Dynamic Modeling of Composite Boring Bars Considering Different Boundary Conditions

Ren Yongsheng, Feng Wenliang and Ma Bole
School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590
renys@sdust.edu.cn

Abstract. Boring bar for deep hole cutting is often more prone to flutter problems. The traditional boring bar is generally made of metal material. There is a close relationship between the dynamic characteristics of the boring bar and the tightness of the fixed end. In this paper, based on Euler-Bernoulli beam theory, the distributed parametric differential equations of composite boring bar are presented. The dynamic characteristics of composite boring bar with three different conditions including fixed-free, pinned-pinned-free and spring-spring-free are investigated. The corresponding frequency equations are given. The natural frequency and dynamic stiffness of the composite boring bar are obtained by numerical calculation. The influences of the supporting conditions and the ply angle are studied. The results show that the supporting conditions, layer angle, support spring stiffness and support spacing have an important effect on the dynamic characteristics of the composite boring bar.

1. Introduction
The internal surface operation of machine components is one of the most chatter-prone metal cutting operations. The reason is that the slender boring bars are usually required in cutting processes. A slender boring bar is generally the weakest link in a machine tool system. High levels of boring bar chatter result in poor surface finish of workpiece, excessive tool wear and tool break. Thus, boring bar chatter has a negative impact on productivity. The chatter is a self-excited vibration which involves low-order bending modes of the boring bar and is dominated by the bending mode in the cutting speed direction. High speed cutting operations using steel boring bars are often hindered by the chatter vibration of boring bars due to the low dynamic stiffness and low natural frequencies of steel boring bars.

Due to its high strength, stiffness, light weight and fatigue resistance, composite materials can be used to enhance the dynamic stiffness and fundamental natural frequency of boring bars. Nagano et al. [1] presented a carbon fiber/epoxy composite boring bar and investigated the effects of steel core shape on the bending stiffness and the natural frequency of the composite boring bars by FEM analysis.

Lee et al. [2-3] designed and manufactured a composite boring bar. The dynamic characteristics of the composite boring bar were experimentally determined with respect to material types and dimensions of the boring bar through vibration tests. A number of analysis models and methods concerning the cutting processes with boring bar and the behavior of the dynamic system has been developed.

Zhang et al. [4] derived analysis model from a two-degree-of-freedom model of a clamped boring bar and four cutting force components. Rao et al. [5] produced a continuous system model of boring dynamics based on a dynamic boring force model, including variation of chip cross-sectional area, and
a uniform Euler–Bernoulli cantilever beam. Andren et al. [6] used time series approach to investigate boring bar chatter and the results were compared with an analytical Euler–Bernoulli model. Scheuer et al. [7] investigated the dynamic properties of a boring bar with different clamping housings based on experimental modal analysis. Their study indicates that different clamping conditions using a clamping housing with clamp screws may affect the fundamental bar bending modes slightly. As the above review indicates, it appears like the most of the continuous system model of boring bar is aimed at conventional metal boring bar. When it comes to analytical investigations concerning the clamping properties influence on the dynamic properties of a clamped composite boring bar, it appears that little work has been done.

In this paper, the dynamical behaviors of the anisotropic composite boring bar with different clamping conditions are studied. Firstly, the Euler–Bernoulli beam theory for the modeling of a composite boring bar with clamped-free boundary conditions is used. To take into account the flexibility of clamping, two-span composite boring bar models with the boundary conditions of pinned-pinned-free and spring-spring-free are studied.

The natural frequency and dynamic stiffness of the composite boring bar are obtained by numerical calculation. The influences of the boundary conditions, the ply angle and support spacing are studied. The results show that the boundary conditions, ply angle, spring stiffness and support spacing have an important effect on the dynamic characteristics of the composite boring bar.

2. Dynamical model of composite boring bar

2.1. Motion equations and clamped conditions

The clamped composite boring bar can be modeled by an Euler-Bernoulli model with clamped-free boundary conditions(C-F), which consists of a homogeneous single span beam with constant cross-sectional area A and constant cross-sectional moment of inertia I_x, see Figure 1.

