The KP hierarchy with self-consistent sources: construction, Wronskian solutions and bilinear identities

Runliang Lin¹, Xiaojun Liu² and Yunbo Zeng¹

¹ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China
² Department of Applied Mathematics, China Agricultural University, Beijing 100083, P.R. China
E-mail: rlin@math.tsinghua.edu.cn, xjliu@cau.edu.cn, yzeng@math.tsinghua.edu.cn

Abstract. In this paper, we will present some of our results on the soliton hierarchy with self-consistent sources (SHSCSs). The Kadomtsev–Petviashvili (KP) hierarchy will be used as an illustrative example to show the method to construct the SHSCSs. Some properties of the KP hierarchy with self-consistent sources will also be given, such as the dressing approach, the Wronskian solutions (including soliton solutions), its bilinear identities and the tau function.

1. Introduction

The soliton equation with self-consistent sources (SESCSs) was proposed by Mel’nikov [16] and has important applications in hydrodynamics, plasma physics and solid state physics. Later on, some SESCSs were studied by inverse scattering method (without explicit Lax pair) [16, 17], Matrix theory [18] and D-bar method [4]. Since the constrained flows of soliton equations can be viewed as the stationary case of the SESCSs, one can derive the auxiliary linear problems for the SESCSs on the basis of the Lax pair for the constrained flows (the latter can be obtained systematically by the adjoint representation) [24]. With the help of the constrained flows, some SESCSs were studied by inverse scattering method (with explicit Lax pair), and some soliton solutions were obtained [8, 23]. It was shown that the velocities of the solitons can be changed by the choice of sources [8, 23]. A similar observation can be found in [5, 19].

The KP equation with self-consistent sources reads [16, 8]

\[ u_t = -\frac{1}{4}(6uu_x + u_{xxx}) - \frac{1}{2}\partial_x \sum_{j=1}^{N} \phi_j^2, \]  

(1a)

\[ \phi_{j,xx} + (\lambda_j + u)\phi_j = 0, \quad j = 1, \cdots, N, \]  

(1b)

where \( u = u(x,t), \phi_j = \phi_j(x,t), \) \( N \) is a natural number, \( \lambda_j \)'s are parameters.
The first type of KP equation with self-consistent sources (KPwS-I) is a soliton equation. Let’s take the Kadomtsev–Petviashvili (KP) equation as an example. A source generalization method was proposed by Hu and coworkers. In the study on SESCSs, it is found that two types of self-consistent sources can be added to SESCSs. Later, some explicit solutions (such as solitons, positons, negatons) of some SESCSs were studied in [2-7,16-19,25]. A source generalization method was proposed by Hu and coworkers.

One can get the soliton solutions for KdV equation with sources (1) by inverse scattering method, e.g., the following is its two-soliton solution

\[
u(x,t) = \frac{12 \{3 + 4 \cosh[2x - 2t - 2 \int_0^t \beta_2(z) \, dz] + \cosh[4x - 16t - 2 \int_0^t \beta_1(z) \, dz]\}}{\cosh[3x - 9t - \int_0^t (\beta_1(z) + \beta_2(z)) \, dz] + 3 \cosh[x - 7t - \int_0^t (\beta_1(z) - \beta_2(z)) \, dz]}^2, \quad (2a)
\]

\[
\phi_1(x,t) = \frac{4 \sqrt{6} \beta_1(t) \cosh[x - t - \int_0^t \beta_2(z) \, dz]}{\cosh[3x - 9t - \int_0^t (\beta_1(z) + \beta_2(z)) \, dz] + 3 \cosh[x - 7t - \int_0^t (\beta_1(z) - \beta_2(z)) \, dz]}, \quad (2b)
\]

\[
\phi_2(x,t) = \frac{4 \sqrt{3} \beta_2(t) \sinh[2x - 8t - \int_0^t \beta_1(z) \, dz]}{\cosh[3x - 9t - \int_0^t (\beta_1(z) + \beta_2(z)) \, dz] + 3 \cosh[x - 7t - \int_0^t (\beta_1(z) - \beta_2(z)) \, dz]}, \quad (2c)
\]

