1. INTRODUCTION

The study of supernovae (SNe) plays a very important role in modern astronomy. SNe Types Ia, Ib/c, and II have different stellar progenitors, ending their lives on different timescales. Types Ib/c and II SNe have massive progenitors, exploding on short timescales, from a few million to several tens of a million years, whereas Type Ia SNe are believed to originate from low- and intermediate-mass stars, in particular from C-O white dwarfs in binary systems, ending their lives on timescales ranging from \(\sim 0.03 \) Gyr up to a Hubble time or more. The Type Ia SN rate is hence related to the past star formation history of a galaxy, whereas the Type Ib/c and II rates reflect the birth rate of massive stars, i.e., the galactic star formation rate (SFR). For this reason, the parallel study of the Types Ia, Ib/c, and II SNe provides us with a complete set of information about stellar and galactic evolution.

In recent years, it has been possible to determine the local supernova rates (SNRs) in great detail, both as functions of the luminosity and mass of the various galactic morphological types, as well as in different environments (Muller et al. 1992; Cappellaro et al. 1999; Gal-Yam et al. 2002; Mannucci et al. 2005). Furthermore, modern telescopes have allowed astronomers to derive the supernova rates up to high redshift, providing crucial information on the various SN progenitors and on the main parameters determining galaxy evolution, such as the SFR and the stellar initial mass function.

This wealth of data has allowed us to improve our theoretical understanding of SNe and of their progenitors. Several theoretical investigations of the cosmic SNR have suggested some constraints on the cosmic star formation history (Madau et al. 1998; Sadat et al. 1998; Kobayashi et al. 2000; Hopkins & Beacom 2006) and on the timescales for the explosion of the progenitors of Type Ia SNe (Yungelson & Livio 2000; Mannucci et al. 2006). However, in all of these works, little emphasis has been placed on the study of the SNR as a function of the galactic morphological type. Another aspect that has not been investigated is how the SNR in single galactic types have evolved with cosmic time, as well as the contribution to the cosmic SNR by different galactic types. Furthermore, there has been no attempt to model the SNR as a function of the galactic stellar mass. The study of these aspects is the main motivation of this paper. We use detailed chemical and spectrophotometric evolution models for galaxies of different morphological types, and we attempt to study the Type Ia, Ib/c, and II SNRs as functions of the galactic Hubble type and of the cosmic time. We build a galactic Hubble sequence, consisting of four classes of models: E/S0 galaxies, spirals (S0a/b and Sbc/d), and irregular types (Ir). We model the SNRs for all known SN types (i.e., Type Ia, Ib/c, and II), and by comparing our predictions with the observational data, we derive important information on the SN progenitors. Finally, by studying the SNR density and its evolution with redshift, we gain information on the global SFR and on how the galaxy populations evolved throughout a large fraction of the cosmic time.

The present paper is organized as follows. In § 2 we present the chemical evolution equations and the models used in this work. In § 3 we present our results. Finally, in § 4 we draw our conclusions.
2. THE CHEMICAL EVOLUTION MODELS

2.1. How to Model the Galactic Hubble Sequence

In this paper, the chemical evolution models are used to describe four different galactic Hubble types: E/S0, S0a/b, Sbc/d, and irregular. A model for a spheroid, characterized by a strong and rapid star formation event, followed by passive evolution, is used to describe E/S0 galaxies. Two different models describe early-type spirals (S0a/b) and late-type spirals (Sbc/d). Finally, to describe irregular galaxies, we use a model characterized by a star formation history that has proceeded with bursts of low efficiency. Here we present the basic chemical evolution equations and the assumptions common to all models.

The time evolution of the fractional mass of the element \(i \) in the gas within a galaxy, \(G_i \), is described by the basic equation

\[
\dot{G}_i = -\psi(t) X_i(t) + R_i(t) + (\dot{G}_i)_{\text{inf}} - (\dot{G}_i)_{\text{out}},
\]

where \(G_i(t) = M_i(t)/M_{\text{tot}} \) is the gas mass in the form of an element \(i \) normalized to a fixed total mass \(M_{\text{tot}} \) and \(G(t) = M_i(t)/M_{\text{tot}} \) is the total fractional mass of gas present in the galaxy at time \(t \). The same quantities can be defined in terms of the surface gas and mass densities, especially in spiral galaxies. The quantity \(X_i(t) = G_i(t)/G(t) \) represents the abundance by mass of an element \(i \), with the summation over all elements in the gas mixture being equal to unity; \(\psi(t) \) is the fractional amount of gas turning into stars per unit time, namely, the SFR; and \(R_i(t) \) represents the returned fraction of matter in the form of an element \(i \) that the stars eject into the interstellar medium (ISM) through stellar winds and supernova explosions. This term contains all the prescriptions concerning the stellar yields and the SN progenitor models. The two terms \((\dot{G}_i)_{\text{inf}} \) and \((\dot{G}_i)_{\text{out}} \) account for the infall of external gas and for galactic winds, respectively. The presence of infall and winds varies for galaxies of different morphological type (see §5 2.2, 2.3, and 2.4).

The nucleosynthesis prescriptions are common to all models. For massive stars and Type Ia SNe, we adopt the empirical yields suggested by François et al. (2004), which are substantially based on the Woosley & Weaver (1995) and Iwamoto et al. (1999) yields, respectively. For low- and intermediate-mass stars, we adopt the prescriptions by van den Hoek & Groenewegen (1997).

The prescription adopted for the star formation history is the main feature that characterizes a particular morphological galactic type. In its simplest form, the SFR \(\psi(t) \) in our models is a Schmidt (1959) law expressed as

\[
\psi(t) = \nu G^k(t).
\]

The quantity \(\nu \) is the efficiency of star formation, namely, the inverse of the typical timescale for star formation, and is expressed in Gyr\(^{-1}\).

Unless otherwise stated, the rate of gas infall for a given element \(i \) is defined as

\[
(\dot{G}_i)_{\text{inf}} = \frac{A}{M_{\text{tot}}} e^{-t/\tau},
\]

where \(A \) is a suitable constant and \(\tau \) is the infall timescale. The rate of gas loss via galactic winds for each element \(i \) is assumed to be proportional to the SFR at the time \(t \),

\[
\dot{G}_{\text{wind}} = w_i \psi(t),
\]

where \(w_i \) is a free parameter describing the efficiency of the galactic wind. In all models the instantaneous recycling approximation is relaxed, and the stellar lifetimes are taken into account.

