Letter

Direct patterning of nitrogen-doped chemical vapor deposited graphene-based microstructures for charge carrier measurements employing femtosecond laser ablation

Nikolai G Kovalchuk¹, Kiryl A Niherysh¹, Andrei V Felsharuk¹, Ivan A Sviito², Tomas Tamulevičius³, Sigita Tamulevičiute³, Nikolai I Kargin⁵, Ivan V Komissarov¹,⁵ and Serghej L Prischepa¹,⁵

¹ Belarusian State University of Informatics and Radioelectronics, P Browka Str. 6, 220013 Minsk, Belarus
² Belarusian State University, Nezalezhnastsi Av. 4, 220030 Minsk, Belarus
³ Institute of Materials Science, Kaunas University of Technology, K Baršausko Str. 59, LT-51423, Kaunas, Lithuania
⁴ Department of Physics, Kaunas University of Technology, Studentų Str. 50, LT-51368, Kaunas, Lithuania
⁵ National Research Nuclear University MEPhI, Kashirskoe Hwy. 31, Moscow 115409, Russia

E-mail: tomas.tamulevicius@ktu.lt

Received 26 February 2019, revised 14 April 2019
Accepted for publication 24 April 2019
Published 22 May 2019

Abstract
Chemical vapor deposited nitrogen-doped graphene, transferred onto a SiO₂/Si substrate, was selectively patterned by femtosecond laser ablation for the formation of the topology dedicated to charge carrier measurements. Ultrashort 1030 nm wavelength Yb:KGW fs-laser pulses of 22 μJ energy, 14 mJ cm⁻² fluence, 96% pulse overlap, and a scanning speed of 100 mm s⁻¹, were found to be the optimum regime for the high throughput microstructure ablation in graphene, without surface damage of the substrate in the employed fs-laser micromachining workstation. Optical scanning electron and atomic force microscopy, as well as Raman spectroscopy, were applied to clarify the intensive fs-laser light irradiation effects on graphene and the substrate, and to also verify the quality of the graphene removal. Measurements of magnetotransport properties of the fs-laser ablated nitrogen-doped graphene microstructure in the Hall configuration enabled the determination of the type, as well as concentration of charge carriers in a wide range of temperatures.

Keywords: nitrogen doped graphene, femtosecond laser ablation, Hall resistance, charge carrier concentration

(Some figures may appear in colour only in the online journal)
Introduction

Currently, graphene’s two-dimensional (2D) nature and unique electronic structure with linear dispersion, make it a very attractive material. However, the great application potential of graphene still faces technological limitations, which result from its reduced dimensionality. Indeed, any impurities on the graphene surface such as adsorbed oxygen, trapped water, chemical residuals cause change of its electronic state mainly due to two mechanisms: charge transfer and charge scattering [1]. This may seriously affect the performance of designed electrical devices [2]. The top down approach widely used in modern electronics assumes application of conventional lithography, which is a multistep process and usually involves the utilization of electron or light irradiation sensitive layers. As a result, the inevitable residuals of the resist on the surface of graphene change its electronic state [3]. Tremendous effort is usually required to remove resist residuals completely [4, 5].

The direct patterning technique of graphene via ultrashort pulse laser ablation, which is considered to be a prospective powerful tool in the micro and nanofabrication of graphene-based devices [6], can be a competitive alternative to the conventional lithography process. It should be noted that the 2D nature of graphene, with charge carriers confined within one atomic layer, causes its electrical, optical and sensing properties to be strongly influenced by the surrounding media or functionalization of graphene. In this sense, ultrashort pulse laser ablation appears to be an efficient technological solution for the production of planar structures excluding any impurities or residuals characteristic to different chemicals applied in conventional graphene patterning techniques. In contrast to the other serial exposure lithography techniques, such as focused ion beam [7] and electron beam lithography [8, 9], microfabrication techniques based on the ultrashort pulse laser approach [10, 11] are widely accessible and easily scalable. Fs-laser micromachining demonstrates a diffraction limited patterning resolution, or even sub-wavelength resolution via direct laser interference patterning [12, 13]. At the same time promises a very competitive writing field, to obtain information regarding the type and concentration of the charge carriers.

