Compact 30kV 0.1 Hz cosine square wave testing system for PD detection on XLPE cables

Shuo Chen¹, Xielin Shen², Jianzhao Guo² and Qinghua Wang²
¹Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049, Shaanxi Province, China
²State Grid Quanzhou Electrical Power Company, Quanzhou, Fujian Province, China

E-mail: x321cs@163.com

Abstract. To provide a more convenient and efficient method for detecting partial discharge (PD) on XLPE cables, this paper describes a 0.1 Hz cosine-square wave testing system, which can output peak voltage up to 30 kV. Due to L-C series resonance principle, the wave of discharge process is in cosine form which can be equivalent to AC voltage. Therefore, PD detection can be conducted under the rising and falling edges. The vital component of the proposed system is high-voltage semiconductor switch which consists of several series connected IGBTs. Based on the idea of compactness, a prototype system is integrated in the lab. Withstand test and PD detection test are also carried out to validate the proposed system. The experiment result shows that the system is effective to detect PD signal in power cables and has certain development prospects on insulation condition assessment of XLPE cables.

1. Introduction

The applied quantity of power cables increases year by year, as power demand is rising, which proposes high standard for safe operation of cables. XLPE cables have superiority in fine heat-resistance, mechanical behaviour, installation and preventive maintenance. However, XLPE cables usually get damaged during production progress and cable laying [1-2]. There are two main methods for power cable insulation testing, namely, online test and offline test [3]. Offline test has the features of high precision and easy operation, and thus it’s widely used in engineering. Depending on the difference of excitation source, offline test mainly includes power frequency AC voltage test, DC voltage test, oscillating wave test and VLF (very low frequency) voltage test etc [4-9]. Power cables often have large equivalent capacitance due to the long laying distance, and it is not convenient to engineer while using AC voltage test, because they have to adopt high capacity and massive transformer. Furthermore, it’ll develop additional electric field after DC voltage withstand test [10-12]. Therefore, VLF voltage test and oscillating wave test are mainly used in the cable insulation test.

Over the years, VLF cosine square wave is the develop priority in the power industry. It can conduct DC voltage withstand test for cable by using the part of square wave, and lastly we can obtain leakage current and dielectric loss reflecting the whole insulation status of cables. In addition, the rising and falling edges similar to AC voltage can carry out partial discharge detection [13-14]. This paper presents compact 0.1 Hz cosine square wave testing system designed for on-site cable insulation test, and it can output 30 kV peak voltage and has the advantage of compactness and portability. Several XLPE cables have been tested by using the system, and experiments results show that this system have excellent performance in the field of cable insulation test.
2. Basic principle of system

2.1. Component f system

As depicted in the Figure 1, the main components are described as follows:

a. Positive high-voltage source, namely, voltage doubling rectifier circuit.
b. Discharge unit consisted of bipolar high voltage semiconductor switch.
c. Detection unit including high voltage divider and PD detection unit.
d. Capacitive load.

In the Figure 1, S_r is the relay controlling on-off of electric supply, and T_1 is step-up transformer, and R_1 is limiting resistor. S_p, S_1 and S_2 are high-voltage switch, and L_1 is air-core reactor. C_x is equivalent capacitance, and C is auxiliary capacitance.

High-voltage semiconductor switch is the vital component of system, and switch has to meet the demand of high speed and high withstand voltage. High-voltage switch proposed consists of several series-connected IGBTs.

![Figure 1. Topology model of 0.1Hz testing system](image)

2.2. Working process of system

In working condition, cable as capacitive load is charged to a default voltage through positive DC source firstly, and it’s in the part of square wave. Thus, load begins to discharge via inductance and load capacitor, and voltage polarity of load reverses. It’s worth mentioning that energy of load is recycled under the discharge process. The typical waveform is shown in Figure 2. Specific process is depicted as follows:

![Figure 2. Typical waveform of 0.1Hz cosine square wave](image)

A. Phase $[t_0,t_1]$:

Before t_0, cable is charged to a positive level, and at t_0, S_r and S_p are turned off making DC source stop power supply. Then, S_1 is turned on and S_2 is still in off mode. Load capacitor begins to
discharge via reactor L_1, forming into a L-C resonance loop. Voltage polarity of load turns to reverse, and the waveform of V_o shows cosine wave form. Mathematical expression is depicted as below:

$$V_o = \frac{U_o}{A} e^{-\delta(t-t_0)} \cos [\omega(t-t_0) + \beta]$$ \hspace{1cm} (1)

Where,

$$A = \left(1 - \frac{R_l^2(C_x + C)}{4L_1}\right)^{1/2}$$ \hspace{1cm} (2)

$$\delta = \frac{R_l}{2L_1}$$ \hspace{1cm} (3)

$$\omega = \left(\frac{1}{L_4(C_x + C)} - \left(\frac{R_l}{2L_4}\right)^2\right)^{1/2}$$ \hspace{1cm} (4)

$$\beta = \arccos (A)$$ \hspace{1cm} (5)

