Bacterial contamination and antimicrobial susceptibility patterns of intensive care units medical equipment and inanimate surfaces at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia

Addis Darge
Medical laboratory Technology department, college of health sciences, Bahir Dar

Atsebaha G Kahsay (atseba_mu@yahoo.com)
Mekelle University College of Health Sciences

Haftamu Hailekiros
Mekelle University College of Health Sciences

Selam Niguse
Mekelle University College of Health Sciences

Mahmud Abdulkader
Mekelle University College of Dryland Agriculture and Natural Resources

Research note

Keywords: Bacterial contamination, medical equipment, inanimate surfaces, Ethiopia, antimicrobial susceptibility pattern

Posted Date: October 15th, 2019

DOI: https://doi.org/10.21203/rs.2.10931/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on September 23rd, 2019. See the published version at https://doi.org/10.1186/s13104-019-4658-5.
Abstract

Objective: To determine bacterial contaminants and their antimicrobial susceptibility patterns from medical equipment and inanimate surfaces.

Results: Of 130 swabs, 115 (88.5%) swabs were culture positive, of which contaminated medical equipment and inanimate surfaces account 70(83.3%) and 45(97.8%), respectively. All the swabs collected from sphygmomanometer, bedside table, computer and computer standing tables were 100% contaminated with bacteria. From the culture-positive swabs, a total of 171 bacterial isolates were identified, out of which 117 (68.4%) and 54 (31.6%) isolates were gram-positive and gram-negative, respectively. Most isolates (82%) were resistant to ampicillin and 13%, 8.6%, and 14% was observed in ciprofloxacin, gentamicin, and tetracycline respectively. Multi-drug resistant was observed in Escherichia coli (72.7%) and Staphylococcus aureus (58.7%).

Introduction

Intensive care unit (ICU) acquired infections are global public health concern [1]. Bacterial contamination of the medical equipment and inanimate surfaces used in the ICU put ICU admitted patients (especially those with an underline disease, impaired immunity and with invasive procedures) at higher risk for hospital-acquired infection [2]. Non-critical medical equipment and inanimate surfaces have a capacity to harbor bacteria for a long period of time and can become into contact with patients and medical personnel during disease management [3-6].

The prevalence of ICU acquired infections in developed countries is indicated to be 5-10%, while their prevalence is shown to exceed 2-20 times higher in developing countries [7]. A high incidence (>50%) of ICU acquired infections are reported as compared with other wards(10%)[1]. This might be due to invasive procedures, presence of debilitating patients, prolonged stays and emerging of multidrug-resistant bacteria [8-10].

Studies have reported that contaminated medical equipment and inanimate surfaces were highly associated with ICU acquired infections [11-16]. Although few studies were carried out in the Hospitals in Ethiopia, most studies were focusing on other wards and those performed in intensive care units were done on single or few medical equipment and inanimate surfaces [17, 18, 19]. Moreover, there is no study done in the study setting related to contamination of ICU medical equipment and inanimate surfaces. Therefore, this study aimed at determining bacterial contaminates and antimicrobial susceptibility patterns from medical equipment and inanimate surfaces in the ICUs of Ayder Comprehensive Specialized Hospital, Northern Ethiopia.

Materials And Methods

Study area, design and period

A hospital-based cross-sectional study was conducted from October 2016 to June 2017 at Ayder Specialized Comprehensive Hospital, Mekelle, Northern Ethiopia. Mekelle city is situated783 km North of Addis Ababa, the capital of Ethiopia. It is the largest hospital serving for more than 4.1 million people of the region and the neighboring regions. The hospital has adult, neonatal, and pediatric ICU health services.

Sampling technique

All non-critical medical equipment and inanimate surfaces that had frequent contact with patients and/or healthcare providers during the study period were included. A total of 130 swabs from medical equipment and inanimate surfaces (55 swabs from Adult, 44 swabs from pediatric and 31 swabs from neonatal) were collected using purposive sampling technique.

Sample collection, handling, and transport

Sterile cotton-tipped applicator sticks, moistened with sterile normal saline, was used to collect swab specimen. Swab samples were taken using aseptic techniques with the presence of a spirit lamp. All swab samples were inserted in a separate sterile test tube, labeled and transported to the Medical Microbiology and Immunology Laboratory, Mekelle University, using icebox within 1 hour and processed immediately [20].