2.2. Early-Type Galaxies

For the chemical evolution of elliptical and S0 galaxies we adopt the model of Pipino & Matteucci (2004), to which we refer the reader for details. Here we recall the main assumptions: elliptical galaxies form by means of a rapid collapse of pristine gas in which star formation occurs at a very high rate (starburst-like regime), and, after a timescale varying with the galactic mass, each galaxy develops a galactic wind due to the energy deposited by SNe into the ISM. After the development of this wind, no star formation is assumed to take place. The SN feedback is taken into account, together with the cooling of SN remnants, and the development of galactic winds is calculated in a self-consistent way. Massive but diffuse halos of dark matter around these galaxies are considered. We assume that the efficiency of the SFR is higher in more massive objects, which evolve faster than less massive ones (inverse-wind scenario; Matteucci [1994]; otherwise called “downsizing”). A Salpeter (1955) initial mass function (IMF) constant in space and time is adopted. The choice of such an IMF for elliptical and S0 galaxies assures us that several observational constraints, such as the average stellar abundances and the color-magnitude diagram (see Pipino & Matteucci 2004), are well reproduced, as well as the metal content in clusters of galaxies (see Renzini 2005). In the SFR expression (eq. [2]) we assume \(k = 1 \) and \(\nu = 10 \) Gyr\(^{-1}\).

2.3. Spiral Galaxies

The model used for spiral (S0a/b and Sbc/d) galaxies is the two-infall model by Chiappini et al. (1997). The first infall creates the halo and the thick disk, on a timescale of \(\sim 1 \) Gyr. The second infall gives rise to the thin disk. The timescale for the disk formation is assumed to increase with the galactocentric distance (\(\tau = 7 \) Gyr at the solar circle), thus producing an “inside-out” scenario for the disk formation. The use of the two-infall model to describe spiral galaxies other than the Milky Way is motivated by the fact that the Milky Way is a rather common spiral galaxy. Recent results of Yoachim & Dalcanton (2006), who analyzed a sample of nearby disks, show that the structural properties of the thin and thick disks of these galaxies are similar to the ones of the Milky Way. This indicates that all spiral galaxies are likely to have a similar origin.

The infall law used for spiral galaxies is based on equation (3), but is expressed in terms of the surface mass density. For a generic chemical element \(i \), the accretion term in spiral galaxies is given by

\[
(\dot{G}_i)_{\text{inf}} = X_{i,\text{inf}} \left(A e^{-t/\tau} + B e^{-\left(t-\tau_{\text{inf}}\right)/\tau_D} \right),
\]

where \(B = 0 \) for \(t < \tau_{\text{inf}} \). The quantity \(\tau_H \) is the timescale for the inner halo formation (0.5–1 Gyr), and \(\tau_D \) is the thin-disk timescale, whereas \(\tau_{\text{inf}} \) is the time of maximum gas accretion onto the disk, coincident with the end of the halo/thick-disk phase. Both \(\tau_D \) and \(\tau_{\text{inf}} \) assume different values for the S0a/b and Sbc/d types (see Table 1). Here \(X_{i,\text{inf}} \) is the abundance of the element \(i \) in the infalling material, which we assume to have a primordial chemical composition. The quantities \(A \) and \(B \) are constants derived in order to reproduce the current average total surface mass density in the halo and in the disk of each galactic type,
TABLE 1

Adopted Parameters for the Galactic Hubble Types Modeled in This Work

Hubble Type	ν (Gyr$^{-1}$)	τ_{inf} (Gyr)	τ_{D} (Gyr)	IMF
E/S0	10	4	1	Salpeter
S0a/b	2	1	3	Scalo
S0a/b	2	1	1	Salpeter
Sbc/d	0.8	5	5	Scalo
Sbc/d	0.8	5	5	Salpeter
Irr	0.05	10		

Notes.—The galactic Hubble types are listed in col. (1). In cols. (2), (3), (4), and (5), we present the adopted parameters, i.e., the star formation efficiency ν, the infall timescale τ_{inf}, the disk timescale τ_{D}, and the IMF, respectively.

respectively. For the surface mass density in the halo, the reference value is the one for the Milky Way, i.e., $\sigma_{H} = 20 M_{\odot} \text{pc}^{-2}$ (Kuijken & Gilmore 1991). For the surface mass density in the disks, the values we adopt are the total surface mass densities by Roberts & Haynes (1994), i.e., $\sigma_{D,\text{S0a/b}} = 154 M_{\odot} \text{pc}^{-2}$ and $\sigma_{D,\text{Sbc/d}} \approx 100 M_{\odot} \text{pc}^{-2}$ for S0a/b and Sbc/d galaxies, respectively.

The IMF is assumed to be constant in space and time. For the IMF, we test two possibilities, the Salpeter (1955) IMF and the Scalo (1986) IMF. In general, for spiral disks the latter is to be preferred over the former, for several reasons. With this IMF, in fact, it is possible to explain the l-band mass-to-light ratio for the stellar component of spiral galaxies, whereas a Salpeter IMF leads to an overestimate of this quantity (Portinari et al. 2004). An important indication about the disk IMF comes also from chemical evolution models described in this section. The parameters used in this work are the total surface mass densities.

In Table 1 we show the adopted parameters for all the chemical evolution models described in this section. The parameters are, for all galaxies, the star formation efficiency ν, the infall timescale τ_{inf}, and the IMF. For the spiral galaxies there is one additional parameter, i.e., the thin-disk timescale τ_{D}. The SFR parameters adopted in this work have been chosen in order to reproduce the main features of the Hubble sequence, i.e., the fact that galaxies from E/S0 to Irr show progressively younger stellar populations, higher SFRs per unit mass, and higher gas fractions (Sandage 1986; Kennicutt 1998). In particular, we interpret the Hubble sequence as a sequence of decreasing efficiency of star formation and increasing infall timescale. In Table 1, we present the present-day main properties of the galactic morphological types studied in this work, as observed by various authors and as predicted by means of our models. We assume that the age of all the galaxies is 12.5 Gyr, which, assuming the set of cosmological parameters suggested by Spergel et al. (2006; $\Omega_{m} = 0.24$, $\Omega_{\Lambda} = 0.76$, and $h = 0.73$), corresponds to a redshift of formation $z_f = 5$. The observables considered in Table 1 are the neutral H mass M_{HI}, the blue luminosity L_{B}, the ratio between these two quantities, the $B-V$ color, and the metallicity.

The measure of the metallicity in the ISM of spiral and irregular galaxies is possible by observing the bright H II regions, whereas the determination of the abundances in the hot ISM of the elliptical and S0 galaxies can be a very difficult task. Moreover, the hot gas in elliptical galaxies may have an external origin. The abundances in E/S0 galaxies are therefore stellar abundances. They are derived from their visual integrated spectrum by means of metallicity indices and then converted to [Fe/H] through suitable calibrations (see Kobayashi & Arimoto 1999). From Table 1, it is possible to see that all the properties of present-day galaxies are reproduced with good accuracy by our models.

2.5. The Star Formation Rates

In Figure 1, we plot the time evolution of the SFRs (expressed in M_{\odot} yr$^{-1}$) for the four models described above. A typical E/S0 galaxies is characterized by very high SFR values (from 100 to 1000 M_{\odot} yr$^{-1}$) and by a starburst lasting \approx0.2 Gyr.

