Rationale for Determining the Functional Potency of Mesenchymal Stem Cells in Preventing Regulated Cell Death for Therapeutic Use

ABDERRAHIM NAJI, a,b NARUFUMI SUGANUMA, a,b NICOLAS ESPAGNOLLE, c KEN-ICHI YAGYU, d NOBUYASU BABA, a LUC SENSEBÉ, c FRÉDÉRIC DESCHASEAUX x

aCenter for Innovative and Translational Medicine and bDepartment of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan; cSTROMAlab, INSERM U1031, EFS Pyrénées-Méditerranée, Université de Toulouse, Toulouse, France; dScience Research Center, Division of Biological Research, Life Sciences and Functional Materials, Kochi Medical School, Kochi University, Kochi, Japan

Key Words. Mesenchymal stem cells • Cell death • Functional potency • Cellular therapy • Degenerative disorder • Inflammatory disorder • Clinical translation • Selection technologies

SUMMARY

Mesenchymal stem (stromal) cells (MSCs) are being investigated for treating degenerative and inflammatory disorders because of their reparative and immunomodulatory properties. Intricate mechanisms relate cell death processes with immune responses, which have implications for degenerative and inflammatory conditions. We review the therapeutic value of MSCs in terms of preventing regulated cell death (RCD). When cells identify an insult, specific intracellular pathways are elicited for execution of RCD processes, such as apoptosis, necroptosis, and pyroptosis. To some extent, exacerbated RCD can provoke an intense inflammatory response and vice versa. Emerging studies are focusing on the molecular mechanisms deployed by MSCs to ameliorate the survival, bioenergetics, and functions of unfit immune or nonimmune cells. Given these aspects, and in light of MSC actions in modulating cell death processes, we suggest the use of novel functional in vitro assays to ensure the potency of MSCs for preventing RCD. Such analyses should be associated with existing functional assays measuring the anti-inflammatory capabilities of MSCs in vitro. MSCs selected on the basis of two in vitro functional criteria (i.e., prevention of inflammation and RCD) could possess optimal therapeutic efficacy in vivo. In addition, we underline the implications of these perspectives in clinical studies of MSC therapy, with particular focus on acute respiratory distress syndrome.

SIGNIFICANCE STATEMENT

Most studies of mesenchymal stem (stromal) cells (MSCs) focus on their anti-inflammatory, trophic and differentiation abilities, but their ability to prevent regulated cell death (RCD) remains undefined. However, this last function could explain both the regenerative and anti-inflammatory therapeutic effect of MSCs observed in preclinical and clinical studies. The present report reviews the role of MSCs in preventing RCD, with implications for enhancing their therapeutic efficacy in the clinic. Development of in vitro assays to assess MSC functional potency in preventing RCD is suggested and criteria for selecting MSCs for therapeutic use are proposed. Furthermore, in vivo biomarkers of RCD that can be used for prompt evaluation of the therapeutic effects of MSCs are suggested.

INTRODUCTION

Mesenchymal stem (stromal) cells (MSCs), in humans, are principally derived from bone marrow and adipose tissues in adults and in neonatal tissues from umbilical cord blood and placenta [1–3]. Regardless of their origin, in vitro-expanded MSCs possess a common phenotype and share mutual biological properties [4–8]. However, we lack specific biomarkers to distinguish MSCs phenotypically and exclusively in vivo or in MSCs expanded in vitro. This situation is further complicated by the fact that in vitro-expanded MSC cultures are not derived from a single clone but rather several fibroblastic colony forming units [9, 10] with probable functional heterogeneities [8, 11]. To address this complexity, researchers use a combination of cell surface markers [7, 8] that are often associated with functional assessment of MSCs in differentiating into osteoblasts, chondroblasts, and adipocytes to confirm the MSC identity [8] (Fig. 1).

Today, MSCs are under intense clinical investigation for regenerative medicine because of their differentiation and trophic abilities [12–14] and for treatment of inflammatory diseases because of their immunosuppressive properties [15, 16]. MSCs delivered in vivo can home to inflammatory sites [17, 18] and...
produce anti-inflammatory and growth factors; therapeutic effects have been demonstrated in preclinical and clinical studies of various disorders [19, 20]. Hence, the clinical use of MSCs for treating severe degenerative and inflammatory diseases lacking appropriate treatments is expected to increase exponentially [8].

