Focusing of timelike worldsheets in a theory of strings

Sayan Kar * †

International Centre for Theoretical Physics,
P.O. Box 586, 34100, Trieste, Italy

and

Institute of Physics
Sachivalaya Marg, Bhubaneswar–751005, India

Abstract

An analysis of the generalised Raychaudhuri equations for string world sheets is shown to lead to the notion of focusing of timelike worldsheets in the classical Nambu–Goto theory of strings. The conditions under which such effects can occur are obtained. Explicit solutions as well as the Cauchy initial value problem are discussed. The results closely resemble their counterparts in the theory of point particles which were obtained in the context of the analysis of spacetime singularities in General Relativity many years ago.

PACS number(s) : 11.27. +d, 11.10.Kk

†Present Address : IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India

*Electronic Address : sayan@iucaa.ernet.in
I. INTRODUCTION

The theory of extended objects such as strings and higher branes embedded in an ambient background spacetime has been extensively studied in the recent past. The string/membrane viewpoint has found useful applications in seemingly diverse fields ranging from a theory of fundamental strings in the context of quantum gravity and unification to two dimensional objects (hypersurfaces) embedded in an Euclidean background, examples of which are abundant in the active area of biological(amphiphilic) membranes. Consequences of the generalisation of those equations which describe various features of a point particle theory to the case of strings and membranes are therefore worth investigating.

To get into the relevant context we must first ask what these equations are. For any theory, the starting point is almost always the action. The action for the relativistic point particle is the integral of the arc length ds. The first variation results in the equation of motion which in a general background is the geodesic equation. Solutions to this equation are the geodesic curves of the corresponding background geometry. The second variation of the action is related to the Jacobi/geodesic deviation equation which governs the separation of one geodesic from another in a generic curved background. In General Relativity (GR), where spacetime curvature is related to matter, geodesic deviation provides a measure of the gravitational force. An alternative set of equations which contain further information about the nature of a one parameter family of geodesics are the Raychaudhuri equations. These deal with the issue of focusing/defocusing of geodesic congruences and play a major role in the proofs of the singularity theorems of GR.

Each of the above-mentioned equations have generalisations for the case of strings as well as higher branes. The geodesic equation is replaced by the string/membrane equations of motion and constraints which emerge out of the first variation of the area functional (Nambu–Goto action). The Jacobi equation has also been extended recently by evaluating the second variation (see also for an earlier reference in the mathematics literature). Finally, generalised Raychaudhuri equations also exist today due to the efforts of
Capovilla and Guven [7]. However, not much attention has been devoted towards understanding the general features of the solutions of the Jacobi and Raychaudhuri equations in string/membrane theories in a way similar to their treatment in the context of GR. Our main aim in this paper would therefore be to analyse the Raychaudhuri equation for strings and derive the worldsheet analog of geodesic focusing.

II. THE RAYCHAUDHURI EQUATIONS

In introducing the Raychaudhuri equations and its generalisations we shall prefer writing down the equations first and then explain the relevance and geometrical meaning of the various quantities which appear.

For the case of families of timelike geodesic curves the Raychaudhuri equation for the quantity known as the expansion θ is given as:

$$\frac{d\theta}{d\lambda} + \frac{1}{3}\theta^2 + 2\sigma^2 - 2\omega^2 = -R_{\mu\nu}\xi^{\mu}\xi^{\nu}$$

(1)

The expansion θ measures the rate of change of the cross sectional area of a family of geodesics. $\sigma^{\mu\nu}$ and $\omega^{\mu\nu}$ are known as the shear and rotation of the congruence. Thus, if the expansion is negative (positive) somewhere we can conclude that the congruence/family is converging (diverging). Moreover, if the expansion goes to $-\infty$ we have focusing of geodesics – a generalisation of which is the main topic here.

