A Theoretical Question in the Optimal Design of Matrix Decomposition Based FIR Filter

HAO WANG1, YI JIN2, XINMIN CHENG3, AND RONG ZENG1,4
1School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2Xi’an Branch of China Academy of Space Technology, Xi’an 710000, China
3School of Information Engineering, Huzhou University, Huzhou 313000, China
4National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

Corresponding author: Hao Wang (klwh2003zhw@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61601153, and in part by the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University, under Grant 2020D13.

ABSTRACT The matrix decomposition (MD) based finite impulse response (FIR) filter is a low-complexity FIR filter. It has been tested the coefficients of the MD-FIR filter can be effectively optimized by the trust-region-iterative-gradient-searching (TR-IGS) algorithm. This algorithm solves the convex-approximation-problem of the original coefficients optimization problem. In this study, we deal with the relationship between the theoretical termination point of the TR-IGS and the optimal solution of the original coefficients optimization problem.

INDEX TERMS FIR, low-complexity, matrix decomposition, optimal design, trust-region-iterative-gradient-searching.

I. INTRODUCTION

Finite impulse response (FIR) filters [1]–[25] can achieve strict linear-phase (LP) and have guaranteed stability. They are widely used in digital signal processing (e.g., filtering and Hilbert transformer design [9]) and communication systems (e.g., pulse shaping [10] and equalizer). Traditional methods of designing an FIR filter include window method, frequency sampling method and direct optimal design method. The hardware implementation complexity [11] of a traditional FIR filter is high due to the coefficient multiplications. However, it has the advantage that it can be implemented using the well developed direct implementation structure. Particularly, for the window method, the filter coefficients can be analytically obtained.

Various techniques have been developed to decrease the hardware implementation complexity [9], [11]–[24] of a traditional FIR filter. The popular ones of these techniques include sparse traditional FIR filter technique [12], [13], [18], [20], frequency response mask technique [8], and the matrix decomposition based technique [7]. For the sparse traditional FIR filter technique, the designed FIR filter can be implemented using the well developed direct implementation structure. For the other two techniques, the designed FIR filters have to be implemented using different structures.

By utilizing a different FIR filter structure, matrix decomposition (MD) based technique can synthesize any FIR filter (including non-frequency-selective FIR filters), with much lower hardware implementation complexity, affecting the frequency performance metrics very scarcely and with no impact on the group-delay performance metric [6], [7].

The optimal design of a MD-FIR filter is generally a high-dimensional, non-convex and non-differential-able (for mini-max design) optimization problem. Thus, it is not easy to analyze and locate its local optimum. The trust-region iterative-gradient-searching (TR-IGS) is an effective technique to optimize the coefficients of a MD-FIR filter [6].

In [7], a convergent implementation of TR-IGS is proposed for the first time. It is pointed out in [7], the TR-IGS may converge to a non-local-minimum.

A theoretical question regarding TR-IGS is: what is the relationship between the optimal solution of TR-IGS and that of the original filter coefficients optimization problem? In this study, we address this issue for the first time. The theoretical results provide insight into the TR-IGS algorithm. The challenge in addressing this theoretical issue is: the original filter coefficients optimization problem is high-dimensional, non-convex and non-differential-able (for mini-max design).
II. THEORETICAL QUESTION

The frequency response of a non-linear-phase MD-FIR filter can be given as follows [7]:

\[
H'(x \omega) = x_{\text{rem}}(0) + \sum_{n=1}^{M} [x_{\text{rem}}(n) \cdot \exp \left(- \sqrt{-1} \cdot \omega \cdot n \right)] + \sum_{j=1}^{R} s_{1}(j) + \sum_{i=1}^{d} \left[r_{1}(i) \cdot \exp \left(- \sqrt{-1} \cdot \omega \cdot (M + (j - 1) \cdot d + i) \right) \right] + \sum_{j=1}^{R} s_{2}(j) + \sum_{i=1}^{d} \left[r_{2}(i) \cdot \exp \left(- \sqrt{-1} \cdot \omega \cdot (M + (j - 1) \cdot d + i) \right) \right] + \ldots + \sum_{j=1}^{R} s_{M_{1}+M_{2}+q}(j)
\]

\[
\cdot \sum_{i=1}^{d} \left[r_{M_{1}+M_{2}+q}(i) \cdot \exp \left(- \sqrt{-1} \cdot \omega \cdot (M + (j - 1) \cdot d + i) \right) \right],
\]

where

\[
x = [x_{\text{rem}}^{T} \quad r_{1}^{T} \quad r_{2}^{T} \quad \ldots \quad r_{p}^{T} \quad s_{1}^{T} \quad s_{2}^{T} \quad \ldots \quad s_{p}^{T}]^{T}.
\]

\[x_{\text{rem}}, r_{i}, \text{and } s_{i}\text{ are the design parameters of a MD-FIR filter [7].} \]

The frequency response of a linear-phase MD-FIR filter has a similar expression to the above [6]. The optimal design of a MD-FIR filter, in the minimax sense or the least square sense, can be described as follows [6]:

\[
\min_{x_{\text{nz}}} \|w \ast (H(x_{\text{nz}}) - H_d)\|_{\infty \text{ or } 2} \quad \text{(Problem 1)}
\]

where \(w\) denotes the frequency weighting vector, \(x_{\text{nz}}\) denotes the variable coefficients vector in \(x\) and \(\ast\) denotes element-wise multiplication of two vectors.

