Two truncating variants in FANCC and breast cancer risk

Thilo Dörk1, Paolo Peterlongo2, Arto Mannermaa3,4,5, Manjeet K. Bolla6, Qin Wang6, Joe Dennis6, Thomas Ahearn7, Irene L. Andrulis8,9, Hoda Anton-Culver10, Volker Arndt11, Kristan J. Aronson12, Annelie Augustinsson13, Laura E. Beane Freeman7, Matthias W. Beckmann14, Alicia Beeghly-Fadiel15, Sabine Behrens16, Marina Bermisheva17, Carl Blomqvist18,19, Natalia V. Bogdanova1,2,20,21, Stig E. Bojesen22,23,24, Hilmut Brauch25,27,156, Hermann Brenner11,27,28, Barbara Burwinkel29,30, Federico Canzian31, Tsun L. Chan32,33, Jenny Chang-Claude16,34, Stephen J. Chanock7, Ji-Yeob Choi35,36, Hans Christiansen20, Christine L. Clarke37, Fergus J. Couch38, Kamila Czene39, Mary B. Daly40, Isabel dos-Santos-Silva41, Miriam Dwek42, Diana M. Eccles43, Arif B. Ekici44, Mikael Eriksson39, D. Gareth Evans45,46, Peter A. Fasching47,48,73,74,75, Jonine Figueroa49,7,48,49, Henrik Flyger50, Lin Fritschi51, Marike Gabrielson52, Manuela Gago-Dominguez52,53, Chi Gao54,55, Susan M. Gapstur56, Montserrat García-Closas57,58, José A. Garcia-Sáenz58, Mia M. Gaudet59,60, Graham A. Giles59,60,61, Mark S. Goldberg52,62, David E. Goldgar64, Pascal Guénel65, Lothar Haeberle66, Christopher A. Haiman67, Niclas Håkansson68, Per Hall69,69, Ute Hamann70,71,72, Jan Hauke73,74,75, Alexander Hein76,77, Peter Hillemanns78, Frans B. L. Hogervorst79, Maartje J. Hooning80, John L. Hopper80, Tony Howell81, Dezheng Huo79,79, Hidemi Ito80,81, Motoki Iwasaki82, Anna Jakubowska83,84, Wolfgang Jann85, Esther M. John86, Audrey Jung16, Rudolf Kaaks16, Daeehe Kang32,36,87, Pooja Middha Kapoor68,88, Elza Khusnutdinova71,79, Sung-Won Kim89,90, Cari M. Kitahara91, Stella Koutras92, Peter Kraft93,94, Veselka N. Kristensen82,93, Ava Kwong92,94,95, Diether Lambrechts96,97, Loic Le Marchand98, Jingmei Li99, Sara Lindström100,101, Martha Linet102, Wing-Yee Lo95,96,79, Jirong Long115, Artitaya Lophatananon103, Jan Lubinski104, Mehdi Manoochehri97,98, Siranoush Manoukian99, Sara Margolin105,106,107, Elena Martinez29,30, Keitaro Matsuo108,80,81, Dimitris Mavroudis109, Alfons Meindl109, Usha Menon109, Roger L. Milne110,99,59,60,110, Nur Aishah Mohd Taib111, Kenneth Muir102,103, Anna Marie Mulligan112,113, Susan L. Neuhausen114, Heli Nevanlinna115, Patrick Neven116, William G. Newman65,66, Kenneth Offt117,118, Olufunmilayo I. Olopade119, Andrew F. Olshan120, Janet E. Olson120, Håkan Olsson121, Sue K. Park122,123,79, Tjoung-Won Park-Simon124, Julian Peto125, Dijana Plaseska-Karanfiliska121, Esther Pohl-Rescigno126,73,74,75, Nadege Presneau62, Brigitte Rack85, Paolo Radice122, Muhammad U. Rashid123,124, Gad Rennert125, Atocha Romero126, Matthias Ruebner126, Emmanuel Saloustros126, Marjanka K. Schmidt127,128, Rita K. Schmutzler73,74,75, Michael O. Schneider66, Minouk J. Schoemaker129, Christopher Scott120, Chen-Yang Shen130,131, Xiao-Ou Shu15, Jacques Simard132, Susan Slager120, Snezhana Smichkoska133, Melissa C. Southey130,131, John J. Spinelli135,136, Jennifer Stone60,137, Harald Suworov79,30, Anthony J. Swerdlow129,130, Rulla M. Tamimi54,55,139, William J. Tapper140, Soo H. Teo111,141, Mary Beth Terry142, Amanda E. Toland143, Robert A. E. Tollefson144, Diana Torres70,145, Gabriela Torres-Mejía146, Melissa A. Troester119, Thérèse Truong147,65, Shoichiro Tsuchane148, Michael Untch149, Celine M. Vachon149, Ans M. W. van den Ouweland150, Elke M. van Veens45,46, Joseph Vial117,118, Camilla Wendt105, Alicja Wolk68,151, Jyh-Cheng Yu152, Wei Zheng15, Argyrios Zioga10, Elad Ziv153, ABCTB Investigators8, NBCS Collaborators165, Alison M. Dunning165, Paul D. P. Pharoah6,165, Detlev Schindler166, Peter Devilee167,168, Douglas F. Easton16,165.
Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCc, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 69,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44–1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.

Fanconi Anemia (FA) is a rare recessively inherited disorder characterized by congenital malformations, progressive bone marrow failure and predisposition to cancer. Twenty-two different FA causative genes have now been identified whose products act in concert to mediate DNA interstrand crosslink repair. At least seven of them (BRCA2/FANCD2, PALB2/FANCl, RAD51C/FANCO, RAD51/FANCl, BRCA1/FANCS, XRCC2/FANCU, and RFWD3/FANCR) are involved in different stages of homology-directed recombinational DNA repair (HRR), a pathway for error-free maintenance of the genome during replication and after DNA damage. A number of FA genes (including BRCA1/FANCS, BRCA2/FANCD1 and PALB2/FANCl) have been shown to be breast cancer susceptibility genes. The products of BRCA1, BRCA2, and PALB2 are central to early stages of HRR. Further interactors in this pathway, in particular BRIP1/FANCl, mainly have been linked to ovarian cancer risk. It is less known to what extent other FA gene products may play a role in the inherited component of breast cancer susceptibility. Few of these other FA genes have been tested for mutations in relatively small breast cancer case-control studies, thus far.

