Sources of phoneme errors in repetition: perseverative, neologistic and lesion patterns in jargon aphasia

PILKINGTON, Emma, KEIDEL, James, KENDRICK, Luke, SADDY, Doug, SAGE, Karen <http://orcid.org/0000-0002-7365-5177> and ROBSON, Holly

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/15564/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

PILKINGTON, Emma, KEIDEL, James, KENDRICK, Luke, SADDY, Doug, SAGE, Karen and ROBSON, Holly (2017). Sources of phoneme errors in repetition: perseverative, neologistic and lesion patterns in jargon aphasia. Frontiers in Human Neuroscience, 11, p. 225.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Sources of Phoneme Errors in Repetition: Perseverative,
Neologistic and Lesion Patterns in Jargon aphasia

Emma Pilkington¹, James Keidel², Luke Thomas Kendrick¹, James Douglas Saddy¹,
Karen Sage³*, Holly Robson¹

¹School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
²School of Psychology, University of Sussex, UK
³Department for Allied Health Professions and Centre for Health and Social Care/Sheffield
 Hallam University, Sheffield, UK

* Correspondence: Karen Sage: k.sage@shu.ac.uk

Keywords: Repetition, Aphasia, Neologisms, Perseveration, Voxel-Lesion Symptom
 Mappings, Jargon aphasia, (Min.5-Max. 8)

Word Count: 6089
Number of Figures: 5
Number of Tables: 6
Abstract
This study examined patterns of neologistic and perseverative errors during word repetition in fluent Jargon aphasia. The principal hypotheses accounting for Jargon production indicate that poor activation of a target stimulus leads to weakly activated target phoneme segments, which are outcompeted at the phonological encoding level. Voxel-lesion symptom mapping studies of word repetition errors suggest a breakdown in the translation from auditory-phonological analysis to motor activation. Behavioural analyses of repetition data were used to analyse the target relatedness (Phonological Overlap Index: POI) of neologistic errors and patterns of perseveration in 25 individuals with Jargon aphasia. Lesion-symptom analyses explored the relationship between neurological damage and jargon repetition in a group of 38 aphasia participants. Behavioural results showed that neologisms produced by 23 jargon individuals contained greater degrees of target lexico-phonological information than predicted by chance and that neologistic and perseverative production were closely associated. A significant relationship between jargon production and lesions to temporoparietal regions was identified. Region of interest regression analyses suggested that damage the posterior superior temporal gyrus and superior temporal sulcus in combination was best predictive of a Jargon aphasia profile. Taken together these results suggest that poor phonological encoding secondary to impairment in sensory-motor integration alongside impairments in self-monitoring result in jargon repetition. Insights for clinical management and future directions are discussed.

Introduction
Neologistic Jargon aphasia is an acquired language disorder characterised by severely distorted speech output. Production in Jargon aphasia is fluent but underspecified and contains numerous nonword errors, rendering it hard to comprehend. Prognosis in Jargon aphasia is poor, with reports of declining vocabulary size and mixed therapeutic outcomes (e.g., Bose, 2013; Eaton et al., 2011; Panzeri et al., 1987; Robson et al., 1998a; 1998b). Perseveration, repeated patterns of phonological distortion, frequently co-occurs with Jargon aphasia and is particularly evident during elicitation tasks such as serial repetition.

Neurobiologically, the repetition of a word requires the transformation of sensory information into motor activation. Traditional neurological accounts of impaired repetition posit damage to the white matter tracts—particularly the arcuate fasciculus—connecting posterior and anterior language areas as the source of breakdown (Geschwind, 1965). Recent neuroimaging and stimulation work has expanded this dorsal network to include cortical regions; namely the inferior supramarginal gyrus (SMG) and posterior superior temporal gyrus (pSTG) (Anderson et al., 1999; Quigg & Fountain, 1999) including area Spt at the boundary of the inferior parietal and superior temporal lobes, which includes portions of the planum temporale (Hickok et al., 2003; 2009; Hickok & Poeppel, 2004). In repetition, the pSTG plays a perceptual role analysing phonetic and phonemic information in the speech stream (Buchsbaum et al., 2001; Deschamps & Tremblay, 2014; McGgettigan et al., 2010). This phonological information is transformed into motor responses for articulatory processes, a function proposed to be supported by area Spt (Buchsbaum et al., 2011; Hickok, 2009; Hickok et al., 2011; Hickok & Poeppel, 2004; Warren et al., 2005). Area Spt has direct structural connectivity with motor and frontal regions, including the pars opercularis and premotor cortex which are associated with the articulatory components of speech production (Basilakos et al., 2015; Isenberg et al., 2012; Itabashi et al., 2016). The SMG is also proposed to support encoding for production (Mesgarani et al., 2014; Ravizza et al., 2004; Trébuchon et al., 2013) but is more prominently associated with auditory short-term memory/working.
memory functions (Henson et al., 2000; Paulesu et al., 1993) which support the temporary
maintenance of phonological information during the repetition process.

Convergent with the neurobiological account, cognitive neuropsychological and
psycholinguistic models highlight a phonological pathway for repetition. In addition, many
models allow a further repetition route via a semantic pathway (Dell et al., 2007; Hanley et
al., 2004; Hanley & Kay, 1997; Hillis & Caramazza, 1991; McCarthy & Warrington, 1984;
Nozari et al., 2010). Word repetition is commonly impaired in aphasia, and has classically
been used as a diagnostic screening test (Kaplan, 1983). However, repetition errors do not
occur in all aphasic conditions. For example, individuals with isolated semantic impairment
such as those with transcortical sensory aphasia or semantic dementia have preserved
repetition abilities (Boatman et al., 2000; Hodges et al., 2008; Jefferies & Lambon Ralph,
2006). Where repetition errors do occur they tend to be phonological in nature, with a
comparative scarcity of purely semantic errors (Hanley et al., 2002; Martin, 1996; Martin et
al., 1994). These behavioural patterns are consistent with a neurobiological mechanism
predominantly engaging sensory-motor integration functions with relatively less weight on
semantic processes (Moritz-Gasser & Duffau, 2013). Nonwords are one form of phonological
repetition error which are particularly frequent in individuals with Jargon aphasia. Nonwords
can range from mild phonemic substitutions of acoustically or articulatory similar phonemes
(e.g. village - /vɪltɪ/), typically referred to as phonological paraphasias, to severe distortions
which bear little resemblance to target phonology (e.g. rocket - /ræætel/), typically referred
to as neologisms. Perseverative errors, the repeated intrusion of phoneme strings or syllabic
patterns, have been noted to occur alongside neologicistic production in Jargon aphasia
(Buckingham et al., 1978; Moses et al., 2004). A fourth type of error commonly observed is
referred to as a formal error, which occurs when an alteration in the phonological structure of
a word results in a real word error (e.g. cot - /koʊt/). There has been considerable research
into the underlying causes of nonword and perseverative errors in repetition and other
production modalities. Much evidence points to a single impairment source for paraphasias,
neologisms, and perseverative errors, with different error types reflecting a range of severity
(Buckingham & Buckingham, 2011; Dell et al., 1997; Martin & Dell, 2007; Olson et al.,
2007; 2015; Schwartz et al., 2004). The predominant hypothesis indicates a disruption in
lexical and phonological processes, during which weak and aberrantly spreading activation
can result in non-target phonology being selected for production. Nonword production is
modulated by word length and word frequency, suggestive of a single lexico-phonological
source generating errors with a range of severity (Nozari et al., 2010; Olson et al., 2007;
2015). Nonword accuracy range adheres to a normal distribution, thereby suggesting that a
single underlying source generates errors of varying severity (Olson et al., 2007). An
alternative hypothesis is that paraphasic and neologicistic nonwords are independent error
types whereby neologisms are produced when lexical retrieval fails, and a random or
idiosyncratic phoneme string is generated for output (Buckingham, 1990; Butterworth, 1979;
Eaton et al., 2010; Moses et al., 2004). Such production would give rise to two separate error
populations; one with very limited target relatedness and the other with high target overlap,
thereby conforming to a bimodal distribution.

