Exercise dose–response relationship with heart rate variability in individuals with overweight and obesity: protocol for a systematic review and meta-analysis of randomised controlled trials

Mukesh Kumar Sinha, G Arun Maiya, Ana Maria Moga, Shivashankar K N, Ravi Shankar N, Vaishali K

ABSTRACT

Introduction Obesity is a chronic relapsing disease process and serious public health concern that can lead to chronic diseases, medical complications and a higher risk of disability. Another significant feature of obesity is dysfunction in cardiac autonomic function, which leads to changes in parasympathetic and sympathetic regulation, which can be measured using heart rate variability (HRV). The objective of this review is to estimate the extent to which exercise doses impacts on HRV among individuals living with overweight and obesity class I and II. Methods and analysis A systematic literature search will be performed using PubMed/Medline, Scopus, EMBASE, ProQuest, CINAHL, Web of Science and the Cochrane Library for articles dating from 1965 to December 2021. Inclusion criteria include studies designed as parallel-arm randomised trials, enrolling adolescent and adult individuals with overweight (body mass index, BMI: 25 to ≤29.9) and obesity (class I BMI: 30–34.9 and class II BMI: 35–39.9) undergoing aerobic or resistance training or concurrent exercise training. For data synthesis, sensitivity analysis, subgroup analysis and risk of bias assessment, Stata V.13.0 software will be used. Ethics and dissemination Formal ethical approval is not required. This systematic review will be submitted to a peer-reviewed journal.

PROSPERO registration number CRD42019104154.

INTRODUCTION

Over the past 35 years, the global prevalence of obesity has tripled and current trends, if extrapolated would lead to approximately over one billion people by 2030. Individuals living with obesity have a significantly higher risk of developing cardiovascular disease, diabetes, hypertension, cancer, stroke and chronic disease, including osteoarthritis. Obesity has also been linked to alteration in cardiac autonomic activity as seen when measuring heart rate variability (HRV). HRV is found to be associated with reduced morbidity, mortality, improved quality of life and psychological well-being. Earlier studies have reported that obese individuals are relatively more susceptible to ventricular arrhythmias, which has been found to be a powerful indicator of sudden death. Several researchers have shown decreased HRV in obese people (BMI ≥30) and this suggests that autonomic disturbances could be involved in the processes stimulating arrhythmia in such people. Weight loss by exercise training and dietary intervention, on the other hand, has been shown to reverse the detrimental impact of weight gain on autonomic function.

Benefits of exercise training are documented as a possible non-pharmacological weight-loss approach. All forms of exercise, whether aerobic, resistance or combination of aerobic and resistance (concurrent), are effective methods of improving anthropometric indicators of adiposity.
volume of exercise that may be considered to constitute the exercise 'dosage'. The effectiveness of the exercise intervention in reducing body weight is documented as dose-dependent and it is mediated by autonomic control.25–29

Current evidence on the influence of long-term exercise training on HRV in healthy or obese individuals is inconsistent, with several studies showing significant increase in the HRV following an exercise training with varying dose ranging from 3 weeks to 12 months of exercise training in healthy and obese individuals7 19 50–53 while other studies did not show such an effect.34–36 Such differences in effect may be due to either participant attributes, a technique of measurement to estimate HRV, study design, exercise types and/or exercise dose parameter.56

A meta-analysis done using data from studies carried out in healthy people suggested that aerobic exercise training can make substantial improvements in the R-R interval, and the effect size for changes in the R-R interval recorded in this study was significantly higher in long exercise interventions (>12 weeks) than in shorter treatments (<12 weeks).29 Meta-analysis including studies done in the elderly37 suggested endurance-type exercise is effective for increasing HRV, and exercise frequency appears to be a powerful component of training that leads to HRV improvement.

A recent meta-analysis19 reported improvement in HRV following weight-loss strategies such as dietary approaches, aerobic training, strength training and exercise programmes coupled with dietary approaches. Also, this study suggested that the impact of weight loss on the autonomic nervous system (ANS) might depend primarily on the amount of weight loss. Differences in the dosage of exercise, such as the duration, frequency and strength of exercise training, are considered to be responsible for the degree of improvement in autonomic cardiac function and the change in body weight.19

The exercise-based weight loss programmes are known to be a key part of therapy for obesity and evaluating its impact on HRV would add value to current assessments of the evidence base. In addition, no studies to date have comprehensively analysed and examined the evidence of exercise dose-response on HRV in people with overweight or obesity. Therefore, the objective of this review is to estimate the extent to which exercise-dose increases HRV in individuals living with overweight and obesity class I and II.