Experimental part

Graphene used in our work was grown by atmospheric pressure (AP) CVD from chemically pure n-decane on a copper foil (Alfa Aesar) at 1050 °C utilizing a custom-built setup. The samples were prepared in the presence of N2 (99.95%) and H2 (99.99%) gas flow with the rates of 100 and 6 cm3 min−1, respectively. This approach allowed to synthesize the bi-layer graphene which was proved by the exhaustive analysis of Raman data [26]. After deposition, graphene was transferred to the SiO2(~700 nm)/Si substrate by the wet transfer method. Detailed descriptions of the graphene synthesis, transfer approach and graphene characterization can be found elsewhere [26, 27]. Comprehensive XPS analysis on identically synthesized samples revealed that graphene was N-doped with the nitrogen concentration of nN ≈ 1.5 × 1013 cm−2 [26].

Laser patterning was performed, employing femtosecond Yb:KGW laser (λ = 1030nm, τ = 270 fs, P = 4 W, Pharos 04-500-PP, Light Conversion) and micromachining workstation (FemtoLAB, Altechna R&D) controlled with the SCA software (Altechna R&D). Two modes of laser beam handling were utilized: (i) translation of the sample with respect to the tightly focused laser beam; (ii) steering of the beam with a
galvo scanner with respect to the stationary sample. The former was exploited for elucidation of the intensive laser light interaction with the graphene on the SiO$_2$/Si substrates and determination of the laser processing conditions necessary to remove the graphene. Laser micromachining was performed with N.A. = 0.42- and 4-mm focal length 50× objective lens (Plan Apo NIR Infinity-Corrected, Mitutoyo) and XYZ translation stage (ANT130-160-XY, ANT130-5-V, Aerotech, further noted as XYZ).

The latter was applied for upsizing the patterning to cm2 range areas and was based on a galvonometer scanner (SCANcube III 14, ScanLab) and F-theta lens of 100 mm focal length and 115 mm working distance (150-1001, Eksma Optics). A detailed description of both modes applied can be found elsewhere [28–31]. The diffraction limited the spot sizes of the objective and F-theta lens focused laser beam were 2.54 μm and 14 μm, respectively. Using the first setup for evaluation of ablation parameters, we made test patterns of 10 × 10 μm in size. Two parameters were varied in our experiments, the fs-laser power ($P = 0.69$ mW–20.7 mW) and the intershot distance (0.5 μm–3.4 μm, or the pulse overlap from 80.3% to non-touching spots, respectively) resulting in an array of 30 × 30 spots. The power of the laser beam and the distance between the neighboring exposed spots were gradually changed along the vertical and horizontal lines, respectively (figure 1(a)). When applicable graphene removal conditions were obtained, the microstructure design for the Hall effect measurements was patterned employing the second, high throughput patterning laser setup using the recalculated parameters in order to keep the same level of the laser pulse energy (see table 1). The differences in fluence per pulse, due to different setups used, (namely laser focusing conditions) were compensated, increasing the pulse overlap.

The patterned graphene structure was analyzed by optical microscopy (BXFM, Olympus), scanning electron microscopy (SEM, SU 9000, Hitachi), atomic force microscopy (AFM, Certus Light V, Nano Scan Technology) and Raman spectroscopy (Confotec NR 500, SOL Instruments, $\lambda = 473$ nm) to monitor structural changes under different fs-laser processing conditions. A 100× (numerical aperture N.A = 0.95) objective and the laser power of 500 μW was used to collect the Raman signal. Mapping of the Raman signal was performed by employing the galvoscanner setup with spatial resolution less than 1 μm.

Magnetotransport measurements of the fs-laser ablated bridge structure were performed in Hall geometry with six silver contacts as electric probes. Two contacts, along the bridge, were used for supplying the current and measuring the voltage (V_x) and while the other two perpendicular to the bridge were employed for Hall voltage measurements (V_y). DC resistivity and Hall measurements were carried out using a cryoegen free measuring system (Cryogenic Ltd, London), which allows setting the sample temperature in the range from 2 K to 300 K with an accuracy better than 0.05 K and magnetic field up to 8 T with central field homogeneity within 0.001% over 25 mm. The temperature was measured with a Cernox™ CX-1030 thermometer located on the holder near the sample. A Lakeshore 340 controller allowed stabilizing temperature with the accuracy of ±5 mK during the measurements.

