A peer-reviewed version of this preprint was published in PeerJ on 30 April 2019.

View the peer-reviewed version (peerj.com/articles/6845), which is the preferred citable publication unless you specifically need to cite this preprint.

Khider M, Hansen H, Hjerde E, Johansen JA, Willassen NP. 2019. Exploring the transcriptome of luxI− and ΔainS mutants and the impact of N-3-oxo-hexanoyl-L- and N-3-hydroxy-decanoyl-L-homoserine lactones on biofilm formation in Aliivibrio salmonicida. PeerJ 7:e6845
https://doi.org/10.7717/peerj.6845
Exploring the transcriptome of \textit{luxI} and \textit{ΔainS} mutants and the impact of N-3-oxo-hexanoyl-L- and N-3-hydroxy-decanoyl-L-homoserine lactones on biofilm formation in \textit{Aliivibrio salmonicida}

Miriam Khider Corresp. 1, Hilde Hansen 1, Jostein A. Johansen 2, Erik Hjerde 1,3, Nils Peder Willassen 1,3

1 Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
2 Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
3 Centre for bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway

Corresponding Author: Miriam Khider
Email address: miriam.khider@uit.no

\textbf{Background.} The marine bacterium \textit{A. salmonicida} uses the quorum sensing (QS) systems, AinS/R and LuxI/R to produce eight acyl-homoserine lactones (AHLs) in a cell density dependent manner. Biofilm formation is one of the QS regulated phenotypes, which requires the expression of exopolysaccharides (EPS). We previously demonstrated that inactivation of LitR, the master regulator of QS in \textit{A. salmonicida} resulted in biofilm formation, which was, similar to the biofilm formed by the AHL deficient mutant \textit{ΔainSluxI}. In this work, we have identified genes regulated by AinS and LuxI using RNA sequencing (RNA-Seq), and studied their role in biofilm formation, colony morphology and motility. We have also studied the effect of two AHLs on the biofilm formation.

\textbf{Results.} The transcriptome profiling of \textit{ΔainS} and \textit{luxI} mutants allowed us to identify essential genes regulated by QS in \textit{A. salmonicida}. Relative to the wild-type, the \textit{ΔainS} and \textit{luxI} mutants revealed 40 and 500 differentially expressed genes (DEGs), respectively. The functional analysis demonstrated that the most pronounced DEGs were involved in bacterial motility and chemotaxis, exopolysaccharide production, and surface structures related to adhesion. Inactivation of \textit{luxI} but not \textit{ainS} genes resulted in wrinkled colony morphology. While inactivation of both genes (\textit{ΔainSluxI}) resulted in strains able to form wrinkled colonies and mushroom structured biofilm. Moreover, when the \textit{ΔainSluxI} mutant was supplemented with N-3-oxo-hexanoyl-L- homoserine lactone (3OC6-HSL) and N-3-hydroxy-decanoyl-L-homoserine lactone(3OHC10-HSL), the biofilm did not develop. We also show that LuxI is needed for motility and repression for EPS production, where repression of EPS is likely operated through the RpoQ-sigma factor.

\textbf{Conclusion.} These findings imply that LuxI and AinS synthases have a critical contribution to the QS-dependent regulation on gene expression and the phenotypic traits related to it.
Exploring the transcriptome of luxI and ΔainS mutants and the impact of N-3-oxo-hexanoyl-L- and N-3-hydroxy-decanoyl-L-homoserine lactones on biofilm formation in *Aliivibrio salmonicida*

Miriam Khider¹, Hilde Hansen¹, Jostein A. Johansen¹, Erik Hjerde¹,² and Nils Peder Willassen¹,²

¹Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway

²Centre for bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway

Corresponding Authors:

Miriam Khider

UiT - The Arctic University of Norway, N-9037 Tromsø, Norway

Email address: miriam.khider@uit.no

Nils Peder Willassen

Email address: nils-peder.willassen@uit.no
Abstract

Background. The marine bacterium *A. salmonicida* uses the quorum sensing (QS) systems, AinS/R and LuxI/R to produce eight acyl-homoserine lactones (AHLs) in a cell density dependent manner. Biofilm formation is one of the QS regulated phenotypes, which requires the expression of exopolysaccharides (EPS). We previously demonstrated that inactivation of LitR, the master regulator of QS in *A. salmonicida* resulted in biofilm formation, which was, similar to the biofilm formed by the AHL deficient mutant ΔainSluxI. In this work, we have identified genes regulated by AinS and LuxI using RNA sequencing (RNA-Seq), and studied their role in biofilm formation, colony morphology and motility. We have also studied the effect of two AHLs on the biofilm formation.

Results. The transcriptome profiling of ΔainS and luxI mutants allowed us to identify essential genes regulated by QS in *A. salmonicida*. Relative to the wild-type, the ΔainS and luxI mutants revealed 40 and 500 differentially expressed genes (DEGs), respectively. The functional analysis demonstrated that the most pronounced DEGs were involved in bacterial motility and chemotaxis, exopolysaccharide production, and surface structures related to adhesion. Inactivation of luxI but not ainS genes resulted in wrinkled colony morphology. While inactivation of both genes (ΔainSluxI) resulted in strains able to form wrinkled colonies and mushroom structured biofilm. Moreover, when the ΔainSluxI mutant was supplemented with N-3-oxo-hexanoyl-L- homoserine lactone (3OC6-HSL) and N-3-hydroxy-decanoyl-L-homoserine lactone (3OHC10-HSL), the biofilm did not develop. We also show that LuxI is needed for
motility and repression for EPS production, where repression of EPS is likely operated through the RpoQ-sigma factor.

Conclusion. These findings imply that LuxI and AinS synthases have a critical contribution to the QS-dependent regulation on gene expression and the phenotypic traits related to it.

Introduction

Quorum sensing (QS) is a widespread mechanism in bacteria, which employs autoinducing chemical signals in response to cell density to coordinate several traits as biofilm formation, motility, bioluminescence and virulence (Whitehead et al., 2001). A variety of classes of QS chemical signals have been identified in different bacteria. Gram-negative bacteria usually employ N-acyl homoserine lactones (AHLs) which contain a conserved homoserine lactone (HSL) ring and an amide (N)-linked acyl side chain. The acyl groups identified to date, range from 4 to 18 carbons in length (Fuqua, Parsek, & Greenberg, 2001; Swift et al., 2001; Whitehead et al., 2001). AHL-mediated QS was originally discovered in the marine bacterium Aliivibrio (vibrio) fischeri, which was found to regulate bioluminescence in a cell-density dependent manner (Eberhard et al., 1981; Ruby & Lee, 1998). A. fischeri controls luminescence by the QS systems LuxS/LuxPQ, LuxI/LuxR and AinS/AinR, where LuxS, LuxI and AinS are the autoinducer synthases (Lupp & Ruby, 2005, 2004; Lupp et al., 2003). LuxI synthesizes a diffusible molecule, N-(3-oxohexanoyl)-L-homoserine lactone (3OC6-HSL), which increases in concentration with cell density. 3OC6-HSL then binds to LuxR, and this complex activate light production from lux operon (Verma & Miyashiro, 2013).
The marine bacterium *Aliivibrio salmonicida*, is known to cause cold-water vibriosis in Atlantic salmon (*Salmo salar*), rainbow trout (*Oncorhynchus mykiss*) and captive Atlantic cod (*Gadus morhua*) (Egidius et al., 1981; Egidius et al., 1986; Holm et al., 1985). The genome sequence of *A. salmonicida* revealed five QS systems, where three are similar to those of *A. fischeri*, the LuxS/PQ, LuxI/P and AinS/R (Hjerde et al., 2008). *A. salmonicida* produces eight AHLs, where the LuxI/R system is responsible for seven AHLs (3OC4-HSL, C4-HSL, 3OC6-HSL, C6-HSL, C8-HSL, 3OC8-HSL and 3OC10-HSL) while the AinS/R system synthesizes only one autoinducer, 3OHC10-HSL (Hansen et al., 2015). Although, *A. salmonicida* encodes the *lux* operon (*luxCDABEG*) (Nelson et al., 2007), the bacteria is only able to produce bioluminescence after addition of decyl aldehyde (Fidopiastis, Sørum & Ruby, 1999). LitR, the master regulator of QS is a positive regulator of AHL production and hence, cryptic bioluminescence in *A. salmonicida* (Bjelland et al., 2012).

