Bovine tuberculosis (TB) in cervids remains a significant problem affecting farmed herds and wild populations. Traditional skin testing has serious limitations in certain species, whereas emerging serological assays showed promising diagnostic performance. The recently developed immunochromatographic dual-path platform (DPP) VetTB assay has been evaluated in various species, including cervids. In this study, we evaluated the diagnostic accuracy of the DPP VetTB assay in white-tailed deer infected with Mycobacterium bovis, in comparison with traditional skin testing procedures.

Mycobacterium bovis, the cause of tuberculosis (TB) in cattle, can also infect a broad range of other mammalian host species, including cervids. Free-ranging deer are known to play a role as wildlife reservoirs of M. bovis infection (1, 2), whereas farmed deer are reportedly involved in disease transmission to cattle (3, 4) and to humans (5, 6). In the last decade, M. bovis outbreaks in captive cervids have been increasingly found in the United States, including multiple herds of white-tailed deer (Odocoileus virginianus) in Michigan, elk (Cervus canadensis) in Indiana, a mixed herd of red deer (Cervus elaphus) and fallow deer (Dama dama) in New York, and a farm of elk and fallow deer in Nebraska (7–9).

In captive cervids, bovine TB control relies primarily on intradermal tuberculin testing and more rarely on slaughter surveillance. Skin test procedures, however, have not been fully validated for use in various cervid species. These limitations were clearly demonstrated in the recent M. bovis outbreak in farmed elk and fallow deer in Nebraska, where only 32 of the animals that had gross lesions and produced positive culture results were reactors in the single cervical skin test (9).

Recent studies have shown the potential of emerging antibody assays for TB detection in various cervid species (10–12). The dual-path platform (DPP) VetTB assay was developed by using Chembio DPP technology for the rapid detection of a specific antibody in the laboratory or, if needed, animal side under field conditions. This immunoassay has been recently evaluated in elk, red deer, and fallow deer (9, 11, 13). In the present report, we describe the diagnostic performance of the DPP VetTB assay in white-tailed deer experimentally or naturally infected with M. bovis.
infection in this host species is endemic (16). The animals enrolled in this study inhabited the “core” of the bovine TB outbreak area (1). Blood specimens of variable quality were obtained during 2004 to 2010 from (i) hunter-harvested deer, (ii) carcasses presented to a wildlife disease laboratory during routine surveillance, and (iii) depopulation of a fenced deer shooting preserve, as described previously (17). All animals were examined for gross lesions consistent with TB in accordance with the standardized protocols (17), followed by histopathology and mycobacterial culture from various tissue specimens, including lungs, parietal pleura, and mediastinal retropharyngeal lymph nodes.

DPP VetTB assay. The DPP format is a two-step test designed for rapid antibody detection in multiple host species (18–20), including cervids (9, 11, 13). The assay has two test antigen bands on the membrane strip, T1 (MPB83 protein) and T2 (CFP10/ESAT-6 fusion), for differential IgG antibody detection by colloidal gold particles coupled with hybridized antisera from the Statens Serum Institut (Copenhagen, Denmark); the MPB59, MPB64, MPB70, and MPB83 proteins, as well as bovine protein purified derivative tuberculin and M. bovis culture filtrate (MBCF), from the Veterinary Sciences Division (Stormont, United Kingdom); Mtb8 and polyepitope fusion TBE10 developed by Corixa Corp. (Seattle, WA); and alpha-crystallin (Acr1) and the 38-kDa protein from Standard Diagnostics (Seoul, South Korea). Deer IgG antibody bound to the immobilized antigens was detected by peroxidase-conjugated protein G (Sigma, St. Louis, MO) diluted 1:1,000 and visualized with 3,3′,5,5′-tetramethylbenzidine (Kirkegaard & Perry Laboratories, Gaithersburg, MD). MAPIA results were evaluated visually, with a band of any intensity being read as an antibody-positive reaction. No visible reactivity with any of the two test antigens was interpreted as an antibody-negative result. In addition, a DPP optical reader device was used to measure reflectance in relative light units (RLU). On the basis of extensive analyses performed with sera from deer known to be TB free, reactivity of T1 and/or T2 above a cutoff value of 50 RLU was considered an antibody-positive result.

