Abstract. We prove that the moduli space of stable sheaves of rank 2 with a certain Chern classes on a smooth quadric Q in \mathbb{P}_3, is isomorphic to \mathbb{P}_3. Using this identification, we give a new proof that a certain Brill-Noether locus on a non-hyperelliptic curve of genus 4, is isomorphic to the Donagi-Izadi cubic threefold.

1. Introduction

In [5], the geometry of the Brill-Noether loci W^r of the moduli spaces $SU_C(2, K_C)$ of semi-stable vector bundles of rank 2 with canonical determinant over curves with small genus, was investigated. In [2], the explicit description of W^1 when $g(C) = 3$, was rediscovered, using the rational map from the moduli space $\overline{M}(1, 2)$ of stable sheaves of rank 2 with Chern classes $(1, 2)$ over \mathbb{P}_2 to W^1, defined by the restriction. In this article, we use the same method as in [2] to rediscover the geometry of W^2 stated in [5], using the rational restriction map

$$\Phi : \overline{M}(2) \dashrightarrow W^2,$$

sending E to $E|_C$, where $\overline{M}(k)$ is the moduli space of semi-stable sheaves of rank 2 with the Chern classes $c_1 = (1, 1)$ and $c_2 = k$ over a smooth quadric surface $Q \subset \mathbb{P}_3$, containing C, and W^2 is a Brill-Noether locus of a non-hyperelliptic curve of genus 4. This rational map makes sense because C is canonically embedded into \mathbb{P}_3 and there exists the unique quadric containing it. We will deal with the case when Q is smooth.

First, we give the explicit description of $\overline{M}(2)$. We construct a morphism $\Psi : \overline{M}(2) \rightarrow \mathbb{P}_3$, sending E to the point p_E which is passed by the lines containing zeros of the sections of E. In fact, Ψ can be proven to be an isomorphism.

Second, we study the jumping conics of $E \in \overline{M}(2)$. In fact, the isomorphism Ψ can be redefined by sending E to the set of jumping conics of E, which is a hyperplane in \mathbb{P}_{3}^*.

Last, we investigate the restriction map $\Phi : \overline{M}(2) \dashrightarrow W^2$. We prove that this map is birational and given by the complete linear system $|I_C(3)|$. This will give us an easy proof that W^2 is isomorphic to the Donagi-Izadi cubic threefold.

1991 Mathematics Subject Classification. Primary: 14D20; Secondary: 14E05.

Key words and phrases. moduli, quadric, stable sheaf, Brill-Noether loci.
threefold. If we composite \(\Phi \) with the projection \(\mathcal{W}^2 \to \mathbb{P}_3^* \) at the unique point of \(\mathcal{W}^3 \), we have an isomorphism of \(\overline{M}(2) \) with \(\mathbb{P}_3^* \). We also describe this isomorphism in terms of sheaves in \(\overline{M}(2) \).

The work in this article was done during my stay at the CIRM in Trento. I am grateful to the institution for the hospitality and support.

2. Description of \(\overline{M}(2) \)

Let \(Q \) be a smooth quadric in \(\mathbb{P}_3 \) over \(\mathbb{C} \) and \(\overline{M}(k) \) be the moduli space of semi-stable sheaves of rank 2 with the Chern classes \(c_1 = \mathcal{O}_Q(1, 1) \) and \(c_2 = k \) on \(Q \) with respect to the ample line bundle \(H = \mathcal{O}_Q(1, 1) \). We know, by the Bogomolov theorem, that \(\overline{M}(k) = \emptyset \) for \(k \leq 0 \). For the case when \(k = 1 \), the following statement can be easily derived.