An alternative way to look at (1) is to convert it into a second order, linear, ordinary differential equation. This is done by a simple change of variables $\theta = \frac{3}{F}\frac{dF}{d\lambda}$ which yields the following equation:

$$\frac{d^2F}{d\lambda^2} + \frac{1}{3}H(\lambda)F = 0$$

(2)

where $H(\lambda) = R_{\mu\nu}\xi^{\mu}\xi^{\nu} + 2\sigma^2 - 2\omega^2$ The focusing theorem which originates from an analysis of either version of the Raychaudhuri equation states that if $\omega^2 = 0$ and matter satisfies an Energy Condition (usually $R_{\mu\nu}\xi^{\mu}\xi^{\nu} \geq 0$ or, using Einstein’s field equation $\left(T_{\mu\nu} - \frac{1}{2}T g_{\mu\nu}\right)\xi^{\mu}\xi^{\nu} \geq 0$) then converging ($\theta$ negative) families of timelike or null geodesics...
must necessarily focus within a finite value of the affine parameter λ. Note that the existence of zeros in the class of solutions of (2) implies the divergence of the expansion. Detailed analysis of the focusing theorems can be found in [6], [7] and [11]. Physically, focusing is a natural consequence of the attractive nature of gravitating matter and acts as a pointer to the existence of spacetime singularities.

A generalisation of the above equation is achieved by considering families of surfaces as opposed to families of curves. These surfaces are timelike (i.e. they have a Lorentzian induced metric on the worldsheet) and extremal with respect to variations of the Nambu–Goto action. The original derivation for the most general case of D dimensional timelike, extremal, Nambu–Goto surfaces embedded in an N dimensional Lorentzian background is due to Capovilla and Guven [7]. The form of the equation for string world sheets given below [11] is obtained by using certain properties of two dimensional surfaces (the choice of isothermal coordinates) and simplifications achieved by implementing the Gauss–Codazzi integrability conditions. We have,

$$-\frac{\partial^2 F}{\partial \tau^2} + \frac{\partial^2 F}{\partial \sigma^2} + \frac{1}{N-2} \Omega^2 \left(-2R + R_{\mu\nu} E^\mu_a E^{\nu a} \right) F = 0 \quad (3)$$

where σ, τ are the worldsheet coordinates, 2R is the worldsheet Ricci curvature, $R_{\mu\nu}$ is the spacetime Ricci tensor and E^μ_a are the tangent vectors to the worldsheet in the frame basis ($g(E_a, E_b) = \eta_{ab}$). $\Omega^2(\sigma, \tau)$ is the conformal factor in the metric induced on the worldsheet from the background geometry. We shall denote the coefficient of F in the third term collectively as $\alpha(\sigma, \tau) = \frac{1}{N-2} \Omega^2 \left(-2R + R_{\mu\nu} E^\mu_a E^{\nu a} \right)$.

The above generalised equation is a second order, linear, hyperbolic partial differential equation. It is the parallel of Eqn (2). We now have two quantities θ_τ and θ_σ which represent the generalised expansions along the τ and σ directions of the worldsheet and are obtained by taking the partial derivative of $\ln F$ with respect to the τ and σ variables respectively. Our objective now is to obtain and analyse the solutions of this equation.

III. SOLUTIONS IN LIGHT–CONE COORDINATES

In order to arrive at and extract information about the solutions of (3) it is useful to make
a few assumptions about the quantity $\alpha(\sigma, \tau)$. We can think of two possibilities straightaway. The first of these is to assume that α is separable in the σ, τ variables. On the other hand one may prefer going over to light cone coordinates and assume separability in that system. The conclusions related to the former case has already been discussed in a previous paper by this author [11]). We therefore concentrate on the latter.

In light–cone coordinates defined by:

\[
\sigma_+ = \frac{1}{2}(\sigma - \tau) \quad ; \quad \sigma_- = \frac{1}{2}(\sigma + \tau)
\]

(4)

the generalised Raychaudhuri equation takes the form:

\[
\frac{\partial^2 F}{\partial \sigma_+ \partial \sigma_-} + \alpha(\sigma_+, \sigma_-)F = 0
\]

(5)

where F and α are functions of the σ_+, σ_- variables. A class of solutions of this equation can be easily obtained by inspection. We first note that the usual general solution of the wave equation in $1 + 1$ dimensions which involves the superposition of functions of σ_+ and σ_- does not work here because of the presence of the second term in the equation.

