Alessandro Baroni · Garrett B. King · Saori Pastore

Electroweak Currents from Chiral Effective Field Theory

Received: 9 August 2021 / Accepted: 12 October 2021 / Published online: 30 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract Since the pioneering work of Weinberg, Chiral Effective Field Theory (χEFT) has been widely and successfully utilized in nuclear physics to study many-nucleon interactions and associated electroweak currents. Nuclear χEFT has now developed into an intense field of research and is applied to study light to medium mass nuclei. In this contribution, we focus on the development of electroweak currents from χEFT and present applications to selected nuclear electroweak observables.

A major objective of nuclear theory is to explain the structure and dynamics of nuclei and their interaction with electroweak probes in a fully microscopic approach. In such an approach, nucleons interact with each other via many-body (primarily, two-and three-nucleon) interactions, and with external electroweak probes, such as electrons, neutrinos, and photons, via many-body currents describing the couplings of these probes to individual nucleons and many-body clusters of correlated nucleons. Over the past sixty years, several highly accurate phenomenological interactions [1,2] have been developed and successfully applied to study nuclear properties. Despite this success, phenomenological theories are hardly improvable; moreover, their connection to the underlying theory ultimately governing nuclear dynamics, that is Quantum Chromodynamics (QCD), is ambiguous. Chiral effective field theory (χEFT), formulated by Weinberg in the Nineties [3–5], resolves these shortcomings.

χEFT is a low-energy approximation of QCD whose degrees of freedom are bound states of QCD (e.g., pions, protons, neutrons, etc.). It exploits the symmetries exhibited by QCD in the low-energy regime, in particular chiral symmetry, to constrain and determine the interactions of pions among themselves and with other baryons. The pion couples to these particles by powers of its momentum \(Q \) and mass, and the Lagrangians describing these interactions can be expanded in powers of \(Q/\Lambda \), where \(\Lambda \sim 1 \text{ GeV} \) represents the chiral-symmetry breaking scale and characterizes the convergence of the expansion. Therefore, the validity of the theory is confined to kinematic regions where the constraint \(Q \ll \Lambda \) is realized. The coefficients of the chiral expansion, or low-energy constants (LECs), are unknown and need to be fixed by comparison with experimental data or calculated by nonperturbative QCD computational methods such as Lattice QCD [7–17].

This extremely powerful approach provides an expansion of the Lagrangians in powers of a small momentum as opposed to an expansion in the strong coupling constant, restoring de facto the applicability of pertur...
bative techniques also in the low-energy regime. Due to the chiral expansion it is then possible, in principle, to evaluate an observable to any degree of desired accuracy and to know *a priori* the hierarchy of interactions contributing to the (low-energy) process under study. The systematic expansion in Q/Λ naturally arranges the operators in increasing numbers of nucleons. For example, in the Q/Λ power counting, three-nucleon forces are suppressed with respect to two-nucleon forces, and so on. Another crucial feature of χEFT is that many-body electroweak currents can be readily and consistently constructed within the same χEFT adopted to derive the many-nucleon interactions.

Since the pioneering work of Weinberg [3–5], this calculational scheme has been widely utilized in nuclear physics [6,18–61] and nuclear χEFT has developed into an intense field of research. In this contribution, we focus on the development of electroweak currents from χEFT [6,42–58] and present applications to selected observables in light and medium mass nuclei [62–69].

Nuclear electroweak current (j) and charge (ρ) operators can be expressed as a sum of one and many-body contributions, namely

