Analysis of the proteins secreted by Trichoderma harzianum P49P11 under carbon-limited conditions

Gelain, Lucas; Pabst, Martin; da Cruz Pradella, José Geraldo; da Costa, Aline Carvalho; van der Wielen, Luuk; van Gulik, Walter M.

DOI
10.1016/j.jprot.2020.103922

Publication date
2020

Document Version
Final published version

Published in
Journal of Proteomics

Citation (APA)
Gelain, L., Pabst, M., da Cruz Pradella, J. G., da Costa, A. C., van der Wielen, L., & van Gulik, W. M. (2020). Analysis of the proteins secreted by Trichoderma harzianum P49P11 under carbon-limited conditions. Journal of Proteomics, 227, [103922]. https://doi.org/10.1016/j.jprot.2020.103922

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Analysis of the proteins secreted by *Trichoderma harzianum* P49P11 under carbon-limited conditions

Lucas Gelain¹,²,⁵*, Martin Pabst³, José Geraldo da Cruz Pradella⁴, Aline Carvalho da Costa⁴, Luuk van der Wielena,⁵ Walter M. van Gulika

⁰ Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ Delft, the Netherlands
¹ University of Campinas, Development of Processes and Products, Av. Albert Einstein, 500, Campinas, Brazil
² University of Limerick, Bernal Institute, V94 T9PX Limerick, Ireland
³ Federal University of São Paulo, Institute of Science and Technology, Av. Cesare Manzucuo Giulio Lattes, 1201, S. J. Campos, Brazil

ARTICLE INFO

Keywords:
Trichoderma harzianum
Carbon-limited condition
PNPGase
Shotgun proteomics analysis
Intracellular metabolites

ABSTRACT

The wild type strain *Trichoderma harzianum* was able to synthesize enzymes that can catalyse the hydrolysis of *p*-nitrophenyl-β-D-glucopyranoside (PNPGase) in glucose-limited chemostat cultures. Fructose/glucose and sucrose conditions provided low levels of PNPGase activity. To investigate whether under these conditions other enzymes were produced, a shotgun proteomics analysis of their supernatants was performed. The analysis has indicated that the different carbon sources used influenced the amounts of proteins secreted including 1,3-beta-glucanosyltransferase, alpha-1,2-mannosidase, alpha-galactosidase and glucan 1,3-beta-glucosidase. The analysis has also suggested the presence of beta-glucosidase, which could also be represented by PNPGase activity. Intracellular metabolites were quantified during PNPGase production for the condition using 20 g/L of glucose in the feed and differences were observed, indicating that intracellular glucose could be inhibiting PNPGase production.

Significance: This work shows that sugars such as glucose, fructose/glucose and sucrose can be used as substrates for the continuous synthesis of different enzymes under carbon-limited conditions by *Trichoderma harzianum*. As far as we know, this is the first work about the continuous synthesis of enzymes under carbon-limited conditions suggesting that different easily assimilated carbon sources can be used to generate different enzymatic cocktails. Each enzyme or uncharacterized protein suggested by shotgun proteomics has the potential to become a promising product for biotechnological applications.

1. Introduction

Proteins are a diverse group of molecules containing different properties such as catalytic activity, molecular weight and solubility [1]. Proteins are also a biotechnological product and their identification and characterization are important for understanding their functionalities and possible applications. In proteomics, a method called shotgun analysis can be used to identify proteins [2]. Proteolytic enzymes such as trypsin are used to digest the proteins, and due to the specificity of this enzyme, it generates peptides of a size that is more readily analysed in the mass spectrometer and facilitates the identification of the protein [1]. Liquid chromatography can be used to separate the peptides, and then peptide sequencing can be performed by tandem mass spectrometry (MS/MS) [1]. In this method, peptides are ionized and selected peptide ions are subjected to sequencing, which is determined by MS/MS spectra using a database search approach [2].

Beta-glucosidase is a group of enzymes responsible for catalysing the final step of the complete hydrolysis of cellulose into glucose [3]. Beta-glucosidase can present a high *p*-nitrophenyl-β-D-glucopyranoside (PNPG) specificity [3], thus the estimation of enzymatic activity using PNPG can be applied to verify the presence of enzymes that can catalyse the hydrolysis of glycosidic bonds like beta-glucosidase.

