Quiz Case

A huge vulval cyst with iliac lymph node enlargement – A unique presentation of a rare tumor

Kriti Joshi, MBBS1, Usha Joshi, MD1, Ankit Kaushik, MD1

1Department of Pathology, Government Medical College, Haldwani, Uttarakhand, India.

*Corresponding author:
Usha Joshi,
Associate Professor,
Department of Pathology,
Government Medical College,
Haldwani, Uttarhank, India.
ushajoshi@gmail.com

Received : 14 April 2020
Accepted : 14 September 2020
Published : 10 July 2021

DOI
10.25259/Cytojournal_27_2020

Quick Response Code:

A 32-year-old female presented with abdominal pain, right labial mass, and right iliac lymph node enlargement for 4 years, to the gynecology department. On examination, a fluctuant, polypoid mass involving the right labium majus was noted and clinical diagnosis of vulval cyst was made. Her MRI findings revealed a well-defined 10.0 × 10.0 × 5.0 cm right labial lesion with heterogeneous signal intensity. It revealed hyperintense signal with areas of hypointensity on T2 and predominantly hypointense on T1, without any calcifications. Another altered signal intensity lesion measuring 5 × 5 cm was seen along the right iliac vessels, suggestive of the right iliac lymphadenopathy. USG-guided fine-needle aspiration (FNA) of the right iliac lymph node was performed and slides were stained with PAP, H&E, and MGG [Figure 1].

Figure 1: FNAC of the right iliac lymph node (Arrowhead-plexiform vasculature, Arrow- lipoblast), PAP, x100 (original).

Q1 – WHAT IS YOUR INTERPRETATION?

- a- Angiomyxoma
- b- Myxofibrosarcoma
- c- Myxoid dermatofibrosarcoma protuberans
- d- Myxoid liposarcoma.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2021 Cytopathology Foundation Inc, Published by Scientific Scholar
Question 1 answer – d-Myxoid liposarcoma.

BRIEF DISCUSSION

Smears made from FNA of the right iliac lymph node showed tissue fragments with myxoid matrix and plexiform vascular network [Figure 1: Arrowhead] surrounded by round to ovoid cells with mild atypia admixed with univacuolated to multivacuolated lipoblasts with scalloped nuclei [Figure 1: Arrow]. A diagnosis of low-grade myxoid liposarcoma (MLS) was made on FNAC. FNAC of the iliac lymph node was followed by removal of the right labial mass which was sent to pathology department for histopathological evaluation. The lesion was a well encapsulated, grayish-white to grayish-brown, lobular mass measuring 8.5 × 5.0 × 4.0 cm [Figure 2].

Gross evaluation revealed solid, multilobulated cut surface with grayish-white, fleshy and gelatinous areas with foci of hemorrhage [Figure 3]. Representative sections were submitted for microscopic evaluation. H&E stained sections from labial mass showed nodular lesion with hypocellular and hypercellular areas. Hypocellular areas showed uniform round to oval-shaped cells admixed with variable number of univacuolated to multivacuolated lipoblasts embedded in prominent myxoid stroma, rich in arborizing chicken wire capillary vasculature [Figure 4].

Extensive grossing was done and then slides were stained with H&E. Sections from labial mass showed nodular lesion with hypocellular and hypercellular areas. Hypocellular areas show uniform round to oval-shaped cells admixed with variable number of univacuolated to multivacuolated lipoblasts embedded in prominent myxoid stroma, rich in arborizing chicken wire capillary vasculature [Figure 4]. Hypercellular areas showed predominantly sheets of round to ovoid cells (approximately 25%) with high nuclear cytoplasmic ratio and absent to scant amount of cytoplasm, favoring a diagnosis of high-grade MLS [Figure 5].

ADDITIONAL QUIZ QUESTIONS

Q2 – Plexiform blood vessels are frequently seen in all except
 a. MLS
 b. Superficial angiomyxoma
 c. Lipoblastoma
 d. Myxofibrosarcoma.

Q3 – Unimultivacuolated cells with scalloping of nuclei are the feature of
 a. Foamy macrophage
 b. Pseudolipoblast
 c. Lipoblast
 d. Adipocyte.

Q4 – Most common translocation involving MLS is?
 a. t(12;16)(q13;p11)
 b. t(7;16)(q33;p11)
 c. t(17;22)(q21.3;q13.1)
 d. t(11;12)(q23;q15).
ANSWERS TO ADDITIONAL QUESTIONS

Q2 (d); Q3 (c); Q4 (a).

Q2 (d) – Plexiform vessels are thin branching vessels usually seen in MLS, superficial angiomyxoma, and lipoblastoma. Myxofibrosarcomas, meanwhile, show thick walled, curvilinear vessels with perivascular alignment of tumor cells.

Q3 (c) – Criteria for diagnostic lipoblast include – hyperchromatic, indented or sharply scalloped nucleus with lipid-rich droplets in cytoplasm, and an appropriate histological background. Multivacuolated cells distended with hyaluronic acid (pseudolipoblast) can be seen in myxofibrosarcoma.

