Vanishing theorems have played a central role in algebraic geometry, for the last couple of decades, especially in classification theory. [Kollár87] gives an introduction to the basic use of vanishing theorems as well as a survey of results and applications available at that time. For more recent results one should consult [Ein97, Kollár97, Kovács00c, Smith97]. Because of the availability of such surveys here we will only recall statements that are important to this article. In any case one must start with the fundamental vanishing theorem of Kodaira:

0.1 Theorem. [Kodaira53] Let X be a smooth complex projective variety and \mathcal{L} an ample line bundle on X. Then

$$H^i(X, \omega_X \otimes \mathcal{L}) = 0 \quad \text{for } i > 0.$$

This has been generalized in several ways, but as noted above we will restrict to a select few. Akizuki and Nakano extended Kodaira’s vanishing to include other exterior powers of the sheaf of differential forms:

0.2 Theorem. [Akizuki-Nakano54] Let X be a smooth complex projective variety and \mathcal{L} an ample line bundle on X. Then

$$H^q(X, \Omega^p_X \otimes \mathcal{L}) = 0 \quad \text{for } p + q > n.$$

The original statement of Kodaira was generalized in a different direction to allow semi-ample and big line bundles in place of ample ones by Grauert and Riemenschneider:

0.3 Theorem. [Grauert-Riemenschneider70] Let X be a smooth complex projective variety and \mathcal{L} a semi-ample and big line bundle on X. Then

$$H^i(X, \omega_X \otimes \mathcal{L}) = 0 \quad \text{for } i > 0.$$

0.3.1 Remark. Later “semi-ample” was replaced by “nef” in the statement by Kawamata and Viehweg [Kawamata82, Viehweg82].

0.4. Ramanujam gave a simplified proof for (0.2) and showed that it does not hold if one only requires \mathcal{L} to be semi-ample and big [Ramanujam72].

0.5. On the other hand Navarro-Aznar et al. proved a version of the Kodaira-Akizuki-Nakano vanishing theorem for singular varieties that actually implies (0.1), (0.2) and (0.3) cf. [Navarro-Aznar88] in [GNPP88].

Another kind of generalization was proved by Esnault and Viehweg:

Supported in part by an AMS Centennial Fellowship and by NSF Grant DMS-9818357.
0.6 Theorem. [Esnault-Viehweg92, 6.4] Let \(X \) be a smooth complex projective variety and \(\mathcal{L} \) an ample line bundle on \(X \). Further let \(D \) be a normal crossing divisor on \(X \). Then

\[
H^q(X, \Omega^p_X(\log D) \otimes \mathcal{L}) = 0 \quad \text{for } p + q > n.
\]

One of the main goals of the present article is to prove a common generalization of (0.1), (0.2), (0.3), (0.5) and (0.6). For the exact statement we will first need to introduce some definitions, so it will only be given in (4.3). For now let us state it in a very informal form:

0.7 Main Theorem. The logarithmic Kodaira-Akizuki-Nakano vanishing theorem of Esnault and Viehweg admits a good generalization to singular varieties.

One could ask why we need such a generalization. I believe it is an interesting result on its own. This seems to be supported by the enthusiasm that greeted (0.5) (cf. [Steenbrink85]). On the other hand it could be viewed as a “poor man’s version” of the logarithmic Kodaira-Akizuki-Nakano vanishing theorem for semi-ample and big line bundles on smooth varieties. Considering that the obvious generalization fails, this might be the best one can hope for. As an easy corollary, we also obtain a local version of this vanishing theorem.

Nevertheless, my original motivation was an actual application. This theorem is the cornerstone of the proof of an Arakelov-Parshin type boundedness result. That result is presented as an application of the Main Theorem, although it would merit to be called a “Main Theorem” itself. The first interesting consequence of the Main Theorem is a vanishing theorem for smooth varieties, (6.4). Note that in order to prove it one has to go through the singular version. (6.4) is a generalization of [Kovács97, 1.1] and similar in nature to [Bedulev-Viehweg00, 2.2].

Next let us take a brief tour of some related problems, and let us start by recalling that a family of projective curves is called isotrivial if all but finitely many members of the family are isomorphic to a fixed curve.

0.8. Fix \(C \), a smooth projective curve of genus \(g \) over an algebraically closed field of characteristic 0, \(\Delta \subset C \) a finite subset and \(q > 1 \) positive integer. Let \(\delta = \#\Delta \).

Shafarevich conjectured at the 1962 ICM in Stockholm that the set, \(\mathcal{G} \), of non-isotrivial families of smooth projective curves of genus \(q \) over \(C \setminus \Delta \) is finite. This was confirmed by [Parshin68] for the case \(\Delta = \emptyset \) and by [Arakelov71] in general. Their method was to divide the problem into two parts:

1. “Boundedness”: There are only finitely many deformation types of families in \(\mathcal{G} \).
2. “Rigidity”: There are no non-trivial deformations within \(\mathcal{G} \).

The basic question now is whether Shafarevich’s conjecture holds in higher dimensions.

0.9. It is actually more convenient to work with a compactification of the family, understanding that later we are free to alter it over \(\Delta \). Hence from now on by a family we will mean a non-isotrivial family over a compact curve.

Considering families over a compact base curve leads to a related problem. Namely one could ask what can be said about the singular fibers of the family. On the simplest level, how many are there? In fact Szpiro did ask this: Is there a lower bound on the number of singular fibers if \(C \cong \mathbb{P}^1 \)?

[Beauville81] gave the following answer: there are always at least 3 singular fibers and there are families with exactly 3. In fact Beauville’s proof also shows that there is at least 1 singular fiber if the base curve is elliptic. In short \(2g - 2 + \delta > 0 \).
Note that Kodaira surfaces show that there are families over high genus curves without any singular fibers.

More recently [Catanese-Schneider95] asked if the same is true with higher dimensional fibers, and the conjecture of [Shokurov97] translates to the same: Is it true that for a family of varieties of general type, $2g - 2 + \delta > 0$, or equivalently: Is $\delta \geq 3$ if $g = 0$ and $\delta \geq 1$ if $g = 1$?

It is interesting to note the wide range of applications this question relates to: [Catanese-Schneider95] wanted to use this to obtain good estimates for the size of the automorphism group of a variety of general type, while [Shokurov97] needed it for proving quasi-projectivity of certain moduli spaces.

0.10. The basic philosophy of proving boundedness is first proving that for a family, $f : X \to C$, there exists some $m \gg 0$, such that $\deg(f^*\omega_X^{\nu}/C)$ is bounded in terms of the fixed data and m. The next step then is to use this bound and an appropriate moduli space (if it exists) to prove boundedness.

The first step will be called “weak boundedness”. In practice one proves weak boundedness and if the appropriate moduli space exists, then boundedness is almost automatic. The step from weak boundedness to boundedness is an independent question: it is basically the problem of existence of moduli spaces.

0.11. The following is a select list of results related to these questions.

[Faltings83] studied the Shafarevich problem for families of abelian varieties and proved that boundedness holds, while rigidity fails in general.

[Migliorini95] showed that for families of minimal surfaces $\delta \geq 1$ if $g \leq 1$, and [Kovács96] showed the same for families of minimal varieties of arbitrary dimension. [Kovács97] settled the question for families of minimal surfaces and [Kovács00a] for families of canonically polarized varieties: In both cases $2g - 2 + \delta > 0$.

[Oguiso-Viehweg00] proved the same for families of elliptic surfaces. Their work completes the case of families of minimal varieties of non-negative Kodaira dimension.

[Bedulev-Viehweg00] proved that boundedness holds for families of surfaces of general type and that weak boundedness (and in some cases boundedness) holds for families of canonically polarized varieties. As a byproduct of their proof they also obtained that $2g - 2 + \delta > 0$ in these cases.

In this article we obtain results regarding both questions. In fact a simple observation yields that these questions are in fact strongly related.

0.12 Theorem. Weak boundedness implies that $2g - 2 + \delta > 0$.

0.13 Theorem. Fix $C, \Delta \subset C$. Then weak boundedness holds for families of canonically polarized varieties with rational Gorenstein singularities (or equivalently singularities that appear on the canonical models of varieties of general type) over $C \setminus \Delta$ with fixed Hilbert polynomial admitting a simultaneous resolution of singularities. In particular $2g - 2 + \delta > 0$ for these families. Furthermore in some cases boundedness holds as well.

As a corollary one obtains weak boundedness for non birationally isotrivial families of minimal varieties of general type.
A few days before the completion of this article I learnt that [Viehweg-Zuo00] proves that $2g - 2 + \delta > 0$ holds for non birationally isotrivial smooth families of minimal varieties. As a byproduct of their proof they also obtain weak boundedness for these families.

Definitions and Notation. Throughout the article the groundfield will always be \mathbb{C}, the field of complex numbers. A complex scheme (resp. complex variety) will mean a separated scheme (resp. variety) of finite type over \mathbb{C}.

A divisor D is called \mathbb{Q}-Cartier if mD is Cartier for some $m > 0$. D is called big if X is proper and $|mD|$ gives a birational map for some $m > 0$ and it is called nef if $D.C \geq 0$ for every proper curve $C \subset X$. In particular ample implies nef and big. If A and B are effective divisors, then $A \cup B$ will denote supp$(A + B)$.

Let U be an open subset of X. A line bundle \mathcal{L} on X is called semi-ample with respect to U if some positive power of \mathcal{L} is generated by global sections over U. It is called semi-ample if it is semi-ample with respect to X. Similarly \mathcal{L} is called ample with respect to U if the global sections of some positive power of \mathcal{L} define a rational map, that is an embedding on U.

A locally free sheaf \mathcal{E} on a scheme X is called semi-positive (resp. ample) if for every smooth complete curve C and every map $\gamma : C \rightarrow X$, any quotient bundle of $\gamma^*\mathcal{E}$ has non-negative (resp. positive) degree.

Let $f : X \rightarrow S$ be a morphism of schemes. Then X_s denotes the fibre of f over the point $s \in S$ and f_s denotes the restriction of f to X_s. More generally, for a morphism $\sigma : Z \rightarrow S$, let $f_Z : X_Z = X \times_S Z \rightarrow Z$. If f is composed with another morphism $g : S \rightarrow T$, then for a $t \in T$, X_t denotes the fibre of $g \circ f$ over the point t, i.e., $X_t = X_{S_t}$. f_Z and X_Z may also be denoted by f_σ and X_σ respectively.

A singularity is called Gorenstein if its local ring is a Gorenstein ring. A variety is Gorenstein if it admits only Gorenstein singularities. Let X be a normal variety and $f : Y \rightarrow X$ a resolution of singularities. X is said to have rational singularities if $R^if_*\mathcal{O}_Y = 0$ for all $i > 0$.

Let X be a complex scheme of dimension n. $D_{\text{filt}}(X)$ denotes the derived category of filtered complexes of \mathcal{O}_X-modules with differentials of order ≤ 1 and $D_{\text{filt,coh}}(X)$ the subcategory of $D_{\text{filt}}(X)$ of complexes K^\cdot, such that for all i, the cohomology sheaves of $Gr^i_{\text{filt}}K^\cdot$ are coherent (cf. [DuBois81], [GNP86]). $D(X)$ and $D_{\text{coh}}(X)$ denotes the derived categories with the same definition except that the complexes are assumed to have the trivial filtration. The superscripts $+, -, b$ carry the usual meaning (bounded below, bounded above, bounded). $C(X)$ is the category of complexes of \mathcal{O}_X-modules with differentials of order ≤ 1 and for $u \in \text{Mor}(C(X))$, $M(u) \in \text{Ob}(C(X))$ denotes the mapping cone of u (cf. [Hartshorne66]). Isomorphism in these categories is denoted by \simeq_{qis}. If K^\cdot is a complex in any of the above defined categories, then $h^i(K^\cdot)$ denotes the i-th cohomology sheaf of K^\cdot. In particular every sheaf is naturally a complex with $h^i = 0$ for $i \neq 0$.