Multiantigen print immunosassay (MAPIA). Testing was performed as previously described (14). The antigen panel consisted of 12 recombinant proteins of *M. tuberculosis* and two native antigen preparations of *M. bovis* as follows: the ESAT-6 and CFP10 proteins, as well as hybrids CFP10/ESAT-6 and Acr1/MPB83, from the Statens Serum Institut (Copenhagen, Denmark); the MPB59, MPB64, MPB70, and MPB83 proteins, as well as bovine protein purified derivative tuberculin and *M. bovis* culture filtrate (MBCF), from the Veterinary Sciences Division (Stormont, United Kingdom); Mtb8 and polyepitope fusion TBE10 developed by Corixa Corp. (Seattle, WA); and alpha-crystallin (Acr1) and the 38-kDa protein from Standard Diagnostics (Seoul, South Korea). Deer IgG antibody bound to the immobilized antigens was detected by peroxidase-conjugated protein G (Sigma, St. Louis, MO) diluted 1:1,000 and visualized with 3,3′,5,5′-tetramethylbenzidine (Kirkegaard & Perry Laboratories, Gaithersburg, MD). MAPIA results were evaluated visually, with a band of any intensity being read as an antibody-positive reaction.

Data analysis. The diagnostic performance of the DPP VetTB assay was evaluated against the gold standard of *M. bovis* culture by calculating test sensitivity and specificity with available software (21) and is presented with the 95% confidence intervals (CIs). For specificity estimates in the NADC studies, we used sera from the noninfected control group and preinoculation samples from the experimentally infected or vaccinated animals. *M. avium* subsp. *paratuberculosis* strain K10-inoculated and BCG-vaccinated deer were used for serological cross-reactivity testing and not included in the specificity evaluation.

RESULTS AND DISCUSSION

Antigen recognition by antibodies during *M. bovis* infection. The use of multiple antigens enabled a detailed analysis of the antibody profiles observed in infected white-tailed deer. Figure 1 shows typical antigen reactivity patterns obtained with representative sera from deer experimentally inoculated with *M. bovis*. In the MAPIA, the MPB83 protein was the antigen most frequently recognized by serum antibodies. The Arc1/MPB83 chimeric molecule and MBCF (both containing MPB83 epitopes) were also reactive with the MPB83 antibody-positive sera. The ESAT-6 and CFP10 proteins, as well as the CFP10/ESAT-6 fusion protein, were reactive as well, albeit in fewer infected deer. No bands were detected with preinoculation sera (Fig. 1, strips 1a and 2a). The antibody profiles were generally variable from animal to animal, irrespective of the route of *M. bovis* inoculation (aerosol versus intratonsilar). The MAPIA findings for the MPB83 and CFP10/ESAT-6 proteins were consistent with the DPP VetTB data obtained for T1 and T2, respectively (Fig. 1), thus demonstrating agreement between the two immunoassays.

The antibody responses detected in the Michigan wild deer with naturally acquired *M. bovis* infections appeared stronger and involved more reactive bands in the MAPIA (Fig. 2) than did those of experimentally inoculated animals (Fig. 1). As with experimentally infected deer, the MPB83 protein was recognized by most of the culture-confirmed free-ranging deer. However, the reactivity of the CFP10 and ESAT-6 antigens was much greater than that found during experimental *M. bovis* infection. With generally heterogeneous antibody profiles observed in deer with naturally acquired disease, the serological responses obtained from sera collected during different winter seasons did not reveal year-to-year differences. As with the experimental *M. bovis* infection, DPP VetTB assay results correlated well with the MAPIA data, confirming the greater contribution of T2 (CFP10/ESAT-6) to antibody detection in Michigan wild deer (Fig. 2) than in experimentally infected deer (Fig. 1).

On the basis of cattle studies, it is generally believed that immune responses to experimental *M. bovis* infection may be stronger than those usually found in naturally acquired bovine TB (22). Therefore, the diagnostic sensitivity of novel immunoassays may be overestimated if they are evaluated only on experimentally generated specimens, requiring further validation with field samples. In the present study, however, we found that Michigan deer with natural *M. bovis* infections produced more robust antibody responses, especially to the ESAT-6 and CFP10 proteins (T2 in the
DPP VetTB assay), than did experimentally inoculated deer of the same species. This unexpected finding may be explained by the short-duration design of the M. bovis inoculation experiments, which is not conducive to full maturation of the antibody response to infection. It is possible that most of the Michigan white-tailed deer that developed TB represented more advanced stages of disease or had been infected longer. Consequently, their immune responses were generally stronger and involved more antibody-reactive antigens. Further studies are necessary to confirm this assumption.

