Characterization of four Latin American families confirms previous findings and reveals novel features of acid-labile subunit deficiency

Paula A. Scaglia | Ana C. Keselman | Débora Braslavsky | Lucía C. Martucci | Liliana M. Karabatas | Sabina Domené | Mariana L. Gutiérrez | María G. Ballerini | María G. Ropelato | Ángela Spinola-Castro | Adriana A. Siviero-Miachon | Juliana Saito Tartuci | María Sol Rodríguez Azrak | Rodolfo A. Rey | Héctor G. Jasper | Ignacio Bergadá | Horacio M. Domené

1 Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
2 Division of Pediatric Endocrinology, Federal University of Sao Paulo, UNIFESP/EPM, Sao Paulo, Brazil

Correspondence
Horacio M. Domené, PhD. Laboratorio de Biología Molecular, Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina. Email: hdomene@cedie.org.ar

Funding Information
Supported by PICT 2010 No 1916 Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) (Argentina), PICT 2013 No 142 (FONCYT) and SANDOZ International GmbH, Business Unit Biopharmaceuticals.

Summary
Objective: Acid-labile subunit deficiency (ACLSD), caused by inactivating mutations in both IGFALS gene alleles, is characterized by marked reduction in IGF-1 and IGFBP-3 levels associated with mild growth retardation. The aim of this study was to expand the known phenotype and genetic characteristics of ACLSD by reporting data from four index cases and their families.

Design: Auxological data, biochemical and genetic studies were performed in four children diagnosed with ACLSD and all available relatives.

Methods: Serum levels of IGF-1, IGFBP-3, acid-labile subunit (ALS), and in vitro ternary complex formation (ivTCF) were determined. After sequencing the IGFALS gene, pathogenicity of novel identified variants was evaluated by in vitro expression in transfected Chinese hamster ovary (CHO) cells. ALS protein was detected in patients’ sera and CHO cells conditioned media and lysates by Western immunoblot (WIB).

Results: Four index cases and four relatives were diagnosed with ACLSD. The following variants were found: p.Glu35Glyfs*17, p.Glu35Lysfs*87, p.Leu213Phe, p.Asn276Ser, p.Leu409Phe, p.Ala475Val and p.Ser490Trp. ACLSD patients presented low IGF-1 and low or undetectable levels of IGFBP-3 and ALS. Seven out of 8 patients did not form ivTCF.

Conclusions: This study confirms previous findings in ACLSD, such as the low IGF-1 and a more severe reduction in IGFBP-3 levels, and a gene dosage effect observed in heterozygous carriers (HC). In addition, father-to-son transmission (father compound heterozygous and mother HC), preservation of male fertility, and marginal ALS expression with potential involvement in preserved responsiveness to rhGH treatment, are all novel aspects, not previously reported in this condition.

KEYWORDS
acid-labile subunit deficiency, IGFALS, IGF-1, short stature
1 | INTRODUCTION

Acid-labile subunit deficiency (ACLSD; OMIM #615961), caused by inactivating mutations in both IGFALS gene alleles, is characterized by severely reduced circulating levels of IGF-I and IGFBP-3 associated with mild growth retardation (height \(-2\) to \(-3\) standard deviation score [SDS]). The condition is transmitted with an autosomal recessive pattern of inheritance in both consanguineous and nonconsanguineous families. About 30 patients from diverse ethnic backgrounds have been reported worldwide. Because acid-labile subunit (ALS) is essential for the stability of ternary complex with IGF-I and IGFBP-3 (or IGFBP-5), the lack of this protein results in the absence of the 150-kDa complex in the circulation and the instability of IGF-I and IGFBP-3. ACLSD patients present a lack of response to the acute and chronic administration of recombinant human GH (rhGH), both in terms of height velocity acceleration and increase in IGF-I levels. Pubertal delay and insulin insensitivity, have been frequently reported.

We evaluated the impact on height and on the IGF system of different IGFALS gene variants characterized in four families with ACLSD. The study of these families confirms previous findings such as a marked reduction in circulating levels of IGF-I, and a more severe reduction in IGFBP-3 levels, associated with mild growth impairment. Functional characterization for several of the IGFALS variants found in these patients has been previously reported. The effect of one combined variant, still unreported, on the synthesis and secretion of ALS by in vitro expression, was also evaluated.

2 | SUBJECTS AND METHODS

In the four index cases, clinical examination and routine laboratory analysis ruled out nonendocrinological causes of short stature. Evaluation of the GH-IGF axis revealed normal GH response to stimulation tests with low levels of IGF-I and low or undetectable IGFBP-3 and ALS levels. Evaluation of other pituitary axes was normal (Table S1).