The differential equation describing the transversal vibration of the slender composite boring bar which ignores the effects of shear deformation and rotary inertia is given by

$$
\rho A \frac{\partial^2 w(z,t)}{\partial t^2} + \frac{\partial^2}{\partial z^2}
\left[\frac{EI_x}{12} \frac{\partial^2 w(z,t)}{\partial t^2} \right] = f(z,t)
$$

where EI_x is flexural stiffness and ρA is mass per unit length of the composite boring bar and $f(z,t)$ is the external force per unit length.

For composite boring bar, EI_x and ρA can be obtained as follows

$$
EI_x = \frac{\pi}{4} \bar{Q}_{11} \left(r_{N+1}^4 - r_1^4 \right)
$$

$$
\rho A = \pi \rho \left(r_{N+1}^2 - r_1^2 \right)
$$

where, \bar{Q}_{11} is the off-axial stiffness coefficient of composite boring bar, r_1 and r_N are the inner and outer radii of the layered composite boring bar.

In reality, the composite boring bar may be clamped with either two screws on the top and two on the underside. If the screw is assumed to be a deformable elastic body, and only its tension rigidity is considered, then elastic supports boundary conditions can be yielded. The model with the elastic support of two springs (S-S-F) is presented in Figure 2. If the clamping housing and the screw are seen to be rigid body, then the pinned boundary conditions can be yielded which assumes an infinitely stiff spring. In fact, if we let the spring coefficient k_f go to infinity, we will obtain the model with the pinned-pinned-free boundary conditions (P-P-F), see Figure 3.

The boundary conditions model corresponding to the C-F, S-S-F and P-P-F can be expressed as

A. The boundary conditions of C-F
\[w(z,t)_{|z=0} = 0, \frac{\partial w(z,t)}{\partial z}_{|z=0} = 0 \]
\[EI_s \frac{\partial^2 w(z,t)}{\partial z^2}_{|z=0} = 0, \frac{\partial}{\partial z} \left[EI_s \frac{\partial^2 w(z,t)}{\partial z^2} \right]_{|z=0} = 0 \]
\[EI_s \frac{\partial^2 w(z,t)}{\partial z^2} = 0, EI_s \frac{\partial^2 w(z,t)}{\partial z^2} = 0 \]

B. The boundary conditions of P-P-F
\[w(z,t)_{|z=0} = 0, EI_s \frac{\partial^2 w(z,t)}{\partial z^2} = 0 \]
\[w(z,t)_{|z=l_c} = 0, EI_s \frac{\partial^2 w(z,t)}{\partial z^2} = 0 \]

C. The boundary conditions of S-S-F
\[EI_s \frac{\partial^3 w(z,t)}{\partial z^3} = -K_T w(z,t)_{|z=0} \]
\[EI_s \frac{\partial^3 w(z,t)}{\partial z^3} = \left[EI_s \frac{\partial^3 w(z,t)}{\partial z^3} - K_T w(z,t) \right]_{|z=l_c} \]

where, \(w(z,t) \) is the transverse displacement for part of the boring bar with the length \(l_c \).
\[EI_s \frac{\partial^2 w(z,t)}{\partial z^2} = 0, \frac{\partial}{\partial z} \left[EI_s \frac{\partial^2 w(z,t)}{\partial z^2} \right]_{|z=l_c} = 0 \]

Figure 1. Composite boring bar with fixed-free boundary condition.

Figure 2. Composite boring bar with spring-spring-free boundary condition.
2.2. Solution method of natural frequency

2.2.1. C-F composite boring bar
In order to calculate the natural frequency of composite boring bar from Eq. (1), we let \(f(z,t) = 0 \). The solution of Eq. (1) can be obtained by using the separation-of-variables procedure.

