Pluripotent embryonic stem cells (ESCs) must select between alternative fates of self-renewal and lineage commitment at each division during continuous proliferation. Heparan sulfate (HS) is a highly sulfated polysaccharide and is present abundantly on the ESC surface. In this study, we investigated the role of HS in ESC self-renewal by examining Ext1−/− ESCs that are deficient in HS. We found that Ext1−/− ESCs retained their self-renewal potential but failed to transit from self-renewal to differentiation upon removal of leukemia inhibitory factor. Furthermore, we found that the aberrant cell fate commitment is caused by defects in fibroblast growth factor signaling, which directly retained high expression of the pluripotency gene Nanog in Ext1−/− ESCs. Therefore, our studies identified and defined HS as a novel factor that controls ESC fate commitment and also delineates that HS facilitates fibroblast growth factor signaling, which, in turn, inhibits Nanog expression and commits ESCs to lineage differentiation.

Embryonic stem cells (ESCs) are derived from the inner cell mass of the preimplantation blastocyst and can differentiate into numerous cell types representative of all three germ layers of the embryo, a property that is defined as pluripotency (1, 2). ESCs retain pluripotency through a process of self-renewal, which allows ESCs to proliferate infinitely as undifferentiated entities. These properties make ESCs a unique system to study early embryonic development and cell fate decisions and provide us with a promising source for cell replacement therapies (3–5). The regulatory network and molecular requirements for the maintenance of self-renewal have been under intense investigation and are now increasingly defined. However, the mechanisms by which ESCs exit the self-renewing state and initiate differentiation are still poorly understood. For example, recent reports suggest that extrinsic signaling of fibroblast growth factors (FGFs) and intracellular factors, including the chromatin-associ-
induced to differentiate into neuronal cell types (21). These studies illustrate that HS is essential for ESC differentiation into multiple cell lineages. However, the role of HS in ESC self-renewal and cell fate commitment is not known.

In this study, we examined the roles of HS in self-renewal and cell fate commitment of mouse ESCs. We observed that, although HS is not required for the maintenance of ESC self-renewal, it promotes the transition of ESCs from self-renewal to lineage commitment via facilitation of FGF signaling and retention of high Nanog expression.

EXPERIMENTAL PROCEDURES

Isolation of ESC Lines—The generation of the conditional Ext1 allele (Ext1<sup>fl</sup>) and Ext1<sup>fl/fl</sup> mice was reported previously (26). Ext1<sup>fl/fl</sup> ESCs were derived from Ext1<sup>fl/fl</sup> blastocysts according to a standard protocol (27). To obtain Ext1 null (Ext1<sup>−/−</sup>) daughter ESC lines, Ext1<sup>fl/fl</sup> ESCs were transfected with pBBS13 EF1 α Cre (Addgene) using Lipofectamine 2000, followed by single cell cloning. The alleles of Ext1<sup>fl</sup> and Ext1<sup>−</sup> were identified by PCR analysis using the following primers. The Ext1<sup>fl</sup> allele was amplified using the following primers: 5′-GGAGTGTGGATGAGTTGAAG-3′ (forward) and 5′-CAACACTTTCAGCTCCAGTC-3′ (reverse). The Ext1<sup>−</sup> allele was amplified using the following primer pair: 5′-GGAGTGTGGATGAGTTGAAG-3′ and 5′-GAGAACAGCTGACCATGTTTC-3′. Cycling parameters for PCR were 95°C for 15 min, 94°C for 1 min, 55°C for 1 min, and 72°C for 1 min repeated for 40 cycles and then 72°C for 10 min.

Culture and Differentiation—ESCs were maintained in medium consisting of Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 10% medium consisting of Dulbecco’s modified Eagle’s medium supplemented with 100 units/ml penicillin, 100 μg/ml streptomycin, 0.1 mM β-mercaptoethanol at 37°C under 5% CO<sub>2</sub> supplemented with 1000 units/ml leukemia inhibitory factor (LIF) (ESGRO, Chemicon). For differentiation into embryoid bodies (EBs), ESCs were trypsinized and transferred into bacterial dishes at 5 × 10<sup>4</sup> cells/ml in 15% fetal bovine serum without the addition of LIF, and medium was changed every second day. Differentiation in adherent serum-containing culture was achieved in 10% fetal bovine serum, 10% knockout serum replacement (Invitrogen), 1-glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin, 0.1 mM β-mercaptoethanol at 37°C under 5% CO<sub>2</sub> supplemented with 1000 units/ml leukemia inhibitory factor (LIF) (ESGRO, Chemicon). For differentiation into embryoid bodies (EBs), ESCs were trypsinized and transferred into bacterial dishes at 5 × 10<sup>4</sup> cells/ml in 15% fetal bovine serum without the addition of LIF, and medium was changed every second day. Differentiation in adherent serum-containing culture was achieved in 10% fetal bovine serum, 10% knockout serum replacement without LIF. Serum-free culture was performed in Dulbecco’s modified Eagle’s medium supplemented with 1× N2 (Gemini), 1× B27 (Gemini), 50 μg/ml bovine serum albumin (Sigma), and 10 ng/ml FGF-4.

