ПРИМЕНЕНИЕ МЕТОДОВ НЕЧЕТКОЙ МАТЕМАТИКИ ДЛЯ ОЦЕНКИ ПЕРСПЕКТИВНОСТИ АРКТИЧЕСКИХ МОРЕЙ С ТОЧКИ ЗРЕНИЯ СТЕПЕНИ РАЗВЕДАННОСТИ АКВАТОРИЙ И ИХ ПРИРОДНЫХ БОГАТСТВ

К.Н. Пивоваров, В.В. Стрелецкая, А.Б. Золотухин

В статье описан единый подход к оценке ресурсов и бизнес-планированию. В качестве примера рассматриваются нефтегазовые ресурсы Печорского моря. Исходя из специфика проблем (количества и качества имеющихся данных и их характера), используются методы многокритериальной нечеткой кластеризации. Оценка перспектив разработки месторождений нефти и газа проводилась по 3 критериям: наличие ресурсов (природно-климатические условия региона), ресурсы углеводородов и степень их разведанности, экономическая оценка развития. Результаты такого анализа представлены в виде карт района Печорского моря, иллюстрирующих наиболее важные и доступные районы их развития. Такое поэтапное развитие, основанное на минимизации риска и максимизации выгод, может стать основой для успешного и беспроблемного освоения ресурсов всего региона.

Ключевые слова: Арктика, Печорское море, условия освоения, ресурсы, разведанность, нечеткая логика, классификация, многокритериальный подход, ранжирование, карта доступности, прогнозирование, Северный Морской путь.

В настоящее время нефтегазовая промышленность России активно входит в новую фазу освоения морских арктических месторождений собственными силами. Запасы природных углеводородов в зоне российской Арктики поистине огромны. Степень вовлечения этих запасов в разработку повлияет на экономический рост России, а также на стабильность развития многих других стран мира. Арктический регион обладает крайне тяжелыми климатическими условиями, поэтому его освоение требует применения новейших технокомплексных решений. В связи с этим актуальность систематизации данных и методов прогнозирования для целей освоения Арктики оценивается как чрезвычайно высокая. Отметим, что некоторые проблемы, свойственные Арктике, также присущи и другим регионам. Так, северная неглубоководная зона Каспийского моря характеризуется сложными гидрометеорологическими и ледовыми условиями, не продолжительным межледовым периодом, богатым животным и растительным миром и высокой экологической чувствительностью. Таким образом, описываемая в статье методика подходит для применения и в других регионах.

К основным видам человеческой деятельности в Арктическом регионе относятся: судоходство, рыболовство, добыча полезных ископаемых, быстро растущий туризм и разработка морских месторождений нефти и газа. Крупные месторождения нефти и газа уже разведаны в достаточной мере и готовы к разработке.

В данной статье оценка доступности освоения морских месторождений представлена на примере акватории Печорского моря. Сама оценка основана на многокритериальном подходе, учитываяшем:
• доступность ресурсов (природно-климатические условия региона);
• углеводородные ресурсы и степень их разведанности;
• экономическую привлекательность.

Методология прогнозирования основывается на принципах нечеткой логики.

Хотя в статье речь идет о вопросах освоения арктического шельфа России, проблемы, описываемые в статье, являются актуальными не только для Арктики, но и для других регионов и в первую очередь для акватории Каспийского шельфа Республики Казахстан. Именно это обстоятельство и послужило дополнительным стимулом для публикации этой работы в Вестнике нефтегазовой отрасли Казахстана.

Доступность ресурсов (природно-климатические условия региона)

Доступность ресурсов с точки зрения природно-климатических, географических и экологических условий является одной из основополагающих характеристик для анализа акваторий. Это многокритерийный параметр, состоящий из следующих критериев:
• гидрометеорологические условия. Этот параметр используется для оценки сложности гидрометеорологических условий региона, в т.ч. сложности условий работы персонала. Этот параметр учиты-
вает влияние природных условий как на сами морские нефтегазопромысловые гидротехнические сооружения, так и на проведение многих морских операций. При определении значений данного критерия приводится сравнительно-описательная характеристика участков морей, которая основывается на анализе многолетних наблюдений и исследований учёных по различным направлениям (рис. 1, А);

