Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris

Soroush PARSAa,b,1, Adriana M. GARCÍA-LEMOSb,1, Katherine CASTILLOb, Viviana ORTIZb, Luis Augusto Becerra LÓPEZ-LAVALLEb, Jerome BRAUNc, Fernando E. VEGAd,*

aLife Sciences Innovation Center, University of California, Davis – Chile, Andrés Bello 2299 No. 1102, Providencia, Santiago, Chile
bCentro Internacional de Agricultura Tropical (CIAT), Apartado Aéreo 6713, Cali, Colombia
cStatistical Consultant, 3034 Boulder Place, Davis, CA 95618, USA
dSustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Building 001, BARC-W, Beltsville, MD 20705, USA

\textbf{Article info}

\textbf{Article history:}
Received 3 September 2015
Received in revised form
28 January 2016
Accepted 29 January 2016
Available online 6 February 2016

\textbf{Keywords:}
Aureobasidium pullulans
Biological control
Endophytic
Fungal biology
Seed-borne fungi

\textbf{Abstract}

We conducted a survey of fungal endophytes in 582 germinated seeds belonging to 11 Colombian cultivars of the common bean (Phaseolus vulgaris). The survey yielded 394 endophytic isolates belonging to 42 taxa, as identified by sequence analysis of the ribosomal DNA internal transcribed spacer (ITS) region. Aureobasidium pullulans was the dominant endophyte, isolated from 46.7% of the samples. Also common were Fusarium oxysporum, Xyloccy sp., and Cladosporium cladosporioides, but found in only 13.4%, 11.7%, and 7.6% of seedlings, respectively. Endophytic colonization differed significantly among common bean cultivars and seedling parts, with the highest colonization occurring in the first true leaves of the seedlings.

\textbf{Introduction}

Plant seeds internally host a diversity of microorganisms that may be transmitted locally or systemically to the developing plant (Mano et al. 2006; Rijavec et al. 2007; Ferreira et al. 2008; Kaga et al. 2009). When the microorganism does not cause any apparent symptoms in the plant it is called an endophyte (Hyde & Soytong 2008). Endophytes are ubiquitous in nature, and some have shown potential to enhance their host’s growth, tolerance to abiotic stress, or resistance to pests and pathogens (Wani et al. 2015). For this reason, significant and growing interest surrounds their application in agriculture (Hallmann et al. 1997; Backman & Sikora 2008). Exploring this potential, our study sought to identify promising fungal endophytes naturally occurring in germinated seeds of the common bean, Phaseolus vulgaris.
The common bean is the most important legume crop consumed by humans worldwide (Broughton et al. 2003). It is grown in over 12 million hectares and feeds more than 500 million people in Latin America and Africa alone (Schwartz & Corrales 1989). This crop is also significantly constrained by biotic and abiotic stressors, top among them plant pathogens and drought (Schwartz & Corrales 1989; Allen et al. 1996). Partly due to these constraints, bean yields in developing countries average ca. 650 kg ha⁻¹, roughly 35% of the yield achieved in the US and Canada (Singh 1999). Exploring the utility of endophytes as biocontrol agents to increase bean production is therefore well justified.

Laboratory studies are beginning to unveil the potential of fungal endophytes for common bean production. In one of these studies, endophytic Trichoderma has been found to stimulate common bean growth (Hoyos-Carvajal et al. 2009). More intriguingly, when established as a root endophyte, the fungal entomopathogen Metarhizium robertsi was shown to translocate nitrogen from a dead insect to a common bean plant host, suggesting this endophyte’s potential to protect its host plant from soil pests and at the same time promote plant growth (Behie et al. 2012; Behie & Bidochka 2014). Also promisingly, root colonization by Glomus intraradices, an arbuscular mycorrhizal fungus, has been shown to protect the common bean from dehydration caused by drought and high salinity (Aroca et al. 2007) while another arbuscular mycorrhizal fungus, Glomus macrocarpum, stimulates common bean nodulation and growth (Daft & El-Giahmi 1974).

Little is known about other fungal endophytes naturally occurring in common bean seeds. A recent search for seed-borne bacterial endophytes in the common bean yielded over 50 species, including the new species Rhizobium endophyticum (López-López et al. 2010). A similar search for fungal endophytes is therefore warranted. We responded to this imperative by screening common bean seeds from 11 cultivars grown in Colombia, an important center of diversity for this crop. Our objective was to identify seed-borne fungal endophytes that are transmitted to seedlings and have the potential to enhance common bean production.

