VAR2CSA and protective immunity against pregnancy-associated Plasmodium falciparum malaria

L. HVIIID and A. SALANTI

Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark

SUMMARY

People living in areas with stable transmission of P. falciparum parasites acquire protective immunity to malaria over a number of years and following multiple disease episodes. Immunity acquired this way is mediated by IgG with specificity for parasite-encoded, clonally variant surface antigens (VSA) on the surface of infected erythrocytes (IEs). However, women in endemic areas become susceptible to P. falciparum infection when they become pregnant, particularly for the first time, regardless of previously acquired protective immunity. This conundrum was resolved when it was observed that the selective placental accumulation of IEs that characterizes pregnancy-associated malaria (PAM) is caused by an immunologically and functionally unique subset of VSA (VSA_{PAM}) that is only expressed by parasites infecting pregnant women, and that protective immunity to PAM is mediated by IgG with specificity for VSA_{PAM}. In this review we summarize the research leading to the identification of the distinctly structured PfEMP1 variant VAR2CSA as the dominant PAM-type VSA and as the clinically most important target of the protective immune response to placental P. falciparum infection.

Key words: Antibodies, immunity, malaria, Plasmodium falciparum, pregnancy, VAR2CSA, variant surface antigens.

INTRODUCTION

Plasmodium falciparum malaria is both the commonest and most serious form of malaria affecting humans, and is an infection of colossal medical and economic consequence (Greenwood and Mutabingwa, 2002; Miller et al. 2002; Sachs and Malaney, 2002). In areas of intense parasite transmission, severe P. falciparum malaria is concentrated among infants and young children, because acquisition of protective immunity causes malaria-related mortality and severe morbidity to decrease with increasing age. However, development of immunity is slow, and substantial protection is only achieved after a number of disease episodes. Even then, immunity is partial and though severe morbidity is rare among adults, sterile protection is probably never achieved. Several studies have documented the efficacy of passive immunization of malaria patients with IgG from clinically immune adults, showing that antibodies targeting asexual blood-stage parasites are likely to contribute to this protection. However, parasite-encoded, clonally variant surface antigens (VSA) expressed on the surface of the infected erythrocytes (IEs) appear to be of particular importance (Marsh et al. 1989), and the intra- and inter-clonal diversity of VSA go a long way towards explaining the sluggish acquisition of immunological protection (reviewed by Hviid, 2005). The general rule of P. falciparum malaria as a childhood disease in areas of intense parasite transmission has one important exception that has attracted substantial attention in recent years: pregnancy-associated malaria (PAM).

PREGNANCY-ASSOCIATED MALARIA

It is a long-recognized fact that pregnant women are at increased risk of malaria, with adverse maternal and foetal consequences (reviewed by Duffy and Desowitz, 2001). This pregnancy-related susceptibility is apparent despite previously acquired protective immunity, and even in malaria-endemic areas, P. falciparum infection is therefore both more prevalent and more severe in pregnant women than in their non-pregnant peers (Walton, 1949). It has often been speculated that PAM is an unavoidable consequence of maternal immuno-suppression or -modulation to protect the foetal allograft from for resistance to malaria for the first months of life in infants born to clinically immune mothers (Bruce-Chwatt, 1952). Antibodies with specificity for a number of antigens expressed by asexual blood-stage parasites are likely to contribute to this protection. However, parasite-encoded, clonally variant surface antigens (VSA) expressed on the surface of the infected erythrocytes (IEs) appear to be of particular importance (Marsh et al. 1989), and the intra- and inter-clonal diversity of VSA go a long way towards explaining the sluggish acquisition of immunological protection (reviewed by Hviid, 2005). The general rule of P. falciparum malaria as a childhood disease in areas of intense parasite transmission has one important exception that has attracted substantial attention in recent years: pregnancy-associated malaria (PAM).
rejection (Menendez, 1995). However, pregnancy-induced immune modulation mainly affects the cellular arm of immunity, whereas humoral immunity (upon which protection from malaria hinges) is largely unaffected (reviewed by Guilbert, Abbasi and Mosmann, 2001). Furthermore, susceptibility to PAM is concentrated among women of low parity, in particular primigravidae (McGregor, 1984). This suggests that susceptibility to PAM is due to a specific absence of immunity to a particular form or subset of *P. falciparum* parasites that can only infect pregnant women, and that protection against PAM-specific parasites is acquired following exposure to them during pregnancy in a manner similar to acquisition of protection from malaria in general. The hypothesis of a pregnancy-specific subset of *P. falciparum* is further supported by the facts that PAM is characterized by a selective accumulation of IEs in the placenta (Blacklock and Gordon, 1925) and that pregnancy-associated parasitaemia generally resolves spontaneously shortly after expulsion of the placenta at delivery (Nguyen-Dinh *et al.* 1988).