DC resistivity was measured by the four-probe method with a Keithley 6430 source-measure unit, which generated a DC current of 5 μA and measured the voltage. To measure the Hall voltage, a Keithley 2182A nanovoltmeter was used. The magnetic field was oriented perpendicular to the substrate surface and, hence, perpendicular to the current direction.

Results and discussion

An overview of whole fs-laser ablated 30 × 30 matrix is depicted in figure 1. From both, SEM (figure 1(b)) and optical microscope (figure 1(c)), micrographs one can directly observe a considerable correlation between the brightness or colors of the spots with respect to the laser power (along the vertical axis), and intershot distances (along the horizontal axis). In the area above the 9th row from the bottom (indicated with a ‘SiO$_2$’ arrow in figure 1(b)) significant destruction of the sample surface is clearly noticeable. The 9th row in 30 × 30 matrix was obtained applying fluence of 613 mJ cm$^{-2}$. At the lower laser fluences used (68–545 mJ cm$^{-2}$), the corresponding rows from 1 to 8), some modification of the substrate is still visible, especially at higher pulse densities. Considering the pulse energy (21 mJ) and the diffraction limited laser spot size, the fluence per pulse level of 409 mJ cm$^{-2}$ was determined from SEM analysis as a good technological condition for selective graphene removal (indicated with a ‘G’ arrow in figure 1(c)) using micromachining setup, where the sample was translated with respect to the laser beam. The graphene ablation threshold value identified here is close to those reported in literature [14, 24].

Zoomed-in SEM images of squares, patterned using different fs-laser processing conditions, are depicted in figure 1(d). Indeed, above the ablation threshold of SiO$_2$ as well for high and low level of the beam overlap, a significant destruction of the substrate surface is observed (figures 1(d)(ii)–(v)). For the square patterned, at power level just below the one indicated with a red arrow in figure 1(b), the substrate surface looks undamaged, whereas graphene layer is removed (figure 1(d) (i)). The estimated threshold fluence in the latter area of the array is smaller than the threshold of SiO$_2$ ablation but taking into account transparency of SiO$_2$ and approximately two times smaller ablation threshold of Si, ~300 mJ cm$^{-2}$ [24], we may expect deterioration of top SiO$_2$ layer via ablation of Si underneath. One could also notice that the SiO$_2$ thickness value in our case was from two to six time thicker compared to [24, 32], where fs-laser ablation thresholds were debated. From figure 1(d) one can see that the graphene layer seems intact only ~1.5–2 μm from the laser irradiated area indicating minimal heat affected zones achieved employing ultra-short pulse lasers. These findings are even more pronounced in the Raman analysis as discussed later on.

Since both Si and graphene have Raman active vibration modes, more quantitative information than just simple observation of fs-laser ablated graphene/SiO$_2$/Si/ structure morphology can be obtained from Raman spectroscopy studies. One
Figure 1. Fs-laser ablation of the test array pattern of 30 × 30 squares: (a) laser code screenshot from the SCA software, with arrows indicating the direction of the increasing pulse density and average laser power (fluence). (b) SEM micrograph, where horizontal arrows represent ablation fluence thresholds for SiO₂ (red, fourth row, 272 mJ cm⁻²) and for graphene (blue, ninth row, 613 mJ cm⁻²); numbers in circles indicate places depicted in (d) investigated under higher magnification. (c) Optical microscope micrograph. (d) Higher magnification SEM micrographs of single squares patterned under corresponding conditions: (i) 272 mJ cm⁻² fluence and 0.5 μm intershot distance (80.3% overlap); (ii) 1430 mJ cm⁻², 0.5 μm (80.3%); (iii) 2 043 mJ cm⁻², 0.5 μm (80.3%); (iv) 2 043 mJ cm⁻², 2.8 μm (56.7%); (v) 2 043 mJ cm⁻², 3.4 μm (37.0%).

should keep in mind that the ratio of the intensity of the 2D peak to G peak, \(I_{2D}/I_G \), indicates the presence of graphene as well as its quality [33] while the position of the silicon peak at 520.7 cm⁻¹ can be employed to disclose the structural changes in silicon [34, 35]. In order to interpret the changes on the sample surface after the intensive laser light irradiation, systematic studies were performed employing Raman mapping of four characteristic laser ablated areas covering: (i) lowest, average and higher fluences at high pulse overlaps and (ii) area corresponding to minimal surface damage albeit visible changes according to microscopy study. This approach enabled us to reveal the laser effects on the sample at critical laser processing conditions and to relate the coverage of graphene together with Si destruction as a function of both fluence and pulse overlap. The summarized results are depicted in figure 2.