$$\rho(q) = \sum_i \rho_i(q) + \sum_{i<j} \rho_{ij}(q) + \cdots,$$

$$j(q) = \sum_i j_i(q) + \sum_{i<j} j_{ij}(q) + \cdots,$$

where q is the momentum carried from the external field and the dots denote three-body operators and beyond. To illustrate the kind of currents emerging from a χEFT with pions, nucleons, and delta excitations, in Fig. 1 we show the vector axial current at tree-level up to next-to-next-to-next-to-leading order (N3LO), corresponding to chiral order Q^0, at zero momentum transfer. The major contribution is from the leading order single-nucleon operator (panel a), this corresponds to the standard Gamow-Teller operator. Two-body corrections enter at N2LO (chiral order Q^{-1}) with a transition current where a nucleon is excited into a delta, which decays into a pion that gets reabsorbed by a second nucleon (panel c). At N3LO, there is another one-pion range two-body current (panel d), along with a contact current (panel e). Because of the power counting, kinematic effects can also be accounted for and arranged within the power expansion. A term of this kind is illustrated in panel b, representing a relativistic correction to the leading one-body operator. All the LECs entering these operators are experimentally known except for that entering the contact term in panel e, which is determined by fits to experimental data [70].

The pioneering derivations of both vector and axial vector currents up to one-loop contributions are from Park, Min and Rho [41,42] who worked within an heavy-baryon formulation of chiral perturbation theory.

Fig. 1 Diagrams illustrating the contributions to the axial current up to N3LO at zero momentum transfer. Nucleons, deltas, pions, and external weak fields are denoted by solid, thick-solid, dashed, and wavy lines, respectively. The square in panel b represents relativistic corrections, while the dot in panels d denotes a vertex induced by subleading terms in the π-nucleon chiral Lagrangian [6].
with pions and nucleons as degrees of freedom. These currents, have been used by Song and collaborators in several hybrid calculations in $A \lesssim 3$ nuclei [59,60]. The electromagnetic charge operator was first investigated within χEFT by Walzl et al. in Ref. [48] and Phillips in Refs. [45–47]. More recently, derivations based on two different implementations of time-ordered perturbation theory appeared in the literature. One is from the so-called Pisa-JLab group [49–52] and the other is from the Bochum-Bonn group [53,54,77,78]. The latter is based on the method of the unitary transformation [79] that decouples, in the Hilbert space of pions and nucleons, states consisting of nucleons only from those including both pions and nucleons. The two derivations differ in the treatment of reducible diagrams [50,54,55,70]. When calculating box diagrams entering the electromagnetic charge and current operators [51,56], the two methods lead to results that are in agreement. However, as discussed at length in Refs. [56,70], the two groups find different results for the box diagrams in the loop contributions to the axial current operator. The (minor) numerical impact of this difference has been investigated in Ref. [70]. Further checks are underway to clarify the origin of these differences [80]. Both formulations, have been used in calculations of electroweak observables in (primarily) light nuclei.

In Fig. 2, we show calculations of the deuteron magnetic form factor based on χEFT currents calculated by Kölling et al. in Ref. [53] and Piarulli et al. in Ref. [52]. The theoretical results are in very good agreement with each other and with the experimental data for values of momentum transferred $q \lesssim 3$ fm$^{-1}$. χEFT currents are first used for nuclei with $A > 3$ in Ref. [66] where they are included when studying magnetic moments and electromagnetic transitions in $A \lesssim 10$ systems. Two-body currents always improve on the agreement between experimental data and theoretical calculations. A long standing under-prediction [84] by less sophisticated theoretical estimations of the measured 9C magnetic moment is in Ref. [66] explained by the presence of a 40% correction generated by two-body electromagnetic currents. This enhancement can be appreciated in Fig. 3 by comparing blue dots (representing calculations based on the single nucleon paradigm) and red diamonds (representing calculations with two-body electromagnetic currents).
Fig. 4 Ratios of Green’s function Monte Carlo calculations to experimental values of the Gamow-Teller reduced matrix elements in the 3H, 6He, 7Be, 8Li, 8B, 8He and 10C weak transitions from Refs. [68,69]. Theory predictions correspond to the χEFT axial current at LO (empty symbols) and up to N3LO (filled symbols).

