Interplay between gut microbiota and antimicrobial peptides

Xin Zong a, b, Jie Fu a, b, Bocheng Xu a, b, Yizhen Wang a, b, *, Mingliang Jin a, b, *

a Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
b Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China

1. Introduction

The mammalian gastrointestinal microbiome is composed of dynamic microbial communities that have increasingly been found to serve as key regulators of health and disease (Jandhyala et al., 2015; Luthold et al., 2017). At the genetic level, these commensal microbes outnumber host genes by 25-fold (Qin et al., 2010). The microbiome is composed of microbes that have evolved to function in mutualistic relationships with their hosts (Ayres, 2016; Bai et al., 2019), with a range of different viruses, bacteria, and fungi composing the overall gastrointestinal microbiome (Chen et al., 2018; Foca et al., 2015). Through the production of small-molecule metabolites that benefit their hosts, these microbes have also been shown to shape mammalian immunity (Moossavi and Bishehsari, 2019). When normal microbial homeostasis is disrupted, a range of serious metabolic disorders and diseases such as cardiovascular disease and inflammatory bowel disease (IBD) can develop (Mahnic et al., 2020; Ray and Dittel, 2015; Salguero et al., 2019), indicating that microbial dysbiosis can compromise normal immunological functionality. These microbes also serve as important regulators of mucosal barrier repair in the intestines (Okumura and Takeda, 2017, 2018), further supporting anti-pathogen defenses within their hosts (Guan et al., 2019; Ubeda et al., 2017).

Antimicrobial peptides (AMP) have been identified as key regulators of interactions between commensal microbes and host tissues. AMP are a diverse array of peptides that exert a range of antimicrobial activities via sequestering key growth nutrients, permeabilizing bacterial membranes, and other related mechanisms. Antimicrobial compound production has generally been studied in the context of competition within and between bacterial species (Mitri and Foster, 2013), but there is also evidence that AMP and other antimicrobial compounds may serve other purposes such as facilitating communication or cooperation between different bacterial strains in particular contexts (Abrudan et al., 2015). Antimicrobial activities can facilitate biodiversity, which is evidenced by the variable ecological fitness of specific sensitive and resistant microbes in a given dynamic environment and reflected...
by the different metabolic inputs necessary to produce these antimicrobial compounds (Guo et al., 2020; Ladram and Nicolas, 2016). Paneth cells and enterocytes within the gastrointestinal tract serve as the primary sources of AMP, with Paneth cells in particular being important secretory cells localized within intestinal crypts proximal to intestinal stem cells. Mucin, which creates a physical barrier between intestinal epithelial cells and gastrointestinal microbes, is also produced by goblet cells. The integrity of the intestinal epithelium is essential for the maintenance of normal gastrointestinal homeostasis, and perturbations of this integrity can have serious complications. Impaired AMP responses, for example, can increase host susceptibility to gastrointestinal infection with pathogens such as *Versinia pseudotuberculosis*, *Acinetobacter baumannii*, and *Pseudomonas aeruginosa* (Muniz et al., 2012; Mwangi et al., 2019). IBD patients have been found to exhibit reduced gastrointestinal AMP production, potentially leading to dysbiosis within this tissue (Yao et al., 2017). Tightly regulated control of AMP secretion is therefore essential in order to prevent such dysbiosis induced by pathogens or commensal microbes. Bacterially-derived peptides can also suppress the growth of certain microbes, thereby directly constraining pathogen infections.

To better understand the gastrointestinal microbiome, in the present review we discuss recent findings pertaining to interactions between commensal microbes and AMP. In particular, we pay specific attention to the ability of host-derived AMP to modulate the composition of the gut microbiome.

2. The composition of the gastrointestinal microbiome

About 100 trillion mutualistic microbes are found within the human gastrointestinal tract wherein they serve as important regulators of host metabolism (Illiano et al., 2020). The makeup of this gastrointestinal microbiome varies throughout the gastrointestinal tract, and nutrient availability is a primary determinant of the growth ability of these microbes in this tissue (Kamada et al., 2013). The gastrointestinal microbiome is dynamic. It is initially colonized immediately following birth and varies substantially (Guo et al., 2020; Milani et al., 2017), eventually stabilizes within 1 to 3 years (Lozupone et al., 2012; Lv et al., 2018). Thereafter, the microbiome typically remains relatively stable, recovering from acute insults such as antibiotic exposure in many cases (Donaldson et al., 2016). Prolonged changes, as may occur in the context of dietary changes, however, can result in long-lived structural changes in the composition of the gastrointestinal microbiome (Sekirov et al., 2010; Tang et al., 2020).

The specific composition of the microbiome varies significantly between individuals and can be difficult to directly assess, and as such, many recent studies have instead focused upon metagenomics approaches aimed at characterizing these microbes, given that many of them can not currently be cultured or evaluated by culture-dependent approaches (Sekirov et al., 2010). Dominant bacterial phyla in the human gut microbiome include Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and Verrucomicrobia species (Donaldson et al., 2016). These bacteria, however, are not uniformly distributed throughout the gastrointestinal tract. The local pH, oxygen level, concentration of host- and bacteria-derived antimicrobial compound, and bile acid level all contribute to heterogeneous bacterial distributions in tissues. Facultative anaerobes including Firmicutes (Lactobacillales) and Proteobacteria (Enterobacteriales) are typically found within the small intestine (Wang et al., 2020; Wang et al., 2018). Microbial density is generally lower in the proximal small intestine due to the harsher environmental conditions in this site, whereas microbes flourish increasingly well in the distal small intestine proximal to the ileum. Slower gastrointestinal transit within the colon leads to the availability of high nutrient levels, which in turn support the growth of fermentative microbes capable of breaking down dietary fiber and other complex nutrients. Microbial density is thus highest within the colon, which contains high levels of luminal Bacteroidetes (Bacteroidoidaceae, Prevotellaceae, and Rikenellaceae) species as well as high levels of Firmicutes (Lachnospiraceae and Ruminococcaceae) (Donaldson et al., 2016). In adult pigs, the colon has been shown to contain 35% Firmicutes, 21% Bacteroidetes, 3% Proteobacteria, and 2% Spirochetes species (Lamendella et al., 2011; Loft et al., 2012). Proteobacteria, in contrast, make up approximately 70% of ileal and jejunal microbial species, and Firmicutes make up approximately 20% of microbes in these tissue niches. This trend is reversed in the colon and cecum, wherein Firmicutes account for over 75% of bacteria, and Proteobacteria make up just 13% of the microbiome (Kim et al., 2012; Zhao et al., 2015). The high density of commensal microbes within the gastrointestinal tract is believed to limit the ability of many pathogens to colonize and damage the host gastrointestinal tract.

