New Perspectives on Axion Misalignment Mechanism

Chia-Feng Chang1,* and Yanou Cui1,†

1Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA

(Dated: April 13, 2023)

A zero initial velocity of the axion field is assumed in the conventional misalignment mechanism. We propose an alternative scenario where the initial velocity is nonzero, which may arise from an explicit breaking of the PQ symmetry in the early Universe. We demonstrate that, depending on the specifics of the initial velocity and the time order of the PQ symmetry breaking vs. inflation, this new scenario can either enhance or suppress the axion relic abundance relative to the conventional prediction. As a result, new viable parameter regions for axion dark matter may open up.

I. INTRODUCTION

Axions are ultra-light pseudo-scalar particles that are generically predicted in the Peccei-Quinn (PQ) mechanism [1–3], a compelling solution for the Strong CP problem in particle physics. Recently QCD axions and axion-like particles (ALPs) have attracted substantial interest as a leading dark matter (DM) candidate alternative to WIMPs [4–7].

Understanding the production mechanism of axions is critical for determining their potential as a viable DM candidate and related phenomenology [8, 9]. Despite extensive literature on this subject, our understanding is not yet complete. For instance, for post-inflationary PQ symmetry breaking, axion topological defects (cosmic strings, domain walls) necessarily form and through their subsequent decays may contribute to axion relic abundance (Ω_a) in significant ways [10–15]. However, the prediction of such contributions is still challenging, while a growing effort has recently been made [16–23]. Meanwhile, our understanding of possible outcomes of the misalignment production may not be complete either. According to the conventional misalignment mechanism, axion field starts with an initial value, $\theta_i (\equiv a/N f_a)$, away from the true vacuum, then begins to oscillate around the minimum when its mass $m_a \sim 3H$ (H: Hubble expansion rate), and behaves like cold DM after that. In order to solve the equation of motion for axion evolution, the initial velocity $\dot{\theta}_i$ also needs to be specified, which is implicitly assumed to be zero in the conventional misalignment, and directly affects the Ω_a prediction. Meanwhile, nonzero $\dot{\theta}_i$ is possible and well-motivated. Then how would a nonzero initial velocity of the axion field influence the axion relic abundance and phenomenology?

In this work we propose and systematically investigate an alternative misalignment mechanism with an initial condition $\dot{\theta}_i \neq 0$. Based on classified benchmark examples in a UV model independent approach 1, we demonstrate the conditions when axion relic density prediction can significantly differ from the conventional, with potentially dramatic enhancement or suppression depending on specifics with $\dot{\theta}_i$ and whether the PQ symmetry breaks before/during or after inflation. An example model realizing such an initial condition is illustrated in Appendix. B. Another recent work [24] also considered the possibility of $\dot{\theta}_i \neq 0$, focusing on the large $\dot{\theta} > 0$ region, demonstrating examples of interesting UV complete models leading to an enhanced Ω_a.

II. THE ORIGIN OF A NONZERO INITIAL VELOCITY

Axion originates from the phase of a complex scalar Φ whose vacuum expectation value $f_a/\sqrt{2}$ leads to the spontaneous breaking of the $U(1)_{\text{PQ}}$ symmetry (or a generic global $U(1)$ for ALPs) 2;

$$\Phi \equiv \frac{1}{\sqrt{2}} (f_a + \phi) e^{ia/f_a} \quad (1)$$

where ϕ and a are the radial and angular (axion) modes, respectively. The conserved Noether charge associated with the PQ symmetry is $R^3 f_a^2 \dot{\theta}$ where R is the cosmic scale factor. $\dot{\theta}_i \neq 0$ thus corresponds to the rotation of the Φ field and an asymmetry of the global PQ charge. Such a charge asymmetry can result from higher dimensional operators that explicitly breaks $U(1)_{\text{PQ}}$ in the early Universe, in analogy to the Affleck-Dine (AD) mechanism for baryogenesis [25–28]. This effect in fact can be generic for an approximate global symmetry [26–28]. Alternatively $\dot{\theta}_i \neq 0$ may originate from axion models with a small dimensionful symmetry-breaking term which introduces a slope in axion potential [29]. Such PQ-breaking effects should be absent today in order not to undermine the solution to the Strong CP problem, which can be realized by tying its strength to the Hubble rate or a dynamical field that has a larger value in the early Universe. Although the specifics of $\dot{\theta}_i$ is model-dependent, important phenomenological

*Electronic address: chiafeng.chang@email.ucr.edu
†Electronic address: yanou.cui@ucr.edu
1 We gave an example UV model in Appendix. B.

