Full length article

New aspects of the surface chemistry of sulfur on Au(111): Surface structures formed by gold-sulfur complexes

Pilar Carroa, Gustavo Andreasenb, Carolina Vericatb, María Elena Vela, Roberto Carlos Salvareza,b,*

aÁrea de Química Física, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, Avda. Francisco Sánchez, s/n 38200-La Laguna, Tenerife, Spain
bInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina

A R T I C L E I N F O

Keywords:
Gold
Sulfur adsorption
Surface structures
Gold-sulfur complexes

A B S T R A C T

Sulfur adsorption on gold surfaces has been extensively studied because of the key role of sulfur species in heterogeneous catalysis, and, more recently, due to the interest in the synthesis of anisotropic gold nanoparticles with potential applications in medicine that involves sulfide reduction. Here we report new surface structures for sulfur on Au(111) by combining in situ scanning tunneling microscopy in aqueous sodium sulfide solutions and density functional theory calculations. Our results show two related lattices, (3√3 x 3√3) R30° (θ = 0.22) and (√7 x √7) R19.1° (θ = 0.57), that involve AuS\textsubscript{3} complexes as building blocks. Gold-sulfur complexes are formed by the lifting of gold atoms from the substrate surface as revealed by density functional theory calculations. These species, intermediate between adsorbed S in the well-known (√3 x √3)-R30° lattice and adsorbed polysulfides in organized rectangular structures, explain the surface coverage of gold vacancy islands, a fingerprint of S adsorption on Au(111).

1. Introduction

The adsorption of sulfur on gold surfaces has been extensively studied in the past years, in particular concerning the complex sulfur-gold surface chemistry and the different related surface structures [1-7]. This is especially relevant for different applications which range from heterogeneous catalysis, where S on gold nanoparticles can act either as a poison or as a catalyst depending on the reaction [1,8-11], to nanomedicine, where S species are the capping agent of gold triangular nanoprisms prepared by gold salt reduction with sulfide [12] and which are promising for photothermal therapies due to their strong absorption in the near-infrared region [13,14]. Also, S is very important for the stability of nanostructures, as mobile-S complexes explain the coarsening on coinage metal surfaces [15].

It is now widely accepted that, as the surface coverage (θ) increases on the Au(111) surface, monomeric (atomic) sulfur species evolve from short rows (θ < 0.1) [5] to (5 x 5) (θ = 0.28) [6,16] and (√3 x √3) R30° (θ = 0.33) lattices [17,18]. At higher coverage, polysulfide species are formed on the substrate which organize into quasi-rectangular structures (θ = 0.66) [19] that coexist with a large number of Au vacancy islands, whose coverage θ\textsubscript{vac} changes from ≈0.2 at room temperature [3] to 0.5 at T > 400 K [11]. Interestingly, these surface structures have been observed irrespective of the S source. Until now, most of the controversy in this field has been related to the chemical nature of these rectangular-like patterns. These have been successively assigned to reconstructed gold [20], adsorbed S atoms forming S\textsubscript{2}like species [17], gold sulfide [4], a mix of S\textsubscript{2} and monomeric S in a quasi-rectangular arrangement [19], and, more recently, to adsorbed S\textsubscript{2} in different configurations to form S\textsubscript{2}like species [21,22] based on scanning tunneling microscopy (STM), spectroscopic evidence and density functional theory (DFT) calculations. Similar quasi-rectangular polysulfide structures have been observed on the Au(001) surface, and the basic building blocks have been also assigned to S\textsubscript{2} species [23]. However, there are now evidences indicating that the disulfide species are stabilized by gold atoms forming well ordered disulfide-gold complexes [24].

Notably, other S species, such as trimer-like structures, have been observed coexisting with the (√3 x √3) R30° S lattice in electrochemical environments [25,26], although their structure and chemistry have not yet been elucidated. In this paper we will focus on the
2. Materials and methods

STM experiments were performed both in air and under electrochemical control (ECSTM) at room temperature by using an ECM microscope and a Nanoscope IIIA controller from Veeco Instruments (Santa Barbara, CA). Imaging was done in the constant current mode with mechanically polished Pt–Ir tips, which were insulated with Apiezon wax. ECSTM imaging was performed by means of a bipolarostat from Veeco Instruments (Santa Barbara, CA) with a small volume Kel-F cell. A high area Pt wire was used as the counter electrode and a Pd/H₂ electrode as the reference (+ 0.05 V vs standard hydrogen electrode, SHE). The electrolyte was a deaerated 3 × 10⁻³ M Na₂S + 0.1 M NaOH solution. Typical setpoint currents and scan rates were 20–30 nA and 10–15 Hz, respectively. Working electrode (E_w) and tip (E_t) potentials were measured with respect to the Pd/H₂ reference, but in the text are referred to the SHE electrode. For in air measurements, typical bias voltages (E_bias), setpoint currents and scan rates were 0.05–0.2 V, 5–15 nA and 15–30 Hz, respectively.

