-ox wood NH}_3 \\
\hline
\text{C1s} & \text{C-C, C=C (i)} & 283.0-284.0 & 7 & 0.00 & 0.00 & 0.00 & 0.00 & 30.02 \\
\text{C1s} & \text{C-C, C=C} & 284.0-285.0 & 6 & 48.31 & 53.29 & 56.48 & 40.39 & 38.17 \\
\text{C1s} & \text{C-N} & 285.0-286.0 & 5 & 31.15 & 29.77 & 21.49 & 34.01 & 0.00 \\
\text{C1s} & \text{C-OH} & 286.0-287.0 & 4 & 9.35 & 9.74 & 10.11 & 10.62 & 14.00 \\
\text{C1s} & \text{R-C=O (R aromatic)} & 287.0-287.5 & _ & 0.00 & 0.00 & 0.00 & 0.00 & 8.79 \\
\text{C1s} & \text{R-C=O} & 287.5-288.0 & 3 & 2.81 & 4.28 & 5.29 & 6.85 & 0.00 \\
\text{C1s} & \text{(C=O)-OH} & 288.5-288.8 & 2 & 0.00 & 0.00 & 5.01 & 6.76 & 6.68 \\
\text{C1s} & \text{N-C=O} & 289.0-290.5 & 1 & 8.37 & 2.92 & 1.63 & 1.36 & 2.33 \\
\hline
\text{N1s} & \text{pyridinic N} & 398.0-398.9 & 15,14 & 26.4 & 44.14 & 27.32 & 23.33 & 0.00 \\
\text{N1s} & \text{C-NH}_2 & 399.0-399.5 & 13 & 28.02 & 0.00 & 0.00 & 4.23 & 0.00 \\
\text{N1s} & \text{C-O=NH}_2^+ & 399.5-400.0 & 12 & 28.96 & 0.00 & 55.89 & 60.32 & 0.00 \\
\text{N1s} & \text{N=C-(C=O)} & 400.0-400.5 & 11 & 0.00 & 48.27 & 0.00 & 0.00 & 0.00 \\
\text{N1s} & \text{N-C-(C=O)} & 400.5-400.9 & 10 & 14.87 & 0.00 & 0.00 & 0.00 & 100 \\
\text{N1s} & \text{NH}_4^+ & 401.9-403.0 & 9.8 & 1.75 & 7.59 & 16.79 & 12.12 & 0.00 \\
\hline
\text{O1s} & \text{R-C=OH} & 531.0-531.3 & 20 & 75.42 & 69.8 & 0.00 & 0.00 & 0.00 \\
\text{O1s} & \text{C=O} & 531.3-532.0 & 19 & 0.00 & 0.00 & 55.74 & 59.38 & 51.98 \\
\text{O1s} & \text{C-O} & 532.0-533.3 & 18 & 19.7 & 26.49 & 44.26 & 40.62 & 48.02 \\
\text{O1s} & \text{H}_2\text{O, OH} & 533.5-536.0 & 16,17 & 4.88 & 3.71 & 0.00 & 0.00 & 0.00 \\
\hline
\end{array}
\]
Table S13. The binding energies (BE) and full-width at half-maximum values (FWHM) of deconvoluted curves of py-ox wood and py-HSW samples before and after exposure to NH\(_3\) and CO\(_2\), measured with XPS. Deconvolution relied on standard compounds as well as online and published literature\(^{11-15}\) shown in Tables S5 and S6.

