Cytokine orchestration in post-operative peritoneal adhesion formation

Ronan A Cahill, H Paul Redmond

Ronan A Cahill, H Paul Redmond, Department of General Surgery, Cork University Hospital, Wilton, Cork, Ireland

Author contributions: Cahill RA and Redmond HP contributed equally to the composition of this work.

Supported by: Clinical Research Fellowship from the Health Research Board, Ireland

Correspondence to: Ronan A Cahill, Department of General Surgery, Cork University Hospital, Wilton, Cork, Ireland. rcahill@rcsi.ie

Telephone: +353-21-4922373 Fax: +353-21-3431307

Received: May 1, 2008 Revised: July 14, 2008

Accepted: July 21, 2008

Published online: August 21, 2008

Abstract

Peritoneal adhesions are a near inevitable occurrence after laparotomy and a major cause of both patient and physician misery. To date, clinical attempts at their amelioration have concentrated on manipulating the physical factors that affect their development despite a wealth of experimental data elucidating the molecular mechanisms that underlie their initiation, development and maturation. However, the advent of targeted, specific anti-cytokine agents as directed therapy for inflammatory and neoplastic conditions raises the prospect of a new era for anti-adhesion strategies. To harness this potential will require considerable cross-disciplinary collaboration and that surgeon-scientists propel themselves to the forefront of this emerging field.

© 2008 The WJG Press. All rights reserved.

Key words: Postoperative peritoneal adhesion formation; Cytokines; Vascular endothelial growth factor

Peer reviewer: Dr. Maria Concepción Gutiérrez-Ruiz, Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, Mexico DF 09340, Mexico

Cahill RA, Redmond HP. Cytokine orchestration in post-operative peritoneal adhesion formation. World J Gastroenterol 2008; 14(31): 4861-4866 Available from: URL: http://www.wjgnet.com/1007-9327/14/4861.asp DOI: http://dx.doi.org/10.3748/wjg.14.4861

INTRODUCTION

Post-operative peritoneal adhesion formation remains a considerable source of patient and physician frustration and a significant burden on hospital resources[1-3]. As the commonest cause of small bowel obstruction in patients who have previously undergone laparotomy, adhesions account for 40% of all cases of intestinal obstruction and 60%-70% of those affecting the small bowel. After a first such clinical episode, 53% of patients will go on to develop a second relapse, and 83% of these will have chronic symptoms[4]. Some 14% of those who manifest overt adhesive intestinal obstruction do so within 2 years of their initial surgery, with 2.6% requiring operative adhesiolysis for its relief[5]. Furthermore, approximately 20% of patients developing adhesional bowel obstruction do so at a remove of more then ten years after their index operation[6]. Post-operative adhesions are also a common cofactor in female infertility in those with prior laparotomy[7] and they add markedly to the technical complexity of any repeat abdominal operation. By doing so, they give rise to considerable surgeon frustration[8] and a heightened risk of patient morbidity[9].

For all these reasons, this iatrogenic complication weighs heavily on the balance books of health care providers. Indeed, in overall costs, the financial cost due to adhesion-related morbidity approximates the expenditure required for the surgical management of gastric or rectal cancer[10] and this is then further compounded by the cost of medicolegal claims and settlements. Finally, the considerable number of bed-days consumed by the sequelae and treatment of post-operative adhesions (indeed in Finland, adhesion-related admissions exceed the number of bed-days appropriated to varicose vein surgery) also reinforces the urgency for developing effective means of adhesion abrogation.