2.1 | Cases descriptions

2.1.1 | Family 1

The proband (IV-4, Figure 1), a 13.8-year-old prepubertal boy referred for growth retardation, was born at term (Table S1), the fourth of nine siblings from consanguineous parents (first-degree cousins) of short normal height (Table 1). He always grew slightly below the 3rd percentile, but from the age of 12 years his growth velocity became markedly low. At 13.8 years, he presented a height of 134.7 cm (−2.65

![FIGURE 1 Familial pedigrees. Pedigree of the investigated families with acid-labile subunit deficiency. [Colour figure can be viewed at wileyonlinelibrary.com]]
TABLE 1
Auxology, evaluation of the IGF system, and IGFALS genotype of the index cases and their relatives

Subject (gender)	Age (y)	Tanner stage	Height cm SDS	IGF-I ng/mL SDS	IGFBP-3 μg/mL SDS	ALS mU/mL SDS	IGFALS genotype	
Family 1								
Father III-2	41	5	160.0	-1.88	98	2.7	1280	c.[1225C>T;1424C>T] p.[L409F;A475V] WT
Mother III-3	42	5	157.0	-0.61	118	3.1	1468	c.[1225C>T;1424C>T] p.[L409F;A475V] WT
IV-I (F)	19	5	153.0	-1.26	233	4.0	3516	WT
IV-2 (F)	17	4	149.8	-1.88	92*	2.7*	1400*	WT
IV-3 (F)	16	4	143.5	-2.69	47	<0.5	<100	c.[1225C>T;1424C>T] p.[L409F;A475V] c.[1225C>T;1424C>T] p.[L409F;A475V]
IV-4 (M)	14.4	1	136.2	-2.76	29	<0.5	<100	c.[1225C>T;1424C>T] p.[L409F;A475V] c.[1225C>T;1424C>T] p.[L409F;A475V]
IV-5 (F)	12.0	3	144.5	-0.68	229	3.3	1409	WT
IV-6 (F)	10.0	1	125.6	-1.45	85	2.0	809	c.[1225C>T;1424C>T] p.[L409F;A475V] WT
IV-7 (M)	6.0	1	110.0	-1.08	87	2.7	990	c.[1225C>T;1424C>T] p.[L409F;A475V] WT
IV-8 (M)	3.0	1	87.6	-1.46	<25	<0.5	<100	c.[1225C>T;1424C>T] p.[L409F;A475V] c.[1225C>T;1424C>T] p.[L409F;A475V]
IV-9 (F)	0.9	1	64	-1.72	N.A.	N.A.	N.A.	N.A.
Family 2								
Father I-1	48	5	178.0	0.18	147	3.4	1435	c.103dupG p.E35Gfs*17 WT
Mother I-2	44	5	154.5	-1.56	170	3.4	1335	c.827A>G p.N276S WT
II-1 (F)	5.0	1	99.5	-1.28	<25	<0.5	<100	c.103dupG p.E35Gfs*17 c.827A>G p.N276S

(Continues)
Table 1 (Continued)

Subject (gender)	Age (y)	Tanner stage	Height cm SDS	IGF- I ng/mL SDS	IGFBP-3 μg/mL SDS	ALS mU/mL SDS	IGFALS genotype
Father I-1	40	5	177.0 ± 0.03	125 ± -0.74	2.7 ± -2.20	1008 ± -1.64	c.103delG p.E35Kfs*87 WT
Mother I-2	43	5	160.0 ± -0.63	116 ± -0.94	2.9 ± -2.00	1071 ± -1.57	c.637C>T p.L213F WT
II-1 (F)	7	1	122.0 ± 0.09	172 ± 1.38	4.2 ± 1.58	1651 ± 0.80	WT WT
II-2 (M)	4.7	1	100 ± -1.67	35 ± -3.50	0.9 ± -3.47	227 ± -2.84	c.103delG p.E35Kfs*87 c.637C>T p.L213F
Family 4							
Father II-4	30	5	156.5 ± -2.40	25 ± -7.94	<0.5 ± -3.70	<100 ± -5.28	c.[1225C>T;1424C>T] p.[L409F,A475V] p.S490W
Mother II-8	25	5	162.3 ± 0.26	128 ± -1.52	2.6 ± -2.7	800 ± -2.26	c.103dupG p.E35Gfs*17 WT
III-1 (M)	5.9	1	116.5 ± -0.60	126 ± 0.12	2.0 ± -1.88	700 ± -1.90	c.1469C>G p.S490W WT
III-2 (M)	3.2	1	88.6 ± -2.30	28 ± -2.33	<0.5 ± -4.05	<100 ± -3.13	c.103dupG p.E35Gfs*17 c.1469C>G p.S490W
Aunt (II-5)	24	5	153.0 ± -1.26	27 ± -7.15	<0.5 ± -4.60	<100 ± -4.04	c.[1225C>T;1424C>T] p.[L409F,A475V] p.S490W
Uncle (II-6)	19	5	172.3 ± -0.05	370 ± 1.11	4.9 ± 0.27	1452 ± -1.33	WT WT
Grandmother (I-2)	56	5	156.4 ± -0.70	133 ± 0.11	2.7 ± -2.0	1044 ± -1.64	c.[1225C>T;1424C>T] p.[L409F,A475V] WT
Grandfather (I-1)	59.7	5	165.0 ± -1.15	106 ± -0.93	4.1 ± -0.58	798 ± -2.41	c.1469C>G p.S490W WT

Serum IGF- I, IGFBP-3 and acid-labile subunit (ALS) levels are expressed as standard deviation score (SDS). For families 1 and 4 height SDS was based on Argentinean growth references, and for families 2 and 3 on CDC (2000), National Center for Health Statistics, Centers for Database Control and Prevention. N.A., not analysed.