2 Without loss of generality we focus on the simplest scenario where domain wall number $N = 1$.

arXiv:1911.11885v3 [hep-ph] 12 Apr 2023
insights can be obtained by studying the axion evolution with benchmark examples that we will demonstrate.

III. AXION MISALIGNMENT MECHANISM WITH A NONZERO INITIAL VELOCITY

We first present Fig. 1 as a cartoon illustration for two representative possibilities of $\dot{\theta}_i \neq 0$ initial condition (IC), with related technical details elaborated later. In conventional misalignment, axion field starts at rest with the rescaled field value θ_i, then roll down the periodic potential well, and start oscillating when $m_a \sim 3H$ (at $t_o^{\text{con}} \sim 1/m_a$). In both cases we show, the field starts with θ_i at time t_i. The lower panel demonstrates the possibility where the axion field has a negative moderate initial velocity to allow it to roll down further in the potential well so that the field value becomes smaller than θ_i when oscillation begins. This would lead to a suppression of the axion relic density. The upper panel shows the possibility with a high initial velocity, which may delay the onset of oscillation (at t_o) to be later than t_o^{con}, thus reduce the entropy $s(t_o)$ then and enhance the relic density of the axion ($\Omega_a \propto Y_a \equiv n_a/s$).

We now study the dynamics of axion evolution in details. The equation of motion (e.o.m) of axion field with rescaled $\theta(t) = a(t)/f_a$ (mod 2π) in FRW cosmology is

$$\ddot{\theta} + 3H\dot{\theta} + m_a^2(T)\theta = 0. \quad (2)$$

In the conventional misalignment mechanism, $\theta(t_i) \equiv \theta_i = 0$, and the axion field freezes at a random initial field value θ_i from PQ breaking to QCD phase transition. For post-inflation PQ breaking, Ω_a is obtained by averaging over the randomly distributed θ_i over all causal patches. For QCD axion, we will assume $m_a(T) \propto T^{-4}$ as found by instanton calculation [30–34], while a constant m_a may apply for general ALPs.

We start by investigating the axion evolution at early times well before oscillation starts. The starting time t_i is generally assumed to be at PQ breaking scale, but can be later times when the axion picks up a nonzero $\dot{\theta}_i$. Allowing $\dot{\theta}(t_i) \neq 0$, and dropping the potential term in Eq. A2 which is negligible for this early regime, we find the following solution in general cosmology, with background energy density $\rho \propto R^{-n}$:

$$\dot{\theta}(t) = \begin{cases} \frac{\dot{\theta}_i}{H_i} \left[\frac{2}{6-n} \left[1 - \left(\frac{R(t)}{R(t_i)} \right)^{n/2-3} \right] \right], & (n \neq 6) \\ \frac{\dot{\theta}_i}{3H_i} \ln \left[\frac{t}{t_i} \right], & (n = 6) \\ \dot{\theta}(t) = \frac{R(t_i)}{R(t)} \left(\frac{R(t)}{R(t_i)} \right)^{n/2-3}, & (3) \end{cases}$$

We will assume standard cosmology (i.e., radiation domination (RD), $n = 4$, thus $\theta(t) \propto 1/\sqrt{t}$) except when considering inflationary effects. The energy density of the axion evolves as $\rho_\theta(t) = \frac{1}{2} \dot{\theta}^2(t) f_a^2 + \frac{3}{2} m_a(T)^2 \ddot{\theta}(t) f_a^2$, and relic density can be estimated as:

$$\Omega_a = m_a(T_o) m_a(T = 0) \theta^2 \frac{s_0}{s(t_o)} \frac{\rho_c}{\rho_c}, \quad (5)$$

where $\theta_o \equiv \theta(t_o)$, t_o implicitly depends on $\dot{\theta}_i$, s_0 and ρ_c are the current-day entropy and critical density, respectively.

