MULTIPOLICY OF SOLUTIONS FOR A CLASS OF QUASILINEAR PROBLEMS INVOLVING THE 1-LAPLACIAN OPERATOR WITH CRITICAL GROWTH

CLAUDIANOR O. ALVES, ANASS OURRAOUI AND MARCOS T. O. PIMENTA

Abstract. The aim of this paper is to establish two results about multiplicity of solutions to problems involving the 1−Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem
\[
\begin{cases}
-\Delta_1 u + \xi \frac{|u|}{|u|} = \lambda |u|^{q-2}u + |u|^{1^*-2}u, & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega,
\end{cases}
\]
where \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^N\), \(N \geq 2\) and \(\xi \in \{0, 1\}\). Moreover, \(\lambda > 0\), \(q \in (1, 1^*)\) and \(1^* = \frac{N}{N-1}\). The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that \(\xi = 1\), \(\Omega = \{x \in \mathbb{R}^N : r < |x| < r + 1\}\), \(N \geq 2\), \(N \neq 3\) and \(r > 0\). In the second one, \(\Omega\) is a smooth bounded domain, \(\xi = 0\), and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a \(C^1\) functional with a convex lower semicontinuous functional.

1. Introduction

In this work we are concerned with the existence of multiple solutions for the following class of problem
\[
\begin{cases}
-\Delta_1 u + \xi \frac{|u|}{|u|} = \lambda |u|^{q-2}u + |u|^{1^*-2}u, & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega,
\end{cases}
\]
where \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^N\), \(q \in (1, 1^*)\), \(\xi \in \{0, 1\}\), \(\lambda > 0\) and \(1^* = \frac{N}{N-1}\) for \(N \geq 2\).

Problem (1.1) looks as the formal limit, as \(p \to 1^+\), of
\[
\begin{cases}
-\Delta_p u + \xi |u|^{p-2}u = \lambda |u|^{q-2}u + |u|^{p^*-2}u, & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega,
\end{cases}
\]
where \(p^* = \frac{Np}{N-p}\) for \(N \geq p\).

The interest in this sort of problem has started with the celebrated paper of Brézis and Nirenberg [16], in which the authors proved that, for \(p = q = 2\) and \(\xi = 0\), (1.2) admits a positive solution for every \(\lambda \in (0, \lambda_1)\) and \(N \geq 4\). Later, this result has been extended for \(p > 1\) by Egnell [26], García Azorero and Peral Alonso [31] and Gueda and Veron [32].

2010 Mathematics Subject Classification. 1-Laplacian operator; Functions of bounded variation, Variational Methods.

Key words and phrases. 35J62, 26A45, 35J20.

C. O. Alves was partially supported by CNPq/Brazil 304804/2017-7. M. T. O. Pimenta was partially supported by FAPESP 2019/14330-9, CNPq/Brazil 303788/2018-6 and FAPDF.
As far as works involving the $1-$Laplacian operator are regarded, some of the pioneering works involving this operator were written by Andreu, Ballester, Caselles and Mazón in a series of papers (among them [8–10]), which gave rise to the monograph [11]. Indeed, in [8], the authors characterize the imprecise quotient $\frac{Du}{|Du|}$ (when Du is just a Radon measure, rather than an L^1 function), through the Pairing Theory of Anzellotti (see [12] and also [11]). This theory allows them to introduce a vector field $z \in L^\infty(\Omega, \mathbb{R}^N)$ which plays the role of $\frac{Du}{|Du|}$. Among the very first works on this issue we could also cite the works of Kawohl [34] and also Demengel [22], where in the later, the author used the symmetry of the domain to get nodal solutions to problems involving the $1-$Laplacian operator and a nonlinearity with critical growth.

In [25], Degiovanni and Magrone studied the version of the Brézis-Nirenberg problem to the 1-Laplacian operator, by applying a linking theorem. In that work, for compactness issues, they worked with an extension of the energy functional to the Lebesgue space $L^{1^*}(\Omega)$.

In [27], Figueiredo and Pimenta studied a problem related to (1.1), where the nonlinearity has a subcritical growth. In their main result, an approach based on the Nehari method has been developed in order to obtain ground-state solutions.

Regarding quasilinear problems of this type, the natural space to deal with it is the space of functions of bounded variation, $BV(\Omega)$. More specifically, when dealing with this sort of problems through variational methods, some difficulties related to the Palais-Smale condition arise. Moreover, other ones related to the lack of smoothness of the energy functional and to the lack of reflexiveness of $BV(\Omega)$, arise as well.

In this work, we exploit some facts and ideas from the above papers, especially from [22] to show the existence of multiple nontrivial solutions to (1.1). Our goal is twofold. First, we establish the existence of many rotationally non-equivalent and nonradial solutions for the above problem (1.1) with $\xi = 1$, involving a nonlinearity with critical growth in the case when

\begin{equation}
\Omega = \Omega_r = \{ x \in \mathbb{R}^N : r < |x| < r + 1 \}.
\end{equation}

Afterwards, we study (1.1) by assuming that Ω is a smooth bounded domain in \mathbb{R}^N and $\xi = 0$. In this case, we prove the existence of multiple many solutions, by applying a version of an abstract result in [44].

The existence of many rotationally non-equivalent and nonradial solutions was considered in some problems involving the Laplacian operator. In Brézis and Nirenberg [16], it was proved the existence of a non-radial positive solution for the following problem

\begin{equation}
\begin{cases}
-\Delta u + u - u^p = 0, & \text{in } D, \\
u = 0, & \text{on } \partial D,
\end{cases}
\end{equation}

where

\[D = \{ x \in \mathbb{R}^N : r < |x| < r + d \} \]

for some $d > 0$. In [21], Coffman proved that, if $p > 1$ and $N = 2$ or $1 < p < N/(N - 2)$ and $N \geq 3$, the number of nonradial and rotationally non-equivalent positive solutions of (1.4), tends to $+\infty$ as $r \to +\infty$.
Motivated by the above papers, some authors have studied this class of problems. For the subcritical case, we can mention the papers of Li [35], Lin [36], Suzuki [45] and references therein. Related to the critical case, Wang and Willem [46] proved the existence of multiple solutions for the following problem

\begin{align}
-\Delta u = \lambda u + u^{2^*-1}, \quad &\text{in } \Omega_r, \\
u = 0, \quad &\text{on } \partial \Omega_r,
\end{align}

where \(\Omega_r \) is given in (1.3). The authors proved that for \(0 < \lambda < \pi^2 \) and \(n \in \mathbb{N} \), there exists \(R(\lambda, n) \) such that for \(r > R(\lambda, n) \), (1.5) has at least \(n \) nonradial and rotationally non-equivalent solutions. Inspired by [46], de Figueiredo and Miyagaki [23] considered the following problem

\begin{align}
-\Delta u = f(|x|, u) + u^{2^*-1}, \quad &\text{in } \Omega_r, \\
u = 0, \quad &\text{on } \partial \Omega_r,
\end{align}

where \(f \) is a \(C^1 \) function with subcritical growth.

Still related to this class of problem, we would like to cite the papers of Alves and de Freitas [3], Byeon [15], Castro and Finan [17], Catrina and Wang [18], Mizoguchi and Suzuki [39], Hirano and Mizoguchi [33] and references therein.

Motivated by the works previously mentioned and more precisely, by [23], [25] and [46], our first main result is the following.

Theorem 1.1. For each \(n \in \mathbb{N} \) there is \(r_0 > 0 \) and \(\lambda_0 > 0 \) such that for all \(\lambda \geq \lambda_0 \) and \(r \geq r_0 \), (1.1) for \(\xi = 1 \) has at least \(n \) nonradial and rotationally non-equivalent solutions.

In what follows, according to Degiovanni and Magrone [25] and Kawohl and Schuricht [13], we say that \(u \in BV(\Omega_r) \) is a solution to (2.1) if there are \(z \in L^\infty(\Omega_r, \mathbb{R}^N) \) and \(\gamma \in L^\infty(\Omega_r, \mathbb{R}) \) such that

\begin{align}
|z|_\infty \leq 1, \quad &\text{div} \in L^N(\Omega_r), \quad -\int_{\Omega_r} u \text{div} z dx = \int_{\Omega_r} |Du| + \int_{\partial \Omega_r} |u| d\mathcal{H}^{N-1}, \\
|\gamma|_\infty \leq 1, \quad &\gamma |u| = u \quad \text{a.e. in } \Omega_r, \\
-\text{div} z + \gamma &= \lambda |u|^{q-2} u + |u|^{r-2} u, \quad \text{a.e. in } \Omega_r.
\end{align}

Our second main result was motivated by the study made in Wei and Wu [47], where the authors showed the existence of multiple solution for the following class of problems involving the \(p \)-Laplacian operator

\begin{align}
-\Delta_p u = f(x, u) + \lambda |u|^{p^*-2} u, \quad &\text{in } \Omega, \\
u = 0, \quad &\text{on } \partial \Omega,
\end{align}

where \(\Omega \) is a smooth bounded domain, \(\lambda \) is a positive parameter and \(f \) is continuous, with subcritical growth. In this work, the authors used a version of an abstract theorem due to Ambrosetti and Rabinowitz [7] which involves the genus theory for \(C^1 \) even functionals. Their main result proves that given \(n \in \mathbb{N} \), there is \(\lambda_0 = \lambda_0(n) > 0 \) such that problem (1.8) has at least \(n \) nontrivial solutions for \(\lambda \in (0, \lambda_0) \). In [42], Silva and Xavier improved the main results proved in [47].