As expected, for the highest value of fluence (\(\gg 409 \text{ mJ cm}^{-2} \), determined from the microscopy analysis) \(I_{2D}/I_G \) contour plots (see figures 2(a), (b) and (d)) indicate that no graphene is observed in the ablated area and at the same time the position of Si is strongly downshifted towards lower wave numbers compared to crystalline Si (521 cm⁻¹ see figures 2(e) and (f)) indicating damage of the substrate [34, 35]. The typical example of pristine and fs-laser abladed graphene spectra are depicted in figures 2(i) and (j). In particular, the red shift of Raman Si band is shown in figure 2(j) and spectrum of the spectral region characteristic to graphene corresponding to completely ablated graphene is presented in figure 2(i). For the intermediate energy density level (fluence 681 mJ cm⁻², overlap 80.3%), graphene is also removed, but the red shift of Si band position is still noticed, although it is less pronounced. Finally, for the lowest investigated energy density level (68 mJ cm⁻², 80.3%) no change in Si band position is visible (figure 2(g)). However, in this case graphene is removed only partially as indicated by the \(I_{2D}/I_G \) contour value of 0.59 (figure 2(c)). These discussed Raman results set us the range, where the energy density optimum condition for the graphene ablation is located i.e. fluence 409–681 mJ cm⁻² and pulse overlap 33.1%–80.3%, still preserving the quality of the substrate. These values are fully consistent with those obtained from the microscopy analysis (see figure 1).

When the optimized graphene ablation conditions were obtained, a topology for Hall measurements was imposed for verification of fs-laser ablated graphene applicability for practical electrical measurements. Therefore, we used graphene grown and transferred on SiO₂/Si substrate at the same conditions as for the experiment described above. The determined fs-laser ablation conditions were adapted for the galvoscanner-based beam steering setup preserving the necessary fluence level. The latter setup was chosen considering the macroscopic size of the graphene sample used in the

Table 1. Laser processing conditions used in the experiments.

Laser processing parameters	Laser beam steering method
Energy per pulse (nJ)	3.5–103.5
Average power (mW)	0.69–20.70
Pulse density (pulses mm⁻²)	2.54
Pulse overlap (%)	0.5
Intershot distance (μm)	0.5–3.4
Pulse repetition rate (Hz)	0.69–20.70, step 0.7
Intershot distance (μm)	0.5–3.4
Pulse density (pulses mm⁻¹)	294–2 000
Scanning speed (mm s⁻¹)	140.0
Fluence per pulse (mJ cm⁻²)	68.1–2 041.0
Diffraction limited spot size (μm)	2.53
Galvo scanner	400
XYZ scanner	96.4
Negative values corresponds to non-overlapping separated points.	
electrical measurements (2 × 2 cm²) and necessity of the fast fs-laser processing. An optical micrograph of the central part of the resulting microstructure is depicted in figure 3(a). The continuity of the fs-laser patterned graphene strip was verified by Raman mapping technique as well. The I_{2D}/I_G contour plot of (figure 3(b)) revealed that, graphene in the bridge does not contain any holes or gaps, whereas no graphene remained outside the bridge. The AFM scans of the virgin SiO₂ surface, SiO₂ after graphene ablation under optimized conditions and graphene transferred on SiO₂, were acquired in tapping mode. The roughness analysis revealed that the morphology of SiO₂ after graphene ablation (average surface roughness Rₐ = 0.55 nm) is determined by the overall morphology of the virgin surface—Rₐ = 0.57 nm. Finally, the roughness of graphene was evaluated as R₂ = 0.56 nm. The AFM study is in line with the Raman mapping results and indicates that the surface of the substrate is preserved.

