The isoperimetric problem for Hölderian curves

Ricardo Almeida Delfim F. M. Torres
ricardo.almeida@ua.pt delfim@ua.pt

Department of Mathematics
University of Aveiro
3810-193 Aveiro, Portugal

Abstract

We prove a necessary stationary condition for non-differentiable isoperimet-
ric variational problems with scale derivatives, defined on the class of Höl-
der continuous functions.

Mathematics Subject Classification: 49K05, 26B05, 39A12.

Key words: scale calculus, isoperimetric problem, non differentiability.

1 Introduction

An analogue of differentiable calculus for Hölder continuous functions has
been recently developed by J. Cresson, by substituting the classical notion
of derivative by a new complex operator, called the scale derivative [2]. A
Leibniz rule similar to the classical one is proved, and with it a general-
ed Euler-Lagrange equation, valid for nonsmooth curves, is obtained [2]. The
new calculus of variations find applications in scale-relativity theory, and
some applications are given to Hamilton’s principle of least action and to
nonlinear Schrödinger equations [1, 2, 3].

In this note we introduce the isoperimetric problem for Hölder con-
 tinuous curves in Cresson’s setting. Section 2 reviews the quantum cal-
 culus of J. Cresson, fixing some typos found in [2]. Main results are given in
Section 3 where the non differentiable isoperimetric problem is formulated and
respective stationary condition proved (see Theorem 4). We end with Sec-
tion 4 illustrating the applicability of our Theorem 4 to a simple example
that has an Hölder continuous extremal, which is not differentiable in the
classical sense.
2 Preliminaries

In this section we review the quantum calculus [1, 2], which extends the classical differential calculus to nonsmooth continuous curves. As usual, we denote by C^0 the set of continuous real valued functions defined on \mathbb{R}.

Definition 1. ([2]) Let $f \in C^0$ and $\epsilon > 0$. The $\epsilon-$left and $\epsilon-$right quantum derivatives are defined by

$$
\Delta^-\epsilon f(x) = \frac{-f(x-\epsilon) - f(x)}{\epsilon} \quad \text{and} \quad \Delta^+\epsilon f(x) = \frac{f(x+\epsilon) - f(x)}{\epsilon},
$$

respectively. In short, we write $\Delta^\sigma\epsilon f(x)$, $\sigma = \pm$.

Next concept generalizes the derivative for continuous functions, not necessarily smooth.

Definition 2. (cf. [2]) Let $f \in C^0$ and $\epsilon > 0$. The ϵ scale derivative of f at x is defined by

$$
\square\epsilon f(x) = \frac{1}{2}(\Delta^+\epsilon f(x) + \Delta^-\epsilon f(x)) - i\frac{1}{2}(\Delta^+\epsilon f(x) - \Delta^-\epsilon f(x)), \quad i^2 = -1. \quad (1)
$$

If f is a C^1 function, and if we take the limit as $\epsilon \to 0$ in (1), we obtain $f'(x)$. To simplify, when there is no danger of confusion, we will write $\square\epsilon f$ instead of $\square\epsilon f/\square x$. For complex valued functions, we define

$$
\square\epsilon f = \frac{\square{\text{Re}(f)}(x) + i\square{\text{Im}(f)}(x)}{\square x}(x).
$$

We now collect the results needed to this work. First the Leibniz rule for quantum calculus:

Theorem 1. (cf. [2]) Given $f, g \in C^0$ and $\epsilon > 0$, one has

$$
\square\epsilon (f \cdot g) = \square\epsilon f \cdot g + f \cdot \square\epsilon g + i\frac{\epsilon}{2}(\square\epsilon f \square\epsilon g - \square\epsilon f \square\epsilon g - \square\epsilon f \square\epsilon g), \quad (2)
$$

where $\square\epsilon f$ is the complex conjugate of $\square\epsilon f$.

If f and g are both differentiable, we obtain the Leibniz rule $(f \cdot g)' = f' \cdot g + f \cdot g'$ from [2], taking the limit as $\epsilon \to 0$.

