Wastewater-based epidemiology—surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia

Alireza Zahedi 1 · Paul Monis 2 · Daniel Deere 3 · Una Ryan 1

Received: 18 November 2020 / Accepted: 14 December 2020 / Published online: 6 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021, corrected publication 2021

Abstract
Waterborne diseases are a major global problem, resulting in high morbidity and mortality, and massive economic costs. The ability to rapidly and reliably detect and monitor the spread of waterborne diseases is vital for early intervention and preventing more widespread disease outbreaks. Pathogens are, however, difficult to detect in water and are not practicably detectable at acceptable concentrations that need to be achieved in treated drinking water (which are of the order one per million litre). Furthermore, current clinical-based surveillance methods have many limitations such as the invasive nature of the testing and the challenges in testing large numbers of people. Wastewater-based epidemiology (WBE), which is based on the analysis of wastewater to monitor the emergence and spread of infectious disease at a population level, has received renewed attention in light of the current coronavirus disease 2019 (COVID-19) pandemic. The present review will focus on the application of WBE for the detection and surveillance of pathogens with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waterborne protozoan parasites Cryptosporidium and Giardia. The review highlights the benefits and challenges of WBE and the future of this tool for community-wide infectious disease surveillance.

Keywords Wastewater · Epidemiology · Cryptosporidium · Giardia · SarsCoV-2

Introduction
Waterborne diseases are a major threat to public health globally. Worldwide, it is estimated that ~80% of wastewater is released to the environment without sufficient treatment (UN 2017) and at least 2 billion people use a drinking water source contaminated with faeces (WHO 2019). Waterborne diseases are thought to be responsible for between 1.6 and 12 million deaths annually (Gleick 2002; Troeger et al. 2018; Xagonaraki and O’Brien 2020). Although the burden is the highest in developing countries, outbreaks of disease still occur in developed countries and the global burden is estimated at 12 billion US dollars per year (Alhamlan et al. 2015). Waterborne pathogens include bacteria (e.g. Escherichia coli, Salmonella spp., Campylobacter spp., Vibrio cholerae), viruses (e.g. norovirus, adenovirus, poliovirus), protozoa (Cryptosporidium spp. and Giardia spp.) and helminths (e.g. Ascaris spp. and Trichuris spp.).

Clinical surveillance and monitoring of waterborne pathogens are essential tools for detecting and preventing further spread and to minimise the extent of an outbreak. However, clinical testing is usually limited to individuals who are ill enough to seek treatment and testing, resulting in underreporting of disease prevalence (Cacciò and Chalmers 2016) and providing a lag indicator for a community outbreak. Similarly, screening for pathogens directly to verify water safety in source and treated waters used for drinking is problematic due to the low pathogen concentrations that are considered acceptable, requiring the analysis of large volumes of water. For instance, acceptable viral pathogen concentrations in treated drinking water range from one infectious virion per 500 kl to 5 ml (Regli et al. 1991; Schijven and Hassanizadeh...
Such concentrations are beyond what is practicably detectable. One solution is to monitor pathogens where they are present at higher concentrations in source waters and make assumptions about pathogen reduction. However, in relatively clean source waters that place little or no reliance on treatment barriers, the acceptable source water concentrations can still be way below the practicable limits of detection, which are in the range one infectious pathogen per l to 1 kl, depending on the pathogen, assay type and quality of the water. Indeed, most of the standard approaches to pathogen monitoring for both clinical disease and water testing are costly, often pathogen-specific, frequently rely on passive monitoring, are only practicable and affordable at inadequately low frequencies, are subject to biases, and vary widely from country to country depending on the resources and funding available (Ramírez-Castillo et al. 2015; Sims and Kasprzyk-Hordern 2020).

Improved monitoring systems that can detect multiple waterborne diseases across broad communities in a cost-effective manner, preferably in real-time, are therefore urgently required. In this regard, wastewater-based epidemiology (WBE), as an early warning system for a variety of waterborne infectious diseases, has received much recent attention. Initially used for monitoring poliovirus prevalence (Pöyry et al. 1988; Berchenko et al. 2017), community-wide drug abuse (Castiglioni et al. 2006) and other chemical pollutants (Choi et al. 2018), WBE relates broadly to the analysis wastewater for the presence of nucleic acids or other biomarkers excreted in faeces and urine to provide comprehensive community health information (Mao et al. 2020a). The methods will also detect pathogens secreted in saliva, sputum, mucus, vomitus and phlegm—all of which are often captured in wastewater (Deere et al. 2020). Thus, WBE is equivalent to obtaining and analysing a large community-based composite sample of faeces, saliva, vomitus, sputum, urine, shed skin and other material shed during personal cleansing, washing, bathing and excreting, providing a sensitive means of monitoring temporal changes in pathogen concentrations and diversity within a community (Xagorarakis and O’Brien 2020). A further advantage of sampling wastewater directly is that pathogen numbers are higher in wastewater compared with the receiving environments into which wastewaters are discharged.

The emergence in 2020 of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), which causes viral pneumonia, Coronavirus Disease 2019 (COVID-19), has heightened the focus on WBE as a surveillance tool to provide early detection of disease in the community, particularly due to the time lag between the development of symptoms, clinical diagnosis and any action required by health authorities to contain the disease cluster. Although SARS-CoV-2 typically causes respiratory symptoms, and is shed in nasal, buccal, oesophageal and respiratory discharges into wastewater, it can also result in gastrointestinal symptoms and/or viral shedding in faeces (Wu et al. 2020a, 2020b; Xu et al. 2020), with a meta-analysis of COVID-19 studies finding that 17.6% of COVID-19 patients had gastrointestinal symptoms and 48.1% of COVID-19 patients had SARS-CoV-2 RNA detected in their faeces (Cheung et al. 2020). Thus, monitoring the presence of SARS-CoV-2 RNA in wastewater is becoming widely used to track changes in COVID-19 case numbers in communities (e.g. Ahmed et al. 2020a; Bar-Or et al. 2020; Kocamemi et al. 2020; La Rosa et al. 2020a; Medema et al. 2020; Nemudryi et al. 2020; Peccia et al. 2020; Randazzo et al. 2020a, 2020b; Wu et al. 2020a; Wurtzer et al. 2020a, 2020b) (Table 1).

The protozoan parasites, Cryptosporidium and Giardia, are also important enteric pathogens of public health concern and major waterborne pathogens. Between 2011 and 2016, Cryptosporidium and Giardia were responsible for all reported waterborne outbreaks due to protozoa (n = 381) worldwide (Efstratiou et al. 2017). Cryptosporidium is the second most important cause of moderate to severe diarrhoea and mortality in children under 5 years of age in developing countries and both symptomatic and asymptomatic cryptosporidial infections in children are associated with malnutrition and stunted growth (Khalil et al. 2018). Oocysts are shed in faeces in high numbers (up to 10⁹ per stool); the median infectious doses reported are in the range approximately 1–125 oocysts, depending on species, with a consensus probability of infection per ingested oocyst recommended of 20%; and the oocysts can remain infectious in the environment for more than 6 months under cool, dark, moist conditions (DuPont et al. 1995; Chappell et al. 2006; Shirley et al. 2012; WHO 2016). The global prevalence of Cryptosporidium has been estimated at 7.6%, with an average prevalence of 4.3% in developed countries and 10.4% in developing countries (with prevalences as high as 69.6% in some countries) (Dong et al. 2020). There is evidence that due to under-reporting, the true number of cases in the community may be as much as 500 times higher than the numbers estimated based on routine clinical stool isolates (Hall et al. 2006). Currently, 43 Cryptosporidium species are considered valid (Bolland et al. 2020; Holubová et al. 2020; Ježková et al. 2020), with the majority of human infections caused by C. hominis and C. parvum, although >20 species and genotypes have been reported in humans (Feng et al. 2018; Zahedi and Ryan 2020).

Giardiasis is the most common enteric protozoan parasitic infection worldwide, with an estimated 280 million people infected annually. The species that infects humans, Giardia duodenalis, is a species complex consisting of eight assemblages (A–H), with assemblages A and B the dominant assemblages in humans and assemblages C–H in animals, although sporadic cases of assemblages C, D, E and F have been reported in humans (Ryan and Zahedi 2019). Giardia infections can be asymptomatic or result in diarrhoea that can become chronic and has also been associated with irritable bowel syndrome, chronic fatigue and joint pain (Coffey et al. 2020). In infants and children, infections can result in failure to thrive and malnutrition (Dunn and Juergens 2020). In developing
Country	Type of sample	Detection and concentration method	Sequence confirmation	Detection frequency	Maximum concentration (genomic copies/L)	Reference
Australia	Untreated	RT-qPCR: N_Sarbeco, NID_2019-nCoV Electronegative membrane-direct RNA extraction; ultrafiltration	Yes	2/9 (22%)	1.2×10^2	Ahmed et al. 2020a
Brazil	Untreated	RT-qPCR: N1, S, RdRp Ultrafiltration of centrifuged supernatant Lycine buffer method and polyethylene glycol precipitation, filtration and centrifugation	No	4/6 (66%)	5×10^6	Fongaro et al. 2020
Brazil	Untreated	RT-qPCR: N1 Ultracentrifugation	No	5/12 (41.6%)	NR	Prado et al. 2020
Chile	Untreated and treated	RT-qPCR: ORF1, N, S Ultracentrifugation	No	Untreated: 4/4 (100%) Treated: 3/4 (75%)	Untreated: 4.8×10^3 Treated: 1.6×10^2	Ampuero et al. 2020
Czech Republic	Untreated	RT-qPCR: NS Direct flocculation using beef extract solution and centrifugation	No	13/112 (11.6%)	NR	Mlejnıkova et al. 2020
England	Untreated	RT-qPCR: RdRp, E_Sarbeco Ultrafiltration of centrifuged supernatant	Yes	3/5 (60%)	$3.1-15.8 \times 10^3$	Martin et al. 2020
France	Untreated	RT-qPCR: E_Sarbeco, RdRp Ultracentrifugation	No	NR (100%)	10^6	Wurtzer et al. 2020a
France	Untreated and treated	RT-qPCR: E_Sarbeco Ultrafiltration of centrifuged supernatant	No	Untreated: 10/14 (71%) Treated: 6/8 (75%)	Untreated: $>10^6.5$ Treated: 10^5	Wurtzer et al. 2020b
France	Untreated	RT-qPCR: CDC N1, N3 Ultracentrifugation of filtered sample	NR	NR	NR	Trottier et al. 2020
Germany	Untreated and treated	RT-qPCR: E, M, N, RdRp Ultrafiltration of centrifuged supernatant	Yes	Untreated: 9/9 (100%) Treated: 4/4 (100%)	Untreated: 2.0×10^4 Treated: 3.7×10^4	Westhaus et al. 2020
India	Untreated and treated	RT-qPCR: ORF1ab, N, S PEG precipitation of filtered sample	No	Untreated: 2/2 (100%) Treated: ND	8.0×10^2	Kumar et al. 2020
India	Untreated and treated	RT-qPCR: ORF1ab, RdRp, N, S, E Two-phase (PEG-dextran method) separation and ultracentrifugation	No	Untreated: 2/6 (33%) Treated: ND	NR	Arora et al. 2020
Israel	Untreated	RT-qPCR: E_Sarbeco PEG or alum precipitation of centrifuged supernatant	No	10/26 (38%)	NR	Bar-Or et al. 2020
Italy	Untreated	RT-qPCR: ORF1ab, RdRp, S PEG/dextran precipitation of centrifuged supernatant	No	6/12 (50%)	NR	La Rosa et al. 2020a
Italy	Untreated	RT-qPCR: ORF1ab, RdRp, E PEG/dextran precipitation of centrifuged supernatant	No	15/40 (37%)	4.1×10^3	La Rosa et al. 2020b
Italy	Untreated and treated	RT-qPCR: 2019-nCoV, ORF1ab and E_Sarbeco Ultrafiltration	Yes	Untreated: 4/8 (50%) Treated: ND	NR	Rimoldi et al. 2020
Japan	Untreated	RT-qPCR: N_Sarbeco, NID_2019-nCoV_N, CDC-N1, and CDC-N2 assays Electronegative membrane-vortex (EMV) method or/and adsorption-direct RNA extraction method (filtration through cellulose-ester membrane)	No	ND	NR	Haramoto et al. 2020
Japan	Untreated	RT-qPCR: NID_2019-nCoV_N, CDC N2, N3 Electronegative membrane-vortex (EMV) method or/and adsorption-direct RNA extraction method (filtration through cellulose-ester membrane)	Yes	7/17 (41%)	4.4×10^4	Hata et al. 2020
Country	Type of sample	Detection and concentration method	Sequence confirmation	Detection frequency	Maximum concentration (genomic copies/L)	Reference
--------------	----------------	---	-----------------------	---------------------	--	----------------------------
Pakistan	Untreated	PEG/dextran precipitation of centrifuged supernatant RT-qPCR: ORF1ab, N Centrifugation	No	NR	NR	Yaqub et al. 2020
Pakistan	Untreated	RT-qPCR: ORF1a PEG/dextran precipitation of centrifuged supernatant	No	21/78 (27%)	NR	Sharif et al. 2020
Spain	Untreated and treated	RT-qPCR: 2019-nCoV Aluminium-driven flocculation – beef extract precipitation	No	Untreated: 12/15 (80%)	1.0 × 10^5	Randazzo et al. 2020a
Spain	Untreated and treated	RT-qPCR: CDC N1, N2, N3 Aluminium-driven flocculation – beef extract precipitation	No	Untreated: 35/42 (83%)	3.4 × 10^5	Randazzo et al. 2020b
Spain	Untreated and treated	RT-qPCR: RdRp, N, E Amicon ultrafiltration of centrifuged supernatant	No	Untreated: 8/8 (100%)	1.50 × 10^4	Balboa et al. 2020
Spain	Untreated	RT-qPCR: RdRp, IP2, IP4, E, N1, N2 20%polyethylene glycol 6000 for precipitation	No	1/19 (11%)	8.3 × 10^2	Chavarria-Miró et al. 2020
Turkey	Untreated	RT-qPCR: RdRp Amicon ultrafiltration or PEG precipitation of centrifuged supernatant	No	5/7 (71%)	1.80 × 10^4	Kocamemi et al. 2020
The Netherlands	Untreated	qPCR: CDC N1, N2, N3, E_Sarbeco Ultrafiltration of centrifuged supernatant	No	14/24 (58%)	2.2 × 10^5	Medema et al. 2020
The Netherlands	Untreated	RT-qPCR (NS)	No	NR	NR	Lodder and de Roda Husman 2020
USA	Untreated	RT-qPCR: CDC N1, N2, N3 PEG precipitation of filtered sample	Yes	10/14 (71%)	>2 × 10^5	Wu et al. 2020a
USA	Untreated	RT-qPCR: CDC N1, N2 Ultrafiltration of filtered sample	No	7/7 (100%)	>3 × 10^4	Nemudriyi et al. 2020
USA	Primary sludge	RT-qPCR: N1, N2 Direct RNA extraction	No	44/44 (100%)	4.6 × 10^7	Peccia et al. 2020
USA	Untreated	RT-ddPCR and RT-qPCR: N1, N2, N3 InnovaPrep Concentrating Pipette Select and electronegative filtration	No	98/198 (49%)	~ 10^5	Gonzalez et al. 2020
USA	Untreated	RT-qPCR: IP2/IP4 Multiplex Ultracentrifugation	No	18/22 (82%)	1.7 × 10^5	Green et al. 2020
USA	Untreated and treated	RT-qPCR: CDC N1, N2 Ultrafiltration of centrifuged supernatant and/or adsorption-elution method using an electronegative membrane	No	Untreated: 2/7 (28%)	7.5 × 10^5	Sherchan et al. 2020

