Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms

Yongxin Li1, Akihito Omori2, Rachel L. Flores3, Sheri Satterfield3, Christine Nguyen3, Tatsuya Ota4, Toko Tsurugaya5, Tetsuro Ikota6,7, Kazuho Ikeo4, Mani Kikuchi8, Jason C. K. Leong9, Adrian Reich10, Meng Hao1, Wenting Wan1, Yang Dong11, Yaondong Ren1, Si Zhang12, Tao Zeng12, Masahiro Uesaka13, Yui Uchida9,14, Xuexian Li1, Tomoko F. Shibata9, Takahiro Bino15, Kota Ogawa16, Shuji Shigenobu15, Mariko Kondo9, Fayou Wang12, Luonan Chen12,17, Gary Wessel10, Hidetoshi Saiga7,9,18, R. Andrew Cameron19, Brian Livingston3, Cynthia Bradham20, Wen Wang1,21,22 & Naoki Irie9,14,22

Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japonica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bilaterality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya.
Bilateral symmetry is highly conserved throughout animal evolution. Echinoderms, a group closely related to chordates, are exceptional in this regard, developing pentameral symmetry as adults from bilaterally symmetric larvae. Even sea cucumbers, which show worm-like bilateral structures as adults, retain pentameral symmetry patterning along their oral-aboral axis (Fig. 1a). Understanding the development of pentameral symmetry would provide important insight into the evolutionary mechanisms of major structural changes in evolution. To probe the genetic and developmental transitions behind the evolution of these unique echinoderm features, we sequenced genomes of the green sea urchin (*Lytechinus variegatus*) and the feather star (*Anneissia japonica*), representing nearly 500 Mya of evolutionary history. We also added developmental transcriptomic datasets for other echinoderms (Supplementary Tables 1–22 and “Methods”), such as the sea cucumber (*Apostichopus japonicus*), and proteome analyses of feather star skeleton to broadly analyze five living echinoderm classes. These data provide fundamental genomic, transcriptomic, and proteomic insights of body plan evolution in echinoderms, and enhance our understanding of the divergence of protostomes and deuterostomes.

Results

Genetic changes behind echinoderm evolution. The estimated genome sizes were 952 Mb for green sea urchin and 553 Mb for the feather star (Supplementary Fig. 1), with 30,238 and 26,838 protein-coding genes, respectively (Supplementary Tables 18–20 and 23). Basic features of these genomes such as GC content, gene length, and exon number were comparable to those of chordate and hemichordate species (Supplementary Fig. 2–7). Genome-wide analysis with 1196 one-to-one orthologs (Fig. 1b, Supplementary Fig. 7, and Supplementary Table 23–24) robustly corroborated recent reports that Echinodermata consists of the early diverged Crinoidea (including feather star), Asterozoa (including brittle star and sea star), and Echinozoa (including sea urchin and sea cucumber). This is consistent with paleontological evidence that suggests echinoderms first evolved with a stemmed, or imperforate extra-axial morphology. We also found that the overall protein sequences of an early diverged echinoderm species, the feather star, showed a relatively low evolutionary rate. Meanwhile, echinoderms showed only slightly diverged protein sequences from vertebrates, as opposed to an ascidian, a species with highly derived morphological features, and with significantly

Fig. 1 Echinoderms and their evolutionary diversity. a Echinoderm species of five living classes were analyzed in this study. Pentameral symmetry can also be observed in the transverse section of the sea cucumber (top), which otherwise shows apparent bilaterality. b Evolutionary rate and the phylogenetic tree constructed by RAxML software using the 1196 orthologous protein sequences identified by reciprocal best blast hit (RBBH). The values on branches represent bootstrap values. c Schematic representation of genomic organization of ambulacrarian Hox clusters. Arrows and horizontal lines represent Hox genes and chromosomal DNAs, respectively. Dashed lines indicate the presence of unconnected scaffolds. See Supplementary Fig. 13 for more detailed Hox cluster structures. Hox cluster structures of *S. kowalevskii*9, A. japonicus56, S. purpuratus7, O. spiculata56 and A. plana8 are according to the previous studies.
diverged genomic sequences from vertebrates (Supplementary Fig. 8 and Supplementary Tables 26–28).

Given that echinoderms evolved unique features without significant genome-wide changes detected, we tested abundance in sets of gene families that may have played critical roles in the evolution of the echinoderm features. We first tested if numbers of genes potentially involved in development (such as genes involved in cell-cell communications) have expanded in the common ancestor of echinoderms (Supplementary Fig. 10). In contrast to our expectation, GO term enrichment analysis suggested that no such terms were enriched in the echinoderm-expanded gene set (Supplementary Fig. 11). Rather, GO terms such as “cell communication”, or “signal transduction”, were present in echinoderm-contracted genes (Supplementary Fig. 11a). Further, genes potentially involved in cytoskeletal regulation appear to have experienced extensive modifications during echinoderm evolution. For example, the “plectin repeat domain”, one of the important domains of cytolinks that connect cytoskeletal elements with each other and to junctional complexes, was not found in any of the five echinoderm species (Supplementary Fig. 12). Similarly, genes potentially involved in actin cytoskeleton regulation such as BCAR1/CAS and PIP5K were found to be positively selected during echinoderm evolution (Supplementary Table 29), suggesting substantial modifications of cytoskeletal function during echinoderm evolution.

Hox clusters in ambulacrarians. We next analyzed genes in the Hox cluster, since previous studies implied that echinoderms may have undergone extensive changes to the genomic-arrangement of these genes early in their evolution, but this is controversial. By analyzing the echinoderm genomes, together with BAC sequencing and fluorescent in situ hybridization (FISH) experiments on feather star (see Supplementary Fig. 13), we found that A. japonica have 10 clustered Hox genes (Hox1 through Hox11/13a), together with two posterior genes (Hox11/13b and Hox11/13c) located with inverse directions more than 360 kb apart from the cluster of 10 Hox genes (Supplementary Fig. 14). This situation is reminiscent of hemichordate Hox gene clusters, which consist of 12 genes with the inversion/translocation of two posterior genes. The consistent differences of Hox genes in feather star from those of hemichordates (Saccoglossus kowalevskii and Pychoderia flava) were that the two posterior genes have face-to-face orientations, and two additional posterior genes (Hox11/13d and Hox11/13e) are present as reported in other echinoderm genomes. These characteristics in turn suggest that the last common ancestor of echinoderms retained a canonical arrangement of 10 Hox genes, while its posterior genes had increased in number and changed their locations. This view accordingly indicates that the changes previously noted with the Hox gene clusters of echinoderms, including the loss of Hox4 or Hox6 and the inversion/translocation of anterior genes, are lineage-specific events, and therefore are unlikely to be involved in the establishment of pentameral body plan. On the other hand, the involvement of the posterior Hox genes, are important candidates in the establishment of the pentameral body plan (Fig. 1c).

