Macronuclear Genome Sequence of the Ciliate Tetrahymena Thermophila, a Model Eukaryote

Jonathan A. Eisen
Institute For Genomic Research

Robert S. Coyne
Institute For Genomic Research

Martin Wu
Institute For Genomic Research

Dongying Wu
Institute For Genomic Research

Mathangi Thiagarajan
Institute For Genomic Research

Follow this and additional works at: https://epublications.marquette.edu/bio_fac

Part of the Biology Commons
See next page for additional authors

Recommended Citation
Eisen, Jonathan A.; Coyne, Robert S.; Wu, Martin; Wu, Dongying; Thiagarajan, Mathangi; Wortman, Jennifer R.; Badger, Jonathan H.; Ren, Qinghu; Amedeo, Paolo; Jones, Kristie M.; Tallon, Luke J.; Delcher, Arthur L.; Salzberg, Steven L.; Silva, Joana C.; Haas, Brian J.; Majoros, William H.; Farzad, Maryam; Carlton, Jane M.; Smith, Roger K.; Garg, Jyoti; Pearlman, Ronald E.; Karrer, Kathleen M.; Sun, Lei; Manning, Gerard; Elde, Nels C.; Turkewitz, Aaron P.; Asai, David J.; Wilkes, David E.; Wang, Yufeng; Cai, Hong; Collins, Kathleen; Stewart, B. Andrew; Lee, Suzanne R.; Wilamowska, Katarzyna; Weinberg, Zasha; Ruzzo, Walter L.; Wloga, Dorota; Gaertig, Jacek; Frankel, Joseph; Tsao, Che-Chia; Gorovsky, Martin A.; Keeling, Patrick J.; Waller, Ross F.; Patron, Nicola J.; Cherry, J. Michael; Stover, Nicholas A.; Krieger, Cynthia J.; del Toro, Christina; Ryder, Hilary F.; Williamson, Sondra C.; Barbeau, Rebecca A.; Hamilton, Eileen P.; and Orias, Eduardo, "Macronuclear Genome Sequence of the Ciliate Tetrahymena Thermophila, a Model Eukaryote" (2006). Biological Sciences Faculty Research and Publications. 8. https://epublications.marquette.edu/bio_fac/8
Authors
Jonathan A. Eisen, Robert S. Coyne, Martin Wu, Dongying Wu, Mathangi Thiagarajan, Jennifer R. Wortman, Jonathan H. Badger, Qinghu Ren, Paolo Amedeo, Kristie M. Jones, Luke J. Tallon, Arthur L. Delcher, Steven L. Salzberg, Joana C. Silva, Brian J. Haas, William H. Majoros, Maryam Farzad, Jane M. Carlton, Roger K. Smith, Jyoti Garg, Ronald E. Pearlman, Kathleen M. Karrer, Lei Sun, Gerard Manning, Nels C. Elde, Aaron P. Turkewitz, David J. Asai, David E. Wilkes, Yufeng Wang, Hong Cai, Kathleen Collins, B. Andrew Stewart, Suzanne R. Lee, Katarzyna Wilamowska, Zasha Weinberg, Walter L. Ruzzo, Dorota Wloga, Jacek Gaertig, Joseph Frankel, Che-Chia Tsao, Martin A. Gorovsky, Patrick J. Keeling, Ross F. Waller, Nicola J. Patron, J. Michael Cherry, Nicholas A. Stover, Cynthia J. Krieger, Christina del Toro, Hilary F. Ryder, Sondra C. Williamson, Rebecca A. Barbeau, Eileen P. Hamilton, and Eduardo Orias

This article is available at e-Publications@Marquette: https://epublications.marquette.edu/bio_fac/8
Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

Jonathan A. Eisen1,2a, Robert S. Coyne1, Martin Wu1, Dongying Wu1, Mathangi Thiagarajan1, Jennifer R. Wortman1, Jonathan H. Badger1, Qingu Ren1, Paolo Amedeo2, Kristie M. Jones3, Luke J. Tallon1, Arthur L. Delcher1b, Steven L. Salzberg1b, Joana C. Silva1, Brian J. Haas1, William H. Majoros1c, Maryam Farzad1d, Jane M. Carlton1e, Roger K. Smith Jr.1f, Jyoti Garg2, Ronald E. Pearlman2,3, Kathleen M. Karrer4, Lei Sun4, Gerard Manning5, Nels C. Elde6, Aaron P. Turkewitz4, David J. Asai7, David E. Wilkes8, Yufeng Wang9, Hong Cai9, Kathleen Collins10, B. Andrew Stewart10, Suzanne R. Lee10, Katarzyna Wilamowska11, Zasha Weinberg11, Walter L. Ruzzo11, Dorota Wloga12, Jacek Gaertig12, Joseph Frankel13, Che-Chia Tsao14, Martin A. Gorovsky14, Patrick J. Keeling15, Ross F. Waller15,16, Nicola J. Patron15,16, J. Michael Cherry16, Nicholas A. Stover16, Cynthia J. Krieger16, Christina del Toro17, Hilary F. Ryder17, Sondra C. Williamson17, Rebecca A. Barbeau17, Eileen P. Hamilton17, Eduardo Orrias17

1 The Institute for Genomic Research, Rockville, Maryland, United States of America, 2 Department of Biology, York University, Toronto, Ontario, Canada, 3 Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada, 4 Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America, 5 Razavi-Newman Center for Bioinformatics, The Salk Institute for Biological Studies, San Diego, California, United States of America, 6 Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America, 7 Department of Biology, Harvey Mudd College, Claremont, California, United States of America, 8 Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America, 9 Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America, 10 Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California, United States of America, 11 Department of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America, 12 Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America, 13 Department of Biological Sciences, University of Iowa, Iowa City, Iowa, United States of America, 14 Department of Biology, University of Rochester, Rochester, New York, United States of America, 15 Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada, 16 Department of Genetics, Stanford University, Stanford, California, United States of America, 17 Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America

The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.

Introduction

Tetrahymena thermophila is a single-celled model organism for unicellular eukaryotic biology [1]. Studies of T. thermophila (referred to as T. pyriformis variety 1 or syngen 1 prior to 1976 [2]) have contributed to fundamental biological discoveries such as catalytic RNA [3], telomeric repeats [4,5], telomerase [6], and the function of histone acetylation [7]. T. thermophila is advantageous as a model eukaryotic system because it grows rapidly to high density in a variety of media and conditions, its life cycle allows the use of conventional tools of genetic analysis, and molecular genetic tools for sequence-enabled experimental analysis of gene function have been developed [8,9]. In addition, although it is unicellular, it possesses many core processes conserved across a wide diversity of eukaryotes (including humans) that are not found in other single-celled model systems (e.g., the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe).

T. thermophila is a member of the phylum Ciliophora, which also includes the genera Paramecium, Oxytricha, and Ichthyoph-
A cartoon showing the phylogenetic position of *T. thermophila* relative to other eukaryotes for which the genomes have been sequenced is shown in Figure 1. The ciliates are one of three major evolutionary lineages that make up the alveolates. The other two lineages are dinoflagellates and the exclusively parasitic apicomplexa, which includes the *Plasmodium* species that cause malaria. Although experimental tools are improving for the apicomplexa [10–12], they can still be challenging to work with, and in some situations *T. thermophila* can serve as a useful “distant cousin” model for this group [13].

As is typical of ciliates, *T. thermophila* cells exhibit nuclear dimorphism [14]. Each cell has two nuclei, the micronucleus (MIC) and the macronucleus (MAC), containing distinct but closely related genomes. The MIC is diploid and contains five pairs of chromosomes. It is the germline, the store of genetic information for the progeny produced by conjugation in the sexual stage of the *T. thermophila* life cycle. Conjugation involves meiosis, fusion of haploid MIC gametes to produce a new zygotic MIC, and differentiation of new MACs from mitotic copies of the zygotic MIC (for details, see [15]). After formation of the MAC, cells reproduce asexually until the next sexual conjugation. During this asexual growth, all gene expression occurs in the MAC, which is thus considered the somatic nucleus.

The MAC genome derives from that of the MIC, but the two genomes are quite distinct. During MAC differentiation, several types of developmentally programmed DNA rearrangements occur [16,17] (Figure 2). One such rearrangement is the deletion of segments of the MIC genome known as internally eliminated sequences (IESs). It is estimated that approximately 6,000 IESs are removed, resulting in the MAC genome being an estimated 10% to 20% smaller than that of the MIC [18]. A key aspect of the process is the preferential removal of repetitive DNA, which results in 90% to 100% of MIC repeats being eliminated [19,20]. Thus the process can be considered analogous to and more extreme than other forms of repeat element silencing phenomena such as repeat-induced point mutation (RIP) in *Neurospora* and heterochromatin formation [21,22]. A second programmed DNA rearrangement is the site-specific fragmentation at each location of the 15–base pair (bp) chromosome breakage sequence (Cbs) [23–25]. During fragmentation, sections of the MIC genome containing each Cbs, as well as up to 30 bp on either side, are deleted [26]. Telomeres are then added to each new end [27], generating some 250 to 300 MAC chromosomes [28,29].

Another process that occurs during MAC differentiation is the amplification of the number of copies of the MAC chromosomes. The tDNA chromosome, which encodes the 5.8S, 17S, and 26S rRNAs, is maintained at an average of 9,000 copies per MAC [30]. Six other chromosomes that have been examined are each maintained at an average of 45 copies per MAC [31]. During asexual reproduction, the MAC divides amitotically, with apparently random distribution of chromosome copies that behave as if acentromeric. In contrast, MIC chromosomes are metacentric [32] and are distributed mitotically [33,34]. Parental MAC DNA is not transmitted to sexual progeny, although it does have an epigenetic influence on postzygotic MAC genome rearrangement, mediated by RNA interference [35].

The *Tetrahymena* research community has coordinated an effort to develop genomic tools for *T. thermophila* [9,36]. The MAC genome was selected for initial sequencing because it contains all the expressed genes and because the complexity of the assembly process was expected to be reduced due to the lower amounts of repetitive DNA. These advantages, however, are countered by some complexities not seen in other eukaryotic genome projects, including the presence of several hundred medium-sized to small chromosomes, the possibility of unequal copy number of at least some chromosomes, the existence of polymorphisms that are generated during MAC development, and the inability to completely separate the MIC from the MAC prior to DNA isolation.

We report here on the shotgun sequencing, assembly, and analysis of the MAC genome of *T. thermophila* strain SB210, an inbred strain B derivative that has been extensively used for genetic mapping and for the isolation of mutants. We discuss how the complexities of sequencing the MAC were successfully addressed, as well as the biological and evolutionary implications of our analysis of the genome sequence.
Results/Discussion

Genome Assembly and General Chromosome Structure

Sequencing and assembly. Using physical isolation methods, MAC were purified from a culture of *T. thermophila* strain SB210 and used to create multiple differentially sized shotgun sequencing libraries (Table S1). Construction of large (greater than 10 kb) insert libraries was not successful—a common problem in working with AT-rich genomes. Approximately 1.2 million paired end sequences were generated from the libraries and assembled using the Celera Assembler [37]. In an initial assembly, the mitochondrial genome (mtDNA; which was present due to some contamination of the MAC preparation with mitochondria) and the highly amplified rDNA chromosome did not assemble well compared to the published sequences of these molecules [38,39]. This was probably because contigs from these molecules had higher depths of coverage than those from other chromosomes, which caused the Celera Assembler to treat them as repetitive DNA. Thus we divided sequence reads into three bins (mtDNA, rDNA, and bulk MAC DNA) and generated assemblies for each bin separately. This resulted in a moderate improvement, and the three separate assemblies...
were thus used for all subsequent analyses. Detailed sequence and assembly information is presented in Tables 1 and S2.

The bulk MAC assembly contains 1,971 scaffolds (contigs that have been linked into larger pieces by mate pair information) with a total estimated span of 104.1 Mb. Perhaps most important, using a combination of computational and experimental identification of telomeres, we have found that many scaffold ends correspond to chromosome ends. One hundred twenty-five scaffolds, encompassing 44% of the assembled genome length, are telomere-capped at both ends and thus likely represent complete MAC chromosomes. One hundred twenty additional scaffolds, encompassing another 31% of the genome, are telomere-capped at one end (Tables 1 and S3).

Assembly accuracy and completeness. Overall, all analyses indicate that the bulk MAC assemblies are highly accurate. For example, all 75 MAC loci that are in distinct genetic coassortment groups (and thus should be on different chromosomes [40]) map to different scaffolds, and all pairs of loci that coassort (and thus should be on the same chromosome) either map to the same scaffold or to two non–fully capped scaffolds whose cumulative size is less than that of the corresponding MAC chromosome (Figure 3A). Finally, all of the 96 MIC sequences known to be adjacent to Cbs sites [24,41,42] that match to a MAC scaffold did so only at the scaffold’s end.

The general accuracy of the assemblies indicates that many of the potential difficulties discussed in the Introduction were not significant. For example, we see little evidence for polymorphism among reads, which is likely a reflection of the use of an inbred strain and the process of phenotypic assortment, which leads to whole-genome MAC homozygous lineages [43]. Also, searches for known MIC-specific sequences indicate that the amount of MIC contamination is very low (e.g., Cbs junctions are at 0.044× coverage which is approximately 200-fold less than the bulk MAC chromosomes) and limited to small contigs (most less than 5 kb). The uniform depth of contig coverage and accuracy of assemblies also suggest that the chromosomes are present in roughly similar copy number and that only limited amounts of repetitive DNA are present in the MAC, both of which are discussed further below.

