Exogenous loading of extracellular vesicles, virus-like particles, and lentiviral vectors with supercharged proteins

Koen Breyne1, Stefano Ughetto1,2,4, David Rufino-Ramos1,3,4, Shadi Mahjoum1, Emily A. Grandell1, Luís P. de Almeida3 & Xandra O. Breakefield1

Cell membrane-based biovesicles (BVs) are important candidate drug delivery vehicles and comprise extracellular vesicles, virus-like particles, and lentiviral vectors. Here, we introduce a non-enzymatic assembly of purified BVs, supercharged proteins, and plasmid DNA called pDNA-scBVs. This multicomponent vehicle results from the interaction of negative sugar moieties on BVs and supercharged proteins that contain positively charged amino acids on their surface to enhance their affinity for pDNA. pDNA-scBVs were demonstrated to mediate floxed reporter activation in culture by delivering a Cre transgene. We introduced pDNA-scBVs containing both a CRE-encoding plasmid and a BV-packaged floxed reporter into the brains of Ai9 mice. Successful delivery of both payloads by pDNA-scBVs was confirmed with reporter signal in the striatal brain region. Overall, we developed a more efficient method to load isolated BVs with cargo that functionally modified recipient cells. Augmenting the natural properties of BVs opens avenues for adoptive extracellular interventions using therapeutic loaded cargo.
Cell-derived biovesicles (BVIs) comprise a large group of bioentities present in the extracellular space ranging from extracellular vesicles (EVs), including exosomes and microvesicles1, viral-like particles to enveloped viruses2, including lentiviral vectors (LVVs). The common elements among all these BV types are their natural capacity to incorporate biomolecules (endogenous cargo or endocargo) from a parent cell, their subcellular scale (nano to micro), their release into the extracellular space, and protection of their luminal contents by a lipid membrane3–5.

Non-infectious EVs have gained more and more attention as a potential therapeutic-delivery vehicle option6–7. EVs have the potential to counter major drawbacks of virus-based vectors, such as immunogenicity, potentially allele-disruptive genome integration, small capacity for additional non-viral encoded biocargo, and potential cytotoxicity. Biomarker studies have demonstrated that the host tolerates high numbers of EVs produced by virtually every cell in the body in biofluids and extracellular spaces, including both from diseased and normal tissues8. Limiting factors in EV therapeutics development are our understanding of defined mechanisms of biomolecule sorting from the source cells into EVs and their fate in recipient cells9. The bioactivity of EV cargo acting upon recipient cells has been the subject of debate in recent years, due in part to experimental limitations at the single EV level10 and quantitation of functional cargo11. The overall observed effect of the EV endocargo in recipient cells is seemingly low and might need additional boost signals to improve therapeutic relevance or multiple EV exposures.

Here, we explore a strategy that is not limited by the donor cell’s ability to package a desired payload into EVs. This avenue is called exogenous EV loading, which others have pursued for loading synthetic RNAs and proteins with lipofection agents or electroporation12,13. Our strategy exploits synthetically reprogrammed proteins with positively charged amino acids, such as arginine and lysine, exposed on the outside of the protein structure, while their functional amino acids remain unchanged from their parental structure14. The biophysical properties of these positively supercharged proteins (+scProteins) enable association with and migration through the cell membranes of living cells15. Here we demonstrate that +scProteins utilizes EV properties to load negatively charged DNA species and aid in the functional delivery of the latter.

Results
Exogenous loading of extracellular vesicles with positive supercharged proteins. Green fluorescent protein (GFP) has a beta barrel scaffold with a centre chromophore16. Through site-specific mutagenesis of the centre structure, the fluorescent spectrum of this fluorescent protein can be switched from green emission (EX485-EM538) to cyan emission (EX433-EM475)17 (Fig. S1), while site-directed mutagenesis of the exposed surface of GFP alters the biophysical properties of the molecule (Fig. 1a). The net charge of GFP can be decreased or increased by modulation of the lysine/arginine ratio18, generating a negatively or a positively supercharged protein (scProtein) (Fig. 1b). To evaluate the affinity of proteins with different net charges to EVs, three recombinant His-tagged eGFP homologues (−scGFP, eGFP, and +scGFP – amino acid sequence in supplemental Note 1) were generated and evaluated for their binding with His-tag affinity Ni-NTA resin (Fig. 1c). The latter was observed to capture 99.1 ± 0.13, 98.8 ± 2.1, and 99.3 ± 0.19% of detectable fluorescence intensity from suspensions of recombinant −scGFP, eGFP, and +scGFP, respectively (Fig. 1d). However, when −scGFP, eGFP, and +scGFP recombinant proteins were incubated with purified EVs from HEK293T cells (Fig. 1e), 99 ± 0.3, 96.1 ± 7.1, and 55.9 ± 6.8% of the GFP fluorescence was retrieved in the His-tag affinity Ni-NTA resin pellet, respectively (Fig. 1f). We hypothesized that EV association prevented the +scGFP His-tag from binding to Ni-NTA, generating a +scProtein-EV assembly, here called supercharged EVs (scEVs). In essence, the Ni-NTA capture of unloaded free recombinant +scGFP (Fig. S2a-I) allows us to generate a fluorescent scEV suspension (Fig. S2a-II), whereby the +scGFP co-immunoprecipitates with CD63 immuno-affinity beads indicative of +scProtein association with EVs (Fig. S2a-III). We verified this hypothesis by resolving the +scGFP fluorescence suspension before and after Ni-NTA cleanup by size exclusion chromatography (SEC) (Fig. S2b-I). EVs are relatively large particles (30–200 nm)19 that peak in the low-numbered SEC fractions (F7-11), while signal retrieved in the later SEC fractions (F13–F28) represent free +scProteins (2–3 nm). This can be demonstrated when resolving a +scGFP solution (without EVs) with SEC. In this case, the fluorescent signal was only detected in the later fractions (Fig. 1g). When +scGFP was mixed with non-fluorescent SEC-purified HEK293T EVs (Fig. 1h) for 45 min prior to SEC analysis, no signal could be detected for two peaks (Fig. S2b-II). The F13–F28 SEC fraction peaking in the latter profile was lacking in a SEC profile post-Ni-NTA cleanup (Fig. 1i and Fig. S2b-III). Thus, confirming our interpretation that Ni-NTA cleanup ensures +scProtein-associated EV purification. Moreover, we explored whether our method also reduced potential aggregate formation in our suspension that might be formed due to mixing of +scGFP with EVs (Fig. S2c). With Nanosight particle analysis of EVs before (Fig. S2c-I) and after +scProtein loading (Fig. S2c-II), a shift in profile was seen from a homogenous one peak profile to a two-peak profile. The Ni-NTA cleanup to generate scEVs excluded aggregates resulting in a profile expected for a single vesicle suspension (Fig. S2c-III). The unique affinity of isolated EVs for +scProteins was further demonstrated by the dependency of +scGFP capture on the number of EVs in solution. When a higher number of SEC-purified HEK293T EVs were provided to the same amount of +scGFP (15 pmol), an increase in +scGFP fluorescence was observed (Fig. 1j). The correlation between the number of scEVs and the increase in fluorescence due to +scGFP association is $Y = 20.36 + 0.8214X + 0.004077X^2$ (R² = 0.99; p < 0.005), where Y represents the scProtein emitted fluorescence and X the number of 10⁵ EVs. A population view of our resulting scEV suspension was investigated with ExoView® analysis20 (Fig. 1k). Hereby, scEVs are captured on anti-CD36, anti-CD81, or anti-CD9 printed in distinguishable spots on an ExoView®Chip and compared to an isotype IgG control spot. On a capturing antibody spot, a single EV is bound allowing a multiparametric comparison through colocalizing fluorescent signals of +scProtein in the blue channel and two detection antibodies, anti-CD36 in the red channel and anti-CD81 in the green channel (Fig. 1l). Specific scEV binding to our ExoView®Chip was confirmed as 130.5 ± 21.9, 361.3 ± 52.5, 126 ± 21.2 fluorescent +scProtein events detected on the anti-CD36, anti-CD81, anti-CD9 capture spots, respectively compared to 7 ± 4.6 events on the IgG control spot (Fig. S3a). We also compared a non-loaded HEK293T EV sample with a HEK293T scEV sample (Fig. S3b). In our scEVs sample, we observed that the sample contained both EVs that associated with +scProtein and EVs that had not, with 8.2% ± 2.0% of the EVs being +scProtein positive. The non-exposed +scProtein exposed EV sample had a similar heatmap profile compared to EVs without +scProtein in our scEV sample. However, EVs with +scProtein in the scEV sample were enriched in an EV subpopulation containing both CD81 and CD63. With interferometric sizing measurements (IM) at each capturing antibody we determined that the level of +scProtein fluorescence is dependent on the size of the loaded EV (Fig. 1m). The linear
The correlation is log₂(Y) = 0.03*X + 7.7 (R² = 0.81; p < 0.0001), where Y represents the +scProtein emitted fluorescence and X the size of EVs. The slope of this correlation (slope = 0.03) was higher than when comparing CD81 (slope = 0.019) and CD63 (slope = 0.019) detection antibody emitted fluorescence with IM (Fig. 1n). Also, the R² value stipulating the strength of the relationship between the fluorescence and the IM was lower for CD81 (R² = 0.34) and CD63 (R² = 0.32). Altogether, our data indicates that CD63 and CD81 are incorporated in a similar fashion into EVs by the donor HEK293T cell and that exogenous +scProtein loading is more size dependent compared to endogenous loading of tetraspanins. This observation was confirmed when comparing the EV size indicated by IM (Fig. S3c-I) and anti-CD63 probe fluorescence (Fig. S3c-II) of CD63+CD81+ events between non-loaded EV samples and loaded scEV samples. Indeed, in the CD63+CD81+ subpopulation the size of single EVs was larger with +scProtein (70–190 nm) compared to EVs without +scProtein and unloaded control EVs (50–90 nm), while the CD63 fluorescence was the same. The latter observation supports inclusion of single EVs in our analysis. We calculated that 7–10% of the EVs in our +scProtein-exposed EV sample are loaded and 81.8% of the EVs with +scProtein have between 1 and 10 scProteins; 13.6% have between 10 and 20 scProteins; 2.7% have between 20 and 30 scProteins; and 1.8% have more than 30 scProteins (Fig. S3d).

