Inelastic neutron scattering studies of Crystal Field Levels in PrOs$_4$As$_{12}$

Songxue Chi, Pengcheng Dai, T. Barnes, H. J. Kang, J. W. Lynn, R. Bewley, F. Ye, M. B. Maple, Z. Henkie, and A. Pietraszko

1Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA
2Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
3NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA
4Rutherford Appleton Laboratory, Chilton, Didcot, Oxon. OX11 0QX, UK
5Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
6Institute of Low Temperature and Structure Research, Polish Academy of Science, 50-950 Wroclaw, Poland

(Dated: February 20, 2008)

We use neutron scattering to study the Pr$^{3+}$ crystalline electric field (CEF) excitations in the filled skutterudite PrOs$_4$As$_{12}$. By comparing the observed levels and their strengths under neutron excitation with the theoretical spectrum and neutron excitation intensities, we identify the Pr$^{3+}$ CEF levels, and show that the ground state is a magnetic $\Gamma_4^{(2)}$ triplet, and the excited states Γ_1, $\Gamma_4^{(1)}$, and Γ_{23} are at 0.4, 13 and 23 meV, respectively. A comparison of the observed CEF levels in PrOs$_4$As$_{12}$ with the heavy fermion superconductor PrOs$_4$Sb$_{12}$ reveals the microscopic origin of the differences in the ground states of these two filled skutterudites.

PACS numbers: 75.47.-m, 71.70.Ch

I. INTRODUCTION

The Pr-based filled skutterudites (FS) have the formula Pr$_2$T$_2$X$_{12}$, where T is one of the transition metals Fe, Ru, or Os, and X is a pnictogen (P, As, or Sb)\cite{12,23}. The notably mounting interests and efforts in the study of the FS compounds are motivated by the remarkable diversity of their electronic and magnetic ground states, including multipole ordering\cite{5,6}, small gap insulators\cite{7,8}, conventional superconductivity\cite{9}, unconventional superconductivity\cite{10,11}, and magnetic ordering\cite{12,13,14,15,16}. Despite the large differences in their physical properties, these compounds are governed by only a few parameters, including the interaction between the conduction and the 4f shell electrons (the c-f coupling) and the effect of the crystalline electric field (CEF) potential on the Pr$^{3+}$ 4f electrons.\cite{4,5,6,7,10,11,12,13,14,15,16} For example, transport and bulk magnetic measurements on the heavy Fermion superconductor PrOs$_4$Sb$_{12}$ suggested either a Γ_1 singlet ground state or a Γ_3 nonmagnetic doublet ground state\cite{16}. Inelastic neutron scattering experiments on PrOs$_4$Sb$_{12}$ showed that the Pr$^{3+}$ CEF levels include a Γ_1 singlet ground state and a low-lying $\Gamma_4^{(2)}$ magnetic triplet excited state at 0.6 meV\cite{16,17,18}. This rules out the quadrupolar Kondo effect, which arises only from a nonmagnetic doublet ground state\cite{19,20}, as the microscopic origin for the observed heavy-fermion superconductivity.

The FS compounds belong to the space group Im\overline{3}m. The rare earth atoms are located at the corners and body-center of the cubic lattice, each of which is surrounded by a simple cube of 8 transition metal atoms at the 8c sites [Fig. 1(a)] and by an icosahedron of 12 pnictogen atoms at the 24g Wyckoff sites [Fig. 1(c)]. Owing to their unique structure, a subtle modification on composition can result in a different CEF scheme and thus a completely different ground state. However, a general understanding is desirable as to how the compositions influence the CEF levels. In PrOs$_4$As$_{12}$, in which the pnictogen Sb in PrOs$_4$Sb$_{12}$ is replaced by As, the material displays quite different correlated electron properties\cite{10,11}. The temperature dependence of the electrical resistivity reveals Kondo lattice behavior, which is not observed in PrOs$_4$Sb$_{12}$\cite{21}. Specific heat measurements indicate an enhanced electronic specific heat coefficient of $\gamma \approx 1$ J/mol K2 for $T \leq 1.6$ K and $0 \leq H \leq 1.25$ T\cite{22}. The ground state has been determined to be antiferromagnetic (AF) by neutron scattering experiments\cite{23}. A determination of the Pr$^{3+}$ CEF level scheme in PrOs$_4$As$_{12}$ and its microscopic origin is crucial for understanding why its ground state is different from that in PrOs$_4$Sb$_{12}$. The outcome will lead to a more general understanding of how the structures and compositions in Pr-based FSs can influence their CEF levels and ground states.