• ледовые условия. Данный параметр включает в себя следующие характеристики: тип льда, средняя толщина льда и другие величины. Это один из основных параметров, который влияет на концепцию разработки месторождения (тип платформы, заканчивающих скважин, хранение и транспортировка), инвестиционные затраты (типа платформы) и эксплуатационные расходы (контроль ледовой обстановки). Также этот параметр указывает на технологические решения для процесса освоения месторождений, в т.ч. на методы защиты морских нефтегазопромысловых гидротехнических сооружений и на необходимость ведения грамотного и своевременного ледового менеджмента (рис. 1, Б);

• айсберги и вероятность их появления в регионе. Айсберги, как одно из наиболее опасных ледовых образований, несут угрозу не только судоходству и функционированию морских нефтегазопромысловых сооружений, но и существенно повышают риски, связанные с безопасным проведением производственных процессов. Этот фактор основан на анализе исторических данных многолетних наблюдений ледовой обстановки. Но стоит учитывать, что данный подход не может полностью описать вероятность столкновения айсбергов с платформой, т.к. суммарное движение большого числа айсбергов в достаточной степени случайное и хаотично и зависит от течений, ветров и силы Кориолиса (рис. 1, В);

• скопление газогидратов. Это может повлиять на разведку и разработку: большие объемы газогидратов, образовавшихся в отложениях морского дна, создают дополнительные проблемы для добычи углеводородов (далее — УВ). Газогидратные отложения опасны тем, что при температурном разложении 1 м³ этой зоны выделяется более 160 м³ газа [1]. В основном это происходит при бурении и цементировании скважины, когда слишком горячий буровой раствор и цемент могут значительно повысить температуру в приискванной зоне и изменить термобарическую обстановку, что приводит к разложению гидратов (рис. 1, Г);

• продолжительность межгодового периода. Данный параметр оказывает сильное влияние на разведочное бурение, которое обычно проводится в период, свободный от льда. В районах с коротким навигационным периодом себестоимость поисковых и разведочных скважин будет существенно выше, чем в акваториях с более продолжительным межгодовым периодом. Соответственно, происходит экскалирование рисков неисполнения буровых (установочных и прочих) обязательств в срок, т.к. зачастую на период свободного ото льда моря приходится время штормов, сильных ветров и больших волнений, что в свою очередь усложняет работы и мешает их проведению. Все это усложняет разработку и затрудняет ее реализацию (рис. 1, Д);

• глубина моря (рис. 1, Е). Тип и вид морских сооружений сильно зависит от глубины моря. В теории проблемы, связанные с глубиной моря, нарастают по экпоненте с ее увеличением, но практика показывает, что на небольших глубинах и в прибрежных районах возникают другие сложности: высокая экологическая чувствительность, вспахивание дна ста- мухами, что представляет проблемы для подводных и подземных трубопроводов, и береговая эрозия [2];

• удалённость от берега (рис. 1, Ж) – критерий, влияющий на выбор типа транспорта углеводородов (в т.ч. указывает на возможность прокладки трубопровода от месторождения до берега). Кроме того, данный критерий важен из-за вопросов охраны здоровья и промышленной безопасности (поиск и спасение персонала в ЧС). Этот параметр оценивается как наименьшее расстояние от акватории до береговой линии. Удаленные от берега акватории характеризуются отсутствием инфраструктуры, спутникового покрытия и возможности быстрого аварийного реагирования. Помимо этого, прибрежные акватории в большей степени экологически чувствительны, чем удаленные от берега, в частности, вызывает беспокойство береговая эрозия,เลี้
добычи углеводородных ресурсов, но и жизнь вовлеченного в этот процесс персонала (рис. 1, 3);

• животный и растительный мир акватории. Данный критерий связан с количеством и разнообразием видов флоры и фауны арктических морей. Этот параметр учитывает экологическое равновесие региона. Разнообразие животного и растительного мира арктических морей довольно большое, а ряд животных и вовсе включен в Красную книгу, как, например, нарвалы, белые медведи, белухи, атлантический морж, гренландский кит и др. (рис. 1, И); • потенциальные экологические угрозы при аварийном загрязнении акватории. Данный критерий показывает возможный ущерб, который может быть нанесен экологическому балансу из-за аварии при разливе нефти, а также возможность вернуть баланс в нормальное состояние (рис. 1, К). Помимо учёта количественных и качественных показателей растительного и животного мира, этот фактор также зависит и от других критериев: постоянные течения в регионе и их векторы, метеорологические условия, удаленность акватории от береговой линии и от производственных баз, ледовые условия и т.д. Включение подряд двух экологических факторов в общий анализ обусловлено тем, что бережное отношение к крайне чувствительной северной экосистеме и понимание возможных последствий из-за нарушения природного баланса являются основополагающими критериями для добросовестного и ответственного освоения арктических морей.

