Tan spot caused by the fungus *Pyrenophora tritici-repentis* is a serious disease of wheat, which is on increase in recent years in Mediterranean region. In the field this fungus produces a diamond-shaped necrotic lesions with a yellow halo on wheat foliage. The objective of this study was to characterize and compare several monospore isolates of *P. tritici-repentis* collected from different infected wheat fields in various locations of Algeria, and find the morphological differences between them, if any. The results revealed wide morphologically variation among the isolates based on colony colors and texture, mycelial radial growth and conidial size.

Keywords: morphological variability, mycelia growth, *Pyrenophora tritici-repentis*, spore

Handling Associate Editor: Lee, Jungkwan
on wheat in various geographical regions of Algeria. This would be a prerequisite for a further population analysis of pathogen virulence and that ultimately would help in evaluation wheat cultivars for tan spot resistance grown in Algeria.

The objective of the present study was to characterize and compare several monospore isolates of *P. tritici-repentis*, collected from different infected wheat fields from various locations of Algeria, to find the morphological culture differences among them, if any.

Materials and Methods

Collection of isolates. In a previous study (Benslimane et al., 20110)

Isolate	Province	Location	Isolate	Province	Location
Ptr1	Mila	Oued Otmania	Ptr11	Oued-Elalaiaig	
Ptr19	Mila	Oued Otmania	Ptr34	Bouira	Tagherzourt
Ptr20	Ain-Tinn		Ptr7		
Ptr41	Azzeba Lotfi		Ptr12	Ain-Sbara	
Ptr45	Gramem Gouda		Ptr35		
Ptr2	Aïn Defla	Oued-Abbas	Ptr61	Oued-El Berdi	
Ptr3	Benbechir		Ptr62		Ain-Aloui
Ptr25	Djendel area1		Ptr63		Oued Elkhali
Ptr46	Djendel area 2		Ptr64		El-hachimia
Ptr6	Djendel area 3		Ptr65		Said Abid
Ptr51	M’herza		Ptr66		Ain Bessam area 1
Ptr4	Tipaza	Berboucha	Ptr48		
Ptr9	Cherchell		Ptr53		Ain-Sbaa
Ptr16	Hamr El Ain area 1		Ptr80		Ain Bessam area 2
Ptr24	Laadjel Hela		Ptr81		Ain Bessam area 3
Ptr27	Hamr El Ain area 2		Ptr82		Ain Bessam area 4
Ptr28	Hadjout		Ptr29	Ghelma	ITGC
Ptr5	Alger	ENSA – El-Harrach	Ptr22		ITGC
Ptr18	ITGC – El-Harrach		Ptr23	Tizi-ouzou	Iaazougen
Ptr10	ITGC – Oued-Smar		Ptr30	Azazga	
Ptr77	ITGC – Oued-Smar		Ptr54		Fredja
Ptr78	ITGC – Oued-Smar		Ptr31	Setif	Ain Tabahraot
Ptr79	ITGC – Oued-Smar		Ptr32	Medea	Ain Sabra
Ptr33	ITGC – Oued-Smar		Ptr38		Berouagia
Ptr50	ENSA – El-Harrach		Ptr42		Beni-Sliman
Ptr55	ITGC – Oued-Smar		Ptr67	Tipaza	
Ptr56	ITGC – Oued-Smar		Ptr68		
Ptr57	ITGC – Oued-Smar		Ptr47	Berbouch	
Ptr13	Constantine	Ibn Ziad	Ptr40	Hadjout	
Ptr39	Benihamiden		Ptr49	Sidi Rached	
Ptr52	Beni-Mestina		Ptr26	Maskara	
Ptr8	Didouche Mourad		Ptr60	Boumerdès	Area 1
Ptr43	Tadis		Ptr69	Area 2	
Ptr36	El-khroub		Ptr70	Area 3	
Ptr37	Ibn Ziad		Ptr71	Area 4	
Ptr14	Bejaia	Ahnîf	Ptr72	Area 5	
Ptr15	El-Kseur area 1		Ptr73	Hamr El-Ani	
Ptr21	El-Kseur area 2		Ptr74	Hamr El-Ani	
Ptr44	Ighzer Ouakar		Ptr75	Hamr El-Ani	
Ptr17	Blida	Moziaia	Ptr76	Hamr El-Ani	