*a NR not reported, b NS not specified, c ND not detected, d PEG polyethylene glycol
countries, up to 33% of individuals have been infected and up to 8% in developed countries (Cacció and Sprong 2014; Dunn and Juergens 2020). As with Cryptosporidium, cysts are shed in the faeces in high numbers (up to 10^{10} cysts per day) with a median infectious dose of approximately 25 cysts (Rendtorff 1954, 1979).

Both parasites are prevalent in wastewater (Hamilton et al. 2018; Zahedi et al. 2018; Adeyemo et al. 2019; Razzolini et al. 2020) (Tables 2 and 3), with concentrations in wastewater as high as 60,000 Cryptosporidium oocysts and 100,000 Giardia cysts L$^{-1}$ (Hamilton et al. 2018), and Cryptosporidium oocysts are resistant to chemical disinfection (Campbell et al. 1995). Urban wastewater discharge is known to play an important role in pathogen transmission. For example, the largest cryptosporidiosis outbreak to date in 1993 in Milwaukee, USA, which affected over 400,000 individuals, was due to drinking water becoming contaminated with wastewater as a result of extreme weather and water treatment failure (MacKenzie et al. 1994). This review will focus on the surveillance and detection of Cryptosporidium, Giardia and SARS-CoV2 in wastewater and the benefits and challenges of WBE for public health.

Occurrence of SARS-CoV-2 in wastewater

Very limited data is available on the occurrence of the closely related SARS-CoV-1 in wastewater (Peiris et al. 2003; Wang et al. 2005a; Gundy et al. 2009; Wigginton et al. 2015), but connections with wastewater were identified in a 2003 outbreak in Hong Kong linked to a faulty sewage system (Peiris et al. 2003). Since the first report of SARS-CoV-2 in human waste (Holshue et al. 2020), the presence of SARS-CoV-2 in wastewater has drawn substantial attention, and globally an increasing number of studies have detected SARS-CoV-2 in untreated and/or treated urban wastewater and wastewater treatment plants (WWTPs) to track the spatial and temporal dynamics of the virus and the removal of efficiency of wastewater treatment processes (Table 1) and the potential public health risks associated with SARS-CoV-2 in wastewater (Michael-Kordatou et al. 2020). Prevalence rates ranging from 11 to 100% at a concentration up to 4.6×10^7 genome copies/L in untreated (raw influent), and 0 to 100% at a concentration up to 10^5 genome copies/L in treated (final effluent) wastewater have been reported (Table 1).

Occurrence of protozoans in wastewater

The protozoon parasites, Cryptosporidium and Giardia, are among the most common parasites reported in wastewater worldwide and are significant contributors to the global waterborne disease burden (Zahedi et al. 2018) (Tables 2 and 3). The occurrence and distribution of Cryptosporidium oocysts and Giardia cysts in untreated wastewater generally correlates to the infection and excretion rates in the population served, which may also be influenced by the contribution of infected domestic or wild animals to the Cryptosporidium and Giardia load in the raw wastewater (Castro-Hermida et al. 2008; Deere and Khan 2016). To date, studies conducted globally have reported more than 20 species/genotypes of Cryptosporidium and G. duodenalis assemblages A, B, C, E and G in wastewater, with prevalence rates of 11.4 to 100% and 18.8 to 100% for Cryptosporidium and Giardia spp., respectively, and often at concentrations over 10 oocysts/L and 100 cysts/L for Cryptosporidium and Giardia, respectively (Tables 2 and 3).

Several studies across the world have reported *C. hominis* (the predominant species in humans) among the most prevalent Cryptosporidium species detected in wastewater, e.g. Australia (King et al. 2015a; Zahedi et al. 2018), Brazil and Peru (Ulloa-Stanojlović et al. 2016; Martins et al. 2019), China (Feng et al. 2009; Li et al. 2012; Huang et al. 2017), Japan (Hashimoto et al. 2006; Hirata and Hashimoto 2006), Switzerland and Germany (Ward et al. 2002), the USA (Xiao et al. 2001; Zhou et al. 2003) and Tunisia (Ben Ayed et al. 2012) (Table 2). While in Europe, a number of studies have reported that *C. parvum* is the dominant species in wastewater (Hänninen et al. 2005; Spanakos et al. 2015; Imre et al. 2017; Ramo et al. 2017). In other countries such as China, Iran, Tunisia and the USA, livestock-associated species such as *C. andersoni* and *C. xiaoi* dominate in wastewater samples (Xiao et al. 2001; Liu et al. 2011; Ben Ayed et al. 2012; Hatam-Nahavandi et al. 2016; Ma et al. 2019) (Table 2).

Compared to other assemblages of *G. duodenalis*, assemblages A and B have been predominantly reported in wastewater globally, while assemblage C (Yamashiro et al. 2019), E (Castro-Hermida et al. 2011; Ben Ayed et al. 2012; Hatam-Nahavandi et al. 2017) and G (Huang et al. 2017; Ma et al. 2019) have been reported sporadically (Table 3).

Current protozoan and SARS-CoV-2 detection/surveillance systems in wastewater

SARS-CoV-2 is most commonly detected using quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays for the detection of SARS-CoV-2 RNA. To date, more than 17 RT-qPCR assays have been developed for the detection of SARS-CoV-2 in clinical samples including the CDC-recommended 3 gene segments of SARS-CoV-2 RNA (N1, N2 and N3) (CDC 2020) and the envelope protein (E) gene (E. Sarbeco, target) (Corman et al. 2020). Some of these assays have been used to detect SARS-CoV-2 in wastewater samples from a wide range of countries including Australia (Ahmed et al. 2020a), Chile (Ampuero et al. 2020), Germany (Westhaus et al. 2020), Israel (Bar-Or et al. 2020), India (Kumar et al. 2020), Italy (La Rosa et al. 2020a), Japan (Hata et al. 2020), France (Wurtzer et al. 2020a, 2020b), the
Year	Country	Type of sample	Cryptosporidium species	gp60 subtypes	Range or arithmetic mean of Cryptosporidium oocysts	Detection method and concentration method	Recovery efficiency	Reference	
2016	Romania	Treated	C. parvum	IaA15G2R1 and IIdA18G1	0.3 ± 6.89 oocysts/L (average concentration)	IFA and PCR – Filtration, centrifugation and IMS \(^{\text{a}}\) (USEPA\(^{\text{b}}\) method 1623)	NR\(^{\text{a}}\)	Imre et al. 2017	
2015–2017	China	Untreated (sewage)	C. hominis, C. parvum, C. andersoni and C. canis	NR	NR	PCR\(^{\text{c}}\) – Filtration and centrifugation	NR	Ma et al. 2019	
2014–2015	Australia	Untreated	C. hominis, C. parvum, C. muris, C. goli, C. meleagridis, C. felis, C. macropus, C. suis, C. hoyi, C. scrofa, C. avium, C. cuniculus, C. ubiquatum, C. ranae, C. canis, C. kiyori, C. erinacei, Cryptosporidium kengaroo genotype I, Cryptosporidium rat genotype III, Cryptosporidium rat genotype IV and Cryptosporidium bat genotype VI	NR	7.0 \(\times\) \(10^{2}\) – \(10^{3}\) oocysts/L	PCR (NGS\(^{\text{c}}\)) – Centrifugation	NR	Zahedi et al. 2018	
2014–2015	Brazil	Untreated and treated	C. hominis, C. parvum, C. baileyi and C. suis	NR	NR	PCR – Centrifugation	NR	Martins et al. 2019	
2014–2015	Iran	Untreated	C. xiaoi and C. andersoni	NR	NR	IFA and PCR – Centrifugation	NR	Hatam-Nahavandi et al. 2016	
2014–2015	China	Treated	C. hominis, C. parvum, C. meleagridis, C. ratti, C. muris, C. canis, C. felis, C. baileyi, C. suis-like, and Cryptosporidium rat genotype IV	IIIbA22G1R1c (C. meleagridis)	BDL\(^{b}\) – 1 oocysts/L	IFA and PCR – Calcium carbonate flocculation and IMS	NR	Ma et al. 2016	
2013–2015	Spain	Untreated and treated	C. hominis, C. parvum, C. cuniculus, C. ubiquatum, C. goli, C. canis, C. andersoni, C. muris, C. suis	IaA16G2R1 and IIdA16G2R1, IlaA18G3R1, IIdA21G1, IIdA22G1 (C. parvum)	Untreated: 9.6 \(\times\) \(10^{1}\) \(\pm\) 10.5 \(\times\) \(10^{1}\) oocysts/L; Treated: 3.1 \(\times\) \(10^{2}\) \(\pm\) 7.0 \(\times\) \(10^{1}\) oocysts/L	IFA and PCR – Filtration, centrifugation and IMS \(^{\text{c}}\) (USEPA\(^{\text{c}}\) method 1623)	17.9 \(\pm\) 5.2\%	Ramo et al. 2017	
2013–2014	Brazil	Untreated and treated	Cryptosporidium spp. (unknown species/genotype)	NR	Untreated: 4.1 \(\times\) \(10^{1}\) \(\pm\) 1.2 \(\times\) \(10^{2}\) oocysts/L (average concentration); Treated: 1.7 \(\times\) \(10^{1}\) \(\pm\) 1.0 \(\times\) \(10^{1}\) oocysts/L (average concentration)	IFA and PCR – Filtration and centrifugation	33.3\%	Yamashiro et al. 2019	
2013	Australia	Untreated and treated	C. hominis and C. parvum	NR	Untreated: 1.0 \(\times\) \(10^{6}\) oocysts/L	IFA and PCR – Calcium carbonate flocculation and IMS	NR	Untreated: 45 \(\pm\) 16\%; Treated: 40 \(\pm\) 14\%	King et al. 2015a
2013	Greece	Untreated and treated	C. parvum and C. muris	NR	NR	IFT and qPCR\(^{\text{d}}\) – Aluminium sulphate flocculation and centrifugation	NR	Spanakos et al. 2015	
2012–2014	China	Untreated	C. hominis, C. parvum, C. meleagridis, C. ubiquatum, C. viatorum, C. ratti, C. felis, C. baileyi and Cryptosporidium rat genotype IV	IaA18R4 and IbA19G2 (C. hominis), IIdA19G1 (C. parvum), IbA22G1R1c (C. meleagridis), XIIb and XIIb (C. ubiquatum), XVaA6 (C. viatorum)	NR	PCR – Centrifugation	NR	Huang et al. 2017	
2012 (Brazil) and 2013 (Peru)	Brazil and Peru	Untreated	C. hominis and C. cuniculus	NR	NR	PCR – Centrifugation	NR	Ullas-Stanojlović et al. 2016	
2011–2013	Israel	Untreated and treated	NR	NR	NR	NR	NR	Spanakos et al. 2016	

\(^{\text{a}}\) PCR – Polymerase chain reaction, IMS – Immunomagnetic separation, NGS – Next generation sequencing, USEPA – United States Environmental Protection Agency.

