Light curve properties of SN 2017fgc and HV SNe Ia

Umut Burgaz1,2, Keiichi Maeda2, Belinda Kalomeni1, Miho Kawabata2, Masayuki Yamanaka3, Koji S. Kawabata4,5,6, Naoki Kawahara4,5 and Tatsuya Nakaoka4,5

1Department of Astronomy and Space Sciences, University of Ege, 35100, Izmir, Turkey
2Department of Astronomy, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
3Okayama Observatory, Kyoto University, 3037-5 Honjo, Kamogoto-cho, Asakuchi, Okayama 719-0822, Japan
4Hiroshima Astrophysical Science Center, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526
5Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
6Core Research for Energetic Universe (CORE-U), Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

Accepted 22 January 2021. Received YYY; in original form ZZZ

ABSTRACT
Photometric and spectroscopic observations of type Ia supernova (SN) 2017fgc which cover the period from -12 to $+137$ days since the B-band maximum are presented. SN 2017fgc is a photometrically normal SN Ia with the luminosity decline rate, $\Delta m_{15}(B)_{\text{true}} = 1.10 \pm 0.10$ mag. Spectroscopically, it belongs to the High Velocity (HV) SNe Ia group, with the Si II $\lambda 6355$ velocity near the B-band maximum estimated to be $15,200 \pm 480 \text{ km s}^{-1}$. At the epochs around the near-infrared secondary peak, the R and I bands show an excess of ~ 0.2 mag level compared to the light curves of the normal velocity (NV) SNe Ia. Further inspection of the samples of HV and NV SNe Ia indicates that the excess is a generic feature among HV SNe Ia, different from NV SNe Ia. There is also a hint that the excess is seen in the V band, both in SN 2017fgc and other HV SNe Ia, which behaves like a less prominent shoulder in the light curve. The excess is not obvious in the B band (and unknown in the U band), and the color is consistent with the fiducial SN color. This might indicate the excess is attributed to the bolometric luminosity, not in the color. This excess is less likely caused by external effects, like an echo or change in reddening but could be due to an ionization effect, which reflects an intrinsic, either distinct or continuous, difference in the ejecta properties between HV and NV SNe Ia.

Key words: supernovae:general – supernovae:individual (SN 2017fgc)

1 INTRODUCTION

Over the last few decades, type Ia supernovae (SNe Ia) have been important targets for transient observations since they have proven to be a reliable distance estimator. Thanks to their huge brightness, these SNe can be seen up to large distances, allowing measurements of fundamental cosmological parameters (Riess et al. 1998; Perlmutter et al. 1999; Riess et al. 2016).

Even though SNe Ia are acknowledged to be a thermonuclear explosion of a C/O white dwarf (WD) in a binary system (Hoyle & Fowler 1960), the explicit nature of the thermonuclear explosion and the binary companion are still under debate (Maeda & Terada 2016). The commonly accepted progenitor models are divided into two scenarios. The first model is the single degenerate (SD) model (Nomoto et al. 1997) in which the companion is a non-degenerate main-sequence star or an evolved star such as a red giant or a helium star. The second model is the double degenerate (DD) model (Iben & Tutukov 1984), which involves the merger of two WDs. Different progenitor scenarios may manifest themselves in observational properties of SNe Ia. It is, therefore, crucial to understand similarities and diversities seen in SNe Ia.

The similarity among SNe Ia is highlighted by their photometric properties. It has been found that the absolute magnitudes of SNe Ia follow the width-luminosity relation (Phillips 1993; Riess et al. 1996; Guy et al. 2005; Guy et al. 2007) and the color-luminosity relation (Tripp 1998; Tripp & Branch 1999; Wang et al. 2005). On the other hand, their spectral properties point to a diversity among SNe Ia. Branch et al. (2006) divided SNe Ia into four groups based on the empirical pseudo equivalent width (pEW) measurements of 5750Å and 6100Å absorption fea-
tures: “Core-Normal (CN)”, "Broad Line (BL)”, “Cool (CL)”, and “Shallow-Silicon (SS)”. Benetti et al. (2005) introduced a different classification scheme, based on the Si II λ6355 velocity evolution: The “faint” SN 1991bg like group, the “low velocity gradient (LVG)” group, and the “high velocity gradient (HVG)” group. In general, HVG SNe Ia have a higher velocity than the faint and LVG SNe Ia. Wang et al. (2009) proposed a similar classification based on the Si II velocity gradient (HVG)” group. In general, HVG SNe Ia have a higher velocity gradient (LVG)” group, and the “high velocity gradient (HVG)” group. In general, HVG SNe Ia have a higher velocity gradient (LVG)” group, and the “high velocity gradient (HVG)” group. In general, HVG SNe Ia have a higher velocity gradient (LVG)” group, and the “high velocity gradient (HVG)” group.

Aside from the line velocity evolution, HV SNe Ia exhibit other properties that are different from those of NV SNe Ia; HV SNe Ia tend to have a redder intrinsic B − V color (Pignata et al. 2008; Wang et al. 2009), and they exhibit different evolution from NV SNe Ia in the B-band light curves (Wang et al. 2008; Wang et al. 2019) and the B − V color at ~40d after the maximum brightness (Wang et al. 2019). Different extinction laws seem to apply to the two types (Wang et al. 2009) where the extinction parameter, \(R_V = A_V / E(B−V) \), is lower for HV SNe Ia (\(R_V \sim 1.55 \)) than for NV SNe Ia (\(R_V \sim 2.51 \)). It has also been shown that in the late epochs, the emission lines shift differently between HV and NV SNe Ia (Maeda et al. 2010a). The explosions sites of HV SNe Ia tend to be more concentrated near the core of the host galaxies than those of NV SNe Ia (Wang et al. 2013), which might indicate different progenitor systems. The origin of the differences between the two sub-types of SNe Ia is still not well understood, and more observational and theoretical studies are needed.