where \( \beta_1(t) \) and \( \beta_2(t) \) are arbitrary continuous functions of \( t \). If we choose special \( \beta_1(t) \) and \( \beta_2(t) \), the soliton with smaller amplitude may propagate faster than that with bigger amplitude (e.g., as plotted in Figure 1 with \( \beta_1(t) = 1 \) and \( \beta_2(t) = 9 \). This phenomenon is completely different from that of solitons to the original KdV hierarchy (without sources). Some other choices of \( \beta_i(t) \) can give a great variety of dynamics of soliton solutions. Similar cases were also studied in [2-7,16-19,25].

Later, some explicit solutions (such as solitons, positons, negatons) of some SESCSs were obtained by Darboux transformation (see the references in [9]) and Hirota method [25]. A source generalization method was proposed by Hu and coworkers [6].

In the study on SESCSs, it is found that two types of self-consistent sources can be added to a soliton equation [7, 16]. Let’s take the Kadomtsev–Petviashvili (KP) equation as an example. The first type of KP equation with self-consistent sources (KPwS-I) is [7, 16]

\[
(4u_t - 12uu_x - u_{xxx})_x - 3u_{yy} + 4 \sum_{i=1}^N (q_ir_i)_{xx} = 0, \quad (3a)
\]

\[
qu_{i,y} = q_{i,xx} + 2u q_i, \quad i = 1, \ldots, N, \quad (3b)
\]

\[
r_{i,y} = -r_{i,xx} - 2u r_i, \quad (3c)
\]

where \( N \) is a natural number. The second type of KP equation with self-consistent sources

Figure 1. The plot of two-soliton solution \( u(x,t) \) in Eq. (2) with \( \beta_1(t) = 1 \) and \( \beta_2(t) = 9 \) (for \( t = -0.06 \) (a), \( t = 0 \) (b) and \( t = 0.06 \) (c)).
(KPwS-II) is [7, 16]

\[ 4u_t - 12uu_x - u_{xxx} - 3\partial^{-1}u_{yy} = 3 \sum_{i=1}^{N} \left[ qi_{xx}r_i - qi_{ri,xx} + (q_ir_i)_y \right], \]  

\[ (4a) \]

\[ qi_t = qi_{xx} + 3uqi_x + \frac{3}{2} q_i \partial^{-1}u_y + \frac{3}{2} q_i \sum_{j=1}^{N} q_j r_j + \frac{3}{2} u_x q_i, \]  

\[ (4b) \]

\[ ri_t = ri_{xx} + 3uri_x - \frac{3}{2} r_i \partial^{-1}u_y - \frac{3}{2} r_i \sum_{j=1}^{N} q_j r_j + \frac{3}{2} u_x r_i, \]  

\[ (4c) \]

where \( \partial^{-1} \) stands for the inverse of \( \partial \equiv \partial_x \).

In the beginning, the two types of SESCSs (3) and (4) were studied individually. In order to find a unified framework to study the two types of SESCSs, a systematical method was proposed by the authors on the basis of Sato’s theory [13]. This is a systematic method to generate the SESCSs, and can be used to study the case of BKP, CKP [22], q-deformed KP [10, 11], and some other cases. A generalized dressing method was also derived for these soliton hierarchy with sources, and their Wronskian solutions (including soliton solutions) were obtained [14]. Recently, a bilinear identity for the KP hierarchy with self-consistent sources (KPHwS) and their Hirota’s bilinear equations (in a simpler form) were obtained [12].

This paper presents some of our results on the SESCSs. In Section 2, the KP hierarchy is used as an illustrative example to show how to construct a soliton hierarchy with self-consistent sources on the basis of Sato’s theory. In Section 3, a dressing approach is given for the KP hierarchy with self-consistent sources (KPHwS) and its Wronskian solutions (including soliton solutions) are shown. In Section 4, the bilinear identities and tau-function for the KPHwS are given, Hirota’s bilinear form for the KP equation with sources is obtained, which is in a simpler form compared with the existing result. In Section 5, we will give a conclusion, remarks and some problems for further exploration.

