Systems Network Genomic Analysis Reveals Cardioprotective Effect of MURC/Cavin-4 Deletion Against Ischemia/Reperfusion Injury

Masahiro Nishi, MD; Takehiro Ogata, MD, PhD; Carlo Vittorio Cannistraci, Ing, PhD; Sara Ciucci, PhD; Naohiko Nakanishi, MD, PhD; Yusuke Higuchi, MD; Akira Sakamoto, MD; Yumika Tsuji, MD; Katsura Mizushima, PhD; Satoaki Matoba, MD, PhD

Background—Ischemia/reperfusion (I/R) injury is a critical issue in the development of treatment strategies for ischemic heart disease. MURC (muscle-restricted coiled-coil protein)/Cavin-4 (caveolae-associated protein 4), which is a component of caveolae, is involved in the pathophysiology of dilated cardiomyopathy and cardiac hypertrophy. However, the role of MURC in cardiac I/R injury remains unknown.

Methods and Results—The systems network genomic analysis based on PC-corr network inference on microarray data between wild-type and MURC knockout mouse hearts predicted a network of discriminating genes associated with reactive oxygen species. To demonstrate the prediction, we analyzed I/R-injured mouse hearts. MURC deletion decreased infarct size and preserved heart contraction with reactive oxygen species–related molecule EGR1 (early growth response protein 1) and DDIT4 (DNA-damage-inducible transcript 4) suppression in I/R-injured hearts. Because PC-corr network inference integrated with a protein–protein interaction network prediction also showed that MURC is involved in the apoptotic pathway, we confirmed the upregulation of STAT3 (signal transducer and activator of transcription 3) and BCL2 (B-cell lymphoma 2) and the inactivation of caspase 3 in I/R-injured hearts of MURC knockout mice compared with those of wild-type mice. STAT3 inhibitor canceled the cardioprotective effect of MURC deletion in I/R-injured hearts. In cardiomyocytes exposed to hydrogen peroxide, MURC overexpression promoted apoptosis and MURC knockdown inhibited apoptosis. STAT3 inhibitor canceled the antiapoptotic effect of MURC knockdown in cardiomyocytes.

Conclusions—Our findings, obtained by prediction from systems network genomic analysis followed by experimental validation, suggested that MURC modulates cardiac I/R injury through the regulation of reactive oxygen species–induced cell death and STAT3-mediated antiapoptosis. Functional inhibition of MURC may be effective in reducing cardiac I/R Injury. (J Am Heart Assoc. 2019;8:e012047. DOI: 10.1161/JAHA.119.012047.)

Key Words: apoptosis • caveolae • ischemia reperfusion injury • reactive oxygen species • systems biology

Coronary heart disease, a leading cause of death worldwide, places tremendous burden on individuals and society given its high rates of mortality and morbidity. The severity of myocardial infarction depends in particular on delays in the initiation of treatment; therefore, early revascularization therapy is critical for survival and positive prognosis. Catheterization and thrombolytic therapy have improved the clinical scenario of myocardial infarction. Although cardiac ischemia/reperfusion (I/R) is essential for cardiac-cell survival, it also increases infarct size, deteriorates cardiac contraction, and induces heart failure. I/R injury produces oxidative damage, cell death, and aberrant immune response through the generation of mitochondrial reactive oxygen species (ROS). Neutrophil NADPH oxidase around the infarct area, xanthine oxidase, and uncoupled...
Clinical Perspective

What Is New?

- This study reveals the intracellular signaling network related to MURC (muscle-restricted coiled-coil protein)/Cavin-4 (caveolae-associated protein 4) in cardiac ischemia/reperfusion (I/R) injury.
- MURC/Cavin-4 deletion has a cardioprotective effect against I/R injury through the inhibition of reactive oxygen species–induced cell death and the promotion of STAT3 (signal transducer and activator of transcription 3)–mediated antiapoptosis.
- The systems network genomic analysis, based on PC-corr network inference integrated with a protein–protein interaction network prediction followed by experimental validation, uncovers a crucial role of MURC/Cavin-4 in cardiac I/R injury.

What Are the Clinical Implications?

- This study elucidates the novel and comprehensive pathophysiological function of MURC/Cavin-4 in cardiac I/R injury.
- Functional inhibition of MURC/Cavin-4 may be effective in reducing cardiac I/R injury.

nitric oxide synthase also produce ROS. Several clinical trials have been launched to assess treatments that overcome I/R injury. However, few effective treatments exist to prevent myocardial I/R injury.

In myocardial infarction, cell death by apoptosis and necrosis occurs because of hypoxia and I/R injury after revascularization therapy. STAT3 (signal transducer and activator of transcription 3) plays a central role in the JAK (Janus kinase)/STAT signaling pathway to transmit the signal from the membrane to the nucleus. JAK and STAT3 are essential components of some cytokine receptors. STAT3 regulates apoptosis by promoting the transcription of antiapoptotic molecules such as BCL2 (B-cell lymphoma 2), which inhibits ROS-induced apoptosis. In cardiovascular diseases, STAT3 functions as a transcription factor and is involved in myocardial infarction, oxidative damage, myocarditis, hypertrophy, and remodeling. STAT3 activated in ischemic preconditioning has a cardioprotective effect for ischemic heart disease. Activation of STAT3 protects against cardiac I/R injury by reducing infarct size in cardiac-specific transgenic mice expressing constitutively active STAT3. Caveolae are plasma membrane invaginations rich in cholesterol, glycosphingolipids, and lipid-anchored proteins. Two distinct components, caveolins and cavins, cooperate to form caveola structure and modulate its biogenesis and function. Caveolin has 3 isoforms: Cav-1 (caveolin-1), Cav-2, and Cav-3. Cavin has 4 isoforms: PTRF (polymerase 1 and transcript release factor)/Cavin-1, SDPR (serum deprivation protein response)/Cavin-2, SRBC (SDR-related gene product that binds to C kinase)/Cavin-3, and MURC (muscle-restricted coiled-coil protein)/Cavin-4. MURC plays several roles in the pathophysiology of cardiovascular diseases and is involved in myofibrillar organization, cardiac dysfunction, conduction disturbance, and atrial arrhythmia through the Rho-ROCK signaling pathway. Gene mutations are observed in patients with dilated cardiomyopathy. MURC deficiency attenuates β1-adrenergic receptor-induced ERK1/2 (extracellular signal-regulated kinase 1/2) activation, inhibits cardiomyocyte hypertrophy, and promotes the decrease of hypertrophy-related gene expression. Moreover, hypoxia induces the synthesis of the MURC protein in the week after myocardial infarction in rat heart, suggesting its important role in left ventricular (LV) remodeling after myocardial infarction.

Omic science is developing rapidly to reveal the complex signaling network surrounding biosystems. An ever-increasing amount of omic data precipitated the development of the network inference method. Principal component analysis (PCA) is widely used to explore differential patterns in omic data sets. PC-corr is an algorithm for unsupervised and parameter-free inference of a linear multivariate-discriminative correlation network based on the PCA loadings. PC-corr enables creation of a discriminative correlation network directly (between-omics features), associated with the sample separation obtained by preliminary PCA analysis, and can be easily adapted for big data exploration in complex biosystems. In this study, separation is between wild-type (WT) and MURC knockout mouse samples. The protein–protein interaction network (PPIN) is a systematic protein network compiled by protein interaction for the understanding of biological processes and protein function in the cell. Network inference from genomic profiles can be followed by a PPIN prediction to understand cell-signaling networks, and protein network–based prediction of novel candidate genes is used to suggest additional candidate genes.

In this study, we elucidate the MURC-related intracellular signaling network in cardiac I/R injury using an integrated omic analysis. The systems network genomic analysis, based on PC-corr network inference integrated with a PPIN prediction followed by experimental validation, uncovers a crucial role of MURC in cardiac I/R injury and reveals that MURC deletion has a cardioprotective effect against I/R injury.
Methods
The authors declare that all supporting data are available within the article and its online supplementary files.

Microarray Analysis
To examine the gene expression of mouse hearts perturbed by MURC deficiency, we collected LV tissue from 10- to 13-week-old WT and MURC knockout (MURC KO) male mouse hearts. After euthanizing the mice, the hearts were excised by cervical dislocation and stored at −80°C. Total RNA was extracted from the tissue using TRIzol reagent (Invitrogen/Thermo Fisher Scientific), according to the manufacturer’s instructions. The GeneChip Gene 1.0 ST Array System for Mouse (Affymetrix/Thermo Fisher Scientific) was used for gene expression profiling. The microarray gene-expression data set was normalized by log transformation (log_10(x+1)), where x denotes the data matrix. The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE125308.

PCA, PC-Corr Network Construction, and Enrichment Analysis
To disclose the similarity in multidimensional microarray compositions between WT and MURC KO mouse hearts, we analyzed the full microarray data set by PCA and subsequently applied PC-corr to elucidate the network of genes that predominantly contribute to the sample segregation obtained by PCA. The processing of the PCA result and the construction of the PC-corr network were performed as described previously. MATLAB R2018a (MathWorks) was used for computational analyses. The PC-corr network was constructed with a cutoff of 0.6 and visually depicted in Cytoscape 3.6.1. Enrichment analysis was conducted using DAVID 6.8 (Leidos Biomedical Research, https://david.ncifcrf.gov/) for the extracted gene data set. Results of the enrichment analysis were obtained using the Benjamini multiple test correction.

PPIN and Enrichment Analysis
PPIN was used to suggest additional candidate genes by means of first-neighbor network interaction prediction. Ninety-one genes extracted from PC-corr at a cutoff of 0.6 were input into STRING 10.5 (https://string-db.org/), and then we described a PPIN. We selected their first neighbors (261 proteins) in the PPIN. DAVID 6.8 was used for the enrichment analysis of the 261 proteins. We reorganized the PPIN by inputting the 46 proteins present in the enriched pathways of our interest to STRING.

Mouse Model of Cardiac I/R Injury
A mouse model of cardiac I/R injury was created as described previously with slight modifications. The left anterior descending coronary arteries of 10-week-old C57BL/6 background male mice were ligated under 1.0% isoflurane anesthesia for 1 hour before reperfusion. Hearts were excised 30 minutes or 24 hours after reperfusion for analysis. Serum cardiac troponin I level was measured 24 hours after reperfusion by high-sensitivity mouse cardiac troponin I ELISA (Life Diagnostics), according to the manufacturer’s instruction. MURC KO mice were generated as described previously. Transgenic mice expressing MURC in the heart (Tg-MURC) were generated as described previously. All animal use conformed with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH; Publication no. 85-23, revised 1996) and was approved by the institutional animal care and use committee of the Kyoto Prefectural University of Medicine.

Echocardiography and Triphenyltetrazolium Chloride Staining
Echocardiography was performed using a Vevo 2100 system (VisualSonics) equipped with a 30-MHz microprobe under isoflurane anesthesia 24 hours after 1/R. Triphenyltetrazolium chloride staining was performed as described previously with slight modifications. To determine the area at risk, 10% Evans blue dye (0.5 g/kg) was injected into the retro-orbital venous sinus after ligation of left anterior descending coronary arteries. Hearts were excised and stored at −80°C. Cross-sections of the hearts (1 mm) were immersed in 1.0% triphenyltetrazolium chloride in 0.9% saline at 24°C for 2 to 3 minutes. The vial was continuously agitated in a water bath at 37°C for 15 minutes, and then cross-sections were fixed in 10% neutral buffered formalin for 60 minutes. Sections were digitally photographed using a Leica MC120 HD microscope camera (Leica Microsystems). Infarct size and area at risk were quantified with ImageJ 1.49 software (NIH).

Dihydroethidium Staining
Dihydroethidium staining was performed as described previously with slight modifications. Cross-sections through the left ventricles (1 mm) of freshly isolated mouse hearts were prepared and then equilibrated in Krebs buffer for 30 minutes at 37°C. Sections were then stained with 30 μmol/L dihydroethidium in fresh Krebs buffer and incubated in the dark for 30 minutes with gentle rotation. Dihydroethidium-stained LV sections were imaged using a
Carl Zeiss LSM 510 confocal microscope with a ×10 dry objective at 488 nm excitation. ZEN software (Carl Zeiss) was used to collect sequential z-stacked confocal line scans of each section and to assemble 2.5-dimensional histogram plots of mean dihydroethidium intensity. Fluorescence intensity analysis of dihydroethidium was measured with ImageJ software.

Cell Culture
Neonatal rat cardiomyocytes (NRCMs) were prepared as described previously with slight modifications.27 Cardiomyocytes isolated from 1- to 3-day-old Wistar rats were cultured in serum-containing medium (DMEM, 10% fetal bovine serum) for a total of 72 hours. Adult mouse cardiomyocytes were prepared as described previously with slight modifications.44 Cardiomyocytes isolated from 10-week-old WT and MURC KO male mouse hearts were cultured in the culture medium and exposed to hydrogen peroxide after 24-hour incubation.

Gene Silencing and Transfer
Rat MURC and control small interfering RNA (siRNA) duplex oligonucleotides (Stealth RNAi siRNAs) were purchased from Invitrogen/Thermo Fisher Scientific. The siRNAs were transiently transfected into cardiomyocytes using Lipofectamine RNAiMAX reagent (Invitrogen/Thermo Fisher Scientific), according to the manufacturer’s instructions. The medium was changed 24 hours after transfection. The siRNA sequences are provided in Table S1. Recombinant adenoviruses expressing FLAG-tagged human MURC/Cavin-4 (Ad-MURC) and β-galactosidase were described previously.27 Twenty-four hours after seeding on a plate, the cardiomyocytes were infected with Ad-MURC and Ad-β-galactosidase diluted in culture media at a multiplicity of infection of 30 and incubated at 37°C for 1 hour. The viral suspension was removed, and the cardiomyocytes were cultured with fresh media.

Hypoxia/Reoxygenation of NRCMs and ROS Detection Assay
We examined ROS activity of cardiomyocytes exposed to hypoxia/reoxygenation. The ROS activity was evaluated using a CellROX detection kit (Invitrogen/Thermo Fisher Scientific) after serum deprivation for 12 hours under hypoxic conditions (1% O2 and 5% CO2, 37°C) followed by 3 hours of reoxygenation (21% O2 and 5% CO2, 37°C). The CellROX staining was performed according to the manufacturer’s instructions; the CellROX reagent was added directly to the hypoxia/reoxygenation–challenged cardiomyocytes, and the mixture was incubated for 1 hour. The ROS intensity was measured using ImageJ software.

TUNEL Assay and Stimulation of Hydrogen Peroxide
Cultured NRCMs were exposed to 200 μmol/L hydrogen peroxide (H2O2) for 2 hours. A TUNEL (TdT-mediated dUTP nick-end labeling) assay was performed to detect apoptosis 6 hours after H2O2 exposure using the In Situ Cell Death Detection Kit, TMR red (Roche), according to the manufacturer’s instructions. Cell death number was assessed by the percentage of TUNEL- and DAPI (40,6-diamidino-2-7 phenylindole)-positive cells.

STAT3 Cancellation Experiment
STAT3 inhibitor WP1066 (20 mg/kg; Santa Cruz Biotechnology) or an equal-volume vehicle (5% dimethyl sulfoxide) was administered intraperitoneally to mice daily for 3 days. The WP1066 dose was determined based on published toxicity and efficacy data in mice.13,45 WP1066 (1 μmol/L) or an equal-volume vehicle 5% dimethyl sulfoxide was administered to NRCMs 1 hour before H2O2 exposure.

Western Blot Analysis
Cell lysates and tissue samples were extracted using a lysis buffer (50 mmol/L Tris-HCl [pH 7.5], 150 mmol/L NaCl, 50 mmol/L EDTA, 1% Triton X-100, and protease–phosphatase inhibitor mixture). Protein samples were subjected to SDS-PAGE and then transferred to membranes that were subsequently incubated with primary antibodies against STAT3, phosphorylated STAT3, ERK1/2, phosphorylated ERK1/2, Akt, phosphorylated Akt, cleaved caspase 3, DDIT4, GAPDH, β-actin, FLAG M2, EGR1, caveolin-1, caveolin-3, PTRF, SDPR, SRBC, BCL2, and MURC. Anti-MURC antibody was originally produced as described previously.30 Horseradish peroxidase–conjugated antirabbit and antimouse IgGs were used as secondary antibodies.

Immunoprecipitation
NRCMs transfected with Ad-MURC were washed with ice-cold PBS and lysed with lysis buffer containing 50 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 50 mmol/L EDTA, 1% Triton X-100, and protease–phosphatase inhibitor mixture. Immunoprecipitation was carried out by incubating equal amounts of cell lysates with magnetic beads (Magnosphere MS300/Carboxyl; Cosmo Bio) coated with each antibody at 4°C overnight. Beads were washed with wash buffer (50 mmol/L Tris-HCl [pH 7.5], 150 mmol/L NaCl, 50 mmol/L EDTA, 1% Triton X-100, and protease–phosphatase inhibitor mixture) 5 times, and the precipitated proteins were separated by SDS-PAGE, transferred to polyvinylidene difluoride membranes, and probed with each antibody.
Reverse Transcription–Mediated Quantitative Polymerase Chain Reaction

Reverse transcription–mediated quantitative polymerase chain reaction was conducted as described previously. Total RNA was extracted from cultured cells or tissues using TRIzol (Invitrogen/Thermo Fisher Scientific) and converted to cDNA using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems/Thermo Fisher Scientific). Synthesized cDNA was analyzed by kinetic real-time polymerase chain reaction using Takara PCR Thermal Cycler Dice (Takara Bio) with Platinum SYBR Green qPCR Supermix (Invitrogen/Thermo Fisher Scientific). The primer sequences are provided in Table S2.

Statistical Analysis

Statistical analysis was done in R 3.3.2 (R Foundation for Statistical Computing). The Shapiro–Wilk test was used for normality testing. All 2-group analysis used a 2-tailed Student t test. Comparisons of multiple groups with normal distribution were done with 1-way ANOVA followed by the Tukey post hoc test. The Kruskal–Wallis test was used as a nonparametric test, followed by the Dunn post hoc test. All data are displayed as mean±SEM. All in vitro experiments were performed at least 3 times. MATLAB R2018a was used for the computational analyses employing PC-corr. The PC-corr network was constructed with a cutoff of 0.6 (maximum is 1) because this value ensures that the connectivity links of the network have medium to high levels of correlation and discrimination simultaneously. Results of the enrichment analysis were obtained using Benjamini multiple test correction with the significance threshold of 0.05.

Results

Systems Network Genomic Analysis Based on PC-Corr Network Inference Reveals MURC Deficiency Is Involved in Response to ROS and Regulation of the Force of Heart Contraction

We performed microarray analysis for WT and MURC KO mouse hearts to examine the gene expression of mouse hearts perturbed by MURC deficiency. Heat mapping showed clear differentiation of gene expression between WT and MURC KO mouse hearts (Figure S1). PCA also showed clear segregation of gene expression between WT and MURC KO mouse hearts (Figure 1A).

PC-corr was used to enlighten the discriminative correlation network according to the weights of the links at a cutoff of 0.6 (Table S3), as both groups were clearly separated along the second principal component PC2. The genes obtained in the PC-corr network were input to DAVID for enrichment analysis (Figure 1B; Table S4). The genes involved in response to hypoxia, response to ROS, skeletal muscle cell differentiation, and regulation of the force of heart contraction and belonging to the top 10 pairs of enriched pathways were highlighted with the respective color circle in the PC-corr network. This reorganized network enabled us to determine that expression levels for the following specific pathway-related genes were markedly perturbed by MURC deficiency: DDIT4, EGR1, and ACOT2 (acyl-CoA thioesterase 2) in response to hypoxia; DDIT4, EGR1, FOS (Fos proto-oncogene, AP-1 transcription factor subunit), and MPV17 (mitochondrial inner membrane protein MPV17) in response to ROS; EGR1, FOS and NR4A1 (nuclear receptor subfamily 4 group A member 1) in skeletal muscle cell differentiation; and GLRX3 (glutaredoxin 3) and MYL4 (myosin light chain 4) in regulation of the force of heart contraction.

MURC Deficiency Preserves Heart Contraction With Infarct Size Reduction After I/R

Because I/R injury induces cardiac damage along with ROS production, we created a mouse model of I/R injury to demonstrate the relationship between ROS and MURC in the heart. By echocardiography, we evaluated cardiac function on WT and MURC KO mouse hearts after sham operation or 24 hours after I/R (Figure 2A and 2B). Fractional shortening and ejection fraction were representative indicators of LV systolic function. Although there was no difference in fractional shortening and ejection fraction between the WT and MURC KO groups of both sham-operated control groups, fractional shortening and ejection fraction were markedly preserved in MURC KO compared with WT mouse hearts after I/R. Mouse heart rate was equivalent between groups during echocardiography (Figure S2). We then evaluated the infarct size by triphenyltetrazolium chloride and Evans blue dual staining (Figure 2C). The area at risk assessed as the proportion of left ventricle was equal between the 2 groups (ie, the procedure was performed equally). The infarct size assessed as the proportion of the area at risk was significantly lower in MURC KO compared with WT mouse hearts after I/R (Figure 2D). Cardiac troponin I level was significantly lower in MURC KO than WT mouse serum (Figure 2E). Similarly, we performed echocardiography and measurement of infarct size on the hearts of adult transgenic mice expressing cardiac-specific MURC (Tg-MURC) 24 hours after I/R; however, we found no difference in fractional shortening, ejection fraction, and infarct size between WT and Tg-MURC mouse hearts (Figure S3A and S3B).
MURC/Cavin-4 Deletion Prevents Cardiac I/R Injury

Nishi et al

Figure 1. Microarray analysis of wild-type (WT) and MURC KO (muscle-restricted coiled-coil protein knockout) mouse hearts shows MURC deficiency is involved in response to hypoxia and reactive oxygen species (ROS). A, Principal component analysis. Red nodes indicate MURC KO, black nodes indicate WT. PC1, first principal component; PC2, second principal component. B, Enrichment analysis conducted by DAVID. Top 10 GO pathways are ranked by Benjamini-corrected \(P \) value and scaled according to the function \(-\log_{10}(P)\). The vertical dashed line indicates the threshold at 0.05. C, PC-corr network was constructed according to the loading of PC2 at a cutoff of 0.6. Magenta nodes indicate genes with higher expression in MURC KO; green nodes indicate genes with higher expression in WT mouse hearts. Node size is proportional to node degree. The color of interaction denotes the direction of the Pearson correlation between the features: red for positive Pearson correlation and blue for negative case. Nodes circled with a dotted line highlight specific pathways as follows: black, response to hypoxia; yellow, response to ROS; red, skeletal muscle cell differentiation; blue, regulation of the force of heart contraction. The network was depicted by Cytoscape. \(n = 3 \) per group.

MURC Deficiency Ameliorates ROS Production in the Heart After I/R With Reduced EGR1 and DDIT4 mRNA Expression

We evaluated cardiac ROS production in WT and MURC KO mouse hearts 30 minutes after I/R by dihydroethidium of LV tissue from mouse hearts with confocal micrographs (Figure 3A). ROS production increased after I/R but was significantly lower in MURC KO compared with WT mouse hearts (Figure 3B). We also evaluated ROS production in NRCMs exposed to hypoxia/reoxygenation. ROS production was measured by CellROX staining in NRCMs transfected with...
control siRNA, MURC siRNA 1 or 2. MURC siRNAs had an induction of MURC knockdown in NRCMs (Figure S4A and S4B). ROS production increased after hypoxia/reoxygenation exposure but was significantly lower in NRCMs transfected with MURC siRNAs compared with control siRNA (Figure S5A and S5B).

Because ROS-related gene expression was perturbed in microarray analysis of mouse hearts (Figure 1C), we examined mRNA expression and protein level of EGR1 and DDIT4. EGR1 mRNA expression and protein level were elevated 24 hours after I/R but significantly lower in MURC KO compared with WT mouse hearts (Figure 3C and 3D). DDIT4 mRNA expression was also significantly lower in MURC KO compared with WT mouse hearts 24 hours after I/R, whereas protein level was not significantly different (Figure 3E and 3F). Although Nox (NADPH oxidase) family genes are involved in the pathophysiology of cardiac I/R injury, Nox4 mRNA expression was reduced only in MURC KO compared with WT mouse hearts 24 hours after I/R (Figure S6).

Figure 2. MURC (muscle-restricted coiled-coil protein) deficiency preserves left ventricular systolic function and infarct size in the heart after ischemia/reperfusion (I/R). Representative echocardiography (A) and quantification (B) of wild-type (WT) and MURC knockout (MURC KO) mouse hearts after sham operation or 24 hours after I/R; n=10 per group. Representative triphenyltetrazolium chloride and Evans blue staining (C) and quantification (D) of WT and MURC KO mouse hearts 24 hours after I/R. In panel C, blue, white, and red regions represent the nonischemic area, the infarct area, and the noninfarct area at risk, respectively. In panel D, the area at risk (AAR) was assessed as a proportion of the left ventricle (LV; left), and the infarct size (IS) was assessed as a proportion of the AAR (right); n=10 per group. E, Cardiac troponin I level of WT and MURC KO mouse serum 24 hours after I/R; n=8 per group. Data are presented as mean±SEM. **P<0.01. Dd indicates left ventricular internal dimension in diastole; Ds, left ventricular internal dimension in systole; NS, not significant.

Protein Network–Based Prediction of Novel Candidate Genes Reveals a Pivotal Role of Antiapoptotic Signaling With STAT3 Activation and Increased BCL2 Expression in MURC KO Mouse Hearts

Protein network–based prediction of novel candidate genes was conducted to explore additional pathways involved in MURC deficiency. PPIN was used to suggest additional candidate genes by means of first-neighbor network interaction prediction, as previously described. Ninety-one genes extracted from PC-corr at a cutoff of 0.6 were input into the
STRING database to obtain their first neighbors (261 proteins) selected in the PPIN; we applied a biclustering algorithm to the matrix of 46 proteins present in the significant pathways of interest (Figure 4A). Then we reorganized the PPIN by inputting the 46 proteins into STRING. The pathways of regulation of apoptosis, response to ROS, response to hypoxia, and regulation of the force of heart contraction were interacted through several proteins in the MURC-deficient heart (Figure 4B). DAVID was used for enrichment analysis (Figure 4C; Table S5).

The PPIN reorganized by STRING implied the involvement of MURC in the apoptotic pathway, which includes BCL2, ROS-responsive molecule EGR1, and ROS-related molecule DDIT4. BCL2 and DDIT4 are involved in STAT3-mediated antiapoptosis. In I/R-injured hearts, mRNA expression and protein level of BCL2, which is a key molecule of STAT3-mediated antiapoptotic signaling, were significantly higher in MURC KO compared with WT mice (Figure 4D and 4E). STAT3 plays an important role in antiapoptotic signaling through inhibiting DDIT4 transcription. DDIT4 mRNA expression was suppressed in I/R-injured hearts of MURC KO mice (Figure 3E). Consequently, we evaluated STAT3 activation in the hearts after I/R. The phosphorylation of STAT3 was significantly higher in MURC KO compared with WT mouse hearts (Figure 4F).

Figure 3. MURC (muscle-restricted coiled-coil protein) deficiency ameliorates reactive oxygen species (ROS) production in the heart after ischemia/reperfusion (I/R). A and B, Cardiac ROS production as measured by dihydroethidium staining of left ventricle tissue from mouse hearts with confocal micrographs and Z-stack–generated 2.5-dimensional reconstructions. Representative dihydroethidium staining (A) and quantification (B) of wild-type (WT) and MURC knockout (MURC KO) mouse hearts after sham operation or 30 minutes after I/R. Scale bar=100 μm. C through F, Measurement of mRNA expressions (C and E) and the protein levels (D and F) of EGR1 (early growth response protein 1) and DDIT4 (DNA-damage-inducible transcript 4) in WT and MURC KO mouse hearts after sham operation or 24 hours after I/R; n=5 per group. *P<0.05, **P<0.01. Data are presented as mean±SEM.
Figure 4. MURC (muscle-restricted coiled-coil protein) deficiency promotes antiapoptotic signaling with STAT3 (signal transducer and activator of transcription 3) activation in the heart after ischemia/reperfusion (I/R). A and B, Protein-network–based prediction of novel candidate genes. The protein–protein interaction network (PPIN) was used to suggest additional candidate genes by means of first-neighbor network interaction prediction. Gene data set extracted from PC-corr at a cutoff of 0.6 was input into STRING. A, Biclustering of the matrix of all proteins obtained by PPIN present in the significant pathways of interest. The matrix consists of 46 proteins (rows) and 4 enriched pathways (columns). The black lines indicate the modules corresponding to the clusters of interacting proteins in the respective pathways. B, PPIN reorganized by STRING. Full and dashed lines delimit the diverse overlapped protein pathway modules. C, Enrichment analysis conducted by DAVID for PPIN. Pathways of interest are ranked by Benjamini-corrected P value and scaled according to the function −log10(P value). The vertical dashed line indicates the threshold at 0.05. Measurement of BCL2 (B-cell lymphoma 2) expression in wild-type (WT) and MURC knockout (MURC KO) mouse hearts after sham operation or 24 hours after I/R: mRNA expression (D) and representative Western blots (left) and quantification (right) of BCL2 (E). Representative Western blots (left) and quantification (right) of STAT3 phosphorylation (F) and cleaved caspase 3 (G) in WT and MURC KO mouse hearts after sham operation or 24 hours after I/R; n=5 per group. Data are presented as mean±SEM. *P<0.05, **P<0.01. Phospho indicates phosphorylated.
24 hours after I/R (Figure 4F). The protein level of cleaved caspase 3 was significantly elevated 24 hours after I/R but significantly lower in MURC KO compared with WT mouse hearts (Figure 4G). Activation of other apoptosis-related proteins such as ERK, p38, and Akt were not different between WT and MURC KO mouse hearts 24 hours after I/R (Figure S7).