The frequency equation for the composite boring bar with C-F boundary conditions is

\[
\cos \beta l \cosh \beta l = -1
\]

(11)

There are solutions for \(\beta_n l \), \(n=1,2,3... \), to Eq. (11). The corresponding natural frequencies \(f_n \) are given by

\[
f_n = \left(\frac{2\pi f_n}{\rho A} \right)^{1/4} \frac{\rho A}{EI} \]

(12)

2.2.2. P-P-F composite boring bar
By using Eq. (1) and boundary conditions (6) and (7), the frequency equation for the composite boring bar with P-P-F boundary conditions is derived as follows \[9\]

\[
2\sin(\beta l_c)\sinh(\beta l_c) + 2\sin(\beta l_o)\sinh(\beta l_o)\cos(\beta l)\cosh(\beta l) - 2\sin(\beta l_l)\sinh(\beta l_l)\sin(\beta l)\cosh(\beta l) + 2\sin(\beta l_c)\sinh(\beta l_c)\cos(\beta l)\cosh(\beta l) + \sin(\beta l_l)\sinh(\beta l_l)\sin(\beta l)\cosh(\beta l) - \cos(\beta l_c)\sinh(\beta l_c)\cos(\beta l)\cosh(\beta l) = 0
\]

(13)

By solving the Eq. (13), \(\beta_n l_c \) and \(\beta_n l_l \), \(n=1,2,... \), can be obtained. Thus, the natural frequencies are yielded based on \(\beta_n l_c \) and \(\beta_n l_l \).

2.2.3. S-S-F model
Based on transfer matrix method \[10\], the natural frequencies for the composite boring bar with S-S-F boundary conditions can be solved.

By means of the separation-of-variables procedure and considering the compatibility requirement including boundary conditions (8), (9) and (10), the frequency equation for the composite boring bar with S-S-F boundary conditions can be expressed as

\[
\begin{bmatrix}
0 \\
0
\end{bmatrix} = \begin{bmatrix}
r_{11} + r_{13} & r_{12} + r_{14} & A_l \\
r_{21} + r_{23} & r_{22} + r_{24}
\end{bmatrix} \begin{bmatrix}
A_l \\
B_l
\end{bmatrix}
\]

(14)

where, \(r_{ij} \) is element of the following 2\(\times \)4 matrix

\[
T_{2\times4} U_{2\times4} \cdots U_{2\times4} = \begin{bmatrix}
r_{11} & r_{12} & r_{13} & r_{14} \\
r_{21} & r_{22} & r_{23} & r_{24}
\end{bmatrix}
\]

(15)
\(U'_{4:4} \) \((i=1,2,\ldots,k)\) are \(4 \times 4\) transfer matrix, its elements may be written as

\[
u_{11} = \left(\cos(\eta L, \beta) + \kappa_i \lambda_i^2 \cos(\eta L, \beta) \right) / 2
\]

\[
u_{12} = \left(\sin(\eta L, \beta) + \kappa_i \lambda_i^2 \sin(\eta L, \beta) \right) / 2
\]

\[
u_{13} = \left(\cosh(\eta L, \beta) - \kappa_i \lambda_i^2 \cosh(\eta L, \beta) \right) / 2
\]

\[
u_{14} = \left(\sinh(\eta L, \beta) - \kappa_i \lambda_i^2 \sinh(\eta L, \beta) \right) / 2
\]

\[
u_{21} = \left(\frac{S_i \cos(\eta L, \beta)}{(EI)_{i+1}(\eta_{i+1})} - (\lambda_i + \kappa_i \lambda_i) \sin(\eta L, \beta) \right) / 2
\]

\[
u_{22} = \left(\frac{S_i \sin(\eta L, \beta)}{(EI)_{i+1}(\eta_{i+1})} + (\lambda_i + \kappa_i \lambda_i) \cos(\eta L, \beta) \right) / 2
\]

\[
u_{23} = \left(\frac{S_i \cosh(\eta L, \beta)}{(EI)_{i+1}(\eta_{i+1})} + (\lambda_i - \kappa_i \lambda_i) \sinh(\eta L, \beta) \right) / 2
\]

\[
u_{24} = \left(\frac{S_i \sinh(\eta L, \beta)}{(EI)_{i+1}(\eta_{i+1})} + (\lambda_i - \kappa_i \lambda_i) \cosh(\eta L, \beta) \right) / 2
\]

