Supplemental information

Alkali metal-linked triangular building blocks
assemble a high-nucleation lanthanoid
cluster based on single-molecule magnets

Yun-Lan Li, Hai-Ling Wang, Zhong-Hong Zhu, Xing-Lin Lu, Fu-Pei Liang, and Hua-Hong Zou
### Supporting Information

| Table S1. Crystallographic data of clusters 1–3. Related to Single-Crystal X-Ray Crystallography in STAR Method Details. |
|---------------------------------|-----------------|-----------------|
| **Formula**                    | C_{91}H_{115}Dy_{3}K_{2}O_{32}N_{4} | C_{138}H_{170}Dy_{6}K_{2}O_{53}N_{12} |
| **Formula weight**             | 2363.59         | 3898.07         |
| **T, K**                       | 100             | 293             |
| **Crystal system**             | monoclinic      | triclinic       |
| **Space group**                | C2/c            | P-1             |
| **a, Å**                       | 22.40684(14)    | 12.8171(3)      |
| **b, Å**                       | 17.60019(12)    | 14.7595(3)      |
| **c, Å**                       | 40.4813(2)      | 17.2511(3)      |
| **α, °**                       | 90              | 91.604(2)       |
| **β, °**                       | 91.1378(6)      | 109.452(2)      |
| **γ, °**                       | 90              | 90.893(2)       |
| **V, Å³**                      | 15961.27(18)    | 3074.90(12)     |
| **Z**                          | 8               | 1               |
| **D_c, g cm⁻³**                | 1.737           | 2.390           |
| **μ, mm⁻¹**                    | 16.43           | 7.913           |
| **F(000)**                     | 8280            | 2077.0          |
| **2θ range for data**          | 4.366 to 151.716 | 6.746 to 57.824 | 5.2 to 154.6 |
| **Refns coll.**                | 54032           | 40407           |
| **Unique reflns**              | 15802           | 14345           |
| **R_{int}**                    | 0.0514          | 0.0365          |
| **Observed data [I > 2σ(I)]**  | 14966           | 10722           |
| **N_{par}, N_{ref}**           | 1055, 15802     | 787, 14345      |
| **R_{I} (I > 2σ(I))**          | 0.0643          | 0.0394          |
| **wR_{2}² (all data)**         | 0.1793          | 0.0984          |
| **GOF**                        | 1.067           | 1.069           |

\[ R_1 = \frac{\Sigma||F_o||-|F_c||}{\Sigma|F_o|}, \quad wR_2 = \left[ \frac{\Sigma w(F_o^2-F_c^2)^2}{\Sigma w(F_o^2)^2} \right]^{1/2} \]
Figure S1. Formation mechanism of ligands $H_3L^1$ (R = C$_2$H$_5$OH) and $H_2L^2$ (R = CH$_3$OH). Related to Figure 1.
Figure S2. Coordinated polyhedron around the metal ions of clusters 1–3. Related to Figure 1.
Figure S3. IR spectra of clusters 1–3. Related to Infrared Spectra in STAR Method Details.
Figure S4. Thermogravimetric (TG) curves of clusters 1–3. Related to Thermogravimetric analyses in STAR Method Details.
Figure S5. Powder X-ray diffraction patterns (PXRD) of clusters 1–3. Related to Powder X-ray diffraction in STAR Method Details.
Figure S6. Loop curve graph of clusters 1–3 at 2 K. Related to Measurements of Magnetic in STAR Method Details.
Figure S7. Frequency and temperature dependence of the out-of-phase ($\chi'$) components under 0 Oe DC fields for clusters 1–3. Related to Figure 3.
Figure S8. Arrhenius plots generated from the temperature-dependent relaxation times extracted from the Cole–Cole fits of the AC susceptibilities. Symbols show the extracted times, and the lines are least-squares fits. Related to Figure 3.
Figure S9. The fitting comparison of experimental and theoretical values of mass spectral molecular ion peaks of cluster 1. Related to Figure 4.
Figure S10. The fitting comparison of experimental and theoretical values of mass spectral molecular ion peaks of cluster 2. Related to Figure 5.
Figure S11. The fitting comparison of experimental and theoretical values of mass spectral molecular ion peaks of cluster 3. Related to Figure 6.
Figure S1. The fitting comparison of experimental and theoretical values of mass spectral molecular ion peaks of cluster 3. Related to Figure 6.
Table S2. Selected bond lengths (Å) and angles (°) of clusters 1–3. Related to Single-Crystal X-Ray Crystallography in STAR Method Details.
See Supporting Information Table S2
### Table S3. SHAPE analysis of the Dy(III) and K(I) in the cluster 1. Related to Single-Crystal X-Ray Crystallography in STAR Method Details.