In this paper, we present the observations of SN 2017fgc, a HV SN Ia that was discovered by DLT40 (Valenti et al. 2017) on 2017 July 11. TÜBİTAK National Observatory (TUG) picked up the alert on 2017 July 13 (MJD 57947.011) with the TUG T60 telescope, and started observing the SN around 11 days before the B-band maximum (MJD 57958.932). Based on a spectrum obtained by Sand et al. (2017), the object was classified as an SN Ia around ~13d before the maximum with a red-shift of \(z=0.008 \). Our observations and data reduction of SN 2017fgc are presented in Section 2. Light curve properties, reddening estimate, absolute magnitudes, and the optical spectra of SN 2017fgc are shown in Section 3. Further comparison of BVRI light curves of NV and HV SNe Ia is presented in Section 4, where we find differences in the light curve evolution between HV SNe Ia (highlighted by SN 2017fgc) and NV SNe Ia. We explore this property further in Section 5. Conclusions are presented in Section 6.

2 OBSERVATIONS AND DATA REDUCTION

SN 2017fgc was discovered by DLT40 on 2017 July 11 (MJD 57945.469) and the alert was published at Transient Name Server\(^1\) on the same day (MJD 57945.472) when it was at 17.3 mag (unfiltered). The last non-detection was on 2017 July 8 (MJD 57942.291) with a magnitude of 19.5 mag. The coordinate of SN 2017fgc is \(\alpha = 01^h 20^m 44.44 \) and \(\delta = 03^\circ 24' 09'' .96 \) (J2000.0). SN 2017fgc is located on 116°.0 east and 45°.0 north of the centre of NGC 0474. This is a famous shell galaxy with tidal tails (Malín & Carter 1983; Turnbull et al. 1999) and is in interaction with NGC 0470 by a HI gas bridge (Rampazzo et al. 2006), and both of these two galaxies lie at a distance of ~27.7 Mpc (Kim et al. 2012). A TUG T60 image of SN 2017fgc taken in V band is presented in Fig. 1.

2.1 Imaging

Imaging observations were initiated soon after the alert with the 0.6 m robotic TUG T60 telescope at TÜBİTAK National Observatory, on 2017 Jul 13 (JD 2457947.511340) and conducted until 2018 January 29. The observations have been performed by using the FLI ProLine PL3041 CCD camera (2048 × 2048 pixels, covering a 17.4 × 17.4 arcmin\(^2\) field of view) using the BVRI photometric passbands. In total, the data are taken on 65 nights starting from ~12 days before the B-band maximum to ~137 days after.

Bias subtraction, dark, and flat-field corrections were done by using the CCDpro package under Astropy. The photometric reduction was done by giving the WCS coordinates to the stars using Astrometry.net\(^2\) and obtaining a catalog file with the instrumental magnitudes by running SExtractor (Bertin & Arnouts 1996) on the images. Considering the distance from the SN to the host galaxy, no galaxy subtraction was done on the images. The preliminary photometric calibration and conversion from instrumental magnitudes to apparent magnitudes using differential photometry was carried out by the Cambridge Photometry Calibration Server (CPCS)\(^3\), which made the data available to all observers during the whole observing periods. Final photometric calibration was done using calibration stars from the Data Release 10 (Henden et al. 2018) of The AAVSO Photometric All-Sky Survey (APASS). The B-band and V-band data were taken from the original APASS values directly. The R-band and the I-band magnitudes of the calibrating stars were obtained by converting APASS photometry of the r and i bands to the Johnson R and I bands using the following SDSS photometry transformation equations;

\[
R = r - 0.2936 \times (r - i) = 0.1439 \pm 0.007 \text{ mag and }
\]

\(1\) https://wis-tns.weizmann.ac.il/

\(2\) nova.astrometry.net

\(3\) http://gsaweb.ast.cam.ac.uk/ followup/
Table 1. A log of the spectroscopic observations of SN 2017fgc.

Date	MJD	Phase\(^a\) (days)	Coverage (Å)	Resolution (Å)
13/07/17	57947.8	10.9	4500–9200	500
19/07/17	57953.8	-4.9	4500–9200	500
30/07/17	57964.7	6.0	4500–9200	500
31/07/17	57965.7	7.0	4500–9200	500
01/08/17	57966.7	8.0	4500–9200	500
03/08/17	57968.7	10.0	4500–9200	500
20/08/17	57985.7	27.0	4500–9200	500
27/08/17	57992.7	34.0	4500–9200	500
01/09/17	57997.7	39.0	4500–9200	500
25/09/17	58021.6	62.9	4500–9200	500

\(\text{(*)Relative to the } B\text{-band maximum (MJD = 57958.7)}\)

\[I = r - 1.2444 \times (r - i) - 0.3820 \pm 0.008 \text{ mag}. \] The zero-points with an average error of 0.02 mag were obtained for each data individually. First-order color term correction was applied in the photometry. The apparent magnitudes of SN 2017fgc are listed in Table A1.

2.2 Spectroscopy

A total of 10 spectra of SN 2017fgc were obtained with the Hiroshima One–shot Wide-field Polarimeter (HOWPol; Kawabata et al. 2008) installed on the Nasmyth stage of the 1.5–m Kanata telescope at the Higashi-Hiroshima Observatory, Hiroshima University. HOWPol has wavelength coverage of 4500–9200Å and \(R = \lambda/\Delta \lambda \sim 400\) at 6000Å. Sky emission lines were used for the wavelength calibration. L. A. Cosmic pipeline (van Dokkum 2001) was used to remove cosmic ray events. Flux calibration was done by using the data of spectrophotometric standard stars observed on the same night. The log of spectroscopy is presented in Table 1. The identification spectrum (Sand et al. 2017) from the DLT survey at \(-13\) days is also included in our analysis.