METHODS

Patient and public involvement

No patient involved as it is a systematic review. The results will be disseminated by the publication of the manuscript in a peer-reviewed journal.

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Protocols guidelines are used for the current study. PRISMA will be used to assist reporting of the SR, once completed.38 This systematic review will consider only randomised controlled trials (RCTs). Any amendments to this study protocol will be reported.

Electronic search

Seven databases will be searched; PubMed/Medline, Scopus, EMBASE, ProQuest, CINAHL, Web of Science and the Cochrane Library, for articles dating from 1965 to December 2021.5 We will also refer to ClinicalTrials.gov, the WHO’s registry platform ICTRP, the reference lists of key articles identified via Scopus and articles that cited the included articles. Also, authors will be contacted to obtain for studies that have been completed but not published. If more than one publication describes the same study, the one that provides the most data will be included in the meta-analysis. Studies will be limited to publications in the English language. The search will be carried out by the first author and a medical librarian. Box 1 Shows the search strategy for PubMed.

Eligibility criteria and study selection

The titles and abstracts screening will be done for eligibility and the article considered appropriate will be reviewed in full-text papers. This process will be conducted using Covidence (www.covidence.org)39 and it is expected to be completed by December 2021.

Inclusion criteria

Studies will be included if they report data from (1) parallel-arm RCTs, (2) enrolled adolescent (age ≥10 years) and adult individuals with overweight (BMI ≥25 to ≤29.9) and obesity (class I BMI: 30–34.9 and class II BMI: 35–39.9) undergoing aerobic or resistance exercise training or concurrent exercise training (table 1)27 and had an outcome of interest as HRV (3) exercise intervention is reported in terms of frequency, intensity, time and type, and (4) measurement of at least one variable of HRV before and after the training intervention is reported.

Exclusion criteria

Exclusion criteria will be (1) observational studies, (2) studies measuring acute exercise effects, (3) obesity class III (BMI ≥40) as it has been found that individuals living with severe obesity may have impaired autonomic function and this would confound the outcome of interest, and (4) studies including individuals with cardiac, neurodegenerative, kidney or metabolic disease as they have an impact on autonomic function.37 40 41

Study selection

Following different database searches, retrieved articles will be imported to the Covidence platform39 where the results will be combined and duplicates will be removed. As a large number of papers are expected to require screening, four authors will be involved in screening. These authors will also perform pilot-testing of eligibility criteria on the first 10% of titles and abstracts. To harmonise the screening process, a training session will be provided to all reviewers. During this session,
retrieved. The full-text versions of the remaining articles will have their full-text versions taken in compliance with inclusion/exclusion criteria. After scanning for titles and abstracts, articles that do not meet the inclusion requirements will be excluded and the remaining articles will have their full-text versions retrieved. The full-text screening will be done by two lead members of the synthesis team using the level of agreement between reviewers. Kappa statistics will be used to test the agreement (ie, thresholds: <0.20 slight agreement, 0.21–0.40 fair agreement, 0.41–0.60 moderate agreement, 0.61–0.80 substantial agreement and >0.80 almost perfect agreement). Disputes will be settled by agreement with the reviewers or by contacting an adjudicator. In a PRISMA flow chart, the study selection process is displayed (figure 1).

Table 1 Operational definitions of exercises type used for the current systematic review according to the American College of sports Medicine

Exercise type	Operational definition
Aerobic/ endurance exercise training	Aerobic exercise as any activity that uses large muscle groups, can be maintained continuously and is rhythmic in nature
Resistance/ strength exercise training	Strength training that involves the performance of physical exercises which are designed to improve muscle strength and endurance
Concurrent exercise training	The combination of muscle strength and aerobic exercise during the same session or training programme

Data extraction and analysis

Outcomes

In this study, the primary outcome of interest is the time domain (SDNN, SDANN, RMSSD, pNN50) and frequency domain variables of HRV (total power, VLF, LF, HF, HF/ LF ratio) (table 2).

