Abstract. I give a short and completely elementary proof of Takagi’s 1921 theorem on the zeros of a composite polynomial \(f(d/dz)g(z) \).

Many theorems in the analytic theory of polynomials \([2, 8, 10, 11]\) are concerned with locating the zeros of composite polynomials. More specifically, let \(f \) and \(g \) be polynomials (with complex coefficients) and let \(h \) be a polynomial formed in some way from \(f \) and \(g \); under the assumption that the zeros of \(f \) (respectively, \(g \)) lie in a subset \(S \) (respectively, \(T \)) of the complex plane, we wish to deduce that the zeros of \(h \) lie in some subset \(U \). The theorems are distinguished by the nature of the operation defining \(h \), and the nature of the subsets \(S, T, U \) under consideration.

Here we shall be concerned with differential composition: \(h(z) = f(d/dz)g(z) \), or \(h = f(D)g \) for short. In detail, if \(f(z) = \sum_{i=1}^{m} a_i z^i \) and \(g(z) = \sum_{j=1}^{n} b_j z^j \), then \(h(z) = \sum_{i=1}^{m} a_i g^{(i)}(z) \); and \(D \) denotes the differentiation operator, i.e., \(Dg = g' \). The following important result was found by Takagi \([13]\) in 1921, subsuming many earlier results:\footnote{See Honda \([4]\), Iyanaga \([5, 6]\), Kaplan \([7]\), and Miyake \([9]\) for biographies of Teiji Takagi (高木貞治, Takagi Teiji, 1875–1960). Takagi’s papers published in languages other than Japanese (namely, English, German, and French) have been collected in \([14]\).}

Theorem 1 (Takagi). Let \(f \) and \(g \) be polynomials with complex coefficients, with \(\deg f = m \) and \(\deg g = n \). Let \(f \) have an \(r \)-fold zero at the origin \((0 \leq r \leq m) \), and let the remaining zeros (with multiplicity) be \(\alpha_1, \ldots, \alpha_{m-r} \neq 0 \). Let \(K \) be the convex hull of the zeros of \(g \). Then either \(f(D)g \) is identically zero, or its zeros lie in the set \(K + \sum_{i=1}^{m-r} [0, n-r]z \alpha_i^{-1} \).

Here we have used the notations \(A + B = \{a + b: a \in A \text{ and } b \in B\} \) and \(AB = \{ab: a \in A \text{ and } b \in B\} \).

Takagi’s proof was based on Grace’s apolarity theorem \([3]\), a fundamental but somewhat enigmatic result in the analytic theory of polynomials.\footnote{For discussion of Grace’s apolarity theorem and its equivalents—namely Walsh’s coincidence theorem and the Schur–Szegő composition theorem—see Marden \([8, \text{ Chapter 18}]\), Oubrechhoff \([10, \text{ pp. 135–136}]\), and Rahman and Schmeisser \([11, \text{ Chapter 3}]\).} This proof is also given in the books of Marden \([8, \text{ Section 18}]\), Oobrechhoff \([10, \text{ Chapter VII}]\), and Rahman
and Schmeisser [11, Sections 5.3 and 5.4]. Here I give a short and completely elementary proof of Takagi’s theorem.

The key step—as Takagi [13] observed—is to understand the case of a degree-1 polynomial \(f(z) = z - \alpha \):

Proposition 2 (Takagi). Let \(g \) be a polynomial of degree \(n \), and let \(K \) be the convex hull of the zeros of \(g \). Let \(\alpha \in \mathbb{C} \), and define \(h = g' - \alpha g \). Then either \(h \) is identically zero, or all the zeros of \(h \) are contained in \(K \) if \(\alpha = 0 \), and in \(K + [0, n] \alpha^{-1} \) if \(\alpha \neq 0 \).

The case \(\alpha = 0 \) is the celebrated theorem of Gauss and Lucas [8, Section V], [10, Chapter V], and [11, Section 2.1], which is the starting point of the modern analytic theory of polynomials. My proof for general \(\alpha \) will be modeled on Cesàro’s [1] 1885 proof of the Gauss–Lucas theorem [11, pp. 72–73], with a slight twist to handle the case \(\alpha \neq 0 \).

Proof of Proposition 2. Clearly, \(h \) is identically zero if and only if either (a) \(g \equiv 0 \) or (b) \(g \) is a nonzero constant and \(\alpha = 0 \). Moreover, if \(g \) is a nonzero constant and \(\alpha \neq 0 \), then the zero set of \(h \) is empty. So we can assume that \(n \geq 1 \).

