Stable group 8 metal porphyrin mono- and bis(dialkylcarbene) complexes: synthesis, characterization, and catalytic activity†

Hai-Xu Wang, Qingyun Wan, Kam-Hung Low, Cong-Ying Zhou, Jie-Sheng Huang, Jun-Long Zhang and Chi-Ming Che

Alkyl-substituted carbene (CHR or CR₂, R = alkyl) complexes have been extensively studied for alkylcarbene (CHR) ligands coordinated with high-valent early transition metal ions (a.k.a. Schrock carbenes or alkylidenes), yet dialkylcarbene (CR₂) complexes remain less developed with bis(dialkylcarbene) species being little (if at all) explored. Herein, several group 8 metal porphyrin dialkylcarbene complexes, including Fe- and Ru-mono(dialkylcarbene) complexes [M(Por)(Ad)] (1a,b, M = Fe, Por = porphyrinato diainion, Ad = 2-adamantylidene, 2a,b, M = Ru) and Os-bis(dialkylcarbene) complexes [Os(Por)(Ad)₂] (3a–c), are synthesized and crystallographically characterized. Detailed investigations into their electronic structures reveal that these complexes are formally low-valent M(II)-carbene in nature. These complexes display remarkable thermal stability and chemical inertness, which are rationalized by a synergistic effect of strong metal-carbene covalency, hyperconjugation, and a rigid diamondoid carbene skeleton. Various spectroscopic techniques and DFT calculations suggest that the dialkylcarbene Ad ligand is unique compared to other common carbene ligands as it acts as both a potent σ-donor and π-acceptor; its unique electronic and structural features, together with the steric effect of the porphyrin macrocycle, make its Fe porphyrin complex 1a an active and robust catalyst for intermolecular diarylcarbene transfer reactions including cyclopropanation (up to 90% yield) and X–H (X = S, N, O, C) insertion (up to 99% yield) reactions.

Introduction

Since the discovery of a metal-alkylcarbene (M=CHR) complex, [Ta(CH₂Bu)₃(CH²Bu)] by Schrock,¹ alkyl-substituted carbene ligands (alternative name: alkylidenes), i.e., alkylcarbene (CHR) and dialkylcarbene (CR₂), have been mainly studied for M=CHR complexes with early transition metals (TM, groups 4–6), with their roles ranging from reactive synthons in olefin metathesis to supporting ligands (in nucleophilic, dianionic form [CHR]²⁻) that stabilize high-valent metal ions.² In contrast, the chemistry of dialkylcarbene complexes of TMs and CHR/CR₂ complexes of middle/late TMs remains less developed (Fig. 1a), particularly for mononuclear bis(CHR/CR₂) examples, of which are sparse.³ To the best of our knowledge, no mononuclear bis(dialkylcarbene) complexes of TMs have been reported previously.⁴

We are interested in developing new types of dialkylcarbene complexes of group 8 metals Fe, Ru, and Os. In the literature, Grubbs’ Ru-alkylcarbene species have received much attention owing to their essential role in olefin metathesis.⁵ Related CHR/CR₂ species of Fe,⁶ Ru,⁷ and Os,⁸ mostly stabilized by strong-field ligands such as CO/phosphate and Cp (cyclopentadienyl), have also been reported; some Fe(dialkylcarbene) complexes [Cp(CO)(L)Fe(CR₂)]⁺ (L = PR₃, CO)⁹ or [Cp(CO₂)₂Fe(CR₂)]¹⁰ undergo stoichiometric reactions typical of electrophilic carbenes, including cyclopropanation,¹¹ Si–H insertion,¹² and C–H insertion.¹⁰ Interest in Fe-carbene complexes also lies in their potential role as next-generation catalysts for olefin metathesis and mechanistic implication of iron porphyrin carbene complexes for artificial metalloenzyme catalysis involving heme-carbenes as key intermediates.¹² Recently, we developed catalytic dialkylcarbene transfer reactions¹³ including C(sp³)–H insertion, cyclopropanation, and Buchner reactions using various metalloporphyrin catalysts including Ru and Fe porphyrins; the active intermediates in these catalytic processes...
are likely to be the corresponding metalloporphyrin dialkyldiazomethane complexes [M(Por)(CMeR)] (Por = porphyrinato diazomethane), which, however, have not been directly detected. Unlike the above-mentioned [Cp(CO)2Fe(CCHR)] and [Cp(CO)2Fe(CR2)] which bear strong π-acidic CO ligand(s) in favor of low-valent metal centers, complexes [M(Por)(CMeR)] can possibly be formulated as either low-valent MII−(CMeR)0 or high-valent MI−(CMeR)2− species. To clarify this issue, it is highly desirable to isolate and fully characterize stable metalloporphyrin dialkyldiazomethane complexes for detailed studies on their electronic and molecular structures.

Up to now, metalloporphyrin dialkyldiazomethane complexes have been rarely reported; the only examples are [Fe(TPP)(CMeR)] (R = "Bu, "Pr) prepared by treatment of [Fe(TPP)Cl2] with terminal alkynes and NaBH4. These [Fe(TPP)(CMeR)] complexes were not structurally characterized by X-ray crystallography and were formulated as Fe(α) species by analogy with the 1H NMR, UV-vis, and MS spectra of iron porphyrins bearing other types of carbene ligands. The very limited knowledge on metalloporphyrin dialkyldiazomethane complexes restricts with extensive studies on other types of nonheteroatom-stabilized carbene complexes of Fe, Ru, Os, and only a few non-porphyrin metal-C(Ph)X (X = OMe, Br) carbene complexes; there is a literature report on the X-ray crystal structure of [Cp(CO)2Mn(Ad)], which is hitherto the only example of a known M=Ad complex, although this Mn=Ad complex was prepared from a metal-borylene precursor rather than using aziadamantane as the Ad source. We envisaged that diazirines could be a new type of carbene source for synthesizing metal-dialkyldiazomethane species and Ad may also lead to isolable group 8 metal porphyrin dialkyldiazomethane complexes by reaction of readily accessible metalloporphyrin precursors with aziadamantane under photolysis.

In the present work, we report a simple and mild method of synthesizing metal-dialkyldiazomethane complexes of TMs using diazirine as the carbene source, leading to the isolation of several M=Ad complexes of group 8 metal porphyrins including Fe- and Ru-dialkyldiazomethane, [M(Por)(Ad)] (M = Fe, Ru, Os) and Os-dialkyldiazomethane, [Os(Por)(Ad)2] (3) complexes, along with the X-ray crystal structures of these complexes, as well as various spectroscopic studies including XANES (X-ray absorption near edge structure) spectroscopy and also DFT calculations (Fig. 1b), which all lend evidence for the low-valent M(=Ad)2 complex nature of 1–3. Complexes 3a–c contribute unique examples of a bis(dialkyldiazomethane) complex of TMs. Surprisingly, the metal-dialkyldiazomethane complexes 1–3 are not reactive toward dialkyldiazomethane transfer reactions and generally display remarkable stability. Direct comparison is also made among dialkyldiazomethane Ad and other types of carbene ligands, mainly based on the system of group 8 metal porphyrins. Furthermore, a promising role of dialkyldiazomethane Ad as a supporting ligand is demonstrated by one of its Fe complexes 1a in homogeneous donor–donor carbene transfer catalysis.

Results

Synthetic procedures

Treatment of [Fe(TPFPP)] and aziadamantane at room temperature under UV irradiation (365 nm) for 15 min afforded a 1,2-hydride shift, which is a common side reaction observed in dialkyldiazomethane transfer catalysis. In addition, non-porphyrin group 8 metal dialkyldiazomethane complexes reported previously were often prepared with a limited choice of ligand sets (e.g., phosphine, Cp, and tris(pyrazolyl)borate) and/or under demanding conditions (e.g., strong acid and reducing medium), and only a few non-porphyrin Ru- and Os-dialkyldiazomethane complexes have been structurally characterized by X-ray crystallographic studies and, despite the report of a structurally characterized Fe=CHMe non-porphyrin complex, no crystal structure of an Fe-dialkyldiazomethane complex has been reported so far.

