Exact matrix treatment of statistical mechanical lattice model of adsorption induced gate opening in metal-organic frameworks

Lawrence J Dunne1,3 and George Manos2

1 School of Engineering, London South Bank University, London SE1 0AA, UK
2 Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
3 Department of Materials, Imperial College London, London SW7 2AZ, UK
E-mail: g..manos@ucl.ac.uk

Received 11 December 2014
Accepted for publication 10 March 2015
Published 8 May 2015

Online at stacks.iop.org/JSTAT/2015/P05008
doi:10.1088/1742-5468/2015/05/P05008

Abstract. Here we present a statistical mechanical lattice model which is exactly solvable using a matrix method and allows treatment of adsorption induced gate opening structural transformations of metal-organic frameworks which are nanoporous materials with exceptional adsorption properties. Modelling of these structural changes presents a serious theoretical challenge when the solid and gas species are treated in an even handed way. This exactly solvable model complements other simulation based approaches. The methodology presented here highlights the competition between the potential for adsorption and the energy required for structural transition as a driving force for the features in the adsorption isotherms.

Keywords: rigorous results in statistical mechanics, solvable lattice models, adsorbates and surfactants (theory)
1. Introduction

Exactly solvable lattice models such as the Ising model have played an important role in the theory of condensed systems, even when somewhat physically unrealistic. In this paper we present an exactly solvable one-dimensional statistical mechanical lattice model which mimics adsorption followed by gate opening [1] in metal-organic framework (MOF) type structures.

Novel materials for energy storage and carbon dioxide capture are the focus of many active research programmes [2, 3]. Accelerated depletion of non-renewable natural resources in combination with concerns over the damaging effects of greenhouse gases makes the search for sustainable innovative energy materials urgent [4]. MOFs [5] are intensely studied examples of nanoporous materials with exceptional adsorption properties. Many MOFs undergo structural transitions with adsorption resulting in isotherms with remarkable features which have been intensively investigated both experimentally and theoretically [6–9]. Structural transitions induced by adsorption of guest molecules occur because the organic entities linking the metal centres provide framework flexibility. The possibility to vary both metals and organic ligands in MOFs widens the application range from gas storage [10, 11] to drug delivery [12, 13], adsorption [14–16] heterogeneous catalysis [17, 18] and separation [19, 20].

Furthermore, the model may find applications in other related phenomena such as swelling of polymers and biopolymers induced by solvent adsorption. Structural transitions accompanied by reversible volume changes present a difficult challenge at the fundamental theoretical level [6–8]. The lattice model inherently embodies the gate opening structural changes following adsorption which we solve exactly by a matrix method. This work allows us to see very clearly the types of adsorption isotherms which may arise from the interplay of adsorption and gate opening.

Lattice models of fluids have been widely discussed [21–23] and successfully applied to a range of adsorption problems [24–27]. A lattice model of breathing in MOFs based on a Hamiltonian for the elastic deformations and host–guest interactions has been discussed by Triguero et al [28] where a Grand Canonical Monte-Carlo simulation is performed to

doi:10.1088/1742-5468/2015/05/P05008
study the adsorption process. The matrix method used in this paper evaluates the Grand Canonical partition function for a mixture of solid and adsorbed phase components and empty sites on a background rigid ladder-like framework to be shown in figures 1 and 2. These sites constitute an underlying rigid framework which may be occupied by any one of three types of constituents on this lattice namely solid, gas, and vacant sites or holes. In our analysis we make a choice as to the statistically significant contributions to the Grand partition function discussed below. In this way a non-trivial exactly solvable statistical mechanical lattice model is obtained.

2. Model

We consider a strip of N groups of three lattice sites so that there are $3N$ sites in total. We have chosen to focus on four types of energetically significant clusters, 1, 2, 3, 4 shown in figure 1.

The solid spheres represent parts of the solid MOF structure while the open circles represent spherical adsorbed gas molecules. The species shown in figure 1 may be configured one-dimensionally to represent the stages of adsorption induced structural changes in a MOF type structure as shown in figure 2.

Structure A is the pure solid in its original state, B contains solid and some adsorbed gas species while C has undergone a structural transition induced by the adsorption of more spherical gas molecules. This structural transition is represented by the change
of shape of arrangement of solids, from diamond to square. The steps in the calculated isotherms to be shown below correspond to the transitions between A, B and C structures and are similar to those found experimentally. In this model, the gate opening is represented by a diamond arrangement of atoms (figure 2A) which expands to a square at higher loading (figure 2C).

