Scattering theory for Laguerre operators

D. R. Yafaev

To Ari Laptev on the occasion of his 70th birthday

Abstract

We study Jacobi operators J_p, $p > -1$, whose eigenfunctions are Laguerre polynomials. All operators J_p have absolutely continuous simple spectra coinciding with the positive half-axis. This fact, however, by no means imply that the wave operators for the pairs J_p, J_q where $p \neq q$ exist. Our goal is to show that, nevertheless, this is true and to find explicit expressions for these wave operators. We also study the time evolution of $(e^{-Jt}f)_n$ as $|t| \to \infty$ for Jacobi operators J whose eigenfunctions are different classical polynomials. For Laguerre polynomials, it turns out that the evolution $(e^{-J_p t}f)_n$ is concentrated in the region where $n \sim t^2$ instead of $n \sim |t|$ as happens in standard situations.

As a by-product of our considerations, we obtain universal relations between amplitudes and phases in asymptotic formulas for general orthogonal polynomials.

Mathematics Subject Classification 2020. [2000]33C45, 39A70, 47A40, 47B39

Keywords. Jacobi operators, Laguerre polynomials, asymptotic formulas

1 Introduction

1.1 Jacobi operators

Jacobi operators J are discrete analogues of one-dimensional differential operators. They are defined in the space $\ell^2(\mathbb{Z}_+)$ by the formula

$$(Jf)_n = a_{n-1}f_{n-1} + b_nf_n + a_nf_{n+1}, \quad n \in \mathbb{Z}_+, \quad a_{-1} = 0. \quad (1.1)$$

We always suppose that $a_n > 0$ and $b_n = \bar{b}_n$. Of course spectral properties of Jacobi operators depend crucially on a behavior of the coefficients a_n and b_n as $n \to \infty$.

Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France and SPGU, Univ. Nab. 7/9, Saint Petersburg, 199034 Russia; email: yafaev@univ-rennes1.fr
In the simplest case $a_n = a_\infty > 0$, $b_n = 0$, the operator J (known as the “free”
discrete Schrödinger operator) has the absolutely continuous spectrum $[-2a_\infty, 2a_\infty]$, and its
eigenfunctions are expressed via Chebyshev polynomials of second kind. Operators J whose
eigenfunctions are Jacobi polynomials are natural generalizations of this operator.

The situation $a_n \to \infty$ as $n \to \infty$ is also quite common in applications. We discuss
only the case where the Carleman condition

$$\sum_{n=0}^{\infty} a_n^{-1} = \infty$$

(1.2)
is satisfied. Suppose that $b_n/2a_n \to \gamma$ as $n \to \infty$. If $|\gamma| < 1$, then the spectrum of the
operator J is purely absolutely continuous and coincides with the whole axis \mathbb{R}; see
[5, 2]. A famous example is

$$a_n = \sqrt{(n + 1)/2}, \quad b_n = 0.$$

(1.3)

Eigenfunctions of the corresponding operator J are the Hermite polynomials. If $|\gamma| > 1$
($|\gamma| = \infty$ is admitted), then the spectrum of J is discrete. The case $|\gamma| = 1$ is critical,
and the spectral properties of J depend on details of the behavior of $b_n/(2a_n) - \gamma$ as
$n \to \infty$. The results pertaining to this situation are scarce. We mention only papers
[6, 7] and references therein.

Here we study an important particular case

$$a_n = a_n^{(p)} = \sqrt{(n + 1)(n + 1 + p)} \quad \text{and} \quad b_n = b_n^{(p)} = 2n + p + 1, \quad p > -1.$$

(1.4)

Thus we have $\gamma = 1$. For all p, the Jacobi operators $J = J_p$ (we call them the Laguerre
operators) with the recurrence coefficients (1.4) have absolutely continuous spectra
coinciding with $[0, \infty)$. Eigenfunctions of these operators are the Laguerre polynomials
$L_n^{(p)}(\lambda)$. Our goal is to investigate an asymptotic behavior of the unitary group $e^{-iJ_p t}$
as $t \to \pm \infty$. We show that, for different p, these asymptotics are essentially the same
although the operators $J_q - J_p$ are not even compact unless $q = p$.

Another goal of the paper is to obtain detailed asymptotic formulas for $(e^{-iJ_p t} f)_n$
as $|t| \to \infty$ for sufficiently arbitrary Jacobi operators J. Here we suppose that an
asymptotic behavior of the corresponding orthogonal polynomials $P_n(\lambda)$ as $n \to \infty$ is
known. These general results are illustrated on examples of the classical polynomials.
In particular, for Laguerre operators J_p, we show that the evolution $(e^{-J_p t} f)_n$ is
concentrated in the region where $n \sim t^2$ instead of $n \sim |t|$ as happens in standard
situations.

1.2 Scattering theory

We work in the framework of scattering theory. Let us briefly recall its basic notions. We
refer, e.g., to the book [10] for a detailed presentation. Consider a couple of self-adjoint
operators A and B in some Hilbert space \mathcal{H}. In view of our applications, we suppose that both of these operators are absolutely continuous. Scattering theory studies the strong limits

$$W_{\pm} = W_{\pm}(B, A) = \text{s-lim}_{t \to \pm \infty} e^{iBt} e^{-iAt}$$

(1.5)

known as the wave operators for the pair A, B. If the limits (1.5) exist, then the wave operators possess several useful features. In particular, they are isometric and enjoy the intertwining property $BW_{\pm} = W_{\pm}A$. It follows that the restriction of the operator B on the image $\text{Ran} \ W_{\pm}$ of W_{\pm} is unitary equivalent to the operator A. If both wave operators $W_{\pm}(B, A)$ and $W_{\pm}(A, B)$ exist, then the operators A and B are unitarily equivalent. In this case the spectra of the operators A and B coincide.

The existence of the limits (1.5) is a non-trivial problem. We emphasize that the unitary equivalence of operators A and B does not imply the existence of the wave operators (1.5). A notorious example is given by the pair of multiplication $A, (Au)(x) = xu(x)$, and differential $B = -id/dx$ operators in the space $L^2(\mathbb{R})$. Generally speaking, the limits (1.5) (or their appropriate modifications) exist if the perturbation $B - A$ is in some sense small. This might mean different things. For example, it suffices to assume that the operator $B - A$ is trace class or that it acts as an integral operator with smooth kernel in the diagonal representation of the operator A (or B).

Our aim is to develop scattering theory for pairs of the operators J_p, J_q. According to (1.4) we have

$$a_n^{(q)} - a_n^{(p)} = (q - p)/2 + O(n^{-1}), \quad n \to \infty, \quad \text{and} \quad b_n^{(q)} - b_n^{(p)} = q - p,$$

(1.6)

so that the operator $J_q - J_p$ is not even compact. Therefore standard methods of scattering theory do not work in this case. It turns out however that, from the viewpoint of scattering theory, the diagonal and off-diagonal terms in (1.6) compensate each other. Note that if only one of the coefficients a_n or b_n is changed, then the spectrum of the operator J_p is shifted. In this case the wave operators cannot exist.

Although the difference $J_q - J_p$ is by no means small, there exists a natural one-to-one correspondence between eigenfunctions of the operators J_p for different p. Their asymptotics as $n \to \infty$ differ by a phase shift only. This allows us to show that the wave operators $W_{\pm}(J_q, J_p)$ exist for all $p, q > -1$. This result is obtained by a direct calculation which yields also explicit expressions for the wave operators.

1.3 Structure of the paper

Jacobi operators and associated orthogonal polynomials, in particular, Laguerre polynomials, are discussed in Sect. 2.

In Sect. 3, we prove the existence of the wave operators $W_{\pm}(J_q, J_p)$ (Theorem 3.1). We also construct scattering theory for pairs J, \bar{J} where $J = J_p$ for some $p > -1$ and the coefficients of a Jacobi operator \bar{J} are sufficiently close to those of J (Theorem 3.8).

In Sect. 4.1, we exhibit a link between a large time behavior of $(e^{-iJt} f)_n$ and asymptotics of associated orthogonal polynomials $P_n(\lambda)$ as $n \to \infty$. This leads to
universal relations between amplitudes and phases in asymptotic formulas for $P_n(\lambda)$. These results are illustrated in Sect. 4.2 – 4.4 on examples of classical polynomials. The results for Laguerre, Jacobi and Hermite polynomials are stated as Theorems 4.5, 4.9 and 4.10, respectively. The Hermite operator J is somewhat exceptional since the evolution $e^{-iJt} f$ is dispersionless in this case.

Below $\| \cdot \|$ is the norm in the space $\ell^2(\mathbb{Z}_+)$; I is the identity operator; C are different positive constants whose precise values are of no importance.