Secondary outcomes include cardiorespiratory endurance, muscular strength, adiposity/anthropometric measures. These outcomes are chosen based on the previous research. If data are available in qualifying studies, the relationship of exercise training with other endpoints, such as time effect and interaction effect with sociodemographic variables, anthropometric measures, presence of cardiovascular risk factors, diet, exercise adherence and life stress, will also be analysed.

Data extraction

A data extraction form will be adopted from published literature. Data extraction process consists of manuscript title, author, time of publication, source of literature, characteristics of the trial (author, conducted/publish year, duration, place of the trial conducted, number of participating centres, study design), the participants (sample size, participants randomised and patients analysed in each group, age, sex, socio-economic status, height, weight, BMI, waist circumference, waist-hip ratio, waist-height ratio and body fat per cent), intervention (aerobic, resistance and concurrent exercise dose in terms of frequency, intensity, number of sessions, duration and progression), control group treatment, method of randomisation, method of allocation, blinding process, outcome time point and follow-up period, lack of follow-up or withdrawal, any incidental findings reported and the main outcome measurement HRV reported either in absolute or log transformed or both. Two independent reviewers will pilot test the data extraction form and to resolve any disagreements team meetings will be conducted to refine the form. The two reviewers will perform data extraction separately. A training session reviewer will be asked to pilot-screen 15 titles/abstracts to prompt clarifications and screening decisions will be taken in compliance with inclusion/exclusion criteria. After scanning for titles and abstracts, articles that do not meet the inclusion requirements will be excluded and the remaining articles will have their full-text versions retrieved. The full-text screening will be done by two lead members of the synthesis team using the level of agreement between reviewers. Kappa statistics will be used to test the agreement (ie, thresholds: <0.20 slight agreement, 0.21–0.40 fair agreement, 0.41–0.60 moderate agreement, 0.61–0.80 substantial agreement and >0.80 almost perfect agreement). Disputes will be settled by agreement with the reviewers or by contacting an adjudicator. In a PRISMA flow chart, the study selection process is displayed (figure 1).

Box 1 Shows the search strategy for PubMed

| (((exercise[MeSH Terms]) OR exercise) OR exercise[Text Word]) OR exercise[Title]) OR exercise[Title/Abstract]) OR (((aerobic exercise) OR aerobic exercise[Text Word]) OR aerobic exercise[Title]) OR aerobic exercise[Title/Abstract]) OR (((resistance exercise) OR resistance exercise[Text Word]) OR resistance exercise[Title]) OR resistance exercise[Title/Abstract]) OR (((concurrent exercise) OR concurrent exercise[Text Word]) OR concurrent exercise[Title]) OR concurrent exercise[Title/Abstract]) OR (((combination exercise) OR combination exercise[Text Word]) OR combination exercise[Title]) OR combination exercise[Title/Abstract]) OR (((“resistance training”[MeSH Terms]) OR resistance training) OR resistance training[Text Word]) OR resistance training[Title]) OR resistance training[Title/Abstract]) OR (((“aerobic training” OR aerobic training[Text Word]) OR aerobic training[Title]) OR aerobic training[Title/Abstract]) exercise dose OR dose response OR aerobic dose OR dose response OR aerobic dose OR dose response OR combination dose OR (((“cardiorespiratory fitness”[MeSH Terms]) OR cardiorespiratory fitness[Text Word]) OR cardiorespiratory fitness[Title]) OR cardiorespiratory fitness[Title/Abstract]) OR (((physical activity) OR physical activity[Text Word]) OR physical activity[Title]) OR physical activity[Title/Abstract]) OR (((cardiorespiratory endurance) OR cardiorespiratory endurance[Text Word]) OR cardiorespiratory endurance[Title]) OR cardiorespiratory endurance[Title/Abstract]) AND (((“overweight”[MeSH Terms]) OR overweight[-Text Word]) OR overweight[Title]) OR overweight[Title/Abstract]) OR (((“obesity”[MeSH Terms]) OR obesity (Text Word)) OR obesity[Title]) OR obesity[Title/Abstract]) OR (((healthy individuals Text Word]) OR healthy individuals[Title]) OR healthy individuals[Title/Abstract]) OR (((“heart rate variability” OR heart rate variability[Text Word]) OR heart rate variability[Title]) OR heart rate variability[Title/Abstract]) OR (((autonomic function) OR autonomic function[Text Word]) OR autonomic function[Title]) OR autonomic function[Title/Abstract]) OR (((sympathetic function) OR sympathetic function[Text Word]) OR sympathetic function[Title]) OR sympathetic function[Title/Abstract]) OR (((parasympathetic function) OR parasympathetic function[Text Word]) OR parasympathetic function[Title]) OR parasympathetic function[Title/Abstract]) OR (((vagal function) OR vagal function[Text Word]) OR vagal function[Title]) OR vagal function[Title/Abstract])}}