PAM is caused by functionally and immunologically unique parasites

Erythrocytes infected by mature (trophozoite and schizont) stages of *P. falciparum* parasites can bind to a range of different receptors in the host vasculature. The first adhesion receptor identified was CD36 (Barnwell, Ockenhouse and Knowles, 1985; Ockenhouse *et al.* 1989), followed by a range of other molecules, including the proteoglycan chondroitin sulphate A (CSA) (Robert *et al.* 1995; Rogerson *et al.* 1995). The first direct piece of evidence in favour of the hypothesis of a discrete parasite subset being responsible for PAM was the finding that IEs isolated from the placenta of women with PAM exclusively bind to CSA, a receptor that is rarely – if ever – exploited as an adhesion receptor by *P. falciparum*-IEs in non-PAM infections (Fried and Duffy, 1996). This key observation was followed by the similarly important observation that placental and CSA-adhering IEs are not only functionally but also immunologically distinct from all other IEs (Fried *et al.* 1998; Beeson *et al.* 1999; Ricke *et al.* 2000). As adhesion of IEs in general is mediated by VSA, these findings together pointed to a functionally and immunologically distinct subset of VSA that is exclusively expressed by placental and CSA-adhering parasites; a subset often referred to as VSAPAM.

Protective immunity to PAM is mediated by IgG with specificity for PAM-specific VSA

It is generally suspected that protective immunity to malaria depends on VSA-specific IgG that can interfere with receptor-specific IE adhesion (David *et al.* 1983; Udeinya *et al.* 1983), and that the piecemeal acquisition of protective immunity to malaria reflects the need to acquire a broad repertoire of such antibodies with specificity for a multitude of antigenically distinct VSA (Marsh and Howard, 1986; Bull *et al.* 1998). The importance of VSAPAM in protective immunity against PAM was therefore reinforced when it was shown that serum antibodies can inhibit adhesion of IEs to CSA in a parity-dependent manner (Fried *et al.* 1998; Ricke *et al.* 2000). In addition to inhibition of IE adhesion, opsonization and phagocytosis of IEs may also play an important role in protective immunity to PAM. The dominance of cytophilic subclasses among VSAPAM-specific IgG (Elliott *et al.* 2005; Megnekou *et al.* 2005) and the finding of impaired opsonization of VSAPAM-expressing IEs in HIV-infected women (Mount *et al.* 2004; Keen *et al.* 2007) support this possibility. In any case, levels of VSAPAM-specific IgG at delivery correlate inversely with placental parasitaemia (Staalsoe *et al.* 2001), and direct and compelling evidence of the clinical importance of CSA adhesion-inhibitory as well as VSAPAM-specific IgG have recently become available (Duffy and Fried, 2003; Staalsoe *et al.* 2004).

Molecular identification of VSAPAM

Most efforts to identify VSAPAM in molecular terms have focused on the best-described family of VSA, *P. falciparum* erythrocyte membrane protein 1 (PfEMP1) (Leech *et al.* 1984). These high-molecular weight antigens are encoded by the var multi-gene family (Baruch *et al.* 1995; Smith *et al.* 1995; Su *et al.* 1995). Scherf *et al.* (1998) observed transcription of a particular var gene, dubbed varCSA, in *P. falciparum* FCR3 selected for IE adhesion to CSA, and the Duffy-binding-like (DBL) 3-y domain of the encoded PfEMP1 variant was found to have affinity for CSA (Buffet *et al.* 1999). Most *P. falciparum* genomes contain a var gene very similar to varCSA, and these related genes were grouped together in the varlesa sub-family of var genes (Rowe *et al.* 2002; Salanti *et al.* 2002). These findings, and the observation that varlesa is often highly transcribed by placental parasites (Duffy and Duffy, 2002), fitted the earlier prediction (Fried *et al.* 1998) that the antigen mediating IE adhesion to CSA, and the suspected target of PAM-specific immunity, was conserved between parasite clones. However, a number of other findings do not support the hypothesis of VAR1CSA as a PAM-type VSA, or its involvement as a target of protective immunity against PAM. Thus, high transcription of varlesa is not restricted to placental and CSA-adhering parasites (Rowe *et al.* 2002; Kyes *et al.* 2003), and levels of VAR1CSA-specific IgG do not correlate with gender or parity, in contrast to expectation regarding VSAPAM-specific IgG
VAR2CSA and immunity to pregnancy-malaria

