Detecting the phylogenetic signal of glacial refugia in a bryodiversity hotspot outside the tropics

Ernest T. Y. Wu1,2 | Yang Liu3 | Linda Jennings4,5 | Shanshan Dong3 | T. Jonathan Davies1,4

Abstract

Introduction: Glacial refugia have likely been important in shaping diversity gradients outside the tropics. Many taxa that have high extratropical diversity in the present day, such as mosses, may have persisted in glacial refugia. However, the biogeographical histories of most species within refugia remain unclear.

Location: Haida Gwaii archipelago, north-west coast of British Columbia, Canada.

Methods: We reconstructed the regional phylogeny of the mosses of Haida Gwaii, a putative glacial refugium and ‘hotspot’ of moss diversity, and used phylogenetic comparative methods to examine the macroecological imprint of glacial refugia on the geographic range structure and phylogenetic attributes of present-day moss assemblages.

Results: We found that many mosses have widespread, but disjunct, distributions, with few close relatives on the islands. We suggest that these features reflect the imprint of glacial history, whereby species within refugia represent isolated populations of previously more widespread species that may have diversified elsewhere. We also observed evidence for phylogenetic overdispersion of species within high-elevation habitats, which best match the climatic regime of the historical glacial refugium. Our results are consistent with the filtering of evolutionarily distinct glacial relicts within these habitats, which contrasts markedly with the patterns of phylogenetic clustering observed across other non-refugial habitat types.

Main conclusions: The islands of Haida Gwaii represent an extratropical hotspot of bryophyte diversity. Our study illustrates how the present-day phylogenetic structure of mosses on Haida Gwaii may have been shaped by glacial history, and highlights the importance of glacial refugia in maintaining extratropical moss diversity.

KEYWORDS
- evolutionary distinctiveness, glacial refugia, latitudinal diversity gradient, moss biogeography and macroecology, phylogenetic diversity
INTRODUCTION

The diversity of life is unevenly distributed across the globe. Perhaps the most well-recognized biodiversity pattern is the latitudinal gradient in species richness, which describes the tendency for richness to be highest in equatorial regions and taper towards the poles (see Hawkins et al., 2003; Hewitt, 2000). However, while uncommon, some taxa show countergradients, with highest richness at high latitudes (Kindlmann et al., 2007); for example lagomorphs, arboreal ants, molluscs and aphids are all more diverse outside of the tropics (Moraes-Castilla et al., 2020). Understanding these ‘exceptions to the rule’ can provide unique insights into the mechanisms shaping biodiversity gradients. Vascular plants demonstrate a typical latitudinal gradient in species richness, with highest diversity in the warm and moist tropics (Brown, 2014). The biogeography of non-vascular plants has been less well explored; while there is some evidence that liverworts and hornworts also exhibit a general latitudinal richness gradient (Wang et al., 2017), mosses may exhibit inverse or no latitudinal diversity gradient (Mateo et al., 2016; Shaw et al., 2005). Additionally, several hotspots of moss species richness are found outside of the tropics, including in British Columbia, the northern Andes, Japan, Madagascar, the East African Highlands, the Himalayan region, central Europe and Scandinavia (Geffert et al., 2013). Here, we use a regional phylogeny of extant mosses from the bryophyte diversity hotspot and putative glacial refugia of Haida Gwaii (formerly known as the Queen Charlotte Islands), an island archipelago off the north-west coast of British Columbia, Canada, to explore the historical mechanisms that have shaped this exceptionally rich northern latitude bryophyte flora.

The moss diversity of Haida Gwaii is remarkable, with over 380 species within an area of 10,180 km² (Golumbia & Bartier, 2004), including the endemic Carey’s small limestone moss (Seligeria careyana; Vitt & Schofield, 1976), which has only ever been observed from three localities. While the majority of moss species (195) on Haida Gwaii have continuous circumpolar or Amphi-Pacific distributions, 46 species have localized distributions in western North America, and a further 47 species have widely interrupted distributions; for example, Daltonia splachnoides, Trichostomum recurvifolium and Zygodon gracilis have their only Canadian occurrence on Haida Gwaii (Schofield, 1989). It is possible that rare single long-distance dispersal events contribute to the unique diversity of disjunct species in glacial refugia (Heinrichs et al., 2009; Provan & Bennett, 2008). However, some bryophytes with disjunct distributions appear to lack mechanisms for effective long-range dispersal, suggesting vicariance might also be important (Shaw, 2001). The occurrence of similarly disjunct non-bryophyte plants indicates a possible common process: Eurasian origin, dispersal to North America and subsequent western North America disjunction (Xiang et al., 1998). The presence of these disjunct and endemic species on Haida Gwaii and their absence elsewhere in north-western North America, which resembles a more boreal flora compared with the more temperate flora on Haida Gwaii (Alaback, 1996), suggest a unique spatial and temporal history of the Haida Gwaii ecosystem that has sustained a rich bryoflora to the present (Heusser, 1989).

One explanation for the unique bryophyte diversity of Haida Gwaii is linked to suggestions that the archipelago was a glacial refugium during the Late Wisconsin Glaciation (Mathewes & Clague, 2017). Graham island, the largest island in the Haida Gwaii archipelago, was glaciated at least twice, once >52,000 years ago, then again between 27,500 and 16,000 years ago (Demboski et al., 1999; Mathewes et al., 2015). However, Haida Gwaii may have been partially ice-free as early as 16,000 years ago, when the lowland phase of the Late Wisconsin Glaciation was at its maximum, as indicated from the succession of Cyperaceae captured in pond sediments from 16,830 years BP (Lacourse et al., 2005). Possible locations of refugia include the Queen Charlotte Ranges, the west coast of Graham and Moresby islands, and the shelf beneath Hecate Straight, which was at various times exposed with freshwater lakes (Shaf er et al., 2010).

Present-day plant communities located between 900 and 1100 m in elevation potentially represent remnants of the refugial flora (Heusser, 1989), as the climate at these elevations may resemble the climatic conditions of historical refugia.

To date, the biogeographical histories of most species within glacial refugia remain unclear. For a few species, population studies and phylogeographic methods have allowed us to identify continental refugia and patterns of post-glacial range expansion (Allen et al., 2015; Provan & Bennett, 2008), for example in oaks, common beech, black alder and silver fir in Europe (Hewitt, 1999). Commonalities across relictual species can also be found, for example, as reflected in their present-day genetic diversity and geographic distributions—species that survived within several large refugia have greater diversity than those that were restricted to fewer small refugia (Roberts & Hamann, 2015), which more often exhibit disjunct present-day distributions. Glaciation would have likely had a disproportionate impact on clades with temperate origins and high extratropical diversity. Refugia at higher latitudes may have been important in preserving relictual lineages, more so than for clades following more commonly observed latitudinal biodiversity gradients with greater species richness at lower latitudes.