II. EXPERIMENTAL

PrOs$_4$As$_{12}$ single crystals were grown using the molten metal flux method described in Ref.\cite{24} and crushed into fine powder. Our neutron scattering experiments were carried out on the cold neutron triple-axis spectrometer SPINS at the NIST Center for Neutron Research (NCNR) and on the HET chopper spectrometer at ISIS (Rutherford Appleton Laboratory), as described previously\cite{25}. We reference positions in reciprocal space at wave vector $\mathbf{Q} = (q_x, q_y, q_z)$ in Å$^{-1}$ using (H,K,L) reciprocal lattice units (r.l.u.) notation, where $(H,K,L) = (q_x/2\pi, q_y/2\pi, q_z/2\pi)$ for the cubic PrOs$_4$As$_{12}$ unit cell ($a = 8.5319$ Å\cite{25}). We used a 3He-4He dilution refrigerator for field-dependent experiments. The nature of observed CEF excitations were...
the scattering function at

tween magnetic and phonon scattering. Figure 2a shows

in the low- and high-angle detectors can distinguish be-

with increasing

and 200 K. Since the CEF magnetic scattering decreases

Q

creases with

4

from PrOs

magnetic field (0 T-11 T) range.

confirmed in a large temperature (0.08 K-200 K) and

magnetic field (0 T-11 T) range.

III. RESULTS AND DISCUSSION

Figure 2 summarizes the neutron scattering intensity

from PrOs4As12 on HET at temperatures between 1.5 K

and 200 K. Since the CEF magnetic scattering decreases

with increasing Q whereas the intensity of phonons in-

creases with Q, a comparison of the neutron intensities

in the low- and high-angle detectors can distinguish be-

 tween magnetic and phonon scattering. Figure 2a shows

the scattering function at T = 1.5 K and T = 200 K with

an incident neutron beam energy of Ei = 32 meV. Com-

parison of the low- and high-angle data reveals two clear

CEF excitations at 13 meV and 23 meV, with phonons

at ~20 meV. Measurements with Ei = 12 and 50 meV

showed no evidence of additional CEF excitations at en-

ergy transfers between 2 and 8 meV or above 25 meV

[Figs. 2(b) and 2(c)].

To search for CEF excitations at energies below

2 meV, we carried out high resolution measurements us-

 ing SPINS. At T = 0.32 K, energy scans at Q = (1.2, 0, 0)

showed a clear peak at 0.4 meV; this mode decreases

and becomes broader on warming to 2.5 K and 6 K [Fig. 3(a)].

Figure 3(b) shows that the energy of the ~0.4 meV mode

has weak Q-dependence and decreases in intensity with

increasing Q, thus confirming its magnetic nature. Fig-

ure 3(d) reveals that the elastic intensity also decreases on

warming from 0.08 K to 4 K. This reduction of intensity in the elastic channel with increasing temperature is

also observed in the HET data, evidencing the ground

state is a magnetic multiplet.

Figures 4(a)-(d) show the temperature dependence of

the low-angle scattering for Ei = 32 meV. The CEF peak

intensities do not change significantly with temperature

between 1.5 K and 5 K. At 50 K the intensity in the elas-

tic channel has undergone a substantial decrease, and the

13 meV peak has shifted to 10 meV. On further increas-

ing the temperature to 100 K and 200 K the intensities

at 0 meV, 13 meV and 23 meV continue to decrease,

whereas the scattering at 10 meV increases.

The theoretical description of the Pr3+ CEF levels in

PrOs4As12 is complicated by the presence of important

contributions from two sets of neighboring ions, Os and

As. The Pr3+ ion in Pr-based FS has a 4f2 configuration,

which in Russell-Saunders coupling has a ninefold degen-

erate 3H4 ground state. This degeneracy is lifted by the

CEF interaction, which we assume to be dominated by

the 12 nearest neighbor pnictogens (As) and the 8 next

nearest neighbor Os ions; the distances to these ions are

dPr−As = 3.23 Å and dPr−Os = 3.69 Å respectively.