(Jensen et al. 2003). Finally, the ability of IEs to adhere to CSA is maintained after disruption of var1csa (Andrews et al. 2003).

An unusually structured gene, var2csa, is selectively transcribed by CSA-adhering and placental parasites

The availability of the complete P. falciparum genome (Gardner et al. 2002) opened the possibility of more precise analysis of var gene transcription than had previously been possible with degenerate primers (Taylor et al. 2000). Taking this approach, Salanti et al. (2003) analyzed changes in var gene transcription in response to selection of NF54-IEs for adhesion to CSA, which resulted in acquisition of the VSA_PAM-type gender-specific and parity-dependent IgG recognition pattern of selected IEs (Ricie et al. 2000). The striking result was that the selection resulted in markedly increased and dominant transcription of a single, distinctly structured, var gene, PFL0030c (Salanti et al. 2003). PFE1640w, which belongs to the var1csa sub-family previously implicated in adhesion of IE to CSA, is a pseudo-gene in NF54/3D7, but data from other parasite lines have shown that selection for IE adhesion to CSA does not increase the abundance of var1csa transcripts (Salanti et al. 2003). Genes with high similarity to PFL0030c, and now grouped in the var2csa sub-family, appear to be present in all P. falciparum clones and to be selectively transcribed by CSA-selected and placental parasites alike (Salanti et al. 2003; Duffy et al. 2005; Tuikue Ndam et al. 2005). The findings that several VAR2CSA domains have affinity for CSA (Gamain et al. 2005) and that disruption of var2csa interferes with the ability to acquire the CSA-adhering phenotype further supports the PAM-relevance of this sub-family (Viebig et al. 2005; Duffy et al. 2006). It is noteworthy that the var2csa response to CSA-selection had gone unnoticed in earlier studies because they used degenerate primers targeting DBL1-α or DBL1-γ encoding sequences (Taylor et al. 2000; Fried and Duffy, 2002); domains that are not present in VAR2CSA.

VAR2CSA has the characteristics expected of VSA_PAM

The distinct structure of var2csa compared to other var genes corresponded well with the expected functional and antigenic uniqueness of the PAM-type VSA it was assumed to encode (Lavstsen et al. 2003; Kraemer and Smith, 2003). Indeed, analysis of levels of VAR2CSA-specific IgG in P. falciparum-exposed adults confirmed the female-restricted and parity-dependent pattern expected of VSA_PAM (Salanti et al. 2004). Importantly, VAR2CSA is present on the surface of intact VSA_PAM-type IEs and absent from the surface of IEs that do not have this phenotype (Salanti et al. 2004; Barfod et al. 2007). Finally, we have shown that high plasma levels of VAR2CSA-specific IgG correlate with protection from adverse clinical consequences of PAM (Salanti et al. 2004).

VAR2CSA appears to be the dominant target of the protective immune response to PAM

The importance of VSA-specific IgG relative to IgG with other antigen specificities for clinical protection against P. falciparum malaria is unknown, but may be high (Marsh et al. 1989). A parallel issue is the importance of IgG with specificity for VAR2CSA relative to other VSA_PAM specificities in protection against PAM. To address this latter question, we cloned memory B cells from recently pregnant, P. falciparum-exposed multigravidae, using a recently developed and highly efficient immortalization method (Traggiai et al. 2004). The clones were subsequently screened for production of VSA_PAM-specific monoclonal IgG using a panel of IEs displaying the VSA_PAM phenotype. All except one of the eight VSA_PAM-specific monoclonals had specificity for either the DBL3-X or the DBL5-ε domain of VAR2CSA (Barfod et al. 2007). The characteristics of the remaining antibody suggest that it is also VAR2CSA-specific. Although var2csa is composed of alternating stretches of substantial and restricted interclonal diversity (Salanti et al. 2003; Dahlbäck et al. 2006; Trimnell et al. 2006), all the human monoclonal IgG antibodies targeted polymorphic rather than conserved epitopes (Barfod et al. 2007). This finding suggests that domains of IE surface-expressed VAR2CSA that are accessible to protective antibodies are under selection pressure that favours polymorphism, in agreement with conclusions drawn from in silico analysis of var2csa (Dahlbäck et al. 2006; Trimnell et al. 2006). This pressure is most likely due to protective host immunity, supporting the clinical significance of the VAR2CSA-specific IgG response to PAM.