In quest of a highly stable dialkyldiazomethane complex of metalloporphyrins, we paid attention to the dialkyldiazomethane ligand 2-adamantylidene (Ad). This was inspired by the studies of Ad as a model of dialkyldiazomethane in free carbene chemistry, as it can be photochemically generated from the diazirine compound, aziadamantane, under mild conditions and exhibits great resistance against 1,2-hydride shift due to its rigid diamondoid skeleton, coupled with the use of diazirines as carbene sources for the preparation of non-porphyrin metal-C(Ph)X (X = OMe, Br) carbene complexes; there is a literature report on the X-ray crystal structure of [Cp(CO)2Mn(Ad)], which is hitherto the only example of a known M=Ad complex, although this Mn=Ad complex was prepared from a metal-borylene precursor rather than using aziadamantane as the Ad source.

We envisaged that diazirines could be a new type of carbene source for synthesizing metal-dialkyldiazomethane species and Ad may also lead to isolable group 8 metal porphyrin dialkyldiazomethane complexes by reaction of readily accessible metalloporphyrin precursors with aziadamantane under photolysis.
1a in 93% yield as a bright red solid (reaction 1 in Scheme 1a). Alternatively, it could be synthesized directly from commercially available [Fe(TPP)Cl] at 40 °C with a slightly lower yield (85%), reaction 2 in Scheme 1a; the Fe(II) center was presumably reduced in situ by free Ad. Complex [Fe(TTP)(Ad)] (1b) could be prepared by the same two methods yet in much lower isolated yields, probably due to its higher susceptibility to aerobic oxidation as it decomposed immediately to μ-oxo dimer [Fe(TTP)]₂O at above 60 °C in air (reaction 4 in Scheme 1a). Six-coordinated iron porphyrin carbene species 1a·Py could be easily accessed by adding pyridine into a solution of 1a (reaction 3 in Scheme 1a). Ruthenium analogues [Ru(Por)(Ad)] (Por = TPFPP: 2a, TTP: 2b) could be similarly prepared from [Ru⁹(Por)(CO)] and azidamantane in high yields (reaction 5 in Scheme 1b). Besides 2a,b, diazirine complexes 2az and 2bz (Scheme 1b), which are a new class of metalloporphyrin complexes, were isolated as minor species. The coordinated diazirine molecules are less photoactive and 2az could only be sluggishly transformed into 2a under UV irradiation and at elevated temperature (reaction 6 in Scheme 1b); we conceive that the coordinated diazirine ligand was either first converted to the corresponding diazo compound which then reacted with Ru porphyrin, or directly decomposed to free carbene that subsequently coordinated to the Ru center. Complexes 2az and 2bz were also slightly air-sensitive and slowly underwent oxidation to give 2-adamantanone.²⁵

Strikingly, by a similar treatment of [Os(Por)(CO)] (Por = 4-F-TPP, TPFPP, and TTP) with azidamantane, bis(dialkylcarbene) products [Os(Por)(Ad)] (Por = 4-F-TPP: 3a, TPFPP: 3b, and TTP: 3c) were observed by ¹H NMR measurements (reaction 7 in Scheme 1c). Monitoring the reaction of [Os(TPFPP)(CO)] and azidamantane by ¹H NMR showed that 3b was formed immediately after UV irradiation and no mono(dialkylcarbene) species [Os(Por)(Ad)] was detected. Thus it is likely that the bis(dialkylcarbene) complexes 3a-c were formed directly from the Os carbonyl precursors, different from the pre-formation of an isolable mono(diarylcarbene) analogue [Os(TPFPP)(CPh₂)] and its conversion to the bis(diarylcarbene) counterpart [Os(TPFPP)(CPh₂)]₂.²⁶ Besides, 3a-c could all be readily purified by using an alumina column in air, in contrast to the analogous bis(diarylcarbene) complexes which could not be isolated in a pure form when supported by simple porphyrin ligands such as TTP.²⁶ The lower isolated yields (12–30%) for 3a-c are attributable to the strong absorptivity of the Os precursors at 365 nm; attempts to improve the yields of 3a-c by increasing irradiation time were not successful, as prolonged irradiation caused

Scheme 1 Synthesis of Fe (a), Ru (b), and Os (c) dialkylcarbene complexes.
decomposition of the Os-dialkylcarbene products. The bis(dialkylcarbene) complexes 3a–c were found slightly susceptible to aerobic oxidation, as exemplified by the oxidation of 3c to a trans-dioxo complex [Os(TTP)O] and 2-adamantane after standing in aerobic solution for ~1 d (reaction 8 in Scheme 1c).

X-ray crystallography

The crystal structures of 1b, 1a-Py, 2b-MeOH, and 3a were determined by X-ray crystallography (Fig. 2), and the selected bond distances and angles are listed in Table 1. The sum of angles around C_carbene atoms (1b: 360.1°; 1a-Py: 359.9°; 2b-MeOH: 359.9°; 3a: 359.8°) is indicative of sp^2-hybridization of carbene carbons; the carbene planes are close to bisecting the M=Npyrrole bonds (31.6–44.3°) in all four complexes. The Fe-C_carbene distance in 1b is 1.770(3) Å, which is typical of five-coordinate iron porphyrin carbene species.11c,15e The TTP macrocycle suffers from saddled distortion and the mean deviation of 24 atoms from the porphyrin mean plane is 0.268 Å, with the iron atom being displaced from this mean plane by 0.269 Å. Coordination of pyridine at the trans axial site causes elongation of the Fe-C_carbene distance to 1.829(9) Å in 1a-Py, yet this distance is still much shorter than Fe=C single bonds;16 mean, while distortion of the porphyrin ligand is greatly suppressed (mean deviation: 0.051 Å) and the iron atom is only marginally deviated (0.074 Å) from the mean porphyrin plane. The crystal structure of 2b-MeOH features a short Ru–C_carbene distance of 1.856(3) Å, and its porphyrin ring shows a minor doming distortion (mean deviation: 0.037 Å) along with a slightly out-of-plane Ru atom (0.172 Å).

The Os–bis(dialkylcarbene) complex 3a features an Os–C_carbene bond length of 2.061(7) Å, similar to the bis(diphenylcarbene) complex [Os(TPPFPP)(CPh_2)_2] (~2.03 Å)15e yet apparently longer than that of Os porphyrin mono(carbene) complexes (1.79–1.87 Å),15e which is likely due to the strong trans influence exerted by the carbene ligands. A 90° disorder is observed for one of the two Ad ligands, making them either orthogonal or parallel to each other. Notably, the porphyrin plane in 3a is almost planar (mean deviation: 0.025 Å), which is in stark contrast to the strongly ruffled porphyrin ligand observed in [Os(TPFPP)(CPh_2)_2] (mean deviation: 0.197 Å).15e

Complexes 2az and 2bz represent two of rare examples of metal diazirine complexes25,27 and the X-ray crystal structure of 2az was obtained (Fig. 3). The two diazirine moieties experience slight π-backbonding from the Ru center, as the N=N bond distance (1.248(9) Å) is longer than those in non-coordinated diazirines (1.228–1.235 Å)25 while the Ru–N_diazirine bonds (1.985(6) and 1.996(6) Å) are also shorter than a typical Ru–N single bond (~2.1 Å). Evidence of such π-backbonding further comes from the N=N stretching bands observed in the IR spectrum of 2az (1518 and 1491 cm^{–1}) which appear at appreciably lower frequencies than that of the free ligand (1570 cm^{–1}).28

Table 1 Selected bond lengths (Å) and angles (°)

	M = Fe, Ru, Os	1b	1a-Py	2b-MeOH	3a^a
M1–C1	1.770(3)	1.829(9)	1.856(3)	2.061(7)	
C1–C2	1.500(4)	1.50(3)	1.511(5)	1.510(7)	
C1–C3	1.488(5)	1.50(2)	1.507(5)	1.510(7)	
M1–N_pyrrole^b	1.978(4)	1.996(8)	2.047(3)	2.065(5)	
M1–L_{ax}	2.200(8)	2.234(3)	2.061(7)		
C2–C1–C3	112.8(3)	111.2(12)	110.7(3)	106.8(7)	
C2–C1–M1	124.2(2)	123.2(11)	124.5(2)	126.3(6)	
C3–C1–M1	123.1(2)	125.5(11)	124.7(2)	126.7(5)	
C1–M1–L_{ax}	178.4(7)	176.16(12)	180.0(9)		

^a All values involving C1–3 are averaged between two Ad groups.
^b Average distances between M1 and pyrrolic nitrogens (N1–4).
^c L_{ax} = N5 (for 1a-Py) or O1 (for 2b-MeOH), or C1a (for 3a).

