On the residual of a factorized group with widely supersoluble factors

Victor S. Monakhov and Alexander A. Trofimuk
Department of Mathematics and Programming Technologies,
Francisk Skorina Gomel State University,
Gomel 246019, Belarus
e-mail: victor.monakhov@gmail.com
e-mail: alexander.trofimuk@gmail.com

Abstract. Let \(\mathbb{P} \) be the set of all primes. A subgroup \(H \) of a group \(G \) is called \(\mathbb{P} \)-subnormal in \(G \), if either \(H = G \), or there exists a chain of subgroups \(H = H_0 \leq H_1 \leq \ldots \leq H_n = G \), \(|H_i : H_{i-1}| \in \mathbb{P} \), \(\forall i \). A group \(G \) is called widely supersoluble, w-supersoluble for short, if every Sylow subgroup of \(G \) is \(\mathbb{P} \)-subnormal in \(G \). A group \(G = AB \) with \(\mathbb{P} \)-subnormal w-supersoluble subgroups \(A \) and \(B \) is studied. The structure of its w-supersoluble residual is obtained. In particular, it coincides with the nilpotent residual of the \(A \)-residual of \(G \). Here \(A \) is the formation of all groups with abelian Sylow subgroups. Besides, we obtain new sufficient conditions for the w-supersolubility of such group \(G \).

Keywords. widely supersoluble groups, mutually \(sn \)-permutable subgroups, \(\mathbb{P} \)-subnormal subgroup, the \(X \)-residual.

Mathematics Subject Classification. 20D10, 20D20.

Introduction

Throughout this paper, all groups are finite and \(G \) always denotes a finite group. We use the standard notations and terminology of \([6]\). The formations of all nilpotent, supersoluble groups and groups with abelian Sylow subgroups are denoted by \(\mathfrak{N} \), \(\mathfrak{U} \) and \(\mathcal{A} \), respectively. The notation \(Y \leq X \) means that \(Y \) is a subgroup of a group \(X \) and \(\mathbb{P} \) be the set of all primes. Let \(\mathcal{X} \) be a formation. Then \(G^{\mathcal{X}} \) denotes the \(\mathcal{X} \)-residual of \(G \).
By Huppert’s Theorem [6, VI.9.5], a group G is supersoluble if and only if for every proper subgroup H of G there exists a chain of subgroups

$$H = H_0 \leq H_1 \leq \ldots \leq H_n = G, \; |H_i : H_{i-1}| \in \mathbb{P}, \; \forall i.$$

So naturally the following definition.

A subgroup H of a group G is called \mathbb{P}-subnormal in G, if either $H = G$, or there is a chain subgroups (1). We use the notation $H \mathbb{P}sn G$. This definition was proposed in [13] and besides, in this paper w-supersoluble (widely supersoluble) groups, i.e. groups with \mathbb{P}-subnormal Sylow subgroups, were investigated. Denote by wU the class of all w-supersoluble groups.

The factorizable groups $G = AB$ with w-supersoluble factors A and B were investigated in [8], [10], [11], [14]. There are many other papers devoted to study factorizable groups, and the reader is referred to the book [1] and the bibliography therein. A criteria for w-supersolvability was obtained by A. F. Vasil’ev, T. I. Vasil’eva and V. N. Tyutyunov [14].

Theorem A. [14, Theorem 4.7] Let $G = AB$ be a group which is the product of two w-supersoluble subgroups A and B. If A and B are \mathbb{P}-subnormal in G and G^A is nilpotent, then G is w-supersoluble.

We recall that two subgroups A and B of a group G are said to be *mutually sn-permutable* if A permutes with all subnormal subgroups of B and B permutes with all subnormal subgroups of A. If A and B are mutually sn-permutable subgroups of a group $G = AB$, then we say that G is a *mutually sn-permutable product* of A and B, see [4]. In soluble groups, mutually sn-permutable factors are \mathbb{P}-subnormal [14, Lemma 4.5]. The converse is not true, see the example 3.1 below.

A. Ballester-Bolinches, W. M. Fakieh and M. C. Pedraza-Aguilera [3] obtained the following results for the sn-permutable product of the w-supersoluble subgroups.

Theorem B. Let $G = AB$ be the mutually sn-permutable product of subgroups A and B. Then the following hold:

1. if A and B are w-supersoluble and N is a minimal normal subgroup of G, then both AN and BN are w-supersoluble, [3, Theorem 3];
2. if A and B are w-supersoluble and $(|A/A^A|, |B/B^A|) = 1$, then G is w-supersoluble, [3, Theorem 5].

