FINITENESS AND VANISHING THEOREMS FOR COMPLETE OPEN RIEMANNIAN MANIFOLDS

ZHONGMIN SHEN

Let M^n denote an n-dimensional complete open Riemannian manifold. In [AG] Abresch and Gromoll introduced a new concept of “diameter growth.” Roughly speaking, one would like to measure the essential diameter of ends at distance r from a fixed point $p \in M^n$. They showed that M^n is homotopy equivalent to the interior of a compact manifold with boundary if M^n has nonnegative Ricci curvature and diameter growth of order $o(r^{1/n})$, provided the sectional curvature is bounded from below. It is well known that any complete open manifold with nonnegative sectional curvature has finite topological type. This is a weak version of the Soul Theorem of Cheeger-Gromoll [CG]. Examples of Sha and Yang show that this kind of finiteness result does not hold for complete open manifolds with nonnegative Ricci curvature in general (see [SY1, SY2]), and additional assumptions are therefore required.

We will use a concept of the essential diameter of ends slightly stronger than that of [AG]: For any $r > 0$, let $B(p, r)$ denote the geodesic ball of radius r around p. Let $C(p, r)$ denote the union of all unbounded connected components of $M^n \setminus B(p, r)$. For $r_2 > r_1 > 0$, set $C(p; r_1, r_2) = C(p; r_1) \cap B(p, r_2)$. Let $1 > \alpha > \beta > 0$ be fixed numbers. For any connected component Σ of $C(p; \alpha r, \beta r)$, and any two points $x, y \in \Sigma \cap \partial B(p, r)$, consider the distance $d_r(x, y) = \inf \text{Length}(\phi)$ between x and y in $C(p, \beta r)$, where the infimum is taken over all smooth curves $\phi \subset C(p, \beta r)$ from x to y. Set $\text{diam}(\Sigma \cap \partial B(p, r), C(p, \beta r)) = \sup d_r(x, y)$, where $x, y \in \Sigma \cap \partial B(p, r)$. Then the diameter of ends at distance r from p is defined by

$$\text{diam}(p, r) = \sup \text{diam}(\Sigma \cap \partial B(p, r), C(p, \beta r)),$$

where the supremum is taken over all connected components Σ of $C(p; \alpha r, \beta r)$. The diameter defined here is not smaller than that defined by Abresch and Gromoll. Our definition will be essential in Lemma 3 and its applications.

The purpose of this note is to announce the following results.

Theorem A. Let M be a complete open Riemannian manifold with sectional curvature $K_M \geq -K^2$ for some constant $K > 0$. Assume that for some base point $p \in M$,

$$\lim_{r \to +\infty} \sup \text{diam}(p, r) < \frac{\ln 2}{K}.$$
Then M is homotopy equivalent to the interior of a compact manifold with boundary.

Theorem B. Let M^n be an n-dimensional complete open Riemannian manifold. Suppose that the sectional curvature $K_M \geq -K^2$ for some constant $K > 0$. Assume that for some $2 \leq k \leq n - 1$, M^n has nonnegative kth-Ricci curvature and that for some $p \in M^n$,

$$\limsup_{r \to +\infty} \frac{\text{diam}(p, r)}{r^{1/k}} < \left[\frac{2(k + 1)}{k} \left(\frac{(k - 1) \ln 2}{2kK} \right) \right]^{1/(k+1)}.$$

Then M^n is homotopy equivalent to the interior of a compact manifold with boundary.

Theorem C. Let M^n be an n-dimensional complete open Riemannian manifold. Assume that for some $1 \leq k \leq n - 1$, M^n has positive kth-Ricci curvature everywhere and that for some $p \in M^n$, M^n has diameter growth of order $o(r)$, i.e.

$$\limsup_{r \to +\infty} \frac{\text{diam}(p, r)}{r} = 0.$$

Then M^n has the homotopy type of a CW-complex with cells of dimensions $\leq k - 1$.

The precise condition that M^n have nonnegative (positive) kth-Ricci curvature at some point $x \in M^n$ is that for all v in the span of any orthonormal set $\{e_1, \ldots, e_{k+1}\}$ in $T_x M^n$,

$$\sum_{i=1}^{k+1} \langle R(e_i, v) v, e_i \rangle \geq 0 \ (> 0),$$

where $R(x, y)z$ denotes the curvature tensor of M^n (cf. also [H] for the definition of kth-Ricci curvature).

Remark 1. (1) In Theorem A the upper bound $\ln 2/K$ must depend on K. Otherwise, the connected sum of infinitely many copies of $S^2 \times S^2$ (see [AG]) provides an easy counterexample.

(2) Theorem B generalizes the Abresch-Gromoll Theorem [AG].

(3) The condition in Theorem C can be weakened to that M^n has nonnegative kth-Ricci curvature everywhere and positive kth-Ricci curvature outside a compact subset of M^n (see Lemma 5).

(4) The same argument as in [AG] shows that any complete open Riemannian manifold with nonnegative Ricci curvature must have diameter growth of order $o(r)$. We do not know whether the condition in Theorem C on diameter growth is necessary. Examples in [SY1, SY2, We and GM] have diameter growth of order at most $o(r)$.

It is a pleasure to thank D. Gromoll for some valuable suggestions. I would also like to thank G. Gong, A. Phillips and G. Wei for helpful discussions.