Assuming $\alpha(\sigma_+, \sigma_-) = \alpha_+\sigma_+ \times \alpha_-\sigma_-$ we may choose–

\[
F(\sigma_+ , \sigma_-) = \exp \left(a \int \alpha_+(\sigma_+)d\sigma_+ + b \int \alpha_-(\sigma_-)d\sigma_- \right)
\]

(6)

where a, b are two constants which must satisfy the condition $ab + 1 = 0$ if (6) has to be a solution of (5).

It is easily seen that the following four possibilities exist for choices of a and b.

(1) $a = 1, b = -1$; \hspace{1cm} (2) $a = -1, b = 1$

(7)

(3) $a = i, b = i$; \hspace{1cm} (4) $a = -i, b = -i$

(8)

Note in the above that there are both oscillatory as well as exponential solutions. For the former, we need to look into the real and imaginary parts (the cosine and sine solutions respectively) which are –
\[F(\sigma_+, \sigma_-) = \cos \left(\int \alpha_+ (\sigma_+) d\sigma_+ + \int \alpha_- (\sigma_-) d\sigma_- \right) \] \hspace{1cm} (9)

\[F(\sigma_+, \sigma_-) = \sin \left(\int \alpha_+ (\sigma_+) d\sigma_+ + \int \alpha_- (\sigma_-) d\sigma_- \right) \] \hspace{1cm} (10)

Introduce the quantities \(\theta_+ \) and \(\theta_- \) (expansions along the light cone directions \(\sigma_+ \) and \(\sigma_- \)) which are related to \(\theta_\sigma \) and \(\theta_\tau \) as follows:

\[\theta_+ = \theta_\sigma - \theta_\tau \hspace{0.5cm} ; \hspace{0.5cm} \theta_- = \theta_\sigma + \theta_\tau \] \hspace{1cm} (11)

For the exponential solutions we therefore have:

\[\theta_+ = \frac{1}{F} \frac{\partial F}{\partial \sigma_+} = \pm \alpha_+ (\sigma_+) \] \hspace{1cm} (12)

\[\theta_- = \frac{1}{F} \frac{\partial F}{\partial \sigma_-} = \mp \alpha_- (\sigma_-) \] \hspace{1cm} (13)

\[\theta_+ \theta_- = \theta_\sigma^2 - \theta_\tau^2 = -\alpha (\sigma_+, \sigma_-) \] \hspace{1cm} (14)

The upper and lower signs refer to the choices (1) and (2) in Eqn (7) respectively.

For positive \(\alpha \) (i.e. (a) \(\alpha_+ > 0 \) or (b) \(\alpha_- < 0 \)) one can have the following alternatives (we take the lower sign in the previous expressions, i.e. (2) in Eqn (7)) – \(\theta_+ \) negative and \(\theta_- \) positive (for (a)) and \(\theta_+ \) positive and \(\theta_- \) negative (for (b)). On the other hand, for negative \(\alpha \) (i.e. (c) \(\alpha_+ > 0 \), \(\alpha_- < 0 \) or (d) \(\alpha_+ < 0 \), \(\alpha_- > 0 \)) the following possibilities exist – \(\theta_+ \) negative (for (c)) and \(\theta_- \) positive for (d). Additionally, for this class of solutions, a divergence in \(\alpha_+ \) or \(\alpha_- \) is necessary to have divergent expansions. This implies a divergence in worldsheet curvature or the spacetime Ricci tensor when evaluated on the worldsheet.