Технологическая доступность акваторий показана на рис. 2.

Углеводородные ресурсы и степень их разведанности «Геологическая ось» показывает степень разведанности акватории, а также возможные запасы нефти и газа в регионе:

• степень разведанности акватории рассматривается как плотность сейсмической изученности (л.м.км²/км²) и объемов проведенной сейсморазведки (рис. 3 иллюстрирует этот показатель на примере Печорского моря);

• оценка ресурсов — нефть, газ и конденсат, выраженные в т н.э. Базируется на классификации структур (месторождений) по величине их запасов. На рис. 4 показаны лицензионные участки компаний К.Н. Пивоваров, В.В. Стрелецкая, А.Б. Золотухин.
Роснефть и Газпром, а также открытые месторождения Печорского моря. Так, на нём изображены 6 месторождений, из которых на данный момент в разработке находится только месторождение Приразломное.

Следует учесть, что месторождения и лицензионные блоки приходятся на разные зоны, поэтому их возможные извлекаемые ресурсы распределены по этим зонам в зависимости от процентного соотношения попадания в тот или иной блок. Такой подход позволяет представить зоны как предполагаемый кластер нескольких возможных подклассовых месторождений, которые в силу своих величин невыгодно разрабатывать по отдельности. Конечно, есть вероятность, что лицензионные участки, приходящиеся на конкретную зону, не будут содержать промышленных запасов углеводородов, поэтому здесь уместно будет предположить вероятность их нахождения как 50% (значение P50).

Экономическая привлекательность разработки

«Экономическая ось» с точки зрения ценового показателя разработки представляет собой возможную выручку от реализации проекта и рассчитывается как произведение текущей цены на баррель нефти и предварительной оценки запасов той или иной территории. Этот экономический показатель не является всеобъемлющим и отображает лишь саму идею о том, что включение экономического блока позволит более детально присмотреться к тем или иным территориям с точки зрения экономической привлекательности.

Методология

Методология подхода для анализа перспектив освоения месторождений нефти и газа в арктических морях основана на теории нечеткой логики. Для этой цели вся территория Печорского
моря была разделена на несколько зон. Эти зоны были изучены и оценены с использованием многокритериального подхода. Использование методов нечеткой логики было обусловлено тем, что в силу своих возможностей они без каких-либо затруднений позволяют оперировать большим количеством анализируемых параметров при малой изученности Арктики и большой неопределенности имеющихся данных [6, 7].

В сравнении с булевой логикой этот подход отличается от стандартных бинарных логистических ответов «истина» или «ложь». Это позволяет нам отражать степень неполноты и неопределенности наших знаний [8] и дает эффективные инструменты для построения моделей, наиболее адекватно отображающих количество имеющихся данных [9].

Многокритериальность при оценке сложности условий означает одновременный анализ множества факторов. Этот подход подробно обсужден в работе [10], где была проанализирована задача картирования технической доступности, и потому в данной статье подход будет описан кратко. Как было изложено выше, для построения карт были выбраны три основные оси: целый диапазон значений для каждого критерия был отображен на оси соответствующей функции принадлежности, которая была ранее разделена на восемь различных классов, где 1-й класс имел самое низкое, а 8-й – самое высокое значение.

Впоследствии каждая группа описывается чётко определенными рамками числовых значений из интервала [0, 1], который разделен на 8 подинтервалов шириной 0,125 каждый. Чтобы агрегировать эти характеристики для построения общей карты, авторы с учетом существующих подходов к нечеткой систематизации данных выбрали метод взвешенной геометрической оценки (далее – ВГО). Метод взвешенной геометрической оценки основан на следующем соотношении:

\[
μ_{Λ_0} = μ_1^{ω_1} · μ_2^{ω_2} · ... · μ_n^{ω_n}
\]

где

- \(μ_i \) – оценка по критерию \(i \);
- \(ω_i \) – коэффициент значимости этого критерия;
- \(n \) – общее число критериев, участвующих в оценке.