Materials and methods

Seed samples and germination

We obtained 1120 seeds representing 11 common bean cultivars from the Genetic Resources Unit at the International Center for Tropical Agriculture (CIAT, after its Spanish acronym) and from a local supermarket in Palmira, Colombia (Table 1). Sixty to 100 seeds of each cultivar were surface sterilized by immersion in 0.1% Triton X-100 (SIGMA, St. Louis, MO) for 2 min, followed by 0.5% sodium hypochlorite for 2 min, and 70% ethanol for 2 min. The seeds were then rinsed three times in sterile distilled water and dried in sterile towel paper. The effectiveness of the seed surface sterilization method was evaluated by pressing individual seeds unto 100 mm × 15 mm Petri dishes containing potato dextrose agar (PDA; Difco™, Sparks, MD) and incubating the plates at 26 °C for 10 d. The disinfection was considered successful when no fungal growth was observed in the PDA plate by the end of the incubation period. The sample was discarded if fungal growth was positive.

Each surface sterilized seed was individually planted in a 50 cm³ sterilized germination tray cell (PlastikA Asociados Ltda., Bogotá, Colombia), containing 11 g of autoclaved vermiculite moistened with 18 ml of sterile distilled water. The plants were allowed to grow for eight days in a walk-in growth chamber set at 25 °C, 47% relative humidity (RH) and a 12 h photoperiod (10 000 lux). All surfaces of the growth chamber were disinfected with the antimicrobial product MonoFoil M1 (Coeus Technology, Anderson, IN) and 70% ethanol before placing the germination trays inside the chamber. Plants were watered with 8 ml of sterile distilled water on days 3, 5, 6, and 7 after planting. To monitor airborne fungal spores that could infect seedlings in the growth chamber, Petri dishes containing PDA media were periodically exposed as sentinels for 15 min inside the growth chamber, incubated for 10 d at 26 °C, and any ensuing fungal growth characterized morphologically. Although a valuable monitoring tool, this method cannot guarantee the complete absence of all fungal contaminants from our growth chamber, particularly fungal species occurring in low frequencies.

Endophyte isolation and culture

We only isolated fungal endophytes from seedlings that had reached their first true leaf stage and were at least 12 cm high eight days after planting. A total of 582 seedlings met these conditions (Table 1). These seedlings were surface-sterilized in bulk following protocols developed by our research team (Greenfeld et al. 2015). Each seedling was first vigorously washed for 2 min in 0.05% Triton X-100, then immersed for 2 min in a solution of 0.5% sodium hypochlorite with 0.05% Triton X-100, followed by a 1 min immersion in 70% ethanol, and three separate rinses in sterile distilled water.

Under sterile conditions in a laminar flow cabinet, we cut each sterilized seedling twice, separating its roots, stem, and leaves. To assess sterilization success, each part was separately imprinted onto a separate PDA media plate thereafter incubated at 26 °C for 10 d (Schulz et al. 1998). The three parts were subsequently cut to yield 12 fragments per seedling, as indicated in Fig. 1. Root and stem fragments were 5 mm long

Cultivar	CIAT	Markets
Bolon Rojo (BR)	40	50
Caraota (CA)	0	15
Cabeza Negra (CN)	0	22
Cargamanto Rojo (CR)	0	50
Diacol Calima (DC)	50	49
Negro Tacana (DOR)	49	0
ICA Quimbaya (IQ)	33	0
Palomito (PA)	0	50
Radical San Gil (RSG)	47	50
SER-16 (SER)	40	0
Tio Canela (TC)	37	0

Table 1 – Sources (and number) of common bean seeds evaluated for fungal endophyte colonization.

and leaf fragments were 5 mm × 5 mm. The disinfection was
considered successful if the PDA imprint resulted in no fungal
growth by the end of its incubation period. Otherwise, we dis-
carded all fragments corresponding to a contaminated seed-
ling part, maintaining only fragments corresponding to
successfully sterilized parts.