Echinoderm embryogenesis show hourglass-like conservation. We next tested if evolution of echinoderm embryogenesis follows the developmental hourglass model as supported in several animal groups. The phylotype hypothesis of the hourglass model predicts that anatomical features of most conserved-embryonic phase represent the body plan of their animal phylum. We tested if the developmental stages most critical for the pentameral body plan show the highest transcriptomic conservation. Recent studies reported that the transcriptomic conservation is instead around blastula to gastrula in sea urchins, however, these studies only examined embryonic sea urchins. We thus analyzed gene expression profiles by covering early-to-late embryos of four diverse echinoderm species, including the publicly available data of purple sea urchins and a sea cucumber (Supplementary Figs. 15 and 16). Unexpectedly, while the hourglass-like conservation was observed, the most conserved phase was not bracketing the pentameral establishing stages (defined as stages when first pentameral symmetric structures appear), but it was instead during gastrulation (Fig. 2a and Supplementary Figs. 17–18). This mismatch between the most conserved phase and the phase for establishing the body plan was also supported by pair-wise comparisons of one-to-one orthologs (Supplementary Fig. 19). These results suggested that, unlike in other animal groups such as vertebrates, the phase for establishing the body plan in echinoderms has experienced substantial diversification during their evolution, further implying that the phylotype hypothesis may not fit within echinoderm embryogenesis. However, a potential caveat of this conclusion would be that the conservation signals from adult rudiments could have been obscured by larval tissues, as adult rudiments share only a small proportion of embryo in early metamorphic stages. Similar analyses with dissected adult rudiment, or single-cell RNAseq technology could clarify this point. While possible contribution of pleiotropic constraints were supported between the closely related species as reported previously (Supplementary Figs. 20 and 21), further studies are needed to clarify the evolutionary mechanism behind the unique evolution of echinoderm embryos.

Partial co-option in pentameral body plan establishment. Paleontological studies suggested the possible evolution of pentameral body axes through changes in the mechanisms of bilateral symmetry (Fig. 2b). However, developmental genes that control the pentameral symmetry remains largely unknown. We thus focused on genes that are involved in Left/Right-patterning and other axis-forming in bilaterians and examined expression patterns of their homologs in the feather star, particularly at the attachment and cystidean stages when the pentameral body plan forms (Supplementary Figs. 22 and 23). Among the genes examined, pitx exhibited relatively strong expression in the calyx, where the pentameral structure first becomes evident (Fig. 2c). Weak expression of chordin was also detected in the calyx (Supplementary Fig. 23). Meanwhile, expression of bmp2/4, nodal, lefty and not were detected most during gastrula to doliolaria stages (Supplementary Fig. 22), but not in the calyx (Supplementary Fig. 23), implying that these genes are possibly involved in the body patterning during bilateral planktonic development rather than pentameral body plan development. These results suggest that evolution of the pentameral body plan may have associated partial co-option of genes involved in existing body axes, which in part, coincides with paleontological predictions that modification of bilateral patterning system contributed to the pentameral body plan establishment.

Proteome analyses of echinoderm skeleton. Mineralized endoskeleton is another notable feature of echinoderms. Despite the widely conserved endoskeleton structures in echinoderms, some of the proteins first identified in sea urchin bio-mineralization, such as MSP130, have not been identified in the skeleton of other echinoderm species. The MSP130 gene was suggested to have originated in prokaryotes and was introduced into metazoan genomes, including echinoderms, by horizontal gene transfer. An MSP130-like gene involved in bio-mineralization has also been identified in a polychaete. The authors suggest that the MSP130
The MSP130 protein was then co-opted into skeleton formation at some point in echinoderm evolution. The gene was duplicated in sea urchins and the ancestral gene was present in the common ancestor to bilaterians, rather than being introduced into protostomes and deuterostomes in separate lateral transfer events. The MSP130 protein included within the mineral of the adult feather star skeleton (see Supplementary Fig. 28). These skeletal proteins included a protein similar to C-type lectin proteins are absent in sea star skeletons and the feather star proteins lack these repetitive domains (Supplementary Fig. 25). A possible evolutionary scenario to explain the star development from bilateral symmetry to pentameral symmetry. a nc aboral nerve center, ar archenteron, ap adhesive pit, dt digestive tract, es enteric sac, hc hydrocoel, l.s c left somatocoel, o.r n oral ring nerve, po podia, r.sc right somatocoel, st stomodeum. d pitx gene expression detected in embryos of attachment stage and cystidean stage. In cystidean embryos, pitx was expressed in the tissues around the gut (arrows) and the inner tissue of the whole stalk (arrowheads). Scale bars: 100 μm. The expression was detected by in situ hybridization with whole mount (left) and sectioned specimens (right).

