Removal of heavy metal (Cu2+) by *Thiobacillus* sp. and *Clostridium* sp. at various temperatures and concentration of pollutant in liquid media

A K R Vernans, B Iswanto and A Rinanti*

Department of Environmental Engineering, Faculty of Landscape Architecture and Environmental Technology, Universitas Trisakti, Jakarta, Indonesia

*astririnanti@trisakti.ac.id

Abstract. This research was conducted to remove heavy metal Cu2+ using bioremediation method with the utilization of mix culture of bacterium *Thiobacillus* sp and *Clostridium* sp. It started with the cultivation of artificial liquid growth media, Stone Mineral Salt solution (SMSs) using temperature (ºC) and pollutant concentration of heavy metal Cu2+ (ppm) as the test parameters. The analysis was conducted with Atomic Absorption Spectrophotometry (AAS) to determine the concentration of heavy metal Cu2+ at the beginning and end of the research in order to calculate its removal efficiency. The exponential phase of mix bacterial culture growth was observed on day 5 with a pH value of 7. Furthermore, the culture was discovered to have the ability to live in several temperatures (ºC) of 20, 25, 30 and 35, and remove heavy metal Cu2+ at 89.10%; 91.27%; 92%; and 90.27% respectively. The results also showed that at a contact time of 48 hours, the temperature of 30ºC, and Cu2+ pollutant concentration of 25, 50, 75, 100 ppm, the mix bacterial culture could remove the pollutant up to efficiency above 90%. Moreover, a higher concentration of the pollutant in liquid media was found to lead to lower efficiency of removal, but at a value above 90%. Therefore, the use of biotechnology approach in this research is expected to give a scientific contribution to the processing of wastewater containing heavy metal Cu2+.

1. **Introduction**

Increased development of metal liquation, mining industries and those specializing in fuel, energy production, insecticide, as well as electroplating industries generates waste containing heavy metal [1-3] and the continuous discharge of this to the environment leads to serious threat for human and other living creatures in an ecosystem [4,5]. Pollution as a result of heavy metal results has been reported to present several risks to human survival and disturb ecologic balance [6-8]. However, an example of these metals with the potential to pollute the environment is the Copper ion Cu2+ [9-12]. It is one of the essential microelements for all living things [13,14], nevertheless, it is very toxic in high concentration [15-17]. Moreover, several types of heavy metals accumulate in the food chain to interrupt the growth of living creatures [18,19].

There are now some well-known ways to overcome pollution of heavy metal and they include chemical precipitation, filtration, ion exchange, electrochemical process, membranous technology, adsorption in active carbon, bioremediation, and phytoremediation [20-22]. However, bioremediation is the use of biological agents such as enzyme, plant or microbial cells to neutralize polluted land and...
water into non-dangerous substances for the environment and human health [23-28]. Successful bioremediation process is determined by factors such as temperatures, contact time between biological agents and pollutant, microbial concentration, oxygen, and value of pH [29-31], however, the contact time depends on the pollutant concentration [32,33]. Such that at higher pollutant concentration, microbe takes longer time to neutralize pollutant materials [34,35]. Furthermore, microbial concentration also affects the process of metal bioremediation such that a higher pollutant concentration requires a higher microbial concentration [36,37]. Acidity degrees (pH) or environmental temperatures (°C) have a large effect on microbial activity in solving wastes from heavy metals [38-40] with the process requiring from neutral to acidic levels. Moreover, the process of bioremediation can be conducted by relying on indigenous microbes or increased by adding exogenous microbes [41]. In addition, single or multiple (mix) cultures can also be utilized [42]. This method has been reported to be the most effective alternative to remove heavy metal of copper (Cu²⁺) [43,44] because it requires relatively lower cost and does not cause primary or secondary pollution [45]. Therefore, this research was conducted to remove heavy metal Cu²⁺ contained in liquid media by utilizing a mix culture of Thiobacillus sp. and Clostridium sp. bacteria and to also test its potentials to serve as an absorber.

2. Research methodology
This study consisted of the initial research phase which include the preparation of SMSs growth media and heavy metal Cu²⁺ pollutant, and cultivation of Thiobacillus sp and Clostridium sp bacteria, while the core research phase was conducted to remove the pollutants of heavy metal Cu²⁺ contained in the SMSs growth media through the use of Thiobacillus sp. and Clostridium sp. bacteria. Furthermore, Atomic Absorption Spectrophotometry (AAS) was used to analyze the concentration of heavy metal in the solution.