Early studies suggested that blood relatives of FA patients show an increased risk of breast cancer, although these findings have not been corroborated in a replication study and could not assess distinct FA complementation groups due to lack of genetic information at that time. After FA was stratified into subsets defined by complementation assays, an increased risk of breast cancer was attributed to heterozygous carriers of FANCC mutations. This was the first of the FA genes to be identified and accounts for 8–15% of FA cases. More recently, FANCC has been suggested as a candidate breast cancer susceptibility gene in an exome sequencing study of 33 familial breast cancer cases and extension to another 438 cases. However, the evidence for an association between FANCC and breast cancer risk is limited by the low prevalence of mutations and, much larger numbers of individuals are needed to provide sufficient power to detect associations of plausible magnitude.
In the present study, we genotyped two truncating variants of FANCC (p.R185X and p.R548X) using the Oncoarray (see Methods) in 64,760 female breast cancer cases and 49,793 female population controls of European descent. Both mutations are disease-causing in European FA patients and are recurrent in the FA mutation database23.

Results
We identified the truncating FANCC variants p.R185X (rs121917783) and p.R548X (rs104886457) in 40 of 153,899 individuals and 20 of 153,904 individuals, respectively. All mutation carriers were heterozygotes. Carrier distributions per study and intensity cluster plots for Europeans (which included the majority of mutation carriers) are shown in Supplementary Table 1 and Supplementary Fig. 1, respectively. Since the majority of carriers were women of European ancestry, we restricted the subsequent case-control association analysis to participants from this population. Logistic regression analyses were adjusted for study and 15 principal components.

In Europeans, the two FANCC variants were observed in 25/64,760 cases (14 with p.R185X, 11 with p.R548X) and in 26/49,793 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of association between the FANCC variants and breast cancer risk, either for carriers of both variants combined (OR 0.77, 95%CI 0.44–1.33, p = 0.35), or for either variant individually (Table 1). Similarly, we found no evidence for an association with estrogen receptor (ER)-negative (OR 0.91, 0.35–2.37) or ER-positive (OR 0.67, 0.37–1.28) disease, nor for subsets of disease defined by age at diagnosis (<50 years), bilaterality, family history, histological morphology, grade or nodal status (Table 2).

For comparison, we also analysed the PALB2/FANCN*p.R414X truncating variant that was genotyped in parallel on the same array. This variant was detected in 22/64,780 cases and 3/49,816 controls and was significantly associated with risk of breast cancer (OR 5.89, 95%CI 1.76–19.74, p = 0.004). The variant carriers were markedly enriched among cases with ER-negative tumours (p = 9.4 × 10⁻⁶; padj = 0.0006 in a log-likelihood ratio test) and specifically triple-negative breast tumours (p = 3.8 × 10⁻²; padj = 0.0001). The p.R414X truncating variant was also associated with ducal morphology, a positive first-degree family history of breast cancer, early age at diagnosis (<50 years), and low-differentiated tumours (grade 3) (Suppl. Table 1). Hence, by contrast with the two tested FANCC variants, p.R185X and p.R548X, the FANCN/PALB2 variant p.R414X was strongly associated with overall and with ER-negative disease under the same genotyping and analysis conditions.

Discussion
Functional defects of DNA repair are a hallmark of genomic instability syndromes as well as of carcinogenesis. FA is a genome instability and cancer prone disorder that has been investigated for breast cancer predisposition in homozygotes and heterozygotes for more than three decades11,12. Monoallelic mutations in five FA genes (BRCA1, BRCA2, RAD51C, BRIP1) have now been confirmed to predispose to breast or ovarian cancer while biallelic mutations in these genes cause FA1. However, the role of the FA genes most commonly mutated, FANCA and FANCC, in the risk of developing breast cancer has remained uncertain. Epidemiological and segregation studies have provided some evidence of an increased breast cancer risk for grandmothers of FA patients, particularly those who carry the FANCC mutation13.

A previous sequencing study of Australian multiple-case breast cancer families had identified truncating variants in FANCC in 3 of 438 multiple-case breast cancer families but in none of 464 healthy controls, suggestive of a predisposing role for FANCC variants in breast cancer14. One of these variants, p.R185X, was also screened in our study. p.R185X was first reported shortly after the identification of the FANCC gene, and thus is one of the earliest recognized FA-causing mutations. Although representing an apparent nonsense mutation in exon 6, it also results in exon 6 being spliced out of a proportion of transcripts, suggesting this variant may alter splice site selection, with the aberrant transcript retaining the reading frame22. p.R548X, also an early-detected FANCC truncating variant23, is an authentic stop mutation in exon 14, and although in the last exon, it proved to be clearly pathogenic for FA23.

The fact that these two disease-causing variants have been frequently observed in European patients with FA23 prompted us to investigate their association with breast cancer in a large case-control study. However, we did not observe a significant difference between their frequency among breast cancer cases and controls. The upper 95% confidence limit was 1.33, thus excluding a two-fold or greater increase in risk found for moderate- or high-penetrance alleles in predisposition genes such as CHEK2 and ATM. Moreover, we found no evidence of association in subgroups defined by earlier age at onset, a positive family history of breast cancer, bilateral occurrence, or defined tumor parameters (histology, grade or hormone receptor status). However, confidence intervals for those estimates for subsets were wider as numbers were small – in particular we could not rule out a 2-fold increased risk for ER-negative or triple-negative breast cancer.

In contrast, we observed a clear association between the PALB2/FANCN variant p.R414X and breast cancer risk. PALB2 is an established breast cancer susceptibility gene, and the investigated mutation p.R414X25 occurred

Mutation	Cases	Controls	Odds Ratio (95% CI)	p
p.R185X	14/64,778	18/49,810	0.64 (0.32; 1.29)	0.215
p.R548X	11/64,788	8/49,816	1.03 (0.41; 2.56)	0.942
All FANCC	25/64,760	26/49,793	0.77 (0.44; 1.33)	0.345

Table 1. Overall analysis of FANCC variants p.R185X and p.R548X. Association analyses of FANCC variants p.R185X and p.R548X with overall breast cancer risk. Results are given as odds ratios (OR) with 95% confidence interval (CI) and p-value (p).
After many nuclease and translesion polymerase steps, a DNA double stranded intermediate is formed and its repair requires proteins from the homology-directed repair pathway, including FANCD1/BRCA2 and FANCN/PALB2. While truncating variants in BRCA2 and PALB2 confer a substantial risk of breast cancer, our study suggests that truncating FANCC variants do not confer a comparable risk. It is possible that members of the FA core complex that act upstream of HRR are less relevant for breast cancer due to their more specialized function in the repair of interstrand crosslink while BRCA1, BRCA2, and PALB2 function more globally at DNA double-strand breaks. On the other hand, there is some evidence that truncating mutations in another gene involved in the early detection and repair of DNA damage, FANCC, is a component of the FA core complex which is thought to recognize an inter-strand crosslink. FANCL, an E3 ubiquitin ligase in the core complex, ubiquinates FANCI and FANCD2. Although PALB2 and FANCC are both FA genes, their products exert different roles in the recognition and repair of DNA damage. FANCC is a component of the FA core complex which is thought to recognize an inter-strand crosslink.