\(^{\text{b}}\) BDL – Below detection limit.

\(^{\text{c}}\) qPCR – Quantitative polymerase chain reaction.

\(^{\text{d}}\) IFT – Immunofluorescent test.

\(^{\text{e}}\) Calcium carbonate flocculation and IMS.

\(^{\text{f}}\) Aluminium sulphate flocculation and centrifugation.
Year	Country	Type of sample	Cryptosporidium species	gp60 subtypes	Range or arithmetic mean of Cryptosporidium oocysts	Detection method and concentration method	Recovery efficiency	Reference
2011–2012 USA	Untreated and treated	Cryptosporidium spp. (unknown species/genotype)	NR	Untreated: 4.1 × 10^2 oocysts/L, Treated: 0.1 × 10^2 oocysts/L	IFA and PCR – Filtration, centrifugation and IMS (USEPA method 1623)	53 ± 0.9% Treated: 23 ± 1.6%	Taran-Benshoshan et al. 2015	
2011–2012 USA	Untreated and treated	Cryptosporidium spp. (unknown species/genotype)	NR	Untreated: 4 × 10^2 – 1.2 × 10^2 oocysts/L, Treated: 0.1 – 1.2 × 10^2 oocysts/L	IFA and PCR – Electronegative filtration, centrifugation and IMS (USEPA 1622)	NR	Schmitz et al. 2018	
2009–2011 Germany	Untreated and treated	Cryptosporidium spp. (unknown species/genotype)	NR	Untreated: 4.0 × 10^2 – 7.2 × 10^2 oocysts/L, Treated: 4 × 10^2 – 1.3 × 10^3 oocysts/L	IFA and PCR – Electronegative filtration, centrifugation and IMS (USEPA 1622)	NR	Kitanjima et al. 2014	
2009–2011 Germany	Untreated and treated	Cryptosporidium spp. (unknown species/genotype)	NR	Untreated: 1.3 × 10^3 – 5.0 × 10^1 oocysts/L, Treated: 3.0 × 10^1 – 1.2 × 10^3 oocysts/L	IFA, DAPIJ and PCR – Centrifugation and IMS (USEPA method 1623)	NR	Berglund et al. 2017	
2009–2010 China	Untreated	C. andersoni and C. ubiquitum, C. hominis (f.), and C. meleagris	NR	Untreated: 1 × 10^3 – 1.3 × 10^3 oocysts/L, Treated: 3.0 × 10^1 – 1.2 × 10^3 oocysts/L	IFA, DAPIJ and PCR – Centrifugation and IMS (USEPA method 1623)	NR	Aslan et al. 2012	
2009 Tunisia	Untreated and treated	C. hominis, C. parvum, C. muris, and C. andersoni	NR	Untreated: 5 × 10^1 – 1.3 × 10^3 oocysts/L, Treated: 3.0 × 10^1 – 1.2 × 10^3 oocysts/L	IFA and PCR – Aluminium sulphate flocculation and sucrose centrifugation	NR	Gallas-Lindemann et al. 2013	
2008–2009 Spain	Untreated and treated	C. hominis, C. parvum, C. andersoni	NR	Untreated: 1 × 10^3 – 6.0 × 10^2 oocysts/L, Treated: 1 × 10^3 – 1.2 × 10^2 oocysts/L	PCR – Filtration and IMS (USEPA method 1623)	NR	Castro-Hermida et al. 2011	
2007–2009 Turkey	Untreated (sewage)	Cryptosporidium spp. (unknown species/genotype)	NR	Untreated: 5 × 10^1 – 5.8 × 10^3 oocysts/L	IFA and PCR – Filtration, centrifugation and Percoll-sucrose floatation	NR	Giangaspero et al. 2009	
2006–2009 China	Untreated	C. hominis, C. parvum, C. canis, C. suis, C. baileyi, C. muris, C. ratti, Cryptosporidium pig genotype II, Cryptosporidium avian genotype III and Cryptosporidium rat genotype IV	NR	Untreated: 5 × 10^1 – 5.8 × 10^3 oocysts/L	IFA and PCR – Aluminium sulphate flocculation and sucrose centrifugation	NR	Li et al. 2012	
2006–2007 China	Untreated	C. hominis, C. parvum, C. meleagris, C. baileyi, C. suis, C. muris, Cryptosporidium rat genotype, Cryptosporidium avian genotype III, and a novel genotype	NR	Untreated: 3.6 – 5.8 × 10^2 oocysts/L	IF and PCR – Filtration, centrifugation and Percoll-sucrose floatation	NR	Giangaspero et al. 2009	
2005–2008 Tunisia	Untreated and treated	C. parvum	NR	Untreated: 7.4 × 10^1 – 3.0 × 10^2 oocysts/L (mean concentration)	IFA and PCR – Electronegative filtration, centrifugation and IMS (USEPA 1622)	NR	Schmitz et al. 2018	
2009–2011 Germany	Untreated and treated	C. parvum	NR	Untreated: 5.0 × 10^1 – 1.3 × 10^3 oocysts/L, Treated: 5.3 ± 1.6%	RT-PCR – Centrifugation	NR	Berglund et al. 2017	
2009–2010 China	Untreated	C. andersoni and C. ubiquitum, C. hominis (f.), and C. meleagris	NR	Untreated: 5.0 × 10^1 – 1.3 × 10^3 oocysts/L, Treated: 5.3 ± 1.6%	RT-PCR – Centrifugation	NR	Berglund et al. 2017	
2008–2009 Tunisia	Untreated and treated	C. hominis, C. parvum, C. andersoni	NR	Untreated: 1 × 10^3 – 3.0 × 10^2 oocysts/L, Treated: 65.5 ± 18.4%	RT-PCR – Centrifugation	NR	Berglund et al. 2017	
Year	Country	Type of sample	Cryptosporidium species	gp60 subtypes	Range or arithmetic mean of Cryptosporidium oocysts	Detection method and concentration method	Recovery efficiency	Reference
----------	----------------	----------------	-------------------------	--------------------------------------	---	--	---------------------	-------------------------
2004–2006	Italy	Treated	C. parvum		5.62 × 10⁴ ± 8.06 × 10³ oocysts/L (mean concentration)	IF and PCR – Centrifugation and Percoll-sucrose flotation	NR	Ben Ayed et al. 2012
2004	Spain	Untreated and treated	C. bailey and C. muris		Untreated: 1.6–1.1 × 10³ oocysts/L, Treated: 3.6 × 10¹ – 5.2 × 10² oocysts/L	IFAT and PCR – Centrifugation	NR	Gómez-Couso et al. 2006
2003	Japan	Untreated	C. parvum		NR	IFA and PCR – Filtration, centrifugation and IMS⁸ (USEPA 1623)	NR	Hinta and Hashimoto 2006
2003	Japan	Untreated	C. parvum		NR	IFA and PCR – Filtration, centrifugation and IMS⁸ (USEPA 1623)	NR	Hashimoto et al. 2006
2001	USA	Treated	C. parvum		2 × 10² – 3 × 10³ oocysts/L	PCR – Serial filtration and centrifugation (USEPA method 1622)	48–59%	Tsuji et al. 2003
2000–2002	USA	Untreated	C. hominis, C. parvum, C. muris, C. andersoni, C. ubiquatum and Cryptosporidium mouse genotype	subtype families 1a, 1b and 1e (C. hominis), subtype family 1a (C. parvum)	NR	PCR – Centrifugation and IMS	NR	Zhou et al. 2003
2001	Finland	Untreated and treated	C. parvum		NR	IFA and PCR – Filtration, centrifugation and IMS⁸ (USEPA 1623)	NR	Hänninen et al. 2005
2000	USA	Untreated	C. parvum, C. muris, C. andersoni, C. ubiquatum and C. felis		NR	PCR – Filtration, centrifugation and IMS (USEPA method 1623)	NR	Xiao et al. 2001
2000	Germany	Untreated	C. hominis, C. parvum, C. muris and C. bailey		NR	PCR – Centrifugation and IMS	73–78%	Ward et al. 2002
1995	USA	Untreated and treated	Cryptosporidium spp. (unknown species/genotype)		Untreated: 1.5 × 10⁵ oocysts/L (mean concentration), Treated: 1.7 × 10⁵ oocysts/L (mean concentration)	IFA and PCR – Percoll/sucrose flotation (USEPA, 1995) and centrifugation	NR	Mayer and Palmer 1996

Notes:
- NR: Not reported
- PCR: Polymerase chain reaction
- IFAT: Immunofluorescent antibody test
- IMS: Immunomagnetic separation
- USEPA: US Environmental Protection Agency
- 4′,6-diamidino-2-phenylindole

* Not reported, ^ polymerase chain reaction, † next-generation sequencing, ‡ immunofluorescence assay, § below detection level, ‖ quantitative PCR, ¶ immunomagnetic separation, US Environmental Protection Agency, ‡ real-time PCR, 4′,6-diamidino-2-phenylindole. Not detected, Modified Bailenger Method
Netherlands (Medema et al. 2020), Spain (Randazzo et al. 2020a, 2020b), Turkey (Kocamemi et al. 2020) and the USA (Green et al. 2020; Nemudryi et al. 2020; Wu et al. 2020a). While qRT-PCR is the most reliable method to detect SARS-CoV-2, a variety of serological tests (ELISAs, lateral flow assays etc) have also been developed, which provide additional important information on the kinetics of the immune response and detection of asymptomatic infections and have the advantage that virus proteins are more stable than RNA (La Marca et al. 2020). Antibody-based methods have been applied for the detection of SARS-CoV-2 protein in wastewater using immunoblotting and immune-linked PCR (Neualt et al. 2020).

Prior to detection, studies have used a variety of viral concentration methods including ultrafiltration, polyethylene glycol (PEG) precipitation, filtration with an electronegative membrane and centrifugation (Lu et al. 2020) (Table 1). To enable accurate measurements of SARS-CoV-2 in wastewater, it is important to determine the recovery efficiencies of these methods. A recent study compared the efficiency of different viral concentration methods from WWTPs using murine hepatitis virus as a human coronavirus (CoV) surrogate (Ahmed et al. 2020b). Of these, the highest mean recovery (65.7%) was achieved using an adsorption-extraction method, supplemented with MgCl2, followed by an adsorption-extraction method without MgCl2 (60.5%). Mean recovery efficiencies for PEG precipitation (44%) and ultrafiltration (Amicon® Ultra-15 28%, Centricon Plus-70 -56%) were lower (Ahmed et al. 2020b). Concentration of both liquid and solid fractions of wastewater samples (due to viral particle adsorption to organic matter) and avoiding acidification of samples was identified as important for viral recovery (Ahmed et al. 2020b).

Standard detection methods for Cryptosporidium and Giardia in wastewater involve concentration (using filtration or flocculation) and purification of the oo(cysts) (usually using immuno magnetic separation—IMS), followed by immunofluorescent microscopy and enumeration, based on Method EPA 1693/2014 (USEPA 2014). The recovery efficiency from wastewater varies widely and ranges from 5.5% to as high as 100% with mean recoveries of 62% (Cryptosporidium) and 45% (Giardia) (Gennaccaro 2003; Quintero-Betancourt et al. 2003; Robertson et al. 2006; Nasser et al. 2012; Nasser 2016; Yamashiro et al. 2019). However, a major limitation of standard microscopy-based detection methods is that they do not provide information on the species/assemblages. Vital dyes have been used to determine viability but are problematic and subject to overestimation of oo(-cyst) viability (Sammarro Silva and Sabogal-Paz 2020). As a consequence, more recent studies have employed molecular detection methods for genetic characterisation, or cell culture infectivity assays.