2. Construction of KP hierarchy with self-consistent sources

In this section, we will use the KP hierarchy as an example to show how to construct a soliton hierarchy with self-consistent sources [13] on the basis of Sato’s theory.

It is known that there is a squared eigenfunction symmetry (or “ghost flow”) [1, 20]

\[ \partial_z L = \sum_{i=1}^{N} q_i \partial^{-1} r_i, \]  

\[ \partial_{n} L = \left[ L_{n+}^{\ast}(q_i), \right], \]  

\[ \partial_{n} r_i = -(L_{n+}^{\ast})^\ast(r_i), \quad i = 1, \ldots, N, \]  

\[ (5a) \]

\[ (5b) \]

\[ (5c) \]

to the original KP hierarchy

\[ \partial_{n} L = [B_n, L], \quad B_n = L_{n+}^{\ast}, \]  

\[ (5d) \]

where \( L = \partial + \sum_{i=1}^{\infty} u_i \partial^{-i} \), and for a pseudo-differential operator \( P = \sum_{i=-\infty}^{n} p_i \partial^i \), we define

\[ P_+ = \sum_{i=0}^{n} p_i \partial^i, \quad P_+ = \sum_{i=-\infty}^{n} (-\partial)^i p_i. \]  

The idea of generating the KP hierarchy with self-consistent
sources (KPHwS) is to modify a specific flow (say \( t_k \)-flow) by the squared eigenfunction symmetry to be a new flow (denoted by \( \bar{t}_k \)-flow) as

\[
\partial_{\bar{t}_k} L = [L_k^b + \sum_{i=1}^{N} q_i \partial^{-1} r_i, L],
\]

\[
\partial_{t_n} L = [L_k^n, L], \quad (n \neq k)
\]

\[
\partial_{t_n} q_i = L_k^n(q_i),
\]

\[
\partial_{t_n} r_i = -(L_k^n)^*(r_i), \quad i = 1, \ldots, N.
\]

It can be shown that the \( \bar{t}_k \)-flow commutes with the other \( t_n \)-flow (\( n \neq k \)) which gives the KP hierarchy with self-consistent sources (KPHwS) [13].

**Proposition 1.** (see [13]) The community of the \( \bar{t}_k \)-flow and the \( t_n \)-flow (\( n \neq k \)) in (6) give rise to the following KP hierarchy with self-consistent sources (KPHwS)

\[
B_{n,\bar{t}_k} - (B_k + \sum_{i=1}^{N} q_i \partial^{-1} r_i)_{t_n} + [B_n, B_k + \sum_{i=1}^{N} q_i \partial^{-1} r_i] = 0
\]

\[
q_{i,t_n} = B_n(q_i),
\]

\[
r_{i,t_n} = -B_n^*(r_i), \quad i = 1, \ldots, N.
\]

For example (see [13]), the system (7) with \( n = 2 \) and \( k = 3 \) gives the KPwS-I (3) with \( y \equiv t_2, \ t \equiv \bar{t}_k, \ u \equiv u_1 \), and the system (7) with \( n = 3 \) and \( k = 2 \) gives the KPwS-II (4) with \( y \equiv \bar{t}_k, \ t \equiv t_3, \ u \equiv u_1 \).

In fact, the two types of reductions on the KPHwS (7) give two types of \((1+1)\)-dimensional soliton hierarchy with self-consistent sources (see [13]), i.e., the \( k \)-constrained KP hierarchy and the Gelfand–Dickey hierarchy with sources, which include two types of KdV equations with sources and two types of Boussinesq equations with sources.

