Distribution Optimization Using Ant Colony Optimization (ACO) Method Case Research: PT. Coca Cola Official Distributor of Surabaya Area

Rusindiyanto*, Nur Rahmawati, Muhammad Andriven Gozali Sutejo
Industrial Engineering Department, UPN “Veteran” Surabaya, East Java, Indonesia

ABSTRACT
PT.Coca-Cola Amatil Indonesia is a manufacturing company that produces beverages such as soft drinks, tea, milk, juice, isotonic and mineral water, located in Pandaan. This company has a distribution area that is spread almost all over Indonesia. In the Surabaya area, the company has 30 kiosks/salesmen as partners. The distribution of products in the Surabaya area is done through Take Order (TO) sales. The final product is distributed to consumers through third parties. The purpose of this research is to determine the distribution route with the shortest distance. The distribution problem experienced by this company is better known as the Traveling salesman problem (TSP). TSP is a combinatorial problem where when the problems faced are increasingly complex, the time needed is also getting longer. Several methods for solving TSP have been proposed. One of the best is the metaheuristic method, one of which is Ant Colony Optimization (ACO). In this research, the ACO method is used to solve the TSP problems encountered. The routes generated from the ACO method are 41.3 km which is 9.03% shorter than the actual route.

Keywords: Distribution problem, traveling salesman problem, ant colony optimization

Introduction
The traveling salesman problem (TSP) aims to find the shortest travel route with several destination cities with certain lines where each city is only allowed visited once and the trip ends with returning to the original city (Lukman et al., 2011). TSP is categorized as an NP-hard problem with a high number of possible solutions (Halim & Ismail, 2019) which means that the minimum expected time to obtain optimal solution is exponential (Brezina & Čičková, 2011). Therefore, a metaheuristic approach is proposed to produce the best solution.

Metaheuristic methods have been widely used in previous researches. For some problems, this method can even provide optimal results with a comparatively shorter calculation time (Rahmawati & Santosa, 2017). Some of the problems that can be solved using this method include the problem of machine scheduling (Kundakci & Kulak (2016) using the hybrid genetic algorithm method in the job shop scheduling problem, Utama et al. (2019) which uses cross entropy- genetic algorithm in flow shop scheduling problem to get minimal total tardiness, and also Ying and Lin (2020) who use simulated annealing for job shop scheduling without waiting time), project scheduling (Rahmawati & Santosa (2016) that uses cross entropy-genetic Algorithm for solving Resource-Constrained Project Scheduling Problem, Kadri and Boctor (2018) using genetic algorithm to solve the resource-constrained project scheduling problem with transfer times and also Lin et al. (2020) which used genetic programming hyper-heuristic approach to the multi-skill resource constrained project scheduling problem), as well as distribution problems (Erdianto et al. (2019) who used genetic algorithms and nearest neighbors to find distribution routes, Santosa et al. (2016) that...
used a hybrid cross entropy-genetic algorithm to solve multi-product inventory ship routing with a heterogeneous fleet model, Zang and Xiong (2018) that used ant colony optimization to find the best routes, and also Khadijah and Hasanah (2019) that used tabu search and differential evolution to find distribution routes and many more.

In this research, the ant colony optimization (ACO) method which is part of Metaheuristic Methods is used to solve the distribution problems that occur. ACO was chosen because ACO was proven could produce the best route for distribution problems (Fahmi et al., 2020).

Research Method

The method used to solve the TSP problem in this research is the Ant Colony Optimization (ACO) method. Table 1 below is the destination location data. There are 34 demand nodes in the Surabaya area in November 2019. The first node in the table, CCOD Surabaya, is the origin node which is the location of the distribution center in Surabaya.