Table 2. Analysis of FANCC variants (p.R158X and p.R548X combined) by tumour subtype. Association analyses of FANCC variants p.R158X and p.R548X with breast cancer risk for subgroups. Results are given as odds ratios (OR) with 95% confidence interval (CI) and p-value (p). Cases in subgroups were compared to the frequency 26/ 49,793 for all controls (derived from Table 1). Familial cases were defined as those with a first-degree family history of breast cancer; premenopausal cases were those with age at diagnosis < 50 years. ER, estrogen-receptor; TNBC, triple-negative breast cancer.

Stratum	Cases	Odds Ratio (95% CI)	p
ER-negative	5/10,124	0.91 (0.35; 2.37)	0.845
ER-positive	14/40,855	0.67 (0.37; 1.28)	0.223
TNBC	2/4,126	0.89 (0.21; 3.77)	0.877
Ductal	6/36,695	0.33 (0.13; 0.80)	0.014
Lobular	4/6,842	1.27 (0.43; 3.69)	0.665
High grade	3/14,582	0.39 (0.12; 1.31)	0.129
Node-positive	1/15,937	0.14 (0.02; 1.00)	0.050
Familial	7/9,720	1.01 (0.43; 2.35)	0.988
Premenopausal	12/22,232	1.09 (0.55; 2.16)	0.814
Bilateral	0/2,741	—	0.645

at a similar frequency to the tested FANCC mutations. The observed six-fold enrichment of p.R414X in breast cancer patients is in line with previous findings for other PALB2 founder mutations and in the upper range of the overall mutational effect size in PALB2 case-control sequencing studies. We confirmed stronger associations with ER-negative breast cancer, with familial breast cancer and with a high tumor grade. While genotyping arrays such as the Oncoarray are primarily used for evaluating common variants, these data confirm that the array provides a robust platform for evaluating even very rare alleles.

Although PALB2 and FANCC are both FA genes, their products exert different roles in the recognition and repair of DNA damage. FANCC is a component of the FA core complex which is thought to recognize an inter-strand crosslink. FANCL, an E3 ubiquitin ligase in the core complex, ubiquinates FANCI and FANCD2. After many nuclease and translesion polymerase steps, a DNA double stranded intermediate is formed and its repair requires proteins from the homology-directed repair pathway, including FANCD1/BRCA2 and FANCN/PALB2. While truncating variants in BRCA2 and PALB2 confer a substantial risk of breast cancer, our study suggests that truncating FANCC variants do not confer a comparable risk. It is possible that members of the FA core complex that act upstream of HRR are less relevant for breast cancer due to their more specialized function in the repair of interstrand crosslinks while BRCA1, BRCA2, and PALB2 function more globally at DNA double-strand breaks. On the other hand, there is some evidence that truncating mutations in another gene involved in the early detection of intra-strand crosslinks, FANCM, are associated with both breast and ovarian cancer risk, though FANCM is part of an anchor complex rather than the FA core complex and is not considered a classical FA gene. It is also possible that the two prototype FANCC truncating variants analysed here, despite being FA-causing, have reduced penetrance for breast cancer due to some residual function, and other particular FANCC variants may confer a more substantial risk. More work will be required to clarify the role of each FA core complex member for breast cancer susceptibility.

In conclusion, our study findings suggest important differences between FA genes, indicating that truncating variants in FANCC do not confer a high overall risk of breast cancer unlike PALB2, BRCA1 and BRCA2. Our study does not exclude a role of monoallelic FANCC variants as low-penetrance alleles for breast cancer or as a genetic risk factor for certain breast cancer subgroups. Very large datasets, such as those generated through the BCAC, are critical to evaluate such rare mutations.

Methods

Patients.
A total of 87 studies from the Breast Cancer Association Consortium (BCAC), of which 78 were case-control studies (some nested within prospective cohort studies) and 9 were case-only studies, contributed data as summarized in Supplementary Table 1. All studies provided data on disease status and age at diagnosis/observation, and the majority provided information on clinico-pathological and epidemiological factors, which have been curated and incorporated into the BCAC database (version 6). All participating studies were approved by their appropriate ethics review boards and all subjects provided informed consent. A list of the ethics review boards by study is provided in Supplementary Table 3.

Genotyping.

The Illumina OncoArray design and genotyping procedure have been described previously. In brief, approximately 72,000 variants were selected, among others, for inclusion on the array specifically for their potential relevance to breast cancer, based on prior evidence of association with overall or subtype-specific disease, with breast density or with breast tissue specific gene expression. After genotype calling and quality control of the cluster file, variants with a call rate <95% in any consortium, not in Hardy-Weinberg equilibrium ($P < 10^{-7}$ in controls or $P < 10^{-12}$ in cases) or with concordance <98% among 5,280 duplicate pairs were excluded. We also excluded samples with extreme heterozygosity (>4.89 standard deviations [SD] from the mean for the respective ethnicity). The final dataset, before restriction based on ethnicity, consisted of 153,673 samples of which 89,733 were cases and 63,940 were controls.
Statistical analyses. Per-allele odds ratios and 95% confidence intervals were generated using logistic regression with adjustment for principal components and study. Principal component analysis was performed using data for 33,661 uncorrelated SNPs (which included 2,318 markers of continental ancestry) with a MAPE = 0.05 and maximum correlation of 0.1, using purpose-written PCcalc software (written by Jonathan Tyrer and available at http://ccgpe.medschl.cam.ac.uk/software/pccalc/).

We also estimated subtype-specific per-allele ORs after restricting the cases by hormone receptor and/or HER2/neu status, by tumor grade, by ductal or lobular morphology, by nodal status, by bilateral occurrence of the tumor, by early diagnosis (<50 years), and by first-degree family history of breast cancer, using available BCAC data for the cases. Since we analysed 3 variants across 10 subgroups, a two-sided p-value < 0.016 for the overall analyses and a two-sided p-value < 0.0016 for the subgroup analyses were considered nominally significant.

Ethical approval. All experimental protocols were approved by the respective ethical institutions of participating BCAC centers. The study was carried out in accordance with the Declaration of Helsinki, and informed consent was obtained from all study participants.