The total scaffold length is much smaller than the predicted genome size of 180 to 200 Mb [14]. Given the accuracy of the assemblies, the large number of chromosomes partially or completely capped, and the fact that all (more than 200) known MAC DNA sequences are found in the assemblies, we conclude that the assemblies represent a very large (more than 95%) fraction of the genome. We conclude therefore that previous genome size estimates were inaccurate (which is not surprising given that they were made almost 30 years ago) and that the genome is close to 105 Mb in size. It is possible, however, that some chromosomes or regions were underrepresented in our libraries due to purification or cloning bias, and thus one cannot infer the absence of any particular gene or feature simply due to its absence from our current assemblies.

Table 1. Important Genome Statistics

Category	Number
Sequence reads	
Total	1,180,981
Reads in contigs	1,137,759 (96.3% of total)
Estimated coverage	9.08-fold
Contigs	
In scaffolds	2,955
Total bp in contigs	103,927,049 bp
Total bp in contigs > 10 kb	99,668,989 bp (95.9% of total)
Maximum contig size^a	715,652 bp
Scaffolds	
Total	1,971
Total bases in scaffolds	103,927,049 bp
Span of scaffolds	104,194,423 bp
Longest scaffold^b	2,214,258 bp
Average GC content^c	22%
Telomere reads and scaffolds	
Telomere-containing reads^b	4,058
Telomere reads linked to scaffold ends	3,328 (82% of total)
Telomere-capped scaffold ends	370 (82% of total)^q
Telomere coverage^e	8.99-fold
Scaffolds capped at both ends	125
Base pairs in two-cap scaffolds	45,191,229 (44% of total)
Scaffolds capped at only one end	120
Base pairs in one-cap scaffolds	31,827,449 (31% of total)

^aPotentially limited by natural fragmentation of the MAC genome.

^bNon-rDNA chromosomes.

^cFor telomere-capped ends.

^qAssuming a total of 450 ends (225 MAC chromosomes).

DOI: 10.1371/journal.pbio.0040286.t001

Estimating the number of MAC chromosomes. The total number of MAC chromosomes is unknown. The telomere-capping of scaffolds allows us to place a minimum boundary on this number at 185 (125 plus half of 220). One way of estimating the actual number is through analysis of the non-rDNA telomere-containing reads; 3,328 such reads can be linked to a total of 370 scaffold ends. This corresponds to approximately 9-fold coverage (3,328/370), which is not significantly different from the bulk MAC chromosome coverage of 9.08, indicating that there is no significant underrepresentation of telomere reads (Tables 1 and S3). Thus, since there are 4,058 such reads total (the others could not be linked), we estimate that there are approximately 451 telomere ends (4,058/9), and thus that there are approximately 225 chromosomes (451/2). An independent estimate of the actual chromosome number can be made by assuming that the size distribution of fully capped chromosomes (see Figure 3B) is representative of the genome as a whole. Since these 225 capped chromosomes represent 43.5% of the total assembly length, this would predict 287 chromosomes in total (125/0.455). This is likely to be an overestimate, since larger chromosomes are statistically less likely to be in the completely assembled set. Indeed, the average size of completely assembled chromosomes is 359 kb, whereas estimates of the average MAC chromosome size obtained through pulsed-field gel electrophoresis are substantially higher [29,41]. Thus, we conclude that there are between 185 and 287 chromosomes, most likely somewhere near 225.

Absence of many standard global features of eukaryotic chromosomes. We note that we searched for but could not
find many of what are considered standard global features of eukaryotic chromosomes. For example, we could not find sequence or structural features shared across multiple chromosomes that could be considered candidates for centromeric regions. This is consistent with experimental studies [44]. In addition, although in many eukaryotes certain genes and repeat elements cluster near telomeres [45–51], we cannot detect any such clustering here. This is not because there is no variation in these features; for example, GC content (Figure S1) and gene density (Figure S2) do vary greatly. Instead, the absence of similar global structure between MAC chromosomes is likely due to the absence of the processes that help generate the key features of normal eukaryotic chromosomes (e.g., mitosis and meiosis, which in T. thermophila are confined to the MIC).

MAC chromosome copy number is uniform. The high quality and completeness of the assemblies suggest that copy number variation among at least most MAC chromosomes is relatively small since otherwise the assembler would have treated contigs from overrepresented chromosomes as repetitive DNA. Such uniform copy number is consistent with genetic experimental data for six chromosomes [31], but its generality for all chromosomes has been unknown. We realized that the relative chromosome copy number could be estimated from depth of coverage in our assemblies (assuming that cloning and sequencing success were relatively random). When all scaffolds are examined, the depth of coverage is remarkably uniform (Figure 4). The decrease in uniformity and coverage seen as scaffold size decreases is likely a reflection of both chance low coverage of some regions and some of the small scaffolds being MIC contaminants. When only scaffolds capped by telomeres at both ends are included in the analysis, observed sequence coverage is even more uniform (red diamonds in Figure 4). Although we cannot rule out that some smaller, incompletely assembled chromosomes are maintained at different copy numbers, the observed uniformity indicates that the replication and/or segregation of most or all bulk MAC chromosomes is under coordinated regulation.

General Features of Predicted Protein Coding Genes and Noncoding RNAs

Protein coding gene predictions. We identified 27,424 putative protein-coding genes in the genome (Table 2), a high number for a single-celled species. These gene models were tested by aligning expressed sequence tags (ESTs) to the genome assemblies using PASA [52]. We note that most of these ESTs were generated after the models were built (Table S5). Of the 9,122 EST clusters identified, most have either no conflicts with the gene models (49.5%) or relatively small ones (17.7% have a missed exon and 9.8% suggest the models need to be merged or split). Only 408 (4.4%) clusters are intergenic relative to the gene models. Although these could represent
missed genes or gene regions, they could also be noncoding RNAs (ncRNAs) or genomic DNA contamination of cDNA libraries. In addition, the predicted and EST-derived introns are quite similar in size distribution except at the short and long extremes (Figure S3), GC content (16.3% versus 16.7%), and splice sites [only a small number (85) of EST-based introns have exceptions to the 5′-GT...AG-3′ junctions assumed by the model—these could simply be sequencing errors]. These analyses indicate that the gene models are relatively robust and should be more than sufficient for making general predictions about the coding potential of this species.

Two other lines of evidence suggest the predicted gene number is not inflated. First, a large number of the predicted genes have matches to known or predicted genes from other species (14,916 have a BLASTP match with an E-value better than 10\(^{-10}\)), and second, experimental studies of mRNA complexity predict transcription of at least 25,000 genes of an average size of 1,200 bp [53]. We also note that the sequence of the largest MAC chromosome of another ciliate, \textit{Paramecium tetraurelia}, indicates a high coding density, and extrapolation to the complete genome predicts at least 30,000 protein-coding genes [54].

\textbf{ncRNAs and the use of all 64 codons to code for amino acids.} The ncRNAs found in the genome are listed in Table S6. We call attention to a few new findings. Of the 174 putative 5S RNA genes (Table S6A), 19 do not correspond to any of the four previously reported \textit{T. thermophila} sequences [55,56]. These 19 differ from one another by single nucleotide substitutions at 34 positions, as well as by various insertions, deletions, and truncations and may represent pseudogenes. In addition, there are two forms of U2 snRNA present (Table S6C), which we have termed U2 (four genes) and U2var (five genes). Functional RNA gene families are expressed ubiquitously during the \textit{T. thermophila} life cycle and under stress conditions as well (representative data shown in Figure S4). The largest class is tRNAs with 700 identified (Tables S6B and S6D), a number consistent with hybridization-based estimates [57].

One of the more unusual features of \textit{T. thermophila} and certain other ciliates is the use of an alternative genetic code in which the canonical stop codons UAG and UAA code for glutamine [58]. The importance and age of this alternative code are reflected in the genome by the presence of 39 tRNAs for these codons. Remarkably, analysis of the genome has also revealed the presence of a tRNA that is predicted to decode the remaining stop codon, UGA. Multiple lines of evidence indicate that this is a functioning tRNA for selenocysteine (Sec), the so-called 21st amino acid. In those eukaryotic species that use Sec, most UGA codons still cause translation termination while those mRNAs that encode Sec-containing peptides have a characteristic stem-loop sequence motif in the 3′ UTR region that directs Sec incorporation [59,60]. The putative \textit{T. thermophila} tRNA-Sec was identified by analysis of the genome sequence and shown to be transcribed and acylated [61], and we have found that it is expressed and charged and that its charging may be under distinct regulatory control from other tRNAs (Figure S4A). In addition, we identified six \textit{T. thermophila} genes with in-frame UGA codons that align (after editing of the gene models) with known Sec codons of their homologs from other eukaryotic species and that have the stem-loop consensus and thus are likely to encode selenoproteins. Thus we conclude that UGA is almost certainly translated into Sec, which would make \textit{T. thermophila} the first organism known to use all 64 triplet codons to specify amino acid incorporation.

\textbf{Genome Evolution}

\textbf{Codon and amino acid usage bias.} Although \textit{T. thermophila} can use all 64 codons, it does not use all equally. The most significant aspect of the codon usage in this species is that the AT-rich codons tend to be used more frequently than others [62,63]. Thus although the AT bias in the genome is strongest in noncoding regions, where selection is thought to be relaxed, it is seen even in coding regions. In fact, the AT pull is so strong in coding regions that amino-acid composition of proteins is shifted toward those coded by codons with high AT content, as seen in other species with extreme AT bias (e.g., [64]). Although the overall codon usage is biased against GC-rich codons, on a gene-by-gene level there is significant variation in the degree of bias. We have identified two dominant patterns to this gene-by-gene variation. The major pattern is that for most genes, the codons used are simply a reflection of the overall AT content of the gene (Figure 5). The variation among genes is due to genomewide variation in AT content (see Figure 5A), although we have been unable to discern a mechanism underlying this variation (e.g., there is no clustering of high or low AT genes near telomeres). There is, however, a less common pattern in the gene-by-gene variation that is very important. There exists a subset of genes (shown in red) that use a common preferred codon set that is different from that of the average gene, and the codons in this set are not strongly correlated to the genes' AT content. Although the existence of such a preferred codon set for this species has been reported [62,63], analysis of the genome allows the set and the genes that use it to be more precisely defined. In total, using a relatively conservative cutoff (Figure 5B), we have identified 232 such genes.

The use of preferred codons by a gene is thought to allow for more efficient or accurate translation [65]. This appears to be the case here as, of the predicted genes using the preferred subset, many have likely housekeeping functions, and, although they account for only 0.85% of all predicted genes, 12.5% of all ESTs map to them (Table S7). Although some do not have EST matches and theoretically could represent falsely predicted genes, it seems unlikely that spurious genes would use the preferred codon set. Thus we predict that these outlier genes are either highly expressed (in at least some of the conditions normally encountered by the organism) or have some critical function requiring accurate translation.

Codon usage differences between genes are thought to have only small fitness effects. For natural selection to

Table 2. Characteristics of Ab Initio Predicted Genes
Feature
Genes
Exons
Introns
Intergenic regions

DOI: 10.1371/journal.pbio.0040286.t002
effectively work on codon usage differences and to thus create a preferred subset, factors that enhance genetic drift (e.g., small population sizes, inbreeding) must be weaker than the selective forces [66]. Thus although codon usage is probably under selective pressure in all species, not all are able to evolve preferred codon sets. For example, although it has a similar AT bias to *T. thermophila*, no preferred set could be detected in the apicomplexan *Plasmodium falciparum* (Figure 5C), possibly a reflection of its parasitic lifestyle and limited effective population size. The presence of a preferred subset in *T. thermophila* is likely a reflection of a large effective population size due to its free-living, sexually reproducing lifestyle (see [66,67] for additional discussion on the large population size of this species).

No plastid-derived genes can be identified. One question of particular interest that the *T. thermophila* genome might shed light on relates to the timing of the origin of the plastids found in apicomplexans and dinoflagellates, the other members of the alveolates [68,69]. Although the plastids in these lineages differ (e.g., that in apicomplexans, known as an apicoplast, is not even involved in photosynthesis), both are thought to be of red algal origin [70]. This has led to the proposal that the plastids in these lineages are the result of a single endosymbiotic event between an ancestor of apicomplexans and dinoflagellates and a red alga, with the algal nucleus being lost and the algal plastid being kept. A key question is whether this secondary endosymbiosis occurred before or after the ciliates split off from the other two lineages. The possibility that it occurred before the ciliate split is known as the chromalveolate hypothesis [71].

For the chromalveolate hypothesis to be correct, plastid loss would have to have occurred in ciliates, most likely at the base of the ciliate tree since no modern ciliates are known to harbor plastids. If the ancestor of ciliates once had a plastid, it is possible that some plastid-derived genes would have been transferred to the nuclear genome (as has occurred in many lineages including apicomplexans and dinoflagellates [72]), and furthermore that some such genes would still be found in *T. thermophila*. To test this possibility, we built phylogenetic trees of all genes in the genome and searched for those with a branching pattern consistent with plastid descent (see Materials and Methods). For *T. thermophila*, we do not see any signal for genes of plastid descent that rises above the noise seen in such automated phylogenetic analyses.

Several lines of evidence suggest that this is not a general flaw in the phylogenetic approach used here. For example, we have used the same approach to identify and catalog the plastid-derived genes in other lineages including the plant *Arabidopsis thaliana* and the apicomplexan *P. falciparum*. In addition, such an approach has been used to detect past endosymbioses in other eukaryotic lineages [73]. Finally, using the same approach we identified 91 likely mitochondrion-derived genes (Table S8) in the *T. thermophila* nuclear genome. This is significant because mitochondrion-derived genes are generally more difficult to identify than plastid-derived genes [74], in part because the plastid symbiosis was more recent [75].

