Aging and APOE-e4 are determinative factors of plasma Aβ42 levels

Takumi Nakamura1, Takeshi Kawarabayashi1, Yusuke Seino1, Mie Hirohata1, Naoko Nakahata1, Sakiko Narita1, Ken Itoh2, Shigeyuki Nakaji3 & Mikio Shoji1

1Department of Neurology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 037-8562, Japan
2Department of Stress Response Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 037-8562, Japan
3Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 037-8562, Japan

Abstract

Objective: The aim of this study was to confirm determinative factors for plasma Aβ and its association with cognitive function. Methods: Fasting plasma Aβ40 and Aβ42 levels were measured by ELISA in 1019 participants in the Iwaki Health Promotion Project. The relationships between plasma Aβ and health-related items, including physical characteristics, cognitive function tests, blood chemistry, and APOE-e4 genotype were analyzed. Results: The plasma levels of Aβ40 and Aβ42, and Aβ40/42 ratio were found to significantly increase with aging. The age-dependent increase in Aβ42 level was significantly suppressed by APOE-e4. Renal function was an associated factor for the plasma Aβ40 level. The plasma Aβ42 level and Aβ40/42 ratio correlated with cognitive function. Interpretation: Age and APOE-e4 are major determinative factors of plasma levels of Aβ42 and the Aβ40/42 ratio. These factors are critical adjustment factors for the usage of plasma Aβ as a biomarker of central nervous system amyloidosis.

Introduction

Alzheimer’s disease (AD) is observed at a critical rate due to the aging population. The latest research suggests that it is possible to prevent pathological processes in AD by developing disease-modifying therapies, such as anti-Aβ antibodies and BACE-1 inhibitors, against Aβ amyloidosis, which act on pathological cascades, including tauopathy. Prospective cohort studies have reported that the ratio of Aβ40/42 is significantly associated with late-life cognitive decline,1 and risk of developing MCI and AD.2–6 Systematic reviews and meta-analyses have also suggested that the plasma Aβ40/42 ratio can predict the development of AD and dementia.7 However, these findings indicated significant heterogeneity,7 and plasma levels of Aβ40 and Aβ42 alone were not significantly associated.8,9

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN) have confirmed the efficacy of neuropsychiatric tests and neuroimaging using cerebrospinal fluid (CSF) biomarkers, including amyloid PET, demonstrating that signatures of brain Aβ amyloidosis can be found approximately 30 years before the onset of dementia.10,11
Recent studies have clarified that the plasma Aβ42/40 ratio is inversely correlated with cortical amyloid burden in AD, which can be converted into MCI,12,13 and that the plasma Aβ42/40 ratio is a useful screening marker for brain Aβ amyloidosis in normal individuals.14,15 Approximately 30–50% of Aβ in the plasma originates from the brain.12 Age, APOE-ε4, and AD pathology are specific determinants of Aβ turnover kinetics from the brain to CSF, and finally to plasma.15,16

We therefore focused on determinant factors of plasma Aβ levels. As Aβ amyloidosis initiates midlife, it is necessary to analyze these factors in large community-based studies on young adolescent to elderly subjects. Age and APOE-ε4 are two major factors accelerating CNS amyloidosis leading to the onset of AD dementia.17 The gene dose of APOE-ε4 may decrease plasma Aβ42 levels with natural aging, or long-term preclinical stage of AD dementia.18–20 For this reason, basic information on how plasma Aβ levels are regulated over time by blood biochemical factors, cognitive function, and lifestyle remains to be clarified in order to adjust plasma Aβ levels for CNS amyloidosis-specific markers.18,19 Here, we analyzed definite factors of plasma Aβ of participants in The Iwaki Health Promotion Project (IHPP) in 2014, a community-based annual health checkup study designed to prevent and improve lifestyle-related diseases and quality of life.

