Advances and Required Changes in Topology Discovered in the Continued Investigation of T_0-identification Spaces

CHARLES DORSETT

Department of Mathematics, Texas A&M University-Commerce Commerce, Texas 75429 USA
Corresponding Author Email:- irvindorsett@gmail.com
http://dx.doi.org/10.22147/jusps-A/300802

Acceptance Date 23th July, 2018, Online Publication Date 2nd August, 2018

Abstract

In this paper discoveries and additional, useful topological tools revealed in the continued investigation of T_0-identification spaces are given, and easily used conditions that imply a space is not completely regular or $T_{(3(1/2))}$ are given.

Key words: T_0-identification spaces, classical separation axioms, negations.

Subject classification: 54D10, 54D15.

1. Introduction and Preliminaries

In the late 1980’s and early 1990’s great progress was being made in the development and expansion of mathematical knowledge, but there was an obstacle hindering its continued growth and expansion. There was no common mathematical language or common classification used by the different groups of creative mathematicians making communication between the groups extremely difficulties, if not impossible.

To overcome the difficulties in communication, a group of mathematicians joined together to develop a common language and common classification to be used by all within mathematics. To promote and motivate the use of their common language and common classification, they eventually and cleverly created an abstract model that included the mathematics done in that time period as a special case. The development and investigation of that new model led to a branch of mathematics today called modern day topology.

Within mathematics, the ability to separated distinct elements, closed sets and elements not in the closed set, and disjoint closed sets is important and was included in the new mathematical model and eventually were jointly referred to as separation axioms. Those separation axioms include T_0, T_1, T_2, Urysohn, regular, T_3, completely regular, $T_{(3(1/2))}$, normal, and T_4, which are today commonly referred to as classical separation axioms.

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)
Definition 1.1. A topological space \((X,T)\) is \(T_0\) iff for distinct elements \(x\) and \(y\) in \(X\) there exists an open set containing only one of \(x\) and \(y\).
All spaces in the paper are topological spaces.

Definition 1.2. A space \((X,T)\) is \(T_1\) iff for distinct elements \(x\) and \(y\) in \(X\) there exists an open set containing \(x\) and not \(y\) and an open set containing \(y\) and not \(x\).

Definition 1.3. A space is \(T_2\) iff for distinct elements \(x\) and \(y\) in \(X\) there exist two disjoint open sets with \(x\) in one and \(y\) in the other.

Definition 1.4. A space is Urysohn iff for distinct elements \(x\) and \(y\) in \(X\) there exist open sets \(U\) and \(V\) such that \(x\) is in \(U\), \(y\) is in \(V\), and \(\text{Cl}(U)\) and \(\text{Cl}(V)\) are disjoint.

Definition 1.5. A space \((X,T)\) is regular iff for each closed set \(C\) and each element \(x\) not in \(C\) there exist two disjoint open sets one containing \(x\) and the other containing \(C\). A regular \(T_1\) space is denoted by \(T_3\).

Definition 1.6. A space \((X,T)\) is completely regular iff for each closed set \(C\) and each \(x\) not in \(C\) there exists a continuous function \(f\) from \((X,T)\) onto \([0,1],U\) such that \(f(x) = 0\) and \(f(C) = 1\), where \(U\) is the relative absolute value metric topology on \([0,1]\). A completely regular \(T_1\) space is denoted by \(T_{(3(1\slash 2))}\).

Definition 1.7. A space \((X,T)\) is normal iff for disjoint closed sets \(C\) and \(D\) there exist two disjoint open sets one containing \(C\) and the other containing \(D\). A normal \(T_1\) space is denoted by \(T_4\).

The work of the 1990’s topological study pioneers was fruitful and the language and classification introduced by them became the language and classifications used in mathematics. Fortunately for the future mathematicians, the old masters left some very logical, natural questions unaddressed in their work.