Extracellular vesicles properties aid in generating supercharged extracellular vesicles. Our results support the ability of positively charged residues of +scProtein to associate with BVs, such as EVs. Here, we investigated whether EV properties also aid in +scProtein association. Bio-Beads SM2 are nonpolar polystyrene
Fig. 1 The number of Lys/Arg surface residues are key for a protein’s potential to associate with extracellular vesicles. a Protein surface mutagenesis. Proteins can be genetically reengineered to display different numbers of lysine (Lys) or arginine (Arg) residues on the solvent exposed surface. Green fluorescent protein (GFP) with reduced or increased levels of Lys/Arg residues on the surface are called negative supercharged GFP (−scGFP) or positive supercharged GFP (+scGFP), respectively. b Arginine/Lysine content in supercharged proteins (scProteins). Number of Lys and Arg incorporated in the supercharged GFP proteins are indicated in green and pink bars, respectively. c Recombinant supercharged protein pull-down. Ni-NTA resin pull-down of free recombinant +scGFP, GFP or, −scGFP to deplete supernatant of GFP fluorescence. d In extracellular vesicles (EV)-free solutions, GFP fluorescence was compared between supernatant (S) after incubation with recombinant −scGFP (n = 3), GFP (n = 4), or +scGFP (n = 4) proteins and the Ni-NTA resin pellet (R). Data are represented in percentage whereby the total fluorescence of the supernatant (S) and Ni-NTA resin pellet (R) represents 100 percent. e Test to verify assembly of GFP with EVs. Interaction of recombinant GFP proteins with EVs was investigated through comparing fluorescence levels of EV-associated vs -unassociated free recombinant affinity protein pull-down with Ni-NTA resin. f +scProtein generates supercharged EVs (scEVs). Post-incubation of HEK293T EVs with −scGFP (n = 3), GFP (n = 4) or +scGFP (n = 4), we added Ni-NTA resin to evaluate whether GFP loaded HEK293T EVs would remain in the supernatant as scEVs. GFP fluorescence was quantified in both supernatant (S) and resin (R). Data are presented in percentage whereby the total fluorescence of the supernatant (S) and Ni-NTA resin pellet (R) represents 100 percent. g Size exclusion chromatography (SEC) profile of fluorescent recombinant +scGFP. Profile when resolving recombinant +scGFP (n = 6) with SEC. A fluorescent signal was detected in the late protein fractions (f) i.e., F14 to F28. Graph represents GFP fluorescence in each SEC fraction. The blue band represents the SEC fractions expected to contain EVs and the grey band represents the SEC fractions expected to contain free proteins. h SEC profile of non-fluorescent SEC-purified EVs. Non-fluorescent HEK293T EVs were not detectable (n = 15). Graph represents GFP fluorescence in each SEC fraction. The blue band represents the SEC fractions expected to contain EVs and the grey band represents the SEC fractions expected to contain free proteins. A transmission electron microscopic image of a non-fluorescent EV used for +scProtein loading is shown. Scalebar = 100 nm. i SEC profile of scEVs post-Ni-NTA cleanup. HEK293T scEVs (n = 6) were generated through combining +scGFP, non-fluorescent HEK293T EVs, and Ni-NTA cleanup; scEVs had a distinct SEC profile whereby GFP fluorescence was observed in the lower SEC fractions, i.e., F7–F12, showing incorporation into EVs. The blue band represents the SEC fractions expected to contain EVs and the grey band represents the SEC fractions expected to contain free proteins. j Correlation of +scProtein content and EV number in scGFP solution. +scProtein loading into EVs was dependent on the number of SEC-purified EVs in solution. Red line demonstrates the non-linear correlation (R2 = 0.9934) between +scProtein fluorescence and the number of 10^5 HEK293T EVs (n = 16) in a scEVs solution. k Single scEV analysis with Exowiew. Schematic of Exowiew method that measures +scProtein and tetraspanin content, as well as particle size on single scEVs. HEK293T scEVs were captured by CD81 antibodies and detected with CD81 and CD63 antibodies in green and red channels, respectively. +scProtein detection occurred in the blue channel. Fluorescent intensities are used to quantify CD81, CD63, and +scProtein levels while interferometric measurements informed about the size of the scEV. l +scProtein fluorescence colocalizes with EV markers in scEVs. These are representative fluorescent images of scD81 capture spots whereby we identify +scProteins (blue), CD63 (red), CD81 (green) in loaded (scEVs) and unloaded (control EVs) from HEK293T EV samples. Overlap of all markers is visualized in white, overlap of scCD63 and scCD81 is in yellow. m Exogenous loaded +scProtein content in scEVs is EV size dependent. In scEVs, we compared particle size measured with interferometry with +scProtein content through fluorescent intensity. The correlation between scEV size and +scProtein fluorescence was R2 = 0.81. The linear model is indicated in red. n Endogenous loaded tetraspanin content is not EV size dependent in scEVs. For tetraspanin content in scEVs, we compared tetraspanin fluorescence with particle size. The correlation of particle size and detection antibodies CD63 or CD81 was 0.32 and 0.34, respectively. +scProtein, CD63 and CD81 were detected in scEVs between 50 and 200 nm, with 50 nm being the detection limit of the Exowiew method. The linear model is indicated in red. Data are presented with mean and SEM (error bars) and analyzed with unpaired t-test. *** and * represent p-values of <0.0001 and <0.5, respectively. R2 represents the statistical measure of how close the data are to the fitted regression line.

