Feasibility study of high-precision trigonometric elevation replacing second-order level in tunnel penetration control survey

Zhang Hongfeng
Fifth Geological Engineering Survey Institute of Shanxi Province, Linfen, 041000, Shanxi

Abstract: Based on the principle of trigonometric elevation measurement and the law of error propagation, the trigonometric elevation formula is derived in this paper. The factors that cause the trigonometric measurement error are analyzed accurately. It is considered that the use of a high-precision total station for the trigonometric elevation measurement under opposite conditions can reach the second-order level measurement accuracy.

1 Introduction
In this paper, the trigonometric elevation measurement of the total station replacing the second-order leveling was studied. Conventional leveling has a short sight line, and it is very difficult to transmit second-order elevation in mountainous areas with large terrain differences and river crossings where measurement conditions are limited. With the advent of high-precision total stations, total stations are used to accurately measure distances and angles. Whether the trigonometric elevation survey can replace the second-order level survey has become an urgent problem for surveying and mapping staff. This article combines the principle and method of total station trigonometric elevation measurement to analyze the factors that cause its error.

2 Principle and accuracy analysis of elevation measurement

2.1 Principle of one-way observation height difference
To observe the height difference h_{AB} at two points AB, place the instrument at A, the instrument height is i, the reflection prism is at point B, and the prism height is l, as shown in Figure 1.

Then h_{AB} = h' + c + i - l - r(1)

Because the ratio of the distance between AB and the radius of the earth is small, it can be considered that \(\angle PNM = 90^\circ \), \(h' = S \sin \alpha \) in PNM (2)

Where S is the slope distance between AB and \(\alpha \) is the vertical angle of the center of the collimating prism. C and r are the effects of earth curvature and atmospheric refraction, respectively [1].

\[
C = \frac{S^2}{2R} \cos^2 \alpha
\]

Substituting (2), (3), and (5) into (1), then

\[
h_{AB} = S \sin \alpha + \frac{1-K}{2R} S^2 \cos^2 \alpha + i - l
\]

Equation (6) is the basic formula for one-way observation of height difference.

2.2 Principle of opposite observation height difference
The opposite observation is also called round-trip measurement, that is, the instrument is set at point A, and the prism is set at point B when the test is performed, the instrument is set at point B, and the prism is set at point A during the back test, then

\[
h_{AB} = S_{AB} \sin \alpha_{AB} + \frac{1-K_{AB}}{2R} S_{AB}^2 \cos^2 \alpha_{AB} + i_{AB} - l_{AB}
\]

\[
h_{BA} = S_{BA} \sin \alpha_{BA} + \frac{1-K_{BA}}{2R} S_{BA}^2 \cos^2 \alpha_{BA} + i_{BA} - l_{BA}
\]

Under the same observation conditions, \(K_{AB} \approx K_{BA} \),

\[
S_{BA} \cos \alpha_{BA} = S_{AB} \cos \alpha_{AB}
\]
Take the average of the round-trip height difference as the height difference between the two points of AB, namely:

$$\bar{h} = \frac{h_{AB} - h_{BA}}{2} = \frac{1}{2}(S\sin\alpha_S - S\sin\alpha) + \frac{1}{2}(i_B - 1) - \frac{1}{2}(i_A - 1)$$

This indicates that the use of the opposite observation method can effectively eliminate or reduce the influence of the spherical aberration on the trigonometric elevation measurement.

2.3 Medium error of opposite trigonometric elevation measurement

Differentiate the formula, and transform it into the medium error relationship equation, high = i - l, because the instrument and observation conditions are the same, it is preferable that the errors in the round-trip measurement are equal to obtain the medium error formula of the opposite observation:

$$m = \frac{1}{2}(\cos\alpha)^2 \times \left(\frac{m_s}{l}\right)^2 \frac{1}{2}(\sin\alpha)^2 \times m_s^2 + \frac{1}{2}m_{high}^2$$

3 Error analysis of the TS60 total station opposite observation height difference

The TS60 total station has the following superior indicators: ① with automatic sighting (ATR) function. ② ATR angle measurement accuracy is 0.5 " . ③ Distance measurement accuracy is 0.6mm + 1ppm.

