Increased Expression of the Tomato SISWEET15 Gene During Grey Mold Infection and the Possible Involvement of the Sugar Efflux to Apoplasm in the Disease Susceptibility

Yuichiro Asai1, Yuhko Kobayashi2 and Issei Kobayashi1,2*

1Graduate School of Regional Innovation Studies, Mie University, 1577 Kurima-Machiya-cho, Tsu, Mie, 514-8507, Japan
2Division of Plant Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya-cho, Tsu, Mie 514-8507, Japan

Abstract

Host plant susceptibility genes, which facilitate pathogen growth during plant infection, are attractive targets for disease-resistance breeding. To explore candidate susceptibility genes in tomatoes during Botrytis cinerea infection, the fungal infection-responsive SWEET genes were screened for out of all 31 tomato SISWEET genes. The expression of only one gene, SISWEET15, was induced by B. cinerea at the pre-necrotic stage (16 h post inoculation), whereas most of the other SWEET genes were downregulated. The expression of the SISWEET15 transiently increased by 16 h post inoculation, then reduced to basal levels by 24 h post inoculation. We measured the glucose and sucrose contents of apoplasmic fluid of infected cotyledons at the pre-necrotic stage (20 h post inoculation). The sugar contents of the apoplasmic fluids were significantly higher in the infected cotyledons compared to 0 h. Furthermore, glucose and sucrose can promote growth and invasion of B. cinerea both in vitro and in vivo. SWEET proteins in clade III, including the deduced SISWEET15, are well-known sugar efflux transporters. These results suggest that SISWEET15 is induced by B. cinerea and that this is exploited by the fungus, which may provide sugars to promote hyphal growth in the pre-necrotic stage of infection in tomato.

Keywords: Tomato; Botrytis cinerea; SWEET sugar transporters; Susceptibility genes

Introduction

Necrotrophic fungi are the largest class of fungal phytopathogens and cause serious crop losses worldwide [1]. Botrytis cinerea, a typical necrotrophic fungus, is an important plant pathogen with a wide range of host plants, causing gray mold disease in over 200 plant species, including most vegetable and fruit crops, trees and flowers [2]. B. cinerea causes massive losses in some field and greenhouse-grown horticultural crops, including tomatoes [3]. The damage to tomato yields caused by B. cinerea is enormous, and the fungus is difficult to control because it has a variety of pathogenic mechanisms, that can use diverse hosts as inoculum sources, and can survive as mycelia and/or conidia or for extended periods as sclerotia in crop debris [3]. Furthermore, promising genetic resources concerning gray mold resistance have not been found in the cultivated tomato (Solanum lycopersicum L.), despite ongoing efforts to identify genetic loci for resistance [4].

One of the alternative strategies for the breeding of disease-resistant crops is the utilization of a reverse genetics approach. Along with suppressing or evading plant immunity, most pathogens, especially biotrophs, require the cooperation of the host to establish a compatible interaction [5]. Host plant genes that facilitate infection and support compatibility are considered to be susceptibility genes. If a defective mutation occurs in a gene essential for pathogen susceptibility, the plant acquires resistance to that pathogen. A recessive resistance gene to powdery mildew, mlo (mildew resistance locus O) is the best example [6,7]. Powdery mildew resistant gene mlo was originally discovered in barley and characterized as a membrane-anchored protein [6]. The role of MLO in powdery mildew susceptibility has been confirmed in Arabidopsis, pea, tomato, pepper, wheat, and strawberry [5]. MLO seems to be required for susceptibility to adapted pathogens, and mlo mutants display a loss of susceptibility resembling that described for non-host resistance [7].