MURC Modulates Apoptosis in Cardiomyocytes and Cardiac Function in Mouse Hearts Through STAT3 Activation

To determine whether MURC modulates the apoptosis of cardiomyocytes, including STAT3-related antiapoptosis, we first performed TUNEL staining for NRCMs exposed to H2O2. Apoptosis induced by H2O2 was significantly inhibited in cardiomyocytes transfected with MURC siRNAs compared with control siRNA (Figure 5A and 5B). Similarly, H2O2-induced apoptosis was significantly inhibited in adult mouse cardiomyocytes of MURC KO mice compared with those of WT mice (Figure S8). In contrast, TUNEL staining for NRCMs infected with Ad-β-galactosidase or Ad-MURC showed that MURC overexpression significantly accelerated H2O2-induced cardiomyocyte apoptosis (Figure 5C and 5D). Next we evaluated the relationship between MURC and STAT3 in cardiac I/R injury and apoptotic signaling, after confirming WP1066, a STAT3 inhibitor, inhibited the phosphorylation of STAT3 in mouse hearts (Figure S9). WP1066 treatment abolished the effect of the preservation of LV systolic function and the reduction of infarct size in MURC KO mouse hearts 24 hours after I/R (Figure 6A and 6B). TUNEL staining for H2O2-exposed NRCMs also showed that WP1066 treatment abolished the MURC knockdown–induced antiapoptotic effect (Figure 6C). Consequently, STAT3 inhibition canceled the cardioprotective effect of MURC deficiency in mouse hearts after I/R. To investigate the direct association between MURC and STAT3, we performed immunoprecipitation of MURC and STAT3 in NRCMs transduced with β-galactosidase or FLAG-tagged human MURC. Unexpectedly, immunoprecipitation showed no direct protein interaction between MURC and STAT3 (Figure S10A and S10B).

Discussion

Systems network genomic analysis is a useful tool for predicting complex intracellular-signaling networks. In this study, we applied the systems network genomic analysis based on PC-corr network inference integrated with a PPIN prediction to assess the functional role of MURC in cardiac I/R injury. MURC is the muscle-restricted caveolar component expressed exclusively in myocytes. It has been reported that MURC is involved in dilated cardiomyopathy, cardiac hypertrophy, hypoxia, and skeletal muscle cell differentiation. Caveolins and caveins cooperatively form the caveola structure and modulate its biogenesis and function. However, because caveolins and caveins including MURC are trafficking or adaptor proteins, it is difficult to assess the function of these caveola-related proteins by conventional kinase assays. The systems network genomic analysis of MURC KO mouse hearts predicted a comprehensive role for MURC in cardiac I/R injury.

MURC deletion reduced infarct size after cardiac I/R and preserved cardiac contraction with a decrease in ROS production and expression of EGR1 and DDIT4. PC-corr network inference on microarray data sets from WT and MURC KO mouse hearts predicted that MURC-related pathways included response to hypoxia and ROS, skeletal muscle cell differentiation, and regulation of the force of heart contraction. We confirmed the prediction with experimental validation using a mouse model of cardiac I/R injury. EGR1 acts as a ROS-sensitive transcription factor and promotes apoptosis and inflammation. DDIT4 also promotes apoptosis and inflammation in a STAT3-dependent manner in response to various cellular stresses including ROS. Although the findings from MURC KO mouse hearts suggested that MURC overexpression aggravated cardiac I/R injury, cardiac-specific Tg-MURC mice did not exhibit aggravated contraction and infarct size in I/R hearts. We reported that the hearts of Tg-MURC mice show cardiac hypertrophy at a young age and subsequently show cardiac enlargement and dysfunction. The phenotype possessed by Tg-MURC mice may have shown a counteracting effect in cardiac I/R injury. PC-corr network inference contributed greatly in elucidating the comprehensive role of MURC in cardiac I/R injury. However, the results of EGR1 and DDIT4 expression in PC-corr network inference and the validation study were inconsistent. PC-corr network inference predicted that EGR1 would be poorly expressed and DDIT4 highly expressed in MURC KO mouse hearts; however, the expression of EGR1 or DDIT4 was not different between the sham-operated hearts of WT and MURC KO mice and decreased in I/R-injured hearts of MURC KO mice compared with those of WT mice. These discrepancies may be caused by the small sample size, which should be regarded as a limitation of this study.

PC-corr network inference integrated with a PPIN prediction also indicated the involvement of antiapoptotic signaling in cardioprotection by MURC deletion. The protein network–based prediction of novel candidate genes indicated that several pathways such as regulation of apoptosis, response to ROS, and response to hypoxia included not only EGR1 and DDIT4 but also BCL2. ROS modulates several apoptosis-
related signaling pathways, thereby controlling cell death in cardiac I/R injury. In the validation study, BCL2 was significantly increased in the hearts of MURC KO mice compared with those of WT mice after I/R injury. BCL2 is a key regulator of antiapoptotic signaling and inhibits several apoptoses including ROS-induced apoptosis. EGR1 and DDIT4 are also involved in ROS-related apoptosis. MURC deletion promoted the activation of STAT3, which regulates apoptosis by facilitating BCL2 transcription, and preserved cardiac function in cardiac I/R injury. MURC knockdown in cardiomyocytes promoted the antiapoptotic pathway via STAT3 activation. STAT3 is a pivotal regulator in various cardiovascular diseases; it acts as a transcription factor and is involved in myocardial infarction, oxidative...

Figure 5. MURC (muscle-restricted coiled-coil protein) modulates apoptosis in neonatal rat cardiomyocytes (NRCMs). Representative TUNEL (TdT-mediated dUTP nick-end labeling) staining (A) and quantification (B) of NRCMs transfected with control small interfering RNA (siRNA), MURC siRNA 1, or MURC siRNA 2 before H2O2 exposure. **P<0.01 vs corresponding H2O2(−) group; *P<0.01 vs control siRNA in H2O2(+) group. Representative TUNEL staining (C) and quantification (D) of NRCMs transduced with adenovirus-mediated β-galactosidase (Ad-LacZ) or MURC (Ad-MURC) before H2O2 exposure. *P<0.05, **P<0.01. Cell death number was assessed by the percentage of TUNEL- and DAPI (4',6-diamidino-2-phenylindole)-positive cells; n=3 per group. Data are presented as mean±SEM. Scale bar=50 μm.
Figure 6. STAT3 (signal transducer and activator of transcription 3) inhibitor cancels the cardioprotective effect of MURC (muscle-restricted coiled-coil protein) deficiency. A, Left ventricle (LV) systolic function as measured by echocardiography of wild-type (WT) and MURC knockout (MURC KO) mouse hearts 24 hours after I/R. Vehicle (5% dimethyl sulfoxide) or WP1066 was injected in mice intraperitoneally for 3 consecutive days; n=3 per group. B, Infarct size as measured by triphenyltetrazolium chloride and Evans blue staining of LV tissue from mouse hearts 24 hours after ischemia/reperfusion. The area at risk (AAR) was assessed as a proportion of LV (left), and the infarct size (IS) was assessed as a proportion of the AAR (right); n=3 per group. C, Evaluation of TUNEL (TdT-mediated dUTP nick-end labeling) staining for NRCMs transfected with control small interfering RNA (siRNA), MURC siRNA 1, or MURC siRNA 2 after H2O2 exposure. Vehicle or WP1066 (a STAT3 inhibitor) was administered to cardiomyocytes; n=3 per group. *P<0.05, **P<0.01. NS indicates not significant.
damage, myocarditis, hypertrophy, and remodeling.15 STAT3 activation in ischemic preconditioning has a cardioprotective effect for ischemic heart disease.16 Constitutive activation of STAT3 also protects cardiac I/R injury.17 Although PC-corr network inference integrated with a PPIN prediction did not directly suggest the involvement of STAT3, STAT3 is a key molecule of BCL2-mediated antiapoptosis; therefore, we examined the STAT3-mediated antiapoptotic signal pathway. The phosphorylation of STAT3 was significantly higher in MURC KO compared with WT mouse hearts after I/R. A STAT3 inhibitor canceled a cardioprotective effect due to MURC deletion.

Immunoprecipitation analysis showed no direct association between MURC and STAT3 in cardiomyocytes. Our results suggest that MURC modulates apoptosis in cardiomyocytes and cardiac function in mouse hearts through STAT3 activation with indirect protein interaction. A recent study demonstrated that the phosphorylation of STAT3 is regulated by the interaction of Cavin-1 with SOCS3 (suppressor of cytokine signaling 3) in a shared signal-transducing receptor for a family of cytokines, gp130-mediated cytokine signaling.56 Cavin-1 localizes SOCS3 in the caveolae at the plasma membrane and suppresses gp130/JAK/STAT3 signaling. MURC forms large complexes with other cavins and caveolins in caveolae and has a direct association with Cavin-1.21 The mechanism by which MURC regulates STAT3 activation remains ambiguous in our study; it is unclear whether MURC inhibits JAK/STAT3 signaling in coordination with Cavin-1 or whether MURC has the same function as Cavin-1 in cardiomyocytes. MURC deletion may facilitate the phosphorylation of JAK in caveolae at the plasma membrane and subsequently induce the STAT3 transition from the cell membrane to the nucleus in coordination with activated JAK.

Protein network–based prediction of novel candidate genes indicates that MURC is highly relevant to ERK in mouse hearts; however, there was no difference in ERK phosphorylation between WT and MURC KO mouse hearts during I/R injury. MURC facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy.31 Hypoxia induces MURC expression in cardiomyocytes during hypertrophy with ERK activation.33 ERK is an apoptosis-related molecule in I/R injury. Its activity has been implicated in neurodegenerative diseases and brain injury following I/R in rodents.57,58 Recently, Yu et al reported that the MAPK/ERK-CREB pathway promotes I/R-induced cardiomyocyte apoptosis by inhibiting FUNDC1 (FUN14 domain containing 1)–related mitophagy.59 Accordingly, we tried to identify the relationship between MURC and ERK activities in I/R-induced cardiomyocyte apoptosis. MURC, however, showed no association with ERK phosphorylation 24 hours after I/R.

MURC interacts with caveolin-3 at the plasma membrane.29,60 Cardiac-specific caveolin-3 overexpression increases the formation of caveolae and induces cardiac protection against I/R injury.61 In contrast, caveolin-3 knockout mice show no isoflurane-induced cardiac protection against I/R injury.62 In the present study, there was no significant change in caveolin-1 and other caveola-related protein levels except for MURC/Cavin-4 between WT and MURC KO mouse hearts (Figure S11A–S11F). Mouse left anterior descending coronary arteries were ligated for 60 minutes during ischemia according to the previous report.63 The long period of ischemia might have affected the cardioprotective effect of isoflurane in MURC KO mouse hearts. We previously reported that there was no reduction or deformation of caveolae in MURC/Cavin-4 KO mouse hearts.31 Therefore, the cardioprotective effect of MURC/Cavin-4 deletion is not derived from the caveolae formation.

In our study, we mimic a cardiac I/R model by hydrogen peroxide exposure or a hypoxia/reoxygenation model in vitro. The in vitro assay reflects only ROS or hypoxia, not the
changes in glucose availability and pH. The discrepancy between in vivo conditions and the in vitro model should be considered a study limitation.

In conclusion, our study applied systems network genomic analysis based on PC-corr network inference integrated with a PPIN prediction to identify a previously undescribed function of MURC in the underlying pathogenetic mechanism of cardiac I/R injury (Figure 7). MURC deletion reduced infarct size and preserved heart contraction through the inhibition of ROS-induced cell death and the promotion of STAT3-mediated antiapoptotic signaling in cardiac I/R injury. Functional inhibition of MURC may be effective for reducing cardiac I/R injury.

Acknowledgments

The authors thank Dr Yuji Naito for assistance with microarray analysis.

Sources of Funding

This work was supported in part by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI; grant nos. JP18K07046, JP18K08111) and the Takeda Science Foundation.

Disclosures

None.

References

1. Benjamin EJ, Blaha MJ, Chiuve SE, Das SR, Deo R, D’Agostino SR, Ford DS, Ford DE, Fornage M, Fornage SE, Fox KM, Gidding SS, Gu D, Ho PM, Hsia JY, Hsiai T, Judd SE, Lackland DT, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mantzoros CS, Matsushita K, Mozaffarian D, Mussolino ME, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu C-H, Dare AJ, James RJ, Amano K, Oh H, Matsubara H, Willerson JT, Marian AJ. Molecular genetic and functional characterization implicate muscle-restricted coiled-coil gene (MURC) as a causal gene for familial dilated cardiomyopathy. Circ Cardiovasc Genet. 2011;4:349–358.

2. Brintnall AR, Sengupta D, Mitchell TA, Croals JM, Kuo WC, Dorn GW II. Increased mitochondrial superoxide generation induces JNK and NF-κB activation in cardiac myocytes. J Biol Chem. 2009;284:28144–28154.

3. Brintnall AR, Kuo WC, Dorn GW II. Increased mitochondrial superoxide generation induces JNK and NF-κB activation in cardiac myocytes. J Biol Chem. 2009;284:28144–28154.
33. Shyu KG, Cheng WP, Wang BW, Chang H. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-beta in cardiac myocytes. Clin Sci (Lond). 2014;126:367–375.

34. Marbach D, Prill RJ, Schaffter T, Mattussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci USA. 2010;107:6286–6291.

35. Ciucci S, Ge Y, Duran C, Palladini A, Jimenez-Jimenez V, Martinez-Sanchez LM, Wang Y, Sales S, Shevchenko A, Poser SW, Herbig M, Otto O, Andreatouilis-Theotokis A, Guck J, Gerl MJ, Cannistraci CV. Enlightening discriminative network functional modules behind principal component analysis separation in differential-omic science studies. Sci Rep. 2017;7:43946.

36. Cannistraci CV, Govev JC, Zorc M, Ravasi T, Dovc P, Kunje T. Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in RASopathies. BMC Med Genomics. 2013;6:5.

37. Shannon P. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504.

38. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

39. da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

40. Szkarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–D368.

41. Kim SC, Boehm O, Meyer R, Hoeft A, Knufermann P, Baumgarten G. A murine cardiac cavin-1 knockout mouse. Am J Physiol Heart Circ Physiol. 2009;297:H2054–H2058.

42. Bohl S, Medway DJ, Schulz-Menger J, Schneider JE, Neubauer S, Lygate CA. Refined approach for quantification of in vivo ischemia-reperfusion injury in the mouse heart. Am J Physiol Heart Circ Physiol. 2009;297:H2054–H2058.

43. Vagnozzi RJ, Gatto GJ Jr, Kallander LS, Hoffman NE, Mallilankaraman K, Ballard VL, Lawhorn BG, Stoy P, Philp J, Graves AP, Naito Y, Lepore JJ, Gao E, Madesh M, Force T. Inhibition of the cardiomyocyte-specific coiled-coil protein (MURC) expression via transforming growth factor-beta in myocardial ischemia/reperfusion injury. Proc Natl Acad Sci USA. 2010;107:4675–4680.

44. Wolff NC, McKay RM, Brugaraolos J. REDD1/Ddit4-independent mTORC1 inhibition and apoptosis by glucocorticoids in thymocytes. Mol Cancer Res. 2014;12:867–877.

45. Williams JL, Alothaiq N, Mullen W, Burchmore R, Liu L, Baillie GS, Schaper F, Pilch PF, Palmer TM. Interaction of suppression of cytokine signaling 3 with cavin-1 links SOCS3 function and cavin-1 stability. Nat Commun. 2018;9:168.

46. Chu CT, Levinthal DJ, Kulich SM, Chalovich EM, DeFranco DB. Oxidative neuronal injury. The dark side of ERK1/2. Eur J Biochem. 2004;271:2060–2066.

47. Subramaniam S, Unsicker K. ERK and cell death: ERK1/2 in neuronal death. FEBS J. 2010;277:22–29.

48. Yu W, Xu M, Zhang T, Zhang Q, Zou C. Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDCl-mediated mitophagy. J Physiol Sci. 2017;69:655–662.

49. Rota R, Faggi F, Coderoni S, Poliani PL, Corninelli M, Chiarello N, Colombi M, Vezzoli M, Monti E, Bono F, Tulipano G, Fiorentini C, Zanola A, Lo HP, Parton RG, Keller C, Fanazzi A. MURC/cavin-4 is co-expressed with caveolin-3 in rhabdomyosarcoma tumors and its silencing prevents myogenic differentiation in the human embryonal RD cell line. PLoS One. 2015;10:e0130287.

50. Tsutsui MY, Horikawa YT, Jennings MM, Kidd MW, Niesman IR, Yokoyama U, Head BP, Hagiwara Y, Ishikawa Y, Myanohara A, Patel PM, Insel PA, Patel HH, Roth DM. Cardiac-specific overexpression of caveolin-3 induces endogenous cardioprotection by mimicking ischemic preconditioning. Circulation. 2008;118:1979–1988.

51. Horikawa YT, Patel HH, Tsutsui YM, Jennings MM, Kidd MW, Hagiwara Y, Ishikawa Y, Insel PA, Roth DM. Caveolin-3 expression and caveolin-3 silencing are required for isofurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury. J Mol Cell Cardiol. 2008;44:123–130.

52. Kaiser RA, Bueno OF, Lips DJ, Doevendans PA, Jones F, Kimball TF, Molkentin JD. Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J Biol Chem. 2004;279:15524–15530.
Table S1. siRNA sequences.

Name	Sequence (5’ to 3’)
MURC siRNA-1 sense	GCCCAUCCAUGAGUUCCACUCUGAU
MURC siRNA-1 antisense	AUCAGAGUGGAACUCAUGGAUGGGC
MURC siRNA-2 sense	GVAAAGAGCACAUCGAAUCAAUUAA
MURC siRNA-2 antisense	UUAAUAUGAUCGAGUGUCUUUGC
Name	Sequence (5’ to 3’)
---------	---
mouse Bcl2 F	CTCGTTCGCTACCGTCGTGACTTCG
mouse Bcl2 R	CAGATGCGCGTTCAGGTACTCAGTC
mouse Egr1 F	ATGAGCACCTGACCACAGAGTC
mouse Egr1 R	GAGAAGCGGCCAGTATAGGTG
mouse Ddit4 F	TCGTCTCGTCTCGAATCC
mouse Ddit4 R	CCATCCAGGTATAGGAGGTCTTC
mouse MURC F	ACAGTCACACAGCAATACGGCTA
mouse MURC R	TTTCGGGGCATCTTCGATTTTA
rat MURC F	ACTGAAGATGAGACCAGCAGCAG
rat MURC R	TGTTAACAACGTCGCTTGTTGC
mouse Gapdh F	TTGTGATGGGTGTAACACAGAGA
mouse Gapdh R	CATGAGCCCTCCACAATGCAACAA
rat Gapdh F	ATGGGAAGCGCTGTCATCAAC
rat Gapdh R	GTGGTTCACACCCATACCA
mouse Nox1 F	CTGACAAGTACTATACACCC
mouse Nox1 R	CTGACAAGTACTATACACGAG
mouse Nox2 F	CATATAGCCACAGCTTATGAAAG
mouse Nox2 R	GTCCTCAATTGCACCCATGCTC
mouse Nox3 F	ACCCTAACGAGACGTACCTCAA
mouse Nox3 R	GACCGGTGACGCCTGTAT
mouse Nox4 F	TGGAGAGTCAGACGCTGGAATGTCACA
mouse Nox4 R	TGGACTAGACGCTGGAATGTCACA
mouse p22phox F	CAATGGCCAGCGACGTC
mouse p22phox R	GTCCACCATGGAGCAGTG
mouse p67phox F	GCAGTGCCCTACTTCAGAG
mouse p67phox R	CTTCACTGTTGTCAGAG
mouse Rac1 F	GTCGCAATACCTTATCAGCTTC
mouse Rac1 R	GAGCAGTCAGGATTTTGACAG
Table S3. PC-corr network nodes and links.

PC-corr network nodes weights and labels at cut-off 0.6

#	Node	Colour	PC-corr Normalized Loading (V)
1	n-R5s180	Black	-0.721354661
2	Gm22496	Black	-0.649040256
3	Gm23579	Black	-0.772801792
4	Gm14214	Black	-0.695256046
5	Gm23614	Black	-0.603048538
6	Gm23254	Black	-0.706045559
7	Gm22834	Black	-0.706677831
8	LOC102632904	Black	-0.624550714
9	Myl7	Black	-0.66021109
10	Gm10921	Black	-0.600872277
11	Gm22253	Black	-0.669850712
12	Gm25648	Black	-0.600369722
13	Gm23737	Black	-0.71365871
14	Gm23922	Black	-0.658574808
15	Lsm5	Black	-0.761220816
16	Gm25098	Black	-0.656646706
17	Gm25449	Black	-0.616392987
18	Gm21732	Black	-0.644501631
19	Gm25089	Black	-0.64846379
20	Gm21882	Black	-0.666405984
21	Gm23730	Black	-0.726798019
22	Gm23305	Black	-0.664243567
23	mt-Tt	Black	-0.859660173
24	Gm20831	Black	-0.613856901
25	Snord116	Black	-0.725166274
26	mt-Tc	Black	-0.847530386
27	Olfr166	Black	-0.63478488
28	Snord116 // Ipw	Black	-0.695183163
29	Gm22510	Black	-0.625509447
30	Rnu1b1	Black	-0.904937482
31	Myl4	Black	-0.642387625
32	Gm22155	Black	-0.753346542
33	Olfr1231	Black	-0.618922514
34	Gm4787	Black	-0.605277579
35	Gm20806	Black	-0.603370638
36	Ipw	Black	-0.679543558
37	Olfr1034	Black	-0.662686071
38	Gm21943	Black	-0.62432152
39	LOC102640399	Black	-0.653001706
40	Gm10375	Black	-0.616879434
41	mt-Tf	Black	-0.843977183
42	Gm23947	Black	-0.642276287
43	Gm20815	Black	-0.624089122
	Gene	Color	Value
---	--------	-------	---------------
44	mt-Ts1	Black	-0.823514957
45	mt-Ty	Black	-0.792687001
46	Gm24624	Black	-0.601008593
47	LOC102633726	Black	-0.610520962
48	Gm20747	Black	-0.607448307
49	Trdn	Black	-0.662913558
50	Snora74a	Black	-0.716709874
51	mt-Ts2	Black	-0.822093546
52	Gm22866	Black	-0.810797753
53	Rnu12	Black	-0.714196988
54	Ppp4r2	Black	-0.725777902
55	Gm22749	Black	-0.634337211
56	Gm24149	Black	-0.679383005
57	Tmeff1	Black	-0.65030418
58	Gm23928	Black	-0.602562509
59	LOC102639563	Black	-0.612052689
60	Vaultre5	Black	-0.728238836
61	Inmt	Black	-0.646471019
62	Fam107a	Black	-0.645410606
63	mt-Tk	Black	-0.720414242
64	Brox	Black	-0.657411274
65	Glrx3	Black	-0.616971069
66	mt-Th	Black	-0.66178471
67	Ddit4	Black	-0.63226978
68	mt-Tp	Black	-0.667405111
69	mt-Ta	Black	-0.680121023
70	Mpv17	Red	0.61068715
71	Gm6245	Red	0.638394295
72	Cd59a	Red	0.637322477
73	Tmem159	Red	0.60103159
74	Acot2	Red	0.679628534
75	Dhdh	Red	0.622508261
76	Fam213a	Red	0.643220229
77	Nmnat1	Red	0.605873152
78	Coq5	Red	0.677305385
79	Tmem184c	Red	0.651508083
80	Nrn1	Red	0.610300306
81	Uprt	Red	0.651921824
82	Nsun3	Red	0.673017501
83	Gm10718	Red	0.609800071
84	Nr4a1	Red	0.747000222
85	BC023105	Red	0.605373598
86	Egr1	Red	0.704399843
87	Fos	Red	0.695614744
88	G530011006Rik	Red	0.740456125
89	Gm5346	Red	0.657448885
PC-corr network links weights and labels at cut-off 0.6