3. Dressing approach and Wronskian solutions for the KP hierarchy with sources (7)

Here we denote the Wronskian determinant as

\[
\text{Wr}(h_1, \ldots, h_N) = \begin{vmatrix} h_1 & h_2 & \ldots & h_N \\ h_1' & h_2' & \ldots & h_N' \\ \vdots & \vdots & \ddots & \vdots \\ h_1^{(N-1)} & h_2^{(N-1)} & \ldots & h_N^{(N-1)} \end{vmatrix}
\]

Then by modifying the dressing approach for the original KP hierarchy, we can get a dressing approach for the KP hierarchy with self-consistent sources as the following [14]:

**Proposition 2.** (see [14]) Let \( W, q_i \) and \( r_i \) be defined as

\[
W = \frac{\text{Wr}(h_1, \ldots, h_N, \partial)}{\text{Wr}(h_1, \ldots, h_N)} = \frac{1}{\text{Wr}(h_1, \ldots, h_N)} \begin{vmatrix} h_1 & h_2 & \ldots & h_N & 1 \\ h_1' & h_2' & \ldots & h_N' & \partial \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ h_1^{(N)} & h_2^{(N)} & \ldots & h_N^{(N)} & \partial^N \end{vmatrix}
\]
The bilinear identity plays an important role in the proof of existence for the KP hierarchy with self-consistent sources (7). The key point to this important discovery is a bilinear residue identity for wave functions called bilinear identities for the KP hierarchy with self-consistent sources (8).

\[ q_i = -\alpha_i \bar{\tau}_k W(g_i), \quad r_i = (-1)^{i-1} \frac{\text{Wr}(h_1, \ldots, h_i, h_{i+1}, \ldots, h_N)}{\text{Wr}(h_1, \ldots, h_N)}, \quad i = 1, \ldots, N \]  

(8b)

\[ h_i = f_i + \alpha_i (\bar{\tau}_k g_i), \quad i = 1, \ldots, N; \]  

(8c)

\[ \partial_{x_i} f_i = \partial^\alpha(f_i), \quad \partial_{\bar{\tau}_k} f_i = \partial^\mu(f_i), \quad i = 1, \ldots, N; \]  

(8d)

\[ \partial_{x_i} g_i = \partial^\alpha(g_i), \quad \partial_{\bar{\tau}_k} g_i = \partial^\mu(g_i); \]  

(8e)

where the \( \alpha_i \)'s are arbitrary differentiable function of \( \bar{\tau}_k \), \( \text{Wr}(h_1, \ldots, h_N, \partial) \) is understood as an expansion with respect to its last column, in which all sub-determinants are collected on the left of the differential symbols, then \( L = W \hat{\partial} W^{-1} \), \( q_i \) and \( r_i \) satisfy the KP hierarchy with self-consistent sources (7).

For example, the one-soliton solution for the KP equation with a second type of self-consistent sources (4) with \( N = 1 \) can be obtained by the dressing approach (Proposition 2)

\[ u = \frac{(\lambda_1 - \mu_1)^2}{4} \text{sech}^2(\Omega_1), \]  

(9a)

\[ q_1 = \sqrt{\Omega_1} \exp(\frac{\lambda_1 + \mu_1}{2}) \text{sech}(\Omega_1), \]  

(9b)

\[ r_1 = \frac{1}{2\sqrt{\Omega_1}} e^{-\frac{\lambda_1 + \mu_1}{2}} \text{sech}(\Omega_1), \]  

(9c)

where \( \Omega_1 = \frac{\lambda_1 - \mu_1}{2} - \frac{1}{2} \ln(\alpha_i) \), \( \exp(\lambda_1 x + \lambda_1^2 y + \lambda_1^3 t) \equiv e^{x'}, \exp(\mu_1 x + \mu_1^2 y + \mu_1^3 t) \equiv e^{y'}, \lambda_1 \) and \( \mu_1 \) are different parameters (see [14]).

In [14], a gauge transformation between the KP hierarchy with sources and the mKP hierarchy with sources is constructed, and a Wronskian solution (including soliton solutions) for the mKP hierarchy with sources is also obtained with the help of dressing approach (Proposition 2) for the KP hierarchy with sources.