Self-renewal Assay—ES cells were seeded at clonal density and cultured for 5 days in ES medium with LIF. Cells were washed, fixed, and tested for alkaline phosphatase (AP) activity using an AP kit (Millipore). One hundred colonies were scored, and the percentage of AP-positive colonies was calculated. Dome-shaped colonies with tightly packed AP-positive cells were considered undifferentiated. Colonies with a mixture of stained and unstained colonies and with flattened and non-uniform morphology were considered differentiated.

Flow Cytometry—For detection of cell surface HS, ESCs were incubated with an anti-HS antibody (H10E4, Seikagaku) at 1:500 and labeled with a secondary antibody (anti-mouse IgM-fluorescein isothiocyanate) before fluorescence-activated cell sorting analysis. FGF cell surface binding was performed as described previously (28). Briefly, ESCs were detached with 2 mM EDTA in PBS for 10 min at room temperature. Cells were incubated with 0.6 μg/ml biotinylated FGF-2 in buffer (0.5% bovine serum albumin, 2 mM EDTA in PBS) for 1 h on ice. Bound FGF-2 was detected by flow cytometry with avidin-fluorescein isothiocyanate (1:100; R&D Systems).

Immunofluorescence—Cells were fixed in 4% paraformaldehyde for 10 min at room temperature, washed three times with PBS, and then incubated for 1 h in blocking buffer (2% goat serum, 0.1% Triton X-100 in PBS). The anti-OCT-4 antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) was diluted in blocking buffer at 1:100 and applied for 1 h at room temperature or overnight at 4°C. Secondary antibodies conjugated to Alexa fluorophores (Molecular Probes) were diluted at 1:500 in blocking buffer and applied for 1 h at room temperature. Cells were washed twice and incubated with 4′,6-diamidino-2-phenylindole (10 μg/ml) before viewing. Fluorescent images were visualized using a fluorescence microscope (Nikon Eclipse, TE2000-S) with ×20/×0.40 and ×40/×0.60 objectives at room temperature and captured using a Qimaging (Retiga 1300i Fast) camera and Qcapture version 2.90.1 software. Fluorescent confocal images were visualized using an Olympus FV1000 laser-scanning confocal microscope with oil objectives (×40/1.35) at room temperature and captured using Fluoview acquisition software. All images were prepared using Photoshop 8.0 (Adobe).

Immunoblotting—After 6 h of serum starvation, ESCs were stimulated with 5 ng/ml FGF2 for 0–60 min. Thereafter, cells were lysed with radioimmune precipitation buffer, and 30 μg of whole cell lysates were resolved on 10% SDS-polyacrylamide gels, transferred onto nitrocellulose membranes, and blotted with anti-β-actin (Cell Signaling Technology) and anti-Erk1/2 (Cell Signaling Technology) antibodies at 1:1000.

PCR Analysis—Total RNA was isolated using the RNeasy kit (Qiagen), and cDNA was made from 1 μg of total RNA using the SuperScript III first strand synthesis system (Invitrogen). Semiquantitative PCR was performed with the primers listed in Table 1. SYBR Green® RT-PCR was performed as described previously (22) to detect expression of Ext1, Ext2, Nanog, Brachyury, Wnt3, Nestin, and Gata-6 with the following primers: Ext1 forward, 5′-gagactcaggtagcctcaac-3′; Ext1 reverse, 5′-tgctgacagagtcctgtgct-3′; Ext2 forward, 5′-agctcaccgctcttgact-3′; Ext2 reverse, 5′-catggaggtgaggccagac-3′; Nanog forward, 5′-ggacttctgagcactcagc-3′; Nanog reverse, 5′-gtctcacaattcacttcc-3′; Brachyury forward, 5′-ctgctcaccataccacactg-3′; Brachyury reverse, 5′-atcgagaaaccaagagca-3′; Wnt3

| Table 1 | Primers for semiquantitative PCR |
| --- | --- |
| Gene | Forward primer | Reverse primer |
| Oct-4 | GCTTACACCTGCTGAGTGCTC | CTTGAAGCAACATGCTGTTC |
| Nanog | CGATAAGTCACGCGTTCAACAC | CTCACTCTGCTGCTATGAGA |
| -F- (AP) | TCAAGAACATCACTTCAGGATACA | GCCATTGGTTAGAAAGAGT |
| Brachyury | AACTGTCCTCTATAGTCTGAGAC | TGCACTTACACACACAAACTG |
| Mixl1 | ACTCTCACCTCCTTCTTACTCGC | ACTTCTCCCTTTTATCGCC |
| Flk-1 | AGAACACCTGAGCCCGCCCT | AAGCTTCCTCCCGGAC |
| Foxa1 | TGACTGCTTAGGAAACAGGA | GCAACAGAAGTGAAGAAAA |
| Ext1 | TGGCTGAGAGTGTGGTTCGTC | TACAGCAGCTTGTGACAC |
| β-Actin | CCATATCAGGGCCGTCTACAG | TCTCTCGGTCTGCTACAG |

