Recyclization of methyl 1-aryl-3-cinnamoyl-4,5-dioxo-4,5-dihydro-1H-pyrrole-2-carboxylates in reaction with monosubstituted hydrazines

Valeriy O. Filimonov, Pavel S. Silaichev, Mikhail I. Kodess, Marina A. Ezhikova, and Andrey N. Maslivets

Department of Organic Chemistry, Perm State National Research University, Bukirev Street 15, Perm 614990, Russian Federation
Postovsky Institute of Organic Synthesis, Russian Academy of Sciences, Ural Branch, Kovalevskaya Street 22, Ekaterinburg 620137, Russian Federation

E-mail: koh2@psu.ru

DOI: http://dx.doi.org/10.3998/ark.5550190.p009.068

Abstract

Methyl 1-aryl-3-cinnamoyl-4,5-dioxo-4,5-dihydro-1H-pyrrole-2-carboxylates react with phenylhydrazine or benzylhydrazine to give the corresponding methyl 1-(phenyl or benzyl)-5-(arylcarbamoyl)-4-cinnamoyl-1H-pyrazole-3-carboxylates in good yields. The structures of the compounds obtained were proved by 1D 1H, 13C and 2D NMR experiments.

Keywords: Pyrrole-2,3-diones, hydrazines, recyclization, pyrazoles, 2D NMR

Introduction

As an important class of heteroaromatic ring systems, pyrazoles have found widespread application in the agrochemical, material, and especially pharmaceutical industries. The syntheses of pyrazoles have drawn considerable attention from organic chemists because of their diverse bioactivities. Recyclization of 1H-pyrrole-2,3-diones by the action of monosubstituted hydrazines is a convenient method of synthesis of polyfunctional pyrazoles. These recyclization proceeds with the carbonyl group of acyl substituent at the C4 of heterocycle or ketone carbonyl group of dioxopyrrole. Reactions of methyl 1-aryl-3-cinnamoyl-4,5-dioxo-4,5-dihydro-1H-pyrrole-2-carboxylates with hydrazine derivatives were not studied.
Results and Discussion

Methyl 1-aryl-3-cinnamoyl-4,5-dioxo-4,5-dihydro-1H-pyrrole-2-carboxylates 1a-c react with an equimolar amount of phenylhydrazine 2a or benzylhydrazine 2b under reflux for 20-30 min in anhydrous 1,4-dioxane (TLC control) to afford methyl 1-(phenyl or benzyl)-5-(arylcarbamoyl)-4-cinnamoyl-1H-pyrazole-3-carboxylates 3a-f in good yield (Scheme 1).

1, Ar = Ph (a), C₆H₄Me-4 (b), C₆H₄OMe-4 (c); 2, R = Ph (a), CH₂Ph (b); 3, Ar = Ph, R = Ph (a), CH₂Ph (b); Ar = C₆H₄Me-4, R = Ph (c), CH₂Ph (d); Ar = C₆H₄OMe-4, R = Ph (e), CH₂Ph (f)

Scheme 1. Recyclization of pyrrolediones 1a-c in the reaction with monosubstituted hydrazines.

Compounds 3a-f are the colorless or light yellow crystals readily soluble in dimethylsulfoxide (DMSO) and dimethylformamide (DMF), hardly soluble in alcohols, ethers, chlorinated solvents, aromatics and insoluble in saturated hydrocarbons and water.

The molecular structures of compounds 3a-f were confirmed with by spectral and analytical data. For example, the IR spectra of 3a-f contain stretching bands of the amide NH-group as broadened bands in a range of 3253-3315 cm⁻¹, the stretching bands of the ester carbonyl group at 1717-1733 cm⁻¹, the stretching bands of the amide carbonyl group at 1667-1685 cm⁻¹, the stretching bands of the ketone carbonyl group at 1635-1655 cm⁻¹, the stretching bands of the cinnamoyl HC=CH group at 1615-1625 cm⁻¹, and amide II band was observed at 1553-1566 cm⁻¹.

Analysis of the ¹H NMR spectra (DMSO-d₆) of compounds 3a-f has show that besides the signals inherent to the protons of aromatic rings and the substituents attached thereto, the spectra exhibited a singlet from the methoxycarbonyl protons at δ 3.80–3.86 ppm, doublets from protons at the double bond in the cinnamoyl fragment at δ 7.24–7.61 ppm with a coupling constant ³J of 15.8-16.1 Hz typical of trans-configured alkenes¹² and a signal from the amide NH proton at δ 10.72–10.95 ppm. Methylene protons in the benzyl substituent of compounds 3b,d,f resonated as a singlet at δ 5.55–5.56 ppm.

