Wild edible plant species used in the Ağrı province, eastern Turkey

Zakine KADIOGLU¹, Kemal CUKADAR², Nalan Nazan KALKAN³, Huseyn VURGUN⁴, Ozkan KAYA⁵*
Erzincan Horticultural Research Institute, 24060 Erzincan, Turkey.

*Correspondence: kayaozkan25@hotmail.com
1https://orcid.org/0000-0003-2727-6771, 2https://orcid.org/0000-0003-1395-0964
3https://orcid.org/0000-0002-1679-6125
4https://orcid.org/0000-0003-5871-8873
5https://orcid.org/0000-0001-5871-8873

Abstract. Wild edible plant species found in Ağrı are nutritionally and economically relevant. Plants are collected by the villagers and brought to the market for sale in the spring. Interest in these plants responds to the increasing demand for organic and natural food. In this study, 350 in-depth face-to-face interviews with villagers about the edible plants used in Ağrı (7 districts, 35 villages) were conducted in the region from April 2016 to October 2017. The species, parts used and their consumption and preservation techniques were analyzed and documented. Some of the wild edible plant species are consumed cured or canned, raw or cooked, dried, and some are frozen. The collected 100 wild edible species belong to 25 different plant families. Species are consumed as vegetables (91), spices (19), beverages (16), subterranean parts (5), fruits (3), seeds (3) and exudates (2). The most important species according to their cultural importance were: *Amaranthus retroflexus*, *Beta trigyna*, *Gundelia tournefortii*, *Mentha longifolia*, *Polygonum persicaria*, *Rumex scutatus*, *Tragopogon porrifolius* subsp. *longirostris*, and *Urtica dioica*. Leaves and young shoots were the most frequently used parts. Our study shows that wild edible plants are still well known and used by the local people of Ağrı as a food source. The documented data on these plants herein could be used as baseline information for further investigations on nutritional contents, as they could have the potential to become valuable nutrition sources.

Keywords. Ethnobotany, local names, modes of use, vegetables, wild plants.

Resumen. Las plantas silvestres comestibles que se encuentran alrededor de Ağrı siguen siendo importantes para la alimentación y la economía local. Estas plantas son recolectadas por la población local y vendidas en el mercado en primavera. El interés por las plantas silvestres comestibles ha aumentado debido a la creciente demanda de alimentos orgánicos y naturales. En este estudio se realizaron 350 entrevistas cara a cara entre abril de 2016 y octubre de 2017 a habitantes de la región de Ağrı (7 distritos, 35 pueblos). Se analizaron y documentaron las especies empleadas, las partes comestibles y sus modos de preparación, conservación y consumo. La mayoría se consumen, pero también se toman crudas. También se procesan en forma de conservas, se secan o se congelan. Las 100 especies registradas pertenecen a 25 familias y se usan como verduras (91), condimentos (19), bebidas (16), órganos subterráneos (5), frutos (3), semillas (3) y exudados (2). Según su importancia cultural, las plantas más importantes son: *Amaranthus retroflexus*, *Beta trigyna*, *Gundelia tournefortii*, *Mentha longifolia*, *Polygonum persicaria*, *Rumex scutatus*, *Tragopogon porrifolius* subsp. *longirostris*, y *Urtica dioica*. Las hojas y brotes jóvenes son las partes más utilizadas. Estos resultados muestran que las plantas silvestres comestibles todavía son muy conocidas y utilizadas por la población local de Ağrı como fuente de alimento. Además, los datos recopilados sobre estas plantas podrían usarse para futuras investigaciones sobre sus contenidos nutricionales, ya que tienen el potencial de convertirse en valiosas fuentes de nutrientes.

Palabras clave. Etnobotánica, modos de uso, nombres locales, plantas silvestres, verduras.

INTRODUCTION

Edible plants that are gathered in the wild to be consumed as a drink or food have been an integral part of millions of people in rural and even urban regions in many developed countries around the world (Block 1991; Heinrich & al. 2006; Leonti & al. 2006; Behre 2008; Łukasz 2013; Reyes-Garcia & al. 2015), suggesting that the effects of wild edible plant resources on peoples’ health are still little known and that their consumption and gathering have been reduced both in diversity of species and quantity (Millennium Ecosystem Assessment 2005; Tardio & al. 2006; Łukasz 2013; Reyes-Garcia & al. 2015; Bharucha & Pretty 2010; Pardo-de-Santayana & al. 2007). This decrease in wild plants use is related to urbanization and associated rural migration, modernization of lifestyles, industrialization of food production, and extinction of natural plant habitats, among others (Pardo-de-Santayana & al. 2005; Turner & Turner 2008; Bharucha & Pretty 2010; Kalle & Soukand 2013; Łukasz & al. 2013; Abbet & al. 2014; Reyes-Garcia & al. 2015).

How to cite this article: Kadioğlu Z., Cukadar K., Kalkan N.N., Vurgun H. & Kaya O. 2020. Wild edible plant species used in the Ağrı province, eastern Turkey. *Anales del Jardín Botánico de Madrid* 77: e098. https://doi.org/10.3989/ajbm.2554

Title in Spanish: Plantas silvestres comestibles en la provincia de Ağrı, Turquía oriental.

Associate Editor: Manuel Pardo-de-Santayana. Received: 14 April 2020; accepted: 28 September 2020; published online: 21 December 2020.
Ethnobotanical studies on European wild edible plants have been mainly conducted in the Mediterranean region (Ertuğ 2004; Tardio & al. 2006; Rivera & al. 2007; Pieroni & al. 2008; Blanco-Salas & al. 2019). All these investigations clearly indicate that wild leafy vegetables or wild culinary herbs still represent a relevant part of the local or territorial Mediterranean diet in rural areas. Furthermore, their nutritional constituents have been studied in numerous publications showing relevant human health benefits (Guil Guerrero & al. 1998; Trichopoulou & al. 2000; Couladis & al. 2003; Pieroni & al. 2002; Tarwadi & Agte 2003; Zeghichi & al. 2003).

However, deep changes in feeding habits of people living in the Mediterranean rural areas have occurred and many local or traditional dietary models have already been forgotten, especially in situations where environmental and cultural transformations have led to changes in local diets (Tumino & al. 2002), and thus local people have lost their plant knowledge over time. Therefore, studies on traditional food culture should be urgently implemented. This goes particularly for those regions in countries like Turkey, where, for historical and geographical reasons, have remained relatively isolated and local food uses are still alive but at risk of disappearing (Kadıoğlu & al. 2020).

Turkey, at the crossroads between Europe and Asia, has a very rich flora in terms of wild foods and several ethnobotanical studies have been conducted in various regions (e.g., Özgökçe & Özcėlik 2004; Simsek & al. 2004; Kargıoğlu & al. 2008; Öztürk & Dİnç 2005; Satılı & al. 2008; Ezer & Arısan 2006; Çakılcıoğlu & Türkoğlu 2010). However, in Ağrı province (eastern Turkey) only one ethnobotanical work has been carried out in limited areas and there is a need now to update this information (Gümüş 1994). Therefore, the aim of this paper is to compile the ethnobotanical information about the gathering and consumption of wild edible plant species in the Ağrı province (Turkey) and provide a picture of their current knowledge and utilization.

MATERIALS AND METHODS

The study area

The findings for edible wild plants were collected in the eight districts of the Ağrı province, namely, Diyarı, Doğubayazıt, Eleskirt, Hamur, Patnos, Taşlıçay and Tutak (Fig. 1), a region with an old traditional background in the consumption of these plant species. The Ağrı province is situated in eastern Anatolia Region of Turkey between the latitudes 38°59'–40°02'N and longitudes 42°15'–44°36'E. It covers a total land area of 11,520 km² with a human population estimated at about 540,000. The climate in central districts is generally continental. According to the data from meteorological stations (Ağrı, Doğubayazıt and Patnos), which perform long term observations in Ağrı (1960–2012), the annual average temperatures of the province vary between 6.2°C and 9.2°C. The temperature in Ağrı may rise to 39.9°C in August and go down to -45.6°C in January. The number of frosty days is 160.7 days, and mean annual rainfall is 521.8 mm/yr.

One village of each district was selected for an exhaustive biodiversity inventory based on their altitude and vegetation cover (Fig. 1). The spatial extent of the villages is highly variable and so the villages were determined with help of Development Agents and agricultural specialists in study areas. In each village, we started by inventorying these plant species. Five different villages in each district of the study area were visited for the ethnobotanical interviews (for all 7 districts = in total 35 villages or small towns).