Помимо разделения зон (акваторий) по кластерам, разработанная программа позволяет проводить ранжирование участков морей, т.е. их расстановку, по степени при-
ввлекательности или сложности условий их освоения [11]. Нечеткое ранжирование состоит из 3 последовательных этапов вычислений.

Первым из этапов является расчет нестрогого предпочтения при сравнении месторождений (одно предпочтительнее не менее, чем другое) по следующей формуле [11]:

$$
\mu_R(i,j) = 1 - \sum_{k=1}^{n} \omega_k \cdot [\mu_k(j) \ominus \mu_k(i)]
$$

где

$\mu_k(j) \ominus \mu_k(i) = \max\{0, \mu_k(j) - \mu_k(i)\}$

Второй этап основан на принципе строгого предпочтения по сравнимым критериям [11]:

$$
\mu_P(i,j) = \mu_R(i,j) \ominus \mu_R(j,i)
$$

Последний этап нечёткого ранжирования является связующим звеном двух предыдущих этапов и помогает ранжировать месторождения по степени сложности их освоения. Для этого используется следующее соотношение [11]:

$$
\mu_{\Theta}(i) = \frac{1}{n-1} \left(\sum_{j \neq i} \mu_P(i,j) \ominus \sum_{j \neq i} \mu_P(j,i) \right)
$$

В данном случае первая сумма показывает нечёткую меру предпочтения элемента i ко всем остальным элементам j в среднем. Вторая сумма показывает нечёткую меру предпочтения элементов $j \neq i$ к элементу i в среднем.

Анализ каждой зоны по описанным выше критериям позволил составить сводную таблицу характеристик всех участков, что в свою очередь позволило агрегировать многокритериальную оценку в однокритериальную с помощью метода взвешенной геометрической оценки ВГО и построить карту доступности, учитывающую экономическую, технологическую и геологическую составляющие (рис. 7).

Помимо разделения зон на кластеры по уровням доступности, разведанности и экономической привлекательности, на рис. 7 отображено ранжирование территорий.

Нетрудно заметить, что месторождение Приразломное находится в 1-й зоне по ранжированию, что и подтверждается его промышленным освоением. Организация системного подхода к планированию хозяйственной деятельности позволит создать комплексный и поэтапный ввод других месторождений в разработку.

Согласно рис. 7, следующим этапом освоения региона вполне может стать освоение Долгинского и Северо-Гуляевского месторождений с последующим переходом на месторождения Варандей-море и Медынь-море. При этом необходимо продолжать геологоразведочные работы на лицензионных участках для выявления перспективных структур и открытия новых месторождений.

Заключение

Печорское море является регионом с высокой экологической чувствительностью, поэтому крайне важно минимизировать не-
гативные антропогенные воздействия. Последовательное планирование разработки месторождений позволяет комплексно подходить к оптимизации освоения акватории. Высокий коммерческий потенциал региона и неопределенности, вызванные глобальным изменением климата, требуют интеграции исследований для достижения стабильной и долгосрочной стратегии развития. Благодаря присущим свойствам, нечеткая логика позволяет прогнозировать этапы развития на основе изменчивой, не полной и неточной информации. Эти конкретные математические свойства позволяют оценивать потенциальную разработку нефтяных и газовых месторождений, расположенных в арктических акваториях, с разных точек зрения, либо концентрируясь на одном параметре, либо проводя всесторонний многокритериальный анализ.

Стоит отметить, что рассматриваемый в статье пример явно демонстрирует, что разработка Печорского моря началась в той же зоне, как это было предложено методологией, разработанной авторами.