Kinetics of antibody responses to M. bovis infection. Serial specimens collected during experimental M. bovis infection were tested to determine seroconversion times. Most deer developed detectable responses between 8 and 16 weeks postinoculation, followed by gradually increasing antibody levels for several weeks and fluctuating but generally sustainable seroreactivity thereafter. Figure 3 shows an example of the individual IgG kinetics measured by the DPP VetTB assay in deer 571, which was infected with M. bovis intratonsillarily. The serological response involved both T1 and T2 reactivity in this animal, suggesting that levels of antibody to each of the test antigens (MPB83 and CFP10/ESAT-6 reactivity) evolved independently over the course of infection, resulting in the variable quantitative seroreactivity profiles observed over time. These findings indicate that M. bovis infection can induce measurable IgG responses in cervids within 2 to 3 months postinoculation, thus supporting previously reported antibody-positive results for the DPP VetTB assay. Arrows show the positions of the DPP VetTB T1 and T2 antigens on the MAPIA strips.

Diagnostic performance of DPP VetTB assay. Taking into account the serological differences found by MAPIA between the experimentally infected animals and the wild deer with naturally acquired M. bovis, the accuracy of the DPP VetTB assay was estimated for each of these groups separately (Table 1). In free-ranging deer, the test sensitivity was higher (71.9%) than in the experimentally infected animals (58.1%), whereas the specificity was nearly the same in the two groups (98.2 and 98.4%) and close to that found for farmed deer (97.2%) in the present study. When all of the animals (63 with TB and 903 controls) were combined, the resulting test sensitivity was 65.1% (95% CI, 51.9 to 76.4%) and the specificity was 97.8% (95% CI, 96.5 to 98.6%).

The wild deer used in the Michigan study to determine DPP VetTB assay specificity included five animals with granulomatous lesions in the lungs which were all negative for M. bovis by culture and PCR. None of these deer showed antibody-positive results in the DPP VetTB assay. The specificity was further evaluated by testing serum samples from three deer experimentally inoculated with M. avium subsp. paratuberculosis strain K10 and five deer vaccinated with M. bovis BCG Pasteur. No antibody cross-reactivity was found by DPP VetTB assay in these animals, despite the development of strong serological responses by the M. avium subsp. paratuberculosis strain K10-inoculated deer that were detected by ELISA using lipoolarabinomannan-enriched antigen (15). It is known that, in contrast to virulent M. bovis, BCG lacks ESAT-6 and CFP10 antigens (25). Further, expression of the MPB70 and MPB83 proteins varies significantly among the BCG strains, with BCG strain Pasteur (the vaccine used in the present study) being a low MPB83/70 producer (26). High specificity of the DPP VetTB assay was also shown for other cervid species (9, 11, 13). In these reports, the test sensitivity was 79% for captive elk involved in the M. bovis outbreak in the United States (Nebraska) and 85% for red deer in New Zealand, whereas for fallow deer the sensitivity estimates varied from 71% in Spain (wild population) to 91% in the United States (captive herd in Nebraska). Thus, the test sensitivity determined in the present study for white-tailed deer with naturally acquired M. bovis infection (72%) appears to be within the range of sensitivity estimates reported for other cervid species.

Comparison of the antibody detection with the tuberculin test for detection of bovine TB in deer was not among the objectives of this report. Free-ranging deer were not skin tested in Michigan, whereas experimentally infected animals were all tuberculin reactors and therefore could not represent natural infection in the
cervid population. Previous studies, however, have demonstrated the added value of serology in situations where the intradermal tuberculin test failed to detect most of the *M. bovis*-infected deer in the affected herd (9). Antibody assays may also be used to supplement skin test procedures for the detection of *M. bovis*-infected animals (12, 13).

In conclusion, the serologic approach to the identification of *M. bovis*-infected cervids is increasingly gaining recognition for use in bovine TB control programs. Published data have demonstrated that antibody detection assays may provide useful ancillary tools for improved bovine TB control in both cattle and cervids. The present study showed a relatively high diagnostic accuracy of the DPP VetTB test for white-tailed deer, especially in detecting naturally infected animals. Further evaluation studies are needed to validate this test utility in other cervid species.