In addition to regulating bioluminescence, AHLs are also involved in multiple other physiological processes in bacteria such as production of virulence factors, drug resistance and biofilm formation (Abisado et al., 2018). AHL-mediated QS affects biofilm formation in a number of bacterial species (Fazli et al., 2014; Yildiz & Visick 2009; Hmelo, 2017), and is associated with almost all stages, such as initial surface attachment, bacterial growth, maturation, and detachment of cells. For some species, QS regulates flagellar activity, which in turn influences the attachment of bacteria to surface (Guvener & McCarter 2003; Pratt & Kolter 1998). In *Pseudomonas aeruginosa* PAO1 and *Burkholderia cepacia*, QS regulates other aspects of biofilm formation, including biofilm structure and maturation (Huber et al., 2001; Whitehead et al., 2001). QS further increases dispersal of detached bacteria from mature biofilm to trigger a new cycle of biofilm formation (Emerenini et al., 2015). In many *Vibrio* species...
development of rugose colony morphology and biofilm formation correlates with exopolysaccharide production. For example, in *Vibrio parahaemolyticus* and *Vibrio vulnificus*, QS activate formation of biofilm and opaque colonies at high cell density. Mutation in the QS regulators OpaR and SmcR in *V. parahaemolyticus* and *V. vulnificus*, respectively results in translucent colonies indicating a decrease in exopolysaccharide production (Lee et al., 2013; McCarter, 1998). In contrast to the two species mentioned above, *Vibrio cholerae* presents a different effect of QS regulation on biofilm formation. A mutation in the master regulator HapR, results in a state mimicking low cell density conditions, where the mutant produces more exopolysaccharides compared to wild-type (Zhu & Mekalanos, 2003). *A. salmonicida* behaves in a similar fashion to *V. cholerae*, where deletion of *litR* leads to increase exopolysaccharide production and formation of three-dimensional biofilm structure (Bjelland et al., 2012; Hansen et al., 2014).

We have previously shown that AinS and LuxI in *A. salmonicida* are responsible for the production of eight AHLs and that both these AHL synthases are needed for downregulation of biofilm formation (Hansen et al., 2015). In the work presented here, we show that the AHLs 3OC6-HSL (LuxI product) and 3OHC10-HSL (AinS product) are biologically active and downregulate biofilm formation in *A. salmonicida*. RNA-Seq was performed to identify genes regulated by AinS/R and LuxI/R QS systems. At high cell density, inactivation of *luxI* had a global effect on the transcriptome and resulted in nearly 500 differently expressed genes (DEGs), whereas deletion of *ainS* only resulted in 29 DEGs at the same condition. Genes involved in motility and EPS production were among the DEGs in the *luxI* mutant, which explains the finding that this mutant lacks flagella, is non-motile and produces rugose colonies.
Materials and methods

Bacterial strains, culture conditions and supplements

Bacterial strains used in this study are listed in Table 1. *A. salmonicida* LFI1238 strain and the *A. salmonicida* mutants were grown from a frozen glycerol stock on blood agar base no. 2 (oxoid, Cambridge, UK) with a total concentration of 5% blood and 2.5% NaCl (BA2.5) or in Luria Berthani broth (Difco, BD Diagnostics, Sparks, MD) with a total concentration of 2.5% NaCl (LB2.5). *A. salmonicida* strains were cultivated from a single colony in 2 ml (LB2.5) at 12°C, 220 rpm for 2 days (primary culture). The primary cultures were diluted 1:20 and grown at 12°C, 220 rpm for an additional day (secondary cultures).

The GFP (green fluorescence protein) constitutive plasmid pVSV102 and helper plasmid pEV104 propagated in *Escherichia coli* (E. coli), DH5αλpir and CC118λpir, respectively. The *E. coli* strains were cultivated in LB or LA containing 1% NaCl (LB1 and LA1 respectively) and incubated at 12°C and 220 rpm. The potential tagged strains were selected on BA2.5 supplemented 150 μl/ml kanamycin.

A seawater-based medium (SWT) was used for the HPLC-MS/MS, transcriptomics, biofilm and morphology assay. The medium consists of 5 g/L of bacto peptone (BD), 3 g/L of yeast extract (Sigma) and 28 g/L of a synthetic sea salt (Instant Ocean, Aquarium Systems).

Transcriptomics
Sample collection

Three biological replicates were used for ΔainS, luxI and A. salmonicida LFI1238 wild-type strains. The overnight secondary cultures were diluted to OD\(_{600}\) = 0.05 (optical density measured at 600 nm) in a total volume of 70 ml SWT media supplemented with 2.5% sea salt. The cultures were grown further at 8°C and 220 rpm in 250 ml baffled flask. Samples (10 ml) at low cell density OD\(_{600}\) = 0.30 and (2.5 ml) at high cell density OD\(_{600}\) = 1.20 were harvested (13000 x g, 2 minutes, 4°C) (Heraeus 3XR, Thermo Scientific). Samples were persevered in RNAlater and stored at -80°C until RNA extraction.

Total RNA isolation and rRNA depletion

The total RNA was extracted from the cell pellets following the standard protocols by manufactures (Masterpure DNA & RNA purification kit, Epicenter). The quality of total RNA was determined using a Bioanalyzer and Total RNA nano chip (Agilent Technologies). The ribosomal rRNA was removed from the samples using Ribo-Zero rRNA Removal kit for bacteria (Illumina) following manufactures instructions. The quality of RNA after depletion was determined using Bioanalyzer and Total RNA pico chip (Agilent Technologies).

RNA sequencing and data analysis

The rRNA depleted samples were used to generate RNA-sequencing libraries using TruSeq standard mRNA library prep kit (Illumina), and sequenced at the Norwegian Sequencing Center.
using the Illumina NextSeq 500 with mid output reagents with 75 bp. read length and paired end reads.

The sequencing quality of FASTQ files was assessed using FastQC (Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Further analysis of the RNA-Seq data was performed using EDGE-pro v1.0.1 (Magoc, Wood, & Salzberg, 2013) and DESeq2 (Love, Huber & Anders, 2014). EDGE-pro was used to align the reads to the A. salmonicida LFI1238 genome (Hjerde et al., 2008), and to estimate gene expression levels. Differences in gene expression between wild-type and ΔlitR and ΔrpoQ mutants were determined using DESeq2. Log2 fold changes of the genes were recalculated to × differential expression values (i.e., ΔainS/wt) and genes were defined as significantly differentially expressed genes based on a p-value ≤ 0.05 and differentially expression values (fold change values) of ≥ 2 × and ≤ -2 ×. tRNA and rRNA reads were filtered out before analysis.