2 Jacobi operators and orthogonal polynomials

2.1 Orthogonal polynomials

Here we collect necessary information about the Jacobi operators J given by formula (1.1) and associated orthogonal polynomials $P_n(z)$; see the books [1, 8] for a comprehensive presentation. Given coefficients $a_n > 0$, $b_n = \bar{b}_n$, $n \in \mathbb{Z}_+$, one constructs $P_n(z)$ by the recurrence relation

$$a_{n-1} P_{n-1}(z) + b_n P_n(z) + a_n P_{n+1}(z) = z P_n(z), \quad n \in \mathbb{Z}_+, \quad z \in \mathbb{C}, \quad (2.1)$$

and the boundary conditions $P_{-1}(z) = 0$, $P_0(z) = 1$. Then $P_n(z)$ is a polynomial of degree n. Obviously, $P(z) = \{P_n(z)\}_{n=0}^\infty$ satisfies the equation $J P(z) = z P(z)$, that is, it is an “eigenvector” of the operator J.

We consider the operator J in the space $\ell^2(\mathbb{Z}_+)$. Let us denote by J_0 the minimal operator defined by formula (1.1) on a set D of vectors $f = \{f_n\}_{n=0}^\infty$ with only a finite number of non-zero components. This operator is symmetric; moreover, it is essentially self-adjoint if the Carleman condition (1.2) is satisfied. In particular, condition (1.2) holds true for the coefficients (1.4). For essentially self-adjoint operators, the domain $D(J)$ of the closure J of the operator J_0 consists of all vectors $f \in \ell^2(\mathbb{Z}_+)$ such that $J f \in \ell^2(\mathbb{Z}_+)$. The spectrum of the self-adjoint operator J is simple with $\epsilon_0 = (1, 0, 0, \ldots)^T$ being a generating vector. Therefore it is natural to define the spectral measure of J by the relation $d\rho(\lambda) = d(E(\lambda)\epsilon_0, \epsilon_0)$ where $E(\lambda)$ is the spectral family of the operator J. The polynomials $P_n(\lambda)$ (we call them orthonormal) are orthogonal and normalized in the spaces $L^2(\mathbb{R}; d\rho)$:

$$\int_{-\infty}^\infty P_n(\lambda) P_m(\lambda) d\rho(\lambda) = \delta_{n,m}, \quad (2.2)$$

as usual, $\delta_{n,n} = 1$ and $\delta_{n,m} = 0$ for $n \neq m$.

Alternatively, given a probability measure $d\rho(\lambda)$, the polynomials $P_0(\lambda), P_1(\lambda), \ldots, P_n(\lambda), \ldots$ can be obtained by the Gram-Schmidt orthonormalization of the monomials $1, \lambda, \ldots, \lambda^n, \ldots$ in the space $L^2(\mathbb{R}_+; d\rho)$. It is easy to see that $P_n(\lambda)$ is a polynomial of degree n, that is, $P_n(\lambda) = k_n (\lambda^n + r_n \lambda^{n-1} + \cdots)$ with $k_n \neq 0$. One usually requires $k_n > 0$. The recurrence coefficients a_n, b_n can be recovered by the formulas $a_n = k_n / k_{n+1}$, $b_n = r_n - r_{n+1}$.

$D. R. Yafaev$
One defines a mapping \(\Phi : \ell^2(\mathbb{Z}_+) \to L^2(\mathbb{R}; d\rho) \) by the formula

\[
(\Phi f)(\lambda) = \sum_{n=0}^{\infty} P_n(\lambda) f_n, \quad f = \{f_n\}_{n=0}^{\infty} \in \mathcal{D}.
\]

(2.3)

This mapping is isometric according to (2.2). It is also unitary if the set of all polynomials \(P_n(\lambda), n \in \mathbb{Z}_+ \), is dense in \(L^2(\mathbb{R}; d\rho) \). This condition is satisfied if the operator \(J_0 \) is essentially self-adjoint. Putting together definitions (1.1), (2.1) and (2.3), it is easy to check the intertwining property \((\Phi J f)(\lambda) = \lambda (\Phi f)(\lambda) \).

Typically, on the absolutely continuous spectrum of a Jacobi operator \(J \) when \(d\rho(\lambda) = \tau(\lambda)d\lambda \), the orthonormal polynomials \(P_n(\lambda) \) have oscillating asymptotics

\[
P_n(\lambda) = 2\kappa(\lambda)n^{-r} \cos \Omega_n(\lambda) + o(n^{-r}),
\]

(2.4)

\[
\Omega'_n(\lambda) = \omega(\lambda)n^s + o(n^s)
\]

(2.5)

where \(\kappa(\lambda) > 0, s > 0 \) and we can suppose that \(\omega(\lambda) > 0 \). The exponents \(r, s \), the amplitude \(\kappa(\lambda) \) and the phase \(\omega(\lambda) \) are determined by the recurrence coefficients \(a_n \) and \(b_n \). Our considerations (see Sect. 4.1) show that these quantities are necessarily linked by universal relations:

\[
2r + s = 1,
\]

(2.6)

\[
2\pi \tau(\lambda) \kappa^2(\lambda) = s\omega(\lambda).
\]

(2.7)

2.2 Laguerre operators

Suppose now that the recurrence coefficients \(a_n, b_n \) are given by formulas (1.4). In this case the orthogonal polynomials \(L_n^{(p)}(z) \) defined by relations (2.1) with the boundary conditions \(L_{-1}^{(p)}(z) = 0, L_0^{(p)}(z) = 1 \) are known as the Laguerre polynomials. Note that the normalized polynomials \(\bar{L}_n^{(p)}(z) \) we consider here are related to the Laguerre polynomials \(L_n^{(p)}(z) \) defined in §10.12 of the book [3] or in §5.1 of the book [9] by the equality

\[
\bar{L}_n^{(p)}(z) = (-1)^n \sqrt{\frac{\Gamma(1 + n)\Gamma(1 + p)}{\Gamma(1 + n + p)}} L_n^{(p)}(z).
\]

(2.8)

According to asymptotic formula (10.15.1) in [3] for positive \(\lambda \), we have

\[
L_n^{(p)}(\lambda) = (-1)^n \sqrt{\frac{\Gamma(1 + p)}{\pi}} \lambda^{-p/2 - 1/4} e^{\lambda^{1/2} n^{-1/4} \cos \left(2\sqrt{n\lambda} - \frac{2p + 1}{4} \pi\right)} + O(n^{-3/4})
\]

(2.9)

as \(n \to \infty \). This asymptotics is uniform in \(\lambda \in [\lambda_0, \lambda_1] \) if \(0 < \lambda_0 < \lambda_1 < \infty \).

Let us now consider the Laguerre operators \(J_p \) defined by formula (1.1) where \(a_n, b_n \) are given by (1.4). The spectral measures of the operators \(J_p \) are supported on the
half-axis \([0, \infty)\), they are absolutely continuous and are given by the relation (see, e.g., formula (10.12.1) in [3])

\[
d\rho_p(\lambda) = \tau_p(\lambda)d\lambda \quad \text{where} \quad \tau_p(\lambda) = \frac{1}{\Gamma(p+1)} \lambda^p e^{-\lambda}, \quad \lambda \in \mathbb{R}_+.
\] (2.10)

Since the measure \(d\rho_p(\lambda)\) is absolutely continuous, it is convenient to reduce the Jacobi operator \(J_p\) to the operator \(A\) of multiplication by \(\lambda\) in the space \(L^2(\mathbb{R}_+)\). To that end, we put

\[
\varphi_n^{(p)}(\lambda) = \sqrt{\tau_p(\lambda)} L_n^{(p)}(\lambda), \quad \lambda \in \mathbb{R}_+.
\] (2.11)

and introduce a mapping \(\Phi_p : \ell^2(\mathbb{Z}_+) \to L^2(\mathbb{R}_+)\) by the formula (cf. (2.3))

\[
(\Phi_p f)(\lambda) = \sum_{n=0}^{\infty} \varphi_n^{(p)}(\lambda) f_n, \quad f = \{f_n\}_{n=0}^{\infty} \in \mathcal{D}, \quad \lambda \in \mathbb{R}_+.
\] (2.12)

The operator \(\Phi_p^* : L^2(\mathbb{R}_+) \to \ell^2(\mathbb{Z}_+)\) adjoint to \(\Phi_p\) is given by the equality

\[
(\Phi_p^* g)_n = \int_{0}^{\infty} \varphi_n^{(p)}(\lambda) g(\lambda) d\lambda, \quad n \in \mathbb{Z}_+.
\]

The operator \(\Phi_p\) is unitary, that is,

\[
\Phi_p^* \Phi_p = I, \quad \Phi_p \Phi_p^* = I,
\] (2.13)

and enjoys the intertwining property

\[
\Phi_p J_p = A \Phi_p.
\] (2.14)

3 Wave operators

3.1 Two Laguerre operators

One of our main results is stated as follows.