3 PROPERTIES OF SN 2017FGC

3.1 Optical Spectra

The spectral series cover the phase from \(t \simeq -11\) to \(t \simeq +63\) days since the \(B\)-band maximum. The complete spectral evolution of SN 2017fgc, including the identification spectra from DLT (shown with gray color), is presented in Fig. 2. The earliest spectra show a strong absorption feature at \(\sim 5900\)Å, by Si II \(\lambda 6355\), indicating a high velocity. Although the spectral inspection of SN 2017fgc is not the main focus of this paper, comparisons in the earliest phase with SN 2019ein (Kawabata et al. 2020), SN 2002dj (Pignata et al. 2008), SN 2002bo (Benetti et al. 2004) and SN 2005cf (Garavini et al. 2007) are presented in Fig. 3. Comparisons in other phases are presented in Fig. A1. All the spectra have been corrected for redshifts and reddening (see Section 3.1), except for those in Fig. 2.

By following the method described in Zhao et al. (2015) and performing a single Gaussian fitting to the observed line profile of Si II \(\lambda 6355\), the expansion velocity \((v_{\text{exp}})\) of SN 2017fgc is derived and presented in Fig. 4 as the function of time, together with those of other well-observed SNe Ia.

All velocities have been corrected for the redshift. It can be seen that SN 2017fgc has a very high expansion velocity with \(v_{\text{exp}}\) reaching to \(\sim 20,500\) km s\(^{-1}\) at \(t = -13\) d. Near the \(B\)-band maximum, from a polynomial fit, \(v_{\text{exp}}\) is estimated to be \(15,200 \pm 480\) km s\(^{-1}\) while the average value for NV SNe Ia is around \(11,800\) km s\(^{-1}\) at maximum light (Wang et al. 2009). Therefore, SN 2017fgc is classified into the HV SN Ia subclass.

3.2 BVRI light curves

The \(BVRI\) light curves of SN 2017fgc are presented in Fig. 5. Thanks to the good photometric coverage, the maximum epoch is well constrained. A polynomial fit is applied to the points around the maximum, and \(B_{\text{max}} = 13.97 \pm 0.05\) mag on \(t_{B\text{max}} = \text{MJD} 57958.6 \pm 0.8\) was obtained. Thus, the observations cover the epochs between \(-12\) and \(+137\) days with respect to \(t_{B\text{max}}\). The maximum magnitudes in the other bands are the following; \(13.64 \pm 0.03\) mag \((V)\), \(13.57 \pm 0.01\) mag \((R)\), and \(13.91 \pm 0.01\) mag \((I)\) on \(-3, 2,\) and \(0.4\) days after the \(B\)-band maximum, respectively. By using the light curve fitter SNoPy (Burns et al. 2011), basic light curve parameters were computed. Both the “EBV model” and “max model” in SNoPy were used for the analysis. These models fit the \(BVRI\) light curves with the templates generated with the prescription given by Prieto et
Figure 3. Spectrum of SN 2017fgc at \(t = -13 \) and \(t = -11 \) days since the \(B \)-band maximum, over-plotted with the spectra of SN 2019ein, SN2002dj, SN 2002bo and SN 2005cf around similar phases (see the text for the references). All the presented spectra have been corrected for redshift and reddening. The dashed line marks the absorption minima of Si II \(\lambda 6355 \) for SN 2017fgc at \(t = -13d \).

Figure 4. Expansion velocity evolution of SN 2017fgc as measured from the minima of Si II \(\lambda 6355 \), along with SN 2019ein (Kawabata et al. 2020), SN 2009ig (Silverman et al. 2015), SN 2006X (Yamanaka et al. 2008), SN 2004dt (Altavilla et al. 2007), SN 2002bo (Benetti et al. 2004), SN 2005cf (Garavini et al. 2007) and SN 2003du (Stanishev et al. 2007).

Figure 5. \(BVRi \) light curves of SN 2017fgc. The gray line represents the best SNooPy fit in each band.

Given that the direct measurement and the SNooPy fit give the consistent results, \(t_{B_{\text{max}}} = \text{MJD } 57958.721 \pm 0.693 \) and \(\Delta m_{15}(B) = 1.08 \pm 0.09 \) mag are adopted in this paper. Secondary peaks are seen in the \(R \) and \(I \) band light curves, as expected for a normal decliner. The secondary peak in the \(I \) band occurred around 30 days after the \(B \)-band maximum and was \(\sim 0.25 \) mag fainter than the maximum brightness.

3.3 Reddening Estimate and Absolute Magnitude

The galactic reddening in the direction of SN 2017fgc is estimated to be \(E(B-V)_{\text{Gal}} = 0.029 \text{ mag} \) (Schlafly & Finkbeiner 2011).
Table 2: Estimated peak absolute magnitudes for SN 2017fgc.

Method	MB_{max}(mag)
Phillips et al. (1999)	-19.38 ± 0.18
Altavilla et al. (2004)	-19.40 ± 0.19
Wang et al. (2005)	-19.29 ± 0.19
Prieto et al. (2006)	-19.29 ± 0.14
Average	-19.34 ± 0.19

Finkbeiner (2011). The intrinsic $B-V$ color of SNe Ia in the maximum light can be estimated by several approaches. Using the relation between the $B-V$ color and $\Delta m_{15}(B)$ suggested by Phillips et al. (1999), $E(B-V)_{host} = 0.29 \pm 0.02$ mag is estimated, while using the approach suggested by Reindl et al. (2005), $E(B-V)_{host} = 0.25 \pm 0.09$ mag is estimated. Another approach with the relation between the Si II λ6355 line velocity and the intrinsic $B-V$ color of SNe Ia in the maximum light can also be used to estimate the host galaxy extinction. From Foley et al. (2011), we derive with $\Delta m_{15}(B) = 0.17 \pm 0.09$ mag is measured. The estimated host galaxy reddening obtained with the light curve fitter SNoOpy is $E(B-V)_{host} = 0.36 \pm 0.11$ mag with $R_V = 1.5$. Since all the estimated values are in agreement, the $E(B-V)_{host} = 0.29 \pm 0.02$ mag is adopted for the host galaxy reddening in this paper, leading to $(B-V)_{rot} = 0.32 \pm 0.02$ mag.