Sinha MK, et al. BMJ Open 2022;12:e047821. doi:10.1136/bmjopen-2020-047821
will be held to harmonise the extraction of data, and at least two pilot extractions will be carried out to ensure accuracy. A written ‘Data Extraction Guide’ with detailed instructions will also be provided to reviewers. To assure accuracy, one lead member of the systematic review team will extract data from each article. An impartial third reviewer will cross-check the data extracted in duplicate. Inconsistencies in the data obtained will be resolved by agreement between the reviewers after reviewing the full-text article. When discrepancies occur, an adjudicator will be contacted. If the data published is incomplete or vague, the authors of the research will be contacted. Data extraction will be independently cross-checked.

Quality and risk of bias assessment

Two reviewers will independently review each selected article to eliminate bias. All selected articles will be evaluated for their quality based on the Cochrane Collaboration’s Risk of Bias Tool 2.0 for risk of bias assessment across five domains. Assessments will be carried out...
using an iterative online form available. The domain of missing outcome data will be evaluated, as per Akobeng and Ebrahim et al. For each domain, the probability of bias will be evaluated as ‘low risk’, ‘some concerns’ or ‘high risk’. If at least one area is listed as ‘high risk’, studies will be deemed to have an overall high risk of bias. Quality of evidence will be measured using the GRADE (Grading of Recommendations, Assessment, Development and Evaluations) rating system. Publication bias will be evaluated using visual inspection of funnel plot asymmetry.

Data synthesis strategy: meta-analysis
We will primarily examine the training effect (aerobic, resistance and concurrent exercise training) on HRV. We will also explore possible sources of heterogeneity among studies by examining aerobic, resistance and concurrent exercise impact with time point. To attain the standardised mean difference and 95% CI, the data of interest given as continuous will be used for meta-analysis. The Q-statistic and I² tests will be used to test for heterogeneity between the included studies. Heterogeneity will be considered low if \(I^2 \) is ≤40%, and high if \(I^2 \) is ≥75%. We will use a random-effects model for meta-analysis if substantial heterogeneity (\(I^2 > 40\% \)) or fixed effects for homogeneous effects (\(I^2 < 40\% \)). Aggregate data obtained from the included studies will be used for quantitative synthesis. By plotting the data on a forest plot, heterogeneity will be evaluated visually.

Analysis of subgroups or subsets
The subanalysis will include baseline participant characteristics and exercise intervention characteristics. Interaction effects between variables will be identified for subgroup analysis.

Significance
Due to modernisation and mechanisation of lifestyle, there is an increase in overweight and obesity globally. Exercise is a key element to prevent lifestyle disease, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1 O’Donoghue G, Blake C, Cunningham C, et al. What exercise prescription is optimal to improve body composition and cardiopulmonary fitness in adults living with obesity? A network meta-analysis. Obes Rev 2021;22:e13137.
2 World Health Organization. Obesity and overweight fact sheet, 2014. Available: http://www.who.int/mediacentre/factsheets/fs311/en/ [Accessed 21 Jul 2020].
3 Fidan-Yaylali G, Yaylali YT, Erdogan Çağdaş, et al. The association between central adiposity and autonomic dysfunction in obesity. Med Princ Pract 2016;25:442–8.
4 Das D, Mondal H. Evaluation of cardiac autonomic function in overweight males: a cross-sectional study. Adv Hum Biol 2017;7:23–6.
5 Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European Society of cardiology and the North American Society of pacing and electrophysiology. Circulation 1996;93:1043–65.
6 Chen LY, Zmora R, Duval S. Cardiorespiratory fitness, adiposity, and heart rate variability: the cardia study. Med Sci Sports Exerc 2019;51:509.
7 Tian Y, Huang C, He Z, et al. Autonomic function responses to training: correlation with body composition changes. Physiol Behav 2015;151:308–13.
8 Goldenberg I, Goldkorn R, Shlomo N, et al. Heart rate variability for risk assessment of myocardial ischemia in patients without known coronary artery disease: the HRV-DETECT (heart rate variability for the detection of myocardial ischemia) study. J Am Heart Assoc 2019;8:e014540.
9 Schmid K, Schönlebe J, Drexl R, et al. Associations between being overweight, variability in heart rate, and well-being in the young men. Cardiol Young 2010;20:54–9.
10 Gutin B, Howe C, Johnson MH, et al. Heart rate variability in adolescents: relations to physical activity, fitness, and adiposity. Med Sci Sports Exerc 2005;37:1856–63.
11 Young HA, Benton D. Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health? Behav Pharmacol 2018;29:140–51.