The following uses the TS60 total station as an example to analyze the cause of the elevation error in the opposite observation. According to the formula, it can be known that there are mainly the following aspects that affect the accuracy of the trigonometric elevation measurement:

3.1 Effect of side length measurement error m_s on height difference

$$= \frac{1}{2}(\sin\alpha)^2 \times m_s^2$$

3.2 Effect of vertical angle observation error m_α on height difference

$$= \frac{1}{2}(\cos\alpha)^2 \times \left(\frac{m_\alpha}{l}\right)^2$$

3.3 Effect of instrument height and prism height measurement error on height difference

$$= \frac{1}{2}m_{high}^2 \quad m_i = m_l = \pm 1\text{mm}, \text{the influence of} m_{high} \text{on the height difference in Table 2} = 1\text{mm}^2.$$

3.4 Estimation of height difference of opposite observation

Take $2m_\alpha$ as the error limit of height measurement, and compare it with the re-measurement limit of second-order measurement. The calculation results are shown in Table 1.

Vertical angle	Error influence	Side length (m)
	$m_{influence}$	100 200 300 400 500 700 800 900 1000 1200
3°	$m_{influence}$	$0.019 0.075 0.169 0.300 0.469 0.919 1.200 1.519 1.875 2.700$
	$m_{influence}$	$0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.005 0.005 0.007$
	m_{high}	$1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000$
2m_α	mm	$2.021 2.076 2.164 2.283 2.427 2.773 2.969 3.177 3.394 3.851$
8°	$m_{influence}$	$0.018 0.074 0.166 0.295 0.461 0.904 1.180 1.494 1.844 2.655$
	$m_{influence}$	$0.012 0.014 0.016 0.019 0.022 0.028 0.031 0.035 0.039 0.047$
	m_{high}	$1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000$
2m_α	mm	$2.030 2.086 2.174 2.293 2.436 2.780 2.974 3.181 3.396 3.848$
15°	$m_{influence}$	$0.018 0.070 0.158 0.281 0.439 0.860 1.123 1.421 1.755 2.527$
	$m_{influence}$	$0.040 0.048 0.057 0.066 0.075 0.097 0.108 0.121 0.134 0.162$
	m_{high}	$1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000$
2m_α	mm	$2.057 2.115 2.205 2.321 2.461 2.798 2.987 3.189 3.399 3.841$
30°	$m_{influence}$	$0.014 0.056 0.127 0.226 0.353 0.691 0.903 1.143 1.411 2.031$
	$m_{influence}$	$0.151 0.180 0.211 0.245 0.281 0.361 0.405 0.451 0.500 0.604$
	m_{high}	$1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000$
The TS60 total station has the following superior measurement accuracy:

\[m = \sqrt{\frac{m_{\text{high}}^2 + m_{\text{low}}^2}{2}} \]

It is preferable that the errors in the round trip measurement are equal to obtain the medium error. Differentiate the formula, an elevation measurement equation is obtained:

\[\text{Height difference} = \alpha \times \rho \]

where \(\alpha \) is the ATR angle measurement accuracy, which is 0.5″. Table 1 shows the influence of various factors on the height difference between the two points of AB, namely: as the height difference between the two points of AB, the vertical angle observation error is the main factor affecting the trigonometric height difference. Therefore, the vertical angle observation error is the vertical angle. Generally, the vertical angle is ≤10°, and it is controlled within 20° in special cases.

4 Application examples

4.1 Project Overview

In December 2017, our institute was commissioned by Xanga Municipal Construction Group Co., Ltd. to use the Leica TS60 total station to measure the precise trigonometric elevation replacing the second-order level for the elevation control measurement of the tunnel 12° in Qi xian to Li shi Expressway, Shanxi. The tunnel length is about 10 km[2].

