Supurna Sinha · Joseph Samuel

DNA Twist Elasticity: Mechanics and Thermal Fluctuations

Abstract The elastic properties of semiflexible polymers are of great importance in biology. There are experiments on biopolymers like double stranded DNA, which twist and stretch single molecules to probe their elastic properties. It is known that thermal fluctuations play an important role in determining molecular elastic properties, but a full theoretical treatment of the problem of twist elasticity of fluctuating ribbons using the simplest worm like chain model (WLC) remains elusive. In this paper, we approach this problem by taking first a mechanical approach and then incorporating thermal effects in a quadratic approximation applying the Gelfand-Yaglom (GY) method for computing fluctuation determinants. Our study interpolates between mechanics and statistical mechanics in a controlled way and shows how profoundly thermal fluctuations affect the elasticity of semiflexible polymers. The new results contained here are: 1) a detailed study of the minimum energy configurations with explicit expressions for their energy and writhe and plots of the extension versus Link for these configurations. 2) a study of fluctuations around the local minima of energy and approximate analytical formulae for the free energy of stretched twisted polymers derived by the Gelfand Yaglom method. We use insights derived from our mechanical approach to suggest calculational schemes that lead to an improved treatment of thermal fluctuations. From the derived formulae, predictions of the WLC model for molecular elasticity can be worked out for comparison against numerical simulations and experiments.

Keywords Twist Elasticity · Gelfand Yaglom · Thermal Fluctuations · Worm like chain

Supurna Sinha
Raman Research Institute, Bangalore, India
Tel.: +91-80-23610122
Fax: +91-80-2361 0492
E-mail: supurna@rri.res.in

Joseph Samuel
Raman Research Institute, Bangalore, India
1 Introduction

In recent years, the theoretical study of the elasticity of semiflexible polymers has emerged as an active area of research. These studies are motivated by micromanipulation experiments on biopolymers in which single molecules are stretched and twisted to measure elastic properties. These experiments are designed to understand the role of semiflexible polymer elasticity in the packaging of these polymers in a cell nucleus. Twist elasticity plays an important role in several biological functions. DNA, a long molecule (between microns and meters in length) which carries the genetic code, is neatly packed into the tiny cell nucleus, just a few microns across. The first step in packaging DNA in a cell nucleus involves DNA-histone association which makes use of supercoiling in an essential way. The process of DNA transcription can generate and be regulated by supercoiling.

The single molecule experiments have been theoretically analyzed using the popular Worm Like Chain model, which gives an excellent account of the bending elastic properties of DNA. When the twist degree of freedom is explored by rotationally constraining the molecule the theoretical analysis gets complicated by subtle topological and differential geometric issues. In a previous work we have treated these subtleties in the language of differential geometry and topology. Our present study builds on earlier mechanics based research in this area and goes on to incorporate the effects of thermal fluctuations in a quadratic approximation. We evaluate the partition function and present an explicit analytical form which can be compared against measured elastic properties or numerical simulations.

Two parallel streams of research have evolved in the study of semiflexible polymer elasticity. Some researchers use classical elasticity which is conceptually simple, but ignores thermal fluctuations which are important to the problem. Others use a statistical mechanical approach which properly takes into account thermal fluctuations and entropic effects. This latter approach is beset by the geometrical and topological subtleties we alluded to earlier. In the real biological context of a cellular environment, these polymers get constantly jiggled around by thermal fluctuations and therefore a statistical mechanical approach is necessary. Biological processes involve the entire range of flexibilities: Actin filaments, microtubules and short DNA strands are energy dominated, while long DNA strands have appreciable entropy. The quantitative measure of flexibility is L/L_P, where L is the contour length of the polymer and L_P its persistence length (16µ for Actin and 50nm for DNA). In the energy dominated short polymer regime classical elasticity gives a fair understanding of the problem. In the absence of external forces and torques, long polymers require a statistical mechanical treatment since the entropic contribution is not small. In this paper we consider polymers subject to a stretching force and torque and develop a theory of thermal fluctuations around the minimum energy configurations. These minimum energy configurations come in two families, the straight line family (SLF) and the writhing family (WF). We present a treatment based on classical elasticity.
and then incorporate thermal fluctuations around the minimum energy configurations. Members of the writhing family are far from straight and so our analysis goes far beyond perturbation theory about the straight line. While our general analysis applies to polymers of all lengths, some of our analytical formulae are derived in the long polymer limit. Our treatment is analytical and complementary to numerical studies\[26,45,29\].

Two extreme situations are relatively well understood. If the polymer is nearly straight, one can use perturbation theory \[27,40,18\] about the straight line to calculate its elastic properties. In the opposite extreme when the polymer is wrung hard, it buckles and forms plectonemic structures \[25,16,15\] which are stabilized by the finite thickness of the DNA. The transitional regime where the polymer is neither straight nor plectonemic is not as easy. Perturbation theory about the straight line is not applicable and neither do we benefit from simplifications that arise from the energy dominated plectonemic regime. More specifically, let the stretching force F be $2k_B T / L_P$ or higher. As we turn the bead to twist or “wind up” the molecule, it initially remains approximately straight. At high links the polymer buckles and winds around itself to form plectonemic structures. The intermediate link regime, in which the polymer is neither straight nor plectonemic is the subject of this paper. (These three regimes of low link, intermediate link and high link have also been referred to in \[29\] as straight line, buckling and supercoiled regimes.) We will study the straight line and the writhing solutions and fluctuations around these solutions.

The central goal of this paper is to derive explicit analytic expressions for the free energy and the writhe of a twisted stretched polymer. Derivatives of the free energy expressions computed here connect to measurable quantities which can be probed via single molecule experiments or simulations. We arrive at the free energies by focusing on the stationary points of the energy functional dominating the partition function. While there is interest in the elastic properties of DNA at all length scales, the experiments \[3,43,14\] deal with long polymers, many times the persistence length of about 50nm. Many theoretical treatments \[30,2,33,29\] also focus on this regime of long polymers, which leads to some simplification.

In order to formulate the problem we start from an idealized experiment. Let us imagine that a twist storing semiflexible polymer (like dsDNA or filamentary Actin) is attached to a glass slide at one end and a bead at the other, so that its tangent vector at both ends is constrained to point in the \hat{z} direction. Supposing the glass slide end to be at the origin, we apply a force F and torque τ (both in the \hat{z} direction) on the bead. The elastic response of the polymer can be described by its extension $z = r \hat{F}$ (the position of the bead) and its link (the number of times the bead has turned about the \hat{z} axis). Real experiments on DNA differ from the one described above mainly in that they deal with long polymers and it is usually the Link rather than the torque that is held constant. Though the experiments \[14,21\] could easily be adapted by using a feedback loop to maintain constant torque.

Actually, we will be interested in a wider class of thought experiments of which the above is a particular realization. We may, for instance, use more general boundary conditions, fixing the tangent vector at the ends to
$\hat{t}(0) = \hat{t}$ and $\hat{t}(L) = \hat{t}_f$. (The force is still along \hat{z} and the torque along \hat{t}_f.) As theorists, we may also explore the entire range of flexibilities and parameters, which are not practical in the currently accessible regime. Our study is not restricted to long polymers, though we will sometimes specialize to this case for simplicity. We will also regard all our parameters (contour length, persistence length, force, torque, temperature, elastic constants and boundary conditions) as tunable without worrying about how this may be experimentally achieved. In the mechanical limit our analysis reduces to the classical theory of beams and cables. Our larger aim is a comprehensive understanding of the entire range of parameters covering the range from beams and cables to DNA. Thus we are not immediately concerned with any one experiment, but a class of them. Detailed treatments of actual experiments are contained in Refs. [25,7]. For example these treatments take into account the chiral nature of the DNA molecule, which we ignore. We are more concerned here with mathematically working out the predictions of the simplest worm like chain model rather than a detailed modelling of specific experimental data. However, our focus is experimental relevance and we calculate from the model, quantities like link-extension relations which are measured in laboratories.