Fig. 2 Evolutionarily conserved echinoderm stages and potential involvement of pitx signal in pentameral body plan development. a Mid-embryonic conservation found in echinoderm species. Based on expression distance (expDists, see also Supplementary Fig. 17) of orthologous groups (defined by orthomc57), an evolutionary conservation of developmental stages were estimated for three taxonomic levels (Lv-Sp, Lv-Sp-Apj, Lv-Sp-Apj-Anj, see also “Methods”). The vertical axis represents percentages of the stage being included in the most (top 1%) conserved stage-combinations13 (Ptop). Changes of the Ptop scores were significant among stages (Friedman test). Error bars represent S.D. of Ptop values. In each species, the developmental phase in which pentameral body plan establishment begins is colored in gray. b Possible evolutionary transition from bilateral symmetry to pentameral symmetric body plan suggested by paleontological studies61. The basal echinoderms had a bilaterally symmetric ambulacral system that is arranged in a 2–1–2 pattern (left); consisting of one unpaired ambulacrum (1) and two ambulacra with a distal bifurcation (2&3, 4&5) and a single unpaired ambulacrum (1). c Feather star development from bilateral symmetry to pentameral symmetry. a nc aboral nerve center, ar archenteron, ap adhesive pit, dt digestive tract, es enteric sac, hc hydrocoel, l.s c left somatocoel, o.r n oral ring nerve, po podia, r.sc right somatocoel, st stomodeum. d pitx gene expression detected in embryos of attachment stage and cystidean stage. In cystidean embryos, pitx was expressed in the tissues around the gut (arrows) and the inner tissue of the whole stalk (arrowheads). Scale bars: 100 μm. The expression was detected by in situ hybridization with whole mount (left) and sectioned specimens (right).

The MSP130 protein was then co-opted into skeleton formation at some point in echinoderm evolution. The gene was duplicated in sea urchins and the resulting paralogues acquired repetitive regions32. The MSP130 protein included within the mineral of the adult feather star skeleton (see Supplementary Fig. 28). These skeletal proteins included a protein similar to the urchin MSP130 proteins, suggesting that the ancestral echinoderm had co-opted this single protein into biomineralization (Supplementary Fig. 24). A number of other genes encoding skeletal proteins and domains conserved between the purple sea urchin (S. purpuratus) and the feather star were also identified (Fig. 3). Among these, we found two proteins with C-type lectin domains, which are also found on the urchin spicule matrix proteins. C-type lectin proteins are absent in sea star skeletons and are present in only a few copies in brittle star skeletons34,35. Sea urchin skeletons utilize a large number of C-type lectins, mostly with repetitive stretches of acidic amino acids37, while the feather star and brittle star proteins lack these repetitive domains (Supplementary Fig. 25). A possible evolutionary scenario to explain
these differences is that the ancestral skeletal C-type lectin genes experienced extensive duplication and acquisition of repetitive domains in the sea urchin lineage. The use of C-type lectins in the sea star skeleton was lost, while the C-type lectins in the feather star and brittle star skeletal proteomes remain largely unchanged. Together, these results suggest that the precursors to all of the genes and domains used in echinoderm skeleton were already present in the common ancestor to echinoderms, which emerged 589.7 Mya (Supplementary Fig. 7). Additionally, these skeleton-related genes may have undergone frequent duplication and loss in speciﬁc lineages, together with frequent changes in gene expression, since expression of MSP130-like genes and C-type lectin genes in the skeleton forming cells were lost in some lineages, even though these genes exist in their genomes. In summary, our study highlights the genomic, transcriptomic and proteomic changes behind the evolution of unique features in echinoderms, and offers an exceptional case in understanding the general tendency for the evolution of body plans.

Methods
Animal care and use. Animal care and experimental procedures and were conducted in strict accordance with guidelines approved by the Animal Experiments Committee of University of Tokyo (approval ID: 14-03, 16-2). All efforts were made to minimize suffering. Individual animals and embryos were selected blindly from wild types.

DNA extraction, library construction, and genome sequencing. Lytechinus variegatus: Genomic DNA was extracted from sperms from a single male. We first constructed five different short-insert libraries (394, 424, 479, 496, and 522 bp. See also Supplementary Table 1) from the genomic DNA samples and sequenced them using the Illumina HiSeq 4000 system to survey the genome complexity. After obtaining the genome size, we further constructed four mate-pair libraries (2–18 Kb. See also Supplementary Table 1) from the same DNA sample, and sequenced them for further assembly. The DNA and genome we obtained in this project is independent from those available through EchinoBase (Lytechinus variegatus genome v.2.2).

Anennisia japonica: After collecting adult feather stars in the cove of Koajiro, Sagami Bay (Misaki, Japan) by scuba diving, sperms from a single male was collected during the breeding season when the gonads were ripe with mature gametes. Sperms were embedded in ~0.5% low-melting agarose plugs (SeaPlaque GTG Agarose, Lonza), and in-gel digestion of proteins was performed by immersing the plugs in digestion buffer (10 mM Tris-Cl pH 7.5, 50 mM NaCl, 10 mM EDTA, 0.5% SDS, 200 mg/mL Proteinase K) at 55 °C, overnight. The gel-plugs were washed repeatedly with TE buffer and stored in TE at 4 °C until use. DNA was released from the gel-plugs using GELase (Epicenter). The DNA and genome we obtained in this project is independent from those available through EchinoBase (Lytechinus variegatus genome v.2.2).

Fig. 3 Skeletal element related proteins/domains identified in echinoderms. a SEM image of a skeletal element isolated from the feather star (A. japonica). b Proteins present in the feather star skeletal proteome were isolated from adult skeleton and identified by comparison of LC/MS/MS data to the genes computationally identiﬁed in the feather star genome. These proteins were compared to those found in skeletal proteomes of the sea urchin S. purpuratus62–64, the sea star P. miniata36 and the brittle star O. spiculata35. The most prevalent proteins are shown in the ﬁgure, along with the number of different proteins from the listed groups present in each species’ proteome. The feather star skeletal proteome contains members of each of the protein families shown. The other echinoderm species are missing some of these proteins in their skeletal proteome and the number of members in each protein family varies between groups.
K-mer-based estimation of genome sizes. We first compared the performances in genome size estimation by K-mer frequency method and GenomeScope. The genome end located in the reads of feather star and green sea urchin estimated by GenomeScope was 6.50 Mbp, while that of kmerfreq method was about 952 Mbp. Considering that the genome size estimated by kmerfreq was closer to the genome size estimated from C-value (0.92, www.genomesize.com) than GenomeScope, we decided to apply kmerfreq method for the genome size estimation. Following formula was used for estimating genome size: Genome size (Mbp) = k-mer number depth of Shallow. Based on the rate of occurrence of K-mers in each genome, the read depths for feather star and green sea urchin were estimated as 147 and 124, respectively, leading to genome size estimations of approximately 553 Mbp for feather star and 952 Mbp for green sea urchin (Supplementary Fig. 1).

