Genome sequence of the acid-tolerant *Burkholderia* sp. strain WSM2232 from Karijini National Park, Australia

Robert Walker¹, Elizabeth Watkin¹, Rui Tian², Lambert Bräu³, Graham O’Hara², Lynne Goodwin⁴, James Han⁵, Tatiparthi Reddy⁶, Marcel Huntemann⁵, Amrita Pati⁵, Tanja Woyke⁵, Konstantinos Mavromatis⁵, Victor Markowitz⁶, Natalia Ivanova⁵, Nikos Kyrpides⁵ & Wayne Reeve²*.

¹School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia, Australia
²Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
³School of Life and Environmental Sciences, Deakin University, Victoria, Australia
⁴Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
⁵DOE Joint Genome Institute, Walnut Creek, California, USA
⁶Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA

*Correspondence: Wayne Reeve (W.Reeve@murdoch.edu.au)

Keywords: root-nodule bacteria, nitrogen fixation, rhizobia, Betaproteobacteria

Burkholderia sp. strain WSM2232 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod that was trapped in 2001 from acidic soil collected from Karijini National Park (Australia) using *Gastrolobium capitatum* as a host. WSM2232 was effective in nitrogen fixation with *G. capitatum* but subsequently lost symbiotic competence during long-term storage. Here we describe the features of *Burkholderia* sp. strain WSM2232, together with genome sequence information and its annotation. The 7,208,311 bp standard-draft genome is arranged into 72 scaffolds of 72 contigs containing 6,322 protein-coding genes and 61 RNA-only encoding genes. The loss of symbiotic capability can now be attributed to the loss of nodulation and nitrogen fixation genes from the genome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

Introduction

Burkholderia spp. are a diverse group of organisms capable of thriving in diverse environments with many forming mutualistic associations with organisms such as fungi and plants [1]. The development in the 1960s and 1970s of a rational classification system for *Pseudomonas* species resulted in proposals to give different generic names to taxonomically distinct groups. The organisms previously classified within *Pseudomonas* rRNA similarity Group II were transferred into the new genus *Burkholderia* [2]. All described *Burkholderia* species at that time were phytopathogenic, or opportunistic mammalian pathogens with the type species *B. cepacia* becoming a growing community health concern in immunocompromised and cystic fibrosis patients [3-5]. With the isolation of more *Burkholderia* spp., it has become apparent that the genus is a far more complex mix, with the isolation of numerous soil-inhabiting species capable of degrading heavy metals and environmental contaminants [6,7]. Further reports identified plant growth promoting (PGP) species and legume microsymbionts. This led to a paradigm shift in rhizobiology and resulted in numerous new novel *Burkholderia* spp. descriptions [8-10].

Most PGP, or legume microsymbiont species of *Burkholderia* have been isolated in South America from Mimosa spp. or South Africa from *Papilionoideae* legumes and until recently, *B. graminis* was the only described PGP bacterial species isolated from Australia in the maize rhizosphere [11]. Australian *Burkholderia* have been isolated as nodule occupants from some Acacia spp., [12] however none have been authenticated or tested for the nodulation of other legumes. There is little data regarding the symbiosis between *Burkholderia* and legumes in Australia.
compared to South Africa and South America. *Burkholderia* sp. WSM2232 was trapped from acidic soil (pH_{CaCl2} 4.8) collected from Karijini National Park (Western Australia) using *Gastrolobium capitatum* as a host. Sites where the soil pH was higher (pH_{CaCl2} >7) did not contain any *Burkholderia* symbionts but did contain numerous *Bradyrhizobium* and *Rhizobium* spp. (Watkin, unpublished). Soil pH is an edaphic variable that controls microbial biogeography [13] and the acid tolerance of *Burkholderia* has been shown to account for the biogeographical distribution of this genus [14].

The symbiotic capacity of WSM2232 was authenticated in axenic glasshouse trials using inoculation of *G. capitatum* grown in nitrogen free conditions. Inoculated plants nodulated by WSM2232 produced significantly greater mass than uninoculated controls. WSM2232 was subcultured and placed in long-term storage in frozen laboratory glycerol stocks. Isolate revival and inoculation onto endemic Australian legumes failed to elicit a symbiotic response. The reason for the loss of the symbiotic phenotype has, until now, not been identified.