Substantial efforts have been undertaken by the translational community to standardize methods for producing, selecting, and using MSCs in the clinic [5, 6]. Notably, general guidance has been proposed for developing in vitro assays for selecting MSCs with potent therapeutic ability based on functional criteria [20, 21]. These assays require identifying MSC functions to predict clinical efficacy [6]. Some clinical observations have confirmed the relevance of in vitro assays to measure anti-inflammatory MSC potency, which was found consistent with in vivo effects [21]. Challenges remain in improving and using pertinent functional in vitro assays to identify MSCs with bona fide optimal efficiency in vivo [5, 6]. Thus, the ability of MSCs to prevent cell death processes could be tested in vitro to identify functional MSCs for clinical use.

Regulated Cell Death as a Therapeutic Target

Emerging evidences indicate a critical role for regulated cell death (RCD) in the pathogenesis of various diseases [22]. By definition, RCD is opposite to accidental cell death (ACD), whose effects are often identified as necrosis [23] (Tables 1, 2). ACD results from sudden trauma and occurs in an uncontrolled manner [23]. Nonetheless, ACD occurring in cells and through the release of intracellular content might trigger RCD in bystander cells [23]. RCD includes several processes [24, 25], among which the most distinct are...
Table 1. Features of RCD and ACD with the role of MSCs in preventing RCD in terminally differentiated third-party cells

Features	RCD	ACD		
Cell death pathway	Apoptosis	Necroptosis	Pyroptosis	Necrosis
Plasma membrane	Intact*	Disrupted	Disrupted	Disrupted
Mechanism	Caspase-3/6/7	RIPK1/3	Caspase-1/4/5	Trauma
Inflammation	No	Yes	Yes	Yes
Prevention by MSCs?	Yes	Yes	Yes	No

Data are based mostly on the studies reported in [22, 23, 33, 34, 43–46]. Additional citations can be found throughout the article.

*The plasma membrane of cells undergoing apoptosis remains intact but not with efferocytosis failure, during which cells might progress to secondary necrosis.

**MSCs do not prevent ACD; however, ACD might trigger RCD in bystander cells as a secondary event, when RCD can be prevented by MSCs.

Abbreviations: ACD, accidental cell death; MSCs, mesenchymal stem (stromal) cells; RCD, regulated cell death.

Table 2. MSC prevention of RCD processes occurring in terminally differentiated parenchymal, stromal, and immune cells

RCD pathway	Cell type benefiting from MSC effects	Mechanism of action	Study
Apoptosis	Cardiomyoblasts, PCs	Cell-to-cell interaction	Cselenyak et al. [43]
Apoptosis	Neurons, PCs	Caspase-3 neutralization, PSAP	Kong et al. [34], Li et al. [44]
Apoptosis	Lung fibroblasts, SCs	PI3K/Akt pathway	Kim et al. [45]
Apoptosis	Alveolar epithelial cells, IICs	KGF/HGF	Uzunhan et al. [46]
Necroptosis	Neurons, PCs	RIP1/3 neutralization	Kong et al. [34]
Pyroptosis	Alveolar macrophages, PCs, IICs	Cell-to-cell interaction	Naji et al. [33]
Pyroptosis	Monocyte-derived macrophages, IICs	Cell-to-cell interaction, IL-10	Naji et al. [33]

This table is not exhaustive; rather, it gives representative examples.

MSCs and target cells described in this table can originate from human or rodent species.

Abbreviations: ACD, accidental cell death; Akt, name related to protein kinase B; HGF, hepatocyte growth factor; IICs, innate immune cells; IL-10, interleukin 10; KGF, keratinocyte growth factor; MSC, mesenchymal stem (stromal) cell; PC, parenchymal cells; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PSAP, prosaposin; RCD, regulated cell death; RIP, receptor-interacting protein; SCs, stromal cells.

apoptosis, necroptosis, and pyroptosis [23] (Tables 1, 2). Thus, RCD is caused after cells sense danger or inflammatory mediators, in sterile or nonsterile conditions, which has implications for the pathogenesis of degenerative and inflammatory disorders [22, 24–28].