In patient IV-2 from family 1, biochemical profile was evaluated at the age of 22 y. Growth charts of ACLSD subjects are included in Supplementary Figures: subjects IV-4, IV-3 and IV-8 from family 1 as Figures S1, S5 and S6, respectively; subject II-1 from family 2 as Figure S2; subject II-2 from family 3 as Figure S3; and subject III-2 from family 4 as Figure S4.
SDS), a weight of 28.3 kg (~2.47 SDS) and a bone age of 12.8 years for 13.3 years. At the age of 14.6 years (height 138.0 cm, ~2.97 SDS, Tanner stage I - pubic hair 2, testicular volume 3 mL), he was started on rhGH treatment (0.32 mg/kg/wk). He was treated up to 18.1 years of age (height 154.3 cm, ~2.67 SDS, bone age 15.5 years), attaining a height of 155.3 cm at the age of 18.6 years (Figure S1).

2.1.2 | Family 2

The index case (II-1, Figure 1) was a 5.0-year-old girl, born at term (Table S1). She was the only child of nonrelated healthy parents of normal height (Table 1). Her height was within normal limits, slightly below her target height (TH ~0.73; Figure S2). She presented a 46,XX karyotype, a delayed bone age (3.5 years) and a normal brain MRI.

2.1.3 | Family 3

The index case was a 4.7-year-old boy (II-2, Figure 1). He was born at term (Table S1), the second child of healthy, nonconsanguineous parents of normal height (Table 1). At first evaluation, he presented a normal height (Table 1), 1.41 SD below TH. However, during an observation period of 3.2 years, he grew poorly, deteriorating his height from ~1.67 to ~2.36 SDS. At the age of 7.9 years he started rhGH treatment (0.15 mg/kg/wk) for 8 months, improving his height velocity from 3.1 to 7.5 cm/y (height gain 0.40 SD). After 5 months, out of treatment, he received rhGH for another 7 months, with poor compliance, attaining a height of ~1.92 SDS at the age of 9.7 years. (Figure S3).

2.1.4 | Family 4

The index case (III-2, Figure 1), a 2.4-year-old boy, was referred for short stature evaluation (Table 1 and Figure S4). He was born at 39 weeks of gestation, the second child from nonconsanguineous parents (Table S1). While his mother (II-8) and his 6-year-old brother (III-1) presented normal height, his father (II-4) was also short (Table S1). She was the only child of nonrelated healthy parents of normal height (Table S1). While his mother (II-8) and his 6-year-old brother (III-1) presented normal height, his father (II-4) was also short (Table S1).

2.2 | Endocrinological evaluation

Serum levels of GH, IGF-I and IGFBP-3 and antithyroperoxidase antibodies were determined by chemiluminescent immunometric assays (Immulite 2000, Siemens Healthcare Diagnostics, Llanberis, Gwynedd, UK). TSH, free T4 (FT4), ACTH, cortisol, PRL, LH, FSH, testosterone and insulin were measured by electrochemiluminescence (Cobas e411 analyzer; Roche Diagnostics GmbH, Mannheim, Germany). Serum ALS levels were evaluated by enzyme-linked immunosorbent assay (ELISA, Mediagnost, Reutlingen, Germany). IGF-I response to exogenous rhGH was also evaluated (Table S2).

2.3 | Molecular studies

Genomic DNA was isolated as previously described.14 The IGFALS gene coding sequence was amplified by PCR as previously reported12 and sequenced in an ABI 3730xl DNA analyzer (Macrogen Inc., Seoul, South Korea). Sequences were analysed based on the following NCBI reference sequences: NG_011778.1 (gene), NM_004970.2 (mRNA) and NP_004961.1 (protein) using the Mutation Surveyor Software v3.2 (State College, PA, USA).

Seventeen single nucleotide polymorphisms (SNPs) were characterized by sequencing IGFALS gene exons 1 and 2, intron 1, 950 bp of 5’ flanking region and 40 bp of 3’UTR. Only nine informative SNPs were used to define a specific microhaplotype. Two short tandem repeats (STRs) flanking the IGFALS gene locus, D16S3434 (21 Kb upstream) and D16S3024 (186 Kb downstream) were analysed by PCR amplification using a fluorescently labelled (FAM) primer, capillary electrophoresis and GeneScan.