Q4 (a) – The entire range of myxoid/round cell liposarcoma is genetically tied to recurrent rearrangement of DDIT3 that partners with FUS in >95% of cases with a resulting FUS-DDIT3 fusion [t(12;16) (q13;p11)] or partners with EWSR1 in the remaining cases with a resulting EWSR1-DDIT3 fusion [t(12;22) (q13;q12)]. Identification of either the FUS-DDIT3 or EWSR1-DDIT3 transcript is considered both highly sensitive and specific for myxoid/round cell liposarcoma, allowing its distinction from morphologically similar neoplasms.

BRIEF REVIEW OF TOPIC

Vulvar sarcomas account for only 1–3% of all vulvar malignancies and the most frequent primary vulvar sarcoma is leiomyosarcoma.1,2 MLS of vulva is very rare and only seven cases are reported in literature till date, to the best of our knowledge [Table 1].3–8 MLS is the second most common subtype of liposarcoma harboring translocation (12;16) (q13;p11) which creates a chimeric gene FUS-DDIT3 and it encompasses a spectrum of tumors defined by their degree of lipoblastic differentiation. It is divided into low-grade and high-grade MLS according to the WHO classification proposed in 2013. At one end of the spectrum is low-grade MLS associated with favorable prognosis and, on the other end, is, high-grade MLS, defined as having ≥5% round cell component, considered more aggressive tumor which tends to metastasize.

MLS of vulva can be mistaken clinically as benign because of their rare location and presentation, which can lead to delayed treatment.9,10 Like in our case, a clinical diagnosis of vulval cyst was made and patient presented with iliac lymph node metastasis which was reported as low-grade MLS. However, on histopathology of labial mass, we encountered the round cell component as well, thus rendering it as high-grade MLS. Sometimes in hypercellular variant, stroma is

Figure 5: Hypercellular areas showing predominantly sheets of round to ovoid cells. (H and E, ×100) (original).

Table 1: Clinical profile of seven cases of MLS of vulva (original).

Study	Age (years)	Site	Duration	Clinical diagnosis	Maximum size (cm)	Management	Outcome
Brooks and LiVolsi[3]	15	Vulvar perineum, recurred on the left posterior medial thigh	20 months	Soft-tissue sarcoma	18	Wide excision; local recurrence as round cell/high-grade myxoid liposarcoma 20 months later treated by chemotherapy	DOD*
Donnellan and Moodley[4]	26	Left labium majus et minor	4 years	Bartholin cyst Lipoma	10	Local excision followed by reexcision	NED+ 9 m
Wu and Tarn[5]	45	Right labium majus	72 months	Lipoma	7	Local excision; reexcision of 6 cm recurrence 16 months later	NED, 28 m
Schoolmeester et al.[6]	34	Left vulval mass	11 months	Unknown	11.7	Local excision	NED, 28 m
Back et al.[7]	33	Bilateral perineum	4 months	Unknown	20 and 15	Wide excision with radiotherapy	NED, 2 yr
Kwak et al.[8]	37	Bilateral vulval mass	3 weeks	Unknown	20 and 15	Wide excision with radiotherapy	NED, 44 m
Present case	32	Right labium majus	4 years	Cyst	8.5	Wide excision	NED, 6 m

*DOD: Died of disease, +NED: No evidence of disease
Differential diagnosis	Age	Location	Gross	Growth pattern	Cellularity	Morphology	LB	Blood vessels	Background	Mitotic activity	IHC	Genetics	
Angio myxoma	Reproductive age (30 years)	Superficial and deep	Polypoidal, partly circumscribed cut surface is homogenously gelatinous	Infiltrative	Low	Spindle and stellate cells with small round hyperchromatic nuclei	-nt	Small thin walled to large hyalinized blood vessels	Myxoid with fine collagen fibrils	Rare	absent	CD34, Vimentin ER, PR	t(12;21)(q15;q21.1)
Botryoid RMS	Children (<10 years)	Mucosa lined hollow organs	Polypoidal with clusters of small sessile or pedunculated nodules	Polypoidal	Mode-rate	Subepithelial condensation of tumor cells (Cambium layer) comprising of primitive small round cells, stellate cells and rhabdomyoblast	-nt	-	Myxoid	Low to moderate	Vimentin, MyoD1, Myogenin	Loss of heterozygosity chromosome 11p15.5	
Myxoid DFSP	Young-middle-aged adults	Superficial	Multinodular cutaneous masses, gray-white cut surface with gelatinous areas	Diffuse infiltrative	Moderate	Uniform spindle cells with plump elongate nuclei arranged in storiform pattern	-nt	Prominent thin-walled vessels	Myxoid	Low to moderate	CD34	t(17;22)(q21.3;q13.1) (COL1A1-PDGFB)	
Myxoid leiomyosarcoma	Middle to older	Deep soft tissue	Well-demarcated cut surface is fleshy white-gray mass with whorled app & foci of gelatinous changes	Ill-defined	Mode-rate	Elongated spindle cells with blunted-ended nuclei arranged in long dissecting fascicles	-nt	Not seen	Myxoid	Low	SMA, CALDESMON	Complex with genetic instability	
MFS	Elderly (60–80 yrs)	Superficial and deep	Multiple gelatinous nodules (superficial), Single mass with infiltrative margin (deep), cut surface is variably gelatinous	Multinodular	Moderate	Plump, spindle or stellate cells having large atypical hyperchromatic nucleus	Pseudolipoblast	Curvilinear, elongated blood vessels with perivascular condensation of tumor cells	Myxoid	High	MSA, SMA	Complex karyotype	
MLS	Young adults	Deep soft tissue	Well-circumscribed, multinodular cut surface is gelatinous to fleshy	Nodular	Mode-rate	Mixture of uniform round-oval cells and bland fusiform cells	+nt	Plexiform, branching	Myxoid	Rare	Vimentin S100	t(12;16)(q13;p11) (FUS-DDIT3)	