A. Single – charge model with separate ions

Os ions form a simple cube around the Pr ions and

they alone give an Oh symmetric CEF. The arrangement

of the 12 pnictogens (As) around Pr3+ forms 3 orthogo-
nally intersected planes where the As-As bonds are shown

as solid lines with length L and W is the length of the
dashed lines in Fig. 1(c) (b = W/L = 0.4267 ≠ 1). When
the 4 pnictogen atoms in each of the 3 orthogonally intersected planes form a square, i.e., \(b = W/L = 1 \), the fourfold rotational symmetry is recovered and the point group symmetry becomes \(O_h \) with the simple cubic CEF potentials [Fig. 1(e)]\(^{26}\). This \(O_h \) case is treated by Lea, Leask, and Wolf (LLW)\(^{26}\) (see their Fig. 9); we have red-erived their excitation spectrum as shown in Fig. 1(b).

Both \(O_h \) and \(T_h \) CEF interactions split the \(\text{Pr}^{3+} \) \(^3\text{H}_4 \) ground state into a singlet, a doublet and two triplets\(^{25}\). In the \(b \neq 1 \) \(T_h \)-symmetry case, these multiplets are referred to as \(\Gamma_1 \) (a singlet), \(\Gamma_{23} \) (a nonmagnetic doublet), and \(\Gamma_{1}\) and \(\Gamma_{2} \) (magnetic triplets). These two triplets are linear combinations of the \(O_h \)-symmetry triplets, mixed by the new \(T_h \) CEF interaction\(^{25}\); this mixing modifies the excitation spectrum and leads to \(b \)-dependent neutron transition intensities.

The \(T_h \)-symmetry CEF excitation spectrum has not been considered in detail in the literature, and the corresponding neutron transition intensities between \(T_h \) CEF levels have not been considered at all. To aid in the interpretation of our neutron scattering data we carried out these CEF calculations using a point charge model. We assumed an expansion of the perturbing CEF potential in spherical harmonics,

\[
V(\Omega) = \sum_{\ell=4,6} g_{\ell} \sum_{m=-\ell}^{\ell} M_{\ell m} Y_{\ell m}(\Omega),
\]

where the interaction strengths \(g_4 \) and \(g_6 \) are treated as free parameters. The spherical harmonic moments \(\{ M_{\ell m} \} \) are determined by the positions of the 12 As ions, which we assigned the (scaled) coordinates \(\vec{x} = (\pm 1, \pm b, 0), (0, \pm 1, \pm b), (\pm b, 0, \pm 1) \). The nonzero independent moments for \(\ell = 4, 6 \) are \(M_{40} = 21(1 - 3b^2 + b^4)/2\sqrt{\pi}(1 + b^2)^2 \), \(M_{60} = 3\sqrt{13}(2 - 17b^2 + 2b^4)/8\sqrt{\pi}(1 + b^2)^2 \) and \(M_{66} = -15\sqrt{3006b^4}(1 - b^2)/16\sqrt{\pi}(1 + b^2)^3 \). The nonzero \(M_{66} \) for \(b \neq 1 \) (\(T_h \) symmetry) confirms the presence of the \(B_h^6 \) terms of Takegahara et al.\(^{25}\); in addition to the usual \(B_h^4 \) and \(B_h^6 \) \(O_h \)-symmetry terms. (Note that the \(T_h \)-allowed moment \(M_{66} \) vanishes at the \(O_h \)-symmetry point \(b = 1 \).) We also confirmed that the other nonzero moments satisfy the ratios quoted in Eq.(7) of Ref.25. Unlike Takegahara et al.\(^{25}\), we do not introduce a new parameter \(y \) for the \(T_h \)-symmetry terms, because they are completely determined by \(g_6 \) and the lattice parameter \(b \) in the point charge model. This was previously noted by Goremychkin et al.\(^{25}\).