2.4 | Site-directed mutagenesis and transient transfection assays

Mutants ALS (p.Leu409Phe, p.Ala475Val and the double mutant p.[Leu409Phe;Ala475Val]-ALS) were generated into an expression vector containing the wild type (WT) IGFALS cDNA (pCMV6-XL5-hIGFALS, Origene, Rockville, USA), using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA, USA) as previously described.13

Transfections were performed using Chinese hamster ovarian (CHO) cells as previously described and lysates and conditioned media (CM) were collected 48 hours after transfection for WIB analysis.13

2.5 | In vitro ternary complex formation (ivTCF)

In vitro ternary complex formation (ivTCF) was evaluated by size exclusion chromatography. In family 1, using a HiPrep 16/60 Sephacryl S-200HR column (Amersham Pharmacia Biotech AB, Uppsala, Sweden)12 and in families 2, 3 and 4 ivTCF using a HiLoad 16/600 Superdex 200 column (GE Healthcare, Bio-Sciences AB, Uppsala, Sweden) as previously described.2,13

2.6 | Western immuno blot

Acid-labile subunit in serum samples and those produced by CHO cells in vitro, was evaluated by WIB using a goat anti-ALS
TABLE 2 Height and IGF-1, IGFBP-3 and acid-labile subunit (ALS) levels in subjects with ALS deficiency (ACLSD), heterozygous carriers (HC) and wild type (WT)

	ACLSD (n=8)	HC (n=14)	WT (n=3)	P value KW test
Age (y)	9.7 (3.0 to 30.4)	40.5 (5.9 to 59.7)	19.0 (7.0 to 19.0)	0.0329
Height	-1.99** (-2.76 to -1.26)	-0.69*** (-1.88 to -0.26)	-0.05 (-1.26 to 0.09)	0.0051
IGF-1	-3.36** (-7.94 to -2.33)	-0.71*** (-1.69 to 0.12)	1.11 (-1.66 to 1.38)	0.0003
IGFBP-3	-4.05* (-6.10 to -3.47)	-1.86*** (-2.70 to -0.58)	0.27 (-0.51 to 1.58)	<0.0001
ALS	-3.13* (-5.28 to -2.78)	-1.44*** (-2.41 to 0.06)	0.80 (-1.33 to 1.40)	0.0002

Results are expressed as median standard deviation score (range) and groups were compared by Kruskal-Wallis (KW) test. Significant differences are given in comparison with the reference population (zero). *P<0.05, **P<0.01 and ***P<0.005.

2.7 | Statistical analysis

Height, serum levels of IGF-1, IGFBP-3 and ALS, expressed as SDS were compared among ACLSD, heterozygous carriers (HC), and wild-type (WT) subjects using Kruskal-Wallis test. In addition, median SDS values for each group were compared with the hypothetical zero values for the reference population by Wilcoxon signed rank test. Values of P<0.05 were considered significant.

3 | RESULTS

3.1 | Biochemical profile

All index cases presented normal stimulated GH, low IGF-1 and extremely low or undetectable IGFBP-3 and ALS levels (Table 1, Table S1). Severe IGF-1 deficiency with undetectable levels of IGFBP-3 and ALS was also found in four relatives: two siblings in family 1 (IV-3 and IV-8), the father (II-4) and the paternal aunt (II-5) in family 4 (Table 1 and Figure 1). IGF generation test was performed in index cases from families 2, 3 and 4 (Table S2). Responses of IGF-1 and IGFBP-3 to rhGH administration were low or absent. One father (II-4, family 4), presented a subnormal increase in IGF-1 levels with no changes in either IGFBP-3 or ALS levels (Table S2).

3.2 | Sequence analysis of the IGFALS gene

Sequencing of the IGFALS gene revealed that all four index cases were either homozygous or compound heterozygous for a presumably pathogenic IGFALS gene variant (Table 1). Patient IV-4 from family 1 was homozygous for two different missense variants present in the same allele: c.[1225C>T;1424C>T], p. [Leu409Phe;Ala475Val]. While one of his older sisters (IV-3) and a younger brother (IV-8) were also homozygous for the same variants, his parents (III-2 and III-3), three sisters (IV-2, IV-5 and IV-6) and a brother (IV-7) were HC. Only the oldest sister (IV-1) was homozygous WT (Figure 1).

In family 2, patient II-1 was compound heterozygous for a duplication (c.103dupG), predicting a frameshift mutation (p.Glu35Glyfs*17) and a missense variant (c.827A>G; p. Asn276Ser). The father was HC for the duplication and the mother, HC for the missense mutation (Figure 1).

Patient II-2 from family 3 was compound heterozygous for a deletion (c.103delG) predicting a frameshift mutation (p.Glu35Lysfs*87) and a missense variant (c.637C>T; p.Leu213Phe), while his parents were HC, the father for the deletion and the mother for the missense mutation. The only sister was homozygous WT (Figure 1).

