Unconventional One-Magnon Scattering Resistivity in Half-Metals

Nobuo Furukawa

Department of Physics, Aoyama Gakuin University, Setagaya, Tokyo 157-8572, Japan

(Received)

Low-temperature resistivity of half-metals is investigated. To date it has been discussed that the one-magnon scattering process in half-metals is irrelevant for low-temperature resistivity, due to the fully spin-polarized electronic structure at the ground state. If one takes into account the non-rigid-band behavior of the minority band due to spin fluctuations at finite temperatures, however, the unconventional one-magnon scattering process is shown to be most relevant and gives T^3 dependence in resistivity. This behavior may be used as a crucial test in the search for half-metallic materials which are potentially important for applications. Comparison with resistivity data of La$_{1-x}$Sr$_x$MnO$_3$ as candidates for half-metals shows good agreement.

KEYWORDS: half-metal, ferromagnetic metal, one-magnon resistivity, colossal magnetoresistance manganites

Since Zener introduced the double exchange (DE) model as a model for perovskite manganites AMnO_3, intensive studies have been performed. Nevertheless, spin fluctuation effects beyond the mean-field picture have not yet been fully clarified. Spin fluctuations strongly influence the structure of the conduction electron band in the DE model. Therefore, many-body treatments with respect to spin fluctuations are important. One example of the mean-field treatment giving an inaccurate result is that it substantially overestimates the Curie temperature T_c. Using realistic parameters for La$_{1-x}$Sr$_x$MnO$_3$, Millis et al. demonstrated that the mean-field treatment of the DE model gives $T_c = 1000$ K ~ 3000 K, which is much larger than the experimental values $T_c = 300$ K ~ 400 K at $0.2 < x < 0.5$, and concluded that the DE model alone cannot explain La$_{1-x}$Sr$_x$MnO$_3$. However, by considering thermal spin fluctuations at $T \sim T_c$, which reduce electronic hoppings, the model reproduces experimental T_c.

Resistivity is also strongly influenced by spin fluctuations. Kubo and Ohata investigated the resistivity of the DE model. The ground state of this model is perfectly spin-polarized, and is now called half-metallic. Based on a rigid-band picture, they have proposed that two-magnon processes which give $\rho \propto T^4$ are relevant for the low-temperature resistivity. In this Letter, however, we demonstrate that a different scattering process creates $\rho \propto T^3$ in half-metals. This process appears only by considering spin fluctuations beyond the rigid-band approximation.

Half-metals interest us from the viewpoint of fabricating a tunneling magnetoresistance junction, since the perfect spin polarization of conduction electrons is important for the sensitivity of devices. Indeed, the origin of low-field magnetoresistance in polycrystal and tri-layer junctions of manganites is considered to be the spin-dependent tunneling at half-metallic junctions. We also note that an exotic type of superconductivity in half-metals has been predicted. In order to conduct a material search for half-metals, a unique T-dependence in resistivity might play an important role as a crucial test.

The magnetic scattering of quasiparticles is one of the origins of resistivity in magnetic metals. In conventional itinerant weak ferromagnets, the one-magnon scattering (1MS) process illustrated in Fig. 1, is one of the origins of resistivity in the form $\rho \propto T^2$. The existence of coherent quasiparticles for both majority- and minority-spin bands is essential for the conventional 1MS process, since the process involves spin-flipping vertices and a propagator of the minority band at the Fermi level.

On the other hand, half-metals belong to a different class of itinerant ferromagnets. Conduction electrons are perfectly spin-polarized, and the Fermi surface is absent in the minority-spin band. In Fig. 2(a) we illustrate the density of states (DOS) for a large Hund’s coupling (J_H) region of the DE model as a canonical example. Kubo and Ohata stated that the 1MS is forbidden in the DE model due to its half-metallic ground state.

However, spin fluctuations at a finite temperature create modifications of the electronic band structure. In
Fig. 1. 1MS self-energy diagram for the majority band. The solid line and the dashed curve represent electron and magnon Green’s functions, respectively.

Fig. 2(b) we illustrate the DOS at $0 < T < T_c$. The DOS has been calculated by the dynamical mean-field (DMF) theory which takes local spin fluctuations into account, and also by the Monte Carlo method which treats spin fluctuations on a finite size cluster in an controlled manner. At a finite temperature, spin fluctuations induce a minority band. Once the thermally activated minority band is created and occupied, a 1MS is allowed. This 1MS is unconventional in the sense that it is absent at the ground state and is strongly affected by the spin fluctuation.