The genome of *Burkholderia* strain WSM2232 is one of two Australian *Burkholderia* genomes (the other being that of WSM2230 (GOLD ID Gi08831)) that have now been sequenced through the Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) program. Here we present a preliminary description of the general features of *Burkholderia* sp. WSM2232 together with its genome sequence and annotation. The absence of nodulation genes within this genome explains the nodulation minus symbiotic phenotype of the laboratory cultured strain. The genomes of WSM2232 and WSM2230 will be an important resource to identify the processes enabling such isolates to adapt to the infertile, highly acidic soils that dominate the Australian landscape.

Classification and features

Burkholderia sp. strain WSM2232 is a motile, non-sporulating, non-encapsulated, Gram-negative rod in the order *Burkholderiales* of the class *Betaproteobacteria*. The rod-shaped form varies in size with dimensions of 0.25-0.5 μm for width and 0.5-2.0 μm for length (Figure 1A and 1B).

It is fast growing, forming colonies within 1-2 days when grown on LB agar [15] devoid of NaCl and within 3-4 days when grown on half strength Lupin Agar (½LA) [16], tryptone-yeast extract agar (TY) [17] or a modified yeast-mannitol agar (YMA) [18] at 28°C. Colonies on ½LA are opaque, slightly domed and moderately mucoid with smooth margins.

Burkholderia sp. WSM2232 falls into a large clade containing PGP, bioremediation and legume microsymbiont species, and WSM2232 demonstrates PGP phenotypes including phosphate solubilization and hydroxamate-like siderophore production and is acid tolerant with growth in the pH range of 4.5-9.0 (Walker, unpublished).

Minimum Information about the Genome Sequence (MIGS) is provided in Table 1. Figure 2 shows the phylogenetic neighborhood of *Burkholderia* sp. strain WSM2232 in a 16S rRNA sequence based tree. This strain shares 99% (1352/1364 bp) sequence identity to the 16S rRNA gene of the sequenced strain *Burkholderia* sp. WSM2230 (Gi08831).

![Figure 1. Images of *Burkholderia* sp. strain WSM2232 using scanning (A) and transmission (B) electron microscopy.](http://standardsingenomics.org)
Burkholderia sp. strain WSM2232

Table 1. Classification and general features of *Burkholderia* sp. strain WSM2232 according to the MIGS recommendations [19].

MIGS ID	Property	Term	Evidence code^a
	Domain	Bacteria	TAS [20]
	Phylum	Proteobacteria	TAS [21]
	Class	Betaproteobacteria	TAS [22,23]
Current classification	Order	Burkholderiales	TAS [23,24]
	Family	Burkholderiaceae	TAS [23,25]
	Genus	Burkholderia	TAS [2,26,27]
	Species	Burkholderia sp.	IDA
	Strain	WSM2232	IDA
	Gram stain	Negative	IDA
	Cell shape	Rod	IDA
	Motility	Motile	IDA
	Sporulation	Non-sporulating	NAS
	Temperature range	Mesophile	IDA
	Optimum temperature	30°C	IDA
	Salinity	Non-halophile	IDA
	Oxygen requirement	Aerobic	IDA
	Carbon source	Varied	IDA
	Energy source	Chemoorganotroph	NAS
	Habitat	Soil, root nodule, on host	IDA
	Biotic relationship	Free living, symbiotic	IDA
	Pathogenicity	Non-pathogenic	IDA
	Biosafety level	1	TAS
	Isolation	Root nodule of *Gastrolobium capitatum*	IDA
	Geographic location	Karijini National Park, Australia	IDA
	Soil collection date	September, 2001	IDA
	Latitude	117.99	IDA
	Longitude	-22.45	IDA
	Depth	0-10 cm	IDA
	Altitude	Not recorded	IDA

^aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [28].
Figure 2. Phylogenetic tree showing the relationship of *Burkholderia* sp. strain WSM2232 (shown in bold print) to other members of the order *Burkholderiales* based on aligned sequences of the 16S rRNA gene (1,242 bp internal region). All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using MEGA [29], version 5. The tree was built using the Maximum-Likelihood method with the General Time Reversible model [30]. Bootstrap analysis [31] with 500 replicates was performed to assess the support for the clusters. Type strains are indicated with a superscript T. Brackets after the strain name contain a DNA database accession number and/or a GOLD ID (beginning with the prefix G) for a sequencing project registered in GOLD [32]. Published genomes are indicated with an asterisk.

