Determination of the Branching Fraction for $B \to X_c\ell\nu$ Decays and of $|V_{cb}|$ from Hadronic-Mass and Lepton-Energy Moments

B. Aubert, R. Barate, D. Boutigny, F. Couderc, J.-M. Gaillard, A. Hieuer, Y. Karyotakis, J. P. Lees, V. Tisserand, A. Zghiche, A. Palano, A. Pomplini, J. C. Chen, N. D. Qi, S. G. Rong, P. Wang, Y. S. Zhu, G. Eigen, I. Ofte, B. Stugu, G. S. Abrams, A. W. Borgland, A. B. Breon, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, Y. Groysoyan, R. G. Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, C. LeClerc, G. Lynen, A. M. Merchant, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, V. G. Shelkov, W. A. Wenzel, K. Ford, T. J. Harrison, C. M. Hawkes, S. E. Morgan, A. T. Watson, M. Fritsch, K. Goetzen, T. Held, H. Koch, B. Lewandowski, M. Pelizaeeus, M. Steinke, J. T. Boyd, N. Chevalier, W. N. Cottingham, T. P. Kelly, T. E. Latham, F. F. Wilson, T. Cuhadar-Donszelmann, C. Heart, N. S. Knecht, T. S. Mattison, J. A. McKenna, D. Thiessens, A. Khan, P. Kyberd, L. Teodorescu, V. E. Blinov, A. D. Bukin, V. P. Druzhinin, V. B. Golubev, V. N. Ivanchenko, A. A. Kravchenko, A. P. Onuchin, I. S. Serednyakov, Yu. I. Skopiven, E. P. Solodov, A. N. Yushkov, D. Best, M. Bruinsma, M. Chao, I. Eschrich, D. Kirkby, A. J. Lankford, M. Mandelkern, R. K. Mommersen, W. Roethel, D. P. Stoker, C. Buchanan, B. L. Hartfiel, J. W. Gary, B. C. Shen, K. Wang, D. del Re, H. K. Hadavand, E. J. Hill, D. B. MacFarlane, H. P. Paar, Sh. Rahatlou, V. Sharma, J. W. Berryhill, C. Campagnari, B. Dahmes, S. L. Levy, O. Long, A. Lu, M. A. Mazur, J. D. Richman, W. Verkerke, T. W. Beck, A. M. Eisner, C. A. Heusch, W. S. Lockman, T. Schalk, R. E. Schmitz, B. A. Schumm, A. Seiden, P. Spradlin, D. C. Williams, M. G. Wilson, J. Albert, E. Chen, G. P. Dubois-Felsmann, A. Dvoretski, D. G. Hiltun, I. Narsky, T. Piatenko, F. C. Porter, A. Ryd, A. Samuel, H. Yang, S. Jayatilleke, G. Mancinelli, B. T. Meadows, M. D. Sokoloff, T. Abe, F. Blanc, P. Bloom, S. Chen, W. T. Ford, U. Nauenberg, A. Olivas, P. Rankin, J. G. Smith, J. Zhang, L. Zhang, A. Chen, J. L. Barton, A. Soffer, W. H. Toki, R. J. Wilson, Q. L. Zeng, D. Altenburg, T. Brandt, J. Brose, T. Colberg, M. Dickopp, E. Feltresi, A. Hauke, H. M. Lacker, E. Maly, R. Müller-Pfeiffer, R. Nogowski, S. Otto, A. Petzold, J. Schubert, R. Schwierz, B. Spaan, J. E. Sundermann, D. Bernard, G. R. Bonneau, F. Brochard, P. Grenier, S. Schrenk, Ch. Thiebaux, G. Vasiileiadis, M. Verderi, D. J. Bard, P. J. Clark, D. Lavin, F. Muheim, S. Playfer, Y. Xie, M. Andreotti, V. Azzolini, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinneto, E. Luppi, M. Negrini, A. Sarti, E. Treadwell, P. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, P. Patteri, P. Piccolo, A. Zallo, A. Buzzo, R. Capra, R. Contri, G. Crosetti, M. Lo Vetere, M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi, S. Bailey, G. Brandenburg, M. Morii, E. Won, R. S. Dubitzky, U. Langenegger, W. Bhimji, D. A. Bowerman, P. D. Dauncey, U. Egede, J. R. Gaillard, G. W. Morton, J. A. Nash, G. P. Taylor, G. J. Grenier, U. Mallik, J. Cochran, H. B. Crawley, J. Lamsa, T. Meyer, S. Prell, E. I. Rosenberg, J. Yi, M. Davier, G. Grosdidier, A. Höcker, J. Laplace, F. Le Diberder, V. Lepeltier, A. M. Lutz, T. C. Petersen, S. Plaszczynski, M. H. Schune, L. Tantot, G. Wormser, C. H. Cheng, D. J. Lange, M. C. Simani, D. M. Wright, A. J. Bevan, J. P. Coleman, J. R. Fry, E. Gabathuler, R. Gamet, J. R. Parry, D. J. Payne, R. J. Sloane, C. Touramanis, J. J. Back, P. F. Harrison, G. B. Mohanty, C. L. Brown, G. Cowan, R. L. Flack, H. U. Flaecher, M. G. Green, C. E. Marker, T. R. McMahon, S. Ricciardi, F. Salvatore, G. Vaitis, M. A. Winter, D. Brown, C. L. Davis, J. Allison, N. R. Barlow, R. J. Barlow, P. A. Hart, M. C. Hodgkinson, G. D. Lafferty, A. J. Lyon, J. C. Williams, A. Farbin, W. D. Hulsbergen, A. Jawahery, D. Kovalskyi, C. K. Lai, V. Lillard, D. A. Roberts, G. Blaylock, C. Dallapiccola, K. T. Flood, S. Hertzbach, R. Kofler, V. B. Koptchev, T. B. Moore, S. Saremi, H. Staengle, S. Willocq, R. Cowan, G. Sciolli, F. Taylor, R. K. Yamamoto, D. J. Mangeol, P. M. Patel, S. Robertson, A. Lazzaro, F. Palombo, J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Godang, K. Kroeger, J. Redi, D. A. Sanders, D. J. Summers, H. W. Zhao, S. Brunet, D. Côté, P. Taras.
We determine the inclusive $B \to X_c \ell \nu$ branching fraction, $B_{cl \nu}$, the CKM matrix element $|V_{cb}|$, and other heavy-quark parameters from a simultaneous fit to moments of the hadronic-mass and lepton-energy distributions in semileptonic B-meson decays, measured as a function of the lower limit on the lepton energy, using data recorded with the BABAR detector. Using Heavy Quark Expansions (HQEs) to order $1/m_b^2$, we extract $B_{cl \nu} = (10.61 \pm 0.16_{stat} \pm 0.06_{HQE})\%$ and $|V_{cb}| = (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{th}) \times 10^{-3}$. The stated errors refer to the experimental, HQE, and additional theoretical uncertainties.