Based on such a non-rigid-band picture, we calculate the resistivity of half-metals in three dimensions. We consider a magnon-electron interaction in the form

$$H_{\text{int}} = \frac{g}{\sqrt{N}} \sum_{qk} \left(a_k^\dagger c_{k+q}^\dagger c_{k+q} + a_k^\dagger c_{k}^\dagger c_{k+q}^\dagger c_{k+q} \right),$$

where c^\dagger and a^\dagger are the creation operators for electrons and magnons, respectively. We define the quantization axis in such a way that a magnon carries $S_z = -1$. For the DE model, the electron-magnon coupling constant is given by $g = J_H/\sqrt{N}$ where J_H gives the Hund’s coupling between conduction electrons and localized spins. Therefore, a perturbational approach based on the linear magnon approximation is well defined, at least in the limit $S \rightarrow \infty$, where J_H is kept constant, and presumably gives qualitatively correct results at low temperatures where spin fluctuations are sufficiently small.

Since conductivity is governed by the majority carriers, the self-energy for the majority spin electrons Σ^\uparrow determines the low-temperature resistivity. A 1MS self-energy, illustrated in Fig. 1, is given in the form

$$\Sigma^\uparrow(k, \omega) = \frac{g^2}{N} \sum_q \int \frac{d\omega'}{2\pi} G_\downarrow(k+q, \omega+\omega') D(q, \omega'),$$

where G_\downarrow and D are Green’s functions for minority-spin electrons and magnons, respectively. Note the direction of the magnon propagator. The 1MS for a majority band electron occurs only when it absorbs a magnon carrying $S_z = -1$. The intermediate state involves a propagator of the preoccupied minority band. Thus, the 1MS self-energy strongly depends on spin fluctuations and diminishes at $T \rightarrow 0$.

Let us assume that Green’s function for the minority band obtained by the DMF is also valid in three-dimensional systems, which at small frequencies reads

$$G_\downarrow(k, \omega) \simeq \frac{z_\downarrow}{\omega - \zeta_\downarrow(k) - i\Gamma_\downarrow},$$

The quasiparticle renormalization factor scales as

$$z_\downarrow = \delta m/2,$$

where $\delta m = (M(0) - M(T))/M(0)$ is the reduction of the spin moment $M(T)$ scaled by its saturated value $M(0)$. Quasiparticle dispersion relation is denoted by $\zeta_\downarrow(k) = (W^* / W)\varepsilon_k - \mu$. Here, ε_k is the dispersion relation of the majority band at $T = 0$, and μ is the chemical potential, while W and W^* are the quasiparticle bandwidth at $T = 0$ and finite T, respectively, which scales as $W^* / W \simeq \delta m / 2$. The inverse lifetime for the minority band due to spin-disorder localization is given by $\Gamma_\downarrow \sim W(1 - \delta m / 2)$.

At low temperatures where $\delta m \ll 1$, we have the incoherent limit for G_\downarrow, namely $|\zeta_\downarrow(k)| \ll \Gamma_\downarrow$. Then, the conventional 1MS calculation becomes invalid. The integration in eq. (2) is dominated by the pole in the magnon Green’s function. As a rough estimate, we have

$$\text{Im} \Sigma^\uparrow \sim \frac{z_\downarrow}{\Gamma_\downarrow} \frac{1}{N} \sum_{q,n} D(q, i\Omega_n) \propto z_\downarrow \langle n_{\text{mag}} \rangle,$$

where $\langle n_{\text{mag}} \rangle$ is the magnon occupation number per site.
which satisfies $\delta m = \langle n_{\text{mag}} \rangle / M(0)$. Therefore, the inverse lifetime of the majority spin carrier at the Fermi level $\Gamma_\uparrow = \mathcal{I}m \Sigma_\uparrow(k = k_F, \omega = 0)$ is proportional to the square of the spin fluctuation, $\Gamma_\uparrow \propto (\delta m)^2$. For three-dimensional magnons with the dispersion relation $\omega_q = D_n q^2$, where D_n is the spin stiffness, we have $\langle n_{\text{mag}} \rangle \simeq 0.06(T/D_n)^{3/2}$. Using the Drude formula $\rho = (m^*/ne^2)\Gamma_\uparrow$, we obtain