Symbiotaxonomy

Burkholderia sp. WSM2232 formed nodules (Nod+) and fixed N\(_2\) (Fix+) with *G. capitatum* when first isolated and was Nod- on various other Australian legumes and *Mimosa pudica* (Table 2). However, after long-term storage and subsequent culture, it failed to effectively nodulate *G. capitatum*.
Table 2. Compatibility of *Burkholderia* sp. WSM2232 with nine legume species for nodulation (Nod) and N$_2$-Fixation (Fix).

Species Name	Common Name	Growth Type	Nod	Fix	Reference
Gastrolobium capitatuma	Bitter Pea	Perennial	+	+	IDAc
Gastrolobium capitatumb	Bitter Pea	Perennial	-	-	IDA
Kennedia coccinea	Coral Vine	Perennial	-	-	IDA
Swainsona formosa	Sturts Desert Pea	Annual	-	-	IDA
Indigolera trita	Jam Wattle	Perennial	-	-	IDA
Oxylobium robustum	Shaggy Pea	Perennial	-	-	IDA
Acacia acuminata		Perennial	-	-	IDA
Acacia paraneura	Weeping Mulga	Perennial	-	-	IDA
Acacia stenophylla		Perennial	-	-	IDA
Mimosa pudica	Sensitive Plant	Perennial	-	-	IDA

aresult obtained from trapping experiment. bauthentication result following long-term storage. cEvidence codes - IDA: Inferred from Direct Assay from http://www.gene-ontology.org/GO.evidence.shtml of the Gene Ontology project [28].

Phenotype Microarray

Strain WSM2232 was assayed using the Biolog Phenotype Microarray® plates (PM1 to 3) system testing 190 carbon and 95 nitrogen compounds. Plates were purchased from Biolog and tests were carried out per manufacturer’s instructions. The irreversible reduction of tetrazolium dye to formazan is used in this system to report on active metabolism [33]. The results obtained from the colorimetric assay are shown in Table 3.

Table 3. Reduction of tetrazolium dye by NADH produced by respiring cells of *Burkholderia* sp. WSM2232 in the Biolog Phenotype Microarray.