It was found that *T. harzianum* was able to synthesize extracellular enzymes that can catalyse the hydrolysis of PNPG (PNPGase) during steady-state under carbon-limited chemostat cultivations [4], especially when using glucose as the carbon source. When sucrose or an equimolar mixture of fructose and glucose were used, low levels of PNPGase activity were observed. To investigate whether under these conditions other enzymes were produced, a shotgun proteomics analysis of their supernatants was performed and it is presented in this work.

https://doi.org/10.1016/j.jprot.2020.103922
Received 23 March 2020; Received in revised form 22 July 2020; Accepted 24 July 2020
Available online 28 July 2020
1874-3919/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
Additionally, analysis of PNPGase production was evaluated according to the results of samples from continuous cultures using 20 g/L of glucose in the feed under carbon-limited conditions. Intracellular metabolites were analysed to verify the possible influence of their concentrations on PNPGase production.

2. Materials and methods

2.1. Culture conditions

Trichoderma harzianum P49P11 was isolated from the Amazon forest [5]. Culture conditions are described in Gelain [4]. The microorganism was grown on plates (potato dextrose agar) at 29 °C and after 5–7 days, the spores were harvested with sterilized water, distributed into vials of 1 mL and stored at −80 °C. Each vial was used to inoculate one shake flask (250 mL of medium). Spores were used to inoculate 500 mL shake flasks containing 250 mL of the medium: 10 g/L of glucose (carbon source), 2 g/L of KH₂PO₄, 5 g/L of (NH₄)₂SO₄, 0.3 g/L of MgSO₄.7H₂O, 0.3 g/L of CaCl₂.2H₂O, 1 mL/L of trace elements solution, and 1 g/L of peptone. Trace elements solution: 15 g/L of Na₂EDTA.2H₂O, 4.5 g/L of ZnSO₄.7H₂O, 1 g/L of MnCl₂.4H₂O, 0.3 g/L of CoCl₂.6H₂O, 0.3 g/L of CuSO₄.5H₂O, 0.4 g/L of Na₂MoO₄.2H₂O, 4.5 g/L of CaCl₂.2H₂O, 3 g/L of FeSO₄.7H₂O, 1 g/L of H₃BO₃, 0.1 g/L of KI. The medium was sterilized at 121 °C for 20 min. The shake flasks were incubated in an orbital shaker for 24–48 h at 29 °C and 200 rpm before inoculating the bioreactor (10% v/v).

Different limiting carbon sources were applied in continuous culture: 10 g/L of glucose (G), 10 g/L of sucrose (S), 5.26 and 5.26 g/L of fructose and glucose (FG). The medium composition was the same as described for shake flasks, only peptone was not added to the feed medium. Additionally, 20 g/L of glucose was also tested in the feed with the following modifications to the medium composition: 3 g/L of KH₂PO₄ and 6 g/L of (NH₄)₂SO₄. The medium composition used for the batch phase of the condition using 20 g/L of glucose was the same as used for the shake flask cultivation. The experiments G, S and FG were performed in sequence and 20 g/L of sucrose was used as the carbon source in the batch phase. The medium was sterilized by filtration using a filter 0.2 μm.

The experiments were performed using a 7 L bioreactor (Applikon, Delft, the Netherlands) and a constant broth mass of 4 kg. The temperature was controlled by a water bath at 29 °C, and pH 5 was controlled by the addition of 2 M KOH and 2 M H₂SO₄. Sterile air was supplied via a mass flow controller (Brooks 59,505, calibration at 0 °C and 1 bar). The volume fraction of oxygen and carbon dioxide were measured by the NGA 2000 off-gas analyser.

All chemostat experiments were carried out with a dilution rate of 0.05 h⁻¹ ± 0.003 h⁻¹. For the batch phase, the stirring speed was kept between 200 and 400 rpm and for the continuous culture, it was changed to a constant stirring speed of 600 rpm. The airflow of 1 L/min was used, and only for the condition using 20 g/L of glucose, the airflow was 1.5 L/min. A constant antifoam addition (Basildon BC antifoam 86/013) of approximately 7 μL/min was used. The achievement of the steady-state was assumed when the CO₂ production and mycelium concentration were constant for at least 6 residence times.