PACS numbers: 12.15.Hh, 11.30.Er, 13.25.Hw

The CKM matrix element V_{cb} is one of the fundamental parameters of the Standard Model and thus its precise measurement with well understood uncertainties is important. At the parton level, the weak decay rate for $b \to c \ell \nu$ can be calculated accurately; it is proportional to $|V_{cb}|^2$ and depends on the quark masses, m_b and m_c. To relate measurements of the semileptonic B-meson decay rate to $|V_{cb}|$, the parton-level calculations have to be corrected for effects of strong interactions. Heavy-Quark Expansions (HQEs) have become a useful tool for calculating perturbative and non-perturbative QCD corrections and for estimating their uncertainties. In the kinetic-mass scheme we have performed by the CLEO collaboration [5] were first performed by the CLEO collaboration [10, 11]. The moments are estimated of these parameters, is to test the consistency of the data with the HQEs employed and to check for the possible impact of higher-order contributions. Moment measurements and the extraction of $|V_{cb}|$ based on HQEs were first performed by the CLEO collaboration [8]. More recently, global fits to a variety of moments were presented [5, 8, 13], using HQEs in different mass schemes.

This analysis makes use of moments measured by the BABAR collaboration [10, 11]. The moments are derived from the inclusive hadronic-mass (m_X) and electron-energy (E_ℓ) distributions in $B \to X_c \ell \nu$ decays, averaged over charged and neutral B mesons produced at the $\Upsilon (4S)$ resonance. We have subtracted the charmless contributions based on the branching fraction $B_{cl \nu} = (0.22 \pm 0.05)\%$ [12]. All moments are measured as functions of E_{cut}, a lower limit on the lepton energy (for energy moments we only use electrons, for mass moments we also use muons). The moments are corrected for detector effects and QED radiation [13]. The hadronic-mass distribution is measured in events tagged by the fully reconstructed hadronic decay of the second B meson. The hadronic-mass moments are defined as $M^n_X(E_{cut}) = \langle m_X^n \rangle_{E_{cut}}$ with $n = 1, 2, 3, 4$.

