CARDINAL INVARIANTS FOR THE G_δ TOPOLOGY

ANGELO BELLA AND SANTI SPADARO

Abstract. We prove upper bounds for the spread, the Lindelöf number and the weak Lindelöf number of the G_δ topology on a topological space and apply a few of our bounds to give a short proof to a recent result of Juhász and van Mill regarding the cardinality of a σ-countably tight homogeneous compactum.

1. Introduction

All spaces are assumed to be T_1. The word compactum indicates a compact Hausdorff space.

Given a topological space X we can consider a finer topology on X by declaring countable intersections of open subsets of X to be a base. The new space is called the G_δ topology of X and is denoted with X_δ.

There are various papers in the literature investigating what properties of X are preserved when passing to X_δ and presenting bounds for cardinal invariants on X_δ in terms of the cardinal invariants of X (see for example [14], [12], [20], [17]). Moreover, results of that kind have found applications to central topics in general topology like the study of covering properties in box products (see, for example, [18]), cardinal invariants for homogeneous compacta (see, for example [2], [6], [7] and [22]) and spaces of continuous functions (See [1]).

Two of the early results on this topic are Juhász’s bound $c(X_\delta) \leq 2^{c(X)}$ for every compact Hausdorff space X, where $c(X)$ denotes the cellularity of X and Arhangel’skii’s result that the G_δ topology on a Lindelöf regular scattered space is Lindelöf. Juhász’s bound is tight in the sense that it’s not possible to prove that $c(X_\delta) \leq c(X)^\omega$ for every compact space X (see [11]) and the scattered property is essential in Arhangel’skii’s result because there are compact Hausdorff spaces whose G_δ-topology even has (weak) Lindelöf number c^+ (see [22]).

In this paper we prove various new bounds for cardinal invariants on the G_δ topology. For example we prove that $s(X_\delta) \leq 2^{s(X)}$ for every

2000 Mathematics Subject Classification. Primary: 54A25, Secondary: 54D20, 54G20.

Key words and phrases. cardinal invariant, G_δ-topology, weak Lindelöf number, Lindelöf degree, homogeneous space.
space X, where $s(X)$ is the spread of X (that is, the supremum of the cardinalities of the discrete subsets of X). For a regular space we prove that $L(X_\delta) \leq \min \{ psw(X)^d(X), 2^{s(X)} \}$, where $L(X)$ denotes the Lindelöf degree of X, $psw(X)$ denotes the point-separating weight of X and $d(X)$ denotes the density of X.

Many questions are left open. For example we don’t know whether the inequality $t(X_\delta) \leq 2^{s(X)}$ is true, where t denotes the tightness, even when X is a compact space.

Finally, we exploit a few of our results to give a short proof of a recent result of Juhász and van Mill on the cardinality of homogeneous compacta.

Our notation regarding cardinal functions follows [15]. The remaining undefined notions can be found in [10].

In our proofs we often use elementary submodels of the structure $(H(\mu), \in)$. Dow’s survey [9] is enough to read our paper, and we give a brief informal refresher here. Recall that $H(\mu)$ is the set of all sets whose transitive closure has cardinality smaller than μ. When μ is regular uncountable, $H(\mu)$ is known to satisfy all axioms of set theory, except the power set axiom. We say, informally, that a formula is satisfied by a set S if it is true when all existential quantifiers are restricted to S. A set $M \subset H(\mu)$ is said to be an elementary submodel of $H(\mu)$ (and we write $M \prec H(\mu)$) if a formula with parameters in M is satisfied by $H(\mu)$ if and only if it is satisfied by M.

The downward Löwenheim-Skolem theorem guarantees that for every $S \subset H(\mu)$, there is an elementary submodel $M \prec H(\mu)$ such that $|M| \leq |S| \cdot \omega$ and $S \subset M$. This theorem is sufficient for many applications, but it is often useful (especially in cardinal bounds for topological spaces) to have the following closure property. We say that M is κ-closed if for every $S \subset M$ such that $|S| \leq \kappa$ we have $S \in M$. For large enough regular μ and for every countable set $S \subset H(\mu)$ there is always a κ-closed elementary submodel $M \prec H(\mu)$ such that $|M| = 2^\kappa$ and $S \subset M$.

The following theorem is also used often: let $M \prec H(\mu)$ such that $\kappa + 1 \subset M$ and $S \in M$ be such that $|S| \leq \kappa$. Then $S \subset M$.

2. Cardinal invariants for the G_δ topology

Let’s start by listing the simplest bounds for cardinal functions of the G_κ topology. They are probably folklore, and we include them just for the convenience of the reader.