Here, we reconstruct the regional phylogeny of the Haida Gwaii bryoflora—focusing on mosses—using rbCL and trnL-F DNA barcode markers extracted from field samples and herbarium specimens. We use this phylogeny to explore the macroevolutionary and macroecological imprint of glacial history on the moss flora of Haida Gwaii by examining the relationship between evolutionary distinctiveness, dispersal traits (i.e. spore size and sexuality) and range continuity in their present-day distributions. We test whether species with more disjunct distributions are also phylogenetically isolated, and whether habitats associated with glacial refugia, such as those at higher elevations on Haida Gwaii, support more phylogenetically dispersed bryophyte communities. We suggest that clades exposed to glacial expansion may have experienced a wave of extinctions, making surviving species, such as those in refugia, more phylogenetically distinct. If glaciation also led to a significant contraction of species’ distributions, with remnant populations restricted to glacial
refugia geographically distant from centres of their evolutionary origin, these species would tend to have few close relatives with which they co-occur and more disjunct present-day distributions.

2 | METHODS

2.1 | Plant material and molecular sequencing

We used the two molecular barcode markers, \textit{rbcL} and \textit{trnL-F}, to place the mosses of Haida Gwaii on the robust, multi-gene backbone phylogenetic reconstruction of major moss lineages proposed by Liu et al. (2019). Using the species list (with corrections to conform to current nomenclature conventions) provided in Golumbia and Bartier (2004)—a comprehensive baseline inventory report for the bryophytes of Haida Gwaii—we downloaded the available \textit{rbcL} and \textit{trnL-F} sequences from the GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) for each species. Species that did not have either existing \textit{rbcL} or \textit{trnL-F} sequences were targeted for field collection and sequencing.

During July and August 2019, we collected voucher specimens representing 109 species from Haida Gwaii using standard field collection methods, as outlined in Schofield (1992). The 21 collection sites (Figure 1), consisting of two alpine locations, four hyper-oceanic locations, eleven low- to mid-elevation forest locations (four along creeks) and four low-elevation open wetlands, were selected to encompass as many as possible of the different habitat types described by Golumbia and Bartier (2004). All microhabitat and substrate types within each site were targeted for collection. Location description, latitude and longitude, microhabitat and other environmental characteristics were recorded for each voucher. Each specimen was photographed in situ, and accessioned at the University of British Columbia Herbarium (UBC). Taxonomic identification and nomenclature of the specimens conform to volumes 27 and 28 of the Flora of North America (Flora of North America Bryophyte Editorial Committee, 2007 & 2014).

In total, 99 field samples and an additional 86 species previously vouchered at the UBC Herbarium were sampled and sequenced for both molecular barcode regions. Samples were ground at 60 Hz for 60 s using TissueLyser 24 (Shanghai Jinxin Industrial Development Co. Ltd.), and total genomic DNA for each sample was extracted using the HP Plant DNA Kit (Omega Bio-Tek) following the manufacturer’s protocol. A nested PCR system was optimized based on the recommended protocol from Hentschel et al. (2006) and Feldberg and Heinrichs (2006). Using the primers in Feldberg et al. (2016): \textit{rbcL1F} and \textit{rbcL1390R} for the first round, and \textit{rbcL210F} and \textit{rbcL1200R} for the second round of PCR for \textit{rbcL}; and \textit{trnL-F} and \textit{trnL-R} for the one round of PCR for \textit{trnL-F}. The amplification products were

FIGURE 1 Location and topographical map of Haida Gwaii, BC. Red symbols indicate sampling locations.
sequenced at the Beijing Genomic Institute (BGI). The generated sequences for each species were then validated against the NCBI database using the BLAST algorithm. For some species, it was only possible to sequence one of the two barcode genes.

2.2 | Phylogenetic reconstruction

We reconstructed a dated molecular phylogeny of Haida Gwaii mosses (n = 300 species) using a backbone constraint (described below), and the combined dataset of the newly generated rbcL and trnL-F sequences and sequences downloaded from GenBank. Sequences were aligned using Geneious Prime (v. 2020.0.3; Biomatters Ltd.; Kearse et al., 2012). For new barcode sequences, ambiguous ends were trimmed, and a consensus sequence was generated using forward and reverse reads. Then, rbcL and trnL-F sequences were aligned separately using MUSCLE v3.8.13 (Edgar, 2004) and optimized using Gblocks Server (Castañesana, 2002) to eliminate poorly aligned regions. The aligned genes were then concatenated into a single matrix.

We reconstructed the phylogeny using RAxML v8.2.12 (Stamatakis, 2014), with the GTR + GAMMA + I model for both rbcL and trnL-F genes, as selected by jModelTest v2.1.10 (Darriba et al., 2012). Phylogenetic information within the two barcode genes is limited, and while useful for differentiating among species, they may be less informative at resolving deeper phylogenetic relationships. We therefore enforced topological constraints at the family level, assigning genera to families using the topology reflecting the ordinal relationships of mosses proposed by Liu et al. (2019). For the genus Sphagnum, we further enforced subgenus-level constraints using the topology in Shaw et al. (2019). Bootstrap analyses were implemented by GTR + CAT approximation for 100 replicates. We rooted the resulting topology with Takakia lepidiozoides as the outgroup.

Branch lengths were made proportional to time using the penalized likelihood method, as implemented in r8s v1.8.1 (Sanderson, 2003). Calibration points were assigned for different nodes on the phylogeny based on the minimum age of dated clades. The age for the most recent common ancestor for mosses, 380.4 mya, as estimated using Bayesian inference by Newton and Tangney (2007), was fixed at the split between the basal moss genus Takakia and other mosses. Subsequent calibration points were set based on fossil records for Sphagnumaceae, 330.0 mya (Hübers & Kerp, 2012; Hübers et al., 2013; Ignatov, 1990; Maslova et al., 2012; Neuburg, 1958); Polytichales, 83.6 mya (Konopka et al., 1997, 1998); Dicranidae, 152.0 mya (Heinrichs et al., 2014); and Bryidae, 136.0 mya (Shelton et al., 2015).

