Solitons are ubiquitous in nature, appearing in systems as diverse as DNA, shallow water, and laser light pulses in nonlinear fiber optics. Modulational instability (MI), an effect well known in the latter context, is the process by which a constant-wave background becomes unstable to sinusoidal modulations due to the presence of a focusing nonlinearity, leading to a pulsed wave, called a bright soliton train. Recently, the first matter-wave bright solitons were created from attractive Bose-Einstein condensates (BEC’s) in elongated harmonic traps. In the latter experiment a train of from four to ten solitons was formed; however, unlike the solitons resulting from MI of a uniform initial wavefunction in a constant potential in one dimension, these solitons were apparently stabilized by repulsive soliton–soliton interactions. Moreover, of the $\sim 3 \times 10^5$ initial atoms present when the focusing nonlinearity was turned on, only $\sim 10\%$ survived to form the soliton final state, implying massive collapse. It was suggested that MI, in this new context, creates such a repulsively interacting soliton train.

In the following, the MI of a non-uniform initial state in the presence of a harmonic potential is studied both analytically and numerically in the context of the mean field of the BEC. The conditions by which the transverse dimensions may bring about primary collapse, either of the entire condensate in the radial direction, or of individual solitons as they are formed by MI, as well as secondary collapse induced by soliton–soliton interactions, are detailed. As a matter-wave bright soliton train is in fact a train of self-contained BEC’s easily guided and manipulated by electromagnetic fields, it is important to understand how it is made and how it may be kept stable. Moreover, bright solitons, which have already revolutionized the communications industry, are, in the context of the BEC, predicted to have applications in atom interferometry and quantum frequency standards.

The results of our analysis differ strongly from those of previous studies. Firstly, it is shown that self-interference of the order parameter seed modulational instability. The latter has no velocity features in contradistinction to the usual homogeneous case known from nonlinear fiber optics. Several open questions in the interpretation of the recent creation of the first matter-wave bright soliton train [Strecker et al. Nature 417 150 (2002)] are addressed. It is shown that primary transverse collapse, followed by secondary collapse induced by soliton–soliton interactions, produce bursts of hot atoms at different time scales.
where \(N|\psi(z,t)|^2\) is the local axial line density of the condensate. If adiabaticity is violated, collapse can also happen at weaker nonlinearity due to transverse oscillations on a time scale \(\tau = \omega_p^{-1}\). When the longitudinal dynamics is significantly slower than this time scale, the adiabatic separation is valid. If, additionally, the transverse nonlinearity is weak, i.e., \(|\eta| \ll 1\), the longitudinal equation reduces to the quasi-1D NLS

\[
[-\hbar^2 \partial_z^2/2m + g_{1D}N|\psi|^2 + m\omega_z^2 z^2/2]|\psi| = i\hbar \partial_t \psi, \tag{3}
\]

where \(g_{1D} = 2 a_s \omega_p \hbar\) is the quasi-1D coupling constant.\(^{[2]}\) provided \(\omega_p \gg |a|\).\(^{[10]}\) with \(\omega_p = \sqrt{\hbar/(ma_p)}\).

In order to understand the mechanism of MI for a non-uniform initial density profile and in the presence of a non-constant potential, it is necessary to briefly review MI in the uniform case, which is well known from fiber optics.\(^{[2]}\) A linear response analysis reveals that, for attractive nonlinearity, a small sinusoidal modulation of a uniform state \(\psi_0\) with wavenumber \(k_0\) grows exponentially at a rate \(\gamma\) given by

\[
\gamma^2 = -\frac{\hbar^2}{4m a_s^2} \left[k_0^2 - \frac{2Nm|g_{1D}|^2 |\psi_0|^2}{\hbar^2} \right] + \frac{|\psi_0|^4 N^2 |g_{1D}|^2}{\hbar^2}.
\]

The maximum growth rate \(\gamma_{mg} = 2 \omega_p |a_s| N|\psi_0|^2\) is obtained at wavenumber \(k_{mg} = 1/\xi\), where \(\xi = \omega_p/\sqrt{4|a_s| N|\psi_0|^2}\) is the effective 1D healing length of the condensate.\(^{[11]}\) Note that \(N|\psi_0|^2\) is the line density of the condensate. Growth occurs only if \(\gamma^2 > 0\), which implies \(0 < k < k_{\text{max}} = \sqrt{2} k_{mg}\). This means that nonlinear focusing can only be seeded by modulations of sufficiently long wavelength and is fastest at the length scale of \(2\pi\xi\).