Proposition 1.
(1) \(w(X_\kappa) \leq (w(X))^{\kappa} \).
(2) \(\chi(X_\kappa) \leq (\chi(X))^{\kappa} \).
(3) If \(X \) is regular then \(d(X_\kappa) \leq 2^{d(X)^{\kappa}} \).
(4) If \(X \) is regular, then \(\pi w(X_\kappa) \leq 2^{\pi w(X)^{\kappa}} \).

Proof. The first two items are easy.
As for the third item, recalling that \(w(X) \leq 2^{d(X)} \) for regular spaces, we have that \(d(X_\kappa) \leq w(X_\kappa) \leq w(X)^{\kappa} \leq 2^{d(X)^{\kappa}} \).
To prove the fourth item, recall that \(w(X) \leq (\pi w(X))^{\epsilon(X)} \) for every regular space \(X \). Hence \(\pi w(X_\kappa) \leq w(X_\kappa) \leq w(X)^{\kappa} \leq (\pi w(X))^{\epsilon(X)^{\kappa}} \leq (\pi w(X))^{\pi w(X)^{\kappa}} \leq 2^{\pi w(X)^{\kappa}} \).

Regularity is essential in both the third and the fourth item, as the following example shows.

Example 2. A Hausdorff space \(X \) such that:
\[
\pi w(X_\kappa) \geq d(X_\delta) > 2^{\pi w(X)} \geq 2^{d(X)}
\]
Proof. Let \(X = \beta \omega \), provided with the following topology: every principal ultrafilter is isolated. A basic neighbourhood of a non-principal ultrafilter \(p \) has the form \(\{p\} \cup A \setminus F \), where \(A \in p \) and \(F \) is a finite set. The space \(X \) has a countable \(\pi \)-base, but \(X_\delta \) is a discrete set of cardinality \(2^\epsilon \).

The following example shows that, unlike in the case of the \(\pi \)-weight, there is no bound on the \(\pi \)-character of the \(G_\delta \)-topology on a regular space of countable \(\pi \)-character.

Example 3. For every cardinal \(\kappa \), there is a hereditarily normal space of countable \(\pi \)-character \(X(\kappa) \) such that \(\pi \chi(X(\kappa)_{\delta}) \geq \kappa \).

Proof. Let \(X(\kappa) \) be the space obtained by taking the sum of a convergent sequence and the one-point compactification of a discrete set of size \(\kappa \) and then collapsing the limit points to a single point \(\infty \). In the resulting space, every point is isolated except for \(\infty \), which nevertheless has a countable \(\pi \)-base. So \(\pi \chi(X(\kappa)) = \omega \). However, \(X(\kappa)_{\delta} \) is homeomorphic to the one-point Lindelöfication of a discrete set of size \(\kappa \). So its \(\pi \)-character is no smaller than \(\kappa \).

One of the early results regarding cardinal invariants for the \(G_\delta \) topology was proved by Juhász in \[14\] and was originally motivated by a problem of Arhangel’skii regarding the weak Lindelöf number of the \(G_\delta \) topology on a compactum. Its proof is an application of the Erdös-Rado theorem from infinite combinatorics.
Theorem 4. (Juhász) Let X be a countably compact regular space. Then $c(X_\delta) \leq 2^{c(X)}$.

Note that regularity is essential in the above theorem as Vaughan \cite{Vaughan} constructed a countably compact Hausdorff space with points G_δ and cardinality larger than the continuum which is even separable.

We also exploit the Erdős-Rado theorem in our next result. Recall that regularity is essential in the above theorem as Vaughan \cite{Vaughan}.

Theorem 5. Let X be any space and κ be a cardinal. Then $s(X_\kappa) \leq 2^{s(X)\cdot\kappa}$.

Proof. Without loss of generality we can assume that $s(X) \leq \kappa$. Suppose by contradiction that there is a discrete set $D \subset X_\kappa$ of cardinality $\geq (2^\kappa)^+$. For every $x \in D$ we can find a G_κ set G_x in X such that $G_x \cap D = \{x\}$. Let $\{U^x_\alpha : \alpha < \kappa\}$ be a sequence of open sets such that $G_x = \bigcap\{U^x_\alpha : \alpha < \kappa\}$. Let \prec be a linear ordering on X. For every $\alpha, \beta < \kappa$ let $C_{\alpha, \beta} = \{\{x, y\} \in |D|^2 : x \prec y \land x \notin U^y_\alpha \land y \notin U^x_\beta\}$. Then $\{C_{\alpha, \beta} : (\alpha, \beta) \in \kappa^2\}$ is a coloring of $|D|^2$ into κ many colors. By the Erdős-Rado theorem we can find a set $T \subset D$ of cardinality κ^+ and a pair of ordinals $(\gamma, \delta) \in \kappa^2$ such that $|T|^2 \subset C_{\gamma, \delta}$. Note now that $U^x_\gamma \cap U^y_\delta \cap T = \{x\}$ for every $x \in T$. Hence T is a discrete subset of X of cardinality κ^+, which contradicts $s(X) = \kappa$.