2.3 | Species life history traits, evolutionary distinctiveness and distribution data

We used the habitat and distributional information from Columbia and Bartier (2004), as well as life history strategies from the bryological literature (Söderström & During, 2005), to generate a matrix of species distribution and habitat preferences, species sexuality, asexual reproduction and spore size (minimum, maximum and mean) (see Table S1). We also calculated evolutionary distinctiveness (ED), a species-level estimate of phylogenetic isolation on a time-calibrated phylogeny (Jetz et al., 2014), using the evol.distinct function in the package picante (Kembel et al., 2010) and the ‘equal splits’ method (Redding & Moores, 2006) in R version 1.1.463 (R Development Core Team, 2018). When calculated at the regional level, this metric provides an indication of whether a species has close relatives on the Haida Gwaii archipelago (high ED species have few close relatives). We recorded spore size as a continuous variable, and species sexuality (0 = monocious, 1 = dioicus) and asexual reproduction (0 = no, 1 = yes) as discrete variables using data from volumes 27 and 28 of the Flora of North America (Flora of North America Bryophyte Editorial Committee, 2007 & 2014) augmented with information from the California moss efflora (2020).

We classified species geographic distributions using information from appendix A of Columbia and Bartier (2004), which presents a continuum of 10 categories (indicated in parentheses, below). First, we broadly classified species from widespread to local on a scale of 1 to 6: 1 (widespread in Northern Hemisphere), 2 (Amphi-Pacific), 3 (western European–western North American), 4 (western European–western North American showing a widely interrupted pattern in the Northern Hemisphere and Eastern North American disjuncts), 5 (tropical–subtropical disjuncts and species for which Haida Gwaii contains the only known Canadian population) and 6 (western North America and Pacific coast). Second, we generated a discrete classification scheme distinguishing species with continuous distributions (grouping distribution codes 1 and 2), disjunct distributions (grouping distribution codes 3, 4 and 5) and localized distributions (distribution code 6). Third, we used a binary classification to distinguish between species with continuous (distribution codes 1, 2 and 6) vs. disjunct distributions (distribution codes 3, 4 and 5). Where possible, species missing distribution data from Columbia and Bartier (2004) were classified based on the available distribution information in volumes 27 and 28 of the Flora of North America (Flora of North America Bryophyte Editorial Committee, 2007 & 2014). Taxa on our reconstructed phylogeny without distribution data (n = 13) were excluded from subsequent analyses. Finally, we coded the presence of species within each of the 16 habitat and vegetation types on Haida Gwaii (hereon referred to as habitat types), as described in Columbia and Bartier (2004). The assignment of habitat associations was derived from the habitat codes in appendix A of Columbia and Bartier (2004), which were determined through extensive habitat surveys conducted on Haida Gwaii, and broadly describes the species habitat preferences summarized in Schofield and Hong (2002).

2.4 | Analysis of species distribution and evolutionary history

We explored whether the composition of mosses across the 16 habitat types listed in Columbia and Bartier (2004) was characterized by species with disjunct distributions and high ED, as this might suggest a common cause for both species’ attributes linked to habitat...
The maximum-likelihood value of included to model phylogenetic non-independence in the data, fitting for purposes of model fitting, zero-length branches were assigned a to model trait correlations in the R package caper (Orme et al., 2014).

First, we used a phylogenetic generalized least squares regression to model trait correlations in the R package caper (Orme et al., 2012). For purposes of model fitting, zero-length branches were assigned a nominal unit length. The phylogenetic variance–covariance matrix was included to model phylogenetic non-independence in the data, fitting the maximum-likelihood value of \(\lambda \). Species distribution, coded on a continuous scale from 1 to 6 (see above), was the response, and separate models were fit with species sexuality, spore size, asexual reproduction and evolutionary distinctiveness as independent predictors, and then with species sexuality, spore size and evolutionary distinctiveness together as grouped predictors. We checked model fits using standard diagnostics using the plot() function in Caper.

Second, to further explore the relationship between ED and distribution, we compared differences in ED between the three distribution classes: continuous, disjunct and regional (see above) with a phylogenetic ANOVA using the phyIANOVA function from the R package phytools (Revell, 2012). Because the ANOVA could not be fitted to an incompletely resolved phylogenetic tree, we removed polytomies by randomly dropping all except one taxon per terminal clade using the function thin_terminal_polytomies (Davies et al., 2012), and fit the model on this reduced dataset. \(p \)-Values for the post hoc tests were adjusted using Holm’s correction for multiple comparisons. We then repeated this thinning procedure 1000 times to generate a distribution of test results.

Third, we compared ED between species with continuous vs. disjunct distributions using phylogenetic logistic regression fit on the full tree using the function phyloglm from the R package phylolm (Ho & Anné, 2014), and with 100 independent bootstrap replications. Here, species distribution was modeled as a binary response with ED as the explanatory variable.

3 | RESULTS

3.1 | Phylogenetic reconstruction of Haida Gwaii moss species

The regional phylogeny of Haida Gwaii mosses (Figure 2) was constructed using 264 tmlF sequences (145 newly generated sequences and 119 from GenBank; Table S2) and 324 rbcl sequences (127 newly generated sequences and 195 from GenBank; Table S2), and includes 300 out of the approximately 380 species estimated present on the islands. Table S3 includes a complete moss species list for Haida Gwaii with up-to-date taxonomic nomenclature, and indicates the species we were not able to obtain sequences with an asterisk. While we made efforts to collect samples in the field to maximize species coverage, some rare species lack genetic data and thus could not be included in our analyses. However, ED metrics are surprisingly robust to missing taxa (Weedop et al., 2019), and we do not believe that missing taxa would bias the observed relationship between evolutionary distinctiveness and range disjunction.

Due to the limited phylogenetic information within the two genes, major clades were topologically constrained to agree with the backbone phylogeny proposed by Liu et al. (2019), while the sequence data from the barcode genes were used to resolve more fine-scale relationships. This approach is well established (Joly et al., 2014) and has been shown to help facilitate robust phylogenetic reconstructions even in highly diverse systems, such as tropical forests (see Kress et al., 2010). Following time calibration, some short branches were collapsed to polytomies, resulting in a few unresolved clades within the Hypnales, including in Campylidaeae, Calliergonaceae and Leskeaceae. However, these collapsed nodes are most likely associated with relatively rapid divergence events (where there has been limited time for mutations to accumulate) and thus should not have a large influence on species ED estimates.

3.2 | Phylogenetic attributes and species range structure across habitats

Species with widespread Northern Hemisphere, Amphi-Pacific and contiguous North American–European distributions dominate across all habitat types. Following the habitat classification of Schofield and Hong (2002), open forests of fen slopes, peatland bogs and fens have the highest proportion of species with continuous distributions relative to the total number of species within each of these habitat types (Table 1). Epiphytes, seaside outcrops, disturbed soil and high-elevation habitats have the highest proportion of species with disjunct distributions, while forest floor, epiphytes, aquatic and high-elevation habitats have the highest proportion of species with localized western North American distributions (Table 1).

