Vol. 8 (2018) No. 5

Articles

Classification of Alzheimer's Disease in PET Scans using MFCC and SVM
Jantana Panyavaraporn, Paramate Horkaew
pages: 1829-1835 DOI:10.18517/ijaseit.8.5.6503

Opinion Mining Summarization and Automation Process: A Survey
Sundas Naqeeb Khan, Nazer Mohd Nawi, Mahmud Imrona, Asim Shahzad, Arif Ullah, Alta-ur- Rahman
pages: 1836-1844 DOI:10.18517/ijaseit.8.5.5002

Predicting the Amount of Digestive Enzymes Medicine Usage with LSTM
Adhistya Erna Permanasari, Abi Mahan Zaky, Silmi Fauziati, Ida Fitriana
pages: 1845-1849 DOI:10.18517/ijaseit.8.5.6511

Developing the Dimensions of a Social Content Management Framework
Wan Azlin Zurita Wan Ahmad, Muriati Mukhtar, Yazrina Yahya
pages: 1850-1857 DOI:10.18517/ijaseit.8.5.6520

Random Forest Weighting based Feature Selection for C4.5 Algorithm on Wart Treatment Selection Method
Handoyo Widi Nugroho, Teguh Bharata Adji, Noor Akhmad Setiawan
pages: 1858-1863 DOI:10.18517/ijaseit.8.5.6504

Credibility Dimensions for Islamic Information in Social Media
Kairulanuar Ab Kadri, Noraidah Safari @ Asaar, Juhana Salim
pages: 1864-1872 DOI:10.18517/ijaseit.8.5.6434

Wearable Technology in Education to Enhance Technical MOOCs
Siti Feirusz Ahmad Fesol, Sazilah Salam, Norasiken Bakar
pages: 1873-1881 DOI:10.18517/ijaseit.8.5.3929

Adoption of Unified Communications and Collaboration from the Perspective of Diffusion of Innovation and Service Dominant Logic: A Preliminary View
Emy Salfarina Alias, Muriati Mukhtar, Ruzzakiah Jenal
pages: 1882-1889 DOI:10.18517/ijaseit.8.5.6435

Validated Software Cost Estimation Factors for Government Projects using Rasch Measurement Model
Rianti Rozalina, Zuikelli Mansor
pages: 1890-1896 DOI:10.18517/ijaseit.8.5.6386

Denial of Service Attack over Secure Neighbor Discovery (SeND)
Amjed Sid Ahmed, Rosilah Hassan, Nor Effendy Othman
pages: 1897-1904 DOI:10.18517/ijaseit.8.5.6427

Intrusion Detection System Using Multivariate Control Chart Hotelling’s T2 Based on PCA
Muhammad Ahsan, Muhammad Mashuri, Heri Kuswanto, Dedy Dwi Prastyo
pages: 1905-1911 DOI:10.18517/ijaseit.8.5.3421

A Design for Challenge-Based Learning of Programming
Rodziah Latih, Marini Abu Bakar, Norleyza Jailani, Noorazeean Mohd Ali, Syahanim Mohd Salleh, Abdullah Mohd. Zin
pages: 1912-1918 DOI:10.18517/ijaseit.8.5.6455
Time Series Predictive Analysis based on Hybridization of Meta-heuristic Algorithms
Zuriani Mustaffa, Mohd Herwan Sulaiman, Dede Rohidin, Ferda Ernawan, Shatreen Kasim
pages: 1919-1925 DOI:10.18517/ijaseit.8.5.4968

Online Impulse Buying: The Role of Self-Construction and Online Shop Aesthetics
Rahayu Crystal Himawari, Tommy Prayoga, Sheila Putri Fajianti, Juneramn Abraham
pages: 1926-1933 DOI:10.18517/ijaseit.8.5.1587

Real Time Monocular Visual Odometry Using Hybrid Features and Distance Ratio for Scale Estimation
Diky Septa Nugroho, Igi Ardiyanto, Adha Imam Cahyadi
pages: 1934-1940 DOI:10.18517/ijaseit.8.5.3247

A New Approach for Fingerprint Authentication in Biometric Systems Using BRISK Algorithm
Elaf J. Al Teae, Zainalabdeen Abdulsamad
pages: 1941-1947 DOI:10.18517/ijaseit.8.5.6239

Secure Data Exchange Using Authenticated Attribute-Based Encryption with Revocation for Environmental Monitoring
- Munsyi, Amang Sudarsono, M. Udin Harun Al Rasyid
pages: 1948-1955 DOI:10.18517/ijaseit.8.5.7223

Robust Features for Elbow Joint Angle Estimation Based on Electromyography
- Triwiyanto, Oyas Wahyunggoro, Hanung Adi Nugroho, - Herianto
pages: 1956-1961 DOI:10.18517/ijaseit.8.5.6495

Remote Sensing Identification of Possible Meteorite Impact Crater on Ciletuh, West Java
Khairul Ummah, Emi Sukiyah, Mega Fatimah Rosana, Boy Yoseph CSS Syah Alam
pages: 1962-1968 DOI:10.18517/ijaseit.8.5.5559

Characteristics of Foamed Concrete Utilizing Rice Husk Ash with Foam Percentage Variation
- Saloma, - Hanafi, Tiara Maeta Amanda, Anggun Suji Budianti
pages: 1969-1975 DOI:10.18517/ijaseit.8.5.3963