Materials and Methods

Subjects

A total of 1109 participants with complete data sets out of 1167 enrolled participants were analyzed. The age of 619 participants ranged from 19 to 59 years (mean age of 68 years; 323 females) and 490 participants were older than 60 years of age (mean age of 68 years; 323 females). The baseline characteristics of participants are presented in Table 1. Clinical diagnoses of dementia, Alzheimer dementia (AD), and mild cognitive impairment (MCI) were based on the NIA-AA clinical criteria.20,21 A total of 200 medical and paramedical staff examined participants between 6:30 to 13:00 over 10 days at Iwaki culture center. After written informed consent, a mini-mental state examination (MMSE) for all participants, the logical memory II tests (delayed recall: LM-II) from the Wechsler Memory Scale-Revised (WMS-R), and a detailed questionnaire for memory disturbances and ADL conditions were performed for participants older than 60 years of age. During and after these items, medical and neurological examinations, motor performance, blood pressure, height, body weight, BMI, and body fatty ratio (BFR) were evaluated, and common laboratory tests were performed for complete blood cell count, nutrition, liver and renal function, diabetes mellitus, cholesterol and lipid metabolism, endocrine system, immunology, cardiovascular biomarkers, and urine analysis (details in Tables S1 and S2).

Aβ40 and Aβ42 Quantitation

Ten milliliters of morning fasting blood was taken into an EDTA-2Na tube and immediately centrifuged at 1400 g for 10 min, separated to plasma in a polypropylene tube, and stored frozen at −80°C until use. Sandwich ELISA was used to quantify plasma Aβ40 and Aβ42 levels using a Human/Rat β Amyloid (40) ELISA Kit Wako II and a Human/Rat β Amyloid (42) ELISA Kit Wako High-Sensitive (Wako Pure Chemical Industries, Ltd, Osaka, Japan).22,23 Microplates were precoated with monoclonal BNT77 (IgA, anti-Aβ1-28, specific for Aβ1-16) and sequentially incubated with 25 µL of samples, followed by application of horseradish-peroxidase-conjugated BA27 (anti-Aβ1-40, specific for Aβ/40 or BC05 (anti-Aβ35-43, specific for Aβ42/43). The sensitivity was 0.049 pmol/L (assay range 1.0–100 pmol/L) in the Aβ40 assay and 0.024 pmol/L (assay range 0.01–20.0 pmol/L) in the Aβ42 assay. Intra- and interassay coefficients of variation were less than 10% for both

Table 1. Baseline characteristics of participants in the IHPP.
Characteristics (average and SD) Total population 19–59 y 60–92 y
Number of participants
Gender (female/male)
Age (y)
Weight (kg)
Education (years)
MMSE score
Aβ40 (pmol/L)
Aβ42 (pmol/L)
Aβ40/Aβ42 ratio
Number of APOE-ε4 alleles
0 (i/2i/3, i/3i/3)
1 (i/2i/4, i/3i/4)
2 (i/4i/4)
Alzheimer’s dementia
Mild cognitive impairment
Normal

SD: standard deviation; MMSE: mini-mental state examination; y: years of age; N.D.: not determined.
Aβ40 and Aβ42. After excluding samples with mean values over +3 standard deviation by Grubbs' method,24,25 1091 assay values were analyzed.

APOE genotyping

DNA of 1,151 Iwaki residents was purified from peripheral whole blood using the QIAamp DNA Blood Kit (QIAGEN, Hilden, Germany), and APOE genotype was determined by Toshiba corporation using the Japonica Array consisting of population-specific SNP markers designed from the 1070 whole genome reference panel.26,27 Fifty-three samples that were not determined by the microarray analysis were genotyped by direct sequencing by the Greiner corporation using the following primer set: Forward primer; 5′ TGG ACG AGA CCA TGA AGG AGTT and reverse primer; CAC CTG CTC CTT CAC CTC GTCCA, except for 11 samples that we analyzed using the following primer set: Forward primer; 5′ TGG ACG AGA CCA TGA AGG AGT and reverse primer; CAC CTG CTC CTT CAC CTC GTCCA.