Adsortents that are not expected to bind to hydrophilic +scGFP (Fig. 2a) but should be able to pellet phospholipids21 present on EVs. When these Bio-Beads were mixed with free +scGFP in solution 71.5 ± 15.2 of the fluorescence stayed in suspension (Fig. 2b). However, when scEVs were mixed with Bio-Beads SM2 (Fig. 2c), the fluorescence was reduced to 11.9 ± 13.5% in suspension confirming the capture and pelleting of +scGFP by cell-derived biomembranes present in EVs (Fig. 2d). We explored whether the lipids in EV membranes are the main determinant underlying association with +scProtein. Therefore, we compared +scProtein association with liposomes consisting of dipalmitylophosphatidylcholine-polyethyleneglycol 2000-diearylphosphatidylethanolamine-cholesterol with a known surface charge of −11 ± 1 mV to that of EVs (Fig. 2e). After Ni-NTA pull-down, the +scProtein fluorescence in suspension with EVs was 6.29-fold higher compared to the liposome condition and 6.06-fold higher than the no vesicle control (scProtein alone) (Fig. 2f). We hypothesized that negative charges on the surface of EVs might be sugar moieties, which are lacking in liposomes. Therefore, EVs were treated with different enzymes, such as PGNase F or different heparinas (I, II, and III), to remove N-glycosylated moieties and thereby reduce the negative charge of their biological membranes22 (Fig. 2g). These enzyme treatments significantly decreased the +scProtein fluorescence in the supernatant after Ni-NTA pull-down, indicative of the level of +scProtein capture by EVs (Fig. 2h). Compared to non-treated samples a 74.1%, 69.1%, 84.70%, 92.34%, and 112.5-fold decrease in the supernatant was observed for a pretreatment with heparinas (I, II, and III), PGNase F and a mixture of Heparinase III with PGNase F, respectively. As a consequence of the decreased association of +scProtein by EVs, an increase in +scProtein fluorescence in the Ni-NTA pellet was observed for the deglycosylated EV conditions. Compared to non-treated samples a 3.16-, 3.68-, and 3.58-fold increase was observed for a pretreatment with heparinases (I, II, and III), PGNase F and a mixture of Heparinase III with PGNase F, respectively (Fig. 2i). Deglycosylation also enabled us to evaluate the stability of our established scEV complex. Here, we remove sugar moieties after +scProtein association with EVs, instead of our previously performed EV deglycosylation before +scProtein loading. If the sugar moieties on the extracellular side merely mask the +scProtein interaction with the Ni-NTA, we expected that +scProtein on scEVs would detach after deglycosylation (Fig. 2j). However, if the association of +scProtein with scEVs was stable, a deglycosylation treatment would have no effect (Fig. 2k). No significant additional pull-down of Ni-NTA was observed after deglycosylation of scEVs with heparinas (I, II, and III) or PGNase F compared to untreated scEVs (Fig. 2l). These results substantiate that removing oligosaccharides after loading +scProtein does not influence the stability of the scEV assembly.

Uptake of supercharged extracellular vesicles and supercharged virus-like particles in cultured cells. Uptake of EVs by recipient cells can be monitored with membrane dye labelled EVs23. To explore the uptake of scEVs by recipient cells, we fluorescently labelled scEVs with a Bodipy TR
ceramide membrane dye24 (Fig. 3a). To generate our Bodipy TR-scEVs, EV samples were incubated with dye prior to supercharging EVs (Fig. S4a). Our method included resolving a Bodipy TR labelled EV suspension over a SEC column removing free dye visible in the higher non-EV SEC fractions (Fig. S4b-I) and a 100 kDa/~10 nm cut-off filter treatment to clean up any potential free +scProtein remaining in our suspension. Free +scProtein was demonstrated to pass through a 100 kDa cut-off filter but could be retained by a 30 kDa/~3 nm cut-off filter (Fig. S4b-II). Of note, non-supercharged Bodipy TR-EV controls were generated from the same EV source sample as our Bodipy TR-scEVs avoiding batch-to-batch variations between EV production (Fig. S4a). In our final suspension, the BODIPY TR-label co-immunoprecipitated with CD63 affinity beads, known to bind CD63+ EVs, as did the +scProtein fluorescent signal (Fig. S4c).

When exposing HEK293T Bodipy TR-scEVs to HEK293T cells cultured in EV-free media, an increase in Bodipy TR cell-associated fluorescence was observed over a 200 min (1 measurement/10 min) monitoring experiment (Fig. 3b). The uptake of the non-supercharged Bodipy TR-EV controls was not significantly different than their Bodipy TR-scEV counterparts. Half of the Bodipy TR signal was reached after 170.8–227.5 min ($R^2 = 0.90$) and 222.9–433.3 (R2 = 0.75) min for EVs and scEVs, respectively. Concomitantly with Bodipy TR fluorescence, we monitored +scProtein fluorescence as a measure of the half-life of
the recombinant +scProtein (Fig. 3c). A decrease in +scProtein fluorescence was significantly greater (p < 0.01) when the recombinant protein was exposed to HEK293T cells without EV-association than when it was delivered in the scEVs format. The half-life of +scProtein without association with EVs was 25.4–42.00 min (R2 = 0.53), in contrast to 65.9–105.8 min (R2 = 0.73) with scEVs.

To examine the potential mechanisms of HEK293T scEV uptake, we pretreated HEK293T cells with inhibitors targeting the endolysosomal and autophagic pathways before adding Bodipy TR-scEVs. v-ATPase inhibitors concanamycin A (ConA, 200 nM) and Bafilomycin A1 (Baf, 200 nM) were used to investigate whether scEVs act through a potential pH-dependent uptake mechanism. Inhibitor pretreated HEK293T cells (1 h) were
investigated 24 h post-exposure to Bodipy TR-scEVs with flow cytometry. No significant decrease in Bodipy TR was observed compared to sham-pretreated cells (Fig. 3d). However, pretreatment with a lysosomotropic agent, such as Chloroquine (CHL, 10 μM) for 1 h did significantly increase Bodipy TR signal fluorescence (p < 0.0001), indicating scEV accumulation in the recipient cells. Bortezomib (Bort, 5 μM), a 26S proteasome inhibitor, which also induces autophagy and ER stress, increased scEV uptake compared to sham (p < 0.001). These inhibitors have been interchangeably used to track both particle uptake as lysosomal protease activity in cells. Therefore, +scProtein fluorescence levels were measured and demonstrated to increase only compared to sham when pretreated with CHL or Bort (p < 0.0001, Fig. 3e). To investigate whether +scProtein fluorescence in cells is solely increased with Bort or CHL pretreatment by an elevated scEV uptake, we combined both treatments (Fig. S4d). Post-Bodipy TR-scEV uptake, Bodipy TR signal was not affected by the combination pretreatment (Fig. S4d-I), while +scProtein fluorescence in cells increased when treated with both Bort and CHL compared to CHL alone (Fig. S4d-II, p < 0.05). These observations suggest that +scProtein kinetics in a scEV recipient cell are not only dependent on scEV uptake and can be enhanced after scEV uptake by blocking protease activity in recipient cells with Bort. Of note, the cytoplasmic proteasome inhibitor Bort also increased +scProtein fluorescence in combination with Baf and ConA (p < 0.01).

HEK293T Bodipy TR-scEVs were separated based on particle size through serial filtration with 450, 220, 100, 30, and 10 nm cut-off filters to examine the effect of particle size (Fig. 3f). In contrast to free scProtein, which was only retrieved in a 3 nm cut-off filter (Fig. S4b-II), an scEV solution could be concentrated by 100, 30, and 10 nm cut-off filters thereby obtaining 100–220 nm, 30–100 nm, and 10–30 nm sized HEK293T Bodipy TR-scEVs, respectively. Based on Bodipy TR fluorescence, no significant difference in cell uptake was observed between different sized- Bodipy TR scEVs (Fig. 3g). In contrast, +scProtein half-life differed based on Bodipy TR-scEV particle size (Fig. 3h). In essence, larger (100–220 nm) scEVs had an intracellular half-life of 25.3–61.0 min (p < 0.01, R2 = 0.75) while the smaller (10–30 nm, and 30–100 nm) scEVs had a half-life of 7.1–43.6 min (p < 0.0001, R2 = 0.73). This data suggests that smaller scEVs which carry less +scProtein (Fig. 1m) are potentially more susceptible to cell endosomal degradation compared to larger scEVs with larger payloads.

