On the kernel of the norm in some unramified number fields extensions

Emmanuel Hallouin and Marc Perret*

February 1, 2008

Introduction

Let L/K be a unramified Galois extension of number fields whose Galois group G is a finite p-group (p a prime integer). In [Ser94], Chap I, §4.4, it is proved that if L is principal then:

$$d_pH^3(G,\mathbb{Z}) = d_pH^2(G,\mathbb{Z}/p\mathbb{Z}) - d_pH^1(G,\mathbb{Z}/p\mathbb{Z}) \leq r_1 + r_2$$

(1)

where $d_p G$ denotes the p-rank of a finite p-group G and where (r_1, r_2) is the signature of the number field K. Briefly, the proof works as follows. Let C_L be the idèles class group of L and E_L its unit group, then:

$$\forall q \in \mathbb{Z}, \quad H^q(G, C_L) \simeq H^{q+1}(G, E_L) \quad \text{and} \quad H^q(G, C_L) \simeq H^{q-2}(G, \mathbb{Z}).$$

The first isomorphism follows from the fact that L is principal while the second one is part of class field theory. Thus:

$$H^{q+1}(G, E_L) \simeq H^{q-2}(G, \mathbb{Z}).$$

(2)

The inequality (1) comes from the specialization at $q = -1$ of this isomorphism because the rank of $H^0(G, E_L)$ is easily bounded thanks to Dirichlet’s units theorem.

Together with Golod-Safarevich’s group theoretic result, (1) implies that if a number field K satisfies the quadratic (in $d_p\mathcal{C}(K)$) inequality:

$$d_p\mathcal{C}(K)^2 - d_p\mathcal{C}(K) > r_1 + r_2 - 1$$

then its p-class field tower is infinite.

In order to find a cubic (in $d_p\mathcal{C}(K)$) analogue of this criteria, we specializes the isomorphism (2) at $q = -2$. This yields the following equality:

$$d_pH^{-1}(G, E_L) = d_pH^3(G,\mathbb{Z}/p\mathbb{Z}) - d_pH^2(G,\mathbb{Z}/p\mathbb{Z}) + d_pH^1(G,\mathbb{Z}/p\mathbb{Z}).$$

It is so crucial to find an upperbound for the p-rank $d_pH^{-1}(G, E_L)$ when $\mathcal{C}(L)$ is trivial. In this paper, we prove results about this rank in some special cases. More precisely, we compute this p-rank when L/K is an abelian unramified (also at infinity) p-extension whose Galois group can be generated by two elements. We also exhibit an explicit basis of the p-group $H^{-1}(G, E_L)$.

Notations — Let K be a number field. We denote by Σ_K the set finite places, $\text{Div}(K)$ its divisor group and $\mathcal{C}(K)$ its divisor class group. To each finite place $v \in \Sigma_K$ one can associate a unique prime ideal \mathfrak{p}_v of K and to each $x \in K$, there corresponds a principal divisor $\langle x \rangle_K$ of K.

If L/K is a Galois extension of number fields, then for each $v \in \Sigma_K$, $\Sigma_{L,v}$ denotes the subset of places $w \in \Sigma_L$ above v (for short $w | v$) and f_v the residual degree of any $w \in \Sigma_{L,v}$ over K. The map $e_{L/K} : \text{Div}(K) \to \text{Div}(L)$ is the classical extension of ideals.

Let G be a finite group and M be a G-module. The norm map $N_G : M \to M$ is defined by $x \mapsto \prod_{g \in G} g(x)$; its kernel is denoted by $M[N_G]$. The augmentation ideal $I_G M = \langle g(x) : x \in M, g \in G \rangle$ is of importance. Of course, one has $I_G M \subset M[N_G]$: the quotient of these two subgroups is nothing else that the Tate cohomology group:

$$H^{-1}(G, M) \overset{\text{def}}{=} \frac{M[N_G]}{I_G M}$$

in which we are interested (see [Ser68] for an introduction to the negative cohomology groups).