The RCD processes differ by their molecular triggers, molecular pathways engaged and mode of execution [23]. Apoptosis has been considered a programmed cell death (PCD) both during physiological and pathological processes. The term “PCD” is now preferred to indicate cell death from physiological processes, such as during development and maintenance of tissue homeostasis [29]. However, when cell death occurs during pathological conditions, RCD rather than PCD appears more appropriate [23, 25, 29]. Apoptosis is executed via a mechanism involving caspase-3/6/7 and results in cell death without plasma membrane rupture [22]. With disrupted plasma membrane, apoptosis might culminate in secondary necrosis [24, 30, 31]. Thus, apoptosis can be considered nonimmunogenic but not occurring in particular pathological conditions [26, 30, 31], whereas RCD such as necroptosis and pyroptosis are intrinsically immunogenic [24].

Necroptosis is mediated by a mechanism that depends on receptor-interacting protein kinase 1/3 and mixed lineage kinase-like protein, whereas pyroptosis is executed in cells by a mechanism involving caspase-1/4/5 and gasdermin D [24, 26, 27]. Both necroptosis and pyroptosis conclude with a rapid rupture of the plasma membrane, release of intracellular content and often with harmful consequences [24, 27]. Hence, RCD can be detrimental because it can sustain inflammation, tissue damage, and loss of function of the affected organ [22, 28]. Furthermore, exacerbated RCD can cause inflammation, and intense inflammation can elicit RCD, with, in all cases, pathological consequences [22]. Therefore, targeting RCD in addition to inflammation is needed to improve the efficacy of existing anti-inflammatory therapeutics [22, 28, 32].

BRIEF INSIGHTS INTO THE PROSPECTIVE MODE OF ACTION OF MSCS IN PREVENTING RCD

MSCs are known to improve cell survival and prevent apoptosis, necroptosis and pyroptosis (Tables 1, 2) occurring in various parenchymal or nonparenchymal cells and immune cells under unfavorable conditions [19, 33–35]. Mechanistically, MSCs are thought to promote cell survival via the secretion and paracrine actions of various cytokines and growth factors [20, 36]. They may also promote survival, bioenergetics, and functions of distressed cells, by mitochondria transfer through tunneling nanotubes (TNT), or microRNA/protein transfer through extracellular vesicles [37–40]. The mechanism may involve gap-junction communication via connexin 43 between MSCs and unfit cells [38, 41]. Consistently, mitochondrial transfer from MSCs to immune cells occurs in vivo and results in enhanced cell survival, phagocytic activity, and antimicrobial effects in preclinical models of acute lung injury and acute respiratory distress syndrome (ARDS) [38, 39]. The mechanisms MSCs use to achieve improved survival, bioenergetics, and functions of unfit cells are diverse and sophisticated and may reflect their vital importance, such as preventing RCD. Of
note, TNT-mediated transfer of mitochondria from healthy to apoptotic neuroblastic PC12 cells can reverse apoptosis, with implications for the survival mechanisms of damaged cells [42]. By comparison, this proposes that transfer of mitochondria from MSCs to distressed cells through a TNT-dependent mechanism might prevent the execution of RCD.

Therefore, innovative therapeutic interventions should simultaneously target RCD and inflammation to optimize cure [22]. The abundant success of MSC therapy in certain degenerative and inflammatory disorders, observed in preclinical and clinical studies, might be because of the intrinsic properties of MSCs to simultaneously modulate RCD and inflammation. Further dissecting the mechanisms MSCs use to prevent RCD is fundamental, but the use of such functional attributes as selection criteria for MSCs intended for therapy is of immediate practical importance for the clinic.