Laboratory processing

Bacterial culture and identification

Swabs were inoculated on to Blood agar, MacConkey agar and Mannitol salt agar (Oxoid Ltd, UK). The inoculated plates were incubated at 37°C for 24 hours. The inoculated plates were inspected after 24 hrs of incubation and bacterial isolates from culture-positive plates were identified at the species level by their colony morphology, gram-staining and biochemical characteristics (catalase, coagulase, urease, indole, oxidase, citrate utilization, glucose and lactose fermentation, gas and hydrogen sulfide production) [20].

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed using modified Kirby-Bauer disk diffusion according to the Clinical and Laboratory Standards Institute (CLSI), guideline [21]. Bacterial isolates were tested for commonly used antibiotics including: amoxicillin-clavulanic acid (AMC, 30mcg), ampicillin (AMP, 10mcg), ceftriaxone (CTR, 30mcg), ciprofloxacin (CIP, 5mcg), chloramphenicol (C, 30mcg), gentamicin (GEN, 10mcg) and tetracycline
(TE, 30mcg), cefoxitin (CX, 30mcg), erythromycin (E, 15mcg), penicillin G (P, 10units), amikacin (AK, 30mcg), cefotaxime (CTX, 30mcg), nalidixic acid (NA, 30mcg) (HIMEDIA, Company).

Data analysis

Data were entered into Microsoft Excel. Data were imported and analyzed using Statistical Package for Social Sciences (SPSS) software version 21.0. Descriptive statistics were computed and results were summarized by using tables.

Quality Assurance

Aseptic techniques were used in all the steps of specimen collection and inoculation to minimize contamination. Specimens were collected in the presence of spirit lamp to prevent bacterial contamination from air. Reagents and antimicrobial discs were checked for expiry date. Sterility of culture media was carried out by incubating 5% of the prepared media prior to inoculation. Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) reference strains were used to control the performance of culture media and antibiotic discs. All results were checked accuracy and cleaned after entering to SPSS.

Operational definition

Non-critical medical equipment: is equipment used for the diagnosis and management of the patient in ICU such as Sphygmomanometer, stethoscope, and thermometer.

The inanimate surface is a surface of the material used in ICU during providing patient care such as bedside tables, mattress, computers, and computer standing tables.

Results

Bacterial contamination of medical equipment and inanimate

A total of 130 swabs (84 from medical equipment and 46 from inanimate surfaces) were collected and inoculated to culture media and all the specimens were analysed. From the total analyzed swabs, bacterial growth was identified in 115 (88.5%) of the swab specimens. Bacterial contaminants were isolated in 70 (83.3%) and 45 (97.8%) from medical equipment and inanimate surfaces, respectively. Bacterial contaminations were statistically significant with the medical and inanimate surfaces bacterial contamination (P-value=0.022, \(X^2 = 14.843 \). All the swabs collected from sphygmomanometer, bedside table, computer and computer standing tables were 100% contaminated with bacteria. From the culture-positive swabs, a total of 171 bacterial isolates were identified, out of which 117 (68.4%) were gram-positive and 54 (31.6%) were gram-negative bacteria.

From the total bacterial isolates in medical equipment and inanimate surfaces, Coagulase-negative Staphylococcus 53 (34.9%), Staphylococcus aureus 40 (26.3%), Citrobacter freundii 14 (9.2%) and Klebsiella pneumoniae 10 (8%) were the most commonly isolated bacteria. From the contaminated medical equipment samples, 32 (34.8%) CoNS, 23 (25%) S. aureus and 13 (14.1%) C. freundii, whereas from the inanimate surface swab samples, 28 (35.4%) CoNS, 23 (29.1%) S. aureus and 5 (6.3%) K. pneumonia was the most commonly isolated bacteria [Table 1].