ENSA, École Nationale Supérieure d’Agronomie; ITGC, Institut Technique des Grandes Cultures; -, not available.
Morphological Characteristics of *P. tritici-repentis* al., 2011), eighty-two mono-conidial isolates of *P. tritici-repentis* were recovered from *Triticum aestivum* and *T. durum* diseased leaves sample. The samples were collected from different geographical wheat growing regions of in Algeria (Table 1, Fig. 1). Briefly, leaf spotted area were cut into 3 cm pieces, surface sterilized in 5% hypochlorite solution for 3 min, then rinsed thrice in sterile water (5 min each time). The fragments were blotted on tissue paper to remove the excess water and placed in Petri dishes with three layers of dampened Whatman filter paper. The plates were incubated at 22°C for 24 h under light then in dark for 24 h. Single conidia from conidiophores (Fig. 2) developing close to the edge of each lesion were transferred to potato dextrose agar (PDA).

Colony texture and color determination. All 82 isolates were grown individually on PDA in plastic Petri dishes at 20°C in the dark. After one week, 5 mm diameter plugs were taken aseptically from the margins of actively growing cultures and placed fungus-side down in the center of fresh PDA dishes. Each isolate was replicated 4 times. Petri dishes were incubated in dark at 20°C, and then macroscopic characters (color, sector, and texture) of each colony were recorded after 7 days. PDA was choosing for this step and the next, because it is commonly used for the isolation and growth of wide range of fungi in laboratories.

Mycelial radial growth evaluation. All isolate hyphal growths were determined on PDA medium. To assess the effects of temperature on *in vitro* colony radial growth, small plugs, 5 mm in diameter were transferred singly to 9 cm Petri dishes containing PDA. Cultures were incubated in the dark at three temperatures (20°C, 25°C, and 30°C), mycelium radial growth was recorded for each isolate in mm at 24 h interval until the colonies had reached the plate edge. Four diameters of linear growth of each plate were measured at right angles to each other and the values were averaged. Four replications (one plate/rep) were used for each isolate and for each temperature. Means values were used to perform principal component analysis using STATISTICA software (StatSoft Inc., Tulsa, OK, USA).

Conidia characteristics identification. To determine whether any differences in conidial width and length exist within or among the isolates, 42 isolates were selected randomly and spores were produced of each isolate following the protocols of Lamari and Bernier (1989). Small

Fig. 1. Map of wheat growing areas in Algeria showing the 14 provinces where *Pyrenophora tritici-repentis* isolates were collected. 1, Mascara; 2, Ain Defla; 3, Tipaza; 4, Médéa; 5, Blida; 6, Algiers; 7, Bouira; 8, Boumerdès; 9, Tiziouzou; 10, Bejaia; 11, Sétif; 12, Mila; 13, Skikda; 14, Constantine; 15, Guelma.

Fig. 2. Conidia (a) and conidiophores (b) developed on tan spot infected wheat leaf surface.

Fig. 3. Culture of *Pyrenophora tritici-repentis* on potato dextrose agar showing a gray-green thick fluffy mycelium.
plugs, 0.5 cm in diameter, from 8 day culture were transferred singly to 9 cm Petri plates, containing V8-PDA. The cultures were incubated in the dark until the colonies reached 4 cm in diameter. The cultures were then flooded with sterile distilled water and the mycelium flattened with the bottom of flamed test tube. After the water was decanted, the cultures were subjected to a regime of 18 h of light at room temperature followed by 24 h of dark at 15°C. Conidia size (length, width) and septation number of 50 spores/each isolate were counted under 40× magnifications with the aid of ocular and stage micrometer in compound microscope. Spore measurements were compared among the isolates and data were analyzed statistically by ANOVA method using SPSS software (SPSS Inc., Chicago, IL, USA).