CONCLUDING REMARKS

VAR1CSA (as well as several non-PfEMP1 antigens) continues to be implicated in the pathogenesis as well as in the protective immune response to pregnancy-specific P. falciparum infection (Chia et al. 2005; Badaut et al. 2007), and is being explored as a candidate for development of vaccines against PAM (Gamain et al. 2004; Chia et al. 2005; Bir et al. 2006). However, from our perspective the bulk of current evidence identifies VAR2CSA as the main antigen mediating placental sequestration of P. falciparum-IEs and as the dominant and clinically most relevant target of the human IgG response to placental P. falciparum infection.
ACKNOWLEDGEMENTS

The PAM-specific research at Centre for Medical Parasitology receives financial support from the Bill and Melinda Gates Foundation, the Commission of the European Communities, the European Malaria Vaccine Initiative, the Danish Medical Research Council, and the Danish Research Council for Development Research.

REFERENCES

Andrews, K. T., Pirrit, L. A., Przyborski, J. M., Sanchez, C. P., Sterkers, Y., Ricken, S., Wickert, H., Lepolard, C., Avril, M., Scherf, A., Gysin, J. and Lanzer, M. (2003). Recovery of adhesion to chondroitin-4-sulphate in Plasmodium falciparum var CSA disruption mutants by antigenically similar PfEMP1 variants. *Molecular Microbiology* 49, 655–669.

Badaut, C., Faure, G., Tuikue Ndam, N. G., Bertin, G., Chaffotte, A., Khattab, A., Klinkert, M.-Q., Deloron, P. and Bentley, G. A. (2007). Receptor-binding studies of the DBLγ domain of Plasmodium falciparum erythrocyte membrane protein 1 from a placental isolate. *Molecular and Biochemical Parasitology* 151, 89–99.

Barford, L., Bernasconi, N., Dahlbäck, M., Jarrosay, D., Andersen, P. H., Salanti, A., Ofori, M. F., Turner, L., Resende, M., Nielsen, M. A.,Theander, T. G., Sallusto, F., Lanzavecchia, A. and Hviid, L. (2007). Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA. *Molecular Microbiology* 63, 335–347.

Barnwell, J. W., Ockenhouse, C. F. and Knowles, D. M., M. (11, 1985). Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum infected erythrocytes to monocytes, endothelial, and C32 melanoma cells. *Journal of Immunology* 135, 3494–3497.

Baruch, D. I., Pasloske, B. L., Singh, H. B., Bi, X., Ma, X. C., Feldman, M., Taraschi, F., Lanzer, M. D., Hommel, M., Miller, L. H., Udoinya, I. J. and Oligino, L. D. (1983). Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. *Proceedings of the National Academy of Sciences, USA* 80, 5075–5079.

Duffy, M. F., Byrne, T. J., Elliott, S. R., Wilson, D. W., Rogerson, S. J., Beeson, J. G., Noviyanti, R. and Brown, G. V. (2005). Broad analysis reveals a consistent pattern of var gene transcription in Plasmodium falciparum repeatedly selected for a defined adhesion phenotype. *Molecular Microbiology* 56, 774–788.

Duffy, M. F., Maier, A. G., Byrne, T. J., Marty, A. J., Elliott, S. R., O'Neill, M. T., Payne, P. D., Rogerson, S. J., Cowman, A. F., Crabb, B. S. and Brown, G. V. (2006). VAR2CSA is the principal ligand for chondroitin sulfate A in two allogeneic isolates of Plasmodium falciparum. *Molecular and Biochemical Parasitology* 148, 117–124.