Fig. 2 ORTEP diagrams of 1b (a), 1a-Py (b), 2b-MeOH (c), and 3a (d) with thermal ellipsoids at the 50% probability level. Hydrogen atoms, disordered atoms/solvent molecules, and ellipsoids of porphyrin ligands (except for pyrrolic nitrogens) are omitted for clarity.
Spectral features

All the 1H NMR signals of dialkylcarbene complexes 1–3 are in the diamagnetic region, and no significant spectral change was observed up to 60 °C under an inert atmosphere. The Ad protons of these M=Ad complexes (Scheme 1) are strongly shielded and well separated by the porphyrin ring current, as assigned by COSY spectra (see the ESI†). In the case of 13C NMR spectra, the five-coordinate Fe-dialkylcarbene complexes 1 show characteristic downfield carbene chemical shifts at 394.92–413.57 ppm, and ligation of 1a with an axial ligand such as isocyanoide, imidazole, or pyridines results in further downfield shifts of carbene carbons to 433.36–444.78 ppm; less deshielded signals are observed in Ru-mono(dialkylcarbene) complexes 2 as well as Os-bis(dialkylcarbene) complexes 3 (350–370 ppm, Table 2).

Several other spectroscopic techniques were employed to probe the oxidation state of metal centers in these metalloporphyrin dialkylcarbene complexes. The Fe K-edge XANES spectrum of 1a was recorded along with that of several reference iron porphyrin complexes. The pre-edge peak of 1a (7113.0 eV) is highly similar to that of [FeII(TPFPP)(CPh2)] (7113.0 eV) yet appreciably lower in energy than that of [FeIII(TPFPP)Cl] (7114.0 eV), thus suggesting an Fe(II) center in the dialkylcarbene spectrum. The Fe K-edge XANES spectra of 1a–3a was found to be highly similar to that of [OsII(4-F-CNPy)Cl] (10879.0 eV) but different from that of the high-valent trans-dioxo complex [OsVII(TTP)O2] (10880.0 eV); these results are supportive of an OsII bis(carbene) electronic structure of 3a rather than an OsV Schrock alkylidene formulation.

Previously, the oxidation state of metal centers in Os porphyrin carbene complexes remained ambiguous.18a,e,f To clarify this issue, we conducted an Os L-edge XANES study on 3a and two related Os porphyrins (Fig. 4, bottom). Complex 3a exhibits an L$_3$-edge peak at 10 879.0 eV in its XANES spectrum, and this was found to be highly similar to that of [OsVII(4-F-TPP)(CO)] (10 879.0 eV) but different from that of the high-valent trans-dioxo complex [OsVII(TTP)O2] (10 880.0 eV); these results are supportive of an OsVII bis(carbene) electronic structure of 3a rather than an OsV Schrock alkylidene formulation.

UV-vis absorption spectra of Fe complexes 1a,b both exhibit a single Soret band, whereas two separate Soret bands could be observed for Ru congeners (Fig. S1†). Addition of an axial ligand generally leads to a red shift of the Soret band(s), and the extent of the red shift is affected by the electronic properties of the

![Fig. 3 ORTEP diagram of 2az with thermal ellipsoids at the 50% probability level. Hydrogen atoms and ellipsoids of porphyrin ligands (except for pyrrolic nitrogens) are omitted for clarity.](Image 1)

Table 2 Carbene chemical shifts δ (ppm)a,b,c

Carbene chemical shifts δ (ppm)a,b,c
δ(Fe=C)
1a
1b
1a·ArNC
1a·CNPy
δ(Os=C)
1a·Py
1a·NMe$_2$Py
1a·Melm

a Measured in CDCl$_3$ at 298 K. b ArNC = 2,6-dimethylphenyl isocyanide, CNPy = 4-cyanopyridine, Py = pyridine, NMe$_2$Py = 4-dimethylaminopyridine, and Melm = 1-methylimidazole. c Measured in C$_6$D$_6$ at 298 K.

![Fig. 4 Top: Fe pre-edge peaks in the XANES spectra of 1a (blue), [Fe(TPFPP)(CPh2)] (red), and [Fe(TPFPP)Cl] (green). Bottom: Os L$_3$-edge peaks in the XANES spectra of 3a (blue), [Os(4-F-TPP)(CO)] (red), and trans-dixo complex [Os(TTP)O$_2$] (green).](Image 2)
axial ligand (Fig. 6). The binding constants of pyridine with 1a and 2b were measured to be $(9.90 \pm 0.48) \times 10^3$ and $(2.375 \pm 0.144) \times 10^4$ M$^{-1}$ respectively (Fig. S2†), both being smaller than those of analogous Fe/Ru porphyrin complexes bearing other carbene ligands (3500 M$^{-1}$ for Fe-dichlorocarbene15a and 1.13 \times 105 M$^{-1}$ for Ru-quinoid carbene complexes17b). Interestingly, no binding between PPh$_3$ and 1a or 2b has been observed during UV-vis monitoring. The Soret and Q bands of Os-bis[dialkylcarbene] complexes 3 are generally weakened and broadened, with the Q bands of 3b,c markedly blue-shifted (<500 nm) as compared to those of 1a,b and 2a,b bearing the same porphyrin ligands (Fig. S1†); these spectral features are typically found for Os porphyrin complexes.12

Electrochemistry

Electrochemical studies on these group 8 metal dialkylcarbene complexes were conducted to gain insights into their electronic structures (Fig. 7 and S3†). Complexes 1a,b both show one reversible oxidation wave at -0.18 to 0.01 V (vs. Fe$^{3+/2+}$, the same as below) in the cyclic voltammograms (Table 3), falling in the region of the Fe$^{3+/2+}$ couple.33 This assignment complied with the results from XANES, Mössbauer, and resonance Raman spectroscopies (vide supra), and was further verified by the spectroelectrochemical spectrum of 1a in which a broadened Soret band and red-shifted Q bands characteristic of Fe(n) porphyrins appeared after oxidation (Fig. 8, top);14 products derived from porphyrin- or carbene ligand-oxidation could be precluded, since metal-Por$^{2+}$ species feature a broad band between 630 and 710 nm while oxidation on the axial ligand generally leads to minor changes in the electronic spectra of [M(Por)] complexes.33,34 Although the oxidation is reversible on the cyclic voltammetry timescale, the oxidized Fe(n) species was found unstable and decomposed within minutes. The first reversible oxidation waves of 2a,b (−0.03 to 0.18 V, Table 3) are also ascribed to be Ru-centered oxidation according to our previous study.17b The Os complexes 3a–c all show a quasi-reversible oxidation wave (−0.17 to 0.04 V) assignable to the Os$^{III/II}$ couple,35 in agreement with the +2 oxidation state of the Os core as determined from XANES spectroscopy (Fig. 4, bottom). The second oxidation waves in 1b, 2b, 3a, and 3c could be attributed to porphyrin-centered oxidation processes. The first reduction waves of the Fe complexes are strongly influenced by the aryl substituents on porphyrin ligands (Table 3) and are therefore assigned to porphyrin-centered reduction. This was also evidenced by the noticeable spectral changes of Soret and Q bands upon reduction of 1a (Fig. 8, bottom). The first reductions of 2a,b and 3a,b are assigned likewise in view of their

![Fig. 6](image-url)
Fig. 6 UV-vis spectra of 1a (black), and 1a ligated with 4-cyanopyridine (blue), pyridine (green), and 4-dimethylaminopyridine (red) in DCM. Inset: titration of pyridine (5 \times 10$^{-5}$−0.01 M) into a DCM solution of 1a (5 \times 10$^{-5}$ M).