Results

Colony texture and color. The *P. tritici-repentis* isolates used in this study varied in colony color and mycelium compactness. Cultures growth on PDA medium showed

Fig. 4. Culture of *Pyrenophora tritici-repentis* on potato dextrose agar depicting a cottony whitish mycelial growth.

Fig. 5. Underside green colony color of the culture grown on potato dextrose agar.

Fig. 6. Fourteen-day-old *Pyrenophora tritici-repentis* culture showing black spherical mycelia aggregations (arrows).

Fig. 7. Changing into orange color (arrows) observed in *Pyrenophora tritici-repentis* subcultures maintained on potato dextrose agar medium.
usually a thick cottony mycelium sometimes fluffy, often gray-green (Fig. 3), and rarely whitish (Fig. 4). Under-side the colony color was green (Fig. 5). The old cultures about two weeks showed black spherical mycelia aggregations (Fig. 6). Moreover, we found that when the mycelium color became orange, the isolates lost the ability to produce spores as a result of a repeated sub-culture in PDA medium (Fig. 7).

Mycelial radial growth. The results on radial growth of all isolates colonies at different temperatures showed that the mycelium growth is temperature depended (Table 2). It was observed that the temperature range of 25–30°C was optimum for mycelial growth of *P. tritici-repentis* on PDA. Indeed, most of the isolates (57) showed a better (3.72–6.95 mm) growth at 25°C; however, some (10) of the isolates grew better at 30°C. Only five isolates (Ptr16, Ptr20, Ptr41, Ptr48, and Ptr72) grew (3.45–5.55 mm) better at 20°C. Based on radial growth at the three different temperatures, the principal component analysis catego-

Table 2. Daily means growth (mm) of *Pyrenophora tritici-repentis* mycelia at different temperatures

Isolate	20°C	25°C	30°C	Isolate	20°C	25°C	30°C
Ptr1	4.40	4.65	5.16	Ptr37	2.00	2.74	4.43
Ptr2	3.74	4.87	4.28	Ptr38	3.80	6.50	5.06
Ptr3	3.62	4.66	4.20	Ptr39	4.40	6.65	4.93
Ptr4	4.00	4.75	4.28	Ptr40	4.40	5.42	4.33
Ptr5	2.05	2.33	2.45	Ptr41	3.81	3.00	3.31
Ptr6	2.95	4.66	3.45	Ptr42	5.12	5.66	3.66
Ptr7	3.45	4.75	5.71	Ptr43	4.19	6.10	3.45
Ptr8	4.66	5.24	5.00	Ptr44	1.91	4.30	2.50
Ptr9	2.46	5.60	4.51	Ptr45	4.00	5.78	5.62
Ptr10	4.75	3.12	4.83	Ptr46	5.56	6.05	4.15
Ptr11	4.60	5.50	5.66	Ptr47	5.00	5.88	3.49
Ptr12	1.70	3.74	3.04	Ptr48	5.55	5.45	3.16
Ptr13	3.93	4.85	4.62	Ptr49	4.16	5.45	2.80
Ptr14	4.49	3.35	4.85	Ptr50	5.03	5.85	4.41
Ptr15	2.91	3.41	3.07	Ptr51	2.75	5.80	2.62
Ptr16	4.31	3.25	3.33	Ptr52	5.41	5.66	4.83
Ptr17	2.21	4.37	3.37	Ptr53	4.95	5.60	3.95
Ptr18	4.37	4.87	5.37	Ptr54	3.86	6.15	4.70
Ptr19	4.81	5.00	3.03	Ptr55	5.02	5.85	4.90
Ptr20	3.45	3.12	2.66	Ptr56	5.00	6.25	4.16
Ptr21	5.30	5.6	5.33	Ptr57	5.00	6.00	4.66
Ptr22	1.83	4.7	5.33	Ptr58	5.00	5.80	4.66
Ptr23	5.10	5.65	5.56	Ptr59	5.00	5.60	4.80
Ptr24	4.80	5.80	4.87	Ptr60	4.02	5.80	3.66
Ptr25	3.75	6.00	3.44	Ptr61	3.07	4.75	4.12
Ptr26	4.8	6.49	1.49	Ptr62	4.63	5.30	5.70
Ptr27	2.33	4.95	1.58	Ptr63	4.24	5.00	3.12
Ptr28	3.37	5.90	3.45	Ptr64	1.77	2.90	4.28
Ptr29	2.40	6.10	5.04	Ptr65	4.49	4.75	4.16
Ptr30	3.70	6.60	5.46	Ptr66	3.41	4.80	3.24
Ptr31	4.60	6.15	4.24	Ptr67	2.44	5.75	5.28
Ptr32	4.75	6.95	4.64	Ptr68	5.00	5.80	2.50
Ptr33	4.70	6.60	4.97	Ptr69	4.70	6.06	3.49
Ptr34	1.50	4.75	4.93	Ptr70	4.57	5.15	2.28
Ptr35	3.20	5.15	4.74	Ptr71	2.31	4.37	2.50
Ptr36	5.00	6.90	4.20	Ptr72	4.44	3.87	4.00
rized the isolates into six groups (Fig. 8); some of these
groups stand out more than others; such as the group
consisting of a single isolate Ptr6, or the group combining
Ptr52 and Ptr64 (Table 1).

