Article

Energy Storage System Analysis Review for Optimal Unit Commitment

Harun Or Rashid Howlader 1,* , Oludamilare Bode Adewuyi 1, Ying-Yi Hong 2, Paras Mandal 3, Ashraf Mohamed Hemeida 4, and Tomonobu Senjyu 1

1 Graduate School of Science and Engineering, University of the Ryukyus, Okinawa 903-0213, Japan; adewuyiobode@gmail.com (O.B.A.); b985542@tec.u-ryukyu.ac.jp (T.S.)
2 Department of Electrical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; yyhong@ee.cycu.edu.tw
3 Department of Electrical and Computer Engineering, University of Texas, El Paso, TX 79968, USA; pmandal@utep.edu
4 Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt; ashraf@aswu.edu.eg
* Correspondence: h.h.howlader@ieee.org

Received: 20 November 2019; Accepted: 22 December 2019; Published: 29 December 2019

Abstract: Energy storage systems (ESSs) are essential to ensure continuity of energy supply and maintain the reliability of modern power systems. Intermittency and uncertainty of renewable generations due to fluctuating weather conditions as well as uncertain behavior of load demand make ESSs an integral part of power system flexibility management. Typically, the load demand profile can be categorized into peak and off-peak periods, and adding power from renewable generations makes the load-generation dynamics more complicated. Therefore, the thermal generation (TG) units need to be turned on and off more frequently to meet the system load demand. In view of this, several research efforts have been directed towards analyzing the benefits of ESSs in solving optimal unit commitment (UC) problems, minimizing operating costs, and maximizing profits while ensuring supply reliability. In this paper, some recent research works and relevant UC models incorporating ESSs towards solving the abovementioned power system operational issues are reviewed and summarized to give prospective researchers a clear concept and tip-off on finding efficient solutions for future power system flexibility management. Conclusively, an example problem is simulated for the visualization of the formulation of UC problems with ESSs and solutions.

Keywords: Energy storage systems; power system flexibility management; renewable energy generations; load leveling; optimal unit commitment

1. Introduction

Energy production using renewable energy resources has been on the increase on a daily basis all over the world and will likely continue to increase over the next few years; on the other hand, fossil-fuel-based energy productions will likely decline. It is expected, in the future, that the lion’s share of energy will be produced from alternative energy sources, such as solar and wind energy. There are many reasons behind the increasing renewable generation installations. For example, installations of renewable energies are increasing for saving fossil fuels [1]. Additionally, urbanization and industrialization are increasing the demand for fossil fuels; consequently, the price of fossil fuels is rising all over the world. In addition, the demand for electricity has been growing worldwide because of population growth and other socioeconomic factors [2]. Moreover, deregulation and liberalization of the power market have led to growing competition among power producers [3,4]; therefore, power companies are trying to reduce the operational costs of
their services. Typically, the operational costs of renewable generations are comparatively lower than fossil-fuel-based thermal generations (TGs). Furthermore, burning fossil fuels continuously for power generation produces enormous CO$_2$ and other greenhouse gas emissions into the environment [5]. The United States Environmental Protection Agency (EPA) demonstrated that around 32% of CO$_2$ emissions are caused by fossil-fuel-based power generation [6]. However, power generation companies still depend mainly on fossil fuels to ensure adequacy, reliability, and flexibility of supply. TGs make use of a large quantity of fossil fuels to generate electricity; for instance, the U.S. Energy Information and Administration (EIA) states that the United States (U.S.) is producing more than 65% of its electricity by burning fossil fuels [7], having already installed (and planning to install) a large number of renewable generators.

However, both wind turbine generators (WTGs) and PV suffer from what is known as intermittency [8–12] because winds have a nasty habit of abruptly dying or springing up, while the sun will also disappear behind clouds and injects no power at night from PV. Sometimes due to these reasons, within short bursts of several seconds, there may be too much power, too little power, or total blackout within the grid. The power output of WTG and PV depends on weather conditions, and power smoothing of WTG and PV outputs remains a technically challenging task [13,14]. WTG has huge ramp up and down requirements, and PV generates power only during the day, besides, they have the uncertainty of power output [15–19]. Renewable generation also has frequency distortions due to the continuously changing mismatches between the generation and demand, instantaneously [20,21]. Due to these problems, the effective load after considering the power output from the renewable energy generators as a negative load fluctuates widely. Hence, the other fossil-fuel-based TGs cannot run optimally since achieving an effective optimal unit commitment (UC) becomes very difficult as a result of load uncertainties [22]. This is because the load curve becomes intractable after the penetration of the renewable generators and the peak and off-peak gap increase in most cases; therefore, TG in the grid needs to be frequently turned off and on. Although coal-based or quick-response generators can be run as spinning reserves for solving these kinds of problems, these generators are polluting the environment massively. Therefore, energy storage systems (ESSs) have currently been installed in the smart grid to smoothing the generators’ power output [23]. Several research works have been carried out on the configuration and development of sufficient energy storage facilities for power system flexibility, reliable operation, and management [24].

This review paper elaborates on the contribution of the ESS for optimal UC, which may involve the minimization of the operational costs or maximization of profit of the power systems under large-scale or small-scale renewable energy penetrations. Typically, renewable generations come with immense technical, economic, and environmental benefits for power system operators as well as the entire society. However, some technical challenges come with renewable energy integration, as highlighted in the previous paragraphs. Most of these problems that are directly related to optimal UC have been solved using the effective deployment of different energy storage facilities, and many review articles have already been published for summarizing the UC model. However, a thorough review of recent works of literature that have investigated the impacts associated with UC models when high penetrations of renewable energy are considered in the power system is reported in [25]. Another research is conducted to find a probabilistic model for UC operation to quantify the effect of the electric vehicle to the grid in different operational times in contrast. The research focuses on several producers and consumers within a microgrid based on cost-benefit analysis and it makes a comparison of the results with a deterministic model [26]. In Reference [27], the literate review for the past several years to demonstrate the modeling and computational aspects of stochastic optimization-based UC are reported. Reference [28] conducts a clear review by citing many peer-reviewed papers and then summarizes the latest techniques employed in optimizing UC problems for both stochastic and deterministic loads. Reference [29] tries to give a structured bibliographic survey for UC problems by applying a stochastic programming approach. However, this particular review work does not focus on ESSs contribution to the UC program.
2. A Short Literature Review on UC Models

The problem of UC is to determine which units of system generators to deploy and interconnect over the next operational periods, which is commonly 24 or 48 h; sometimes, it is also possible to solve UC for a week at a time. The problem is complex and can become more complicated by the consideration of intertemporal constraints. Several UC problems have been designed for solving various powers system operation problems, as reflected on the objective functions, simulation conditions, and optimization methods [30–32]. Succinctly, the UC problem in the power system can be defined as a broad set of mathematical optimization problems, where the production of a combination of power generators is coordinated in order to achieve some common targets. The usual targets are to maximize profit, minimize cost, and more.