As seen above, in Definition 1.5, Definition 1.6, and Definition 1.7, two separation axioms that differed only by the \(T_1\) separation axiom were given, unlike the earlier definitions. Thus two very logical, natural questions arise: (1) Could \(T_1\) in each definition be replaced by the weaker \(T_0\) separation axiom? and, if so, (2) Are there separation axioms weaker than \(T_i\), \(i = 0,1,2\), and Urysohn, which together with \(T_0\), equals \(T_i\), \(i = 0,1,2\), or Urysohn, respectively?

Also, of the separation axioms given above, completely regular and \(T_{(3(1\slash 2))}\) are unique in that a continuous function satisfying strict conditions for each closed set \(C\) and each element not in \(C\) is required. Thus knowing a space is completely regular or \(T_{(3(1\slash 2))}\) gives a strong property with which to work. However, not knowing if a space is completely regular or \(T_{(3(1\slash 2))}\) and wanting to know if the space is completely regular or \(T_{(3(1\slash 2))}\) can be challenging, raising the question of whether there are easily used properties that can be checked to show that the space is neither completely regular nor \(T_{(3(1\slash 2))}\).

Below, the questions above are addressed.

2. Answers to Basic, logical Unanswered Questions.

The investigation of question (1) has shown that for regular and completely regular, \(T_1\) can be replaced by \(T_0\), but not for normal. Thus, the normal separation axiom differs from regular and completely regular and raises the question: For what property \(P\), if any, would \((\text{normal and } P)\) and \(T_0\) = \(T_4\)?

A partial solution to question (2) was given in 1961 [1]: A space is \(T_2\) iff it is \((R_1\text{ and } T_0)\) and a space is
T₁ iff it is (R₀ and T₀).

The R₁ separation axiom was introduced in the 1961 paper¹ and the R₀ separation axiom was introduced in 1943¹³. A space (X,T) is R₁ iff for x and y in X such that Cl({x}) is unequal to Cl({y}), there exist disjoint open sets, one containing x and the other containing y. A space (X,T) is R₀ iff for each closed set C and each x not in C, C and Cl({x}) are disjoint.

To resolve the question concerning T₀ a new, never before even imagined topological property discovered in a 2017 paper² was needed: L = (T₀ or “not-T₀”) = (P or “not-P”), where P is a topological property for which “not-P” exists, is the least of all topological properties² and a space is T₀ iff it is (L and T₀³).

In a 1988 paper⁴, it was shown that a space is Urysohn iff it is ((weakly Urysohn) and T₀). The (weakly Urysohn) separation axiom was introduced in the 1988 paper⁴: A space (X,T) is (weakly Urysohn) iff for x and y in X such that Cl({x}) is not equal to Cl({y}), there exist two open sets, one containing x and the other containing y, whose closures are disjoint.

In a 2017 paper⁵, the question concerning normal was resolved: A space is T₄ iff it is ((normal and R₀) and T₀).

The discovery of L, the least topological property, raised the question of whether for each classical separation axiom given above, is there is a least topological property, which together with T₀, equals the classical separation axiom?, which is addressed below.

3. Least Properties and Properties that Show a Space is not Completely Regular or T₃(T₂).

The never before imagined topological property used to resolve the question above about T₀ was discovered in the continued study of T₀-identification spaces introduced in 1936¹⁴.

Definition 3.1. Let (X,T) be a space, let R be the equivalence relation on X defined by xRy iff Cl({x}) = Cl({y}), for each x in X, let Cₓ be the R equivalence class containing x, let X₀ be the set of R equivalence classes, let N be the natural function from X onto X₀ and let Q(X,T) be the decomposition topology on X₀ determined by N and (X,T). Then (X₀,Q(X,T)) is the T₀-identification space of (X,T).

T₀-identification spaces were cleverly created to give for each space (X,T) a closely (X,T) related T₀-identification space with the T₀ axiom added, making T₀-identification spaces a useful topological tool¹⁴. In the 1936 paper, T₀-identification spaces were used to jointly characterize pseudometrizable and metrizable: A space is pseudometrizable iff its T₀-identification space is metrizable.