2.1. Preparation of Stone Mineral Salt solution (SMSs) growth media
Mix culture of Thiobacillus sp. and Clostridium sp. bacteria requires liquid growth media in a sterile condition. Therefore, the growth media used in this research was Stone Mineral Salt solution (SMSs) with 1 liter containing 0.5 gr calcium carbonate (CaCO₃); 2.5 gr ammonium nitrate (NH₄NO₃); 1 gr sodium hydrogen phosphate (Na₂HPO₄.7H₂O); 0.5 gr mono potassium nitrate (KH₂PO₄); 0.5 gr magnesium sulfate (MgSO₄.7H₂O); and 0.2 gr magnesium chloride (MnCl₂.7H₂O).

2.2. Preparation of heavy metal Cu²⁺ pollutant
The pollutant concentrations used in this study was in the variations of 25, 50, 75 and 100 (ppm). This was conducted to understand the effectiveness of mix cultures of Thiobacillus sp. and Clostridium sp. bacteria in removing heavy metal Cu²⁺ in various pollutant concentrations. Furthermore, artificial pollution was prepared by making the main solution of 1000 ppm with 1 gr CuSO₄.5 H₂O dissolved in 1 liter of distilled water while lower concentration was obtained by diluting the main solution.

2.3. Cultivation of Thiobacillus sp. and Clostridium sp. bacteria
Mix culture of Thiobacillus sp. and Clostridium sp. bacteria were obtained from the collection of Laboratory of Environmental Biology/Microbiology, Department of Environmental Engineering, Universitas Trisakti, Jakarta, Indonesia. It was first cultivated in SMSs growth media for 14 days until the exponential phase was reached at room temperature and pH value of 7. Bacterial growth in liquid media polluted by heavy metal Cu²⁺ was observed, based on the bacterial population through the use of Total Plate Count method and 1 ml of the sample was taken for analysis and count using the following equation:

\[
\text{Total colony/mL or gram} = \text{total colony/cup} \times \left(\frac{1}{\text{Factor of Dilution}} \right)
\]

Data collected were descriptive with quantitative numbers and the analyses are shown in the Table and graph.
2.4. Removal of Cu2+ in liquid media of Stone Mineral Salt solution (SMSs)

This research started by determining the optimum temperatures which were varied between 20, 25, 30 and 35 (°C) to understand the effectiveness of *Thiobacillus* sp. and *Clostridium* sp. to remove heavy metal Cu2+ at specific temperatures. The *Mix culture* was included in Erlenmeyer batch system containing liquid growth media of SMSs at a ratio of 1:1 and inserted in a shaker incubator at a 150-rpm rotational speed. The fixed variables were pollutant concentration of 100 ppm, pH 7 and contact time of 48 hours. After the optimum temperatures were obtained, the pollutant concentration of Cu2+ that the bacterial culture has the ability to remove was determined by testing the variations of 25, 50, 75 and 100 (ppm). Furthermore, *Atomic Absorption Spectrophotometry* was used to understand the concentration of heavy metal Cu2+ in pre-and-post research through the variation of temperatures and tested Cu2+ pollutant.

2.5. Removal efficiency of heavy metal Cu2+

Removal efficiency of heavy metal Cu2+ was calculated using the following equation:

\[
\text{Removal efficiency (\%) = } \frac{C(a) - C(b)}{C(a)} \times 100\%
\]

C (a): initial concentration of heavy metal Cu2+ in liquid media (ppm)
C (b): final concentration of heavy metal Cu2+ in liquid media (ppm)

3. Results and discussion

Table 1 and Figure 1 show the removal efficiency of heavy metal Cu2+ (%) in various temperatures (°C) and the average value of 92% was observed at the optimum temperature of 30°C for the *mix culture* of *Thiobacillus* sp. and *Clostridium* sp. Furthermore, all the temperatures used were found to have produced removal efficiency above 85%.

Table 1. Efficiency of heavy metal Cu2+ removal (%) in various temperatures (°C).

Various temperatures (°C)	Removal efficiency (%)	Standard deviation
20	89.10	0.2100
25	91.27	0.2359
30	92.00	0.2545
35	90.27	0.2055

Table 2. Efficiency of heavy metal Cu2+ removal (%) in various pollutant concentration (ppm).