Evaporated Au films on glass with (111) preferred orientation (Arrandees™, Germany) were used as substrates. After annealing for 3 min with a hydrogen flame these substrates exhibit atomically smooth (111) terraces separated by monatomic steps in height. The typical terraces width is about 70–100 nm (Fig. S1). However, in some cases there are also smaller terraces, about 20 nm in size. Clean substrates were used as the working electrodes for ECSTM measurements. For in air measurements S layers were formed by immersion of the clean substrates in aqueous 3 × 10⁻³ M Na₂S + 0.1 M NaOH solution for 10 min at room temperature, which were then rinsed with water and dried with a N₂ flux.

3. Theoretical calculations

Density functional calculations were performed with the periodic plane-wave basis set code VASP 5.2.12 [27,28]. The scheme of non-local functional proposed by Dion et al. [29], vdW-DF, and the optimized Becke88 exchange functional optB88-vdW [30], were used to take into account van der Waals (vdW) interactions. The projector augmented plane wave (PAW) method was used to represent the atomic cores using the PBE potential [31]. The electronic wave functions were expanded in a plane-wave basis set with a 420 eV cut-off energy. Optimal grids of Monkhorst-Pack [32] k-points 7 × 7 × 1 an 1 × 1 × 1 were used for numerical integration in the reciprocal space of the (√3 × √3) R19.1° and (3√3 × 3√3) R30° unit cells described in the experimental results section. The Au(111)-(1 × 1) substrate is represented by five ((√3 × √3) R19.1°) or four ((3√3 × 3√3) R30°) atomic layers and a vacuum of ~17 Å that separates two successive slabs in our calculations. Surface relaxation is allowed in the three uppermost Au layers and a vacuum of ~17 Å that separates two successive slabs in our calculations.

Surface relaxation is allowed in the three uppermost Au layers and a vacuum of ~17 Å that separates two successive slabs in our calculations. Surface relaxation is allowed in the three uppermost Au layers and a vacuum of ~17 Å that separates two successive slabs in our calculations.

Surface relaxation is allowed in the three uppermost Au layers and a vacuum of ~17 Å that separates two successive slabs in our calculations. Surface relaxation is allowed in the three uppermost Au layers and a vacuum of ~17 Å that separates two successive slabs in our calculations.

4. Results and discussion

Figs. 1a and S1a show STM images taken at E = −0.350 V vs SHE. Domains of a honeycomb-like structure that consists of six bright triangular elements (hexagons) organized around a star-shaped center (dark region in the image) are clearly observed.

The center-to-center distance is ~1.5 nm, with a maximum height difference between the bright triangular elements and the dark centers of 0.07 nm, i.e. they are not gold atoms and instead can be assigned to adsorbed S species. Similar structures have been reported for S adsorption in electrochemical environments [25]. No evidence of vacancy islands inside the ordered domains is found in the images, as the cross section analysis indicates height differences between dark and bright features that are smaller than 0.24 nm.

High resolution STM images (Fig. 1b) reveal that the triangular elements are formed by three bright spots (trimers) with average nearest neighbor distance d = 0.36 ± 0.03 nm, i.e. a distance too large to be assigned to S–S bonds. Also, in Fig. 1b a small domain of the well-known (√3 × √3) R30° lattice formed by monomeric S is shown, which serves as a reference. It is worth to mention that the dark hexagons are rotated 30° in relation to the (√3 × √3) R30° lattice, i.e. they follow the substrate direction (see arrows in Fig. 1). Moreover, in some of the trimers one of the spots is brighter than the other two.

We have modeled the honeycomb-like domains as a (√3×√3) R30° lattice, composed of two groups of three S species with a total S coverage θ = 6/27 = 0.22 (green spheres in Fig. 2). This structure is consistent with the experimental orientation of the hexagon motifs, the center-to-center hexagon distances, and also with the S intra-trimer distances.