| Label     | Shape     | Symmetry | Distortion (°) |
|-----------|-----------|----------|----------------|
|           |           |          | Dy1 | Dy2      | Dy3      |
| EP-9      | $D_{9h}$  | Enneagon | 32.03402 | 32.19503 | 32.92997 |
| OPY-9     | $C_{6v}$  | Octagonal pyramid | 21.70521 | 22.06622 | 22.37165 |
| HBPY-9    | $D_{7h}$  | Heptagonal bipyramid | 16.16985 | 15.73974 | 16.16229 |
| JTC-9     | $C_{3v}$  | Triangular cupola | 14.53576 | 15.19843 | 15.09948 |
| JCCU-9    | $C_{4v}$  | Capped cube(J8) | 9.38175 | 9.08612 | 9.32769 |
| JCSAPR-9  | $C_{4v}$  | Capped cube | 8.50933 | 8.06204 | 8.36375 |
| JCSAPR-9  | $C_{4v}$  | Capped sq. antiprism | 7.03118 | 7.23693 | 7.58703 |
| CSAPR-9   | $C_{4v}$  | Capped square antiprism | 5.63736 | 5.89192 | 6.12814 |
| JTCTPR-9  | $D_{5h}$  | Tricapped trigonal prism (J51) | 7.19632 | 7.57074 | 7.93750 |
| TCTPR-9   | $D_{5h}$  | Tricapped trigonal prism | 6.26367 | 6.65164 | 6.82042 |
| JTDIC-9   | $C_{5v}$  | Tridiminished icosahedron (J63) | 12.77939 | 12.45961 | 12.58968 |
| HH-9      | $C_{2v}$  | Hula-hoop | 7.67841 | 6.82883 | 7.52646 |
| MFF-9     | $C_s$     | Muffin | 4.51240 | 4.74592 | 4.75972 |
|           |           |          | K1 | K2      |          |
| HP-7      | $D_{7h}$  | Heptagon | 35.44175 | 35.32174 |          |
| HPY-7     | $C_{6v}$  | Hexagonal pyramid | 17.11062 | 17.71296 |          |
| PBPY-7    | $D_{5h}$  | Pentagonal bipyramid | 13.42554 | 14.39715 |          |
| COC-7     | $C_{3v}$  | Capped octahedron | 8.27378 | 9.53824 |          |
| CTPR-7    | $C_{2v}$  | Capped trigonal prism | 9.36229 | 10.23588 |          |
| JPBPY-7   | $D_{5h}$  | Johnson pentagonal bipyramid (J13) | 17.67778 | 18.85227 |          |
| JETPY-7   | $C_{3v}$  | Elongated triangular pyramid (J7) | 18.06457 | 18.14182 |          |
Table S4. SHAPE analysis of the Dy(III) and K(I) in the cluster 2. Related to Single-Crystal X-Ray Crystallography in STAR Method Details.