Family 4 presented a more complex mutational result, and the patient (III-2) harboured two different heterozygous gene variants: a transition at c.1469C>G, predicting a missense point mutation (p.Ser490Trp); and a duplication (c.103dupG, p.Glu35Glyfs*17). The mother (II-8) was HC for the duplication (c.103dupG). The father (II-4) resulted compound heterozygous, with one allele carrying the c.1469C>G; p.Ser490Trp variant, and two different additional variants in the other allele: c.[1225C>T;1424C>T], p.[Leu409Phe;Ala475Val]. The patient’s brother was HC for the p.Ser490Trp variant. The study of the father’s relatives, revealed that the grandmother (I-2) was HC for the p.[Leu409Phe;Ala475Val] and the grandfather (I-1) HC for the p.Ser490Trp variants. The younger uncle (II-6) was homozygous WT while a paternal aunt (II-5) turned out to present the same genotype as the father (Table 1, Figure 1).

3.3 | Gene dosage effect

Height as well as IGF-1, IGFBP-3 and ALS were significantly different among ACLSD patients, HC and WT subjects. Although these parameters were only significantly lower in ACLSD compared to WT relatives, ACLSD and HC showed height, IGF-1, IGFBP-3 and ALS levels significantly below zero SDS, suggesting a gene dosage effect (Table 2).

3.4 | Western immunoblot (WIB)

Serum ALS WIB (Figure 2, Panel A) showed that no 84- to 86-kD ALS protein band could be detected in three out of four index cases: IV-4 (family 1), II-1 (family 2) and II-3 (family 4), and in four of their relatives: IV-3 and IV-8 (family 1) and II-4 and II-5 (family 4), all of them homozygous or compound heterozygous for IGFALS variants. Patient II-2 (family 3) presented a faint but clear 84-86-kD band indicating the presence of some ALS protein. Heterozygous carriers presented an 84-86-kD band less intense than that corresponding to a normal control.
In transfected CHO cells (Figure 2, Panel B), WIB revealed that WT-ALS was present mostly in the extracellular compartment (CM) at 48 hours post-transfection, although a faint band of lower molecular weight was visible in the intracellular compartment, probably related to the lesser extent of glycosylation. While p.Ala475Val-ALS variant showed a similar pattern of expression as WT-ALS, no discernible band corresponding to ALS protein was observed in the CM or in the lysate of CHO cells transfected with either the p.Leu409Phe-ALS variant or the double mutant p.[Leu409Phe;Ala475Val]-ALS variant, indicating that the lack of ALS in the patient could be attributed to the pathogenic effect of the p.Leu490Phe variant.

3.5 | In vitro ternary complex formation (ivTCF)

Profiles corresponding to ivTCF are shown in Figure 3. In family 1, ivTCF was performed with the addition of 6 μg/mL rhIGFBP-3 on Sephacryl column. In subjects presenting ACLSD (IV-3, IV-4 and IV-8), no peak corresponding to the ternary complex was detected, with most of the complexed 125I-IGF-I eluting in the 50-kD peak corresponding to the binary complex formed with IGFBPs. Heterozygous carriers (III-1, III-2, IV-5, IV-6 and IV-7) presented peaks corresponding to ternary and binary complex of similar magnitude, while the only homozygous WT subject from this family (IV-1) showed a predominant 150-kD peak corresponding to the ternary complex.

In the other three families, ivTCF was performed on Superdex-200 columns. Patient II-1 (family 2) showed no detectable 150-kD peak and her parents had both a clear peak corresponding to ternary complexes. In family 3, patient II-2 presented a reduced but detectable ternary complex, while his parents and his older sister all presented predominant ternary complex peaks.

In family 4, size-exclusion chromatography revealed absence of 150-kD peak in the three ACLSD subjects (III-2, II-4, and II-5; Figure 3, panel A), whereas normal ternary complexes were observed in HC (I-2, II-8, and III-1) as well as in the only homozygous WT subject from this family (II-6; Figure 3, panel B).

3.6 | IGFALS polymorphism analysis

Given the unusual finding of two uncommon gene variants c.[1225C>T;1424C>T] in the same allele in families 1 and 4, a polymorphism analysis was undertaken to determine whether these two variants arose independently or they originated from a common ancestor. The analysis of nine informative SNPs and two CA repeats (D16S3034 and D16S3024) revealed the common haplotyp e (CA)_{15}/acgaaccgt/(CA)_{22} or (CA)_{23}, differing
only by one CA-repeat in D16S3024, in all subjects carrying the c.[1225C>T;1424C>T] double variant allele. This finding strongly suggests a founder effect for these variants, originated from a common ancestor (Table 3).

4 | DISCUSSION

In the present study, we have characterized ACLSD in four children presenting either short stature, normal stature but shorter than mid-parental height, or even normal height adequate to familial height. All cases presented normal GH-stimulated levels and severe IGF-I and IGFBP-3 deficiencies. Despite this variable impact on postnatal growth, the lack of ALS had a consistent effect on the circulating IGF system resulting in diminished levels of IGF-I with a more severe reduction in IGFBP-3.