After imprinting the fragments, we transferred them onto
\(\frac{3}{4} \) -strength PDA media plates with penicillin (100 mg L\(^{-1}\)),
streptomycin (200 mg L\(^{-1}\)), and tetracycline (50 mg L\(^{-1}\)). The
plates were incubated at 26 °C in darkness, and evaluated
for fungal growth ensuing from the edges of the fragments
for up to 14 d. Such fungal growth was considered ‘endo-
phytic,’ and it was serially sub-cultured onto fresh PDA media
with antibiotics (as above) to obtain monosporic cultures
(Parsa et al. 2013). We cataloged these cultures following the
morphospecies approach (Arnold et al. 2000; Crozier et al.
2006; Thomas et al. 2008), based on multiple characters includ-
ing the colour of the fungal colony, colour changes in the PDA
media after fungal growth, the development and organization
of the aerial mycelium, the surface texture of the mycelium,
the characteristics of the colony margin, and the production
of spores. Fungal cultures were deposited in the Fungal En-
tomopathogen and Endophyte Collection at CIAT.

DNA extraction, amplification and sequencing

Fungal tissue was obtained by scraping mycelium from the
monosporic cultures followed by lyophilization and then
maceration with liquid nitrogen in a sterile mortar. One
gram of the resulting powdered mycelium was used for
DNA extraction using the Invitrogen Easy-DNA extraction
kit (Invitrogen Life Technologies, Carlsbad, CA). The nucleic
acid concentration of each sample was quantified using a
NanoDrop 2000c spectrophotometer (Thermo Scientific,
Wilmington, DE) (Desjardins & Conklin 2010), in order to
generate a 50 ng ml\(^{-1}\) diluted sample. From this dilution,
2 \(\mu \)l was added to 8 \(\mu \)l of a PCR reaction mixture consisting
of 0.5 U \(\mu \)l\(^{-1}\) Platinum\(^\text{®}\) Taq DNA polymerase (Invitrogen
Life Technologies, Carlsbad, CA), 1X PCR Buffer (Invitrogen
Life Technologies, Carlsbad, CA), 2 mM Mg\(^{2+}\), 0.2 mM dNTP’s,
and 0.1 pmol \(\mu \)l\(^{-1}\) primer (both forward and reverse; see be-
low). The PCR amplification was conducted in a Mastercycler
Pro thermal cycler (Eppendorf, Hauppauge, NY) as follows: an
initial denaturation step consisting of 2 min at 95 °C; 35 cy-
cles of 30 s at 94 °C, 1 min at 53 °C, 1 min at 72 °C, and a final
extension of 5 min at 72 °C.

The PCR products were run on 1.5 % (w/v) agarose gel using
1X boric acid-NaOH buffer stained with SYBR\(^\text{®}\) Safe (Invitro-
gen Life Technologies, Carlsbad, CA) to visualize the amplifi-
cation of the desired band length (550–600 bp). The ligation
protocol of the PCR products was performed using the Prom-
ega ligation protocol (Promega 2015). PCR products were
then cloned using the pGEM\(^\text{®}\)-T Easy Vector System (Promega,
Madison, WI), and transformed into competent cells from
Escherichia coli colony DH5\(\alpha\) (Invitrogen Life Technologies;
Carlsbad, CA). The plasmid containing the fragment of inter-
est was purified from E. coli and sent to Macrogen Inc.
(Gasan-dong, Seoul, Korea) for sequencing. The endophytic
fungal isolates were identified by sequencing the internal
transcribed ITS region of the rDNA, using universal fungal
primers ITS4 (\(5’\)TCC TCC GCT TAT TGA TAT GC-3’)
for the for-
ward primer and ITS5 (\(5’\)GGA AGT AAA AGT CGT AAC AAG G-
TCC TCC GCT TAT TGA TAT GC-3’) for the reverse primer
(White et al. 1990).

The raw sequences received from Macrogen Inc. were edi-
ted and assembled using Sequencher Software v5.0 (Gene
Codes, MI, USA). For the endophyte identification, the se-
quences were matched in the GenBank nucleotide database
using the Basic Local Alignment Search Tool (BLAST)
(Altschul et al. 1990). DNA sequences were deposited in Gen-
Bank (Table 2).
Table 2 - Percentage of common bean seedlings colonized by fungal endophytes. Sterilized seeds were germinated in sterile vermiculite in a growth chamber and the resulting seedlings (n = 582) sampled for fungal endophytes eight days later.

