A REMARK ON MEASURES OF SECTIONS OF L_p-BALLS

ALEXANDER KOLDOBSKY AND ALAIN PAJOR

Abstract. We prove that there exists an absolute constant C so that

$$\mu(K) \leq C\sqrt{p} \max_{\xi \in S^{n-1}} \mu(K \cap \xi^\perp) |K|^{1/n}$$

for any $p > 2$, any $n \in \mathbb{N}$, any convex body K that is the unit ball of an n-dimensional subspace of L_p, and any measure μ with non-negative even continuous density in \mathbb{R}^n. Here ξ^\perp is the central hyperplane perpendicular to a unit vector $\xi \in S^{n-1}$, and $|K|$ stands for volume.

1. Introduction

The slicing problem [Bo1, Bo2, Ba1, MP], a major open question in convex geometry, asks whether there exists a constant C so that for any $n \in \mathbb{N}$ and any origin-symmetric convex body K in \mathbb{R}^n,

$$|K|^{n-1} \leq C \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|,$$

where $|K|$ stands for volume of proper dimension, and ξ^\perp is the central hyperplane in \mathbb{R}^n perpendicular to a unit vector ξ. The best-to-date result $C \leq O(n^{1/4})$ is due to Klartag [Kl], who improved an earlier estimate of Bourgain [Bo3]. The answer is affirmative for unconditional convex bodies (as initially observed by Bourgain; see also [MP, J2, BN]), intersection bodies [G, Theorem 9.4.11], zonoids, duals of bodies with bounded volume ratio [MP], the Schatten classes [KMP], k-intersection bodies [KPY, K6]; see [BGVV] for more details.

The case of unit balls of finite dimensional subspaces of L_p is of particular interest in this note. It was shown by Ball [Ba2] that the slicing problem has an affirmative answer for the unit balls of finite dimensional subspaces of L_p, $1 \leq p \leq 2$. Junge [J1] extended this result to every $p \in (1, \infty)$, with the constant C depending on p and going to infinity when $p \to \infty$. Milman [M1] gave a different proof for

The first named author was partially supported by the US National Science Foundation, grant DMS-1265155.
subspaces of L_p, $2 < p < \infty$, with the constant $C \leq O(\sqrt{p})$. Another proof of this estimate can be found in [KPY].

A generalization of the slicing problem to arbitrary measures was considered in [K3, K4, K5, K6]. Does there exist a constant C so that for every $n \in \mathbb{N}$, every origin-symmetric convex body K in \mathbb{R}^n, and every measure μ with non-negative even continuous density f in \mathbb{R}^n,

$$\mu(K) \leq C \max_{\xi \in S^{n-1}} \mu(K \cap \xi^\perp) |K|^{1/n},$$

where $\mu(K) = \int_K f$, and $\mu(K \cap \xi^\perp) = \int_{K \cap \xi^\perp} f$?

Inequality (1) was proved with an absolute constant C for intersection bodies [K3] (by [K2], this includes the unit balls of subspaces of L_p with $0 < p \leq 2$), unconditional bodies and duals of bodies with bounded volume ratio in [K6], for k-intersection bodies in [K5]. For arbitrary origin-symmetric convex bodies, (1) was proved in [K4] with $C \leq O(\sqrt{n})$. A different proof of the latter estimate was recently given in [CGL], where the symmetry condition was removed.

For the unit balls of subspaces of L_p, $p > 2$, (1) was proved in [K5] with $C \leq O(n^{1/2-1/p})$. In this note we improve the estimate to $C \leq O(\sqrt{p})$, extending Milman’s result [M1] to arbitrary measures in place of volume. In fact, we prove a more general inequality

$$\mu(K) \leq (C \sqrt{p})^k \max_{H \in Gr_{n-k}} \mu(K \cap H) |K|^{k/n},$$

where $1 \leq k < n$, Gr_{n-k} is the Grassmanian of $(n-k)$-dimensional subspaces of \mathbb{R}^n, K is the unit ball of any n-dimensional subspace of L_p, $p > 2$, μ is a measure on \mathbb{R}^n with even continuous density, and C is a constant independent of p, n, k, K, μ.