Recently, it has been revealed that several sugar efflux transporter encoding genes, SWEETs, are important susceptibility factors, therefore, could be candidate recessive disease resistance genes. Plant pathogens, especially biotrophs and hemi-biotrophs, depend on nutrient uptake from host plants. Thus, a reasonable hypothesis is that plant pathogen hijack the host nutrient transport system. In rice, two recessive genes that confer resistance to the semi-biologic bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), xa13 and xa25 loci, encode SWEET proteins [8,9]. Additionally, the sugar transporter genes OsSWEET11, 12 and 14 are confirmed targets of Xoo effectors [10-12]. Furthermore, the expression of Arabidopsis SWEET genes is upregulated by several pathogens, including B. cinerea [9]. Interestingly, in addition to Arabidopsis, it was recently reported that the VvSWEET4 gene, encoding a member of the grapevine SWEET sugar transporter family, is also induced during B. cinerea infection [13]. These findings support the hypothesis that necrotrophs, which had been thought to only take up nutrients from dead host cells, may be able to take up sugar from live host cells. Therefore, identifying pathogen-responsive SWEET genes will be an effective way of finding essential susceptibility factors, which may be ideal targets for disease-resistance breeding.

Here, we explored SWEET genes responsive to B. cinerea infection from all 31 SISWEET genes in tomato and found that the fungus only induces expression of the SISWEET15 gene, which is a clade III SWEET sugar efflux transporter and transports sucrose and glucose [14]. The
identification of possible candidate susceptibility factors for *B. cinerea* may lead to a deeper understanding of the complex process of *B. cinerea* infection and may provide attractive targets for breeding grey mold resistance in tomato. In the present study, we discuss the characteristics of SISWEET15 gene induction during *B. cinerea* infection and the possible utilization of the sugar transporter by the fungus.

Materials and Methods

Plant materials and growth conditions

The tomato (*Solanum lycopersicum* L.) cultivar Ponderosa was primarily used in the present study, and other cultivars, including strawberry, Micro-Tom, Soprano and Misora, were also used for SWEET gene expression analysis. Tomato seeds were germinated and grown on wet filter paper for 3 d before being transferred to soil. The seedlings were then incubated in a growth chamber under 16-h-light at 25°C/8-h-dark conditions at 19°C.

Fungal strains and growth conditions

B. cinerea highly pathogenic strains MB1209 were used for inoculation assays. The fungus was maintained on potato dextrose agar (PDA; 1.5% agar was added to potato dextrose broth, BD Difco, Sparks, MD, USA) at 25°C. For sporulation, 5 mm × 5 mm mycelial mats were transferred to PDA plates and incubated for 8 d under BLB light at 25°C.

Inoculation methods and assays for fungal invasion

Tomato (cv. Ponderosa) cotyledons were harvested from 3- to 4-week-old plants and placed in glass Petri dishes moistened with a wet filter paper. Conidia of *B. cinerea* were collected from 2-week-old cultures and suspended in 2-fold diluted PDB potato dextrose broth (1/2 PDB) at 1 × 10⁶ conidia/ml. A small piece of filter paper (3 mm × 3 mm) was put on the center of the tomato cotyledon, and then a droplet of the fungal spore suspension (5 µl) was deposited beneath the filter paper. As mock treatment, 5 µl of 1/2 PDB was applied on the filter paper. Conidia of *B. cinerea* were suspended in sugar solutions, and then droplets of the fungal spore suspension (5 µl) were deposited on glass slides. The tomato cotyledons were inoculated with fungal spores that were move into new sample tubes. The concentrations of glucose and sucrose were measured by the Sucrose/D-Glucose assay kit (Roche/R-Biopharm, Darmstadt, Germany).

Assay for the effects of sugar on invasion of tomato cotyledons

To investigate the direct effects of sugars on fungal spore growth, spores were suspended in 20 mM or 40 mM glucose instead of 1/2 PDB. The lesion size and fungal biomass were measured as described in the methods above. Apoplasmic fluid was collected and measured at 20 h post inoculation. Apoplasmic fluids were suspended in 2-fold diluted PDB. The lesion size and fungal biomass were statistically analyzed by ANOVA.