PM1 plate Compound	PM2 plate Compound	PM3 plate Compound
L-Arabinose +	Chondroitin Sulfate C -	Ammonia +
N-Acetyl-D Glucosamine +	α-Cyclodextrin -	Nitrite +
D-Saccharic Acid +	β-Cyclodextrin -	Nitrate +
Succinic Acid +	γ-Cyclodextrin -	Urea +
D-Galactose +	Dextrin +	Biuret -
L-Aspartic Acid +	Gelatin -	L-Alanine +
L-Proline +	Glycogen -	L-Arginine +
D-Alanine +	Inulin -	L-Asparagine +
D-Trehalose +	Laminarin -	L-Aspartic Acid +
D-Mannose +	Mannan -	L-Cysteine +
Dulcitol +	Pectin -	L-Glutamic Acid +
D-Serine -	N-Acetyl-D-Galactosamine +	L-Glutamine +
D-Sorbitol +	N-Acetyl-Neuraminic Acid -	Glycine +
Glycerol +	β-D-Allose -	L-Histidine +
L-Fucose +	Amygdalin -	L-Isoleucine +
D-Glucuronic Acid +	D-Arabinose +	L-Leucine +
D-Gluconic Acid +	D-Arabitol +	L-Lysine +
D,L-α-Glycerol-Phosphate +	L-Arabitol +	L-Methionine +
D-Xylose +	Arbutin -	L-Phenylalanine +
L-Lactic Acid +	2-Deoxy-D-Ribose +	L-Proline +
PM1 plate Compound	PM2 plate Compound	PM3 plate Compound
--------------------	--------------------	--------------------
Formic Acid	L-Erythritol	L-Serine
D-Mannitol	D-Fucose	L-Threonine
L-Glutamic Acid	3-O-β-D-Galacto-	L-Tryptophan
	pyranosyl-D-Arabinose	
D-Glucose-6-Phosphate	Gentiobiose	L-Tyrosine
D-Galactonic Acid-γ-	L-Glucose	L-Valine
Lactone		
D,L-Malic Acid	Lactitol	D-Alanine
D-Ribose	D-Melezitose	D-Asparagine
Tween 20	Maltitol	D-Aspartic Acid
L-Rhamnose	α-Methyl-D-Glucoside	D-Glutamic Acid
D-Fructose	β-Methyl-D-Galactoside	D-Lysine
Acetic Acid	3-Methyl Glucose	D-Serine
α-D-Glucose	β-Methyl-D-Glucuronic Acid	D-Valine
Maltose	α-Methyl-D-Mannoside	L-Citrulline
D-Melibiose	β-Methyl-D-Xyloside	L-Homoserine
Thymidine	Palatinose	L-Ornithine
L-Asparagine	D-Raffinose	N-Acetyl-D,L-Glutamic Acid
D-Aspartic Acid	Salicin	N-Pthaloyl-L-Glutamic Acid
D-Glucosaminic Acid	Sedoheptulosan	L-Pyroglutamic Acid
1,2-Propanediol	L-Sorbitose	Hydroxylamine
Tween 40	Stachyose	Methylamine
α-Keto-Glutaric Acid	D-Tagatose	N-Amylamine
α-Keto-Butyric Acid	Turanose	N-Butylamine
α-Methyl-D-Galactoside	Xyitol	Ethylamine
α-D-Lactose	N-Acetyl-D-	Ethanolamine
	Glucosaminitol	
Lactulose	γ-Amino Butyric Acid	Ethylenediamine
Sucrose	δ-Amino Valeric Acid	Putrescine
Uridine	Butyric Acid	Agmatine
L-Glutamine	Capric Acid	Histamine
M-Tartaric Acid	Caproic Acid	β-Phenylethylamine
D-Glucose-1-Phosphate	Citraconic Acid	Tyramine
D-Fructose-6-Phosphate	Citramalic Acid	Acetamide
Tween 80	D-Glucosamine	Formamide
α-Hydroxy Glutaric Acid-	2-Hydroxy Benzoic Acid	Glucuronamide
γ-Lactone		
α-Hydroxy Butyric Acid	4-Hydroxy Benzoic Acid	D,L-Lactamide
β-Methyl-D-Glucoside	β-Hydroxy Butyric Acid	D-Glucosamine
Adonitol	γ-Hydroxy Butyric Acid	DGalactosamine
Maltotriose	α-Keto Valeric Acid	DMannosamine
2-Deoxy Adenosine	Itaconic Acid	N-Acetyl-D-Glucosamine
Adenosine	5-Keto-D-Gluconic Acid	N-Acetyl-D-Galactosamine
Glycy-L-Aspartic Acid	D-Lactic Acid Methyl Ester	N-Acetyl-D-Mannosamine
Citric Acid	Malonic Acid	Adenine
PM1 plate Compound	PM2 plate Compound	PM3 plate Compound
--------------------	-------------------	-------------------
M-Inositol +	Melibionic Acid +	Adenosine +
D-Threonine -	Oxalic Acid +	Cytidine +
Fumaric Acid +	Oxalomallic Acid +	Cytosine +
Bromo Succinic Acid+	Quinic Acid +	Guanine -
Propionic Acid +	D-Ribono-1,4-Lactone	Guanosine +
Mucic Acid +	Sebacic Acid +	Thymine +
Glycolic Acid -	Sorbic Acid +	Thymidine -
Glyoxylic Acid +	Succinamic Acid +	Uracil +
D-Cellobiose -	D-Tartaric Acid +	Uridine +
Inosine +	L-Tartaric Acid +	Inosine +
Glycyl-L-Glutamic Acid +	Acetamid e -	Xanthine +
Tricarballylic Acid +	L-Alaninamide +	Xanthosine +
L-Serine +	N-Acetyl-L-Glutamic Acid +	Uric Acid +
L-Threonine +	L-Arginine +	Alloxan +
L-Alanine +	Glycine -	Allantoin +
L-Allnyl-Glycine +	L-Histidine +	Parabanic Acid +
Acetoacetic Acid +	L-Homoserine +	D,L-α-Amino-N-Butyric Acid +
N-Acetyl-β-D-Mannosamine -	Hydroxy-L-Proline +	γ-Amino-N-Butyric Acid +
Mono Methyl Succinate +	L-Isoleucine +	ε-Amino-N-Caproic Acid -
Methyl Pyruvate +	L-Leucine +	D,L-α-Amino-Caprylic Acid -
D-Malic Acid +	L-Lysine +	δ-Amino-N-Valeric Acid +
L-Malic Acid +	L-Methionine -	α-Amino-N-Valeric Acid +
Glycyl-L-Proline +	L-Ornithine +	Ala-Asp +
p-Hydroxy Phenyl Acetic Acid +	L-Phenylalanine +	Ala-Gln +
m-Hydroxy Phenyl Acetic Acid -	L-Pyroglutamic Acid +	Ala-Glu +
Tyramine -	L-Valine +	Ala-Gly +
D-Psicose -	D,L-Carnitine +	Ala-His +
L-Lyxose +	Sec-Butylamine -	Ala-Leu +
Glucuronamide +	D,L-Octopamine +	Ala-Thr +
Pyruvic Acid +	Putrescine +	Gly-Asn +
L-Galactonic Acid-γ-Lactone +	Dihydroxy Acetone -	Gly-Gln +
D-Galacturonic Acid +	2,3-Butanediol +	Gly-Glu +
Phenylethylamine +	2,3-Butanone +	Gly-Met +
2-Aminoethanol +	3-Hydroxy γ-2-Butanone -	Met-Ala +