MSC Function to Modular RCD as Criteria for Therapeutic Use

The antiapoptotic properties of MSCs toward immune and non-immune cells have been demonstrated in some contexts [35, 36, 43–46]. Emerging studies suggest that MSCs can inhibit RCD such as necroptosis [34], and we recently showed that MSCs could prevent pyroptosis in macrophages [33]. We focused on the pathogenesis of severe occupational lung diseases such as interstitial lung disease and pulmonary alveolar proteinosis, which could involve pyroptosis of lung macrophages caused by inhalation of inorganic particles [33]. This pyroptosis is characterized by the production of inflammatory cytokines and cell death by cytolysis, events depending on the inflammasome NACHT, LRR, and PYD domain-containing protein 3–apoptosis-associated speck-like protein containing a CARD–Caspase-1 (NLRP3-ASC-Caspase-1) [33]. Blockade of inflammatory pathways with pharmacological inhibitors such as dexamethasone and genetic knockdown of essential inflammasome containing a CARD–Casase-1 could prevent pyroptosis in macrophages [33].

We focused on the pathogenesis of severe occupational lung diseases such as interstitial lung disease and pulmonary alveolar proteinosis, which could involve pyroptosis of lung macrophages caused by inhalation of inorganic particles [33]. This pyroptosis is characterized by the production of inflammatory cytokines and cell death by cytolysis, events depending on the inflammasome NACHT, LRR, and PYD domain-containing protein 3–apoptosis-associated speck-like protein containing a CARD–Caspase-1 (NLRP3-ASC-Caspase-1) [33]. Blockade of inflammatory pathways with pharmacological inhibitors such as dexamethasone and genetic knockdown of essential inflammasome containing a CARD–Casase-1 could prevent pyroptosis in macrophages [33]. We focused on the pathogenesis of severe occupational lung diseases such as interstitial lung disease and pulmonary alveolar proteinosis, which could involve pyroptosis of lung macrophages caused by inhalation of inorganic particles [33]. This pyroptosis is characterized by the production of inflammatory cytokines and cell death by cytolysis, events depending on the inflammasome NACHT, LRR, and PYD domain-containing protein 3–apoptosis-associated speck-like protein containing a CARD–Caspase-1 (NLRP3-ASC-Caspase-1) [33]. Blockade of inflammatory pathways with pharmacological inhibitors such as dexamethasone and genetic knockdown of essential inflammasome containing a CARD–Casase-1 could prevent pyroptosis in macrophages [33].

Clinical Relevance for Identifying MSCs With Optimal Therapeutic Actions

Indeed, RCD represents a therapeutic target for attenuating both tissue damage and inflammation in various disorders [22] such as ARDS [49]. ARDS represents severe lung injury, a serious and life-threatening condition that often results from intense trauma, pneumonia infection or sepsis [49]. The pathogenesis of ARDS is characterized by diffuse alveolar damage complicated by intense inflammation [51]. Diffuse alveolar damage is associated with rapid and massive myeloid and epithelial cell death, which is detected by molecular markers such as activated caspases and cleavage of cytokeratin 18 (K18) [21, 49]. Hence, in advanced-phase clinical trials, the MSC potency in preventing RCD in myeloid and epithelial cells could be evaluated as supplementary selection criteria for MSCs intended for patients with ARDS. This suggestion is motivated by patients with ARDS being particularly affected by intense cell death and inflammation within the lung parenchyma [51]. Furthermore, molecular markers of RCD should be tested in vivo (Table 5) to measure the beneficial effects of MSC adoptive transfer, as an integral part of monitoring MSC therapy, especially for patients with ARDS.

A study by Leblanc and colleagues [21] showed improvement with MSC infusion in severe cases of ARDS, with resolution of respiratory, hemodynamic, and organ failure [21]. These improvements were associated with decreased levels of markers of inflammation. Moreover, the authors evaluated in vitro the immunomodulation potency of the MSCs used. The in vitro potency assays included functional assays for determining the anti-inflammatory properties of MSCs and proteomic analysis of both MSCs and extracellular vesicles released by MSCs. Encouraging results were observed in two patients with ARDS who received an intravascular infusion of MSCs on a compassionate basis [21]. In these two cases, adoptive transfer of MSCs demonstrated that the in vivo actions of MSCs agreed with most of the MSC actions measured in vitro [21].
Table 3. Evaluation of MSC potency based on two functional criteria: inflammation and RCD

Estimate of MSC potency	Inflammation	Burden	RCD	Immunomodulation and tissue repair
Innate/adaptive immune cells	No effect (−)	No effect (−)	Prevent (+)	No effect (−)
Prevent (+)	No effect (−)	No optimal effect (−/+)		
No effect (−)	Prevent (+)	No optimal effect (−/+)		
Prevent (+)	Prevent (+)	Optimal effect (+)		

Abbreviations: MSC, mesenchymal stem (stromal) cells; RCD, regulated cell death.