The sequences of ΔainS, luxI- and A. salmoncida LFI1238 have been deposited in the European Nucleotide Archive (www.ebi.ac.uk/ena) under study accession numbers PRJEB29457 and PRJEB28385, respectively.

High-Performance Liquid Chromatography Tandem Mass Spectrometry (HPL-MS/MS) assay

AHL standards
155 AHL standards purchased from University of Nottingham, UK were: N-3-oxo-butyryl-L-homoserine lactone (3OC4-HSL), N-3-hydroxy-butyryl-L-homoserine lactone (3OHC4-HSL), N-3-hydroxy-hexanoyl-L-homoserine lactone (3OHC6-HSL), N-3-hydroxy-octanoyl-L-homoserine lactone (3OHC8-HSL), N-3-hydroxy-decanoyl-L-homoserine lactone (3OHC10-HSL). Standards purchased from Sigma-Aldrich were: N-butyryl-DL-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-3-oxo-hexanoyl-L-homoserine lactone (3OC6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL), N-3-oxo-octanoyl-L-homoserine lactone (3OC8-HSL), N-decanoyl-DL-homoserine lactone (C10-HSL), N-3-oxo-decanoyl-L-homoserine lactone (3OC10-HSL), N-dodecanoyl-DL-homoserine lactone (C12-HSL), N-3-oxo-dodecanoyl-L-homoserine lactone (3OC12-HSL), and N-3-hydroxy-dodecanoyl-DL-homoserine lactone (3OHC12-HSL). Acetonitrile and formic acid for HPLC were purchased from Sigma.

166 Preparation of bacterial supernatants for AHL measurements

Two biological replicates were used for all *A. salmonicida* strains. The overnight secondary cultures were diluted to an OD$_{600}$ = 0.05 in a total volume of 60 ml SWT media supplemented with 2.5% sea salt. The cultures were grown further at 8°C and 220 rpm in 250 ml baffled flask for 50 h. 1 ml was harvested from each culture at 13000 x g (Heraeus Fresco 21, Thermo Scientific), 4°C for 2 min. The supernatants were acidified before threefold ethyl acetate extraction as previously described (Purohit et al., 2013). The ethyl acetate phase was dried using rotary vacuum centrifuge (CentriVap, Labconco) at 40°C for 15 min, and then redissolved in 150 μl of 20% acetonitrile containing 0.1% formic acid and 775 nM of the internal standard 3OC12-HSL.
Detection of AHL profiles using a mix of HPLC-MS/MS and full scan HR-MS analysis

The detection of AHL was adapted from the methods described previously (Hansen et al., 2015). Briefly: the samples (20 µl) were injected onto an Ascentis Express C18 5 cm x 2.1 mm, 2.7 µm reverse phase column (Supelco) using an Accela autosampler (Thermo scientific). The elution was performed using an Accela pump (Thermo scientific) with an acetonitrile gradient in 0.1% formic acid, and consisted of 5% acetonitrile for 18 seconds, followed by a linear gradient up to 90% acetonitrile over 222 seconds, and finally 90% acetonitrile for 60 seconds. The column was re-equilibrated for 60 seconds with 5% acetonitrile in 0.1% formic acid before the next sample was injected. Flow rate was 500 µl/min for all steps.

The separated compounds were ionized in positive ion electrospray using the following settings: sheath gas flow rate 70, auxiliary gas flow rate 10, sweep gas flow rate 10, spray voltage +4.50 kV, capillary temperature 330°C, capillary voltage 37 V, and tube lens 80 V.

The ionized components where detected using an LTQ Orbitrap XL (Thermo scientific) run in either ms/ms low resolution mode or full scan HRMS mode. C4 AHL’s are difficult to detect using full scan HR-MS analysis due to co-eluting isobaric compounds seen in some samples, so these components together with 3OC6 and 3OHC6 where measured using HPLC MS/MS using the LTQ part of the LTQ orbitrap XL. The rest of the compounds where measured using Full Scan HR-MS analysis. The C4’s, 3OHC6 and 3OC6 elute early in the chromatogram, and where measured in 2 segments each with 3 scan events. Segment 1 ran from 0 min to 0.88 min, with the following scan events. m/z 172.10 -> (101.2-103.2) (C4-HSL), m/z 186.10-> (101.2-103.2) (3OC4-HSL) and 188.10-> (101.2-103.2) (3OHC4-HSL). Segment 2 ran from 0.88 min to 1.76
min with the following scan events: 172.10-> (101.2-102.3) (C4-HSL), 214.10-> (101.2-102.3) (3OC6-HSL), 216.12-> (101.2-102.3) (3OHC6-HSL). Segment 3 ran from 1.76 min to 5 min in which the rest of the compounds where measured using only one scan event, FTMS (165-450) resolution 15000. Target setting was 5x10^5 ions per scan, and maximum injection time was 250 ms. Lock mass was enabled for correction of background ions from caffeine (m/z 195.0877) and diisooctyl phthalate (m/z 391.2843 and m/z 413.2662). The system was calibrated with a mixture of 15 AHLs including the internal standard 3OC12-HSL, and the ion chromatograms were analyzed using the Xcalibur v. 2.18 software package. The mass window was set to 8 parts per million. The limit of detection (LOD) and the limit of quantification (LOQ) for the different AHLs were calculated as previously described (Purohit et al., 2013).

Construction of GFP tagged *A. salmonicida* strains

A. salmonicida mutants (ΔainS, luxI, ΔainSluxI and ΔlitR) used in this study were constructed previously (Bjelland et al., 2012; Hansen et al., 2015). The mutants were tagged with GFP using tri-parental mating as described by others. Briefly; the pVSV102 plasmid carrying the gene coding for GFP and kanamycin was transferred from *E. coli* DH5αλpir to the mutant strains using the conjugative helper strain CC118λpir harboring pEV5104 helper plasmid. Donor and helper cells were grown to mid-log phase (OD₆₀₀ = 0.7) in LB1. Recipient strains (*A. salmonicida*) were grown to early stationary phase (OD₆₀₀ = 1.2) in LB2.5. The donor, helper and recipient strains were harvested (13000 x g, 1 min) and washed twice with LB1 before they were mixed in 1 to 1 ratio and spotted onto BA2.5 plates, followed by overnight incubation at 16°C. The spotted cells were resuspended in LB2.5 and incubated for 24 h. at 12°C with
agitation (220 rpm). The potential tagged strains were selected on BA2.5 after 5 days. The tagged strains were confirmed microscopically with Nikon Eclipse TS100.