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the Community Sequencing Program at the U.S. Department of Energy, Joint Genome Institute (JGI) for projects of relevance to agency missions. The genome project is deposited in the Genomes OnLine Database [32] and a standard-draft genome sequence in IMG.
sequencing, finishing and annotation were performed by the JGI. A summary of the project information is shown in Table 4.

Growth conditions and DNA isolation

Burkholderia sp. strain WSM2232 was cultured to mid logarithmic phase in 60 ml of TY rich medium on a gyratory shaker at 28°C [34]. DNA was isolated from the cells using a CTAB (Cetyl trimethyl ammonium bromide) bacterial genomic DNA isolation method (http://my.jgi.doe.gov/general/index.html).

Genome sequencing and assembly

The genome of *Burkholderia* sp. strain WSM2232 was sequenced at the Joint Genome Institute (JGI) using Illumina technology [35]. An Illumina standard shotgun library was constructed and sequenced using the Illumina HiSeq 2000 platform, which generated 12,244,888 reads totaling 1,837 Mbp.

All general aspects of library construction and sequencing performed at the JGI can be found at http://my.jgi.doe.gov/general/index.html. All raw Illumina sequence data was passed through DUK, a filtering program developed at JGI, which removes known Illumina sequencing and library preparation artifacts (Mingkun, L., Copeland, A. and Han, J., unpublished). The following steps were then performed for assembly:

1. Filtered Illumina reads were assembled using Velvet [36] (version 1.1.04)
2. 1–3 Kbp simulated paired end reads were created from Velvet contigs using wgsim (https://github.com/lh3/wgsim)
3. Illumina reads were assembled with simulated read pairs using Allpaths–LG [37] (version r37348).

Parameters for assembly steps were:

1. Velvet --v --s 51 --e 71 --i 2 --t 1 -f
 "-shortPaired -fastq $FASTQ" --o
 "-ins_length 250 -min_contig_length 500"

2. wgsim (-e 0 -1 76 -2 76 -r 0 -R 0 -X 0)
3. Allpaths–LG (STD_1, project, assembly, fragment, 1,200,35, inward,0,0 SIMREADS, project,assembly,jumping,1,,3000,300, inward,0,0).

The final draft assembly contained 72 contigs in 72 scaffolds. The total size of the genome is 7.2 Mbp and the final assembly is based on 1,837 Mbp of Illumina data, which provides an average 255× coverage of the genome.

Genome annotation

Genes were identified using Prodigal [38] as part of the DOE-JGI annotation pipeline [39], followed by a round of manual curation using the JGI GenePrimp pipeline [40]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. The tRNAscanSE tool [41] was used to find tRNA genes, whereas ribosomal RNA genes were found by searches against models of the ribosomal RNA genes built from SILVA [42]. Other non–coding RNAs such as the RNA components of the protein secretion complex and the RNase P were identified by searching the genome for the corresponding Rfam profiles using INFERNAL (http://infernal.janelia.org). Additional gene prediction analysis and manual functional annotation was performed within the Integrated Microbial Genomes (IMG-ER) platform [43].