$$\rho \propto (T/D_n)^3. \quad (6)$$

More formal expression for Σ_\uparrow is obtained through the spectral representation as

$$\mathcal{I}m \Sigma_\uparrow(k, \omega - i\eta) = \frac{g^2}{N} \sum_q \int_{-\infty}^{\infty} d\omega' \left[f(\omega + \omega') + n(\omega') \right]$$

$$\times \mathcal{I}m G_\downarrow(k + q, \omega + \omega' - i\eta) \mathcal{I}m D(q, \omega' - i\eta), \quad (7)$$

where $f(\omega)$ and $n(\omega)$ are Fermi and Bose distribution functions, respectively. The incoherent limit of eq. (3) gives $\mathcal{I}m G_\downarrow(k, \omega - i\eta) \simeq z_\downarrow/\Gamma_\downarrow$, and for the magnon Green’s function we use $\mathcal{I}m D(q, \omega - i\eta) = \pi\delta(\omega - \omega_q)$. Then, we obtain

$$\Gamma_\uparrow = g^2 z_\downarrow N \sum_q \left[f(\omega_q) + n(\omega_q) \right] \sim g^2 z_\downarrow (n_{\text{mag}}). \quad (8)$$

Here, we use $f(\omega) \ll n(\omega)$ at small frequencies which mostly contributes to the integration.

We point out here that T^3 resistivity can be used as a probe to investigate whether a given compound is a half-metal. For example, if there exists a substantial overlap with other bands, it will create a conventional T^2 resistivity. Wang and Zhang calculated the case of a nearly half-metal where the slightly doped minority band is Anderson-localized below the mobility edge. They derived the resistivity $\rho \propto T^{2.5}$ at high temperatures which crosses over to $\rho \propto T^{1.5}$ at low temperatures.

Let us now compare the result with those of experiments. We investigate the resistivity data for $La_{1-x}Sr_xMnO_3$ as a candidate for a half-metal. It has previously been shown by various experiments that the spin polarization of the conduction electron is very large; large values of saturation moment $\sim 4\mu_B$ suggest that Mn ions are in high-spin states. Spin-dependent photoemission experiments as well as tunneling magneto-resistance measurements indicate the absence of the minority-spin quasiparticles at the Fermi level. Observation of magnon dispersion throughout the Brillouin zone supports the hypothesis that the low-energy Stoner continuum is absent due to large spin polarization. Nevertheless, since there exist overlaps of Mn e_g orbitals and O $2p$ orbitals in the conduction band which might break down the perfect spin-polarization, it is important to determine whether these series of compounds are half-metals or not. Here, we examine whether they can be considered as perfectly spin-polarized half-metals, on the basis of the low-temperature resistivity measurements.

Low-temperature resistivity data for single crystals of $La_{1-x}Sr_xMnO_3$ are obtained from ref. The residual resistivity of the sample is $\rho_0 \leq 35\mu\Omega\text{cm}$ at $x = 0.4$ indicating the high quality of the sample. In Fig. 3, we show the conventional T^2-plot of the resistivity $\rho(T)$. In the high-temperature region, the resistivity data fit well in the form $\rho(T) = \rho_0 + AT^\alpha$ with $\alpha \simeq 2$, as has been commonly reported for metallic manganites.

However, in the low-temperature region below 20 K we see substantial deviation from the T^2-like behavior. The flattening of $\rho(T)$ is observed. Moreover, there exist discrepancies between $\rho_0 = \rho(T \to 0)$ and its counterpart by extrapolation from the high-temperature T^2 region, ρ_0. The reduction of the resistivity $\rho(T) < \rho_0$ indicates that $\rho(T)$ is not understood by Matthiessen’s rule, i.e., $\rho(T)$ at $T \gtrsim 20$ K is not explained by the simple sum of the residual scattering and the Fermi-liquid-type scattering at $T \to 0$. Namely, this indicates that not only the quasiparticle lifetime but also the nature of the conduction channel itself might possibly make a crossover at $T \sim 20$ K.
Let us now restrict ourselves to the low-temperature region below the crossover, and examine the 1MS results. In Fig. 4 we show a T^3-plot of the resistivity $\rho(T)$. The data at $T \lesssim 30$ K is well reproduced by the unconventional 1MS contribution $\rho(T) = \rho_0 + A_3 T^3$. We also investigate the coefficient of the T^3 term as a crucial test. From eq. (6) we expect the scaling relation $A_3 \propto D_x^{-3}$. Unfortunately, the values of D_x have been measured for only a few limited concentrations thus far, so a direct comparison cannot be carried out. Instead, we assume a scaling relating $D_x \propto x$, which is experimentally observed in La$_{1-x}$Sr$_x$MnO$_3$ at $0.15 \lesssim x \lesssim 0.3$. In Fig. 5 we plot the coefficient of the T^3 term as a function of doping, and we roughly see $A_3 \propto x^{-3}$. The deviation from the fit at $x = 0.4$ can be understood by the saturation of D_x as a function of x, since we experimentally see that at $x \sim 0.4$ the increase of T_c by increasing x saturates and D_x roughly scales as T_c. In this analysis we assumed that the carrier number n and the effective mass m^* do not change substantially upon doping in the metallic region, based on the Hall coefficient and specific-heat measurements.