Antimicrobial susceptibility patterns of the bacterial isolates

The antimicrobial susceptibility tests of the isolates revealed varying ranges of resistance to the tested antimicrobial agents. More than 50% of Staphylococcus species were found to be resistant to penicillin G, erythromycin, amoxicillin-clavulanic acid, ampicillin, cefoxitin. Methicillin-resistant Staphylococcus aureus was observed in 34 (73.9%) of the isolates. More than 74% of gram-negative rods were resistant to amoxicillin-clavulanic acid, ampicillin, and nalidixic acid. Moreover, above 63% of E. coli isolates were resistant to amoxicillin-clavulanic acid, ceftriaxone, ampicillin, cefotaxime, and nalidixic acid [Table 2]. Multidrug resistance was observed in 17(28.3%) of CoNS, 27(58.7%) of S. aureus, 3(20%) of C. freundii and 8(72.7%) of E. coli [Table 3].

Discussions

In this study, the overall bacterial contamination of noncritical medical equipment and inanimate surfaces were high. In addition to this, in this study, similar bacteria were isolated from swab samples taken from parts of some non-critical medical equipment and inanimate surfaces indicating cross-contamination. The predominant isolate was CoNS. With regard to the antimicrobial susceptibility pattern, the isolates showed a significant resistance pattern.

The findings of this study were compared with other similar studies. This finding is in line with the studies conducted from Ethiopia [17] and Asia [15, 22]. On the other hand, our finding is higher than another study from Ethiopia [19], sub-Saharan Africa [5, 16, 22, 23], Asia [13, 14, 24, 25, 26], Brazil [27], Italy [28] and UK [12]. On the contrary, this finding is lower than the other study from Brazil [29]. The difference might be attributed to the frequency of medical equipment and inanimate surfaces decontamination, types of decontaminants used, improper health professional practice, nature of the medical equipment and inanimate surfaces to harbor bacteria [12-14, 22, 24-28]. This might be through bacterial cross-contamination of surfaces. This was similarly observed in an study conducted in the UK [12].
Conclusion

In this study, high bacterial contamination was observed in medical equipment and inanimate surfaces. CoNS, S. aureus, C. freundii, K. pneumonia, and E. coli were the most commonly isolated bacteria. Resistance to amoxicillin-clavulanic acid, ampicillin, and nalidixic acid was observed among the gram-negative bacteria. Resistant to penicillin G, erythromycin, amoxicillin-clavulanic acid, and ampicillin, cefoxitin was shown in gram-positive bacteria. Moreover, a significant multi-drug resistance was observed in the isolated bacteria. These calls for strengthening the existing infection prevention and antibiotic stewardship program with the application of strict follow up to minimize bacterial contamination of medical equipment and inanimate surfaces.

Limitation: This study limited to carry out the extended beta-lactam spectrum.

Abbreviations

CoNS = Coagulase-negative staphylococcus
CLSI = Clinical and Laboratory Standards Institute
ICU = Intensive care Unit
IP = Infection prevention
MDR = Multidrug resistance
SPSS = Statistical Package for Social Sciences

Declarations

Ethics approval and consent to participate

The study protocol was evaluated and approved by the Research Ethics Review Committee (RERC) of College of Health Sciences; Mekelle University was obtained (REC, 0951/2017). Permission to collect data was obtained from administrative bodies of Ayder comprehensive specialized Hospital to conduct the study. The Ethics involves the permission to disseminate the findings of the study through the scientific workshop and publish in reputable journals.

Consent for Publication

Not applicable

Availability of data and materials

Not applicable

Competing interests

The authors declare that they have no competing interests

Funding

Not Applicable

Authors’ contribution

DA conceived the study. DA, KGA, HH, NS designed, carried out the coordination of the study. DA and AM carried out the statistical analysis. NS and KGA draft the manuscript. All authors read and approved the final manuscript.

Acknowledgments

We would like to thank the College of Health Sciences, Mekelle University and Medical Microbiology and Immunology Department for their material support during laboratory work. We would also like to extend our appreciation to staffs of Ayder Comprehensive Specialized Hospital for their technical and administrative support.