Theorem 3.1. Let \(J_p\) be a Jacobi operator with matrix elements (1.4) in the space \(\ell^2(\mathbb{Z}_+)\). Define the unitary operators \(\Phi_p : \ell^2(\mathbb{Z}_+) \to L^2(\mathbb{R}_+)\) by formulas (2.11) and (2.12). Then for all \(p, q > -1\), the wave operators \(W_\pm(J_q, J_p)\) exist and

\[
W_\pm(J_q, J_p) = e^{\pm i(q-p)\pi/2} \Phi_q^* \Phi_p^*.
\]

We start a proof with a simple standard statement.

Lemma 3.2. The claim of Theorem 3.1 is equivalent to the relation

\[
s-lim_{t \to \pm\infty} (\Phi_p^* - \mu_\pm \Phi_q^*) e^{-iAt} = 0, \quad \mu_\pm = e^{\pm i(q-p)\pi/2}.
\] (3.1)
Proof. Let f be an arbitrary element of the space $\ell^2(\mathbb{Z}_+)$ and $g = \Phi_pf$. In view of the properties (2.13) and (2.14), we have
$$
\|e^{iJq_t}e^{-iJp_t}f - \mu\Phi_q^*\Phi_pf\| = \|e^{-iJp_t}\Phi_p^*g - \mu\pm e^{-iJq_t}\Phi_q^*g\| = \|\Phi_p^* - \mu\Phi_q^*\|e^{-iAt}g\|.
$$
Since the left- and right-hand sides here tend to zero at the same time, this concludes the proof. \hfill \Box

It suffices to check (3.1) on a set $C^\infty_0(\mathbb{R}_+)$ dense in $L^2(\mathbb{R}_+)$. Let the function $\varphi(p)_n(\lambda)$ be defined by equalities (2.10) and (2.11). It follows from asymptotic formula (2.9) that
$$
\varphi_n(p)(\lambda) = (-1)^n2^{-1/2}\pi^{-1/4}(n + 1)^{-1/4}(\nu_p e^{2i\sqrt{n}l} + \bar{\nu}_p e^{-2i\sqrt{n}l}) + r_n(p)(\lambda) \quad (3.2)
$$
where $\nu_p = e^{-i\pi(2p+1)/4}$ and
$$
|r_n(p)(\lambda)| \leq C(n + 1)^{-3/4} \quad (3.3)
$$
uniformly on every compact subinterval of \mathbb{R}_+.

Let us define mappings $V_\pm: C^\infty_0(\mathbb{R}_+) \to \ell^2(\mathbb{Z}_+)$ by the formula
$$
(V_\pm g)_n = (-1)^n2^{-1/2}\pi^{-1/4}(n + 1)^{-1/4}\int_0^{\infty} e^{\pm 2i\sqrt{n}l}l^{-1/4}g(\lambda)d\lambda. \quad (3.4)
$$
Equality (3.2) implies that
$$
\Phi_p^*e^{-iAt}g = \nu_p V_+e^{-iAt}g + \bar{\nu}_p V_-e^{-iAt}g + R_p(t)g \quad (3.5)
$$
where
$$
(R_p(t)g)_n = \int_0^{\infty} r_n(p)(\lambda)e^{-iAt}g(\lambda)d\lambda.
$$

First, we check that the remainder in (3.5) is negligible.

Lemma 3.3. Let $g \in C^\infty_0(\mathbb{R}_+)$. Then
$$
\lim_{|t| \to \infty} \|R_p(t)g\| = 0. \quad (3.6)
$$
Proof. By the Riemann-Lebesgue lemma, every integral in the sum
$$
\|R_p(t)g\|^2 = \sum_{n=0}^{\infty} \left| \int_0^{\infty} r_n(p)(\lambda)e^{-iAt}g(\lambda)d\lambda \right|^2 \quad (3.7)
$$
tends to zero as $|t| \to \infty$. Estimate (3.3) allows us to use the dominated convergence theorem. Therefore the sum (3.7) tends to zero as $|t| \to \infty$. \hfill \Box
Note a formula
\[
\int_0^\infty e^{\pm 2i\sqrt{n}\lambda - iAt} G(\lambda) d\lambda = \int_0^\infty e^{\pm 2i\sqrt{n}\lambda - iAt} \left(\frac{G(\lambda)}{\pm \sqrt{n}\lambda^{1/2} - t} \right)' d\lambda
\]
(3.8)
which can be verified by a direct integration by parts. Using it, we obtain the following elementary assertion.

Lemma 3.4. For an arbitrary \(G \in C_0^\infty(\mathbb{R}_+) \), an estimate
\[
\left| \int_0^\infty e^{\pm 2i\sqrt{n}\lambda - iAt} G(\lambda) d\lambda \right| \leq C_k(\sqrt{n} + |t|)^{-k}, \quad \forall t > 0,
\]
(3.9)
is true for all \(k \in \mathbb{Z}_+ \).

Proof. Suppose that \(\text{supp} \, G \subset [\lambda_1, \lambda_2] \). Then
\[
\sqrt{n}\lambda^{1/2} + |t| \geq \sqrt{n}\lambda_2^{1/2} + |t|
\]
and \(\lambda^{3/2} \leq \lambda_2^{3/2} \). Therefore the right-hand side of (3.8) is estimated by \(C_1(\sqrt{n} + |t|)^{-1} \) which proves (3.9) for \(k = 1 \). Further integrations by parts in (3.8), yield (3.9) for an arbitrary \(k \).

Corollary 3.5. For the operators (3.4) and all \(g \in C_0^\infty(\mathbb{R}_+) \), we have
\[
\lim_{t \to \pm \infty} \|V_{\pm} e^{-iAt} g\| = 0.
\]
(3.10)

Using now relation (3.5) and taking into account Lemma 3.3, we arrive at the following result.

Lemma 3.6. Let \(g \in C_0^\infty(\mathbb{R}_+) \). Then
\[
\lim_{t \to \pm \infty} \|\Phi^*_p e^{-iAt} g - \nu_p^\pm V_{\pm} e^{-iAt} g\| = 0.
\]
(3.11)

The same result is of course true for \(\Phi^*_q e^{-iAt} g \). This yields relation (3.1) with \(\mu_{\pm} = (\nu_p \bar{\nu}_q)^\pm 1 \). Using Lemma 3.2, we conclude the proof of Theorem 3.1. \(\square \)

For the scattering operator \(S = W^*_+ W_- \), we obtain a very simple expression.

Proposition 3.7. Under the assumptions of Theorem 3.1, we have \(S = e^{i(p-q)\pi I} \).

Recall that the wave operators \(W_{\pm}(B, A) \) for a couple of self-adjoint operators \(A \) and \(B \) can be represented as products of an appropriate Fourier transform for the operator \(A \) and the inverse transform corresponding to \(B \). For Schrödinger operators in the space \(L^2(\mathbb{R}_+) \), this is discussed, for example, in Section 4.2 (see formula (2.30)) of the book [11]. Normally, there are two natural sets of eigenfunctions of the operators \(A \) and \(B \). This leads to two wave operators. In our case these sets of eigenfunctions almost coincide so that the wave operators \(W_{\pm}(J_q, J_p) \) differ by a phase factor only whence the scattering operator is almost trivial.
3.2 Perturbation theory

Here we choose some \(p > -1 \) and construct scattering theory for the pair \(J = J_p, \ \overline{J} = J + V \) where the operator \(V \) is in some sense small. We do not assume that \(V \) is a Jacobi operator, but, in particular, our results apply to Jacobi operators. We denote by \(\mathcal{H}_{ac} \) the absolutely continuous subspace of the operator \(\overline{J} \).

Let us define an operator \(\mathcal{N} \) in the space \(\ell^2(\mathbb{Z}_+) \) by the formula
\[
(\mathcal{N} f)_n = (n + 1) f_n.
\]

Our goal is to prove the following result.

Theorem 3.8. Let \(J = J_p, \ p > -1, \) be the Laguerre operator with matrix elements (1.4), and let \(\overline{J} = J + V \) where \(V \) is a symmetric operator such that
\[
V = N^{-r} TN^{-r_0}
\]
(3.12)
for some bounded operator \(T \).

