SUPPLEMENTARY DATA

The structure of the 5’ end of the protein-tyrosine phosphatase PTPRJ mRNA reveals a novel mechanism for translation attenuation

Luchezar Karagyozov, Rinesh Godfrey, Sylvia-Annette Böhmer, Astrid Petermann, Sebastian Hölters, Arne Östman, Frank-D. Böhmer

Supplementary Experimental Data

A. Cloning of the extended promoter region

The sequence of the 5’ untranslated region of the PTPRJ cDNA (NM_002843) was used to BLAST search the NCBI database. A BAC genomic clone was identified (RP11-346F1) which was obtained from the BACPAC Resources Center (http://bacpac.chori.org/). The sequence of the forward cloning primer (ATATA\texttt{GCTAGCCTTGGCCTCCCGGAAGTGC}) was complementary to nucleotides 1419 - 1400 upstream of the 5’-end of the PTPRJ cDNA and the reverse cloning primer (TTAAT\texttt{AGATCTCTGGAACGTGCCCCGGAC}) was complementary to nucleotides 326 - 343 downstream of the transcription start. The PCR product was NheI and BglII digested and cloned into the firefly luciferase reporter vector pGL3-Basic (Promega, Mannheim, Germany). The clone (1762 bp, GenBank EF219146) contained sequences upstream of the transcription start and 343 nt of the 5’ leader. It ended 12 nt upstream of the ATG\textsubscript{356} coding for translation initiation (as indicated in NM_002843).

The sequence of the entire clone p1.7 (pGL3) was verified. Sequencing showed no difference between the 3’ region of this clone, the 5’ end of cDNA-HA(pcDNA3) and NM_002843. Amplification of human genomic DNA with primers flanking the transcription start site resulted in products with the same sequence as those deposited for Homo sapiens chromosome 11 genomic contig, reference assembly (NT_009237). The genomic amplification primers were: Forward - CGGGAGCGCTTCCTCTGC, Reverse – CACACGCCGGAGCTTAGC. Sequencing primer - TCCTCTGCCCGGGAG..

B. Fire-fly luciferase reporter constructs

The “Out-of- Frame” and “In-frame” constructs. Deletion constructs.

The 1762 nt PTPRJ promoter region was inserted into NheI and BglII sites of pGL3 (Promega, Mannheim, Germany). In this construct - p1.7 OutF (pGL3)- ATG\textsubscript{14} , ATG\textsubscript{191} and ATG\textsubscript{Luc} are in two different reading frames.
The p1.7(pGL3) clone was partially digested with NarI and the products were cloned into ClaI digested pBScript (Stratagene, La Jolla, CA). Two clones were obtained with the suitable orientation. One clone - pNar–Nar(pBS) - contained sequences -323 to +82 (from PTPRJ). The KpnI - Hind III fragment from this clone was inserted into the pGL3-Basic (KpnI – Hind III digested) to get the 3’deletion reporter construct pNar-Nar(pGL3). The other clone - pNar-Bgl(pBS) - contained sequences -323 to +343 from PTPRJ plus the sequences from the BglII site to the NarI site in the pGL3 vector. This clone was digested with EcoRV and BglIII and the fragment was ligated to pGL3-Basic opened with SmaI and BglIII. The clone pNar(17)_OutF(pGL3) contained 17 additional nucleotides between +343 (the BglII site) and the AUG_{Luc}.

A deletion in p1.7(pGL3) was constructed (BstAPI -NdeI region was deleted, Sebastian deletion). DNA was digested with HindIII and BglIII, blunt-ended (Klenow) and ligated to get pSebastian_InF(pGL3). The KpnI – PstI fragment from this clone was replaced either with the full-sized wild type fragment to get p1.7_InF(pGL3) or with the KpnI – PstI fragment from pNar_OutF(pGL3) to get pNar_InF(pGL3).