Corollary 6. (Hajnal and Juhász) Let X be a T_1 space. Then $|X| \leq 2^{s(X)\cdot\psi(X)}$.

Proof. Set $\kappa = s(X)\cdot\psi(X)$. By the above theorem we have $s(X_\kappa) \leq 2^\kappa$, but since X_κ is discrete we must have $|X| \leq 2^\kappa$.

The next example shows that $2^{s(X)\cdot\kappa}$ cannot be replaced with $s(X)^\kappa$ in Theorem 5 even for compact LOTS.

Example 7. There is a compact linearly ordered space L such that $s(L_\delta) > s(L)^\omega$.

Proof. Fleissner constructed in \cite{Fleissner} a compact linearly ordered space L such that $c(L) \leq \mathfrak{c}$ and L has a \mathfrak{c}^+-sized subset S consisting of G_δ points. Since $c(X) = s(X)$ for every linearly ordered space X we must have $s(L) \leq \mathfrak{c}$, but it’s clear that $s(L_\delta) \geq \mathfrak{c}^+$.

Recall that the Lindelöf degree of a topological space X ($L(X)$) is defined as the minimum cardinal κ such that for every open cover of X has a κ-sized subcover.

The weak Lindelöf degree of X ($wL(X)$) is defined as the minimum cardinal κ such that, for every open cover U of X there is a κ-sized subcollection $V \subset U$ such that $X \subset \bigcup V$.

At the 1970 International Congress of Mathematicians in Nice, France, Arhangel’skii asked whether the weak Lindelöf degree of a compact space with its $G_δ$ topology is always bounded by the continuum. A counterexample has recently been given in [22] but various related bounds for the (weak) Lindelöf number of the $G_δ$ topology have been presented in the literature (see, for example [12], [20], [14] and [7]).

A set $G \subset X$ is called a $G_κ^c$ set if there is a family $\{U_α : α < κ\}$ of open subsets of X such that $G = \bigcap\{U_α : α < κ\} = \bigcap\{\overline{U_α} : α < κ\}$.

Given a space X, we denote with $X_κ^c$ the topology generated by the $G_κ^c$ subsets of X. Obviously if X is regular, then $X_κ = X_κ^c$.

Theorem 8. Let X be any space and $κ$ be a cardinal. Then $L(X_κ^c) \leq 2^{s(X)·κ}$.

Proof. Without loss we can assume $s(X) \leq κ$. Fix a cover F of X by $G_κ^c$ sets.

Let $θ$ be a large enough regular cardinal and M be a $κ$-closed elementary submodel of $H(θ)$ such that $X, F ∈ M, 2^κ + 1 \subset M$ and $|M| = 2^κ$.

For every $F ∈ F$ choose open sets $\{U_α(F) : α < κ\}$ witnessing that F is a $G_κ^c$-set. Note that when $F ∈ F$ we can assume that $\{U_α(F) : α < κ\} \subset M$ and hence $\{U_α(F) : α < κ\} \subset M$.

Claim 1. $F \cap M$ covers $X \cap M$.

Proof of Claim 1. Suppose this is not true and let $p ∈ X \cap M \setminus \bigcup(F \cap M)$. For every $x ∈ X \cap M$ we can find $F_x ∈ F \cap M$ such that $x ∈ F_x$. Moreover, there must be $α(x) < κ$ such that $p \notin U_{α(x)}(F_x)$. Now, $O = \{U_{α(x)}(F_x) : x ∈ X \cap M\}$ is an open cover of $X \cap M$. By Shapirovskii’s Lemma (see [13]) there is a discrete set $D ⊂ X \cap M$ and a subcollection $U ⊂ O$ with $|U| = |D| ≤ κ$ such that $X \cap M ⊂ \overline{D} \cup \bigcup U$. By $κ$ closedness of M we have $D, U ∈ M$ hence $M \models X ⊂ \overline{D} \cup \bigcup U$. Therefore by elementarity $H(θ) \models X \subset \overline{D} \cup \bigcup U$. Since $p \notin \bigcup U$ we must have $p ∈ \overline{D}$.