The paper is organized as follows. Sec II deals with the mechanics of semiflexible polymers. We start by noting that the problem of computing the partition function of a twist storing polymer separates into two parts, a simple Gaussian over the twist and a harder problem involving the writhe. We derive the Euler-Lagrange (E-L) equations describing the minimum energy configurations. The solutions of the E-L equations can be expressed using elliptic integrals. Sec III deals with the role of thermal fluctuations. We perform the second variation of the energy and explain the methods we use to compute the thermal correction to the free energy due to fluctuations about the classical solutions. This gives the main result of our paper, an approximate expression for the free energy of a stretched twisted polymer which takes into account thermal fluctuations around nonperturbative solutions. We then suggest calculational schemes (Sec. IV) for a more ambitious treatment of thermal fluctuations. We end with some concluding remarks in Sec. V.

2 Mechanics

We model the twist storing polymer by a ribbon $(\mathbf{x}(s), \hat{e}^i(s))$, $(i = 1, 2, 3)$ which is a framed space curve. $\mathbf{x}(s)$ describes the curve, $\hat{t}(s) = \frac{\mathbf{x}}{\mathbf{x}_s}$, its tangent vector and $\hat{e}^i(s)$ the framing. s is the arc length parameter along the curve ranging from 0 to L the contour length of the curve. $\mathbf{x}(0) = 0$ since one end is fixed at the origin. The tangent vectors at both ends $\hat{t}(0), \hat{t}(L)$ are fixed. A force $\mathbf{F} = F\hat{z}$ along the \hat{z} direction is applied at the free end at $\mathbf{x}(L)$ and also a torque τ along the fixed end tangent vector $\hat{t}(L)$. We suppose

1 Note that we do not use Serret-Frenet framing, which is popular in this field. Serret-Frenet framing becomes ill defined over locally straight pieces of the curve.
\hat{e}_3 = \hat{t}(s) and refer to \hat{e}_1(s) as the ribbon vector that describes the twisting of the polymer about its backbone. Defining the “angular velocity” \(\Omega \), via

\[
\frac{d\hat{e}_i}{ds} = \Omega \times \hat{e}_i
\]

(1)

The “body-fixed angular velocity” components of \(\Omega \) are \(\Omega_i = \hat{e}_i \cdot \Omega \). The expression for the energy of a configuration is

\[
\mathcal{E}_0(C) = \int_0^L \frac{1}{2} [A(\Omega_1^2 + \Omega_2^2) + C\Omega_3^2] ds - \int_0^L \mathbf{F} \cdot d\hat{t} - 2\pi \tau L_k,
\]

(2)

where \(L_k \) is the number of times the bead is turned around the \(\hat{t} \) axis. The mathematical problem we face is to compute the partition function

\[
Z_0(F, \tau) = \sum_C \exp - \frac{\mathcal{E}_0(C)}{k_B T}.
\]

(3)

In Eq.(3), the sum is over all allowed configurations of the ribbons \[37\]. The ribbon can be closed with a fixed reference ribbon that goes a long way in the \(\hat{t} \) direction, makes a wide circuit and returns to the origin along the \(\hat{t}_f \) direction. In the calculations below, we will set both A and \(k_B T \) equal to unity and restore them when necessary.

We use the celebrated relation\[46,5\] decomposing the link into twist and writhe:

\[
L_k = Tw + W_{CW}
\]

(4)

where \(Tw = 2\pi \int_0^L \Omega_3(s) ds \) and \(W_{CW} \) is the writhe. The writhe is a non-local quantity defined on closed simple curves: Let the arc length parameter \(s \) range over the entire length \(L_0 \) of the closed ribbon (real ribbon + reference ribbon) and let us consider the curve \(x(s) \) to be a periodic function of \(s \) with period \(L_0 \). Let \(R(s, \sigma) = x(s + \sigma) - x(s) \). The Călugăreanu-White writhe is given by \[8,5,46,15,16\]

\[
W_{CW} = \frac{1}{4\pi} \int_0^{L_0} ds \int_0^{L_0} d\sigma \left[\frac{d\hat{R}(s, \sigma)}{ds} \times \frac{d\hat{R}(s, \sigma)}{d\sigma} \right] \cdot \hat{R}.
\]

(5)

Because of White’s theorem Eq.(4), we find that the problem neatly splits \[16,27,37\] into two parts

\[
Z_0(F, \tau) = Z_1(F, \tau) Z_2(\tau)
\]

(6)

where

\[
Z_1(F, \tau) = \int \mathcal{D}[x(s)] \exp - \mathcal{E}_1[x(s)]
\]

(7)

and

\[
\mathcal{E}_1[x(s)] = \int_0^L ds \frac{1}{2} \frac{dt}{ds} \cdot \frac{dt}{ds} - \int_0^L \mathbf{F} \cdot d\hat{t} - 2\pi \tau W_{CW}.
\]

(8)

\footnote{The reference ribbon is supposed to be nowhere self intersecting or south pointing \[37\]. So we also suppose \(\hat{t}_i, \hat{t}_f \neq \hat{z} \).}
The central quantity of interest is the bending, stretching and writhing energy,
\[\mathcal{E}(C) = \frac{1}{2} \int_0^L \dot{t} \cdot \dot{t} ds - \int_0^L F \cdot \dot{s} ds - 2\pi \tau \mathcal{W}_{CW} \]
(11)
of a space curve \(x(s) \) whose tangent vector is \(\dot{t}(s) = \frac{dx}{ds} \). The tangent vector is varied subject to the boundary conditions \(\dot{t}(0) = \dot{t}_i, \dot{t}(L) = \dot{t}_f \) fixing the tangent vector at both ends of the curve. Remembering that the variations of writhe are local [37,38], we arrive at the Euler-Lagrange equations (see Eq. (36) below) from Eq. (11):

\[-\ddot{\dot{t}} + \mathbf{F} = \tau (\dot{\dot{t}} \times \dot{t}) - \gamma \dot{t}, \]
(12)
where the term \(\gamma \dot{t} \) arises since \(\dot{t} \cdot \dot{t} = 1 \). The problem is formally similar to a symmetric top, a fact that was well known to Kirchhoff The analogy is useful for integrating the Euler Lagrange equations. We use quotes for the
analogous top quantities. The “Kinetic energy” is given by \(T = \frac{1}{2} \dot{l} \cdot \dot{l} \) and the “potential energy” is \(V = F \cdot \hat{t} \). The total “energy”

\[
\mathcal{H} = T + V = \frac{1}{2} \dot{l} \cdot \dot{l} + \mathbf{F} \cdot \hat{t} = \frac{1}{2} (\dot{\theta}^2 + \sin^2 \theta \dot{\varphi}^2) + F \cos \theta
\]

is a constant of the motion as is the \(z \) component of the “angular momentum”

\[
J_z = (t \times \dot{t})_z = \sin^2 \theta \dot{\varphi} - \tau \cos \theta,
\]

where we have introduced the usual polar coordinates on the sphere of tangent vectors. Using these “constants of the motion” we reduce the problem to quadratures as described in [19]. The basic equations are

\[
\dot{\theta}^2 = \mathcal{H} - F \cos \theta - \frac{(J_z + \tau \cos \theta)^2}{2 \sin^2 \theta} \quad (15)
\]
\[
\dot{\varphi} = \frac{(J_z + \tau \cos \theta)}{\sin^2 \theta} \quad (16)
\]

Setting \(u = \cos \theta \), we find that

\[
\dot{u} = \epsilon f(u) \quad (17)
\]

where \(f(u) = \sqrt{\mathcal{P}(u)}, \epsilon = \pm 1 \) and

\[
\mathcal{P}(u) := 2(\mathcal{H} - Fu)(1 - u^2) - (J_z + \tau u)^2 \quad (18)
\]

is a cubic polynomial in \(u \). Integration of Eq. (17) gives \(u(s) \) in terms of elliptic integrals and Eq. (16) gives \(\varphi(s) \). Further integrating the tangent vector gives us the polymer configuration \(\mathbf{x}(s) \) in real space. Since our polymer is under stretch (unlike that of Ref. [11] which is under compression) we assume \(F \) is positive. \(\mathcal{P}(u) \) is positive for large positive \(u \), and negative (or zero) at \(u = 1 \) and \(u = -1 \). In order for there to be a physical solution there must be two real roots, \(b, c \) (turning points) in the physical range of \(u = \cos \theta \): \(-1 \leq c \leq b \leq 1 \) and a third real root \(a \geq 1 \). We have ordered the three roots so that \(a \geq b \geq c \). The boundary data must lie between \(c \) and \(b \), \(c \geq u_i, u_f \leq b \). The “motion” goes from \(u_i \) to \(u_f \), possibly passing through turning points on its way.

