A Molecular Phylogeny of the Lichen Genus *Lecidella* Focusing on Species from Mainland China

Xin Zhao¹, Lu Lu Zhang¹, Zun Tian Zhao¹, Wei Cheng Wang¹, Steven D. Leavitt²,³, Helge Thorsten Lumbsch²*

¹ College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China, ² Science & Education, The Field Museum, Chicago, Illinois, United States of America, ³ Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America

* tlumbsch@fieldmuseum.org

Abstract

The phylogeny of *Lecidella* species is studied, based on a 7-locus data set using ML and Bayesian analyses. Phylogenetic relationships among 43 individuals representing 11 *Lecidella* species, mainly from mainland China, were included in the analyses and phenotypical characters studied and mapped onto the phylogeny. The *Lecidella* species fall into three major clades, which are proposed here as three informal groups – *L. stigmatea* group, *L. elaeochroma* group and *L. enteroleucella* group, each of them strongly supported. Our phylogenetic analyses support traditional species delimitation based on morphological and chemical traits in most but not all cases. Individuals considered as belonging to the same species based on phenotypic characters were found to be paraphyletic, indicating that cryptic species might be hidden under these names (e.g. *L. carpathica* and *L. effugiens*). Potentially undescribed species were found within the phenotypically circumscribed species *L. elaeochroma* and *L. stigmatea*. Additional sampling across a broader taxonomic and geographic scale will be crucial to fully resolving the taxonomy in this cosmopolitan genus.

Introduction

The circumscription of lichen-forming fungal species has traditionally been guided by morphological, chemical and ecological features. However, because lichens generally display few taxonomically useful characters, of which many are widely variable and the homology of character states within and among groups is difficult to assess [1–4]. Therefore, molecular data have gained importance in lichen systematics and now have a significant impact on the classification and taxonomy of lichenized ascomycetes [5–9]. Many phylogenetic studies of lichenized ascomycetes are designed to test morphology-based classifications. As a result, the systematic value of morphological characters in diverse groups of lichen-forming fungi is now much better understood [10–15]. Recent studies indicate that while phenotypical characters are useful in discriminating distinct lineages in many cases, they may fail to separate distinct species-level
lineages with similar morphologies and/or chemistries [16–21]. In some cases, cryptic lineages correspond to geographically isolated areas, often continents, and are well documented in foliose or fruticose lichens. However, less is known about the presence and biogeography of cryptic lineages in crustose lichens.

The genus *Lecidella* Körb. (Lecanoraceae; [22]) is a medium-size genus with approximately 80 accepted species [23]. The species are distinguished based on a few taxonomically diagnostic morphological and anatomical characters, in addition to secondary chemistry. The genus is generally regarded as taxonomically difficult due to a high degree of variation and/or plasticity in diagnostic characters. As lecideoid lichens, *Lecidella* was considered to be part of the huge genus *Lecidea* Ach. for a long time [24]. Although *Lecidella* was established by Körber in 1855 [25], the genus was not widely used until Hertel [26] recognized it as a subgenus of *Lecidea* and subsequently [27] at generic level mainly based on the secondary chemistry which differs from *Lecidea* in the presence of chlorinated norlichexanthones. *Lecidella* was classified in Lecanoraceae [28, 29] mainly based on the similarity in ascus-type. Our knowledge of species delimitation in the genus vastly improved over the last decades with the improvement of identification of chlorinated xanthones using TLC (thin layer chromatography), HPLC (high performance liquid chromatography), and mass spectrometry [30–39]. As currently circumscribed, *Lecidella* is comprised of crustose lichens characterized by black lecideine apothecia, persistent proper excipulum, clavate, large amyloid, eight-spored asci referred to as *Lecidella*-type [29], paraphyses that typically separate readily in KOH, simple, hyaline, non-halonate ascospores, curved, filiform conidia and the occurrence of xanthones in the majority of species. The genus is widespread, from the tropics to polar regions, occurring on various substrata, including rock, detritus, bark, wood and mosses. Presently, about 10 species of *Lecidella* have been reported in mainland China [40–42].

Currently our knowledge of the phylogeny of *Lecidella* is limited, with only a few studies including representatives from this genus [43–49]. While these few studies support the monophyly of *Lecidella* and its placement in Lecanoraceae, none have included a broader taxonomic sampling to address the evolutionary relationships of species within the genus. Here we address the phylogeny of the genus using a concatenated data set of seven loci (two loci from the nuclear ribosomal cistron, one mitochondrial ribosomal, and four nuclear protein-coding genes) for selected taxa of *Lecidella*, with a focus on species from mainland China. The main goals of this study were 1) to evaluate the current delimitation of selected morphospecies within *Lecidella* and 2) to reconstruct phylogenetic relationships among species of this genus.

Materials and Methods

MorphologicAl and chemical studies

Approximately 1000 specimens of *Lecidella* collected in mainland China were studied primarily from the herbarium: SDNU, and also the herbaria: DUKE, F, HMAS-L, and KUN-L. The field studies did not involve endangered or protected species, and no specific permissions were required to collect specimens from these localities. Specimens were examined using standard microscopy techniques and hand-cut sections under a dissecting microscope (Nikon SMZ 745T), anatomical characters were observed under a compound microscope in water (OLYMPUS CX21). Secondary metabolites were identified using thin-layer chromatography with solvent C (toluene: acetic acid = 170:30) [50, 51]. Specimens representing the range of morphological and chemical variation were selected for molecular phylogenetic investigations.
Taxon sampling and molecular data