To prepare the 5’-end deletion clone pNde_InF(pGL3), DNA from p1.7_InF(pGL3) was digested with NheI and NdeI, blunt ended and ligated. To obtain the deletion clone pSac_InF(pGL3), DNA from p1.7_IF(pGL3), the latter was digested with SacI and ligated. These deletion clones were used to perform promoter activity analysis (see Suppl. Fig. 4).

Constructs with mutated ATGs

All mutations of the ATGs were performed by PCR with thermophilic DNA polymerases Turbo-Pfu (Stratagene Europe, the Netherlands) or Phusion High Fidelity (BioCat, Heidelberg) following closely the manufacturers instructions. The PCR products were cloned and the clones were sequenced. ATG_{14} was mutated to TTG; ATG_{191} - to AGG, and ATG_{356} – to ATT.

Constructs with fused PTPRJ and firefly luciferase

Constructs expressing the firefly luciferase as a fusion protein with PTPRJ were prepared by PCR. The template was pNar(pGL3) and the primers (phosphorylated) were as follows:

FU_LEFT GCCCGCGCGCGCCCTGGGAACGTGCCC
FU_RIGHT ATGAAGCCGGCGGCGGAAGACGCCAAAAACA

PCR was performed with Phusion High Fidelity, the amplification product was treated with DpnI (to destroy the original template) and circularized by blunt-end ligation. The clones were screened first by restriction enzyme analysis and then by sequencing.
The resulting construct pNar_Luc_Fused(pGL3) expressed the firefly luciferase fused to the first five N-end amino acids of the signal peptide. The construct contained PTPRJ sequences from – 323 to +370, followed by the fire-fly luciferase sequences coding amino acids 2 – 550.

Constructs with frame shift mutations

Frame shift mutations in the region between +191 and +356, without introducing a stop codon were prepared. We inserted one A (between +200 and +201) in the 3rd codon after the AUG_{191} (plus mutant) or deleted one C (+340) in the 6th codon preceding AUG_{356} (minus mutant). The distance between the frame shifts is 139 nt, altered codons are 47. The double frame shift mutant was created by transferring a fragment BsmBI (+262) – Sall (in the pGL3 vector) from the minus to the plus mutant by standard techniques.

Constructs containing the firefly luciferase fused to the PTPRJ 5’ leader expressed under the CMV promoter

The entire PTPRJ-Luciferase fused region (total length 2349 nt) was cloned in pcDNA3.1(+) (Invitrogen, Kalsruhe, Germany) between HindIII and XbaI sites. From these constructs the HindIII – NotI fragment, containing the PTPRJ promoter and 170 nt of the 5’ leader was removed (DNA was restricted, ends were blunt-ended with Klenow, DNA was gel-purified and circularized by ligation). In this construct the firefly luciferase was transcribed from the strong CMV promoter and translated from the tandem codons AUG_{191} and AUG_{356}. The region from PTPRJ mRNA, which is present upstream of the luciferase codons is 201 nt long (from the NotI site to codon 5 of the signal peptide).

D. Transfection of HEK293 cells and other cell lines with polyethylenimine (PEI)

Cells were grown to 40 - 70 % confluence, and transfected with branched PEI (Polyethylenimine, Aldrich, Cat. No. 40872-7, MW ~ 25 kD). For transfection of cells in 35 mm dishes, 2 - 4 µg DNA was diluted in 250 µl serum-free medium at room temperature. The PEI stock (10 µg/µl in water, pH 7.2, sterile filtered) was appropriately diluted in 250 µl of serum-free medium (final ratio 2.5 µg PEI per µg DNA for HEK293 cells, 5 to 1 for other cell lines), and the DNA and PEI solutions were mixed. The mixture was incubated at room temperature for 20 – 30 min to allow formation of complexes, and then added to the culture dish containing 2 ml medium with serum under gentle agitation. Cells were incubated in a CO_{2} incubator for 24 to 48 hours prior to analysis. To prevent detachment of the HEK293 cells the dishes were coated with poly-L-lysine (Sigma, P1274). Poly-L-lysine solution (0.6 ml, 10 µg/ml in water, sterile filtered) is
added to the dish and kept for 1 hour at 37° C. Thereafter, the solution is removed and the dish dried in the microwave oven for 2 min.