The integration constants \(\mathcal{H} \) and \(J_z \) are determined by the length of the polymer and the boundary conditions. From Hamilton-Jacobi theory we can write the energy of the solution of length \(L \) going from \(u_i, \varphi_i \) to \(u_f, \varphi_f \) as

\[
\mathcal{E}(u_i, u_f, \varphi_i, \varphi_f, L) = \int_{u_i}^{u_f} \! du f(u) - \mathcal{H}L + J_z \Phi \quad (19)
\]

where \(L \) and \(\Phi = \varphi_f - \varphi_i \), given by

\[
L = \int_{u_i}^{u_f} \! du \frac{1}{f(u)} \quad (20)
\]
and
\[\Phi = \int_{u_i}^{u_f} \frac{du}{f(u)} h(u) \]
(21)
determine \(\mathcal{H} \) and \(J_z \) and \(h(u) = (J_z + \tau u)/(1 - u^2) \). These integrations must include turning points if any. For instance, if \(u \) goes from \(u_i \) to \(u_f \) via \(c \),
\[\int_{u_i}^{u_f} = \int_{u_i}^{u} + \int_{u}^{u_f}, \]
allowing for sign changes in the integrand Eq.(17).

We will use these relations below in computing the fluctuation determinant in the next section. The expressions for \(\Phi, L \) and \(E \) are elliptic integrals, but as these functions are not as widely known today as they were a century ago, it is more useful and appropriate to leave them as integrals. It is quite easy to numerically evaluate these integrals on a computer and plot any function which may be of interest.

2.1 Symmetric Boundary Conditions:

As an illustrative example, we specialize to boundary conditions \(\ell_i = \ell_f = \hat{z} \). These boundary conditions imply that \(\theta = 0 \) is a point on the solution. Since \(\dot{\theta}^2 \) has to be finite and non-negative at \(\theta = 0 \), we have \(J_z = -\tau \) and \(\mathcal{H} \geq F \).

The form of \(\mathcal{P}(u) \) simplifies to
\[\mathcal{P}(u) = (1 - u)[2(\mathcal{H} - Fu)(1 + u) - \tau^2(1 - u)], \]
and Eq.(16) reduces to
\[\dot{\phi} = -\frac{\tau}{1 + u}. \]
(22)
We want to find the minimum energy configurations subject to the writhe constraint. These configurations satisfy the Euler-Lagrange equations. The simplest solution is the straight line \(\ell(s) = \hat{z} \) or \(\theta(s) = 0 \) for all \(s \). This configuration globally minimizes \(\mathcal{E}(\mathcal{C}) \)
\[\mathcal{E}_{ST} = -FL \]
(23)
but since \(\mathcal{W}_{CW} = 0 \), it cannot accommodate writhe. For this we need the "writhing solution", in which the tangent vector \(\ell \) starts from \(\hat{z} \) at \(s = 0 \) and \(\theta \) increases to a maximum of \(\theta_0 \) at \(s = s_0 \), the turning point and then returns to \(\hat{z} \) at \(s = 2s_0 \). The period of the orbit is \(P = 2s_0 \). As was shown in [30], the configuration is a local minimum of the energy only if the length \(L \) of the polymer is equal to \(P \) (and not a multiple of it).

It has been shown earlier [30] that the local minima of the energy are "good curves" [30], i.e. they satisfy the conditions of Fuller’s [16,15] theorem and so the writhe can be computed from a simple local formula [30].

\[\mathcal{W}_{CW} = \int_{u_i}^{u_f} du(1 - u)h(u) \]
(24)
Below we will sometimes drop the subscript on \(\mathcal{W}_{CW} \), it is understood that we only deal with "good curves".

\footnote{As a side remark we mention that our approach is guided by geometric phase ideas [39, 23, 34, 35].}
2.2 Long Polymers

One gets further simplification by confining to the limit of long polymers. In this limit, the “period” \(P (= L \rightarrow \infty) \). As a result the doubly periodic functions that appear for finite \(L \) become simple trigonometric functions (since one of the periods tends to infinity). We will briefly restrict our attention to infinitely long polymers in this section to arrive at an explicit analytical form for the “writhing family” of solitons. To reach this limit, the length Eq.(20) must diverge. For \(H > F \), the function \(P(u) = f(u) \) vanishes linearly as \(u \rightarrow 1 \). The corresponding integral converges and does not lead to \(L \rightarrow \infty \).

Thus we must require that \(P(u) \) vanishes quadratically as \(u \rightarrow 1 \) so that \(\int_{u_0}^{1} \frac{du}{f(u)} \) diverges logarithmically at the upper limit. This situation obtains if \(P(u) \) has coincident roots at the upper limit. Now, demanding that \(P(u) \) vanishes as we take \(u \rightarrow 1 \) in Eq. (17) gives us the condition \(H = F \). So the form of \(P(u) \) simplifies to

\[
P(u) = (1 - u)^2[2F(1 + u) - \tau^2]
\]

The turning points of \(u \) are at \(u_{max} = 1 \) and \(u_{min} = u_0 \), where

\[
u_0 = \frac{\tau^2}{2F} - 1.
\]

The solutions are found by elementary integration [44,12]

\[
u(s) = (1 - u_0) \tanh^2 \mu (s - s_0) + u_0 \quad (25)
\]

\[
\varphi(s) = -\frac{\tau(s - s_0)}{2} - \arctan(\frac{2\mu}{\tau} \tanh (s - s_0)), \quad (26)
\]

where \(\mu^2 = F - \tau^2/4 \). The energy of the writhing family parametrized by \(F, \tau \) and \(L \) is given by

\[
E_W = -FL + 8\mu \tanh \frac{\mu L}{2} - 2\pi \tau W_{CW}(\tau). \quad (27)
\]

Since we have already established [36] that the writhing family are “good curves” [30] we may compute the writhes using the simpler “Fuller formula” \(W_F \), which (apart from normalization) measures the solid angle swept out by the unique shorter geodesic connecting the tangent vector to the north pole. We find by a straightforward calculation that the writhes of the writhing family is

\[
W_{CW} = W_F = \frac{2 \text{sgn} \mu}{\pi} \arctan[\frac{2\mu}{|\tau|} \tanh (\frac{\mu L}{2})], \quad (28)
\]

in agreement with [7]. Including the twist energy Eq.(11) \(-\tau^2 L/(2C)\), the “Gibbs” free energy \(G(F, \tau) \) of the writhing family in the mechanics approximation is

\[
G^F_W(F, \tau) = -FL + 8\mu \tanh[\frac{\mu L}{2}] - 2\pi \tau W_{CW}(F, \tau) - L \tau^2/(2C) \quad (29)
\]
Fig. 1 Gibbs free energies $\mathcal{G}(F, \tau)$ (from a purely mechanical approach) of the writhing family (thick red curve) and of the straight line family (thin blue line) plotted against torque τ for $L = 10$, $F = 2$ and twist elastic constant $C = 1.4$. A, k_BT, L_P are set to 1. Note that the writhing family has higher energy and that this difference narrows as one nears buckling.

where W_{CW} is given by Eq. (28). Correspondingly, the “Gibbs” free energy $\mathcal{G}(F, \tau)$ of the straight line family in the mechanics approximation is

$$
\mathcal{G}_{SL}^C(F, \tau) = -FL - \frac{L\tau^2}{2C}
$$

(30)

These two Gibbs free energies are plotted in Figure 1 as a function of τ for a fixed force. In our expressions Eq. (28, 29) for the energy and writhe of the writhing family, we have retained expressions like $\tanh[\mu L/2]$, which become 1 in the long polymer limit provided μ is not small. If one drops these expressions our energy difference coincides with [12] after correcting for an overall factor ($\sqrt{F/2}$), a presumed misprint in [12].

