The Strategy of Studying the Herb-Pair Inter-Reinforcement Mechanism Mapping on Chemical Space Between Sparganii Rhizoma and Curcumae Rhizoma

Zhao Chen (zhaochen@bucm.edu.cn)
Beijing University of Chinese Medicine
https://orcid.org/0000-0002-3911-1125

Shiqi Sun
Beijing University of Chinese Medicine

Xingde Ren
Beijing University of Chinese Medicine

Yankun Chen
Beijing University of Chinese Medicine

Research

Keywords: Chinese herbal medicine, herb-pair, inter-reinforcement mechanism, chemical space, Sparganii Rhizoma, Curcumae Rhizoma, compound combinations, network pharmacology, cardiovascular diseases

DOI: https://doi.org/10.21203/rs.3.rs-136208/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

With the ever-increasing acceptance of combination therapy and the use of traditional Chinese medicine (TCM) has become an emerging trend. The multi-herb formulae therapy is one of the most important characteristics of TCM, but the modernization drive of this conventional wisdom has faced many obstacles due to its unimaginable complexity. Herb pairs, the most fundamental and the simplest form of multi-herb formulae, are a centralized representative of Chinese herbal compatibility. A systematic search of herb pair related research was carried out using multiple online literature databases, books and monographs published in the past 20 years. The herb-pair has an important characteristics—inter-reinforcement (Xiangxu in TCM terms) in TCM basic theory. The inter-reinforcement mechanisms of herb pairs are extremely complicated and their exact molecular mechanisms are also still not well elucidated.

Methods

This research integrated the cheminformatics’ and network pharmacology approach to elucidate the inter-reinforcement mechanisms in treating cardiovascular diseases (CVDs) with the herb-pair (Sparganii Rhizoma and Curcumae Rhizoma) at the scale of chemical space. Chemical space is a term often used for ‘multi-dimensional descriptor space’, geographical map to illustrate the distribution of molecules and their properties. It also encompasses all possible small organic molecules in Chinese herbal medicine (CHM). The concept of chemical space was proposed for the first time to study the herb-pair inter-reinforcement mechanism.

Results

Those compounds from Sparganii Rhizoma and Curcumae Rhizoma with the HIA<=2 were as candidate compounds. The herb-pair shared 2 common compounds with 6 common targets and they have 24 targets from four public databases. The compound-target-pathway-disease networks were constructed to obtain a global perspective of the interactions between Sparganii Rhizoma and Curcumae Rhizoma in chemical space. On this basis, a series of pathway guided compound combinations were found. Screen with HIA<2 (Human intestinal Absorption), which were derived from Sparganii Rhizoma and Curcumae Rhizoma (Chinese herb pair). The CTPAs network embodied 327 nodes (100 compounds, 104 targets, and 128 pathways). After setting compounds similarity to 0.7 in each compound combinations, 497 pairs of compound combinations associated 128 pathways were obtained in Target-Pathway Association Interactions (TPAs). Five, three and thirty-six compound combinations were screened which their targets were in platelet activation pathway, vascular smooth muscle contraction and calcium signaling pathway.

Conclusions

Mapping the chemical compounds of Chinese herbal medicine into chemical space is helpful to explain herb-pair inter-reinforcement mechanism at molecular level. Several combination compounds were mapped into cardiovascular diseases pathways, and the results showed that the strategy of studying the
herb-pair inter-reinforcement mechanism mapping on chemical space is a certain scientific and rational method to illustrate material basis of Chinese herbal medicine at multi-dimension.

Background

Chinese herbal medicine (CHM) is not only medical treasure trove of traditional Chinese medicine (TCM), but also the vastness of natural and biologically relevant chemical space[1,2]. Chemical space is a term often used for ‘multi-dimensional descriptor space’[1], geographical map to illustrate the distribution of molecules and their properties[3-5]. Additionally, traditional Chinese medicine (TCM) has been practiced to treat disease from ancient time and it has been recognized as an interesting alternative to conventional medicine[6,7]. Long-term applications and their experiences have demonstrated that herb compatibility is not only a better choice, but also a necessary choice[8]. Herb-pair is the most basic form of herb compatibility in traditional Chinese medicine and is the ancient medical experts of long-term medical practice summary. Herb-pairs are a combination of two relatively fixed herbs, which have been proven effective in clinical practice. The herb-pair has their inherent prescriptions and it is a bridge between single herb and prescriptions. Traditional Chinese medicine (TCM)—herbal mixtures developed thorough observation and experience accumulated over thousands of years, but with unknown mechanisms of action[9].