2.2. Enzymatic activity

The method for the estimation of PNPGase activity was adapted from Zhang et al. [6] using p-nitrophenyl-β-D-glucopyranoside (PNPG) as the substrate. The reaction mixture was composed of 80 μL of 1 mM substrate diluted in 50 mM citrate buffer (pH 4.8), and 20 μL of the diluted enzyme extract. After 10 min at 50 °C, the reaction was stopped by adding 100 μL of 1 M sodium carbonate. The measurement was performed at 400 nm.

2.3. Quantification of intracellular metabolites

The estimation of the metabolites was performed in duplicate using different samples withdrawn at the same time (10 s difference). Intracellular metabolites were extracted and analysed according to Lameiras et al. [7]. Broth (approx. 1.3 mL) was rapidly withdrawn into 10 mL of pre-cooled 40% (v/v) aqueous methanol solution (−20 °C) and after, the samples were weighed for the estimation of cell mass and kept at −20 °C until extraction of the metabolites. Methanol was removed by filtration and the samples were washed thrice with cold methanol solution (−20 °C). Then, boiling ethanol extraction was performed to disrupt the cell and inactivate the enzymes. 25 mL of ethanol solution (75% v/v) was first pre-heated at 75 °C, and after the filtration and washing of the samples, they were placed into the ethanol solution along with 100 μL of U-13C-labeled cell extract of *S. cerevisiae* as the internal standard and moved to a water bath at 95 °C for 3 min. After the extraction, the samples were first placed on ice and then stored at −80 °C.

Before the quantification of the metabolites, ethanol was evaporated until almost dryness in a Rapid-Vap under vacuum for 240 min. After evaporation, the residues were suspended in 500 μL of Milli-Q water, and centrifuged at 1000 × g for 5 min in a tube coupled with a filter (0.22 μm) to remove cell debris. The supernatants were stored at −80 °C until analysis. The concentrations of the intracellular metabolites were measured by isotope dilution mass spectrometry (LC-IDMS/MS and GC-IDMS) according to the protocols of Dam et al. [8], Jonge et al. [9] and Cipollina et al. [10].

2.4. SDS-PAGE

The samples were concentrated using Amicon 10 kDa cut-off Eppendorf tube concentrates. Then, they were mixed with NuPAGE LDS sample buffer (4 ×) (Thermo Fischer Scientific, NP0007) at a ratio of 1 to 4 and heated at 70 °C for 15 min. For the SDS-PAGE analysis, a mini-protein polyacrylamide gel was prepared (10% resolving gel) (BIO-RAD, 1610182), 1 μg protein was loaded from each sample. SDS-PAGE was run using a MES buffer (Thermo Fischer Scientific, NP0002) at constant voltage (200 V) for 25 min. Following a short fixation, the gel was stained using Coomassie Brilliant Blue for 15 min and destained in 10% acetic acid over-night. The gel image was taken using a XY camera and the image was processed using the Microsoft Office Picture Manager, 2010.
2.5. Shotgun proteomics and label-free quantification

Protein was precipitated from the supernatant using 4 volumes of ice-cold acetone at −20 °C for 20 min, centrifuged at 14,000 rpm for 10 min, and the pellet was washed twice using ice-cold acetone. The protein pellet was reconstituted in 200 mM ammonium bicarbonate containing 6 M urea. The protein solution was further reduced using DTT and then alkylated using iodoacetamide according to the protocol by Herbert et al. [11]. The protein solution was diluted using 200 mM ammonium bicarbonate buffer to approximately 1 M urea and further digested using trypsin in a ratio of protein to trypsin of approximately 50 to 1, at 37 °C over-night [11].

The proteolytic digest was purified using an Oasis HLB solid-phase extraction plate (Waters) and approximately 250 ng of the proteolytic digest was then analysed by a one-dimensional reverse-phase gradient (Acclaim PepMap RSLC 50 μm × 15 cm, 2 μm, 100 A, Thermo) using an EASY-nLC 1200 coupled to a QE plus Orbitrap mass spectrometer operating in top 10 DDA mode. Further details regarding one-dimensional shotgun proteomics approaches are described in Köcher et al. [12].