In the ¹³C NMR spectra of compounds 3b,d,e apart from signals typical of carbon atoms in the aromatic rings, substituents therein, methylene and methoxy groups, we observed signals from carbonyl carbon atoms at δC 185.7–185.9 (C⁴CO), 161.6–161.7 (C⁴COOMe), 156.7–157.1 (C⁴CONH) and signals from carbon atoms at the double bond in the cinnamoyl fragment at 143.4–144.4 (C⁴COC═C), 126.3–126.5 (C⁴COC═C) ppm. The chemical shifts of carbons in the pyrazole ring were at
δ_C 140.7–141.8 (C^3), 140.1–140.3 (C^5), 122.8–123.3 (C^4) ppm. The chemical shifts of carbon in the benzyl substituent of compounds 3b,d were at δ_C 54.6 ppm.

However, the ^1H and ^13C NMR spectral data did not allow performing an unambiguous choice between two possible structures (type A or B) of the recyclization products 3a-f (Figure 1). In the absence of suitable crystals for X-ray analysis, we undertook a thorough analysis of the structures of pyrazoles 3 via NMR spectroscopy, including 2D ^1H-^13C HSQC / HMBC and ^1H-^1H NOESY experiments of compounds 3d,e as an example (Figure 2). This made it possible to decide between two structures of pyrazoles 3 in favor of type B.

![Figure 1. Types of pyrazoles 3a-f.](image)

The most downfield-shifted ^13C resonance in the ^13C spectra corresponds to the carbonyl carbon of cinnamoyl moiety (δ_C 185.8 and 185.9 ppm, respectively), as evidenced by correlations of these carbons with protons at the double bond H\(^2'\), H\(^3'\) in the 2D ^1H-^13C HMBC spectra.

In the 2D HMBC spectrum of compound 3d, cross-peaks between protons of NCH\(_2\)-group and carbons Ci, Co and C^5 (δ_C 140.2 ppm) are observed. The chemical shift of the pyrazole carbon C^5 in compound 3e has a similar value (δ_C 140.1 ppm). The presence of low-intensity cross-peak between protons H\(^2'\) and carbons C^4 (δ_C 122.8 and 123.3 ppm, respectively) in the HMBC spectra is characteristic for both compounds 3d, e.

![Figure 2. Key ^1H-^13C long-range and ^1H-^1H NOE connectivities for compounds 3d,e.](image)

The proposed pyrazole structure of type B is also confirmed by the data of 2D ^1H-^1H NOESY experiment, which suggests that substituents at N\(^1\) and C^5 in pyrazole are spatially close. In particular, the NH-proton of arylcarbamoyl substituent at C^5 in compound 3d gives the cross-peak
with methylene protons of the benzyl substituent at N1; and in compound 3\textit{e}, with ortho-protons of phenyl substituent at N1 (Figure 3).

Figure 3. Fragments of 1H-1H NOESY (500 MHz, DMSO-\textit{d}\textsubscript{6}) spectra of 3\textit{d} (left) and 3\textit{e} (right).

The formation of compounds 3\textit{a-f} occurs apparently due to the initial addition of the primary amino group in monosubstituted hydrazine at the C2 atom of dioxopyrrole 1\textit{a-c} with formation of intermediate 4 which undergoes cleavage of the pyrrole ring at the N1–C2 bond. The subsequent intramolecular nucleophilic attack by the secondary amino group in the hydrazine fragment on the carbonyl carbon atom neighboring to the carbamoyl fragment and elimination of water molecule yields final pyrazole structure 3\textit{a-f} (Scheme 2).

Scheme 2. The mechanism of formation 3\textit{a-f}.
Conclusions

We have succeeded in developing a method for synthesis of new functionalized pyrazole derivatives of potential synthetic and pharmacological interest from the recyclization of 1H-pyrrole-2,3-diones with phenylhydrazine or benzylhydrazine. Our work presents a very simple reaction performed under neutral conditions and in the absence of any catalyst. From a structural viewpoint, the products are polycarbonyl compounds suitable for further modification. High yields and the simple reaction and purification procedures are the key advantages of this approach.