Let us now turn to the oscillatory solutions. The expressions for \(\theta_+ \) and \(\theta_- \) for them can be obtained in a similar fashion. We choose to work with the cosine solution for which we have:

\[\theta_+ = -\alpha_+ (\sigma_+) \tan \left(\int \alpha_+ (\sigma_+) d\sigma_+ + \int \alpha_- (\sigma_-) d\sigma_- \right) \] \hspace{1cm} (15)

\[\theta_- = -\alpha_- (\sigma_+) \tan \left(\int \alpha_- (\sigma_+) d\sigma_+ + \int \alpha_- (\sigma_-) d\sigma_- \right) \] \hspace{1cm} (16)

\[\theta_+ \theta_- = \theta_\sigma^2 - \theta_\tau^2 = \alpha (\sigma_+, \sigma_-) \tan^2 \left(\int \alpha_- (\sigma_+) d\sigma_+ + \int \alpha_- (\sigma_-) d\sigma_- \right) \] \hspace{1cm} (17)
First let us assume \(\alpha > 0 \) which implies the constraints (a) and (b) mentioned before on \(\alpha \pm \). Consequently we have \(\theta_\pm > 0 \) or \(\theta_\pm < 0 \) depending on the sign of the tangent function. On the contrary, if \(\alpha < 0 \) i.e. cases (c) and (d), we find that for both cases \(\theta_+ \) and \(\theta_- \) can only have opposite signs. However, in contrast to the oscillatory solutions \(\theta_\pm \) can diverge for finite values of \(\sigma_\pm \) even though \(\alpha \) may be completely regular there.

If \(\alpha = 0 \) one has to analyse the solutions of the ordinary wave equation which are given by the functions \(f(\sigma_+) \) or \(g(\sigma_-) \) or their linear superposition. By specialising to exponential or oscillatory cases it is easy to arrive at focusing effects at least for the latter. Note however, that solutions to the \(\alpha \neq 0 \) case may not go over smoothly to those for \(\alpha = 0 \). The simplest example of this type of behaviour can be noted for the ordinary differential equation for the simple harmonic oscillator which has solutions of the form \(\cos kx, \sin kx, k \) being the frequency. Putting \(k = 0 \) in the solutions yields trivial results whereas we know that the differential equation for \(k = 0 \) has a solution of the form \(ax + b \) where \(a, b \) are two arbitrary constants.

We now construct an explicit example of an embedding which is such that the quantity \(\alpha \) is separable in light–cone coordinates.

The background metric is assumed to be conformally flat –the line element is taken as:

\[
\text{d}s^2 = f(x_0, x_1) \left[-dx_0^2 + dx_1^2 + dx_2^2 + dx_3^2 \right]
\]

(18)

An embedding which satisfies the Nambu–Goto equations and constraints could be:

\[
x_0 = C_1 \tau + C_2 \sigma \quad ; \quad x_1 = C_2 \tau + C_1 \sigma \quad ; \quad x_2 = \text{constant} \quad ; \quad x_3 = \text{constant}
\]

(19)

where \(C_1, C_2 \) are constants with \(C_1^2 > C_2^2 \).

One therefore needs to write down the expression for the quantity \(\alpha \) which turns out to be:

\[
\alpha = -2 \frac{1}{\sqrt{f}} \partial_+ \partial_- \sqrt{f}
\]

(20)

Defining the induced metric on the worldsheet as:
\[ds_I^2 = e^{2\rho} \left[-d\tau^2 + d\sigma^2 \right] \] (21)

with \(e^{2\rho} = f(C_1^2 - C_2^2) \) we can convert the expression above into the following form:

\[\alpha = -2e^{-\rho} \partial_+ \partial_- e^{\rho} \]

\[= -2 (\partial_+ \partial_- \rho + \partial_+ \rho \partial_- \rho) \] (22)

Choosing a generic form of \(\rho = A(\sigma) + B(\sigma) \) we can easily see that it is possible to get an \(\alpha \) which is separable in light–cone coordinates. Note that in this entire discussion we have never really chosen an explicit form for the function \(f(x_0, x_1) \). This is not necessary as is apparent from the calculation. The separability of \(\rho \) which ultimately results in the separability of \(\alpha \) however yields a worldsheet metric which is flat \((2R = -2e^{-2\rho} \partial_+ \partial_- \rho \text{ turns out be zero}) \).

