Gate-tunable magnetoresistance in six-septuple-layer MnBi$_2$Te$_4$

Yaoxin Li1,8, Chang Liu1,2,8, Yongchao Wang3,8, Hao Li4,5, Yang Wu5,6, Jinsong Zhang1,7,*,8 and Yayu Wang1,7,*,9

1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China
2 Beijing Academy of Quantum Information Sciences, Beijing 100193, People’s Republic of China
3 Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, People’s Republic of China
4 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
5 Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China
6 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
7 Frontier Science Center for Quantum Information, Beijing 100084, People’s Republic of China

E-mail: jinsongzhang@mail.tsinghua.edu.cn and yayuwang@mail.tsinghua.edu.cn

Received 19 July 2021, revised 11 October 2021
Accepted for publication 1 November 2021
Published 1 December 2021

Abstract

The recently discovered antiferromagnetic topological insulator MnBi$_2$Te$_4$ hosts many exotic topological quantum phases such as the axion insulator and the Chern insulator. Here we report on systematic gate-voltage-dependent magneto-transport studies in six-septuple-layer MnBi$_2$Te$_4$. In the p-type carrier regime, we observe positive linear magnetoresistance (MR) when MnBi$_2$Te$_4$ is polarized in the ferromagnetic state by an out-of-plane magnetic field. Whereas in the n-type regime, distinct negative MR behaviors are observed. The behaviors of magnetoresistance in both regimes are highly robust against temperature up to the Néel temperature. Within the antiferromagnetic regime, the behavior of MR exhibits a transition from negative to positive under the control of gate voltage. The boundaries of the MR phase diagram can be explicitly marked by the gate-voltage-independent magnetic fields that characterize the processes of the spin-flop transition. The rich transport phenomena demonstrate the intricate interplay between topology, magnetism and dimensionality in MnBi$_2$Te$_4$.

Supplementary material for this article is available online

Keywords: linear magnetoresistance, magnetic topological insulator, MnBi$_2$Te$_4$

(Some figures may appear in color only in the online journal)

1. Introduction

Topological quantum materials such as topological insulators (TIs) [1, 2] and Weyl semimetals (WSMs) [3–5] can produce a lot of exotic topological quantum phenomena when there is interplay between the nontrivial topological band structure and other degrees of freedom. One outstanding example is the quantum anomalous Hall (QAH) effect that was first realized in magnetic doped TI films with ferromagnetic (FM) order, which is now called the Chern insulator [6–11] due to the absence of Landau levels. The axion insulator is
another topological state with nontrivial axion field θ in a bulk insulator [12–16]. Early experimental demonstrations of the axion insulator are mainly built on TI heterostructures with the top and bottom surface states gapped by opposite out-of-plane magnetization [17–19]. By applying an out-of-plane magnetic field, the axion insulator can be driven into the QAH insulator phase when the two surfaces are in the FM state.

Recently, the intrinsic magnetic TI, MnBi$_2$Te$_4$, has attracted a lot of attention in the topological matter community. It is found to be an A-type antiferromagnetic (AFM) TI below the Néel temperature T_N, of about 25 K [20–26]. A moderate magnetic field of about 5 T can drive it to a FM WSM [27]. When it is exfoliated into even-septuple-layer (even-SL) thin flakes, it is predicted and demonstrated to exhibit the axion insulator state in the AFM regime and the Chern insulator state in the FM regime [21, 22]. However, previous works on even-SL MnBi$_2$Te$_4$ mainly focus on the quantum phenomena with the Fermi level (E_F) tuned to the charge-neutral point (CNP). The gate voltage (V_g) dependence of magneto-transport and interplay between the band topology and magnetic order in conductive regimes have not been thoroughly investigated. Although the behavior of magnetoresistance (MR) in MnBi$_2$Te$_4$ has been reported by other recent works [28, 29], a detailed investigation of the V_g-dependent transport behaviors has been lacking due to the absence of quantization and insufficient gate tunability on thick samples. In addition, the WSM nature of FM MnBi$_2$Te$_4$ may further lead to exotic topological quantum phenomena, as demonstrated in other WSM systems, such as unsaturated linear MR [30–32] and chiral anomaly [30, 33, 34].