For measuring density dependence of reporter expression, HT29 cells were seeded in 96-well plates (3 x 10⁴ cells per well), and transfected with reporter constructs 24 h later. Cells were harvested daily for reporter assays at day 1-5 after transfection.

E. DIG-probes, RT-PCR primers

Preparation of DIG labeled hybridization probes

DNA from pGL3-basic and pRL-TK (Promega, Mannheim, Germany) was labelled with digoxigenin-11-dUTP, alkali-stable (Roche, Penzberg, Germany) by PCR according to the protocol of the supplier. The fire-fly luciferase specific primers (CTGCCTCATAGAACTGCCTGC and TGAGCCCATATCCTTGCTG) and the Renilla luciferase specific primers (ATTGGTATGGGCAAATCAGG and TGTTGGACGACGAACTCAC) generated products 400 bp and 414 bp long, which were used for hybridization.

Primers for cDNA amplification

The primers used for qRT-PCR for the firefly and Renilla luciferase were the same as the primers for preparation of the labeled probes. The beta- lactamase specific primers were:
Forward - CCCAACGATCAAGCGAGTTAC
and Reverse - CTGCAGGCACTTACTTGAC.
Supplementary Figures

Supplementary Figure 1. Genome view of the \textit{hPTPRJ} promoter region and the first exon.

Position of the cloned fragment and conservation are shown.
Supplementary Figure 2. Alignment of the nucleotide sequence of the first exon of the human and mouse *PTPRJ*.

The translation initiation codons are highlighted (green). The codons with different sense are in yellow while the synonymous codons are in grey. The amino acids encoded by the human sequence are indicated.

| Human 1 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 1 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 44

| Human 44 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC |
| Mouse 44 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 86

| Human 86 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 89 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 131

| Human 131 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 134 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 176

| Human 176 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 176 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 221

| Human 221 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 221 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 266

| Human 266 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 266 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 311

| Human 311 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 311 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 356

| Human 356 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 347 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 401

| Human 401 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 392 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |

Human 446

| Human 446 | GAC CCG AAC CGG GCC GGC AGC GGG AGC AGC --- |
| Mouse 437 | GAC CCG AAC CGG GCC GGC AGA GGG AGC AGC CCG |
Supplementary Figure 3. Deletion analysis of the *PTPRJ* promoter.

Firefly luciferase reporter constructs with 5’ deletions upstream of +1 were transiently transfected into HEK293 cells and activity was measured after 24 hours.
Supplementary Figure 4. Sequences of the region AUG\textsubscript{191} – AUG\textsubscript{356}, wild type and mutated. In each sequence AUG\textsubscript{191} is highlighted; codon numbers are indicated.

Wild type. The rarely used codons are highlighted in yellow (e.g. construct 1, Fig. 7A).

\begin{verbatim}
Wild type.
The rarely used codons are highlighted in yellow (e.g. construct 1, Fig. 7A).

1 ATG TCT CCG GGG AAG CCC GGC GGG ACG AGG CGG
 Met Ser Pro Gly Lys Pro Gly Ala Gly Ala Gly Thr Arg Arg
 Codons 1 5 10 15

46 ACC GCC TGG CCG AGG AGG AGG CGA AGG AGA CGG
 Thr Gly Trp Arg Arg Arg Arg Arg Arg Arg Gln Glu Ala Ala
 Codons 16 20 25 30

91 ACG ACG GTG CCC GGG CTC GGG CGC ACG GCG GGG CCC GAT TCG CGC
 Thr Thr Val Pro Gly Leu Gly Thr Ala Gly Pro Asp Ser Arg
 Codons 31 35 40 45

136 GTC CGG GGC XCG TTC CAG GGC GCC AGG GGC ATG AAG CCG GCG GCG
 Val Arg Gly Thr Phe Glu Gly Ala Arg Gly Met Lys Pro Ala Ala
 Codons 46 50 55
 ►►► Luciferase
\end{verbatim}

Optimized codons. The modified codons optimized for efficient translation are in bright green (construct 4, Fig. 7A).

\begin{verbatim}
Optimized codons. The modified codons optimized for efficient translation are in bright green (construct 4, Fig. 7A).