Heparan Sulfate Controls Self-renewal of Embryonic Stem Cells

5908 JOURNAL OF BIOLOGICAL CHEMISTRY

VOLUME 285 • NUMBER 8 • FEBRUARY 19, 2010
HS Isolation—The HS isolation was carried out as we reported previously (28, 29). In brief, ESCs were washed with ice-cold PBS followed by lysis for 20 min in 0.1 M NaOH. The cell lysate was adjusted to pH 7.0 and then loaded onto a DEAE-Sephacel column (Bio-Rad) that had been equilibrated with equilibration buffer (20 mM sodium acetate, pH 6.0, 0.25 M NaCl). After washing with the equilibration buffer, glycosaminoglycans were eluted with elution buffer (20 mM sodium acetate, pH 6.0, 1 M NaCl). The samples were desalted in water on PD10 columns (Amersham Biosciences), followed by lyophilization, and glycosaminoglycans were subjected to digestion with 20 milliunits of chondroitinase ABC (Sigma) and reduction with NaBH4 overnight. Following an additional desalting step, total HS was quantified using 1,9-dimethylmethylene blue (30).

RESULTS

Ext1+/+ ESCs Are Deficient in HS—The enzyme EXT1 functions to initiate HS biosynthesis by polymerizing the HS precursor structure. To study the role of HS in ESCs, mouse ESC lines were derived from conditionally targeted Ext1 (Ext1flox/flox) mice following standard procedures (26, 27). The Ext1 null (Ext1−/−) ESC lines were generated by transfecting Ext1flox/flox ESC lines with Cre recombinase, followed by single cell cloning and PCR determination of Ext1 ablation (Fig. 1A). The PCR-identified Ext1+/+ ESCs were deficient in Ext1 transcripts but retained normal levels of Ext2 mRNA (Fig. 1B). To determine whether Ext1 ablation eliminated HS biosynthesis, Ext1flox/flox ESC lines were generated by transfecting Ext1flox/flox ESC lines with Cre recombinase, followed by single cell cloning and PCR determination of Ext1 ablation (Fig. 1A). The PCR-identified Ext1+/+ ESCs were deficient in Ext1 transcripts but retained normal levels of Ext2 mRNA (Fig. 1B).

Ext1−/− ESCs expressed HS abundantly on their cell surfaces. In contrast, Ext1+/+ ESCs did not display any HS expression (Fig. 1C).

Ext1+/+ ESCs were incubated with an anti-HS antibody (H10E4), and HS chains were quantified by flow cytometry. Ext1−/− ESCs expressed HS abundantly on their cell surfaces. In contrast, Ext1+/+ ESCs did not display any HS expression (Fig. 1C).
Heparan Sulfate Controls Self-renewal of Embryonic Stem Cells

FIGURE 2. Ext1+/− ESCs can be maintained in the self-renewing state. A, Ext1+/+ and Ext1+/− ESCs were examined for their colony morphology after 20 days (5 passages) in feeder-free conditions in the presence of LIF. Bar, 300 μm. B, Ext1+/+ and Ext1+/− ESCs were stained for AP activity after 20 days of culture in the presence of LIF. Bar, 200 μm. C, ESCs were cultured for 15 days and then plated out at clonal density. The percentage of AP-positive colonies was quantitated. Error bars indicate the S.E. generated from triplicates of the same experiment. D, semiquantitative PCR of pluripotency genes. RNA was extracted from ESCs cultured for 20 days in feeder-free conditions. E, immunofluorescence of OCT-4 expression in colonies formed after 20 days in culture in feeder-free conditions in the presence of LIF. Bar, 4’,6-diamidino-2-phenylindole.

showing directly that Ext1 ablation completely disrupts HS biosynthesis in ESCs.

HS Is Not Required for the Maintenance of ESC Self-renewal—Growth factors, including BMP-4 and Wnt, are promoters of ESC self-renewal and are modulated by HS during invertebrate and vertebrate embryogenesis, suggesting that HS might similarly modulate BMP-4 and Wnt signaling to govern ESC self-renewal. To test this idea, we examined Ext1−/− ESCs under long term feeder-free LIF-containing culture conditions for their capacity to give rise to undifferentiated self-renewing colonies, which generally display characteristics such as compact morphology, high AP activity, and expression of pluripotency genes. After 20 days in culture, Ext1−/− ESC clones still retained their compact dome-shaped colony morphology typical of undifferentiated ESC colonies and were morphologically indistinguishable from Ext1+/+ ESCs cultured under the same conditions (Fig. 2A). This result suggested that HS is dispensable for the maintenance of ESC self-renewal.

