A. Implementation details on computation cost

In the main paper, computational resources (BOPs and estimated energy consumption) are measured with respect to quantization bit-width, considering the overflow of low-bit arithmetic operations. Overflow occurs when an arithmetic operation attempts to create a numeric value that is outside the range that can be possibly represented. Taking integer overflow into account is especially essential in low-bit networks, since the output ranges of low-bit multiplication and addition are strictly limited. Various techniques are used to avoid the integer overflow, such as using the overflow checker or value sanity testing. For ultra-low precision operations where the integer overflow is highly likely to occur, we design an appropriate large bit-width for each operation, under the assumption of an integer overflow. For instance, when the sum is accumulated over vector of size C with each n-bit element, the output buffer is $n + \log_2 (C - 1)$-bit. Also, the output buffer for multiplication of two n-bit elements is $(2n - 1)$-bit.

B. Derivation of convolution operations for DAQ

Section 3.3 in the main paper claims that quantization can step forward to hardware efficiency simply by postponing the de-transformation process as late as possible (See Equation (B), (D), and (G)). As more operations are done before de-transformation, in other words, in the state of real integer, the more efficient the quantization becomes.

Section 3.2 of the main paper presents a convolution operation with a n-bit channel-wise quantized feature map and a n-bit layer-wise quantized weight tensor. Given a feature map $x \in \mathbb{R}^{C \times H \times W}$, c-th channel, j, k-th element of the feature map is denoted as $x_c[j, k]$ with the indexing operator $[\cdot, \cdot]$. Given a weight $w \in \mathbb{R}^{C \times C_{out} \times K \times K}$, c-th input channel and i, u, v-th element of a part of weight tensor w is denoted as $w_c[i, u, v]$ with indexing operator $[\cdot, \cdot, \cdot]$. Then, the output response $y \in \mathbb{R}^{C_{out} \times H \times W}$ is the output of convolution between the given feature map and the weight in a sliding window manner. The i, j, k-th element of the output response is formulated as follows:

$$y[i, j, k] = \sum_{c=1}^{C} \sum_{u=1}^{K} \sum_{v=1}^{K} x_c[u+j, v+k] \cdot w_c[i, u, v].$$

(A)

For simplicity, we drop the index subscript in the following equations to denote $x_c[u+j, v+k]$ as x_c and $w_c[i, u, v]$ as w_c. From our proposed quantization method, convolution with floating-point values can be approximated with low-precision values, as follows:

$$y[i, j, k] \approx \sum_{c=1}^{C} \sum_{u=1}^{K} \sum_{v=1}^{K} x^q_c \cdot w^q_c$$

(B)

$$= \sum_{c=1}^{C} \sum_{u=1}^{K} \sum_{v=1}^{K} (\sigma_{x_c} s(n) \cdot \hat{x}^q_c + \mu_{x_c}) \cdot (\sigma_{w_c} s(n) \cdot \hat{w}^q_c)$$

(C)
From Equation 4, 5, 6 of the main paper, Equation (D) can be approximated as follows:

\[
\mu_c \sigma_c q_s + \hat{\mu}_c q_s + \hat{w}_c q_s
\]

Likewise overview Figure 3 in the main paper, the channel-wise de-transformation (see Equation (D)) derived from the procedure with element-wise de-transformation (see Equation (B)) can reduce costly operations with floating-point values. Although the computation costly operation of element-wise de-transformation is largely reduced in Equation (D), it still bears computational overhead, by operating the channel-wise summation in floating-point values (due to floating-point de-transformation parameters \(\mu_c \) and \(\sigma_c \)). To alleviate this issue, main paper presents a scheme of quantizing quantization transformation parameters of \(\mu \in \mathbb{R}^C \) and \(\sigma \in \mathbb{R}^C \), to approximate \(\mu_c \) and \(\sigma_c \) by using the distribution statistics of \(\mu \) and \(\sigma \). From Equation 4, 5, 6 of the main paper, Equation (D) can be approximated as follows:

\[
\approx \sigma_w s(n)^2 \sum_{c=1}^C \sigma_c^2 \sum_{u=1}^K K \sum_{v=1}^K \hat{x}_c^q \cdot \hat{w}_c^q + \sigma_w s(n) \sum_{c=1}^C \mu_c^2 \sum_{u=1}^K K \sum_{v=1}^K \hat{w}_c^q
\]

\[
= \sigma_w s(n)^2 \sum_{c=1}^C \sigma_c^2 \sum_{u=1}^K K \sum_{v=1}^K \hat{x}_c^q \cdot \hat{w}_c^q + \sigma_w s(n) \sum_{c=1}^C \mu_c \sum_{u=1}^K K \sum_{v=1}^K \hat{w}_c^q
\]