After geometry optimization of the initial structure we observe that the Au atom located at the center of the 3S atoms is spontaneously lifted 0.17 nm from the substrate surface, as shown in Fig. 2a-b and S3, thus creating a vacancy in the substrate. The S atoms are placed at nearly bridge sites around the extracted Au atom. Interestingly, the three S atoms interact with the lifted Au atom from the substrate but not among themselves, i.e. they are individual S atoms coordinated by the lifted Au atom. Indeed, the existence of three-coordinated Au
complexes has been already reported [40–42]. Also some S atoms in the 3S–Au structures are slightly higher with respect to the Au substrate (Table 1), thus explaining the brighter spots in Fig. 1b.

The energetic and geometric parameters of the proposed model are shown in Table 1. The calculated STM images (Fig. 1c) are in excellent agreement with the experimental data in Fig. 1b. The fact that the Au atom at the central position of the trimers is not “seen” by the STM tip indicates that the density of states at the Fermi level is dominated by the S atom states.

We have also observed a denser S lattice (Fig. 3a-b and S1b) coexisting with the trimers that was also imaged under ambient conditions (Fig. 3c). In this case the S atoms arrange into a quasi-hexagonal pattern (Fig. 3b inset) with average distances d = 0.37 ± 0.03 nm, i.e. the same distances as in the trimers of the honeycomb-like S structure. Also in this case we did not observe vacancy islands in the ordered domains. Indeed, the cross section analysis along the black regions in Fig. 3a yields height differences ≈0.1 nm, smaller than the depth expected for gold vacancy islands (0.24 nm), and which can instead be assigned to missing S atoms. An interesting observation in Fig. 3a, b and S1b is the presence of some dark centers arranged with distances consistent with the (3√3 × 3√3) R30° lattice proposed for the less dense S overlayer shown in Fig. 1. In this sense, the images in Fig. 3a and b show the transition from the diluted to the denser surface structures.

We have modeled this surface structure with a (√7 × √7) R19° lattice with a sulfur coverage θ = 4/7 = 0.57 which yields S–S distances similar to the experimental ones. Note that a diffuse phase has been observed by LEED at this surface coverage [43]. Interestingly, here also the initial hexagonal lattice is spontaneously distorted as a result of the optimization procedure. Indeed, one Au atom is lifted 0.24 nm from the substrate surface to form 3S–Au species similar to those described for the (3√3 × 3√3) R30° lattice (Fig. 4). Two S atoms of the 3S–Au structures are located at nearly bridge sites, while the remaining one is placed at an on-top site. The lattice is completed with one S atom adsorbed at fcc-hollow site. The energetic and geometric parameters of the (√7 × √7)R19° lattice model are summarized in Table 1. Again, the simulated STM image is in excellent agreement with those observed in the experiments (Fig. 3d). However, there is a subtle difference between the STM simulation of the (3√3 × 3√3) R30° lattice (Fig. 1c) and that shown in Fig. 3d. Despite the fact that the both simulations were made under the same conditions, the Au adatom is appreciable in the simulation of the (√7 × √7)R19° as a small spot (red spot in Fig. 3d) while it is not present in the simulation of the (3√3 × 3√3) R30° lattice (Fig. 1c). The origin of this difference can be found in the greater S coverage of this surface structure, that gives rise to small differences in the Bader charge of the respective Au adatoms (Table S1), and also in slight structural differences (Table S2). In fact, the position of the Au

![Fig. 1. STM images taken under electrochemical control in 3 × 10^{-3} M Na2S + 0.1 M NaOH. E = -0.35 V (SHE). (a) (28.4 × 28.4 nm²) honeycomb-like S lattice, (b) (8 × 8 nm²). Detail of the trimer structures forming the honeycomb-like lattice. The white arrow indicates a small domain of the (√3 × √3) R30° lattice. (c) Simulated STM image of the (3√3 × 3√3) R30° lattice model shown in Fig. 2. The small white arrows in the images indicate the orientation of the Au(111) lattice.](image1)

![Fig. 2. Optimized structures of the (3√3 × 3√3) R30° honeycomb lattice. (a) top view, (b) side view (c) detail of the optimized geometry. Yellow: Au atoms, orange: lifted Au atom, green: S atoms. The unit cell is indicated (solid black lines).](image2)
Table 1
Energetic and geometric parameters of the different surface species and gold complexes.