The right derived functor of an additive functor F, if exists, is denoted by RF and R^IF stands for $h^i \circ RF$. In particular \mathbb{H}^i denotes $R^i\Gamma$ and \mathbb{H}^i_Z denotes $R^i\Gamma_Z$ and \mathbb{H}^i denotes $R^i\mathcal{H}_Z$ where Γ is the functor of global sections and Γ_Z is the functor of global sections with support in the closed subset Z and \mathcal{H}_Z is the functor of local sections with support in the closed subset Z. Note that according to this terminology if $\phi : Y \rightarrow X$ is a morphism and \mathcal{F} is a coherent sheaf on Y, then $R\phi_*\mathcal{F}$ is the complex whose cohomology sheaves give the usual higher direct images of \mathcal{F}. The derived functor of \otimes is denoted by \otimes^L.

The dimension of the empty set is $-\infty$.

Acknowledgement. The lion’s share of the work related to this article was done while I...
enjoyed the hospitality of RIMS at Kyoto University. I would like to express my warm thanks to members, visitors and staff of RIMS for making my stay fruitful and memorable. I would like to thank especially Shigefumi Mori for making my visit possible and also for the interest he took in my work. I would also like to thank him, Stefan Helmke, Stefan Kebekus, Yoichi Miyaoka and Noboru Nakayama for helpful remarks and discussions.

I am also indebted to Osamu Fujino for saving me from some simple but crucial errors.

Commutative diagrams were drawn with the help of Paul Taylor’s TeX macro package.

§1. De Rham-Du Bois complexes

In order to state our generalized version of the Kodaira-Akizuki-Nakano vanishing theorem, we need Du Bois’s generalized De Rham complex.

The original construction of Du Bois’s complex, $\Omega_X^{\cdot}(\log D)$, is based on simplicial resolutions. The reader interested in the details is referred to the original article [DuBois81]. Note also that a simplified construction was later obtained by [GNPP88] via the general theory of cubic resolutions. An easily accessible introduction can be found in [Steenbrink85].

The word “hyperresolution” will refer to either simplicial or cubic resolution. Formally the construction of $\Omega_X^{\cdot}(\log D)$ is the same regardless which resolution is used and no specific aspects of either resolution will be used.

1.1 Definition. Let X be a complex scheme and D a closed subscheme whose complement is dense in X. Then $(X^{\cdot}, D^{\cdot}) \rightarrow (X, D)$ is a good hyperresolution if $X^{\cdot} \rightarrow X$ is a hyperresolution, and if $U = X \times_X (X \setminus D)$ and $D = X \setminus U$, then D_i is a divisor with normal crossings on X_i for all i.

1.2 Theorem. [DuBois81, 6.3, 6.5] Let X be a proper complex scheme of finite type and D a closed subscheme whose complement is dense in X. Then there exists a unique $\Omega_X^{\cdot}(\log D) \in \text{Ob}(D_{filt}(X))$ with the following properties, using the notation:

$$\Omega_X^{p}(\log D) := \text{Gr}_{filt}^{p} \Omega_X^{\cdot}(\log D)[p].$$

(1.2.1) Let $j : X \setminus D \rightarrow X$ be the inclusion map. Then

$$\Omega_X^{\cdot}(\log D) \simeq_{qis} Rj_{\ast} C_{X \setminus D}.$$

(1.2.2) It is functorial, i.e., if $\phi : Y \rightarrow X$ is a morphism of proper complex schemes of finite type, then there exists a natural map ϕ^* of filtered complexes

$$\phi^* : \Omega_X^{\cdot}(\log D) \rightarrow R\phi_{\ast} \Omega_Y^{\cdot}(\log \phi^{\ast} D)$$

Furthermore, $\Omega_X^{\cdot}(\log D) \in \text{Ob}(D_{filt,coh}^{b}(X))$ and if ϕ is proper, then ϕ^* is a morphism in $D_{filt,coh}^{b}(X)$.

(1.2.3) Let $U \subseteq X$ be an open subscheme of X. Then

$$\Omega_X^{\cdot}(\log D)|_U \simeq_{qis} \Omega_U^{\cdot}(\log D)|_U.$$

(1.2.4) There exists a spectral sequence degenerating at E_1 and abutting to the singular cohomology of $X \setminus D$:

$$E_1^{pq} = H^q(X, \Omega_X^{p}(\log D)) \Rightarrow H^{p+q}(X \setminus D, \mathbb{C}).$$
If \(\varepsilon : (X, D) \to (X, D) \) is a good hyperresolution, then

\[
\Omega^X_X(\log D) \simeq_{\text{qis}} R\varepsilon_* \Omega^X_X(\log D).
\]

In particular \(h^i(\Omega^p_X(\log D)) = 0 \) for \(i < 0 \).

There exists a natural map, \(\mathcal{O}_X \to \Omega^0_X(\log D) \), compatible with (1.2.2).

If \(X \) is smooth and \(D \) is a normal crossing divisor, then

\[
\Omega^X_X(\log D) \simeq_{\text{qis}} \Omega^X_X(\log D).
\]

In particular

\[
\Omega^p_X(\log D) \simeq_{\text{qis}} \Omega^p_X(\log D).
\]

If \(\phi : Y \to X \) is a resolution of singularities, then

\[
\Omega^{\dim X}_X(\log D) \simeq_{\text{qis}} R\phi_* \omega_Y(\phi^* D).
\]

§2. A SHORT EXACT SEQUENCE

The following notation and assumptions will be used throughout this and the next section.

2.1. Let \(X \) be a projective variety and \(D \subset X \) an effective divisor on \(X \) and \(\varepsilon : (X, D) \to (X, D) \) a good hyperresolution. Let \(\mathcal{M} \) be a semiample line bundle on \(X \). Assume that \(\mathcal{M} \) is ample with respect to \(X \setminus D \). Let \(\mathcal{L} = \mathcal{M}^N \) for some \(N \gg 0 \), \(\sigma \in H^0(X, \mathcal{L}) \) a general section, and \(\mathcal{L} = (\sigma = 0) \). Note that \(\mathcal{L} \) is generated by global sections and the morphism given by its global sections is an embedding on \(X \setminus D \). In particular \(\mathcal{L} \) is transversal to \(\varepsilon : (X, D) \to (X, D) \).

Finally let \(D_L = D \mid \mathcal{L}, \mathcal{M}_L = \mathcal{M} \mid \mathcal{L}, \) and \(\mathcal{L}_L = \mathcal{L} \mid \mathcal{L} \).

Now \(\lambda = \varepsilon \mid \mathcal{L} : (L, D_L) \to (L, D_L) \) is a good hyperresolution, where \(L = X \times_X L \). Furthermore by (1.2.5)

\[
\Omega^X_X(\log D) = R\varepsilon_* \Omega^X_X(\log D),
\]

\[
\Omega^L_L(\log D_L) = R\lambda_* \Omega^L_L(\log D_L).
\]

(2.1.1)

2.2 Lemma. One has the following distinguished triangle:

\[
\Omega^{p-1}_L(\log D_L) \to \Omega^p_X(\log D) \otimes \mathcal{L}_L \to \Omega^p_L(\log D_L) \otimes \mathcal{L}_L \xrightarrow{+1}
\]

(2.2.1)

Proof. First assume that \(X \) is smooth and \(D \) is an effective normal crossing divisor. Then one has the following commutative diagram cf. [Esnault-Viehweg92, 2.3]:

\[
\begin{array}{ccccccccc}
0 & \to & \mathcal{L}_L^{-1} & \to & \Omega^1_X|_L & \to & \Omega^1_L & \to & 0 \\
\alpha & & & & & & & \\
0 & \to & \mathcal{K} & \to & \Omega^1_X(\log D)|_L & \to & \Omega^1_L(\log D_L) & \to & 0 \\
& & & & \oplus \mathcal{O}_{D_j}|_L & \to & \oplus \mathcal{O}_{D_j \cap L} & & \\
& & & & \beta & & & \\
& & & & 0 & \to & 0 & & \\
\end{array}
\]
L is transversal to D, so β is an isomorphism, hence so is α. Taking exterior powers one obtains that for all p:

$$0 \rightarrow \Omega^{p-1}_L(\log D^L) \otimes \mathcal{L}_L^{-1} \rightarrow \Omega^p_X(\log D)|_L \rightarrow \Omega^p_L(\log D^L) \rightarrow 0. \quad (2.2.2)$$

Next consider the general case. Let $\varepsilon: (X_d, D) \rightarrow (X, D)$ be a good hyperresolution. By (2.2.2) one has the following short exact sequence for all i:

$$0 \rightarrow \Omega^{p-1}_{L_i}(\log D_i^L) \rightarrow \Omega^p_{X_i}(\log D_i) \otimes \mathcal{L}_{L_i} \rightarrow \Omega^p_{L_i}(\log D_i^L) \otimes \mathcal{L}_{L_i} \rightarrow 0.$$

Since L_i is the pull-back of L for all i these maps are compatible with λ, and then applying $R\lambda_*$ gives the required distinguished triangle. □

§3. Trace map, Gysin morphism, etc.

The first subsection of this section is an adaptation of some parts of [Hartshorne75, II.2-3] to the logarithmic setting.

§§3.1 The trace map.

3.1.1. In addition to the notation and assumptions of (2.1), X and L will be assumed to be smooth and D an effective normal crossing divisor throughout this subsection. Consider the following short exact sequence,

$$0 \rightarrow \mathcal{L}_L^{-1} \rightarrow \Omega^1_X(\log D)|_L \rightarrow \Omega^1_L(\log D^L) \rightarrow 0,$$

and the induced natural map,

$$\Omega^p_L(\log D^L) \rightarrow \Omega^p_X(\log D)|_L \otimes \omega_{L/X}, \quad (3.1.1.1)$$

where $\omega_{L/X} \simeq \mathcal{L}_L$ as in [Hartshorne75].

Through the rest of this section all morphisms between sheaves and complexes are meant to be in $D(X)$ even if only sheaves are involved. Let $\iota: L \rightarrow X$ be the embedding of L into X. The definition of $\iota^!$ for a finite morphism [Hartshorne66, VI 3.1, p. 311, p. 165] together with the fundamental local isomorphism [Hartshorne66, III 7.2] shows that

$$\iota^! \Omega^p_X(\log D) \simeq_{qis} \Omega^p_X(\log D)|_L \otimes \omega_{L/X}[-1],$$

and then the trace map for residual complexes gives:

$$\text{Tr}_\iota: R\iota_* \Omega^p_X(\log D)|_L \otimes \omega_{L/X}[-1] \rightarrow \Omega^p_X(\log D). \quad (3.1.1.2)$$

Combining (3.1.1.1) and (3.1.1.2) one has:

$$R\iota_* \Omega^p_L(\log D^L)[-1] \rightarrow \Omega^{p+1}_X(\log D).$$

Note, that the left hand side is supported on L, so the map factors through $R\mathcal{H}L \Omega^{p+2}_X(\log D)$. Also, by the proof of [Hartshorne75, II.2.2] this map is compatible with the differential of the de Rham complex, so by taking the above for all p one has a trace map:

$$\text{Tr}_L: R\iota_* \Omega_L(\log D^L)[-2] \rightarrow R\mathcal{H}L \Omega_X(\log D). \quad (3.1.1.3)$$
3.1.2 Lemma [Hartshorne75, II.3.1], Tr_L in (3.1.1.3) is a quasi-isomorphism.

3.1.2.1 Remark. The proof of this lemma is taken from [Hartshorne75, II.3.1] with some small modifications and repeating it for logarithmic differentials instead of ordinary ones. It is included for the benefit of the reader as this constitutes an important step in the entire proof.