Diagonalization of this \(T_h \) CEF interaction within the \(\text{Pr}^{3+} \) \(^3\text{H}_4 \) monet gives our results for the spectrum of CEF levels and their associated eigenvectors. These eigenvectors depend only on the ratio \(g_6/g_4 \) and the lattice parameter \(b \); the energies in addition have an arbitrary overall scale. Our results for the spectrum for \(b = 1 \) (\(O_h \) symmetry) and \(b = 0.4267 \) (\(\text{PrOs}_4\text{As}_{12} \) geometry) are shown in Figs. 1(b) and 1(d), using LLW normalization conventions\(^{26}\). (These conventions set our two Hamiltonian parameters in Eq.(1) to \(g_4 = (968\pi/21)x \) and \(g_6 = (−5808\pi/221)(1−|x|) \). Note that the \(b = 1 \) and \(b = 0.4267 \) level schemes differ qualitatively, which demonstrates the importance of the \(T_h \) terms in this problem.

We find that the \(O_h \) singlet and doublet energy eigenvalues are unmodified by the \(T_h \) interaction, consistent with Takegahara et al.\(^{25}\). The singlet eigenvector (in a \(J^{(2)} \)-basis) is \(|\Psi_1\rangle = \sqrt{7/12}|0\rangle + \sqrt{5/24}|4\rangle + |−4\rangle \) and the doublet states are \(|\Psi_{23}\rangle = −\sqrt{5/12}|0\rangle + \sqrt{7/24}|4\rangle + |−4\rangle \) and \(|\Psi_{23b}\rangle = \sqrt{3/4}|(2)+ |−2\rangle \), consistent with earlier (numerical) results\(^{25,26}\). The singlet and doublet energy eigenvalues in our conventions are modified by the \(T_h \) interaction. In terms of the LLW variables \(J^{(2)} \) and our parameter \(b \) they are \(E_1 = -(16/13(1+ b^2)^2)(91x(1−3b^2+b^4)−20(1−|x|)(2−17b^2+2b^4)) \) and \(E_{23} = -(16/13(1+b^2)^2)(13x(1−3b^2+b^4)+16(1−|x|)(2−2b^2+2b^4)) \). The corresponding analytic results for the two \(T_h \) triplet states for general \(b \) are quite complicated, so we only present numerical results for these states.

The neutron transition intensities are defined by \(I_{J_f} = \langle |\langle f|J^{(2)}|0\rangle|^2 \rangle \), as introduced by Birgeneau\(^{25}\). (There is an implicit sum over initial and final magnetic quantum numbers.) Our \(T_h \)-symmetry results for these quantities are shown in Fig. 5(a). The values in the limits \(x = \pm 1 \) (no \(\ell = 6 \) term, hence \(O_h \) symmetry) implicitly check Birgeneau’s numerical \(O_h \) results; see the off-diagonal entries in his Table 1(e). These \(O_h \) limits are indicated on the vertical axis of Fig. 5(a).

Next we compare the observed CEF levels and their neutron excitation intensities to the well-known LLW CEF results for \(O_h \) symmetry [Fig. 1(b)] and our calculated CEF predictions for \(\text{PrOs}_4\text{As}_{12} \) under \(T_h \) symmetry [Fig. 1(d) and Fig. 5(a)]. Both \(O_h \) and \(T_h \) CEF spectra have \(x \) values that can accommodate a magnetic triplet ground state and a nearly degenerate singlet first excited state [vertical lines in Figs. 1(b) and 1(d)]. However, it is evident that the \(O_h \) scheme cannot explain the data because the observed 0.4 meV transition \(\Gamma_{1}^{(2)} \rightarrow \Gamma_1 \) is incorrectly predicted to have zero intensity due to the \(O_h \) symmetry. While in the \(T_h \) scheme the relative neutron excitation strengths of the higher levels (at 13 and 23 meV) predicted in Fig. 1(d) seem to be in good agreement with observation at low temperatures, the As CEF alone predicts an incorrect spectrum of levels [Fig. 1(d)], with the triplet \(\Gamma_{1}^{(1)} \) being the highest excitation. The calculated neutron transition intensity shown in Fig.5(a) can not explain the observed intensity at higher temperatures. As temperature increases, the excited states get populated and the excitations start to decrease in intensities. Meanwhile the new excited-state transitions start to increase. If \(\Gamma_{1}^{(1)} \), instead of \(\Gamma_{23} \), is the highest level, the intensity at 12.6 meV would not increase but that at 22.6 meV would, because the \(\Gamma_1 \) to \(\Gamma_{23} \) transition is not allowed even in \(T_h \) symmetry. Goremychkin et al.\(^{25}\) showed that the highest level in the similar Sb material is the \(\Gamma_{23} \) doublet.