1 ATG AGC CCC GGC AAG CCT GGC GCC GGA GGG GCC GGA ACC AGA CGG
 Met Ser Pro Gly Lys Pro Gly Ala Gly Gly Ala Gly Thr Arg Arg
 Codons 1 5 10 15

46 ACC GCC TGG CCG AGG AGG AGG CGA AGG AGA CGG
 Thr Gly Trp Arg Arg Arg Arg Arg Arg Arg Gln Glu Ala Ala
 Codons 16 20 25 30

91 ACC ACC GTG CCC GGC CTG GGC AGA ACC GCC GGA CCC GAC AGC AGA
 Thr Thr Val Pro Gly Leu Gly Arg Thr Ala Gly Pro Asp Ser Arg
 Codons 31 35 40 45

136 GTG CGG GGC ACC TTC CAG GGC GCC AGG GGC ATG AAG CCG GCG GCG
 Val Arg Gly Thr Phe Glu Gly Ala Arg Gly Met Lys Pro Ala Ala
 Codons 46 50 55
 ►►► Luciferase
\end{verbatim}

Double frame-shift mutant. The changed amino acid residues are in red (construct 3, Fig. 7A).

\begin{verbatim}
Double frame-shift mutant. The changed amino acid residues are in red (construct 3, Fig. 7A).

1 ATG TCT CCG GAG GAA GCC CGG GGC GGG CGG AGC GGG GCC GAC GCC
 Met Ser Pro Glu Ala Arg Gly Ala Gly Ala Gly Ser Gly Asp Glu Ala
 Codons 1 5 10 15

46 GAC CGG CTG GCC GAG GAG GAG GCG AAG GAG ACG GCA GGA GGC GGC
 Asp Arg Leu Ala Glu Glu Glu Ala Lys Glu Thr Ala Gly Gly Gly
 Codons 16 20 25 30

91 GAC GAC GGT GCC CGG TGT CCG GCC CGC ACC GCC GCC CGA TGC GCC
 Asp Asp Gly Ala Arg Ala Arg Ala His Gly Gly Ala Arg Phe Ala
 Codons 31 35 40 45

136 CGT CCG GCC ACC GTT CAG GCC CGG CGG GCC ATG AAG CCG GCC CC
 Arg Pro Gly His Val Glu Gly Ala Arg Gly Met Lys Pro Ala Ala
 Codons 46 50 55
 ►►► Luciferase
\end{verbatim}
Deletion mutant. The amino acid residues between AUG\textsubscript{191} and AUG\textsubscript{356} are shown (construct 5, Fig. 7A).

\begin{verbatim}
1 ATG TCT CCG GAG GGC GCG CGG ATG AAG CCG GCG GCG Met Ser Pro Glu Gly Ala Arg Gly Met Lys Pro Ala Ala Codons 1 5 10

►►► Luciferase
\end{verbatim}

Supplementary Figure 5. Sequences of the region AUG\textsubscript{191} – CGG\textsubscript{266} (Arg\textsubscript{266}) - wild type and mutated. In each sequence AUG\textsubscript{191} is highlighted; codon numbers are indicated.

Wild type codons. The triplets coding Arg are in grey (construct 2, Fig.7B).

\begin{verbatim}
1 ATG TCT CCG GGG AAG CCC GGG GCG GGC GGA GCG GGG ACG AGG CGG Met Ser Pro Gly Lys Pro Gly Ala Gly Gly Ala Gly Thr Arg Arg Codons 1 5 10 15

46 ACC GGC TGG CGG AGG AGG AGG AGG CGA AGG AGA CGG CAT AAG CCG Thr Gly Trp Arg His Lys Pro Codons 16 20 25
\end{verbatim}

Frame-shifted codons at the N-end of the protein sequence. The triplets coding Arg are highlighted in grey. The changed amino acid residues are in red (construct 3, Fig. 7B).

