ASSESSING THE TOLERANCE OF NEURAL MACHINE TRANSLATION SYSTEMS AGAINST SPEECH RECOGNITION ERRORS

Nicholas Ruiz1,2, Mattia Antonino Di Gangi1, Nicola Bertoldi1, Marcello Federico1

1Fondazione Bruno Kessler, Italy
2Interactions, LLC, USA

nrui@interactions.com, \{digangi, bertoldi, federico\}@fbk.eu

Abstract

Machine translation systems are conventionally trained on textual resources that do not model phenomena that occur in spoken language. While the evaluation of neural machine translation systems on textual inputs is actively researched in the literature, little has been discovered about the complexities of translating spoken language data with neural models. We introduce and motivate interesting problems one faces when considering the translation of automatic speech recognition (ASR) outputs on neural machine translation (NMT) systems. We test the robustness of sentence encoding approaches for NMT encoder-decoder modeling, focusing on word-based over byte-pair encoding. We compare the translation of utterances containing ASR errors in state-of-the-art NMT encoder-decoder systems against a strong phrase-based machine translation baseline in order to better understand which phenomena present in ASR outputs are better represented under the NMT framework than approaches that represent translation as a linear model.

Index Terms: speech translation, machine translation, evaluation, neural machine translation

1. Introduction

A substantial amount of progress has been made in Neural Machine Translation (NMT) for text documents. Research has shown that the encoder-decoder model with an attention mechanism generates high quality translations that exploit long range dependencies in an input sentence \cite{bahdanau2014neural}. While NMT has proven to yield significant improvements for text translation over log-linear approaches to MT such as phrase-based machine translation (PBMT), it has yet to be shown the extent to which gains purported in the literature generalize to the scenario of spoken language translation (SLT), where the input sequence may be corrupted by noise in the audio signal and uncertainties during automatic speech recognition (ASR) decoding. Are NMT models implicitly better at modeling and mitigating ASR errors than the former state-of-the-art approaches to machine translation? As a preliminary work, we analyze the impact of ASR errors on neural machine translation quality by studying the properties of the translations provided by an encoder-decoder NMT system with an attention mechanism, against a strong baseline PBMT system that rivals the translation quality of Google Translate\textregistered on TED talks.

We address the following questions regarding NMT:

1. How do NMT systems react when ASR transcripts are provided as input?
2. Do ASR error types in word error alignments impact SLT quality the same for NMT as PBMT? Or is NMT implicitly more tolerant against ASR errors?
3. Which types of sentences does NMT handle better than PBMT, and vice-versa?

To address these questions, we explore the impact of feeding ASR hypotheses, which may contain noise, disfluencies, and different representations on the surface text, to a NMT system that has been trained on TED talk transcripts that do not reflect the noisy conditions of ASR. Our experimental framework is similar to that of \cite{luong2015machine, vereecken2016neural}, with the addition of a ranking experiment to evaluate the quality of NMT against our PBMT baseline. These experiments are intended as an initial analysis with the purpose to suggesting directions to focus on in the future.

2. Neural versus Statistical MT

Before beginning our analysis, we summarize some of the biggest differences between NMT and other forms of statistical machine translation, such as PBMT. \cite{luong2015machine} compare neural machine translation against three top-performing statistical machine translation systems in the TED talk machine translation track from IWSLT 2015\textregistered. The evaluation set consists of 600 sentences and 10,000 words, post-edited by five professional translators. In addition to reporting a 26% relative improvement in multi-reference TER (mTER), \cite{luong2015machine}'s encoder-decoder attention-based NMT system trained on full words outperformed state of the art statistical machine translation (SMT) systems on English-German, a language pair known to have issues with morphology and whose syntax differs significantly from English in subordinate clauses. \cite{luong2015machine}'s analysis yields the following observations:

- **Precision versus Sentence length**: Although NMT outperformed every comparable log-linear MT system, they confirmed \cite{luong2015machine}'s findings that translation quality deteriorates rapidly as the sentence length approaches 35 words.
- **Morphology**: NMT translations have better case, gender and number agreement than PBMT systems.
- **Lexical choice**: NMT made 17% fewer lexical errors than any PBMT system.
- **Word order**: NMT yielded fewer shift errors in TER alignments than any SMT system. NMT yielded significantly higher Kendall Reordering Score (KRS) \cite{carletta1997interannotator} values than any PBMT system. NMT generated 70% fewer verb order errors than the next-best hybrid phrase and syntax-based system.