An observed $\Delta m_{15}(B) = 1.08 \pm 0.09$ mag is measured for SN 2017fgc. Applying the interstellar extinction suffered by SN 2017fgc, a correction to the $\Delta m_{15}(B)$ is applied by using the Equation 6 of Phillips et al. (1999). The reddening corrected decline rate parameter is then found to be $\Delta m_{15}(B)_{true} = 1.10 \pm 0.10$ mag.

The absolute magnitude of SN 2017fgc can be estimated by several methods. By using the relation between MB and Δm_{15} from Phillips et al. (1999), we derive $MB = -19.38 \pm 0.23$ mag, which corresponds to a distance modulus of $DM = 32.81 \pm 0.33$ with $H_0 = 72$ km s$^{-1}$ Mpc$^{-1}$. By using the relation updated by Prieto et al. (2006), $MB = -19.29 \pm 0.14$ mag, and $DM = 32.72 \pm 0.34$ mag. By another method proposed by Wang et al. (2005), which uses the relation between MB and the $B-V$ color \sim12 days after the B-band maximum (ΔC_{12}), we obtain $MB = -19.29 \pm 0.24$ mag, and $DM = 32.72 \pm 0.31$ mag. Altavilla et al. (2004) presented an updated version of Hamuy et al. (1996), which gives $MB = -19.40 \pm 0.23$ mag. DM obtained by all of the methods (extinction corrected, assuming $R_V = 3.1$ for the Milky Way (MW), and $R_V = 1.55$ for the host galaxy) agree with the distance to NGC 0474 within the errors. The results are listed in Table 2.

4 LIGHT CURVE COMPARISONS

We compare the multi-band light curves of SN 2017fgc to those of the following objects; SN 2002dj [$\Delta m_{15}(B) = 1.08$; Pignata et al. (2008)], SN 2002bo [$\Delta m_{15}(B) = 1.19$; Ganeshalingam et al. (2010); Silverman et al. (2012a)], SN 2003W [$\Delta m_{15}(B) = 1.11$; Ganeshalingam et al. (2010); Silverman et al. (2012a)], SN 2006X [$\Delta m_{15}(B) = 1.17$; Wang et al. (2008)], SN 2006cf [$\Delta m_{15}(B) = 1.12$; Pastorello et al. (2007)], SN 2005na [$\Delta m_{15}(B) = 0.95$; Contreras et al. (2010)], SN 2007af [$\Delta m_{15}(B) = 1.22$; Ganeshalingam et al. (2010); Silverman et al. (2012a)], SN 2007le [$\Delta m_{15}(B) = 1.10$; Hicken et al. (2012)], SN 2011fe [$\Delta m_{15}(B) = 1.21$; Richmond & Smith (2012); Zhang et al. (2016)], and SN 2012cg [$\Delta m_{15}(B) = 1.04$; Silverman et al. (2012a); Munari et al. (2013)]. All the light curves are normalized to the time of B_{max} and to the peak magnitudes in the corresponding bands. Figs. 6 – 10 show the comparisons. In each band, the comparison is done with a sample of HV SNe Ia and that of NV SNe Ia separately.

Fig. 6 reveals that the B-band light curve of SN 2017fgc is similar to both NV and HV SNe Ia until \sim 50 days after the B-band maximum. The pre-maximum phase of SN 2017fgc in the B-band is most similar to SN 2002bo and SN 2003W. Around 50 days after the t_{Bmax}, SN 2017fgc starts to differ from those of NV SNe Ia, as previously shown by Wang et al. (2019) for HV SNe Ia.

We find that SN 2017fgc shows a difference from NV SNe Ia in the V band with a shoulder-like behaviour that can be seen between \sim20 and \sim30 days after the B band maximum (Fig. 9). Similar behaviour was previously discovered in SN 2006X (Wang et al. 2008). Indeed, this behavior is commonly seen in other comparison HV SNe Ia (See Section 5 for details).

SN 2017fgc differs from NV SNe Ia in the R-band light curve with a higher magnitude rise around the secondary peak as well (Fig. 7). Indeed, it can be seen from Fig. 7 that HV SNe Ia generally seem to differ from NV SNe Ia in the R-band light curves. Similar behavior is also noticed in the I-band light curves (Fig. 8). Note that these differences between HV and NV SNe Ia happen at the same time window in all the bands. The observed behavior of the secondary peak and the difference between HV and NV SNe Ia will be further discussed in Section 5.

4.1 Color curves

The $B-V$, $V-R$, $V-I$, and $R-I$ color curves of SN 2017fgc and the other SNe Ia are presented in Fig. 10. All the color curves are shifted to match the peak color and the maximum epoch in the corresponding band of SN 2017fgc. The $B-V$ color evolution is similar for all the SNe Ia in the early epoch where the $B-V$ color rises for \sim 30 days. As previously shown by Wang et al. (2019), the $B-V$ color becomes bluer for HV SNe Ia for later epochs, where SN 2017fgc also shows the same behavior. The $B-V$ color evolution of SN 2017fgc is especially similar to SN 2002bo at all the epochs.

The $V-R$ color curve does not show any notable change in the color at \sim 20–40 days. $V-R$ color of SN 2017fgc follows a redder path, mainly following a close match to SN 2002bo. The $V-I$ color curve of SN 2017fgc shows a similar behavior until \sim 30 days after the B-band maximum, after which SN 2017fgc follows a redder evolution.

