**Bifidobacterium infantis** 35624 modulates host inflammatory processes beyond the gut

David Groeger,1 Liam O’Mahony,2 Eileen F. Murphy,3 John F. Bourke,4 Timothy G. Dinan,4 Barry Kiely,1 Fergus Shanahan4,5 and Eamonn M.M. Quigley1,5,* 

1Alimentary Health Ltd.; Cork, Ireland; 2Swiss Institute of Allergy and Asthma Research; University of Zurich; Davos, Switzerland; 3Department of Dermatology; South Infirmary-Victoria University Hospital; Cork, Ireland; 4Alimentary Pharmabiotic Centre; Department of Medicine; University College Cork; Cork, Ireland; 5Department of Medicine; Clinical Sciences Building; Cork University Hospital; Cork, Ireland

**Keywords:** *B. infantis* 35624, inflammation, immunity, microbiota, C-reactive protein

**Abbreviations:** *B. infantis*, Bifidobacterium infantis; UC, ulcerative colitis; CFS, chronic fatigue syndrome; TNF-α, tumor necrosis factor; IL, interleukin; PBMCs, peripheral blood mononuclear cells; LPS, lipopolysaccharide; PASI, psoriasis area severity index; CAIA, clinical activity index assessment; IBD, irritable bowel syndrome; IBD, inflammatory bowel disease

**Introduction**

There is persuasive evidence from several sources indicating that the gut microbiota has an influence on the development and maintenance, not only of the mucosal, but also the systemic immune response.1-6 This raises the therapeutic vista of modulating the systemic immune response by enteric microbes. For example, species as varied as *Clostridia* and *Bifidobacteria* have been shown to induce regulatory T cells which,理论上, could modulate immune-inflammatory or autoimmune diseases. The organism *Bifidobacterium longum* subsp *infantis* (**B. infantis** 35624) induces regulatory T cells in animal models with activity both in the gut and in extra-intestinal sites.1-7 It has also been shown to increase the relative proportion of regulatory T cells in the peripheral blood of healthy human volunteers.1-7 This raises the question as to whether regulatory T cell induction following administration of *B. infantis* 35624 would be sufficient to influence inflammatory mediator production in inflammatory disorders both in and beyond the gut in humans.

To address this, we studied cytokine profiles before and after administration of this organism to patients with ulcerative colitis (UC) and two extra-intestinal inflammatory diseases; psoriasis and chronic fatigue syndrome (CFS). The results show that *B. infantis* 35624-feeding significantly reduced plasma CRP and pro-inflammatory cytokine levels in both gastrointestinal and non-gastrointestinal conditions. In conclusion, these data show that the immunomodulatory effects of the microbiota in humans are not limited to the mucosal immune system but extend to the systemic immune system.

---

*Correspondence to: Eamonn M.M. Quigley; Email: equigley@tmhs.org
http://dx.doi.org/10.4161/gmic.25487
general, UC patients displayed the highest CRP levels compared with healthy volunteers, while plasma TNF-α and IL-6 levels were comparable for the different disease states.

*B. infantis* 35624 reduced plasma pro-inflammatory biomarkers in UC and extra-intestinal inflammatory conditions. The administration of *B. infantis* 35624 was associated with a significant reduction in plasma pro-inflammatory biomarkers in patients with psoriasis, CFS and, to a lesser extent, in those with UC.

CRP. Plasma CRP levels were significantly reduced in *B. infantis* 35624-fed subjects compared with placebo controls in psoriasis (p = 0.0425), CFS (p = 0.0285) and UC patients (p = 0.0327). Data are expressed as the change from baseline (post-treatment minus pre-treatment level) for each patient (Fig. 2) with the median values (interquartile range) presented in Table 1.

When comparing pre- and post-feeding levels, plasma CRP was significantly reduced in psoriasis (p = 0.0161) and CFS (p = 0.0393) after eight weeks of feeding *B. infantis* 35624 but increased slightly in the placebo group after eight weeks of feeding. There was no statistically significant decrease in CRP levels for UC patients following six weeks *B. infantis* 35624 feeding; however, CRP levels in the placebo group increased post treatment, likely due to these patients not receiving steroid treatment during the trial period (Fig. 3C).

TNF-α. Plasma TNF-α levels were significantly reduced in *B. infantis* 35624-fed subjects compared with placebo controls in psoriasis (p = 0.0405) and CFS (p = 0.0214). However, no significant difference in the levels of TNF-α was observed between *B. infantis* 35624-fed UC patients compared with placebo following six weeks feeding. Data are expressed as the change from baseline (post-treatment minus pre-treatment level) for each patient (Fig. 4) with the median values (interquartile range) presented in Table 2.

When comparing pre- and post-feeding levels, plasma TNF-α was significantly reduced in psoriasis (p = 0.0269) and CFS (p = 0.0129) after 8 wk of feeding with *B. infantis* 35624 but increased slightly in the placebo group (Fig. 5A and B). In UC patients, there was no statistically significant decrease in TNF-α levels following six weeks *B. infantis* 35624 feeding; however, TNF-α levels were comparable for the different disease states.

