Fatty Acid Metabolism and T Cells in Multiple Sclerosis

Saige L. Pompura1, David A. Hafler1 and Margarita Dominguez-Villar2*

1 Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States, 2 Faculty of Medicine, Imperial College London, London, United Kingdom

Cellular metabolic remodeling is intrinsically linked to the development, activation, differentiation, function, and survival of T cells. T cells transition from a catabolic, naïve state to an anabolic effector state upon T cell activation. Subsequently, specialization of T cells into T helper (Th) subsets, including regulatory T cells (Treg), requires fine-tuning of metabolic programs that better support and optimize T cell functions for that particular environment. Increasingly, studies have shown that changes in nutrient availability at both the cellular and organismal level during disease states can alter T cell function, highlighting the importance of better characterizing metabolic-immune axes in both physiological and disease settings. In support of these data, a growing body of evidence is emerging that shows specific lipid species are capable of altering the inflammatory functional phenotypes of T cells. In this review we summarize the metabolic programs shown to support naïve and effector T cells, and those driving Th subsets. We then discuss changes to lipid profiles in patients with multiple sclerosis, and focus on how the presence of specific lipid species can alter cellular metabolism and function of T cells.

Keywords: T cell, multiple sclerosis, immunometabolism, fatty acids, T regulatory (Treg) cell

INTRODUCTION

During the course of an immune response, CD4+ T cells transition from a naïve state, participating in immune surveillance, to a highly specialized subset of effector T cells (Teff) equipped with the capacity to rid hosts of invading pathogens and regulate immune responses. As this transition occurs, there is concurrent cellular metabolic remodeling that is intrinsically linked to the development, activation, differentiation, function, and survival of T cells. In addition to the different metabolic requirements of naïve and effector T cells, there are additional metabolic dependencies for CD4+ T helper (Th) subsets and regulatory T cells (Treg), the latter relying on a

Abbreviations: ACC1, Acetyl-CoA carboxylase-1; ATP, Adenosine triphosphate; AMPK, AMP activated protein kinase; CNS, Central nervous system; CSF, Cerebrospinal fluid; DHA, Docosahexaenoic acid; Teff, Effector T cells; EPA, Eicosapentaenoic acid; ETC, Electron transport chain; EAE, Experimental autoimmune encephalomyelitis; FAO, Fatty acid oxidation; Tfn, Follicular T helper cells; FFA, Free fatty acid; GM-CSF, Granulocyte macrophage colony-stimulating factor; LCFA, Long chain fatty acids; IFN-γ, Interferon gamma; IL, Interleukin; LDHA, Lactate dehydrogenase; mTOR, Mammalian target of rapamycin; MCF, Medium chain fatty acids; MS, Multiple sclerosis; OXPHOS, Oxidative phosphorylation; pTreg, Peripheral Treg; PPAR, Peroxisome proliferator-activated receptor; Pten, Phosphatase and tensin homolog; PKA, Phosphorylase kinase; PI3K, Phosphatidylinositol 3-kinase; PKD1, Pyruvate dehydrogenase kinase 1; Rheb, Ras homologue enriched in brain; Rictor, Rapamycin-insensitive companion of TOR; Treg, Regulatory T cells; SCFA, Short chain fatty acids; TCR, T cell receptor; Th, T helper; tTreg, Thymic Treg; TGF, Transforming growth factor; TCA, Tricarboxylic acid.
different metabolic program than their effector counterparts, displaying metabolic flexibility while maintaining suppressive functions. For example, memory CD8+ T cells use fatty acids derived from extracellular glucose or those mobilized from lysosomes to support their fatty acid oxidation (FAO), whereas Treg cells acquire fatty acids from the extracellular environment, although the mechanism is not well understood (1).

At the cellular and organismal level, previous studies have shown that nutrient availability in physiological health and disease states can alter T cell function. For example, fluctuations in salt intake and lipid composition in the diet have been shown to change the inflammatory profile of T cells (2–4), and feeding mice diets containing different fatty acid species alter the ratios of T cell subsets and outcome of experimental autoimmune encephalomyelitis (EAE) (5). Additionally, at the cellular level, manipulating metabolic pathways in T cells skews their differentiation towards specific Th cell subsets. Depending on the specific context this can be harmful or beneficial, as metabolic manipulation often determines Th17 versus Treg cell fates (6, 7). Together, the importance of the metabolic-immune axis is critical. However, while the link between metabolism and T cell function is appreciated, specifically how fluctuations in lipid availability, lipid species, and lipid metabolism dictates T cell functions and phenotypes is not well investigated. Studies have also shown that there are changes to lipid profiles in inflammatory settings such as obesity and autoimmune diseases like multiple sclerosis (MS) (8–10), further highlighting the importance of teasing apart the intricate links between metabolic and transcriptional changes within T cells.

In this review we discuss the changes in metabolic states as T cells change from naïve to effector cells and discuss the metabolic requirements driving CD4+ T cell subsets, including Treg cells. We briefly highlight the key roles of T cells in the pathogenesis of multiple sclerosis, and detail findings of altered lipid profiles in MS and murine models of EAE. We highlight data showing that altering lipid metabolism in T cells can alter T cell function in MS and EAE. Finally, we summarize how lipids are trafficked in the body and provide evidence supporting the idea that specific lipid species are capable of altering T cell phenotypes and functions.

IMMUNOMETABOLISM OF T CELLS

Metabolic Remodeling of T Cells Upon Activation

Upon activation, quiescent, naïve T cells have an increased need for cellular energy in the form of adenosine triphosphate (ATP) and biomass to meet proliferative demands and production of effector molecules. As such, the rapidly dividing cells utilize aerobic glycolysis, by which pyruvate is used to produce lactate in the presence of oxygen by cells with a great enough mitochondrial capacity to perform oxidative phosphorylation (OXPHOS), known as the Warburg effect (11, 12). T cell receptor (TCR) signals induce c-Myc, which initiates the expression of metabolic genes to induce glycolysis and mitochondrial metabolism necessary for T cell activation (13, 14). Both c-Myc and mammalian target of rapamycin (mTOR) are positive regulators of glycolysis in T cells (13, 15). mTOR exists as two complexes, mTORC1 and mTORC2. mTORC1 enhances glycolytic metabolism and can regulate other metabolic programs such as lipid synthesis and amino acid metabolism (16). mTOR can partially mediate TCR sensitivity (17), and co-stimulatory signals from CD28 have been shown to upregulate glucose utilization in T cells by recruitment of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit p110γ which activates AKT and mTORC1 (18, 19).

AMP-activated protein kinase (AMPK) is another central node controlling metabolic remodeling during T cell activation. It is activated by TCR signaling via two different pathways. The first pathway is LKB1-dependent: AMPK can sense the cellular AMP-to-ATP ratio and control the progression of cells to complete activation (20). The second pathway of AMPK activation is calcium-dependent, mediated by activation of calcineurin and downstream kinase CAMKK (21) (Figure 1). T cells that lack AMPK are completely dependent on glycolysis and do not re-engage mitochondrial respiration upon glucose depletion (22). This suggests that activation of AMPK in early T cell activation limits mTOR signaling and prevents premature engagement of glycolysis that is associated with the high proliferative demands of clonal expansion (23). In the mitochondria, the tricarboxylic acid (TCA) cycle creates reducing equivalents that are fed into the electron transport chain (ETC) to generate ATP via OXPHOS. Substrates are derived from multiple cytosolic and mitochondrial metabolic pathways including glycolysis and the oxidation of amino acids and fatty acids. FAO translocates free fatty acids (FFA) into the mitochondrial matrix to be broken down and produce acetyl-CoA, which enters the TCA. Acetyl-CoA can also act as a substrate for epigenetic modifications, thereby illustrating how metabolism can directly influence gene expression (24). During the first 24-48 hours after T cell activation, T cells are dependent on ATP production from ATP synthase to become fully activated and meet proliferative demands (25). This reliance on ATP is demonstrated by limited T cell activation after knockdown of the ETC complex IV subunit COX10 (26), and by the inhibition of antigen-specific T cell activation upon loss of ETC complex III subunit RISP (27).