The proof is a combination of two known results. Firstly, we use the reduction of the slicing problem for measures to computing the outer volume ratio distance from a body to the class of intersection bodies established in [K6]; see Proposition 1. Note that outer volume ratio estimates have been applied to different cases of the original slicing problem by Ball [Ba2], Junge [J1], and E.Milman [M1]. Secondly, we use an estimate for the outer volume ratio distance from the unit ball of a subspace of L_p, $p > 2$, to the class of origin-symmetric ellipsoids proved by E.Milman in [M1]. This estimate also follows from results of Davis, V.Milman and Tomczak-Jaegermann [DMT]. We include a concentrated version of the proof in Proposition 2.

2. Slicing inequalities

We need several definitions and facts. A closed bounded set K in \mathbb{R}^n is called a star body if every straight line passing through the origin
crosses the boundary of K at exactly two points different from the origin, the origin is an interior point of K, and the Minkowski functional of K defined by

$$\|x\|_K = \min\{a \geq 0 : x \in aK\}$$

is a continuous function on \mathbb{R}^n.

The radial function of a star body K is defined by

$$\rho_K(x) = \|x\|_K^{-1}, \quad x \in \mathbb{R}^n, \; x \neq 0.$$

If $x \in S^{n-1}$ then $\rho_K(x)$ is the radius of K in the direction of x.

We use the polar formula for volume of a star body

$$|K| = \frac{1}{n} \int_{S^{n-1}} \|\theta\|_K^{-n} d\theta. \quad (3)$$

The class of intersection bodies was introduced by Lutwak [L]. Let K, L be origin-symmetric star bodies in \mathbb{R}^n. We say that K is the intersection body of L if the radius of K in every direction is equal to the $(n-1)$-dimensional volume of the section of L by the central hyperplane orthogonal to this direction, i.e. for every $\xi \in S^{n-1}$,

$$\rho_K(\xi) = \|\xi\|_K^{-1} = |L \cap \xi^{|\cdot\|^{-1}}|$$

$$= \frac{1}{n-1} \int_{S^{n-1} \cap \xi^{|\cdot\|^{-1}}} \|\theta\|_L^{-n+1} d\theta = \frac{1}{n-1} R(\|\cdot\|_L^{-n+1})(\xi),$$

where $R : C(S^{n-1}) \to C(S^{n-1})$ is the spherical Radon transform

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^{|\cdot\|^{-1}}} f(x) dx, \quad \forall f \in C(S^{n-1}).$$

All bodies K that appear as intersection bodies of different star bodies form the class of intersection bodies of star bodies. A more general class of intersection bodies is defined as follows. If μ is a finite Borel measure on S^{n-1}, then the spherical Radon transform $R\mu$ of μ is defined as a functional on $C(S^{n-1})$ acting by

$$(R\mu, f) = (\mu, Rf) = \int_{S^{n-1}} Rf(x) d\mu(x), \quad \forall f \in C(S^{n-1}).$$

A star body K in \mathbb{R}^n is called an intersection body if $\|\cdot\|_K^{-1} = R\mu$ for some measure μ, as functionals on $C(S^{n-1})$, i.e.

$$\int_{S^{n-1}} \|x\|_K^{-1} f(x) dx = \int_{S^{n-1}} Rf(x) d\mu(x), \quad \forall f \in C(S^{n-1}).$$

Intersection bodies played a crucial role in the solution of the Busemann-Petty problem and its generalizations; see [K1, Chapter 5].
A generalization of the concept of an intersection body was introduced by Zhang [Z] in connection with the lower dimensional Busemann-Petty problem. For $1 \leq k \leq n - 1$, the $(n-k)$-dimensional spherical Radon transform $R_{n-k} : C(S^{n-1}) \to C(Gr_{n-k})$ is a linear operator defined by

$$R_{n-k}g(H) = \int_{S^{n-1} \cap H} g(x) \, dx, \quad \forall H \in Gr_{n-k}$$

for every function $g \in C(S^{n-1})$.