Also, if the background geometry had been chosen such that the conformal factor was associated as a factor with the \(x_0, x_1 \) part of the metric (more precisely, \(ds^2 = f(x_0, x_1)(-dx_0^2 + dx_1^2) + dx_2^2 + dx_3^2 \)) then the same embedding would have resulted in an \(\alpha \) identically equal to zero.

IV. FOCUSING THEOREM

We now move on to the more important question of analysing the generalised Raychaudhuri equation in string theory from the viewpoint of a Cauchy initial value problem. Note that the discussion presented in the previous sections has been largely aimed at obtaining specific solutions with the assumption of separability in light cone variables.

Fortunately, we have several oscillation theorems due to Pagan [12] and co–workers [13] which are essentially tailored to our requirements. We mention below one such theorem which we shall use subsequently.

Theorem : (Pagan and Stocks 1975)

Let \(F(\sigma_+, \sigma_-) \) satisfy the partial differential equation:

\[F_{+-} + \alpha(\sigma_+, \sigma_-)F = 0 \] (23)
with the initial conditions:

\[F(\sigma_+, \sigma_+) = r(\sigma_+) \quad \text{and} \quad \frac{\partial F}{\partial \sigma_+}\big|_{\sigma_+ = \sigma_-} = t(\sigma_+) \] (24)

in the domain \(\sigma_- - \sigma_+ \geq 0 \) (i.e. \(\tau \geq 0 \)). Let the following conditions also hold:

\[(i) \quad \alpha(\sigma_+, \sigma_-) \geq k^2 > 0 \] (25)

\[(ii) \quad \alpha_+(\sigma_+, \sigma_-) \geq 0 \quad \text{and} \quad (iii) \quad \alpha_-(\sigma_+, \sigma_-) \geq 0 \] (26)

\[(iv) \quad |F^2(\sigma_+, \sigma_+) - \frac{F^2_+(\sigma_+, \sigma_+)}{\alpha(\sigma_+, \sigma_+)}| \quad \text{and} \quad |F^2(\sigma_-, \sigma_-) - \frac{F^2_-(\sigma_-, \sigma_-)}{\alpha(\sigma_-, \sigma_-)}| \] (27)

are bounded as \(\sigma_\pm \to \infty \)

then \(F \) changes sign (i.e. develops a zero, nodal line) somewhere in the domain:

\[D \equiv \{ \sigma_+, \sigma_- | \Sigma_- \leq \sigma_- < \infty \quad ; \quad \Sigma_+ \leq \sigma_+ < \infty \quad ; \quad \Sigma_- - \Sigma_+ \geq 0 \} \] (28)

The possible existence of the nodal line (a curve along which \(F \) is zero) is the basic result of the abovestated theorem. In the language of GR the nodal line is a generalisation of the focal point– we might call it the focal curve along which families of timelike world–sheets intersect. We can see straightaway that there are several conditions which have to be obeyed in order to ensure the existence of a nodal line. We now briefly discuss the implications of each of them.

The condition (i) is the analog of the usual Energy Condition in the theory of geodesic curves although the R. H. S. of the inequality has a positive number instead of zero. However, since the \(\alpha = 0 \) case leads to a simple wave equation (whose solutions always have zeros) we can extend this condition to the analog of the usual energy condition with the \(k^2 \) being replaced by zero.

The second condition (i.e. (ii)) imposes restrictions on the derivatives of \(\alpha \). Translated in the language of \(\sigma, \tau \) coordinates one can easily check that the following have to hold true.

\[\frac{\partial \alpha}{\partial \sigma} \geq \frac{\partial \alpha}{\partial \tau} \quad \text{and} \quad \frac{\partial \alpha}{\partial \sigma} \geq -\frac{\partial \alpha}{\partial \tau} \] (29)
Therefore, if α is only a function of σ one requires $\frac{d\alpha}{d\sigma} \geq 0$ whereas if α is only a function of τ then one actually ends up in a contradiction, the only resolution of which is to assume α as a constant or zero.