Genome properties

The genome is 7,208,311 nucleotides 63.11% GC content (Table 5) and comprised of 72 scaffolds (Figure 3) of 72 contigs. From a total of 6,383 genes, 6,322 were protein encoding and 61 RNA only encoding genes. The majority of genes (80.90%) were assigned a putative function whilst the remaining genes were annotated as hypothetical. The distribution of genes into COGs functional categories is presented in Table 6.

Acknowledgments

This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.
Table 4. Genome sequencing project information for *Burkholderia* sp. WSM2232.

MIGS ID	Property	Term
MIGS-31	Finishing quality	Standard draft
MIGS-28	Libraries used	One Illumina fragment library
MIGS-29	Sequencing platforms	Illumina HiSeq 2000
MIGS-31.2	Sequencing coverage	Illumina: 255×
MIGS-30	Assemblers	Velvet version 1.1.04; Allpaths-LG version r37348
MIGS-32	Gene calling methods	Prodigal 1.4
	GOLD ID	Gi08832^a
	NCBI project ID	182741
	Database: IMG	2508501125^b
	Project relevance	Symbiotic N₂ fixation, agriculture

Figure 3. Graphical map of the four largest scaffolds genome for the genome of *Burkholderia* sp. strain WSM2232. From bottom to the top of each scaffold: Genes on forward strand (color by COG categories as denoted by the IMG platform), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, sRNAs red, other RNAs black), GC content, GC skew.
Table 5. Genome Statistics for *Burkholderia* sp. strain WSM2232.

Attribute	Value	% of total^a
Genome size (bp)	7,208,311	100.00
DNA coding region (bp)	6,203,174	86.06
DNA G+C content (bp)	4,548,885	63.11
Number of scaffolds	72	
Number of contigs	72	
Total gene	6,383	100.00
RNA genes	61	0.96
rRNA operons^b	1	0.02
Protein-coding genes	6,322	99.04
Genes with function prediction	5,164	80.90
Genes assigned to COGs	5,151	80.70
Genes assigned Pfam domains	5,425	84.99
Genes with signal peptides	645	10.10
Genes with transmembrane helices	1,497	23.45
CRISPR repeats	1	

^aTotal is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome. ^b4 copies of 5S, 2 copies of 16S and 1 copy of 23S rRNA.

Table 6. Number of protein coding genes of *Burkholderia* sp. strain WSM2232 associated with the general COG functional categories.

Code	Value	%age^a	Description
J	474	8.15	Carbohydrate transport and metabolism
A	3	0.05	RNA processing and modification
K	151	2.60	Replication, recombination and repair
L	559	9.61	Transcription
B	1	0.0	Chromatin structure and dynamics
D	42	0.72	Cell cycle control, cell division and chromosome partitioning
Y	0	0.0	Nuclear structure
V	0	0.0	Defense mechanism
T	318	5.47	Signal transduction mechanisms
M	371	6.38	Cell wall/membrane/envelope biogenesis
N	125	2.15	Cell motility
Z	0	0.00	Cytoskeleton
W	2	0.03	Extracellular structures
U	154	2.65	Intracellular trafficking, secretion, and vesicular transport
O	183	3.15	Posttranslational modification, protein turnover, chaperones
C	384	6.60	Energy production conversion
G	194	3.34	Translation, ribosomal structure and biogenesis
E	569	9.79	Amino acid transport and metabolism
F	100	1.72	Nucleotide transport and metabolism
H	213	3.66	Coenzyme transport and metabolism
I	277	4.76	Lipid transport and metabolism
P	269	4.63	Inorganic ion transport and metabolism
Q	199	3.42	Secondary metabolite biosynthesis, transport and catabolism
R	673	11.58	General function prediction only
S	500	8.60	Function unknown
-	1,232	19.30	Not in COGs

^aThe total is based on the total number of protein coding genes in the annotated genome.
References