Endophyte ID	GenBank accession number	Cultivar^a (number of seedlings)
		BR (90) CA (15) CN (22) CR (50) DC (99) DOR (49) IQ (33) PA (50) RSG (97) SER (40) TC (37)
Acremonium sp.	KR012891	-
Alternaria sp.	KR012902	1
Aspergillus ustus	KR012899	-
Aureobasidium pullulans	KR012884	26 60 38 37 42 6 13 45 5
Chaetomium sp.	KR012907	1
Chaetomium globosum	KR012922	-
Cladosporium cladosporioides	KR012880	-
Cladosporium cladosporioides	KR012883	7 2 2 3 4 3 3 3 3
Colletotrichium	KR012909	2 - 1 - - - - - - -
Curvularia lindemuthianum	KR012910	-
Curvularia sp.	KR012911	-
Curvularia affinis	KR012898	-
Epicoccum sp.	KR012889	-
Epicoccum nigrum	KR012895	-
Fusarium sp. 1^b	KR012920	2
Fusarium sp. 2	KR012890	1
Fusarium sp. 3	KR012894	-
Fusarium sp. 4	KR012901	1 7
Fusarium sp. 5	KR012926	1
Fusarium phaseoli	KR012896	-
Fusarium oxysporum	KR012886	4 7 19
Fusarium solani	KR012915	- 7 2
Macrophoma phaseolina	KR012878	-
Marasmia aff. nigrobrunneus	KR012906	1
Neurospora sp.	KR012910	-
Penicillium commune	KR012904	1
Pestalotiospis sp.	KR012882	1
Pestalotiospis microspora	KR012928	1
Pestalotiospis sydowiana	KR012887	-
Pestalotiospis sp.	KR012893	-
Peyronelae glomerata	KR012905	1
Phaeoephaeospira sp.	KR012892	-
Pleospora sp.	KR012918	1
Stemphyllum sp.	KR012908	-
Stemphyllum solani	KR012916	1
Talaromyces aff. verruculosus	KR012927	-
Uncultured ascomycete	KR012903	1
Uncultured Aureobasidium	KR012885	8 7 34 14 2 18 12 13 3 3
Uncultured endophytic fungus	KR012923	-
Uncultured Xylariales	KR012888	2
Xylaria sp.	KR012879	6

^a BR = Bola Roja; CA = Caracota; CN = Cabeza Negra; CR = Cargamanto Rojo; DC = Diacol Calima; DOR = Negro Tacana; IQ = Ica. Quimbaya; PA = Palomito; RSG = Radical San Gil; SER = Ser-16; TC = Tio Canela.

^b Numbers in Fusarium endophytes ID correspond to isolates that presented different sequences length and different identity percent in BLAST analysis.

Statistical analyses

Fungal endophytes were tabulated and summarized using isolation percentages for each cultivar and plant fragment. For analysis, fragments were grouped into two plant parts: shoots (leaves and stem) and roots. Presence or absence of any fungal endophyte colonization was determined within each plant part summarizing across all fragments. The extent of fungal endophyte colonization was determined within each plant part by the proportion of fragments with colonization. To assess both the distribution of any fungal endophyte colonization and the extent of fungal endophyte colonization across plant parts and cultivars, separate binomial mixed effect models were fit for each with fixed effects for cultivar, plant part, and cultivar by plant part interaction and with a random effect for seed. Post hoc test of simple effects within interaction terms were corrected for multiplicity using the Holm-Bonferroni method. Binomial mixed effect models were fit
Fig 2 – Colonization of fungal endophytes in common bean seedlings from 11 cultivars. Sterilized seeds were germinated in sterile vermiculite in a growth chamber and the resulting seedlings sampled for fungal endophytes eight days later. Shoots include leaves and stem samples. Cultivar: BR = Bola Roja; CA = Caraoa; CN = Cabeza Negra; CR = Cargamanto Rojo; DC = Diacol Calima; DOR = Negro Tacana; IQ = ICA Quimbaya; PA = Palomito; RSG = Radical San Gil; SER = Ser-16; TC = Tío Canela. (A). All fungal endophytes. (B). Distribution of the most common endophyte, *Aureobasidium pullulans*, among the 11 cultivars.