\[
u_{31} = \left(\cos(\eta L, \beta) - \kappa_i \lambda_i^2 \cos(\eta L, \beta) \right) / 2
\]

\[
u_{32} = \left(\sin(\eta L, \beta) - \kappa_i \lambda_i^2 \sin(\eta L, \beta) \right) / 2
\]

\[
u_{33} = \left(\cosh(\eta L, \beta) + \kappa_i \lambda_i^2 \cosh(\eta L, \beta) \right) / 2
\]

\[
u_{34} = \left(\sinh(\eta L, \beta) + \kappa_i \lambda_i^2 \sinh(\eta L, \beta) \right) / 2
\]

\[
u_{41} = \left(\frac{S_i \cos(\eta L, \beta)}{(EI)_{i+1}(\eta_{i+1})} - (\lambda_i - \kappa_i \lambda_i) \sin(\eta L, \beta) \right) / 2
\]

\[
u_{42} = \left(\frac{S_i \sin(\eta L, \beta)}{(EI)_{i+1}(\eta_{i+1})} + (\lambda_i - \kappa_i \lambda_i) \cos(\eta L, \beta) \right) / 2
\]

\[
u_{43} = \left(\frac{S_i \cosh(\eta L, \beta)}{(EI)_{i+1}(\eta_{i+1})} + (\lambda_i + \kappa_i \lambda_i) \sinh(\eta L, \beta) \right) / 2
\]

\[
u_{44} = \left(\frac{S_i \sinh(\eta L, \beta)}{(EI)_{i+1}(\eta_{i+1})} + (\lambda_i + \kappa_i \lambda_i) \cosh(\eta L, \beta) \right) / 2
\]

where \(\kappa_i = \frac{(EI)_{i+1}}{(EI)_{i+1}} \), \(\lambda_i = \frac{\eta_i}{\eta_{i+1}} \)

The matrix \(T_{2 \times 4} \) in Eq.(14) is given as

\[
T_{2 \times 4} = \begin{bmatrix}
-c_{k+1} & -s_{k+1} & c_{k+1} & s_{k+1} \\
-s_{k+1} & -c_{k+1} & s_{k+1} & c_{k+1}
\end{bmatrix}
\]

where
\[c_{k+1} = \cos(\eta_{k+1} \lambda L_{k+1}), \quad s_{k+1} = \sin(\eta_{k+1} \lambda L_{k+1}), \]
\[ch_{k+1} = \cosh(\eta_{k+1} \lambda L_{k+1}), \quad sh_{k+1} = \sinh(\eta_{k+1} \lambda L_{k+1}) \ quad (18) \]

By solving Eq. (14), \(\lambda_n \) is obtained, thus the natural frequencies for the composite boring bar with S-S-F boundary conditions can be found.

2.3. Dynamic stiffness

It is found that the maximum depth of cut of a boring bar is proportional to the dynamical stiffness of the boring bar\(^2\). In order to assess the stability of composite boring bar in boring operation and influence of clamped conditions, it is necessary to calculated the dynamical stiffness of the composite boring bar.

The dynamic stiffness \(D \) can be defined as the product of the static bending stiffness \(K \) and damping ratio \(\xi \)\(^3\), which is

\[D = \xi K \quad (19) \]

The static bending stiffness \(K \) are defined by the quotient of a concentrated force at \(z = L \) and the resulting static tip displacement. For the problem at hand \(\xi \) is taken to be 0.015 for composite boring bar\(^1\).

The dynamic stiffness \(D \) for the composite boring bar with different boundary conditions are

C-F composite boring bar

\[D = K \xi = \frac{3EI_s}{\ell^3} \xi \quad (20) \]

P-P-F composite boring bar

\[D = \frac{3EI_s}{\ell^3 \left(l_e + 1 \right)} \xi \quad (21) \]

S-S-F composite boring bar

\[D = K \xi \quad (22) \]

where

\[K = \frac{k_{11}k_{22}}{k_{11} + k_{22}} \quad (23) \]

\(k_{11} \) is the equivalent static bending stiffness of an infinitely composite boring bar with two spring supports. \(k_{22} \) is the equivalent static bending stiffness of composite boring bar with P-P-F clamped conditions.