Several SMT modeling challenges are exacerbated in NMT. While log-linear SMT translation models can handle large word
vocabularies, NMT systems require careful modeling to balance vocabulary coverage and network size, since each token introduced increases the size of its hidden layers. Because of this constraint, [8] observe that only 69% of German nouns are covered with 30,000 words on English-German WMT 2014 system. Although noun compound splitting works well for German→English, English→German model performance is not improved significantly. In particular named entities (e.g. persons, organizations, and locations) are underrepresented.

On the other hand, NMT has the ability to model subword units such as characters [9] or coarser grained segmentations of low frequency words [10] without substantial changes to the system architecture, unlike other SMT approaches. [11] have additionally demonstrated NMT’s ability to translate between multiple language pairs with a neural translation model trained with a single attention mechanism.

Although NMT models translate with higher precision, models are slow to train even with the most powerful GPUs – often taking weeks for the strongest systems to complete training. On the other hand, large order PBMT systems trained in the ModernMT framework [4] may be trained within a few hours and can be adapted in near real-time with translation memories containing post-editions by professional translators.

3. Research Methodology

Similar to our experimental framework in [2][3], we collect English ASR hypotheses from the eight submissions on the tst2012 test set in the IWSLT 2013 TED talk ASR track [12]. Coupled with reference translations from the MT track, we construct a dataset consisting of the eight English ASR hypotheses for 1,124 utterances, a single unpunctuated reference transcript from the ASR track, and the reference translations from the English-French MT track. The English ASR hypotheses and reference transcript are normalized and punctuated according to the same approach as described in [3]. We use both BLEU [13] and Translation Edit Rate (TER) [14] as global evaluation metrics. TER and ΔTER over gold standard ASR outputs are used to observe sentence-level trends. We compute automatic translation scores, sentence-level system ranking, and take a closer look at the types of errors observed in the data. Below, we briefly describe the MT systems used in this experiment.

3.1. Neural MT system

Our NMT system is based on FBK’s primary MT submission to the IWSLT 2016 evaluation for English-French TED talk translation [15]. The system is based on the sequence-to-sequence encoder-decoder architecture proposed in [1] and further developed by [5][10]. The system is trained on full-word text units to allow a direct comparison with our PBMT counterpart. We refer to this system as NEURAL for the remainder of our experiments.

3.2. Phrase-based MT system

Our phrase-based MT system (which we refer to as MMT) is built upon the ModernMT framework: an extension of the phrase-based MT framework introduced in [16] that enables context-aware translation for fast and incremental training. Context-aware translation is achieved by the partitioning of the training data into homogeneous domains by a context analyzer (CA), which permits the rapid construction and interpolation of domain-specific translation, language, and reordering models based on the context received during a decoding run. It also permits the underlying models to be modified on-line. The decoder also exploits other standard features (phrase, word, distortion, and unknown word penalties) and performs cube-pruning search. A detailed description of the ModernMT project can be found in [17].

4. SLT Evaluation

We first report the translation results on the evaluation task in Table 1. NMT outperforms our best PBMT system by 4.5 BLEU in the absence of ASR errors (gold) and by approximately 3 BLEU across all ASR hypothesis inputs. Overall, the introduction of ASR errors results in decreases in BLEU by 5.5(±0.8) and 5.4(±0.8) and TER increases of 6.0(±0.9) and 6.2(±0.9) for MMT and NEURAL, respectively.

Table 2 provides the average sentence-level TER and ΔTER scores for the MMT and Neural MT systems. The average Neural MT TER scores are 5% better than the PBMT counterpart.

4.1. MT system ranking

Are there ASR error conditions in which PBMT remains a better solution than NMT, and if so, what are the properties of these utterances that makes them difficult for NMT? We take a closer look at the sentence-level translation scores by ranking the performance of each MT system on the utterances where ASR errors exist, in order to understand how each MT system handles
The table 3: Ranked evaluation of the SLT utterances containing ASR errors in tst2012. (Left) Counts of the winner decisions and the percentage of all of the decisions that were influenced by ASR errors. (Right) Mean TER scores across each sentence in the ranked set. The remainder of winner decisions are made on error-free ASR transcripts.