ACKNOWLEDGMENTS

We are grateful to Claudia Quinn and Laurie Nussbaum for skillful technical assistance with the serological assays, as well as Rebecca Lyon, Jessica Pollock, Shelly Zimmerman, Mike Howard, Kristin Bass, and the animal care and clinical veterinary staff at NADC.

REFERENCES

1. O'Brien DJ, Schmitt SM, Fierke JS, Hogle SA, Winterstein SR, Cooley TM, Moritz WE, Diegel KL, Fitzgerald SD, Berry DE, Kaneene JB. 2002. Epidemiology of *Mycobacterium bovis* in free-ranging white-tailed deer, Michigan, USA, 1995–2000. Prev. Vet. Med. 54:47–63.

2. Palmer MV. 2007. Tuberculosis: a reemerging disease at the interface of domestic animals and wildlife. Curr. Top. Microbiol. Immunol. 315:195–215.

3. Essey MA, Koller MA. 1994. Status of bovine tuberculosis in North America. Vet. Microbiol. 40:15–22.

4. O'Brien DJ, Schmitt SM, Fitzgerald SD, Berry DE, Hickling GJ. 2006. Managing the wildlife reservoir of *Mycobacterium bovis*: the Michigan, USA, experience. Vet. Microbiol. 112:313–323.

5. Fanning A, Edwards S. 1991. *Mycobacterium bovis* infection in human beings in contact with elk (*Cervus elaphus*) in Alberta, Canada. Lancet 338:1253–1255.

6. Wilkins MJ, Meyerson J, Bartlett CP, Spidenlenner SL, Berry DE, Mosher LB, Kaneene JB, Robinson-Dunn B, Stobierski MG, Boulton ML. 2008. Human *Mycobacterium bovis* infection and bovine tuberculosis outbreak, Michigan, 1994–2007. Emerg. Infect. Dis. 14:657–660.

7. Connell KM. 2009. Report of the committee: bovine tuberculosis surveillance in U.S. livestock fiscal year 2009, p 650–653. Proc. 113th U.S. Anim. Health Assoc. Annu. Meet., San Diego, CA. http://www.usaha.org/Portals/6/Proceedings/2009_USAHA_Proceedings.pdf.

8. O'Brien DJ, Schmitt SM, Fitzgerald SD, Berry DE. 2011. Management of bovine tuberculosis in Michigan wildlife: current status and near term prospects. Vet. Microbiol. 151:179–187.

9. Waters WR, Stevens GE, Schoenbaum MA, Orloski KA, Robbe-Austerman S, Harris NB, Hall SM, Thomsen BV, Wilson AJ, Brannian RE, Nelson JT, Schafer S, Esfandiari J, Dutton M, Greenwald R, Lyashchenko KP. 2011. Bovine tuberculosis in a Nebraska herd of farmed elk and fallow deer: a failure of the tuberculin skin test and opportunities for serodiagnosis. Vet. Med. Int. 14:933–985.

10. Lyashchenko KP, Greenwald R, Esfandiari J, Chambers MA, Vicente J, Gortazar C, Santos N, Corriaza-Neves M, Buddle BM, Jackson R, O'Brien DJ, Schmitt S, Palmer MV, Delahay RJ, Waters WR. 2008. Animal-side assay for rapid detection of *Mycobacterium bovis* infection in multiple species of free-ranging wildlife. Vet. Microbiol. 132:283–292.

11. Buddle BM, Wilson T, Denis M, Greenwald R, Esfandiari J, Lyashchenko KP, Liggett S, Mackintosh CG. 2010. Sensitivity, specificity, and confounding factors of novel serological tests used for the rapid diagnosis of bovine tuberculosis in farmed red deer (*Cervus elaphus*). Clin. Vaccine Immunol. 17:626–630.

12. Jaroso R, Vicente J, Martín-Hernando MP, Aranaz A, Lyashchenko K, Greenwald R, Esfandiari J, Gortazar C. 2010. Ante-mortem testing wild fallow deer for bovine tuberculosis. Vet. Microbiol. 146:285–289.