\(k_{11} \) and \(k_{22} \) can be derived as following, respectively

\[k_{11} = \frac{l_e^2}{(l^2 + l_e)^2 - l_e^2} k_T \quad (24) \]
\[k_{22} = \frac{3EI_s}{\ell^3 \left(l + l_e \right)} \quad (25) \]

It is obvious that if we let \(K_T = \infty \), then \(k_{11} = \infty \) and \(K = k_{22} \), the dynamic stiffness of the S-S-F composite boring bar will reduce the dynamic stiffness of the P-P-F composite boring bar.

3. Results

The mechanical properties of composite boring bar used in this work are shown in Table 1. The boring bar geometrical characteristics are the external radius \(R=10\text{mm} \), section thickness \(h=5\text{mm} \), lamination [\(\theta \)]\(^{30}\).
Table.1 carbon/epoxy mechanical properties $^{[12]}$

ρ (kg/m3)	E_{11} (GPa)	E_{22} (GPa)	G_{23} (GPa)	G_{12} (GPa)	ν_{12}	η_1 (%)	η_2 (%)	η_4 (%)	$\eta_5=\eta_6$ (%)
1446.2	172.7	7.2	3.76	3.76	0.3	0.45	4.22	7.05	7.05

3.1. Natural frequency

Figure 4 presents the variation of the first three natural frequencies with ply angle of the composite boring bar with different boundary conditions. The related quantities used in the numerical simulation are given as $l=0.2$m, $l_c=0.05$m, $k_T=4.881\times10^5$ N/m.

Figure 4 shows that natural frequencies increase as the fiber ply angle decreases. The composite boring bar is stiffer when fibers are directed along the boring bar axis (longitudinal moduli is higher than the transversal moduli). From Figure 4, it is also observed that when the C-F composite boring bar model is changed to the P-P-F composite boring bar model, the first natural frequency for the ply angle 0° drops by approximately 200 Hz, and approximately 600 Hz when C-F composite boring bar model is changed to the S-S-F composite boring bar model. This shows that the boundary conditions have significant influence on dynamic properties of the composite boring bar.

Figure 5 presents that the effect of the support spacing on the first three natural frequencies of the P-P-F composite boring bar ($l=0.2$m, $\theta=0^\circ$). It can be seen that natural frequencies of the P-P-F composite boring bar decrease as l_c increases.

Figure 6 presents that the effect of support spacing on the first three natural frequencies of the S-S-F composite boring bar ($l=0.2$m, $k_T=4.881\times10^7$ N/m, $\theta=0^\circ$). As can be seen from Figure 6, the spacing of spring supports l_c has same effect on the natural frequencies of the S-S-F composite boring bar as on those of P-P-F composite boring bar.
Figure 4. The first three natural frequencies vs. ply angle for the composite boring bar with different boundary conditions.

Figure 5. Effect of support spacing on the first three natural frequencies of the composite boring bar with P-P-F boundary condition.
3.2. Dynamic stiffness

Table 2 presents the dynamical characteristics of the composite boring bar with various boundary conditions \(l=0.2m, l_c=0.1m, k_T=4.881\times10^6 N/m, \theta=0^\circ \). Table 2 shows that the dynamic stiffness of S-S-F composite boring bar is largest, followed by P-P-F and S-S-F composite boring bar.

Table 3 presents the effect of ply angle on the dynamical characteristics of the composite boring bar \(k_T=4.881\times10^6 N/m, l=0.2m, l_c=0.1m \). It shows that the larger ply angle, the higher dynamic stiffness is for the composite boring bar with same clamped conditions.

Table 4 presents the effect of spring stiffness \(k_T \) on the dynamical characteristics of the S-S-F composite boring bar \(l=0.2m, l_c=0.1m, \theta=0^\circ \). It was obvious that the dynamical stiffness of the S-S-F composite boring bar increases with \(k_T \).