| Label  | Shape   | Symmetry | Distortion (°) | Dy1   | Dy2     | Dy3     |
|--------|---------|----------|----------------|-------|---------|---------|
| OP-8   | $D_{6h}$ | Octagon  |                | 31.40224 | 30.93665 | 31.86738 |
| HPY-8  | $C_{7v}$ | Heptagonal pyramid |                | 22.98754 | 22.55653 | 23.43464 |
| HBPY-8 | $D_{6h}$ | Hexagonal bipyramid |              | 16.01332 | 16.00043 | 16.08463 |
| CU-8   | $O_h$   | Cube     |                | 11.26985 | 11.07054 | 11.07622 |
| SAPR-8 | $D_{4d}$ | Square antiprism |                | 2.00440 | 1.47148 | 1.92184 |
| TDD-8  | $D_{2d}$ | Triangulardodecahedron |        | 2.21115 | 1.65281 | 2.14061 |
| JGBF-8 | $D_{2d}$ | Gyrobifastigium J26 |              | 12.52124 | 13.65531 | 13.67130 |
| JETBPY-8 | $D_{3h}$ | Johnson - Elongated triangular bipyramid J14 |        | 27.77077 | 27.30844 | 28.65484 |
| JBTP-8 | $C_{2v}$ | Johnson - Biaugmented trigonal prism J50 |              | 1.33655 | 1.59385 | 1.34547 |
| BTPR-8 | $C_{2v}$ | Biaugmented trigonal prism |              | 0.96055 | 1.12537 | 0.84943 |
| JSD-8  | $D_{2d}$ | Snub disphenoid J84 |             | 3.57084 | 4.05478 | 3.67215 |
| TT-8   | $T_d$   | Triakis tetrahedron |                | 11.44981 | 11.89816 | 11.39128 |
| ETBPY-8 | $D_{3h}$ | Elongated trigonal bipyramid |        | 23.86486 | 23.58950 | 25.20718 |

| Label  | Shape   | Symmetry | Distortion (°) | K1    | K2     |
|--------|---------|----------|----------------|-------|---------|
| OP-8   | $D_{6h}$ | Octagon  |                | 24.39026 | 24.39024 |
| HPY-8  | $C_{7v}$ | Heptagonal pyramid |                | 20.23237 | 20.23236 |
| HBPY-8 | $D_{6h}$ | Hexagonal bipyramid |              | 9.15323 | 9.15324 |
| CU-8   | $O_h$   | Cube     |                | 8.74575 | 8.74576 |
| SAPR-8 | $D_{4d}$ | Square antiprism |                | 7.50824 | 7.50825 |
| TDD-8  | $D_{2d}$ | Triangulardodecahedron |        | 7.65031 | 7.65033 |
| JGBF-8 | $D_{2d}$ | Gyrobifastigium J26 |              | 14.13732 | 14.13732 |
| JETBPY-8 | $D_{3h}$ | Johnson - Elongated triangular bipyramid J14 |        | 19.26590 | 19.26585 |
| JBTP-8 | $C_{2v}$ | Johnson - Biaugmented trigonal prism J50 |              | 8.48222 | 8.48222 |
| BTPR-8 | $C_{2v}$ | Biaugmented trigonal prism |              | 8.25986 | 8.25987 |
| JSD-8  | $D_{2d}$ | Snub disphenoid J84 |             | 10.26004 | 10.26003 |
| TT-8   | $T_d$   | Triakis tetrahedron |                | 9.55435 | 9.55435 |
| ETBPY-8 | $D_{3h}$ | Elongated trigonal bipyramid |        | 16.12188 | 16.12185 |
### Table S5. SHAPE analysis of the Dy(III) and Na(I) in the cluster 3. Related to Single-Crystal X-Ray Crystallography in STAR Method Details.