Table 1. Demand in November 2019

No	Kios	Address
1	CCOD SURABAYA	Rungkut Industri I no 27
2	Kios Nada	Wonorejo Timur no13
3	Kop Sejahtera Bersama	Embong Trengguli no 5-7
4	Toko Buku Immanuel	Pregolan no 27
5	Depot Kanya Food	Wonorejo Selatan gg 6 no 17
6	Toko Primagama	Wonorejo Selatan no 57
7	Toko Mitra Abadi	Rungkut Madya no 245k
8	Kolam Pancing Bumi Gacar	Wonorejo Selatan no 1
9	Apotek Pradana	Perum. Rungkut Asri Timur no 24
10	Toko Sams Bakery	Rungkut Madya no 157
11	Toko Barokah Makur	Medokan Sawah no 52
12	Apotek K-24 Medokan	Medokan Sawah no 9a
13	Warung Salam	Wonorejo Timur no 1
14	Toko Mandiri	Wonorejo no 1
15	Salon Emelda	Nirwana Eksekutive bb 386a
16	Warung Kopi Cak Agus	Wonorejo Selatan no 142
17	Toko Ibu Sumaji	Wonorejo Selatan 2 no 108
18	Yamaha Lestari Jaya Motor	Raya Pandugo no 45
19	Kedai Ayam Geprek EGP	Raya Pandugo no 76
20	Yuan Cell	Raya Pandugono no 39
21	Toko Banana Speed	Rungkut Madya no 117
22	Toko Sofi Jaya	Medokan Sawah no 119
23	Toko Baru	Medokan Kampung gg TK no 1
24	Toko Putra Bangsa	Putra Bangsa no 1
25	Toko Madinah	Taman Rivera Regency no 8
26	Rujak Ibu Nono	Medayu Selatan 2 no 16

To be continued...
The ACO algorithm used in this research are (Hlaing & Khine, 2010):

Procedure ACO algorithm for TSP

Set parameters, initialize pheromone trails

Loop
- Each ant is positioned on a starting node
 Loop
 - Construct Solutions
 - Apply Local Search
 - Local_Pheromone_Update
 Until all ants have built a complete solution
 - Global_Pheromone_Update
 Until End_condition

End ACO algorithm for TSPs

Result and Discussion

Table 2 below is a distribution route generated by the ACO algorithm. From this table, it is known that the first destination of the route is the Kopi Satu shop. While the last stall on the route is the Sams and Bakery shop following the sequence generated by the ACO algorithm.

No	Sequence	Kios	Address
1	1	CCOD SURABAYA	Rungkut Industri I no 27
2	7	Toko Annisa	Rungkut Kidul YKP RK V Blok E
3	30	Toko Banana Speed	Rungkut Madya no 117
4	34	Kolam Renang	Rungkut Madya no 181
5	35	Toko Sams Bakery	Rungkut Madya no 157
6	3	Toko Sofi Jaya	Medokan Sawah no 119
7	4	Toko Barokah Makur	Medokan Sawah no 52
8	2	Warung Kopi Satu	Medokan Asri 5 no 18
9	13	Warung Mas Bro	Medokan Sawah no 116
10	14	Rujak Ibu Nono	Medayu Selatan 2 no 16
11	15	Apotek K-24 Medokan	Medokan Sawah no 9a
12	8	Toko Madinah	Taman Rivera Regency no 8
No	Sequence	Kios	Address
----	----------	-----------------------	-----------------------------------
13	16	Waltel Ruzky	Medokan Ayu gg 1C no 18
14	17	Toko Baru	Medokan Kampung gg TK no 1
15	5	Toko Putra Bangsa	Putra Bangsa no 1
16	6	Depot Kanya Food	Wonorejo Selatan gg 6 no 17
17	18	Toko Ibu Sumaji	Wonorejo Selatan 2 no 108
18	19	Toko Primagama	Wonorejo Selatan no 57
19	20	Salon Emelda	Nirwana Eksekutive bb 386a
20	32	Toko Cindy Jaya	Raya Medokan Semampir ni 18
21	27	Toko Buku Immanuel	Pregolan no 27
22	22	Kop Sejahtera Bersama	Embong Trengguli no 5-7
23	11	Kios Nada	Wonorejo Timur no 13
24	26	Warung Salam	Wonorejo Timur no 1
25	12	Toko Mandiri	Wonorejo no 1
26	25	Kolam Pancing Bumi Gacar	Wonorejo Selatan no 1
27	28	Warung Kopi Cak Agus	Wonorejo Selatan no 142
28	24	Kedai Ayam Geprek EGP	Raya Pandugo no 76
29	23	Yuan Cell	Raya Pandugono no 39
30	29	Yamaha Lestari Jaya Motor	Raya Pandugo no 45
31	9	Fotocopy Mitra Abadi	Medokan Sawah no 2
32	31	Apotek Pradana	Perum. Rungkut Asri Timur no 24
33	33	Warung Kopi Wolu	Medokan Asri Timur no 10
34	10	Toko Mitra Abadi	Rungkut Madya no 245k
35	21	Surya Fotocopy and Print	Rungkut Madya no 31