We now specify two benchmark types of initial condition of θ_i to find concrete form of solutions given by Eqs. 3. **Type-I IC**: $\dot{\theta}_i = -\delta H_i$, where δ is a constant parameter independent of θ_i. To simplify discussion we choose the convention of $\delta > 0$ without loss of generality. While the detailed UV physics leading to such initial conditions is not our focus here, they may arise from an AD-like scenario [35], which readily gives $|\dot{\theta}(t_i)| \sim H(t_i)$ upon PQ-breaking at $t_i \sim m_a/f_a^2$ (assuming PQ-breaking during

3 We assume that by t_i of our consideration the radial mode has settled into its true vacuum, therefore does not influence axion evolution through coupled e.o.m’s.

4 The late time evolution of the field with $\delta < 0$ is nearly the same as their $\delta > 0$ counterpart.
radiation domination around $T \sim f_a$ \footnote{The specifics of initial velocity depends on the radial mode in the UV model. The AD mechanism can generate a initial velocity with a varying ratio to the Hubble rate, see e.g. \cite{35-37}.}. Applying this IC to Eq. 3 in RD we find
\[\theta(t) = \theta_i - \delta + \delta \left(\frac{R(t)}{R(t)} \right), \quad \text{Mod}[2\pi]. \] (6)

Provided a small/moderate $\dot{\theta}(t_i)$, the oscillation onset t_o in the new scenario is also close to t_o^{con}. However, with sufficiently large $\dot{\theta}_i$ the kinetic energy (KE) could be larger than the potential energy V at t_o^{con}, and oscillation can only start later when KE $\sim V$. Such a delayed t_o may enhance Ω_a since $\Omega_a \sim \rho_o(t_o)/s(t_o)$. For high $|\theta_i|$ we can estimate t_o as the earliest time when KE and V become equal ($\theta_o \approx 2\pi$):
\[\dot{\theta}_i (t_i/t_o)^{3/2} \approx 2\pi m_a(t_o). \] (7)

Combining Eq. 7 and $m_a(t_o^{\text{con}}) \approx 3H(t_o^{\text{con}})$, we can find the critical δ_c: for $\delta > \delta_c$, a notable delay of t_o relative to t_o^{con} would occur:
\[\delta_c \approx 6\pi (t_o^{\text{con}}/t_i)^{1/2} \approx 2 \times 10^{11} \left(\frac{f_a}{10^{11}\text{GeV}} \right)^{7/6}, \] (8)
where we assumed t_i around the PQ-breaking time $\sim M_P/f_a^2$. Note that δ_c can be much smaller if t_i (when axion picks up a nonzero velocity) is much later than PQ-breaking time.

Next we will discuss the evolution patterns in different δ parameter regions based on Eqs. 3, A1. The two distinct scenarios of PQ breaking after and before/during inflation will be considered in order.

IC-I: Post-inflationary $U(1)_{PQ}$ breaking.

In each of the following cases, we consider the field evolution with a random initial field value θ_i which upon considering Ω_a will be averaged over post-inflationary causal patches as $\langle \theta^2 \rangle \approx \langle \theta^2 \rangle_2 \sim 2.67\pi^2/3$ [38, 39].

(i) $0 < \delta < \theta_i$, i.e., with generally small initial KE. For generic $\theta_i \sim 1$, although the $\frac{R(t)}{R(t_i)}$ term in Eq. 3 slightly reduces $\theta(t)$ over time, the effect is negligible relative to the constant term and $\theta_o \sim \theta_i$. Therefore the axion evolution and the prediction $\Omega_a \propto \theta_o^2$ is very similar to the conventional prediction Ω_a^{conv} and remains so after averaging over causal patches.