![Fig. 7](image-url)
Fig. 7 Cyclic voltammograms of group 8 metal dialkylcarbene complexes supported by the TTP macrocycle, using 0.1 M (Bu$_4$N)PF$_6$ as the electrolyte and at a scan rate of 0.1 V s$^{-1}$. Top: 1b and 2b, measured in DMF with SCE as the reference electrode; E(Fe$^{3+/2+}$) = 0.49 V. Bottom: 3c, measured in DCM with Ag/AgCl as the reference electrode; E(Fe$^{3+/2+}$) = 0.40 V. Dotted lines indicate irreversible redox events.

E (V)	E_{G1}	E_{G2}	E_{R1}	E_{R2}
1a	0.01	−1.59	−2.07	
1b	−0.18	0.47b	−1.86	−2.38b
2a	0.18	−1.66	−2.10	
2b	−0.03	0.61b	−1.91	−2.50b
3a	−0.10d	0.77b	−2.05d	
3b	0.04d	−1.71d		
3c	−0.17d	0.59b		

a E$_{G1}$ values. 1a,b and 2a,b were measured in DMF with SCE as the reference electrode; E(Fe$^{3+/2+}$) = 0.49 V. 3a–c were measured in DCM with Ag/AgCl as the reference electrode; E(Fe$^{3+/2+}$) = 0.40 V. b $E_{P_{Bu}^4}$, c $E_{P_{Bu}^4}$, d Quasi-reversible.
similarity in potential and reversibility (Table 3); no reduction peaks are observed for 3c and they are possibly beyond the solvent window of DCM.

DFT calculations

DFT calculations were performed on 1b and 3a to provide detailed information on the bonding nature of a metalloporphyrin mono(dialkylcarbene) complex and a metal-bis(dialkylcarbene) complex. The optimized structure of 1b and 3a show the M–C_carbene (M = Fe, Os) bond distances of 1.742 Å and 2.003 Å respectively, which are close to the experimental values (Table 1). A low-spin Fe(n) center with an electronic configuration of \((d_{x^2-y^2})^2(d_{xz})^2(d_{yz})^2(d_{xy})^0\) was found for 1b (Fig. 9), consistent with the diamagnetism of this complex and also similar to previous experimental and computational results for iron porphyrin complexes ligated with other types of carbene ligands.\(^{16h,17}\) An Fe-dialkylcarbene \(\pi\)-backbonding interaction is formed between the \(d_{yz}\) of Fe and the \(p_{yz}\) orbital of C_carbene, and the \(\pi(Fe=C)\) orbital is mostly Fe \(d_z^*\) in character (H-3, 45% Fe, 17% C_carbene), while the \(\pi^*(Fe=C)\) orbital is more polarized to the carbene carbon (L + 2, 32% Fe, 52% C_carbene). Therefore, the complex should be best described as a formally Fe^{II}=Ad^0 species with decent Fe-to-carbene \(\pi\)-backbonding. Similar to free Ad in which hyperconjugation plays an essential role in stabilizing the carbene center,\(^{72d,e}\) the \(\pi^*(Fe=C)\) he orbital in 1b is also stabilized by such an effect exerted by the flanking alkyl groups. The LUMO is essentially populated on the porphyrin ligand and the HOMO mostly resides at the Fe center, both of which comply with the electrochemical study (vide supra).

A similar M(n) electronic configuration was calculated for Os-bis(dialkylcarbene) complex 3a which features a low-spin d\(^6\) Os(n) center and strong metal-carbene covalency (Fig. 10, top). The two perpendicular \(p_x\) orbitals of the two Ad ligands interact with the \(d_{xz}\) and \(d_{yz}\) orbitals of Os, giving rise to two pairs of almost degenerate \(\pi(Os=C)\) (H-1 and H-2) and \(\pi^*(Os=C)\) (L + 2 and L + 3) orbitals. Different from 1b, the \(d_{yz}\) orbital of 3a is higher in energy than \(d_{xy}\) as a result of the strongly coordinating dialkylcarbene ligands. TD-DFT calculations could well reproduce the UV-vis spectrum of 3a which consists of two separate Soret bands at 343–395 nm and a weak and broad Q band at 557 nm (Fig. 10, bottom).

Stability and reactivity

Fe(n) porphyrins are usually air-sensitive and could be stabilized by a few \(\pi\)-acceptor ligands (e.g., CS and isocyanides). In this work, the dialkylcarbene Ad ligand was found to confer remarkable stability on Fe(n) porphyrins, especially for 1a bearing the electron-deficient porphyrin ligand TPFPP. No decomposition of 1a could be detected even by treating its benzene solution at 80 °C in air for at least 1 h; its six-coordinate adducts with pyridines and MeIm also stayed intact in solution for at least one week under ambient conditions, which is in sharp contrast to air-sensitive [Fe(TPFPP)(CPh3)(MeIm)].\(^{11v}\) Surprisingly, thermogravimetric analysis (TGA) revealed that 1a in the solid state is stable up to \(\sim 230 ^\circ\) C in air (Fig. S6); the \(^1\)H NMR spectrum of 1a, after being heated at 230 °C in the solid state for 5 min in air, remained unchanged. The Ru analogue 2a also exhibits great thermal stability in air with the onset of decomposition appearing at \(\sim 330 ^\circ\) C (Fig. S6f). The Os-bis(dialkylcarbene) complexes are stable below 60 °C under an inert atmosphere in both solution and solid states.
could be traced by the changes in ^{1}H and ^{19}F NMR spectra; the C(sp3) complexes could react stoichiometrically with alkenes and/or dialkylcarbene) complex 18 displaying stoichiometric diarylcarbene transfer reactivity.

When the studies described above revealed that the dialkylcarbene Ad ligand coordinated to group 8 metal porphyrins is less reactive than diphenylcarbene CPh$_2$, their relative thermodynamic stability was further probed by carbene substitution experiments (Scheme 3). It was found that [Fe(TPFP)(CPh$_2$)] and [Os(TPFP)(CPh$_2$)$_2$] could readily react with free Ad, generated from photolysis of azidamantane, to afford 1a and 3b, respectively (reactions 10 and 12 in Scheme 3), yet treatment of 1a or 3b with excess diazo compound Ph$_2$CN$_2$ was not able to result in replacement of the Ad ligand(s) in the Fe or Os complex by CPh$_2$ even under more forcing conditions (reactions 11 and 13 in Scheme 3). For the reaction of 1a with Ph$_2$CN$_2$ (reaction 11 in Scheme 3), the azine product Ph$_2$C=N=N=CPh$_2$ was obtained in 90% yield.