In this work, we fabricate a high-quality six-SL MnBi$_2$Te$_4$ device and measure the MR and Hall traces at different V_gs and temperatures (Ts). Six-SLs is selected because it is an appropriate thickness for ensuring the nontrivial band topology and reducing the bulk carriers at the same time. In previous works, the axion insulator and Chern insulator behaviors have been demonstrated in a six-SL device [25]. Here we reproduce the axion insulator to Chern insulator transition in the insulating regime. Then the magneto-transport at different V_gs in the six-SL device is thoroughly investigated. In the FM state, a positive linear MR characterizing the nature of WSMs is observed until $T > T_N$ where the Hall traces indicate p-type transporte. In contrast, the slope of linear MR turns to negative in the n-type regime. While in the low-field AFM state, we observe a reversal from negative to positive MR along with the transition from the p-type to the n-type regime at $T < T_N$. The experimental phase diagram summarizes from the V_g-dependent MR is consistent with the origin of magnetic order in MnBi$_2$Te$_4$.

2. Methods

MnBi$_2$Te$_4$ single crystals are grown by the direct reaction of Bi$_2$Te$_3$ and MnTe with a ratio of 1:1 in a vacuum-sealed silica ampoule. The mixture is heated to 973 K and then cooled down to 864 K slowly. The quality of the MnBi$_2$Te$_4$ crystal and its precursors is examined by x-ray diffraction, energy dispersive x-ray (EDX) spectra and high-resolution x-ray photoelectron spectroscopy (XPS) spectra. The growth method and characterization are similar to those used in previous works [25, 26]. The MnBi$_2$Te$_4$ bulk crystal we use is about 2 mm in size. MnBi$_2$Te$_2$ flakes are exfoliated onto 285 nm thick SiO$_2$/Si substrates treated by air plasma and the cleaved thin flake is about 10 μm \times 20 μm in size. The thickness of six-SL is determined by the optical contrast and atom force microscope measurement (see supplementary figure S1 (available online at stacks.iop.org/JPD/55/104001/mmedia)). The Hall-bar structure is fabricated by electron beam lithography followed by thermal evaporation of Cr/Au. All the device fabrication processes are carried out in an argon-filled glove box. Before transport measurement, the devices are all covered with 400 nm thick poly(methyl methacrylate). Transport measurements are performed in a commercial cryostat with the base temperature of 1.6 K and a magnetic field of up to 9 T. Standard four-probe lock-in techniques with low frequency (12.357 Hz) and an ac current of 200 nA are adopted. Both the longitudinal (R_{xx}) and Hall resistance (R_{yx}) are measured simultaneously. The V_g was applied between the sample and the dielectric by a dc voltage source.

3. Results and discussion

The magnetic and crystal structures of six-SL MnBi$_2$Te$_4$ are shown in figure 1(a). At zero magnetic field, the Mn$^{2+}$ moments between neighboring SLs are antiferromagnetically aligned. As an out-of-plane magnetic field is applied, MnBi$_2$Te$_4$ is polarized to the FM state. We fabricate six-SL MnBi$_2$Te$_4$ into a standard six-probe Hall bar geometry and firstly measure the R_{xx} and R_{yx} at different V_gs at $T = 1.6$ K. Figures 1(b) and (c) show the variation of R_{xx} and R_{yx} with V_g at $\mu_0H = 0$ and 9 T respectively. At $\mu_0H = 0$ T, a typical insulating behavior shows up at the CNP around $V_g = 30$ V as manifested by a large R_{xx} over 150 kΩ. In the V_g range from 24 to 40 V, E_F is tuned within the band gap and the system enters the axion insulator regime. When a magnetic field is applied, MnBi$_2$Te$_4$ is driven into the FM state, R_{xx} exhibits a quantized plateau along with vanishing R_{yx}, which are hallmark of the Chern insulator state. The magnetic field driven axion-insulator-to-Chern-insulator transition is displayed in the fourth panel of figure 1(d). All these transport characters are consistent with previous reports [25, 35–37].