For some given initial solution \(x_{\text{nz}}^{\text{init}}\) = \(x_{\text{nz}}^{(0)}\) (the superscript ‘Int’ denotes the initial solution), (Problem 1) can be approximately transformed into a convex optimization problem described as follows:

\[
\min_{x_{\text{nz}}} \|w \ast (H(x_{\text{nz}}) + G(x_{\text{nz}})) - H_d\|_{\infty \text{ or } 2} \quad \text{(Problem 2.a)}
\]

subject to: \(\|x_{\text{nz}}\|_{\infty} \leq \delta \) \quad (Problem 2.b)

where \(G(x_{\text{nz}})\) is the Jacobian matrix of the function \(H(x_{\text{nz}})\) with respect to \(x_{\text{nz}}\), \(\nabla x_{\text{nz}}(\nabla x_{\text{nz}} = (x_{\text{nz}} - x_{\text{nz}}^{\text{init}}))\) denotes the minor change of variable \(x_{\text{nz}}\) at some initial point and \(\delta\) is some prescribed bound. By solving (Problem 2), we could obtain a better solution \(x_{\text{nz}}^{(1)}\) than \(x_{\text{nz}}^{(0)}\). Thus, \(x_{\text{nz}} = x_{\text{nz}}^{(0)}\) can be improved iteratively until it cannot be improved (Theoretically speaking, \(x_{\text{nz}} = x_{\text{nz}}^{(0)}\) can be infinitely iteratively improved before reaching the theoretical termination point [7] of TR-IGS (i.e., the optimal solution of TR-IGS). Practically and generally speaking, however, \(x_{\text{nz}} = x_{\text{nz}}^{(0)}\) can only be finitely iteratively improved before reaching the theoretical termination point.).

Note the objective function in Problem (2)/(2.a) is the convex approximation of the objective function in Problem (1).

If the optimal solution of Problem (2) is \(\nabla x_{\text{nz}} = 0\) (i.e., \(x_{\text{nz}} = x_{\text{nz}}^{\text{init}}\)) for some initial solution \(x_{\text{nz}}^{\text{init}}\), then the TR-IGS algorithm terminates at this point \(x_{\text{nz}}^{\text{init}}\), and \(\nabla x_{\text{nz}} = 0\) is the optimally solution of Problem (2)/(2.a). And, this \(\nabla x_{\text{nz}} = 0\) is the optimal solution of TR-IGS. A theoretical question intuitively arise as follows: what is the relationship between the optimal solution of TR-IGS and that of the original problem? In this study, a complete relationship between the optimal solution of TR-IGS and that of the original problem is studied.

III. PRELIMINARY WORK

Firstly, we reformulate Problems (1) and (2) by expanding each function in the \(\ell_{\infty}\) norm or \(\ell_{2}\) norm using Taylor series.

Let

\[
\begin{pmatrix}
\nabla f(x_{\text{nz}}) \omega_{1} \\
\nabla f(x_{\text{nz}}) \omega_{2}
\end{pmatrix} = w \ast (H(x_{\text{nz}}) - H_d), \quad \text{(3)}
\]

\[
\nabla f(x_{\text{nz}}) \omega_{i} \quad \text{and } \quad H \left[f \left(x_{\text{nz}} \omega_{i} \right) \right] \quad \text{denote the gradient vector and Hessian matrix of } f \left(x_{\text{nz}} \omega_{i} \right) \quad \text{for } i = 1, 2, 3, \ldots, \Gamma, \text{ and } \omega_{i} \text{ are the frequency points of interest. For some initial solution } x_{\text{nz}}^{\text{init}}, \text{ (Problem 1) can be reformulated equivalently in (Problem 3-Q), as shown at the bottom of the next page, where } \Delta x_{\text{nz}} = \left(x_{\text{nz}} - x_{\text{nz}}^{\text{init}} \right). \text{ And (Problem 2) can be reformulated equivalently in (Problem 3-L-a) and (Problem 3-L-b), as shown at the bottom of the next page.}
\]

In this paper, “Q” and “L” are used to differentiate the original problem and the convex-approximation problem.

Note the optimal design of the basic frequency response masking (FRM) FIR filter and that of the separable 2-D FIR filter can also be described by (Problem 3-Q).

Then, we consider the reformulated problems only in one direction of \(\nabla x_{\text{nz}}\). Let \(d = \frac{\nabla x_{\text{nz}}}{\|\nabla x_{\text{nz}}\|_{\infty}}\) be the direction of \(\nabla x_{\text{nz}}\) and \(\nabla x_{\text{nz}} = \|\nabla x_{\text{nz}}\|_{\infty} (\Delta x_{\text{nz}} \geq 0)\) be the length of \(\nabla x_{\text{nz}}\). For any given direction \(d\) of \(\nabla x_{\text{nz}}\), (Problem 3-Q) can be reformulated equivalently in (Problem 4-Q), as shown at the bottom of the next page.

Let

\[
g_{1i} = \left(\nabla f \left(x_{\text{nz}}^{\text{init}} \omega_{i} \right) \right)^{T} \cdot d \quad \text{(4)}
\]

And

\[
g_{2i} = d^{T} \cdot H \left[f \left(x_{\text{nz}}^{\text{init}} \omega_{i} \right) \right] \cdot d. \quad \text{(5)}
\]
We have (Problem 5-Q), (Problem 5-L-a), and (Problem 5-L-b), as shown at the bottom of this page.

IV. RELATIONSHIP BETWEEN THE OPTIMAL SOLUTION OF THE TR-IGS AND THAT OF THE ORIGINAL PROBLEM, \(\ell_\infty \) NORM

A. THE GENERAL CASE: \(f(x_{NZ} \omega_i) \) ARE COMPLEX-COEFFICIENT FUNCTIONS WITH REAL ARGUMENT \(x_{NZ} \)

For \(i = 1, 2, 3, ..., \Gamma \)

Firstly, some sets of the indexes (i.e., \(i = 1, 2, 3, ..., \Gamma \)) of the functions \(f(x_{NZ} \omega_i) \) are defined, which will be used in simplifying the expressions of the objective functions of Problems (5-Q) and (5-L), (6) and (7), as shown at the bottom of the next page, for \(i = 1, 2, 3, ..., \Gamma \), where \(\text{Real}[] \) and \(\text{Imag}[] \) denote the real and imaginary part of a complex number.