1° If \(r_0 > 1/4, \ r > 1/4 \), then the wave operators \(W_{\pm}(\overline{J}, J) \) exist and are complete, that is, \(\text{Ran} \ W_{\pm}(\overline{J}, J) = \mathcal{H}_{ac} \).

2° If \(r_0 > 1/4, \ r > 1/2 \), then the singular spectrum of the operator \(\overline{J} \) consists of eigenvalues of finite multiplicities that may accumulate to the point 0 only.

Corollary 3.9. Let \(a_n, b_n, \) be defined by formulas (1.4), and let \(\overline{J} \) be a self-adjoint Jacobi operator with matrix elements \(\tilde{a}_n, \tilde{b}_n \) such that
\[
\tilde{a}_n - a_n = O(n^{-\rho}), \quad \tilde{b}_n - b_n = O(n^{-\rho}).
\]
(3.13)

1° If \(\rho > 1/2 \), then the wave operators \(W_{\pm}(\overline{J}, J) \) exist and are complete.

2° If \(\rho > 3/4 \), then the singular spectrum of the operator \(\overline{J} \) consists of eigenvalues that may accumulate to the point 0 only.

Let us deduce Corollary 3.9 from Theorem 3.8. We introduce diagonal matrices \(A \) and \(B \) with the elements \(a_n \) and \(b_n \) and the shift \(S: (Sf)_n = f_{n+1}, \ n \in \mathbb{Z}_+ \). Then \(J = AS + S^* A + B \) and with obvious notation, we have
\[
\overline{J} - J = (\tilde{A} - A)S + S^*(\tilde{A} - A) + (\tilde{B} - B).
\]
The operators \(N^{r}(\tilde{A} - A)N^{r_0} \) and \(N^{r}(\tilde{B} - B)N^{r_0} \) are bounded if \(r_0 + r = \rho \). Since the operator \(N^{-r} S N^r \) is also bounded, we see that \(N^{r}(\overline{J} - J)N^{r_0} \) is bounded as long as \(r_0 + r = \rho \). For the proof of the first statement of Corollary 3.9, we set \(r_0 = r = \rho/2 \).

The second statement follows if \(r_0 = (\rho - 1/4)/2 \) and \(r = (\rho + 1/4)/2 \).

Remark. Under the assumptions of Corollary 3.9 one can find asymptotics of the associated orthogonal polynomials. Essentially, it is the same as for the Laguerre polynomials, that is, given (up to a phase shift) by formula (2.9).
Example 3.10. Consider the Jacobi operator \tilde{J} with the coefficients
\[\tilde{a}_n = n + \alpha, \quad \tilde{b}_n = 2n + 2\alpha - 1, \quad \alpha > 1/2. \]
Up to a shift by $2\alpha - 1$, this operator is related to the birth and death processes (see §5.2 of the book [4]). Now conditions (3.13) with $\rho = 1$ are satisfied for $a_n = a^{(p)}_n$, $b_n = b^{(p)}_n$ where $p = 2(\alpha - 1)$.

Note that under the assumptions of Theorem 3.8 or Corollary 3.9, the operator $V = \tilde{J} - J$ belongs to the Hilbert-Schmidt but not to the trace class. Therefore the assertion about the wave operators $W_{\pm}(\tilde{J}, J)$ does not follow from the classical Kato-Rosenblum theorem.

3.3 Strong smoothness

Our proof of Theorem 3.8 relies on a notion of strong smoothness (see Definition 4.4.5 in the book [10]). We will check strong J-smoothness of the operator $N - r$ for $r > 1/4$.

Recall that the operator Φ is defined by formula (2.12) where the functions $\varphi_n(\lambda)$ are linked to the Laguerre polynomials $L_n(\lambda)$ by equalities (2.10), (2.11).

Lemma 3.11. Let Λ be a compact subinterval of \mathbb{R}_+ and $r > 1/4$. Then
\[|(\Phi N^{-r} f)(\lambda)| \leq C \|f\|. \tag{3.14} \]
Moreover,
\[|(\Phi N^{-r} f)(\mu) - (\Phi N^{-r} f)(\lambda)| \leq C |\mu - \lambda|^s \|f\| \tag{3.15} \]
if $s < 2r - 1/2$ and $s \leq 1$. The constants C in (3.14) and (3.15) do not depend on $f \in L^2(\mathbb{Z}_+)$ and $\lambda, \mu \in \Lambda$.

Proof. It follows from asymptotics (2.9) of $L_n^{(p)}(\lambda)$ that
\[|\varphi_n(\lambda)| \leq C (1 + n)^{-1/4} \tag{3.16} \]
where the constant C does not depend on $n \in \mathbb{Z}_+$ and on $\lambda \in \Lambda$. So, by the Schwarz inequality, we have
\[|(\Phi N^{-r} f)(\lambda)|^2 \leq C \left(\sum_{n=0}^{\infty} (1 + n)^{-1/4 - r} |f_n| \right)^2 \leq C \sum_{n=0}^{\infty} (1 + n)^{-1/2 - 2r} \|f\|^2 \]
where the series is convergent if $2r > 1/2$. This proves (3.14).

For a proof of (3.15), we need an estimate on derivatives of $dL_n^{(p)}(\lambda)/d\lambda$ of Laguerre polynomials for large n. Let us use formula (5.1.14) of the book [9] for Laguerre polynomials $L_n^{(p)}(\lambda)$ linked to $L_{n-1}^{(p+1)}(\lambda)$ by equality (2.8):
\[\frac{d}{d\lambda} L_n^{(p)}(\lambda) = -L_{n-1}^{(p+1)}(\lambda) \quad \text{whence} \quad \frac{d}{d\lambda} L_n^{(p)}(\lambda) = \sqrt{\frac{n}{p+1}} L_{n-1}^{(p+1)}(\lambda). \]
It now follows from estimate (3.16) that
\[|\varphi_n'(\lambda)| \leq C (1 + n)^{1/4}. \quad (3.17) \]

Note that
\[|\varphi_n(\mu) - \varphi_n(\lambda)| \leq (2 \sup_{x \in \Lambda} |\varphi_n(x)|)^{1-s} \sup_{x \in \Lambda} |\varphi_n'(x)||\mu - \lambda|^s \]
for any \(s \in [0, 1] \). Therefore using (3.16) and (3.17), we see that
\[|\varphi_n(\mu) - \varphi_n(\lambda)| \leq C (1 + n)^{-1/4 + s/2} |\mu - \lambda|^s. \]

This yields an estimate
\[
|\Phi N^{-r} f)(\mu) - (\Phi N^{-r} f)(\lambda)| \leq \sum_{n=0}^{\infty} |\varphi_n(\mu) - \varphi_n(\lambda)|(1 + n)^{-r} |f_n| \\
\leq \|f\| \sqrt{\sum_{n=0}^{\infty} |\varphi_n(\mu) - \varphi_n(\lambda)|^2 (1 + n)^{-2r}} \leq C |\mu - \lambda|^s \|f\|
\]
provided \(s < 2r - 1/2 \). Thus we get (3.15).

The operator \(N^{-r} \) satisfying estimates (3.14) and (3.15) is called strongly \(J \)-smooth with exponent \(s \in (0, 1] \) on the interval \(\Lambda \).

Theorem 4.6.4 of [10] states that if a perturbation \(V \) admits representation (3.12) with the operators \(N^{-r_0} \) and \(N^{-r} \) strongly \(J \)-smooth (with some exponents \(s_0, s > 0 \)) on all compact subintervals \(\Lambda \) of \(\mathbb{R}_+ \), then the wave operators \(W_{\pm}(J, J) \) exist and are complete. This is part 1\(^0 \) of Theorem 3.8.

Theorems 4.7.9 and 4.7.10 of [10] state that all spectral results enumerated in part 2\(^0 \) of Theorem 3.8 are true provided \(s > 1/2 \) (and \(s_0 > 0 \)). According to Lemma 3.11 we can choose \(s > 1/2 \) if \(r > 1/2 \). This concludes the proof of part 2\(^0 \) of Theorem 3.8.

Finally, we note that an unusually weak assumption \(\rho > 1/2 \) (instead of the standard \(\rho > 1 \) in (3.13)) is explained by a decay (3.16) of eigenfunctions of \(J \).