The study was carried out between 2014 and 2015 (from April to October). We carried out fieldwork to elaborate the inventory about wild edible plants, and also interviewed native elders who were familiar with these plants. Data were collected through open in-depth interviews with local elders (Martin 2014). Elderly and experienced people who lived in this region for many years and who knew the plants very well were favoured. Older women were preferred since they are more knowledgeable about edible wild plants than men. Ten informants were interviewed in each village and therefore 350 informants (7*5*10 = 350) were recruited (290 female, 60 male; average age 65).

We asked native elders to list all the wild food plants of the region and, for each wild edible plant species listed, to indicate all relevant knowledge about its consumption and gathering: present and past use, processing techniques and mode of consumption. Knowledge regarding wild edible plants was categorized according to Kadıoğlu & al. (2016): Turkish vernacular name, part of the plant used (whole plant, leaf, stem, shoot, root, tuber, exudates, flower, seed and fruit), traditional preparation for consumption and consumption time. Wild food plant uses were organized under seven food use-categories: vegetables (including the subcategories cooked, raw, and pickles), spices, beverages, seeds, fruits, exudates and subterranean parts.

The identifications of the reported wild edible plants are based on Davis & al. (1988) and Davis (1965–1985). Identifications were made by the Prof. Dr. Ali Kandemir. Two specimens of each wild edible plant species accompanied by detailed information on the collection locality, the characteristics of the plant, vernacular names, native culinary uses, and wild edible plants meanings were deposited in the herbarium of the Turkey Seed Gene Bank (Ankara) center and the Erzincan Horticultural Research Institute.

Data Analysis

The Cultural Importance (CI) index (Tardio & Pardo-de-Santayana 2008) was used to express the importance of the studied species:

$$UV_i = \sum UR/N$$

where N is the total number of informants interviewed in the survey (350) and UR is the number of informants that mention each use-category for the species. For example, in
the case of *Anthriscus sylvestris* (L.) Hoffm., 31 informants mentioned its use as a cooked vegetable, 48 as a raw vegetable, 61 as pickles, 14 as spice. Therefore, $CI = (31+48+61+14)/350 = 0.44$.

We also calculated the total CI of each use-category, adding the CI of all the species included in each category and the average CI of the category dividing the total CI of the category between the number of species reported for the category. For example, there are three species in the use-category seeds (*Cephalaria syriaca* (L.) Schrad., *Gundelia tournefortii* L., and *Vicia cracca* L.). As these uses were mentioned by 46, 35 and nine people, respectively, their CI as seed was 0.13, 0.10 and 0.03. The total CI of seeds was 0.26, the result of adding 0.13, 0.10 and 0.03 and the average CI of seeds was 0.09, 0.26 divided by three, i.e. the number of species of the use-category seeds.

RESULTS AND DISCUSSION

The ethnobotanical survey showed a great diversity of plant species used as wild foods in Ağrı. A total of 100 wild plant species and 25 families were documented and inventoried (Appendix 1). Among the 25 families, the four most important were Asteraceae (17 species), Lamiaceae (14 species), Apiaceae (12 species), and Polygonaceae (10 species). The remaining 21 families have from four (Brassicaceae, Amaranthaceae) to one species (Araceae, *Arum rupicola* Boiss; Caprifoliaceae, *Cephalaria syriaca*; Caryophyllaceae, *Silene vulgaris* (Moench) Garcker var. vulgaris; Hypericaceae, *Hypericum perfoliatum* L.; Malvaceae, *Malva neglecta* Wallr.; Primulaceae, *Primula auriculata* Lam.; Urticaceae, *Urtica dioica* L.; and Xanthorrhoeaceae, *Eremurus spectabilis* M.Bieb., respectively) (Figure 2).

Based on the CI, the most important species were (ordered by CI): *Amaranthus retroflexus* L. (0.98), *Tragopogon porrifolius* subsp. longirostris (Sch.Bip.) Greuter (0.98), *Urtica dioica* (0.98), *Beta trigyna* Walds. & Kit. (0.97), *Gundelia tournefortii* L. (0.97), *Mentha longifolia* L. (0.97), *Polygonum persicaria* L. (0.97), *Rumex scutatus* L. (0.97), *Anchusa leptophylla* Roemer & Schultes (0.94), *Caltha palustris* L. (0.93), *Capsella bursa-pastoris* L. (0.93), *Silene vulgaris* var. vulgaris (0.93), *Rumex crispus*
L. (0.92), Malva neglecta Wallr. (0.91), Nonea melanocarpa Boiss. (0.91), Rumex patientia L. (0.91), Thymus kotschyanus Boiss. & Hohen. (0.90). All are vegetables, and most of them are eaten cooked. These data show that there is still a considerable number of species that are widely known, since most of them were cited by more than 90% of the people interviewed (Appendix 1).

Allium kharputense Freyn & Sint., Alyssum peltarioides Boiss., Caltha palustris L., Ferula orientalis L., Rumex patientia, Scorzonera mollis M.Bieb. subsp. szowitzii (DC) D.F.Chamb., and Stachys lavandulifolia Vahl, are some of the local wild edible plants used daily in the Ağrı region. They are loved as food and have not undergone any changes over the past decade (Appendix 1).

These species are gathered for self-consumption or are sold in local markets of the area. Some of these species are suffering overexploitation, so they are in danger of extinction due to unconscious or incorrect collecting techniques such as uprooting: Arum rupicola Boiss., Crocus biflorus subsp. tauri (Maw) B.Mathew, Rheum ribes L.

The vast majority of wild edible plants mentioned are frequently used as food in Turkey and other regions east of Turkey. However, several wild edible plants are only utilized in small areas of Turkey (e.g., Amaranthus retroflexus, Chenopodium album subsp. album, Eremurus spectabilis, Gundelia tournefortii, Malva neglecta, Mentha longifolia, Polygonum sibiricum Meissn., Portulaca oleracea, Rheum ribes, Rumex crispus, Rumex scutatus, Scorzonera cana (C.A Meyer) Griseb. var. jacquiniana (W.Koch) Chamberlain, Tragopogon dubius Scop., and Urtica dioica (Çakilcioglu & Turkoglu 2010; Özgen & al. 2004; Ugulu & al. 2009; Ezer & Arısan 2006; Kirbağ & Zengin 2006; Akan & al. 2008; Ari & al. 2015).

The use-category that included most plants was vegetables (91 taxa), followed by spices (19), beverages (16), subterranean parts (5), fruits (3), seeds (3), and exudates (2). The highest CI was for vegetables (total 42.84; cooked 28.3, raw 11.65, pickles 2.89), followed by spices (5.38), beverages (2.21), fruits (1.52), subterranean parts (1.46), exudates (0.32) and seeds (0.26). However, the highest average CI was for fruits (0.51), followed by cooked vegetables (0.46), raw vegetables (0.24), spices (0.38) and subterranean parts (0.29) (Table 1).

Vegetables

The most diverse use-category, with 91 species, was clearly vegetables. The high global CI of the category (42.84) and its high average (0.47) indicate that they are also the most widely used. As in previous studies, our results confirm the high diversity and intensive use of wild vegetables in east Turkey (Özgen & Kaya 2004; Özgökçe & Özçelik 2004; Kirbağ & Zengin 2006; Akan & al. 2008; Çakilcioglu & Turkoglu 2010; Çakilcioglu & al. 2010; Kadioglu & al. 2016, 2020).

Table 1. Number of wild edible plant species and cultural importance of the use-categories and subcategories in the Ağrı province, Turkey.