We further examined ESCs for AP activity and for the expression of pluripotency genes. AP assays showed that Ext1−/− ESC colonies display high AP activity equal to that of Ext1+/+ ESCs (Fig. 2B). Quantification further showed that both Ext1−/− and Ext1+/+ ESC populations contained around 95% AP-positive colonies (Fig. 2C). Examination of Nanog, Rex-1, and Oct-4 transcripts showed that pluripotency genes were still expressed at high levels in Ext1−/− ESCs (Fig. 2D). Immunostaining for OCT-4 further showed that OCT-4 was expressed as abundantly in Ext1−/− ESCs as in Ext1+/+ ESCs (Fig. 2E). Taken together, examinations of colony morphology, AP activity, and pluripotency gene expression consistently showed that Ext1−/− ESCs retained their normal self-renewal capacity and established that HS is not required for the maintenance of ESC self-renewal.

HS Facilitates Multilineage Cell Fate Commitment—To further explore the role of HS in self-renewal, Ext1+/+ and Ext1−/− ESCs were cultured in varying concentrations of LIF. As expected, a decrease in LIF concentration correlated with fewer AP-positive colonies in Ext1+/+ populations. Surprisingly, a high percentage of Ext1−/− cell colonies remained AP-positive even under low LIF concentrations, showing that Ext1−/− ESCs were unable to exit the self-renewal program (Fig. 3A). This was further supported by the observation that Ext1−/− cell colonies still retained their compact morphology when LIF was present at low concentrations (data not shown). To verify that HS is required for cell fate commitment into multiple lineages, ESCs were differentiated into EBs. Ext1+/+ EBs developed internal cavities, a process that mirrors proamniotic cavitation of postimplantation mouse embryos. In contrast, Ext1−/− EBs failed to form cavities, showing that Ext1−/− ESCs could not...
FIGURE 3. HS is required for ESC differentiation commitment. A, Ext1<sup>+/+</sup> and Ext1<sup>-/-</sup> ES cells were plated at clonal density and cultured at various LIF concentrations for 5 days. The percentage of undifferentiated colonies was examined by AP assays. Error bars indicate S.E. generated from triplicates of the same experiment, which is representative of at least three independent experiments. B, phase-contrast microscopy of day 10 EBs. Bar, 200 μm. C, RNA expression levels of pluripotency and differentiation markers during in vitro differentiation of ESCs. Semiquantitative RT-PCR analysis was performed on RNA extracted from either undifferentiated ESCs or EBs throughout a differentiation period of 10 days (days 2–10). β-Actin transcripts were used as an internal control. D, confocal microscopy images of day 8 EBs immunostained for OCT-4. Bar, 100 μm. U, units.

Heparan Sulfate Controls Self-renewal of Embryonic Stem Cells

were determined over the time course of EB formation. As expected, upon Ext1<sup>+/+</sup> EB differentiation, markers, including those of endoderm (FoxA2), early mesoderm (Brachyury and MixL1), late mesoderm (Fk-1), and extraembryonic (Gata4 and Afp) lineages, became up-regulated concomitantly with a decline in transcript levels of pluripotency genes, such as Nanog and Oct-4 (Fig. 3, C and D). In contrast, Ext1<sup>-/-</sup> EBs retained high expression levels of Nanog and Oct-4, and none of the lineage markers were expressed (Fig. 3, C and D), indicating that Ext1<sup>-/-</sup> ESCs failed to differentiate into multiple lineages. Taken together, these results demonstrate that HS is an essential factor for ESCs to exit from the self-renewing state and to enter multilineage cell fate commitment.