4. The bilinear identities and Hirota’s bilinear form for the KP hierarchy with sources (7)
The Sato theory is of fundamental importance in the study of integrable systems (see [3] and references therein). It reveals the infinite dimensional Grassmannian structure of the space of \( \tau \)-functions, where the \( \tau \)-functions are solutions of Hirota’s bilinear form of the KP hierarchy. The key point to this important discovery is a bilinear residue identity for wave functions called bilinear identity. Bilinear identity plays an important role in the proof of existence for \( \tau \)-functions. It also serves as the generating function of Hirota’s bilinear equations for the KP hierarchy [2, 15, 21].

With the help of an auxiliary parameter “z” corresponding to the “ghost flow”, we can find the bilinear identities for the KP hierarchy with self-consistent source (7).

Proposition 3. (see [12]) The bilinear identity for the KP hierarchy with self-consistent sources (7) with \( N = 1 \) is given by the following sets of residue identities with auxiliary variable “z”:

\[ \text{Res}_\lambda w(z - \bar{\tau}_k, t, \lambda) \cdot w^*(z - \bar{\tau}_k, t', \lambda) = 0, \]  

(10a)

\[ \text{Res}_\lambda w(z - \bar{\tau}_k, t, \lambda) \cdot w^*(z - \bar{\tau}_k, t', \lambda) = q(z - \bar{\tau}_k, t)r(z - \bar{\tau}_k, t'), \]  

(10b)

\[ \text{Res}_\lambda w(z - \bar{\tau}_k, t, \lambda) \cdot \partial^{-1}(q(z - \bar{\tau}_k, t')w^*(z - \bar{\tau}_k, t', \lambda)) = -q(z - \bar{\tau}_k, t), \]  

(10c)

\[ \text{Res}_\lambda \partial^{-1}(r(z - \bar{\tau}_k, t)w(z - \bar{\tau}_k, t, \lambda)) \cdot w^*(z - \bar{\tau}_k, t', \lambda) = r(z - \bar{\tau}_k, t'), \]  

(10d)
Then, similar to [2], we have the following results: 

\[ \xi(t, \lambda) = \tilde{t}_k \lambda^k + \sum_{i \neq k} t_i \lambda^i, \quad t = (t_1, t_2, \cdots, t_{k-1}, \tilde{t}_k, t_{k+1}, \cdots), \quad t' = (t'_1, t'_2, \cdots, t'_{k-1}, \tilde{t}'_k, t'_{k+1}, \cdots), \]

\[ w(z, t, \lambda) = W e^{\tilde{t}(t, \lambda)} = (W^*)^{-1} e^{-\xi(t, \lambda)}. \]

**Remark 4.1.** In this section, we will only show the formulae on the KP hierarchy with self-consistent sources (7) with \( N = 1, q \equiv q_1 \) and \( r \equiv r_1 \). The same idea can be used to study the case of \( N > 1 \).

The existence of the \( \tau \)-function for the original bilinear identity of the KP hierarchy is proved in [3]. In our case, the wave functions \( w(z - \tilde{t}_k, t, \lambda) \) and \( w^*(z - \tilde{t}_k, t, \lambda) \) satisfy exactly the same bilinear identity (10a) as the original KP case if one considers \( z \) as an additional parameter. So it is reasonable to assume the existence of a \( \tau \)-function and make the following ansatz:

\[ w(z - \tilde{t}_k, t, \lambda) = \frac{\tau(z - \tilde{t}_k + \frac{1}{k\lambda^k}, t - [\lambda])}{\tau(z - \tilde{t}_k, t)} \cdot \exp \xi(t, \lambda), \]

(11a)

\[ w^*(z - \tilde{t}_k, t, \lambda) = \frac{\tau(z - \tilde{t}_k - \frac{1}{k\lambda^k}, t + [\lambda])}{\tau(z - \tilde{t}_k, t)} \cdot \exp(-\xi(t, \lambda)), \]

(11b)

where \( [\lambda] = (\frac{1}{\lambda}, \frac{1}{2\lambda^2}, \frac{1}{3\lambda^3}, \cdots) \). According to [2], we should make further assumptions:

\[ q(z, t) = \frac{\sigma(z, t)}{\tau(z, t)}, \quad r(z, t) = \frac{\rho(z, t)}{\tau(z, t)}. \]

