SOME SPECIAL COPRIME ACTIONS
AND THEIR CONSEQUENCES

GÜLİN ERCAN*, İSMAIL Ş. GÜLOĞLU, M. YASİR KIZMAZ, AND DANILA O. REVIN

Abstract. Let a group A act on the group G coprimely. Suppose that the order of the fixed point subgroup $C_G(A)$ is not divisible by an arbitrary but fixed prime p. In the present paper we determine bounds for the p-length of the group G in terms of the order of A, and investigate how some A-invariant p-subgroups are embedded in G under various additional assumptions.

1. INTRODUCTION

All groups considered are finite. Let a group A act on the group G. The nature of this action has some radical consequences on the structures of both G and A and also leads to some bounds for the invariants of both in terms of the other’s. So much research is devoted to studying coprime action, that is the case $(|G|, |A|) = 1$ due to the existence of well known nice relations between G and A. The present paper is concerned with the consequences of some coprime actions with the additional condition common to all of them such that the order of the fixed point subgroup $C_G(A)$ is not divisible by an arbitrary but fixed prime p. In Section 2 we handle the case where A acts with regular orbits, that is, for every proper subgroup B of A and every elementary abelian B-invariant section S of G, there exists some $v \in S$ such that $C_B(v) = C_B(S)$; and bound the p-length of the group G. Namely, we prove

Theorem A. Let A be a group acting coprimely and with regular orbits on the solvable group G. Suppose that B is a subgroup of A such that $\bigcap_{a \in A}[G, B]^a = 1$. If p is a prime not dividing $|C_G(A)|$ then $\ell_p(G) \leq \ell(A : B)$.

Here, $\ell(A : B)$ denotes the length (by the number of inclusions) of the longest chain of subgroups of A that starts with B and ends with A. Simply we use $\ell(A)$ instead of $\ell(A : 1)$. The proof of Theorem A, one immediate consequence of which is presented below, involves a series of reductions similar to the techniques used in the proof of Theorem 2.1 of [17].

Corollary. Let A be a group acting coprimely and with regular orbits on the solvable group G. For any prime p not dividing $|C_G(A)|$ we have $\ell_p(G) \leq \ell(A)$.

2000 Mathematics Subject Classification. 20D10, 20D15, 20D45.
Key words and phrases. coprime action, p-length, Fitting series, Frobenius action, simple group.
*Corresponding author.
Recall that the coprime action of \(A \) guarantees the existence of \(A \)-invariant Sylow subgroups. In [10] Kızmaz studied the structure of a group \(G \) admitting a coprime automorphism \(\alpha \) such that \(G \) has a unique \(\alpha \)-invariant Sylow \(p \)-subgroup for a prime \(p \) where \(C_G(\alpha) \) is a \(p' \)-group and also asked about replacing \(\alpha \) by any subgroup \(A \) of \(\text{Aut}G \). The rest of the paper is concerned with this kind of extensions. More precisely, we consider the situation that \(G \) contains a unique \(A \)-invariant Sylow \(p \)-subgroup where \(C_G(A) \) is a \(p' \)-group. It should be noted that \(G \) contains a unique \(A \)-invariant Sylow \(p \)-subgroup \(P \) if and only if \(C_G(A) \) normalizes \(P \). A first partial answer in this direction is the second result of Section 2 which bounds the \(p \)-length of \(G \) by \(\ell(A) \) in the case where \(A \) is abelian and \(G \) is \(p \)-separable. Namely we have

Theorem B. Let \(A \) be an abelian group acting coprimely on the \(p \)-separable group \(G \). Suppose that \(G \) contains a unique \(A \)-invariant Sylow \(p \)-subgroup and that \(C_G(A) \) is a \(p' \)-group. Then \(\ell_p(G) \leq \ell(A) \).

Section 3 is devoted to the extensions of some results of [10] and firstly includes the following answer to its Question 4.1 when \(A \) is abelian.

Theorem C. Let \(A \) be an abelian group acting coprimely on the solvable group \(G \). Suppose that \(G \) contains a unique \(A \)-invariant Sylow \(p \)-subgroup \(P \) for an odd prime \(p \) where \(C_G(A) \) is a \(p' \)-group. Then \(P \leq F_{2\ell(A)}(G) \).

The next result extends Proposition 3.1 in [10] for arbitrary \(A \) under some additional assumptions.

Theorem D. Let \(A \) be a group acting coprimely on the group \(G \) and let \(P \) be an \(A \)-invariant Sylow \(p \)-subgroup of \(G \) for a prime \(p \) dividing the order of \(G \). Suppose that \(p \) does not divide \(|C_G(a)| \) and that \(C_G(a) \) normalizes \(P \) for all \(1 \neq a \in A \) of prime order. If \(|GA| \) is odd then \(P \leq F_2(G) \). Furthermore, \(P \leq F(G) \) if \(A \) is of prime order and \(G \) is solvable.

It should be noted that the assumptions of Theorem D are indispensable because the group \(G = \text{PSL}(2, 2^4) \) admits an automorphism of order \(a \) of order 5 such that \(C_G(a) = \text{PSL}(2, 2) \) normalizes an \(\langle a \rangle \)-invariant 11-subgroup of \(G \) while \(F(G) = F_2(G) = 1 \).

Section 4 mainly includes Theorem E below which yields Theorem C in [10] as an immediate corollary.

Theorem E. Let \(A \) be a group acting coprimely on a group \(G \). Suppose that \(U \) is an \(A \)-invariant \(p \)-subgroup of \(G \) such that \(C_U(a) = 1 \) for each \(1 \neq a \in A \) and that \(C_G(A) \) normalizes \(U \). Then \(U \leq O_p(G) \) if the following hold:

(i) \(G = \text{PSL}(2, 2^r) \) free for all \(1 \neq r \) dividing \(|A| \) in case where \(p \mid 2^r + 1 \),
(ii) \(G = \text{Sz}(2^r) \) free for all \(1 \neq r \) dividing \(|A| \) in case where \(p \mid 4^r + 1 \).

The notation and terminology are standard.