The electron-energy distribution is measured in events tagged by a high-momentum electron from the second B meson. We define the first energy moment as $M_1^E(E_{cut}) = \langle E_\ell \rangle_{E_{cut}}$ and the second and third moments as $M_2^E(E_{cut}) = \langle (E_\ell - M_1^E(E_{cut}))^2 \rangle_{E_{cut}}$, with $n = 2, 3$. In addition, we use the partial branching fraction $M_2^E(E_{cut}) = \int_{E_{cut}}^{E_{max}} (dR_{cl \nu}/dE_\ell) dE_\ell$. All measured moments are shown in Fig. 1.

In the kinetic-mass scheme the HQE to $O(1/m_b^3)$ for the rate of $B \to X_c \ell \nu$ decays can be expressed as [14]

$$\Gamma_{cl \nu} = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 (1 + A_{ew}) A_{pert}(r, \mu) \times$$

$$\left[z_0(r) \left(1 - \frac{\mu^2}{\mu_c^2} + \frac{\rho^2 + \rho_{LS}^2}{m_b^2} \right) \right]$$

$$- 2(1 - r)^4 \left(\frac{\rho_b + \rho_{LS}}{m_b} + r d(r) \frac{\rho_D}{m_b^3} + O(1/m_b^4) \right) .$$

The leading non-perturbative effects arise at $O(1/m_b^2)$ and are parameterized by $\mu^2_c(\mu)$ and $\mu^2_D(\mu)$, the expectation values of the kinetic and chromomagnetic dimension-five operators. At $O(1/m_b^3)$, two additional parameters enter, $\rho_b(\mu)$ and $\rho_{LS}(\mu)$, the expectation values of the Darwin (D) and spin-orbit (LS) dimension-six operators. These parameters depend on the scale μ that separates short-distance from long-distance QCD effects; the calculations are performed for $\mu = 1$ GeV [3]. Electroweak corrections are $1 + A_{ew} \cong (1 + \alpha/\pi \ln(M_Z/m_b)^2) = 1.014$ and perturbative QCD corrections are estimated to be $A_{pert}(r, \mu) \cong 0.91 \pm 0.01$ [13]. The ratio $r = m_c^2/m_b^2$ enters in the phase-space factor $z_0(r) = 1 - 8r^2 + 8r^3 - r^4 - 12r^2$ lhr and the function $d(r) = 8 \ln(34/3 - 32r^3/3 - 8r^2 + 32r^3/3 - 10r^4)/3$.

This analysis uses linearized expressions for the HQEs [12]. Specifically, the dependence of $|V_{cb}|$ on the true values of heavy-quark parameters, expanded around $a priori$ estimates of these parameters, is

$$|V_{cb}| \approx 0.0417 \sqrt{B_{cl \nu} / 1.55 \text{ ps}} \times$$

$$\times [1 + 0.30(\alpha_s(m_b) - 0.22)]$$

$$\times [1 - 0.66(m_b - 4.60) + 0.39(m_c - 1.15)]$$

$$+ 0.013(\mu^2 - 0.40) + 0.09(\rho_D^2 - 0.20)$$

$$+ 0.05(\mu^2_{c,LS} - 0.35) - 0.01(\rho^2_{c,LS} + 1.15) .$$

(2)
Here m_b and all other parameters of the expansion are in GeV; τ_B refers to the average lifetime of B mesons produced at the $\Upsilon(4S)$. We use $\tau_B = f_0 \tau_0 + (1 - f_0) \tau_\perp = (1.608 \pm 0.012)$ ps, taking into account the lifetimes of neutral and charged B mesons, τ_0 and τ_\perp, and their relative production rates (defined in terms of $f_0 = 0.488 \pm 0.013$, the fraction of $B^0\bar{B}^0$ pairs).

HQEs in terms of the same heavy-quark parameters are available for the hadronic-mass and electron-energy moments. The dependence on the heavy-quark parameters has again been linearized using the same a priori estimates of the parameters. We have verified that the differences between the linearized expressions and the full theoretical calculation are very small in all cases. We use these linear equations to determine the unknown heavy-quark parameters, the total branching fraction B_{ctr}, and $|V_{cb}|$ from a simultaneous χ^2 fit to the measured moments and the partial branching fraction, all as a function of the cut-off lepton energy, E_{cut}.