(ii) $\theta_i < \delta < \delta_c$, i.e., with moderate initial KE. In this case KE becomes important at early stages of the field evolution, but is not yet sufficient to cause a notable delay of the t_o relative to t_o^{con}. In this regime as δ increases θ_o and thus Ω_a become more sensitive to δ (oscillatory dependence) due to the periodic nature of the field potential. In particular, Ω_a can be much suppressed for particular δ values that causes cancellation among the θ_i and δ-dependent terms in Eqs. A1, i.e., when
\[\theta_o = 2\pi k, \quad k \in \mathbb{Z}. \] (9)

However, with a constant δ such an accidental cancellation only occurs for certain θ_i’s, and its effect is washed out after averaging. Consequently, the Ω_a prediction is comparable to Ω_a^{con}.

(iii) $\delta > \delta_c$, i.e., with high initial KE. This case is similar to the above (ii), yet the difference is that KE is reshifted to $\sim V$ after t_o^{con}, so the oscillation is delayed. Although $\rho(t_o)$ is the same as in case (ii) at the onset of axion oscillation, the entropy then is diluted as $s(t_o) \sim s(t_o^{\text{con}})(t_o^{\text{con}}/t_o)^{3/2} \approx \delta^{-1}$ (using Eqs. A1, 7). Like in (ii), accidental cancelation Eq. 9 can happen but becomes irrelevant after averaging. Therefore Ω_a is enhanced relative to Ω_a^{con} by a factor of $\sim \delta/\delta_c$.

(iv) $\delta = \theta_i$ or $\delta \approx \theta_i$, the special regime where δ is equal to or in the close vicinity of θ_i. This case is qualitatively different from the previous ones. Due to the (almost) cancelation between θ_i and δ, $\delta \left(\frac{R(t)}{R(t_i)} \right)$ term in Eq. A1 dominates the evolution which causes a potentially dramatic decrease in $\theta(t)$ until oscillation starts around $t_o \sim t_o^{\text{con}}$, with $\theta(t_o) = \theta_i \ll \theta_i$. $\rho_o(t_o)$ would be expected to be suppressed by $\sim \theta_o^2/\theta_i^2$ relative to the conventional. However, he cancelation between δ and θ_i only occurs for patches with peculiar θ_i, and the effect disappears after averaging over post-inflationary patches.

Detailed illustrations for the field evolution in each of these cases can be found in Fig. S1 in the Appendix A. A representative example of $\Omega_a-\delta$ relation is shown in Fig. 2 based on numerical results. The analytical estimate of Ω_a is summarized later in Eq. 10. The upshot for the post-inflation scenario is: Ω_a can be similar to or enhanced relative to the conventional misalignment.
due to $\dot{\theta}(t_i) \neq 0$, while the potential suppression effect in specific patches is resolved after averaging over post-inflationary causal patches.

IC-I: Before or during inflation $U(1)_{\text{PQ}}$ breaking.

During inflation the KE in the axion field is rapidly diluted, while θ_i or the potential energy freezes in as its value at the onset of inflation (or at PQ breaking time if PQ breaks during inflation). Many of the discussions for the post-inflationary scenario apply here, but there are key differences due to inflationary effects. We briefly summarize the results for the same four cases as follows:

(i) $0 < \delta < \theta_i$: similar to the conventional pre-inflationary case.

(ii) $\theta_i < \delta < \delta_i$: in general similar to the conventional, but unlike in the post-inflationary scenario, the accidental cancelation/suppression on Ω_a (i.e. $\theta_i \approx 0$ in Eq. (9)) persists without the averaging.

(iii) $\delta > \delta_i$: the situation with ρ_a evolution is similar to the above (iii), but the enhancement due to the diluted $s(t_o)$ is absent due to the intervention of inflation which cuts short the KE domination time (unless inflation happens after QCD phase transition). Therefore the result is in general similar to the conventional, but accidental suppression is possible for certain δ.