Relatively few studies have genetically characterised Cryptosporidium and Giardia in wastewater (Tables 2 and 3) and most studies have utilised Sanger sequencing of PCR amplicons with only two studies using next-generation sequencing (NGS) of amplicons (Zahedi et al. 2018, 2019). A custom microarray targeting a range of viral, bacterial and protozoan pathogens has also been tested against DNA obtained from whole genome amplification (WGA) of RNA and DNA from wastewater and animal faeces, which detected Giardia but not Cryptosporidium (Li et al. 2015).

A wide diversity of Cryptosporidium and Giardia species and assemblages have been detected in wastewater with many studies reporting C. hominis as well as C. parvum, C. muris, C. meleagridis and G. duodenalis assemblages A and B among the most prevalent (King et al. 2015a; Taran-Benshoshan et al. 2015; Ulloa-Stanojlović et al. 2016; Huang et al. 2017; Ramo et al. 2017; Zahedi et al. 2018; Yamashiro et al. 2019) (Tables 2 and 3). In addition, a few studies have utilised subtyping tools to further investigate Cryptosporidium gp60 subtypes in wastewater (Feng et al. 2009; Ben-Ayed et al. 2012; Li et al. 2012; Ma et al. 2016; Huang et al. 2017; Jiang et al. 2020). Amongst C. hominis subtype families identified in wastewater to date, subtype family Ib was the most predominant subtype family reported (83% of studies that used subtyping), followed by subtype families Ia (66%), Id and Ie (50% each) and If (33%). For C. parvum, only three studies have used subtyping tools, and C. parvum subtype families Ila (Tunisia and USA), Ilc (Tunisia) and Ilb (China) were reported (Zhou et al. 2003; Ben Ayed et al. 2012; Li et al. 2012; Huang et al. 2017). In addition, subtyping of C. meleagridis, C. viatorum and C. ubiquitum in wastewater samples at the gp60 locus have identified subtypes IlbA22G1R1c, XvaA6 and two distinct subtype families XIIg and XIIIh, respectively (Ma et al. 2016; Huang et al. 2017) (Table 2).

Fate/survival/removal of protozoans and SARS-CoV-2 in wastewater

After being shed into nasal, buccal, oesophageal, respiratory and faecal discharges into wastewater, pathogens are exposed to the wastewater environment for hours to days before they reach WWTPs. The fate and survival of pathogens in wastewater systems depend on a variety factors, including wastewater characteristics, the presence of biofilms, temperature, pH, average in-sewer travel time, per-capita water use, and the processes used to treat and disinfect the wastewater (Curtis 2003; Cao et al. 2020; Hart and Halden 2020; Mandal et al. 2020). Wastewater treatment usually involves a combination of physical (sedimentation, filtration, inactivation by solar or UV radiation), biological (activated sludge, algae) and chemical (coagulation-flocculation, inactivation by
oxidants such as chlorine) processes for pathogen removal from wastewater, with some of the process occurring concurrently (Bhatt et al. 2020; Fu et al. 2010; Nasser et al. 2012).

In general, secondary wastewater treatment is capable of removing an average of 1-log_{10} (90%) of viruses, although removal levels are highly variable and additional treatment such as chlorination is required to reduce virus levels to safe levels for release to the environment (McLellan et al. 2020). Relatively, little is known about the fate of SARS-COV-2 in WWTPs. In one study, the time from stool emission to the arrival at the WWTP for SARS-CoV-2 was estimated at 6–8 h (Rimoldi et al. 2020) and it has previously been reported that SARS-CoV-1 can remain infectious in wastewater for up to 14 days (at 4 °C) (Wang et al. 2005a). Coronavirus are enveloped viruses, which means that the virus genome and associated proteins are covered by a lipid membrane taken from the host cell during virus reproduction (Casanova et al. 2009; Schoeman and Fielding 2019). In contrast, enteric viruses such as norovirus and enterovirus are non-enveloped, and their genome is encapsulated by a protein coat. These structural differences alter their behaviour, with enveloped viruses more readily binding to particulates in wastewater compared with non-enveloped viruses, which are not particle associated (Ye et al. 2016). Enveloped viruses are considered to be more fragile compared with non-enveloped viruses because the presence of compounds such as solvents and detergents in wastewater can damage the virus envelope, rendering them non-infectious (Gundy et al. 2009). Wastewater temperature varies seasonally and it has been estimated that at 20 °C, at least 25% of SARS-COV-2 virus RNA in wastewater should persist even with an in-sewer transit time of 10 h and low virus stability (Hart and Halden 2020). Chlorination is the most commonly used disinfection technique in WWTPs and previous studies have shown that SARS-CoV-1 is more sensitive to disinfection than *Escherichia coli*, with complete inactivation at a dose of 10 mg/L chlorine or 20 mg/L chlorine dioxide (Wang et al. 2005b). A study in Italy detected SARS-CoV-2 RNA in raw, but not in tertiary treated wastewater and none of the positive samples contained infectious virus (Rimoldi et al. 2020), which is similar to a study in Spain (Randazzo et al. 2020b). A study in Paris identified SARS-CoV-2 RNA in raw (23/23) and treated (6/8) wastewater, but there was a 10-fold reduction in viral load in treated water compared to raw water (Wurtzer et al. 2020b).

The removal of *Cryptosporidium* and *Giardia* (oo)cysts at WWTPs can be highly variable and often dependent on the temperature and type of wastewater treatment processes used (Emelko 2003; Nasser et al. 2012; 2016; King et al. 2017; Hamilton et al. 2018; Schmitz et al. 2018). Seasonality and inflow also affect removal (King et al. 2017), and many studies have reported variable removal of both *Cryptosporidium* and *Giardia* from WWTPs, particularly activated sludge (Nasser et al. 2012; 2016). *Giardia* Log_{10} reduction values (LRV) removal efficiencies of 0.5–4.0 (Taran-Benshoshan et al. 2015; Soller et al. 2017; Hamilton et al. 2018; Yamashiro et al. 2019) and *Cryptosporidium* LRVs ranging from 0.21 to 3.08 (King et al. 2017; Soller et al. 2017; Hamilton et al. 2018) have been reported from various WWTPs. WWTPs that used Bardenpho processes (similar to activated sludge but incorporates additional aerobic (oxic) and anoxic stages) have been reported to have had significantly greater LRVs for *Cryptosporidium* and *Giardia* than WWTPs using activated sludge or other methods (Schmitz et al. 2018).

Few studies have measured the extent of protozoan inactivation that may occur across treatment processes. An integrated *Cryptosporidium* assay that determines oocyst density, infectivity and genotype has been developed (Swaffer et al. 2014; King et al. 2015a, 2017) and applied to wastewater (King et al. 2015b, 2017). Using this assay, King et al. (2017) showed that *Cryptosporidium* oocyst infectivity in wastewater in two states in Australia were stable throughout the year but that removals across secondary treatment processes were seasonal and highly variable (King et al. 2017). Interestingly, the infectivity of oocysts that were not removed in the effluent was higher compared to inlet samples for some WWTPs analysed, possibly due to the preferential removal of damaged/non-infectious oocysts. Another study reported that while activated sludge removed ~80% of oocysts, the remaining oocysts were still infectious in mice (Villacorta-Martínez de Maturana et al. 1992), which highlights the importance of incorporating routine infectivity testing in wastewater (King et al. 2017). Ultrafiltration (*Cryptosporidium*: 4.4–6.0 LRV; *Giardia*: 4.7–7.4 LRV) and UV disinfection combined with advanced oxidation (~6.0 LRV for both *Cryptosporidium* and *Giardia*) were reported as the most efficient methods for removal and disinfection of *Cryptosporidium* and *Giardia* (oo)cysts in WWTPs (Soller et al. 2017). Future studies on environmental conditions including temperature and pH and other wastewater treatment processes and disinfection studies are necessary to better understand the removal of a range of pathogens from WWTPs (Bhatt et al. 2020).

Benefits of wastewater-based epidemiology

Normally, disease outbreaks are detected and their progression monitored by the clinical testing of symptomatic individuals. However, particularly in the case of enteric pathogens, outbreaks can be missed or disease incidence under-reported because there is a reliance on infected people presenting for medical care, and for medical practitioners to request clinical testing to confirm infection and to report results (Cacciò and Chalmers 2016). In the case of the COVID-19 pandemic, many countries adopted large-scale screening of people with flu-like symptoms to identify COVID-19 cases and assist with...
Year	Country	Type of sample	G. duodenalis assemblages detected	Range or arithmetic mean of Giardia cysts	Detection method and concentration method	Recovery efficiency	Reference
2016	Romania	Treated	G. duodenalis assemblage AII and E	1.96 ± 3.0 × 10^2 cysts/L (average concentration)	IFA and PCR – Filtration, centrifugation and IMS (USEPA 1623 method)	NR	Imre et al. 2017
2014–2015	China	Untreated (sewage)	G. duodenalis assemblage A and G	NR	PCR6 – Filtration and centrifugation	NR	Ma et al. 2019
2014–2015	Brazil	Untreated and treated	G. duodenalis assemblage A	NR	PCR – Centrifugation	NR	Martins et al. 2019
2014–2015	Iran	Untreated	G. duodenalis assemblage A (subassemblies AII, AIII, and EIII)	NR	IFA and PCR – Centrifugation	NR	Hatam-Nahavandi et al. 2017
2014–2015	China	Treated	G. duodenalis assemblage A (subassembly AII) and B	BDL^4 – 4.9 × 10^2 cysts/L	IFA and PCR – Calcium carbonate flocculation and IMS	NR	Ma et al. 2016
2013–2014	Brazil	Untreated and treated	G. duodenalis assemblage A (subassemblies AII, and B)	Untreated: 3.2 × 10^3 ± 2.0 × 10^2 cysts/L Treated: 5.0 × 10^3 ± 2.8 × 10^2 cysts/L	IFA and PCR – Filtration, centrifugation and IMS (USEPA 1623)	37.2 ± 18.5%	Ramo et al. 2017
2013–2014	Brazil	Untreated and treated	G. duodenalis assemblage A (subassemblies AII, and B)	Untreated: 14.1 × 10^3 ± 6.7 × 10^3 cysts/L (average concentration) Treated: 1.1 × 10^3 ± 6.6 × 10^3 cysts/L (average concentration)	IFA and PCR – Filtration and centrifugation	94.2%	Yamashiro et al. 2019
2013	Greece	Untreated and treated	G. duodenalis (unknown assemblage)	NR	IFT and qPCR⁵ – Aluminium sulphate flocculation and centrifugation	NR	Spanakos et al. 2015
2012–2014	China	Untreated	G. duodenalis assemblage A (subassemblies AII and AIII), B, G and AII-like	NR	PCR – Centrifugation	NR	Huang et al. 2017
2012	Brazil and Peru (2013 Peru)	Untreated	G. duodenalis assemblage A and B	NR	PCR – Centrifugation	NR	Uloa-Stanojkovic et al. 2016
2011–2013	Israel	Untreated and treated	G. duodenalis (unknown assemblage)	Untreated: 1.0 × 10^3–12 × 10^3 cysts/L Treated: 0.1–9.1 × 10^2 cysts/L	IFA and PCR – Filtration, centrifugation and IMS (USEPA 1623)	Untreated: 49 ± 14.5% Treated: 41.7 ± 3.2%	Taran-Benshoshan et al. 2015
2011–2012	USA	Untreated and treated	G. duodenalis (unknown assemblage)	Untreated: 1.8 × 10^3–6.4 × 10^3 cysts/L (mean concentration) Treated: 8–1.9 × 10^3 cysts/L (mean concentration)	IFA and PCR – Electronegative filtration, centrifugation and IMS (USEPA 1622)	NR	Schmitz et al. 2018
2011–2012	USA	Untreated and treated	G. duodenalis assemblage A (subassemblage AII) and B	Untreated: 1.4 × 10^3–1.5 × 10^3 cysts/L Treated: < 4.0–6.2 × 10^2 cysts/L	IFA and PCR – Electronegative filtration, centrifugation and IMS	Untreated: 52.5 ± 17.1% Treated: 48.3 ± 10.4%	Kitajima et al. 2014
2011–2012	Sweden	Untreated and treated	G. duodenalis (unknown assemblage)	NR	RT-PCR⁶ – Centrifugation	NR	Berglund et al. 2017
2011	Thailand	Untreated and treated	G. duodenalis (unknown assemblage)	BDL – 3.0 × 10^3 ± 5.2 × 10^3 cysts/L (mean concentration)	qPCR – Centrifugation	NR	Ferrer et al. 2012
2009–2011	Germany	Untreated and treated	G. duodenalis (unknown assemblage)	NR	IFA and PCR – Aluminum sulfate flocculation and sucrose centrifugation	NR	Gallas-Lindemann et al. 2013
Year	Country	Type of sample	G. duodenalis assemblages detected	Range or arithmetic mean of Giardia cysts	Detection method and concentration method	Recovery efficiency	Reference
------	--------------	----------------------	-----------------------------------	--	---	--------------------	------------------------------------
2009–2010	South Africa	Untreated and treated	G. duodenalis assemblage A and B	NR	PCR – Centrifugation, ferric sulphate flocculation and caesium chloride flocculation.	NR	Samie and Ntekele 2014
2009–2010	China	Untreated	G. duodenalis assemblage A (subassemblies AII and B)	NR	PCR – centrifugation	NR	Liu et al. 2011
2009	China	Untreated	G. duodenalis assemblage A (subassemblies AII and AIV)	NR	PCR – centrifugation	NR	Jiang et al. 2020
2009	Tunisia	Untreated and treated	G. duodenalis assemblage A and B	Untreated: $1 - 1.1 \times 10^2$ cysts/L, Treated: NDa	IFA and PCR – MBMb and IMS (USEPA method 1623)	NR	Khouja et al. 2010
2008–2009	Spain	Untreated and treated	G. duodenalis assemblage A (subassemblies AII, and AII), and E	Untreated: $2 - 10 \times 10^3$ cysts/L, Treated: $2 - 2.1 \times 10^3$ cysts/L	PCR – Filtration and IMS (USEPA method 1623)	NR	Castro-Hermida et al. 2011
2006–2007	Italy	Treated	G. duodenalis assemblage A and B	$1.4 - 10.4 \times 10^3$ cysts/L	IF and PCR – Filtration, centrifugation and Percoll-sucrose flotation	NR	Giangaspero et al. 2009
2005–2008	Tunisia	Untreated and treated	G. duodenalis assemblage A (subassemblies AI and AII) and B and E	NR	PCR – Sedimentation and centrifugation	NR	Ben Ayed et al. 2012
2004–2006	Italy	Treated	G. duodenalis assemblage A and B	$1.8 \times 10^3 \pm 1.8 \times 10^3$ cysts/L (mean concentration)	IF and PCR – Centrifugation and Percoll-sucrose floatation	NR	Lonigro et al. 2006
2004	France	Untreated	G. duodenalis assemblage A, B and E	$5.3 \times 10^2 - 1.1 \times 10^5$ cysts/L	IFA and RT-PCR – Percoll®-sucrose flotation (USEPA method 1995) and centrifugation	NR	Bertrand and Schwartzbord 2007
2002	USA	Untreated	G. duodenalis (unknown assemblage)	$2.5 \times 10^3 - 2.4 \times 10^3$ cysts/L	IFA and qPCR – Percoll®/sucrose flotation (USEPA, 1995) and centrifugation	NR	Bertrand et al. 2004
2002	Canada	Untreated	G. duodenalis assemblage A and B	$2.6 \times 10^3 - 1.3 \times 10^4$ cysts/L	qPCR – Percoll-sucrose flotation and Centrifugation	NR	Guy et al. 2003
2001	Finland	Untreated and treated	G. duodenalis assemblage A and B	NR	IFA and PCR – Filtration, centrifugation and IMSg (USEPAh method 1623)	NR	Hanninen et al. 2005
2000	Italy	Untreated	G. duodenalis assemblage A and B	$2.1 \times 10^3 - 4.2 \times 10^4$ cysts/L	IFA and PCR – Filtration and centrifugation	NR	Cacciò et al. 2003
1999–2003	USA	Untreated	G. duodenalis assemblage A and B	NR	PCR – Centrifugation and IMS	NR	Sulaiman et al. 2004
1995	USA	Untreated and treated	Giardia duodenalis (unknown assemblage)	Untreated: 1.3×10^4 cysts/L (mean concentration), Treated: 1.1×10^3 cysts/L (mean concentration)	IFA and PCR – Percoll®/sucrose flotation (USEPA, 1995) and centrifugation	NR	Mayer and Palmer 1996