Our main second result has the following statement.
Theorem 1.2. Given $n \in \mathbb{N}$, there is $\lambda_n > 0$ such that (1.1) for $\xi = 0$ has at least n nontrivial solutions for $\lambda \geq \lambda_n$.

We would like to point out that in the proof of Theorems 1.1 and 1.2 we cannot use the classical variational methods for C^1 functionals, since problems involving the 1-Laplacian operator have energy functionals which are not C^1. This, in turn, brings a lot of difficulties for dealing with the problem. In order to overcome this difficulty, we use the minimax methods developed by Szulkin in [44], which works well for functionals that can be written as the sum of a C^1 functional with a convex lower semicontinuous one. Finally, we would like to point out that $\xi = 1$ in Theorem 1.1 is very important, because in our approach it was necessary to work with some sequences in $BV(\mathbb{R}^N)$ (see the proof of Lemma 2.5).

Before concluding this introduction, for those readers interested in problems involving the 1-Laplacian operator, we would like to cite Alves [1, 2], Alves and Pimenta [4], Alves, Figueiredo and Pimenta [5], Bellettini, Caselles and Novaga [14], Chang [20], Demengel [24], Figueiredo and Pimenta [29, 30], Mercaldo, Rossi, Segura de León and Trombetti [37], Mercaldo, Segura de León and Trombetti [38], Molino Salas and Segura de León [40], Ortiz Chata and Pimenta [41].

2. Existence of nonradial solutions

We say that $u \in BV(\Omega_r)$ is a solution of (2.1) if $0 \in \partial I_\lambda(u)$, where $\partial I_\lambda(u)$ denotes the generalized gradient of I_λ in u, as defined in [19]. It is possible to prove that $0 \in \partial I_\lambda(u)$ if, and only if,

$$\|w\|_r - \|u\|_r \geq \int_{\Omega_r} (\lambda |u|^{q-2}u + |u|^{1^*-2}u)(w - u) dx, \quad \forall w \in BV(\Omega_r),$$

where $BV(\Omega_r)$ denotes the space of functions of bounded variation.

We say that $u \in L^1(\Omega_r)$ and its distributional derivative Du is a vectorial Radon measure, i.e.,

$$BV(\Omega_r) = \{u \in L^1(\Omega_r); Du \in \mathcal{M}(\Omega_r, \mathbb{R}^N)\}.$$

It can be proved that $u \in BV(\Omega_r)$ is equivalent to $u \in L^1(\Omega_r)$ and

$$\int_{\Omega_r} |Du| := \sup \left\{ \int_{\Omega_r} \text{div}\phi dx; \phi \in C^1_c(\Omega_r, \mathbb{R}^N), \text{s.t.} \|\phi\| \leq 1 \right\} < +\infty.$$
The space $BV(\Omega_r)$ is a Banach space endowed with the norm
\begin{equation}
\|u\| := \int_{\Omega_r} |Du| + |u|_{L^1(\Omega_r)}.
\end{equation}
Moreover, the Sobolev embeddings hold also for this space and its embedding into $L^r(\Omega)$ is continuous for all $r \in [1, 1^*)$ and compact for $r \in [1, 1^*)$.

In this section, we will consider the following norm on $BV(\Omega_r)$,
\begin{equation}
\|u\|_r = \int_{\Omega_r} |Du| \, dx + \int_{\Omega_r} |u| \, dx + \int_{\partial \Omega_r} |u| \, dH^{N-1},
\end{equation}
which is equivalent to the norm (2.3), where H^{N-1} denotes the $(N - 1)$-dimensional Hausdorff measure.

As one can see in [13], the space $BV(\Omega_r)$ has different convergence and density properties when compared with the usual Sobolev spaces. For instance, $C^\infty(\overline{\Omega_r})$ is not dense in $BV(\Omega_r)$ with respect to the strong convergence. However, there is a weaker sense of convergence in $BV(\Omega_r)$, called intermediate convergence (or strict convergence), which makes $C^\infty(\overline{\Omega_r})$ dense on it. We say that $(u_n) \subset BV(\Omega_r)$ converges to $u \in BV(\Omega_r)$ in the sense of the intermediate convergence if
\begin{equation}
u_n \to u \quad \text{in} \quad L^1(\Omega_r)
\end{equation}
and
\begin{equation}
\int_{\Omega_r} |Du_n| \to \int_{\Omega_r} |Du|.
\end{equation}

In what follows, $O(N)$ denotes the group of $N \times N$ orthogonal matrices. For any integer $k \geq 1$, let us consider the finite rotational subgroup O_k of $O(2)$ given by
\begin{equation}
O_k = \left\{ g \in O_2 : g(x) = \left(x_1 \cos \frac{2\pi l}{k} + x_2 \sin \frac{2\pi l}{k}, -x_1 \sin \frac{2\pi l}{k} + x_2 \cos \frac{2\pi l}{k} \right) \right\},
\end{equation}
where $x = (x_1, x_2) \in \mathbb{R}^2$ and $l \in \{0, 1, \ldots, k - 1\}$. We also consider the subgroups of $O(N)$
\begin{equation}
G_k = O_k \times O(N - 2), \quad 1 \leq k < \infty
\end{equation}
and
\begin{equation}
G_\infty = O(N).
\end{equation}

Now related to the above subgroups, we set the subspaces
\begin{equation}
BV_{G_k}(\Omega_r) = \{ u \in BV(\Omega_r) : u(x) = u(g^{-1}(x)), \quad \text{for all} \quad g \in G_k \},
\end{equation}
endowed with the norm $\| \cdot \|_r$.

From the compact embedding involving the space $BV(\Omega_r)$, it follows that the embedding
\begin{equation}
BV_{G_k}(\Omega_r) \hookrightarrow L^t(\Omega_r), \quad t \in [1, 1^*)
\end{equation}
is compact for $1 \leq k < +\infty$ and
\begin{equation}
BV_{G_\infty}(\Omega_r) \hookrightarrow L^t(\Omega_r), \quad t \in [1, +\infty)
\end{equation}
is compact, see [6, Lemma 2.1].
Moreover, Figueiredo and Pimenta [28] proves that the embedding
\[BV_{G_{\infty}}(\mathbb{R}^N) \hookrightarrow L^t(\mathbb{R}^N), \quad t \in (1, 1^*) \]
is compact as well.

In the sequel, for each \(1 \leq k \leq \infty\), \(J_{\lambda,k,r}\) denotes the following real numbers
\[J_{\lambda,k,r} = \inf_{\mathcal{N}_{k,r}} I_{\lambda}, \]
with
\[\mathcal{N}_{k,r} = \{ BV_G(\Omega_r) \setminus \{0\}; \ E_\lambda(u) = 0 \}, \]
where
\[E_\lambda(u) = \int_{\Omega_r} |Du| \, dx + \int_{\Omega_r} |u| \, dx + \int_{\partial \Omega_r} |u| \, d\mathcal{H}^{N-1} - \lambda \int_{\Omega_r} |u|^q \, dx - \int_{\Omega_r} |u|^{1^*} \, dx. \]

The set \(\mathcal{N}_{k,r}\) is called Nehari set associated with \(I_\lambda\) (see [27] for a detailed description of this set). It is possible to prove that \(J_{\lambda,k,r}\) is the mountain pass levels associated with \(I_\lambda\) on \(BV_{G_k}(\Omega_r)\) and \(BV_{G_{\infty}}(\Omega_r)\), respectively. Hence, there is a \((PS)\) sequence \((u_n)\) associated to \(J_{\lambda,k,r}\), i.e.,
\[I_\lambda(u_n) \to J_{\lambda,k,r} \]
and
\[\|v\|_r - \|u_n\|_r \geq \int_{\Omega_r} (\lambda|u_n|^{q-2}u_n + |u_n|^{1^*-2}u_n)(v - u_n) \, dx - \tau_n \|v - u_n\|_r, \quad \forall v \in BV_{G_k}(\Omega_r). \]
The last inequality implies that
\[\|u_n\|_r = \int_{\Omega_r} (\lambda|u_n|^q + |u_n|^{1^*}) \, dx + o_n(1)\|u_n\|_r. \]

Lemma 2.1. The sequence \((u_n)\) is bounded.

Proof. From (2.8) and (2.9),
\[J_{\lambda,k,r} + o_n(1) = I_\lambda(u_n) - \frac{1}{q}\|u_n\|_r + \frac{1}{q} \int_{\Omega_r} (\lambda|u_n|^q + |u_n|^{1^*}) \, dx + o_n(1)\|u_n\|_r. \]
Then
\[J_{\lambda,k,r} + o_n(1) \geq \left(\frac{q - 1}{q} \right)\|u_n\|_r - o_n(1)\|u_n\|_r \geq \frac{(q - 1)}{2q}\|u_n\|_r \]
for \(n\) large enough, showing the boundedness of the sequence. \(\square\)

Lemma 2.2. For each \(\lambda > 0\) fixed, there is \(\eta = \eta(\lambda) > 0\) that is independent of \(k\) and \(r > 0\) such that \(J_{\lambda,k,r} \geq \eta\) for \(1 \leq k \leq \infty\).