4.2 Trigonometric elevation control network diagram

![Diagram of trigonometric elevation observation route](image)

4.3 Precise trigonometric elevation measurement method

(1) Non-destructive modification of two TS60 total stations with automatic collimation function. Install two collimation prisms on the handle of the total station for automatic collimation facing observation, which can basically eliminate or greatly weaken the spherical aberration impact.

(2) Determination of high and low prism constants: Set up a TS60 total station on a flat ground, and place high and low prisms about 20m away. Measure the height difference between low and high prisms multiple times. The difference between the heights is the high and low prism constants. The high and low prism constants are used to check the station height difference.

(3) After one side observation is completed, the next side observation is performed. At this time, special attention should be paid to the fact that the front station does not move, and it is the back station of the next side. The original instrument is moved to the front, and the next station is the front station. The opposite side of the
measurement section is an even number of sides, and each measurement section performs back and forth double prism observations in the order of back low, front low, front high, and back high. At the same time, the height is set at the starting and ending level of the measurement section. The same prism rod does not change, which can completely avoid error in measuring instrument height and prism height[3].

(4) Generally 0.2 km≤S≤1 km, distance and vertical angle S = 0.2 ~ 0.5 km, 4 rounds are measured; 6 rounds are measured at 0.5 ~ 0.8 km; 8 rounds are measured at 0.8 ~ 1 km. And the height difference is ≤ ± 4√L mm.

4.4 Precision trigonometric elevation measurement accuracy

The trigonometric elevation control survey of the 12th tunnel from Qixian to Lishi Expressway takes the first-level point BM53 as the starting point and finally attaches to the first-level point BM56 via the trigonometric elevation route. See Table 2 for measurement accuracy.

Section name	Distance (m)	Backward measurement height difference (m)	Backward measurement height difference (m)	Average height difference (m)	Round trip measurement difference (mm)	Round trip measurement limit difference (mm)
BM53-GC	7966.317	117.8854	-117.8769	117.8812	8.5	11.3
GC-L3	233.736	-11.6352	11.6340	-11.6346	-1.2	1.9
GC-L4	220.311	-9.2075	9.2086	-9.20805	1.1	1.9
GC-GJ	10502.738	112.2907	-112.2800	112.2854	10.7	13.0
GJ-L2	361.229	-4.1877	4.1856	-4.18665	-2.1	2.4
GJ-L1	388.421	8.2665	-8.2646	8.26555	1.9	2.5
L1-BM56	4573.529	13.4451	-13.4367	13.4409	8.4	8.6
total	24246.2810	226.8573	-226.8300	226.8436	226.8436	19.7

Accuracy \(\Delta h=H_6-H_5=226.8436m-226.8312m=12.4mm < \Delta h_{\text{limit}}=4\sqrt{L}=19.7mm \)

It can be seen from Table 2 that the round-trip observation of each level of the route is poor, and all are less than the round-trip measurement limit. The line closure difference is 12.4mm, which is less than the limit requirement of 19.7mm. According to the statistical calculation of the difference, the total mid-range error per kilometer is measured. It is 1.3mm, which satisfies the accuracy of second-level measurement. The construction unit uses the Leica DNA03 leveler to set up a second-level test, which meets the requirements.

5 Conclusion

Qixian to Lishi Expressway 12th tunnel penetrating elevation control, using TS60 total station with automatic collimation function for opposite precision trigonometric elevation measurement, which can reduce or eliminate measurement errors from three aspects: people, instruments and observation environment. The results are reliable, so it is feasible under certain conditions to replace the second-order leveling with a precise trigonometric elevation method.

Author

Zhang Hong feng male Lin fen, Shanxi people 1973.11.28 senior professional bachelor's degree: engineering survey, aerial survey and remote sensing.

References

1. Kong Xiangming, Control Surveying [M]. Wuhan: Wuhan University Press, 2011
2. Chen Longfei, JinQikun, Engineering Surveying [M]. Shanghai: Tongji University Press, 1990
3. Discipline group of survey adjustment, School of Surveying and Mapping, Wuhan University, error theory and survey adjustment [M]. Wuhan: Wuhan University Press, 2005