Let \(\Phi_1 = \arg \max_{i \in \Phi_1} |f(x_{NZ} \omega_i)|^2 \), \(\Phi_2 = \arg \max_{i \in \Phi_2} c_{1i} \) and \(\Phi_{3-Q} = \arg \max_{i \in \Phi_2} c_{2i} \). Let

\[
\begin{align*}
\phi_1 & = \arg \max_{i \in \Phi_1} |f(x_{NZ} \omega_i)|^2, \\
\phi_2 & = \arg \max_{i \in \Phi_2} c_{1i}, \\
\phi_{3-Q} & = \arg \max_{i \in \Phi_2} c_{2i}.
\end{align*}
\]

FIGURE 1. \(\Phi_1, \Phi_2, \Phi_{3-Q}, \Phi_{3-L}, \Phi_{4-Q}, \Phi_{5-Q} \) and \(\Phi_{Q-L} \) (case 1).

\(\Phi_{3-L} = \arg \max_{i \in \Phi_2} |g_{1i}|^2 \), \(\Phi_{4-Q} = \arg \max_{i \in \Phi_2} c_{3i} \), and \(\Phi_{5-Q} = \arg \max_{i \in \Phi_2} c_{4i} \). Let \(i = \max \{ Q \} \) denote an element in set \(\Phi_{5-Q} \), and \(i = \max \{ Q \} - L \) denote an element in set \(\Phi_{3-L} \). Let \(\Phi_{Q-L} = \Phi_{3-L} \cap \Phi_{3-Q} \) and \(i = \max \{ Q \} - L \) denote an element in \(\Phi_{Q-L} \). The relationship between \(\Phi_1, \Phi_2, \Phi_{3-Q}, \Phi_{3-L}, \Phi_{4-Q}, \Phi_{5-Q} \) and \(\Phi_{Q-L} \) is illustrated in the following Figures 1-3.

Program 3-Q

\[
\begin{align*}
\min_{x_{NZ}} & \quad f(x_{NZ} \omega_1) = f(x_{NZ}^{\text{Init}} \omega_1) + \nabla f(x_{NZ}^{\text{Init}} \omega_1) \cdot \Delta x_{NZ} \\
& \quad + 0.5 \cdot x_{NZ}^{\text{Init}} \cdot H[f(x_{NZ}^{\text{Init}} \omega_1)] \cdot \Delta x_{NZ} \\
& \quad + \cdots \quad (\text{Problem 3-Q})
\end{align*}
\]

Program 3-L-a

\[
\begin{align*}
\min_{x_{NZ}} & \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + \nabla f_l(x_{NZ}^{\text{Init}} \omega_1) \cdot \Delta x_{NZ} \\
& \quad + \cdots \quad (\text{Problem 3-L-a})
\end{align*}
\]

subject to

\[
\|x_{NZ}\|_\infty \leq \delta
\]

Program 4-Q

\[
\begin{align*}
\min_{x_{NZ}} & \quad f(x_{NZ} \omega_1) = f(x_{NZ}^{\text{Init}} \omega_1) + \nabla f(x_{NZ}^{\text{Init}} \omega_1) \cdot d \cdot \Delta x_{NZ} \\
& \quad + 0.5 \cdot d^T \cdot H[f(x_{NZ}^{\text{Init}} \omega_1)] \cdot d \\
& \quad + \cdots \quad (\text{Problem 4-Q})
\end{align*}
\]

Program 5-Q

\[
\begin{align*}
\min_{x_{NZ}} & \quad f(x_{NZ} \omega_1) = f(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} + 0.5 \cdot \Delta x_{NZ}^2 \cdot g_{2i} \\
& \quad f(x_{NZ} \omega_2) = f(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} + 0.5 \cdot \Delta x_{NZ}^2 \cdot g_{2i} \\
& \quad f(x_{NZ} \omega_1) = f(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f(x_{NZ} \omega_2) = f(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad \|x_{NZ}\|_\infty \leq \delta
\end{align*}
\]

Program 5-L-a

\[
\begin{align*}
\min_{x_{NZ}} & \quad f(x_{NZ} \omega_1) = f(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} + 0.5 \cdot \Delta x_{NZ}^2 \cdot g_{2i} \\
& \quad f(x_{NZ} \omega_2) = f(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} + 0.5 \cdot \Delta x_{NZ}^2 \cdot g_{2i} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad \|x_{NZ}\|_\infty \leq \delta
\end{align*}
\]

Program 5-L-b

\[
\begin{align*}
\min_{x_{NZ}} & \quad f(x_{NZ} \omega_1) = f(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} + 0.5 \cdot \Delta x_{NZ}^2 \cdot g_{2i} \\
& \quad f(x_{NZ} \omega_2) = f(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} + 0.5 \cdot \Delta x_{NZ}^2 \cdot g_{2i} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_1) = f_l(x_{NZ}^{\text{Init}} \omega_1) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad f_l(x_{NZ} \omega_2) = f_l(x_{NZ}^{\text{Init}} \omega_2) + g_{1i} \cdot \Delta x_{NZ} \\
& \quad \|x_{NZ}\|_\infty \leq \delta
\end{align*}
\]
Secondly, the objective functions of Problems (5-Q) and (5-L) are simplified. There always exists a positive number \(\lambda > 0 \) such that the following Equations (8) and (9), as shown at the bottom of this page, hold true for \(\Delta x_{NZ} \in [0, \lambda] \). This can be proved using the definition of infinity norm. In brief words, the left-hand sides of Equations (8) and (9) (i.e., the objective functions in Problems (5-Q) and (5-L)) are only determined by functions \(f(x_{NZ}, \omega_i - \text{max-Q}) \) \((i - \text{max-Q} \in \Phi_3)\) and \(f(x_{NZ}, \omega_i - \text{max-L}) \) \((i - \text{max-L} \in \Phi_3 - L)\), respectively, as long as \(\Delta x_{NZ} \) is sufficiently small.

A special case: Suppose \(\Phi_{Q-L} \) is not empty for some direction \(d \). Thus, the objective function in (Problem 5-Q) can be determined by \(f(x_{NZ}, \omega_i - \text{max-Q}) \) and that in (Problem 5-L) can be determined by \(f_L(x_{NZ}, \omega_i - \text{max-L}) \) for the direction \(d \).