Static biofilm assay

The biofilm assay was performed as described previously (Hansen et al., 2014; Khider, Willassen & Hansen, 2018). Briefly; the overnight secondary cultures were grown to an OD$_{600}$ of 1.3. The secondary cultures were further diluted 1:10 in SWT and a total volume of 300 μl was added to each well in flat-bottom, non-tissue culture-treated Falcon 24-well plates (BD Bioscience). A final concentration of 1400 ng/ml of 3OC6-HSL, 100 ng/ml of 3OHC10-HSL, 197 ng/ml of 3OC8, 100 ng/ml of C8 and 400 ng/ml of C6 were added to each well. The plates were incubated statically at 8°C, for 72 h. and the biofilm was visualized using Nikon Eclipse TS100 microscope at 10x magnification and photographed with Nikon DS-5Mc. The biomasses of the biofilms were quantified using crystal violet. The medium was removed and 300 μl of 0.1% (wt/vol) crystal violet in H$_2$O was added. The plates were incubated at room temperature for 30 min. The crystal violet stain was removed by flipping the plates gently, and the wells were washed twice with 0.5 ml of H$_2$O. The wells were air dried overnight and the biofilm was dissolved in 0.5 ml of 96% ethanol with agitation (250 rpm) overnight. The dissolved biofilm was diluted 1:10 in 96% ethanol and transferred to a 96-well plate (100 μl/well). The absorbance was measured at 590 nm (Vmax kinetic microplate reader; Molecular Devices).

Soft agar motility assay
The motility assay was performed using soft agar plates containing 0.25% agar and 2.5% NaCl as previously described (Khider, Willassen & Hansen, 2018). Briefly; the secondary overnight cultures were diluted to an OD$_{600}$ of 0.4. Then 3 μl of each culture was spotted on the soft agar plates and incubated at 8°C for 5 days. The degree of motility for each strain was monitored every 24 hours for 5 days by measuring the diameters of spreading halos on the soft agar plate.

Colony morphology assay

The colony morphology assay was carried mainly as described before (Hansen et al., 2014; Khider, Willassen & Hansen, 2018). From each secondary overnight culture, a 250 μl was harvested by centrifugation, and the pellet was re-suspended in 250 μl SWT. Then, 2 μl of each culture was spotted onto SWT agar plates, and incubated at 8°C for 14 days. The colonies were viewed microscopically with Zeiss Primo Vert and photographed with AxioCam ERC5s at 4x magnification.

Scanning Electron Microscopy (SEM)

Secondary cultures of *A. salmonicida* strains were grown overnight and fixed with 2.5% (wt/vol) glutaraldehyde and 4% formaldehyde in PHEM-buffer and incubated for one day at 4°C. 100 μL of each sample were mounted on a poly-L-lycine coated coverslip for 5 min. Coverslips were washed three times with PHEM buffer before they were postfixied in 1% (wt/vol) Osmiumtetroxide (OsO₄). Samples were further washed for three times with PHEM buffer, all samples were dehydrated with a graded series of ethanol at room temperature for 5 min. The
samples were dried using hexamethyldisilazane (HMDS) as a drying agent and further left to dry in a desiccator overnight before being mounted on aluminum stubs, using carbon tape and silver paint. The samples were coated with gold-palladium using a Polaron Range Sputter Coater. Pictures were taken with Ziess Zigma SEM.

Results

AHL profiling of *A. salmonicida* in SWT medium

In our previous studies, AHL profiling of *A. salmonicida* LFI1238 and mutants thereof were performed after growth in LB2.5 medium. The autoinducer synthase, AinS produced one AHL (3OHC10-HSL), and the LuxI synthase produced seven AHLS, where the most abundant AHL signal was 3OC6-HSL (Hansen et al., 2015; Purohit et al., 2013). Consequently, when both luxI and ainS synthases were inactivated, no AHL production was observed in *A. salmonicida* and the double mutant (ΔainSluxI) produced a biofilm similar to the biofilm of ΔlitR mutant (Hansen et al., 2015). In the work presented here, we wanted to analyze if addition of AHLS could interfere with the biofilm formation of the ΔainSluxI double mutant. However, since SWT medium is required for biofilm formation we first wanted to know whether a change of medium would affect the AHLS profiles of *A. salmonicida* wild-type and the mutants.

The different *A. salmonicida* strains (LFI1238, ΔlitR, ΔainS, luxI and ΔainSluxI) were grown in SWT medium at 8°C for 50 h. (OD_{600} ~ 2.0) before samples were harvested and analyzed using HPLC-MS/MS. The *A. salmonicida* wild-type and mutants showed AHL profiles (Table 2) similar to what have been shown after growth in LB (Hansen et al., 2015) with the exception of C4 and 3OC4. Thus, the wild-type and the ΔlitR AHL profiles consisted of 6 AHLS, where the
3OC6-HSL was the most abundant. No AHLs were detected in the ΔainSluxI supernatant, the luxI mutant produced only 3OHC10-HSL, and the ΔainS mutant produced the remaining five AHLs. Compared to the wild-type, the ΔlitR mutant produced lower concentrations of the 3OC6-HSL and 3OHC10-HSL confirming that LitR is a positive regulator of these two AHLs also after growth in SWT medium.

N-acyl homoserine 3OHC10 and 3OC6 downregulate biofilm formation in A. salmonicida

To investigate possible effects of 3OC6-HSL (LuxI product) and 3OHC10-HSL (AinS product) on biofilm formation the different AHLs were added to the SWT medium, and A. salmonicida strains were allowed to form biofilm at 8°C for 72 h. As shown in Figure 1A, the biofilm formation of ΔainSluxI was totally inhibited when supplemented with either 3OHC10-HSL or 3OC6-HSL. The ΔainS, luxI and the wild-type do not form a biofilm (Hansen et al., 2015), and no difference in biofilm formation was found when treated with 3OHC10-HSL or 3OC6-HSL (Figure 1A). The mushroom structured ΔlitR biofilm remained unchanged after the addition of AHLs. This shows that LuxI-3OC6-HSL and AinS-3OHC10-HSL functions through LitR, and downregulation on the biofilm formation can not be achieved when litR is inactivated (Figure 1A). The addition of C6, C8, and 3OC8 AHLs did not interfere with the biofilm formation of any of the A. salmonicida strains (data not shown). Next, the biomasses of treated and untreated biofilms were quantified using crystal violet. Relative to the untreated control samples, the addition of either 3OHC10-HSL or 3OC6-HSL, significantly decreased the biomass of ΔainSluxI biofilm (p-value < 0.05). Quantitation of treated and untreated ΔlitR, LFI1238, ΔainS and luxI had no significant differences (Figure 1B). These observations suggest that these two
AHLs (3OHC10-HSL and 3OC6-HSL) inhibit biofilm formation in *A. salmonicida* and are operated via LitR.

luxI mutant forms wrinkled colonies in *A. salmonicida*

To determine whether any of the *A. salmonicida* QS systems (*lux* or/and *ain*) are involved in wrinkled colony formation, the *luxI*, *ΔainS* and the double mutant *ΔainSluxI* were allowed to form colonies on SWT plates at 8°C. As shown in Figure 2, the *ΔainS* mutant formed smooth colonies indistinguishable from those formed by the wild-type. This indicates that *ainS* is not required for formation of rugosity. Whereas the *luxI* and *ΔainSluxI* mutants formed wrinkled colonies similar to the *ΔlitR* after 14 days of incubation.