The solid species occupying the sites of the background framework are assumed to be in equilibrium with a reservoir of solid atoms representing the original framework, at chemical potential μ_s, assumed to be independent of the external gas pressure. An expression for μ_s is given in the Debye model of a crystalline solid [29] although the explicit form is not utilized here.

Similarly, adsorbed gas species are at equilibrium with an ideal gas reservoir at a chemical potential μ_i for component i given by [30]

$$\mu_i = \mu_i^0 + kT \ln P,$$

(1)

where the standard chemical potential μ_i^0 is given by

$$\mu_i^0 = -kT \ln \left(\frac{(2\pi m_i kT)^{3/2}}{\hbar^2} \right)$$

(2)

and where modification for non-ideal behaviour is straightforwardly achieved by replacing pressure by fugacity.

Matrix methods for statistical mechanical treatment of one-dimensional lattice fluid problems have been reviewed by us previously [31]. The Grand Canonical partition function Ξ for the mixture of solid and gas molecules on the lattice framework with N groups of three lattice sites may be written as the sum of the products of N factors given by

$$\Xi = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \sum_{\gamma=1}^{n} \sum_{\omega=1}^{n} A_{\alpha\beta} A_{\beta\gamma} A_{\gamma\delta} \ldots A_{\omega\alpha},$$

(3)

where $n = 4$ is the number of possible clusters which can occupy a row of three sites. Cyclic boundary conditions have been assumed where the lattice is folded on to a ring. For N strips there are at most $3N$ species on the lattice as higher numbers than this are energetically prohibited and do not contribute to the Grand partition function. As is usual in the matrix method [31] we define the terms in (3) as the product of an internal partition function for the cluster and an interspecies interaction term given by

$$A_{\mu\nu} = (f_\mu f_\nu)^{1/2} \exp \left(\frac{-J_{\mu\nu}}{kT} \right),$$

(4)

where subscripts μ, ν run over the species 1 to 4 and the parameter $J_{\mu\nu}$ is the interaction energy of nearest neighbour pairs of species μ, ν. For example, $J_{12} \approx 2j_{ss}$, $J_{13} \approx 2j_{ss} + 3j_{sg}$, $J_{34} \approx 6j_{sg} + 3j_{gg}$ here j_{sg}, j_{ss} and j_{gg} are effective interaction energies of pairs of solid (s) and gas (g) species. Since other clusterings are forbidden in this model as they are not represented in structures A, B, C in figure 2 an energy penalty function is imposed which reduces their statistical weight to zero in the Grand partition function. The internal
Exact matrix treatment in metal-organic frameworks

partition function for clusters 1 to 4 are given by

\[f_1 = \exp \left(\frac{-u_g + \mu_g}{kT} \right), \]
\[f_2 = (f_1)^2, \]
\[f_3 = (f_1)^2 \exp \left(\frac{-u_g + \mu_s}{kT} \right), \]
\[f_4 = \exp \left(\frac{3(-u_g + \mu_s)}{kT} \right), \]

where \(\mu_g \) and \(\mu_s \) are the gas and solid species chemical potentials respectively while \(u_g \) and \(u_s \) are the interaction energies of these species with the background framework which mimics their interaction with the other atoms in a three-dimensional bulk crystal which we do not explicitly include in this model. The chemical potential and energy of a vacant site or ‘hole’ on the background framework is evidently zero.

Using the inner product rule \(D_{ij} = \sum_k B_{ik} C_{kj} \) for matrix multiplication of a pair of conformable matrices \(B \) and \(C \) the Grand Canonical partition function given in (3) can be expressed as

\[\Xi = \sum_{\alpha=1}^{n} (A^N)_{\alpha\alpha} = \text{Tr}(A^N) = \sum_{i=1}^{n} (\lambda_i)^N, \tag{9} \]

where \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \) are the eigenvalues of the matrix \(A \) which is given below as

\[
A = \begin{pmatrix}
0 & (f_1 f_2)^{1/2} \exp \left(\frac{-J_{12}}{kT} \right) & (f_1 f_3)^{1/2} \exp \left(\frac{-J_{13}}{kT} \right) & 0 \\
(f_1 f_2)^{1/2} \exp \left(\frac{-J_{12}}{kT} \right) & 0 & 0 & 0 \\
(f_1 f_3)^{1/2} \exp \left(\frac{-J_{13}}{kT} \right) & 0 & 0 & (f_3 f_4)^{1/2} \exp \left(\frac{-J_{34}}{kT} \right) \\
0 & 0 & (f_3 f_4)^{1/2} \exp \left(\frac{-J_{34}}{kT} \right) & 0
\end{pmatrix}.	ag{10}\]