For our phylogenetic analyses, we selected a total of 51 Lecidella specimens collected from different regions of mainland China. These specimens represented 11 currently recognized species—L. carpathica, L. effugiens, L. elaeochromata, L. aff. elaeochromata, L. claeochromoides, L. enteroleucella, L. euphorea, L. aff. euphorea, L. patavina, L. stigmateta and L. tumidula (S1 Table). Each species was represented by at least two specimens. Molecular data were generated for seven loci: the internal transcribed spacer (ITS), nuclear large subunit (nucLSU), mitochondrial small subunit (mtSSU), minichromosome maintenance complex component 7 (MCM7), ribosome biogenesis gene (TSR1), the largest subunit of the RNA polymerase II gene (RPB1) and the second largest subunit of RNA polymerase II gene (RPB2). Sequences generated for this study were complemented with sequences from GenBank representing additional species or specimens: L. elaeochromata, L. euphorea, L. flavosorediate, L. greenii, L. meiococca, L. siplei, L. stigmateta and L. wulfenii (S2 Table). Rhizoplaca parilis, R. porterii, Protoparmeliopsis achariana and P. muralis were selected as outgroups (S2 Table).

To obtain fungal sequences, apothecia were used for extracting total genomic DNA using the Prepease DNA Isolation Kit (USB, Cleveland, OH, USA), following the leaf extraction protocol. Ready-To-Go PCR Beads were used (GE Healthcare) for the amplification of the targeted loci. A new forward primer for amplifying the RPB2 locus of Lecidella was designed for this study, and all primers and PCR settings [52–63] are summarized in Table 1. PCR products were purified using Exo SAP-IT (USB, Cleveland, OH, USA), following the manufacturers’ instructions. Sequencing reactions were performed using BigDye Terminator v3.1 (Applied Biosystems, Foster City, CA, USA) and using the same primers as those used for amplification. Sequenced products were then run on an ABI 3730 automated sequencer according to established protocols (Applied Biosystems) at the Pritzker Laboratory for Molecular Systematics at the Field Museum, Chicago, IL, USA.

Sequence alignments

Contigs were assembled and edited using the program Geneious v6.1.2 (Biomatters Ltd., Auckland, NZ). Sequences of each locus were aligned using the program MAFFT v7 [64]. For ITS sequences, we used the L-ING-i alignment algorithm with the remaining parameters set to default values. For nucLSU, G-ING-i algorithm and “leave gappy regions” were selected. Then we used E-ING-i algorithm for mtSSU and RPB1, and G-ING-i algorithm for MCM7, TSR1 and RPB2, with the remaining parameters set to default values. Ambiguous positions of the ITS and mtSSU alignments were removed using Gblocks [65] implementing all the options for a less stringent selection. We compiled two data matrices: the ‘ITS matrix’ included ITS sequences of all of our samples (Table 2) and all taxa of Lecidella available from GenBank (S2 Table); and the ‘multilocus matrix’ was a concatenated dataset comprised of specimens that were represented by at least two of seven targeted loci (Table 2). A summary of alignment information for the multilocus dataset was provided (Table 3). The ‘multilocus matrix’ included a total of 47 individuals representing 16 taxa.

Phylogenetic analysis

The single-locus alignments were concatenated in Geneious for the subsequent phylogenetic analyses. Maximum likelihood (ML) analyses were carried out on the ‘multilocus matrix’ using locus-specific model partitions (ITS, nucLSU, mtSSU, MCM7, RPB1, RPB2 and TSR1) in RAxML v8.1.11 [66]. We were unable to generated MCM7 and TSR1 sequences from the majority of specimens, and therefore we did another partitioned ML analyses limited to the five most thoroughly sampled loci (ITS, nucLSU, mtSSU, RPB1 and RPB2). A search
combining 200 separate ML searches was conducted, implementing a GTRGAMMA model, and 1000 pseudoreplicates to evaluate bootstrap support for each node. A ML topology was also inferred from the 'ITS matrix' using RAxML and search parameters as described above. In addition to the ML analysis, the 'multilocus matrix' was also subjected to a Bayesian analysis with MrBayes v3.2.3 [67]. The nucleotide substitution models of the seven loci were selected using the Akaike information criterion in jModelTest v2.1.7 [68]. The Bayesian analysis was run for 10,000,000 generations with four independent chains and sampling every 1000th tree. All model parameters were unlinked. Two independent Bayesian runs were conducted to ensure that stationarity was reached and the runs converged at the same log-likelihood level (verified by eye and with AWTY option; [69]). After discarding the burn-in, the remaining 7500 trees of each run were pooled to calculate a 50% majority rule consensus tree. The clades that received bootstrap support ≥70% under ML and posterior probabilities ≥0.95 were considered significant. Phylogenetic trees were visualized using FigTree v1.4.2 [70].

Table 1. Primer information and PCR settings used for this paper.