Results expressed as median (interquartile range).

### Table 1. *B. infantis* 35624-feeding induces a reduction in absolute CRP levels in the majority of inflammatory disorder patients compared with placebo-fed patients

| Disease indication          | Treatment  | Biomarker | Pre-treatment level (mg/L) | Post-treatment level (mg/L) |
|-----------------------------|------------|-----------|---------------------------|---------------------------|
| **Chronic fatigue syndrome** | *B. infantis* | CRP       | 2.35 (1.36-5.65)          | 2.07 (1.05-4.77)          |
|                             | Placebo    | CRP       | 1.92 (0.41-9.78)          | 3.02 (1.52-9.72)          |
| **Psoriasis**               | *B. infantis* | CRP       | 4.47 (1.59-7.97)          | 2.89 (2.02-5.36)          |
|                             | Placebo    | CRP       | 2.68 (1.33-4.33)          | 3.55 (2.46-5.79)          |
| **Ulcerative colitis**      | *B. infantis* | CRP       | 3.81 (1.67-10.66)         | 1.82 (0.83-15.18)         |
|                             | Placebo    | CRP       | 8.91 (1.18-50.94)         | 36.20 (2.26-86.14)        |

Results expressed as median (interquartile ranges).

### Table 2. *B. infantis* 35624-feeding induces a reduction in absolute IL-6 and TNF-α levels in inflammatory disorder patients compared with placebo-fed patients

| Disease indication          | Treatment  | Cytokine | Pre-treatment level (pg/ml) | Post-treatment level (pg/ml) |
|-----------------------------|------------|----------|----------------------------|-----------------------------|
| **Psoriasis**               | *B. infantis* | IL-6     | 1.62 (1.05-2.96)           | 1.48 (0.94-1.93)           |
|                             | Placebo    | IL-6     | 1.73 (1.32-2.78)           | 1.42 (1.12-2.47)           |
| **Chronic fatigue syndrome**| *B. infantis* | IL-6     | 0.73 (0.60-0.96)           | 0.66 (0.50-0.85)           |
|                             | Placebo    | IL-6     | 0.86 (0.70-1.21)           | 0.92 (0.85-1.27)           |
| **Ulcerative colitis**      | *B. infantis* | IL-6     | 2.17 (1.95-3.96)           | 1.98 (1.29-2.60)           |
|                             | Placebo    | IL-6     | 3.28 (1.65-4.95)           | 5.57 (1.39-7.96)           |
| **Psoriasis**               | *B. infantis* | TNF-α    | 8.20 (7.12-11.05)          | 7.67 (6.57-8.43)           |
|                             | Placebo    | TNF-α    | 7.06 (6.48-8.10)           | 7.40 (6.35-8.91)           |
| **Chronic fatigue syndrome**| *B. infantis* | TNF-α    | 7.50 (6.42-7.85)           | 6.82 (5.75-9.22)           |
|                             | Placebo    | TNF-α    | 8.01 (6.07-8.90)           | 8.36 (6.88-9.84)           |
| **Ulcerative colitis**      | *B. infantis* | TNF-α    | 9.38 (7.49-9.84)           | 7.12 (8.77-9.84)           |
|                             | Placebo    | TNF-α    | 6.82 (5.75-9.22)           | 7.03 (5.48-9.18)           |

Results expressed as median (interquartile ranges).

![Figure 1](See opposite page). Plasma pro-inflammatory biomarkers are elevated in patients with inflammatory disorders. Plasma CRP and pro-inflammatory cytokines levels are significantly elevated in chronic fatigue syndrome (CFS) (n = 48), psoriasis (n = 26) and ulcerative colitis (UC) (n = 22) patients compared with healthy volunteers (n = 35). Results are expressed as median values. (Healthy volunteers vs. each inflammatory disorder) (Mann-Whitney U test) *p < 0.05, **p < 0.01, ***p < 0.001.
Figure 1. For figure legend, see page 326.
levels in the placebo group increased from pretreatment (Fig. 5C).

IL-6. Plasma IL-6 levels were numerically lower in B. infantis 35624-fed patients compared with placebo controls in CFS (p = 0.054) and UC (p = 0.057) but remained unchanged in psoriasis. Data are expressed as the change from baseline (post-treatment minus pre-treatment level) for each patient (Fig. 6) with the median values (interquartile range) presented in Table 2.

When comparing pre-and post-feeding for CFS patients, plasma IL-6 levels were significantly reduced (p = 0.0022) after eight weeks of feeding B. infantis 35624 but remained unchanged in the placebo group (Fig. 7B). There was no statistically significant decrease in plasma IL-6 in psoriasis and UC following 6–8 sk feeding B. infantis 35624 compared with pretreatment levels. However, while plasma IL-6 levels remained unchanged in the psoriasis placebo group, they increased in the UC placebo-fed group (Fig. 7A and C).