Catalytic intermolecular donor–donor carbene transfer reactions catalyzed by 1a

Given the remarkable stability of the Ad ligand, we examined the possibility of using 1a as a robust Fe(u) catalyst for some experiment in the absence of a substrate. Surprisingly, 3a was also stable against MeLi at $^{−78}$°C to room temperature, although MeLi was known to undergo nuleophilic addition or π-deprotonation of metal-carbene complexes. Addition of pyridine into a DCM solution of 3a at room temperature slowly led to carbene ligand dissociation and formation of 2-adamantanone, yet neither a dialkylcarbene transfer product nor an Os-mono(dialkylcarbene) complex could be observed.16f

While the studies described above revealed that the dialkylcarbene Ad ligand coordinated to group 8 metal porphyrins is less reactive than diphenylcarbene CPh$_2$, their relative thermodynamic stability was further probed by carbene substitution experiments (Scheme 3). It was found that [Fe(TPFP)(CPh$_2$)] and [Os(TPFP)(CPh$_2$)$_2$] could readily react with free Ad, generated from photolysis of azidamantane, to afford 1a and 3b, respectively (reactions 10 and 12 in Scheme 3), yet treatment of 1a or 3b with excess diazo compound Ph$_2$CN$_2$ was not able to result in replacement of the Ad ligand(s) in the Fe or Os complex by CPh$_2$ even under more forcing conditions (reactions 11 and 13 in Scheme 3). For the reaction of 1a with Ph$_2$CN$_2$ (reaction 11 in Scheme 3), the azine product Ph$_2$C=N=N=CPh$_2$ was obtained in 90% yield.

Catalytic intermolecular donor–donor carbene transfer reactions catalyzed by 1a

Given the remarkable stability of the Ad ligand, we examined the possibility of using 1a as a robust Fe(u) catalyst for some

Scheme 2 Intermolecular reactions of 1a with anionic nucleophiles.

Scheme 3 Carbene substitution experiments.
challenging transformations. Diarylcarbene (CAR) transfer reactions remain less developed in the literature, which is mainly due to the intrinsic low reactivity of CAR carbenes and they are known to form isolable adducts even with the most active catalysts such as Rh and Cu. Inspired by the carbene substitution experiments (reaction 11 in Scheme 3) revealing the formation of an azine product, we envisioned that 1a might serve as an efficient catalyst for diarylcarbene transfer reactions, since the observed azine product possibly resulted from reaction of Ph2CN2 with a reactive Fe-bis(carbene) intermediate [Fe(TPFPP)](Ad)(CPh2) (4a, Scheme 3; by drawing an analogy with Os-bis(carbene) analogues), in which the CPh2 ligand was activated with the trans-Ad ligand. Gratifyingly, cyclopropanation of styrene with Ph2CN2 could be catalyzed by 2 mol% of 1a in excellent yield (90%, entry 1 in Table 4). The time course plot of this reaction showed that product 5a was smoothly produced with a very short induction period, and catalyst 1a remained rather stable in the reaction mixture (85% recovery, Fig. 11). Employing [Fe4(TPFPP)] as the catalyst led to a poorer yield of 5a (entry 2 in Table 4), which suggests the important role played by the Ad ligand in 1a in this reaction. Complex 1a showed superior catalytic performance and chemoselectivity to other commonly used carbene transfer catalysts (e.g., Rh and Cu catalysts, entries 4–6 in Table 4; see also Table S7) under the same reaction conditions since the latter catalysts afforded mainly the azine product; the Ru-dialkylcarbene complex 2a gave slightly better results than 1a (entry 3). By using 1a as the catalyst, the scope of alkynes was extended to styrenes bearing electron-donating (5b,c) and withdrawing (5d) substituents with good to high product yields (Scheme 4). A conjugated alkyne was selectively cyclopropanated at the less hindered site in a moderate yield (5e). However, alkyl-substituted alkynes such as 1-octene resulted in a low yield of 5f and mainly the azine by-product. Besides CPh2 carbene, electron-deficient (5g) and -rich (5h,i) diarylcarbenes were also converted to the desired cyclopropanes in high yields.

Complex 1a could also catalyze intermolecular S–H, N–H, and O–H insertion reactions, thereby introducing benzhydryl groups onto various heteroatoms (Scheme 4). S–H bonds activated by aryl (6a–c) and 2-pyridyl groups (6d) readily underwent carbene insertion in 88–99% yields; alkyl-substituted thiols such as ethanethiol also afforded the desired sulfonyl product albeit in a lower yield (6e, 33%). Catalytic N–H insertion could be achieved in high yields by using electron-rich N-heterocycles such as carbazole (7a) and imidazole (7b), as well as secondary alkyl amines such as morpholine (7c); primary amines, aryl (7d) and aliphatic (7e), resulted in only moderate product yields. Aryl complexes including phenols (8a,b) and 2-naphthol (8d) were transformed into O–H insertion products in 75–92% yields, yet electron-poor phenol (8c) and aliphatic alcohol (8e) showed appreciably lower reactivity. Notably, catalytic C(sp3)–H insertion of CPh2 carbene was achieved under more demanding conditions (80 °C and dropwise addition of Ph2CN2), and previously such catalytic transformations were largely confined to intramolecular versions using Rh catalysts. C–H insertion of doubly-activated substrates including 1,4-cyclohexadiene (9a) and fluorene (9b) was achieved in moderate yields, while a low yield was observed with the less reactive indane (9c). Moreover, the robustness of catalyst 1a could be demonstrated by the high recovery of 1a after most of the catalytic reactions mentioned above (Scheme 4).

Attempts to isolate or directly detect the proposed Fe-bis(carbene) intermediate 4a have not been successful. We performed DFT calculations on a model complex 4b (Fig. 12), which is identical to 4a except that the meso-aryl groups in 4a were replaced by hydrogen for simplicity. The calculated structure of 4b features a rather lengthened Fe–CPh2 bond (1.96 Å) as compared to the Fe–CAd bond (1.89 Å); the LUMO was mainly localized on the p̂π of CPh2 while the p̂π of CAd was higher in energy (L + 3); this could account for the relatively high reactivity of CAR ligands as well as the stability of 1a and its Ad ligand during catalytic turnover.

Catalytic intermolecular cyclopropanation reactions of other donor-donor (phenyl/alkyl- and dialkyl-) carbones were also tested by using freshly prepared or in situ generated diazo compounds. Complex 1a could catalyze the reactions of N2C(Ph)CF3 and N2C(Ph)Me (the latter was generated in situ from acetophenone hydrazone and Ag2O) with styrene to afford the corresponding cyclopropanation products in moderate to good yields albeit with low diastereomeric ratios (entries 1–2 in Table 5); however, a similar treatment of diazoadamantane (in situ generated from AdNNH2 and PhIO) with styrene using catalyst 1a did not give the cyclopropanation product, and [3 + 2] additions were only observed.
cycloaddition between styrene and the diazo compound to give 10 was the major reaction observed (entry 3 in Table 5). Worthy of note is the high recovery of 1a in all these reactions as this complex showed decent stability toward PhIO which is known to generate Fe-oxo species with common Fe porphyrin complexes.

Discussion

Middle/late transition metal (TM) (di)alkylcarbene species are key intermediates related to olefin metathesis and (di)alkylcarbene transfer catalysis, yet the electronic properties of dialkylcarbene as a ligand, especially in comparison with common carbene ligands including “stable” (NHC and CAAC) and “reactive” (phenyl-/ester-substituted) carbenes, still remain less understood. In this work, by choosing 2-adamantylidene (Ad) as a rigid model, we have synthesized several terminal group 8 metal dialkylcarbene complexes from easily accessible precursors and by a simple and mild method. We have also demonstrated that, different from the well documented reactive features, dialkylcarbene ligands such as Ad can be highly stable upon coordination to TMs including Fe and even act as a robust ancillary ligand for catalytic applications. To gain deeper knowledge, the following aspects of the dialkylcarbene ligand Ad coordinated to TMs are discussed in this section.

Dialkylcarbene vs. common carbene ligands

Although both stable and reactive carbene ligands feature an sp2-hybridized carbene center with a vacant p orbital, they have scarcely been linked or discussed together due to the drastic differences in the molecular structure, stability, and/or electronic properties of their metal complexes. The uniqueness of dialkylcarbene lies in the fact that it possesses mutual characters from the above two types of carbenes: on the one hand, its carbene transfer reactivity has been well documented in the literature; on the other hand, we have discovered in this work that it confers remarkable thermodynamic and kinetic stability on group 8 metal porphyrin complexes and in particular, it leads to stabilization of an Fe(II) porphyrin species and several Os-bis(-carbene) complexes. These findings prompt us to make a closer comparison between dialkylcarbene and stable/reactive carbenes with the aid of theoretical calculations.