The source of perseveration errors is also controversial. The predominant hypothesis states
that weak target activation or phonological encoding allows recently used, and therefore the
most active representations, to override the current target (Ackerman & Ellis, 2007;
Buckingham & Buckingham, 2011; Eaton et al., 2010; Hirsh, 1998; Moses et al., 2007a). As
such, perseverative, paraphasic and neologicistic errors are hypothesised to have a common
source. The co-occurrence of perseverative and non-perseverative nonword errors supports
this hypothesis (Martin & Dell, 2007; Moses et al., 2007b). An alternative hypothesis posits that errors arise from disruption of inhibitory processes, and a failure of post-activation suppression (Papagno & Basso, 1996; Sandson & Albert, 1984; Santo Pietro & Rigrodsky, 1986; Stark, 2007; Yamadori, 1981). Concurrent inhibition and encoding deficits have been identified in some dysgraphic individuals indicating that these mechanisms are not mutually exclusive (Fischer-Baum & Rapp, 2012). However, it is unclear whether such inhibitory mechanisms are a specific feature of the phonological encoding system or a domain-general cognitive function, and whether different mechanisms operate more strongly in different subtypes of aphasia. A significant challenge in distinguishing between nonword error and perseveration hypotheses within the neologistic Jargon aphasia population comes from the relative rarity of the condition, which has resulted in small scale case-series investigations or single case studies. This results in difficulty applying psycholinguistic patterns to the wider Jargon aphasia population.

Despite this, evidence from lesion-symptom mapping is currently consistent with the proposed impairment in phonological encoding put forward by computational modelling and neuropsychological investigations. Repetition errors in chronic aphasia have been associated with lesions affecting the left inferior parietal lobe (Fridriksson et al., 2010), the left posterior temporo-parietal cortex (Baldo et al., 2012), and area Spt (Rogalsky et al., 2015) similarly interpreted as a disruption to sensory-motor integration (including phonological encoding). However, lesion-symptom mapping, modelling and neuropsychological evidence is not currently directly comparable. Lesion-symptom mapping repetition studies currently contain few or no individuals with jargon-type repetition impairments, and predominantly include those with conduction-like repetition deficits (Baldo et al., 2012; Rogalsky et al., 2015), reducing the applicability of these results to the jargon population. As such the possibility remains that more “peripheral” aspects of the repetition system, such as perceptual auditory-phonological or articulatory processing, may contribute to jargon repetition. An impairment in perceptual analysis is consistent with the majority of individuals with Jargon aphasia also displaying Wernicke’s-type aphasia associated with auditory-phonological processing impairments (Robson et al., 2012; 2013; 2014) and the association of neologistic production and impairments in self-monitoring (Kinsbourne & Warrington, 1963; Maher et al., 1994; Marshall et al., 1998). Perceptual and articulatory processes are also not captured in computational modelling which focuses on core linguistic components of semantic, lexical and phonological processing. A further possibility is that no single process or neural region results in the deficit. Rather, jargon repetition may occur following damage to multiple components of the repetition network, resulting in the severe distortions observed in the condition. Investigating the lesion profiles associated with nonword and perseverative errors in a large cohort is required to explore these hypotheses.

In the current study we use a combination of psycholinguistic and lesion-symptom mapping analyses to explore the cognitive and neurobiological underpinnings of jargon repetition deficits. The target relatedness and distribution of nonword errors are analysed to distinguish the default generation and phonological encoding hypotheses. Patterns of perseveration are examined, and the co-occurrence of perseveration and non-perseveration errors is explored to determine whether these error types share a common source. Whole brain and region of interest lesion-symptom mapping analyses are used to explore the contribution of the wider dorsal repetition network to neologistic Jargon aphasia.

Method
Ethical approval for the current study was given by the Multicenter NHS Research Ethics Committee, the NHS East of England Research Ethics Committee and the University of Reading School of Psychology Research Ethics Committee.

Participants

We report data from 46 individuals with aphasia (female n=15), mean age 69.7 years (σ = 12.24; range = 31-93), mean time post onset 35 months (σ = 47.63; range = 5-204), see Table 1. Aphasia profile was assessed with the Boston Diagnostic Aphasia Examination – Short Form (Goodglass et al., 2001). Percentile scores for auditory comprehension, repetition (word and sentence) and fluency subtests are presented in Table 1. Twenty individuals presented with Wernicke’s aphasia, four with conduction aphasia, four with anomic aphasia, and two with transcortical sensory aphasia. In the nonfluent categories, four participants were classified as Broca’s type aphasia, with one individual classified as transcortical motor aphasia. Four individuals were classified as mixed aphasic, and the remaining six were unable to be classified as the necessary BDAE data were unavailable. Different individuals were entered into behavioural and neuroimaging analyses based on analysis criteria discussed below.

Neuroimaging

Neuroimaging data were available for 38 participants (see Table 1). 3T T1w research MRI scans were collected for 27 individuals. Scans were collected across different studies and, as a result, protocols varied. Clinical imaging scans were available for the remaining 11 participants. Only scans which were carried out after 24 hours post stroke onset were included in the analysis to avoid significant underestimation of the extent of the stroke. Lesions were manually delineated by lesion drawing in native space. The native lesion masks were used for cost-function masking during normalisation. Normalisation was implemented in the SPM Clinical toolbox (Rorden et al., 2012). Normalisation parameters were applied to the native lesion masks which were subsequently manually checked for normalisation accuracy. Lesion overlap maps for the whole aphasia group and for the Jargon aphasia subgroup are presented in Figure 1A & 1B. Lesions were observed throughout the entire left MCA territory in the aphasia group as a whole with peak lesion overlap in the temporoparietal junction including the superior temporal gyrus and sulcus and supramarginal gyrus, in both the whole group and Jargon subgroup.

Table 1: Demographic, imaging and BDAE information

Pt code	Age (years)	Time post stroke (months)	Gender	Imaging	Comprehension	Fluency	Repetition			
1	55	24	M	3T	n/a	n/a	n/a			
2	70	96	M	3T	n/a	n/a	n/a			
3	80	8	F	Clinical CT	30	n/a	n/a			
4	54	145	F	n/a	38	n/a	45			
5	56	22	M	3T	77	n/a	15			
6	75	132	F	3T	58	7	60			
7	63	144	M	3T	48	13	40			
8	31	15	M	n/a	48	20	20			
9	68	108	M	3T	87	30	65			
---	---	---	---	---	---	---	---	---	---	---
10	81	8	M	Clinical CT	15	30	25			
11	59	14	M	3T	10	38	13			
12	68	24	M	3T	9	42	7			
13	65	108	F	3T	50	48	45			
14	74	6	M	n/a	12	51	13			
15	69	15	F	n/a	33	55	10			
16	72	204	M	3T	100	62	60			
17	73	6	M	3T	3	63	<1			
18	62	84	M	3T	n/a	63	n/a			
19	78	72	F	3T	5	68	10			
20	53	7	M	n/a	15	68	<1			
21	64	6	M	n/a	10	68	15			
22	66	10	M	3T	5	70	25			
23	49	24	F	3T	70	70	60			
24	81	7	F	Clinical CT	18	75	15			
25	85	9	F	n/a	<1	75	<1			
26	86	13	M	3T	10	80	7.5			
27	88	9	M	Clinical MRI	42	80	65			
28	73	13	F	3T	10	83	10			
29	60	5	M	3T	7	84	8			
30	77	24	M	3T	40	90	25			
31	71	72	M	3T	7	90	1			
32	70	42	M	3T	45	100	28			
33	59	6	M	3T	17	100	20			
34	75	12	M	Clinical MRI	28	100	5			
35	78	9	F	3T	73	100	80			
36	83	9	F	Clinical CT	48	100	60			
37	93	9	F	Clinical CT	67	100	80			
38	68	9	M	Clinical CT	55	100	50			
39	80	9	F	n/a	25	100	20			
40	71	9	M	Clinical MRI	50	100	80			
41	82	9	M	Clinical MRI	64	100	30			
42	76	14	M	3T	13	100	1			
43	74	9	M	3T	57	100	50			
44	57	9	M	3T	15	100	10			
45	86	13	F	Clinical CT	3	100	15			
46	49	5	M	3T	67	100	60			
Repetition tasks
All participants completed an 80 item word repetition task. Sixteen participants completed the word repetition test from the PALPA (Psycholinguistic Assessment of Language Processing in Aphasia, subtest 9: Kay et al., 1996) and 30 participants completed an in-house 80 item repetition test. The 80 items were administered either continuously or in shorter blocks if a participant was perceived to require a break. The experimenter provided repetitions when requested.