Lab	SLT Rank by sentence	TER (avg)	ASR Winner	Absolute %	Relative %		
	Winner	Count	Percentage	MMT	NEURAL		
fbk	MMT	257	32.4	51.1	64.0		
	NEURAL	373	47.1	58.9	44.5		
	Tie	162	20.5	54.1	54.1		
kit	MMT	213	30.6	46.3	59.1		
	NEURAL	347	49.9	55.0	41.1		
	Tie	135	19.4	52.9	52.9		
mtll	MMT	194	27.6	48.4	61.4		
	NEURAL	351	49.9	55.0	41.5		
	Tie	159	22.6	52.2	52.2		
naist	MMT	189	28.3	43.9	56.5		
	NEURAL	342	51.2	54.8	41.2		
	Tie	137	20.5	52.5	52.5		
nict	MMT	184	31.8	46.3	58.4		
	NEURAL	286	49.4	54.0	40.8		
	Tie	109	18.8	56.0	56.0		
prke	MMT	256	31.6	48.0	60.3		
	NEURAL	378	46.7	57.7	44.1		
	Tie	175	21.6	55.8	55.8		
rwth	MMT	221	29.9	47.0	59.2		
	NEURAL	383	51.8	55.5	41.3		
	Tie	135	18.3	55.0	55.0		
uedin	MMT	219	30.6	47.9	59.2		
	NEURAL	348	48.7	56.5	42.8		
	Tie	148	20.7	52.2	52.2		

Table 4: Changes in sentence-level TER rankings as ASR errors are introduced.

Gold Winner	ASR Winner	Absolute %	Relative %
MMT	NEURAL	19.8	16.1
Tie	MMT	4.3	14.9
NEURAL	MMT	6.4	12.4
Tie	NEURAL	3.9	19.5
NEURAL	Tie	5.0	25.0
Tie	NEURAL	3.9	19.5

It is likely that NMT may not be able to translate contextual patterns it hasn’t observed before. MMT on the other hand provides valid translation for both words; although the meaning of the sentence is lost due to the translation of ASR errors. A PBMT system will translate phrases consistently, as long as there is not another overlapping phrase pair in the translation model that leads to a path in the search graph with a higher score.

Utterance U85 in the TED talk test set shows longer range effects of ASR errors on translation in NMT. FBK’s ASR recognized the utterance as “But when I step back, I felt myself at the cold, hard center of a perfect storm.” In the translation of ASRgold, both MT systems translate the expression “stepped back” in the sense of “returned”. MMTgold provides an adequate translation as “je recule”, but in the process, the attention mechanism seems to have taken the incorrect source word and translation as context that corrupts the remainder of the translation. While MMTASR makes a translation error at the beginning of the sense, the remainder of the translated sentence remains the same as its gold translation. This suggests that ASR errors may have longer range effects on NMT systems in languages that are even observable in sentences that lack long distance dependencies.

Utterance U296 demonstrates an example where misrecognitions of short function words can cause the duplication of content words in NMT. While MMT handles the misrecognition “and⇒“an” by backoff by translating it independently from other phrases in the sentence, NEURAL, attaches “photo” both to the article “an” and additionally outputs “photo” at its usual position. As innocuous closed-class word errors that occur often in ASR, this could yield a significant problem in NMT.
5. Mixed-effects analysis and error distribution

In order to quantify the effects of ASR errors on each system, we build linear mixed-effects models [18] in a similar manner to our mixed-effects analysis in [2, 3]. We construct two sets of mixed-effects models, using the word error rate scores of the 8 ASR hypotheses as independent variables and the resulting increase in translation errors ΔTER as the response variable. The models contain random effect intercepts that account for the variance associated with the ASR system (SysID), the intrinsic difficulty of translating a given utterance (UtilID), and a random effects slope accounting for the variability of word error rate scores (WER) across systems. Instead of treating each different MT system as a random effect in a joint mixed-effect model, we construct a mixed-effects model for each MT system with the purpose of comparing the degree to which each ASR error type explains the increase in translation difficulty. The models are built using R [19] and the lme4 library [20]. The fixed-effects coefficients and the variance of the random effects for each model are shown in Table 5.