Lemma 2.1. \(\overline{M}(1) \) is the one-point space with the strictly semi-stable bundle,

\[
E_0 = \mathcal{O}_Q(1, 0) \oplus \mathcal{O}_Q(0, 1).
\]

Proof. Let \(E \in \overline{M}(1) \) be a stable bundle and then, from \(\chi(E) = 4 \) and the stability condition, we have

\[
0 \to \mathcal{O}_Q \to E \to I_p(1, 1) \to 0,
\]

where \(I_p \) is the ideal sheaf of a point \(p \in Q \). If we tensor the sequence with \(\mathcal{O}_Q(-1, 0) \), it can be shown that \(h^0(E(-1, 0)) = 1 \) which is a contradiction to the stability of \(E \). If \(E \) is strictly semi-stable, it should be fitted into the following sequence,

\[
0 \to \mathcal{O}_Q(a, 1 - a) \to E \to \mathcal{O}_Q(1 - a, a) \to 0,
\]

where \(a = 0 \) or \(1 \). Since \(\text{Ext}^1(\mathcal{O}_Q(a, 1 - a), \mathcal{O}_Q(1 - a, a)) \) is trivial, so \(E \) must be the direct sum of \(\mathcal{O}_Q(1, 0) \) and \(\mathcal{O}_Q(0, 1) \). \(\square \)

Now let us deal with the case \(k = 2 \). Note that the stability and semi-stability conditions are equivalent. In particular, \(\overline{M}(2) \) is a projective space whose points correspond to isomorphism classes of stable sheaves on \(Q \) with given numerical invariants. From the standard computation, we can have \(\text{Ext}^2(E, E) = 0 \) for any \(E \in \overline{M}(2) \). Thus \(\overline{M}(2) \) is smooth.

Let \(E \) be a sheaf in \(\overline{M}(2) \). For a subsheaf \(\mathcal{O}_Q(a, b) \) of \(E \), we have \(a + b < 1 \) by the stability condition. Since \(\chi(E) = 3 \) and

\[
h^2(E) = h^0(E^*(-2, -2)) = h^0(E(-3, -3)) = 0,
\]

so we have \(h^0(E) > 0 \). Hence, \(E \) can be obtained from the following extension,

\[
0 \to \mathcal{O}_Q \to E \to I_Z(1, 1) \to 0, \tag{1}
\]

where \(Z \) is a zero-dimensional subscheme of \(Q \) with length 2. In particular, we have \(h^0(E) = 3 \) and \(h^1(E) = 0 \). Assume that there exists a line \(l \) on \(Q \) containing \(Z \) with the ideal sheaf \(\mathcal{O}_Q(-1, 0) \). If we tensor the sequence (1) with \(\mathcal{O}_Q(0, -1) \), it can be easily checked that \(h^0(E(0, -1)) = 0 \) contradicting
to the stability of E. Thus, the line l containing Z should intersect with Q only at Z.

Lemma 2.2. The sheaves in the extension (1), are all stable if Z is not contained in any line on Q.

Proof. From the condition on the numerical invariants of E, the only possibility of the sub-bundle $O_Q(a, b) \subset E$ is O_Q or $O_Q(a, 1 - a)$ with $a = 0, 1$. The second case is impossible due to the condition on Z. □

Note that $P(Z) := P \text{Ext}^1(I_Z(1, 1), O_Q) \simeq P_1$. From the isomorphism

$$\text{Ext}^1(I_Z(1, 1), O_Q) \simeq O_{z_1} \oplus O_{z_2},$$

we can denote (c_1, c_2) for the coordinates of $P(Z)$. As in the case of the projective plane [3], we can prove the following lemma.

Lemma 2.3. An extension (c_1, c_2) gives a bundle if and only if all $c_i \neq 0$.

Proof. An easy application of [4]. □

Lemma 2.4. The set of non-bundles in $\overline{M}(2)$ is parametrized by $Q \subset P_3$.

Proof. Let E be a non-bundle in $\overline{M}(2)$, then we have the following exact sequence,

$$0 \to E \to E^{**} \to O_Z \to 0,$$

where Z is a zero-dimensional subscheme of Q. Since E^{**} is semi-stable, we have $E^{**} \simeq E_0 = O_Q(1, 0) \oplus O_Q(0, 1)$ by [2.1]. In particular, the length of Z is 1.