Metabolic Requirements of CD4+ T Cell Subsets

After the initial metabolic reprogramming that occurs with T cell activation, Treg cells use glycolysis to proliferate and maintain their effector functions (28–30). However, Th cell subsets are supported by unique metabolic needs. For example, Th1 cells rely on glycolysis and glutaminolysis to support their growth and proliferation (31), and activating naive CD4+ T cells in a glutamine deficient environment generates FOXP3+ Treg even in the presence of Th1 polarizing cytokines (32). Further, the by-product of glutaminolysis, α-ketoglutarate, might serve as the metabolic determinant in Th1 differentiation by promoting expression of TBET and mTORC1 signaling (32). mTORC1
has been shown to phosphorylate TBET, and inhibition of mTORC1 signaling reduces production of interferon gamma (IFN-γ) (33), highlighting the importance of glucose uptake and aerobic glycolysis in the production of IFN-γ (25, 34, 35). Th1 expression of IFN-γ production is regulated transcriptionally and post-transcriptionally (22, 25), and when activated under glucose-depleted conditions, production of IFN-γ is inhibited (25, 35–38). IFN-γ production is limited by the binding of GAPDH to the 3′ UTR of ifng mRNA, which is reversed when GAPDH is engaged in glycolysis (25). Epigenetically, glycolysis has been shown to promote IFN-γ production in Th1 cells via lactate dehydrogenase (LDHA) (35). LDHA is required to sustain aerobic glycolysis that supports Th1 proliferation, and loss of LDHA leads to reduced H3K9 acetylation at the ifng locus that is associated with active transcription and reduced glycolytic flux (35) (Figure 2). Moreover, a recent study has demonstrated a role for mitochondrial metabolism in Th1 effector function by showing that mitochondrial metabolism uncouples Th1 proliferation and effector functions. The TCA cycle, and specifically, succinate dehydrogenase activity (ETC complex II), is required for Th1 effector functions including expression of IFN-γ, but suppresses proliferation and histone acetylation. Conversely, complex I of the ETC, the malate-aspartate shuttle, and mitochondrial citrate export maintain Th1 proliferation and promote histone acetylation to regulate T cell activation genes (39).

In correlation with enhanced glycolytic metabolism, in vitro-generated Th17 cells express higher levels of pyruvate dehydrogenase kinase 1 (PDK1), which is essential for Th17 differentiation in vitro (40, 41). Th17 cells differentiated in vitro utilize both OXPHOS and glycolysis, and Th17 cells from steady state and inflamed tissues rely on OXPHOS for cytokine production (40). In support of these data, the OXPHOS inhibitor oligomycin reduces Th17 pro-inflammatory cytokine production and improves pathology in mouse models of colitis (40). Evidence suggests that lipid metabolism plays an important role in the function of Th17 cells under normal and stressed conditions (42, 43), and Th17 cells rely on de novo fatty acid synthesis, rather than acquisition of extracellular fatty acids (42). While the reasons for this are unclear, it has been shown that Th17 cells are particularly dependent on cholesterol synthesis, as intermediates of the pathway can bind to the RORγt promoter and promote interleukin (IL)-17 expression, whereas inhibition of cholesterol biosynthesis blocks Th17 development (44, 45). The ratio of intracellular saturated to polyunsaturated fatty acids has been shown to control CD5L expression, which can determine whether or not Th17 cells will adopt a pro- or anti-inflammatory phenotype (46). Saturated to polyunsaturated FFA ratios also affect the expression of metabolic genes cyph51 and sc4mol, which synthesize ligands for RORγt (43, 46). Given the intricacies of Th17 and Treg development, studies are unveiling a role for metabolic intermediates in skewing T cell lineages alongside cytokine polarization. For example, acetyl-CoA carboxylase-1 (ACC1)-deficient T cells default to the Treg lineage (6), and mice fed a high fat diet increases the expression of ACC1 in CD4+ T cells, which upregulates the expression of the Th17 master regulator, RORγt (7) (Figure 2). The increase of ACC1 expression in CD4+ T cells is mimicked in obese individuals and proposed to contribute to associated Th17 pathologies (7).

Th2 cells have been reported to display high glycolytic activity (31, 47). Ras homologue enriched in brain (Rheb) is a small GTPase that activates mTORC1. Rheb-deficient mice have impaired mTORC1 function and fail to generate Th1 and Th17 cells without alterations in Th2 differentiation. Conversely, rapamycin-insensitive companion of TOR (Rictor) is a component of the mTORC2 complex, and Rictor-deficient mice have impaired mTORC2 signaling, with differentiation into Th2 cells, but intact Th1 and Th17 generation (48). Further, downstream targets of mTORC2, SGK1 and the GTPase RhoA, have been shown to play important roles in the commitment to, and function of Th2 cells, respectively (49, 50). These data suggest mTORC2 is the signaling determinant of the Th2 lineage, not mTORC1, and that glycolytic engagement differs between Th2 and Th1 and Th17 lineages. Genome-wide transcriptional profiling of human Th2 cells from allergic asthma patients demonstrate a positive correlation between the expression of c-Myc and disease state further supporting glycolysis as a marker of Th2 pathogenicity (51). Lipids might also play a role in Th2 metabolism, as expression of peroxisome proliferator-activated receptor (PPAR)-γ is critical for Th2 responses against house dust mite antigens, and PPAR-γ deficient mice display Th2 cells unable to produce IL-5 and IL-13 (51, 52) (Figure 2).
Metabolic Adaptations of Regulatory T Cells

In contrast to T_{eff} cells, T_{reg} cells appear to exhibit a greater capacity for metabolic flexibility. Murine T_{reg} cells have been described to preferentially rely on OXPHOS rather than aerobic glycolysis for ATP production (31). However, metabolic adaptations of T_{reg} cells are context-dependent and influenced by T_{reg} origin and anatomical distribution (53). It remains unclear how thymic-derived T_{reg} (T_{reg}^{th}) and T_{reg} differentiated in the periphery from conventional T_{eff} cells, termed peripheral T_{reg} (T_{reg}^{per}) differ metabolically. However, it appears that T_{reg} proliferation and effector functions are maintained through different metabolic programs. Proteomic analysis of human T_{reg} and T_{eff} cells suggests that freshly isolated T_{reg} are highly glycolytic and proliferative, while in vitro proliferating T_{reg}, engage in both glycolysis and FAO (53). Conversely, T_{eff} cells switch from OXPHOS to aerobic glycolysis upon in vitro activation, and FAO appears to be indispensable for proliferation and effector functions (53). One explanation for the discrepancy between human and murine models is that mice are typically housed in pathogen-free environments, whereas human immune cells are constantly engaging with pathogens that requires T_{reg} to meet higher proliferative and functional demands (54).

AMPK and mTORC1 signals are important determinants of T_{reg} fitness. T_{reg}-specific mTOR deletion impairs T_{reg} fitness and homeostasis resulting in a reduction of T_{reg} in the tissues and T_{eff} cell activation and heightened inflammation at barrier sites (55). Inhibiting mTORC1 by rapamycin along with IL-2 signaling greatly expands T_{reg} numbers (56). Conversely, AMPK, which activates FAO and OXPHOS, provides critical signals required for T_{reg} differentiation (57). Activation of AMPK by metformin induces T_{reg} differentiation and, in murine models, was sufficient to limit progression of EAE and inflammatory bowel disease (31, 58, 59).

FOXP3 is involved in the fine tuning of metabolic cues to maintain T_{reg} function. Inflammatory stimuli and FOXP3 oppose each other through regulation of mTORC1 and glucose metabolism as T_{reg} treatment with TLR1/TLR2 agonists enhances mTORC1 activity and T_{reg} proliferation but reduces their suppressive capacity (60). In contrast, FOXP3 inhibits mTORC1 signaling and glycolysis while promoting OXPHOS and reduces the rate of proliferation (60), suggesting that mTORC1 activity and glycolysis are adequate for T_{reg} proliferation in inflammatory environments. However, excessive mTORC1 activity impairs T_{reg} function and indeed T_{reg} suppress mTORC1 activity via PP2A (48, 61, 62). Murine T_{reg} induced via transforming growth factor (TGF)-β express low levels of GLUT1 compared to T_{eff} cells (31), and in human T_{reg}, GLUT1 expression is also thought to be limited by FOXP3 via AKT inhibition (63). T_{reg} that overexpress GLUT1 exhibit reduced CD25 and FOXP3 expression and fail to suppress colitis (60). Expression of FOXP3 allows T_{reg} to survive in lactate rich environments by increasing the ratio of NAD to NADH (64).

AMPK and mTORC1 signals required for T_{reg} differentiation (57). Activation of AMPK by metformin induces T_{reg} differentiation and, in murine models, was sufficient to limit progression of EAE and inflammatory bowel disease (31, 58, 59).

FOXP3 is involved in the fine tuning of metabolic cues to maintain T_{reg} function. Inflammatory stimuli and FOXP3 oppose each other through regulation of mTORC1 and glucose metabolism as T_{reg} treatment with TLR1/TLR2 agonists enhances mTORC1 activity and T_{reg} proliferation but reduces their suppressive capacity (60). In contrast, FOXP3 inhibits mTORC1 signaling and glycolysis while promoting OXPHOS and reduces the rate of proliferation (60), suggesting that mTORC1 activity and glycolysis are adequate for T_{reg} proliferation in inflammatory environments. However, excessive mTORC1 activity impairs T_{reg} function and indeed T_{reg} suppress mTORC1 activity via PP2A (48, 61, 62). Murine T_{reg} induced via transforming growth factor (TGF)-β express low levels of GLUT1 compared to T_{eff} cells (31), and in human T_{reg}, GLUT1 expression is also thought to be limited by FOXP3 via AKT inhibition (63). T_{reg} that overexpress GLUT1 exhibit reduced CD25 and FOXP3 expression and fail to suppress colitis (60). Expression of FOXP3 allows T_{reg} to survive in lactate rich environments by increasing the ratio of NAD to NADH (64).
program for optimal suppressor functions. Of note, PI3K-mTORC2 mediated activation of glucokinase, which activates glycolysis and mediates actin cytoskeletal rearrangements, was found to be important for proper migration of Tregs in skin allograft models (65). Therefore, although glycolysis seems to play a role in Treg migration and proliferation, utilization of OXPHOS appears to be the main metabolic program utilized for Treg function, which is dependent on FAO (31).