Phylogenetic structure and species diversity of bryophytes also varied across the different habitat types. Broad evidence for phylogenetic clustering (as indexed by ses.PD) indicates that most habitats capture less phylogenetic diversity (PD) than predicted from their species
Epiphytes have the lowest ses.PD, indicating that epiphytic taxa are the most phylogenetically clustered. The mean evolutionary distinctiveness of species (mED) is also lower for epiphytes than for other habitat types (Table 1). In contrast, high-elevation habitats capture somewhat more PD than expected from their species richness (positive ses.PD), and mean species evolutionary distinctiveness is higher than in other habitats (mED = 113.68). Overall, there was a general positive correlation between ses.PD and mED (Pearson’s r = .66), while the relationship between ses.PD and total PD or SR was somewhat weaker and negative (Pearson’s r = -.11 and -.38, respectively). Thus, while habitats with a less phylogenetically constrained moss flora tended to be less species-rich, the species within them were more evolutionarily distinct. However, we did not observe any strong relationship between ses.PD and the proportion of species with disjunct distributions within habitats.

3.3 | Relationship between species distributions and evolutionary distinctiveness

In our phylogenetic generalized least squares regressions, we found no significant relationship between either dispersal traits (i.e. spore size and sexuality) or evolutionary distinctiveness and species distribution when modeled as a continuous variable assuming six distribution classes. Although there appeared to be some weak evidence for a relationship between sexuality and distribution (slope = 0.66, p = .04) in the multiple regression model, the overall model was not significant (p > .05, model R² = .02; Table 2), and this relationship was not supported in the single-trait model (all p > .05, model R² = .01; Table 2).

Reclassifying distributions into three discrete classes, localized, disjunct and continuous, revealed strong and significant differences in the evolutionary distinctiveness of species with different distributions (p < .05 from the phylogenetic ANOVA; Table S4). The corrected post hoc pairwise comparisons using the Holm adjustment indicates that species with disjunct distributions are more evolutionarily distinct than species with continuous or localized distributions, but that there was no significant difference between species with continuous and regional distributions (Figure 3).

We further examined the difference in evolutionary distinctiveness between species with disjunct distribution and those with continuous or regional distributions (Figure 4) using a phylogenetic
TABLE 1 Comparison between phylogenetic diversity (PD), species richness (SR), standard effect size of phylogenetic diversity (ses.PD), mean evolutionary distinctiveness (mED), and the proportion of species with continuous, disjunct and localized distributions to the total number of species across the 16 habitat types

	PD	SR	Continuous	Disjunct	Localized	Ses.PD	mED	
1	Forest floor	3142.87	17	0.71	0.06	0.24	−0.42	76.19
2	Large woody debris	1818.91	9	0.67	0.11	0.22	−0.72	102.34
3	Epiphytes	3894.15	35	0.51	0.20	0.29	−4.85	67.43
4	Open forest of fen slopes	2744.39	17	0.88	0.06	0.06	−1.46	71.62
5	Swamp forests	2171.65	13	0.75	0.08	0.17	−1.92	68.25
6	Peatland bogs	3625.48	23	0.83	0.09	0.09	−1.63	68.21
7	Peatland fens	3066.18	20	0.85	0.05	0.10	−2.33	73.96
8	Seaside outcrops	924.91	4	0.75	0.25	0.00	−0.87	78.84
9	Sand dunes	2492.91	13	0.69	0.15	0.15	−0.52	71.33
10	Blowdown	1664.90	8	1.00	0.00	0.00	−0.66	102.34
11	Disturbed soil	3009.38	17	0.63	0.25	0.13	−0.96	83.34
12	Aquatic habitats	1822.90	11	0.55	0.18	0.27	−2.19	70.53
13	Water body margins	4143.07	28	0.78	0.15	0.07	−2.08	79.58
14	Calcareous rock	6654.45	47	0.63	0.19	0.19	−1.41	91.44
15	Siliceous rock	5973.79	45	0.80	0.05	0.15	−2.50	74.78
16	High elevations	5028.98	26	0.56	0.20	0.24	1.41	113.68

Note: Siliceous rocks and water body margins have the highest overall species richness, while siliceous rocks and calcareous rocks have the greatest frequency of species with continuous distributions, and calcareous rocks and epiphytes have the greatest frequency of both disjunct and localized species. High-elevation sites are the only habitat that have higher PD than predicted by their species richness (positive ses.PD), and the largest mean evolutionary distinctiveness (mED). Epiphytes have the lowest ses.PD, and second lowest mED, and swamp forest has the lowest mED.

TABLE 2 Phylogenetic generalized least squares regressions assuming a continuous classification of range size on a scale of 1–6 (where 1 = Northern Hemisphere, 2 = Amphi-Pacific, 3 = western European–western North American, 4 = Northern Hemisphere disjuncts, 5 = tropical–subtropical disjuncts, and 6 = localized in western North America) as response variables, and with spore size, evolutionary distinctiveness and sexuality as predictors

| Model | Predictor(s) | Coef. | Std. Error | T value | p >|t| | λ | F stat. | R² | df |
|-------|--------------|-------|------------|---------|-------|-----|-------|-------|-----|
| 1 | Spore size | 0.01 | .02 | 0.72 | .47 | 0.37 | 0.52 | <.01 | 246 |
| 2 | Evolutionary distinctiveness | <0.01 | <.01 | 1.53 | .13 | 0.27 | 2.35 | <.01 | 284 |
| 3 | Sexuality | 0.51 | .26 | 1.94 | .05 | 0.42 | 3.77 | .01 | 250 |
| 4 | Asexual reproduction | 0.29 | .35 | 0.83 | .40 | 0 | 0.70 | <.01 | 112 |
| 5 | Spore size | 0.02 | .02 | 1.13 | .26 | 0.43 | 2.50 | .02 | 226 |
| | Evolutionary distinctiveness | <0.01 | <.01 | 1.74 | .08 | | | | |
| | Sexuality | 0.57 | .27 | 2.08 | .04 | | | | |

Note: Models 1–4 show single-trait relationship, and model 5 shows the same traits in the multivariate analysis.

generalized linear model on the binary distribution data. While this model may have been statistically weaker, we again found a significant positive relationship between evolutionary distinctiveness and disjunct distribution, although the effect size is comparatively small ($\alpha = .003, p < .05$; Figure S1).