Список использованной литературы

1. Judzis A., Schofield T.R. and Yousif M. Stabilization of In-Situ Hydrates Enhances Drilling. – Performance and Rig Safety Proc. SPE Annual Technical Conf. and Exhibition (San Antonio), 1997, SPE 38568.
2. Mørk K. The challenges facing Arctic pipelines, design principles for extreme conditions. – J. Offshore Oil and Gas Magazine, 2007, № 67, p. 9.
3. Zolotukhin A. and Pivovarov K. Use of multicriteria approach and methods of fuzzy mathematics for estimating development conditions of arctic seas in terms of the south-eastern part of the Barents Sea. – J. Arctic: ecology and economy, 2018, 3(31), p. 100–111.
4. Pivovarov K., Zolotukhin A. Streletskaya V. Application of multicriteria fuzzy clustering approach to assess the arctic seas oil and gas field development prospects. – IOP Conf., series Material Science and Engineering, 2019, 700, 012049.
5. Tkachenko M. Geological structure and oil and gas potential of the Jurassic complex of the central part of the East Barents megagrip. – Moscow, 2014 (FGBU VNIGNI).
6. Zade L. Fuzzy sets. – J. Inform. Control, 1965, № 8(3), p. 338–353.
7. Хургин Я.А. Нечеткие методы в нефтегазовой промышленности. – М., Государственная академия нефти и газа им. И.М. Губкина, 1995, 131 с.
8. Леоненков А. Нечеткое моделирование в MATLAB и fuzzy TECH. – Санкт-Петербург, «BHV Petersburg», 2005, 736 с.
9. Круглов В.В., Длы М.И., Голунов Р.Ю. Нечеткая логика и искусственные нейронные сети. – М., Физматлит, 2001, 201 с.
10. Zolotukhin A., Nesic S., Pivovarov K. and Streletskaya V. Mapping the main risks for offshore operations in the Pechora Sea. – Материалы конф. Int. Conf. on Safety and Security Engineering (Rome), SAFE, 2017, 174, p. 69–80.
11. Zolotukhin A. Engineering methods in petroleum science. – Stavanger, Stavanger University, Preprint – Lecture notes on the master’s course MPE, 2007, 140 p.

АРКТИКАЛЫҚ ТЕНІЗДЕРДІҢ АКВАТОРИЯЛАРЫНЫҢ БАРЛАНҒАН ДӘРЕЖЕСІ МЕН ТАБИҚИ БАЙЛЫҚТАРЫНЫҢ ПЕРСПЕКТИВАЛАРЫҢ БАҒАЛАУДА БҰЛЫҢҒЫР МАТЕМАТИКАЛЫҚ ӘДІСТЕРДІ ПАЙДАЛАНУ

К.Н. Пивоваров, В.В. Стрелецкая, А.Б. Золотухин

Мақалада ресурстарды бағалау мен бизнесті жоспарлауда бірекелген тәсіл пайдалану кеңінелген. Мысал ретінде Печор теніздің мунай-газ ресурстары қарастырылған. Қарастырылған проблеманың ерекшелігінің байланысты (сандық және сапалық мәліметтер мен сипаттар) көпкритерілі бұлыңыр класификация әдісі қолданылады. Мунай-газ кен орнындағы пайдаланудың перспективасын анықтау уш критеріге сүйенген: ресурстардың болуы (аймақтың табиғи-кіматтық қарқыны), кемісшүкек
APPLICATION OF MULTICRITERIA FUZZY CLUSTERIZATION APPROACH TO ASSESS THE ARCTIC SEAS OIL AND GAS FIELD DEVELOPMENT PROSPECTS

K.N. Pivovarov, V.V. Streletskaya, A.B. Zolotukhin

The article describes a unified approach to the assessment of resources and business planning. As an example, the paper considers oil and gas resources of the Pechora Sea. Based on the specifics of the problem (the quantity and quality of the available data and their nature), the methods of multicriteria fuzzy clusterization are used. The assessment of the prospects for the development of oil and gas fields was carried out using 3 criteria, namely: availability of resources (natural and climatic conditions of the region); hydrocarbon resources and their degree of exploration; economic assessment of the development. The results of such an analysis are presented in the form of maps of the Pechora Sea area, illustrating the most important and accessible areas and the sequence of their development. Such a stepwise development based on minimizing the risk and maximizing the benefits can be the basis for the successful and trouble-free development of the resources of the entire region.

Keywords: Arctic, Pechora Sea, development conditions, resources, exploration, fuzzy logic, classification, ranking, multi-criteria approach, accessibility maps, Northern Sea Route.