Pollutant concentration (ppm)	Removal efficiency (%)	Standard deviation
20	96.00	0.2210
25	95.00	0.2410
30	94.00	0.2320
35	92.00	0.2110

This research proved that the *mix culture* worked in synergy and was able to utilize heavy metal Cu2+ as a nutrient source in achieving approximately 90% removal efficiency. Environmental temperatures (°C) have a large effect on microbial activity in solving wastes from heavy metals [38-40].
Figure 1. Removal efficiency of heavy metal Cu$^{2+}$ (%) in various temperatures (°C).

Moreover, Table 2 and Figure 2 also the mix culture to have the ability to remove in both low concentrations of 25 ppm and high concentration of 100 ppm as reflected in the removal percentage above 90%. It was found that the efficiency of Cu$^{2+}$ removal in liquid media containing Cu$^{2+}$ of 25, 50, 75, and 100 (ppm) concentration was 96%, 94%, and 92% respectively. This shows a low concentration of Cu$^{2+}$ in liquid media to lead to the high removal efficiency, and vice versa. Interestingly, the results also indicate that, in Cu$^{2+}$ pollutant of 100 ppm, the mix culture of bacteria has a removal efficiency above 90%, which is the same with lower pollutant concentration. At higher pollutant concentration, microbe takes longer time to neutralize pollutant materials [34,35]. Furthermore, microbial concentration also affects the process of metal bioremediation such that a higher pollutant concentration requires a higher microbial concentration [36,37].

Figure 2. Removal efficiency of heavy metal Cu$^{2+}$ (%) in various pollutant concentration (ppm).

However, the previous research conducted showed mix culture of Viridibacillus arenose B-21, Sporosarcina soli B-22, Enterobacter cloacae KJ46, and E. cloacae KJ-47 bacteria to reduce heavy metal Cu$^{2+}$ only by 5% at a contact time of 48 hours [1].