Model	S/Au(111)	(√3 × √3) R30°	(√3 × √3) R30°	(√7 × √7) R19.1°	S₂Au (gas)
Surface lattice					
0_Θ	0.22	0.33	0.33	0.57	–
E_e(eV)	−4.19	−4.14	−3.63	−3.61	−3.81
k_eV	+0.69	+0.56	0.0	+0.48	–
γ/meVÅ⁻²	−106.6	−159.61	−161.71	−254.0	–
d(S-S)/Å	3.8	3.8	5.0	3.6/4.2	3.8
d(Au-S)/Å	2.4/2.4/2.5	2.4/2.4/2.5	2.4/2.4/2.3	2.2	2.2
Δz(surface)/Å	1.8/1.7/1.8	1.8/1.8/1.7	1.6	2.3/1.9/2.0	–
α(S-Au-S)°	155/103/103	154/102/102	–	159/100/100	120

* Intra trimer S distance, nearest neighbor S distance inter trimers 4.6 Å.

Fig. 3. In situ STM images taken at E = −0.350 V (vs SHE) in 3 × 10⁻³ M Na₂S + 0.1 M NaOH (a) (12.2 × 12.2 nm²) showing the dense hexagonal S lattice, (b) (4.6 × 4.6 nm²). The S atom arrangement is depicted in more detail. Inset: Fourier transform analysis showing the hexagonal pattern, (c) STM image taken in ambient conditions (4.6 × 4.6 nm²), inset: cross section showing the 0.37 nm periodicity (the distance between the red arrows is 2.5 nm), (d) simulated STM image of the (√7 × √7)R19° lattice model shown in Fig. 4. The small white arrows in the images indicate the orientation of the Au(111) lattice. The unit cell is indicated. Light green: S atom in the 3S₆Au species, red: Au adatom, green: monomeric S atoms.
Fig. 4. Optimized structure of the \((\sqrt{7} \times \sqrt{7})R19^\circ\) lattice model. (a) top view, (b) side view (c) detail of the optimized geometry. Yellow: Au atoms, orange: lifted Au atom, green: S atoms. The unit cell is indicated (solid black lines).

Fig. 5. Optimized structure of the \((\sqrt{3} \times \sqrt{3})R30^\circ\) surface lattice. (a) top view, (b) side view. Complete \((3\sqrt{3} \times 3\sqrt{3})R30^\circ\) lattice (c) top view, (d) side view. Yellow: Au atoms, orange: lifted Au atom, green: S atoms. The unit cells are indicated (solid black lines). In Fig. 5a the solid line represents the real lattice and the dashed line the one used in the DFT calculations.
adatom with respect to both S and Au substrate atoms is higher in the \((\sqrt{7} \times \sqrt{7})\) R19° than in the \((3\sqrt{3} \times 3\sqrt{3})\) R30° lattice (Table S2). Also in this case some S atoms have different height relative to the substrate, explaining the different contrast in the STM images (Table 1).

For coverage \(\theta = 0.33\), S atoms are adsorbed at fcc-hollow site, forming the well-known \((3\sqrt{3} \times 3\sqrt{3})\) R30° lattice. In order to compare the results of the present work with those on an unreconstructed Au (111) surface performed under the same calculation conditions (lattice, metal layer number, k points, vacuum layer) we have calculated the energetic and geometric parameters of a \((3\sqrt{3} \times 3\sqrt{3})\) R30°-S lattice with the S atoms located at fcc-hollow site and S coverage, \(\theta = 0.33\), i.e. corresponding to the \((\sqrt{3} \times \sqrt{3})\) R30° lattice (see Table 1 and Fig. 5a and b). Our DFT calculations show that, although the \((3\sqrt{3} \times 3\sqrt{3})\) R30°-S honeycomb lattice with \(\theta = 0.22\) exhibits a higher \(E_\text{st} \) than that corresponding to the \((\sqrt{3} \times \sqrt{3})\) R30° lattice, there is an energetic cost, \(E_\text{rec}\), derived from the lifting of the Au adatom from the topmost layer of the surface. This, together with the fact that its coverage is lower, accounts for a more positive \(\gamma\) value (see Eqs. (1)-(4) of the \((3\sqrt{3} \times 3\sqrt{3})\) R30° honeycomb lattice compared to the \((\sqrt{3} \times \sqrt{3})\) R30° lattice, i.e. the former is thermodynamically less stable. On the other hand, the \((\sqrt{7} \times \sqrt{7})\) R19° surface structure has a similar \(E_\text{st}\) value as that shown by the \((3\sqrt{3} \times 3\sqrt{3})\) R30° and exhibits a considerable \(E_\text{rec}\) value. However, this structure compensates the high cost to reconstruct its surface with its higher S coverage, \(\theta = 0.57\), which leads it to present the highest stability in terms of surface free energy among the structures studied in this work.