B. Combined Os – As CEF model
FIG. 3: (Color online) a) Low energy spectrum of CEF excitations observed at $T = 0.32, 2.5$ and 6.0 K using the SPINS spectrometer at NCNR. (b) The wave vector dependence of the excitations at $Q = (0.8, 0, 0)$, $Q = (1.2, 0, 0)$, and $Q = (1.7, 0, 0)$. (c) The expected and observed temperature dependence of the intensity of the 0.4 meV mode. (d) The temperature difference spectrum between 0.08 K and 4 K, showing clear reduction in magnetic elastic scattering.

The twin constraints of having the Γ_{21} level at the top of the spectrum and having a large $\Gamma_{4}(2) \leftrightarrow \Gamma_{1}$ neutron excitation strength requires both Os and As terms in the CEF interaction. We therefore introduce a combined Os-As CEF Hamiltonian,

$$H = H(\text{Os}) + H(\text{As}).$$

Although this model nominally has four parameters ($g_{4}^{\text{Os}}, g_{6}^{\text{Os}}, g_{4}^{\text{As}}$ and g_{6}^{As}), only three are independent; g_{6}^{Os} and g_{4}^{As} cannot be distinguished because they are summed into a single coefficient of the O_{h}-symmetry $\ell = 4$ interaction. For this reason we introduce combined O_{h}-symmetry Os-As coefficients $g_{4} = g_{4}^{\text{Os}} + g_{4}^{\text{As}}$ and $g_{6} = g_{6}^{\text{Os}} + g_{6}^{\text{As}}$, which we normalize according to LLW conventions. As the $\ell = 6$ T_{6}-symmetry terms from $H(\text{As})$ in the CEF are proportional to g_{6}^{As} alone, the strengths g_{6}^{Os} and g_{6}^{As} can be distinguished. We parametrize these two $\ell = 6$ interactions through the total O_{h}-symmetry g_{6} and a T_{6}/O_{h} relative strength r_{6}, which is the ratio of the coefficients of Y_{62} to Y_{60} in the CEF potential. The energy levels of this Hamiltonian are $E_{6}(2) = -6g_{4} - 8g_{6} - f$, $E_{1} = 28g_{4} - 80g_{6}$, $E_{4}(1) = -6g_{4} - 8g_{6} + f$ and $E_{23} = 4g_{4} + 64g_{6}$, where $f = ((20g_{4} + 12g_{6})^{2} + 960r_{6}^{2}g_{6}^{2})^{1/2}$. For $r_{6} = 0$ these reduce to the familiar LLW O_{h} spectrum. In the pure As model, r_{6} is determined by CEF theory if we assume point As ions, and is given by $(11 \sqrt{105}/4) b^{2} (1 - b^{2})/(1 + b^{2})(1 - (17/2)b^{2} + b^{4})$. For PrOs$_{4}As_{12}$ we have $b = 0.4267$, which gives a rather large $r_{6} = -6.901$. This drives strong level repulsion between the two triplets, which explains why the pure As spectrum of Fig.1d differs so greatly from the O_{h} (pure Os) symmetry spectrum of Fig.1b.

Our experimentally observed CEF levels are close to but not exactly consistent with the predictions above of the mixed Os-As model, since the gap ratio $(E_{4}(1) - E_{4}(2))/(E_{23} - E_{4}(2)) \approx 0.57$ is slightly below the theoretical lower bound of $7/12$. The parameters we estimate from the measured gaps are $g_{4} \approx 0.24 \text{ meV}$ and $g_{6} \approx 0.20 \text{ meV}$. The value of r_{6} is not determined by the measured energies due to the inconsistency mentioned above, although $r_{6} \lesssim 0.5$ appears plausible. A more sensitive determination of r_{6} is possible through the measurement of the inelastic neutron excitation intensities we discuss below.