Proof. For each \(u \in \mathcal{N}_{k,r}\) we have that
\[\|u\|_r = \lambda \int_{\Omega_r} |u|^q \, dx + \int_{\Omega_r} |u|^{1^*} \, dx. \]
In what follows, we define the function \(\tilde{u} : \mathbb{R}^N \to \mathbb{R}\) given by
\[\tilde{u}(x) = \begin{cases} u(x), & x \in \Omega_r, \\ 0, & x \in \Omega_r^c. \end{cases} \]
Hence,
\[
\int_{\Omega_r} |u|^q \, dx = \int_{\mathbb{R}^N} |\tilde{u}|^q \, dx, \quad \int_{\Omega_r} |u|^{1^*} \, dx = \int_{\mathbb{R}^N} |\tilde{u}|^{1^*} \, dx
\]
and by properties of \(BV(\mathbb{R}^N)\), \(\tilde{u} \in BV(\mathbb{R}^N)\) and
\[
\int_{\mathbb{R}^N} |D\tilde{u}| = \int_{\Omega_r} |Du| \, dx + \int_{\partial\Omega_r} |u| \, d\mathcal{H}^{N-1}.
\]
The definition of \(\tilde{u}\) combined with (2.10) gives
\[
\int_{\mathbb{R}^N} |D\tilde{u}| + \int_{\mathbb{R}^N} |\tilde{u}| \, dx = \lambda \int_{\mathbb{R}^N} |\tilde{u}|^q \, dx + \int_{\mathbb{R}^N} |\tilde{u}|^{1^*} \, dx.
\]
The function \(\| \cdot \| : BV(\mathbb{R}^N) \to \mathbb{R}\) given by
\[
\|w\| = \int_{\mathbb{R}^N} |Dw| + |w|_{L^1(\mathbb{R}^N)}.
\]
is a norm in \(BV(\mathbb{R}^N)\). Moreover, there are positive constants \(C_1, C_2 > 0\) such that
\[
\|w\|_{L^q(\mathbb{R}^N)} \leq C_1 \|w\| \quad \text{and} \quad \|w\|_{L^{1^*}(\mathbb{R}^N)} \leq C_2 \|w\|, \quad \forall w \in BV(\mathbb{R}^N).
\]
From (2.12)-(2.14), there is \(C_3 > 0\) such that
\[
1 \leq C_3(\lambda \|\tilde{u}\|^{q-1} + \|\tilde{u}\|^{1^*-1}).
\]
Therefore, there is \(\eta_1 = \eta_1(\lambda) > 0\) such that
\[
\|\tilde{u}\| \geq \eta_1,
\]
and so,
\[
\|u\| \geq \eta_1, \quad \forall u \in \mathcal{N}_{k,r}.
\]
From (2.10),
\[
\lambda \int_{\mathbb{R}^N} |u|^q \, dx + \int_{\mathbb{R}^N} |u|^{1^*} \, dx \geq \eta_1, \quad \forall u \in \mathcal{N}_{k,r},
\]
then,
\[
I_\lambda(u) = \frac{\lambda(q-1)}{q} \int_{\Omega_r} |u|^q \, dx + \frac{(1^*-q)}{q1^*} \int_{\Omega_r} |u|^{1^*} \, dx \geq \frac{(q-1)}{q} \eta_1,
\]
showing the result. \(\square\)

Hereafter, \(S\) denotes the following constant
\[
S = \inf_{\substack{u \in BV(\mathbb{R}^N) \setminus \{0\}}} \frac{\int_{\mathbb{R}^N} |Du|}{\|u\|_{L^{1^*}(\mathbb{R}^N)}}.
\]

Lemma 2.3. For each \(1 \leq k < \infty\), there is \(\lambda^*_k > 0\) such that
\[
J_{\lambda,k} < \frac{1}{2N}S^N, \quad \text{for all} \quad \lambda \geq \lambda^*_k.
\]
Proof. From the fact that \(\Omega_r \) is an open bounded domain, we may choose \(\sigma > 0 \) that is independent of \(r \), such that the ball \(B_\sigma = B_\sigma \left(\frac{2r+1}{2}, 0, ..., 0 \right) \subset \Omega_r \) verifies

\[
g^i B_\sigma \cap g^j B_\sigma = \emptyset, \text{ for } g^i \in G_k, \quad i \neq j, \quad i, j = 0, ..., k - 1.
\]

Let us choose \(\omega \in C^\infty_0(B_\sigma) \setminus \{0\} \) and define \(v := \Sigma_{g \in G_k} \omega \in BV_{G_k}(\Omega_r) \setminus \{0\} \). A simple computation implies that

\[
I_\lambda'(tv)tv > 0 \quad \text{for} \quad t \approx 0^+ \quad \text{and} \quad I_\lambda'(tv)tv \to -\infty, \quad \text{as} \quad t \to \infty.
\]

Hence, there exists \(t_v > 0 \) such that \(t_v \omega \in N_{k, r} \). From this, \(J_{\lambda, k, r} \leq I_\lambda(t_v \omega) \leq k \max_{t \geq 0} I_\lambda(t \omega) \). and so,

\[
J_{\lambda, k, r} \leq k \max_{t \geq 0} \left\{ t \|\omega\|_r - \frac{\lambda t^q}{q} \int_{B_\sigma} |\omega|^q \, dx \right\}.
\]

Putting \(g(t) = t \|\omega\|_r - \frac{\lambda t^q}{q} |\omega|^q \), this function attains its maximum at

\[
t_0 = \left(\frac{\|\omega\|_r}{\lambda |\omega|^q} \right)^{\frac{1}{q-1}}.
\]

Therefore,

\[
J_{\lambda, k, r} \leq k \frac{(q - 1)}{q} \left(\frac{\|\omega\|_r}{|\omega|^q} \right)^{\frac{q}{q-1}} \lambda^{\frac{1}{q-1}}.
\]

Taking \(\lambda_k^* > \left(\frac{2Nk(q-1)}{S_q} \right)^{q-1} \left(\frac{\|\omega\|_r}{|\omega|^q} \right)^q \) the proof is achieved. \(\square \)

Lemma 2.4. For each \(1 \leq k \leq \infty \) the number \(J_{\lambda, k, r} \) is attained for \(\lambda \geq \lambda_k^* \).

Proof. The case \(k = \infty \) is immediate because of the compact embedding (2.5), then we will only show the case \(1 \leq k < +\infty \). Recalling that \(J_{\lambda, k, r} \) is the mountain pass level of \(I_\lambda \) on the space \(BV_{G_k}(\Omega_r) \), we know that there is a \((PS)\) sequence \((u_n) \) (see (2.8)), such that

\[
I_\lambda(u_n) \to J_{\lambda, k, r}
\]

and

\[
\|v\|_r - \|u_n\|_r \geq \int_{\Omega_r} (\lambda |u_n|^{q-2}u_n + |u_n|^{1^*-2}u)(v - u_n) \, dx - \tau_n \|v - u_n\|_r, \quad \forall v \in BV_{G_k}(\Omega_r),
\]

where \(\tau_n \to 0 \). Moreover, we also have the equality below

\[
(2.16) \quad \|u_n\|_r = \int_{\Omega_r} \left(\lambda |u_n|^q + |u_n|^{1^*} \right) \, dx + o_n(1) \|u_n\|_r.
\]

Since that \((u_n) \) is bounded in \(BV_{G_k}(\Omega_r) \), for some subsequence, there is \(u \in BV_{G_k}(\Omega_r) \) such that

\[
\|u\|_r \leq \liminf_{n \to +\infty} \|u_n\|_r
\]

and

\[
u_n \to u \quad \text{in} \quad L^t(\Omega_r), \quad \forall t \in [1, 1^*).
\]
We claim that \(u \neq 0 \), otherwise if we argue as in the proof of Lemma 2.2, we would find a constant \(C > 0 \) such that
\[
1 \leq C(\lambda \|u_n\|_r^{q-1} + \|u_n\|_{r+1}^{-1}), \quad \forall n \in \mathbb{N}.
\] (2.17)

On the other hand, by (2.16),
\[
\int_{\Omega} |D u_n| + \int_{\Omega} |u_n| \, dx + \int_{\partial \Omega} |u_n| \, d\mathcal{H}^{N-1} = \int_{\Omega} |u_n|^{r^*} \, dx + o_n(1),
\]
then for some subsequence,
\[
\lim_{n \to +\infty} \left(\int_{\Omega} |D u_n| + \int_{\partial \Omega} |u_n| \, d\mathcal{H}^{N-1} \right) = \int_{\Omega} |u|^{r^*} \, dx = L \geq 0.
\]

We claim that \(L > 0 \), because otherwise we would have
\[
\lim_{n \to +\infty} \int_{\Omega} |u_n|^{r^*} \, dx = 0,
\]
and so,
\[
\lim_{n \to +\infty} \|u_n\|_r = 0,
\]
which contradicts (2.17). Since \(L > 0 \), we can assume that \(u_n \neq 0 \) for all \(n \in \mathbb{N} \).