Nevertheless, since it is possible that our phylogenomic screen might have missed some plastid-derived genes, we also did a targeted search for genes that might be expected to be retained, using the apicoplast as a model. Apicoplasts are involved in biosynthesis of fatty acids, isoprenoids, and heme.
Fatty acid and isoprenoid biosynthetic pathways are of special interest because the plastid-derived pathways are distinct from analogous pathways in the eukaryotic cytoplasm [76]. In the case of isoprenoid biosynthesis, genes for proteins in the canonical eukaryotic cytosolic mevalonate pathway are present as expected based on experimental studies [77–79], but no enzymes involved in the plastid-derived DOXP pathway were evident. For fatty acid biosynthesis, while *T. thermophila* does not require an exogenous supply of fatty acids for growth, no evidence for a complete version of a type I (normally cytosolic) pathway could be found. Although at least some genes for a type II pathway are present, these are insufficient for de novo fatty acid synthesis and appear more likely to be derived from the mitochondrion than a plastid.

Based on the general and targeted searches, we conclude that there is presently no evidence for a plastid or ancestrally plastid-derived genes in *T. thermophila*. This does not preclude the possibility that other ciliates have plastid-derived enzymes or even a plastid, but there is presently no evidence to suggest this despite extensive ultrastructural observations [80,81]. If ciliates do lack all evidence of a plastid, it could either mean that the hypothesized early origin of the chromalveolate plastid is incorrect or that an ancestor of *T. thermophila* (and perhaps all ciliates) lost its plastid and all detectable plastid-derived genes outright. The latter possibility is not without precedent, as some apicomplexans such as the Cryptosporidia have lost their apicoplasts and have few, if any, plastid-derived genes in their nuclear genomes [82,83]. This loss has been suggested to be the result of metabolic streamlining in response to its parasitic lifestyle. Resolving whether a plastid was present in the ancestor of ciliates will be important to our understanding of the evolution of plastids and their biochemical relationship with eukaryotic hosts.

IES excision targets foreign DNA rather than repetitive DNA per se. As discussed in the Introduction, there are multiple parallels between the IES excision process and other repeat element silencing phenomena such as RIP and heterochromatin formation. Despite these parallels, the processes differ significantly in their mechanisms of action and therefore likely have different short- and long-term evolutionary consequences. For example, in species with RIP, all repetitive DNA becomes a target for mutational inactivation, which has resulted in a drastic suppression of evolutionary diversification through gene duplication [84,85]. The IES excision process results in the exclusion of certain MIC DNA sequences from the transcriptionally active MAC. Experimental introduction of foreign transgenes into the MIC has shown that as MIC copy number increases, so does the efficiency of transgene excision [86]. One might therefore predict a similar suppression of gene duplication as in RIP. However, rather than targeting repetitive DNA per se, it has been proposed that IES excision specifically targets foreign DNA that has invaded the germline MIC but is not represented in the MAC [35,87,88]. MIC gene duplication and functional diversification should still be possible under this scenario as long as, at each conjugation event, the gene copies have not diverged in sequence enough to be recognized as foreign and excluded from the MAC; since sex is frequent in natural populations of *T. thermophila* [89], this should be the case. We therefore sought to use the genome sequence data to both test the foreign DNA hypothesis and to examine what the consequences of the IES excision process have been on the evolution of the *T. thermophila* genome.

Analysis of the genome reveals several lines of evidence that provide strong support for the foreign DNA hypothesis. First, small but nevertheless significant amounts of repetitive DNA are present in the MAC. This is best seen in analysis of the scaffolds that correspond to complete MAC chromosomes which are unlikely to contain MIC IES contamination. These scaffolds contain dispersed repeats that make up 2.3% of the total DNA. This means that some repetitive DNA bypasses the IES excision process. The second line of evidence comes from examining the small contigs and singletons (nonassembled sequences) in the assembly data. Known MIC-specific elements such as the REP and *Tt*1 transposons [90,91] are found only in these small contigs, which are thus clearly enriched for MIC-specific DNA (and also for repetitive DNA; see Figure S5). In fact, the small contigs contain homologs of an unusually wide range of transposable element (TE) clades for a single-celled eukaryote [92,93] including many previously unreported in *Tetrahymena* (Table S9). We do not find any good matches to TEs in any of the large contigs. Thus, transposons in general appear to be filtered out very efficiently by the IES excision process. The tandem and dispersed repeats in the MAC appear to correspond to noninvasive DNA (e.g., the 5S rRNA genes). Taken together, the fact that mobile (and likely invasive) DNA elements are kept out of the MAC, combined with the fact that both tandem and dispersed noninvasive repeats avoid the excision process, indicates strong support for the foreign DNA hypothesis.

In organisms with RIP, since all duplicated DNA is targeted [94], gene diversification by duplication is suppressed. For example, the fraction of all *Neurospora crassa* genes found in paralogous families is only 19%, a value that falls below the overall correlation line between this fraction and total gene number [84]. In addition, very few gene pairs share greater than 80% amino acid sequence identity [84]. Consistent with the foreign DNA hypothesis, we do not see such signs of suppression of gene family diversification in *T. thermophila*. Large numbers of paralogous genes are found in the genome (1,970 gene families including 10,851 predicted proteins) (Table 3). The fraction of genes in such families in *T. thermophila* (39%) is much higher than that seen in *N. crassa*. Although this fraction is not as high as would be predicted from the observed correlation between total number of genes and the fraction found in paralogous families [84], the fraction of gene pairs sharing greater than 80% amino acid identity is much higher than in *N. crassa* and similar to that found in other sequenced eukaryotes.

Since it is possible some of the 1,970 gene families could have originated by duplications that occurred prior to the origin of the IES excision process, it is more useful to examine recent duplications. We searched for such duplications in multiple ways, including the identification of genes duplicated in the *T. thermophila* lineage relative to other lineages for which genomes are available (Table S10) and by searching for pairs of paralogs with very similar sequences. Both of these classes are abundant in *T. thermophila*, further indicating that the IES excision does not significantly affect expansion of gene families of “native” genes. Thus the ciliate
system of targeting invading DNA has significantly different consequences than RIP.

High gene count in *T. thermophila*. The expansion of gene families helps explain the high gene count in *T. thermophila*, which is higher than that of other protists and even surpasses that of some metazoans (Table 4). The duplication events appear to spread out over evolutionary time with some being ancient and some quite recent. We searched for but did not find evidence for either whole genome or segmental duplications. We do find extensive numbers of tandemly duplicated genes. In total, 1,603 tandem clusters of between two and 15 genes were found, comprising 4,276 total genes; 67% of these clusters are simple gene pairs and 96% contain five or fewer genes. Thus it appears many of the paralogous genes in *T. thermophila* are the results of separate small duplication events.

The high gene count in *T. thermophila* relative to some other single-celled eukaryotes is not simply a reflection of gene family expansions. For example, when recent gene expansions are collapsed into ortholog sets, we find that humans and *T. thermophila* share more orthologs with each other (2,280) than are shared between humans and the yeast *S. cerevisiae* (2,097) or *T. thermophila* and *P. falciparum* (1,325) (Figure 6), despite the sister phyla relationships of animals and fungi on the one hand and ciliates and apicomplexans on the other. We note that this does not mean that humans and *T. thermophila* are overall more similar to each other than is to species in sister phyla. For example, humans and *S. cerevisiae* do share some processes that evolved in the common ancestor of fungi and animals. In addition, for orthologs found in all eukaryotes, the human and *S. cerevisiae* genes are more similar in sequence to each other than to any genes from *T. thermophila*. The higher number of orthologs shared between humans and *T. thermophila* is a reflection of both the loss of genes in other eukaryotic lineages and the retention of a variety of ancestral eukaryotic functions by *T. thermophila*. Consistent with this conclusion, there are 874 human genes with orthologs in *T. thermophila* but not *S. cerevisiae*, 58 of which correspond to loci associated with human diseases (Table S12). Thus genome analysis reveals many cases where *T. thermophila* can continue to complement experimental studies of yeast as a model system for eukaryotic (and human) cell biology [13].

Table 3. Gene Families

Family Size Range	Number of Families	Total Number of Genes	Examples of Families
201 to 500	5	1,525	K⁺ channel protein
101 to 200	5	691	Protein kinase; cysteine proteinase; surface antigen
51 to 100	8	522	ABC transporter ABC/ABCG; cation-transporting ATPase; serine/threonine kinase
21 to 50	37	1,177	Kinesin II; calcium/calmodulin-dependent protein kinase; GTP-binding protein; glutathione S-transferases; surface antigen; cytochrome P450; histidine kinase; ABC transporter ABCG; ABC transporter ABCA; dynein heavy chain; carboxypeptidase-like proteins; triacylglycerol lipase; oxalate formate antipporter; metalloprotease; leishmanolysin-like peptidase; AAA family ATPase; Kazal-type proteinase inhibitor 1; K⁺ channel protein; Tt5Rp protein; sugar transport protein; protein phosphatase
11 to 20	91	1,292	
6 to 10	195	1,423	
2 to 5	1,629	4,221	

Table 4. Numbers of Protein-Coding Genes in Various Eukaryotes

Species	Predicted Gene Number	Genome Size (Mb)	Genes/Mb
T. thermophila	27,424	104	264
S. cerevisiae	6,561	12	505
S. pombe	5,279	13	345
P. falciparum	1,325	12	331
T. pseudonana	12,500	34	368
D. discoideum	13,679	180	76
C. elegans	19,971	103	194
A. thaliana	26,207	125	210
Oryza sativa	46,976	466	101
Fugu napri	34,312	365	94
Mus musculus	37,854	Approximately 2,500	15
H. sapiens	35,845	Approximately 2,900	12

DOI: 10.1371/journal.pbio.0040286.t003

DOI: 10.1371/journal.pbio.0040286.t004
selected for sequencing mostly due to their medical relevance and that these are not representative (e.g., many have quite small genomes). Most important, the presence of large gene families and recent gene duplications are likely indications of functional diversity, recent evolutionary innovations, and selective pressures placed on this organism.

Our analysis of paralogous gene families and in particular the recently duplicated members of such families reveals the importance of processes associated with the sensing of and responding to environmental changes. We highlight five such processes here: signal transduction, membrane transport, proteolytic digestion, construction and manipulation of cell shape and movement, and membrane trafficking. These processes are all critical to the free-living heterotrophic lifestyle of this organism. In the following sections, we discuss what the analysis of the genome reveals about these processes in *T. thermophila* with a particular focus on expansions of genes associated with these functions relative to other species.

Signal transduction and the expansions of kinase families.

A variety of genes with putative roles in signal transduction were identified in our screens of paralogous genes. Of these, we chose to perform an in depth analysis of the kinases because they are such a diverse family of proteins and because they have been found to have critical roles in sensory and regulatory processes across the tree of life. In total, 1,069 predicted protein kinases (Tables 5 and S11A) were identified in the genome. This corresponds to approximately 3.8% of the predicted proteome, a fraction significantly larger than the approximately 2.3% in fungi, *Drosophila*, and vertebrates [104]. Among these, representatives were found of 54 of the known kinase families and subfamilies [105]. Some families found in a wide diversity of eukaryotes [106] were not detected. This includes the checkpoint kinase CHK1/RAD53, the PI3 kinase–related kinase TRRAP, two cyclin-dependent kinases (CDK7 and CDK8, which may be functionally replaced by the related expanded CDC2 family), and two poorly conserved classes (Bub1 and Haspin) that may have been missed by sequence homology searches. Despite the reported presence of phosphotyrosine in *T. thermophila* [107], no clear members of the tyrosine kinase group could be identified. However, the genome encodes some proteins that might be alternative tyrosine kinases including multiple dual-specificity kinases (e.g., Weel, Ste7, TTK, and Dyrk) as well as five members of the related TKL group, which may mediate tyrosine phosphorylation in the slime mold *Dictyostelium discoideum* [106]. Twelve kinase classes are found in *T. thermophila* and humans but not yeast, and thus are apparent examples of the retention of ancestral eukaryotic functions discussed above. Several of the genes in these classes have been implicated in the etiology of human disease (Dyrk1A, DNAPK, SGK1, RSK2, Wnk1, and Wnk4) [108].

A key feature of the *T. thermophila* kinome is the expansion of several kinase classes relative to other sequenced organisms (Table 5). The implications of some of these expansions can be predicted based on the known functions of family members. For example, the mitotic kinase families Aurora, CDC2, and PLK are all substantially expanded, perhaps reflecting the additional signaling complexity required by two nuclei that simultaneously engage in very different processes within the same cell cytoplasm. Also expanded are multiple kinases that interact with the microtubule network [109,110] (e.g., Nima-related kinases (NRKs) and the ULK family), possibly reflecting diversification of cytoskeletal systems (discussed more below). Of the kinase families with known functions, the most striking expansion is the presence of 89 histidine protein kinases (HPKs), which are generally involved in transducing signals from the external environment [111]. HPKs are found predominantly in two-component regulatory systems of bacteria, archaea, protists, and plants and are absent from metazoans. Most of the *T. thermophila* HPKs have substrate receiver domains, and many are predicted to be transmembrane receptors.

The full meaning of the kinome diversity in *T. thermophila* is hard to predict as a great deal of the diversification has occurred in classes for which the functions are poorly understood. For example, in many of the known kinase families, the *T. thermophila* proteins are highly diverse in sequence, both relative to those in other species as well as to each other (e.g., see Figure S6). The scope of the diversification in *T. thermophila* is perhaps best seen in the fact that 630 (approximately 60%) of the kinases could not be assigned to any known family or subfamily [105]. Overall, 37 novel classes of kinases and hundreds of unique proteins were identified in this genome. The presence of so many novel kinases and expansions in many known classes of kinases is both an indication of the versatility of the eukaryotic protein kinase domain seen in other lineages [112] and suggestive of a great elaboration of ciliate-specific functions.

Diversification of membrane transport systems.