Proof. Since L is of codimension one and $\Omega^p_L((log\,D))$ is locally free for all p, there is only one non-zero local cohomology sheaf, namely $\mathcal{H}^1_L\Omega^p_X((log\,D))$. Furthermore $\mathcal{H}^1_L\Omega^p_X((log\,D))$ can be identified with $\Omega^p_X((log\,D))|_{X\backslash L}/\Omega^p_X((log\,D))$, locally isomorphic to $\Omega^p_X((log\,D))[f^{-1}]/\Omega^p_X((log\,D))$ where f is a local equation of L in X. Therefore

$$R\mathcal{H}_L\Omega_X((log\,D)) \simeq_{qis} \mathcal{H}^1_L\Omega_X((log\,D))[-1],$$

(3.1.2.1)

where $\mathcal{H}^1_L\Omega_X((log\,D))$ denotes the complex whose p^{th} term is $\mathcal{H}^1_L\Omega^p_X((log\,D))$ and whose differential is the one induced from the differential of the de Rham complex.

Using the local isomorphism $\mathcal{H}^1_L\Omega^p_X((log\,D)) \simeq \Omega^p_X((log\,D))[f^{-1}]/\Omega^p_X((log\,D))$ one sees easily that Tr_L is induced by the map

$$\Omega^p_L((log\,D^L))[-1] \rightarrow \mathcal{H}^1_L\Omega^p_X((log\,D)),$$

(3.1.2.2)

given by $\eta \mapsto \eta \wedge f^{-1}df$, where $\eta \in \Omega^p_L((log\,D^L))$.

Next assume that $L = \text{Spec} \, A$ and $X = \text{Spec} \, B$ are affine. Let $f \in B$ be an equation of L in X, so $A \simeq B/(f)$. It is enough to prove the desired quasi-isomorphism after passing to the completion with respect to the f-adic topology (cf. [Hartshorne75, p.38]), so we may assume, that $B \simeq A[[f]]$ by [Hartshorne75, II.1.2].

Based on the above discussion it will be sufficient to show that the map,

$$\tau : \Omega^p_A((log\,D^L))[-1] \rightarrow \Omega^p_B((log\,D))[f^{-1}]/\Omega^p_B((log\,D)),$$

given by $\eta \mapsto \eta \wedge f^{-1}df$ for $\eta \in \Omega^p_L((log\,D^L))$ is a quasi-isomorphism of complexes.

Let $\gamma \in \Omega^{p+1}_B((log\,D))[f^{-1}]/\Omega^{p+1}_B((log\,D))$. Then γ can be written as $\gamma = \gamma_1 + \gamma_2 \wedge df$, where $\gamma_1 \in \Omega^{p+1}_B((log\,D))[f^{-1}]$ and $\gamma_2 \in \Omega^p_B((log\,D))[f^{-1}]$, such that $\gamma_i = \sum_{j=0}^k \gamma_{ij} f^{-j}$ for $i = 1, 2$ and a suitable $k \in \mathbb{N}$ with $\gamma_{ij} \in \Omega^{p+2-i}_B((log\,D))$. Furthermore, using the fact that $B \simeq A[[f]]$, $\gamma_{ij} = \sum_{n=0}^\infty \gamma_{ijn} f^n$ where $\gamma_{ijn} \in \Omega^{p+2-i}_A((log\,D^L))$. Hence

$$\gamma = \sum_{j=0}^k \sum_{n=0}^\infty (\gamma_{1jn} + \gamma_{2jn} \wedge df) \, f^{n-j}.$$

Notice that all but a finite number of terms of this expression will be in $\Omega^{p+1}_B((log\,D))$, so one obtains that γ can be written uniquely in the form

$$\gamma = \sum_{s=1}^N (\alpha_s + \beta_s \wedge df) f^{-s}$$

(3.1.2.3)

for a suitable $N \in \mathbb{N}$ and $\alpha_s \in \Omega^{p+1}_A((log\,D^L))$ and $\beta_s \in \Omega^p_A((log\,D^L))$.

Now \(d\gamma = 0 \) if and only if

\[
\begin{align*}
 d\alpha_s &= 0, \quad s = 1, \ldots, N \\
 d\beta_1 &= 0 \\
 d\beta_{s+1} &= (-1)^{p+1} s \alpha_s, \quad s = 1, \ldots, N.
\end{align*}
\]

Let \(\theta = (-1)^{p+1} \sum_{s=2}^N \frac{1}{s-1} \beta_s f^{-s+1} \in \Omega_A^p(\log D_L) \). Then \(\gamma = d\theta + \beta_1 \wedge f^{-1} df \) where \(d\beta_1 = 0 \). Hence \(h^i(\tau) \) is surjective for all \(i \).

Finally if \(\beta_1 \wedge f^{-1} df = d\gamma' \) for some \(\gamma' \in \Omega_B^p(\log D)[f^{-1}]/\Omega_B^p(\log D) \), then a similar expression for \(\gamma' \) as the one for \(\gamma \) in (3.1.2.3) shows that then there exists a \(\rho \in \Omega_A^{p-1}(\log D_L) \) such that \(\gamma' = \rho \wedge f^{-1} df \). Therefore \(h^i(\tau) \) is also injective for all \(i \). \(\square \)

§§3.2 Strong ampleness. In this subsection the extra assumptions made in the previous subsection are dropped, in particular \(X \) is not necessarily smooth, but (2.1) is still in effect.

3.2.1 Definition. Let \(\mathcal{K} \) be a semi-ample line bundle on \(X \). Then \(\mathcal{K} \) is called strongly ample with respect to \(X \setminus D \) if it is ample with respect to \(X \setminus D \) and there exists a proper birational morphism, \(\alpha : \tilde{X} \to X \), such that for \(\tilde{D} = \alpha^* D \), \(\alpha_X \setminus \tilde{D} : \tilde{X} \setminus \tilde{D} \to X \setminus D \) is an isomorphism and there exists an effective divisor \(\tilde{B} \) on \(\tilde{X} \) such that \(\text{supp} \tilde{B} = \text{supp} \tilde{D} \) and \(\alpha^* \mathcal{K}^a(\tilde{B}) \) is an ample line bundle for some \(a > 0 \).

In particular if \(\tau \in H^0(X, \mathcal{K}^{am}) \) is a general section for some \(m \gg 0 \) and \(K = (\tau = 0) \), then \(\alpha^* K + m \tilde{B} \) is an effective ample Cartier divisor supported on \(\tilde{D} \cup \alpha^* K \), hence \(\tilde{X} \setminus (\tilde{D} \cup \alpha^* K) \simeq X \setminus (D \cup K) \) is affine.

3.2.2. Note that if \(D = \emptyset \), then \(\mathcal{K} \) is strongly ample if and only if it is ample. It is also clear that if \(\mathcal{K} \) is strongly ample then it is also big. On the other hand, let \(\pi : X \to \mathbb{P}^n \) be the blow up of \(\mathbb{P}^n \) at a single point for \(n \geq 2 \). Let \(D \) be the exceptional divisor of \(\pi \). Then \(\pi^* \mathcal{O}_X(1) \) is semi-ample and big, but not strongly ample with respect to \(X \setminus D \).

It will be very important in §4 that this property is inherited by restrictions to \(L \):

3.2.3 Lemma. If \(\mathcal{K} \) is strongly ample with respect to \(X \setminus D \), then \(\mathcal{K}_L = \mathcal{K}|_L \) is strongly ample with respect to \(L \setminus D_L \).

Proof. \(\mathcal{K} \) is ample with respect to \(X \setminus D \), so \(\mathcal{K}_L \) is ample with respect to \((X \setminus D) \cap L = L \setminus D_L \). Let \(\alpha : \tilde{X} \to X \) be a proper birational morphism, \(\tilde{D} = \alpha^* D \), and \(\tilde{B} \) an effective divisor on \(\tilde{X} \) such that \(\text{supp} \tilde{B} = \text{supp} \tilde{D} \) and \(\alpha^* \mathcal{K}^a(\tilde{B}) \) is ample for some \(a > 0 \).

Let \(\tilde{L} \) be the proper transform of \(L \) on \(\tilde{X} \), \(\alpha_L = \alpha|_L \) and \(\tilde{B}^L = \tilde{B}|_L \). It is easy to see that \(\mathcal{K}_L \) and \(\alpha_L : \tilde{L} \to L \) satisfies the requirements of the definition (3.2.1). \(\square \)

The following lemma gives important examples for strongly ample line bundles.

3.2.4 Lemma. Assume that there exists an effective \(\mathbb{Q} \)-Cartier divisor \(B \), such that \(\text{supp} B = \text{supp} D \) and, in addition to (2.1), one of the following holds:

\[(3.2.4.1) \quad \mathcal{L} \text{ is ample, or} \]
\[(3.2.4.2) \quad B \text{ is nef.} \]

Then \(\mathcal{M} \) is strongly ample with respect to \(X \setminus D \).

Proof. It is enough to prove that \(\mathcal{L} = \mathcal{M}^N \) is strongly ample with respect to \(X \setminus D \).
If \mathcal{L} is ample and B is \mathbb{Q}-Cartier, then $\mathcal{L}^a(bB)$ is ample for some $a, b > 0$.

In case (3.2.4.2), let $\phi : X \to Z$ be the morphism given by the global sections of \mathcal{L} and \mathcal{A} an ample line bundle on Z, such that $\mathcal{L} = \phi^* \mathcal{A}$. Further let $\alpha : \tilde{X} \to X$ be the blowing up of X along the exceptional set of ϕ and $\tilde{D} = \alpha^* D$. Note that the exceptional set of $\tilde{\phi} = \phi \circ \alpha$ is a Cartier divisor with support contained in $\text{supp} \, \tilde{D} = \text{supp} \, \alpha^* B$.

Now there exists a $\tilde{\phi}$-exceptional divisor E on \tilde{X}, such that $\tilde{\phi}^* A_a \left(-E \right)$ is ample for some $a > 0$. Since E is $\tilde{\phi}$-exceptional, $\text{supp} \, E \subseteq \text{supp} \, \tilde{D} = \text{supp} \, \alpha^* B$, so for some $b > 0$, $\tilde{B} = b \alpha^* B - E$ is effective and $\text{supp} \, \tilde{B} = \text{supp} \, \tilde{D}$. Finally $\alpha^* \mathcal{L}^a(\tilde{B})$ is ample, since B is nef. \square

§§3.3 Gysin morphism.

3.3.1. Using the notation and assumptions of (2.1) further assume that M is strongly ample with respect to $X \setminus D$.

3.3.2. Again, $\varepsilon : (X \setminus D, D)$ denotes a good hyperresolution. Applying (3.1.2) for $i^i : L_i \hookrightarrow X_i$ one obtains the following natural quasi-isomorphism

$$ R\varepsilon^i_* \Omega_{L_i}(\log D_i) [-2] \xrightarrow{\sim_{\text{qis}}} R\mathcal{H}_L \Omega_{X_i}(\log D_i). $$

By (2.1.1) this implies that there exists a quasi-isomorphism

$$ R\varepsilon_* \Omega_L(\log D) [-2] \xrightarrow{\sim_{\text{qis}}} R\mathcal{H}_L \Omega_X(\log D). \quad (3.3.2.1) $$

Let $j : X \setminus D \to X$ and $j^L : L \setminus D \to L \to X$ be the inclusion maps. Then by (1.2.1) (3.3.2.1) gives a quasi-isomorphism

$$ Rj_* \mathcal{C}_{L \setminus D} [-2] \xrightarrow{\sim_{\text{qis}}} R\mathcal{H}_L Rj_* \mathcal{C}_{X \setminus D}. $$

Applying $R\Gamma$ to both sides one obtains a quasi-isomorphism

$$ R\Gamma \mathcal{C}_{L \setminus D} [-2] \xrightarrow{\sim_{\text{qis}}} R\Gamma L \mathcal{C}_{X \setminus D}. $$

In particular

$$ H^{i-2}(L \setminus D, \mathbb{C}) \xrightarrow{\sim} H^i_{L \setminus D}(X \setminus D, \mathbb{C}) \quad (3.3.2.2) $$

is an isomorphism for all i.