Even the different analyses of the results of mycelia
growth showed that there was some difference between
the studied isolates, the effect of temperatures, expressed
trough the radial growth, showed that the difference or
the approximation among studied isolates, seems to have
no relationship with the geographical origin of the iso-
lates. It was found that pathogen population in closely
located fields or in the same, consisted of specimens of
large phenotypical variability. Otherwise, it does not
show any relationship with the climate of the area from
where the sample was collected. In deed in Fig. 8, we can
see isolates from different geographical regions grouped
together, as well as other isolates from nearby areas clas-
sified statistically in groups far away each other.

Conidia characteristics. *P. tritici-repentis* isolates pro-
duced abundant conidia on V8-PDA which were consis-
tent in morphology. Significant differences were founded
in conidial length and number of cells among the isolates
(*P* = 0.000). Dimensions of the conidia for each isolate
are presented in Fig. 9 and Fig. 10. Average conidial
length was maximum (217.67 μm) in isolate Ptr10 and

Fig. 8. Groups of isolates as reveled by the principal component
analysis based on mycelia radial growth at three different tem-
peratures.

Fig. 9. Conidial length variation among 42 *Pyrenophora tritici-repe-
antis* isolates.

Fig. 10. Variation in number of conidial septa of 42 *Pyrenophora tritici-repentis* isolates.
minimum (117.15 µm) in Ptr71 whereas the number of septa varied from 11.52 in isolates Ptr11 to 5.42 in isolate Ptr21. However, no significant variation was observed in conidial width; only two values were founded 15.6 µm and 18.2 µm.

Discussion

The results of the present study revealed wide morphological variation among P. tritici-repentis isolates based on colony color and texture, mycelial radial growth, and conidial size prevalent on wheat in Algeria. Several researchers observed variation in mycelia color and colony morphology in P. tritici-repentis and its related species isolates collected from different geographical regions. Dos Santos et al. (2002) studied P. tritici-repentis, McDonald (1967) and Frazzon et al. (2002) studied Pyrenophora teres isolates, and observed significant morphological variation based on mycelial colony colors. Similar results were reported by Benslimane (2002) and Christensen and Graham (1934) when they studied Pyrenophora graminea isolates for their morphological variation. Hosford (1971) observed that P. tritici-repentis isolates lose their sporulation when the culture became orange colored due to frequent subculturing on PDA. This phenomenon also occurred frequently as sectoring in an otherwise typical colony and was not always associated with slower growth.

In Bipolaris sorokiniana isolates, Valim-Labres et al. (1997), Oliveira et al. (1998), and Matsumura (1991) observed and reported variability based on mycelium color and colony morphology grown on PDA. Some isolates exhibited white tufts while others showed fan shaped sectors, although the surface of all isolates was plain.