In contrast to the use of homologous scEVs, Bodipy TR-scEVs from other cell sources were tested for their internalization potential on common recipient HEK293T cells. HeLa EVs and GL261 EVs had a similar Nanosight Analysis profile before being labelled with Bodipy-TR, supercharged with +scProtein, and exposed to HEK293T cells (Fig. S4e-I). Based on Bodipy-TR fluorescence, HeLa EVs (p < 0.05) and GL261 EVs (p < 0.05) did not well accumulate over a 200 min incubation at 37 °C with HEK293T cells compared to control (blue graph compared to black graph in Fig. S4f-I and II). However, when GL261 EVs (p < 0.0001) and HeLa EVs (p < 0.0001) were supercharged, their uptake by HEK293T cells was increased significantly compared to unsupercharged GL261 EVs and HeLa EVs (red graph compared to blue graphs in Fig. S4f-I, II). When comparing to homologous uptake of scEVs with heterologous scEV uptake by HEK293T cells, Bodipy TR fluorescence increases in the latter
with supercharging (Fig. 3i-left bar graphs, Fig. 5f, g) but does
not influence the +scProtein fluorescence in the cell (Fig. 3i-right
bar graphs and Fig. 5g).

To verify whether in addition to the origin of EVs, viral factors
could influence the uptake of supercharged BVs, virus-like
particles (VLPs) were generated from HEK293T cells by
overexpression of VSV G, GAG, or both VSV G and GAG
(Fig. S4e-II). Similar to what we earlier observed with HEK293T
EVs, no significant difference in uptake between Bboxy TR
labelled supercharged and non-supercharged HEK293T VLPs was
observed when incubated with HEK293T cells (left graphs in
Fig. 3j and Fig. S4h). +scProtein fluorescent levels delivered with
scVLPs did not differ between conditions in recipient
HEK293T cells (right graphs in Fig. 3j and Fig. S4h).

 Altogether, our data indicate that scEV uptake and scProtein
kinetics in recipient cells can be influenced by particle size and
EV source, but not by endogenous EV loading of viral components.

 Leakage of supercharged proteins from lysosomal compart-
ments after cellular uptake of supercharged extracellular ves-
cles and supercharged virus-like particles. Our previous
observations with inhibitors of endolysosomal function suggested
this route of EV internalization by cells. Here, we marked the low
pH compartments in a scEV-recipient HEK293T cell with
LysoTracker Red29 and investigated its position compared to
+scProtein (Fig. 4a). Seventy-two h after scEV exposure, we
determined that +scProtein was present in both Lysotracker positive
and LysoTracker negative cell compartments (Fig. 4b). To
confirm +scProtein leakage from endosomes post-scEV expo-
sure, we loaded +scProteins equipped with a nuclear localization
signal (NLS) into EVs. The resulting NLS-scEVs were incubated
for 3 days with HEK293T cells and screened for +scProtein
fluorescence in the nucleus (Fig. 4c). Isolated nuclei from recipi-
ent HEK293T cells after 4 days of NLS-scEVs or NLS-scVLPs
exposure were then compared to nuclei of HEK293T cells
exposed to EVs and VLPs from the same EV batch, but which
had not been supercharged (Fig. 4d). A significant difference in
+scProtein fluorescence of the isolated nuclei was observed for
HEK293T scEVs (p < 0.05), HeLa scEVs (p < 0.05), VSV
G-scVLPs (p < 0.05), GAG-scVLPs (p < 0.05), or VSV G/GAG-
scVLPs (p < 0.05), while for GL261 scEVs we only noted a trend
(p = 0.06) compared to non-supercharged EV or VLP controls.
In line with +scProtein accumulation in cells between different EV
sources (Fig. S4g-III), no differences were observed for nuclear
translocation between HEK, HeLa, and GL261 scEVs. In contrast,
loading multiple viral components such as VSV G and GAG
increased nuclear translocation compared to GAG alone
(p < 0.05). These results indicate again that scEV uptake by cells
does not predict +scProtein kinetics.

 Supercharged extracellular vesicles, supercharged virus-like
particles, and supercharged lentiviral vectors mediate plasmid
DNA expression in recipient cells. It has been reported that
plasmid DNA (pDNA) can be piggybacked into cells with
scProteins.35 We tested whether EVs associated with both
+scProtein and pDNA would generate a pDNA encoded signal in
the pDNA-scEVs recipient cells (Fig. 4e). The plasmid used for
these experiments encoded a nanoluciferase reporter (see Sup-
plementary Table 2) that enables bioluminescence recordings upon
expression by cells. We tested the stability of the pDNA-scEV
assembly using DNase I treatment which was able to degrade
pDNA in the presence of EVs without +scProtein (Fig. S5). We
observed that when pDNA is associated with +scProteins, the
pDNA is still susceptible to DNase I treatment, but not when that
combination is assembled with EVs as a pDNA-scEV complex
(Fig. 4f). The HEK293T pDNA-scEVs assembly, containing all
three components (EVs, scProtein, and pDNA), was incubated
with HEK293T cells for 4 days (Fig. 4g). pDNA expression in the
recipient cells was established by a detectable bioluminescence
signal. This signal was significantly higher compared to other
conditions whereby cells were exposed to only two components (+scProtein and pDNA or EVs and pDNA, p < 0.0001) or to
single components (pDNA or EVs, p < 0.0001). As published in
earlier reports30, the condition without EVs (pDNA and scPro-
tein) was also able to significantly increase the bioluminescent signal compared to condition without scProtein (pDNA and
EVs), but to a 4.5-fold lower extend than our pDNA-scEVs
assembly (p < 0.0001). Moreover, we evaluated whether this
pDNA-mediated delivery of HEK293T pDNA-scEVs was solely
restricted to HEK293T EVs (Fig. 4h). Therefore, GL261, HeLa, or
HEK293T derived EVs were used to generate pDNA-scEVs and
cell controls (pDNA and EVs without +scProtein). Based on
bioluminescent readings, GL261 pDNA-scEVs (p = 0.05) and
HeLa pDNA-scEVs (p > 0.05) were also able to induce pDNA
expression in HEK293T cells after 4 days of incubation compared
to the control suspensions without +scProtein but with pDNA
and GL261 EVs or HeLa EVs, respectively. Similar conclusions to
the NLS-scEV experiments, there was no difference in nanoluc
expression observed between HEK293T, HeLa, or GL261 pDNA-
scEVs observed. The same observation was made with HEK293T
pDNA-scVLPs and HEK293T recipient cells (Fig. 4i). VSV
G-scVLPs (p < 0.05), GAG-scVLPs (p < 0.001), or VSV G/GAG-
scVLPs (p < 0.01) increased bioluminescence in HEK293T cells
compared to control suspensions without +scProtein, but with
pDNA and VSV G-VLPs, GAG-VLPs, or VSV G/GAG-VLPs,
respectively. No significant differences were observed between the
different scVLPs conditions in terms of nanoluc bioluminescence.
We also investigated whether HEK293T LVVs (lentiviral Vectors)
carrying a mCherry transgene could be complexed to +scProteins
and pDNA generating pDNA-sclLVVs. Different conditions
consisting of combinations of LVV, pDNA, and +scProteins were
exposed to HEK293T cells for 3 days (Fig. 4j). Only the
pDNA-sclLVV assembly with all components (sclLVV = +scProtein,
LVV, and pDNA) being present was able to express detectable
levels of bioluminescence. The pDNA-sclLVV induced signal was
119–169-fold higher as compared to controls. Data could be
confirmed with immunohistochemistry detecting Flag-tag present
in our pDNA encoded protein (yellow) in less than 0.01% of the
pDNA-sclLVV recipient cells, and absent in cells after control
treatments (Fig. 4k). Overall, our data confirm that +scProteins
assembled with EVs, VLPs, or LVV and pDNA mediate pDNA
expression in recipient cells.