The writhing family always has a higher energy [12] than the straight line family for fixed force and torque. However, this difference is not extensive in the length L and remains finite as $L \to \infty$. The energy difference at zero torque is $8\sqrt{FA}$. At higher torques (see Fig. 1) this energy difference narrows and disappears at the buckling torque ($\sqrt{4FA}$, for long polymers). At the buckling torque, the writhing solution merges with the straight line and there are no classical solutions beyond this torque.

The writhing family becomes relevant when there is a need to accommodate writhe. As one can see by toying with a tube, applying Link to the ends of the tube results in deformations which cause the tube to deviate considerably from the straight line. If one applies a fixed link to the tube, the elastic response of the tube depends on C, the twist elastic constant. In Fig. 2,3, we plot the relative extension $\xi = z/L$ versus link for a fixed force for large and small values of C. If C is large (Fig. 2), there is a critical link above which the SLF ceases to exist. The WF is then the only solution to the mechanics problem. Further increasing the link causes the writhing family to buckle into plectonemes. Thus the writhing family represents the transition from the straight line to plectonemes.
Fig. 2 Relative extension ξ of the polymer versus applied link for the straight line family (thin blue line) and the writhing family (thick red line) for a stretching force of $F = 2$ (in dimensionless units of $k_B T/L_P$) and $L = 10$. This plot has a twist elasticity $C = 10$ in dimensionless units. At high Link the straight line family ceases to exist; only the writhing family can store writhe.

Fig. 3 Relative extension ξ of the polymer versus applied link for the straight line family (thin blue line) and the writhing family (thick red line). This plot uses $C=1.4$ and a stretching force $F = 2$ and $L = 10$. Similar curves are seen in simulations \[29\].

For smaller values of C, the behavior is as shown in Fig.3, which plots the relative extension of the polymer versus link. If one takes a straight ribbon and twists it, it remains straight and acquires link, following the thin blue line in the figure. At a critical torque, the straight line meets the writhing family (thick red line in the figure) and becomes unstable, follows the red line of the writhing family and buckles. This is exactly the behavior seen in the simulations of Ref.\[29\]. See the section of the curve from b_0 to b_1 in Figure 2 of \[29\]. The rest of the curve in this figure of Ref.\[29\] is not relevant to our analysis since it involves self contact of the polymer and goes beyond our analytic approach. A drop in extension at buckling has also been seen in the experiments of \[14\].
3 Fluctuations

In a thermal environment, the polymer fluctuates around its minimum energy configuration. This contributes a fluctuation term to the partition function and gives a thermal correction to the classical energy computed in the last section. The elastic properties of the polymer are profoundly affected by these fluctuations. Interpretation of the experiments on DNA elasticity[43] requires an inclusion of thermal effects. By taking appropriate derivatives of the free energy computed here one can find the theoretical predictions of the worm like chain model for the experimentally accessible extension versus link or torque twist relations. (See[14] for experimental graphs of these.)

For a system with a finite number of degrees of freedom, $q^i, i = 1..N$ with a potential $V(q)$, the mechanical energy in equilibrium is given by the value of the potential $V(q^*)$ at its minimum q^* where

\[\frac{\partial V}{\partial \bar{q}} |_{q^*} = 0 \]
\[\frac{\partial \partial V}{\partial \bar{q}} |_{q^*} > 0 \]

where we formally write the gradient of V as ∂V and the Hessian matrix as $\partial \partial V$. (The Hessian is positive at local minima.) By performing a Gaussian integral, we find that the free energy in the presence of thermal fluctuations is

\[F = V(q^*) + \frac{1}{2} k_B T \log \det \frac{\partial \partial V}{\partial \bar{q}} |_{q^*}. \]

Our objective here is to present a calculation of the free energy of twisted semiflexible polymers by considering fluctuations about the mechanical solutions of the last section. At fixed force and torque we have the minimum energy classical solution, which satisfies $\delta \mathcal{E}_{bs} = 2\pi \tau \delta \mathcal{W}_{CW}$, where \mathcal{W}_{CW} is the writhe and \mathcal{E}_{bs} is the bending and stretching energy. Formally, what we wish to do is to expand the energy and writhe around the classical configuration retaining terms to quadratic order. The quadratic integral is a functional Gaussian integral which can then be performed and gives an answer in terms of the determinant of the fluctuation operator. The problem reduces to computing the determinant of the fluctuation operator.

Computing the functional determinant of the WLC polymer involves some subtleties. If one evaluates the determinant as an infinite product of eigenvalues, one finds that the product does not converge and needs regularization. This is an artifact of the fact that we have modeled the polymer as a space curve (or ribbon), which has an infinite number of degrees of freedom. Physically, we know that the polymer consists of a finite number of atoms and has finite free energy. There is a well developed mathematical theory to deal with such situations. Multiplicative (additive) constants can be dropped in evaluating the partition function (free energy) and the infinities do not affect physical predictions. Another subtlety arises from zero modes of the classical solution. If the energy functional (and boundary conditions) has continuous symmetries which are broken by the classical solution, there are “Goldstone modes” which cost no energy and have zero eigenvalue. Such zero modes need separate handling. We will face both these problems below.
Let us now consider a family of polymer configurations parametrized by \(\sigma \). The first variation of the energy is (where \(' \) denotes the \(\sigma \) derivative).

\[
E'[\hat{t}(s)] = \int_0^L (\dddot{\hat{t}} \cdot \hat{t}' - \mathbf{F} \cdot \hat{t}') \, ds \tag{34}
\]

and the first variation of the writhe is

\[
W'[\hat{t}(s)] = \frac{1}{2\pi} \int_0^L (\hat{t}(s) \times \dot{\hat{t}}(s)) \cdot \hat{t}'(s) \, ds. \tag{35}
\]

The Euler-Lagrange equations read

\[
E' - 2\pi \tau W' = 0 \quad \text{or} \quad \int_0^L (-\dddot{\hat{t}} - \mathbf{F} - \tau(\hat{t}(s) \times \dot{\hat{t}}(s))) \cdot \hat{t}' \, ds = 0 \tag{36}
\]

for arbitrary \(\hat{t}' \) satisfying \(\hat{t} \cdot \hat{t}' = 0 \).

