Estrogen-Related Receptor Alpha Modulates Lactate Dehydrogenase Activity in Thyroid Tumors

Submitted by Emmanuel Lemoine on Fri, 03/20/2015 - 12:47

Titre
Estrogen-Related Receptor Alpha Modulates Lactate Dehydrogenase Activity in Thyroid Tumors

Type de publication
Article de revue

Auteur
Mirebeau-Prunier, Delphine [1], Le Pennec, Soazig [2], Jacques, Caroline [3], Fontaine, Jean-Fred [4], Guegen, Naig [5], Boutet-Bouzamondo, Nathalie [6], Donnant, Audrey [7], Malthièry, Yves [8], Savagner, Frédérique [9]

Editeur
Public Library of Science

Type
Article scientifique dans une revue à comité de lecture

Année
2013

Langue
Anglais

Date
2013/03/13

Numéro
3

Pagination
e58683

Volume
8

Titre de la revue
PLoS ONE

Mots-clés
Cell binding assay [10], Cell metabolism [11], Gene Expression [12], Hyperexpression techniques [13], Luciferase [14], mitochondria [15], thyroid [16], Transfection [17]

Résumé en anglais
Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis.

URL de la notice
http://okina.univ-angers.fr/publications/ua9039 [18]

DOI
10.1371/journal.pone.0058683 [19]

Lien vers le document
http://dx.doi.org/10.1371/journal.pone.0058683 [19]
Titre abrégé PLoS ONE

Liens
[1] http://okina.univ-angers.fr/delphine.prunier/publications
[2] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=1022
[3] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=447
[4] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=765
[5] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=24205
[6] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=1056
[7] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=15958
[8] http://okina.univ-angers.fr/yves.malthiery/publications
[9] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=557
[10] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=16847
[11] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=16846
[12] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7481
[13] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=16848
[14] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=16849
[15] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=984
[16] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=1400
[17] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=10782
[18] http://okina.univ-angers.fr/publications/ua9039
[19] http://dx.doi.org/10.1371/journal.pone.0058683

Publié sur Okina (http://okina.univ-angers.fr)