Fig. 5 Comparison of experimental (y-axis) and theoretical (x-axis) Gamow-Teller matrix elements for medium-mass nuclei. The theoretical results were obtained using (i) a bare Gamow-Teller one-body operator, (ii) Gamow-Teller one-body operator consistently evolved with the Hamiltonian [65], and (iii) a consistently-evolved Gamow-Teller operator that includes both one- and two-body currents. See Ref. [65] for details.
Axial currents are tested primarily in beta decays and electron capture processes for which data are readily available and known for the most part with great accuracy. The long-standing problem of the systematic overprediction of Gamow-Teller beta decay matrix elements \([85]\) in simplified nuclear calculations, the so-called \(g_A\) problem\footnote{E. Epelbaum, H.-W. Hammer, U.-G. Meissner, Modern theory of nuclear forces. Rev. Mod. Phys. \textbf{81}, 1773–1825 (2009)} \footnote{R. Machleidt, D.R. Entem, Chiral effective field theory and nuclear forces. Phys. Rept. \textbf{503}, 1–75 (2011)} \footnote{D.R. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory. Phys. Rev. \textbf{C91}(1), 014002 (2015)}\footnote{A. Parreño, P. E. Shanahan, M. L. Wagman, F. Winter, E. Chang, W. Detmold, Two nucleon systems at \(m_\pi \sim 450\text{MeV}\) from lattice QCD. Phys. Rev. D \textbf{92}(11), 114512 (2015) \footnote{K. Orginos, A. Parreno, M.J. Savage, S.R. Beane, E. Chang, W. Detmold, Two nucleon systems at \(m_\pi \sim 450\text{MeV}\) from lattice QCD. Phys. Rev. D \textbf{95}(no.5), 059902 (2017)}} has been recently addressed by several groups \([65,68,69]\). The authors in Refs. \([68,69]\) calculated the Gamow-Teller matrix elements in \(A = 6 \rightarrow 10\) nuclei accounting systematically for many-body effects in nuclear interactions and coupling to the axial current both derived in \(\chi\)EFT. The agreement of the calculations with the data is excellent for \(A = 3, 6\) and 7 systems, with two-body currents providing a small \((\sim 2\%)\) contribution to the matrix elements. Decays in the \(A = 8\) and 10 systems, instead, require further developments of the nuclear wave functions \([65,69]\). The \(g_A\)-problem\footnote{R. Machleidt, The high precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn). Phys. Rev. C \textbf{63}, 024001 (2001)} can be resolved in light nuclei largely by correlation effects in the nuclear wave functions. A summary of these calculations is reported in Fig. 4. Similar results for these light nuclei obtained using the No-core shell model are reported in Ref. \([65]\).

The \(\chi\)EFT approach in recent year is being implemented in studies of medium mass nuclei \([65]\]. As a representative of this class of electroweak calculations we show the results of Ref. \([65]\) on beta decay matrix elements represented in Fig. 5. Here, the authors demonstrate that the quenching in the nuclear matrix elements arises primarily from \(\chi\)EFT axial two-body currents and strong correlations in the nucleus. Nuclei from \(A = 3\) to \(^{100}\text{Sn}\) are analyzed with \(\chi\)EFT predictions in agreement with experimental data.

There has been exceptional progress in studying nuclear physics using \(\chi\)EFT. In the last two decades, this framework rooted in the symmetries and breaking pattern of QCD has allowed for the calculation of many low-energy nuclear processes, such as electromagnetic reactions and \(\beta\) decays in both light and medium-mass nuclei, has reached a remarkable agreement with experiment, and has contributed to solving long-standing anomalies in nuclear theory. As chiral interactions and currents are being refined and pushed to higher orders, we have entered the precision era of this powerful framework.