Unfortunately, however, clinical strategies and therapies aimed at controlling or alleviating adhesion formation have been largely inadequate in their address of both ongoing human suffering[11-14] and economic cost[15]. To date these attempts have mostly concentrated on employing physical means to align[16-18] or separate[19] adjacent loops of bowel in the early post-operative period (so that any configuration of interloop bands is either organised or hindered respectively) or have focused on manipulating peritoneal fibrinolytic mechanisms[16-18].
CYTOKINE ORCHESTRATION IN POST-OPERATIVE ADHESION FORMATION

Adhesions however represent a form of secondary wound healing. Therefore the mesothelial tissue response to injury (occurring either directly due to handling and dissection or indirectly due to desiccation, cooling or relative ischaemia at sites both adjacent to and distant from the actual operative site) is initiated locally and thence both propagated and orchestrated by cytokine signaling. Although systemic[19] and genetic elements[24] may also influence the severity of the cascade and factors such as bacterial contamination can potentiate it[21], interruption or manipulation of key cellular processes early in the response cascade would seem likely to markedly diminish all downstream events including the ultimate fibrotic endpoint. Furthermore, the increasing sophistication of anti-cytokine therapies now allows single components of complex cellular processes to be specifically targeted. In addition, potentially efficacious agents have already been proved both safe and useful in the management of anti-neoplastic[22] and anti-inflammatory conditions[23]. Therefore a new era in the approach to adhesion amelioration may be in the offing.

SPECIFIC TARGETTING OF SELECTED CYTOKINES

There has of course been a vast array of cytokines and chemokines implicated in the initiation, development and maturation of abdominal adhesions after laparotomy (Table 1) and therefore it may initially appear forbidding to try and narrow the therapeutic target most likely to lead to unopposed benefit. Tumor necrosis factor was one of the earliest cytokines investigated and certainly seems to represent one important factor. However its recent elucidation as a key mediator of the bacterial response to infection seems to mitigate against using monoclonal antibodies (already commercially available) to abrogate this cytokine early after intestinal operation[24]. Equally, the variability of action depending on the relative proportions of its isoforms and the central role it plays in wound healing would also seem to deter use of directed therapy against transforming growth factor-beta. Of the remaining candidate targets the majority only really have a slender evidence base to support their selection from out of the general post-operative molecular milieu. The one exception, at present, would seem to be vascular endothelial growth factor (VEGF).

Although this important signaling protein is best known as a potent angiogenic cytokine (and indeed may be proposed as having a role in the process of adhesion growth through the induction of new blood vessels into areas of operative tissue injury[25]), VEGF is now also well established as being directly involved in restorative tissue processes, including early inflammatory responses, as well as wound repair and remodeling via effecting fibroblast function[26]. Furthermore, the central role of VEGF in facilitating increased vascular permeability (essential for the early proinflammatory response to injury) as well as the subsequent deposition of the fibrin-rich matrix necessary for subsequent cellular migration and proliferation[27,28] would seem to make it a prime putative agent in the formation of peritoneal adhesions. It is not surprising therefore that VEGF has been consistently positively implicated (albeit non-selectively) in this process[29]. The realization that peritoneal mast cells both constitutively and inducibly express this cytokine[30,31] further suggests an intriguing link given that these cells are known also to be central to adhesion formation[32]. However, it may well be that rather than through direct secretion, mast cells effect the threshold concentration of this cytokine by exciting the egress of neutrophils and monocytes from the circulation into the peritoneum and that it is these cells that instead then contribute most to regional VEGF levels.

Regardless of its exact cellular origin, VEGF seems to represent an ideal target as its levels correlate with adhesion formation in animal models with its regulation (either positively[33] or negatively[34]) affecting the degree to which they form after peritoneal operations. The clinical success and safety of VEGF neutralization by a specific monoclonal antibody in the treatment of malignant diseases[35] adds further impetus to the need to try its pharmacological manipulation as an anti-adhesion strategy particularly as selective therapeutic targeting of the cytokine does not seem to disrupt operative wound healing in a clinically important fashion[36].

DETERMINATION OF CLINICAL EFFICACY

Clinical evidence of efficacy of anti-adhesion therapies is notoriously difficult to attain as second look-laparotomy to assess distribution and intensity of peritoneal reaction is not ethically justifiable (although may be possible in the case of certain gynecological procedures[37]). Additionally, the mere presence of adhesions, even if extensive, does not necessarily correlate with the incidence and severity of subsequent symptomatic episodes and long-term follow-up is required to determine the full-extent of the problems arising. These challenges are not however insurmountable as have been shown by those who advance the cause of bioactive substances[38,39] and the difficulties that would be encountered in establishing a progressing and adequately powered multi coated blinded study would be markedly outweighed by the huge benefit to patients of many differing specialties. With regard to monoclonal antibody therapies in particular, there now exists the opportunity to piggy-back on the human safety testing performed on this class of drug in alternative settings. While pursuit of molecular mechanisms for adhesion amelioration will undoubtedly still be expensive[40], the cost incurred by the management of adhesion-related morbidity[39,41] economically justifies considerable investment in any potential means of their attenuation.