Experimental Section

General. Melting points were obtained on a standard melting point apparatus in open capillary tubes. IR spectra (mineral oil) were recorded on a Perkin Elmer Spectrum Two spectrophotometer. The 1H and 13C NMR spectra were recorded at 500.1 and 125.6 MHz respectively on a Bruker AVANCE III 500 spectrometer with DMSO-d_6 as solvent and TMS as internal standard. All signals in the 1H and 13C NMR spectra of compounds 3d,e were assigned on the basis of 2D 1H–13C HSQC and HMBC experiments. All reactions were monitored by TLC (silica gel, Silufol aluminum sheets, benzene-ethyl acetate 5:1). Elemental analyses for C, H and N were obtained using a LECO CHNS-932 analyzer.

Methyl 1-(phenyl or benzyl)-5-(arylcarbamoyl)-4-cinnamoyl-1H-pyrazole-3-carboxylates (3a-f). General procedure. A solution of 1 mmol of hydrazine 2 in 5 mL of anhydrous 1,4-dioxane was added to a solution of 1 mmol of compound 1 in 20 mL of anhydrous 1,4-dioxane. The mixture was heated for 30 min under reflux, evaporated and recrystallized from ethanol.

Methyl 4-cinnamoyl-1-phenyl-5-(phenylcarbamoyl)-1H-pyrazole-3-carboxylate (3a). Colorless crystals, yield 80%, mp 209-210 °C; IR (v_{max}, cm$^{-1}$): 3281 (NH), 1728 (COOMe), 1684 (CO), 1649 (C-CO), 1621 (CH=CH), 1558 (NH). 1H NMR (500 MHz, DMSO-d_6): δH 3.86 (3H, s, H$_7$), 7.10 (1H, t, J 7.4 Hz, H$_{6''}$), 7.29 (2H, t, J 7.8 Hz, 2CH$_{arom}$), 7.32 (1H, d, J 16.1 Hz, H$_2'$), 10.95 (1H, s, NH). Anal. Calcd for C$_{27}$H$_{21}$N$_3$O$_4$ (451.48): C, 71.83; H, 4.69; N, 9.31%. Found: C, 71.79; H, 4.60; N, 9.26%.

Methyl 1-benzyl-4-cinnamoyl-5-(phenylcarbamoyl)-1H-pyrazole-3-carboxylate (3b). Colorless crystals, yield 83%, mp 168-170 °C; IR (v_{max}, cm$^{-1}$): 3253 (NH), 1733 (COOMe), 1675 (CONH), 1648 (C-CO), 1620 (CH=CH), 1562 (NH). 1H NMR (500 MHz, DMSO-d_6): δH 3.80 (3H, s, H$_7$), 5.56 (2H, s, NCH$_2$), 7.13 (1H, t, J 7.4 Hz, H$_{6''}$), 7.26 (1H, d, J 16.0 Hz, H$_2'$), 7.29-7.44 (10H, m, 10CH$_{arom}$), 5.53 (1H, d, J 16.0 Hz, H$_3'$), 7.53 (1H, d, J 7.8 Hz, 2CH$_{arom}$), 7.65 (2H, d, J 7.8 Hz, H$_5'$), 10.87 (1H, s, NH). 13C NMR (126 MHz, DMSO-d_6): δC 52.3 (C$_7$), 54.6 (NCH$_2$), 120.1 (C$_{6''}$), 122.9 (C$_5$), 124.7 (C$_{6''}$), 126.5 (C$_2'$), 128.0 (C$_8$), 128.2 (C$_6$), 128.5 (C$_5$), 128.7 (C$_{m}$), 128.8 (C$_{5'}$), 128.9 (C$_{6'}$), 130.7 (C$_7$), 134.2 (C$_{4'}$), 135.4 (C$_{3''}$), 137.7 (C$_1$), 140.1 (C$_5$), 140.7 (C$_3$), 143.4 (C$_{5'}$), 143.5 (C$_{6'}$), 143.6 (C$_{3''}$), 143.7 (C$_{4'}$), 143.8 (C$_7$), 143.9 (C$_8$), 144.0 (C$_{m}$), 144.1 (C$_{6''}$).
157.1 (C′′), 161.7 (C′), 185.7 (C′′′). Anal. Calcd for C_{28}H_{23}N_{3}O_{4} (465.51): C, 72.25; H, 4.98; N, 9.03%. Found: C, 72.30; H, 4.93; N, 9.06%.