ETHICS AND DISSEMINATION
This review will not require an ethical authorisation, since participant privacy issues do not exist. Our results will provide data on the various forms of exercise dose-response on the HRV in overweight and obese people. The results of this study will be published in a peer-reviewed international journal, displayed at relevant conferences and disseminated to obesity-focused public organisations.
12 Csige I, Ujvaryo S, Szabó Z, et al. The impact of obesity on the cardiovascular system. J Diabetes Res 2018;2018:1–12.
13 Ashraf MJ, Baweja P. Obesity: the 'huge' problem in cardiovascular diseases. Mo Med 2013;110:499.
14 Posier P, Gilea TD, Bray GA, et al. Obesity and cardiorespiratory disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American heart association scientific statement on obesity and heart disease from the obesity Committee of the Council on nutrition, physical activity, and metabolism. Circulation 2006;113:996–1004.
15 Avsar A, Acarturk G, Melek M, et al. Cardiac autonomic function evaluated by the heart rate turbulence method was not changed in obese patients without co-morbidities. J Korean Med Sci 2007;22:628–32.
16 Karason K, Moggaard H, Wikstrand J, et al. Heart rate variability in obesity and the effect of weight loss. Am J Cardiol 1999;83:1242–7.
17 Adam M, Imboden M, Schaffner E, et al. The adverse impact of obesity on heart rate variability is modified by a NFE2L2 gene variant. Int J Cardiol 2017;228:341–6.
18 Lambert EA, Eisler MD, Schlaich MP. Obesity-Associated organ damage and sympathetic nervous activity: a target for treatment? Hypertension 2019;73:1150–9.
19 Costa J, Moreira A, Moreira P, et al. Effects of weight changes in the autonomic nervous system: A systematic review and meta-analysis. Clin Nutr 2019;38:110–26.
20 Vina J, Sanchis-Gomar F, Martínez-Bello V, et al. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol 2012;167:1–12.
21 García-Hermoso A, Ramírez-Vélez R, Ramírez-Campillo R, et al. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: a systematic review and meta-analysis. Br J Sports Med 2018;52:161–6.
22 Schwingshackl L, Dias S, Schlaich MP, et al. Impact of different training modalities on anthropometric and metabolic characteristics in overweight/obese subjects: a systematic review and network meta-analysis. PLoS One 2013;8:e68253.
23 Santos A, Shumaker D, Schlaich MP, et al. Concurrent aerobic exercise training promote similar benefits in body composition and metabolic profiles in obese adolescents. Lipids Health Dis 2021;20:46.
24 Chapatu J-P, Klingenberg L, Rosenkilde M, et al. Physical activity plays an important role in body weight regulation. J Obes 2011;2011:360257. doi:10.1155/2011/360257
25 Batrakoulis A, Fattoruso IG, Chatzinikolaou A, et al. Dose-Response effects of high-intensity interval neuromuscular exercise training on weight loss, performance, health and quality of life in inactive obese adults: study rationale, design and methods of the DoIT trial. Contemp Clin Trials Commun 2019;15:100386.
26 American College of Sports Medicine. ACSM's exercise testing and prescription. Lippincott williams & wilkins, 2017.
27 Gifford RM, Boos CJ, Reynolds RM, et al. Recovery time and heart rate variability following extreme endurance exercise in healthy women. Physiol Rep 2018;6:e13905.
28 Sandercock GRH, Bromley PD, Brodie DA. Effects of exercise on heart rate variability: influences from meta-analysis. Med Sci Sports Exerc 2005;37:433–9.
29 Facchin M, Mallafatto G, Sala L, et al. Changes of autonomic cardiac profile after a 3-week integrated body weight reduction program in severely obese patients. J Endocrinol Invest 2003;26:138–42.