Let now F be an element of F such that $p ∈ F$. We have $p ∈ \overline{U_α(F)} \cap \overline{D}$ for every $α < κ$ and $\overline{U_α(F)} \cap \overline{D} ∈ M$, by $κ$-closedness of M. Define $B = \bigcap\{\overline{U_α(F)} \cap \overline{D} : α < κ\}$. Then $B ∈ M$. Note that we have $H(θ) \models (∃G ∈ F)(B \subset G)$, hence by elementarity $M \models (∃G ∈ F)(B \subset G)$, which implies the existence of $H ∈ F \cap M$ such that $p ∈ B ⊂ H$. But this contradicts the fact that $p \notin \bigcup(F \cap M)$. Hence $F \cap M$ covers $X \cap M$ and the claim is proved.

Claim 2. $F \cap M$ covers X.

△
Proof of Claim 2. Suppose this is not true and let p be a point of $X \setminus \bigcup (\mathcal{F} \cap M)$. For every $F \in \mathcal{F} \cap M$ we can find $\beta(F) < \kappa$ such that $p \notin U_{\beta(F)}(F)$.

It follows from Claim 1 that the family $\mathcal{V} := \{U_{\beta(F)}(F) : F \in \mathcal{F} \cap M\}$ is an open cover of $X \cap M$. By Shapirovskii’s Lemma we can find a discrete $D \subset X \cap M$ and a family $W \subset \mathcal{V}$ such that $|W| = |D| < \kappa$ and $X \cap M \subset D \cup \bigcup W$. Note that $D, W \in M$, by κ-closedness of M. This implies that $M \models X \subset D \cup \bigcup W$ by elementarity. But this is a contradiction because $p \notin W$, for every $W \in \mathcal{W}$ and since $D \subset X \cap M$ we also have that $p \notin D$.

Since $|M| \leq 2^\kappa$ it follows that $\mathcal{F} \cap M$ is a 2^κ-sized subfamily of \mathcal{F} covering X and hence we are done. △

It’s not possible to replace X_δ with X_δ in the above result, as the following example shows.

Example 9. There are T_1 spaces X of countable spread where $\ell(X_\delta)$ can be arbitrarily large.

Proof. Let κ be a cardinal of uncountable cofinality and $\mu = cf(\kappa)$. Define a topology on $X = \kappa$ by declaring sets of the form $[0, \alpha] \setminus F$ to be a base, where α is an ordinal less than κ and F is a finite set. It is easy to see that $s(X) = \omega$. Moreover $\{[0, \alpha] : \alpha < \kappa\}$ is an open cover of X without subcovers of cardinality less than μ and hence $\ell(X_\delta) \geq \mu$. □

However, for regular spaces, the G_δ modification and the G_δ^c modification coincide, so we obtain the following result:

Theorem 10. Let X be a regular space. Then $\ell(X_\kappa) \leq 2^{s(X) \cdot \kappa}$.

Recall that the tightness of a point x in the space X ($t(x, X)$) is defined as the minimum cardinal κ such that for every subset A of X with $x \in \overline{A} \setminus A$ there is a subset $B \subset A$ such that $|B| \leq \kappa$ and $x \in \overline{B}$. The tightness of the space X is then defined as $t(X) = \sup \{t(x, X) : x \in X\}$. A space of countable tightness is also called countably tight.

Theorem 11. Let X be a countably compact space with a dense set of points of countable character. Then $w\ell(X_\kappa) \leq 2^{t(X) \cdot w\ell_c(X) \cdot \kappa}$.

Proof. Without loss of generality we can assume that $w\ell_c(X) \cdot t(X) \leq \kappa$. Fix a cover \mathcal{F} of X by G_κ sets

Let θ be a large enough regular cardinal and M be a κ-closed elementary submodel of $H(\theta)$ such that $X, \mathcal{F} \in M$ and $|M| = 2^\kappa$. □
Proof of Claim 1. Let \(F \subseteq X \setminus M \) and use \(t(X) \leq \kappa \) to fix a \(\kappa \)-sized set \(A \subseteq X \setminus M \) such that \(x \notin A \). Note \(A \subseteq M \). Let \(F \subseteq \mathcal{F} \) be such that \(x \in F \) and let \(\{ U_\alpha : \alpha < \kappa \} \) be a sequence of open sets witnessing that \(F \) is a \(G^*_\kappa \) set.