The lack of ALS, resulting in the impairment of ivTCF, a landmark of this condition, was observed in seven of eight ACLSD subjects in this study. Delayed puberty, frequently observed in ACLSD was present in the male index case of family 1 (4 mL of testicular volume at the age of 15 years) and a relatively late thelarche in his older sister (11.5 years). The remaining ACLSD subjects were too young to characterize the time of puberty (three males of 3.0, 3.2 and 4.7 years old and a female 5.0 years old). Insulin resistance, a frequent finding in ACLSD, was not present in the index cases.

From the original report in 2004, at least 30 patients with complete ACLSD have been characterized. In autosomal recessive genetic diseases, patients arise usually in consanguineous families being both parents' carriers for the same pathogenic variants. However, in ACLSD more than 40% of the patients reported were compound heterozygous for two different variants inherited from nonrelated parents. This finding suggests that pathogenic IGFALS variants could be present in the general population, probably because they would not be under a strong negative selection pressure. Our previous finding of heterozygous inactivating IGFALS variants in idiopathic short stature and even in normal control children, support this interpretation.

Reinforcing this observation, three of four index cases from this study were compound heterozygous for different IGFALS gene variants, while their parents, obligate HC, were nonrelated. Only in family 1, the parents were first-degree cousins, carrying the same genetic variants.

Characterization of two ACLSD undiagnosed siblings in family 1, and the finding of two ACLSD adults in family 4, underline the importance to extend biochemical and genetic studies to all available relatives. Because ACLSD subjects could present a mild phenotype, it is not unusual to find undiagnosed ACLSD siblings and even adults. Family 4 represents the first example of father-to-son transmission of ACLSD, not due to an autosomal dominant pattern of inheritance, but because the proband was the offspring of a father compound heterozygous for two different pathogenic variants and a mother HC for
Family	Subject	D16S3434	rs2745206	rs2473466	rs2745205	rs9923699	rs3817902	rs12445517	rs186939	rs180753	rs3751893	D16S3024	IGFALS variant
Family 1	III-2	15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]
		10	A	C	G	A	A	C	C	G	C	24	WT
		12	G	T	C	G	G	T	G	C	C	26	WT
		15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]
		10	A	C	G	A	A	C	C	G	C	24	WT
		12	G	T	C	G	G	T	G	C	C	26	WT
		15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]
		10	A	C	G	A	A	C	C	G	C	24	WT
		12	G	T	C	G	G	T	G	C	C	26	WT
		15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]
		15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]
		15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]
		15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]
		12	G	T	C	G	G	T	G	C	C	26	WT
		15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]
		12	G	T	C	G	G	T	G	C	C	26	WT
		15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]
		15	A	C	G	A	A	C	C	G	T	23	p.[L409F;A475V]

(Continues)
Family	Subject	D16S3434	D16S3024	IGFALS variant									
		rs2745206	rs2473466	rs2745205	rs9923699	rs3817902	rs12445517	rs186939	rs180753	rs3751893	D16S3024		
Family 4	I-1	14	G	T	C	G	G	T	G	C	C	25	p.S490W
		15	A	C	G	A	A	C	C	G	T	31	WT
	I-2	15	A	C	G	A	A	C	C	G	T	22	p.[L409F;A475V]
		13	G	T	C	G	G	T	G	C	C	28	WT
	II-4	15	A	C	G	A	A	C	C	G	T	22	p.[L409F;A475V]
		14	G	T	C	G	G	T	G	C	C	25	p.S490W
	II-5	15	A	C	G	A	A	C	C	G	T	22	p.[L409F;A475V]
		14	G	T	C	G	G	T	G	C	C	25	p.S490W
	II-6	15	A	C	G	A	A	C	C	G	T	31	WT
		13	G	T	C	G	G	T	G	C	C	28	WT
	II-8	12	G	T	C	G	G	T	G	C	C	21	p.E35Gfs*17
		12	G	T	C	G	G	T	G	C	C	24	WT
	III-1	12	G	T	C	G	G	T	G	C	C	24	WT
		14	G	T	C	G	G	T	G	C	C	25	p.S490W
	III-2	12	G	T	C	G	G	T	G	C	C	21	p.E35Gfs*17
		14	G	T	C	G	G	T	G	C	C	25	p.S490W

We found five different alleles ranging from 10 to 15 CA-repeats for the D16S3034 microsatellite, while for the D16S3024 microsatellite, eight different alleles ranging from 21 to 31 CA-repeats, were detected. All the individuals carriers for the p.[L409F;A475V] double variant allele present a similar haplotype: (CA)$_{15}$/acgaaccgt/(CA)$_{22}$ or (CA)$_{23}$ (shaded in grey).
another pathogenic variant in the IGFALS gene. Incidentally, this family revealed that male fertility is preserved in this condition. A situation that, associated with the mild phenotype and no evidence of a serious deleterious effect on health or lifespan, could explain the transmission of pathogenic IGFALS variants from one generation to another.