| Label  | Shape     | Symmetry | Distortion (°) | Dy1     | Dy2     | Dy3     | Dy4     |
|--------|-----------|----------|----------------|---------|---------|---------|---------|
| OP-8   | \(D_{6h}\) | Octagon  |                | 32.26500| 44.33456| 45.14573| 45.24018|
| HPY-8  | \(C_{7v}\) | Heptagonal bipyramid | 23.73222| 35.53709| 34.83718| 35.67898|
| HBPY-8 | \(D_{6h}\) | Hexagonal bipyramid  | 15.54014| 32.58928| 32.48028| 32.76373|
| CU-8   | \(O_h\)   | Cube     |                | 10.96573| 30.91117| 30.61302| 31.26290|
| SAPR-8 | \(D_{4d}\) | Square antiprism | 2.37043| 23.99350| 24.52473| 24.79381|
| TDD-8  | \(D_{2d}\) | Triangular bipyramid | 1.94342| 23.63674| 24.18808| 24.63486|
| JGBF-8 | \(D_{2d}\) | Gyrobifastigium J26 | 12.60489| 27.14322| 30.63380| 30.37773|
| JETBPY-8 | \(D_{3d}\) | Johnson - Elongated triangular bipyramid J14 | 28.59859| 37.88308| 39.86499| 40.69667|
| JBTP-8 | \(C_{2v}\) | Johnson - Biaugmented trigonal prism J50 | 1.52354| 21.75351| 25.03684| 25.70538|
| BTPR-8 | \(C_{2v}\) | Biaugmented trigonal prism | 0.92185| 21.78288| 22.76974| 22.53160|
| JSD-8  | \(D_{2d}\) | Snub disphenoid J84 | 3.45775| 22.62685| 27.11959| 27.82578|
| TT-8   | \(T_d\)   | Triakis tetrahedron | 11.21166| 29.23957| 29.88114| 30.22706|
| ETBPY-8 | \(D_{3d}\) | Elongated trigonal bipyramid | 24.32687| 35.85744| 38.04196| 38.39332|

| Label  | Shape     | Symmetry | Distortion (°) | Na1     | Na2     | Na3     | Na4     | Na5     | Na6     |
|--------|-----------|----------|----------------|---------|---------|---------|---------|---------|---------|
| HP-6   | \(D_{6h}\) | Hexagon  |                | 48.9601 | 48.9602 | 47.3090 | 48.9864 | 48.9863 | 48.2509 |
| PPy-6  | \(C_{5v}\) | Pentagonal pyramid | 36.2670| 36.2670| 36.0822| 35.5438| 35.5435| 36.5731|
| OC-6   | \(O_h\)   | Octahedron | 38.2188| 38.2188| 38.4099| 37.5280| 37.5278| 38.7985|
| TPR-6  | \(D_{3h}\) | Trigonal prism | 34.8597| 34.8598| 34.8670| 33.4451| 33.4449| 35.8057|
| JPPY-5 | \(C_{5v}\) | Johnson pentagonal pyramid (J2) | 39.5426| 39.5426| 39.1388| 36.1387| 36.1387| 39.4129|

17
Table S6. Parameters from the fitting result of the Cole-Cole plots for the cluster 1 under 0 Oe field. Related to Figure 3.