Now consider the second variation of the energy

\[
E''[\hat{t}(s)] = \int_0^L \dot{\hat{t}} \cdot \dot{\hat{t}}'' - \int_0^L \mathbf{F} \cdot \hat{t}'' + \int_0^L \hat{t} \cdot \hat{t}' \, ds \tag{37}
\]

and the writhe

\[
W''[\hat{t}(s)] = \frac{1}{2\pi} \int_0^L (\hat{t} \times \dot{\hat{t}}) \cdot \hat{t}'' \, ds + \frac{1}{2\pi} \int_0^L (\hat{t}(s) \times \dot{\hat{t}}') \cdot \hat{t}' \, ds. \tag{38}
\]

Computing \(E'' - 2\pi \tau W'' \) we find that the \(\hat{t}'' \) terms combine, thanks to the Euler-Lagrange equations Eq.(12), to give

\[
\gamma \int_0^L \hat{t} \cdot \dot{\hat{t}}' \, ds
\]

This is a quadratic form in \(\hat{t}' \) which we assume is non negative (since we suppose that \(\hat{t}_{cl}(s) \) is a minimum of the energy, either local or global). The subscript on \(\hat{t}_{cl}(s) \) and \(\gamma_{cl}(s) \) indicates that it is the classical solution about which we wish to compute the determinant of this quadratic form. Varying \(\hat{t}' \) to find the fluctuation operator (analogous to \(\partial \partial V \) above) we find the eigenvalue equation (for \(\hat{t}' \) satisfying \(\hat{t} \cdot \hat{t}'' + \hat{t} \cdot \hat{t}' = 0 \)).

\[
\hat{O}\hat{t}' = -\dddot{\hat{t}}' - \tau \hat{t}_{cl}(s) \times \dot{\hat{t}}' + \gamma_{cl}(s)\hat{t}' = \lambda \hat{t}' \tag{40}
\]

which gives us the spectrum of the fluctuation operator. If we could find all the eigenvalues of \(\hat{O} \), we could compute its determinant. While this works in special cases (like the SLF) it is not usually possible in general.

To compute the determinant of the fluctuation operator \(\hat{O} \), we use a technique due to Gelfand and Yaglom (GY) \[17,28\]. We consider the energy Eq.(11) as a function of the boundary conditions at the end of the polymer. (This is similar to considering the Action in classical mechanics as a function
of the end points in Hamilton Jacobi theory.) We consider classical solutions which go from \hat{t}_i at $s = 0$ to \hat{t}_f at $s = L$. Although our physical problem fixes \hat{t}_i and \hat{t}_f, the calculational technique (GY) requires that we consider variations of the energy under such changes. The result of GY is that the computation of an infinite dimensional functional determinant (the determinant of the operator \hat{O}) reduces to the computation of a finite dimensional one. The final answer is expressed in terms of the variation of the classical energy with respect to variations of the boundary conditions. Let $\mathcal{E}(\hat{t}_i, \hat{t}_f, L)$ be the energy of the configuration of length L that goes from \hat{t}_i to \hat{t}_f (where \hat{t}_i and \hat{t}_f are the small variations of the boundary conditions about the actual boundary conditions in our problem). The infinite dimensional functional determinant after regularization is reduced to the computation of a simple finite dimensional determinant:

$$\det \hat{O} = \left[\det \frac{\partial^2 \mathcal{E}}{\partial \hat{t}_i \partial \hat{t}_f} \right]^{-1}$$

evaluated at the physical boundary data. From Hamilton-Jacobi theory we can write the quantity in square brackets in Eq.(41) as

$$\det \frac{\partial p_f}{\partial t_i^2}$$

where p_f^2 is the “final momentum” $p(L)$ of the classical configuration of length L that reaches t_f from t_i.

The method of GY is used in many fields of physics (see for example [9]) for computing fluctuation determinants. Ref.[11] contains an application of the technique to polymer physics in which it is used to compute the thermal corrections to Euler buckling of polymers under compression. Our present application is to stretched and twisted polymers. The great advantage of the GY technique is that one does not have to diagonalize the fluctuation operator \hat{O} to compute its determinant. All one has to do is to linearise the Euler Lagrange equations and study the Jacobi fields. In many cases, it is not practical to diagonalize the fluctuation operator, while computing the Jacobi fields is a much easier task.

We saw in the last section that the minima of the energy come in two families, the straight line family and the writhing family. Since the GY technique may not be familiar to many readers, we illustrate its use by applying it to a case where the answer is known, the straight line family. We calculate the fluctuation determinant by two methods, first explicitly diagonalizing the fluctuation operator and then by the GY technique. We then apply the GY idea to the writhing family to obtain new results.

3.1 Straight line Family

For the straight line family, $\hat{t}_c(s) = \hat{z}$ (for any F, τ). As is well known[12, 27], there is a range of (F, τ) (\(\tau < \tau_c = \sqrt{4F + (\frac{F}{2})^2}\)) for which the straight
line family is stable against perturbations. The eigenvalue equation Eq. (40) reads
\[-\ddot{t} - \tau(\dot{z} \times \dot{t}) + F\dot{t} = \lambda \dot{t},\]
where $\dot{t}, \dot{z} = 0$. The eigenvalues are easily worked out and the thermal correction to the free energy computed. This involves regularizing a divergent sum $2k_B T \sum_{n=1}^{\infty} \log(\mu^2 + n^2 \pi^2 L^2)$, which can be done by standard methods. The final answer turns out to be $\det \hat{O} = (\sinh \mu L/\mu)^2$ which leads to the thermal correction to the free energy
\[k_B T \log \left[\frac{\sinh L\mu}{\mu} \right],\]
in agreement with Ref. [18].

This computation can also be performed by line arising the Euler-Lagrange equations about the straight line. After some simple transformations, it reduces to the inverted oscillator (in a magnetic field) and the solutions can be written in terms of hyperbolic functions (unlike the trigonometric functions of the usual oscillator). Varying the relations between final and initial data, we easily find

\[
\delta Z(L) = (\exp -i\tau L/2) (\cosh \mu L) \delta Z(0) + \mu^{-1} (\sinh \mu L) \delta P(0) \quad (45)
\]
\[
\delta P(L) = (\exp -i\tau L/2) \mu (\sinh \mu L) \delta Z(0) + (\cosh \mu L) \delta P(0) \quad (46)
\]

where $Z = \hat{t}_x + i\hat{t}_y$ are complex coordinates in the tangent plane at the north pole and P the conjugate momenta. Setting $\delta Z(L) = 0$ and solving for $\delta P(L)$, performing the differentiation Eq. (42) yields the determinant $\det \hat{O} = [\det \partial P(L)/\partial Z(0)]^{-1} = (\sinh \mu L/\mu)^2$ as before. Computing $k_B T/2 \log |\partial P(L)/\partial Z(0)|^2$ gives us the same answer as Eq. (44).

3.2 Writhing Family

For the writhing family, the eigenvalue equation Eq. (40) is considerably more complicated (note the presence of the functions $\hat{t}_cl(s)$ and $\gamma_{cl}(s)$) and the eigenvalues and eigenvectors are not available in closed form, but we can still use the GY method. The writhing family breaks the azimuthal symmetry (rotation about the \hat{z} axis) that is present in the energy and the boundary conditions. As a result the solution has zero modes which need careful handling. There are two routes open to us and we briefly describe both of them. We can alter the boundary conditions so that they break the azimuthal invariance. For instance, we could make at least one of \hat{t}_i and \hat{t}_f not point along the \hat{z} direction. The other route is to exploit the symmetry of the rotational invariance and treat the azimuthal degrees of freedom exactly. This leaves a one dimensional problem (θ or u), which we can treat either approximately or exactly, depending on the desired degree of accuracy. Since the calculations are involved if straightforward, we outline the method and present the final answer.
3.3 Asymmetric Boundary Conditions

We suppose that u_i, φ_i and u_f, φ_f, the initial and final tangent vectors are not both in the \hat{z} direction. We make a variation in the initial positions, while holding the final positions fixed. We are interested in the resultant variation in the final momenta. To compute this, we proceed as follows exploiting the integrability of the system. We will keep the final configuration (u_f, φ_f) fixed and perform variations in (u_i, φ_i) the initial configuration and look at the variations in Φ, L and E. These are

$$\delta L = \epsilon_i \frac{\delta u_i}{f(u_i)} + \frac{\partial L}{\partial H} \delta H + \frac{\partial L}{\partial J} \delta J,$$

$$\delta \Phi = \epsilon_i \frac{\delta u_i}{f(u_i)} \frac{h(u_i)}{f(u_i)} + \frac{\partial \Phi}{\partial H} \delta H + \frac{\partial \Phi}{\partial J} \delta J,$$

$$\delta E = \epsilon_i f(u_i) \delta u_i + \delta J \Phi + J \delta \Phi - \delta H L - H \delta L. \quad (47)$$

The Jacobian of interest is Eq.(42), which can be expressed as (writing p_f for p_{u_f} and J_z for p_{φ_f})

$$\frac{\partial (p_f, J_z)}{\partial (u_i, \varphi_i)} = \frac{\partial (p_f, J_z)}{\partial (H, J_z)} \frac{\partial (H, J_z)}{\partial (u_i, \varphi_i)}.$$

From

$$\epsilon_f \delta p_f = \delta f(u_f)/(1 - u_f^2) = \frac{\delta H}{f(u_f)} - \frac{h(u_f)}{f(u_f)} \delta J_z,$$

we find

$$\begin{pmatrix} \delta p_f \\ \delta J \end{pmatrix} = \begin{pmatrix} \frac{\partial L}{\partial H} & \frac{\partial L}{\partial J} \\ \frac{h(u_f)}{f(u_f)} & 1 \end{pmatrix} \begin{pmatrix} \delta H \\ \delta J_z \end{pmatrix} = A \begin{pmatrix} \delta H \\ \delta J_z \end{pmatrix} \quad (48)$$

where A is a 2×2 matrix defined by Eq. (48).