4. Conclusions
Mix culture of Thiobacillus sp. and Clostridium sp. bacteria was very effective in reducing heavy metal Cu$^{2+}$ in liquid media of SMSs at 30°C, pH 7, and contact time of 48 hours. The highest removal efficiency was found to be 96% at 25 ppm and 92% at 100 ppm. This research found the exponential phase of mix culture growth of Thiobacillus sp. and Clostridium sp. bacteria occurred in day 5.
References
[1] Nanda M, Kumar V and Sharma D K 2019 Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to “clean-up” heavy metal contaminants from water Aquatic Toxicology 212 1-10
[2] Rathour R, Kalola V, Johnson J, Jain K, Madamwar D and Desai C 2019 Treatment of Various Types of Wastewaters Using Microbial Fuel Cell Systems Microbial Electrochemical Technology 665-692
[3] Zhao X, Do H, Zhou Y, Li Z, Zhang X, Zhao S, Li M and Wu D 2019 Rahnella sp. LRP3 induces phosphate precipitation of Cu (II) and its role in copper-contaminated soil remediation Journal of Hazardous Materials 368 133-140
[4] Dong H, Li L, Lu Y, Cheng Y, Wang Y, Ning Q, Wang B, Zhang L and Zeng G 2019 Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review Environment International 124 265-277
[5] Chen Z, Gao S, Jin M, Sun S, Lu J, Yang P, Bonda P L, Yuana Z and Guo J 2019 Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium Environment International 125 65-74
[6] Banerjee S, Kamila B, Barman S, Joshi S R, Mandal T and Halder G 2019 Interlining Cr (VI) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater Journal of Environmental Management 233 271-282
[7] Hu Y, Zhou J, Du B, Liu H, Zhang W, Liang J, Zhang W, You L and Zhou J 2019 Health risks to local residents from the exposure of heavy metals around the largest copper smelter in China Ecotoxicology and Environmental Safety 171 329-336
[8] Liu L, Bilal M, Duan X and Iqbal H M N 2019 Mitigation of environmental pollution by genetically engineered bacteria-Current challenges and future perspectives Science of The Total Environment 667 444-454
[9] Xu Y, Seshadri B, Bolan N, Sarkar B, Ok Y S, Zhang W and Dong Z 2019 Microbial functional diversity and carbon use feedback in soils as affected by heavy metals Environment international 125 478-488
[10] Verma S and Kuila A 2019 Bioremediation of heavy metals by microbial process Environmental Technology & Innovation 14 100369
[11] Hsu D W, Wang T I, Huang D J, Pao Y J, Lin Y A, Cheng T W and Chen C C 2019 Copper promotes E. coli laccase-mediated TNT biotransformation and alters the toxicity of TNT metabolites toward Tigriopus japonicus Ecotoxicology and environmental safety 173 452-460
[12] Wang H, Zhou L, Liao X, Meng Z, Xiao J, Li F, Zhang S, Cao Z and Lu H 2019 Toxic effects of oxime-copper on development and behavior in the embryo-larval stages of zebrafish Aquatic Toxicology 210 242-250
[13] Rappazzo A C, Papale M, Rizzo C, Conte A, Giannarelli S, Onor M and Giudice A L 2019 Heavy metal tolerance and polychlorinated biphenyl oxidation in bacterial communities inhabiting the Pasvik River and the Varanger Fjord area (Arctic Norway) Marine pollution bulletin 141 535-549
[14] Sutcliffe B, Hose G C, Harford A J, Midgley D J, Greenfield P, Paulsen I T and Chariton A A 2019 Microbial communities are sensitive indicators for freshwater sediment copper contamination Environmental Pollution 247 1028-1038
[15] Zhao J, Gao W, Yang Z, Li H, and Gao Z 2019 Nitration of amyloid-β peptide (1–42) as a protective mechanism for the amyloid-β peptide (1–42) against copper ion toxicity Journal of Inorganic Biochemistry 190 15-23
[16] Jones A S, Marini J, Solo-Gabriele H M, Robey N M and Townsend T G 2019 Arsenic, copper, and chromium from treated wood products in the U.S. disposal sector Waste Management 87 731-740
[17] Wang M, Yin H, Peng H, Feng M, Lu G and Dang Z 2019 Degradation of 2,2′,4,4′-tetrabromodiphenyl ether by Pycnoporus sanguineus in the presence of copper ions Journal
[18] Liu X, Liu M, Chen X, Yang Y, Hou L, Wu S, and Zhu P 2019 Indigenous PAH degraders along the gradient of the Yangtze Estuary of China: Relationships with pollutants and their bioremediation implications Marine Pollution Bulletin 142 419-427

[19] Wu S, Li R, Xie S and Shi C 2019 Depth-related change of sulfate-reducing bacteria community in mangrove sediments: The influence of heavy metal contamination Marine Pollution Bulletin 140 443-450

[20] Subashchandrabose S R, Venkateswarlu K, Venkidusamy K, Palanisami T, Naidu R and Megharaj M 2019 Bioremediation of soil long-term contaminated with PAHs by algal–bacterial synergy of Chlorella sp. MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase Science of The Total Environment 659 724-731

[21] Kumar M, Jaiswal S, Sodhi K K, Shree P, Singh D K, Agrawal P K and Shukla P 2019 Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance Environment International 124 448-461

[22] Joseph L, Jun B.-M, Flora J R V, Park C M and Yoon Y 2019 Removal of heavy metals from water sources in the developing world using low-cost materials: A review Chemosphere

[23] Ramírez-García R, Gohil N and Singh V 2019 Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials Phytomanagement of Polluted Sites 517–568

[24] He T, Xie D, Ni J, Cai X and Li Z 2019 Investigating the effect of copper and magnesium ions on nitrogen removal capacity of pure cultures by modified non-competitive inhibition model Ecotoxicology and Environmental Safety 170 479-487

[25] Rabodonirina S, Rasolomampianina R, Krier F, Drider D, Merhaby D, Net S and Ouiddane B 2019 Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites Journal of Environmental Management 232 1-7

[26] Huang Z, He K, Song Z, Zeng G, Chen A, Yuan L, Li H and Chen G 2019 Alleviation of heavy metal and silver nanoparticle toxicity and enhancement of their removal by hydrogen sulfide in Phanerochaete chrysosporium Chemosphere 224 554-561

[27] Sivasankar P, Poongodi S, Seedevi P, Sivakumar M, Murugan T and Loganathan S 2019 Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept Journal of Environmental Management 237 84-93