Gene expression analyses

The tomato cotyledons inoculated with fungal spores were used for total RNA extraction at the 0, 8, 16 and 24 h post inoculation. RNA was extracted using the RNA Sui-Sui P Kit (Rizo, Tsukuba, Japan) following the manufacturer’s instruction. RNA concentrations and 260/280 nm ratio were measured using a spectrophotometer (DU650, Beckman Coulter, Fullerton, CA, USA). Total RNA from healthy tissues was extracted by the same method. For quantitative reverse transcription PCR (qRT-PCR), total RNA from each sample was treated with DNase I (DNase I recombinant, RNase-free; Roche Diagnostics, Mannheim, Germany), followed by cDNA synthesis using the High-Capacity cDNA Reverse Transcription Kit (Life Technologies). cDNA derived from 25 ng of total RNA was used for each qRT-PCR reaction with gene-specific primer sets (Table S1). The tomato SAND family protein-encoded gene (*SISAND*) was used as an internal control [15]. Additionally, expression of the *PR1a1* gene was measured using a *PR1a1* specific primer set to monitor fungal invasion (Table S1). Primer sets for each SWEET gene were designed using Primer Express 3 software (Life Technologies). The names of tomato SWEET genes are written according to the nomenclature of Lin et al. [16]. Real-time qRT-PCR was performed with the StepOne plus system as described in the methods for qPCR, using a program of 20 sec at 95°C, followed by 40 cycles of 95°C for 3 sec, annealing for 30 sec at 60°C, and melt curve stage at 95°C for 15 sec, 60°C for 1 min and 95°C for 15 sec. The average threshold cycle (Ct) was used to determine the fold change of gene expression.

All experiments were performed in biological triplicate and statistically analyzed by ANOVA.

Assay for the effects of sugar on invasion of tomato cotyledons and fungal spore growth

To mimic sugar exudation from mesophyll cells to the plant-fungus interface, tomato cotyledons were inoculated with fungal spores that were suspended in 20 mM or 40 mM glucose or sucrose instead of 1/2 PDB. The lesion size and fungal biomass were measured as described in the methods above.

To investigate the direct effects of sugars on fungal spore growth, spores were suspended in sugar solutions, and then droplets of the fungal spore suspension (5 µl) were deposited on glass slides. The growth of the germ tube was measured on digital images using ImageJ software [18] 8 h after incubation.
All experiments were performed in biological triplicate and statistically analyzed by ANOVA.

Results

Changes in the expression of tomato SWEET genes during *B. cinerea* infection

Plant genomes typically contain approximately 20 SWEET paralogs, which are differentially expressed [19]. According to Lin et al. [16], 30 SWEET genes were identified in the tomato genome. Cell death in infected cotyledons was observed under the microscope appeared 48 h post-inoculation, whereas no cell death had formed by 20 h post-inoculation (see Figure 3a). We focused on the pre-necrotic stage of *B. cinerea* infection (until 20 h post inoculation), because it is presumed that no sugar leakage from dead cells occurred in this stage. Primer sets for all 31 tomato SWEET (SISWEEt) genes were designed, and the expression of each gene was investigated by qRT-PCR at 0 h and 16 h post inoculation with *B. cinerea*. According to phylogenetic analysis based on the deduced amino acid sequence of SWEET gene products, *Arabidopsis* [19] and rice [11] SWEET genes are subdivided into four clades, clades I to IV. Thirty SISWEEt genes also fall into these four clades (Figure S1). The changes in gene expression of the 31 SISWEEt at an early stage of *B. cinerea* infection were investigated by qRT-PCR (Figure 1). Expression of all SISWEEt genes was detected, except for SISWEEt8a. The expression of SISWEEt8a was never detected at all, even though two different primer sets were used for qRT-PCR (Table 1).

