Introduction

Facial reconstruction-making faces are an old story. In ancient Egypt, great efforts were made by scientists to preserve as many details of their ancestors as they could. Late in the 19th century, anatomists, anthropologists and forensic odontologists began to study the correlation between the surface soft tissues of the face and the underlying bony structure of the skull. In modern times, facial reconstruction has been developed in order to help archaeologists in their attempts to demonstrate the appearance of early man. Also, recently in forensic science in order to produce an image from a skull, which offers a sufficient likeness of the living individual [1].

Skulls can survive for centuries, even millions of years and can provide an unrivalled means of identification [2]. If a skull is accidentally recovered from a garden, forest etc, a positive identification will be needed. In cases where traditional methods of identification like dental records examination, radiography, DNA analysis etc, cannot be used or have been ineffective, forensic facial reconstruction can be used as an important tool which may help in facial recognition of the skull and lead to identification of an individual [3].

Faces are fascinating. The bones of the skull are a key determinant of facial appearance. They form the basic framework to which other tissues are attached and how a person looks depends on all these factors together-skin, muscle, fat and bone. In human beings, the basic look is similar but we are very sensitive to the small differences that can be used for identification purposes [2].

Techniques of facial reconstruction [1,4]

a. Plaster skull reconstruction (combination Manchester method/British method)

b. Skull/photo video superimposition

c. Computerized 3D facial reconstruction

d. Anthropometrical American method/Tissue depth method

e. Anatomical Russian Method.

Each approach utilizes either a manual or computer generated method. Computer generated models are particularly important to focus on in light of technological advances that have been made in recent years and the increasingly heavy reliance on these methods.

Regardless of the method used, approaches can be broken down into three basic schools of thoughts: anatomical, anthropometrical and combination. The anatomical view is heavily influenced by the prevalence of musculature in defining the shape of the reconstructed face, while anthropometrical view focuses on the average tissue depth of the face as the key factor. The combination view is a way of merging the anatomical and anthropometrical, with average tissue depth serving to confirm details obtained by looking at the muscle and bone structure. The method chosen determines the measurements and formulas that one uses and the level of objective and subjective influences [5].

Plaster scalp reconstruction technique

This is a traditional technique which requires the eyes and hands of an artist and the specialized knowledge of an anatomist. The method involves the preparation of a cast of skull (both cranium and mandible together fit with false eyes). On the cast, 3 mm diameter pegs are fitted to the distance according to the thickness...
of the soft tissues regarding the age, sex, ethnic group and mainly
the appropriate set of measurements.

a. Medial and Lateral canthi of the eyes is marked with a
copper pin.

b. 1 or 2 pegs from the nasal aperture.

The progression of muscle building in temporal muscle, masseter, buccinator, orbicular oris. Position and strength of
muscle insertions should be noted. The width of the mouth is
determined by the outer borders of the canine teeth. When teeth
are missing, the distance between the inner borders of the iris
is considered next the expression muscles are added-levator
anguli oris, levator labii superioris, zygomaticus major and minor;
depressor labii inferioris and depressor anguli oris. Space between
them should be supported to prevent them from collapsing.

The width of the nasal aperture in the skull is equal to the three
fifth of the overall nose’s width. Then the whole cast is to be covered
by a layer of clay to simulate the outer layers of subcutaneous
tissues and skin. The modelling of the superficial features makes a
face look alive. The average success rate is between 50% and 60%
[1,6-8].

Skull/photo video super imposition

This method was first described by Kenna [9]. This method
is useful when ante-mortem photographs of 1 or more possible
descendants are available. The skull to be identified is mounted on
an adjustable support. A high resolution video camera is aligned
at right angles with the ante-mortem photograph. A second video
camera is aligned with the skull. The center of the lens must be at the
same level as the horizontal center of the photograph. The 2 images
from each camera are processed in a vision mixer, for horizontal,
vertical wiping and super imposition and negative stimulation.

If teeth are present, the enlargement can be carried out until
the teeth in the ante mortem photograph exactly overlaps the
teeth in the super imposed video picture. If teeth are not present,
estimation should be made by adjusting the vertical height of the
photograph of that of the skull [1,9,10].

Computerized 3D facial reconstruction

This method employs computer programs to transform laser-
scanned 3D skull images into faces. Although the results are more
reproducible than sculpted reconstructions, some subjectivity
could remain in the pegging of a composite facial image onto the
digitized skull matrix [1].

A database of head models (both skulls, faces and soft tissue
depth with their personal characters [age, sex, race and nutrition
status] is required. The remains of the deceased are examined by
the forensic team and the information provided is utilized in order
to chose the appropriate skull and soft tissue templates [11-13].

The skull is positioned in a padded head holder. The longitude
changes as the skull rotates on the platform and the radius is
measured for each latitude. A wire frame of 256 x 256 radii
is manufactured which must be transformed using tissue
depth measurements to generate the foundation of the facial
reconstruction. The facial features not predicted by the skull
contours (nose, eyes, mouth) must be added with separate means
to generate a wire frame face onto which colour and texture are
rendered [11,14].