The predicted SFRs for S0a/b and Sbc/d are characterized by two peaks, which are due to the two infall episodes. At the present time the S0a/b and Sbc/d models have similar SFR values, on the order of $\approx 4-6 M_{\odot}$ yr$^{-1}$, but in the past the S0a/b galaxy was characterized by SFRs higher than the Sbc/d during the disk phase. In fact, the timescale for gas accretion onto the disk in Sbc/d galaxies is assumed to be larger than in S0a/b, thus producing a shallower SFR. The SFR of the irregular model consists of an early burst, lasting 0.1 Gyr, and a very long period of low-efficiency star formation, lasting 9 Gyr. The irregular model is the one characterized by the lowest SFR values, typically on the order of $\approx 0.1-0.2 M_{\odot}$ yr$^{-1}$.

In Figure 2, we show the predicted evolution of the SFR per unit mass (SFR$_{m}$, expressed in 10^{5} yr$^{-1}$) for the four models used in this work. This quantity was introduced by Sandage (1986) and is very important for the arguments discussed in this paper. In fact, this quantity is the main driver of the morphological differences among the various Hubble types. From Figure 2, we see that the galaxy types presenting the highest SFR$_{m}$ are the E/S0, with values up to several 10^{-7} yr$^{-1}$. At the beginning of the bursts, Irr galaxies also present a very high SFR$_{m}$ of $\approx 10^{-7}$ yr$^{-1}$. S0a/b and Sbc/d have initial SFR$_{m}$ of $\approx 10^{-7}$ yr$^{-1}$ only during a very short initial phase, after which they evolve with progressively

luminosities) have been corrected for dust extinction effects (Cappellaro et al. 1999). For this reason, in our spectrophotometric calculations we do not take into account dust extinction.
Hubble Type	L_B	M_{HI}	M_{HI}/L_B	$B - V$	Metallicity				
	1	2	3	4	5	6	7	8	9
E/S0	0.3–9.4	0.9	0.04–50a	0.07	0.0001–0.13a	0.0008	0.86–0.94b	0.86	([Fe/H]) = −0.8 to 0.3
S0a/b (Scalo IMF)	2.1–10.7	4.3	18–260b	65	0.04–0.33b	0.15	0.55–0.83b	0.66	12 + log (O/H) = 8.8–9.5c,e
S0a/b (Salp. IMF)	2.1–10.7	2.9	18–260b	47.5	0.04–0.33c	0.16	0.55–0.83c	0.69	12 + log (O/H) = 8.0–9.5c,e
Sbc/d (Scalo IMF)	0.98–9.55	4.7	40–260b	125	0.19–0.56b	0.27	0.42–0.62b	0.48	12 + log (O/H) = 8.0–9.5c,e
Sbc/d (Salp. IMF)	0.98–9.55	4.7	40–260b	133	0.19–0.56b	0.28	0.42–0.62b	0.44	12 + log (O/H) = 8.0–9.5c,e
Irr	0.1–0.7	0.21	7.4–61.7b	36.5	0.36–2c,e	1.7	0.35–0.53b	0.38	12 + log (O/H) = 7.5–9.0c,e

Notes.—The galactic Hubble types are listed in column (1). In cols. (2)–(11) we present the observed and predicted values for the blue luminosity, the H I mass, the H I mass-to-light ratio, the $B - V$ color, and the metallicity.

a Sansom et al. (2000).

b Robert & Haynes (1994).

c For E/S0 galaxies, the chemical abundances reported in the table are the stellar ones. For S0a/b, Sbc/d and Irr galaxies, the chemical abundances reported in the table are the ones measured in H II regions.

d Kobayashi & Arimoto (1999).

e Vila-Costas & Edmunds (1992).

f Garland et al. (2004).

g Hunter & Elmegreen (2004).
decreasing values. It is interesting to note that at the present time the SFR is an increasing function of the Hubble type, with progressively higher values from the early to the late types. This fact has important consequences for the study of the SNR per unit luminosity and mass (see §3.1 and 3.2).

2.6. The Supernova Rates

2.6.1. Type Ia Supernovae

To describe Type Ia supernova progenitors, we assume the single-degenerate (SD) scenario proposed by Whelan & Iben (1973). In this scenario, a C-O white dwarf accretes mass from a nondegenerate companion until it reaches the Chandrasekhar mass (M_{Ch}) and explodes via C-deflagration, leaving no remnant.

The Type Ia SNR is expressed as

$$R_{\text{Ia}}(t) = A_{\text{Ia}} \int_{M_{\text{BM}}}^{M_{\text{BM}}} \phi(M_B) \left[\int_{M_{\text{MB}}}^{M_{\text{B}}(t)} f(\mu) \psi(t - \tau_M) d\mu \right] dM_B,$$

where A_{Ia} represents the proportion of stars in the mass range $M_{\text{BM}} \leq M_B \leq M_{\text{BM}}$ that are born as binaries of that particular type, which eventually produces SNe Ia. The quantity $\mu = M_2/M_B$ is the ratio of the secondary component of the binary system (i.e., the less massive one) and the total mass of the system, and $f(\mu)$ is the distribution function of this ratio. Statistical studies indicate that mass ratios close to 0.5 are preferred, so the formula

$$f(\mu) = 2^{1+\beta}(1 + \beta)\mu^\beta$$

is commonly adopted (Matteucci & Recchi 2001), with $\beta = 2$ as a parameter; τ_M is the lifetime of the secondary star in the system, which determines the timescale for the explosion. The assumed value of A_{Ia} is fixed by reproducing the present-day observed rate and depends on the assumed IMF (Matteucci et al. 2003). For the masses M_{BM} and M_{BM}, we chose the values 3 and 16 M_{\odot}, respectively (see Matteucci & Greggio 1986).

2.6.2. Type II Supernovae

We assume that single massive stars with initial masses in the range >8–25 M_{\odot} explode as Type II core-collapse supernovae. The Type II SNR is expressed as

$$R_{\text{II}}(t) = (1 - A_{\text{Ia}}) \int_{M_{\text{BM}}}^{M_{\text{BM}}} \phi(M) \psi(t - \tau_M) dM + \int_{M_{\text{BM}}}^{25} \phi(M) \psi(t - \tau_M) dM.$$

The upper limit for Type II SNe is uncertain, and it can vary from 25 to 100 M_{\odot}, according to the mass loss.

