ITERATIONS OF CURVATURE IMAGES

MOHAMMAD N. IVAKI

ABSTRACT. We study the iterations of a class of curvature image operators \(\Lambda^p \) introduced by the author in (J. Funct. Anal. 271 (2016) 2133–2165). The fixed points of these operators are the solutions of the \(L_p \) Minkowski problems with the positive continuous prescribed data \(\varphi \). One of our results states that if \(p \in (-n, 1) \) and \(\varphi \) is even, or if \(p \in (-n, -n+1] \), then the iterations of these operators applied to suitable convex bodies sequentially converge in the Hausdorff distance to fixed points.

1. Introduction

The setting here is \(n \)-dimensional Euclidean space. Let \(\varphi \in C(S^{n-1}) \) be a positive continuous function defined on the unit sphere. Suppose either \(\varphi \) is even (i.e., it takes the same value at antipodal points) and \(p \in (-n, 1) \), or \(p \in (-n, -n+1] \). Using an iteration method, we show that there exists a convex body \(K \) with support function \(h_K \) and curvature function \(f_K \) such that

\[
\varphi h_K^{1-p} f_K = \text{const}.
\]

While the existence of solutions to (1.1) has been known in this range of \(p \) since the work of Chou–Wang [11], we use a notion of generalized curvature image to add a novel existence method to the literature on the \(L_p \) Brunn-Minkowski theory.

Let us briefly recall the origin and the historical context of (1.1). For any \(x \) on the boundary of a convex body \(K \), \(\nu_K(x) \) is the set of all unit exterior normal vectors at \(u \). The surface area measure of \(K \), \(S_K \), is a Borel measure on the unit sphere defined by

\[
S_K(\omega) = \mathcal{H}^n(\nu_K^{-1}(\omega)) \quad \text{for all Borel sets } \omega \text{ of } S^{n-1}.
\]

Here, \(\mathcal{H}^n \) denotes the \(n \)-dimensional Hausdorff measure. If \(K \) has a positive continuous curvature function, then \(dS_K = f_K d\sigma \), where \(\sigma \) is the spherical Lebesgue measure.

The classical Minkowski problem is one of the corner stones of the Brunn-Minkowski theory. It asks what are the necessary and sufficient conditions on a Borel measure \(\mu \) on \(S^{n-1} \) in order to be the surface area measure of a convex body. The complete solution to this problem was
found by Minkowski, Aleksandrov and Fenchel and Jessen (see, e.g., Schneider [30]): A Borel measure \(\mu \) whose support is not contained in a closed hemisphere is the surface area measure of a convex body if and only if

\[
\int_{\mathbb{S}^{n-1}} u d\mu(u) = 0.
\]

Moreover, the solution is unique up to translations.

The \(L_p \) Minkowski asks what are the necessary and sufficient conditions on a Borel measure \(\mu \) on \(\mathbb{S}^{n-1} \), such that there exists a convex body \(K \) with support function \(h_K \), so that

\[
h_K^{1-p} dS_K = \gamma d\mu \quad \text{for some constant } \gamma > 0.
\]

This problem for \(p > 1 \) was put forward by Lutwak [25] almost a century after Minkowski’s original work and stems from the \(L_p \) linear combination of convex bodies. See [5, 6, 8–11, 19, 26, 30–32] regarding the \(L_p \) Minkowski problem and Lutwak et al. [27] for an application.

To motivate our iteration scheme, let us briefly recall a few observations from Lutwak [23]. Suppose \(K \) has its Santaló point at the origin. Then by Minkowski’s existence theorem (see, e.g., [7, pp. 60–67]), there exists a convex body \(\Lambda K \), uniquely determined up to translations, whose curvature function is given by

\[
f_{\Lambda K} = \frac{V(K)}{V(K^*)} \frac{1}{h_K^{n+1}}.
\]

Here, \(K^* \) is the polar body and \(V(\cdot) \) is the \(n \)-dimensional Lebesgue measure. We always choose \(\Lambda K \) such that its Santaló point is at the origin. The curvature image operator \(\Lambda \) was introduced by Petty [20]. See [30, Section 10.5] for the importance of the curvature image in affine differential geometry.