In 1975¹², T₀-identification spaces were used to jointly characterize R₁ and T₂: A space is R₁ iff its T₀-identification space is T₂.

In 2015⁶, using the characterizations of pseudometrizable and R₁ as both motivation and model, weakly Po spaces and properties were introduced.

Definition 3.1. Let P be a topological property for which Po = (P and T₀) exists. Then a space (X,T) is weakly Po iff its T₀-identification space (X₀,Q(X,T)) has property P. A topological property Po for which weakly Po exists is called a weakly Po property.

Because of the special T₀ property for T₀-identification spaces given above, a space is weakly Po iff its T₀-identification space is Po. Thus, by the results above, pseudometrizable = weakly (pseudometrizable)₀ = weakly metrizable and R₁ = weakly (R₁)₀ = weakly T₂.
The continued investigation of weakly Po spaces and properties revealed that $R_0 = \text{weakly } (R_0)\circ = \text{weakly } T_{\frac{3}{2}}$, $(\text{weakly Urysohn}) = \text{weakly } (\text{Urysohn})\circ = \text{weakly } U_{\text{Urysohn}}$, regular = weakly (regular)\circ = \text{weakly } T_3$, completely regular = weakly (completely regular)\circ = \text{weakly } T_{(3(1\frac{1}{2}))}$, normal = weakly (normal)\circ = \text{weakly } T_{4}$, and (normal and R_0) = weakly (normal and R_0)\circ = \text{weakly } T_4$.

In the 2015 paper, the search for a topological property that is not weakly Po led to the need and use of “not-T_0” revealing “not-T_0” as an important topological property for both additional study and use, leading to the inclusion of “not-T_0” and “not-P”, where P is a topological property for which “not-P” exists, into the study of topology opening the path to topologically rich, not before imagined territory within topology leading to the discovery of L and other properties that have changed to study of topology forever.

As expected, the existence of the never before least topological property L created discontinuities in the study of topology. Using the 1930 definition of product properties, L is a product property creating a discontinuity in the study of product properties. The discontinuity was corrected by the removal of L as a product property. In addition, within classical topology, the question of whether (P and Q) is a product property for product properties P and Q was never addressed. The investigation of that question revealed L as the only topological property P for which “not-P” does not exist, which was used to prove that for product properties P and Q, (P and Q) is a product space property. Thus many new product properties were given and the use of “not-P”, where P is a product property, was used to give many new examples of not product properties. In a similar manner, L created a discontinuity in the study of subspace properties, which was resolved in a similar manner correcting and expanding the knowledge of subspace properties.

Initially, the search for properties that are weakly Po was trial and error, with no certainty of success, but a major, never before imagined breakthrough was given in a 2017 paper; \{Qo | Q is a topological property and weakly Q_0 exists\} = \{Qo | Q is a topological property and Q_0 exists\}. The continued investigation of the question concerning least topological properties given above led to the following result: For a topological property Q for which Q_0 exists, the least topological property, which together with T_0, equals Q_0 is (weakly Q_0) or “not-T_0”). Thus, the least topological property, which together with T_0, equals T_0 (L or “not-T_0”), the least topological property, which together with T_0, equals T_1 (R or “not-T_1”), the least topological property, which together with T_0, equals T_2 (K or “not-T_2”), the least topological property, which together with T_0, equals T_3 (Urysohn or “not-T_3”), the least topological property, which together with T_0, equals T_4 (completely regular or “not-T_4”), the least topological property, which together with T_0, equals $T_{(3(1\frac{1}{2}))}$ (normal or “not-$T_{(3(1\frac{1}{2}))}$”), and the least topological property, which together with T_0, equals T_5 (metrizable or “not-T_5”).

Thus, as stated above, the addition and use of “not-T_0” to the study of topology has provided the tool needed to unlocked many very natural, previously unaddressed questions. Likewise, the addition and use of “not-P”, where P is a topological property for which “not-P” exists, has proven to be a useful tool in the study of topology. As given above L is the only topological property P for which “not-P” does not exist, which was used to prove that there is no strongest topological property. Also, as given below, certain topological properties “not-P”, if satisfied by a space, can be used to show that the space is not completely regular or $T_{(3(1\frac{1}{2}))}$.