2. **Bounding the \(p \)-length**

Let \(G \) and \(A \) be groups where \(A \) acts on \(G \). The concept of an \(A \)-tower will be frequently used throughout the paper.
Definition 2.1. (Definition 1.1 and 1.2 of [16]) We say that a sequence $(S_i), i = 1, \ldots, t$ of A-invariant subgroups of G is an A-tower of G of height t if the following are satisfied:

1. S_i is a p_i-group, p_i is a prime, for $i = 1, \ldots, t$;
2. S_i normalizes S_j for $i \leq j$;
3. Set $P_i = S_i$, $P_i = S_i/T_i$ where $T_i = C_{S_i}(P_{i+1})$, $i = 1, \ldots, t-1$ and we assume that P_t is not trivial for $i = 1, \ldots, t$;
4. $p_i \neq p_{i+1}$, $i = 1, \ldots, t-1$.

An A-tower $(S_i), i = 1, \ldots, t$ of G is said to be irreducible if the following are satisfied:

5. $\Phi(\Phi(P_i)) = 1$, $\Phi(P_i) \leq Z(P_i)$ and, if $p_i \neq 2$, then P_i has exponent p_i for $i = 1, \ldots, t$. Moreover P_{t-1} centralizes $\Phi(P_t)$;
6. P_t is elementary abelian;
7. There exists H_i, an elementary abelian A-invariant subgroup of P_{t-1} such that $[H_i, P_i] = P_i$;
8. $(\prod_{i=1}^{t-1} S_i)A$ acts irreducibly on $P_t/\Phi(P_t)$.

Remark 2.2. When the action is coprime G and G is solvable, G contains an A-invariant Sylow p-subgroup for every prime p dividing $|G|$. This leads to the existence of A-towers so that the Fitting height of the group G coincides with the maximum of the heights of all possible A-towers in G.

The essence of the proof of Theorem A lies in the following

Lemma 2.3. Let a group G act on the solvable group G coprimely and let p be a prime dividing $|G|$. Then G contains an A-tower having exactly $\ell_p(G)$-many p-terms.

Proof. We proceed by induction on $|G|$. Suppose that $O_{p'}(G) \neq 1$. Then the group $G = G/O_{p'}(G)$ contains an A-tower S_1, \ldots, S_t of G having exactly $\ell_p(G)$-many p-terms where S_i is a subgroup of G for each $i = 1, \ldots, t$. By Lemma 1.6 in [16] there is an A-tower S_1, \ldots, S_t of G which maps to S_i, $i = 1, \ldots, t$ having exactly $\ell_p(G)$-many p-terms. This contradiction shows that $O_{p'}(G) = 1$ and hence $F(G) = O_p(G)$.

Similarly an induction argument applied to the action of $G = G/O_{p,p'}(G)$ yields an A-tower S_1, \ldots, S_t of G having exactly $((\ell_p(G) - 1)$-many p-terms. Notice that S_i is a subgroup of $O_p(G)$. By Lemma 1.6 in [16] again, we get an A-tower S_1, \ldots, S_t, of G which maps to S_i, $i = 1, \ldots, t$. We see that $[S_1, \ldots, S_{t-1}, S_t] \neq 1$ where S_t is a p-group contained in $O_{p',p'}(G)$. Since $S_t/S_i \cap O_p(G)$ acts faithfully on $O_{p',p'}(G)/O_p(G)$, there exists a q-group $Q \leq O_{p,p'}(G)$ for some prime $q \neq p$ such that $[S_1, \ldots, S_{t-1}, S_t, Q] \neq 1$. We may assume that Q is A-invariant. It follows that the sequence

$S_1, \ldots, S_{t-1}, S_t, Q, F(G)$

forms an A-tower having exactly $\ell_p(G)$-many p-terms which is a contradiction completing the proof.

Proof of Theorem A. We choose a counterexample with minimum $|GA| + |A : B|$. If $A = B$ then $G = CG(A)$ whence $G = O_p(G)$ and the result holds. Hence we may assume that $\ell(A : B) \geq 1$. We may also assume that $O_{p'}(G) = 1$, that is $F(G) = O_p(G)$.
Lemma 2.2 guarantees the existence of an A-tower \(S_1, \ldots, S_t \) in \(G \) having exactly \(\ell_p(G) \)-many \(p \)-terms where \(S_1 \) and \(S_t \) are both \(p \)-groups with \(t \geq 3 \). We may assume that this tower is irreducible by Lemma 1.4 in [16]. An induction argument gives that \(G = \prod_{i=1}^{t-1} S_i \) with \(T_{t-1} = 1 \). Set \(H = \prod_{i=1}^{t-2} S_i \) and \(R = P_{t-1} = S_{t-1} \). From now on we shall proceed over a series of steps:

Step 1. For all \(C \leq A \) such that \(B \leq C \) and \(\ell(C : B) \geq 1 \) we have \(R = [R, C]^H \).

Assume the contrary, that there exists \(C \leq A \) such that \(B \leq C \) and \(\ell(C : B) \geq 1 \) so that \(R \neq [R, C]^H \). Set \(R_0 = [R, C]^H \Phi(R) \). Since \(R/\Phi(R) \) is irreducible as an \(HA \)-module, we have \(\cap_{a \in A} R_0^a = \Phi(R) \) and \(\cap_{a \in A} C_G(R/R_0)^a = C_G(R/\Phi(R)) \).

Set \(\mathcal{H} = H/C_H(R/\Phi(R)) \). As \([\mathcal{S}_1, \ldots, \mathcal{S}_{t-2}] = \mathcal{S}_{t-2} \neq 1 \), the sequence \(\mathcal{S}_1, \ldots, \mathcal{S}_{t-2} \) is an \(A \)-tower of \(\mathcal{H} \) having exactly \(\ell_p(G) - 1 \)-many \(p \)-terms. This forces that

\[
\ell_p(\mathcal{H}) = \ell_p(G) - 1.
\]

Notice that \([R/R_0, C]\) = 1 and \(R_0 < \mathcal{H} \). Then, by the three subgroups lemma, \([H, C] \leq C_H(R/R_0)\) and hence

\[
\bigcap_{a \in A} [\mathcal{H}, C]^a = \bigcap_{a \in A} [H, C]^a \leq \bigcap_{a \in A} C_H(R/R_0)^a = 1.
\]

Now an induction argument applied to the action of \(A \) on \(\mathcal{H} \) implies

\[
\ell_p(G) - 1 = \ell_p(\mathcal{H}) \leq \ell(A : C) \leq \ell(A : B) - 1.
\]

This forces that \(\ell_p(G) \leq \ell(A : B) \), which is a contradiction establishing the claim.