In this context it is important to discuss why the 3S–Au islands can coexist with the \((3\sqrt{3} \times 3\sqrt{3})\) R30°-S lattice, which is more stable in terms of the energetic parameters here considered (Fig. 1b). First, we note that there are several equivalent configurations for S positions in the 3S–Au structures forming the \((3\sqrt{3} \times 3\sqrt{3})\) R30° honeycomb lattice which are compatible with the experimental STM images. We have estimated the stability of another surface structure in which the orientation of the two triangles in the unit cell is the same and have found that this is only \(4\text{ meV}\AA^{-2}\) more unstable than that determined for the model proposed in Fig. 4, i.e. the system only changes slightly in terms of energetic parameters.

It has been shown that the configurational entropy restricts the validity of an analysis based only on energetic considerations for temperatures above 0 K [44]. This term of the free energy calculation is difficult to estimate [45], but could qualitatively explain why relatively dense islands of adsorbates prevail over more extended diluted domains [44,46]. In principle, this argumentation cannot be applied in this case, as our experimentally observed \((3\sqrt{3} \times 3\sqrt{3})\) R30° honeycomb lattice is more diluted (\(\theta = 0.22\)) than the \((\sqrt{3} \times \sqrt{3})\) R30° lattice (\(\theta = 0.33\)). However, Stickney et al. have observed a complete \((3\sqrt{3} \times 3\sqrt{3})\) R30° lattice with \(\theta = 0.33\) [26], which can be also modeled with 3S–Au species. We have calculated this complete \((3\sqrt{3} \times 3\sqrt{3})\) R30°-S lattice (Fig. 5c–d) and after optimization obtained \(E_\text{st} = -4.14\text{ eV}\) and \(\gamma = -159.6\text{ meV}\AA^{-2}\), i.e. the lattice is similar in stability to the \((\sqrt{3} \times \sqrt{3})\) R30°-S lattice on the unreconstructed Au(111) \((\gamma = -161.7\text{ meV}\AA^{-2})\). Even if the complete \((3\sqrt{3} \times 3\sqrt{3})\) R30° is slightly less stable than the \((\sqrt{3} \times \sqrt{3})\) R30° lattice, the contribution of its configurational entropy can account for the coexistence of \((3\sqrt{3} \times 3\sqrt{3})\) R30°-3S-Au and \((\sqrt{3} \times \sqrt{3})\) R30°-S domains. A slow adsorption kinetics could be the reason why we observe the \((3\sqrt{3} \times 3\sqrt{3})\) R30° honeycomb lattice (\(\theta = 0.22\)) in our in situ STM images rather than the complete \((3\sqrt{3} \times 3\sqrt{3})\) R30° structure (\(\theta = 0.33\)) imaged by Stickney et al.

In order to compare the stability of the surface structures studied in this work with the well-known octomeric structures in a \((3\sqrt{2} \times 3\sqrt{2})\) lattice with surface coverage 0.66, we have made an estimation of their thermodynamic stability. This lattice is actually formed by S2 and monomeric S species and has an Au atom lifted from the substrate as well [19]. Thus, by using Eq. (4) and the \(E_\text{st}\) value reported in that work it results in \(\gamma = -300\text{ meV}\AA^{-2}\), i.e. the \((3\sqrt{2} \times 3\sqrt{2})\) surface structure is more stable than the \((\sqrt{7} \times \sqrt{7})\) R19° S lattice. Although, the comparison of this \(\gamma\) value with those reported in the present work should be taken with care due to the different computational methodologies, it seems to be a reasonable comparison as the \(E_\text{st}\) value for the \((\sqrt{3} \times \sqrt{3})\) \(\frac{3}{2}\) is similar in both cases.

Finally, it is important to stress that the 3S–Au species considered in this work are not a two-dimensional gold sulfide phase, which was one of the models proposed for 8S on Au(111) at high sulfur coverage [4,47]. Also, they cannot be identified with the Au3S2 clusters observed for the initial S adsorption of S at liquid nitrogen temperature [48].