We say that an origin symmetric star body K in \mathbb{R}^n is a generalized k-intersection body, and write $K \in BP^n_k$, if there exists a finite Borel non-negative measure μ on Gr_{n-k} so that for every $g \in C(S^{n-1})$

$$\int_{S^{n-1}} \|x\|^k_K g(x) \, dx = \int_{Gr_{n-k}} R_{n-k}g(H) \, d\mu(H). \quad (4)$$

When $k = 1$ we get the class of intersection bodies. It was proved by Goodey and Weil [GW] for $k = 1$ and by Grinberg and Zhang [GZ, Lemma 6.1] for arbitrary k (see also [M2] for a different proof) that the class BP^n_k is the closure in the radial metric of k-radial sums of origin-symmetric ellipsoids. In particular, the classes BP^n_k contain all origin-symmetric ellipsoids in \mathbb{R}^n and are invariant with respect to linear transformations. Recall that the k-radial sum $K +_k L$ of star bodies K and L is defined by

$$\rho^k_{K+_k L} = \rho^k_K + \rho^k_L.$$

For a convex body K in \mathbb{R}^n and $1 \leq k < n$, denote by

$$o.v.r.(K, BP^n_k) = \inf \left\{ \left(\frac{|C|}{|K|} \right)^{1/n} : K \subset C, \ C \in BP^n_k \right\}$$

the outer volume ratio distance from a body K to the class BP^n_k.

Let B^n_2 be the unit Euclidean ball in \mathbb{R}^n, let $| \cdot |_2$ be the Euclidean norm in \mathbb{R}^n, and let σ be the uniform probability measure on the sphere S^{n-1} in \mathbb{R}^n. For every $x \in \mathbb{R}^n$, let x_1 be the first coordinate of x. We use the fact that for every $p > -1$

$$\int_{S^{n-1}} |x_1|^p d\sigma(x) = \frac{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{n+p}{2}\right)}; \quad (5)$$

see for example [K1, Lemma 3.12], where one has to divide by $|S^{n-1}| = 2\pi^{(n-1)/2}/\Gamma\left(\frac{n}{2}\right)$, because the measure σ on the sphere is normalized.

In [K6], the slicing problem for arbitrary measures was reduced to estimating the outer volume ratio distance from a convex body to the classes BP^n_k, as follows.
Proposition 1. For any \(n \in \mathbb{N} \), \(1 \leq k < n \), any origin-symmetric star body \(K \) in \(\mathbb{R}^n \), and any measure \(\mu \) with even continuous density on \(K \),
\[
\mu(K) \leq (\text{o.v.r.}(K, \mathcal{B}_k^n))^k \frac{n}{n-k} c_{n,k} \max_{H \in \text{Gr}_{n-k}} \mu(K \cap H) |K|^{k/n},
\]
where \(c_{n,k} = |B_2^n|^{(n-k)/n}/|B_2^{n-k}| \in (e^{-k/2}, 1) \).

It appears that for the unit balls of subspaces of \(L_p \), \(p > 2 \) the outer volume ratio distance to the classes of intersection bodies does not depend on the dimension. As mentioned in the introduction, the following estimate was proved in [M1] and also follows from results of [DMT]. We present a short version of the proof.

Proposition 2. Let \(p > 2 \), \(n \in \mathbb{N} \), \(1 \leq k < n \), and let \(K \) be the unit ball of an \(n \)-dimensional subspace of \(L_p \). Then
\[
\text{o.v.r.}(K, \mathcal{B}_k^n) \leq C \sqrt{p},
\]
where \(C \) is an absolute constant.

Proof: Since the classes \(\mathcal{B}_k^n \) are invariant under linear transformations, we can assume that \(K \) is in the Lewis position. By a result of Lewis in the form of [LYZ, Theorem 8.2], this means that there exists a measure \(\nu \) on the sphere so that for every \(x \in \mathbb{R}^n \)
\[
\|x\|^p_K = \int_{S^{n-1}} |(x, u)|^p d\nu(u),
\]
and
\[
|x|^2_2 = \int_{S^{n-1}} |(x, u)|^2 d\nu(u).
\]
Also, by the same result of Lewis [Le], \(K \subset n^{1/2-1/p} B_2^n \).