Overall, the color evolution in $B-V$ and $V-R$ of SN 2017fgc shows a close match to those of SN 2002bo. In the $V-I$ and $R-I$ colors, SN 2017fgc follows a redder evolution after the peak. We do not see a clear difference between HV and NV SNe Ia around the secondary peaks. Given that the difference around the secondary peaks can be seen individually in the light curves in each band, this suggests that the excess might be caused by the differences in the bolometric luminosities (or at least the quasi-bolometric
Figure 6. The B-band light curve of SN 2017fgc together with those of comparison SNe Ia. HV SNe Ia are plotted on the top, while NV SNe Ia are plotted on the bottom. All the light curves are shifted to match the time of B maximum and the peak magnitude in the B band. Gray lines represent NV SN 2007af (Top) and HV SN 2012bo (Bottom).

Figure 7. Same as Figure 6, but for the R band.

Figure 8. Same as Figure 6, but for the I band.

5 ANALYSIS OF THE EXCESS

The light curve analysis of SN 2017fgc has revealed a characteristic shoulder in the VRI bands, as shown in Figs. 7–9.

5.1 Methodology

In order to quantitatively study the difference between NV and HV SNe Ia light curves regarding the excess in the VRI bands, we have used SN 2004dt (Ganeshalingam et al. 2010) and SN 2009ig (Foley et al. 2012) and the same comparison objects previously used in this paper. We used the ‘max model’ in SNooPy, which generates the templates from Prieto et al. (2006) to fit individual light curves for all the comparison SNe. For each band, we first fit the light curve by omitting the data around the secondary peak, and obtain a light curve template in each band. This template predicts the light curve behavior around the secondary peak for the same object. Then, we subtract the entire light curve by the template for each object. The difference here is then defined as the amount of the excess. Omitting the data in the same epochs for HV and NV SNe Ia, and by setting the fit parameters free, we remove a possible bias from our calculations.

Fig. 11 shows the examples of the procedure, for SN 2017fgc (HV), SN 2003W (HV), and SN 2005cf (NV). The template obtained by omitting the data around the secondary peak is shown by a gray line. It is seen that the template fits the secondary peak seen in NV SN 2005cf. On the other hand, HV SN 2017fgc and 2003W show the excess both in the R and I bands. The same procedure is applied to all other comparison SNe as well.
Figure 9. The V-band light curve of SN 2017fgc together with those of comparison SNe Ia. All the light curves are shifted to match the time of B maximum and peak magnitude in the B band.

Figure 10. The B − V, V − R, V − I and R − I color curves of SN 2017fgc all together with comparison SNe Ia. All the peak colors are artificially shifted to match the observed values of SN 2017fgc at t_{Bmax}. Filled symbols represent HV SNe Ia, while open symbols represent NV SNe Ia.
stronger in redder bands. Table 3 shows the maximum excess seen in the V/R/I bands for the comparison SNe.

The excess in each band is compared in Fig. 13. NV SNe Ia have no clear excess, being clustered around the zero points. HV SNe Ia have a large scatter showing an excess, which is stronger in the redder bands in general.

5.2 Property of the excess

The results obtained with the same procedure for the entire sample is shown in Fig. 12. It quantitatively shows that at ~20 days there is a distinct difference between HV and NV SNe Ia. NV SNe Ia show a uniform nature. HV SNe Ia show a large scatter, clearly exceeding the statistical fluctuation seen in NV SNe Ia. Average values of the excess (~0 mag) obtained for 20 days intervals from NV SNe Ia data are also shown for both NV and HV SNe Ia samples to make the comparison easier.

While there is a small diversity in the behavior of HV SNe Ia in the epoch and the magnitude of the excess, the same tendency is seen. They all show an excess compared to NV SNe Ia at similar epochs. This excess tends to be stronger in redder bands.

6 DISCUSSION AND CONCLUSIONS

In this paper, we present the extensive photometric and spectroscopic observations of SN 2017fgc, which spans from 12 days before the B-band maximum to 137 days afterward. SN 2017fgc is characterized by a normal decline rate of

![Figure 11.](image1.png)

![Figure 12.](image2.png)

Figure 11. The comparison of the light curves of SN 2017fgc (HV), SN 2005cf (NV), and SN 2003W (HV). Gray line represents the fit obtained by using only the black dots. Red dots represent the data omitted in the fit. All data are shifted in the y-axis for clarity. The light curves are shifted to match the time of B-band maximum.

Figure 12. The difference between the template and observed light curves. Filled symbols represent HV SNe Ia, while open symbols represent NV SNe Ia. The top panels are for the I-band data, while the bottom panels are for the R-band data. The black dots are the average values for the NV SNe Ia samples within four different time bins, with the associated statistical scatters. In order to clarify the difference in magnitudes, the same average values for the ‘NV SNe Ia sample’ are shown in the panels for the HV SNe Ia. SN 2017fgc is represented with orange color.

Group	Name	V_{excess} (mag)	R_{excess} (mag)	I_{excess} (mag)
NV	SN 2005cf	0.02 ± 0.02	0.05 ± 0.03	−0.08 ± 0.05
NV	SN 2007af	−0.03 ± 0.02	0.12 ± 0.03	0.04 ± 0.02
NV	SN 2011fe	0.01 ± 0.02	0.09 ± 0.02	−0.09 ± 0.04
NV	SN 2005na	0.08 ± 0.03	0.10 ± 0.03	0.06 ± 0.04
NV	SN 2012cg	−0.05 ± 0.02	−0.08 ± 0.03	0.06 ± 0.04
HV	SN 2017fgc	−0.21 ± 0.07	−0.18 ± 0.04	−0.28 ± 0.05
HV	SN 2003W	−0.06 ± 0.02	−0.15 ± 0.05	−0.25 ± 0.06
HV	SN 2007le	−0.15 ± 0.03	−0.08 ± 0.02	−0.15 ± 0.02
HV	SN 2002bo	−0.06 ± 0.02	−0.25 ± 0.05	−0.15 ± 0.05
HV	SN 2006X	−0.12 ± 0.03	−0.17 ± 0.04	−0.25 ± 0.04
HV	SN 2002dj	−0.13 ± 0.04	−0.06 ± 0.02	−0.15 ± 0.03
HV	SN 2004dt	−0.17 ± 0.03	−0.24 ± 0.03	−0.45 ± 0.05
HV	SN 2009ig	−0.14 ± 0.06	−0.14 ± 0.05	−0.18 ± 0.06
As a possible origin of the excess, one might consider an external effect caused by the environment. Blondin et al. (2009) studied the NaI D variability in highly reddened SNe Ia which tend to be HV SNe Ia. The variability in NaI D raises the possibility that the SN light could affect the environment in a time-dependent way by destroying the surrounding dust, which will reduce extinction for later epochs. However, in the V, R and I band light curves, HV and NV SNe Ia go back to the same track after \(\sim 40 \) days. Therefore, a possible change in the extinction property would not be an origin of the excess found in our study.