CONCLUSION

There have long been a multitude of groups proposing
Table 1 Overview of literature to date regarding cytokine orchestration in postoperative adhesion formation. Included in the list are cytokines, chemokines, and proteases as well as trigger enzymes

Cytokine^a	Mechanism investigated	In vitro/vivo	Species	Experimental model	Effect on adhesion formation
HGF^b	Macrophage and neutrophil omental migration	In vivo	Mouse	(1) Partial hepatectomy (2) Omental adherence	Exacerbated by Midkine- omental inflammation reduced
	Mesothelial cell proliferation and migration	Both	Rat	Cecal abrasion	Exacerbated by local HGF gene transfer
IFN-γ, HGF^b	Natural killer T cell activity	Both	Mouse	Cecal cauterization	Attenuated by HGF
IL-1α, TNF^a	Non-specific inflammation	In vivo	Human	Adhesion samples	Exacerbated by IL-1
IL-1β, IL-6, TNF^a	Proinflammatory markers	In vivo	Human	Peritoneal fluid sampling	Adhesions associated with IL-6 and IL-1
IL-1^α	Natural anti-inflammatory	In vivo	Mouse	Peritoneal injury	Attenuated by IL-10 but no effect with IL-10 mAb. No associated with IL-10 levels
IL-1β^b	Immunosuppression	In vivo	Mouse	Peritoneal injury	Attenuated by IL-10
TGF-β1, IL-10, IFN-γ, GM-CSF					
IL-6^b	Early proinflammatory effects	In vivo	Rat	Cecal abrasion with C₂H₅OH	Exacerbated by IL-6, attenuated by monoclonal Ab to IL-6
PAF^b	Early inflammatory mediators	In vivo	Rat	Uterine horn abrasion	Adhesions and IL-6 levels attenuated by Lexipafant (PAF antagonist)
Substance P^b	Substance P mediation	In vivo	Rat	Peritoneal ischaemic buttons	Substance P and TGF-β1 as well as ICAM-1 and VCAM-1 increased
TGF-β^b	TGF-β isoforms	In vivo	Mouse	Serosal abrasion and adhesion	Exacerbated by TGF-β-β, attenuated by combined TGF-β1 and TGF-β2 mAb
TGF-β^b	Early proinflammatory effects	In vivo	Rat	Cell culture	TGF-β-β and tryptase increased collagen
TGF-β^b	Mast cells	In vivo	Human	Uterine horn abrasion	No antiadhesion effect of anti-TGF mAb
TGF-β^b	Mast cells	In vivo	Human	Cell culture	Adhesions attenuated by tacrolimus
TGF-β^b	Immunosuppression	In vivo	Rat	Small bowel transplant	TGF-β-β increased by trauma, adhesions attenuated by chymase inhibition
TGF-β^b	Mast cells	In vivo	Rat	Uterus scraping	TGF-β-β increased by trauma, adhesions attenuated by chymase inhibition
TGF-β^b	Cellular effects of Tissue	In vivo	Human	Cell culture	Fibroblasts TGF-β-β reduced
TGF-β^b	Matrix factors	In vivo	Human	Sampled peritoneal fluid	Adhesion assoc with reduced MMP-9 but elevated MMP-3/TIMP-1 ratio
TGF-β^b	Carboxymethylcellulose sponge	In vivo	Rat	Cecal demudation & adhesion	Effect of sponge independent to cytokine release (barrier function)
TGF-β^b	Chemotraction	In vivo	Human	Cell culture	TGF-β-β increased in scar tissue
TGF-β^b	Extracellular matrix	In vivo	Mouse	Cecal abrasion	Exacerbated by haploid insufficiency
TGF-β^b	Fibrinolysis	In vivo	Human	Biopsy sampling	Attenuated by TGF-β-β overexpression
TGF-β^b	Peritonitis	In vivo	Rat	Cecal ligation and puncture	Peritonitis upregulates TGF-β-β expression