Understanding the composition of the gastrointestinal microbiome is important, given that dysbiosis can promote obesity or other serious disorders (Villanueva-Milan et al., 2015) such as IBD (Ostaff et al., 2013). Similarly, skin microbiome dysbiosis can promote the development of psoriasis and atopic dermatitis (Hourigan et al., 2018; Zou et al., 2019). Eliminating or disrupting the normal microbiome can seriously adversely impact host health, increasing susceptibility to pathogen infection and simultaneously causing many nutritional defects and impairing hormone signaling (Raymann et al., 2017; Zheng et al., 2017). It is thus essential that mammals be capable of regulating the composition of the gastrointestinal microbiome so as to promote homeostasis. Appropriate localization of commensal microbes within the gastrointestinal tract is also a key consideration in the maintenance of health and tissue homeostasis, given that both pathogenic microbes and commensal microbes require similar ecological niches in order to colonize the gastrointestinal tract. The co-evolution of these microbes and their hosts has led to the development of mutualistic relationships that simultaneously support microbial growth and host health (Ostaff et al., 2013). Indeed, many commensal microbes can prevent pathogen infection of the gastrointestinal tract by altering local environmental conditions (Nuding et al., 2014), whereas other commensal species are able to prevent such infections via competitive exclusion (Sekirov et al., 2010). In this setting, commensal microbes serve as an effective barrier to pathogen infection. Furthermore, these commensal microbes regulate host immunological functionality, control the production of cytokines such as IL-12, influencing the differentiation of CD4⁺ T helper cell subsets, and impact the production of host- and microbe-derived antimicrobial compounds (Iacob et al., 2019). AMP represent important host-derived antimicrobial compounds that help to regulate gastrointestinal microbiome homeostasis. Notably, these AMP are highly evolutionarily conserved and are expressed in all mammals and many other distantly-related species including cinderains (Mergaert, 2018). Studies in cinderains, insects, and mammals have consistently shown that host-derived AMP can influence epithelial microbial community composition (Mergaert, 2018).

3. Interactions between AMP and the gut microbiome

Interactions between host and gut microbiota are complex and can regulate metabolite production (Franzosa et al., 2019), and AMP serve as key regulators of host–microbe interactions (Dodd et al., 2017). Appropriate AMP production has been found to be dependent upon the presence of a healthy microbiota, and once these peptides are produced, the quality and quantity of the microbiome...
can be adjusted. Interactions between AMP and microbiota are bidirectional, and microbe-derived metabolites in turn serve to regulate host cell functionality and AMP production (da Costa et al., 2015; Nuding et al., 2014).

3.1. Host-derived AMP and the gut microbiome

Epithelium-derived AMP are regularly and inductively produced and contribute to barrier defenses that protect hosts against pathogenic incursions. Paneth cells and enterocytes are the primary sources of AMP in the gastrointestinal tract (Filipp et al., 2019), but immune cells such as dendritic cells, macrophages, and lymphocytes within the lamina propria can also produce these peptides (Phadke et al., 2005). The 3 primary types of AMP found in the gut include defensins, cathelicidins, and regenerating gene (Reg). IL3/βγ.

3.1.1. Defensins

Defensins are the most abundant AMP associated with the intestinal mucosa. To date, 10 types of defensins have been identified and separated into 2 groups (α- and β-defensins) according to their structural homology. Defensins are broadly antimicrobial cationic peptides that create small pores in the membranes of bacteria, resulting in a loss of membrane integrity, and eventually cell death (Cobo and Chadee, 2013). Paneth cells primarily secrete α-defensins in the small intestine, whereas epithelial cells in the colon primarily produce β-defensins. In addition, immune cells including B cells, T cells, macrophages, monocytes, and dendritic cells can also produce both α- and β-defensins (Dutta and Das, 2016).

There is evidence that the gut microbiome serves as an important regulator in α-defensin induction to protect hosts against pathogens (Miani et al., 2018). Indeed, in vitro intact intestinal contents can be stimulated to produce these defensins by live Escherichia coli or Staphylococcus aureus, live or dead Staphylococcus typhimurium, lipopolysaccharide (LPS), lipid A, lipoteichoic acid, or liposaccharides, underscoring the ability of bacteria and bacterially-derived components to promote defensin secretion by Paneth cells (Ayabe et al., 2000). With respect to the ability of commensal microbes to control defensin production, lactic acid has been shown to suppress α-defensin transcription in vitro in Caco-2 intestinal epithelial cells (IEC), whereasecal contents can promote the expression of α-defensin 5 (Sugi et al., 2017). In contrast, Menendez et al. (2013) determined that the administration of lactobacilli to antibiotic-treated mice was sufficient to restore α-defensin gene expression. Mice that overexpressed human α-defensin 5 (HDS; also known as DEFA5) exhibited significantly reduced segmented filamentous bacteria (SBF) colonization that was associated with decreased lamina propria Th17 cell levels (Salzman, 2010). At present, however, the role of SFB in regulating the production of α-defensins remains uncertain, and further studies of the ability of specific microbes to control the secretion of these AMP are warranted. Further studies of specific microbial metabolic pathways associated with defensin expression may offer novel insights into the mechanistic basis for host–microbiota interactions.