Cytokines that promote Treg differentiation such as TGF-β (66), activate AMPK (67) and promote FAO to skew naïve T cells into a Treg phenotype instead of pro-inflammatory Th17 cells (31, 68). In support of this observation, Treg differentiation and suppressive functions are reduced by the FAO inhibitor etomoxir (31), and suppression of PI3K activity by phosphatase and tensin homolog (PTEN) drives Treg differentiation (69). PTEN-deficient Tregs have elevated glycolytic activity and lose FOXP3 expression and suppressive function (70). These data suggest that the balance between PTEN and AKT functions can regulate Treg differentiation. Data also suggest a reciprocal relationship between FOXP3 and glycolysis as FOXP3 has been shown to interfere with c-Myc expression to dampen glycolytic activity (64) and forced expression of FOXP3 suppresses glycolysis-related genes while inducing lipid and oxidative metabolic genes required for maximum suppression (60). In murine models, mitochondrial complex III is required for Treg suppression through the active metabolism of 2-HG and succinate, resulting in de-repressed transcription of Treg suppressive genes, including PD-1, CD73, and TIGIT (Figure 2). Moreover, loss of mitochondrial complex III function accumulates 2-HG and succinate, which inhibits demethylases and represses transcription of Treg suppressive genes PD-1, CD73, Nrp1, and TIGIT. In addition, mice containing a RISP knockout, an essential component of mitochondrial complex III, die after one month exhibiting lethal inflammation as characterized by enlargement of lymph nodes and spleens along with lymphocytic infiltration into multiple organs (71).

Interestingly, in human Tregs, glycolytic activity has been linked to suppressive function via enolase-1, which mediates expression of a specific splice variant of FOXP3 that is necessary for suppression (72). However, this study also showed that the relationship between FOXP3 and metabolic intermediates changes depending on which metabolic program the cells are engaging. Upon inhibition of glycolysis with 2-DG, the non-glycolytic activity of enolase-1 represses FOXP3 expression, whereas the generation of Tregs under suboptimal TCR stimulation promotes FOXP3 expression via the glycolytic activity of enolase-1 (72) (Figure 2). Lack of mTOR activity does not decrease FOXP3 expression, but it does diminish cholesterol biosynthesis that has been shown to be required for suppressive function in vivo (73). Therefore, Tregs seem to be partially dependent on mTOR and glycolytic signals that are more oscillatory in nature (74), or perhaps for maintenance of metabolic intermediates that feed into lipid related pathways, as seen with cholesterol.

Fatty acids can induce cell death in T cells (75–78). It is suggested that Tregs have specifically evolved FAO dependence to combat fatty-acid-induced cell death via FOXP3 (79). For example, long chain fatty acids like palmitate, are pro-apoptotic through various mechanisms, including depolarization of mitochondrial action potential and reactive oxygen species generation (80). This shows that FOXP3 uniquely enables Tregs to utilize fatty acids as fuel by upregulating enzymes to engage in FAO and become resistant to apoptosis (79). This evolved anti-apoptotic strategy is likely even more useful during steady state or inflammation as Tregs are important in the maintenance of homeostasis in lipid-rich tissue environments. Undoubtedly, the metabolic-functional axis in these cells is incredibly complex, and is essential to our complete understanding of disease pathology and resolution.

Overall, it is clear that T cell metabolic programs are flexible and highly dynamic. T cells can utilize different substrates based on metabolic needs, and tailor metabolic programs to support effector functions. Studies investigating Th-subset differentiation show that specific metabolic engagements promote and suppress specific Th-lineage differentiation and functions.

THE ROLE OF LIPIDS IN T CELL FUNCTION

Introduction to Lipids and Lipid Trafficking
Lipids provide the foundation of both cellular and organelle membranes, serve as fuel for cells, and are the precursors of bioactive lipid mediators. Lipids are incredibly diverse, just like proteins; however, because of limitations in technologies to study lipids, we are just beginning to understand the diverse effects lipids exert on biological processes such as gene expression and cellular function. It is understood that the storage and secretion of lipids from the adipose tissue is one mechanism by which the body can communicate hunger and the need for energy (81, 82). However, during lipolysis and even inflammation, FFA s are exposed to immune cells that reside in the tissues and in circulation. How immune cells sense and interpret these signals remains an active area of research, as evidence is emerging that not all lipids are created equal and perform the same functions on specific cell types.

Cells obtain fatty acids from lipid species in the diet, fats stored in cells as lipid droplets, and lipids synthesized in one organ for export to another. Lipid species from the diet are ingested as triglycerides, which travel into the small intestine where they are emulsified by bile salts, and form hydrophobic structures called micelles. Together, bile salts and pancreatic lipases breakdown triglycerides into FFAs. FFAs in the intestine are transported across intestinal cell membranes, where they are converted back into triglycerides, and packaged with cholesterol and other apolipoproteins into vesicles called chylomicrons. Chylomicrons move freely from the intestines, through the lymphatic system, and into the bloodstream where they either
enter the liver, or the adipose tissue. In the adipose, they will either be oxidized for fuel, or stored until they are needed. When hormones in the body signal the need for metabolic fuel, triglycerides that are stored in adipose tissue are mobilized and transported to other tissues throughout the body where the fatty acids may be oxidized for energy (81).

Similar to amino acids, there are both essential and non-essential fatty acids. Essential fatty acids comprise groups of lipids that must be acquired from the diet, as they cannot be synthesized in the body. These include omega-3 and omega-6 fatty acids. Omega-3 fats are derived from fish, eggs, and other plant based sources and are typically associated with anti-inflammatory effects (82). In contrast, omega-6 fatty acids are found various oils and animal meats and are associated with the production of inflammatory bioactive mediators (83). Of interest, these two groups of fatty acids can compete with each other for insertion into cellular membranes, where they are cleaved and converted into lipid mediators and other signaling molecules (84). Further, studies have shown due to this competition, fats in the diet reflect the overall lipid composition in cellular membranes (84-87), highlighting an important link between diet and inflammatory status. Therefore, fat sources enriched in the Westernized diet may partially explain rises in some inflammatory associated diseases.

FFAs are further characterized according to length and saturation. SCFA are typically classified as having fewer than six carbons, whereas medium chain fatty acids (MCFA) contain between six to twelve carbons, and LCFA are those with more than twelve carbons. Saturated fatty acids contain no double bonds in their carbon tail, whereas monounsaturated and polyunsaturated fatty acids contain one double bond, and more than one double bond, respectively. SCFAs are able to freely move into the mitochondria for β-oxidation, whereas LCFA must first enter the carnitine shuttle. Of note, the majority of FFAs obtained from the diet or released from the adipose tissue are MCFA or LCFA. On the other hand, most of the SCFA studied are those derived from bacterial metabolism and associated byproducts.

Lipids Altering Immune Cell Phenotypes

There is great focus on understanding factors that drive and regulate immune cell phenotypes and functions in tissues. Recent studies have described contributions from cytokines and hormones secreted from tissue-resident cells and other neighboring immune cells (88–91), the presence of local antigens driving immune cell persistence in the tissues (88, 92, 93), and the changes in nutrients that prompt metabolic reprogramming in specific microenvironments, such as tumors (94, 95). Evidence has shown that CD4+ T cell fate is driven by availability of metabolic bioactive substrates and cell-intrinsic programs that determine metabolic requirements (96). Metabolic reprogramming is critical for T cell proliferation, differentiation, and function, however, how specific substrates such as lipids, affect T cells remains unanswered. T_{reg} rely mainly on FAO-driven OXPHOS for survival and function (31), so lipid species in the tissues likely provide a critical signal for maintenance of T_{reg} survival and homeostatic functions within tissues as well. It is likely that altered lipid profiles in disease settings can impact T cell function and is of great interest to fully understand how tissue microenvironments shape T cell metabolism.

Recent data have shown that the length of fatty acids can differentially affect immune cell phenotypes. In the colon, resident gut bacteria produce SCFAs as a byproduct of fermentation (97, 98), which shapes the colonic T_{reg} population (99). The addition of the SCFA propionate to the drinking water of germ-free mice increases T_{reg} numbers in the colon, but not spleen or thymic T_{reg} numbers. Further, antibiotic-mediated depletion of gut bacteria reduces T_{reg} numbers that can be rescued with the addition of propionate to the drinking water (99). SCFAs promote FOXP3 expression and are dependent on fatty acid receptor, GPR43 (100, 101). In support of these data, the addition of SCFAs to naïve CD4+ T cells increases the proportion of FOXP3+ cells upon activation. However, the addition of LCFA results in CD4+ T cells that produce more pro-inflammatory cytokines including IFN-γ and IL-17a that exacerbate EAE (5).