Then we focus on the magneto-transport in the regimes far away from the CNP. Figure 1(d) shows some representative behaviors of MR and Hall traces at different V_gs. For $V_g \ll 12$ V, R_{xx} shows an overall p-type behavior in both AFM and FM states, indicating that E_F lies in the valence band. In contrast, R_{xx} shows the overall n-type behavior and E_F lies in the conduction band for $V_g \geq 50$ V. Hall traces show two characteristic magnetic fields $H_{c1} \sim 2.3$ T and $H_{c2} \sim 5.2$ T, which correspond to the beginning and ending of the spin-flop process, respectively, as labeled in figure 1(d). These features can also be identified in the MR curves. Notably, the R_{xx} curves show systematic and complex features with a varied
Figure 1. (a) Crystal and magnetic structure of six-SL MnBi$_2$Te$_4$ in the AFM and FM states. (b), (c) Gate-dependent R_{xx} and R_{yx} at $T = 1.6$ K at (b) $\mu_0 H = 0$ T and (c) $\mu_0 H = 9$ T. The CNP is about 30 V. (d) MR and Hall traces at different V_gs. Navy and magenta arrows mark the characteristic magnetic fields H_{c1} and H_{c2} respectively. Navy and magenta broken lines demote the quantized Hall and vanishing longitudinal resistance plateau, respectively.

magnetic field. In the FM state, R_{xx} shows a positive linear MR in the p-type regime. While in the AFM state, the negative MR in the p-type regime evolves into a positive one in the n-type regime. The distinct behaviors in MR reflects the close relationship between the carrier type and magnetic structure, and the mechanism is the main focus of this work.

To further understand these MR behaviors, we perform magneto-transport on six-SL MnBi$_2$Te$_4$ at varied Ts. In figures 2(a) and (b) we compare the T dependent MR curves for $V_g = 0$ and 50 V. A field independent R_{xx} is observed in the AFM state for $V_g = 0$ V, except for a weak peak at ~ 0.2 T (see supplementary figure S2 for details). The positive linear MR in the FM state persists up to 25 K which is above the T_N of six-SL MnBi$_2$Te$_4$. As T increases, H_{c1} and H_{c2} gradually decrease and drop to zero for $T \geq 20$ K so that the field range of linear MR increases systematically. In contrast to the positive MR at 0 V, the MR at 50 V in the FM state is negative.

To explain the opposite MR behavior in the p-type and n-type regimes, we investigate the origin of MR in the WSM phase and the asymmetry of electron and hole bands. Robust linear MR against magnetic field and temperature has been reported in many topological materials such as TIs [38–41] and WSMs [30–32, 42, 43]. And the WSM nature of the FM state of MnBi$_2$Te$_4$ is also predicted and then experimentally verified recently [21, 22, 36, 44]. In previous works the explanations of positive linear MR in WSMs are mainly based on the classical [45, 46] or quantum linear MR theory [47, 48]. Quantum theory predicts that MR is proportional to $1/n^2$, where n is the carrier density. According to this model, linear MR occurs in the extreme quantum limit when only few Landau levels are occupied. Although the hole density is very low for $V_g = 0$ V due to the linear dispersion of the WSM state of MnBi$_2$Te$_4$ ($\sim 10^{12}$ cm$^{-2}$, shown in figure 2(c)), the magnetic field at which we observe linear MR is still far from the criterion of quantum limit $n \ll (eH/c\hbar)^{3/2}$ [48]. Furthermore, as plotted in figure 2(c), carrier density against $dMR/\mu_0 dH$ at different Ts strongly deviates from the $1/n^2$ dependence predicted by the model. Here, $MR = (R_{xx}(\mu_0 H) - R_{xx}^0)/R_{xx}^0$, R_{xx}^0 is the intercept of the linear fitting of $R_{xx} - \mu_0 H$ in the FM state for $V_g = 0$ V and R_{xx} at 0 T for other V_gs. Therefore, the quantum theory fails to explain the linear MR here. On the other hand, classical linear MR theory considering the mobility fluctuation predicts that the MR is proportional to the larger of average mobility (μ) and the variance of mobility.
MR induced by the same mechanism can still occur. The bulk state hinders the perfect quantization but the negative scattering between the chiral edge state and the tric potential fluctuation induced by disorders, linear MR will occur \[\mu(H) \]. When the carrier density is too low to screen the electric potential fluctuation induced by disorders, linear MR will occur \[\mu(H) \]. As figure 2(c) shows, dMR/\mu_0 dH indeed increases with increasing mobility \(\mu \) though it slightly deviates from linear dependence. It is worth noting that the \(\mu \) we get from transport data is the average mobility and the linear relation of \(\mu \) only satisfies when \(\mu \) is larger than \(\Delta \mu \). A large fluctuation of mobility in MnBi\(_2\)Te\(_4\) may explain the deviation from linear dependence. But further experiments about the microscopic distribution of defect are needed to verify the model completely.