3.1.2. Cathelicidins

Like defensins, cathelicidins function by disrupting the bacterial cell membrane. These cationic peptides are composed of signal peptides containing a cathelin domain and a cationic AMP produced via C-terminal proteolysis (Sorensen et al., 2001). Cathelicidins such as LL-37/cramp are expressed in humans, mice, fish, chickens, snakes, and countless other species (Bals et al., 2001; Das et al., 2006; de Mera et al., 2008; Gao et al., 2014; Scocchi et al., 1999; Shamova et al., 1999; Uzzell et al., 2003; Wang et al., 2008; Xiao et al., 2006), functioning as natural AMP derived from macrophages and colonic epithelial cells that serve to control the composition of the microbiome within the colon.

In prior analyses, we have found that cathelicidin-WA can enhance the barrier function of the intestinal epithelium, protecting hosts from enterohemorrhagic E. coli O157:H7 infection (Yi et al., 2017). In vitro, synthetic cramp can disrupt the murine enteric pathogen Citrobacter rodentium, which is normally able to adhere to the apical surface of IEC (limura et al., 2005). In cramp-deficient mice, the mucus layer in the colon is discontinuous and thin, making it far easier for E. coli O157:H7 to penetrate the intestinal epithelium, thus underscoring the important defensive role of this AMP (Chromek et al., 2012; Hing et al., 2013). When orally administered the pathogen C. rodentium, cramp γ− mice exhibited markedly increased fecal C. rodentium counts relative to wild type mice (limura et al., 2005). Consistent with this, mice lacking cramp expression exhibit increased E. coli O157:H7 counts when infected with this pathogen, which was better able to penetrate the mucosal layer and to attach to the epithelium, thereby generating pathogenic lesions (Chromek et al., 2012). LL-37/cramp thus serves to protect the intestinal epithelium from colonization by adherent bacteria, thereby maintaining microbiome homeostasis. Singly-housed cramp γ− mice have been shown to develop a distinct intestinal microbiota compared with wild type mice. Whereas in these mice were cohoused for 4 wk, the composition of the microbiome in wild type mice shifted to more closely resemble that of cramp γ− mice. This suggests that pathogenic bacteria can grow more readily in the absence of cramp production and also suggests that pathogenic bacteria can be transferred to wild type mice upon cohousing (Yoshimura et al., 2018). These findings suggest that defensin-1 but not β-defensin-2, which is upregulated in xenografts in the context of intraluminal Salmonella infection (O’Neil et al., 1999). Enteroxigenic E. coli O157 can also drive the expression of β-defensins in porcine intestines (Xiong et al., 2016). Pre-incubating Caco-2 cells with live Enterococcus faecalis markedly impaired S. typhimurium uptake by 45.8%, whereas heat-killed E. faecium pretreatment did not impact pathogen internalization (Fusco et al., 2017). Miani et al. (2018) recently utilized a model of antibiotic-treated mice to explore the association between the microbiome and β-defensin production, and additionally assessed the influence of a low-affinity aryl hydrocarbon receptor (AHR) allele on impaired pancreatic β-defensin-14 secretion in non-obese diabetic mice. These authors ultimately determined that AHR ligands, butyrate, and other microbiota-derived compounds were sufficient to drive innate lymphoid cells (ILC) in the pancreas to secrete IL-22, which in turn induced β-defensin-14 secretion by endocrine cells. This suggests that both dysbiosis and low-affinity AHR alleles can influence the secretion of pancreatic β-defensin-14 in mice. Given the evidence that only live microbes can promote β-defensin production, we speculate that particular gut microbes that produce certain metabolites and/or AHR ligands may serve as the primary intestinal regulators of β-defensins. However, further in vivo research will be essential to fully explore the mechanisms whereby the gut microbiota controls β-defensin expression so as to suppress pathogen colonization and to control gut homeostasis.
endogenous cathelicidins are important regulators of homeostasis in the intestinal microbiome.

3.1.3. Reg IIIβ/γ

Regenerating gene AMP are soluble lectins that interact with bacterial surface components. Paneth cells are major producers of Reg type-IIIβ (Reg IIIγ) and its human ortholog Reg IIIx (HIP/PAP) (Cash et al., 2006; Vaishnava et al., 2008), and enterocytes can also produce these AMP (Brandl et al., 2007; Ogawa et al., 2003) upon infection, Toll-like receptor (TLR) activation, and inflammation (Behnse et al., 2014; Brandl et al., 2008). In mice, Reg IIIβ is generally co-regulated with Reg IIIγ (Zheng et al., 2008).

Recent work indicates that Reg III prevents pathogen colonization via a mechanism dependent upon the presence of a healthy gut microbiota. Ju et al. (2017) for example, found that metronidazole-treated mice exhibited decreased Turicibacteraceae abundance, excessive E. coli growth, and increased Reg IIIβ and Reg IIIγ mRNA expression relative to mice not treated with antibiotics. Earle et al. (2015) similarly found through their analysis of fixed gut cross-sections that eliminating microbiota-accessible carbohydrates from the diet resulted in the thinning of distal colonic mucosa, leading to closer microbial proximity to the epithelium and from the diet resulted in the thinning of distal colonic mucosa, sections that eliminating microbiota-accessible carbohydrates produce these AMP (Brandl et al., 2007; Ogawa et al., 2003) upon infection via impairing the recovery of normal gut microbiome homeostasis (Miki et al., 2017), indicating that the role of these AMP may differ in a pathogen-specific fashion. Using Reg IIIβ−/− mice, Vaishnava et al. (2011) found that the loss of this AMP was associated with abnormal spatial relationships between mucosal surfaces and commensal microbes within the intestines, and these RegIIIβ−/− mice exhibited a significantly increased mucosa-associated bacterial burden relative to cohoused wild type littermates. However, they did not observe any abnormalities in microbial localization within the colons of these Reg IIIβ−/− mice, consistent with the fact that lectin is expressed at lower levels in the colon as compared to the small intestine. This indicates that Reg IIIβ is a key innate immune peptide that mediates relationships between host tissues and the intestinal microbiome via controlling the spatial relationships between these entities.