![Figure 1](image-url): Expression of tomato SISWEEt genes in the cotyledon at the early stage of *B. cinerea* infection. Expression of each SISWEEt gene was measured by qRT-PCR 0 h and 16 h post-inoculation. Transcript levels were normalized to the SISAND gene. Values represent the mean and standard error of triplicate results. ND means ‘not detected’. Asterisks indicate values that are statistically significantly different from the 0 h control using ANOVA (P<0.05).
S1). Also a large deletion (24 amino acids) was found in the functional domain (two triple-helix-bundle repeats) of the deduced gene product (Figure S2). Therefore, SISWEET8a gene is likely to be a pseudogene. Twenty-one of the 30 expressing SISWEET genes were significantly downregulated in infected tomato cotyledons by 16 h post inoculation relative to expression at the time of infection. Also SISWEET1d and 7 were obviously downregulated by the fungal infection, although no significant differences were detected between 0 h and 16 h post inoculation because of relatively large fluctuations. All of these genes belong to one of the four SISWEET gene clades. Thus, most of the SISWEET genes were downregulated by B. cinerea inoculation at the early stage of infection. The expression of 6 SISWEET genes, SISWEET2c (clade I), SISWEET4 and 8b (clade II), SISWEET10d, 10f and 10h (clade III), was not significantly changed. Only SISWEET15, which belongs to clade III, was significantly upregulated, and the expression of this gene was increased more than ten times 16 h post inoculation compared with the 0 h control (Figure 1).

Expression patterns of SISWEET15 gene in infected tomatoes

When the cotyledon was inoculated with B. cinerea spores, the expression of SISWEET15 was increased 3.4 to 8.1 times 16 h post inoculation, relative to the 0 h control, regardless of differences in tomato cultivars (Figure 2a). When the tomato cotyledon (cultivar Ponderosa) was inoculated with B. cinerea, expression of the SISWEET15 gene remained at basal levels until 8 h post inoculation, then transiently increased to 5.4 times at 16 h post inoculation compared with levels at 0 h. The transiently induced expression later decreased back to basal levels by 24 h post inoculation. No obvious changes in SISWEET15 gene expression were detected in the mock control over the course of the infection (Figure 2b). The expression of a well-known defense marker gene, PR1a1, was slightly upregulated at 16 h post inoculation and tended to continue increasing until at least 24 h post inoculation, showing the same tendency as the increase in fungal biomass (Figure 2c, 2d). These results suggest that SISWEET15 is a relatively early responsive and transiently expressed gene during B. cinerea infection in tomato.

Changes of sugar contents in apoplasm of B. cinerea infected cotyledons

Induced expression of sugar efflux transporter gene SISWEET15, in the pre-necrotic stage of infection may trigger sugar leakage from live cotyledon cells to apoplasm. Therefore, we measured glucose and sucrose contents of apoplasmic fluids collected from infected cotyledons at the pre-necrotic stage. We preferred 20 h post inoculation as a time point for measurements of sugar contents, because no cell death was observed in cotyledons by 20 h post inoculation, while prominent cell death was induced in cotyledon tissue by 48 h post inoculation (Figure 3a). Infected and mock treated cotyledons were infiltrated with distilled water 20 h post inoculation, and the cotyledons were subjected to centrifugation to recover apoplasmic fluids. The glucose and sucrose content of the supernatant was 3.4 and 2.4-fold higher in apoplasmic fluids from infected cotyledons compared to 0 h control, respectively.

Figure 2: Expression of the SISWEET15 gene in different tomato varieties and time course of SISWEET15 gene expression. (a) Expression of the SISWEET15 gene was measured by qRT-PCR at 0 h and 16 h post inoculation in 5 different tomato cultivars. Asterisks indicate values that are statistically significantly different from the 0 h control using ANOVA (P<0.05). Expression of SISWEET15 (b) and PR1a1 (c) genes were measured by qRT-PCR at 0, 8, 16 and 24 h post inoculation. In mock inoculations, cotyledons were treated with 1/2 PDB. Transcript levels were normalized to the SISAND gene. (d) Biomass of B. cinerea was measured with qPCR at the same time points. Values represent the mean and standard error of triplicate results.
while no changes were observed in the mock treated cotyledons (Figure 3b,3c).