4 Time evolution

It is a common wisdom that an asymptotic behavior of \(e^{-iJt} f \) as \(t \to \infty \) is determined by spectral properties of the Jacobi operator \(J \) and by asymptotics of the corresponding orthonormal polynomials \(P_n(\lambda) \) as \(n \to \infty \). We first discuss this general idea at a heuristic level and derive new relations between amplitudes and phases in asymptotic formulas for \(P_n(\lambda) \). Then we illustrate the formulas obtained on examples of the classical polynomials.
4.1 Universal asymptotic relations

Assume that the spectrum of a Jacobi operator J is absolutely continuous on an interval Λ and the corresponding measure $d\rho(\lambda) = \tau(\lambda)d\lambda$ has a smooth weight $\tau(\lambda)$ for $\lambda \in \Lambda$. Let the operator Φ diagonalizing J be defined by formula (2.3). Choose f such that $f = E(\Lambda)f$ and set $g(\lambda) = \sqrt{\tau(\lambda)}(\Phi f)(\lambda)$. Clearly, $\|g\|_{L^2(\Lambda)} = \|f\|$. If $P_n(\lambda)$ satisfy asymptotic relation (2.4), then

$$
(e^{-iJt}f)_n = (n + 1)^{-r} \int_{\Lambda} \kappa(\lambda)\left(e^{i\Omega_n(\lambda) - i\lambda t} + e^{-i\Omega_n(\lambda) - i\lambda t}\right)g(\lambda)d\lambda
$$

(4.1)

where $\kappa(\lambda) = \sqrt{\tau(\lambda)}\kappa(\lambda)$. Here and below we keep track only of leading terms in asymptotic formulas. We suppose that the phase $\Omega_n(\lambda)$ obeys condition (2.5) where $\omega'(\lambda) \neq 0$ for $\lambda \in \Lambda$ and that $g \in C^\infty_0(\Lambda)$.

Stationary points of the integrals (4.1) are determined by the equations

$$
\pm \omega(\lambda)n^s = t.
$$

(4.2)

Suppose, for definiteness, that $t \to +\infty$. Then equation (4.2) may have a solution (necessary unique) for the sign “+” only. Let $\sigma = s^{-1}$, $\xi = n/t^\sigma$, and let $\lambda = \lambda(\xi)$ be the solution of the equation

$$
\omega(\lambda) = \xi^{-s}.
$$

(4.3)

Applying the stationary phase method to integrals (4.1), we see that

$$
(e^{-iJt}f)_n = (2\pi)^{1/2}n^{-r-s/2}e^{i\phi(\xi, t)}|\omega'\lambda(\xi)|^{-1/2}\kappa(\lambda(\xi))g(\lambda(\xi))
$$

(4.4)

where

$$
\phi(\xi, t) = \pm \pi/4 + \Omega \xi t^\sigma (\lambda(\xi))t - \lambda(\xi)t \quad \text{if} \quad \pm \omega'(\lambda) > 0.
$$

Let

$$
h(\xi) = \xi^{-r-s/2}|\omega'\lambda(\xi)|^{-1/2}\kappa(\lambda(\xi))g(\lambda(\xi))
$$

(4.5)

so that (4.4) reads as

$$
(e^{-iJt}f)_n = (2\pi)^{1/2}t^{-(2r+s)\sigma/2}e^{i\phi(n/t^\sigma, t)}h(n/t^\sigma).
$$

(4.6)

Since the operators e^{-iJt} are unitary, it follows from (4.6) that

$$
2\pi \lim_{t \to \infty} \left(t^{-(2r+s)\sigma} \sum_{n=0}^{\infty} |h(n/t^\sigma)|^2 \right) = \|f\|^2.
$$

(4.7)

Observe that the integral sums

$$
N^{-1} \sum_{n=0}^{\infty} |h(n/N)|^2 \to \int_{\Lambda^{-1}(\Lambda)} |h(\xi)|^2 d\xi
$$

(4.8)
as \(N \to \infty \), by the definition of the integral. Let us here set \(N = t^{\sigma} \) and compare (4.8) with (4.7). First, we obtain relation (2.6) since the powers of \(t \) in the left-hand sides of (4.7) and (4.8) should be the same. It follows that \(\xi^{-r-s/2} \) in (4.5) can be replaced by \(\xi^{-1/2} \). Second, comparing the right-hand sides, using definition (4.5) and taking into account that \(\|f\| = \|g\|_{L^2(\Lambda)} \), we see that

\[
2\pi \int_{\Lambda^1(\Lambda)} \xi^{-1} |\omega'(\lambda(\xi))|^{-1} |\xi^2(\lambda(\xi))| |g(\lambda(\xi))|^2 d\xi = \int_{\Lambda} |g(\lambda)|^2 d\lambda. \tag{4.9}
\]

Differentiating relation (4.3), we find that \(\omega'(\lambda(\xi))\lambda'(\xi) = -s\xi^{-s-1} = -s\xi^{-1}\omega(\lambda(\xi)) \). Substituting this expression for \(\omega'(\lambda(\xi)) \) into the left-hand side of (4.9), we rewrite equality (4.9) as

\[
2\pi s^{-1} \int_{\Lambda} \xi^2(\lambda) \omega(\lambda)^{-1} |g(\lambda)|^2 d\lambda = \int_{\Lambda} |g(\lambda)|^2 d\lambda.
\]

Since \(g \in C^\infty_0(\Lambda) \) is arbitrary, this yields relation (2.7) between asymptotic coefficients in (2.4), (2.5) and the spectral measure.

According to formula (4.4) the functions \((e^{-iHt} f)_n\) “live” in the region where \(n \sim |t|^\sigma \). For example, for the Laguerre polynomials, it follows from (2.9) that \(\sigma = 2 \). This is fairly unusual since scattering states are normally concentrated in the region where \(n \sim |t| \). Similarly, for continuous operators of the Schrödinger type we have the relation \(x \sim |t| \). Indeed, consider, for example, the operator \(H = -d^2/dx^2 \) in the space \(L^2(\mathbb{R}) \). In this case, we have

\[
(e^{-iHt} f)(x) = e^{\mp n^2/4(2|t|)^{-1/2}e^{ix^2/(4t)}} f(x/(2t)) + \varepsilon(x,t)
\]

where \(f(x) = (2\pi)^{-1/2} \int_\infty^{-\infty} e^{-ix\xi} f(x)dx \) is the Fourier transform of \(f(x) \) and the norm in \(L^2(\mathbb{R}) \) of the term \(\varepsilon(x,t) \) tends to zero as \(|t| \to \infty \).

The above arguments relied strongly on the stationary phase method and used the assumption \(\omega'(\lambda) \neq 0 \). Let us now consider, at a very heuristic level, the dispersionless case \(\omega'(\lambda) = 0 \). We suppose that condition (2.4) is satisfied with \(\Omega_n(\lambda) = \nu_n \lambda + \delta_n \) where \(\lambda \in \mathbb{R} \), \(\nu_n = \omega n^s + o(n^s) \), \(s \in (0,1) \) and \(\delta_n \) do not depend on \(\lambda \). Then it follows from (4.1) where \(\Lambda = \mathbb{R} \) that, up to a term which tends to zero in \(\ell^2(\mathbb{Z}_+) \) as \(|t| \to \infty \),

\[
(e^{-iHt} f)_n = (2\pi)^{1/2} (n+1)^{-r} (e^{i\delta_n \hat{G}(t-v_n)} + e^{-i\delta_n \hat{G}(t+v_n)}) \tag{4.10}
\]

where \(\hat{G}(t) \) is the Fourier transform of \(G(\lambda) = \nu(\lambda)g(\lambda) \). If \(\omega > 0 \) and \(t \to +\infty \), the second term in the right-hand side is negligible. The operators \(e^{-iHt} \) being unitary, it follows from (4.10) that

\[
2\pi \sum_{n=0}^\infty (n+1)^{-2r} |\hat{G}(t-v_n)|^2 \to \|f\|^2 = \int_{-\infty}^\infty |g(\lambda)|^2 d\lambda \quad \text{as} \quad t \to +\infty. \tag{4.11}
\]

It is natural to expect that the limit of the left-hand side here is determined by \(n \) such that \(\omega n^s \sim t \) whence \(n^{-2r} \sim (t/\omega)^{-2\sigma r} \). Let us set \(m = n - (t/\omega)^{\sigma r} \) and use that
$t - \nu_n \sim -st(\omega/t)^\sigma m$. Then (4.11) implies that

$$2\pi t^{-\sigma-1}\omega^2 |G(-m/N)|^2 \rightarrow \int_{-\infty}^{\infty} |g(\lambda)|^2 d\lambda$$

where $N = s^{-1}t^{\sigma-1}\omega^{-\sigma} \rightarrow \infty$. According to (4.8) and the Parseval identity the second factor in the left-hand side has a finite limit $\int_{-\infty}^{\infty} |G(\lambda)|^2 d\lambda$. Therefore the power of t in the first factor should be zero which yields equality (2.6). Now relation (4.12) shows that

$$2\pi \int_{-\infty}^{\infty} |G(\lambda)|^2 d\lambda = \omega_s \int_{-\infty}^{\infty} |g(\lambda)|^2 d\lambda.$$

Since $G(\lambda) = \kappa(\lambda)g(\lambda)$ and $g \in C^\infty_0(\mathbb{R})$ is arbitrary, we again arrive at equality (2.7) where $\omega(\lambda) = \omega$ does not depend on λ.