Definition 3. Let $f \in C^0$, and $\alpha \in (0,1)$ be a real number. We say that f is H"olderian of H"older exponent α if there exists a constant c such that, for all $\epsilon > 0$, and all $x, x' \in \mathbb{R}$ such that $|x - x'| \leq \epsilon$,

$$
|f(x) - f(x')| \leq c\epsilon^\alpha.
$$

We denote by H^α the set of H"olderian functions with H"older exponent α.

2
From now on, we assume that $\alpha \in (0,1)$ is fixed, and ϵ is a sufficiently small parameter, $0 < \epsilon \ll 1$. Let

$$C^\alpha_\epsilon(a,b) = \{ y : [a-\epsilon, b+\epsilon] \to \mathbb{R} \mid y \in H^\alpha \}.$$

A functional is a function $\Phi : C^\alpha_\epsilon(a,b) \to \mathbb{C}$. We study the class of functionals Φ of the form

$$\Phi(y) = \int_a^b f(x, y(x), \Box_\epsilon y(x)) \, dx,$$

where $f : \mathbb{R} \times \mathbb{R} \times \mathbb{C} \to \mathbb{C}$ is a C^1 function, called the Lagrangian. We assume that the Lagrangian satisfies

$$\|Df(x, y(x), \Box_\epsilon y(x))\| \leq C,$$

where C is a positive constant, D denotes the differential, and $\| \cdot \|$ is a norm for matrices.

If we consider the class of differentiable functions $y \in C^1$, we obtain the classical functional

$$\Phi(y) = \int_a^b f(x, y(x), \dot{y}(x)) \, dx$$

of the calculus of variations when ϵ goes to zero.

The methods to solve problems of the calculus of variations admit a common variational approach: we consider a class of functions $\eta(x)$ such that $\eta(a) = 0 = \eta(b)$; and admissible functions $\overline{y} = y + \epsilon_1 \eta$ on the neighborhood of y. For ϵ_1 sufficiently small, \overline{y} is infinitely near y and satisfies given boundary conditions $\overline{y}(a) = y(a)$ and $\overline{y}(b) = y(b)$. For our purposes, we need another assumption about functions η.

Definition 4. (2) Let $y \in C^\alpha_\epsilon(a,b)$. A variation \overline{y} of y is a curve of the form $\overline{y} = y + h$, where $h \in C^\beta_\epsilon(a,b)$, $\beta \geq \alpha 1_{[1/2,1]} + (1 - \alpha)1_{[0,1/2]}$, and $h(a) = 0 = h(b)$.

The minimal condition on β is to ensure that the variation curve \overline{y} is still on $C^\alpha_\epsilon(a,b)$.

Definition 5. (2) A functional Φ is called differentiable on $C^\alpha_\epsilon(a,b)$ if for all variations $\overline{y} = y + h$, $h \in C^\beta_\epsilon(a,b)$,

$$\Phi(y + h) - \Phi(y) = F_y(h) + R_y(h),$$

where F_y is a linear operator and $R_y(h) = O(h^2)$.

Theorem 2. (cf. [2]) For all $\epsilon > 0$, the functional Φ defined by (3) is differentiable, and its derivative is

$$F_y(h) = \int_a^b \left[\frac{\partial f}{\partial y}(x, y(x), \square_\epsilon y(x)) - \square_\epsilon \left(\frac{\partial f}{\partial \square_\epsilon y}(x, y(x), \square_\epsilon y(x)) \right) \right] h(x) \, dx$$

$$+ \int_a^b \frac{\partial f}{\partial \square_\epsilon y}(x, y(x)) \frac{\partial f}{\partial \square_\epsilon y}(x, y(x)) h(x) \, dx + iR_y(h)$$

with

$$R_y(h) = -\frac{\epsilon}{2} \int_a^b \left[\square_\epsilon f_\epsilon(x) \square_\epsilon h(x) - \square_\epsilon f_\epsilon(x) \square_\epsilon h(x) - \square_\epsilon f_\epsilon(x) \square_\epsilon h(x) \right] dx$$

where

$$f_\epsilon(x) = \frac{\partial f}{\partial \square_\epsilon y}(x, y(x), \square_\epsilon y(x)).$$

Definition 6. (2) Let $a_p(\epsilon)$ be a real or complex valued function, with parameter p. We denote by $[\cdot]_\epsilon$ the (unique) linear operator defined by

$$a_p(\epsilon) - [a_p(\epsilon)]_\epsilon \to_{\epsilon \to 0} 0 \quad \text{and} \quad [a_p(\epsilon)]_\epsilon = 0 \quad \text{if} \quad \lim_{\epsilon \to 0} a_p(\epsilon) = 0.$$

Definition 7. (2) We say that y is an extremal curve for the functional (3) on $C^\beta_\epsilon(a, b)$, if $[F_y(h)]_\epsilon = 0$ for all $\epsilon > 0$ and $h \in C^\beta_\epsilon(a, b)$.