The Curing Method Influence on Mechanical Behavior of Reactive Powder Concrete
Ika Bali, Wilson Kumia
pages: 1976-1983 DOI:10.18517/ijaseit.8.5.4197

Demand versus Capacity of Tsunami Shelters in Padang, Indonesia
Yosritza Yosritza, Badhul Mustafa Kemal, Yoga Bimo Aulia
pages: 1984-1990 DOI:10.18517/ijaseit.8.5.4184

Passengers’ Perceptions on Effectiveness of Public Facilities in Hasanuddin International Airport Terminal Based on Ordered Logit Model
Muhammad Irawan Raml, Rinto Patandungan, S. Adji Adisasmita
pages: 1991-1996 DOI:10.18517/ijaseit.8.5.3101

Project Risk Patterns: A Comparison Across Three Periods
- Fachruzzazi, Saiful Husin, - Mahmuddin
pages: 1997-2004 DOI:10.18517/ijaseit.8.5.3935

Evaluation of Household Pyrolitic Stove Performance: Effect of Bottom Air Apertures
Yano Surya Pradana, Muhamed Hartono, Agus Prasetya
pages: 2005-2011 DOI:10.18517/ijaseit.8.5.3810

Covered Conductor Burn-Down Phenomena in Indonesia without Protection Relay Operation
Putu Agus Aditya Pramana, Aristo Adi Kusuma, Nur Widi Priambodo, Buyung Sofiarto Munir
pages: 2012-2017 DOI:10.18517/ijaseit.8.5.6517

Cutout Types Analysis on Picohydro Pelton Turbine
- Budiarso, - Warjito, Dendy Adanta, Nesen Syah Putra, Hans Vohra
pages: 2024-2030 DOI:10.18517/ijaseit.8.5.3799
Optimizing the Preventive and Corrective Control Scheme in Integrated Variable Renewable Energy Generation
Lesnanto Mulia Putranto, Sarjiya Sarjiya, Avrin Nur Widiastuti
pages: 2031-2038 DOI:10.18517/ijaseit.8.5.6518

Joint Power Loading and Phase Shifting on Signal Constellation for Transmit Power Saving on OFDM/OFDMA Systems
Budi Prasetya, Adit Kurniawan, - Iskandar, Arfianto Fahmi
pages: 2039-2045 DOI:10.18517/ijaseit.8.5.3880

Effect of Ultrasonic Electro-Chemical Polishing Parameters on Surface Roughness and Material Removal Rate of Medical Grade Cobalt Chromium Alloys
Is Prima Nanda, Muhammad Hafiz Jahare, Mohd Hasbullah Isdir, Mohd Hazwan Hasim, Andril Arafat
pages: 2046-2051 DOI:10.18517/ijaseit.8.5.4507

The Role of Powder Sub-bituminous Coal with Sodium Hydroxide (NaOH) to Improve Chemical Properties of Ultisols
Herviyanti Herviyanti, T.B. Prasetyo, Juniarti Juniarti, S. Prima, S. Wahyuni
pages: 2052-2058 DOI:10.18517/ijaseit.8.5.3543

Visible Light Absorption and Photo-Sensitizing Characteristics of Natural Dye Extracted from Mangosteen Pericarps Using Different Solvents
Nofrijon Sofyan, Aga Ridhova, Kalisha R.O. Pramono, Akthmad H. Yuwono, Arief Uchiarto
pages: 2059-2064 DOI:10.18517/ijaseit.8.5.3499

Consumption of Purple Soy Tofu in Improving Hyperglycemia Condition and Nutritional Intake to Type-2 Diabetes Mellitus Respondents
Sri N. Amrizal, Fransiscia R. Z. - Suliantari, Ekowati Chasanah
pages: 2065-2070 DOI:10.18517/ijaseit.8.5.6024

Utilization of Papaya Seeds as Natural Coagulant for Synthetic Textile Coloring Agent Wastewater Treatment
Hans Kristianto, Maya Angelina Kurniawan, Jenny N M Soetedjo
pages: 2071-2077 DOI:10.18517/ijaseit.8.5.3804

Comparison of Repair Costs for Small and Mid-Sizes Farm Machinery in Malaysian Oil Palm Plantation
Siti Nabila Samudin, Darius El Pebrian, Ajeng Jok Wan
pages: 2078-2084 DOI:10.18517/ijaseit.8.5.2421

The Effect of Gamma Radiation on Plant Morphological Characteristics of Zingiber officinale Roscoe
Shamsiah Abdullah, Nor Yusliza Kamaruddin, Abdul Rahim Harun
pages: 2085-2091 DOI:10.18517/ijaseit.8.5.4641

Optimization of Emulsification Process Parameters of Cinnamon Oil Nanoemulsions
Yuliani Aisyah, Sri Haryani, Novi Safriani, Nids El Husna
pages: 2092-2098 DOI:10.18517/ijaseit.8.5.929

Effect of Edible Coating on Quality of Chips from Potato Variety Granola
Condro Wibowo, Rumpoko Wicaksoso, Erminawati Erminawati
pages: 2099-2105 DOI:10.18517/ijaseit.8.5.4331

Membrane Performance of Micro and Ultrafiltration on Folic Acid Separation from Dent Corn (Zea mays var. indentata) Hydrolyzed by Rhizopus oligosporus-C1
- Aspiyanto, Agustine Suslovati, Putra Dewi Lotulung, Yati Maryati
pages: 2106-2113 DOI:10.18517/ijaseit.8.5.3857