1. Compant S, Nowak J, Coenye T, Clement C, Barka EA. Diversity and occurrence of *Burkholderia* spp. in the natural environment. *FEMS Microbiol Rev* 2008; 32:607-626. http://dx.doi.org/10.1111/j.1574-6976.2008.00113.x PubMed

2. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of *Burkholderia* gen. nov. and transfer of seven species of the genus *Pseudomonas* homology group II to the new genus, with the type species *Burkholderia cepacia* (Palleroni and Holmes 1981) comb. nov. *Microbiol Immunol* 1992; 36:1251-1275. PubMed

3. Vial L, Chapalain A, Groeleau MC, Deziel E. The various lifestyles of the *Burkholderia cepacia* complex species: a tribute to adaptation. *Environ Microbiol* 2011; 13:1-12. http://dx.doi.org/10.1111/j.1462-2920.2010.02343.x PubMed

4. Govan JR, Hughes JE, Vandamme P. *Burkholderia cepacia*: medical, taxonomic and ecological issues. *J Med Microbiol* 1996; 45:395-407. http://dx.doi.org/10.1099/00222615-45-6-395 PubMed

5. Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Lauwers S, Gillis M, Kersters K, et al. Occurrence of multiple genomovars of *Burkholderia cepacia* in cystic fibrosis patients and proposal of *Burkholderia multivorans* sp. nov. *Int J Syst Bacteriol* 1997; 47:1188-1200. http://dx.doi.org/10.1099/00207713-47-4-1188 PubMed

6. Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, Reyes VL, Hauser L, Cordova M, Gomez L, Gonzalez M, et al. *Burkholderia xenovorans* LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. *Proc Natl Acad Sci USA* 2006; 103:15280-15287. http://dx.doi.org/10.1073/pnas.0606924103 PubMed

7. Achouak W, Christen R, Barakat M, Martel MH, Heulin T. *Burkholderia caribensis* sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. *Int J Syst Bacteriol* 1999; 49:787-794. http://dx.doi.org/10.1099/00207713-49-2-787 PubMed

8. Angus AA, Hirsch AM. Insights into the history of the legume-betaproteobacterial symbiosis. *Mol Ecol* 2010; 19:28-30. http://dx.doi.org/10.1111/j.1365-294X.2009.04459.x PubMed

9. Chen WM, de Faria SM, Straliotto R, Pitard RM, Simões-Araújo JL, Chou J, Chou Y, Barrios E, Prescott AR, Elliott GN, et al. Proof that *Burkholderia* strains form effective symbioses with legumes: a study of novel *Mimosa*-nodulating strains from South America. *Appl Environ Microbiol* 2005; 71:7461-7471. http://dx.doi.org/10.1128/AEM.71.11.7461-7471.2005 PubMed

10. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previo L, James EK, Venturi V. Common features of environmental and potentially beneficial plant-associated *Burkholderia*. *Microb Ecol* 2012; 63:249-266. http://dx.doi.org/10.1007/s00248-011-9929-1 PubMed

11. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S, Ophel-Keller K, Balandreau J. *Burkholderia graminis* sp. nov., a rhizospheric *Burkholderia* species, and reassessment of *Pseudomonas phazinii*, *Pseudomonas pyrocirina* and *Pseudomonas glathei* as *Burkholderia*. *Int J Syst Bacteriol* 1998; 48:549-563. http://dx.doi.org/10.1099/00207713-48-2-549 PubMed

12. Hoque MS, Broadhurst LM, Thrall PH. Genetic characterisation of root nodule bacteria associated with *Acacia salicina* and *A. stenophylla* (*Mimosaceae*) across south-eastern Australia. *Int J Syst Evol Microbiol* 2011; 61:299-309. http://dx.doi.org/10.1099/ijsem.0.021014-0 PubMed

13. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. *Proc Natl Acad Sci USA* 2006; 103:626-631. http://dx.doi.org/10.1073/pnas.0507535103 PubMed

14. Stopnisek N, Bodenhausen N, Frey B, Fierer N, Eberl L, Weisskopf L. Genus-wide acid tolerance of *Burkholderia cepacia* complex species, and reassessment of *Pseudomonas* *phazinii*, *Pseudomonas pyrocirina* and *Pseudomonas glathei* as *Burkholderia*. *Int J Syst Bacteriol* 1998; 48:549-563. http://dx.doi.org/10.1099/ijsem.0.021014-0 PubMed