We have made a charge analysis of the honeycomb \((3\sqrt{3} \times 3\sqrt{3})\) R30° and \((\sqrt{7} \times \sqrt{7})\) R19° lattices (Table S1). In the former case the Bader charge analysis indicates a charge transfer from the lifted Au atom to the S atoms in the 3S–Au structures. In fact, a charge of \(-0.27/-0.30\) e is obtained for the S atoms and +0.26/+0.27 e for the central Au atom. Note that the Au atoms in the top layer have a considerably lower charge (+0.05 e). As regards the \((\sqrt{7} \times \sqrt{7})\) R19° lattice, given its smaller size and greater S coverage, it has all the top layer Au atoms involved in the bonding, either with one or two S atoms or with the lifted Au atom, a situation that results in a greater complexity.

![Fig. 6. Charge density difference isosurfaces for the a) S- \((3\sqrt{3} \times 3\sqrt{3})\) R30° lattice and b) S-\((\sqrt{7} \times \sqrt{7})\) R19° lattices on Au(111) showing electronic charge accumulation (pink) and depletion (green).](image-url)
in the distribution of the surface atom charge. Thus, the charge of S
atoms bonded to the lifted Au atom are \(-0.28\ e\) and \(-0.22/-0.24\ e\) at
on-top and bridge sites, respectively, very similar to the Bader charge of
the isolated S atom placed in a hollow fcc site of the surface \((-0.21)\). In
addition, the Bader charge results in \(+0.33\ e\) for the lifted Au atom,
while it changes between \(+0.17\ e\) and \(+0.07\ e\) for the other Au sur-
face. These data should be compared to those corresponding to the
\((\sqrt{3} \times \sqrt{3})\ R30^\circ\) lattice on the unreconstructed surface, where the S
atom at fcc-hollow has \(-0.29\ e\) and the subjacent Au substrate atoms
exhibit \(+0.10\ e\).

The charge density difference isosurfaces of the adsorbed species
show more clearly the S charge density accumulation for both models
(Fig. 6a–b). From these data one can conclude that the charge of the
adsorbed S atoms remains nearly unchanged \((-0.28\ e/\pm0.22\ e\) in the
different surface structures. In contrast, there are marked differences in
the charge of the Au atoms: while the metal substrate atoms have
\(+0.07/+0.17\) irrespective of the lattice, the Au lifted atoms exhibit much
larger charges: +0.26 e in the honey-like lattice and +0.33 e in the \((\sqrt{7} \times \sqrt{7})\ R19^\circ\) lattice. This behavior reveals the distinctive character of the Au adatom lifted from the surface compared with the Au substrate atoms.

Following this line of reasoning, we have also studied the electronic
structure of 3S–Au species in the gas phase in order to analyze its
stability as an isolated AuS3 complex (Fig. 7), i.e., in the absence of the
Au substrate (Table 1). It is well-known that trigonal-planar-co-
ordinated Au(I) centers have interesting photoemission properties and
also important applications as antiarthritic and cancerostatic drugs
[49]. We have found that this complex is stable and that it adopts a C3v
symmetry with S–Au distances of 0.22 nm and an angle \(\alpha(S-Au-
S) = 120^\circ\) (Fig. 7a Table 1). The S–Au bond energy is \(-2.51\ eV\), and the S–Au distances are slightly smaller than those in the similar tri-
gonal 3S–Au structures adsorbed on the Au(111) surface (Fig. 7b–c,
Table 1). Likewise, bond angles (S-Au-S) are distorted in the presence
of the surface in order to achieve the most favorable configuration
(Table 1). These facts seem to indicate the relevant influence of the
substrate and its competition for S atoms of the complex. Interestingly,
the Bader charges of the isolated complex are very similar to those on
Au(111). In this configuration there would be no need to extract the Au atom from the Au(111) surface to form the 3S–Au complex. However, in this case the 3S–Au structures result unstable and evolve towards S-Au-S complexes and adsorbed S atoms. S–S dis-
tances are larger than those experimentally observed and there is no
significant gain in surface free energy. This is a clear evidence that
the surface reconstruction and the structural vacancy actually stabilize
the 3S–Au structures. Note that a recent theoretical work predicts that S-
Au-S complexes cannot be formed, as adsorbed atomic S is more stable
on the Au(111) surface [50]. Our results show that S3Au complexes co-
adsorbed with atomic S can form well-ordered lattices with a high
thermodynamic stability, even though they require surface re-
construction and structural vacancies to stabilize the system.