For \(V_g = 50 \) V, \(E_F \) is tuned out of the band gap and crosses the conduction band. However, the overall \(R_{xx} \) curve at \(V_g = 50 \) V is qualitatively the same as that at the CNP with \(V_g = 30 \) V except for the quantized transport. In the Chern insulator state of six-SL MnBi\(_2\)Te\(_4\) at the CNP, \(E_F \) is within the band gap and intersects with the dissipationless chiral edge state. Magnetic field can localize other dissipative conduction channels generated by thermal excitations and the negative MR occurs. The calculated band structure of few-layer MnBi\(_2\)Te\(_4\) in the FM state shows that the chiral edge state survives even when \(E_F \) lies beyond the band gap and coexists with the conduction band for a large energy range \[27, 36, 53 \]. The considerable scattering between the chiral edge state and bulk state hinders the perfect quantization but the negative MR induced by the same mechanism can still occur. The Weyl-band-induced positive MR is drowned by the chiral edge conduction, which is absent in the p-type regime. Asymmetric electron and hole bands in the FM state can explain the sign change in MR at different \(V_g \). And the metallic \(R_{xx} \) vs \(T \) relation in the FM state for \(V_g = 50 \) V is also consistent with this scenario.

Now we turn to the MR behavior in the AFM state. As figure 1(d) shows, when we set \(V_g = 12 \) V, it is still in the p-type regime. The positive linear MR in the FM state persists but a distinct negative linear MR in the AFM state emerges, which differs from that at 0 V. A MR peak at ~0.2 T is also observed. At higher \(T_s \), as shown in figure 3(a), the slope of MR decreases and the field range of negative MR shrinks. At \(T = 20 \) K and 25 K, the negative MR at low magnetic field vanishes and turns to positive in the whole field range. For clarity we only plot MR curves between \(\pm 3.5 \) T and the complete data from \(-9\) to \(9\) T is shown in supplementary figure S5. Interestingly, the MR curves for \(V_g \geq 30 \) V show the opposite behavior. At low \(T_s \), a positive MR is observed in the AFM state and the MR peak at \(V_g = 12 \) V turns into a dip. The slope of MR increases with increasing temperature up to 16 K, as shown in figure 3(b). At 20 K and 25 K, however, the slope of MR suddenly becomes negative. In figure 3(c), we display the temperature dependent dMR/\mu_0 dH. When \(T > T_N \), the AFM order vanishes and the MR shows the behavior like that in the FM state as discussed above.

At lower \(T_s \), the sign of MR and MR peak/dip are gate dependent, behaving as in Mn-doped Bi\(_2\)Te\(_{1−x}\)Se\(_x\) \[54 \]. The butterfly-shaped MR in the p-type regime is the conventional...
behavior associated with the suppression of spin scattering by magnetic field [24, 55]. And the linear MR seems like that in the system hosting electron–magnon scattering [56–60]. When the temperature is raised to above \(T_N \), the direction of local moments is random so that the spinwave is absent and the magnon-related negative MR vanishes. However, this behavior only emerges in a narrow gate range around \(V_g = 12 \text{V} \). The study of the excitation of the spin-wave and its gate dependence in \(\text{MnBi}_2\text{Te}_4 \) is desired to verify the scenario. When the \(E_F \) is tuned towards the CNP, the magnetic field tends to suppress the conductivity in the AFM state, turning the MR positive. We attribute this behavior to the emergence of a pair of helical hinge conducting channel in the axion insulator state, which is closely related to the AFM magnetic structure [61, 62]. When the magnetic field breaks the \(S \) symmetry in the axion insulator state, the axion field \(\theta \) deviates from the quantized value and the scattering between the helical conduction channels is enhanced. Similar MR behavior has been observed in many quantum spin Hall systems that host helical edge states protected by time-reversal symmetry [63, 64].