Step 2. Recall that \(P_{t-2} = S_{t-2}/T_{t-2} \). Set \(Q = S_{t-2} \) and \(K = \prod_{i=1}^{t-3} S_i \). Then for all \(D \leq A \) such that \(B \leq D \) and \(\ell(D : B) \geq 2 \) we have \(Q = [Q, D]^K \Phi \) where \(\Phi = \Phi(Q)T_{t-2} \).

Assume the contrary, that there exists \(D \leq A \) such that \(B \leq D \) and \(\ell(D : B) \geq 2 \) so that \(Q \neq [Q, D]^K \Phi \). Let \(Q_0 = [Q, D]^K \Phi \). Since \(Q/\Phi \) is an irreducible \(KA \)-module, \(\cap_{a \in A} Q_0^a = \Phi \) and \(\cap_{a \in A} C_G(Q/Q_0)^a = C_G(Q/\Phi) \).

Set \(\mathcal{K} = K/C_K(Q/\Phi) \). As \([\mathcal{S}_1, \ldots, \mathcal{S}_{t-3}] = \mathcal{S}_{t-3} \neq 1 \), the sequence \(\mathcal{S}_1, \ldots, \mathcal{S}_{t-3} \) forms an \(A \)-tower of \(\mathcal{K} \). It follows that

\[
\ell_p(G) - 2 \leq \ell_p(\mathcal{K}) \leq \ell_p(G) - 1.
\]

Then we also have \(\ell_p(K/C_K(Q/Q_0)) \geq \ell_p(G) - 2 \). Since \(D \) acts trivially on \(Q/Q_0 \), \([K, D] \leq C_K(Q/Q_0)\). Therefore we have

\[
\bigcap_{a \in A} [\mathcal{K}, D]^a = \bigcap_{a \in A} [K, D]^a \leq \bigcap_{a \in A} C_K(Q/Q_0)^a = 1.
\]

By induction applied to the action of \(A \) on \(\mathcal{K} \) we get

\[
\ell_p(G) - 2 \leq \ell_p(\mathcal{K}) \leq \ell(A : D) \leq \ell(A : B) - 2
\]

which forces that \(\ell_p(G) \leq \ell(A : B) \). This contradiction establishes the claim.
Step 3. Final contradiction.

Since the A-tower S_1, \ldots, S_t is irreducible, the groups P and $Q/C_Q(P)$ are special. Furthermore they are of exponent p_{t-1} (resp. p_{t-2}) if p_{t-1} and p_{t-2} are odd. We are now ready to apply [17, Theorem 1.1], to the action of $S_{t-1}S_{t-2}A$ on the Frattini factor group of S_t and get $C_{S_t}(A) \neq 1$. This contradiction completes the proof. □

Proof of Theorem 3.4 Let GA be a minimal counterexample to the theorem. We may assume that $O_{p'}(G) = 1$. Let $O_i(G)$, $i = 1, \ldots, \ell(G)$ be defined for $\pi = \{p\}$ as in [12] where $\ell(G)$ is the least positive integer such that $G = O_{\ell(G)}(G)$. If $P \leq O_{\ell(G)-1}(G)$, an induction argument applied to the action of A on the group $O_{\ell(G)-1}(G)$ implies that $\ell_p(G) \leq \ell(A)$, which is not the case. Therefore we may assume that $G = O_{\ell(G)-1}(G)P$. By [12, Lemma 4.3] there exists a sequence $A_1, \ldots, A_{\ell(G)}$ of A-invariant sections of G satisfying the conditions (1.10.a) – (1.10.f) of [12]. Furthermore, as a consequence of [12, Lemma 4.3 (a)], the following are satisfied:

(a) A_i is a p-group (or a p'-group), respectively A_i+1 is a p'-group (or a p-group), and $A_{\ell(G)} \leq G$. In our case we see that A_1 and $A_{\ell(G)}$ are both p-groups. In particular $C_{A_1}(A) = 1$

(b) $\ell_p(G)$ is equal to the number of p-groups among the sections A_i, for $i = 1, \ldots, \ell(G)$.

(c) $[A_i, A_{i-1}] = A_i$, for $i = 2, \ldots, \ell(G)$.

More precisely, the sequence $A_1, \ldots, A_{\ell(G)}$ is an A-tower. Since A acts fixed point freely on A_1 there is a nonidentity element $a \in A$ of prime order such that $[A_1, a] \neq 1$. It follows by Theorem 3.1 in [16] that there is a sequence of A-invariant subgroups $C_2, \ldots, C_{\ell(G)}$ each of which is centralized by a so that it forms an A-tower. This forces that the $C_{O_{\ell(G)}(G)}(a)$ has p-length $\ell_p(G) - 1$. We then apply induction to the action of $A/\langle a \rangle$ on $C_{O_{\ell(G)}(G)}(a)$ and get $\ell_p(G) - 1 \leq \ell - 1$. This contradiction completes the proof.

3. Embedding of the unique A-invariant Sylow p-subgroup

Proof of Theorem 3.4 We proceed by induction on $[GA]$. Let k be the largest such that p divides the order of $F_k(G)/F_{k-1}(G)$. Assume that $k > 2\ell(A)$. Then there is an A-tower $S_1, S_2, \ldots, S_{2\ell(A)+1}$ of G where S_1 is a p-group. We may assume that this tower is irreducible. Set $V = P_2/\Phi(P_2)$. We have $C_V(A) = 1$ as $[C_{P_2}(A), P_1] = 1$. If the group P_1A is Frobenius we would have $C_V(A) \neq 1$, which is a contradiction. Thus there exists $1 \neq a \in A$ such that $C_{P_2}(a) \neq 1$. By [16, Theorem 3.1], we see that

$$[C_{S_1}(a), \ldots, C_{S_{j-1}}(a), C_{S_j+1}(a), \ldots, C_{S_{2\ell(A)+1}}(a)] \neq 1.$$

Indeed we have one of the two cases:
Consider the semidirect product $V \rtimes H$.

Let V be an elementary abelian 5-group and C_i.

Both are impossible by hypothesis and the first claim follows.

Proof. Let V, P, B, G be two successive terms of an A-tower such that S_{i-1} is a p-group. We may assume that this tower is irreducible. Then $C_{P_2}(a) \leq \Phi(P_2)$ for all $1 \neq a \in A$ as $[C_{P_2}(a), P_2] = 1$. It follows that $P_2 = [P_2, a]$ for all $1 \neq a \in A$, that is, the group $P_2 A$ is Frobenius-like with kernel P_2.