In total, we have measured four hadronic-mass moments for each of seven different values of E_{cut}, ranging from 0.9 to 1.5 GeV, and three electron-energy moments plus the partial branching fraction at five values of E_{cut}, ranging from 0.6 to 1.5 GeV. Since many of these individual moments are highly correlated we select for the fitting procedure a set of moments for which the correlation coefficients do not exceed 95%. Thus we only use half of the 28 mass moments, and retain 13 of the 20 energy moments.

The global fit takes into account the statistical and systematic errors and correlations of the individual measurements, as well as the uncertainties of the expressions for the individual moments. We assess the uncertainty of the calculated moments by varying, as suggested in [15], in the linearized expressions (given for $|V_{cb}|$ in Eq. 2) the a priori estimates for μ_{τ}^2 and μ_D^2 by $\pm 20\%$ and for ρ_{LS} and ρ_{D} by $\pm 30\%$. We assume that for a given moment these changes are fully correlated for all values of E_{cut}, but uncorrelated for different moments. The resulting fit, shown in Fig. 1 describes the data well with $\chi^2 = 15.0$ for 20 degrees of freedom. Tables I and II list the fitted parameters, their errors and correlations. As expected, m_b and m_c are highly correlated. For the mass difference, we obtain $m_b - m_c = (3.436 \pm 0.025_{\text{exp}} \pm 0.018_{\text{HQE}} \pm 0.010_{\alpha_s})$ GeV.

Beyond the uncertainties that are included in the fit, the limited knowledge of the expression for the decay rate, including various perturbative corrections and higher-order non-perturbative corrections, introduces an error in $|V_{cb}|$, assessed to be 1.5% [14]. By comparison, the impact of the uncertainty in α_s is estimated to be relatively small. For $M_n^f(E_{cut})$ moments, perturbative corrections of order α_s^2 are included with $\alpha_s (m_b) = 0.22 \pm 0.04$, whereas for $M_n^f (E_{cut})$ moments, they are calculated only to $\mathcal{O}(\alpha_s)$ with $\alpha_s (m_b) = 0.3 \pm 0.1$. We estimate the error on the perturbative corrections by varying α_s within the stated errors. The choice of the scale μ is estimated to have a very small impact on $|V_{cb}|$ and the branching fraction [14].

A series of tests has been performed to verify that the

![FIG. 1: The measured hadronic-mass (a-d) and electron-energy (e-h) moments as a function of the cut-off energy, E_{cut}, compared with the result of the simultaneous fit (line), with the theoretical uncertainties indicated as shaded bands. The solid data points mark the measurements included in the fit. The vertical bars indicate the experimental errors; in some cases they are comparable in size to the data points. Moment measurements for different E_{cut} are highly correlated.](image-url)
FIG. 2: Fit results (crosses) with contours corresponding to \(\Delta \chi^2 = 1 \) for two pairs of the eight free parameters a) \(m_b \) and b) \(\mu^2 \) versus \(|V_{cb}| \), separately for fits using the hadronic-mass, the electron-energy, and all moments.

The fit results are fully compatible with independent estimates of theoretical uncertainties from the HQEs, and additional uncertainties from the data and the HQE uncertainties included in the fit, and from heavy-quark sum rules [13]. Figure 2 shows the \(\Delta \chi^2 = 1 \) ellipses for \(|V_{cb}| \) versus \(m_b \) and \(\mu^2 \), for a fit to all moments and separate fits to the electron-energy moments and the hadronic-mass moments, but including the partial branching fractions in both. The lepton-energy and hadronic-mass moments have slightly different sensitivity to the fit parameters, but the results for the separate fits, \(|V_{cb}| = (41.4 \pm 0.7) \times 10^{-3} \) and \(|V_{cb}| = (41.6 \pm 0.8) \times 10^{-3} \) are fully compatible with each other and with the global fit to all moments. Changes in the other fit parameters are also consistent within the stated errors. Since the fits are so sensitive to different theoretical uncertainties and assumptions, in particular the differences in the treatment of the perturbative corrections, the observed consistency of the separate fits indicates that such differences are small compared with the experimental and assumed theoretical uncertainties.