Modifications of plasma cytokine and CRP levels are correlated with B. infantis feeding. To further explore relationships with B. infantis 35624 feeding and responses in the various inflammatory markers, individual patient changes from baseline values of CRP, TNF-α and IL-6 were plotted in 3D scatter plots for each inflammatory disease; psoriasis, chronic fatigue syndrome and ulcerative colitis. This analysis revealed a separation of B. infantis 35624-fed patients from placebo-fed patients in all three inflammatory diseases (Fig. 8). To demonstrate a unique responder biomarker pattern, the individual CRP, TNF-α and IL-6 as represented by percentage change from baseline in the inflammatory disorder patients compared with placebo-fed patients (Table 3). At week 6–8, 75% of psoriasis patients, 71% of CFS patients and 62% of UC patients displayed decreased levels of CRP, TNF-α and IL-6, when fed B. infantis 35624. In contrast, only 7% of psoriasis patients, 11% of CFS patients and 0% of the UC patients displayed decreased levels of CRP, TNF-α and IL-6 in the placebo-fed group (Table 4). Furthermore, 70% of all patients fed B. infantis 35624, independent of the nature of their inflammatory disorder, demonstrated a reduction in CRP, TNF-α and IL-6 compared with placebo-fed patients in all three inflammatory diseases (Fig. 8).

### Discussion

Our findings show that oral administration of B. infantis 35624 modulates the cytokine milieu across both gastrointestinal and non-gastrointestinal inflammatory disorders and healthy subjects. B. infantis 35624 significantly reduced plasma CRP levels in all patient groups, plasma TNF-α in the non-gastrointestinal disorders, psoriasis and CFS, while non-statistically significant trends toward a reduction in levels of IL-6 were seen in patients with CFS and UC. Furthermore, B. infantis 35624 altered responses to inflammatory stimuli in ex vivo cultures from healthy volunteers. Chronic inflammatory diseases such as UC, CFS and psoriasis are characterized by an over-production of pro-inflammatory cytokines and are characterized by chronic, low-grade inflammation. B. infantis 35624 feeding reduces pro-inflammatory biomarkers in healthy subjects. In contrast to the inflammatory disease patients described above, the plasma levels of CRP, TNF-α and IL-6 in healthy human volunteers were unaffected by eight weeks feeding with B. infantis 35624 (data not shown). However, B. infantis 35624 feeding for eight weeks resulted in a reduction in the in vitro secretion of TNF-α (p < 0.05) and IL-6 (p < 0.05) from lipopolysacharide (LPS) stimulated peripheral blood mononuclear cells (PBMCs) in comparison to those fed placebo (Fig. 9).

### Table 3. In comparison to placebo, B. infantis 35624 feeding reduces plasma CRP, TNF-α and IL-6 levels, expressed as % change from baseline, in inflammatory disorder patients

| Disease Indication | Treatment | (% Change in the level of CRP) | (% Change in the level of TNF-α) | (% Change in the level of IL-6) |
|--------------------|-----------|-------------------------------|---------------------------------|-------------------------------|
| Psoriasis          | B. infantis | −34.0 (−64.0, −7.25)          | −15.5 (−20.0, 3.50)             | −3.0 (−13.0, 16.0)            |
|                    | Placebo   | 2.0 (−31.75,154.8)            | 0.0 (−22.0, 15.0)               | −5.0 (−20.5, 11.25)           |
| Chronic fatigue syndrome | B. infantis | −12.0 (−50.0, 15.75) | −6.0 (−13.0, 4.0) | −14.0 (−20.5, −5.0) |
|                    | Placebo   | 3.0 (−6.0, 17.0)              | 3.0 (−6.0, 17.0)                | −4.0 (−10.5, 25.5)            |
| Ulcerative colitis | B. infantis | −38.0 (−79.0, 178.0)         | −5.0 (−9.50, 8.50)              | −5.0 (−33.0, 36.5)            |
|                    | Placebo   | 5.0 (−11.0, 20.0)             | 5.0 (−11.0, 20.0)               | 27.0 (−3.5, 137.0)            |