Write \(\Omega(K) \) for the affine surface area of \(K \) (Definition 3.4 with \(\varphi \equiv 1, p = -n \)). By a straightforward calculation,

\[
\Omega(\Lambda K)^{n+1} = n^{n+1} V(K)^n V(K^*).
\]

On the other hand, for any convex body \(L \) with the origin in its interior by the Hölder inequality, we have

\[
\Omega(L)^{n+1} \leq n^{n+1} V(L)^n V(L^*).
\]

Hence, using this inequality for \(L = K \) and \(L = \Lambda K \), we see

\[
\Omega(\Lambda K) \geq \Omega(K)
\]

\[
V(K) V(K^*) \leq \left(\frac{V(\Lambda K)}{V(K)} \right)^{n-1} V(\Lambda K) V((\Lambda K)^*).
\]
By Minkowski’s mixed volume inequality, we have
\[V(\Lambda K) \leq V(K). \]
Moreover, using the affine isoperimetric inequality,
\[V(\Lambda K)^{n-1} \geq \frac{\Omega(\Lambda K)^{n+1}}{n^{n+1}V(B)^2} \geq \frac{\Omega(K)^{n+1}}{n^{n+1}V(B)^2}, \]
where \(B \) denotes the unit ball. Therefore, we arrive at
\[\left(\frac{\Omega(K)^{n+1}}{n^{n+1}V(B)^2} \right)^{\frac{1}{n-1}} \leq V(\Lambda K) \leq V(K). \]
Let us put \(\Lambda^i K := \Lambda \cdots \Lambda K \). By induction, we obtain
\[V(\Lambda^{i-1} K) V((\Lambda^{i-1} K)^*) \leq \left(\frac{V(\Lambda^i K)}{V(\Lambda^{i-1} K)} \right)^{n-1} V(\Lambda^i K) V((\Lambda^i K)^*), \]
\[\left(\frac{\Omega(K)^{n+1}}{n^{n+1}V(B)^2} \right)^{\frac{1}{n-1}} \leq V(\Lambda^i K) \leq V(K). \]
To sum up these observations, we have seen the curvature image under the operator \(\Lambda \) strictly increases (unless it is applied to an origin-centered ellipsoid; see Marini–De Philippis [22] regarding the fact that the only solutions of \(\Lambda K = K \) are origin-centered ellipsoids) the volume product functional, while \(\{ V(\Lambda^i K) \}_{i} \) is uniformly bounded above and below away from zero.

The previous observations motivate us to seek a curvature image operator \(\Lambda^\varphi_p \) (see Definition 3.2) that satisfies the following three rules.

1. The fixed points, \(\Lambda^\varphi_p L = L \), are solutions of (1.1).
2. The curvature image under \(\Lambda^\varphi_p \) strictly increases a "suitable" functional, unless \(\Lambda^\varphi_p \) is applied to a solution of (1.1).
3. There are uniform lower and upper bounds on the volume after applying any number of iteration.

Put \((\Lambda^\varphi_p)^i K := \Lambda^\varphi_p \cdots \Lambda^\varphi_p K \). When \(\varphi \equiv 1 \), we use \(\Lambda_p \) in place of \(\Lambda^\varphi_p \).

Theorem 1.1. The following statements hold:

1. suppose either
 - \(-n < p < 1, \varphi \in C(S^{n-1}) \) is positive and even, and \(K \) is origin-symmetric, or
\(-n < p \leq -n + 1, \varphi \in C(S^{n-1}) \) is positive, \(K \) contains the origin in its interior and

\[
\int_{S^{n-1}} u \frac{1}{(\varphi h_{K}^{1-p})(u)} d\sigma = o.
\]

Then a subsequence of iterations \(\{(\Lambda^{p}_{i}K)_{i}\} \), converges in the Hausdorff distance, as \(i \to \infty \), to a convex body \(L \) such that

\[
\varphi h_{L}^{1-p} f_{L} = \text{const}.
\]

(2) If \(-n < p < 1 \), and \(K \) contains the origin in its interior and

\[
\int_{S^{n-1}} uh_{K}^{p-1}(u)d\sigma = o,
\]

then \(\{\Lambda^{p}_{i}K\}_{i} \) converges in the Hausdorff distance, as \(i \to \infty \), to an origin-centered ball.