The Utilization of Ceramic Membrane for Treating of Water from Sekanak River Palembang to Produce Clean Water
- Sisnayati, Muhammad Said, Subiyer Nasir, Dwi Putro Priadi
pages: 2114-2121 DOI:10.18517/ijaseit.8.5.4724

Designing of Straw Chopper Machine for Compost Production
Wahyu Sugandhi, - Zaida, Asap Yusuf, Ahmad Thoriq, Ade Kramadibrata
pages: 2122-2127 DOI:10.18517/ijaseit.8.5.5810

Characteristics of Soil Suction with Filter Paper Test Method
Yulindasari Sutejo, Anis Saggaff, Wiwik Rahayu, Hanafiah Hanafiah
DOI: 10.18517/ijaseit.8.5.4201

Basement Characteristic Western Part of Java, Indonesia; Case Study in Bayah Area, Banten Province

Aton Patonah, Haryadi Permana
DOI: 10.18517/ijaseit.8.5.5907

Government Intervention and Farmers' Adaptation to Saline Intrusion: A Case Study in the Vietnamese Mekong Delta

Van Huynh Thanh Pham, Rudi Febriamansyah, Afrizal Afrizal, Thong Anh Tran
DOI: 10.18517/ijaseit.8.5.7090

The Aesthetic Man-made Hill: An Alternative Tsunami Vertical Evacuation for Padang City, West Sumatera, Indonesia

Jafril Tanjung, Rudy Feirial, Hendri Gusti Putra, Irmailt Indra
DOI: 10.18517/ijaseit.8.5.7091

Mangrove Ecosystem Management based on Mitigation for Natural Disaster in Coastal Community

Abdul Haris Sambu, A Amrudden
DOI: 10.18517/ijaseit.8.5.6175

Evaluation of Community Resilience Aspects of Sri Lankan Coastal Districts

G. P. Jayasiri, C.S.A. Siriwardena, S.S.L. Hettiarachchi, P.B.R. Dissanayake, C.S. Bandara
DOI: 10.18517/ijaseit.8.5.7095

Microstructure Analysis of Hydroxyapatite Coating on Stainless Steel 316L Using Investment Casting Technique for Implant Application

Nuzul Ficky Nuswantoro, Gunawarman Gunawarman, Masagus Rifinto Saputra, Is Prima Nanda, Mohammad Hasbullah Idris, Andril Arafat
DOI: 10.18517/ijaseit.8.5.5808

Quality Function Deployment (QFD) on Product Design Development: Group Riding Safety Equipment

Ahmad Rizaal Yassaruddin, Muhammad Ridwan Andi Purnomo, Rizqi Ramadhani, Alf Asbani, Bella Azis Dewardi Putri, Arman Adhi Diramarwan
DOI: 10.18517/ijaseit.8.5.3905

The Effect of Styrofoam Addition into HRS-Base on Marshall Characteristics

Elsa Eka Putri, Ariefky Dwiputra
DOI: 10.18517/ijaseit.8.5.3944

Comparative Analysis of Different Data Representations for the Task of Chemical Compound Extraction

Basel Alshaikhdeeb, Kamsuriah Ahmad
DOI: 10.18517/ijaseit.8.5.6432

User Perceived Quality Model for Web-Based System Assessment

Siti Rohana Ahmad Ibrahim, Jamaiah Yahaya, Aziz Deraman, Abdul Razak Hamdan, Yusmadji Yah Jusoh
DOI: 10.18517/ijaseit.8.5.8670

Implementation of an eCK-secure Key Exchange Protocol for OpenSSL

Janaka Alawatugoda, Seralathan Vivekaanathan, Nishen Peris, Chamitha Wickramasinghe, Chai Wen Chuah
DOI: 10.18517/ijaseit.8.5.5046

Assessing Indonesian University Students' Preferences on Mendeley Reference Manager for Scientific Writing

Andi Hudriati, R Rusdiah, Andi Anto Patak, Muhammad Basri
DOI: 10.18517/ijaseit.8.5.6671

Early Detection of Dengue Disease Using Extreme Learning Machine

Suhaeri Suhaeri, Nazri Mohd Nawi, Muhamad Fathurahman
DOI: 10.18517/ijaseit.8.5.5006

Relationship of Chewing Tobacco Intake and Food Consumption with High Fondues Uteri on Pregnant Mother in Simalungun District

Evawany Yunita Aritonang, Albiner Siagian
DOI: 10.18517/ijaseit.8.5.5157
Influences of heating temperatures on physical properties, spray characteristics of bio-oils and fuel supply system of a conventional diesel engine

Anh Tuan Hoang, Minh Tuan Pham
pages: 2231-2240 DOI:10.18517/ijaseit.8.5.5487

Effectiveness of Bamboo Biochar Combined with Compost and NPK Fertilizer to Improved Soil Quality and Corn Yield

Yohanes Parlindungan Situmeang, I Made Adnyana, I Nengah Netera Subadiyasa, I Nyoman Merit
pages: 2241-2248 DOI:10.18517/ijaseit.8.5.2179

Spouted Bed Drying of Oil Palm Frond Particles

Ifa Puspasari, Siti Masrinda Tasirin, Tan Yie Hua
pages: 2249-2255 DOI:10.18517/ijaseit.8.5.7192