Recording and error coding
All response data were transcribed into broad phonemic transcription. When multiple responses were given per item, the final stressed response was accepted. All transcriptions were then converted into DISC symbols (1:1 phoneme: symbol correspondence, e.g. IPA = [i:], DISC = [i]); to enable automated data extraction via Microsoft excel and MATLAB. Responses were categorised following criteria used by Moses, Nickels, and Sheard (2004). Non-lexical responses were classified as nonwords. Lexical errors were labelled according to their target relationship, and were classed as either formal (either identical first phoneme or fifty percent phonology overlap with target), semantic (semantically related to target), mixed (semantically and phonologically related to target word form), unrelated (real word error that did not share an obvious relationship to target), no response (individual indicated they could not provide an answer or did not respond); or circumlocution (individual provides information about the item by talking around it but not naming it).

Analysis summary
Four different analyses were undertaken to explore behavioural patterns in jargon production. Phonological accuracy of nonwords was explored using the Phonological Overlap Index measure (POI: Schwartz et al., 2004), and nonword accuracy distributions were examined

Figure 1: Lesion Overlap Maps and VLSM Results
using the Kolmogorov-Smirnov test. Perseverative patterns were analysed using the Intrusion Perseveration Probability (IPP) measure, adapted from Cohen and Dehaene (1998), and the relationship between perseverative and non-perseverative nonwords was explored, using a correlation analysis. Voxel-lesion symptom mapping and follow-up region-of-interest (ROI) analyses were used to investigate the relationship between jargon production and lesion profiles.

Phonological accuracy in neologistic Jargon
The degree to which neologistic errors are produced with reference to target phonology was investigated using the POI measure (Bose, 2013; Schwartz et al., 2004). The POI for each non-word repetition response was calculated using the formula:

\[
POI = \frac{(n \text{ phonemes shared between target and response}) \times 2}{(n \text{ phonemes in target} + n \text{ phonemes in response})}
\]

A value of 0 indicates no overlap with target phonology and a value of 1 indicates complete overlap between the target and response. Non-word responses were then assigned to a paraphasic (>0.51 POI) or neologism (≤0.5 POI) error category (Schwartz et al., 2004). The target relatedness of neologistic errors was compared to a chance rate derived from null distributions. In each null distribution, all non-word errors from all participants were randomly reassigned to a new target and a new POI calculated. To statistically compare individual and chance accuracy an equal number of resampled responses as neologistic errors were randomly extracted for each participant. The observed POI mean was compared against each resampled POI mean to derive a level of significance.

Nonword accuracy distributions
The accuracy (POI) distribution of both nonword error types (paraphasias and neologisms) was examined using the one sample Kolmogorov-Smirnov (KS) test of normality, in order to examine whether distributions adhered to a normal curve and conformed to the single source hypothesis.

Perseveration
The Intrusion Perseveration Probability (IPP) measure, adapted from Cohen and Dehaene (1998), calculates how often a phonological error occurs in each of the previous ten responses. To calculate it, every intruded/erroneous phoneme was identified. Then, how often each of these intruded phonemes was present (matched) in each of the previous ten responses was measured. The probability was calculated by dividing the number of matched phonemes at each lag by the total number of intruded phonemes. The average IPP across the ten lags was calculated so as to assign each individual with a perseveration value, representative of persistent patterns of phoneme intrusions. To account for breaks in administration, data were split into blocks of twenty responses, and only responses eleven to twenty were analysed in relation to the previous ten responses. This method provided 40 trials per individual for analysis. Both correct and incorrect responses were included in the analysis. Six individuals (4, 12, 26, 41, 43, 44) were excluded from this analysis because their data could not be split into blocks of twenty.

Chance perseveration
To interpret the prevalence of perseveration within the Jargon aphasia group, observed IPP values were compared against a chance rate. In the current study, all responses from all
participants were randomly reassigned to a new target to create a null distribution, and forty trials were randomly selected to undergo IPP analysis. This process was repeated 1000 times. The observed IPP score was compared against each resampled IPP score to derive a level of significance.

Relationship between perseverative and non-perseverative nonwords

For individuals who presented with fluent Jargon aphasia, the number of perseverative nonword errors was calculated using criteria from Martin and Dell (2007). A nonword was identified as a perseveration when a phoneme error was present in the previous response. Otherwise, the nonword was labelled as a non-perseveration. To accommodate administration breaks, the initial response in each subset was discounted. The association between perseverative and non-perseverative nonwords was examined using Spearman’s rank correlation.

Voxel-lesion symptom mapping

All participants with an available clinical or 3T T1w image were included in an exploratory voxel-lesion symptom mapping analysis implemented in the vlsm2 matlab toolbox (version 2.3; Bates, et al., 2003). This analysis uses a mass univariate general linear model approach to determine the relationship between the presence of lesion and behaviour at each voxel while accounting for total lesion volume. The analysis was constrained to the left hemisphere grey and white matter regions. Results were obtained at thresholds of 0.05 and 0.01 and compared to those obtained from 1000 permutations/null distributions. The VLSM analysis was extended using an ROI analysis. VLSM clusters significant at p<0.05 and greater than 200 voxels were identified and the percentage lesion overlap with each cluster was extracted in each participant. ROI data were used to identify the consistency of lesion-behaviour associations and the strongest predictors of jargon repetition.

Results

Overall accuracy and error patterns

All but 4 individuals (participants 7; 38; 40; 46) displayed a repetition impairment ($\bar{x} = 35 \sigma = 23.24$, range = 1-73; see Table 2). Individuals with anomic aphasia were the most accurate as a group ($\bar{x} = 54; \sigma = 28.62$), followed by those with Broca’s aphasia ($\bar{x} = 49.7; \sigma = 19.40$), then conduction aphasia ($\bar{x} = 43.3; \sigma = 25.16$). Those with Wernicke’s aphasia were the least accurate as a group ($\bar{x} = 21.45; \sigma = 16.30$). Across all participants, the predominant error types were nonwords (1288, 35%) and formal errors (304, 8%). The remaining four error categories (unrelated, semantic, circumlocution, no response) contributed just over 7% of the overall response rate. POI analysis indicated roughly equal numbers of neologistic and paraphasic errors (medians; paraphasias = 14; neologisms = 8.5; Mann Whitney U = 875.5; p = .153). Participants who presented with fluent speech and produced 5 or more neologistic errors during repetition were considered to present with neologistic Jargon aphasia; 25 participants met these criteria.
Pt code	Test	Correct	Paraphasia	Neologism	Formal	Unrelated	No response	Other
17	Palpa	1	8	71	0	0	0	1
44	DV	3	12	59	3	3	0	0
45	DV	4	20	38	8	8	1	2
20	Palpa	6	18	44	4	6	2	2
21	Palpa	6	17	51	1	4	1	2
19	Palpa	8	25	30	3	6	7	0
22	Palpa	8	38	22	7	3	2	0
26	Palpa	8	19	33	9	11	0	1
12	DV	10	21	28	12	9	0	1
28	Palpa	16	18	32	9	1	2	2
11	Palpa	17	19	19	7	3	15	2
31	DV	19	8	1	7	1	43	1
42	DV	19	15	23	13	9	0	1
41	DV	20	30	16	11	2	0	0
25	Palpa	21	34	17	5	1	0	0
34	DV	23	10	30	13	4	0	0
10	DV	25	16	18	16	4	0	0
30	Palpa	25	26	17	6	4	0	0
29	Palpa	26	9	14	6	6	18	0
5	DV	33	30	6	6	4	0	0
9	DV	36	25	9	7	3	0	0
6	DV	37	14	4	21	0	3	0
14	Palpa	37	21	9	7	3	1	1
15	DV	39	15	9	16	1	0	0
8	DV	40	6	0	3	2	29	1
32	Palpa	40	21	8	6	3	1	1
43	DV	40	14	11	11	1	1	0
3	Palpa	42	19	6	10	2	0	0
33	Palpa	42	14	5	2	1	15	0
39	DV	49	17	1	11	1	0	1
24	Palpa	50	12	13	3	0	0	0
27	DV	60	8	0	11	1	0	0
1	DV	61	8	2	8	0	0	0
4	DV	62	11	0	6	1	0	0
2	DV	66	5	1	6	0	0	1
13	DV	67	7	0	4	1	1	2
Ordered by fewest correct responses

Phonemic content of neologisms

Chance POI was calculated as 0.18 (± 0.01) independent of the number of samples extracted from each null distribution (see methods). The mean POI of neologisms produced by 23 Jargon individuals was greater than the chance prediction (p ≤ .007; see Table 3). Two individuals (33, 44) could not be differentiated from chance (p ≥ .066; see Figure 2).