Finally, a series of remarks with respect to the optimums of Problems (3-Q) and (3-L) are obtained:

\[
\begin{align*}
\| f(x_{NZ}, \omega_i) + g_{i1} \cdot \Delta x_{NZ} + 0.5 \cdot \Delta x_{NZ}^2 \cdot g_{2i} \|_2^2 \\
= [f(x_{NZ}, \omega_i)]^2 + \Delta x_{NZ} \cdot (2 \cdot \text{Re} [f(x_{NZ}, \omega_i)] \cdot \text{Re} [g_{i1}] + 2 \cdot \text{Im} [f(x_{NZ}, \omega_i)] \cdot \text{Im} [g_{i1}]) \\
+ \Delta x_{NZ}^2 \cdot (\text{Re} [g_{i1}]^2 + \text{Im} [g_{i1}]^2) \\
+ \Delta x_{NZ}^4 \cdot (0.25 \cdot \text{Re} [g_{2i}]^2 + 0.25 \cdot \text{Im} [g_{2i}]^2) \\
\end{align*}
\]

\[
\frac{\| f(x_{NZ}, \omega_i) + g_{i1} \cdot \Delta x_{NZ} + 0.5 \cdot g_{2i} \cdot \Delta x_{NZ}^2 \|_2^2}{g_{2i}=0} = \| f(x_{NZ}, \omega_i) + g_{i1} \cdot \Delta x_{NZ} \|_2^2 \\
= \| f(x_{NZ}, \omega_i) \|_2^2 \\
+ \Delta x_{NZ} \cdot (2 \cdot \text{Re} [f(x_{NZ}, \omega_i)] \cdot \text{Re} [g_{i1}] + 2 \cdot \text{Im} [f(x_{NZ}, \omega_i)] \cdot \text{Im} [g_{i1}]) \\
+ \Delta x_{NZ}^2 \cdot (\text{Re} [g_{i1}]^2 + \text{Im} [g_{i1}]^2) \\
\]

\[
\begin{align*}
\| f(x_{NZ}, \omega_1) \|_2 & = \| f(x_{NZ}, \omega_2) \|_2 \\
& = \| f(x_{NZ}, \omega_3) \|_2 \\
& = \| f(x_{NZ}, \omega_4) \|_2 \\
& = \ldots \\
& = \| f(x_{NZ}, \omega_i - \text{max-Q}) \|_2 \\
& + \Delta x_{NZ} \cdot c_{i1-\text{max-Q}} + \Delta x_{NZ}^2 \cdot c_{2i-\text{max-Q}} + \Delta x_{NZ}^3 \cdot c_{3i-\text{max-Q}} + \Delta x_{NZ}^4 \cdot c_{4i-\text{max-Q}} \\
& = \sqrt{\| f(x_{NZ}, \omega_i - \text{max-Q}) \|^2 + \Delta x_{NZ} \cdot c_{i1-\text{max-Q}} + \Delta x_{NZ}^2 \cdot c_{2i-\text{max-Q}} + \Delta x_{NZ}^3 \cdot c_{3i-\text{max-Q}} + \Delta x_{NZ}^4 \cdot c_{4i-\text{max-Q}}} \\
& = f_L(x_{NZ}, \omega_1) = f(x_{NZ}, \omega_2) = f(x_{NZ}, \omega_3) = f(x_{NZ}, \omega_4) \\
& \ldots \\
& = f_L(x_{NZ}, \omega_i - L) = g_{i1} \cdot \Delta x_{NZ} \\
& f_L(x_{NZ}, \omega_i - L) = f(x_{NZ}, \omega_i - L) + g_{i1} \cdot \Delta x_{NZ} \\
& f_L(x_{NZ}, \omega_i - L) = f(x_{NZ}, \omega_i - L) + g_{i1} \cdot \Delta x_{NZ} \\
& = \sqrt{\| f(x_{NZ}, \omega_i - \text{max-L}) \|^2 + \Delta x_{NZ} \cdot c_{i1-\text{max-L}} + \Delta x_{NZ}^2 \cdot |g_{i1-\text{max-L}}|^2} \\
& = \| f(x_{NZ}, \omega_i - \text{max-L}) \|_{\infty} = \| f(x_{NZ}, \omega_i - \text{max-L}) + g_{i1-\text{max-L}} \cdot \Delta x_{NZ} \|_{\infty} \\
\end{align*}
\]
The following Figure 4 describes the curves of the objective functions of the original problem and its convex approximation. (e.g. L_∞-Complex-3D-1)

\[
\begin{align*}
\text{minimize} & \quad \Delta x \\
\text{subject to} & \quad (2-j) + \Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x \\
& \quad (2-j) + \Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x \\
& \quad (2-j) + \Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x \\
& \quad (2-j) + \Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x
\end{align*}
\]

where

\[
\begin{align*}
\text{grad}_1 &= \left[1 + 2 \cdot j \ -1 + 2 \cdot j \ 1 + 2 \cdot j \right]^T, \\
\text{grad}_2 &= \left[1 + 2 \cdot j \ 1 + 2 \cdot j \ 0 \right]^T, \\
\text{grad}_3 &= \left[0 \ 1 + 2 \cdot j \ 1 + 2 \cdot j \right]^T, \\
\text{Hess}_1 &= \text{Hess}_2 = \text{Hess}_3 = \text{Hess}_4 \\
&= \begin{bmatrix}
-18 - 18 \cdot j & 0 & 0 \\
0 & -18 - 18 \cdot j & 0 \\
0 & 0 & -18 - 18 \cdot j
\end{bmatrix}.
\end{align*}
\]

The strictly globally/locally optimal solution $\Delta x_{NZ} = 0$ of (Problem 3-L) may also be the strictly globally/locally optimal solution of (Problem 3-Q). Four examples are provided as follows:

The strictly globally/locally optimal solution $\Delta x = 0$ of the TR-IGS-convex-approximation-problem is the strictly globally/locally optimal solution of the original problem

\[
\begin{align*}
\text{minimize} & \quad \Delta x \\
\text{subject to} & \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x)
\end{align*}
\]

The following Figure 5 describes the curves of the objective functions of the above two problems.

\[
\begin{align*}
\text{minimize} & \quad \Delta x \\
\text{subject to} & \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x)
\end{align*}
\]

The strictly globally/locally optimal solution $\Delta x = 0$ of the TR-IGS-convex-approximation-problem is also the

\[
\begin{align*}
\text{minimize} & \quad \Delta x \\
\text{subject to} & \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x)
\end{align*}
\]

The following Figure 5 describes the curves of the objective functions of the above two problems.

\[
\begin{align*}
\text{minimize} & \quad \Delta x \\
\text{subject to} & \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x) \\
& \quad (1 + 2 \cdot j) + (\Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x)
\end{align*}
\]

The following Figure 5 describes the curves of the objective functions of the above two problems.
strictly globally/locally optimal solution of the original problem
\[
\minimize_{\Delta x} \left\{ \left\| 1 - 2 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 3 \right\|_{\infty} \right. \\
\left. + 0.1 - 2 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 2 \right\}
\]
(e.g.-L_{\infty}-Real-1)

The following Figure 6 describes the curves of the objective functions of the above two problems.

![Figure 6](image_url)

FIGURE 6. The curves of the objective functions of the original problem and its convex approximation. (e.g.-L_{\infty}-Real-1).

The strictly locally optimal solution \(\Delta x = 0 \) of the TR-IGS-convex-approximation-problem is also the strictly locally optimal solution of the original problem
\[
\minimize_{\Delta x} \left\{ \left\| 2 + \Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x \right\|_{\infty} \right. \\
\left. + 2 \Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x \right\} \\
\left. + 2 \Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x \right\} \\
\left. + 2 \Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x \right\} \\
\left. + 2 \Delta x^T \cdot \text{grad}_5 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_5 \cdot \Delta x \right\} \\
\left. + 2 \Delta x^T \cdot \text{grad}_6 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_6 \cdot \Delta x \right\}
\]
\(\infty \) (e.g.-L_{\infty}-Real-3D-1)

where
\[
\text{grad}_1 = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T, \quad \text{grad}_2 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}^T, \\
\text{grad}_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \quad \text{grad}_4 = \begin{bmatrix} -1 & -1 & 0 \end{bmatrix}^T, \\
\text{grad}_5 = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T, \quad \text{grad}_6 = \begin{bmatrix} 1 & -1 & -2 \end{bmatrix}^T
\]

and \(\text{Hess}_i \) (3 \times 3) can be any matrix of real elements for \(i = 1, 2, 3, \ldots, 6 \).

The strictly locally optimal solution \(\Delta x = 0 \) of the TR-IGS-convex-approximation-problem is also the strictly locally optimal solution of the original problem
\[
\minimize_{\Delta x} \left\{ \left\| (2 - j) + \Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x \right\|_{\infty} \right. \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x \right\} \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x \right\} \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x \right\} \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_5 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_5 \cdot \Delta x \right\} \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_6 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_6 \cdot \Delta x \right\}
\]
\(\infty \) (e.g.-L_{\infty}-Complex-3D-2)

where
\[
\text{grad}_1 = \text{grad}_2 = \begin{bmatrix} 1 + 2 \cdot j & -1 - 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T, \\
\text{grad}_3 = \begin{bmatrix} 1 + 2 \cdot j & -1 - 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T, \\
\text{grad}_4 = \begin{bmatrix} 0 & 1 + 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T, \\
\text{grad}_5 = \begin{bmatrix} 1 + 2 \cdot j & -1 - 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T, \\
\text{grad}_6 = \begin{bmatrix} 0 & 1 + 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T
\]

The strictly globally/locally optimal solution \(\Delta x = 0 \) of (Problem 3-L) may also be the non-strictly locally optimal solution of (Problem 3-Q). One example is provided as follows:

The strictly locally optimal solution \(\Delta x = 0 \) of the TR-IGS-convex-approximation-problem is the non-strictly locally optimal solution of the original problem
\[
\minimize_{\Delta x} \left\{ \left\| (2 - j) + \Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x \right\|_{\infty} \right. \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x \right\} \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x \right\} \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x \right\} \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_5 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_5 \cdot \Delta x \right\} \\
\left. + (2 - j) + \Delta x^T \cdot \text{grad}_6 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_6 \cdot \Delta x \right\}
\]
\(\infty \) (e.g.-L_{\infty}-Complex-3D-3)

where
\[
\text{grad}_1 = \text{grad}_2 = \begin{bmatrix} 1 + 2 \cdot j & -1 - 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T, \\
\text{grad}_3 = \begin{bmatrix} 1 + 2 \cdot j & -1 - 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T, \\
\text{grad}_4 = \begin{bmatrix} 0 & 1 + 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T, \\
\text{grad}_5 = \begin{bmatrix} 1 + 2 \cdot j & -1 - 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T, \\
\text{grad}_6 = \begin{bmatrix} 0 & 1 + 2 \cdot j & 1 + 2 \cdot j \end{bmatrix}^T
\]

and
\[
\text{Hess}_1 = \begin{bmatrix} -18 - 18 \cdot j & 0 & 0 \\
0 & -18 - 18 \cdot j & 0 \\
0 & 0 & -18 - 18 \cdot j \end{bmatrix}, \
\text{Hess}_2 = \begin{bmatrix} 0 & 0 & 0 \\
0 & 10 - 10 \cdot j & 0 \\
0 & 0 & 10 - 10 \cdot j \end{bmatrix}
\]

Remark 2: The strictly globally/locally optimal solution \(\Delta x_{NZ} = 0 \) of (Problem 3-L) may be/not be the strictly locally optimal solution of (Problem 3-Q).

Proof: Please see the examples of Remark 1.