Duffy, P. E. and Desowitz, R. S. (2001). Pregnancy malaria throughout history: dangerous labors. In *Malaria in Pregnancy. Deadly Parasite, Susceptible Host.* (ed. P. E. Duffy and M. Fried), pp. 1–25. Taylor & Francis, London.

Duffy, P. E. and Fried, M. (2003). Antibodies that inhibit Plasmodium falciparum adhesion to chondroitin sulfate A are associated with increased birth weight and the gestational age of newborns. *Infection and Immunity* 71, 6620–6623.

Elliott, S. R., Brennan, A. K., Beeson, J. G., Tadesse, E., Molyneux, M. E., Brown, G. V. and Rogerson, S. J. (2005). Placental malaria induces variant-specific antibodies of the cytotoxic subtypes immunoglobulin G1 (IgG1) and IgG3 that correlate with adhesion inhibitory activity. *Infection and Immunity* 73, 5903–5907.

Fried, M. and Duffy, P. E. (1996). Adherence of Plasmodium falciparum to chondroitin sulphate A in the human placenta. *Science* 272, 1502–1504.
Fried, M. and Duffy, P. E. (2002). Two DBL subtypes are commonly expressed by plasmodial isolates of Plasmodium falciparum. Molecular and Biochemical Parasitology 122, 201–210.

Fried, M., Nosten, F., Brockman, A., Brabin, B. T. and Duffy, P. E. (1998). Maternal antibodies block malaria. Nature 395, 851–852.

Gamain, B., Smith, J. D., Avril, M., Baruch, D. I., Scheidig, C., Scherf, A., Gysin, J. and Miller, L. H. (2005). Identification of multiple chondroitin sulfate A (CSA)-binding domains in the var2CSA gene transcribed in CSA-binding parasites. Journal of Infectious Diseases 191, 1010–1013.

Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M. S., Nene, V., Shalom, S. J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M. W., Vaidya, A. B., Martin, D. M., Fairlamb, A. H., Fraunholz, M. J., Roos, D. S., Ralph, S. A., McFadden, G. I., Cummings, L. M., Subramanian, G. M., Mungall, C., Venter, J. C., Carucci, D. J., Hoffman, S. L., Newbold, C., Davis, R. W., Fraser, C. M. and Barrell, B. (2002). Genome sequence of Plasmodium falciparum, the human malaria parasite. Nature 419, 498–511.

Greenwood, B. and Mutasingwa, T. (2002). Malaria in Africa. Nature 415, 670–672.

Gullbert, L. J., Abbasi, M. and Mosmann, T. R. (2001). The immunology of pregnancy: maternal defenses against infectious diseases. In Malaria in Pregnancy. Deadly Parasite, Susceptible Host. (ed. P. E. Duffy and M. Fried), pp. 53–70. Taylor & Francis, London.

Hviid, L. (2005). Naturally acquired immunity to Plasmodium falciparum malaria in Africa. Acta Tropica 95, 270–275.

Jensen, A. T. R., Zornig, H. D., Buhmann, C., Salanti, A., Koram, K. A., Riley, E. M., Theander, T. G., Hviid, L. and Staalsoe, T. (2003). Lack of gender-specific antibody recognition of products from domains of a var gene implicated in pregnancy-associated Plasmodium falciparum malaria. Infection and Immunity 71, 4193–4196.

Keen, J., Serghides, L., Ayi, K., Patel, S. N., Ayis, J., van Eijk, A., Stekete, R., Udhayakumar, V. and Kain, K. C. (2007). HIV impairs phagocytic clearance of pregnancy-associated malaria parasites. PLoS Medicine (in press).

Kraemer, S. M. and Smith, J. D. (2003). Evidence for the importance of genetic structuring to the structural and functional specialization of the Plasmodium falciparum var gene family. Molecular Microbiology 50, 1527–1538.

Kyes, S. A., Christodoulou, Z., Raza, A., Horrocks, P., Pinches, R., Rowe, J. A. and Newbold, C. I. (2003). A well-conserved Plasmodium falciparum var gene shows an unusual stage-specific transcript pattern. Molecular Microbiology 48, 1339–1348.

Lavstsen, T., Salanti, A., Jensen, A. T. R., Arnot, D. E. and Theander, T. G. (2003). Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions. Malaria Journal 2, 27.