If a dusty environment (e.g., within a circumstellar environment) exists near the SN, an echo might be created that will contribute to the light curves as an additional component. In the NIR, this is caused by a thermal emission echo (Maeda et al. 2015). For example, Nagao, Maeda, & Yamakata (2017) investigated the distribution of the circumstellar dust around SN 2012dn and explained the NIR excess starting around 30 days after the \(B \)-band maximum by this thermal emission echo. This scenario naturally predicts a blue echo in the optical as created by the dust scatterings. Indeed, Wang et al. (2019) suggested the scattering light echo as an origin of the late time excess after \(\sim 30 \) days since the \(B \)-band maximum (see Section 4), which is seen only in the short wavelengths and matches to the echo prediction. However, the behavior found in our study is different; the excess here takes place much earlier, and it is red. We, therefore, conclude that the excess is not caused by the CS echo. In summary, it is very unlikely that the excess is attributed to any external effect.

The origin of the NIR secondary peak has not been fully understood, but it is likely that this is caused by the recombination of Fe III to Fe II in the ejecta (Kasen 2006). Since this is caused by the existence of iron in the ejecta, our finding would indicate that HV SNe Ia tend to have a more extended distribution of \(^{56}\)Ni and Fe-peak elements in the ejecta than in NV SNe Ia. One may expect that the difference in the ionization status would also be caused by the difference in the luminosity between HV and NV SNe Ia even without an intrinsic difference in the ejecta structure, since the HV and NV SNe Ia may have a small offset in the luminosity for a given decline rate. However, this effect is probably small; we find the excess exist in the sample of HV SNe Ia with a range of the decline rate, and therefore any small difference in the luminosity between HV and NV SNe Ia (with similar decline rates) should not be the main cause.

Pan (2020) suggested that the metallicity is likely to be the dominant factor in the creation of HV SNe Ia, which was initially proposed by Wang et al. (2013). Indeed, Lentz et al. (2000) suggested that metallicity may affect the Si II \(\lambda 6355 \) velocity, strength, and profile. However, we note that this direct effect of high abundance of iron due to high metallicity on the line formation will not provide good explanation for the prominent secondary feature observed in HV SNe Ia. Since the primordial iron within the ejecta will be distributed uniformly, it is expected for the ionization to work in a similar way as mixing of iron within the ejecta. Indeed, a larger degree of mixing would suppress the NIR secondary peak (Kasen 2006), which is opposite to the observed behavior.

Irrespective of a cause in the different ionization levels, our finding supports the existence of a difference seen in the ejecta between HV and NV SNe Ia. Indeed, Kawabata et al. (2020) performed a spectral synthesis study for HV SN 2019ein and argued that there is an intrinsic difference in...
the ejecta properties between HV and NV SNe Ia, where HV SNe Ia have a more extended distribution of burning products. Given that HV and HV SNe Ia share similar luminosity range (i.e., 56Ni), it is difficult to explain the difference in the distribution of 56Ni by a single model sequence if the model would be controlled by a single parameter. The popular model, a delayed-detonation on a nearly Chandrasekhar-mass WD, is mainly characterized by the central density and the deflagration-to-detonation transition density; these may be set through the accretion history (Nomoto, Thielemann, & Yokoi 1984) and the C/O ratio in the progenitor (Umeda et al. 1999), respectively. Yet another popular model, a double-detonation on a sub-Chandrasekhar-mass WD, can be characterized by the masses of the WD and the He shell; different combinations on these parameters are possible depending on the evolutionary pathway (Woosley & Kasen 2011). Both scenarios can lead to an asymmetric distribution of burning products including 56Ni (Maeda et al. 2010b; Fink et al. 2010), which could contribute to explain at least part of the HV/NV SNe Ia diversity by a viewing angle effect (Maeda et al. 2010a). Given systematically different environments found for NV and HV SNe Ia (Wang et al. 2013), it is likely that the SNe Ia progenitors can be a mixture of different progenitor systems leading to different explosion models. While further discussion on the origin of the difference in the ejecta property is beyond the scope of the presented work, the results presented in this work highlight the importance of high-quality and well-sampled light curve data for a large sample of HV SNe Ia.