2.1. Profit Maximization UC

The restructuring in conventional power systems has resulted in more challenges for the power producer. It becomes an essential strategy for the power company to make an optimal schedule for generations to survive in a competitive deregulated market. Many researchers have published articles related to profit maximization, which are summarized below [33–35].

2.1.1. Objective Function

The following problem formulation for UC in Equations (1) and (2) show the objective function for profit maximization.

$$\max F = \sum_{t=1}^{T} \sum_{g=1}^{G} \left[FP_t (P_t^g) - \left(f^g (P_t^g) + (SUC^g_t \left(1 - uc_{t-1}^g \right)) \right) \right] uc_t^g.$$ \hspace{1cm} (1)

$$f^g (P_t^g) = a^g + b^g P_t^g + c^g (P_t^g)^2 \hspace{1cm} g \in [1, G], \ t \in [1, T].$$ \hspace{1cm} (2)

$$SUC^g \begin{cases} HS^g; & MTD^g \leq Toff^g_t \leq MTD^g + TOC^g, \\ CS^g; & Toff^g_t \geq MTD^g + TOC^g, \end{cases} \hspace{1cm} g \in [1, G], \ t \in [1, T].$$ \hspace{1cm} (3)

2.1.2. Decision Variables

The decision variables are two types; the binary variables \((uc_t^g)\) 0 and 1 for the OFF and ON status of system generator units, respectively, and the real decision variable \(P_t^g\) that gives the scheduled power (MWh) of \(g^{th}\) committed unit at hour \(t\) (when \((uc_t^g) = 1\)). The real decision variable range is \([p_{g_{\text{min}}}^g, p_{g_{\text{max}}}^g]\).

2.1.3. UC Constraints

(i) Spinning reserve constraint

$$\sum_{g=1}^{G} p_{g_{\text{max}}}^g uc_t^g \leq LD_t + MSR_t \hspace{1cm} g \in [1, G], \ t \in [1, T].$$ \hspace{1cm} (4)

(ii) Minimum OFF time and ON time constraints

$$\left(Ton_t^g - MUT^g \right) (uc_{t-1}^g - uc_t^g) \geq 0 \hspace{1cm} g \in [1, G], \ t \in [1, T].$$ \hspace{1cm} (5)

$$Ton_t^g = \left(Ton_{t-1}^g + 1 \right) uc_t^g \hspace{1cm} g \in [1, G], \ t \in [1, T].$$ \hspace{1cm} (6)
\begin{align*}
\text{(Toff}_i^g - \text{MDT}_i^g)\left(\text{uc}_{i-1}^g - \text{uc}_{i-1}^g\right) & \geq 0 \quad g \in [1, G], \quad t \in [1, T]. \quad (7) \\
\text{Toff}_i^g - \text{(Toff}_i^g - 1)\left(1 - \text{uc}_{i-1}^g\right) & \geq 0 \quad g \in [1, G], \quad t \in [1, T]. \quad (8)
\end{align*}

(iii) Initial status of Unit
\begin{equation}
\text{uc}_{i=0}^g = \begin{cases}
0; & IS^g < 0, \\
1; & IS^g > 0, \\
g \in [1, G].
\end{cases} \quad (9)
\end{equation}

(iv) Load Demand Constraints
\begin{equation}
\sum_{g=1}^{G} P_{i}^g \text{uc}_{i}^g \leq L_t \quad g \in [1, G], \quad t \in [1, T]. \quad (10)
\end{equation}

(v) Generator’s output power constraints
\begin{equation}
P_{\text{min}}^g \leq P_{i}^g \leq P_{\text{max}}^g \quad g \in [1, G], \quad t \in [1, T]. \quad (11)
\end{equation}

(vi) Generation Ramp rate
\begin{align*}
P_{i}^g - P_{i-1}^g & \leq \text{RU}^g \quad g \in [1, G], \quad t \in [1, T]. \quad (12) \\
P_{i-1}^g - P_{i}^g & \leq \text{RD}^g \quad g \in [1, G], \quad t \in [1, T]. \quad (13)
\end{align*}

2.2. Cost Minimization UC

There are several papers on UC for minimizing system costs, but each of them is distinct from each author’s viewpoint. Each manuscript solves UC problem by considering different conditions and constraints [36–39]. Reference [40] represents a UC problem formulation for minimizing cost as follows:

Objective Function

The objective function is to minimize the total production cost; Equation (14) expressed the objective function, and the fuel cost \(f \) and start-up cost \(SUC \) are as expressed in Equation (2) and (3), respectively. This minimization UC problem considers the same thermal UC constraints like profit maximization (see Section 2.1.2).

\begin{equation}
\min F = \sum_{i=1}^{T} \sum_{g=1}^{G} \left[f^g(P_{i}^g) + (SUC_{i}^g(1 - \text{uc}_{i-1}^g))\right] \quad g \in [1, G], \quad t \in [1, T]. \quad (14)
\end{equation}

2.3. Stochastic UC Problem

In recent times, the stochastic UC problem has been an interesting area for researchers due to the high penetration of renewable generation into the grid [41–47]. Renewable generations have the uncertainty of power output; that is why the introduction of stochastic UC programming is becoming very necessary [48,49]. Most of the recent papers have considered two or multistage stochastic UC [50–55]. Some articles considered hybrid stochastic UC to manage uncertainty on the expected net load [56]. The hybrid UC scheme applies the stochastic formulation to the initial operating hours of the optimization horizon so as to get a more accurate expected generation [57]. All of these stochastic UC models have been proven to increase the system efficiency using different optimization algorithms. A probabilistic UC problem considering incentive-based demand response (DR) and a high level of wind power are described in [58]:
2.3.1. Main Program Formulation for Stochastic UC