The main result of [2] is a version of the Euler-Lagrange equation for nonsmooth curves:

Theorem 3. (2) The curve y is an extremal for the functional (3) on $C^\beta_\epsilon(a, b)$ if and only if

$$\left[\frac{\partial f}{\partial y}(x, y(x), \square_\epsilon y(x)) - \square_\epsilon \left(\frac{\partial f}{\partial \square_\epsilon y}(x, y(x), \square_\epsilon y(x)) \right) \right]_\epsilon = 0$$

for every $\epsilon > 0$.

3 Main results

The isoperimetric problem is one of the most ancient optimization problems. One seeks to find a continuously differentiable curve $y = y(x)$, satisfying
given boundary condition \(y(a) = a_0 \) and \(y(b) = b_0 \), which minimizes or maximizes a given functional

\[
I(y) = \int_a^b f(x, y(x), \dot{y}(x)) \, dx,
\]

for which a second given functional

\[
G(y) = \int_a^b g(x, y(x), \dot{y}(x)) \, dx
\]

possesses a given prescribed value \(K \). The classical method to solve this problem involves a Lagrange multiplier \(\lambda \) and consider the problem of extremizing the functional

\[
\int_a^b (f - \lambda g) \, dx
\]

using the respective Euler-Lagrange equation. In scale calculus we have an additional problem, because functionals \(I \) and \(G \) take complex values and so the Lagrange multiplier method must be adapted. We will assume that \(\|Dg(\cdot)\| \) is finite.

For our main theorem, we need the following lemma.

Lemma 1. If \(\lim_{\epsilon \to 0} (a_p(\epsilon)) \) and \(\lim_{\epsilon \to 0} (b_p(\epsilon)) \) are both finite, then

\[
[a_p(\epsilon) \cdot b_p(\epsilon)]_{\epsilon} = [a_p(\epsilon)]_{\epsilon} \cdot [b_p(\epsilon)]_{\epsilon}.
\]

Proof. Since \(\lim_{\epsilon \to 0} (a_p(\epsilon)) \) and \(\lim_{\epsilon \to 0} (b_p(\epsilon)) \) are finite, then \(\lim_{\epsilon \to 0} [a_p(\epsilon)]_{\epsilon} \) and \(\lim_{\epsilon \to 0} [b_p(\epsilon)]_{\epsilon} \) are also finite. Moreover,

1. \[
\lim_{\epsilon \to 0} (a_p(\epsilon) \cdot b_p(\epsilon) - [a_p(\epsilon)]_{\epsilon} \cdot [b_p(\epsilon)]_{\epsilon})
\]
 \[=\lim_{\epsilon \to 0} ((a_p(\epsilon) - [a_p(\epsilon)]_{\epsilon}) \cdot b_p(\epsilon) + [a_p(\epsilon)]_{\epsilon} \cdot (b_p(\epsilon) - [b_p(\epsilon)]_{\epsilon})) = 0.\]

2. If \(\lim_{\epsilon \to 0} (a_p(\epsilon) \cdot b_p(\epsilon)) = 0 \), then \(\lim_{\epsilon \to 0} (a_p(\epsilon)) = 0 \) or \(\lim_{\epsilon \to 0} (b_p(\epsilon)) = 0 \). Therefore, \([a_p(\epsilon)]_{\epsilon} = 0 \) or \([b_p(\epsilon)]_{\epsilon} = 0 \) and so \([a_p(\epsilon)]_{\epsilon} \cdot [b_p(\epsilon)]_{\epsilon} = 0 \).

\[\square\]