Tandem-MS data were analysed using PEAKS Studio 8.5 against the TrEMBL Trichoderma harzianum protein database (un-reviewed, taxon 5544 http://www.uniprot.org/), and results were filtered for < 1% FDR for both, peptide and protein identification. 3 replicate injections for each condition were finally analysed using the label-free quantification option provided by PEAKS Studio 8.5 [13].

3. Results and discussion

3.1. Secretome analysis

SDS-PAGE analysis was performed in the supernatant of the samples from carbon-limited chemostat cultivations using glucose (G), sucrose (S), and fructose/glucose (FG) (Fig. 1). For the glucose and fructose/glucose-limited chemostat cultures, more intense bands were observed than for the sucrose-limited culture, indicating higher protein concentrations. The molecular weights of the majority of the proteins were between 70.3 and 92 kDa for the glucose and fructose/glucose-limited cultures. For the sucrose-limited culture, the molecular weight of the
Table 1: Description of some enzymes from shotgun proteomics analysis, beta-glucosidase is highlighted in grey frames, G – glucose at 10 g/L, FG – fructose/glucose, and S – sucrose.

Accession	Coverage (%)	Peptides	Unique Peptides	Blank Intensity	G Intensity	S Intensity	FG Intensity	Avg. Mass	Description, GN – gene name, PE – protein existence, SV – sequence version
A0A0G6L6L81	A0A0G6L6L81	43	30	25.00E+06	5.51E+08	2.98E+07	6.51E+08	83322	Glycosyl hydrolase, GN=THAR02_00205, PE=4, SV=1
A0A0F3O7T121	A0A0F3O7T121	24	17	4.13E+05	4.52E+07	0	2.94E+07	104391	Glycosyl hydrolase family. N terminal domain-containing protein, PE=4, SV=1
A0A0G6A4511	A0A0G6A4511	29	23	2.43E+06	3.96E+08	6.78E+06	2.00E+08	104855	Glycosyl hydrolase family 31, GN=THAR02_03951, PE=3, SV=1
A0A0G6A1011	A0A0G6A0911	13	9	0	0	7.50E+06	3.03E+06	92668	Glycosyl hydrolase family 3, terminal domain-containing protein, PE=4, SV=1
A0A0F3T0Y101	A0A0F3T0Y10	37	26	2.35E+06	8.65E+08	1.23E+07	2.77E+08	92791	Beta-glucosidase, GN=THAR02_02132, PE=4, SV=1
A0A0F3T8W912	A0A0F3T8W9	14	6	1.36E+05	9.59E+07	1.03E+07	4.71E+07	52933	1,3-beta-glucanosyltransferase, GN=THAR02_04021, PE=3, SV=1
A0A0F3T2R312	A0A0F3T2R3	11	5	6.70E+05	5.22E+07	9.15E+07	8.96E+07	60083	Alpha-1,2-mannosidase, GN=THAR02_02385, PE=4, SV=1
A0A0F3T5D011	A0A0F3T5D0	13	5	1.74E+05	5.72E+07	2.37E+08	7.28E+07	46519	Mucinase, GN=THAR02_03460, PE=4, SV=1
A0A0F3T9K311	A0A0F3T9K3	12	5	4.37E+05	4.45E+07	1.86E+07	1.19E+07	63234	Mucin glycolyase, GN=THAR02_03434, PE=4, SV=1
A0A0F3X1511	A0A0F3X151	16	7	3.21E+05	7.52E+07	0	2.40E+07	48188	Alpha-galactosidase, GN=THAR02_01852, PE=3, SV=1
A0A0F3W5R11	A0A0F3W5R1	13	4	6.56E+04	5.74E+07	0	1.69E+07	55601	Alpha-1,2-Mannosidase, GN=THAR02_10337, PE=3, SV=1

Majority of the proteins was between 54 and 70.3 kDa.