Our first models (WER-only) focus on the effects of the global WER score on translation quality (ΔTER). Our fitted models claim that each point of WER yields approximately the same change in ΔTER for NEURAL (0.61 ± 0.020) and MMT (0.56 ± 0.019).

Our second models (WERonly) break WER into its Substitution, Deletion, and Insertion error alignments, each being normalized by the length of the reference transcript. According to the fixed effects of the model, insertion errors have a greater impact on translation quality in MMT than deletions. More importantly, substitution errors have a significantly stronger impact in MMT on translation quality, which reflects the behavior we observe in the translation examples from Fig. 1. MMT appears to be affected by insertion and deletion error types equally.

We compare the average ASR error type frequencies in the FBK ASR utterances where NEURAL or MMT yield a better TER score. We introduce the “phonetic substitution span” error type from [3] to cover multi-word substitution errors (e.g. “anomaly” \Rightarrow “and that to me”). Focusing on utterances between 10 and 20 words, we observe in Table 6 that the cases where NEURAL scores highest consist of utterances with fewer deletion errors (0.22 versus 0.32). Although further investigation is needed to understand the interplay between substitution and deletion ASR errors in NMT, it is interesting to note that MMT seems to be more adept to handle error-prone ASR outputs, given the higher average WER (19.4% vs 17.7%).

Table 5: Mixed-effects summary, comparing Neural MT (NEURAL) to Phrase-based MT (MMT). Top: WER score as a single predictor of translation ΔTER. Bottom: Decomposing WER into the basic alignment error operations. Statistical significance at $p < 10^{-4}$ is marked with \cdot.

Fixed effects	NEURAL	MMT		
β	Std. Error	β	Std. Error	
(Intercept)	4.85e-04	4.68e-04	-5.76e-04	1.90e-04
Sub	6.80e-1	2.10e-2	5.34e-1	1.96e-2
Del	4.28e-1	2.41e-2	5.94e-1	2.20e-2
Ins	5.99e-1	3.01e-2	5.98e-1	2.68e-2

Table 6: Average ASR error counts for utterances translated best with NEURAL, MMT, or a tie. Translation TER is compared between the best MT system and the inferior MT system. Computed on utterances with reference (gold) length between 10-20 words.

Fixed effects	NEURAL	MMT	
β	Std. Error	β	Std. Error
(Intercept)	4.17 ± 0.27	4.17 ± 0.37	14.92 ± 0.44
WER	17.74 ± 1.69	19.30 ± 2.54	17.28 ± 2.77
Sub	1.19 ± 0.11	1.13 ± 0.17	0.20 ± 1.12
Del	0.22 ± 0.05	0.32 ± 0.07	0.33 ± 0.12
Ins	0.22 ± 0.05	0.27 ± 0.08	0.35 ± 0.12
Sub-span	1.00 ± 0.15	0.92 ± 0.19	0.75 ± 0.21

Table 7: ANOVA table for the fixed effects of the mixed-effects model.

Fixed effects	NEURAL	MMT		
β	Std. Error	β	Std. Error	
(Intercept)	4.28 ± 0.05	4.28 ± 0.05	-4.28 ± 0.05	
WER	6.09e-1	1.90e-2	5.34e-1	1.85e-2

Table 8: Random effects summary.

Fixed effects	NEURAL	MMT		
β	Std. Error	β	Std. Error	
UtilID (Intercept)	0.01	0.08	0.00	0.05
WER	0.23	0.48	0.22	0.47
SysID (Intercept)	0	0	0	0
Residual	0.01	0.07	0.00	0.06

Figure 1: Three examples of changes in NMT errors (NEURAL) caused by ASR errors: (1) the effects of unobserved context; (2) long distance effects of local ASR errors; (3) duplication of content words caused by substitution errors on short function words. Alternative translations are provided by MMT.
7. References

[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 5th International Conference on Learning Representations, San Diego, USA, ICLR, 2015.