Raw read filtering and error correction of short-read libraries. HiSeq raw reads with the following features were regarded as low-quality reads and were filtered out: [1] reads containing >10 bp adapter sequences; [2] reads with >20% nucleotide Ns; and [3] reads having Ns’%>10% of their length; [4] PCR duplicates (paired-end reads completely identical); [5] reads containing >40 bp low-quality (phred quality score ≤5) bases. After the filtering process, we further corrected the qualified K-mers. In brief, K-mers were usually low in frequency, and we thus corrected these K-mer sequences by referring to high-frequency reads. If the erroneous sites could not be corrected, the low-frequency K-mers from the reads were trimmed. No error correction was made for the long-insert libraries (refer to Supplementary Tables 1 and 2) and having >10 bp overlap [3]; Reads having Ns’%>10% of their length; [4] PCR duplicates (paired-end reads completely identical); [5] Reads containing >40 bp low-quality (phred quality score ≤5) bases. After the filtering process, we further corrected the qualified K-mers. In brief, K-mers were usually low in frequency, and we thus corrected these K-mer sequences by referring to high-frequency reads. If the erroneous sites could not be corrected, the low-frequency K-mers from the reads were trimmed. No error correction was made for the long-insert libraries (refer to Supplementary Tables 1 and 2), as these were only used for scaffolding. The SOA-Platanus and especially effective for assembling complex heterozygous regions.

Gene set and genomes obtained from public database. Refer to Supplementary Table 24 for the publicly available gene sets and genomes used in this project.

Genome assembly. Genome sequences with the filtered and/or corrected data were assembled by Platanus software. The assembly was carried out using the following steps: (a) Contig construction: Reads from short-insert (<1 Kb) libraries were split into K-mers and used to construct a de Bruijn graph. Short branches caused by errors were removed by "tip removal" step and short repeats were resolved by K-mer extension. Bubble structures caused by heterozygosity or errors were removed. At last, subgraphs without any junctions represent the contigs. (b) Scaffold construction: All the filtered clean reads were re-aligned onto the contig sequences, and the scaffolds were constructed by weighting the consistent rate and paired-end reads relationships on the contigs. Heterozygous regions were resolved as bubble or branch structures on the graph by the "bubble removal" or "branch cut" step. These simplification steps are characteristic of Platanus and especially effective for assembling complex heterozygous regions. (c) Gap filling: Paired-end reads have one end mapped on the contig with the other end located in the reads that were used to fill the gaps in the genome assembly by GapCloser1.10 software. Then the very short assembly sequences (contig shorter than 500 bp) were removed in the genome assembly. The detailed command lines of the Platanus assembly were shown as below: Feather star: Platanus assembly -o contig.fa -b contigBaffle.fa -o scaffold.fa -P Rf1q.Rf2q -O Rf1q.Rf2q -u 0.2. Green sea urchin: Platanus assembly -o contig.fa -f short_clean_reads.fq -k 69 -u 0.2 -m 200; platanus assembly -o contig.fa -b contigBaffle.fa -o scaffold.fa -P Rf1q.Rf2q -O Rf1q.Rf2q -u 0.2.

Assessment of assembled genomes. The completeness of the feather star and green sea urchin genomes assed by was assembled by the BUSCO program (version 2.0), using the eukaryotic and metazoan libraries (Supplementary Tables 6–8). Reads from the short-inserts libraries were also mapped to these assembled genomes by BWA and SAMtools software (bwa index -a bwtsw genome.fa; bwa aln -t 6 genome.fa reads.fq; samtools view -b -S out.sam > out.bam; samtools flagstat out.bam) to assess the genome quality (Supplementary Table 9). In addition, coverage ratio of de novo assembled transcripts obtained by Trinity (ver. 2.2.0) (perl Trinity -l 8M 200 G -seqType fq -left reads.Rf1q -right reads.Rf2q -SS libType FR -output out) and TGICL software (tgicl -F transcripts.fasta) over the sequenced genomes using BLAT software (blat genome.fa transcripts.fasta -t -d = dna -q = rna out. ps) (Supplementary Tables 10–13). De novo assembled transcripts (made by the RNAseq data we obtained for each species) were also aligned to the flated genome and confirmed that 98.64% transcripts in feather star and 99.53% transcripts in green sea urchin were aligned.

GC content of genome. GC content of the feather star and green sea urchin genomes were estimated using a sliding window approach. Briefly, a 500 bp sliding window (default stepsize) was employed to calculate the GC content, and found that the average GC content of feather star and green sea urchin is about 33.22% and 33.71%, respectively. All of these values were found to be similar with those of hemichordate and most chordate species except lamprey (Supplementary Fig. 2).

Repeat annotation. Tandem repeats in the genomes were identified using Tandem Repeat Finder 36 (v.0.4 http://tandem.bu.edu/tra/tra.html) with default parameters (-nolow (-value set as 1e-5). The small nuclear RNA (snRNA) and microRNA (miRNA) were predicted by INFERNAL software (v0.81) against the Rfam database (Release 9.1) with default parameters. The statistical results are shown in Supplementary Tables 21 and 22.