Loci/PCR info	ITS	nucLSU	mtSSU	MCM7	RPB1	RPB2	TSR1
PCR primers	ITS1f	AL1Rf	mSSU1f	LecMCM7f	gRPB1a	Lecidella_RPB2f	TSR1f (5'GCTTGAGCRACRAGICADTGGGAGAC-3)
	ITS4a	AL2Rf	mSSU2f	LecMCM7f	IRPB1c	(5'GATGATGGGAGAYCGAGART-3)	
	LRSf	mSSU3f	MCM7-709f	RPB2-6f			
	LRSf	MSU1f	MCM7-1348f	RPB2-7cl			
Initial denaturation	95°C 5min	95°C 5min	94°C 10min	94°C 10min	94°C 10min	94°C 10min	
Phase 1	10 cycles	10 cycles	34 cycles	34 cycles	34 cycles	34 cycles	
	95°C 30sec	95°C 30sec	95°C 45sec	94°C 45sec	94°C 45sec	94°C 45sec	
	66°C 30sec	66°C 30sec	50°C 50sec	50°C 50sec	50°C 50sec	50°C 50sec	
	72°C 1min30sec	72°C 1min30sec	72°C 1min30sec	72°C 1min	72°C 1min	72°C 1min	
Phase 2	34 cycles	34 cycles	none	none	none	none	
	95°C 30sec	95°C 30sec	56°C 30sec	56°C 30sec	56°C 30sec	56°C 30sec	
	72°C 1min30sec	72°C 1min30sec	72°C 5min	72°C 5min	72°C 5min	72°C 5min	
Final extension	72°C 10min	72°C 10min	72°C 10min	72°C 5min	72°C 5min	72°C 5min	

1 [52]
2 [53]
3 [54]
4 [55]
5 [56]
6 [57]
7 [58]
8 [59]
9 [60]
10 [61]
11 [62]
12 [63].

doi:10.1371/journal.pone.0139405.t001
Table 2. Species and sequences used for the multilocus phylogenetic analyses, newly generated sequences are in bold. The numbers behind the specific epithet are used to distinguish different individuals for each species.

Species	ITS	LSU	mtSSU	RPB1	RPB2	MCM7	TSR1
Lecidella aff.elaeochroma 0	KT453753	KT453778	KT453825	KT453961	KT453884	KT453980	
Lecidella aff.elaeochroma 1	KT453752	KT453779	KT453826	KT453962	KT453885	KT453981	
Lecidella aff.elaeochroma 2	KT453751	KT453780	KT453827	KT453963			
Lecidella aff.euphorea 0	KT453756	KT453961	KT453980				
Lecidella aff.euphorea 5	KT453755	KT453782	KT453829	KT453959			
Lecidella carpathica 0	KT453739	KT453783	KT453830	KT453942			
Lecidella carpathica 1	KT453741	KT453784	KT453831	KT453944			
Lecidella carpathica 2	KT453740	KT453785	KT453832	KT453945			
Lecidella eufugensis 0	KT453748	KT453786	KT453833	KT453941	KT453883		
Lecidella eufugensis 1	KT453747	KT453787	KT453834	KT453949			
Lecidella eufugensis 2	KT453746	KT453788	KT453835	KT453957			
Lecidella eufugensis 3	KT453754	KT453789	KT453836	KT453958			
Lecidella eufugensis 4	KT453749	KT453790	KT453837	KT453956			
Lecidella eufugensis 5	KT453748	KT453791	KT453838	KT453948			
Lecidella eufugensis 6	KT453747	KT453792	KT453839	KT453949			
Lecidella eufugensis 7	KT453746	KT453793	KT453840	KT453950			
Lecidella eufugensis 8	KT453745	KT453794	KT453841	KT453951			
Lecidella eufugensis 9	KT453744	KT453795	KT453842	KT453952			
Lecidella eufugensis 10	KT453743	KT453796	KT453843	KT453953			
Lecidella eufugensis 11	KT453742	KT453797	KT453844	KT453954			
Lecidella eufugensis 12	KT453741	KT453798	KT453845	KT453955			
Lecidella eufugensis 13	KT453740	KT453799	KT453846	KT453956			
Lecidella eufugensis 14	KT453739	KT453800	KT453847	KT453957			
Lecidella eufugensis 15	KT453738	KT453801	KT453848	KT453958			
Lecidella eufugensis 16	KT453737	KT453802	KT453849	KT453959			
Lecidella eufugensis 17	KT453736	KT453803	KT453850	KT453960			
Lecidella eufugensis 18	KT453735	KT453804	KT453851	KT453961			
Lecidella eufugensis 19	KT453734	KT453805	KT453852	KT453962			
Lecidella eufugensis 20	KT453733	KT453806	KT453853	KT453963			
Lecidella eufugensis 21	KT453732	KT453807	KT453854	KT453964			
Lecidella eufugensis 22	KT453731	KT453808	KT453855	KT453965			
Lecidella eufugensis 23	KT453730	KT453809	KT453856	KT453966			
Lecidella eufugensis 24	KT453729	KT453810	KT453857	KT453967			
Lecidella eufugensis 25	KT453728	KT453811	KT453858	KT453968			
Lecidella eufugensis 26	KT453727	KT453812	KT453859	KT453969			
Lecidella eufugensis 27	KT453726	KT453813	KT453860	KT453970			
Lecidella eufugensis 28	KT453725	KT453814	KT453861	KT453971			
Lecidella eufugensis 29	KT453724	KT453815	KT453862	KT453972			
Lecidella eufugensis 30	KT453723	KT453816	KT453863	KT453973			
Lecidella eufugensis 31	KT453722	KT453817	KT453864	KT453974			
Lecidella eufugensis 32	KT453721	KT453818	KT453865	KT453975			
Lecidella eufugensis 33	KT453720	KT453819	KT453866	KT453976			
Lecidella eufugensis 34	KT453719	KT453820	KT453867	KT453977			
Lecidella eufugensis 35	KT453718	KT453821	KT453868	KT453978			
Lecidella eufugensis 36	KT453717	KT453822	KT453869	KT453979			
Lecidella eufugensis 37	KT453716	KT453823	KT453870	KT453980			
Lecidella eufugensis 38	KT453715	KT453824	KT453871	KT453981			
Lecidella eufugensis 39	KT453714	KT453825	KT453872	KT453982			
Lecidella eufugensis 40	KT453713	KT453826	KT453873	KT453983			