Conidia of Drechslera tactylidis significantly vary in length, diameter and number of septations (Zeiders, 1980). This also holds true for the closely related species B. sorokiniana, when 87 isolates representing different agro-ecological regions of Pakistan studied for morphological variation and observed differences in colony size and conidial color and size (Asad et al., 2009). Morphological variability is also common in several other plant pathogens population. In Fusarium oxysporum f.sp lentis, 32 isolates collected in western Algeria showed variability in the cultural colony appearance and size of conidia (Belabid, 2002). Similarly, 29 isolates of Sphaeropsis sapinea from Canada revealed several morphotypes based on their appearance of colony, their radial growth, and conidial size (Hausner et al., 1999).

Morphological variation within a taxon is well known in fungi (Harrington and Rizzo, 1999). For example it is known that the morphology of conidiophores and conidia in several asexual fungi is strongly influenced by the culture medium (Booth, 1971). Morphological characters are the main tool in identifying and describing of a species (Harrington and Rizzo, 1999). This is more useful for quantitative characters, because they can be used in defining species phylogeny (Luckow, 1995). Among the morphological quantitative characters in fungal species, spore size is probably the most commonly character used (Parmasto and Parmasto, 1992). However, if these characters have long been used to identify the pathogenic fungi and to compare the isolates of different origins, analysis has several major drawbacks. These characters are highly variable in many fungi, which limit the scope of their significance in determining population structures. Moreover, in general, these characters (with rare exceptions) cannot be a precise genetic analysis; genes involved in expression are being too numerous (Lourd, 1995).

In this study, we found that P. tritici-repentis isolates showed significant differences in many morphological characters such as spore size, colony color, etc. grown on the same medium and similar growing conditions. Obtaining fungal isolates information characterized for color, growth, and spore size facilitates further research in the fungus in a multitude of discipline. For example, to study the genetics of a fungus or its interaction with a host, mutants of the fungus are produced. However, to determine if mutagenesis altered these characters, the range of variation in the original isolates for each character must be determined. In addition, isolates with defined characteristics would facilitate studies involving the epidemiology of tan spot.

References

Adee, E. A. and Pfender, W. F. 1989. The effect of primary inoculum levels of Pyrenophora tritici-repentis on tan spot epidemic development of wheat. Phytopathology 79:873-877.

Ali, S. and Franch, L. 1998. Race structure of Pyrenophora tritici-repentis isolates from wheat and grasses in the US Great Plains. Phytopathology 88:S114.

Ali, S., Gurung, S. and Adhikari, T. B. 2010. Identification and characterization of novel isolates of Pyrenophora tritici-repentis from Arkansas. Plant Dis. 94:229-235.

Asad, S., Ifthikhar, S., Munir, A. and Ahmad, I. 2009. Characterization of Bipolaris sorokiniana isolated from different agro-ecological zones of wheat production in Pakistan. Pak. J. Bot. 41:301-308.

Belabid, L. 2002. La Fusariose vasculaire de la lentille (Lens culinaris Med.) dans le nord-ouest algérien: morphologie et diversité génétique chez Fusarium oxysporum (Schlecht.) Emend. S. & H. f. sp. lentis (Vasud. & Srin.) en relation avec la repartition géographique et le pouvoir pathogène. Ph.D. thesis. Université d’Oran, Oran, Algeria.
Benslimane, H., Bouznad, Z., Aouali, S., Khalfi, A., Benbelkacem, A. and Sayoud, R. 2006. Prévalence de la tache bronzée à l’égard de cinq génotypes d’orge. Master thesis. Institut National Agronomique, Alger, Algeria.

Benslimane, H., Lababidi, S., Yahyaoui, A., Ogbonnaya, F., da Luz, W. C. and Bergstrom, G. C. 1986. Effect of temperature in resistance. Phytopathology 76:747-755.

Hunger, R. M. and Brown, D. A. 1987. Colony color, growth, fungicide sensitivity, and pathogenicity of Pyrenophora tritici-repentis. Plant Dis. 71:907-910.