3.2. Gut microbiota-derived AMP

Much like their hosts, many bacteria are capable of producing diverse AMP known as bacteriocins. Bacteriocins exhibit a range of functional activities, and some serve to disrupt protein, RNA, and DNA metabolism, whereas others can disrupt bacterial membranes (Cotter et al., 2013). The bactericidal properties of these bacteriocins enable them to effectively compete with other microbes for nutrients and environmental niches (Yang et al., 2014). Analyses of isolated microbes (Nakatsui et al., 2017; Rodet et al., 2015) and metagenomic analyses (Donia et al., 2014) in mammals have revealed that AMP-producing microbes are highly prevalent. Unlike antibiotics, which are primarily secondary metabolites, bacteriocins are proteins and are thus sensitive to protease activity and thus cause minimal damage to host tissues in vivo.

The exact roles played by bacteriocins are often unclear, but in vivo evidence suggests that certain bacteriocins can influence the establishment of microbes within the microbiota. For example, Hu et al. (2018) identified and validated Lactobacillus gasseri LA39 and Lactobacillus frumenti as 2 bacterial species that mediate diarrhea resistance by comparing the relative abundance of intestinal microbiota in saline and microbiota-transferred piglets. Zipperer et al. (2016) utilized wild type or mutant Staphylococcus lugdunensis that could or could not produce the AMP lugdunin in order to demonstrate that microbes capable of producing this bacteriocin were capable of outcompeting S. aureus in the nasal epithelia, thereby impacting overall microbiota composition. In a separate analysis, Roelofs et al. (2016) assessed AMP, which is termed Bac-

terioal species secretes antimicrobial proteins (BSAP) produced by the ubiquitous gastrointestinal commensal species Bacteroides uniformis. By employing a gnotobiotic model of competitive colonization, they revealed that BSAP are important mediators of gut colonization for B. uniformis, and when mice were co-colonized with BSAP-producing bacteria and bacteria that were either resistant or sensitive to these BSAP, B. uniformis microbes were able to outcompete sensitive but not resistant strains. The metagenomic analyses of human samples further revealed that BSAP-producing microbes and BSAP-sensitive microbes are not present in a given host, suggesting that these AMP play a key role in governing competitive dynamics among microbes in the gastrointestinal tract.

In the gastrointestinal tract of mammals, Abp118 is a Lactobacillus salivarius UCC118-derived bacteriocin that serves as one of the primary compounds capable of protecting against foodborne Lis-
teria monocytogenes infection, as evidenced by the fact that mutant L. salivarius UCC118 strains that cannot produce this bacteriocin are unable to protect against L. monocytogenes infections in mice (Corr et al., 2007). The Bacillus thuringiensis DPC 6431 bacteriocin thur-
icin CD can similarly kill many Clostridium difficile isolates including those that cause human disease, despite having no significant adverse effect on commensal microbial species (Rea et al., 2010). Pheromone-responsive plasmids that encode bacteriocins are also frequently observed among enterococcal bacteria (Gilmore et al., 2013), suggesting that these AMP are able to influence the balance between enterococci and other constituents in the gastrointestinal microbiome. Kommineni et al. (2015), for example, colonized the murine gastrointestinal tract with Enterococcus faecalis and then assessed the impact of the bacteriocin 21-encoding conjugative plasmid pP01 on enterococcal colonization, revealing that colonization by E. faecalis strains that carried a conjugation-defective pP01 mutant plasmid were able to clear vancomycin-resistant enterococci without undergoing plasmid transfer or disrupting the commensal microbiome. This indicates that the production of bacteriocins can control niche competition within the intestines, suggesting that bacteriocins produced by certain microbes may represent valuable therapeutic compounds capable of specifically targeting antibiotic-resistant pathogens within the intestines without adversely affecting the microbiome as a whole. However, it is important to note that certain bacteriocins serve as virulence factors, as in the case of listeriolysin S produced by certain strains of L. monocytogenes, which enables these bacteria to better colonize the intestine and to evade more deeply into host tissues and organs (Quereda et al., 2016). Other bacteriocins have also been shown to serve as mediators of bacterial quorum sensing in micro-

bial communities such as biofilms (Gobbetti et al., 2007), and the exact roles of these AMP are likely to be highly context-
dependent (Gilior et al., 2008).

Together, these prior studies offer clear evidence that AMP-producing microbes may have value as a probiotic alternative to traditional antibiotic treatment (Kommineni et al., 2015; Sassone-

Corsi et al., 2016). At the epithelial surface, a diverse array of host- and microbiota-derived AMP are present, and both of them serve to regulate the dynamics and overall structure of the prox-

imal microbiota.

4. Action modes of AMP and gut microbiota interaction

AMP can not only prevent pathogen infection, but also shape the overall composition of the microbiome. Shared features of host-
derived AMP allow them to act broadly on target microbes to suppress cell division, to interfere with microbial metabolism, and/
or to disrupt ATP synthesis. In addition to these direct antimicrobial activities, certain AMP can modulate immune responses and related signaling activities, thereby shaping both innate and adaptive immunity. These activities suggest that certain AMP may be leveraged in a therapeutic context to treat diseases associated with changes in the composition of the microbiome, particularly given the increasing global prevalence of antibiotic-resistant pathogens.