a Not reported, b polymerase chain reaction, c immunofluorescence assay, d below detection level, e quantitative PCR, f immunomagnetic separation, g US Environmental Protection Agency, h real-time PCR, i not detected, j Modified Bailenger
disease containment, overwhelming the testing capacity of many public health systems and also causing global shortages of testing reagents. As pathogens such as viruses (e.g. SARS-CoV-2) and protozoa (Cryptosporidium and Giardia) are shed through faeces into wastewater, continuous and systematic monitoring of WWTPs can clearly benefit public health by providing early warning signs and information about temporal and spatial spread of infection in different localities at a population level (Kitajima et al. 2020).

Several WBE studies have reported the occurrence of local community transmission of SARS-CoV-2 before the first notified autochthonous SARS-CoV-2 cases (La Rosa et al. 2020a; Medema et al. 2020; Randazzo et al. 2020a, 2020b). Had this testing been in place at the time, it would have provided public health officials with more time to coordinate and implement actions to slow the spread of disease. A study in the UK reported that clinical testing underestimated the prevalence of COVID-19 and that large reductions in SARS-CoV-2 RNA in wastewater coincided with lockdowns (Martin et al. 2020).

Similarly, analyses of wastewater in Australia for Cryptosporidium identified a large increase in oocyst numbers relating to an outbreak of cryptosporidiosis, prior to it being reported by public health officials (King et al. 2017). WBE has also been used in several studies to show that the community level prevalence of Giardia is underestimated (Jakubowski et al. 1991; Oda et al. 2005; Nasser et al. 2012).

The lag time between symptoms developing and clinical testing varies depending on a number of factors including willingness of individuals to present for testing, workloads in testing facilities etc., but is usually 3–9 days after symptom onset. One study in the US reported that WBE for SARS-CoV-2 foreshadowed new clinical case reports by 2–4 days (Nemudryi et al. 2020) and another that viral titre trends in wastewater appeared 4–10 days earlier in wastewater than in clinical data (Wu et al. 2020b). In addition to this lag time, clinical testing for SARS-CoV-2 underestimates the true scale of the pandemic, as another US study estimated that only 32% of SARS-CoV-2-infected individuals sought medical care (Silverman et al. 2020). WBE overcomes this by capturing data from all individuals in the community. WBE can also detect asymptomatic community infections and rapidly identify emerging clusters which can then be used to alert public health officials about emerging undetected transmission events (Tang et al. 2020).

In addition, WBE can be used to monitor the effectiveness of public health interventions. For example, a study in Cuba detected poliovirus in 100% of wastewater samples prior to an immunization campaign, but 15 weeks after the campaign, no virus was detected (Más Lago et al. 2003). Similarly, WBE could be used to monitor the ongoing effectiveness of public health campaigns to reduce COVID-19 by tracking increases or decreases in disease burden, or to detect the re-emergence of disease in communities that have no active COVID-19 cases. Carefully designed spatial sampling and nationwide WBE monitoring could be used to identify and monitor sensitive locations, such as aged care facilities, or to generate maps of disease clusters and show patterns of disease and identify which public health interventions are more effective than others (Daughton 2020). Communities with high numbers of a particular pathogen identified could be targeted for more focussed testing and in the longer term to identify and mitigate causes, e.g. socioeconomic status, age demographics, etc. (Sims and Kasprzyk-Hordern 2020).

Sequencing and phylogenetic analysis of pathogens in wastewater allows for comparisons between regions and detection of sources of infection and transmission dynamics. This is very much in its infancy for SARS-CoV-2 in wastewater, but is actively being used in identifying and tracing sources of COVID-19 as part infection control strategies (Roeckitt et al. 2020). Such an approach may be particularly useful in settings with low disease incidence when the source of new infection clusters is being tracked (Eden et al. 2020). A comprehensive study using WGS assessed the geographic and temporal distribution of SARS-CoV-2 lineages across Europe (Alm 2020) and this approach was used in the Netherlands to identify separate introductions to mink farms (Oreshkova et al. 2020). A study in England used WBE to detect virus variants that were particularly prevalent in the UK and also identified the increasing dominance of the Spike protein G614 variant using Whole Genome sequencing (WGS) (Martin et al. 2020). Similarly, phylogenetic analyses of a SARS-CoV-2 genome from a WWTP in Bozeman, Montana (USA), showed that it was more closely related to isolates from California and Australia than the Wuhan WA1 lineage (Nemudryi et al. 2020). Surveillance using WGS has also been used to show that infections in California have been due to multiple introductions from interstate and international sources (Deng et al. 2020).

Subtyping of Cryptosporidium from wastewater in China has been used to identify differences in the transmission dynamics of C. hominis from different cities (Li et al. 2012). In the same way, molecular analyses have been used to identify that hospitals are important contributors of Cryptosporidium and Giardia to urban wastewater (Jiang et al. 2020). Molecular typing of Cryptosporidium in wastewater has also been used to identify the contribution of abattoirs to wastewater as species from livestock such as C. andersoni (Zhou et al. 2003; Ben Ayed et al. 2012) and species from poultry (C. galli, C. baileyi and C. meleagridis) (Huang et al. 2017; Ramo et al. 2017; Zahedi et al. 2018) are more frequently detected in cities with large abattoirs. WBE has identified the persistence of the C. hominis IbA10G2 subtype, which was responsible for the 1993 Milwaukee outbreak (Zhou et al. 1993). A study conducted 7 years after the outbreak identified that despite the complexity of Cryptosporidium in
wastewater, the IbA10G2 subtype was still the predominant subtype indicating its persistence even in the absence of another outbreak (Zhou et al. 1993). WBE has also been used to show that anthroponotic and not zoonotic transmission of *Giardia* dominates in cities in China due to the absence of detection of animal-specific *Giardia* assemblages and even when potentially zoonotic assemblages (A) were detected, subtyping identified sub-assemble AII, which is mainly found in humans (Li et al. 2012). Due to the diversity of pathogens from different sources in wastewater, NGS has advantages over conventional Sanger sequencing in identifying the extent of diversity and also detecting low abundance species that may not otherwise be detected by conventional sequencing. For example, NGS has been shown to detect a larger diversity of *Cryptosporidium* species and subtypes in Australian wastewater compared to Sanger and identified striking differences between states, reflecting differing contributions from humans, livestock, wildlife and birds and abattoirs to wastewater (Zahedi et al. 2018).

Challenges, risks and future prospects

Despite the obvious benefits of WBE, many challenges remain. Concentrations of pathogens in wastewater can vary seasonally and daily, depending on a wide variety of factors including the disease prevalence and age and health status in communities, the rate at which the pathogens are shed into the wastewater in nasal, buccal, oesophageal, respiratory and faecal discharges, climate and environmental factors including rainfall, the relative proportions of industrial and domestic effluent, water use and wastewater management practices including sewer residence and holding times. The impacts of all these factors need to be better understood to improve the predictive value of WBE.

It is particularly important to better understand how and in what quantities pathogens are shed in the nasal, buccal, oesophageal, respiratory and faecal discharges from infected individuals that might enter wastewater streams in order to model the number of infections in the community using the number of pathogen detected in wastewater. For example, defaecation frequency is the highest in the morning (Heaton et al. 1992) and therefore the timing of sampling is important, as morning samples are likely to contain higher numbers of faecal-oral pathogens. In addition, pathogen shedding is frequently sporadic. For instance, not all COVID-19 patients shed virus in their faeces. A recent meta-analysis of ninety-five studies reported that 43% (934/2149) of patients (including asymptomatic patients) tested positive for SARS-CoV-2 in stool samples but the prevalence of positivity from faecal samples varied widely across studies (van Doorn et al. 2020). The viral load of SARS-CoV-2 in the faeces of patients also varies widely depending on the infection course, with up to 10^8 copies per gram of faeces (Foladori et al. 2020; Lesnare et al. 2020; Pan et al. 2020; Wölfel et al. 2020). Similarly, both *Cryptosporidium* and *Giardia* also exhibit sporadic (oo)cyst shedding in faeces (Danciger and Lopez 1975; Chappell et al. 1996) and as with SARS-CoV-2, the (oo)cyst faecal load also varies widely with up to 10^{-5} *Cryptosporidium* oocysts per gram of faeces (Chappell et al. 1996).

It is also unclear how long the shedding continues in faeces once other symptoms have resolved. For primarily upper respiratory and nasopharyngeal pathogens, shedding from nasal, buccal, oesophageal and respiratory discharges into wastewater are relevant as well as faecal inputs. Other pathogens, such as norovirus, are often shed in vomitus (Kirby et al. 2016). As regards SARS-CoV-2, initial studies report that faecal shedding is relevant to wastewater samples since faecal samples were positive between 1 and >30 days (up to 7 weeks) post onset of illness and the median survival of positive viral signals was significantly longer in faecal samples than that in oropharyngeal swabs (Amirian 2020; Wang et al. 2020). With *Cryptosporidium*, oocyst shedding post cessation of diarrhoea is very variable and can extend for up to 60 days (Jokipii and Jokipii 1986; Stehr-Green et al. 1987) and for up to 6 months with *Giardia* (Hanekv 2007).