Expression profiles of *A. salmonicida luxI* and *ΔainS* mutants revealed genes related to QS

In order to gain a better understanding of how LuxI and AinS work in the QS system, the transcriptome expression profiles of *luxI* and *ΔainS* mutants were compared to the *A. salmonicida* LFI1238 wild-type. The expression profiling of *luxI* mutant relative to the wild-type LFI1238 revealed 494 and 446 DEGs at low and high cell densities, respectively, that fell into various functional gene classes adapted from MultiFun (Serres & Riley, 2000) (Figure 3). Among the DEGs at low cell density (LCD) 366 were downregulated and 128 were upregulated (Table S1). Whereas, at high cell density (HCD) 224 genes were downregulated and 222 genes were upregulated (Table S2). Among the upregulated genes that fell into *surface structures* functional group we identified genes of the *tad* operon, which is believed to be associated with adhesion, *VSAL_II0366* (83.8-fold change at LCD and 151.5-fold change at HCD) and
VSAL_II0377 (57.3-fold change at LCD and 39.5-fold change at HCD) coding for fimbrial proteins, Flp/Fap pilin component and type IV leader peptidase, respectively. The remaining genes of the tad operon were also upregulated in the luxI mutant relative to the wild-type at both cell densities, and are listed in details in the supplementary material (Table S1 and Table S2).

As described in our results presented above, the luxI mutant formed wrinkled colony morphology on SWT plates. The rugosity is associated with the enhanced production of exopolysaccharides (EPS), which requires the expression of syp operon (18 genes) in A. salmonicida (Hansen et al., 2014; Khider, Willassen & Hansen, 2018). Consistently, our RNA-Seq data at HCD demonstrated 11 significantly upregulated genes of the syp operon with fold change values ranging from 9.55 to 2.04.

For several bacteria, QS regulates motility and flagellar synthesis (Kim et al., 2007; Ng & Bassler, 2009). Within the cell processes functional group, the transcriptome of luxI mutant revealed genes associated with motility and chemotaxis (59 DEGs at LCD and 57 DEGs at HCD) (Table S1 and Table S2). The greatest transcript abundance at LCD and HCD were genes encoding sigma 54-dependent transcription regulator, flrA and flrC in addition to the two-component system flrB. Other genes coding for flagellin subunits and flagellar basal body rod, ring, hook and cap proteins, were also downregulated in the luxI mutant relative to the wild-type at both cell densities. Additionally, genes coding for methyl-accepting chemotaxis proteins and motor proteins as MotA and MotB were downregulated in the luxI mutant.

The transcriptome of AainS revealed fewer genes compared to the luxI. Our results presented here show that at LCD we were able to determine a total of 20 DEGs (8 up- and 12
downregulated) and at HCD we were able to identify 29 DEGs where 8 were upregulated and 21
genes were downregulated (Table S3 and Table S4). The DEGs fell into 10 functional groups
(Figure S1). At LCD and in the absence of AHLs, ain system act as kinase and serve as
phosphoryl-donors to LuxU, which in turn phosphorylates LuxO (Freeman & Bassler, 1999).
The ΔainS transcriptome demonstrates an upregulation in genes responsible for phosphorylation.
The DEGs with high expression level relative to the wild-type was phosphorelay prorein LuxU
(VSAL_I1875) with a fold change values of 2.22 and 2.37 at low and high cell densities,
respectively. Among the upregulated genes that fell into the surface structures functional group
we were able to identify genes of the tad operon, VSAL_II0366 gene coding for fimbrial protein
with a fold change values of 2.82 and 4.24 at LCD and HCD, respectively. VSAL_II0367 coding
for Flp/Fap pilin component and type IV leader peptidase was identified among upregulated
genes at LCD only (Table S3). Among the 21 downregulated genes at HCD our data revealed
DEGs with highest fold change to be allocated into amino acid biosynthesis as sulfate
adenyltransferase subunit 1 and 2 encoded by VSAL_I0421 and VSAL_I0420, respectively (Table
S4).

LuxI controls motility in A. salmonicida LFI1238

The flagellum is required for motility of bacteria, mediating their movements towards favorable
environments and avoiding unfavorable conditions (Utada et al. 2014; Zhu, Kojima & Homma,
2013). Because the transcriptome results demonstrated that a large panel of flagellar biosynthesis
and assembly genes are regulated by lux system, we wished to analyze the motility behavior of
QS mutants (luxI, ΔainS and ΔainSluxI), using soft motility assay.
We show that inactivation of luxI resulted in a non-motile strain, where the size of the spotted colony (2.0 mm) did not change, indicating no migration from the site of inoculation (Figure 4AB). AinS was shown to negatively regulate motility in A. fischeri (Lupp & Ruby, 2004), and similarly, we assessed the impact of ainS deletion on motility of A. salmonicida. Compared to the wild-type, which showed motility zones of 26.6 ± 0.57 mm, the ΔainS showed an increased motility, where migration through the soft agar resulted in motility zones of 30.3 ± 0.57 mm. The ΔainSluxI- double mutant also demonstrated an increase motility compared to the wild-type with motility zones of 31.3 ± 1.15 mm. (Table S5). In order to determine whether the strains analyzed by soft motility assay possess or lack flagella, the wild-type and the constructed mutants were visualized by SEM. The ΔainS and ΔainSluxI- mutants produced several flagella similar to the wild-type. As expected the luxI- mutant that showed a motility defect, lack flagella in all replicates (Figure 4C).

Discussion

AHLs have been identified in many vibrio and aliivibrio species including A. salmonicida (Buchholtz et al., 2006; Garcia-Aljaro et al., 2008; Purohit et al., 2013; Valiente et al., 2009), which showed to produce a broad range of AHLs through LuxI and AinS synthases (Hansen et al., 2015). However, there is still limited understanding of the biological advantages of this AHL diversity in the QS mechanism. In this study, we have demonstrated the influence of luxI and ainS on the global gene regulation and the impact of AHLs on several phenotypic traits related to QS in order to reveal some answers on the complex network of signal production and regulation in A. salmonicida.
The ability to form rugose colonies and biofilm are often correlated features in vibrios (Casper-Lindley & Yildiz, 2004; Yildiz & Schoolnik, 1999; Yildiz et al., 2004), where wrinkled colony phenotype is generally associated with enhanced exopolysaccharide production (Yildiz & Schoolnik, 1999). Likewise, in *A. salmonicida* colony wrinkling (rugosity) and biofilm formation requires the expression of *syp* genes responsible for the production of EPS (Hansen et al., 2014; Khider, Willassen & Hansen, 2018). In the study presented here we show that *luxI* mutant exhibited a strong wrinkling colony morphology, indicating an enhanced polysaccharide production. This finding is further confirmed by the transcription analysis, which revealed upregulation of 11 *syp* genes and downregulation of the in the *rpoQ* gene in the *luxI* mutant relative to the wild-type. The sigma factor RpoQ is known to be a strong repressor of *syp* in *A. salmonicida* (Khider, Willassen & Hansen, 2018). Earlier studies demonstrated that inactivation of the AHL synthase (e.g *luxI* homologous) in several bacteria caused a reduction in both AHL and EPS production (Koutsoudis et al., 2006; Molina et al., 2005; Von Bodman, Bauer & Coplin, 2003). However, here we show that inactivation of *luxI* in *A. salmonicida*, enhanced the EPS production and resulted in wrinkled colonies. Unlike the *luxI* mutants, the *ΔainS* mutant formed smooth colonies, similar to the wild-type and did not show any differentially expressed genes associated with EPS production in the transcriptomics profiling. This indicates that LuxI-derived AHLs are involved in the repression of *syp* genes, where this repression is most likely operated through RpoQ, independent of AinS and the 3OHC10-HSL production.