(3) If \(p = -n \) and \(K \) has its Santaló point at the origin, then there exists a sequence of volume-preserving transformations \(\ell_{i} \), such that \(\{\ell_{i}A^{i}K\}_{i} \) converges in the Hausdorff distance, as \(i \to \infty \), to an origin-centered ball.

Remark 1.2. Each convex body after a suitable translation satisfies the required integral condition in the theorem (see, e.g., [15, Lemma 3.1]).

Iterations methods in convex geometry were previously applied in [12, 28] and as smoothing tools in [16, 17] to prove local uniqueness of fixed points of a certain class of operators. Also to deduce the asymptotic behavior of a class of curvature flows in [13, 15, 18] and to prove a stability version of the Blaschke–Santaló inequality in the plane [14] we used some properties of the curvature image operators. We mention that the unique convex body of maximal affine perimeter contained in a given two-dimensional convex body is (up to translations) a curvature image body (see Bárány [2, 3]). Moreover, Schneider [29] proved that in any dimension a curvature image body uniquely possess the maximal affine surface area among all convex bodies contained in it.

Acknowledgment

MI has been supported by a Jerrold E. Marsden postdoctoral fellowship from the Fields Institute. The author would like to thank the referee for suggestions that led to improvement of this article.
2. Background and notation

A compact convex set with non-empty interior is called a convex body. The set of convex bodies is denoted by K. Write K_o, K_e, respectively, for the set of convex bodies containing the origin in their interiors and the origin-symmetric convex bodies. We write $C^+(\mathbb{S}^{n-1})$ for the set of positive continuous functions and $C^+_e(\mathbb{S}^{n-1})$ for the set of positive continuous even functions on the unit sphere.

The support function of a convex body K is defined as

$$h_K(u) = \max_{x \in K} \langle x, u \rangle.$$

For a convex body K with the origin o in its interior, the polar body K^* is defined by

$$K^* = \{y : \langle x, y \rangle \leq 1 \ \forall x \in K\}.$$

For $x \in \text{int } K$, we set $K^x = (K - x)^*$. The Santaló point of K, denoted by s, is the unique point in $\text{int } K$ such that

$$V(K^s) \leq V(K^x) \ \forall x \in \text{int } K.$$

Moreover, the Blaschke–Santaló inequality states that

$$V(K)V(K^s) \leq V(B)^2.$$

with equality if and only if K is an ellipsoid.

Let K, L be two convex bodies and $0 < a < \infty$. The Minkowski sum $K + aL$ is defined by $h_{K+aL} = h_K + ah_L$ and the mixed volume of K, L is defined by

$$V_1(K, L) = \frac{1}{n} \lim_{a \to 0} \frac{V(K + aL) - V(K)}{a}.$$

Corresponding to each K, there is a unique Borel measure S_K on the unit sphere such that

$$V_1(K, L) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_L dS_K \text{ for any convex body } L.$$

If the boundary of K, ∂K, is C^2-smooth and strictly convex, then S_K is absolutely continuous with respect to spherical Lebesgue measure σ and $dS_K/d\sigma$ is the reciprocal Gauss curvature.

The Minkowski mixed volume inequality states that

$$V_1(K, L)^n \geq V(K)^n V(L),$$

and equality holds if and only if K and L are homothetic.

We say K has a positive continuous curvature function f_K if

$$V_1(K, L) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_L f_K d\sigma \text{ for any convex body } L.$$
Write \mathcal{F} for set of convex bodies with positive continuous curvature functions, and put
\[\mathcal{F}_o = \mathcal{K}_o \cap \mathcal{F}, \quad \mathcal{F}_e = \mathcal{K}_e \cap \mathcal{F}. \]

3. Curvature image operators

Assumption 3.1. Suppose one of the following cases occurs.