 Unsaturated fatty acids like oleic acid and linoleic acid have been shown to modulate cytokine production in T cells (102, 103), but only saturated fatty acids induce cytokine secretion in the absence of T cell activation in a dose-dependent manner (102). In T cells, oleic acid has been shown to induce proliferation in the spleen and lymph nodes, but to inhibit Jurkat cell proliferation and IL-2 and IFN-γ production (104). In CD4+ T cells, fatty acid synthesis blockade by the inhibitor TOFA, reduces proliferation, which can be rescued by the addition of oleic acid specifically (105). Moreover, oleic acid can also rescue proliferation of CD4+ T cells cultured in fatty acid-free media (105). Interestingly, oleic acid has also been shown to decrease the content of arachidonic acid in cell membranes that result in decreased arachidonic acid-derived pro-inflammatory lipid mediators (86, 87), and to inhibit palmitic-induced inflammation in type 2 diabetes (106). Mechanistically, attenuation of palmitic acid-induced inflammation by oleic acid is linked to increases in CPT1a expression and FAO driven by AMPK activation. In adipocytes, oleic acid induces IL-10 and adiponectin expression which can activate AMPK (106). We have also shown that oleic acid is one of the most prevalent fatty acids in human adipose tissue, and is significantly decreased in the adipose tissue from MS patients (4).

In EAE models, docosahexaenoic acid (DHA) downregulates Th1 and Th17-related cytokines (107). Both DHA and eicosapentaenoic acid (EPA) have been shown to modulate the JAK-STAT pathway and IL-2 signaling in T cells (108). In Jurkat cell lines DHA exerts immunosuppressive effects by increasing calcium concentrations in cells (109–111). Similarly in vivo, mice fed a DHA- and EPA-enriched diet exhibited reduced T cell proliferation and IL-2 signaling (77, 112, 113). DHA has been shown to also induce dose-dependent reductions in the ability of T_{reg} to inhibit effector T cell proliferation. In contrast, DHA can upregulate FOXP3 mRNA and other immunosuppressive cytokines such as IL-10 (114).
Saturated fatty acids like palmitic acid have been shown to drive T cell activation via the PI3K/AKT pathway (5, 115, 116). Palmitic acid treatment also induces the expression of cytokines related to T cell activation such as IL-2, IL-6, IL-17A, TNF-α, and IFN-γ (102, 116). Similarly, lauric acid has been shown to have some pro-inflammatory properties, as it increases IL-2 and can promote Th17 differentiation in models of EAE (117).

The PPAR family of lipid receptors has been implicated in T cell biology, through regulation of IL-2 production (118–120), influencing Th17 and Treg differentiation (121), and regulation of inflammation (121–126). Similarly, SREBPs are transcription factors that regulate gene expression related to lipogenesis and cholesterol synthesis and uptake (127). SREBPs are important for lipid membrane synthesis that allows rapid expansion of proliferating T cells (128). However, in the absence of fatty acids or upon blockade of FAO, Treg development is inhibited in vitro. Treg cells rely on exogenous fatty acids as their metabolic substrate (31, 42), which seems to impart a survival advantage for Tregs as FOXP3 alone upregulates enzymes associated with FAO and OXPHOS (79). Interestingly, triglyceride storage in Tregs limits protein kinase C activity to promote FOXP3 expression, potentially highlighting a feedback mechanism between exogenous fatty acid uptake in Tregs (79). Much of these data support the idea that fatty acids can differentially effect Treg cells and Treg subsets, but further, that specific fatty acid species have the potential to differentially affect Treg biology. However, the mechanism driving these changes remains unknown.

T CELLS IN MULTIPLE SCLEROSIS

MS is an autoimmune disorder characterized by aberrant immune responses and immune cell infiltration in the central nervous system (CNS). Both relapsing-remitting MS and progressive MS experience demyelination and neurodegeneration because of ongoing inflammation in the CNS (129–131). Multiple immune cell types are found in the MS brain; however, autoreactive T cells are considered the main mediators of inflammation (132–137). In particular, the CD4⁺ T cell subsets, Th1 and Th17 cells promote inflammation via interactions with other immune cells types, such as B cells, follicular T helper cells (Tfh) cells, and resident CNS microglia. Tfh cells support B cell survival, differentiation, and expansion via interactions in the germinal center and through secretion of cytokines like IL-21 (138, 139). Tfh cells have been reported in MS lesions (140). In addition, numerous markers of Tfh cells, such as IL-21, are upregulated in MS (141), and altered ratios of Tfh cells have been reported (142). For instance, MS patients have elevated ratios of Th17-like Tfh cells, which are considered pathogenic and support B cell antibody production (142). Thus, Tfh cells likely play an important role in MS pathogenesis by supporting autoreactive B cell antibody production.

Th1 CD4⁺ T cells that are associated with MS express the transcription factor TBET and secrete pro-inflammatory cytokines IFN-γ and TNF-α, whereas Th17 associated CD4⁺ T cells express RORC2 and secrete IL-17, IL-21, and IL-22 cytokines. Both IFN-γ and IL-17 are thought to enhance immune activation and have been strongly associated in human disease, as the frequencies of Th1 and Th17 cells are increased in MS lesions and the cerebrospinal fluid (CSF) (130, 143). However, there is a dichotomous nature to the roles of Th1 and Th17 cells in MS. Increases in Th17 cells have been measured during clinical relapse in the CSF of MS patients (143); whereas other studies have found increases in IFN-γ upon relapse (144). Despite these differences, evidence suggests that both IFN-γ and IL-17 are pathogenic in MS, however, different cytokines might play different roles depending on the stage of the disease (for example initiating events of the disease versus exacerbation of the disease). Furthermore, with advances in single cell technologies, there is growing evidence of subsets within Th cell subsets, so it is likely that not all IFN-γ or IL-17-producing cells are pathogenic, but perhaps only a subset of these cells, making the signals and environmental cues that drive these pathogenic subsets of great interest to define.

Of importance are the pathogenic Th17 cells that secrete both IFN-γ and IL-17 and express both TBET and RORγt, termed Th1-like Th17 cells, which are found in multiple autoimmune disorders like multiple sclerosis (145), insulin-dependent diabetes mellitus, autoimmune arthritis and inflammatory colitis (146, 147). In EAE, Th1-like Th17 cells have been found to be the main drivers of disease pathology (148), and in humans, IFN-γ⁺,IL-17⁺ T cells are found in the blood and brain tissue of MS patients (149). These Th1-like Th17 cells are capable of crossing the blood brain barrier and have been correlated with inflammation in both MS patients and EAE models (148–150). Th1-like Th17 cells can also secrete granulocyte macrophage colony-stimulating factor (GM-CSF) which augments inflammation by activation of innate immune cell populations (151, 152). In contrast, subsets of Th17 cells can produce IL-10 and thought to play a more suppressive, protective role in inflammatory settings (153–156).

Another consequence of the ongoing inflammation in MS are the functional changes that occur in Tregs. Under homeostatic conditions Tregs are responsible for the maintenance of immune tolerance by preventing aberrant or excessive immune responses. However, during chronic inflammation, as with MS, Treg cells acquire effector like properties, and express IFN-γ, termed, Th1-like Tregs (157). Th1-like Tregs upregulate other Th1 markers, such as TBET and CXCR3, and are less suppressive than their control counterparts in vitro (157). Increased frequencies of Th1-like Tregs have been found in patients with MS, type 1 diabetes, and in mouse models of Sjögren Syndrome, and are thought to contribute to the loss of tolerance in autoimmune diseases (158). Th1-like Tregs secrete IFN-γ via activation of the PI3K-AKT-FOXO1/3 pathway, and using an in vitro approach, activation of PI3K has been shown to be sufficient to induce a Th1-like phenotype in human Tregs (159, 160). Given that mTORC1 is downstream of the PI3K pathway it is possible that alterations in cellular metabolism also accompany such examples of Treg plasticity.

Development of MS is thought to arise from unfavorable interactions between genetic risk loci and environmental conditions and/or cues. Numerous environmental triggers have
been proposed, including smoking, vitamin D, EBV infection, salt, and gut microbiota (161, 162). However, none of these factors reconcile the rise in MS incidence in the western world, except the changes in diet and consequential rise in obesity. The Western diet contains greater concentrations of salt, refined sugars, and unsaturated fats (163). We have reported that the physiologic sodium concentrations induce an inflammatory signature in T\textsubscript{eff} cells and drives a Th1-like phenotype in T\textsubscript{regs} (2). Further, obesity has been identified as another risk factor for the development of MS, and adipose tissue of obese patients has been shown to host a chronic, pro-inflammatory environment, indicating that diet can influence immune cell activation and phenotypes within tissues, which might play an important role in MS (164, 165).

Altered Lipid Profiles in Multiple Sclerosis

Lipids play many roles in the CNS including signaling, structural support, mediating inflammation, and membrane biogenesis (9). Therefore, during inflammation changes in the availability and profiles of FFA species might alter disease pathogenesis by influencing immune cell function. In multiple sclerosis, immune cells attack the myelin sheath around nerves that are rich in lipids, containing approximately 700 different lipid species (11, 15, 16), and as a result many studies have found altered lipid profiles in the MS patients and EAE models (8, 166), that could potentially serve as biomarkers of the disease. At the time of diagnosis, the CSF of MS patients harbor differences in many lipid species, including pro-inflammatory arachidonic acid, compared to the non-MS control group (167). In support of these data, lipid profiling of mouse EAE brains showed that during acute inflammation, lipid metabolism is shifted from the pathway that creates common lipid substrates into the pathway producing the pro-inflammatory arachidonic acid (168). Studies profiling the phospholipids of serum samples from patients with MS have also demonstrated that patients with MS have a phospholipidomic signature different from that of healthy controls (169).