Effects of glucose and sucrose on fungal spore growth and invasion into plant tissue

The results above led us to hypothesize that sugar exudation to the plant-fungus interface may play an important role in plant permissiveness to fungal infection. This is supported by the fact that SWEET proteins are well-known hexose and sucrose efflux transporters [9,16], especially clade III SWEET proteins, which transport glucose and sucrose [14]. To test this hypothesis, spores were suspended in a glucose or sucrose solution to mimic the exudation of sugar to the plant-fungus interface, and tomato cotyledons were inoculated with the suspensions. When cotyledons were inoculated with spores suspended with distilled water, necrotic lesions never formed on tomato cotyledon 48 h post inoculation. However, necrotic lesions appeared on cotyledons inoculated with spores suspended in sugar solutions (Figure 4a). The lesions expanded in a sugar concentration-dependent manner in both sugar treatments, and lesion sizes tend to be larger in the case of sucrose treatment compared to glucose treatment (Figure 4b). A similar tendency was observed in the biomass of B. cinerea. The fungal biomass was more prominently and significantly increased 48 h post inoculation when spores were suspended in sucrose (Figure 4c).

To determine the direct effects on the fungal growth, spores were suspended in distilled water (control), glucose or sucrose, and then germ tubes elongation on a glass slides was measured 8 h after incubation (Figure 5). When spores were suspended with 20 mM and 40 mM glucose, germ tubes of B. cinerea elongated to approximately 50 µm, whereas only short germ tubes (27.7 µm in average) were formed in distilled water (Figure 5b). More prominently, germ tubes from spores suspended in 20 mM and 40 mM sucrose solutions were nearly twice as long (108 and 139 µm, respectively) as those suspended in glucose solution (Figure 5b).

These results suggest that fungal growth in the early stage of infection can be promoted by plant exudation of sugar, especially of sucrose, to the plant-fungus interface.

Discussion

Since 2010, when actual sugar efflux transporter activity was shown [9], knowledge of important roles of SWEET sugar transporters has been accumulated from a number of research groups over the last few years. The redundancy of SWEET genes (approximately 20 to 30 copies in the plant genome) implicates them as fundamental sugar transporters. Indeed, a wide variety of physiological roles, including pollen development [20], nectar secretion [16], phloem loading [14], seed development [21], salt stress [22] and freezing tolerance [23], have been described in Arabidopsis.

Simultaneously, it has become increasingly clear that SWEET transporters were hijacked by plant pathogens and used as a source of nutrients. Biotrophic pathogens must acquire sugars through their host plasma membrane [24,25] thus, the exploitation of host sugar efflux systems by pathogens is a reasonable strategy. Chen et al. [9] reported that the powdery mildew pathogen Golovinomyces cichoracearum
induced the accumulation of AtSWEET mRNAs, most prominently those of AtSWEET12. Furthermore, the hemi-biotrophic bacterial blight pathogen of rice, Xoo, induces rice clade III OsSWEET genes [10-12]. Direct evidence for the role of SWEET transporters on hemi-biotrophic fungus has not been shown yet. It is, however, strongly suggested that limitation of the availability of sucrose in the rice leaf apoplasma to prevent hemi-biotrophic fungus, Magnaporthe oryzae, infection [26]. Infection of rice by Xoo strain PXO99A requires the bacterial type III effector gene pthXo1, encoding a transcriptional activator-like (TAL) effector PthXo1, which directly interacts with the OsSWEET11 promoter [9].

Two of the OsSWEETs were identified as recessive blight resistance loci, named xa13 [8,27] and xa25 [28], corresponding to OsSWEET11 and OsSWEET13, respectively, are now known to be functional sugar transporters. OsSWEET11 and OsSWEET13 belong to clade III SWEETs (Figure S3). Moreover, only 5 out of the 21 OsSWEET genes, all of which belong to clade III (OsSWEET11 to 15), have been shown to support pathogen growth [11]. Recently, SWEETs have been shown to be induced by TAL effectors from the Cassava blight pathogen X. axonopodis pv. manihotis. In this case, two clade III genes, MeSWEET10 and 15, were induced by the pathogen [29]. Interestingly, in the present study, only one tomato SWEET gene out of 31 SlSWEETs, SlSWEET15, which is also a member of clade III, was specifically induced by B. cinerea infection (Figure 1). Clades I, II, and IV appear to be predominantly hexose transporters, whereas clade III SWEETs transport predominantly sucrose, and also can transport glucose [14]. Thus, clade III SWEET proteins may provide some specific advantage to pathogens by providing sucrose and glucose.