TGF-β^b	Mitogenicity of macrophages & fibroblasts	In vivo	Human	Human fibroblast & mesothelial cell culture	Adhesions and TGF-1 levels attenuated by ACE inhibition
TGF-β1, MMP1,2, TGF-β3 expression					
TGF-β1, TGF-β2 expression	Basal expression	In vivo	Human	Biopsy sampling	Sit-specific TGF-β1 & TGF-β3 expression
TGF-β1 expression	Cellulr effects of changtong	In vivo	Rat/rabbit	Cecal abrasion	TGF-β-β reduced in rats
TNF-α, IL-1β, IL-6^a	Effects of gloves and powders	In vivo	Rat	Cecal abrasion	Adhesions increased by glove powder
TNF-α^b	Proinflammatory effects of	In vivo	Rat	Cecal abrasion	Adhesion formation attenuated by infliximab but no histological effect of TNF-α appears a good biological marker for adhesion formation
TNF-α, IL-1β^b	Proinflammatory markers	In vivo	Rat	Cecal abrasion or small bowel resection	Adhesion formation attenuated by mAbs to IL-1 and IL-1/TNF-α
TNF-α^b, IL-6^b	Immunosuppression	In vivo	Rat	Cecal abrasion	Adhesion formation attenuated by mAbs to IL-1 and IL-1/TNF-α
TNF-α, IL-6^b	Proinflammatory mediators	In vivo	Mouse	Marine macrophages	Adhesion formation attenuated by hyaluronic acid and dexamethasone
TNF-α, MMP1^b	Mesothelium reaction to peritoneal injury	In vivo	Rat	Peritoneal wounding	No effect of MMP & TACE inhibition, TNF-α may not be adhesiogenic
TNF-α^b, TGF-β1^b	PROACT to injured peritoneum	In vivo	Human	Tissue sampling	Associated with angiogenesis
VEGF^b	Angiogenesis	In vivo	Rat	Uterus-peritoneal scrub	Adhesions attenuated by Antiserum and monoclonal antibody
VEGF^b	Vascular permeability	In vivo	Mouse	Peritoneal injury	VEGF in endothelial cells associated with adhesion formation
VEGF, basic-FGF^b	Fibrovascular band formation	In vivo	Human	Adhesion samples	VEGF in endothelial cells associated with adhesion formation
novel, potential therapies for the attenuation of adhesion formation at a preclinical level—the onus now though is on leading surgeon-scientists to corral their endeavour and progress their preclinical expertise into the clinical setting. For a start, the most likely candidate cytokine must be agreed (in our mind VEGF would seem the most apposite) and the most appropriate means of affecting its activity (whether directly or indirectly) selected. Furthermore industry interest will need to be stimulated for its support for Phase II and III trials as well as for the subsequent manufacture and marketing processes is crucial. Above all, though it must be realized that the timing for a concerted attempt to prove that molecular manipulation of post-operative peritoneal formation has never been better.

REFERENCES

1 Ellis H. The clinical significance of adhesions: focus on intestinal obstruction. Eur J Surg Suppl 1997; 5-9

2 Barkan WE, Webster S, Ozeran S. Factors predicting the recurrence of adhesive small-bowel obstruction. Am J Surg 1995; 170: 361-365

3 Beck DE, Opelka FG, Bailey HR, Rauh SM, Pashos CL. Incidence of small-bowel obstruction and adhesiolysis after open colorectal and general surgery. Dis Colon Rectum 1999; 42: 241-248