| Temp.(K) | $\tau$ | $\alpha$ | residual |
|----------|--------|---------|----------|
|          |        |         |          |
| 2        | 0.859867E-03 | 0.503275E+00 | 0.221471E+00 |
| 2.2      | 0.127822E-02 | 0.455042E+00 | 0.246443E+00 |
| 2.4      | 0.161594E-02 | 0.410997E+00 | 0.260320E+00 |
| 2.6      | 0.188058E-02 | 0.372951E+00 | 0.251410E+00 |
| 2.8      | 0.204809E-02 | 0.338109E+00 | 0.242636E+00 |
| 3        | 0.215018E-02 | 0.31758E+00  | 0.225109E+00 |
| 3        | 0.219120E-02 | 0.290726E+00 | 0.209301E+00 |
| 3.2      | 0.220849E-02 | 0.272893E+00 | 0.190252E+00 |
| 3.4      | 0.218299E-02 | 0.261614E+00 | 0.179179E+00 |
| 3.6      | 0.215051E-02 | 0.247752E+00 | 0.164145E+00 |
| 3.8      | 0.209631E-02 | 0.237708E+00 | 0.147243E+00 |
| 4        | 0.204612E-02 | 0.225587E+00 | 0.124926E+00 |
| 4.2      | 0.197350E-02 | 0.214843E+00 | 0.111189E+00 |
| 4.4      | 0.189317E-02 | 0.207817E+00 | 0.103828E+00 |
| 4.6      | 0.181167E-02 | 0.199613E+00 | 0.092863E+00 |
| 4.8      | 0.172715E-02 | 0.194168E+00 | 0.083046E+00 |
| 5        | 0.163418E-02 | 0.186396E+00 | 0.075968E+00 |
| 5.2      | 0.154453E-02 | 0.180612E+00 | 0.068452E+00 |
| 5.4      | 0.145821E-02 | 0.174800E+00 | 0.063496E+00 |
| 5.6      | 0.136824E-02 | 0.168238E+00 | 0.058400E+00 |
| 5.8      | 0.128298E-02 | 0.163054E+00 | 0.051631E+00 |
| 6        | 0.120186E-02 | 0.157321E+00 | 0.047763E+00 |
| 6.2      | 0.11230E-02   | 0.152568E+00 | 0.043250E+00 |
| 6.4      | 0.10502E-02   | 0.145634E+00 | 0.036522E+00 |
| 6.6      | 0.976266E-03  | 0.143822E+00 | 0.034316E+00 |
| 6.8      | 0.903589E-03  | 0.138110E+00 | 0.033040E+00 |
| 7        | 0.837805E-03  | 0.133163E+00 | 0.030125E+00 |
| 7.2      | 0.777046E-03  | 0.129452E+00 | 0.026915E+00 |
| 7.4      | 0.718187E-03  | 0.123822E+00 | 0.025095E+00 |
| 7.6      | 0.661850E-03  | 0.120844E+00 | 0.022905E+00 |
| 7.8      | 0.613207E-03  | 0.113931E+00 | 0.018720E+00 |
| 8        | 0.564577E-03  | 0.108925E+00 | 0.016802E+00 |
| 8.2      | 0.516490E-03  | 0.107420E+00 | 0.016357E+00 |
| 8.4      | 0.468064E-03  | 0.108558E+00 | 0.018044E+00 |
| 8.6      | 0.434712E-03  | 0.100735E+00 | 0.014076E+00 |
| 8.8      | 0.398886E-03  | 0.957640E-01  | 0.127420E-01 |
| 9        | 0.365162E-03  | 0.928252E-01  | 0.111748E-01 |
| 9.2      | 0.333065E-03  | 0.895507E-01  | 0.99989E-02  |
| 9.4      | 0.302562E-03  | 0.896324E-01  | 0.891032E-02 |
|      |         |         |          |          |
|------|---------|---------|----------|----------|
| 9.6  | 0.281131E-03 | 0.806208E-01 | 0.793707E-02 |
| 9.8  | 0.255089E-03 | 0.804004E-01 | 0.673206E-02 |
| 10   | 0.233308E-03 | 0.762775E-01 | 0.617077E-02 |
| 10.2 | 0.210758E-03 | 0.751255E-01 | 0.505672E-02 |
| 10.4 | 0.194822E-03 | 0.694647E-01 | 0.458749E-02 |
| 10.6 | 0.177775E-03 | 0.687481E-01 | 0.344429E-02 |
| 10.8 | 0.163579E-03 | 0.620459E-01 | 0.345447E-02 |
| 11   | 0.148661E-03 | 0.615869E-01 | 0.227326E-02 |
| 11.2 | 0.136327E-03 | 0.576289E-01 | 0.193463E-02 |
| 11.4 | 0.123890E-03 | 0.580668E-01 | 0.175123E-02 |
| 11.6 | 0.113412E-03 | 0.541104E-01 | 0.151978E-02 |
| 11.8 | 0.103531E-03 | 0.501386E-01 | 0.143394E-02 |
| 12   | 0.101621E-03 | 0.461236E-01 | 0.132162E-02 |
Table S7. Parameters from the fitting result of the Cole-Cole plots for the cluster 2 under 0 Oe field. Related to Figure 3.