REFERENCES

Altavilla G. et al., 2004, MNRAS, 349, 1344
Altavilla G., Stehle M., Ruiz-Lapuente P., Mazzali P., Pignata G., Balastegui A., Benetti S., et al., 2007, A&A, 475, 585
Barbon R., Iijima T., Rosino L., 1989, A&A, 220, 83
Benetti S. et al., 2004, MNRAS, 348, 261
Benetti S. et al., 2005, ApJ, 623, 1011
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Blondin S. et al., 2009, ApJ, 693, 207
Blondin S. et al., 2012, AJ, 143, 126
Branch D. et al., 2006, PASP, 118, 560
Burns C. R. et al., 2011, AJ, 141, 19
Contreras C. et al., 2010, AJ, 139, 519
Contreras C. et al., 2018, ApJ, 859, 24
Fink M., Röpke F. K., Hillebrandt W., Seitenzahl I. R., Sim S. A., Kromer M., 2010, A&A, 514, A53
Folatelli G. et al., 2010, AJ, 139, 120
Foley R. J., Sanders N. E., Kirshner R. P., 2011, ApJ, 742, 89
Foley R. J., Challis P. J., Filippenko A. V., Ganshalingam M., Landsman W., Li W., Marion G. H., et al., 2012, ApJ, 744, 38
Ganshalingam M. et al., 2010, ApJS, 190, 418
Garavini G. et al., 2007, A&A, 471, 527
Guy J., Astier P., Nobili S., Regnault N., Pain R., 2005, A&A, 443, 781
Guy J., Astier P., Baumont S., Hardin D., Pain R., Regnault N., Basa S., et al., 2007, A&A, 466, 11
Hamuy M. et al., 1996, AJ, 112, 2408
Henden A. A., Levine S., Terrell D., Welch D. L., Munari U., Kloppenborg B. K., 2018, AAS, 232, 223.06
Hicken M. et al., 2012, ApJS, 200, 12
Hoyle F., Fowler W. A., 1960, ApJ, 132, 565
Hsiao E. Y. et al., 2007, ApJ, 663, 1187
Iben I., Jr., Tutukov A. V., 1984, ApJS, 54, 335
Kasen D., 2006, ApJ, 649, 939
Kawabata K. S. et al., 2008, SPIE, 70441L, SPIE.7044
Kawabata M., Maeda K., Yamakawa M., Nakaoka T., Kawabata K. S., Adachi R., Akitaya H., et al., 2020, ApJ, 893, 143
Kokhlov A. M., 1991, A&A, 245, 114
Kim T. et al., 2012, ApJ, 753, 48
Krisicinas K. et al., 2003, AJ, 125, 166
Lentz E. J., Branch D., Hauschildt P. H., Nugent P. E., 2000, ApJ, 530, 966
Lira P. et al., 1998, AJ, 115, 234

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

ACKNOWLEDGEMENTS

We acknowledge ESA Gaia, DPAC and the Photometric Science Alerts Team (http://gsaweb.ast.cam.ac.uk/alerts). U.B. acknowledges the support provided by the Turkish Scientific and Technical Research Council (TÜBİTAK—2211C and 2212A). The authors thank TÜBİTAK for a partial support in using T60 telescope with the project number 17BT60–1185. K.M. acknowledges support by JSPS KAKENHI Grant (JP20H00174, JP20H0473, JP18H04585, JP18H05223, JP17H02864). B.K. acknowledges support by TÜBİTAK (Project no:12OF169). The authors thank the anonymous referee for her/his valuable comments and suggestions that have significantly improved the manuscript.
APPENDIX A: PHOTOMETRY TABLE AND SPECTRA COMPARISONS

This paper has been typeset from a TeX/\LaTeX file prepared by the author.
Table A1. Photometric observations of SN 2017fgc.

Date	MJDa	Phaseb	B	V	R	I
		(d)	(mag)	(mag)	(mag)	(mag)
2017 Jul 13	57947.0	−11.7	15.92 ± 0.05	15.61 ± 0.03	15.34 ± 0.04	15.32 ± 0.06
2017 Jul 14	57948.0	−10.7	15.13 ± 0.04	15.21 ± 0.03	14.97 ± 0.03	15.14 ± 0.06
2017 Jul 15	57949.0	−9.7	15.01 ± 0.04	14.99 ± 0.03	14.75 ± 0.03	14.90 ± 0.07
2017 Jul 16	57950.0	−8.7	14.80 ± 0.05	14.65 ± 0.04
2017 Jul 20	57954.0	−4.7	13.88 ± 0.02	...
2017 Jul 21	57955.0	−3.7	14.07 ± 0.03	13.95 ± 0.02
2017 Jul 22	57956.0	−2.7	13.76 ± 0.02	...
2017 Jul 23	57957.0	−1.7	14.08 ± 0.03	13.85 ± 0.02	13.67 ± 0.02	13.96 ± 0.05
2017 Jul 24	57958.0	−0.7	13.79 ± 0.02	13.60 ± 0.02	13.95 ± 0.05	...
2017 Jul 25	57959.0	−0.7	13.80 ± 0.02	13.65 ± 0.02	13.95 ± 0.05	...
2017 Jul 26	57960.0	1.3	14.03 ± 0.03	...	13.61 ± 0.02	13.92 ± 0.05
2017 Jul 27	57961.0	1.3	13.73 ± 0.02	13.91 ± 0.05
2017 Jul 28	57962.0	3.3	14.12 ± 0.03	13.74 ± 0.02	13.57 ± 0.02	13.96 ± 0.05
2017 Jul 29	57963.0	3.3	...	13.64 ± 0.02
2017 Jul 30	57964.0	5.2	14.25 ± 0.03	13.67 ± 0.02	13.59 ± 0.02	14.02 ± 0.05
2017 Jul 31	57965.0	6.2	14.37 ± 0.03	13.67 ± 0.02	13.58 ± 0.02	14.11 ± 0.05
2017 Aug 01	57966.0	7.2	14.41 ± 0.03	...	13.64 ± 0.02	14.16 ± 0.05
2017 Aug 02	57967.0	8.2	14.42 ± 0.03	13.78 ± 0.02	13.66 ± 0.02	14.19 ± 0.06
2017 Aug 03	57968.0	8.2	14.15 ± 0.05	...
2017 Aug 04	57969.0	8.2	14.20 ± 0.05
2017 Aug 05	57970.0	8.2	14.07 ± 0.03	14.56 ± 0.05
2017 Aug 06	57971.0	13.2	15.04 ± 0.05
2017 Aug 07	57972.0	13.2	15.06 ± 0.05
2017 Aug 08	57980.0	21.3	14.34 ± 0.02	14.20 ± 0.02
2017 Aug 09	57981.0	22.3	...	14.22 ± 0.02
2017 Aug 10	57982.0	23.3	14.27 ± 0.05	...
2017 Aug 11	57983.0	24.3	14.23 ± 0.05
2017 Aug 12	57987.0	28.3	14.51 ± 0.06
2017 Aug 13	57989.0	30.3	...	14.30 ± 0.02
2017 Aug 14	57990.0	31.3	16.68 ± 0.04	14.73 ± 0.02	14.30 ± 0.02	14.17 ± 0.04
2017 Aug 15	57991.0	32.3	14.78 ± 0.02
2017 Aug 16	57992.0	33.3
2017 Aug 17	57993.0	34.3	14.41 ± 0.05

aMJD=JD-2400000.5, bRelative to B-band maximum (MJD = 57958.721)
Table A1 – continued