By [10, Corollary C], applied to the action of $P_2 A$ on P_3 we observe that $C_{P_3}(A) \neq 1$ which forces that $P_3 \neq P$.

If the group $P_3 A$ were Frobenius then we would have $C_{P_2}(A) \leq \Phi(P_2)$ which is not the case. Thus there exists $1 \neq b \in A$ such that $C_{P_2}(b) \neq 1$. We may assume that b is of prime order. It follows that $[C_{P_2}(b), P_2, P_3] \neq 1$ as P_2 acts faithfully on P_3. Since p is odd, by [10, Theorem 3.1], we get either $[C_{P_2}(b), C_{P_2}(b)] \neq 1$ or $[C_{P_2}(b), C_{P_2}(b)] \neq 1$.

Both are impossible by hypothesis and the first claim follows.

Finally assume that A is of prime order and G is solvable. In this case let S_i and S_{i-1} be two successive terms of an A-tower such that S_{i-1} is a p-group. Notice that $C_{S_{i-1}}(A)$ and $C_{P_i, \Phi(P_i)}(A)$ are both trivial. This forces by Thompson’s celebrated theorem that S_{i-1} centralizes P_i which is a contradiction. Hence the proof is complete.

Example 3.1. Let $H = P \times A$ where $P \triangleleft H$ is cyclic of order 7 and A is cyclic of order 9. Suppose that $B = \Omega_i(A) \triangleleft H$ and H/B is a Frobenius group of order 21. Then $Soc(H) = P \times B$ and is cyclic of order 21. By Theorem 10.3 on page 173 in [1] there exists an elementary abelian 5-group V which is a faithful and irreducible H-module.

Consider the semidirect product $V H$ and let G be the subgroup $V P$. Then A acts coprimely on G, $[V, P] = V$, and $[V, B] = V$ whence the group VA is Frobenius. Now $C_G(A) = 1$ and $C_G(a) = P$ for any $1 \neq a \in A$ of prime order. This example shows that P is not necessarily contained in $F(G)$ under the hypothesis of Theorem 10.

4. EMBEDDING OF SOME A-INvariant p-SUBGROUPS WITHIN THE GROUP

Although this section is devoted to a proof of Theorem E we want first to emphasize a special case of this result due to the simplicity of its proof.

Theorem 4.1. Let A be a group acting on the p-separable group G coprimely and let U be an A-invariant p-subgroup of G such that $C_U(a) = 1$ for each $1 \neq a \in A$. If $C_G(A) \triangleleft G$, then $U \leq O_p(G)$.

Proof. Let G be a minimal counterexample to the theorem. We can easily observe that by an induction argument applied to the action of A on $G/O_p(G)$ we get $O_p(G) = 1$.
Another induction argument applied to the action of A on $O_{p'}(G)U$ yields that $G = O_{p'}(G)U$. By hypothesis, the group UA is Frobenius with kernel U. Let Q be a UA-invariant Sylow q-subgroup of $O_{p'}(G)$ on which U is nontrivial. Set V be the Frattini factor group of Q. W.l.o.g. we may assume that V is irreducible as a UA-module. It is well known that $C_V(A) \neq 1$. On the other hand $[C_Q(A), U] = 1$ and so $C_Q(A) \leq \Phi(Q)$, that is $C_V(A) = 1$, which is a contradiction. \qed

We now prove some lemmas which will be used in the proof of Theorem E.

Lemma 4.2. Let $G = PGL(2, p^r)$ for some positive integer r and let P be a Sylow p-subgroup of G. Then $C_G(x) \leq P$ for any nonidentity $x \in P$.

Proof. Let $\Gamma = GL(2, p^r)$ and F be a field of order p^r. Let $A = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ for some $t \in F^*$ and pick $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ such that $AB = BA$. It follows easily that $a = d$ and $c = 0$, that is,

$$B = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}^{1} \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & 1 \end{pmatrix} \in Z(\Gamma)Q$$

where Q is the Sylow p-subgroup of Γ which consists of upper triangular matrices. Thus, we obtain $C_\Gamma(A) \leq Z(\Gamma)Q$. Write $\overline{\Gamma} = \Gamma/Z(\Gamma) = G$. Since $Z(\Gamma)$ is a p'-subgroup of Γ, we get $C_G(\overline{A}) = C_{\overline{\Gamma}}(A) = C_{\overline{\Gamma}}(A) \leq \overline{Q}$ by [9] Lemma 7.7. Note that \overline{Q} is a Sylow p-subgroup of G, and so by taking an appropriate conjugate we obtain that $C_G(x) \leq P$ for any $1 \neq x \in P$. \qed

Lemma 4.3. Let $G \cong PSL(2, 3^r)$ and $H \cong PSL(2, 3)$ be a subgroup of G. Suppose that U is a subgroup of G which is normalized by H and which has trivial intersection with H. Then $U = 1$.

Proof. Let G be a minimal counter example to the lemma. Note that the order of G is $q(q - 1)(q + 1)/2$ where $q = 3^r$. Let now M be a maximal subgroup of G that contains the subgroup HU. The possible structure of M is given in [11] Corollary 2.2[(a)-(h)]. Since $\pi(H) = \{2, 3\} \subseteq \pi(M)$ and $q = 3^r$ for $r \geq 2$, the group M can be only one of the groups described in (e), (d), (c) or (h) of [11] Corollary 2.2. We shall complete the proof by obtaining a separate contradiction for each case below.

Suppose that [11] Corollary 2.2 (c) holds. Then M is of order $q(q - 1)/2$ as q is odd, and so the normalizer of a Sylow 3-subgroup. It follows that M is 3-closed and hence $H \cong A_4$ is also 3-closed, which is not the case.

Suppose that [11] Corollary 2.2 (d) holds, that is, $M \cong PSL(2, 3^r)$ for some $r_0 < r$. It follows that $U = 1$ by the minimality of G, which is a contradiction.