References

1. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, An accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C \textbf{51}, 38–51 (1995)
2. R. Machleidt, The high precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn). Phys. Rev. C \textbf{63}, 024001 (2001)
3. S. Weinberg, Nuclear forces from chiral Lagrangians. Phys. Lett. B \textbf{251}, 288–292 (1990)
4. S. Weinberg, Effective chiral Lagrangians for nucleon - pion interactions and nuclear forces. Nucl. Phys. B \textbf{363}, 3–18 (1991)
5. S. Weinberg, Three body interactions among nucleons and pions. Phys. Lett. B \textbf{295}, 114–121 (1992)
6. A. Baroni, L. Giralda, A. Kievsky, L. E. Marcucci, R. Schiavilla, and M. Viviani, “Tritium \(\beta\)-decay in chiral effective field theory,” Phys. Rev., \textbf{C94}, 024003, 2016. [Erratum: Phys. Rev.C95,no.5,059902(2017)]
7. S. Aoki et al., Review of lattice results concerning low-energy particle physics. Eur. Phys. J. C \textbf{77}(2), 112 (2017)
8. J. Bijnens, G. Ecker, Mesonic low-energy constants. Ann. Rev. Nuclear Particle Sci. \textbf{64}, 149–174 (2014)
9. K. Orginos, A. Parreño, M.J. Savage, S.R. Beane, E. Chang, W. Detmold, Two nucleon systems at \(m_\pi \sim 450\text{MeV}\) from lattice QCD. Phys. Rev. D \textbf{92}(11), 114512 (2015)
10. P.E. Shanahan, Chiral effective theory methods and their application to the structure of hadrons from lattice QCD. J. Phys. \textbf{G43}(12), 124001 (2016)
11. W. Detmold and P. E. Shanahan, “Few-nucleon matrix elements in pionless effective field theory in a finite volume,” 2 2021
12. S.R. Beane, E. Chang, S. Cohen, W. Detmold, H.W. Lin, K. Orginos, A. Parreno, M.J. Savage, B.C. Tiburzi, Magnetic moments of light nuclei from lattice quantum chromodynamics. Phys. Rev. Lett. \textbf{113}(25), 252001 (2014)
13. M.J. Savage, P.E. Shanahan, B.C. Tiburzi, M.L. Wagman, F. Winter, S.R. Beane, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, Proton-proton fusion and tritium \(\beta\) decay from lattice quantum chromodynamics. Phys. Rev. Lett. \textbf{119}(6), 062002 (2017)
14. B.C. Tiburzi, M.L. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, M.J. Savage, P.E. Shanahan, Double-\(\beta\) decay matrix elements from lattice quantum chromodynamics. Phys. Rev. D \textbf{96}(5), 054505 (2017)
15. Z. Davoudi, W. Detmold, K. Orginos, A. Parreno, M. J. Savage, P. Shanahan, and M. L. Wagman, “Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes,” \textbf{3}, 2020
16. V. Cirigliano, W. Detmold, A. Nicholson, and P. Shanahan, “Lattice QCD Inputs for Nuclear Double Beta Decay,” \textbf{3}, 2020
17. A. Parreño, P. E. Shanahan, M.L. Wagman, F. Winter, E. Chang, W. Detmold, and M. Illa, “The axial charge of the triton from lattice QCD,” \textbf{2}, 2021
18. S. Binder et al., Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces. Phys. Rev. C \textbf{98}(1), 014002 (2018)
19. E. Epelbaum, H.-W. Hammer, U.-G. Meissner, Modern theory of nuclear forces. Rev. Mod. Phys. \textbf{81}, 1773–1825 (2009)
22. D.R. Entem, R. Machleidt, Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 044001 (2003)
23. E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.G. Meissner, H. Witala, Three nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002)