4 Menzies D, Ellis H. Intestinal obstruction from adhesions—how big is the problem? Ann R Coll Surg Engl 1990; 72: 60-63

5 Herslag A, Diamond MP, DeCherney AH. Adhesiolysis. Clin Obstet Gynecol 1991; 34: 395-402

6 Ray NF, Denton WG, Thamer M, Henderson SC, Perry S. Abdominal adhesiolysis: inpatient care and expenditures in the United States in 1994. J Am Coll Surg 1998; 186: 1-9

7 Coleman MG, McLain AD, Moran BJ. Impact of previous surgery on time taken for incision and division of adhesions during laparotomy. Dis Colon Rectum 2000; 43: 1297-1299

8 Van Der Krabben AA, Dijskstra FR, Nieuwenhuize M, Reijnen MM, Schapaevd M, Van Goor H. Morbidity and mortality of inadvertent enterotomy during adhesiotomy. Br J Surg 2000; 87: 467-471

9 Kossi JA, Salminen PT, Rantala A, Laato M. Surgical workload and surgical complications following laparotomy for presumed small-bowel obstruction. Br J Surg 2001; 88: 1441-1444

10 Davey AK, Maher PJ. Surgical adhesions: a timely update, a great challenge for the future. J Minim Invasive Gynecol 2007; 14: 15-22

11 Kossi JA, Salminen PT, Laato M. Surgical workload and cost of postoperative adhesion-related intestinal obstruction: importance of previous surgery. World J Surg 2004; 28: 666-670

12 McCarthy JD. Further experience with the Chils-Phillips plication operation. Am J Surg 1975; 130: 15-19

13 Holland-Cunz S, Boelter AV, Waag KL. Protective fibrin-sealed plication of the small bowel in recurrent laparotomy. Pediatr Surg Int 2003; 19: 540-543

14 Sprouse LR 2nd, Arnold CL, Thow CB, Bures RP. Twelve-year experience with the Thow long intestinal tube: a means of preventing postoperative bowel obstruction. Am Surg 2001; 67: 357-360

15 Verco SJ, Peers EM, Brown CB, Rodgers KE, Roda N, diZerega G. Development of a novel glucose polymer solution (icodextrin) for adhesion prevention: pre-clinical studies. Hum Reprod 2000; 15: 1764-1772

16 Ivarsson ML, Falk P, Holmdahl L. Response of visceral peritoneum to abdominal surgery. Br J Surg 2001; 88: 148-151

17 Hill-West JL, Dunn RC, Hubbell JA. Local release of fibrinolytic agents for adhesion prevention. J Surg Res 1995; 59: 759-763

18 Falk K, Bjorquist P, Stromqvist M, Holmdahl L. Reduction of experimental adhesion formation by inhibition of plasminogen activator inhibitor type 1. Br J Surg 2001; 88: 268-289

19 Condon ET, Cahill RA, O’Malley DB, Aherne NJ, Redmond HP. Evaluation of postoperative peritoneal adhesion formation following perioperative nicotine administration. J Surg Res 2007; 140: 135-138

20 Berkun Y, Ben-Chetrit E, Klar A, Ben-Chetrit E. Peritoneal adhesions and intestinal obstructions in patients with familial Mediterranean fever—are they more frequent? Semin Arthritis Rheum 2007; 36: 316-321

21 Cahill RA, Wang JH, Redmond HP. Enteric bacteria and their antigens may stimulate postoperative peritoneal adhesion formation. Surgery 2007; 141: 403-410

22 Petersen I. Antiangiogenesis, anti-VEGF(R) and outlook. Recent Results Cancer Res 2007; 176: 189-199

HGF: Hepatocyte growth factor; IFN-β: Interferon-gamma; IL: Interleukin; TNF-α: Tumour necrosis factor-alpha; TGF-β: Transforming growth factor-beta; GM-CSF: Granulocyte macrophage colony stimulating factor; PAF: Platelet activating factor; MMP: Matrix metalloproteinase; TIMP: Tissue inhibitor of metalloproteinase; MDF: Macrophage deactivating factor; VEGF: Vascular endothelial growth factor; FGF: Fibroblast growth factor; PIGF: Placental growth factor; MCP: Monocyte chemotactic protein.
adhesion formation. *Ann Surg* 2002; 236: 593-601

59 Chegini N. The role of growth factors in peritoneal healing: transforming growth factor beta (TGF-beta). *Eur J Surg Suppl* 1997; 17: 23.