#	Node i	Node j	PC-corr(i,j)																									
1	n-R5s180	Gm22496	0.649040256																									
2	n-R5s180	Gm23579	0.721354661																									
3	n-R5s180	Gm14214	0.695256046																									
4	n-R5s180	Gm23254	0.706045559																									
5	n-R5s180	Gm22834	0.706677831																									
6	n-R5s180	LOC102632904	0.624550714																									
7	n-R5s180	Gm10921	0.600872277																									
8	n-R5s180	Gm22253	0.669580712																									
9	n-R5s180	Gm25648	0.600369722																									
10	n-R5s180	Gm23737	0.710045012																									
11	n-R5s180	Gm23922	0.658574808																									
12	n-R5s180	Lsm5	0.721354661																									
13	n-R5s180	Gm25098	0.656646706																									
14	n-R5s180	Gm25449	0.616392987																									
15	n-R5s180	Gm21732	0.644501631																									
16	n-R5s180	Gm25089	0.64846379																									
17	n-R5s180	Gm21882	0.666405984																									
18	n-R5s180	Gm23730	0.721354661																									
19	n-R5s180	Gm23305	0.664243567																									
20	n-R5s180	mt-Tt	0.721354661																									
21	n-R5s180	Gm20831	0.613856901																									
22	n-R5s180	Snord116	0.721354661																									
23	n-R5s180	mt-Tc	0.721354661																									
24	n-R5s180	Olfr166	0.63478488																									
25	n-R5s180	Snord116 // Ipw	0.695183163																									
26	n-R5s180	Gm22510	0.625509447																									
27	n-R5s180	Rnu1b1	0.721354661																									
28	n-R5s180	Gm22155	0.721354661																									
29	n-R5s180	Olfr1231	0.618922514																									
30	n-R5s180	Gm4787	0.605277579																									
31	n-R5s180	Gm20806	0.603370638																									
32	n-R5s180	Ipw	0.679543558																									
33	n-R5s180	Olfr1034	0.662686071																									
34	n-R5s180	Gm21943	0.62432152																									
35	n-R5s180	LOC102640399	0.653001706																									
36	n-R5s180	Gm10375	0.616879434																									
37	n-R5s180	mt-Tf	0.721354661																									
38	n-R5s180	Gm23947	0.642276287																									
39	n-R5s180	Gm20815	0.624089122																									
40	n-R5s180	mt-Ts1	0.721354661																									
41	n-R5s180	mt-Ty	0.721354661																									
42	n-R5s180	Gm24624	0.601008593																									
	n-R5s180	LOC102633726	0.610520962																									
---	---------	--------------	-------------																									
43	n-R5s180	Gm20747	0.607448307																									
44	n-R5s180	Snora74a	0.716709874																									
45	n-R5s180	mt-Ts2	0.721354661																									
46	n-R5s180	Gm22866	0.721354661																									
47	n-R5s180	Trdn	0.662913558																									
48	n-R5s180	Gm23928	0.602562509																									
49	n-R5s180	LOC102639563	0.612052689																									
50	n-R5s180	Vaultrc5	0.721354661																									
51	n-R5s180	Fam107a	0.645410606																									
52	n-R5s180	mt-Tk	0.657411274																									
53	n-R5s180	Brox	0.66178471																									
54	n-R5s180	mt-Th	0.66178471																									
55	n-R5s180	Ddit4	0.63226978																									
56	n-R5s180	mt-Tp	0.667405111																									
57	n-R5s180	mt-Ta	0.680121023																									
58	n-R5s180	Mpv17	-0.61068715																									
59	n-R5s180	Gm6245	-0.638394295																									
60	n-R5s180	Cd59a	-0.637322477																									
61	n-R5s180	Tmem159	-0.60103159																									
62	n-R5s180	Acot2	-0.679628534																									
63	n-R5s180	Dhdh	-0.622508261																									
64	n-R5s180	Fam213a	-0.643220229																									
65	n-R5s180	Nmnat1	-0.605873152																									
66	n-R5s180	Coq5	-0.677305385																									
67	n-R5s180	Tmem184c	-0.651508083																									
68	n-R5s180	Nrn1	-0.610300306																									
69	n-R5s180	Uprt	-0.651921824																									
70	n-R5s180	Nsun3	-0.673017501																									
71	n-R5s180	Gm10718	-0.609800071																									
72	n-R5s180	Nr4a1	-0.721354661																									
73	n-R5s180	Egr1	-0.704399843																									
74	n-R5s180	Fos	-0.695614744																									
75	n-R5s180	G530011O06Rik	-0.721354661																									
76	n-R5s180	Gm5346	-0.657448885																									
77	n-R5s180	Gm5912	-0.651967258																									
78	n-R5s180	Murc	-0.721354661																									
79	n-R5s180	Gm22496	0.649040256																									
80	n-R5s180	Gm23579	0.649040256																									
81	n-R5s180	Gm14214	0.649040256																									
82	n-R5s180	Gm23254	0.649040256																									
83	n-R5s180	Gm22834	0.649040256																									
	Gm22496	Gm10921	0.600872277																									
---	---------	---------	-------------																									
90	Gm22496	Gm22253	0.649040256																									
92	Gm22496	Gm25648	0.600369722																									
93	Gm22496	Gm23737	0.649040256																									
94	Gm22496	Gm23922	0.649040256																									
95	Gm22496	Lsm5	0.649040256																									
96	Gm22496	Gm25098	0.649040256																									
97	Gm22496	Gm25449	0.616392987																									
98	Gm22496	Gm21732	0.644501631																									
99	Gm22496	Gm25089	0.64846379																									
100	Gm22496	Gm21882	0.649040256																									
101	Gm22496	Gm23730	0.649040256																									
102	Gm22496	Gm23305	0.649040256																									
103	Gm22496	mt-Tt	0.649040256																									
104	Gm22496	Gm20831	0.613856901																									
105	Gm22496	Snord116	0.649040256																									
106	Gm22496	mt-Tc	0.649040256																									
107	Gm22496	Olfr166	0.63478488																									
108	Gm22496	Snord116//lpw	0.649040256																									
109	Gm22496	Gm22510	0.62509447																									
110	Gm22496	Rnu1b1	0.649040256																									
111	Gm22496	Gm22155	0.649040256																									
112	Gm22496	Olfr1231	0.618922514																									
113	Gm22496	Gm20806	0.603370638																									
114	Gm22496	lpw	0.649040256																									
115	Gm22496	Olfr1034	0.649040256																									
116	Gm22496	Gm21943	0.62432152																									
117	Gm22496	LOC102640399	0.649040256																									
118	Gm22496	mt-Tf	0.649040256																									
119	Gm22496	Gm20815	0.624089122																									
120	Gm22496	mt-Ts1	0.649040256																									
121	Gm22496	mt-Ty	0.649040256																									
122	Gm22496	Gm24624	0.601008593																									
123	Gm22496	LOC102633726	0.610520962																									
124	Gm22496	Gm20747	0.607448307																									
125	Gm22496	Snora74a	0.649040256																									
126	Gm22496	mt-Ts2	0.649040256																									
127	Gm22496	Gm22866	0.649040256																									
128	Gm22496	Rnu12	0.649040256																									
129	Gm22496	Tmeff1	0.649040256																									
130	Gm22496	Gm23928	0.602562509																									
131	Gm22496	LOC102639563	0.612052689																									
132	Gm22496	Vaultrc5	0.649040256																									
133	Gm22496	Inmt	0.646471019																									
134	Gm22496	Fam107a	0.645410606																									
	Gm22496	mt-Tk	0.649040256																									
---	---------	---------	-------------																									
136	Gm22496	Glrx3	0.616971069																									
137	Gm22496	mt-Th	0.649040256																									
138	Gm22496	Ddit4	0.63226978																									
139	Gm22496	mt-Tp	0.649040256																									
140	Gm22496	mt-Ta	0.649040256																									
141	Gm22496	Mpv17	-0.61068715																									
142	Gm22496	Gm6245	-0.638394295																									
143	Gm22496	Cd59a	-0.637322477																									
144	Gm22496	Tmem159	-0.60103159																									
145	Gm22496	Acot2	-0.649040256																									
146	Gm22496	Dhdh	-0.622508261																									
147	Gm22496	Fam213a	-0.643220229																									
148	Gm22496	Nmnat1	-0.605873152																									
149	Gm22496	Coq5	-0.649040256																									
150	Gm22496	Tmem184c	-0.649040256																									
151	Gm22496	Nrn1	-0.610300306																									
152	Gm22496	Uprt	-0.649040256																									
153	Gm22496	Nsun3	-0.649040256																									
154	Gm22496	Gm10718	-0.609800071																									
155	Gm22496	Nr4a1	-0.649040256																									
156	Gm22496	Egr1	-0.649040256																									
157	Gm22496	Fos	-0.649040256																									
158	Gm22496	Gm5912	-0.649040256																									
159	Gm22496	Murc	-0.649040256																									
160	Gm23579	Gm14214	0.695256046																									
161	Gm23579	Gm23254	0.706045559																									
162	Gm23579	Gm22834	0.706677831																									
163	Gm23579	LOC102632904	0.624550714																									
164	Gm23579	Gm10921	0.600872277																									
165	Gm23579	Gm22253	0.669850712																									
166	Gm23579	Gm25648	0.600369722																									
167	Gm23579	Gm23737	0.71365871																									
168	Gm23579	Gm23922	0.658574808																									
169	Gm23579	Lsm5	0.712042989																									
170	Gm23579	Gm25098	0.656646706																									
171	Gm23579	Gm25449	0.616392987																									
172	Gm23579	Gm21732	0.644501631																									
173	Gm23579	Gm25089	0.64846379																									
174	Gm23579	Gm21882	0.666405984																									
175	Gm23579	Gm23730	0.726798019																									
176	Gm23579	Gm23305	0.664243567																									
177	Gm23579	mt-Tt	0.772801792																									
178	Gm23579	Gm20831	0.613856901																									
179	Gm23579	Snord116	0.725166274																									
180	Gm23579	mt-Tc	0.772801792																									
Number	Gm23579	Gene	Value																									
--------	---------	------	-------																									
181	Gm23579	Olfr166	0.63478488																									
182	Gm23579	Snord116 // Ipw	0.695183163																									
183	Gm23579	Gm22510	0.625509447																									
184	Gm23579	Rnu1b1	0.772801792																									
185	Gm23579	Gm22155	0.753346542																									
186	Gm23579	Olfr1231	0.618922514																									
187	Gm23579	Gm20806	0.603370638																									
188	Gm23579	Ipw	0.679543558																									
189	Gm23579	Olfr1034	0.662686071																									
190	Gm23579	Gm21943	0.62432152																									
191	Gm23579	LOC102640399	0.653001706																									
192	Gm23579	mt-Tf	0.772801792																									
193	Gm23579	Gm23947	0.603435569																									
194	Gm23579	Gm20815	0.624089122																									
195	Gm23579	mt-Ts1	0.772801792																									
196	Gm23579	mt-Ty	0.772801792																									
197	Gm23579	Gm24624	0.601008593																									
198	Gm23579	LOC102633726	0.610520962																									
199	Gm23579	Gm20747	0.607448307																									
200	Gm23579	Snora74a	0.716709874																									
201	Gm23579	mt-Ts2	0.772801792																									
202	Gm23579	Gm22866	0.772801792																									
203	Gm23579	Rnu12	0.714196988																									
204	Gm23579	Tmeff1	0.65030418																									
205	Gm23579	Gm23928	0.602562509																									
206	Gm23579	LOC102639563	0.612052689																									
207	Gm23579	Vaultrc5	0.728238836																									
208	Gm23579	Inmt	0.646471019																									
209	Gm23579	Fam107a	0.645410606																									
210	Gm23579	mt-Tk	0.720414242																									
211	Gm23579	Glrx3	0.616971069																									
212	Gm23579	mt-Th	0.66178471																									
213	Gm23579	Ddit4	0.63226978																									
214	Gm23579	mt-Tp	0.667405111																									
215	Gm23579	mt-Ta	0.680121023																									
216	Gm23579	Mpv17	-0.61068715																									
217	Gm23579	Gm6245	-0.638394295																									
218	Gm23579	Cd59a	-0.637322477																									
219	Gm23579	Tmem159	-0.60103159																									
220	Gm23579	Acot2	-0.679628534																									
221	Gm23579	Dhdh	-0.622508261																									
222	Gm23579	Fam213a	-0.643220229																									
223	Gm23579	Nmmt1	-0.605873152																									
224	Gm23579	Coq5	-0.677305385																									
225	Gm23579	Tmem184c	-0.651508083																									
226	Gm23579	Nrn1	-0.610300306																									
	Gm23579																											
---	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------
227	Gm23579	Uprt	0.651921824																									
228	Gm23579	Nsun3	0.673017501																									
229	Gm23579	Gm10718	0.609800071																									
230	Gm23579	Nr4a1	0.747000222																									
231	Gm23579	BC023105	0.604280515																									
232	Gm23579	Egr1	0.675938407																									
233	Gm23579	Fos	0.695614744																									
234	Gm23579	G530011O06Rik	0.604280515																									
235	Gm23579	Gm5346	0.641654659																									
236	Gm23579	Gm5912	0.651967258																									
237	Gm23579	Murc	0.772801792																									
238	Gm14214	Gm23614	0.603048538																									
239	Gm14214	Gm23254	0.695260464																									
240	Gm14214	Gm22834	0.695260464																									
241	Gm14214	LOC102632904	0.624550714																									
242	Gm14214	Gm10921	0.600872277																									
243	Gm14214	Gm22253	0.669850712																									
244	Gm14214	Gm25648	0.600369722																									
245	Gm14214	Gm23737	0.695260464																									
246	Gm14214	Gm23922	0.658574808																									
247	Gm14214	Gm25098	0.656646706																									
248	Gm14214	Gm25449	0.616392987																									
249	Gm14214	Gm10921	0.600872277																									
250	Gm14214	Gm22834	0.695260464																									
251	Gm14214	Gm25098	0.656646706																									
252	Gm14214	Gm23730	0.695260464																									
253	Gm14214	Gm23305	0.664243567																									
254	Gm14214	mt-Tt	0.695260464																									
255	Gm14214	Gm20831	0.613856901																									
256	Gm14214	Snord116	0.695260464																									
257	Gm14214	mt-Tc	0.695260464																									
258	Gm14214	Olfr166	0.619866273																									
259	Gm14214	Snord116 // Ipw	0.695183163																									
260	Gm14214	Rnu1b1	0.695260464																									
261	Gm14214	Gm22155	0.695260464																									
262	Gm14214	Olfr1231	0.618922514																									
263	Gm14214	Gm4787	0.605277579																									
264	Gm14214	Gm20806	0.603370638																									
265	Gm14214	Ipw	0.679543558																									
266	Gm14214	Olfr1034	0.662686071																									
267	Gm14214	Gm1943	0.62432152																									
268	Gm14214	LOC102640399	0.653001706																									
269	Gm14214	Gm10375	0.616879434																									
270	Gm14214	mt-Tf	0.695260464																									
271	Gm14214	Gm23947	0.642276287																									
272	Gm14214	Gm20815	0.624089122																									
	Gm14214																											
----	---------	-------	-----------	--------																								
273	Gm14214	mt-Ts1	0.695256046																									
274	Gm14214	mt-Ty	0.695256046																									
275	Gm14214	Gm24624	0.601008593																									
276	Gm14214	LOC102633726	0.610520962																									
277	Gm14214	Gm20747	0.607448307																									
278	Gm14214	Trdn	0.662913558																									
279	Gm14214	Snora74a	0.695256046																									
280	Gm14214	mt-Ts2	0.695256046																									
281	Gm14214	Gm22866	0.695256046																									
282	Gm14214	Rnu12	0.695256046																									
283	Gm14214	Ppp4r2	0.680706606																									
284	Gm14214	Gm22749	0.634337211																									
285	Gm14214	Tmeff1	0.65030418																									
286	Gm14214	Gm23928	0.602562509																									
287	Gm14214	LOC102639563	0.612052689																									
288	Gm14214	Vaultrc5	0.695256046																									
289	Gm14214	Inmt	0.646471019																									
290	Gm14214	mt-Tk	0.695256046																									
291	Gm14214	Brox	0.657411274																									
292	Gm14214	Gtrx3	0.616971069																									
293	Gm14214	mt-Th	0.667405111																									
294	Gm14214	mt-Tp	0.680121023																									
295	Gm14214	mt-Ta	0.680121023																									
296	Gm14214	Mpv17	-0.61068715																									
297	Gm14214	Gm6245	-0.638394295																									
298	Gm14214	Cd59a	-0.637322477																									
299	Gm14214	Tmem159	-0.60103159																									
300	Gm14214	Acot2	-0.679628534																									
301	Gm14214	Dhdh	-0.622508261																									
302	Gm14214	Fam213a	-0.643220229																									
303	Gm14214	Nmnat1	-0.605873152																									
304	Gm14214	Coq5	-0.677305385																									
305	Gm14214	Tmem184c	-0.651508083																									
306	Gm14214	Nrn1	-0.610300306																									
307	Gm14214	Uprt	-0.651921824																									
308	Gm14214	Nsun3	-0.673017501																									
309	Gm14214	Gm10718	-0.609800071																									
310	Gm14214	BC023105	-0.605373598																									
311	Gm14214	Gm5346	-0.657448885																									
312	Gm14214	Gm5912	-0.651967258																									
313	Gm14214	Murc	-0.695256046																									
314	Gm23614	LOC102632904	0.603048538																									
315	Gm23614	Myl7	0.603048538																									
316	Gm23614	Gm22253	0.603048538																									
317	Gm23614	Gm25098	0.603048538																									
318	Gm23614	Gm21732	0.603048538																									
---	---	---	---																									
319	Gm23614	Gm25089	0.603048538																									
320	Gm23614	Gm21882	0.603048538																									
321	Gm23614	Gm23305	0.603048538																									
322	Gm23614	Myl4	0.603048538																									
323	Gm23614	Gm20806	0.603048538																									
324	Gm23614	Gm21943	0.603048538																									
325	Gm23614	Gm23947	0.603048538																									
326	Gm23614	Gm20815	0.603048538																									
327	Gm23614	Gm20747	0.603048538																									
328	Gm23614	Tmeff1	0.603048538																									
329	Gm23614	Cd59a	-0.603048538																									
330	Gm23614	BC023105	-0.603048538																									
331	Gm23254	Gm22834	0.706045559																									
332	Gm23254	LOC102632904	0.624550714																									
333	Gm23254	Gm10921	0.600872277																									
334	Gm23254	Gm22253	0.669850712																									
335	Gm23254	Gm25648	0.600369722																									
336	Gm23254	Gm23737	0.706045559																									
337	Gm23254	Gm23922	0.65874808																									
338	Gm23254	Lsm5	0.626818399																									
339	Gm23254	Gm25098	0.65646706																									
340	Gm23254	Gm25449	0.616392987																									
341	Gm23254	Gm21732	0.644501631																									
342	Gm23254	Gm25089	0.64846379																									
343	Gm23254	Gm21882	0.666405984																									
344	Gm23254	Gm23730	0.706045559																									
345	Gm23254	Gm23305	0.664243567																									
346	Gm23254	mt-Tt	0.706045559																									
347	Gm23254	Gm20831	0.613856901																									
348	Gm23254	Snord116	0.706045559																									
349	Gm23254	mt-Tc	0.706045559																									
350	Gm23254	Olfr166	0.63478488																									
351	Gm23254	Snord116 // Ipw	0.695183163																									
352	Gm23254	Gm22510	0.625509447																									
353	Gm23254	Rnu1b1	0.706045559																									
354	Gm23254	Gm22155	0.706045559																									
355	Gm23254	Olfr1231	0.618922514																									
356	Gm23254	Gm20806	0.603370638																									
357	Gm23254	Ipw	0.679543558																									
358	Gm23254	Olfr1034	0.662686071																									
359	Gm23254	Gm21943	0.62432152																									
360	Gm23254	LOC102640399	0.653001706																									
361	Gm23254	mt-Tf	0.706045559																									
362	Gm23254	Gm23947	0.642046792																									
363	Gm23254	Gm20815	0.624089122																									
364	Gm23254	mt-Ts1	0.706045559																									
	Gm23254																											
---	---------	-------	----------	----------																								
365	mt-Ty	Gm24624	0.706045559																									
366		Gm24624	0.601008593																									
367		LOC102633726	0.610520962																									
368		Gm20747	0.607448307																									
369		Snora74a	0.706045559																									
370		mt-Ts2	0.706045559																									
371		Gm22866	0.601008593																									
372		Rnu12	0.607448307																									
373		Tmeff1	0.65030418																									
374		Gm23928	0.602562509																									
375		LOC102639563	0.612052689																									
376		Vaultrc5	0.706045559																									
377		Inmt	0.646471019																									
378		Fam107a	0.645410606																									
379		mt-Tk	0.706045559																									
380		Glrx3	0.616971069																									
381		mt-Th	0.66178471																									
382		Ddit4	0.63226978																									
383		mt-Tp	0.667405111																									
384		mt-Ta	0.680121023																									
385		Mpv17	-0.61068715																									
386		Gm6245	-0.638394295																									
387		Cd59a	-0.637322477																									
388		Tmem159	-0.60103159																									
389		Acot2	-0.679628534																									
390		Dhdh	-0.622508261																									
391		Fam213a	-0.643220229																									
392		Nmnat1	-0.605873152																									
393		Coq5	-0.677305385																									
394		Tmem184c	-0.651508083																									
395		Nrn1	-0.610300306																									
396		Uprt	-0.651921824																									
397		Nsun3	-0.673017501																									
398		Gm10718	-0.609800071																									
399		Nr4a1	-0.706045559																									
400		BC023105	-0.605373598																									
401		Egr1	-0.601654027																									
402		Fos	-0.642685168																									
403		Gm5912	-0.651967258																									
404		Murc	-0.706045559																									
405		LOC102632904	0.624550714																									
406		Gm10921	0.600872277																									
407		Gm22253	0.669850712																									
408		Gm25648	0.600369722																									
409		Gm23737	0.706677831																									
410		Gm23922	0.658574808																									