(iv) $\delta = \theta_i$ or $\delta \approx \theta_i$. For PQ breaking during inflation, the situation is similar to the conventional, since the initial KE is quickly depleted by inflation before it can drive down θ_i value. However, if the PQ breaks before inflation with a moderate/large separation in their scales, the $\dot{\theta}(t_i) \neq 0$ initial condition can leave a trace despite inflation: the field value is already driven down to $\theta_i \equiv \theta(t_i) \approx \frac{R(t_i)}{m(t_i)} \theta_i$ for $\theta_i - \delta \to 0$, where t_f is when inflation starts. $\theta(t_i)$ then freezes in as the effective new initial condition for axion misalignment after inflation.

Detailed illustrations for the field evolution in each of these cases can be found in Fig. S2 in Appendix A. A representative example of $\Omega_a-\delta$ relation for this scenario is illustrated in Fig. 3 based on numerical results. The upshot for this pre/during inflation scenario is: Ω_a is similar to or suppressed relative to the conventional due to $\dot{\theta}(t_i) \neq 0$, while the potential enhancement effective in post-inflationary case is wiped out by inflation.

We now summarize the prediction for Ω_a with IC-I for post- and pre-inflation cases in order:

$$
\Omega^{\text{post-1}}_a \simeq \begin{cases}
\Omega^{\text{con}}_a = 0.02 \langle \theta^2_i \rangle \left(\frac{f_a}{10^{11}\text{GeV}} \right)^{7/6}, & \delta < \delta_c \\
\Omega^{\text{con}}_a \frac{\delta}{\delta_c} \simeq 0.01 \langle \theta^2_i \rangle \left(\frac{\delta}{10^{11}} \right), & \delta \geq \delta_c,
\end{cases}
$$

(10)

and

$$
\Omega^{\text{pre-1}}_a = \Omega^{\text{con}}_a \frac{\theta^2_i}{\langle \theta^2_i \rangle},
$$

(11)

For the last equality in the 2nd line of Eq. 10, we used Eq. 8 which assumes t_i at PQ breaking scale $t_i \sim m_{pl}/f_a$. Other t_i choices would change the numerics. θ_i in Eq. 11 is obtained from Eq. A1 with $t = t_f$, which as discussed can lead to a suppression in $\Omega^{\text{pre-1}}_a$ when $\theta_i \approx \delta$.

Note that case (iv) of this scenario provides a new possibility for Ω_a to account for Ω_{DM} with $f_a \gtrsim 10^{11}$ GeV due to specific relations between θ_i and θ_i even with a natural $\theta_i \sim 1$. On the other hand, one could argue that this is trading one type of fine-tuning for another type. Although challenging it is curious to see if it is possible to distinguish the two types of fine-tuning combining various avenues of observational data.

Type-II IC: $\dot{\theta}_i = -(1 - \gamma)\theta_i H_1$, where $\gamma \geq 0$.

This IC is inspired by case (iv) with Type-I IC. Most results in IC-I apply, with the replacement of $\delta \to (1 - \gamma)\theta_i$ in Eq. A1. The key difference is that here the relation $\theta_i \propto \theta_i$ is assumed to be valid for any θ_i, therefore the aforementioned suppression effect in case (iv) (here $\gamma \to 0$) is robust and survives even after averaging patches for post-inflationary PQ breaking. The realization of such an IC generally requires an explicit PQ breaking term in the axion potential effective in the early Universe, which is beyond the scope of this work but would be interesting to explore. We highlight this possibility since it provides a novel dynamic way to accommodate large $f_a \gtrsim 10^{11}$ GeV QCD axion as a DM candidate for post-inflation PQ breaking. Despite requiring a special relation between θ_i and θ_i, this solution is intriguing considering that for post-inflationary PQ breaking in the conventional misalignment there is no way to even fine-tune to accommodate $f_a \gtrsim 10^{11}$ GeV, since θ_i is averaged to $O(1)$. We show the $\Omega_a-\gamma$ relation for IC-II in Figs. 4 and 5, for post- and pre-inflation PQ-breaking, respectively.