### Table 4. More patients with inflammatory disorders achieve reductions in plasma CRP, TNF-α and IL-6 levels following feeding with B. infantis 35624 compared with placebo-fed patients

| Disease Indication | Treatment | Number of subjects (IL-6, TNF-α, CRP) | Total number of subjects | Percent of Subjects (IL-6, TNF-α, CRP) |
|--------------------|-----------|--------------------------------------|--------------------------|----------------------------------------|
| Psoriasis          | B. infantis | 9                                   | 12                       | 75%                                    |
|                    | Placebo   | 1                                   | 14                       | 7%                                     |
| Chronic fatigue syndrome | B. infantis | 20                                  | 28                       | 71%                                    |
|                    | Placebo   | 3                                   | 20                       | 11%                                    |
| Ulcerative colitis | B. infantis | 8                                   | 13                       | 62%                                    |
|                    | Placebo   | 0                                   | 9                        | 0%                                     |
| Inflammatory diseases | B. infantis | 37                                  | 53                       | 70%                                    |
|                    | Placebo   | 4                                   | 43                       | 9%                                     |
Figure 2. *B. infantis* 35624-feeding reduces plasma CRP levels compared with placebo. Plasma levels of CRP were significantly reduced in the *B. infantis* 35624 treated groups compared with placebo treatment following 6–8 wk of feeding in patients with chronic fatigue syndrome (CFS), psoriasis and ulcerative colitis (UC). Results are expressed as the change from baseline (post-treatment minus pre-treatment level) for each patient. *p < 0.05 vs. placebo; (Mann-Whitney U test).
Figure 3. B. infantis 35624-feeding reduces plasma CRP levels compared with pretreatment level. Placebo-feeding for 8 weeks did not alter plasma CRP levels compared with pretreatment levels in any patients with inflammatory disorders. Plasma CRP levels were significantly reduced following 8 wk of feeding with B. infantis 35624 compared with pretreatment levels in (A) psoriasis (n = 12) and (B) chronic fatigue syndrome (CFS) (n = 28). However, there was no difference in CRP levels following 6 wk feeding with B. infantis 35624 in patients with (C) ulcerative colitis (UC) (n = 13) compared with their pretreatment levels. Results are expressed as the individual responses of each patient (mg/L) (pre-treatment vs. post-treatment level) *p < 0.05 (Wilcoxon matched pair test).
Figure 4. *B. infantis* 35624-feeding reduces plasma TNF-α levels compared with placebo. Plasma levels of TNF-α were significantly reduced in the *B. infantis* 35624-treated groups compared with placebo treatment following 8 wk of feeding in patients with chronic fatigue syndrome (CFS) and psoriasis. However, there was no difference in TNF-α levels following 6 wk feeding with *B. infantis* 35624 in patients with ulcerative colitis (UC) compared with placebo treatment. Results are expressed as the change from baseline (post-treatment minus pre-treatment level) for each patient.

* *p* < 0.05 vs. placebo; (Mann-Whitney U test).
Figure 5. For figure legend, see page 333.
cytokines. C-reactive protein (CRP) is an acute phase protein synthesized by hepatocytes and adipocytes in response to increased peripheral pro-inflammatory cytokines, such as TNF-α and IL-6, and the serum or plasma level is a useful and clinically relevant indicator of systemic pro-inflammatory activity in multiple inflammatory states. In this study, plasma CRP was significantly elevated in all conditions investigated compared with healthy controls. These elevated levels of CRP concur with the results of previous studies conducted in CFS, psoriasis, and UC patients. In standard clinical laboratories the median value of plasma CRP for healthy subjects is < 1 mg/L. Ultrase nsive assays have associated low-grade inflammation (CRP > 2.4 mg/L) with increased risk for coronary artery disease, while levels of CRP from 10–1000 mg/L are associated with overt inflammatory and infectious disorders. Interestingly, B. infantis significantly reduced plasma CRP levels in all three inflammatory conditions examined. Regarding the significance of changes in CRP following treatment, the best illustration is provided by studies in heart disease where very small increments in CRP (1–2 mg/L) were associated with substantial increases in risk for coronary events.

The effect of other microbes on CRP levels has been quite variable. Studies have shown that microbial treatment reduced CRP levels in the serum or plasma in ulcerative colitis while others noted an increase in serum CRP levels in a non-gastrointestinal condition eczema dermatitis or no effect in both gastrointestinal and non-gastrointestinal conditions. This suggests that not all commensal microbes can induce this effect in humans.

TNF-α and IL-6 are pro-inflammatory cytokines which are elevated in a variety of inflammatory conditions and involved in transcriptional regulation of CRP. They are not employed in clinical practice but both of these cytokines have been targeted by anti-cytokine biologic agent therapy in the treatment of autoimmune diseases. The attenuation of CRP following B. infantis treatment in this study is consistent with the reduction in circulating levels of both pro-inflammatory cytokines. In general, reduction in inflammatory markers, such as those seen in this study would be regarded as indicative of clinical remission and of a lower risk of relapse.

Patients with CFS, psoriasis and UC had higher baseline TNF-α levels compared with healthy controls. These findings are in agreement with other studies. Following 8 wk of treatment with B. infantis, a significant attenuation of TNF-α was observed for CFS and psoriasis patients; no such effect was noted with placebo treatment. A trend toward decreased TNF-α in the UC group was also observed, but this did not reach statistical significance, perhaps due to the shorter treatment time (i.e., 6 wk). These data implicate TNF-α in the pathophysiology of inflammatory conditions and support the use of specific and well selected therapeutic microbes in alleviating the inflammatory component of such conditions, despite the often conflicting literature.