Let \(\beta_1, \ldots, \beta_n \) be the zeros of \(g \) (with multiplicity), so that \(g(z) = b_n \prod_{i=1}^{n} (z - \beta_i) \) with \(b_n \neq 0 \). If \(z \notin K \), then \(g(z) \neq 0 \), and we can consider

\[
\frac{h(z)}{g(z)} = \frac{g'(z) - \alpha g(z)}{g(z)} = \sum_{i=1}^{n} \frac{1}{z - \beta_i} - \alpha.
\]

If this equals zero, then by taking complex conjugates we obtain

\[
0 = \sum_{i=1}^{n} \frac{1}{\bar{z} - \bar{\beta_i}} - \bar{\alpha} = \sum_{i=1}^{n} \frac{|z - \beta_i|^2}{|z - \beta_i|} - \bar{\alpha},
\]

which can be rewritten as

\[
z = \sum_{i=1}^{n} \lambda_i \beta_i + \kappa \bar{\alpha} \text{ where } \lambda_i = \frac{|z - \beta_i|^2}{\sum_{j=1}^{n} |z - \beta_j|^2}, \quad \kappa = \frac{1}{\sum_{j=1}^{n} |z - \beta_j|^2}.
\]

Then \(\lambda_i > 0 \) and \(\sum_{i=1}^{n} \lambda_i = 1 \), so \(\sum_{i=1}^{n} \lambda_i \beta_i \in K \); and of course \(\kappa > 0 \). Moreover, by the Schwarz inequality we have

\[
|\alpha|^2 = \left| \sum_{i=1}^{n} \frac{1}{z - \beta_i} \right|^2 \leq \sum_{i=1}^{n} |z - \beta_i|^{-2} = \frac{n}{\kappa},
\]

so \(\kappa \leq n|\alpha|^{-2} \). This implies that \(\kappa \bar{\alpha} \in [0, n]|\alpha|^{-1} \) and hence that \(z \in K + [0, n]|\alpha|^{-1} \).

We can now handle polynomials \(f \) of arbitrary degree by iterating **Proposition 2**:

Proof of Theorem 1. From \(f(z) = a_m \left(\prod_{i=1}^{m-r} (z - \alpha_i) \right) z^r \) it is easy to see that \(f(D) = a_m \left(\prod_{i=1}^{m-r} (D - \alpha_i) \right) D^r \). We first apply \(D^r \) to \(g \), yielding a polynomial of degree \(n - r \) whose zeros also lie in \(K \) (by the Gauss–Lucas theorem); then we repeatedly apply (in any order) the factors \(D - \alpha_i \), using **Proposition 2**.

Remark. When \(\alpha = 0 \), the zeros of \(h = g' \) lie in \(K \); so one might expect that when \(\alpha \) is small, the zeros of \(h = g' - \alpha g \) should lie near \(K \). But when \(\alpha \) is small and nonzero, the set \(K + [0, n]|\alpha|^{-1} \) arising in **Proposition 2** is in fact very large. What is going on here?
Here is the answer: Suppose that \(\deg g = n \). When \(\alpha = 0 \), the polynomial \(h = g' \) has degree \(n - 1 \); but when \(\alpha \neq 0 \), the polynomial \(h = g' - \alpha g \) has degree \(n \). So, in order to make a proper comparison of their zeros, we should consider the polynomial \(g' \) corresponding to the case \(\alpha = 0 \) as also having a zero “at infinity.” This zero then moves to a value of order \(\alpha^{-1} \) when \(\alpha \) is small and nonzero.

This behavior is easily seen by considering the example of a quadratic polynomial \(g(z) = z^2 - \beta^2 \). Then the zeros of \(g' - \alpha g \) are

\[
z = \frac{1 \pm \sqrt{1 + \alpha^2 \beta^2}}{\alpha} = -\frac{\beta^2}{2} + O(\alpha^3), \quad 2\alpha^{-1} + O(\alpha).
\]

So there really is a zero of order \(\alpha^{-1} \), as Takagi’s theorem recognizes.

In the context of Proposition 2, one expects that \(g' - \alpha g \) has one zero of order \(\alpha^{-1} \) and \(n - 1 \) zeros near \(K \) (within a distance of order \(\alpha \)). More generally, in the context of Theorem 1, one would expect that \(h \) has \(m - r \) zeros of order \(\alpha^{-1} \), with the remaining zeros near \(K \). It is a very interesting problem — and one that is open, as far as I know — to find strengthenings of Takagi’s theorem that exhibit these properties. There is an old result that goes in this direction [8, Corollary 18.1], [11, Corollary 5.4.1(ii)], but it is based on a disc \(D \) containing the zeros of \(g \), which might in general be much larger than the convex hull \(K \) of the zeros.