	Gm22834								
406		Gm10921	0.600872277						
407		Gm22253	0.669850712						
408		Gm25648	0.600369722						
409		Gm23737	0.706677831						
410		Gm23922	0.658574808						
	Gm22834								
---	--------	-------	-------						
411	Gm22834	Lsm5	0.671102514						
412	Gm22834	Gm25098	0.656646706						
413	Gm22834	Gm25449	0.616392987						
414	Gm22834	Gm21732	0.644501631						
415	Gm22834	Gm25089	0.64846379						
416	Gm22834	Gm21882	0.666405984						
417	Gm22834	Gm23730	0.706677831						
418	Gm22834	Gm23305	0.664243567						
419	Gm22834	mt-Tt	0.706677831						
420	Gm22834	Gm20831	0.613856901						
421	Gm22834	Snord116	0.706677831						
422	Gm22834	mt-Tc	0.706677831						
423	Gm22834	Olfr166	0.63478488						
424	Gm22834	Snord116	0.695183163						
425	Gm22834	Gm22510	0.625509447						
426	Gm22834	Rnu1b1	0.706677831						
427	Gm22834	Gm22155	0.706677831						
428	Gm22834	Olfr1231	0.618922514						
429	Gm22834	Gm20806	0.603370638						
430	Gm22834	Ipw	0.679543558						
431	Gm22834	Olfr1034	0.662686071						
432	Gm22834	Gm21943	0.62432152						
433	Gm22834	LOC102640399	0.653001706						
434	Gm22834	mt-Tf	0.706677831						
435	Gm22834	Gm20815	0.624089122						
436	Gm22834	mt-Ts1	0.706677831						
437	Gm22834	mt-Ty	0.706677831						
438	Gm22834	Gm24624	0.601008593						
439	Gm22834	LOC102633726	0.610520962						
440	Gm22834	Gm20747	0.607448307						
441	Gm22834	Snora74a	0.706677831						
442	Gm22834	mt-Ts2	0.706677831						
443	Gm22834	Gm22866	0.706677831						
444	Gm22834	Rnu12	0.706677831						
445	Gm22834	Tmeff1	0.65030418						
446	Gm22834	Gm23928	0.602562509						
447	Gm22834	LOC102639563	0.612052689						
448	Gm22834	Vaultrc5	0.706677831						
449	Gm22834	Inmt	0.646471019						
450	Gm22834	Fam107a	0.606896022						
451	Gm22834	mt-Tk	0.706677831						
452	Gm22834	Glrx3	0.616971069						
453	Gm22834	mt-Th	0.66178471						
454	Gm22834	Ddit4	0.63226978						
455	Gm22834	mt-Tp	0.667405111						
456	Gm22834	mt-Ta	0.680121023						
457	Gm22834	Mpv17	-0.61068715						
458	Gm22834	Gm6245	-0.638394295						
459	Gm22834	Cd59a	-0.637322477						
460	Gm22834	Tmem159	-0.60103159						
461	Gm22834	Acot2	-0.679628534						
462	Gm22834	Dhdh	-0.622508261						
463	Gm22834	Fam213a	-0.643220229						
464	Gm22834	Nmnat1	-0.605873152						
465	Gm22834	Coq5	-0.677305385						
466	Gm22834	Tmem184c	-0.602643594						
467	Gm22834	Nrn1	-0.610300306						
468	Gm22834	Uprt	-0.651921824						
469	Gm22834	Nsun3	-0.673017501						
470	Gm22834	Gm10718	-0.609800071						
471	Gm22834	Nrx4a1	-0.694049455						
472	Gm22834	BC023105	-0.605373598						
473	Gm22834	Egr1	-0.601195826						
474	Gm22834	Fos	-0.642161087						
475	Gm22834	M5912	-0.651967258						
476	Gm22834	Muc	-0.706677831						
477	LOC102632904	Myl7	0.624550714						
478	LOC102632904	Gm10921	0.600872277						
479	LOC102632904	Gm22253	0.624550714						
480	LOC102632904	Gm25648	0.600369722						
481	LOC102632904	Gm23737	0.624550714						
482	LOC102632904	Gm23922	0.624550714						
483	LOC102632904	Gm25098	0.624550714						
484	LOC102632904	Gm25449	0.616392987						
485	LOC102632904	Gm21732	0.624550714						
486	LOC102632904	Gm25089	0.624550714						
487	LOC102632904	Gm21882	0.624550714						
488	LOC102632904	Gm23730	0.624550714						
489	LOC102632904	Gm23305	0.624550714						
490	LOC102632904	mt-Tt	0.624550714						
491	LOC102632904	Gm20831	0.613856901						
492	LOC102632904	Snord116	0.624550714						
493	LOC102632904	mt-Tc	0.624550714						
494	LOC102632904	Olfr166	0.624550714						
495	LOC102632904	Snord116 // Ipw	0.624550714						
496	LOC102632904	Gm22510	0.624550714						
497	LOC102632904	Rnu1b1	0.624550714						
498	LOC102632904	Gm22155	0.624550714						
499	LOC102632904	Olfr1231	0.618922514						
500	LOC102632904	Gm20806	0.603370638						
501	LOC102632904	Ipw	0.624550714						
502	LOC102632904	Olfr1034	0.624550714						
	LOC102632904		LOC102632904						
----	--------------	---	--------------	---					
503	LOC102632904	Gm21943	0.62432152						
504	LOC102632904	LOC102640399	0.624550714						
505	LOC102632904	mt-Tf	0.624550714						
506	LOC102632904	Gm23947	0.624550714						
507	LOC102632904	Gm20815	0.624089122						
508	LOC102632904	mt-Ts1	0.624550714						
509	LOC102632904	mt-Ty	0.624550714						
510	LOC102632904	Gm24624	0.601008593						
511	LOC102632904	LOC102633726	0.610520962						
512	LOC102632904	Gm20747	0.607448307						
513	LOC102632904	Snora74a	0.624550714						
514	LOC102632904	mt-Ts2	0.624550714						
515	LOC102632904	Gm22866	0.624550714						
516	LOC102632904	Rnu12	0.624550714						
517	LOC102632904	Tmeffl	0.624550714						
518	LOC102632904	Gm23928	0.602562509						
519	LOC102632904	LOC102639563	0.612052689						
520	LOC102632904	Vaultrc5	0.624550714						
521	LOC102632904	Inmt	0.624550714						
522	LOC102632904	mt-Tk	0.624550714						
523	LOC102632904	Glrx3	0.616971069						
524	LOC102632904	mt-Th	0.624550714						
525	LOC102632904	Ddit4	0.624550714						
526	LOC102632904	mt-Tp	0.624550714						
527	LOC102632904	mt-Ta	0.624550714						
528	LOC102632904	Mpv17	-0.61068715						
529	LOC102632904	Gm6245	-0.624550714						
530	LOC102632904	Cd59a	-0.624550714						
531	LOC102632904	Tmem159	-0.60103159						
532	LOC102632904	Acot2	-0.624550714						
533	LOC102632904	Dhdh	-0.622508261						
534	LOC102632904	Fam213a	-0.624550714						
535	LOC102632904	Nmnat1	-0.605873152						
536	LOC102632904	Coq5	-0.624550714						
537	LOC102632904	Tmem184e	-0.624550714						
538	LOC102632904	Nrn1	-0.610300306						
539	LOC102632904	Uprt	-0.624550714						
540	LOC102632904	Nsun3	-0.624550714						
541	LOC102632904	Gm10718	-0.609800071						
542	LOC102632904	BC023105	-0.605373598						
543	LOC102632904	Gm5912	-0.624550714						
544	LOC102632904	Murc	-0.624550714						
545	Myl7	Gm25648	0.600369722						
546	Myl7	Gm23922	0.616526462						
547	Myl7	Gm25449	0.616392987						
548	Myl7	Gm21732	0.644501631						
---	---	---	----------						
549	Myl7	Gm25089	0.64846379						
550	Myl7	Gm21882	0.628419398						
551	Myl7	Gm22510	0.625509447						
552	Myl7	Myl4	0.642387625						
553	Myl7	Gm20815	0.624089122						
554	Myl7	Gm20747	0.607448307						
555	Myl7	Gm10718	-0.609800071						
556	Gm10921	Gm22253	0.600872277						
557	Gm10921	Gm25648	0.600369722						
558	Gm10921	Gm23737	0.600872277						
559	Gm10921	Gm23922	0.600872277						
560	Gm10921	Lsm5	0.600872277						
561	Gm10921	Gm25098	0.600872277						
562	Gm10921	Gm25449	0.600872277						
563	Gm10921	Gm21732	0.600872277						
564	Gm10921	Gm25089	0.600872277						
565	Gm10921	Gm21882	0.600872277						
566	Gm10921	Gm23730	0.600872277						
567	Gm10921	Gm23305	0.600872277						
568	Gm10921	mt-Tt	0.600872277						
569	Gm10921	Gm20831	0.600872277						
570	Gm10921	Snord116	0.600872277						
571	Gm10921	mt-Tc	0.600872277						
572	Gm10921	Olfr166	0.600872277						
573	Gm10921	Snord116 // Ipw	0.600872277						
574	Gm10921	Gm22510	0.600872277						
575	Gm10921	Rnu1b1	0.600872277						
576	Gm10921	Gm22155	0.600872277						
577	Gm10921	Olfr1231	0.600872277						
578	Gm10921	Gm4787	0.600872277						
579	Gm10921	Gm20806	0.600872277						
580	Gm10921	Ipw	0.600872277						
581	Gm10921	Olfr1034	0.600872277						
582	Gm10921	Gm21943	0.600872277						
583	Gm10921	LOC102640399	0.600872277						
584	Gm10921	Gm10375	0.600872277						
585	Gm10921	mt-Tf	0.600872277						
586	Gm10921	Gm23947	0.600872277						
587	Gm10921	Gm20815	0.600872277						
588	Gm10921	mt-Ts1	0.600872277						
589	Gm10921	mt-Ty	0.600872277						
590	Gm10921	Gm24624	0.600872277						
591	Gm10921	LOC102633726	0.600872277						
592	Gm10921	Gm20747	0.600872277						
593	Gm10921	Trdn	0.600872277						
594	Gm10921	Snora74a	0.600872277						
	Gene	Description	Correlation						
---	------------	-------------	-------------	---					
595	Gm10921	mt-Ts2	0.600872277						
596	Gm10921	Gm22866	0.600872277						
597	Gm10921	Rnu12	0.600872277						
598	Gm10921	Tmeff1	0.600872277						
599	Gm10921	Gm23928	0.600872277						
600	Gm10921	LOC102639563	0.600872277						
601	Gm10921	Vaultrc5	0.600872277						
602	Gm10921	Inmt	0.600872277						
603	Gm10921	Fam107a	0.600872277						
604	Gm10921	mt-Tk	0.600872277						
605	Gm10921	Brox	0.600872277						
606	Gm10921	Glrx3	0.600872277						
607	Gm10921	mt-Th	0.600872277						
608	Gm10921	Ddit4	0.600872277						
609	Gm10921	mt-Tp	0.600872277						
610	Gm10921	mt-Ta	0.600872277						
611	Gm10921	Mpv17	-0.600872277						
612	Gm10921	Gm6245	-0.600872277						
613	Gm10921	Cd59a	-0.600872277						
614	Gm10921	Tmem159	-0.600872277						
615	Gm10921	Acot2	-0.600872277						
616	Gm10921	Dhdh	-0.600872277						
617	Gm10921	Fam213a	-0.600872277						
618	Gm10921	Nmnat1	-0.600872277						
619	Gm10921	Coq5	-0.600872277						
620	Gm10921	Tmem184c	-0.600872277						
621	Gm10921	Nrm1	-0.600872277						
622	Gm10921	Uprt	-0.600872277						
623	Gm10921	Nsun3	-0.600872277						
624	Gm10921	Gm10718	-0.600872277						
625	Gm10921	Nr4a1	-0.600872277						
626	Gm10921	BC023105	-0.600872277						
627	Gm10921	Egr1	-0.600872277						
628	Gm10921	Fos	-0.600872277						
629	Gm10921	G530011O06Rik	-0.600872277						
630	Gm10921	Gm5346	-0.600872277						
631	Gm10921	Gm5912	-0.600872277						
632	Gm10921	Murc	-0.600872277						
633	Gm22253	Gm25648	0.600369722						
634	Gm22253	Gm23737	0.669850712						
635	Gm22253	Gm23922	0.658574808						
636	Gm22253	Lsm5	0.669850712						
637	Gm22253	Gm25098	0.656646706						
638	Gm22253	Gm25449	0.616392987						
639	Gm22253	Gm21732	0.644501631						
640	Gm22253	Gm25089	0.64846379						
	Gm22253	Gm21882	0.666405984						
---	---------	---------	-------------						
641	Gm22253	Gm23730	0.669850712						
642	Gm22253	Gm23305	0.66423567						
643	Gm22253	Gm22253	0.669850712						
644	Gm22253	Gm23730	0.669850712						
645	Gm22253	Gm23305	0.66423567						
646	Gm22253	Gm22253	0.669850712						
647	Gm22253	Gm22253	0.669850712						
648	Gm22253	Gm22253	0.669850712						
649	Gm22253	Gm22253	0.669850712						
650	Gm22253	Gm22253	0.669850712						
651	Gm22253	Gm22253	0.669850712						
652	Gm22253	Gm22253	0.669850712						
653	Gm22253	Gm22253	0.669850712						
654	Gm22253	Gm22253	0.669850712						
655	Gm22253	Gm22253	0.669850712						
656	Gm22253	Gm22253	0.669850712						
657	Gm22253	Gm22253	0.669850712						
658	Gm22253	Gm22253	0.669850712						
659	Gm22253	Gm22253	0.669850712						
660	Gm22253	Gm22253	0.669850712						
661	Gm22253	Gm22253	0.669850712						
662	Gm22253	Gm22253	0.669850712						
663	Gm22253	Gm22253	0.669850712						
664	Gm22253	Gm22253	0.669850712						
665	Gm22253	Gm22253	0.669850712						
666	Gm22253	Gm22253	0.669850712						
667	Gm22253	Gm22253	0.669850712						
668	Gm22253	Gm22253	0.669850712						
669	Gm22253	Gm22253	0.669850712						
670	Gm22253	Gm22253	0.669850712						
671	Gm22253	Gm22253	0.669850712						
672	Gm22253	Gm22253	0.669850712						
673	Gm22253	Gm22253	0.669850712						
674	Gm22253	Gm22253	0.669850712						
675	Gm22253	Gm22253	0.669850712						
676	Gm22253	Gm22253	0.669850712						
677	Gm22253	Gm22253	0.669850712						
678	Gm22253	Gm22253	0.669850712						
679	Gm22253	Gm22253	0.669850712						
680	Gm22253	Gm22253	0.669850712						
681	Gm22253	Gm22253	0.669850712						
682	Gm22253	Gm22253	0.669850712						
683	Gm22253	Gm22253	0.669850712						
684	Gm22253	Gm22253	0.669850712						
685	Gm22253	Gm22253	0.669850712						
686	Gm22253	Gm22253	0.669850712						
---	--------	--------	----------						
687	Gm22253	Mpv17	-0.61068715						
688	Gm22253	Gm6245	-0.638394295						
689	Gm22253	Cd59a	-0.637322477						
690	Gm22253	Tmem159	-0.60103159						
691	Gm22253	Acot2	-0.669850712						
692	Gm22253	Dhdh	-0.622508261						
693	Gm22253	Fam213a	-0.643220229						
694	Gm22253	Nmnat1	-0.605873152						
695	Gm22253	Coq5	-0.669850712						
696	Gm22253	Tmem184c	-0.651508083						
697	Gm22253	Nrn1	-0.610300306						
698	Gm22253	Uptr	-0.651921824						
699	Gm22253	Nsun3	-0.669850712						
700	Gm22253	Gm10718	-0.609800071						
701	Gm22253	Nr4a1	-0.669850712						
702	Gm22253	BC023105	-0.605373598						
703	Gm22253	Egr1	-0.669850712						
704	Gm22253	Fos	-0.669850712						
705	Gm22253	Gm5346	-0.657448885						
706	Gm22253	Gm5912	-0.651967258						
707	Gm22253	Murc	-0.669850712						
708	Gm25648	Gm23922	0.600369722						
709	Gm25648	Lsm5	0.600369722						
710	Gm25648	Gm25098	0.600369722						
711	Gm25648	Gm25449	0.600369722						
712	Gm25648	Gm21732	0.600369722						
713	Gm25648	Gm25089	0.600369722						
714	Gm25648	Gm21882	0.600369722						
715	Gm25648	Gm23730	0.600369722						
716	Gm25648	Gm23305	0.600369722						
717	Gm25648	Gm20831	0.600369722						
718	Gm25648	Gm20831	0.600369722						
719	Gm25648	Gm20831	0.600369722						
720	Gm25648	Gm20831	0.600369722						
721	Gm25648	Gm20831	0.600369722						
722	Gm25648	Gm20831	0.600369722						
723	Gm25648	Gm20831	0.600369722						
724	Gm25648	Gm20831	0.600369722						
725	Gm25648	Gm20831	0.600369722						
726	Gm25648	Gm20831	0.600369722						
727	Gm25648	Gm20831	0.600369722						
728	Gm25648	Gm20831	0.600369722						
729	Gm25648	Gm20831	0.600369722						
730	Gm25648	Gm20831	0.600369722						
731	Gm25648	Gm20831	0.600369722						
732	Gm25648	Gm20831	0.600369722						
	Symbol	Gene Symbol	Adj. Pearson Corr.						
---	----------	-------------	---------------------						
733	Gm25648	LOC102640399	0.600369722						
734	Gm25648	mt-Tf	0.600369722						
735	Gm25648	Gm20815	0.600369722						
736	Gm25648	mt-Ts1	0.600369722						
737	Gm25648	mt-Ty	0.600369722						
738	Gm25648	Gm24624	0.600369722						
739	Gm25648	LOC102633726	0.600369722						
740	Gm25648	Gm20747	0.600369722						
741	Gm25648	Trdn	0.600369722						
742	Gm25648	Snora74a	0.600369722						
743	Gm25648	mt-Ts2	0.600369722						
744	Gm25648	Gm22866	0.600369722						
745	Gm25648	Rnu12	0.600369722						
746	Gm25648	Ppp4r2	0.600369722						
747	Gm25648	Tmeff1	0.600369722						
748	Gm25648	LOC102639563	0.600369722						
749	Gm25648	Vaultrc5	0.600369722						
750	Gm25648	Inmt	0.600369722						
751	Gm25648	Fam107a	0.600369722						
752	Gm25648	mt-Tk	0.600369722						
753	Gm25648	Brox	0.600369722						
754	Gm25648	Glrx3	0.600369722						
755	Gm25648	mt-Th	0.600369722						
756	Gm25648	Ddit4	0.600369722						
757	Gm25648	mt-Tp	0.600369722						
758	Gm25648	mt-Ta	0.600369722						
759	Gm25648	Mpv17	-0.600369722						
760	Gm25648	Gm6245	-0.600369722						
761	Gm25648	Cd59a	-0.600369722						
762	Gm25648	Tmem159	-0.600369722						
763	Gm25648	Acot2	-0.600369722						
764	Gm25648	Dhdh	-0.600369722						
765	Gm25648	Fam213a	-0.600369722						
766	Gm25648	Nmnat1	-0.600369722						
767	Gm25648	Coq5	-0.600369722						
768	Gm25648	Nrn1	-0.600369722						
769	Gm25648	Uprt	-0.600369722						
770	Gm25648	Nsun3	-0.600369722						
771	Gm25648	Gm10718	-0.600369722						
772	Gm25648	Nr4a1	-0.600369722						
773	Gm25648	Egr1	-0.600369722						
774	Gm25648	Fos	-0.600369722						
775	Gm25648	G530011O06Rik	-0.600369722						
776	Gm25648	Gm5346	-0.600369722						
777	Gm25648	Gm5912	-0.600369722						
778	Gm25648	Murc	-0.600369722						
---	---	---	---						
779	Gm23737	Gm23922	0.658574808						
780	Gm23737	Gm25098	0.656646706						
781	Gm23737	Gm25449	0.616392987						
782	Gm23737	Gm21732	0.644501631						
783	Gm23737	Gm25089	0.607305416						
784	Gm23737	Gm21882	0.666405984						
785	Gm23737	Gm23730	0.713658710						
786	Gm23737	Gm23305	0.664235670						
787	Gm23737	mt-Tt	0.713658710						
788	Gm23737	Gm20831	0.613856901						
789	Gm23737	Snord116	0.713658710						
790	Gm23737	mt-Tc	0.713658710						
791	Gm23737	Olfr166	0.634784888						
792	Gm23737	Snord116 // Ipw	0.695183163						
793	Gm23737	Rnu1b1	0.713658710						
794	Gm23737	Gm22155	0.713658710						
795	Gm23737	Olfr1231	0.618922514						
796	Gm23737	Gm20806	0.603370638						
797	Gm23737	Ipw	0.679543558						
798	Gm23737	Olfr1034	0.662686071						
799	Gm23737	Gm21943	0.62432152						
800	Gm23737	LOC102640399	0.653001706						
801	Gm23737	mt-Tf	0.713658710						
802	Gm23737	Gm23947	0.642276287						
803	Gm23737	Gm20815	0.624089122						
804	Gm23737	mt-Ts1	0.713658710						
805	Gm23737	mt-Ty	0.713658710						
806	Gm23737	Gm24624	0.601008593						
807	Gm23737	LOC102633726	0.610520962						
808	Gm23737	Gm20747	0.607448307						
809	Gm23737	Snora74a	0.713658710						
810	Gm23737	mt-Ts2	0.713658710						
811	Gm23737	Gm22866	0.713658710						
812	Gm23737	Rnu12	0.713658710						
813	Gm23737	Gm22749	0.634337211						
814	Gm23737	Tmeff1	0.65030418						
815	Gm23737	Gm23928	0.602562509						
816	Gm23737	LOC102639563	0.612052689						
817	Gm23737	Vaultrc5	0.713658710						
818	Gm23737	Inmt	0.646471019						
819	Gm23737	Fam107a	0.645410606						
820	Gm23737	mt-Tk	0.713658710						
821	Gm23737	Glrx3	0.616971069						
822	Gm23737	mt-Th	0.66178471						
823	Gm23737	Ddit4	0.63226978						
824	Gm23737	mt-Tp	0.667405111						
----	-----	------------------------	--------						
825	Gm23737	mt-Ta	0.680121023						
826	Gm23737	Mpv17	-0.61068715						
827	Gm23737	Gm6245	-0.638394295						
828	Gm23737	Cd59a	-0.637322477						
829	Gm23737	Tmem159	-0.60103159						
830	Gm23737	Acot2	-0.679628534						
831	Gm23737	Dhdh	-0.622508261						
832	Gm23737	Fam213a	-0.643220229						
833	Gm23737	Nmnat1	-0.605873152						
834	Gm23737	Coq5	-0.677305385						
835	Gm23737	Tmem184c	-0.651508083						
836	Gm23737	Nrnl	-0.610300306						
837	Gm23737	Uprt	-0.651921824						
838	Gm23737	Nsun3	-0.673017501						
839	Gm23737	BC023105	-0.605373598						
840	Gm23737	Murc	-0.71365871						
841	Gm23922	Lsm5	0.658574808						
842	Gm23922	Gm25098	0.656646706						
843	Gm23922	Gm25449	0.616392987						
844	Gm23922	Gm21732	0.644501631						
845	Gm23922	Gm25089	0.648463797						
846	Gm23922	Gm21882	0.658574808						
847	Gm23922	Gm23730	0.658574808						
848	Gm23922	Gm23305	0.658574808						
849	Gm23922	mt-Tt	0.658574808						
850	Gm23922	Gm20831	0.613856901						
851	Gm23922	Snord116	0.658574808						
852	Gm23922	mt-Tc	0.658574808						
853	Gm23922	Olfr166	0.63478488						
854	Gm23922	Snord116 */ Ipw	0.658574808						
855	Gm23922	Gm22510	0.625509447						
856	Gm23922	Rnu1b1	0.658574808						
857	Gm23922	Myl4	0.628830995						
858	Gm23922	Gm22155	0.658574808						
859	Gm23922	Olfr1231	0.618922514						
860	Gm23922	Gm4787	0.605277579						
861	Gm23922	Gm20806	0.603370638						
862	Gm23922	Ipw	0.658574808						
863	Gm23922	Olfr1034	0.658574808						
864	Gm23922	Gm21943	0.62432152						
865	Gm23922	LOC102640399	0.653001706						
866	Gm23922	mt-Tf	0.658574808						
867	Gm23922	Gm20815	0.624089122						
868	Gm23922	mt-Tsl	0.658574808						
869	Gm23922	mt-Ty	0.658574808						
870	Gm23922	Gm24624	0.601008593						
	Gm23922	LOC102633726	0.610520962						
---	---------	--------------	-------------						
871	Gm23922	Gm20747	0.607448307						
872	Gm23922	Trdn	0.608574808						
873	Gm23922	Snora74a	0.658574808						
874	Gm23922	mt-Ts2	0.658574808						
875	Gm23922	Gm22866	0.658574808						
876	Gm23922	Trdn	0.608574808						
877	Gm23922	Tmeff1	0.65030418						
878	Gm23922	Gm23928	0.602562509						
879	Gm23922	LOC102639563	0.612052689						
880	Gm23922	Vaultrc5	0.658574808						
881	Gm23922	Inmt	0.646471019						
882	Gm23922	Fam107a	0.645410606						
883	Gm23922	mt-Tk	0.658574808						
884	Gm23922	Glrx3	0.61971069						
885	Gm23922	mt-Th	0.658574808						
886	Gm23922	Ddit4	0.63226978						
887	Gm23922	mt-Tp	0.658574808						
888	Gm23922	mt-Ta	0.658574808						
889	Gm23922	Mpv17	-0.61068715						
890	Gm23922	Gm6245	-0.638394295						
891	Gm23922	Cd59a	-0.637322477						
892	Gm23922	Tmem159	-0.60103159						
893	Gm23922	Acot2	-0.658574808						
894	Gm23922	Dhdh	-0.622508261						
895	Gm23922	Fam213a	-0.643220229						
896	Gm23922	Nmnat1	-0.605873152						
897	Gm23922	Coq5	-0.658574808						
898	Gm23922	Tmem184c	-0.640680762						
899	Gm23922	Nrn1	-0.610300306						
900	Gm23922	Uprt	-0.651921824						
901	Gm23922	Nsun3	-0.658574808						
902	Gm23922	Gm10718	-0.609800071						
903	Gm23922	Nr4a1	-0.658574808						
904	Gm23922	BC023105	-0.605373598						
905	Gm23922	Egr1	-0.658574808						
906	Gm23922	Fos	-0.658574808						
907	Gm23922	Gm5346	-0.654263032						
908	Gm23922	Gm5912	-0.651967258						
909	Gm23922	Egr1	-0.658574808						
910	Gm23922	Murc	-0.658574808						
911	Lsm5	Gm25098	0.642283769						
912	Lsm5	Gm25449	0.616392987						
913	Lsm5	Gm25089	0.64846379						
914	Lsm5	Gm23730	0.70095173						
915	Lsm5	Gm23305	0.664243567						
916	Lsm5	mt-Tt	0.64601116						
---	-----	-----	----------	----------					
917	Lsm5	Gm20831	0.613856901						
918	Lsm5	Snord116	0.725166274						
919	Lsm5	mt-Tc	0.61096251						
920	Lsm5	Olfr166	0.63478488						
921	Lsm5	Snord116 // Ipw	0.665435345						
922	Lsm5	Gm22510	0.625509447						
923	Lsm5	Olfr1231	0.606451907						
924	Lsm5	Gm4787	0.605277579						
925	Lsm5	Gm20806	0.603370638						
926	Lsm5	Ipw	0.679543558						
927	Lsm5	Olfr1034	0.662686071						
928	Lsm5	Gm21943	0.62432152						
929	Lsm5	LOC102640399	0.653001706						
930	Lsm5	Gm10375	0.616879434						
931	Lsm5	mt-Tf	0.720624646						
932	Lsm5	Gm20815	0.624089122						
933	Lsm5	mt-Ts1	0.624454726						
934	Lsm5	mt-Ty	0.713642853						
935	Lsm5	LOC102633726	0.610520962						
936	Lsm5	Gm20747	0.607448307						
937	Lsm5	Trdn	0.662913558						
938	Lsm5	Rnu12	0.603442777						
939	Lsm5	Ppp4r2	0.725777902						
940	Lsm5	Tmeff1	0.65030418						
941	Lsm5	LOC102639563	0.612052689						
942	Lsm5	Inmt	0.646471019						
943	Lsm5	Fam107a	0.645410606						
944	Lsm5	mt-Tk	0.716985592						
945	Lsm5	Brox	0.657411274						
946	Lsm5	Glrx3	0.616971069						
947	Lsm5	mt-Th	0.66178471						
948	Lsm5	Ddit4	0.63226978						
949	Lsm5	mt-Tp	0.665011816						
950	Lsm5	mt-Ta	0.634771368						
951	Lsm5	Mpv17	-0.61068715						
952	Lsm5	Gm6245	-0.631869125						
953	Lsm5	Tmem159	-0.60103159						
954	Lsm5	Fam213a	-0.643220229						
955	Lsm5	Uprt	-0.648469299						
956	Lsm5	Gm10718	-0.60980071						
957	Lsm5	Nr4a1	-0.747000222						
958	Lsm5	Egr1	-0.704399843						
959	Lsm5	Fos	-0.695614744						
960	Lsm5	G530011O06Rik	-0.740456125						
961	Lsm5	Gm5346	-0.657448885						
962	Lsm5	Gm5912	-0.651967258						
---	---	---	---						
963	Lsm5	Murc	-0.761220816						
964	Gm25098	Gm25449	0.616392987						
965	Gm25098	Gm21732	0.644501631						
966	Gm25098	Gm25089	0.64846379						
967	Gm25098	Gm21882	0.656646706						
968	Gm25098	Gm23730	0.656646706						
969	Gm25098	Gm23305	0.656646706						
970	Gm25098	mt-Tt	0.656646706						
971	Gm25098	Gm20831	0.656646706						
972	Gm25098	Snord116	0.656646706						
973	Gm25098	mt-Tc	0.656646706						
974	Gm25098	Olfr166	0.63478488						
975	Gm25098	Snord116 // Ipw	0.656646706						
976	Gm25098	Gm22510	0.625509447						
977	Gm25098	Rnu1b1	0.656646706						
978	Gm25098	Gm22155	0.656646706						
979	Gm25098	Olfr1231	0.618922514						
980	Gm25098	Gm20806	0.603370638						
981	Gm25098	Ipw	0.656646706						
982	Gm25098	Olfr1034	0.656646706						
983	Gm25098	Gm21943	0.62432152						
984	Gm25098	LOC102640399	0.653001706						
985	Gm25098	mt-Tf	0.656646706						
986	Gm25098	Gm23947	0.642276287						
987	Gm25098	Gm20815	0.624089122						
988	Gm25098	mt-Ts1	0.656646706						
989	Gm25098	mt-Ty	0.656646706						
990	Gm25098	Gm24624	0.601008593						
991	Gm25098	LOC10263726	0.610520962						
992	Gm25098	Gm20747	0.607448307						
993	Gm25098	Snora74a	0.656646706						
994	Gm25098	mt-Ts2	0.656646706						
995	Gm25098	Gm22866	0.656646706						
996	Gm25098	Rnu12	0.656646706						
997	Gm25098	Tmeff1	0.65030418						
998	Gm25098	Gm23928	0.602562509						
999	Gm25098	LOC102639563	0.612052689						
1000	Gm25098	Vaultrc5	0.656646706						
1001	Gm25098	Inmt	0.646471019						
1002	Gm25098	Fam107a	0.626498046						
1003	Gm25098	mt-Tk	0.656646706						
1004	Gm25098	Glrx3	0.616971069						
1005	Gm25098	mt-Th	0.656646706						
1006	Gm25098	Ddit4	0.63226978						
1007	Gm25098	mt-Tp	0.656646706						
1008	Gm25098	mt-Ta	0.656646706						
	Gene	Gene2	Correlation						
---	----------	-------	--------------						
1009	Gm25098	Mpv17	-0.61068715						
1010	Gm25098	Gm6245	-0.638394295						
1011	Gm25098	Cd59a	-0.637322477						
1012	Gm25098	Tmem159	-0.60103159						
1013	Gm25098	Acot2	-0.656646706						
1014	Gm25098	Dhdh	-0.622508261						
1015	Gm25098	Fam213a	-0.643220229						
1016	Gm25098	Nmnat1	-0.605873152						
1017	Gm25098	Coq5	-0.656646706						
1018	Gm25098	Tmem184c	-0.651508083						
1019	Gm25098	Nrn1	-0.610300306						
1020	Gm25098	Uprt	-0.651921824						
1021	Gm25098	Nsun3	-0.656646706						
1022	Gm25098	Gm10718	-0.609800071						
1023	Gm25098	Nr4a1	-0.656646706						
1024	Gm25098	BC023105	-0.605373598						
1025	Gm25098	Fos	-0.620396953						
1026	Gm25098	Gm5912	-0.651967258						
1027	Gm25098	Murc	-0.656646706						
1028	Gm25449	Gm21732	0.616392987						
1029	Gm25449	Gm25089	0.616392987						
1030	Gm25449	Gm21882	0.616392987						
1031	Gm25449	Gm23730	0.616392987						
1032	Gm25449	Gm23305	0.616392987						
1033	Gm25449	mt-Tt	0.616392987						
1034	Gm25449	Gm20831	0.613856901						
1035	Gm25449	Snord116	0.616392987						
1036	Gm25449	mt-Tc	0.616392987						
1037	Gm25449	Olf166	0.616392987						
1038	Gm25449	Snord116 // Ipw	0.616392987						
1039	Gm25449	Gm22510	0.616392987						
1040	Gm25449	Rnu1b1	0.616392987						
1041	Gm25449	Myl14	0.616392987						
1042	Gm25449	Gm22155	0.616392987						
1043	Gm25449	Olf1231	0.616392987						
1044	Gm25449	Gm4787	0.605277579						
1045	Gm25449	Gm20806	0.603370638						
1046	Gm25449	Ipw	0.616392987						
1047	Gm25449	Olf1034	0.616392987						
1048	Gm25449	Gm21943	0.616392987						
1049	Gm25449	LOC102640399	0.616392987						
1050	Gm25449	mt-Tf	0.616392987						
1051	Gm25449	Gm20815	0.616392987						
1052	Gm25449	mt-Ts1	0.616392987						
1053	Gm25449	mt-Ty	0.616392987						
1054	Gm25449	Gm24624	0.601008593						
	Gm25449		Gm20747		0.607448307				
---	---------	---	---------	---	-------------				
	Gm25449		Trdn		0.616392987				
	Gm25449		Snora74a		0.616392987				
	Gm25449	mt-Ts2			0.616392987				
	Gm25449		Gm22866		0.616392987				
	Gm25449		Rnu12		0.616392987				
	Gm25449		Ppp4r2		0.614158295				
	Gm25449		Tmeff1		0.616392987				
	Gm25449		LOC102639563		0.612052689				
	Gm25449		Vaultrc5		0.616392987				
	Gm25449		Inmt		0.616392987				
	Gm25449		Fam107a		0.616392987				
	Gm25449	mt-Tk			0.616392987				
	Gm25449		Brox		0.616392987				
	Gm25449		Glrx3		0.616392987				
	Gm25449	mt-Th			0.616392987				
	Gm25449		Ddit4		0.616392987				
	Gm25449	mt-Tp			0.616392987				
	Gm25449	mt-Ta			0.616392987				
	Gm25449		Mpv17		-0.61068715				
	Gm25449		Gm6245		-0.616392987				
	Gm25449		Cd59a		-0.616392987				
	Gm25449		Tmem159		-0.60103159				
	Gm25449		Acot2		-0.616392987				
	Gm25449		Dhdh		-0.616392987				
	Gm25449		Fam213a		-0.616392987				
	Gm25449		Nmnat1		-0.605873152				
	Gm25449		Coq5		-0.616392987				
	Gm25449		Nrn1		-0.610300306				
	Gm25449		Uprt		-0.616392987				
	Gm25449		Nsun3		-0.616392987				
	Gm25449		Gm10718		-0.609800071				
	Gm25449		Nr4a1		-0.616392987				
	Gm25449		Egr1		-0.616392987				
	Gm25449		Fos		-0.616392987				
	Gm25449		Gm5346		-0.616392987				
	Gm25449		Gm5912		-0.616392987				
	Gm25449		Murc		-0.616392987				
	Gm21732		Gm25089		0.644501631				
	Gm21732		Gm21882		0.644501631				
	Gm21732		Gm23730		0.644501631				
	Gm21732		Gm23305		0.644501631				
	Gm21732	mt-Tt			0.644501631				
	Gm21732		Gm20831		0.613856901				
	Gm21732		Snord116		0.644501631				
	Gene 1	Gene 2	Score						
---	---------	---------	---------						
1101	Gm21732	mt-Tc	0.644501631						
1102	Gm21732	Olfr166	0.63478488						
1103	Gm21732	Snord116 // Ipw	0.644501631						
1104	Gm21732	Gm22510	0.625509447						
1105	Gm21732	Rnu1b1	0.644501631						
1106	Gm21732	Myl4	0.642387625						
1107	Gm21732	Gm22155	0.644501631						
1108	Gm21732	Olfr1231	0.618389416						
1109	Gm21732	Gm20806	0.603370638						
1110	Gm21732	Ipw	0.644501631						
1111	Gm21732	Olfr1034	0.644501631						
1112	Gm21732	Gm21943	0.62432152						
1113	Gm21732	LOC102640399	0.644501631						
1114	Gm21732	mt-Tf	0.644501631						
1115	Gm21732	Gm20815	0.624089122						
1116	Gm21732	mt-Ts1	0.644501631						
1117	Gm21732	mt-Ty	0.644501631						
1118	Gm21732	Gm24624	0.601008593						
1119	Gm21732	LOC102633726	0.610520962						
1120	Gm21732	Gm20747	0.6074307						
1121	Gm21732	Snora74a	0.63664912						
1122	Gm21732	mt-Ts2	0.644501631						
1123	Gm21732	Gm22866	0.644501631						
1124	Gm21732	Rnu12	0.644501631						
1125	Gm21732	Tmeff1	0.644501631						
1126	Gm21732	LOC102639563	0.612052689						
1127	Gm21732	Vaultrc5	0.644501631						
1128	Gm21732	Inmt	0.603800407						
1129	Gm21732	mt-Tk	0.644501631						
1130	Gm21732	Glrx3	0.616971069						
1131	Gm21732	mt-Th	0.644501631						
1132	Gm21732	Ddit4	0.608171217						
1133	Gm21732	mt-Tp	0.644501631						
1134	Gm21732	mt-Ta	0.644501631						
1135	Gm21732	Mpv17	-0.61068715						
1136	Gm21732	Gm6245	-0.638394925						
1137	Gm21732	Cd59a	-0.637322477						
1138	Gm21732	Tmem159	-0.60103159						
1139	Gm21732	Acot2	-0.644501631						
1140	Gm21732	Dhdh	-0.622508261						
1141	Gm21732	Fam213a	-0.643220229						
1142	Gm21732	Nmnt1	-0.605873152						
1143	Gm21732	Coq5	-0.644501631						
1144	Gm21732	Up1t	-0.644501631						
1145	Gm21732	Nsun3	-0.644501631						
1146	Gm21732	Gm10718	-0.60980071						
	Gene1	Gene2	Similarity						
---	--------	-----------	--------------						
1147	Gm21732	BC023105	-0.605373598						
1148	Gm21732	Gm5912	-0.644501631						
1149	Gm21732	Murc	-0.644501631						
1150	Gm25089	Gm21882	0.64846379						
1151	Gm25089	Gm23730	0.64846379						
1152	Gm25089	Gm23305	0.64846379						
1153	Gm25089	mt-Tt	0.626492121						
1154	Gm25089	Gm20831	0.613856901						
1155	Gm25089	Snord116	0.64846379						
1156	Gm25089	mt-Tc	0.64846379						
1157	Gm25089	Olfr166	0.63478488						
1158	Gm25089	Snord116 // Ipw	0.64846379						
1159	Gm25089	Gm22510	0.625509447						
1160	Gm25089	Rnu1b1	0.64846379						
1161	Gm25089	Myl4	0.642387625						
1162	Gm25089	Olfr1231	0.614302373						
1163	Gm25089	Gm4787	0.605277579						
1164	Gm25089	Gm20806	0.603370638						
1165	Gm25089	Ipw	0.64846379						
1166	Gm25089	Olfr1034	0.64846379						
1167	Gm25089	Gm21943	0.62432152						
1168	Gm25089	LOC102640399	0.64846379						
1169	Gm25089	mt-Tf	0.64846379						
1170	Gm25089	Gm20815	0.624089122						
1171	Gm25089	mt-Ts1	0.64846379						
1172	Gm25089	mt-Ty	0.64846379						
1173	Gm25089	Gm24624	0.601008593						
1174	Gm25089	LOC102633726	0.610520962						
1175	Gm25089	Gm20747	0.607448307						
1176	Gm25089	mt-Ts2	0.64846379						
1177	Gm25089	Gm22866	0.64846379						
1178	Gm25089	Rnu12	0.645183951						
1179	Gm25089	Tmeff1	0.64846379						
1180	Gm25089	LOC102639563	0.612052689						
1181	Gm25089	Vaultrc5	0.64846379						
1182	Gm25089	mt-Tk	0.64846379						
1183	Gm25089	Glrx3	0.616971069						
1184	Gm25089	mt-Th	0.64846379						
1185	Gm25089	Ddit4	0.631360489						
1186	Gm25089	mt-Tp	0.64846379						
1187	Gm25089	mt-Ta	0.64846379						
1188	Gm25089	Mpv17	-0.61068715						
1189	Gm25089	Gm6245	-0.638394295						
1190	Gm25089	Cd59a	-0.637322477						
1191	Gm25089	Tmem159	-0.60103159						
1192	Gm25089	Acot2	-0.64846379						
	Gm25089								
---	---------	---	---						
	Dhidh		-0.622508261						
	Fam213a		-0.643220229						
	Nmnat1		-0.605873152						
	Coq5		-0.64846379						
	Uprt		-0.64846379						
	Nsun3		-0.639296357						
	Gm10718		-0.609800071						
	BC023105		-0.605373598						
	Egr1		-0.609483998						
	Fos		-0.610218063						
	Gm5912		-0.64846379						
	Gm23730		0.666405984						
	Gm23305		0.664243567						
	mt-Tt		0.666405984						
	Gm20831		0.613856901						
	Snord116		0.66405984						
	mt-Tc		0.66405984						
	Olfr166		0.63478488						
	Snord116//Ipw		0.666405984						
	Gm22510		0.625509447						
	Rnu1b1		0.666405984						
	Myl4		0.614114394						
	Gm22155		0.666405984						
	Olfr1231		0.618922514						
	Gm20806		0.603370638						
	Ipw		0.666405984						
	Olfr1034		0.662686071						
	Gm21943		0.62432152						
	LOC102640399		0.653001706						
	mt-Tf		0.666405984						
	Gm23947		0.642276287						
	Gm20815		0.624089122						
	mt-Ts1		0.666405984						
	mt-Ty		0.666405984						
	Gm24624		0.601008593						
	LOC102633726		0.610520962						
	Gm20747		0.607448307						
	Snora74a		0.666405984						
	mt-Ts2		0.666405984						
	Gm22866		0.666405984						
	Rnu12		0.666405984						
	Tmef1		0.65030418						
	LOC102639563		0.612052689						
	Vaultrc5		0.666405984						
	Inmt		0.646471019						
Row	Gene 1	Gene 2	Value						
-----	----------	----------	--------						
1239	Gm21882	Fam107a	0.621684412						
1240	Gm21882	mt-Tk	0.666405984						
1241	Gm21882	Glrx3	0.616971069						
1242	Gm21882	mt-Th	0.66178471						
1243	Gm21882	Ddit4	0.63226978						
1244	Gm21882	mt-Tp	0.666405984						
1245	Gm21882	mt-Ta	0.666405984						
1246	Gm21882	Mpv17	-0.61068715						
1247	Gm21882	Gm6245	-0.638394295						
1248	Gm21882	mt-Th	0.66178471						
1249	Gm21882	Tmem159	-0.60103159						
1250	Gm21882	Acot2	-0.666405984						
1251	Gm21882	Dhdh	-0.622508261						
1252	Gm21882	Fam213a	-0.643220229						
1253	Gm21882	Nmnat1	-0.605873152						
1254	Gm21882	Coq5	-0.666405984						
1255	Gm21882	Tmem184c	-0.650602006						
1256	Gm21882	Nrn1	-0.610300306						
1257	Gm21882	Uprt	-0.651921824						
1258	Gm21882	Nsun3	-0.666405984						
1259	Gm21882	Gm10718	-0.609800071						
1260	Gm21882	BC023105	-0.605373598						
1261	Gm21882	Gm5912	-0.630204077						