doi:10.1371/journal.pone.0139405.t002
For this study, 63 new sequences were generated (Table 2). The two datasets we used in this study were deposited in TreeBase (ID #17997). The ‘ITS matrix’ consisted of 60 individuals and 550 aligned nucleotide position characters. The concatenated, ‘multilocus matrix’ consisted of 47 individuals and 4260 aligned nucleotide position characters (Table 3). Phylogenies derived from the ML and B/MCMC analyses were generally concordant. ML analysis of the seven-locus and five-locus matrices also produced topologies that were generally concordant, and the seven-locus phylogeny is presented here, with nodal support values from both ML bootstrap analysis and posterior probabilities from the Bayesian inference (Fig 1). We listed 13 phenotypical characters next to the ML tree (Fig 1). The phylogenies resulting from the ML analyses of the ITS matrix and the five-locus matrix were shown in S1 and S2 Figs.

Table 3. The alignment information for the multilocus dataset.

Alignments	ITS	nucLSU	mtSSU	MCM7	RPB1	RPB2	TSR1	Total
Number of sequences	38	40	36	9	21	44	8	196
Newly added sequences to Genbank	10	15	9	0	2	19	8	64
Number of sites (including gaps)	509	696	595	502	679	656	623	4260
Missing sequences/ the percentages	9/19%	7/15%	11/23%	38/81%	26/55%	3/6%	39/83%	133/40%
Nucleotide substitution models	GTR+I+G	SYM+G	GTR+I+G	HKY+I+G	GTR+I+G	SYM+I+G	HKY+G	

doi:10.1371/journal.pone.0139405.t003

Results

For this study, 63 new sequences were generated (Table 2). The two datasets we used in this study were deposited in TreeBase (ID #17997). The ‘ITS matrix’ consisted of 60 individuals and 550 aligned nucleotide position characters. The concatenated, ‘multilocus matrix’ consisted of 47 individuals and 4260 aligned nucleotide position characters (Table 3). Phylogenies derived from the ML and B/MCMC analyses were generally concordant. ML analysis of the seven-locus and five-locus matrices also produced topologies that were generally concordant, and the seven-locus phylogeny is presented here, with nodal support values from both ML bootstrap analysis and posterior probabilities from the Bayesian inference (Fig 1). We listed 13 phenotypical characters next to the ML tree (Fig 1). The phylogenies resulting from the ML analyses of the ITS matrix and the five-locus matrix were shown in S1 and S2 Figs.

The most likely tree was comprised of three main, well-supported (bs = 100%, pp = 1.0) clades (Fig 1). Lecidella enteroleucella formed a highly supported clade (bs = 100%, pp = 1.0) sister to L. carpathica, L. effugiens, L. elaechroma, L. aff. elaechroma, L. elaeochromoides, L. euphora, L. aff. euphora, L. meiococca, and L. tumidula, which together formed a well-supported clade (bs = 100%, pp = 1.0). The species L. stigmatea and L. patavina formed a well-supported sister-group (bs = 100%, pp = 1.0) to the other two clades. All species with colorless hypothecium and lacking xanthones, which refer to L. stigmatea and L. patavina in the seven-gene tree (Fig 1) and L. greenii, L. siplei, L. stigmatea and L. patavina in the ITS tree (S1 Fig) formed a monophyletic lineage. Lecidella enteroleucella, which is characterized by a colorless hypothecium and contains the chlorinated xanthones thuringione and arthothelin, formed a separate clade. While most species which have yellow-brown to brown hypothecium and contain xanthones formed a separate clade, the traditionally circumscribed species L. carpathica was not recovered as a monophyletic lineage but clustered with L. tumidula in both trees.

Discussion

Here we provide the first phylogenetic hypothesis for the cosmopolitan lichen-forming fungal genus Lecidella. In most cases, our phylogenetic analyses support the traditional species delimitation based on morphological and chemical traits. The phylogeny also indicated that the species diversity of Lecidella in China is higher than previously assumed. The role of secondary metabolites in species delimitation of the genus Lecidella is supported. Below we discuss each of the three major Lecidella clades recovered in this study.

Lecidella stigmatea clade

This clade includes L. stigmatea and L. patavina and is characterized by a colorless hypothecium and secondary compounds other than xanthones. The two species were distinguished previously on a combination of characters, the inspersion of the hymenium being the most important [31]. Our phylogeny does not support the hymenial inspersion as being a major trait...
Fig 1. Maximum Likelihood phylogeny of *Lecidella* inferred from a concatenated 7-locus data matrix. Branches in bold received maximum likelihood bootstrap support values equal or above 70% and posterior probabilities equal or above 0.95. Phenotypical characters listed in boxes right to the tree. 1. Color of epihymenium: 0 = olive-brown (sometimes with green tinge); 1 = violet-brown; 2 = green to dark-green. 2. Hymenium: 0 = not inspersed; 1 = slightly inspersed; 2 = inspersed. 3. Color of hypothecium: 0 = colorless; 1 = yellow-brown to red-brown. 4. Arthrothelin: 0 = absent; 1 = present as minor substance; 2 = present as a major substance. 5. Thiophanic acid: 0 = absent; 1 = present. 6. Aotoearone: 0 = absent; 1 = present. 7. Capistratone: 0 = absent; 1 = present as minor substance; 2 = present as major substance. 8. Thuringione: 0 = absent; 1 = present as minor substance; 2 = present as major substance. 9. Granulosin: 0 = absent; 1 = present. 10. Lichexanthone: 0 = absent; 1 = present. 11. Diploicin: 0 = absent; 1 = present. 12. Zeorin: 0 = absent; 1 = present. 13. Substratum: 0 = corticolous; 1 = lignicolous; 2 = saxicolous. (? indicates samples that were unavailable for study)