 Supercharged lentiviral vectors as a model for a future multi-
cargo delivery modality in the brain. Our previous findings
indicate that pDNA-sclLVVs deliver both LVV- and pDNA-
encoded transgenes using mCherry and a Nanoluc reporter,
respectively. Here, we tested whether both transgenes (pDNA-
transgene and LVV-transgene) can successfully be delivered to
the same recipient cell and collaboratively generate a biolumi-
nescent signal (Fig. 5a). We developed a model with a LVV that
encodes a nanoluciferase-reporter transgene here called FLEX.
FLEX in our LVV is in the OFF-state and can only be activated to
the ON-state when pDNA encoding for Cre recombinase is co-
delivered. We tested whether FLEX activation is possible with
pDNA-sclLVVs, when LLVs are carrying the FLEx-OFF trans-
gene. We also investigated whether HEK293T LVVs (lentiviral Vectors)
carrying a mCherry transgene could be complexed to +scProteins
and pDNA generating pDNA-sclLVVs. Different conditions
consisting of combinations of LVV, pDNA, and +scProteins were
exposed to HEK293T cells for 3 days (Fig. 4j). Only the
pDNA-sclLVV assembly with all components (sclLVV = +scProtein,
LVV, and pDNA) being present was able to express detectable
levels of bioluminescence. The pDNA-sclLVV induced signal was
119–169-fold higher as compared to controls. Data could be
confirmed with immunohistochemistry detecting Flag-tag present
in our pDNA encoded protein (yellow) in less than 0.01% of the
pDNA-sclLVV recipient cells, and absent in cells after control
treatments (Fig. 4k). Overall, our data confirm that +scProteins
assembled with EVs, VLPs, or LVV and pDNA mediate pDNA
expression in recipient cells.
only the pDNA-scLVV with the mCre could induce FLEX-reporter activity in our recipient HEK-293T cells ($p < 0.0001$, Fig. 5b). We confirmed activation of the FLEX reporter in the mCre condition, absent in the bCre condition, with qPCR utilizing primer pairs discriminating between the ON- and OFF-state of FLEX at the gDNA-level in the recipient cells (Fig. 5c). Of note, under both pDNA-scLVV conditions (mCre and bCre) similar amount of LVV transgene integration ($p > 0.05$) could be detected in the genome of the recipient cells as assessed by qPCR for WPRE.

We revisited our FLEX model to test whether pDNA-scLVV can co-deliver two payloads (pDNA transgene and LVV transgene) to brain cells (Fig. 5d). mCre- or bCre- encoding pDNA-scLVVs suspensions were injected into the striatum of adult Ai9 reporter mice31, in which Cre can turn on tdTomato expression in mouse cells. Twenty-five days after injecting pDNA-scLVVs, Ai9 mice were sacrificed and checked for Cre and FLEX deployment in the brain. Sections (80 µm) were taken from different areas in the Ai9 brains to verify FLEX-reporter delivery and FLEX-activation as a result of Cre activity. We confirmed FLEX activity in the section at the injection site as the nanoluciferase signal was significantly higher (Fig. 5e, $p > 0.01$) compared to sections in anterior or posterior brain regions. Furthermore, Ai9 animals receiving bCre or mCre pDNA-scLVVs were compared at the injection site (Fig. 5f) and more distal brain regions (Fig. 5g). FLEX-activity was significantly higher for mCre as compared to bCre or sham injected animals at the injection site ($p > 0.05$), while no difference was observed in nanoluciferase signal in other sections among the conditions ($p > 0.05$). To confirm that Cre delivered by pDNA-scLVVs was not only able to flip our FLEX-switch, we also screened for tTomato signal that results from activation of the mouse-
encoded Ai9 reporter. pDNA-scLVV delivery to brain cells was identified at the injection site through GFP fluorescence encoded by the FLEx-transgene (Fig. 5h). In these cells, Ai9 tdTomato fluorescence was visualized with immunohistochemistry. We quantified the tdTomato transcript levels at the injection site in pDNA-scLVV injected animals and thereby showed that the Ai9 reporter was significantly activated by mCre, and not by bCre ($p > 0.0001$, Fig. 5i). We confirmed that the tdTomato signal resulted from the removal of a floxed region in Ai9 mice by Cre activity (Fig. 5j). Indeed, qPCR with discriminating primers between floxed and un floxed regions confirmed floxing by Cre in Ai9 brain sections with mCre pDNA-pLVV compared to bCre pDNA-pLVV ($p > 0.0001$). As exemplified with pDNA-scLVVs, our data suggest that the delivery capacity of vesicles can be augmented through supercharging to deliver multiple types of biomolecules with a single carrier platform that work in a combinatorial way on recipient cells.

Discussion

Delivery of cargo with scProteins to cells has proven to be feasible but can be improved by adding a lipid component. Entrapment of negatively charged scProteins (−scProteins) within cationic lipids improves scProtein translocation into the cytosol and protection of their accompanied cargo against potential degradation. In our setup, we provided a lipid component to +scProteins by using EV, VLP, and LVV membranes to achieve combinatorial functional delivery of cargo to recipient cells. Larger EVs were more prone to +scProtein loading compared to smaller ones, indicating that more luminal volume and interaction surface promote incorporation of +scProteins. The surface of EVs consists of negatively charged lipids, such as ceramides and phosphatidylserine restricting association with negative supercharged scProteins (−scProteins) and non-supercharged proteins (scaffold). This ensures that larger membrane-encompassed vesicles exert a higher negative charge (from −12.30 to −16.0 mV), compared to smaller EVs (−9.7 mV). As an important factor, we noticed that our +scProtein did not associate with −11 mV synthetic liposomes in contrast to SEC-purified EVs. This observation is in line with earlier reports that the charge of lipids is important for docking of Arg-rich peptides in contrast with sugar moieties on biomembranes. It is known that the EV surface contains heavily glycosylated proteins that influences their uptake by cells. EVs adopt sugars from their originating both plasma membrane and endocytic cell membrane compartments.

In this regard, the extracellular domain of tetraspanins are equipped with N-linked glycosylation sites important for endocytic membrane trafficking. We’ve demonstrated that deglycosylated EVs were not able to integrate +scProteins and a high number of tetraspanins on the EV surface is propitious for +scProtein association. In terms of the % EVs loaded in a SEC purified EV sample, we expect that our supercharging method could be improved by +scProtein loading of EV subpopulations rich in tetraspanins such as CD63+/CD81+EVs, with large particle size, with a high glycosylation status, and with a negative surface charge.
Supercharging of HEK293T EVs did not influence uptake but did increase +scProtein half-life following uptake by HEK293T cells. Improving scEV uptake through using scEVs from different sources did not increase +scProtein levels when exposed to the same cell type, indicating the scProtein half-life is dependent on process dictated by the recipient cell. Through lysotracker red experiments scEVs were found to be taken up into low pH cell compartments, indicating that scEVs are exposed to endolysosomal conditions. We hypothesize that the stability of scEV assembly inside cells aids in the scEV-mediated delivery of pDNA to a recipient cell. It is known that supercharging of proteins protects them against proteolysis and other physical stresses, such as denaturation by temperature or denaturation and aggregation by chemicals like 2,2,2-trifluoroethanol.15,30.
The resilience to many hazardous factors and tolerance of scProteins makes them ideal in delivery of associated cargo to a living cell or organism. We have demonstrated that assembly formation through supercharging of EVs protects them against deglycosylation, DNAase activity, and degradation in recipient cells. Delivery of scEV assemblies containing a higher level of +scProteins, such as large scEVs (220–100 nm) compared to smaller scEVs (<100 nm) was accompanied with an increased half-life of cargo. Longer stability implies longer interaction with the endosomal compartments, therefore boosting the +scProteins ability to escape from endosomal compartments. We confirmed nuclear translocation of the +scProtein, as well as delayed cytotoxic +scProtein degradation, using the 26S proteasome inhibitor Bortin in combination with CHI, BafA, and ConA. More importantly, pDNA delivery and expression were increased with pDNA-scEVs compared to +scProtein and pDNA alone.