Now we can discuss the origin of the Au vacancy islands. It has been
proposed that the 8S structures formed by adsorbed S3 and monomeric S
species with surface coverage \(\theta = 0.66\) are able to lift one gold atom
from the substrate every 8 S atoms [19]. Although, this is in qualitative
agreement with the lifting of Au atoms proposed here, it is not possible
to explain the final coverage of gold vacancy islands observed in the
STM images \(\theta_{vac} = 0.2\); see Fig. S2) based on their structure, as they
only provide a vacancy coverage \(\theta_{vac} = 0.08\), which is too far from the
experimental value. On the other hand, the \((\sqrt{7} \times \sqrt{7})\ R19^\circ\) lattice has
\(\theta_{ad} = 1/7 = 0.14\), i.e., there is one adatom for every 4 S species
\((S_3 + S)\), and one structural vacancy associated. We therefore propose
that AuS3 complexes are intermediate species in going from the
\((\sqrt{7} \times \sqrt{7})\ R19^\circ\) lattice to the denser and thermodynamically more
stable 8S polysulfide surface structures [19]. This transformation leaves
the single vacancies that are now free to diffuse and to nucleate as
vacancy islands (at terraces) or to be adsorbed at step edges in order to
decrease the surface free energy. As above mentioned the \((\sqrt{7} \times \sqrt{7})\ R19^\circ\)
provides an amount of single vacancies equivalent to \(\theta_{vac} = 0.14\),
much closer to the experimental data. The islands grow by adsorbing
more vacancies or by coalescence, as observed by in situ STM images at
S-containing organic molecules adsorbed on Au(111) terraces.

On this basis, we can conclude that the well-known \((\sqrt{3} \times \sqrt{3})\ R30^\circ\)
S lattice coexists with the \((3\sqrt{3} \times 3\sqrt{3})\ R30^\circ\) lattice formed by AuS3
complexes. This intermediate surface structure is stabilized by in-
corporating more S atoms to yield the denser \((\sqrt{7} \times \sqrt{7})\ R19^\circ\) lattice,
which contains both AuS3 structures and monomeric S, as schematically
shown in Fig. 8. This process involves translation and rotation of the
AuS3 complexes.

The stability of the AuS3 complexes not only arises out of the charge
transfer from the lifted Au atom to the S atoms but also because of their
interaction with the reconstructed substrate surface where the struc-
tural vacancy plays an stabilizing role. The addition of more S atoms to

![Fig. 8. Scheme showing the relationship between the AuS3 containing lattices on Au(111). Yellow: Au atoms, orange: lifted Au atom, green: S atoms.](image-url)
Indeed, adsorbates include monomeric sulfur, monomeric sulfur complexes, adsorbed disulfides, and disulfide complexes, which can coexist with adsorbed S atoms. We believe that these results provide a deeper understanding of the sulfur chemistry in 2D systems. Indeed, adsorbates include monomeric sulfur, monomeric sulfur complexes, adsorbed disulfides and disulfide complexes, and the substrate plays a significant role in the adsorbate geometry. It could be argued that the solvent, electrolyte, and electric field could have a key in the formation of surface structures. However, we have imaged the ($\sqrt{7} \times \sqrt{7}$) R19° lattice both in electrolyte and air environments, as shown in Fig. 3. Moreover, the (4×4) lattice, similar to our $(3 \sqrt{3} \times 3 \sqrt{3})$R30° lattice, has been observed by LEED on Au(111) exposed to SO₂ [43]. In any case, we cannot exclude that the cations from the electrolyte and the applied potential play a role, as discussed in Ref [26].

5. Conclusions

We have presented a combined STM and DFT study that reveals the existence of two new surface structures formed by gold-sulfur complexes, which can coexist with adsorbed S atoms. We believe that these results contribute to provide a unified picture of the S–Au interface in S-containing adsorbates, thus helping to find a bridge from the surface chemistry of sulfur to that of sulfur-containing molecules, such as thiols on Au(111), for which the existence of gold-thiolate complexes [51] and adsorbed radicals is still a matter of controversy [52,53].

Acknowledgments

Authors acknowledge financial support from ANPCyT (PICT 2016-0679) Argentina, CONICET (PIP 0093) Argentina, Universidad Nacional de La Plata (11X760) Argentina and MINECO (ENE2016-74889-C4-2-R, AEI-FEDER-UE) Spain. MEV is member of the research career of CICPBA. PC thankfully acknowledges the computer resources provided by the Computer Support Service for Research (SAII) at La Laguna University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apsusc.2019.05.167.