This proposed probabilistic thermal UC model lays emphasis on reducing the operational cost. The objective function F is shown in Equation (15).

$$
\min F = \sum_{i=1}^{T} \left(\sum_{g=1}^{G} \left[f_{g}^{\text{uc}} \frac{\pi_{g}^{\text{up}}}{\pi_{g}^{\text{dn}}} + \pi_{g}^{\text{up}} + \pi_{g}^{\text{dn}} \right] + A_{i}(D_{t}^{p} - D_{t}) \right) \quad g \in [1, G], \quad t \in [1, T].
$$

Here, fuel cost f_{g}^{uc} is conditioned on the fuel type k and the generator’s constraints are expressed considering the fuel types in Equation (16).

$$
f_{t}^{g} = a_{g,k}^{1} + a_{g,k}^{2}P_{t}^{g} + a_{g,k}^{3}(P_{t}^{g})^{2} + a_{g,k}^{4} \times \sin \left\{ a_{g,k}^{5}(P_{g}^{\text{min}} - P_{g}^{\text{max}}) \right\} \quad g \in [1, G], \quad t \in [1, T].
$$

2.3.2. Constraints

Program constraints and some related formulations to fulfill the requirement for optimal objective values are listed below.

(i) Power output constraint of unit g

$$
P_{g,k}^{\text{min}} \leq P_{t}^{g} \leq P_{g,k}^{\text{max}} \quad g \in [1, G], \quad t \in [1, T].
$$

(ii) Start-up function

$$
\pi_{g}^{\text{up}} = \begin{cases}
\pi_{g}^{\text{up}}(1 - uc_{t-1}^{g}), & \text{if } \sum_{i=1}^{t-1} HSS_{i} - CSS_{i} > 0, \\
\pi_{g}^{\text{up}} & \text{otherwise}, \\
g \in [1, G], \quad t \in [1, T].
\end{cases}
$$

(iii) Start-off function

$$
\pi_{g}^{\text{dn}} = \pi_{g}^{\text{dn}}(1 - uc_{t-1}^{g}) \quad g \in [1, G], \quad t \in [1, T].
$$

(iv) Power balance constraint

$$
\sum_{g=1}^{G} P_{t}^{g} = D_{t} \quad g \in [1, G], \quad t \in [1, T].
$$

(v) Incentive value limit

$$
A_{t}^{\text{min}} \leq A_{t} \leq A_{t}^{\text{max}} \quad t \in [1, T].
$$

(vi) Power output constraint of unit g

$$
P_{g,t}^{\text{min}} \leq P_{t}^{g} \leq P_{g,t}^{\text{max}} + uc_{t}^{g} \quad g \in [1, G], \quad t \in [1, T].
$$

$$
P_{g,t}^{\text{min}} = \min \left(P_{g,t}^{\text{max}} + \Delta P_{g,t}^{\text{up}}, P_{t-1}^{g} + \Delta P_{g,t}^{\text{up}} \right) \quad g \in [1, G], \quad t \in [1, T].
$$

$$
P_{g,t}^{\text{max}} = \max \left(P_{g,t}^{\text{min}} + \Delta P_{g,t}^{\text{up}}, P_{t-1}^{g} + \Delta P_{g,t}^{\text{up}} \right) \quad g \in [1, G], \quad t \in [1, T].
$$
(vii) Turned on constraint
\[\sum_{t'=t-MUT}^{t-1} = MUT^g \text{ if } uc^g_t - uc^g_{t-1} = -1 \quad g \in [1,G], \quad t \in [1,T]. \] (27)

(viii) Turned off constraint
\[\sum_{t'=t-MTD}^{t-1} = MTD^g \text{ if } uc^g_t - uc^g_{t-1} = 1 \quad g \in [1,G], \quad t \in [1,T]. \] (28)

(ix) Up/Down reserves constraints
\[r_{up}^g = \sum \min(p^\text{max}_g - P^{\hat{r}}_g, 10\Delta, p^\text{max}_g) uc^g_t \quad g \in [1,G], \quad t \in [1,T]. \] (29)
\[r_{dn}^g = \sum \min(P^{\hat{r}}_g - p^\text{min}_g, 10\Delta p^\text{max}_g) uc^g_t \quad g \in [1,G], \quad t \in [1,T]. \] (30)

(x) Probability function (Prob)
\[\sum_k \left\{ p_{k}^{out} \text{Prob} \left(-r_{up}^g \leq D_{i(t)}^{\text{up}} - D_{o(t)}^{\text{up}} \leq r_{dn}^g \right) \right\} \geq (1 - \epsilon) \quad g \in [1,G], \quad t \in [1,T]. \] (31)

The proposed stochastic UC improves the conventional form of the UC problem by integrating short-term security restriction in Equation (15). In Equation (15), a simultaneous probability occurrence of forecasting error of the residual demand is imposed on one hand; and a limit on the generator’s outage beyond the balancing capacity of the scheduled up/down spinning reserves is imposed on the other. To satisfy Equation (15), in addition to the hourly power outputs of conventional generating units and on/off UC status, the system operator can set up four types of hourly decision variables; which are (1) the traditional up/down spinning reserve, (2) the amount of incentive value, (3) the wind curtailment levels, and (4) loads provided by incentive-based demand response program.

2.4. Multiobjective UC Problem

Most of the multiobjective UC problems are formulated as an extension of the stochastic UC problems for the simultaneous realization of more than one objective of system operators. A novel multipurpose operation planning method for minimizing the prediction error of power generated from solar PV generators to achieve the optimal reduction of the operating cost and improve the voltage stability of power systems, simultaneously, was reported in [59]. An optimally scheduled demand response (DR) program and properly sized storage system are considered as the main parameters for voltage stability improvement and PV output prediction error minimization. The stochastic programming algorithm is deemed to provide adequate treatment of the uncertainty of PV output and coordination of demand response for consumer side management. The multiobjective genetic algorithm (MOGA) and the neural network toolbox in MATLAB library were used in the research study. The detailed problem formulation is described below.