24. E. Epelbaum, H. Krebs, U.G. Meißner, Precision nucleon-nucleon potential at fifth order in the chiral expansion. Phys. Rev. Lett. 115(12), 122301 (2015)
25. A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Local chiral effective field theory interactions and quantum Monte Carlo applications. Phys. Rev. C 90(5), 054323 (2014)
26. E. Epelbaum, W. Glöckle, U.-G. Meissner, Nuclear forces from chiral Lagrangians using the method of unitary transformation. 1. Formalism. Nucl. Phys. A 637, 107–134 (1998)
27. E. Epelbaum, W. Glöckle, U.-G. Meissner, Nuclear forces from chiral Lagrangians using the method of unitary transformation. 2. The two nucleon system. Nucl. Phys. A 671, 295–331 (2000)
28. N. Kaiser, R. Brockmann, W. Weise, Peripheral nucleon-nucleon phase shifts and chiral symmetry. Nucl. Phys. A 625, 758–788 (1997)
29. H. Krebs, E. Epelbaum, U.-G. Meissner, Nuclear forces with Delta-excitations up to next-to-next-to-leading order. I. peripheral nucleon-nucleon waves. Eur. Phys. J. A 32, 127–137 (2007)
30. H. Krebs, A. Gasparian, E. Epelbaum, Chiral three-nucleon force at N4LO I: longest-range contributions. Phys. Rev. C 85, 054066 (2012)
31. H. Krebs, A.M. Gasparian, E. Epelbaum, Three-nucleon force in chiral EFT with explicit $\Delta(1232)$ degrees of freedom: longest-range contributions at fourth order. Phys. Rev. C 98(1), 014003 (2018)
32. C. Ordonez, L. Ray, U. van Kolck, The two nucleon potential from chiral Lagrangians. Phys. Rev. C 53, 2086–2105 (1996)
33. U. van Kolck, Few nucleon forces from chiral Lagrangians. Phys. Rev. C 49, 2932–2941 (1994)
34. M. Piarulli, L. Girlanda, R. Schiavilla, R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola, “Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances,” Phys. Rev., C91(2), 024003, 2015
35. M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato, L.E. Marcucci, S.C. Pieper, M. Viviani, R.B. Wiringa, Local chiral potentials with Δ-intermediate states and the structure of light nuclei. Phys. Rev. C 94(5), 054007 (2016)
36. M. Piarulli et al., Light-nuclei spectra from chiral dynamics. Phys. Rev. Lett. 120(5), 052503 (2018)
37. S. Gandolfi, D. Lonardoni, A. Lovato, and M. Piarulli, “Atomic nuclei from quantum Monte Carlo calculations with chiral EFT interactions,” 2020
38. M. Piarulli, I. Tews, Local nucleon-nucleon and three-nucleon interactions within chiral effective field theory. Front. Phys. 7, 245 (2020)
39. A. Ekström et al., Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order. Phys. Rev. Lett. 110(19), 192502 (2013)
40. A. Ekström, G. Hagen, T.D. Morris, T. Papenbrock, P.D. Schwartz, Δ isobars and nuclear saturation. Phys. Rev. C 97(2), 024332 (2018)
41. T.-S. Park, D.-P. Min, M. Rho, Chiral dynamics and heavy fermion formalism in nuclei. 1. exchange axial currents. Phys. Rept. 233, 341–395 (1993)
42. T.-S. Park, D.-P. Min, M. Rho, Chiral Lagrangian approach to exchange vector currents in nuclei. Nucl. Phys. A 596, 515–552 (1996)
43. T.-S. Park, K. Kubodera, D.-P. Min, M. Rho, The solar proton burning process revisited in chiral perturbation theory. Astrophys. J. 507, 443–453 (1998)
44. T.S. Park, L.E. Marcucci, R. Schiavilla, M. Viviani, A. Kievesky, S. Rosati, K. Kubodera, D.P. Min, M. Rho, Parameter free effective field theory calculation for the solar proton fusion and hep processes. Phys. Rev. C 67, 055206 (2003)