Suppose that [11] Corollary 2.2 (e) holds. Then $M \cong PGL(2, 3^r)$ for some $r_0 < r$. Set $q_0 = 3^r$ and let M_0 be the subgroup of M isomorphic to $PSL(2, 3^r)$. Note that the order of M is $q_0(q_0^2 - 1)$, and so $|M : M_0| = 2$. Clearly $H \leq M_0$ and H normalizes $U \cap M_0$ as $M_0 < M$. By the minimality of G, we see that $U \cap M_0 = 1$, and so $|U| = 2$ as $|U| > 1$. It follows then that $[H, U] = 1$ as H normalizes U. Let now $h \in H$ be of order
3. Then $U \leq C_M(h) \leq P$ where P is a Sylow 3-subgroup of M by Lemma 4.2 which leads to a contradiction.

Finally suppose that \cite{11} Corollary 2.2 ([h]) holds. Then $M \cong A_5$ and so it is apparent that the subgroup $H \cong A_4$ does not normalize any nontrivial such U.

\begin{lemma}

Let $G = L(q^f)$ be a simple group of Lie type over the field F of order q where q is a power of a prime u, and let a be the automorphism of G induced by the field automorphism $x \mapsto x^q$. Suppose that $\O''(G(a)) = L(q)$ is not isomorphic to one of $\PSL(2,2)$, $\PSL(2,3)$ and $\Sz(2)$. Then there is no nontrivial subgroup K of G which is normalized by $CG(a)$ and which has trivial intersection with $CG(a)$.

\begin{proof}

Let K be a subgroup of G which is normalized by $CG(a)$ and which has trivial intersection with $CG(a)$. By \cite{3} Theorem 1, there exists a positive integer r dividing f such that

$$L(q^r) \cong \O''(G(a^r)) \leq CG(a)K \leq CG(a)^r$$

where $CG(a^r)$ is generated by $\text{Inn}(CG(a^r))$ and some diagonal automorphisms of the simple group $\O''(CG(a^r))$. Note that $r < f$ because otherwise $G = CG(a)K$ which implies by the simplicity of G that $K = 1$. If $r = 1$ then $CG(a)K \leq \Aut(CG(a))$ and so K normalizes $CG(a)$, that is, $K = 1$ as desired. Then by induction applied to the action of $\langle a \rangle / \langle a^r \rangle$ on $CG(a^r)$ with $CG(a^r) \cap K$ we obtain $CG(a^r) \cap K = 1$. It follows that $CG(a^r) = CG(a)$ and so $[CG(a^r), K] \leq CG(a^r) \cap K = 1$. Due to the faithful action of K on $CG(a)$ we get $K = 1$.

\end{proof}

\end{lemma}

\begin{lemma}

Let A be a nontrivial automorphism group of a nonabelian simple group G and $(|A|, |G|) = 1$. Then G is a simple group of Lie type and A is cyclic.

\begin{proof}

It is clear that A is isomorphic to a subgroup of $\Out(G) = \Aut(G)/\Inn(G)$. According to the classification of finite simple groups \cite{1} Theorem 0.1.1 and the well-known information on outer automorphism groups (see \cite{8} Theorem 5.2.1 and Tables 5.3a–5.3z), one of the following statements holds:

\begin{itemize}
 \item G is isomorphic to an alternating group of degree ≥ 5 and $|\Out(G)| \in \{2, 4\}$;
 \item G is isomorphic to one of 26 sporadic groups and $|\Out(G)| \in \{1, 2\}$;
 \item G is isomorphic to a simple group of Lie type.
\end{itemize}

Since $|G|$ is even (by the Feit–Thompson theorem \cite{5}, for example), G must be isomorphic to a simple group of Lie type. Then $\Out(G)$ is solvable. More exactly, according to \cite{8} Theorem 2.5.12 $\Out(G)$ has a normal subgroup $\Outdiag(G)$ such that $\pi(\Outdiag(G)) \subseteq \pi(G)$. Moreover, $\overline{G} = \Out(G)/\Outdiag(G)$ has a normal cyclic subgroup Φ (isomorphic to the automorphism group of the ground field) such that $\overline{G}/\Phi \in \{1, 2\}$ or $G \cong D_4(q)$ and $\overline{G}/\Phi \cong S_3$. In all cases $\pi(\overline{G}/\Phi) \subseteq \pi(G)$. This implies that A is isomorphic to a subgroup of Φ. In particular, A is cyclic.

\end{proof}

\end{lemma}

\begin{lemma}

Let $G = \Sz(q)$, where $q = 2^r$ for some odd r. Then every solvable subgroup H of G such that $5 \in \pi(H)$ is contained in a subgroup M of G with the following properties.

\begin{proof}

\end{proof}

\end{lemma}
• $|M| = 4(q - \varepsilon\sqrt{2q} + 1)$, where $\varepsilon \in \{+, -\}$ is uniquely defined by the relation $5 | (q - \varepsilon\sqrt{2q} + 1)$;
• M is the Frobenius group with cyclic kernel of order $q - \varepsilon\sqrt{2q} + 1$ and cyclic complement of order 4.

In particular, if U is a nontrivial p-subgroup of G such that 5 divides $|N_G(U)|$ then U is cyclic and $|U|$ divides $q - \varepsilon\sqrt{2q} + 1$.

Proof. According to [15, Theorem 9], every proper subgroup of G is conjugate to a subgroup of one of the following subgroups:
• Frobenius group of order $q^2(q - 1)$;
• dihedral group B_0 of order $2(q - 1)$;
• the normalizer B_1 of a cyclic group A_1 of order $q - \sqrt{2q} + 1$, $|B_1| = 4|A_1|$;
• the normalizer B_2 of a cyclic group A_2 of order $q + \sqrt{2q} + 1$, $|B_2| = 4|A_2|$;
• $Sz(2^r)$ where r_0 divides r.

It is easy to see that 5 divides only the orders of $Sz(2^r)$ and exactly one of B_1 and B_2. We choose $i \in \{1, 2\}$ such that 5 divides $|B_i|$. It follows by induction from this remark that H contains a normal cyclic 2-complement T and T contains a cyclic subgroup of order 5. Since A_i contains a Sylow 5-subgroup of G, we may assume that $A_i \cap T \neq 1$.

By [15, Proposition 16], the centralizer of every nontrivial element of A_i coincides with A_i. Therefore, $T \leq C_G(A_i \cap T) \leq A_i$ and H normalizes $C_G(T) = A_i$. This means that $H \leq B_i$. Moreover, $B_i/A_i = B_i/C_{B_i}(Z)$ is isomorphic to a subgroup of the automorphism group of the subgroup $Z \leq A_i$ of order 5. Consequently, B_i/A_i is cyclic. Since $C_{B_i}(a) = A_i$ for every nontrivial $a \in A_i$, B_i is a Frobenius group with the cyclic kernel A_i and a cyclic complement of order 4. \hfill \Box

We need an extension of [10, Lemma 3.3] in the proof of Theorem E.