In addition to the demonstration of the ability for the direct fs-laser patterning technique of graphene, the present paper also illustrates the applicability of such structure for the evaluation of the charge carrier concentration. In this work we measured Hall resistance R_H as a function of B at different T. These results are depicted in figure 4(a). The experimental R_H(B) dependencies are well fitted by linear approximation. Applying the standard relation for the carrier concentration n from the Hall effect measurements, n = q⁻¹(R_H/B), q being the elementary charge, one can evaluate the n values at different temperatures. This result is shown in figure 4(c). It follows that the carrier concentration slightly varies between 5.1 × 10¹² cm⁻² at T = 50 K and 5.55 × 10¹² cm⁻² at T = 300 K, which is in good agreement with what it should be expected for N-doped graphene [36]. Considering the mutual directions of the external magnetic field and biasing current used in our configuration, we may conclude that the main type of carriers in our nitrogen-doped graphene are holes (p-type).

The main advantage of the structure produced in our case is that graphene was not contaminated by polymer [5] as usually occurs in patterning utilizing conventional lithography. Current–voltage characteristics measured at different temperatures T and constant magnetic inductance B revealed a linear relationship (figure 4(b)), which confirms the absence of leakage currents through the oxide layer into the substrate.
It is generally accepted that the type of charge carriers in N-doped graphene depends on the configuration that the embedded nitrogen atoms form. It is known that the graphitic and pyrolic configuration lead to \(n \)-type, whereas the pyridinic and nitrilic configuration leads to \(p \)-type [37]. In our earlier work [26] we have demonstrated that according to XPS analysis of graphene synthesized at identical conditions, it contained N atom concentration of \(n_N \approx 1.5 \times 10^{13} \text{ cm}^{-2} \). Comparing this value with the charge carrier concentration value obtained from the Hall measurements we may conclude that the average number of holes transferred by nitrogen, \(n/n_N \), is 0.37 per atom at room temperature. This value is very close to what is known for pyridinic N-bond type, 0.45 [37]. For nitrilic bonding this value is higher, 0.66 [37]. From this we could suppose that the probable chemical N-bonding is pyridinic. However, we need to emphasize that evaluation of exact \(n/n_N \) value for graphene requires the elimination of charged transfer effect caused by substrate, trapped water during the graphene transfer, etc which is difficult to achieve and is out of the scope of this work.

Figure 3. Graphene microstructure used for electrical Hall measurements. (a) The optical microscope image of the patterned graphene bridge and six-contacts structure with the box indicating the area, where Raman mapping was performed, together with the wiring diagram and magnetic field (B) orientation used in the electrical measurements (I—direction of the current, \(V_x \)—voltage measurement along the bridge, \(V_H \)—voltage measurement across the bridge). (b) \(I_{2D}/I_G \) map of the graphene bridge structure (dark area corresponds to the contour where no graphene is present).

Figure 4. Electrical Hall measurements. (a) Measured Hall resistance \(R_H \) versus magnetic field at different temperatures (symbols) together with the linear fits (lines). The slopes of linear fits are indicated for each temperature. (b) Current–voltage characteristics measured at different temperatures ranging from 50 K to 300 K at constant magnetic inductance \(B = 8 \text{ T} \). (c) Charge carrier concentration extracted from resistive Hall measurements at different temperatures.

Conclusions

It was demonstrated that bilayer graphene can be effectively removed by fs-laser ablation (fluence per pulse 14.1 mJ cm\(^{-2}\)) at relatively high laser beam positioning speed of 100 mm s\(^{-1}\) in cm\(^2\) areas employing a galvoscanner beam steering without damaging the SiO\(_2\)/Si substrate. Micro Raman analysis elucidated typical effects, corresponding to femtosecond laser irradiation energy densities of the graphene/SiO\(_2\)/Si samples, that were also visible as morphology changes under microscopy analysis.
The fs-laser patterned graphene microstructures demonstrated themselves as applicable for the electrical Hall resistivity measurements that were used in order to obtain the carrier type and their concentration: p-type and 5.5×10^{12} cm$^{-2}$, respectively.