Potential functions of protein-coding genes were predicted using InterProScan 47 (v4.8), against the InterPro database (Pfam, release 27.0, PRMTS, release 42.0), PROSITE, release 20.97, ProDom, 2006.1, and SMART, release 6.2). To determine the InterPro and GO number of those predicted protein-coding genes. In addition, KEGG, COG, NR, Uniprot/SwissProt, and Uniprot/TrEMBL databases were also used in this analysis. These four software programs were trained by using lamprey, human, ciona, and zebrasfish, respectively. Short genes (CDS length < 150 bp) and low-quality genes (gaps covered more than 10% of the coding region) were discarded. Proteins from human (Ensembl:GRCm38), mouse (Ensembl:GRCm38), chicken (Ensembl: Gallus_gallus-5.0), green anole lizard (Ensembl: AnoCar2.0), Xenopus tropicalis (Ensembl: GI:4.2), zebrasfish (Ensembl:GRCz10), sea lamprey (Ensembl: Ptrifarium_7.0), lancelet (LanceletDB: v18.27.1_3), Ciona intestinalis (NCBI: C0012826S1), scorp, worm (Ensembl: GCF_000006602.2) and purple sea urchin (NCBI: GCF_000002235.4) were used in the homology-based annotation using blast with e-value 1e-5. Blast hits that correspond to reference proteins were concatenated by solar software and low-quality records were filtered out. Sequence of each reference protein was extended to upstream and downstream by 2 kb to represent the protein-coding region with default parameters. GeneWise software was used to predict gene structure contained in each protein-coding region. For each gene locus, the longest coding region and/or highest genewise score was retained. In RNAseq-based method, the coding sequences defined by transcripts was aligned against the genome by BLASTO (v34, identity > 90%, coverage > 90%), thereby defining the splicing orientation of coding region. Then, PASSA software was used to link the spliced alignments with default parameters. The Evidence-Modeler47 (EVM, ver. 1.1) software was further used to integrate data derived from the three methods into an EVM-derived gene set with default parameters, the weight of de novo, homolog and complementary DNA (cDNA) are 1, 5, and 10. Finally, 26,838 and 30,238 protein-coding gene models were annotated in feather star and green sea urchin genome, respectively (Supplementary Table 18).

Annotation of gene function, non-protein-coding genes. InterProScan (v4.8) was used to screen these genes’ protein sequences against five databases (including: Pfam, release 27.0, prints, release 42.0, prosite, release 20.97, ProDom, 2006.1, and smart, release 6.2) to determine the InterPro and GO number of those predicted protein-coding genes. In addition, KEGG, COG, NR, Uniprot/SwissProt, and Uniprot/TrEMBL databases were also used in this analysis. The completeness of the feather star and green sea urchin genomes assed by was assembled by the BUSCO program (version 2.0), using the eukaryotic and metazoan libraries (Supplementary Tables 6–8). Reads from the short-inserts libraries were also mapped to these assembled genomes by BWA and SAMtools software (bwa index -a bwtsw genome.fa; bwa aln -t 6 genome.fa reads.fq; samtools view -b -S out.sam > out.bam; samtools flagstat out.bam) to assess the genome quality (Supplementary Table 9). In addition, coverage ratio of de novo assembled transcripts obtained by Trinity (ver. 2.2.0) (perl Trinity -l 8M 200 G -seqType fq -left reads.Rf1q -right reads.Rf2q -SS libType FR -output out) and TGICL software (tgicl -F transcripts.fasta) over the sequenced genomes using BLAT software (blat genome.fa transcripts.fasta -t -d = dna -q = rna out. ps) (Supplementary Tables 10–13). De novo assembled transcripts (made by the RNAseq data we obtained for each species) were also aligned to the flated genome and confirmed that 98.64% transcripts in feather star and 99.53% transcripts in green sea urchin were aligned.
were searched for homology-based functions (Supplementary Tables 19 and 20). For non-coding genes, the trnascan-se57 (v1.3) software for eukaryote was used for RNA transcription. Single clones were extracted from the genomic assembly. RNA annotation was based on homology information of invertebrate tRNA sequences using blastn (v2.2.26) with e-value (1e-5). The snrna and miRNA were predicted by Infernal software (v0.81) against the Rfam database (Release 9.1). The statistical results are shown in Supplementary Tables 21 and 22.

Gene family analysis. orthomcl: orthomcl50 was used to find orthologous genes (orthologous groups) among different species. Amphioxus (Branchiostoma floridae), zebrafish (Danio rerio), ciona (Ciona intestinalis), Drosophila (Drosophila melanogaster), chicken (Gallus gallus), acorn worm (Saccoglossus kowalevskii), green sea urchin (Lytechinus variegatus [Lv]), purple sea urchin (Strongylocentrotus purpuratus [Sp]), medaka (Oryzias latipes), mouse (Mus musculus), brittle star (Ophiothrix spiculata), feather star (Annelida japonica [Anj]), lamprey (Petromyzon marinus), sea cucumber (Apostichopus japonicus [A]), sea star (Acanthaster planci), frog (Xenopus laevis), turtle (Pelodiscus sinensis) gene sets were prepared and used here. Gene families and orthologous groups identified by this OrthoMCL is shown in Supplementary Figures 5 and 6. For ortholog groups identified among echinoderms, 15618 were used for Lv-Apj-Anj, 14758 for Lv-Apj, 13951 for Lv-Sp-Apj, 13356 for Lv-Sp, and 13649 for Lv-Anj.

The aligned results were filtered by blast tool. Second, the aligned results were used to extract the protein sequences in all other 16 species to feather star gene set and vice versa by blast. Finally, we identified 15200 orthologous gene pairs in all of the 16 species were extracted. The orthologous group was defined as domains lost in echinoderms, the gene family of clustered Hox genes.

Phylogenetic tree construction and divergence time. Molecular phylogenetic analysis: 1196 RBBH ortholog genes (1,447,456 aa) in each species were combined into a super-gene in the same gene order, followed by phylogenetic analysis using raxml51 (with PROTGAMMAuto model, Drosophila melanogaster was used as the outgroup species) through these super-genes (Fig. 1b and Supplementary Table 25). Both of the reconstructed phylogenetic trees robustly showed three clusters, including echinoderms, acorn worm, and chordates. Among them, feather star was the earliest diverging species in echinoderms, brittle star and sea star form one branch, sea urchin and sea cucumber form another branch. Identification of clustered Hox genes: In scaffold 288292 (about 1.86 Mbp in length), hox1, hox2, hox3, hox4, hox5, hox6, hox7, hox8, hox9/10, and hox11/13a were identified. The ten Hox genes were aligned in the order, spanning about 480 kb length, with the 3’ end of hox1 about 392 kb away from the 5’ end of the scaffold. In scaffold 287987 (about 96 kb), hox11/13b and hox11/13c were identified. To see whether the 12 Hox genes form a single cluster, we carried out two-color chromosomal FISH, using the BAC clones (described above) as probes. The FISH analysis revealed that the eight genes contained in the BAC clones were in close vicinity to one another on a single chromosome (comprising of two sister chromatids). However, the gene order or relative positions of the two scaffolds on the chromosome could not be clarified, leaving four possible gene orders of 12 Hox genes underdetermined. Thus, it is suggested that 12 Hox genes are present on a single chromosome, forming two subclusters separated by at least 400 kb in the genome of Acanthaster planci50, hox11/13d and hox11/13e in another scaffold 28266 and 6788, respectively. This suggests that the two genes are localized apart from the subcluster of ten Hox genes, which situation is consistent with the previous report showing that Hox11/13d and Hox11/13e do not reside in the Hox gene cluster in echinoderm genomes50.