Author Details

1Medical Microbiologist, Bahidar College of Health Sciences, Ethiopia; 2Medical Microbiologist and Researchers from the Medical Microbiology and Immunology Unit, Institute of Biomedical Sciences, College of Health Science, Mekelle University, Mekelle, Ethiopia
References

1. Vincent J-L, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. 2009; 302(21):2323 – 29.

2. Pekka Y, Tero I Ala-K, Jouko L, Pasi H, Hannu S. Intensive care acquired infection is an independent risk factor for hospital mortality: a prospective cohort study. Critical Care 2006; 10(2): 1-6.

3. Kathleen MA, Alice N, John D, Janet H, William J. Contamination and Cross Contamination on Hospital Surfaces and Medical Equipment. Available from: initiatives-patientsafety.org

4. Chidi O, Allison A, Wale A, Roger H, Clyde C, Ralph E-C, et al. Contamination of equipment in emergency settings: An exploratory study with targeted automated intervention. Annals of Surgical Innovation and R 2009; 3:8.

5. Chigozie JU, Chinwendu DN, Kingsley ON, Richard CN, Cletus DU, Nittita P-P. Stethoscope disinfection campaign in a Nigerian teaching hospital: results of a before-and-after study. J Infect DevCtries 2014; 8(1):86-93.

6. Nseir S, Blazejewski C, Lubret R, Wallet F, Courcol R, Durocher A. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbial Infect 2011; 17(8):1201 – 08.

7. Pittet D, Allegranzi B, Storr J, Bagheri NS, Dziekan G, Donaldson L et al. Infection control as a major World Health Organization priority for developing countries. J Hosp. Infection 2008; 68: 285- 92.

8. Keshni N, Ilisapeci N, Sharan R, Keni V, Stephen MG, Karen B. A Descriptive Study of Nosocomial Infections in an Adult Intensive Care Unit in Fiji: 2011-12. of Tropical Medicine 2014; 1: 5.

9. Bereket W, Hemalatha K, Getenet B, Wondwossen T, Solomon A, Zeynudin A, et al. Update on bacterial nosocomial infections. ER for Medical and Pharmacological Sciences 2012; 16: 1039-44.

10. Sah MK, Mishra SK, Ohora H, Kirikae T, Shercan JB, Rijal BP et al. Nosocomial Bacterial Infection and antimicrobial Resistant Pattern in a Tertiary care Hospital in Nepal. J of Institute of Medicine 2014; 36(3): 38-48.

11. Ding JG, Sun QF, Li KC. "Retrospective analysis of nosocomial infections in the intensive care unit of a tertiary hospital in China during 2003 and 2007," BMC Infectious Diseases 2009; 9: 115.

12. Whittington AM, Whitlow G, Hewson D, Thomas C, Brett SJ. Bacterial contamination of stethoscopes on the intensive care unit. Anaesthesia 2009; 64: 620 – 24.

13. Ibrahim HK, Mehmet O, Isik DK, Yasemin Z, Eda S, Vedat D. The role of stethoscopes in the transmission of hospital infections. of Biotechnology 2011; 10(30): 5769-72.

14. Abrar -Nasser DM, Afra SA, Khulood YF, Khulood AA-j, Mawaddah HS, Waad SA, et al. The Prevalence of Stethoscopes Contamination at Tertiary Center in AL MadinahAlmonawarah Saudi Arabia 2015. of Academic Scientific Research 2016; 4(1):103-10.

15. Bharathi M, Lakshmi N, Kalyani CS, Padmaja IJ. The prevalence of bacterial contamination of stethoscope diaphragms: A cross-sectional study, among health care workers of a tertiary care hospital. of Medical Microbiology 2014; 32(2): 201-02.

16. Yushau M, Bukar A, Aliyu BS, Abdulkaree A. Bacterial Contamination of Some Hospital Equipment in Kano, Nigeria. HMedicus 2012; 55(3):1-4.

17. Teklu S, Getenet B, Tesfaye K, Tsegaye S.Bacterial contamination, bacterial profile and antimicrobial susceptibility pattern of isolates from stethoscopes at Jimma University Specialized Hospital. Annals of CM and Antimicrobials 2013; 12:39.

18. Tewelde T, Yibrah B, Kibrom G-s. Microbial contamination of operating Theatre at Ayder Referral Hospital, Northern Ethiopia. IJPSR 2015; 6(10):1-4.