Plasma IL-6 levels were significantly higher in CFS, psoriasis and UC patients compared with healthy controls, which is consistent with the findings of previous studies in psoriasis and UC. Though previous studies have indicated that certain therapeutic microbes could significantly reduce IL-6 levels in both patients with gastrointestinal inflammatory disorders and healthy controls, plasma IL-6 levels were only marginally decreased following B. infantis administration in this study. These data reinforce the hypothesis that individual elements of the microbiota influence specific components of the host immune response and not all members of the microbiota, or even not all members of the same species, exert an identical effect.

In conclusion, oral administration of a single microbial agent, B. infantis, was sufficient to reduce systemic inflammatory biomarkers in both gastrointestinal and extra-intestinal inflammatory disorders. This is consistent with the hypothesis that certain elements of the enteric microbiota can induce mucosal immunoregulatory responses that can exert an effect systemically.

Methods

Psoriasis patients. Twenty-six male and female patients aged between 18 and 60 y with mild to moderate chronic plaque psoriasis with a psoriasis area severity index (PASI) < 16 were

Figure 5 (See opposite page). B. infantis 35624 feeding reduces plasma TNF-α levels compared with pretreatment level. Placebo treatment did not alter plasma TNF-α levels compared with pretreatment levels, in all the patient groups tested. Plasma TNF-α levels were significantly reduced following 8 wk of feeding with B. infantis 35624, compared with pretreatment levels, in (A) psoriasis (n = 12) and (B) chronic fatigue syndrome (CFS) (n = 28). However, there was no difference in TNF-α levels following 6 weeks feeding with B. infantis 35624 in patients with (C) ulcerative colitis (UC) (n = 13) compared with their pretreatment levels. Results are expressed as the individual responses of each patient (pg/ml) (pre-treatment vs. post-treatment level) *p < 0.05 (Wilcoxon matched pair test).
Figure 6. *B. infantis* 35624-feeding reduces plasma IL-6 levels compared with placebo. Plasma levels of IL-6 were reduced in the *B. infantis* 35624-treated groups compared with placebo treatment following 6–8 wk of feeding in patients with chronic fatigue syndrome (CFS) (#p = 0.054) and ulcerative colitis (UC) (~p = 0.057). However, there was no difference in IL-6 levels following 8 wk feeding with *B. infantis* 35624 in patients with psoriasis compared with placebo treatment. Results are expressed as the change from baseline (post-treatment minus pre-treatment level) for each patient. *p* < 0.05 vs. placebo groups (Mann-Whitney U test).
Figure 7. For figure legend, see page 336.
Identified from the community by means of local advertising in newspapers and general practice clinics.

Chronic fatigue syndrome patients. Patients with chronic fatigue syndrome (CFS) meeting the criteria outlined by the Centers for Disease Control (CDC) were recruited from gastroenterology and rheumatology clinics at Cork University Hospital. A total of 48 female patients between 18 and 65 y of age were selected. Those who had other diseases of the gastrointestinal tract, including inflammatory bowel disease (IBD) and clinically significant systemic diseases, individuals diagnosed with lactose intolerance or immunodeficiency, individuals who had undergone any abdominal surgery (with the exception of hernia repair and appendectomy), and those with a psychiatric illness were excluded. The diagnosis of CFS was made using the 1994 Centers for Disease Control and CFS International Study Group diagnostic criteria. The international criteria are based on the fulfillment of two major criteria: CFS causing incapacity, lasting more than 6 mo, and the exclusion of associated medical and psychiatric conditions, as well as the concurrence of a series of symptom-based criteria, particularly rheumatologic and neuro-psychological symptomatology.

Healthy subject population. Thirty-five healthy volunteers (25 female) aged between 18 and 65 y were recruited by direct advertisement on the university campus and in a local newspaper. These subjects had no evidence of gastrointestinal tract disease, including irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), and were also free of any clinically significant systemic diseases including psoriasis and chronic fatigue syndrome. These 35 subjects were used as baseline references for the patients with inflammatory conditions. Twenty-two of the healthy adults were randomized to receive Bifidobacterium infantis 35624 (n = 10) or placebo (n = 12) for eight weeks.

Exclusion criteria. Pregnant or breast feeding females, individuals diagnosed with lactose intolerance or immunodeficiency, individuals who had undergone any abdominal surgery (with the exception of hernia repair and appendectomy) and those with a psychiatric illness or with significant hepatic, renal disease were excluded from all arms of the study, as were patients receiving immunosuppressant therapy or probiotics.

Each potentially eligible patient was evaluated by a full review of clinical history, physical examination, full blood count and routine biochemistry, and the concurrence of a series of symptom-based criteria, particularly rheumatologic and neuro-psychological symptomatology.