Many of the most greatly expanded *T. thermophila* gene families encode proteins predicted to be involved in membrane transport. Membrane transporters play critical roles in responding to variations in the environment and making use of available resources. We therefore conducted a more thorough analysis of the predicted transporters in this species. Overall, *T. thermophila* possesses a robust and diverse collection of...
predicted membrane transport systems (Tables 6 and S11B). Comparison to other eukaryotes [113] reveals some interesting differences in terms of both classes of transporters and predicted substrates being moved. For example, *T. thermophila* has more representatives in each of the four major families than do humans. In addition, it encodes a much higher number of transporters in the ABC superfamily, voltage-gated ion channels (VICs), and P-type ATPases than any other sequenced eukaryotic species (Table 6) including the other free-living protists, the diatom *Thalassiosira pseudonana*, and the slime mold *D. discoideum*. Regarding substrates, an extremely extensive set of transporters likely specific for inorganic cations has been identified (Table 6). Most of these are channel-type transporters and cation-transporting P-type ATPases. Interestingly, despite the apparent massive amplification of cation transporters, *T. thermophila* has a very limited repertoire of transporters for inorganic anions: only one member each for sulfate, phosphate, arsenite, and chromate ion were identified, and there are no predicted anion channels. The reason for the difference in the amplification of cation versus anion transporters is unclear.

As with kinases, some of the most interesting properties are revealed by examination of the lineage-specific duplications of transporters. The recent clusters include K⁺ channel proteins (285 members), ABC transporters (152 members), cation-transporting ATPases (59 members), K⁺ channel beta subunit proteins (22 members), oxalate:formate antiporters (24 members), sugar transporters (22 members), and phospholipid-transporting ATPases (20 members). The expansion of the K⁺ channel proteins, which are VIC-type transporters, was particularly large and was pursued further.

In total, 308 VIC-type K⁺-selective channels have been predicted, many more than in any other sequenced species and over three times as many as identified in humans (89). A multigene family of potassium ion channels has also been identified in *P. tetraurelia* [114] and thus may be a general characteristic of some ciliates. Some lines of evidence suggest that this expansion in ciliates could be adaptive. First, K⁺ channels control the passive permeation of K⁺ across the membrane, which is essential for ciliary motility [115]. Second, a novel adenylyl cyclase with a putative N-terminal K⁺ ion channel regulates the formation of the universal second messenger cAMP in ciliates and apicomplexans.

Table 5. Distribution of Selected Protein Kinase Classes in *T. thermophila* and Other Classified Kinomes

Group	Family	Subfamily	*T. thermophila*	*D. discoideum*	Yeast	Worm	Fly	Human
AGC MAST 3	5	0	1	2	5			
AGC RSK 2	0	0	1	1	4			
Atypical PIKK 1	1	0	0	0	1			
CMGC CDK 1	2	0	2	1	1			
CMGC CDK 4	0	0	1	1	5			
CMGC Drk 1	1	0	1	1	2			
CMGC Drk 5	1	0	3	3	3			
CMGC MAPK 2	0	3	1	1	1			
CMGC MAPK 3	1	1	3	2	4			
Other TLK 2	0	0	1	1	4			
Atypical HistK 83	14	1	0	0				
Other ULK 52	2	2	1	2	3			
Other Nek/NRK 39	4	1	1	4	11			
Other Aur 15	1	1	2	2	3			
CMGC CDK CDC2 11	1	1	2	2	3			
CMGC RCK 8	1	1	1	1	3			
CAMK CAMKL AMPK 7	1	1	2	1	2			
CMGC MAPK Erk7 3	1	0	1	1	1			
Other PLK 8	1	1	3	2	4			
CAMK CAMKL MARK 9	3	1	2	3	4			
CMGC CDKL 4	0	0	1	1	5			
STE Ste20 4	1	1	1	1				
CMGC Drk Drk2 5	1	0	3	2	3			
CMGC MAPK Erk 7	1	6	1	1	5			
Other TLK 2	0	0	1	1	2			

Counts are numbers of kinase domains.
Yeast, *S. cerevisiae*; worm, *C. elegans*; fly, *D. melanogaster*
DOI: 10.1371/journal.pbio.0040286.t005

Table 6. Comparison of the Numbers of Membrane Transporters in *T. thermophila* and Other Eukaryotes by Family and Predicted Substrate

Species	Family	ABC	MFS	VIC	P-ATPase	Other	Predicted Substrate	Total	Percent of ORFs
T. thermophila	161	125	332	91	231	485	(51.6%)		
E. histolytica	18	4	1	19	57	27	(27.3%)		
D. discoideum	61	27	3	24	135	54	(21.6%)		
T. pseudanana	55	42	2	22	271	103	(39.2%)		
C. parum	13	15	1	11	47	25	(28.4%)		
P. falciparum	14	15	1	11	47	25	(28.4%)		
N. crassa	31	14	2	19	103	17	(22.7%)		
S. cerevisiae	24	85	2	16	176	59	(21.5%)		
S. pombe	9	58	1	13	107	45	(23.9%)		
A. thaliana	108	90	3	46	135	45	(23.9%)		
C. elegans	48	134	6	22	389	181	(27.6%)		
D. melanogaster	51	136	3	19	361	181	(51.7%)		
H. sapiens	47	81	8	32	521	261	(53.9%)		

*Percent of total transporters are indicated in parentheses.

ABC, ATP-binding cassette; MFS, major facilitator superfamily; VIC, voltage-gated ion channels; P-ATPase, P-type ATPase.

DOI: 10.1371/journal.pbio.0040286.t006
Ciliates have 211 (44.0%) 139 (28.9%) 73 (15.2%) 14 (2.9%) 480 1.7 and Other Model Organisms

Table 7. Protease Complements in *T. thermophila* and Other Model Organisms

Organism	Aspartic	Cysteine	Metallo	Serine	Threonine		
T. thermophila	43 (9.0%)	211 (44.0%)	139 (28.9%)	73 (15.2%)	14 (2.9%)	480	1.7
P. falciparum	10 (10.5%)	33 (34.7%)	21 (22.1%)	16 (16.9%)	15 (15.8%)	95	1.8
S. cerevisiae	14 (9.3%)	43 (29.0%)	49 (33.1%)	26 (17.6%)	16 (10.8%)	148	2.4
A. thaliana	203 (24.5%)	154 (18.6%)	110 (13.2%)	326 (39.3%)	37 (4.4%)	830	2.7
C. elegans	27 (6.0%)	114 (25.3%)	180 (40.0%)	105 (23.3%)	24 (5.3%)	450	2.2
D. melanogaster	46 (6.6%)	80 (11.4%)	191 (27.2%)	351 (50.1%)	33 (4.7%)	701	3.9
H. sapiens	91 (11.7%)	162 (20.9%)	205 (26.4%)	285 (36.7%)	33 (4.3%)	776	2.8
M. musculus	312 (31.6%)	167 (16.9%)	223 (22.6%)	247 (25.1%)	37 (3.8%)	986	4.1
E. coli	12 (6.2%)	30 (15.5%)	60 (31.1%)	87 (45.1%)	4 (2.1%)	193	3.9
Methanococcus jannaschii	2 (5.3%)	11 (29.0%)	17 (44.7%)	5 (13.1%)	3 (7.9%)	38	2.6

The percentage of the genome that encodes putative proteases.

Percentage of individual catalytic class in the protease complement is included in parentheses.

The distribution of proteases in *P. falciparum* is based on Wu et al. [122], and the distributions in the other model organisms are based on the results published in the Merops database Release 7.00. DOI: 10.1371/journal.pbio.0040286.t007

are all cysteine proteases, which comprise 44% of the total protease complement. The two most prominent families from this class are the papain family (C1), which is the most abundant and complex family, with 114 members, and the ubiquitin carboxyl-terminal hydrolase 2 family (UCH2, C19) with 47 members. It is possible that the biochemical activity among the paralogs within these families is conserved but that they are used in different parts of the cell (or outside the cell) or in different developmental stages in *T. thermophila*.

Cytoskeletal components and regulators. Ciliates have highly complex cytoskeletal architecture [128] with highly polarized cell types which assemble 18 types of microtubular organelles in specific locations along the anteroposterior and dorsoventral axis. We therefore sought to determine whether this diversity was reflected in the genome. As with the protease analysis described above, initial comparisons of the number of particular types of cytoskeletal and microtubule-associated proteins was somewhat ambiguous (the numbers for humans and *T. thermophila* are shown in Tables 8 and S11D). For example, although kinesin and dynein motors as well as kinas associated with microtubules appear to be expanded, structural components of the cilia and participants in the intraflagellar transport pathway are not. In addition, some cytoskeletal protein types are apparently absent from *T. thermophila*; these include intermediate filament proteins (including nuclear lamins) as already suggested by biochemical studies [129], some microtubule-associated proteins (MAP2, MAP4, and Tau, for which no nonaminal eukaryotic homologs have been found) and some actin-binding proteins (e.g., α-actinin). To better understand what role genes involved in microtubule and cytoskeletal functions might have played in the diversification of this species, we focused analysis on some of the genes with apparent expansions: tubulins, dyneins, and regulatory proteins.

Tubulins. Tubulins are the key structural components of microtubules and they come in many forms in eukaryotes [130]. In the *T. thermophila* genome, phylogenetic analysis of tubulin homologs (Figure 7) reveals the presence of one or two genes, each within the essential alpha (α), beta (β), and gamma (γ) subfamilies (as reported previously [131–133]) and one in each of the delta (δ), epsilon (ε), and eta (η), which are found in organisms that possess centrioles/basal bodies [134–136]. In addition, *T. thermophila* encodes noncanonical tubulin homologs that can be divided into two categories. In the first category are genes that are most similar to the canonical α- or β-tubulins. These nine genes (three α-like and six β-like) lack characteristic motifs for the tail domain post-translational modifications (polyglutamylation and polyglycylation) that are essential to the function of their canonical counterparts [137–139]. Three of the β-like genes (BLTI/THERM_01104960, THERM_01104970, and THERM_01104980) form a tandem cluster with intergenic intervals of less than 2 kb. We hypothesize that these genes function, perhaps redundantly, in formation or function of some of the many highly specialized microtubule systems of *T. thermophila* cells. Experimental analysis of BLTI, a β-like tubulin, indicated that its product localizes to a small subset of microtubules and is not incorporated into growing ciliary axonomes (K. Clark and M. Gorovsky, unpublished data). Genetic deletion of this gene or of the α-like gene THERM_00647130 did not yield an obvious phenotype (R. Xie and M. A. Gorovsky, unpublished data).

The second category of noncanonical tubulin homologs consists of three novel proteins (THERM_00550910, THERM_01001250, and THERM_01001260) that fall into a clade with *P. tetraurelia* iota tubulin. Two of these (THERM_01001250 and THERM_01001260) are closely related to each other (Figure 7) and closely linked in the genome and thus likely arose by a recent tandem duplication. The functions of these genes are unknown, but because they are, so far, unique to ciliates, they might be responsible for microtubule functions specific to this phylum.

Dyneins. Dyneins, which were first discovered in *Tetrahymena* [140], are molecular motors that translocate along microtubule tracks, a process critical to many activities in *T. thermophila* including ciliary beating, karyokinesis, MAC division, cortical organization, and phagocytosis. Many of these activities are critical for sensing and responding to changes in the environment. Each dynein complex consists of one, two, or three heavy chains (containing the motor
activity) and specific combinations of smaller subunits, including intermediate, light-intermediate, and light chains, which regulate motor activity and the tethering of dynein to its molecular cargo [141–143]. In organisms with cilia or flagella, there are multiple isoforms of dyneins, including the axonemal outer arm dyneins, the axonemal inner arm dyneins, and nonaxonemal or cytoplasmic dyneins. Each is specialized in its intracellular location and the cellular task it performs [144].

In total we identified 21 light chains, five intermediate chains, two light-intermediate chains, and 25 heavy chains (Table S13). The expression of each gene, as well as the exon/intron structures of most, was confirmed by RT-PCR and, if necessary, sequencing of the RT-PCR product. For the most part, the families of Tetrahymena thermophila dynein subunits appear to be similar to those of other model organisms; however, there are some interesting differences. Tetrahymena thermophila light chains LC3A and 3B are most similar to the green alga Chlamydomonas reinhardtii’s LC3 and LC5 [145]. These proteins belong to the larger family of thioredoxin-related proteins, and, without biochemical evidence identifying one or both of the proteins as part of a dynein complex, it may be premature to label these as dynein components. Light chain LC4 belongs to the calmodulin-related family of proteins and may regulate

![Figure 7. Tubulin Gene Diversity in Tetrahymena thermophila](image_url)

The figure shows a neighbor-joining tree built from a clustalX alignment. Species abbreviations: Hs, H. sapiens; Dm, D. melanogaster; Sc, S. cerevisiae; Tt, T. thermophila; Pt, P. tetraurelia; Cr, C. reinhardtii; Tb, T. brucei; Ec, E. coli; Xi, Xenopus laevis. A prokaryotic tubulin ortholog, Escherichia coli FtsZ, was used as the outgroup.