Core level	Bond	BE range (eV)	Peak	py-HSW CO\(_2\)+NH\(_3\)	py-HSW	py-ox wood CO\(_2\)+NH\(_3\)	py-ox wood NH\(_3\)	py-ox wood
				BE (eV)	FWHM	BE (eV)	FWHM	BE (eV)
Cls	C-C, C=C	283.0-284.0	7	--	--	--	--	283.76
Cls	C-C, C=O	284.0-285.0	6	284.31	1.36	284.34	1.46	284.19
Cls	C-N	285.0-286.0	5	285.07	1.36	285.39	1.46	285.00
Cls	C-OH	286.0-287.0	4	286.12	1.36	286.55	1.46	286.35
Cls	R-C=O (R aromatic)	287.0-287.5	--	--	--	--	--	287.46
Cls	R-C=O	287.5-288.0	3	287.73	1.36	287.93	1.46	287.66
Cls	(C=O)-OH	288.5-288.8	2	--	--	--	--	288.80
Cls	N-C=O	289.0-290.5	1	289.37	1.36	289.47	1.46	290.02
Nls	pyridinic N	398.0-389.9	15,14	398.00	1.20	398.35	1.85	398.63
Nls	C-NH\(_2\)	399.0-399.5	13	399.94	1.20	--	--	399.29
Nls	C-O--NH\(_2\)	399.5-400.0	12	399.9	1.20	--	--	399.71
Nls	N=C=O (C=O)	400.0-400.5	11	--	--	400.08	1.85	--
Nls	N=C=O (C=O)	400.5-400.9	10	400.67	1.20	--	--	400.77
Nls	NH\(_4^+\)	401.0-403.0	9,8	401.89	1.20	401.88	1.85	401.32
Ols	R-C-OH	531.0-531.3	20	531.23	1.87	531.15	1.99	--
Ols	C=O	531.3-532.0	19	--	--	--	--	531.58
Ols	C-O	532.0-533.3	18	532.54	1.87	532.61	1.99	533.23
Ols	H\(_2\)O, OH	533.5-536.0	16,17	535.70	1.87	534.86	1.99	--
Table S14. Carbon (C), nitrogen (N), and oxygen (O) weight percent and the molar O to C ratio of milled samples by determined by IRMS with correction for sample mass change shown in Figure S3A (IRMS w/TGA) and IRMS with no mass correction (IRMS). The surface atomic percent of C, N, and O was also determined using XPS of whole particles. Total potassium (K) concentration was also determined for py-HSW.

Treatment	C (AT%)	C (%w w$^{-1}$)	N (AT%)	N (%w w$^{-1}$)	O (AT%)	O (%w w$^{-1}$)	O/C (mol mol$^{-1}$)	K (AT%)				
	XPSa	IRMSb w/TGA	IRMS	XPS IRMS w/TGA	IRMS	IRMS XPS	IRMS w/TGA IRMS XPS					
py-HSW CO$_2$+NH$_3$	33.25	46.96 ± 0.61	45.88 ± 0.73	3.75	5.33 ± 0.13	5.20 ± 0.15	40.65	20.25 ± 0.99	19.78 ± 0.85	0.43	0.43	8.15
py-HSW	47.49	44.04 ± 0.66	44.04 ± 0.66	3.76	4.57 ± 0.04	4.57 ± 0.04	33.1	19.90 ± 0.48	19.90 ± 0.48	0.45	0.45	3.68
py-ox wood NH$_3$+CO$_2$	81.66 ± 0.59	77.25 ± 5.85	67.25 ± 5.02	3.65	4.05 ± 0.13	4.05 ± 0.13	14.69	20.61 ± 1.76	19.39 ± 1.43	0.27	0.29	n/a
py-ox wood NH$_3$	78.55 ± 1.85	74.54 ± 0.27	71.48 ± 0.24	4.40	3.74 ± 0.17	3.59 ± 0.70	17.05	19.90 ± 0.58	19.90 ± 0.48	0.27	0.27	n/a
py-ox wood NH$_3$	79.85 ± 1.05	74.13 ± 1.73	74.13 ± 1.73	0.22	0.21 ± 0.08	0.21 ± 0.08	19.93	22.04 ± 0.66	22.04 ± 0.66	0.3	0.3	n/a
XPS RSFc	21.12	33.71	49.75				1.55					

a XPS quantification shows the average of n = 2 narrow scans for py-ox wood samples. Wide scan data was used for py-HSW.

b IRMS data shows the average of n = 2 experimental replicates.

c Atomic concentrations of C, N, O, and K were corrected using instrument-specific relative sensitivity factors (RSF).
Figure S11. Narrow scan XPS spectra in the C1s region showing peaks for the K2p region for potassium between 296-290 eV, highlighted with black arrows. The K2p 1 peak between 293-290 eV increases in area by 2.7-fold in py-HSW CO₂+NH₃ compared to py-HSW.
Supplementary references

1 Thornton, T.; Hajj, L.; Massengill, K.; Koch, S.; Armstrong, L. Y Zeolite Reference Material Booklet, 004-16844-02. 2015, Micromeritics, Norcross, GA.