19. Dabsu R, Woldeamanuel Y, Asrat D. Otoscope and stethoscope: Vehicles for microbial colonization at TikurAnbessa Specialized Referral Hospital, Addis Ababa, Ethiopia. J. Health Dev. 2014; 28(1):35-39.

20. Monica C. District laboratory practice in tropical countries, Part 2, 2nd edition, United States of America, Cambridge University Press 2006; 105-15.

21. Clinical and Laboratory Standards Institute (CLSI): Performance standards for antimicrobial susceptibility testing. Twenty-Six Informational Supplement. Wayne PA 19087 USA 2016; 36(1).

22. Gurjeet S, Urhekar AD, Anahita VH, Neha S, Bhaskar D. Bacterial Contamination of Stethoscopes Used by Health Care Workers in a Tertiary Care Hospital in Navimumbai. Int J Pharm Bio Sci 2013; 3(1):186-93.

23. Chigozie JU, Annayo O, Patrick GO, Christian MO. Bacterial contamination of stethoscopes used by health workers: public health implications. J Infect DevCtries 2010; 4(7):436-41.

24. Youngster I, Berkovitch M, Heyman E, Lazarovitch Z, Goldman M. The stethoscope as a vector of infectious diseases in the paediatric division. ActaPaediatrica2008; 97: 1253 – 55.

25. Alothman A, Bukhari A, Aljohani S, Muhanaa A. Should we Recommend Stethoscope Disinfection before Daily Usage as an Infection Control Rule? The Open Infectious Diseases Journal 2009; 3: 80-82.

26. Kuhu P, Ranadeep C, Amrita B, Arnab KS. Bacterial Contamination and Disinfection of Stethoscopes: A Knowledge Gap among Health Care Personnel of a Tertiary Care Hospital of Rural Bengal. IOSR Journal of Dental and Medical Sciences 2015; 14(7).44-9.
27. Vanessa MS, Elizandra O, Regina C, Fernando RG, CamyllaCde-M. Microbiological analysis of inanimate surfaces in an Intensive Care Unit and patient safety. *Revista de EnfermagemReferência* 2014; 3: 45-52.

28. Gabriele M, Emma C, Daniele L, Sandra B, Elena A, Pietro M. Environmental Contaminants in Hospital Settings and Progress in Disinfecting Techniques. *BioMed Research International* 2013; 1: 8.

29. Quesia SD, Robert I, Adriana CO. Comparing Resistant Microorganisms Isolated from Patients and Environment in an Intensive Care Unit. *Advances in Infec. Dis* 2014; 4:30-35.

30. Havill LN, Havill LH, Elise M, Diane G. D, John MB. Cleanliness of portable medical equipment disinfected by nursing staff. *Am J Infect Control* 2011; 39: 602-04.

31. Carol D, MAEd A, PGDip A, CertCritCare T. Blood pressure cuffs and pulse oximeter sensors: A potential source of cross-contamination. *Australasian Emergency Nursing* J. 2009; 12: 104-09.

32. De Gialluly C, Morange V, De Gialluly E, Loulergue J, Van der Mee N, Quentin R. Blood Pressure Cuff as a Potential Vector of Pathogenic Microorganisms: A Prospective Study in a Teaching Hospital. *Infect Control HospEpidemiol* 2006; 27:940-43.

33. Nazar EN, Ali TA, Saad LH. Bacterial Contamination in the Intensive Care Unit at Al-Imam Al-Hussein Hospital in Thiqar Province in Iraq. *Global J. of Health Science* 2013; 5(1): 143-49.

34. Aminu M, Usman-Sani H, Usman M. A. Characterization and determination of antibiotic susceptibility pattern of bacteria isolated from some fomites in a teaching hospital in northern Nigeria. *AJ of Microbiology Research* 2014; 8(8): 814-18.

35. Carvalho KS, Melo MC, Melo GB, Gontijo-Filho PP. Hospital surface contamination in wards occupied by patients infected with MRSA or MSSA in a Brazilian university hospital. *Cienc. Farm. Basica APL* 2007; 28(2): 159-63.