Note that the set \(B = \bigcap \{ A \cap U_\alpha : \alpha < \kappa \} \) is in \(M \) and \(x \in B \subseteq F \). Now \(H(\theta) \mid (\exists F \subseteq \mathcal{F}) (B \subseteq F) \). Hence \(M \mid (\exists F \subseteq \mathcal{F}) (B \subseteq F) \). Therefore we can find \(G \subseteq \mathcal{F} \cap M \) such that \(x \in B \subseteq G \), which is what we wanted. \(\triangle \)

Claim 2. \(\mathcal{F} \cap M \) has dense union in \(X \).

Proof of Claim 2. Suppose not and let \(p \in X \setminus \bigcup \mathcal{F} \cap M \) be a point of countable character. Fix a local base \(\{ V_n : n < \omega \} \) at \(p \).

For every \(x \in X \setminus M \) pick \(F_x \subseteq \mathcal{F} \cap M \) such that \(x \in F_x \) and let \(\{ V_\alpha^x : \alpha < \kappa \} \subseteq M \) be a sequence of open sets witnessing that \(F_x \) is a \(G^*_\kappa \) set. Since \(p \notin F_x \), there must be \(\alpha < \kappa \) such that \(p \notin V_\alpha^x \). Hence there must be \(n_x < \omega \) such that \(V_{n_x} \cap V_\alpha^x = \emptyset \). let \(U_n = \bigcup \{ V_\alpha^x : n_x = n \} \). Then \(\{ U_n : n < \omega \} \) is a countable open cover of the countably compact space \(X \setminus M \). So there is \(k < \omega \) such that \(\{ U_n : n < k \} \) covers \(X \setminus M \). Let now \(\mathcal{U} = \{ U_\alpha^x : n_x < k \} \). Then \(\mathcal{U} \) covers \(X \setminus M \), hence \(wL^c(X) \leq \kappa \) implies the existence of \(\mathcal{V} \subseteq [\mathcal{U}]^\kappa \) such that \(X \cap M \subseteq \bigcup \mathcal{V} \). But that implies \(M \mid X \subseteq \bigcup \mathcal{V} \) and hence \(H(\theta) \mid X \subseteq \bigcup \mathcal{V} \), which contradicts \(V_k \cap (\bigcup \mathcal{V}) = \emptyset \). \(\triangle \)

Corollary 12. (Alas, [3]) Let \(X \) be a countably compact \(T_2 \) space with a dense set of points of countable character. Then \(|X| \leq 2^{|wL^c(X) \cap t(X)|} \).

Corollary 13. Let \(X \) be a regular countably compact space with a dense set of points of countable character. Then \(wL(X) \leq 2^{wL_c(X) \cap t(X) \cdot \kappa} \).

Corollary 14. Let \(X \) be a normal countably compact space with a dense set of points of countable character. Then \(wL(X) \leq 2^{wL(X) \cap t(X) \cdot \kappa} \).

In a similar way we can prove the following theorem:

Theorem 15. Let \(X \) be a space with a dense set of isolated points. Then \(wL(X) \leq 2^{wL_c(X) \cap t(X) \cdot \kappa} \).

Question 1. Is it true that \(wL(X) \leq 2^{wL_c(X) \cap t(X) \cdot \kappa} \) for any Hausdorff space \(X \)?
We call a cover \mathcal{U} of a space X, strongly point-separating if $\bigcap\{\overline{U} : U \in \mathcal{U} \land x \in U\} = \{x\}$.

We define $\text{psw}_{s}(X)$ to be the least cardinal κ such that X admits a strongly point-separating open cover of order κ. Obviously $\text{psw}_{s}(X) = \text{psw}(X)$ for every regular space X.

Theorem 16. Let X be a T_2 space. Then $L(X,\kappa) \leq \text{psw}_{s}(X)^{L(X),\kappa}$.

Proof. Let $\lambda = \text{psw}_{s}(X)$ and fix a strongly point-separating open cover \mathcal{U} of X of order $\leq \lambda$. We can assume $L(X) \leq \kappa$. Let \mathcal{F} be a G_κ cover of X. Since $L(X) \leq \kappa$ we can assume that \mathcal{F} is made up of κ-sized intersections of elements of \mathcal{U}. Let M be a κ-closed elementary submodel of $H(\theta)$ such that $\lambda^\kappa \subseteq M$, $X, \mathcal{U}, \mathcal{F} \in M$ and $|M| = \lambda^\kappa$.

Claim 1. $\mathcal{F} \cap M$ covers $\overline{X \cap M}$.