4 | DISCUSSION

One of the most universal global diversity patterns is the latitudinal gradient in species richness. However, unlike most vascular plant taxa, mosses exhibit no general latitudinal diversity gradient, and temperate regions are equally diverse as the tropics (Geffert et al., 2013; Möls et al., 2013). The temperate Northern Hemisphere hotspots of moss diversity, such as in British Columbia, which also contain a disproportionate number of rare species, are particularly noteworthy. Explanations for these unusual diversity gradients frequently assume that extratropical species richness reflects phylogenetic niche conservatism (Stephens & Wiens, 2003; Wiens & Donoghue, 2004) in clades with temperate or high latitude origins.

Mosses consist of a diversified group of plants and likely had a temperate origin (Shaw et al., 2005), with different lineages evolving various strategies to persist across diverse environmental conditions, for example, related to water availability (Chen et al., 2015).
No basal clades of mosses have a primarily tropical distribution. *Takakia*, the sister group to all other mosses (Chang & Graham, 2011), is strictly a Northern Hemisphere temperate genus (first noted to occur in North America from the islands of Haida Gwaii by Persson, 1958), and other basal clades, such as *Sphagnum*, are more phylogenetically diverse in the temperate Southern Hemisphere (Shaw et al., 2005). Extratropical niche conservatism and ancestral adaptation to temperate environmental conditions may therefore help explain the high latitude species richness of mosses. Shaw et al. (2005) suggest the lack of a strong latitudinal gradient in molecular diversity highlights the ‘migratory prowess of mosses’, and mosses may be more constrained in their distributions by fit to the environment (filtered into temperate climates matching to their evolutionary origins) than dispersal limitation per se. Nonetheless, glacial history likely provides an additional part of the explanation for present-day hotspots of temperate moss diversity.

During glacial cycles, the distributions of many high latitude and temperate species contracted towards the equator, reducing species richness and phylogenetic diversity at higher northern latitudes. Following glacial retreat, northward recolonization may have been slow for some taxa (Svenning & Skov, 2007), and undoubtedly restructured many species assemblages. Glacial refugia provided long-term stable habitats (Sundaram et al., 2019) that allowed some areas to retain high diversity away from the tropics, and to more rapidly recolonize higher latitudes following glacial retreat (Keppel et al., 2012). Several Northern Hemisphere hotspots of present-day moss diversity might represent such historical refugia. Indeed, historical climatic conditions throughout the different glacial–interglacial cycles may have imposed consistent constraints on the functional diversity of plants, reducing regional bryophyte diversity, while more stable habitats, such as glacial refugia, were able to support and accumulate greater evolutionary and functional diversity through time (Dynesius & Jansson, 2000; Ordonez & Svenning, 2017).

4.1 Phylogenetic structure of glacial refugia

Phylogenetic niche conservatism predicts that newly emerging environments, such as those revealed from receding ice sheets, will select for species with traits preadapted to these novel habitats (Donoghue, 2008). Such environmental filtering of species by post-glacial habitats will therefore tend to result in phylogenetic clustering (Baeten et al., 2015; Ma et al., 2016). However, glacial refugia would not have been subject to similar habitat filtering, allowing them to retain a more phylogenetically dispersed species assemblage. Non-glaciated habitats, such as nunataks, were likely tundra, resembling present-day high-elevation habitats, which is consistent with our observation of greater phylogenetic dispersion in mosses from high-elevation sites. The phylogenetic overdispersion in high-elevation habitats contrasts starkly with the phylogenetic clustering observed across other habitat types, consistent with habitat filtering.

Phylogenetic overdispersion has often been associated with the process of competitive exclusion at small spatial scales, that is within ecological communities, and phylogenetic under-dispersion is...
associated with environmental filtering of the regional species pool (Webb et al., 2002). However, at regional scales, spatial patterns of phylogenetic dispersion are more likely to reflect historical biogeography (Davies & Buckley, 2011). We suggest that present-day high-elevation habitats may provide a modern refuge to glacial relicts, disrupting the expected patterns of phylogenetic clustering commonly predicted in strongly filtered communities at high elevations, and contribute to phylogenetic dispersion in glacial refugia (Brooks & Bandoni, 1988; Fryxell, 1962; Shoener et al., 2018). Other species characteristics of the mosses on Haida Gwaii and within these high-elevation habitats, such as the high proportion of evolutionary distinct and disjunct species, further support the glacial refugia hypothesis.

4.2 Glacial history and range disjunction

The moss flora of Haida Gwaii includes a striking number of species with disjunct distributions—frequently with western North American populations disjunct from populations in eastern North America, western Europe and tropical Eurasia. The disjunct global geographic distributions of Haida Gwaii mosses are not easily attributable to species life history traits. The traits we examined, chosen because we a priori hypothesized that they might relate to dispersal ability, showed little relationship with species geographic extents. While propagule size has previously been associated with dispersal ability (Söderström & During, 2005), correlations between spore size and distribution are weak and non-significant in our data. It is possible that, in mosses, neither small nor large spores have a dispersal advantage. Small spore species can produce higher quantities of spores, but large spore species establish more easily within a locality and have better survival (During, 1997). While other traits might explain some of the variation in geographic extent, trait data for mosses are limited, and we suggest that these disjunct distributions more likely reflect the signal of glacial history, a consequence of the process of range expansion and contraction between glacial and interglacial periods (Zhao et al., 2019).

If high-elevation sites best match historical refugia, we might then also predict that they should have a higher proportion of disjunct species. Given differences in the relative abundance of different habitat types across the landscape, such as the widespread distribution of peatland bogs in the N. Hemisphere (with all Sphagnum species having a continuous distribution), vs. the patchy distribution of high-elevation habitats, it is perhaps expected that high-elevation habitats will also contain a higher proportion of disjunct species. While this is true on a global scale, on Haida Gwaii we did not generally observe a relationship between habitat availability and the continuity of geographic distribution of species. Other more widespread habitat types, including epiphytic bryophytes, seaside outcrops and disturbed soils, all have equal or higher proportions of disjunct species than high-elevation sites. It is possible therefore that species with disjunct distributions share other traits that favour their establishment within these habitat types, perhaps linked with their association with frequent disturbance. However, such trait filtering contrasts with observations that high-elevation habitats demonstrate phylogenetic overdispersion; high-elevation sites have a unique combination of phylogenetic dispersion and high proportion of disjunct species.