1262	Gm21882	Murc	-0.666405984						
1263	Gm23730	Gm23305	0.664243567						
1264	Gm23730	mt-Tt	0.726798019						
1265	Gm23730	Gm20831	0.613856901						
1266	Gm23730	Snord116	0.725166274						
1267	Gm23730	mt-Tc	0.726798019						
1268	Gm23730	Olfr166	0.63478488						
1269	Gm23730	Snord116	0.695183163						
1270	Gm23730	Gm22510	0.620136599						
1271	Gm23730	Rnu1b1	0.726798019						
1272	Gm23730	Gm22155	0.726798019						
1273	Gm23730	Olfr1231	0.618922514						
1274	Gm23730	Gm4787	0.605277579						
1275	Gm23730	Gm20806	0.603370638						
1276	Gm23730	Ipw	0.679543558						
1277	Gm23730	Olfr1034	0.662686071						
1278	Gm23730	Gm21943	0.62432152						
1279	Gm23730	LOC102640399	0.653001706						
1280	Gm23730	Gm10375	0.616879434						
1281	Gm23730	mt-Tf	0.726798019						
1282	Gm23730	Gm23947	0.642276287						
1283	Gm23730	Gm20815	0.624089122						
1284	Gm23730	mt-Ts1	0.726798019						
---	-----	-------	----------	----------					
1285	Gm23730	mt-Ty	0.726798019						
1286	Gm23730	Gm24624	0.601008593						
1287	Gm23730	LOC102633726	0.610520962						
1288	Gm23730	Gm20747	0.607448307						
1289	Gm23730	Trdn	0.662913558						
1290	Gm23730	Snora74a	0.716709874						
1291	Gm23730	mt-Tx2	0.726798019						
1292	Gm23730	Gm22866	0.726798019						
1293	Gm23730	Rnu12	0.714196988						
1294	Gm23730	Ppp4r2	0.725777902						
1295	Gm23730	Gm22749	0.634337211						
1296	Gm23730	Tmeff1	0.65030418						
1297	Gm23730	Gm23928	0.607448307						
1298	Gm23730	LOC102639563	0.610520962						
1299	Gm23730	Vaultrc5	0.726798019						
1300	Gm23730	Inmt	0.646471019						
1301	Gm23730	Fam107a	0.645410606						
1302	Gm23730	mt-Tk	0.720414242						
1303	Gm23730	Brox	0.657411274						
1304	Gm23730	Glrx3	0.616971069						
1305	Gm23730	mt-Th	0.66178471						
1306	Gm23730	Ddit4	0.63226978						
1307	Gm23730	mt-Tp	0.667405111						
1308	Gm23730	mt-Ta	0.680121023						
1309	Gm23730	Mpv17	-0.61068715						
1310	Gm23730	Gm6245	-0.638394295						
1311	Gm23730	Cd59a	-0.637322477						
1312	Gm23730	Tmem159	-0.60103159						
1313	Gm23730	Acot2	-0.679628534						
1314	Gm23730	Dhdh	-0.622508261						
1315	Gm23730	Fam213a	-0.643220229						
1316	Gm23730	Nmnt1	-0.605873152						
1317	Gm23730	Coq5	-0.677305385						
1318	Gm23730	Tmem184c	-0.651508083						
1319	Gm23730	Nrn1	-0.61030306						
1320	Gm23730	Uprt	-0.651921824						
1321	Gm23730	Nsun3	-0.673017501						
1322	Gm23730	Gm10718	-0.60980071						
1323	Gm23730	Nr4a1	-0.623776868						
1324	Gm23730	BC023105	-0.605373598						
1325	Gm23730	Fos	-0.623812344						
1326	Gm23730	Gm5346	-0.657448885						
1327	Gm23730	Gm5912	-0.651967258						
1328	Gm23730	Mucr	-0.726798019						
1329	Gm23305	mt-Tt	0.664243567						
1330	Gm23305	Gm20831	0.613856901						
	Gm23305								
---	---------	---	---	---					
1331	Snord116		0.664243567						
1332	mt-Tc		0.664243567						
1333	Olfr166		0.63478488						
1334	Snord116 \// lpw		0.664243567						
1335	Gm22510		0.625509447						
1336	Rnu1b1		0.664243567						
1337	Gm22155		0.664243567						
1338	Olfr1231		0.618922514						
1339	Gm4787		0.605277579						
1340	Gm22155		0.664243567						
1341	Ipw		0.664243567						
1342	Olfr1034		0.662686071						
1343	Gm21943		0.62432152						
1344	LOC102640399		0.653001706						
1345	Gm10375		0.604081696						
1346	mt-Tf		0.664243567						
1347	Gm23947		0.642276287						
1348	Gm20815		0.624089122						
1349	mt-Ts1		0.664243567						
1350	mt-Ty		0.664243567						
1351	Gm24624		0.601008593						
1352	LOC102633726		0.610520962						
1353	Gm20747		0.607448307						
1354	Trdn		0.662913558						
1355	Snora74a		0.664243567						
1356	mt-Ts2		0.664243567						
1357	Gm22866		0.664243567						
1358	Rnu12		0.664243567						
1359	Tmeff1		0.65030418						
1360	Gm23928		0.602562509						
1361	LOC102639563		0.612052689						
1362	Vaultrc5		0.664243567						
1363	Inmt		0.646471019						
1364	Fam107a		0.645410606						
1365	mt-Tk		0.664243567						
1366	Brox		0.614858096						
1367	Glrx3		0.616971069						
1368	mt-Th		0.66178471						
1369	Ddit4		0.63226978						
1370	mt-Tp		0.664243567						
1371	mt-Ta		0.664243567						
1372	Mpv17		-0.61068715						
1373	Gm6245		-0.638394295						
1374	Cd59a		-0.637322477						
1375	Tmem159		-0.60103159						
1376	Acot2		-0.664243567						
	Genes	Description	Log2FoldChange						
---	-------------	-------------	----------------						
1377	Gm23305	Dhidh	-0.622508261						
1378	Gm23305	Fam213a	-0.643220229						
1379	Gm23305	Nmnat1	-0.605873152						
1380	Gm23305	Coq5	-0.664243567						
1381	Gm23305	Tmem184c	-0.651508083						
1382	Gm23305	Nrn1	-0.610300306						
1383	Gm23305	Uprt	-0.651921824						
1384	Gm23305	Nsun3	-0.664243567						
1385	Gm23305	Gm10718	-0.609800071						
1386	Gm23305	Nr4a1	-0.664243567						
1387	Gm23305	BC023105	-0.605373598						
1388	Gm23305	Egr1	-0.664243567						
1389	Gm23305	Fos	-0.664243567						
1390	Gm23305	Gm5346	-0.651967258						
1391	Gm23305	Gm5912	-0.651967258						
1392	Gm23305	Murc	-0.664243567						
1393	Gm23305	Gm20831	0.613856901						
1394	Gm23305	Snord116	0.725166274						
1395	Gm23305	mt-Tt	0.847530386						
1396	Gm23305	Olfr166	0.63478488						
1397	Gm23305	Snord116 // Ipw	0.695183163						
1398	Gm23305	Gm22510	0.625509447						
1399	Gm23305	Rnu1b1	0.859660173						
1400	Gm23305	Gm22155	0.753346542						
1401	Gm23305	Olfr1231	0.618922514						
1402	Gm23305	Gm4787	0.605277579						
1403	Gm23305	Gm20806	0.603370638						
1404	Gm23305	Ipw	0.679543558						
1405	Gm23305	Olfr1034	0.662686071						
1406	Gm23305	Gm21943	0.62432152						
1407	Gm23305	LOC102640399	0.653001706						
1408	Gm23305	mt-Tf	0.843977183						
1409	Gm23305	Gm23947	0.642276287						
1410	Gm23305	Gm20815	0.624089122						
1411	Gm23305	mt-Ts1	0.823514957						
1412	Gm23305	mt-Ty	0.792687001						
1413	Gm23305	Gm24624	0.601008593						
1414	Gm23305	LOC102633726	0.610520962						
1415	Gm23305	Gm20747	0.607448307						
1416	Gm23305	Trdn	0.634569329						
1417	Gm23305	Snora74a	0.716709874						
1418	Gm23305	mt-Ts2	0.822093546						
1419	Gm23305	Gm22866	0.810797753						
1420	Gm23305	Rnu12	0.714196988						
1421	Gm23305	Gm22749	0.601767939						
1422	Gm23305	Tmeff1	0.65030418						
-----	-----	-----	-----	-----	-----				
1423	mt-Tt	Gm23928	0.602562509						
1424	mt-Tt	LOC102639563	0.612052689						
1425	mt-Tt	Vaultrc5	0.728238836						
1426	mt-Tt	Inmt	0.646471019						
1427	mt-Tt	Fam107a	0.645410606						
1428	mt-Tt	mt-Tk	0.720414242						
1429	mt-Tt	Brox	0.657411274						
1430	mt-Tt	Glrx3	0.616971069						
1431	mt-Tt	mt-Th	0.66178471						
1432	mt-Tt	Ddit4	0.63226978						
1433	mt-Tt	mt-Tp	0.667405111						
1434	mt-Tt	mt-Ta	0.680121023						
1435	mt-Tt	Mpv17	-0.61068715						
1436	mt-Tt	Gm2425	-0.638394295						
1437	mt-Tt	Cd59a	-0.637322477						
1438	mt-Tt	Tmem159	-0.60103159						
1439	mt-Tt	Acot2	-0.679628534						
1440	mt-Tt	Dhdh	-0.622508261						
1441	mt-Tt	Fam213a	-0.643220229						
1442	mt-Tt	Nnmat1	-0.605873152						
1443	mt-Tt	Coq5	-0.677305385						
1444	mt-Tt	Tmem184e	-0.651508083						
1445	mt-Tt	Nrn1	-0.610300306						
1446	mt-Tt	Uprt	-0.651921824						
1447	mt-Tt	Nsun3	-0.673017501						
1448	mt-Tt	Nr4a1	-0.747000222						
1449	mt-Tt	BC023105	-0.605373598						
1450	mt-Tt	Egr1	-0.687631153						
1451	mt-Tt	Fos	-0.695614744						
1452	mt-Tt	G530011O06Rik	-0.740456125						
1453	mt-Tt	Gm5346	-0.657448885						
1454	mt-Tt	Gm5912	-0.651967258						
1455	mt-Tt	Murc	-0.859660173						
1456	Gm20831	Snord116	0.613856901						
1457	Gm20831	mt-Tc	0.613856901						
1458	Gm20831	Olfr166	0.613856901						
1459	Gm20831	Snord116 // Ipw	0.613856901						
1460	Gm20831	Gm22510	0.613856901						
1461	Gm20831	Rnu1b1	0.613856901						
1462	Gm20831	Gm22155	0.613856901						
1463	Gm20831	Olfr1231	0.613856901						
1464	Gm20831	Gm4787	0.605277579						
1465	Gm20831	Gm20806	0.603370638						
1466	Gm20831	Ipw	0.613856901						
1467	Gm20831	Olfr1034	0.613856901						
1468	Gm20831	Gm21943	0.613856901						
Gene1	Gene2	Gene3	Score						
-----------	-----------	-----------	-----------						
Gm20831	LOC102640399	0.613856901							
Gm20831	mt-Tf	0.613856901							
Gm20831	Gm20815	0.613856901							
Gm20831	mt-Ts1	0.613856901							
Gm20831	mt-Ty	0.613856901							
Gm20831	Gm24624	0.601008593							
Gm20831	LOC102633726	0.610520962							
Gm20831	Gm20747	0.607448307							
Gm20831	Trdn	0.613856901							
Gm20831	Snora74a	0.613856901							
Gm20831	mt-Ts2	0.613856901							
Gm20831	Gm22866	0.613856901							
Gm20831	Rnu12	0.613856901							
Gm20831	Tmeff1	0.613856901							
Gm20831	Gm23928	0.602562509							
Gm20831	LOC102639563	0.612052689							
Gm20831	Vaultrc5	0.613856901							
Gm20831	Inmt	0.613856901							
Gm20831	Fam107a	0.613856901							
Gm20831	mt-Tk	0.613856901							
Gm20831	Brox	0.613856901							
Gm20831	Glrx3	0.613856901							
Gm20831	mt-Th	0.613856901							
Gm20831	Ddit4	0.613856901							
Gm20831	mt-Tp	0.613856901							
Gm20831	mt-Ta	0.613856901							
Gm20831	Mpv17	-0.61068715							
Gm20831	Gm6245	-0.613856901							
Gm20831	Cd59a	-0.613856901							
Gm20831	Tmem159	-0.60103159							
Gm20831	Acot2	-0.613856901							
Gm20831	Dhdh	-0.613856901							
Gm20831	Fam213a	-0.613856901							
Gm20831	Nimnat1	-0.605873152							
Gm20831	Coq5	-0.613856901							
Gm20831	Tmem184c	-0.613856901							
Gm20831	Nrn1	-0.610300306							
Gm20831	Uprt	-0.613856901							
Gm20831	Nsun3	-0.613856901							
Gm20831	Gm10718	-0.609800071							
Gm20831	Nr4a1	-0.613856901							
Gm20831	Egr1	-0.613856901							
Gm20831	Fos	-0.613856901							
Gm20831	G530011O06Rik	-0.613856901							
Gm20831	Gm5346	-0.613856901							
Gm20831	Gm5912	-0.613856901							
	Name	Symbol	Value						
----	--------	---------	-----------						
1515	Gm20831	Murc	-0.613856901						
1516	Snord116	mt-Tc	0.725166274						
1517	Snord116	Olf166	0.63478488						
1518	Snord116	Snord116 // Ipw	0.695183163						
1519	Snord116	Gm22510	0.625509447						
1520	Snord116	Rnu1b1	0.725166274						
1521	Snord116	Gm22155	0.725166274						
1522	Snord116	Olfr1231	0.618922514						
1523	Snord116	Gm4787	0.605277579						
1524	Snord116	Gm20806	0.603370638						
1525	Snord116	Ipw	0.679543558						
1526	Snord116	Olfr1034	0.662686071						
1527	Snord116	Gm21943	0.62432152						
1528	Snord116	LOC102640399	0.653001706						
1529	Snord116	Gm10375	0.616879434						
1530	Snord116	mt-Tf	0.725166274						
1531	Snord116	Gm23947	0.642276287						
1532	Snord116	Gm20815	0.624089122						
1533	Snord116	mt-Ts1	0.725166274						
1534	Snord116	mt-Ty	0.725166274						
1535	Snord116	Gm24624	0.601008593						
1536	Snord116	LOC102633726	0.610520962						
1537	Snord116	Gm20747	0.607448307						
1538	Snord116	Trdn	0.662913558						
1539	Snord116	Snora74a	0.716709874						
1540	Snord116	mt-Ts2	0.725166274						
1541	Snord116	Gm22866	0.725166274						
1542	Snord116	Rnu12	0.714196988						
1543	Snord116	Tmeff1	0.65030418						
1544	Snord116	Gm23928	0.602562509						
1545	Snord116	LOC102639563	0.612052689						
1546	Snord116	Vaultrc5	0.725166274						
1547	Snord116	Inmt	0.646471019						
1548	Snord116	Fam107a	0.645410606						
1549	Snord116	mt-Tk	0.720414242						
1550	Snord116	Brox	0.657411274						
1551	Snord116	Glrx3	0.616971069						
1552	Snord116	mt-Th	0.66178471						
1553	Snord116	Ddit4	0.63226978						
1554	Snord116	mt-Tp	0.667405111						
1555	Snord116	mt-Ta	0.680121023						
1556	Snord116	Mpv17	-0.61068715						
1557	Snord116	Gm6245	-0.638394295						
1558	Snord116	Cd59a	-0.637322477						
1559	Snord116	Tmem159	-0.60103159						
1560	Snord116	Acot2	-0.679628534						
----	---------	--------	-----------						
1561	Snord116	Dhidh	-0.622508261						
1562	Snord116	Fam213a	-0.643220229						
1563	Snord116	Nmnat1	-0.605873152						
1564	Snord116	Coq5	-0.677305385						
1565	Snord116	Tmem184c	-0.651508083						
1566	Snord116	Nrn1	-0.610300306						
1567	Snord116	Uprt	-0.651921824						
1568	Snord116	Nsun3	-0.673017501						
1569	Snord116	Gm10718	-0.609800071						
1570	Snord116	Nr4a1	-0.725166274						
1571	Snord116	BC023105	-0.605373598						
1572	Snord116	Egr1	-0.704399843						
1573	Snord116	Fos	-0.695614744						
1574	Snord116	G530011O06Rik	-0.716249925						
1575	Snord116	Gm5346	-0.657448885						
1576	Snord116	Gm5912	-0.651967258						
1577	Snord116	Murc	-0.725166274						
1578	mt-Tc	Olfr166	0.634784888						
1579	mt-Tc	Snord116 // Ipw	0.695183163						
1580	mt-Tc	Gm22510	0.625509447						
1581	mt-Tc	Rnu1b1	0.847530386						
1582	mt-Tc	Gm22155	0.753346542						
1583	mt-Tc	Olfr1231	0.618922514						
1584	mt-Tc	Gm4787	0.605277579						
1585	mt-Tc	Gm20806	0.603370638						
1586	mt-Tc	Ipw	0.679543558						
1587	mt-Tc	Olfr1034	0.662686071						
1588	mt-Tc	Gm21943	0.62432152						
1589	mt-Tc	LOC102640399	0.653001706						
1590	mt-Tc	mt-Tf	0.843977183						
1591	mt-Tc	Gm23947	0.642276287						
1592	mt-Tc	Gm20815	0.624089122						
1593	mt-Tc	mt-Ts1	0.823514957						
1594	mt-Tc	mt-Ty	0.792687001						
1595	mt-Tc	Gm24624	0.601008593						
1596	mt-Tc	LOC102633726	0.610520962						
1597	mt-Tc	Gm20747	0.607448307						
1598	mt-Tc	Trdn	0.662913558						
1599	mt-Tc	Snora74a	0.716709874						
1600	mt-Tc	mt-Ts2	0.822093546						
1601	mt-Tc	Gm22866	0.810797753						
1602	mt-Tc	Rnu12	0.714196988						
1603	mt-Tc	Gm22749	0.634337211						
1604	mt-Tc	Tmeff1	0.65030418						
1605	mt-Tc	Gm23928	0.602562509						
1606	mt-Tc	LOC102639563	0.612052689						
Gene Name	Gene Name	Score							
------------	------------	-----------							
mt-Tc	Vaultre5	0.728238836							
mt-Tc	Inmt	0.646471019							
mt-Tc	Fam107a	0.645410606							
mt-Tc	mt-Tk	0.720414242							
mt-Tc	Brox	0.644665592							
mt-Tc	Glrx3	0.616971069							
mt-Tc	mt-Th	0.66178471							
mt-Tc	Ddit4	0.63226978							
mt-Tc	mt-Tp	0.667405111							
mt-Tc	mt-Ta	0.680121023							
mt-Tc	Mpv17	-0.61068715							
mt-Tc	Gm6245	-0.638394295							
mt-Tc	Cd59a	-0.637322477							
mt-Tc	Tmem159	-0.60103159							
mt-Tc	Acot2	-0.679628534							
mt-Tc	Dhdh	-0.622508261							
mt-Tc	Fam213a	-0.643220229							
mt-Tc	Nmnat1	-0.605873152							
mt-Tc	Coq5	-0.677305385							
mt-Tc	Tmem184c	-0.651508083							
mt-Tc	Nrn1	-0.610300306							
mt-Tc	Uprt	-0.651921824							
mt-Tc	Nsun3	-0.673017501							
mt-Tc	Nr4a1	-0.747000222							
mt-Tc	BC023105	-0.605373598							
mt-Tc	Egr1	-0.614853621							
mt-Tc	Fos	-0.658077623							
mt-Tc	G530011O06Rik	-0.663459858							
mt-Tc	Gm5346	-0.657448885							
mt-Tc	Gm5912	-0.651967258							
mt-Tc	Murc	-0.847530386							
Olfr166	Snord116	0.63478488							
Olfr166	Gm22510	0.625509447							
Olfr166	Rnu1b1	0.63478488							
Olfr166	Gm22155	0.63478488							
Olfr166	Olfr1231	0.618922514							
Olfr166	Gm4787	0.605277579							
Olfr166	Gm20806	0.603370638							
Olfr166	Ipw	0.63478488							
Olfr166	Olfr1034	0.63478488							
Olfr166	Gm21943	0.62432152							
Olfr166	LOC102640399	0.63478488							
Olfr166	Gm10375	0.616879434							
Olfr166	mt-Tf	0.63478488							
Olfr166	Gm20815	0.624089122							
Olfr166	mt-Ts1	0.63478488							
	Gene	Description	Score						
---	-------	-------------	-------						
1653	Olfr166	mt-Ty	0.63478488						
1654	Olfr166	Gm24624	0.601008593						
1655	Olfr166	LOC102633726	0.610520962						
1656	Olfr166	Gm20747	0.607448307						
1657	Olfr166	mt-Ts2	0.63478488						
1658	Olfr166	Gm22866	0.63478488						
1659	Olfr166	Rnu12	0.63478488						
1660	Olfr166	Ppp4r2	0.63478488						
1661	Olfr166	Tmeff1	0.63478488						
1662	Olfr166	Gm23928	0.602562509						
1663	Olfr166	LOC102639563	0.612052689						
1664	Olfr166	Vaultrc5	0.63478488						
1665	Olfr166	Inmt	0.63478488						
1666	Olfr166	Fam107a	0.63478488						
1667	Olfr166	mt-Tk	0.63478488						
1668	Olfr166	Brox	0.63478488						
1669	Olfr166	Glrx3	0.616971069						
1670	Olfr166	mt-Th	0.63478488						
1671	Olfr166	Ddit4	0.63226978						
1672	Olfr166	mt-Tp	0.63478488						
1673	Olfr166	mt-Ta	0.63478488						
1674	Olfr166	Mpv17	-0.61068715						
1675	Olfr166	Gm6245	-0.63478488						
1676	Olfr166	Cd59a	-0.63478488						
1677	Olfr166	Tmem159	-0.60103159						
1678	Olfr166	Acot2	-0.63478488						
1679	Olfr166	Dhdh	-0.622508261						
1680	Olfr166	Fam213a	-0.63478488						
1681	Olfr166	Nmnat1	-0.605873152						
1682	Olfr166	Coq5	-0.63478488						
1683	Olfr166	Tmem184c	-0.63478488						
1684	Olfr166	Nrn1	-0.610300306						
1685	Olfr166	Uprt	-0.63478488						
1686	Olfr166	Nsun3	-0.63478488						
1687	Olfr166	Gm10718	-0.609800071						
1688	Olfr166	Nr4a1	-0.63478488						
1689	Olfr166	Egr1	-0.63478488						
1690	Olfr166	Fos	-0.63478488						
1691	Olfr166	G530011O06Rik	-0.63478488						
1692	Olfr166	Gm5346	-0.63478488						
1693	Olfr166	Murc	-0.63478488						
1694	Snord116 // Ipw	Gm22510	0.625509447						
1695	Snord116 // Ipw	Rnu1b1	0.695183163						
1696	Snord116 // Ipw	Gm22155	0.695183163						
1697	Snord116 // Ipw	Olfr1231	0.618922514						
1698	Snord116 // Ipw	Gm4787	0.605277579						
	Symbol	Gene	Value						
----	------------	------------	-------------						
1699	Snord116 // Ipw	Gm20806	0.603370638						
1700	Snord116 // Ipw	Ipw	0.679543558						
1701	Snord116 // Ipw	Olfr1034	0.662686071						
1702	Snord116 // Ipw	Gm21943	0.624321525						
1703	Snord116 // Ipw	LOC102640399	0.653001706						
1704	Snord116 // Ipw	mt-Tf	0.695183163						
1705	Snord116 // Ipw	Gm23947	0.642276287						
1706	Snord116 // Ipw	Gm20815	0.624089122						
1707	Snord116 // Ipw	mt-Ts1	0.695183163						
1708	Snord116 // Ipw	mt-Ty	0.695183163						
1709	Snord116 // Ipw	Gm24624	0.601008593						
1710	Snord116 // Ipw	LOC102633726	0.610520962						
1711	Snord116 // Ipw	Gm20747	0.607448307						
1712	Snord116 // Ipw	Snora74a	0.601031590						
1713	Snord116 // Ipw	mt-Ts2	0.695183163						
1714	Snord116 // Ipw	Gm22866	0.695183163						
1715	Snord116 // Ipw	Rnu12	0.695183163						
1716	Snord116 // Ipw	Tmefl	0.65030418						
1717	Snord116 // Ipw	Gm23928	0.602562509						
1718	Snord116 // Ipw	LOC102639563	0.612052689						
1719	Snord116 // Ipw	Vaultrc5	0.695183163						
1720	Snord116 // Ipw	Inmt	0.646471019						
1721	Snord116 // Ipw	Fam107a	0.645410606						
1722	Snord116 // Ipw	mt-Tk	0.695183163						
1723	Snord116 // Ipw	Glrx3	0.616971069						
1724	Snord116 // Ipw	mt-Th	0.66178471						
1725	Snord116 // Ipw	Ddit4	0.63226978						
1726	Snord116 // Ipw	mt-Tp	0.667405111						
1727	Snord116 // Ipw	mt-Ta	0.680121023						
1728	Snord116 // Ipw	Mpv17	-0.61068715						
1729	Snord116 // Ipw	Gm6245	-0.638394295						
1730	Snord116 // Ipw	Cd59a	-0.637322477						
1731	Snord116 // Ipw	Tmem159	-0.60103159						
1732	Snord116 // Ipw	Acot2	-0.679628534						
1733	Snord116 // Ipw	Dhdh	-0.622508261						
1734	Snord116 // Ipw	Fam213a	-0.643220229						
1735	Snord116 // Ipw	Nmnt1	-0.605873152						
1736	Snord116 // Ipw	Coq5	-0.677305385						
1737	Snord116 // Ipw	Tmem184c	-0.651508083						
1738	Snord116 // Ipw	Nrn1	-0.610300306						
1739	Snord116 // Ipw	Uprt	-0.651921824						
1740	Snord116 // Ipw	Nsun3	-0.673017501						
1741	Snord116 // Ipw	Gm10718	-0.609800071						
1742	Snord116 // Ipw	Nr4a1	-0.695183163						
1743	Snord116 // Ipw	BC023105	-0.605373598						
1744	Snord116 // Ipw	Egr1	-0.695183163						
Snord116 // Ipw	Fos	-0.695183163							
-----------------	-----	--------------							
Snord116 // Ipw	Gm5346	-0.6243902							
Snord116 // Ipw	Gm5912	-0.651967258							
Snord116 // Ipw	Murc	-0.695183163							
Gm22510	Rnu1b1	0.625509447							
Gm22510	Myl4	0.625509447							
Gm22510	Gm22155	0.625509447							
Gm22510	Gm20806	0.603370638							
Gm22510	Ipw	0.625509447							
Gm22510	Olfr1034	0.625509447							
Gm22510	Gm21943	0.62432152							
Gm22510	LOC102640399	0.625509447							
Gm22510	mt-Tf	0.625509447							
Gm22510	Gm20815	0.624089122							
Gm22510	mt-Ts1	0.625509447							
Gm22510	mt-Ty	0.625509447							
Gm22510	Gm24624	0.601008593							
Gm22510	LOC102633726	0.610520962							
Gm22510	Gm20747	0.607448307							
Gm22510	mt-Tx2	0.625509447							
Gm22510	Gm22686	0.625509447							
Gm22510	Rnu12	0.625509447							
Gm22510	Tmeff1	0.625509447							
Gm22510	LOC102639563	0.612052689							
Gm22510	mt-Tk	0.625509447							
Gm22510	Glrx3	0.616971069							
Gm22510	mt-Th	0.625509447							
Gm22510	Ddit4	0.625509447							
Gm22510	mt-Tp	0.625509447							
Gm22510	mt-Ta	0.625509447							
Gm22510	Gm6245	-0.617235028							
Gm22510	Tmem159	-0.60103159							
Gm22510	Fam213a	-0.625509447							
Gm22510	Nimnat1	-0.605873152							
Gm22510	Coq5	-0.625509447							
Gm22510	Uprt	-0.625509447							
Gm22510	Gm10718	-0.609800071							
Gm22510	Nr4a1	-0.625509447							
Gm22510	Egr1	-0.625509447							
Gm22510	Fos	-0.625509447							
Gm22510	Gm5912	-0.625509447							
Gm22510	Murc	-0.625509447							
Rnu1b1	Gm22155	0.753346542							
Rnu1b1	Olfr1231	0.618922514							
Rnu1b1	Gm4787	0.605277579							
Rnu1b1	Gm20806	0.603370638							
	Gene	Alternative	Score						
----	--------	------------	---------						
1791	Rnu1b1	Ipw	0.679543558						
1792	Rnu1b1	Olfr1034	0.662686071						
1793	Rnu1b1	Gm21943	0.62432152						
1794	Rnu1b1	LOC102640399	0.653001706						
1795	Rnu1b1	mt-Tf	0.843977183						
1796	Rnu1b1	Gm23947	0.642276287						
1797	Rnu1b1	Gm20815	0.624089122						
1798	Rnu1b1	mt-Ts1	0.823514957						
1799	Rnu1b1	mt-Ty	0.792687001						
1800	Rnu1b1	Gm24624	0.601008593						
1801	Rnu1b1	LOC102633726	0.610520962						
1802	Rnu1b1	Gm20747	0.607448307						
1803	Rnu1b1	Trdn	0.64121884						
1804	Rnu1b1	Snora74a	0.716709874						
1805	Rnu1b1	mt-Ts2	0.822093546						
1806	Rnu1b1	Gm22866	0.810797753						
1807	Rnu1b1	Rnu12	0.714196988						
1808	Rnu1b1	Gm22749	0.612863749						
1809	Rnu1b1	Tmeff1	0.65030418						
1810	Rnu1b1	Gm23928	0.602562509						
1811	Rnu1b1	LOC102639563	0.612052689						
1812	Rnu1b1	Vaultrc5	0.728238836						
1813	Rnu1b1	Inmt	0.646471019						
1814	Rnu1b1	Fam107a	0.645410606						
1815	Rnu1b1	mt-Tk	0.720414242						
1816	Rnu1b1	Glrx3	0.616971069						
1817	Rnu1b1	mt-Th	0.66178471						
1818	Rnu1b1	Ddit4	0.63226978						
1819	Rnu1b1	mt-Tp	0.667405111						
1820	Rnu1b1	mt-Ta	0.680121023						
1821	Rnu1b1	Mpv17	-0.61068715						
1822	Rnu1b1	Gm6245	-0.638394295						
1823	Rnu1b1	Cd59a	-0.637322477						
1824	Rnu1b1	Tmem159	-0.60103159						
1825	Rnu1b1	Acot2	-0.679628534						
1826	Rnu1b1	Dhdh	-0.622508261						
1827	Rnu1b1	Fam213a	-0.643220229						
1828	Rnu1b1	Nmnat1	-0.605873152						
1829	Rnu1b1	Coq5	-0.677305385						
1830	Rnu1b1	Tmem184c	-0.651508083						
1831	Rnu1b1	Nrn1	-0.610300306						
1832	Rnu1b1	Uprt	-0.651921824						
1833	Rnu1b1	Nsun3	-0.673017501						
1834	Rnu1b1	Nr4a1	-0.67405666						
1835	Rnu1b1	BC023105	-0.605373598						
1836	Rnu1b1	Gm5346	-0.657448885						
No.	Gene1	Gene2	Expression						
-----	-----------	-----------	--------------						
1837	Rnu1b1	Gm5912	-0.651967258						
1838	Rnu1b1	Murc	-0.88953734						
1839	Myl4	Gm20815	0.618753345						
1840	Myl4	Gm20747	0.607448307						
1841	Myl4	Gm10718	-0.609800071						
1842	Gm22155	Olfr1231	0.618922514						
1843	Gm22155	Gm20806	0.603370638						
1844	Gm22155	lpw	0.679543558						
1845	Gm22155	Olfr1034	0.662686071						
1846	Gm22155	Gm21943	0.62432152						
1847	Gm22155	LOC102640399	0.653001706						
1848	Gm22155	mt-Tf	0.753346542						
1849	Gm22155	Gm23947	0.642276287						
1850	Gm22155	Gm20815	0.624089122						
1851	Gm22155	mt-Ts1	0.753346542						
1852	Gm22155	mt-Ty	0.753346542						
1853	Gm22155	Gm24624	0.601008593						
1854	Gm22155	LOC102633726	0.610520962						
1855	Gm22155	Gm20747	0.607448307						
1856	Gm22155	Snora74a	0.716709874						
1857	Gm22155	mt-Ts2	0.753346542						
1858	Gm22155	Gm22866	0.753346542						
1859	Gm22155	Rnu12	0.714196988						
1860	Gm22155	Gm22749	0.608771096						
1861	Gm22155	Tmeff1	0.65030418						
1862	Gm22155	Gm23928	0.602562509						
1863	Gm22155	LOC102639563	0.612052689						
1864	Gm22155	Vaultrc5	0.728238836						
1865	Gm22155	Inmt	0.646471019						
1866	Gm22155	Fam107a	0.645410606						
1867	Gm22155	mt-Tk	0.720414242						
1868	Gm22155	Glrx3	0.616971069						
1869	Gm22155	mt-Th	0.66178471						
1870	Gm22155	Ddit4	0.6326978						
1871	Gm22155	mt-Tp	0.667405111						
1872	Gm22155	mt-Ta	0.680121023						
1873	Gm22155	Mpv17	-0.61068715						
1874	Gm22155	Gm6245	-0.638394295						
1875	Gm22155	Cd59a	-0.637322477						
1876	Gm22155	Tmem159	-0.60103159						
1877	Gm22155	Acot2	-0.679628534						
1878	Gm22155	Dhdh	-0.622508261						
1879	Gm22155	Fam213a	-0.64320229						
1880	Gm22155	Nmnat1	-0.605873152						
1881	Gm22155	Coq5	-0.677305385						
1882	Gm22155	Tmem184c	-0.651508083						
	Gene	Symbol							
---	------------	--------	---						
1883	Gm22155	Nrn1	-0.610300306						
1884	Gm22155	Uprt	-0.651921824						
1885	Gm22155	Nsun3	-0.673017501						
1886	Gm22155	Nr4a1	-0.747000222						
1887	Gm22155	BC023105	-0.605373598						
1888	Gm22155	Egr1	-0.619063383						
1889	Gm22155	Fos	-0.66127862						
1890	Gm22155	G530011O06Rik	-0.700359365						
1891	Gm22155	Gm5346	-0.657448885						
1892	Gm22155	Gm5912	-0.651967258						
1893	Gm22155	Murc	-0.753346542						
1894	Olfr1231	Gm4787	0.605277579						
1895	Olfr1231	Gm20806	0.603370638						
1896	Olfr1231	lpw	0.618922514						
1897	Olfr1231	Olfr1034	0.618922514						
1898	Olfr1231	Gm21943	0.618922514						
1899	Olfr1231	LOC102640399	0.618922514						
1900	Olfr1231	Gm10375	0.616879434						
1901	Olfr1231	mt-Tf	0.618922514						
1902	Olfr1231	Gm23947	0.618922514						
1903	Olfr1231	Gm20815	0.618922514						
1904	Olfr1231	mt-Ts1	0.618922514						
1905	Olfr1231	mt-Ty	0.618922514						
1906	Olfr1231	Gm24624	0.601008593						
1907	Olfr1231	LOC102633726	0.610520962						
1908	Olfr1231	Gm20747	0.607448307						
1909	Olfr1231	Trdn	0.618922514						
1910	Olfr1231	Snora74a	0.618922514						
1911	Olfr1231	mt-Ts2	0.618922514						
1912	Olfr1231	Gm22866	0.618922514						
1913	Olfr1231	Rnu12	0.618922514						
1914	Olfr1231	Ppp4r2	0.618922514						
1915	Olfr1231	Gm22749	0.618922514						
1916	Olfr1231	Tmeff1	0.618922514						
1917	Olfr1231	Gm23928	0.602562509						
1918	Olfr1231	LOC102639563	0.612052689						
1919	Olfr1231	Vaultrc5	0.618922514						
1920	Olfr1231	Inmt	0.618922514						
1921	Olfr1231	Fam107a	0.618922514						
1922	Olfr1231	mt-Tk	0.618922514						
1923	Olfr1231	Brox	0.618922514						
1924	Olfr1231	Grlrx3	0.616971069						
1925	Olfr1231	mt-Th	0.618922514						
1926	Olfr1231	Ddit4	0.618922514						
1927	Olfr1231	mt-Tp	0.618922514						
1928	Olfr1231	mt-Ta	0.618922514						
Year	Gene	Symbol	Expression						
------	--------	--------	------------						
1929	Olfr1231	Mpv17	-0.61068715						
1930	Olfr1231	Gm6245	-0.618922514						
1931	Olfr1231	Cd59a	-0.618922514						
1932	Olfr1231	Tmem159	-0.60103159						
1933	Olfr1231	Acot2	-0.618922514						
1934	Olfr1231	Dhdh	-0.618922514						
1935	Olfr1231	Fam213a	-0.618922514						
1936	Olfr1231	Nmnt1	-0.605873152						
1937	Olfr1231	Coq5	-0.618922514						
1938	Olfr1231	Tmem184c	-0.618922514						
1939	Olfr1231	Nrn1	-0.610300306						
1940	Olfr1231	Uprt	-0.618922514						
1941	Olfr1231	Nsun3	-0.618922514						
1942	Olfr1231	Nrs4a1	-0.618922514						
1943	Olfr1231	BC023105	-0.605373598						
1944	Olfr1231	Fos	-0.618922514						
1945	Olfr1231	G530011O06Rik	-0.618922514						
1946	Olfr1231	Gm5346	-0.618922514						
1947	Olfr1231	Gm5912	-0.618922514						
1948	Olfr1231	Muc	-0.618922514						
1949	Gm4787	Gm20806	0.603370638						
1950	Gm4787	Ipw	0.605277579						
1951	Gm4787	Olfr1034	0.605277579						
1952	Gm4787	Gm21943	0.605277579						
1953	Gm4787	LOC102640399	0.605277579						
1954	Gm4787	Gm10375	0.605277579						
1955	Gm4787	mt-Tf	0.605277579						
1956	Gm4787	Gm23947	0.605277579						
1957	Gm4787	Gm20815	0.605277579						
1958	Gm4787	mt-Ts1	0.605277579						
1959	Gm4787	mt-Ty	0.605277579						
1960	Gm4787	Gm24624	0.601008593						
1961	Gm4787	LOC102633726	0.605277579						
1962	Gm4787	Gm20747	0.605277579						
1963	Gm4787	Trdn	0.605277579						
1964	Gm4787	mt-Ts2	0.602346686						
1965	Gm4787	Gm22866	0.605277579						
1966	Gm4787	Rnu12	0.605277579						
1967	Gm4787	Ppp4r2	0.605277579						
1968	Gm4787	Gm22749	0.605277579						
1969	Gm4787	Tmeff1	0.605277579						
1970	Gm4787	Gm23928	0.602562509						
1971	Gm4787	LOC102639563	0.605277579						
1972	Gm4787	Vaultrc5	0.605277579						
1973	Gm4787	Inmt	0.605277579						
1974	Gm4787	Fam107a	0.605277579						
Year	Accession	Symbol	Score						
------	-----------	--------	-------						
1975	Gm4787	mt-Tk	0.605277579						
1976	Gm4787	Brox	0.605277579						
1977	Gm4787	Glrx3	0.605277579						
1978	Gm4787	mt-Th	0.605277579						
1979	Gm4787	Ddit4	0.605277579						
1980	Gm4787	mt-Tp	0.605277579						
1981	Gm4787	mt-Ta	0.605277579						
1982	Gm4787	Mpv17	-0.605277579						
1983	Gm4787	Gm6245	-0.605277579						
1984	Gm4787	Cd59a	-0.605277579						
1985	Gm4787	Tmem159	-0.60103159						
1986	Gm4787	Acot2	-0.605277579						
1987	Gm4787	Dhdh	-0.605277579						
1988	Gm4787	Fam213a	-0.605277579						
1989	Gm4787	Coq5	-0.605277579						
1990	Gm4787	Tmem184c	-0.605277579						
1991	Gm4787	Nrn1	-0.605277579						
1992	Gm4787	Uptr	-0.605277579						
1993	Gm4787	Nsun3	-0.605277579						
1994	Gm4787	Gm10718	-0.605277579						
1995	Gm4787	Nr4a1	-0.605277579						
1996	Gm4787	Egr1	-0.605277579						
1997	Gm4787	Fos	-0.605277579						
1998	Gm4787	G530011O06Rik	-0.605277579						
1999	Gm4787	Gm5346	-0.605277579						
2000	Gm4787	Gm5912	-0.605277579						
2001	Gm4787	Mure	-0.605277579						
2002	Gm20806	Ipw	0.603370638						
2003	Gm20806	Olfr1034	0.603370638						
2004	Gm20806	Gm21943	0.603370638						
2005	Gm20806	LOC102640399	0.603370638						
2006	Gm20806	Gm10375	0.603370638						
2007	Gm20806	mt-Tf	0.603370638						
2008	Gm20806	Gm23947	0.603370638						
2009	Gm20806	Gm20815	0.603370638						
2010	Gm20806	mt-Ts1	0.603370638						
2011	Gm20806	mt-Ty	0.603370638						
2012	Gm20806	Gm24624	0.601008593						
2013	Gm20806	LOC102633726	0.603370638						
2014	Gm20806	Gm20747	0.603370638						
2015	Gm20806	Trdn	0.603370638						
2016	Gm20806	Snora74a	0.603370638						
2017	Gm20806	mt-Ts2	0.603370638						
2018	Gm20806	Gm22866	0.603370638						
2019	Gm20806	Rnu12	0.603370638						
2020	Gm20806	Tmeff1	0.603370638						
Year	Gm20806	LOC	Correlation						
------	---------	-----	-------------						
2021	Gm20806	Gm23928	0.602562509						
2022	Gm20806	LOC102639563	0.603370638						
2023	Gm20806	Vaultrc5	0.603370638						
2024	Gm20806	Inmt	0.603370638						
2025	Gm20806	Fam107a	0.603370638						
2026	Gm20806	mt-Tk	0.603370638						
2027	Gm20806	Glrx3	0.603370638						
2028	Gm20806	mt-Th	0.603370638						
2029	Gm20806	Ddit4	0.603370638						
2030	Gm20806	mt-Tp	0.603370638						
2031	Gm20806	mt-Ta	0.603370638						
2032	Gm20806	Mpv17	-0.603370638						
2033	Gm20806	Gm6245	-0.603370638						
2034	Gm20806	Cd59a	-0.603370638						
2035	Gm20806	Tmem159	-0.60103159						
2036	Gm20806	Acot2	-0.603370638						
2037	Gm20806	Dhdh	-0.603370638						
2038	Gm20806	Fam213a	-0.603370638						
2039	Gm20806	Nmnat1	-0.603370638						
2040	Gm20806	Coq5	-0.603370638						
2041	Gm20806	Tmem184c	-0.603370638						
2042	Gm20806	Nrn1	-0.603370638						
2043	Gm20806	Uprt	-0.603370638						
2044	Gm20806	Nsun3	-0.603370638						
2045	Gm20806	Gm10718	-0.603370638						
2046	Gm20806	Nr4a1	-0.603370638						
2047	Gm20806	BC023105	-0.603370638						
2048	Gm20806	Gm5346	-0.603370638						
2049	Gm20806	Gm5912	-0.603370638						
2050	Gm20806	Murc	-0.603370638						
2051	Ipw	Olfr1034	0.662686071						
2052	Ipw	Gm21943	0.62432152						
2053	Ipw	LOC102640399	0.653001706						
2054	Ipw	Gm10375	0.616879434						
2055	Ipw	mt-Tf	0.679543558						
2056	Ipw	Gm23947	0.642276287						
2057	Ipw	Gm20815	0.624089122						
2058	Ipw	mt-Ts1	0.679543558						
2059	Ipw	mt-Ty	0.679543558						
2060	Ipw	Gm24624	0.601008593						
2061	Ipw	LOC102633726	0.610520962						
2062	Ipw	Gm20747	0.607448307						
2063	Ipw	Trdn	0.662913558						
2064	Ipw	Snora74a	0.679543558						
2065	Ipw	mt-Ts2	0.679543558						
2066	Ipw	Gm22866	0.679543558						
-----	---	-----	----------------	-----------					
2067	Ipw		Rnu12	0.679543558					
2068	Ipw		Ppp4r2	0.679543558					
2069	Ipw		Tmeff1	0.65030418					
2070	Ipw		Gm23928	0.602562509					
2071	Ipw		LOC102639563	0.612052689					
2072	Ipw		Vaultrc5	0.679543558					
2073	Ipw		Inmt	0.646471019					
2074	Ipw		Fam107a	0.645410606					
2075	Ipw		mt-Tk	0.679543558					
2076	Ipw		Brox	0.657411274					
2077	Ipw		Glrx3	0.616971069					
2078	Ipw		mt-Th	0.66178471					
2079	Ipw		Ddit4	0.63226978					
2080	Ipw		mt-Tp	0.667405111					
2081	Ipw		mt-Ta	0.679543558					
2082	Ipw		Mpv17	-0.61068715					
2083	Ipw		Gm6245	-0.638394295					
2084	Ipw		Cd59a	-0.637322477					
2085	Ipw		Tmem159	-0.60103159					
2086	Ipw		Acot2	-0.679543558					
2087	Ipw		Dhdh	-0.622508261					
2088	Ipw		Fam213a	-0.643220229					
2089	Ipw		Nmnat1	-0.605873152					
2090	Ipw		Coq5	-0.677305385					
2091	Ipw		Tmem184c	-0.651508083					
2092	Ipw		Nrn1	-0.610300306					
2093	Ipw		Uprt	-0.651921824					
2094	Ipw		Nsun3	-0.673017501					
2095	Ipw		Gm10718	-0.609800071					
2096	Ipw		Nr4a1	-0.679543558					
2097	Ipw		Egr1	-0.679543558					
2098	Ipw		Fos	-0.679543558					
2099	Ipw		G530011O06Rik	-0.679543558					
2100	Ipw		Gm5346	-0.657448885					
2101	Ipw		Gm5912	-0.651967258					
2102	Ipw		Murc	-0.679543558					
2103	Olfr1034		Gm21943	0.62432152					
2104	Olfr1034		LOC102640399	0.653001706					
2105	Olfr1034		mt-Tf	0.662686071					