Lemma 4.7. Let G be a nonabelian simple group and let α be a coprime automorphism of G of order r. Let U be a nontrivial α-invariant p-subgroup of G such that $C_U(\alpha) = 1$. If $C_G(\alpha)$ normalizes U, then one of the following holds:

a) $G = PSL(2, 2^r)$ and $r \geq 5$. Moreover, $p \geq 5$ and p is a divisor of $2^r + 1$.

b) $G = Sz(2^r)$ and $r \geq 7$. Moreover, $p \geq 5$ and p is a divisor of $2^r \pm \sqrt{2^r + 1} + 1$ where the sign \pm is chosen such that 5 divides $2^r \pm \sqrt{2^r + 1} + 1$.

Proof. We see that G is a simple group of Lie type by Lemma 4.5. It follows that $G = PSL(2, 2^r)$ or $Sz(2^r)$ by Lemmas 4.3 and 4.4. Set $C = C_G(\alpha)$.

Let $G = PSL(2, 2^r)$ and set $q = 2^r$. Then we see that $C = PSL(2, 2) \cong S_3$. Suppose first that p is odd. A Sylow p-subgroup P of G is cyclic by [13, Theorem 8.6.9]. If $p = 3$, then $U \cap C$ contains an element of order 3, which is impossible by the hypothesis. Thus $p \geq 5$. We also have $r \geq 5$ as r is coprime to $|C| = 6$. We see that C is contained in a maximal subgroup D, which is a dihedral group of order $2(q + 1)$ (see [11, Corollary 2.2 (f) and (i)]). Since r is odd, 3 is coprime to $q - 1 = 2^r - 1$, and so $|D| = 2(q + 1) = 2^r + 1$.

Let T be the subgroup of C of order 3. Clearly, T is normalized by D, and so $D = N_G(T)$ as G is simple and D is a maximal subgroup of G. Now we claim that
p | q + 1. Since U is cyclic, Aut(U) is abelian. It follows that C/C_G(U) is abelian. We get that T \leq C_G(U) as T = C_g, and so U \leq C_G(T) \leq N_G(T) = D. As p is odd and |D| = 2(q + 1), we have that p divides q + 1. Consequently, we observe that if such an α-invariant p-subgroup U of G exists, it must be contained in D = N_G(T). On the other hand, D = N_G(T) is α-invariant and π(D) ≠ \{2, 3\} as r ≥ 5. Pick an α-invariant Sylow p-subgroup P of D for p ≥ 5. Clearly, P is normalized by C and C_P(α) = 1, which completes the proof for this case.

Assume now that p = 2 and take a Sylow p-subgroup P of G such that U \leq P. In this case, P is elementary abelian of order 2^r and |N_G(P)| = 2^r(2^r - 1) (see [2, Table 1]). Since r is odd, we have (|N_G(P)|, 3) = 1. It follows from Lemma 4.2 that C_G(U) = P which means that P is a normal subgroup of N_G(U). Therefore, N_G(U) \leq N_G(P) and (|N_G(U)|, 3) = 1, which contradicts the fact that N_G(U) ≥ C \cong S_3. Thus, the case p = 2 is impossible.

Next let G = Sz(q) where q = 2^r and r is odd. Note that C \cong Sz(2) which is a Frobenius group of order 20. Denote T = O_5(C). Then T \leq C \leq N_G(U). In particular, |N_G(U)| is divisible by 5. By Lemma 4.6 U must be cyclic and |U| must divide q - ε√2q + 1, where ε = ± and 5 divides q - ε√2q + 1.

If r = 3 then q - √2q + 1 = 5. Consequently, ε = + and p = |U| = 5. But in this case UT is contained in a Frobenius subgroup with a cyclic kernel and a cyclic complement of order 4 by Lemma 4.6. This means that U = T is contained in C, a contradiction. Hence, r > 3.

Since 5 divides |G| and |α| = r, we have r > 5. Now the desired statement follows from Lemma 4.6.

Proof of Theorem E. Let G be a minimal counterexample to the theorem and choose U of minimal possible order. Then U > 1. It can be easily observed by an induction argument applied to the action of A on G/O_p(G) that O_p(G) = 1. Let N be a minimal normal A-invariant subgroup of G. We shall separate the proof into two cases:

Case 1. Assume that N = G. Then G is characteristically simple, that is, G = G_1 × ... × G_n where G_i are isomorphic nonabelian simple groups and A acts transitively on \{G_i : i = 1, ..., n\}. Let now B = N_A(G_1) and let X = G_2 × G_3 × ... × G_n. Note that X is a B-invariant normal subgroup of G. Assume that X > 1 and set \overline{G} = G/X. Let A = ∪_i=1^n B_{a_i} be a coset decomposition of A with respect to B where a_1 = 1. We observe that C_G(A) = \{ \prod_{i=1}^n g^{a_i} : g \in C_{G_1}(B) \}, and hence

$$C_G(A) = C_{G_1}(B) = C_{\overline{G}_1}(B) = C_{\overline{G}}(B).$$

Then \overline{C}(B) normalizes \overline{U}. Since \overline{U}B is a Frobenius group, an induction argument applied to the action of B on \overline{G} yields that \overline{U} \leq O_p(\overline{G}) = 1, that is, \overline{U} ≤ X. It follows that U = 1 as A acts transitively on \{G_i : i = 1, ..., n\}. By this contradiction, we get X = 1, that is, G is simple. We observe by Lemma 4.3 that A is cyclic. Then, appealing to Lemma 4.7 we obtain the final contradiction in Case 1.
Case 2. Assume that $N < G$. By induction applied to the action of A on N, it holds that $U \cap N \leq O_p(N) \leq O_p(G) = 1$. Write $\overline{G} = G/N$. Then by induction applied to the action of A on \overline{G}, we get $1 < \overline{U} \leq O_p(\overline{G})$. Let $H/N = O_p(\overline{G})$. Assume $H < G$. Clearly, $U \subseteq H$, and so $U \leq O_p(H) \leq O_p(G)$ by induction applied to H. This contradiction shows that $H = G$. Since \overline{G} is a p-group, NU is subnormal in G. Thus, if $NU < G$, then we get $U \leq O_p(G)$, which is not the case. Thus, $G = NU$. We get $\Phi(U) = O_p(G) = 1$ by the minimality of U, and so U is an elementary abelian p-group.