4.3 Glacial refugia support more evolutionarily distinct lineages

We find that the mean evolutionary distinctiveness of the constituent species in high-elevation habitats is much greater than found in any other habitat type, suggesting that species within high-elevation habitats tend to have few close relatives. Although it is also possible that high-elevation habitats encompass a larger number of vegetation types than other habitats, which could drive greater phylogenetic dispersion (there may be large differences in phylogenetic membership between vegetation types), we do not suspect this is the primary factor driving the observed phylogenetic patterns because such spatial structuring cannot explain why species found in high-elevation habitats are more evolutionarily distinct, and evolutionary distinctiveness was quantified at the level of the entire Haida Gwaii archipelago. Here, we suggest that more evolutionarily distinct species with few close relatives are found in refugia (i.e. high-elevation habitats) either because their close relatives may have been lost during previous cycles of glacial expansion, and failed to recolonize following glacial retreat, or because they represent isolated populations of previously widespread species that diversified elsewhere (Figure 5 illustrates one possible scenario).

4.4 Evolutionary distinctiveness as a predictor of range disjunction

We also show that evolutionary distinctiveness is a strong predictor of range disjunction, supporting our hypotheses that glacial history shapes both the phylogenetic structure and range distribution of species. Although our results were significant across models and alternative classifications of range distributions, many additional factors likely influence species’ evolutionary distinctiveness, most obviously the underlying diversification processes that have shaped moss phylogeny. Including such additional information would increase model explanatory power and could allow us to more clearly demonstrate the link with range disjunction. Unfortunately, a complete global phylogeny at the species level for mosses would be required, and we are still some way from achieving this goal.

4.5 Bryodiversity hotspots vs. global plant diversity hotspots

While the signature of phylogenetic overdispersion in the mosses of high-elevation habitats on Haida Gwaii may reflect the signature
FIGURE 5 Schematic illustrating one possible shift in regional phylogenetic relationship through glacial cycles. (a) shows the distribution of species α, η, Ω and μ in the pre-glacial landscape. During glaciation, lowland areas become covered by ice (b). Temperatures during this period are also much cooler, and high-elevation areas and north-facing slopes may also be ice-covered or too cold to support plant life. As a result, species μ is lost from the regional pool as its climate niche contracts. Fortunate survivors, species η and Ω, persisted in warmer mid-elevation refugia habitats that resemble nunataks, while species α persisted in incised valley refugia. In the post-glacial flora (c), species η and Ω expand their ranges upwards in elevation as the temperature warms; meanwhile, warm-adapted species capable of rapid dispersal and establishment (species α) rapidly recolonize lower elevation areas. In high-elevation habitats, the resulting post-glacial flora (species η & Ω) is more phylogenetically dispersed and has higher mean evolutionary distinctiveness (mED), relative to the pre-glacial flora (species Ω & μ). While it is possible that species μ might have persisted in a refugia elsewhere, the disjunct distribution of high-elevation (refugial) habitats will likely restrict its dispersal and ability to recolonize, at least in the short term. Furthermore, the regional mED of high-elevation sites may further increase if new species that are descendants from distant clades colonize the habitat.
of glacial history in this region, the phylogenetic structure of refugial communities likely differs among taxa and biomes. For example, phylogenetic clustering may be observed in tropical refugia dominated by angiosperms (Costion et al., 2015), which have a broadly tropical evolutionary origin, with many angiosperm lineages diversifying when tropical environments were globally more extensive (Crandall & Lidgard, 1989). In contrast, mosses likely diversified extensively outside the tropics (Shaw et al., 2005). Thus, while tropical refugia for flowering plants might be more likely to sample from a regional pool of more recently diversified lineages, temperate refugia for mosses may be more likely to sample older lineages from a more phylogenetically diverse species pool.

In the temperate moss refugia, the persistence of relictual lineages may contribute greater phylogenetic diversity to regional assemblages than the migration of invading lineages from other regions post-glaciation (Harrison & Noss, 2017). Relict species might possess unique traits that allowed them to persist through glacial-interglacial cycles (Tang et al., 2018), or they may simply represent fortunate survivors. The narrow ecological niche preferences among species that persisted within glacial refugia (Frahm, 2007) might have further reinforced the range disjunction of relict species due to the isolated distribution of these habitat types in the present day (Lv et al., 2018). It would be interesting to evaluate whether there is a generalizable relationship between range disjunction and ED across refugia for other temperate clades. We hope our study will inspire further exploration of such relationships.

4.6 Conservation value of refugial habitats

The biodiversity of Haida Gwaii comprises three intertwined features: ecosystem diversity, species diversity and genetic diversity. Maintaining genetic diversity within species is essential for sustaining healthy populations (Hughes et al., 2008). Similarly, maintaining the phylogenetic diversity of species within ecosystems contributes to sustaining ecosystem processes and integrity (Cadotte et al., 2015). Phylogenetic diversity is also a measure of evolutionary heritage with intrinsic value (Faith, 2015; Mooers et al., 2005), and evolutionary distinctiveness is important when prioritizing habitats for conservation (Costion et al., 2015). On Haida Gwaii, we have shown that high-elevation sites likely represent historical glacial refugia and support relictual species with high evolutionary distinctiveness. These habitats therefore have high conservation value even though they may not be as species-rich as other habitat types. In contrast, epiphytic habitats have high species richness, but the phylogenetic clustering of species within them captures relatively little evolutionary history. The conservation of refugial habitat, especially high-elevation habitats, is increasingly important with current warming trends placing additional stress on cold-adapted species, including many Northern Hemisphere bryophytes (Wu et al., 2018).

By examining the imprint of range contraction and expansion during glacial cycles from a community-wide species perspective (see also Mastrogianni et al., 2019), our study illustrates how the present-day phylogenetic structure of species composition can reveal the signal of glacial refugia, and help explain why some taxa have higher species richness outside of the tropics. We present an alternative but complementary approach to traditional population genetics and palaeobiological studies, which we hope can contribute to providing a richer picture of the recent biogeographic history of glacial refugia and Northern Hemisphere bryophyte diversity.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Karen Golinski and Robert Guy for their mentorship and helpful editorial suggestions; Katelyn Colwell and Caitlin Laidlaw for their assistance in the herbarium and in the field; Danny Collison, Laurie Whitehead, and the Heritage and Natural Resources Department of the Council of Haida Nation for their in-kind and logistical support; Emma Harrower and Lingfei Li for help with generating and formatting the phylogeny; and Andy Gougherty for help with the location map. Finally, special thanks to Steve Joya for his assistance with identification and verification of the sequenced specimens.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

DATA AVAILABILITY STATEMENT

All newly generated barcode sequence data are available on the Barcode of Life Database (BOLD). Details on species distribution, habitat and traits are in the Supplementary Materials and on the Dryad Digital Repository: https://doi.org/10.5063/F1RN367K.

ORCID

Ernest T. Y. Wu https://orcid.org/0000-0001-8800-8805
T. Jonathan Davies https://orcid.org/0000-0003-3318-5948

REFERENCES

Alaback, P. B. (1996). Biodiversity patterns in relation to climate: The coastal temperate rainforests of North America. In R. G. Lawford, E. Fuentes, & P. B. Alaback (Eds.), High-latitude rainforests and associated ecosystems of the West Coast of the Americas (pp. 105–133). Springer.