36. Alemu A, Misganaw D, Wondimeneh Y. Bacterial Profile and their Antimicrobial Susceptibility Patterns of Computer Keyboards and Mice at Gondar University Hospital, Northwest Ethiopia. *Biomedicine and Biotechnology* 2015; 3(1): 1-7.

37. Eltablawy SY, Elhifnawi HN. Microbial Contamination of Some Computer Keyboards and Mice in National Center for Radiation Research and Technology (NCRRT). *World Applied Sciences J.* 2009; 6 (2): 162-67.

38. Kausar M, Nabiha N. Study of Bacteria on Computers. *J.Curr.Microbiol.App.Sci*2014; 3(4): 813-23.

39. Onochie CC, Anyim C, Alo MN, Onwa NC, Okonkwo EC, Afuokwa FN. Bacteriological Examination of Computer Keyboards and Mouse Devices and their Susceptibility Patterns to Disinfectants. *American J. of Microbiology* 2013; 4(1): 9-19.

40. Bernd H, Matthias B, Habil A, Lorenzo Q, Rainer R, Bernhard F, et al. Computer Keyboard and Mouse as a Reservoir of Pathogens in an Intensive Care Unit. *JClinMonit* 2004; 18:7-12.

Tables

Table 1 Profile and distribution of isolated bacteria from medical equipment at Ayder Specialized Comprehensive Hospital October 2016 to June 2017
Bacterial isolates	Stethoscope parts	Thermometers	Sphygmomometers	Mattresses	Bedsides	Computers	CS table	Total						
	Ear (n=25)	Tubing (n=17)	Diaphragm (n=19)	TM (n=6)	TS (n=6)	SC (n=10)	SB (n=8)	BTT (n=10)	BTB (n=9)	CM (n=7)	CE (n=10)	CS (n=9)	Total	
CoNS	4	3	6	0	0	0	1	2	2	2	2	1	1	24
S. aureus	7	4	3	0	0	2	1	2	2	1	0	2	1	27
K. pneumonia	0	0	1	0	1	2	1	0	0	1	0	0	0	6
E. coli	1	0	2	1	0	0	1	0	0	0	0	0	1	6
Total	12	7	12	1	1	4	3	3	4	4	2	4	2	63

Bacterial isolates	Stethoscope parts	Thermometers	Sphygmomometers	Mattresses	Bedsides	Computers	CS table	Total						
	Ear (n=25)	Tubing (n=17)	Diaphragm (n=19)	TM (n=6)	TS (n=6)	SC (n=10)	SB (n=8)	BTT (n=10)	BTB (n=9)	CM (n=7)	CE (n=10)	CS (n=9)	Total	
CoNS	1	1	0	0	0	3	1	2	1	2	0	0	2	15
S. aureus	1	1	0	0	0	1	1	2	1	1	2	0	0	10
C. fraudii	3	3	2	2	0	0	0	1	0	0	0	0	1	14
E. aerogenes	1	1	1	0	0	3	3	0	0	0	0	0	0	9
S. typhi	0	0	0	0	0	0	0	0	0	1	1	0	0	2
P. vulgaris	1	0	0	0	0	0	0	0	0	0	1	0	1	2
E. coli	0	1	1	0	0	0	0	0	2	1	0	0	0	5
Total	7	7	4	2	2	6	5	3	6	5	2	2	3	57

Bacterial isolates	Stethoscope parts	Thermometers	Sphygmomometers	Mattresses	Bedsides	Computers	CS table	Total									
	Ear (n=25)	Tubing (n=17)	Diaphragm (n=19)	TM (n=6)	TS (n=6)	SC (n=10)	SB (n=8)	BTT (n=10)	BTB (n=9)	CM (n=7)	CE (n=10)	CS (n=9)	Total				
CoNS	3	2	3	3	2	NA	NA	NA	NA	NA	NA	NA	2	2	1	3	21
S. aureus	1	1	0	0	1	NA	NA	NA	NA	NA	NA	NA	1	0	2	3	9
C. fraudii	1	0	0	0	0	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	1
K. pneumonia	1	0	0	0	0	NA	NA	NA	NA	NA	NA	NA	0	1	1	2	5
Total	6	3	3	3	3	NA	NA	NA	NA	NA	NA	NA	3	3	4	8	36