Now N is characteristically simple, that is, $N = N_1 \times \cdots \times N_k$ where N_i, $i = 1, \ldots, k$, are simple. Notice that N is nonabelian because otherwise G is p-separable and the result follows by Theorem 4.1.

Let Ω denote the set of N_i, $i = 1, \ldots, k$. Then UA acts transitively on Ω. Let Ω_1 be the U-orbit on Ω containing N_1, and set $A_1 = Stab_A(\Omega_1)$.

Suppose first that $A_1 = 1$. Clearly, we have $Stab_A(N_1) \leq A_1 = 1$. Consider the group $X = \prod_{a \in A} N_1^a$. Then $C_X(A) = \{\prod_{a \in A} n^a : n \in N_1\}$. Since U centralizes $C_X(A)$, X is UA-invariant and hence $X = N$ by the minimality of N. That is, $k = |A|$ and so there is a U-orbit of length 1 because otherwise we would have p divides $|A|$. Suppose that U normalizes N_1. Then U normalizes N_i for each i. This forces that $|N_i, U| = 1$ for each i as $[C_N(A), U] = 1$, and so $[N, U] = 1$. This contradiction shows that $A_1 \neq 1$.

Let now $S = Stab_{UA_1}(N_1)$ and $U_1 = U \cap S$. Then $|U : U_1| = |\Omega_1| = |UA_1 : S|$. Notice next that $(|S : U_1|, |U_1|) = 1$ as $(|U|, |A_1|) = 1$. Let S_1 be a complement of U_1 in S. Then we have $|U : U_1| = |U : A_1|/|U_1 : S_1|$ which implies that $|A_1| = |S_1|$. Therefore we may assume that $S = U_1A_1$, that is, N_1 is A_1-invariant.

Let $x \in U$ and $1 \neq a \in A_1$ such that $(N_1^a)^x = N_1^x$ holds. Then $[a, x^{-1}] \in U_1$ and so $U_1x = U_1x^a = (U_1x)^a$ implying the existence of an element $g \in U_1x \cap C_U(a)$. Hence $x \in U_1$. It follows that $Stab_{A_1}(N_1^x) = 1$ for every $x \in U \setminus U_1$. More precisely we have shown that A_1 is a nontrivial subgroup of A stabilizing exactly one element, namely N_1, and all the remaining orbits of A_1 are of length $|A_1|$.

The group A acts transitively on $\{\Omega_i : i = 1, 2, \ldots, s\}$, the collection of U-orbits on Ω. Let now $M_i = \prod_{s \in \Omega_i} M$ for $i = 1, 2, \ldots, s$. Suppose that $s > 1$. Then $A_1 = Stab_{A_1}(\Omega_1)$ is a proper subgroup of A. Let $A = \bigcup_{i=1}^{m} A_1g_i$ be the coset decomposition of A with respect to A_1. Notice that $C_N(A) = \prod_{i=1}^{m} n^{g_i} : n \in C_{M_i}(A_i)\}$. Since $[C_N(A), U] = 1$, we have $[C_{M_i}(A_1), U] = 1$. Applying induction to the action of A_1 on M_iU we obtain $U = O_p(M_iU)$, that is $[M_i, U] = 1$. Then $[M_i, U] = 1$ for each i, which is impossible. Thus $A_1 = A$ and $\Omega = \Omega_1$, that is, U acts transitively on Ω.

It follows that N_1 is A-invariant. Let $Y = \prod_{n \in \Omega} N_2^a$. Since $[C_Y(A), U] = 1$, we see that Y is UA-invariant which is impossible by the minimality of N. Therefore we may assume that N is simple. Moreover, $C_G(N) \cap N = Z(N) = 1$. Consequently, $C_G(N)$ is isomorphic to a subgroup of $G/N \cong U$. Therefore, $C_G(N)$ is a normal p-subgroup of G and $O_p(G) = 1$ implies $C_G(N) = 1$. It follows from the three subgroups lemma and the equalities

$$[C_N(N), G] = 1 \text{ and } [N, G, C_A(N)] = [N, C_A(N)] = 1$$
that
\[[G, C_A(N), N] = 1, \quad [G, C_A(N)] \leq C_G(N) = 1 \quad \text{and} \quad C_A(N) = C_A(G) = 1. \]

This means that \(G \) and \(A \) are isomorphically embedded in \(Aut(N) \). Moreover, the kernel \(C_GA(N) \) of the natural homomorphism \(GA \rightarrow Aut(N) \) is also trivial because \(|G| \) and \(|A| \) are coprime. Thus we may consider \(GA \) as a subgroup of \(Aut(N) \).

Note that \(N \) must be isomorphic to a group of Lie type by Lemma 4.5 as it admits a coprime automorphism. We need now some information about the automorphism groups of the simple groups of Lie type given in [5, Theorem 2.5.12]. There are three subgroups \(Inndiag(N) \), \(\Phi \), and \(\Gamma \) in \(Aut(N) \) such that every two of them have the trivial intersection and
\[Aut(N) = Inndiag(N)\Phi \Gamma. \]

Here \(\Phi \) is the field automorphism group of \(N \), \(\Gamma \) is the graph automorphism group, and \(Inndiag(N) \) is the inner-diagonal automorphism group of \(N \). The subgroup \(Inndiag(N) \) is normal in \(Aut(N) \) and contains \(Inn(N) \) by [8, Theorem 2.5.12]. We have that
\[\pi(\Gamma) \cup \pi(Outdiag(N)) \subseteq \pi(N), \]
where \(Outdiag(N) = Inndiag(N)/Inn(N) \). Moreover \([\Phi \Gamma, \Phi] = 1 \).

It follows from the Schur-Zassenhaus theorem that \(A \) is conjugate in \(Aut(N) \) to a subgroup of \(\Phi \) and we may assume that \(A \leq \Phi \). Moreover, as \(UA \) is a Frobenius group, we have
\[U = [U, A] \leq [Aut(N), \Phi] \leq [\Phi \Gamma, \Phi] Inndiag(N) = Inndiag(N). \]

Furthermore, \(U \cap N = 1 \) implies that \(U \) is isomorphic to a subgroup of \(Outdiag(N) \). In particular, \(d = |Outdiag(N)| > 1 \). This means that \(N \) is not a Suzuki group and \(2, 3 \in \pi(N) \) by [5] and [6, Chapter II, Corollary 7.3].