Shotgun proteomics analysis was performed and indicates the presence of 207 proteins (92 enzymes and 115 other proteins of which 99 are uncharacterized). Fig. 2 highlights spectrum intensity, indicating the relative abundance for specific groups of enzymes. For the glucose-limited condition, higher intensities were observed for most of the proteins, indicating higher protein levels. According to Owen et al. [14], the relative intensity of each spectrum peak is proportional to the peptide concentration; this allows a relative quantification across different experimental conditions. Table 1 shows the result of some enzymes related to Fig. 2. Several enzymes were found including four 1,3-beta-glucanosyltransferase, two alpha-1,2-mannosidase, two alpha-galactosidase, two beta-glucosidase, two glucan 1,3-beta-glucosidase, two glucan endo-1,3-beta-glucosidase, thirteen glycosyl hydrolase and three mutanase. The complete table is presented in the supplementary material. It presents the coverage, the number of peptides and unique peptides identified, and intensities of the samples for each protein. Beta-glucosidase is highlighted in Table 1, the first one had coverage of 37%, 26 peptides, 24 unique peptides, 93 kDa and the second one, coverage of 8%, 8 peptides, 7 unique peptides and 95 kDa.

Vale et al. [15] reported a secretome analysis of T. harzianum using batch cultivation on cellulose performed in Erlenmeyer flasks with a liquid volume of 20 mL. They identified 56 proteins based on at least 2 unique peptides. In this project, the proteins with at least 1 unique peptide are presented to visualize the possible enzymatic cocktail secreted. Nevertheless, there are 114 proteins identified based on at least 2 peptides and 93 with only 1 unique peptide. According to Vale et al. [15], nowadays, high MS accuracy, low ppm mass errors, and rich MS/MS data, provided by mass spectrometers, offer excellent identification even based on single peptides.

Fig. 3 indicates through a heat map, the presence of proteins in the supernatant of the three samples analysed (G, S and FG). The B sample corresponds to the blank (no protein present, bright green colour). The samples came from continuous cultures with a dilution rate of 0.05 h⁻¹ and the differences observed are mainly due to the carbon sources used since no other variables were changed. Clear differences in protein abundances were observed between the three experimental conditions. If they would have been similar, this would indicate the constitutive production of these enzymes/proteins; however, the difference observed indicates that their production was possibly influenced by different inducers. Qualitative analyses such as ethanol precipitation, followed by hydrolysis of the precipitate confirmed the presence of extracellular polysaccharides in all conditions [4]. The presence of extracellular polysaccharides suggests that they were the source of inducers.

Gómez-Mendoza et al. [16] evaluated the T. harzianum secretome using glucose, carboxymethyl cellulose, xylan and an agricultural by-product (sucarcane bagasse) as carbon sources. The experiments were performed in shake flasks containing 1% (w/v) of the carbon source with a liquid volume of 30 mL. Glucose was used as the promoter of catabolite repression of enzymes and the condition resulted in the secretion of 107 groups of proteins of which 40 were exclusively identified in this carbon source. The secretion of celllobiohydrolase and beta-glucosidase were detected for this condition and their presence was attributed to the consequence of low constitutive enzyme production. In this project, however, the different colour intensities in Fig. 3 suggest that glucose condition was capable of inducing the production of proteins.

The difference between G and FG conditions is the lack of fructose in the G condition. This change resulted in different protein production as indicated in Fig. 3. It seems that the presence of fructose inhibited/induced the production of different proteins, but the samples also share common ones. The sucrose-limited condition resulted in the lowest protein levels in the culture supernatant. The use of monosaccharides (fructose and glucose – FG) had a positive influence on the diversity of the proteins/enzymes than the disaccharide used. The glucose-limited condition showed the highest diversity of proteins. It seems that each condition provided a distinct enzymatic cocktail, which could be related to the different carbon sources used. However, more research is needed to identify the uncharacterized proteins suggested by shotgun proteomics analysis.

