ABSTRACT: **Background:** Mutations in the mitochondrial DNA polymerase gamma are causing a wide phenotypic spectrum including ataxia as one of the most common presentations.  
**Objective:** The objective of this study was to determine the course of disease of polymerase gamma-related ataxia.  
**Methods:** In a prospective natural history study, we assessed 24 adult ataxia patients with biallelic polymerase gamma mutations for (1) severity of cerebellar dysfunction using the Scale for the Assessment and Rating of Ataxia score, (2) presence of nonataxia signs using the Inventory of Non-Ataxia Symptoms, (3) gray- and white-matter changes in brain MRI, and (4) findings in nerve conduction studies.  
**Results:** Assessment included follow-up visits up to 11.6 years. The Scale for the Assessment and Rating of Ataxia showed a mean annual increase of 1.02 ± 0.78 points/year. Disease progression was faster in patients with age at onset ≤ 30 years (1.5 Scale for the Assessment and Rating of Ataxia points/year) than with later onset (0.5 points/year); P = 0.008. The Inventory of Non-Ataxia Symptoms count increased by 0.30 ± 0.4 points/year. External ophthalmoplegia, brain stem ocular motor signs, areflexia, and sensory deficits were the most common nonataxic features. On MRI cerebellar atrophy was mild. T2 signal alterations affected mostly cerebellar white matter, middle cerebellar peduncles, thalamus, brain stem, and occipital and frontal white matter. Within 4 years, progression was primarily observed in the context of repeated epileptic seizures. Nerve conduction studies revealed axonal sensory peripheral neuropathy with mild motor nerve involvement. Exploratory sample size calculation implied 38 patients per arm as sufficient to detect a reduction of progression by 50% in hypothetical interventions within a 1-year trial.  
**Conclusion:** The results recommend the Scale for the Assessment and Rating of Ataxia as a primary outcome measure for future interventional trials in polymerase gamma-related ataxia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society  
**Key Words:** POLG; polymerase gamma; ataxia; natural history
Mutations in mitochondrial DNA polymerase gamma (POLG) are causing a wide and overlapping phenotypic spectrum of neurological diseases. Neontal and infant onset leads to myocerebrohepatopathy spectrum disorder (MCHS) and Alpers-Huttenlocher syndrome (AHS), both leading to early death. Later onset is associated with chronic progressive external ophthalmoplegia (CPEO), spinocerebellar ataxia with epilepsy (SCAE), mitochondrial recessive ataxia syndrome, and sensory ataxic neuropathy, dystrophy, and ophthalmoparesis (SANDO) involving various combinations of progressive external ophthalmoplegia, epilepsy, ataxia, parkinsonism, chorea, myoclonus, dystonia, peripheral neuropathy, myopathy, and sensorineural hearing loss as well as neuropsychiatric manifestations such as depression or cognitive impairment and nonneurological findings such as cataracts, premature ovarian failure, gastrointestinal dysmotility, hepatic failure, diabetes, and cardiomyopathy.

As POLG constitutes the only polymerase expressed in mitochondria, the replication of mitochondrial DNA is critically dependent on its proper function. POLG mutations causing MCHS or AHS are often associated with mtDNA depletion, whereas CPEO, SCAE, and SANDO go along with mtDNA deletions. Although POLG is a mitochondrial protein, it is nuclear coded. Most POLG mutations show autosomal-recessive inheritance, but some mutations causing CPEO follow an autosomal-dominant trait. POLG mutations are supposed to cause 2%–5% of autosomal-recessive ataxia with some regional differences because of founder mutations.

Whereas several reports have described the phenotypic spectrum and neurogenetic aspects, less is known about the course of disease in POLG-related ataxia (POLG-A), which is, however, key for trial readiness. In this study, we examined the phenotypic spectrum and prospectively assessed disease progression in 24 POLG-A patients.

Methods

Cohort

Patients with POLG mutations were included in this study who attended the ataxia clinics in Tübingen (Germany), Essen (Germany), Nijmegen (Netherlands), and Sevilla (Spain) between 2004 and 2019. We identified 28 individuals. Included were all ataxic patients with 2 POLG mutations. Accordingly, 4 patients were excluded. One patient carried a heterozygous G517V variant that is considered most likely not pathogenic. Another patient had 2 recessive variants (P587L and T251I) that have been described several times to occur in cis, and compound heterozygosity could not be proven in our participant because the patient was adopted and living relatives were unknown. Furthermore, 2 affected relatives of a POLG-A patient were excluded as they did not present ataxia. Detailed genetic and demographic data of all included patients (n = 24) are given in Table 1. Cross-sectional phenotypic data of 13 of 24 patients were reported earlier. The study was approved by the Institutional Review Board of the University of Tübingen (598/2011BO1), and all patients gave their written informed consent.