30 Phoensapthewahe J, Prasertsi P, Leelavuyat N. Heart rate variability responses to a combined exercise training program: correlation with adiposity and cardiorespiratory fitness changes in obese young men. J Exerc Rehabil 2019;15:114–22.
31 Goulopoulou S, Baynard T, Franklin RM, et al. Exercise training improves cardiovascular autonomic modulation in response to glucose ingestion in obese adults with and without type 2 diabetes mellitus. Metabolism 2010;59:901–10.
32 Onbridge FS, Campbell TS, McFetridge-Durdle JA, et al. Improvements in heart rate variability with exercise therapy. Can J Cardiol 2010;26:303–12.
33 Boucher SH, Stein P. Association between heart rate variability and training response in sedentary middle-aged men. Eur J Appl Physiol 1998;76:75–80.
34 Davy KP, Willis WL. Seals DR. Influence of exercise training on heart rate variability in post-menopausal women with elevated arterial blood pressure. Clin Physiol 1997;17:31–40.
35 Bhati P, Moiz JA, Menon GR, et al. Does resistance training modulate cardiac autonomic control? A systematic review and meta-analysis. Clin Auton Res 2019;29:75–103.
36 Raffin J, Barthélémie J-C, Dupré C, et al. Exercise frequency determines heart rate variability gains in older people: a meta-analysis and meta-regression. Sports Med 2019;49:719–33.
37 Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4.
38 Covidence systematic review software, veritas health innovation, Melbourne, Australia. Available: www.covidence.org [Accessed 29 Sep 2020].
39 Buccellotti E, Giliardi E, Scaini E, et al. Heart rate variability and myocardial infarction: systematic literature review and metaanalysis. Eur Rev Med Pharmacol Sci 2009;13:299–307.
40 Christensen FJ, Campbell TS, McFetridge-Durdle JA, et al. Cardiac autonomic dysfunction in hemodialysis patients assessed by heart rate variability. Miner Urol Nefrol 2012;64:191–8.
41 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74.
42 PRISMA flow diagram. Available: http://www.prisma-statement.org [Accessed 14 Dec 2020].
43 Centre for Reviews and Dissemination (CRD). Systematic Reviews: CRD’s Guidance for Undertaking Reviews in Health Care. 3 edition. York, UK: CRD, Univeristy of York, 2009. Available: http://www.york.ac.uk/inst/crd/.
44 Higgins J, Green S. Cochrane Handbook for systematic reviews of interventions, version 5.1.0. The Cochrane Collaboration, 2011.
45 Shaw KA, Gennat HC, O’Rourke P, et al. Exercise for overweight or obesity. Cochrane Database Syst Rev 2006;73:CD003817.
46 Sterne JAC, Savovic J, Page MJ, et al. Rob 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:14898.
47 Risk of bias tools. Available: https://www.riskofbias.info
48 Akobeng AK. Understanding systematic reviews and meta-analysis. Available: http://www.mathcentre.ac.uk/ for participants excluded from trial analysis: a guide for systematic reviewers. J Clin Epidemiol 2003;66:1014–21.
49 Guyatt GH, Oxman AD, Vist GE, et al. Grading strength of recommendations, for participants excluded from trial analysis: a guide for systematic reviewers. J Clin Epidemiol 2003;66:1014–21.
50 Varadarajan N, Vaidyanathan V, Vaidyanathan. An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.
51 Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011;343:d4002.
52 Ho M, Garnett SP, Baur L, et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics 2012;130:e1647–71.
53 Hetereogeneity and subgroup analyses in Cochrane consumers and communication review group reviews: planning the analysis at protocol stage, 2020. Available: https://ccrg.cochrane.org
54 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.