Statistical analysis

Plasma Aβ40, Aβ42, Aβ40/42 ratios did not deviate significantly from normal distribution according to the histograms. To clarify the relationships between plasma Aβ levels and other factors, including blood examination data, life style, and motor functions, correlation analysis was used. For comparison of normal distribution factors, Pearson's correlation coefficient analysis was applied. If normalization was not possible, Spearman's rank correlation coefficient analysis was used. To examine the effects on plasma Aβ by aging, linear regression models were used. To plot the age-dependent changes in plasma Aβ, the simple linear regression model was applied, and the linear regression line was drawn by the method of least squares. To compare the significance between the slopes of the linear regression models and to adjust for confounding factors, multiple regression analysis was applied. To examine whether Aβ and cognitive function are related, we compared the plasma Aβ levels between the high MMSE scores group (29 or 30) and low MMSE scores (less than 29) in subjects aged 60 years and over. In this group comparison, multiple logistic regression was used to adjust for age. Two-tailed P-values less than 0.05 were considered significant. These analyses were performed with IBM SPSS Statistics, version 24 (IBM Japan, Tokyo) and GraphPad Prism, version 7 (GraphPad Software, San Diego, CA). In this study, statistical analyses were conducted with all 1019 participants, including 991 normal, 26 MCI, and 2 AD dementia individuals.

Results

Plasma Aβ Levels and relationship with APOE genotype

The mean ± SD of the Aβ40 plasma level was 106.2 ± 15.5 pmol/L, that of the Aβ42 level was 11.36 ± 1.7, and that of the Aβ40/42 ratio was 9.42 ± 1.1 in all participants. A significant linear increase with age was observed for Aβ40 levels (Y = 0.4724X + 79.65, r² = 0.2208, P < 0.0001), Aβ42 levels (Y = 0.02466X + 10.04, r² = 0.04898, P < 0.0001), and the Aβ40/42 ratio (Y = 0.02234X + 8.113, r² = 0.09725, P < 0.0001) (Fig. 1A–C).

To evaluate whether the APOE-ε4 alleles affect plasma Aβ levels, age-dependent changes in plasma Aβ levels between APOE-ε4 carriers and noncarriers were analyzed. Age-dependent increases in Aβ40 levels were observed in both non-APOE-ε4 allele carriers (Y = 0.4619X + 80.29, r² = 0.2163, P < 0.0001) and APOE-ε4 carriers (Y = 0.5153X + 77.08, r² = 0.2389, P < 0.0001). Aβ42 levels were increased in noncarriers (Y = 0.02984X + 9.842, r² = 0.07497, P < 0.0001) but not in APOE-ε4 carriers (Y = 0.0001912X + 10.92, r² = 0.00002616, P = 0.8068) with aging. The Aβ40/42 ratios were increased both in noncarriers (Y = 0.01701X + 8.327, r² = 0.066, P < 0.0001) and carriers (Y = 0.04561X + 7.159, r² = 0.2658). Plasma Aβ40 and Aβ42 levels, and the Aβ40/42 ratio increased with aging, except for Aβ42 levels in APOE-ε4 carriers by simple linear regression (Fig. 2A–F).

After adjusting for total protein, platelet count, and creatinine levels, which were previously reported as confounding factors for plasma Aβ levels,18,19 the multiple linear regression model was used to clarify whether the age-dependent increases in Aβ levels were affected by APOE-ε4. There were significant differences between carriers and noncarriers in regression lines of Aβ42 (P < 0.0001) and Aβ40/42 (P < 0.0001) but not Aβ40 (P = 0.76) (Fig. 3A–B, details in Table S3). To further validate these results, multiple linear regression model analyses were performed after adjustments for hemoglobin, platelet count, albumin, creatinine, blood urea nitrogen, fasting plasma glucose (FPG), free fatty acid, hemoglobin A1c, and cystatin C, which were all found to be correlated with both plasma Aβ40 and Aβ42 levels in our study. There were also significant differences between carriers and noncarriers in regression lines of Aβ42 (P = 0.001) and Aβ40/42 (P < 0.0001) but not Aβ40 (P = 0.923) (details in Table S4). Thus, the age-dependent increases in Aβ42 levels were suppressed by APOE-ε4, whereas age-dependent increases in the Aβ40/42 ratio were enhanced by APOE-ε4.
Association between MMSE scores and plasma Aβ levels