Krupinsky, J. M. 1992. Grass hosts of Pyrenophora tritici-repentis. Plant Dis. 76:92-95.

Lamari, L. and Bernier, C. C. 1989. Evaluation of wheat lines and cultivars to tan spot [Pyrenophora tritici-repentis] based on lesion type. Can. J. Plant Pathol. 11:49-56.

Lamari, L. and Bernier, C. C. 1991. Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis. Phytopathology 81:1092-1095.

Leisová, L., Hanzalová, A. and Kucera, L. 2008. Genetic diversity of Pyrenophora tritici-repentis isolates as revealed by AFLP analysis. J. Plant Pathol. 90:233-245.

Lourd, M. 1995. Diversité génétique des populations de parasites des plantes: structures des populations et analyse de la diversité. In: Modélisation en protection des cultures, ed. by S. Savary, pp. 172-186. Académie d’Agriculture de France, Paris, France.

Luckow, M. 1995. Species concepts: assumptions, methods, and applications. Syst. Bot. 20:589-605.

Marshall, D. 2009. Disease which challenge global wheat production powdery mildew and leaf and head blight. In: Wheat: science and trade, ed. by B. F. Carver, pp. 155-168. Wiley-Blackwell, Ames, IA, USA.

Matsumura, A. T. S. 1991. Variabilidad intraespecífica quanto a patogenicidade, característica de cultura e padrão isoenzimático em populações naturais de Bipolaris sorokiniana (Helminthosporium sativum). Ph.D. thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

McDonald, W. C. 1967. Variability and inheritance of morphological mutants in Pyrenophora teres. Phytopathology 57:747-755.

Mielke, H. 1999. Studien zur biologie des erregers drechslera tritici-repentis, zur anfelligkeit des Weizens und verschiedener artverwandten sowie zur Bekämpfung der DTR-Weizenblattdürre. Parey Buchverlag, Berlin, Deutschland.

Misra, A. P. and Singh, R. A. 1972. Pathogenic differences amongst three isolates of Helminthosporium sativum and the performance of wheat varieties against them. Indian Phytopathol. 25:350-353.

Moreno, M. V., Stenglein, S. A., Ballati, P. A. and Perello, A. E. 2008. Pathogenic and molecular variability among isolates of Pyrenophora triticida, causal agent of tan spot of wheat in Argentina. Eur. J. Plant Pathol. 122:239-252.

Morrall, R. A. A. and Howard, R. J. 1975. The epidemiology of leaf spot disease in a native prairie. I. The progression of disease with time. Can. J. Bot. 53:1040-1050.

Howard, R. J. and Morrall, R. A. A. 1975. Colony color, growth, fungicide sensitivity, and pathogenicity of Pyrenophora tritici-repentis. Plant Dis. 71:907-910.

Krupinsky, J. M. 1992. Grass hosts of Pyrenophora tritici-repentis. Plant Dis. 76:92-95.

Lamari, L. and Bernier, C. C. 1989. Evaluation of wheat lines and cultivars to tan spot [Pyrenophora tritici-repentis] based on lesion type. Can. J. Plant Pathol. 11:49-56.

Lamari, L. and Bernier, C. C. 1991. Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis. Phytopathology 81:1092-1095.

Leisová, L., Hanzalová, A. and Kucera, L. 2008. Genetic diversity of Pyrenophora tritici-repentis isolates as revealed by AFLP analysis. J. Plant Pathol. 90:233-245.

Lourd, M. 1995. Diversité génétique des populations de parasites des plantes: structures des populations et analyse de la diversité. In: Modélisation en protection des cultures, ed. by S. Savary, pp. 172-186. Académie d’Agriculture de France, Paris, France.

Luckow, M. 1995. Species concepts: assumptions, methods, and applications. Syst. Bot. 20:589-605.

Marshall, D. 2009. Disease which challenge global wheat production powdery mildew and leaf and head blight. In: Wheat: science and trade, ed. by B. F. Carver, pp. 155-168. Wiley-Blackwell, Ames, IA, USA.