Therefore, by definition of \(S \), see (2.15),
\[
S \leq \frac{\int_{\mathbb{R}^N} |\tilde{u}_n|^{1^*} \, dx}{\|\tilde{u}_n\|_{L^{1^*}(\mathbb{R}^N)}} = \frac{\int_{\Omega_r} |D u_n| + \int_{\partial \Omega_r} |u_n| \, d\mathcal{H}^{N-1}}{\|u_n\|_{L^{1^*}(\mathbb{R}^N)}}, \quad \forall n \in \mathbb{N},
\]
where \(\tilde{u}_n \) is defined as in (2.11). Letting \(n \to +\infty \), we get
\[
S \leq \frac{L}{L^{1^*}} = L^{\frac{N}{N+1}},
\]
that is,
\[
L \geq S^N.
\]

Now, using the fact that
\[
J_{\lambda,k,r} + o_n(1) = I_\lambda(u_n) = \frac{1}{N} \int_{\mathbb{R}^N} |\tilde{u}_n|^{1^*} \, dx + o_n(1) = \frac{1}{N}L \geq \frac{1}{N}S^N,
\]
which contradicts Lemma 2.3. Now, arguing as in [25], we also derive that
\[
\int_{\Omega_r} |Du| \, dx + \int_{\Omega_r} |u| \, dx + \int_{\partial \Omega_r} |u| \, d\mathcal{H}^{N-1} = \int_{\Omega_r} |u|^{q} \, dx + \int_{\Omega_r} |u|^{r^*} \, dx,
\]
from where it follows that $u \in \mathcal{N}_{k,r}$, and so,

$$J_{\lambda,k,r} \leq I_{\lambda}(u) = \frac{\lambda(q - 1)}{q} \int_{\Omega_r} |u|^q \, dx + \frac{(1^*-1)}{1^*} \int_{\Omega_r} |u|^{1^*} \, dx$$

$$\leq \frac{\lambda(q - 1)}{q} \lim_{n \to +\infty} \int_{\Omega_r} |u_n|^q \, dx + \liminf_{n \to +\infty} \frac{(1^*-1)}{1^*} \int_{\Omega_r} |u_n|^{1^*} \, dx$$

$$\leq \limsup_{n \to +\infty} (I(u_n) + o_n(1)) = \limsup_{n \to +\infty} I(u_n) = J_{\lambda,k,r},$$

from where it follows that $u \in \mathcal{N}_{k,r}$ and $I_{\lambda}(u) = J_{\lambda,k,r}$, showing the lemma. \hfill \Box

Lemma 2.5. There exists $r_0 = r_0(\lambda) > 0$ such that

$$J_{\lambda,\infty,r} \geq \frac{1}{2N} S^N, \text{ for } r > r_0.$$

Proof. Let us assume the opposite, i.e., that there exists a sequence $r_n \to \infty$ such that

$$J_{\lambda,\infty,r_n} < \frac{1}{2N} S^N, \text{ for } n \in \mathbb{N}.$$

By Lemma 2.4, J_{∞,r_n} is attained for all $n \in \mathbb{N}$, and so, there is $(u_n) \in BV_{G_\infty}(\Omega_{r_n}) \setminus \{0\}$ such that

$$E_{\lambda}(u_n) = 0 \quad \text{and} \quad I_{\lambda}(u_n) = J_{\lambda,\infty,r_n},$$

where E_{λ} is given in (2.7).

The assumption $J_{\lambda,\infty,r_n} < \frac{1}{2N} S^N$ combined with the first equality above ensures that there is $M > 0$ such that

$$(2.18) \int_{\Omega_{r_n}} |Du_n| \, dx + \int_{\Omega_{r_n}} |u_n| \, dx + \int_{\partial \Omega_{r_n}} |u_n| \, d\mathcal{H}^{N-1} \leq M, \quad \forall n \in \mathbb{N}.$$ Setting

$$\tilde{u}_n(x) = \begin{cases} u_n(x), & x \in \Omega_{r_n}, \\ 0, & x \in \Omega^{c}_{r_n}, \end{cases}$$

we have that $\tilde{u}_n \in BV_{G_\infty}(\mathbb{R}^N)$,

$$\int_{\Omega_{r_n}} |u_n|^q \, dx = \int_{\mathbb{R}^N} |\tilde{u}_n|^q \, dx, \quad \int_{\Omega_{r_n}} |u_n|^{1^*} \, dx = \int_{\mathbb{R}^N} |\tilde{u}_n|^{1^*} \, dx$$

and

$$\|\tilde{u}_n\| = \int_{\Omega_{r_n}} |Du_n| \, dx + \int_{\Omega_{r_n}} |u_n| \, dx + \int_{\partial \Omega_{r_n}} |u_n| \, d\mathcal{H}^{N-1}.$$ The definition of \tilde{u}_n combined with the fact that $E_{\lambda}(u_n) = 0$ gives

$$(2.19) \quad \|\tilde{u}_n\| \leq \lambda \int_{\mathbb{R}^N} |\tilde{u}_n|^q \, dx + \int_{\mathbb{R}^N} |\tilde{u}_n|^{1^*} \, dx.$$
From the definition of \bar{u}_n, it follows that $\bar{u}_n \to 0$ a.e in \mathbb{R}^N, and so,

\[(2.20) \quad \bar{u}_n \to 0 \text{ in } L^t(\mathbb{R}^N) \text{ for } t \in (1, 1^*)\]

Moreover, from (2.19), there is $t_n \in (0, 1] \cup (1, 1^*)$ such that

\[(2.21) \quad \int_{\mathbb{R}^N} |D\bar{u}_n| + \int_{\mathbb{R}^N} |\bar{u}_n| \, dx = \lambda t_n^{q-1} \int_{\mathbb{R}^N} |\bar{u}_n|^q + t_n^{1^*-1} \int_{\mathbb{R}^N} |\bar{u}_n|^{1^*} \, dx.

Arguing as in the proof of Lemma 2.2, there is $C > 0$ such that

\[(2.22) \quad 1 \leq C \left(\lambda ||t_n \bar{u}_n||^{q-1} + ||t_n \bar{u}_n||^{1^*-1} \right), \quad \forall n \in \mathbb{N}.

On the other hand, by (2.20) and (2.21),

\[
\int_{\mathbb{R}^N} |t_n D\bar{u}_n| + \int_{\mathbb{R}^N} |t_n \bar{u}_n| \, dx = \int_{\mathbb{R}^N} |t_n \bar{u}_n|^{1^*} \, dx + o_n(1),
\]

then for some subsequence,

\[
\lim_{n \to +\infty} ||t_n \bar{u}_n|| = \lim_{n \to +\infty} \int_{\mathbb{R}^N} |t_n \bar{u}_n|^{1^*} \, dx = L \geq 0.
\]

We claim that $L > 0$, since otherwise we would have

\[
\lim_{n \to +\infty} \int_{\mathbb{R}^N} |t_n \bar{u}_n|^{1^*} \, dx = 0,
\]

and so,

\[
\lim_{n \to +\infty} ||t_n \bar{u}_n|| = 0,
\]

which contradicts (2.22). Since $L > 0$, we can assume that $u_n \neq 0$ for all $n \in \mathbb{N}$. Therefore, by definition of S, see (2.15),

\[
S \leq \frac{\int_{\mathbb{R}^N} |D\bar{u}_n|}{||\bar{u}_n||^{1^*}} \leq \frac{||\bar{u}_n||}{||\bar{u}_n||^{1^*}}, \quad \forall n \in \mathbb{N}.
\]

Letting $n \to +\infty$, we get

\[
S \leq \frac{L}{L^{1^*}} = \frac{L}{L} = 1,
\]

that is,

\[
L \geq S^N.
\]

Now, using the fact that

\[
\frac{1}{N} S^N \leq \frac{1}{N} L = I_\lambda(t_n \bar{u}_n)(t_n \bar{u}_n) = \frac{1}{N} \int_{\mathbb{R}^N} |t_n \bar{u}_n|^{1^*} \, dx \leq \frac{1}{N} \int_{\mathbb{R}^N} |\bar{u}_n|^{1^*} \, dx,
\]

that is,

\[
\frac{1}{N} S^N \leq \frac{1}{N} \int_{\mathbb{R}^N} |\bar{u}_n|^{1^*} \, dx = \frac{1}{N} \int_{\Omega_{r_n}} |\bar{u}_n|^{1^*} \, dx = I_\lambda(u_n) = J_{\lambda, \infty, r_n},
\]

Hence,

\[
\frac{1}{N} S^N \leq \limsup_{n \to +\infty} J_{\lambda, \infty, r_n} \leq \frac{1}{2N} S^N,
\]

which is absurd. \qed

Lemma 2.6. For each $1 \leq k < \infty$ and $2 \leq m < \infty$, we have that $J_{\lambda, k, r} < J_{\lambda, km, r}$, for all $r \geq r_0$.