The competing mechanism between magnon-induced negative MR and edge-conduction-induced positive MR result in the temperature dependence of the slope of MR. The change in sign of MR in different regions can also be interpreted by this competing mechanism.

In figure 4(a), we summarise the \(\text{dMR/}\mu_0\text{dH} \) color map in the \(\mu_0\text{H–}V_g \) plane at \(1.6 \text{K} \). There are four prominent regions \(I \sim IV \) with two clear phase boundaries \(H_{c1} \) and \(H_{c2} \). Regions I and III locate the \(p \)-type regime and II and IV cross the charge-neutral regime and the \(n \)-type regime. Below \(H_{c1} \), \(\text{dMR/}\mu_0\text{dH} \) changes from a negative value in region III to a positive one in region IV due to the competition mechanism between electron–magnon scattering and edge conduction in the axion insulator state, as discussed above. When the magnetic field is tuned above \(H_{c2} \), the Weyl-band-induced positive MR in region I changes into negative MR due to the emergence of the chiral edge state in region II. Two characteristic magnetic fields \(H_{c1} \) and \(H_{c2} \) at different \(V_g \) are both nearly constant. The carrier independent characteristic fields are consistent with the origin of magnetism in \(\text{MnBi}_2\text{Te}_4 \), that is, the superexchange interaction between Mn–Te–Mn [21, 22]. When the temperature is increased, \(H_{c1} \) and \(H_{c2} \) decrease and nearly vanish above 20 K, the \(T_N \) of six-SL \(\text{MnBi}_2\text{Te}_4 \), as shown in figure 4(b). We only plot the color map of \(\text{dMR/}\mu_0\text{dH} \) at \(V_g = 30 \text{V} \) here because the temperature evolutions of \(H_{c1} \) and \(H_{c2} \) are gate independent (see supplementary figure S4). The distinct AFM regime with a positive MR and FM regime with a weak negative MR are separated by the spin-flop regime at low \(T_s \) and merge into the paramagnetic regime above 20 K.

4. Conclusions

The gate dependent magneto-transport of six-SL \(\text{MnBi}_2\text{Te}_4 \) displays systematic and complex behaviors resulting from the interplay among the band topology, magnetic structure and scattering mechanism. Distinct MR behaviors are observed in different parameter ranges. In the AFM state, we observe negative MR in the \(p \)-type regime, while it becomes positive when \(E_F \) is tuned from the CNP to the conduction band. This behavior can be explained by the competition between the spin scattering mechanism and the edge conduction in the axion insulator state. In the FM state, due to the asymmetric band structure, we observe a reversal from positive linear MR in the \(p \)-type regime to a negative MR in the \(n \)-type regime. The characteristic magnetic fields labeling the boundary of the AFM, spin-flop progress and the FM state are independent.

Figure 4. (a) Color map of \(\text{dMR/}\mu_0\text{dH} \) at \(T = 1.6 \text{K} \) in \(\mu_0\text{H–}V_g \) plane. Regions I – IV labeled in the diagram represent the typical MR behaviors discussed in the text. \(H_{c1} \) and \(H_{c2} \) from the data in figure 1(d) plotted in navy and magenta broken lines denote the phase boundary. Black broken line marks the CNP with \(V_g = 30 \text{V} \). (b) Phase diagram of \(\text{dMR/}\mu_0\text{dH} \) at \(V_g = 30 \text{V} \) in \(T–\mu_0\text{H} \) plane. AFM, spin-flop and FM states are separated by the navy and magenta broken lines which show the temperature-dependent behaviors discussed in the text.
of V_g. When the temperature is increased to above T_c, AFM order disappears and all the critical magnetic fields are reduced to zero. With the presence of such rich MR phenomena, MnBi$_2$Te$_4$ serves as an ideal platform for exploring the interplay between band topology and intrinsic magnetism.