In conclusion, we have extracted \(|V_{cb}| \), the semileptonic branching fraction, and the heavy-quark masses,

\[
|V_{cb}| = (41.4 \pm 0.4_{\text{exp}} \pm 0.4_{\text{HQE}} \pm 0.6_{\text{th}}) \times 10^{-3},
\]

\[
B_{\text{exp}} = (10.61 \pm 0.16_{\text{exp}} \pm 0.06_{\text{HQE}})\%,
\]

\[
m_b(1\,\text{GeV}) = (4.61 \pm 0.05_{\text{exp}} \pm 0.04_{\text{HQE}} \pm 0.02_{\text{th}})\,\text{GeV},
\]

\[
m_c(1\,\text{GeV}) = (1.18 \pm 0.07_{\text{exp}} \pm 0.06_{\text{HQE}} \pm 0.02_{\text{th}})\,\text{GeV},
\]

as well as the non-perturbative parameters in the kinetic-mass scheme up to order \((1/m_b^2) \) (see Table III). The total semileptonic branching fraction is \(B_{\text{exp}} + B_{\text{th}} = (10.83 \pm 0.16_{\text{exp}} \pm 0.06_{\text{HQE}})\% \). The errors refer to contributions from the experimental errors on the moment measurements, the HQE uncertainties included in the fit, and additional theoretical uncertainties, \(\delta_{\text{th}} = \sqrt{\delta_{\alpha_s}^2 + \delta_r^2} \), derived from Refs. [14, 15]. Based on a large set of hadronic-mass and electron-energy moments and a consistent set of HQE calculations, we have also been able to assess the uncertainties in the \(O(1/m_b^2) \) terms from the data without constraints to any \(a \) priori values. The fitted values of the parameters are consistent with theoretical estimates [2, 14]. The uncertainties on the quark masses are much smaller than

| \(|V_{cb}|(10^{-3}) \) | \(m_b \) (GeV) | \(m_c \) (GeV) | \(\mu_s^2 \) (GeV\(^2\)) | \(\rho_D \) (GeV\(^2\)) | \(\rho_G \) (GeV\(^2\)) | \(\rho_{LS} \) (GeV\(^2\)) | \(B_{\text{exp}} \) (%) |
|---|---|---|---|---|---|---|---|
| Results | 41.390 | 4.611 | 1.175 | 0.447 | 0.195 | 0.267 | 0.085 | 10.611 |
| \(\delta_{\text{exp}} \) | 0.437 | 0.052 | 0.072 | 0.035 | 0.023 | 0.055 | 0.038 | 0.163 |
| \(\delta_{\text{HQE}} \) | 0.398 | 0.041 | 0.056 | 0.038 | 0.018 | 0.033 | 0.072 | 0.063 |
| \(\delta_{\alpha_s} \) | 0.150 | 0.015 | 0.015 | 0.010 | 0.004 | 0.018 | 0.010 | 0.000 |
| \(\delta_r \) | 0.620 | 0.870 | 0.068 | 0.092 | 0.053 | 0.029 | 0.067 | 0.082 | 0.175 |

TABLE II: Correlation coefficients for the fit parameters.

| \(|V_{cb}| \) | \(m_b \) | \(m_c \) | \(\mu_s^2 \) | \(\rho_D \) | \(\rho_G \) | \(\rho_{LS} \) | \(B_{\text{exp}} \) |
|---|---|---|---|---|---|---|---|
| \(|V_{cb}| \) | \(m_b \) | \(m_c \) | \(\rho_D \) | \(\rho_G \) | \(\rho_{LS} \) | \(B_{\text{exp}} \) |
| 1.00 | 0.49 | -0.36 | 0.56 | 0.35 | -0.37 | 0.64 | 0.61 |
| \(m_b \) | 1.00 | 0.97 | -0.40 | -0.13 | 0.16 | -0.63 | 0.23 |
| \(m_c \) | 1.00 | -0.38 | -0.13 | -0.04 | -0.50 | 0.29 |
| \(\mu_s^2 \) | 1.00 | 0.82 | 0.08 | 0.46 | 0.16 |
| \(\rho_D \) | 1.00 | 0.08 | 0.23 | 0.12 |
| \(\rho_G \) | 1.00 | -0.43 | -0.04 |
| \(\rho_{LS} \) | 1.00 | 0.09 |
| \(B_{\text{exp}} \) | 1.00 | |
those of previous measurements \cite{16}. It would be interesting to compare the results of this analysis with fits based on recent calculations performed in the $1S$ mass scheme \cite{19}.