Use-category/subcategory	Number of species	Cultural Importance (CI total/average CI)
Vegetables (VEG)	91	42.84/0.47
Cooked (VEG)	61	28.3/0.46
Raw (VEG)	48	11.65/0.24
Pickles (VEG)	9	2.89/0.32
Spices (SPI)	19	5.38/0.38
Beverage (BEV)	16	2.21/0.14
Subterranean parts (SUB)	5	1.46/0.29
Fruits (FRU)	3	1.52/0.51
Seeds (SEE)	3	0.26/0.09
Exudates (EXU)	2	0.32/0.16

Fig. 2. Number of wild edible plants surveyed in the Ağrı province, distributed across plant families.
Many of these vegetables are rich in valuable nutrients. For instance, *Malva neglecta*, eaten cooked or raw, is rich in vitamins A, B, and C (Yeşil & al. 2019). It has substantial local value as a vegetable (CI cooked: 0.8 and CI raw 0.11) both in bordering countries and Turkey (Yeşil & Akalın 2010; Pieroni & al. 2017; Yeşil & al. 2019). As in the other parts of Turkey and in bordering countries, roots, young stems and petioles of *Gundelia tournefortii*, a good source of vitamins A, C and E are consumed cooked or raw in the study region (Şimşek & al. 2004; Yeşil & Akalın 2010; Karaaslan & al. 2014; Ahmad & al. 2015; Pieroni & al. 2017; Yeşil & al. 2019).

Most species are gathered in spring (mainly May and June), although there are also species that can be gathered earlier (e.g., *Crocus biflorus* subsp. *tauri* young leaves are consumed in March and April), later (e.g., *Rumex ribes* flower stems are eaten in July) or even all year round (e.g., *Stachys lavandulifolia* Vahl., *Ziziphora clinopodioides* Lam.). The plant parts most commonly used are young leaves and shoots. They are usually eaten fresh, mainly cooked (61 species), or raw (48). Besides nine species are preserved in pickles. The use-category cooked vegetables is clearly the most important (total CI 28.3, average CI 0.46). For instance, five of the species with the highest CI values are only consumed cooked (i.e., *Amaranthus retroflexus*, *Beta trigyna* Walds. & Kit., *Polygonum persicaria*, *Tragopogon porrifolius* subsp. *longirostris* (Sch. Bip.) Greuter). The tops of the shoots, leaves and shoots are eaten cooked, stirred with olive oil and fried in oil with chili or garlic and different spices mixed with other wild vegetables.

An interesting group of cooked vegetables are those used to prepare *dolma*, an important component of Turkish cuisine inherited from the Ottomans. *Dolma* consists of stuffed vegetables like eggplant or stuffed peppers. They are usually stuffed with rice, meat and bulgur (chopped wheat). Big leaves of *Heracleum trachylymon* Fisch. & C. Mey, *Plantago major* L., several *Rumex* species (*R. alpinus* L., *R. crispus* L., *R. obtusifolius* L. subsp. *subalpinus* (Schur) Celak., *R. patientia*), and *Salvia verticillata* L. subsp. *verticillata* are also used for wrapping *dolma*. Besides, young leaves of *Eremurus spectabilis* are used in stews that are added to the filling of *dolma*.

There are also species that are both eaten cooked and raw (e.g., * Scorzonera mollis* subsp. *szowitzii*, *Tragopogon aureus* Boiss.). Besides a very important number of species are only eaten raw, being *Rumex scutatus* the species with highest CI (0.97). Some of them are brought home to prepare salads (e.g., *Portulaca oleracea* L., *Rumex scutatus*, *Teucrium chamaedryis* L.) and others are consumed without any preparation. For instance, the fresh leaves of *Allium kharputense* Freyn & Sint., *Allium gramineum* K.Koch (Körmern, Sir, Sirim), *Arctium tomentosum* Mill., *Caltha palustris*, *Plantago major*, *Rumex crispus*, *Rumex obtusifolius* subsp. *subalpinus*, *Rumex patientia*, and *Xanthogalum purpurascens* Lalllem. are consumed raw at home. On the other hand, the fresh leaves and fresh shoots of other species are consumed raw in the field (e.g., *Allium atrovialuceum* Boiss., *Anthriscus nemorosa* (M.Bieb) Spreng., *Carduus nutans* L., *Heracleum trachylymon*, *Hylotelephium telephium* (L.) H.Öhba, *Onopordum acanthium* L., *Rheum ribes*, *Scorzonera cana* (C.A.Meyer) Griseb. var. *jacquiniana* (W.Koch) D.F.Chamb., *Scorzonera mollis* subsp. *szowitzii*, *Sempervivum minus* Turr. ex Wale., *Tragopogon aureus*, and *Tragopogon dubius* Scop.).

Besides leaves and young shoots, flowers are also consumed. This is the case of the young flowers of *Iris persica*, that are valued for their mild taste. Interestingly, they are known as the heralds of the arrival of spring (Yeşil & al. 2019). Other interesting species is *Echinops pungens* Trautv. which immature receptacle of the inflorescences are consumed in a similar way as the heart of the artichokes.

The other important category of vegetables are those used to elaborate pickles. While only nine species are used, its average CI is high (0.32). Their shoots are placed in a sterilized jar along with salt, as well as spices, and are then allowed to mature until the desired taste is obtained. In general, tarterness has a very important place in making pickles for people in the region, as the tart taste of these plants is perceived as a special flavor in the sense of “a different taste” and “good for the food”. For instance, * Ferula orientalis* L. and *Prangos platyclaena* Boiss. are especially valuable for the inhabitants of the Ağrı region and their taste is described as “tart or sour” (*Heliz or Çakşur* in Ağrı). While *Ferula orientalis* (0.75) and *Prangos platyclaena* (0.78) are culturally important species in the study region, their usage is not very common in other areas of Turkey (Kadioğlu & al. 2016, 2020).

Taste has an important place in the selection of wild edibles for local communities and people pay attention to collect tart/sour wild edible plant species to obtain a balanced taste of the meals. On the other hand, the taste of plants or foods is often an important criterion for categorizing, characterizing and detecting food plants (Johns 1986; Nebel 2004; Yeşil & Akalın 2010; Karaaslan & al. 2014; Ahmad & al. 2015; Pieroni & al. 2017; Yeşil & al. 2019).

Spices

Plants used for seasoning food are also commonly used. Nineteen species with a total CI of 5.38 and an average CI of 0.28 were reported, being *Mentha longifolia* L. (CI = 0.89), *Thymus sylpyleus* Boiss. (0.63) and *Ziziphora clinopodioides* Lam. (0.58) the species with highest CI. These species are used freshly in salads called Turkish Shepherd’s Salad, *Rezepete, Mamzana*. Additionally, dried parts of them are cooked and consumed in yogurt soups such as Turkish Yogurt Soup. Many of these plants are members of the Lamiaceae family and are also consumed raw and to prepare herbal teas (e.g., *Nepeta italica* L., *Satureja hortensis* L.). An interesting group of six species are used to flavor cheese, mainly *Allium* species and several Apiaceae (e.g., *Anthriscus sylvestris*, *Chaerophyllum bulbosum* L.).
Beverages

In the studied region, 16 taxa were used for preparing herbal teas, being Alyssum peltaroides Boiss the most cited species (0.49). All their parts are consumed as a tea, but also as salad and spice. Another widely consumed beverage is the sherbet (diluted syrups produced with the addition of sugar) made from the flowers of Papaver argemone L. (0.3). Young shoots and leaves of Hypericum perforatum L. (0.23), Mentha longifolia L. (0.06), Nepeta racemosa Lam. (0.03), Nepeta italica L. (0.07), Rosa pimpinellifolia L. (0.18), Salvia multicaulis Vahl. (0.03), Satureja hortensis L. (0.28), Stachys lavandulifolia Vahl. (0.04), Thymus kotschyanus (0.07), Thymus pubescens Boiss. & Kotschy ex Celak. (0.11), Thymus sipyleus (0.06), and Ziziphora clinopodioides Lam. (0.03) are also used as herbal teas as in other Turkish regions (Özgen & Kaya 2004; Özugkçe & Özçelik 2004; Kirbağ & Zengin 2006; Akan & al. 2008; Kadioglu & al. 2016, 2020). Another interesting common beverage in Ağrı, also previously cited, is the herbal tea prepared with flowers of Iris persica (0.06) (Akgül & al. 2018).

Subterranean parts

Roots and tubers from five species are eaten in the region, being Arctium tomentosum the most cited (0.66). Its root collar is peeled and consumed raw. The roots of two thistles (Cirsium rhizocephalum C.A Mey., 0.26; Onopordum acanthium, 0.21) are consumed after cooking and the roots of Lathyrus tuberosus L. (0.06) and the corms (bulbiferous tubers) of Crocus biflorus subsp. tauri (0.27) raw.