The zero values for some matrix elements \(A_{ij} \) arises because the interaction energy between those clusters \(i,j \) is infinitely repulsive due to the penalty function discussed above. For example, species 1 is not allowed to be next to another species 1 in figure 2 etc. Fortuitously, this feature renders the solution of the characteristic polynomial of the matrix \(A \) to be obtained analytically.

As is usual in matrix evaluations of partition functions only the largest eigenvalue of \(A \) concerns us here since for large \(N \) equation (9) reduces to

\[\Xi = (\lambda_{\text{max}})^N, \tag{11} \]

where \(\lambda_{\text{max}} \) is the largest eigenvalue of the matrix \(A \) whose square is calculated exactly as

\[
(\lambda_{\text{max}})^2 = \frac{\sqrt{\Psi}}{2} + \frac{f_1 f_2}{2} \exp \left(\frac{-2J_{12}}{kT} \right) + \frac{f_1 f_3}{2} \exp \left(\frac{-2J_{13}}{kT} \right) + \frac{f_3 f_4}{2} \exp \left(\frac{-2J_{34}}{kT} \right),
\]

where

\[
\Psi = \exp \left(\frac{-4J_{12}}{kT} \right) f_1^2 f_2^2 + 2 \exp \left(\frac{-2(J_{12} + J_{13})}{kT} \right) f_1^2 f_2 f_3 + \exp \left(\frac{-4J_{13}}{kT} \right) f_1^2 f_3^2 \\
-2 \exp \left(\frac{-2(J_{12} + J_{34})}{kT} \right) f_1 f_2 f_3 f_4 + 2 \exp \left(\frac{-2(J_{13} + J_{34})}{kT} \right) f_1 f_3^2 f_4 + \exp \left(\frac{-4J_{34}}{kT} \right) f_3^2 f_4.	ag{12}\]

doi:10.1088/1742-5468/2015/05/P05008
Exact matrix treatment in metal-organic frameworks

Figure 3. Theoretical isotherm calculated using exact matrix method. Both the coverage of the empty lattice by solid and gas species are shown. The inflections in the isotherm reflect the structural transitions A to B and B to C, as shown above. The parameters are $J_{12} = -3.0kT$, $J_{13} = -8.0kT$, $J_{34} = -13.5kT$, $\mu_s = -10.0kT$, $u_s = -5.0kT$, $u_g = -9.0kT$. All other parameters are infinitely repulsive.

The mean density of solid or adsorbed molecules expressed as 3 times the fractional coverage of lattice site is given by the standard relationship [30]

$$\rho_i = kT \frac{\partial}{\partial \mu_i} \ln(\lambda_{\text{max}}),$$

(13)

where i refers to solid or gas as required. The required differentiations were performed analytically in a straightforward manner using mathematical software. Thus for a given gas phase pressure adsorption isotherms can be constructed for this exact one-dimensional model.

3. Results and discussion

The model displays three types of isotherm discussed below.

The isotherm in figure 3 shows adsorption (A \rightarrow B) followed by gate opening (B \rightarrow C) as shown in the pictures on the graph. The shape of the adsorption isotherm follows the general pattern seen in the results of Coudert and co-workers [1]. The density of the solid phase falls due to the gas take-up and the accompanying solid expansion due to gate opening. The shape of the adsorption isotherms reflects the competition between the potential for adsorption and the energy required for structural transformations as a driving force for the features in the adsorption isotherms. The gate opening does not occur until the chemical potential of the gas phase is sufficiently high. Some further types of adsorption isotherm reproduced by the model with different parameter values are given (only gas fractional coverage is shown) in figure 4.