Clinical Measures of Disease Severity

Severity of ataxia was assessed using the Scale for the Assessment and Rating of Ataxia (SARA), from 0 points indicating no ataxia to 40 points indicating most severe ataxia. The annual prospective progression rate in SARA was calculated with a linear regression model, whereas SARA score was used as the variable depending on the duration of follow-up in years. All participants with follow-up data of at least 1 year (n = 13) were evaluated. To prevent bias from different numbers of assessments between study participants, we calculated the linear regression of data points from each single patient as the individual progression rate. The mean progression rate was calculated as the average of individual progression rates. All participants with SARA data (22 of 24) presented manifest ataxia, defined as a SARA score of 3 points or more.

Nonataxia symptoms and signs were screened using the Inventory of Non-Ataxia Symptoms (INAS), which lists 16 potential nonataxic manifestations of disease including areflexia, hyperreflexia, extensor plantar response, spasticity, paresis, amyotrophy, fasciculations, myoclonus, rigidity, chorea, dystonia, resting tremor, sensory symptoms, brain stem oculomotor signs (defined as ophthalmoparesis and/or slowing of saccades in the INAS count), urinary dysfunction, and cognitive impairment. INAS yields the INAS count, a semiquantitative measure that scores the presence or absence of nonataxia features but does not rate their severity. Annual progression of INAS count was calculated in the same manner as SARA progression including all participants with INAS follow-up data of at least 1 year (n = 11). Further POLG-related symptoms like epilepsy, cataract, elevated transaminases, diabetes, and neuropsychiatric symptoms are not considered by the INAS but were assessed by medical history and clinical examination. Progression of gait disorder was estimated revealing the 3 categories (1) onset of gait disturbance, (2) loss of independent walking, and (3) use of wheelchair with the Kaplan–Meier method.

Brain Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) data were available for 18 POLG patients. MR scans were acquired in
### Overview of the study cohort.

| Subject | Family no. | Sex | Age at onset (y) | Loss of independent walking | Wheelchair dependence | Disease duration (y) | First POLG sign | Age at onset gait disorder (y) | POLG mutation | Inheritance | MRI scans | Neurography |
|---------|------------|-----|-----------------|-----------------------------|-----------------------|---------------------|------------------|------------------------|--------------|-------------|-----------|-------------|
| P01     | 1          | F   | 29              | 29                          | /                     | /                   | 27               | Gait                   | 29           | W748S + E1143G/ W748S + E1143G | aut rec     | 3           | Yes       |
| P02     | 2          | F   | 39              | 39                          | /                     | /                   | 15               | Gait                   | 39           | A467T/ W748S | aut rec     | 1           | Yes       |
| P03     | 3          | M   | 18              | 18                          | /                     | /                   | 9                | Gait                   | 18           | A467T/A467T | aut rec     | Yes         |
| P04     | 4          | F   | 12              | 12                          | 27                    | 31                  | 23               | Gait                   | 12           | A467T/A467T | aut rec     | 1           | Yes       |
| P05     | 5          | F   | 17              | 22                          | 24                    | 33                  | 34               | Epilepsy               | 22           | A467T/A467T | aut rec     | 1           | Yes       |
| P06     | 6          | F   | 29              | 29                          | 36                    | 43                  | 19               | Gait                   | 29           | R627Q/G948S | aut rec     | 3           | Yes       |
| P07     | 7          | F   | 14              | 14                          | 31                    | 33                  | 19               | Gait                   | 14           | R627Q/K3096H | aut rec     | 3           | Yes       |
| P08     | 8          | F   | 36              | 36                          | Unknown              | 47                  | 11               | Gait                   | 36           | A467T/A467T | aut rec     | 1           | Yes       |
| P09     | 9          | F   | 25              | 25                          | 42                    | 44                  | 25               | Gait                   | 25           | A467T/W748S | aut rec     | Yes         |
| P10     | 10         | M   | 39              | 39                          | 55                    | 57                  | 57               | Gait                   | 39           | A467T/W748S | aut rec     | Yes         |
| P11     | 11         | F   | 49              | 49                          | 56                    | /                   | 8                | Gait                   | 49           | A467T/W748S | aut rec     | 1           | Yes       |
| P12     | 12         | F   | 41              | 41                          | 52                    | 58                  | 59               | Gait                   | 58           | A467T/W748S | aut rec     | Yes         |
| P13     | 13         | F   | 22              | 22                          | 41                    | 48                  | 28               | Gait                   | 28           | W748S/W748S | aut rec     | Yes         |
| P14     | 14         | F   | 45              | 52                          | /                     | /                   | 9                | Porois                 | 52           | Y955C/W7 | aut dom     | Yes         |
| P15     | 15         | M   | 16              | 37                          | 52                    | 57                  | 42               | Hypacusis              | 37           | A467T/A467T | aut rec     | Yes         |
| P16     | 16         | F   | 32              | 35                          | 36                    | 41                  | 13               | Chorea                 | 35           | W748S/W748S | aut rec     | Yes         |
| P17     | 17         | F   | 12              | 12                          | 25                    | 25                  | 44               | Epilepsy               | 24           | W748S/W748S | aut rec     | Yes         |
| P18     | 18         | M   | 27              | 27                          | 48                    | 53                  | 29               | Gait                   | 29           | A467T/A467T | aut rec     | Yes         |
| P19     | 19         | M   | 30              | 30                          | 40                    | /                   | 13               | Gait                   | 30           | A467T/A467T | aut rec     | Yes         |
| P20     | 20         | M   | 42              | 42                          | 48                    | /                   | 6                | Gait                   | 42           | W748S/W748S | aut rec     | Yes         |
| P21     | 21         | M   | 5               | 22                          | /                     | /                   | 22               | Epilepsy               | 22           | A467T/A467T | aut rec     | Yes         |
| P22     | 22         | M   | 63              | 63                          | 49                    | /                   | 17               | Gait                   | 63           | P587L/T251I | aut rec     | Yes         |
| P23     | 23         | M   | 48              | 48                          | 53                    | /                   | 8                | Gait                   | 48           | A467T/W748S + E1143G | aut rec     | 1           | Yes       |