DOI: 10.1371/journal.pbio.0040286.g007

Protein Type	T. thermophila	H. sapiens
Actin-related	14	19
Actin-binding proteins		
Profilin	1	2
α-Actinin	0	4
Fascin	0	3
Coflin	1	3
Gelsolin	0	2
CapZ	1	3
Tropomodulin	0	4
Paxillin	1	4
Fimbrin	1	2
Intermediate filaments		
Desmin	0	1
Vimentin	0	1
Keratin	0	8
Lamin (A/C, B)	0	3
Tubulins		
α-tubulin	1	9
α-tubulin-like	3	0
β-tubulin	2	9
β-tubulin-like	6	0
γ-tubulin	1	2
ε-tubulin	1	1
δ-tubulin	1	1
η-tubulin	1	0
θ-tubulin	3	0
Microtubule-associated proteins		
MAP1A	0	1
MAP1B	0	1
MAP2	0	1
MAP4	0	1
Tau	0	1
TPX2	1	1
XMAP215	2	1
EB1	7	3
Centrin	6	3
Pericentrin	0	2
Katanin (p60)	2	2
Motor proteins		
Kinesin motor chain	78	48
Dynein motor chain	25	46
Myosin motor chain	13	22
Tubulin-modifying enzymes		
Tubulin deacetylase HDAC6	2	1
Tubulin tyrosine ligase-like	50	14
Intraflagellar transport (IFT) components		
IFT20	1	1
IFT52	1	1
IFT57	1	1
IFT71	1	1
IFT81	1	1
IFT88	2	1
IFT140	1	1
IFT172	1	1
Structural components of cilia and flagella		
Radial spoke protein 4/6	3	2
Radial spoke protein 2	3	1
PF16	1	1
PF20	1	1
Cytoskeleton-associated serine-threonine kinases		
NIMA-related kinase (NRK)	39	11
Aurora kinase	16	3
Polo kinase	8	4

DOI: 10.1371/journal.pbio.0040286.t008

PLoS Biology | www.plosbiology.org September 2006 | Volume 4 | Issue 9 | e286

Tetrahymena thermophila Genome Sequence
calcium-dependent ciliary reversal. *T. thermophila* expresses two LC4 genes, perhaps providing alternative or additional ways to control ciliary motility compared to species that express only one. In other systems, LC8 is associated with several different dynen and nondynein complexes, and *T. thermophila* expresses one canonical LC8 as well as five divergent LC8-like genes, with unknown functions.

Perhaps the most interesting revelation is that *T. thermophila* expresses 25 dynein heavy chains. These include the 14 DYH genes previously described [146,147] and 11 new ones, all of which appear to be axonemal. The complexity of the DYH family may represent a mechanism by which the organism can fine-tune ciliary activity, produce specialized cilia (e.g., oral and posterior cilia), and/or generate large numbers of new cilia quickly. Along these lines, there has also been an expansion in other motor proteins. For example, there are 78 kinesins, more than in any other sequenced organism ([101] and Table 8). In addition, although there are fewer myosins than in humans (15 versus 22), 12 of 13 of the *T. thermophila* genes comprise a single novel myosin class not found in other organisms [102,148].

Regulation of microtubules and microtubule-associated processes. Among the expanded genes in *T. thermophila* are a variety implicated in the regulation of microtubules or microtubule-associated processes. One example is the tubulin tyrosine ligase-like domain proteins of which multiple members have been identified as enzymes responsible for polyglutamylation of either α- or β-tubulin [149]. *T. thermophila* encodes 50 tubulin tyrosine ligase-like proteins compared with 14 in human. Another example is the NRK family of protein kinases which, as mentioned above, has undergone a large expansion in *T. thermophila*. NRKs are often found associated with microtubular organelles [150] such as centrioles, basal bodies, and flagella and play multiple roles, including the regulation of centrosome maturation [151] and flagellar excision [152]. We identified 39 NRKs in *T. thermophila*, roughly three times the number of such loci in humans. Phylogenetic and functional analyses have suggested that this diversification has adapted the members of this family for distinct subcellular localizations and cytoskeletal roles [103]. Thus, such gene expansions could allow differentially targeted protein isoforms to regulate the function of the same organelle type in different locations or generate different properties of the same structural building materials (e.g., microtubules), which are used as frameworks to build different types of organelles.

Secretory pathways and membrane trafficking. Besides the conventional organelles, *T. thermophila* maintains several more specialized membrane-bound compartments, including alveoli (shared with other alveolates), a contractile vacuole (found in many protists), and separate, functionally distinct macronuclei and micronuclei [128]. It also has multiple pathways for plasma membrane internalization, as well as both constitutive and regulated exocytosis [128,153]. The sorting and trafficking of membrane components are critical functions for all these activities. Analysis of the genome reveals homologs of many of the key proteins known from other eukaryotes to be involved in vesicle formation and fusion, including all major classes of coat proteins (Table S14). One interesting finding that came from genome analysis is that *T. thermophila* encodes eight dynamin-related proteins, more than most other sequenced unicellular eukaryotes, and two of them, Drp1p and Drp2p, have evolved a new function in endocytosis [96] (A. Rahaman and A. P. Turkewitz, unpublished data). Furthermore, phylogenetic analysis indicated that the recruitment of dynamin to a role in endocytosis occurred independently by convergent evolution in the animal and ciliate lineages [96].

The diversification of membrane trafficking is more apparent in regard to Rab proteins, which are small monomeric GTPases that regulate membrane fusion and fission events. *T. thermophila*, with 69 Rabs (Table S15), has a number more along the lines of humans (which have 60) than many single-celled species, such as *Saccharomyces cerevisiae*, which has 11 [154] and *Trypanosoma brucei*, which has 16 [155]. Based on localization and functional studies, including comparisons between yeast and humans [156], Rabs have been divided into eight groups [157]. Phylogenetic analysis (Figure S7) indicates that *T. thermophila* encodes representatives of all but groups IV and VII, which are involved in late endocytosis and Golgi transport, respectively. For group VII this appears to reflect a lineage-specific loss, since the genomes of both *T. brucei* and *Entamoeba histolytica* have several homologs in this group. Two *T. thermophila* Rabs appear homologous to Rab28 and Rab32, which have not been assigned to any of these groups; Rab32 was previously thought to be restricted to mammalian lineages. Rab groups II and V, involved in endocytosis, are especially large in *T. thermophila* and include several Rab2, Rab4, and Rab11 homologs in group II. This may reflect the intricacy of maintaining at least two major pathways of membrane internalization. Additionally, 29 Rabs in *T. thermophila* fail to cluster with any of the Rab groups found more widely among eukaryotes. Within this group, 20 cluster into three clades, designated *Tetrahymena* clades I, II, and III in Figure S7, which may represent ciliate-specific radiations. The remaining nine are very divergent and may represent very ancient duplication events and/or changes related to recruitment for novel function. Because unambiguous alignment among such divergent Rabs is difficult, their relationships will become clearer as additional related genomes are sequenced.

Recently, large numbers of Rabs have been found in a variety of amoeboid protists including *D. discoideum*, *E. histolytica* [158], and the parabasalid *Trichomonas vaginalis* [159]. The diversification in these species was proposed to relate to their amoeboid lifestyle [159]. However, the presence of significant diversification in *T. thermophila* suggests that different protist lifestyles may be accompanied by their own brand of significant Rab diversification.

Tetrahymena Genome Database

An integral part of the effort to make the genomic resources and analyses described above widely available to researchers working with *T. thermophila* and other organisms has been the creation of the *Tetrahymena* Genome Database (TGD; http://www.ciliate.org), a Web-accessible resource on the genetics and genomics of *T. thermophila*. TGD provides information about the *T. thermophila* MAC genome, its genes and gene products, facts about the ciliate scientific community, and tools for querying the genome and collected scientific literature. TGD was created using the database environment developed for the *Saccharomyces* Genome Database and software tools contributed to the Generic Model Organism Database (GMOD) project.
Information from the published literature on *T. thermophila* is distilled in multiple ways. Results from published studies of *T. thermophila* genes are curated and provided, including community-approved gene names, other nonstandard aliases, nucleotide and amino acid sequences, and literature citations. In addition, free-text descriptions are associated with predicted gene models, and full-text searching is provided using Textpresso [160]. To enable intra- and cross-species comparisons, when information on characterized genes is curated, TGD staff members capture aspects of a gene product's biology (i.e., molecular function, biological role, and cellular localization) using terms from the Gene Ontology (http://www.geneontology.org). This is complemented by automated functional annotation of all predicted genes. Other resources include tools for searching the annotation by keywords, similarity searching using BLAST and BLAT, Gbrowse-based genome visualization [161], information about Tetrahymena research laboratories, links to other ciliate-related resources, and various tutorials. The TGD staff is always available to help individual researchers by answering questions, finding information, and generating datasets specific to their needs.

Conclusions and Future Plans

In sequencing and assembling the *T. thermophila* MAC genome, there were many anticipated major challenges not commonly seen in eukaryotic genome projects. Overall, however, the assemblies are remarkably accurate and represent excellent coverage of the genome. This is likely in large part due to low levels of repetitive DNA, one of the features of the MAC genome that initially led us to select it for sequencing. The sequence data in our current assemblies are certainly complete enough for detailed analyses of the predicted biology of this species as we have reported here and others have shown. In addition, the genome sequence is already being used in many functional genomic studies taking advantage of the powerful experimental tools available. Along these lines, it will be of great value to do comparative analyses with the genome sequences of other ciliates such as *P. tetraurelia* and *Oxytricha trifallax*, which are in progress.

One of our main goals is to obtain a complete sequence of the MAC genome, and there are still some challenges left to its achievement. Since we were unable to obtain quality sequence data from large insert clones, any region of the MAC genome containing significant amounts of repetitive DNA would not have assembled well. To overcome this pitfall we are now using HAPPY mapping [162] as an alternative approach to obtaining such linking information. Also, it is known that at least the ends of at least two MAC chromosomes present immediately following conjugation disappear during subsequent vegetative growth, perhaps an indication that these chromosomes are incapable of long-term maintenance [41]. As expected, we do not find sequences corresponding to these ends in our database. Thus alternative methods will be required to obtain the sequences of these regions and any others lost during early vegetative growth. Despite these challenges, all the evidence suggests that it will be possible to close the entire MAC genome.

Of course, the entire MAC genome alone does not provide us with a complete picture of the *T. thermophila* genome. Sequencing the MIC genome will be more challenging due to the greater abundance of repetitive DNA. However, we will be able to use the MAC genome as a scaffold and thus in a way MIC sequencing will be equivalent to genome closure rather than an independent project. We have already begun in this area by determining the sequence adjacent to MIC Cbs junctions and mapping these to MAC assemblies as well as the reverse—using MAC telomere-adjacent sequences to pull out MIC Cbs-flanking regions [24,41].

Having a MIC sequence and mapping the MIC to the MAC will be useful in understanding many aspects of *T. thermophila* biology that we cannot study through the MAC. These include centromere function, MIC telomere features, and the extent to which the MAC and MIC in *T. thermophila* and other ciliates are the equivalent of somatic and germ cells. Perhaps most important, having both genomes will allow detailed analyses of the genome-wide DNA rearrangement process. It is only by having both genome sequences that we can fully understand the biology of this fascinating species.

Materials and Methods

Cell growth, DNA isolation, and library construction. *T. thermophila* cell lines currently in laboratory use were first isolated from the wild in the 1950s [163] and were maintained by serial passage and inbreeding for over 16 y before viable freezing methods were developed. Strain SB210 [164] is the end result of about 25 sexual reorganizations in laboratory culture, including a series of sexual inbreedings by the equivalent of brother-sister matings giving rise to the inbred strain B genetic background [165]. Following the final conjugation, a thoroughly assorted cell line was isolated after at least three serial single-cell isolations (SCIs). The last SCI was approximately 150 fissions after conjugation. These serial SCIs provided abundant opportunity to isolate a cell line that had become pure for most of the MAC developmental diversity but not necessarily all, because assortment brings about a stochastic, exponential decay in diversity. The chosen cell line was then subjected to a genomic exclusion cross [166], which generates a whole-genome homozygous MIC but does not generate a new MAC. At least one additional SCI occurred at this step, after which this cell line was frozen. As needed, frozen stocks were replenished following a minimal number of vegetative fissions. The strain has been deposited in the *Tetrahymena* Stock Center at Cornell University as suggested [167].

A culture was started from a fresh thaw of strain SB210. Purified macronuclei were prepared by differential sedimentation, and DNA was extracted from the purified macronuclei as described [168]. The preparation was checked by Southern blot hybridization to verify that the level of contamination with MIC DNA was low. Genomic libraries were prepared as described [169]. DNA was randomly sheared, end-polished with consecutive polynucleotide kinase and T4 DNA polymerase treatments, and size-selected by electrophoresis in 1% low-melting-point agarose. After ligation to BstXI adapters (Invitrogen, Carlsbad, California, United States; catalog No. N408–18), DNA was purified by three rounds of gel electrophoresis to remove excess adapters, and the fragments, now with 3′-CACA overhangs, were inserted into BstXI-linearized plasmid vector (pHOS2, a medium-copy pBR322 derivative) with 3′-TGTG overhangs. Libraries with average sizes of inserts were constructed: 1.8, 2.5, 3.5, 5.0, and 8.5 kb (Table S1). Libraries with larger insert sizes were unstable, presumably due to the high AT content in the genomic DNA.

Sequencing was done from paired-ends primarily at the J. Craig Venter Science Foundation Joint Technology Center. Possible contaminating sequences from other projects have been filtered out using BLASTN searches against all other genome projects conducted at the same time at TIGR and the Joint Technology Center. Whole genome assemblies were performed using the Celera Assembler [57] with modifications implemented by researchers at the J. Craig Venter Science Foundation and TIGR. Sequence reads corresponding to the mitochondrial and rDNA chromosomes were identified using the latest version of the MUMmer program [170] and comparison to the published sequences.

Linking open ends of assembled scaffolds to telomeres. The initial assembly contained 85 telomere-capped scaffold ends. However, these ends correspond to a minority of the total number of non–rDNA telomere–containing sequence reads, which we estimate to be...
4,058. Computational and experimental methods were used to identify and confirm scaffold ends that were very close to a telomere, marking the end of a chromosome. One method matched read-mates of telomere-containing reads (Tel-reads) that the assembly program failed to incorporate into scaffolds. These were identified by searching the sequence read database (dbEST) of T. thermophila/P. falciparum using Multivariate BLAST at http://www.tigr.org/tigr-scripts/blast2/blast.cgi?index.cgi;species=thermophila. Subsequent analyses used comparisons of the conjugal sequences with all vegetative sequences including those in GenBank not generated at TIGR.