Formation of pDNA-scEVs is built upon the potential of +scProteins to associate with genetic material mainly through their lysine residues, while at the same time, protecting the associated DNA from degradation. We utilized this +scProtein property to piggyback pDNA-scProtein complexes for entrance into EVs. Nanoluc expression in HEK293T cells confirmed transgene delivery by pDNA-scEVs through the detection of bioluminescence. We adapted this readout to corroborate whether supercharging of EVs might be applicable for delivery of multiple types of biomolecules through scLVVs. pDNA-scLVVs generated a nanoluc signal whereby two components CRE and a FLEX-off reporter were delivered to the same cell generating bioluminescent readout. The LVV component provided viral RNA encoding a non-active floxed reporter, while the pDNA component encoded a CRE enzyme able to activate the floxed reporter. Apart from nanoluc activity, secondary downstream analysis with qPCR confirmed FLEX reporter editing by Cre.
Box 1 | Our study introduces a customizable BV-loading technique that is
 - a two-step procedure (approx. 1 h),
 - easily scalable (for in vitro and in vivo purposes),
 - occurs under physiological conditions (no need for compromising the vesicle integrity or introducing non-physiologic pH or osmotic changes),
 - very efficient (focuses on intact membrane vesicles and not on free protein contaminants),
 - applicable to all natural glycosylated enclosed nanobiomembranes (EVs, LVVs, or VLPs),
 - applicable to every BV source (no need for transgenic EV donor cells),
 - delivery efficacy of pDNA is tunable by varying vesicle properties,
 - serves as combinatorial carrier of different types of biomolecules either as LVV transgene or pDNA that is functional in the recipient cell.

cutoff (Amicon Ultra-15 Centrifugal filters), yielding about 0.5 ml concentrate (two spins of 10 ml at 6000 × g for 10 min). This concentrate was resolved by passing through IZON qEV original size exclusion columns (SEC) followed by 15 ml of double filtered (0.2 μm) PBS. Five-hundred-microliter fractions were collected. High particle/low protein fractions (from 7 to 11) were pooled and concentrated using Amicon Ultra-0.5 Centrifugal filters to a final volume of 200 μL at 10,000 × g for 30 min. The typical yield of an EV isolation was approximately 7.1 × 10^2 ± 3.2 × 10^2 particles/μL. This method was adapted to isolate EVs, LVVs (transgene plasmid, psPAX2 (Addgene #12260) and pMD2.G (Addgene #12259), VSV-G-VLPs (pMD12G (Addgene #12259), and GAG-VLPs (psPAX2 (Addgene #12260))) before being exposed to scProteins (see below). LVVs purified from media of 2.5 million HEK293T cells transfected with psPAX2 (Addgene #12260) and pMD2.G (Addgene #12259) were isolated with SEC.

Loading of biovesicles with scProtein. 5 × 10^7 concentrated EVs (based on Nanosight measurement) were loaded in 50 μl with 283 mM recombinant scProtein and incubated for 15–45 min with gentle agitation on a HulaMixer™ at room temperature. Then 50 μl Ni-NTA agarose resin (Qiagen) or NERExpress Ni-NTA Magnetic Beads (NEB) in PBS were added, incubated for 15–30 min to 24 h on a HulaMixer™ and compared based on fluorescence to a control of scProtein added agarose resin (Qiagen) without EV suspension. After centrifugation for 30 s at 14,000 × g, the supernatant was collected leaving the resin with the bound scProtein that was not associated with the EVs. Fluorescence in suspension was visually inspected using a UV lamp with black background and quantified with a microplate reader (Synergy H1 Hybrid Multi-Mode Reader, BioTek) at an excitation wavelength of 485 nm for GFP or 433 nm for mCerulean3. Similarly, +scProtein solution was exposed to liposomes (100–200 nm vesicles based on Nanosight) at a concentration of 6.29 × 10^8 particles/ml that were kindly provided by Dr. Van Solinge. The liposomes were diluted to match our EV sample with been characterized in depth by Deshantri et al. 201949. This method was also adapted for loading LVVs, GAG-VLPs, VSV-G-VLPs GAG/VSV G-VLPs. The total solution of 90 μl was incubated with gentle agitation on a HulaMixer™ at 4 °C overnight to generate scLVV. Then 90 μl samples were added to cells at a density of 50,000 cells in each well of a 12-well plate. Genomic viral RNA (vRNA)-carrying LVVs or pMD2.G (Addgene #12259) were isolated with SEC.

scEV characterization with exoview. A sample of EVs purified from HEK293T cells (see above) was concentrated with spin filter columns (Milipore 30 kDa) to a final volume of 30 μl. These EVs were either loaded with 20 μl 283 mM scProtein (see procedure above) or remained unloaded at 4 °C overnight. According to the guidelines provided by NanoView Biosciences (USA), the samples were incubated on the ExoView Tetraspanin Chip for 16 h at room temperature. After washing the chips three times in 1 ml PBS for 3 min, they were incubated with ExoView Tetraspanin labelling antibodies (1:500 in PBS) with 2% BSA for 2 h. The chips were rinsed with PBS and then imaged with the ExoView R100 reader. Procedure and initial analysis were performed by the ExoView representative.

scProtein production. One Shot™BL21 Star™ (DE3; Invitrogen) bacteria were transformed with plasmids encoding the scProtein of interest and plated on LB agar plates with appropriate antibiotic (kanamycin 50 μg/mL, Sigma). After overnight incubation at 37 °C, a medium sized, isolated colony was picked and inoculated into a 5 mL overnight seed culture of LB media. The seed culture was diluted 1:20 and grown in 2×T media (Sigma) supplemented with 0.2 μm filtered 40 mM MgSO4 (Sigma), 2.5 mM KCl (Sigma), and 20 mM glucose (Sigma) until obtaining OD600 = 0.1–0.3 and then, for protein expression, the bacteria were induced by adding 0.5 mM isopropyl β-D-thiogalactopyranoside (IPTG; Sigma) and incubated overnight at 37 °C. Cultures were harvested by centrifugation at 3000 × g for 10 min and pellets stored at −80 °C or processed immediately.

Bio-beads pull-down of scEVs. Bio-Beads SM-2 resin (BioRad) were suspended in PBS to 0.2 mg/ml. Subsequently, 50 μl of the Bio-Bead solution was added to a 500 μl scEV suspension generated from a mixture of 7.5 × 10^7 /+/- 1.2 × 10^7 EV particles/ml and 10 pmol of +scProtein or a scProtein solution without EVs. The samples were incubated overnight at 4 °C degrees with gentle agitation on a HulaMixer™. As a control for Bio-Bead pull-down, a 10% Triton X-100 solution was incubated under the same conditions. The following day, the Bio-Beads were spun down (6000 × g for 1 min) and resuspended in 50 μl PBS. 50 μl of the supernatant and the Bio-Bead solution were measured with a Synergy H1 Hybrid Multi-Mode Reader (Biotek).

Removal of N-glycosylated moieties. 7.5 × 10^8 EVs in 100 μl solution prior or after scProtein loading were incubated with 10 μl Heparinase III/IV/III separately from Flavobacterium heparinum (Sigma) or with PNGase F (New England Bio-labs). For optimal enzyme activity, a buffer solution was added provided by the supplier and the samples were incubated for 24 h at 37 °C or 25 °C, respectively, in a HulaMixer Sample Mixer (Invitrogen). Ni-NTA affinity resin was added and pellet (16,000 × g for 5 min) to exclude unloaded scProtein. scProtein fluorescence was measured after incubation for 15–30 min at 24 h in Ni-NTA supernatant and Ni-NTA resin pellet.

CD63 immunoassay beads for scEV characterization. 20 μl of antiCD63 beads (invitrogen) was washed twice with 0.1% BSA in PBS and provided with 100 μl suspensions of HEK293T scEVs, HEK293T EVs, scProteins, HEK293T Bodipy TR labelled scEVs, or HEK293T EVs. The samples were incubated overnight at 4 °C with gentle agitation on a HulaMixer™. Beads were washed twice with 0.1%BSA/ PBS and when needed incubated with antiCD63-APC (MEM-259, Invitrogen) in a 100 μl volume with 0.1% BSA/PBS for 1 h at 4 °C with gentle agitation. Samples were washed twice with centrifugation (300 × g for 15 min) and dissolved in 250 μl 0.1%BSA/PBS for flow cytometry measurement.