n = 19; 16 F, 3 M

Mean ± SD 30.9 ± 15.5, 18.1 ± 9.2, 33.1 ± 14.5

Range 5–63, 6–42, 12–63

1Published before in cross-sectional study.
2Compound heterozygosity confirmed.
3Insertion mutation with premature stop codon (insA c.3594; p.T11961215X).
4Variant of uncertain significance in highly conserved region, once submitted to the National Center for Biotechnology Information.
clinical routine with different scanners and at different sites, but all images were available in a digital format and analyzed in a uniform manner. Referring to earlier MRI studies in POLG patients, cerebellar and cerebral atrophy was assessed in a semiquantitative way (no, mild, moderate, severe atrophy) by a neurologist experienced in MRI (F.B.) and a neuroradiologist (B.B.). T2/FLAIR hyperintensity in the cerebrum, thalamus, cerebellum, and brain stem was rated as present or absent.

For 5 participants, repeated MRI data were available covering follow-up intervals of 1 month to 4 years, resulting in a total of 28 MRIs. All data sets included T1 and T2 sequences; 26 of 28 data sets had additional fluid-attenuated inverse recovery (FLAIR) sequences, and 20 of 28 data sets contained diffusion-weighted images.

**Nerve Conduction Studies**

Twelve participants underwent nerve conduction studies, according to standard assessment for peripheral neuropathy including motor nerve conduction studies and F-wave analysis of the right tibial and ulnar nerves and sensory nerve conduction studies of the sural and
radial nerves (in one case, P03, only sensory nerves were examined). To ensure comparability of nerve conduction velocities, a minimum skin temperature of 30°C has been assured by the use of a heat lamp when needed.

Statistics

Quantitative features are given as mean and standard deviation for normally distributed data and as median and interquartile range for not normally distributed data. Normal distribution was tested using the Shapiro–Wilk test. Differences in age at onset between the most frequent genotypes were evaluated with independent t tests with a Bonferroni-corrected threshold for multiple testing of P = 0.005. We used the Kaplan–Meier method for descriptive data concerning onset of gait disorder, use of walking aids, progression to wheelchair dependence, and death. Further linear regression was used to determine progression in SARA and INAS. To correct for the different amounts of test for each participant, the regression rates of each subject were used to determine the mean progression rate in SARA and INAS. All calculations were performed using SPSS (version 26.0.0.0; IBM Corp., Chicago, Illinois).

Sample size calculation was computed using G*Power 3.1.9.6.33 We performed a 2-tailed t test (1:1, α = 0.05, power = 0.8), using mean and standard deviation of the annualized change in SARA after confirming normality by the Shapiro–Wilk test. Because of the assumable slow progression, we excluded patients with a SARA follow-up of less than 1 year from calculations of the progression rate and sample size estimation.

Results

Age at Onset

Disease onset was defined as the occurrence of the first symptom related to POLG mutations based on medical history. Unsteadiness of gait was the most frequent initial symptom defining onset of disease in 18 of 24 patients. In 3 of 24 cases epileptic seizures manifested at onset of disease. Ptosis, hypacusis, and chorea were seen in 1 patient each as the initial POLG-related symptom. Age at onset showed great variability, ranging from 5 to 63 years, with a mean of 30.9 ± 15.5 years. Age at onset was significantly earlier in patients with homozygous A467T mutations compared with patients with heterozygous A467T/W748S mutations (P = 0.0004); see details in Table S1. We did not find an effect of sex on age at onset (P = 0.966, t test).