Chronic fatigue syndrome patients. Patients with chronic fatigue syndrome (CFS) meeting the criteria outlined by the Centers for Disease Control (CDC) were recruited from gastroenterology and rheumatology clinics at Cork University Hospital. A total of 48 female patients between 18 and 65 y of age were selected. Those who had other diseases of the gastrointestinal tract, including inflammatory bowel disease (IBD) and clinically significant systemic diseases, individuals diagnosed with lactose intolerance or immunodeficiency, individuals who had undergone any abdominal surgery (with the exception of hernia repair and appendectomy), and those with a psychiatric illness were excluded. The diagnosis of CFS was made using the 1994 Centers for Disease Control and CFS International Study Group diagnostic criteria. The international criteria are based on the fulfillment of two major criteria: CFS causing incapacity, lasting more than 6 mo, and the exclusion of associated medical and psychiatric conditions, as well as the concurrence of a series of symptom-based criteria, particularly rheumatologic and neuro-psychological symptomatology.

Healthy subject population. Thirty-five healthy volunteers (25 female) aged between 18 and 65 y were recruited by direct advertisement on the university campus and in a local newspaper. These subjects had no evidence of gastrointestinal tract disease, including irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), and were also free of any clinically significant systemic diseases including psoriasis and chronic fatigue syndrome. These 35 subjects were used as baseline references for the patients with inflammatory conditions. Twenty-two of the healthy adults were randomized to receive Bifidobacterium infantis 35624 (n = 10) or placebo (n = 12) for eight weeks.

Exclusion criteria. Pregnant or breast feeding females, individuals diagnosed with lactose intolerance or immunodeficiency, individuals who had undergone any abdominal surgery (with the exception of hernia repair and appendectomy) and those with a psychiatric illness or with significant hepatic, renal disease were excluded from all arms of the study, as were patients receiving immunosuppressant therapy or probiotics.

Each potentially eligible patient was evaluated by a full review of clinical history, physical examination, full blood count and routine biochemistry, and the concurrence of a series of symptom-based criteria, particularly rheumatologic and neuro-psychological symptomatology.
Figure 8. B. infantis 35624-feeding reduces pro-inflammatory biomarkers in a highly correlated way in inflammatory disorder patients. 3D Cluster analysis of plasma levels of CRP (x), TNF-α (y) and IL-6 (z) from patients with psoriasis and ulcerative colitis (UC) and of CRP (x), IL-6 (y) and TNF-α (z) from patients with chronic fatigue syndrome (CFS) displayed a separation between the B. infantis 35624 treated groups compared with the placebo treated groups. Results are expressed as the change from baseline (post-treatment minus pre-treatment level) for each patient.
the effects of \( B. \) \( \infantis \) 35624 feeding and placebo on a patient's cytokine levels, differences were calculated for each patient as change from baseline (visit 2, week 0) to the end of feeding. The Mann-Whitney U test was then used to compare these changes from baseline in cytokine levels between \( B. \) \( \infantis \) 35624 and placebo-fed subjects in all arms of the study. Differences were considered significant at \( p < 0.05 \).

**Ethical approval and consent:** The study protocol, including all procedures, was approved by the University College Cork Clinical Research Ethics committee of the Cork Teaching Hospitals.

**Acknowledgments**

We are grateful to Anne Lyons and Dr Paul Scully for their technical assistance in this study. We are appreciative to Carmel Wycherley for the clinical management of the study. We would also like to thank Dr Caroline Brown for reviewing the manuscript and Dr Ian B. Jeffery for creating the three dimensional graphs. Contributions: DG performed the laboratory analysis. DG, FS, LOM, TD, JB, BK and EQ contributed to study concept and design, analysis and interpretation of the data. DG, FS, LOM, TD, JB, BK and EQ contributed to the drafting of the manuscript while EQ supervised the conduct of these studies.