(11c)

Then, similar to [2], we have the following results:

\[ \partial^{-1}(r(z - \tilde{t}_k, t)w(z - \tilde{t}_k, t, \lambda) = \frac{\rho(z - \tilde{t}_k + \frac{1}{k\lambda^k}, t - [\lambda])}{\lambda \tau(z - \tilde{t}_k, t)} e^{\xi(t, \lambda)}, \]

(12a)

\[ \partial^{-1}(q(z - \tilde{t}_k, t)w^*(z - \tilde{t}_k, t, \lambda) = \frac{-\sigma(z - \tilde{t}_k - \frac{1}{k\lambda^k}, t + [\lambda])}{\lambda \tau(z - \tilde{t}_k, t)} e^{-\xi(t, \lambda)}. \]

(12b)

After substituting (11) into (10) and some calculation, we get the following systems with Hirota bilinear derivatives \( \bar{D} \) and \( D_i \)’s:

\[ \sum_{i \geq 0} p_i(2y) p_{i+1}(-\bar{D}) \exp \left( \sum_{j \geq 1} y_j D_j \right) \bar{\bar{\tau}}(z, t) \cdot \bar{\bar{\tau}}(z, t) = 0, \]

(13a)

\[ \sum_{i \geq 0} p_i(2y) p_{i+1}(-\bar{D}) \exp \left( \sum_{j \geq 1} y_j D_j \right) \bar{\bar{\tau}}_z(z, t) \cdot \bar{\bar{\tau}}(z, t) \]

\[ - \sum_{i \geq 0} p_i(2y) \left( \partial_z \log \bar{\bar{\tau}}(z, t + y) \right) p_{i+1}(-\bar{D}) \bar{\bar{\tau}}(z, t + y) \cdot \bar{\bar{\tau}}(z, t - y) = \exp \left( \sum_{j \geq 1} y_j D_j \right) \bar{\sigma}(z, t) \cdot \bar{\rho}(z, t) \]

(13b)

\[ \sum_{i \geq 0} p_i(2y) p_{i}(-\bar{D}) \exp \left( \sum_{j \geq 1} y_j D_j \right) \bar{\bar{\tau}}(z, t) \cdot \bar{\sigma}(z, t) = \exp \left( \sum_{j \geq 1} y_j D_j \right) \bar{\sigma}(z, t) \cdot \bar{\tau}(z, t), \]

(13c)

\[ \sum_{i \geq 0} p_i(2y) p_{i}(-\bar{D}) \exp \left( \sum_{j \geq 1} y_j D_j \right) \bar{\bar{\rho}}(z, t) \cdot \bar{\tau}(z, t) = \exp \left( \sum_{j \geq 1} y_j D_j \right) \bar{\tau}(z, t) \cdot \bar{\rho}(z, t), \]

(13d)
where the bar $\bar{\cdot}$ over a function $f(z, t)$ is defined as $\bar{f}(z, t) \equiv f(z - \bar{t}_k, t)$, e.g., $\bar{\tau}(z, t - [\lambda]) \equiv \tau(z - (\bar{t}_k - \frac{1}{\lambda^k}), t - [\lambda])$, $\bar{\tau}(z, t' + [\lambda]) \equiv \tau(z - (\bar{t}_k - \frac{1}{\lambda^{k'}}), t' + [\lambda])$, $y = (y_1, y_2, \cdots)$, $\bar{D} = (D_1, \frac{1}{2}D_2, \frac{1}{3}D_3, \cdots)$, $D_i$ is the well-known Hirota bilinear derivative $D_i f \cdot g = f_i g - fg_i$, and $p_i(t)$ is the $i$-th Schur polynomial, whose generating function is given by

$$\exp \sum_{i=1}^{\infty} y_i \lambda^i = \sum_{i=0}^{\infty} p_i(y)\lambda^i.$$ 