Nonword accuracy distributions

The POI of all nonwords (paraphasias and neologisms) produced by 20 neologistic individuals adhered to a normal distribution (p ≥ .067). Nonword POI distributions exhibited by individuals 41, 30, 22, 12, and 44, violated the normal distribution (0.124 ≤ KS ≤ 0.211; p ≤ .05; see Table 3). Individual 12 produced a bimodal distribution and individual 44 exhibited a left skew (see supplementary materials). Histograms for these five individuals are presented in supplementary materials.

Table 3: Test statistics for Phonological Overlap Index (POI) and distribution analyses

Pt code	Mean POI	p value	KS stat
33	0.29	0.066	0.148
3	0.39	≤0.001	0.146
32	0.44	≤0.001	0.154
14	0.34	≤0.001	0.154
15	0.39	≤0.001	0.127
43	0.32	0.007	0.149
24	0.42	≤0.001	0.18
29	0.37	≤0.001	0.16
41	0.35	≤0.001	0.211***
25	0.34	≤0.001	0.109
30	0.35	≤0.001	0.163**
	Neologism POI	Chance POI	Statistic
---	---------------	------------	------------
10	0.32	0.102	
11	0.33	≤0.001	0.12
22	0.36	≤0.001	0.124*
42	0.35	≤0.001	0.121
12	0.27	0.003	0.212***
19	0.35	≤0.001	0.12
34	0.26	0.006	0.096
28	0.32	≤0.001	0.09
26	0.30	≤0.001	0.09
45	0.26	0.004	0.11
20	0.29	≤0.001	0.093
21	0.27	≤0.001	0.072
44	0.20	0.149	0.159***

Note. * = p ≤ .05; ** = p ≤ .01; *** = p ≤ .001.

*Kolmogorov-Smirnov test statistic

Figure 2: Mean neologism Phonological Overlap Index (POI) score per Jargon individual (squares), and the mean chance POI estimate (red line). Error bars show 95% confidence intervals.

Perseveration results
The IPP measure quantifies how frequently intruded phonemes occur over the previous ten responses. This analysis was applied to individuals with fluent Jargon aphasia for whom suitable data were available (n=25). The perseveration probability scores observed across lags one to ten were averaged to derive a single IPP (perseveration) score. Individual IPP scores were compared against the null chance distributions. Thirteen individuals (3, 28, 39, 22, 20, 25, 34, 30, 42, 45, 19, 21, 17) produced perseveration at significantly greater rates.
than the chance prediction ($p \leq 0.039$; see Table 4). The remaining twelve individuals did not perseverate at above the chance prediction ($p \geq 0.054$; see Figure 3).

Table 4: Test statistics for Intrusion Perseveration Probability (IPP) analysis.

Pt code	IPP mean	p value
31	0.01	1
27	0.13	0.963
36	0.13	0.949
10	0.14	0.905
15	0.16	0.527
14	0.17	0.467
33	0.17	0.395
37	0.17	0.337
29	0.18	0.269
32	0.18	0.219
11	0.19	0.068
24	0.20	0.054
3	0.20	0.039
28	0.21	0.029
39	0.21	0.028
22	0.21	0.007
20	0.24	≤ 0.001
25	0.24	≤ 0.001
34	0.25	≤ 0.001
30	0.26	≤ 0.001
42	0.28	≤ 0.001
45	0.28	≤ 0.001
19	0.29	≤ 0.001
21	0.29	≤ 0.001
17	0.57	≤ 0.001
Figure 3: Mean Intrusion Perseveration Probability (IPP) score per Jargon individual (square), and IPP chance estimate (red line). Error bars show 95% confidence intervals.

Relationship between perseverative and non-perseverative nonwords

Nonword errors were coded as a perseveration if an intruded phoneme was present in the previous response. Remaining nonwords were coded as non-perseverative errors. A correlation analysis revealed a significant positive relationship between rates of perseverative and non-perseverative nonwords ($\rho = 0.557, p = .001$; see Figure 4). The size of this effect increased from moderate to large when the two outlying individuals (17 and 44) were removed ($\rho = 0.749, p \leq .001$).

Figure 4: Scatter plot showing the relationship between numbers of perseverative and non-perseverative nonwords.

Lesion-Symptom mapping

The Jargon aphasia group were combined with a wider aphasia group for whom neuroimaging data were available to explore the relationship between lesion and jargon repetition. All but four participants (7; 38; 40; 46) in the wider aphasia group displayed a degree of repetition impairment; however, these impairments were only considered Jargon in
25 participants. As well as the significant relationship between perseverative and non-perseverative errors, Pearson correlation analyses displayed strong to medium relationships between overall repetition accuracy, number of neologistic errors, number of paraphasic errors and total number of intruded phonemes, see Table 5. Principal component analysis was used to derive a summary score representing number of neologisms, paraphasias and intruded phonemes (jargon score) which was entered into the VLSM analysis as the continuous dependent variable.

VLSM analysis identified lesion clusters associated with the jargon score in the posterior temporal and inferior parietal lobe, Figure 1C. These regions included the grey and white matter of the posterior superior temporal gyrus (STG), including areas Spt, the posterior superior temporal sulcus (STS), grey matter of the inferior parietal lobe (IPL) including the supramarginal gyrus (SMG) and white matter at the temporal-parietal borderer. These clusters remained significant at $p = .01$, (see Table 5), however did not survive permutation correction.

Table 5: Correlations coefficients displaying medium-strong relationships between jargon score components

Repetition Accuracy	Number Neologisms	Number Paraphasias	Total Intruded Phonemes
r value	-0.799	-0.709	-0.671
p value	<0.001	<0.001	<0.001

Number Neologisms	r value	0.363	0.851
p value	.023	<0.001	

Number Paraphasias	r value	0.324
p value	.044	

Table 6: Peak VLSM results, threshold ≤0.01

Region	MNI Coordinate
Posterior Superior Temporal Gyrus	-42 -50 15
	-50 -36 17
	-58 -57 16
Superior Temporal/Inferior Parietal Lobe	-33 -37 15
Supramarginal Gyrus	-50 -46 33
Significant clusters occurred in regions of high lesion overlap, (see Figure 1B). Therefore, follow-up ROI analyses were used to explore consistency of the VLSM results across the aphasia group. Four neuroanatomically constrained clusters were identified from the VLSM analyses: 1) White matter of the STG and IPL; 2) STS; 3) Grey matter of IPL including SMG and 4) Grey matter of the STG, (see Figure 5). The number of lesion voxels in each ROI was identified for each participant and participants were separated into low overlap (<30% ROI voxels lesioned) or high overlap (>30% ROI voxels lesioned). T-tests were used to compare the jargon score between the high and low overlap groups in each ROI. There was no significant difference in jargon score for clusters 1 and 2. There was a significant difference in jargon scores between the high and low overlap groups in cluster 3, IPL (t(36) = 2.0, p = .049), and a borderline significant difference in cluster 4, STG grey matter (t(36) = 1.77, p = .085), (see Figure 5).

Figure 5: Colour areas display four regions of interest derived from VLSM clusters. Graphs indicate jargon score for low and high lesion overlap group in each ROI. Ceiling performance on jargon score = -1.07. * = significant group difference; (*) = borderline significant group difference. WM = white matter; GM = grey matter; STG = superior temporal gyrus; IPL = inferior parietal lobe; STS = superior temporal sulcus.