2.6.3. Type Ib/c Supernovae

The origin of Type Ib/c SNe is rather controversial. They occur in late-type galaxies, in general in the vicinity of star-forming regions (Filippenko 1991). This fact indicates that the most likely progenitors of these SNe are massive stars, such as Wolf-Rayet (W-R) stars (Filippenko & Sargent 1986; Schaeffer et al. 1987), which eject their H-envelope by means of intense stellar winds. However, there is observational evidence against this hypothesis, such as the observed light curves, which are in general broader than the ones achievable by assuming that they originate from the collapse of very massive stars. Other problems are represented by the apparent paucity of W-Rs, unable to account for the rates observed in local galaxies (Muller et al. 1992), along with the fact that some events have been observed relatively far from active star-forming regions (Filippenko 1991). More promising candidates, which could account for these observations, are represented by less massive stars, with typical masses of 12–20 M_{\odot} (Baron 1992; Pols 1997), in close binary systems. In this case, the loss of their envelope occurs by means of Roche lobe overflows.
However, we start with the simplest assumption and, as suggested by Maeder (1992), assume that all the massive stars with initial mass M_{\odot} explode as Type Ib/c supernovae. The Type Ib/c SNR is then expressed as

$$R_{\text{Ib/c}}(t) = \psi(M) \hat{\psi}(t - \tau_M) dM.$$

(9)

3. RESULTS: SUPERNOVA RATES PER UNIT LUMINOSITY AND PER UNIT MASS

The SNR can be expressed per unit blue luminosity, according to

$$1 \text{SNu} = 1 \text{SN}/10^{10} L_{\odot B} \text{ century}^{-1}.$$

(10)

The SNR per unit luminosity (SNu) depends on the details of the SN progenitor models and on the blue luminosity. On the other hand, the SNR per unit stellar mass (SNuM; Mannucci et al. 2005) is expressed as

$$1 \text{SNuM} = 1 \text{SN}/10^{10} M_{\odot} \text{ century}^{-1}.$$

(11)

By adopting these units, the SNR contains information on the stellar mass, which reflects the integrated star formation history; hence, it provides different pieces of information than the SNR per unit luminosity.

3.1. SNRs per Unit Blue Luminosity

In Figure 3, we show the predicted evolution of the Type Ia, Ib/c, and II SNRs per unit blue luminosity for all the four galactic morphological types studied in this work. In E/S0 galaxies, all Type II SNe explode until ~ 0.2 Gyr, which corresponds to the starburst timescale. The Ib/c SNR is dominant at the beginning of the starburst, when the most massive stars explode. After

~ 0.01 Gyr, the Type II SNe dominate the total rate until ~ 0.2 Gyr. The Type Ia SNR, on the other hand, starts to be significant at ~ 0.1 Gyr and peaks at ~ 3 Gyr. After this time, it decreases continuously up to the present time ($T_0 \sim 12.5$ Gyr).

The Ib/c and II SNRs of the S0a/b type reflect the effects of the two infall episodes, which determine the shape of the star formation history. They both decrease until 1 Gyr, when they rise again and present a peak. This peak corresponds to the discontinuity in the SFR at $t = 1$ Gyr (see Fig. 1). After this peak, the Ib/c and II SNRs decrease continuously until the present time (12.5 Gyr).

The Type Ia rate has a completely different behavior. It presents a very broad peak corresponding to the first infall, and then it increases nearly monotonically until the present time.

Also for galaxies of the Sbc/d types, the Ib/c and II SNRs strongly depend on the two infalls. They both decrease until 1 Gyr, when the SFR has a strong discontinuity (see Fig. 1). The Ib/c and II SNRs are then nearly constant until 6 Gyr, when they present a peak and then decrease up to the present time. The Type Ia SNR is similar to the one described for the S0a/b galactic type.

For the Irr galaxy types, the SNRs strongly reflect the bursty star formation history. The Ib/c and II SNRs peaks correspond to the first starburst, at 1 Gyr, then they drop as a consequence of the short duration of the first burst, which is 0.1 Gyr. The Ib/c and II SNRs present a second peak at $t \sim 6$ Gyr, when the star formation starts again, then they decline until the present time. The Type Ia SNR shows a first peak, occurring at 1.1 Gyr. A second broad peak is located at 3 Gyr. This second peak is mainly due to a strong decrease of the blue luminosity, predicted by our spectrophotometric model in the period between the two bursts. The Type Ia SNR starts to increase again a short time after the second burst and then flattens, remaining constant up to 12.5 Gyr.

The predicted evolution of the SNR per unit mass for different galactic morphological types is shown in Figure 4. For each galactic type, the time evolution of the Ib/c and II SNRs is very similar to the SNRs per unit luminosity, as described above.
However, we note that the predicted evolution of the Type Ia SNR per unit mass is substantially different than the predicted Type Ia SNR per unit luminosity. In the case of E/S0 galaxies, the SNU peaks at a different time than the SNe. In the case of the S0a/b and Scb/d galaxies, in the disk phase, i.e., at times larger than 1 Gyr, the SNU is a decreasing function of time, whereas the SNe follows the opposite trend. Also for Irr galaxies, during the second star formation episode, the SNU decreases, whereas the SNe increases. All of these effects are due to the fact that, as the cosmic time increases, the stellar mass and the blue luminosity are increasing and decreasing, respectively.

In Figure 5, we plot the observed and predicted present-day Type Ia (bottom), Ib/c (middle), and II (top) SNRs per unit blue luminosity as a function of the galactic morphological type. The squares with the error bars represent the observed values by Cappellaro et al. (1999). The circles represent the predicted values for the various galactic types, assuming that the progenitors of SNe Ib/c are single stars with masses $M \geq 25 M_\odot$, losing their envelope as Wolf-Rayet (W-R) stars. The circles are calculated assuming a Salpeter IMF (1955) in E/S0 and Irr galaxies and a Scalo (1986) IMF in S0a/b and Scb/d galaxies. The triangles represent the SNRs calculated for S0a/b and Scb/d galaxies, assuming a Salpeter (1955) IMF.

Concerning SN Ib/c, according to our predictions the rate in E/S0 is zero, since in these galaxies star formation stopped more than 12 Gyr ago. For the S0a/b and Scb/d galaxies, with a Salpeter IMF (Fig. 5, circles) our models underestimate the observed rates. For Irr galaxies, the predicted Ib/c rate lies in the lower part of the error bar. This fact probably indicates that we are underestimating the Ib/c rates, i.e., that the single stars with masses $M > 25 M_\odot$ are not sufficient to explain the observed Type Ib/c SNRs and that other progenitors should be taken into account. On the other hand, we note that with the assumption of a Salpeter IMF (Fig. 5, triangles) in spiral disks, the Type Ib/c SNRs are well accounted for.

Finally, we note that the predicted Type II SNRs are in very good agreement with the data. Given the many sources of uncertainty in determining the blue luminosity of galaxies (mostly dust extinction and inclination effects), as well as the galactic Hubble types, we find that our theoretical picture provides a good fit to the observed rates.