**Example 1** (First type of KP equation with a source (KPwS-I) [7, 13, 16, 18], i.e., the KPHwS (7) for $n = 2$ and $k = 3$). The Hirota equations for the KPwS-I (3) can be obtained as

$$D_x \tau_x \cdot \tau + \sigma \rho = 0, \quad \text{by (13b) with } y_1 = 0,$$

$$(D^2_x + 3D^2_{t_2} - 4D_x(D_{t_3} - D_x))\tau \cdot \tau = 0, \quad \text{by (13a) in } y_3,$$

$$(D_{t_2} + D^2_x)\tau \cdot \sigma = 0, \quad \text{by (13c) in } y_2,$$

$$(D_{t_2} + D^2_x)\rho \cdot \tau = 0, \quad \text{by (13d) in } y_2,$$ 

where $D_z$ is Hirota’s derivative, i.e., $D_z f(z) \cdot g(z) = f_z g - fg_z$. Note that from the definition of $\bar{\tau}$, we know that $D_\xi \bar{\tau} \cdot \bar{\tau} = (D_\xi \bar{D}_z - D_z)\bar{\tau} \cdot \tau$, which interprets the appearance of this term in the second equation.

**Example 2** (Second type of KP with a source (KPwS-II) [7, 13, 16, 18], i.e., the KPHwS (7) for $n = 3$ and $k = 2$). The Hirota equations for the KPwS-II (4) can be obtained as

$$D_x \tau_x \cdot \tau + \sigma \rho = 0, \quad \text{by (13b) with } y_1 = 0,$$

$$(D^2_x + 3(D_{t_2} - D_z^2) - 4D_x(D_{t_3} - D_z))\tau \cdot \tau = 0, \quad \text{by (13a) in } y_3,$$

$$(D_{t_2} - D_z) + D^2_x)\tau \cdot \sigma = 0, \quad \text{by (13c) in } y_2,$$

$$(D_{t_2} - D_z) + D^2_x)\rho \cdot \tau = 0, \quad \text{by (13d) in } y_2,$$

$$(4D_{t_3} - D^2_z + 3D_x(D_{t_2} - D_z))\tau \cdot \sigma = 0, \quad \text{by (13c) in } y_3,$$

$$(4D_{t_3} - D^2_z + 3D_x(D_{t_2} - D_z))\rho \cdot \tau = 0, \quad \text{by (13d) in } y_3.$$ 

It seems that the Hirota bilinear equations (15) obtained here for KPwS-II are simpler than the results by Hu and Wang [7].

5. Conclusion and discussions

In this paper, we presented some results on the soliton hierarchy with self-consistent sources, especially on the method based on the symmetry of the soliton hierarchy. The Kadomtsev–Petviashvili (KP) hierarchy is used as an illustrative example to show the method to construct the soliton hierarchy with self-consistent sources (SHSCSs) and some properties of the SHSCSs, such as dressing approach, Wronskian solutions (including soliton solutions), bilinear identities and tau function.

There are some important applications of the bilinear identities for the KP hierarchy with self-consistent sources (KPHwS). As we know, the quasi-periodic solutions for the KP hierarchy can be constructed by using a method in algebraic geometry, where the construction of wave functions (or Baker–Akhiezer functions as in quasi-periodic cases) are intimately related to the bilinear identities, Riemann surfaces and divisors on it. It is very interesting to consider the quasi-periodic solutions for the KPHwS (7) when bilinear identities have been obtained in this paper. Another interesting problem is to consider the bilinear identities for other soliton hierarchies with sources, such as BKP, 2D Toda and discrete KP, etc. We will investigate these problems in the future.
Acknowledgments

The authors are grateful for the referee’s valuable suggestions to our manuscript. This work is supported by the National Natural Science Foundation of China (11171175, 11201477). XL is also supported by the Chinese Universities Scientific Fund (2011JS041).