Physical Properties and Glycemic Index Studies of Singaraja White Rice Grown by Conventional and Organic Methods in Denpasar Bali Indonesia

Sagung Putri Risa Andriani, Mohamad Hasnul Naim Abdul Hamid, Mohamad Sazuan Sahrom, Bohari Mohd Yamin
pages: 2256-2262 DOI:10.18517/ijaseit.8.5.6898

Monitoring and Empirical Modelling for Organic Soil Subsidence Estimation in Sumatra

Nurhamidah Nurhamidah, Bujang Rusman, Bambang Istijono, Abdul Hakam, Ahmad Junaidi
pages: 2263-2268 DOI:10.18517/ijaseit.8.5.3515
Characteristics of Soil Suction with Filter Paper Test Method

Yulindasari Sutejo#, Anis Saggaff#, Wiwik Rahayu*, Hanafiah#

#Civil Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Inderalaya, 30139, Indonesia
E-mail: yulindasari@unsri.ac.id, anissaggaf@yahoo.com (corresponding author), hanafiah_dr@yahoo.com.sg

*Civil Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
E-mail: wrahayu@eng.ui.ac.id

Abstract—Soil suction is the ability of the soil to absorb water. Type of soil in this research was peat soil and clay soil. The soil samples had been used were taken from Village III Banyu Urip, Banyuasin Regency, South Sumatera Province. Laboratory testing with Filter Paper test method. The filter paper used is Whatman Filter Paper No.42. The Scanning Electron Microscope (SEM) had been used to analyze the orientation of fiber content. Energy Dispersive Spectroscopy (EDS) also to analyze the chemical elements. Characteristics of peat soil are water content value (ω) is 294.30 %, acidity (pH) value is 3.000, and peat soils classified as fibrous peat soils. While the characteristics of clay soil are water content value is (ω) 62.05 %, acidity (pH) value is 5.000, and clay soils classified as A-7-5 (AASHTO) and OH (organic clay) based on USCS. The result of the test paper filter test on peat soil obtained from the value of suction is (Ψ) 3.2432 kPa-17.5230 kPa. The results of testing the Filter Paper test method on the clay obtained the value of suction is (Ψ) 61.8733 kPa-100.3421 kPa. The value of suction from clay soil is more than a value of suction peat soil based on Filter Paper test method.

Keywords—soil suction; peat soil; clay soil; filter paper; characteristics soil.

I. INTRODUCTION

South Sumatra Province has a soil type with varying conditions such as peat and clay soil. Peat soil is a mixture of organic fragments derived from vegetation that has been transformed into fossils chemically. Clay soil is a mineral particle with fine grain size and has the potential for shrinkage. The characteristic of peat soil containing water content is quite high, causing peat soil to have a low of suction soil. The soil suction is directly connected with the released energy in the pores of water content in the soil. Based on clay soil characteristics influenced by moisture content it also affects the occurrence of soil suction on clay soil. The higher the groundwater content, the soil suction ability will be lower.

Soil suction is the capability of the soil to absorb water. Therefore, to determine the value of soil suction done laboratory testing by testing the soil suction. There are several methods to measure soil suction in the laboratory, among others tensiometer, thermal conductivity, and filter paper. In this research, laboratory testing is done using a filter paper method. Filter paper method is a simple test method whose main media is a filter paper by measuring the water content of filter paper. The filter paper used in this research is Whatman filter paper No. 42 [1] – [5]. Research from [2] using the filter paper method. This method is used to analyze suction matrix suction and total suction. The results show higher water content in the compacted soil.

The relationship between water content and soil suction is the definition of the Soil Water Characteristic Curve. Water content states the amount of water contained in the pores of the soil. Some critical parameters in SWCC are Air Entry Value (AEV), slope curve function for negative or positive pore water pressure (MW), and residual water content (θ_v) or saturation (Sr). Soil Water Characteristic Curve (SWCC) is used as an estimate or estimate of soil properties in measuring its suction [3], [6]-[8]. The specific of Soil Water Characteristic Curve (SWCC) can be seen in Fig. 1 [6].

Reference [3] analyzes the effect of the Soil Water Characteristic Curve (SWCC) on kaolin samples. The kaolin sample had been used in the compacted condition. Based on the test it is found that density value and initial water content value influence to SWCC characteristics. [7] stated that the Soil Water Characteristic Curve (SWCC) affects the characteristics of unsaturated soil conditions. Parameters such as residual water content, Air Entry Value (AEV), and slope of the graph affect SWCC analysis. A simple method to estimate the Soil Water Characteristic Curve (SWCC) is examined by [8]. Soil types used are fine-grained soils and coarse-grained soils. The result of the research shows that data analysis using the simple method used is better than the one point method.
The research methodology used is the laboratory testing method conducted in Soil Mechanics Laboratory of Civil Engineering Department of Sriwijaya University. This research started with a survey of the research location. The location of the soil sampling is in Banyuasin District, South Sumatera Province. Soil samples taken are peat and clay soil. Soil sampling is undertaken in disturbed and undisturbed condition. Before testing the ability of peat soil and clay soil of the filter paper method, first testing soil properties.