2 Nunez, J.; Renslow, R.; Cliff III, J. B.; Anderton, C. R. NanoSIMS for biological applications: Current practices and analyses. Biointerphases 2018, 13 (3), 03B301. doi.org/10.1116/1.4993628

3 Ghosal, S.; Fallon, S. J.; Leighton, T. J.; Wheeler, K. E.; Kristo, M. J.; Hutcheon, I. D.; Weber, P. K. Imaging and 3D elemental characterization of intact bacterial spores by high-resolution secondary ion mass spectrometry. Anal. Chem. 2008, 80 (15), 5986-5992. doi.org/10.1021/ac8006279

4 Pett-Ridge, J.; Weber, P. K. NanoSIP: NanoSIMS applications for microbial biology. In: Navid, A. (Ed.) Microb. Syst. Biol. 2012, Humana Press: Totowa, NJ, pp. 375-408.

5 Pocztak, C.; Kaufman, Z; Lechene, C. OpenMIMS ImageJ Plugin Guide. 2009, Harvard Medical School, Boston, MA, USA. https://nrims.harvard.edu/software (last accessed December 2019)

6 Hestrin, R.; Torres-Rojas, D.; Dynes, J. J.; Regier, T. Z.; Gillespie, A. W.; Lehmann, J. Fire-derived organic matter retains ammonia through covalent bond formation. Nat. Comm. 2019, 10 (1), 1-8. doi.org/10.1038/s41467-019-08401-z

7 Gillespie, A. W.; Walley, F. L.; Farrell, R. E.; Regier, T. Z.; Blyth, R. I. Calibration method at the N K-edge using interstitial nitrogen gas in solid-state nitrogen-containing inorganic compounds. J. Synchrotron Radiat. 2008, 15 (5), 532-534. doi.org/10.1107/S0909049508014283

8 Leinweber, P.; Kruse, J.; Walley, F. L.; Gillespie, A.; Eckhardt, K. U.; Blyth, R. I.; Regier, T. Nitrogen K-edge XANES—an overview of reference compounds used to identify ‘unknown’ organic nitrogen in environmental samples. J. Synchrotron Radiat. 2007, 14 (6), 500-511. doi.org/10.1107/S0909049507042513

9 Gillespie, A. W., Diochon, A., Ma, B. L., Morrison, M. J., Kellman, L., Walley, F. L., Regier, T. Z., Chevrier, D., Dynes, J. J.; Gregorich, E. G. Nitrogen input quality changes the biochemical composition of soil organic matter stabilized in the fine fraction: a long-term study. Biogeochem. 2014, 117 (2-3), 337-350. doi.org/10.1007/s10533-013-9871-z

10 Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43 (5-1), 1126-1128. doi.org/10.1107/S0021889810030499

11 Biesinger, M. C. XPS fitting. 2018. www.xpsfitting.com (last accessed December 2019)

12 Cheng, C. H.; Lehmann, J.; Thies, J. E.; Burton, S. D.; Engelhard, M. H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37 (11), 1477-1488. doi.org/10.1016/j.orggeochem.2006.06.022

13 Graf, N.; Yegen, E.; Gross, T.; Lippitz, A.; Weigel, W.; Krakert, S.; Terfort, A.; Unger, W. E. XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surf. Sci. 2009, 603 (18), 2849-2860. doi.org/10.1016/j.susc.2009.07.029

14 Rouxhet, P. G.; Genet, M. J. XPS analysis of bio-organic systems. Surf. Interface Anal. 2011, 43 (12), 1453-1470. doi.org/10.1002/sia.3831

15 Buckingham, A. D.; Handy, N. C.; Rice, J. E.; Somasundram, K.; Dijkgraaf, C. Reactions involving CO₂, H₂O, and NH₃: The formation of (i) carbamic acid, (ii) urea, and (iii) carbonic acid. J. Comput. Chem. 1986, 7 (3), 283-293. doi.org/10.1002/jcc.540070306

16 Coates, J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 2000.

17 Baio, J. E.; Weidner, T.; Brison, J.; Graham, D. J.; Gamble, L. J.; Castner, D. G. Amine terminated SAMs: Investigating why oxygen is present in these films. J. Electron Spectrosc. Relat. Phenom. 2000, 172 (1-3), 2-8. doi.org/10.1016/j.elspec.2009.02.008
18 Shimada, H.; Minami, H.; Okuizumi, N.; Sakuma, I.; Ukai, M.; Fujii, K.; Yokoya A.; Fukuda, Y.; Saitoh, Y. Nitrogen K-edge X-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution. *J. Chem. Phys.* **2015**, *142* (17), p.05B605_1. doi.org/10.1063/1.4919744