Discussion

The objective of this study was to identify fungal endophytes naturally occurring in germinated seeds of the common bean. To our knowledge, this is the first study to document seed-borne fungal diversity in this crop within its center of origin.

The survey detected a low incidence of seed-transmitted common bean pathogens. The only exception was *Fusarium oxysporum*, which occurred in 13.4% of seedlings evaluated. Other potential pathogens were rare, found in less than 2% of seedlings evaluated. The most important include *Colletotrichum lindemuthianum*, *Fusarium solani*, *Macrophomina phaseolina*, causing agents of bean anthracnose, *Fusarium* root rot, and ashy stem blight, respectively (Schwartz & Corrales 1989). The relative abundance of *Fusarium* spp. compared to other seed-transmitted plant pathogens was also found in numerous surveys of mycotoxin producing fungi in common bean seeds (Tseng et al. 1995; Castillo et al. 2004; Domijan et al. 2005; Embaby & Abdel-Galil 2006; El-Samawaty et al. 2014). Although more commonly plant pathogens, some members of the *Fusarium* genus have shown potential as beneficial endophytes against insects and nematodes (Vu et al. 2006; Paparli et al. 2008). Because we evaluated only healthy
bean seedlings, the potential exists that some of our Fusarium isolates may serve as beneficial endophytes. More promisingly, close to half of the seedlings we evaluated were endophytically colonized by Aureobasidium pullulans. We were unable to find any other report of this species occurring endophytically in common bean seeds. Unlike Fusarium members, A. pullulans has demonstrated no major pathogenic potential in our target crop or any other cultivated plant. Commonly known as black yeast, A. pullulans is an ubiquitous saprophyte in plants (Cooke 1959; Webb & Munó 1978), with demonstrated biological control activity against leaf pathogens (van den Heuvel 1969; McCormack et al. 1995; Dik & Elad 1999; Dik et al. 1999; and postharvest rots (Bhatt & Vaughan 1962; Lima et al. 1997; Schena et al. 1999; Ippolito & Nigro 2000; Schena et al. 2003; Elmer & Reglinski 2006). Relevantly, a study that applied A. pullulans on the surface of bean leaves found that it inhibited leaf lesions caused by Alternaria zinniae (van den Heuvel 1969). Aureobasidium pullulans has also been reported as a common endophyte in numerous plants (Pugh & Buckley 1971; Johnson & Whitney 1989; Schena et al. 2003; Suryanarayanan et al. 2005; Elmer & Reglinski 2006; Osono 2008; Martini et al. 2009). Recently, endophytic A. pullulans has been implicated in resistance to insect pests (Albrechtsen et al. 2010) and plant pathogens (Miles et al. 2012). Particularly promising is its effect on Rhizoctonia solani (Miles et al. 2012), a major soil-borne pathogen limiting common bean production (Schwartz & Corrales 1989). Based on its widespread endophytic colonization in our seed samples, and its demonstrated biological control potential, A. pullulans could be a promising candidate for the endophytic control of common bean pests and pathogens.

The results also suggest significant differences exist in fungal endophyte compatibility across common bean cultivars. The cultivar Diacol Calima ranked amongst the most compatible, as suggested by its high endophytic colonization levels. This finding is particularly significant to our efforts since Diacol Calima is one of the most important common bean cultivars in Latin America (Voysest 2000), and it is also highly susceptible to several key pathogens, including bean anthracnose, angular leaf spot and root rot (Carlos Jara, pers. comm.). Efforts to evaluate the potential of A. pullulans as a disease-inhibiting endophyte in Diacol Calima are therefore justified.

We also found differences in the transmission of seed-borne endophytes across seedling parts. Save a few exceptions, fungal endophytes were more prevalent in shoots than in roots, with the highest colonization occurring in the first true leaves. This distribution may partly reflect the epigeal germination of bean seeds, which renders most of the seed biomass and food reserves above ground. This pattern could also result from plant root and leaf tissues differentially protecting endophytes in the surface sterilization process. A potential implication is that seed-borne endophytes in the common bean may be more effective for the control of foliar relative to root insect pests and pathogens.