15. Miller JH. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; 1972.

16. Howieson JG, Ewing MA, D’antuono MF. Selection for acid tolerance in *Rhizobium meliloti* (*Mimosaceae*). *Plant Soil* 1988; 105:179-188. http://dx.doi.org/10.1007/BF00237681

17. Beringer JE. R factor transfer in *Rhizobium leguminosarum*, *J Gen Microbiol* 1974; 84:188-198. http://dx.doi.org/10.1099/00221287-84-1-188 PubMed

18. Terpolilli JJ. Why are the symbioses between some genotypes of *Sinorhizobium* and *Medicago*...
suboptimal for N\textsubscript{2} fixation? Perth: Murdoch University; 2009. 223 p.

19. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen M, Angiuoli SV, et al. Towards a richer description of our complete collection of genomes and metagenomes "Minimum Information about a Genome Sequence " (MIGS) specification. Nat Biotechnol 2008; 26:541-547. http://dx.doi.org/10.1038/nbt1360 PubMed

20. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. http://dx.doi.org/10.1073/pnas.87.12.4576 PubMed

21. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyl. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.

22. Garrity GM, Bell JA, Lilburn T. Class II. Betaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 575.

23. Validation List No. 107. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006; 56:1-6. http://dx.doi.org/10.1099/ijs.0.64188-0 PubMed

24. Garrity GM, Bell JA, Lilburn T. Order I. Burkholderiales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 575.

25. Garrity GM, Bell JA, Lilburn T. Family I. Burkholderiaceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 575.

26. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 45. Int J Syst Bacteriol 1993; 43:398-399. http://dx.doi.org/10.1099/00207713-43-2-398

27. Gillis M, Van TV, Bardin R, Goor M, Hebban P, Willems A, Segers P, Kerssters K, Heulin T, Fernandez MP. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N\textsubscript{2}-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 1995; 45:274-289. http://dx.doi.org/10.1099/00207713-45-2-274

28. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. http://dx.doi.org/10.1038/75556 PubMed

29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGAS5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011; 28:2731-2739. http://dx.doi.org/10.1093/molbev/msr121 PubMed

30. Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.

31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783-791. http://dx.doi.org/10.2307/2408678

32. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2008; 36:D475-D479. http://dx.doi.org/10.1093/nar/gkm884 PubMed

33. Barry RB, Peter G, Eugenia P. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 2001; 11:1246-1255. http://dx.doi.org/10.1101/gr.186501 PubMed

34. Reeve WG, Tiwari RP, Worsley PS, Dilworth MJ, Glenn AR, Howieson JG. Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology 1999; 145:1307-1316. http://dx.doi.org/10.1099/14500872-145-6-1307 PubMed

35. Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5:433-438. http://dx.doi.org/10.1517/14622416.5.4.433 PubMed

36. Zerbinio DR. Using the Velvet de novo assembler for short-read sequencing technologies. Current Protocols in Bioinformatics 2010;Chapter 11:Unit 11 5.

37. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci USA 2011; 108:1513-1518. http://dx.doi.org/10.1073/pnas.1017351108 PubMed

38. Hyatt D, Chen GL, Locascio PF, Land ML, Laimer FW, Hauser LJ. Prodigal: prokaryotic gene
recognition and translation initiation site identification. *BMC Bioinformatics* 2010; 11:119. http://dx.doi.org/10.1186/1471-2105-11-119 PubMed

39. Mavromatis K, Ivanova NN, Chen IM, Szeto E, Markowitz VM, Kyrpides NC. The DOE-JGI Standard operating procedure for the annotations of microbial genomes. *Stand Genomic Sci* 2009; 1:63-67. http://dx.doi.org/10.4056/sigs.632 PubMed

40. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. *Nat Methods* 2010; 7:455-457. http://dx.doi.org/10.1038/nmeth.1457 PubMed

41. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res* 1997; 25:955-964. PubMed

42. Pruesse E, Quast C, Knittel K, Fuchs BdM, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. *Nucleic Acids Res* 2007; 35:7188-7196. http://dx.doi.org/10.1093/nar/gkm864 PubMed

43. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. http://dx.doi.org/10.1093/bioinformatics/btp393 PubMed