2.4.1. Problem Formulation

The operation approach is divided into three parts: the prediction section, the UC section, and the multi-objective schedule section of the stochastic UC problem. Equation (32) shows the objective function for minimizing the total operation cost, and a two-stage stochastic programming problem for UC was implemented as described below:

\[\min OC = \sum_t \left[\sum_g c_t(u^{\hat{r}}_{gt}, \hat{P}_{gt}, \hat{F}_{gt}) + h(\hat{D}_t) + \sigma(PV^{\text{curt}}_t) + E[\phi(x, \omega)] \right]. \] (32)
2.4.2. Constraint Functions

\[
\begin{align*}
\text{s.t.} \quad & \sum_s (\hat{P}_{st} \cdot \hat{u}_{st}) + \hat{E}_{ssst} + \sum_j S_{jt} = d_{st}^{fr} - \hat{P}_V. \\
& (\hat{u}_{gt}, \hat{P}_{gt}, \hat{r}_{gt}) \in Q_i. \\
& (\hat{D}_{rt}) \in D. \\
& (\hat{E}_{ssst}) \in E. \\
& 0 \leq \hat{P}_V \leq PV_{i}^{\text{max}}. \\
& PV_{i}^{\text{cart}} = PV_{i}^{\text{max}} - PV_{i}(\omega).
\end{align*}
\]

(33)

Physical operations of the generator, such as generator output limits, generator ramp limits, and minimum up- and down-time constraints, belong to the constraint set \(Q \) in Equation (34). Demand response and energy storage system constraints set are \(D \) in Equation (35) and \(E \) in Equation (36). PV output control constraints are determined by Equations (37) and (38).

The second-stage objective function, which consists of the resource cost \(\phi \) for each scenario \(\omega \), is derived below:

\[
\phi(\hat{x}, \omega) = \min \sum_s q_s (\hat{r}_{up}^s(\omega), \hat{r}_{dn}^s(\omega)) + v \cdot \hat{I}_i(\omega) + \theta (\hat{D}_{rt}(\omega)) \\
+ \beta (PV_{i}^{\text{cart}}(\omega)) + \gamma (E_{ssst}^{up}(\omega), E_{ssst}^{dn}(\omega)).
\]

(39)

\[
\begin{align*}
\text{s.t.} \quad & \sum_k [\hat{u}_{kt} \cdot \hat{u}_{kt} + \hat{\hat{r}}_{up}^k(\omega) - \hat{\hat{r}}_{dn}^k(\omega)] + \sum_j S_{jt} + E_{ssst} + E_{ssst}^{up}(\omega) - E_{ssst}^{dn}(\omega), \\
& = [d_{kt}^{fr} + e_{kt}^{fr}] - \hat{D}_{rt} - \hat{I}_i(\omega) - \hat{P}_V(\omega). \\
& 0 \leq \hat{r}_{up}^i(\omega) \leq b_{up}(\omega) \cdot \hat{r}_{up}^i. \\
& 0 \leq \hat{r}_{dn}^i(\omega) \leq (1 - b_{nn}(\omega)) \cdot \hat{r}_{dn}^i. \\
& 0 \leq \hat{I}_i(\omega) \leq I_{i}^{\text{max}}. \\
& 0 \leq \hat{D}_{rt}(\omega) \leq D_{rt}. \\
& (E_{ssst}^{up}, E_{ssst}^{dn}) \in E. \\
& 0 \leq \hat{P}_V(\omega) \leq PV_{i}^{\text{max}}. \\
& PV_{i}^{\text{cart}}(\omega) = PV_{i}^{\text{max}} - PV_{i}(\omega).
\end{align*}
\]

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)
Equation (40) shows the real time demand and supply balance constraints. Equations (41) and (42) present the ramp-up and ramp-down of the generator in real time; where \(e^d \) is the load demand forecasted error in scenario \(\omega \).

2.5. Multiobjective Schedule

The UC state on the prior day and the actual PV power output are used in this multiobjective method. Equations (48) and (49) are operating costs (OC) of the day and the voltage stability index (VSI), respectively. In this research, voltage stability is taken into consideration as the second objective function to improve power system stability. The detail of the voltage stability index (VSI) used in this work is contained in [60]; it is called the critical boundary index (CBI), which is a direct estimate of the distance between the current operating point of the power system to the nearest voltage collapse point. CBI gives a satisfactory result for monitoring the stability of the power system with high penetration of PV and energy storage facilities.

\[
\min F_1 = OC. \quad (48)
\]

\[
\max F_2 = VSI. \quad (49)
\]

3. Overview of Algorithms for Solving UC Problem

There are several research works on deploying suitable optimization algorithms for solving UC problems; hence, different types of optimization algorithms have been implemented to get optimal UC solutions. A review of existing literature on the UC problem solution approach depicts that researchers have investigated various conventional, metaheuristic, and hybrid optimization algorithms. The major studied conventional methods include the Lagrangian relaxation (LR) method [61,62], and mixed-integer linear programming (MILP). Nowadays, the LR method is used along with different algorithms, which can be called hybrid methods for solving different types of UC problems. LR method and particle swarm optimization (PSO) are implemented to solve the cost minimization problem, which considered fuel and startup costs in [63]. LR is combined with a genetic algorithm (GA) to obtain satisfactory results for operational cost minimization UC problem in [64]. By implementing MILP, many UC problems involving ESSs have been solved with objective functions such as peak shaving [65], maximizing energy production by reducing curtailment [66], minimization of cost [67–71], minimization of emissions [72], and so on.

Besides the aforementioned conventional methods, various metaheuristic algorithms like Tabu search (TS) [73,74], GA [75], simulated annealing (SA) [76], evolutionary programming (EP) [77], PSO [78], nodal ant colony optimization (NACO) [79], multiagent modeling (MAM) [80], improved teaching–learning-based algorithm (TLBO) [81], binary fireworks algorithm (BFWA) [82], imperialist competitive algorithm (ICA) [83], parallel artificial bee colony (PABC) [84], Benders decomposition (BD) [85], binary fish swarm algorithm [86], binary whale optimization algorithm (BWOA) [87], and gravitational search algorithm (GSA) [88] have also been implemented to solve the UC problems. Typically, metaheuristic algorithms for solving UC problems search both local and global solutions. Some hybrid metaheuristic algorithms have also been efficiently used to solve UC problems. Hybrid algorithms normally give better optimal results. Some of the efficiently deployed hybrid metaheuristic algorithms in existing literature are the neural-network-based tabu search (NBTS) [89], GA and differential evolution (DE) [90], simulated annealing-based (EP) [91], PSO and EP [92], binary successive approach (BSA) and civilized swarm optimization (CSO) [93], and binary particle swarm optimization (BPSO) and PSO [94].
4. ESS with UC Program