Definition 8. Given a constraint functional \(G(y) = K \) and a curve \(\overline{y} \), we say that \(\overline{y} \) is an extremal curve for the functional \(I(y) = \int_a^b f(x, y(x), \square_{\epsilon} y(x)) \, dx \)
subject to the constraint $G(y) = K$, if whenever $\hat{y} = \bar{y} + \sum_k h_k$, $h_k \in C^\beta_c(a,b)$, is a variation satisfying the constraint $G(\hat{y}) = K$, then

$$[F_\bar{y}(h_k)]_\epsilon = \int_a^b \left[\frac{\partial f}{\partial y}(x, \bar{y}(x), \Box_\epsilon \bar{y}(x)) - \Box_\epsilon \left(\frac{\partial f}{\partial \Box_\epsilon y}(x, \bar{y}(x), \Box_\epsilon \bar{y}(x)) \right) \right]_\epsilon h_k(x) \, dx = 0$$

for all $\epsilon > 0$ and for all k.

Theorem 4. Let $\bar{y} \in C^\alpha_c(a,b)$. Suppose that \bar{y} is an extremal for the functional

$$\begin{align*}
I : C^\alpha_c(a,b) & \to \mathbb{C} \\
y & \mapsto \int_a^b f(x, y(x), \Box_\epsilon y(x)) \, dx
\end{align*}$$

on $C^\beta_c(a,b)$, subject to the boundary conditions $y(a) = a_0$, $y(b) = b_0$ and the integral constraint

$$G(y) = \int_a^b g(x, y(x), \Box_\epsilon y(x)) \, dx = K,$$

where $K \in \mathbb{C}$ is a given constant. If

1. \bar{y} is not an extremal for G;

2. and

$$\lim_{\epsilon \to 0} \max_{x \in [a,b]} \left| \left(\frac{\partial f}{\partial y} - \Box_\epsilon \left(\frac{\partial f}{\partial \Box_\epsilon y} \right) \right) \right|_{(x, \bar{y}(x), \Box_\epsilon \bar{y}(x))}$$

and

$$\lim_{\epsilon \to 0} \max_{x \in [a,b]} \left| \left(\frac{\partial g}{\partial y} - \Box_\epsilon \left(\frac{\partial g}{\partial \Box_\epsilon y} \right) \right) \right|_{(x, \bar{y}(x), \Box_\epsilon \bar{y}(x))}$$

are both finite;

then there exists $\lambda \in \mathbb{R}$ such that

$$\left[\left(\frac{\partial L}{\partial y} - \Box_\epsilon \left(\frac{\partial L}{\partial \Box_\epsilon y} \right) \right) \right]_{(x, \bar{y}(x), \Box_\epsilon \bar{y}(x))} = 0,$$

where $L = f - \lambda g$. In other words, \bar{y} is an extremal for L.

Remark 1. Hypothesis 2 of Theorem 4 is trivially satisfied in the case where the admissible curves are smooth.

Proof. To short, let $u = (x, \bar{y}(x), \Box_\epsilon \bar{y}(x))$. Consider the two-parameter family of variations

$$\hat{y} = \bar{y} + \epsilon_1 \eta_1 + \epsilon_2 \eta_2,$$
such that \(\eta_1, \eta_2 \in C^\beta_c(a, b) \), \(\beta \geq \alpha_1[1/2,1] + (1 - \alpha)1_{0,1/2} \), \(\eta_1(a) = 0 = \eta_1(b) \), \(\eta_2(a) = 0 = \eta_2(b) \), and \(\epsilon_1, \epsilon_2 \in B_r(0) \), with \(r \) sufficiently small. Then, \(\hat{y}(a) = a_0 \) and \(\hat{y}(b) = b_0 \), as prescribed, for all values of the parameters \(\epsilon_1 \) and \(\epsilon_2 \). It is easy to see that \(\hat{y} \in C^\alpha(a, b) \).