Matsumura, A. T. S. 1991. Variabilidad intraespecífica quanto a patogenicidade, característica de cultura e padrão isoenzimático em populações naturais de Bipolaris sorokiniana (Helminthosporium sativum). Ph.D. thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

McDonald, W. C. 1967. Variability and inheritance of morphological mutants in Pyrenophora teres. Phytopathology 57:747-755.

Mielke, H. 1999. Studien zur biologie des erregers drechslera tritici-repentis, zur anfelligkeit des Weizens und verschiedener artverwandten sowie zur Bekämpfung der DTR-Weizenblattdürre. Parey Buchverlag, Berlin, Deutschland.

Misra, A. P. and Singh, R. A. 1972. Pathogenic differences amongst three isolates of Helminthosporium sativum and the performance of wheat varieties against them. Indian Phytopathol. 25:350-353.

Moreno, M. V., Stenglein, S. A., Ballati, P. A. and Perello, A. E. 2008. Pathogenic and molecular variability among isolates of Pyrenophora triticida, causal agent of tan spot of wheat in Argentina. Eur. J. Plant Pathol. 122:239-252.

Morrall, R. A. A. and Howard, R. J. 1975. The epidemiology of leaf spot disease in a native prairie. I. The progression of disease with time. Can. J. Bot. 53:1040-1050.
Morphological Characteristics of *P. tritici-repentis*

- Parmasto, E. and Parmasto, I. 1992. Size and shape of basidiospores in the Hymenomycetes. *Mycol. Helv.* 5:47-78.
- Rees, R. G., Platz, G. J. and Mayer, R. J. 1982. Yield losses in wheat from yellow spot: comparison of estimates derived from single tillers and plots. *Aust. J. Agric. Res.* 33:899-908.
- Schilder, A. M. C. and Bergstrom, G. C. 1990. Variation in virulence within the population of *Pyrenophora tritici-repentis* in New York. *Phytopathology* 80:84-90.
- Singh, P. K. and Hughes, G. R. 2006. Genetic similarity among isolates of *Pyrenophora tritici-repentis*, causal agent of tan spot of wheat. *J. Phytopathol.* 154:178-184.
- Sutton, J. C. and Vyn, T. J. 1990. Crop sequences and tillage practices in relation to diseases of winter in Ontario. *Can. J. Plant Pathol.* 12:358-368.
- Valim-Labres, M. E., Prestes, A. M., Van der Sand, S. and Matsumura, A. T. S. 1997. Variação no aspecto cultural, morfologia e virulência em isolados de *Bipolaris sorokiniana* de trigo. *Fitopatol. Bras.* 22:483-487.
- Wiese, M. V. 1987. Tan spot (yellow leaf spot). In: *Compendium of wheat diseases*, ed. by M. V. Wiese, pp. 42-43. APS Press, St. Paul, MN, USA.
- Wolf, P. 1991. Biologie, Epidemiologie Schadrelevanz, Konzeption für ein integrierte Bekämpfung von *Drechslera tritici-repentis* (Died.) Drechs. dem Erreger einer Blattfleck- enkrankheit an Weizen. Ph.D. thesis. TU München, Weihenstephan, Germany.
- Wolf, P. F. J. and Hoffmann, G. M. 1993. Biological studies on *Drechslera tritici-repentis* (Died.) Shoem. (teleomorph *Pyrenophora tritici-repentis* (Died.) Dreschsler) the causal agent of a leaf spot disease on wheat. *Z. Pflanzenkrankh. Pflanzenschutz* 100:33-48.
- Wright, K. H. and Sutton, J. C. 1990. Inoculum of *Pyrenophora tritici-repentis* in relation to epidemics of tan spot of winter in Ontario. *Can. J. Plant Pathol.* 12:149-157.
- Zeiders, K. E. 1980. A variable-spored isolate of *Drechslera dactylidis* pathogenic on orchardgrass and corn. *Plant Dis.* 64:211-213.