Fruits

The fruits of three taxa, including Lathyrus tuberosus L. (0.27), Rosa pimpinellifolia L. (0.37), and Rubus idaeus L. (0.87) are consumed raw. The fruits of Rosa pimpinellifolia are especially known for their effectiveness in colds and for strengthening the body’s defenses against infection (Baytop 1999). Furthermore, fruits of Rosa pimpinellifolia are rich in minerals (C, P, A), vitamins (B1, B2, E, K), organic acids, sugar, tannins, pectin, essential oils (Demir & Özcan 2001; Mehmet & al. 2018). In addition, Rubus idaeus L. fruits are used to elaborate jams and the leaves of Rosa pimpinellifolia are dried and used to prepare a drink.

Seeds

The use-category seeds includes three species. From our knowledge, Cephalaria syriaca (0.1) has been recorded as edible in the present study for the first time. The seeds are ground and used for making bread mixed with wheat flour. Gundelia tournefortii seeds (0.13) are cooked and consumed as grain/kernel substitutes. The seeds of the plant are dried with a paper towel and placed in a bowl. Then olive oil and salt are added. It is spread on a baking sheet and baked for 5–10 minutes until browned and crispy. Given their lipid content they have been studied as a source of edible oil (Khanzadeh & al. 2012). Finally, Vicia cracca raw seeds are eaten as in southeastern Turkey (Yeşil & al. 2019).

Exudates

In the study area, the latex of Gundelia tournefortii (0.25) roots and Scorzonera latifolia (Fisch. & C. A. Mey.) DC. (0.07) shoots are used to prepare chewing gum. These findings are similar to our previous results (Kadioglu & al. 2016, 2020).

Plant names

A very rich number of plant names was obtained. Local phytonyme of wild edibles consisted in 157 local names, 145 simple (e.g., sogutu, kuskekme) and 12 complex names (e.g., yabani sakiz, yer citegi) (Appendix 1). The average number of names by species was 2.13, having most species one, two or three names (25, 29 and 25 species respectively). Generic names that are used for several species were also common. For instance kimi and mendek were applied to three different morphologically similar Apiaceae species (Anthriscus sylvestris, Chaerophyllum bulbosum, Ch. crinitum Boiss.), and kekik to four Lamiaceae species (Thymus kotschyanus, Thymus pubescens, Thymus sipyleus, Ziziphora clinopodioides).

The language of the vast majority of the wild edible plant species names recorded is Turkish (e.g., evelik, Rumex crispus, Rumex patientia; tirso, Rumex scutatus, Rumex tuberosus subsp. horizontalis; isgin, Rheum ribes; isrgan, Urtica dioica L.; ciris, Eremurus spectabilis M. Bieb.). Kurdish is also spoken in the area and four Kurdish names were mentioned: tirso, Rumex crispus, Rumex patientia, Rumex scutatus, Rumex tuberosus subsp. horizontalis; silgok, Beta trigyna, Beta lomatogona Fisch. & C.A. Mey.; sirim, Allium sp., Allium atrovialuceum, Allium gramineum; silmask, Chenopodium album subsp. album).

The wild edible plant species utilized in Ağrı are called by the same or very similar local names in different regions of Anatolia (e.g., Mentha longifolia, yarpuz; Gundelia tournefortii, kenger, Malva neglecta, eбегuemeci; Polygonum cognatum, madmak; Rheum ribes, isкин; Urtica dioica, isrgan; Rumex scutatus, ek scrimmage; Rumex crispus L., evelik; Eryngium billardierei F.Delaroche, boğa diкeni) (Yücel & Tüלükoğlu 2000; Sarper & al. 2009; Arı & al. 2015; Çakılcıoglu & Turkoglu 2016). This similarity reflects a wide sharing of ethnobotanical knowledge in the region.

There are also plants whose local names in Ağrı are different from other areas of Turkey (e.g., Silene vulgaris var. vulgaris, civrincik, gelin parmağı; Capsella bursa-pastorii, çoban çantası; Ononis spinosa L., kayışкiran; Salvia multicaulis, adaçaylı; Teucrium chamaedrys, mayaslotu; Teucrium polium L., ыlper yavşanı, acı ot; Papaver rоhes L., gelincik; Rumex scutatus, kuzukulağı; Portulaca oleracea, semizotu, temizlik out; Chenopodium album subsp. album, sari sirken; Beta trigyna, kir ispanja; Rumex patientia, ilibada; Polygonum

Anales del Jardín Botánico de Madrid 77 (2): e098. https://doi.org/10.3989/ajbm.2554
cognatum, çoban ekmeği; Urtica dioica, gezgezik; Echium vulgare L., sormuk) (Çakılcıoğlu & Turkoğlu 2010; Arı & al. 2015). This situation could be due to the changing demographics of the young population or domestic people, i.e. residents who migrated to different provinces were replaced by migrants from different cities of Turkey. Hence, the regional people pattern changed progressively and finally such a situation modified the regional population culture.

Additionally, because villagers in the local community are usually migrating to large cities or towns and benefiting from the facilities of modern agriculture or different food products, the heritage of traditional wild edible plant species information is decreasing dramatically. Moreover, the younger generation in the local community tends to migrate to large cities in an effort to earn more money and find steady jobs. Consequently, villages in the region are rapidly emptying of their new generations or young population and such a situation raises the danger of losing regional knowledge about wild edible plant species.

The results of our work indicate a very rich ethnobotanical knowledge about wild edible plant species in rural areas of Ağrı. It is vital to document local usages as food through further studies before it is too late. Some of the wild edible plant species of Ağrı are endangered by over grazing, use of chemical herbicides in farming, inattentive picking of edible wild plant species to generate revenue, and expansion of new agricultural lands. Given the nutritional interest of many of these species, the documented data could be used as baseline information for further investigations on nutritional contents, as they could have the potential to become valuable nutritional sources for people. These uses could help to promote the sustainable development of the area, once inappropriate gathering techniques are excluded.

ACKNOWLEDGEMENTS

We would like to thank Prof. Dr. Ali Kandemir for his assistance in the identification of the plants and the local people who shared their botanical knowledge. We are also grateful to the Ağırı people for their hospitality. This research work was supported by General Directorate of Agricultural Research and Policies, Scientific Research Project -SRP, (Project no; TAGEM/BBAD/11/06/01/006) appropriated to Erzincan Horticultural Research Institute, Turkey. Authors Contributions: ZK designed the study, OK and ZK wrote the manuscript and interpreted the results. KC, NNK and HV were responsible for the performance of the research, collection, data analysis and interpretation.

REFERENCES

Ahmad S.A. & Askari A.A. 2015. Ethnobotany of the Hawraman region of Kurdistan Iraq. Harvard Papers in Botany 20: 85–9.

Abbet C., Mayor R., Roguet D., Spichiger R., Hamburger M. & Potterat, O. 2014. Ethnobotanical survey on wild alpine food plants in lower and central Valais (Switzerland). Journal of Ethnopharmacology 151: 624–634.

Akgül A., Akgül A., Şenol S.G., Yıldırım H., Seçmen Ö. & Doğan Y. 2018. An ethnobotanical study in Midyat (Turkey), a city on the silk road where cultures meet. Journal of Ethnobiology and Ethnomedicine 14: 12.

Akan H., Korkut M.M. & Balos M.M. 2008. An ethnobotanical study around Arat Mountain and its surroundings (Bireçik, Sanlıurfa). Firat University Journal of Science and Engineering 20: 67–81.

Ari S., Temel M., Kargoğlu M. & Konuk M. 2015. Ethnobotanical survey of plants used in Afyonkarahisar-Turkey. Journal of Ethnobiology and Ethnomedicine 11: 84.

Baytop T. 1999. Herbal medicine in Turkey, past and present. Istanbul: Nobel Tıp Kitabevleri Yayınları (in Turkish).

Behre K.E. 2008. Collected seeds and fruits from herbs as prehistoric food. Vegetation History and Archaeobotany 17: 65–73.

Bharucha Z. & Pretty J. 2010. The roles and values of wild foods in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2913–2926.

Blanco-Salas J., Gutiérrez-Garcia L., Labrador-Moreno J. & Ruiz-Téllez. T. 2019. Wild plants potentially used in human food in the Protected Area “Sierra Grande de Hornachos” of Extremadura (Spain). Sustainability 11: 456.

Block G. 1991. Dietary guidelines and the results of food consumption surveys. The American Journal of Clinical Nutrition 53: 356S–357S.