Progression of Ataxia

SARA scores for the assessment of ataxia were available in all but 2 participants (P07 and P08). Severity in SARA at the first visit ranged from 3.0 to 39.0 points (median, 13.25 points; IQR, 8.25 points) after a disease duration between 1 and 33 years (mean, 12.8 ± 8.3 years). For prospective determination of disease progression, longitudinal data with a follow-up of at least 1 year were available for 13 participants, with a range of 2.0–11.6 years (mean, 6.2 ± 2.8 years) between the first and last ratings. SARA scores indicated a linear progression over time, with a mean annual increase of 1.02 ± 0.78 SARA points per year, as shown in Figure 1A. To explore potential effects of genotypes, age at onset or the occurrence of epilepsy on disease progression we color-coded respective groups and plotted individual progression rates, as shown in Figure 1C–E. There was a clear tendency toward more rapid progression with earlier onset of disease (Fig. 1D). Correlation analysis showed a correlation of r = −0.455 but without statistical significance, probably because of small numbers (P = 0.119; Spearman correlation for not normally distributed data). We then compared progression rates in patients with early onset (≤30 years of age) with patients with later onset (>30 years of age) and found...
significant differences, with a progression of $1.5 \pm 0.8$ SARA points/year ($n = 7$) in the early-onset group and $0.5 \pm 0.2$ SARA points ($n = 6$) in the late-onset group ($P = 0.008$; Mann–Whitney $U$ test) with no obvious differences in relation to these factors.

**Nonataxia Symptoms**

Nonataxic manifestation of POLG-related disease was assessed by INAS and medical history. We observed a wide range of nonataxia symptoms and signs including (in decreasing frequency) brain stem oculomotor signs, areflexia, sensory symptoms, urinary dysfunction, cognitive impairment, myoclonus, chorea/dystonia, dystonia, muscle atrophy, paresis, rigidity, hyperreflexia, and spasticity. In addition to nonataxia features covered by the INAS, 23 of 24 patients showed CPEO with gaze palsy and ptosis or only ptosis. Less frequent were hypacusis, depression, anxiety, cataract, elevation of transaminases, diabetes, migraine with aura, and myopathy. Eight of 24 patients had epilepsy, including 3 of 8 cases with focal and generalized seizures, 2 of 8 cases with only generalized seizures, and 2 patients with a single convulsive epileptic state with no previous history of epileptic seizures. In 1 case, the semiology remained unclear. Cardiomyopathy was not observed. The detailed prevalence of nonataxic manifestations is given in Table S2. INAS count at the first visit was available for all 24 patients and ranged from 1 to 9 points (median, 5.0 points; IQR, 1.75 points) after a disease duration of 1 to 33 years (mean, $14.7 \pm 8.5$ years). For prospective assessment of the progression of
extracerebellar involvement, longitudinal INAS data over a period of at least 1 year were available for 11 of 24 subjects with a follow-up period of 1.9 to 6.1 years (mean, 3.4 ± 1.2 years). INAS count increased by 0.30 ± 0.39 points per year but with major variability including decrease of INAS count in some visits in 5 patients (Fig. 1B). Comparing the individual INAS progression rates between patients with early disease onset (≤30 years of age) and patients with later onset (>30 years of age), we found a nonsignificant tendency toward faster progression in the early-onset group (0.4 ± 0.5 points/year, n = 8, vs 0.2 ± 0.2 points/year, n = 3; P = 0.536, t test).

**Progression of Gait Disturbance**

Clinical gait assessment data were available for all participants (only for P08 was the beginning of use of walking aids unclear) and revealed a predominantly ataxic gait in all but 1 patient (P14). P14 initially presented with a hypokinetic-rigid gait disturbance followed by ataxia only later in the disease. Until the end of the study, 5 of 24 patients had gait difficulties but walked independently, 7 used walking aids, 9 were dependent on a wheelchair, and 4 participants had died. Details are shown in Figure 2.

Gait disturbance occurred at a median age of 29 years (IQR, 19 years). Walking aids were used at a median age of 48 years (IQR, 19 years), and wheelchair use was reached at a median age of 57 years (IQR, 15 years). Four patients died during the study, aged 34, 44, 54, and 59 years. Cause of death in all 4 cases was status epilepticus or its direct sequelae.

Related to the onset of gait difficulties, walking aids were used after a median of 15 years (IQR, 10 years), and wheelchair use occurred after a median of 19 years (IQR, 6 years).