In this context, we take herb-pair Sparganii Rhizoma (tuber of Spargranium stloniferum Buch.-Ham.) and Curcumae Rhizoma (rhizome of Curcuma phaeocaulis Val.) (SR-CR) as our research object to study the herb-pair inter-reinforcement (Xiang Xu in Chinese ancient medical term) mechanism from holistic perspective in chemical space. The rein-reinforcement is the combination of herbs with similar property and efficacy which can significantly reinforce some kind or several kinds of therapeutic effects[10]. The herb-pair Sparganii Rhizoma and Curcumae Rhizoma (SR-CR) has been increasingly recognized to possess multiple therapeutic activities for treatment of tumor[11-13], thrombosis[14], inflammation[15], blood stasis[16,17], amenorrhea, functional dyspepsia[16]. The details of SR-CR main chemical ingredients see the supplementary Table S1.

In a Chinese herbal mixture, the paired-herb is referring to a combined usage of two herbs as to optimize the pharmacological property[18]. Mutual enhancement of herb-pair can be achieved by using pair of herbs with ingredients of similar therapeutic actions, or by using a principal herb with main therapeutic actions and another one acting to enhance or assist the effects of the principle one[19]. Many ingredients of herbs are inactive individually but become active in combination, called coalistic combinations, which are quite common in herb pairs[20,21]. However, the exact molecular mechanisms of these TCM herb-pairs are yet unclear[19]. The herb-pair contains many combinations among the chemical space. Though there are many reports on pharmaceutics, pharmacokinetics, and pharmacodynamics of TCM, there remains a serious lack of summarization and systemic analyses of these reported data to help uncover the compatibility rationale of TCM herb pairs based on their chemical spaces[22]. Chemical space—which encompasses all possible small organic molecules, including those present in biological systems—is vast[1,23]. The vastness of chemical space will guide us to discover biologically active compounds[2],
natural products[24], and the synthesis of new ligands[25,26]. Although herb-pair inter-reinforcement is not entirely clear, the explorations of herb-pair chemical space will greatly enhance our understanding of herb-pair inter-reinforcement mechanism in biology, and lead to new strategies to treat disease[27,28].

Methods

Date collection and visualization

We collected compounds of *Sparganii Rhizoma* and *Curcumae Rhizoma* from four typical TCM databases, namely TCMID[53], TCMSP[36], TCM Database@Taiwan[54], BANMAN-TCM[55]. All of these compounds collected were normalized to the canonical SMILES format[56]. Duplicates and compounds without structures were excluded. Data set S was collected from Sparganii Rhizoma chemical space and contained 47 molecules. Similarly, data set E was from Curcumae Rhizoma chemical space and contained 91 molecules. Chemical space was used to discuss the similarities and differences between the molecule sets of Sparganii Rhizoma (data set S) and Curcumae Rhizoma (data set E). The data set S and E can be mapped to two-dimensional space while maintaining a lot of geometric structure. A total of 47 chemical components of Sparganii Rhizoma were obtained from the databases and were numbered from S001 to S047 (*Supplementary Table S1*). The 91 chemical components of Curcumae Rhizoma were numbered from E001 to E093, and we excluded the no clear structure chemical E071, E075 in this research (*Supplementary Table S1*).

All of the related targets were normalized to the official gene symbols using the UniProt database (http://www.uniprot.org/uploadlists/). Duplicates from different sources were excluded. Fingerprints for each of the data sets. The MDL 166-key fingerprint is also known as the “Molecular Access System (MACCS)” key in the literature and is a no hashed fingerprint consisting of 166 bits. The MDL 166-key fingerprint is one of the very few available that offers a 1-1 mapping[57]. These fingerprints were assembled into the fingerprint array.

The data sets used to evaluate the models’ ability to cluster compounds by molecular structure were given in **Table 1**. The PaDEL-Descriptor[58] was used to generate a set of MDL 166-key fingerprints for each of the data sets. The MDL 166-key fingerprint is also known as the “Molecular Access System (MACCS)” key in the literature and is a no hashed fingerprint consisting of 166 bits. The MDL 166-key fingerprint is one of the very few available that offers a 1-1 mapping[57]. These fingerprints were assembled into the fingerprint array.