Let us summarize the results obtained. Suppose that the orthonormal polynomials $P_n(\lambda)$ have asymptotic behavior (2.4) with the phase $\Omega_n(\lambda)$ satisfying (2.5). Then, necessarily relations (2.6) and (2.7) hold true. Precise conditions guaranteeing (2.6) and (2.7) and proofs of these relations will be published elsewhere.

4.2 Laguerre polynomials

Let the operators J_p be defined by formula (1.1) with the coefficients (1.4). Theorem 3.1 shows that, for all $p, q > -1$,

$$\lim_{t \rightarrow \pm \infty} ||e^{-iJ_p t}f - e^{-iJ_q t}f_\pm|| = 0 \quad \text{if} \quad f_\pm = W_\pm(J_q, J_p)f,$$

that is, the time evolution of $e^{-iJ_p t}f$ is the same for all $p > -1$; only the initial data are changed.

Our goal here is to obtain detailed asymptotic formulas for $(e^{-iJ_p t}f)_n$ as $t \rightarrow \pm \infty$. We choose f from the set $\Phi^*_p C^\infty_0(\mathbb{R}_+)$ dense in $L^2(\mathbb{R}_+)$. It turns out that the asymptotics of $(e^{-iJ_p t}f)_n$ depends crucially on the ratio n/t^2. Below we omit the index p. Since $e^{-iJ_1 t}f = \Phi^* e^{-iAt} \Phi f$, Lemma 3.6 can be reformulated as follows.

Lemma 4.1. Let $g = \Phi f \in C^\infty_0(\mathbb{R}_+)$, and let the operators V_\pm be defined by formula (3.4). Then

$$e^{-iJ_1 t}f = v^\pm_1 V_\pm e^{-iAt}g + \varepsilon_\pm(t)$$

where $||\varepsilon_\pm(t)|| \rightarrow 0$ as $t \rightarrow \pm \infty$.

Thus, we have to find the asymptotics of

$$(V_\pm e^{-iAt}g)_n = (-1)^n 2^{-1} n^{-1/2}(n + 1)^{-1/4} \int_0^\infty e^{\pm 2i\sqrt{n} - iAt} G(\lambda) d\lambda,$$

where $G(\lambda) = \lambda^{-1/4} g(\lambda)$ as $t \rightarrow \pm \infty$.

The first assertion shows that these functions are small as $|t| \rightarrow \infty$ both for relatively “small” and “large” n.

Lemma 4.2. Let the operators V_k be defined by formula (3.4), and let $G \in C_0^\infty(\mathbb{R}_+)$. Suppose that $\text{supp } G \subset [\lambda_1, \lambda_2]$ and choose $\mu_1 < \lambda_1$, $\mu_2 > \lambda_2$. Then for all $n \leq \mu_1 t^2$ and $n \geq \mu_2 t^2$, all $k \in \mathbb{Z}_+$ and some constants C_k, we have estimates

$$\left|(V_k e^{-i\lambda t} g)_n\right| \leq C_k(\sqrt{n} + |t|)^{-k}, \quad \forall t \in \mathbb{R}. \quad (4.14)$$

Proof. We proceed from formula (3.8) and estimate its right-hand side. If $n \leq \mu_1 t^2$, then

$$|\sqrt{n}\lambda^{-1/2} - t| \geq |t| - \sqrt{n}\lambda_1^{-1/2} \geq |t|(1 - (\mu_1 / \lambda_1)^{1/2}) \geq c(\sqrt{n} + |t|)$$

where $c(\sqrt{\mu_1} + 1) = 1 - \sqrt{\mu_1} / \lambda_1 > 0$. Quite similarly, if $n \geq \mu_2 t^2$, then

$$|\sqrt{n}\lambda^{-1/2} - t| \geq |t| - \sqrt{n}\lambda_2^{-1/2} \geq |t|(\lambda_2^{-1/2} - \mu_2^{-1/2}) \geq c(\sqrt{n} + |t|)$$

where $c(\sqrt{\mu_2} + 1) = \sqrt{\mu_2} / \lambda_2 - 1 > 0$. According to (3.8) this proves (4.14) for $k = 1$. Integrating by parts k times in (3.8), we obtain (4.14).

To find asymptotics of the integral in (4.13), we use the stationary phase method. Put

$$\xi = \sqrt{n}t^{-1} \quad \text{and} \quad \theta(\lambda, \xi) = -2\xi\sqrt{\lambda} + \lambda.$$

Then

$$\int_0^\infty e^{2i\sqrt{n}\lambda^{-1/2} - i\lambda t} G(\lambda) d\lambda = \int_0^\infty e^{-i\theta(\lambda, \xi)t} G(\lambda) d\lambda =: I(t, \xi). \quad (4.15)$$

Differentiating $\theta(\lambda, \xi)$ in λ, we find that

$$\theta'(\lambda, \xi) = -\xi\lambda^{-1/2} + 1 \quad \text{and} \quad \theta''(\lambda, \xi) = 2^{-1}\xi\lambda^{-3/2}.$$

The stationary point $\lambda_0 = \lambda_0(\xi)$ of the phase $\theta(\lambda, \xi)$ is determined by the equation $\theta'(\lambda_0, \xi) = 0$ whence $\lambda_0 = \xi^2$. Therefore the stationary phase method yields

$$I(t, \xi) = e^{\pi i \xi^4 / 4} e^{-i\theta(\lambda_0, \xi)t} \frac{2\pi}{|\theta''(\lambda_0, \xi)t|} G(\lambda_0) + o(|t|^{-1/2})$$

as $t \to \pm \infty$. Since $\theta(\lambda_0, \xi) = -\xi^2$ and $\theta''(\lambda_0, \xi) = 2^{-1}\xi^{-2}$, we arrive at the following intermediary result.

Lemma 4.3. Let $G \in C_0^\infty(\mathbb{R}_+)$. Then the integral (4.15) has asymptotics

$$I(t, \xi) = 2\pi^{1/2} e^{\pi i \xi^4 / 4} e^{i\xi^2 t |t|^{-1} |\xi| G(\xi^2)} + o(|t|^{-1}), \quad t \to \pm \infty, \quad (4.16)$$

with the estimate of the remainder uniform in ξ from compact subintervals of $\mathbb{R} \setminus \{0\}$.

Let us come back to formula (4.13). Set

$$(U(t)g)_n = (-1)^n e^{in/t} |t|^{-1} g(n/t^2), \quad t \neq 0. \quad (4.17)$$
Lemma 4.4. Let \(G \in C_0^\infty(\mathbb{R}_+) \) and \(0 < \mu_1 < \mu_2 < \infty \). Then
\[
\sup_{n \in (\mu_1 t^2, \mu_2 t^2)} \left| (V \chi e^{-iAt} g)_n - e^{\pi i/4} (U(t)g)_n \right| = o(|t|^{-1}), \quad t \to \pm \infty.
\] (4.18)

Proof. Let us set in (4.16) \(G(\lambda) = \lambda^{-1/4} g(\lambda) \) and \(\xi = \sqrt{n} t^{-1} \) so that
\[
|\xi| G(\xi^2) = |\xi|^{1/2} g(\xi^2) = n^{1/4} |t|^{-1/2} g(n/t^2).
\]
Thus, it follows from Lemma 4.3 that
\[
\int_0^\infty e^{\pm i \sqrt{n} t^{-1} \lambda^{-1/4}} G(\lambda) d\lambda = 2 \pi^{1/2} e^{\pi i/4} n^{1/4} e^{i n/t} |t|^{-1/2} g(n/t^2) + o(|t|^{-1}), \quad t \to \pm \infty,
\]
as long as \(n \in (\mu_1 t^2, \mu_2 t^2) \). Putting together this relation with (4.13), we arrive at (4.18). \(\square \)

Now we are in a position to obtain an asymptotic formula for \(e^{-iJt} f \) as \(t \to \pm \infty \).