Remark 3: The strictly globally/locally optimal solution \(\Delta x_{NZ} = 0 \) of (Problem 3-L) may be/not be the strictly locally optimal solution of (Problem 3-Q).

Proof: Please see the examples of Remark 1.

Remark 4: The non-strictly globally/locally optimal solution \(\Delta x_{NZ} = 0 \) of (Problem 3-L) may be/not be the non-strictly locally optimal solution of (Problem 3-Q).

Proof: The non-strictly globally/locally optimal solution \(\Delta x = 0 \) of the TR-IGS-convex-approximation-problem is not the (strictly) locally optimal solution of the original problem
\[
\minimize_{\Delta x} \left\{ \left\| 1 + 0 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot (-3) \right\|_{\infty} \right. \\
\left. + 1 + 0 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot (-5) \right\} \\
\left. + 0.1 + 2 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot (-5) \right\} \\
\left. + 1 + (-2) \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot (-2) \right\}
\]
\(\infty \) (e.g.-L_{\infty}-Real-1)
The following Figure 7 describes the curves of the objective functions of the above two problems.

The non-strictly globally/locally optimal solution $\Delta x = 0$ of the TR-IGS-convex-approximation-problem is not the (strictly) locally optimal solution of the original problem in the following two examples: (e.g.-L_{∞}-Real-3D-2) and (e.g.-L_{∞}-Complex-3D-4)

\[
\text{minimize}_{\Delta x} \left\{ \begin{array}{c} 2 + \Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x \\ 2 + \Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x \\ 2 + \Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x \\ 2 + \Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x \end{array} \right\}_\infty
\]

where

\[
\text{grad}_1 = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T, \quad \text{grad}_2 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}^T, \\
\text{grad}_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \quad \text{grad}_4 = \begin{bmatrix} -1 & -1 & 0 \end{bmatrix}^T,
\]

\[
\text{Hess}_1 = \text{Hess}_2 = \text{Hess}_3 = \text{Hess}_4 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
\]

The following Figure 8 describes the curves of the objective functions of the above two problems.

The non-strictly locally optimal solution $\Delta x = 0$ of the TR-IGS-convex-approximation-problem is the strictly globally/locally optimal solution of the original problem

\[
\text{minimize}_{\Delta x} \left\{ \begin{array}{c} 1 + 0 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 3 \\ 1 + 0 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 5 \\ 0.1 + 2 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 5 \\ 1 + (-2) \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 2 \end{array} \right\}_\infty
\]

where

\[
\text{grad}_1 = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T, \quad \text{grad}_2 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}^T, \\
\text{grad}_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \quad \text{grad}_4 = \begin{bmatrix} -1 & -1 & 0 \end{bmatrix}^T,
\]

The following Figure 9 describes the curves of the objective functions of the above two problems.

The non-strictly globally/locally optimal solution $\Delta x = 0$ of the TR-IGS-convex-approximation-problem is the strictly locally optimal solution of the original problem

\[
\text{minimize}_{\Delta x} \left\{ \begin{array}{c} 1 + 0 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 3 \\ 1 + 0 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 5 \\ 0.1 + 2 \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 5 \\ 1 + (-2) \cdot \Delta x + 0.5 \cdot \Delta x^2 \cdot 2 \end{array} \right\}_\infty
\]

where

\[
\text{grad}_1 = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T, \quad \text{grad}_2 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}^T, \\
\text{grad}_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \quad \text{grad}_4 = \begin{bmatrix} -1 & -1 & 0 \end{bmatrix}^T,
\]
\[
\begin{align*}
\text{minimize} & \quad (2-j)+\Delta x^T \cdot \text{grad}_1 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_1 \cdot \Delta x \\
& \quad (2-j)+\Delta x^T \cdot \text{grad}_2 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_2 \cdot \Delta x \\
& \quad (2-j)+\Delta x^T \cdot \text{grad}_3 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_3 \cdot \Delta x \\
& \quad (1-j)+\Delta x^T \cdot \text{grad}_4 + 0.5 \cdot \Delta x^T \cdot \text{Hess}_4 \cdot \Delta x \\
\text{Hess}_1 = \text{Hess}_2 = \text{Hess}_3 = \text{Hess}_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}
\end{align*}
\]

where
\[
\begin{align*}
\text{grad}_1 = & \begin{bmatrix} 1+2 \cdot j & -1-2 \cdot j & 1+2 \cdot j \end{bmatrix}^T, \\
\text{grad}_2 = & \begin{bmatrix} 1+2 \cdot j & 1+2 \cdot j & 0 \end{bmatrix}^T, \\
\text{grad}_3 = & \begin{bmatrix} 0 & 1+2 \cdot j & 1+2 \cdot j \end{bmatrix}^T
\end{align*}
\]

and
\[
\begin{align*}
\text{grad}_4 = & \begin{bmatrix} 10-j & 0 & 0 \\ 0 & 10-j & 0 \\ 0 & 0 & 0 \end{bmatrix}
\end{align*}
\]

Remark 6: The non-strictly globally/locally optimal solution \(\Delta x_{NZ} = 0\) of (Problem 3-L) may be not be the locally optimal solution of (Problem 3-Q).

Proof: Please see the examples of Remarks (4) and (5).

Remark 7: The globally/locally optimal solution \(\Delta x_{NZ} = 0\) of (Problem 3-L) may be not be the locally optimal solution of (Problem 3-Q).

Proof: Please see the examples of Remarks (1)-(5).

Remark 8: The locally optimal solution \(\Delta x_{NZ} = 0\) of (Problem 3-Q) must also be the globally/locally optimal solution of (Problem 3-L). (If (Problem 3-L) is a linear programming problem (please see Part B of this section), a useful necessary condition for the locally optimal solution of the original problem can be obtained.) [7]

Proof: If \(\Delta x_{NZ} = 0\) is the locally optimal solution of (Problem 3-Q), then \(c_{1i-i}\) hold for true for any direction \(d\). Because \(i - \max -Q \in \Phi_2, i - \max -L \in \Phi_2 \) and \(\Phi_2 = \arg\max c_{1i}, c_{1i-i}\) hold for true for any direction \(d\). This remark is thus proved.