Functional ncRNA annotation. A search of Table S6 was conducted using covariance model (CM) scans [174]. Transfer RNA annotations are those provided by the CM-based tRNAscanSE program [175] run with default parameters. Most other scans were based on CMs defined by the Rfam database [176,177] (release 7.0, March 2005; 503 families). With a few exceptions, we used rigorous filters to avoid models that identified sequences that match the Rfam models with scores at or above Rfam’s family-specific “gathering” cutoff. One exception was RF00005 (tRNA), as mentioned above. Another exception was RF00012, the U3 small nuclear RNA, for which the Rfam model found no hits. Instead, we manually added one known Tetrahymena U3 sequence [179] to the Rfam seed alignment, built a CM from it, and rescreened the genome, finding the four U3 sequences reported in Table S6C. The third class of exceptions consisted of the 44 Rfam families using no CMs. These were performed using ML-heuristic filters [180], with a scan threshold chosen for each such family such that approximately 1% of the genome was scored by the CM. This setting generally shows good sensitivity but is not guaranteed to find all sequences that match the Rfam model, unlike the rigorous scans above. Hits against the Rfam T-box (RF00230), G-hairpin (RF00229), tRNA (RF00005), and pseudoknot (RF00238) involved in bacterial plasmid copy control all appear implausible and are also unexpected by phylogenetic criteria. Hits against Rfam small nuclear RNAs (RF00086, RF00133, RF00039) also appeared to be false positives, as well as two hits to the tRNA element (RF00037) and selenocysteine insertion sequence (RF00053) families. Other families not discussed here or in Table S6 yielded no hits above threshold. See http://www.cs.washington.edu/homes/ruzzo/papers/T TMPthermophila for full details about the ncRNA scans. It should be noted that our annotation approach may be prone to reporting ncRNA pseudogenes and that its accuracy may be affected by the high AT content of the genome.

Protein-coding gene finding and coding region analysis. The gene finder TIGRscan v1.18 [181], since renamed GeneZilla) was trained for T. thermophila using a two-phase bootstrapping process [192], due to the dearth of curated training data available at the time. In the first round of training (termed “long-ORFs”), all parameters were estimated from a set of 193 full-length cDNAs from the apicomplexan P. falciparum (including surrounding regions from the genomic sequence; 1.6 Mb total) except for the exon state, which was trained on full-length cDNA clones (each at least 1.5 kb in length). The default polyadenylation signal state and TATA-box state for this gene finder utilize human TRANSFAC weight matrices [183]; these were not modified. The gene finder was then used to predict genes in the raw T. thermophila genomic sequence, and the predictions were used to bootstrap the parameter estimation during the second round of training (termed “hybrid”). Sixty curated T. thermophila genes which became available during the second round of training were analyzed and their coding statistics were used to improve the exon state by averaging with the original long-ORF statistics, appropriately weighted. A second round of long-ORF gene models was estimated from the 60-gene set, with appropriate smoothing. Interpolated and noninterpolated Markov chains [184] were utilized by the content states, with the order of dependency (3rd for exons and introns, 0th for intergenic, and 1st for UTR) selected so as to optimize prediction accuracy of the 60-gene set. Sixteen gene start/stop codon states were re-trained from pooled data consisting of the 60 curated genes and the original P. falciparum training data, using an 80%/20% T. thermophila/P. falciparum weighting to mitigate the effects of overtraining due to small sample sizes in the sixty gene set. Weight matrices for Exon, Start and Stop states were rerun at 22 bp when it was noticed that longer matrices interfered with the prediction of short introns. The “hybrid” and “long-ORFs” parameterizations were tested on a set of 300 partial genes inferred from ESTs that were assembled against the chromosomes using the PASA program [193]. The “long-ORFs” parameterization was chosen because it was about three times more accurate at the exon level than “long-ORFs” (see Table S16).

Multivariate analysis of codon usage was performed with the
codonW package (http://cordonw.sourceforge.net). Correspondence analysis of relative synonymous codon usage values was carried out to examine the major source of codon usage variation. Amino acid composition of the predicted aggregate proteome was compared with the corresponding data downloaded from dictyBase for the slime mold, Dictyostelium discoideum, and from Ensembl for Homo sapiens. For the ciliate genome, additional profile-sets were analyzed pairwise alignments between neighboring genes using BLASTP. An all-versus-all BLASTP search was performed using all Tetrahymena gene-encoded proteins, requiring a maximum E-value of 1e–20, and reporting the best 20 matches. Matches found at adjacent genome locations were chained together and reported as candidate tandem gene arrays, allowing only a total of two nonmatching genes to intervene matching genes in a single array.

A Lek clustering algorithm [169] was applied for paralogous gene family classification of the predicted proteins in the T. thermophila genome. Gene products were classified into families based on homology to known proteins in each other. Links were established between genes at an E-value cutoff of 1×10^{-20}. Lek similarity scores, which were defined as the number of BLAST hits shared by any pair of proteins divided by the combined number of hits for either of the two genes, were calculated for all pairs of proteins. The links for which the Lek similarity scores were above a cutoff of 0.66 were used to build gene family clusters by a single-linkage clustering algorithm. Biological function roles were assigned to the gene families based on the top BLASTP hits for individual genes in each family. Gene families classified into the ciliate TEs, namely mariner, Tc1, and Tc3, were used to search for plastid and mitochondrially derived genes.

Organelle-derived genes and APIS. Searches for plastid and mitochondrial related genes were performed using the APIS program. APIS (J. H. Badger, unpublished data) is a system that automatically generates and summarizes phylogenetic trees for each gene in a genome. It is implemented as a series of Ruby scripts, and the result is an interactive tree that incorporates a web interface for the user to explore the data and results in an interactive manner. APIS obtains homologs by comparing each query protein against a database of proteins from complete genomes, and extracting the full length sequences of homologs with E-values less than 1e–10. The homologs are then aligned by MUSCLE [185] and bootstrapped neighbor-joining trees are produced using QuickTree [186]. As QuickTree (unlike most programs) produces bootstrapped trees with meaningful branch lengths, the trees are then midpoint rooted. Then a taxonomic analysis is performed of the proteins that are neighbors in the tree with the query protein. This analysis makes use of the NCBI taxonomy assigned to the other proteins in the tree. For each taxonomic level (e.g., kingdom, phylum, class, etc.), the query protein is assigned to a bin. If in the tree the query protein is within a clade of sequences that are all from group X (for the taxonomic level being examined) then the query protein is placed in a bin labeled “contained within group X.” If the query protein branches next to (but not within) a clade of sequences from the same group, it is placed in a bin labeled “outgroup of X.” If the neighbors of the query sequence are in multiple groups, no binning is done for that taxonomic level. Candidates for mitochondrially derived genes were separated by BLASTP searches using known mitochondrial proteins as queries [187,188]. Phylogenetic trees were then constructed for individual candidates in the context of all completely sequenced genomes and representatives of mitochondria. Genes whose closest neighbors were exclusively 2- proteobacteria and/or mitochondrion were classified as possibly mitochondriion derived.

Analysis of repetitive DNA and TEs. The location and characterization of tandem minisatellite and microsatellite repeats were done using our suite of software tools [190]. We note that repeats that are larger than the scaffold number and size. Vmatch (http://www.vmatch.de) was used to scan for homology to TE-encoded ORFs using BLASTP. All proteins with significant hits (E-value less than 0.001) were collected and searched against the NCBI nonredundant protein and Pfam databases [194]. Transmembrane protein topology was predicted by TMHMM [195]. A Web-based interface was implemented to facilitate the organization of membrane transport protein predictions based on their genes, followed by annotation. APIS allows automatic generation and summarization of phylogenetic trees for each family classification of the predicted proteins in the T. thermophila genome and previously classified kinases.

Predicted protein sequences were searched against a curated database of transport proteins, using BLASTP with E-value cutoff of 1e–10. For putative transport proteins using BLASTP with E-value cutoff of less than 1e–10. Then, a taxonomic analysis is performed of the proteins that are neighbors in the tree with the query protein. This analysis makes use of the NCBI taxonomy assigned to the other proteins in the tree. For each taxonomic level (e.g., kingdom, phylum, class, etc.), the query protein is assigned to a bin. If in the tree the query protein is within a clade of sequences that are all from group X (for the taxonomic level being examined) then the query protein is placed in a bin labeled “contained within group X.” If the query protein branches next to (but not within) a clade of sequences from the same group, it is placed in a bin labeled “outgroup of X.” If the neighbors of the query sequence are in multiple groups, no binning is done for that taxonomic level. The location and characterization of tandem minisatellite and microsatellite repeats were done using our suite of software tools [190]. We note that repeats that are larger than the scaffold number and size. Vmatch (http://www.vmatch.de) was used to scan for homology to TE-encoded ORFs using BLASTP. All proteins with significant hits (E-value less than 0.001) were collected and searched against the NCBI nonredundant protein and Pfam databases [194]. Transmembrane protein topology was predicted by TMHMM [195]. A Web-based interface was implemented to facilitate the organization of membrane transport protein predictions based on their genes, followed by annotation. APIS allows automatic generation and summarization of phylogenetic trees for each family classification of the predicted proteins in the T. thermophila genome and previously classified kinases.

Analysis of repetitive DNA and TEs. The location and characterization of tandem minisatellite and microsatellite repeats were done using our suite of software tools [190]. We note that repeats that are larger than the scaffold number and size. Vmatch (http://www.vmatch.de) was used to scan for homology to TE-encoded ORFs using BLASTP. All proteins with significant hits (E-value less than 0.001) were collected and searched against the NCBI nonredundant protein and Pfam databases [194]. Transmembrane protein topology was predicted by TMHMM [195]. A Web-based interface was implemented to facilitate the organization of membrane transport protein predictions based on their genes, followed by annotation. APIS allows automatic generation and summarization of phylogenetic trees for each family classification of the predicted proteins in the T. thermophila genome and previously classified kinases.

Analysis of repetitive DNA and TEs. The location and characterization of tandem minisatellite and microsatellite repeats were done using our suite of software tools [190]. We note that repeats that are larger than the scaffold number and size. Vmatch (http://www.vmatch.de) was used to scan for homology to TE-encoded ORFs using BLASTP. All proteins with significant hits (E-value less than 0.001) were collected and searched against the NCBI nonredundant protein and Pfam databases [194]. Transmembrane protein topology was predicted by TMHMM [195]. A Web-based interface was implemented to facilitate the organization of membrane transport protein predictions based on their genes, followed by annotation. APIS allows automatic generation and summarization of phylogenetic trees for each family classification of the predicted proteins in the T. thermophila genome and previously classified kinases.
of GenBank to confirm that Rab proteins from another species were the closest match. The minimum E score cut-off was 5e−13, but the majority of homologs scored better than 1e−30. The top scoring Rab1 homolog from *T. thermophila* (PTHERM_00316280) was used in an additional BLASTP search of the *T. thermophila* genome to confirm that all Rab homologs were identified by the initial query. Homologs of other GTPases in the Rab, Ral, Rap, Ras, Rhe, and Arr families began to appear along with the lower scoring Rab homologs and were discarded from the set. Rab protein sequences from *H. sapiens* (Ensembl database), *Drosophila melanogaster* (Flybase), and *S. cerevisiae* (Saccharomyces Genome Database) along with those identified as described above from *T. thermophila*, were aligned using ClustalX. The alignment was refined by eye and gaps removed. The tree in Figure S7 was generated using the neighbor-joining module in Phylip 3.6. Trees constructed using maximum-likelihood and parsimony methods largely corroborated this topology. *T. thermophila* Rab homologs associated with clades of previously identified Rab homologs were given tentative names where consistent BLASTP results were evident and are arranged in Table S15 according to functional groups. Preliminary annotations from the TGD were queried to identify predicted coat protein homologs. Others were identified in queries with peptide sequence from *D. melanogaster* homologs. *T. thermophila* homologs were used in BLASTP queries of GenBank to confirm annotations. Further analysis of AP subunits, clathrin, and dynamin-related proteins is found in [96].

Sequence availability. All of the sequences, assemblies, and gene predictions can be downloaded from the TIGR ftp site (ftp://ftp.tigr.org/pub/tda/tda97/otic_Projects/Tt_thermophila). The sequence reads and traces can be downloaded from the NCBI trace archive at ftp://ftp.ncbi.nih.gov/pub/TraceDB/tetrahymena__thermophila. Assemblies, sequence reads, and gene predictions can be searched using multiple similarity search methods at the TIGR, TGD, and NCBI Web sites. Sequences are also available in Genbank (see below).

Supporting Information

Figure S1. Nucleotide Composition

(A) Scaffolds larger than 1 Mb were sorted by size and concatenated to make a pseudo molecule. Statistics of nucleotide composition were calculated for 2,000 bp sliding windows with a shift length of 1,000 bp. Yellow, GC-skew; blue, GC%; purple, χ² score. The green lines delimit the scaffolds (long) or contigs within each scaffold (short).

(B) Analysis of three *T. thermophila* scaffolds of diverse size. Red boxes, genes on forward strand; green boxes, genes on reverse strand; blue, χ² score; orange, GC%; brown, GC skew; salmon, AT skew. The vertical light gray lines delimit contigs within each scaffold. Scaffold sizes: 82,545,13, 1,076 kb; 82,545,510 kb; 82,545,72, 37.3 kb.

Found at DOI: 10.1371/journal.pbio.0040286.s001 (246 KB PDF).

Figure S2. Gene Density Distribution

Using scaffolds larger than 100 kb, the percentage of predicted gene coding sequence was calculated within 10-kb windows. For the overall gene density (black bars), a sliding 10-kb window was applied at 2-kb intervals. Gray bars represent gene density in the 10-kb adjacent to each telomere.

Found at DOI: 10.1371/journal.pbio.0040286.s002 (92 KB PDF).

Figure S3. Intron Size Distribution

Comparison of the percentage of introns in various size classes for both ab initio predicted genes (gray bars) and introns confirmed by EST sequencing (black bars). Found at DOI: 10.1371/journal.pbio.0040286.s003 (17 KB PDF).