Table 4. Evaluating RCD and ACD in vitro with specific RCD biomarkers

Biomarkers—test in vitro (e.g., cocultures)	Apoptosis	Necroptosis	Pyroptosis	Necrosis
Trypan blue	+	+	+	+
Lactate dehydrogenase	−	+	+	+
Annexin V	+	+	+	+
Propidium iodide	−	+	+	+
PARP Cleavage	−	−	−	−
MLKL Phosphorylation	−	−	−	−
Caspase-1	−	−	−	−
Gasedemin D	−	−	−	−

Data are based on the studies reported in [23–27, 33, 34].

Table 5. Evaluating RCD and ACD in vivo with specific biomarkers

Biomarkers—test in vivo (e.g., biologic fluids)	Apoptosis	Necroptosis	Pyroptosis	Necrosis
Lactate dehydrogenase	−	+	+	+
K18	−	+	+	+
cK18	+	+	+	+
sTNFR	+	−	−	−
sTRAIL	+	−	−	−
HMGB1	−	+	+	+
IL-1β/IL-18	−	−	−	−
mtDNA	−	+	+	+

Data are based on the studies reported in [21–25, 53–55].

Improvements in patients with ARDS who received adoptive transfer of MSCs were associated with a rapid decrease in levels of markers of cell death [21]. Significantly, Leblanc and colleagues analyzed bronchoalveolar lavage fluid (BALF) for monitoring molecular markers of apoptosis and necrosis of alveolar epithelial cells. The analysis of cell death in BALF was based on detection of epithelial apoptosis by measuring caspase-cleaved K18 and other forms of cell death with features of necrosis, detected by measuring uncleaved K18 [21]. The results revealed a rapid decrease in both apoptosis and necrosis of lung epithelial cells, assessed within only few hours after the adoptive transfer of MSCs in patients [21]. This finding might indicate a sequential mechanism of the MSC action, the first effect being to home to the site of tissue damage, to prevent RCD, before or concomitant with the assessable action of MSCs in modulating inflammation.

Thus, RCD biomarkers could be measured to monitor and rapidly predict the outcomes of a given MSC treatment in patients with ARDS. This analysis is crucial to readily evaluate the response of the intervention in patients and could be used to adapt and appropriately improve the treatment. Leblanc and colleagues suggested that MSCs have therapeutic efficacy for ARDS [21]. Furthermore, the authors demonstrated the advantage of in vitro assessment of the MSC anti-inflammatory potency while providing critical molecular insights into the processes of cell death as pertinent in vivo biomarkers [21]. Thenceforth, such assessments appear critical in order to rapidly monitor and evaluate the therapeutic effects of MSCs.

CONCLUSION

MSCs are remarkable from therapeutic perspectives, given the ease with which we can obtain a significant number of genetically stable MSCs and the number of diseases that can be treated because of the intrinsic properties of MSCs [36]. Today, MSCs are used in advanced-phase clinical trials of therapy to inhibit the degenerative and inflammatory processes in various disorders [6, 14, 36]. Thus, we increasingly need to standardize, optimize, and ensure the success of MSC therapy in such advanced-phase clinical trials [5, 6, 9, 13, 14, 20, 21, 48, 50, 52]. The challenges and perspectives lie in implementing appropriate functional assays in vitro that could assess the therapeutic potential of MSCs intended for clinical use. To this end, the efforts of the translational community have focused on providing release criteria for MSCs based on their anti-inflammatory function, usually toward T-cell activation and proliferation, in vitro [5, 6, 48]. In this review, we suggest that in addition to developing easy-to-use and rapid functional assays for MSCs, we should develop assays to evaluate their ability to modulate RCD and in particular innate immune cells such as macrophages and epithelial cells. However, functional assays for MSCs in modulating RCD of other cell types, such as parenchymal cells or organ-specific cell subtypes, could be applied; pertinent target cells should be identified according to a known pathogenesis implying RCD for a given disease. In addition, we suggest monitoring RCD biomarkers in patients, including specific markers for apoptosis, necroptosis, and pyroptosis, because these RCD have a direct effect on the pathogenesis of a number of molecular makers of apoptosis and necrosis of alveolar epithelial cells. The analysis of cell death in BALF was based on detection of epithelial apoptosis by measuring caspase-cleaved K18 and