*Laboratoire Emile Picard, Institut de Mathématiques de Toulouse, France.
1 The cyclic case

Let \(L/K \) be a cyclic extension with Galois group \(G = \langle g \rangle \). A classical consequence of the Hilbert’s 90 theorem states that the kernel of the norm \(N_G \) equals the augmentation ideal: \(L^*[N_G] = I_G L^* \). In cohomological terms, this means that:

\[
H^1(G, L^*) = \{1\} \implies H^{-1}(G, L^*) = \{1\}.
\]

Another easy consequence already known is that:

Proposition 1 Let \(L/K \) be a cyclic unramified extension with Galois group \(G = \langle g \rangle \). Then the map:

\[
\varphi_g : \text{Ker}(\mathcal{C}(K) \to \mathcal{C}(L)) \to H^{-1}(G, E_L)
\]

\[
[I] \to \frac{g(y)}{y}
\]

where \([I]\) denotes the ideal class of \(I \) and \(y \) any generator of \(I \) in \(L \), is an isomorphism of groups.

Proof — The only non-trivial assertion to verify is the surjectivity of the map. Let \(u \in E_N[N_G] \), then there exists \(y \in L^* \) such that \(u = \frac{g(y)}{y} \). Thus the ideal \(\langle y \rangle_L \) is fixed by the action of \(G \). The extension \(L/K \) being unramified, the ideal \(\langle y \rangle_L \) is the extension to \(L \) of an ideal \(I \) of \(K \): \(e_{L/K}(I) = \langle y \rangle_L \). Then \(u = \varphi_g([I]) \). \(\square \)

This proposition implies the following corollary:

Corollary 2 Let \(K \) be a number field and \(L/K \) an unramified (included at infinity) abelian extension with Galois group \(G \) a cyclic \(p \)-group such that \(L \) is principal. If \(G = \langle g \rangle \) and if \(\pi \) generate a prime ideal of \(L \) with Frobenius equal to \(g \), then:

\[
H^{-1}(G, E_L) = \left\langle \frac{g(\pi)}{\pi} \right\rangle.
\]

2 Some experiments with magma

With the help of magma and pari/gp, we have made some experiments and collect informations about the 2-rank of the group \(H^{-1}(G, E_{K_i}) \) in unramified finite 2-extensions \(K_i/K \) (\(i = 1, 2 \)). In each case, we start with a quadratic complex number field \(K \) whose class group is a 2-group; tables of such fields can be found in [Lem]. We compute \(K^1 = K^\text{hilb} \) and the group structure of \(H^{-1}(E_{K^1}) \). If \(\mathcal{C}(K^1) \) is not trivial, we try to go further. We compute \(K^2 = (K^1)^\text{hilb} \) and the group structure of \(H^{-1}(E_{K^2}) \).

Here is our magma program we used:

```magma
clear;
Q := RationalField();
dis := -84;
K<x> := QuadraticField(dis);

"Computation of K^hilb...";
Khilb := AbsoluteField(HilbertClassField(K));
Khilb<y> := OptimizedRepresentation(Khilb);

"... computation of the unit group of K^hilb...";
E_Khilb, e_Khilb := UnitGroup(Khilb);

Gal_Khilb_Q, Aut_Khilb_Q, i := AutomorphismGroup(Khilb);
G := FixedGroup(Khilb, K);
Norm_G := map < Khilb -> Khilb | y :-> [ [i(g)(y) : g in G] > ;
N := hom < E_Khilb -> E_Khilb | [(e_Khilb * Norm_G * Inverse(e_Khilb))(E_Khilb.i) : i in [1..NumberOfGenerators(E_Khilb)]] > ;
Ker_N := Kernel(N);
I_G := [i(g)(u)/u : u in Generators(E_Khilb) @ e_Khilb, g in G] ;
assert(I_G subset Ker_N) ;
printf "... structure of H^(-1)(G, E_M) = %o", Ker_N / I_G ;
```
Unfortunately, because of the difficulty of computing the unit group of a number field, only few computations achieved. In the following table, the notation 2·4 means that the concerning group is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \).