For non-uniform initial density profiles, self-interference fringes in the order parameter can provide the necessary seed. To understand this phenomenon, it is instructive to first consider the development of the wavefunction for the ideal gas (\(a_s = 0\)). As a model, we shall consider the case of an initial state \(\psi(z,0)\) which is a rectangular function of height \(\psi_0\) and width \(L\) centered at the origin. Recall that the Feynman propagator which determines the evolution of the wavefunction in the linear Schrödinger equation is defined by \(\psi(z,t) = \int dz' G(z,t;z',0)\psi(z',0)\). In the case of a harmonic potential, \(G\) may be determined exactly by semi-classical methods to be \(G = \frac{1}{l_z \sqrt{2\pi i|\sin \tau|}} \exp \left\{ i(\frac{z^2}{2} - 2z'\cos \tau + z'^2)/(2l_z^2 \tan \tau) \right\}\).\(^{[12]}\)\(^{[17]}\),

\[
G = \int \frac{dz'}{(2\pi i)^{3/2}} \exp \left\{ i(z^2 - 2z z'\cos \tau + z'^2)/(2l_z^2 \tan \tau) \right\}, \tag{5}
\]

where \(\tau = \omega_z t\) and \(l_z = \sqrt{\hbar/(m\omega_z)}\) is the axial harmonic oscillator length. This gives an analytic expression for the evolution of the order parameter, which may be more easily understood in the limit \(\omega_z t \ll 1\):

\[
\frac{|\psi|^2}{|\psi_0|^2} \approx 1 + \frac{8l_z^2 \omega_z t}{\pi} \left[\frac{\sin(k_0 z + \delta - \pi)}{L + 2z} \right] + \frac{4l_z^2 \omega_z t}{\pi} \left(\frac{L^2 + 4z^2}{(L + 2z)(L - 2z)} + \frac{\cos((k_0 + k)z)}{(L + 2z)(L - 2z)} \right) + \frac{1}{2} \omega_z^2 t^2 + O((\omega_z t)^3), \tag{6}
\]

\[
\theta \approx \frac{2l_z^2 \omega_z t}{L} \left[\frac{\sin(k_0 z + \delta + \pi/2)}{L + 2z} + \frac{\sin(k_0 z + \delta - \pi/2)}{L - 2z} \right] + \frac{\omega_z^2 t^2}{L^2} \left\{ \frac{L^2 \cos(2k_0 z + \delta)}{(L + 2z)^2} + \frac{\cos(2(k_0 z + \delta))}{(L - 2z)^2} \right\} + O((\omega_z t)^{3/2}), \tag{7}
\]

\[
k_{\pm} \equiv \text{sec}(\omega_z t) z \pm L \frac{L^2 \cot(\omega_z t)}{8l_z^2} \cdot |z| < \frac{L}{2}, \tag{8}
\]

where \(\theta = \text{Arg}(\psi)\). Figures\(^{[1]}\)\(^{b}\) and \(^{[2]}\)\(^{a}\) show the density and phase structure given by Eqs.\(^{[4]}\)\(^{[8]}\), respectively. Note that the above expansions converge very slowly as \(|z| \rightarrow L/2\) where the initial wavefunction is discontinuous.

The above expressions for the evolution of the phase and density of the wavefunction may be understood as follows. All trigonometric terms represent quantum self-interference and produce fringes which seed MI. The wavenumber \(k_{\pm}\) is dependent on both time and position; the wavelength is longer and the amplitude of oscillations higher at the edges of the box than in the center, and the overall wavelength increases as a function of time. As these interference terms are to linear order independent of \(\omega_z\) (since \(l_z^2 \omega_z = \hbar/m\)), they must result solely from the non-uniform initial density profile. One may also understand this result by observing that Eq.\(^{[6]}\) is, to order \(\omega_z t\), identical with the free space Feynman propagator in one dimension. In contrast, the non-trigonometric terms are caused by the harmonic potential: in Eq.\(^{[5]}\) they lead to a monotonic increase in the mean density, where the order \(\omega_z t^2\) term is independent of position; and in Eq.\(^{[7]}\) they develop the overall phase profile harmonically. The development of the density and phase of the wavefunction for the geometry of Ref.\(^{[4]}\) of \(L \sim 10L_z\) is shown in Figs.\(^{[1]}\) and \(^{[2]}\).