4.1. Direct interactions between AMP and the gastrointestinal microbiome

There are 2 primary types of AMP — those that permeabilize target cell membranes, and those that do not disturb membrane integrity and instead interact with intracellular targets (Toké, 2005). Electrostatic interactions lead these cationic AMP to interact with anionic LPS or lipoteichoic acid in the membranes of Gram-negative and -positive bacteria, respectively, thereby enabling these AMP to enter into bacterial cells. Membrane-disrupting AMP typically form \(\alpha \)-helical structures, with C-terminal positively charged residues interacting with one another (Powers and Hancock, 2003). This has been confirmed by 3D analyses of \(\alpha \)- and \(\beta \)-defensins: their amphipathic composition was thought to be necessary for their ability to interact with target cell membranes. AMP can disrupt microbial membranes either via directly disrupting it by forming barrel-stave and toroidal pores, or by thinning the lipid bilayer such that it dissolves (carpet model) (Jenssen et al., 2006). Multiple studies have evaluated the impact of human \(\alpha \)-defensins on \(E. \) coli strain (Lehrer et al., 1989). In one of these studies, inner and outer bacterial membranes were sequentially permethylized within 1 h by human neutrophil-derived \(\alpha \)-defensins, after which DNA and RNA synthesis were disrupted, and cells died. \(C. \) albicans treatment with human \(\alpha \)-defensin 1 also induced non-lytic release of ATP and other low-molecular-weight substances from cells, ultimately resulting in their death via mechanisms similar to those induced by salivary peptide histatin 5 (Edgerton et al., 2000). The \(\beta \)-defensin (RTD-1) is able to interact with lipid bilayers such that it promotes their thinning, forming large cylindrical complexes with 1-palmitoyl-2-oleoyl-phosphatidylcholine—1-palmitoyl-2-oleoyl-phosphatidylglycerol bilayers (Buffy et al., 2004). Studies of RTD-1 underscore its ability to disturb the phospholipid bilayer, underscoring the AMP of \(\beta \)-defensins noted in vitro. AMP can also adversely impact pathogens via enzymatically degrading bacterial membranes. For example, lysozyme can hydrolyze bacterial peptidoglycan linkages, whereas secretory phospholipase A2 can break down bacterial membrane phospholipids (Ragland and Criss, 2017). Intestinal pathogen infection interferes with normal secretory activity (Keestra-Gounder et al., 2016), thereby interfering with luminal AMP production. To preserve normal immunity, host cells may therefore employ alternative compensatory mechanisms in this context. For example, Paneth cells can maintain antimicrobial activity in the context of \(S. \) typhimurium infections via rerouting lysozyme for release via secretory autophagy (Bel et al., 2017).

AMP that do not disrupt cell membranes can instead cross into cells wherein they can interact with polyionic structures such as RNA or DNA, inhibiting the activity of particular intracellular targets (Jenssen et al., 2006). AMP-mediated inhibition of particular intracellular pathways can occur following penetration or endocytosis of these peptides (Madani et al., 2011; Nicolas, 2009). During endocytosis, the cellular membrane folds inward to form small vesicles that are coated with clathrin or caveolin prior to their internalization.

4.2. Indirect interactions between AMP and the gut microbiome

Defensins exert a number of activities in addition to their direct antimicrobial activities that enable them to influence innate immunity. Human \(\beta \)-defensin (HD1) and HD2, for example, can attract cells which express the CC-chemokine receptor 6 (CCR6) such as dendritic cells (Yang et al., 2002; Yang et al., 1999). In addition, certain murine intestinal \(\alpha \)-defensins can drive epithelial cell ion flux (Yue et al., 2002), and HD5 is capable of neutralizing bacterially-derived exotoxins (Lehrer et al., 2009). Cash et al. (2006) previously demonstrated that colonizing germ-free mice with \(Bacteroides \) thetaiotaomicron induces Paneth cells to express Reg III\(\gamma \), whereas the expression of Reg III\(\gamma \) has been found to be absent in myeloid differentiation factor 88 (MyD88)-deficient mice indicating that it is induced by commensal microbes in a TLR-dependent fashion (Brandl et al., 2007). In another study building upon these results, Vaishnava et al. (2008) utilized transgenic MyD88-deficient mice that expressed MyD88 only in Paneth cells and found that these cells were able to recognize and respond to bacterial signatures in MyD88-dependent fashion to induce Reg III\(\gamma \), Reg III\(\beta \), CRP-ductin (also known as DMTB1), and resistin-like molecule-\(\beta \) (RELMB) secretions. When Paneth cells and MyD88 expression were absent in these mice, commensal and pathogenic microbes were also able to more readily disseminate to mesenteric lymph nodes (Brandl et al., 2007; Vaishnava et al., 2008). Deleting individual TLR in these mice failed to replicate the phenotype of MyD88-knockout mice, indicating that multiple TLR are likely necessary for bacterial recognition and AMP induction (Vaishnava et al., 2008). The upregulation of Reg III\(\beta \), however, has been found to be specifically driven by TLR2 such that mice lacking this TLR are more susceptible to \(Y. \) pseudotuberculosis infection (Desselin et al., 2009). Broad-spectrum antibiotic treatment in mice impairs their production of Reg III\(\gamma \), whereas oral LPS administration can reverse this phenotype (Brandl et al., 2008). Overall, this thus suggests that Paneth cells recognize commensal microbes via TLR, and that they respond by producing key AMP that help to prevent pathogen invasion and shape the overall gastrointestinal microbiota. Treatment with broad-spectrum antibiotics can thus have off-target effects by reducing AMP production and thereby increasing susceptibility to pathogen colonization within the gastrointestinal tract (Brandl et al., 2007).

Paneth cell-derived AMP are important regulators of the overall composition of the microbiome. Mice that did not express the pattern recognition receptor nucleotide-binding oligomerization domain-containing protein 2, which is expressed in Paneth cells, exhibited decreased \(\alpha \)-defensin mRNA expression in these Paneth cells (Kobayashi et al., 2005), and dysregulated Th1-induced inflammation (Biswas et al., 2010) and abnormal microbiome composition in the small intestine relative to wild type mice (Petnicki-Ocwieja et al., 2009). Similarly, germ-free mice that do not express \(C D 1 d 1 \), which is necessary for glycolipid antigen presentation to natural killer T (NKT) cells, exhibit altered Paneth cell-derived \(\alpha \)-defensin secretion in response to \(E. \) coli challenge, and also exhibit an altered small intestine microbiome composition relative to that observed in wild type animals (Nieuwenhuis et al., 2009).