SlSWEET15 was the only SWEET gene activated in response to B. cinerea infection in tomato cotyledons. It was reported that B. cinerea induced expression of SWEET genes in Arabidopsis [9] and grapevine [13], although the details have not yet been clarified. In Arabidopsis, B. cinerea induced expression of AtSWEET4, AtSWEET15 and AtSWEET17 48 h post inoculation, although no induction of gene expression was observed at the earlier stage of infection, 18 h post inoculation [30]. Similarly with Arabidopsis, VvSWEET4, which was the only SWEET gene induced by B. cinerea infection in grapevine, was not induced until 72 h post inoculation, the stage when visible necrotic lesions expand. Compared with VvSWEET4, two typical markers of B. cinerea infection in grapevine, VvSTS, a key enzyme in the synthesis of stilbene phytoalexins, and VvHSR1, a cell death marker, were induced at a much earlier stage, 24 h and 48 h post inoculation, respectively.
The results strongly suggest that SlSWEET15, the pathogen, is promoted by and requires the active cell death of the host B. cinerea VvSWEET4 in plant cell death because, a typical necrotrophic VvSWEET4 induction of, Chong et al. [13] proposed a possible role for stage when no cell death observed (Figure 3a). With regards to the late expression of at 16 h post inoculation, the early infection [13]. In contrast, infection in tomato transiently induced B. cinerea significantly increased in the stage when no cell death was observed (Figures 2 and 3). Furthermore, glucose and sucrose can promote growth and invasion of B. cinerea both in vitro and in vivo (Figures 4 and 5). These results support a model where the necrotrophic pathogen B. cinerea may need to obtain sugars, glucose and sucrose, from live tomato cells by hijacking SlSWEET15 at the pre-necrotic stage of infection.

Unexpectedly, most of tomato SWEET genes were downregulated at the pre-necrotic stage of infection (16 h post inoculation) (Figures 1 and 2). This suggests that most SWEET genes, whose original function is inter- and intracellular sugar transport in plant cells, are positively involved in defense reactions by reallocating and retaining carbohydrates [32]. Therefore, the downregulation of SISWEET genes may be caused by B. cinerea, which transfers small RNA effectors into host plant cells to suppress host immunity and achieve infection [33].

To improve plant resistance against pathogens, dominant resistance genes have typically been used. However, because resistance is based on the recognition of a single pathogen-derived molecular pattern, altering a plant gene that critically facilitates compatibility (susceptibility genes) could provide a more broad-spectrum and durable type of resistance [5]. Indeed, SWEET-derived recessive Xoo resistance genes from rice have been obtained not only from natural mutations of some rice clade III SWEET genes [26,27] but also from an artificially generated target mutation of the SWEET gene via genome editing using CRISPR/Cas9 technology [12]. Also, Li et al. [34] produced Xoo resistant rice by knockdown of clade III OsSWEET1 with an artificial microRNA technology. These facts indicate that knockout or knockdown of an appropriate plant SWEET gene, which functions as a susceptibility gene of a pathogen, may present a promising strategy for the generation of resistant plants to the pathogen. Recent protein-base plant genome editing technology [35] may enhance practical utility of the strategy by developing non-transgenic recessive alleles at the targeted susceptibility genes.

The results of this study strongly suggest that SlSWEET15 is induced and exploited by B. cinerea and may provide sucrose to promote hyphal growth in the early stages of infection in tomato, although direct evidence has not been shown in the present study. An understanding of the detailed mechanisms will help in the development of grey mold-resistant tomato plants. Future studies aimed at generating a SlSWEET15 transgenic tomato will provide a better understanding of the role of this candidate tomato susceptibility gene in B. cinerea infection.

Acknowledgement

We are grateful to Mr. Hirohumi Suzuki (Mie Prefecture Agricultural Research Institute, Mie, Japan) and Mr. Hiroaki Isobe (Toyohashi Seed Co.,ltd, Aichi, Japan) for gift of strains and tomato seeds, respectively. This work was supported in part by Grant-in-Aid for Scientific Research (C) No. 26450054 (2014-2016) from the Ministry of Education, Science and Culture of Japan, given to I. Kobayashi.