Figure S4. Expression of tRNA and Other ncRNAs

(A) tRNA charging and expression. Total RNA was harvested from *T. thermophila* in log-phase growth (lanes 1 and 2) or after resuspension in 10 mM Tris starvation buffer for the times indicated. Total RNA samples were resolved by acidurea acrylamide gel electrophoresis and transferred to nylon membrane; the same total RNA sample either untreated or deacetylated at alkaline pH was used for lanes 1 and 2. Probing was performed using end-radiolabeled oligonucleotides specific for the tRNA of interest.

(B) Expression levels of ncRNAs under various conditions. Total RNA was harvested from *T. thermophila* under the growth or development conditions indicated, resolved, transferred, and probed as in (A). As an internal control for even loading, the same blot was hybridized to detect tRNA-Sec and SRP RNA (RNA PolIII transcripts found predominantly in the cytoplasm and involved in translation) and also to U1 and U2 snRNAs (RNA PolII transcripts found predominantly in the nucleus and involved in mRNA splicing).

Found at DOI: 10.1371/journal.pbio.0040286.s004 (429 KB PDF).

Figure S5. Distribution of Repeat Content versus Scaffold Size

Orange points represent scaffolds that have been capped with telomeres at both ends.

Found at DOI: 10.1371/journal.pbio.0040286.s005 (30 KB PDF).

Figure S6. Expansion of the Polo Kinase Family in *T. thermophila* Compared with Selected Eukaryotes

Neighbor-joining tree built from ClustalW alignment of polo kinase domains. Species abbreviations: Hs, *H. sapiens*; Dm, *D. melanogaster*; Ce, *Caenorhabditis elegans*; Sc, *S. cerevisiae*; Dd, *D. discoideum*; Tt, *T. thermophila*. Note that *T. thermophila* has multiple members of both the polo and sak subfamilies, and that even within the *T. thermophila*-specific cluster, sequences are as divergent as orthologs from vertebrates and lower metazoa. The bar indicates scale of average substitutions per site.

Found at DOI: 10.1371/journal.pbio.0040286.s006 (71 KB PDF).

Figure S7. Phylogenetic Analysis of Rabs

Unrooted neighbor-joining tree for Rab GTPases. Bootstrap values over 40% (from 100 replicates) are indicated near corresponding branches. Predicted *T. thermophila* genes are in bold. Other Rabs are from *H. sapiens* (Hs), *D. melanogaster* (Dm), and *S. cerevisiae* (Sc). Proposed Rab families [157] are shown in colored blocks. Asterisks indicate Rabs for which there is functional evidence (**) or at least localization data (*) consistent with their groupings. *T. thermophila* genes cluster with the members of each Rab family except VII and IV (not shown in a box). There are three clades comprised exclusively of *T. thermophila* gene predictions (clades I, II, and III) shown in dark gray boxes.

Found at DOI: 10.1371/journal.pbio.0040286.s007 (39 KB PDF).

Table S1. Genomic DNA Libraries

Found at DOI: 10.1371/journal.pbio.0040286.s001 (28 KB DOC).

Table S2. Statistics on Chromosome Assemblies and Satellite Repeats

Found at DOI: 10.1371/journal.pbio.0040286.s002 (52 KB DOC).

Table S3. Scaffolds Capped by Telomeres

Found at DOI: 10.1371/journal.pbio.0040286.s003 (352 KB DOC).

Table S4. Matches of RAPD DNA Polymorphisms to Scaffolds

Found at DOI: 10.1371/journal.pbio.0040286.s004 (167 KB DOC).

Table S5. *T. thermophila* ESTs, including Available GenBank Entries

Found at DOI: 10.1371/journal.pbio.0040286.s005 (30 KB DOC).

Table S6. ncRNAs

(A) 5S.

(B) tRNA.

(C) Other ncRNAs

(D) RNA gene IDs.

Found at DOI: 10.1371/journal.pbio.0040286.s006 (1.0 MB DOC).

Table S7. Genes Predicted to Be Highly Expressed on the Basis of Codon Usage Bias

Found at DOI: 10.1371/journal.pbio.0040286.s007 (388 KB PDF).

Table S8. Likely Mitochondrion-Derived Genes from the *T. thermophila* Macronuclear Genome

Found at DOI: 10.1371/journal.pbio.0040286.s008 (114 KB DOC).

Table S9. Scaffolds with Similarity to Members of the mariner/Tecl IS630 Superfamily

Found at DOI: 10.1371/journal.pbio.0040286.s009 (73 KB DOC).

Table S10. Recent Gene Duplications

Found at DOI: 10.1371/journal.pbio.0040286.s010 (1.9 MB DOC).

Table S11. Expanded Versions of Tables 5 through 8, including TIGR and GenBank IDs for All the Identified Genes

(A) Kinases.

(B) Membrane transporters.
Tetrahymena thermophila Genome Sequence

Acknowledgments

We would like to acknowledge the Tetrahymena research community and the members of our Tetrahymena Scientific Advisory Board for advice, support, encouragement, and assistance. In addition, we would like to specifically acknowledge many people for assistance: John Gill (sample tracking); Hean Koo (contaminant identification and trace archive and EST submission); Shannon Smith, Susan van Aken, and William Nierman (library construction); Sam Angüoili (Web and BLAST page maintenance); Jeff Shao (database construction); Jessica Vanamethivan (initial work on genome closure); Tamara Feldhübel, Terry Utterback, and the staff at the J. Craig Venter Institute’s Joint Technology Center (sequencing); Lauren Smith and Jyoti Shetty (fosmid construction); Malcolm Gardner (advice); Martin Shumway (general software engineering support); Owen White (general informatics support); Leslie Bistignano and Lynn McMenna (grant support); Aimée Turner (financial operations); Tintu Akinwumi (administrative support); and Claire Fraser (for supporting the scientific research within TIGR).

Author contributions. JAE coordinated the project. JAE, RSC, EPH, and EO wrote and edited the majority of the manuscript. JAE, RSC, MW, DW, JHB, and MT performed multiple bioinformatics analyses. MT, JRW, PA, MF, RKS, and BJH coordinated the annotation. KMY and LJT carried out genome closure. ALD and SLS generated and analyzed genome assemblies. JCS, KMK, and LS analyzed mobile DNA elements. WHM generated model genes. QRM conducted analyses of membrane transporters. JMC, JG, and REP generated and analyzed ESTs. GM analyzed protein kinases. NCE and APT analyzed membrane trafficking. DJA and DEW analyzed dynines. YW and HC analyzed proteases. KC, BAS, SRL, WLR, KW, and ZW analyzed ncDNA. DW, JG, MAG, JF, and CCT analyzed cytoskeletal associated proteins. DJ, RFW, NG, NJH, NBR, EPH, and LJT searched for plastid-derived genes. MC, NAS, and CJK built TGD, Cdt, HFR, SCW, and RAB performed the RAPD analyses. EPH, EO, SLS, JAE, and MW examined genome structure.

Funding. This project was supported by grants to JAE from the National Science Foundation Microbial Genome Sequencing Program (EF-0240561) and the National Institute of Health–National Institute of General Medical Sciences (R01 GM067012-03). We also acknowledge Genome Canada for support of EST library construction and sequencing through the Projet EST Project and grant RR-009231 to EO from the National Institutes of Health (the National Center for Research Resources) which supported the RAPD and Cbs work and an EO subcontract to NSF grant MCB-0132675 which supported sequence analyses related to number of chromosomes and their copy number.

Competing interests. The authors have declared that no competing interests exist.

References

1. Collins K, Gorovsky MA (2003) Tetrahymena thermophila.Curr Biol 15: R317–
R319.
2. Namney DL, Simon EM (2000) Laboratory and evolutionary history of Tetrahymena thermophila.Methods Cell Biol 62: 3–25.
3. Zaiz Af, Cech TR (1986) The intervening sequence RNA of Tetrahymena an enzyme. Science 231: 476–475.
4. Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the terminal of the extrachromosomal ribosomal RNA genes in T.thermophila.J Mol Biol 120: 35–33.
5. Yao MC, Yao CH (1981) Repeated hexanucleotide C-C-C-C-A-A is present near free ends of macronuclear DNA of Tetrahymena. Proc Nail Acad Sci U S A 78: 7436–7439.
6. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts.Cell 45: 405–413.
7. Brownell JH, Zhou J, Kanali T, Kothayaich R, Edmondson DG, et al. (1996) Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.
8. Asai DJ, Forney JD, editors (2000) Tetrahymena thermophila. San Diego: Academic Press.
9. Turkwitz AP, Orrias F, Kapger G (2002) Functional genomics: The coming of age for Tetrahymena thermophila. Trends Genet 18: 35–40.
10. Kim K, Weiss LM (2004) Toxoplasmagondii: The model apicomplexan. Int J Parasitol 34: 423–432.
11. Donald RG, Roos DS (1998) Gene knock-outs and allelic replacements in Toxoplasma gondii: HXGPR a selectable marker for hit-and-run mutagenesis. Mol Biochem Parasitol 91: 251–265.
12. Radko RJ, Beloff-Sexy, Mackey AJ, Radke J, Roos DS, et al. (2005) The transcriptome of Toxoplasma gondii. BMC Biol 3: 26.
13. Peterson DS, Gao Y, Asokan K, Gaertig J (2002) The circumsposorote protein of Plasmodium falciparum is expressed and localized to the cell surface in the free-living ciliate Tetrahymena thermophila. Mol Biochem Parasitol 122: 119–126.
14. Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58: 253–
267.
15. Martindale DW, Allis CD (2003) Molecular biology. A self-help guide for a trim genome. New York: John Wiley & Sons.
16. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena. An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
17. Yao MC, Duharcoeur S, Chalker DL (2002) Genome-wide rearrangements of DNA in ciliates. In: Craig N, Craigie R, Gellert M, Lambowitz A, editors. Mobile DNA II. Herndon (Virginia): ASM Press. pp. 730–758.
18. Yao MC, Chao JI (2005) DNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
19. Yao MC, Duharcoeur S, Chalker DL (2002) Genome-wide rearrangements of DNA in ciliates. In: Craig N, Craigie R, Gellert M, Lambowitz A, editors. Mobile DNA II. Herndon (Virginia): ASM Press. pp. 730–758.
20. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
21. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
22. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
23. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
24. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
25. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
26. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
27. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
28. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
elements contains an invariant 10-base-pair core. Eukaryot Cell 5: 771–780.
25. Yao MC, Yoo CH, Monks B (1990) The controlling sequence for site-specific chromosome breakage in Tetrahymena. Cell 63: 763–772.
26. Fokkens P, Yao M (1996) New telomere formation coupled with site-specific chromosome breakage in Tetrahymena thermophila. Mol Cell Biol 16: 1267–1274.
27. Yu GL, Blackburn EH (1991) Developmentally programmed healing of chromosomes by telomerase in Tetrahymena. Cell 67: 825–832.
28. Aeschbacher ML, Yao MC (1995) Macronuclear DNA of Tetrahymena thermophila exists as defined subchromosomal-sized molecules. Nucleic Acids Res 13: 5817–5831.
29. Conover RK, Brunk CF (1986) Macronuclear DNA molecules of Tetrahymena thermophila. Mol Cell Biol 6: 900–905.
30. Kapler GM (1993) Developmentally regulated processing and replication of the Tetrahymena rDNA minichromosome. Curr Opin Genet Dev 3: 730–735.
31. Doerder FP, Deak JC, Lief JH (1992) Rate of phenotypic assortment in Paramecium tetraurelia and evolution of microtubular chromosome C content, during prometaphase and metaphase of micronuclear division in Tetrahymena thermophila. J Eukaryot Microbiol 49: 30–37.
32. Ray CJ (1956) Preparation of chromosomes of Tetrahymena pyriformis for photomicrography. Stain Technol 31: 271–274.
33. LaFountain JR Jr, Davidson LA (1979) An analysis of spindle ultrastructure during prometaphase and metaphase of micronuclear division in Tetrahymena. Chromosoma 75: 293–308.
34. LaFountain Jr Jr, Davidson LA (1980) An analysis of spindle ultrastructure during anaphase of micronuclear division in Tetrahymena. Cell Motil 1: 41–61.
35. Mochizuki K, Gorovsky MA (2004) Small RNAs in genome rearrangement in Tetrahymena. Curr Opin Genet Dev 14: 181–187.
36. Orias E (2000) Toward sequencing the Tetrahymena genome: Exploiting the gift of nuclear dimorphism. J Eukaryot Microbiol 47: 328–335.
37. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, et al. (2000) A whole-genome assembly of Drosophila. Science 287: 2196–2204.
38. Brunk CF, Lee LC, Tran AB, Li J (1992) Complete sequence of the mitochondrial genome of Tetrahymena thermophila and comparative methods for identifying highly divergent genes. Nucleic Acids Res 31: 1675–1682.
39. Engberg J, Nielsen H (1990) Complete sequence of the extrachromosomal rDNA molecule from the ciliate Tetrahymena thermophila strain B16867/11/V. Nucleic Acids Res 18: 6915–6919.
40. Wong L, Kliosny L, Wickert S, Merriam V, Orias E, et al. (2000) Autonomously replicating macronuclear DNA pieces are the physical basis of genetic coassortment groups in Tetrahymena thermophila. Genetics 155: 1119–1125.
41. Cassidy-Hanley D, Bisharyan Y, Fridman V, Gerber J, Lin C, et al. (2005) Genome-wide characterization of Tetrahymena thermophila chromosome breakage sites II. Physical and genetic mapping of 1653–1651.
42. Yao MC, Zheng K, Yao CH (1987) A conserved nucleotide sequence at the sites of developmentally regulated chromosome breakage in Tetrahymena. Cell 48: 779–788.
43. Karrer KM (2000) Tetrahymena genetics: Two nuclei are better than one. Methods Cell Biol 62: 127–186.
44. Cervantes MD, Xi X, Vermaak D, Yao MC, Malik HS (2006) The CNA1 protein synthesis. Annu Rev Nutr 23: 17–40.
45. Gao W, Khang CH, Park SY, Lee YH, Kang S (2002) Evolution and alignment assemblies. Nucleic Acids Res 31: 5654–5666.
46. Wellinger RJ, Sen D (1997) The DNA structures at the ends of eukaryotic telomeres. II. Physical and genetic mapping. Genetics 170: 1623–1631.
47. Regoes A, Zourmpanou D, Leon-Avila G, van der Giezen M, Tovar J, et al. (2007) The genome of the social amoeba Dictyostelium discoideum. Nature 455: 43–57.
48. Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. (2005) The genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511.
49. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, et al. (2003) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3: 91–102.
50. Mefford HC, Trask BJ (2002) The nutritional requirements of a ciliate Tetrahymena corlissi requirements of T. corlissi. Am Zool 19: 573–587.
51. Holz GG Jr, Wagner B, Crawford MF, Franholz MJ, et al. (2004) Tropical infectious diseases: Metabolism and functions of Plasmodium falciparum apicoplast. Nat Rev Microbiol 2: 203–216.
52. Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. (2002) Genomic evolution in the human malaria parasite Plasmodium falciparum. Nature 419: 498–511.
53. Kimmel AR, Gorovsky MA (1976) Numbers of 5S and tRNA genes in eukaryotes: Correlation of codon usage diversity with translation efficiency and with G+C-dinucleotide usage as assessed by multifracture analysis. J Mol Evol 53: 290–298.
54. Lynch M, Conery JS (2003) The origins of genome complexity. Science 300: 1401–1404.
55. Erwin JJ (2006) Evolution of human subtelomeres. Nat Rev Genet 3: 91–102.
DNA during somatic differentiation in *Tetrahymena thermophila* shows position effect and is dosage dependent. Eukaryot Cell 4: 421–431.