A regression analysis was performed to investigate whether a combination of lesions was most predictive of jargon production. The centred percentage lesion overlap of each ROI and the two-way interaction between ROIs were added as predictor variables alongside age, time post onset at testing and total lesion volume into a linear regression; jargon score was the dependent variable. Interaction terms were calculated by multiplying percentage of lesion in each cluster e.g. percentage overlap in cluster 1 x percentage overlap in cluster 2. Predictors in the model displayed sufficient collinearity tolerance; the minimum tolerance value outside interaction predictors was 0.2. The regression returned a borderline significant model (F(12,25) = 2.05, adjusted R² = 0.253, p = .063). Time post onset was a significant predictor (t = -2.3, p = .03) indicating that the greater time post onset the less jargon production. Lesions in isolated clusters did not significantly contribute to the model, however the interaction between cluster 2 (STS GM) and cluster 4 (STG GM) was a significant predictor (t = 2.3, p = .03) indicating that jargon was more severe when lesions affected both the STS and STG.
Discussion

The aim of the current study was to explore, side by side, the behavioural and neurological patterns associated with repetition deficits in Jargon aphasia. Behavioural analyses identified the target relatedness of phonological distortions, and explored the effect of phoneme perseveration in Jargon repetition. Correlation analyses exposed the relationship between perseverative and non-perseverative errors. Lesion analyses were used to identify neurological regions and patterns of damage associated with jargon repetition. Results support the hypothesis that weak activation of target phonology results in neologistic production. Individuals with increasingly severe production deficits showed greater degrees of perseveration, and there was a clear association between the occurrence of perseverative and non-perseverative nonwords, suggesting that both error types arise from a common mechanism. Lesion analyses converge with this interpretation and, additionally, implicate a contribution of impairments in analysis and maintenance of auditory information to jargon repetition.

Psycholinguistic models account for nonword errors in Jargon aphasia through a breakdown in phonological encoding, whereby activation is not effectively transferred from the lexical to the phonological level (Dell, 2014; Marshall, 2006; Olson et al., 2007; 2015; Schwartz et al., 2004). Therefore, phonological and neologistic errors are accounted for by the same mechanism with differing degrees of breakdown severity. However, some evidence has pointed towards a random or default phonological activation pattern for some individuals, hypothesised to arise when lexical retrieval fails, (Butterworth, 1979; Eaton et al., 2010; Moses et al., 2004). Phonological Overlap Index (POI) analysis of the neologisms produced by the 25 participants with neologistic Jargon aphasia in the current study is largely consistent with the phonological encoding hypothesis and does not provide direct support for the default phonology hypothesis. The phonological overlap between neologisms and targets, although by definition low, was significantly above chance for 23 of the 25 neologistic Jargon aphasia participants, indicating a post-lexical retrieval breakdown. However, a large distribution and only one of these participants (individual 12) displayed evidence of a separate cluster of nonword errors with limited target overlap occurring alongside errors with greater target relatedness would provide evidence for an additional lexical retrieval failure and default phonological production source. To investigate this hypothesis, the POI distribution across all nonword errors was analysed. Only five individuals violated the normal distribution and only one of these participants (individual 12) displayed evidence of a skewed POI distribution and neologistic accuracy distribution analyses. For example, individual 44 exhibited a left skew indicating that most of their nonwords had very limited target overlap, and the POI analysis identified the accuracy of individual 44 as at chance. However, the correlation analysis indicated that individual 44 was highly perseverative, thus it is probable that their skewed POI distribution and neologistic accuracy is contaminated by perseveration.

A perseveration error is thought to occur when poor activation of target phonology allows recently used segments to compete and intrude. Therefore, perseveration errors are proposed to share a source with other nonword jargon errors (Buckingham & Buckingham, 2011; Martin & Dell, 2007). In the current study 25 individuals with Jargon aphasia had suitable data for IPP perseveration analysis. Thirteen of these individuals displayed perseveration at a significantly greater level than the chance prediction, demonstrating that perseveration was a common but not universal feature of Jargon aphasia. Correlation analysis confirmed to
previous data (e.g. Martin & Dell, 2007) showing that nonword perseverative and non-
perseverative error rates are strongly associated, indicating a common error source. Taken
together, these results illustrate that perseverative errors occur at moderate to severe levels of
phonological encoding impairment. One interpretation is that when phonological encoding is
sufficiently impaired, a dearth of target activation results in the availability of only previously
active phonological units. These results do not, however, preclude a breakdown of within-
network inhibitory processes contributing to perseverative error production. Indeed, if the
existence of both excitatory and inhibitory processes are presumed to occur within a
cognitive system, it would be highly unlikely that one is impaired and the other spared.

Failure of inhibition as a dominant impairment is hypothesised to result in a qualitatively
different error pattern than impairments in activating new target information, with consistent
perseverative responses occurring without a correspondingly high level of non-perseverative
nonword errors (Fischer-Baum & Rapp, 2012). Two individuals in the current study
(participants 17 and 44) displayed this pattern, producing extremely high proportions of
ersors classified as perseverative with a comparatively low number of errors classified as
non-perseverative nonword responses. This may indicate a greater contribution of inhibitory
breakdown in these two individuals. Again, however, caution must be taken in this
interpretation. The perseverative errors produced by these two individuals were blended
perseverations in which responses contained both perseverated phonemes and non-
perseverated phonemes. Non-perseverated phonemes were, for the most part, not related to
the target item, suggestive of additional phonological encoding breakdown. Extreme
breakdown in phonological encoding would cause consistent failure of target phonology
activation and an over-reliance on previously encoded phonology resulting in the majority of
responses being identified as perseverative. This would also account for the error patterns
produced by participants 17 and 44. Further testing of dissociating individuals would provide
useful information on the nature and consistency of production patterns, and is crucial for
better understanding Jargon aphasia and the heterogeneity within the population (Nickels et
al., 2011).

Voxel-lesion symptom mapping (VLSM) analyses were used to explore the relationship
between lesion distribution and a sensitive measure of jargon repetition. Results parallel those
obtained in previous VLSM studies and revealed a significant relationship between jargon
production and lesion in the posterior temporo-parietal region. Four significant clusters were
identified in the grey matter of the posterior superior temporal gyrus (pSTG), supramarginal
gyrus (SMG) and superior temporal sulcus (pSTS) and the white matter at the border of the
superior temporal and inferior parietal lobes. These regions are commonly observed to
activate during functional imaging studies of speech production and repetition, although the
precise roles remain under discussion. The pSTG region identified included area Spt at the
border between the temporal and parietal lobe. Area Spt is proposed to be a hub region
supporting the translation of auditory into motor information (Buchsbaum et al., 2011;
Hickok et al., 2011; Hickok & Poeppel, 2004; Warren et al., 2005). These posterior auditory
and phonological processes are thought to interact with frontal motor and articulatory
processes via dorsal stream white matter tracts associated with the regions of white matter
lesion identified in the current study. This finding converges with the phonological encoding
impairment interpretation from the current and previous psycholinguistic analyses in that, in
the context of repetition, phonological encoding requires the translation of auditory
information into phonological patterns that can interface with articulatory processes. The
SMG and pSTS regions identified in the VLSM analysis are associated with other processes.
The SMG is frequently found to be active during tasks which require the temporary storage
of phonological information, leading to the interpretation of this area as a phonological short
memory store. An impairment in phonological short term memory is likely to
exacerbate difficulties with phonological encoding through a difficulty in maintaining
phonological strings during production and, indeed, those with a greater degree of lesion in
the SMG region displayed significantly more severe jargon repetition (Figure 5). The pSTS
may play a role in maintaining auditory targets during repetition (Markiewicz & Bohland,
2016; Tourville et al., 2008). This converges with traditional hypotheses which implicate an
impairment in self-monitoring in Jargon aphasia (Kinsbourne & Warrington, 1963; Maher et
al., 1994); difficulties in holding auditory targets may result in limited information with
which to monitor production. The VLSM analysis did not identify regions associated with
articulatory processes, therefore indicating limited involvement of articulatory impairment in
jargon repetition.

ROI analyses were used to explore whether combinations of lesions across the posterior
temporal-parietal region were predictive of jargon repetition. Regression analysis found that
combined lesions to the STG and STS region were associated with jargon production. This
indicates that jargon is more likely to occur when impairments in phonological encoding and
self-monitoring occur in combination. The STG and STS clusters were proximal and
consequently there was a medium correlation between percentage lesion overlap in these
clusters across the group (r = 0.54). However, over 1/3 of the group displayed high lesion
overlap in the STG or STS but not in the other region, therefore this pattern is not fully
accounted for by a lesion to a single region.