In figure 4 the red curve is close in shape to that shown in figure 3. Configurations A, B, C can all have a significant statistical weight at some pressure which causes two steps
Figure 4. Further types of theoretical isotherm for gas adsorption by MOF calculated using exact matrix method for range of parameters. The parameters are as follows: red: $J_{12} = -3.0kT$, $J_{13} = -8.0kT$, $J_{34} = -12.5kT$, $u_s = -5.0kT$, $u_g = -9kT$; black: $J_{12} = -3.0kT$, $J_{13} = -4.5kT$, $J_{34} = -12.5kT$, $u_s = -5kT$, $u_g = -9kT$; green: $J_{12} = -3.0kT$, $J_{13} = -8.5kT$, $J_{34} = -6.0kT$, $u_s = -5.0kT$, $u_g = -9.0kT$; $\mu_s = -10kT$. All other parameters are infinitely repulsive.

in the isotherm. This may be compared with the green curve in which configurations A, B are preferred so that only one step is seen in the isotherm. Configuration C is unfavoured while configuration B is favoured. This is a simple adsorption isotherm. In the black curve configurations A, C are preferred while B is unfavoured. Hence only an abrupt step in the gas fractional coverage is observed corresponding to only gate opening without previous adsorption which is equivalent to gate opening in a non-porous solid as described by Coudert and co-workers [1]. The isotherm is practically discontinuous. The dominant configurations at any given gas pressure are marked on figure 4.

4. Conclusion

Exactly solvable models in statistical mechanics have the virtue of readily providing an insight into a range of physical and chemical phenomena, even if somewhat restricted in nature. MOFs are nanoporous materials with exceptional adsorption properties whose structural transitions with gas adsorption pose a challenge theoretically. We have devised an exactly solvable statistical mechanical lattice model using a matrix method. The approach treats the solid and gas component on an equal footing. The methodology presented here highlights the competition between the potential for adsorption and the energy required for structural transition as a driving force for the features in the adsorption isotherms.

Further work is underway to extend this exactly solvable model to a realistic MOF structure. Considerable progress towards more realistic models seem possible. For example, if an extended eigenvalue problem of the type described above is treated
Numerically then more realistic chemical and physical features can be incorporated in the future.

The model also has the possibility of investigating the mechanical pressure through the relation \(PV = kT \ln \Xi \) although this possibility has yet to be investigated. Similarly, the relationship with this model and the more realistic osmotic ensemble of Coudert et al. [1] remains to be explored. Work on both of these points is being considered.

References

[1] Bousquet D, Coudert F-X, Fossati A G J, Neimark A V, Fuchs A H and Boutin A 2013 Adsorption induced transitions in soft porous crystals: an osmotic potential approach to multistability and intermediate structures J. Chem. Phys. 138 174706

[2] Espinal L, Poster D L, Wong-Ng W, Allen A J and Green M L 2013 Green measurement, standards, and data needs for CO2 capture materials: a critical review Environ. Sci. Technol. 47 11960

[3] Lu L H, Wang S S, Muller E A, Cao W, Zhu Y D, Lu X H and Jackson G 2014 Adsorption and separation of CO2/CH4 mixtures using nanoporous absorbents by molecular simulation Fluid Phase Equilibria 362 227–34

[4] Martin R L, Simon C M, Smit B and Haranczyk M 2014 In silico design of porous polymer networks: high-throughput screening for methane storage materials J. Am. Chem. Soc. 136 5006–22

[5] Peng Y, Krungleviciute V, Eryazici I, Hupp J T, Farha O K and Yildirim T 2013 Methane storage in metal–organic frameworks: current records, surprise findings, and challenges J. Am. Chem. Soc. 135 11887–94

[6] Chen L, Mowat J P S, Fairen-Jimenez D, Morrison C A, Thompson S P, Wright P A and Düren T 2013 Elucidating the breathing of the metal–organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ x-ray powder diffraction experiments J. Am. Chem. Soc. 135 15763–73

[7] Llewellyn P L, Maurin G, Devic T, Loera-Serna S, Rosenbach N, Serre C, Bourelly S, Horcajada P, Filinchuk Y and Ferey G 2008 Prediction of the conditions for breathing of metal organic framework materials using a combination of x-ray powder diffraction microcalorimetry, and molecular simulation J. Am. Chem. Soc. 130 12808–14

[8] Neimark A V, Coudert F X, Triguero C, Boutin A, Fuchs A H, Beurroies I and Denoyel R 2011 Structural transitions in MIL-53 (Cr): view from outside and inside Langmuir 27 4734–41