LitR was suggested to link AinS/R and LuxS/PQ systems to LuxI/R systems in *A. salmonicida*, where its deletion influenced the production of AinS and LuxI AHLs. When both *luxI* and *ainS* were inactivated simultaneously, biofilm and colony morphology similar to *ΔlitR* was formed (Hansen et al., 2015). A simple explanation for this observation is the deficiency in AHL
production, leading to litR inactivation (also litR knockout) (Hansen et al., 2014; Bjelland et al., 2012), and thereby no repression on biofilm or colony rugosity is achieved. Furthermore, the exogenous addition of either 3OHC10-HSL (AinS signal) or 3OC6-HSL (LuxI signal) to ΔainSluxI, completely inhibited biofilm formation. We have previously shown that the disruption of either EPS or other matrix components (e.g. proteins, lipoproteins and eDNA), disrupts the mature biofilm formation in A. salmonicida (Hansen et al., 2014; Khider, Willassen & Hansen, 2018). While ΔainS mutant did not produce neither mature biofilm nor wrinkled colonies, introduction of luxI mutation into ΔainS, resulted in strains (ΔainSluxI) with three-dimensional biofilm architecture and wrinkled colonies. These data suggest that these two systems regulate biofilm formation synergistically, where the effect of AinS and LuxI AHLs is operated through a common pathway as previously reported (Hansen et al., 2015). The results presented here show that both systems function to allow or repress production of EPS and other matrix components. However, the lux system is believed to be essential for the production of EPS rather than the ain system (discussed above). Studies showed that one key function of EPS involves the attachment of cells to different substratum, which is the initial step in biofilm formation (Vu et al., 2009). For example in V. cholera, EPS production is the first step in biofilm formation as cells switch from motile planktonic state to being non-motile and surface attached (Silva & Benitez, 2016). Likewise, we suggest that the non-motile luxI mutant, increases EPS production to mediate the initial steps in biofilm formation, whereas ainS is neither fully activated nor required at this time. This suggests that lux system may operate at a lower threshold cell density than ain system, which is more essential at later stages of biofilm development, mainly the maturation into three-dimensional mushroom structure. With our results we expand the previously suggested model, to include luxI and ainS and their proposed role in regulating
biofilm formation and colony rugosity. In the model presented in Figure 5, we propose that as cell density rises 3OHC10-HSL binds AinR receptor, resulting in activation of LitR, which in turn regulates the production of AinS AHL. The activated LitR leads to a repression on other matrix components required for building a mature biofilm as well as activating rpoQ resulting in repression of syp genes. The luxI was proposed to be activated by both LitR and LuxRs. The active LuxI synthesizes seven AHLs and represses syp operon via RpoQ. In summary, our results provide clear evidence that the biofilm formation is a low cell density dependent phenotype, when neither LuxI nor AinS AHLs are present. As AHLs accumulate at high cell densities the biofilm is dispersed, indicating that AHL-mediated QS in A. salmonicida is involved in the dispersal step of the biofilm cycle.

Several bacteria are known to regulate motility via QS, where motility is either activated or inhibited by AHLs (Atkinson et al., 2006; Hoang, Gurich & Gonzalez, 2008; Hussain et al., 2008; Kim et al., 2007; Quinones, Dulla & Lindow, 2005). In the sponge-associated bacteria KLH11 flagellar motility was abolished in the ssaI and ssaR mutants homologous of luxI and luxR, respectively (Zan et al., 2012). Similarly, inactivation of luxI in A. salmonicida led to loss of flagella and motility under our experimental conditions (Figure 4). Consistent with these results, the most pronounced regulation in the luxI transcriptome data was observed for genes involved in motility and chemotaxis, exhibiting a significantly low expression level. The motility regulatory cascade has not been well elucidated in A. salmonicida, however the motility genes are organized in a similar fashion to A. fischeri (Karlsen et al., 2008). Flagellar genes are often grouped into different hierarchal classes; early, middle and late genes, where each class encode genes responsible for entire motility regulon, structural components of the hook-basal body, flagellar filaments, chemotaxis and motor force, respectively (Aldridge & Hughes, 2002). Our
results demonstrate DEGs that fell into all classes and thus it is unclear into which regulatory level LuxI affects motility genes. This defect in motility, observed by luxI, can not be explained by differences in growth rate, as cultures for different mutants reached the stationary phase (Figure S2). Hence, our observations indicate that LuxI is a positive regulator and required for full motility in *A. salmonicida*, suggesting that the defect in motility is most likely due to impact of LuxI-derived AHLs on the flagellar apparatus. LitR has been shown to be a positive regulator of *ainS* (Hansen et al., 2015). Thus, not surprisingly, we found that ΔainS displayed an increased motility compared to the wild-type, similar to what was reported for ΔlitR (Bjelland et al., 2012). However, the regulation of motility in *A. salmonicida* and the target of these regulators remain to be determined.

We have previously shown that changes in media composition altered biological traits as biofilm formation and colony rugosity in *A. salmonicida* (Hansen et al., 2014). Contrary to what was previously reported (Hansen et al., 2015; Purohit et al., 2013) neither C4-HSL nor 3OC4-HSL were detected in the present work, suggesting that the concentration of these AHLs are either below the detectable limit or not produced due to different culturing temperatures and/or media. However, the profile for the remaining AHLs was unaffected.

Conclusion

In this study we have shown that luxI but not ainS is essential for formation of wrinkled colonies at low cell density, whereas both systems are required to form a three-dimensional mature biofilm in *A. salmonicida* LFI1238. We also demonstrated that addition of either LuxI-3OC6-HSL or AinS-3OHC10-HSL is able to inhibit the biofilm formation. Our results show that lux
and *ain* systems regulates biofilm formation through a common pathway, where LuxI acts
mainly as a repressor of EPS production (*syp* operon) via RpoQ. While AinS is probably
involved in the repression of other matrix components required to build the mature biofilm.
Furthermore, we identified differentially expressed genes associated with motility to be regulated
by LuxI. These results add a new knowledge to the QS mechanism of *A. salmonicida*, however
further investigations are needed to understand the regulation and complexity of this mechanism.

Abbreviation

- **AHL**: Acyl homoserine lactone; **GFP**: Green fluorescent protein; **rpm**: rounds per minute;
- **RNA**: Ribonucleic acid; **tRNA**: transfer RNA; **rRNA**: ribosomal RNA; **h**: hours; **OD**: optical
density; **RNA-Seq**: RNA sequencing.