\(\text{dis}(K) \)	\(\mathcal{C}_\ell(K) \)	\(\mathcal{C}_\ell(K^1) \)	\(H^{-1}(E_{K^1}) \)	\(\mathcal{C}_\ell(K^2) \)	\(H^{-1}(E_{K^2}) \)
-84	2·2	1	2·2·2	1	8
-120	2·2	2	4	1	8
-260	2·4	2	2·4	1	2·8
-280	2·2	4	4	1	16
-308	2·4	1	2·2·4		
-399	2·8	1	2·2·8		
-408	2·2	2	2·2·2	1	2·2·4
-420	2·2·2	2·2	2·2·2·4	1	unknown

In the following section, we will explain why \(d_2H^{-1}(E_{K^1}) = 3 \) when \(d_2\mathcal{C}_\ell(K) = 2 \) and \(d_2\mathcal{C}_\ell(K^1) = 1 \). In all the remaining known cases, we point out that \(d_2H^{-1}(E_{K^1}) = d_2H^{-1}(E_{K^2}) \).

3 When the Galois group has two generators

The goal of is section is to extend the results of \[\] to the case of extensions whose Galois group is an abelian group generated by two elements.

First, we investigate the cohomology group with values in \(M^* \). We still have:

Theorem 3 Let \(K \) be a number field and \(M/K \) be an unramified (included at infinity) extension whose Galois group \(G \) is an abelian \(p \)-group generated by two elements. Then \(H^{-1}(G, M^*) = 1 \).

Proof — Since \(M/K \) is an abelian unramified extension, there exists \(G' \) a subgroup of \(\mathcal{C}_\ell(K) \) such that \(G \cong \mathcal{C}_\ell(K)/G' \). Let \(p_1, \ldots, p_r \) be primes of \(K \) whose classes generate \(G' \). If \(G \cong \mathbb{Z}/p^\alpha\mathbb{Z} \times \mathbb{Z}/p^\beta\mathbb{Z} \) with \(\alpha \leq \beta \), we complete these primes by choosing \(p, q \) primes of \(K \) such that their decomposition groups in \(M/K \) satisfy \(D(p) = \langle (1, 1) \rangle \) and \(D(q) = \langle (0, 1) \rangle \). Adjoining \(p, q \) to the \(p_i \)'s leads to a system of generators of \(\mathcal{C}_\ell(K) \).

Let \(H = \langle (1, 0) \rangle \). Then \(H \) and \(G/H \) are cyclic and, by construction, the decomposition groups in \(M/K \) satisfy:

\[
\forall 1 \leq i \leq r, \quad D(p_i) \cap H = \{ \text{id} \}, \quad D(p) \cap H = \{ \text{id} \}, \quad D(q) \cap H = \{ \text{id} \}.
\]

Theorem 3 is implied by the following lemmas.

Lemma 4 Let \(H \) be a normal cyclic subgroup of \(G \). Then:

\[
H^{-1}(G, M^*) = \{ 1 \} \iff H^{-1}(G/H, N_H(M^*)) = \{ 1 \}.
\]

Proof — Suppose that \(H^{-1}(G, M^*) = \{ 1 \} \). If \(y \in N_H(M^*)[N_G/H] \), then there exists \(z \in M^* \) such that \(y = N_H(z) \) and \(N_G(z) = N_{G/H}(N_H(z)) = N_{G/H}(y) = 1 \). Thus, by hypothesis, \(z \in M^*[N_G] = IG M^* \):

\[
\exists z_i \in M, \ g_i \in G, \quad z = g_1(z_1) \times \cdots \times g_r(z_r) \frac{z_1}{z_1} \times \cdots \times \frac{z_r}{z_r}.
\]

Hence:

\[
y = N_H(z) = \frac{g_1(N_H(z_1))}{N_H(z_1)} \times \cdots \times \frac{g_r(N_H(z_r))}{N_H(z_r)}.
\]

Therefore \(y \in IG \cdot H_M(z_1) \).