The main difference from IC-I in the Ω_a prediction, i.e., for case (iv) (small γ) in the post-inflation scenario,
is demonstrated with the following formula:

\[
\Omega_a^{\text{post-I}} \approx \begin{cases}
\Omega_a^{\text{con}} \gamma^2, & R(t_i) \leq \gamma \leq 1 \\
\Omega_a^{\text{con}} \left(\frac{R(t_i)}{R(t_0)} \right)^2, & 0 \leq \gamma \leq \frac{R(t_i)}{R(t_0)},
\end{cases}
\]

where we can clearly see the suppression relative to the conventional by a factor of \(\gamma^2 \) or \(\left(\frac{R(t_i)}{R(t_0)} \right)^2 \).

\[\Omega_a \propto \gamma^2 \quad \text{for Type-II IC} \]

\[\Omega_a \propto \gamma^2 \quad \text{pre/during-inflationary PQ-breaking}.\]

IV. CONCLUSION

In this work, we propose a new misalignment mechanism where the axion initial velocity is non-zero and demonstrate its impact on axion relic abundance based on systematically classified benchmark cases with a UV model-independent approach. While in many cases \(\Omega_a \) remains similar to the conventional prediction, it may be significantly enhanced with a large initial velocity \(\theta_i \) or suppressed when \(\theta_i \) and \(\theta_i \) satisfy peculiar relations.

As an outcome of this new scenario, new viable parameter space for the QCD axion DM opens up, allowing \(f_a \) both much above (in the special suppression region identified in IC-II) and much below (with sufficiently large \(\theta_i \)) the conventional \(\sim 10^{11} \) GeV scale (detailed relations given in Eqs. 10-12). Detailed realization of these initial conditions and phenomenological consequences for both QCD axion and general ALPs are worth further investigation (an example is given in Appendix. B). Meanwhile a caveat for the scenario of post-inflationary PQ-breaking is that, as in conventional misalignment, topological defects’ contribution to \(\Omega_a \) may dominate over the misalignment contribution, and is worth revisiting to advance and complete our understanding of the axion production mechanism \(\cite{14, 17, 20, 40, 41} \).

Side Notes: During the final stage of completing this manuscript, \(\cite{24} \) (as also noted in the introduction) came out which has overlap with our results. The two papers are complementary to each other as explained in the introduction.

Acknowledgments

We thank Anson Hook for discussion. The authors are supported in part by the US Department of Energy grant DE-SC0008541. CC thanks Yin Chin Foundation of U.S.A. for its support. YC thanks the Kavli Institute for Theoretical Physics (supported by the National Science Foundation under Grant No. NSF PHY-1748958), Erwin Schrödinger International Institute, and Galileo Galilei Institute for hospitality while the work was being completed.

Appendix A: The dynamics of Axion Evolution with An Initial Velocity

In this section, we illustrate the time evolution of \(\Omega_a \) in the main text. We will refer to Type-I IC to be specific, while each of the cases may apply to Type-II IC by the substitution of \(\theta \rightarrow (1 - \gamma) \theta_i \) in \(\theta(t) \) solution as

\[\theta(t) = \theta_i \left[\gamma + (1 - \gamma) \frac{R(t_i)}{R(t)} \right], \quad \text{Mod}[2\pi]. \quad (A1) \]

The difference between IC-I and IC-II in predicting \(\Omega_a \) is explained in the main text. The results shown in Figs. 6, 7 are obtained by solving the equation of motion

\[\dot{\theta} + 3H \dot{\theta} + m_a^2(T) \theta = 0. \quad (A2) \]

By solving the above E.O.M, we can also obtain the averaged background energy density \(\bar{\rho}_a \) and pressure \(\bar{P}_a \) of the axion field are:

\[\bar{\rho}_a = \frac{1}{2} a^2 + \frac{1}{2} m_a^2 a^2, \quad \bar{P}_a = \frac{1}{2} a^2 - \frac{1}{2} m_a^2 a^2. \quad (A3) \]
The equation of state can then be found by applying

\[w(t) \equiv \frac{\dot{P}_a}{\rho_a}. \]

IC-I Post-inflationary \(U(1)_\text{PQ} \) breaking: the representative solutions for this scenario in the following four cases are illustrated in Fig. 6. \(\theta_i \) takes a random initial value which will be averaged over post-inflationary patches for \(\Omega_\text{a} \) calculation

(i) \(0 < \delta < \theta_i \), i.e., with generally small initial KE. This is illustrated with green dashed lines (\(\delta \sim 0 \), overlapping with conventional case) in Fig. 6 for constant \(m_a \), while for QCD axion the evolution before \(t_\text{con}^\text{pre} \) follows the orange line (overlapping with green for \(w(t) \) and \(\theta(t) \)).