Outline of Proofs. Throughout this part we assume that M^n denotes a complete open Riemannian manifold of dimension n and p is a point of
M^n fixed during the discussion. For arbitrary $t \geq 0$, let $R_t(p) = \{y(t); y$ is a ray emanating from $p\}$, which is a closed subset of the distance sphere $S(p,t)$. Set $B^t_p(x) = t - d(x,R_t(p))$ for any $x \in M^n$. It is easy to see that $B^t_p(x)$ is increasing in t and $|B^t_p(x)| \leq d(p,x)$ for any $x \in M^n$. The generalized Busemann function B_p is defined as $B_p(x) = \lim_{t \to +\infty} B^t_p(x)$, which is a Lipschitz function with Lipschitz constant 1. The excess function E_p is defined as $E_p(x) = d(p,x) - B_p(x)$. We will introduce a new function L_p which plays an essential role in the study of the generalized Busemann function B_p. Set $L_p(x) = d(x,R_t(p))$, where $t = d(p,x)$. Since $B^t_p(x)$ is increasing in t, it is easy to see that $E_p(x) < L_p(x)$ and $d(p,x) - L_p(x) \geq B_p(x)$ for all $x \in M^n$. A more detailed discussion for generalized Busemann functions has been given by H. Wu [W1]. For the purpose of this note, we need the following

Lemma 1. For any $q \in M^n$, there exists a ray $\sigma_q(t)$ emanating from q such that for all $t \geq 0$, the function $B^{q,t}_p(x)$ defined by $B^q_p(q) + t - d(x,\sigma_q(t))$ supports $B_p(x)$ at q, namely $B^{q,t}_p(x) \leq B_p(x)$ for all $x \in M^n$ and $B^{q,t}_p(q) = B_p(q)$.

Lemma 2. Suppose that M^n has sectional curvature $K_M \geq -K^2$ for some $K > 0$, then for any critical point q with respect to p, $E_p(q) \geq \frac{1}{K} \left(e^{Kd(p,q)} \right)$.

Notice that $E_p(x) \leq L_p(x)$ for all $x \in M^n$. Thus if $\limsup_{d(p,x) \to +\infty} L_p(x) < \frac{\ln 2}{K}$, Lemma 2 shows that outside a compact subset there is no critical point with respect to p, Theorem A follows from this argument and the following

Lemma 3. Suppose that M^n has diameter growth of order $o(r)$. Then there exists an $R > 0$ such that for any $x \in M^n \setminus B(p,R)$,

\[(1) \quad L_p(x) \leq \text{diam}(p,d(p,x)),\]

and the Busemann function B_p is proper.

Notice that $d(p,x) - L_p(x) \geq B_p(x)$ for all $x \in M^n$. It is clear that (1) implies that $g(x) \equiv d(p,x) - L_p(x)$ is proper, and so is $B_p(x)$.

One can obtain a better estimate for $E_p \leq L_p$ in terms of L_p if M^n has nonnegative kth-Ricci curvature.

Lemma 4. Suppose that M^n has nonnegative kth-Ricci curvature for some $2 \leq k \leq n-1$, then for all $x \in M^n$ with $L_p(x) < d(p,x)$,

\[(2) \quad E_p(x) \leq \frac{2k}{k-1} \left[\frac{k}{2(k+1)} \times \frac{L_p(x)^{k+1}}{d(p,x) - L_p(x)} \right]^{1/k} .\]

The proof of Lemma 4 depends on Lemma 1 and the maximum principle. Theorem B therefore follows from Lemmas 2, 3, and 4. For the proof of Theorem C, we need Lemma 3 and the following
Lemma 5. Suppose that for some $1 \leq k \leq n - 1$, M^n has nonnegative kth-Ricci curvature everywhere and positive kth-Ricci curvature outside a compact subset. If the Busemann function B_p is proper, then there exists a C^2 function $\chi(t)$ such that $\chi \circ B_p$ is proper and strictly k-convex. Therefore M^n has the homotopy type of a CW-complex with cells of dimensions $\leq k - 1$.

Compare [W2] for a definition of k-convexity. It seems to be crucial that the Busemann function B_p is proper. The first assertion in Lemma 5 follows from Lemma 1. If we assume that $\chi \circ B_p$ is proper and strictly k-convex, then the last assertion in Lemma 5 follows from Wu’s Smoothing Theorem [W2] and the standard Morse Theory [M]. This proves Theorem C.

Remark 2. An observation of Cheeger-Gromoll ([CG], sharpened in [GW]) is that if M^n has nonnegative sectional curvature outside a compact subset, then M^n has finite topological type and B_p is a proper function. If an addition, M^n has nonnegative kth-Ricci curvature everywhere and positive kth-Ricci curvature outside a compact subset, then M^n has the homotopy type of a CW-complex with finitely many cells of dimensions $\leq k - 1$ (cf. [W2]).

References

[AG] U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, Preprint.

[CG] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1974), 413–443.

[GM] D. Gromoll and W. T. Meyer, Examples of complete manifolds with positive Ricci curvature, J. Differential Geom. 21 (1985), 195–211.

[GW] R. Greene and H. Wu, Integrals of subharmonic functions on manifolds of nonnegative curvature, Invent. Math. 27 (1974), 265–298.

[H] P. Hartman, Oscillation criteria for self-adjoint second-order differential systems and “principal sectional curvature”, J. Differential Equations 34 (1979), 326–338.

[M] J. Milnor, Morse theory, Princeton Univ. Press, Princeton, N.J., 1975.

[SY1] J. Sha and D. Yang, Examples of manifolds of positive Ricci curvature, J. Differential Geom. (to appear).

[SY2] , Positive Ricci curvature on the connected sums of $S^n \times S^m$, Preprint.

[W1] H. Wu, An elementary method in the study of nonnegative curvature, Acta Math. 142 (1979), 57–78.

[W2] , Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), 525–548.

[We] G. Wei, Examples of complete manifolds of positive Ricci curvature with nilpotent isometry groups, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 311–313.

Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York, 11794