Remark 9: If \(\Delta x_{NZ} = 0\) is the strictly optimal solution of the following linear programming problem

\[
\begin{align*}
\text{minimize} & \quad \begin{bmatrix} f(x_{NZ})^T & c^T_1 \cdot \Delta x_{NZ} \\ f(x_{NZ})^T & c^T_2 \cdot \Delta x_{NZ} \\ \vdots \\ f(x_{NZ})^T & c^T_i \cdot \Delta x_{NZ} \\ \end{bmatrix} \\
\text{subject to} & \quad \begin{bmatrix} f(x_{NZ})^T & c^T_1 \cdot \Delta x_{NZ} \\ f(x_{NZ})^T & c^T_2 \cdot \Delta x_{NZ} \\ \vdots \\ f(x_{NZ})^T & c^T_i \cdot \Delta x_{NZ} \\ \end{bmatrix} \\
\end{align*}
\]

where maximize \(f(x_{NZ})^T \cdot d > 0\) and

\[
\begin{align*}
c^T_i = & \begin{bmatrix} \text{Real} \left[f(x_{NZ})^T \omega_i \right] \\ \text{Imag} \left[f(x_{NZ})^T \omega_i \right] \end{bmatrix}, \quad \text{Real} \left[\nabla f(x_{NZ})^T \omega_i \right] \end{align*}
\]

for \(i = 1, 2, 3, ..., \Gamma\). Then, \(\Delta x_{NZ} = 0\) is also strictly locally optimal solution of the original problem (Problem 3-Q). (A sufficient condition for the strictly locally optimal solution of the original problem can be obtained. This condition is of theoretical and practical value in viewing that (Problem 6) is a linear programming problem.) [7]

Proof: If \(\Delta x_{NZ} = 0\) is the strictly optimal solution of Problem (6), then it is strictly optimal in any direction \(d\). So, maximize \(c^T_i \cdot d > 0\) holds true for any direction \(d\).
TABLE 1. The relationship between the optimal solutions of the original problem (Q) and the convex approximation problem (L), L∞.

Strictly locally optimal solution (Q)	Non-strictly locally optimal solution (Q)	Locally optimal solution (*Q)
May be/not be L→Q (complex)	May be/not be L→Q (real)	May be/not be L→Q (real)
(L→Complex-3D-1)	(L→Complex-3D-2)	(L→Complex-3D-1)
(L→Complex-3D-2)	(L→Complex-3D-3)	(L→Complex-3D-2)
May be/not be Q→L (complex)	May be/not be Q→L (real)	May be/not be Q→L (real)
(L→Complex-3D-3)	(L→Complex-3D-4)	(L→Complex-3D-3)
(L→Complex-3D-5)	(L→Complex-3D-6)	(L→Complex-3D-5)
May be/not be Q→L (complex)	May be/not be Q→L (real)	May be/not be Q→L (real)
(L→Complex-3D-6)	(L→Complex-3D-7)	(L→Complex-3D-6)
(L→Complex-3D-8)	(L→Complex-3D-9)	(L→Complex-3D-8)

(Not maxgimize \(|f \left(X_{NZ}, \omega \right) |^2 \geq 0 \)). Then, maximize \(c_{ij} \) (in the corresponding (Problem 5-Q)) is a positive number for any direction \(d \). Thus, \(\Delta x_{NZ} = 0 \) is also the strictly optimal solution of the original problem (Problem 3-Q).

Remark 10: If \(\Delta x_{NZ} = 0 \) is the locally optimal solution of (Problem 3-Q), then it must be the locally optimal solution of (Problem 6). (A necessary condition for the locally optimal solution of the original problem can be obtained, which is of theoretical and practical value in viewing that (Problem 6) is a linear programming problem.) [7]

Tip for the Proof: Please see the proof of Remark (8).

B. SPECIAL CASE: \(f \left(x_{NZ}, \omega \right) \) ARE REAL-COEFFICIENT FUNCTIONS WITH REAL ARGUMENT \(x_{NZ} \) FOR \(i = 1, 2, 3, ..., \Gamma \)

In this case, (Problem 3-L) is a linear programming problem. Remarks (4)-(10) in Part A still hold true in Part B. However, Remarks (1)-(3) in Part A should be modified in Part B as follows:

Remark 11: If \(\Delta x_{NZ} = 0 \) is the strictly globally/locally optimal solution of (Problem 3-L), it must also be the strictly locally optimal solution of (Problem 3-Q). (A useful sufficient condition for the strictly locally optimal solution of the original problem can be obtained.) [7]

Proof: Firstly, some sets of the indexes (i.e., \(i = 1, 2, 3, ..., \Gamma \)) of the functions \(f \left(x_{NZ}, \omega \right) \) are defined. \(\text{sign} \) is utilized to denote the sign of \(X \) (1 for positive number and -1 for negative number.). Let \(\Phi_{1-\text{real}} = \arg \max_{i \in \Phi_{1-\text{real}}} g_{i1} \cdot \text{sign} \left(f \left(x_{NZ}, \omega \right) \right) \), \(\Phi_{2-\text{real}} = \arg \max_{i \in \Phi_{2-\text{real}}} g_{i1} \cdot \text{sign} \left(f \left(x_{NZ}, \omega \right) \right) \), and \(\Phi_{3-Q-\text{real}} = \arg \max_{i \in \Phi_{3-Q-\text{real}}} g_{i2} \cdot \text{sign} \left(f \left(x_{NZ}, \omega \right) \right) \). Let \(i - \max -Q \) denote an element in set \(\Phi_{3-Q-\text{real}} \), and \(i - \max -L \) denote an element in set \(\Phi_{2-\text{real}} \). The relationship between \(\Phi_{1-\text{real}}, \Phi_{2-\text{real}} \) and \(\Phi_{3-Q-\text{real}} \) is illustrated in the following Figure 10.