Çakılcıoğlu U. & Turkoğlu I. 2010. An ethnobotanical survey of medicinal plants in Sivrice (Elazığ-Turkey). Journal of Ethnopharmacology 132: 165–175.

Çakılcıoğlu U., Şengün M.T. & Türkoglu İ. 2010. An ethnobotanical survey of medicinal plants of Yarınkonak and Yurbaşı districts of Elazığ province, Turkey. Journal of Medicinal Plants Research 4: 567–572.

Coudalis M., Tzakou O., Verykokidou E. & Harvala C. 2003. Screening of some Greek aromatic plants for antioxidant activity. Phytotherapy Research 17: 194–195.

Davis P.H. (ed.). 1965–1985. Flora of Turkey and the East Aegean Islands, vol. 1–9. Edinburgh University Press, Edinburgh.

Davis P.H., Mill R.R., Tan K. (eds.). 1988. Flora of Turkey and the East Aegean Islands, vol. 10. Edinburgh University Press, Edinburgh.

Demir F. & Özcan M. 2001. Chemical and technological properties of rose (Rosa canina L.) fruits grown wild in Turkey. Journal of Food Engineering 47: 333–336.

Ertuğ, F. 2004. Wild edible plants of the Bodrum area (Muğla, Turkey). Turkish Journal of Botany 28: 161–174.

Ezer N. & Arisan Ö.M. 2006. Folk medicines in Merzifon (Amasya, Turkey). Turkish Journal of Botany 30: 223–230.

Gümüş İ. 1994. The local names and uses of some useful plants grown in Ağrı Province (Ağrı Yöresinde Yetişen Bazı Faydalı Bitkilerin Yerel Adları ve Kullanımları). Turkish Journal of Botany 18: 107–112. (In Turkish)

Grivetti L.E. 1981. Cultural nutrition: Anthropological and geographical themes. Annual Review of Nutrition 1: 47–68.

Gui Guerrero J.L., Giménez Martinez J.J. & Torija Issa M.E. 1998. Mineral nutrient composition of edible wild plants. Journal of Food Composition and Analysis 11: 322–328.

Hasler C.M. 2002. Functional foods: benefits, concerns and challenges a position paper from the American Council on Science and Health. The Journal of Nutrition 132: 3772–3781.

Heinrich M., Müller W.E. & Galli C. (eds.). 2006. Local Mediterranean food plants and nutraceuticals (Vol. 59). Karger Medical and Scientific Publishers.

Hummer K.E. 2013. Manna in winter: indigenous Americans, huckleberries, and blueberries. Hortsience 48: 413–417.

Johns T. 1986. Chemical selection in Andean domesticated tubers as a model for the acquisition of empirical plant knowledge. In Erkin N. (ed.), Plants in indigenous medicine and diet: Behavioural approaches (pp. 266–288). New York: Redgrave.

Kalle R. & Soukand R. 2013. Wild plants eaten in childhood: a retrospective of Estonia in the 1970s–1990s. Botanical Journal of the Linnean Society 172: 239–253.

https://doi.org/10.3989/ajbm.2554
Khanzadeh F., Haddad Khodaparast M.H., Elhami Rad A.H., Rahmani F. 2012. Physiochemical properties of Gundelia tournefortii L. seed oil. Journal of Agricultural Science and Technology 14: 1535–1542.

Karaaşlan Ö., Çötelı E. & Karataş F. 2014. Investigation of amounts of A, E, C vitamins with malondialdehyde and glutathione in plant Gundelia tournefortii. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7:2–159–68.

Kargıoğlu M., Cenksci S., Serteser A., Evliyaoglu N., Konuk M., Kök M.S. & Bağcı Y. 2008. An ethnobotanical survey of inner-West Anatolia, Turkey. Human Ecology 36: 763–777.

Kırbaş S. & Zengin F. 2006. Antimicrobial activities of some medical plants in Elazığ region. Tüyünçül Yırdı University Journal of Agricultural Sciences 16: 77–90.

Kadioğlu Z., Çakdar K., Kandemir A., Kalkan N.N., Vurgun H. & Dönberalp V. 2020. Kars İlinde Sebzeler Olarak Tüketilen Yabanı Bitki Türlerinin Tespiti ve Kullanımı Şekilleri. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi 30: 11–32.

Kadioğlu Z., Çakdar K., Kandemir A., Aslay M., Kalkan N.N., Vurgun H. & Ertürk N. 2016. Erzincan ve Erzurum illerinde sebzeler olarak tüketilen yabanı bitki türlerinin tespiti ve kullanım şekilleri. Uluslararası Erzincan Sempozyumu. 28 Eylül–01 Ekim 2016. Erzincan. s. 855–877.

Kadioğlu Z., Çakdar K., Kandemir A., Kalkan N.N., Vurgun H. & Dönberalp V. 2020. Kars İlinde Sebzeler Olarak Tüketilen Yabanı Bitki Türlerinin Tespiti ve Kullanımı Şekilleri. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 30:11–32.

Leonti M., Nebel S., Rivera D. & Heinrich M. 2006. Wild gathered food plants in the European Mediterranean: a comparative analysis. Economic Botany 60: 130–142.

Lukasz L., Zovko Končić M., Miščević T., Dolina K. & Pandža M. 2013. Wild vegetable mixes sold in the markets of Dalmatia (southern Croatia). Journal of Ethnobiology and Ethnomedicine 9: 2.

Millenium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: A Framework for Assessment. Island Press, Washington, D.C., USA.

Martin G.J. 2014. Ethnobotany: a methods manual. Springer.

Mehmet Ö.Z., Baltacı C. & Deniz İ. 2018. Gümüşhane Yöresi Kuşburnu (Rosa canina L.) ve Siyah Kuşburnu (Rosa pimpinellifolia L.) Meyvelerinin C Vitamini ve Şeker Analizleri. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8: 284–292.

Nebel S. 2001. Arbereshe taste perception of wild food plants. Thesis M.Sc. in Ethnobotany, University of Kent at Canterbury.

Nebel S., Pieroni A. & Heinrich M. 2006. Ta chòrta: wild edible greens used in the Graecanic area in Calabria, Southern Italy.

Nebel S., Pieroni A., Ahmed H.M. & Zahir H. 2017. The spring has arrived: traditional wild vegetables gathered by Yarsanis (Ahl-e Haqq) and Sunni Muslims in Western Harwanan, SE Kurdistan (Iraq). Acta Societatis Botanicorum Poloniae 86: 3519.

Numula T., Tarwadi K. & Agte V. 2003. Potential of commonly consumed green leafy vegetables for their antioxidant capacity and its linkage with the micronutrient profile. International Journal of Food Sciences and Nutrition 54: 417–425.

Ogle B.M., Tuyet H.T., Duyet H.N. & Dung N.N.X. 2003. Food, feed or in the Northern Albanian Alps. Genetic Resources and Crop Evolution 55: 1197–1214.

Ogley S., Keogh J.B., Clifton P.M., Williams P.G., Fazio V.A. & Inge K.E. 2006. Health benefits of herbs and spices: the past, the present, the future. Medical Journal of Australia 185(S4): S1–S24.

Pardos-de-Santayana M., Tardio J., Blanco E., Carvalho A.M., Lastra J.J., San Miguel E. & Morales R. 2007. Traditional knowledge of wild edible plants used in the northwest of the Iberian Peninsula (Spain and Portugal): a comparative study. Journal of Ethnobiology and Ethnomedicine 3: 27.

Pardos-de-Santayana M., Tardio J. & Morales R. 2005. The gathering and consumption of wild edible plants in the Campoo (Cantabria, Spain). International Journal of Food Sciences and Nutrition 56: 529–542.

Pieroni A. 2008. Local plant resources in the ethnobotany of Theth, a village in the Northern Albanian Alps. Genetic Resources and Crop Evolution 55: 1197–1214.

Pieroni A., Janiak V., Dürß C.M., Lüdeke S., Trachsel E. & Heinrich M. 2002. In vitro antioxidant activity of non-cultivated vegetables of ethnic Albanians in southern Italy. Phytotherapy Research 16: 467–473.

Pieroni A., Nebel S., Quave C., Munz H. & Heinrich M. 2002. Ethnopharmacology of liakra: traditional weedy vegetables of the Arbereshe of the Vulture area in southern Italy. Journal of Ethnopharmacology 81: 165–185.