Postscript. A few days after finding this proof of Proposition 2, I discovered that an essentially identical argument is buried in a 1961 paper of Shisha and Walsh [12, pp. 127–128 and 147–148] on the zeros of infrapolynomials. I was led to the Shisha–Walsh paper by a brief citation in Marden’s book [8, pp. 87–88, Exercise 11]. So the proof given here is not new; but it deserves to be better known.

ACKNOWLEDGMENTS. This research was supported in part by U.K. Engineering and Physical Sciences Research Council grant EP/N025636/1.

REFERENCES

[1] Cesàro, E. (1885). Solution de la question 1338. *Nouvelles Annales de Mathématiques* (3e série). 4: 328–330. www.numdam.org/article/NAM_1885_3_4__328_0.pdf

[2] Dieudonné, J. (1938). *La Théorie Analytique des Polynômes d’une Variable (à Coefficients Quelconques).* Mémoire des Sciences Mathématiques, fascicule 93. Paris: Gauthier-Villars. www.numdam.org/issue/MSM_1938__93_1_0.pdf

[3] Grace, J. H. (1902). The zeros of a polynomial. *Proc. Cambridge Philos. Soc.* 11: 352–357.

[4] Honda, K. (1975). Teiji Takagi: A biography — on the 100th anniversary of his birth. *Comment. Math. Univ. St. Paul.* 24(2): 141–167. doi.org/10.14992/00010342

[5] Iyanaga, S. (1990). On the life and works of Teiji Takagi, in [14, pp. 354–376].

[6] Iyanaga, S. (2001). Memories of Professor Teiji Takagi. In: Miyake, K., ed. *Class Field Theory — Its Centenary and Prospect*. Advanced Studies in Pure Mathematics, Vol. 30. Tokyo: Mathematical Society of Japan, pp. 1–11.

[7] Kaplan, P. (1997). Takagi Teiji et la découverte de la théorie du corps de classes. *Ebisu — Études Japonaises.* 16: 5–11. www.persee.fr/doc/ebisu_1340-3656_1997-num_16_1_973

[8] Marden, M. (1966). *Geometry of Polynomials*, 2nd ed. Providence, RI: American Mathematical Society. (First edition 1949.)

[9] Miyake, K. (2007). Teiji Takagi, founder of the Japanese school of modern mathematics. *Japanese J. Math.* 2(1): 151–164.

[10] Obrechkoff, N. (2003). *Zeros of Polynomials*. Sofia: Marin Drinov Academic Publishing House. (Originally published in Bulgarian: Obreškov, N. (1963). *Nuli na Polinomite*. Sofia: Izdat. Bûlgar. Akad. Nauk.)

[11] Rahman, Q. I., Schmeisser, G. (2002). *Analytic Theory of Polynomials*. Oxford: Clarendon Press.

[12] Shisha, O., Walsh, J. L. (1961). The zeros of infrapolynomials with some prescribed coefficients. *J. Analyse Math.* 9: 111–160.
A Generalization of Euler’s Limit

Euler’s limit is defined as \(\lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n = e \). We establish a generalization of this limit in the following proposition.

Proposition. Let \(A_n \) be a strictly increasing sequence of positive numbers satisfying the asymptotic formula \(A_{n+1} \sim A_n \), and let \(d_n = A_{n+1} - A_n \). Then

\[
\lim_{n \to \infty} \left(\frac{A_{n+1}}{A_n} \right)^{\frac{A_n}{d_n}} = e. \tag{1}
\]

Proof. Let us consider the function \(\ln x \) on the interval \([A_n, A_{n+1}]\) for all \(n \in \mathbb{N} \). By the mean value theorem, we have \(\ln A_{n+1} - \ln A_n = \frac{1}{c} (A_{n+1} - A_n) \) for some \(c \) with \(A_n < c < A_{n+1} \). Hence (since \(\frac{1}{A_{n+1}} < \frac{1}{c} < \frac{1}{A_n} \))

\[
\frac{A_{n+1} - A_n}{A_{n+1}} < \ln A_{n+1} - \ln A_n < \frac{A_{n+1} - A_n}{A_n}.
\]

Since \(A_{n+1} \sim A_n \), we have

\[
1 \leftarrow \frac{A_n}{A_{n+1}} < \frac{\ln A_{n+1} - \ln A_n}{A_{n+1} - A_n} < 1;
\]

that is,

\[
\lim_{n \to \infty} \ln \left(\frac{A_{n+1}}{A_n} \right)^{\frac{A_n}{A_{n+1} - A_n}} = 1.
\]

This completes the proof.

It can be seen that generalization (1) gives Euler’s limit when \(A_n = n \).

——Submitted by Reza Farhadian, Razi University, Iran

doi.org/10.1080/00029890.2022.2027718
MSC: Primary 11Y60; 40A05, Secondary 11B83; 11B05