Allen, G. A., Marr, K. L., McCormick, L. J., & Hebda, R. J. (2015). Geographical origins, migration patterns and refugia of Sibbaldia procumbens, an arctic–alpine plant with a fragmented range. Journal of Biogeography, 42(9), 1665–1676. https://doi.org/10.1111/jbi.12543

Baeten, L., Davies, T. J., Verheynen, K. V., Calser, H., & Vellend, M. (2015). Disentangling dispersal from phylogeny in the colonization capacity of forest understorey plants. Journal of Ecology, 103(1), 175–183. https://doi.org/10.1111/1365-2745.12333

Brooks, D. R., & Bandoni, S. M. (1988). Coevolution and relicts. Systematic Zoology, 37(1), 19–33. https://doi.org/10.2307/2413186

Brown, J. H. (2014). Why are there so many species in the tropics? Journal of Biogeography, 41(1), 8–22. https://doi.org/10.1111/jbi.12228

Cadotte, M. W., Cardinale, B. J., & Oakley, T. H. (2008). Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17012–17017. https://doi.org/10.1073/pnas.0805962105
evolutionary distinctness in birds. Current Biology, 24(9), 919–930. https://doi.org/10.1016/j.cub.2014.03.011

Joly, S., Davies, T. J., Archambault, A., Bruneau, A., Derry, A., Kembel, S. W., Peres-Neto, P., Vamosi, J., & Wheeler, T. A. (2014). Ecology in the age of DNA barcoding: The resource, the promise and the challenges ahead. Molecular Ecology Resources, 14(2), 221–232. https://doi.org/10.1111/1755-0998.12173

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464. https://doi.org/10.1093/bioinformatics/btq166

Keppel, G., Van Niel, K. P., Wardell-Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Schut, A. G., Hopper, S. D., & Franklin, S. E. (2012). Refugia: Identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography, 21(4), 393–404. https://doi.org/10.1111/j.1466-8238.2011.00686.x

Kindlmann, P., Schödelbauerová, I., & Dixon, A. F. G. (2007). Inverse latitudinal gradients in species diversity. In D. Storch, & P. A. Marquet (Eds.). Scaling biodiversity, (pp. 246–257). Cambridge University Press.

Konopka, A. S., Herendeen, P. S., & Crane, P. R. (1998). Sporophytes and gametophytes of Dicranaceae from the Santonian (Late Cretaceous) of Georgia, USA. American Journal of Botany, 85, 714–723. https://doi.org/10.2307/2446542

Konopka, A. S., Herendeen, P. S., Merrill, G. L. S., & Crane, P. R. (1997). Sporophytes and gametophytes of Polytrichaceae from the Campanian (Late Cretaceous) of Georgia U.S.A. International Journal of Plant Science, 158, 489–499. https://doi.org/10.1086/297459

Kress, W. J., Erickson, D. L., Swenson, N. G., Thompson, J., Uriarte, M., Konopka, A. S., Herendeen, P. S., & Crane, P. R. (1998). Sporophytes and gametophytes of Dicranaceae from the Santonian (Late Cretaceous) of Georgia, USA. American Journal of Botany, 85, 714–723. https://doi.org/10.2307/2446542

Lacourse, T., Mathewes, R. W., & Fedje, D. W. (2005). Late-glacial vegetation dynamics of the Queen Charlotte Islands and adjacent continental shelf, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 36–57. https://doi.org/10.1016/j.palaeo.2005.05.003

Liu, Y., Johnson, M. G., Cox, C. J., Medina, R., Devos, N., Vanderpoorten, A., Hedenäs, L., Bell, N. E., Shevock, J. R., Aguero, B., Quandt, D., Wickett, N. J., Shaw, J., & Goffinet, B. (2019). Resolution of the or. Quaternary Research, 82(2), 277–292. https://doi.org/10.1017/qua.2017.36

Mathewes, R. W., & Clague, J. J. (2017). Paleoenvironment and ice limits of the early Fraser glaciation (Marine Isotope Stage 2) on Haida Gwaii, British Columbia, Canada. Quaternary Research, 88(2), 277–292. https://doi.org/10.1017/qua.2017.36

Mathewes, R. W., Liang, O. B., Clague, J. J., & Huntley, M. J. (2015). Early Wisconsinan (MIS 4) glaciation on Haida Gwaii, British Columbia, and implications for biological refugia. Canadian Journal of Earth Sciences, 52(11), 939–951. https://doi.org/10.1139/cjess-2015-0041

Mols, T., Vellak, K., Vellak, A., & Ingerupu, N. (2013). Global gradients in moss and vascular plant diversity. Biodiversity and Conservation, 22(6–7), 1537–1551. https://doi.org/10.1007/s10531-013-0492-6

Moore, A. O., Heard, S., & Chrostowski, E. (2005). Evolutionary heritage as a metric for conservation. In A. Purvis, J. Gittleman, & T. Brooks (Eds.), Phylogeny and conservation (Conservation Biology, pp. 120–138). Cambridge University Press.

Moraes-Castilla, I., Davies, T. J., & Rodriguez, M. (2020). Historical contingency, niche conservatism and the tendency for some taxa to be more diverse towards the poles. Journal of Biogeography, 47(4), 783–794. https://doi.org/10.1111/jbi.13725

Neuberg, M. F. (1958). Permian true mosses of Angaraland. Journal of the Palaeontological Society of India, 3, 22–29.

Newton, A. E., & Tangney, R. S. (2007). Pleurocarpus mosses: Systematics and evolution. CRC Press.

Ordonez, A., & Svenning, J. C. (2017). Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/srep42988

Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., & Pearse, W. (2012). Caper: Comparative analyses of phylogenetics and evolution in R. R Package Version, 5.

Flora of North America Bryophyte Editorial Committee. (2007 & 2014). Flora of North America [North of Mexico], Volumes 27–28. Oxford University Press.

Presson, H. (1958). The genus Takakia found in North America. The Borylolog, 61(4), 359–361. https://doi.org/10.2307/3240166

Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution, 23(10), 564–571. https://doi.org/10.1016/j.tree.2008.06.010

R Development Core Team. (2018). RStudio: Integrated development for R, Vol. V 1.1 (p. 463). RStudio.