\begin{verbatim}
1 ATG TCT CCG GAG GAA GCC CGG GGC GGG CGG AGC GGG GCG AGG CGG Met Ser Pro Glu Glu Ala Arg Gly Gly Arg Ser Gly Ala Arg Arg Codons 1 5 10 15

46 ACC GGC TGG CGG AGG AGG AGG AGG CGA AGG AGA CGG CAT AAG CCG Thr Gly Trp Arg His Lys Pro Codons 16 20 25
\end{verbatim}

Extended frame-shifted region. The changed amino acid residues are in red (construct 4, Fig. 7B).

\begin{verbatim}
1 ATG TCT CCG GAG GAA GCC CGG GGC GGG CGG AGC GGG GCG AGG CGG Met Ser Pro Glu Glu Ala Arg Gly Gly Arg Ser Gly Ala Asp Glu Ala Codons 1 5 10 15

46 GAC CGG CTG GCG GAG GAG GAG GCG AAG GAG ACG GCT AAG CCG Asp Arg Leu Ala Glu Glu Ala Lys Glu Thr Ala Lys Pro Codons 16 20 25
\end{verbatim}
Supplementary Figure 6. Folding of 5’ end of PTPRJ mRNA (nt 1 - 358).

Program RNA mfold, version 3.2. (Zuker, 2003). Arrangement of nucleotides is clockwise, the AUGs are highlighted. Free energy dG = -186.70
Supplementary Figure 7. *PTPRJ* reporter expression at different cell densities.

HT29 cells were transfected with the indicated firefly luciferase reporters (vector pGL3, core *PTPRJ* promoter, wildtype construct as in Fig.5; double frame-shift analogous to Fig.7), or with a pGL2 control vector (luciferase expression driven by the SV40 promoter), and cotransfected with pRL-TK. Cells were cultivated for different length of time, and the relative firefly luciferase activity (normalized to *Renilla* luciferase) was measured. Note that activity of the *PTPRJ* promoter is increasing with increasing cell density, while the SV40 promoter activity decreases under these conditions. Elevated activity of the construct with altered amino acid sequence between AUG$_{191}$ and AUG$_{356}$ (caused by double frame-shift) is maintained at all time points.
Supplementary Table 1. Promoter and leader sequences of the human receptor like PTPs.

Name	Gene symbol	cDNA Accession	CpG island promoter	5’UTR, length (nt)	uAUGs, position from 5’end (nt)	uORF, length (codons)	
1.	hCD45	PTPRC	No	181	55	10	
					140	12	
					175	No stop, in-frame§	
Subtype R1							
2.	hPTPalpha	PTPRA	Yes	676	36, 147, 168, 393	All four uORF in-frame; one stop	
					241, 286	Both uORF in frame; one stop	
					340, 361	Both uORF in frame; one stop	
					604, 607	Both uORF in frame; one stop	
					463	45	
					579	4	
					600	No stop; not-in-frame§§	
					632	6	
Subtype R4							
3.	hPTPepsilon	PTPRE	Yes	280	197	19	
Subtype R2B	4. hPTPmu	PTPRM	NM_002845	Yes	No data	No data	No Data
---	---	---	---	---	---	---	---
5. hPTPkappa	PTPK	NM_002844	Yes	221	6	19	
6. hPTPrho	PTPRT	NM_007050	Yes	185	106	18	
7. hPTPlambda	PTPRU	NM_005704	Yes	111	None		

Subtype R2A	8. hLAR	PTPRF	NM_002840	Yes	341	188	27
9. hPTPsigma	PTPRS	NM_002850	Yes	235	79	25	
10. hPTPdelta	PTPRD	NM_002839	Yes	712	307	16	
						328	9
						370	32
						476	6
						479	5

Subtype R5	11. hPTPgamma	PTPRG	NM_002841	Yes	718	1	153
						15	37
						23	25
						225	14
						702	No stop, not-in-frame§§
12. hPTPzeta	PTPRZ1	NM_002851	Yes	369	111	4	