The finding of two variants in cis (p.Leu409Phe and p.Ala475Val) in two nonrelated families of different ethnic background opens the question as to the origin of this unusual variant combination. In family 1, the two great-grand parents of the index case were Sephardic Jews from Aleppo, Syria, that migrated to Argentina at the beginning of the twentieth century. In family 4, the grandmother, carrier for these same variants, had Spanish ancestors. The finding of a similar haplotype with nine intragenic SNPs and two flanking microsatellites suggests a gene-founder effect with likely a common ancestor from Spain. A similar finding of a common ancestor has been reported for the E180 splice variant in the GHR gene in patients with Laron syndrome from different countries.15

The auxological evaluation and the characterization of the IGF system in all eight ACLSD subjects, fourteen HC and three WT relatives revealed that HC for pathogenic IGFALS variants were 0.6 SD shorter than WT, presenting IGF-I, IGFBP-3 and ALS levels intermediate between ACLSD and WT relatives. A similar difference in height of 0.9 SD between HC and WT relatives has been reported.2 However, these observations are limited by the relatively small number of WT subjects and due to the different ages among ACLSD patients, HC and WT subjects. These data confirm previous findings of a gene dosage effect of IGFALS gene on the IGF system.2,16 probably related to the requirement of a molar excess of ALS to stabilize circulating IGF-I in ternary complexes.7

This study also revealed the first subject (II-2, family 3) compound heterozygous for two pathogenic IGFALS variants retaining a marginal expression of ALS protein. While the p.Glu35Lysfs*87 (a pathogenic variant associated with complete ACLSD when present in homozygosis)1 was not expressed in vitro, the novel p.Leu213Phe, although partially synthesized in vitro was not secreted.13 A similar effect on preserved synthesis but complete lack of secretion has been previously reported for the p.Asp440Asn-ALS variant, albeit for this particular variant a more pronounced intracellular accumulation was reported.17

Whether the finding of detectable levels of ALS in this patient, preserving the ability to form some ternary complexes, could be explained by marginal in vivo secretion of p.Leu213Phe-ALS, or alternatively, to some regression to the WT allele by a revertant mosaicism mechanism,18 remains to be elucidated. This marginal secretion of ALS protein may have practical implications. Previous studies have demonstrated a limited effect of rhGH treatment in ACLSD patients to improve adult height.3 The index case of family 1 (IV-4), had a very poor response to rhGH improving his height only 0.3 SDS after 3.5 years of rhGH treatment. The index case from family 3 (II-2) lost 0.72 SD from 4.7 to 7.8 years of age and gained 0.44 SD in 1.9 years receiving rhGH for only 1.25 years with partial compliance. In addition, measurements obtained 2 weeks after the last rhGH injection showed normalization of IGF-I levels (88 ng/mL, ~0.98 SDS) and measurable IGFBP-3 levels (1.0 μg/mL, ~3.27 SDS). It could be speculated that this increase in IGF-I levels could be responsible for the observed growth acceleration.

Previously, we reported the impact of seven different IGFALS variants found in these families by in vitro expression.13 Five of these variants (p.Glu35Lysfs*87, p.Glu35Glyfs*17, p.Asn276Ser, p.Ser490Trp and p.Leu409Phe) were not synthesized and secreted in vitro, confirming they all are pathogenic variants. Variant p.Leu213Phe retained some ability to be synthesized in vitro but with no evidence of secretion. Variant p.Ala475Val-ALS showed a similar pattern of expression as WT-ALS.

Variants p.Leu409Phe and p.Ala475Val were found in the same allele both in homozygosis (three subjects in family 1) or as compound heterozygous (three subjects from family 4). To clarify the effect of these two variants on synthesis and secretion of ALS, they were expressed individually and combined. While variant p.Leu409Phe was not synthesized, variant p.Ala475Val preserved the ability to be synthesized and secreted. The double variant p.Leu409Phe:Ala475Val was not expressed in vitro, indicating that the pathogenicity of this double variant is caused by p.Leu409Phe variant.

In conclusion, this study not only confirms previous findings of ACLSD, but also reveals novel aspects such as: (i) the first report of a father-to-son transmission, not as a consequence of an autosomal dominant pattern of inheritance (the father was compound heterozygous and the mother HC for different IGFALS variants); (ii) male fertility is preserved in this condition; and (iii) ACLSD children retaining some ALS expression, may increase IGF-I on rhGH treatment. Whether this might improve adult height, remains to be determined.

ACKNOWLEDGEMENT

We are grateful to the children, parents and relatives who agreed to take part in this study.

DISCLOSURE STATEMENT

The authors have nothing to disclose.