ESS can be operated by a system operator, or by an independent owner. Independently owned ESSs are operated as a vertically integrated facility with the utility, as opposed to that which is exclusively owned by the utility. From the investors’ point of view, ESSs are to be operated to maximize their profit, and this captures the objective function of the UC problem. On the other hand, for vertically integrated ESS facilities, utility minimizes overall operating costs of the power system by using the ESSs. A comparison between total operating cost reduction with ESS and without ESS by considering different size UC model is shown in Table 1. ESSs can be operated in a few different ways as described below:

(a). **Energy arbitrage**: Buy energy (charge ESS) during the lower price and sell energy (discharge ESS) during the higher price [95–97].

(b). **Reserve provision of ESS**: Power shortages or frequency drops within a given period of time can be compensated by online energy storage, which may work as spinning reserve [98].

(c). **Co-optimization with renewable plants**: ESS helps to ensure optimal, stable, and profitable power delivery from a renewable generation like wind and PV by reducing renewable intermittency [99,100].

(d). **Load shifting**: ESS contributes to load shifting from peak to off-peak or load smoothing, which helps to make a profitable UC [100,101].

ESSs technology is not a totally new concept in power systems. The most famous and installed storage system is the battery energy storage system (BESS); however, pumped hydro storage (PSH) is becoming a more attractive option due to effective load-leveling attributes in many places. PSHs also have very good and efficient response time for ramp rate and frequency control of wind turbine [102]. Due to the uncertainty of renewable generations and load demand, utility needs to smooth generated power by using ESSs and proper energy management. Therefore, utility and independent ESS owners install various ESS technologies, which include PSH, compressed air energy storage (CAES), hydrogen storage with the fuel cell, flywheels, super-capacitor, thermal storage, superconducting magnetic energy storage (SMES), and different BESS technologies.

No. of Units	Total Operating Cost	Comparative Net OC Benefit	
	With ESS (WE)	Without ESS (WOE)	WE-WOE
10	555,908	563,668	−7760
20	1,107,733	1,124,453	−16,720
40	2,213,375	2,246,563	−33,188
60	3,329,062	3,367,153	−38,091
80	4,432,915	4,489,239	−56,324
100	5,531,812	5,608,888	−77,076

As earlier mentioned, ESS has significantly contributed to the reduction of the operation of fossil-fuel-based TGs by serving as an effective peak shaving mechanism. Typically, ESSs shift the load demand from peak to off-peak, which helps to achieve better optimal UC. Some of the additional constraints that are introduced for ESSs scheduling in UC programs are as follows:

(i) **State of charge (SOC)** for each storage

\[
SOC^t_e = SOC^{t-1}_e + P^c_{t,e} \times eff^c_{t,e} \times \frac{P^{ch}_e}{\eta^{ch}_{e}} \quad e \in [1,E], \quad t \in [1,T].
\] (50)

(ii) **Up/down limits for SOC**

\[
SOC^{min}_e \leq SOC^t_e \leq SOC^{max}_e \quad e \in [1,E], \quad t \in [1,T].
\] (51)
(iii) Maximum charge constraint

\[
P_{ch}^{t,e} \leq Ch_{e}^{max} \times x_{t,e}^{ch} \quad e \in [1, E], \quad t \in [1, T]. \tag{52}
\]

(iv) Minimum charge constraint

\[
P_{dch}^{t,e} \leq dch_{e}^{max} \times x_{t,e}^{dch} \quad e \in [1, E], \quad t \in [1, T]. \tag{53}
\]

(v) Discharged power rating constraint

\[
P_{dch}^{t,e} \leq soc_{t,e}^{t-1} \times eff_{e}^{dch} \times x_{t,e}^{dch} \quad e \in [1, E], \quad t \in [1, T]. \tag{54}
\]

(vi) Disables simultaneous charging and discharging

\[
x_{t,e}^{ch} + x_{t,e}^{dch} \leq 1 \quad e \in [1, E], \quad t \in [1, T]. \tag{55}
\]

(vii) Charge ramp-up

\[
P_{ch}^{t,e} \leq P_{ch}^{t,e} + P_{cru}^{t} \times X_{t,e}^{ch} \quad e \in [1, E], \quad t \in [1, T]. \tag{56}
\]

(viii) Charge ramp-down

\[
P_{ch}^{t,e} \geq P_{ch}^{t,e} - P_{crd}^{t} \times X_{t,e}^{ch} \quad e \in [1, E], \quad t \in [1, T]. \tag{57}
\]

(ix) Discharge ramp-up

\[
P_{dch}^{t,e} \leq P_{dch}^{t,e} + P_{dru}^{t} \times X_{t,e}^{dch} \quad e \in [1, E], \quad t \in [1, T]. \tag{58}
\]

(x) Discharge ramp-down

\[
P_{dch}^{t,e} \geq P_{dch}^{t,e} - P_{drd}^{t} \times X_{t,e}^{dch} \quad e \in [1, E], \quad t \in [1, T]. \tag{59}
\]

In Equation (51), maximum SOC \(SOC_{e}^{max}\) and \(SOC_{e}^{min}\) is not usually equal to 100\% and 0\%, respectively.

An example problem is drawn for understanding the contribution of ESSs in UC model. In this example, an ESS-rated 138 MW is considered along with 10 TG units. The objective function considers the minimization of cost, Equation (14), which includes the fuel cost, Equation (2), and start-up cost, Equation (3). The UC model considers several constraints such as spinning reserve constraint, Equation (4); OFF and ON time constraints, Equation (5)-(8); initial status of unit, Equation (9); load demand constraint, Equation (10); TG unit’s power output constraint, Equation (11); generator ramp up and down constraint, as shown in Equations (12) and (13).