1. $-n < p \neq 1 < \infty$, $\varphi \in C^+_c(S^{n-1})$ and $K \in \mathcal{K}_o$.
2. $-n < p \leq -n + 1$, $\varphi \in C^+_c(S^{n-1})$, $K \in \mathcal{K}_o$ and
 \[\int_{S^{n-1}} \frac{u}{\left(\varphi h^{-p}_K\right)(u)} d\sigma = o. \]
3. $-n \leq p \neq 1 < \infty$, $K \in \mathcal{K}_o$ and
 \[\int_{S^{n-1}} uh^{p-1}_K(u)d\sigma = o. \]

Definition 3.2. Under the Assumption 3.1, the curvature image $\Lambda_{\varphi}^p K$ of K is defined as the unique convex body whose curvature function is
\[f_{\Lambda_{\varphi}^p K} = \frac{V(K)}{1/n} \frac{h^{p-1}_K}{\varphi} \]
and its support function satisfies
\[\int_{S^{n-1}} \frac{u}{\left(\varphi h^{-p}_{\Lambda_{\varphi}^p K}\right)(u)} d\sigma = o. \]

Remark 3.3. By Minkowski’s existence theorem and [15, Lemma 3.1], there exists a unique convex body that satisfies (3.1) and (3.2). The integral condition (3.2) for $p = -n$ and $\varphi \equiv 1$ says the curvature image has its Santaló point at the origin.

In view of $V_1(\Lambda_{\varphi}^p K, K) = V(K)$ and Minkowski’s mixed volume inequality, we have
\[V(K) \geq V(\Lambda_{\varphi}^p K). \]
Moreover, equality holds if and only if $\Lambda_{\varphi}^p K = K$.

Definition 3.4. Suppose $\varphi \in C^+_c(S^{n-1})$. For $K \in \mathcal{K}_o$, we define
\[\mathcal{A}_{\varphi}^p(K) = \begin{cases} V(K) \left(\int_{S^{n-1}} \frac{h_K}{\varphi} d\sigma\right)^{-\frac{n}{p}}, & 0 \neq p \in [-n, \infty), \\ V(K) \exp\left(\frac{\int_{S^{n-1}} \log h_K d\sigma}{\frac{1}{n} \int_{S^{n-1}} \frac{1}{\varphi} d\sigma}\right), & p = 0. \end{cases} \]
Let $K \in \mathcal{F}$. Define
ITERATIONS OF CURVATURE IMAGES

• for \(p \in [-n, \infty) \setminus \{0, 1\} \):

\[
\mathcal{B}_p^{\phi}(K) = V(K)^{1-n} \left(\int_{S^{n-1}} \varphi^{-p} f_K^{p-1} d\sigma \right)^{\frac{n(p-1)}{p}},
\]

• for \(p = 0 \):

\[
\mathcal{B}_0^{\phi}(K) = V(K)^{1-n} \exp \left(\int_{S^{n-1}} \log(\varphi f_K) d\theta \right) \left(\int_{S^{n-1}} \frac{1}{\varphi} d\sigma \right)^n,
\]

where \(d\theta = \frac{1}{\int_{S^{n-1}} \frac{1}{\varphi} d\sigma} d\sigma \).

For \(K \in \mathcal{F} \), define

\[
\Omega_p^{\phi}(K) = \begin{cases}
\int_{S^{n-1}} \varphi^{-p} f_K^{p-1} d\sigma, & p \in [-n, \infty) \setminus \{0, 1\}, \\
\exp \left(\int_{S^{n-1}} \frac{1}{\varphi} \log(\varphi f_K) d\sigma \right), & p = 0.
\end{cases}
\]

A straightforward calculation shows that

\[
B_p^{\phi}(\Lambda_p^{\phi} K) = n^n \left(\frac{V(K)}{V(\Lambda_p^{\phi} K)} \right)^{n-1} A_p^{\phi}(\Lambda_p^{\phi} K).
\]

For \(L \in \mathcal{F} \) and \(x \in \text{int} \, L \), by the Hölder and Jensen inequalities

\[
\begin{cases}
B_p^{\phi}(L) \leq n^n A_p^{\phi}(L - x), & p \in [-n, 1) \\
B_p^{\phi}(L) \geq n^n A_p^{\phi}(L - x), & p > 1.
\end{cases}
\]

From now onward, we only focus on the case \(p \in (-n, 1) \) and establish the desired properties mentioned in the introduction. For \(p > 1 \), the second inequality in (3.5) is in the wrong direction and hence \(\Lambda_p^{\phi} \) does not exhibit the same behavior as \(\Lambda \) does.