MI of a non-uniform initial state, both with and without an additional harmonic potential, may be understood in light of the above considerations. In Fig.\(^{[3]}\) is shown the numerical evolution of the axial line density \(N|\psi|^2\) in Eq.\(^{[8]}\) for the parameters of Strecker et al.\(^{[4]}\)\(^{[1]}\) and our model of an initial square function. The fringes produced by self-interference of the condensate order parameter \(\psi\) attain the critical wavelength for MI of \(\sqrt{2}\xi\) first at the edges of the cloud, as shown in Figs.\(^{[1]}\) and \(^{[2]}\). In Fig.\(^{[3]}\) one notes that the solitons are therefore formed last in the center of the trap. In this latter stage they are also formed closer together, as, due both to the harmonic potential (see Eq.\(^{[4]}\)) and the global focusing effect of the nonlinearity, the axial density has increased,
and \(\xi \propto |\psi|^{-1} \). Note that although the early phase structure in Fig. 3 depends only weakly on the harmonic potential, in later stages of evolution the trap affects the phase strongly.

One may ask if the seed fringes are caused by the sharpness of the square function edges in our model. In the particular case \(\omega_z t = \pi/4 \), Eq. 5 takes the form of a Fourier transform, \(\psi(z, t) \propto \int dz' \exp(-i z z'/l_z^2) \psi(z', 0) \). Thus it is immediately apparent that all initial wavefunctions with the exception of a Gaussian must develop fringes. In order to test the full time development for an experimentally relevant initial density, a Thomas-Fermi profile of harmonic trapping [4] with \(\psi \propto \sqrt{1 - (2z/L)^2} \) for \(|z| < L/2 \) and \(\psi = 0 \) for \(|z| \geq L/2 \) was also studied and was found to have qualitatively the same evolution in the linear Schrödinger equation, i.e., fringes of longer wavelength towards the outer edges of the density profile and an overall increase in wavelength with time. The nonlinear evolution also shows the same qualitative behavior as Fig. 3 with solitons forming spontaneously first near the edges and later toward the center.

Besides the initial linear density fringes and nonlinear behavior as Fig. 3, with solitons forming spontaneously first near the edges and later toward the center.

FIG. 1: Shown is the right half of the axial density of a BEC in a harmonic potential, as determined by (a) numerical solution of the nonlinear Schrödinger equation, and (b) analytical solution of the linear Schrödinger equation (dashed: exact, solid: approximate), at \(t = 0.016 \times 2\pi/\omega_p \), after 1D evolution from an initial box state of length \(L/l_z = 10 \) centered at the origin. The formation of solitons first at the edge of the condensate in (a) results from the longer wavelength of the linear fringes, as seen in (b), since MI takes place at a wavelength \(\sim 2\pi \xi = 0.43l_z \) in this simulation, using the parameters of Strecker et al. 4, 17.

MI, the condensate can undergo primary transverse collapse on a time scale \(\pi/\omega_p \), according to Eq. 2. In the Strecker experiment, a rough estimate assuming a constant initial density yields \(\eta \approx 6.3 \). In fact, \(\eta \) will exceed this value locally due to the slanted initial profile produced by creating the BEC on one side of the trap 4 and transverse collapse is likely to occur on the higher density side of the profile before MI develops. However, even for a uniform initial state, the critical value of \(\eta \) is reached during soliton formation as indicated in Fig. 2. Note that, the center of mass of the BEC, created at the side of the trap, trivially oscillates with the harmonic oscillator frequency and decouples completely from the relative motion, the latter of which is analyzed in this work.

After the soliton train has spontaneously formed, even if transverse collapse is avoided, individual solitons can undergo primary 3D collapse, which dominates over transverse instabilities. The static condition for three-dimensional soliton stability in the absence of longitudinal confinement is given numerically by [4]

\[
N_{\text{crit}}|a_s|/l_p = 0.627 \ldots
\]

Dynamical effects, as for example breathing of the soliton, can lower this condition further. In light of a recent experiment on a single matter-wave bright soliton 2, it is anticipated that such a three dimensional collapse...
will eject the excess number of atoms, leaving behind a solitonic core which is near the limit of Eq. [9]. In the simulation of Figs. [10], the 26 solitons formed carry an average of \(\approx 1.9 N_{\text{crit}} \) atoms where \(N_{\text{crit}} \approx 6100 \) for the parameters of the Strecker experiment. These results are supported by a coarse estimate based on Eq. [9], which predicts formation of 22 solitons, and by simulations of the 3D NLS analogous to the one of Figs. [10] which shows primary collapse immediately after formation of the first solitons (not shown).