Let us estimate volume of \(K \) from below. By the Fubini theorem, formula (5) and Stirling’s formula, we get
\[
\int_{S^{n-1}} \|x\|^p_K d\sigma(x) = \int_{S^{n-1}} \int_{S^{n-1}} |(x, u)|^p d\sigma(x) d\nu(u)
\]
\[
= \int_{S^{n-1}} |x_1|^p d\sigma(x) \int_{S^{n-1}} d\nu(u) \leq \left(\frac{Cp}{n+p} \right)^{p/2} \int_{S^{n-1}} d\nu(u).
\]
Now
\[
\frac{Cp}{n+p} \left(\int_{S^{n-1}} d\nu(u) \right)^{2/p} \geq \left(\int_{S^{n-1}} \|x\|^p_K d\sigma(x) \right)^{2/p}
\]
\[
\geq \left(\int_{S^{n-1}} \|x\|^{-n} d\sigma(x) \right)^{-2/n} = \left(\frac{|K|}{|B_2^n|} \right)^{-2/n} \sim \frac{1}{n} |K|^{-2/n},
\]
because $|B^n_2| \sim n^{-1/2}$. On the other hand,
\[
1 = \int_{S^{n-1}} |x|^2 d\sigma(x) = \int_{S^{n-1}} \int_{S^{n-1}} (x, u)^2 d\nu(u) d\sigma(x)
\]
\[
= \int_{S^{n-1}} \int_{S^{n-1}} |x_1|^2 d\sigma(x) d\nu(u) = \frac{1}{n} \int_{S^{n-1}} d\nu(u),
\]
so
\[
\frac{Cp}{n + p} n^{2/p} \geq \frac{1}{n} |K|^{-2/n},
\]
and
\[
|K|^{1/n} \geq cn^{-1/p} \sqrt{\frac{n + p}{np}} \geq \frac{cn^{1/2 - 1/p}}{\sqrt{p}} |B^n_2|^{1/n}.
\]
Finally, since $K \subset n^{1/2 - 1/p} B^n_2$, and $B^n_2 \in \mathcal{B}^n_k$ for every k, we have
\[
\text{o.v.r.}(K, \mathcal{B}^n_k) \leq \left(\frac{|n^{1/2 - 1/p} B^n_2|}{|K|} \right)^{1/n} \leq C \sqrt{p},
\]
where C is an absolute constant.

We now formulate the main result of this note.

Corollary 1. There exists a constant C so that for any $p > 2$, $n \in \mathbb{N}$, $1 \leq k < n$, any convex body K that is the unit ball of an n-dimensional subspace of L_p, and any measure μ with non-negative even continuous density in \mathbb{R}^n,
\[
\mu(K) \leq (C \sqrt{p})^k \max_{H \in \text{Gr}_{n-k}} \mu(K \cap H) |K|^{k/n}.
\]

Proof: Combine Proposition 1 with Proposition 2. Note that $\frac{n}{n-k} \in (1, e^k)$, and $c_{n,k} \in (e^{-k/2}, 1)$, so these constants can be incorporated in the constant C.

\[
\square
\]

References

[Ba1] K. Ball, *Isometric problems in ℓ_p and sections of convex sets*, Ph.D. dissertation, Trinity College, Cambridge (1986).

[Ba2] K. Ball, *Normed spaces with a weak Gordon-Lewis property*, Lecture Notes in Math. 1470, Springer, Berlin (1991), 36–47.

[BN] S. Bobkov and F. Nazarov, *On convex bodies and log-concave probability measures with unconditional basis*, Geometric aspects of functional analysis (Milman-Schechtman, eds), Lecture Notes in Math. 1807 (2003), 53–69.

[Bo1] J. Bourgain, *On high-dimensional maximal functions associated to convex bodies*, Amer. J. Math. 108 (1986), 1467–1476.

[Bo2] J. Bourgain, *Geometry of Banach spaces and harmonic analysis*, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 871–878.
[Bo3] J. Bourgain, *On the distribution of polynomials on high-dimensional convex sets*, Geometric aspects of functional analysis, Israel seminar (1989–90), Lecture Notes in Math. 1469 Springer, Berlin, 1991, 127–137.