Subjects aged 60 years old and over were separated into high MMSE score (30, 29 points; n = 340) or low MMSE score (less than 28 points; n = 150) groups. Plasma Aβ40, Aβ42, and Aβ40/42 ratio levels were plotted, and an asterisk was plotted when there were significant differences between the two groups on multiple logistic regression analyses after adjusting for age (Fig. 4A–C). There was no significant difference in variables for Aβ40 levels (P = 0.25). However, significant differences in variables for both age and Aβ42 were observed for Aβ42 (P < 0.0001 and P = 0.04), and also by the model chi-squared test (P < 0.0001). The Hosmer-Lemeshow test demonstrated good predictability (P = 0.502), with a discrimination predictive value of 69.0%. On analysis of the plasma Aβ40/42 ratio, there were significant differences in both age and Aβ ratio (<0.0001 and P = 0.046), and by the model chi-squared test (P < 0.0001). Predictability was good (P = 0.502), with a discrimination predictive value of 70.2% (details in Table S5). There were no significant differences in Aβ concentrations between “AD and MCI group” and “randomly selected age and APOE genotype-matched high MMSE score group (28 participants)”.

Each P value was
0.8838 in Aβ40 level, 0.4647 in Aβ42 level, and 0.2158 in Aβ40/42 ratio.

Factors affecting plasma levels of Aβ
Although the other blood chemistry test items were found to have significant linear correlations with Aβ levels, the correlation coefficients were very low. A strong correlation was only noted between cystatin C levels and Aβ40 levels ($r = 0.5276$). These results are shown in Tables S1 and S2. We additionally analyzed the correlation between plasma Aβ levels and habits or physical conditions. Weak correlations between both Aβ40 and Aβ42 levels, and alcohol intake, smoking amount, body fat ratio, and muscle mass were observed. Measurements of four major complex motor reaction tests, including the ruler drop test, timed up and go test, 10 m walk test, and whole-body reaction time test, were more associated with plasma Aβ40 and Aβ42 levels than simple muscle strength, but the correlation coefficients were low.
Discussion

Our results demonstrated the following: (1) Fasting plasma levels of Aβ40 and Aβ42, and the Aβ40/42 ratio age-dependently increased from 20 years old. (2) The presence of APOE-ε4 suppressed these age-dependent increases in plasma Aβ42 levels. (3) Age and APOE-ε4 were most significant factors for plasma Aβ42 levels and Aβ40/42 ratios after adjusting for previously indicated and newly examined factors, including blood chemistry, life style, and activity. (4) Only renal function was a definitive factor for plasma Aβ40 levels. (5) Plasma Aβ42 levels and Aβ40/42 ratios were correlated with lower MMSE scores in subjects aged over 60 years.

With a longer follow-up, repeated measurement of plasma Aβ may be useful as a simple and minimally invasive screening procedure to detect brain Aβ amyloidosis.14-16 Aβ in plasma does not only originate in the brain because it is also involved in amyloid precursor protein (APP) metabolism in peripheral organs, it binds to several proteins and lipoproteins, is partially released from activated platelets, and is metabolized in the liver and cleared through the kidneys.19 However, a recent study suggested that 30-50% of plasma Aβ originates from the CNS.15 APOE-ε4 is the strongest genetic risk factor for sporadic late onset AD, and markedly accelerates Aβ amyloid deposition in the brain and the onset age of dementia by approximately 10 years.10,17 Recent studies have revealed that CNS-derived Aβ is cleared into the CSF28 and peripheral blood,29 and that the clearance rate is decreased in late onset AD,30 and is differently regulated by age and presence of Aβ amyloidosis.15,31 Association of plasma Aβ levels and cortical amyloid burden is also modulated by APOE isoforms.32 Together with these data, our findings that aging and APOE-ε4 are critical factors for plasma Aβ42 levels from 20 years of age are consistent with Aβ42 clearance from the brain to peripheral plasma. For this reason, adjustments of the plasma Aβ42 level and Aβ40/42 ratio for age, and APOE-ε4 allele at any age are essential for evaluating plasma Aβ levels as biomarkers of the progress of brain Aβ amyloidosis or clinical trials of disease modifying drugs.