Other papers have reported on endophyte diversity within different plant cultivars, e.g., rice (Fisher & Petrini 1992), wheat (Crous et al. 1995), ginseng (Park et al. 2012), grapevine (Cosoveanu et al. 2014), and cotton (Li et al. 2014). All of these articles characterized mature plants grown in an open environment, with prolonged opportunities for fungal invasion after germination. Accordingly, their colonization patterns are unlikely to reflect how seed-borne fungal endophytes are transmitted to seedlings, which is the focus of our contribution.

In summary, the survey of seed-borne fungal endophytes in the common bean revealed A. pullulans as the dominant species. When considered together with the published literature, our results suggest endophytic A. pullulans could offer significant potential to enhance common bean production as an addition to integrated pest management programs. Future empirical work should focus on seed inoculation trials to experimentally test its endophytic biological control potential in the common bean.

Acknowledgements

This project was supported by a Bill and Melinda Gates Foundation Grand Challenges Exploration grant (#OPP1069291, Endophytic biological control for cassava and beans) to S. Parsa and F.E. Vega, and by a Colombian Administrative Department of Science, Technology and Innovation (Colciencias) grant (#2236-521-28463) to S. Parsa.

References

Albrechtsen BR, Bjorkén L, Varad A, Hagner Å, Wedin M, Karlsson J, Jansson S, 2010. Endophytic fungi in European
aspen (Populus tremula) leaves - diversity, detection, and a suggested correlation with herbivory resistance. *Fungal Diversity* 41: 17–28.

Allen DJ, Amfofo JKO, Wortmann CS, 1996. *Pests, Diseases, and Nutritional Disorders of the Common Bean in Africa: a field guide*. International Center for Tropical Agriculture (CIAT), Cali, Colombia.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990. Basic local alignment search tool. *Journal of Molecular Biology* 215: 403–410.

Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA, 2000. Are fungal endophytes hyperdiverse? *Ecology Letters* 3: 267–274.

Arroca R, Porcell R, Ruiz-Lozano JM, 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in *Phaseolus vulgaris* under drought, cold or salinity stresses? *New Phytologist* 173: 808–816.

Backman PA, Sikora RA, 2008. Endophytes: an emerging tool for biological control. *Biological Control* 46: 1–3.

Bates D, Maechler M, Bolker B, Walker S, 2013. *lme4: linear mixed-effects models using Eigen and S4*. R Package Version 1.1-9. http://CRAN.R-project.org/package=lme4.

Beyers SW, Bidochka MJ, 2014. Nutrient transfer in plant-fungal symbioses. *Trends in Plant Science* 19: 734–740.

Bhunty SW, Zelisko PM, Bidochka MJ, 2012. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. *Science* 336: 1576–1577.

Bhattacharya DD, Vahaniy UK, 1962. Preliminary investigation on biological control of grey mould (Botrytis cinerea) of strawberries. *Plant Disease Reporter* 46: 342–345.

Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J, 2003. Beans (*Phaseolus spp.*) – model food legumes. *Plant and Soil* 252: 55–128.

Castillo MD, Gonzalez HHL, Martinez EJ, Pascin AM, Resnik SL, 2004. Mycorrhiza and potential for mycorrhizal production of freshly harvested black bean from the Argentinean main production area. *Mycopathologia* 158: 107–112.

Cooke WB, 1959. An ecological life history of *Aureobasidium pullulans* (de Bary) Arnaud. *Mycopathologia et Mycologia Applicata* 12: 1–45.

Cosoventeau A, Gimenez-Marino C, Cabrera Y, Hernandez G, Cabrera R, 2014. Endophytic fungi from grapevine cultivars in the Canary Islands and their activity against phytopathogenic fungi. *International Journal of Agriculture and Crop Sciences* 7: 1497–1503.

Crous PW, Petrini O, Marais GF, Pretorius ZA, Rehder F, 1995. Occurrence of fungal endophytes in cultivars of *Triticum aestivum* in South Africa. *Mycosience* 36: 105–111.

Crozier J, Thomas SE, Aime MC, Evans HC, Holmes KA, 2006. Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of *Theobroma cacao*. *Plant Pathology* 55: 783–791.

Daft MJ, El-Ghazali AA, 1974. Effect of Endogone mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation in French bean (*Phaseolus vulgaris*). *New Phytologist* 73: 1139–1147.