Date	MJD^a	Phase^b	B	V	R	I
	(d)	(mag)	(mag)	(mag)	(mag)	(mag)
2017 Aug 31	57996.0	37.3	15.29 ± 0.02	14.82 ± 0.02	14.52 ± 0.05	
2017 Sept 01	57997.0	38.3	...	14.92 ± 0.02	14.64 ± 0.05	
2017 Sept 02	57998.0	39.3	14.91 ± 0.02	
2017 Sept 04	58000.0	41.3	...	15.51 ± 0.04	15.09 ± 0.02	14.94 ± 0.07
2017 Sept 05	58001.0	42.2	15.07 ± 0.02	14.92 ± 0.06
2017 Sept 06	58002.0	43.2	...	15.68 ± 0.05	15.15 ± 0.03	14.98 ± 0.05
2017 Sept 07	58003.0	44.2	15.53 ± 0.04	15.11 ± 0.03	14.94 ± 0.04	
2017 Sept 17	58013.0	54.2	17.10 ± 0.04	15.90 ± 0.02	15.58 ± 0.03	
	17.03 ± 0.04	15.59 ± 0.03		
2017 Sept 18	58014.0	55.3	15.56 ± 0.02	
2017 Sept 19	58015.0	56.3	...	15.95 ± 0.03	15.58 ± 0.03	15.69 ± 0.06
2017 Sept 20	58016.0	57.3	...	15.96 ± 0.03		
2017 Sept 21	58017.0	58.3	17.15 ± 0.04	16.02 ± 0.03	15.70 ± 0.03	15.63 ± 0.05
2017 Sept 22	58018.0	59.3	...	16.03 ± 0.03	15.70 ± 0.05	
2017 Sept 23	58019.0	61.2	17.26 ± 0.04	16.07 ± 0.04	15.75 ± 0.03	15.76 ± 0.06
2017 Sept 24	58020.0	61.2	17.16 ± 0.04	15.99 ± 0.03	15.69 ± 0.03	15.66 ± 0.06
2017 Sept 25	58021.0	62.2	17.22 ± 0.03	16.20 ± 0.03	15.81 ± 0.02	15.86 ± 0.07
2017 Sept 26	58022.0	62.3	17.17 ± 0.03	16.08 ± 0.04	15.78 ± 0.02	
2017 Sept 27	58023.0	64.2	17.19 ± 0.04	16.16 ± 0.04	15.91 ± 0.03	15.92 ± 0.07
2017 Oct 01	58027.9	69.2	17.21 ± 0.05	16.33 ± 0.03	15.99 ± 0.03	16.09 ± 0.05
2017 Oct 02	58029.9	70.2	17.31 ± 0.06	16.39 ± 0.07	16.09 ± 0.03	16.25 ± 0.09
2017 Oct 03	58030.0	70.3	16.30 ± 0.04	16.07 ± 0.03	16.13 ± 0.06	
2017 Oct 04	58030.0	71.3	16.38 ± 0.04	16.09 ± 0.03	16.18 ± 0.04	
2017 Oct 05	58031.0	72.3	...	16.25 ± 0.03		
2017 Oct 17	58034.9	86.2	...	16.14 ± 0.04	16.66 ± 0.05	
2017 Oct 23	58049.9	91.1	17.66 ± 0.07	16.87 ± 0.05		
2017 Oct 31	58057.9	99.1	17.73 ± 0.08	17.12 ± 0.03		
2017 Nov 07	58061.8	106.1	...	17.12 ± 0.04		
2017 Nov 08	58066.8	107.1	17.77 ± 0.04	17.48 ± 0.04		
2017 Nov 09	58068.8	108.1	17.88 ± 0.06	17.43 ± 0.03		
2017 Nov 10	58067.8	109.1	17.43 ± 0.05	17.49 ± 0.07		
2017 Nov 11	58068.8	110.1	17.42 ± 0.04	17.46 ± 0.05	17.42 ± 0.04	
2017 Nov 14	58071.8	113.1	...	17.56 ± 0.04		
2017 Nov 15	58072.8	114.1	...	17.57 ± 0.05		
2017 Nov 16	58073.8	115.1	18.29 ± 0.07	17.54 ± 0.04		
2017 Nov 18	58075.8	117.1	18.21 ± 0.06	17.66 ± 0.05	17.51 ± 0.04	

^aMJD=JD-2400000.5, ^bRelative to B-band maximum (MJD = 57958.721)
Table A1 – continued Photometric observations of SN 2017fgc.

Date	MJD	Phaseb (d)	B (mag)	V (mag)	R (mag)	I (mag)
2017 Nov 22	58079.8	121.1				17.91 ± 0.04
2017 Nov 24	58081.8	123.1	18.35 ± 0.06	17.71 ± 0.04	17.92 ± 0.05	
2017 Dec 02	58089.8	131.1		17.60 ± 0.04		
2017 Dec 08	58095.8	137.0		17.78 ± 0.09		
2017 Dec 02	58089.8	131.1	17.60 ± 0.04	17.92 ± 0.05		

aMJD=JD-2400000.5, bRelative to B-band maximum (MJD = 57958.721)

Figure A1. Spectra of SN 2017fgc at t ≃ -5, +6, +27, +63 days after the B-band maximum overplotted with those of SN 2002bo and SN 2005cf at similar epochs (see the text for references). Telluric lines are showed with a mark.