3.2. SNRs per Unit Mass

The K-band luminosity is dominated by old stellar populations, which contribute to the bulk of the stellar mass of present-day galaxies. For this reason, the K luminosity represents a better tracer of the stellar mass than the B-band luminosity. Moreover, the K-band luminosity is not affected by dust extinction effects; hence, its determination is in principle more robust than the one for the B band. The K-band luminosity has been used by Mannucci et al. (2005) to derive the SNR per unit mass. In Figure 6, we show the observed and predicted present-day Type Ia (bottom), Ib/c (middle), and II (top) SNRs per unit mass as a function of the galactic morphological type. Also in this case, the observations show an increase in the rates from early types to late types. In general, this effect is even more pronounced than in Figure 5. We note that this effect is accounted for by our predictions. Furthermore, the agreement between the model predictions and the observations here is better than in Figure 5.

The Type Ia SNR per unit mass is reproduced very well for all galaxy types. The discrepancy between the observed and predicted Ib/c rates for S0a/b, Scb/d (with a Salpeter IMF), and Irr is still present. This confirms that, if the IMF in spiral disks is the one of Scalo (1986), massive W-R stars are unlikely to represent the only progenitors of Type Ib/c SNe. On the other hand, it is important to note that the assumption of a Salpeter IMF (Fig. 6, triangles) in S0a/b and Scb/d galaxies allows us to reproduce the observed Type Ib/c SNRs.

3.3. SN Type Ib/c Rates from Binary Systems

Other possible progenitors for Type Ib/c SNe can be less massive stars (i.e., stars with initial masses 12–20 M_\odot) in close binary systems, ending their lives as He stars and ejecting their H-envelope by means of mass transfer (Filippenko 1991) and finally exploding as core-collapse SNe. Therefore, we recalculate the Type Ib/c and II SNRs by assuming that the Ib/c SN progenitors are both single W-R stars and close massive binaries. In this case, the uncertain parameter is the proportion of massive stars in close binary systems that give rise to Type Ib/c SNe, the equivalent of the parameter A_{ib} described in § 2.6. This quantity is practically unknown, as it is A_{ib}, and it should be determined as...
SNe Ib/c are single stars with masses and Sbc/d galaxies, assuming a Salpeter (1955) IMF and that the progenitors of IMF in S0a/b and Sbc/d galaxies. The triangles are the SNRs calculated for S0a/b calculated assuming a Salpeter (1955) IMF in E/S0 and Irr galaxies and a Scalo (1986) stars plus massive binaries (MB). The open circles and the dotted circles are cal-

quantitatively estimate for the Scalo (1986) IMF that a fraction of this quantity by assuming that in our Galaxy half of the massive stars with masses in the range 12–25 M_{\odot}, losing their envelope as Wolf-Rayet (W-R) stars. The dotted circles represent possible Type Ib/c SN progenitors. We recall here that, as in the case of the fraction $A_{Ib/c}$ of binary systems that can end as Type Ia (see eq. [6]), the quantity $A_{Ib/c}$ depends on the assumed stellar IMF. Here we assume that $A_{Ib/c} = A_{Ib/c,Salp}$ for E/S0 and Irr and $A_{Ib/c} = A_{Ib/c,Sc}$ for S0a/b and Sbc/d, respectively, from the predicted Type II SNR calculated at the present time [$R_{II}(T_0)$], and by adding this same quantity to the previously calculated current Type Ib/c SNR [$R_{Ib}(T_0)$], we obtain

$$R'_{II}(T_0) = R_{II} - R_{Ib}^{MB}(T_0).$$ \hspace{1cm} (15)

$$R'_{Ib}(T_0) = R_{Ib}(T_0) + R_{Ib}^{MB}(T_0).$$ \hspace{1cm} (16)

These quantities are the revised calculations for the Types II and Ib/c SNRs, indicated by $R'_{II}(T_0)$ and $R'_{Ib}(T_0)$, respectively. In Figure 6, these new values are indicated as dotted circles.

We note that the newly calculated Type Ib/c SNRs are in very good agreement with the observations. Our conclusions are that single W-R stars, exploding as Type Ib/c SNe, are not sufficient to account for the observed Ib/c SNR per unit mass. Less massive stars, with initial masses $12 \leq M/M_{\odot} \leq 20$, in close binary systems make a significant contribution to the Ib/c SN SFRs. It is important to stress that for S0a/b and Sbc/d galaxies this conclusion holds only in the case of the assumption of a Scalo (1986) IMF.

In Table 3, we present all the predicted present-day estimates for the Types Ib/c SNRs in the four morphological types, and we compare them with the available observational estimates. The SNRs are calculated per unit B-band luminosity and per unit mass. Hubble types are reported in column (1). The observed and predicted values for the Type Ib/c, and II SNRs are reported in columns (2)–(7). For S0a/b and Sbc/d in the case of Scalo IMF and Irr galaxies, the entries for the predicted Type Ib/c SNRs in Table 3 include also the contribution by massive binaries and have been calculated according to equation (16). For S0a/b and Sbc/d, in the case of the adoption of a Salpeter IMF, the entries include only the contribution by single stars with masses $M \geq 25 M_{\odot}$. In general, the agreement between the model predictions and the data is rather good. Given the several sources of uncertainty in recognizing the galactic Hubble types and in some cases the SN types, we find that our models provide a good fit to the observed rates.

3.4. The Evolution of the Cosmic Star Formation Rate Density

A significant test for any galaxy evolution model is represented by the study of the cosmic star formation history (Hopkins 2004; Sawicki & Thompson 2006). In this paper, we calculate the SFR density $\rho_s(z)$ as indicated in Calura & Matteucci (2003),

$$\dot{\rho}_s(z) = \sum_i \rho_{B,i}(z) \left(\frac{M}{T_{\star}} \right)_{B,i} (z) SFR_{m,i}(z),$$ \hspace{1cm} (17)

where $\rho_{B,i}$, $\left(M/L \right)_{B,i}$, and $SFR_{m,i}(z)$ are the B luminosity density, the B mass-to-light ratio, and the SFR per unit mass for the galaxies of the ith morphological type, respectively. For purposes of comparison with all the observational data, hereafter we adopt a Lambda cold dark matter cosmology (ΛCDM, $\Omega_0 = 0.3$, $\Omega_{\Lambda} = 0.7$) and $h = 0.73$. For all galaxies, we assume that the star formation started at redshift $z_f = 5$. According to this cosmological model, the redshift $z_f = 5$ corresponds to a look-back time of 11.8 Gyr.