[2] N. Ruiz and M. Federico, “Assessing the Impact of Speech Recognition Errors on Machine Translation Quality,” in Association for Machine Translation in the Americas (AMTA), Vancouver, Canada, 2014, pp. 261–274.

[3] ——, “Phonetically-Oriented Word Error Alignment for Speech Recognition Error Analysis in Speech Translation,” in IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). Scottsdale, Arizona: IEEE, December 2015.

[4] L. Bentivogli, A. Bisazza, M. Cettolo, and M. Federico, “Neural versus phrase-based machine translation quality: a case study,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp. 257–267. [Online]. Available: http://aclweb.org/anthology/D/D16/D16-1025.pdf

[5] M.-T. Luong and C. D. Manning, “Stanford neural machine translation systems for spoken language domain,” in International Workshop on Spoken Language Translation, Da Nang, Vietnam, 2015.

[6] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder-decoder approaches,” in Proceedings of the Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014, pp. 103–111. [Online]. Available: http://aclweb.org/anthology/W/W14/W14-4012.pdf

[7] A. Birch, P. Blunsom, and M. Osborne, “A quantitative analysis of reordering phenomena,” in StatMT ’09: Proceedings of the Fourth Workshop on Statistical Machine Translation. Morristown, NJ, USA: Association for Computational Linguistics, 2009, pp. 197–205.

[8] F. Hirschmann, J. Nurm, and J. Fünkranz, “What Makes Word-level Neural Machine Translation Hard: A Case Study on English-German Translation,” in Proceedings of the 25th International Conference on Computational Linguistics, Osaka, Japan, December 2016.

[9] J. Chung, K. Cho, and Y. Bengio, “A character-level decoder without explicit segmentation for neural machine translation,” arXiv preprint arXiv:1603.06147, 2016.

[10] R. Senneirch, B. Hardow, and A. Birch, “Neural machine translation of rare words with subword units,” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016. [Online]. Available: http://aclweb.org/anthology/P/P16/P16-1162.pdf

[11] O. Firtar, K. Cho, B. Sankaran, F. T. Y. Viral, and Y. Bengio, “Multi-way, multilingual neural machine translation,” Computer Speech & Language, 2016.

[12] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and M. Federico, “Report on the 10th IWSLT Evaluation Campaign,” in Proc. of the International Workshop on Spoken Language Translation, December 2013.

[13] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of the Association of Computational Linguistics (ACL), Philadelphia, PA, 2002, pp. 311–318. [Online]. Available: http://aclweb.org/anthology-new/P/P02/P02-1040.pdf

[14] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul, “A study of translation edit rate with targeted human annotation,” in 5th Conference of the Association for Machine Translation in the Americas (AMTA), Boston, Massachusetts, August 2006.

[15] M. A. Farajian, R. Chatterjee, C. Conforti, S. Jalalvand, V. Balaraman, M. A. Di Gangi, D. Ataman, M. Turchi, M. Negri, and M. Federico, “FBK’s Neural Machine Translation Systems for IWSLT 2016,” in Proceedings of the 9th International Workshop on Spoken Language Translation (WSLT), Seattle, WA, USA, December 2016.

[16] P. Koehn and J. Schroeder, “Experiments in Domain Adaptation for Statistical Machine Translation,” in Proceedings of the Second Workshop on Statistical Machine Translation. Prague, Czech Republic: Association for Computational Linguistics, June 2007, pp. 224–227. [Online]. Available: http://www.aclweb.org/anthology/W/W07/W07-0233

[17] N. Bertoldi, D. Caroselli, M. Madl, M. Cettolo, and M. Federico, “ModernMT – Second Report on Database and MT Infrastructure,” European Union Horizon 2020 research and innovation programme, Tech. Rep. D.32, December 2016.

[18] S. R. Searle, “Prediction, mixed models, and variance components,” Biometrics Unit, Cornell University, Tech. Rep. BU-468-M, June 1973. [Online]. Available: http://hdl.handle.net/1813/32559

[19] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013.

[20] D. Bates, M. Maechler, B. Bolker, and S. Walker, lme4: Linear mixed-effects models using Eigen and S4, 2014, r package version 1.1-6. [Online]. Available: http://CRAN.R-project.org/package=lme4