The UC problem considers a 138-MW ESS system with 1192-MWh capacity for leveling the load demand, and it considers ESSs constraints such as SOC constraint, Equation (50); maximum, and minimum limits, Equation (51); maximum charge constraint, Equation (52); minimum charge constraint, Equation (53); discharge power rating, Equation (54); disable simultaneous charging and discharging, Equation (55); charge ramp-up, Equation (56); charge ramp-down, Equation (57); discharge ramp-up, Equation (58); and discharge ramp-down, Equation (59). Figure 1 shows that the UC problem without considering the ESS system involves turning on all the 10 TG units, as shown in Figure 2, in order to meet the load demand. Figure 3 demonstrates the UC problem after considering ESS, and this results in only 7 TG units being turned on in order to meet the load demand after load shifting action of the ESS, as seen in Figure 4. It can be observed that there is a load shifting from the actual load profile due to the penetration of ESS optimal power output, and the UC outputs are obtained for the shifted load profile. Finally, ESS optimal power output (charging/discharging) and SOC are shown in Figures 5 and 6, respectively. This example problem is given only for demonstrating the optimal ESS contribution with the UC.
problem. Several types of research have proven this concept of load-leveling action of ESS in optimal UC implementation [104]. Most of the modeling used in the above example problem configurations and the parameters of the considered TG units are taken from Reference [104].

A review of some contributions of ESSs to power system operation considering UC problem is presented in Table 2.

![Figure 1. Unit commitment without considering ESS.](image1)

![Figure 2. Number of thermal generation (TG) units turned on without considering ESS.](image2)

![Figure 3. Unit commitment considering ESS.](image3)
Figure 4. Number of TG units turned on considering ESS.

Figure 5. Optimal charging and discharging dynamics of ESS.

Figure 6. Optimal state of charge (SOC) of ESS.
Table 2. ESS contribution in unit commitment (UC) with references.

References	ESS Constraints	ESS Type	Objective	Power System	Summary
[105]	Equation (51), Equation (52)	Battery	Minimization of costs: including fuel cost of TGs, nuclear generators, start up and shut down cost, and peak shaving cost.	IEEE RTS-24 bus system, which includes 10 TGs, two WTGs, two nuclear power plants and two ESS stations.	Propose research, nuclear power plants mainly work for peak shaving, and ESS mitigate the renewable fluctuations and makes schedules more flexible which help the UC program for reducing the operation of TG unit and system cost.
[106]	Equation (A1), Equation (A2), Equation (A3), Equation (A4), Equation (A5)	Pumped storage hydro (PSH)	Minimization of scheduling costs with high wind penetration	Power system consists of 16 TG units, 4 PSH units, and 3 wind turbine generators (WTGs).	Constant start-up costs and ramps of the TG units for measuring the contribution of PSH to reduce the scheduling costs of power system with high WTG penetration.
[107]	Equation (A1), Equation (A2), Equation (A3), Equation (A4), Equation (A5), Equation (A6), Equation (A7)	Pumped storage hydro (PSH)	Minimizing operational cost which includes fuel cost of TGs, and start-up and shut-down cost of both TGs and PSH units.	IEEE-9 bus system, the PEGASE 89-bus system and the Shenzhen city grid including the 110-kV network.	Security-constrained UC program with PSH, which was able to reduce the fuel costs of TGs and total operational cost of the system.
[108]	Equation (50), Equation (51), Equation (52), Equation (53), Equation (54), Equation (55), Equation (56), Equation (57), Equation (58), Equation (59)	PSH, Compressed air, Battery (lead acid and lithium-ion)	Minimization of total operational cost, which includes fuel cost, start-up cost, shut-down cost, and load shedding cost	IEEE 24-bus reliability test system (RTS) with three types of ESSs and TG units.	ESSs in the proposed methodology for UC problem contributed to the leveling of the load, which help to reduce the operation time of expensive TGs units, thus the total operational cost was reduced.
[109]	Equation (A9), Equation (A10), Equation (A11), Equation (A12), Equation (A13)	Superconducting magnetic energy storage (SMES)	Minimizing operational cost, which includes fuel cost of TGs and start-up and shut-down cost	IEEE ten-unit test system with SMES	SMES contributes to level the load, which leads to peak load decrease and off-peak load increase. This reduces the number of start-up of TGs and consequently, the usage of fossil fuel and cost of production was reduced.
[110]	Equation (A14), Equation (A15), Equation (A16), Equation (A17), Equation (A18), Equation (A19), Equation (A20), Equation (A21), Equation (A22), Equation (A23), Equation (A24), Equation (A25)	Hydrogen storage system (HSS) [111]	Mainly minimizing fuel and start-up costs of TG units, cost of HSS in both generation and storage mode, and DR cost	Proposed model has been tested on a 6-bus system. Model consists of TG units, W TG, and HSS considering DR	The proposed research considers three cases: case 1 does not consider HSS and DR and it needs all TG units to be turned on, case 2 considers HSS that contributes to leveling the load and needs only two units turned on, and case 3 reduces the operation time of TG unit 3. From case 1 to case 3, the operation cost was gradually reduced.

5. Conclusions

This paper has summarized a broad research area that is related to UC modeling with ESSs integration. Some models and methodologies of UC are drawn from reviewing several recent research articles. In this review work, some important ESSs-incorporated UC mathematical models with constraints are clearly elucidated and demonstrated. Additionally, some of the proven algorithms
found in the existing literature for solving various types of UC problems are reviewed. Moreover, the various constraints considered for integrating ESSs in the UC model, as obtained from different research works, are collected and summarized for different types of ESSs. In references, as mentioned earlier, most of the research work with integrating ESS in the UC model either aim to minimize the cost or maximize the profit. An illustrative example of the UC problem with and without ESS inclusion is solved and analyzed using figures to give a better understanding of ESSs contribution to UC modeling and solution approach. Conclusively, this review article summarizes the contribution of various types of ESSs in UC with reference to existing works of literature. Mostly, ESSs contribution in the UC model involves injecting power during the peak period and consuming the surplus power during the off-peak period; that means ESSs reduce the gap between peak and off-peak periods, which is essential for achieving optimal UC. Some essential and unique ESSs model constraints for optimal UC are also stated in Appendix A.