3.2. Analysis of intracellular metabolites during PNPase production under glucose-limited conditions

The intracellular metabolites from the tricarboxylic acid cycle, glycolysis and pentose phosphate pathway, as well as nucleotides, were quantified for samples from glucose-limited chemostat cultures named A and B using 20 g/L in the feed. Both samples (A and B) were withdrawn during the steady-state of cells and CO₂. The difference between them is that sample A was not at steady-state of PNPGase production. The Tukey test with 95% confidence interval (OriginPro 8 software) was applied to analyse the average values for each metabolite. Significant differences among metabolite levels could indicate
Fig. 3. Heat map from the shotgun proteomics analysis (triplicate), indicating the possible enzymes present in the supernatant of samples at steady-state, B – blank, G – glucose at 10 g/L, FG – fructose/glucose, and S – sucrose.
metabolites that might be directly or indirectly related to PNPGase production. Statistically significant differences in concentrations of the metabolites are highlighted in blue (Table 2).

The high experimental errors observed for some metabolites could be attributed to the sample processing and/or analytical errors. Another explanation considered is a possible heterogeneity of cells inside the bioreactor caused by the consumption of fragments of polysaccharides under carbon-limited conditions. Considering that the highest shear rates in a mixing vessel are close to the blades of the impeller [17], there are regions with different shear rates inside the bioreactor. Fragments of polysaccharides from the cell wall can be released due to this shear stress [18], and because of different shear rate regions inside the bioreactor, it could also be expected that there exist regions with different concentrations of fragments. Since the cells can consume these fragments, the cells closer to the regions with a higher concentration of fragments could present different concentrations of some intracellular metabolites than the cells farther from that region.

Although samples A and B were at steady-state of cell concentration and CO2 production, it seems that there was another parameter, perhaps polysaccharide fragments, influencing the intracellular metabolite concentrations and the changes highlighted in Table 2 were not considered as resulting from sample processing and/or analytical errors due to the low standard experimental errors.

Table 2 shows a significant difference regarding intracellular glucose concentration that decreases from sample A to B and its concentration is inversely proportional to PNPGase activity (A = 1.1 ± 0.1 U/mL, B = 6.2 ± 0.4 U/mL). The higher glucose concentration for sample A could explain the lower enzymatic activity. Perhaps at this stage (A), the process was still unstable and glucose was inhibiting the inducer uptake. Additionally, 1.6 μmol/g seems to be an intracellular glucose concentration that could prevent carbon catabolite repression.

Based on PNPGase activity and intracellular glucose concentration, it can be considered that sample A provides information on an inhibition-state and sample B provides information of an inducer-state for PNPGase synthesis. For sample B, the uptake rate of inducer fragments of PNPGase synthesis was probably higher than for sample A, meanwhile, the uptake rate of hydrolysed fragments was higher for sample A,

Table 2

A (µmol/g)	B (µmol/g)	A (µmol/g)	B (µmol/g)
31.789 ± 2.978	1.559 ± 0.375	Fum	11.04 ± 0.16
0.937 ± 0.442	1.417 ± 0.023	G3P	0.226 ± 0.060
0.227 ± 0.105	0.298 ± 0.019	G1P	0.030 ± 0.012
0.381 ± 0.139	0.410 ± 0.008	UTP	1.256 ± 0.049
0.015 ± 0.001	0.026 ± 0.002	T6P	0.025 ± 0.006
0.108 ± 0.021	0.153 ± 0.014	Tre	112.059 ± 16.836
0.396 ± 0.001	0.497 ± 0.020	M6P	0.388 ± 0.146
0.041 ± 0.002	0.054 ± 0.004	AMP	0.296 ± 0.006
0.011 ± 0.001	0.017 ± 0.0001	ADP	1.484 ± 0.055
0.087 ± 0.001	0.097 ± 0.014	ATP	2.726 ± 0.083
0.745 ± 0.273	0.618 ± 0.044	cAMP	0.018 ± 0.00005
0.283 ± 0.006	0.222 ± 0.038	UMP	0.053 ± 0.008
0.615 ± 0.033	0.386 ± 0.030	UDP	0.129 ± 0.015
0.382 ± 0.004	0.357 ± 0.057	UTP	0.715 ± 0.002
0.786 ± 0.021	0.443 ± 0.025	GDP	0.213 ± 0.021
0.0046 ± 0.0003	0.0049 ± 0.0004	GMP	0.149 ± 0.009
6.656 ± 0.039	13.080 ± 1.005	GTP	0.766 ± 0.018
0.098 ± 0.001	0.278 ± 0.014	CMP	0.031 ± 0.003
0.525 ± 0.004	0.649 ± 0.043	CDP	0.066 ± 0.007
0.590 ± 0.027	1.143 ± 0.242	CTP	0.353 ± 0.016
2.441 ± 0.155	3.034 ± 0.223	UDPP	0.180 ± 0.029