doi:10.1371/journal.pone.0139405.g001
to characterize clades in the group. All *L. stigmatea* specimens collected in China have an olive-brown to brown (sometimes with green tinge) ephymenium regardless of the age of apothecia, while the samples identified as *L. patavina* have a green to dark-green ephymenium. In the ITS phylogeny (S1 Fig), *L. patavina* and *L. stigmatea* do not form monophyletic groups either and this indicates that the species circumscription in this group needs re-evaluation. Also, *L. greenii* is nested within the clade but forms a strongly supported monophyletic group. In the ITS tree (S1 Fig) the specimen ‘*L. patavina2’ clusters with the Antarctic species *L. siplei* sensu Inoue [48, 71] and is also morphologically similar. With the data at hand we cannot conclude whether cryptic species are present in this group or whether the species are morphologically and chemically variable. However, the presence of well-supported groups within the clade suggests that cryptic species might be hidden under the names *L. patavina* and *L. stigmatea*. Our taxon sampling is insufficient to address this issue. The lignicolous sample ‘*L. stigmatea4’ differs from the other *L. stigmatea* specimens in having a violet-brown ephymenium and thinner proper excipulum but otherwise agrees well morphologically with the saxicolous specimens of that species. In the ITS tree (S1 Fig) it is also separate from the other samples in this clade. Additional material will be necessary to determine whether it represents an undescribed taxon.

Lecidella elaeochroma clade

This clade forms a well-supported monophyletic group in the phylogenies inferred from the ‘multilocus matrix’ (bs = 100%, pp = 1.0) and ‘ITS matrix’ (bs = 100%) and contains *L. carpatica*, *L. effugiens*, *L. elaeochroma*, *L. aff. elaeochroma*, *L. elaeochromoides*, *L. euphora*, *L. aff. euphora*, *L. meiococca*, and *L. tumidula*. In the ITS topology, *L. wulfenii* and *L. flavosorediata* were also recovered within this clade. All species within this clade are known to produce xanthones. According to Leuckert and Knoph [35] the xanthones in *Lecidella* mainly consist of two types: chloronorlichexanthones (arthothelin and thiophanic acid in our samples) and O-methylated xanthones (aotearone, capistratone, thuringione, granulosin and lichenxanthone in our samples). Our results indicate that both major groups of xanthones are not completely independent from one another, being present for example in *L. euphora*, which contains arthothelin and thiophanic acid but also aotearone and capistratone. *Lecidella euphora* and *L. tumidula* form well-supported monophyletic clades. *Lecidella tumidula*3 was originally identified as *L. euphora* [72]. However, a re-examination of the voucher specimen from DUKE revealed the presence of lichenxanthone in this specimen; hence it was re-identified as *L. tumidula*. *Lecidella carpatica* is paraphyletic with *L. tumidula* nested within. In the ITS tree (S1 Fig), specimens *Lecidella carpatica1’ and ‘carpathica2’ cluster with a sequence from Genbank that was collected in Austria and apparently represents *L. carpatica* s.str., whereas specimens ‘carpathica0’ and ‘carpathica3’ form a sister-group to *L. tumidula* and potentially represent a cryptic lineage.

In our tree, *L. elaeochroma* is polyphyletic. A specimen from Xinjiang in NW China named *L. ‘elaeochroma3’ did not cluster with *L. ‘elaeochroma5’, which was collected in Europe (Belgium). The latter clustered in the ITS tree with numerous other sequences of *L. elaeochroma* and probably represents *L. elaeochroma* s.str., whereas the Chinese sample appear to represent an undescribed species. In addition, three samples were identified as *Lecidella aff. elaeochroma* here. They were collected in NE China (Jilin province) and have a brownish ephymenium (vs. greenish), a heavily inspersed hymenium (vs. non- to slightly inspersed), and a violet pigment in the excipulum. The samples also formed a separate, strongly supported monophyletic clade and might represent a new species (Fig 1). *Lecidella elaeochromoides* and *L. effugiens*, which were traditionally separated based on a combination of somewhat overlapping thalline and apothecial characters, and differences in chemical composition [33, 34], were not supported as
distinct clades, suggesting these taxa may be conspecific. However, *L. effugiens* is not monophyletic and itself consists of two clades with two specimens (‘effugiens2’ and ‘effugiens3’) collected in NE and SW China potentially representing a cryptic lineage that is sister to *L. aff. euphora* (Fig 1). The latter is only distantly related to *L. euphora* but is morphologically similar. It, however, differs in its secondary chemistry, containing aotearone but lacking capistratone or lacking xanthones altogether (specimen 5).

Lecidella enteroleucella clade

Lecidella enteroleucella individually forms a monophyletic group. The small apothecia (less than 0.4mm in diam.) are unique in the genus. The species agrees with the *L. elaeochroma* clade in containing chlorinated xanthones. In our tree the species forms a sister-group to that clade and no close relatives are known. However, *L. oceanica*, which was reported from Korea [73] and China [74], is morphologically similar but has a different chemistry (containing capistratone as major substance). We failed to generate DNA sequences of this species but hypothesize that *L. oceanica* also falls within this clade.

The current study provides important insight into the evolution and classification of *Lecidella*. Combining morphology, chemistry and phylogeny, the three informal groups within *Lecidella*–*L. elaeochroma* group, *L. enteroleucella* group and *L. stigmatea* group are proposed in this study. Additional sampling across a broader taxonomic and geographic scale will be crucial to fully resolving taxonomy in this cosmopolitan lineage.