The neutron excitation intensities in this combined Os-As Hamiltonian depend only on a single parameter θ, which is the mixing angle of the triplet energy eigenvectors when expanded in an O_{h}-symmetry $\{|3\rangle, |3'\rangle\}$ basis,

$$|4(1)\rangle = + \sin(\theta)|3\rangle + \cos(\theta)|3'\rangle$$

$$|4(2)\rangle = + \cos(\theta)|3\rangle - \sin(\theta)|3'\rangle.$$

This mixing angle is related to the Hamiltonian param-
The nonzero neutron excitation intensities in terms of triplet and doublet parameters by \(\tan(2\theta) = 2\sqrt{15}r_6/(5(g_4/g_6) + 3) \). The singlet and doublet \(O_h \) energy eigenvectors are unchanged. The nonzero neutron excitation intensities in terms of \(s = \sin(\theta) \) and \(c = \cos(\theta) \) are \(\Gamma^{(2)}_4 \leftrightarrow \Gamma_1 = (20/3)s^2 \), \(\Gamma^{(2)}_4 \leftrightarrow \Gamma_1 = (20/3)c^2 \), \(\Gamma^{(1)}_4 \leftrightarrow \Gamma_1 = (20/3)c^2 \), \(\Gamma^{(2)}_4 \leftrightarrow \Gamma_23 = 4 + (16/3)s^2 \), \(\Gamma_1 \leftrightarrow \Gamma^{(1)}_4 = (20/3)c^2 \), \(\Gamma^{(2)}_4 \leftrightarrow \Gamma_23 = 28/3 - (16/3)s^2 \), \(\Gamma^{(2)}_4 \leftrightarrow \Gamma^{(1)}_4 = (25/2)(1 - (4/5)s^2)^2 \), and \(\Gamma^{(1)}_4 \leftrightarrow \Gamma^{(1)}_4 = (1/2)(1 + 4c^2)^2 \). The calculated neutron scattering intensity of different transitions as a function of \(\theta \) is shown in Fig. 5(b). We recover the \(O_h \)-symmetry results of Birgeneau (Table 1(e) of Ref. 2) for \(s = 0, c = 1 \).

We carried out a least-squares fit of our neutron excitation data at 1.5 K, 50 K, 100 K and 200 K (Fig. 4) to the theoretical intensities given above, which gives an estimate of the triplet mixing angle \(\theta \) in PrOs\(_4\)As\(_{12}\),

\[\theta \approx 22.5^\circ. \]

When combined with the values of \(g_A \) and \(g_B \) from the spectrum, this \(\theta \) corresponds to \(r_6 \approx 1.2 \). In this fit the relatively isolated \(\Gamma^{(2)}_4 \rightarrow \Gamma^{(1)}_1 \) peak at 23 meV was used to infer the background, which was taken to be constant plus linear. The assumed lineshapes were Lorenzians with a common linewidth, fixed by the 23 meV peak. The calculated intensities of the individual transitions (dotted lines) and the total intensity (solid lines) for each temperature are shown in Figs. 4(a)-(d). We note that the intensity reduction at 0.4 meV on warming from 0.32 K to 2.5 K is larger than that expected from the CEF model [Fig. 3(c)], thus suggesting Pr-Pr interactions below \(T_N = (2.3 \text{ K}) \) are important. On the other hand, the large difference between the calculated and expected intensity around 8 meV in the 200 K data is presumably due to thermally populated phonons (Fig. 2a).

C. Field effect on the CEF gap

If the ground state of PrOs\(_4\)As\(_{12}\) is indeed the \(\Gamma^{(2)}_4 \) triplet, application of a magnetic field should Zeeman split it, resulting in a field dependent energy gap. There should also be a reduction in the intensity of the zero-energy \(\Gamma^{(2)}_4 \rightarrow \Gamma^{(2)}_4 \) magnetic scattering. Figure 6 shows that these expectations are indeed qualitatively satisfied. The first excited state at 0.4 meV shifts toward higher energies as the applied field increases. The field-dependent transition energy is linear only at higher fields (between 6 T and 11 T). The drop of intensity in the elastic channel is almost constant for all applied fields, as shown in the inset of Fig. 6(b). Figure 6(c) shows that the wave vector dependence is also present with applied magnetic field \((H = 9 \text{ T})\). Normally the field-splitting of the ground state multiplet would be a very clear test of our \(\Gamma^{(2)}_4 \) triplet assignment for the ground state. However, PrOs\(_4\)As\(_{12}\) is complicated by the near degeneracy of the \(\Gamma^{(2)}_4 \) and \(\Gamma_1 \) levels, which mix strongly under an applied field. This results in a more complicated spectrum of low-lying states, with several low-field level crossings and neutron scattering intensities that are also modified by their field-induced \(\Gamma^{(2)}_4-\Gamma_1 \) mixing.