The VLSM analyses in the current study converge with previous lesion studies undertaken
with a smaller proportion of severely impaired individuals. Therefore, these results indicate
that jargon repetition may be a more severe manifestation of milder conduction-like
repetition deficits. However, ROI analyses in the current study found that individuals with
mild or no impairments still presented with lesions in regions identified by the VLSM
analysis. These individual differences may be a consequence of post-stroke reorganisation,
which was also a significant predictor of jargon production, and are of interest for
neuroscientific studies of stroke recovery. These results should, however, be treated as
exploratory. Although the results parallel previous VLSM studies of repetition in aphasia
(Baldo et al., 2012; Fridriksson et al., 2010; Rogalsky et al., 2015), the results did not remain
significant following permutation testing. This is likely to be a consequence of high lesion
overlap in the aphasia group as a whole and the high prevalence of repetition impairment,
Figure 1, Table 1. Additionally, caution must be taken in interpreting mass-univariate lesion-
symptom mapping analyses which suffer from spatial distortion because of constraints of the
vascular architecture (Mah et al., 2014) and do not account for regions which have limited
functional capacity but remain structurally intact (Robson et al., 2016).

Insights for therapy

Current findings highlight several possible therapeutic strategies that may aid clinical
management of Jargon aphasia. Weak activation of target segments at the phonological
encoding level dictates that therapy and management should maximise the degree of
activation feeding through to the phonological level. According to cognitive-
neuropsychological models of word repetition, this is achieved via two converging avenues;
lexical (via semantics) and sub-lexical (auditory-phonological analysis and translation into
motor instructions). To fully utilise and maximise activation via lexical and sub lexical
avenues, clinical tasks should include stimuli in multiple modalities, administering a written
and verbal model of the stimuli, and imagery where possible. Phonological awareness
training could be adapted to include post phonological processing tasks – an area of comparative strength in this patient population (Romani & Galluzzi, 2005; Romani et al., 2002). Jargon aphasia therapy studies are scarce and further research is crucial to enhance understanding of the Jargon impairment, and thus support development of targeted treatments.

Conclusions
This study explored behavioural and neurological patterns associated with neologicist and perseverative word repetition errors in Jargon aphasia. Results from the behavioural and lesion analyses converge and support an impairment in encoding target phonology, possibly secondary to impairments in sensory-motor integration. Region of interest lesion analysis extended behavioural findings by indicating that impairments in maintaining auditory information in combination with phonological encoding impairments are particularly detrimental for repetition and were the most predictive of jargon responses in the current study. Behavioural analysis found that nonword and perseverative production are for the most part closely associated, paralleling previous psycholinguistic investigations and supporting the interpretation that perseverative and nonword errors can be accounted for by the same impairment source. These results imply that strengthening auditory-phonological integration and supporting self-monitoring would support speech production in Jargon aphasia.

References
Ackerman, T., & Ellis, A. W. (2007). Case study: Where do aphasic perseverations come from? Aphasiology, 21(10-11), 1018-1038. doi: 10.1080/02687030701198361
Anderson, J. M., Gilmore, R., Roper, S., Crosson, B., Bauer, R. M., Nadeau, S., . . . Heilman, K. M. (1999). Conduction aphasia and the arcuate fasciculus: A reexamination of the Wernicke-Geschwind model. Brain and Language, 70(1), 1-12. doi: 10.1006/brln.1999.2135
Baldo, J. V., Katseff, S., & Dronkers, N. F. (2012). Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: Evidence from voxel-based lesion symptom mapping. Aphasiology, 26(3-4), 338-354. doi:10.1080/02687038.2011.602391
Basilakos, A., Rorden, C., Bonilha, L., Moser, D., & Fridriksson, J. (2015). Patterns of Poststroke Brain Damage That Predict Speech Production Errors in Apraxia of Speech and Aphasia Dissociate. Stroke, 46:1561-1566. https://doi.org/10.1161/STROKEAHA.115.009211
Boatman, D., Gordon, B., Hart, J., Selnes, O., Miglioretti, D., & Lenz, F. (2000). Transcortical sensory aphasia: revisited and revised. Brain, 123(8), 1634-1642. doi:10.1093/brain/123.8.1634
Bose, A. (2013). Phonological therapy in Jargon aphasia: effects on naming and neologisms. International Journal of Language & Communication Disorders, 48(5), 582-595. doi: 10.1111/1460-6984.12038
Buchsbaum, B. R., Baldo, J., Okada, K., Berman, K. F., Dronkers, N., D'Esposito, M., & Hickok, G. (2011). Conduction aphasia, sensory-motor integration, and phonological short-term memory – An aggregate analysis of lesion and fMRI data. Brain and Language, 119(3), 119-128. doi:http://dx.doi.org/10.1016/j.bandl.2010.12.001
Buchsbaum, B. R., Hickok, G., & Humphries, C. (2001). Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cognitive Science, 25(5), 663-678. doi:http://dx.doi.org/10.1016/S0364-0213(01)00048-9
Buckingham Jr, H. W., Avakian-Whitaker, H., & Whitaker, H. A. (1978). Alliteration and Assonance in Neologistic Jargon Aphasia. *Cortex*, 14(3), 365-380. doi:http://dx.doi.org/10.1016/S0010-9452(78)80063-X

Buckingham, H. W. (1990). Abstruse Neologisms, Retrieval Deficits and the Random Generator. *J. Neurolinguistics*, 5(2/3), 215-235. doi:http://dx.doi.org/10.1016/0911-6044(90)90012-N

Buckingham, H. W., & Buckingham, S. S. (2011). Is recurrent perseveration a product of deafferented functional systems with otherwise normal post-activation decay rates? *Clin Linguist Phon*, 25(11-12), 1066-1073. doi:10.3109/02699206.2011.616982

Butterworth, B. (1979). Hesitation and the production of verbal paraphasias and neologisms in Jargon aphasia. *Brain and Language*, 8(2), 133-161. doi: http://dx.doi.org/10.1016/0093-934X(79)90046-4

Cohen, L., & Dehaene, S. (1998). Competition between past and present. Assessment and interpretation of verbal perseverations. *Brain*, 121(9), 1641-1659.

Dell, G. S. (2014). Phonemes and Production. *Lang Cogn Process*, 29(1), 30-32. doi: 10.1080/01690965.2013.851795

Dell, G. S., Martin, N., & Schwartz, M. F. (2007). A case-series test of the interactive two-step model of lexical access: Predicting word repetition from picture naming. *Journal of Memory and Language*, 56(4), 490-520. doi: http://dx.doi.org/10.1016/j.jml.2006.05.007

Deschamps, I., & Tremblay, P. (2014). Sequencing at the syllabic and supra-syllabic levels during speech perception: an fMRI study. *Frontiers in human neuroscience*, 8(492). doi:10.3389/fnhum.2014.00492

Eaton, E., Marshall, J., & Pring, T. (2010). Like deja vu all over again: Patterns of perseveration in two people with Jargon aphasia. *Aphasiology*, 24(9), 1017-1031. doi: Pii 918865637

Eaton, E., Marshall, J., & Pring, T. (2011). Mechanisms of change in the evolution of Jargon aphasia. *Aphasiology*, 25(12), 1543-1561. doi: 10.1080/02687038.2011.624584

Fischer-Baum, S., & Rapp, B. (2012). Underlying cause(s) of letter perseveration errors. *Neuropsychologia*, 50(2), 305-318. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2011.12.001

Fridriksson, J., Kjartansson, O., Morgan, P. S., Hjaltason, H., Magnusdottir, S., Bonilha, L., & Rorden, C. (2010). Impaired Speech Repetition and Left Parietal Lobe Damage. *The Journal of Neuroscience*, 30(33), 11057-11061. doi:10.1523/jneurosci.1120-10.2010

Geschwind, N. N. (1965). Disconnexion syndromes in animals and man. II. *Brain* (London, England: 1878), 88(3), 585.