Efficient recovery and concentration of pathogens from WWTPs prior to identification is central to reliable detection. Currently, there are differences in the types and volumes of samples analysed and differences in the concentration and processing procedures and detection methods used between studies. In order to make WBE studies more comparable, a standard approach for WBE including robust sample design and quality assurance protocols is essential (Ahmed et al. 2020; Farkas et al. 2020). Studies to develop a simple, effective primary concentration method that can be used for the concentration of viral, bacterial and eukaryotic pathogens are also vital. Central to this is the ability to determine recovery efficiencies for the different pathogens monitored as without this, accurate quantitation and determination of the numbers of pathogens present in WWTPs is not possible. Whatever methods are developed for real-time WBE detection in the future, they need to be fully quantitative to allow for comparison across communities. If detection methods are nucleic acid based, then standardised extraction and PCR-based diagnostic methods should be used.

Understanding the detection limits of WBE is also an area that requires more study (i.e. what numbers of cases need to be positive in a community before they can be confidently detected at a WWTP). Modelling suggests that for SARS-CoV-2, detection in community wastewater of one positive case per 100 to 2,000,000 non-infected people is theoretically feasible (Hart and Halden 2020; Kitajima et al. 2020). A study in Japan reported that SARS-CoV-2 RNA could be detected in WWTPs when the number of total confirmed cases was as low as 1 in 100,000 people but that detection frequency
increased and became more reliable once cases were at 10 in 100,000 people or higher (Hata et al. 2020). The detection limits for other pathogens remain unknown.

While some studies have reported that the prevalence in wastewater correlated well with the reported COVID-19 community prevalence (Ahmed et al. 2020a; Medema et al. 2020; Wurzer et al. 2020a, 2020b), another study reported that SARS-CoV-2 concentrations in wastewater were orders of magnitude greater than the number of confirmed clinical cases (Wu et al. 2020a). The impact of confounding variables such as the rate of asymptomatic cases and the variation in numbers of individuals that present for testing as well as the testing and quantitation methods used are also variables that require further study to provide more robust data in this area. Another challenge associated with WBE is estimating the population size of individual WWTP catchments and the contribution of tourists or commuters in smaller communities (Sims and Kasprzyk-Hordern 2020). Ethical considerations, including privacy and the stigmatisation of ethnic and vulnerable populations, are also issues that will need to be managed. Analyses based on populations over > 10,000 are thought to provide anonymity; however, reporting the emergence and/or spread of disease in small populations or sub-populations by WBE must be done with care and needs to be sensitive to different social, ethnic and economic circumstances (Sims and Kasprzyk-Hordern 2020).

Although RT-PCR is the most widely used method for detecting SARS-CoV-2, it can be expensive, time-consuming and requires skilled technicians, and is therefore not conducive to real-time WBE. A variety of point-of-care (POC) options are being explored including paper-based devices (e.g. those that use inexpensive isothermal nucleic acid amplification on a paper material) (Mao et al. 2020b). However, available data indicates that current isothermal amplification of SARS-CoV-2 lacks the required sensitivity and throughput and still requires sample concentration prior to analyses. CRISPR (clustered regularly interspaced short palindromic repeats)-based isothermal RNA detection assays has been developed to help overcome some of these issues but are expensive and the sensitivity remains to be fully evaluated (Broughton et al. 2020; Huang et al. 2020). Small-scale lab-on-a-chip biosensor devices which use a bio-recognition element (e.g., antibodies, aptamer, peptides, protein, etc.) that can generate physicochemical signals (optical, electrochemical, etc.) are increasingly being developed for pathogen detection (Ryan et al. 2017; Cesewski and Johnson 2020), including Cryptosporidium (Luka et al. 2019) and SARS-CoV-2 (Funari et al. 2020; Mavrikou et al. 2020; Qiu et al. 2020; Seo et al. 2020). Biosensors have the potential for rapid and real-time WBE and have been applied to wastewater (Yang et al. 2017), but still present many technical challenges including sensitivity, specificity and detection limit (Ryan et al. 2017; Cesewski and Johnson 2020; Mao et al. 2020c).

Moreover, as discussed above, we need to better understand the infectiousness, half-life and survival of various pathogens in wastewater as well as the travel time to the treatment facility, water use per capita and the effectiveness of various WWTP processes and disinfection technologies (chlorine, UV, ozone etc) on the removal of a wide range of pathogens to better inform computational models (Ahmed et al. 2020a, 2020d; Hart and Halden 2020; Mandal et al. 2020).

Conclusions

WBE has the potential to be a powerful and effective early warning tool for community-wide monitoring of public health. However, improved assays for pathogen concentration, detection, quantitation and infectivity are needed for continuous and systematic monitoring of WWTPs. WBE also needs to be integrated with clinical testing, case reporting and public health campaigns, including coordination of testing methods, so that data generated from WBE and clinical testing is comparable. Recently, a global COVID-19 WBE Collaborative project has been launched (www.covid19wbec.org/) in collaboration with the Sewage Analysis CORe group Europe (SCORE) network and the Global Water Pathogen Project to coordinate methodological research and reporting on WBE. Based on this precedent, similar collaboration in relation to the monitoring of protozoan and other pathogens in wastewater is highly desirable. Molecular sequencing and typing of pathogens in wastewater holds great promise for identifying sources of infection and determining transmission dynamics.

Compliance with ethical standards

Competing interests The authors declare that they have no competing interests.

References

Adeyemo FE, Singh G, Reddy P, Bux F, Stenström TA (2019) Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS One 14(5):e0216040

Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien JW, Choi PM, Kitajima M, Simpson SL, Li J, Tschurke B, Verhagen R, Smith WJM, Zaugg J, Dierens L, Hugenholtz P, Thomas KV, Mueller JF (2020a) First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ 728: 138764

Ahmed W, Bertsch PM, Bivins A, Bibby K, Farkas K, Gathercole A, Haramoto E, Gyawali P, Korajkic A, McMinn BR, Mueller JF, Simpson SL, Smith WJM, Symonds EM, Thomas KV, Verhagen R, Kitajima M (2020b) Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a
surrogate for SARS-CoV-2 from untreated wastewater. Sci Total
Environ 739:139960

Ahmed W, Bertsch PM, Bibby K, Haramoto E, Hewitt J, Huygens F,
Gyawali P, Korajkic A, Riddell S, Sherchan SP, Simpson SL,
Sirikanchana K, Symonds EM, Verhagen R, Vasan SS, Kitajima
M, Bivins A (2020) Decay of SARS-CoV-2 and surrogate murine
hepatitis virus RNA in untreated wastewater to inform application in
wastewater-based epidemiology. Environ Res 191:110092

Ahmed W, Bivins A, Bertsch PM, Bibby K, Choi PM, Farkas K, Gyawali
P, Hamilton KA, Haramoto E, Kitajima M, Simpson SL, Tandukar
S, Thomas K, Mueller JF (2020c) Decay of SARS-CoV-2 and surrogate murine
hepatitis virus RNA in wastewater: methods optimisation and quality control are
crucial for generating reliable public health information. Curr Opin
Environ Sci Health In Press. https://doi.org/10.1016/j.coesh.2020.
09.003

Ajonina C, Buzic C, Ajonina IU, Banner A, Reinhardt H, Gulyas H,
Liebau E, Otterpohl R (2012) Occurrence of Cryptosporidium in a
wastewater treatment plant in North Germany. J Toxicol Environ
Health A 75(22–23):1351–1358

Alhamlan FS, Al-Qahtani AA, Al-Ahdal MN (2015) Recommended ad-
vanced techniques for waterborne pathogen detection in developing
countries. J Infect Dev Ctries 9(2):128–135

Amirian ES (2020) Potential fecal transmission of SARS-CoV-2: current
evidence and implications for public health. Int J Infect Dis 95:363–
370

Ampuero M, Valenzuela S, Valiente-Echeverria F, Soto-Ríos R, Barriga
GP, Chnaiderman J, Rojas C, Guajardo-Leiva S, Diez B, Gaggero A
(2020) SARS-CoV-2 detection in sewage in Santiago. Chile - pre-
liminary results medRxiv. https://doi.org/10.1101/2020.07.02.
20145177

Arora S, Nag A, Sethi J, Rajvanshi J, Saxena S, Shrivastava SK, Gupta
AB (2020) Sewage surveillance for the presence of SARS-CoV-2
genome as a useful wastewater based epidemiology (WBE) tracking
tool in India. medRxiv. https://doi.org/10.1101/2020.06.18.
20135277

Aslan G, Bayram G, Otağ F, Direkel S, Taylan Özkan A, Ceber K,
Emekdaş G (2012) Investigation of the presence of
Cryptosporidium spp. in different water sources in Mersin province,
Turkey. Mikrobiyol Bul 46(1):93–100

Balboa S, Mauricio-Iglesias M, Rodríguez S, Martínez-Lamas L, Vasallo
FJ, Regueiro B, Lema JM (2020) The fate of SARS-CoV-2 in wastewater
water treatment plants points out the sludge line as a suitable spot for
incidence monitoring. medRxiv. https://doi.org/10.1101/2020.05.
25.20112706

Bar-Or I, Yaniv K, Shagan M, Ozer E, Erster O, Mendelson E, Manasse
B, Shirazi R, Kramarsky-Winter E, Nir O, Abu-Ali H, Ronen Z,
Rinott E, Lewis YE, Friedler E, Bitkover E, Paitan Y, Berchenko
Y, Kushmaro A (2020) Regressing SARS-CoV-2 sewage measure-
ments onto COVID-19 burden in the population: a proof-of-concept
for quantitative environmental surveillance. medRxiv. https://doi.
org/10.1101/2020.04.26.20073569

Ben Ayed L, Yang W, Widmer G, Cama V, Ortega Y, Xiao L (2012)
Survey and genetic characterization of wastewater in Tunisia for
Cryptosporidium spp., Giardia duodenalis, Enterocytozoon
duodenalis, Cyclospora cayetanensis and Eimeria spp. J Water
Health 10(3):431–444

Berchenko Y, Manor Y, Freedman LS, Kaliner E, Grotto I, Mendelson
E, Huppert A (2017) Estimation of polio infection prevalence from
environmental surveillance data. Sci Transl Med 9eaaf6786

Berglund B, Dienus O, Sokolova E, Berglund E, Matussek A, Pettersson
T, Lindgren PE (2017) Occurrence and removal efficiency of para
titic protozoa in Swedish wastewater treatment plants. Sci Total
Environ 598:821–827

Bertrand I, Ganzter C, Chesnot T, Schwartzbrod J (2004) Improved spec-
ificity for Giardia lamblia cyst quantification in wastewater by
development of real-time PCR method. J Microbiol Methods 57:
41–53

Bhatt A, Arora P, Prajapati SK (2020) Occurrence, fates and potential
treatment approaches for removal of viruses from wastewater: a
review with emphasis on SARS-CoV-2. J Environ Chem Eng
8(5):104429

Bolland SJ, Zahedi A, Oskam C, Murphy B, Ryan U (2020)
Cryptosporidium bollandi n. sp. (Apicomplexa: Cryptosporididae)
from angelfish (Pterophyllum scalare) and Oscar fish (Astronotus
oceletus). Exp Parasitol 217:107956

Broughton JP, Deng X, Yu G, Fasching CL, Singh J, Streithorst J,
Granados A, Sotomayor-Gonzalez A, Zom K, Gopez A, Hsu E,
Gu W, Miller S, Pan CY, Guevara H, Wadford DA, Chen JS,
Chiu CY (2020) Rapid detection of 2019 novel coronavirus
SARS-CoV-2 using a CRISPR-based DETECTR Lateral Flow
Assay. medRxiv. https://doi.org/10.1101/2020.03.06.20032334

Cacciò SM, De Giacomo M, Aulicino FA, Pozio E (2003) Giardia cysts
in wastewater treatment plants in Italy. Appl Environ Microbiol 69:
3393–3398

Cacciò SM, Chalmers RM (2016) Human cryptosporidiosis in Europe.
Clin Microbiol Infect 22(6):471–480

Campbell AT, Robertson LJ, Snowball MR, Smith HV (1995)
Inactivation of oocysts of Cryptosporidium parvum by ultraviolet
irradiation. Water Res 29(11):2583–2586

Cao B, Gu AZ, Hong PY, Ivanek R, Li B, Wang A, Wu J (2020) Editorial
perspective: viruses in wastewater; wading into the knowns and
unknowns. Environ Res In press. https://doi.org/10.1016/j.envres.
2020.110255

Casanova L, Rutala WA, Weber DJ, Sobsey MD (2009) Survival of
surrogate coronaviruses in water. Water Res 43:1893–1898

Castiglioni S, Zucato E, Crisci E, Chiabrando C, Fanelli R, Bagnati R
(2006) Identification and measurement of illicit drugs and their
metabolites in urban wastewater by liquid chromatography-tandem
mass spectrometry. Anal Chem 78(24):8421–8429