60 Wasserberg N, Nunoo-Mensah JW, Ruiz P, Tzakis AG. The effect of immunosuppression on peritoneal adhesions formation after small bowel transplantation in rats. *J Surg Res* 2007; 141: 294-298

61 Okamoto Y, Takai S, Miyazaki M. Effect of chymase-dependent transforming growth factor beta on peritoneal adhesion formation in a rat model. *Surg Today* 2004; 34: 865-867

62 Sæd GM, Kruger M, Diamond MP. Expression of transforming growth factor-beta and extracellular matrix by human peritoneal mesothelial cells and by fibroblasts from normal peritoneum and adhesions: effect of Tisseele. *Wound Repair Regen* 2004; 12: 557-564

63 Cheeong YC, Shelton JB, Laird SM, Li TC, Ledger WL, Cooke ID. Peritoneal fluid concentrations of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and transforming growth factor-beta in women with pelvic adhesions. *Fertil Steril* 2003; 79: 1168-1175

64 Ryan CK, Sax HC. Evaluation of a carboxymethylcellulose sponge for prevention of postoperative adhesions. *Am J Surg* 1995; 169: 154-159; discussion 159-160

65 Hobson KG, DeWing M, Ho HS, Wolfe BM, Cho K, Greenhalgh DG. Expression of transforming growth factor beta1 in patients with and without previous abdominal surgery. *Arch Surg* 2003; 138: 129-132

66 Krause TJ, Katz D, Wheeler CJ, Ehner S, McKinnon RD. Increased levels of surgical adhesions in TGFbeta1 heterozygous mice. *J Invest Surg* 1999; 12: 31-38

67 Holmdahl L, Kotseos K, Bergstrom M, Falk P, Ivassson ML, Chegini N. Overproduction of transforming growth factor-bet (TGF-beta1) is associated with adhesion formation and peritoneal fibrinolytic impairment. *Surgery* 2001; 129: 626-632

68 Ghellai AM, Stucchi AF, Chegini N, Ma C, Andry CD, Kaseta JM, Burns JW, Skinner KC, Becker JM. Role of transforming growth factor-beta1 in peritonitis-induced adhesions. *J Gastrointest Surg* 2000; 4: 316-323

69 Bulbuller N, Ilhan YS, Kirkil C, Cetiner M, Gogebakan O, Ilhan N. Can angiotsin converting enzyme inhibitors prevent postoperative adhesions? *J Surg Res* 2005; 125: 94-97

70 Gago LA, Sæd GM, Chauhan S, Elhammady EF, Diamond MP. Seprafilm (modified hyaluronic acid and carboxymethylcellulose) acts as a physical barrier. *Fertil Steril* 2003; 80: 612-616

71 Chegini N, Kotseos K, Zhao Y, Bennett B, McLean FW, Diamond MP, Holmdahl L, Burns J. Differential expression of TGF-beta1 and TGF-beta3 in serosal tissues of human intrauterine organs and peritoneal adhesions. *Hum Reprod* 2001; 16: 1291-1300

72 Yang XX, Shi HP, Hou LB. Chinese medicine compound Changtong oral liquid on postoperative intestinal adhesions. *World J Gastroenterol* 2005; 11: 2967-2970

73 Dwivedi AJ, Kuvajerwala NK, Silva YJ, Tennenberg SD. Effects of surgical gloves on postoperative peritoneal adhesions and cytokine expression in a rat model. *Am J Surg* 2004; 188: 491-494

74 Kurukahvecioglu O, Koksal H, Gulbazar O, Erdem O, Engin D, Yazicioglu O, Kerem M, Taneri F. Infliximab ‘TNF-alpha antagonist’ decreases intraabdominal adhesions. *Surg Med J* 2007; 28: 1830-1835