| Temp.(K) | \( \tau \) | \( \sigma \) | residual |
|---------|------------|------------|----------|
| 2       | 0.505461E-03 | 0.258312E+00 | 0.333497E+01 |
| 2.25    | 0.508306E-03 | 0.260249E+00 | 0.269419E+01 |
| 2.5     | 0.506204E-03 | 0.261861E+00 | 0.228687E+01 |
| 2.75    | 0.501746E-03 | 0.262594E+00 | 0.196482E+01 |
| 3       | 0.492610E-03 | 0.264901E+00 | 0.216602E+01 |
| 3.25    | 0.481607E-03 | 0.263224E+00 | 0.150540E+01 |
| 3.5     | 0.469890E-03 | 0.264211E+00 | 0.128731E+01 |
| 3.75    | 0.456073E-03 | 0.263979E+00 | 0.111003E+01 |
| 4       | 0.442688E-03 | 0.263681E+00 | 0.983719E+00 |
| 4.25    | 0.429958E-03 | 0.262009E+00 | 0.869457E+00 |
| 4.5     | 0.415585E-03 | 0.261502E+00 | 0.781695E+00 |
| 4.75    | 0.402071E-03 | 0.261474E+00 | 0.692332E+00 |
| 5       | 0.390485E-03 | 0.259237E+00 | 0.639418E+00 |
| 5.25    | 0.378310E-03 | 0.257605E+00 | 0.583405E+00 |
| 5.5     | 0.368016E-03 | 0.255386E+00 | 0.546116E+00 |
| 5.75    | 0.357214E-03 | 0.255378E+00 | 0.466380E+00 |
| 6       | 0.346368E-03 | 0.253636E+00 | 0.411143E+00 |
| 6.25    | 0.335810E-03 | 0.251655E+00 | 0.386037E+00 |
| 6.5     | 0.328234E-03 | 0.248053E+00 | 0.365332E+00 |
| 6.75    | 0.316404E-03 | 0.252135E+00 | 0.344955E+00 |
| 7       | 0.312275E-03 | 0.242299E+00 | 0.308749E+00 |
Table S8. Parameters from the fitting result of the Cole-Cole plots for the cluster 3 under 0 Oe field. Related to Figure 3.