Theorem 4.5. Let \(J_p, p > -1 \), be a Jacobi operator with matrix elements (1.4), and let the operator \(U(t) \) be given by formula (4.17). Define the operators \(\Phi_p \) by formulas (2.11) and (2.12) and suppose that \(\Phi_p f \in C_0^\infty(\mathbb{R}_+) \). Then
\[
\lim_{t \to \pm \infty} \| e^{-iJt} f - e^{\pi i(p+1/2) \pi/2} U(t) \Phi_p f \| = 0.
\] (4.19)

Proof. According to Lemma 4.1 we can replace here \(e^{-iJt} f \) by \(V \chi e^{-iAt} g \) where \(g = \Phi f \). Suppose that \(\text{supp} \, g \subset [\lambda_1, \lambda_2] \) and choose \(\mu_1 < \lambda_1, \mu_2 > \lambda_2 \). It follows from Lemma 4.2 that
\[
(\sum_{n \leq \mu_1 t^2} + \sum_{n \geq \mu_2 t^2}) |(V \chi e^{-iAt} g)_n|^2 \to 0
\] (4.20)
as \(t \to \pm \infty \). According to (4.18) we also have
\[
\sum_{\mu_1 t^2 \leq n \leq \mu_2 t^2} |(V \chi e^{-iAt} g)_n - e^{\pi i/4} (U(t)g)_n|^2 = o(1).
\]
Combined with (4.20) this yields relation (4.19). \(\square \)

According to (2.9) for the Laguerre polynomials, we have \(\Lambda = \mathbb{R}_+, r = 1/4, s = 1/2 \) and
\[
\kappa(\lambda) = \frac{1}{2} \sqrt{\frac{\Gamma(1+p)}{\pi}} \lambda^{-p/2-1/4} e^{\lambda/2}, \quad \Omega_n(\lambda) = \pi n + 2 \sqrt{n \lambda} - \frac{2p+1}{4} \pi, \quad \omega(\lambda) = \lambda^{-1/2}.
\]
Since \(\tau(\lambda) \) is given by (2.10), the identity (2.7) is satisfied.
4.3 Jacobi polynomials

In this subsection we define a Jacobi operator by its spectral measure \(d\rho(\lambda) \). We suppose that this measure is supported on the interval \([-1, 1]\) and

\[
d\rho(\lambda) = \tau(\lambda)d\lambda, \quad \lambda \in (-1, 1),
\]

where

\[
\tau(\lambda) = k(1 - \lambda)\alpha(1 + \lambda)\beta, \quad \alpha, \beta > -1.
\]

The weight function \(\tau(\lambda) = \tau_{\alpha,\beta}(\lambda) \) (as well as all other objects discussed below) depends on \(\alpha \) and \(\beta \), but these parameters are often omitted in notation. The constant \(k = k_{\alpha,\beta} \) is chosen in such a way that the measure (4.21) is normalized, i.e., \(\rho(\mathbb{R}) = \rho((-1, 1)) = 1 \). The orthonormal polynomials \(G_n(\lambda) = G_n^{(\alpha,\beta)}(\lambda) \) determined by the measure (4.21), (4.22) are known as the Jacobi polynomials.

Let \(J = J_{\alpha,\beta} \) be the Jacobi operator with the spectral measure \(d\rho(\lambda) = d\rho_{\alpha,\beta}(\lambda) \). Explicit expressions for its matrix elements \(a_n, b_n \) can be found, for example, in the books \([3, 9]\), but we do not need them. We here note only asymptotic formulas

\[
a_n = \frac{1}{2} + 2^{-4}(1 - 2\alpha^2 - 2\beta^2)n^{-2} + O(n^{-3}), \quad b_n = 2^{-2}(\beta^2 - \alpha^2)n^{-2} + O(n^{-3}) \quad (4.23)
\]

for the matrix elements and (see formula (8.21.10) in the book \([9]\))

\[
G_n(\lambda) = 2^{1/2}(\pi k)^{-1/2}(1 - \lambda)^{-(1+2\alpha)/4}(1 + \lambda)^{-(1+2\beta)/4} \times \cos \left((n + \gamma)\arcsin\lambda - \pi(2n + \beta - \alpha)/4\right) + O(n^{-1}), \quad \gamma = (\alpha + \beta + 1)/2, \quad (4.24)
\]

for the orthonormal polynomials. Estimate of the remainder in (4.24) is uniform in \(\lambda \) from compact subsets of \((-1, 1)\). Similarly to the cases of the Laguerre polynomials, we set \(\varphi_n(\lambda) = \sqrt{\tau(\lambda)}G_n(\lambda) \) and define the mapping \(\Phi : \ell^2(\mathbb{Z}_+) \to L^2(-1, 1) \) by formula (2.12) where \(\lambda \in (-1, 1) \). Using (4.22) and (4.24), we obtain the representation

\[
e^{-iJt}f = \Phi^*e^{-i\lambda t}g = V_+e^{-i\lambda t}g + V_-e^{-i\lambda t}g + R(t)g, \quad g = \Phi f \in C_0^\infty(-1, 1), \quad (4.25)
\]

where

\[
(V_\pm g)_n = (2\pi)^{-1/2}i\pi n e^{\pm i(\alpha - \beta)\pi/4} \int_{-1}^1 e^{\pm i(n + \gamma)}\arcsin\lambda(1 - \lambda^2)^{-1/4}g(\lambda)d\lambda,
\]

and the remainder \(R(t)g \) satisfies condition (3.6).

Let us state analogues of Lemmas 3.4 and 4.2.

Lemma 4.6. For an arbitrary \(G \in C_0^\infty(-1, 1) \), an estimate

\[
\left| \int_{-1}^1 e^{\pm in\arcsin\lambda - i\lambda t}G(\lambda)d\lambda \right| \leq C_k(n + |t|)^{-k} \quad (4.26)
\]

is true for all \(k \in \mathbb{Z}_+ \) if \(\mp t > 0 \).
Proof. Integrating by parts, we see that
\[
\int_{-1}^{1} e^{\pm i n \arcsin \lambda - i \lambda t} G(\lambda) d\lambda = \pm i \int_{-1}^{1} e^{\pm i n \arcsin \lambda - i \lambda t} \left(\frac{G(\lambda)}{n(1 - \lambda^2)^{-1/2} \mp t} \right) d\lambda.
\]
This yields (4.26) for \(k = 1 \) because \(\mp t = |t| \) and \(|\lambda| \leq c < 1 \) on the support of \(G \). Further integrations by parts lead to estimates (4.26) for all \(k \).

Quite similarly, we obtain also the following result.

Lemma 4.7. Let \(G \in C_0^\infty((-1, 1) \setminus \{0\}) \). Then estimates (4.26) hold for all \(t \in \mathbb{R} \) and all \(k \in \mathbb{Z}_+ \) if either \(n \leq \delta |t| \) or \(n \geq (1 - \delta)|t| \) for a sufficiently small number \(\delta \) depending on \(\supp G \).

We use these lemmas with \(G \pm (\lambda) = e^{\pm i \gamma \arcsin \lambda} \left(1 - \lambda^2 \right)^{-1/4} G(\lambda) \) and take equality (4.25) into account. According to Lemma 4.6 relation (3.10) is satisfied so that it suffices to consider \(V \pm e^{-iAt} g \) as \(t \to \pm \infty \). According to Lemma 4.7 we only have to study
\[
(V \pm e^{-iAt} g)_n = (2\pi)^{-1/2} \mp n e^{i(\alpha - \beta)\pi/4} \int_{-1}^{1} e^{\pm i n \arcsin \lambda - i \lambda t} G_\pm(\lambda) d\lambda
\]
for \(\delta |t| \leq n \leq (1 - \delta)|t| \) where \(\delta > 0 \).

Let us now set
\[
\xi = n|t|^{-1}, \quad \theta(\lambda, \xi) = \xi \arcsin \lambda - \lambda
\]
and consider an integral
\[
I(t, \xi) = \int_{-1}^{1} e^{i\theta(\lambda, \xi)t} G(\lambda) d\lambda, \quad \xi \in (0, 1),
\]
where \(G \in C_0^\infty((-1, 1) \setminus \{0\}) \). Differentiating \(\theta(\lambda, \xi) \) in \(\lambda \), we see that
\[
\theta'(\lambda, \xi) = \xi(1 - \lambda^2)^{-1/2} - 1 \quad \text{and} \quad \theta''(\lambda, \xi) = \xi \lambda(1 - \lambda^2)^{-3/2}.
\]

The stationary points \(\lambda_\pm = \lambda_\pm(\xi) \) of the phase \(\theta(\lambda, \xi) \) are determined by the equation \(\theta'(\lambda_\pm, \xi) = 0 \) whence
\[
\lambda_\pm = \pm \lambda_0, \quad \lambda_0 = \sqrt{1 - \xi^2}
\]
and
\[
\theta''(\lambda_\pm, \xi) = \pm \xi^{-2} \sqrt{1 - \xi^2}.
\]

Note also that
\[
\theta(\lambda_0, \xi) = \xi \arccos \xi - \sqrt{1 - \xi^2} =: \psi(\xi).
\]
Therefore the stationary phase method yields the following intermediary result.
Lemma 4.8. Let the phases $\theta(\lambda, \xi)$ and $\psi(\xi)$ be given by formulas (4.28) and (4.30), respectively. Then the integral (4.29) has asymptotics

$$I(t, \xi) = (2\pi)^{1/2}|t|^{-1/2}(1 - \xi^2)^{-1/4}$$

$$\times \left(e^{\pm i\pi/4}e^{i\psi(\xi)r} G(\sqrt{1 - \xi^2}) + e^{\mp i\pi/4}e^{-i\psi(\xi)r} G(-\sqrt{1 - \xi^2}) \right) + o(|t|^{-1/2}) \quad (4.31)$$

as $t \to \pm \infty$. The estimate of the remainder in (4.31) is uniform in ξ from compact subintervals of $(0, 1)$.