Supporting Information

S1 Fig. Maximum Likelihood topology of *Lecidella* inferred from ITS sequences. ML bootstrap frequencies are shown above branches.
(TIF)

S2 Fig. Maximum Likelihood topology of *Lecidella* inferred from the five-locus matrix. ML bootstrap frequencies are shown above branches.
(PDF)

S1 Table. The detailed collection information for the *Lecidella* specimens selected for this study.
(XLS)

S2 Table. Species and specimens which were selected from GenBank, together with information on their origin and GenBank accession numbers.
(XLS)

Acknowledgments

We are thankful to Ms. Deng Hong (HMAS-L) and Mr. Wang Li Song (KUN-L) for providing access to specimens deposited in their herbaria, and grateful to M. McMullen (Duke Univ. Herbarium) for sending us *Lecidella* specimens for examination on loan.

Author Contributions

Conceived and designed the experiments: XZ LLZ HTL. Performed the experiments: XZ SDL. Analyzed the data: XZ HTL. Contributed reagents/materials/analysis tools: XZ SDL HTL. Wrote the paper: XZ LLZ ZTZ WCW SDL HTL.
References

1. Rivas Plata E, Lumbsch HT. Parallel evolution and phenotypic divergence in lichenized fungi: a case study in the lichen-forming fungal family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Molecular Phylogenetics and Evolution. 2011; 61(1):45–63. PMID: MEDLINE:21605691. doi: 10.1016/j.ympev.2011.04.025

2. Grube M, Baloch E, Lumbsch HT. The phylogeny of Porinaceae (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. Mycological Research. 2004; 108:1111–8. PMID: ISI:000224794900001.

3. Schmitt I, del Prado R, Grube M, Lumbsch HT. Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Molecular Phylogenetics and Evolution. 2009; 52(1):34–44. doi: 10.1016/j.ympev.2009.03.017 PMID: ISI:000266692800004.

4. Teehler A, Irestedt M. Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics. 2007; 23:432–54. PMID: ISI:000089214200001.

5. Lumbsch HT. Phylogeny of filamentous ascomycetes. Naturwissenschaften. 2000; 87(8):335–42. PMID: ISI:000089214200001.

6. Lumbsch HT. Recent trends in phylogeny and classification of lichen-forming ascomycetes. In: Ganguli BN, Deshmukh SK, editors. Fungi Multifaceted Microbes: Anamaya Publishers, New Delhi. 321 pp.; 2006. p. 153–68.

7. Grube M, Winka K. Progress in understanding the evolution and classification of lichenized ascomycetes. Mycologist. 2002; 16:67–76. PMID: 26257.

8. DePriest PT. Early molecular investigations of lichen-forming symbionts: 1986–2001. Annual Review of Microbiology. 2004; 58:273–301. PMID: 27086.

9. Printzen C. Lichen Systematics: The Role of Morphological and Molecular Data to Reconstruct Phylogenetic Relationships. In: Lütte U, Bęyschlag W, Büdel B, Francis D, editors. Progress in Botany 712010. p. 233–75.

10. Jaklitsch WM, Baral HO, Lücking R, Lumbsch HT. Ascomycota. In: Frey W, editor. Syllabus of Plant Families—Adolf Engler’s Syllabus der Pflanzenfamilien. 1/2. 13 ed. Stuttgart: Gebr. Borntraeger Verlagsbuchhandlung; 2015. p. 150.

11. Otálora MA, Aragón G, Martínez I, Wedin D. Cardinal characters on a slippery slope—A re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str). Molecular and Phylogenetic Evolution. 2013; 68:185–98. PMID: 34539.

12. Divakar PK, Kauff F, Crespo A, Leavitt SD, Lumbsch HT. Understanding phenotypical character evolution in pellnioid lichenized fungi (Parmeliaceae, Ascomycota). PLoS ONE. 2013; 8(11):e83115. doi: 10.1371/journal.pone.0083115 PMID: MEDLINE:24312438.

13. Wedin D, Wiklund E, Jørgensen PM, Ekman S. Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Molecular Phylogenetics and Evolution. 2009; 53:682–71. PMID: 31603.

14. Gueidan C, Roux C, Lutzoni F. Using a multigene phylogenetic analysis to assess generic delineation in Parmeliaceae (Ascomycota: Lecanoromycetes: Ostropales). Systematics and Biodiversity. 2014; 12(3):271–91.

15. Lumbsch HT, Parmen S, Kraichak E, Papong K, Lücking R. High frequency of character transformations is phylogenetically structured within the lichenized fungal family Graphidaceae (Ascomycota: Ostropales). Systematics and Biodiversity. 2014; 12(3):271–91.

16. Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, et al. A single macrolichen constitutes hundreds of unrecognized species. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111(30):11091–6. doi: 10.1073/pnas.1403517111 PMID: WOS:000339500200054. doi:10.1073/pnas.1403517111 PMID: WOS:000339500200054.

17. Amo de Paz G, Crespo A, Cubas P, Elix JA, Lumbsch HT. Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS ONE. 2012; 7(6):e39683. doi: 10.1371/journal.pone.0039683 PMID: 22745810.

18. Otálora MAG, Martínez I, Aragón G, Molina MC. Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern. American Journal of Botany. 2010; 97:216–23. PMID: 32109.

19. Elix JA, Corush J, Lumbsch HT. Triterpene chemosyndromes and subtle morphological characters characterise lineages in the Physcia aipolia group in Australia (Ascomycota). Systematics and Biodiversity. 2009; 7(4):479–87. doi: 10.1017/s1477200009990223 PMID: ISI:000272735000012.