www.StemCellsTM.com ©2016 The Authors STEM CELLS TRANSLATIONAL MEDICINE published by Wiley Periodicals, Inc. on behalf of AlphaMed Press
diseases [22, 23, 28]. Of note, RCD may not be relevant in the pathogenesis of all diseases treated with MSCs, in which case other pertinent markers should be evaluated. Nonetheless, targeting both inflammation pathways and RCD pathways as therapeutic objectives might help improve MSC treatments intended for degenerative and inflammatory diseases. The assessment of the potency of MSCs in modulating both inflammation and RCD in vitro and the monitoring of both inflammation and RCD biomarkers in vivo [23, 25, 53–55] would certainly benefit patients receiving MSC therapy, particularly those with ARDS currently in advanced-phase clinical trials [20, 21, 39, 50, 51].

ACKNOWLEDGMENTS

Support was provided by the Program to Disseminate Tenure Tracking System of the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by intramural funding from Kochi Medical School, Kochi University, Japan to A.N. Additional support was provided by Grant 12/12/12.11 to L.S., “Nouveaux Marqueurs de Sécurité des Cellules Souches,” Région Midi-Pyrénées, Toulouse, France.

AUTHOR CONTRIBUTIONS

A.N., conception and design, figure/table design, manuscript writing, final approval of manuscript; N.S., N.E., K-I.Y., and N.B.: manuscript writing, final approval of manuscript; L.S. and F.D.: conception and design, manuscript writing, final approval of manuscript.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

The authors indicated no potential conflicts of interest.
Jackson MV, Morrison TJ, Doherty DF et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. STEM CELLS 2016;34:2210–2223.

Vallabhaneni KC, Penfornis P, Dhule S et al. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget 2015;6:4953–4967.

Han J, Kim B, Shin JY et al. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction. ACS Nano 2015;9:2805–2819.

Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 2015;22:1181–1191.

Cselenyák A, Pankotai E, Horváth EM et al. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 2010;11:29.

Li N, Sarojini H, An J et al. Prosaposin in the secretome of marrow stroma-derived neural progenitor cells protects neural cells from apoptotic death. J Neurochem 2010;112:1527–1538.

Kim SY, Lee JH, Kim JI et al. Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage. Am J Physiol Lung Cell Mol Physiol 2012;302:L891–L908.

Uzunhan Y, Bernard O, Marchant D et al. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 2016;310:L439–L451.

Dozmorov I, Eisenbraun MD, Lefkovits I. Limiting dilution analysis: from frequencies to cellular interactions. Immunol Today 2000;21:15–18.

Salem B, Minner S, Hensel NF et al. Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency. Cytotherapy 2015;17:1675–1686.

Moon HG, Cao Y, Yang J et al. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway. Cell Death Dis 2015;6:e2016.

Wilson JG, Liu KD, Zhuo H et al. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir Med 2015;3:24–32.

Kao KC, Hu HC, Chang CH et al. Diffuse alveolar damage associated mortality in selected acute respiratory distress syndrome patients with open lung biopsy. Crit Care 2015;19:228.

Munneke JM, Spruit MJ, Cornelissen AS et al. The potential of mesenchymal stromal cells as treatment for severe steroid-refractory acute graft-versus-host disease: A critical review of the literature. Transplantation. 2015 [Epub ahead of print].

Jouan-Lanhouet S, Riquet F, Duprez L et al. Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol 2014;35:2–13.

Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity 2013;38:209–223.

Vanden Berghe T, Demon D, Bogaert P et al. Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. Am J Respir Crit Care Med 2014;189:282–291.