Referring to the first POLG-related symptom, walking aids were required after a median of 16 years (IQR, 13 years), and wheelchair dependence was reached after a median of 19 years (IQR, 10 years).
MRI

MRI data of 18 patients were available for the assessment of atrophy, white-matter changes, and diffusion deficits. Cerebellar atrophy equally involving the vermis and cerebellar hemispheres was found in 10 of 18 patients in T1 images and appeared to be mild in all cases (examples in Fig. 3L–N). Longitudinal follow-up data over 4 years were available for 3 participants. In 2 of them mild progression was seen, whereas cerebellar atrophy did not change in the third case.

Cerebellar white matter was affected in 9 of 18 patients. Eight of them showed lesions in the deep cerebellar white matter (Fig. 3O–S), whereas 1 patient (P10) had a more nodular-shaped white-matter lesion (Fig. 3T). On follow-up scans only 1 patient (P18) presented with a novel hyperintensity in cerebellar gray matter after a series of epileptic seizures (Fig. 3S).

Thalamic T2/FLAIR lesions were seen in 9 of 18 patients, with the predominant effect in the central parts of the thalamus (Fig. 3A–D). These did not change over 4 years of observation.

In the brain stem, 2 types of lesions were observed: (1) T2/FLAIR hyperintensities in the inferior olivary nucleus occurred in 4 patients, with slight progression within 1 year in P01 (Fig. 3E–H); (2) pontine T2/FLAIR hyperintensities in the area of the medial lemniscus ventral to the locus coeruleus or between pontocerebellar fibers were seen in 3 of 18 patients, with progression in 2 patients (P19 and P23) within 3 and 4 years, respectively (Fig. 3I–K). Cerebral lesions in T2 and FLAIR imaging were disclosed in 6 of 18 patients (P06, P12, P18, P19, P22, P23). Isolated subcortical lesions were seen in 4 of them (P12, P19, P22, and P23) and cortical involvement in 2 (P06 and P18). Examples of cerebral lesions are given in Figure 4. Cerebral FLAIR hyperintense stroke-like lesions appeared in P06 and P18 within 1 month after several epileptic seizures (Fig. 4A–C). These affected widespread cortical and subcortical areas in P06, but showed an isolated effect in the cortical band in P18. The latter was the only lesion with a decreased ADC signal in our series.

Nerve Conduction Studies

Nerve conduction studies (NCS) were performed in 12 of 24 POLG patients. All 12 cases showed axonal sensory neuropathy with reduced or absent sensory nerve action potentials in the lower and/or upper limbs. In 7 cases, and in addition, compound muscle action potentials were reduced. Nerve conduction velocity was normal in 6 patients and mildly slowed (1–7 m/s below threshold) in the other 6 cases. Detailed results are given in Table S3. In summary, 5 participants presented with isolated sensory axonal neuropathy, and 7 cases showed sensory-motor axonal neuropathy with sensory accentuation.

Sample Size Calculation

For the calculation of the minimally required sample size for future treatment studies, we used the mean SARA progression und standard deviation calculated with the 13 participants who had SARA follow-up data of at least 1 year. For capturing a 50% reduction of SARA progression with 80% power and a significance of 0.05 in a placebo-controlled trial with 1-year duration and 1:1 randomization, at least 38 patients would be required per arm (Fig. 1F).

Discussion

This study provides the first data on the natural history of POLG-related ataxia (POLG-A) in adults. In our prospective assessment, severity of ataxia as measured by the SARA score progressed linearly over more than a decade by 1.02 points/year. This makes the progression rate of POLG-A faster than in Friedreich’s ataxia (FA, 0.77 points/year), COQ8A ataxia (COQ8A, 0.45 points/year), or spinocerebellar ataxia type 6 (SCA6, 0.80 points/year), but slower than in spinocerebellar ataxia types 1, 2, and 3 (SCA1, 2.11 points/year; SCA2, 1.49 points/year; SCA3, 1.56 points/year), or multiple system atrophy (MSA, 3.3 points/year).

The identification of factors that influence progression is of major importance for the planning of upcoming interventional trials. We found earlier age at onset to be associated with more rapid progression with substantial differences, 1.5 versus 0.5 points/year with onset before versus after 30 years of age. Confirmation of this age-at-onset factor in a larger cohort is definitely needed, but a similar correlation of earlier onset and more rapid progression was also found in pediatric manifestations of POLG-related disease including predominantly in patients with Alpers syndrome and MCHS3 and in a large cohort covering many different phenotypes.

We did not find a relevant correlation of the genotype with progression rate in SARA, but the A467T genotype did go along with an earlier onset of disease, as described previously. We could not confirm a correlation of earlier disease onset in compound heterozygous POLG-A patients as reported earlier for POLG-related disease. This could be because of the more homogeneous cohort of POLG-A patients in our study compared with largely heterogeneous phenotypes studied by Hikmat et al (2020). There was also no significant difference in disease onset and progression rate between male and female participants, as observed in a previous study analyzing a broader phenotypic spectrum. Comparing our data with the course of disease in other POLG phenotypes like Alpers syndrome clearly shows that natural history studies as well as clinical trials need to consider stratification of mitochondrial diseases not
only for the underlying gene but also the presenting phenotype.