**References**

1. Borodil R, Infuenza, questions and possibilities in the III-microbiota signalling. Nature 2008; 459:257-
2. Garrett WS, Gordon JI, Glomtris LA. Humorostasis and inflammation in the intestinal. Cell 2010; 140:705-
3. Lee YK, Akkermans D, Oomen M, Mazmanian SK. Probiotic effects of SCFA in gut microbiota promote experimental anti-arthritis in mouse models. Proc Natl Acad Sci U S A 2011; 108:497-502.
4. Wu HL, Itooei H, Daron J, Hattori K, Shiina T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria induce anti-inflammatory T cells in mice. PLoS 2010; 15:1219-25.
5. O'Mahony L, Feeney M, O'Halloran S, Mckernan DP, Fitzgerald P, O'Mahony D, O'Brien F, Lyonna O'B, Ceddia M, et al. Bacterial strain-specific induction of Foxp3 T regulatory cells in mice induced by probiotics. J Clin Exp Med 2010; 108:2035-48.
6. O'Mahony C, Scully P, O'Mahony D, Murphy S, O'Brien F, O'Callaghan L, Shima T, Akkermans D, O'Halloran S. Double-blind, placebo controlled trial of two probiotic strains in inflammatory bowel disease. Gut 2012; 61:354-60.
7. O'Mahony L, Murphy S, O'Mahony D, Murphy S, O'Brien F, O'Callaghan L, Shima T, Akkermans D, O'Halloran S. Double-blind, placebo controlled trial of two probiotic strains in inflammatory bowel disease. Gut 2012; 61:354-60.
8. Garret WS, Garrett WS, Garrett WS. Nature 2004; 430:257-
9. T , Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2010; 331:337-41.
10. Konieczna P, Akiba GA, Quigley EM, Sandhaus F, O'Mahony L. Portrait of an immunoregulatory Bacteroides. Gut Microbes 2012; 3:631-6.
11. Konieczna P, Akiba GA, Quigley EM, Sandhaus F, O'Mahony L. Portrait of an immunoregulatory Bacteroides. Gut Microbes 2012; 3:631-6.
12. Vernon T , Shima T, Imaoka A, Kuwahara I, Konieczna P, Akdis CA, Quigley EM, Shima T, Outhwaite P, Cryan JF. The probiotic Bifidobacterium infantis 35624 displays in vitro anti-inflammatory effects in the rat. Neurogastroenterol Motil 2012; 24:1025-35, e208.
13. O'Mahony L, Murphy S, O'Mahony D, Murphy S, O'Brien F, O'Callaghan L, Shima T, Akkermans D, O'Halloran S. Double-blind, placebo controlled trial of two probiotic strains in inflammatory bowel disease. Gut 2012; 61:354-60.
14. O'Mahony L, Murphy S, O'Mahony D, Murphy S, O'Brien F, O'Callaghan L, Shima T, Akkermans D, O'Halloran S. Double-blind, placebo controlled trial of two probiotic strains in inflammatory bowel disease. Gut 2012; 61:354-60.
15. O'Mahony L, Murphy S, O'Mahony D, Murphy S, O'Brien F, O'Callaghan L, Shima T, Akkermans D, O'Halloran S. Double-blind, placebo controlled trial of two probiotic strains in inflammatory bowel disease. Gut 2012; 61:354-60.
16. O'Mahony L, Murphy S, O'Mahony D, Murphy S, O'Brien F, O'Callaghan L, Shima T, Akkermans D, O'Halloran S. Double-blind, placebo controlled trial of two probiotic strains in inflammatory bowel disease. Gut 2012; 61:354-60.
17. O'Mahony L, Murphy S, O'Mahony D, Murphy S, O'Brien F, O'Callaghan L, Shima T, Akkermans D, O'Halloran S. Double-blind, placebo controlled trial of two probiotic strains in inflammatory bowel disease. Gut 2012; 61:354-60.
18. O'Mahony L, Murphy S, O'Mahony D, Murphy S, O'Brien F, O'Callaghan L, Shima T, Akkermans D, O'Halloran S. Double-blind, placebo controlled trial of two probiotic strains in inflammatory bowel disease. Gut 2012; 61:354-60.
19. O'Mahony L, Murphy S, O'Mahony D, Murphy S, O'Brien F, O'Callaghan L, Shima T, Akkermans D, O'Halloran S. Double-blind, placebo controlled trial of two probiotic strains in inflammatory bowel disease. Gut 2012; 61:354-60.
JH, Walsh SV, O’Neil DA, et al. Synbiotic therapy for ulcerative colitis: a randomised controlled pilot trial. Gut 2012; 31:83-8; PMID:22961458; http://dx.doi.org/10.1136/gut.2011.05.003.

Viljanen M, Folkvord E, Haltia M, Tarpela K, Raitanen M, Seppänen A, et al. Induction of inflammation in patients with active ulcerative colitis treated with probiotics (Bifidobacterium longum/Synergy 1) initiates resolution of inflammatory changes. Aliment Pharmacol Ther 2012; 35:576-86; PMID:22593958; http://dx.doi.org/10.1111/j.1365-2036.2011.04599.x.

Hayakawa H, Adeying T, Guan S, Duan H, Shi M, Grigori S, et al. Probiotic preparation VII-3 induces remission in children with mild to moderate ulcerative colitis in a pilot study. Inflamm Bowel Dis 2009; 15:746-9; PMID:19046762; http://dx.doi.org/10.1002/ibd.20116.

Meylan E, Abanmi A, Al Harthi F, Park JS, Haq IA, Khan MA, et al. Beneficial effects of a probiotic (VSL#3) on parameters of liver function in chronic liver disease. J Clin Gastroenterol 2001; 32:56-60; PMID:11244034; http://dx.doi.org/10.1097/00004872-200101000-00003.

Low-grade inflammation and arterial wave reflection in patients with chronic fatigue syndrome. Clin Sci 2009; 23:327-37; PMID:19111923; http://dx.doi.org/10.1042/CLIN20080042.