Scheme 4

Intermolecular diarylcarbene transfer reactions catalyzed by 1a. Product yields in red and recovery of 1a (blue) in parentheses.

Fig. 12

DFT-optimized structure of model complex 4b (left) and its LUMO (middle) and L + 3 orbitals (right).

(i) Dialkylcarbene vs. stable carbenes (NHC/CAAC).

The carbene substituents for dialkylcarbene and stable carbenes show an interesting pattern ranging from diamino (NHC), amino/alkyl (CAAC) to dialkyl (Ad), and such a variation can directly influence their carbene frontier orbitals, i.e., the σ orbital and p orbital, through inductive and mesomeric effects. By performing DFT calculations on these free carbenes, we found that the most striking feature of dialkylcarbene is its much lower-lying p orbital than NHC and CAAC ($\Delta E > 1.8$ eV, Fig. 13a), likely due to the absence of π-donating atoms adjacent to the carbene center; its σ orbital is also slightly higher in energy ($\Delta E = 0.10–0.52$ eV). Therefore, dialkylcarbene acts as a much stronger π_acceptor and a slightly better σ-donor, and thus a stronger-field ligand than these conventional stable carbenes.

The variation in π-character could account for the distinct differences in the Fe/Ru–C(carbene) distances, as the Fe/Ru–C_{Ad}
bonds are all within double bond regions (Table 1) and are apparently shorter than those in NHC/CAAC complexes (1.87–2.15 Å for Fe and 1.93–2.15 Å for Ru). The redox potential of metalloporphyrin carbene complexes, especially the first oxidation potential \((E_{O1}) \), is a good indicator for the electronic properties of carbene ligands, and the greater \(\pi \)-acidity of the Ad ligand is also noted by the increased \(E_{O1} \) values of 2a,b as compared to their NHC congeners (Fig. 14 and Table S8 †). In addition, NHC often gives bis(carbene) complexes with Fe and Ru porphyrins, yet only mono(dialkylcarbene) complexes of Fe and Ru porphyrins \([\text{MFe/Ru(Por)(Ad)}] \) are isolable, which is likely caused by the prominent trans influence of the Ad ligand. The stronger trans influence of Ad than NHC is also inferred by comparing the solid-state structures of [Ru(TTP)(Ad)(MeOH)] (2b·MeOH) and [Ru(TPP)(IMe2)(THF)] where the axial Ru–O bond is longer in the former (2.36 Å) than in the latter complex (2.22 Å, Fig. S7 †).

(ii) Dialkylcarbene vs. reactive carbenes (phenyl-/ester-substituted carbenes). Besides all being related to carbene transfer catalysis, dialkylcarbene also bears some other resemblance to reactive carbenes. For instance, their complexes of Fe/Ru porphyrins are all mono(carbene) species displaying \(\text{M–C_carbene} \) double bond character (1.77–1.83 Å for Fe and 1.81–1.88 Å for Ru); these complexes share similar features in their NMR, UV-vis, and IR spectra and cyclic voltammograms. To further compare their electronic properties, we conducted DFT

Table 5 Intermolecular cyclopropanation reactions between other diazo compounds and styrene catalyzed by 1a

Entry	Diazo compound	Yield of cyclopropane\(^{a,b} \) (dr)	By-product	Recovery of 1a
1		71% (2.4 : 1)		90%
2\(^c\)		45% (2.0 : 1)	Azine	88%
3\(^d\)		0%		81%

\(^{a}\) See the ESI for detailed reaction conditions. \(^{b}\) Yield and diastereomeric ratio (dr) determined by \(^1\)H NMR with PhTMS as the internal standard. \(^{c}\) In situ generated diazo compound from acetophenone hydrazone and Ag\(_2\)O. \(^{d}\) In situ generated diazo compound from 2-adamantanone hydrazone and PhIO.

Fig. 13 (a) Comparison of calculated carbene frontier orbitals of free NHC, CAAC, Ad, and CPh\(_2\) carbenes in their singlet states. (b) Comparison of calculated \(\text{Fe–C_carbene} \) orbitals in [Fe(Por)(Ad)], [Fe(Por)(CPh\(_2\))], and [Fe(Por)(C(Ph)CO\(_2\)Et)].

\text{This journal is © The Royal Society of Chemistry 2020}
calculations on Fe-carbene complexes bearing Ad, CPh₂, and C(Ph)CO₂Et ligands since they have all been isolated in this work or in a previous report;⁴⁴ the porphyrin meso-substituents are again replaced by hydrogen atoms for simplicity. The most notable difference between dialkylcarbene Ad and reactive carbene lies in the σ-properties, as the Fe dₓᵧ orbital in the Ad complex is calculated at a much higher energy level (ΔE ≥ 0.78 eV) together with a relatively large energy splitting between σ and σ* orbitals (Fig. 13b), which is attributable to the electron-donating alkyl substituents. Meanwhile, its Fe dₓᵧ orbital is also slightly destabilized compared to that of CPh₂ and C(Ph)CO₂Et carbene complexes (ΔE = 0.25–0.35 eV). Therefore, dialkylcarbene Ad is a stronger σ-donor and slightly weaker π-acceptor, and thus a more electron-donating ligand than the other reactive carbenes.

These computational results are supported by a number of spectroscopic and experimental data. The electron-donating feature of dialkylcarbene can be demonstrated by electrochemical studies where the Eₒ₁ values of Ad complexes of group 8 metal porphyrins are appreciably smaller than those of phenyl-ester-substituted carbene congeners (Table 6 and Fig. 14);²⁵ additionally, a larger isomer shift in the Mössbauer spectrum of 1a (0.25 mm s⁻¹) than that of the analogous CPh₂ (0.03–0.19 mm s⁻¹) and CCl₂ complexes (0.02–0.10 mm s⁻¹) also reveals a more electron-rich Fe center in the former complex. The much enhanced σ-bonding interaction improves the trans influence, as revealed by smaller binding constants of 1a and 2b (see the Results section), as well as the thermodynamic stability of dialkylcarbene Ad relative to other reactive carbene complexes, which has been demonstrated by the carbene substitution experiments (Scheme 3). The higher carbene pₓ orbital in dialkylcarbene complexes is accountable for the kinetic stability of 1a and 3a since they were observed to be unreactive towards stoichiometric carbone transfer reactions while the analogous CPh₂ and/or C(Ph)CO₂R carbene complexes have been reported to be reactive.¹⁵,¹⁶

Ad vs. other dialkylcarbene ligands

In this work, Ad is used as a model to study the features of dialkylcarbene ligands. To examine the effect of alkyl substituents of dialkylcarbene on the frontier orbitals of the carbene carbon, we performed DFT calculations on two in silico complexes [Fe(Por)(CMe₂)] and [Fe(Por)(C’Pr₃)]; the two calculated complexes show almost identical Fe-carbene bonding structures to the Ad complex (Fig. S8†). However, M=Ad complexes (especially the Fe and Ru complexes) are uniquely stable as compared to other examples of Fe/Ru-dialkylcarbene complexes which could undergo a 1,2-hydride/alkyl shift and/or carbene transfer reaction.⁷,⁸,¹⁰,¹⁹,₂⁰,₂¹ Such a striking difference is attributable to the rigid structure of Ad. On the one hand, its diamondoid skeleton suppresses the inner-sphere 1,2-hydride shift both thermodynamically and kinetically (Fig. 15a).²² On the other hand, the angle at carbene carbon is relatively fixed in Ad complexes while it is more flexible in other dialkylcarbene such as CMe₂, as revealed by DFT calculations (Fig. 15b). Such an angle is closely related to the reactivity of carbene species⁷ as the energy level of the CMe₂ pₓ orbital decreases significantly upon increasing this angle (Fig. S9†); in contrast, the Ad complex stays preferentially around the local minimum of its potential energy curve which is apparently steeper than that of the CMe₂ complex, thus making it less susceptible to outer-sphere nucleophilic attack.