Proof of Claim 1. Let $p \in \overline{X \cap M}$. Let $F \in \mathcal{F}$ be such that $p \in F$. Let $\{U_\alpha : \alpha < \kappa\} \subseteq \mathcal{U}$ be a family of open sets such that $F = \bigcap \{U_\alpha : \alpha < \kappa\}$. Let x_α be any point in $U_\alpha \cap M$. Note that for every $\alpha < \kappa$ we have that $\{U \in \mathcal{U} : x_\alpha \in U\}$ is an element of M of cardinality λ. Therefore $\{U \in \mathcal{U} : x_\alpha \in U\} \subseteq M$ and hence $U_\alpha \in M$, for every $\alpha < \kappa$. By κ-closedness of M we have $F = \bigcap \{U_\alpha : \alpha < \kappa\} \subseteq M$, as we wanted. \triangle

Claim 2. $\mathcal{F} \cap M$ actually covers X.

Proof of Claim 2. Suppose that is not true and let $p \in X \setminus \bigcup (\mathcal{F} \cap M)$. For every $x \in \overline{X \cap M}$, let $F_x \in \mathcal{F} \cap M$ such that $x \in F_x$ and let $\{U_\alpha^x : \alpha < \kappa\} \subseteq M$ be a sequence of open sets such that $\bigcap \{U_\alpha^x : \alpha < \kappa\} = F_x$. We again have that $\{U_\alpha^x : \alpha < \kappa\} \subseteq M$ and hence, for every $x \in \overline{X \cap M}$ we can find an open neighbourhood $U_x \in M$ of x such that $p \notin U_x$. The family $\mathcal{V} := \{U_x : x \in \overline{X \cap M}\}$ is an open cover of the space $\overline{X \cap M}$, which has Lindelöf number at most κ and hence we can find $\mathcal{C} \subseteq [\mathcal{V}]^\kappa$ such that $X \cap M \subseteq \overline{X \cap M} \subseteq \bigcup \mathcal{C}$. By κ-closedness of M we have $\mathcal{C} \subseteq M$ and hence the previous formula implies $M \models X \subseteq \bigcup \mathcal{C}$. By elementarity we get that $H(\theta) \models X \subseteq \bigcup \mathcal{C}$, which contradicts the fact that $p \notin \bigcup \mathcal{C}$. \triangle

Corollary 17. Let X be a regular space. Then $L(X,\kappa) \leq \text{psw}(X)^{L(X),\kappa}$.

Question 2. Is $t(X_\delta) \leq 2^{t(X)}$ true for every (compact) T_2 space X?

3. AN APPLICATION TO HOMOGENEOUS COMPACTA

Definition 18. Let X be a topological space. A set $S \subseteq X$ is called subseparable if there is a countable set $C \subseteq X$ such that $S \subseteq \overline{C}$.
Since \(w(X) \leq 2^{d(X)} \) for every regular space \(X \) and the weight is hereditary every subseparable subspace of a regular topological space has weight at most continuum.

Lemma 19. (Juhász and van Mill, [16]) Let \(X \) be a \(\sigma \)-countably tight homogeneous compactum. Then \(X \) contains a non-empty subseparable \(G_\delta \)-subset and has a point of countable \(\pi \)-character.

Corollary 20. Every \(\sigma \)-countably tight homogeneous compactum has character at most continuum.

Proof. Let \(x \in X \) be any point. By homogeneity we can find a subseparable \(G_\delta \) set \(G \) containing \(x \). Then \(w(G) \leq 2^\omega \). So we can fix a continuum-sized family \(\mathcal{U} \) of open neighbourhoods of \(x \) such that \(G \cap \bigcap \mathcal{U}_x = \{x\} \). Let \(\{U_n : n < \omega\} \) be a countable family of open sets such that \(G = \bigcap\{U_n : n < \omega\} \). Then \(\mathcal{V} = \{U_n : n < \omega\} \cup \mathcal{U} \) is a continuum sized family of open subsets of \(X \) such that \(\bigcap \mathcal{V} = \{x\} \). Since \(X \) is compact, this implies that \(\chi(x, X) \leq 2^\omega \). \(\square \)

Theorem 21. Let \(X \) be a homogeneous compactum which is the union of countably many countably tight dense subspaces. Then \(L(X_\delta) \leq 2^\omega \).