Proof. Let \(u \in N_{\lambda,m,r} \) be such that \(I_\lambda(u) = J_{\lambda,km,r} \) and fix \(\varphi_n \subset C^\infty(\Omega) \cap BV_{\lambda,m,r}(\Omega_r) \) such that

\[
\varphi_n \to u \quad \text{in} \quad L^1(\Omega_r) \quad \text{as} \quad n \to +\infty
\]

and

\[
\int_{\Omega_r} |\nabla \varphi_n| \, dx \to \int_{\Omega_r} |Du| \quad \text{as} \quad n \to +\infty.
\]

Associated with \(\varphi_n \), we set \(v_n(\theta, \rho, |y|) = \varphi_n(\theta/m, \rho, |y|) \) where \((\theta, \rho)\) is the polar coordinates of \(x \in \mathbb{R}^2 \) and \(y \in \mathbb{R}^{N-2} \). Hence, \(v_n \in BV_{\lambda,m,r}(\Omega_r) \) and there is \(t_n > 0 \) such that \(\omega_n = t_n v_n \in N_{\lambda,k,r} \). A simple argument proves that \((t_n) \) is bounded, then up to a subsequence, \(t_n \to t_0 \) as \(n \to +\infty \). Then

\[
\omega_n \to t_0 u \quad \text{in} \quad L^1(\Omega_r) \quad \text{as} \quad n \to +\infty
\]

and

\[
\int_{\Omega_r} |\nabla \omega_n| \, dx \to t_0 \int_{\Omega_r} |Du| \quad \text{as} \quad n \to +\infty.
\]

Thus,

\[
J_{\lambda,k,r} \leq I_\lambda(\omega_n) = \int_{\Omega_r} |\nabla \omega_n| \, dx \, dy + \int_{\Omega_r} |\omega_n| \, dx \, dy + \int_{\partial \Omega_r} |\omega_n| \, d\mathcal{H}^{N-1}
\]

\[
- \int_{\Omega_r} \left(\frac{\lambda}{q} |\omega_n|^q + \frac{1}{1^*} |\omega_n|^{1^*} \right) \, dx \, dy.
\]

Thereby,

\[
J_{\lambda,k,r} \leq \int_0^\pi \int_r^{r+1} \int_0^{2\pi} |\nabla \omega_n| \rho \, d\theta \, d\rho \, dy + \int_0^\pi \int_{\Omega_r} |\omega_n| \, dx \, dy + \int_{\partial \Omega_r} |\omega_n| \, d\mathcal{H}^{N-1}
\]

\[
- \int_{\Omega_r} \left(\frac{\lambda}{q} |\omega_n|^q + \frac{1}{1^*} |\omega_n|^{1^*} \right) \, dx \, dy.
\]

where \(|\nabla \omega_n| = \left(\frac{1}{\rho^2 m^*} (\omega_n)_\rho^2 + (\omega_n)_\rho^2 + |\nabla_y \omega_n|^2 \right)^{1/2} \). Using the fact that \(m > 1 \) we get

\[
\int_0^\pi \int_r^{r+1} \int_0^{2\pi} \frac{1}{m^2 \rho^2} (\omega_n)_\rho^2 \, d\theta \, d\rho \, dy < \int_0^\pi \int_r^{r+1} \int_0^{2\pi} \frac{1}{\rho^2} (\omega_n)_\rho^2 \, d\theta \, d\rho \, dy + \left(\frac{1}{m^2} - 1 \right) \int_0^\pi \int_r^{r+1} \int_0^{2\pi} \frac{1}{\rho^2} (\omega_n)_\rho^2 \, d\theta \, d\rho \, dy.
\]

We claim \(\liminf_{n \to +\infty} \int_0^\pi \int_r^{r+1} \int_0^{2\pi} \frac{1}{\rho^2} (\omega_n)_\rho^2 \, d\theta \, d\rho \, dy = \sigma > 0 \), otherwise we have that for some subsequence

\[
\lim_{n \to +\infty} \int_0^\pi \int_r^{r+1} \int_0^{2\pi} (\omega_n)_\rho^2 \, d\theta \, d\rho \, dy = 0.
\]

Since \(\omega_n \in W^{1,1}((0, \pi) \times (r, r+1) \times (0, 2\pi)) \) and \(\omega_n \to t_0 u \) in \(L^1(\Omega) \), the last limit implies that \(u(x) = u(|x|) \), that is \(u \in BV_{\infty,r}(\Omega_r) \), which is absurd, since \(J_{\lambda,k,m,r} < J_{\lambda,\infty,r} \) (see Lemmas 2.3 and 2.5). The previous analysis ensures that

\[
J_{\lambda,k,r} \leq I_\lambda(t_0 u) - \sigma < I_\lambda(t_0 u) \leq I_\lambda(u) = J_{\lambda,k,m,r}.
\]
2.1. **Proof of Theorem 1.1.** Given \(n \in \mathbb{N} \), by Lemmas 2.4 and 2.5 we know that \(J_{\lambda,2^m,r} \) are critical levels of \(I_\lambda \) with

\[
0 < J_{\lambda,2^m,r} < J_{\lambda,2^{m+1},r} < \ldots < J_{\lambda,2^n,r} < J_{\lambda,\infty,r}.
\]

Applying the Principle of Symmetric Criticality (see [43]), it follows that they are critical points of \(I_\lambda \) in \(BV(\Omega_r) \). This way, all minimizers of \(J_{\lambda,2^m,r} \) for \(m = 1, \ldots, n \) are nonradial, rotationally non-equivalent and non-negative solutions of (2.1).

3. **Existence of multiple solutions via genus**

In this section, we will prove Theorem 1.2, which implies in the existence of multiple solutions for the problem

\[
\begin{aligned}
-\Delta_1 u &= \lambda |u|^{q-2}u + |u|^{1^*-2}u, \quad \text{in } \Omega, \\
0 &= u, \quad \text{on } \partial \Omega,
\end{aligned}
\]

(3.1)

where \(\Omega \subset \mathbb{R}^N \) is a smooth bounded domain in \(\mathbb{R}^N \) with \(N \geq 2 \), \(\lambda > 0 \) and \(q \in (1,1^*) \). Let us recall that \(u \in BV(\Omega) \) is a solution of (3.1) if there is \(z \in L^\infty(\Omega, \mathbb{R}^N) \) such that

\[
\begin{aligned}
|z|_{\infty} &\leq 1, \quad \text{div } z \in L^N(\Omega), \\
-\int_{\Omega} u \text{div } z \, dx &= \int_{\Omega} |Dz| + \int_{\partial \Omega} |z| \, d{\mathcal H}^{N-1}, \\
-\text{div } z &= \lambda |u|^{q-2}u + |u|^{1^*-2}u, \quad \text{a.e. in } \Omega.
\end{aligned}
\]

(3.2)

In this section, we will consider the energy functional

\[
I_\lambda : L^{1^*}(\Omega) \to (-\infty, +\infty],
\]

(3.3)

where

\[
\int_{\Omega} |Dz| \, dx + \int_{\partial \Omega} |z| \, d{\mathcal H}^{N-1} - \frac{\lambda}{q} \int_{\Omega} |u|^q \, dx - \frac{1}{1^*} \int_{\Omega} |u|^{1^*} \, dx.
\]

Hereafter, let us consider the functional

\[
f_0 : L^{1^*}(\Omega) \to [0, +\infty],
\]

(3.4)

which is convex and lower semicontinuous in \(L^{1^*}(\Omega) \). Moreover, let us define

\[
f_1 : L^{1^*}(\Omega) \to [0, +\infty]
\]

(3.5)

by

\[
\begin{aligned}
f_0(u) &= \begin{cases}
\int_{\Omega} |Dz| \, dx + \int_{\partial \Omega} |z| \, d{\mathcal H}^{N-1}, & \text{if } u \in BV(\Omega) \\
+\infty, & \text{if } u \in L^{1^*}(\Omega) \setminus BV(\Omega),
\end{cases} \\
f_1(u) &= \frac{\lambda}{q} \int_{\Omega} |u|^q \, dx + \frac{1}{1^*} \int_{\Omega} |u|^{1^*} \, dx,
\end{aligned}
\]

which is a \(C^1 \) functional.

Then, the functional \(I_\lambda \) is written as the difference between a convex, proper and lower semicontinuous functional and a \(C^1 \) one. Hence, in the light of [44], we denote by \(\partial I_\lambda(u) \), the subgradient of \(I_\lambda \) at \(u \in L^{1^*}(\Omega) \), which is well defined as a subset of \(L^N(\Omega) \).

By [34, Proposition 4.23], we have the following result.

Proposition 3.1. Assume that \(u \in BV(\Omega) \) is a critical point of \(I_\lambda \), i.e., \(0 \in \partial I_\lambda(u) \). Then \(u \in L^\infty(\Omega) \) and \(u \) is a solution of (3.1), in the sense of (3.2).
Proof. Note that

$$0 \in \partial I_{\lambda}(u)$$

if and only if

$$f_1'(u) \in \partial f_0(u).$$

On the other hand, the last inclusion implies that there exists \(w \in \partial f_0(u) \subset L^N(\Omega) \) such that

\[
(3.4) \quad f_1'(u) = w \quad \text{in} \quad L^N(\Omega).
\]

Taking into account the characterization of \(\partial f_0(u) \) given in [34, Proposition 4.23], there exists \(w \in \partial f_0(u) \subset L^N(\Omega) \) such that

\[
(3.5) \quad \begin{cases}
-\text{div} z = w, & \text{a.e. in } \Omega, \\
\int_{\Omega} wudx = \int_{\Omega} |Du| + \int_{\partial \Omega} |u| d\mathcal{H}^{N-1}.
\end{cases}
\]

By (3.4) and (3.5), we also have that

\[-\text{div} z = \lambda |u|^{p-2}u + |u|^{r-2}u, \quad \text{a.e. in } \Omega.\]

Hence, \(u \) satisfies (3.2). The fact that \(u \in L^\infty(\Omega) \) is a regularity result which follows as in [25, Proposition 3.3].