Setting $\delta L = 0$ and $\delta \Phi = \delta (\varphi_2 - \varphi_i) = -\delta \varphi_i$ in Eq. (47) we find

$$D \begin{pmatrix} \delta H \\ \delta J \end{pmatrix} = \begin{pmatrix} \epsilon_i \frac{h(u_i)}{f(u_i)} \\ -1 \end{pmatrix} \begin{pmatrix} \delta u_i \\ \delta \varphi_i \end{pmatrix} = C \begin{pmatrix} \delta u_i \\ \delta \varphi_i \end{pmatrix} \quad (50)$$

where the 2×2 matrices D and C are defined in Eq. (50). From

$$(\det D)^{-1} = \det \begin{pmatrix} \frac{\partial p_f}{\partial u_i} \end{pmatrix},$$

we finally arrive at

$$\det \hat{O} = (\det A)^{-1} (\det D) (\det C)^{-1},$$

$$= f(u_i) f(u_f) \det D$$

$$= f(u_i) f(u_f) \left[\frac{\partial L}{\partial H} \frac{\partial \Phi}{\partial J} - \frac{\partial \Phi}{\partial H} \frac{\partial L}{\partial J} \right] \epsilon_i \epsilon_f \quad (53)$$
where D is the 2×2 matrix defined in Eq. (50). The final answer for the total free energy including thermal corrections is

$$G(F, \tau, k_BT) = E_{cl} + k_BT \log \left(\frac{\epsilon_i \epsilon_f}{f(u_i) f(u_f)} \left(\frac{\partial L}{\partial \Phi} \frac{\partial \Phi}{\partial J} - \frac{\partial \Phi}{\partial H} \frac{\partial L}{\partial J} \right) \right)$$ \hspace{1cm} (54)

These derivatives are evaluated at constant u_i, u_f. While this final answer may appear to be abstract, it is in fact quite amenable to numerical methods. All the functions appearing here can be expressed in terms of elliptic integrals and numerically evaluated.

Although Eq. (54) is written for asymmetric boundary conditions, the thermal correction to the free energy for long polymers with symmetric boundary conditions can be teased out of it, since the free energy for long polymers is expected to be independent of the boundary conditions. We take the limit of $u_i \to 1$, which leads to $f(u_i)$ vanishing. In Eq. (54) the terms that multiply $f(u_i)$, we need only keep those terms that diverge as $u_i \to 1$. This results in a simple expression for the leading correction to the free energy:

$$\Delta G_W = k_BT L \mu = k_BT L \sqrt{F - \tau^2/4}$$ \hspace{1cm} (55)

In Eq. (55) we have dropped lower order terms which are not extensive in L. Notice that the numerical value of the thermal correction to the free energy is the same as for the straight line family. This can be understood physically since for any finite μ, most of the polymer is straight. We would not in general expect the fluctuation energies of SLF and WF to be equal in short polymers. The expressions Eqs. (53-55) contain the main results of this study: an analytic calculation of the thermal corrections to the free energy.

Our main result expressing the fluctuation determinant in simple terms sheds considerable light on the stability of polymer configurations. Note that the determinant vanishes as either u_i or u_f approaches a turning point. This signals the appearance of null eigenvalues for the Hessian or Fluctuation operator Eq. (40). Such effects have been well studied in optics and mechanics [1], where they reveal the appearance of caustics, focusing and conjugate points. If the polymer configuration goes from u_i to u_f passing through turning points, it is not stable against small perturbations. The Gibbs free energy $G(\tau, F)$ can be lowered at constant torque by such perturbations. At constant torque, such configurations will decay to lower energy configurations.

However, if one works in the corresponding Helmholtz ensemble, at constant link, which is how most experiments are done, the allowed perturbations are also required to maintain constant writhe (supposing for simplicity, C to be infinite) and this instability disappears. However, if u_i and u_f are separated by two turning points, there are two independent perturbations, which lower the Energy. Working to second order in the perturbation, one of these lowers the writhe and the other increases it. One can take a linear combination of these two perturbations to maintain constant writhe. Such configurations are unstable at both constant torque and constant Link. Note that polymer configurations that extend for more than a period P are therefore unstable to perturbations in accord with the findings of [36]. They are not local minima of either the Helmholtz or Gibbs energies.
4 Towards Statistical Mechanics

Till this point we have relied on the mechanical approach, dealing with individual polymer configurations and considering small fluctuations around them. This has the advantage that we know which individual configuration we are dealing with and can show that the dominant configurations admit a local writhe formula. We now move towards a more statistical mechanical approach and integrate over configurations. In the process, we lose touch with individual configurations, but we gain by getting a fuller treatment. From the mechanical approach, we have gained confidence that the sum over configurations is dominated by “good curves” that admit a local writhe formula. Using this idea, we will now extrapolate to more general situations where the thermal fluctuations are appreciable and continue to use a local writhe formula. There is a logical jump involved here and we have argued elsewhere that this leads to a good approximation provided that the polymer is under stretch.

4.1 Symmetric Boundary Conditions

If we assume that the boundary conditions are azimuthally symmetric, we can exploit the symmetry to treat the \(\varphi \) degrees of freedom exactly by “integrating them out”. We reduce the problem to a single variable \(\theta \) (or \(u \)). In the process of reduction the effective potential picks up an extra contribution from the thermal fluctuations of the \(\varphi \) degrees of freedom. As a result the effective potential explicitly depends on the temperature. The origin of this effect is that path integration in general coordinates has subtleties coming from the measure \(^4 \), as pointed out by Edwards and Gulyaev \([10]\). These techniques have been applied \([32]\) to compute the quantum corrections to soliton energies. Our calculation is mathematically similar, but physically different since we deal with thermal corrections rather than quantum ones. Our treatment below closely follows these earlier studies, with appropriate modifications.

After integrating out the \(\varphi \) degrees of freedom, the \(\theta \) motion is governed by an effective potential

\[
V_{\text{eff}}(\theta) = F \cos \theta - \frac{k_B T}{8 L_P} \frac{\tau^2 (1 - \cos \theta)}{1 + \cos \theta} - \frac{k_B T}{8 L_P} \sin^2 \theta \tag{56}
\]

and the earlier equation Eq. (17) is replaced by

\[
\ddot{u}^2 = \mathcal{P}_T(u) = (f_T(u))^2 = 2((\mathcal{H} + \frac{k_B T}{8 L_P}) - Fu)(1-u^2) - \tau^2(1-u)^2 + \frac{k_B T}{4 L_P} \tag{57}
\]

Note the explicit temperature dependence in Eq. (56). Note that \(u = 1 \) is no longer an allowed solution. The straight line is destabilized by entropic effects. Indeed it would be hard to distinguish between SLF and WF here

\footnote{This can also be seen by operator methods, where it emerges from the need to make the reduced differential operator self adjoint.}
because we are no longer dealing with single configurations but ensembles of
them. However, we can still continue to use a local writhe formula for torques
large enough that the turning point c is positive. Such curves have tangent
vectors entirely in the northern hemisphere and are “good” curves.