Reyes-García V., Menendez-Baceta G., Aceituno-Mata L., Acosta-Naranjo R., Calvet-Mir L., Domínguez P., Garnatje T., Gómez-Baggettun E., Molina-Bustamante M., Molina M., Rodríguez-Franco R., Serrasoltes G., Vallés J. & Pardo-de-Santayana M. 2015. From famine foods to delicatessen: Interpreting trends in the use of wild edible plants through cultural ecosystem services. Ecological Economics 120: 303–311.

Rivera D., Obón C., Inoccenzi C., Heinrich M., Verde A., Fajardo J. & Palazón J.A. 2007. Gathered food plants in the mountains of Castilla-La Mancha (Spain): ethnobotany and multivariate analysis. Economic Botany 61: 269.

Satil F., Aşıkçe E. & Selvi S. 2008. An ethnobotanical study in Madra Mountain (Balıkesir-İzmir) and vicinity. Research Journal of Biology Sciences 1: 31–36.

Schulp C.J., Thuiller W. & Verburg P.H. 2014. Wild food in Europe: A synthesis of knowledge and data of terrestrial wild food as an ecosystem service. Ecological Economics 105: 292–305.

Simsek I., Aytekin F., Yesildağ E. & Yıldırımli Ş. 2004. An ethnobotanical survey in the Haymana district of Ankara province in Turkey. Turkish Journal of Biological Science 70: 755–720.

Tapsell L.C., Hemphill I., Cobia E., Sullivan D.R., Fenech M., Rooedenrys S., Keogh J.B., Clifton P.M., Williams P.G., Fazio V.A. & Inge K.E. 2006. Nutritional composition and health benefits of herbs and spices: the past, the present, the future. Turkish Journal of Research Journal of Biology 185(S4): S1–S24.

Tardio J. & Pardo-de-Santayana M. 2008. Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Economic Botany 62: 24–39.

Tardio J., Pardo-de-Santayana M. & Morales R. 2006. Ethnobotanical review of wild edible plants in Spain. Botanical Journal of the Linnean Society 152: 27–71.

Tarwadi K. & Agte V. 2003. Potential of commonly consumed green leafy vegetables for their antioxidant capacity and its linkage with the micronutrient profile. International Journal of Food Sciences and Nutrition 54: 417–425.

Tunino R., Frasca G., Giudanella M.C., Lauria C. & Krogh V. 2002. Consumption of wild vegetables in the EPIC cohort of Ragusa (Sicily). In Riboli E. & Lambert R. (eds.), Nutrition and lifestyle: Opportunities for cancer prevention (pp. 115–116). Lyon: International Agency for Research on Cancer.
Turner N.J. & Turner K. 2008. “Where our women used to get the food”: cumulative effects and loss of ethnobotanical knowledge and practice; case study from coastal British Columbia. *Botany* 86: 103–115.

Uğulu I., Baslar S., Yorek N. & Dogan Y. 2009. The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province, Turkey. *Journal of Medicinal Plants Research* 3: 345–367.

Yeşil Y. & Akalın E. 2010. The use of edible plants in Kürecik (Akçadağ/Malatya). *Turkish Journal of Pharmaceutical Science* 41: 90–103.

Yeşil Y., Çelik M. & Yılmaz B. 2019. Wild edible plants in Yeşilli (Mardin-Turkey), a multicultural area. *Journal of Ethnobiology and Ethnomedicine* 15: 52.

Yücel E. & Tülüköglu A. 2000. Plants used as folk medicine in and around Gediz (Kütahya). *Ekoloji* 9: 12–14.

Zeghichi S., Kallithraka S., Simopoulos A.P. & Kyriakakis Z. 2003. Nutritional composition of selected wild plants in the diet of Crete. In Simopoulos A.P. & Gopalan C. (eds.), *Plants in human health and nutrition policy*, Vol. 91: 22–40. Basel: Karger.
APPENDIX 1

Selected attributes of the surveyed wild edible plants used in the Ağrı province, Turkey. BEV: beverage, EXU: exudates, PIC: pickles, SEE: seeds, SPI: spices, SUB: subterranean parts, VEGc: cooked, VEGp: pickled, VEGr: raw; dolma: stuffed leaves or vegetables; şerbet: a diluted form of mixed syrups produced with the addition of sugar.

Species	Turkish common name	Used parts	Preparation	Consum. time	CI	Voucher	
AMaranthaceae	*Amaranthus retroflexus* L.	Bostanpancarı, bozoğlan	Young leaves and shoots	Dishes	May-Jul	0.98 (VEGc)	04-2
Beta lomatogona Fisch. & C.A. Mey.	Silgok, pazi pancarı	Young leaves and shoots	Dishes	May-Jun	0.89 (VEGc)	25-01	
Beta trigyna Walds. & Kit.	Silgok, pancar, pazi pancarı, silk	Young leaves and shoots	Dishes	May-Jun	0.97 (VEGc)	04-1	
Chenopodium album L. subsp. *album*	Silmask, unluca	Young leaves and shoots	Dishes	May-Jun	0.86 (VEGc)	04-3	
Chenopodium folliculosum Asch.	Kızılpancar	Young leaves and shoots	Dishes	May-Jun	0.21 (VEGc)	04-4	
AMaryllidaceae	*Allium atroviolaceum* Boiss.	Sirim	Leaves, bulbs	Dishes	May	0.49 (VEGc)	04-8
Allium gramineum K. Koch	Körmen, sir, sirim	Young leaves	Raw, cheese flavoring	May-Jul	0.36 (VEGr: 0.29; SPI: 0.07)	04-5	
Allium kharputense Freyn & Sint.	Suğuryos, camışkıran	Leaves	Dishes	May-Jun	0.18 (VEGr)	04-6	
Allium sp.	Sirim, itsoğanı	Leaves, bulbs	Raw, cheese flavoring	May	0.21 (VEGc: 0.15; SPI: 0.06)	04-7	
APIaceae	*Anthriscus nemorosa* (M. Bieb) Spreng.	Kımı, mendek	Young leaves and shoots	Dishes, pickles, raw, cheese flavoring	May-Jun	0.25 (VEGp: 0.09; VEGr: 0.07; PIC: 0.05; SPI: 0.03)	04-12
Anthriscus sylvestris (L.) Hoffm.	Kımı, mendek, özek	Young leaves and shoots	Dishes, pickled, raw, cheese flavoring	May-Jun	0.41 (VEGp: 0.09; VEGr: 0.14; PIC: 0.17; SPI: 0.04)	04-9	
Chaerophyllum bulbosum L.	Kımı, guını, mendek	Young leaves and shoots	Dishes, pickles, raw, cheese flavoring	May-Jun	0.19 (VEGp: 0.05; VEGr: 0.07; PIC: 0.06; SPI: 0.01)	04-10	
Chaerophyllum crinitum Boiss.	Kımı, mendek	Young leaves and shoots	Dishes, pickles, raw, cheese flavoring	May-Jun	0.14 (VEGp: 0.03; VEGr: 0.04; PIC: 0.04; SPI: 0.03)	24-01	
Eryngium billardierei F. Delanoche	Boğa dikeni, Gelenk, Gelenknebi	Young shoots	Raw, dishes, pickles	May-Jun	0.69 (VEGp: 0.44; VEGr: 0.06; PIC: 0.19)	04-16	
Eryngium campestre L.	Boğa dikeni, Gelenk, Gelenknebi	Young leaves and shoots	Dishes, pickles	May-Jun	0.64 (VEGp: 0.35; PIC: 0.29)	04-17	
Falcaria vulgaris Bernh.	Gazayağı, pigast, pigozik, yağlıca	Young plants	Dishes	May-Jun	0.63 (VEGc)	58-75	
Ferula orientalis L.	Heliz	Young leaves and shoots	Pickles	Jun-Jul	0.75 (PIC)	76-4	
Heracleum trachyloma Fisch. & C. Mey.	Kaşın, sh, süh	Young leaves and shoots	Dolma	May-Jun	0.07 (VEGc)	04-13	
Pastinaca armens Fisch. & C. Mey.	Kelemenkesir	Young leaves and shoots	Pickles	May-Jun	0.55 (PIC)	04-15	
Paragya platycarpa Boiss.	Heliz, çakşur	Young leaves and shoots	Pickles	Jun-Jul	0.78 (PIC)	24-3	
Xanthogalum purpurascens Lalam.	Kaşın, baldırgan	Young leaves and shoots	Raw	May-Jun	0.05 (VEGr)	04-14	
ARACEAE	*Arum rupicola* Boiss.	Garibent	Leaves	Dried, dishes	May-Jun	0.70 (VEGc)	58-09
ASPARAGACEAE	*Asparagus officinalis* L.	Satsun	Young shoots and shoots	Dishes	Apr-May	0.05 (VEGc)	75-1
Ornithogalum platyphylloides Boiss.	Şuluk	Young leaves and shoots	Dishes	Apr-May	0.15 (VEGc)	04-19	
Ornithogalum sphacelatum A. Kern	Şuluk, soğan	Young leaves and shoots	Dishes	Apr-May	0.11 (VEGc)	04-18	