Altered T Cell Metabolic Profiles in Multiple Sclerosis

As with infections and metabolic syndromes, the inflammation induced in autoimmunity triggers metabolic alterations locally and systemically (166). In the blood of patients with MS and other autoimmune disorders such as rheumatoid arthritis and systemic lupus erythematosus, there are elevated levels of IL-1β, IL-6, TGF-β, and IL-23, which promote pathogenic Th17 cell differentiation and block T\textsubscript{reg} development in \textit{vivo} and in \textit{vitro} (170–176), proving that there is a disturbance in the balance between the induction and regulation of pro-inflammatory T\textsubscript{eff} cells. Although the metabolic cues that shift this balance are still being defined, there is evidence that glycolysis and OXPHOS are impaired during T cell activation in relapsing-remitting MS patients (177).

As mentioned above, glycolysis is a common feature of Th1 and Th17 CD4+ T\textsubscript{eff} cells (13, 47). Inhibiting glucose metabolism can inhibit differentiation of Th1 and Th17 lineages even in the presence of polarizing cytokine (31, 47). Further, blocking glycolysis using 2-deoxyglucose (2-DG) improves clinical outcomes in EAE models (47) (Figure 3). A direct link between dysregulated glucose metabolism in lymphocytes and autoimmunity was shown in mice that over-express GLUT1 in T cells (178). Increased glucose uptake drives IFN-γ and IL-2 expression in T cells upon \textit{in vitro} stimulation, and deletion of GLUT1 reduces glycolysis in CD4+ T cells, and effector differentiation. These cells are also unable to provide protection in a model of colitis (34). Further, CD4+ T cells in lupus-prone mice show increases in glycolytic engagement compared to healthy control cells (179).

Some studies have reported alterations in T cell lipid metabolism as a contributor to MS pathogenesis (180–183). Activated T cells have higher cholesterol and fatty acid concentrations in their membrane (184, 185), therefore altered lipid-mediated signaling could contribute to MS pathogenesis (186). Specific deletion of ACC1 in T cells protects mice from EAE by reducing the number of IFN-γ Th17 cells and increases the number of FOXP3+ T\textsubscript{regs} in the spinal cord (42). Conditional deletion of LDHA in T cells protects susceptible mice from Th1-mediated autoimmunity (35). Simvastatin, an inhibitor of cholesterol biosynthesis, was used in a clinical trial to treat MS and was able to attenuate brain atrophy and disease progression (187). In support, during the chronic phase of EAE, linoleic and cholesterol metabolism have been found to be altered (9, 10), and inhibition of cholesterol synthesis via statins, prevented EAE progression by blocking Th17 differentiation (188). However, statins broadly affect the immune system, including promotion of Th2 cells and inhibition of the cytokines that induce Th1 and Th17 differentiation, and therefore their effect on MS might not be directly related to their effect on cholesterol (187–189).

Long chain fatty acids (LCFAs) and short chain fatty acids (SCFAs) have been shown to exert opposing effects on T cell differentiation. LCFAs promote IFN-γ and IL-17 production and exacerbate EAE, whereas SCFAs induce FOXP3 expression and provide protection (5). We have recently shown that T\textsubscript{regs} isolated from the adipose tissue of MS patients exhibit a pro-inflammatory transcriptome that resembles the transcriptome of T\textsubscript{regs} treated \textit{in vitro} with the pro-inflammatory LCFA arachidonic acid (4). T\textsubscript{regs} isolated from the adipose of healthy subjects and T\textsubscript{reg} exposed to oleic acid \textit{in vitro} do not show an inflammatory transcriptome, but rather exhibit increased FAO-driven OXPHOS metabolism, creating a positive feedback mechanism that induces the expression of FOXP3 and enhances phosphorylation of STAT5, which acts to stabilize the T\textsubscript{reg} lineage and increase suppressive function (4). Finally, treating dysfunctional MS T\textsubscript{regs} with oleic acid can partially restore their suppressive function, highlighting a role for dietary lipids in shaping T\textsubscript{reg} function and identity in MS (4, 92, 190, 191) (Figure 3). Further studies must address how metabolic perturbations generate and sustain pathogenic T cells in the context of MS and other autoimmune diseases. Metabolic signatures of T cells are intricately linked to their differentiation and activation status. However, under inflammatory conditions such as infection or during metabolic syndromes, autoimmunity,
and cancer, the microenvironment drastically changes in regard to nutritional availability, forcing T cells to adapt to these changing environments.

Future studies focusing on how nutrient depletion or metabolite availability shapes metabolic utilization and differentiation of T_{eff} and T_{reg} cells will be critical to our understanding and implementation of targeted therapies. For example, Shi et al. have shown that blocking glycolysis improves clinical outcomes of EAE (47), and disease-modulatory effects of feeding mice both LCFAs and SCFAs have been observed (5). However, to realistically translate these data to human therapies we must first develop more reliable metabolic profiles of T cells and other cells involved in disease pathogenesis and progression during active disease states. Once established, we can couple these data to cytokine profiles or other functional readouts, e.g. suppressive capacity of T_{reg}, in order to more precisely define relevant metabolic targets. One current limitation of metabolic therapies is that the target molecules are often the regulators of central metabolic nodes that integrate many signals and crosstalk between multiple pathways, such as mTOR. However, the ability to fine tune T cell functions and phenotypes that are more favorable for disease outcomes will depend on specifically targeting certain metabolic intermediates.

CONCLUSIONS

Lipids are a critical component of all cellular and organelle membranes. They provide structural support to the cell, serve as fuel, and signaling platforms. Lipid species are as diverse as proteins, however, limitations in technologies to study lipids
have left major gaps in our understanding of their range of impacting biological functions, especially in lymphocytes. Despite these gaps, we know that different T cell subsets differentially utilize lipids for fuel and function (192). Upon activation of an T_{reg} cell, there is a switch from a predominantly OXPHOS metabolic program to aerobic glycolysis, a more anabolic process critical for growth and proliferation during an immune response (47, 192). Conversely, OXPHOS mainly supports survival of T_{reg}s and memory T cells (31). Although these cell types rely on the same metabolic program, they acquire and utilize lipid species differently (15). Given the diversity of FFAs, profiling lipid composition in tissues is crucial to understand which FFA species might be important in regulating T cell function in specific microenvironments and physiological states. Current data show the pleiotropic effects lipid species exert on T cells, depending on fatty acid length, degree of saturation, and nutrient availability in the environment. There are clear correlations and fluctuations in lipid profiles with diet and disease states, so understanding these differences will be critical to discern how lipid signaling and lipid-driven metabolism affects the function and phenotypes of T cells in disease states. There are many remaining questions regarding fatty acid-specific effects on T cell function. For example, it is not well defined which FFA are preferentially metabolized, which can serve as signaling molecules, or which FFA exert their effects by increasing intermediates generated by FAO or other downstream metabolic processes. It is also not fully understood if lipid receptors display degrees of specificity beyond FFA length. Better characterization of these receptor families could potentially provide insight as to which FFA are being utilized by T cell subsets and how the receptor expression profile might shift in specific disease states. Regardless, given the constant exposure of T cells to lipid species in the tissues, it is certain these molecules have important implications in T cell biology.

AUTHOR CONTRIBUTIONS

SLP wrote the manuscript under the supervision of MD-V and DAH. Correspondence should be addressed to MD-V. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants to DAH from the NIH (U19 AI089992, R25 NS079193, P01 AI073748, U24 AI111867, R01 AI22220, UM 1HG009390, P01 AI039671, P50 CA121974, and R01 CA227473); the National Multiple Sclerosis Society (NMS) (CA 1061- A-18, RG-1802-30153); the Nancy Taylor Foundation for Chronic Diseases; and Race to Erase MS.