1. If we fix two curves \(\eta_1 \) and \(\eta_2 \), we can consider the functions \(\mathcal{T} \) and \(\mathcal{G} \) with two variables \(\epsilon_1 \) and \(\epsilon_2 \), defined by

\[
\mathcal{T}(\epsilon_1, \epsilon_2) = \int_a^b f(x, \overline{y}(x)) + \epsilon_1 \eta_1 + \epsilon_2 \eta_2, \quad \mathcal{G}(\epsilon_1, \epsilon_2) = \int_a^b g(x, \overline{y}(x)) + \epsilon_1 \eta_1 + \epsilon_2 \eta_2 \ dx.
\]

Let \(\mathcal{G} = \mathcal{G} - K \).

2. We have \(\nabla \mathcal{G}(0, 0) \neq 0 \). Indeed, since \(g \) is a smooth function, \(\mathcal{G} \) is also smooth and

\[
\frac{\partial \mathcal{G}}{\partial \epsilon_1} \bigg|_{(0,0)} = \int_a^b \left(\eta_1 \frac{\partial g}{\partial y}|_u + \Box \eta_1 \frac{\partial g}{\partial \Box y}|_u \right) dx
\]

\[
= \int_a^b \frac{\partial g}{\partial y}|_u \left(\frac{\partial g}{\partial \Box y}|_u \right) \eta_1 dx + \int_a^b \Box \frac{\partial g}{\partial \Box y}|_u \left(\frac{\partial g}{\partial \Box y}|_u \right) \eta_1 dx - \frac{1}{2} \int_a^b \left[\Box g \Box \eta_1 - \Box g \Box \eta_1 - \Box g \Box \eta_1 + \Box g \Box \eta_1 \right] dx,
\]

where

\[
g_\epsilon = \frac{\partial g}{\partial \Box y}|_u.
\]

Since

\[
\lim_{\epsilon \to 0} \int_a^b \Box \left(\frac{\partial g}{\partial \Box y}|_u \right) \eta_1(x) dx = 0
\]

and

\[
\lim_{\epsilon \to 0} \epsilon \int_a^b (Op_\epsilon g_\epsilon Op_\epsilon' \eta_1) dx = 0,
\]

where \(Op_\epsilon \) and \(Op_\epsilon' \) is equal to \(\Box \epsilon \) and \(\Box \epsilon \) (cf. [2, Lemma 3.2]), it follows that

\[
\left[\frac{\partial \mathcal{G}}{\partial \epsilon_1} \right]_{(0,0)} = \int_a^b \left[\frac{\partial g}{\partial y}|_u - \Box \left(\frac{\partial g}{\partial \Box y}|_u \right) \right] \eta_1(x) dx.
\]
Since \(\overline{y} \) is not an extremal of \(G \), there exists a curve \(\eta_1 \) such that

\[
\left[\frac{\partial G}{\partial \epsilon_1} \right]_{(0,0)} \neq 0.
\]

Therefore, by the definition of \(\left[\cdot \right]_\epsilon \), we conclude that

\[
\frac{\partial G}{\partial \epsilon_1} \bigg|_{(0,0)} \neq 0.
\]

3. We can choose \(\epsilon_2 \eta_2 \) in order to satisfy the isoperimetric condition. Since \(\nabla G(0,0) \neq 0 \) and \(G(0,0) = 0 \), by the implicit function theorem, there exists a function \(\epsilon_1 := \epsilon_1(\epsilon_2) \) defined on a neighbourhood of zero such that

\[
G(\epsilon_1(\epsilon_2), \epsilon_2) = 0.
\]

4. We now adapt the Lagrange multiplier method. Since \(\overline{G}(\epsilon_1(\epsilon_2), \epsilon_2) = 0 \), for any \(\epsilon_2 \), then

\[
0 = \frac{d}{d\epsilon_2} \overline{G}(\epsilon_1(\epsilon_2), \epsilon_2) = \frac{d\epsilon_1}{d\epsilon_2} \cdot \frac{\partial G}{\partial \epsilon_1} + \frac{\partial G}{\partial \epsilon_2}
\]

and so, as \(\epsilon \) goes to zero,

\[
\frac{d\epsilon_1}{d\epsilon_2} \bigg|_0 = -\int_a^b \left(\frac{\partial g}{\partial y} \bigg|_u - \frac{\Box x}{\Box y} \left(\frac{\partial g}{\partial \Box y} \bigg|_u \right) \right) \eta_2(x) \, dx + \int_a^b \frac{\partial g}{\partial y} \bigg|_u \cdot \eta_2 \, dx - \ldots
\]

