Eppstein’s bound on intersecting triangles revisited

Gabriel Nivasch∗ Micha Sharir†
School of Computer Science
Tel Aviv University
Tel Aviv 69978, Israel

July 27, 2008

Abstract

Let \(S \) be a set of \(n \) points in the plane, and let \(T \) be a set of \(m \) triangles with vertices in \(S \). Then there exists a point in the plane contained in \(\Omega\left(\frac{m^3}{n^6 \log^2 n}\right) \) triangles of \(T \). Eppstein (1993) gave a proof of this claim, but there is a problem with his proof. Here we provide a correct proof by slightly modifying Eppstein’s argument.

Keywords: Triangle; Simplex; Selection Lemma; \(k \)-Set

1 Introduction

Let \(S \) be a set of \(n \) points in the plane in general position (no three points on a line), and let \(T \) be a set of \(m \leq \binom{n}{3} \) triangles with vertices in \(S \). Aronov et al. [2] showed that there always exists a point in the plane contained in the interior of

\[
\Omega\left(\frac{m^3}{n^6 \log^2 n}\right)
\]

triangles of \(T \). Eppstein [5] subsequently claimed to have improved this bound to

\[
\Omega\left(\frac{m^3}{n^6 \log^2 n}\right).
\]

There is a problem in Eppstein’s proof, however[1] In this note we provide a correct proof of [2], by slightly modifying Eppstein’s argument.

∗gabriel.nivasch@cs.tau.ac.il. Work was supported by ISF Grant 155/05 and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.

†michas@post.tau.ac.il. Work was partially supported by NSF grant CCF-05-14079, by a grant from the U.S.-Israel Binational Science Foundation, by ISF Grant 155/05, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.

[1] The very last sentence in the proof of Theorem 4 (Section 4) in [5] reads: “So \(\epsilon = 1/2^{i+1} \), and \(x = m \epsilon / y = O(m/8^{i}) \), from which it follows that \(x/\epsilon^3 = O(n^2) \).” This is patently false, since what actually follows is that \(x/\epsilon^3 = O(m) \), and the entire argument falls through.
1.1 The Second Selection Lemma and k-sets

The above result is the special case $d = 2$ of the following lemma (called the Second Selection Lemma in [6]), whose proof was put together by Bárány et al. [3], Alon et al. [1], and Živaljević and Vrecica [8]:

Lemma 1. If S is an n-point set in \mathbb{R}^d and T is a family of $m \leq \binom{n}{d+1}$ d-simplices spanned by S, then there exists a point $p \in \mathbb{R}^d$ contained in at least

$$c_d \left(\frac{m}{n^{d+1}} \right)^{s_d} n^{d+1}$$

simplices of T, for some constants c_d and s_d that depend only on d.

(Note that $m/n^{d+1} = O(1)$, so the smaller the constant s_d, the stronger the bound.) Thus, for $d = 2$ the constant s_2 in (3) can be taken arbitrarily close to 3. The general proof of Lemma 1 gives very large bounds for s_d; roughly $s_d \approx (4d + 1)^{d+1}$.

The main motivation for the Second Selection Lemma is deriving upper bounds for the maximum number of k-sets of an n-point set in \mathbb{R}^d; see [6, ch. 11] for the definition and details.

2 The proof

We assume that $m = \Omega(n^2 \log^{2/3} n)$, since otherwise the bound (2) is trivial. The proof, like the proof of the previous bound (1), relies on the following two one-dimensional selection lemmas [2]:

Lemma 2 (Unweighted Selection Lemma). Let V be a set of n points on the real line, and let E be a set of m distinct intervals with endpoints in V. Then there exists a point x lying in the interior of $\Omega(m^2/n^2)$ intervals of E.

Lemma 3 (Weighted Selection Lemma). Let V be a set of n points on the real line, and let E be a multiset of m intervals with endpoints in V. Then there exists a multiset $E' \subseteq E$ of m' intervals, having as endpoints a subset $V' \subseteq V$ of n' points, such that all the intervals of E' contain a common point x in their interior, and such that

$$\frac{m'}{n'} = \Omega \left(\frac{m}{n \log n} \right).$$

The proof of the desired bound (2) proceeds as follows:

Assume without loss of generality that no two points of S have the same x-coordinate. For each triangle in T define its *base* to be the edge with the longest x-projection. For each pair of points $a, b \in S$, let T_{ab} be the set of triangles in T that have ab as base, and let $m_{ab} = |T_{ab}|$. (Thus, $\sum_{ab} m_{ab} = m$.)

Discard all sets T_{ab} for which $m_{ab} < m/n^2$. We discarded at most $\left(\binom{n}{2} \right) m/n^2 < m/2$ triangles, so we are left with a subset T' of at least $m/2$ triangles, such that either $m_{ab} = 0$ or $m_{ab} \geq m/n^2$ for each base ab.

This critical discarding step is missing in [5], and that is why the proof there does not work.
Partition the bases into a logarithmic number of subsets E_1, E_2, \ldots, E_k for $k = \log_4(n^3/m)$, so that each E_j contains all the bases ab for which

$$\frac{4^j - 1}{n^2} m \leq m_{ab} < \frac{4^j m}{n^2}. \tag{4}$$

Let $T_j = \bigcup_{ab \in E_j} T_{ab}$ denote the set of triangles with bases in E_j, and $m_j = |T_j|$ denote their number. There must exist an index j for which

$$m_j \geq 2^{-(j+1)} m,$$

since otherwise the total number of triangles in T' would be less than $m/2$. From now on we fix this j, and work only with the bases in E_j and the triangles in T_j.