Inhibition of FGF Signaling Recapitulates the Aberrant Ext1<sup>-/-</sup> Cell Fate Commitment—HS-binding growth factors, including FGFs, BMPs, and Wnts, are master regulators of ESC fate decisions. FGF signaling has been shown to trigger the transition of ESCs from self-renewal to lineage commitment (7), whereas BMP-4 and Wnt3 are known to promote ESC self-renewal. Our results have shown that Ext1<sup>-/-</sup> ESCs retain normal self-renewal but fail to commit into developmental lineages, suggesting that HS deficiency may disrupt FGF signaling and, as a consequence, exhibit aberrant cell fate commitment. To test this idea, we examined whether inhibition of FGF signaling would recapitulate the Ext1<sup>-/-</sup> phenotype. ESCs were treated with the chemical FGFR inhibitor PD173074 (PD) and examined for downstream activation of ERK1/2 and changes in colony morphology upon removal of LIF. PD treatment substantially inhibited ERK1/2 phosphorylation and shows that the MAPK pathway is directly activated by FGFs in ESCs, in accordance with other reports (Fig. 4A) (7). Examination of colony morphologies showed that mock-treated Ext1<sup>+/+</sup> ESCs initiated differentiation and visibly flattened out after the onset of differentiation (Fig. 4B). In contrast, PD-treated Ext1<sup>+/+</sup> ESCs retained their compact and dome-shaped colony morphology similar to Ext1<sup>-/-</sup> colonies (Fig. 4B). Next, we assessed whether FGFR inhibition would delay the decline in OCT-4 and Nanog expression and suppress the expression of lineage markers. We found that OCT-4 and Nanog levels were substantially reduced in mock-treated Ext1<sup>+/+</sup> cells, whereas PD-treated Ext1<sup>+/+</sup> ESCs retained high levels of OCT-4 and Nanog that were comparable with those in Ext1<sup>-/-</sup> ESCs (Fig. 4, C and D). Consistent with elevated transcript levels of pluripotency genes, the expression of early differentiation markers Wnt3, Brachyury, Nestin, and Gata-6 was completely suppressed by PD treatment of Ext1<sup>+/+</sup> ESCs. Similarly, no expression of differentiation markers was detected in Ext1<sup>-/-</sup> ESCs in the absence or presence of PD (Fig. 4, C and D). Collectively, our results show that inhibition of FGF signaling in ESCs recapitulates the Ext1<sup>-/-</sup> ESC lineage commitment failure, supporting our hypothesis that HS deficiency leads to defects in FGF signaling, which, in consequence, delays or blocks cell fate commitment.

HS Modulates FGF Signaling in ESCs—To directly address whether HS modulates FGF signaling in ESCs, we examined FGF-2 cell surface binding. Flow cytometry analyses detected strong cell surface binding of FGF-2 on Ext1<sup>+/+</sup> ESCs and no significant FGF-2 binding on Ext1<sup>-/-</sup> ESCs, showing that HS
deficiency disrupts efficient cell surface binding of FGF-2 (Fig. 5A). FGF-mediated ERK1/2 activation is the driving force behind lineage commitment (7, 31). Therefore, we tested whether activation of ERK1/2 by FGF was compromised in Ext1/H11002/H11002 ESCs. Stimulation of serum-starved ESCs with FGF-2 elicited substantial phosphorylation of ERK1/2 in Ext1/H11001/H11001 cells but not in Ext1/H11002/H11002 ESCs, showing directly that FGF-mediated MAPK activation is disrupted in Ext1/H11002/H11002 ESCs (Fig. 5B). In further support, we found that steady-state phospho-ERK1/2 levels were consistently lower in Ext1^-/- ESCs than in Ext1^+/+ ESCs (Fig. 5C). Collectively, our data show that FGF cell surface binding and subsequent activation of the MAPK pathway are dependent on HS in ESCs.

**Heparin and HS Restore Cell Fate Commitment of Ext1^-/- ESCs in a FGF Signaling-dependent Manner**—Heparin is a chemical analogue of HS and is commonly used as a model molecule for biological studies of HS. Heparin is well known to function as a co-factor that facilitates FGF-FGFR interactions, thereby enhancing FGF signaling in various cell types (32, 33). To support our hypothesis that HS facilitates FGF signaling to drive ESC fate commitment, we attempted to substitute endogenous HS with soluble heparin. Heparin dose-dependently
Heparan Sulfate Controls Self-renewal of Embryonic Stem Cells

Quantification showed that the number of AP-positive Ext1−/− colonies was reduced from 80% in the absence of heparin to around 5% in the presence of heparin. Similarly, HS reduced the percentage of AP-positive Ext1−/− ESCs to around 15%. Collectively, our colony morphology and AP assays demonstrated that heparin restored differentiation commitment of Ext1−/− ESCs. The heparin/HS rescue also verified that the differentiation commitment defect associated with Ext1−/− ESCs is truly due to HS deficiency alone. Furthermore, Ext1−/− ESCs were simultaneously treated with both heparin/HS and PD. In this case, PD inhibited both changes in colony morphology and reduction in AP activity, indicating that the heparin/HS-mediated rescue of cell fate commitment was achieved specifically through restoration of FGF signaling (Fig. 6D).

To assess whether heparin would restore lineage commitment of Ext1−/− ESCs, we analyzed transcript levels of Nanog and early differentiation markers, including Wnt3, Brachyury, Nestin, and Gata-6. Heparin treatment resulted in reduction of Nanog levels and significant increases in differentiation markers, including Brachyury, Wnt3, and Nestin, indicating that heparin successfully restored cell fate commitment (Fig. 6E). Interestingly, only Brachyury expression was restored to that of Ext1+/+ cells. Wnt3 and Nestin expression increased but not to levels of Ext1+/+ ESCs, and Gata-6 expression remained unchanged, indicating that heparin only rescued cell fate commitment and not the full differentiation potential of ESCs. Inhibition of FGF signaling by PD treatment maintained high Nanog levels and suppressed the expression of differentiation markers, showing again that heparin-mediated cell fate commitment rescue was achieved via restoration of FGF signaling (Fig. 6E).