is finite. Observe that

\[
\lim_{\epsilon \to 0} \frac{\partial \overline{T}}{\partial \epsilon_1} \bigg|_u = \lim_{\epsilon \to 0} \int_a^b \left(\frac{\partial f}{\partial y} \bigg|_u - \frac{\Box x}{\Box y} \left(\frac{\partial f}{\partial \Box y} \bigg|_u \right) \right) \eta_1(x) \, dx
\]

and

\[
\lim_{\epsilon \to 0} \frac{\partial \overline{G}}{\partial \epsilon_1} \bigg|_u = \lim_{\epsilon \to 0} \int_a^b \left(\frac{\partial g}{\partial y} \bigg|_u - \frac{\Box x}{\Box y} \left(\frac{\partial g}{\partial \Box y} \bigg|_u \right) \right) \eta_1(x) \, dx
\]

are also finite. Let us prove that

\[
\frac{d}{d\epsilon_2} \left[T(\epsilon_1(\epsilon_2), \epsilon_2) \right]_{(0,0)} = 0.
\]

(4)
A direct calculation shows that

\[
\frac{d}{d\epsilon_2} \left[T(\epsilon_1(\epsilon_2), \epsilon_2) \right]_{\epsilon_0} = \left[\frac{d\epsilon_1}{d\epsilon_2} \frac{\partial T}{\partial \epsilon_1} + \frac{\partial T}{\partial \epsilon_2} \right]_{\epsilon_0} \\
= \left[\frac{d\epsilon_1}{d\epsilon_2} \right]_{\epsilon_0} \int_a^b \left[\frac{\partial f}{\partial y} - \frac{x}{y} \left(\frac{\partial f}{\partial \epsilon_2} \right) \right]_{\epsilon_0} \eta_1 \, dx \\
+ \int_a^b \left[\frac{\partial f}{\partial y} - \frac{x}{y} \left(\frac{\partial f}{\partial \epsilon_2} \right) \right]_{\epsilon_0} \eta_2 \, dx \\
= \left[\frac{d\epsilon_1}{d\epsilon_2} \right]_{\epsilon_0} \left[F(\eta_1) \right]_{\epsilon_0} + \left[F(\eta_2) \right]_{\epsilon_0} = 0
\]

since \(\eta \) is an extremal of \(I \) subject to the constraint \(G = K \). On the other hand, for any \(\epsilon_2 \), we also have

\[
\left[G(\epsilon_1(\epsilon_2), \epsilon_2) \right]_{\epsilon_0} = 0.
\]

Therefore,

\[
0 = \frac{d}{d\epsilon_2} \left[\frac{d\epsilon_1}{d\epsilon_2} \frac{\partial G}{\partial \epsilon_1} + \frac{\partial G}{\partial \epsilon_2} \right]_{\epsilon_0} \\
and so
\[
\left[\frac{d\epsilon_1}{d\epsilon_2} \right]_{\epsilon_0} = -\left[\frac{\partial G}{\partial \epsilon_2} \right]_{\epsilon_0}.
\]

Using condition \((4)\), we have

\[
\left| \begin{bmatrix} \frac{\partial T}{\partial \epsilon_1} & \frac{\partial G}{\partial \epsilon_1} \\ \frac{\partial T}{\partial \epsilon_2} & \frac{\partial G}{\partial \epsilon_2} \end{bmatrix} \right| = 0.
\]

Since \(\left[\frac{\partial G}{\partial \epsilon_1} \right]_{\epsilon_0} \neq 0 \), we conclude that there exists some real \(\lambda \) such that

\[
\left(\left[\frac{\partial T}{\partial \epsilon_1} \right]_{\epsilon_0}, \left[\frac{\partial T}{\partial \epsilon_2} \right]_{\epsilon_0} \right) = \lambda \left(\left[\frac{\partial G}{\partial \epsilon_1} \right]_{\epsilon_0}, \left[\frac{\partial G}{\partial \epsilon_2} \right]_{\epsilon_0} \right).
\]
5. In conclusion, since

\[0 = \left[\frac{\partial}{\partial \epsilon} \left(I - \lambda G \right) \right]_{(0,0)}^{\epsilon} \]