Assume that \(N \) is not isomorphic to
\[PSL^+(n, q) = PSL(n, q) \cong A_{n-1}(q) \quad \text{and} \quad PSL^-(n, q) = PSU(n, q) \cong 2A_{n-1}(q). \]

Then \(d \leq 4 \) by [8, Theorem 2.5.12], and \(|U| \leq 4 \). In this case, \(A \) is a \(\{2, 3\} \)-group since \(A \leq Aut(U) \), which contradicts the fact that \((|A|, |G|) = 1 \).

Thus, we may assume that \(N = PGL^\varepsilon(n, q) \), where \(\varepsilon \in \{+, -\} \). It follows from [8, Theorem 2.5.12], that \(Outdiag(N) \) is cyclic of order \(d = (n, q-\varepsilon 1) \) (in fact, \(Inndiag(N) \cong PGL^\varepsilon(n, q) \) in this case). This means that the elementary abelian \(p \)-group \(U \) is cyclic, \(|U| = p \), and \(p \leq d \leq n \). Now, take \(r \in \pi(A) \). Then
\[r \leq |A| \leq |Aut(U)| = p - 1 < n. \]

Moreover, \((|A|, |G|) = 1 \) implies \((r, 2q) = 1 \) and \(r \) divides \(q^r-1 = q^r-1-(\varepsilon 1)^r-1 \). But this means that \(r \) divides
\[|N| = \frac{1}{d}q^n(q-1)^{n-1} \prod_{i=1}^{n}(q^i - (\varepsilon 1)^i), \]
which contradicts the fact that \(|A| \) and \(|G| \) are coprime. This completes the proof. \(\Box \)
Suppose that A acts on G. Let $S_p(G, A)$ denote the set of all A-invariant Sylow p-subgroups of G, and $(O, A)_p(G)$ denote the intersection of all $P \in S_p(G, A)$.

Corollary 4.8. Let A act coprimely on G and let p be a prime which is coprime to $|C_G(a)|$ for all $1 \neq a \in A$. Then $(O, A)_p(G) = O_p(G)$ if the following hold:

(i) G is $PSL(2, 2^r)$ free for all $1 \neq r$ dividing $|A|$, in case where $p | 2^r + 1$,

(ii) G is $Sz(2^r)$ free for all $1 \neq r$ dividing $|A|$ in case where $p | 4^r + 1$.

Proof. We clearly have $O_p(G) \leq (O, A)_p(G)$. On the other hand, it is easy to see that $(O, A)_p(G)$ is normalized by $C_G(A)$. Since p is coprime to $|C_G(a)|$ for all $1 \neq a \in A$, we have $(O, A)_p(G) \leq O_p(G)$ by Theorem E as claimed. ∎

Acknowledgement

We thank Richard Lyons and Stephan Kohl whose remarks are directly applied to the proof of Lemma 4.4.

References

[1] M. Aschbacher, R. Lyons, S.D. Smith, R. Solomon, The classification of finite simple groups. Groups of characteristic 2 type. Mathematical Surveys and Monographs, 172. American Mathematical Society, Providence, RI, 2011. xii+347 pp.

[2] J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups. London Mathematical Society Lecture Note Series, 407. Cambridge University Press, Cambridge, 2013.

[3] N. Burgoyne, R. Griess, R. Lyons, Maximal subgroups and automorphisms of Chevalley groups. *Pacific J. Math.* 71 (1977), no. 2, 365–403.

[4] K. Doerk, T. Hawkes, Finite soluble groups. *De Gruyter expositions in mathematics* (1992).

[5] W. Feit, J.G. Thompson, Solvability of groups of odd order. *Pacific J. Math.,* 13 (1963) 775–1029.

[6] G. Glauberman, Factorization in local subgroups of finite groups. *Conf. Ser. Math.,* 33, Amer. Math. Soc., Providence, RI, 1976.

[7] İ. Güloğlu, G. Ercan, Action of a Frobenius-like group. *J. Algebra* 402 (2014) 533–543.

[8] D. Gorenstein, R.Lyons, R.Solomon, The classification of the finite simple groups. Number 3. American Mathematical Society, Providence, RI, 1998.

[9] I.M. Isaacs, Finite group theory, *Graduate Studies in Mathematics,* 92. American Mathematical Society, Providence, RI (2008).

[10] M.Y. Kızmaz, On the influence of the fixed points of an automorphism to the structure of a group. *J. Algebra* 572 (2021) 326–336.

[11] O. King, The subgroup structure of finite classical groups in terms of geometric configurations. In B. Webb (Ed.), *Surveys in Combinatorics* (2005) (London Mathematical Society Lecture Note Series, pp. 29-56). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511734885.003

[12] H. Kurzweil, p-Automorphismen von auflösbarer p'-gruppen, *Math. Z.* 120 (1971) 326–354.

[13] H. Kurzweil, B. Stellmacher, The theory of finite groups. An introduction. Springer-Verlag, New York, 2004.

[14] E.E. Shult, On groups admitting fixed point free abelian operator groups, *Illinois J. Math.* 9 (1965), 701-720.

[15] M. Suzuki, On a class of doubly transitive groups. *Ann. Math.* 75:1, (1962) 105–145.

[16] A. Turull, Fitting height of groups and of fixed points, *J. Algebra* 86 (1984) 555–566.

[17] A. Turull, Groups of automorphisms and centralizers, *Math. Proc. Camb. Phil. Soc.* 107 (1990) 227–238.
Gülîn Ercan, Department of Mathematics, Middle East Technical University, Ankara, Turkey
Email address: ercan@metu.edu.tr

İsmail Ş. Guloğlu, Department of Mathematics, Doğuş University, Istanbul, Turkey
Email address: iguloglu@dogus.edu.tr

M. Yasır Kizmaz, Department of Mathematics, Bilkent University, Ankara, Turkey
Email address: yasirkizmaz@bilkent.edu.tr

Danila O. Revin, Sobolev Institute of Mathematics SB RAS
Email address: revin@math.nsc.ru