Proof. Let \(\{X_n : n < \omega\} \), be a countable family of countably tight subspaces covering \(X \). Let \(\mathcal{U} \) be a \(G_\delta \)-cover of \(X \). Without loss we can assume that for every \(U \in \mathcal{U} \) there are open sets \(\{O_n(U) : n < \omega\} \) such that \(O_{n+1}(U) \subseteq O_n(U) \), for every \(n < \omega \) and \(U = \bigcap\{O_n(U) : n < \omega\} \).

Let \(\theta \) be a large enough regular cardinal and let \(M \) be an \(\omega \)-closed elementary submodel of \(H(\theta) \) such that \(|M| = 2^\omega \) and \(M \) contains everything we need.

Claim. \(\mathcal{U} \cap M \) covers \(\overline{X \cap M} \).

Proof of Claim. Let \(x \in \overline{X \cap M} \).

We claim that \(x \in X_n \cap M \), for every \(n < \omega \). Indeed, fix \(n < \omega \) and let \(V \) be a neighbourhood of \(x \). Pick \(y \in V \cap (X \cap M) \). Then \(y \) has a local base \(\mathcal{U}_y \subseteq M \) having cardinality continuum. By the assumptions on \(M \), \(\mathcal{U}_y \subseteq M \). Since \(X_n \) is dense in \(X \), \(M \) reflects this and therefore for every \(U \in \tau \cap M \) we have \(U \cap X_n \cap M \neq \emptyset \). Hence for every \(U \in \mathcal{U}_y \) we have \(U \cap X_n \cap M \neq \emptyset \). It turns out that \(V \cap X_n \cap M \neq \emptyset \), for every open neighbourhood \(V \) of \(x \), as we wanted.

Let \(k < \omega \) be such that \(x \in X_k \). Using the fact that \(X_k \) has countable tightness we can choose a countable set \(C_k \subseteq X_k \cap M \) such that \(x \in \overline{C_k} \). Note that, since \(M \) is countably closed, every subset of \(C \) is an element of \(M \). Since \(\mathcal{U} \) covers \(X \) there is \(U \in \mathcal{U} \) such that \(x \in U \). Note that \(x \in \overline{O_i(U)} \cap C \), for every \(i < \omega \). Let \(B = \bigcap\{O_i(U) \cap C : i < \omega\} \) and note that \(B \in M \). We have \(H(\theta) \models (\exists U \in \mathcal{U})(B \subseteq U) \). Since every
free variable in the previous formula belongs to M, by elementarity we have $M \models (\exists U \in \mathcal{U})(B \subset U)$ and hence there is $U \in \mathcal{U} \cap M$ such that $x \in B \subset U$, which finishes the proof of the Claim. \hfill \triangle$

Let us now prove that $\mathcal{U} \cap M$ actually covers X, which will finish the proof.

Suppose this is not the case and let $p \in X \setminus \bigcup(\mathcal{U} \cap M)$. By the claim, for every $x \in X \cap M$ we can pick a $U_x \in \mathcal{U} \cap M$ containing x. Then we can choose $m < \omega$ such that $p \notin O_m(U_x) \in M$. This means that we can cover $X \cap M$ by an open family $\mathcal{V} \subset M$ such that $p \notin \bigcup \mathcal{V}$. By compactness we can then take a finite subfamily \mathcal{F} of \mathcal{U} such that $X \cap M \subset \bigcup \mathcal{F}$. Since $\mathcal{F} \in M$ this is equivalent to $M \models X \subset \bigcup \mathcal{F}$, which implies, by elementarity, $H(\theta) \models X \subset \bigcup \mathcal{F}$, and that is a contradiction because $p \in H(\theta) \setminus \bigcup \mathcal{F}$. □

Lemma 22. Let X be a compact homogeneous space which is the union of finitely many countably tight subspaces. Then $L(X_\delta) \leq 2^{\omega}$.

Proof. Let \mathcal{F} be a finite cover of X by countably tight subspaces. We can find a non-empty open subset V of X such that $V \cap F$ is dense in V, whenever $V \cap F \neq \emptyset$ and $F \in \mathcal{F}$. Applying the argument proving Lemma 21 to V we obtain that $L(V_\delta) \leq 2^{\aleph_0}$. Using the homogeneity of X we can find an open cover \mathcal{V} of X such that $L(\mathcal{V}_\delta) \leq 2^{\aleph_0}$, for every $V \in \mathcal{V}$. Choosing a finite subcover of \mathcal{V} we see that $L(X_\delta) \leq 2^{\omega}$.

The following lemma was noted independently by de la Vega and Ridderbos (see [21] for the proof of a much more general statement).

Lemma 23. Let X be a homogeneous space. Then $|X| \leq d(X)^{\pi_X(X)}$.