Present paper extends the Theorems A and B. We prove the following result.

Theorem 1. Let A and B be w-supersoluble \mathbb{P}-subnormal subgroups of G and $G = AB$. Then the following hold:

1. $G^{wU} = (G^A)^B$;
2. if N is a nilpotent normal subgroup of G, then both AN and BN are w-supersoluble;
if \(|A/A|, |B/B| = 1\), then \(G\) is \(w\)-supersoluble.

Theorem A follows from assertion (1) of Theorem 1. Theorem B follows from assertions (2) and (3) of Theorem 1 since the group \(G\) in Theorem B is soluble.

1 Preliminaries

In this section, we give some definitions and basic results which are essential in the sequel. A group whose chief factors have prime orders is called supersoluble. Recall that a \(p\)-closed group is a group with a normal Sylow \(p\)-subgroup and a \(p\)-nilpotent group is a group with a normal Hall \(p'\)-subgroup.

Denote by \(G'\), \(Z(G)\), \(F(G)\) and \(\Phi(G)\) the derived subgroup, centre, Fitting and Frattini subgroups of \(G\) respectively. We use \(E_p^t\) to denote an elementary abelian group of order \(p^t\) and \(Z_m\) to denote a cyclic group of order \(m\). The semidirect product of a normal subgroup \(A\) and a subgroup \(B\) is written as follows: \(A \rtimes B\).

Let \(\mathcal{F}\) be a formation. Recall that the \(\mathcal{F}\)-residual of \(G\), that is the intersection of all those normal subgroups \(N\) of \(G\) for which \(G/N \in \mathcal{F}\). We define \(\mathcal{X} \mathcal{Y} = \{G \in \mathcal{E} \mid G^\mathcal{Y} \in \mathcal{X}\}\) and call \(\mathcal{X} \mathcal{Y}\) the formation product of \(\mathcal{X}\) and \(\mathcal{Y}\). Here \(\mathcal{E}\) is the class of all finite groups.

If \(H\) is a subgroup of \(G\), then \(H^G = \bigcap_{x \in G} H^x\) is called the core of \(H\) in \(G\). If a group \(G\) contains a maximal subgroup \(M\) with trivial core, then \(G\) is said to be primitive and \(M\) is its primitivator.

A simple check proves the following lemma.

Lemma 1.1. Let \(\mathcal{F}\) be a saturated formation and \(G\) be a group. Assume that \(G \notin \mathcal{F}\), but \(G/N \in \mathcal{F}\) for all non-trivial normal subgroups \(N\) of \(G\). Then \(G\) is a primitive group.

Lemma 1.2. (\cite[Theorem II.3.2]{6}) Let \(G\) be a soluble primitive group and \(M\) is a primitivator of \(G\). Then the following statements hold:

1. \(\Phi(G) = 1\);
2. \(F(G) = C_G(F(G)) = O_p(G)\) and \(F(G)\) is an elementary abelian subgroup of order \(p^n\) for some prime \(p\) and some positive integer \(n\);
3. \(G\) contains a unique minimal normal subgroup \(N\) and moreover, \(N = F(G)\);
4. \(G = F(G) \rtimes M\) and \(O_p(M) = 1\).

Lemma 1.3. (\cite[Proposition 2.2.8, Proposition 2.2.11]{2}) Let \(\mathcal{F}\) and \(\mathcal{H}\) be formations, \(K\) be normal in \(G\). Then the following hold:

1. \((G/K)^\mathcal{H} = G^\mathcal{H}K/K\).
(2) \(G^{\delta \circ} = (G^\delta)^\delta \);
(3) if \(H \subseteq \delta \), then \(G^\delta \leq G^\circ \);
(4) if \(G = HK \), then \(H^\delta K = G^\delta K \).

Recall that a group \(G \) is said to be siding if every subgroup of the derived subgroup \(G' \) is normal in \(G \), see [12, Definition 2.1]. Metacyclic groups, t-groups (groups in which every subnormal subgroup is normal) are siding. The group \(G = (Z_6 \times Z_2) \rtimes Z_2 \) (IdGroup(G)=[24,8]) is siding, but not metacyclic and a t-group.