Where U_o is the default voltage, and R_l is equivalent resistance of the air-core reactor. Value of ΔT is related to L_1, C and C_x, and mathematical expression is depicted as below:

$$\Delta T = \frac{\pi}{\omega} = \pi \left(\frac{1}{L_4(C_x + C)} - \left(\frac{R_l}{2L_4}\right)^2\right)^{1/2}$$ \hspace{1cm} (6)

Usually, R_l is so small that it can be neglected, and then expression can be simplified as below:

$$\Delta T \approx \pi \left(\frac{1}{L_4(C_x + C)}\right)^{1/2} = \pi \left(L_4(C_x + C)\right)^{1/2}$$ \hspace{1cm} (7)

B. Phase $[t_1,t_2]$

In fact, a small energy loss occurs in the cable when cable is in the process of discharge, therefore peak voltage at t_1 of cable is smaller than voltage at t_0. From t_1 to t_2, switches S_1 and S_2 are both turned off, and S_p and S_r are still in off mode. Time period of this process is 5 seconds.

C. Phase $[t_2,t_3]$

Similar to first step, at t_2, S_p and S_r are still in off mode. And S_2 is turned on, but S_1 is still in off mode. At the moment, cable begins to discharge via reactor L_1, forming into a L-C resonance loop. Finally voltage polarity of load turns to reverse, and the waveform of V_o shows cosine wave form. Mathematical expression is depicted as below:

$$V_o = \frac{KU_o}{A} e^{-\delta(t-t_2)} \cos [\omega(t-t_2) + \beta], \hspace{1cm} 0 < K < 1$$ \hspace{1cm} (8)

Where, K is loss coefficient due to energy loss.

D. Phase $[t_3,t_4]$

At t_3, voltage polarity of V_o is positive. In order to replenish energy loss, S_r and S_p are turned on, but S_1 and S_2 are turned off. Therefore, DC source works following that cable begins to be charged. And time period of this process is also 5 seconds.

3. System design

3.1. High-voltage switch

According to explanation above, the testing system need three high-voltage switches, and switches require higher operating speed, higher withstand voltage and smaller size. There is comparison of characteristics among three electronic power switches as depicted in Table 1.

Table 1 shows that IGBT and MOSFET both have low driving power and high operating speed, but MOSFET has higher saturation voltage. Therefore, IGBT is chosen as vital component of high-voltage switch. Taking various factors into consideration, high-voltage semiconductor switch designed is
based on several series connected IGBTs. The whole switch unit consists of IGBT, drive circuit, isolation power supply system and signal control system.

Table 1. Comparison of characteristics among three electronic power.

	IGBT	MOSFET	BJT
Driving mode	Voltage	Voltage	Current
Operating speed	ns	ns	µs
Driving power	Low	Low	High
Saturation voltage	Low	High	Low

When several IGBTs are connected in series, question about series even-voltage on different IGBTs has to be taken into account. Respective IGBTs have different static parameter and dynamic parameter. Besides, delay of trigger signal and exist of stray capacitance will have effect on even-voltage on IGBTs. To solve the problem, each IGBT is in parallel with high-voltage resistor calculated to be 25 MΩ. When IGBT operates, there is transient pulse voltage, which will affect normal operation of IGBT, therefore each IGBT is also in parallel with transient voltage suppressors (TVS). TVS has fast response time that is less than 1.0 ps from 0 volts to breakdown voltage, and can completely satisfy the requirement. For integration of system, high-voltage switch is designed in circle outline as shown in Figure 3. A high-voltage switch board consists of eight IGBT modules, which are connected in series.

![Figure 3. Physical map of high voltage switch](image)

Reference potential difference of respective drive circuit is up to a few thousand volts, therefore supply power of drive circuit must be isolated respectively. Flyback switching power supply has advantage of stable operation and good isolation. Besides, it is easily realizable to have multiplexed output. A multi-output signal flyback switching power supply is proposed in this paper. High-frequency transformer is placed on the centre of switch board. And there are eight outputs in the secondary side of transformer. As shown in Figure 4, the primary side of transformer is controlled by MOSFET, forming into main circuit of power supply with relevant driving circuit.
3.2. Control unit
From Figure 1, we can see that system has S_p, S_1 and S_2 totaling three high-voltage switches, and one relay. In order to ensure electrical isolation, control unit needs three ways of optical signal to control on-off of high-voltage switches and two ways of optical signal to control on-off of isolation power supply system. For switches, control signal is firstly generated by FPGA control board, and thus it’s transferred to multichannel control board by optical fiber, and multichannel control signal are also transferred to corresponding IGBT modules by optical fiber at last.

For power supply system, it will generate much noise interference. In order to detect accurately partial discharge in cable, power supply system must be shut up in the process of polarity reversal. Similarly, two ways of optical signal are generated by FPGA control board, and thus they will be transferred to power supply system by optical fiber. Besides, for relay, control signal is generated by FPGA control board in the mode of electrical signal, and it can drive the relay corresponding with audion.