On the other hand,

$$ R\Gamma L \mathcal{C}_{X \setminus D} \to R\Gamma \mathcal{C}_{X \setminus D} \to R\Gamma \mathcal{C}_{X \setminus (D \cup L)} $$

forms a distinguished triangle. By (3.2.1) $X \setminus (D \cup L)$ is affine, so $H^j(X \setminus (D \cup L), \mathbb{C}) = 0$ for $j > \dim X$ [Hartshorne75, II.4.6], [Goresky-MacPherson83], [GNPP88, III.3.1(i)]. Hence

$$ H^i_{L \setminus D}(X \setminus D, \mathbb{C}) \to H^i(X \setminus D, \mathbb{C}) $$
is an isomorphism for \(i > \dim X + 1 \) and surjective for \(i = \dim X + 1 \). Combinig this with (3.3.2.2) one obtains that
\[
H^{i-2}(L \setminus D^L, \mathbb{C}) \to H^i(X \setminus D, \mathbb{C})
\]
is an isomorphism for \(i > \dim X + 1 \) and surjective for \(i = \dim X + 1 \). Furthermore by the construction of these maps it is clear that they respect the Hodge decomposition (1.2.4). Therefore
\[
G : \mathbb{H}^{q-1}(L, \Omega^{p-1}_L(\log D^L)) \to \mathbb{H}^q(X, \Omega^p_X(\log D)) \quad (3.3.2.3)
\]
is an isomorphism for \(p + q > \dim X + 1 \) and surjective for \(p + q = \dim X + 1 \).

\section{The logarithmic Kodaira-Akizuki-Nakano Vanishing Theorem}

4.1 Theorem. With the notation and assumptions of (2.1) and (3.3.1),
\[
\mathbb{H}^q(X, \Omega^p_X(\log D) \otimes \mathcal{L}) = 0 \quad \text{for } p + q > \dim X.
\]

Proof. Tensoring the short exact sequence,
\[
0 \to \mathcal{O}_X \to \mathcal{L} \to \mathcal{L}_L \to 0,
\]
by \(\Omega^p_X(\log D) \) leads to the distinguished triangle,
\[
\Omega^p_X(\log D) \to \Omega^p_X(\log D) \otimes \mathcal{L} \to \Omega^p_X(\log D) \otimes^L \mathcal{L}_L \xrightarrow{+1}
\]
and the corresponding long exact hypercohomology sequence:
\[
\mathbb{H}^{q-1}(L, \Omega^p_X(\log D) \otimes^L \mathcal{L}_L) \xrightarrow{\partial} \mathbb{H}^q(X, \Omega^p_X(\log D)) \to \mathbb{H}^q(X, \Omega^p_X(\log D) \otimes \mathcal{L}). \quad (4.1.1)
\]
On the other hand, (2.2) gives the distinguished triangle,
\[
\Omega^{p-1}_L(\log D^L) \to \Omega^p_X(\log D) \otimes^L \mathcal{L}_L \to \Omega^p_L(\log D^L) \otimes \mathcal{L}_L \xrightarrow{+1},
\]
and in turn the long exact hypercohomology sequence:
\[
\mathbb{H}^{q-1}(L, \Omega^{p-1}_L(\log D^L)) \to \mathbb{H}^{q-1}(L, \Omega^p_X(\log D) \otimes \mathcal{L}_L) \to \mathbb{H}^{q-1}(L, \Omega^p_L(\log D^L) \otimes \mathcal{L}_L).
\]

Now by induction and (3.2.3) we may assume that \(\mathbb{H}^{q-1}(L, \Omega^{p-1}_L(\log D^L) \otimes \mathcal{L}_L) = 0 \). Hence
\[
\phi : \mathbb{H}^{q-1}(L, \Omega^{p-1}_L(\log D^L)) \to \mathbb{H}^{q-1}(L, \Omega^p_X(\log D) \otimes \mathcal{L}_L)
\]
is an isomorphism for \(p + q > \dim X + 1 \) and surjective for \(p + q = \dim X + 1 \). Furthermore \(\phi \) is induced by the map \(\Omega^{p-1}_L(\log D^L) \to \Omega^p_X(\log D) \otimes \mathcal{L}_L \) which locally is given by \(\eta \mapsto \eta \wedge df \otimes f^{-1} \) where \(f \) is a local equation of \(L \) in \(X \). So \(\phi \) is defined the same way as the Gysin map was, hence the following diagram is commutative, where \(G \) is from (3.3.2.3) and \(\partial \) is from (4.1.1).
\[
\begin{array}{ccc}
\mathbb{H}^{q-1}(L, \Omega^{p-1}_L(\log D^L)) & \xrightarrow{\phi} & \mathbb{H}^q(X, \Omega^p_X(\log D)) \\
\downarrow \quad G & & \downarrow \quad \partial \\
\mathbb{H}^{q-1}(L, \Omega^p_X(\log D) \otimes^L \mathcal{L}_L) & \xrightarrow{\partial} & \mathbb{H}^q(X, \Omega^p_X(\log D))
\end{array}
\]

Now \(G \) and \(\phi \) are isomorphisms for \(p + q > \dim X + 1 \) and surjective for \(p + q = \dim X + 1 \), so the same holds for \(\partial \). However, then (4.1.1) implies that
\[
\mathbb{H}^q(X, \Omega^p_X(\log D) \otimes \mathcal{L}) = 0 \quad \text{for } p + q > \dim X.
\]

To obtain the statement in the general case one uses the usual covering trick:
4.2 Corollary. \(H^q(X, \Omega_X^p(\log D) \otimes \mathcal{M}) = 0 \) for \(p + q > \dim X \).

Proof. Let

\[\pi : \tilde{X} = \text{Spec}_X \bigoplus_{i=0}^{N-1} \mathcal{M}^{-i} \to X \]

be the cover obtained by taking the \(N \)th-root of \(L \). Now the trace map of \(\pi \) provides a left inverse to the natural map cf. [GNPP88, p.151], [Esnault-Viehweg92, 3.22]:

\[\Omega_X^p(\log D) \to R\pi_* \Omega_{\tilde{X}}^p(\log \pi^* D). \]

Applying \(H^q \) and using (4.1) on \(\tilde{X} \) proves the statement. \(\square \)

Therefore we have (no longer using (2.1)):

4.3 Theorem. Let \(X \) be a projective variety and \(D \) an effective divisor on \(X \). Let \(\mathcal{L} \) be a semi-ample line bundle on \(X \) that is strongly ample with respect to \(X \setminus D \). Then for \(p + q > n \),

\[H^q(X, \Omega_X^p(\log D) \otimes \mathcal{L}) = 0. \]

4.4 Corollary=0.3 Theorem. Let \(Y \) be a smooth complex projective variety and \(\mathcal{M} \) a semiample and big line bundle on \(Y \). Then

\[H^i(Y, \omega_Y \otimes \mathcal{M}) = 0 \quad \text{for} \quad i > 0. \]

Proof. First assume that \(\mathcal{M} \) is generated by global sections. Let \(\phi : Y \to X \) be the morphism given by the global sections of \(\mathcal{M} \). Then there exists an ample line bundle, \(\mathcal{L} \), on \(X \) such that \(\mathcal{M} = \phi^* \mathcal{L} \), so by (1.2.8), (3.2.4), and (4.3)

\[H^i(Y, \omega_Y \otimes \mathcal{M}) \simeq H^i(X, R\phi_* \omega_Y \otimes \mathcal{L}) \simeq H^i(X, \Omega_X^p(\log 0) \otimes \mathcal{L}) = 0. \]

The generic case is now proved by the usual covering trick cf. (4.2). \(\square \)

4.4.1 Remark. This shows that (4.3) is indeed a common generalization of (0.1), (0.2), (0.3), (0.5) and (0.6).

We also have a local version:

4.5 Theorem. Let \(\psi : X \to Z \) be a projective morphism and \(D \) an effective \(\mathbb{Q} \)-Cartier divisor on \(X \). Let \(\mathcal{L} \) be a \(\psi \)-ample line bundle on \(X \). Then for \(p + q > n \),

\[R^q \psi_*(\Omega_X^p(\log D) \otimes \mathcal{L}) = 0. \]

Proof. The statement is local, so we may assume that \(Z \) is projective. Let \(\mathcal{M} \) be an ample line bundle on \(Z \), such that for all \(p, q \), \(R^q \psi_*(\Omega_X^p(\log D) \otimes \mathcal{L}) \otimes \mathcal{M} \) is generated by global sections and have no higher cohomology. This can be done because \(\Omega_X^p(\log D) \) is bounded and has coherent cohomology sheaves. Furthermore choose \(\mathcal{M} \) in such a way, that \(\mathcal{L} \otimes \psi^* \mathcal{M} \) be ample on \(X \). Then by the Leray spectral sequence, (3.2.4) and (4.3),

\[H^0(Z, R^q \psi_*(\Omega_X^p(\log D) \otimes \mathcal{L}) \otimes \mathcal{M}) = H^q(X, \Omega_X^p(\log D) \otimes \mathcal{L} \otimes \psi^* \mathcal{M}) = 0. \]

Since \(R^q \psi_*(\Omega_X^p(\log D) \otimes \mathcal{L}) \otimes \mathcal{M} \) is generated by global sections, this proves the statement. \(\square \)

Finally, this gives a bound on the range of degrees where \(\Omega_X^p(\log D) \) can have non-zero cohomology sheaves.
4.6 Corollary. Let X be a projective variety and D an effective \mathbb{Q}-Cartier divisor on X.
Then $h^q(\Omega_X^p(\log D)) = 0$ for $q > n - p$ or $0 > q$.

Proof. Let $\psi = \text{id}_X : X \to X$ and $M = O_X$. The second inequality is simply (1.2.5). □

Regarding the case of $H^q(Y, \Omega_Y^p \otimes M)$ for $p < n$, Ramanujam has already noticed that if M is only semi-ample (or even generated by global sections) and big, than vanishing does not necessarily hold [Ramanujam72]. However, since globally generated and big line bundles are pull-backs of (very) ample ones, (4.3) can be considered as a substitute. Later applications will show that it can actually be used for this purpose.

§5. Relative complexes

Let $f : X \to C$ be a morphism such that C is a smooth complex curve. Let $\Delta \subseteq C$ be a finite set and $D = f^*\Delta$. Let $\varepsilon_\cdot : (X, D) \to (X, D)$ be a good hyperresolution, and consider the map $f_i = f \circ \varepsilon_i : X_i \to C$.

The goal is to construct a complex whose cohomological properties resemble those of $\Omega_{X/C}^p$ in the smooth case.

Taking the wedge product induces a map,

$$\Omega_X^p(\log D_i) \otimes f_i^*\omega_C(\Delta) \to \Omega_X^{p+1}(\log D_i).$$

This is obviously compatible with ε_\cdot, so it gives a morphism of complexes:

$$\wedge_p : \Omega_X^p(\log D) \otimes f^*\omega_C(\Delta) \to \Omega_X^{p+1}(\log D).$$

It is also easy to see that this is independent of the actual hyperresolution used cf. [Kovács96, p.375]. Hence \wedge_p is a well-defined natural map in $D(X)$.