Lemma 1.4. Let \(G \) be siding. Then the following hold:
1. If \(N \) is normal in \(G \), then \(G/N \) is siding;
2. If \(H \) is a subgroup of \(G \), then \(H \) is siding;
3. \(G \) is supersoluble

Proof.
1. By [6, Lemma I.8.3], \((G/N)' = G'N/N \). Let \(A/N \) be an arbitrary subgroup of \((G/N)' \). Then
\[
A \leq G'N, \ A = A \cap G'N = (A \cap G')N.
\]
Since \(A \cap G' \leq G' \), we have \(A \cap G' \) is normal in \(G \). Hence \((A \cap G')N/N \) is normal in \(G/N \).
2. Since \(H \leq G \), it follows that \(H' \leq G' \). Let \(A \) be an arbitrary subgroup of \(H' \). Then \(A \leq G' \) and \(A \) is normal in \(G \). Therefore \(A \) is normal in \(H \).
3. We proceed by induction on the order of \(G \). Let \(N \leq G' \) and \(|N| = p \), where \(p \) is prime. By the hypothesis, \(N \) is normal in \(G \). By induction, \(G/N \) is supersoluble and \(G \) is supersoluble.

Lemma 1.5. ([9, Lemma 3]) Let \(H \) be a subgroup of \(G \), and \(N \) be a normal subgroup of \(G \). Then the following hold:
1. If \(H \leq H/N \) \(P \)sn \(G/N \), then \(H \ P \)sn \(G \);
2. If \(H \ P \)sn \(G \), then \((H \cap N) \ P \)sn \(N \), \(HN/N \ P \)sn \(G/N \) and \(HN \ P \)sn \(G \);
3. If \(H \leq K \leq G \), \(H \ P \)sn \(K \) and \(K \ P \)sn \(G \), then \(H \ P \)sn \(G \);
4. If \(H \ P \)sn \(G \), then \(H^g \ P \)sn \(G \) for any \(g \in G \).

Lemma 1.6. ([9, Lemma 4]) Let \(G \) be a soluble group, and \(H \) be a subgroup of \(G \). Then the following hold:
1. If \(H \ P \)sn \(G \) and \(K \leq G \), then \((H \cap K) \ P \)sn \(K \);
2. If \(H_i \ P \)sn \(G \), \(i = 1, 2 \), then \((H_1 \cap H_2) \ P \)sn \(G \).

Lemma 1.7. ([9, Lemma 5]) If \(H \) is a subnormal subgroup of a soluble group \(G \), then \(H \) is \(P \)-subnormal in \(G \).
Lemma 1.8. ([13, Theorem 2.7]) The class \(wU \) is a hereditary saturated formation.

Lemma 1.9. (1) If \(G \in wU \), then \(G^A \) is nilpotent, [13, Theorem 2.13].

(2) \(G \in wU \) if and only if every metanilpotent subgroup of \(G \) is supersoluble, [7, Theorem 2.6].

(3) \(G \in wU \) if and only if \(G \) has a Sylow tower of supersoluble type and every biprimary subgroup of \(G \) is supersoluble, [9, Theorem B].

2 Factorizable groups with \(\mathbb{P} \)-subnormal \(w \)-supersoluble subgroups

Lemma 2.1. ([14, Theorem 4.4]) Let \(A \) and \(B \) be \(\mathbb{P} \)-subnormal subgroups of \(G \), and \(G = AB \). If \(A \) and \(B \) have an ordered Sylow tower of supersoluble type, then \(G \) has an ordered Sylow tower of supersoluble type.

Proof of Theorem 1 (1). If \(G \) is \(w \)-supersoluble, then \(G^{wU} = 1 \) and \(G^A \) is nilpotent by Lemma 1.9(1). Consequently \(G^{wU} = 1 = (G^A)^{\mathfrak{N}} \) and the statement is true. Further, we assume that \(G \) is non-\(w \)-supersoluble. Since \(wU \subseteq \mathfrak{N}A \), it follows that

\[
G^{(\mathfrak{N}A)} = (G^A)^{\mathfrak{N}} \leq G^{wU}
\]

by Lemma 1.3(2-3). Next we check the converse inclusion. For this we prove that \(G/(G^A)^{\mathfrak{N}} \) is \(w \)-supersoluble. By Lemma 1.3(1),

\[
(G/(G^A)^{\mathfrak{N}})^A = G^A(G^A)^{\mathfrak{N}}/(G^A)^{\mathfrak{N}} = G^A/(G^A)^{\mathfrak{N}}
\]

