First Investigation of magnetic ground states in the rare-earth intermetallic compounds $RAl_{0.9}Si_{1.1}$ ($R = Ce, Pr, Gd$)

M. H. Junga,* S. H. Parka, H. C. Kima, Y. S. Kwonb,c

aMST, Korea Basic Science Institute, Daejeon 305-333, South Korea
bBK 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, South Korea
cCenter for Strongly Correlated Material Research, Seoul National University, Seoul 151-742, South Korea

Abstract

We report the magnetic properties strongly varying with the rare-earth elements in the newly found ternary compounds $RAl_{0.9}Si_{1.1}$, which crystallize in the tetragonal α-ThSi$_2$-type structure. For $R = Ce$ the alloy has a weak ferromagnetism below 11 K and for $R = Pr$ it orders ferromagnetically at 17 K, while for $R = Gd$ it is antiferromagnetic with $T_N = 30.5$ K. In addition, we find no field effect on T_N of $R = Gd$ because of the large internal mean field, but significant changes in the magnetic properties of $R = Ce$ and Pr.

Key words: rare-earth compound, local moment, magnetic properties, exchange interaction, spin-glass transition
PACS: 75.20.En, 75.20.Hr, 75.30.-m, 75.30.Cr, 75.30.Et

There have been studies of Ce-based ternary compounds in the Ce-Al-(Si,Ge) phase diagram [1]. It was found for CeAl$_x$(Si,Ge)$_{2-x}$ that the crystal structure changes as the Al/Si(Ge) ratio varies [2]. The alloys of $x = 1$ and 1.2 have the tetragonal α-ThSi$_2$-type structure, while the alloy of $x = 1.5$ has the hexagonal AlB$_2$-type structure. The magnetic properties were reported to depend on the crystal chemistry [3]; CeAlSi is ferromagnetic with a Curie temperature of 7.1 K, whereas CeAlGe orders antiferromagnetically at 4 K. In the present work, we have extended this investigation to other ternary compounds as changing

* Corresponding author. Tel.: +82-42-865-3495; fax:+82-42-865-3469. E-mail address: mhjung@kbsi.re.kr
The specific heat $C(T)$ vs. temperature for $R = \text{Ce, Pr, and Gd}$ in $\text{RAI}_{0.9}\text{Si}_{1.1}$. The solid symbols are zero-field data and the open symbols are 9T data.

the rare-earth elements, which are $\text{RAI}_{0.9}\text{Si}_{1.1}$ ($R = \text{Ce, Pr, and Gd}$) and find that the magnetic properties are strongly varying with the rare-earth elements.

The single crystals were synthesized by high-temperature flux method. Electron-probe microanalysis showed the composition of $\text{RAI}_{0.9}\text{Si}_{1.1}$ within an error of ± 0.05 for $R = \text{Gd}$ and ± 0.03 for $R = \text{Ce and Pr}$ without any impurity phase. X-ray powder diffraction pattern revealed that the samples are single phased with the tetragonal α-ThSi$_2$-type structure. The magnetic susceptibility was measured in a field of 100 G using a Quantum Design superconducting quantum interference device. The specific heat was taken with a Quantum Design physical property measurement system.

The inverse magnetic susceptibility H/M vs. temperature is shown in Fig. 1. A linear behavior of the Curie-Weiss law is observed above 100 K and a deviation from the linear behavior occurs below 50 K. The effective magnetic moments are estimated to be $\mu_{\text{eff}} = 2.52(5) \mu_B$, $3.31(8) \mu_B$, and $8.10(8) \mu_B$ for $R = \text{Ce, Pr, and Gd}$, respectively. These values show that the rare-earth ions are in the normal trivalent state. The paramagnetic Curie temperatures are $\theta_P = 6.91(0)$ K, $26.37(4)$ K, and $-142.43(3)$ K for $R = \text{Ce, Pr, and Gd}$, respectively, possibly indicating the development of different types of magnetic exchange interaction. The small value of θ_P for CeAl$_{0.9}$Si$_{1.1}$ might be related with a weak ferromagnetism, while the negative value of θ_P for GdAl$_{0.9}$Si$_{1.1}$ might be responsible for an antiferromagnetic order.

These different types of magnetic exchange could be achieved at low temperatures. In the inset of Fig. 1, we observe a peak in the zero-field cooled (ZFC) curve and a cusp in the field cooled (FC) curve at $T_{wF} = 11$ K, which fur-
Fig. 2. Inverse magnetic susceptibility H/M vs. temperature for $R = \text{Ce, Pr, and Gd}$ in $\text{RAI}_{0.9}\text{Si}_{1.1}$. The solid lines represent linear fits of the Curie-Weiss law. The inset shows the low-temperature susceptibility M/H of $R = \text{Ce}$.

ther confirms weak ferromagnetism in $\text{CeAl}_{0.9}\text{Si}_{1.1}$. The magnetic behavior of $\text{PrAl}_{0.9}\text{Si}_{1.1}$ could be also understood in a way similar to that of $\text{CeAl}_{0.9}\text{Si}_{1.1}$, because there is a difference between ZFC and FC susceptibilities below $T_C = 17$ K. However, we observe a rapid saturation of magnetization to a value of almost full moment $\sim 3\mu_B$ at 0.4 T (not shown here), indicating a ferromagnetic ordering. It is worthwhile to mention here that this difference could be associated with a spin-glass transition. On the other hand, $\text{GdAl}_{0.9}\text{Si}_{1.1}$ has no difference between ZFC and FC susceptibilities and orders antiferromagnetically below $T_N = 30.5$ K. The magnetization increases linearly with magnetic field (not shown here).

Figure 2 represents the specific heat $C(T)$ vs. temperature. A λ-type anomaly is observed in all the compounds $\text{RAI}_{0.9}\text{Si}_{1.1}$ at the magnetic transition temperatures: $T_{wF} = 11$ K, $T_C = 17$ K, and $T_N = 30.5$ K for $R = \text{Ce, Pr, and Gd}$, respectively. As the magnetic is applied, the magnetic transition temperatures for $R = \text{Ce and Pr}$ are increased, whereas the transition temperature for $R = \text{Gd}$ is unchanged. The former is characteristic of ferromagnetic materials. In the latter case, one should note that Gd^{3+} ions ($L = 0$ and $J = S$) in $\text{GdAl}_{0.9}\text{Si}_{1.1}$ have a large internal mean field and thus an effect of external field could be negligible in total magnetic exchange. We may depress T_N in a very high magnetic field beyond our present measurement range.

This work was supported by the Korea Science and Engineering Foundation through the Center for Strongly Correlated Materials Research at SNU and the NRL project of the Korea Ministry of Science and Technology.
References

[1] H. Flandorfer, D. Kaczorowski, J. Gröbner, P. Rogl, R. Wouters, C. Godart, and A. Kostikas, J. Solid State Chem. 137 (1998) 191.

[2] S. K. Dhar and S. M. Pattalwar, J. Magn. Magn. Mater. 152 (1996) 22.

[3] S. K. Dhar, S. M. Pattalwar, and R. Vjayaraghavan, J. Magn. Magn. Mater. 104-107 (1992) 1303.