Tables 5 and 6 present the effect of the supports spacing \(l_c \) on the dynamical characteristics of the composite boring bar with P-P-F and S-S-F boundary conditions, respectively. The results show that the dynamic stiffness increases as \(l_c \) increases.
Table 2. Effect of boundary conditions on the dynamic characteristics of composite boring bar

Ply angle	C-F	P-P-F	S-S-F		
$\theta = 0$	ω_1 (rad/s)	ω_2 (rad/s)	ω_3 (rad/s)	D (N/m)	
$\theta = 30$	856.122	660.843	507.302	558.194	4190.388
$\theta = 60$	655.402	505.905	216.074	427.324	2862.845
$\theta = 90$	279.925	216.074	134.932	182.512	646.257

Table 3. Effect of ply angle on the dynamic characteristics of composite boring bar

Ply angle	C-F	P-P-F	S-S-F			
ω_1 (rad/s)	D (N/m)	ω_2 (rad/s)	D (N/m)	ω_3 (rad/s)	D (N/m)	
$\theta = 0$	856.122	9572.984	660.843	6381.989	3282.110	4190.388
$\theta = 30$	655.402	5610.475	505.905	4284.782	216.074	2862.845
$\theta = 60$	279.925	1023.441	216.074	682.292	134.932	646.257
$\theta = 90$	174.805	399.115	134.932	4190.388	266.070	2862.845

Table 4. Effect of spring stiffness on the dynamic characteristics of S-S-F composite boring bar

k_T	$\beta_1 l$	$\beta_2 l$	$\beta_3 l$	ω_1 (rad/s)	ω_2 (rad/s)	ω_3 (rad/s)	D (N/m)
4.881×10^5	1.495	3.852	6.454	241.898	1605.918	4508.259	1024.385
4.881×10^6	2.165	5.488	9.015	507.302	3282.110	8795.942	4190.388
4.881×10^7	2.271	5.799	9.483	558.194	3696.292	9732.903	6064.780
4.881×10^8	2.365	5.941	9.885	605.359	3802.006	10595.582	6348.785
4.881×10^9	2.426	6.118	10.241	636.990	4051.071	11353.257	6380.936

Table 5. Effect of support spacing on the dynamic characteristics of P-P-F composite boring bar

l_s (m)	ω_1 (rad/s)	ω_2 (rad/s)	ω_3 (rad/s)	D (N/m)
0.05	951.609	6170.081	17564.477	7658.387
0.1	660.843	4284.782	12197.554	6381.989
0.15	485.515	3148.001	8961.4682	6380.936

Table 6. Effect of support spacing on the dynamic characteristics of S-S-F composite boring bar

l_s (m)	ω_1 (rad/s)	ω_2 (rad/s)	ω_3 (rad/s)	D (N/m)
0.05	803.799	5241.066	14015.381	6444.922
0.1	558.194	3696.292	9732.903	6064.780
0.15	410.102	2674.013	7150.705	4717.106
3.3. Model validation

In order to validate the present model, the calculated results for the metal boring bar with S-S-F boundary conditions are compared with those obtained in Ref. [13]. This a three span boring bar with elastic support, its geometrical and material properties are \(l_1=0.035\text{m},\ l_2=0.005\text{m},\ l_3=0.215\text{m},\ \rho=7850\text{kg/m}^3,\ E=205\text{GPa} \). According to Ref.[13], the spring coefficients are \(k_T=4.881\times10^9\text{N/m} \), geometrical properties \(A=3.661\times10^{-5}\text{(m}^2)\), \(I_x=1.067\times10^{-5}\text{(m}^4)\), for the metal boring bar with four screws of size M8, and \(k_T=7.732\times10^9\text{N/m} \), geometrical properties \(A=5.799\times10^{-5}\text{(m}^2)\), \(I_x=2.676\times10^{-5}\text{(m}^4)\), for the metal boring bar with six screws of size M10. The results obtained using the present model are shown in Table 7 together with those of Ref. [13]. As can be seen from the table our results are well consistent with those in Ref. [13].