REFERENCES

1. Domené HM, Bengolea SV, Martínez AS, et al. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N Engl J Med. 2004;350:570-577.
2. Fofanova-Gambetti OV, Hwa V, Wit JM, et al. Impact of heterozygosity for acid-labile subunit (IGFALS) gene mutations on stature: results from the international acid-labile subunit consortium. J Clin Endocrinol Metab. 2010;95:4184-4191.
3. Domené HM, Hwa V, Argente J, et al. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences. Horm Res. 2009;72:129-141.
4. Schreiner F, Schoenberger S, Koester B, Domené HM, Woelfle J. Novel acid-labile subunit (IGFALS) mutation p. T145K (c.434C>A) in a patient with ALS deficiency, normal stature and immunological dysfunction. Horm Res Paediatr. 2013;80:424-30.
5. Hess O, Khayat M, Hwa V, et al. A novel mutation in IGFALS, c.380T>C (p.L127P), associated with short stature, delayed puberty, osteopenia and hyperinsulinemia in two siblings: insights into the roles of insulin growth factor-1 (IGF1). Clin Endocrinol (Oxf). 2013;79:838-844.
6. Poukoulidou T, Kowalczyk J, Metherell L, De Schepper J, Maes M. A novel homozygous mutation of the IGFALS gene in a female adolescent: indirect evidence for a contributing role of the circulating IGF-I pool in the pubertal growth spurt. *Horm Res Paediatr*. 2014;81:422-427.

7. Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. *J Endocrinol*. 2001;170:63-70.

8. Domené HM, Scaglia PA, Lteif A, et al. Phenotypic effects of null and haploinsufficiency of acid-labile subunit in a family with two novel IGFALS gene mutations. *J Clin Endocrinol Metab*. 2007;92:4444-4450.

9. Heath KE, Argente J, Barrios V, et al. Primary acid-labile subunit deficiency due to recessive IGFALS mutations results in postnatal growth deficit associated with low circulating insulin growth factor (IGF)-I, IGF binding protein-3 levels, and hyperinsulinemia. *J Clin Endocrinol Metab*. 2008;93:1616-1624.

10. van Duyvenvoorde HA, Kempers MJE, Twickler THB, et al. Homozygous and heterozygous expression of a novel mutation of the acid-labile subunit. *Eur J Endocrinol*. 2008;159:113-120.

11. Fofanova-Gambetti OV, Hwa V, Kirsch S, et al. Three novel IGFALS gene mutations resulting in total ALS and severe circulating IGF-I/IGFBP-3 deficiency in children of different ethnic origins. *Horm Res*. 2009;71:100-110.

12. Domené HM, Scaglia PA, Martinez AS, et al. Heterozygous IGFALS gene variants in idiopathic short stature and normal children: impact on height and the IGF system. *Horm Res Paediatr*. 2013;80:413-423.

13. Martucci LC, Gutiérrez ML, Karabatas LM, et al. Assessment of pathogenicity of natural IGFALS gene variants by in silico bioinformatics tools and in vitro functional studies. *Mol Cell Endocrinol*. 2016;429:19-28.

14. Del Sal G, Manfioletti G, Schneider C. The CTAB-DNA precipitation method: a simple common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. *Biotechniques*. 1989;7:514-518.

15. Gonçalves FT, Fridman C, Pinto EM, et al. The E180splice mutation in the GHR gene causing Laron syndrome: witness of a Sephardic Jewish exodus from the Iberian Peninsula to the New World? *Am J Med Genet A*. 2014;164A:1204-8.

16. Höglér W, Martin DD, Crabtree N, et al. IGFALS gene dosage effects on serum IGF-I and glucose metabolism, body composition, bone growth in length and width, and the pharmacokinetics of recombinant human IGF-I administration. *J Clin Endocrinol Metab*. 2014;99:E703-12.

17. Firth SM, Yan X, Baxter RC. D440N mutation in the acid-labile subunit of insulin-like growth factor complexes inhibits secretion and complex formation. *Mol Endocrinol*. 2011;25:307-314.

18. Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. *Nat Rev Genet*. 2013;14:307-320.

19. Ballerini MG, Domené HM, Scaglia P, Martínez A, Keselman A, Jasper HG, & Ropelato MG. Association of serum components of the GH-IGFs-IGFBPs system with GHR-exon 3 polymorphism in normal and idiopathic short stature children. *Growth Horm IGF Res*. 2013;23:229-236.

20. Lejarraga H, del Pino M, Fano V, Caino S, Cole TJ. Growth references for weight and height for Argentinian girls and boys from birth to maturity: incorporation of data from the World Health Organisation from birth to 2 years and calculation of new percentiles and LMS values. *Arch Argent Pediatr*. 2009;107:126-133.

21. 2000 CDC growth charts for the united states: methods and development. (https://www.cdc.gov/nchs/data/series/sr_11/sr11_246.pdf). Accessed January, 2017.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Scaglia PA, Keselman AC, Braslavsky D, et al. Characterization of four Latin American families confirms previous findings and reveals novel features of acid-labile subunit deficiency. *Clin Endocrinol*. 2017;87:300–311. https://doi.org/10.1111/cen.13361