We now treat the θ (or u) motion approximately by considering the “con-
figurations” $u(s)$ which satisfy the Euler-Lagrange equations. One finds the
“classical” contribution by evaluating the energy on the “classical” solution.
(“Classical” is in quotes because it is a bit of a misnomer, since the effec-
tive potential includes contributions from thermal fluctuations.) The thermal
correction to the free energy can now be computed:

$$F(T,F,\tau) = E_{\text{Cl}}'(T,F,\tau) + k_B T/2 \log \left[-4(H - F)(\frac{\partial L}{\partial H}) \right]$$ (58)

In the first term in Eq.(58) E_{Cl}' is computed using the thermally corrected
$P_T(u)$. In the second term which is already of order $k_B T$, we have used the
old $P(u)$ since the difference is higher order in $k_B T$. L is given in terms of H
by formula Eq.(20). These formulae are numerically tractable (analytically
they are still elliptic integrals) and can be used to work out the predictions
of the model.

4.2 Statistical Approach

In fact, it is possible to also treat the u degree of freedom exactly but with
more work. The effective potential Eq.(56) gives rise to a Schrödinger equa-
tion

$$-\frac{1}{2} \frac{d^2 \psi}{d\theta^2} + V_{\text{eff}}(\theta) \psi = \epsilon \psi.$$ (59)

Solving the Schrödinger equation gives the full propagator, which in turn
gives us the free energy of the polymer. It is convenient to pass to imaginary
“time” which changes the relative sign between the kinetic and potential terms. This turns the potential over $V_{\text{eff}} \rightarrow -V_{\text{eff}}$. For $\tau^2 \geq \frac{k_B T}{\sigma^2}$ the potential has an attractive well at $\theta = \pi$ coming from the last two terms in the effective potential (Eq. 56). The potential near $\theta = \pi$ diverges as $-1/(\pi - \theta)^2$.

As a result, writhe can be stored at arbitrarily small energy cost. This pathology of the model is caused by paths that wind round the south pole and has to be regulated by imposing a cutoff [2,15]. This is a reflection in this model of the plectonemic transition [2]. As these authors point out, a cutoff corresponding to the effective diameter of the DNA molecule is necessary. In fact the twist experiments reported in [6] show the polymer making transitions between the plectonemic phase and the normal phase. It would be interesting to compare the predictions of this theoretical model with the experiment. Possible points of contact are the relative time spent in each phase and the mean rate of transitions, both of which can be calculated from the model. Of course a comparison with the real experiment will also involve the dynamics of the bead as done in [7]. Our study deals purely with the polymer.

For long polymers, we can use the eigenstate expansion with states ψ_n and energies ϵ_n

$$K(\hat{t}_i, \hat{t}_f, L) = \Sigma_n \psi_n(\hat{t}_i) \psi_n(\hat{t}_f) \exp[-\epsilon_n]$$

(60)

is dominated by the ground state and compute the free energy as the ground state energy ϵ_0 of the Schrödinger operator in Eq. (59).

5 Conclusion

We have given a detailed analysis of the mechanics and fluctuations of writhing polymers under stretch. Our main results are 1) an explicit characterization of the mechanics of the writhing family, its energy and writhe 2) a study of fluctuations about these equilibrium configurations and formulae which can be used to calculate the thermal correction to the free energy. In particular, we have presented explicit approximate analytic expressions for the free energy (Eqs. (54) and (58)) of a semiflexible polymer ribbon. We do not have room here for a detailed elucidation of the “phase diagram” which results from the free energy expressions above. However, our work shows that approximate analytical treatments of the problem of writhing DNA are possible. Such analytical treatments are complementary to simulations (numerical experiments) and real experiments.

A curious feature of the energy (and free energy) of the writhing family is the cusp at $\tau = 0$. On differentiation this results in a discontinuity in the link between positive and negative values of τ. The discontinuity is visible in Figure 2 (the gap in the thick red curve) and is also present in simulations (see Figure 2 of [29]). This feature can be traced to the fact that the $\tau = 0$ member of the writhing family has self intersections and there is a consequent jump in the writhe across it.

We started this paper with a mechanical approach and moved progressively to a more statistical mechanical point of view. The advantage of mechanics is that we are dealing with single configurations of the polymer and
can therefore check whether the local writhe formula applies. The work of \[36\] shows that it does apply to all the local minima of energy (at least for a class of solutions \(J_z = -\tau\)), which includes symmetric initial data. We expect from here that small fluctuations about these “good curves” are also “good curves”. Further extrapolating this idea, we expect that the present models based on a local writhe formula are a good approximation to the exact, but difficult to solve models based on the non local writhe. This result supports the idea proposed in \[37\] that in a statistical sense, one can approximate self avoiding models by south avoiding ones.

We mentioned before that in mechanics, the straight line is incapable of accommodating writhe. This is shown in Figs 2 and 3, where the extension of the thin blue line is maximal independent of the applied link. This situation changes drastically when thermal fluctuations are incorporated as in Fig. 4. The straight line family no longer has maximal extension (the thin blue line curves down). Thus the applied link is stored entirely in the thermal fluctuations of the molecule. The molecule has helical fluctuations and the molecule stores writhe by preferentially writhing with one helicity. This is in sharp contrast to the writhing solutions, which can store writhe even without thermal fluctuations.

A mechanical treatment is expected to work well for short polymers. For long polymers without applied force, the system is entropy dominated and therefore our treatment does not apply. For long polymers under a very high stretching force (for example the regime \(F \approx 10\) in \[14\] corresponding to 1pN), the entropic fluctuations are tamed and a mechanical approach is again possible. As the force is lowered, entropic effects begin to gain importance. Our treatment considers fluctuations about non perturbative solutions of the writhing family and therefore goes beyond perturbation theory about the straight line. We have argued elsewhere \[37\] that the free energy predicted by “south” avoiding models are a good approximation to that of “self avoiding models” provided the polymer is under stretch. This is certainly true at low link, since perturbation theory about the straight line applies. At extremely high links, the same is true for a different reason: the configurations in which the polymer winds around itself in the self avoiding model are mimicked by south winding configurations in the south avoiding model. At intermediate links, we expect that the polymer is in a coexistence phase \[25\] with some of its length storing the writhe in the plectonemic phase and the rest of it at a torque below the buckling torque. Our study suggests that even in this regime which is far from perturbative, the two models give approximately similar predictions. As mentioned earlier, this is based on our demonstration \[39\] that the dominant configurations (the local minima of the energy) are good curves. Only a simulation will convincingly demonstrate how low one can go in stretching force before the approximation breaks down. We hope to compare these theoretical predictions with computer simulations in the future.
Acknowledgements It is a pleasure to thank Michael Berry, Abhishek Dhar, Sreehar B. Dutta, Abhijit Ghosh, Yashodhan Hatvalne, Jaya Kumar, Viewanbhar Pati, Abhishtodi Prakash, Arthur La Porta and Sanjib Sabhapandit for discussions.