LB: Lipoblast, RMS: Rhabdomyosarcoma, DFSP: Dermatofibrosarcoma protuberans, MFS: Myxofibrosarcoma, MLS: Myxoid liposarcoma, -nt: Absent, +nt: Present
less myxoid and capillary network is less prominent leading to erroneous diagnosis of round cell tumor on FNAC. Hence, there is a need for extensive sampling.

Histologically, MLS can be confused with other myxoid tumors more common in the vulva such as aggressive angiomyxomas, botryoid embryonal rhabdomyosarcoma, myxoid dermatofibrosarcoma protuberans, myxofibrosarcoma, and myxoid leiomyosarcoma [Table 2].

SUMMARY

Vulvar MLS is an extremely rare case reported in the literature. The present case marks the seventh reporting of vulval myxoid/round cell liposarcoma and the first one presenting with iliac lymph node metastasis. Both pathologists and clinicians should be aware of the occurrence of this entity in vulval region to ensure the correct diagnosis and appropriate management of the patient with this potentially curable neoplasm.

COMPETING INTEREST STATEMENT BY ALL AUTHORS

The authors declare that they have no competing interests.

AUTHORSHIP STATEMENT BY ALL AUTHORS

All authors certify that we have actively participated in the conception, design, defining intellectual content and preparation and editing of manuscript.

ETHICS STATEMENT BY ALL AUTHORS

This was a retrospective analysis of the data and all the procedures were done after obtaining informed consents from patients.

LIST OF ABBREVIATIONS (In alphabetic order)

- DFSP – Dermatofibrosarcoma protuberans
- FNA – Fine needle aspiration
- FNAC – Fine needle aspiration cytology
- LB – Lipoblast
- MLS – Myxoid liposarcoma
- MFS – Myxofibrosarcoma
- RMS – Rhabdomyosarcoma.

EDITORIAL/PEER-REVIEW STATEMENT

To ensure the integrity and highest quality of CytoJournal publications, the review process of this manuscript was conducted under a **double-blind model** (the authors are blinded for reviewers and vice versa) through automatic online system.

REFERENCES

1. Yokouchi J, Negishi Y, Abe K, Shirasawa K, Mernyei M. Radiotherapy for liposarcoma of the vulva. Gynecol Oncol 2000;79:315-7.
2. DiSaia PJ, Rutledge F, Smith JP. Sarcoma of the vulva-report of 12 patients. Obstet Gynecol 1971;38:180-4.
3. Brooks JJ, LiVolsi VA. Liposarcoma presenting on the vulva. Am J Obstet Gynecol 1987;156:73-5.
4. Donnellian R, Moodley M. Vulval myxoid liposarcoma. Int J Gynecol Cancer 2001;11:3212.
5. Wu TC, Tarn JJ. Vulvar liposarcoma. Taiwan J Obstet Gynecol 2007;46:293-4.
6. Schoolmeester JK, Leifer AJ, Wang L, Hameed MR. Vulvar myxoid liposarcoma and well differentiated liposarcoma with molecular cytogenetic confirmation: Case reports with review of malignant lipomatous tumors of the vulva. Int J Gynecol Pathol 2015;34:390-5.
7. Baek JY, Park CS, Joo SH. A case of liposarcoma of the perineum. Korean J Obstet Gynecol 2007;50:932-5.
8. Kwak JH, Shin SM, Kim JW, Lee NW. Unusual bilateral vulvar liposarcoma. Obstet Gynecol Sci 2014;57:549-52.
9. Genton CY, Maroni ES. Vulvar liposarcoma. Arch Gynecol 1987;240:63-6.
10. Nucci MR, Fletcher CD. Liposarcoma (atyypical lipomatous tumors) of the vulva: A clinicopathologic study of six cases. Int J Gynecol Pathol 1998;17:17-23.

How to cite this article: Joshi K, Joshi U, Kaushik A. A huge vulval cyst with iliac lymph node enlargement – A unique presentation of a rare tumor. CytoJournal 2021;18:15.

HTML of this article is available FREE at: https://dx.doi.org/10.25259/Cytojournal_27_2020