Ad vs. π-acceptor ligands for Fe(s) porphyrins

Some useful comparisons can also be made among dialkylcarbene Ad and common π-acceptor ligands which are important in stabilizing Fe(s) porphyrins.⁴⁶ While Ad only forms mono-adducts with the Fe center, bis-adducts of NO,⁴⁴ CO,⁴⁵ pyridine,⁴⁶ and isocyanide⁴⁷ have all been reported, which implies a stronger ligand field of Ad than other π-acids. Electrochemistry revealed larger E₀₁ values for CS and NO complexes (≥0.6 V vs. SCE)⁴⁵,⁵¹,⁵² than the Ad counterparts (0.29–0.50 V vs. SCE) and thus suggested less electron-donating
porphyrin ligand has been well documented in the literature, especially in six-coordinate complexes where a strong distortion of the porphyrin ligand has been observed,114 which is distinctly different from the nearly planar porphyrins found in six-coordinate Ad and CCl\textsubscript{3} carbene complexes.118 In previous examples with imidazoles as trans-axial ligands, the strong trans effect of CPh\textsubscript{2} carbene and the highly distorted porphyrin plane significantly weaken the Fe-imidazole interaction.116 In model complex 4b, however, where the ligand field of Ad is comparable to that of CPh\textsubscript{2}, the Ad group tends to stay closer to the Fe center and reduces the distortion of porphyrin toward itself; consequently, the steric effect (or Pauli repulsion) between porphyrin and CPh\textsubscript{2} is expected to increase, as the distance between them is as short as 2.4 Å (Fig. 16a), which is well within the normal region for π–π interaction,118 and the electrostatic repulsion is also enhanced since both CPh\textsubscript{2} and porphyrin carry partial negative charge (Fig. 16b). Elongation of the Fe–C\textsubscript{CPh\textsubscript{2}} bond thus occurs in order to offset these repulsive interactions. It should be noted that such a steric effect is unique to metalloporphyrin systems, since in other common catalysts, such as Rh and Cu catalysts, the coordination environment around CAr\textsubscript{2} is much less congested and the aryl ring(s) on CAr\textsubscript{2} can even be coplanar with the carbene plane according to their crystal structures.90,110

Besides being spatially accessible due to the elongated Fe-carbene distance, CPh\textsubscript{2} carbene is also energetically favorable to be transferred to organic substrates in the bis(carbene) intermediate. While the carbene p\textsubscript{π} orbitals of CPh\textsubscript{2} and Ad ligands in their mono(carbene) porphyrin complexes are both calculated at L + 2 (Fig. 13b), in the bis(carbene) complex 4b the p\textsubscript{π} orbital of CPh\textsubscript{2} is markedly lowered to the LUMO while that of Ad slightly increases to L + 3 (Fig. 12). This is likely caused by the intrinsic π-characters of the two carbene ligands as the p\textsubscript{π} orbital of free Ad lies higher in energy than that of CPh\textsubscript{2} (in their singlet states) due to the hyperconjugation effect (Fig. 13a), yet the presence of two π-acceptor ligands on the Fe center decreases the metal-to-carbene backbonding and makes the carbene orbital of CPh\textsubscript{2} shift to a lower energy level. Meanwhile, the σ orbital of CPh\textsubscript{2} is also strongly destabilized, as it is mainly located at H-17 in the mono(carbene) complex (Fig. 13b), yet in 4b it exists at H-5 and even partially at the HOMO (Fig. S10†). To briefly summarize, the elongated Fe–C\textsubscript{CPh\textsubscript{2}} bond as well as reorganized CPh\textsubscript{2} carbene frontier orbitals concomitantly lead to great destabilization of the CPh\textsubscript{2} group in the putative bis(carbene) [Fe(Por)(Ad)(CPh\textsubscript{2})] intermediate, which could in turn

Fig. 15 (a) Resistance of M–Ad complexes toward 1,2-hydride shift. (b) Calculated potential energy curves for [Fe(Por)(Ad)] and [Fe(Por)(CMe\textsubscript{2})] by changing the angle θ.

properties of the diatomic ligands; this is consistent with the larger isomer shift of 1a (0.25 mm s-1) in Mössbauer spectroscopy as compared to CS and CO complexes measured at similar temperatures (−0.03 to 0.18 mm s-1).116

Catalytic diarylcarbene transfer reactivity

Previously, intermolecular diarylcarbene transfer reactions have only been achieved by a limited number of catalytic systems and some of them suffered from a low yield, narrow substrate scope, and/or high catalyst loading.116,117 The Fe-dialkylcarbene complex 1a is, to the best of our knowledge, the first Fe catalyst that mediates the transfer of diarylcarbene to a panel of substrates with moderate to high yields, while remaining largely intact during turnover. Based on a few reports on the stoichiometric reactivity of Fe-diarylcarbene species with organic substrates,116,118 we envision that the plausible intermediates, [Fe(TPFPP)(Ad)(CAr\textsubscript{2})], are key to the success in our methodology and thus merit further discussion.

We have not been able to detect the presence of [Fe(TPFPP)(Ad)(CPh\textsubscript{2})] species. Nonetheless, according to our calculated structure of 4b (Fig. 12), the CPh\textsubscript{2} carbene group is rather labile as indicated by the elongated Fe–C\textsubscript{CPh\textsubscript{2}} bond (1.96 Å), which is also consistent with the high reactivity of 1a involving 4a as a proposed reactive intermediate; meanwhile the Fe–C\textsubscript{Ad} bond is appreciably shorter (1.89 Å) and could account for the stability of the catalyst. However, such a large difference in Fe-carbene distances is in contrast to those found in the corresponding five- or six-coordinate mono(carbene) complexes, i.e., [Fe(Por)(CPh\textsubscript{2})] vs. [Fe(Por)(Ad)] or [Fe(Por)(CPh\textsubscript{2})(L)] vs. [Fe(Por)(Ad)(L)],116,118 where both pairs of complexes display negligible differences in the Fe-carbene bond distances (<0.02 Å). We attribute this phenomenon to both the trans effect of Ad and the steric effect of CPh\textsubscript{2} carbene ligands. The steric repulsion between the bulky CPh\textsubscript{2} group and

Fig. 16 (a) Spatial separation between CPh\textsubscript{2} and Por ligands in the optimized structure of 4b. (b) Calculated electrostatic map of 4b.
account for the high catalytic activity of 1a in these diarylcarbene transfer reactions.