Data Availability

The genotyping results from the Oncoarray are available in the dbGAP repository. The FANCC variants analysed in the current study are deposited in the NCBI SNP database as rs121917783 and rs104886457. The datasets analysed during the current study are available from the corresponding author upon reasonable request and with permission of the Data Access Committee of the Breast Cancer Association Consortium.

References

1. Cecchaldi, R., Sarangi, P. & D’Andrea, A. D. The Fanconi anaemia pathway: new players and new functions. Nat. Rev. Mol. Cell Biol. 17, 337–349 (2016).
2. Knies, K. et al. Biallelic mutations in the ubiquitin ligase RNF135 cause Fanconi anemia. J. Clin. Invest. 127, 3013–3027 (2017).
3. Nalepa, G. & Clapp, D. W. Fanconi anemia and cancer: an intricate relationship. Nat. Rev. Cancer 18, 168–185 (2018).
4. Ramus, S. J. et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J. Natl. Cancer Inst. 107, 11 (2015).
5. Easton, D. F. et al. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J. Med. Genet. 53, 298–309 (2016).
6. García, M. J. et al. Mutational analysis of FANCI, FANCM and the recently identified FANCI suggests that among the 13 known Fanconi Anemia genes, only FANCD1/BRC2 plays a major role in high-risk breast cancer predisposition. Carcinogenesis 30, 1899–1902 (2009).
7. Bakker, J. L. et al. Analysis of the novel Fanconi anemia gene SLX4/FANCN in familial breast cancer cases. Hum. Mutat. 34, 70–73 (2013).
8. Osorio, A. et al. Evaluation of rare variants in the new fanconi anemia gene ERCC4 (FANCQ) as familial breast/ovarian cancer susceptibility alleles. Hum. Mutat. 34, 1615–1618 (2013).
9. Lhota, F. et al. Hereditary truncating mutations of DNA repair and other genes in BRCA1/BRC2/PALB2-negatively tested breast cancer patients. Clin. Genet. 90, 324–333 (2016).
10. Swift, M. Fanconi’s anemia in the genetics of neoplasia. Nature 230, 370–373 (1971).
11. Swift, M., Caldwell, R. J. & Chase, C. Reassessment of cancer predisposition of Fanconi anemia heterozygotes. J. Natl. Cancer Inst. 65, 863–867 (1980).
12. Jacobs, P. & Karabus, C. Fanconi’s anemia. A family study with 20-year follow-up including associated breast pathology. Cancer 54, 1850–1853 (1984).
13. Berwick, M. et al. Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res. 67, 9591–9596 (2007).
14. Strathdee, C. A. et al. Cloning of cDNAs for Fanconi’s anemia by functional complementation. Nature 356, 763–767 (1992).
15. Gibson, R. A. et al. Genetic mapping of the FACC gene and linkage analysis in Fanconi anemia families. J. Med. Genet. 31, 868–871 (1994).
16. Verlander, P. C. et al. Mutation analysis of the Fanconi anemia gene FACC. Am. J. Hum. Genet. 54, 595–601 (1994).
17. Thompson, E. R. et al. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet. 8, e1002894 (2012).
18. Seal, S. et al. Evaluation of Fanconi Anemia genes in familial breast cancer predisposition. Cancer Res. 63, 8596–8599 (2003).
19. Ellis, N. A. & Offit, K. Heterozygous mutations in DNA repair genes and hereditary breast cancer: a question of power. PLoS Genet. 8, e1003008 (2012).
20. Fanconi anemia mutation database, http://www2.rockefeller.edu/fanconi/.
21. Michaloudi, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017).
22. Gibson, R. A. et al. A nonsense mutation and exon skipping in the Fanconi anemia group C gene. Hum Mol Genet. 2, 797–799 (1993).
23. Murer-Orlando, M., Llerena, J. C. Jr. & Birjandi, F. FACC gene mutations and early prenatal diagnosis of Fanconi’s anemia. Lancet. p. 866 (1993).
24. Lo ten Foe, J. R. et al. Sequence variations in the Fanconi anemia gene, FACC: pathogenicity of 1806insA and R548X and recognition of D195V as a polymorphic variant. Hum. Genet. 98, 522–523 (1996).
25. Bogdanova, N. et al. PALB2 mutations in German and Russian patients with bilateral breast cancer. Breast Cancer Res. Treat. 126, 545–550 (2011).
26. Erkko, H. et al. A recurrent mutation in PALB2 in Finnish cancer families. Nature 446, 316–319 (2007).
27. Southey, M. C. et al. A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res. 12, R109 (2010).
28. Noskowicz, M. et al. Prevalence of PALB2 mutation c.509_510delGA in unselected breast cancer patients from Central and Eastern Europe. Fam. Cancer 13, 137–142 (2014).
29. Rahman, N. et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 39, 165–167 (2007).
30. Tsichkowitz, M. et al. Rare germline mutations in PALB2 and breast cancer risk: a population-based study. Hum. Mutat. 33, 674–680 (2012).
31. Heikkinen, T. et al. The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin. Cancer Res. 15, 3214–3222 (2009).
32. Kükki, J. I. et al. Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proc. Natl. Acad. Sci. USA 111, 15172–15177 (2014).
33. PETERLONGO, P. et al. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Hum. Mol. Genet. 24, 5345–5355 (2015).
Acknowledgements

We thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out. We acknowledge all contributors to the COGS and OncoArray study design, chip design, genotyping, and genotype analyses. ABCFS thanks Maggie Angelakos, Judi Maskiell, Gillian Dite. ABCS thanks the Blood bank Sanquin, The Netherlands. ABCTB Investigators: C.L.C., Rosemary Balleine, Robert Baxter, Stephen Braye, Jane Carpenter, Jane Dahlstrom, John Forbes, Soon Lee, Deborah Marsh, Adrienne Morey, Nirmala Pathmanathan, Rodney Scott, Allan Spigelman, Nicholas Wilcken, Desmond Yip. Samples are made available to researchers on a non-exclusive basis. The ACP study wishes to thank the participants in the Thai Breast Cancer study. Special Thanks also go to the Thai Ministry of Public Health (MOPH), doctors and nurses who helped with the data collection process. Finally, the study would like to thank Dr Prat Boonyawongviroj, the former Permanent Secretary of MOPH and Dr Pornthep Sirirawarsungsan, the Department Director-General of Disease Control who have supported the study throughout. NBCS thanks Eileen Williams, Elaine Ryder-Mills, Kara Sargus. BCEES thanks Allyson Thomson, Christobel Saunders, Terry Slevin, BreastScreen Western Australia. The Dr. Elizabeth Wylie, Rachel Shirk, the CBS study would not have been possible without the contributions of Dr. K. Landsman, Dr. N. Gronich, Dr. A. Flugelman, Dr. W. Saliba, Dr. E. Liani, Dr. I. Cohen, Dr. S. Kalet, Dr. V. Friedman, Dr. O. Barnet of the NICCC in Haifa, and all the contributing family medicine, surgery, pathology and oncology consultations in all medical institutes in Northern Israel. The BREOGAN study would not have been possible without the contributions of the following: Jose Esteban Castelao, Angel Carracedo, Victor Muñoz Garzón, Alejandro Novo Domínguez, Sara Miranda Ponte, Carmen Redondo Marey, Maite Peña Fernández, Manuel Enguix Castelo, María Torres, Manuel Calaza (BREOGAN), José Antúnez, Maximo Fraga and the staff of the University of Medicine and Biobank of the University Hospital Complex of Santiago-CHUS, Instituto de Investigación Sanitaria de Santiago, IDIS, Xerencia de Xestion Integrada de Santiago-SERGAS; Joaquin González-Carreró and the staff of the Department of Pathology and Biobank of University Hospital Complex of Vigo, Instituto de Investigacion Biomedica Galicia Sur, SERGAS, Vigo, Spain. BSUCH thanks Peter Bugert, Medical Faculty Mannheim. The CAMA study would like to recognize CONACyT for the financial support provided for this work and all physicians responsible for the project in the different participating hospitals: Dr. Germán Castelazo (IMSS, Ciudad de México, DF), Dr. Sinhué Barroso Bravo (IMSS, Ciudad de México, DF), Dr. Fernando Mainero Ratchelous (IMSS, Ciudad de México, DF), Dr. Joaquín Zarco Méndez (ISSTSE, Ciudad de México, DF), Dr. Edelmiro Pérez Rodríguez (Hospital Universitario, Monterrey, Nuevo León), Dr. Jesús Pablo Esparza Cano (IMSS, Monterrey, Nuevo León), Dr. Heriberto Fabela (IMSS, Monterrey, Nuevo León), Dr. Fausto Hernández Morales (ISSTSE, Veracruz, Veracruz), Dr. Pedro Coronel Brizio (CECAN SS, Xalapa, Veracruz) and Dr. Vicente A. Saldaña Quiroz (IMSS, Veracruz, Veracruz). CBCS thanks study participants, co-investigators, collaborators and staff of the Canadian Breast Cancer Study, and project coordinators Agnes Lai and Celine Morissette. CGGP thanks Stylianos Apostolaki, Anna Margjolaki, Georgios Nintos, Maria Perraki, Georgia Saloustrou, Georgia Sevastaki, Konstantinos Pompodakis. CGPS thanks staff and participants of the Copenhagen General Population Study. For the excellent technical assistance: Dorthé Uldall Andersen, Maria Birna Arnadottir, Anne Bank, Dorte Kjeldgård Hansen. The Danish Cancer Biobank is acknowledged for providing infrastructure for the collection of blood samples for the cases. COLBCCC thanks all patients, the physicians Justo G. Olaya, Mauricio Tawil, Lilian Torregrosa, Elias Quintero, Sebastian Quintero, Claudia Ramirez, José J. Caicedo, and Jose F. Robledo, the researchers Ignacio Briceno, Fabian Gil, Angela Umana, Angela Beltran and Viviana Ariza, and the technician Michael Gilbert for their contributions and commitment to this study. Investigators from the CPSII cohort thank the participants and Study Management Group for their invaluable contributions to this research. They also acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, as well as cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program. CTS Investigators include Leslie Bernstein, S.L.N., James Lacey, Sophia Wang, and Huiyan Ma at the Beckman Research Institute of City of Hope, Jessica Clague DeHart at the School of Community and Global Health Claremont Graduate University, Dennis Deapan, Rich Pinder, and Eunjun Lee at the University of Southern California, Pam Horn-Ross, Christina Clarke Dur and David Nelson at the Cancer Prevention Institute of California, Peggy Reynolds, at the Department of Epidemiology and Biostatistics, University of California San Francisco, H.A-C. A.Z., and Hannah Park at the University of California Irvine, and Fred Schumacher at Case Western University. DIETCOMPLYF thanks the patients, nurses and clinical staff involved in the study. We thank the participants and the investigators of EPIC (European Prospective Investigation into Cancer and Nutrition). ESTHER thanks Hartwig Ziegler, Sonja Wolf, Volker Hermann, Christa Stegmaier, Katja Butterbach. FHRISK thanks NIHR for funding. GC-HB0C thanks Stefanie Engert, Heide Hellebrand, Sandra Kröber and LIFE - Leipzig Research Centre for Civilization Diseases (Markus Loeffler, Joachim Thiery, Matthias Nüchter, Ronny Baber). The GENICA Network: Dr. Margarite Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany [H.B., W.-Y.L.], German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) [H.B.], Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2180 - 390900677, Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhäuser, Bonn, Germany [Yon-Dschun Ko, Christian
Baisch], Institute of Pathology, University of Bonn, Germany [Hans-Peter Fischer], Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany [UH], Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IFP), Bochum, Germany [Thomas Brüning, Beate Pesch, Sylvia Rahbstein, Anne Lotz]; and Institute of Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany [Volker Hartb]. HABCS thanks Michael Bremer and Johann H. Karstens. HEBCS thanks Sofia Khan, Johanna Kiiski, Kristiina Aittomäki, Rainer Ragerholm, Kirsiimiari Aaltosen, Karl von Smitten, Irja Erkkilä. HKBCS thanks Hong Kong Sanatorium and Hospital, Dr Ellen Li Charitable Foundation, The Kerry Group Kuok Foundation, National Institute of Health 1R03CA130065 and the North California Cancer Center for support. HMBCS thanks Johann H. Karstens. HUBCS thanks Shamil Gantsiev. KARMA thanks the Swedish Medical Research Counsel. KBCP thanks Eija Myöhänen, Helena Kemiläinen. We thank all investigators of the KOHBR (Korean Hereditary Breast Cancer) Study. LMBC thanks Gillian Peuteman, Thomas Van Brussel, EvyVanderheyden and Kathleen Corthouts. MABCBS thanks Milena Jakimova (RCGEB "Georgii D. Efremov"), Emilija Lazarova (University Clinic of Radiotherapy and Oncology), Katerina Kukelka-Sabit, Mitko Karadjozov (Adzibadem-Sistina Hospital), Andrej Arsovski and Liljana Stojanovska (Re-Medika Hospital) for their contributions and commitment to this study. MARIE thanks Petra Seibold, Dieter Flesch-Jany, Judith Heinz, Nadia Obi, Alina Vrielin, Sabine Behrens, Ursula Eibler, Muhubbet Celik, Til Olchers and Stefan Nickels. MBCSG (Milan Breast Cancer Study Group): Bernard Peissel, Jacopo Azzollini, Dario Zimbaltati, Daniela Zaffaroni, Bernardo Bonanni, Mariarosaria Calvello, Davide Bondavalli, Aliana Guerrieri Gonzaga, Monica Marabelli, Irene Feroce, and the personnel of the Copengent Cancer Genetic Test Laboratory. We thank the coordinators, the breast research staff and especially the MNHS participants for their continued collaboration on research studies in breast cancer. MSKCC thanks Marina Corines, Lauren Jacobs, MTNLGEBCS would like to thank COG (Centre de recherche en génétique du Québec-Université Laval Research Center), Marie-France Valois, Annie Turgeon and Lea Hegy (McGill University Health Center, Royal Victoria Hospital; McGill University) for DNA extraction, sample management and skillful technical assistance. J.S. is Chair holder of the Canada Research Chair in Oncogenetics. MYBRC thanks study participants and research staff (particularly Patsy Ng, Nurhidayi Hassan, Yoon Sook-Yee, Daphne Lee, Lee Sheau Yee, Phuah Sze Yee and Norhashimah Hassan) for their contributions and commitment to this study. The NBCS Collaborators would like to thank the Oslo Breast Cancer Research Consortium, OSEBREAC (breastcancerresearch.no/osbreac), for providing samples and phenotype data. NBHS and SBCGS thank study participants and research staff for their contributions and commitment to the studies. We would like to thank the participants and staff of the Nurses’ Health Study and Nurses’ Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WV. The authors assume full responsibility for analyses and interpretation of these data. OFBCR thanks Teresa Selander, Nayana Weerasooriya. ORIGO thanks E. Krolo-Warmerdam, and J. Blom for patient accrual, administering questionnaires, and managing clinical information. The ORIGO survival data were retrieved from the Leiden hospital-based cancer registry system (ONCODOC) with the help of Dr. J. Molenaar. PBCS thanks Louise Brinton, Mark Sherman, Neolinda Szeszenia-Dabrowska, Beata Peplonska, Witold Zatorski, Pei Chao, Michael Stagner. The ethical approval for the POSH study is MREC /06/69, UCERN ID: 1137. We thank staff in the Experimental Cancer Medicine Centre (ECMC) supported Faculty of Medicine Tissue Bank and the Faculty of Medicine DNA Banking resource. PREFACE thanks Sonja Oeser and Silke Lindruth. PROCAS thanks NIHR for funding. RBCS thanks Petra Bos, Jannet Blom, Ellen Crepin, Elisabeth Huijskens, Anja Kromwijk-Nieuwlaat, Annette Heemskerk, the Erasmus MC Family Cancer Clinic. We thank the SEARCH and EPIC teams. SGBCC thanks the participants and research coordinator Ms Tan Siew Li. SKKDFSZ thank all study participants, clinicians, family doctors, researchers and technicians for their contributions and commitment to this study. We thank the SUCCESS Study teams in Munich, Duesseldorf, Erlangen and Ulm. SZBCS thanks Ewa Putresza. UCIBCS thanks Irene Masunaka. UKBGS thanks Breast Cancer Now and the Institute of Cancer Research for support and funding of the Breakthrough Generations Study, and the study participants, study staff, and the doctors, nurses and other health care providers and health information sources who have contributed to the study. We acknowledge NHS funding to the Royal Marsden/ICR NIHR Biomedical Research Centre. BCAC is funded by Cancer Research UK [C1287/A16563, C1287/A10118], the European Union’s Horizon 2020 2020 Research and Innovation Programme (grant numbers 634935 and 633784 for BRIDGES and B-CAST respectively), and by the European Community’s Seventh Framework Programme under grant agreement number 223175 (Grant Number HEALTH-F2-2009-223175) (COGS). The EU Horizon 2020 Research and Innovation Programme funding source had no role in study design, data collection, data analysis, data interpretation or writing of the report. Genotyping of the OncoArray was funded by the NIH Grant U19 CA148065, and Cancer UK Grant C1287/A1883256 and the PERSPECTIVE project supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research (grant GPH-129344) and the Ministère de l’Économie, Science et Innovation du Québec through Genome Québec and the PSR-SIIRI-701 grant, and the Quebec Breast Cancer Foundation. Funding for the iCOGS infrastructure came from: the European Community’s Seventh Framework Programme under grant agreement No. 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, and Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The DRIVE Consortium was funded by U19 CA148065. The Australian Breast Cancer Family Study (ABCFS), BCFR-NY, BCFR-PA, BCFR-UTAH, the Northern California Breast Cancer Family Registry (NC-BCFR) and Ontario Familial Breast Cancer Registry (OFBCR) were supported by grant UM1 CA164920 from the