Let us now apply Lemma 4.8 to functions (4.27). We set

$$h_{\pm}(\xi) = e^{\pm i\pi/4}e^{\pm iy} \arccos \xi (1 - \xi^2)^{-1/4} g(\pm \sqrt{1 - \xi^2}) \quad (4.32)$$

and

$$(U(t)g)_n = i^{2n}e^{\pm i(\alpha-\beta)\pi/4}|t|^{-1/2} \left(e^{i\psi(\xi)t} h_+(\xi) + e^{-i\psi(\xi)t} h_-(\xi) \right) \quad (4.33)$$

where $\xi = n|t|^{-1} \in (0, 1)$, $\pm t > 0$ and the function $\psi(\xi)$ is defined by formula (4.30). For $n \geq |t|$, we set $(U(t)g)_n = 0$.

Putting the results obtained together, we state our final result.

Theorem 4.9. Let $J = J_{\alpha, \beta}$ be the Jacobi operator corresponding to the weight function (4.21). Define the operator $\Phi : \ell^2(\mathbb{Z}_+) \to L^2((−1, 1), 1)$ by formula (2.12) and suppose that $g = \Phi f \in C_0^\infty((−1, 1) \setminus \{0\})$. Let the operator $U(t)$ be given by equalities (4.32) and (4.33). Then

$$\lim_{t \to \pm \infty} ||e^{-iJt}f - U(t)\Phi f|| = 0.$$
4.4 Hermite polynomials

The Hermite polynomials $H_n(z)$ are determined by the recurrence coefficients (1.3). As usual, relations (2.1) for $H_n(z)$ are complemented by the boundary conditions $H_{-1}(z) = 0$, $H_0(z) = 1$. According to asymptotic formula (10.15.18) in [3], we have

$$H_n(\lambda) = 2^{1/2} n^{-1/4} e^{1/2} (2n+1)^{-1/4} \cos \left(\sqrt{2n+1} \lambda - \pi n/2 \right) + O(n^{-3/4})$$

(4.34)

as $n \to \infty$. This asymptotics is uniform in $\lambda \in \mathbb{R}$ on compact subintervals.

Let us consider the Jacobi operators J defined by formula (1.1) where a_n, b_n are given by (1.3). The spectral measure of J equals $d\rho(\lambda) = \pi^{-1/2} e^{-\lambda^2} d\lambda$ where $\lambda \in \mathbb{R}$ (see, e.g., formula (10.13.1) in [3]). Thus, $d\rho(\lambda)$ is absolutely continuous and its support is the whole axis \mathbb{R}.

Following the scheme exposed in Sect. 2.2, we reduce the Jacobi operator J to the operator A of multiplication by λ in the space $L^2(\mathbb{R})$. To that end, we introduce a mapping $\Phi : \ell^2(\mathbb{Z}_+) \to L^2(\mathbb{R})$ by the formula

$$(\Phi f)(\lambda) = \pi^{-1/4} \sum_{n=0}^{\infty} e^{-\lambda^2/2} H_n(\lambda) f_n, \quad f = \{f_n\}_{n=0}^{\infty} \in \mathcal{D}, \quad \lambda \in \mathbb{R}.$$

(4.35)

The operator Φ is unitary and enjoys the intertwining property $\Phi J = A \Phi$.

Putting together formulas (4.34) and (4.35), we obtain representation (4.25) where

$$(V_\pm g)_n = i^{\pi n} (2\pi)^{-1/2} (2n+1)^{-1/4} \int_{-\infty}^{\infty} e^{\pm t \sqrt{2n+1}} \hat{g}(\lambda) d\lambda$$

and the remainder $R(t)g$ satisfies condition (3.6). Then

$$(V_\pm e^{-iAt} g)_n = i^{\pi n} (2n+1)^{-1/4} \hat{g}(t \pm \sqrt{2n+1})$$

where $\hat{g}(x)$ is the Fourier transform of g. Since $\hat{g}(x) = O(x^{-k})$ as $|x| \to \infty$ for all $k > 0$, we see that

$$\lim_{t \to \pm \infty} \sum_{n=0}^{\infty} (2n+1)^{-1/2} |\hat{g}(t \pm \sqrt{2n+1})|^2 = 0,$$

whence relation (3.10) follows. Thus, representation (4.25) implies the result below.

Theorem 4.10. Let J be a Jacobi operator with matrix elements (1.3), and let the operator $U(t)$ be given by the formula

$$(U(t)g)_n = i^{\pi n} (2n+1)^{-1/4} \hat{g}(t \pm \sqrt{2n+1}), \quad \pm t > 0.$$

(4.36)

Define the operator Φ by formula (4.35) and suppose that $\Phi f \in C^0(\mathbb{R})$. Then

$$\lim_{t \to \pm \infty} ||e^{-iJt} f - U(t)\Phi f|| = 0.$$
Corollary 4.11. For all \(g \in C_0^\infty(\mathbb{R}) \), we have

\[
\lim_{t \to \pm \infty} \sum_{n=0}^{\infty} (2n+1)^{-1/2} |\hat{g}(t \mp \sqrt{2n+1})|^2 = \|\hat{g}\|_{L_2(\mathbb{R})}^2.
\] (4.37)

According to (4.36) the evolution \(e^{-itJ} f \) is dispersionless. Clearly, it is similar to time evolutions for first order differential operators.

Finally, we note that for the Hermite polynomials, \(\Lambda = \mathbb{R} \), \(r = 1/4 \), \(s = 1/2 \), \(\Omega_n(\lambda) = \sqrt{2n+1} \lambda - \pi n/2 \), \(\omega(\lambda) = \sqrt{2} \), \(\kappa(\lambda) = 2^{-3/4} \pi^{-1/4} e^{\lambda^2/2} \). Thus, the identity (2.7) remains true. Evolution (4.36) is dispersionless now, and relation (4.37) is a particular case of (4.11).

Acknowledgments. Supported by RFBR grant No. 17-01-00668 A.

References

[1] N. Akhiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh and London, 1965.

[2] A. I. Aptekarev and J. S. Geronimo, Measures for orthogonal polynomials with unbounded recurrence coefficients, J. Approx. Theory 207 (2016), 339-347.

[3] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Vol. 1, 2, McGraw-Hill, New York-Toronto-London, 1953.

[4] M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Cambridge University Press, Cambridge, 2005.

[5] J. Janas and S. Naboko, Jacobi matrices with power-like weights – grouping in blocks approach, J. Funct. Anal. 166 (1999), 218-243.

[6] J. Janas, S. Naboko, and E. Shcherbina, Asymptotic behavior of generalized eigenvectors of Jacobi matrices in the critical ("double root") case, Z. Anal. Anwend. 28 (4) (2009), 411-430.

[7] S. Naboko and S. Simonov, Titchmarsh-Weyl formula for the spectral density of a class of Jacobi matrices in the critical case, arXiv: 1911.10282 (2019).

[8] P. G. Nevai, Orthogonal polynomials, Memoirs of the AMS 18, No. 213, Providence, R. I., 1979.

[9] G. Szegő, Orthogonal polynomials, Amer. Math. Soc., Providence, R. I., 1978.

[10] D. R. Yafaev, Mathematical scattering theory: General theory, Amer. Math. Soc., Providence, R. I., 1992.

[11] D. R. Yafaev, Mathematical scattering theory: Analytic theory, Amer. Math. Soc., Providence, R. I., 2010.

[12] D. R. Yafaev, Analytic scattering theory for Jacobi operators and Bernstein-Szegő asymptotics of orthogonal polynomials, Rev. Math. Phys. 30, No. 8 (2018), 1840019.