19 Dietrich P. M.; Graf, N.; Gross, T.; Lippitz, A.; Schüpbach, B.; Bashir, A.; Wöll, C.; Terfort, A.; Unger, W. E. Self-assembled monolayers of aromatic ω-aminothiols on gold: Surface chemistry and reactivity. *Langmuir* **2009**, *26* (6), 3949-3954. doi.org/10.1021/la903293b

20 Chuang, C. H.; Ray, S. C.; Mazumder, D.; Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Chiu, J. W.; Tsai, H. M.; Shiu, H. W.; Chen, C. H.; Lin, H. J. Chemical modification of graphene oxide by nitrogenation: An X-ray absorption and emission spectroscopy study. *Sci. Rep.* **2017**, *7*, 42235. doi.org/10.1038/srep42235

21 Robinson, D. broom: Convert Statistical Analysis Objects into Tidy Data Frames. R package version 0.4.2. **2017**. https://CRAN.R-project.org/package=broom (last accessed December 2019)

22 Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. R package version 0.9.2. **2017**. https://CRAN.R-project.org/package=cowplot (last accessed December 2019)

23 Dowle, M.; Srinivasan, A. data.table: Extension of `data.frame`. R package version **2017**, 1.10.4-3. https://CRAN.R-project.org/package=data.table (last accessed December 2019)

24 Wickham H.; Chang W. devtools: Tools to Make Developing R Packages Easier. R package version 1.13.4. **2017**. https://CRAN.R-project.org/package=devtools (last accessed December 2019)

25 Wickham, H., Francois, R., Henry, L., Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.7.4. **2017**. https://CRAN.R-project.org/package=dplyr (last accessed December 2019)

26 Schloerke, B.; Crowley, J.; Cook, D.; Briatte, F.; Marbach, M.; Thoen, E.; Elberg A.; Larmarange, J. GGally: Extension to 'ggplot2'. R package version 1.4.0. **2018**. https://CRAN.R-project.org/package=GGally (last accessed December 2019)

27 Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, **2009**. http://ggplot2.org (last accessed December 2019)

28 Aphalo, O. J. Learn R as you learnt your mother tongue. *Leanpub 2016*, Helsinki.

29 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, **2017**. URL https://www.R-project.org/ (last accessed December 2019)

30 Sarkar, D. Lattice: Multivariate Data Visualization with R. Springer, New York. **2008**. ISBN 978-0-387-75968-5

31 Lenth, R. V. Least-Squares Means: The R Package lsmeans. *J. Stat. Softw.* **2016**, *69* (1), 1-33. doi.org/10.18637/jss.v069.i01

32 Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. *Biom. J.* **2008**, *50* (3), 346-363. doi.org/10.1002/bimj.200810425

33 Sievert, C.; Parmer, C.; Hocking, T.; Chamberlain, S.; Ram, K.; Corvellec, M.; Despouy, P. plotly: Create Interactive Web Graphics via 'plotly.js'. R package version 4.7.1. **2017**. https://CRAN.R-project.org/package=plotly (last accessed December 2019)

34 Wickham, H. The Split-Apply-Combine Strategy for Data Analysis. *J. Stat. Softw.* **2011**, *40* (1), 1-29. doi.org/10.18637/jss.v040.i01

35 Wickham, H. Reshaping Data with the reshape Package. *J. Stat. Softw.* **2007**, *21* (12), 1-20. doi.org/10.18637/jss.v021.i12

36 Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.2.0. **2017**. https://CRAN.R-project.org/package=stringr (last accessed December 2019)
37 Wickham, H. tidyverse: Easily Install and Load the 'Tidyverse'. R package version 1.2.1. 2017.
https://CRAN.R-project.org/package=tidyverse (last accessed December 2019)

38 Dragulescu, A. A. xlsx: Read, write, format Excel 2007 and Excel 97/2000/XP/2003 files. R
package version 0.5.7. 2014. https://CRAN.R-project.org/package=xlsx (last accessed December
2019)

39 Dragulescu, A. A. xlsxjars: Package required POI jars for the xlsx package. R package version
0.6.1. 2014. https://CRAN.R-project.org/package=xlsxjars (last accessed December 2019)