Now let $f : E_0 \to O_{p_E}$ be a surjection with the kernel E, where p_E is a point in Q. We can denote f by (f_1, f_2), where $f_i : O_Q(i - 1, i) \to O_{p_E}$, i.e. the parametrization of such surjections is P_1 with the coordinates (f_1, f_2). If $f_1 = 0$, then $\ker(f)$ is decomposed to $O_Q(1, 0) \oplus I_{p_E}(0, 1)$, which is not stable. Similarly, we have an unstable kernel when $f_2 = 0$. Let us assume that $f_i \neq 0$ for all i. Then we have the following diagram,

$$\begin{array}{ccccccc}
0 & \to & I_{p_E}(1, 0) & \to & E & \to & O_Q(0, 1) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & O_Q(1, 0) & \to & E_0 & \to & O_Q(0, 1) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & O_{p_E} & \to & O_{p_E} & \to & 0 \\
& & & & & & 0, \\
\end{array}$$
where E is a non-trivial extension. It is easily checked that this non-trivial sheaf is stable. Since the dimension of $\text{Ext}^1(O_Q(0,1), I_{p_E}(1,0))$ is 1, the non-trivial extension E is uniquely determined, i.e. we have only one non-bundle on Q associated to a point $p_E \in Q$. Hence, we get the assertion. □

Now let E be a stable bundle in $\overline{M}(2)$ and s be a section of E. From s, we have an exact sequence of type (1) and so can consider a morphism

$$\psi_E : \mathbb{P} H^0(E) \simeq \mathbb{P}_2 \to \text{Gr}(1,3) \subset \mathbb{P}_5,$$

sending a section s of E to the line containing Z in \mathbb{P}_3.

Remark 2.5. In the previous proof, if we choose a section of E_0 whose zero is $q \neq p_E$, then we have an exact sequence

$$0 \to O_Q \to E \to I_Z(1,1) \to 0,$$

where $Z = \{p_E, q\}$. In particular, for a non-bundle E, the image of φ_E is the plane in $\text{Gr}(1,3)$ whose points correspond to lines passing through the singularity point p_E.

Let E be a stable bundle in $\overline{M}(2)$ with the exact sequence (1).

Lemma 2.6. The determinant map

$$\lambda_E : \wedge^2 H^0(E) \to H^0(O_Q(1,1)),$$

is injective.

Proof. Let us assume that λ_E is not injective. Since every element in $\wedge^2 H^0(E)$ is decomposable, there exist two sections s_1 and s_2 of E such that $s_1 \wedge s_2$ is a non-trivial element in $\ker(\lambda_E)$. Then s_1 and s_2 generate a subsheaf F of E with $h^0(F) \geq 2$. Hence, F is of the form $I_Z'(a,b)$, where Z' is a 0-cycle on Q and $a, b \geq 0$. From the stability condition of E, we have $F \simeq O_Q(a, 1 - a)$ with $a = 0$ or 1, which is not possible since Z is not contained in any line on Q. □

Let p_E be the point in $\mathbb{P}_3 \simeq \mathbb{P} H^0(O_Q(1,1))^*$ corresponding to the cokernel of λ and consider the following exact sequence,

$$0 \to H^0(I_Z(1,1)) \to H^0(O_Q(1,1)) \to H^0(O_Z) \to 0.$$

In the previous lemma, $H^0(E)$ can be expressed as the direct sum of $H^0(O_Q)$ and $H^0(I_Z(1,1))$, which would give the following identification,

$$\wedge^2 H^0(E) \simeq [H^0(O_Q) \otimes H^0(I_Z(1,1))] \oplus [\wedge^2 H^0(I_Z(1,1))].$$

From this identification, clearly we have,

$$H^0(I_Z(1,1)) \subset \lambda_E(\wedge^2 H^0(E)).$$

In other words, the dual of the cokernel of λ is contained in $H^0(O_Z)^*$. Note that $\mathbb{P} H^0(O_Z)^*$ is a line in \mathbb{P}_3 passing through Z. Thus the line passing through Z, also contains p_E. With the previous remark, we get the following lemma.
Lemma 2.7. ψ_E is a linear embedding of $\mathbb{P}^0(E)$ into \mathbb{P}_5. Moreover, the image corresponds to the set of lines passing through one point p_E in \mathbb{P}_3.