Choose a representative, $K_p \in \text{Obj}(C(X))$, of $\Omega_X^p(\log D)$ for all p such that \wedge_p is represented by morphisms $K_p \to K_{p+1}$ in $\text{Mor}(C(X))$. By abuse of notation this will also be denoted by \wedge_p. Let $\wedge_p = \wedge_p \otimes \text{id}_{f^*\omega(C(\Delta))} \in \text{Hom}_{C(X)}(K_p \otimes f^*\omega_C(\Delta), K_{p+1} \otimes f^*\omega_C(\Delta))$. Since $\omega_C(\Delta)$ is a line bundle, $\wedge_p \circ \wedge_{p-1} = 0$. Let $M_r = 0 \in \text{Obj}(C(X))$, $w_r'' = 0 \in \text{Hom}_{C(X)}(K_r \otimes f^*\omega_C(\Delta), M_r \otimes f^*\omega_C(\Delta))$ and $w_r' = 0 \in \text{Hom}_{C(X)}(M_r \otimes f^*\omega_C(\Delta), K_{r+1})$ for $r \geq n$. Assume that $p < n$ and for every $q > p$, $M_q \in \text{Obj}(C(X))$ is defined. Assume further that there are morphisms of complexes,

$$w_q'' : K_q \otimes f^*\omega_C(\Delta) \to M_q \otimes f^*\omega_C(\Delta) \quad \text{and} \quad w_q' : M_q \otimes f^*\omega_C(\Delta) \to K_{q+1},$$

such that

$$\wedge_q = w_q' \circ w_q'' \quad \text{and} \quad w_q'' \circ \wedge_{q-1} = 0.$$

Let

$$w_q = w_q'' \otimes \text{id}_{f^*\omega_C(\Delta)^{-1}} : K_r \to M_r$$

and

$$M_p = M(w_{p+1})[-1] \otimes f^*\omega_C(\Delta)^{-1} \in \text{Obj}(C(X)),$$

i.e.,

$$M_p^m \otimes f^*\omega_C(\Delta) = K_p^m \oplus M_{p+1}^{m-1}$$
and
\[d_{M_p}^m \otimes f^*\omega_C(\Delta) = \left(\begin{array}{cc} d_{K_{p+1}}^m & 0 \\ -w_{p+1}^m & -d_{M_{p+1}}^m \end{array} \right). \]

Also let
\[w_p'' = \left(\begin{array}{c} \wedge_p \\ 0 \end{array} \right) : K_p \otimes f^*\omega_C(\Delta) \to M_p \otimes f^*\omega_C(\Delta) \]

and
\[w_p' = (id_{K_{p+1}}, 0) : M_p \otimes f^*\omega_C(\Delta) \to K_{p+1}. \]

\(w_p' \) is a morphism of complexes by the definition of the mapping cone and \(w_p'' \) is a morphism of complexes because \(w_{p+1} \circ \wedge_p = 0. \) It is also obvious that \(\wedge_p = w_p' \circ w_p'' \) and \(w_p'' \circ \wedge_{p-1}' = 0. \)

Also, by their definition, the equivalence classes of \(w_p, w_p' \) and \(w_p'' \) in \(D(X) \) are independent of the hyperresolution chosen. From now on these symbols will denote their equivalence classes in \(D(X). \) A map will mean an element of \(\text{Mor}(D(X)), \) so it is possibly not represented by an actual morphism of complexes between two arbitrary representatives of the respective objects.

5.1 Theorem-Definition. Let \(f : X \to C \) be a morphism between complex varieties such that \(\dim X = n \) and \(C \) is a smooth curve. Let \(\Delta \subseteq C \) be a finite set and \(D = f^*\Delta. \) For every nonnegative integer \(p \) there exists a complex \(\Omega^p_{X/C}(\log D) \in \text{Obj}(D(X)) \) with the following properties.

(5.1.1) The natural map \(\wedge_p \) factors through \(\Omega^p_{X/C}(\log D) \otimes f^*\omega_C(\Delta), \) i.e., there exist maps:
\[w_p' : \Omega^p_X(\log D) \otimes f^*\omega_C(\Delta) \to \Omega^p_{X/C}(\log D) \otimes f^*\omega_C(\Delta) \quad \text{and} \]
\[w_p' : \Omega^p_{X/C}(\log D) \otimes f^*\omega_C(\Delta) \to \Omega^{p+1}_X(\log D) \]

such that \(\wedge_p = w_p' \circ w_p''. \)

(5.1.2) If \(w_p = w_p'' \otimes \text{id}_{f^*\omega_C(\Delta)}^{-1} : \Omega^p_X(\log D) \to \Omega^p_{X/C}(\log D), \) then
\[\Omega^p_{X/C}(\log D) \otimes f^*\omega_C(\Delta) \xrightarrow{w_p'} \Omega^{p+1}_X(\log D) \xrightarrow{w_{p+1}} \Omega^{p+1}_{X/C}(\log D) \xrightarrow{+1} \]

is a distinguished triangle in \(D(X). \)

(5.1.3) \(w_p \) is functorial, i.e., if \(\phi : Y \to X \) is a \(C \)-morphism, then there are natural maps in \(D(X) \) forming a commutative diagram:
\[
\begin{array}{ccc}
\Omega^p_X(\log D) & \xrightarrow{R\phi} & \Omega^p_{Y/C}(\log D) \\
\downarrow & & \downarrow \\
\Omega^p_{X/C}(\log D) & \xrightarrow{R\phi_\ast} & \Omega^p_{Y/C}(\log D) \\
\end{array}
\]

(5.1.4) If \(f \) is smooth over \(C \setminus \Delta, \) then \(\Omega^p_{X/C}(\log D) \simeq_{\text{qis}} \Omega^p_{X/C}(\log D) \)
(5.1.5) \(\Omega^p_{X/C}(\log D) = 0 \) for \(r \geq n \) and if \(f \) is proper, then \(\Omega^p_{X/C}(\log D) \in \text{Obj}(D_{coh}(X)) \) for every \(p. \)

Proof. Let \(\Omega^p_{X/C}(\log D) \simeq_{\text{qis}} [M_p] \in \text{Obj}(D(X)). \) Then (5.1.1), (5.1.2) and the first part of (5.1.5) follows from the discussion above. Using (5.1.2), the first part of (5.1.5) and descending induction on \(p, (5.1.3), (5.1.4) \) and the rest of (5.1.5) follows from (1.2.2) and (1.2.7). □
Note that the combination of (1.2.2), (1.2.6), and (5.1.3) implies that if \(\phi : Y \to X \) is a \(C \)-morphism, then there are natural maps in \(D(X) \) forming a commutative diagram:

\[
\begin{array}{ccc}
\mathcal{O}_X & \to & \Omega^0_X(\log D) \\
\downarrow & & \downarrow \\
R\phi_*\mathcal{O}_Y & \to & R\phi_*\Omega^0_Y(\log \phi^*D) \\
& & \downarrow \\
& & R\phi_*\Omega^0_{X/C}(\log \phi^*D)
\end{array}
\]

(5.1.6)

\section{6. More vanishing theorems}

\subsection{6.1 Theorem.} Let \(X \) be a projective variety of dimension \(n \) and \(f : X \to C \) a morphism to a smooth complex curve. Let \(\Delta \subseteq C \) be a finite set and \(D = f^*\Delta \). Let \(\mathcal{L} \) be a line bundle on \(X \) such that \(\mathcal{L} \) and \(\mathcal{L} \otimes f^*\omega_C(\Delta)^{-(n-1)} \) are semi-ample and ample with respect to \(X \setminus D \). Then

\[
\mathbb{H}^n(X, \Omega^0_{X/C}(\log D) \otimes \mathcal{L} \otimes f^*\omega_C(\Delta)) = 0.
\]

\textbf{Proof.} Let \(\mathcal{L}_p = \mathcal{L} \otimes f^*\omega_C(\Delta)^{-(p-1)} \) for \(p = 0, \ldots, n \). By assumption, \(\mathcal{L}_p \) is semi-ample and ample with respect to \(X \setminus D \) for \(1 \leq p \leq n \) since either \(f^*\omega_C(\Delta) \) or \(f^*\omega_C(\Delta)^{-(n-1)} \) is semi-positive. In fact \(\mathcal{L}_p \) is strongly ample with respect to \(X \setminus D \) for \(1 \leq p \leq n \) by (3.2.4) since \(D \) is an effective, nef \(\mathbb{Q} \)-Cartier divisor. Twisting \((5.1.2)\) by \(\mathcal{L}_p \) yields the following distinguished triangle:

\[
\Omega^{p-1}_{X/C}(\log D) \otimes \mathcal{L}_{p-1} \to \Omega^p_X(\log D) \otimes \mathcal{L}_p \to \Omega^p_{X/C}(\log D) \otimes \mathcal{L}_p \oplus 1.
\]

By \((4.3) \) \(\mathbb{H}^{n-(p-1)}(X, \Omega^p_{X/C}(\log D) \otimes \mathcal{L}_p) = 0 \), so the map

\[
\mathbb{H}^{n-p}(X, \Omega^p_{X/C}(\log D) \otimes \mathcal{L}_p) \to \mathbb{H}^{n-(p-1)}(X, \Omega^{p-1}_{X/C}(\log D) \otimes \mathcal{L}_{p-1})
\]

is surjective for all \(1 \leq p \leq n \). Observe that these maps form a chain as \(p \) runs through \(p = n, n-1, \ldots, 1 \). So the composite map

\[
\mathbb{H}^0(X, \Omega^n_{X/C}(\log D) \otimes \mathcal{L}_n) \to \mathbb{H}^n(X, \Omega^0_{X/C}(\log D) \otimes \mathcal{L}_0)
\]

is also surjective. However \(\Omega^n_{X/C}(\log D) = 0 \) by construction (cf. (5.1.5)). Therefore the statement follows. \(\Box \)

\subsection{6.2 Lemma.} Let \(\phi : Y \to X \) be a proper generically finite map of varieties of dimension \(n \). Let \(\mathcal{F} \) be a coherent sheaf on \(Y \). Then the natural map \(H^n(X, \phi_*\mathcal{F}) \to H^n(Y, \mathcal{F}) \) is surjective.

\textbf{Proof.} Let \(x \in X \) and let \(d(x) = \dim Y_x \), the dimension of the fiber of \(\phi \) over \(x \). Now \((R^i\phi_*\mathcal{F})_x = 0 \) for \(j > d(x) \), so supp \(R^i\phi_*\mathcal{F} \subseteq X_j = \{ x \in X \mid d(x) \leq j \} \). Clearly, \(X = X_0 \cup X_1 \cup \cdots \cup X_{n-1} \) and for all \(j > 0 \), the dimension of \(\phi^{-1}(X_j) \) is at most \(n-1 \), so \(\dim X_j + j \leq n-1 \). Hence \(\dim \text{supp } R^i\phi_*\mathcal{F} = n - j - 1 \) for \(j > 0 \). Therefore \(H^i(X, R^i\phi_*\mathcal{F}) = 0 \) for \(j > 0, i+j \geq n \). Finally this implies that in the Leray spectral sequence \(H^i(X, R^j\phi_*\mathcal{F}) \Rightarrow H^{i+j}(Y, \mathcal{F}) \) the only non-zero term for \(i+j \geq n \) is \(H^n(X, \phi_*\mathcal{F}) \). \(\Box \)
6.3 Lemma. Let \(\phi : Y \to X \) be a proper generically finite map of normal varieties of dimension \(n \). Let \(\mathcal{L} \) be a line bundle on \(X \).

(6.3.1) If \(\phi \) is birational, then the natural map \(H^n(X, \mathcal{L}) \to H^n(Y, \phi^*\mathcal{L}) \) is surjective.

(6.3.2) If \(X \) is projective and has rational singularities, then the natural map \(H^n(X, \mathcal{L}) \to H^n(Y, \phi^*\mathcal{L}) \) is injective.