Redding, D. W., & Mooers, A. O. (2006). Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20(6), 1670–1678. https://doi.org/10.1111/j.1523-1739.2006.00555.x

Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x

Roberts, D. R., & Hamann, A. (2015). Glacial refugia and modern genetic diversity of 22 western North American tree species. Proceedings of the Royal Society B: Biological Sciences, 282(1804), 20142903. https://doi.org/10.1098/ rspb.2014.2903

Sanderson, M. J. (2003). r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 19(2), 301–302. https://doi.org/10.1093/bioinformatics/19.2.301
Schofield, W. B. (1989). Structure and affinities of the bryoflora of the Queen Charlotte Islands. In G. Scudder, & N. Gessler (Eds.), The outer shores (pp. 109–119). University of British Columbia Press.

Schofield, W. B. (1992). Some common mosses of British Columbia. Royal British Columbia Museum.

Schofield, W. B., & Hong, W. S. (2002). An assessment of the bryophytes of Haida Gwaii. Report prepared for Gwaii Haanas National Park Reserve and Haida Heritage Site.

Shafer, A. B. A., Cullingham, C. I., Côté, S. D., & Coltman, D. W. (2010). Glaciers and refugia: A decade of studies sheds new light on the phytogeography of northwestern North America. Molecular Ecology, 19(21), 4589–4621. https://doi.org/10.1111/j.1365-294X.2010.04828.x

Shaw, J. (2001). Biogeographic patterns and cryptic speciation in bryophytes. John Brown, 28(2), 253–261. https://doi.org/10.1046/j.1365-2699.2001.00530.x

Shaw, J., Cox, C. J., & Giffinet, B. (2005). Global patterns of moss diversity: Taxonomic and molecular inferences. Taxon, 54, 337–352. https://doi.org/10.2307/25065362

Shelton, G. W. K., Stockey, R. A., Rothwell, G. W., & Tomescu, A. M. F. (2015). Exploring the fossil history of pleurocarpous mosses: Tricostaceae fam. nov. from the Cretaceous of Vancouver Island, Canada. American Journal of Botany, 102, 1883–1900. https://doi.org/10.3732/ajb.1500360

Shooner, S., Davies, T. J., Saikia, P., Deka, J., Bharali, S., Tripathi, O. P., Singha, L., Latif Khan, M., & Dayanandan, S. (2018). Phylogenetic diversity patterns in Himalayan forests reveal evidence for environmental filtering of distinct lineages. Ecosphere, 9(5), e02157. https://doi.org/10.1002/ecs2.2157

Söderström, L., & During, H. J. (2005). Bryophyte rarity viewed from the perspectives of life history strategy and metapopulation dynamics. Journal of Bryology, 27, 261–268. https://doi.org/10.11179/j174328205X70010

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Stephens, P. R., & Wiens, J. J. (2003). Explaining species richness from continents to communities: The time-for-speciation effect in emydid turtles. American Naturalist, 161(1), 112–128. https://doi.org/10.1086/345091

Sundaram, M., Donoghue, M. J., Farjon, A., Filer, D., Mathews, S., Jetz, W., & Leslie, A. B. (2019). Accumulation over evolutionary time as a major cause of biodiversity hotspots in conifers. Proceedings of the Royal Society B: Biological Sciences, 286(1912), 1–8. https://doi.org/10.1098/rspb.2019.1887

Svenning, J. C., & Skov, F. (2007). Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecology Letters, 10(6), 453–460. https://doi.org/10.1111/j.1461-0248.2007.00383.x

Tang, C. Q., Matsui, T., Ohashi, H., Dong, Y. F., Momohara, A., Herrando-Moraira, S., Qian, S., Yang, Y., Ohsawa, M., Luu, H. T., Grote, P. J., Krestov, P. V., LePage, B., Merger, M., Robertson, K., Hobohm, C., Yang, C., Peng, M., Chen, X., ... López-Pujol, J. (2018). Identifying long-term stable refugia for relict plant species in East Asia. Nature Communications, 9(1), 1–14. https://doi.org/10.1038/s41467-018-06837-3

Vitt, D. H., & Schofield, W. B. (1976). Seligeria careyana, a new species from the Queen Charlotte Islands, Western Canada. The Bryologist, 79(2), 231–234. https://doi.org/10.2307/3241920

Wang, J., Vanderpoorten, A., Hagborg, A., Goffinet, B., Laenen, B., & Patiño, J. (2017). Evidence for a latitudinal diversity gradient in liverworts and hornworts. Journal of Biogeography, 44(3), 487–488. https://doi.org/10.1111/jbi.12909

Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33(1), 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

Weedop, K. B., Mooers, A. Ó., Tucker, C. M., & Pearse, W. D. (2019). The effect of phylogenetic uncertainty and imputation on EDGE Scores. Animal Conservation, 22(6), 527–536. https://doi.org/10.1111/acv.12495

Wien, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19(12), 639–644. https://doi.org/10.1016/j.tree.2004.09.011

Wu, E. T. Y., Mosquin, D. P., & Guy, R. D. (2018). An inventory of bryophytes on the summit of Pink Mountain (Peace River District, British Columbia, Canada). Western North American Naturalist, 78(1), 17–25. https://doi.org/10.3399/064.078.0104

Xiang, Q. Y., Soltis, D. E., & Soltis, P. S. (1998). The Eastern Asian and Western North American floristic disjunction: Congruent phylogenetic patterns in seven diverse genera. Molecular Phylogenetics and Evolution, 10(2), 178–190. https://doi.org/10.1006/mpev.1998.0524

Zhao, M., Chang, Y., Kimball, R. T., Zhao, J., Lei, F., & Qu, Y. (2019). Pleistocene glaciation explains the disjunct distribution of the Chestnut-vented Nuthatch (Aves, Sittidae). Zoologica Scripta, 48(1), 33–45. https://doi.org/10.1111/zsc.12327

BIOSKETCH

Ernest T. Y. Wu is a recent postgraduate student from the University of British Columbia and currently at the University of Oxford. He is interested in using phylogenetic methods to understand the biogeographical and macroecological processes that shape the distribution of biodiversity, both at a local and at a global scale, and how plant biodiversity responds to historical and future changes in the climate.

Author Contributions: ETYW and TJD designed the study. ETYW collected the field samples. LJ assisted with the curation of the specimens. ETYW, YL and SSD conducted the laboratory work. ETYW and TJD performed the phylogenetic analysis. ETYW wrote the manuscript with help from TJD, and editorial input from YL and LJ. All authors have read the manuscript and gave their approval for publication.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Wu, E. T. Y., Liu, Y., Jennings, L., Dong, S., & Davies, T. J. (2022). Detecting the phylogenetic signal of glacial refugia in a bryodiversity hotspot outside the tropics. Diversity and Distributions, 28, 2681–2695. https://doi.org/10.1111/ddi.13449