Now, let us define a map

$$\Psi : \mathcal{M}(2) \to \mathbb{P}_3,$$

sending E to p_E, where p_E is the unique point in \mathbb{P}_3, passed by the lines in the image of φ_E.

Proposition 2.8. $\Psi : \mathcal{M}(2) \to \mathbb{P}_3$ is an isomorphism.

Proof. Let p be a point in \mathbb{P}_3. If Z is a 0-cycle on Q such that $p \in Z$ and the line passing through Z, is not contained in Q, then there exists $E \in \mathbb{P}(Z)$ for which $p_E = p$. Thus, Φ is surjective.

Moreover, assume that p is not in Q. If we take the projection $\pi_p : \mathbb{P}_3 \to \mathbb{P}_2$ from p, then the restriction map $\pi_p : Q \to \mathbb{P}_2$ is a finite morphism of degree 2. Again, if we take the pull-back of $\Omega_{\mathbb{P}_2}(2)$ on Q, we get a stable vector bundle on Q with the Chern classes $c_1 = \mathcal{O}_Q(1,1)$ and $c_2 = 2$ (this will be proved later in Lemma 4.3). Clearly, this defines an inverse map of Ψ. Hence, Ψ is a birational morphism and it is an isomorphism over the stable vector bundles.

Since Φ is also an isomorphism over the non-bundles from Lemma 2.4, Φ is an isomorphism. \square

Remark 2.9. From the identification of $\mathcal{M}(2)$ with \mathbb{P}_3, we know that $\mathbb{P}(Z)$ is exactly the secant line of Q in \mathbb{P}_3 passing through Z.

Remark 2.10. Alexander Kuznetsov pointed out that the moduli space $\mathcal{M}(2; 1, 1, 1)$ of stable sheaves on \mathbb{P}_3 of rank 3 with the Chern classes $(c_1, c_2, c_3) = (1, 1, 1)$ is isomorphic to \mathbb{P}_3, whose points correspond to the cokernels E of $\mathcal{O}_{\mathbb{P}_3} \to T_{\mathbb{P}_3}(-1)$, where $T_{\mathbb{P}_3}$ is the tangent bundle of \mathbb{P}_3. Note that $h^0(\mathbb{P}_3, T_{\mathbb{P}_3}(-1)) = 4$. The restriction map from $\mathcal{M}(2; 1, 1, 1) \to \mathcal{M}(2)$ turns out to be an isomorphism.

3. Jumping Conics

Definition 3.1. Let E be a stable sheaf in $\mathcal{M}(2)$ and H be a hyperplane in \mathbb{P}_3. A conic $C_H = Q \cap H$ on Q, is called a jumping conic of E if the splitting type of $E|_{C_H}$ is different from the generic splitting type.

Assume that E is locally free. If H is a hyperplane, which does not contain p_E, then we can choose a line l through p_E, with the unique intersection point with C_H, say q. Let $Z = l \cap Q$ and then E is fitted into the exact sequence (1), i.e. $E \in l = \mathbb{P}(Z)$. If we tensor the sequence with \mathcal{O}_{C_H}, then $E|_{C_H}$ lies in $\text{Ext}^1(\mathcal{O}_{C_H}(1 - q), \mathcal{O}_{C_H}(q)) = 0$, i.e.

$$E|_{C_H} \simeq \mathcal{O}_{C_H}(p) \oplus \mathcal{O}_{C_H}(1 - p).$$

(6)

If H contains p_E, let us choose a line $l \subset H$ containing p_E. If we let $Z = l \cap Q$ again, we have $E \in l = \mathbb{P}(Z)$. But in this case, $E|_{C_H}$ lies in
Ext^1(\mathcal{O}_{C_H}, \mathcal{O}_{C_H}(1)) = 0, i.e.
(7) \quad E|_{C_H} \simeq \mathcal{O}_{C_H}(1) \oplus \mathcal{O}_{C_H}.