HS Enhances FGF Signaling to Inhibit Nanog Expression, Thereby Facilitating ESC Differentiation Commitment—Our results have shown that HS modulates FGF signaling to control cell fate commitment of ESCs; however, it remains unclear how FGF signaling is integrated into the intracellular core circuitry of pluripotency-associated transcription factors. The homeoprotein Nanog is a key factor in maintaining self-renewal and acts together with Oct-4 and Sox2 to establish the ESC identity (34, 35). Nanog mRNA levels remained consistently high in Ext1−/− ESCs and may account for sustained self-renewal of Ext1−/− ESCs. The correlation between elevated Nanog expression and defects in FGF signaling of Ext1−/− ESCs leads us to hypothesize that the efficient down-regulation of Nanog during ESC differentiation may be directly controlled by FGF signaling. To test this hypothesis, Ext1+/+ ESCs were differentiated in serum-free medium supplemented with FGF-4 for 24 h. Nanog mRNA levels were compared between mock- and PD-treated Ext1+/+ ESCs. PD-treated ESCs maintained substantially higher Nanog expression compared with mock-treated cells, showing that FGF signaling directly inhibits Nanog expression (Fig. 6F). Furthermore, treatment of Ext1−/− ESCs with heparin decreased Nanog expression, and this effect was reversed by PD treatment (Fig. 6F). These results indicate a direct correlation between cell surface HS, FGF signaling, and Nanog expression, in which HS deficiency in Ext1−/− ESCs disrupts FGF signaling and results in elevated Nanog expression levels in Ext1−/− ESCs. Enhanced...
**Heparan Sulfate Controls Self-renewal of Embryonic Stem Cells**

Nanog expression retains self-renewal and inhibits cell fate commitment of ESCs (34, 35). Therefore, these observations indicate that HS enhances FGF signaling, which in turn inhibits Nanog expression, thereby facilitating the transit of ESCs from self-renewal to cell differentiation commitment.

**DISCUSSION**

In this study, we examined the roles of HS in self-renewal and cell fate commitment of ESCs using conditional Ext1−/− ESC lines. We found, surprisingly, that HS is not required for the maintenance of ESC self-renewal (Fig. 3, A–E). This observa-
tion is in disparity with a recent study carried out by Sasaki et al. (20). Employing an RNA interference-mediated gene knockdown approach, Sasaki et al. (20) reported spontaneous differentiation of Ext1-knockdown ESCs even in the presence of LIF and serum, suggesting that HS is required to maintain ESC self-renewal (20). The two opposite effects upon self-renewal observed in our study and Ref. 20 might be explained by differences in HS product. Our Ext1+/− ESCs were completely deficient in HS, whereas Ext1-knockdown cells carried residual HS with reduced chain size (20). Short HS chains may, at least in some cases, retain some of their function. For example, short HS chains were able to act as co-receptors for Wnt signaling in Drosophila embryos but not in embryos that lacked HS completely (14, 36, 37). Hence, it is possible that the growth factor signaling that regulates the balance between self-renewal and differentiation is modulated differently in Ext1-knockdown and our Ext1+/− ESCs, leading to the apparent discrepancies in self-renewal phenotypes.

Currently, the mechanisms that control the transition of ESCs from self-renewal to differentiation are poorly understood, but they have been suggested to involve extracellular signaling as well as epigenetic regulation (7, 8). Using suspension and adherent differentiation systems, we observed that loss of HS inhibits the transition of ESCs from self-renewal to differentiation into multiple lineages (Fig. 3), revealing HS as a critical factor that controls ESC fate commitment. This observation is supported by the studies of Johnson et al. (23), who reported that HS deficiency sustains Oct-4 expression and blocks differentiation of ESCs into neural cells during directed neuronal differentiation.