Leech, J. H., Barnwell, J. W., Miller, L. H. and Howard, R. J. (1984). Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. Journal of Experimental Medicine 159, 1567–1575.

Marsh, K. and Howard, R. J. (1986). Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science 231, 150–153.

Marsh, K., Oto, L., Hayes, R. J., Carson, D. C. and Greenwood, B. M. (1989). Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 293–303.

McGregor, I. A. (1984). Epidemiology, malaria and pregnancy. American Journal of Tropical Medicine and Hygiene 33, 517–525.

McGregor, I. A., Carrington, S. P. and Cohen, S. (1963). Treatment of East African P. falciparum malaria with West African human γ-globulin. Transactions of the Royal Society of Tropical Medicine and Hygiene 57, 170–175.

Meganekou, R., Staalsoe, T., Taylor, D. W., Leke, R. and Hviid, L. (2005). Effects of pregnancy and intensity of Plasmodium falciparum transmission on immunoglobulin G subclass responses to variant surface antigens. Infection and Immunity 73, 4112–4118.

Menendez, C. (1995). Malaria during pregnancy: a priority area of malaria research and control. Parasitology Today 11, 178–183.

Miller, L. H., Baruch, D. I., Marsh, K. and Doumbo, O. K. (2002). The pathogenic basis of malaria. Nature 415, 673–679.

Mount, A. M., Mwapasa, V., Elliott, S. R., Beeson, J. G., Tadesse, E., Lema, V. M., Molyneux, M. E., Meshnick, S. R. and Rogerson, S. J. (2004). Impairment of humoral immunity to Plasmodium falciparum malaria in pregnancy by HIV infection. Lancet 363, 1860–1867.

Nguyen-Dinh, P., Stekete, R. W., Greenberg, A. E., Wirima, J. J., Mulenda, O. and Williams, S. B. (1988). Rapid spontaneous postpartum clearance of Plasmodium falciparum parasitaemia in African women. Lancet 2, 751–752.

Ockenhouse, C. F., Tandon, N. N., Magowan, C., Jamieson, G. A. and Chulay, J. D. (1989). Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science 243, 1469–1471.

Ricke, C. H., Staalsoe, T., Koram, K., Akamori, B. D., Riley, E. M., Theander, T. G. and Hviid, L. (2000). Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion.
to chondroitin sulphate A. *Journal of Immunology* **165**, 3309–3316.

Robert, C., Pouvelle, B., Meyer, P., Muanza, K., Fujioka, H., Aikawa, M., Scherf, A. and Gysin, J. (1995). Chondroitin-4-sulphate (proteoglycan), a receptor for *Plasmodium falciparum*-infected erythrocyte adherence on brain microvascular endothelial cells. *Research in Immunology* **146**, 383–393.

Rogerson, S. J., Chaiyaroon, S. C., Ng, K., Reeder, J. C. and Brown, G. V. (1995). Chondroitin sulfate A is a cell surface receptor for *Plasmodium falciparum*-infected erythrocytes. *Journal of Experimental Medicine* **182**, 15–20.

Rowe, J. A., Kyes, S. A., Rogerson, S. J., Babiker, H. A. and Raza, A. (2002). Identification of a conserved *Plasmodium falciparum* var gene implicated in malaria in pregnancy. *Journal of Infectious Diseases* **185**, 1207–1211.

Sabchareon, A., Burnouf, T., Ouattara, D., Attanath, P., Bouharoun, T. H., Chantavanich, P., Foucault, C., Chongsupsahajisiddhi, T. and Druilhe, P. (1999). Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. *American Journal of Tropical Medicine and Hygiene* **45**, 297–308.

Sachs, J. and Malaney, P. (2002). The economic and social burden of malaria. *Nature* **415**, 680–685.

Salanti, A., Dahlböck, M., Turner, L., Nielsen, M. A., Barford, L., Magistrado, P., Jensen, A. T. R., Lavstsen, T., Ofori, M. F., Marsh, K., Hviid, L. and Theander, T. G. (2004). Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. *Journal of Experimental Medicine* **200**, 1197–1203.