2106	Olfr1034		Gm20815	0.624089122					
2107	Olfr1034		mt-Ts1	0.662686071					
2108	Olfr1034		mt-Ty	0.662686071					
2109	Olfr1034		Gm24624	0.601008593					
2110	Olfr1034		LOC102633726	0.610520962					
2111	Olfr1034		Gm20747	0.607448307					
2112	Olfr1034		Trdn	0.605928444					
---	------	--------	------------	------------					
2113	Olfr1034	Snora74a	0.662686071						
2114	Olfr1034	mt-Ts2	0.662686071						
2115	Olfr1034	Gm22866	0.662686071						
2116	Olfr1034	Rnu12	0.662686071						
2117	Olfr1034	Ppp4r2	0.608536463						
2118	Olfr1034	Tmeff1	0.65030418						
2119	Olfr1034	Gm23928	0.602562509						
2120	Olfr1034	LOC102639563	0.612052689						
2121	Olfr1034	Vaultrc5	0.662686071						
2122	Olfr1034	lnmt	0.646471019						
2123	Olfr1034	Fam107a	0.645410606						
2124	Olfr1034	mt-Tk	0.662686071						
2125	Olfr1034	Brox	0.657411274						
2126	Olfr1034	Glrx3	0.616971069						
2127	Olfr1034	mt-Th	0.66178471						
2128	Olfr1034	Ddit4	0.63226978						
2129	Olfr1034	mt-Tp	0.662686071						
2130	Olfr1034	mt-Ta	0.662686071						
2131	Olfr1034	Mpv17	-0.61068715						
2132	Olfr1034	Gm6245	-0.638394295						
2133	Olfr1034	Cd59a	-0.637322477						
2134	Olfr1034	Tmem159	-0.60103159						
2135	Olfr1034	Acot2	-0.662686071						
2136	Olfr1034	Dhdh	-0.622508261						
2137	Olfr1034	Fam213a	-0.643220229						
2138	Olfr1034	Nmnat1	-0.605873152						
2139	Olfr1034	Coq5	-0.662686071						
2140	Olfr1034	Tmem184c	-0.651508083						
2141	Olfr1034	Nrn1	-0.610300306						
2142	Olfr1034	Uprt	-0.651921824						
2143	Olfr1034	Nsun3	-0.662686071						
2144	Olfr1034	Gm10718	-0.609800071						
2145	Olfr1034	Nr4a1	-0.662686071						
2146	Olfr1034	Egr1	-0.662686071						
2147	Olfr1034	Fos	-0.662686071						
2148	Olfr1034	G530011O06Rik	-0.662686071						
2149	Olfr1034	Gm5346	-0.657448885						
2150	Olfr1034	Gm5912	-0.651967258						
2151	Olfr1034	Murc	-0.662686071						
2152	Gm21943	LOC102640399	0.62432152						
2153	Gm21943	Gm10375	0.616879434						
2154	Gm21943	mt-Tf	0.62432152						
2155	Gm21943	Gm23947	0.62432152						
2156	Gm21943	Gm20815	0.624089122						
2157	Gm21943	mt-Ts1	0.62432152						
2158	Gm21943	mt-Ty	0.62432152						
Gene	Symbol	Another Symbol	Score						
------------	--------	----------------	------------						
Gm21943	Gm24624		0.601008593						
Gm21943	LOC102633726		0.610520962						
Gm21943	Gm20747		0.607448307						
Gm21943	Trdn		0.610520962						
Gm21943	Snora74a		0.62432152						
Gm21943	mt-Ts2		0.62432152						
Gm21943	Gm20747		0.62432152						
Gm21943	Trdn		0.62432152						
Gm21943	Snora74a		0.62432152						
Gm21943	mt-Ts2		0.62432152						
Gm21943	Gm23928		0.62432152						
Gm21943	Rnu12		0.62432152						
Gm21943	Tmeff1		0.62432152						
Gm21943	Gm23928		0.62432152						
Gm21943	LOC102639563		0.612052689						
Gm21943	Vaultrc5		0.62432152						
Gm21943	Inmt		0.62432152						
Gm21943	Fam107a		0.62432152						
Gm21943	mt-Tk		0.62432152						
Gm21943	Brox		0.617708927						
Gm21943	Glrx3		0.616971069						
Gm21943	mt-Th		0.62432152						
Gm21943	Ddit4		0.62432152						
Gm21943	mt-Tp		0.62432152						
Gm21943	mt-Ta		0.62432152						
Gm21943	Mpv17		-0.61068715						
Gm21943	Gm6245		-0.62432152						
Gm21943	Cd59a		-0.62432152						
Gm21943	Tmem159		-0.60103159						
Gm21943	Acot2		-0.62432152						
Gm21943	Dhdh		-0.622508261						
Gm21943	Fam213a		-0.62432152						
Gm21943	Nmnat1		-0.605873152						
Gm21943	Coq5		-0.62432152						
Gm21943	Tmem184c		-0.62432152						
Gm21943	Nrn1		-0.610300306						
Gm21943	Uprt		-0.62432152						
Gm21943	Nsun3		-0.62432152						
Gm21943	Gm10718		-0.609800071						
Gm21943	Nr4a1		-0.621845927						
Gm21943	BC023105		-0.605373598						
Gm21943	Egr1		-0.62432152						
Gm21943	Fos		-0.62432152						
Gm21943	Gm5346		-0.62432152						
Gm21943	Gm5912		-0.62432152						
Gm21943	Murc		-0.62432152						
Gm21943	Gm10375		-0.616879434						
Gm21943	Gm10375		-0.62432152						
Gm21943	Gm5912		-0.62432152						
LOC102640399	Gm10375		0.616879434						
LOC102640399	mt-Tf		0.653001706						
LOC102640399	Gm23947		0.642276287						
LOC102640399	Gm20815		0.624089122						
	LOC102640399								
---	----------------	---	---						
2205	mt-Ts1	0.653001706							
2206	mt-Ty	0.653001706							
2207	LOC102640399	Gm24624	0.601008593						
2208	LOC102640399	LOC102633726	0.610520962						
2209	LOC102640399	Gm20747	0.607448307						
2210	LOC102640399	Trdn	0.641821472						
2211	LOC102640399	Snora74a	0.653001706						
2212	LOC102640399	mt-Ts2	0.653001706						
2213	LOC102640399	Gm22866	0.653001706						
2214	LOC102640399	Rnu12	0.653001706						
2215	LOC102640399	Tmefl1	0.65030418						
2216	LOC102640399	Gm23928	0.602562509						
2217	LOC102640399	LOC102639563	0.612052689						
2218	LOC102640399	Vaultrc5	0.653001706						
2219	LOC102640399	Inmt	0.646471019						
2220	LOC102640399	Fam107a	0.645410606						
2221	LOC102640399	mt-Tk	0.653001706						
2222	LOC102640399	Brox	0.653001706						
2223	LOC102640399	Glrx3	0.616971069						
2224	LOC102640399	mt-Th	0.653001706						
2225	LOC102640399	Ddit4	0.63226978						
2226	LOC102640399	mt-Tp	0.653001706						
2227	LOC102640399	mt-Ta	0.653001706						
2228	LOC102640399	Mpv17	-0.61068715						
2229	LOC102640399	Gm6245	-0.638394295						
2230	LOC102640399	Cd59a	-0.637322477						
2231	LOC102640399	Tmem159	-0.60103159						
2232	LOC102640399	Acot2	-0.653001706						
2233	LOC102640399	Dhdh	-0.622508261						
2234	LOC102640399	Fam213a	-0.643220229						
2235	LOC102640399	Nmnat1	-0.605873152						
2236	LOC102640399	Coq5	-0.653001706						
2237	LOC102640399	Tmem184c	-0.651508083						
2238	LOC102640399	Nrn1	-0.610300306						
2239	LOC102640399	Uprt	-0.653001706						
2240	LOC102640399	Nsun3	-0.653001706						
2241	LOC102640399	Gm10718	-0.609800071						
2242	LOC102640399	Nr4a1	-0.653001706						
2243	LOC102640399	Egr1	-0.653001706						
2244	LOC102640399	Fos	-0.653001706						
2245	LOC102640399	G530011O06Rik	-0.653001706						
2246	LOC102640399	Gm5346	-0.653001706						
2247	LOC102640399	Gm5912	-0.653001706						
2248	LOC102640399	Mucr	-0.653001706						
2249	Gm10375	mt-Tf	0.61644722						
2250	Gm10375	Gm23947	0.616879434						
---	----------	----------	------------						
2251	Gm10375	Gm20815	0.616879434						
2252	Gm10375	mt-Ty	0.616879434						
2253	Gm10375	LOC102633726	0.610520962						
2254	Gm10375	Gm20747	0.607448307						
2255	Gm10375	Trdn	0.616879434						
2256	Gm10375	Ppp4r2	0.616879434						
2257	Gm10375	Gm22749	0.616879434						
2258	Gm10375	Inmt	0.616879434						
2259	Gm10375	Fam107a	0.616879434						
2260	Gm10375	Brox	0.616879434						
2261	Gm10375	Ddit4	0.616879434						
2262	Gm10375	Mpv17	-0.61068715						
2263	Gm10375	Gm6245	-0.616879434						
2264	Gm10375	Cd59a	-0.616787635						
2265	Gm10375	Tmem159	-0.60103159						
2266	Gm10375	Acot2	-0.60971604						
2267	Gm10375	Dhdh	-0.616879434						
2268	Gm10375	Fam213a	-0.616879434						
2269	Gm10375	Tmem184c	-0.616879434						
2270	Gm10375	Nrn1	-0.610300306						
2271	Gm10375	Uprt	-0.616879434						
2272	Gm10375	Nsun3	-0.61180126						
2273	Gm10375	Gm10718	-0.609800071						
2274	Gm10375	Egr1	-0.616879434						
2275	Gm10375	Fos	-0.616879434						
2276	Gm10375	G530011O06Rik	-0.616879434						
2277	Gm10375	Gm5346	-0.616879434						
2278	Gm10375	Gm5912	-0.608955289						
2279	Gm10375	Murc	-0.616879434						
2280	mt-Tf	Gm23947	0.642276287						
2281	mt-Tf	Gm20815	0.624089122						
2282	mt-Tf	mt-Ts1	0.823514957						
2283	mt-Tf	mt-Ty	0.792687001						
2284	mt-Tf	Gm24624	0.601008593						
2285	mt-Tf	LOC102633726	0.610520962						
2286	mt-Tf	Gm20747	0.607448307						
2287	mt-Tf	Trdn	0.662915558						
2288	mt-Tf	Snora74a	0.716709874						
2289	mt-Tf	mt-Ts2	0.822093546						
2290	mt-Tf	Gm22866	0.810797753						
2291	mt-Tf	Rnu12	0.714196988						
2292	mt-Tf	Ppp4r2	0.630692301						
2293	mt-Tf	Gm22749	0.614416992						
2294	mt-Tf	Tmeff1	0.65030418						
2295	mt-Tf	Gm23928	0.602562509						
2296	mt-Tf	LOC102639563	0.612052689						
------	-------	---------	--------						
2297	mt-Tf	Vaultre5	0.728238836						
2298	mt-Tf	Inmt	0.646471019						
2299	mt-Tf	Fam107a	0.645410606						
2300	mt-Tf	mt-Tk	0.720414242						
2301	mt-Tf	Brox	0.657411274						
2302	mt-Tf	Glrx3	0.616971069						
2303	mt-Tf	mt-Th	0.66178471						
2304	mt-Tf	Ddit4	0.63226978						
2305	mt-Tf	mt-Tp	0.667405111						
2306	mt-Tf	mt-Ta	0.680121023						
2307	mt-Tf	Mpv17	-0.61068715						
2308	mt-Tf	Gm6245	-0.638394295						
2309	mt-Tf	Cd59a	-0.637322477						
2310	mt-Tf	Tmem159	-0.60103159						
2311	mt-Tf	Acot2	-0.679628534						
2312	mt-Tf	Dhdh	-0.622508261						
2313	mt-Tf	Fam213a	-0.643220229						
2314	mt-Tf	Nmnat1	-0.605873152						
2315	mt-Tf	Coq5	-0.677305385						
2316	mt-Tf	Tmem184c	-0.651508083						
2317	mt-Tf	Nrn1	-0.610300306						
2318	mt-Tf	Uprt	-0.651921824						
2319	mt-Tf	Nsun3	-0.673017501						
2320	mt-Tf	Gm10718	-0.609800071						
2321	mt-Tf	Nrs4a1	-0.747000222						
2322	mt-Tf	BC023105	-0.605373598						
2323	mt-Tf	Egr1	-0.704399843						
2324	mt-Tf	Fos	-0.695614744						
2325	mt-Tf	G530011O06Rik	-0.740456125						
2326	mt-Tf	Gm5346	-0.657448885						
2327	mt-Tf	Gm5912	-0.651967258						
2328	mt-Tf	Murc	-0.843977183						
2329	Gm23947	Gm20815	0.624089122						
2330	Gm23947	mt-Ts1	0.642276287						
2331	Gm23947	mt-Ty	0.642276287						
2332	Gm23947	Gm24624	0.601008593						
2333	Gm23947	LOC102633726	0.610520962						
2334	Gm23947	Gm20747	0.607448307						
2335	Gm23947	Trdn	0.642276287						
2336	Gm23947	Snora74a	0.642276287						
2337	Gm23947	mt-Ts2	0.642276287						
2338	Gm23947	Gm22866	0.642276287						
2339	Gm23947	Rnu12	0.642276287						
2340	Gm23947	Gm22749	0.634337211						
2341	Gm23947	Gm24149	0.642276287						
2342	Gm23947	Tmeff1	0.642276287						
	Gm23947	Gm23928	0.602562509						
---	---------	---------	-------------						
2343	Gm23947	LOC102639563	0.612052689						
2344	Gm23947	Vaultrc5	0.642276287						
2345	Gm23947	Inmt	0.642276287						
2346	Gm23947	Fam107a	0.642276287						
2347	Gm23947	mt-Tk	0.642276287						
2348	Gm23947	Glrx3	0.61068715						
2349	Gm23947	mt-Th	0.642276287						
2350	Gm23947	Ddit4	0.60588849						
2351	Gm23947	mt-Tp	0.642276287						
2352	Gm23947	mt-Ta	0.642276287						
2353	Gm23947	Mpv17	0.63894295						
2354	Gm23947	Cd59a	0.63732477						
2355	Gm23947	Tmem159	0.60103159						
2356	Gm23947	Acot2	0.642276287						
2357	Gm23947	Dhdh	0.622508261						
2358	Gm23947	Fam213a	0.642276287						
2359	Gm23947	Nmnat1	0.605873152						
2360	Gm23947	Tmem184c	0.642276287						
2361	Gm23947	Cq05	0.642276287						
2362	Gm23947	Tmem184c	0.642276287						
2363	Gm23947	Tmem184c	0.642276287						
2364	Gm23947	Nrrl	0.63894295						
2365	Gm23947	Uprt	0.63732477						
2366	Gm23947	Nsun3	0.63894295						
2367	Gm23947	BC023105	0.605373598						
2368	Gm23947	Gm5346	0.642276287						
2369	Gm23947	Murc	0.642276287						
2370	Gm20815	mt-Ts1	0.624089122						
2371	Gm20815	mt-Ty	0.624089122						
2372	Gm20815	Gm24624	0.601008593						
2373	Gm20815	LOC102633726	0.610520962						
2374	Gm20815	Gm20747	0.607448307						
2375	Gm20815	Trdn	0.624089122						
2376	Gm20815	Snora74a	0.624089122						
2377	Gm20815	mt-Ts2	0.624089122						
2378	Gm20815	Gm22866	0.624089122						
2379	Gm20815	Rnu12	0.624089122						
2380	Gm20815	Ppp4r2	0.624089122						
2381	Gm20815	Tmeff1	0.624089122						
2382	Gm20815	Gm23928	0.602562509						
2383	Gm20815	LOC102639563	0.610520962						
2384	Gm20815	Vaultrc5	0.624089122						
2385	Gm20815	Inmt	0.624089122						
2386	Gm20815	Fam107a	0.624089122						
2387	Gm20815	mt-Tk	0.624089122						
2388	Gm20815	Brox	0.624089122						
Line	Gene1	Gene2	Score						
------	---------	---------	-------------						
2389	Gm20815	Glrx3	0.616971069						
2390	Gm20815	mt-Th	0.624089122						
2391	Gm20815	Ddit4	0.624089122						
2392	Gm20815	mt-Tp	0.624089122						
2393	Gm20815	mt-Ta	0.624089122						
2394	Gm20815	Mpv17	-0.61068715						
2395	Gm20815	Gm6245	-0.624089122						
2396	Gm20815	Cd59a	-0.624089122						
2397	Gm20815	Tmem159	-0.60103159						
2398	Gm20815	Acot2	-0.624089122						
2399	Gm20815	Dhdh	-0.622508261						
2400	Gm20815	Fam213a	-0.624089122						
2401	Gm20815	Nmnat1	-0.605873152						
2402	Gm20815	Coq5	-0.624089122						
2403	Gm20815	Tmem184c	-0.624089122						
2404	Gm20815	Nrn1	-0.610300306						
2405	Gm20815	Uprt	-0.624089122						
2406	Gm20815	Nsun3	-0.624089122						
2407	Gm20815	Gm10718	-0.609800071						
2408	Gm20815	BC023105	-0.605373598						
2409	Gm20815	Egr1	-0.624089122						
2410	Gm20815	Fos	-0.624089122						
2411	Gm20815	Gm5346	-0.624089122						
2412	Gm20815	Gm5912	-0.624089122						
2413	Gm20815	Murc	-0.624089122						
2414	mt-Ts1	mt-Ty	0.792687001						
2415	mt-Ts1	Gm24624	0.601008593						
2416	mt-Ts1	LOC102633726	0.610520962						
2417	mt-Ts1	Gm20747	0.607448307						
2418	mt-Ts1	Trdn	0.662913558						
2419	mt-Ts1	Snora74a	0.716709874						
2420	mt-Ts1	mt-Ts2	0.822093546						
2421	mt-Ts1	Gm22866	0.810797753						
2422	mt-Ts1	Rnu12	0.714196988						
2423	mt-Ts1	Gm22749	0.610521668						
2424	mt-Ts1	Tmeff1	0.65030418						
2425	mt-Ts1	Gm23928	0.602562509						
2426	mt-Ts1	LOC102639563	0.612052689						
2427	mt-Ts1	Vaultrc5	0.728238836						
2428	mt-Ts1	Inm1	0.646471019						
2429	mt-Ts1	Fam107a	0.645410606						
2430	mt-Ts1	mt-Tk	0.720414242						
2431	mt-Ts1	Brox	0.62787898						
2432	mt-Ts1	Glrx3	0.616971069						
2433	mt-Ts1	mt-Th	0.66178471						
2434	mt-Ts1	Ddit4	0.63226978						
	mt-Ts1	mt-Ta	mt-Tp	mt-Ts1	mt-Ta	mt-Tp	mt-Ts1	mt-Ta	mt-Tp
---	--------	-------	-------	--------	-------	-------	--------	-------	-------
2435	mt-Ts1	mt-Ta	mt-Tp	0.667405111					
2436	mt-Ts1	mt-Ta	mt-Tp	0.680121023					
2437	mt-Ts1	Gm6245	mt-Ta	-0.638394295					
2438	mt-Ts1	Cd59a	mt-Ta	-0.637322477					
2439	mt-Ts1	Tmem159	mt-Ta	-0.60103159					
2440	mt-Ts1	Acot2	mt-Ta	-0.679628534					
2441	mt-Ts1	Dhdh	mt-Ta	-0.622508261					
2442	mt-Ts1	Fam213a	mt-Ta	-0.643220229					
2443	mt-Ts1	Nmnat1	mt-Ta	-0.605873152					
2444	mt-Ts1	Coq5	mt-Ta	-0.677305385					
2445	mt-Ts1	Tmem184c	mt-Ta	-0.651508083					
2446	mt-Ts1	Nrn1	mt-Ta	-0.610300306					
2447	mt-Ts1	Uppt	mt-Ta	-0.651921824					
2448	mt-Ts1	Nsun3	mt-Ta	-0.673017501					
2449	mt-Ts1	Gm10718	mt-Ta	-0.609800071					
2450	mt-Ts1	Nr4a1	mt-Ta	-0.742765616					
2451	mt-Ts1	BC023105	mt-Ta	-0.605373598					
2452	mt-Ts1	Egr1	mt-Ta	-0.60898327					
2453	mt-Ts1	Coq5	mt-Ta	-0.652122797					
2454	mt-Ts1	G5300110O06Rik	mt-Ta	-0.624279924					
2455	mt-Ts1	Gm5346	mt-Ta	-0.657448885					
2456	mt-Ts1	Gm5912	mt-Ta	-0.651967258					
2457	mt-Ts1	Murc	mt-Ta	-0.823514957					
2458	mt-Ts1	Gm24624	mt-Ta	0.601008593					
2459	mt-Ts1	LOC102633726	mt-Ta	0.610520962					
2460	mt-Ts1	Gm20747	mt-Ta	0.607448307					
2461	mt-Ts1	Gm24624	mt-Ta	0.601008593					
2462	mt-Ts1	Trdn	mt-Ta	0.662913558					
2463	mt-Ts1	Snora74a	mt-Ta	0.716709874					
2464	mt-Ts1	mt-Ts2	mt-Ta	0.792687001					
2465	mt-Ts1	Gm22866	mt-Ta	0.792687001					
2466	mt-Ts1	Rnu12	mt-Ta	0.714196988					
2467	mt-Ts1	Ppp4r2	mt-Ta	0.65687002					
2468	mt-Ts1	Gm22749	mt-Ta	0.634337211					
2469	mt-Ts1	Tmeff1	mt-Ta	0.65030418					
2470	mt-Ts1	Gm23928	mt-Ta	0.602562509					
2471	mt-Ts1	LOC102633726	mt-Ta	0.610520962					
2472	mt-Ts1	Vaultrc5	mt-Ta	0.728238836					
2473	mt-Ts1	Inmnt	mt-Ta	0.646471019					
2474	mt-Ts1	Fam107a	mt-Ta	0.645410606					
2475	mt-Ts1	Mt-Tk	mt-Ta	0.720414242					
2476	mt-Ts1	Brox	mt-Ta	0.657411274					
2477	mt-Ts1	Glrx3	mt-Ta	0.616971069					
2478	mt-Ts1	Mt-Th	mt-Ta	0.66178471					
2479	mt-Ts1	Ddit4	mt-Ta	0.63226978					
2480	mt-Ts1	Mt-Tp	mt-Ta	0.667405111					
	Gene 1	Gene 2	log_2 fold change						
---	----------	----------	-------------------						
2481	mt-Ty	mt-Ta	0.680121023						
2482	mt-Ty	Mpv17	-0.61068715						
2483	mt-Ty	Gm6245	-0.638394295						
2484	mt-Ty	Cd59a	-0.637322477						
2485	mt-Ty	Tmem159	-0.60103159						
2486	mt-Ty	Acot2	-0.679628534						
2487	mt-Ty	Dhdh	-0.622508261						
2488	mt-Ty	Fam213a	-0.643220229						
2489	mt-Ty	Nmnat1	-0.605873152						
2490	mt-Ty	Coq5	-0.677305385						
2491	mt-Ty	Tmem184c	-0.651508083						
2492	mt-Ty	Nrn1	-0.610300306						
2493	mt-Ty	Uprt	-0.651921824						
2494	mt-Ty	Nsun3	-0.673017501						
2495	mt-Ty	Gm10718	-0.699800071						
2496	mt-Ty	Nr4a1	-0.747000222						
2497	mt-Ty	BC023105	-0.605373598						
2498	mt-Ty	Egr1	-0.67487865						
2499	mt-Ty	Fos	-0.695614744						
2500	mt-Ty	G530011O06Rik	-0.716188592						
2501	mt-Ty	Gm5346	-0.657448885						
2502	mt-Ty	Gm5912	-0.651967258						
2503	mt-Ty	Murc	-0.792687001						
2504	Gm24624	LOC102633726	0.601008593						
2505	Gm24624	Gm20747	0.601008593						
2506	Gm24624	Snora74a	0.601008593						
2507	Gm24624	mt-Ts2	0.601008593						
2508	Gm24624	Gm22866	0.601008593						
2509	Gm24624	Rnu12	0.601008593						
2510	Gm24624	Gm24149	0.601008593						
2511	Gm24624	Tmeff1	0.601008593						
2512	Gm24624	Gm23928	0.601008593						
2513	Gm24624	LOC102639563	0.601008593						
2514	Gm24624	Vaultrc5	0.601008593						
2515	Gm24624	Inmt	0.601008593						
2516	Gm24624	Fam107a	0.601008593						
2517	Gm24624	mt-Tk	0.601008593						
2518	Gm24624	Glrx3	0.601008593						
2519	Gm24624	mt-Th	0.601008593						
2520	Gm24624	Ddit4	0.601008593						
2521	Gm24624	mt-Tp	0.601008593						
2522	Gm24624	mt-Ta	0.601008593						
2523	Gm24624	Mpv17	-0.601008593						
2524	Gm24624	Gm6245	-0.601008593						
2525	Gm24624	Cd59a	-0.601008593						
2526	Gm24624	Tmem159	-0.601008593						
-----	----------	--------	--------						
2527	Gm24624	Acot2	-0.601008593						
2528	Gm24624	Dhdh	-0.601008593						
2529	Gm24624	Fam213a	-0.601008593						
2530	Gm24624	Nmnat1	-0.601008593						
2531	Gm24624	Coq5	-0.601008593						
2532	Gm24624	Tmem184c	-0.601008593						
2533	Gm24624	Nr4a1	-0.601008593						
2534	Gm24624	Uprt	-0.601008593						
2535	Gm24624	Nsun3	-0.601008593						
2536	Gm24624	Coq5	-0.601008593						
2537	Gm24624	BC023105	-0.601008593						
2538	Gm24624	Egr1	-0.601008593						
2539	Gm24624	Fos	-0.601008593						
2540	Gm24624	Gm5346	-0.601008593						
2541	Gm24624	Murc	-0.601008593						
2542	LOC102633726	Gm20747	0.607448307						
2543	LOC102633726	Trdn	0.610520962						
2544	LOC102633726	Snora74a	0.610520962						
2545	LOC102633726	mt-Ts2	0.610520962						
2546	LOC102633726	Gm22866	0.610520962						
2547	LOC102633726	Rnu12	0.610520962						
2548	LOC102633726	Tmeff1	0.610520962						
2549	LOC102633726	Gm23928	0.602562509						
2550	LOC102633726	LOC102639563	0.610520962						
2551	LOC102633726	Vaultrc5	0.610520962						
2552	LOC102633726	Inmt	0.610520962						
2553	LOC102633726	Fam107a	0.610520962						
2554	LOC102633726	mt-Tk	0.610520962						
2555	LOC102633726	Brox	0.610520962						
2556	LOC102633726	Glrx3	0.610520962						
2557	LOC102633726	mt-Th	0.610520962						
2558	LOC102633726	Ddit4	0.610520962						
2559	LOC102633726	mt-Tp	0.610520962						
2560	LOC102633726	mt-Ta	0.610520962						
2561	LOC102633726	Mpv17	-0.610520962						
2562	LOC102633726	Gm6245	-0.610520962						
2563	LOC102633726	Cd59a	-0.610520962						
2564	LOC102633726	Tmem159	-0.601031592						
2565	LOC102633726	Acot2	-0.610520962						
2566	LOC102633726	Dhdh	-0.610520962						
2567	LOC102633726	Fam213a	-0.610520962						
2568	LOC102633726	Nmnat1	-0.605873152						
2569	LOC102633726	Coq5	-0.610520962						
2570	LOC102633726	Tmem184c	-0.610520962						
2571	LOC102633726	Nrn1	-0.610300306						
2572	LOC102633726	Uprt	-0.610520962						
ID	Gene	Gene2	Score						
--------	------------	---------	---------						
2573	LOC102633726	Nsun3	-0.610520962						
2574	LOC102633726	Gm10718	-0.609800071						
2575	LOC102633726	Nr4a1	-0.610520962						
2576	LOC102633726	BC023105	-0.605373598						
2577	LOC102633726	Egr1	-0.610520962						
2578	LOC102633726	Fos	-0.610520962						
2579	LOC102633726	G530011O06Rik	-0.610520962						
2580	LOC102633726	Gm5346	-0.610520962						
2581	LOC102633726	Gm5912	-0.610520962						
2582	LOC102633726	Murc	-0.610520962						
2583	Gm20747	Trdn	0.607448307						
2584	Gm20747	Snora74a	0.607448307						
2585	Gm20747	mt-Ts2	0.607448307						
2586	Gm20747	Gm22866	0.607448307						
2587	Gm20747	Rnu12	0.607448307						
2588	Gm20747	Ppp4r2	0.607448307						
2589	Gm20747	Tmeff1	0.607448307						
2590	Gm20747	Gm23928	0.602562509						
2591	Gm20747	LOC102639563	0.607448307						
2592	Gm20747	Vaultr5c	0.607448307						
2593	Gm20747	Inmt	0.607448307						
2594	Gm20747	Fam107a	0.607448307						
2595	Gm20747	mt-Tk	0.607448307						
2596	Gm20747	Brox	0.607448307						
2597	Gm20747	Glrx3	0.607448307						
2598	Gm20747	mt-Th	0.607448307						
2599	Gm20747	Ddit4	0.607448307						
2600	Gm20747	mt-Tp	0.607448307						
2601	Gm20747	mt-Ta	0.607448307						
2602	Gm20747	Mpv17	-0.607448307						
2603	Gm20747	Gm6245	-0.607448307						
2604	Gm20747	Cd59a	-0.607448307						
2605	Gm20747	Tmem159	-0.60103159						
2606	Gm20747	Acot2	-0.607448307						
2607	Gm20747	Dhdh	-0.607448307						
2608	Gm20747	Fam213a	-0.607448307						
2609	Gm20747	Nmnat1	-0.605873152						
2610	Gm20747	Coq5	-0.607448307						
2611	Gm20747	Tmem184c	-0.607448307						
2612	Gm20747	Nrn1	-0.607448307						
2613	Gm20747	Uprt	-0.607448307						
2614	Gm20747	Nsun3	-0.607448307						
2615	Gm20747	Gm10718	-0.607448307						
2616	Gm20747	Nr4a1	-0.607448307						
2617	Gm20747	BC023105	-0.605373598						
2618	Gm20747	Egr1	-0.607448307						
	Gm20747	Gm5346	0.607448307						
---	---------	--------	-------------						
2619	Gm20747	Gm5912	-0.607448307						
2620	Gm20747	Murc	-0.607448307						
2621	Trdn	Snora74a	0.662913558						
2622	Trdn	mt-Ts2	0.600342649						
2623	Trdn	Gm22866	0.653174468						
2624	Trdn	Gm22749	0.634337211						
2625	Trdn	Tmeff1	0.65030418						
2626	Trdn	Gm23928	0.602562509						
2627	Trdn	Gm5346	0.657448885						
2628	Trdn	Gm5912	0.651967258						
2629	Trdn	Murc	-0.662913558						
2630	Trdn	Cd59a	0.637322477						
2631	Trdn	Vaultrc5	0.662913558						
2632	Trdn	Inmt	0.646471019						
2633	Trdn	Brox	0.657411274						
2634	Trdn	mt-Tk	0.662913558						
2635	Trdn	Tmem159	-0.60103159						
2636	Trdn	Gm6245	-0.638394295						
2637	Trdn	Acot2	-0.662913558						
2638	Trdn	Dhdh	-0.622508261						
2639	Trdn	Fam213a	-0.643220229						
2640	Trdn	Coq5	-0.662913558						
2641	Trdn	Tmem184c	-0.647554647						
2642	Trdn	Nrn1	-0.610300306						
2643	Snora74a	mt-Ts2	0.716709874						
2644	Snora74a	Gm22866	0.716709874						
2645	Snora74a	Rnu12	0.714196988						
2646	Snora74a	Gm22749	0.634337211						
2647	Snora74a	Tmeff1	0.65030418						
2648	Snora74a	Gm10718	-0.609800071						
2649	Snora74a	Gm5346	-0.657448885						
2650	Snora74a	Gm5912	-0.651967258						
2651	Snora74a	Murc	-0.662913558						
2652	Snora74a	mt-Ts2	0.716709874						
2653	Snora74a	Gm22866	0.716709874						
2654	Snora74a	Rnu12	0.714196988						
2655	Snora74a	Gm22749	0.634337211						
2656	Snora74a	Tmeff1	0.65030418						
2657	Snora74a	Gm23928	0.602562509						
2658	Snora74a	LOC102639563	0.612052689						
2659	Snora74a	Vaultrc5	0.716709874						
2660	Snora74a	Inmt	0.646471019						
2661	Snora74a	Fam107a	0.62496117						
2662	Snora74a	mt-Tk	0.716709874						
2663	Snora74a	Glrx3	0.616971069						
2664	Snora74a	mt-Th	0.66178471						
Line	Gene 1	Gene 2	Value						
------	--------	--------	---------						
2665	Snora74a	mt-Tp	0.667405111						
2666	Snora74a	mt-Ta	0.680121023						
2667	Snora74a	Mpv17	-0.61068715						
2668	Snora74a	Gm6245	-0.638394295						
2669	Snora74a	Cd59a	-0.637322477						
2670	Snora74a	Tmem159	-0.60103159						
2671	Snora74a	Acot2	-0.679628534						
2672	Snora74a	Dhdh	-0.622508261						
2673	Snora74a	Fam213a	-0.643220229						
2674	Snora74a	Nmnat1	-0.605873152						
2675	Snora74a	Coq5	-0.677305385						
2676	Snora74a	Tmem184c	-0.651508083						
2677	Snora74a	Nrn1	-0.610300306						
2678	Snora74a	Uprt	-0.679628534						
2679	Snora74a	Nsun3	-0.673017501						
2680	Snora74a	BC023105	-0.605373598						
2681	Snora74a	Gm5912	-0.651967258						
2682	Snora74a	Murc	-0.716709874						
2683	mt-Ts2	Gm22866	0.810797753						
2684	mt-Ts2	Rnu12	0.714196988						
2685	mt-Ts2	Tmeff1	0.65030418						
2686	mt-Ts2	Gm23928	0.602562509						
2687	mt-Ts2	LOC102639563	0.612052689						
2688	mt-Ts2	Vaultrc5	0.728238836						
2689	mt-Ts2	Inmt	0.646471019						
2690	mt-Ts2	Fam107a	0.645410606						
2691	mt-Ts2	mt-Tk	0.720414242						
2692	mt-Ts2	Glrx3	0.616971069						
2693	mt-Ts2	mt-Th	0.66178471						
2694	mt-Ts2	Ddit4	0.63226978						
2695	mt-Ts2	mt-Tp	0.667405111						
2696	mt-Ts2	mt-Ta	0.680121023						
2697	mt-Ts2	Mpv17	-0.61068715						
2698	mt-Ts2	Gm6245	-0.638394295						
2699	mt-Ts2	Cd59a	-0.637322477						
2700	mt-Ts2	Tmem159	-0.60103159						
2701	mt-Ts2	Acot2	-0.679628534						
2702	mt-Ts2	Dhdh	-0.622508261						
2703	mt-Ts2	Fam213a	-0.643220229						
2704	mt-Ts2	Nmnat1	-0.605873152						
2705	mt-Ts2	Coq5	-0.677305385						
2706	mt-Ts2	Tmem184c	-0.651508083						
2707	mt-Ts2	Nrn1	-0.610300306						
2708	mt-Ts2	Uprt	-0.651921824						
2709	mt-Ts2	Nsun3	-0.673017501						
2710	mt-Ts2	Gm10718	-0.609800071						
2711	mt-Ts2	Nr4a1	-0.747000222						
2712	mt-Ts2	BC023105	-0.605373598						
2713	mt-Ts2	Egr1	-0.61652364						
2714	mt-Ts2	Fos	-0.652720916						
2715	mt-Ts2	G530011O06Rik	-0.606523901						
2716	mt-Ts2	Gm5346	-0.657448885						
2717	mt-Ts2	Gm5912	-0.651967258						
2718	mt-Ts2	Murc	-0.822093546						
2719	Gm22866	Rnu12	0.714196988						
2720	Gm22866	Gm22749	0.634337211						
2721	Gm22866	Tmeff1	0.65030418						
2722	Gm22866	Gm23928	0.602562509						
2723	Gm22866	LOC102639563	0.612052689						
2724	Gm22866	Vaultrc5	0.728238836						
2725	Gm22866	Inmt	0.646471019						
2726	Gm22866	Fam107a	0.645410606						
2727	Gm22866	mt-Tk	0.720414242						
2728	Gm22866	Glrx3	0.616971069						
2729	Gm22866	mt-Th	0.66178471						
2730	Gm22866	Ddit4	0.6326978						
2731	Gm22866	mt-Tp	0.667405111						
2732	Gm22866	mt-Ta	0.680121023						
2733	Gm22866	Mpv17	-0.61068715						
2734	Gm22866	Gm6245	-0.638394295						
2735	Gm22866	Cd59a	-0.637322477						
2736	Gm22866	Tmem159	-0.60103159						
2737	Gm22866	Acot2	-0.679628534						
2738	Gm22866	Dhdh	-0.622508261						
2739	Gm22866	Fam213a	-0.643220229						
2740	Gm22866	Nmmt1	-0.605873152						
2741	Gm22866	Coq5	-0.677305385						
2742	Gm22866	Tmem184c	-0.651508083						
2743	Gm22866	Nrn1	-0.610300306						
2744	Gm22866	Uprt	-0.651921824						
2745	Gm22866	Nsun3	-0.673017501						
2746	Gm22866	Nr4a1	-0.685927353						
2747	Gm22866	BC023105	-0.605373598						
2748	Gm22866	Gm5346	-0.657448885						
2749	Gm22866	Gm5912	-0.651967258						
2750	Gm22866	Murc	-0.810797753						
2751	Rnu12	Gm22749	0.621666819						
2752	Rnu12	Tmeff1	0.65030418						
2753	Rnu12	Gm23928	0.602562509						
2754	Rnu12	LOC102639563	0.612052689						
2755	Rnu12	Vaultrc5	0.714196988						
2756	Rnu12	Inmt	0.646471019						
----	-----	----------------	------------	------------					
2757	Rnu12	Fam107a	0.645410606						
2758	Rnu12	mt-Tk	0.714196988						
2759	Rnu12	Brox	0.633692105						
2760	Rnu12	Glrx3	0.616971069						
2761	Rnu12	mt-Th	0.661784711						
2762	Rnu12	Ddit4	0.632269798						
2763	Rnu12	mt-Tp	0.667405111						
2764	Rnu12	mt-Ta	0.680121023						
2765	Rnu12	Mpv17	-0.61068715						
2766	Rnu12	Gm6245	-0.638394295						
2767	Rnu12	Cd59a	-0.637322477						
2768	Rnu12	Tmem159	-0.60103159						
2769	Rnu12	Acot2	-0.679628534						
2770	Rnu12	Dhdh	-0.622508261						
2771	Rnu12	Fam213a	-0.643220229						
2772	Rnu12	Nmnat1	-0.605873152						
2773	Rnu12	Coq5	-0.677305385						
2774	Rnu12	Tmem184c	-0.651508083						
2775	Rnu12	Nrn1	-0.610300306						
2776	Rnu12	Uprt	-0.651921824						
2777	Rnu12	Nsun3	-0.673017501						
2778	Rnu12	Nr4a1	-0.714196988						
2779	Rnu12	BC023105	-0.60537598						
2780	Rnu12	Egr1	-0.608129223						
2781	Rnu12	Fos	-0.661717656						
2782	Rnu12	G530011O06Rik	-0.684519954						
2783	Rnu12	Gm5346	-0.657448885						
2784	Rnu12	Gm5912	-0.651967258						
2785	Rnu12	Murc	-0.714196988						
2786	Ppp4r2	Inmt	0.646471019						
2787	Ppp4r2	Brox	0.657411274						
2788	Ppp4r2	Mpv17	-0.61068715						
2789	Ppp4r2	Tmem159	-0.60103159						
2790	Ppp4r2	Gm10718	-0.609800071						
2791	Ppp4r2	Nr4a1	-0.646217126						
2792	Ppp4r2	Egr1	-0.696533816						
2793	Ppp4r2	Fos	-0.695614744						
2794	Ppp4r2	G530011O06Rik	-0.725777902						
2795	Ppp4r2	Gm5346	-0.657448885						
2796	Ppp4r2	Gm5912	-0.651967258						
2797	Ppp4r2	Murc	-0.708092287						
2798	Gm22749	Gm24149	0.634337211						
2799	Gm22749	Gm23928	0.602562509						
2800	Gm22749	Vaultrc5	0.634337211						
2801	Gm22749	Inmt	0.634337211						
2802	Gm22749	Brox	0.627581231						
---	---	---	---						
2803	Gm22749	mt-Ta	0.634337211						
2804	Gm22749	Mpv17	-0.61068715						
2805	Gm22749	Gm6245	-0.634337211						
2806	Gm22749	Cd59a	-0.634337211						
2807	Gm22749	Tmem159	-0.60103159						
2808	Gm22749	Acot2	-0.634337211						
2809	Gm22749	Dhdh	-0.622508261						
2810	Gm22749	Fam213a	-0.634337211						
2811	Gm22749	Coq5	-0.634337211						
2812	Gm22749	Tmem184c	-0.634337211						
2813	Gm22749	Nrn1	-0.610300306						
2814	Gm22749	Uprt	-0.634337211						
2815	Gm22749	Nsun3	-0.634337211						
2816	Gm22749	Gm5346	-0.634337211						
2817	Gm24149	Gm23928	0.602562509						
2818	Gm24149	Fam107a	0.632030655						
2819	Gm24149	Dhdh	-0.619438228						
2820	Gm24149	Tmem184c	-0.651508083						
2821	Gm24149	Nrn1	-0.610300306						
2822	Gm24149	Nsun3	-0.63332989						
2823	Tmeff1	Gm23928	0.602562509						
2824	Tmeff1	LOC102639563	0.612052689						
2825	Tmeff1	Vaultrc5	0.65030418						
2826	Tmeff1	Inmt	0.646471019						
2827	Tmeff1	Fam107a	0.612505914						
2828	Tmeff1	mt-Tk	0.65030418						
2829	Tmeff1	Glrx3	0.616971069						
2830	Tmeff1	mt-Th	0.65030418						
2831	Tmeff1	Ddit4	0.63226978						
2832	Tmeff1	mt-Tp	0.65030418						
2833	Tmeff1	mt-Ta	0.65030418						
2834	Tmeff1	Mpv17	-0.61068715						
2835	Tmeff1	Gm6245	-0.638394295						
2836	Tmeff1	Cd59a	-0.637322477						
2837	Tmeff1	Tmem159	-0.60103159						
2838	Tmeff1	Acot2	-0.65030418						
2839	Tmeff1	Dhdh	-0.622508261						
2840	Tmeff1	Fam213a	-0.643220229						
2841	Tmeff1	Nmnat1	-0.605873152						
2842	Tmeff1	Coq5	-0.65030418						
2843	Tmeff1	Tmem184c	-0.65030418						
2844	Tmeff1	Nrn1	-0.610300306						
2845	Tmeff1	Uprt	-0.65030418						
2846	Tmeff1	Nsun3	-0.65030418						
2847	Tmeff1	Gm10718	-0.609800071						
2848	Tmeff1	Nr4a1	-0.645284069						
---	---	---	---						
2849	Tmeff1	BC023105	-0.605373598						
2850	Tmeff1	Fos	-0.620415975						
2851	Tmeff1	Gm5346	-0.634603988						
2852	Tmeff1	Gm5912	-0.65030418						
2853	Tmeff1	Murc	-0.65030418						
2854	Gm23928	LOC102639563	0.602562509						
2855	Gm23928	Vaultrc5	0.602562509						
2856	Gm23928	Inmt	0.602562509						
2857	Gm23928	Fam107a	0.602562509						
2858	Gm23928	mt-Tk	0.602562509						
2859	Gm23928	Brox	0.602562509						
2860	Gm23928	Glrx3	0.602562509						
2861	Gm23928	mt-Th	0.602562509						
2862	Gm23928	Ddit4	0.602562509						
2863	Gm23928	mt-Tp	0.602562509						
2864	Gm23928	mt-Ta	0.602562509						
2865	Gm23928	Mpv17	-0.602562509						
2866	Gm23928	Gm6245	-0.602562509						
2867	Gm23928	Cd59a	-0.602562509						
2868	Gm23928	Tmem159	-0.60103159						
2869	Gm23928	Acot2	-0.602562509						
2870	Gm23928	Dhdh	-0.602562509						
2871	Gm23928	Fam213a	-0.602562509						
2872	Gm23928	Nmnat1	-0.602562509						
2873	Gm23928	Coq5	-0.602562509						
2874	Gm23928	Tmem184C	-0.602562509						
2875	Gm23928	Nrn1	-0.602562509						
2876	Gm23928	Uprt	-0.602562509						
2877	Gm23928	Nsun3	-0.602562509						
2878	Gm23928	Nr4a1	-0.602562509						
2879	Gm23928	Egr1	-0.602562509						
2880	Gm23928	Fos	-0.602562509						
2881	Gm23928	G330011O06Rik	-0.602562509						
2882	Gm23928	Gm5346	-0.602562509						
2883	Gm23928	Gm5912	-0.602562509						
2884	Gm23928	Murc	-0.602562509						
2885	LOC102639563	Vaultrc5	0.6102052689						
2886	LOC102639563	Inmt	0.6102052689						
2887	LOC102639563	Fam107a	0.6102052689						
2888	LOC102639563	mt-Tk	0.6102052689						
2889	LOC102639563	Glrx3	0.6102052689						
2890	LOC102639563	mt-Th	0.6102052689						
2891	LOC102639563	Ddit4	0.6102052689						
2892	LOC102639563	mt-Tp	0.6102052689						
2893	LOC102639563	mt-Ta	0.6102052689						
2894	LOC102639563	Mpv17	-0.61068715						
Gene1	Gene2	Correlation							
-----------	-----------	--------------							
LOC102639563	Gm6245	-0.612052689							
LOC102639563	Cd59a	-0.612052689							
LOC102639563	Tmem159	-0.60103159							
LOC102639563	Acot2	-0.612052689							
LOC102639563	Dhhd	-0.612052689							
LOC102639563	Fam213a	-0.612052689							
LOC102639563	Nmnat1	-0.605873152							
LOC102639563	Coq5	-0.612052689							
LOC102639563	Tmem184c	-0.612052689							
LOC102639563	Nrn1	-0.610300306							
LOC102639563	Uprt	-0.612052689							
LOC102639563	Nsun3	-0.612052689							
LOC102639563	Gm10718	-0.609800071							
LOC102639563	Nr4a1	-0.612052689							
LOC102639563	BC023105	-0.605373598							
LOC102639563	Egr1	-0.612052689							
LOC102639563	Nmnat1	-0.605873152							
LOC102639563	Uprt	-0.612052689							
LOC102639563	Mpv17	-0.61068715							
LOC102639563	Muc	-0.612052689							
LOC102639563	Inmt	0.646471019							
LOC102639563	Fam107a	0.645410606							
LOC102639563	mt-Tk	0.720414242							
LOC102639563	Glrx3	0.616971069							
LOC102639563	mt-Th	0.66178471							
LOC102639563	Ddit4	0.63226978							
LOC102639563	mt-Tp	0.667405111							
LOC102639563	mt-Ta	0.680121023							
LOC102639563	Muc	0.651921824							
LOC102639563	Inmt	0.645410606							