[BGVV] S. Brazitikos, A. Giannopoulos, P. Valettas and B. Vritsiou, *Geometry of isotropic convex bodies*, Amer. Math. Soc., Providence RI, 2014.

[CGL] G. Chasapis, A. Giannopoulos and D.-M. Liakopoulos, *Estimates for measures of lower dimensional sections of convex bodies*, preprint; arXiv:1512.08393.

[DMT] W.J. Davis, V.D. Milman, and N. Tomczak-Jaegermann, *The distance between certain n-dimensional Banach spaces*, Israel J. Math. 39 (1981), 1–15.

[G] R. J. Gardner, *Geometric tomography*, Second edition, Cambridge University Press, Cambridge, 2006.

[GW] P. Goodey and W. Weil, *Intersection bodies and ellipsoids*, Mathematika 42 (1995), 295–304.

[GZ] E. Grinberg and Gaoyong Zhang, *Convolutions, transforms and convex bodies*, Proc. London Math. Soc. 78 (1999), 77–115.

[J1] M. Junge, *On the hyperplane conjecture for quotient spaces of L_p*, Forum Math. 6 (1994), 617–635.

[J2] M. Junge, *Proportional subspaces of spaces with unconditional basis have good volume properties*, Geometric aspects of functional analysis (Israel Seminar, 1992-1994), 121–129, Oper. Theory Adv. Appl., 77, Birkhauser, Basel, 1995.

[Kl] B. Klartag, *On convex perturbations with a bounded isotropic constant*, Geom. Funct. Anal. 16 (2006), 1274–1290.

[K1] A. Koldobsky, *Fourier analysis in convex geometry*, Amer. Math. Soc., Providence RI, 2005.

[K2] A. Koldobsky, *Intersection bodies, positive definite distributions and the Busemann-Petty problem*, Amer. J. Math. 120 (1998), 827–840.

[K3] A. Koldobsky, *A hyperplane inequality for measures of convex bodies in \(\mathbb{R}^n \), n \leq 4*, Discrete Comput. Geom. 47 (2012), 538–547.

[K4] A. Koldobsky, *A \(\sqrt{n} \) estimate for measures of hyperplane sections of convex bodies*, Adv. Math. 254 (2014), 33–40.

[K5] A. Koldobsky, *Slicing inequalities for subspaces of L_p*, Proc. Amer. Math. Soc. 144 (2016), 787–795.

[K6] A. Koldobsky, *Slicing inequalities for measures of convex bodies*, Adv. Math. 283 (2015), 473–488.

[KPY] A. Koldobsky, A. Pajor and V. Yaskin, *Inequalities of the Kahane-Khinchin type and sections of L_p-balls*, Studia Math. 184 (2008), 217–231.

[KMP] H. König, M. Meyer and A. Pajor, *The isotropy constants of the Schatten classes are bounded*, Math. Ann. 312 (1998), 773–783.

[Le] D. R. Lewis, *Finite dimensional subspaces of L_p*, Studia Math. 63 (1978), 207–212.

[L] E. Lutwak, *Intersection bodies and dual mixed volumes*, Adv. Math. 71 (1988), 232–261.

[LYZ] E. Lutwak, D. Yang, and G. Zhang, *L_p John ellipsoids*, Proc. London Math. Soc. 90 (2005), 497-520.

[M1] E. Milman, *Dual mixed volumes and the slicing problem*, Adv. Math. 207 (2006), 566–598.
[M2] E. Milman, Generalized intersection bodies. J. Funct. Anal. 240 (2) (2006), 530–567.

[MP] V. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in: Geometric Aspects of Functional Analysis, ed. by J. Lindenstrauss and V. Milman, Lecture Notes in Mathematics 1376, Springer, Heidelberg, 1989, pp. 64–104.

[Z] Gaoyong Zhang, Section of convex bodies, Amer. J. Math. 118 (1996), 319–340.

Department of Mathematics, University of Missouri, Columbia, MO 65211
E-mail address: koldobskiya@missouri.edu

Université Paris-Est, Laboratoire d’Analyse et Mathématiques Appliquées (UMR 8050) UPEM, F-77454, Marne-la-Vallée, France
E-mail address: alain.pajor@u-pem.fr