Table 1 Data sets on Sparganii Rhizoma and Curcumae Rhizoma chemical space to Evaluate Structure Clustering*
The diversities were computed using Tanimoto coefficient[57,59], which is a statistic used for comparing the similarity and diversity of sample sets. Tanimoto coefficient is also known as the Jaccard coefficient, and, when used to measure dissimilarity rather than similarity[60]. Turning then to the similarity coefficient that is used for comparing fingerprints, the most popular is the Tanimoto coefficient (Equation 1). If two molecules have a and b bits set in their fragment bit-strings, with c of these bits being set in both of the fingerprints, then the Tanimoto coefficient is defined to be:

$$\frac{c}{a+b-c}$$ \hspace{1cm} (1)

The Tanimoto coefficient gives values in the range of zero (no bits in common) to unity (all bits the same); and is usually used for Boolean vector, that is, when the components are only 0 or 1. In our research, the compounds of herb pair were normalized to MDL 166-key fingerprints.

Visualization for herb pair’s chemical space

Generative Topographic Mapping (GTM) is nonlinear and works by training an Radial Basis Function (RBF) neural network to produce a mapping from two-dimensional latent (i.e., visualization) space to n-dimensional data (i.e. fingerprint) space[57]. Essentially, GTM models was used to reduce the dimensionality of the fingerprint array from 166-dimensional space to two-dimensional space where it could be plotted and visualized (Fig. 2). It has reported that greater the structural similarity, the greater the biological similarity[61]. As can be seen from Fig. 2, the chemical compounds in the chemical space of SR-RC could be divided into two groups. Nevertheless, there are many compounds with similar structure (Fig. 2).

The workflow of studying the herb-pair inter-reinforcement mechanism

We calculated the human intestinal absorption (HIA) properties of the compounds from Sparganii Rhizoma and Curcumae Rhizoma using a model integrated within Pipeline Pilot (version 7.5.2, BIOVIA, San Diego, CA, USA) [62] to rank the molecules into the following four classes: good (0), moderate (1), poor (2) and very poor (3). The very poor class of 10 compounds was discarded. The remaining compounds were further analyzed (for further details of four classifications for these compounds, see Supplementary Table S1).

Subsequently, we collected experimentally determined compound-target pairs from four databases, namely STITCH (version 5.0) [63], BindingDB[64], PubChem[65] and DrugBank[66,67]. No target records
among these four typical TCM databases of these compounds were predicted using BATMAN-TCM bioinformatics tool[55] and chemical-protein interactions (CPI) predictor[68]. For each compound, the score above 80 predicted targets were stored as putative targets when using the bioinformatics tool—BATMAN-TCM; the probability above 0.6 predicted targets were stored as putative targets when using CPI predictor[68]. The calculating score method of the BATMAN-TCM is to rank potential drug-target interactions based on their similarity to the known drug-target interactions[69]. On this basis, the Compound-Target Network were constructed, indicating the interaction between compounds and targets.

We will explain the inter-reinforcement mechanism for herb pair of from the pathway level and the disease level. On this basis, the target-pathway network and target-disease network on the basis of Compound-Target network were constructed. In order to study the contribution of common compounds and non-common compounds for the herb-pair inter-reinforcement in the herb pair, we examined compound-target-pathway and compound-target-disease with common compounds and the non-common compounds. Finally, the CTDIs and TPAs were constructed with the common/non-common compounds to comparative analysis the inter-reinforcement mechanism of the herb pair (Fig. 3).

Results

Networks can be used to view global drug-targets-pathway-disease relationships between nodes[29,30]. Network pharmacology approach have been applied in drug discovery[31-35]. In this research, we utilized the network pharmacology method to illustrate SR-CR inter-reinforcement mechanism by mapping compound combinations into SR-CR chemical space.

Target-Pathway association profile of Common compounds for the herb pair

The herb-pair shared 2 common compounds and they have 24 targets from four public databases. We obtained 24 targets associated 15 KEGG pathways and 22 REACTOME pathways in total and the inter-reinforcement mechanisms of herb-pair were mapped to the target-pathway network according to their targets information (Fig. 4, see Supplementary Table S2 for further details of these pathways). The degree of PIK3CG among the 24 targets is the largest one. We also obtained 27 targets associated 87 diseases in total and an average degree of 14 targets per compound (Fig. 5a, see Supplementary Table S3 for further details of these 87 diseases).