FIGURE 10. \(\Phi_{1-\text{real}}, \Phi_{2-\text{real}} \) and \(\Phi_{3-Q-\text{real}} \).

Afterwards, the objective functions of Problems (5-Q) and (5-L) are simplified. There always exists a positive number \(\lambda > 0 \) such that the following Equations (3-Q) and (3-L) hold true for \(\Delta x_{NZ} \in \left[0, \lambda \right] \). This can be proved by the definition of infinity norm (11) and (12), as shown at the bottom of the next page.

Then, according to the assumption that \(\Delta x_{NZ} = 0 \) is the strictly optimal solution of Problem (3-L) (i.e., it is strictly optimal in any direction \(d \)), the following inequality must hold true

\[
\left\{ \left[g_{i1 - \max -L \text{-real}} \cdot \text{sign} \left(f \left(x_{NZ}, \omega \right) \right) \right] \right\} > 0
\]

for any direction \(d \). Because \(i - \max -Q \text{-real} \in \Phi_{3-Q-\text{real}} \), and \(i - \max -Q \text{-real} \in \Phi_{2-\text{real}} \), please also see Figure 12. As \(i - \max -L \text{-real} \) denotes any element in \(\Phi_{2-\text{real}} \), and \(i - \max -Q \text{-real} \in \Phi_{2-\text{real}} \),
Finally, a complete relationship between the optimal solution of the TR-IGS and that of the original problem is listed in the following Tables 1 (L_∞) and 2 (L_2), which can be obtained based on all the above Remarks (in Sections III and IV). Note for each relationship, the corresponding examples are also provided in these two tables. And, the proofs or tips for the proofs of all the examples in this paper are provided in the supporting material.

VI. CONCLUSION

The MD-FIR filter has been tested to be an effective low-complexity FIR filter [7]. The optimal design of a MD-FIR filter is a high-dimensional non-convex optimization problem. It has been experimentally tested that the coefficients of the MD-FIR filter can be effectively optimized by the TR-IGS algorithm [6], [7]. This algorithm solves a series of the convex-approximation-problems (Problem 2) of the original problem (Problem 1). The relationship between the optimal solution (i.e., theoretical termination point) of the
TR-IGS and that of the original problem is theoretically investigated in this study. A practical issue with respect to TR-IGS is practical TR-IGS generally terminates at a point that is not a theoretical termination point. It will be our future research work to investigate the distance between the practical termination point and a local minimum point.

REFERENCES

[1] Y. C. Lim and B. Liu, “Extrapolated impulse response FIR filters,” IEEE Trans. Circuits Syst., vol. 37, no. 12, pp. 1548–1551, Dec. 1990.

[2] Y. Cao, K. Wang, W. Pei, Y. Liu, and Y. Zhang, “Design of high-order extrapolated impulse response fir filters with signed powers-of-two coefficients,” Circuits Syst. Signal Process., vol. 30, no. 5, pp. 963–985, Oct. 2011.

[3] H. Wang, L. Zhao, H. Wang, S. Pang, P. Liu, and X. Du, “An optimal design of the extrapolated impulse response filter with analytical solutions,” Signal Process., vol. 92, no. 7, pp. 1665–1672, Jul. 2012.

[4] H. Wang, L. Zhao, W. Pei, J. Zuo, Q. Wang, and M. Xin, “An iterative technique for optimally designing extrapolated impulse response filter in the mini–max sense,” IEICE Trans. Fundam., vol. E96.A, no. 10, pp. 2029–2033, 2013.

[5] Y. J. Yu, D. Shi, and Y. C. Lim, “Design of extrapolated impulse response FIR filters with residual compensation in subexpression space,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 12, pp. 2621–2633, Dec. 2009.

[6] H. Wang, X. Cheng, P. Song, L. Yu, W. Hu, and L. Zhao, “An extrapolated impulse response filter design with sparse coefficients based on a novel linear approximation of matrix,” Circuits Syst. Signal Process., vol. 34, no. 7, pp. 2335–2361, Jul. 2015.

[7] H. Wang, Z. Zhao, and L. Zhao, “Matrix decomposition based low-complexity FIR filter: Further results,” IEEE Trans. Circuits Syst. I, Reg. Papers, to be published.

[8] Y. Lim, “Frequency-response masking approach for the synthesis of sharp linear phase digital filters,” IEEE Trans. Circuits Syst., vol. 33, no. 4, pp. 357–364, Apr. 1986.

[9] Y. C. Lim and Y. J. Yu, “Synthesis of very sharp Hilbert transformer using the frequency-response masking technique,” IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2595–2597, Jul. 2005.

[10] T. Baran, D. Wei, and A. Oppenheim, “Linear programming algorithms for sparse filter design,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1605–1617, Mar. 2010.

[11] Y. Ching Lim, R. Yang, D. Li, and J. Song, “Signed power-of-two term allocation scheme for the design of digital filters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 46, no. 5, pp. 577–584, May 1999.

[12] F. K. H. Lee and P. J. McLane, “Design of nonuniformly-spaced tapped-delay-line equalizers for sparse multipath channels,” IEEE Trans. Commun., vol. 52, no. 4, pp. 1336–1343, Apr. 2004.

[13] W.-S. Lu and T. Hinamoto, “A unified approach to the design of interpolated and frequency-response-masking FIR filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2257–2266, Dec. 2016.

[14] X. Lou, P. K. Meher, Y. Yu, and W. Ye, “Novel structure for area–efficient implementation of FIR filters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 10, pp. 1212–1216, Oct. 2017.

[15] R. Matsuoka, S. Kyochi, S. Ono, and M. Okuda, “Joint sparsity and order optimization based on ADMM with non–uniform group hard thresholding,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 5, pp. 1602–1613, May 2018.

[16] W.-S. Lu and T. Hinamoto, “Optimal design of frequency-response-masking filters using semidefinite programming,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 50, no. 4, pp. 557–568, Apr. 2003.