The points in Figure 7 represent estimates based on observations in the UV band, which is contaminated by dust extinction effects. However, since the extent of the attenuation by dust is highly uncertain (see Steidel et al. 1999; Hopkins 2004), we have chosen to plot the data uncorrected for dust extinction. The dashed line in Figure 7 represents the predicted evolution of the cosmic...
star formation history, obtained by means of our models. The solid line represents the predicted cosmic SFR, renormalized to the value calculated at \(z = 0.05 \) by Sawicki & Thompson (2006). The solid line is drawn in order to stress that the evolution of the cosmic SFR observed between redshift \(z = 1 \) and 0 is well reproduced by our models. The shape of the SFR density at redshifts \(z > 2 \) is highly uncertain (Hopkins 2004). The fit to the points can be improved by shifting the redshift of formation \(z_f = 5 \) toward higher values. The peak predicted by means of our models is due to the strong star formation in the progenitors of E/S0 galaxies and might not be observable if the associated starbursts occurred in sites heavily obscured by dust. In fact, in their study of the UV luminosity density evolution, Calura et al. (2004) have shown that, once dust obscuration effects are taken into account, the predicted peak at \(z = 5 \) of the UV luminosity density, due to early-type galaxies, levels off, and their predictions become consistent with the observed values.

3.5. The Evolution of the Supernova Rate Density

Once we have verified that our galaxy evolution picture reproduces the observed cosmic star formation history, now we focus on the cosmic SFR density and its evolution. The SNR density (SNRD) is defined as the SNR per unit cosmic volume. This quantity is important since it gives information on how the total galaxy populations evolve with cosmic time. This study is also useful to understand the contributions that the different galactic morphological types make to the total supernova rate and, as a consequence, to the global rate of metal production. The SNRD values observed so far concern Type Ia SNe and core-collapse (CC) SNe, which include the categories of Type Ib/c and II. For this reason, from this moment on we ignore the distinction between Types Ib/c and II SNe. The CC SNRD is given by the sum of the Types Ib/c and II SNRDs.

For the \(k \)th galactic morphological type, the Type \(\gamma \) SNRD (expressed as \(SN \) \(yr^{-1} \) \(Mpc^{-3} \)) as a function of the redshift \(z \) is

\[
\rho_{SRD,\gamma}(z) = \rho_{B,\gamma}(z)SN_{\gamma}^{100^{-1} \text{ yr}^{-1} \text{ yr}^{-1} 10^{-10}L_{B,\gamma}},
\]

where \(\rho_{B,\gamma}(z) \) is the \(B \)-band luminosity density (BLD) for the \(k \)th morphological type. At \(z = 0 \) the BLDs for the single galaxy types are the ones observed by Marzke et al. (1998), who determined the local \(B \)-band luminosity function for three morphological types: early-type, spiral, and irregular galaxies. We assume that the early-type BLD represents the contribution by E/S0 galaxies. The morphological fractions for the S0a/b and Sbc/d

TABLE 3

Hubble Type	Ia (Observed)	Ia (Predicted)	Ib/c (Observed)	Ib/c (Predicted)	II (Predicted)
E/S0	0.17 ± 0.06	0.19	<0.01	0	<0.02
S0a/b	0.20 ± 0.08	0.29	0.10 ± 0.06	0.06	0.40 ± 0.28
Sbc/d	0.20 ± 0.08	0.29	0.10 ± 0.06	0.1	0.40 ± 0.18
S0a/b	0.38 ± 0.15	0.5	0.13 ± 0.07	0.15	0.81 ± 0.33
Sbc/d	0.38 ± 0.15	0.5	0.13 ± 0.07	0.15	0.81 ± 0.33

The SNR per Unit Mass (SNuM)

- **a** Observed values: Cappellaro et al. (1999).
- **b** Observed values: Mannucci et al. (2005).

![Fig. 7. Predicted and observed SFRD assuming that galaxy formation started at \(z_f = 5 \). The dashed line represents the predicted total convolving SFRD, given by the sum of the contributions of all the different morphological types. The solid line represents the predicted SFRD, renormalized to the \(z_f = 0.05 \) value by Sawicki & Thompson (2006). The squares represent the observational data by Sawicki & Thompson (2006). The circles represent the observational data by Schiminovich et al. (2005). The diamonds are taken from Lanzetta et al. (2002). [See the electronic edition of the Journal for a color version of this figure.]

No. 2, 2006

COSMIC SUPERNOVA RATES AND THE HUBBLE SEQUENCE

897 No. 2, 2006
galaxies are the ones observed by Nakamura et al. (2003), who have shown that the stellar mass density of spiral disks is dominated by S0a/b galaxies, with a 73% contribution. The remaining 27% is the contribution by Sbc/d galaxies. These fractions, multiplied by the total spiral BLD as observed by Marzke et al. (1998), give the local S0a/b and Sbc/d BLDs.

At a generic redshift \(z \), the luminosity density is calculated as described in Calura & Matteucci (2003, 2004). The quantity \(\text{SNR}_{k} \) is the SNR, expressed in SNu, for the \(k \)th galactic type and for the \(\gamma \)th SN type. In Figure 8 we show the predicted redshift evolution of the Type Ia SNRD (bottom) and CC SNRD (top) for E/S0 galaxies (solid lines), S0a/b (dotted lines), Sbc/d (short-dashed lines), and irregular galaxies (long-dashed lines). We note that the Type Ia SNRD (Fig. 8, bottom) is dominated by E/S0 galaxies throughout most of the cosmic time. S0a/b galaxies are the second largest contributors to the Type Ia SNRD at any redshift. Sbc/d and Irr make a minor contribution throughout most of the cosmic time. At the present time, the Type Ia SNRD is dominated by S0a/b galaxies.

The CC SNRD (Fig. 8, top) at early epochs is dominated by the progenitors of E/S0 galaxies, which, as predicted by Calura & Matteucci (2003), also cause a peak in the cosmic SFRD. The S0a/b and Sbc/d galaxies dominate the CC SNRD throughout most of the cosmic time. At the present time, the CC SNRD is dominated by S0a/b and Sbc/d galaxies, with Irr making a minor contribution. In E/S0 galaxies, the present-day CC SNRD is zero.

In Figure 9, we show the predicted and observed redshift evolution of the total Type Ia (bottom left) and CC (top left) SNRD, along with the time evolution of the Ia and CC SNRD (right). By looking at the time evolution of the Type Ia and CC SNRD (Fig. 9, right), we note that the Type Ia and CC SNRD present a peak at 0.2 and 0.02 Gyr after the beginning of the star formation, respectively. The delay between these two peaks is due to the different mass ranges and, consequently, explosion timescales of Type Ia and CC SNe.