Castro-Hermida JA, Garcia-Presedo I, Almeida A, Gonzalez-Warleta M,
Correia Da Costa JM, Mezo M (2008) Contribution of treated waste-
to the contamination of recreational river areas with
Cryptosporidium spp. and Giardia duodenalis. Water Res 42:
3528–3538

Castro-Hermida JA, Garcia-Presedo I, Almeida A, Gonzalez-Warleta M,
Correia Da Costa JM, Mezo M (2011) Cryptosporidium spp. and
Giardia duodenalis in two areas of Galicia (NW Spain). Sci Total
Environ 409(13):2451–2459

Cacciò SM, Sprong H (2014) Epidemiology of giardiasis in humans. In:
Lujan HD, Svard S (eds) Giardia: A model organism. Springer,
Vienna, New York, pp 16–28

Cesewski E, Johnson BN (2020) Electrochemical biosensors for patho-
gen detection. Biosens Bioelectron 159:112214

CDC (2020) 2019-Novel Coronavirus (2019-ncov) Real-Time rRT-
PCR panel primers and probes. U.S. Centers for Disease Control
and Prevention, https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-
pcr-panel-primer-probes.html Accessed October 21st 2020

Chappell CL, Okhuysen PC, Sterling CR, DuPont HL (1996)
Cryptosporidium parvum: intensity of infection and oocyst excre-
tion patterns in healthy volunteers. J Infect Dis 173(1):232–236

Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE,
Tanriverdi S, Tzipori S (2006) Cryptosporidium hominis: experi-
mmental challenge of healthy adults. Am J Trop Med Hyg 75(5):
851–857

Chavarria-Miró G, Anfruns-Estrada E, Guix S, Paraira M, Galofré B,
Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE,
Tanriverdi S, Tzipori S (2006) Cryptosporidium hominis: experi-
mmental challenge of healthy adults. Am J Trop Med Hyg 75(5):
851–857

Chavarria-Miró G, Anfruns-Estrada E, Guix S, Paraira M, Galofré B,
Sánchez G (2020) Sentinel surveillance of SARS-CoV-2 in waste-
water anticipates the occurrence of COVID-19 cases. medRxiv.
https://doi.org/10.1101/2020.06.13.20129627

Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R, Ng YY, Chu
MY, Chung TWH, Tam AR, Yip CCY, Leung KH, Fung AY,
Zhang RR, Lin Y, Cheng HM, Zhang AJX, To KKW, Chan KH,
Yuen KY, Leung WK (2020) Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterol 159(1):81–95
Choi PM, Tscharke BJ, Donner E, O’Brien JW, Grant SC, Kaserzon SL, Deere D, Khan S (2016) Collation and analysis of source water pathogen.
Deng X, Gu W, Federman S, du Plessis L, Pybus OG, Faria NR, Wang C, Deere D, Sobsey M, Sinclair M, Hill K and White P (2020) Historical.
Efstratiou A, Ongerth JE, Karanis P (2017) Waterborne transmission of.
Eden JS, Rockett R, Carter I, Rahman H, de Ligt J, Hadfield J, Storey M, Danciger M, Lopez M (1975) Numbers of.
Giardia Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Coffey CM, Collier SA, Gleason ME, Yoder JS, Kirk MD, Richardson HY, Shendure J, Jerome KR, Anderson C, Gangavarapu K, Zeller Greninger AL, Roychoudhury P, Starita LM, Famulare M, Chu Yu G, Bushnell B, Pan CY, Guevara H, Reusken C, Koopmans MP, Drosten C (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 25(3):2000045
Curtis T (2003) 30 - Bacterial pathogen removal in wastewater treatment plants. In: Mara D, Horn N (eds): Handbook of Water and Wastewater Microbiology, Academic Press, pp 477-449
Danciger M, Lopez M (1975) Numbers of Giardia in the feces of infected children. Am J Trop Med Hyg 24(2):237–242
Daughton CG (2020) Wastewater surveillance for population-wide Covid-19: the present and future. Sci Total Environ 736:139631
Deere D, Khan S (2016) Collation and analysis of source water pathogen monitoring data. Water Research Australia for WaterVal for the monitoring data.
Gallas-Lindemann C, Sotiriadou I, Plutzer J, Karanis P (2013) Prevalence and distribution of Cryptosporidium and Giardia in wastewater and the surface, drinking and ground waters in the lower Rhine, Germany. Epidemiol Infect 141(9):9–21
Gennaccaro AL, McLaughlin MR. Quintiero-Betancourt W, Huffman DE, Rose JB (2003). Infectious Cryptosporidium parvum oocysts in final reclaimed effluent. Appl Environ Microbiol 69(8):4983–4984
Giangaspero A, Cirillo R, Lacasella V, Lonigro A, Marangi M, Cavallo P, Berrilli F, Di Cave D, Brandonisio O (2009) Giardia and Cryptosporidium in inflowing water and harvested shellfish in a lagoon in southern Italy. Parasitol Int 58(1):12–17
Glück PK (2002) Dirty-water: estimated deaths from water-related diseases 2000–2020. Oakland, CA: Pacific Institute for Studies in Development, Environment, and Security. https://pacinst.org/publication/569/ Accessed October 2020
Gómez-Couso H, Méndez-Hermida F, Castro-Mazás E (2006) Cryptosporidium contamination in harvesting areas of bivalve molluscs. J Food Prot 69(1):185–190
Gonzalez R, Curtis K, Bivins A, Bibby K, Weir MH, Yetka K, Thompson H, Keeling D, Mitchell J, Gonzalez D (2020) COVID-19 surveillance in southeastern Virginia using wastewater-based epidemiology. Water Res 186:116296
Green H, Wilder M, Collins M, Fenty A, Gentle K, Brittany L, Zeng T, Middleton FA, Larsen DA (2020) Quantification of SARS-CoV-2 and cross-assembly phage (crAssphage) from wastewater to monitor coronavirus transmission within communities. medRxiv. https://doi.org/10.1101/2020.05.21.20109181
Gundy PM, Gerba CP, Pepper IL (2009) Survival of coronaviruses in water and wastewater. Food Environ Virol 1:10
Guy RA, Payment P, Krull UJ, Horgen PA (2003) Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and wastewater. Appl Environ Microbiol 69:5178–5185
Hall GV, Kirk MD, Ashbolt R, Stafford R, Lalar K, Group OW (2006) Frequency of infectious gastrointestinal illness in Australia, 2002: regional, seasonal and demographic variation. Epidemiol Infect 134:111–118
Hamilton KA, Wado M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W (2018) Cryptosporidium and surveillance for monitoring COVID-19. Curr Opin Environ Sci Health 17:14–20
Feng Y, Li N, Duan L, Xiao L (2009) Cryptosporidium genotype and subtype distribution in raw wastewater in Shanghai, China: evidence for possible unique Cryptosporidium hominis transmission. J Clin Microbiol 47(1):153–157
Feng Y, Ryan UM, Xiao L (2018) Genetic diversity and population structure of Cryptosporidium. Trends Parasitol 34:997–1011
Ferrer A, Nguyen-Viet H, Zinsstag J (2012) Quantification of diarrhea risk related to wastewater contact in Thailand. Ecohealth 9(1):49–59
Foladori P, Cutrupi F, Segnata N, Manara S, Pinto F, Malpei F, Bruni L, La Rosa G (2020) SARS-CoV-2 from faeces to wastewater treatment: what do we know? A review. Sci Total Environ 743:140444
Fongaro G, Stocco PH, Sobral Marques Souza D, Grisara EC, Magri ME, Rogowski P, Schörner AM, Barazzetti FH, Christoff AP, de Oliveira LF V, Bazzo ML, Wagner G, Hernandez M, Rodriguez-Lázaro D (2020) SARS-CoV-2 in human sewage in Santa Catalina, Brazil, November 2019, medRxiv. https://doi.org/10.1101/2020.06.26.20140731
Fu C, Xie X, Huang JJ, Zhang T, Wu QY, Chen JN, Hu HY (2010) Monitoring and evaluation of removal of pathogens at municipal wastewater treatment plants. Water Sci Technol 61:1589–1599
Funari R, Chu KY, Shen AQ (2020) Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip. Biosens Bioelectron 169:112578
Gállas-Lindemann C, Sotiriadou I, Plutzer J, Karanis P (2013) Prevalence and distribution of Cryptosporidium and Giardia in wastewater and the surface, drinking and ground waters in the lower Rhine, Germany. Epidemiol Infect 141(9):9–21
Hennigar AL, McLaughlin MR. Quintiero-Betancourt W, Huffman DE, Rose JB (2003). Infectious Cryptosporidium parvum oocysts in final reclaimed effluent. Appl Environ Microbiol 69(8):4983–4984
Giangaspero A, Cirillo R, Lacasella V, Lonigro A, Marangi M, Cavallo P, Berrilli F, Di Cave D, Brandonisio O (2009) Giardia and Cryptosporidium in inflowing water and harvested shellfish in a lagoon in southern Italy. Parasitol Int 58(1):12–17
Glück PK (2002) Dirty-water: estimated deaths from water-related diseases 2000–2020. Oakland, CA: Pacific Institute for Studies in Development, Environment, and Security. https://pacinst.org/publication/569/ Accessed October 2020
Gómez-Couso H, Méndez-Hermida F, Castro-Hermida JA, Ares-Mázás E (2006) Cryptosporidium contamination in harvesting areas of bivalve molluscs. J Food Prot 69(1):185–190
Gonzalez R, Curtis K, Bivins A, Bibby K, Weir MH, Yetka K, Thompson H, Keeling D, Mitchell J, Gonzalez D (2020) COVID-19 surveillance in southeastern Virginia using wastewater-based epidemiology. Water Res 186:116296
Green H, Wilder M, Collins M, Fenty A, Gentle K, Brittany L, Zeng T, Middleton FA, Larsen DA (2020) Quantification of SARS-CoV-2 and cross-assembly phage (crAssphage) from wastewater to monitor coronavirus transmission within communities. medRxiv. https://doi.org/10.1101/2020.05.21.20109181
Gundy PM, Gerba CP, Pepper IL (2009) Survival of coronaviruses in water and wastewater. Food Environ Virol 1:10
Guy RA, Payment P, Krull UJ, Horgen PA (2003) Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and wastewater. Appl Environ Microbiol 69:5178–5185
Hall GV, Kirk MD, Ashbolt R, Stafford R, Lalar K, Group OW (2006) Frequency of infectious gastrointestinal illness in Australia, 2002: regional, seasonal and demographic variation. Epidemiol Infect 134:111–118
Hamilton KA, Wado M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W (2018) Cryptosporidium and
van-der-Werf S, Yazdanpanah Y (2020) Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis 20(6):697–706

Li N, Xiao L, Wang L, Zhao S, Zhao X, Duan L, Guo M, Liu L, Feng Y (2012) Molecular surveillance of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi by genotyping and subtyping parasites in wastewater. PLoS Negl Trop Dis 6(9):e1809

Li X, Harwood VJ, Nayak B, Staley C, Sadowsky MJ, Weidhaas J (2015) A novel microbial source tracking microarray for pathogen detection and fecal source identification in environmental systems. Environ Sci Technol 49(12):7319–7329

Liu A, Ji H, Wang E, Liu J, Xiao L, Shen Y, Li Y, Zhang W, Ling H (2011) Molecular identification and distribution of Cryptosporidium and Giardia duodenalis in raw urban wastewater in Harbin, China. Parasitol Res 109(3):913–918

Lodder W, de Roda Husman AM (2020) SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol 5:533–534

Lonigro A, Pollice A, Spinelli R, Berrilli F, Di Cave D, D’Orazi C, Mal Z, Zhang X, Jian Y, Li X, Wang G, Hu Y, Karanis P (2019) Detection of SARS-CoV-2 in sewage treatment plants and wastewater. Cell Rep Med 1(6):100098

Mao K, Zhang H, Zhugen Y (2020a) The potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in wastewater as a tool for the COVID-19 pandemic: a mini-review. Sci Total Environ 747:141245

Mao K, Zhang K, Du W, Ali W, Feng X, Zhang H (2020b) The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Curr Opin Environ Sci Health 17:1–7

Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, Law KI, Lai RW, Guan Y, Yuen KY, HKU/UCH SARS Study Group (2003) Clinical progression and viral load in a community outbreak of SARS in Hong Kong. Lancet 361(9371):1767–1772

Pöyry T, Stenkvist M, Hovi T (1988) Viruses in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett 7:511–516

Michael-Kordatou I, Karoloplia P, Fatta-Kassinos D (2020) Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. J Environ Eng 8:104306

Mlejnjkova H, Sovovka K, Vasíčková P, Ocenášková V, Jasíková L, Michael-Kordatou I, Karaolia P, Fatta-Kassinos D (2020) Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. J Environ Eng 8:104306

Mavrikou S, Moschopoulou G, Tsekouras V, Kintzios S (2020) Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors 20(11):3121