The T^3 behavior as well as the concentration dependence of its coefficient shows consistent theoretical and experimental results. Another possible test is to measure the resistivity under high magnetic fields which suppress δm. Resistivity due to the unconventional 1MS should scale as $\rho(T, H) = \rho_0 \propto (\delta m(T, H))^2$.

Thus, the low-temperature T^3 behavior in the resistivity of (La,Sr)MnO$_3$ is direct evidence of their half-metallic nature. Similar behaviors have been reported for various compositions of doped manganites in the ferromagnetic metal regime. Crossovers from T^2-like behavior to a flatter temperature dependence in the low-temperature region is widely seen. Recently, resistivity data for narrow bandwidth compounds including (Nd,Sr)MnO$_3$ and (Sm,Sr)MnO$_3$ were shown to fit well with T^3 at low temperatures. We also note that a similar flattening in the low-temperature resistivity is also observed in CrO$_2$, which is considered to be another half-metallic system.

Let us discuss the applicability of the DMF. In eq. (3), we see that G_{\uparrow} has nonzero Γ_1 for $k = k_F, \omega = 0$ in the limit $T \to 0$. This behavior seems to be an artifact of the DMF approximation, which should be recovered by taking into account proper vertex corrections as a magnon-drag phenomenon. For the majority-band self-energy, however, this recovery of coherence is not exhibited at low temperatures. The minority-band Green’s function should exhibit an incoherent behavior in the high-frequency region $|\omega| \gtrsim W^*$, irrespective of the vertex correction. The majority-band self-energy in eq. (5) is determined by the minority-band structure in the frequency range $|\omega| \lesssim T$. Since $W^* \propto T^{3/2}$, contributions from the incoherent part of G_{\downarrow} become dominant in eq. (3) when $W^* \ll T$. Incoherent treatments for the minority-band Green’s function appear to be valid at low temperatures.

Once an incoherent minority band with the weight $z_{\downarrow} \propto \delta m$ is created, we have $\rho \propto T^3$. Note that localization effects as well as strong electron-electron inter-
actions enhance the incoherence of the minority band, which enlarge the T^3 scaling region. The crossover temperature T^* is roughly estimated by

$$T^* \sim W^* \simeq (0.06W/2M(0)) \cdot (T^*/D_s)^{3/2}. \quad (9)$$

Using the parameters for (La,Sr)MnO$_3$, $W \sim 1$eV, $D_s \sim 10$ meV and $M(0) \sim 2$, we obtain $T^* \sim 50$ K, which is consistent with the actual crossover temperature in experiments, $T_{exp} \sim 30$ K, where deviations from the T^3 behavior emerge. Above T^*, the minority band quasiparticles gain coherence since $W^* > T$. The change in the electronic structure causes a deviation from the T^3 behavior. Electronic properties at $T > T^*$, particularly the minority-band Green’s function structure and its influences to the 1MS, remain for future study in order to explain the T^2-like resistivity in experiments.

In the low-temperature region of manganites $T < T_c$, where spin moments are considered to be almost saturated, the roles of orbital degeneracies have been emphasized, which should contribute to the Fermi-liquid-type T^2 resistivity down to $T \to 0$. However, the T^3 behavior of the resistivity at $T \ll T^*$ in Fig. 4 indicates that the T^2 contributions are negligible. Hence, concerning this temperature region of measurement, $T \ll T^* \ll T_c$, the spin fluctuation scattering is much stronger than other scattering mechanisms.