Data availability statement

All raw and derived data used to support the findings of this work are available from the authors on request.

Acknowledgments

This work is supported by the National Key R&D Program of China Grant No. 2018YFA0307100, the Basic Science Center Project of NSF (Grant No. 51788104), and NSF Grant Nos. 51991340 and 21975140. This work is supported in part by Beijing Advanced Innovation Center for Future Chip (ICFC).

Author contributions

Y Y W and J S Z supervised the research. Y X L, C L and Y C W fabricated the devices and performed the transport measurements. H L and Y W grew the MnBi$_2$Te$_4$ crystals. J S Z, Y Y W, Y X L and C L prepared the manuscript with comments from all authors.

ORCID iDs

Yaoxin Li https://orcid.org/0000-0002-4737-4427
Chang Liu https://orcid.org/0000-0002-3721-3902
Yongchao Wang https://orcid.org/0000-0002-1869-2290
Yang Wu https://orcid.org/0000-0002-0460-3621
Jinsong Zhang https://orcid.org/0000-0002-3601-4995
Yayu Wang https://orcid.org/0000-0003-2330-1642

References

[1] Hasan M Z and Kane C L 2010 Colloquium: topological insulators Rev. Mod. Phys. 82 3045–67
[2] Qi X-L and Zhang S-C 2011 Topological insulators and superconductors Rev. Mod. Phys. 83 1057–110
[3] Yan B and Felser C 2017 Topological materials: Weyl semimetals Annu. Rev. Condens. Matter Phys. 8 337–54
[4] Armitage N P, Mele E and Vishwanath A 2018 Weyl and Dirac semimetals in three-dimensional solids Rev. Mod. Phys. 90 015001
[5] Lv B Q, Qian T and Ding H 2021 Experimental perspective on three-dimensional topological semimetals Rev. Mod. Phys. 93 025002
[6] Chang C-Z et al 2013 Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator Science 340 167–70
[7] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator Nat. Phys. 10 731–6
[8] Kou X et al 2014 Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit Phys. Rev. Lett. 113 137201
[9] Chang C-Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S-C, Liu C, Chan M H W and Moodera J S 2015 High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator Nat. Mater. 14 473–7
[10] Grauer S, Schreyeck S, Winnerlein M, Brunner K, Gould C and Molenkamp L W 2015 Coincidence of superparamagnetism and perfect quantization in the quantum anomalous Hall state Phys. Rev. B 92 201304
[11] Liu M, Wang W, Richardella A R, Kandala A, Li J, Yazdani A, Samarth N and Ong N P 2016 Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator Sci. Adv. 2 e1600167
[12] Qi X-L, Hughes T L and Zhang S-C 2008 Topological field theory of time-reversal invariant insulators Phys. Rev. B 78 195424
[13] Essin A M, Moore J E and Vanderbilt D 2009 Magnetoelectric polarizability and axion electrodynamics in crystalline insulators Phys. Rev. Lett. 102 146805
[14] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Topological semimetal and Fermi-arc surface states in electronic structure of pyrochlore iridates Phys. Rev. B 83 205101
[15] Nenno D M, Garcia C A C, Gooth J, Felser C and Narang P 2020 Axion physics in condensed-matter systems Nat. Rev. Phys. 2 682–96
[16] Sekine A and Nomura K 2021 Axion electrodynamics in topological materials J. Appl. Phys. 129 141101
[17] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M and Tokura Y 2017 A magnetic heterostructure of topological insulators as a candidate for an axion insulator Nat. Mater. 16 516–21
[18] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M and Tokura Y 2017 Tailoring tricolor structure of magnetic topological insulator for robust axion insulator Sci. Adv. 3 eaao1669
[19] Xiao D et al 2018 Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures Phys. Rev. Lett. 120 056801
[20] Otrokov M M et al 2019 Prediction and observation of an antiferromagnetic topological insulator Nature 576 416–22
[21] Li J, Li Y, Du S, Wang Z, Gu B-L, Zhang S-C, He K, Duan W and Xu Y 2019 Intrinsic magnetic topological insulators in van der Waals layered MnBi$_2$Te$_4$-family materials Sci. Adv. 5 eaaw5685
[22] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Topological axion states in the magnetic insulator MnBi$_2$Te$_4$ with the quantized magnetoelectric effect Phys. Rev. Lett. 122 206401
[23] Gong Y et al 2019 Experimental realization of an intrinsic magnetic topological insulator* Chin. Phys. Lett. 36 076801
[24] Cui J, Shi M, Wang H, Yu F, Wu T, Luo X, Ying J and Chen X 2019 Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi$_2$Te$_4$ Phys. Rev. B 99 155125
[25] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator Nat. Mater. 19 522–7
[26] Li H, Liu S, Liu C, Zhang J, Xu Y, Yu R, Wu Y, Zhang Y and Fan S 2020 Antiferromagnetic topological insulator MnBi$_2$Te$_4$: synthesis and magnetic properties Phys. Chem. Chem. Phys. 22 556–63
[27] Li J, Wang C, Zhang Z, Gu B-L, Duan W and Xu Y 2019 Magnetically controllable topological quantum phase
transitions in the antiferromagnetic topological insulator MnBi$_2$Te$_3$. *Phys. Rev. B* 100 121103