Similarly, when E is not locally free, we can derive the same result. Hence, all jumping conics can be characterized by $h^0(E(-1)|_{C_H}) \neq 0$.

Proposition 3.2. For a stable bundle $E \in \overline{M}(2)$, the set of jumping conics C_H, form a hyperplane $H_E \subset \mathbb{P}_3$ corresponding to $p_E \in \mathbb{P}_3$. In particular, Ψ can be also defined by sending E to the set of jumping conics of E.

4. The Restriction Map

Let C be a non-hyperelliptic curve of genus 4 and it is embedded into $\mathbb{P}H^0(K_C)^* \simeq \mathbb{P}_3$ and there is the unique quadric surface $Q \subset \mathbb{P}_3$ containing C. Let g_3^1 and h_3^1 be the two trigonal line bundles in $\Theta \subset \text{Pic}^3(C)$ such that $g_3^1 \otimes h_3^1 = \mathcal{O}_C(K_C)$. Q is smooth if and only if $|g_3^1| \neq |h_3^1|$. From now on, we assume that Q is smooth. Let $SU_C(2, K_C)$ be the moduli space of semi-stable vector bundles of rank 2 with canonical determinant over C. Let \mathcal{W} be the closure of the following set
(8) \quad \{ E \in SU_C(2, K_C) \mid h^0(C, E) \geq r + 1 \}.

Then we have the following inclusions [5] on the Brill-Noether loci,
(9) \quad SU_C(2, K_C) \supset W \supset W^1 \supset W^2 \supset W^3 \supset W^4 = \emptyset,

where $W = W^0$. Many geometric descriptions of these Brill-Noether loci have been investigated in [5].

Since C is a divisor of Q with the divisor class $(3, 3)$, we have the exact sequence
(10) \quad 0 \rightarrow \mathcal{O}_Q(-3, -3) \rightarrow \mathcal{O}_Q \rightarrow \mathcal{O}_C \rightarrow 0.

Twisting the sequence [10] with a stable bundle $E \in \overline{M}(2)$, we obtain that $h^0(C, E|_C) = h^0(Q, E) = 3$.

Lemma 4.1. For a stable bundle $E \in \overline{M}(2)$, its restriction to C, $E|_C$, is stable and so we have a rational map
$$\Phi : \overline{M}(2) \rightarrow \mathcal{W}^2$$

sending E to $E|_C$.

Proof. Since the embedding of C into \mathbb{P}_3 is canonical, the restriction of $\wedge^2 E \simeq \mathcal{O}_Q(1, 1)$ is $\mathcal{O}_C(K_C)$, i.e. $\det(E|_C) = \mathcal{O}_C(K_C)$. If we tensor the exact sequence [1] by \mathcal{O}_C, we have
$$0 \rightarrow \mathcal{O}_C(D) \rightarrow E|_C \rightarrow \mathcal{O}_C(K_C - D) \rightarrow 0,$$

where $D = Z \cap C$ as a scheme with $l(D) \leq l(Z) = 2$. Suppose that there exists a subbundle $\mathcal{O}_C(D') \subset E|_C$ with $\deg(D') = d' \geq 3$. If the natural composite $f : \mathcal{O}_C(D') \rightarrow \mathcal{O}_C(K_C - D)$ is zero, then $\mathcal{O}_C(D') \subset \mathcal{O}_C(D)$, which is not possible. Thus f is not zero and must be injective so that d' can be at most 6. Since $h^0(E|_C) = 3$ and $h^0(\mathcal{O}_C(K_C - D')) < 2$, so $H^0(\mathcal{O}_C(D'))$
Lemma 4.2. For a general E in W^2, the determinant map

$$\lambda_E : \wedge^2 H^0(E) \rightarrow H^0(K_C),$$

is injective.