In the left panels, the predictions have been calculated by assuming two possible redshifts of formation for all galaxies: \(z_f = 3 \) (dotted lines) and \(z_f = 5 \) (solid lines). The sources of the observed SNRD are reported in the legend of Figure 9. All the observed SNRDs have been normalized to the local BLD used in this work, i.e., the one by Marzke et al. (1998). Concerning the Type Ia SNRD, the majority of the observed data up to redshift \(z \sim 1 \) (i.e., \(1 + z \sim 2 \))
in Fig. 9) are well reproduced by our models. On the other hand, the points at redshift $z > 1$ (corresponding to $1 + z > 2$ in Fig. 9) observed by Dahlen et al. (2004) are overestimated by our predictions. These data are very difficult to reproduce by means of standard SNR models (Dahlen et al. 2004; Mannucci et al. 2005), unless a significant delay time ($\tau_d = 4$ Gyr) between the epoch of star formation and the explosion of Type Ia SN is assumed. In principle, this means that one should wait a time comparable to ~ 4 Gyr after the beginning of star formation in order to observe a significant contribution from Type Ia SN to the chemical enrichment of any astrophysical system. This conclusion is in strong contrast to the results of any chemical evolution model describing the Milky Way galaxy. It is well known that CC SNe enrich the galactic ISM of α-elements, such as O and Mg. On the other hand, Type Ia SNe are the main producers of Fe-peak elements. For this reason, the study of the α/Fe ratio in astrophysical objects carries important information on the star formation history and on the age of the systems. Chemical evolution models indicate that in the solar neighborhood the time at which the Fe production from SNe Ia starts to become important is ~ 1 Gyr after the beginning of star formation (Matteucci & Greggio 1986; Matteucci & Recchi 2001). This timescale allows us to explain the α/Fe values as a function of the Fe/H ratio observed in Galactic field stars.

A delay time of ~ 4 Gyr is also in contrast to chemical evolution studies of damped Lyα (DLA) systems. DLAs are quasar-absorbing systems characterized by high neutral gas content [with typical values for the neutral H column density of N(H I) $\geq 2 \times 10^{20}$ cm$^{-2}$] and metal abundances that can span from $\sim 1/100$ solar up to the solar value (Wolfe et al. 2005). Recently, by comparing the abundance ratios observed in a sample of DLAs with the predictions from chemical evolution models, it has been possible to determine for the first time the age of these systems (Dessauges-Zavadsky et al. 2004), with values ranging from ~ 0.1 up to 1–2 Gyr. In general, DLAs show solar (O/Fe) ratios (Calura et al. 2003). This means that in these systems the contribution of Type Ia SNe to the chemical enrichment of the ISM has already been significant. Given their ages, with a typical timescale of ~ 4 Gyr for Type Ia SNe, it would be impossible to find solar O/Fe values in DLAs. Moreover, recently Mannucci et al. (2006) have shown that a large fraction of SNe Ia should arise from fast systems, i.e., exploding on timescales on the order of 40 Myr, to explain the Type Ia SNRs observed in radio-loud elliptical galaxies. For these reasons, we believe that the decline in the cosmic Ia SNRD as observed by Dahlen et al. (2004) should be regarded with caution. These data are the first collected at redshift $z > 1$ for the Type Ia SNR and are likely to represent lower limits to the actual values. Our suggestion is that, before drawing definitive conclusions about the behavior of the Type Ia SNRD at redshift $z > 1$, we wait for more data from future surveys. Finally, from Figure 9 (left bottom), we note that the assumption that galaxy formation started at $z_f = 5$ or at 3 has a minor impact on the theoretical results.

In Figure 9 (top), we show the predicted and observed evolution of the CC SNRD. In this case, the available data are scant. The available measures have been derived only by Cappellaro et al. (1999, 2005) and Dahlen et al. (2004).

The observed local CC SNRD is reproduced by our models. On the other hand, all the SNRD values observed at redshift $z \geq 0.3$ are underestimated by our results, although consistent with the error bars. On the other hand, our models allow us to reproduce the observed evolution of the cosmic star formation, which is a quantity proportional to the CC SNRD. We believe that, because of the paucity of the observational data, no firm conclusion can be drawn about the evolution of the CC SNRD at redshift $z > 0$.

In Figure 10, we show the redshift evolution of the predicted CC/Ia SNR ratio, along with the few available data that have been collected for both quantities (Cappellaro et al. 1999; Dahlen et al. 2004). The predictions indicate that the CC/Ia ratio does not vary significantly between $z = 0$ and 1. The predictions are all consistent with the available observations. According to our results, at higher redshift the CC/Ia ratio should show a large peak, corresponding to the epoch of major spheroid formation. This effect could be in principle observable in the future, thanks to the next-generation space- and ground-based telescopes.

4. CONCLUSIONS

In this paper, we have studied the Type Ia, Ib/c, and II SNRs for galaxies of different morphological types. We have built four different chemical evolution models, each one representing a different Hubble type: E/S0, S0a/b, Sbc/d, and Irr galaxies. We have interpreted the Hubble sequence as due to a decreasing star formation efficiency and an increasing infall timescale going from early- to late-type galaxies. We have then used these models to study the evolution of the SNRs per unit luminosity and per unit mass as a function of time and as a function of the Hubble type. This kind of study can provide useful constraints on the possible SN progenitor models and on several galaxy evolution parameters. We have compared the observed local SNRs with our predictions, finding a generally good agreement. Finally, we have investigated the redshift evolution of the core-collapse and Type Ia SNRD, a quantity very important to understanding the global evolution of star formation in the universe. Our results can be summarized as follows.

1. The local observations indicate an increase of both the SNR per unit luminosity and mass from early- to late-galaxy types.
This feature is well reproduced by our models. According to our results, this effect is due to the fact that the latest Hubble types have in general the highest SFRs per unit mass.

2. If we adopt a Scalo (1986) IMF in S0a/b and Sbc/d galaxies, our results show that massive (i.e., with initial masses $M > 25 M_\odot$), single W-R stars, losing the H-envelope by means of stellar winds and exploding as Type Ib/c SNe, are not sufficient to account for the observed Ib/c SNR per unit mass. In this case, less massive stars, i.e., with initial masses $12 \leq M/M_\odot \leq 20$, in close binary systems give a significant contribution to the local Ib/c SNeRs. On the other hand, by adopting a Salpeter (1955) IMF for all morphological types, it is possible to explain the observed Type Ib/c SNeRs without resorting to the contribution by massive stars in close binary systems. However, Romano et al. (2005) have studied the effects of varying the IMFs in the chemical evolution models of the Milky Way galaxy. These authors have found that the Salpeter IMF leads to a serious overestimate of the observed solar abundances, showing that, for the modeling of the Milky Way disk, the Scalo (1986) IMF is favored over the Salpeter (1955) one.

3. The main contributors to the Type Ia SNR throughout most of the cosmic time are E/S0 galaxies. During the epoch of E/S0 formation, the progenitors of these galaxies dominate the total core-collapse SNR. S0a/b and Sbc/d galaxies dominate the core-collapse SNR throughout the remainder of the cosmic time, with Ir galaxies making a minor contribution.