Table 2 Physical and chemical properties of the common compounds

Common compound	LogP	OB(%)[36]	pKa
alexandrin	8.615	20.63	12.91±0.70
hederagenin	7.065	36.91	4.63±0.70
The two common compounds were connected to multiple targets and they have 6 common targets, namely PTGS2, PGR, NCOA2, ADH1C, PTGS1, LYZ. The 6 targets associated 35 diseases and the maximum degree of 32 diseases is PTGS2 in Fig. 5b. (See Supplementary Table S4 for further details of these 35 diseases)

Compound-Target-Pathway Associations (CTPAs) network

To understand the complex interaction of herb-pair's targets at system level, we constructed a Compound-Target-Pathway Associations (CTPAs) network. The CTPAs network embodied 327 nodes (100 compounds, 104 targets, and 128 pathways) (Fig. 6, see Supplementary Table S5 for further details of these pathways associated targets). The mean degree value (the number of associated common targets) of candidate compounds was 1.08, and 24 compounds had a degree value >10, indicating that most of the compounds regulated multiple targets to exert various therapeutic effects in the herb-pair's chemical space. The top 5 degree of Compound-Target-Pathway network were Neuroactive ligand-receptor interaction, Morphine addiction, Retrograde endocannabinoid signaling, Calcium signaling pathway, Nicotine addiction.

Compound-Target-Disease interactions (CTDIs) network

The Compound-Target-Disease interactions (CTDIs) network was built by targets and diseases [37-41]. Node size was proportional to its degree. The light green (green) ellipses indicated Sparganii Rhizoma (Curcumae Rhizoma) compounds, the pink ellipses indicates the targets of herb-pair's compounds, and the cyan ellipses indicated the disease types (Fig. 7, see Supplementary Table S6 for further details of these diseases). The involved diseases were type 2 diabetes, hypercholesterolemia, hypertension, cardiovascular diseases, etc.

All of these targets were shown by the gene name. All of the targets and diseases were selected to construct the Compound-Target-Disease interactions (CTDIs) network by linking the targets to the corresponding diseases. All visualized network graphs were constructed by Cytoscape 3.2.1 (http://www.cytoscape.org/), an open software package project for visualizing, integrating, modeling and analyzing the interaction networks[42,43].

Target-Pathway Association Interactions (TPAs)

We analyzed Target-Pathway Association Interactions (TPAs) and screened the combinatorial compounds which their targets were in the same pathway[21]. Then we combined the two compounds which one from Sparganii Rhizoma and the other from Curcumae Rhizoma. Finally, 14370 pairs of pathway-guided combination compounds, including 1267 pairs of compound combinations (Supplementary Table S7) were obtained. After setting compounds similarity to 0.7 in each compound combinations (Fig. 8), 497 pairs of compound combinations associated 128 pathways (Supplementary Table S8) were obtained.

Pathway guided compound combinations
The pathway of platelet activation is one of 128 pathways, and platelets play a key role in preventing blood loss in response to injury, thrombosis, atherosclerosis, inflammation and metastasis, but they are also responsible for the formation of pathogenic thrombi that cause acute manifestations of vascular atherothrombotic disease[44-46]. In this research, four compound combinations and their associated targets in platelet activation pathway (Fig 9.) were obtained. The compound combination (S039, E063) acted on Akt pathway, and the compound combinations ((S039, E085), (S039, E074), (S039, E005)) targeted on the PTGS1 (the numbered chemical ingredients see the supplementary Table S1). The mechanism of compound combinations is alike drug combinations. As we knew, drug combinations can improve over single therapeutic agents in two ways[47]. In additionally, drug combinations have been used for treating diseases and reducing suffering in Chinese herbal medicine[48].

Synergy between two drugs may result in a better response than the two drugs independently[47]. In this research, we picked out another two pathways (Calcium signaling pathway, vascular smooth muscle contraction) closely related to cardiovascular diseases (CVDs) and the 3 pathways were consolidated into a “CVDs pathway” under the pathological and clinical data[49]. In order to illustrate the material basis of herb-pair inter-reinforcement mechanism, we mapped compound combinations to pathways associated compounds’ targets (supplementary Table S9).

Across all kingdoms in the tree of life, Calcium (Ca2+) is an essential element used by cells to respond and adapt to constantly changing environments[50]. Signaling occurs when the cell is stimulated to release calcium ions (Ca2+) from intracellular stores, and/or when calcium enters the cell through plasma could induce the development of atherosclerosis[49].