Soil properties testing of peat soil are: (1) water content (\(\omega\)) ASTM D 2974-87; (2) acidity of peat soil (pH) ASTM D 2976-71; (3) specific gravity (Gs) ASTM D 854-14; (4) fiber content (FC) ASTM D 1997-13; and (5) organic content (OC) and ash content (AC) ASTM D 2974-14. While the testing of soil properties for clay soil is consists of several tests, among others: (1) water content, ASTM D 2216; (2) Specific Gravity, (Gs) ASTM D 854; (3) Sieve Analysis, ASTM D 422; and (4) Atterberg Limits ASTM D4318. Soil classification using a soil classification system based on AASHTO (American Association of States Highway and Transportation Official) and USCS (Unified Soil Classification System).

Soil suction testing for peat soil and clay soil in this research using measurement techniques with filter paper test methods. Soil suction testing using the filter paper method is based on ASTM D 5298-03. The filter paper used is Type II Whatman No. 42. The filter paper used in this research is shown in Fig. 2.

After peat soil sampling and soil properties, soil testing, then proceed with the preparation of making a sample of the specimen. The making of this specimen was done in Soil Mechanics Laboratory of Civil Engineering Department of Sriwijaya University. Using a piece of pipe measuring 57 mm in diameter and about 50 mm in height, the soil sample used was compacted on the compacted pipe. In this research, we used two pieces of pipe mold samples. The soil mold of each piece of pipe will be used as a sample of the test material for soil suction measurement. At least more than two pieces of pipe are required to print the soil sample to be used in the soil suction test. In the peat soil and clay soil measurement test using the filter paper method, six samples were used as a sample of the suction test. Research from [2] had been used compacted samples with height (h) 70 mm and internal diameter (d) 85 mm for the filter paper test method.

The data obtained from the test results are data soil properties (soil characteristics), data of soil test suction with a filter paper method, and water content data every seven days. Soil suction test obtained data weight of dry filter paper and water in filter paper. From the data obtained value of filter paper water content. The soil suction value was obtained by calibrating the moisture content of the ASTM standard Whatman filter paper 42. From the data of the water content can be obtained the value of a degree of saturation (Sr, %) and volumetric water content (\(\theta_v\), %). In soil suction testing that has been done can be known Soil Water Characteristic Curve (SWCC) which describes the relationship of soil water with moisture content (\(\omega\)), a degree of saturation (Sr), and volumetric water content (\(\theta_v\)).
percentage of grains passed 200 more than 50 % sieve. So the soil including the classification of OH (organic clay with moderate to high plasticity).

TABLE I
CHARACTERISTICS OF PEAT SOIL

No.	Tests	Results
1.	Water Content (ω, %)	294.300
2.	Specific Gravity (G_s)	1.799
3.	Acidity (pH)	3.160
4.	Organic Content (OC, %)	77.400
5.	Ash Content (AC, %)	26.610
6.	Fiber Content (FC, %)	70.450
7.	Void Ratio (e)	3.092
8.	Wet Unit Weight (γ_b, kN/m3)	17.335
9.	Dry Unit Weight (γ_d, kN/m3)	4.396
10.	Cohesion (c, kPa)	7.649
11.	Internal Friction (ϕ, °)	24.000
12.	Shear Strength (τ, kPa)	8.720
13.	Von Post Scale	H$_4$

TABLE II
CHARACTERISTICS OF CLAY SOIL

No.	Tests	Results
1.	Water Content (ω, %)	62.050
2.	Specific Gravity (G_s)	2.594
3.	Liquid Limit (LL, %)	65.200
4.	Plastic Limit (PL, %)	42.870
5.	Index plastic (IP, %)	22.330
6.	Wet Unit Weight (γ_b, kN/m3)	17.531
7.	Dry Unit Weight (γ_d, kN/m3)	10.818
8.	Void Ratio (e)	1.396
9.	Acidity (pH)	5.000
10.	Cohesion (c, kPa)	18.000
11.	Internal Friction (ϕ, °)	22.835
12.	Shear Strength (τ, kPa)	26.521
13.	Classification AASHTO	A-7-5
14.	Classification USCS	OH

The fiber content can be examined under a Scanning Electron Microscope (SEM). Fig. 3 and Fig. 4 shows the typical fiber orientation obtained by Scanning Electron Microscope (SEM) for soil obtained from Village III Banyu Urip, Banyuasin, South Sumatra Province. Based on test results conducted on the SEM peat in the Chemical Laboratory of Chemical Engineering Department of the Sriwijaya Polytechnic visible pores and fibers contained. The sample used in this test was a sample which is cut horizontally with a magnification up to 10.000x.

Testing of EDS (Energy Dispersive Spectroscopy) also performed for peat soil and clay soil sample from Village III Banyu Urip, Banyuasin, South Sumatra Province. EDS test was done to analyze the chemical elements contained in the peat soil and clay soil. The results of the testing of EDS can be seen in Fig. 5 and Fig. 6. Research [11] reported the results from a Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) tests. Based on the results of the EDS test showed that element C has the highest content.
Soil suction testing using filter paper method on clay soil and peat soil from Village III Banyu Urip, Banyuasin regency had been done at Soil Mechanics Laboratory of Civil Engineering Department of Sriwijaya University based in ASTMDS298-03. Soil suction tests conducted as many as six samples on peat soil and clay soils. In this research, the soil suction value was obtained from the amount of water content on the Filter Paper calibrated by using a calibration curve or with an equation for Whatman Filter Paper No. 42.