Our determination of the CEF levels in PrOs\(_4\)As\(_{12}\) reveals the reasons for the wide range of behaviours in different FS. The spectrum of CEF levels is largely determined by the \(O_h \) symmetry field of the eight nearest neighbor ions, and for Os the near equality of the \(\ell = 4 \) and \(\ell = 6 \) strengths \(g_A \) and \(g_B \) implies nearly degener-
ate low-lying singlet (insulator) and triplet (AF) levels. The low temperature magnetic properties are determined by which of these phases happens to be the true ground state. In the CEF model, this is specified by the two parameters g_4/g_6 and r_6 (Fig. 7); in PrOs$_4$As$_2$, which has a triplet ground state, we estimate $g_4/g_6 \approx 1.15$ and $r_6 \approx 1.2$. The T_h symmetry pnictogen CEF (proportional to r_6) acts to stabilize the triplet state, and can itself lead to a triplet ground state if r_6 is sufficiently large to cross the phase boundary shown in Fig. 7.

In principle, one can extend our approach to calculate the ground states of other Pr-FS by determining its crystal structure and g_4/g_6 ratio. The necessity of using the T_h-symmetry of As rather than the O_h-symmetry pure Os form to explain the observed excitations shows that the detailed pnictogen geometry is important in determining the CEF levels. Indeed, the AF-ordered ground state in PrOs$_4$Sb$_3$ has a triplet ground state, while the superconducting PrOs$_4$Sb$_12$ has nonmagnetic Γ_1 singlet ground state. The nearly degenerate first excited state Γ_1 at 0.4 meV (~ 4 K), and its temperature and field dependence (Figs. 4 and 6), may explain the presence of multiple transitions in the specific heat (in $C(T)/T$ versus T) and its field dependence.

II. SUMMARY

To understand the observed Pr$^{3+}$ CEF levels, one must incorporate the As ions’ contribution to the CEF Hamiltonian, in addition to the usual Os cubic field terms. A comparison of our CEF calculations using this more general Hamiltonian with our experimental results shows that the Pr$^{3+}$ CEF level scheme in PrOs$_4$As$_2$ consists of a $\Gamma_4^{(2)}$ magnetic triplet ground state, a nearly degenerate Γ_1 singlet excitation, and higher $\Gamma_4^{(1)}$ magnetic triplet and Γ_{23} nonmagnetic doublet excited states. We find that contributions in the CEF Hamiltonian due to As are important in determining the neutron excitation intensities in PrOs$_4$As$_2$: our results differ qualitatively from the predictions of the conventional CEF Hamiltonian, and therefore provide a microscopic understanding for its AF ground state.

ACKNOWLEDGEMENT

We thank R. J. Birgeneau, B. C. Sales and D. Schultz for helpful discussion. The work at UT/ORNL was supported by the U.S. DOE under grant DE-FG02-05ER46202, ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. Work at UCSD was supported by the U.S. DOE under grant DE-FG02-04ER46105 and by the NSF under grant DMR-0335173. Work on SPINS was supported in part by the National Science Foundation under Agreement No. DMR-0454672.
S. Raymond, M. -A. Méasson, J. Flouquet, H. Sugawara, Y. Aoki, and H. Sato, Phys. Rev. Lett. 95, 107003 (2005).

21 Y. Aoki, T. Namiki, S. Ohsaki, S. R. Saha, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 71, 2098 (2002).

22 Pei-chun Ho, J. Singleton, M. B. Maple, H. Harima, P. A. Goddard, Z. Henkie, and A. Pietraszko, New J. Phys. 9, 269 (2007).

23 S. D. Wilson, Pengcheng Dai, D. T. Adroja, S.-H. Chung, J. W. Lynn, N. P. Butch, and M. B. Maple, Phys. Rev. Lett. 94, 056402 (2005).

24 K. Takegahara, J. Phys. Soc. Jpn. 69, 1572 (2000).

25 K. Takegahara, H. Harima, and A. Yanase, J. Phys. Soc. Jpn. 70, 1190 (2001).

26 K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).

27 R. J. Birgeneau, J. Phys. Chem. Solids 33, 59 (1972).