De Rosario-Martinez H, 2013. *phia: post-hoc interaction analysis*. R Package Version 0.1-5. http://CRAN.R-project.org/package=phia.

Desjardins P, Conklin D, 2010. NanoDrop microvolume quantitation of nucleic acids. *Journal of Visualized Experiments* 45: e2565. http://dx.doi.org/10.3791/2565.

Dik AJ, Elad Y, 1999. Comparison of antagonists of Botrytis cinerea in greenhouse-grown cucumber and tomato under different climatic conditions. *European Journal of Plant Pathology* 105: 123–137.

Dik AJ, Koning G, Köhl J, 1999. Evaluation of microbial antagonists for biological control of Botrytis cinerea stem infection in cucumber and tomato. *European Journal of Plant Pathology* 105: 115–122.

Domijan A-M, Pernica M, Zlender V, Cvjetković B, Jurčević Z, Topolovec-Pintaric S, Ivić D, 2005. Seed-borne fungi and ochratoxin A contamination of dry beans (*Phaseolus vulgaris*) in the Republic of Croatia. *Food and Chemical Toxicology* 43: 427–432.

El-Samawy AMA, Moslem MA, Sayed SR, Yassin MA, 2014. Fungal endophytes survey of some legume seeds. *Journal of Pure and Applied Microbiology* 8: 153–160.

Elmer PAG, Reilinski T, 2006. Biosuppression of Botrytis cinerea in grapes. *Plant Pathology* 55: 155–177.

Embassy AM, Abdel-Galil MM, 2006. Seed borne fungi and mycotoxins associated with some legume seeds in Egypt. *Journal of Applied Sciences Research* 2: 1064–1071.

Ferreira A, Quecine MC, Lacaia PT, Oda S, Azevedo JL, Araújo WL, 2008. Diversity of endophytic bacteria from *Eucalyptus* species and colonization of seedlings by Pantoea agglomerans. *FEMS Microbiology Letters* 287: 8–14.

Perez PG, Petri M, 1992. Fungal saprobes and pathogens as endophytes of rice (*Oryza sativa*). *New Phytologist* 120: 137–143.

Greenfeld M, Pareja R, Ortiz V, Gomez-Jiménez MI, Vega FE, Parsa S, 2015. A novel method to scale up fungal endophyte isolations. *Biocontrol Science and Technology* 10: 1208–1212.

Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepfer JW, 1997. Biological control of endophytic fungi in agricultural crops. *Canadian Journal of Microbiology* 43: 895–914.

Hoyos-Carvajal L, Ordusz S, Bissett J, 2009. Growth stimulation in bean (*Phaseolus vulgaris*) by *Trichoderma*. *Biological Control* 51: 409–416.

Hyde KD, Sotong K, 2008. The fungal endophyte dilemma. *Fungal Diversity* 33: 163–173.

Ippolito A, Nigro F, 2000. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. *Crop Protection* 19: 715–723.

Johnson JA, Whitney NJ, 1989. An investigation of needle endophyte colonization patterns with respect to height and compass direction in a single crown of balsam fir (*Abies balsamea*). *Canadian Journal of Botany* 67: 723–725.

Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H, 2009. Rice seeds as sources of endophytic bacteria. *Microbes and Environments* 24: 154–162.

Li Z-F, Wang L-F, Feng Z-L, Zhao L-H, Shi Y-Q, Zhu H-Q, 2014. Diversity of endophytic fungi form different *Verticillium*-wilt resistant *Gossypium hirsutum* and evaluation of antifungal activity against *Verticillium dahliae* in vitro. *Journal of Microbiology and Biotechnology* 24: 1149–1161.

Lima C, Ippolito A, Nigro F, Salerno M, 1997. Effectiveness of *Aureobasidium pullulans* and Candida oleophila against postharvest strawberry rots. *Postharvest Biology and Technology* 10: 169–178.

López-López A, Rogel MA, Ormeno-Orrillo E, Martínez-Romero J, Martínez-Romero E, 2010. *Phaseolus vulgaris* seed-borne endophytic community with novel bacterial species such as *Rhizobium endophyticum* sp. nov. *Systematic and Applied Microbiology* 33: 322–327.

Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H, 2006. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (*Oryza sativa*) cultivated in a paddy field. *Microbes and Environments* 21: 86–100.