45. D.R. Phillips, T. Cohen, Deuteron electromagnetic properties and the viability of effective field theory methods in the two nucleon system. Nucl. Phys. A 668, 45–82 (2000)
46. D.R. Phillips, Higher-order calculations of electron-deuteron scattering in nuclear effective theory. Physics Letters B 567(1), 12–22 (2003)
47. D.R. Phillips, Chiral perturbation theory for electroweak reactions on deuterium. J. Phys. G 31, S1263–S1272 (2005)
48. M. Walzl, U.-G. Meißer, E. Epelbaum, Charge-dependent nucleon-nucleon potential from chiral effective field theory. Nuclear Physics A 693(3), 663–692 (2001)
49. S. Pastore, R. Schiavilla, J.L. Goity, Electromagnetic two-body currents of one- and two-pion range. Phys. Rev. C 78, 064002 (2008)
50. S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, R.B. Wiringa, Electromagnetic currents and magnetic moments in (ch)EFT. Phys. Rev. C 80, 034004 (2009)
51. S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, The two-nucleon electromagnetic charge operator in chiral effective field theory (γEFT) up to one loop. Phys. Rev. C 84, 024001 (2011)
52. S. Pastore, L. Girlanda, L.E. Marcucci, S. Pastore, R. Schiavilla, M. Viviani, Electromagnetic structure of $A=2$ and 3 nuclei in chiral effective field theory. Phys. Rev. C 87(1), 014006 (2013)
53. S. Kolling, E. Epelbaum, H. Krebs, U.G. Meissner, Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation. Phys. Rev. C 80, 045502 (2009)
54. S. Kolling, E. Epelbaum, H. Krebs, U.G. Meissner, Two-nucleon electromagnetic current in chiral effective field theory: one-pion exchange and short-range contributions. Phys. Rev. C 84, 054008 (2011)
55. H. Krebs, E. Epelbaum, U.G. Meißer, Nuclear axial current operators to fourth order in chiral effective field theory. Annals Phys. 378, 317–395 (2017)
56. H. Krebs, E. Epelbaum, and U.-G. Meißner, “Box diagram contribution to the axial two-nucleon current,” 2020
57. A. Baroni, L. Girlanda, S. Pastore, R. Schiavilla, and M. Viviani, “Nuclear Axial Currents in Chiral Effective Field Theory,” Phys. Rev., C93(1), 015501, 2016. [Erratum: Phys. Rev.C95,no.5,059901(2017)]
58. P. Klos, A. Carbone, K. Hebeler, J. Menéndez, and A. Schwenk, “Uncertainties in constraining low-energy constants from ^3H β decay,” Eur. Phys. J., A53(8), p. 168, 2017. [Erratum: Eur. Phys. J. A54,no.5,76(2018)]
| Citation |
|----------|
| 59. Y.-H. Song, R. Lazauskas, T.-S. Park, D.-P. Min, Effective field theory approach for the m1 properties of a=2 and 3 nuclei. Phys. Lett. B 656(4), 174–181 (2007) |
| 60. Y.-H. Song, R. Lazauskas, T.-S. Park, Up to N3LO heavy-baryon chiral perturbation theory calculation for the m1 properties of three-nucleon systems. Phys. Rev. C 79, 064002 (2009) |
| 61. R. Schiavilla, A. Baron, S. Pastore, M. Piarulli, L. Girlanda, A. Kievsy, A. Lovato, L. Marcucci, S.C. Pieper, M. Viviani, R.B. Wiringa, Local chiral interactions and magnetic structure of few-nucleon systems. Phys. Rev. C 99, 034005 (2019) |
| 62. S. Bacca, S. Pastore, Electromagnetic reactions on light nuclei. J. Phys. G41(12), 123002 (2014) |
| 63. S. Kölling, E. Epelbaum, D.R. Phillips, Magnetic form factor of the deuteron in chiral effective field theory. Phys. Rev. C 86, 047001 (2012) |