Proof. If \(\phi \) is birational, then \(\mathcal{O}_X \simeq \phi_*\mathcal{O}_Y \), so \(\mathcal{L} \simeq \phi^*\mathcal{L} \), hence (6.2) implies (6.3.1). If \(X \) is projective and has rational singularities, then the natural map \(\mathcal{O}_X \to R\phi_*\mathcal{O}_Y \) has a left inverse by [Kovács00b, Theorem 2]. Hence \(H^n(X, \mathcal{L}) \to \mathbb{H}^n(X, R\phi_*\mathcal{O}_Y \otimes \mathcal{L}) \simeq H^n(Y, \phi^*\mathcal{L}) \) is injective. \(\square \)

6.4 Theorem. Let \(X \) be a projective variety of dimension \(n \) and \(f : X \to C \) a morphism to a smooth proper curve. Let \(\Delta \subseteq C \) be a finite set and \(D = f^*\Delta \). Assume that there exists a smooth projective variety, \(Y \), and a proper generically finite map, \(\phi : Y \to X \), such that \(h|_{Y \setminus B} : Y \setminus B \to C \setminus \Delta \) is smooth, where \(h = f \circ \phi \) and \(B = h^*\Delta \). Let \(\tilde{C} \) be smooth proper curve, \(\sigma : \tilde{C} \to C \) a finite cover, unramified over \(C \setminus \Delta \). Assume that for \(\tilde{\Delta} = (\sigma^*\Delta)_{\text{red}} \), \(\omega_{\tilde{C}}(\tilde{\Delta}) \subseteq \sigma^*\omega_C(\Delta) \). Let \(\tilde{X} \) be the normalization of \(\tilde{C} \times_C X \) and \(\tilde{Y} \to \tilde{C} \times_C Y \) a resolution of singularities such that it is an isomorphism over \(\tilde{C} \setminus \sigma^*\Delta \):

\[
\begin{align*}
\tilde{\pi}^*B &= \tilde{\phi}^*\pi^*D \hookrightarrow \tilde{Y} \\
\pi^*D &= \tilde{f}^*\sigma^*\Delta \hookrightarrow \tilde{X} \\
Y &\to B = \phi^*D \\
\tilde{C} \times_C X &\to X \to D = f^*\Delta \\
\sigma^*\Delta &\hookrightarrow \tilde{C} \to C \to \Delta
\end{align*}
\]

Assume that there exists a line bundle \(\mathcal{L} \) on \(X \) such that \(\pi^*\mathcal{L} \) contains a line bundle \(\tilde{\mathcal{L}} \) such that \(\tilde{\mathcal{L}} \) and \(\tilde{\mathcal{L}} \otimes \tilde{f}^*\omega_{\tilde{C}}(\tilde{\Delta})^{-(n-1)} \) are semi-ample and ample with respect to \(\tilde{X} \setminus \pi^*D \).

(6.4.1) If \(\phi \) is birational, then
\[
H^n(Y, \phi^*\mathcal{L} \otimes h^*\omega_C(\Delta)) = 0.
\]

(6.4.2) If \(X \) has rational singularities, then
\[
H^n(X, \mathcal{L} \otimes f^*\omega_C(\Delta)) = 0.
\]

Proof. Let \(\mathcal{M} = \mathcal{L} \otimes f^*\omega_C(\Delta) \) and \(\tilde{\mathcal{M}} = \tilde{\mathcal{L}} \otimes \tilde{f}^*\omega_{\tilde{C}}(\tilde{\Delta}) \subseteq \pi^*\mathcal{M} \). By (5.1.6) one has the following commutative diagram:

\[
\begin{align*}
H^n(\tilde{X}, \tilde{\mathcal{M}}) &\xrightarrow{\tilde{\alpha}} \mathbb{H}^n(\tilde{X}, \Omega^0_{\tilde{X}/\tilde{C}}(\log \pi^*D) \otimes \tilde{\mathcal{M})) \\
H^n(\tilde{Y}, \tilde{\phi}^*\tilde{\mathcal{M}}) &\xrightarrow{\tilde{\eta}} \mathbb{H}^n(\tilde{X}, R\phi_*\mathcal{O}_\tilde{Y} \otimes \tilde{\mathcal{M}}) \\
H^n(\tilde{Y}, \tilde{\phi}^*\tilde{\mathcal{M}}) &\xrightarrow{\tilde{\beta}} \mathbb{H}^n(\tilde{X}, R\phi_*\mathcal{O}_\tilde{Y} \otimes \tilde{\mathcal{M}}) \\
&\to \mathbb{H}^n(\tilde{X}, R\phi_*\mathcal{O}_\tilde{Y} \otimes \tilde{\mathcal{M}})
\end{align*}
\]
\[\mathbb{H}^n(\tilde{X}, \Omega^0_{X/C}(\log \pi^*D) \otimes \tilde{\mathcal{M}}) = 0 \] by (6.1), so \(\tilde{\beta} \) is the zero map. Furthermore \(\eta \) is an isomorphism by (5.1.4), hence \(\tilde{\alpha} \) is the zero map as well.

Now consider the following commutative diagram:

\[
\begin{array}{ccc}
H^n(\tilde{X}, \tilde{\mathcal{M}}) & \xrightarrow{\gamma} & H^n(\tilde{X}, \pi^*\mathcal{M}) \\
\downarrow{\tilde{\alpha}} & & \downarrow{\beta} \\
H^n(\tilde{Y}, \tilde{\phi}^*\tilde{\mathcal{M}}) & \xrightarrow{\tilde{\gamma}} & H^n(\tilde{Y}, \tilde{\phi}^*\pi^*\mathcal{M}) \\
& \downarrow{\tilde{\delta}} & \downarrow{\delta} \\
& H^n(Y, \phi^*\mathcal{M}) &
\end{array}
\]

The cokernel of the inclusion \(\tilde{\mathcal{M}} \subseteq \pi^*\mathcal{M} \) is supported in codimension 1, so \(\gamma \) and \(\tilde{\gamma} \) are surjective. Therefore \(\beta \) is the zero map, since so is \(\tilde{\alpha} \).

Now \(\delta \) is injective, because \(\pi \) is finite and \(X \) is normal and \(\tilde{\delta} \) is injective by (6.3.2). Hence \(\alpha \) is the zero map.

If \(\phi \) is birational, then \(\alpha \) is also surjective by (6.3.1), so (6.4.1) follows.

If \(X \) has rational singularities, then \(\alpha \) is also injective by (6.3.2), so (6.4.2) follows. \(\square \)

\section{Arakelov-Parshin Boundedness}

\subsection{Definition} A morphism, \(h : Y \to C \) is called \textit{isotrivial} if all but finitely many fibers of \(h \) are isomorphic to a fixed variety. Similarly \(h \) is called \textit{birationally isotrivial} if all but finitely many fibers of \(h \) are birational to a fixed variety.

\subsection{Definition} [Esnault-Viehweg90] Let \(F \) be a normal Gorenstein variety with rational singularities, \(\mathcal{L} \) a line bundle on \(F \) and \(\Gamma \) an effective divisor such that \(\mathcal{L} = \mathcal{O}_F(\Gamma) \). Let

\[
\begin{align*}
(1) \quad & C(\Gamma, N) = \text{coker} \left(\tau_* \omega_F \left(- \left[\frac{\tilde{\Gamma}}{N} \right] \right) \to \omega_F \right) \text{ where } \tau : \tilde{F} \to F \text{ is a resolution of singularities such that } \tilde{\Gamma} = \tau^*\Gamma \text{ is a normal crossing divisor.} \\
(2) \quad & e(\Gamma) = \min \{ N \in \mathbb{N}_+ | C(\Gamma, N) = 0 \} \\
(3) \quad & e(\mathcal{L}) = \sup \{ e(\Gamma) | \exists \lambda \in H^0(F, \mathcal{L}) \text{ such that } \Gamma = (\lambda = 0) \}
\end{align*}
\]

\(e(\mathcal{L}) \) will be called the \textit{Esnault-Viehweg threshold} of \(\mathcal{L} \). For properties of \(e(\mathcal{L}) \) the reader should consult [Viehweg95, §5.3-4]

\subsection{Notation and Assumptions} Let \(C \) be a smooth projective curve of genus \(g \), \(\Delta \subseteq C \) a finite set of points, regarded as a (reduced) divisor. Let \(\delta = \#\Delta \), the number of points in \(\Delta \). Let \(X \) be an irreducible projective variety of dimension \(n \) with rational Gorenstein singularities and \(f : X \to C \) a morphism. Let \(D = f^*\Delta \).

Assume that \(X_t \) has rational Gorenstein singularities for \(t \in C \setminus \Delta \) and that there exists a simultaneous resolution of \(X \setminus D \to C \setminus \Delta \), i.e., there exists a smooth projective variety \(Y \) and a birational morphism \(\phi : Y \to X \), such that \(Y \setminus \phi^*D \to C \setminus \Delta \) is smooth. Let \(h = f \circ \phi \), \(B = \phi^*D \) and let \(Y_{\text{gen}} \) denote the general fiber of \(h \). By blowing up \(Y \) along a subvariety of \(B \) one may assume that \(B \) is a (not necessarily reduced) normal crossing divisor.

\(r(m) \) will denote the rank of \(f_*\omega_{X/C}^m \). This is equal to the \(m \)-th plurigenus of the general fiber of \(f, P_m(X_{\text{gen}}) \). \(e(m) \) will denote the Esnault-Viehweg threshold of \(\omega_{X_{\text{gen}}}^m \). If \(\omega_{X_{\text{gen}}} \) is ample, then \(e(m) \leq m^n K_{X_{\text{gen}}}^n + 1 \) for \(m \gg 0 \) by [Viehweg95, 5.12].
7.3.1 Remark. X_t has only rational singularities for $t \in C \setminus \Delta$, so the same holds for $X \setminus D$. It is conjectured that a variety with only rational singularities admits a compactification with only rational singularities. Furthermore, if that conjecture holds then the Gorenstein assumption could be avoided as well with a little care. Hence the assumption on the singularities of X is conjecturally superfluous.

The following lemma gives an effective measure of the positivity of $f_\ast \omega^m_{X/C}$. The proof follows parts of the proof of [Bedulev-Viehweg00, 3.1] very closely, however both the situation and the statement are different from theirs, so the actual proof is included.

7.4 Lemma. Assume that f is non-isotrivial and that $\omega_{X_{gen}}$ is ample. Then $(f_\ast \omega^m_{X/C}) \otimes e(m)r(m) \otimes \det(f_\ast \omega^m_{X/C})^{-1}$ is semi-positive for all $m > 0$.

Proof. By [Viehweg95, 2.8] one may replace C by a finite cover, unramified along Δ, and X by the pull-back family in order to assume that $\det f_\ast \omega^m_{X/C} = D^{e(m)}$ for some invertible sheaf D.

Let $r = r(m)$ and $\pi: Z \to X^r = X \times_C X \times_C \cdots \times_C X$ a resolution of singularities. Further let $\rho = f^r \circ \pi$. Then $\mathcal{M} = \pi^\ast \omega^r_{X^r/C} = \pi^\ast (\otimes m \omega^r_{X^r/C})$ is big by [Viehweg83, Theorem II].

f^r is a Gorenstein morphism and the general fibre has rational singularities, so there are natural injective maps:

$$\rho_\ast (\mathcal{M}^{m-1} \otimes \omega_{Z/C}) \hookrightarrow f^r_\ast \omega^m_{X^r/C} \quad (7.4.1)$$
$$f^r_\ast \omega^m_{X^r/C} \hookrightarrow \rho_\ast \mathcal{M}^m \quad (7.4.2)$$
$$D^{e(m)} \hookrightarrow (f_\ast \omega^m_{X/C})^r \simeq f^r_\ast \omega^m_{X^r/C}, \quad (7.4.3)$$

where (7.4.1) and (7.4.2) are isomorphisms near the generic point of C.

The composition of (7.4.2) and (7.4.3) gives a section $\sigma \in H^0(Z, \mathcal{M}^m \otimes \rho^\ast D^{-e(m)})$. Let $A = (\sigma = 0)$. Since π was an arbitrary resolution of singularities one may replace it by further blow-ups, so in particular one may assume that A is a normal crossing divisor.

Let $J \subseteq \mathcal{O}_Z$ be the ideal sheaf defined as

$$\im[\rho^\ast f^r_\ast \omega^m_{X^r/C} \to \mathcal{M}^m] = \mathcal{M}^m \otimes J.$$

Note that the support of \mathcal{O}_X/J is contained in finitely many fibers. By blowing up J one can assume that it is a line bundle and it is trivial near the general fibre of ρ. By [Kawamata82] $f_\ast \omega^m_{X/C} \simeq h_\ast \omega^m_{Y/C}$ is semi-positive, hence so is $\mathcal{M}^m \otimes J$, i.e., it is a nef line bundle.