3.3. Physical design
In the final design, the diameter of high-voltage switch is 520 mm, each weighed 3kg. The charge unit consists of two high-voltage switches, and sixteen IGBTs rated for 4 kV are chosen in these switches. The discharge unit consists of four high-voltage switches, and thirty-two IGBTs rated for 3 kV are chosen in these ones. The vertical distance between each switch board is about 80 mm, assuming safe enough insulation distance.

Finally, HV source, charge unit, detection unit and air-core reactor are put together in one epoxy cylinder, and the inductance of reactor is 1 H. And discharge unit and control unit are integrated in another epoxy cylinder, which is connected with the former cylinder by flexible cable.

4. High voltage test
After system integration, PD detection test for cable was conducted in the laboratory. Before the experiment, for system’s reliability and security, withstand voltage test was carried out using oil filled capacitor instead of XLPE cable as load. As can be seen in Figure 5, the peak value of output voltage is up to 30 kV. In the test, the value of capacitor is 0.1 μf, and according to expression (7), the time of rising edge and falling edge can be calculated.
For PD detection test, a 200 m single core 10 kV XLPE cable was chosen as test object, which was connected by two 100 m XLPE cables. Besides, a defect was made artificially in the intermediate joint of this cable, which could cause partial discharge under high voltage. As depicted in Figure 6, a needle was stuck into insulating layer of intermediate joint, and the depth was about 2.5 mm.

Using 0.1Hz cosine square wave testing system, PD detection on the XLPE proposed was conducted in the laboratory. Experiment results are shown in Figure 7 and Figure 8. From results, we can clearly see that PD signal was accurately detected by the testing system.

Figure 5. Output waveform of system

![Output waveform of system](image)

Figure 6. Defect in the intermediate joint of this cable

![Defect in the intermediate joint](image)

Figure 7. PD detection on cable under the rising edge

![PD detection on cable](image)
5. Conclusion
A compact testing system for PD detection on power cable is presented in this paper. Benefiting from high-voltage semiconductor switch proposed, it can output 0.1 Hz cosine square voltage rated for 30 kV. Through lab tests, system has been proven to be effective on PD detection. Because energy loss is much small under the process of polarity reverse, DC source has low power and small size. The system proposed is more suitable for on-site cable test than conventional AC system. In fact, this system also can locate defect point by using TDR and it will be discussed in the future.

References
[1] Tanaka T, Okamoto T, Hozumi N and Suzuki K 1996 Interfacial improvement of XLPE cable insulation at reduced thickness IEEE Transactions on Dielectrics & Electrical Insulation pp 345–350
[2] Sarathi R, Nandini A and Tanaka T 2012 Understanding electrical treeing phenomena in XLPE cable insulation under harmonic AC voltages adopting UHF technique IEEE Transactions on Dielectrics & Electrical Insulation pp 903–909
[3] Ahmed N and Srinivas N 2001 Experience gained with on-line partial discharge testing in power cable system Transmission and Distribution Conference and Exposition vol 2 (Atlanta Ga) pp 859–864
[4] Siregar Mutiara Sofia 2017 Partial discharge patterns on cross-linked polyethylene DC power cables Power Engineering and Renewable Energy IEEE
[5] Wong, Belle Valerie, T Yuan and T Neier 2016 Practical experience using VLF Tan Delta and Partial Discharge measurement in medium voltage cable International Conference on Condition Monitoring and Diagnosis IEEE pp 106–109
[6] Kim, Dong sub, Y Cho and S M Kim 2014 A study on three dimensional assessment of the aging condition of polymeric medium voltage cables applying very low frequency (VLF) tan δ diagnostic IEEE Transactions on Dielectrics & Electrical Insulation pp 940–947
[7] Takahashi and Toshihiro 2016 AC and DC partial discharge measurements on defective cables IEEE Electrical Insulation Conference pp 375–378
[8] Bach, Robert, S Sulk and C Walter 2016 Suitable voltage levels for on-site tests of MV and HV-cables with Damped AC to detect service endangering defects IEEE International Conference on Dielectrics
[9] Zhijuan Chen 2010 Test and study of 10kV XLPE power cables' typical defects based on Oscillating Wave Test System pp 1–4
[10] Wang Yajun 2014 The partial discharge characteristic of typical XLPE cable insulation defects under damped oscillating voltage Electrical Insulation Conference pp 290–293
[11] Oyegoke B 2003 Selectivity of damped AC (DAC) and VLF voltages in after-laying tests of extruded MV cable systems *IEEE Transactions on Dielectrics & Electrical Insulation* pp 874–882

[12] Xue Rong, Zhang Long and Huang Zhiwei 2015 Comparative Study on Partial Discharge Characteristics of XLPE Cable under Damped Oscillating Wave Voltage and AC Voltage *Insulation Materials* pp 43–48

[13] Salathe Daniel 2017 New methods for offline PD diagnosis on MV cable systems *Power System Conference*

[14] Tang Shihu 2014 Research and Design on 0.1Hz VLF Cosine Square Wave System (Southwest Jiaotong University)