Lemma 3.5. Suppose Assumption 3.1 holds and \(p < 1 \). We have the following.

1. \(A_p^{\phi}(K) \leq \left(\frac{V(\Lambda_p^{\phi} K)}{V(K)} \right)^{n-1} A_p^{\phi}(\Lambda_p^{\phi} K) \leq A_p^{\phi}(\Lambda_p^{\phi} K) \).
2. If \(p \neq 0 \), then

\[
\Omega_p^{\phi}(K)^{\frac{n(p-1)}{p(n-1)}} \leq \Omega_p^{\phi}(\Lambda_p^{\phi} K)^{\frac{n(p-1)}{p(n-1)}}.
\]

If \(p = 0 \), then

\[
\Omega_0^{\phi}(K) \leq \Omega_0^{\phi}(\Lambda_0^{\phi} K).
\]

3. If \(p \neq 0 \), then

\[
c_p^{\phi} \Omega_p^{\phi}(K)^{\frac{n(p-1)}{p(n-1)}} \leq V((\Lambda_p^{\phi})^i K) \leq V(K).
\]
If \(p = 0 \), then
\[
c_0^p \Omega^p_0(K) \leq V((\Lambda^p_0)^i K) \leq V(K).
\]

Proof. Inequalities of (1) and (2) follow from (3.3), (3.4), and (3.5) applied to \(L = K \) and \(L = \Lambda^p_0 K \).

In view of [1, Theorem 9.2], for each \(L \in \mathcal{K} \), there exists \(e_p \in \text{int} L \) such that
\[
\mathcal{A}^1_p(L - e_p) \leq \mathcal{A}^1_p(B).
\]

Therefore, for \(p \neq 0 \), due to (3.5) we see
\[
\mathcal{B}^p_0(L) \leq c_{p,\varphi} \quad \text{for any convex body } L \in \mathcal{F}.
\]

In particular, for \(p \neq 0 \), owing to (2), this last inequality yields
\[
c_{p,\varphi} V(\Lambda^p_0 K) \geq \Omega^p_0(\Lambda^p_0 K)^{\frac{n(p-1)}{n}} \geq \Omega^p_0(K)^{\frac{n(p-1)}{n}}.
\]

Now, (3) follows by induction.

The proof for the case \(p = 0 \) is similar and it follows from the following inequality. By (3.5), the Jensen and Blaschke–Santaló inequality, for any convex body \(L \in \mathcal{F} \) we have
\[
\mathcal{B}^p_0(L) \leq n^n \mathcal{A}^p_0(L - s) \leq n^n V(L) \frac{\int_{S^{n-1}} \frac{1}{\varphi k^p_1} d\sigma}{\int_{S^{n-1}} \frac{1}{\varphi} d\sigma} \leq c_0^p,
\]
where \(s \) is the Santaló point of \(L \). \(\square \)

4. Passing to a Limit

In this section, we give the proof of Theorem 1.1. First we consider the case \(p \neq -n \). By Lemma 3.5, the operator \(\Lambda^p_0 \) satisfies the three principals mentioned in the introduction. Therefore, by [15, Theorem 7.4], there are constants \(a, b \), such that
\[
a \leq h((\Lambda^p_0)^i)_K \leq b \quad \forall i.
\]

Due to the monotonicity of \(\mathcal{A}^p_0 \) under \(\Lambda^p_0 \),
\[
\lim_{i \to \infty} \mathcal{A}^p_0((\Lambda^p_0)^i K) \text{ exists and is positive}
\]
Thus, in view of (3.3) and
\[
\mathcal{A}^p_0((\Lambda^p_0)^i K) \leq \left(\frac{V((\Lambda^p_0)^{i+1} K)}{V((\Lambda^p_0)^i K)} \right)^{n-1} \mathcal{A}^p_0((\Lambda^p_0)^{i+1} K),
\]
we arrive at
\[
\lim_{i \to \infty} \frac{V((\Lambda^p_0)^{i+1} K)}{V((\Lambda^p_0)^i K)} = 1.
\]
By (4.1) and the Blaschke selection theorem, for a subsequence \(\{i_j\} \):

\[
\lim_{j \to \infty} (\Lambda_p^\varphi)^{i_j} K = L \in \mathcal{K}_o,
\]