4. The predicted Type Ia cosmic SNRD increases with redshift, reaching a peak at redshift $z \gtrsim 3$, which is due to the contribution by massive spheroids. Our models allow us to reproduce the observed Type Ia SNR up to redshift $z \sim 1$. At higher redshifts, our predictions overestimate the few available data, which cannot be reproduced unless a significant delay time ($\tau_d = 4$ Gyr) between the epoch of star formation and the explosion of Type Ia SNe is assumed, as shown by Dahlen et al. (2004). This delay time is in strong contrast to chemical evolution results from studies of the α/Fe ratio in the Milky Way and in damped Lyman α systems. It is also in contrast to the empirical Type Ia SNR recently derived by Mannucci et al. (2006), which agrees with our assumptions about the Type Ia SNR, which includes systems exploding only after ~ 0.03 Gyr from the beginning of star formation. More data on the SNe Ia at high redshift are necessary before drawing firm conclusions.

5. At $z = 0$, we reproduce the observed CC SNRD. At redshift $z > 0$, the few observations of the CC SNRD are underestimated by our results, although consistent with the error bars. To draw firm conclusions on the behavior of the CC SNR at redshift $z > 0$, more observational data are needed.

6. Our predictions indicate that the ratio of the core-collapse to Type Ia SN rate should present a peak corresponding to the major spheroid formation epoch. In the future, the next-generation telescopes could allow us to observe this effect.

We are grateful to Raul Jimenez for providing us with the software necessary to calculate the spectra of the simple stellar populations. We thank A. Pipino and G. Cescutti for several interesting discussions. The authors acknowledge financial support from INAF (Italian National Institute of Astrophysics), project 2005-1.06.08.16.

REFERENCES

Baron, E. 1992, MNRAS, 255, 267
Barris, B. J., & Tonry, J. L. 2006, ApJ, 637, 427
Blanc, G., et al. 2004, A&A, 423, 881
Bradamante, F., Matteucci, F., & D’Ercole, A. 1998, A&A, 337, 338
Calura, F., & Matteucci, F. 2003, ApJ, 596, 734 (CM03)
———. 2004, MNRAS, 350, 351
———. 2005, MNRAS, 332, 37
———. 2006, A&A, 421, 613
———. 2007, A&A, 467, 79
Dessauges-Zavadsky, M., Calura, F., Prochaska, J. X., D’Odorico, S., & Matteucci, F. 2004, A&A, 416, 79
Filipenko, A. V. 1991, in IAU Symp. 143, Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, ed. K. A. van der Hucht & B. Hidayat (Dordrecht: Kluwer), 529
Filipenko, A. V., & Sargent, W. L. W. 1986, AJ, 91, 691
François, P., Matteucci, F., Cayrel, R., Spite, M., Spite, F., & Chiappini, C. 2004, A&A, 421, 613
Gal-Yam, A., Maoz, D., & Sharon, K. 2002, MNRAS, 332, 37
Garland, C. A., Pisano, D. J., Williams, J. P., Guzmán, R., & Castander, F. J. 2004, ApJ, 615, 89
Hardin, D., et al. 2000, A&A, 362, 419
Hopkins, A. M. 2004, ApJ, 615, 209
Hopkins, A. M., & Beacom, J. F. 2006, ApJ, 651, 142
Huntor, D. A., & Elmegreen, B. G. 2004, AJ, 128, 2170
Iwamoto, K., Brachwitz, F., Nomoto, K., Kishimoto, N., Umeda, H., Hix, W. R., & Thielemann, F.-K. 1999, AIP, 125, 439
Jeffries, R. D., & Maxted, P. F. L. 2005, Astron. Nachr., 326, 944
Jimenez, R., MacDonald, J., Dunlop, J. S., Padoan, P., & Peacock, J. A. 2004, MNRAS, 349, 240
Kennicutt, R. C., Jr. 1998, ARA&A, 36, 189
Kobayashi, C., & Arimoto, N. 1999, ApJ, 527, 573
Kobayashi, C., & Utimoto, K., & Nomoto, K. 2000, ApJ, 539, 26
Kuijken, K., & Gilmore, G. 1991, ApJ, 367, L9
Lanzetta, K. M., Yahata, N., Pancarelle, S., Chen, H., & Fernández-Soto, A. 2002, ApJ, 570, 492
Madau, P., Delia Valle, M., & Panagia, N. 1998, MNRAS, 297, L17
Madgwick, D. S., Hewett, P. C., Mortlock, D. J., & Wang. L. 2003, ApJ, 599, L33
Maeder, A. 1992, A&A, 264, 105
Mannucci, F., Delia Valle, M., & Panagia, N. 2006, MNRAS, 370, 773
———. 2007, A&A, 478, 10
———. 2008, A&A, 498, 737
Mannucci, F., Chiappini, C., Matteucci, F., & Romano, D. 2001, ApJ, 554, 1044
Dahlen, T., et al. 2004, ApJ, 613, 189
Dessauges-Zavadsky, M., Calura, F., Prochaska, J. X., D’Odorico, S., & Matteucci, F. 2004, A&A, 416, 79
Pain, R., et al. 1996, ApJ, 473, 356
Pipino, A., & Matteucci, F. 2004, MNRAS, 347, 968
Pols, O. 1997, in ASP Conf. Ser. 130, The Third Pacific Rim Conference on Recent Development in Binary Star Research, ed. K.-C. Leung (San Francisco: ASP), 153
Portinari, L., & Sargent, W. L. W. 1994, ARA&A, 32, 115
Romano, D., Chiappini, C., Matteucci, F., & Tosi, M. 2005, A&A, 430, 491
Sadat, R., Blanchard, A., Guidoroni, B., & Silk, J. 1998, A&A, 331, L69
Salpeter, E. E. 1955, ApJ, 121, 161
Sandage, A. 1986, A&A, 161, 89
Samsom, A. E., Hibbard, J. E., & Schweizer, F. 2000, AJ, 120, 1946
Savicki, M., & Thompson, D. 2006, ApJ, 648, 299
Scalo, J. M. 1986, Fundam. Cosmic Phys., 11, 1
Schaeffer, R., Cassé, M., & Cahen, S. 1987, ApJ, 316, L31
Schiminovich, D., et al. 2005, ApJ, 619, L47
Schmidt, M. 1959, ApJ, 129, 243
Spergel, D. N., et al. 2006, ApJ, submitted (astro-ph/0603449)
Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M. 1999, ApJ, 519, 1
Tonry, J. L., et al. 2003, ApJ, 594, 1

van den Hoeck, L. B., & Groenwegen, M. A. T. 1997, A&AS, 123, 305
Vila-Costas, M. B., & Edmunds, M. G. 1992, MNRAS, 259, 121
Whelan, J., & Iben, I., Jr. 1973, ApJ, 186, 1007
Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2005, ARA&A, 43, 861
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181
Yoachim, P., & Dalcanton, J. J. 2006, AJ, 131, 226
Yungelson, L., & Livio, M. 2000, ApJ, 528, 108