Methyl 4-cinnamoyl-1-phenyl-5-((p-tolylcarbamoyl)-1H-pyrazole-3-carboxylate (3c). Colorless crystals, yield 81%, mp 209-210 °C; IR (ν_{max}, cm⁻¹): 3315 (NH), 1722 (COOMe), 1669 (CONH), 1635 (C=O), 1615 (CH=CH), 1553 (NH). ¹H NMR (500 MHz, DMSO-d₆): δ_H 2.23 (3H, s, H′), 3.86 (3H, s, H′′), 7.09 (2H, d, J 8.6 Hz, H′′′), 7.30 (1H, d, J 16.1 Hz, H′), 7.32 (2H, d, J 8.6 Hz, H′′), 7.39-7.70 (11H, m, H₃, 10CH_{arom}), 10.86 (1H, s, NH). Anal. Calcd for C_{28}H_{23}N_{3}O_{4} (465.51): C, 72.25; H, 4.98; N, 9.03%. Found: C, 72.21; H, 4.94; N, 9.00%.

Methyl 1-benzyl-4-cinnamoyl-5-((p-tolylcarbamoyl)-1H-pyrazole-3-carboxylate (3d). Light yellow crystals, yield 82%, mp 156-157 °C; IR (ν_{max}, cm⁻¹): 3267 (NH), 1717 (COOMe), 1685 (CONH), 1647 (C=O), 1625 (CH=CH), 1561 (NH). ¹H NMR (500 MHz, DMSO-d₆): δ_H 2.25 (3H, s, H′), 3.80 (3H, s, H′′), 5.55 (2H, s, NCH₂), 7.13 (2H, d, J 8.2 Hz, H′′′), 7.25 (1H, d, J 16.1 Hz, H′), 7.29-7.43 (10H, m, 10CH_{arom}), 7.52 (1H, d, J 16.1 Hz, H′′), 7.65 (2H, d, J 7.2 Hz, H′′′), 10.78 (1H, s, NH). ¹³C NMR (126 MHz, DMSO-d₆): δ_C 20.5 (C″), 52.3 (C′), 54.6 (NCH₂), 120.1 (C′′′), 122.8 (C′′), 126.5 (C′′′′), 128.0 (C″), 128.2 (C″′), 128.5 (C″′′), 128.7 (C″′′′), 129.2 (C″), 130.7 (C″′), 133.8 (C″′′), 134.2 (C″′′′), 135.2 (C′′′′), 135.5 (C″′′′), 140.1 (C′), 140.7 (C″), 143.4 (C″′), 156.9 (C″′′), 161.7 (C″′′′), 185.8 (C″′′′′). Anal. Calcd for C_{29}H_{25}N_{3}O₅ (479.54): C, 72.64; H, 5.26; N, 8.76%. Found: C, 72.67; H, 5.28; N, 8.79%.

Methyl 4-cinnamoyl-5-((4-methoxyphenyl)carbamoyl)-1-phenyl-1H-pyrazole-3-carboxylate (3e). Colorless crystals, yield 80%, mp 195-196 °C; IR (ν_{max}, cm⁻¹): 3307 (NH), 1722 (COOMe), 1667 (CONH), 1636 (C=O), 1616 (CH=CH), 1553 (NH). ¹H NMR (500.1 MHz, DMSO-d₆): δ_H 3.70 (3H, s, H′), 3.86 (3H, s, H′′′), 6.86 (2H, d, J 9.1 Hz, H′′′), 7.30 (1H, d, J 16.0 Hz, H′), 7.35 (2H, d, J 9.1 Hz, H′′′), 7.40-7.46 (3H, m, H′′, H′′′), 7.51 (1H, tt, J 7.3, J 1.2 Hz, H′′), 7.57 (2H, dd, J 8.4, J 7.3 Hz, H′′′), 7.60 (1H, d, J 16.0 Hz, H′′′), 7.65 (2H, dd, J 8.4, J 1.2 Hz, H′′), 7.69 (2H, dd, J 7.7, J 1.8 Hz, H′′), 10.81 (1H, s, NH). ¹³C NMR (126 MHz, DMSO-d₆): δ_C 52.5 (C″), 55.2 (C′), 114.0 (C″′), 121.4 (C′′′), 123.3 (C″′′), 123.8 (C″′′′), 126.3 (C″′′′), 128.6 (C″′′′), 129.0 (C″′′′), 129.3 (C″), 129.6 (C″′), 130.7 (C″′′), 130.8 (C″′′′), 134.2 (C′′′), 138.2 (C′′), 140.3 (C″), 141.8 (C′), 144.4 (C″′), 156.2 (C″′′), 156.7 (C″′′′), 161.6 (C″′′′′), 185.9 (C″′′′′). Anal. Calcd for C_{28}H_{23}N_{3}O_{5} (481.51): C, 69.84; H, 4.81; N, 8.73%. Found: C, 69.89; H, 4.86; N, 8.74%.