Mice that do not express matrix metalloproteinase-7 (MMP7) and that thus do not produce mature \(\alpha \)-defensins or that produce higher levels of \(\alpha \)-defensins because they express human HD5 have been used to assess the role of these Paneth cell-derived AMP in the regulation of the gastrointestinal microbiota (Salzman et al., 2010). Reciprocal changes in the dominant bacterial groups within the gastrointestinal microbiome were also observed in these mice, and \(\alpha \)-defensin deficiencies were associated with reduced Bacteroidetes abundance and increased Firmicutes abundance relative to wild
type mice, whereas HD5 expression was associated with the opposite phenotype. However, the total bacterial burden in these 2 mouse models was comparable to that observed in wild type mice, suggesting that Paneth cell-derived α-defensins do not regulate total bacterial load in the small intestine. Mice lacking MyD88 have also been found to exhibit comparable numbers of culturable bacteria within the lumen of the small intestine as compared to wild type mice (Vaishnava et al., 2008).

Transgenic HD5 expression in mice has also been shown to eliminate SFB colonization in these animals, and these bacteria are gradually lost in hemizygous HD5- transgenic breeding pairs and thus not transmitted from mothers to their pups through coprophagy. This absence of SFB resulted in an absence of detectable SFB bacteria within the lumen of the small intestine as compared to wild type mice (Nieuwenhuis et al., 2009). Paneth cell-derived AMP are therefore able to modulate lamina propria T cell responses via modulating the makeup of the intestinal microbiota, thus influencing the balance between pro- and anti-inflammatory immune responses.

These prior findings have significant implications, suggesting that Paneth cells and effectors derived therefrom can influence both intestinal homeostasis and systemic inflammation by controlling the microbiota composition. Given that Paneth cells constitutively produce many AMP, these molecules may be important regulators of baseline intestinal microbiota composition, thus setting a homeostatic baseline for local and systemic inflammatory responses. Paneth cell genetic or signaling abnormalities, in turn, may adversely affect the balance between hosts and the intestinal microbiome, resulting in potentially significant proximal and distal consequences.

5. Conclusions and future directions

This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota, which should have therapeutic implications for different intestinal disorders. In mammals, microbial interactions at barrier tissues are complex and dynamic processes, and the microbial homeostasis at these sites helps to maintain anti-pathogen defenses. To constrain pathogenic microbial growth and infection, large quantities of diverse AMP are produced in the intestines. These peptides can not only play immunomodulatory roles but also directly kill certain microbes. In addition to these direct antimicrobial activities, AMP have also been found to play essential roles in shaping the composition of the local microbiome.

Future research will be required in order to fully understand the intricate mechanisms whereby host-derived AMP expression is controlled temporally and spatially at barrier tissue surfaces so as to support microbial homeostasis. Further studies on how individual AMP impact the composition of the intestinal microbiome are also necessary. There is also a clear need to better understand how AMP dysregulation influence the development of diseases including IBD, psoriasis, and atopic dermatitis.

Author contributions

Xin Zong: writing, original draft preparation. Jie Fu and Bocheng Xu: investigation and reviewing. Yizhen Wang: supervision, validation. Minliang Jin: reviewing and editing.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 31702123 and 31630075), Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ20C170005), and Fundamental Research Funds for the Central Universities (Grant No. 2020-KYY-517102-0001).

References

Abrudan ML, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, Rozen DE. Socially mediated induction and suppression of antibiotic during bacterial coexistence. Proc Natl Acad Sci USA 2015;112:11054–9.
Ayabe T, Satcheli DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbial alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000;1:113–8.
Ayers JS. Cooperative microbial tolerance behaviors in host-microbiota mutualism. Cell 2016;165:1323–31.
Bai MM, Liu HN, Xu K, Zhang XF, Deng BC, Tan CQ, Deng JP, Bing PF, Yin YL. Compensation effects of coated cysteamine on meat quality, amino acid composition, fatty acid composition, mineral content in dorsal muscle and serum biochemical indices in finishing pigs offered reduced trace minerals diet. Sci China Life Sci 2019;62:1530–3.
Bals R, Lang C, Weiner DJ, Vogelmeier C, Welsch U, Wilson JM. Rhesus monkey (Macaca mulatta) mucosal antimicrobial peptides are close homologues of human molecules. Clin Diagn Lab Immunol 2001;8:370–5.
Behnsen J, Jellbauer S, Wong CP, Edwards RA, George MD, Ouyang WJ, Raffatellu M. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity 2014;40:262–73.
Bel S, Pensele M, Wang YH, Li Y, Ruhn KA, Hassell B, Leal T, Winter SE, Xavier RJ, Hooper LV. Paneth cells secrete lymphoyzeum via secretory autophagy during bacterial infection of the intestine. Science 2017;357:1047–51.
Biswas A, Liu YJ, Hao LM, Mizoguchi A, Salzman NH, Bevis CL, Kobayashi KS. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc Natl Acad Sci USA 2010;107:14739–44.
Brandi K, Pilita G, Mihou CN, Ubeda C, Ja T, Fleisher M, Schnabl B, De Matteo RP, Pamer EG. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficiencies. Nature 2008;455:804–U808.
Brandi K, Pilita G, Schnabl B. De Matteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. J Exp Med 2007;204:1891–900.
Buffy JJ, McCormick MJ, Wi S, Waring A, Lehrer RI, Hong M. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1. Biochemistry 2004;43:9800–12.
Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006;313:1126–30.
Chen B, Chen HH, Shu XL, Yin YS, Li J, Qin JN, Chen LJ, Peng KR, Xi F, Gu WZ, Zhao H, Jiang LQ, Li LJ, Song J, Eliot Y, Hu HWD, Jiang MZ, Wang X, Xiang C. Presence of segmented filamentous bacteria in human children and its potential role in the modulation of human gut immunity. Front Microbiol 2018;9.
Chow BT, Soto M, Lo BL, Crosby DC, Camerini D. Bacterial activity of four human beta-defensins: HBD-1, HBD-2, HBD-27, and HBD-29. Polymers-Basel 2012;4:747–58.
Chromek M, Arvidsson I, Karpman D. The antimicrobial peptide cathelicidin promotes mice from Escherichia coli 0157:H7-mediated disease. PloS One 2012;7:.
Cobo EE, Chadee K. Antimicrobial human beta-defensins in the colon and their role in infectious and non-infectious diseases. Pathogens 2013;2:177–92.
Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CGM. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 2017;107:14739–44.
da Costa JP, Cova M, Ferreira R, Soriano R, Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 2015;99:23–40.
Das H, Sharma B, Kumar A. Cloning and characterization of novel cathelicidin cDNA sequences of Bubalus bubalis homologous to Bos taurus cathelicidin-4. DNA Seq 2006;17:14–9.
de Mera IGF, de la Lastra JMP, Ayoubi P,inarjanan V, Kocam KM, Gortazar C, de la Fuente J. Differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer (Cervus elaphus hispanicus) naturally infected with Mycobacterium bovis. Dev Comp Immunol 2008;32:85–91.
Dessein R, Gironealla M, Vignal C, Peyrin-Biroulet L, Sokol H, Secher T, Lacas-Gervais S, Gratadoux JJ, Lafont F, Dagon JC, Ryffel B, Akira S, Langelot P, Nunez G, Sirard JC, Iovanna J, Simonet M, Chamaillard M. Toll-like receptor 2 is
critical for induction of Reg3β expression and intestinal clearance of Yersinia pseudotuberculosis. Gut 2009;58:771–6.