National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the USA Government or the BCFR. The ABCPS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow. M.C.S. is a NHMRC Senior Research Fellow. The ABCPS study was supported by the Dutch Cancer Society [grants NKI 2007-3839; 2009 4363]. The Australian Breast Cancer Tissue Bank (ABCTB) was supported by the National Health and Medical Research Council of Australia, The Cancer Institute NSW and the National Breast Cancer Foundation. C.L.C is a NHMRC Principal Research Fellow. The ACP study is funded by the Breast Cancer Research Trust, UK and KM and AL are supported by the NIH Manchester Biomedical Research Centre and by the ICEP ("This work was also supported by CRUK [grant number C18281/A19169]"). The AHS study is supported by the intramural research program of the National Institutes of Health, the National Cancer Institute (grant number Z01-CP010119), and the National Institute of Environmental Health Sciences (grant number Z01-ES049030). The work of the BBCC was partly funded by ELAN-Fond of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breast Cancer Now and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). The BCEEES was funded by the National Health and Medical Research Council, Australia and the Cancer Council Western Australia and acknowledges funding from the National Breast Cancer Foundation (J.S.). The BREast Oncology Galician Network (BREOGAN) is funded by Acción Estratégica de Salud del Instituto de Salud Carlos III FIS PI12/02125/Cofinanciado FEDER, Acción Estratégica de Salud del Instituto de Salud Carlos III FIS Intrasalud (PI13/01136), Cancer Genomics Group (Cancer Genomics Group, Instituto de Investigacion Biomedica Galicia Sur. Xerencia de Xestion Integrada de Vigo-SERGAS, Instituto de Salud Carlos III, Spain; Grant 10CSA012E, Consellería de Industria Programa Sectorial de Investigación Aplicada, PHEME I + D e I + D Suma del Plan Gallego de Investigación, Desarrollo e Innovación Tecnológica de la Consellería de Industria de la Xunta de Galicia, Spain; Grant EC11-192. Fomento de la Investigación Clínica Independiente, Ministerio de Sanidad, Servicios Sociales e Igualdad, Spain; and Grant FEDER-Innterconecta. Ministerio de Economía y Competitividad, Xunta de Galicia, Spain. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CAMA study was funded by Consejo Nacional de Ciencia y Tecnología (CONACYT) (SALUD-2002-C01-7462). Sample collection and processing was funded in part by grants from the National Cancer Institute (NCI R01CA120120 and K24CA169004). CBCS is funded by the Canadian Cancer Society (grant #313404) and the Canadian Institutes of Health Research. CGPS is supported by funding from the University of Crete. The CECILE study was supported by Fondation de France, Institut National du Cancer (INCa), Ligue Nationale contre le Cancer, Agence Nationale de Sécurité Sanitaire, de l'Alimentation, de l'Environnement et du Travail (ANSES), Agence Nationale de la Recherche (ANR). The CGPS was supported by the Chief Physician Johan Bosuerup and Lise Boserup Fund, the Danish Medical Research Council, and Herlev and Gentofte Hospital. COLBCCC is supported by the German Cancer Research Center (DKFZ), Heidelberg, Germany. Diana Torres was in part supported by a postdoctoral fellowship from the Alexander von Humboldt Foundation. The American Cancer Society funds the creation, maintenance, and updating of the CPSII cohort. The CTS was supported by the California Breast Cancer Act of 1993, the California Breast Cancer Research Fund (contract 97-10500) and the National Institutes of Health (RO1 CA77398, K05 CA136967, UM1 CA164917, and U01 CA199277). Collection of cancer incidence data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The University of Westminster curates the DietCompLyf database funded by the charity Against Breast Cancer (Registered Charity No. 1121258) and the NCRN. The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by: Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF) (Germany); the Hellenic Health Foundation, the Stavros Niarchos Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LIK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health Research Fund (FIS), PI13/00061 to Granada, PI13/01162 to EPIC-Murcia, Regional Governments of Andalucia, Asturias, Basque Country, Murcia and Navarra, ISCIII RETIC (RD06/0020) (Spain); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (United Kingdom). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). FHRISK is funded from NHMRC grant PG15 0707-10031. DGE is supported by the all Manchester NIHR Biomedical Research Centre (IS-BRC-1215-20007). The GC-HBOC (German Consortium of Hereditary Breast and Ovarian Cancer) is supported by the German Cancer Aid (grant no 110837, coordinator: R.K.S., Cologne). This work was also funded by the European Regional Development Fund and Free State of Saxony, Germany (LIFE - Leipzig Research Centre for Civilization Diseases, project numbers 713-241202, 713-241202, 14505/2470, 14575/2470). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, the Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the
Ruhr University Bochum (IPA), Bochum, as well as the Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany. The GEPARSIXTO study was conducted by the German Breast Group GmbH. The GESBC was supported by the Deutsche Krebshilfe e. V. [70492] and the German Cancer Research Center (DKFZ). The HABCs study was supported by the Claudia von Schillings Foundation for Breast Cancer Research, by the Lower Saxonian Cancer Society, by the Friends of Hannover Medical School and by the Rudolf Barlting Foundation. The HEBCS was financially supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society, and the Sigrid Juselius Foundation. The HERPACC was supported by MEXT Kakenhi (No. 170150181 and 26253041) from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan, by National Cancer Center Research and Development Fund, and “Practical Research for Innovative Cancer Control (15ck0106177h0001)” from Japan Agency for Medical Research and development, AMED, and Cancer Bio Bank Aichi. The HMBCs and HUBCS were funded by the German Research Foundation (Do761/10-1) and by the Rudolf Barlting Foundation. The HUBCS was further supported by a grant from the German Federal Ministry of Research and Education (RUS08/017), and by the Russian Foundation for Basic Research and the Federal Agency for Scientific Organizations for support the Bioresource collections and RFBR grants 14-04-97088, 17-29-06014 and 17-44-020498. Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Swedish Cancer Society, The Gustav V Jubilee foundation and Bert von Kantzows foundation. The KARMA study was supported by Märit and Hans Rausings Initiative Against Breast Cancer. The KBP was financially supported by the Intramural Research Program of the National Institutes of Health, NCI, Division of Cancer Epidemiology and Genetics. The PLCO is supported by the National Cancer Institute, National Institutes of Health, and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16). The PBCS was funded by Komen Foundation, the National Cancer Institute (P50 CA058223, U54 CA156733, U01 CA179715), and the North Carolina University Cancer Research Fund. The NGOBCs was supported by the National Cancer Center Research and Development Fund. The NHS was supported by NIH grants P01 CA87969, UM1 CA186107, and U19 CA148065. The NHS2 was supported by NIH grants UM1 CA176726 and U19 CA148065. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. Genotyping for PLCO was supported by the Intramural Research Program of the National Institutes of Health, NCI, Division of Cancer Epidemiology and Genetics. The PLCO is supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics and supported by contracts from the Division of Cancer Prevention, National Cancer Institute, National Institutes of Health. The POSH study is funded by Cancer Research UK (grants C1275/A11699, C1275/C22524, C1275/A19187, C1275/A15956 and
Breast Cancer Campaign 2010PR62, 2013PR044. PROCAS is funded from NIHR grant PGfAR 0707-10031. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). The SASCBC study was supported by funding from the Agency for Science, Technology and Research of Singapore (A*STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation. The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, UMCA182910, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The scientific review and funding of this project were, in part, supported by the Genetic Associations and Mechanisms in Oncology (GAME-ON) Network U19 CA148065. SEARCH is funded by Cancer Research UK [C490/A10124, C490/A16561] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The University of Cambridge has received salary support for PDPP from the NHS in the East of England through the Clinical Academic Reserve. SEBCS was supported by the Basic Research Laboratory program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the NUS start-up Grant, National University Cancer Institute Singapore (NCIS) Centre Grant and the NMRC Clinician Scientist Award. Additional controls were recruited by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC), which was funded by the Biomedical Research Council, grant number: 05/1/21/19/425. The Sister Study (SISTER) is supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01 ES044005 and Z01-ES049033). The Two Sister Study (2SISTER) was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01-ES044005 and Z01-ES102245), and, also by a grant from Susan G. Komen for the Cure, grant PAF0703856. SKDKFZS is supported by the DKFZ. The SMC is funded by the Swedish Cancer Foundation. The SBBBCS was supported by the Grant PIEK, KUN, 122/09/2004. The TNBC PREDICT study was supported by a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), a grant from the Breast Cancer Research Foundation, a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ohio State University Comprehensive Cancer Center, The TWBCS is supported by the Taiwan Biobank project of the Institute of Biomedical Sciences, Academia Sinica, Taiwan. The UCIBCS component of this research was supported by the NIH [CA58860, CA92044] and the Lon V Smith Foundation [LVS93420]. The UKBGS is funded by Breast Cancer Now and the Institute of Cancer Research (ICR), London. ICR acknowledges NHS funding to the NIH Biomedical Research Centre. The UKOPS study was funded by The Eve Appeal (The Oak Foundation) and supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. The USRT Study was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. The WAABCS study was supported by grants from the National Cancer Institute of the National Institutes of Health (R01 CA89085 and P50 CA125183 and the D43 TW009112 grant), Susan G. Komen (SAC110026), the Dr. Ralph and Marian Falk Medical Research Trust, and the Avon Foundation for Women.