References:

- Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. 2018. Bacterial Quorum
 Sensing and Microbial Community Interactions. *MBio* 9
- Aldridge P, Hughes KT. 2002. Regulation of flagellar assembly. *Current Opinion in
 Microbiology* 5:160-165
- Atkinson S, Chang CY, Sockey RE, Camara M, Williams P. 2006. Quorum sensing in *Yersinia
 enterocolitica* controls swimming and swarming motility. *Journal of Bacteriology* 188:1451-
 1461
- Bjelland AM, Sørum H, Tegegne DA, Winther-Larsen HC, Willassen NP, Hansen H. 2012. LitR
 of *Vibrio salmonicida* is a salinity-sensitive quorum-sensing regulator of phenotypes
 involved in host interactions and virulence. *Infection and Immunity* 80:1681-1689
- Buchholtz C, Nielsen KF, Milton DL, Larsen JL, Gram L. 2006. Profiling of acylated
 homoserine lactones of *Vibrio anguillarum* in *vitro* and in *vivo*: Influence of growth
 conditions and serotype. *Systematic and Applied Microbiology* 29:433-445
Casper-Lindley C, Yildiz FH. 2004. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. Journal of Bacteriology 186:1574-1578

Dunn, AK, Millikan DS, Adin DM, Bose JL, Stabb EV. 2006. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Applied and Environmental Microbiology 72: 802-810

Eberhard A, Burlingame AL, Eberhard C, Kenyon GL,Nealson KH, Oppenheimer NJ. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444-2449

Egidius E, Andersen K, Clausen E, Raa J. 1981. Cold-water vibriosis or "Hitra disease" in Norwegian salmonid farming. Journal of Fish Diseases 4:353-354

Egidius E, Wiik R, Andersen K, Hoof KA, Hjeltnes B. 1986. Vibrio salmonicida sp. nov., a new fish pathogen. International Journal of Systematic Bacteriology 36: 518-520

Emerenini BO, Hense BA, Kuttler C, Eberl HJ. 2015. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment. PLoS One 10:e0132385

Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. 2014. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environmental Microbiology 16:1961-1981

Fidopiastis PM, Sørum H, Ruby EG. 1999. Cryptic luminescence in the cold-water fish pathogen Vibrio salmonicida. Archives of Microbiology 171:205-209

Freeman JA, Bassler BL. 1999. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Molecular Microbiology 31:665-677

Fuqua C, Parsek MR, Greenberg EP. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annual Review of Genetics 35:439-468

Garcia-Aljaro C, Eberl L, Riedel K, Blanch AR. 2008. Detection of quorum-sensing-related molecules in Vibrio scophthalmi. BMC Microbiology 8:138

Guvener ZT, McCarter LL. 2003. Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. Journal of Bacteriology 185:5431-5441

Hansen H, Bjelland AM, Ronessen M, Robertsen E, Willassen NP. 2014. LitR is a repressor of syp genes and has a temperature-sensitive regulatory effect on biofilm formation and colony morphology in Vibrio (Alivibrio) salmonicida. Applied and Environmental Microbiology 80:5530-5541
Hansen H, Purohit AA, Leiros HK, Johansen JA, Kellermann SJ, Bjelland AM, Willassen NP. 2015. The autoinducer synthases LuxI and AinS are responsible for temperature-dependent AHL production in the fish pathogen *Aliivibrio salmonicida*. *BMC Microbiology* 15:69

Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, Bason N, Churcher C, Harris D, Norbertczak H, Quail MA, Sanders S, Thurston S, Parkhill J, Willassen NP, Thomson NR. 2008. The genome sequence of the fish pathogen *Aliivibrio salmonicida* strain LFI1238 shows extensive evidence of gene decay. *BMC Genomics* 9:616

Hmelo LR. 2017. Quorum Sensing in Marine Microbial Environments. *Annual Review of Marine Science* 9:257-281

Hoang HH, Gurich N, Gonzalez JE. 2008. Regulation of motility by the ExpR/Sin quorum-sensing system in *Sinorhizobium meliloti*. *Journal of Bacteriology* 190: 861-871

Holm KO, Strøm E, Stensvaag K, Raa J, Jorgensen T. 1985. Characteristics of a *Vibrio* sp. Associated with the "Hitra Disease" of Atlantic Salmon in Norwegian Fish Farms. *Fish Pathology* 20:125-129

Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L. 2001. The *cep* quorum-sensing system of *Burkholderia cepacia* H111 controls biofilm formation and swarming motility. *Microbiology* 147:2517-2528

Hussain MB, Zhang HB, Xu JL, Liu Q, Jiang Z, Zhang LH. 2008. The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of *Erwinia chrysanthemi pv. zeae*. *Journal of Bacteriology* 190:1045-1053

Karlsen C, Paulsen SM, Tunsjo HS, Krinner S, Sørum H, Haugen P, Willassen NP. 2008. Motility and flagellin gene expression in the fish pathogen *Vibrio salmonicida*: effects of salinity and temperature. *Microbial Pathogenesis* 45:258-264

Khider M, Willassen NP, Hansen H. 2018. The alternative sigma factor RpoQ regulates colony morphology, biofilm formation and motility in the fish pathogen *Aliivibrio salmonicida*. *BMC Microbiology* 18:116

Kim J, Kang Y, Choi O, Jeong Y, Jeong JE, Lim JY, Kim M, Moon JS, Suga H, Hwang I. 2007. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in *Burkholderia glumae*. *Molecular Microbiology* 64:165-179

Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB. 2006. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in *Pantoea stewartii* subspecies *stewartii*. *Proceedings of the National Academy of Sciences of the United States of America* 103:5983-5988
Lee KJ, Kim JA, Hwang W, Park SJ, Lee KH. 2013. Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum-sensing in Vibrio vulnificus. Molecular Microbiology 90:841-857

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

Lupp C, Ruby EG. 2004. Vibrio fischeri LuxS and AinS: comparative study of two signal synthases. Journal of Bacteriology 186:3873-3881

Lupp C, Ruby EG. 2005. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. Journal of Bacteriology 187: 3620-3629

Lupp C, Urbanowski M, Greenberg EP, Ruby EG. 2003. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Molecular Microbiology 50:319-331

Magoc T, Wood D, Salzberg SL. 2013. EDGE-pro: Estimated Degree of Gene Expression in Prokaryotic Genomes. Evolutionary Bioinformatics Online 9:127-136

McCarter LL. 1998. OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. Journal of Bacteriology 180:3166-3173

Molina L, Rezzonico F, Defago G, Duffy B. 2005. Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. Journal of Bacteriology 187:3206-3213

Ng WL, Bassler BL. 2009. Bacterial quorum-sensing network architectures. Annual Review of Genetics 43:197-222

Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology 30: 285-293

Purohit AA, Johansen JA, Hansen H, Leiros KH, Kashulin A, Karlsen C, Smalås A, Haugen P, Willassen NP. 2013. Presence of acyl-homoserine lactones in 57 members of the Vibrionaceae family. Journal of Applied Microbiology 115:835-847

Quinones B, Dulla G, Lindow SE. 2005. Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Molecular Plant-Microbe Interaction 18:682-693
Ruby EG, Lee KH. 1998. The Vibrio fischeri-Euprymna scolopes Light Organ Association: Current Ecological Paradigms. Applied and Environmental Microbiology 64:805-812

Serres MH, Riley M. 2000. MultiFun, a multifunctional classification scheme for Escherichia coli K-12 gene products. Microbial & Comparative Genomics 5:205-222

Silva AJ, Benitez JA. 2016. Vibrio cholerae Biofilms and Cholera Pathogenesis. PLoS Neglected Tropical Diseases 10: e0004330

Stabb EV, Ruby EG. 2002. RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods in Enzymology 358: 413-426.