20. Parmen S, Rangsiruji A, Mongkolshuk P, Boonpragob K, Nutakki A, Lumbsch HT. Using phylogenetic and coalescent methods to understand the species diversity in the Cladia aggregata complex
21. Arguello A, Del Prado R, Cubas P, Crespo A. *Parmelia quercina* (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biological Journal of the Linnean Society. 2007; 91(3):455–67. PMID: IS000247817100011.

22. Lumbsch HT, Huhndorf SM. Myconet Volume 14. Part One. Outline of Ascomycota—2009. Fieldiana (Life and Earth Sciences). 2010; 1:1–42.

23. Kirk PM, Cannon PF, Minter DW, Stalpers JA, editors. Ainsworth & Bisby’s Dictionary of the Fungi. 10th ed. Wallingford: CAB International; 2008.

24. Hertel H. Über saxicole, lecideoid Flechten der Subantarktis. Beiheft zur Nova Hedwigia. 1984; 29:399–499. PMID: 8459.

25. Koerber GW. Systema Lichenum Germaniae (I-XXXIV). Die Flechten Deutschlands mikroskopisch geprüft, kritisch gesichtet, charakteristisch beschrieben und systematisch geordnet: Breslau; 1855.

26. Hertel H. Revision einiger calciphiler Formenkreise der Flechtengattung *Lecidea*. Beih. Nova Hedwigia. 1967; 24:1–155. PMID: 11406.

27. Leuckert C, Hertel H. Über Flechtenstoffe und Systematik einiger Arten der Gattung *Lecidea*. Nova Hedwigia. 1967; 14:291–300. PMID: 8414.

28. Hafellner J. Durch Ascusstrukturanalysen zu einem besseren Verständnis der Systematik der Lecideae coll. (lichenisierte Ascomycetes). Mitteilungsband Botaniker-Tagung Wien1984. p. 116.

29. Hafellner J. Studien in Richtung einer naturlicheren Gliederung der Sammelfamilien Lecanoraceae und Leucideaceae. Beih. Nova Hedwigia. 1984; 79:241–371. PMID: 7251.

30. Elix JA, Crook CE. The joint occurrence of chloroxanthones in lichens, and a further thirteen new lichen xanthones. Bryologist. 1992; 95:52–64. PMID: 4875.

31. Knoph J-G. Untersuchungen an gesteinsbewohnenden xanthonhaltigen Sippen der Flechtengattung *Lecidella* (Lecanoraceae, Lecanorales) unter besonderer Berücksichtigung von aussereuropäischen Proben exklusive America. Bibliotheca Lichenologica. 1990; 36:1–183. PMID: 10253.

32. Leuckert C, Knoph J-G, Ziegler HG, Hertel H. Chemotaxonomische Studien in der Gattung *Lecidella* (Lecanoraceae, Lecanorales) I. Herzogia. 1990; 8:265–72. PMID: 11413.

33. Leuckert C, Knoph J-G. European taxa of saxicolous *Lecidella* containing chloroxanthones: identification of patterns using thin layer chromatography. Lichenologist. 1992; 24:383–97. PMID: 11411.

34. Leuckert C, Knoph J-G, Hertel H. Chemotaxonomische Studien in der Gattung *Lecidella* (Lecanorales, Lecanoraceae) II. Europäische Arten der *Lecidella asema*-Gruppe. Herzogia. 1992; 9:1–17. PMID: 11410.

35. Leuckert C, Knoph J-G. Secondary compounds as taxonomic characters in the genus *Lecidella* (Lecanoraceae, Lecanorales). Bibliotheca Lichenologica. 1993; 53:161–71. PMID: 11412.

36. Knoph J-G, Leuckert C. Chemotaxonomic studies in the saxicolous species of the lichen genus *Lecidella* (Lecanoraceae, Lecanorales) in America. Nova Hedwigia. 1994; 59:455–508. PMID: 10252.

37. Knoph J-G, Leuckert C, Hertel H. Chemotypes and distribution patterns of saxicolous species of *Lecidella* (Lecanoraceae, Lecanorales). Cryptogamic Botany. 1995; 5:45–54. PMID: 10251.

38. Knoph J-G, Leuckert C. Chemotypes and distribution patterns of the non-saxicolous species of *Lecidella* (Lecanoraceae, Lecanorales). Bibliotheca Lichenologica. 1997; 68:129–34. PMID: 10242.

39. Knoph J-G, Leuckert C. Chemotaxonomische Studien in der Gattung *Lecidella* (Lecanorales, Lecanoraceae) III. Die gesteinsbewohnenden Arten mit farblosem Hypothecium unter besonderer Berücksichtigung von europäischem Material. Herzogia. 2000; 14:1–26. PMID: 21139.

40. Wei JC. An Enumeration of Lichens in China. Beijing: International Academic Publishers; 1991.

41. Abbas A, Mijit H, Tumur A, Jinong W. A checklist of the lichens of Xinjiang, China. Harvard Papers in Botany. 2001; 5(2):359–70. doi: 10.2307/41761612

42. Zhang L-L, Wang L-S, Wang H-Y, Zhao Z-T. Four new records of lecideoid lichens from China. Mycotoxins. 2012; 11410.

43. Elix JA, Crook CE. The joint occurrence of chloroxanthones in lichens, and a further thirteen new lichen xanthones. Bryologist. 1992; 95:52–64. PMID: 4875.

44. Grube M, Baloch E, Arup U. A phylogenetic study of the *Lecanora rupicola* group (Lecanoraceae, Ascomycota). Mycological Research. 2004; 108:506–14. PMID: IS000221995600006.

45. Miadlikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, Hafellner J, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses...
of three ribosomal RNA- and two protein-coding genes. Mycologia. 2006; 98(6):1088–103. PMID: IS1:000245858800024.

46. Miadlikowska J, Kauf F, Högnabba F, Oliver JC, Molnár K, Fraker E, et al. Multigene phylogenetic synthesis for 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families of the class Lecanoromycetes (Ascomycota). Molecular Phylogenetics and Evolution. 2014; 79:132–68. doi: 10.1016/j.molphy.2014.04.003 PMID: 24747130

47. Kalb K, Staiget B, Elix JA, Lange U, Lumbsch HT. A new circumscription of the genus

48. Ruprecht U, Lumbsch HT, Brunauer G, Green TGA, Turk R. Insights into the Diversity of Lecanoraceae (Lecanorales, Ascomycota) in continental Antarctica (Ross Sea region). Nova Hedwigia. 2012; 94(3–4):287–306. doi: 10.1127/0029-5035/2012/0017 PMID: WOS:000304431800002.

49. Zhao X, Leavitt SD, Zhao ZT, Zhang LL, Arup U, Grube M, et al. Towards a revised generic classification of lecanoroid lichens (Lecanoraceae, Ascomycota) based on molecular, morphological and chemical evidence. Fungal Diversity. 2015; xx:in prep.

50. Orange A, James PW, White FJ. Microchemical methods for the identification of lichens. London: British Lichen Society; 2001. 101 p.

51. Lumbsch HT. Analysis of phenolic products in lichens for identification and taxonomy. In: Kranner I, Orange A, James PW, White FJ. Microchemical methods for the identification of lichens. London: British Lichen Society; 1996. 200 p.

52. Mangold A, Martin MP, Lücking R, Lumbsch HT. Molecular phylogeny suggests synonymy of Thelotrema (Lecanorales, Ascomycota) in continental Antarctica (Ross Sea region). Nova Hedwigia. 2012; 94(3–4):287–306. doi: 10.1127/0029-5035/2012/0017 PMID: WOS:000304431800002.

53. Zhou S, Stanosz GR. Primers for amplification of mtSSU rDNA, and a phylogenetic study of Xanthoparmelia species. Journal of Bacteriology. 1990; 172:423–46. PMID: 2376561

54. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology. 1990; 172:423–46. PMID: 2376561

55. Zoller S, Scheidegger C, Sperisen C. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist. 1999; 31:511–6. PMID: IS1:00026667600009.

56. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology. 1990; 172:423–46. PMID: 2376561

57. Zoller S, Scheidegger C, Sperisen C. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist. 1999; 31:511–6. PMID: IS1:000286884500012.

58. Zhou S, Stanosz GR. Primers for amplification of mtSSU rDNA, and a phylogenetic study of Botryosphaeria and associated anamorphic fungi. Mycological Research. 2001; 105:1033–44.

59. Leavitt SD, Johnson L, St Clair LL. Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in western North America. American Journal of Botany. 2011; 98(2):175–88. doi: 10.3732/ajb.1000230 PMID: IS1:000286884500011.

60. Schmidt I, Crespo A, Divakar PK, Fankhauser J, Herman-Sackett E, Nelsen MP, et al. New primers for single-copy protein-coding genes for fungal systematics. Persoonia—Molecular Phylogeny and Evolution of Fungi. 2009; 23:35–40.

61. Stiller JW, Hall BD. The origin of red algae: implications for plastid evolution. Proceedings of the National Academy of Sciences of the United States of America. 1997; 94:4520–5. PMID: 9114022

62. Matheny PB, Liu YJ, Ammirati JF, Hall BD. Using RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). American Journal of Botany. 2002; 89:688–98. doi: 10.3732/ajb.89.4.688 PMID: 21665669

63. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution. 1999; 16:1799–808. PMID: 10605121

64. Katoh K, Asimenos G, Toh H. Multiple Alignment of DNA Sequences with MAFFT. Methods in Molecular Biology. 2009; 537:39–64. doi: 10.1007/978-1-59745-251-9_3 PMID: 19378139

65. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution. 2000; 17(4):540–52. PMID: IS1:000086337700008.

66. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22:2688–90. PMID: 16928733
67. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012; 61:539–42. doi:10.1093/sysbio/sys029 PMID: 22357727

68. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012; 9(8):772. doi:10.1038/nmeth.2109 PMID: 22847109

69. Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL. AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics. 2008; 24:581–3. PMID: 17766271

70. Rambaut A. FigTree 1.2.2. http://tree.bio.ed.ac.uk/software/figtree/2009.

71. Inoue M. Lecideoid lichens of Prince Olav Coast and Sôya Coast, Enderby Land, East Antarctica. Nan-kyoku Shiryô. 1991; 35:271–84. PMID: 9134.

72. Schmull M, Miadlikowska J, Pelzer M, Stocker-Woergoetter E, Hofstetter V, Fraker E, et al. Phyloge-netic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia. 2011; 103(5):983–1003. doi:10.3852/10-234 PMID: WOS:000294529400006.

73. Zhang LL, Wang XY, Wang HY, Wang LS, Hur J-S. A new species and new records of saxicolous species of the genus Lecidella (Lecanoraceae) from South Korea. Bryologist. 2012; 115(2):329–32. doi:10.1639/0007-2745-115.2.329 PMID: WOS:000307281700012.

74. Zhao X, Zhang LL, Sun LY, Hu L, Zhao ZT. Four new records of Lecanoraceae from China. Mycotaxon. 2015; in press.