Table 3 shows the peat soil result from P1 sample testing. Table 4 shows the clay soil result from C1 sample testing. Based on Table 3, peat soil under the Degree of Saturation (Sr) condition is 100% obtained water content (θ) 149.4095%, Volumetric of water content (θv) 85.3882 %, and Soil Suction (Ψ) 1.000 kPa. While in clay soil (Table 4) Degree of Saturation (Sr) of 97.7485 % obtained water content (θ) 42.5407%, Volumetric of water content (θv) 56.9463 %, and soil suction (Ψ) 1.000 kPa.

The result of soil suction in Table 3 and Table 4 can be seen that the change of the suction occurring on the peat and clay soils is related to the value of water content and the degree of saturation possessed by soil samples. The relationship of moisture content, a degree of saturation, and volumetric water content with soil suction occurring on peat soil samples can be seen in Fig. 7, Fig. 8, and Fig. 9. While Fig. 10, Fig. 11, and Fig. 12 shows the relationship of moisture content, a degree of saturation, and volumetric water content with suction on clay soil.

The graph of the relationship between water content (θ) peat soil and soil suction value as shown in Fig. 7 shows some points of initial value of soil sucking test, AEV value point, and residual water content. From the figure results the soil suction Ψ = 1,000 kPa with θ = 149.4095 % as the initial value of soil suction test, Ψ1 = 6,632632 kPa with Sr1 = 127.0030 % as the AEV value, and Ψ2 = 16.7062 kPa with θ2 = 87.9751 % as value of residual water content.

The graph of the relationship between the degree of saturation (Sr) of peat soil and soil suction value in Fig. 8 shows some points of initial value of soil suction test, AEV value point, and residual water content. Based on the Fig. 8 results soil suction Ψ = 1,000 kPa with Sr = 142.5387 % as the initial value of soil suction testing, Ψ1 = 6,632632 kPa with Sr1 = 141.1450 % as AEV values, and Ψ2 = 16.7062 kPa with Sr2 = 137.6341 % as residual water content.

Fig. 9 shows a graph of the relationship between volumetric water content (θv) of peat soil and soil suction value. Fig. 9 shows some points of initial value of ground suction testing, Air Entry Value, and residual water content. The results is soil suction Ψ = 1 kPa with θv = 85.3882 % as the initial value of soil suction testing, Ψ1 = 6,632632 kPa with θv1 = 78.9674 % as AEV values, and Ψ2 = 16.7062 kPa with θv2 = 64.4148 % as residual water content.

The relationship between soil suction clay with water content can be seen in Fig. 10. From the graph, it can be known that the starting point of the test on soil suction value Ψ = 1,000 kPa with a degree of saturation θ = 42.3292 %. While the soil suction value, Ψ1 = 48.9050 kPa with θ1 = 40.8399 % shows the value point Air Entry Value and value Ψ2 = 103.5342 kPa with θ2 = 37.9294 % as residual water water content.

The result of the filter paper test on clay soil obtained the graph of soil saturation relationship with a degree of saturation (Fig. 11). From the graph, it can be seen the starting point of testing on soil suction value Ψ = 1,000 kPa with a degree of saturation Sr = 97.4560 %. While the soil suction value, Ψ1 = 48.9050 kPa with Sr1 = 93.6319 % shows the point value of AEV (Air Entry Value) 103.5342 kPa with Sr2 = 87.4753 % residual water content. Fig. 12 illustrates the soil suction graph with volumetric water content. From the graph it can be seen the starting point of testing on soil suction value Ψ = 1,000 kPa with volumetric water content, Sr = 56.7759 %. While the soil suction value, Ψ1 = 48.9045 kPa with Ω1 = 54.5481 % shows the value point AEV (Air Entry Value) and value Ω2 = 103.5342 kPa with Ω2 = 50.9613 % as residual water content. The value of AEV (Air Entry Value) from [13] in the range 3kPa-200 kPa.

Table III

No.	Water Content (θv, %)	Degree of Saturation (Sr, %)	Volumetric of Water Content (θv, %)	Soil Suction (Ψ, kPa)
1.	149.4095	100.0000	85.3882	1.0000
2.	137.7388	99.9000	82.1750	3.8826
3.	127.0030	99.0000	78.9674	6.6326
4.	106.5902	95.8970	72.4620	7.7614
5.	97.3758	91.2470	68.9482	9.3663
6.	95.9804	90.1480	68.1180	10.0358
7.	91.3841	87.4720	66.0961	13.1782
8.	90.0128	86.4600	65.3315	13.4625
9.	87.9751	85.2470	64.4148	16.7063
10.	87.2716	84.1747	63.6042	23.9449
11.	85.8190	83.1140	62.8027	34.8745
12.	84.6429	82.2577	62.1566	55.5056
13.	83.3120	81.7230	61.7520	421.9588
14.	83.9462	81.1560	61.3232	798.5424

Table IV

No.	Water Content (θv, %)	Degree of Saturation (Sr, %)	Volumetric of Water Content (θv, %)	Soil Suction (Ψ, kPa)
1.	42.5407	100.0000	56.9463	1.0000
2.	41.9737	96.5143	56.2273	14.0080
3.	41.1994	94.6953	55.1676	19.7394
4.	40.4207	93.0846	54.2292	27.1052
5.	39.9430	91.7572	53.3172	31.5157
6.	39.0946	90.4190	52.6762	41.6312
7.	38.0377	88.4253	51.5148	49.9796
8.	37.3970	87.1340	50.7625	61.8733
9.	36.8482	85.9830	50.0920	129.2291
10.	36.4787	85.1767	49.6222	207.0814
As shown in the graph above shows that the value of water content indicated by the soil may affect the value of saturation degree and volumetric water content which will then also affect the value of suction produced by the tested peat soil. Each graph of the three samples shows three different points in each sample. The points on each graph show the amount of value at the beginning of the occurrence of soil suction, the value of the Air Entry Value, and the value of the value at the beginning of the residual water content.