Acknowledgments

The authors are grateful to BSc student Linas Šimatonis and MSc student Orestas Ulčinas for their help with laser ablation experiments and Dr Sergey M Zavadski for AFM measurements. I V K and S L P acknowledge financial support from the ‘Improving of the Competitiveness’ Program of the National Research Nuclear University MEPhI. T T and S T acknowledges funding of a Joint Lithuanian–Latvian–Chinese (Taiwanese) Tripartite Cooperation Programme project co-financed by the Research Council of Lithuania (Grant No. S-LITT-18-2) and the Ministry of Science and Technology of Taiwan (Contract SV3-0618).

ORCID iDs

Tomas Tamulevičius https://orcid.org/0000-0003-3879-2253

Sigitas Tamulevičius https://orcid.org/0000-0002-9965-2724

References

[1] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Electronic transport in two-dimensional graphene Rev. Mod. Phys. 83 407–70

[2] Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonald N, Colombo L, Vogel E M, Ruoff R S and Wallace R M 2011 The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO$_2$ Appl. Phys. Lett. 99 121108

[3] Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y F, Akinwande D and Ruoff R S 2013 Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue Nano Lett. 13 1462–7

[4] Chen Y, Gong X L and Gai J G 2016 Progress and challenges in transfer of large-area graphene films Adv. Sci. 3 1500343

[5] Kovalchuk N G, Nigerish K A, Mikhailik M M, Kargin N I, Komissarov I V and Prischepa S L 2018 Possibility of determining the graphene doping level using Raman spectra J. Appl. Spectrosc. 84 995–8

[6] Sahin R, Simsek E and Akturk S 2014 Nanoscale patterning of graphene through femtosecond laser ablation Appl. Phys. Lett. 104 053118

[7] Bell D C, Lemme M C, Stern L A, Williams J R and Marcus C M 2009 Precision cutting and patterning of graphene with helium ions Nanotechnology 20 455301

[8] Tapasztó L, Dobrik G, Lambin P and Biro L P 2008 Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography Nat. Nanotechnol. 3 397–401

[9] Tan Y W, Zhang Y, Stormer H L and Kim P 2007 Temperature dependent electron transport in graphene Eur. Phys. J. 148 15–8

[10] Gonnelli R S, Paolucci F, Piatti E, Sharda K, Sola A, Tortello M, Nair J R, Gerbaldi C, Bruna M and Borini S 2015 Temperature dependence of electric transport in few-layer graphene under large charge doping induced by electrochemical gating Sci. Rep. 5 9554

[11] Davaji B, Cho H D, Malakoutian M, Lee J K, Panin G, Kang T W and Lee C H 2017 A patterned single layer graphene resistance temperature sensor Sci. Rep. 7 8811

[12] Roch T, Beyer E and Lasagni A 2010 Surface modification of thin tetrahedral amorphous carbon films by means of UV direct laser interference patterning Diam. Relat. Mater. 19 1472–7

[13] Guo L et al 2012 Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device Carbon 50 1667–73

[14] Zhang W, Li L, Wang Z B, Pena A A, Whitehead D J, Zhong M L, Lin Z and Zhu H W 2012 Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene Appl. Phys. A 109 291–7

[15] Yoo J H, In J B, Park J B, Jeon H J and Grigoropoulos C P 2012 Graphene folds by femtosecond laser ablation Appl. Phys. Lett. 100 233124

[16] Cheng C, He R Y, Romero C, de Aldana J R V and Chen F 2017 Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation Appl. Phys. Lett. 111 241901

[17] Perez-Mas A M, Alvarez P, Campos N, Gomez D and Menendez R 2016 Graphene patterning by nanosecond laser ablation: the effect of the substrate interaction with graphene J. Phys. D: Appl. Phys. 49 305301

[18] Mackenzie D M A, Buron J D, Whelan P R, Jesson B S, Silajdzic A, Pesquera A, Centeno A, Zurutuza A, Boggild P and Petersen D H 2015 Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization 2D Mater. 2 045003

[19] Kalita G, Qi L T, Namba Y, Wataki K and Umeno M 2011 Femtosecond laser induced micropatterning of graphene film Mater. Lett. 65 1569–72

[20] Van Erps J et al 2015 Laser ablation- and plasma etching-based patterning of graphene on silicon-on-insulator waveguides Opt. Express 23 26639–50