BTB; Bedside Table Bottom, BTT; Bedside Table Top, CE; computer Enter key, CM; computer mouse, CoNs; coagulase negative *staphylococcus*, CS Table; computer standing table, CS; computer space bar, Diaphragm; Stethoscope diaphragm, Ear; Stethoscope ear piece, NA; none applicable, TM; Thermometer mercury, TS; Thermometer side, SB; Sphygmomanometer bulb, SC; Sphygmomanometer cuff, Tubing; Stethoscope tubing

Table 2 Antimicrobial susceptibility pattern of gram positives and negative from the medical inanimate surfaces at Ayder Specialized Comprehensive Hospital October 2016 to June 2017
Isolates (N)	Pattern	E	P	AMC	CIP	CTR	TE	C	GEN	AMP	CX	Total (%)
CoNS (60)	S	20 (33.3)	24 (40)	22 (37.2)	61 (64.5)	53 (71.7)	29 (39.4)	2 (2.8)	0	4 (5.3)	NA	47.4
	I	10 (16.7)	1 (1.7)	0	6 (9.7)	12 (23.1)	0	0	0	0	NA	6.7
	R	30 (50)	35 (53.3)	38 (62.7)	9 (13.5)	12 (20.3)	8 (13.3)	15 (23.7)	6 (10.1)	56 (33.4)	NA	42.5
S.aureus (46)	S	8 (17.4)	9 (19.5)	17 (36.9)	31 (67.4)	19 (41.3)	36 (78.2)	31 (67.4)	35 (76)	5 (10.8)	12 (26.1)	40.5
	I	15 (32.6)	3 (6.5)	0	4 (8.6)	14 (30.4)	3 (6.5)	3 (6.5)	1 (2.1)	0	0	8.8
	R	23 (50)	34 (73.9)	29 (63)	11 (23.9)	13 (28.2)	7 (15.2)	12 (26)	10 (21.7)	41 (89.1)	34 (73.9)	50.5
Total (106)	S	28 (26.4)	33 (31.1)	39 (36.8)	77 (72.6)	53 (50)	88 (83)	75 (70.8)	85 (80.2)	9 (8.5)	12 (26.1)	44.9
	I	25 (23.6)	4 (3.8)	0	9 (8.5)	28 (26.4)	3 (2.8)	7 (6.6)	5 (4.7)	0	0	7.4
	R	53 (50)	69 (65.1)	67 (63.2)	20 (18.9)	25 (23.6)	15 (14.2)	26 (24.5)	16 (15.1)	97 (91.5)	34 (73.9)	47.9

Isolates (N)	Pattern	AMC	CIP	CTR	TE	C	GEN	AMP	CTX	NA	AK	Total (%)	
C. fraudii (15)	S	0	14 (93.3)	15 (100)	14 (93.3)	15 (100)	15 (100)	2 (13.3)	15 (100)	0	12 (80)	68	
	I	2 (13.3)	15 (100)	16 (100)	0	0	0	0	0	0	0	2.6	
	R	13 (86.6)	1 (6.6)	0	0	0	0	12 (80)	0	0	15 (100)	29.3	
K. pneumoniae (11)	S	0	9 (81.8)	4 (36.3)	6 (54.5)	5 (33.3)	11 (100)	1 (9)	2 (18.1)	2 (18.1)	8 (72.7)	42.3	
	I	1 (9)	1 (9)	1 (9)	2 (18.1)	1 (9)	0	0	0	0	4 (36.3)	2 (18.1)	10.8
	R	10 (90.9)	1 (9)	6 (54.5)	3 (27.2)	5 (45.4)	0	10 (90.9)	9 (100)	5 (45.4)	1 (9)	47.2	
E.aerogenes (9)	S	0	8 (88.9)	9 (100)	9 (100)	9 (100)	0	9 (100)	0	8 (88.9)	67.8		
	I	6 (66.6)	1 (11.1)	0	0	0	0	0	0	0	0	7.8	
	R	3 (33.3)	0	0	0	0	0	9 (100)	0	9 (100)	1 (11.1)	24.4	
P.vulgaris (2)	S	0	2 (100)	1 (50)	1 (50)	2 (100)	2 (100)	0	1 (50)	2 (100)	2 (100)	65	
	I	1 (50)	0	0	0	0	0	0	0	1 (50)	0	10	
	R	1 (50)	0	1 (50)	1 (50)	0	0	2 (100)	0	0	0	25	
E.coli (11)	S	0	8 (72.7)	3 (27.3)	6 (50)	8 (72.7)	7 (63.6)	3 (25)	3 (27.3)	3 (27.3)	4 (36.4)	40.2	
	I	2 (18.2)	1 (9.1)	0	2 (18.2)	0	2 (27.3)	0	1 (9.1)	5 (45.4)	12.3		
	R	9 (81.8)	2 (18.2)	8 (72.7)	3 (27.3)	3 (27.3)	1 (9.1)	8 (72.7)	8 (72.7)	7 (63.7)	2 (18.2)	46.4	
Total (48)	S	0	42 (84)	33 (68)	39 (78)	41 (82)	45 (90)	7 (14)	30 (60)	7 (14)	35 (70)	55.8	
	I	13 (26)	4 (8)	12 (24)	4 (8)	1 (2)	4 (8)	1 (2)	5 (10)	8 (16)	8.6		
	R	37 (74)	4 (8)	16 (32)	7 (14)	8 (16)	1 (2)	42 (84)	18 (36)	38 (76)	7 (14)	35.6	