| 64. D. Rozpedzik, J. Golak, S. Kölling, E. Epelbaum, R. Schiavilla, L. Girlanda, A. Kievsky, A. Lovato, L. E. Marcucci, S.C. Pieper, M. Viviani, R.B. Wiringa, Local chiral interactions and magnetic structure of few-nucleon systems. Phys. Rev. C 99, 034005 (2019) |
| 65. S. Pastore, S.C. Pieper, R. Schiavilla, R.B. Wiringa, Quantum Monte Carlo calculations of electromagnetic moments and transitions in A ≤ 9 nuclei with meson-exchange currents derived from chiral effective field theory. Phys. Rev. C 87 (3), 035503 (2013) |
| 66. S. Pastore, S.C. Pieper, R. Schiavilla, R.B. Wiringa, Quantum Monte Carlo calculations of electromagnetic transitions in A = 8 Be with meson-exchange currents derived from chiral effective field theory. Phys. Rev. C 90(2), 024321 (2014) |
| 67. S. Pastore, A. Baron, J. Carlson, S. Gandolfi, S.C. Pieper, R. Schiavilla, R.B. Wiringa, Quantum Monte Carlo calculations of weak transitions in A = 6 – 10 nuclei. Phys. Rev. C 97(2), 022501 (2018) |
| 68. S. Pastore, R. Schiavilla, L.E. Marcucci, L. Girlanda, A. Kievsy, A. Lovato, S. Pastore, M. Piarulli, S.C. Pieper, M. Viviani, R.B. Wiringa, Local chiral interactions, the tritium gamow-teller matrix element, and the three-nucleon contact term. Phys. Rev. C 98, 044003 (2018) |
| 69. C. Buchanan, M. Yearian, Elastic electron-deuteron scattering and possible meson-exchange effects. Phys. Rev. Lett. 15, 303–306 (1965) |
| 70. G. Simon, C. Schmitt, V. Walther, Elastic electric and magnetic eD scattering at low momentum transfer. Nucl. Phys. A 364, 285–296 (1981) |
| 71. S. Auffret, J. Cavedon, J. Clemens, B. Frois, D. Goutte et al., Magnetic form-factor of the deuteron. Phys. Rev. Lett. 54, 649–652 (1985) |
| 72. R. Cramer, M. Renkhoff, J. Drees, U. Ecker, D. Jagoda et al., Measurement of the magnetic form-factor of the deuteron. Z. Phys. C 29, 513–518 (1985) |
| 73. F.E. Bosted, A. Katramatou, R. Arnold, D. Benton, L. Cloher et al., Measurements of the deuteron and proton magnetic form-factors at large momentum transfers. Phys. Rev. C 42, 38–64 (1990) |
| 74. I. Sick, Elastic electron scattering from light nuclei. Prog. Part. Nucl. Phys. 47, 245–318 (2001) |
| 75. H. Krebs, E. Epelbaum, U.-G. Meißner, Nuclear Electromagnetic Currents to Fourth Order in Chiral Effective Field Theory. Few-Body Syst. 60 (2019) |
| 76. H. Krebs, Nuclear currents in chiral effective field theory. European Phys. J. A 56(9), 234 (2020) |
| 77. S. Ökubo, “Diagonalization of Hamiltonian and Tamm-Dancoff Equation,” Progress of Theoretical Physics, 12, 603–622 |
| 78. H. Krebs, E. Epelbaum, U.-G. Meißner, Box diagram contribution to the axial two-nucleon current. Phys. Rev. C 101, 055502 (2020) |
| 79. D. Borremans, D. Yordanov, D. Balabanski, G. Neyens, J. Lassen et al., New measurement and reevaluation of the nuclear magnetic and quadrupole moments of Li-8 and Li-9. Phys. Rev. C 72, 044309 (2005) |
| 80. D. Tilley, C. Cheves, J. Godwin, G. Hale, H. Hofmann, J. Kelley, C. Sheu, H. Weller, Energy levels of light nuclei a=5, 6, 7. Nucl. Phys. A 708(1–2), 3 (2002) |
| 81. D. Tilley, J. Kelley, J. Godwin, D. Millener, J. Purcell, C. Sheu, H. Weller, Energy levels of light nuclei. Nucl. Phys. A 745(3–4), 155 (2004) |
| 82. Y. Utsumo, Anomalous magnetic moment of C-9 and shell quenching in exotic nuclei. Phys. Rev. C 70, 011303 (2004) |
| 83. W.-T. Chou, E.K. Warburton, B.A. Brown, Gamow-teller beta-decay rates for a≤18 nuclei. Phys. Rev. C 47, 163–177 (1993) |