Technical problems, including storage tubes, temperature, periods, buffers, and pipetting, during the assay procedure affect plasma Aβ levels.27 Sleep-wake cycles of Aβ production and clearance also affect CNS Aβ levels.33 We carefully managed fasting morning blood sampling, storage, and assay procedures, and obtained intra- and interassay coefficients with a variation of less than 10% in both Aβ40 and Aβ42 assays. We then analyzed the correlations among plasma Aβ and other blood factors. In the ADNI cohort, platelet count, creatinine, and total protein levels and Aβ42 levels are critical factors for plasma Aβ42 levels, except Cystatin C for Aβ40 level, in the IHPP cohort.

Regarding the relationship between plasma Aβ and lifestyle, no direct association was found with systolic or diastolic blood pressure,48,39 nor with alcohol intake, hours of sleep or smoking amount by questionnaire survey. Physical and motor activity, including 10MWT, RDT, TUG, and WBRT as candidates for integrated cognitive processes that require attention, planning, visuospatial, and motor processes, demonstrated linear associations with the plasma Aβ40/42 ratio. However, these correlation coefficients were weak, suggesting that plasma Aβ40/42 is not a predictor for complex motor activity related with cognitive function.40

Prior major cohort studies have reported that plasma Aβ is a risk factor or predictive marker for AD onset in healthy older community members aged at least 55 years.1-12 In contrast, after analyzing fasting blood samples from healthy individuals of a wide age range, we observed the natural course of and factors affecting plasma Aβ40 and Aβ42. The period from mid-life to elderly is critical for preclinical progression of Aβ amyloidosis. Consistent with other reports, we found that decreased plasma Aβ42 levels and increased Aβ40/42 ratio were associated with low cognitive ability in participants aged over 60 years. Furthermore, plasma Aβ42 levels were stably regulated mainly by age and APOE-ε4. As this study was cross-sectional, we were unable to validate plasma Aβ42 and Aβ40/42 ratio as a predictive biomarker for the onset of AD. This is one limitation of our study. Furthermore, we were also unable to analyze the association between Aβ and vascular factors by MRI. To resolve
these limitations, longitudinal confirmation is necessary. To confirm this basic data from the 2014 study, we are repeating the same annual surveys from 2015 to 2017, to clarify the factors of plasma Aβ and evaluate plasma Aβ40 and Aβ42 as biomarkers of onset of Aβ amyloidosis in the brain.

Acknowledgments

We thank Yasuhiro Wakasaya, Kaoru Sato, Sachiyoh Ichinohe, Sachiyoh Kasai, Inose Maruyama, and the members of the Iwaki Health Promotion Project group for research assistance. This study was supported by the Amyloidosis Research Committee Surveys and Research on Special Diseases, the Longevity Science Committee of the Ministry of Health and Welfare of Japan; Scientific Research (C) (15K09305 TK and 18K07385 MS) from the Ministry of Education, Science, and Culture of Japan; the Hirosaki University Institutional Research Grant, and the Center of Innovation Science and Technology-based Radical Innovation and Entrepreneurship Program from the Japan Science and Technology Agency. This study was approved by the ethics committee of Hirosaki University (2016-028). All participants provided written informed consent.