The total distribution distance generated by following the sequence obtained from the ACO algorithm is 41.3 km. The more iterations are generated, the more stable the results are obtained. From the results of running with the ACO algorithm (Figure 1), the results began to stabilize with a distance of 41.3 km on the 85th iteration.

![Figure 1. Iteration using ACO algorithm](image-url)
Conclusion
The results obtained from this research are the Ant Colony Optimization algorithm produced a total delivery distance of 41.3 km whereas if using the actual route, the total delivery distance is 45.4 km. The Ant Colony Optimization algorithm method is proven to be able to save a distance of 4.1 km with a saving percentage of 9.03%.

Acknowledgment
The authors would like to thank all related parties that support this research so that can be completed properly.

References
Brezina Jr., I., & Čičková, Z. (2011). Solving the travelling salesman problem using the ant colony optimization. Management Information Systems, 6(4), 10-14.
Fahmi, H., Zarlis, M., Nababan, E. B., & Sihombing, P. (2020, June). Ant Colony Optimization (ACO) Algorithm for Determining The Nearest Route Search in Distribution of Light Food Production. In Journal of Physics: Conference Series (Vol. 1566, No. 1, p. 012045). IOP Publishing
Halim, A. H., & Ismail, I. (2019). Combinatorial optimization: comparison of heuristic algorithms in travelling salesman problem. Archives of Computational Methods in Engineering, 26(2), 367-380.
Hlaing, Z. C. S. S., & Khine, M. A. (2010, December). An ant colony optimization algorithm for solving traveling salesman problem. Fifth Local Conference on Parallel and Soft Computing.
Kadri, R. L., & Boctor, F. F. (2018). An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case. European Journal of Operational Research, 265(2), 454-462.
Khadijah, A., & Hasanah, H. (2019, August). Optimization of CNG Multi-depot Distribution to Determine Model Routes and GTM Totals Using Tabu Search and Differential Evolution Methods. In Proceedings of the International Manufacturing Engineering Conference & The Asia Pacific Conference on Manufacturing Systems (pp. 10-16). Springer, Singapore.
Kundakci, N., & Kulak, O. (2016). Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Computers & Industrial Engineering, 96, 31-51.
Lin, J., Zhu, L., & Gao, K. (2020). A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Expert Systems with Applications, 140, 112915.
Lukman, A., Palapa, S. N., Rubinah, A. R., & Rizky, A. M. I. K. (2011). Penyelesaian Travelling Salesman Problem dengan Algoritma Greedy. Rahmati, N., & Santosa, B. (2017). Penerapan Algoritma Hybrid Cross Entropy-Genetic Algorithm Dalam Penyelesaian Resource-Constrained Project Scheduling Problem. Prosiding SENIATI, C37-1.
Santosa, B., Damayanti, R., & Sarkar, B. (2016). Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case research in Indonesia. Production & Manufacturing Research, 4(1), 90-113.
Utama, D. M., Ardiansyah, L. R., & Garside, A. K. (2019). Penjadwalan Flow Shop untuk Meminimasi Total Tardiness Menggunakan Algoritma Cross Entropy–Algoritma Genetika. Jurnal Optimasi Sistem Industri, 18(2), 133-141.
Ying, K. C., & Lin, S. W. (2020). Solving no-wait job-shop scheduling problems using a multi-start simulated annealing with bi-directional shift timetabling algorithm. Computers & Industrial Engineering, 106615.