[21] Wang T, Huang D, Yang Z, Xu S S, He G L, Li X L, Hu N T, Yin G L, He D N and Zhang L Y 2016 A review on graphene-based gas/vapor sensors with unique properties and potential applications Nano-Micro Lett. 8 95–119

[22] Bobrenetskii I, Melianov A, Nasibulin A, Komarov I, Otero N and Romero P M 2016 Photochemical and photochemical effects in ultrafast laser patterning of CVD graphene J. Phys. D: Appl. Phys. 49 41LT01

[23] Roberts A, Cormode D, Reynolds C, Newhouse-Ullie T, Leroy B J and Sandhu A S 2013 Response of graphene to femtosecond high-intensity laser irradiation Appl. Phys. Lett. 99 051912

[24] Dong T Q, Sparkes M, Durkan C and O’Neill W 2016 Evaluating femtosecond laser ablation of graphene on SiO$_2$/Si substrate J. Laser Appl. 28 022202

[25] Gil-Villalba A, Meyer R, Giust R, Rapp L, Billet C and Otero N 2015 Femtosecond laser nano-ablation of CVD monolayer graphene Sci. Rep. 5 14601

[26] Komissarov I V et al 2017 Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD Appl. Phys. Lett. 109 153104

[27] Galli A, Siegel M A, Galzerano D, Grigis G, Attal P, Leeming D, Mattoussi H, Saclier J P, Lebugle J F, Leclercq P, Capoziacchi I, Potin P and Rossignol P 2016 Graphene-based gas/vapor sensors with unique properties and potential applications Nano-Micro Lett. 8 95–119

[28] Komissarov I V et al 2015 Micro Raman investigation of graphene synthesized by atmospheric pressure CVD on copper foil from decane Phys. Proc. 72 450–4

[29] Adomaviciute E, Tamulevičius T, Šimatonis L, Fataaraitė-Urbioniene E, Stankevičius E and Tamulevičius S 2015
Micro-structuring of electrospun mats employing femtosecond laser Mater. Sci. 21 44–51

[29] Antanaviciute I, Simatonis L, Ulcinas O, Gadeikyte A, Abakeviciene B, Tamulevicius S, Mikalayeve V, Skeberdis V A, Stankevicius E and Tamulevicius T 2018 Femtosecond laser micro-machined polyimide films for cell scaffold applications J. Tissue Eng. Regen. Med. 12 E760–73

[30] Tamulevicius T, Simatonis L, Ulcinas O, Tamulevicius S, Zukauskas E, Rekuviene R and Mazeika L 2016 Micromachining and validation of the scanning acoustic microscope spatial resolution and sensitivity calibration block for 20–230 MHz frequency range Microscopy 65 429–37

[31] Juodenas M, Tamulevicius T, Ulcinas O and Tamulevicius S 2018 Implementation of an optimized microfluidic mixer in alumina employing femtosecond laser ablation J. Micromech. Microeng. 28 015013

[32] Rublack T, Muchow M, Hartmayer S and Seifert G 2011 Laser ablation of silicon dioxide on silicon using femtosecond near infrared laser pulses Proc. of the SiliconPV 2011 Conf. (1st Int. Conf. on Crystalline Silicon Photovoltaics) vol 8, pp 467–72

[33] Ferrari A C and Basko D M 2013 Raman spectroscopy as a versatile tool for studying the properties of graphene Nat. Nanotechnol. 8 235–46

[34] BenyouCEF M, Kuball M, Sun J M, Zhong G Z and Fan X W 2001 Raman scattering and photoluminescence studies on Si/SiO2 superlattices J. Appl. Phys. 89 7903–7

[35] Ding W-G, Yuan J, Meng L-H, Wu S-J, Yu W and Fu G-S 2011 Dependence of optical absorption in silicon nanostructures on size of silicon nanoparticles Commun. Theor. Phys. 55 688–92

[36] Scardamaglia M, Struzzi C, Osella S, Reckinger N, Colomer J F, Petacci L, Snyders R, Beljonne D and Bittencourt C 2016 Tuning nitrogen species to control the charge carrier concentration in highly doped graphene 2D Mater. 3 011001

[37] Schiros T et al 2012 Connecting dopant bond type with electronic structure in N-doped graphene Nano Lett. 12 4025–31