Proof. As in [lemma 2.6], let us assume that s_1 and s_2 are two sections of E for which $s_1 \wedge s_2$ is a non-trivial element in $\ker(\lambda_E)$. It would generate a sub-bundle $L \subset E$ with $h^0(L) \geq 2$ and $\deg(L) \leq 2$, contrary to the fact that C is non-hyperelliptic. □

Remark 4.5. Note that g_3^1 and h_3^1 are isomorphic to $O_Q(1,0)|_C$ and $O_Q(0,1)|_C$. In particular, $E_0|_C = g_3^1 \oplus h_3^1$ and $h^0(E_0) = h^0(E_0|_C) = 4$. As pointed in [5], $g_3^1 \oplus h_3^1$ can be considered as the unique point of W^3.

is not trivial. Now we can assume that D' is effective and the zeros of a section in $H^0(E|_C)$. Note that $H^0(E) \simeq H^0(E|_C)$ and so every section of $E|_C$ comes as the restriction of a section of E. Since the zero of a section of E has only 2 points as its support, the degree of D' must be less than 3. Hence, $E|_C$ is stable. □

Remark 4.5. Note that g_3^1 and h_3^1 are isomorphic to $O_Q(1,0)|_C$ and $O_Q(0,1)|_C$. In particular, $E_0|_C = g_3^1 \oplus h_3^1$ and $h^0(E_0) = h^0(E_0|_C) = 4$. As pointed in [5], $g_3^1 \oplus h_3^1$ can be considered as the unique point of W^3.

Corollary 4.4. The restriction map Φ is birational.

Remark 4.5. Note that g_3^1 and h_3^1 are isomorphic to $O_Q(1,0)|_C$ and $O_Q(0,1)|_C$. In particular, $E_0|_C = g_3^1 \oplus h_3^1$ and $h^0(E_0) = h^0(E_0|_C) = 4$. As pointed in [5], $g_3^1 \oplus h_3^1$ can be considered as the unique point of W^3.

Corollary 4.4. The restriction map Φ is birational.
Remark 4.6. Let E be a non-bundle in $\overline{M}(2)$ and p be its singularity point. If $p \notin C$, then $E|_C \simeq E_0|_C \in \mathcal{W}^3$. If $p \in C$, then $E|_C$ is not torsion-free. In particular, the indeterminacy locus of Φ is exactly $C \subset \mathbb{P}_3 \simeq \overline{M}(2)$.

Proposition 4.7. The map Φ is given by the complete linear system $|I_C(3)|$.

Proof. We know that Φ is an isomorphism on $\mathbb{P}_3 \setminus Q$ and sends $Q \setminus C$ to one point $E_0|_C$. Let H be a general hyperplane in \mathbb{P}_3. The intersection of H with C is 6 points on Q, say P_1, \cdots, P_6 and these points lie on a conic $C_2 = H \cap Q$. The restriction of Φ to H is not defined on P_i's and maps the other points of C_2 to $E_0|_C$.

Let S_6 be the blow-up of H at P_i's and then we obtain a morphism f_H from S_6 to \mathcal{W}^2.

\[
\begin{array}{c}
S_6 \\
\downarrow f_H \\
H \rightarrow \mathcal{W}^2
\end{array}
\]

The proper transform of C_2 in S_6 is a line l_H and f_H contracts l_H to a point. Since S_6 is a cubic surface in \mathbb{P}_3, the degree of f_H is 3 and so is the degree of Φ.

