Developing Electron Microscopy Tools for Profiling Plasma Lipoproteins Using Methyl Cellulose Embedment, Machine Learning and Immunodetection of Apolipoprotein B and Apolipoprotein(a)

Giesecke, Yvonne; Soete, Samuel; MacKinnon, Katarzyna; Tsiaras, Thanasis; Ward, Madeline; Althobaiti, Mohammed

Published in:
International Journal of Molecular Sciences

DOI:
10.3390/ijms21176373

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Giesecke, Y., Soete, S., MacKinnon, K., Tsiaras, T., Ward, M., Althobaiti, M., Suveges, T., Lucocq, J. E., McKenna, S. J., & Lucocq, J. M. (2020). Developing Electron Microscopy Tools for Profiling Plasma Lipoproteins Using Methyl Cellulose Embedment, Machine Learning and Immunodetection of Apolipoprotein B and Apolipoprotein(a). International Journal of Molecular Sciences, 21(17), [6373]. https://doi.org/10.3390/ijms21176373

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Jul. 2021
Supplementary Figure S1. Analysis of protein in fractions from the gel filtration column. Protein was assayed using the BCA method and expressed as a percentage of total protein in the plasma sample. See Materials and Methods for details.

Supplementary Figure S2. Mean size distribution of plasma LPs after correcting for oblate spheroidal shape (based on LDL size ratio observed from cryo-electron microscopy [38]). For comparison size ranges of lipoprotein categories from reference [10] are illustrated below the x axis: LDL very small (LDL IV, 18.0–20.17 nm), LDL small (LDL III, 20.17–21.1 nm), LDL medium (LDL II, 21.1–21.99 nm) and LDL large (LDL I, 21.99–23.8 nm); IDL IDL small (IDL2, 23.8–26.82 nm) and IDL large (IDL1,
26.82–29.6nm) and VLDL small (29.6–33.5 nm), medium (33.5–42.4 nm), and large (42.4–52.0 nm). For clarity the x axis label (Particle size (nm)) has been omitted.

Supplementary Figure S3. Comparison of Lp(a) particles sizes in freeze-thawed (frozen) and unfrozen (fresh) plasma. Horizontal calliper distance was measured as described in Materials and Methods using ImageJ. Chi square = 1.498, df 2, \(p > 0.1 \). KS test: D is 0.095; \(p = 0.895 \). n = 74 (frozen) and 65 (fresh).