Finally, the third condition, which is on the function F, implies, for instance, for the oscillatory solutions derived earlier, the boundedness of the quantity α as σ_\pm approaches $\pm\infty$. This can be seen by substituting the solution in the expression for the condition.

Based on the above theorem we can now frame our focusing theorem for timelike world-sheets.

If θ_+ or θ_- is negative somewhere then they tend to $-\infty$ within a finite value of the worldsheet parameters σ_+ or σ_- provided all conditions on the α are obeyed. The negativity of θ_+ or θ_- is dependent on the negativity of the functions r and t which appear in the initial conditions.

It is perhaps easier to visualise the notion of focusing for the case of a family of closed string worldsheets. Assume a family of cylindrical worldsheets which meet along some curve $\sigma_+ = f(\sigma_-)$. This curve is the nodal line mentioned before. It may happen, that this curve (nodal line) degenerates to a point. For example, if the equation of the curve turns out to be $\sigma_+^2 + \sigma_-^2 = 0$. Then the only real solution is $\sigma_+ = \sigma_- = 0$. For such cases we have a family of cones emerging out of that point—the common vertex of the cones being the focal point of the congruence of worldsheets. This basically means that the worldsheet geometries have a conical singularity in the sense of unbounded curvature at that specific point. In GR, the focal point of a congruence indicates a singularity in the congruence of geodesics. We may find that the spacetime singularity (in the sense of unbounded curvature) coincides with the focal point of a geodesic congruence in the spacetime— for example, this happens in the universe models which exhibit curvature singularities. However, this is not true always. At this stage, it is not completely clear whether a notion of incompleteness of string worldsheets can be derived and related to a singularity in the background spacetime. Moreover, we do not know precisely if the conical worldsheet singularity which may arise if the focal curve
degenerates to a point has any relation with the background spacetime singularities. Further analysis is essential if one wishes to arrive at a better understanding.

It must be mentioned that this is a focusing theorem – i.e. with the assumptions on the various quantities one can conclude that a focal curve can exist. The results of the previous section are different from two angles–firstly we do not frame an initial value problem there and secondly the solutions are obtained ad–hoc, largely by inspection. It is possible that under different assumptions on the variables as well as other initial conditions one may also be able to prove the existence of a nodal curve. The author, unfortunately, is unaware of such results either in the mathematics or in the physics literature.

V. OFFSHOOTS

Before we conclude let us point out certain applications of the formalism of the generalised Jacobi and Raychaudhuri equations in a completely different context–that of biological membranes. Here, we consider two–dimensional hypersurfaces embedded in an Euclidean (flat) background space. The first variation yields the surface configurations which can be minimal (zero mean curvature) or Willmore (constant mean curvature) depending on the choice of the action functional. The corresponding Jacobi equations contain information about the normal deformations of these two–dimensional surfaces and are thereby linked to the question of stability. Much of the basic notions along these directions have been pursued in a mathematical context in a number of papers [14]. However, an application oriented analysis with an emphasis on specific, physically relevant cases has not yet been performed. On the other front, solutions of the Raychaudhuri equations, which are in a certain sense nonperturbative, would indicate the formation of cusps and kinks on the membrane (focusing along a degenerate curve(point)). A major difference with the analysis presented in this paper and that required to understand membranes in an Euclidean background is the appearance of elliptic equations as opposed to hyperbolic ones. Therefore, to analyse the Jacobi equations/ focusing one has to utilise the oscillation theorems for elliptic equations.
Fortunately, once again such theorems do exist \cite{15}. A detailed presentation of these ideas and their consequences in the context of biological membranes will be reported elsewhere \cite{16}.

VI. CONCLUSIONS

In conclusion we summarise and raise a few questions of related interest.

We have obtained a focusing theorem for string worldsheets. This is illustrated through exact solutions as well as an analysis of the Cauchy initial value problem. The conditions for focusing are outlined–these constrain worldsheet as well as spacetime properties. An analysis of the Jacobi equation as well as a more detailed presentation of the ideas here is in progress and will be reported in the near future \cite{17}.