REFERENCES

1. Klocperk A, Grecova J, Šimová K, Kayserová J, Frňovková E, Šedivá A. Helios Expression in T-Regulatory Cells in Patients With Di George Syndrome. *J Clin Immunol* (2014) 34:864–70. doi: 10.1007/s10875-014-0071-y

2. Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N, et al. Sodium Chloride Inhibits the Suppressive Function of FOXP3+ Regulatory T Cells. *J Clin Invest* (2015) 125:212–22. doi: 10.1172/JCI81151

3. Kleinewietfeld M, Manzel A, Titze J, Kvakhan H, Yosef N, Linker R, et al. Sodium Chloride Drives Autoimmune Disease by the Induction of Pathogenic T(H)17 Cells. *Nature* (2013) 496:518. doi: 10.1038/nature12186

4. Pomplua SR, Wagner A, Kitz A, LaPerche J, Yosef N, Dominguez-Villar M, et al. Oleic Acid Restores Suppressive Defects in Tissue-Resident FOXP3+ Tregs From Patients With Multiple Sclerosis. *J Clin Invest* (2021) 131(2): e138519. doi: 10.1172/JCI138519

5. Haghkia A, Jörg S, Duschka A, Berg J, Manzel A, Waschbisch A, et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. *Immunity* (2015) 45:817–29. doi: 10.1016/j.immuni.2015.09.007

6. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Mulle J, et al. Lymphatic Endothelial S1P Promotes Mitochondrial Function and Survival in Naive T Cells. *Nature* (2017) 546:158. doi: 10.1038/nature22352

7. Endo Y, Asou HK, Matsuura N, Hiraehara K, Shinoda K, Tunes DJ, et al. Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, Accl. *Cell Rep* (2015) 12:1042–55. doi: 10.1016/j.celrep.2015.07.014

8. Bhargava P, Calabresi PA. Metabolomics in Multiple Sclerosis. *Multiple Sclerosis* (2016) 22:431–60. doi: 10.1177/1352458115622827

9. Giri S, Laila P, Singh J, Suhail H, Deshpande M, Datta I, et al. Profile of Circulatory Metabolites in Chronic Mouse Model of Multiple Sclerosis Using Untargeted Global Metabolomics. *J Immunol* (2014) 192:10.

10. Poisson LM, Suhail H, Singh J, Datta I, Denic A, Labuzek K, et al. Untargeted Plasma Metabolomics Identifies Endogenous Metabolite With Drug-Like Properties in Chronic Animal Model of Multiple Sclerosis. *J Biol Chem* (2015) 290(52):30697–712. doi: 10.1074/jbc.M115.679068

11. Warburg O, Wind F, Negelein E. The Metabolism of Tumors in the Body. *J Gen Physiol* (1927) 8:519–30. doi: 10.1126/science.1160809

12. Heiden MGV, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. *Science* (2009) 324:1029–33. doi: 10.1126/science.1160809

13. Wang R, Dillon C, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The Transcription Factor Myc Controls Metabolic Reprogramming Upon T Lymphocyte Activation. *Immunity* (2011) 35:871–82. doi: 10.1016/j.immuni.2011.09.021

14. Sena LA, Li S, Jairaman A, Prakriya M, Erponta T, Hildeman DA, et al. Mitochondria Are Required for Antigen-Specific T Cell Activation Through Reactive Oxygen Species Signaling. *Immunity* (2013) 38:225–36. doi: 10.1016/j.immuni.2012.10.020

15. Pollizzio KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J, et al. Mtorc1 and Mtorc2 Selectively Regulate Cdk4(+) T Cell Differentiation. *J Clin Invest* (2015) 125:2090–108. doi: 10.1172/JCI77746

16. Yang K, Neale G, Green DR, He W, Chi H. The Tumor Suppressor Tsc1 Controls Cell Growth and Survival. *Cell* (2003) 115:577–80. doi: 10.1016/S0092-8674(03)00929-2

17. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. *Cell* (2017) 168:960–76. doi: 10.1016/j.cell.2017.02.004

18. Inoki K, Zhu TQ, Guan KL. TSC2 Mediates Cellular Energy Response to Reactive Oxygen Species. *Science* (2017) 352:1290–3. doi: 10.1126/science.aai8284

19. Fagerstrom KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. The CD28 Signaling Pathway Regulates Glucose Metabolism. *Immunity* (2002) 16:769–77. doi: 10.1016/S1074-7613(02)00323-0
20. MacIver NJ, Blagih J, Saucillo DC, Tonelli L, Griss T, Rathmell JC, et al. The Liver Kinase B1 Is a Central Regulator of T Cell Development, Activation, and Metabolism. J Immunol (2011) 187:4187–98. doi: 10.4049/jimmunol.1100367

21. Tamás P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, et al. Regulation of the Energy Sensor AMP-Activated Protein Kinase by Antigen Receptor and Ca^{2+} in T Lymphocytes. J Exp Med (2006) 203:1665–70. doi: 10.1084/jem.20052469

22. Blagih J, Coulombe F, Vincent EE, Dupuy F, Vázquez GC, Yurchenko Ekaterina, et al. The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses In Vivo. Immunity (2015) 42:41–54. doi: 10.1016/j.immuni.2014.12.030

23. Adams WC, Chen YH, Kratchmarov R, Yen B, Nish SA, Lin WHW, et al. Anaerobolism-Associated Mitochondrial Stasis Drives Lymphocyte Differentiation Over Self-Renewal. Cell Rep (2016) 17:3142–52. doi: 10.1016/j.celrep.2016.11.065

24. Kinnaird A, Zhao A, Wellesen KE, Michelakis ED. Metabolic Control of Epigenetics in Cancer. Nat Rev Cancer (2016) 16:694–707. doi: 10.1038/nrc.2016.82

25. Chang C-H, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, et al. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell (2013) 153:1239–51. doi: 10.1016/j.cell.2013.05.016

26. Yurchenko GC, Yurchenko J, Kapnick SM, Diaz F, et al. Cytochrome C Oxidase Activity Is a Metabolic Checkpoint That Regulates Cell Fate Decisions During T Cell Activation and Differentiation. Cell Metab (2017) 25:1254. doi: 10.1016/j.cmet.2017.05.007

27. Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS. T Cells Express a Phagocyte-Type NADPH Oxidase That Is Activated After T Cell Receptor Stimulation. Nat Immunol (2004) 5:818–27. doi: 10.1038/nim.20040710

28. Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, et al. Amino Acids Rather Than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. Dev Cell (2016) 36:540–9. doi: 10.1016/j.devcel.2016.02.012

29. Liberti MV, Locasale JW. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem Sci (2016) 41:211–8. doi: 10.1016/j.tibs.2015.12.001

30. Fox CJ, Hämmerman PS, Thompson CB. Fuel Feeds Function: Energy Metabolism and the T-Cell Response. Nat Rev Immunol (2005) 5:844–52. doi: 10.1038/nri1710

31. Michalek RD, Gerriets VA, Jacobs SR, MacIntyre AN, MacIver NJ, Mason EF, et al. Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4(+) T Cell Subsets. J Immunol (2011) 186:3299–303. doi: 10.4049/jimmunol.1003613

32. Klysza D, Tai X, Robert PA, Craveiro M, Cretenet G, Obourou L, et al. Glutamine-Dependent Alpha-Ketoglutarate Production Regulates the Balance Between T Helper 1 Cell and Regulatory T Cell Generation. Sci Signaling (2013) 6(396):ra97. doi: 10.1126/scisignal.20032610

33. Chornoguz O, Hagan RS, Haile A, Arwood ML, Gamper CJ, Banerjee A, et al. Peri-Antigenic Metabolism in Cancer. Cell Metab (2015) 21:2186–97. doi: 10.1016/j.cell.2015.10.004

34. Wang C, Yosef N, Gauledome JM, Wu C, Lee Y, Clish CB, et al. CD58/AIM Lipid Biosynthesis and Reactions Th17 Cell Pathogenicity. Cell (2015) 163(6):1413–27. doi: 10.1016/j.cell.2015.10.068

35. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1 Alpha-Dependent Glycolytic Pathway Orchestrates a Metabolic Checkpoint for the Differentiation of T(H)17 and T-Reg Cells. J Exp Med (2011) 208:1367–76. doi: 10.1084/jem.20110278

36. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR Kinase Differentially Regulates Effector and Regulatory T Cell Lineage Commitment. Immunity (2009) 30:832–44. doi: 10.1016/j.immuni.2009.04.014

37. Heikamp EB, Patel CH, Collins S, Waickman A, Oh M-H, Sun I-H, et al. The AGC Kinase SGK1 Regulates TH1 and TH2 Differentiation Downstream of the Mtorc2 Complex. Nat Immunol (2014) 15:457. doi: 10.1038/ni.2867

38. Yang J-Q, Kalim KW, Li Y, Zhang S, Hinge A, Filippi MD, et al. RhoA Orchestrates Glycolysis for TH1 Cell Differentiation and Allergic Airway Inflammation. J Allergy Clin Immunol (2016) 137:231. doi: 10.1016/j.jaci.2015.05.004

39. Seumois G, Zapardiel-Gonzalo J, White B, Singh D, Schulten V, Dillen M, et al. Transcriptional Profiling of TH2 Cells Identifies Pathogenic Features Associated With Asthma. J Immunol (2016) 197:655–64. doi: 10.4049/jimmunol.1600397

40. Chen T, Tibbott CA, Feng X, Stark JM, Rohrbeck L, Rausch L, et al. PPAR Gamma Promotes Type 2 Immune Responses in Allergy and Nematode Infection. Sci Immunol (2017) 2(9):eaal5196. doi: 10.1126/sciimmunol.aal5196

41. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, et al. The Proteinic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements. Immunity (2014) 40:712–22. doi: 10.1016/j.immuni.2014.02.022

42. Beura LR, Hamilton SE, Bi K, Schenkel JM, Oda murae OA, Casey KA, et al. Normalizing the Environment Recapitulates Adult Human Immune Traits in Laboratory Mice. Nature (2016) 532:512. doi: 10.1038/nature17655