(ii) \(\delta < \delta_c \), i.e., with moderate initial KE. The evolution for this case is illustrated with blue lines in Fig. 6 (for \(\theta_i \) away from the cancelation region \(\theta_o = 2\pi k, \ k \in \mathbb{Z} \)). Due to the dominance of KE over \(V \) in early times, both the constant \(m_a \) and the QCD cases essentially follow same evolution (this also applies to the case (iii) and (iv) below). We can see that due to the large \(\theta_i \) the field’s equation of state in early stage is kination-like.

(iii) \(\delta > \delta_c \), i.e., with high initial KE. This case is illustrated with black lines in Fig. 6.

(iv) \(\delta = \theta_i \) or \(\delta \approx \theta_i \), the special regime where \(\delta \) is equal to or in the close vicinity of \(\theta_i \). This case is demonstrated in red in Fig. 6 for \(\delta = \theta_i \), in yellow for \(\delta \approx \theta_i \).

IC-I Pre-inflationary \(U(1)_\text{PQ} \) breaking: the representative solutions for this scenario in the following four cases are illustrated in Fig. 6, with the same color codes as in their post-inflationary counterparts.

\[\Phi_1 = \frac{1}{\sqrt{2}} \left(f_a + \phi \right) e^{ia/f_a}, \]

where \(i = \{1, 2\} \), and \(\Phi_2, \phi \) are CP-even real scalar. The angular mode of \(\Phi_1 \) is identified as the axion. For simplicity, we assume the effective coupling \(g_{\Phi} \) is real. The \(g_{\Phi} \) term explicitly breaks the axion shift symmetry, considering the motivated possibility that \(\Phi_2 \) may be displaced from its true vacuum (\(\Phi_2 = 0 \)) at the end of inflation. \(\Lambda_2 \) is the cutoff scale of this effective action, and \(\Lambda_2 \gg f_a \). The effective potential of the axion then takes the follow-
equation of motion for the axion field:
\[\mathcal{L} \supset -\sqrt{2}g_{ij}f_a \left(\frac{\Phi_2}{\Lambda_2^2} \right)^{\lambda} \cos \left(\frac{a}{f_a} + \alpha_0 \right) . \quad (B2) \]

With a nonzero initial field value, the dynamics of the field \(\Phi_2 \) provides a variety of possibilities to generate a nontrivial axion velocity at \(t_{osc} \) (the onset of axion oscillation). For instance, we consider that \(V(\Phi_2) \) takes the following power-law form, which can occur in e.g. quintessence models [42–45]:
\[V(\Phi_2) = g_N \Phi_2^N , \quad (B3) \]
where \(g_N \) is a constant parameter. We simply assume that this term dominates the potential in early universe. With the dominant background energy density generically parametrized as \(\rho \propto R^{-m} \), we find \(\rho_{\Phi_2} \propto R^{-n} \), where \(n = \left(\frac{N}{N-2} \right) m \). By solving the time evolution of \(\Phi_2 \) in this potential, we find
\[\Phi_2(t) \propto t^{1-N/(N-2)} , \quad \forall \ N > 2 , \ n \neq m , \ \frac{6-n}{m} > 0 , \quad (B4) \]