Author Contributions
Study design: Thilo Dörk, Alison M. Dunning, Paul D.P. Pharoah, Detlev Schindler, and Douglas F. Easton. Data management: Manjeet K. Bolla, Qin Wang, Joe Dennis. Data and material contributions: Thilo Dörk, Paolo Peterlongo, Arto Mannermaa, Manjeet K. Bolla, Qin Wang, Joe Dennis, Thomas Ahearn, Irene L. Andrulis, Hoda Anton-Culver, Volker Arndt, Kristan J. Aronson, Annelie Augustinsson, Laura E. Beane Freeman, Matthias W. Beckmann, Alicia Beeghly, Sabine Behrens, Marina Bermishova, Carl Blomqvist, Natalia V. Bogdanova, Stig E. Bojesen, Hiltrud Brauch, Hermann Brenner, Barbara Burwinkel, Federico Canzian, Tsun L. Chan, Jenny Chang-Claude, Stephen J. Chanock, Ji-Yeob Choi, Hans Christiansen, Christine L. Clarke, Fergus J. Couch, Kamila Czene, Mary B. Daly, Isabel dos-Santos-Silva, Miriam Dwek, Diana M. Eccles, Arif B. Ekici, Mikael Eriksson, D. Gareth Evans, Peter A. Fasching, Jonine Figueroa, Henrik Flyger, Lin Fritschi, Marike Gabrielsson, Manuela Gago-Dominguez, Chi Gao, Susan M. Gallo, Montserrat Garcia-Closas, Jose A. Garcia-Saenz, Mia M. Gaudet, Graham G. Giles, Mark S. Goldberg, David E. Goldgar, Pascal Guénel, Lothar Haab, Lothar Haeberle, Christopher A. Haiman, Niclas Håkansson, Per Hall, Ute Hamann, Mikael Hartman, Jan Hauke, Alexander Hein, Peter Hillelmann, Franz B.L. Hogervorst Maartje J. Hooning, John L. Hopper, Tony Howell, Dolzheng Huo, Hidemi Ito, Motoki Iwasaki, Anna Jakubowska, Wolfgang Jann, Esther M. John, Audrey Jung, Rudolf Kaaks, Daechee Kang, Pooja Maddula Kapoor, Elza Khusnutdinova, Sung-Won Kim, Cari M. Kitahara, Stella Koutsos, Peter Kraft, Vessela N. Kristensen, Ava Kwong, Diether Lambrechts, Loic Le Marchand, Jingmei Li, Sara Lindstrom, Martha Linet, Wing-Yee Lo, Jirong Long, Arittaya Lophatananon, Jan Lubinski, Mehdi Manochehri, Siranoush Manoukian, Sara Margolin, Elena Martinez, Keitao Matsudo, Dimitris Mavroudis, Allons Menidl, Usha Menon, Roger L. Milne, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur Aishah Mohd Taib, Kenneth Muir, Anna Marie Mulligan, Susan L. Neuhausen, Hélène Nervi, Patrick Neven, William G. Newman, Kenneth Offit, Olufunmilayo I. Olopade, Andrew F. Olshan, Janet E. Olson, Nur A
Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-48804-y.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019
Consortia
ABCTB Investigators
Rosemary Balleine169, Robert Baxter170, Stephen Braye171, Jane Carpenter154, Jane Dahlstrom172,173, John Forbes174, C. Soon Lee175, Deborah Marsh176, Adrienne Morey177, Nirmala Pathmanathan178, Rodney Scott179,180, Peter Simpson181, Allan Spigelman182, Nicholas Wilcken183,184, Desmond Yip173,185 & Nikolajs Zeps186