Turner D, Mack DR, Hyams J, LeLeiko N, O’Hagan G, et al. MALT lymphoma and mitochondrial translocation in Crohn’s disease. Gut 2012; 61:78-83; PMID:22593958; http://dx.doi.org/10.1136/gut.2005.069476.

Iino H, Ushida K, et al. Improvement of nutritional status and incidence of infection in hospitalized, osteoarthritis fed elderly by feeding of fermented milk containing probiotic Lactobacillus rhamnosus GG (LGG). Br J Nutr 2007; 98:61-7; PMID:17504029; http://dx.doi.org/10.1017/S0007114507764723.

Celenk T , Kaplan A, Sit D. Plasma cytokine profiles in patients with chronic fatigue syndrome. Clin Exp Immunol 2007; 145:82-3; PMID:17504029; http://dx.doi.org/10.1111/j.1365-2179.2006.03017.x.

Peyrin-Biroulet L, Gonzalez F, Dubuquoy L, Rousseaux CP, et al. Randomised clinical trial: the effectiveness of probiotics on prevention of postoperative infection in patients with chronic liver disease. J Crohns Colitis 2011; 5:423-9; PMID:21939916; http://dx.doi.org/10.1016/j.crohns.2011.05.003.

Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: a comprehensive approach to its definition and study. Ann Rheum Dis 2001; 60:113-9; PMID:11345050; http://dx.doi.org/10.1136/ard.60.2.113.

D’Avirino M, Calvani M, Kappos L, Steinberg A, Pirrallo R, et al. Effect of a new symbiotic formulation on plasma levels and peripheral blood mononuclear cell cytokine profiles in patients with chronic fatigue syndrome. J Crohns Colitis 2011; 5:423-9; PMID:21939916; http://dx.doi.org/10.1016/j.crohns.2011.05.003.

Kacira M, Al Harthi F, Groeger D, Shaker A, Dunne CJ, et al. Changes in plasma cytokine profiles in females with irritable bowel syndrome and controls. J Inflamm 2009; 6:1-10; PMID:19694343; http://dx.doi.org/10.1186/1479-5876-6-96.

De Simone C, D’Auria MV, De Simone R, et al. Beneficial effects of a new symbiotic formulation on systemic inflammatory response markers in children with active distal ulcerative colitis. Aliment Pharmacol Ther 2012; 35:576-86; PMID:22593958; http://dx.doi.org/10.1111/j.1365-2036.2011.04599.x.

Celenk T, Kaplan A, Sit D. Plasma cytokine profiles in patients with chronic fatigue syndrome. Clin Exp Immunol 2007; 145:82-3; PMID:17504029; http://dx.doi.org/10.1111/j.1365-2179.2006.03017.x.

Celenk T, Kaplan A, Sit D. Plasma cytokine profiles in patients with chronic fatigue syndrome. Clin Exp Immunol 2007; 145:82-3; PMID:17504029; http://dx.doi.org/10.1111/j.1365-2179.2006.03017.x.

D’Avirino M, Calvani M, Kappos L, Steinberg A, Pirrallo R, et al. Effect of a new symbiotic formulation on plasma levels and peripheral blood mononuclear cell cytokine profiles in patients with chronic fatigue syndrome. J Crohns Colitis 2011; 5:423-9; PMID:21939916; http://dx.doi.org/10.1016/j.crohns.2011.05.003.

Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: a comprehensive approach to its definition and study. Ann Rheum Dis 2001; 60:113-9; PMID:11345050; http://dx.doi.org/10.1136/ard.60.2.113.

Rheumatoid arthritis, IFN-γ and IL-21 cytokines in patients treated with anti-TNFα [63]. J Clin Invest 2010; 120:103-12; PMID:20074604; http://dx.doi.org/10.1172/JCI37346.

D’Avirino M, Calvani M, Kappos L, Steinberg A, Pirrallo R, et al. Effect of a new symbiotic formulation on plasma levels and peripheral blood mononuclear cell cytokine profiles in patients with chronic fatigue syndrome. J Crohns Colitis 2011; 5:423-9; PMID:21939916; http://dx.doi.org/10.1016/j.crohns.2011.05.003.

Kacira M, Al Harthi F, Groeger D, Shaker A, Dunne CJ, et al. Changes in plasma cytokine profiles in females with irritable bowel syndrome and controls. J Inflamm 2009; 6:1-10; PMID:19694343; http://dx.doi.org/10.1186/1479-5876-6-96.

De Simone C, D’Auria MV, De Simone R, et al. Beneficial effects of a new symbiotic formulation on systemic inflammatory response markers in children with active distal ulcerative colitis. Aliment Pharmacol Ther 2012; 35:576-86; PMID:22593958; http://dx.doi.org/10.1111/j.1365-2036.2011.04599.x.

Celenk T, Kaplan A, Sit D. Plasma cytokine profiles in patients with chronic fatigue syndrome. Clin Exp Immunol 2007; 145:82-3; PMID:17504029; http://dx.doi.org/10.1111/j.1365-2179.2006.03017.x.