Multiple HS-binding growth factors, such as Wnt, BMP, and FGF, critically regulate cell fate decisions of ESCs. Notably, Wnt and BMP signaling maintain self-renewal, whereas FGF signaling functions as an inhibitor of self-renewal and an essential factor for differentiation commitment (7, 38). In our studies, Ext1+/− ES cells failed to commit to lineage differentiation (Fig. 3C), displaying a phenotype analogous to that of ESCs deficient in FGF4 or ESCs treated with FGFR inhibitors (7, 38). Furthermore, Ext1+/− EBs displayed cavitation defects that have been described for FGR2−/− ESCs (39). Hence, we hypothesized that defects in FGF signaling may underlie the aberrant differentiation commitment of Ext1+/− ESCs. Our examination of FGF cell surface binding and downstream MAPK activation demonstrated directly that HS facilitates FGF signaling in ESCs (Fig. 3). The role of FGF signaling in cell fate commitment of ESCs has been controversial. Smukler et al. (40) reported that FGF signaling is dispensable for commitment into a primitive neural stem cell fate. In contrast, Kunath et al. (7) observed that autocrine/paracrine FGF signaling was required for differentiation commitment into both neural and mesoderm lineages. To determine whether the defect in FGF signaling could recapitulate the aberrant cell fate commitment of Ext1+/− ESCs in our serum-containing culture conditions, we treated Ext1+/− ESCs with the FGFR-specific inhibitor PD173074. In agreement with previous reports (7, 41), we observed that FGF receptor inhibition results in delayed lineage commitment, phenocopying the differentiation defects of Ext1+/− ESCs (Fig. 4) and supporting our hypothesis that defects in FGF signaling may underlie the aberrant differentiation commitment of Ext1+/− ESCs. In further support, substitution with heparin or HS isolated from Ext1+/− ESCs restored FGF signaling in Ext1+/− ESCs, which correlated with effective exit from self-renewal and differentiation commitment of Ext1+/− ESCs (Fig. 6), and the heparin/HS-induced rescue was efficiently blocked by inhibition of FGF signaling (Fig. 6, C−E). Altogether, these observations consistently show that Ext1 deficiency results in impaired FGF signaling and aberrant differentiation commitment in ESCs, establishing that HS modulates FGF signaling to control ESC differentiation commitment. Interestingly, inhibition of FGF signaling by PD treatment in Ext1+/− ESCs resulted in stronger reduction of ERK1/2 phosphorylation and higher Nanog expression when compared with PD treatment of Ext1+/− cells, indicating that additional ERK1/2-activating growth factors may be modulated by HS. This possibility has been supported by other studies. For example, insulin-like growth factor possesses HS-binding sites and has been shown to activate ERK1/2 in mouse ESCs (42, 43). Therefore, it will be interesting to examine whether HS modulates additional growth factors involved in facilitating cell fate commitment.

Our data established that HS facilitates FGF signaling to control ESC differentiation commitment; however, its effects on intracellular pluripotency factors are unknown. Using defined culture conditions lacking LIF, we observed that elevated Nanog levels in Ext1−/− ESCs were efficiently reduced upon heparin treatment (Fig. 6F), demonstrating a direct link between HS and Nanog. PD treatment of heparin-treated Ext1−/− ESCs completely reversed the reduction in Nanog levels, further showing that HS controls Nanog levels via FGF signaling. Furthermore, PD treatment of Ext1+/− cells resulted in the inhibition of Nanog down-regulation and showed directly that FGF signaling negatively controls Nanog expression (Fig. 6F). In agreement with our observation, a similar retention of Nanog expression upon the removal of LIF has been recently reported in ESCs treated with the MAPK inhibitor U0126 (31), suggesting that FGF signaling activates downstream MAPK to control Nanog levels. Enhanced Nanog expression has been
Heparan Sulfate Controls Self-renewal of Embryonic Stem Cells

shown to maintain self-renewal and to inhibit differentiation of ESCs (34, 35). Therefore, our study delineates that HS promotes ESC exit from self-renewal and cell fate commitment by inhibiting Nanog expression via facilitation of FGF signaling.

Acknowledgments—We appreciate Drs. Kelley Moremen, Alison Nairn, Brian Condie, and Steve Dalton (University of Georgia) for discussion of the manuscript. We also thank Dr. Heather Steet for technical assistance.