	Present	Ref. [13], analytical	Ref. [13], experimental
C-F	698.309	698.331	601.791
S-S-F (M8)	520.412	519.432	555.357
S-S-F (M10)	526.883	525.241	555.351

4. Conclusions

Based on Bernoulli-Euler beam theory, dynamical analysis has been carried out on the composite boring bar with different clamping conditions. The influences of the supporting conditions and the ply angle of composite boring bar are studied.

1) The clamped condition's model and its effect on the natural frequencies and dynamic stiffness of composite boring bar are significant. The clamped composite boring bar using clamped-free boundary conditions overestimates the natural frequencies and dynamic stiffness since it assumes rigid clamping which is not the case in reality. The dynamical model of the composite boring bar with pinned-pinned-free and spring-spring-free boundary conditions is an improvement to clamped-free composite boring bar model. These models can be used to predict the natural frequencies and dynamic stiffness with sufficient accuracy.

2) Ply angle, the supports spacing and spring stiffness affect the natural frequency and dynamic stiffness, thus affect the stability of composite boring bar during cutting. The natural frequency and dynamic stiffness decease as ply angle increases.

Acknowledgments

The research is funded by the National Natural Science Foundation of China (GrantNos.11672166).

References

[1] Nagano S, Koizumi T, Fujii T, Tsujiuchi N, Ueda H and Steel K (1997) Development of a composite boring bar. Composite Structures, 38(1–4), 531-539.
[2] Lee D G, Suh N P (1987) Manufacturing and testing of chatter free boring bars. CIRP Annals - Manufacturing Technology, 37(1), 365-368.
[3] Dai G L, Hui Y H and Jin K K (2003) Design and manufacture of a carbon fiber epoxy rotating boring bar. Composite Structures, 60(1), 115-124.
[4] Zhang G (1987). Dynamic modeling and dynamic analysis of the boring machining system. Journal of Engineering for Industry, 1(109), 219-26.
[5] Rao P N, Rao U R K and Rao J S (1988) Towards improved design of boring bars part 1: Dynamic cutting force model with continuous system analysis for the boring bar performance. International Journal of Machine Tools & Manufacture, 28(1), 33-44.
[6] Andrén L, Häkansson L, Brandt A, and Claesson I (2004) Identification of dynamic properties of boring bar vibrations in a continuous boring operation. Mechanical Systems & Signal
Processing 18(4), 869-901.

[7] André n L, Håkansson L, Brandt A, and Claesson I (2004) Identification of motion of cutting tool vibration in a continuous boring operation—correlation to structural properties. Mechanical Systems & Signal Processing, 18(4), 903-927.

[8] Scheuer J, Håkansson L and Claesson I (2004) Modal analysis of a boring bar using different clamping conditions. Eleventh International Congress on Sound & Vibration Icsv.

[9] Smirnova T, Akesson H and Hakansson L (2009) Dynamic modeling of a boring bar using theoretical and experimental engineering methods Part 1: distributed-parameter system modeling and experimental modal analysis. International Journal of Acoustics and Vibration, 123-133.

[10] Mao Y E, Ping T, Min R, Zhou F L and Wang D Y (2010) Modal analysis of multi-span beams with intermediate flexible constraints and different boundary conditions. Engineering Mechanics, 27(9), 80-85.

[11] Kim W, Argento A and Scott R A (2001) Forced vibration and dynamic stability of a rotating tapered composite timoshenko shaft: bending motions in end-milling operations. Journal of Sound & Vibration, 246(4), 583-600.

[12] Sino R, Baranger T N, Chatelet E and Jacquet G (2008) Dynamic analysis of a rotating composite shaft. Composites Science & Technology, 68(2), 337-345.

[13] Åkesson H, Smirnova T and Håkansson L (2009) Analysis of dynamic properties of boring bars concerning different clamping conditions. Mechanical Systems & Signal Processing, 23(8), 2629-2647.