Mayer CL, Palmer CJ (1996) Evaluation of PCR, nested PCR, and fluorescent antibodies for detection of Giardia and Cryptosporidium species in wastewater. Appl Environ Microbiol 62:2081–2085

McLellan N, Pemtisky D, Umble A (2020). Coronavirus and the water cycle — here is what treatment professionals need to know, Available at: https://www.wateronline.com/doc/coronavirus-and-the-water-cycle-here-is-what-treatment-professionals-need-to-know-0001 Accessed November 16th 2020

Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A (2020) Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett 7:511–516

Oda T, Kawabata M, Uga S (2005) Detection of Giardia cysts in sewage and estimations of Giardiasis prevalence among inhabitants in Hyogo prefecture, Japan. Trop Med Health 33:1–5

Oreshkova N, Mollenar RJ, Vrenan S, Harders F, Oude Munnink BB, Hakze-van der Honing RW, Gerhards N, Tolsma P, Bouwstra W, Sikkmva RS, Tacken MG, de Ruij M, Weesendorp E, Engela BM, Bruschke CJ, Smit LA, Koopmans M, van der Poel WH, Stegeman A (2020) SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill 25(23):2001005

Pan Y, Zhang D, Yang P, Poon LLM, Wang Q (2020) Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 20(4):411–412

Peccia J, Zulli A, Brackney DE, Grubaud ND, Kaplan EH, Casanovas-Massana A, Ko AI, Malik AA, Wang D, Wang M, Warren JL, Weinberger DM, Arnold W, Omer SB (2020) Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat Biotechnol 38(10):1164–1167

Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, Law KL, Tang BS, Hon TY, Chan CS, Chan KH, Ng JS, Zheng BJ, Ng WL, Lai RW, Guan Y, Yuen KY, HKU/UCH SARS Study Group (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772

Pöyry T, Stenkvist M, Hovi T (1988) Viruses in sewage waters during and after a poliomyelitis outbreak and subsequent nationwide oral polio-virus vaccination campaign in Finland. Appl Environ Microbiol 54:371–374

Prado T, Fumian TM, Mannarino CF, Maranhão AG, Siqueira MM, Miagostovich MP (2020) Preliminary results of SARS-CoV-2
detection in sewage system in Niterói municipality, Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 115:e200196
Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J (2020) Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14(5):5268–5277
Quintero-Betancourt W, Gennaccaro AL, Scott TM, Rose JB (2003) Assessment of methods for detection of infectious Cryptosporidium oocysts and Giardia cysts in reclaimed effluents. Appl Environ Microbiol 69(9):5380–5388
Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-Regli S, Rose JB, Hass C, Gerba C (1991) Modeling the risk from Giardia lamblia. Appl Environ Microbiol 67:76–81
Rendtorff RC (1979) The experimental transmission of human intestinal Giardia lamblia. Appl Environ Microbiol 69(9):5380–5388
Rendtorff RC (1954) The experimental transmission of human intestinal Giardia lamblia. Appl Environ Microbiol 69(9):5380–5388
Rockett RJ, Arnott A, Lam C, Sadsad R, Timms V, Gray KA, Eden JS, Chang S, Gall M, Draper J, Sim EM, Bachmann NL, Carter I, Basile K, Byun R, O’Sullivan MV, Chen SC, Maddocks S, Sorrell TC, Dwyer DE, Holmes EC, Kok J, Prokopenko M, Sintchenko V (2020) Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nat Med 26(9):1398–1404
Ryan U, Paparini A, Oskam C (2017) New technologies for detection of enteric parasites. Trends Parasitol 33(7):532–546
Ryan U, Zahedi A (2019) Molecular epidemiology of giardiasis from a veterinary perspective. Adv Parasitol 106:209–254
Samie A, Niekede P (2014) Genotypic detection and evaluation of the removal efficiency of Giardia duodenalis at municipal wastewater treatment plants in northern South Africa. Trop Biomed 31(1):122–133
Sammarro Silva KJ, Sabogal-Paz LP (2020) Cryptosporidium spp. and Giardia spp. (oo)cysts as target-organisms in sanitation and environmental monitoring: a review in microscopy-based viability assays. Water Res 189:116590
Schijven J, Hassanizadeh S (2000) Removal of virus by soil passage: overview of modeling, processes and parameters. Crit Rev Environ Sci Technol 30:49–127
Schijven J, Mulschegel JHC, Hassanizadeh M, Teunis PFM, de Roda Husman AM (2006) Determination of protection zones for Dutch groundwater wells against virus contamination-uncertainty and sensitivity analysis. J Water Health 4:297–312
Schmitz BW, Moriyama H, Haramoto E, Kitajima M, Scherhan S, Gerba CP, Pepper IL (2018) Reduction of Cryptosporidium, Giardia, and fecal indicators by Bardenpho wastewater treatment. Environ Sci Technol 52(12):7015–7023
Schoeman D, Fielding BC (2019) Coronavirus envelope protein: current knowledge. Virol J 16:69
Seo G, Lee G, Kim MJ, Baek SH, Choi M, Ku KB, Lee CS, Jun S, Park D, Kim HG, Kim SJ, Lee JO, Kim BT, Park EC, Kim SI (2020) Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14(4):5135–5142
Sharif S, Ikram A, Khurshid A, Salman M, Mehmood N, Arshad Y, Ahmad J, Angez M, Alam MM, Rehman L, Mujtaba G (2020) Detection of SARS-CoV-2 in wastewater, using the existing environmental surveillance network: an epidemiological gateway to an early warning for COVID-19 in communities. medRxiv. https://doi.org/10.1101/2020.06.03.20121426
Sherchan SP, Shalin S, Ward LM, Tandukar S, Aw TG, Schmitz B, Ahmed W, Kitajima M (2020) First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA. Sci Total Environ 743:140621. https://doi.org/10.1016/j.scitotenv.2020.140621
Shirley DT, Moonah SN, Kotloff KL (2012) Burden of disease from cryptosporidiosis. Curr Opin Infect Dis 25(5):555–563
Silverman JD, Hupert N, Washburne AD (2020) Using influenza surveillance networks to estimate state-specific prevalence of SARS-CoV-2 in the United States. Sci Transl Med 12:eabc1126
Sims N, Kaspryk-Hordern B (2020) Future perspectives of wastewater-based epidemiology: monitoring infectious disease spread and resistance to the community level. Environ Int 139:105689
Soller JA, Eftim SE, Warren I, Nappier SP (2017) Evaluation of microbial risks associated with direct potable reuse. Microb Risk Anal 5:3–4
Spanakos G, Biba A, Mavridou A, Karanis P (2015) Occurrence of Cryptosporidium and Giardia in recycled waters used for irrigation and first description of Cryptosporidium parvum and C. muris in Greece. Parasitol Res 114:1803–1810
Stein-Green JK, McCaig L, Rensen HM, Rains CS, Fox M, Juranek DD (1987) Shedding of oocysts in immunocompetent individuals infected with Cryptosporidium. Am J Trop Med Hyg 36:634–638
Sulaiman IM, Jiang J, Singh A, Xiao L (2004) Distribution of Giardia duodenalis genotypes and subgenotypes in raw urban wastewater in Greece. Parasitol Res 114:1803–1810
Troeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SRM, Albertson S, Stanaway JD, Deshpande A, Brown A, Abebe Z,
Alvis-Guzman Na, Amare AT et al (2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 18(11):1211–1228

Trottier J, Darques R, Ait Mouheb N, Partiot E, Bakhache W, Defieu MS, Gaudin R (2020) Post-lockdown detection of SARS-CoV-2 RNA in the wastewater of Montpellier, France. One Health 10: 100157

Tsuchihashi R, Loge FJ, Darby JL (2003) Detection of Cryptosporidium parvum in secondary effluents using a most probable number-polymerase chain reaction assay. Water Environ Res 75(4):292–299

Ulloa-Stanojlović FM, Aguiar B, Jara LM, Sato MI, Guerrero JA, Hackich E, Matté GR, Drope M, Matté MH, de Araujo KS (2016) Occurrence of Giardia intestinalis and Cryptosporidium sp. in wastewater samples from São Paulo state, Brazil, and Lima, Peru. Environ Sci Pollut Res Int 23(21):22197–22205

UN (2017) The United Nations world water development report, 2017. Wastewater: the untapped resource. https://unesdoc.unesco.org/ark:/48223/pf0000247153?posInSet=5&queryId=N-EXPLORE-7383672f-bf39-4492-bdc3-40e64191d3f. Accessed November 16th 2020

USEPA (2014) United States Environmental Protection Agency. Office of Water. Method 1693: Cryptosporidium and Giardia in disinfected wastewater by concentration/IMS/IFA, Office of Water (4303T). EPA 821-R-14-013. https://www.epa.gov/sites/production/files/2015-08/documents/method_1693_2014.pdf

van Doom AS, Meijer B, Frampton CMA, Barclay ML, de Boer NKH (2020) Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther 52(8):1276–1288

Villacorta-Martínez de Maturana I, Ares-Mazá ME, Durán-Oreiro D, Lorenzo-Lorenzo MJ (1992) Efficacy of activated sludge in removing Cryptosporidium oocysts from sewage. Appl Environ Microbiol 58:3514–3516

Wang FX, Li JS, Jin M, Zhen B, Kong Q, Gu X, Lee WL, Kauffman K, Hanage W, Matus M, Ghaeli N, Endo N, Duvall et al. (2020a) Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewater. medRxiv. https://doi.org/10.1101/2020.04.12.20062679

Wurtz S, Marechal V, Mouchel JM, Maday Y, Teyssou R, Richard E (2020a) Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewater. medRxiv. https://doi.org/10.1101/2020.04.12.20062679

WHO (2020b) Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv. https://doi.org/10.1101/2020.04.12.20062679

Wurtz S, Marechal V, Mouchel JM, Moulin L (2020b) Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv. https://doi.org/10.1101/2020.04.12.20062679

Xagoraraki I, O’Brien E (2020) Wastewater-based epidemiology for early detection of viral outbreaks. Women in Water Quality 2020:75–97

Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A (2001) Molecular characterization of Cryptosporidium oocysts in samples of raw surface water and wastewater. Appl Environ Microbiol 67: 1097–1101

Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, Guo Q, Sun X, Zhao D, Shen J, Zhang H, Liu H, Xia X, Tang J, Zhang K, Gong S (2020) Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Med 26(4): 502–505

Yang Z, Xu G, Rebold J, Kasprzyk-Hordern B, Cooper JM (2017) Monitoring genetic population biomarkers for wastewater-based epidemiology. Anal Chem 89(18):9941–9945

Yaqub T, Nawaz M, Shabbir M, Ali MA, Aftab I, Raza S, Shabbir MA, Ashraf MA, Aziz SZ, Cheema S, Shah MB, Hassan S, Rafique S, Sardar N, Mehmood A, Aziz SZ, Cheema S, Shah MB, Hassan S, Rafique S, Sardar N, Mehmood A, Aziz MW, Fazal S, Khan N, Khan MT, Attique M, Asif A, Anwar M, Awan NA, Younis MU, Bhatti MA, Tahir Z, Mukhtar N, Sarwar H, Rana MS (2020) A longitudinal survey for genome-based identification of SARS-CoV-2 in sewage water in selected lockdown areas of Lahore city, Pakistan: a potential approach for future smart lockdown strategy. medRxiv. https://doi.org/10.1101/2020.07.31.20165126

Ye Y, Ellenberg RM, Graham KE, Wigginton KR (2016) Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environ Sci Technol 50(10):5077–5085

Zahedi A, Golhom AW, Greay T, Monis P, Oskam C, Ball A, Bath A, Waterston A, Robertson I, Ryan U (2018) Profiling the diversity of Cryptosporidium spp. and Cryptosporidium spp. removal efficiency of a combined fixed-film system treating domestic wastewater receiving hospital effluent. Environ Sci Pollut Res Int 26(22):22756–22771

Ye Y, Ellenberg RM, Graham KE, Wigginton KR (2016) Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environ Sci Technol 50(10):5077–5085

Zahedi A, Golhom AW, Greay T, Monis P, Oskam C, Ball A, Bath A, Waterston A, Robertson I, Ryan U (2018) Profiling the diversity of Cryptosporidium spp. and Cryptosporidium spp. removal efficiency of a combined fixed-film system treating domestic wastewater receiving hospital effluent. Environ Sci Pollut Res Int 26(22):22756–22771

Zahedi A, Greay TL, Paparini A, Lingle KL, Joll CA, Ryan UM (2019) Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. Water Res 158:301–312
Zahedi A, Ryan U (2020) Cryptosporidium - an update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 132:500–512

Zhou L, Singh A, Jiang J, Xiao L (2003) Molecular surveillance of Cryptosporidium spp. in raw wastewater in Milwaukee: implications for understanding outbreak occurrence and transmission dynamics. J Clin Microbiol 41(11):4254–4257

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.