and \((G/(G^A)^{\mathfrak{N}})^A\) is nilpotent. The quotients

\[
G/(G^A)^{\mathfrak{N}} = (A(G^A)^{\mathfrak{N}}/(G^A)^{\mathfrak{N}})(B(G^A)^{\mathfrak{N}}/(G^A)^{\mathfrak{N}}),
\]

\[
A(G^A)^{\mathfrak{N}}/(G^A)^{\mathfrak{N}} \cong A/A \cap (G^A)^{\mathfrak{N}},
\]

\[
B(G^A)^{\mathfrak{N}}/(G^A)^{\mathfrak{N}} \cong B/B \cap (G^A)^{\mathfrak{N}},
\]

hence the subgroups \(A(G^A)^{\mathfrak{N}}/(G^A)^{\mathfrak{N}} \) and \(B(G^A)^{\mathfrak{N}}/(G^A)^{\mathfrak{N}} \) are \(w \)-supersoluble by Lemma 1.8 and by Lemma 1.5(2), they are \(\mathbb{P} \)-subnormal in \(G/(G^A)^{\mathfrak{N}} \). By Theorem A, \(G/(G^A)^{\mathfrak{N}} \) is \(w \)-supersoluble. \(\square \)

Lemma 2.2. Let \(G \) be a group, and \(A \) be a subgroup of \(G \) such that \(|G : A| = p^\alpha \), where \(p \in \pi(G) \) and \(\alpha \in \mathbb{N} \). Suppose that \(A \) is \(w \)-supersoluble and \(\mathbb{P} \)-subnormal in \(G \). If \(G \) is \(p \)-closed, then \(G \) is \(w \)-supersoluble.
Proof. Let P be a Sylow p-subgroup of G. Since P is normal in G and $G = AP$, we have $G/P \cong A/A \cap P \in w\mathfrak{U}$, in particular, G is soluble. Because G is soluble, it follows that P is \mathfrak{P}-subnormal in G by Lemma 1.7. Let Q be a Sylow q-subgroup of G, $q \neq p$. Then $Q \leq A^x$ for some $x \in G$. By Lemma 1.5(4), A^x is \mathfrak{P}-subnormal in G. Since $A^x \in w\mathfrak{U}$, it follows that Q is \mathfrak{P}-subnormal in A^x and Q is \mathfrak{P}-subnormal in G by Lemma 1.5(3). So, G is w-supersoluble.

Lemma 2.3. Let A and B be w-supersoluble \mathfrak{P}-subnormal subgroups of G, and $G = AB$. Suppose that $|G : A| = p^a$, where $p \in \pi(G)$. If p is the greatest in $\pi(G)$, then G is w-supersoluble.

Proof. Since every w-supersoluble group has an ordered Sylow tower of supersoluble type, then by Lemma 2.1, G has an ordered Sylow tower of supersoluble type. Hence G is p-closed. By Lemma 2.2 we have that G is w-supersoluble.

Theorem 2.1. Let A be a w-supersoluble \mathfrak{P}-subnormal subgroup of G, and $G = AB$. Then G is w-supersoluble in each of the following cases:

1. B is nilpotent and normal in G;
2. B is nilpotent and $|G : B|$ is prime;
3. B is normal in G and is a siding group.

Proof. We prove all three statements at the same time using induction on the order of G. Note that G is soluble in any case. By Lemma 1.7, B is \mathfrak{P}-subnormal in G and G has an ordered Sylow tower of supersoluble type by Lemma 2.1. If N is a non-trivial normal subgroup of G, then AN/N is \mathfrak{P}-subnormal in G/N by Lemma 1.5(2) and $AN/N \cong A/A \cap N$ is w-supersoluble by Lemma 1.8. The subgroup $BN/N \cong B/B \cap N$ is nilpotent or a siding group by Lemma 1.4(1). Hence $G/N = (AN/N)(BN/N)$ is w-supersoluble by induction. Since the formation of all w-supersoluble groups is saturated by Lemma 1.8, we have G is a primitive group by Lemma 1.1. By Lemma 1.2, $F(G) = N = G_p$ is a unique minimal normal subgroup of G and $N = C_G(N)$, where p is the greatest in $\pi(G)$.

Since A is \mathfrak{P}-subnormal in G, it follows that G has a subgroup M such that $A \leq M$ and $|G : M|$ is prime. By Dedekind’s identity, $M = A(M \cap B)$. The subgroup A is \mathfrak{P}-subnormal in M. The subgroup $M \cap B$ satisfies the requirements (1)–(3). By induction, M is w-supersoluble.