2PG 2-phosphoglycerate, 3PG 3-phosphoglycerate, 6PG 6-phosphogluconate, ADP Adenosine diphosphate, αKG α-Ketoglutarate, AMP Adenosine monophosphate, ATP Adenosine triphosphate, cAMP Cyclic AMP, CDP Cytidine diphosphate, Cit Citrate, cMP Cytidine monophosphate, cTP Cytidine triphosphate, DHAP Dihydroxyacetone phosphate, E4P Erythrose-4-phosphate, F6P Fructose-6-phosphate, FBP Fructose-1,6-bisphosphate, Fum Fumarate, G1P Glucose-1-phosphate, G3P Glycerol-3-phosphate, GAP Glyceraldehyde-3-phosphate, G6P Glucose-6-phosphate, GAP Glyceraldehyde-3-phosphate, GDP Guanosine diphosphate, Gluc Glucose, GMP Guanosine monophosphate, GTP Guanosine triphosphate, iCit Isocitrate, M1P Mannitol-1-phosphate, M6P Mannose-6-phosphate, Mal Malate, PEP Phosphoenolpyruvate, Rib5P Ribose-5-phosphate, Ribu5P Ribulose-5-phosphate, S7P Sedoheptulose-7-phosphate, Suc Sucinate, T6P Trehalose-6-phosphate, Tre Trehalose, UMP Uridine monophosphate, UDP UDP Uridine diphosphate, UDPP Uridine-5-diphosphoglycerate, UDPR Uridine monophosphate, UTP Uridine triphosphate, and Xyl5P Xylulose-5-phosphate.
providing inhibition. Therefore, significant differences observed between some metabolite levels indicate changes in the metabolic pathway when there is a higher consumption of inducers (sample B) or inhibitors (sample A) of PNPGase production. The higher uptake of inducers resulted in higher concentrations of metabolites from the tri-carboxylic acid cycle, part of glycolysis (from glyceraldehyde-3-phosphate to phosphoenolpyruvate) and lower values for metabolites from the pentose phosphate pathway. Nevertheless, more experiments have to be conducted to verify whether the metabolic profiles observed always follow this pattern.

4. Conclusions

Shotgun proteomics and SDS-PAGE analysis were performed for the proteins present in the supernatant of carbon-limited chemostat cultures using glucose, fructose/glucose and sucrose as carbon sources. The shotgun proteomics analysis has indicated that the different carbon sources used greatly influenced the amounts of secreted proteins, of which many of them are enzymes. The possible differences regarding the enzymes secreted could be related to the presence of different inducers. This brings the possibility of creating a hypothesis that different carbon sources easily assimilated by the cells under carbon-limited conditions could lead to the synthesis of different inducers and thus different enzymes. Several uncharacterized proteins were also suggested by the analysis and methods to identify them and their functions could reveal new promising products. Analysis of the intracellular metabolites has suggested that high intracellular glucose concentrations can inhibit the production of PNPGase.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This project was supported by the São Paulo Research Foundation (FAPESP), process number 2014/22537-9, the University of Campinas, Delft University of Technology and the dual degree program between the University of Campinas and Delft University of Technology. The authors would like to thank Cor Ras and Patricia van Dam for the analysis of intracellular metabolites and Silvia Mariné for the analysis of SDS-PAGE and shotgun proteomics.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jprot.2020.103922.