Theorem 24. (Juhász and van Mill) Let X be a compact homogeneous space which is the union of countably many dense countably tight subspaces or of finitely many countably tight subspaces. Then $|X| \leq 2^{\omega}$.

Proof. Use homogeneity to fix, for every $x \in X$, a subseparable G_δ set G_x containing x. We have $w(G_x) \leq 2^{\omega}$. Note that $\mathcal{U} = \{G_x : x \in X\}$ is a G_δ cover of X, so there is $C \in [X]^{2^{\omega}}$ such that $X \subset \bigcup\{G_x : x \in C\}$. For every $x \in C$, we can fix a continuum-sized $D_x \subset G_x$, dense in G_x. Then $D = \bigcup\{D_x : x \in C\}$ is a dense subset of X having cardinality at most continuum, proving that $d(X) \leq 2^{\omega}$. Using the above lemmas we obtain that $|X| \leq 2^{\omega}$. □

References

[1] A.V. Arhangel’skii, Topological function spaces, Kluwer Academic Publishers, Mathematics and its Applications, vol. 78, Dordrecht, Boston, London, 1992.
CARDINAL INVARIANTS FOR THE $G_δ$ TOPOLOGY

[2] A.V. Arhangel’skii, $G_δ$-modification of compacta and cardinal invariants, Commentationes Mathematicae Universitatis Carolinae 47 (2006), 95–101.

[3] O.T. Alas, More topological cardinal inequalities, Colloquium Mathematicae 65 (1993), pp. 165–168.

[4] A. Arhangel’skii, J. van Mill and G.J. Ridderbos A new bound on the cardinality of power-homogeneous compacta, Houston Journal of Mathematics 33 (2007), 781–793.

[5] A. Bella, On two cardinal inequalities involving free sequences, Topology and its Applications 159 (2012), 3640–3643.

[6] N. Carlson, The weak Lindelöf degree and homogeneity, Topology and its Applications 160 (2013), 508–512.

[7] N. Carlson, J. Porter and G.J. Ridderbos, On cardinality bounds for homogeneous spaces and the $G_κ$-modification of a space, Topology and its Applications 159 (2012), 311–332.

[8] R. de la Vega, A new bound on the cardinality of homogeneous compacta, Topology Appl. 153 (2006), 2118–2123.

[9] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proceedings 13 (1988), no. 1, 17–72.

[10] R. Engelking, General Topology, PWN, Warsaw, 1977.

[11] W. G. Fleissner, Some spaces related to topological inequalities proven by the Erdős-Rado Theorem, Proceedings of the American Mathematical Society 71 (1978), 313–320.

[12] W. Fleischmann and S. Williams The $G_δ$-topology on compact spaces, Fundamenta Mathematicae 83 (1974), 143–149.

[13] M.E. Gewand, The Lindelöf degree of scattered spaces and their products, Journal of the Australian Mathematical Society (series A), 37 (1984), 98–105.

[14] I. Juhász, On two problems of A.V. Archangel’skii, General Topology and its Applications 2 (1972) 151-156.

[15] I. Juhász, Cardinal Function in Topology - Ten Years Later, Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980.

[16] I. Juhász and J. van Mill, On $σ$-countably tight spaces, preprint, arXiv:1607.00517

[17] M. Kojman, D. Milovich and S. Spadaro, Noetherian type in topological products, Israel Journal of Mathematics 202 (2014), 195–225.

[18] K. Kuenen, Paracompactness of box products of compact spaces, Transactions of the American Mathematical Society 240 (1978), 307–316.

[19] R. Levy and M.D. Rice, Normal P-spaces and the $G_δ$-topology, Colloquium Mathematicum 44 (1981), 227–240.

[20] E.G. Pytkeev, About the $G_δ$-topology and the power of some families of subsets on compacta, Colloq. Math. Soc. Janos Bolyai, 41. Topology and Applications, Eger (Hungary), 1983, pp.517-522.

[21] G.J. Ridderbos, On the cardinality of power-homogeneous Hausdorff spaces, Fundamenta Mathematicae 192 (2006), pp. 255–266.

[22] S. Spadaro and P. Szeptycki, $G_δ$ covers of compact spaces, preprint, arXiv:1605.05630

[23] S. Spadaro, Infinite games and chain conditions, Fundamenta Mathematicae 234 (2016), 229–239.
[24] J. Vaughan, *Countably compact locally countable T_2 spaces*, Proceedings of the American Mathematical Society 80 (1980), 147–153.