Finally, the coherent overlap of solitons, not themselves subject to two or three dimensional collapse, can cause secondary collapse. The dynamics of binary soliton interactions are determined by their relative phase \(\Delta \phi \) and amplitude \(\Delta A \). For \(-\pi/2 < \Delta \phi < \pi/2 \) they attract each other and exchange mass. Consequently, they can undergo collapse if, during their interaction, they temporarily violate Eq. [9]. For \(\pi/2 < \Delta \phi < 3\pi/2 \) and \(\Delta A = 0 \) the interaction is repulsive and there is no mass exchange; the solitons are stable against secondary collapse induced by interactions. However, for \(\Delta A \neq 0 \) the relative phase cycles periodically which, if it crosses over into the regime \(-\pi/2 < \Delta \phi < \pi/2 \), can again cause collapse. Based on the above and the experiment of Ref. [9], we conjecture that, in the Strecker experiment, collisions of solitons close to \(N_{\text{crit}} \) led, by several stages of secondary collapse, to a final configuration of a small number of solitons with stable trajectories. We emphasize that these results differ from those found in Ref. [9], where it was suggested that the phase difference \(\Delta \phi \) between adjacent solitons originates from quantum fluctuations and is restricted to values close to \(\pi \), thus stabilizing their trajectories. We have shown that MI of a non-uniform initial state may produce arbitrary \(\Delta \phi \) already in a mean-field model. We conjecture that it is the secondary collapse processes which determine a stable trajectory of solitons in the final state with \(\pi/2 < \Delta \phi < 3\pi/2 \).

The 2D and 3D collapse processes of Eqs. [2] and [9] occur on different time scales. It is likely that both processes contributed to the \(\sim 90\% \) initial atom loss in the Strecker experiment; a measurement of the time dependence of the atomic mass ejected from the trap during the initial stages of soliton train formation may be able to determine if one or both were dominant. For the experimental parameters, based on the collapse conditions and Fig. [8] primary transverse collapse occurs on a time scale of \(\lesssim 1.7 \) ms, primary 3D collapse occurs between 1.5 and 10 ms, and secondary collapse occurs at \(\gtrsim 10 \) ms.

In conclusion, the phenomenon of MI has been analyzed in the case of a non-uniform initial state in the nonlinear Schrödinger equation with a harmonic potential. It was shown that linear density fringes, the length scale of which depends both on space and time, seed the nonlinear instability. Primary transverse collapse, primary three-dimensional soliton collapse, and secondary three-dimensional collapse due to soliton binary interactions were discussed, and all were predicted to have played a role in the Strecker experiment [9].

We thank Y. Castin, R. Hulet, and G. Shlyapnikov for useful discussions. L. D. Carr was supported by NSF grant no. MPS-DRF 0104447. LKB is a unit of ENS and of Université Paris 6 associated to CNRS. We thank the ECT* (Trento) and MPIPKS (Dresden) for hosting us during various stages of this work.

References:

[1] G. P. Agrawal, *Nonlinear Fiber Optics*, 2nd ed. (Academic Press, San Diego, 1995).
[2] A. Hasegawa and W. F. Brinkman, IEEE J. Quantum Electron. 16, 694 (1980).
[3] L. Khaykovich et al., Science 296, 1290 (2002).
[4] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Nature 417, 150 (2002).
[5] U. Al Khawaja et al., Phys. Rev. Lett. 89, 200404 (2002).
[6] S. V. Rozhdestvenskii, YV, Rozanov NN, JETP Letters 76, 370 (2002).
[7] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
[8] L. P. Pitaevskii, Phys. Lett. A 221, 14 (1996).
[9] L. D. Carr and Y. Castin, Phys. Rev. A 66, 063602 (2002).
[10] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[11] Note that the growth rate may also be calculated numerically, as in Akhmediev et al., Opt. Lett. 17, 393 (1992).
[12] E. P. Storey, Ph.D. thesis, L’École Normale Supérieure,
1996.

[13] J. J. García-Ripoll, V. M. Pérez-García, and V. Vekslerchik, Phys. Rev. E 64, 056602 (2001).

[14] J. P. Gordon, Opt. Lett. 8, 596 (1983).

[15] M. I. Weinstein, Comm. Math. Phys. 87, 567 (1983); A. Gammal et al., Phys. Lett. A 267, 305 (2000).

[16] The parameters used are $N = 3 \times 10^5$, $\omega_z = 2\pi \times 3$Hz, $\omega_\rho = 2\pi \times 600$Hz, and $a_s = -3a_0$.

[17] Up to a global phase $\nu = \nu(t)$, called the Maslov index, which has no physical significance for the observables in the problem at hand, since the important quantity for soliton interactions is relative phase.