This strategy of studying herb-pair inter-reinforcement membrane ion channels[51]. Many diseases, such as cardiovascular diseases, type 2 diabetes, malignant hyperthermia, central core disease, associated with calcium signaling pathway[50,52]. Vascular smooth muscle contraction also plays an important role in the regulation of CVDs, there is due mechanism mapping on chemical space will lead to the development of many today's drug discovery from Chinese herb-pairs. Future research in our group will focus on investigating compound combinations’ pathological effect on specific diseases, such as, CVDs.

Discussion

This research proposed to explore the inter-reinforcement mechanism of Sparganii Rhizoma and Curcumae Rhizoma based on the chemical space for the first time. We adopted the chemoinformatics methods to screen the chemical compounds that can be absorbed and utilized by the human body from the chemical space of Sparganii Rhizoma and Curcumae Rhizoma. And then, the network of Compound-Target-Disease interactions (CTDIs) network, Compound-Target-Disease interactions (CTDIs) network, Target-Pathway Association Interactions (TPAs), Pathway guided compound combinations were constructed with network pharmacology method.
It explains inter-reinforcement mechanism of *Sparganii Rhizoma* and *Curcumae Rhizoma* with the combination compounds in cardiovascular disease-related pathways. Each group of combination compounds was derived from *Sparganii Rhizoma* and *Curcumae Rhizoma*. This strategy could provide research strategies for further research on the mechanism of interaction of TCM pairs. However, this approach to screen out combination compounds on specific disease-related pathways required further animal or cell experiments to confirm its combined effect.

Conclusions

This strategy will provide methodology to study the herb-pairs inter-reinforcement mechanism on compound combinations level. In this context, several compound combinations with potential efficacy to treat diseases were discovered, especially cardiovascular disease.

The compound combinations with the common compounds (hederagenin and alexandrin) plays an important role in the cardiovascular diseases (CVDs) pathways from Supplementary Table S9. The common compounds appeared in the CVDs pathways (platelet activation, vascular smooth muscle contraction, calcium signaling pathway), and it indicated that the compound combinations with common compounds through the accumulation of quantity to play a synergistic role. However, the synergistic effects with no-common compounds by accumulating target effects in the same or different pathways. Betulinic acid in Sparganii Rhizoma combined with many other compounds played import role in CVDs pathway. Betulinic acid with other compounds may be a potential drug for treating of cardiovascular diseases.

Abbreviations

CHMs: Chinese herbal medicines; TCM: Traditional Chinese medicine; *SR-CR*: *Sparganii Rhizoma* and *Curcumae Rhizoma*; CVDs: cardiovascular diseases; HIA: Human intestinal Absorption; RBF: Radial Basis Function; GTM: Generative Topographic Mapping; CPIs: Chemical-protein interactions; CTDIs: Compound-Target-Disease interactions; TPAs: Target-Pathway Association Interactions

Declarations

Authors’ contributions

ZC substantial contributions to the conception or design of the work. ZC and SS drafting the work and revising it critically for important intellectual content. ZC and XR final approval of the version to be published; XR and YC conceived and designed the experiments; SS and XR collected the data; YC contributed reagents/materials/analysis tools; ZC analyzed the data and wrote the paper, YC revised the manuscript. All authors read and approved the final manuscript.

Author details
Acknowledgements

This work is supported and sponsored by the Natural Science Foundation of China (No.81430094) and China Postdoctoral Science Foundation (No.2020M670236).

Competing interests

The authors declare that they have no competing interests.

Consent for publication

All of authors consent to publication of this study in Journal of Chinese Medicine.

Availability of data and materials

The readers can use data and materials in this manuscript by quotation of author names and Journal of Chinese Medicine. Raw data in Supplementary Table S1-9 and were summarized as Additional file 1. Availability of raw data for Fig. 1-10 were summarized as Additional file 2.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

This work was supported by National Natural Science Foundation of China (No.81430094) and China Postdoctoral Science Foundation (No.2020M670236).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References
1. Dobson CM. Chemical space and biology. Nature. 2004;432:824-828.

2. Lipinski C, Hopkins A. Navigating chemical space for biology and medicine. Nature. 2004;432(7019):855-61.

3. Reymond JL, Awale M. Exploring chemical space for drug discovery using the chemical universedatabase. ACS chemical neuroscience. 2012;3(9):649-57.