| Temp.(K) | \( \tau \)          | \( \alpha \)          | residual         |
|----------|----------------------|-----------------------|------------------|
| 2        | 0.346568E-03         | 0.282730E+00          | 0.119366E+01     |
| 2.2      | 0.342143E-03         | 0.282040E+00          | 0.957015E+00     |
| 2.4      | 0.337432E-03         | 0.279925E+00          | 0.848538E+00     |
| 2.6      | 0.331776E-03         | 0.279472E+00          | 0.667349E+00     |
| 2.8      | 0.326970E-03         | 0.277751E+00          | 0.545815E+00     |
| 3        | 0.320552E-03         | 0.276487E+00          | 0.465872E+00     |
| 3.2      | 0.313163E-03         | 0.276177E+00          | 0.384086E+00     |
| 3.4      | 0.304740E-03         | 0.276177E+00          | 0.364197E+00     |
| 3.6      | 0.296255E-03         | 0.275284E+00          | 0.309297E+00     |
| 3.8      | 0.289245E-03         | 0.274855E+00          | 0.273851E+00     |
| 4        | 0.280756E-03         | 0.273091E+00          | 0.246033E+00     |
| 4.2      | 0.272498E-03         | 0.271925E+00          | 0.224864E+00     |
| 4.4      | 0.264591E-03         | 0.270368E+00          | 0.217683E+00     |
| 4.6      | 0.256029E-03         | 0.270157E+00          | 0.184614E+00     |
| 4.8      | 0.248367E-03         | 0.268501E+00          | 0.167911E+00     |
| 5        | 0.241148E-03         | 0.267063E+00          | 0.157433E+00     |
| 5.2      | 0.232754E-03         | 0.266893E+00          | 0.149018E+00     |
| 5.4      | 0.226586E-03         | 0.263425E+00          | 0.145220E+00     |
| 5.6      | 0.218551E-03         | 0.263347E+00          | 0.127380E+00     |
| 5.8      | 0.210697E-03         | 0.262528E+00          | 0.135889E+00     |
| 6        | 0.202848E-03         | 0.261916E+00          | 0.191795E+00     |
| 6.2      | 0.199747E-03         | 0.255215E+00          | 0.113786E+00     |
| 6.4      | 0.196748E-03         | 0.248207E+00          | 0.145517E+00     |
| 6.6      | 0.187051E-03         | 0.250945E+00          | 0.100334E+00     |
| 6.8      | 0.178740E-03         | 0.248722E+00          | 0.100745E+00     |
| 7        | 0.172797E-03         | 0.246275E+00          | 0.853950E-01     |
| 7.2      | 0.170741E-03         | 0.238905E+00          | 0.940587E-01     |
| 7.4      | 0.164196E-03         | 0.238013E+00          | 0.710680E-01     |
| 7.6      | 0.160212E-03         | 0.234548E+00          | 0.681782E-01     |
| 7.8      | 0.152716E-03         | 0.232182E+00          | 0.618019E-01     |
| 8        | 0.145206E-03         | 0.232666E+00          | 0.489608E-01     |
| 8.2      | 0.140658E-03         | 0.227626E+00          | 0.517672E-01     |
| 8.4      | 0.136339E-03         | 0.224079E+00          | 0.483185E-01     |
| 8.6      | 0.129504E-03         | 0.222949E+00          | 0.465780E-01     |
| 8.8      | 0.123725E-03         | 0.220497E+00          | 0.490826E-01     |
| 9        | 0.118369E-03         | 0.218943E+00          | 0.394840E-01     |
| 9.2      | 0.116900E-03         | 0.210398E+00          | 0.380708E-01     |
| 9.4      | 0.111329E-03         | 0.207554E+00          | 0.409541E-01     |
| 9.6      | 0.106709E-03         | 0.205937E+00          | 0.307569E-01     |
|    |     |     |     |
|----|-----|-----|-----|
| 9.8| 0.100103E-03 | 0.209509E+00 | 0.304264E-01 |
| 10 | 0.947299E-04 | 0.205316E+00 | 0.260148E-01 |
| 10.2| 0.934105E-04 | 0.201176E+00 | 0.335295E-01 |
| 10.4| 0.863854E-04 | 0.195145E+00 | 0.240161E-01 |
| 10.6| 0.793756E-04 | 0.204222E+00 | 0.255962E-01 |
| 10.8| 0.803960E-04 | 0.194278E+00 | 0.112810E+00 |
| 11 | 0.722651E-04 | 0.190932E+00 | 0.194958E-01 |
| 11.2| 0.708160E-04 | 0.189399E+00 | 0.227005E-01 |
| 11.4| 0.649317E-04 | 0.192043E+00 | 0.174698E-01 |
| 11.6| 0.601546E-04 | 0.191438E+00 | 0.130173E-01 |
| 11.8| 0.555988E-04 | 0.192675E+00 | 0.152040E-01 |
| 12 | 0.553632E-04 | 0.179295E+00 | 0.164426E-01 |
| 12.2| 0.491946E-04 | 0.186790E+00 | 0.106419E-01 |
| 12.4| 0.460963E-04 | 0.180969E+00 | 0.126017E-01 |
| 12.6| 0.389604E-04 | 0.195064E+00 | 0.138793E-01 |
| 12.8| 0.417390E-04 | 0.175259E+00 | 0.113867E-01 |
| 13 | 0.362343E-04 | 0.192602E+00 | 0.194936E-01 |
| 13.2| 0.310981E-04 | 0.192367E+00 | 0.875309E-02 |
| 13.4| 0.315870E-04 | 0.175791E+00 | 0.141767E-01 |
| 13.6| 0.295302E-04 | 0.176250E+00 | 0.111824E-01 |
| 13.8| 0.250767E-04 | 0.189965E+00 | 0.999945E-02 |
| 14 | 0.225953E-04 | 0.186247E+00 | 0.116443E-01 |
| 14.2| 0.170061E-04 | 0.203291E+00 | 0.116687E-01 |
| 14.4| 0.211043E-04 | 0.177571E+00 | 0.111794E-01 |
| 14.6| 0.161153E-04 | 0.184946E+00 | 0.943356E-02 |
| 14.8| 0.133293E-04 | 0.189178E+00 | 0.789166E-02 |
| 15 | 0.149301E-04 | 0.181210E+00 | 0.113274E-01 |