Since completely regular implies regular, which implies (weakly Urysohn), which implies R_1, which implies R_0, then, by use of contrapositive statements, “not-R_0” implies “not-R_1”, which implies “not-(weakly Urysohn)”, which implies “not-regular”, which implies “not-completely regular”. Thus, given a space and
wanting to know if the space is completely regular, the space could be easily checked to see if it is “not-R_0” and, if so, the space is “not-completely regular” and thus not completely regular. In like manner, each of “not-R_1”, “not-(weakly Urysohn)”, and “not-regular” could be checked to show that a space is not completely regular.

Since $T_{(3(\frac{1}{2}))}$ implies T_3, which implies Urysohn, which implies T_2, which implies T_1, which implies T_0, then, by use of contrapositive statements, “not-T_0” implies “not-T_1”, which implies “not-T_2”, which implies “not-Urysohn”, which implies “not-T_3”, which implies $T_{(3(\frac{1}{2}))}$. Thus, as above, if a space satisfies any of “not-T_0”, “not-T_1”, “not-T_2 “, “not-Urysohn”, or “not-T_3”, then the space is not $T_{(3(\frac{1}{2}))}$.

Thus, the continued investigation of T_0-identification spaces through weakly Po spaces and properties has been, and continues to be, a productive, enlightening, corrective study adding needed fundamental, foundational knowledge to the study of topology.

Reference

1. A. Davis, Indexed Systems of Neithborhoods for General Topological Spaces, *Amer. Math. Monthly*, 68, 886-893 (1961).
2. C. Dorsett, Pluses and Needed Changes in Topology Resulting From Additional Properties, *Far East Journal of Mathematical Sciences*, 101(4), 803-811 (2017).
3. C. Dorsett, Weakly P Corrections and New, Fundamental Topological Properties and Facts, *Fundamental Journal of Mathematics and Mathematical Sciences*, 5(1), 11-20 (2016).
4. C. Dorsett, Generalized Urysohn Spaces, *Revista Colombiana de Mat.*, 22, 149-160 (1988).
5. C. Dorsett, A Necessary and Sufficient Condition for Normal T_0 to be Equivalent to T_4, *Fundamental Journal of Mathematics and Mathematical Sciences*, 8(2), 59-65 (2017).
6. C. Dorsett, Weakly P Properties., *Fundamental Journal of Mathematics and Mathematical Sciences*, 3(1), 83-90 (2015).
7. C. Dorsett, Infinitely Many New Characterizations of Urysohn, T_3, $T_{(3(\frac{1}{2}))}$, Weakly Urysohn, Regular, and Completely Regular Obtained by Applying Properties of T_0-Identification Spaces, T_0, and T_0-Identification P Properties, *Journal of Mathematical Sciences: Advances and Applications*, 43, 19-29 (2017).
8. C. Dorsett, Another Look at Topological Product Properties and Examples, accepted by *Fundamental Journal of Mathematics and Mathematical Sciences*.
9. C. Dorsett, Another Look at Topological Subspace Properties and Examples, accepted by *Journal of Mathematical Sciences: Advances and Applications*.
10. C. Dorsett, Complete Characterizations of Weakly Po and Related Properties, *Journal of Mathematical Sciences: Advances and Applications*, 45, 97-109 (2017).
11. C. Dorsett, Another Important Use of “Not-P”, where P is a topological Property, *Pioneer Journal of Mathematics and Mathematical Sciences*, 18(2), 97-99 (2016).
12. W. Dunham, Weakly Hausdorff Spaces, *Kyungpook Math. J.*, 15(1), 41-50 (1975).
13. N. Shanin, On Separations in Topological Spaces, *Akademiia Nauk SSSR Comptes Rendus (Doklady)*, 38, 110-113 (1943).
14. M. Stone, Applications of Boolean Algebras to Topology, Mat. Sb., 1, 765-771 (1936).