Automatic Quality Estimation for Natural Language Generation: Ranting (Jointly Rating and Ranking)

Ondřej Dušek, Karin Sevegnani, Ioannis Konstas & Verena Rieser
Charles University, Prague
Heriot-Watt University, Edinburgh
INLG, Tokyo, 31 Oct 2019
Our Task(s)

• **Quality estimation**: checking NLG output quality
 • just given input MR & NLG system output
 • **no human reference texts** for the NLG output
 • **supervised training** from a few human-annotated instances
 • well-established for MT, not so much in data-to-text NLG

• **Rating**: Given NLG output, check if it’s good or not (scale 1-6)

• **Ranking**: Given more NLG outputs, which one is the best?

MR: inform_only_match(name='hotel drisco', area='pacific heights')
NLG output: the only match i have for you is the hotel drisco in the pacific heights area.
Rating: 4 (on a 1-6 scale)

MR: inform(name='The Cricketers', eatType='coffee shop', rating=high, familyFriendly=yes, near='Café Sicilia')
NLG 1: The Cricketers is a children friendly coffee shop near Café Sicilia with a high customer rating.
NLG 2: The Cricketers can be found near the Café Sicilia. Customers give this coffee shop a high rating. It's family friendly.
Rank: better
Rank: worse
Why Quality Estimation?

• BLEU et al. don’t work very well – can we be better?
 • evaluating via correlation with humans

• We can do without human references – wider usage:
 • Evaluation, tuning (same as BLEU)
 • Tuning (same as BLEU)
 • Inference – improving running NLG systems

• Inference time use:
 • for rating: don’t show outputs rated below a threshold
 • use a backoff or humans
 • ranking: select best system output from an n-best list
Old Model (Dušek, Novikova & Rieser, 2017)

- Ratings only
- Dual-encoder
 - MR encoder
 - NLG output encoder
 - fully connected + linear
 - trained by squared error
- Final score is rounded
Our Model

- Ranking extension:
 - 2nd copy NLG output encoder + fully connected + linear
 - shared weights
 - trained by hinge rank loss
 - on difference from 2 ratings
- Can learn ranking & rating jointly
 - training instances mixed & losses masked
Synthetic Data
(Dušek, Novikova & Rieser, 2017)

- Adding more training instances
 - introducing artificial errors
 - randomly:
 - removing words
 - replacing words by random ones
 - duplicating words
 - inserting random words

- For rating data:
 - lower the rating by 1 for each error (with 6 → 4)

- This can be applied to NLG systems’ training data, too
 - assume 6 (maximum) as original instances’ rating

* articles and punctuation are dispreferred

Dušek, Sevegnani, Konstas & Rieser – Automatic Quality Estimation for NLG
Synthetic Ranking Pairs

- Different #’s of errors introduced to the same NLG output
- Fewer errors should rank better
- Ranking pairs are useful when the system is trained to rate, too!

```
X-name serves Chinese food .
```

1 error → better

```
food
X-name serves Chinese food .
```

2 errors → worse

```
X-name serves Chinese food .
```

```
X-name serves Chinese food .
```
Results: Rating

- Small 1-6 Likert-scale data (2,460 instances)
 - 3 systems, 3 datasets (hotels & restaurants)
 - 5-fold cross-validation
- Much better correlations than BLEU et al.
 - despite not needing references
 - synthetic data help a lot
 - statistically significant
 - correlation of 0.37 still not ideal
 - noise in human data?
- absolute differences (MAE/RMSE) not so great

System	Pearson	Spearman	MAE	RMSE
Constant	-	-	1.013	1.233
BLEU (needs human references)	0.074	0.061	2.264	2.731
Our previous (Dušek et al., 2017)	0.330	0.287	0.909	1.208
Our base	0.253	0.252	0.917	1.221
+ synthetic rating instances	0.332	0.308	0.924	1.241
+ synthetic ranking instances	0.347	0.320	0.936	1.261
+ synthetic from systems’ training data	0.369	0.295	0.925	1.250

(Novikova et al., EMNLP 2017)
https://aclweb.org/anthology/D17-1238
Results: Ranking

• Using E2E human ranking data (quality) – 15,001 instances
 • 21 systems, 1 domain
 • 5-way ranking converted to pairwise, leaving out ties
 • 8:1:1 train-dev-test split, no MR overlap
• Our system is much better than random in pairwise ranking accuracy
• Synthetic ranking instances help
 • +4% absolute, statistically significant
• Training on both datasets doesn’t help
 • different text style, different systems

System	P@1/Acc
Random	0.500
Our base	0.708
+ synthetic ranking instances	0.732
+ synthetic from systems’ training data	0.740

(Dušek et al., CS&L 59)
https://arxiv.org/abs/1901.07931
Conclusions

• Trained quality estimation can do much better than BLEU & co.
 • Pearson correlation with humans 0.37 vs. ~0.06-0.10
 • synthetic ranking instances help
• The results so far aren’t ideal (we want more than 0.37/74%)
• Domain/system generalization is still a problem
• Future work:
 • improving model
 • using pretrained LMs
 • obtaining “cleaner” user scores
 • more realistic synthetic errors
 • influence of error type on user ratings
Thanks

• Code & link to data + paper:
 http://bit.ly/ratpred

• Contact me:
 odusek@ufal.mff.cuni.cz
 http://bit.ly/odusek
 @tuetschek

Paper links: this paper: arXiv: 1910.04731
 previous model: arXiv: 1708.01759
 datasets used: ACL D17-1238, arXiv:1901.07931