Embryo collection and RNA extraction. Lytechinus variegatus: Adult green sea urchins were originally obtained from Reeftopia in Florida (FL) or from the Duke Marine lab in Beaufort NC. L. variegatus total RNA was prepared from wild type embryos per timepoint using TRIzol (Invitrogen) and DNase treatment. RNA quantitation and integrity were determined using a Qubit 2.0 Fluorometer (Life Technologies) and a 2100 Bioanalyzer (Agilent Technologies). Total RNA was subjected to three iterations of polyA selection using Dynabeads (Life Technologies) prior to cDNA synthesis. Following stages were collected for RNA extraction and fixation: 2 cell (1 h post fertilization), 60 cell (2.5 hpf), EB (Early Blastula, 4 hpf), HB (Hatched Blastula, 7 hpf), TVP (Thickened Vegetal Plate, 10 hpf), MB (Mid Blastula, 12.5 hpf), GB (Gastrula, 15 hpf), HG (Hairy Gastrula, 15 hpf), LG (Late Gastrula, 18 hpf), EP (Early Pleuteus, 36 hpf), LP (Late Pleuteus, 48 hpf), 7 wpf (7 weeks post fertilization), 8 wpf (8 weeks post fertilization), 1 day post metamorphosis, 1 week post metamorphosis, and adult. In addition, RNA from larval region of 8 weeks post fertilization (8 wpf Larva) and rudiment region of 8 weeks post fertilization (8 wpf Rudiment) were also extracted by dissecting the 8 wpf embryo. Results based on analyses with RNaseq data from two cell to Late pleuteus were published52. Two independent biological samples were prepared for all the sampled stages.

Screening and cloning of BAC clones containing hox genes: Using the cDNA fragments of nine hox genes (hox1, hox2, hox4, hox5, hox7, hox8, hox9/10, hox11/13, and hox11/13c). Tsurugaya et al. (in preparation), we screened the BAC library of A. japonica for the clones that contained Hox genes and their neighboring regions. This screening yielded 25 clones in total, which, however, were not contiguous but separated into four groups.

Expansion and contraction of gene families. For fish Hox genes were derived from clones out of the A. japonica BAC library. BAC clones used for fish were Oj1–26E10 (containing hox1), Oj2–17D15 (hox2), Oj2–75D03 (hox4 and hox5), Oj2–78N14 (hox7 and hox8), Oj1–50I03 (hox8 and hox9/10), and Oj2–102A05 (hox11/13c). BAC clone DNAs were isolated using Qiagen Plasmid Midi Kit (Qiagen) and labeled with biotin or digoxigenin by using Nick Translation Kit (Roche). Hybridization mix was prepared as described previously53. Two color-ensemble FISH was carried out as described out previously (1.2) with the following modifications. Blastula or early gastrula stage embryos were treated with 0.08% colchicine (Sigma) in sea water for 30 min. Embryos were fixed in methanol/glacial acetic acid (3:1) fixative at 4 °C overnight, then transferred to 100% ethanol, air-dried at ~20 °C. To prepare hybridization mix, 80% of 60% acetic acid was added to a microscope slide containing 50–100 embryos. Three minutes later, embryos were dropped onto a prewarmed (48 °C) slide glass, and left until dry (about 30 min). Before hybridization, the slides were treated with 0.5% pepsin (1:100, Wako) in 0.01 N HCl for 3 min, and washed in phosphate-buffered saline (PBS) three times. Then the slides were post-fixed in 1% paraformaldehyde in PBS at r.t. for 30 min, and washed in PBS twice. After dehydration, the air-dried slides were treated with acetone at r.t. for 10 min, and dried again. Following the denaturation of chromosomal DNA and dehydration, hybridization was carried out at 43 °C for 16 h, FISH images were taken using an Olympus BX60 microscope equipped with an Olympus DP70 camera.

Screening of clustered Hox genes: Using the cDNA fragments of nine hox genes (hox1, hox2, hox4, hox5, hox7, hox8, hox9/10, and hox11/13a). First, we compared the orthologous gene pairs in all species and selected hox genes that were conserved in at least 70% of species. Then, expanded and contracted gene families were shown in Extended data 1 (Extended_data_1.xlsx).

Domains lost in echinoderms. Domains found in any of the chordate species, but not found in any of the echinoderm species defined as domains lost in echinoderm lineage. Six echinoderm species (Apostichopus japonicus, Lytechinus variegatus, Acanthaster planci, Ophiothrix paulayi, Anniesia flachiostoma, Branichion variegatus) and nine chordate species (Mus musculus, Branchiostoma floridae, Ciona intestinalis, Petromyzon marinus, Oryzias latipes, Gallus gallus, Xenopus laevis, Pelodiscus sinensis, and Danio rerio) were blasted (>50% identity and >30% align ratio) to the acorn worm (Saccoglossus kowalevskii) protein gene set and searched for potential domains lost in echinoderms. Seven-hundred forty-seven genes were identified to be the lost genes in echinoderms. Among these genes, six genes were not found in any of the nine chordate species, but found in acorn worm. These genes were enriched with GO terms of biosynthetic process, metabolism process, and the establishment of localization.