References

1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer-Verlag (1978)
2. Bouchiat, C., Mézard, M.: Elasticity model of a supercoiled dna molecule. Phys. Rev. Lett. 80(7), 1556–1559 (1998). DOI 10.1103/PhysRevLett.80.1556
3. Bustamante, C., Smith, S.B., Liphardt, J., Smith, D.: Single molecule studies of dna mechanics. Curr. Opin. Struct. Biol. 10, 279 (2000)
4. Chouiaieb, N., Goriely, A., Maddocks, J.H.: Helices. Proceedings of the National Academy of Sciences of the United States of America 103(25), 9398–403 (2006). URL http://dx.doi.org/10.1073/pnas.0508370103
5. Călugăreanu, G.: On the isotopy classes of three dimensional knots and their invariants (original title in french). Czech. Math. J 11, 588 (1961)
6. Daniels, B.C., Forth, S., Sheinin, M.Y., Wang, M.D., Sethna, J.P.: Discontinuities at the dna supercoiling transition. Phys. Rev. E 80(4), 040,901 (2009)
7. Daniels, B.C., Forth, S., Sheinin, M.Y., Wang, M.D., Sethna, J.P.: Discontinuities at the dna supercoiling transition. Phys. Rev. E 80(4), 040,901 (2009). DOI 10.1103/PhysRevE.80.040901
8. Dennis, M.R., Hanay, J.H.: Geometry of calugareanu's theorem. Proc. R. Soc. A 461(2062) (2005). DOI 10.1098/rspa.2005.1527
9. Dunne, G.V.: Worldline instantons, vacuum pair production and gutzwiller’s trace formula. Journal of Physics A: Mathematical and Theoretical 41(16), 164,041 (2008). URL http://stacks.iop.org/1751-8121/41/i=16/a=164041
10. Edwards, S.F., Gulyaev, Y.V.: Path integrals in polar co-ordinates. Proc. Roy. Soc. A 279, 229 (1964). DOI 10.1103/PhysRevD.11.2950
11. Emanuel, M., Mohrbach, H., Sayar, M., Schiessel, H., Kulić, I.M.: Buckling of stiff polymers: Influence of thermal fluctuations. Phys. Rev. E 76(6), 061,907 (2007). DOI 10.1103/PhysRevE.76.061907
12. Fain, B., Rudnick, J.: Conformations of closed dna. Phys. Rev. E 60(6), 7239–7252 (1999). DOI 10.1103/PhysRevE.60.7239
13. Fain, B., Rudnick, J., Östlund, S.: Conformations of linear dna. Phys. Rev. E 55(6), 7364–7368 (1997). DOI 10.1103/PhysRevE.55.7364
14. Forth, S., Deufel, C., Sheinin, M.Y., Daniels, B., Sethna, J.P., Wang, M.D.: Abrupt buckling transition observed during the plectoneme formation of individual dna molecules. Phys. Rev. Lett. 100(14), 148,301 (2008). DOI 10.1103/PhysRevLett.100.148301
15. Fuller, F.B.: The writhing number of a space curve. Proc. Nat. Acad. Sci. 68, 815 (1971)
16. Fuller, F.B.: Decomposition of the linking number of a closed ribbon: A problem from molecular biology. Proc. Nat. Acad. Sci. 75, 3557 (1978)
17. Gelland, I.M., Yaglom, A.M.: Integration in functional spaces and its applications in quantum physics. Journal of Mathematical Physics 1, 48 (1960)
18. Ghosh, A., Samuel, J., Sinha, S.: Elasticity of stiff biopolymers. Phys. Rev. E 76(6), 061,801 (2007). DOI 10.1103/PhysRevE.76.061801
19. Goldstein, H.: Classical Mechanics. Addison-Wesley Publishing Company (1978)
20. Keller, D., Swigon, D., Bustamante, C.: Relating single-molecule measurements to thermodynamics. Biophys J 84(2 Pt 1), 733–8 (2003)
21. La Porta, A., Wang, M.D.: Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92(19), 190,801 (2004). DOI 10.1103/PhysRevLett.92.190801
22. Love, A.E.H.: A Treatise On the Mathematical Theory Of Elasticity. Dover Publications (1944)
23. Maggs, A.C., Rossetto, V.: Writhing photons and berry phases in polarized multiple scattering. Phys. Rev. Lett. 87(25), 253,901 (2001). DOI 10.1103/PhysRevLett.87.253901
24. Marko, J., Siggia, E.D.: Stretching dna. Macromolecules 28, 8759 (1995)
25. Marko, J.F.: Torque and dynamics of linking number relaxation in stretched supercoiled dna. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 76(2), 021926 (2007). DOI 10.1103/PhysRevE.76.021926. URL http://link.aps.org/abstract/PRE/v76/e021926
26. Monastryshky, M.: Computational Studies of DNA and RNA. Springer (2007)
27. Moroz, J.D., Nelson, P.: Entropic elasticity of twist-storing polymers. Macromolecules 31, 6333 (1998)
28. Muratore-Ginanneschi, P.: Path integration over closed loops and gutzwiller’s trace formula. Physics Reports 383(5-6), 299 – 397 (2003). URL http://www.sciencedirect.com/science/article/B6TVP-497YYH3-1/2/7a4f0e2ef91dddf3fd1e37438f1db8
29. Neukirch, S.: Extracting dna twist rigidity from experimental supercoiling data. Phys. Rev. Lett. 93(19), 198,107 (2004). DOI 10.1103/PhysRevLett.93.198107
30. Neukirch, S., Starostin, E.L.: Writhe formulas and antipodal points in plec tonic dna configurations. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 78(4), 041912 (2008). DOI 10.1103/PhysRevE.78.041912. URL http://link.aps.org/abstract/PRE/v78/e041912
31. Panyukov, S., Rabin, Y.: Thermal fluctuations of elastic filaments with spontaneous curvature and torsion. Phys. Rev. Lett. 85(11), 2404-2407 (2000). DOI 10.1103/PhysRevLett.85.2404
32. Rajaraman, R., Weinberg, E.J.: Internal symmetry and the semiclassical method in quantum field theory. Phys. Rev. D 11(10), 2950–2966 (1975). DOI 10.1103/PhysRevD.11.2950
33. Rossetto, V., Maggs, A.C.: ”comment on elasitcnic model of a supercoiled dna molecule”. Phys. Rev. Lett. 88(8), 089,801 (2002). DOI 10.1103/PhysRevLett.88.089801
34. Samuel, J., Bhandari, R.: General setting for berry’s phase. Phys. Rev. Lett. 60(23), 2339–2342 (1988). DOI 10.1103/PhysRevLett.60.2339
35. Samuel, J., Sinha, S.: Molecular elasticity and the geometric phase. Phys. Rev. Lett. 90, 098,305 (2003)
36. Samuel, J., Sinha, S.: Top and writhing dna. Submitted for Publication (2009)
37. Samuel, J., Sinha, S., Ghosh, A.: Dna elasticity: Topology of self-avoidance. Journal Of Physics: Condensed Matter 18(14), S253 (2006)
38. Seol, Y., Li, J., Nelson, P., Perkins, T.T., Betterton, M.D.: Elasticity of short dna molecules: Theory and experiment for contour lengths of 0.6-7 µm. Biophysical Journal 93, 4360 (2007)
39. Shapere, A., Wilczek, F.: Geometric Phases in Physics. World Scientific, Singapore (1989)
40. Sinha, S.: Writhing distribution of stretched polymers. Phys. Rev. E 70(1), 011,801 (2004). DOI 10.1103/PhysRevE.70.011801
41. Sinha, S.: Free energy of twisted semiflexible polymers. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 77(6), 061903 (2008). DOI 10.1103/PhysRevE.77.061903. URL http://link.aps.org/abstract/PRE/v77/e061903
42. Sinha, S., Samuel, J.: Inequivalence of statistical ensembles in single molecule measurements. Phys. Rev. E 71(2), 021,104 (2005). DOI 10.1103/PhysRevE.71.021104
43. Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A., Croquette, V.: ”The Elasticity of a Single Supercoiled DNA Molecule”. Science 271(5257), 1835–1837 (1996). DOI 10.1126/science.271.5257.1835
44. Stump, D.M., Fraser, W.B.: Multiple solutions for writhed rods: implications for dna supercoiling. Proc. Roy. Soc. Lond. 456, 455 (2000)
45. Vologodskii, A.V., Marko, J.F.: Extension of torsionally stressed dna by external force. Biophysical Journal 73(1), 123 (1997)
46. White, J.: Self-linking and the gauss integral in higher dimensions. Am. J. math 91, 693 (1969)