REFERENCES

1. Martin, G. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7634–7638
2. Evans, M. J., and Kaufman, M. H. (1981) Nature 292, 154–156
3. Gangaaraj, V. K., and Lin, H. (2009) Nat. Rev. Mol. Cell Biol. 10, 116–125
4. Faherty, S., Fitzgerald, A., Keohan, M., and Quinlan, L. R. (2007) In Vitro Cell Dev. Biol. Anim. 43, 37–47
5. O’Shea, K. S. (2004) Biol. Reprod. 71, 1755–1765
6. Kaji, K., Nichols, J., and Hendrich, B. (2007) Development 134, 1123–1132
7. Kunath, T., Saba-El-Leil, M. K., Almoussalikh, M., Wray, J., Meloche, S., and Smith, A. (2007) Development 134, 2895–2902
8. van den Boom, V., Kooistra, S. M., Boesjes, M., Geverts, B., Houtsmuller, A. B., Monzen, K., Komuro, I., Essers, J., Drenth-Diephuis, L. J., and Eggen, B. J. (2007) J. Cell Biol. 178, 913–924
9. Bernfield, M., Goette, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J., and Zako, M. (1999) Annu. Rev. Biochem. 68, 729–777
10. Esko, J. D., and Selleck, S. B. (2002) Annu. Rev. Biochem. 71, 435–471
11. Baeg, G. H., Lin, X., Khare, N., Baumgartner, S., and Perrimon, N. (2001) Development 128, 87–94
12. Desbordes, S. C., and Sanson, B. (2003) Development 130, 6245–6255
13. Yan, D., and Lin, X. (2007) Dev. Biol. 312, 203–216
14. Han, C., Belenkaya, T. Y., Khodoun, M., Tauchi, M., and Lin, X. (2004) Development 131, 1563–1575
15. Capurro, M. I., Xu, P., Shi, W., Li, F., Jia, A., and Films, J. (2008) Dev. Cell 14, 700–711
16. Takei, Y., Ozawa, Y., Sato, M., Watanabe, A., and Tabata, T. (2004) Development 131, 73–82
17. Lin, X., Wei, G., Shi, Z., Dryer, L., Esko, J. D., Wells, D. E., and Matzuk, M. M. (2000) Dev. Biol. 224, 299–311
18. Stickens, D., Zak, B. M., Rougier, N., Esko, J. D., and Werb, Z. (2005) Development 132, 5055–5068
19. Holmborn, K., Ledin, J., Smeds, E., Eriksson, I., Kusche-Gullberg, M., and Kjellen, L. (2004) J. Biol. Chem. 279, 42355–42358
20. Sasaki, N., Okishio, K., Ui-Tei, K., Saigo, K., Kinoshita-Toyoda, A., Toyoda, H., Nishimura, T., Suda, Y., Hayasaka, M., Hanaoka, K., Hitoshi, S., Ikenaka, K., and Nishihara, S. (2008) J. Biol. Chem. 283, 3594–3606
21. Baldwin, R. J., ten Dam, G. B., van Kuppevelt, T. H., Lacaud, G., Gallagher, J. T., Kouskoff, V., and Merry, C. L. (2008) Stem Cells 26, 3108–3118
22. Nairn, A. V., Kinoshita-Toyoda, A., Toyoda, H., Xie, J., Harris, K., Dalton, S., Kulik, M., Pierce, J. M., Toida, T., Moremen, K. W., and Linhardt, R. J. (2007) J. Proteome Res. 6, 4374–4387
23. Deleted in proof
24. Johnson, C. E., Crawford, B. E., Stavridis, M., Ten Dam, G., Wat, A. L., Rushton, G., Ward, C. M., Wilson, V., van Kuppevelt, T. H., Esko, J. D., Smith, A., Gallagher, J. T., and Merry, C. L. (2007) Stem Cells 25, 1913–1923
25. Jakobsson, L., Kreuger, J., Holmborn, K., Lundin, L., Eriksson, I., Kjellén, L., and Claesson-Welsh, L. (2006) Dev. Cell 10, 625–634
26. Inatani, M., Irie, F., Plump, A. S., Tessier-Lavigne, M., and Yamaguchi, Y. (2003) Science 302, 1044–1046
27. Nagy, A., Gertsenstein, M., Vintersten, K., and Behringer, R. (2003) Manipulating the Mouse Embryo: A Laboratory Manual, 3rd Ed., pp. 359–389, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
28. Fuster, M. M., Wang, L., Castagnola, J., Sikora, L., Reddi, K., Lee, P. H., Radek, K. A., Schuksz, M., Bishop, J. R., Gallo, R. L., Sirimarao, P., and Esko, J. D. (2007) J. Cell Biol. 177, 539–549
29. Wang, L., Fuster, M., Siririmaro, P., and Esko, J. D. (2005) Nat. Immunol. 6, 902–910
30. Barbosa, I., Garcia, S., Barbier-Chassefière, V., Caruelle, J. P., Martelly, I., and Papy-García, D. (2003) Glycobiology 13, 647–653
31. Niwa, H., Ogawa, K., Shimosato, D., and Adachi, K. (2009) Nature 460, 118–122
32. Milne, C. D., Corfe, S. A., and Paige, C. J. (2008) J. Immunol. 180, 2839–2847
33. Delehedde, M., Lyon, M., Gallagher, J. T., Rudland, P. S., and Fornbl, D. G. (2002) Biochem. J. 366, 235–244
34. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Murayama, M., Maeda, M., and Yamanaka, S. (2003) Cell 113, 631–642
35. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003) Cell 113, 643–655
36. Binari, R. C., Staveley, B. E., Johnson, W. A., Godavarti, R., Saisekharan, R., and Manoukian, A. S. (1997) Development 124, 2623–2632
37. Haerry, T. E., Heslip, T. R., Marsh, J. L., and O’Connor, M. B. (1997) Development 124, 3055–3064
38. Ying, Q. L., Wray, J., Nichols, J., Battle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008) Nature 453, 519–523
39. Chen, Y., Li, X., Eswarakumar, V. P., Seger, R., and Lonai, P. (2000) Oncogene 19, 3750–3756
40. Smukler, S. R., Runciman, S. B., Xu, S., and van der Kooy, D. (2006) J. Cell Biol. 172, 79–90
41. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M., and Smith, A. (2003) Nat. Biotechnol. 21, 183–186
42. Li, Q. G., Blacher, R., Esch, F., and Congote, L. F. (1990) Biochem. Biophys. Res. Commun. 166, 557–561
43. Nguyen, T. T., Shepard, A. M., Kaye, P. L., and Noakes, P. G. (2007) Reproduction 134, 41–49