□

Now let us define what we mean by a \((PS)\) sequence for \(I_{\lambda} \). We say that \((u_k) \subset L^{1*}(\Omega)\) is a \((PS)\) sequence for \(I_{\lambda} \) if there exist \(d \in \mathbb{R} \) and \((z_k) \subset L^N(\Omega)\) such that \(|z_k|_N \to 0 \) as \(k \to +\infty \),

\[
(3.6) \quad \lambda |u_k|^{q-2}u_k + |u_k|^{r-2}u_k + z_k \in \partial f_0(u_k)
\]

and

\[
I_{\lambda}(u_k) \to d, \quad \text{as } k \to +\infty.
\]

Next, we state an abstract result, whose proof follows as in Szulkin [44, Theorem 4.4]. Hereafter \(X \) denotes a Banach space. We say that a functional \(I : X \to (-\infty, +\infty] \) satisfies the condition \((H)\) if:

\[
(H) \quad I = \Phi + \psi, \text{ where } \Phi \in C^1(X, \mathbb{R}) \text{ and } \psi : X \to (-\infty, +\infty] \text{ is convex, proper (i.e. } \psi \not\equiv +\infty) \text{ and lower semicontinuous.}
\]

Moreover, for each \(c \in \mathbb{R} \) we denote

\[
I_c = \{ u \in X : I(u) \leq c \}
\]

and by \(\Sigma \) the collection of all symmetric subsets of \(X \setminus \{0\} \) which are closed in \(X \).

Theorem 3.2. Assume that \(I : X \to (-\infty, +\infty] \) satisfies \((H)\), \(I(0) = 0 \) and \(\Phi, \psi \) are even and there is \(d > 0 \) such that \(I \) has no critical points in \(I_{-d} \). Assume also that

a. there is \(M > 0 \) such that \(I \) satisfies \((PS)_c\) condition for \(0 < c < M \).

b. there exist \(\alpha, \rho > 0 \) such that

\[
I(u) \geq \alpha \quad \text{for} \quad ||u|| = \rho.
\]
c. given $n \in \mathbb{N}$, there is a finite dimensional subspace $X_n \subset X$ and $R_n > \rho$ such that

$$I|_{\partial Q_n} \leq -d$$

where $Q_n = \overline{B}_{R_n} \cap X_n$.

Denoting by \mathcal{F} the set

$$\mathcal{F} = \{ f \in C(Q_n, X) : f \text{ is odd and } f|_{\partial Q_n} \approx id_{\partial Q_n} \text{ in } I_{-d} \text{ by an odd homotopy} \},$$

we consider for each $j \in \mathbb{N}$ the sets Λ_j' and Λ_j given by,

$$\Lambda_j' = \left\{ f : Q_n - V \text{ is open in } Q_n \text{ and symmetric, } V \cap \partial Q_n = \emptyset, \text{ and for each } Y \subset V \text{ such that } Y \in \Sigma, \gamma(Y) \leq k - j \right\}$$

and

$$\Lambda_j = \left\{ A \subset X : A \text{ is compact, symmetric and for each open set } U \supset A, \text{ there is } A_0 \in \Lambda_j' \text{ such that } A_0 \subset U \right\}.$$

Using the above notation, the numbers

$$c_j = \inf_{A \in \Lambda_j} \sup_{u \in A} I(u)$$

are well defined for all $j \in \mathbb{N}$ and $0 < \alpha \leq c_1 \leq c_2 \leq \ldots \leq c_j \leq c_{j+1} \leq \ldots$ for all $j \in \mathbb{N}$. If $c_n < M$, then c_j are critical values of I for $j \in \{1, 2, \ldots, n\}$. Moreover, if there are $j_0 \in \{1, 2, \ldots, n\}$ and $p \in \mathbb{N}$ such that $c_j_0 = \ldots = c_{j_0+p} = c < M$, then $\gamma(K_c) \geq p + 1$.

Now, following the approach explored in [25], for each $h > 0$ we consider the functions $T_h, R_h : \mathbb{R} \to \mathbb{R}$ given by

$$T_h(s) = \min\{\max\{s, -h\}, h\} \quad \text{and} \quad R_h(s) = s - T_h(s).$$

A simple computation shows that for each $u \in L^1(\Omega)$,

$$T_h(u) \to u \quad \text{in } L^1(\Omega) \quad \text{as } h \to +\infty,$$

and so,

$$R_h(u) \to 0 \quad \text{in } L^1(\Omega) \quad \text{as } h \to +\infty.$$

Moreover, if $(u_k) \subset L^1(\Omega)$ is a sequence satisfying

$$u_k(x) \to u(x) \quad \text{a.e. in } \Omega \quad \text{as } k \to +\infty,$$

then, for each h fixed, the Lebesgue Dominated Convergence Theorem ensures that

$$T_h(u_k) \to T_h(u) \quad \text{in } L^1(\Omega) \quad \text{as } k \to +\infty.$$

Proposition 3.3. Let (u_k) be a sequence in $BV(\Omega)$ and (w_k) be a sequence in $L^N(\Omega)$ such that, for $k \in \mathbb{N}$, $w_k \in \partial f_0(u_k)$ and, as $k \to +\infty$,

$$u_k \rightharpoonup u \quad \text{in } L^1(\Omega),$$

$$w_k \rightharpoonup w \quad \text{in } L^N(\Omega).$$

Then $u \in BV(\Omega)$ and $w \in \partial f_0(u)$.

Proof. See [25, Proposition 3.2]. \qed
Lemma 3.4. Let \((u_k)\) be a \((PS)\) sequence for \(I_\lambda\). Assume that \((u_k)\) is bounded in \(BV(\Omega)\) and
\[
\|u_k\|_{L^\infty} = \|u\|_{L^\infty}.
\]
Then,
\[
\lim_{k \to +\infty} (f_0(u_k) - |u_k|^{1^*}) = f_0(u) - |u|^{1^*},
\]
and, for \(h > 0\) fixed,
\[
\lim_{k \to +\infty} (f_0(R_h(u_k)) - |R_h(u_k)|^{1^*}) \leq f_0(R_h(u)) - |R_h(u)|^{1^*}.
\]

Proof. Since \((u_k)\) is a \((PS)\) sequence, there is \((z_k) \subset L^N(\Omega)\), where \(z_k = o_k(1)\) in \(L^N(\Omega)\) and
\[
f_0(v) - f_0(u_k) \geq \lambda \int_\Omega |u_k|^{q-2} u_k (v - u_k) \, dx + \int_\Omega |u_k|^{1^*-2} u_k (v - u_k) \, dx
\]
\[
+ \int_\Omega z_k (v - u_k) \, dx,
\]
for all \(v \in L^{1^*}(\Omega)\). From this,
\[
\lambda |u_k|^{q-2} u_k + |u_k|^{1^*-2} u_k + z_k \in \partial f_0(u_k), \quad \forall k \in \mathbb{N},
\]
and then there exists \(w_k \in \partial f_0(u_k)\) such that
\[
w_k = \lambda |u_k|^{q-2} u_k + |u_k|^{1^*-2} u_k + z_k, \quad \forall k \in \mathbb{N}.
\]
Moreover, by [34, Proposition 4.23],
\[
\int_\Omega w_k u_k \, dx = \int_\Omega |Du_k| \, dx + \int_{\partial \Omega} |u_k| \, d\mathcal{H}^{N-1}, \quad \forall k \in \mathbb{N}.
\]
Thus, from (3.10) and (3.11), for all \(k \in \mathbb{N}\),
\[
\int_\Omega |Du_k| \, dx + \int_{\partial \Omega} |u_k| \, d\mathcal{H}^{N-1} = \lambda \int_\Omega |u_k|^q \, dx + \int_\Omega |u_k|^{1^*} \, dx
\]
\[
+ \int_\Omega z_k u_k \, dx.
\]
Since \(q \in (1, 1^*)\), Hölder’s inequality implies that \(|u_k|^{q-2} u_k\) and \(|u_k|^{1^*-2} u_k\) are bounded in \(L^N(\Omega)\). Indeed, it is straightforward to see that
\[
\|u_k|^{1^*-2} u_k\|_N = \|u_k|^{1^*-2}\|_N
\]
and
\[
\|u_k|^{q-2} u_k\|_N^N = \int \|u_k|^{(q-1)N} \, dx
\]
\[
\leq \left(\int |u_k|^{1^*} \, dx \right)^{(N-1)(q-1)} |\Omega|^{1-(N-1)(q-1)},
\]
from where it follows that both these sequences are bounded in \(L^N(\Omega)\). Then
\[
|u_k|^{q-2} u_k \rightharpoonup |u|^{q-2} u
\]
and
\[(3.14)\quad |u_k|^{1^*-2}u_k \rightharpoonup |u|^{1^*-2}u\]
in $L^N(\Omega)$.

Hence, from (3.13) and (3.14),
\[(3.15)\quad w_k \rightharpoonup w \quad \text{in} \quad L^N(\Omega),\]
with
\[w = -\gamma + \lambda|u|^{q-2}u + |u|^{1^*-2}u.\]

Taking into account the hypothesis and (3.15), Proposition 3.3 yields that $u \in BV(\Omega)$,
\[\lambda|u|^{q-2}u + |u|^{1^*-2}u \in \partial f_0(u)\]
and then, by (3.11),
\[(3.16)\quad \int_\Omega |Du| \, dx + \int_{\partial \Omega} |u| \, dH^{N-1} = \lambda \int_\Omega |u|^q \, dx + \int_\Omega |u|^{1^*} \, dx.\]

Hence, from (3.12),
\[
\lim_{k \to +\infty} \left(f_0(u_k) - |u_k|^{1^*}\right) = \lim_{k \to +\infty} \left(\lambda \int_\Omega |u_k|^q \, dx + \int_\Omega z_k u_k \, dx \right) \\
= \lambda \int_\Omega |u|^q \, dx.
\]

Then, from the last equality and (3.16), it follows that
\[
\lim_{k \to +\infty} \left(f_0(u_k) - |u_k|^{1^*}\right) = (f_0(u) - |u|^{1^*}),
\]
showing (i). The item (ii) follows as in [25, Lemma 5.1].

\[\square\]

Lemma 3.5. Each (PS) sequence for I_λ is bounded in $BV(\Omega)$.