Author Contributions

T.N., S.N., and M.S. conceptualized and designed the study. T.N., N.N., S.N., and K.I. acquired and analyzed the data. T.N., T.K., Y.S., M.H., K.I., S.N., and M.S. drafted the text and prepared the figures.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

1. Okereke OI, Xia W, Selkoe DJ, et al. Ten-year change in plasma amyloid beta levels and late-life cognitive decline. Arch Neurol 2009;66:1247–1253.
2. van Oijen M, Hofman A, Soares HD, et al. Plasma Abeta (1–40) and Abeta(1–42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 2006;5:655–660.
3. Graff-Radford NR, Crook JE, Lucas J, et al. Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol 2007;64:354–362.
4. Lambert JC, Schraen-Maschke S, Richard F, et al. Association of plasma amyloid beta with risk of dementia: the prospective Three-City Study. Neurology 2009;73:847–853.
5. Yaffe K, Weston A, Graff-Radford NR, et al. Association of plasma beta-amyloid level and cognitive reserve with subsequent cognitive decline. JAMA 2011;305:261–266.
6. Chouraki V, Beiser A, Younkin L, et al. Plasma amyloid-β and risk of Alzheimer’s disease in the Framingham Heart study. Alzheimers Dement 2015;11:249–257.
7. Koyama A, Okereke OI, Yang T, et al. Plasma amyloid-β as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Arch Neurol 2012;69:824–831.
8. Olsson B, Launer L, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016;15:673–684.
9. Lovheim H, Elgh F, Johansson A, et al. Plasma concentrations of free amyloid β cannot predict the development of Alzheimer’s disease. Alzheimers Dement 2017;13:778–782.
10. Weiner MW, Veitch DP, Aisen PS, et al. Update of the Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 2014;2015: https://doi.org/10.1016/j.jalz.2014.11.001.
11. Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012;367:795–804.
12. Rembach A, Faux NG, Watt AD, et al. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer’s disease. Alzheimers Dement 2014;10:53–61.
13. Devanand DP, Schupf N, Stern Y, et al. Plasma Aβ and PET PiB binding are inversely related in mild cognitive impairment. Neurology 2011;. https://doi.org/10.1212/WNL.0b013e318224af9.
14. Fandos N, Pérez-Grijalba V, Pesini P, et al. Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals. Alzheimers Dement 2017;8:179–187.
15. Ovod V, Ramsey KN, Mawuenyega KG, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 2017;13:841–849.
16. Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimers’ disease. Nature 2018;554:249–254.
17. Lim YY, Mormino EC. APOE genotype and early β-amyloid accumulation in older adults without dementia. Neurology 2017;89:1028–1034.
18. Toledo JB, Vanderstichele H, Figurski M, et al. Factors affecting Aβ plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol 2011;122:401–413.
19. Toledo JB, Shaw LM, Trojanowski JQ. Plasma amyloid beta measurements – a desired but elusive Alzheimer’s disease biomarker. Alzheimers Res Ther 2013;5:8.
20. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease:
recommendations from the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement
2011;7:263–269.
21. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis
of mild cognitive impairment due to Alzheimer’s disease:
recommendations from the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement
2011;7:270–279.
22. Kanai M, Matsubara E, Isoe K, et al. Longitudinal study of
cerebrospinal fluid levels of tau, A beta40, and A beta1-
42(43) in Alzheimer’s disease: a study in Japan. Ann
Neurol 1999;45:337–541.
23. Matsubara E, Ghiso J, Frangione B, et al. Lipoprotein-free
amyloidogenic peptides in plasma are elevated in patients
with sporadic Alzheimer’s disease and Down’s syndrome.