From the continuity of \(\Lambda_p^\varphi \) (cf. [15, Theorem 7.6]), it follows that

\[
\lim_{j \to \infty} (\Lambda_p^\varphi)^{i_j+1} K = \Lambda_p^\varphi L.
\]

Consequently, we must have

\[
V(L) = \lim_{j \to \infty} V((\Lambda_p^\varphi)^{i_j} K) = \lim_{j \to \infty} V((\Lambda_p^\varphi)^{i_j+1} K) = V(\Lambda_p^\varphi L).
\]

Now, the equality case of (3.3) implies that \(\Lambda_p^\varphi L = L \) and hence,

\[
\varphi h_L^{1-p} f_L = \frac{V(L)}{\frac{1}{n} \int_{S_{n-1}} \frac{V_L}{\varphi} d\sigma}.
\]

Regarding the case \(-n < p < 1\) and \(\varphi \equiv 1 \), first note that due to the result of [4] the limiting shapes are origin-centered balls. To show that in fact they are the same ball, note that due to the monotonicity of the volume under \(\Lambda_p \), the limits have the same volume.

Finally, regarding the third claim of Theorem 1.1, \(p = -n \), recall that \(\{V(\Lambda^i K)\} \) is uniformly bounded above and below. For each \(i \), by Petty [21] (see also [33, Theorem 5.5.14]), we can find \(\ell_i \in SL(n) \) such that \(\ell_i \Lambda^i K \) is in a minimal position, that is, its surface area is minimal among its volume-preserving affine transformations. Therefore, for a subsequence \(\{i_j\} \), we have

\[
\lim_{j \to \infty} \ell_{i_j} \Lambda^{i_j} K = L \in \mathcal{K}_o,
\]

and \(L \) has its Santaló point at the origin (in fact, this follows from \(s(\ell_i \Lambda^i K) = \ell_i s(\Lambda^i K) = o \) and that \(s \) is a continuous map with respect to the Hausdorff distance). In particular, by [24, (7.12)] and the continuity of the curvature image operator we obtain

\[
\lim_{j \to \infty} \ell_{i_j} \Lambda^{i_j+1} K = \lim_{j \to \infty} \Lambda(\ell_{i_j} \Lambda^{i_j} K) = \Lambda L.
\]

Meanwhile by the monotonicity of the volume product and its upper bound due to the Blaschke-Santaló inequality, we have

\[
V(L) = \lim_{j \to \infty} V(\ell_{i_j} \Lambda^{i_j} K) = \lim_{j \to \infty} V(\ell_{i_j} \Lambda^{i_j+1} K) = V(\Lambda L).
\]

Therefore, \(\Lambda L = L \). By [22], \(L \) is an origin-centered ellipsoid. Since this ellipsoid is in a minimal position, it has to be a ball. The limit is independent of the subsequences as in the case (2) of the theorem. The proof of the theorem is finished.
5. Questions

(1) Let $p > 1$ and $\varphi \in C^+_e(S^{n−1})$. It would be of interest to find a curvature operator whose iterations applied to any $K \in \mathcal{K}_e$ converge to the solution of the L_p Minkowski problem with the prescribed even data φ.

(2) Is the limit in Theorem 1.1 independent of the subsequence?