Conversely, suppose that \(H^{-1}(G/H, N_H(M^*)) = \{ 1 \} \). If \(z \in M^*[N_G] \) then \(1 = N_G(z) = N_{G/H}(N_H(z)) \) and thus \(N_H(z) \in N_H(M^*)[N_G/H] \). By hypothesis, there exist \(z_1, \ldots, z_r \in M^* \) and \(g_1, \ldots, g_r \in G \) such that:

\[
N_H(z) = \frac{g_1(N_H(z_1))}{N_H(z_1)} \times \cdots \times \frac{g_r(N_H(z_r))}{N_H(z_r)} = N_H \left(\frac{g_1(z_1)}{z_1} \times \cdots \times \frac{g_r(z_r)}{z_r} \right).
\]

It follows that:

\[
z \in IG M^* \times M^*[N_H] = IG M^* \times IH M^* = IG M^*.
\]

because, \(H \) being cyclic, one has \(M^*[N_H] = IH M^* \). \(\square \)
Lemma 5 Let H be a cyclic subgroup of G such that G/H is also cyclic. If $\mathcal{C}l(K)$ can be generated by primes whose decomposition groups intersect H trivially, then $H^{-1}(G/H, N_{H}(M^{*})) = \{1\}$.

Proof — Let h be a generator of H and $g \in G$ such that $G = \langle g, h \rangle$. Let $L = M^{H}$ so that $\text{Gal}(L/K) = \langle g \rangle$.

Let $y \in N_{H}(M^{*})[N_{G/H}]$. Since G/H is cyclic generated by g, there exists $b \in L$ such that $y = \frac{g(b)}{b}$.

Since $y \in N_{H}(M^{*})$, it is a norm everywhere locally:

$$\forall w \in \Sigma_{L}, w(y) \equiv 0 \pmod{f_{w}} \implies \forall w \in \Sigma_{L}, w \circ g(b) \equiv w(b) \pmod{f_{w}}$$

$$\implies \forall v \in \Sigma_{K}, \forall w, w' \in \Sigma_{L,v}, w'(b) \equiv w(b) \pmod{f_{w}}.$$

Note that there is no condition at infinity because infinite places are supposed unramified. The last assertion implies that the ideal J of L defined by:

$$J = \prod_{w \in \Sigma_{L}} \mathfrak{p}_{w}^{-w(b) \bmod f_{w}} \quad \text{(for } x \in \mathbb{Z}, \text{ we choose } x \bmod f_{w} \in [0..f_{w} - 1]),$$

is the extension to L of the ideal I of K defined by:

$$I = \prod_{v \in \Sigma_{K}} \mathfrak{p}_{v}^{-w(b) \bmod f_{w}} \quad \text{(for each } v \in \Sigma_{K}, \text{ we choose } w \text{ a place of } \Sigma_{L,v}).$$

By hypothesis, $\mathcal{C}l(K)$ can be generated by prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ of K whose decomposition groups satisfy $D(\mathfrak{p}_{i}) \cap H = \{1\}$. This means that all the primes of L above the \mathfrak{p}_{i} totally split in M. There exists $a \in K$ and $e_{1}, \ldots, e_{r} \in \mathbb{N}$ such that $(a) = I \times \prod_{i} \mathfrak{p}_{i}^{e_{i}}$. By construction, the ideal ab of L has support on primes of L totally split in M.

Recall that, in a cyclic extension, the local-global principle is true form norm equations. Thus, by this local-global principle, we deduce that $ab \in N_{H}(M^{*})$. Finally, because $a \in K$, we have:

$$y = \frac{g(b)}{b} = \frac{g(ab)}{ab} \in I_{G/H}N_{H}(M^{*}),$$

which was to be proved. \hfill \square

Secondly, as in the cyclic case, one can ask if the triviality of the cohomological group with values in M^{*} could imply some results about the cohomological group with values in E_{M}.