**Anthropometrical american method/ tissue depth
method**

This technique first developed by Krokmn in 1946, uses soft
tissue depth data which are obtained by the use of needles, x-rays
or ultra sound. Facial muscles are recorded in a proper anatomical
manner. This technique is not preferred now-a-days as it requires
highly trained personnel [4].

Anatomical Russian method

This method developed by Gerasimov in 1971, does not uses
soft tissue depth data but facial muscles were used in anatomical
position.

Discussion

Several forensic scientists have criticized facial reconstruction
for the accuracy of the method and its failing to create exact replicas
of an individual. However forensic facial reconstructions will only
produce images that are a gross approximation which may be an
alternative method in the identification process where no other
evidence is available.

However the choice of method of facial reconstruction depends
upon the information provided by the team of a forensic pathologist,
forensic anthropologist, forensic odontologist and the investigation
team.

The technique of plaster face reconstruction requires the
information of age, race, sex, nutrition status, to assess the soft
tissue thickness data. Furthermore the details of nose, eye, ear,
lips and chin cannot be constructed exactly from the skull and are
largely guess work [13].

However in case of ante mortem photographs to be matched
with the skull remains, the skull/ photo video super imposition
technique can be of great advantage as the operator’s ability to fade
either the skull or ante mortem photograph in and out of the video
screen and can assess how well they match [9,10,15].

But the possibility that other skulls could fit all the facial
features of a photograph could occur and therefore this technique
is best used in exclusion rather than identification and to supply
corroborative evidence [1]. In Australian courts of law, video super
impositions has been accepted as a means of identifying skeletal
remains when other methods of identification are not reliable
[1,10,15].

Computer assisted facial reconstruction has many benefits
compared to classic methods. It eases the procedure, the amount of
time spent on proposing a facial model is greatly reduced. Several
possible models can be moved under several angles increasing the
probability of identification of individual [14].
Characteristics of facial features, namely the eyes, nose, mouth, and ears. Efforts have been made to produce standards that can be used for feature prediction. Research has shown that there exists a "significant correlation between eyeball protrusion and orbital depth" for instance [5].

The nose has proved more difficult to reliably assess, with the best method proving to be the two-tangent method first proposed in 1955 [5]. The width and thickness of the mouth have been demonstrated to be positively correlate to the distance between the irises or an inter canine width and teeth height respectively [5]. Despite the many ways to predict the specific characteristics of facial features, a great deal of the accuracy is still attributed to the discretion of a skilled analyst.

Conclusion

Facial reconstruction is a delicate mixture of art and science and with the evolution of innovative methods of facial reconstruction has evolved tremendously. Even though the accuracy of these techniques are questionable, these techniques prove to be a major tool for the forensic team in the identification of the individual when no other source of evidence is available.

References

1. Stavrianos Ch (2007) An introduction to facial reconstruction. Balk J Stom 11: 76-83.
2. Verze L (2009) History of facial reconstruction. Acta Biomed 80(1): 5-12.
3. Fernandes CM, Pereira FD, da Silva JV, Serra Mda C (1998) Is characterizing the digital forensic facial reconstruction with hair necessary? A familiar assessors’ analysis. Forensic Sci Int 229(1-3): 164.e1-164.e5.
4. Sonia G (2015) Forensic facial reconstruction: the final frontier. Journal of Clinical and Diagnostic Research 9(9): ZE26-ZE28.
5. Lee WJ, Mackenzie S, Wilkinson DC (2011) Forensic Aanthropology 2000-2010. CRC Press, USA.
6. Neave RAH (1979) Reconstruction of the heads of three ancient Egyptian mummies. J Audiov Media Med 2(4): 156-164.
7. Prag J, Neave R (1999) Making faces. London: British Museum Press, China.
8. Neave RAH (1989) Reconstruction of the skull and the soft tissues of the head and face of Lindow Man. Canadian Soc Forensic Sci J 22(1):43-53.
9. McKenna J, Jablonski N, Fearnhead R (1984) A method of matching skulls with photographic portraits using landmarks and measurements of the dentition. J Forensic Sci 29(3): 787-797.
10. Bastian R, Dalitz GD (1989) Video superimposition of skulls and photographic portraits-A new aid to identification. J Forensic Sci 31(4): 1373-1379.
11. Tyrell AJ, Evison MP, Chamberlain AT, Green MA (1997) Forensic three-dimensional facial reconstruction: historical review and contemporary developments. J Forensic Sci 42(4): 653-661.
12. Miyasaka S, Yoshino M, Imaizumi K, Seta S (1995) The computeraided facial reconstruction system. Forensic Sci Int 74(1-2): 155-165.
13. Shahrom AW, Vanezis P, Chapman RC, Gonzales A, Blenkinshop C, et al. (1996) Techniques in facial identification: computer-aided facial reconstruction using a laser scanner and video superimposition. Int J Legal Medicine 108(4): 194-200.
14. Myers JC, Okoye MI, Kiple D, Kimmerle EH (1999) Three dimensional (3-D) imaging in post-mortem examinations: elucidation and identification of cranial and facial fractures in victims of homicide utilizing 3-D computerized imaging reconstruction techniques. Int J Legal Med 113(1): 33-37.
15. Iscan MY, Helmer RP (1993) Forensic analysis of the skull. Wiley Liss, New York, USA, pp. 105-182.