(Continued)
APPENDIX 1. (Continued) Selected attributes of the surveyed wild edible plants used in the Ağrı province, Turkey. BEV: beverage, EXU: exudates, PIC: pickles, SEE: seeds, SPI: spices, SUB: subterranean parts, VEGc: cooked, VEGp: pickled, VEGr: raw; dolma: stuffed leaves or vegetables; şerbet: a diluted form of mixed syrups produced with the addition of sugar.

Species	Turkish common name	Used parts	Preparation	Consum. time	CI	Voucher
Asteraceae						
Arctium tomentosum Mill.	Düvetabanı, devetabanı, gelbeni	Root collar, leaves	Raw, cooked	May-Jun	0.66 (SUB)	58-79
Artemisia absinthium L.	Havşan, süpürgeotu	Young shoots	Raw	May-Jun	0.05 (VEGr)	04-31
Carduus nutans L.	Eşek diken	Shoots and young leaves	Dishes, raw	May-Jun	0.28 VEGp: 0.07; VEGr: 0.21	25-18
Centaurea sp.	Diken	Shoots	Raw	May-Jun	0.13 (VEGr)	04-29
Cirsium rhezocephalum C.A Mey.	Medik, kopuk, ammik	Roots and root collar	Cooked, raw	May-Jun	0.26 (SUB)	24-66
Echinops pungens Trautv.	Eşek diken, boğadikeni, gelenk, gelenknedi	Young inflorescences	Raw	May-Jun	0.20 (VEGr)	04-28
Gandelia tournefortii L.	Kenger	Young leaves, shoots, latex and seeds	Dishes, chewing gum, kernels	May-Jun	0.97 VEGp: 0.59; EXU: 0.25	04-30
Onopordum acanthium L.	Kangal, gelenk	Root collar and young shoots	Cooked, raw	May-Jun	0.70 (VEGp: 0.14; VEGr: 0.34; SUB: 0.21)	58-02
Scorzonera con var. *jacquiriana* (W. Koeh) D.F. Chamb.	Teke sakalı	Young leaves and shoots	Cooked, raw	May-Jun	0.52 (VEGp: 0.34; VEGr: 0.18)	04-25
Scorzonera latifolia (Fisch. & C.A. Mey.) DC.	Yabani sakz	Shoots and root latex	Chewing gum	May-Jun	0.07 (EXU)	04-27
Scorzonera mollis M. Bib.	Kızır, navneri, sipink	Young leaves and shoots	Raw, dishes	May-Jun	0.79 (VEGp: 0.51; VEGr: 0.28)	04-23
Scorzonera mollis subsp szowitzii (DC) D.F. Chamb.	Kızır	Young leaves and shoots	Raw, dishes	May-Jun	0.52 (VEGp: 0.34; VEGr: 0.18)	04-25
Scorzonera phaeopappa (Boiss.) Boiss.	Navneri	Young leaves and shoots	Raw, dishes	May-Jun	0.29 (VEGp: 0.23; VEGr: 0.06)	04-24
Scorzonera suberosa K. Koch subsp. suberosa	Kızır, navneri, sipink, tombalak, tombalak	Young leaves and shoots	Raw, dishes	May-Jun	0.89 (VEGp: 0.27; VEGr: 0.63)	04-20
Tragopogon aureus Boiss.	Sping, yemlik, spidak	Young shoots and leaves	Raw, dishes	May-Jun	0.89 (VEGp: 0.27; VEGr: 0.63)	04-20
Tragopogon dubius Scop.	Sping, yemlik, spidak	Young shoots and leaves	Dishes	May-Jun	0.86 (VEGc)	04-22
Tragopogon portulifolius subsp. *longirostris* (Sch. Bip.) Greuter	Sping, yemlik	Young shoots and leaves	Dishes	May-Jun	0.98 (VEGc)	04-21
Boraginaceae						
Anchusa leptophylla Roem. & Schult.	Öküzmemesi, öküzkulağı	Young plant	Dishes	May-Jun	0.94 (VEGc)	58-81
Cerinthe minor L.	Cücegözü	Young shoots	Dishes	May-Jun	0.08 (VEGc)	76-21
Echium vulgar L.	Öküzmemesi, öküzkulağı	Young shoots and leaves	Dishes	May-Jun	0.61 (VEGc)	75/76-11
Nonea melanocarpa Boiss.	Mızmızık	Young shoots and leaves	Dishes	May-Jun	0.91 (VEGc)	36-14
Brassicaceae						
Alliaria petiolaris (M. Beib.) Cavara & Grande	Dida	Young shoots and leaves	Raw, dishes	May-Jun	0.26 (VEGp: 0.18; VEGr: 0.08)	04-32
Alyssum peltarioides Boiss.	Mevrân	All parts of plant	Tea, salads, spice	May-Jun	0.84 (SPI: 0.35; BEV: 0.49)	04-33
Capsella bursa-pastoris (L.) Medik.	Pancar, devredişık, turpotu, kuskeğme	Young shoots and leaves	Raw, dishes	May-Jun	0.93 (VEGp: 0.81; VEGr: 0.12)	58-52
Cardamine uliginosa M. Beib.	Gici	Young shoots and leaves	Raw	May-Jun	0.83 (VEGc)	24-23/01

(Continued)
APPENDIX 1. (Continued) Selected attributes of the surveyed wild edible plants used in the Ağrı province, Turkey. BEV: beverage, EXU: exudates, PIC: pickles, SEE: seeds, SPI: spices, SUB: subterranean parts, VEGc: cooked, VEGp: pickled, VEGr: raw; dolma: stuffed leaves or vegetables; şerbet: a diluted form of mixed syrups produced with the addition of sugar.