Subtype R3	13. hSAP1	PTPRH	NM_002842	No	42	None	None
14. hPTP beta	PTPRB	NM_002837	Yes	31	None	None	
15. hDEP1	PTPRJ	NM_002843	Yes	356	14, 191	No stop, both in-frame§§	
16. hGLEPP1	PTPRO	NM_030667	Yes	175	50	12	
Subtype R7

	Protein	Accession	Start	Stop	In-frame?	uAUG 5′UTR	
17.	hPCPTP1	PTPRR	NM_002849	No	417	69	56
						No stop; not-in-frame	

Subtype R8

	Protein	Accession	Start	Stop	In-frame?	uAUG 5′UTR	
18.	hIA2	PTPRN	NM_002846	Yes	90	None	None
19.	hIA2beta	PTPRN2	NM_002847	Yes	58	None	None

Classification of the receptor type PTPs is according to Andersen JN, RL Del Vecchio, N Kannan, J Gergel, AF. Neuwald and NK. Tonks (2005) Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources, Methods 35: 90-114.

1) The search for CpG island promoters was performed in the UCSC Human Genome Browser at http://genome.ucsc.edu/

2) The search for uORF longer than 4 codons was performed on Clone Manager Professional Suite, version 8.

§) In-frame – uAUGs without stop codon in the 5′UTR. The uAUG and the AUG of the main protein are in the same reading frame.

§§) Not-in-frame – uAUG without stop codon in the 5′UTR. The uAUG and the AUG of the main protein are in different reading frames.
Supplementary Table 2. Promoter and leader sequences of the human non-transmembrane PTPs

Name	Gene symbol	cDNA Accession	CpG island promoter\(^1\)	5’UTR, length (nt)	uAUGs, position from 5’end (nt)	uORF, length \(^2\) (codons)		
1. hPTP1B	PTPN1	NM_002827	yes	175	4	9		
2	hTCPTP	PTPN2	NM_002828	yes	195	101	14	
Subtype NT2								
3	hSHP1	PTPN6	NM_002831	No	234	None	None	
4	hSHP2	PTPN11	NM_002834	Yes	381	29	25	
Subtype NT3								
5	hMEG2	PTPN9	NM_002833	Yes	509	394	8	
Subtype NT4								
6	hBDP1	PTPN18	NM_014369	Yes	63	None	None	
7	hLyPTP	PTPN22	NM_015967	No	90	27	4	
							43	No stop; not-in-frame\(^3\)
8	hPEST	PTPN12	NM_002835	Yes	30	None	None	
Subtype NT5								
9	hMEG1	PTPN4	NM_002830	Yes	772	145	8	
							158	31
							583	22
10	hPTPH1	PTPN3	NM_002829	No	24	None	None	
Subtype NT6								
-------------	--							
11. hPTPD1	PTPN21	NM_007039	Yes	332	106	25		
12. hPTPD2	PTPN14	NM_005401	Yes	272	144	22		
Subtype NT7								
13. hPTPBAS	PTPN13	NM_006264	Yes	64	None	None		
Subtype NT8								
14. hHDPTP	PTPN23	NM_015466	Yes	97	None	None		
Subtype NT9								
15. hPTPTyp	PTPN20*	NM_015605	Yes	188	177	No stop, not-in-frame		
§§								
Subtype NT unclassified								
16. hHePTP	PTPN7	NM_002832	No	132	None	None		
17. hSTEP	PTPN5	NM_032781	Yes	387	355	11		

Classification of the receptor type PTPs is according to Andersen JN, RL Del Vecchio, N Kannan, J Gergel, AF. Neuwald and NK. Tonks (2005) Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources, Methods 35: 90-114.

1) The search for CpG island promoters was performed in the UCSC Human Genome Browser at http://genome.ucsc.edu/

2) The search for uORF longer than 4 codons was performed on Clone Manager Professional Suite, version 8.

§§) Not-in-frame – uAUG without stop codon in the 5’UTR The uAUG and the AUG of the main protein are in different reading frames