CHARACTERIZATION OF APPROXIMATELY MONOTONE AND APPROXIMATELY HÖLDER FUNCTIONS

ANGSHUMAN R. GOSWAMI AND ZSOLT PÁLES

Abstract. A real valued function f defined on a real open interval I is called Φ-monotone if, for all $x, y \in I$ with $x \leq y$ it satisfies

$$f(x) \leq f(y) + \Phi(y - x),$$

where $\Phi : [0, \ell(I)] \to \mathbb{R}_+$ is a given nonnegative error function, where $\ell(I)$ denotes the length of the interval I. If f and $-f$ are simultaneously Φ-monotone, then f is said to be a Φ-Hölder function. In the main results of the paper, using the notions of upper and lower interpolations, we establish a characterization for both classes of functions. This allows one to construct Φ-monotone and Φ-Hölder functions from elementary ones, which could be termed the building blocks for those classes. In the second part, we deduce Ostrowski- and Hermite–Hadamard-type inequalities from the Φ-monotonicity and Φ-Hölder properties, and then we verify the sharpness of these implications. We also establish implications in the reversed direction.

Mathematics subject classification (2010): Primary: 26A48; Secondary: 26A12, 26A16, 26A45, 39B72, 39C05.

Keywords and phrases: Φ-monotone function, Φ-Hölder function, Φ-monotone envelope, Φ-Hölder envelope, Ostrowski-type inequality, Hermite–Hadamard-type inequality.

REFERENCES

[1] Á. Császár, Monotonité locale et dérivabilité approximatives de fonctions quelconques, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 3 (4): 41–52, 1960.
[2] A. Daniilidis and P. Georgiev, Approximate convexity and submonotonicity, J. Math. Anal. Appl., 291 (1): 292–301, 2004.
[3] T. Elsken, D. B. Pearson, and P. M. Robinson, Approximate monotonicity: theory and applications, J. London Math. Soc. (2), 53 (3): 489–502, 1996.
[4] A. Goswami and Zs. Páles, On approximately monotone and approximately Hölder functions, Per. Math. Hungar., 81 (1): 65–87, 2020.
[5] J. Makó and Zs. Páles, On ϕ-convexity, Publ. Math. Debrecen, 80 (1–2): 107–126, 2012.
[6] H. V. Ngai and J.-P. Penot, Semismoothness and directional subconvexity of functions, Pac. J. Optim., 3 (2): 323–344, 2007.
[7] Zs. Páles, On approximately convex functions, Proc. Amer. Math. Soc., 131 (1): 243–252, 2003.