References

[1] Aratyn H, Nissimov E and Pacheva S 1998 Method of squared eigenfunction potentials in integrable hierarchies of KP type Commun. Math. Phys. 193 493–525 (arXiv:solv-int/9701017)
[2] Cheng Y and Zhang Y J 1994 Bilinear equations for the constrained KP hierarchy Inverse Probl. 10 L11–7
[3] Date E, Kashiwara M, Jimbo M and Miwa T 1983 Transformation groups for soliton equations Nonlinear Integrable Systems – Classical Theory and Quantum Theory ed M Jimbo, T Miwa and M Sato (Singapore: World Scientific) pp 39–119
[4] Doktorov E V and Shchesnovich V S 1995 Nonlinear evolutions with singular dispersion laws associated with a quadratic bundle Phys. Lett. A 207 153–8
[5] Grinevich P G and Taimanov I A 2008 Spectral conservation laws for periodic nonlinear equations of the Melnikov type Amer. Math. Soc. Transl. 224(2) 125–38 (arXiv:0801.4143)
[6] Hu X B and Wang H Y 2006 Construction of dKP and BKP equations with self-consistent sources Inverse Probl. 22 1903–20
[7] Hu X B and Wang H Y 2007 New type of Kadomtsev–Petviashvili equation with self-consistent sources and its bilinear Bäcklund transformation Inverse Probl. 23 1433–44
[8] Lin R L, Zeng Y B and Ma W X 2001 Solving the KdV hierarchy with self-consistent sources by inverse scattering method Physica A 291 287–98
[9] Lin R L, Yao H S and Zeng Y B 2006 Restricted flows and the soliton equation with self-consistent sources SIGMA 2 096 (arXiv:nlin/0701003)
[10] Lin R L, Liu X J and Zeng Y B 2008 A new extended q-deformed KP hierarchy J. Nonlinear Math. Phys. 15 333–47
[11] Lin R L, Peng H and Mañas M 2010 The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons J. Phys. A: Math. Theor. 43 434022 (15pp)
[12] Lin R L, Liu X J and Zeng Y B 2013 Bilinear identities and Hirota’s bilinear forms for Kadomtsev–Petviashvili hierarchy J. Nonlinear Math. Phys. 20 214–28
[13] Liu X J, Zeng Y B and Lin R L 2008 A new extended KP hierarchy Phys. Lett. A 372 3819–23 (arXiv:0710.4015)
[14] Liu X J, Lin R L, Jin B and Zeng Y B 2009 A generalized dressing approach for solving the extended KP and the extended mKP hierarchy J. Math. Phys. 50 053506 (arXiv:0905.1402)
[15] Loris I and Willox R 1997 Bilinear form and solutions of the k-constrained Kadomtsev–Petviashvili hierarchy Inverse Probl. 13 411–20
[16] Mel’nikov V K 1983 On Equations for wave interactions Lett. Math. Phys. 7 129–36
[17] Mel’nikov V K 1984 Some new nonlinear evolution equations integrable by the inverse problem method Math. USSR SB+ 49 461–89
[18] Mel’nikov V K 1987 A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the x-y plane Commun. Math. Phys. 112 639–52
[19] Mel’nikov V K 1989 Capture and confinement of solitons in nonlinear integrable systems Commun. Math. Phys. 120 451–68
[20] Oevel W and Schief W 1994 Squared eigenfunctions of the (modified) KP hierarchy and scattering problems of Loewner type Rev. Math. Phys. 6 1301–38
[21] Shen H F and Tu M H 2011 On the constrained B-type Kadomtsev–Petviashvili hierarchy: Hirota bilinear equations and Virasoro symmetry J. Math. Phys. 52 032704
[22] Wu H X, Zeng Y B and Fan T Y 2008 A new multicomponent CKP hierarchy and solutions J. Math. Phys. 49 093510
[23] Zeng Y B, Ma W X and Lin R L 2000 Integration of the soliton hierarchy with self-consistent sources J. Math. Phys. 41 5453–89
[24] Zeng Y B and Li Y S 1993 The deduction of the Lax representation for constrained flows from the adjoint representation J. Phys. A: Math. Gen. 26 L273–8
[25] Zhang D J and Chen D Y 2003 The N-soliton solutions of the sine-Gordon equation with self-consistent sources Physica A 321 467–81