Dodd WJ, Clokie MR, Lavelle JD, Hillykkvian AJ, Higginsbottom SK, Le A, Cowan TM, Nolans GP, Fischbach MA, Sonnenburg JL. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017;551:648.

Donaldson GP, Lee SJ, Magnanin SK, Gut microbiogeography of the bacterial microbiota. Nat Rev Microbiol 2016;15:20–32.

Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J, Reiner S, Averkiou M, Luck J, De Pauw E, Mergaert P. Role of antimicrobial peptides in controlling symbiotic bacterial populations. PLoS Pathog 2012;8:e1002710.

Earle KA, Billings G, Lichtman JS, Hansson GC, Elias JE, Amieva MR, Le A, Cowan TM, Nolan GP, Fischbach MA, Sonnenburg JL. Gut microbiota dysbiosis in hospitalized gastroenterological patients are disease associated and characterized with the predominance of either enterobacteriaceae or Enterococcus. Front Microbiol 2020;11.

Elmers MS, Lebrun V, van Schalkwijk GC, van der Sloot AE, van der Mei HC, van den Bol M, Krop M, de Vos WM. The bacterial cell wall lectin RegBlf2 prolongs gut colonization and enteropathy in the streptomycin mouse model. Gut 2017;66:1495–504.

Elms C, Dunlop A, Ziegler M, Jannsen E, Kastenemies J, Rieger F, Scherler M, Kleyer M, Hafner J, Stalder F, Schaller S, Leukel T, Hiller K, Munter A. Distinct types of gut microbiota dysbiosis in hospitalized gastroenterological patients are disease associated and characterized with the predominance of either enterobacteriaceae or Enterococcus. Front Microbiol 2020:11.

Ehlers SR, Ercolini D, Fortina P, Nolans GP, Fischbach MA, Sonnenburg JL. The bacterial cell wall lectin RegBlf2 prolongs gut colonization and enteropathy in the streptomycin mouse model. Gut 2017;66:1495–504.

Emerson SM, Slaney M, O’Farrell DJ, Reynolds ME, Kinnear IA, Stothard P, Willing BP, Ménard A, Vazquez-Boland JA, Tjalsma H, Fischbach MA, Sonnenburg JL. NodD2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005;307:731–4.

Enriquez Y, Brette D, Iann, C, Grzegorczyk R, Hayward M, Simpson P, Caom Y, Boosieux P, Kristich CJ, Salzman NH. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 2019;526:719–22.

Ernst D, Brabec T, Voboril M, Dobes J. Enteric alpha-defensins on the verge of in vitro and in vivo applications. Microb Cell Fact 2017;16:172.

Escher JC, Hattori M, Onderdonk AB, Blumberg RS. Cytotoxic T cells kill remember ‘danger’ Lutheran bacteria. Cell 2009;152:1281–93.

Esteban RR, Souza WH, de Mello SA, Moraes MC, Carvalho RF, Lamari DR, Yen YH, Hata TR, Leung DY, Gallo RL. Bacterial colonization dysbiosis in hospitalized gastroenterological patients are disease associated and characterized with the predominance of either enterobacteriaceae or Enterococcus. Front Microbiol 2020:11.

Fiserova N, Kusuma M, Dąbrowski A, Ryszkowska M, Piotrowska M, Sajewska A, Kaczmarek A, Skrzypek M, Jaju S, Nowak A, Bannister NA, Carotenuto L, Lehn MW, Klar J, Samani N, Han IF. Mucosal immunity and the adaptive immune response. Curr Opin Immunol 2019;59:10–7.

Filipp D, Brabec T, Voboril M, Dobes J. Enteric alpha-defensins on the verge of in vitro and in vivo applications. Microb Cell Fact 2017;16:172.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.