Proposition 6 Let K be a number field and M/K an unramified (included at infinity) abelian extension with Galois group G a p-group of p-rank d. If M is principal, then $d_{p}H^{-1}(G, E_{M}) = \frac{d(d^{2}+5)}{6}$.

Proof — In [Ser94] §4.4, using class field theory, it is proved that:

$$\forall q \in \mathbb{Z}, \quad H^{q+1}(G, E_{M}) \simeq H^{q-2}(G, \mathbb{Z}).$$

Hence, for $q = -2$, we obtain:

$$H^{-1}(G, E_{M}) \simeq H^{-4}(G, \mathbb{Z}).$$

By duality, it is enough to compute the p-rank of $H^{4}(G, \mathbb{Z})$. This can be done, starting with the exact sequence of G-modules (trivial action) $0 \rightarrow \mathbb{Z} \overset{p}{\rightarrow} \mathbb{Z} \rightarrow \mathbb{Z}/p\mathbb{Z} \rightarrow 0$ and considering the long cohomology exact sequence:

$$0 \rightarrow H^{1}(G, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^{2}(G, \mathbb{Z}/p\mathbb{Z}) \overset{p}{\rightarrow} H^{2}(G, \mathbb{Z}/p\mathbb{Z}) \rightarrow \cdots \rightarrow H^{3}(G, \mathbb{Z}/p\mathbb{Z}) \overset{p}{\rightarrow} H^{3}(G, \mathbb{Z}/p\mathbb{Z}) \rightarrow H^{4}(G, \mathbb{Z})[p] \rightarrow 0.$$

The logarithm of the product of the orders of these groups equals 0, therefore:

$$d_{p}H^{4}(G, \mathbb{Z}) = d_{p}H^{3}(G, \mathbb{Z}/p\mathbb{Z}) - d_{p}H^{2}(G, \mathbb{Z}/p\mathbb{Z}) + d_{p}H^{1}(G, \mathbb{Z}/p\mathbb{Z})$$

(recall that in a finite abelian p-group A, one has: $\#A[p] = p^{d_{p}-1}A$). It is now easy to conclude because:

$$d_{p}H^{2}(G, \mathbb{Z}/p\mathbb{Z}) = \frac{d(d + 1)}{2} \quad \text{and} \quad d_{p}H^{3}(G, \mathbb{Z}/p\mathbb{Z}) = \frac{d(d + 1)(d + 2)}{6}$$

as it can be proved using Künne’s formula (see [NSW00], exercice 7, page 96). \hfill \square
Let us return to the case where $d_p(G) = 2$. Then, due to proposition 3, one has $d_p(G, E_M) = 3$. As in corollary 2, one can be more precise and exhibit a basis of $H^{-1}(G, E_M)$.

Theorem 7 Let K be a number field and M/K an unramified (included at infinity) abelian extension with Galois group G a p-group of rank 2 such that M is principal. If $G = \langle g_1, g_2 \rangle$ and if π_1, π_2, π_{12} generate primes ideals of M with Frobenius equal to g_1, g_2 and $g_1 g_2$ respectively, then:

$$H^{-1}(G, E_M) = \left\langle \frac{\sigma_\pi(\pi)}{\pi} \mid \pi \text{ a prime element of } M \right\rangle.$$

Proof — First step. We claim that $H^{-1}(G, E_M)$ is generated by:

$$H^{-1}(G, E_M) = \left\langle \frac{\sigma_\pi(\pi)}{\pi}, \pi \text{ a prime element of } M \right\rangle,$$

where σ_π denotes the Frobenius at π.