Species	Turkish common name	Used parts	Preparation	Consum. time	CI	Voucher
Sinapis arvensis L.	Tülpenk	Young shoots and leaves	Raw, dishes	May-Jun	0.60 (VEGp: 0.21; VEGr: 0.29)	58-25
CAPRIFOLIAE						
Cephalaria syriaca (L.) Schrad.	Onum	Seeds	Bread	Aug-Sep	0.10 (SEE)	25-4
CARYOPHYLLACEAE						
Silene vulgaris (Moench) Garcke var. vulgaris	Goşberg	Young leaves and shoots	Dishes	May-Jun	0.93 (VEGc)	24-14
CRASSULACEAE						
Hylotelephium telephium (L.) H. Ohba	Camişkulağı, katırtırnağı, katırtunağı, kayapapaği	Leaves	Raw	May-Jun	0.62 (VEGc)	36-15
FABACEAE						
Lathyrus tuberosus L.	Gürül, gürül, kırgülü, koçgüzü	Young leaves, shoots, root collar, fruits	Raw	May-Jun	0.06 (VEGr: 0.01; SUB: 0.05)	25-16
Ononis spinosa L.	Hatunbarması	Young leaves and shoots	Dishes	May-Jun	0.07 (VEGc)	04-36
Vicia cracca L.	Gürülü, kılur, külül, fiğ, geda	Young leaves, shoots, seeds	Raw, cooked	May-Jun	0.05 (VEGp: 0.02; VEGr: 0.01; SEE: 0.03)	36-20
HYPERICACEAE						
Hypericum perfoliatum L.	Sanççıççek	Young shoots	Tea	Year round	0.23 (BEV)	04-37
IRIDACEAE						
Crocus biflorus subsp. tauri (Maw) B. Mathew.	Çiğdem	Young leaves, corms	Cooked, raw	Mar-Apr	0.53 (VEGp: 0.26; SUB: 0.27)	25-9
Iris persica L.	Nergiz	Flowers	Raw, tea	Mar-Apr	0.33 (VEGr: 0.27; BEV: 0.06)	24-10
LAMIACEAE						
Mentha longifolia L.	Yarpuz, punk, nana	Young leaves	Raw, tea, spices	Year round	0.97 (VEGr: 0.02; SPI: 0.89; BEV: 0.06)	04-45
Nepeta racemosa Lam.	Kedinanesi, sendar	Young leaves and shoots	Raw, tea	Year round	0.20 (VEGp: 0.02; SPI: 0.15; BEV: 0.03)	25-202
Nepetaitalic L.	Sendar, dağ namesi, mevrent	Young leaves and shoots	Raw, tea, spices	Year round	0.39 (VEGp: 0.07; SPI: 0.25; BEV: 0.08)	04-38
Salvia mitschudica Vahl.	Dağçayı	Young shoots and leaves	Raw, tea, spices	May-Jun	0.21 (VEGp: 0.04; SPI: 0.14; BEV: 0.03)	04-47
Salvia staminea Montbret & Aucher ex Benth.	Gazangülüpu, öküzpoçüğü, kediayağı	Young shoots	Raw	May-Jun	0.17 (VEGr)	76-13
Salvia verticillata L.	Karabaşotu, gazankarasi	Young shoots and leaves	Dolma, raw	May-Jun	0.83 (VEGp: 0.31; VEGr: 0.52)	04-46
Satureja hortensis L.	Çibriska	Young leaves and tuber	Raw, tea, spices	Year round	0.70 (VEGp: 0.10; SPI: 0.31; BEV: 0.28)	25-10
Stachys kuandahifoka Vahl.	Dağçayı, cayabeyan	Young leaves and shoots	Raw, tea, spices	Year round	0.76 (VEGp: 0.24; SPI: 0.47; BEV: 0.04)	04-44
Teucrium chamaedrys L.	Dağ kekiği	Young shoots	Salads, dried	Year round	0.05 (VEGp: 0.02; SPI: 0.03)	04-50
Teucrium polium L.	Keklik otu, çay	Young shoots	Salads, dried	Year round	0.41 (VEGp: 0.13; SPI: 0.29)	04-49
Thymus kotschyanus Boiss. & Hohen.	Kekik, keklikotu çağıtrı,	Young leaves and shoots	Raw, tea, spices	Year round	0.90 (VEGp: 0.27; SPI: 0.55; BEV: 0.08)	04-41
Thymus pubescens Boiss. & Kotschy ex Celak.	Kekik, keklikotu çağıtrı	Young leaves and shoots	Raw, tea, spices	Year round	0.84 (VEGp: 0.24; SPI: 0.49; BEV: 0.11)	04-42

(Continued)
APPENDIX 1. (Continued) Selected attributes of the surveyed wild edible plants used in the Ağrı province, Turkey. BEV: beverage, EXU: exudates, PIC: pickles, SEE: seeds, SPI: spices, SUB: subterranean parts, VEGc: cooked, VEGp: pickled, VEGr: raw; dolma: stuffed leaves or vegetables; şerbet: a diluted form of mixed syrups produced with the addition of sugar.

Species	Turkish common name	Used parts	Preparation	Consum. time	CI	Voucher
Thymus sipyleus Boiss.	Kekik, keklikotu, Kekeotu, Çağtiri,	Young leaves and shoots	Raw, tea, spices	Year round	0.89 (VEGr: 0.19; SPI: 0.63; BEV: 0.06)	24-65/01
Ziziphora clinopodioides Lam.	Nane, kekik	Young leaves and shoots	Raw, tea, spices	Year round	0.87 (VEGr: 0.26; SPI: 0.58; BEV: 0.03)	04-48
Malva neglecta Wallr.	Ebenkömeci, dollik	Young leaves and shoots	Dishes, raw	Apr-Jun	0.91 (VEGp: 0.80; VEGr: 0.11)	24-6-05
Papaver argemone L.	Lale, taklog, budbad	Flowers	Sherbet	May-Jun	0.30 (BEV)	04-56
Papaver cylindricum Cullen	Kabarek	Young shoots	Dishes	May-Jul	0.05 (VEGc)	04-54
Papaver rhoes L.	Lale, taklog budbad	Young shoots	Dishes	May-Jun	0.85 (VEGc)	04-52
Plantago major L. subsp. intermedia (Gilib.) Lange	Bağya yaprağı, pelhevis	Young leaves	Dishes	May-Jul	0.59 (VEGc)	24-39/02
Plantago major L.	Bağya yaprağı, pelhevis	Young leaves	Dolma	May-Jul	0.38 (VEGc)	24-57
Polygonum alpinum All.	Pancar, elegez, arıbisk	Young plants	Dishes	May-Jun	0.06 (VEGc)	04-58
Polygonum aviculare L.	Madmak, nanacück	Young plants	Dishes	May-Jun	0.61 (VEGc)	24-60
Polygonum cognatum Meissn.	Madmak, kuşlemği, nanacück, yolotu, nanisiği	Young plants	Dishes	May-Jun	0.79 (VEGc)	24-43/02
Polygonum persicaria L.	Madmak, söğülotu	Young leaves and shoots	Dishes	May-Jun	0.97 (VEGc)	04-59
Rheum alpinus L.	Işgın	Young flower stems	Raw	Jul	0.88 (VEGr)	24-37/02
Rumex alpinus L.	Gariberk, kedipatasi, kersım yaprağı, bizbizik, pelidolma yaprağı	Young leaves and shoots	Dolma, dishes	May-Jun	0.05 (VEGc)	04-57
Rumex crispus L.	Evelik, tirço tirçoaga,	Young leaves, shoots	Dolma, dishes	May-Jun	0.92 (VEGc)	04-53
Rumex obtusifolius L. subsp. subalpinus (Schur) Celak.	Yaprak, çayrrıyaprağı	Young leaves and shoots	Dolma	May-Jun	0.31 (VEGc)	24-29
Rumex patientia L.	Evelik, tirço, tirçoaga galar	Young leaves, shoots	Dolma, dishes	May-Jul	0.91 (VEGc)	04-55
Rumex scutatus L.	Tirço, çekımken, tursuotu	Young leaves and shoots	Salads	May-Jul	0.97 (VEGc)	04-61
Rumex tuberosus L. subsp. horizontalis (K. Koch.) Rech. f.	Tirço, tursuotu	Young leaves and shoots	Salads	May-Jul	0.84 (VEGc)	04-63
Portulaca oleracea L.	Pirpirim	Young leaves and shoots	Dishes, salads	May-Jun	0.07 (VEGp: 0.03; VEGr:0.04)	24-56/01
Primula auriculata Lam.	Gıbosan	Young shoots and flowers	Raw	May-Jun	0.05 (VEGr)	24-23/02
Rubus idaeus L.	Yer çileği, Rasgaravi	Fruits	Jam	Jul-Aug	0.87 (FRUc)	25-12
Rosa pimpinellifolia L.	Kuşburnu, gül	Fruits	Boiled	Sep-Nov	0.55 (BEV: 0.18; FRUc:0.37)	25-13
Caltha palustris L.	Pisipis, lilpar, lilpar	Young leaves and shoots	Dishes (with eggs)	May-Jun	0.93 (VEGc)	04-60

(Continued)
APPENDIX 1. (Continued) Selected attributes of the surveyed wild edible plants used in the Ağrı province, Turkey. BEV: beverage, EXU: exudates, PIC: pickles, SEE: seeds, SPI: spices, SUB: subterranean parts, VEGc: cooked, VEGp: pickled, VEGr: raw; dolma: stuffed leaves or vegetables; şerbet: a diluted form of mixed syrups produced with the addition of sugar.

Species	Turkish common name	Used parts	Preparation	Consum. time	CI	Voucher	
Thalictrum minus L	Karakatran	Young plants	Dishes	May-Jun	0.49 (VEGc)	24-39/01	
Urticaceae	Urtica dioica L.	Isırgan, gezgez	Young leaves, shoots and seeds	Dishes, boiled	May-Jul	0.98 (VEGc)	24-73
Xanthorrhoeaceae	Eremurus spectabilis M. Bieb.	Çiriş, gullik, kiriş	Young plants	Dishes, pies	May-Jun	0.82 (VEGc)	24-18