Note: The table contains gene IDs and their correlation values with other genes.
2941	Inmt	mt-Tk	0.646471019		
2942	Inmt	Brox	0.646471019		
2943	Inmt	Glrx3	0.616971069		
2944	Inmt	mt-Th	0.646471019		
2945	Inmt	Ddit4	0.63226978		
2946	Inmt	mt-Tp	0.646471019		
2947	Inmt	mt-Ta	0.646471019		
2948	Inmt	Mpv17	-0.61068715		
2949	Inmt	Gm6245	-0.638394295		
2950	Inmt	Cd59a	-0.637322477		
2951	Inmt	Tmem159	-0.60103159		
2952	Inmt	Acot2	-0.646471019		
2953	Inmt	Dhdh	-0.622508261		
2954	Inmt	Fam213a	-0.643220229		
2955	Inmt	Nmnat1	-0.605873152		
2956	Inmt	Coq5	-0.646471019		
2957	Inmt	Tmem184c	-0.646471019		
2958	Inmt	Nrn1	-0.610300306		
2959	Inmt	Uprt	-0.646471019		
2960	Inmt	Nsun3	-0.646471019		
2961	Inmt	Nr4a1	-0.646471019		
2962	Inmt	BC023105	-0.605373598		
2963	Inmt	Egr1	-0.604479588		
2964	Inmt	Fos	-0.646471019		
2965	Inmt	G530011O06Rik	-0.646471019		
2966	Inmt	Gm5346	-0.646471019		
2967	Inmt	Gm5912	-0.646471019		
2968	Inmt	Murc	-0.646471019		
2969	Fam107a	mt-Tk	0.645410606		
2970	Fam107a	Brox	0.645410606		
2971	Fam107a	Glrx3	0.616971069		
2972	Fam107a	mt-Th	0.645410606		
2973	Fam107a	Ddit4	0.63226978		
2974	Fam107a	mt-Tp	0.645410606		
2975	Fam107a	mt-Ta	0.645410606		
2976	Fam107a	Mpv17	-0.61068715		
2977	Fam107a	Gm6245	-0.638394295		
2978	Fam107a	Cd59a	-0.637322477		
2979	Fam107a	Tmem159	-0.60103159		
2980	Fam107a	Acot2	-0.645410606		
2981	Fam107a	Dhdh	-0.622508261		
2982	Fam107a	Fam213a	-0.643220229		
2983	Fam107a	Nmnat1	-0.605873152		
2984	Fam107a	Coq5	-0.645410606		
2985	Fam107a	Tmem184c	-0.645410606		
2986	Fam107a	Nrn1	-0.610300306		
---	---	---	---		
2987	Fam107a	Uprt	-0.645410606		
2988	Fam107a	Nsun3	-0.645410606		
2989	Fam107a	Nr4a1	-0.645410606		
2990	Fam107a	Egr1	-0.645410606		
2991	Fam107a	Fos	-0.645410606		
2992	Fam107a	G530011O06Rik	-0.645410606		
2993	Fam107a	Gm5346	-0.645410606		
2994	Fam107a	Murc	-0.645410606		
2995	mt-Tk	Brox	0.657411274		
2996	mt-Tk	Glnx3	0.616971069		
2997	mt-Tk	mt-Th	0.66178471		
2998	mt-Tk	Ddit4	0.63226978		
2999	mt-Tk	mt-Tp	0.667405111		
3000	mt-Tk	mt-Ta	0.680121023		
3001	mt-Tk	Mpv17	-0.61068715		
3002	mt-Tk	Gm6245	-0.638394295		
3003	mt-Tk	Cd59a	-0.637322477		
3004	mt-Tk	Tmem159	-0.60103159		
3005	mt-Tk	Acot2	-0.679628534		
3006	mt-Tk	Dhdh	-0.622508261		
3007	mt-Tk	Fam213a	-0.643220229		
3008	mt-Tk	Nmnat1	-0.605873152		
3009	mt-Tk	Coq5	-0.677305385		
3010	mt-Tk	Tmem184c	-0.651508083		
3011	mt-Tk	Nrn1	-0.610300306		
3012	mt-Tk	Uprt	-0.651921824		
3013	mt-Tk	Nsun3	-0.673017501		
3014	mt-Tk	Gm10718	-0.609800071		
3015	mt-Tk	Nr4a1	-0.720414242		
3016	mt-Tk	Egr1	-0.704399843		
3017	mt-Tk	Fos	-0.695614744		
3018	mt-Tk	G530011O06Rik	-0.720414242		
3019	mt-Tk	Gm5346	-0.657488885		
3020	mt-Tk	Gm5912	-0.651967258		
3021	mt-Tk	Murc	-0.720414242		
3022	Brox	Glnx3	0.616971069		
3023	Brox	mt-Th	0.648440869		
3024	Brox	Ddit4	0.63226978		
3025	Brox	mt-Tp	0.605450373		
3026	Brox	mt-Ta	0.657411274		
3027	Brox	Mpv17	-0.61068715		
3028	Brox	Gm6245	-0.638394295		
3029	Brox	Tmem159	-0.60103159		
3030	Brox	Dhdh	-0.622508261		
3031	Brox	Fam213a	-0.643220229		
3032	Brox	Coq5	-0.626735973		
	Brox	Tmem184c	-0.641514331		
----	------------	-----------	--------------		
3034	Brox	Nrn1	-0.610300306		
3035	Brox	Uprt	-0.651921824		
3036	Brox	Gm10718	-0.609800071		
3037	Brox	Nr4a1	-0.657411274		
3038	Brox	Egr1	-0.657411274		
3039	Brox	Fos	-0.657411274		
3040	Brox	G530011O06Rik	-0.657411274		
3041	Brox	Gm5346	-0.657411274		
3042	Brox	Gm5912	-0.651967258		
3043	Brox	Murc	-0.657411274		
3044	Glrx3	mt-Th	0.616971069		
3045	Glrx3	Ddit4	0.616971069		
3046	Glrx3	mt-Tp	0.616971069		
3047	Glrx3	mt-Ta	0.616971069		
3048	Glrx3	Mpv17	-0.61068715		
3049	Glrx3	Gm6245	-0.616971069		
3050	Glrx3	Cd59a	-0.616971069		
3051	Glrx3	Tmem159	-0.60103159		
3052	Glrx3	Acot2	-0.616971069		
3053	Glrx3	Dhdh	-0.616971069		
3054	Glrx3	Fam213a	-0.616971069		
3055	Glrx3	Nmnat1	-0.605873152		
3056	Glrx3	Coq5	-0.616971069		
3057	Glrx3	Tmem184c	-0.616971069		
3058	Glrx3	Nrn1	-0.610300306		
3059	Glrx3	Uprt	-0.616971069		
3060	Glrx3	Nsun3	-0.616971069		
3061	Glrx3	Gm10718	-0.609800071		
3062	Glrx3	Nr4a1	-0.616971069		
3063	Glrx3	Egr1	-0.616971069		
3064	Glrx3	Fos	-0.616971069		
3065	Glrx3	G530011O06Rik	-0.616971069		
3066	Glrx3	Gm5346	-0.616971069		
3067	Glrx3	Gm5912	-0.616971069		
3068	Glrx3	Murc	-0.616971069		
3069	mt-Th	Ddit4	0.63226978		
3070	mt-Th	mt-Tp	0.66178471		
3071	mt-Th	mt-Ta	0.66178471		
3072	mt-Th	Mpv17	-0.61068715		
3073	mt-Th	Gm6245	-0.638394295		
3074	mt-Th	Cd59a	-0.637322477		
3075	mt-Th	Tmem159	-0.60103159		
3076	mt-Th	Acot2	-0.66178471		
3077	mt-Th	Dhdh	-0.622508261		
3078	mt-Th	Fam213a	-0.643220229		
	F	G	H	I	J
---	---	---	---	---	---
3079	mt-Th	Nmnat1	-0.605873152		
3080	mt-Th	Coq5	-0.66178471		
3081	mt-Th	Tmem184c	-0.651508083		
3082	mt-Th	Nrn1	-0.610300306		
3083	mt-Th	Upri	-0.651921824		
3084	mt-Th	Nsun3	-0.66178471		
3085	mt-Th	Gm10718	-0.609800071		
3086	mt-Th	Nr4a1	-0.66178471		
3087	mt-Th	BC023105	-0.605373598		
3088	mt-Th	Egr1	-0.66178471		
3089	mt-Th	Fos	-0.66178471		
3090	mt-Th	G530011O06Rik	-0.66178471		
3091	mt-Th	Gm5346	-0.657448885		
3092	mt-Th	Gm5912	-0.651967258		
3093	mt-Th	Murc	-0.66178471		
3094	Ddit4	mt-Tp	0.63226978		
3095	Ddit4	mt-Ta	0.63226978		
3096	Ddit4	Mpv17	-0.61068715		
3097	Ddit4	Gm6245	-0.63226978		
3098	Ddit4	Cd59a	-0.63226978		
3099	Ddit4	Tmem159	-0.60103159		
3100	Ddit4	Acot2	-0.63226978		
3101	Ddit4	Dhdh	-0.622508261		
3102	Ddit4	Fam213a	-0.63226978		
3103	Ddit4	Nmnat1	-0.605873152		
3104	Ddit4	Coq5	-0.63226978		
3105	Ddit4	Tmem184c	-0.63226978		
3106	Ddit4	Nrn1	-0.610300306		
3107	Ddit4	Upri	-0.63226978		
3108	Ddit4	Nsun3	-0.63226978		
3109	Ddit4	Gm10718	-0.609800071		
3110	Ddit4	Nr4a1	-0.63226978		
3111	Ddit4	Egr1	-0.63226978		
3112	Ddit4	Fos	-0.63226978		
3113	Ddit4	G530011O06Rik	-0.63226978		
3114	Ddit4	Gm5346	-0.63226978		
3115	Ddit4	Murc	-0.63226978		
3116	mt-Tp	mt-Ta	0.667405111		
3117	mt-Tp	Mpv17	-0.61068715		
3118	mt-Tp	Gm6245	-0.638394295		
3119	mt-Tp	Cd59a	-0.637322477		
3120	mt-Tp	Tmem159	-0.60103159		
3121	mt-Tp	Acot2	-0.667405111		
3122	mt-Tp	Dhdh	-0.622508261		
3123	mt-Tp	Fam213a	-0.643220229		
3124	mt-Tp	Nmnat1	-0.605873152		
	mt-Tp				
-----	-------------	---------	----------		
3125	mt-Tp	Coq5	-0.667405111		
3126	mt-Tp	Tmem184c	-0.651508083		
3127	mt-Tp	Nrn1	-0.610300306		
3128	mt-Tp	Uprt	-0.651921824		
3129	mt-Tp	Nsun3	-0.667405111		
3130	mt-Tp	Gm10718	-0.609800071		
3131	mt-Tp	Nr4a1	-0.667405111		
3132	mt-Tp	BC023105	-0.605373598		
3133	mt-Tp	Egr1	-0.667405111		
3134	mt-Tp	Fos	-0.667405111		
3135	mt-Tp	G530011O06Rik	-0.667405111		
3136	mt-Tp	Gm5346	-0.657448885		
3137	mt-Tp	Gm5912	-0.651967258		
3138	mt-Tp	Murc	-0.667405111		
3139	mt-Ta	Mpv17	-0.61068715		
3140	mt-Ta	Gm6245	-0.638394295		
3141	mt-Ta	Cd59a	-0.637322477		
3142	mt-Ta	Tmem159	-0.60103159		
3143	mt-Ta	Acot2	-0.679628534		
3144	mt-Ta	Dhdh	-0.622508261		
3145	mt-Ta	Fam213a	-0.643220229		
3146	mt-Ta	Nmnat1	-0.605873152		
3147	mt-Ta	Coq5	-0.677305385		
3148	mt-Ta	Tmem184c	-0.651508083		
3149	mt-Ta	Nrn1	-0.610300306		
3150	mt-Ta	Uprt	-0.651921824		
3151	mt-Ta	Nsun3	-0.673017501		
3152	mt-Ta	Nr4a1	-0.680121023		
3153	mt-Ta	BC023105	-0.605373598		
3154	mt-Ta	Egr1	-0.640973115		
3155	mt-Ta	Fos	-0.680121023		
3156	mt-Ta	G530011O06Rik	-0.680121023		
3157	mt-Ta	Gm5346	-0.657448885		
3158	mt-Ta	Gm5912	-0.651967258		
3159	mt-Ta	Murc	-0.680121023		
3160	Mpv17	Gm6245	0.61068715		
3161	Mpv17	Cd59a	0.61068715		
3162	Mpv17	Tmem159	0.60103159		
3163	Mpv17	Acot2	0.61068715		
3164	Mpv17	Dhdh	0.61068715		
3165	Mpv17	Fam213a	0.61068715		
3166	Mpv17	Nmnat1	0.605873152		
3167	Mpv17	Coq5	0.61068715		
3168	Mpv17	Tmem184c	0.61068715		
3169	Mpv17	Nrn1	0.610300306		
3170	Mpv17	Uprt	0.61068715		
---	---	---	---		
3171	Mpv17	Nsun3	0.61068715		
3172	Mpv17	Gm10718	0.609800071		
3173	Mpv17	Nr4a1	0.61068715		
3174	Mpv17	BC023105	0.605373598		
3175	Mpv17	Egr1	0.61068715		
3176	Mpv17	Fos	0.61068715		
3177	Mpv17	G530011O06Rik	0.61068715		
3178	Mpv17	Gm5346	0.61068715		
3179	Mpv17	Gm5912	0.61068715		
3180	Mpv17	Murc	0.61068715		
3181	Gm6245	Cd59a	0.637322477		
3182	Gm6245	Tmem159	0.60103159		
3183	Gm6245	Acot2	0.638394295		
3184	Gm6245	Dhdh	0.622508261		
3185	Gm6245	Fam213a	0.638394295		
3186	Gm6245	Nmnat1	0.605873152		
3187	Gm6245	Coq5	0.638394295		
3188	Gm6245	Tmem184c	0.638394295		
3189	Gm6245	Nrn1	0.610300306		
3190	Gm6245	Uprt	0.638394295		
3191	Gm6245	Nsun3	0.638394295		
3192	Gm6245	Gm10718	0.609800071		
3193	Gm6245	Nr4a1	0.638394295		
3194	Gm6245	BC023105	0.605373598		
3195	Gm6245	Egr1	0.62827716		
3196	Gm6245	Fos	0.638394295		
3197	Gm6245	G530011O06Rik	0.621019387		
3198	Gm6245	Gm5346	0.638394295		
3199	Gm6245	Gm5912	0.638394295		
3200	Gm6245	Murc	0.638394295		
3201	Cd59a	Tmem159	0.60103159		
3202	Cd59a	Acot2	0.637322477		
3203	Cd59a	Dhdh	0.622508261		
3204	Cd59a	Fam213a	0.637322477		
3205	Cd59a	Nmnat1	0.605873152		
3206	Cd59a	Coq5	0.637322477		
3207	Cd59a	Tmem184c	0.637322477		
3208	Cd59a	Nrn1	0.610300306		
3209	Cd59a	Uprt	0.637322477		
3210	Cd59a	Nsun3	0.637322477		
3211	Cd59a	BC023105	0.605373598		
3212	Cd59a	Gm5346	0.637322477		
3213	Cd59a	Gm5912	0.637322477		
3214	Cd59a	Murc	0.637322477		
3215	Tmem159	Acot2	0.60103159		
3216	Tmem159	Dhdh	0.60103159		
	Tmem159	Fam213a	0.60103159		
---	---------	---------	-------------		
3218	Tmem159	Nmnat1	0.60103159		
3219	Tmem159	Coq5	0.60103159		
3220	Tmem159	Tmem184c	0.60103159		
3221	Tmem159	Nrn1	0.60103159		
3222	Tmem159	Uprt	0.60103159		
3223	Tmem159	Nsun3	0.60103159		
3224	Tmem159	Gm10718	0.60103159		
3225	Tmem159	Nr4a1	0.60103159		
3226	Tmem159	Egr1	0.60103159		
3227	Tmem159	Fos	0.60103159		
3228	Tmem159	G530011O06Rik	0.60103159		
3229	Tmem159	Gm5346	0.60103159		
3230	Tmem159	Gm5912	0.60103159		
3231	Tmem159	Murc	0.60103159		
3232	Acot2	Dhdh	0.622508261		
3233	Acot2	Fam213a	0.643220229		
3234	Acot2	Nmnat1	0.605873152		
3235	Acot2	Coq5	0.677305385		
3236	Acot2	Tmem184c	0.651508083		
3237	Acot2	Nrn1	0.610300306		
3238	Acot2	Uprt	0.651921824		
3239	Acot2	Nsun3	0.673017501		
3240	Acot2	BC023105	0.605373598		
3241	Acot2	Gm5346	0.657448885		
3242	Acot2	Gm5912	0.651967258		
3243	Acot2	Murc	0.679628534		
3244	Dhdh	Fam213a	0.622508261		
3245	Dhdh	Nmnat1	0.605873152		
3246	Dhdh	Coq5	0.622508261		
3247	Dhdh	Tmem184c	0.622508261		
3248	Dhdh	Nrn1	0.610300306		
3249	Dhdh	Uprt	0.622508261		
3250	Dhdh	Nsun3	0.622508261		
3251	Dhdh	Nr4a1	0.622508261		
3252	Dhdh	BC023105	0.605373598		
3253	Dhdh	Egr1	0.622508261		
3254	Dhdh	Fos	0.622508261		
3255	Dhdh	G530011O06Rik	0.622508261		
3256	Dhdh	Gm5346	0.622508261		
3257	Dhdh	Gm5912	0.622508261		
3258	Dhdh	Murc	0.622508261		
3259	Fam213a	Nmnat1	0.605873152		
3260	Fam213a	Coq5	0.643220229		
3261	Fam213a	Tmem184c	0.643220229		
3262	Fam213a	Nrn1	0.610300306		
	Gene 1	Gene 2	Score		
---	-----------	----------	-------------		
3263	Fam213a	Uprt	0.643220229		
3264	Fam213a	Nsun3	0.643220229		
3265	Fam213a	Gm10718	0.609800071		
3266	Fam213a	Nr4a1	0.643220229		
3267	Fam213a	BC023105	0.605373598		
3268	Fam213a	Egr1	0.643220229		
3269	Fam213a	Fos	0.643220229		
3270	Fam213a	G530011O06Rik	0.643220229		
3271	Fam213a	Gm5346	0.643220229		
3272	Fam213a	Gm5912	0.643220229		
3273	Fam213a	Murc	0.643220229		
3274	Nmnat1	Coq5	0.605873152		
3275	Nmnat1	Tmem184c	0.605873152		
3276	Nmnat1	Nr1	0.605873152		
3277	Nmnat1	Uprt	0.605873152		
3278	Nmnat1	Nsun3	0.605873152		
3279	Nmnat1	Nr4a1	0.605873152		
3280	Nmnat1	BC023105	0.605373598		
3281	Nmnat1	Gm5346	0.605873152		
3282	Nmnat1	Gm5912	0.605873152		
3283	Nmnat1	Gm5912	0.605873152		
3284	Coq5	Tmem184c	0.651508083		
3285	Coq5	Nr1	0.610300306		
3286	Coq5	Uprt	0.651921824		
3287	Coq5	Nsun3	0.673017501		
3288	Coq5	Gm10718	0.602732694		
3289	Coq5	Nr4a1	0.677305385		
3290	Coq5	BC023105	0.605373598		
3291	Coq5	Fos	0.628958607		
3292	Coq5	G530011O06Rik	0.616075739		
3293	Coq5	Gm5346	0.657448885		
3294	Coq5	Gm5912	0.651967258		
3295	Coq5	Murc	0.677305385		
3296	Tmem184c	Nr1	0.610300306		
3297	Tmem184c	Uprt	0.651508083		
3298	Tmem184c	Nsun3	0.651508083		
3299	Tmem184c	Nr4a1	0.607968651		
3300	Tmem184c	BC023105	0.605373598		
3301	Tmem184c	G530011O06Rik	0.639262445		
3302	Tmem184c	Gm5346	0.651508083		
3303	Tmem184c	Murc	0.651508083		
3304	Nr1	Uprt	0.610300306		
3305	Nr1	Nsun3	0.610300306		
3306	Nr1	Nr4a1	0.60682593		
3307	Nr1	BC023105	0.605373598		
3308	Nr1	Gm5346	0.610300306		
---	---	---	---		
3309	Nrn1	Gm5912	0.610300306		
3310	Nrn1	Murc	0.610300306		
3311	Uprt	Nsun3	0.651921824		
3312	Uprt	Gm10718	0.609800071		
3313	Uprt	Nr4a1	0.651921824		
3314	Uprt	BC023105	0.605373598		
3315	Uprt	Egr1	0.651921824		
3316	Uprt	Fos	0.651921824		
3317	Uprt	G530011006Rik	0.62605167		
3318	Uprt	Gm5346	0.651921824		
3319	Uprt	Gm5912	0.651921824		
3320	Uprt	Murc	0.651921824		
3321	Nsun3	BC023105	0.605373598		
3322	Nsun3	Gm5346	0.657448885		
3323	Nsun3	Murc	0.673017501		
3324	Gm10718	Nr4a1	0.609800071		
3325	Gm10718	Egr1	0.609800071		
3326	Gm10718	Fos	0.609800071		
3327	Gm10718	Gm5346	0.609800071		
3328	Gm10718	Gm5912	0.609800071		
3329	Gm10718	Murc	0.609800071		
3330	Nr4a1	Egr1	0.704399843		
3331	Nr4a1	Fos	0.695614744		
3332	Nr4a1	G530011006Rik	0.740456125		
3333	Nr4a1	Gm5346	0.657448885		
3334	Nr4a1	Gm5912	0.638183711		
3335	Nr4a1	Murc	0.747000222		
3336	BC023105	Gm5912	0.605373598		
3337	Egr1	Fos	0.695614744		
3338	Egr1	G530011006Rik	0.704399843		
3339	Egr1	Gm5346	0.657448885		
3340	Egr1	Murc	0.704399843		
3341	Fos	G530011006Rik	0.695614744		
3342	Fos	Gm5346	0.657448885		
3343	Fos	Murc	0.695614744		
3344	G530011006Rik	Gm5346	0.657448885		
3345	G530011006Rik	Murc	0.722746106		
3346	Gm5346	Gm5912	0.651967258		
3347	Gm5346	Murc	0.657448885		
3348	Gm5912	Murc	0.651967258		
Table S4. Benjamini corrected P-values of the enrichment pathways in Figure 1B.