[9] Sarkisov L, Martin R L, Haranczyk M and Smit B 2014 On the flexibility of metal–organic frameworks J. Am. Chem. Soc. 136 2229–31

[10] Feng Y, Jiang H, Chen M and Wang Y 2013 Construction of an interpenetrated MOF-5 with high mesoporosity for hydrogen storage at low pressure Powder Technol. 249 38–42

[11] Lia J, Cheng S, Zhoa Q, Longa P and Donga J 2009 Synthesis and hydrogen-storage behaviour of metal–organic framework MOF-5 J. Hydrogen Energy 34 1377–82

[12] Makowska W, Mankova M, Zabierowska P, Mlekodaj K, Majda D, Szklarzewicz J and Lasocha W 2014 Unusual adsorption behavior of volatile hydrocarbons on MOF-5 studied using thermodesorption methods Thermochim. Acta 587 1–10

[13] Karra J R, Grabicka B E, Huang Y G and Walton K S 2013 Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal–organic framework (MOF-14) J. Colloid Interface Sci. 392 331–6

[14] Llabrés i Xamena F X, Abad A, Corma A and García H 2007 MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF J. Catal. 250 294–8

[15] Bazer-Bachi D, Assié L, Lecocq V, Harbuzara B and Falk V 2014 Towards industrial use of metal-organic framework: impact of shaping on the MOF properties Powder Technol. 255 52–9

[16] Bozbiyik B, Duerinck T, Lannoeye J, De Vos D E, Baran G V and Denayer J F M 2014 Adsorption and separation of n-hexane and cyclohexane on the UiO-66 metal-organic framework Microp. Mesop. Mater. 183 143–9

DOI: 10.1088/1742-5468/2015/05/P05008 8
Exact matrix treatment in metal-organic frameworks

[20] Duerinck T, Bueno-Perez R, Vermoortele F, De Vos D E, Calero S, Baron G V and Denayer J F M 2013 Understanding hydrocarbon adsorption in the UiO-66 metal-organic framework: separation of (un)saturated linear, branched, cyclic adsorbates, including stereoisomers J. Phys. Chem. C 117 12567–78

[21] Frenkel D and Smit B 2002 Understanding Molecular Simulation: From Algorithms to Applications 2nd edn (London: Academic)

[22] Bell G M, Combs L L and Dunne L J 1981 Theory of cooperative phenomena in lipid systems Chem. Rev. 81 15–48

[23] Du Z, Dunne L J, Manos G and Chaplin M 2000 Exact statistical mechanical treatment of benzene adsorption in a zeolite twin-pore one-dimensional lattice model Chem. Phys. Lett. 318 319–24

[24] Manos G, Dunne L J, Chaplin M F and Du Z 2001 Comparative study of Monte Carlo simulations and exact statistical mechanical lattice model of commensurate transitions of alkanes adsorbed in zeolites Chem. Phys. Lett. 335 77–84

[25] Dunne L J, Manos G and Du Z 2003 Exact statistical mechanical one-dimensional lattice model of alkane binary mixture adsorption in zeolites and comparison with Monte-Carlo simulations Chem. Phys. Lett. 377 551–6

[26] Dutcher C S, Ge X, Wexler A S and Clegg S L 2011 Statistical mechanics of multilayer sorption: extension of the Brunauer Emmett Teller (BET) and Guggenheim Anderson de Boer (GAB) adsorption isotherms J. Phys. Chem. C 115 16474–87

[27] Dutcher C S, Ge X, Wexler A S and Clegg S L 2012 Statistical mechanics of multilayer sorption: II. Systems containing multiple solutes J. Phys. Chem. C 116 1850–64

[28] Triguero C, Coudert F-X, Boutin A, Fuchs A H and Neimark A V 2012 Understanding adsorption-induced structural transitions in metal-organic frameworks: from the unit cell to the crystal J. Chem. Phys. 137 184702

[29] Kittel C 2005 Introduction to Solid State Physics (Hoboken, NJ: Wiley)

[30] Hill T L 1960 An Introduction to Statistical Thermodynamics (New York: Addison-Wesley)

[31] Dunne L J and Manos G (ed) 2010 Adsorption and Phase Behaviour in Nanochannels and Nanotubes (Dordrecht: Springer)