[28] Lei X et al 2020 Surface-induced linear magnetoresistance in the antiferromagnetic topological insulator MnBi$_2$Te$_3$. *Phys. Rev. B* 102 235431

[29] Zhu P-F 2020 From negative to positive magnetoresistance in the intrinsic magnetic topological insulator MnBi$_2$Te$_3$. *Phys. Rev. B* 101 075425

[30] Huang X et al 2015 Observation of the Chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. *Phys. Rev. X* 5 031023

[31] Ali M N et al 2014 Large, non-saturating magnetoresistance in WTe$_2$. *Nature* 514 205–8

[32] Ghimire N J, Luo Y, Neupane M, Williams D J, Bauer E D and Ronning F 2015 Magnetotransport of single crystalline NbNAs. *J. Phys.: Condens. Matter* 27 152201

[33] Arnold F et al 2016 Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. *Nat. Commun.* 7 1–7

[34] Li Y, Wang Z, Li P, Yang X, Shen Z, Sheng F, Li X, Lu Y, Zheng Y and Xu Z-A 2017 Negative magnetoresistance in Weyl semimetals NbNAs and NbP: intrinsic chiral anomaly and extrinsic effects. *Front. Phys.* 12 127205

[35] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi$_2$Te$_3$. *Science* 367 895–900

[36] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2020 High-Chern-number and high-temperature quantum Hall effect without Landau levels. *Nat. Sci. Rev.* 7 1280–7

[37] Ovchinnikov D et al 2021 Intertwined topological and magnetic orders in atomically thin Cnern insulator MnBi$_2$Te$_3$. *Nano Lett.* 21 2544–50

[38] Qu D-X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi$_2$Te$_3$. *Science* 329 821–4

[39] Tang H, Liang D, Qu R L J and Gao X P A 2011 Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi$_2$Se$_3$. *Nano Lett.* 11 4859

[40] He H, Li B, Liu H, Guo X, Wang Z, Xie M and Wang J 2012 High-field linear magneto-resistance in topological insulator Bi$_2$Se$_3$. *Thin Films* *Appl. Phys. Lett.* 100 032105

[41] Tian J, Chang C, Cao H, He K, Ma X, Xue Q and Chen Y P 2014 Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gate-tunable bulk and surface conduction. *Sci. Rep.* 4 4859

[42] Liang D D, Wang Y J, Xi C Y, Zhen W L, Yang J, Pi L, Zhu W K and Zhang C J 2018 Extreme magnetoresistance and Shubnikov-de Haas oscillations in ferromagnetic DySb and EuSb$_2$Te$_3$. *AIP Mater.* 6 080610