Plugging this solution to Eq.(B2), we obtain the axion potential at early times:
\[V_\Lambda(a) = \Lambda^{4} \left(\frac{t_2}{t} \right)^p \cos \left(\frac{a}{f_a} + \alpha_0 \right) , \quad (B5) \]
where \(\Lambda^{4} \equiv \sqrt{2}g_{ij}f_a (M_2/\Lambda_2)^{\lambda} \) with initial field value of \(\Phi_2(t_2) = M_2 \), \(p \equiv -\lambda(1-N/(N-2)) > 0 \). With the \(V_\Lambda(a) \) given above, we can write down the parametrized equation of motion for the axion field:
\[\ddot{a} + \frac{6}{m} \frac{1}{t} \dot{a} - \frac{\Lambda^{4}}{f_a} \left(\frac{t_2}{t} \right)^p \sin \left(\frac{a}{f_a} + \alpha_0 \right) + m_n^2(T)f_a \sin \left(\frac{a}{f_a} \right) = 0 . \quad (B6) \]

A key feature of this model with positive \(p \) is that the effect of the potential \(V_\Lambda(a) \) is suppressed/negligible after \(t \sim 1/m_a \). Consequently, the conventional axion dynamics is restored after QCD phase transition. Therefore the axion has enough time to enter into QCD vacuum and be restored after QCD phase transition. Therefore the strong CP constraint can be satisfied as long as \(\Omega_\alpha \leq \Omega_{\text{DM}} \), and the implied constraints on model parameters can be found in Eqs. 10-12 in the main text.

The example we demonstrated provides a class of models parametrized by \(p, \lambda \) and \(m \), that can generate diverse possibilities of initial conditions for the axion field including a sizable initial velocity. In the following, we will show a choice of parameters that can generate our IC-I (iv) and IC-II.

\[a. \ Example: \ p = 2, \ \lambda = 10, \ m = 4 \]

Here we consider \(p = 2, \ \lambda = 10, \ m = 4 \), consequently \(N = 12 \) and \(n = 4.8 \). In this case, the equation of motion of axion in the very early Universe can be approximately as the following (the choice of \(\alpha_0 = \pi \) leads to \(c > 0 \), while \(\alpha_0 = 0 \) leads to \(c < 0 \), and QCD axion potential is negligible during this early era of interest):
\[\ddot{a} + \frac{3}{t} \dot{a} + \frac{c}{t^2} a = 0 \quad (B8) \]
where define \(|c| \equiv \Lambda^{4}t_2^2/f_a^2 \). The solution is
\[a(t) = c_1 t^{n_+} + c_2 t^{n_-} , \quad (B9) \]
where
\[n_\pm = \frac{1}{2} (-2 \pm \sqrt{4 - 4c}) . \quad (B10) \]

In general, \(c \) is suppressed by PQ-scale \(f_a \) and high energy physics scale \(\Lambda_2 \). Therefore, we expect \(-1 \leq c \leq 1 \) and consequently \(-1 \leq n_\pm \leq 0.414 \). Assuming that initially at \(t_2 \), \(a(t_2) \sim \pi f_a \) and \(\dot{a}(t_2) = 0 \), we find that \(n_+ \) term will dominate at late times, and the axion follows the relation
\[\frac{\dot{a}(t)}{a(t)} \simeq n_+ \frac{1}{t} = n_+ \frac{m}{2} H(t) . \quad (B11) \]

To give a numerical benchmark example, we consider
\[M_2 \sim 10^6 \text{GeV}, \quad g_N \sim 1 \text{GeV}^{-8}, \]
\[\Lambda \sim 10 \sqrt{m_a f_a}, \quad m_a \sim 10^{-15} \text{GeV}, \]
\[t_2 \sim 10^{-2} t_{\text{con}}, \quad \alpha_0 = \pi . \]

This implies
\[c = \Lambda^{4} t_2^2 f_a^2 \sim 1 \rightarrow n_+ \sim -1 , \quad (B12) \]
therefore
\[\frac{\dot{a}(t_{\text{con}})}{a(t_{\text{con}})} = \frac{\dot{a}(t_{\text{con}})}{a(t_{\text{con}})} \sim n_+ \frac{m}{2} H(t_{\text{con}}) \sim -H(t_{\text{con}}) . \quad (B13) \]
This gives our IC-I-(iv) and IC-II.