Salanti, A., Jensen, A. T. R., Zornig, H. D., Staalsoe, T., Joergensen, L., Nielsen, M. A., Khattab, A., Arnot, D. E., Klinkert, M. Q., Hviid, L. and Theander, T. G. (2002). A sub-family of common and highly conserved var genes expressed by CSA-adhering *Plasmodium falciparum*. *Molecular and Biochemical Parasitology* **122**, 111–115.

Salanti, A., Staalsoe, T., Lavstsen, T., Jensen, A. T. R., Sowa, M. P. K., Arnot, D. E., Hviid, L. and Theander, T. G. (2003). Selective upregulation of a single distinctly structured var gene in CSA-adhering *Plasmodium falciparum* involved in pregnancy-associated malaria. *Molecular Microbiology* **49**, 179–191.

Scherf, A., Hernandez-Rivas, R., Buffet, P., Bottius, E., Benatar, C., Pouvelle, B., Gysin, J. and Lanzer, M. (1998). Antigenic variation in malaria: *in situ* switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in *Plasmodium falciparum*. *EMBO Journal* **17**, 5418–5428.

Smith, J. D., Chitinis, C. E., Craig, A. G., Roberts, D. J., Hudson-Taylor, D. E., Peterson, D. S., Pinches, R., Newbold, C. I. and Miller, L. H. (1995). Switches in expression of *Plasmodium falciparum* var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. *Cell* **82**, 101–110.

Staalsoe, T., Megnekou, R., Fievet, N., Ricke, C. H., Zornig, H. D., Leke, R., Taylor, D. W., Deloron, P. and Hviid, L. (2001). Acquisition and decay of antibodies to pregnancy-associated variant antigens on the surface of *Plasmodium falciparum* infected erythrocytes that are associated with protection against placental parasitemia. *Journal of Infectious Diseases* **184**, 618–626.

Staalsoe, T., Shulman, C. E., Bulmer, J. N., Kawuondo, K., Marsh, K. and Hviid, L. (2004). Variant surface antigen-specific IgG and protection against the clinical consequences of pregnancy-associated *Plasmodium falciparum* malaria. *Lancet* **363**, 283–289.

Su, X., Heatwole, V. M., Wertheimer, S. P., Guinet, F., Herrfeldt, J. A., Peterson, D. S., Ravetch, J. A. and Wellems, T. E. (1995). The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of *Plasmodium falciparum*-infected erythrocytes. *Cell* **82**, 89–100.

Taylor, H. M., Kyes, S. A., Harris, D., Kriek, N. and Newbold, C. I. (2000). A study of var gene transcription in vitro using universal var gene primers. *Molecular and Biochemical Parasitology* **105**, 13–23.

Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M. R., Murphy, B. R., Rappuoli, R. and Lanzavecchia, A. (2004). An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. *Nature Medicine* **10**, 871–875.

Trimmell, A. R., Kraemer, S. M., Mukherjee, S., Phippard, D. J., Janes, J. H., Flameo, E., Su, X. Z., Awadalla, P. and Smith, J. D. (2006). Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. *Molecular and Biochemical Parasitology* **148**, 169–180.

Tuikue Ndam, N. G., Salanti, A., Bertin, G., Dahlböck, M., Fievet, N., Turner, L., Gaye, A., Theander, T. G. and Deloron, P. (2005). High level of var2csa transcription by *Plasmodium falciparum* isolated from the placenta. *Journal of Infectious Diseases* **192**, 331–335.

Udeinya, I. J., Miller, L. H., McGregor, I. A. and Jensen, J. B. (1983). *Plasmodium falciparum* strain-specific antibody blocks binding of infected erythrocytes to amelanotic melanoma cells. *Nature* **303**, 429–431.

Viebig, N. K., Gamain, B., Scheidig, C., Lepolard, C., Viebig, N. K., Gamain, B., Scheidig, C., Lepolard, C., Udeinya, I. J., Miller, L. H., McGregor, I. A. and Jensen, J. B. (2005). A single member of the *Plasmodium falciparum* multigene family determines cytoadherence to amelanotic melanoma cells. *EMBO Reports* **6**, 775–781.

Walton, G. A. (1949). On the control of malaria in Freetown, Sierra Leone. II – control methods and the effects upon the transmission of *Plasmodium falciparum* resulting from the reduced abundance of *Anopheles gambiae*. *Annals of Tropical Medicine and Parasitology* **43**, 117–139.