References

[1] J.A. Rodriguez, J. Hrbek, Interaction of sulfur with well-defined metal and oxide surfaces: unraveling the mysteries behind catalyst poisoning and desulfurization, Acc. Chem. Res. 32 (1999) 719–728.
[2] J.A. Rodriguez, J. Dvorak, T. Jirsak, G. Liu, J. Hrbek, Y. Aray, C. González, Coverage effects and the nature of the metal–sulfur bond in S/Au(111): high-resolution photoemission and density-functional studies, J. Am. Chem. Soc. 125 (2003) 7285–7286.
[3] E. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat, M.H. Fonticelli, G. Benítez, A.A. Rubert, R.C. Salvarezza, The chemistry of the sulfur-gold interface: in search of a unified model, Acc. Chem. Res. 45 (2012) 1183–1192.
[4] M.M. Biener, J. Biener, C.M. Friend, Revisiting the S-Au(111) interaction: static or dynamic? Langmuir 21 (2005) 1668–1671.
[5] H. Walen, D.-J. Liu, J. Oh, H. Lim, J.W. Evans, Y. Kim, P.A. Thiel, Self-organization of S adatoms on Au(111): $\sqrt{3}R30^\circ$ rows at low coverage, J.Chem.Phys. 143 (2015) 014704.
[6] M. Yu, H. Ascolani, G. Zampieri, D.P. Woodruff, C.J. Satterley, R.G. Jones, V.R. Dhanak, The structure of atomic sulfur phases on Au(111), J.Phys.Chem.C 111 (2007) 10904–10914.
[7] K.M. Kocakur, E.M. Hamed, A. Hosamam, Sulfur multilayer formation on Au(111): new insights from the study of hexamethyldisilathiane, Langmuir 27 (2011) 12270–12274.
[8] J.E. Reilie, G.J. Hutchings, Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotaldehyde hydrogenation, Chem. Commun. (1999) 2151–2152.
[9] S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Rudnik, H. Hofmeister, P. Claus, Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today 72 (2002) 63–78.
[10] R. Meyer, C. Lemire, S.K. Shaikhutdinov, H.-J. Freund, Surface chemistry of catalysis by gold, Bull. Chem. 37 (2004) 72–124.
[11] R.K. Min, A.B. Alemanyar, M.M. Biener, C.M. Friend, Reaction of Au (111) with sulfur and oxygen: scanning tunneling microscopic study, Top. Catal. 36 (2005) 77–90.
[12] M.A. Huergo, L. Giovannetti, M.S. Moreno, C.M. Maier, F.G. Requejo, R.C. Salvarezza, C. Vericat, New insight into the chemical nature of the plasmonic nanostructures synthesized by the reduction of Au(III) with sulfuric species, Langmuir 33 (2017) 6785–6793.
[13] M.A. Huergo, C.M. Maier, M.F. Cano, C. Vericat, S. Nedev, R.C. Salvarezza, A.S. Urban, J. Feldmann, Optical nanoparticle sorting elucidates synthesis of plasmonic nanostripes, ACS Nano 10 (2016) 3614–3621.
[14] B. Pelaz, V. Grauz, A. Ibbara, G. Magen, P. del Pino, J.M. de la Fuente, Tailoring the synthesis and heating ability of gold nanoparticles for biomaterials, Langmuir 28 (2012) 8965–8970.
[15] P.A. Thiel, M. Shen, D.-J. Liu, J.W. Evans, Adsorbate-enhanced transport of metals on metal surfaces: oxygen and sulfur on coinage metals, J. Vac. Sci. Technol. A 28 (2010) 1285–1298.
[16] G.M. McGuirk, H. Shin, M. Caragiu, S. Ash, P.K. Bandyopadhyay, R.H. Prince, R.D. Diehl, Au(111) surface structures induced by adsorption: LEED (I/E) analysis of (1×1) and (5×5) Au(111)–S phases, Surf. Sci. 610 (2013) 42–47.
[17] C. Vericat, G. Andreasen, M.E. Vela, R.C. Salvarezza, Dynamics of potential-dependent transformations in sulfur adlayers on Au(111) electrodes, J.Phys.Chem.B 104 (2000) 302–307.
[18] X. Gao, Y. Zhang, M.J. Weaver, Observing surface chemical transformations by atomic-resolution scanning tunneling microscopy: sulfide electrooxidation on Au(111).

Fig. 9. Scheme showing the relationship among the different S surface structures on Au(111) that were included by STM. Au vacancy islands are included for structures that induce surface reconstruction.