POLG-A patients required walking aids after a median disease duration of 16 years and became wheel-
chair dependent after 19 years. This constitutes a slightly faster progression of gait ataxia to wheelchair
dependence compared with SCA2 and SCA3 (21 years\textsuperscript{40} and SCA6 (24 years\textsuperscript{41}) and a slower progression than in SCA1 (15 years\textsuperscript{42}) and FA (approximately 12 years\textsuperscript{13}).

Four POLG-A patients were deceased at the end of the study. In all cases death was related to status
epilepticus. Drug-resistant epileptic seizures and a sig-
nificant influence on survival have been described previ-
ously in patients with POLG mutations.\textsuperscript{8,38} An
important point in the antiepileptic treatment of POLG
patients is the avoidance of valproate as its mitochon-
drial toxicity frequently causes hepatic failure in this
mitochondrial disease.\textsuperscript{44,45}

The most frequent noncerebellar finding in POLG-A
was CPEO, which was observed in all but 1 patient. In
addition, INAS revealed brain stem oculomotor signs,
areflexia, sensory deficits, urinary dysfunction, and cog-
nitive impairment in more than 50% of patients with
POLG-A. Cognitive impairment may be under-
estimated, as it was only assessed by impression of the
examiner without further cognitive testing. The INAS
category of “brainstem oculomotor signs” may be con-
founded by the high rate of CPEO. On the single-item
level, ophthalmoplegia was seen in 92% of patients
and slowing of saccades in 63%. Differentiation from
external ophthalmoplegia can be difficult and may lead
to overestimation of the effect on the brain stem in our
study. However, frequent signal abnormalities of the
brain stem on MRI support a high frequency of brain
stem involvement.

INAS count in POLG-A increased annually by 0.30
points/year, which is similar to SCA2 and SCA3 (both
0.30 points/year\textsuperscript{46}), but slower than in SCA1 (0.56
points/year\textsuperscript{46}) and faster than in SCA6 (no progression
within 2 years\textsuperscript{46}) and FA (0.10 points/year\textsuperscript{34}). INAS
count is most likely inferior to SARA as a progression
marker because INAS showed more variability with a
higher standard deviation (0.39 points/year) than its
medial progression (0.30 points/year). In addition, we
observed some cases with apparently decreasing INAS
count potentially because of different examiners. On
MRI, white-matter lesions revealed a pattern with pre-
dominant effect on the inferior olive, pons, middle cere-
bellar peduncles, cerebellar white matter, thalamus, and
occipital white matter. Occurrence and frequency of
lesions in these regions fit well with previous reports.\textsuperscript{31,47,48} Although no quantitative MRI data
were available, this observational study provides evi-
dence that cerebellar atrophy is only mild in POLG-A
with minor progression, even after 4 years of follow-
up. This makes it rather unlikely that volumetric MRI
is a better progression marker for interventional trials
in POLG-A than clinical scores. However, further lon-
gitudinal imaging studies with thoroughly conducted
quantitative analyses are needed to evaluate the poten-
tial of MRI as a biomarker in POLG-related ataxia, as
minor changes might escape visual evaluation.

Electrophysiological examination revealed predomi-
nantly sensory and axonal neuropathy in all patients
who underwent nerve conduction studies in our series.
Motor fibers were affected in only 58% of patients and
to a most mild degree. These results resemble findings
in FA with similar axonal sensory neuropathy and at
most mild effects on motor nerves in a few cases.\textsuperscript{6,49,50}
As amplitude of sensory nerve action potentials and
compound muscle action potentials shows limited repli-
cability,\textsuperscript{51} nerve conduction studies are unlikely to
be useful as progression markers in interventional trials.
However, because of the high number of POLG-A
patients with effects in the peripheral nervous system,
quantitative scores like the Charcot–Marie-Tooth neu-opathy score\textsuperscript{52} might be a useful outcome parameter
to capture progression of peripheral neuropathy but
require longitudinal assessment in larger cohorts.

As sufficiently large cohorts may not be available in a
rare disorder like POLG-A, development of biomarkers
like the amount of mtDNA deletions that are related to
POLG pathophysiology should be stimulated, and this
may directly indicate successful interference of drug
candidates with pathogenesis.