The initial value of the occurrence of soil suction, the magnitude of the AEV value, and the value of the initial value of residual water content shown on the graph are the parameters that form the Soil Water Characteristic Curve (SWCC). The points that lie between the AEV point and starting point of the residual water content are the slope points of the moisture (\(\theta\)). The results of peat soil suction with a filter paper test method are shown in Table 5. Table 6 shows the results of clay soil suction. Fig. 12 and Fig. 13 illustrate the graph of the relationship between Soil Water Characteristic Curve (SWCC) with peat soil and clay soil.

Based on Table 5, the peat soil suction (\(\Psi\)) values in the range of 3.2432-17.5230 kPa. The clay soil suction (\(\Psi\)) in Table 6 was in the range 61.8733-100.3421 kPa. In Fig. 13 and Fig. 14 it can be seen that SWCC is comparing the suction value of all peat soil and clay soil samples. Soil Water Characteristic Curve (SWCC) above shows the existence of parameters that influence it. The comparison of the Soil Water Characteristic Curve (SWCC) from Fig. 13 shows the amount of AEV (Air Entry Value) in each peat soil sample having a value of soil suction less than 20 kDa. Whereas based on Fig. 14 the value of AEV in each clay soil sample has a soil suction value of less than 110 kPa.
In soil suction testing conducted with peat soil samples indicated that peat soil has a low suction to water with a soil suction value of no more than 1000 kPa. The clay has a relatively small percentage of pore volume. The amount of Pressure required on soil sucking is related to the pores of a land. The larger the pores of the soil, the pressure required to suction the water gets smaller because the soil that has a larger pore can be easier in passing water. The research of [12] describes the matrix suction of 10 and 500 kPa on coarse-grained soils and fine-grained soils. The results show that the Grained soils and fine-grained soils. The results show that the sensitivity analysis obtained a good SWCC curve.

TABLE V
RESULTS OF PEAT SOIL SUCTION WITH FILTER PAPER METHOD

Parameters	Peat Soil Suction	Clay Soil Suction				
Initial Value of Suction	Air Entry Value (AEV)	Residual Water Content	Initial Value of Suction	Air Entry Value (AEV)	Residual Water Content	
Sample P1	149.4095	127.0030	95.9804	42.3292	40.8400	37.9294
Sample P2	100.0000	99.0000	90.1480	97.4560	93.6319	87.4753
Sample P3	85.3882	78.9674	68.1180	56.7759	54.5481	50.9613
Sample P4	1.0000	6.6326	10.0358	1.0000	48.9050	103.5342
Sample P5	100.0000	99.0000	84.2890	99.2137	96.4817	89.20705
Sample P6	83.0566	77.4935	67.0247	57.7999	56.2083	51.97024
Sample P7	1.0000	2.8320	3.2432	1.0000	30.4006	64.1832
Sample P8	100.0000	99.1000	85.7510	100.0000	99.3000	90.1500
Sample P9	84.6304	78.3499	65.5933	80.8882	74.4674	63.6180
Sample P10	1.0000	10.3836	16.2930	1.0000	19.7394	61.8733
Sample P11	100.0000	99.1998	70.8247	1.0000	4.5326	9.3580
Sample P12	100.0000	99.4500	84.7510	100.0000	99.3000	90.1500
Sample P13	87.3066	81.2935	70.8247	84.6304	78.3499	65.5933
Sample P14	1.0000	3.9320	4.3432	1.0000	10.3836	16.2930
Sample P15	100.0000	99.1998	70.8247	100.0000	99.4500	84.7510
Sample P16	88.4804	82.1998	70.8247	1.0000	11.6136	17.5230
Sample P17	149.4095	127.0030	95.9804	149.4095	127.0030	95.9804
Sample P18	100.0000	99.0000	90.1480	100.0000	99.1000	85.7510
Sample P19	85.3882	78.9674	68.1180	83.0566	77.4935	67.0247
Sample P20	1.0000	6.6326	10.0358	1.0000	2.8320	3.2432
Sample P21	100.0000	99.0000	84.2890	100.0000	99.1000	85.7510
Sample P22	84.6304	78.3499	65.5933	80.8882	74.4674	63.6180
Sample P23	1.0000	10.3836	16.2930	1.0000	19.7394	61.8733
Sample P24	100.0000	99.1998	70.8247	1.0000	4.5326	9.3580
Sample P25	100.0000	99.4500	84.7510	100.0000	99.3000	90.1500
Sample P26	87.3066	81.2935	70.8247	84.6304	78.3499	65.5933
Sample P27	1.0000	3.9320	4.3432	1.0000	10.3836	16.2930
Sample P28	100.0000	99.1998	70.8247	100.0000	99.4500	84.7510
Sample P29	88.4804	82.1998	70.8247	1.0000	11.6136	17.5230

![Fig. 13 Soil water characteristic curve (swcc) peat soil suction](image)
Fig. 14 Soil water characteristic curve (swcc) clay soil suction

Based on the soil suction capability generated in soil suction testing, it is found that the greater the value of water content of a soil type, the greater the degree of saturation and volumetric moisture value of the soil type. Conversely, the water content of land will affect the absorption or puffing of the soil with the higher the value of moisture content, a degree of saturation, and volumetric water content of the soil will be smaller the value of suction produced by the soil. So from the results of research that has been done can be concluded that clay soil has a high soil suction ability compared with the suction be possessed by peat soil.