Let $\mathcal{K} = \mathcal{M}^{m-1} \otimes \rho^\ast D^{-1}$. Then

$$\mathcal{K}^{e(m)m}(-mA) = \mathcal{M}^{e(m)m(m-1)-m^2} \supseteq (\mathcal{M}^m \otimes J)^{e(m)(m-1)-m},$$

where the inclusion is an equality near the general fiber of ρ. Hence $\mathcal{K}^{e(m)}(-A)$ is nef near the general fiber of ρ and then $\rho_\ast \left(\mathcal{K} \otimes \omega_{Z/C} \left(- \left[\frac{A}{e(m)} \right] \right) \right)$ is semi-positive by [Esnault-Viehweg90, 1.7]. By [Viehweg95, 5.14, 5.21]

$$F := \rho_\ast \left(\mathcal{K} \otimes \omega_{Z/C} \left(- \left[\frac{A}{e(m)} \right] \right) \right) \hookrightarrow \rho_\ast (\mathcal{K} \otimes \omega_{Z/C})$$
is an isomorphism near the generic point of \(C \). On the other hand by (7.4.1),
\[
\rho_*(K \otimes \omega_{Z/C}) \simeq \rho_*(M^{m-1} \otimes \omega_{Z/C}) \otimes D^{-1} \hookrightarrow (f_*\omega^m_X/C)^{\otimes r} \otimes D^{-1},
\]
is also an isomorphism near the generic point of \(C \).

Thus \(\mathcal{F} \subseteq (f_*\omega^m_X/C)^{\otimes r} \otimes D^{-1} \) which is an equality on an open dense subset of \(C \). \(\mathcal{F} \) is semi-positive and then so is \((f_*\omega^m_X/C)^{\otimes r} \otimes D^{-1} \). Taking the \(e(m) \)-th power gives the statement. \(\square \)

7.5 Corollary. Assume that \(h \) is not birationally isotrivial and that \(\omega_{Y_\text{gen}} \) is nef and big. Then \((h_*\omega^m_Y/C)^{\otimes e(m)r(m)} \otimes \det(h_*\omega^m_Y/C)^{-1} \) is semi-positive for all \(m > 0 \).

7.6 Lemma. Let \(M \) be a line bundle on \(X \) and \(N \) a line bundle on \(C \). Assume that \(f_*M \otimes N \) is ample, \(M_t = M|_{X_t} \) is generated by global sections for \(t \in C \setminus \Delta \), and \(h^0(M) \) is constant. Then

(7.6.1) \(M \otimes f^*N \) is semi-ample with respect to \(X \setminus D \).

(7.6.2) If \(M_t \) is ample for \(t \in C \setminus \Delta \), then \(M \otimes f^*N \) is ample with respect to \(X \setminus D \).

Proof. Let \(t, s \in C \setminus \Delta \). For \(l \gg 0 \), \(H^1(C, \text{Sym}^l(f_*M) \otimes N^l \otimes \mathcal{O}_C(-t-s)) = 0 \). Hence the map \(H^0(C, \text{Sym}^l(f_*M) \otimes N^l) \to \text{Sym}^l(f_*M) \otimes (k(t) \oplus k(s)) \) is surjective.

Since \(M_t \) is generated by global sections for \(t \in C \setminus \Delta \), \(f^*\text{Sym}^l(f_*M) \to M^l \) on \(X \setminus D \). In particular \(f^*\text{Sym}^l(f_*M) \otimes (\mathcal{O}_{X_t} \oplus \mathcal{O}_{X_s}) \to M^l_t \oplus M^l_s \) is surjective.

Now one has the following commutative diagram:

\[
\begin{array}{ccc}
H^0(C, \text{Sym}^l(f_*M) \otimes N^l) \otimes \mathcal{O}_X & \xrightarrow{\alpha} & f^*\text{Sym}^l(f_*M) \otimes (\mathcal{O}_{X_t} \oplus \mathcal{O}_{X_s}) \\
H^0(C, f_*M^l \otimes N^l) \otimes \mathcal{O}_X & \cong & f^*\text{Sym}^l(f_*M) \otimes (\mathcal{O}_{X_t} \oplus \mathcal{O}_{X_s}) \\
H^0(X, M^l \otimes f^*N^l) \otimes \mathcal{O}_X & \xrightarrow{\gamma} & M^l_t \oplus M^l_s \\
\end{array}
\]

Since \(\alpha \) and \(\beta \) are surjective, so is \(\gamma \). This shows both statements. \(\square \)

7.7 Definition. Let \(m_0(k) \) be the smallest positive constant such that for all projective varieties, \(F \), of dimension \(k \) with at most rational singularities and \(\omega_F \) ample, \(\omega_F^m \) is generated by global sections if \(m \geq m_0(k) \).

7.7.1 Remark. Fujita’s conjecture predicts that \(m_0(k) \leq k + 2 \).

7.8 Theorem. Let \(C \) be a smooth projective curve of genus \(g \), \(\Delta \subseteq C \) a finite set of points. Then there exists a divisor \(\bar{\Delta} \subseteq C \) of degree \(2g + \delta + 1 \) such that for all non-isotrivial morphisms, \(f : X \to C \), satisfying the assumptions made in (7.3) and such that for \(t \in C \setminus \Delta \), \(\omega_{X_t} \) is ample, and for all \(m \geq m_0(\dim X - 1) \),
\[
\deg(f_*\omega^m_X/C) = \deg(h_*\omega^m_Y/C) \leq \deg(\omega_C(\bar{\Delta})^{\dim X} \otimes \omega_C^{-1})^{me(m)r(m)}.
\]

Proof. \(X \) has rational singularities, so \(\phi_*\omega_Y/C \simeq \omega_X/C \), and then \(h_*\omega^m_Y/C \simeq f_*\omega^m_X/C \).
7.8.1 Let $m \geq m_0(\dim X - 1)$ and \mathcal{N} a line bundle on C such that

$$\deg \mathcal{N}^{-me(m)r(m)} < \deg(f_\ast \omega^m_{X/C}).$$

Then by (7.4) $f_\ast \omega^m_{X/C} \otimes \mathcal{N}^m$ is ample on C. $h^0(X_t, \omega^m_{X_t})$ is constant for $t \in C \setminus \Delta$ by Kawamata-Viehweg vanishing, so $\omega_{X/C} \otimes f_\ast \mathcal{N}$ is ample with respect to $X \setminus D$ by (7.6).

7.8.2 Choose an $l > 0$ such that $\omega^l_{X/C} \otimes f_\ast \mathcal{N}^l$ is generated by global section on $X \setminus D$. By blowing up the base locus of $\omega^l_{X/C} \otimes f_\ast \mathcal{N}^l$ (contained in D), one may assume that there exists an effective Cartier divisor Γ, supported on $\text{supp } D$ such that $\omega^l_{X/C} \otimes f_\ast \mathcal{N}^l(-\Gamma)$ is generated by global sections on the entire X.

7.8.3 Let $P \in C \setminus \Delta$. We may assume that $l \geq 2g + \delta$. The linear system $|(2g + \delta)P - \Delta|$ is base point free, so one can find a reduced effective divisor, $\Delta' \in |(2g + \delta)P - \Delta|$ such that $\Delta \cap \Delta' = \emptyset$. Let $D = \sum d_i D_i$ and $l' = \text{lcm}(d_i) \cdot l$. Let

$$\Delta'' = \Delta + \Delta' + \left((l' - (2g + \delta))P \in |l'P| \right).$$

Let $\sigma : \tilde{C} \to C$ be the finite cover obtained by taking the l'-th root of Δ''. Take the fiber product of σ with f and h. Let \tilde{X} be the normalization of $\tilde{C} \times_C X$, $\tilde{f} : \tilde{X} \to \tilde{C}$, and $\tilde{Y} \to \tilde{C} \times_CY$ a resolution of singularities such that it is an isomorphism over $\tilde{C} \setminus \sigma^*\Delta''$.

Note that $\Delta + \Delta'$ is a non-empty reduced divisor, so both \tilde{C} and \tilde{X} are irreducible. Let $\tilde{\Delta} = (\Delta'')_{\text{red}}, \hat{\Delta} = (\sigma^*\hat{\Delta})_{\text{red}}, \hat{D} = \hat{f}^\ast \Delta$ and $\hat{D}_j = (\pi^*D_j)_{\text{red}}$. Then $\tilde{Y} \setminus \tilde{f}^\ast \hat{D} \to \tilde{C} \setminus \hat{\Delta}$ is smooth, $\omega_{\tilde{C}}(\tilde{\Delta}) \simeq \sigma^*\omega_C(\hat{\Delta})$ and $\delta = \#\Delta = 2g + \delta + 1$. By [Kovács 96; (2.4), (2.17)] $\delta > 0$ if $g = 0$, so $2g - 2 + \delta \geq 0$, i.e., $\omega_{\tilde{C}}(\tilde{\Delta}) \simeq \sigma^*\omega_C(\hat{\Delta})$ is nef. Furthermore, over the smooth locus of X, $\pi^*D_j = \frac{l'}{\gcd(l,d_i)} \hat{D}_j$, so by the definition of l', the coefficient of \hat{D}_j is divisible by l, hence there exists a divisor $\hat{\Gamma}$ on \tilde{X}, supported on $\text{supp } \hat{D}$, such that $\pi^*\Gamma = l'\hat{\Gamma}$. As before, by blowing up the ideal sheaf of $\hat{\Gamma}$ one may assume that it is a Cartier divisor. Then

$$\pi^*(\omega^l_{X/C} \otimes f_\ast \mathcal{N}^l(-\Gamma)) = \pi^*(\omega_{X/C} \otimes f_\ast \mathcal{N})^l(-l'\hat{\Gamma}) = (\pi^*(\omega_{X/C} \otimes f_\ast \mathcal{N})(-\hat{\Gamma}))^l,$$

so $\pi^*(\omega_{X/C} \otimes f_\ast \mathcal{N})(-\hat{\Gamma})$ is semi-ample on \tilde{X} and ample with respect to $\tilde{X} \setminus \hat{D}$. Finally let $\tilde{\omega} = \pi^*\omega_{X/C}(-\hat{\Gamma})$ and $\tilde{\mathcal{N}} = \sigma^*\mathcal{N}$. Using this notation $\tilde{\omega} \otimes \tilde{f}^*\tilde{\mathcal{N}}$ is semi-ample on \tilde{X} and ample with respect to $\tilde{X} \setminus \hat{D}$.

7.8.4 Let $\mathcal{K} = \omega_C(\hat{\Delta})^n$ where $n = \dim X$ and let $\tilde{\mathcal{K}} = \sigma^*\mathcal{K}$. Then by construction

$$\tilde{\omega} \otimes \tilde{f}^*(\tilde{\mathcal{N}} \otimes \tilde{\mathcal{K}}) \subseteq \pi^*(\omega_{X/C} \otimes f_\ast (\mathcal{N} \otimes \mathcal{K})).$$

Let $\mathcal{L} = \omega_{X/C} \otimes f_\ast (\mathcal{N} \otimes \mathcal{K}) \otimes f_\ast \omega_C(\hat{\Delta})^{-1}$ and $\tilde{\mathcal{L}} = \tilde{\omega} \otimes \tilde{f}^*\tilde{\mathcal{N}} \otimes \tilde{f}^*\omega_C(\tilde{\Delta})^{n-1} \subseteq \pi^*\mathcal{L}$. Since $\omega_C(\tilde{\Delta})$ is nef, \mathcal{L} and $\tilde{\mathcal{L}} \otimes \tilde{f}^*\omega_C(\tilde{\Delta})^{-(n-1)}$ are semi-ample on \tilde{X} and ample with respect to $\tilde{X} \setminus \hat{D}$. Hence $H^n(X, \omega_{X/C} \otimes f_\ast (\mathcal{N} \otimes \mathcal{K})) = 0$ by (6.4.2).