Term	P-value
Gamete generation	1.40E-04
Skeletal muscle cell differentiation	0.0042497
Methyltransferase activity	0.02957848
Methylation	0.03585928
Regulation of the force of heart contraction	0.03994466
Cellular response to reactive oxygen species	0.04164585
Response to hypoxia	0.04517363
Protein heterodimerization activity	0.04829376
Cellular response to organic substance	0.05682571
Reactive oxygen species metabolic process	0.06515804

P=0.05 is a significance threshold.
Table S5. Benjamini corrected P-values of the enrichment pathways in Figure 4C.

Term	P-value
Regulation of the force of heart contraction	0.002678
Response to reactive oxygen species	0.003656
Regulation of apoptosis	0.008735
Response to hypoxia	0.017106

P=0.05 is a significance threshold.
Heat map for entire genes. Magenta color indicates upregulated gene, while cyan color indicates downregulated gene. Gene expression is scaled by log10.
Figure S2. Heart rate of WT and MURC KO mouse heart during echocardiography after sham operation or 24 h after I/R. n = 10 per group.

Data are presented as mean ± SEM.
Figure S3. Effect of cardiospecific MURC overexpression in I/R injury. (A) LV systolic function of Tg-MURC mouse hearts 24 h after I/R. n = 5 per group. (B) Infarct size as measured by TTC and Evans blue staining of LV tissue from Tg-MURC mouse hearts 24 h after I/R. (C) Representative photo (left) and its illustration (right) of TTC and Evans blue staining. Blue, white and red regions represent the non-ischemic area, the infarct area and the non-infarct area at risk respectively. The area at risk consists of the infarct area and the non-infarct area at risk. Data are presented as mean ± SEM. n = 3 per group. N.S. indicates not significant (P ≥ 0.05). I/R, ischemia/reperfusion; LV, left ventricle; AAR, area at risk; IS, infarct size; TTC, triphenyltetrazolium chloride.
Figure S4. Gene silencing of MURC through siRNA in neonatal rat cardiomyocytes. (A) mRNA expression of MURC in neonatal rat cardiomyocytes 48 h after transfection with control siRNA, MURC siRNA1 and siRNA2. (B) Representative Western blots (upper) and its quantification (lower) of MURC in neonatal rat cardiomyocytes 72 h after transfection with control siRNA, MURC siRNA1 and siRNA2. Data are presented as mean ± SEM. *P < 0.05, **P < 0.01 compared with control siRNA. n = 3 per group. Gapdh, Glyceraldehyde-3-phosphate dehydrogenase.
Figure S5. MURC knockdown ameliorates ROS production in cardiomyocytes after H/R. (A) Representative photos of in vitro ROS detection as measured by Cell ROX staining in H/R stimulating-neonatal rat cardiomyocytes transfected with control siRNA, MURC siRNA1 or MURC siRNA2. (B) Quantification of in vitro ROS production. n = 3 per group. **P < 0.01 vs. corresponding normoxia group; * P < 0.05, **P < 0.01 vs. control siRNA in H/R group. Scale bar, 50 μm. ROS, reactive oxygen species; H/R, hypoxia-reoxygenation.
Figure S6. mRNA expression of NADPH oxidase (Nox) family genes in WT and MURC KO mouse hearts 24 h after I/R. Data are presented as mean ± SEM. *P < 0.05. n = 4 per groups. Rac1, RAS-related C3 botulinus toxin substrate 1.
Figure S7. (A-C) Representative Western blots (upper panel) and its quantification (lower graph) of the activation of apoptosis-related proteins in WT and MURC KO mouse hearts 24 h after I/R. Data are presented as mean ± SEM. n = 5 per group. ERK, extracellular signal-regulated kinase; p38, mitogen-activated protein kinase p38; Akt, phosphoinositide-3-kinase–protein kinase B.
Figure S8. A, Cardiomyocytes isolated from adult mouse heart after incubation for 24 h. Rod-shaped cells are alive cardiomyocytes. B and C, Representative TUNEL staining (B) and its quantification (C) of WT and MURC KO adult mouse cardiomyocytes after H$_2$O$_2$ exposure. The number of cell death was assessed by the percentage of TUNEL positive cells / DAPI positive cells. n = 5 per group. Data are presented as mean ± SEM. **P < 0.01. Scale bar indicates 50 μm.
Figure S9. STAT3 inhibitor cancels the cardioprotective effect of MURC deficiency. (A) Representative Western blots (upper) and its quantification (lower) of mouse hearts after WP1066 or vehicle i.p. injection daily for 3 days. n = 3 per group. *P < 0.05. Data are presented as mean ± SEM. WP1066, a STAT3 inhibitor.
Figure S10. Immunoprecipitation of MURC and STAT3 in neonatal rat cardiomyocytes transduced with Lac Z or Flag-human (h) MURC. IP, immunoprecipitation; IB, immunoblotting.
Figure S11. (A-F) Representative Western blots (upper panel) and its quantification (lower graph) of the caveola-related proteins in WT and MURC KO mouse hearts. n = 5 per group. Data are presented as mean ± SEM. **P < 0.01. PTRF, polymerase I and transcript release factor; SDPR, serum deprivation protein response; SRBC, SDR-related gene product that binds to C kinase.