Box cluster analysis. Cloning of Hox genes: To further confirm sequences of Hox genes in the feather star, a total of nine hox genes had been cloned from Anniesia flachiostoma using RT-PCR (Tsurugaya et al., in preparation). These gene annotations were done in the Marine lab in Beaufort NC.
collected from rocky substrate of about 10 m depth at Koaji, Sagami Bay, and kept in the sea until the day of spawning. Spawning check was carried out at every near tide during October and November, 2015. Spawning was observed in the evening of 20th and 21st of October, 2015, and seven females spawned in total. The obtained eggs were very fragile and surrounded by mucus. Small amounts of the spawned unfertilized eggs were separated in 1.5 mL tubes (100 µl each) for RNA extraction and fixation. The rest of the eggs were inseminated immediately by diluting concentrated sperm, which were directly collected from genital pinnules. The fertilized eggs were washed with filtered sea water several times to remove the mucus, and separated in the filtered sea water in plastic vessels for culture. The culture was done at room temperature (about −10 °C). Following stages were collected for RNA extraction and fixation (Supplementary Fig. 15): 2.2 cells (5–post fertilization), 8 cells (2.5 hpf), 32 cells (3.5 hpf), gastrula (8 hpf), hatching stage (17 hpf), early dolichura (24 hpf), mid-late dolichura (36 hpf), attachment stage (3–4 days pf), early cystidean (4–7 days pf), late cystidean (7–9 days pf), early pentacrinoid (3 weeks pf), late pentacrinoid (1.5 months pf), juvenile (2.5 months pf), arm branching stage (6–7 months pf), and adult (9 months pf). For the RNA extraction, more than 50 µl of specimens were diluted in the 10× volume of TRIzol reagent (Invitrogen). The tissue of the specimens were destructed by pipetting with a micro syringe or grinding with a pestle and mortar in the TRIzol reagent, and immediately stored in −80 °C. For the fixation, specimens were fixed with 4% paraformaldehyde in 0.5 M NaCl and 0.1 M 3-(N-morpholino) propanesulfonic acid (MOPS), pH 7.0 for several days at room temperature (about 22 °C). Fixed specimens were washed with 70% ethanol three times, and stored in 70% ethanol at −20 °C. Two independent biological samples were prepared for all the sampled stages.

RNA sequencing and gene expression data. After adjusting total RNA amounts between samples, non-stranded sequencing libraries (with the TruSeq protocol) were constructed and sequenced using the Illumina HiSeq 4000 platform. For the sea cucumber (A. japonica) samples, qRT-seq amplified libraries (six replicates) as previously described23. Qualities of raw reads were evaluated using FastQC program (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Read length and single/paired information are as follows: L. variegatus (100 bp, paired-end), A. japonica (150 bp, paired-end), A. japonicus (100 bp, single-end). Adapter sequences of Quartz-Seq samples (Mm early stages 2-cell-blastocyst) were removed using the fastq-mcf program (https://code.google.com/p/ea-utils/wiki/FastqMcf) as pre- previously described23. RNAseq data were then mapped to genomes of each species using HISAT2 program54 (ver. 2.0.5), and calculated relative expression levels by

Proteomic analysis. Proteins were isolated from adult female skeleton and analyzed as previously described59. All organic material was removed from the skeleton by extensive washing with sodium hypochlorite followed by guanidine isothiocyanate. The skeleton was demineralized with acetic acid followed by dialysis. Both soluble and insoluble protein fractions were analyzed. Proteins were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Each lane was excised into 20 equal sized segments and processed. In-gel digestion with trypsin was performed on each fraction, followed by analysis by nano Liquid chromatography–mass spectrometry (LC-MS/MS) with a Waters nanoAcquity high-performance liquid chromatography system interfaced to a ThermoFisher Q Exactive hybrid quadruple-orbitrap mass spectrometer. The mass spectrometer was operated in a data-dependent mode. Data were used to search predicted peptides from the A. japonica genome using Mascot and then parsed into the Scaffold algorithm for validation and filtering, using a 95% protein identification score with at least two peptides per protein.

Statistics and reproducibility. Alpha levels of 0.05 were regarded as statistically significant throughout the study, unless otherwise specified. Experiments were repeated multiple times to confirm the reproducibility of the data. See details for individual experiments in the “Methods” sections above.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
Genomic sequence data and assembled genomes for the following species are available through the NCBI database at the indicated BioProject accession IDs: Brittle star genome (PRJNA182997), feather star genome (PRJNA553656), and green sea urchin genome (PRJNA553643). RNAseq data are available for the following species at the indicated BioProject accession IDs: green sea urchin RNAseq data (PRJNA554218), feather star RNAseq data (PRJNA553591), and Japanese sea cucumber RNAseq data (PRJNA553613). Cloned sequences of Hox genes of the feather star (hx1 LC462021, hx2 LC462022, hx3 LC462023, hx5 LC462024, hx7 LC462025, hx8 LC462026, hx9/10 LC462027, hx11/13a LC462028, hx11/13c LC462029) are also available through the NCBI database at the indicated nucleotide accession IDs. Assembled genomes and gene sets can also be accessed through the DRYAD database at https://doi.org/10.5061/dryad.rnbsz7h.

Proteomic data are available via the ProteomeXchange with identifier PXD019526. Source data for Figs 2a and 3b can be found in Supplementary Data 1 and Supplementary Data 2.

Code availability
No custom or proprietary software was used in the analysis. Versions and parameters for each software package used are described in the reporting summary and elsewhere in the “Methods.”

Received: 18 October 2019; Accepted: 19 June 2020; Published online: 10 July 2020

References
1. Hyman, L. H. The Invertebrates: Echinodermata Vol. IV (McGraw-Hill, 1955).
2. Mooi, R., David, B. & Wray, G. A. Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evol. Dev. 7, 542–555 (2005).
3. Rozhkov, S. V. Symmetry of echinoderms: From initial bilaterally-asymmetrical metamerism to pentaradiality. Nat. Sci. 06, 171–183 (2014).
4. Reich, A., Dunn, T., Akasaka, K. & Wessel, G. Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinodermata. PLoS ONE 10, e0191627 (2015).
5. Telford, M. J. et al. Phylogenomic analysis of echinoderm class relationships supports Asterozoea. Proc. Biol. Sci. 281, 20140479 (2014).
6. Janda, L., Damborsky, J., Rezniczek, G. A. & Wiche, G. Plectin repeats and metamerism to pentaradiality. Genesis 52, 952–958 (2014).
7. Freeman, R. et al. Identical genomic organization of two hemichordate hox clusters. Curr. Biol. 22, 2053–2058 (2012).
8. Szabo, R. & Ferrier, D. E. K. Two more Posterior Hox genes and Hox cluster metamerism to pentaradiality. Bioessays 52, 1064–1069 (2000).
9. Cameron, R. A. et al. Unusual gene order and organization of the sea urchin hox cluster. J. Exp. Zool. B Mol. Dev. Evol. 306, 45–58 (2006).
10. Baughman, K. W. et al. Genomic organization of Hox and Parahox clusters in the echinoderm, Asconaster planus. Genome 52, 952–958 (2014).
11. Duboule, D. Temporal colinearity and the phyloptetic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies
ther through homologous. Development 135–142. https://dev.biologists.org/content/1994/Supplement/135.full.pdf (1994).

12. Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248 (2011).

13. Hu, H. et al. Constrained vertebrate evolution by pleiotropic genes. Nat. Ecol. Evol. 1, 1722–1730 (2017).

14. Zalts, H. & Yanai, I. Developmental constraints shape the evolution of the nematode model in experimental traumas. Nat. Ecol. Evol. 1, 113 (2017).

15. Kalkin, A. T. et al. Gene expression divergence recapitulates the developmental hourglass model. Nature 468, 811–814 (2010).

16. Xu, F. et al. High expression of new genes in trophophore enlightening the ontogeny and evolution of trochozoans. Sci. Rep. 6, 34664 (2016).

17. Raff, A. The Shape of Life: Genes, Development, and the Evolution of Animal Form (University of Chicago Press, 1996).

18. Irie, N., Satoh, N. & Kuratani, S. The phylum Vertebrata: a case for zoological recognition. Zool. Lett. 4, 32 (2018).

19. Israel, J. W. et al. Comparative developmental transcriptomics reveals rewiring of a highly conserved gene regulatory network during a major life history switch in the sea urchin genus Helicodiscus. PLoS Biol. 14, e1002391 (2016).

20. Malik, A., Gildor, T., Sher, N., Layous, M. & Ben-Tabou de-Leon, S. Parallel embryonic transcriptional programs evolve under distinct constraints and may enable morphological conservation amidst adaptation. Dev. Biol. 430, 202–213 (2017).

21. Tu, Q., Cameron, R. A. & Davidson, E. H. Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 385, 160–167 (2014).

22. Tu, Q., Cameron, R. A., Worley, K. C., Gibbs, R. A. & Davidson, E. H. Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis. Genome Res. 22, 2079–2087 (2012).

23. Li, Y. et al. Weighted gene co-expression network analysis reveals potential genes involved in early metamorphosis process in sea cucumber Apostichopus japonicus. Biochem. Biophys. Res. Commun. 495, 1395–1402 (2018).

24. Uchida, Y., Uesaka, M., Yamamoto, T., Takeda, H. & Irie, N. Embryonic lethality is not sufficient to explain hourglass-like conservation of vertebrate embryos. Evodevo 9, 7 (2018).

25. Irie, N. Remaining questions related to the hourglass model in vertebrate evolution. Curr. Opin. Genet. Dev. 45, 103–107 (2017).

26. Sumrall, C. D. & Wray, G. A. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33, 149–163 (2007).

27. Molina, M. D., de Croze, N., Haillot, E. & Lepage, T. Nodal: master and regulator of a highly conserved gene regulatory network during a major life history phylotypic period during organogenesis. Proc. Natl Acad. Sci. USA 110, 1639–1644 (2013).

28. Kim, D., Langnead, B. & Salberg, S. L. HIST: a fast alignedic with low memory requirements. Nat. Methods 12, 357–360 (2015).

29. Pertea, M., Kim, D., Meek, J. T. & Salberg, S. L. Transcript-level analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Proc. Natl Acad. Sci. USA 113, E1594–E1602 (2016).

30. Poustka, A. J. & Mann, M. In-depth, high-accuracy proteomics of the sea urchin tooth organic matrix. Proteome Sci. 8, e103121. https://doi.org/10.1186/1423-0127-8-121 (2010).

31. Oshita, K. & Sakaguchi, S. A genome-wide analysis of biomineralization-related genes in echinoderm DNA and RNA samples collected from the sea cucumber Apostichopus japonicus. Protoplasma 248, 227–235 (2011).

32. Su, Y. H. telling left from right: left-right asymmetric controls in sea urchins. Genesis 52, 269–274 (2014).

33. Bessodes, N. et al. Reciprocal signaling between the ectoderm and a mesendoderm left-right origin affects left-right determination in the sea urchin Strongylocentrotus purpuratus. Dev. Dyn. 245, 1959–1968 (2016).

34. Duboc, V., Rottinger, E., Llapaz, F., Besnardeau, L. & Lepag, T. Lateral asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Dev. Cell 9, 147–158 (2005).

35. Luo, Y. F. & Su, Y. H. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol. 10, e1001462 (2012).

36. Erdosohn, C. A. Horizontal transfer of the mspl30 gene supported the evolution of metazoan biomineralization. Evol. Dev. 16, 139–148 (2014).

37. Szabo, R. & Ferrier, D. E. K. Another biomineralisation protostome with an mspl30 gene and conservation of mspl30 gene structure across Bilateria. Evol. Dev. 17, 195–197 (2015).

38. Elston, B. V. & Livington, B. T. Examination of the skeletal proteome of the brittle star Ophiocoma wendtii reveals overall conservation of proteins but variation in spurce matrix proteins. Proteome Sci. 13, 7 (2015).

39. Flores, R. L., Gonzales, K., Seaver, R. W. & Livington, B. T. The skeletal proteome of the brittle star Ophiophiilix spiculata identifies C-type lectins and other proteins conserved in echinoderm skeleton formation. AIMs Mol. Sci. 3, 357–367 (2016).

40. Flores, R. L. & Livington, B. T. The skeletal proteome of the sea star Patiria miniata and evolution of biomineralization in echinoderms. BMC Evol. Biol. 17, 125 (2017).

41. Livingston, B. T. et al. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 300, 335–348 (2006).

42. Berson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 28, 753–758 (1999).

43. Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, 1531–1538 (2005). Suppl. 1.

44. Xiao, H., Wang, H. LTR-FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).
Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42003-020-1091-1.

Correspondence and requests for materials should be addressed to W.W. or N.I.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.