1. If B is nilpotent and normal in G, then $B = N$. Hence $G = AN$ and A is a maximal subgroup of G. Since A is \mathfrak{P}-subnormal in G, we have $|G : A| = p = |N|$ and G is supersoluble. Therefore G is w-supersoluble. So, in (1), the theorem is proved.
2. Let B be nilpotent and $|G : B| = q$, where q is prime. Besides, let $|G : M| = r$, where r is prime. If $q \neq r$, then $(|G : M|, |G : B|) = 1$. Since $G = MB$, M and B are P-subnormal in G and w-supersoluble, it follows obviously that G is w-supersoluble. Hence $q = r$. If $q = p$, then N is not contained in M. Thus $G = N \rtimes M$ and $|N|$ is prime. Consequently G is supersoluble and therefore G is w-supersoluble. So, $q \neq p$. Then $G_p = N \leq M \cap B$. Since B is nilpotent, $G_p = B \leq M$. Because $G = MB$, we have $G = M$, a contradiction. So, in (2), the theorem is proved.

3. Let B is normal in G and is a siding group. If B is nilpotent, then G is w-supersoluble by (1). Hence $B' \neq 1$. Because B' is normal in G and nilpotent, we have $N = B'$. If N is not contained in M, then $G = N \rtimes M$ and $|N|$ is prime. Consequently G is supersoluble and therefore G is w-supersoluble. Let N be contained in M and N_1 be a subgroup of prime order of N such that N_1 is normal in M. Then N_1 is normal in B by definition of siding group. Hence N_1 is normal in G. Consequently G is w-supersoluble. So, in (3), the theorem is proved.

Proof of Theorem 1 (2).

Note that by the Lemma 2.1, G is soluble. By Theorem 2.1 (1), Theorem 1 (2) is true.

Proof of Theorem 1 (3). Assume that the claim is false and let G be a minimal counterexample. By Lemma 2.1 G has an ordered Sylow tower of supersoluble type. If N is a non-trivial normal subgroup of G, then AN/N and BN/N are P-subnormal in G/N by Lemma 1.5 (2). Besides, $AN/N \simeq A/A \cap N$ and $BN/N \simeq B/B \cap N$ are w-supersoluble by Lemma 1.8. By Lemma 1.3 we have

$$(|(AN/N)/(AN)^A|, |(BN/N)/(BN)^A|) =$$

$$= (|AN/(AN)^A|, |BN/(BN)^A|) =$$

$$= (|AN/A^A|, |BN/B^A|) = \left(\frac{|A/A^A|}{|S_1|}, \frac{|B/B^A|}{|S_2|} \right),$$

$S_1 = (A \cap N)/(A \cap N)$, $S_2 = (B \cap N)/(B \cap N)$.

Since $(|A/A^A|, |B/B^A|) = 1$, it follows that

$$(|(AN/N)/(AN)^A|, |(BN/N)/(BN)^A|) = 1.$$ The quotient $G/N = (AN/N)(BN/N)$ is w-supersoluble by induction.

Since the formation of all w-supersoluble groups is saturated by Lemma 1.8, we have G is a primitive group by Lemma 1.1. By Lemma 1.2, $F(G) = N =
G_p is a unique minimal normal subgroup of G and N = C_G(N), where p is the greatest in π(G).

By Lemma 2.2, AN is w-supersoluble. If AN = G, then G is w-supersoluble, a contradiction. Hence in the future we consider that AN and BN are proper subgroups of G.

By Lemma 1.9 (1), (AN)^A is nilpotent. Since N = C_G(N), we have (AN)^A is a p-group. Because AN/(AN)^A ∈ A, it follows that all Sylow r-subgroups of A are abelian, r ≠ p. Since A_p ≤ G_p, where A_p is a Sylow p-subgroup of A, we have A ∈ A. Similarly, B ∈ A. Hence A^A = 1 = B^A and (|A|, |B|) = (|A/A^A|, |B/B^A|) = 1. It is clear that G is w-supersoluble, a contradiction. □

3 Examples

The following example shows that for a soluble group G = AB the mutually sn-permutability of subgroups A and B doesn’t follow from P-subnormality of these factors.

Example 3.1. The group G = S_3 ⋊ Z_3 (IdGroup=[18,3]) has P-subnormal subgroups A ≃ E_3^2 and B ≃ Z_2. However A and B are not mutually sn-permutable.