In summary, we found a rather linear progression of
ataxia as assessed by SARA in this prospective natural
history study. Nonataxia symptoms, MR imaging and
nerve conduction studies showed more variability or
less sensitivity to change. This suggests SARA as a pri-
mary outcome measure for future interventional trials
in POLG-A. To provide first evidence on the feasibility
of interventional trials, we estimated sample sizes of
cohorts dependent on the expected efficacy of the inter-
vention. Our computations revealed a cohort size of at
least 38 patients per trial arm to detect a 50% reduc-
tion in ataxia progression in POLG-A within 1 year of
trial duration. Stratification for age at onset is required,
as earlier onset was associated with a more rapid pro-
gression of POLG-related ataxia. As variability of pro-
gression is a crucial factor in sample size calculations,
the rather small number of 13 patients in this analysis
may have provided only a preliminary estimate, and
future studies with larger sample sizes are necessary to
confirm these results.

Acknowledgments: We are grateful to all patients for participation in this study. F.B., B.v.d.W., M.S., and L.S. are members of the European Reference Network for Rare Neurological Diseases, Project ID No. 739510. F.B. and L.S. are affiliated to the German Network for Mitochon-
drial Diseases (mitoNET; https://www.mitonet.org/). Open access
funding enabled and organized by Projekt DEAL.
Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Blok MJ, van den Bosch BJ, Jongen E, et al. The unfolding clinical spectrum of POLG mutations. J Med Genet 2009;46(11):776–783.
2. Wong LJ, Naviaux RK, Brunetti-Pierri N, et al. Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum Mutat 2008;29(9):E130–E172.
3. Hikmat O, Tzoulis C, Chong WK, et al. The clinical spectrum and natural history of early-onset diseases due to DNA polymerase gamma mutations. Genet Med 2017;19(11):1217.
4. Synofzik M, Schulte R, Schulte C, et al. Complex hyperkinetic movement disorders associated with POLG mutations. Mov Disord 2010;25(14):2472–2475.
5. Synofzik M, Asmus F, Reimold M, Schols L, Berg D. Sustained dopaminergic response of parkinsonism and depression in POLG-associated parkinsonism. Mov Disord 2010;25(2):243–245.
6. Synofzik M, Sruiljes K, Godau J, Berg D, Schols L. Characterizing POLG ataxia: clinics, electrophysiology and imaging. Cerebellum 2012;11(4):1002–1011.
7. Whittaker RG, Devine HE, Gorman GS, et al. Epilepsy in adults with mitochondrial disease: a cohort study. Ann Neurol 2015;78(6):949–957.
8. Anagnostou ME, Ng YS, Taylor RW, McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: a clinical and molecular genetic review. Epilepsia 2016;57(10):1531–1545.
9. Orsucci D, Angelini C, Bertini E, et al. Revisiting mitochondrial ocular myopathies: a study from the Italian network. J Neurol 2017;264(8):1777–1784.
10. Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: clinical and molecular genetic study. Lancet 2004;364(9437):875–882.
11. Schicks J, Synofzik M, Schulte C, Schols L, POLG, but not PEO1, is a frequent cause of cerebellar ataxia in Central Europe. Mov Disord 2010;25(15):2678–2682.
12. Puceathly RD, Tomlinson SE, Hargreaves I, et al. Distal myopathy with cachexia: an unrecognised phenotype caused by dominantly-inherited mitochondrial polymerase gamma mutations. J Neurol Neurosurg Psychiatry 2013;84(1):107–110.
13. Mancuso M, Orsucci D, Angelini C, et al. ‘Mitochondrial neuropathies’: a survey from the large cohort of the Italian network. Neuromuscul Disord 2016;26(4–5):272–276.
14. Prasun P, Koebel DD. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)-like phenotype in a patient with a novel heterozygous POLG mutation. J Neurol 2014;261(9):1818–1819.
15. Šašić D, Dimberg EI, Milone M, Wong LJ. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)-like phenotype: an expanded clinical spectrum of POLG1 mutations. J Neurol 2012;259(5):862–868.
16. Horvath R, Hudson G, Ferrari G, et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 2006;129(Pt 7):1674–1684.
17. Lamantea E, Tiranti V, Bordoni A, et al. Mutations of mitochondrial DNA polymerase gammaA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann Neurol 2002;52(2):211–219.
18. Nissanka N, Bacman SR, Platini MJ, Moraes CT. The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat Commun 2018;9(1):2491.
19. Rahman S, Copeland WC. POLG-related disorders and their neurological manifestations. Nat Rev Neurol 2019;15(1):40–52.
20. Synofzik M, Nemeth AH. Recessive ataxias. Handb Clin Neurol 2018;155:73–89.
21. Hakonen AH, Davidson G, Salemri R, et al. Abundance of the POLG disease mutations in Europe, Australia, New Zealand, and the United States explained by single ancient European founders. Eur J Hum Genet 2007;15(7):779–783.
22. Hakonen AH, Heiskanen S, Juvenon V, et al. Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 2005;77(3):430–441.
23. Kasiviswanathan R, Copeland WC. Biochemical analysis of the G517V POLG variant reveals wild-type like activity. Mitochondrion 2011;11(6):929–934.
24. Lamantea E, Zeviani M. Sequence analysis of familial PEO shows additional mutations associated with the 752C–T and 3527C–T changes in the POLG1 gene. Ann Neurol 2004;56(3):454–455.
25. van Goethem G, Schwartz M, Loqfen G, Dermaut B, van Breukchoven C, Vissing J. Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur J Hum Genet 2003;11(7):547–549.
26. Schulte C, Synofzik M, Gasser T, Schols L. Ataxia with ophthalmoplegia or sensory neuropathy is frequently caused by POLG mutations. Neurology 2009;73(11):898–900.
27. National Center for Biotechnology Information. ClinVar [VCV000493164.1]. 2017. https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000493164.1/.
28. Schmitz-Hubsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006;66(11):1717–1720.
29. Schmitz-Hubsch T, Coudert M, Bauer P, et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology 2008;71(13):982–989.
30. Jacobi H, Rakowicz M, Rola R, et al. Inventory of non-Ataxia signs (INAS): validation of a new clinical assessment instrument. Cerebellum 2013;12(3):418–428.
31. Tzoulis C, Neckelmann G, Mork SJ, et al. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes. Brain 2010;133(5):1428–1437.
32. Uusimaa J, Gowda V, McShane A, et al. Prospective study of POLG mutations presenting in children with intractable epilepsy: prevalence and clinical features. Epilepsia 2013;54(6):1002–1011.
33. Faul F, Erdfelder E, Lang AG, Buchner A. G′ power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39(2):175–191.
34. Reetz K, Dogan I, Hilgers R-D, et al. Progression characteristics of the European Friedrich’s ataxia consortium for translational studies (EFACCTS): a 2-year cohort study. Lancet Neurol 2016;15(13):1346–1354.
35. Traschutz A, Schirinzii T, Laugwitz L, et al. Clinico-genetic, imaging and molecular delineation of COQ8A-ataxia: a multicenter study of 59 patients. Ann Neurol 2020;88(2):251–263.
36. Jacobi H, du Montcel ST, Bauer P, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol 2015;14(11):1101–1108.
37. Giordano I, Harmath F, Jacobi H, et al. Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology 2017;89(10):1043–1049.
38. Hikmat O, Naess K, Engvall M, et al. Simplifying the clinical classification of polymerase gamma (POLG) disease based on age of onset; studies using a cohort of 155 cases. J Inherit Metab Dis 2020;43(4):726–736.
39. Hikmat O, Naess K, Engvall M, et al. The impact of gender, puberty, and pregnancy in patients with POLG disease. Ann Clin Transl Neurol 2020;7(10):2019–2025.
40. Yasui K, Yabe I, Yoshida K, et al. A 3-year cohort study of the natural history of spinocerebellar ataxia type 6 in Japan. Orphanet J Rare Dis 2014;9:118.
41. Antonera A, Bruzzese D, Lieto M, et al. Predictors of survival in spinocerebellar ataxia type 2 population from southern Italy. Neuron Sci 2018;39(11):1857–1860.
42. Klockgether T, Ludlke R, Kramer B, et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 1998;121(Pt 4):589–600.