Ann Neurol 1999;45:537–541.
24. Grubbs FE. Procedures for detecting outlying observations
in samples. Technometrics 1969;11:1–21.
25. Stefansky W. Rejecting outliers in factorial designs.
Technometrics 1972;14:469–479.
26. Kawai Y, Mimori T, Kojima K, et al. Japonica array:
improved genotype imputation by designing a population-
specific SNP array with 1070 Japanese individuals. J Hum
Genet 2015;60:581–587.
27. Nagasaki M, Yasuda J, Yamamoto M, et al. Rare variant
discovery by deep whole genome sequencing of 1,070
Japanese individuals. Nat Commun 2015;6:8018.
28. Bateman RJ, Munsell LY, Morris JC, et al. Human
amyloid-beta synthesis and clearance rates measured in
cerebrospinal fluid in vivo. Nat Med 2006;12:856–861.
29. Roberts KF, Elbert DL, Kasten TP, et al. Amyloid-β efflux
from the central nervous system into the plasma. Ann
Neurol 2014;76:837–844.
30. Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased
clearance of CNS beta-amyloid in Alzheimer’s disease.
Science 2010;330:1774.
31. Patterson BW, Elbert DL, Mawuenyega KG, et al. Age and
amyloid effects on human central nervous system amyloid-
beta kinetics. Ann Neurol 2015;78:439–453.
32. Swaminiathan S, Risacher SL, Yoder KK, et al. Association
of plasma and cortical amyloid beta is modulated by
APOE ε4 status. Alzheimers Dement 2014;10:e9–e18.
33. Lucey BP, Mawuenyega KG, Patterson BW, et al.
Associations between β-Amyloid kinetics and the
β-Amyloid diurnal pattern in the central nervous system.
JAMA Neurol 2017;74:207–215.
34. Arvanitakis Z, Lucas JA, Younkin LH, et al. Serum
creatinine levels correlate with plasma amyloid Beta
protein. Alzheimer Dis Assoc Disord 2002;16:187–190.
35. Reed B, Villeneuve S, Mack W, et al. Associations between
serum cholesterol levels and cerebral amyloidosis. JAMA
Neurol 2014;71:195.
36. Bettcher BM, Ard MC, Reed BR, et al. Association between
cholesterol exposure and neuropathological findings: the
ACT study. J Alzheimer’s Dis 2017;59:1307–1315.
37. Li W, Risacher SL, Gao S, et al. Type 2 diabetes mellitus
and cerebrospinal fluid Alzheimer’s disease biomarker
amyloid β1-42 in Alzheimer’s disease neuroimaging
initiative participants. Alzheimer’s Dement 2018;10:94–98.
38. Ruiz A, Pesini P, Espinosa A, et al. Blood amyloid beta
levels in healthy, mild cognitive impairment and
Alzheimer’s disease individuals: replication of diastolic
blood pressure correlations and analysis of critical
covariates. PLoS ONE 2013;8:e81334.
39. Lambert J-C, Dallongeville J, Ellis KA, et al. Association of
plasma Aβ peptides with blood pressure in the elderly.
PLoS ONE 2011;6:e18536.
40. Stillman CM, Lopez OL, Becker JT, et al. Physical activity
predicts reduced plasma β amyloid in the cardiovascular
health study. Ann Clin Transl Neurol 2017;4:284–291.

Supporting Information

Additional supporting information may be found online
in the Supporting Information section at the end of the
article.
Table S1. Correlation between plasma levels of Aβ and
other blood tests 1.
Table S2. Correlation between plasma levels of Aβ and
other blood tests 2.
Table S3. Result of multiple linear regression model anal-
ysis about whether age-dependent increases in Aβ levels
are affected by presence of APOE-ε4 adjusting for total
protein, platelet count and creatinine levels.
Table S4. Result of multiple linear regression model anal-
ysis about whether age-dependent increases in Aβ levels
are affected by presence of APOE-ε4 after adjustments for
hemoglobin, platelet count, albumin, creatinine, blood
urea nitrogen, fasting plasma glucose, free fatty acid,
hemoglobin A1c, and cystatin C.
Table S5. Result of multiple logistic regression analyses
between plasma Aβ and MMSE scores after adjusting for
age.