The following example shows that we cannot omit the condition «G is p-closed» in Lemma 2.2.

Example 3.2. The group G = (S_3 × S_3) ⋊ Z_2 (IdGroup=[72,40]) has P-subnormal supersoluble subgroups A ≃ Z_3 × S_3. Besides |G : A| = 2^2 and Sylow 2-subgroup is maximal in G. Hence G is non-w-supersoluble.

The following example shows that in Theorem 2.1 (1) the normality of subgroup B cannot be weakened to P-subnormality.

Example 3.3. The group G = (Z_2 × (E_3^2 × Z_4)) ⋊ Z_2 (IdGroup=[144,115]) is non-w-supersoluble and factorized by subgroups A = D_{12} and B = Z_{12}. The subgroup A has the chain of subgroups A < S_3 × S_3 < Z_2 × S_3 × S_3 < G and B has the chain of subgroups B < Z_3 × (Z_3 × Z_4) < (Z_3 × (Z_3 × Z_4)) ⋊ Z_2 < G. Therefore A and B are P-subnormal in G.

The following example shows that in Theorem 2.1 (2) it is impossible to weak the restrictions on the index of subgroup B.
Example 3.4. The alternating group $G = A_4$ is non-w-supersoluble and factorized by subgroups $A = E_2$ and $B = Z_3$. It is clear that A is supersoluble and \mathbb{P}-subnormal in G, and B is nilpotent and $|G : B| = 2^2$. The group $G = E_2 \rtimes Z_3$ is non-w-supersoluble and has a nilpotent subgroup Z_3 of index 5^2. Therefore even for the greatest p of $\pi(G)$, the index of B cannot be equal p^α, $\alpha \geq 2$.

The following example shows that in Theorem 2.1 (3) the normality of subgroup B cannot be weakened to subnormality.

Example 3.5. The group $G = Z_3 \times ((S_3 \times S_3) \rtimes Z_2)$ (IdGroup=[216,157]) is non-w-supersoluble and factorized by \mathbb{P}-subnormal supersoluble subgroup $A \simeq S_3 \times S_3$ and subnormal siding subgroup $B \simeq Z_3 \times Z_3 \times S_3$.

References

[1] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M. (2010). Products of finite groups. Berlin; New York: Walter de Gruyter.

[2] Ballester-Bolinches, A., Ezquerro, L.M. (2006). Classes of Finite Groups. Dordrecht: Springer.

[3] Ballester-Bolinches, A., Fakieh, W.M., Pedraza-Aguilera, M.C. (2019). On Products of Generalised Supersoluble Finite Groups. Mediterr. J. Math. 16:46.

[4] Carocca, A. (1998). On factorized finite groups in which certain subgroups of the factors permute. Arch. Math. 71:257–262.

[5] GAP (2019) Groups, Algorithms, and Programming, Version 4.10.2. www.gap-system.org.

[6] Huppert, B. (1967). Endliche Gruppen. Berlin: Springer-Verlag.

[7] Monakhov, V.S. (2016). Finite groups with abnormal and \mathfrak{A}-subnormal subgroups. Siberian Math. J. 57:352–363.

[8] Monakhov, V.S., Chirik, I.K. (2017). On the supersoluble residual of a product of subnormal supersoluble subgroups. Siberian Math. J. 58:271–280.

[9] Monakhov, V. S., Kniahina, V. N. (2013). Finite group with \mathbb{P}-subnormal subgroups. Ricerche Mat. 62:307–323.
[10] Monakhov, V. S., Trofimuk, A. A. (2019). Finite groups with two supersoluble subgroups. *J. Group Theory.* 22:297–312.

[11] Monakhov, V. S., Trofimuk, A. A. (2020). On supersolubility of a group with seminormal subgroups. *Siberian Math. J.* 61:118–126.

[12] Perez, E. R. (1999). On products of normal supersoluble subgroups. *Algebra Colloq.* 6:341–347.

[13] Vasil’ev, A. F., Vasil’eva, T. I., Tyutyanov, V. N. (2010). On the finite groups of supersoluble type. *Siberian Math. J.* 51:1004–1012.

[14] Vasil’ev, A. F., Vasil’eva, T. I., Tyutyanov, V. N. (2012). On the products of P-subnormal subgroups of finite groups. *Siberian Math. J.* 53:47–54.