Goodglass, H., Kaplan, E., & Barresi, B. (2001). The Boston Diagnostic Aphasia Examination: BDAE-3. Philadelphia, Pa.: Lippincott Williams & Wilkins.

Hanley, J. R., & Kay, J. (1997). An effect of imageability on the production of phonological errors in auditory repetition. *Cognitive Neuropsychology*, 14(8), 1065-1084. doi:10.1080/026432997381277
Hanley, J. R., Dell, G. S., Kay, J., & Baron, R. (2004). Evidence for the involvement of a nonlexical route in the repetition of familiar words: A comparison of single and dual route models of auditory repetition. *Cognitive Neuropsychology*, 21(2), 147-158. doi: 10.1080/02643290342000339

Hanley, J. R., Kay, J., & Edwards, M. (2002). Imageability effects, phonological errors, and the relationship between auditory repetition and picture naming: Implications for models of auditory repetition. *Cognitive Neuropsychology*, 19(3), 193-206. doi: 10.1080/02643290342000339

Henson, R. N., Burgess, N., & Frith, C. D. (2000). Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. *Neuropsychologia*, 38(4), 426-440.

Hickok, G. (2009). The functional neuroanatomy of language. *Physics of Life Reviews*, 6(3), 121-143. doi: http://dx.doi.org/10.1016/j.plrev.2009.06.001

Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. *Cognition*, 92(1-2), 67-99. doi: 10.1016/j.cognition.2003.10.011

Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory–Motor Interaction Revealed by fMRI: Speech, Music, and Working Memory in Area Spt. *Journal of Cognitive Neuroscience*, 15(5), 673-682. doi:10.1162/02643290342000339

Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor Integration in Speech Processing: Computational Basis and Neural Organization. *Neuron*, 69(3), 407-422. doi:http://dx.doi.org/10.1016/j.neuron.2011.01.019

Hickok, G., Okada, K., & Serences, J. T. (2009). Area Spt in the Human Planum Temporale Supports Sensory-Motor Integration for Speech Processing. *Journal of Neurophysiology*, 101(5), 2725.

Hillis, A. E., & Caramazza, A. (1991). Mechanisms for accessing lexical representations for output: Evidence from a category-specific semantic deficit. *Brain and Language*, 40(1), 106-144. doi: http://dx.doi.org/10.1016/0093-934X(91)90119-L

Hirsh, K. W. (1998). Perseveration and Activation in Aphasic Speech Production. *Cognitive Neuropsychology*, 15(4), 377-388. doi: 10.1080/026432998381140

Hodges, J. R., Martinos, M., Woolfams, A. M., Patterson, K., & Adlam, A.-L. R. (2008). Repeat and Point: Differentiating semantic dementia from progressive non-fluent aphasia. *Cortex*, 44(9), 1265-1270. doi:http://dx.doi.org/10.1016/j.cortex.2007.08.018

Isenberg, A. L., Vaden, K. I., Saberi, K., Muftuler, L. T., & Hickok, G. (2012). Functionally distinct regions for spatial processing and sensory motor integration in the planum temporale. *Human brain mapping*, 33(10), 2453-2463. doi:10.1002/hbm.21373

Itabashi, R., Nishio, Y., Kataoka, Y., Yazawa, Y., Furui, E., Matsudaand M., & Mori, E. (2016). Damage to the Left Precentral Gyrus Is Associated With Apraxia of Speech in Acute Stroke. *47*:31-36 https://doi.org/10.1161/STROKEAHA.115.010402

Jefferies, E., & Lambon Ralph, M. A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. *Brain*, 129(8), 2132-2147. doi:10.1093/brain/aw1153

Kaplan, E. (1983). The assessment of aphasia and related disorders (Vol. 2): Lippincott Williams & Wilkins.
Kay, J., Lesser, R., & Coltheart, M. (1996). Psycholinguistic assessments of language processing in aphasia (PALPA): An introduction. *Aphasiology*, 10(2), 159-180.

Kinsbourne, M., & Warrington, E. K. (1963). Jargon aphasia. *Neuropsychologia*, 1(1), 27-37. doi: http://dx.doi.org.idpproxy.reading.ac.uk/10.1016/0028-3932(63)90010-1

Mah, Y.-H., Husain, M., Rees, G., & Nachev, P. (2014). Human brain lesion-deficit inference remapped. *Brain*, 137(9), 2522-2531. doi:10.1093/brain/awu164

Maher, L. M., Rothi, L. J. G., & Heilman, K. M. (1994). Lack of Error Awareness in an Aphasic Patient with Relatively Preserved Auditory Comprehension. *Brain and Language*, 46(3), 402-418. doi: http://dx.doi.org/10.1006/brln.1994.1022

Markiewicz, C. J., & Bohland, J. W. (2016). Mapping the cortical representation of speech sounds in a syllable repetition task. *Neuroimage*, 1;141:174-90. doi: 10.1016/j.neuroimage.2016.07.023

Marshall, J. (2006). Jargon aphasia: What have we learned? *Aphasiology*, 20(5), 387-410. doi: 10.1080/02687030500489946

Marshall, J., Robson, J., Pring, T., & Chiat, S. (1998). Why Does Monitoring Fail in Jargon aphasia? Comprehension, Judgment, and Therapy Evidence. *Brain and Language*, 63(1), 79-107. doi: http://dx.doi.org/10.1006/brln.1997.1936

Martin, N. (1996). Models of deep dysphasia. *Neurocase*, 2(1), 73-80. doi: 10.1080/13554799608402391

Martin, N., & Dell, G. S. (2007). Common mechanisms underlying perseverative and non-perseverative sound and word substitutions. *Aphasiology*, 21(10-11), 1002-1017. doi:10.1080/0268703020201198346

Martin, N., Dell, G. S., Saffran, E. M., & Schwartz, M. F. (1994). Origins of paraphasias in deep dysphasia: testing the consequences of a decay impairment to an interactive spreading activation model of lexical retrieval. *Brain and Language*, 47(4), 609-660. doi: 10.1006/brln.1994.1061

McCarthy, R., & Warrington, E. K. (1984). A two-route model of speech production. *Brain*, 107(2), 463.

McGettigan, C., Warren, J. E., Eisner, F., Marshall, C. R., Shanmugalingam, P., & Scott, S. K. (2010). Neural Correlates of Sublexical Processing in Phonological Working Memory. *Journal of Cognitive Neuroscience*, 23(4), 961-977. doi:10.1162/jocn.2010.21491

Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. (2014). Phonetic Feature Encoding in Human Superior Temporal Gyrus. *Science*, 343(6174), 1006-1010. doi:10.1126/science.1245994

Moritz-Gasser, S., & Duffau, H. (2013). The anatomo-functional connectivity of word repetition: insights provided by awake brain tumor surgery. *Frontiers in Human Neuroscience*, 7, 405. doi: 10.3389/fnhum.2013.00405

Moses, M. S., Nickels, L. A., & Sheard, C. (2004). Disentangling the web: Neologistic perseverative errors in Jargon aphasia. *Neurocase*, 10(6), 452-461. doi: 10.1080/13554790490894057

Moses, M. S., Nickels, L. A., & Sheard, C. (2007a). Chips, cheeks and carols: A review of recurrent perseveration in speech production. *Aphasiology*, 21:10-11, 960-974, DOI: 10.1080/02687030701198254
Moses, M. S., Sheard, C., & Nickels, L. A. (2007b). Insights into recurrent perseverative errors in aphasia: A case series approach, *Aphasiology*, 21:10-11, 975-1001, DOI:10.1080/02687030701198312

Nickels, L., Howard, D., & Best, W. (2011). On the use of different methodologies in cognitive neuropsychology: Drink deep and from several sources. *Cognitive Neuropsychology*, 28(7), 475-485. 10.1080/02643294.2012.672406

Nozari, N., Kittredge, A. K., Dell, G. S., & Schwartz, M. F. (2010). Naming and repetition in aphasia: Steps, routes, and frequency effects. *Journal of Memory and Language*, 63(4), 541-559. doi:10.1016/j.jml.2010.08.001

Olson, A. C., Romani, C., & Halloran, L. (2007). Localizing the deficit in a case of jargon aphasia. *Cognitive Neuropsychology*, 24(2), 211-238. doi: 10.1080/02643290601137017

Olson, A., Halloran, E., & Romani, C. (2015). Target/error overlap in jargon aphasia: The case for a one-source model, lexical and non-lexical summation, and the special status of correct responses. *Cortex*, 73, 158-179. doi:http://dx.doi.org/10.1016/j.cortex.2015.06.028

Panzeri, M., Semenza, C., & Butterworth, B. (1987). Compensatory processes in the evolution of severe Jargon aphasia. *Neuropsychologia*, 25(6), 919-933. doi: http://dx.doi.org/10.1016/0028-3932(87)90096-0

Papagno, C., & Basso, A. (1996). Perseveration in Two Aphasic Patients. *Cortex*, 32(1), 67-82. doi:10.1016/s0010-9452(96)80017-7

Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. *Nature*, 362(6418), 342-345.