Proof. Let (u_k) be a $(PS)_d$ sequence for I_λ, that is,
\[I_\lambda(u_k) \to d \quad \text{as} \quad k \to +\infty\]
and
\[f_0(v) - f_0(u_k) \geq \lambda \int_\Omega |u_k|^{q-2}u_k(v - u_k) \, dx \]
\[+ \int_\Omega |u_k|^{1^*-2}u_k(v - u_k) \, dx + \int_\Omega z_k(v - u_k) \, dx,\]
where $(z_k) \subset L^N(\Omega)$, with $z_k = o_k(1)$ in $L^N(\Omega)$, as $k \to +\infty$.

By Proposition [34, Proposition 4.23], for all $k \in \mathbb{N}$,
\[
\int_\Omega |Du_k| \, dx + \int_{\partial \Omega} |u_k| \, dH^{N-1} = \lambda \int_\Omega |u_k|^q \, dx + \int_\Omega |u_k|^{1^*} \, dx \\
+ \int_\Omega z_k u_k \, dx.
\]
Now, let us denote
\[
Q(u_k) = \int_\Omega |D u_k| \, dx + \int_\Omega |u_k| \, dx + \int_{\partial \Omega} |u_k| \, d\mathcal{H}^{N-1}
- \lambda \int_\Omega |u_k|^q \, dx - \int_\Omega |u_k|^{1^*} \, dx - \int_\Omega z_k u_k \, dx
\]
and note that
\[
(3.17) \quad Q(u_k) = 0, \quad \forall k \in \mathbb{N}.
\]
Thus, from (3.17),
\[
d + o_k(1) = I_\lambda(u_k)
\]
\[
= I_\lambda(u_k) - \frac{1}{q} Q(u_k)
\]
\[
\geq \left(1 - \frac{1}{q} \right) f_0(u_k) + \left(1 - \frac{1}{q} \right) |u_k|_1 + \left(\frac{1}{q} - \frac{1}{1^*} \right) |u_k|_{1^*} + \frac{1}{q} \int_\Omega z_k u_k \, dx
\]
\[
\geq \left(1 - \frac{1}{q} \right) f_0(u_k) + \left(1 - \frac{1}{q} \right) |u_k|_{1^*} - \frac{1}{q} |z_k|_{N} |u_k|_1.
\]
for \(k \) large enough. Since \(g : [0, +\infty) \to \mathbb{R} \), given by
\[
g(t) = t^{1^*} - t
\]
is bounded from below, there exists \(K > 0 \) such that
\[
g(t) \geq -K, \quad \forall t \in [0, +\infty).
\]
Then
\[
d + o_k(1) \geq \left(1 - \frac{1}{q} \right) f_0(u_k) - \left(\frac{1}{q} - \frac{1}{1^*} \right) K,
\]
from where it follows that \((u_k)\) is bounded in \(BV(\Omega)\). \(\square \)

Lemma 3.6. For each \(\lambda > 0 \), the functional \(I_\lambda \) satisfies the \((PS)_c\) condition, for \(c < \frac{1}{N} S^N \).

Proof. Let \((u_k)\) be a \((PS)_c\) sequence for \(I_\lambda \) with \(c < \frac{1}{N} S^N \). Then,
\[
I_\lambda(u_k) \to c \quad \text{as} \quad k \to +\infty
\]
and
\[
f_0(v) - f_0(u_k) \geq \lambda \int_\Omega |u_k|^{q-2} u_k (v - u_k) \, dx
\]
\[
+ \int_\Omega |u_k|^{1^*-2} u_k (v - u_k) \, dx + \int_\Omega w_k (v - u_k) \, dx,
\]
for some \(w_k \in L^N(\Omega) \) and \(w_k = o_k(1) \) in \(L^N(\Omega) \). Moreover, we also have

\[
(3.18) \quad \int_{\Omega} |Du_k| \, dx + \int_{\partial \Omega} |u_k| \, d\mathcal{H}^{N-1} = \lambda \int_{\Omega} |u_k|^q \, dx + \int_{\Omega} |u_k|^r \, dx + \int_{\Omega} w_k u_k \, dx, \quad \forall k \in \mathbb{N}.
\]

Hence, from (3.18), for all \(k \in \mathbb{N} \),

\[
(3.19) \quad I_\lambda(u_k) = \lambda \left(1 - \frac{1}{q} \right) |u_k|^q + \left(1 - \frac{1}{1^*} \right) |u_k|^{1^*} + \int_{\Omega} w_k u_k \, dx.
\]

Since \((u_k)\) is bounded and \(w_k = o_k(1) \) in \(L^N(\Omega) \), (3.19) gives

\[
\lim_{k \to +\infty} |u_k|^{1^*} \leq Nc < S^N.
\]

Since \(f_0 \) is lower semicontinuous and

\[
f_0(u) = f_0(T_h(u)) + f_0(R_h(u)),
\]

(3.7) and (3.8) lead us to

\[
\limsup_{h \to +\infty} (f_0(R_h(u)) - |R_h(u)|^{1^*}) \leq 0.
\]

Therefore, given \(\epsilon > 0 \), there is \(h > 0 \) large enough such that

\[
(3.20) \quad f_0(R_h(u)) - |R_h(u)|^{1^*} < \epsilon \left(S - (Nc)^\frac{1}{N}\right).
\]

For \(h \) fixed above, the definition of \(R_h \) gives

\[
\limsup_{k \to +\infty} |R_h(u_k)|^{1^*-1} \leq \limsup_{k \to +\infty} |u_k|^{1^*-1} \leq (Nc)^\frac{1}{N}.
\]

Now, the inequality below

\[
(S - |R_h(u_k)|^{1^*-1}) |R_h(u_k)|_1^* \leq f_0(R_h(u_k)) - |R_h(u_k)|^{1^*},
\]

together with Lemma 3.4 and (3.20) leads to

\[
\limsup_{k \to +\infty} |R_h(u_k)|_1^* < \epsilon.
\]

Hence \(|R_h(u)|_1^* < \epsilon \). Moreover, since by (3.9), \((T_h(u_k))\) is strongly convergent to \(T_h(u) \), it follows that

\[
\limsup_{k \to +\infty} |u_k - u|_1^* \leq \limsup_{k \to +\infty} |T_h(u_k) - T_h(u)|_1^* + \limsup_{k \to +\infty} |R_h(u_k)|_1^* + |R_h(u)|_1^* \leq 2\epsilon.
\]

Since that \(\epsilon \) is arbitrary, the last inequality ensures that \(u_k \to u \) in \(L^{1^*}(\Omega) \). \(\square \)

Lemma 3.7. There are \(\alpha, \rho > 0 \) such that

\[
I_\lambda(u) \geq \alpha, \quad \text{for} \quad |u|_1^* = \rho.
\]
Proof. Note that, in order to verify this lemma, it suffices to consider \(u \in \text{BV}(\Omega) \), since otherwise we would have \(I_\lambda(u) = +\infty \). Then, if \(u \in \text{BV}(\Omega) \), from the continuous embedding \(\text{BV}(\Omega) \hookrightarrow L^{1^*}(\Omega) \) and Hölder inequality, we have that
\[
I_\lambda(u) \geq C_1 |u|_{1^*} - C_2 |u|^q_{1^*} - |u|_{1^*}^{1^*}.
\]
Since \(q > 1 \), the last inequality allows us to conclude that there are \(\alpha, \rho > 0 \) such that
\[
I_\lambda(u) \geq \alpha, \quad \text{for} \quad |u|_{1^*} = \rho.
\]
\(\square \)

3.1. Proof of Theorem 1.2. In what follows, we will assume that there is \(d > 0 \) such that \(I_\lambda \) has no critical point in \(I_{-d} \), otherwise \(I_\lambda \) has infinitely many critical points and Theorem 1.2 is proved.

Lemma 3.8. For \(n \in \mathbb{N} \) and a finite dimensional subspace \(X_n \subset X \), there exists \(R_n > \rho \) such that
\[
I_\lambda|_{\partial Q_n} \leq -d \quad \text{where} \quad Q_n = \overline{B}_{R_n} \cap X_n.
\]

Proof. Let \(X_n \subset L^{1^*}(\Omega) \) be a finite dimensional subspace, such that \(X_n \subset C_0^\infty(\Omega) \). Since in \(X_n \), all the norms are equivalent, there are positive constants \(a_n, d_n \) and \(b_n \) (which depend just on \(n \in \mathbb{N} \)), such that, for \(u \in X_n \),
\[
I_\lambda(u) \leq a_n |u|_{1^*} - d_n \lambda |u|^q_{1^*} - b_n |u|_{1^*}^{1^*}.
\]

The last inequality, in turn, implies that
\[
I_\lambda(u) \to -\infty \quad \text{as} \quad |u|_{1^*} \to +\infty.
\]
This proves the desired result. \(\square \)

Lemma 3.9. For each \(n \in \mathbb{N} \), there is \(\lambda_n > 0 \) such that if \(\lambda \geq \lambda_n \), then
\[
\sup_{u \in Q_n} I_\lambda(u) < \frac{1}{N^{S^N}}.
\]

Hence, \(c_n < \frac{1}{N^{S^N}} \).