References

[1] B. Andrews, P. Guan, L. Ni, Flow by powers of the Gauss curvature, Adv. in Math. 299(2016): 174–201.
[2] I. Bárány, Affine perimeter and limit shape, J. Reine Angew. Math. 484(1997): 71–84.
[3] I. Bárány, M. Prodromou, On maximal convex lattice polygons inscribed in a plane convex set, Israel J. Math. 154(2006): 337–360.
[4] S. Brendle, K. Choi, P. Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Math. 219(2017): 1–16.
[5] G. Bianchi, K. J. Böröczky, A. Colesanti, D. Yang, The L_p Minkowski problem for $−n < p < 1$, Adv. in Math. 341(2019): 493–535.
[6] G. Bianchi, K. J. Böröczky, A. Colesanti, Smoothness in the L_p Minkowski problem for $p < 1$, J. Geom. Anal. 30(2020): 680–705.
[7] H. Busemann, Convex Surfaces, Interscience Publishers, New York, 1958.
[8] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26(2013): 831–852.
[9] K. J. Böröczky, H. T. Trinh, The planar L_p-Minkowski problem for $0 < p < 1$, Adv. in Appl. Math. 87(2017): 58–81.
[10] S. Chen, Y. Huang, Q. R. Li, J. Liu, The L_p-Brunn-Minkowski inequality for $p \in (1−\frac{2}{n},\frac{1}{n})$, Preprint, 2018, arXiv:1811.10181.
[11] K. S. Chou and X. J. Wang, The L_p-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. in Math. 205(2006): 33–83.
[12] A. Fish, F. Nazarov, D. Ryabogin, A. Zvavitch, The unit ball is an attractor of the intersection body operator, Adv. in Math. 226(2011): 2629–2642.
[13] P. Bryan, M. N. Ivaki, J. Scheuer, A unified flow approach to smooth even L_p Minkowski problem, Analysis & PDE 12(2019): 259–280.
[14] M. N. Ivaki, Stability of the Blaschke-Santaló inequality in the plane, Monatsh. Math. 177(2015): 451–459.
[15] M. N. Ivaki, Deforming a hypersurface by Gauss curvature and support function, J. Func. Anal. 271(2016): 2133–2165.
[16] M. N. Ivaki, The second mixed projection problem and the projection centroid conjectures, J. Func. Anal. 272(2017): 5144–5161.
[17] M. N. Ivaki, A local uniqueness theorem for minimizers of Petty’s conjectured projection inequality, Mathematika 64(2018): 1–19.
[18] M. N. Ivaki, The planar Busemann-Petty centroid inequality and its stability, Trans. Amer. Math. Soc. 368(2016): 3539–3563.
[19] H. Jian, J. Lu, and X. J. Wang, Nonuniqueness of solutions to the L_p-Minkowski problem Adv. in Math. 281(2015): 845–856.
[20] C. M. Petty, Affine isoperimetric problems, Ann. N.Y. Acad. Sci. 440(1985): 113–127.
[21] C. M. Petty, Surface area of a convex body under affine transformations, Proc. Amer. Math. Soc. 12(1961): 824–828.
[22] M. Marini, G. De Philippis, A note on Petty’s problem, Kodai Math. J. 37(2014): 586–594.
[23] E. Lutwak, On some affine isoperimetric inequalities, J. Differ. Geom. 23(1986): 1–13.
[24] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. 60(1990): 365–391.
[25] E. Lutwak, The Brunn–Minkowski–Firey theory, I: Mixed volumes and the Minkowski problem, J. Differ. Geom. 38(1993): 131–150.
[26] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differ. Geom. 41(1995): 227–246.
[27] E. Lutwak, D. Yang, G. Zhang, Sharp affine L_p Sobolev inequalities, J. Differ. Geom. 62(2002): 17–38.
[28] C. Saroglou, A. Zvavitch, Iterations of the projection body operator and a remark on Petty’s conjectured projection inequality, J. Func. Anal. 272(2017): 613–630.
[29] R. Schneider, Affine surface area and convex bodies of elliptic type, Period. Math. Hungar. 69(2014): 120–125.
[30] R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, 2nd edn., Vol. 151, Cambridge University Press (New York, NY, 2013).
[31] A. Stancu, The discrete planar L_0-Minkowski problem, Adv. in Math. 167(2002): 160–174.
[32] A. Stancu, On the number of solutions to the discrete two-dimensional L_0-Minkowski problem, Adv. in Math. 180(2003): 290–323.
[33] A. C. Thompson, Minkowski geometry, Cambridge University Press, (Cambridge, 1996).

Department of Mathematics, University of Toronto, Ontario, M5S 2E4, Canada
E-mail address: m.ivaki@utoronto.ca