IV. CONCLUSION

The value of water content (ω) from peat soil is 294.30 %. The pH value of peat soil is 3.00. Peat soils are included on the H4 from Von Post classification. So, peat soils are classified as fibrous peat soils. The value of peat soil suction (Ψ) is 3.2432 kPa -17.5230 kPa. Peat soils have a fairly low suction capability. This is because the amount of soil suction value (Ψ) on peat soil obtained from the suction test with paper test does not reach more than 1000 kPa. The water content of clay soil is 62.05 %. pH value about 5.00. Classification of clay soils based on AASHTO is A-7-5. Moreover, based USCS is OH (organic clay). The value of peat soil suction (Ψ)= 61.8733 kPa-100.3421 kPa.

ACKNOWLEDGMENT

The author would like to thank Lily Triani and Ade Marshella. This research is part of the Dissertation research from Faculty of Engineering, Universitas Sriwijaya.

REFERENCES

[1] ASTM International. Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. D5298-03. ASTM International. 2003.
[2] Leong, E., C., Kizzam, R., and Rahardjo, H., Measurement of Soil Suction using Most Filter Paper. E3S W. UNSAT 10012. DOI: 10.1051/ e3sconf/20160910012. 2016.
[3] Hezni, M.A., Saari, R., Zahari, M., Z., Abdullah, R., A., Yunus, N., Z., M., and Safuan, Rashid, A., S., A., Soil Water Characteristic Curves of Compacted Kaolin for Various Initial Moisture Content. Jurnal Teknologi (Sciences and Engineering) 76:2 (2015) 39.44.
[4] Leong, E., C., He, L., and Rahardjo, H., Factors Affecting the Filter Paper Method for Total and Matric Suction Measurements. Journal Geotechnical Testing, Vol. 25, No. 3. Paper ID GTJ20028198, 253. 2002.
[5] J. A. Munoz-Castelblanco, Jean-Michel Pereira, Pierre Delage, Yu-Jun Cui. Suction measurements on a Natural Unsaturated Soil: A Reappraisal of the Filter Paper Method. Alonso, E. E., and Gens, A. Unsaturated Soils-Proc. Fifth Int. Conf. on Unsaturated Soils, Sep 2010, Barcelona, Spain. CRC Press, 1, pp.707-712, 2010.
[6] Fredlund, D., G., Rahardjo, H., and Fredlund, M., D., Unsaturated Soil Mechanics in Engineering Practice. John Wiley and Sons. Canada. 2012.
[7] Zhai, Q., and Rahardjo, H., Determination of Soil Water Characteristic Curve Variables. Computers and Geotechnics 42 (2012) 37-43.
[8] Khong, B., C., Leong, E., C., and Rahardjo, H., A Simplified Method to Estimate The Soil Water Characteristics Curve. Canadian Geotechnical Journal. 47: 1382-1400. doi:10.1139/T10-033, 2010.
[9] Sutejo, Y. et al., Engineering Properties of Peat in Ogan Ilir Regency. Jurnal Teknologi (Sciences and Engineering) 78: 7-3. 61–69. 2016
[10] Nevia. The response of Rice and Carbon Emission to Application of Ameliorant Dregs in The Peat Soil With Saturation and Unsaturation Condition International. Journal on Advanced Science, Engineering And Information Technology (IJASEIT), Vol.4 No. 6 ISSN: 2088-5334. 2014.
[11] Bow, Y., Hairul, and Hajar, I., Molecularly Imprinted Polymer (MIP) Based PVC-Membrane-Coated Graphite Electrode for the Determination of Heavy Metals. Journal on Advanced Science, Engineering and Information Technology (IJASEIT), Vol.5. No. 6 ISSN: 2088-5334. 2015.
[12] Satyanaga, A., Rahardjo, H., Leong, E., C., and Wangm, J., Y., Water Characteristics Curve of Soil with Bimodal Grain Size Distribution. Computers and Geotechnics 48, 51-61. 2013.
[13] Lins, Y., Schanz, T., and Fredlund, D., G., Modified Pressure Plate Apparatus and Column Testing Device for Measuring SWCC of Sand. Geotechnical Testing Journal, Vol. 32, No. 5. Paper ID GTJ101318. 2009.
REGISTRASI KARYA ILMIAH

Berdasarkan data yang terdapat pada kami, maka tulisan/artikel/penelitian dengan judul:

- CHARACTERISTICS OF SOIL SUCTION WITH FILTER PAPER TEST METHOD

Termuat dalam International Journal On Advanced Science Engineering Information Technology

ISSN : 2088-5334

Penulis : Dr. Ir. Hanafiah, MS

Telah teregistrasi dengan No.

Kode Fakultas	Kode PS/Jurusan	Kode Publikasi	Kode Penulis	Tahun Publikasi	Kode Sumber Tulisan	Sumber Dana	Nomor urut Publikasi dan Fakultas
030101041801031773							

Inderalaya, 08 Mei 2019

Koord,

Unit PPMK FT. UNSRI

Idya Fransiska FA, S.T., MM., Ph.D

NIP. 197602162001122001