Finally take $\mathcal{N} = \omega_C(\hat{\Delta})^{-n} \otimes \omega_C$. Then $\mathcal{N} \otimes \mathcal{K} \simeq \omega_C$, and $\omega_{X/C} \otimes f_\ast (\mathcal{N} \otimes \mathcal{K}) \simeq \omega_X$. Now $H^n(X, \omega_X) \neq 0$, so $\deg(f_\ast \omega^m_{X/C}) \leq \deg \mathcal{N}^{-me(m)r(m)} = (\omega_C(\hat{\Delta})^n \otimes \omega_C^{-1})^{me(m)r(m)}$. \square
7.9 Corollary. Under the assumptions of (7.8), \(2g - 2 + \delta > 0\). In particular (0.12) holds.

Proof. Assume the contrary, i.e., either \(g = 0\) and \(\delta \leq 2\) or \(g = 1\) and \(\delta = 0\). First of all we may assume that \(h : Y \to C\) is semi-stable and in both cases there exists a finite endomorphism, \(\tau : C \to C\), of degree > 1 such that \(\tau\) is smooth over \(C \setminus \Delta\) and completely ramified over \(\Delta\). Hence \(f_\tau : X_\tau \to C\) again has the same properties as \(f\). In particular \(C_\tau \simeq C\) and \(h_\tau\) is smooth over \(C_\tau \setminus \Delta_\tau \simeq C \setminus \Delta\). However, \(\deg(h_\tau^*\omega^m_{Y_\tau/C}) = \deg(\tau) \cdot \deg(h^*\omega^m_{Y/C})\), contradicting the boundedness of \(\deg(h^*\omega^m_{Y/C})\). \(\square\)

7.10 Corollary. Under the assumptions of (7.8),

\[
\frac{\deg(f^*\omega^m_{X/C})}{\text{rk}(f^*\omega^m_{X/C})} = \frac{\deg(h^*\omega^m_{Y/C})}{\text{rk}(h^*\omega^m_{Y/C})} \leq 4 \cdot \dim X \cdot (2g - 2 + \delta) \cdot m \cdot e(m) \quad \text{for } m \geq \left(\frac{\dim X}{2}\right) + 2.
\]

Proof. By (7.9) \(2g - 2 + \delta > 0\), so

\[
\deg(\omega_C(\Delta)^{\dim X} \otimes \omega_C^{-1}) = \dim X (4g - 1 + \delta) - (2g - 2) \leq 4 \dim X (2g - 2 + \delta).
\]

Furthermore \(m_0(\dim X - 1) \leq \left(\frac{\dim X}{2}\right) + 2\) by [Kollár97, 5.8] (cf. [Angehrn-Siu95]). \(\square\)

7.10.1 Remark. Fujita’s conjecture suggests that (7.10) should hold for \(m \geq \dim X + 1\).

7.11 Corollary. Let \(h : Y \to C\) be a non birationally isotrivial family such that \(Y\) is a smooth projective variety of dimension \(n\), \(C\) is a smooth projective curve of genus \(g\) and there exists a finite subset \(\Delta \subset C\) such that \(h\) is smooth over \(C \setminus \Delta\). Assume that \(\omega_{Y/C}\) is \(h\)-nef and \(h\)-big. Then

\[
\frac{\deg(h^*\omega^m_{Y/C})}{\text{rk}(h^*\omega^m_{Y/C})} \leq 4 \cdot \dim X \cdot (2g - 2 + \delta) \cdot m \cdot e(\omega^m_{Y_{\text{gen}}}) \quad \text{for } m \geq \left(\frac{\dim X}{2}\right) + 2.
\]

Proof. By the relative base point free theorem [KMM87] there exist morphisms \(\phi : Y \to X\) and \(f : X \to C\) that satisfy (7.3), so the statement follows from (7.10). \(\square\)

7.12. Let \(D_h\) denote the moduli functor of canonically polarized normal projective varieties with rational Gorenstein singularities and Hilbert polynomial \(h(t)\). Let \(D_h^{(m)}\) denote the sub-moduli functor of varieties with \(\omega^m\) very ample cf. [Viehweg95, 1.20, 8.18].

\(D_h^{(m)}\) is locally closed by [Kawamata99] and is bounded by definition, so by [Viehweg95, 8.20] there exists a coarse quasi-projective moduli scheme \(D_h^{(m)}\) for \(D_h^{(m)}\). Furthermore by [Kollár90] there exists an integer \(p > 0\) and a very ample line bundle \(\lambda\) on \(D_h^{(m)}\) such that for any \(f : T \to S \in D_h^{(m)}(S)\), \(\lambda\) induces \(\det(f^*\omega^m_{T/S})^p\) on \(S\). Note also that by [Viehweg95, 5.17] \(e(\omega^p_{\mathcal{F}})\) is bounded on \(D_h^{(m)}\).

Let \(\bar{D}_h^{(m)}\) be the projective closure of \(D_h^{(m)}\) corresponding to the embedding given by \(\lambda\), and \(\mathcal{H} = \text{Hom}((C, C \setminus \Delta), (\bar{D}_h^{(m)}, D_h^{(m)}))\) the scheme parametrizing morphisms \(\Psi : C \to \bar{D}_h^{(m)}\) such that \(\Psi(C \setminus \Delta) \subset D_h^{(m)}\).

7.13 Theorem. There exists a subscheme of finite type \(T \subset \mathcal{H}\) that contains all points \([\Psi : C \to \bar{D}_h^{(m)}] \in \mathcal{H}\) induced by morphisms \(f : X \to C \in D_h^{(m)}(C)\) such that \(f_{\mid X \setminus f^{-1}(\Delta)}\) admits a simultaneous resolution. \(\square\)
References

[Angehrn-Siu95] U. Angehrn, Y.-T. Siu, Effective freeness and point separation for adjoint bundles, Invent. Math. 122 (1995), 291–308.

[Akizuki-Nakano54] Y. Akizuki, S. Nakano, Note on Kodaira-Spencer’s proof of Lefschetz theorems, Proc. Jap. Acad. 30 (1954), 266–272.

[Arakelov71] S. Arakelov, Families of algebraic curves with fixed degeneracies, Izv. A. N. SSSR 35 (1971), 1269-1293.

[Beauville81] A. Beauville, Le nombre minimum de fibres singulières d’une courbe stable sur P¹, Astérisque 86 (1981), 97–108.

[Bedulev-Viehweg00] E. Bedulev, E. Viehweg, On the Shafarevich conjecture for surfaces of general type over function fields, Inv. Math. 139 (2000), 603–615.

[Catanese-Schneider95] F. Catanese, M. Schneider, Polynomial bounds for abelian groups of automorphisms, Compositio Math. 97 (1995), 1–15.

[DuBois81] Ph. Du Bois, Complex de De Rham filtré d’une variété singulière, Bull. Soc. Math. France 109 (1981), 41–81.

[Ein97] L. Ein, Multiplier ideals, vanishing theorems and applications, Algebraic Geometry Santa Cruz 1995, Proc. Symp. Pure Math., vol. 62, 1997, pp. 203–219.

[Esnault-Viehweg86] H. Esnault, E. Viehweg, Logarithmic de Rham complexes and vanishing theorems, Inv. Math. 86 (1986), 161–194.

[Esnault-Viehweg90] H. Esnault, E. Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compositio Math. 76 (1990), 69–85.

[Esnault-Viehweg92] H. Esnault, E. Viehweg, Lectures on vanishing theorems, DMV Seminar vol. 20, Birkhäuser, 1992.

[Faltings83] G. Faltings, Arakelov’s Theorem for abelian varieties, Inv. Math. 73 (1983), 337–348.

[Goresky-MacPherson83] M. Goresky, R. MacPherson, Intersection homology II, Inv. Math. 71 (1983), 77-129.

[Grauert-Riemenschneider70] H. Grauert, O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263-292.

[GNPP88] F. Guillén, V. Navarro-Aznar, P. Pascual-Gainza, F. Puerta, Hyperrésolutions cubiques et descente cohomologique, Springer Lecture Notes, vol. 1335, 1988.

[Hartshorne66] R. Hartshorne, Residues and Duality, Lecture Notes in Math, vol. 20, Springer-Verlag, 1966.

[Hartshorne75] R. Hartshorne, On the De Rham cohomology of algebraic varieties, Publ. Math. IHES 45 (1975), 5-99.

[Kawamata82] Y. Kawamata, A generalisation of Kodaira-Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), 43–46.

[Kawamata82b] Y. Kawamata, Kodaira dimension of algebraic fiberspaces over curves, Inv. Math. 66 (1982), 57–71.

[Kawamata99] Y. Kawamata, Deformations of canonical singularities, J. Amer. Math. Soc. 12 (1999), 85–92.

[KMM87] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the Minimal Model Problem, Algebraic Geometry, Sendai, Adv. Stud. Pure Math. vol 10. T. Oda ed., Kinokuniya – North-Holland, 1987, pp. 283–360.

[Kodaira53] K. Kodaira, On a differential geometric method in the theory of analytic stacks, Proc. Nat. Acad. USA 39 (1953), 1268–1273.

[Kollár87] J. Kollár, Vanishing theorems for cohomology groups, Algebraic Geometry Bowdoin 1985, Proc. Symp. Pure Math. vol. 46, 1987, pp. 233–243.

[Kollár90] J. Kollár, Projectivity of Complete Moduli, J. Diff. Geom. 32 (1990), 235-268.

[Kollár97] J. Kollár, Singularities of pairs, Algebraic Geometry Santa Cruz 1995, Proc. Symp. Pure Math., vol. 62, 1997, pp. 221–287.

[Kovács96] S. J. Kovács, Smooth families over rational and elliptic curves, J. Alg. Geom. 5 (1996), 369–385.

[Kovács97] S. J. Kovács, On the minimal number of singular fibres in a family of surfaces of general type, J. reine angew. Math. 487 (1997), 171–177.

[Kovács00a] S. J. Kovács, Algebraic hyperbolicity of fine moduli spaces, J. Alg. Geom. 9 (2000), 165–174.

[Kovács00b] S. J. Kovács, A characterization of rational singularities, Duke Math. J. 102 (2000), 187–191.

[Kovács00c] S. J. Kovács, Rational, log canonical, Du Bois singularities II: Kodaira vanishing and small deformations, to appear in Comp. Math. (2000).
L. Migliorini, *A smooth family of minimal surfaces of general type over a curve of genus at most one is trivial*, J. Alg. Geom. 4 (1995), 353–361.

V. Navarro-Aznar, *Théorèmes d’annulation*, Hyperrésolutions cubiques et descente cohomologique, Springer Lecture Notes, vol. 1335, 1988, pp. 133–160.

K. Oguiso, E. Viehweg, *On the isotriviality of families of elliptic surfaces*, preprint (1999).

A. Parshin, *Algebraic curves over function fields*, Izv. A. N. SSSR 32 (1968), 1145–1170.

C. P. Ramanujam, *Remarks on the Kodaira vanishing theorem*, J. Indian Math. Soc. 36 (1972), 41–51.

V. V. Shokurov, *Letters of a bi-rationalist I. A projectivity criterion*, Birational Algebraic Geometry, Y. Kawamata, V. Shokurov eds., Contemp. Math., vol. 207, 1997, pp. 143–152.

K. E. Smith, *Vanishing, singularities and effective bounds via prime characteristic local algebra*, Algebraic Geometry Santa Cruz 1995, Proc. Symp. Pure Math., vol. 62, 1997, pp. 289–325.

J. H. M. Steenbrink, *Vanishing theorems on singular spaces*, Astérisque 130 (1985), 330–341.

E. Viehweg, *Vanishing theorems*, J. f. r. u. a. Math. 335 (1982), 1–8.

E. Viehweg, *Weak positivity and the additivity of the Kodaira dimension II.*, Classification of algebraic and analytic manifolds, Birkhäuser, 1983, pp. 567–590.

E. Viehweg, *Quasi-Projective Moduli of Polarized Manifolds*, Springer, 1995.

E. Viehweg, K. Zuo, *On the isotriviality of families of projective manifolds over curves*, preprint (2000).

Department of Mathematics, University of Chicago, Chicago, IL 60637

E-mail address: skovacs@member.ams.org