Let π be a prime element of M and $g, g' \in G$ such that $g \equiv g' \mod D(\pi)$ where $D(\pi)$ denotes the decomposition group of the ideal $\langle \pi \rangle$. Then there exists $\alpha \in \mathbb{N}$ such that $g^{-1}g' = \sigma_\pi^\alpha$ and thus:

$$\frac{g'(\pi)}{g(\pi)} = g \left(\frac{g^{-1}g'(\pi)}{\pi} \right) = g \left(\frac{\sigma_\pi^\alpha(\pi)}{\pi} \right) = \left(\frac{\sigma_\pi(\pi)}{\pi} \right)^\alpha \equiv \left(\frac{\sigma_\pi(\pi)}{\pi} \right)^\alpha \pmod{I_E}.$$

For every $v \in \Sigma_K$, we choose a generator π_v of one of the primes of M above p_v, and we fix a section $\sigma \mapsto \tilde{\sigma}$ of the canonical projection map $G \to G/D(\pi_v)$. The elements $\tilde{\sigma}(\pi_v)$, when v runs in Σ_K and $\sigma \in G/D(v)$, describe a system of prime elements of M. Then every $z \in M$ factorizes into:

$$z = u \prod_{v \in \Sigma_K} \left(\prod_{\sigma \in G/D(v)} \tilde{\sigma}(\pi_v)^{v(\sigma)} \right) \implies g(z) = g(u) \prod_{v \in \Sigma_K} \left(\prod_{\sigma \in G/D(v)} g\tilde{\sigma}(\pi_v)^{v(\sigma)} \right)$$

for every $g \in G$. Of course $g\tilde{\sigma} \equiv \tilde{\sigma} \pmod{D(\pi_v)}$ therefore there exists $\alpha_v \in \mathbb{N}$ such that:

$$g\tilde{\sigma}(\pi_v) = \left(\frac{\tilde{\sigma}(\pi_v)}{\pi_v} \right)^{\sigma_v \in \sigma_v \in \sum \mathbb{K}} \tilde{\sigma}(\pi_v) \implies g(z) \in \langle g(u) \rangle \left(\frac{\sigma_\pi(\pi)}{\pi}, \pi \text{ a prime element of } M \right) \langle \tilde{\sigma}(\pi_v), v \in \Sigma_K, \sigma \in G/D(v) \rangle.$$

Now start with $u \in E_M[N_G]$. By theorem 3, we know that $H^{-1}(G, M^*) = \{1\}$, i.e. $M^*[N_G] = I_G M^*$. Hence, there exists $z_1, z_2 \in M^*$ such that $u = \frac{\sigma_1(z_1) \sigma_2(z_2)}{z_2}$. Factorizing z_1 and z_2 into primes of M of the form $\tilde{\sigma}(\pi_v)$, one shows that:

$$u \in I_G E_M \left(\frac{\sigma_\pi(\pi)}{\pi}, \pi \text{ a prime element of } M \right) \langle \tilde{\sigma}(\pi_v), v \in \Sigma_K, \sigma \in G/D(v) \rangle.$$

But, in this decomposition, since u is invertible, the element in the third group must be equal to 1.

Second step. We consider a prime element π of M whose Frobenius is denoted by σ_π. Let us prove that the class modulo $I_G E_M$ of the element $u = \frac{\sigma_\pi(\pi)}{\pi}$ is contained in the subgroup generated by the $\frac{g_i(\pi)}{\pi}$ for $i = 1, 2, 12$.

To this end, put $H = \langle g_12 \rangle$, $L = M^H$ and $p = \langle \pi \rangle_M \cap K$, $p_1 = \langle \pi_1 \rangle_M \cap K$, $p_2 = \langle \pi_2 \rangle_M \cap K$.