Martini M, Musetti R, Grisan S, Polizzotto R, Borselli S, Pavan F, Osler R, 2009. DNA-dependent detection of the grapevine fungal endophytes *Aureobasidium pullulans* and *EpíCoccum nigrum*. *Plant Disease* 93: 993–998.

McCormack P, Wildman HG, Jeffries P, 1995. The influence of moisture on the suppression of *Pseudomonas syringae* by

Aureobasidium pullulans on an artificial leaf surface. FEMS Microbiology Ecology 16: 159–166.
Miles LA, Lopera CA, Gonzalez S, Cepero de Garcia MC, Franco AE, Restrepo S, 2012. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian paramo ecosystem. BioControl 57: 697–710.
Osono T, 2008. Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100: 387–391.
Paparu P, Dubois T, Gold CS, Coyne D, 2008. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants. Microbial Ecology 55: 561–568.
Park SU, Lim H-S, Park K-C, Park Y-H, Bae H, 2012. Fungal endophytes from three cultivars of Panax ginseng Meyer cultivated in Korea. Journal of Ginseng Research 36: 107–113.
Parsa S, Ortiz V, Vega FE, 2013. Establishing fungal entomopathogens as endophytes: towards endophytic biological control. Journal of Visualized Experiments 74: e50360. http://dx.doi.org/10.3791/50360.
Promega, 2015. Technical Manual pGEM®-T and pGEM®-T Easy Vector Systems. Promega Corporation. https://www.promega.com/resources/protocols/technical-manuals/0/pgem-t-and-pgem-t-easy-vector-systems-protocol/ (last accessed 22.12.15.).
Pugh GF, Buckley NG, 1971. Aureobasidium pullulans: an endophyte in sycamore and other trees. Transactions of the British Mycological Society 57: 227–231.
R Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (last accessed 22.12.15.).
Rijavec T, Lapanje A, Dermastia M, Rupnik M, 2007. Isolation of bacterial endophytes from germinated maize kernels. Canadian Journal of Microbiology 53: 802–808.
Schena I, Ippolito A, Zahavi T, Cohen L, Nigro F, Droby S, 1999. Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biology and Technology 17: 189–199.
Schena I, Nigro F, Pentimone I, Ligorio A, Ippolito A, 2003. Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology and Technology 30: 209–220.
Schulz B, Guske S, Dammann U, Boyle C, 1998. Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25: 213–227.
Schwartz HF, Corrales MAP, 1989. Bean Production Problems in the Tropics. International Center for Tropical Agriculture (CIAT), Cali, Colombia.
Singh SP, 1999. Production and utilization. In: Singh SP (ed.), Common Bean Improvement in the Twenty-first Century. Kluwer Academic Publishers, Dordrecht, pp. 1–24.
Suryanarayanan TS, Wittlinger SK, Faeth SH, 2005. Endophytic fungi associated with cacti in Arizona. Mycological Research 109: 635–639.
Thomas SE, Crozier J, Aime MC, Evans HC, Holmes KA, 2008. Molecular characterisation of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gleri, in Ecuador. Mycological Research 112: 852–860.
Tseng TC, Tu JC, Tzean SS, 1995. Mycoflora and mycotoxins in dry bean (Phaseolus vulgaris) produced in Taiwan and in Ontario, Canada. Botanical Bulletin of Academia Sinica 36: 229–234.
von den Heuvel J, 1969. Effects of Aureobasidium pullulans on numbers of lesions on dwarf bean leaves caused by Alternaria zinniae. Netherlands Journal of Plant Pathology 75: 300–307.
Voyvost O, 2000. Mejoramiento genetico del frijol (Phaseolus vulgaris L.): legado de variedades de América Latina 1930–1999. International Center for Tropical Agriculture (CIAT), Cali, Colombia.
Vu T, Hauschild R, Sikora RA, 2006. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8: 847–852.
Wani ZA, Ashraf M, Mohiuddin T, Riyaz-Ul-Hassan S, 2015. Plant endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology 99: 2955–2965.
Webb TA, Mundt JO, 1978. Molds on vegetables at the time of harvest. Applied and Environmental Microbiology 35: 655–658.
White TJ, Bruns T, Lee S, Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). PCR Protocols: a guide to methods and applications. Academic Press, New York, pp. 315–322.