Proof. Arguing as in the proof of Lemma 3.8, we get
\[
\sup_{u \in Q_n} I_\lambda(u) \leq \sup_{u \in Q_n} \{a_n |u|_{1^*} - d_n \lambda |u|^q_{1^*} - b_n |u|_{1^*}^{1^*} \} \leq \sup_{u \in Q_n} \{a_n |u|_{1^*} - d_n \lambda |u|^q_{1^*} \}
\]

Defining the function \(h : [0, +\infty) \to \mathbb{R} \) as
\[
h(t) = a_n t - d_n \lambda t^q,
\]
it is straightforward to see that
\[
\max_{t \geq 0} h(t) = C_n \left(\frac{1}{\lambda} \right)^{\frac{1}{1-q}},
\]
for some \(C_n \) which depends on \(n \). Thus, there is \(\lambda_n > 0 \) such that
\[
\max_{t \geq 0} h(t) < \frac{1}{N^{S^N}}, \quad \forall \lambda \geq \lambda_n.
\]
This ensures that
\[\sup_{u \in Q_n} I_\lambda(u) < \frac{1}{N} S^N, \quad \forall \lambda \geq \lambda_n. \]
Since \(Q_n \in \Lambda_n \), we have that
\[c_n \leq \sup_{u \in Q_n} I_\lambda(u) < \frac{1}{N} S^N, \quad \forall \lambda \geq \lambda_n. \]
\[\square \]
Therefore, taking into account Lemmas 3.6, 3.7, 3.8 and 3.9, we see that \(I_\lambda \) satisfies all the conditions of Theorem 3.2, and so, Theorem 1.2 is proved.

References

[1] C.O. Alves, A Berestycki-Lions type result for a class of problems involving the 1-Laplacian operator, Commun. Contemp. Math. doi.org/10.1142/S021919972150022X. 4
[2] C.O. Alves, On existence of multiple solutions to a class of problems involving the 1–Laplace operator in whole \(\mathbb{R}^N \), to appear in Communications in Analysis and Geometry. 4
[3] C.O. Alves and L. R. de Freitas, Multiplicity of nonradial solutions for a class of quasilinear equation on annulus with exponential critical growth, Top. Meth. in Nonlinear Analysis 39(2012), 243–262. 3
[4] C.O. Alves and M.T.O. Pimenta, On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplacian problem in \(\mathbb{R}^N \), Bull. Braz. Math. Soc., New Series DOI 10.1007/s00574-019-00179-4 4
[5] C.O. Alves and T. Boudjeriou, Existence of solution for a class of heat equation involving the 1-Laplacian operator, Preprint. 5
[6] A. Ambrosetti and P.H. Rabinowitz, Dual methods in critical point theory and applications, J. Funct. Analysis 14, 347-381 (1973). 3
[7] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the total variation flow, J. Functional Anal., Vol. 180, No. 2, 347 - 403 (2001). 2
[8] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow, C. R. Acad. Sci., Paris, Sr. I, Math., Vol. 331, No. 11, 867 - 872 (2000). 2
[9] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Parabolic quasilinear equations minimizing linear growth functionals, Progress in mathematics, 233. Birkhäuser Verlag, Basel (2004). 2
[10] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., Vol. 4, No. 135, 293 - 318 (1983). 2
[11] G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem \(\text{div} \left(\frac{\nabla u}{|\nabla u|} \right) = u \) in \(\mathbb{R}^2 \), SIAM J. Math. Anal. 36, No. 4, 1095-1129 (2005). 4
[12] J. Byeon, Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differential Equations 136 (1997), 136–165. 3
[13] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36, 437–477 (1983) 1, 2
[14] A. Castro and B.M. Finan, Existence of many positive nonradial solutions for a superlinear Dirichlet problem on thin annuli, Nonlinear Differential Equations 5 (2000), 21–31. 3
[18] F. Catrina and Z.-Q. Wang, Nonlinear elliptic equations on expanding symmetric domains, J. Differential Equations 156 (1999), 153–181.

[19] K. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80, 102 - 129 (1981).

[20] K. Chang, The spectrum of the 1-Laplace operator, Commun. Contemp. Math., 9, No. 4, 515 - 543 (2009).

[21] C. Coffman, A non-linear boundary value problem with many positive solutions, J. Differential Equations 54 (1984), 429–437.

[22] F. Demengel, On some nonlinear partial differential equations involving the 1-Laplacian and critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 4, 667-686 (1999).

[23] D.G. de Figueiredo and O.H. Miyagaki, Multiplicity of non-radial solutions of critical elliptic problems in an annulus, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), 25–37.

[24] F. Demengel, Functions locally almost 1-harmonic, Appl. Anal. 83(9), 865-896 (2004).

[25] M. Degiovanni and P. Magrone, Linking solutions for quasilinear equations at critical growth involving the 1-Laplace operator, Calc. Var. Partial Differential Equations, 36, 591 - 609 (2009).

[26] H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Ration. Mech. Anal. 104, 57–77 (1988).

[27] G.M. Figueiredo and M.T.O. Pimenta, Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions, NoDEA Nonlinear Differential Equations Appl. 25, 47 (2018).

[28] G.M. Figueiredo and M.T.O. Pimenta, Strauss’ and Lions’ type results in BV(R^N) with an application to 1-Laplacian problem, Milan J. Math 86 (2018), 15-30.

[29] G.M. Figueiredo and M.T.O. Pimenta, Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials, J. Math. Anal. Appl. 459 (2018), 861-878.

[30] A. Mercaldo, J.D. Rossi, S. Segura de León and C. Trombetti, Behaviour of p-Laplacian problems with Neumann boundary conditions when p goes to 1, Comm. Pure. Appl. Anal. 12 (2013), 253-267.

[31] J. García Azorero and I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues. Comm. Partial Differ. Equ. 12, 1389–1430 (1987).

[32] M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989).

[33] N. Hirano and N. Mizoguchi, Nonradial solutions of semilinear elliptic equations on annuli, J. Math. Soc. Japan 46 (1994), 111–117.

[34] B. Kawohl and F. Schuricht, Dirichlet problems for the 1–Laplace operator, including the eigenvalue problem, Commun. Contemp. Math., 9, No. 4, 525 - 543 (2007).

[35] Y.Y. Li, Existence of many positive solutions of semilinear elliptic equations on annuli, J. Differential Equations 83 (1990), 348–367.

[36] S.S. Lin, Existence of many positive nonradial solutions for nonlinear elliptic equations on annulus, J. Differential Equations 103 (1993), 338–349.

[37] A. Mercaldo, J.D. Rossi, S. Segura de León and C. Trombetti, Behaviour of p-Laplacian problems with Neumann boundary conditions when p goes to 1, Comm. Pure. Appl. Anal. 12 (2013), 253-267.

[38] A. Mercaldo, S. Segura de León and C. Trombetti, On the behaviour of the solutions to p-Laplacian equation as p goes to 1, Publ. Mat. 52 (2008), 377-411.

[39] N. Mizoguchi and T. Suzuki, Semilinear elliptic equations on a annuli in three and higher dimensions, Houston J. Math. 22 (1996), 199–215.

[40] A. Molino Salas and S. Segura de León, Elliptic equations involving the 1-Laplacian and a subcritical source term, Nonlinear Anal., 168 (2018) 50–66.

[41] J. C. Ortiz Chata and M. T. O. Pimenta, A Berestycki-Lions’ type result to a quasilinear elliptic problem involving the 1-laplacian operator, J. Math. Anal. Appl. doi.org/10.1016/j.jmaa.2021.125074.
MULTIPLICITY OF SOLUTIONS FOR A CLASS OF QUASILINEAR...

[42] E.A.B. Silva and M.S. Xavier, *Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents*, Ann. I. H. Poincaré – AN 20, 2 (2003) 341–358

[43] M. Squassina, *On Palais’ principle for non-smooth functionals*, Nonlinear Analysis 74 (2011) 3786–3804.

[44] A. Szulkin, *Minimax principle for lower semicontinuous functions and applications to nonlinear boundary value problems*, Ann. Inst. H. Poincaré, 3, n 2, 77 - 109 (1986).

[45] T. Suzuki, *Positive solutions for semilinear elliptic equations on expanding annuli: mountain pass approach*, Funkcial. Ekvac. 39 (1996), 143–164.

[46] Z. Wang and M. Willem, *Existence of many positive solutions of semilinear elliptic equations on an annulus*, Proc. Amer. Math. Soc. 127 (1999), 1711–1714.

[47] Z. Wei and X. Wu, *A multiplicity result for quasilinear elliptic equations involving critical Sobolev exponents*, Nonlinear Anal. TMA 18 (6) (1992) 559–567.

(Claudianor O. Alves)

Unidade Acadêmica de Matemática
Universidade Federal de Campina Grande
58429-970, Campina Grande - PB, Brazil

E-mail: coalves@mat.ufcg.edu.br

(Anass Ourraoui)

Department of Mathematics, FSO,
University of Mohamed I, Morocco,
E-mail: a.ourraoui@gmail.com

(Marcos T. O. Pimenta)

Departamento de Matemática e Computação,
Universidade Estadual Paulista (Unesp), Faculdade de Ciências e Tecnologia
19060-900 - Presidente Prudente - SP, Brazil,
E-mail: marcos.pimenta@unesp.br