Recall that the indeterminacy of Φ is C. Since $h^0(I_C(3)) = 5$ and \mathcal{W}^2 is a 3-fold which is not isomorphic to \mathbb{P}_3, so Φ must be given by the complete linear system $|I_C(3)|$. □

Remark 4.8. The image of \mathbb{P}_3 via $|I_C(3)|$ is known to be the Donagi-Izadi cubic threefold in $\mathbb{P}_4^* \{1\}$. This is singular with a nodal point $P = E_0|_C$.

Let π_P be the projection from \mathbb{P}_4^* at P and then we have the following commutative diagram,

\[
\begin{array}{c}
\overline{M}(2) \xrightarrow{\Phi} \mathcal{W}^2 \\
\downarrow \Psi \quad \downarrow \pi_P \\
\mathbb{P}_3 \xrightarrow{\sim} \mathbb{P}_3^*,
\end{array}
\]

where the map f_Q is defined as follows: Let H' be a hyperplane in \mathbb{P}_3^* and then it pulls back via π_P to a hyperplane in \mathbb{P}_3^* containing P, and again to Q and a residual hyperplane $H \subset \mathbb{P}_3$ by Φ.

Let p_E be a point in \mathbb{P}_3 corresponding to $E \in \overline{M}(2)$ and H'_E be its hyperplane in \mathbb{P}_3^*. As above, we can assign a residual hyperplane $H_E \subset \mathbb{P}_3$ and a conic $C_E = H_E \cap Q$ to E. Simply, f_Q is a polar map given by

\[
[x_0, \cdots, x_3] \mapsto [\frac{\partial f}{\partial t_0}(x), \cdots, \frac{\partial f}{\partial t_3}(x)],
\]
where f is the homogeneous polynomial of degree 2 defining Q. The hyperplane $H_E \subset \mathbb{P}_3$, corresponding to $f_Q(p_E)$, is given by the equation,

\begin{equation}
3 \sum_{i=0}^{3} \frac{\partial f}{\partial t_i}(p_E)t_i = 0,
\end{equation}

and, from the Euler formula, it is clear that $p_E \in Q$ is equivalent to $p_E \in H_E$. Assume that $p_E \notin Q$. Let us recall that $C_E = H_E \cap Q$ is the set of points $p \in Q$ for which p_E is contained in the tangent plane of Q at p. In particular, E is fitted into an extension (1) where Z is a point p with multiplicity 2. In other words, there exists a section s of E whose zero is p with multiplicity 2. We can have the same argument for the case when $p_E \in Q$.

Proposition 4.9. Let E be a stable sheaf in $\overline{M}(2)$. The set of points $p \in Q$ which is the zero with multiplicity 2 for some section of E, forms a conic C_E in Q. This defines an isomorphism

$$f_Q \circ \Psi : \overline{M}(2) \to \mathbb{P}^*_3.$$

References

1. Ron Donagi, *The fibers of the Prym map*, Curves, Jacobians, and abelian varieties (Amherst, MA, 1990), Contemp. Math., vol. 136, Amer. Math. Soc., Providence, RI, 1992, pp. 55–125. MR 1188194 (94e:14037)

2. S. Huh, *Moduli spaces of stable sheaves on the projective plane and on the plane quartic curve*, Ph.D. thesis, University of Michigan, 2007.

3. Klaus Hulek, *Stable rank-2 vector bundles on \mathbb{P}_2 with c_1 odd*, Math. Ann. 242 (1979), no. 3, 241–266. MR 545217 (80m:14011)

4. W. Hulsbergen, *Vector bundles on the projective plane*, Ph.D. thesis, Leiden, 1976.

5. W. M. Oxbury, C. Pauly, and E. Previato, *Subvarieties of SU_c(2) and 2θ-divisors in the Jacobian*, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3587–3614. MR 1467474 (98m:14034)

CIRM, FONDACIONE BRUNO KESSLER, VIA SOMMARIVE, 14-POVO, 38100-TRENTO

E-mail address: sukmoon.huh@math.unizh.ch