13. Boadella M, Barasoa JA, Diaz-Sanchez S, Lyashchenko KP, Greenwald R, Esfandiari J, Gortazar C. 2012. Performance of immunochromatographic and ELISA tests for detecting fallow deer infected with *Mycobacterium bovis*. Prev. Vet. Med. 104:160–164.

14. Waters WR, Palmer MV, Bannantine JP, Whipple DL, Greenwald R, Esfandiari J, Andersen P, McNair J, Pollock JM, Lyashchenko KP. 2004. Antigen recognition by serum antibodies in white-tailed deer (*Odocoileus virginianus*) experimentally infected with *Mycobacterium bovis*. Clin. Diagn. Lab. Immunol. 11:849–855.

15. Palmer MV, Stabel JR, Waters WR, Bannantine JP, Miller JM. 2007. Experimental infection of white-tailed deer (*Odocoileus virginianus*) with *Mycobacterium avium* subspp. *paratuberculosis*. J. Wildl. Dis. 43:597–608.

16. Schmitt SM, Fitzerald SD, Cooley TM, Bruning-Fann CS, Sullivan L, Berry D, Carlson T, Minnis RB, Payeur BJ, Sikarskie J. 1997. Bovine tuberculosis in free-ranging white-tailed deer from Michigan. J. Wildl. Dis. 33:749–758.

17. O'Brien DJ, Schmitt SM, Lyashchenko KP, Waters WR, Berry DE, Palmer MV, McNair J, Greenwald R, Esfandiari J, Cosgrove MK. 2009. Evaluation of blood assays for detection of *Mycobacterium bovis* in white-tailed deer (*Odocoileus virginianus*) in Michigan. J. Wildl. Dis. 45:153–164.

18. Greenwald R, Lyashchenko O, Esfandiari J, Miller M, Mikota S, Olsen JH, Ball R, Dumonceaux G, Schmitt D, Moller T, Payeur BJ, Harris B, Sofranco D, Waters WR, Lyashchenko KP. 2009. Highly accurate antibody assays for early and rapid detection of tuberculosis in African and Asian elephants. Clin. Vaccine Immunol. 16:605–612.

19. Lyashchenko KP, Greenwald R, Esfandiari J, Rhodes S, Dean G, de La Rue-Domeinec R, Meylan M, Vordermeier HM, Zanolari P. 2011. Diagnostic value of animal-side antibody assays for rapid detection of *Mycobacterium bovis* or *Mycobacterium microtus* infection in South American camels. Clin. Vaccine Immunol. 18:2143–2147.

20. Rhodes SC, Gunn-Moore D, Boushehri ML, Schiller I, Esfandiari J, Greenwald R, Lyashchenko KP. 2011. Comparative study of IFNγ and antibody tests for feline tuberculosis. Vet. Immunol. Immunopathol. 144:129–134.

21. Lowry R. 2007. VassarStats: website for statistical computation. Clinical calculator 1. From an observed sample: estimates of population prevalence, sensitivity, specificity, predictive values, and likelihood ratios. Vassar College, Poughkeepsie, NY. http://vassarstats.net/.

22. Waters WR, Palmer MV, Thacker TC, Bannantine JP, Vordermeier HM, Hewinson RG, Greenwald R, Esfandiari J, McNair J, Pollock JM, Andersen A, Lyashchenko KP. 2006. Early antibody responses to experimental *Mycobacterium bovis* infection of cattle. Clin. Vaccine Immunol. 13:648–654.

23. Harrington NP, Surujballi OP, Prescott JF, Duncan JR, Waters WR,
Lyashchenko K, Greenwald R. 2008. Antibody responses of cervids (Cervus elaphus) following experimental Mycobacterium bovis infection and the implications for immunodiagnosis. Clin. Vaccine Immunol. 15:1650–1658.

24. Waters WR, Palmer MV, Bannantine JP, Greenwald R, Esfandiari J, Andersen P, McNair J, Pollock JM, Lyashchenko KP. 2005. Antibody responses in reindeer (Rangifer tarandus) infected with Mycobacterium bovis. Clin. Diagn. Lab. Immunol. 12:727–735.

25. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178:1274–1282.

26. Charlet D, Mostowy S, Alexander D, Sit L, Wiker HG, Behr MA. 2005. Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigK. Mol. Microbiol. 56:1302–1313.