\[
= \sigma_w s(n)^2 \sigma_c s(m) \sum_{c=1}^C \sigma_c^2 \sum_{u=1}^K K \sum_{v=1}^K \hat{x}_c^q \cdot \hat{w}_c^q + \sigma_w s(n) \sum_{c=1}^C \mu_c \sum_{u=1}^K K \sum_{v=1}^K \hat{w}_c^q
\]

\[
+ \sigma_w s(n) \sigma_c s(m) \sum_{c=1}^C \hat{\mu}_c \sum_{u=1}^K K \sum_{v=1}^K \hat{w}_c^q + \sigma_w s(n) \mu_c \sum_{c=1}^C \mu_c \sum_{u=1}^K K \sum_{v=1}^K \hat{w}_c^q.
\]

The floating-point channel-wise summation (see Equation (D)) is replaced with lower-precision channel-wise summation (see Equation (G)). As shown in Table A, simply changing the operation order from Equation (A) to Equation (D) reduces the BOPs largely from 174T to 10T. Furthermore, quantizing quantization transformation parameters (QQ) in Equation (D) results in Equation (G), which further reduces the BOPs to 3T with 4-bit for QQ.

Table A: Computational cost comparison of a 2-bit (w2a2) channel-wise quantized convolution. \(C_{out}=256, K=3, (H, W)=(480, 270) \)

De-transformation	QQ	Eqn.	(2, 2)	(3, 3)	(6, 4)	(6, 6)	(9, 9)	(14, 32)	(17, 32)	(32, 32)	BOPs
Element-wise	x	Eqn. (B)	-	-	-	-	-	-	-	-	169937M
Channel-wise	x	Eqn. (D)	76441M	67948M	-	8493M	-	8493M	-	8493M	10108G
Channel-wise	✔	Eqn. (G)	152882M	135895M	8493M	8493M	8460M	33M	33M	66M	3046G
C. Additional experiments

C.1. Comparison with SotA methods

Existing state-of-the-art quantized SR networks [23, 41] involve a specialized architecture or an ad-hoc training scheme for low precision SR networks, mostly concentrated on binary precision. BTM [23] exploits a new training scheme like knowledge distillation and specialized gradient update rule instead of the traditional straight-through estimator [46]. BAM [41] designs a new binarized SR network, namely BSRN, utilizing a bit accumulation module.

Our proposed quantization method is orthogonal to these techniques. EDSR-BTM and BSRN-BAM are re-implemented according to the respective paper, and we replace the typical quantization (binarization) function with our distribution-aware channel-wise quantization (DAQ) function. The re-implemented architectures and the DAQ-applied architectures are respectively trained with batch size 4 and other settings same as the baseline in each paper. Despite the channel-wise overhead, our proposed method DAQ gives clear auxiliary gain in performance, for about 0.3 dB in Set5, as shown in Table B.

Method	Precision	BOPs	Energy	Parameters	PSNR (dB)				
	w	a			Set6	Set14	B100	Urban100	
EDSR-BTM [23]	1	1	23.1 T	52.8 mJ	43.1M	31.30	28.05	27.22	25.08
EDSR-BTM [23] - DAQ	1	1	75.1 T	138.9 mJ	43.1M	31.60	28.19	27.34	25.30
BSRN-BAM [41]	1	1	2.9 T	8.5 mJ	1.2M	31.17	27.94	27.15	25.01
BSRN-BAM [41] - DAQ	1	1	7.2 T	23.7 mJ	1.2M	31.44	28.03	27.21	25.05

C.2. SR Networks with batch normalization layers

In the main paper, we made a comparison with quantization methods without retraining. Among the compared methods, DFQ [37] utilizes batch normalization (BN) parameters to further improve the quantization accuracy. However, the comparison backbone of Table 3, EDSR [31] removed the BN layers for improved performance, followed by several other SR networks. For further fair comparison with DFQ, we compare the quantization methods without retraining, on EDSR with BN. Table C shows that our method outperforms DFQ regardless of BN layers.

Method	Precision	BOPs	Energy	PSNR (dB)		
	w	a	(HD image)	(HD image)		
EDSR w/ BN	32	32	10025.8 T	22516.0 mJ	26.04 dB	
EDSR w/ BN - LinQ	4	4	357.8 T	378.4 mJ	22.79 dB	
EDSR w/ BN - DFQ	4	4	364.3 T	390.1 mJ	23.07 dB	
EDSR w/ BN - DAQ	2	2	213.4 T	333.5 mJ	24.53 dB	