87. Mochizuki K, Fine NA, Fusitawa T, Gorovsky MA (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in *Tetrahymena*. Cell 106: 689–699.

88. Yao MC, Fuller P, Xi X (2005) Programmed DNA deletion as an RNA-guided system of genome defense. Science 309: 1581–1584.

89. Doerder FP, Gates MA, Eberhardt FP, Arslanyol M (1995) High frequency of somatic and equal frequency of maternal genomes in natural populations of the ciliate *Tetrahymena thermophila*. Proc Natl Acad Sci U S A 92: 8715–8718.

90. Fillingham J, Thing TA, Vytelingum N, Kerughan A, Bruno D, et al. (2004) A nonlong terminal repeat retrotransposon family is restricted to the germ line nucleus of the ciliated protistoxozan *Tetrahymena thermophila*. Eukaryot Cell 3: 157–160.

91. Wuitschick JD, Gershon JA, Lochowicz AJ, Li S, Karrer KM (2002) A novel tandem duplication, and unique DNA induced point mutation (RIP) in *Tetrahymena*. Mol Biol Evol 22: 1751–1763.

92. Silva JC, Bastida F, Biswel SL, Johnson PJ, Carlton JM (2005) A potentially functional mariner transposable element in the ciliate *Trichomonas vaginalis*. Mol Biol Evol 22: 126–134.

93. Foss EJ, Garrett PW, Kinsey JA, Selker EU (1991) Specificity of induced point mutation (RIP) in Neurospora: Sensitivity of non-N. crassa species, a naturally diverged tandem duplication, and unique DNA adjacent to a duplicated region. Genetics 127: 717–711.

94. Bowman GR, Smith DG, Michael Siu KW, Pearlman RE, Turkewitz AP (2006) A nonlong terminal repeat retrotransposon family is limited to the germline genome in the germ line micronucleus of the ciliated protozoan *Tetrahymena thermophila*. Cell 110: 689–699.

95. Wuitschick JD, Gershan JA, Lochowicz AJ, Li S, Karrer KM (2002) A novel tandem duplication, and unique DNA induced point mutation (RIP) in *Tetrahymena*. Mol Biol Evol 22: 1751–1763.

96. Haynes WJ, Ling KY, Saimi Y, Kung C (2003) PAK paradox: *Paramecium* appears to have more K(+)–channel genes than humans. Eukaryot Cell 2: 737–745.

97. Kung C, Saimi Y (1982) The physiological basis of taxes in *Paramecium*. Annu Rev Physiol 44: 519–544.

98. Hennessey T, Machemer H, Nelson DL (1985) Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur J Cell Biol 39: 457–462.

99. Weber JL, Vishnyakov A, Hambach K, Schultz A, Schulz JE, et al. (2004) Adenyl cyclase and Pseudomurys, *Paramecium* and *Tetrahymena* are novel ion channelenzyme fusion proteins. Cell Signal 16: 115–125.

100. Puegne NS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: A comparative genomic approach. Nat Rev Genet 4: 544–558.

101. Rawlings ND, Tolles, DP, Barrett AJ (2004) MEROPS: The peptidase database. Nucleic Acids Res 32: D160–D164.

102. Williams NE (2000) Preparation of cytoskeletal fractions from *Tetrahymena thermophila*. Methods Cell Biol 62: 411–417.

103. Dutcher SK (2005) Long-lost relatives reappear: Identification of new members of the tubulin superfamily. Curr Opin Microbiol 6: 634–640.

104. Welling GW, Smith DG, Michael Siu KW, Pearlman RE, Turkewitz AP (2006) A nonlong terminal repeat retrotransposon family is limited to the germline genome in the germ line micronucleus of the ciliated protozoan *Tetrahymena thermophila*. Cell 110: 689–699.

105. Madeo F, Herker E, Maldener C, Wissig S, Lachelt S, et al. (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9: 911–917.

106. Frankel J (2000) Cell biology of *Tetrahymena thermophila*. Methods Cell Biol 62: 125–127.

107. Williams NE (2000) Preparation of cytoskeletal fractions from *Tetrahymena thermophila*. Methods Cell Biol 62: 411–417.

108. Dutcher SK (2005) Long-lost relatives reappear: Identification of new members of the tubulin superfamily. Curr Opin Microbiol 6: 634–640.

109. Gaertig J, Thatcher TH, McGrath KE, Callahan RC, Gorovsky MA (1993) Functional evidence for interaction between eta- and beta-tubulins. Cell Motil Cytoskeleton 25: 243–253.

110. McGrath KE, Yu SM, Heruth DP, Kelly AA, Gorovsky MA (1994) Regulation and evolution of the single alpha-tubulin gene of the ciliate *Tetrahymena thermophila*. Cell Motil Cytoskeleton 27: 272–285.

111. Shang Y, Li B, Gorovsky MA (2002) *Tetrahymena thermophila* contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. J Cell Biol 158: 1195–1206.

112. Dupuis-Williams P, Fleury-Aubusson A, de Loubresse NG, Geoffroy H, Madeo F, et al. (2002) A nonlong terminal repeat retrotransposon family is restricted to the germline genome in the germ line micronucleus of the ciliated protozoan *Tetrahymena thermophila*. Cell 110: 689–699.

113. Madeo F, Herker E, Maldener C, Wissig S, Lachelt S, et al. (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9: 911–917.

114. Frankel J (2000) Cell biology of *Tetrahymena thermophila*. Methods Cell Biol 62: 125–127.

115. Williams NE (2000) Preparation of cytoskeletal fractions from *Tetrahymena thermophila*. Methods Cell Biol 62: 411–417.

116. Dutcher SK (2005) Long-lost relatives reappear: Identification of new members of the tubulin superfamily. Curr Opin Microbiol 6: 634–640.
Tetrahymena thermophila

Genome Sequence

148. Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103: 3681–3686.

149. Janke C, Rogowski K, Włoga D, Regnard C, Kajava AV, et al. (2005) Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308: 1758–1762.

150. Osmani SA, Engle DB, Dooman JH, Morris NR (1988) Spindle formation and chromatin condensation in cells blocked at interphase by mutation of a negative cell cycle control gene. Cell 52: 241–251.

151. Fry AM, Meraldi P, Nigg EA (1998) A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 17: 470–481.

152. Mahjoub MR, Montpetit B, Zhao L, Finst JR, Goh B, et al. (2002) The FA2 gene of Chlamydomonas encodes a NIMA family kinase with roles in cell cycle progression and microtubule severing during delagellation. J Cell Sci 115: 1759–1770.

153. Turkewitz AP (2004) Out with a bang! Tetrahymena as a model system to study secretory granule biogenesis. Traffic 5: 63–68.

154. Bock JB, Matern HT, Peden AA, Scheller RH (2001) A genomic perspective on membrane compartments in organization. Nature 409: 839–841.

155. Ackers JP, Dhir V, Field MC (2005) A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Mol Biochem Parasitol 141: 89–97.

156. Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2: reviews3007.

157. Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313: 889–901.

158. Saito-Nakano Y, Loftus R, Hall N, Nozaki T (2005) The diversity of Rab GTPases in Entamoeba histolytica. Exp Parasitol 110: 244–252.

159. Lal K, Field MC, Carlton JM, Warwicker J, Hirt RP (2005) Identification of a very large Rab GTPase family in the parasitic protozoa Trichomonas vaginalis. Mol Biochem Parasitol 145: 226–235.

160. Muller KM, Kenny EE, Sternberg PW (2004) Textpresso: An ontology-based information retrieval and extraction system for biological literature. PLoS Biol 2: e309.

161. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, et al. (2002) The generic genome browser: A building block for a model organism system database. Genome Res 12: 1559–1610.

162. Dear PH, Cook PR (1993) Happy mapping: Linkage mapping using a physical analogue of meiosis. Nucleic Acids Res 21: 13–20.

163. Elliott AM, Gruchy DF (1952) The occurrence of mating types in Tetrahymena. Biol Bull (Woods Hole, MA) 105: 301.

164. Mayo KA, Orias E (1981) Further evidence for lack of gene expression in Tetrahymena. EMBO J 1: 77–172.

165. Allen SL, Gibson I (1973) Genetics of Tetrahymena. Stroudsburg (Pennsylvania): Dowden, Hutchison and Ross. pp. 307–375.

166. Allen SL (1967) Genomic exclusion: A rapid means for inducing homologous diploid lines in Tetrahymena pyrifoma, syngen 1. Science 155: 579–577.

167. Ward N, Eisen J, Fraser C, Staceybrandt F (2001) Sequenced strains must be saved from extinction. Nature 414: 148.

168. Gorovsky MA, Yao MC, Keevert JB, Pleger GL (1975) Isolation of microtubules from Tetrahymena pyriformis. Methods Cell Biol 9: 311–327.

169. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. (2001) The sequence of the human genome. Science 291: 1304–1351.

170. Kurrty S, Phillippiy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile and open software for comparing large genomes. Genome Biol 5: R12.

171. Lynch TJ, Bricker N, Nakano KJ, Orrias E (1995) Genetic map of randomly amplified DNA polymorphisms closely linked to the mating type locus of Tetrahymena thermophila. Genet Res 65: 141–152.

172. Hamilton E, Bruns P, Lin C, Merriam V, Orrias E, et al. (2005) Genome-wide characterization of Tetrahymena thermophila chromosome breakage sites. I. Cloning and identification of functional sites. Genet Res 170: 1611–1621.

173. Birren B, Lai E (1993) Pulsed field gel electrophoresis—A practical guide. New York: Academic Press.

174. Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models. Nucleic Acids Res 22: 2079–2088.

175. Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 95–96.

176. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2005) Rfam: An RNA family database. Nucleic Acids Res 33: 439–441.

177. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, et al. (2005) Rfam: Annotating noncoding RNAs in complete genomes. Nucleic Acids Res 33: D121–D124.

178. Weinberg Z, Ruzzo WL (2004) Exploiting conserved structure for faster annotation of noncoding RNAs without loss of accuracy. Bioinformatics 20: 1354–1341.

179. Orum H, Nielsen H, Engberg J (1995) Sequence and proposed secondary structure of the Tetrahymena thermophila U3 snoRNA. Nucleic Acids Res 21: 2511.

180. Weinberg Z, Ruzzo WL (2006) Sequence-based heuristics for faster annotation of noncoding RNA families. Bioinformatics 22: 33–39.

181. Orum H, Bateman A, Durbin R (2002) QuikTree: Building huge Neighbour-joining trees of protein sequences. Bioinformatics 18: 1546–1547.

182. Scharfe C, Zaccaria P, Hoerttagel K, Jaksh M, Klosteck P, et al. (2000) MITOP, the mitochondrial proteome database: 2000 Update. Nucleic Acids Res 28: 155–158.

183. Scharfe C, Zaccaria P, Hoerttagel K, Jaksh M, Klosteck P, et al. (1999) MITOP: Database for mitochondria-related proteins, genes and diseases. Nucleic Acids Res 27: 153–155.

184. Benson G (1999) Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res 27: 573–580.

185. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

186. Gershon JA, Karrer KM (2000) A family of developmentally excised DNA elements in Tetrahymena is under selective pressure to maintain an open reading frame encoding an integrase-like protein. Nucleic Acids Res 28: 1405–1412.

187. Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tcl1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genomics 139: 1105–1115.

188. Ogurtsov AY, Roytberg MA, Shabalina SA, Kondrashov AS (2002) OWEN: Aligning long collinear regions of genomes. Bioinformatics 18: 1703–1704.

189. Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: Multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26: 320–322.

190. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305: 567–580.

191. Ren Q, Paulsen IT (2005) Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes. PLoS Comput Biol 1: e27. DOI: 10.1371/journal.pcbi.00100927.

192. Baldauf SL (2003) The deep roots of eukaryotes. Science 300: 1703–1706.