Labelling of scEVs and uptake. 1.8–2.0 × 10^7 EVs from HEK293T, HeLa, or GL261 cells in 30 μl PBS each were labelled with 10 μM Bodipy™ TR-ceramide (ThermoFisher) for 1 h on a HulaMixer at 37 °C (Fig. S4-A). To remove excess dye, EVs were isolated by SEC. Samples were divided such that one part was super-charged with 50 pmol scProtein, as described above, while the other part was incubated in the same volume of PBS. Lastly, the samples were applied to a 10 nm filter (milipore) as an additional step to eliminate free scProtein (30.1 μg DNA = −3 nm). To monitor EV and scEV uptake, HEK293T cells (10,000 cells per well) were seeded in 96-well plates (Falcon) in optimum culture medium (Gibco) overnight in serum-free media. Images were acquired every 10 min for 200 min using a Synergy H1 Hybrid Multi-Mode Reader (Biotek). The average fluorescent intensity of scProtein and Bodipy TR was normalized to the starting value. Flow cytometry experiments of scEV uptake after 24 h were performed, as described below, separately from 200 min monitoring experiments.

For inhibitor treatment before scEV uptake, HEK293T cells (50,000 cells per well) were seeded in 24-well culture plates (Falcon) for 24 h in DMEM with serum. The cells were then pre-incubated with the inhibitors in Optimem without serum. The following inhibitors were used: 200 nM bafilomycin A1 (Sigma-Aldrich), 200 nM concanamycin A (Sigma-Aldrich), 100 μM Chloroquine (Sigma-Aldrich) or 5 μM Bortezomib (Millipore). The labelled EVs (10^11 particles) were added each well for 24 h in the presence of the indicated inhibitors. Following incubation, cells were trypsinized and analyzed based on scProtein and Bodipy TR fluorescence on a Beckman SORP 5 Laser BD Fortessa Flow Cytometer in the MGH core facility.

For uptake of different EV sizes, 3 × 10^6 per 0.5 ml BODIPY-TR labelled scEVs were serial filtered through 450 nm (Costar), 220 nm (Costar), 100 nm (Costar), 300 kDa (−30 nm, Millipore), 100 kDa (−10 nm, Millipore), and 30 kDa (−3 nm, Millipore) cut-off filters. Images were acquired every 10 min for 200 min using a
Synergy H1 Hybrid Multi-Mode Reader (BioTek). The average fluorescent intensity of scProtein and Bodipy TR was normalized to the starting value.

Nucleus isolation post-scEV exposure of hek293T cells. **10**^7-10^8 scEVs and EVs derived from HEK293T, HeLa, and GL261 cells were incubated with 50,000 HEK293T cells per 24-well. After 4 days of incubation, cells were trypsinized and washed with PBS. Cell fractionation kit (Abcam,109718) was used to extract cytosolic, mitochondrial, and nuclear proteins. scProtein fluorescence was measured with a Synergy H1 Hybrid Multi-Mode Reader (BioTek).

Assembly of scEVs with plasmid DNA (pDNA). **10**^7-10^8 HEK293T EVs, GL261 EVs, HeLa EVs, VSV-G-VLPs, GAG-VLPs, VSV-G/GAG-VLPs, and LVSs were incubated with 50-100 pmol scProtein and 1 μg pDNA overnight at 4 °C. Binding of pDNA to complexes was verified on 1% agarose gels. To test the stability of assembly, 2 units of TURBO Dnase I (Invitrogen) was added at 37 °C for 15 min and compared to pDNA/scProtein or pDNA with and without DNase treatment. pDNA used for this experiment has been summarized in Supplementary Table 1 and published in the Ruñono-Ramos et al. 2022 manuscript 50.

Bioluminescent and fluorescent assays. Recipient cells were trypsinized and seeded in 24-well plates (50,000 cells/well) in 500 μl complete DMEM media. After 24 h, 100 μl of the pDNA-scEV suspension was added to the cultured cells. Each day nanoluciferase27 was monitored by removing 50–100 μl of media. Nanoluciferase expression was analyzed with the addition of furimazine (Nano-Glo®Luciferase, Promega) diluted in 1× PBS in a range from 1:250 to 1:500. Samples were incubated with the reagent for at least 3 min prior to reading on Synergy H1 Hybrid Multi-Mode Reader (BioTek). For luminescent readings, samples were loaded into white 96-well culture plates (Lumitrac 200). For fluorescent readings, the samples were loaded into black 96-well culture plates (10,000 cells/well). Each sample was loaded in triplicate with a volume of 100 μl in each well. Biovesicles were loaded with pDNA as listed above. Coronal tissue samples from mouse brain corresponding to 150 μm thick sections were homogenized in 500 μl Nano-Glo® Luciferase Assay Buffer. Bioluminescence were analyzed by adding 100 μl sample and 100 μl 1.250 furimazine (Nano-Glo® Luciferase, Promega) in 1×PBS. The excitation laser was shut off, and the emitted light was measured at two different gains: 135 and 200.

Animals. All animal experiments were conducted under the oversight of the MGB Institution Animal Care and Use Committee. Ai9 mice41 were maintained with unlimited access to water and food under a 12 h light/dark cycle. Male and female Ai9 mice ranging from 8 to 10 weeks in age were randomly assigned to experimental groups (N = 5 treated, N = 4 control).

Stereotaxic injections into striatum. Mice were all stereotactically injected into the right striatum (coordinates: anteroposterior: +0.6 mm, lateral: ±1.8 mm, ventral: −3.3 mm) with nanovesicles in a 1% agarose gel. The average fluorescent assays were performed at 24 h, 100 μl containing scProtein, LVV encoding FLEx-reporter, and/or mammalian CRE plasmid. Control animals treated:

14 COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03440-7 | www.nature.com/commsbio

References

1. Hoen, E. N., Cremer, T., Gallo, R. C. & Margolis, L. B. Extracellular vesicles and viruses: Are they close relatives? *Proc. Natl Acad. Sci. USA* 113, 9155–9161 (2016).
2. Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. *Science* 373, 882–889 (2021).
3. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. *Nat. Cell Biol.* 21, 9–17 (2019).
4. Resch, U. et al. A two-component regulatory system impacts extracellular membrane-derived vesicle production in a streptococcus. *mBio* 7, e00207–16 (2016).
5. Wiklander, O. P. B., Brennan, M., Lötvlå, J., Breakefield, X. O. & Andaloussi, S. E. L. Advances in therapeutic applications of extracellular vesicles. *Sci. Transl. Med.* 11, 8521 (2019).
6. Murphy, D. E. et al. Extracellular vesicle-based therapeutics: Natural versus engineered targeting and drug efficacy. *Exp. Mol. Med.* 51, 1–12 (2019).
7. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. *Cell 185*, 250–265 (2022).
8. Abels, E. R. et al. Globostatoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21. *Cell Rep.* 28, 3105–3119 (2019).
9. O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. *Nat. Rev. Mol. Cell Biol.* 21, 585–606 (2020).
10. Shete, H. K., Prabhu, R. H. & Patravale, V. B. Endosomal escape: A bottleneck in intracellular delivery. *J. Nanos. Nanotechnol.* 14, 460–474 (2014).
11. Soni, M. & Kuroda, S. Real-time luminescence assay for cytoplasmic cargo mediated by functional transfer of extracellular miR-21. *Cell Rep.* 28, 247–258 (2017).
12. Asnir Kenari, A., Cheng, L. & Hill, A. F. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles. *Methods 177*, 103–113 (2020).
13. Ma, C., Malessa, A., Boersma, A. J., Liu, K. & Herrmann, A. Supercharged proteins and polypeptides. *Adv. Mater.* 32, 1905309 (2020).
14. McNaughton, B. R., Cronican, J. J., Thompson, D. B. & Liu, D. B. Mammalian cell penetration, SRNA transfection, and DNA transfection by supercharged proteins. *Proc. Natl Acad. Sci. USA* 106, 6111–6116 (2009).
15. Tisen, R. Y. The green fluorescent protein. *Annu. Rev. Biochem.* 67, 509–553 (1998).
16. Markwardt, M. L., Kremers, G.-J., Kraft, C. A., Ray, K. & Cranck, P. J. C. An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photo switching. *PLoS One* 6, 17896 (2011).
17. Lawrence, M. S., Phillips, K. J. & Liu, D. R. Supercharging proteins can impair neuronal resilience. *J. Am. Chem. Soc.* 129, 10110–10112 (2007).
18. Kruse, T., Schneider, S., Reger, L. N., Kampmann, M. & Reif, O.-W. A novel approach for enumeration of extracellular vesicles from crude and purified cell culture samples. *Eng. Life Sci.* https://doi.org/10.1002/elsc.202100149 (2022).
19. Fraser, K. et al. Characterization of single microvesicles in plasma from glioblastoma patients. *Neuro Oncol.* 21, 606–615 (2018).
20. Rigaud, J. L. et al. Bio-Beads: An efficient strategy for two-dimensional crystallization of membrane proteins. *J. Struct. Biol.* 118, 226–235 (1997).