75 Kaidi AA, Gurchumelidze T, Nazzal M, Fitgert P, Vanterpool C, Silva Y. Tumor necrosis factor-alpha: a marker for peritoneal adhesion formation. *J Surg Res* 1995; 58: 516-518

76 Kaidi AA, Nazzal M, Gurchumelidze T, Ali MA, Dawe EJ, Silva YJ. Preoperative administration of antibodies against tumor necrosis factor-alpha (TNF-alfa) and interleukin-1 (IL-1) and their impact on peritoneal adhesion formation. *Am Surg* 1995; 61: 569-572

77 Ito T, Fraser IP, Yeo Y, Highley CB, Bellas E, Kohane DS. Anti-inflammatory function of an in situ cross-linkable conjugate hydrogel of hyaluronic acid and desamethasone. *Biomaterials* 2007; 28: 1778-1786

78 Miratschijski U, Johannesson K, Jeppsson B, Agren MS. Effect of a matrix metalloproteinase activity and TNF-alpha converting enzyme inhibitor on intra-abdominal adhesions. *Eur Surg Res* 2005; 37: 68-75

79 Ivarsson ML, Diamond MP, Falk P, Holmdahl L. Plasminogen activator/plasminogen activator inhibitor-1 and cytokine modulation by the PROACT System. *Fertil Steril* 2003; 79: 987-992

80 Rout UK, Oommen K, Diamond MP. Altered expressions of VEGF mRNA splice variants during progression of uterine-peritoneal adhesions in the rat. *Am J Reprod Immunol* 2000; 43: 299-304

81 Molinas CR, Campo R, Dewerchin M, Eriksson U, Carmeliet P, Koninckx PR. Role of vascular endothelial growth factor and placental growth factor in basal adhesion formation and in carbon dioxide pneumoperitoneum-enhanced adhesion formation after laparoscopic surgery in transgenic mice. *Fertil Steril* 2003; 80 Suppl 2: 803-811

82 Victory R, Sæd GM, Diamond MP. Antiadhesion effects of doxosahexaenoic acid on normal human peritoneal and adhesion fibroblasts. *Fertil Steril* 2007; 88: 1657-1662

83 Hoshino A, Kawamura YI, Yasuhara M, Toyama-Sorimachi N, Yamamoto K, Matsuakawa A, Lira SA, Dohi T. Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. *J Immunol* 2007; 179: 5296-5304

84 Holsti MA, Chitnis T, Panzo RJ, Bronson RT, Yagita H, Sayegh MH, Tzianabos AO. Regulation of post-surgical fibrosis by the programmed death-1 inhibitory pathway. *J Immunol* 2004; 172: 5774-5781

85 Mrstik M, Kotseos K, Ma C, Chegini N. Increased expression of interferon-inducible protein-10 during surgically induced peritoneal injury. *Wound Repair Regen* 2003; 11: 120-126

86 Berkanoglu M, Zhang L, Ulukus M, Cakmak H, Kayisli UA, Kursun S, Arici A. Inhibition of chemokines prevents intraabdominal adhesions in mice. *Hum Reprod* 2005; 20: 3047-3052

87 Zeyneloglu HB, Seli E, Senturk LM, Gutierrez LS, Olive DL, Arici A. The effect of monocyte chemotactic protein 1 in intraperitoneal adhesion formation in a mouse model. *Am J Obstet Gynecol* 1998; 179: 438-443

88 Gao Y, Luo L, He F. Effect of monocyte chemotactic protein-1 on the intraperitoneal adhesion formation. *J Tongji Med Univ* 2000; 20: 340-349

89 Zeyneloglu HB, Senturk LM, Seli E, Oral E, Olive DL, Arici A. The role of monocyte chemotactic protein-1 in intraperitoneal adhesion formation. *Hum Reprod* 1998; 13: 1194-1199

90 Chung DR, Chitnis T, Panzo RJ, Kasper DL, Sayegh MH, Tzianabos AO. CD4+ T cells regulate surgical and postinfectious adhesion formation. *J Exp Med* 2002; 195: 1471-1478

S- Editor Zhong XY L- Editor Alpini GD E- Editor Lin YP