Filippelli E, Carpena AM, Pinto-Machado P, Masera G, Coccia ME, D’Auria F, Vignali DA, Lanzavecchia A, Zolino M, Lanzavecchia A. A key role for β-defensin-2 in shaping the human gastrointestinal immune tolerance and in vaccine responses. Cell Host Microbe 2015;18:478–89.
O’Neil DA, Porter EM, Elewaut D, Anderson CM, Eckmann L, Ganz T, Kagnoff MF. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in contrast epithelial cells. Infect Immun 1999;67:676–84.

Ogawa H, Fukushima K, Naito H, Funayama Y, Unno M, Takahashi K, Kitayama T, Matsuno S, Ohtani H, Takasawa S, Okamoto H, Sasaki I. Increased expression of HIF-1α and regulating gene III in human inflammatory bowel disease and a patient with fistulizing Crohn disease model. Inflamm Bowel Dis 2003;9:162–70.

Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med 2017;49.

Okumura R. Maintenance of intestinal homeostasis by mucosal barriers. Expert Rev Gastroenterol Hepatol 2017;11:927–39.

Ostaf Mf, Stange EF, Wehkim A. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med 2013;5:1465–83.

Petrick-Obwieja T, Hnici T, Lui VJ, Biswas A, Hudcovic T, Tkalačová-Hogenová H, Kobayashi KS. Nos2 is required for the regulation of commercial microbiota in the intestine. Proc Natl Acad Sci USA 2009;106:15813–8.

Phadke SM, Deslouches B, Hileman SE, Montelaro RC, Wiesenfeld HC, Mietzner TA. Phadke SM, Deslouches B, Hileman SE, Montelaro RC, Wiesenfeld HC, Mietzner TA. From bacterial killing to immune modulation: recent insights. J Proteome Res 2010;9:3961–70.

Powers JPS, Hancock REW. The relationship between peptide structure and antimicrobial activity. Peptides 2003;24:1681–91.

Putsep K, Aoeissong L, Boman A, Midttveit T, Normark S, Boman HC, Andersson M. Germ-free and colonized mice generate the same products from enteric defensins. J Biol Chem 2000;275:80478–82.

Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Rey A, Dittel BN. Interrelatedness between dysbiosis in the gut microbiota due to antibiotic treatment. PLoS Pathog 2017;13.

Ray A, Dittel BN. Intestinal dysbiosis induced by antibiotics. Cell Mol Life Sci 2010;67:645–55.

Ray A, Dittel BN. Intestinal dysbiosis induced by antibiotics. Cell Mol Life Sci 2010;67:645–55.

Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA, Edwards RA, Zhang XM, Zhou RB, Tian ZG, Zeng BH, Wei H, Strober W, Zhao LP, Meng GX. Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nat Commun 2017;8.

Shamova O, Brogden KA, Zhao CQ, Nguyen T, Kokryakov VN, Lehrer RI. Purification and characterization of the cathelicidin from Bungarus fasciatus. Peptides 2003;24:1655–67.

Shavaya S, Behrendt IS, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 2008;105:20858–63.

Xiao YJ, Cai YB, Bommineni VR, Fernando SC, Prakash O, Gilliland SE, Zhang GL. Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J Biol Chem 2006;281:25838–67.

Xiao YT, Guo BX, Gan ZS, Song DG, Lu QZ, Yi HB, Wu YM, Yu YY, Yu ZD, Xu JM. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylation. Sci Rep 2016;6.

Yang D, Biragyn A, Kwak LW, Oppenheim JJ. Mammalian defensins in immunity: more than just microbicides. Trends Immunol 2002;23:291–6.

Yang D, Chertov O, Bykovskaia N, Chen Q, Buffo MJ, Shogan M, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OMZ, Oppenheim JJ. beta-defensins: linking innate and adaptive immunity through dendritic and T cell cCR3. Science 1999;286:525–8.

Yang SC, Lin CH, Sung CT, Fang JY. Antimicrobial activities of cathelicidins: application in foods and pharmaceuticals. Front Microbiol 2014;5:241.

Yao XM, Zhang CH, Xing Y, Xue C, Zhang QP, Pan FW, Guo HJ, Xu YX, Lu AL, Zhang XM, Zhou BB, Tian ZG, Zeng BH, Wei H, Struber W, Zhao JP, Meng GX. Modelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nat Commun 2017;8.

Yi HB, Hu WH, Chen S, Lu QZ, Wang YZ. Cathelicidin-WA improves intestinal epithelial barrier function and enhances host defense against enterohemorrhagic Escherichia coli O157:H7 infection. J Immunol 2017;198:1966–70.

Yoshimura T, Mclean MH, Drutzek AK, Yao XH, Chen QG, Huang JQ, Gong WH, Zhou JM, Yang X, Badger JH, O’Neill C, Thovarai V, Tessler A, Durum SK, Inui M, Cherniak C, Bian XW, Wang JM. The antimicrobial peptide CRAMP is essential for colon homeostasis by maintaining microbiota balance. J Immunol 2018;200:2019–26.

Yue G, Merlin D, Selsted ME, Lencer WJ, Madara JL, Eaton DC. Cryptdin 3 forms anion selective channels in cytoplasmic membranes of human embryonic kidney cells. Am J Physiol Gastrointest Liver Physiol 2002;282:G757–65.

Zhang XM, Wang JY, Liu SX, Jia Y, Zhao JG, He C, Ding J, Wang J, Wang HJ, Fan WB, Zhou JC, Miao J, Wang Z, Meng JC, Wang JL, Wang J, Wang J. Modulation of the distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One 2015;10:1–7.

Zheng HL, Zhang AH, Sun H, Yan GL, Wu FF, Wang XJ. Gut microbiota as endogenous antibiotics. China Life Sci 2020;63:116–22.

Zhu WM, Wang XJ, Xiang Y, Yang YZ, Wang KL, Zhang LM, Zeng Z, Pu Y. Identification of microRNA transcriptome reveals that miR-100 is involved in the renewal of intestinal stem cells. J Biol Chem 2010;285:39600–8.