Author Contributions: Conceptualization, H.O.R.H. and T.S.; data curation, H.O.R.H. and O.B.A.; validation, Y.-Y.H., P.M., and A.M.H.; formal analysis and investigation, H.O.R.H. and O.B.A.; writing—original draft preparation, H.O.R.H. and O.B.A.; writing—review and editing, H.O.R.H. and O.B.A.; supervision, project administration, and funding acquisition, T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. PSH Constraint

PSH constraints are given below:

\[p_l t \leq u_t (p_s - p_{\text{max}} t) \quad t \in [1, T]. \] (A1)

\[u_t + u_p t \leq 1. \] (A2)

\[y p t \geq (u_t - u_p t) - (u_t(t - 1) - u_p (t - 1)) \quad t \in [1, T]. \] (A3)

\[V_t = v(t - 1) + 3600 \times (u_p t \times q_p - u_p t \times q_{\text{min}} - q t \times p_l t) \quad t \in [1, T]. \] (A4)

\[v (t \in [1, T]) = v_0. \] (A5)

\[\begin{cases} Z_i^c + Z_i^u + 1 \leq 1 & t \in [1, T - 1], \\ Z_i^c + Z_i^u + 2 \leq 1 & t \in [1, T - 2], \\ Z_i^c + Z_i^c t \leq 1 & t \in [1, T - 1], \\ Z_i^c + Z_i^c t \leq 2 & t \in [1, T - 2]. \end{cases} \] (A6)

\[\begin{cases} 0 \leq R_i^{gu} \leq ph^\text{max} - ph^e, \\ 0 \leq R_i^{dd} \leq ph^e. \end{cases} \] (A7)

\[\begin{cases} 0 \leq R_i^{gu} \leq -ph^e, \\ 0 \leq R_i^{dd} \leq ph^e - ph^\text{max}. \end{cases} \] (A8)

Appendix A.2. SMES Constraints

(i) Charging/discharging constraint

\[-SM_{\text{max}} \leq SM^e \leq -SM_{\text{max}} \quad e \in [1, E], \quad t \in [1, T]. \] (A9)
(ii) Storage capacity variation constraint

\[\Delta STC^e_t = \begin{cases}
\Delta t, SM^e_t / \text{eff}_{dch} & \text{if } EM^e_t > 0, \\
0 & \text{if } EM^e_t = 0, \\
\text{eff}_{dch} \times \Delta t, SM^e_t & \text{if } EM^e_t < 0,
\end{cases} \quad e \in [1, E], \ t \in [1, T]. \]

(A10)

(iii) Storage capacity of SMES at the end of time

\[STC^e_T = STC^e_{t-1} - \Delta STC^e_t \quad e \in [1, E], \ t \in [1, T]. \]

(A11)

(iv) Storage capacity constraint

\[STC^e_{\min} \leq STC^e_t \leq STC^e_{\max} \quad e \in [1, E], \ t \in [1, T]. \]

(A12)

(v) Capacity balance constraint

\[STC^e_0 = STC^e_T \quad e \in [1, E], \ t \in [1, T]. \]

(A13)

Appendix A.3. Hydrogen Storage System (HSS)

(i) HS can operate in generation, storage, or idling modes

\[i_{e,t}^{H2P} + i_{e,t}^{P2H} \leq 1 \quad e \in [1, E], \ t \in [1, T]. \]

(A14)

(ii) Generated and stored hydrogen has a maximum and minimum limit

\[p_{e,\min}^{P2H} \leq i_{e,t}^{P2H} \leq p_{e,\max}^{P2H} \quad e \in [1, E], \ t \in [1, T]. \]

(A15)

\[p_{e,\min}^{H2P} \leq i_{e,t}^{H2P} \leq p_{e,\max}^{H2P} \quad e \in [1, E], \ t \in [1, T]. \]

(A16)

(iii) HSS in both production and storage modes constraints

\[R_{H2P}^{e,t} + R_{S,H2P}^{e,t} + R_{RU,H2P}^{e,t} \leq i_{e,t}^{H2P} \min \left\{ RU_{e}^{H2P}, p_{e,\max}^{H2P} - p_{e,\min}^{H2P} \right\}. \]

(A17)

\[R_{e,t}^{RD,H2P} \leq i_{e,t}^{H2P} \min \left\{ RD_{e}^{H2P}, p_{e,\max}^{H2P} - p_{e,\min}^{H2P} \right\}. \]

(A18)

\[R_{e,t}^{RD,P2H} \leq i_{e,t}^{P2H} \min \left\{ RU_{e}^{P2H}, p_{e,\max}^{P2H} - p_{e,\min}^{P2H} \right\}. \]

(A19)

(iv) Amount of hydrogen stored from each HSS unit \(e \) at \(t \) time

\[A_{e,t} = A_{e,t-1} + \frac{i_{e,t}^{H2P} - p_{e,\min}^{H2P}}{\eta_{e}} + M_{e,t} \quad e \in [1, E], \ t \in [1, T]. \]

(A21)

(v) HSS minimum and maximum capacity limits

\[A_{e,\min}^{\min} \leq A_{e,t} \leq A_{e,\max}^{\max} \quad e \in [1, E], \ t \in [1, T]. \]

(A22)
(vi) HSS initial capacity limits

\[A^{e,o} = A_{e,\text{init}} \quad e \in [1, E], \ t \in [1, T]. \quad (A23) \]

(vii) HSS initial value and final value

\[A^{e,o} = A_{e,\text{NT}} \quad e \in [1, E], \ t \in [1, T]. \quad (A24) \]

(viii) HSS supply limit to other production

\[0 \leq M_{e,t} \leq M_{e,\text{max}} \quad e \in [1, E], \ t \in [1, T]. \quad (A25) \]