References

1. Łazniewska J, Macioszek V, Lawrence C, Kononowicz A (2010) Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiol Plant 32: 1-10.
2. Nakajima M, Akutsu K (2014) Virulence factors of Botrytis cinerea. J Gen Plant Pathol 80: 15-23.
3. Williamson B, Tuzdzynski B, Tuzdzynski P, van Kan JA (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8: 561-580.
4. Finkers R, van Heusden AW, Meijer-Dekens F, van Kan JA, Maris P, et al. (2007) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114: 1071-1080.
5. van Schie CC, Takken FL (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52: 551-581.

6. Büscheres R, Holtbrücher K, Panstruga R, Simons G, Wolter M, et al. (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695-705.

7. Humphry M, Consonni C, Panstruga R (2006) mlo-based powdery mildew immunity: silver bullet or simply non-host resistance? Mol Plant Pathol 7: 605-610.

8. Antony G, Zhou J, Huang S, Li T, Liu B, et al. (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-Xln3. Plant Cell 22: 3864-3876.

9. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, et al. (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468: 527-532.

10. Li T, Huang S, Zhou J, Yang B (2013) Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. Mol Plant 6: 781-789.

11. Streubel J, Pesce C, Hutlin M, Koebnik R, Boch J, et al. (2013) Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200: 808-819.

12. Zhou J, Peng Z, Long S, Sosso D, Liu B, et al. (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82: 632-643.

13. Chong J, Pirón MC, Meyer S, Merdinoglu D, Bertsch C, et al. (2014) The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. J Exp Bot 65: 6599-6601.

14. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, et al. (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335: 207-211.

15. Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8: 131.

16. Lin IW, Sosso D, Chen LQ, Qase K, Kim SG, et al. (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508: 546-549.

17. Bruzzese E, Hasan S (1993) A whole leaf clearing and staining technique for A. thaliana. Plant Cell Rep 3: 85-87.

18. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675.

19. Feng L, Frommer WB (2015) Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem Sci 40: 480-486.

20. Sun MX, Huang XY, Yang J, Guan YF, Yang ZN (2013) Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod 26: 83-91.

21. Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, et al. (2015) A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27: 607-619.

22. Seo PJ, Park JM, Kang SK, Kim SG, Park CM (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233: 189-200.

23. Klemans PA, Patzke K, Deitmer J, Spinner L, Le Hir R, et al. (2013) Overexpression of the vascular sugar carrier AISWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol 163: 1338-1352.

24. Mendgen K, Nuss P (1988) The activity of powdery-mildew haustorium after feeding the host cells with different sugars, as measured with a potentiometric

25. Voegele RT, Struck C, Hahn M, Mendgen K (2001) The role of haustorium in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci USA 98: 8133-8138.

26. Sun L, Yang DL, Kong Y, Chen Y, Li XZ, et al. (2014) Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. Mol Plant Pathol 15: 161-173.

27. Yang B, Sugio A, White FF (2006) OsN3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103: 10503-10508.

28. Liu Q, Yuan M, Zhou Y, Li X, Xiao J, et al. (2011) A paralog of the MiN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 34: 1958-1969.

29. Cohn M, Bart RS, Shybul M, Dahlbeck D, Gomez M, et al. (2014) Xanthomonas axonopodis pv. oryzae: a role in pre-existing and induced defence in rice. Mol Plant Microbe Interact 27: 1186-1189.

30. Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, et al. (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144: 367-379.

31. Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10: 751-757.

32. Scharfe J, Schön H, Wells E (2005) Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ 28: 1421-1435.

33. Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, et al. (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342: 118-23.

34. Li C, Wei J, Lin Y, Chen H (2012) Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding. Plant Cell Rep 31: 851-862.

35. Luo S, Li J, Stoddard TJ, Balfes NJ, Demorest ZL, et al. (2015) Non-transgenic Plant Genome Editing Using Purified Sequence-Specific Nucleases. Mol Plant 8: 1425-1427.