Quigg, M., & Fountain, N. B. (1999). Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus. *J Neurol Neurosurg Psychiatry*, 66(3), 393-396.

Ravizza, S. M., Delgado, M. R., Chein, J. M., Becker, J. T., & Fiez, J. A. (2004). Functional dissociations within the inferior parietal cortex in verbal working memory. *Neuroimage*, 22(2), 562-573. doi:http://dx.doi.org/10.1016/j.neuroimage.2004.01.039

Robson, H., Cloutman, L., Keidel, J. L., Sage, K., Drakesmith, M., & Welbourne, S. (2014). Mismatch negativity (MMN) reveals inefficient auditory ventral stream function in chronic auditory comprehension impairments. *Cortex*, 59, 113-125. doi:10.1016/j.cortex.2014.07.009

Robson, H., Grube, M., Lambon Ralph, M. A., Griffiths, T. D., & Sage, K. (2013). Fundamental deficits of auditory perception in Wernicke's aphasia. *Cortex*, 49(7), 1808-1822. doi:10.1016/j.cortex.2012.11.012

Robson, H., Keidel, J. L., Ralph, M. A., & Sage, K. (2012). Revealing and quantifying the impaired phonological analysis underpinning impaired comprehension in Wernicke's aphasia. *Neuropsychologia*, 50(2), 276-288. doi:10.1016/j.neuropsychologia.2011.11.022

Robson, H., Specht, K., Beaumont, H., Parkes, L. M., Sage, K., Lambon Ralph, M. A., & Zahn, R. (2016). Arterial spin labelling shows functional depression of non-lesion tissue in chronic Wernicke's aphasia. *Cortex*. doi:http://dx.doi.org/10.1016/j.cortex.2016.11.002

Robson, J. O., Marshall, J., Pring, T. I. M., & Chiat, S. (1998a). Phonological naming therapy in Jargon aphasia: Positive but paradoxical effects. *Journal of the International Neuropsychological Society*, 4(06), 675-686.

Robson, J. O., Pring, T., Marhsall, J., Morrison, S., & Chiat, S. (1998b). Written communication in undifferentiated Jargon aphasia: a therapy study. *International Journal of Language & Communication Disorders*, 33(3), 305. doi: 10.1080/13688298247767
Rogalsky, C., Poppa, T., Chen, K.-H., Anderson, S. W., Damasio, H., Love, T., & Hickok, G. (2015). Speech repetition as a window on the neurobiology of auditory–motor integration for speech: A voxel-based lesion symptom mapping study. *Neuropsychologia, 71*, 18-27. doi:http://dx.doi.org.idpproxy.reading.ac.uk/10.1016/j.neuropsychologia.2015.03.012

Romani, C., & Galluzzi, C. (2005). Effects of syllabic complexity in predicting accuracy of repetition and direction of errors in patients with articulatory and phonological difficulties. *Cognitive Neuropsychology, 22*(7), 817-850. doi:10.1080/02643290442000365

Romani, C., Olson, A., Semenza, C., & Grana, A. (2002). Patterns of phonological errors as a function of a phonological versus an articulatory locus of impairment. *Cortex, 38*(4), 541-567.

Rorden, C., Bonilha, L., Fridriksson, J., Bender, B., & Karnath, H.-O. (2012). Age-specific CT and MRI templates for spatial normalization. *Neuroimage, 61*(4), 957-965. doi:10.1016/j.neuroimage.2012.03.020

Sandson, J., & Albert, M. L. (1984). Varieties of perseveration. *Neuropsychologia, 22*(6), 715-732.

Santo Pietro, M. J., & Rigrodsky, S. (1986). Patterns of oral-verbal perseveration in adult aphasics. *Brain and Language, 29*(1), 1-17.

Schwartz, M. F., Wilshire, C. E., Gagnon, D. A., & Polansky, M. (2004). Origins of nonword phonological errors in aphasic naming. *Cognitive Neuropsychology, 21*(2-4), 159-186. doi:10.1080/02643290342000519

Stark, J. (2007). A review of classical accounts of verbal perseveration and their modern-day relevance. *Aphasiology, 21*(10-11), 928-959. doi:10.1080/02687030301198239

Tourville, J. A., Reilly, K. J., & Guenther, F. H. (2008). Neural mechanisms underlying auditory feedback control of speech. *Neuroimage, 39*(3): 1429–1443. doi:10.1016/j.neuroimage.2007.09.054

Trébuchon, A., Démonet, J., Chauvel, P., & Liégeois-Chauvel, C. Ventral and dorsal pathways of speech perception: An intracerebral ERP study. *Brain, 127*(2), 273–283 doi:http://dx.doi.org/10.1016/j.bandl.2013.04.007

Warren, J. E., Wise, R. J. S., & Warren, J. D. (2005). Sounds do-able: auditory–motor transformations and the posterior temporal plane. *Trends in Neurosciences, 28*(12), 636-643. doi:http://dx.doi.org/10.1016/j.tins.2005.09.010

Yamadori, A. (1981). Verbal perseveration in aphasia. *Neuropsychologia, 19*(4), 591-594. doi:http://dx.doi.org/10.1016/0028-3932(81)90026-9
List of Tables:
Table 1: Demographic, imaging and BDAE information
Table 2: Number of each response type on single word repetition task. *Ordered by fewest correct responses*
Table 3: Test statistics for Phonological Overlap Index (POI) and distribution analyses
Table 4: Test statistics for Intrusion Perseveration Probability (IPP) analysis
Table 5: Correlations coefficients displaying medium-strong relationships between jargon score components
Table 6: Peak VLSM results, threshold ≤0.01

List of Figures:
Figure 1: Lesion Overlap Maps and VLSM Results
Figure 2: Neologism analysis
Figure 3: Perseveration analysis
Figure 4: Perseveration and non-perseveration correlation analysis
Figure 5: ROI analysis

Figure Legends:
Figure 1: MNI X-coordinate displayed above. Panel A: Lesion overlap map for Jargon aphasia participants for whom imaging was available. Colour bar indicates number of individuals with lesion at each voxel. Panel B: Lesion overlap Lesion overlap map for all aphasia participants for whom imaging was available. Colour bar indicates number of individuals with lesion at each voxel. Panel C: VLSM results (threshold ≤0.05) showing voxels significantly associated with jargon score. Colour bar indicates t-statistic.

Figure 2: Mean neologism Phonological Overlap Index (POI) score per Jargon individual (squares), and the mean chance POI estimate (red line). Error bars show 95% confidence intervals.

Figure 3: Mean Intrusion Perseveration Probability (IPP) score per Jargon individual (square), and IPP chance estimate (red line). Error bars show 95% confidence intervals.

Figure 4: Scatter plot showing the relationship between numbers of perseverative and non-perseverative nonwords.

Figure 5: Colour areas display four regions of interest derived from VLSM clusters. Graphs indicate jargon score for low and high lesion overlap group in each ROI. Ceiling performance on jargon score = -1.07. * = significant group difference; (*) = borderline significant group
difference. WM = white matter; GM = grey matter; STG = superior temporal gyrus; IPL = inferior parietal lobe; STS = superior temporal sulcus.

Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding
This research was funded by a Stroke Association Postgraduate Fellowship awarded to Emma Pilkington (TSA PGF 2015-02), and a Stroke Association Senior Research Training Fellowship awarded to Dr Holly Robson (TSA SRTF 2012/2).

Acknowledgements
We would like to thank the participants who were involved in the current study.