4. Hopkins AL, Bickerton GR. Drug discovery: Know your chemical space. Nature chemical biology. 2010;6(7):482-3.

5. Finamore C, Festa C, Renga B, Sepe V, Carino A, Masullo D, et al. Navigation in bile acid chemical space: Discovery of novel fxr and gpbar1 ligands. Scientific reports. 2016;6:29320.

6. Xiong X. Integrating traditional chinese medicine into western cardiovascular medicine: A evidence-based approach. Nature Reviews Cardiology. 2015;12(6):374.

7. Song Y, Yang J, Jing W, Wang Q, Liu Y, Cheng X, et al. (2020). Systemic elucidation on the potential bioactive compounds and hypoglycemic mechanism of Polygonum multiflorum based on network pharmacology. Chinese Medicine. 2020;15(1):1-15.

8. Wang S, Hu Y, Tan W, Wu X, Chen R, Cao J, Chen M, Wang Y. Compatibility art of traditional chinese medicine: From the perspective of herb pairs. Journal of ethnopharmacology. 2012;143(2):412-423.

9. Lam CS, Cheng LP, Zhou LM, Cheung YT, Zuo Z. Herb–drug interactions between the medicinal mushrooms Lingzhi and Yunzhi and cytotoxic anticancer drugs: a systematic review. Chinese medicine. 2020;15(1):1-18.

10. Zhao C, Cao Y, He S, Qiao, Y. Development of models for classification of action between heat-clearing herbs and blood-activating stasis-resolving herbs based on theory of traditional Chinese medicine. Chinese Medicine. 2018;13(1):12.

11. Zhou Y, Tao H, Wang A, Zhong Z, Wu X, Wang M, Wang Y. Chinese herb pair Paeoniae Radix Alba and Atractylodis Macrocephalae Rhizoma suppresses LPS-induced inflammatory response through inhibiting MAPK and NF-κB pathway. Chinese medicine. 2019;14(1):1-11.

12. Liu J, Zhang Y, Qu J, Xu L, Hou K, Zhang J, et al. β-elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC cancer. 2011;11(1):1-10.

13. Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu, L, et al. (2019). Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chinese medicine. 2019;14(1):48.

14. Xia Q, Wang X, Xu DJ, Chen XH, Chen FH. Inhibition of platelet aggregation by curdione from curcuma wenyujin essential oil. Thrombosis research. 2012;130(3):409-14.

15. Makabe H, Maru N, Kuwabara A, Kamo T, Hirota M. Anti-inflammatory sesquiterpenes from curcuma zedoaria. Natural product research. 2006;20(7):680-85.
16. Commission, C.P. Pharmacopoeia of the people's republic of china. Subdivision of 2015 edition. China medical science and technology press: Beijing, 2015.

17. Xia GY, Sun DJ, Ma JH, Liu Y, Zhao F, Donkor PO, Ding LQ, Chen LX, Qiu F. (+)/(−)-phaeocaulin ad, four pairs of new enantiomeric germacrane-type sesquiterpenes from curcuma phaeocaulis as natural nitric oxide inhibitors. Scientific Reports. 2017; 7(1):1-8.

18. Yan L, Xu SL, Zhu KY, Lam KY, Xin G, Maiwulanjiang M, et al. Optimizing the compatibility of paired-herb in an ancient chinese herbal decoction kai-xin-san in activating neurofilament expression in cultured pc12 cells. Journal of ethnopharmacology 2015, 162:155-62.

19. Qi Y, Cheng X, Jing H, Yan T, Xiao F, Wu B, et al. Comparative pharmacokinetic study of the components in Alpinia oxyphylla Miq.-Schisandra chinensis (Turcz.) Baill. herb pair and its single herb between normal and Alzheimer's disease rats by UPLC-MS/MS. Journal of pharmaceutical and biomedical analysis. 2020;177:112874.

20. Zhang L, Liu X, Tu C, Li C, Song D, Zhu J, et al. Components synergy between stilbenes and emodin derivatives contributes to hepatotoxicity induced by Polygonum multiflorum. Xenobiotica. 2020;50(5):515-25.

21. Jaeger S, Igea A, Arroyo R, Alcalde V, Canovas B, Orozco M, et al. Quantification of pathway cross-talk reveals novel synergistic drug combinations for breast cancer. Cancer research. 2017; 77(2):459-69.

22. Zhou M, Hong Y, Lin X, Shen L, Peng Y. Recent pharmaceutical evidence on the compatibility trationality of traditional chinese medicine. Journal of Ethnopharmacology. 2017;206:363-375.