43. Chapman NM, Zeng H, Nguyen T-LM, Wang Y, Vogel P, Dhungana Y, et al. mTOR Coordinates Transcriptional Programs and Mitochondrial Metabolism of Activated T-Reg Subsets to Protect Tissue Homeostasis. Nat Commun (2018) 9(1):2095. doi: 10.1038/s41467-018-04392-5

44. Asanuma S, Tanaka J, Sugita K, Kosugi M, Shiratori S, Wakasa K, et al. Expansion of CD4(+)CD25(+) Regulatory T Cells from Cord Blood CD4(+) Cells Using the Common Gamma-Chain Cytokines (IL-2 and IL-15) and Lampropyline. Ann Hematol (2011) 90: doi: 10.1007/s00277-011-1211-z

45. Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, et al. Erominor Actions on Regulatory and Memory T Cells Are Independent of
Cpt1α-Mediated Fatty Acid Oxidation. *Cell Metab* (2018) 28:504. doi: 10.1016/j.cmet.2018.06.002
58. Salkhoon JD, Tiant T, Garcia C, Hou H, Cao R, et al. Metformin Ameliorates the Development of Experimental Autoimmune Encephalomyelitis by Regulating T Helper 1 and Regulatory T Cells in Mice. *J Neuroimmunol* (2016) 292:58–67. doi: 10.1016/j.jneuroim.2016.01.014
59. Lee S-Y, Lee SH, Yang E-J, Kim E-K, Kim J-K, Shin D-Y, et al. Metformin Ameliorates Inflammatory Bowel Disease by Suppression of the STAT3 Signaling Pathway and Regulation of the Between Th17/Treg Balance. *Plos One* (2015) 10(9):e0135858. doi: 10.1371/journal.pone.0135858
60. Gurr et al., et al. Foxp3 and Toll-Like Receptor Signaling Balance T-Reg Cell Anabolic Metabolism for Suppression. *Nat Immunol* (2016) 17:1459–66. doi: 10.1038/nl3577
61. Apostolidis SA, Rodríguez-Perea AL, Moreno-Fernandez M, Jackson CM, Melchior JT, Davidson WS, et al. High Density Lipoproteins selectively Promote the Survival of Human Regulatory T Cells. *J Lipid Res* (2017) 58:1514–23. doi: 10.1194/jlr.M072835
62. Apostolidis SA, Rodríguez-Perea AL, Moreno-Fernandez M, Jackson CM, Melchior JT, Davidson WS, et al. High Density Lipoproteins selectively Promote the Survival of Human Regulatory T Cells. *J Lipid Res* (2017) 58:1514–23. doi: 10.1194/jlr.M072835
63. de Jong AI, Kloppenburg M, Toes REM, Ioan-Facsinay A. Fatty Acids, Lipid Mediators, and T-Cell Function. *Front Immunol* (2014) 5. doi: 10.3389/immu.2014.00483
64. Cury-Boventura MF, Gorjao R, de Lima TM, Newsholme P, Curi R. Comparative Toxicity of Oleic and Linoleic Acid on Human Lymphocytes (Vol 78, Pg 1448, 2006). *Life Sci* (2011) 112:97–7. doi: 10.1016/j.lfs.2013.01.014
65. Takahashi HK, Cambiagi TD, Luchessi AD, Hirabara SM, Vinolo MAR, Newsholme P, et al. Activation of Survival and Apoptotic Signaling Pathways in Lymphocytes Exposed to Palmitic Acid. *J Cell Physiol* (2012) 227(1):339–50. doi: 10.1002/jcp.22740
66. Howie D, Cobbold SP, Adams E, Bokum AT, Necula AS, Zhang W, et al. Foxp3 Drives Oxidative Phosphorylation and Protection From Lipotoxicity. *JCI Insight* (2017) 2(3):e9160. doi: 10.1172/jci.insight.9160
67. Xu S, Nam SM, Kim J-H, Das R, Choi S-K, Nguyen TT, et al. Palmitate Induces ER Calcium Depletion and Apoptosis in Mouse Podocytes Subsequent to Mitochondrial Oxidative Stress. *Cell Death Dis* (2015) 6(11):e1976. doi: 10.1038/cddis.2015.331
68. Spector AA. Plasma Lipid Transport. *Clin Physiol Biochem* (1984) 2(2):132–43.
69. Calder PC. Omega-3 Fatty Acids and Inflammatory Processes. *Nutrients* (2010) 2(3):355–74. doi: 10.3390/nu20030355
70. Innes JK, Calder PC. Omega-6 Fatty Acids and Inflammation. *Prostaglandins Leukotrienes Essential Fatty Acids* (2018) 132:41–8. doi: 10.1016/j.plfa.2018.03.004
71. Field CJ, Clandinin MT. Modulation Of Adipose-Tissue Fat Composition By Field CJ, Clandinin MT. Modulation Of Adipose-Tissue Fat Composition By Body DR. The Lipid-Composition Of Adipose-Tissue. *Nature* (2007) 445(2):374–8. doi: 10.1038/nm.2002
72. de Vries E, VanZuilen L, et al. The Alarmin IL-33 Promotes Regulatory T-Cell Function in the Intestine. *Nature* (2014) 513:564. doi: 10.1038/nature13577
73. Vasanthisakumar A, Moro K, Xian A, Liao Y, Gloury R, Kawamoto S, et al. The Transcriptional Regulators IRF4, BATF and IL-33 Orchestrate Development and Maintenance of Adipose-Tissue-Resident Regulatory T Cells. *Nat Immunol* (2015) 16:544–4. doi: 10.1038/ni.3571
74. Han JM, Wu D, Denroche HC, Yao Y, Verchere B, Levings MK. IL-33 Reverses an Obesity-Induced Deficit in Visceral Adipose Tissue Subtype (+) T Regulatory Cells and Ameliorates Adipose Tissue Inflammation and Insulin Resistance. *J Immunol* (2015) 194:4777–83. doi: 10.4049/jimmunol.1500020
75. Schiering C, Krausgruber T, Chomka A, Fröhlich A, Adelmann K, Wohlfert EA, et al. The Alarmin IL-33 Promotes Regulatory T-Cell Function in the Intestine. *Nature* (2014) 513:564. doi: 10.1038/nature13577
76. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, But Not Obese, Fat is Enriched for a Unique Population of Regulatory T Cells That Affect Metabolic Parameters. *Nat Med* (2009) 15:930–U137. doi: 10.1038/nm.2002
77. Farini A, Meregalli M, Belicchi M, Battistelli M, Parolini D, Di Giovanni A. IL-33 to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. *Immunol* (2016) 4(2):374–88. doi: 10.1038/immu.2016.709
78. Siska PJ, Rathmell JC. T Cell Metabolic Fitness in Antitumor Immunity. *Trends Immunol* (2015) 36:257–64. doi: 10.1016/j.it.2015.02.007
96. Howie D, Ten Bokum A, Necula AS, Cobbold SP, Waldmann H. The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival. *Front Immunol.* (2016) 7. doi: 10.3389/fimmu.2017.01949
97. Round JL, Mazmanian SK. Inducible Foxp3(+) Regulatory T-Cell Development by a Commensal Bacterium of the Intestinal Microbiota. *Proc Natl Acad Sci USA* (2010) 107:12204–9. doi: 10.1073/pnas.0909122107
98. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. *Science* (2011) 331:337–41. doi: 10.1126/science.1198469
99. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The Role of Conserved non-Coding DNA Elements in the Foxp3 Gene in Regulatory T-Cell Fate. *Nature* (2010) 463:808–U120. doi: 10.1038/nature08750
100. Stentz FB, Kitabchi AE. Palmitic Acid-Induced Activation of Human T-Lymphocytes and Aortic Endothelial Cells With Production of Insulin Receptors, Reactive Oxygen Species, Cytokines, and Lipid Peroxidation. *Biochim Biophys Acta* (2003) 164:721–6. doi: 10.1016/j.bjba.2006.05.159
101. Zheng Y, Jostowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of Conserved non-Coding DNA Elements in the Foxp3 Gene in Regulatory T-Cell Fate. *Nature* (2010) 463:808–U120. doi: 10.1038/nature08750
102. Carrillo C, Cavia MD, Alonso-Torre S. Role of Oleic Acid in Immune System; Mechanism of Action: A Review. *Nutr Hosp.* (2012) 27(4):978–90. https://doi.org/10.3305/nh.2012.27.4.5783
103. Polak PE, Kalinin S, Russo CD, Gavrilyuk V, Sharp A, Peters JM, et al. Protective Effects of a Peroxisome Proliferator-Activated Receptor Gamma (PPAR Gamma) Agonists - PPAR Gamma Co-Association With Transcription Factor NFAT. *J Biol Chem* (2000) 275:4541–4. doi: 10.1074/jbc.275.7.4541
104. Kim W, Barhoumi R, McMurray DN, Chapkin RS. Dietary Fish Oil and DHA Down-Regulate Antigen-ACTivated CD4+ T-Cells While Promoting the Formation of Lipid-Ordered Mesodomains. *Br J Nutr.* (2014) 111:260–8. doi: 10.1017/s0007114513002444
105. Demy A, Hichami A, Khan NA. Eicosapentaenoic Acid and Docosahexaenoic Acid Modulate MAP Kinase Enzyme Activity in Human T-Cells. *Mol Cell Biochem* (2002) 232(1–2):143–8. doi: 10.1023/a:101406122510
106. Bonin A, Khan NA. Regulation of Calcium Signalling by Docosahexaenoic Acid in Human T-Cells. Implication of CRAC Channels. *J Lipid Res.* (2000) 41(2):277–4.
107. Chow SC, Jondal M. Polyunsaturated Fatty Acids Stimulate an Increase in Cytosolic Ca2+ by Mobilizing the Inositol 1,4,5-Trisphosphate-Sensitive Calcium Release Inotrophic Turnover. *J Biol Chem* (1990) 265(2):902–7.
108. Aires V, Hichami A, Moutiaou K, Laposata M. Human Peripheral Blood T Lymphocyte Proliferation After Activation of the T Cell Receptor: Effects of Unsaturated Fatty Acids. *Prostaglandins Leukotrienes Essential Fatty Acids* (1999) 60(5–6):371–5. doi: 10.1016/s0952-3278(99)80015-5
109. Choi J-M, Bothwell ALM. The Nuclear Receptor PPARs as Important Regulators of T-Cell Functions and Autoimmune Diseases. *Mol Cells* (2012) 33:217–22. doi: 10.1007/s12974-012-2297-y
110. Yang XY, Wang LH, Chen T, Hodge DR, Resau JH, DaSilva L, et al. Activation of Human T Lymphocytes is Inhibited by Peroxisome Proliferator-Activated Receptor Gamma (PPAR Gamma) Agonists - PPAR Gamma Co-Association With Transcription Factor NFAT. *J Biol Chem* (2000) 275:4541–4. doi: 10.1074/jbc.275.7.4541
111. Su CG, Wen X, Bailey DT, Liang W, Rampal PG, Keilbaugh SA, et al. A Novel Therapy for Colitis Utilizing PPAR-Gamma Ligands to Inhibit the Epithelial Inflammatory Response. *J Clin Invest* (1999) 104:383–9. doi: 10.1172/jci17145
112. Desreumaux P, Dubusquoy L, Nutten S, Peuchmaur M, Englaro W, Schoonjans K, et al. Antigen Presentation In CD8+ T Cells by Indicating Tolllike Receptors and PPAR Glycogenolytic Enzyme Activity in Human T-Cells. *Mol Cell Biochem* (2002) 232(1–2):143–8. doi: 10.1023/a:101406122510
113. Kidani Y, Elaassem H, Hock MB, Vergnes L, Williams KJ, Argus JP, et al. Sterol Regulatory Element-Binding Proteins Are Essential for the Metabolic Programming of Effector T Cells and Adaptive Immunity. *Nat Immunol* (2013) 14:489. doi: 10.1038/ni.2570
114. Tsuchih S, Neuma M, Healy BC, Weiner HL, Bakshi R. MRI Phenotypes Based on Cerebral Lesions and Atrophy in Patients With Multiple Sclerosis. *J Neurol Sci* (2014) 346(1–2):250–4. doi: 10.1016/j.jns.2013.08.047
115. Polak PE, Kalinin S, Russo CD, Gavrilyuk V, Sharp A, Peters JM, et al. Protective Effects of a Peroxisome Proliferator-Activated Receptor-Beta/ Delta Agonist in Experimental Autoimmune Encephalomyelitis. *J Neuroimmunol.* (2005) 168:65–75. doi: 10.1016/j.jneuroim.2005.07.006
116. Hua XX, Wu J, Goldenstein JL, Brown MS, Hobbs HH. Structure Of The Human Gene Encoding Sterol Regulator Element-Binding Protein-1 (Srebfl1) And Localization Of Srebfl1 And Srebfl2 To Chromosomes 17p11.2 And 22q13. *Genomics* (1995) 25:667–73. doi: 10.1006/geno.1995.0009-B
117. Gocke AR, Hussain RZ, Yang Y, Peng H, Weisen J, Ben L-H, et al. Transcriptional Modulation of the Immune Response by Peroxisome Proliferator-Activated Receptor-Alpha Agonists in Autoimmune Disease. *J Immunol* (2009) 182:4479–87. doi: 10.4049/jimmunol.0713927
118. Okuda H, Hori M, Kitada M, Takahashi M, Saito K, Takahashi N. Peroxisome Proliferator-Activated Receptor Gamma (PPAR Gamma) Agonist: A Basis for New Therapeutic Strategies. *J Exp Med* (2001) 193:827–38. doi: 10.1084/jem.193.7.827
169. Ferreira HB, Melo T, Monteiro A, Paiva A, Domingues P, Domingues MR. Serum Phospholipidomics Reveals Altered Lipid Profile and Promising Biomarkers in Multiple Sclerosis. *Arch Biochem Biophys* (2021) 697:108672. doi: 10.1016/j.abb.2020.108672