References

[1] W.H. McDonald, J.R. Yates, Shotgun proteomics and biomarker discovery, Dis. Markers 18 (2002) 99–105.
[2] A.I. Nesvizhskii, R. Aebersold, Interpretation of shotgun proteomic data, Mol. Cell. Proteomics 4 (2005) 1419–1440.
[3] J. Eyzaguirre, M. Hidalgo, A. Leschot, β-glucosidases from filamentous fungi: properties, structure, and applications, in: K.J. Yarema (Ed.), Handbook of Carbohydrate Engineering, CRC Taylor and Francis group, 2005, pp. 645–685.
[4] L. Gelain, Mathematical Modelling of Cellulase Production and Continuous Production of Enzymes under Carbon-Limited Conditions by Trichoderma harzianum P49P11, (2020), https://doi.org/10.4233/uuid:cf8840b6-c075-4cfe-af43-2b9fcb70f1a1 PhD thesis 2020.
[5] P.S. Delabona, C.S. Farinas, M.R. da Silva, S.F. Azzoni, J.G. Pradella, Use of a new Trichoderma harzianum strain isolated from the amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production, Bioresour. Technol. 107 (2012) 517–521.
[6] Y.H. Zhang, J. Hong, X. Ye, Cellulase assays, in: J. Mielenz (Ed.), Biofuels. Methods in Molecular Biology (Methods and Protocols), Humana Press Inc, Totowa, 2009, pp. 213–231.
[7] F. Lameiras, J.J. Heijnen, W.M. van Gulik, Development of tools for quantitative intracellular metabolomics of Aspergillus niger chemostat cultures, Metabolomics 11 (2015) 1253–1264.
[8] J.C. Dam, M.R. Eman, J. Frank, H.C. Lange, G.W. Dedem, S.J. Heijnen, Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection, Anal. Chim. Acta 460 (2002) 209–218.
[9] L.P. Jonge, N.A. Buiks, A.T. Pierick, A. Deshmukh, Z. Zhao, J.A. Kiel, J.J. Heijnen, W.M. van Gulik, Scale-down of penicillin production in Penicillium chrysogenum, Biotechnol. J. 6 (2011) 944–958.
[10] C. Cipollina, A.T. Pierick, A.B. Canelas, R.M. Seifar, J.J. Maris, J.C. Dam, J.J. Heijnen, A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC–IDMS, J. Chromatogr. B 877 (2009) 3231–3236.
[11] A.S. Hebert, A.L. Richards, D.J. Bailey, A. Ulbrich, E.E. Coughlin, N.A. Buijs, J.J. Coon, The one hour yeast proteome, Mol. Cell. Proteomics 13 (2014) 339–347.
[12] T. Köcher, P. Pichler, R. Swart, K. Mechtler, Analysis of protein mixtures from whole-cell extracts by single-run nano LC-MS/MS using ultralong gradients, Nat. Protoc. 7 (2012) 882–890.
[13] J. Zhang, L. Xin, B. Shan, W. Chen, M. Xie, D. Yuen, W. Zhang, Z. Zhang, G.A. Lajoie, B. Ma, PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification, Mol. Cell. Proteomics 11 (2012).
[14] C.B. Owen, D.J. Hughes, B. Baquero-Perez, A. Berndt, M.V. Sousa, Cellulase assays, in: J. Mielenz (Ed.), Biofuels. Methods in Molecular Biology (Methods and Protocols), Humana Press Inc, Totowa, 2009, pp. 48–55.
[15] L.H. Van, D.P. Gómez-Mendoza, M. Kim, A. Pandey, C.A. Ricart, X.F. Eidvaldo, M.V. Sousa, Secretome analysis of the fungus Trichoderma harzianum grown on cellulose, Proteomics 12 (2012) 2716–2728.
[16] D.P. Gómez-Mendoza, M. Junqueira, L.H.F. Do Vale, G.B. Domont, E.X.F. Filho, M.V.D. Sousa, C.A.O. Ricart, Secretomic survey of Trichoderma harzianum secretome using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection, Metabolomics 11 (2015) 1253–1264.
[17] J.J. Heijnen, A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC–IDMS, J. Chromatogr. B 877 (2009) 3231–3236.
[18] U. Rau, Production of Schizophyllan, in: C. Bucke (Ed.), Carbohydrate Engineering, CRC Taylor and Francis group, 2005, pp. 645–685.