[43] Wu Z M, Ruan Y R, Tang F, Zhang L, Fang Y, Zhang J-M, Han Z D, Tang R J, Qian B and Jiang X F 2019 Multiple metamagnetism, extreme magnetoresistance and nontrivial topological electronic structures in the magnetic semimetal candidate holmium monobismuthide. *New J. Phys.* 21 093063

[44] Lee S H et al 2020 Evidence for a magnetic-field-induced ideal type-II Weyl state in antiferromagnetic topological insulator MnBi$_2$Se$_3$. *Phys. Rev. X* 11 031032

[45] Parish M M and Littlewood P B 2003 Non-saturating magnetoresistance in heavily disordered semiconductors. *Nature* 426 162–5

[46] Parish M M and Littlewood P B 2005 Classical magnetotransport of inhomogeneous conductors. *Phys. Rev. B* 72 094417

[47] Abrikosov A A 1998 Quantum magnetoresistance. *Phys. Rev. B* 58 2788–94

[48] Abrikosov A A 2000 Quantum linear magnetoresistance EPL (Europhys. Lett.) 49 780

[49] Zeugner A et al 2019 Chemical aspects of the candidate antiferromagnetic topological insulator MnBi$_2$Te$_4$. *Chem. Mater.* 31 2795–806

[50] Hou F et al 2020 Te-vacancy-induced surface collapse and reconstruction in antiferromagnetic topological insulator MnBi$_2$Te$_3$. *ACS Nano* 14 11262–72

[51] Huang Z, Du M-H, Yan J and Wu W 2020 Native defects in antiferromagnetic topological insulator MnBi$_2$Te$_4$. *Phys. Rev. Mater.* 4 121202

[52] Yuan Y et al 2020 Electronic states and magnetic response of MnBi$_2$Te$_3$ by scanning tunneling microscopy and spectroscopy. *Nano Lett.* 20 3271–7

[53] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi$_2$Te$_3$ films. *Phys. Rev. Lett.* 122 107202

[54] Checkelsky J G, Ye J, Onose Y, Iwasa Y and Tokura Y 2012 Dirac-fermion-mediated ferromagnetism in a topological insulator. *Nat. Phys.* 8 729–33

[55] Lee S H et al 2019 Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi$_2$Te$_3$. *Phys. Rev. B* 101 012011

[56] Mihai A P, Attane J P, Marty A, Warin P and Samson Y 2008 Electron-magnon diffusion and magnetization reversal detection in FePt thin films. *Phys. Rev. B* 77 060401

[57] Nguyen V D, Vila L, Marty A, Warin P, Vergnaud C, Jamet M, Notin L, Beigné C and Attane J P 2013 Asymmetric magnetoresistance of nanowires with perpendicular anisotropy seen as a contribution from the contacts. *J. Appl. Phys.* 113 183906

[58] Wu W-B et al 2020 Complex magnetic ordering in nanoporous [Co/Pd]$_x$-IrMn multilayers with perpendicular magnetic anisotropy and its impact on magnetization reversal and magnetoresistance. *Phys. Chem. Chem. Phys.* 22 3661–74

[59] Ohta T, Tokuda M, Iwakiri S, Sakai K, Driesen B, Okada Y, Kobayashi K and Niimi Y 2021 Butterfly-shaped magnetoresistance in van der Waals ferromagnet Fe$_3$GeTe$_2$. *Phys. Rev. X* 11 021014

[60] Taniguchi H et al 2020 Butterfly-shaped magnetoresistance in triangular-lattice antiferromagnet Ag$_2$CrO$_2$. *Sci. Rep.* 10 2525

[61] Li Y, Liu C, Wang Y, Lian Z, Li H, Wu Y, Zhang J and Wang Y 2021 Nonlocal transport in axion insulator state of MnBi$_2$Te$_3$. (arXiv:210510390) [Cond-Mat]

[62] Lin W et al 2021 Direct visualization of edge state in van der Waals ferromagnet Fe$_3$GeTe$_2$. *AIP Adv.* 11 025014

[63] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X-L and Zhang S-C 2007 Quantum spin Hall insulator state in HgTe quantum wells. *Science* 318 766–70

[64] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. *Science* 359 76–79