170. Chung Y, Chang SH, Martínez GI, Yang XO, Nurieva R, Kang HS, et al. Critical Regulation of Early Th17 Cell Differentiation by Interleukin-1 Signaling. *Immunity* (2009) 30:576-87. doi: 10.1016/j.immuni.2009.02.007

171. Ghoreschi K, Laurence A, Yang X-P, Tato CM, McGeehy MJ, Konkel JE, et al. Generation of Pathogenic T(H)17 Cells in the Absence of TGF-Beta Signalling. *Nature* (2010) 467(7318):967-971. https://doi.org/10.1038/nature09447

172. Heink S, Yoge N, Garbers C, Herwerth M, Aly L, Gasperi C, et al. Trans-Presentation of IL-6 by Dendritic Cells is Required for the Priming of Pathogenic T(H)17 Cells. *Nat Immunol* (2017) 18:74-85. doi: 10.1038/ni.3632

173. Jain R, Chen Y, Kanno Y, Joyce-Shaikh B, Vahedi G, Hirahara K, et al. Induction and Pathogenicity of T Helper 17 Cells. *J Immunol* (2012) 188:3431-7. doi: 10.1016/j.immuni.2011.05.002

174. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al. Interleukin-23-Induced Transcription Factor Blimp-1 Promotes Pathogenicity of T Helper 17 Cells. *Immunity* (2016) 44:131-42. doi: 10.1016/j.immuni.2015.11.009

175. Mailer RKW, Joly AL, Liu S, Elias S, Tegner J, Andersson J. IL-1 Beta Signaling. *Immunity* (2017) 46:47-57. doi: 10.1016/j.immuni.2017.07.002

176. La Rocca C, Carbone F, De Rosa V, Colamatteo A, Galgani M, Perna F, et al. Oxysterols and Cholesterol Precursors Correlate to Magnetic Resonance Biomarkers in Multiple Sclerosis. *Arch Biochem Biophys* (2020) 697:108672. doi: 10.1016/j.abb.2020.108672

177. La Rocca C, Carbone F, De Rosa V, Colamatteo A, Galgani M, Perna F, et al. Regulation of Autoantibody Activity by the IL-23-T(H)17 Axis Determines the Onset of Autoimmune Disease. *Nat Immunol* (2017) 18:104-13. doi: 10.1038/ni.3579

178. Lojkowska M, Biernacka M, Ford-Lloyd V, Taylor J, MacManus R, Yosef N, et al. Interleukin-23-Induced Transcription Factor Blimp-1 Promotes Differentiation of Th17 Cells Derived From Patients With Multiple Sclerosis. *J Immunol* (2011) 187:3431-7. doi: 10.4049/jimmunol.1100580

179. Xiong L, Xue H, Xiao S, Shankaran M, Wang L, Jiang S, et al. Generation of Pathogenic T(H)17 Cells in the Absence of TGF-Beta Signalling. *Nat Immunol* (2016) 17:621-30. doi: 10.1038/ni.3632

180. Xia M, Hu S, Fu Y, Jin W, Yi Q, Matsui Y, et al. CCR10 Regulates Balanced Maintenance and Function of Resident Regulatory and Effector T Cells To Promote Immune Homeostasis in Skin. *J Allergy Clin Immunol* (2014) 134:634-44. doi: 10.1016/j.jaci.2013.03.010

181. Zhang X, Tao Y, Troiani L, Markovic-Plese S. Simvastatin Inhibits IFN Regulatory Factor 4 Expression and Th17 Cell Differentiation in CD4(+) T Cells Derived From Patients With Multiple Sclerosis. *J Immunol* (2011) 187:3431-7. doi: 10.4049/jimmunol.1100580

182. Zeng H, Chi H. mTOR and Lymphocyte Metabolism. *Curr Opin Immunol* (2013) 25:347-52. doi: 10.1016/j.coi.2013.05.002

Conflict of Interest: DH has received funding for his laboratory from Bristol Myers Squibb and Genentech. A child of DAH is an employee of Sanofi. Further information regarding funding is available at: https://openpaymentsdata.cms.gov/ physician/166753.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Pompura, Hafler and Domínguez-Villar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction which does not comply with these terms.