Conclusions

In this work we have conducted a detailed study on a series of group 8 metal porphyrin dialkylcarbene complexes. With aziadamantane as the carbene source, a new synthetic method is developed toward Fe- and Ru-mono(dialkylcarbene) complexes and also Os-bis(dialkylcarbene) complexes, which, to the best of our knowledge, represent the first examples of transition metal-bis(dialkylcarbene) complexes. Spectroscopic investigations including XANES, NMR, electrochemistry, UV-vis, Mössbauer, resonance Raman, and IR, combined with DFT and TD-DFT calculations, reveal that the electronic structures of these dialkylcarbene complexes are all low-valent d6 metal-carbene M=Ad0 in nature instead of the high-valent Schrock alkyldiene formalism. These dialkylcarbene complexes generally exhibit much improved thermodynamic and kinetic stability than other analogous group 8 metal porphyrins bearing nonheteroatom-stabilized carbene ligands such as diphenylcarbene; further comparison with other types of carbene ligands shows that dialkylcarbene Ad is a borderline species in between the common “stable” and “reactive” carbene ligands and it displays strong σ-donating as well as π-accepting characters. The unique electronic properties and stable features make dialkylcarbene Ad a promising candidate for ligand design in organometallic catalysis, and it has been demonstrated in this work that the Fe(a) complex 1a is highly active and robust in some donor–donor carbene, especially diarylcarbene, transfer reactions where the strong-field trans-Ad ligand is believed to play a crucial role in activating the reactive carbene groups.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is supported by the Hong Kong Research Grants Council (HKU 17303815) and Basic Research Program-Shenzhen Fund (JCYJ20170412140251576, JCYJ20170818141858021, and JCYJ20180508162429786). We thank Prof. Ya-Wen Zhang, Mr Haozong Xue, and staff at the Shanghai Synchrotron Radiation Facility (SSRF) for assistance with XANES spectroscopy, Mr Qian Liu from shiyanjia lab (https://www.shiyanjia.com) for support in Mössbauer analysis, and Prof. David L. Phillips, Dr Lili Du, Dr Zhiping Yan, and Ms Xueqin Bai for performing the resonance Raman measurements. We acknowledge helpful discussions with Prof. Michael P. Doyle and Dr Ka-Pan Shing. Assistance in experimental work by Ms Linda Quach and Ms Shuo Xu is also kindly acknowledged.

Notes and references

1 R. R. Schrock, J. Am. Chem. Soc., 1974, 96, 6796–6797.
2 R. R. Schrock, Chem. Rev., 2002, 102, 145–180.
3 (a) J. D. Fellmann, G. A. Rupprecht, C. D. Wood and R. R. Schrock, J. Am. Chem. Soc., 1978, 100, 5964–5966; (b) M. R. Churchill and W. J. Youngs, Inorg. Chem., 1979, 18, 1930–1935; (c) J. D. Fellmann, R. R. Schrock and G. A. Rupprecht, J. Am. Chem. Soc., 1981, 103, 5752–5758; (d) A. M. LaPointe, R. R. Schrock and W. M. Davis, J. Am. Chem. Soc., 1995, 117, 4802–4813; (e) J. B. Diminnie, H. D. Hall and Z. Xue, Chem. Commun., 1996, 2383–2384; (f) T. Chen, Z. Wu, L. Li, K. R. Sorasaenee, J. B. Diminnie, H. Pan, I. A. Guzei, A. L. Rheingold and Z. Xue, J. Am. Chem. Soc., 1998, 120, 13519–13520; (g) T. Chen, X.-H. Zhang, C. Wang, S. Chen, Z. Wu, L. Li, K. R. Sorasaenee, J. B. Diminnie, H. Pan, I. A. Guzei, A. L. Rheingold, Y.-D. Wu and Z.-L. Xue, Organometallics, 2005, 24, 1214–1224; (h) U. J. Kilgore, J. Tomaszewski, H. Fan, J. C. Huffman and D. J. Mindiola, Organometallics, 2007, 26, 6132–6138; (i) Z.-L. Xue and L. A. Morton, J. Organomet. Chem., 2011, 696, 3924–3934.
4 For a review on Fischer-type multicarbene complexes, see: D. I. Bezuidenhout, S. Lotz, D. C. Liles and B. von der Westhuizen, Coord. Chem. Rev., 2012, 256, 479–524.
5 G. C. Vougioukalakis and R. H. Grubbs, Chem. Rev., 2010, 110, 1746–1787.
6 (a) W. Petz, Iron-Carbene Complexes, Springer-Verlag, 1993; (b) O. Daugulis, A. H. R. MacArthur, F. C. Rix and J. L. Templeton, ACS Catal., 2016, 6, 1518–1532.
7 (a) J. P. Collman, P. J. Brothers, L. McElwee-White, E. Rose and L. J. Wright, J. Am. Chem. Soc., 1985, 107, 4570–4571; (b) D. G. Gusev, T. Maxwell, F. M. Dolgushin, M. Lyssenko and A. J. Lough, Organometallics, 2002, 21, 1095–1100; (c) P. Alvarez, E. Lastra, J. Gimeno, M. Bassetti and L. R. Falvello, J. Am. Chem. Soc., 2003, 125, 2386–2387; (d) M. Leutzsch, L. M. Wolf, P. Gupta, M. Fuchs, W. Thiel, C. Farès and A. Fürstner, Angew. Chem., Int. Ed., 2015, 54, 12431–12436; (e) A. Guthertz, M. Leutzsch, L. M. Wolf, P. Gupta, S. M. Rummelt, R. Goddard, C. Farès, W. Thiel and A. Fürstner, J. Am. Chem. Soc., 2018, 140, 3156–3169; (f) A. Fürstner, J. Am. Chem. Soc., 2019, 141, 11–24; (g) T. Biberger, C. P. Gordon, M. Leutzsch, S. Peil, A. Guthertz, C. Copéret and A. Fürstner, Angew. Chem., Int. Ed., 2019, 58, 8845–8850; (h) S. Peil, A. Guthertz, T. Biberger and A. Fürstner, Angew. Chem., Int. Ed., 2019, 58, 8851–8856.
8 (a) G. Ferrando, J. N. Coalter III, H. Gérard, D. Huang, O. Eisenstein and K. G. Caulton, New J. Chem., 2003, 27, 1451–1462; (b) M. A. Estefuelas, A. M. López and M. Oliván, Coord. Chem. Rev., 2007, 251, 795–840; (c) V. Martin and S. Blakey, Tetrahedron Lett., 2008, 49, 6800–6803; (d) T. Bolaño, M. A. Estefuelas and E. Oñate, J. Organomet. Chem., 2011, 696, 3911–3923.
9 (a) M. Brookhart, J. R. Tucker and G. R. Husk, J. Am. Chem. Soc., 1981, 103, 979–981; (b) K. A. M. Kremer, P. Helquist and R. C. Kerber, J. Am. Chem. Soc., 1981, 103, 1862–1864; (c) M. Brookhart, J. R. Tucker and G. R. Husk, J. Am. Chem. Soc., 1983, 105, 258–264; (d) M. Brookhart, D. Timmers, J. R. Tucker, G. D. Williams, G. R. Husk, H. Brunner and B. Hammer, J. Am. Chem. Soc., 1983, 105, 6721–6723; (e)
50 G. Dazinger and K. Kirchner, *Organometallics*, 2004, 23, 6281–6287.
51 L. W. Olson, D. Schaeper, D. Lancon and K. M. Kadish, *J. Am. Chem. Soc.*, 1982, 104, 2042–2044.
52 B. B. Wayland, L. F. Mehne and J. Swartz, *J. Am. Chem. Soc.*, 1978, 100, 2379–2383.
53 G. B. Jameson and J. A. Ibers, *Inorg. Chem.*, 1979, 18, 1200–1208.
54 L. A. Bottomley, M. R. Deakin and J.-N. Gorce, *Inorg. Chem.*, 1984, 23, 3563–3571.
55 (a) W. Baratta, W. A. Herrmann, R. M. Kratzer and P. Rigo, *Organometallics*, 2000, 19, 3664–3669; (b) H. Werner, M. E. Schneider, M. Bosch, J. Wolf, J. H. Teuben, A. Meetsma and S. I. Troyanov, *Chem.–Eur. J.*, 2000, 6, 3052–3059; (c) S. Priya, M. S. Balakrishna, S. M. Mobin and R. McDonald, *J. Organomet. Chem.*, 2003, 688, 227–235; (d) A. Hamze, B. Tréguier, J.-D. Brion and M. Alami, *Org. Biomol. Chem.*, 2011, 9, 6200–6204; (e) H. Liu, Y. Wei and C. Cai, *New J. Chem.*, 2016, 40, 674–678; (f) Z. Liu, Q. Li, Y. Yang and X. Bi, *Chem. Commun.*, 2017, 53, 2503–2506.
56 R. M. Parrish and C. D. Sherrill, *J. Am. Chem. Soc.*, 2014, 136, 17386–17389.