23. Irwin JJ. Staring off into chemical space. Nature chemical biology. 2009;5(8):536-7.

24. Renner S, Van Otterlo WA, Seoane MD, Möcklinghoff S, Hofmann B, Wetzel S, et al. Bioactivity-guided mapping and navigation of chemical space. Nature chemical biology 2009;5(8), 585-92.

25. Harrison C. Branching out into chemical space. Nature Reviews Drug Discovery. 2009;8(8):615.

26. Smith A. Exploring chemical space. Nature Reviews Drug Discovery. 2002;1(2):95.

27. Chou TC. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer research. 2010;70(2):440-6.

28. Kuenemann MA, Labbé CM, Cerdan AH, Sperandio O. Imbalance in chemical space: How to facilitate the identification of protein-protein interaction inhibitors. Scientific reports. 2016; 6(1):1-17.

29. Zhang R, Zhu X, Bai H, Ning, K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Frontiers in pharmacology, 2019;10:123.

30. Hopkins AL. Network pharmacology. Nature biotechnology. 2007;25(10):1110-1.

31. Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL. Global mapping of pharmacological space. Nature biotechnology. 2006; 24(7):805-15.
32. Morphy R, Rankovic Z. Fragments, network biology and designing multiple ligands. Drug discovery today. 2007;12(3-4):156-160.

33. Qi Q, Li R, Li HY, Cao YB, Bai M, Fan XJ, et al. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach. Acta Pharmacologica Sinica. 2016;37(7):963-972.

34. Yue SJ, Xin LT, Fan YC, Li SJ, Tang YP, Duan JA, et al. Herb pair danggui-honghua: Mechanisms underlying blood stasis syndrome by system pharmacology approach. Scientific reports. 2017;7:40318.

35. Zhang RZ, Yu SJ, Bai H, Ning K. TCM-mesh: The database and analytical system for network pharmacology analysis for tcm preparations. Scientific Reports. 2017;7(1):1-14.

36. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of cheminformatics 2014, 6(1):13.

37. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online mendelian inheritance in man (omim), a knowledgebase of human genes and genetic disorders. Nucleic acids research 2005(suppl_1), 33, D514-D517.

38. Amberger J, Bocchini C, Hamosh A. A new face and new challenges for online mendelian inheritance in man (omim®). Human mutation. 2011;32(5):564-7.

39. Chen X, Ji ZL, Chen YZ. TTD: Therapeutic target database. Nucleic acids research. 2002;30(1): 412-5.

40. Zhu F, Han B, Kumar P, Liu X, Ma X, Wei X, et al. Update of ttd: Therapeutic target database. Nucleic acids research. 2009;38(suppl_1):D787-D791.

41. Zhu F, Shi Z, Qin C, Tao L, Liu X, Xu F, et al. Therapeutic target database update 2012: A resource for facilitating target-oriented drug discovery. Nucleic acids research. 2011;40(D1): D1128-D1136.

42. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using cytoscape. Nature protocols. 2007;2(10): 2366-82.

43. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome research. 2003;13(22):2498-504.

44. Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW. Release of gelatinase a during platelet activation mediates aggregation. Nature. 1997;386(6625):616-9.

45. Davi G, Patrono C. Platelet activation and atherothrombosis. New England Journal of Medicine. 2007;357(24):2482-94.
46. Jennings LK. Mechanisms of platelet activation: Need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost. 2009;102(08):248-57.

47. Vazquez A. Optimal drug combinations and minimal hitting sets. BMC systems biology. 2009;3(1):81.

48. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological reviews. 2006;58(3):621-681.

49. Liu J, Mu J, Zheng C, Chen X, Guo Z, Huang C, et al. Systems-pharmacology dissection of traditional chinese medicine compound saffron formula reveals multi-scale treatment strategy for cardiovascular diseases. Scientific reports. 2016;6:19809.

50. Zaichick SV, McGrath KM, Caraveo G. The role of Ca^{2+} signaling in Parkinson's disease. Disease models & mechanisms. 2017;10(5):519-35.

51. Clapham DE. Calcium signaling. Cell 1995;80(2):259-68.

52. Carafoli E. Calcium signaling: A tale for all seasons. Proceedings of the National Academy of Sciences. 2002;99(3):1115-22.

53. Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. TCMID: Traditional chinese medicine integrative database for herb molecular mechanism analysis. Nucleic acids research. 2012;41(D1):D1089-D1095.