There exists $\alpha_1, \alpha_2 \in \mathbb{N}$ such that $\sigma_\pi = g_1^\alpha g_2^\alpha$ and, by Artin map, $p = a^\alpha p_1^a p_2^\alpha$ with $a \in K^*$. Since $\langle \pi_i \rangle \cap H = \{1\}$ for $i = 1, 2$, the primes $p_i, i = 1, 2$, totally split between L and M. Thus:

$$\begin{align*}
e_{L/K}(p) &= \langle N_H(\pi) \rangle_L, \\
e_{L/K}(p_i) &= \langle N_H(p_i) \rangle_L, i = 1, 2 \implies N_H(\pi) = av N_H(p_1)^{\alpha_1} N_H(p_2)^{\alpha_2},
\end{align*}$$

where $v \in E_L$. Hence:

$$N_H(u) = N_H \left(\frac{\sigma_\pi(\pi)}{\pi} \right) = \frac{\sigma_\pi(\pi)}{N_H(\pi)} = \frac{\sigma_\pi(a)}{\sigma_\pi(\pi)} \left(\frac{N_H(\pi)}{N_H(\pi)} \right)^{\alpha_1} = \left(\frac{N_H(\pi)}{\pi_1} \right)^{\alpha_1} \pi_2^{\alpha_2}.$$
Let us look separately, at the four terms in the right hand product. The first one is equal to 1 because $a \in K$. Since local-global principal occurs in cyclic extensions and since M/L is unramified, there exists $w \in E_M$ such that $v = N_H(w)$. Thus the second term $\frac{\sigma_v(w)}{w}$ equals $N_H\left(\frac{\sigma_v(w)}{w}\right)$. The third and fourth terms go in the same way: since g_1, g_2 generate G, the elements g_1 and g_1g_2 also generate G and there exists $\beta_1, \beta_2 \in \mathbb{N}$ such that $\sigma_\pi = g_1^{\beta_1}(g_1g_2)^{\beta_2}$. It follow that:

$$N_H\left(\frac{\sigma_v(\pi_1)}{\pi_1}\right) = N_H\left(\frac{g_1^{\beta_1}(\pi_1)}{\pi_1}\right) = N_H\left(\frac{g_1(w_1)}{w_1} \left(\frac{g_1(\pi_1)}{\pi_1}\right)^{\beta_1}\right)$$

where $w_1 \in E_M$. In conclusion, going back to u, it satisfies:

$$N_H(u) = N_H\left(\frac{\sigma_v(w_1)}{w_1} \frac{g_1(w_1)}{w_1} \frac{g_2(w_2)}{w_2} \left(\frac{g_1(\pi_1)}{\pi_1}\right)^{\alpha_1 \beta_1} \left(\frac{g_2(\pi_2)}{\pi_2}\right)^{\alpha_2 \beta_2}\right)$$

$$\implies u \times \left(\frac{\sigma_v(w_1)}{w_1} \frac{g_1(w_1)}{w_1} \frac{g_2(w_2)}{w_2} \left(\frac{g_1(\pi_1)}{\pi_1}\right)^{\alpha_1 \beta_1} \left(\frac{g_2(\pi_2)}{\pi_2}\right)^{\alpha_2 \beta_2}\right)^{-1} \in E_M[N_H].$$

Finally, due to the cyclic case, we know that $E_M^*[N_H] = I_H E_M \left\langle \frac{g_1g_2(\pi_{12})}{\pi_{12}} \right\rangle$ and thus:

$$u \mod I_G E_M \in \left\langle \frac{g_1(\pi_1)}{\pi_1}, \frac{g_2(\pi_2)}{\pi_2}, \frac{g_1g_2(\pi_{12})}{\pi_{12}} \right\rangle,$$

which was to be proved. □

Remark – All these results hold in the function field case for S-units where S is any non-empty finite set of places.

References

[Len] Franz Lemmermeyer. A survey on class field towers, http://www.fen.bilkent.edu.tr/~franz/publ.html.

[NSW00] Jurgen Neukirch, Alexander Schmidt, and Kay Wingberg. *Cohomology of Number Fields*, volume 323 of *A Series of Comprehensive Studies in Mathematics*. Springer, 2000.

[Ser68] Jean-Pierre Serre. *Corps locaux*. Hermann, troisième edition, 1968.

[Ser94] Jean-Pierre Serre. *Galois Cohomology*. Springer, 1994.