43. Lecoq C, Charles P, Azulay JP, et al. Delayed-onset Friedreich's ataxia revisited. Mov Disord 2016;31(1):62–69.

44. Saneto RP, Lee IC, Koenig MK, et al. POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders. Seizure 2010;19(3):140–146.

45. Stewart JD, Horvath R, Baruffini E, et al. Polymerase gamma gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 2010;52(5):1791–1796.

46. Jacobi H, Bauer P, Giunti P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 2011;77(11):1035–1041.

47. Tzoulis C, Engelsen BA, Telstad W, et al. The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain 2006;129(Pt 7):1685–1692.

48. Tchikviladzé M, Gilleron M, Maisonobe T, et al. A diagnostic flow chart for POLG-related diseases based on signs sensitivity and specificity. J Neurol Neurosurg Psychiatry 2011;86(6):646–654.

49. Morral JA, Davis AN, Qian J, Gelman BB, Koeppen AH. Pathology and pathogenesis of sensory neuropathy in Friedreich's ataxia. Acta Neuropathol 2010;120(1):97–108.

50. Ouvrier RA, McLeod JG, Conchin TE. Friedreich's ataxia. Early detection and progression of peripheral nerve abnormalities. J Neurol Sci 1982;55(2):137–145.

51. Buchner H, Schönlau L. Reproduzierbarkeit der Neurografie – explorative Untersuchung. Klin Neurophysiol 2019;50(02):83–88.

52. Murphy SM, Herrmann DN, McDermott MP, et al. Reliability of the CMT neuropathy score (second version) in Charcot-Marie-tooth disease. J Peripher Nerv Syst 2011;16(3):191–198.

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.