AMC: Amoxicillin-clavulanic, AMP: Ampicillin, CX: Cefoxitin, CRT: Ceftriaxone, C: Chloramphenicol, CIP: Ciprofloxacin, CoNS: coagulase negative staphylococcus, E: Erythromycin, GEN: Gentamicin, I; intermediate, P: Penicillin G, R: resistant, S: sensitive, TE: Tetracycline,

Table 3 Multidrug resistant (MDR) pattern of isolated bacteria from medical equipments and inanimate surfaces at Ayder Specialized Comprehensive Hospital October 2016 to June 2017
Bacterial Species	Resisted antimicrobial agents	No. bacteria (%) for MDR
Coagulase negative staphylococcus	R4 E, AMC, CIP, AMP	1(1.7)
	R5 p, AMC, C, GEN, AMP	3(5)
	p, AM, CIP, TE, AMP	2(3.3)
	E, AMC, CIP, TE, AMP	1(1.7)
	E, P, CIP, C, AMP	1(1.7)
	R6 E, P, AM, C, CTR, AMP	2(3.3)
	E, P, AM, CTR, GEN, AMP	1(1.7)
	E, P, AM, CTR, CAMP	1(1.7)
	R7 E, P, AM, CTR, TE, C, AMP	1(1.7)
	E, P, AM, CIP, CTR, GEN, AMP	1(1.7)
	R9 E, P, AM, CIP, CTR, TE, C, GEN, AMP	2(3.3)
	Total	8(72.7)
S. aureus	R3 CIP, GEN, AMP	1(2.2)
	R4 E, AMP, CX	1(2.2)
	R5 P, AMC, C, AMP, CX	4(8.7)
	R7 E, P, AMP, CX	3(6.5)
E.coli	R8 E, P, AMC, C, AMP, CX	1(2.2)
	R9 E, P, AMC, C, AMP, CX	1(2.2)
	Total	17(28.3)
C.fraudii	R4 AM, CIP, CTR, CAMP	1(9.1)
	R7 AM, CIP, CTR, CAMP, CTX, NA	1(9.1)
	R9 AM, CIP, CTR, CAMP, CTX, NA	1(9.1)
	Total	3(20)

P: penicillin, CX: cefoxitin, E: erythromycin, AMC: amoxicillin-clavulanic acid, AMP: ampicillin, CTR: ceftriaxone, CIP: ciprofloxacin, C: chloramphenicol, GEN: gentamicin, TE: tetracycline, AK: amikacin, CTX: cefotaxime, NA: Nalidixic acid, R3; R4; R5; R6; R7; R8; R9; R10; R11: resistant to (3, 4, 5, 6, 7, 8, 9, 10, 11 antimicrobial agents), respectively, MDR: non-susceptible to ≥1 agent in ≥3 antimicrobial categories.