54. Chen CYC. TCM database@ taiwan: The world's largest traditional chinese medicine database for drug screening in silico. PloS one. 2011;6(1):e15939.

55. Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H, et al. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Scientific reports. 2016;6:21146.

56. O'Boyle NM. Towards a universal smiles representation-a standard method to generate canonical smiles based on the InChI. Journal of cheminformatics. 2012;4(1):22.

57. Owen JR, Nabney IT, Medina-Franco JL, López-Vallejo F. Visualization of molecular fingerprints. Journal of chemical information and modeling. 2011;51(7):1552-63.

58. Yap CW. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of computational chemistry. 2011;32(7):1466-74.

59. Willett, P. Similarity-based approaches to virtual screening. Portland Press Limited: 2003;603-6

60. Willett P, Barnard JM, Downs GM. Chemical similarity searching. Journal of chemical information and computer sciences. 1998;38(6):983-96.

61. Martin YC, Kofron JL, Traphagen LM. Do structurally similar molecules have similar biological activity? Journal of medicinal chemistry. 2002;45(19):4350-58.
62. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. Journal of medicinal chemistry. 2000;43(21):3867-3877.

63. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic acids research. 2015;44(D1):D380-D384.

64. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. Bindingdb: A web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic acids research. 2006;35(suppl_1):D198-D201.

65. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant S.H. Pubchem: A public information system for analyzing bioactivities of small molecules. Nucleic acids research. 2009;37(suppl_2):W623-W633.

66. Wishart D.S, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. Drugbank: A knowledgebase for drugs, drug actions and drug targets. Nucleic acids research. 2008;36(suppl_1):D901-D906.

67. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. Drugbank: A comprehensive resource for in silico drug discovery and exploration. Nucleic acids research. 2006;34(suppl_1):D668-D672.

68. Cheng F, Zhou Y, Li J, Li W, Liu G, Tang Y. Prediction of chemical–protein interactions: Multitarget-qsar versus computational chemogenomic methods. Molecular BioSystems.2012;8(9):2373-2384.

69. Perlman L, Gottlieb A, Atlas N, Ruppin E, Sharan R. Combining drug and gene similarity measures for drug-target elucidation. Journal of computational biology. 2011;18(2):133-145.

Figures
Figure 1

Herb-pair mapping into chemical space to explain the inter-reinforcement mechanism at molecular level.

Figure 2

Generative Topographic Mapping (GTM) visualization (a) and Magnification Factor (MF) Plot for herb-pair's (Spargani Rhizoma and Curcumae Rhizoma) chemical space (b)
Figure 3

The workflow of studying the herb-pair inter-reinforcement mechanism mapping on chemical space to guide compound combination.
Figure 4

The two common compound (alexandrine and hederagenin) of target-pathway association profile from KEGG database. A target node and a pathway node were linked if the target was associated with the pathway.

Figure 5

The two common compound (alexandrine hederagenin) of Compound-Target-Disease Interaction (CTDIs) network. (a) contains 28 targets of the two compound, (b) exacting the 6 common target from the 28 target to construct target node and a disease node were linked if the target was associated with the disease.
The non-common compounds of target-pathways association profiles. A target node and a pathway node were linked if the target was associated with the disease. The compound combinations were from SR-CR chemical space and each of them may act on the same target as route (1). Otherwise, each of them may act on the different targets in the same pathway as route (2).
Figure 7

The non-common compound of target-disease association profiles. A targets node and a node were linked if the target was associated with the disease.
Figure 8

The workflow to discover the key compound combinations for herb-pair inter-reinforcement mechanism.

Chemical Space of Sparganii Rhizoma (S) and Curcumae Rhizoma (E)

Cardiovascular Diseases pathway
- Vascular smooth muscle contraction
- Platelet activation
- Calcium signaling pathway
Figure 10

CTDIs-TPAs guide compound combinations for inter-reinforcement mechanism in cardiovascular disease (CVDs) associated pathway and the compound combinations' targets in the pathways.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTableS1.xlsx
- SupplementaryTableS2.xlsx
- SupplementaryTableS3.xlsx
- SupplementaryTableS4.xlsx
- SupplementaryTableS5.xlsx
- SupplementaryTableS6.xlsx
- SupplementaryTableS7.xlsx
- SupplementaryTableS8.xlsx
- SupplementaryTableS9.xlsx