To summarize, the low-temperature resistivity of half-metals is investigated. On the basis of the unconventional 1MS contribution, we obtain T^3 behavior below the crossover temperature T^*. We conclude that this is a unique character of half-metals, and may be used as a crucial test to make the distinction from conventional itinerant ferromagnets. Comparison with experimental data for a possible half-metal (La,Sr)MnO$_3$ reveals good agreement. The author thanks A. Asamitsu and Y. Tokura for providing the data in ref. [18] as well as for useful comments. He is also grateful M. Salamon, M. Jaime, A. J. Millis, A. Gupta, Y. Moritomo and G. M. Zhao for valuable discussions.

[1] C. Zener: Phys. Rev. 82 (1951) 403.
[2] N. Furukawa: in Physics of Manganites, edited by T. Kaplan and S. Mahanti (Plenum Publishing, New York, 1999).
[3] A. J. Millis, P. B. Littlewood and B. I. Shraiman: Phys. Rev. Lett. 74 (1995) 5144.
[4] N. Furukawa: J. Phys. Soc. Jpn. 64 (1995) 2754.
[5] C. M. Varma: Phys. Rev. B54 (1996) 7328.
[6] K. Kubo and N. Ohata: J. Phys. Soc. Jpn. 33 (1972) 21.
[7] V. Yu Irkhin and M. I. Katsnel’son: Physics Uspekhi 37 (1994) 659.
[8] H. Hwang, S.-W. Cheong, N. Ong and B. Batlogg: Phys. Rev. Lett. 77 (1996) 2041.
[9] J. Sun, W. Gallasger, P. Duncombe, L. Krushin-Elbaum, R. Altman, A. Gupta, Y. Lu, G. Gong and G. Xiao: Appl. Phys. Lett. 69 (1996) 3266.
[10] W. E. Pickett: Phys. Rev. Lett. 77 (1997) 3185.
[11] T. Kasuya: Prog. Theor. Phys. 22 (1959) 227.
[12] I. Mannari: Prog. Theor. Phys. 22 (1959) 325.
[13] N. Furukawa: J. Phys. Soc. Jpn. 65 (1996) 1174.
[14] X. Wang and X.-G. Zhang: Phys. Rev. Lett. 82 (1999) 4276.
[15] G. H. Jonker and J. H. van Santen: Physica 16 (1950) 337.
[16] J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh and T. Venkatesan: Nature 392 (1998) 794.
[17] T. G. Perring, G. Aeppli, S. M. Hayden, S. A. Carter, J. P. Remeika and S.-W. Cheong: Phys. Rev. Lett. 77 (1996) 711.
[18] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido and Y. Tokura: Phys. Rev. B51 (1995) 14103.
[19] P. Schiffer, A. Ramirez, W. Bao and S.-W. Cheong: Phys. Rev. Lett. 75 (1995) 3336.
[20] G. J. Snyder, R. Hiskes, S. DiCarolis, M. R. Beasley and T. H. Geballe: Phys. Rev. B53 (1996) 14434.
[21] M. Jaime, P. Lin, M. Salamon and P. Han: Phys. Rev. B58 (1998) R5901.
[22] Y. Endoh and K. Hiritoma: J. Phys. Soc. Jpn. 66 (1997) 2264.
[23] A. Asamitsu and Y. Tokura: Phys. Rev. B58 (1998) 47.
[24] T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi and Y. Tokura: Phys. Rev. Lett. 81 (1998) 3203.
[25] P. R. Broussard, S. B. Qadri, V. M. Browning and V. C. Cestone: J. Appl. Phys. 85 (1999) 6563.
[26] G. M. Zhao, V. Smolyaninova, W. P. Prellier and H. Keller: cond-mat/9912037.
[27] T. Akimoto, Y. Moritomo, A. Nakamura and N. Furukawa: unpublished.
[28] A. Barry, J. Coey, L. Ranno and K. Ounadja: J. Appl. Phys. 83 (1998) 7166.
[29] X. W. Li, A. Gupta, T. McGuire, P. Duncombe and G. Xiao: J. Appl. Phys. 85 (1999) 5585.
[30] S. Ishihara, M. Yamanaka and N. Nagaosa: Phys. Rev. B56 (1997) 686.
[31] M. Imada: J. Phys. Soc. Jpn. 67 (1998) 45.
[32] R. Kilian and G. Khalilullin: Phys. Rev. B58 (1998) 11841.
[33] P. Horsch, J. Jaklic and F. Mack: Phys. Rev. B59 (1999) 6217.