Methyl 1-benzyl-4-cinnamoyl-5-((4-methoxyphenyl)carbamoyl)-1H-pyrazole-3-carboxylate (3f). Light yellow crystals, yield 82%, mp 178-179 °C; IR (ν_{max}, cm⁻¹): 3304 (NH), 1731 (COOMe), 1668 (CONH), 1655 (C=O), 1622 (CH=CH), 1566 (NH). ¹H NMR (500 MHz, DMSO-d₆): δ_H 3.72 (3H, s, H′), 3.80 (3H, s, H′′′), 5.55 (2H, s, NCH₂), 6.89 (2H, d, J 8.6 Hz, H′′′), 7.24 (1H, d, J 16.0 Hz, H′), 7.29-7.45 (10H, m, 10CH_{arom}), 7.52 (1H, d, J 16.0 Hz, H′′′), 7.65 (2H, m, H′′′), 10.72 (1H, s, NH). Anal. Calcd for C_{29}H_{25}N_{3}O₅ (495.53): C, 70.29; H, 5.09; N, 8.48%. Found: C, 70.23; H, 5.04; N, 8.46%.
Acknowledgements

The study was financially supported by the Ministry of Education and Science of the Russian Federation, by the Ministry of Education of Perm Krai (International Research Teams competition), and by the Russian Foundation for Basic Research (Grants Nos. 13-03-96009, 14-03-96014).

References

1. Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A. M. S. Targets Heterocycl. Syst. 2002, 6, 52.
2. Seltzman, H. H. Drug Dev. Res. 2009, 70, 601.
 http://dx.doi.org/10.1002/ddr.20338
3. Dai, H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7222.
 http://dx.doi.org/10.1021/ja201708f
4. Jones, L. H.; Allan, G.; Corbau, R.; Middleton, D. S.; Mowbray, C. E.; Newman, S. D.; Phillips, C.; Webster, R.; Westby, M. Chem. Biol. Drug Des. 2011, 77, 393.
 http://dx.doi.org/10.1111/j.1747-0285.2011.01113.x
5. Kong, Y.; Tang, M.; Wang, Y. Org. Lett. 2014, 16, 576.
 http://dx.doi.org/10.1021/ol403447g
6. Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984.
 http://dx.doi.org/10.1021/cr2000459
7. Dadiboyena, S.; Nefzi, A. Eur. J. Med. Chem. 2011, 46, 5258.
 http://dx.doi.org/10.1016/j.ejmech.2011.09.016
8. Fustero, S.; Simón-Fuentes, A.; Sanz-Cervera, J. F. Org. Prep. Proc. Int. 2009, 41, 253.
 http://dx.doi.org/10.1080/00304940903077832
9. Aliev, Z.G.; Maslivets, A.N.; Gorkovets, T.M.; Andreichikov, Yu.S.; Atovmyan, L.O. Russ. Chem. Bull. 1999, 48, 604.
 http://dx.doi.org/10.1007/BF02496190
10. Silaichev, P.S.; Kudrevatykh, N.V.; Aliev, Z.G.; Maslivets, A.N. Russ. J. Org. Chem. 2010, 46, 1546.
 http://dx.doi.org/10.1134/S1070428010100180
11. Silaichev, P.S.; Chudinova, M.A.; Slepukhin, P.A.; Maslivets, A.N. Russ. J. Org. Chem. 2012, 48, 109.
 http://dx.doi.org/10.1134/S1070428012010174
12. Breitmaier E. Structure Elucidation by NMR in Organic Chemistry: A Practical Guide. Third revised edition. University of Bonn, Germany, John Wiley & Sons Ltd. 2002. p. 44.