For each pair of triangles abc, abd having the same base $ab \in E_j$, project the segment cd into the x-axis, obtaining segment $c'd'$. We thus obtain a multiset M_0 of horizontal segments, with

$$|M_0| \geq \frac{m_j}{2} \left(\frac{4^j - 1}{n^2} m - 1 \right) = \Omega \left(\frac{2^j m^2}{n^2} \right).$$

(Each of the m_j triangles in T_j is paired with all other triangles sharing the same base, and each such pair is counted twice.)

We now apply the Weighted Selection Lemma (Lemma 3) to M_0, obtaining a multiset M_1 of segments delimited by n_1 distinct endpoints, all segments containing some point z_0 in their interior, with

$$\frac{|M_1|}{n_1} = \Omega \left(\frac{|M_0|}{n \log n} \right) = \Omega \left(\frac{2^j m^2}{n^3 \log n} \right).$$

Let ℓ be the vertical line passing through z_0. For each horizontal segment $c'd' \in M_1$, each of its (possibly multiple) instances in M_1 originates from a pair of triangles abc, abd, where points a and c lie to the left of ℓ, and points b and d lie to the right of ℓ. Let p be the intersection of ℓ with ad, and let q be the intersection of ℓ with bc. Then, pq is a vertical segment along ℓ, contained in the union of the triangles abc, abd (see Figure 1). Let M_2 be the set of all these segments pq for all $c'd' \in M_1$.

Note that the vertical segments in M_2 are all distinct, since each such segment pq uniquely determines the originating points a, b, c, d (assuming z_0 was chosen in general position).
Let \(n_2 \) be the number of endpoints of the segments in \(M_2 \). We have \(n_2 \leq n_1 \), since each endpoint (such as \(p \)) is uniquely determined by one of \(n_1 \) “inner” vertices (such as \(d \)) and one of at most \(n \) “outer” vertices (such as \(a \)).

Next, apply the Unweighted Selection Lemma (Lemma 2) to \(M_2 \), obtaining a point \(x_0 \in \ell \) that is contained in

\[
\Omega\left(\frac{|M_2|^2}{n_2^2} \right) = \Omega\left(\frac{1}{n^2} \left(\frac{|M_1|}{n_1} \right)^2 \right) = \Omega\left(\frac{4^jm^4}{n^8 \log^2 n} \right)
\]

segments in \(M_2 \). Thus, \(x_0 \) is contained in at least these many unions of pairs of triangles of \(T_j \). But by (4), each triangle in \(T_j \) participates in at most \(4^jm^2/n^2 \) pairs. Therefore, \(x_0 \) is contained in

\[
\Omega\left(\frac{m^3}{n^6 \log^2 n} \right)
\]

triangles of \(T_j \).

3 Discussion

Eppstein [5] also showed that there always exists a point in \(\mathbb{R}^2 \) contained in \(\Omega(m/n) \) triangles of \(T \). This latter bound is stronger than [2] for small \(m \), namely for \(m = O(n^{5/2} \log n) \).

On the other hand, as Eppstein also showed [5], for every \(n \)-point set \(S \) in general position and every \(m = \Omega(n^2) \), \(m \leq \binom{n}{3} \), there exists a set \(T \) of \(m \) triangles with vertices in \(S \), such that no point in the plane is contained in more than \(O(m^2/n^3) \) triangles of \(T \). Thus, with the current lack of any better lower bound, the bound [2] appears to be far from tight. Even achieving a lower bound of \(\Omega(m^3/n^6) \), without any logarithmic factors, is a major challenge still unresolved.

It is known, however, that if \(S \) is a set of \(n \) points in \(\mathbb{R}^3 \) in general position (no four points on a plane), and \(T \) is a set of \(m \) triangles spanned by \(S \), then there exists a line (in fact, a line spanned by two points of \(S \)) that intersects the interior of \(\Omega(m^3/n^6) \) triangles of \(T \); see [4] and [7] for two different proofs of this.

References

[1] N. Alon, I. Bárány, Z. Füredi, and D. Kleitman, Point selections and weak \(\epsilon \)-nets for convex hulls, *Combin., Probab. Comput.*, 1:189–200, 1992.

[2] B. Aronov, B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and R. Wenger, Points and triangles in the plane and halving planes in space, *Discrete Comput. Geom.*, 6:435–442, 1991.

[3] I. Bárány, Z. Füredi, and L. Lovász, On the number of halving planes, *Combinatorica*, 10:175–183, 1990.

[4] T. K. Dey and H. Edelsbrunner, Counting triangle crossings and halving planes, *Discrete Comput. Geom.*, 12:281–289, 1994.
[5] D. Eppstein, Improved bounds for intersecting triangles and halving planes, *J. Combin. Theory Ser. A*, 62:176–182, 1993.

[6] J. Matoušek, *Lectures on Discrete Geometry*, Springer-Verlag, New York, 2002.

[7] S. Smorodinsky, *Combinatorial problems in computational geometry*, Ph.D. Thesis, Tel Aviv University, June 2003. http://www.cs.bgu.ac.il/~shakhar/my_papers/phd.ps.gz

[8] R. T. Živaljević and S. T. Vrećica, The colored Tverberg's problem and complexes of injective functions, *J. Combin. Theory Ser. A*, 61:309–318, 1992.