The result on $|V_{cb}|$ is in agreement with previous measurements using HQEs, either for a different mass scheme and with fixed terms of $O(1/m_b^2)$ \cite{8}, or for the kinetic-mass scheme, but with external constraints on almost all HQE parameters \cite{9}, as well as with an analysis combining both of these measurements \cite{10}.

This work has greatly benefited from many interactions with N. Uraltsev and P. Gambino. We thank them as well as many other theorists for valuable discussions regarding this work. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is based on recent calculations performed in the $1S$ mass scheme, but with external constraints on almost all HQE parameters \cite{9}, as well as with an analysis combining both of these measurements \cite{10}.

References

\[\] M. Voloshin and M. Shifman, Sov. J. Nucl. Phys. 41, 120 (1985); J. Chay, H. Georgi, and B. Grinstein, Phys. Lett. B247, 399 (1990); I. I. Bigi, and N. Uraltsev, Phys. Lett. B280, 271 (1992).

[2] I. I. Bigi, N. Uraltsev, and A. I. Vainshtein, Phys. Lett. B293, 430 (1992); I. I. Bigi, M. Shifman, N. Uraltsev, and A. Vainshtein, Phys. Rev. Lett. 71, 496 (1993); B. Blok, L. Koyrakh, M. Shifman, and A. Vainshtein, Phys. Rev. D49, 3356 (1994); A. V. Manohar and M. B. Wise, Phys. Rev. D49, 1310 (1994); M. Gremm and A. Kapustin, Phys. Rev. D55, 6924 (1997).

[3] I. I. Bigi, M. Shifman, N. Uraltsev, and A. Vainshtein, Phys. Rev. D56, 4017 (1997).

[4] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D67, 031101 (2003).

[5] M. Voloshin, Phys. Rev. D51, 4934 (1995); A. Falk, M. Luke, and M. Savage, Phys. Rev. D53, 2491 (2001); ibid., D53, 6316 (1996).

[6] D. Cronin–Hennery et al. [CLEO Collaboration], Phys. Rev. Lett. 87, 251808 (2001).

[7] C. W. Bauer, Z. Ligeti, M. Luke and A. V. Manohar Phys. Rev. D67, 054012 (2003).

[8] A. H. Mahmood et al. [CLEO Collaboration], Phys. Rev. D67, 072001 (2003) .

[9] M. Battaglia et al. [DELPHI Collaboration], Phys. Lett. B556, 41 (2003).

[10] B. Aubert et al. [BABAR Collaboration], Measurement of Moments of the Hadronic Mass Distribution in Semileptonic B Decays, hep-ex/0403031 submitted to Phys. Rev. D (2004).

[11] B. Aubert et al. [BABAR Collaboration], Measurement of the Electron Energy Spectrum and its Moments in Inclusive $B \to X_{\nu} \tau$ Decays, hep-ex/0403030 submitted to Phys. Rev. D (2004).

[12] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 92, 071802 (2004).

[13] E. Barbiero and Z. Was, Comput. Phys. Comm. 79, 291 (1994).

[14] D. Benson, I. I. Bigi, T. Mannel, and N. Uraltsev, Nucl. Phys. B665, 367 (2003).

[15] P. Gambino and N. Uraltsev, Moments of Semileptonic B Decay Distributions in the $1/m_b$ Expansion, hep-ph/0401063, to be published in Eur. Phys. J. C (2004); the lepton-energy dependence of the perturbative corrections has been added for the hadronic-mass moments, based on N. Uraltsev, Perturbative Corrections to Semileptonic B-Decay Moments, hep-ph/0403166.

[16] K. Hagiwara et al. Phys. Rev. D66, 010001 (2002).

[17] J. P. Alexander et al. [CLEO Collaboration], Phys. Rev. Lett. 86, 2737 (2001); B. Aubert et al. [BABAR Collaboration], Phys. Rev. D65, 032001 (2002); S.B. Athar et al. [CLEO Collaboration], Phys. Rev. D66, 052003 (2002).

[18] I. I. Bigi, M. A. Shifman, and N. G. Uraltsev, Ann. Rev. Nucl. Part. Sci., 47, 591 (1997).

[19] M. Trott, Improving Extractions of $|V_{cb}|$ and m_b from the Hadronic Invariant Mass Moments of Semileptonic Inclusive B Decays, hep-ph/0402120.