It is a somewhat pleasing fact that most of the results for point particle theories have their generalisation for the case of strings. However, GR as a theory of gravity has an unique feature–the equations of motion for test particles (i.e. the geodesic equation) can be derived from the Einstein field equations for the field $g_{\mu\nu}$ \cite{18}. We may therefore ask–given the string equation of motion can one find the corresponding ‘Einstein equation’ which would lead to it under the suitable assumptions which may define a test string?

Finally, of course, one has to address the question of background spacetime singularities – does a string description as opposed to the point particle resolve the issue at the classical level? As a first step towards this (following the path of GR) we now have a focusing theorem. It would perhaps be worthwhile to attempt a derivation of the analogs of the Hawking–Penrose theorems for the case of strings and thereby demonstrate the existence/non-existence of spacetime singularities in the classical theory of strings. If the answer remains the same as in GR (i.e. spacetime singularities exist under quite general conditions) then one can proceed towards examining how quantum string theory can help us solve the problem.

The author wishes to thank S. Randjbar–Daemi for inviting him to visit the International Centre for Theoretical Physics, Trieste, Italy where this work was done.
REFERENCES

[1] M. S. Green, J. H. Schwarz and E. Witten, *Superstring Theory*, (Cambridge University Press 1987)

[2] See articles by F. David and S. Leibler in *Statistical Mechanics of Membranes and Surfaces* ed. T. Piran and S. Weinberg, (World Scientific, 1989)

[3] A. K. Raychaudhuri, Phys. Rev. **99** 1123 (1955)

[4] J. Guven, Phys. Rev. **D 48**, 4604 (1993); **D 48** 5562 (1993); R. Capovilla and J. Guven, Phys. Rev. **D 51**, 6736 (1995)

[5] A. L. Larsen and V P. Frolov, Nucl. Phys. **B 414**, 129 (1994); B. Carter, Phys. Rev. **D 48**, 4835 (1993)

[6] H. Blaine Lawson, *Lectures on Minimal Submanifolds*, 2nd Ed. (Publish or Perish, Boston, MA 1970)

[7] R. Capovilla and J. Guven, Phys. Rev. **D 52**, 1072 (1995)

[8] F. J. Tipler, Ann. Phys. **108**, 1 (1977); Jr. Diff. Eqns. **30**, 165 (1978)

[9] R. M. Wald, *General Relativity*, (University of Chicago Press, 1985)

[10] S. W. Hawking and G. F. R. Ellis, *The Large Scale Structure of spacetime*, (Cambridge University Press, 1972)

[11] S. Kar, Phys. Rev. **D 52**, 2036 (1995); Phys. Rev. **D 53**, 2071 (1996)

[12] G. Pagan, *The study of the oscillatory behaviour of solutions of hyperbolic partial differential equations* (Doctoral thesis, Chelsea College, Univ. of London, 1975)

[13] G. Pagan and D. Stocks, Proc. Roy. Soc. Edin. **83 A**, 239 (1975)

[14] A. A. Tuzhilin, *Global properties of minimal surfaces in R^3 and H^3 and their Morse type indices* in *Minimal surfaces* Ed. A. T. Fomenko (Advances in Soviet Mathematics, Vol.
15, American Mathematical Society, Providence, Rhode Island, 1993) and references therein.

[15] K. Kreith, Proc. Amer. Math. Soc. 15, 341 (1964); K. Kreith and C. Travis, Pac. Jr. Math. 41, 743 (1972); K. Kreith, *Oscillation Theory*, (Lecture Notes in Mathematics, Vol. 324, Springer Verlag, Berlin, 1973)

[16] S. Kar, Geometry of Deformations of Amphiphilic Membranes (In preparation)

[17] S. Kar, (In preparation)

[18] A. Einstein and J. Grommer, Sitz. Preuss. Acad. Wiss. 1 (1927); L. Infeld and A. Schild, Rev. Mod. Phys. 21, 408 (1949)