NBCS Collaborators
Anne-Lise Barresen-Dale92,93, Grethe I. Grenaker Alnæs92, Kristine K. Sahlberg92,155,164, Lars Ottestad92, Rolf Kåresen93,157, Ellen Schlichting157, Marit Muri Holmen158, Toril Sauer93,159, Vilde Haakensen92, Olav Engebråten93,160,161, Bjørn Naume93,161, Alexander Fossa161,162, Cecile E. Kiserud161,162, Kristin V. Reinertsen161,162, Åslaug Helland92,161, Margit Riis157 & Jürgen Geisler93,163

169Pathology West ICPMR, Westmead, Sydney, NSW, Australia. 170Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia. 171Pathology North, John Hunter Hospital, Newcastle, NSW, Australia. 172Department of Anatomical Pathology, ACT Pathology, Canberra Hospital, Canberra, ACT, Australia. 173ANU Medical School, Australian National University, Canberra, ACT, Australia. 174Department of Surgical Oncology, Calvary Mater Newcastle Hospital, Australian New Zealand Breast Cancer Trials Group, and School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia. 175School of Science and Health, The University of Western Sydney, Sydney, NSW, Australia. 176Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia. 177SydPath St Vincent’s Hospital, Sydney, NSW, Australia. 178Department of Tissue Pathology and Diagnostic Oncology, Pathology West, Westmead Breast Cancer Institute, Westmead Hospital, Sydney, NSW, Australia. 179Centre for Information Based Medicine, Hunter Medical Research Institute, Newcastle, NSW, Australia. 180Priority Research Centre for Cancer, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia. 181The University of Queensland: UQ Centre for Clinical Research and School of Medicine, Brisbane, QLD, Australia. 182Hereditary Cancer Clinic, St Vincent’s Hospital, The Kinghorn Cancer Centre, Sydney, NSW, Australia. 183Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia. 184Sydney Medical School - Westmead, University of Sydney, Sydney, NSW, Australia. 185Department of Medical Oncology, The Canberra Hospital, Canberra, ACT, Australia. 186St John of God Perth Northern Hospitals, Perth, WA, Australia.