Swift S, Downie JA, Whitehead NA, Barnard MA, Salmond PG, Williams P. 2001. Quorum sensing as a population-density-dependent determinant of bacterial physiology. Advanced in Microbial Physiology 45:199-270

Utada AS, Bennett RR, Fong JCN, Gibiansky ML, Yildiz FH, Golestanian R, Wong GCL. 2014. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nature Communications 5:4913

Valiente E, Bruhn JB, Nielsen KF, Larsen JL, Roig FJ, Gram L, Amaro C. 2009. Vibrio vulnificus produces quorum sensing signals of the AHL-class. FEMS Microbiology Ecology 69:16-26

Verma SC, Miyashiro T. 2013. Quorum sensing in the squid-Vibrio symbiosis. International Journal of Molecular Sciences 14:16386-16401

Von Bodman SB, Bauer WD, Coplin DL. 2003. Quorum sensing in plant-pathogenic bacteria. Annual Review of Phytopathology 41:455-482

Vu B, Chen M, Crawford RJ, Ivanova EP. 2009. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535-2554

Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiology Reviews 25:365-404

Yildiz FH, Liu XS, Heydorn A, Schoolnik GK. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Molecular Microbiology 53:497-515

Yildiz FH, Schoolnik GK. 1999. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proceedings of the National Academy of Sciences of the United States of America 96:4028-4033

Yildiz FH, Visick KL. 2009. Vibrio biofilms: so much the same yet so different. Trends Microbiology 17:109-118
Zan J, Cicirelli EM, Mohamed NM, Sibhatu H, Kroll S, Choi O, Uhlson CL, Wysoczynski CL, Murphy RC, Churchill ME, Hill RT, Fuqua C. 2012. A complex LuxR-LuxI type quorum sensing network in a roseobacterial marine sponge symbiont activates flagellar motility and inhibits biofilm formation. *Molecular Microbiology* 85:916-933

Zhu J, Mekalanos JJ. 2003. Quorum sensing-dependent biofilms enhance colonization in *Vibrio cholerae*. *Developmental Cell* 5:647-656

Zhu S, Kojima S, Homma M. 2013. Structure, gene regulation and environmental response of flagella in *Vibrio*. *Frontiers in Microbiology* 4:410
Table 1 (on next page)

Bacterial strains and plasmids used in this study
Bacterial strains or plasmids	Description	Source
A. salmonicida		
LF1238	Wild-type, isolated from Atlantic cod	(Hjerde et al., 2008)
ΔlitR	LF1238 containing an in-frame deletion in *litR*	(Bjelland et al., 2012)
ΔainS	LF1238 containing an in-frame deletion in *ainS*	(Hansen et al., 2015)
luxI	LF1238 containing an insertional disruption in *luxI*, Cm^r	(Hansen et al., 2015)
ΔainSluxI	ΔainS containing an insertional disruption in *luxI*, Cm^r	(Hansen et al., 2015)
LF1238-pVSV102	*A. salmonicida* LF1238 carrying pVSV102, Kn^r	(Khider, Willassen & Hansen, 2018)
ΔlitR-pVSV102	ΔlitR carrying pVSV102, Kn^r	(Khider, Willassen & Hansen, 2018)
ΔainS-pVSV102	ΔainS carrying pVSV102, Kn^r	This study
luxI-pVSV102	luxI carrying pVSV102, Kn^r	This study
ΔainSluxI-pVSV102	ΔainS luxI carrying pVSV102, Kn^r	This study
E. coli		
C118λpir	Helper strain containing pEVS104	(Dunn et al., 2006)
DH5αλpir	*E. coli* strain containing GFP plasmid pVSV102	(Dunn et al., 2006)
Plasmids		
pVSV102	pES213, constitutive GFP, Kn^r	(Dunn et al., 2006)
pEVS104	R6Korigin, RP4, oriT, trb tru and Kn^r	(Stabb & Ruby, 2002)
Table 2 (on next page)

AHL production in *A. salmonicida* LFI1238, ΔlitR, luxI, ΔainS and ΔainSluxI.

The values represent the mean of two biological replicates ± standard deviation.
Strains	3OC6 (nM)	C6 (nM)	3OC8 (nM)	3OC10 (nM)	3OHC10 (nM)	C8 (nM)
LFI1238	8403 ± 279.3	606 ± 3.5	366 ± 27	67 ± 5.9	161 ± 2.1	28 ± 3.0
ΔlitR	5173 ± 113.6	593 ± 82.3	330 ± 42.1	72 ± 4.7	11 ± 1.7	25 ± 3.4
luxI^-	NF	NF	NF	NF	105 ± 6.7	NF
ΔaiaS	8691 ± 0.0	709 ± 54.6	382 ± 42.5	89 ± 16.9	NF	30 ± 0.0
ΔaiaSluxI^-	NF	NF	NF	NF	NF	NF

- C4-HSL and 3OC4 were not detected in this analysis
- NF: not found
The effect of 3OC6-HSL and 3OHC10-HSL on biofilm formation of LFI1238, ΔlitR, luxI−, ΔainS and ΔainSluxI−.

(A) The strains (LFI1238, ΔlitR, luxI−, ΔainS and ΔainSluxI−) were allowed to form biofilm in SWT media supplemented with 1400 ng/ml 3OC6-HSL or 100 ng/ml 3OHC10-HSL at 8°C for 72 h. The biofilms were viewed in a Nikon Eclipse TS100 microscope at 10x magnification and photographed with Nikon DS-5Mc. (B) The formed biofilms were staining with crystal violet and quantified by measuring the absorbance at 590 nm. The error bars represent the standard deviation of biological triplicates. (*) represents p-value < 0.05.
Figure 2

Colony morphology of LFI1238, ΔlitR, luxI, ΔainS and ΔainSluxI.

The colonies of different strains were allowed to form on SWT plates at 8°C for 14 days. The colonies were viewed in a Zeiss Primo Vert microscope at 4x magnification and photographed with AxioCam ERc5s. Scale bars represent 0.5 mm.
Figure 3

Functional distribution of genes between *A. salmonicida* wild-type and *luxI* mutant at HCD and LCD that are $\geq 2 \times$ differentially expressed.
Motility of LFI1238, \textit{luxI}, \Delta\textit{ainS} and \Delta\textit{ainSluxI}.

(A) Motility zones on soft agar plates after 5 days on incubation at 8°C. (B) Measurement of motility zones (mm) of LFI1238, \textit{luxI}, \Delta\textit{ainS} and \Delta\textit{ainSluxI} after 5 days, error bars are standard deviation of biological triplicates. (C) SEM images for flagellum observation of LFI1238, \textit{luxI}, \Delta\textit{ainS} and \Delta\textit{ainSluxI} taken with Ziess Zigma at 2kV with an in-lens detector. Scale bars represent 1 mm.

Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.
The proposed model of QS system in A. salmonicida LFI1238.

The autoinducer synthases LuxI and AinS produce eight AHLs that are transported across the outer (OM) and inner membrane (IM) (Hansen et al., 2015). At high cell density these AHLs are accumulated to reach a critical concentration to be sensed by their receptors (AinR or LuxRs). The AinS-3OHC10-HSL binds AinR, which in turn induces a dephosphorylation cascade, resulting in LitR activation. The expressed LitR, activates the production of the AinS AHL (3OHC10) and the expression of downstream rpoQ gene. The increased RpoQ levels represses the syp operon leading to biofilm disruption and inhibition of colony rugosity. Moreover, LitR represses other matrix components, through a pathway that remain unknown (Khider, Willassen & Hansen, 2018). LitR together with LuxRs are proposed to regulate luxI. The expressed LuxI mediate the production of seven AHLs and represses the syp genes via RpoQ. Blue arrows and red lines with bar end indicate pathways of positive and negative regulation, respectively, and may consist of several steps. The thicker, empty arrows indicate the resulting phenotypes.