[28] Ryszka P, Lichtscheidl I, Tylko G and Turnau K 2019 Symbiotic microbes of Saxifraga stellaris ssp. alpigena from the copper creek of Schwarzwand (Austrian Alps) enhance plant tolerance to copper Chemosphere 228 183-194

[29] Ma Y, Zhong H and He Z 2019 Cr(VI) reductase activity locates in the cytoplasm of BK1, a novel Cr(VI)-reducing thermophile isolated from Tengchong geothermal region, China Chemical Engineering Journal

[30] Igun O T, Meynet P, Davenport R J and Werner D 2019 Impacts of activated carbon amendments, added from the start or after five months, on the microbiology and outcomes of crude oil bioremediation in soil International Biodeterioration & Biodegradation 142 1-10

[31] Nwanya A C, Razanamahanjy L C, Bashir A K H, Ikpo C O, Nwanya S C, Botha S and Maaza M 2019 Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles Journal of hazardous materials 375 281-289

[32] Sharma B, Singh P, Chauhan P S, Singh S and Singh R P 2019 Microbes-Assisted Remediation of Metal Polluted Soils New and Future Developments in Microbial Biotechnology and Bioengineering 223-232

[33] Ye J, Chen X, Chen C and Bate B 2019 Emerging Sustainable Technologies for Remediation of Soils and Groundwater in a Municipal Solid Waste Landfill Site -- A Review Chemosphere 227 681-702

[34] Yang L and Wang W-X 2019 Comparative contributions of copper nanoparticles and ions to
copper bioaccumulation and toxicity in barnacle larvae *Environmental Pollution* **249** 116-124

[35] Rezazadeh L, Sharafi S, Schaffie M and Ranjar M 2019 Synthesis and characterization of magnetic nanoparticles from raffinate of industrial copper solvent extraction plants *Materials Chemistry and Physics* **229** 372-379

[36] Mukherjee A, Yadav R, Marmeisse R, Fraissinet-Tachet L and Reddy M S 2019 Heavy metal hypertolerant eukaryotic aldehyde dehydrogenase isolated from metal contaminated soil by metatranscriptomics approach *Biochimie* **160** 183-192

[37] Latorre M, Troncoso R and Uauy R 2019 Biological Aspects of Copper *Clinical and Translational Perspectives on Wilson Disease* 25–31

[38] Khan A H A, Nawaz I, Yousaif S, Cheema A S and Iqbal M 2019 Soil amendments enhanced the growth of *Nicotiana alata* L. and *Petunia hydrida* L. by stabilizing heavy metals from wastewater *Journal of Environmental Management* **242** 46-55

[39] Meseldzija S, Petrovic J, Onjia A, Volkov-Husovic T, Nesic A and Vukelic N 2019 Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater *Journal of Industrial and Engineering Chemistry* **75** 246-252

[40] Kong X, Jin D, Tai X, Yu H, Duan G, Yan X, Pan J, Song J and Deng Y 2019 Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by *Gordonia* sp. strain QH-11 and the microbial ecological effects in soil *Science of The Total Environment* **667** 691-700

[41] Wang Z, Liu X and Qin H 2019 Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China *Journal of Geochemical Exploration* **200** 159-166

[42] Singh S K, Singh P P, Gupta A, Singh A K and Keshri J 2019 Tolerance of Heavy Metal Toxicity Using PGPR Strains of *Pseudomonas* Species *PGPR Amelioration in Sustainable Agriculture* 239–252

[43] Upadhyay S, Saha A K and Sinha A 2019 High carbon iron filings (HCIF) and metal reducing bacteria (*Serratia* sp.) co-assisted Cr (VI) reduction: Kinetics, mechanism and longevit *Journal of Environmental Management* **236** 388-395

[44] Narendran R, Kathiresan K, Sathishkumar R S, Kayalvizhi K and Sundaramanickam A 2019 Bioremoval of toxic substances in synthetic wastewater using *Trichoderma pubescens* (NPK2), isolated from mangrove soil *Biocatalysis and Agricultural Biotechnology* **19** 101100

[45] Wang H, Lv Z, Song Y, Wang Y-nan, Zhang D, Sun Y, Tsang Y F and Pan X 2019 Adsorptive removal of Sb(III) from wastewater by environmentally-friendly biogenic manganese oxide (BMO) materials: Efficiency and mechanisms *Process Safety and Environmental Protection* **124** 223-230