Characterization of the front-end EASIROC for read-out of SiPM in the ASTRI camera

D. Impiombato, S. Giarrusso, M. Belluso, S. Bilotta, G. Bonanno, O. Catalano, A. Grillo, G. La Rosa, D. Marano, T. Mineo, F. Russo, G. Sottile, on behalf of the ASTRI Collaboration

INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo, Italy
INAF, Osservatorio Astrofisico di Catania, via S. Sofia 78, I-95123 Catania, Italy

Abstract

The design and realization of a prototype for the Small-Size class Telescopes of the Cherenkov Telescope Array is one of the cornerstones of the ASTRI project. The prototype will adopt a focal plane camera based on Silicon Photo-Multiplier sensors that coupled with a dual mirror optics configuration represents an innovative solution for the detection of Atmospheric Cherenkov light. These detectors can be read by the Extended Analogue Silicon Photo-Multiplier Integrated Read Out Chip (EASIROC) equipped with 32-channels. In this paper, we report some preliminary results on measurements aimed to evaluate EASIROC capability of autotriggering and measurements of the trigger time walk, jitter, DAC linearity and trigger efficiency vs the injected charge. Moreover, the dynamic range of the ASIC is also reported.

Keywords: detector:SiPM, front-end:EASIROC

1. Introduction

ASTRI (Astrofisica con Specchi a Tecnologia Replica-<c>nte Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research (MIUR) and led by the Italian National Institute of Astrophysics (INAF). Main object of the project is the design and implementation of an end-to-end Small Size Telescope prototype for the Cherenkov Telescope Array (CTA). The ASTRI prototype will adopt a wide field optical system in a Schwarzschild-Couder configuration to explore the VHE range (1-100 TeV) of the electromagnetic spectrum and a camera at the focal plane based on Silicon Photo-Multiplier (SiPM) sensors. This configuration is an innovative solution for the detection of Cherenkov light that requires high sensitivity in the 300–700 nm band and fast temporal response. SiPMs can be read by the Extended Analogue Silicon Photo-Multiplier Integrated Read Out Chip (EASIROC) equipped with 32-channels each with the capability of measuring charge from 1 to 2000 photoelectrons with a SiPM gain of 10^6 that is the gain we adopted in our measurements. A schematic of EASIROC is shown in Fig. 1.

An Evaluation Board has been designed and built by Omega Micro to test the functional characteristics and performance of this Application Specific Integrated Circuit (ASIC). The gain of each channel can be individually adjusted by varying the bias voltage, in a range of 4.5V, with an 8 bit DAC(Digital to Analog Converter). The SiPM signal is splitted and conveyed in two separate chains, high and low gain, in order to measure charges from 160fC up to 320pC allowing a dynamical range of 2000. Each of the two chains is composed by an adjustable gain preamplifier followed by a tunable shaper and a track and hold circuit. A third chain...
is implemented to generate a trigger using a fast shaper followed by a discriminator, whose threshold is set by a 10-bit DAC, common to all 32 channels. The power consumption is lower than 5mW/channel and unused features can be set OFF to furtherly save power.

In this paper, we report preliminary results on the measurements of the EASIROC output analogue signals to evaluate the capability of autotriggering. We present on the trigger time walk and jitter of the output signal, on the DAC linearity and on the trigger efficiency vs the injected charge. The paper presents also results on the the dynamic range of the ASIC as function of the injected charges.

2. Trigger

The trigger chain is derived from the High Gain preamplifier and is composed by a dedicated 15ns fast shaper followed by a discriminator which provides the trigger signal (see Fig. 1). The threshold of the discriminators is common to all 32 channels and is set by a 10-bit DAC. The DAC output range goes from 1.06V up to 2.38V, in steps of 1.28mV.

Figure 2 shows in the top panel the evolution of the DAC Voltage output as a function of the input threshold and in the bottom panel the residuals of the fit with a line. Residuals are of the order of 0.5%.

In order to evaluate the pedestal level of the trigger discriminators, the threshold level for all 32 channels was scanned without input signal. As presented in the Fig. 3, the resulted curve, called S-curve, shows that the pedestal level measured at the 50% of trigger efficiency, is the same for all the channels with a spread of about one DAC count. The trigger efficiency was then evaluated scanning the threshold, in one channel, by changing the injected charge and keeping constant the preamplifier gain at the same shaping time. The measurements were carried out using two input SiPM-like signals both with triangular shapes with 1 ns of rise time. The decay time of the signal was set to 50ns and 200 ns, respectively. We plotted the DAC channels corresponding to 50% efficiency, evaluated from the S-curves with an error of one channel, as function of the injected charge. The linearity of the trigger (see Fig. 4), is satisfactory and in line with the front-end electronics requirements.

Figure 1: Architecture of the EASIROC front-end (Omega courtesy)

Figure 2: 10-bit Input DAC Linearity

Figure 3: Pedestal S-curves for channel 1 to 32

The trigger walk time and jitter were investigated injecting pulses and measuring at the oscilloscope the delay between the chip trigger output and the strobe of the generator. Two sets of measurements were performed injecting charge through the calibration channel (in calib) with ASIC gain of 30. In this preliminary measurements the injected charge ranges from 0.48 up to 2.72pC (3pe up to 17pe) and from 1.6 up to 4.48pC (10pe up to 28pe) for trail edge input signals of 50 ns
The results of the time walk and jitter measurements are presented in Fig. 5 and 6 for values of the injected charge. As preliminary result, we find that the jitter is always lower than \(\sim 4\text{ns} \) and the maximum walk time is \(\sim 10\text{ns} \).

Figure 5: Trigger time walk for a threshold value above the pedestal as a function of the injected charge and for two input signals, 50\(\text{ns} \) (top panel) and 200\(\text{ns} \) (bottom panel), respectively.

Figure 6: Trigger time jitter for a threshold value above the pedestal as a function of the injected charge and for two input signals, 50\(\text{ns} \) (top panel) and 200\(\text{ns} \) (bottom panel), respectively.

3. Signal slow shaper and Charge linearity

As shown in Fig. 4, the signal coming from the detector is routed to a CRRC\(^2\) slow shaper that provides a charge measurement for both High Gain (1-85 pe) and Low Gain (1-2200 pe). The shaping time is fixed to 50 ns. The signal at the output of EASIROC is sampled by an external Anologue to Digital Converter (ADC). The linearity of the system was checked plotting the maximum of the peak versus the charge injected. Results are shown in Figure 7 and 8. The linearity of the High Gain chain is maintained up to \(\sim 8\text{ pC} \), while the Low Gain shows a non linear bump for charge below 50pC.

4. Conclusion

This first preliminary set of measurements showed that EASIROC performance closely matches the ASTRI focal plane requirements and can be used for the telescope prototype. The problems on the linearity are
not present in an update version of the chip, kindly provided us by OMEGA Micro. However, to adopt this chip for CTA, minor modifications of the ASIC design should be adopted.

Acknowledgements

We are deeply grateful to S. Callier, C. De La Taille, and L. Raux of the OMEGA group at Orsay, for useful discussions and suggestions.

References

[1] R. Canestrari (et al.), ”The Italian ASTRI program: an end-to-end dual-mirror telescope prototype for Cherenkov light imaging above few TeV”, 32nd International Cosmic Ray Conference, Beijing, 2011.

[2] The CTA Consortium, ”Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy”, Experimental Astronomy, Vol.32, Issue 3, p. 193-316, 2011.