\[= \int_a^b \left[\eta_2 \frac{\partial f}{\partial y} + \epsilon \eta_2 \frac{\partial f}{\partial \epsilon y} \right] - \lambda \left(\eta_2 \frac{\partial g}{\partial y} + \epsilon \eta_2 \frac{\partial g}{\partial \epsilon y} \right) dx \]

\[= \int_a^b \left[\frac{\partial L}{\partial y} - \epsilon \frac{\partial \Delta}{\partial \epsilon y} \right] \eta_2 dx \]

and \(\eta_2 \) is any curve, we obtain

\[\left[\frac{\partial L}{\partial y} - \epsilon \frac{\partial \Delta}{\partial \epsilon y} \right] = 0. \]

\[\square \]

4. An example

Let \(f(x, y, v) = (v - \frac{\Box}{\Box x} |x|)^2 \). With simple calculations, one proves that

\[\frac{\Box}{\Box x} |x| = \begin{cases}
1 & \text{if } x \geq \epsilon \\
\frac{x}{\epsilon} - i(\epsilon - x)/\epsilon & \text{if } 0 \leq x < \epsilon \\
\frac{x}{\epsilon} - i(\epsilon + x)/\epsilon & \text{if } -\epsilon < x < 0 \\
-1 & \text{if } x \leq -\epsilon
\end{cases} \]

Suppose we want to find the extremals for the functional

\[\int_{-1}^1 f(x, y(x), \Box y(x)) \, dx \] (5)

subject to the integral constraint

\[\int_{-1}^1 g(x, y(x), \Box y(x)) \, dx = \frac{2}{3}, \]

where \(g(x, y, v) = x + y^2 \), and to the boundary conditions \(y(-1) = 1 = y(1) \).

The (nonsmooth) curve \(y = |x| \) satisfies the constraint integral, and the following conditions:
1. \[\left[\frac{\partial f}{\partial y} - \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial |x| y} \right) \right]_{\epsilon} = 0; \]
\[\frac{\partial f}{\partial y} - \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial |x| y} \right) = -\frac{\partial}{\partial x} \left(2 \left(\frac{\partial}{\partial x} |x| - \frac{\partial}{\partial x} |x| \right) \right) = 0. \]

2. \[\left[\frac{\partial g}{\partial y} - \frac{\partial}{\partial x} \left(\frac{\partial g}{\partial |x| y} \right) \right]_{\epsilon} \neq 0; \]
\[\frac{\partial g}{\partial y} - \frac{\partial}{\partial x} \left(\frac{\partial g}{\partial |x| y} \right) = 2|x|. \]

3. \[\lim_{\epsilon \to 0} \max_{x \in [-1,1]} \left| \frac{\partial f}{\partial y} - \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial |x| y} \right) \right| = \lim_{\epsilon \to 0} 0 = 0. \]

4. \[\lim_{\epsilon \to 0} \max_{x \in [-1,1]} \left| \frac{\partial g}{\partial y} - \frac{\partial}{\partial x} \left(\frac{\partial g}{\partial |x| y} \right) \right| = \lim_{\epsilon \to 0} 2 = 2. \]

Observe that, since \(y = |x| \) is actually an extremal of (5), we may take \(\lambda = 0 \).

Acknowledgments

Work supported by Centre for Research on Optimization and Control (CEOC) from the “Fundaçao para a Ciência e a Tecnologia” (FCT), cofinanced by the European Community Fund FEDER/POCI 2010.

References

[1] Cresson, J. Scale calculus and the Schrödinger equation. J. Math. Phys., 44 (11), pp. 4907–4938, 2003.

[2] Cresson, J. Non differentiable variational principles. J. Math. Anal. Appl, 307 (1), pp. 48–64, 2005.

[3] Cresson, J., Frederico, G.S.F. and Torres, D.F.M. Constants of motion for non-differentiable quantum variational problems, Proceedings of the V SNA 2007, Toruń, September 10–14, 2007. In: Lectures Notes of the Juliusz Schauder Center for Nonlinear studies, in press.

[4] van Brunt, B. The calculus of variations. Universitex, Springer-Verlag New York, Inc, 2004.