Statistical analysis and reproducibility. Data were analyzed using GraphPad Prism 9, version 9.1.0 (GraphPad Software Inc., La Jolla, CA). All statistical tests were two-sided and a p-value of less than 0.05 was considered statistically significant. Data were presented as the mean ± S.E.M. The statistical tests used are indicated in the figure legends. Multiple comparisons of significance between groups were performed using the Tukey procedure for ANOVA or Dunn’s multiple comparison test for Kruskal–Wallis, as indicated in the corresponding figure legends. The statistical analyses for uptake of EVs was modeled with non-linear regression using a one-phase association or one phase-decay equation. Graphical illustrations in figures were done in Adobe Illustrator 26.0.2.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The datasets to generate Figs. 1-5 of this manuscript, including the unprocessed gel of Fig. 4AR are available on figshare: https://doi.org/10.6084/m9.figshare.19617147.v1.

Materials availability. The materials generated during the current study are available from the corresponding author on reasonable request. Received: 16 August 2021; Accepted: 3 May 2022; Published online: 19 May 2022
22. Mishin, V. P., Novikov, D., Hayden, F. G. & Gubareva, L. V. Effect of hemagglutinin glycosylation on influenza virus susceptibility to neuraminidase inhibitors. J. Virol. 79, 12416–12424 (2005).
23. Marca, I. C. et al. Isolation of human small extracellular vesicles and tracking of their uptake by retinal pigment epithelial cells in vitro. Int. J. Mol. Sci. 21, 3799 (2020).
24. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular exosomes. Science 319, 1244–1247 (2008).
25. Ashfaq, U. A., Javed, T., Rehman, S., Nawaz, Z. & Riazuddin, S. Lysozyme as key agents acting as entry inhibitors. Virol. J. 8, 163 (2011).
26. di Lernia, G. et al. Effects of extracellular vesicles on cell membrane modifications and mitochondrial function. Cell. Physiol. Biochem. 40, 1036–1046 (2016).
27. Tzotzopoulou, M., Miyamoto, K., Saigo, K. & Taniguchi, T. Bortezomib causes ER stress-related death of acute promyelocytic leukemia cells through excessive accumulation of PML-RARA. Anticancer Res. 35, 3307–3316 (2015).
28. Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPas- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).
29. Zhang, Q., Jeppesen, D. K. & Higginbotham, J. N. Supermeres are functional extracellular vesicles that replicate with disease biomarkers and therapeutic targets. Nat. Cell Biol. https://doi.org/10.1038/s41556-021-00805-8 (2021).
30. Thompson, D. B., Cronican, J. J. & Liu, D. R. Methods in Enzymology Vol. 503, 293–319 (Academic Press Inc., 2012).
31. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
32. Said Hassane, F., Saleh, A. F., Abes, R., Gait, M. J. & Lebleu, B. Cell penetrating peptides: Overview and applications to the delivery of oligonucleotides. Cell. Mol. Life Sci. 67, 715–726 (2010).
33. Kim, Y. B., Zhao, K. T., Thompson, D. B. & Liu, D. R. An anionic human protein mediates cationic liposome delivery of genome editing proteins into mammalian cells. Nat. Commun. 10, 1–8 (2019).
34. Sharma, R., Huang, X., Brekken, R. A. & Schroit, A. J. Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. Br. J. Cancer 117, 545–552 (2017).
35. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field fractionation. Nat. Cell Biol. 20, 332–348 (2018).
36. Fuchs, S. M. & Raines, R. T. Pathway for polargyrine entry into mammalian cells. Biochemistry 43, 2438–2444 (2004).
37. Williams, C. et al. Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Sci. Rep. 9, 1–14 (2019).
38. Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).
39. Kudo, K. et al. Cell surface CD63 increased by upregulated polylactosamine modification sensitizes human melanoma cells to the BRAF inhibitor PLX4032. FASEB J. 33, 3851–3869 (2019).
40. van den Boorn, J. G., Slieke, M., Coch, C. & Hartmann, G. SiRNA delivery with exosome nanoparticles. Nat. Biotechnol. 29, 325–326 (2011).
41. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. https://doi.org/10.1038/nbt.1807 (2011).
42. Tienenmann, G. et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J. Pept. Sci. 14, 469–476 (2008).
43. Bartnicki, F., Bonarek, P., Kowalska, E. & Strzalka, W. The Argi system: One–two pestering peptides. Sci. Rep. 7, 1–12 (2017).
44. Brock, D. J. et al. Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides. Traffic 19, 421–435 (2018).
45. Cronican, J. J. et al. Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem. Biol. 5, 747–752 (2010).
46. Stearns, N. A., Zhou, S., Petri, M., Binder, S. R. & Pitskys, D. S. The use of poly-L-lysine as a capture agent to enhance the detection of antineutrophil antibodies. J. Virol. 79, 12416–12424 (2005).
47. Kim, S. M. et al. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Controlled Release 266, 8–16 (2017).
48. Sutaria, D. S. et al. Low active loading of cargo into engineered extracellular vesicles results in inefficient miRNA mimics delivery. J. Extracell. Vesicles 6, 1333882 (2017).
49. Deshantri, A. K. et al. Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. J. Controlled Release 296, 232–240 (2019).
50. Rufino-Ramos, D. et al. Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials 281, 121366 (2022).

Acknowledgements

The Breakfield laboratory acknowledges grant support from NIH NCI R03 CA232103 and P01 CA069246 and a gift received from Ionis Pharmaceuticals. The MGH Vector Core was supported by NIH NINDS grant P30 NS045776. The MGH Department of Pathology Flow and Image Cytometry Research Core obtained support from the NIH Shared Instrumentation Programme with grants 1S10OD012027-01A1, 1S10OD016372-01, 1S10RR020936-01, and 1S10RR025440-01A1. We thank Dr. Christopher Miller from the Department of Biochemistry at the Brandeis University for his guidance and Dr. Casey A. Maguire from the Molecular Neurogenetics Unit at MGH for his use of the ExoView R100 device. We also thank Dr. Leif Anderson of NanoView Bioscience for generating the single scEV data. We thank Dr. David Liu for sharing the −30 scGFP plasmid. We thank Dr. T. Van Solinge, K. O’Brien, L. Nieland, P.S. Cheah, R. Sobolewski-Lamberti, and S. Prabhakar for their support.

Author contributions

K.B. conceived the project, designed, and performed experiments, analyzed data, and wrote the manuscript. S.U. designed experiments and analyzed data and wrote the manuscript. D.R.R. designed experiments and analyzed data and wrote the manuscript. S.M. designed and performed experiments. E.A.G. designed and performed experiments. L.P.D.A. wrote the manuscript. X.O.B. conceived the project, designed experiments, wrote the manuscript, and supervised the project.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information Supplementary information is available at https://doi.org/10.1038/s42003-022-03440-7.

Correspondence and requests for materials should be addressed to Koen Breyne.

Peer review information Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors Kači Montague-Cardoso and Eve Rogers.

Reprints and permission information are available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.