References

1. Dong, Y.; Shimada, K. Evolution from the renewable portfolio standards to feed-in tariff for the deployment of renewable energy in Japan. *Renew. Energy* 2017, 107, 590–596. doi:10.1016/j.renene.2017.02.016.
2. Howlader, H.O.R.; Matayoshi, H.; Noorzad, A.S.; Muarapaz, C.C.; Senjyu, T. Smart house-based optimal operation of thermal unit commitment for a smart grid considering transmission constraints. *Int. J. Sustain. Energy* 2018, 37, 438–454. doi:10.1080/14786451.2017.1284849.
3. Razeghi, G.; Shaffer, B.; Samuelsen, S. Impact of electricity deregulation in the state of California. *Energy Policy* 2017, 103, 105–115. doi:10.1016/j.enpol.2017.01.012.
4. Howlader, H.O.R.; Matayoshi, H.; Senjyu, T. Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error. *Energy Convers. Manag.* 2015, 96, 303–314. doi:10.1016/j.enconman.2015.02.087.
5. Edmunds, R.; Davies, L.; Deane, P.; Pourkashanian, M. Thermal power plant operating regimes in future British power systems with increasing variable renewable penetration. *Energy Convers. Manag.* 2015, 105, 977–985. doi:10.1016/j.enconman.2015.08.067.
6. EPA. Learn about Carbon Pollution from Power Plants. Available online: https://archive.epa.gov/epa/cleanpowerplan/learn-about-carbon-pollution-power-plants.html (accessed on 25 October 2019).
7. eia. U.S. Energy Information and Administration. Available online: https://www.eia.gov/tools/faqs/faq.php?id=427&t=3 (accessed on 17 April 2017).
8. Sikder, P.S.; Pal, N. Modeling of an intelligent battery controller for standalone solar-wind hybrid distributed generation system. *J. King Saud Univ. Eng. Sci.* 2019, in press. doi:10.1016/j.jsues.2019.02.002.
9. Rayati, M.; Ranjbar, A.M. Resilient Transactive Control for Systems with High Wind Penetration Based on Cloud Computing. *IEEE Trans. Ind. Inform.* 2018, 14, 1286–1296. doi:10.1109/TII.2017.2759223.
10. Ren, G.; Liu, J.; Wan, J.; Guo, Y.; Yu, D. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions. *Appl. Energy* 2017, 204, 47–65. doi:10.1016/j.apenergy.2017.06.098.
11. Long, D. A stochastic optimization modeling and algorithmic strategy for the security constrained unit commitment with wind farm. In Proceedings of the 2014 China International Conference on Electricity Distribution (CICED), Shenzhen, China, 23–26 September 2014; pp. 733–737. doi:10.1109/CICED.2014.6991808.
12. Adewuyi, O.B.; Lotfy, M.E.; Akinloye, B.O.; Howlader, H.O.R.; Senjyu, T.; Narayanan, K. Security-constrained optimal utility-scale solar PV investment planning for weak grids: Short reviews and techno-economic analysis. *Appl. Energy* 2019, 245, 16–30. doi:10.1016/j.apenergy.2019.04.008.
13. Addisu, A.; George, L.; Courbin, P.; Sciandra, V. Smoothing of renewable energy generation using Gaussian-based method with power constraints. *Energy Procedia* 2017, 134, 171–180. doi:10.1016/j.egypro.2017.09.555.
14. Howlader, H.O.R.; Matayoshi, H.; Ibrahim, A.M.; Dhanish, M.S.S.; Senjyu, T.; Saber, A.Y. Operational Cost Based UC by Introducing HCSP in Case of PVs Power Uncertainty. In Proceedings of the 2018 4th International Conference on Electrical Engineering and Information Communication Technology (ICEEiCT), Dhaka, Bangladesh, 13–15 September 2018; pp. 193–198. doi:10.1109/CIEEEICT.2018.8628165.
15. Gong, Y.; Jiang, Q.; Baldick, R. Ramp Event Forecast Based Wind Power Ramp Control with Energy Storage System. *IEEE Trans. Power Syst.* 2016, 31, 1831–1844. doi:10.1109/TPWRS.2015.2445382.
16. Han, L.; Zhang, R.; Chen, K. A coordinated dispatch method for energy storage power system considering wind power ramp event. *Appl. Soft Comput.* 2019, 84, 105732. doi:10.1016/j.asoc.2019.105732.

17. Gong, Y.; Chung, C.Y.; Mall, R.S. Power System Operational Adequacy Evaluation with Wind Power Ramp Limits. *IEEE Trans. Power Syst.* 2018, 33, 2706–2716. doi:10.1109/TPWRS.2017.2764420.

18. Gallego-Castillo, C.; Cuerva-Tejero, A.; Lopez-Garcia, O. A review on the recent history of wind power ramp forecasting. *Renew. Sustain. Energy Rev.* 2015, 52, 1148–1157. doi:10.1016/j.rser.2015.07.154.

19. Heckenbergerova, J.; Musilek, P.; Janata, M. Sensitivity analysis of PCA method for wind ramp event detection. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–4. doi:10.1109/EEEIC.2016.7555687.

20. Kerdphol, T.; Watanabe, M.; Hongesombut, K.; Mitani, Y. Self-Adaptive Virtual Inertia Control-Based Fuzzy Logic to Improve Frequency Stability of Microgrid With High Renewable Penetration. *IEEE Access* 2019, 7, 76071–76083. doi:10.1109/ACCESS.2019.2920886.

21. Choi, W.Y.; Kook, K.S.; Yu, G.R. Control Strategy of BESS for Providing Both Virtual Inertia and Primary Frequency Response in the Korean Power System. *Energies* 2019, 12, 4060. doi:10.3390/en12214060.

22. Shahbazitabar, M.; Abdi, H. A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation. *Energy* 2018, 161, 308–324. doi:10.1016/j.energy.2018.07.025.

23. Howlader, H.O.R.; Furukakoi, M.; Matayoshi, H.; Senju, T. Duck curve problem solving strategies with thermal unit commitment by introducing pumped storage hydroelectricity renewable energy. In Proceedings of the 2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), Honolulu, HI, USA, 12–15 December 2017; pp. 502–506. doi:10.1109/PEDS.2017.8289132.

24. Kiptoo, M.K.; Adewuyi, O.B.; Lotfy, M.E.; Senjyu, T.; Mandal, P.; Abdel-Akher, M. Multi-Objective Optimal Capacity Planning for 100% Renewable Energy-Based Microgrid Incorporating Cost of Demand-Side Flexibility Management. *Appl. Sci.* 2019, 9, 3855.

25. Abujarad, S.Y.; Mustafa, M.; Jamian, J. Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review. *Renew. Sustain. Energy Rev.* 2017, 70, 215–223. doi:10.1016/j.rser.2016.11.246.

26. Tafreshi, S.M.M.; Ranjarzadeh, H.; Jafari, M.; Khayyam, H. A probabilistic unit commitment model for optimal operation of plug-in electric vehicles in microgrid. *Renew. Sustain. Energy Rev.* 2016, 66, 934–947. doi:10.1016/j.rser.2016.08.013.

27. Zheng, Q.P.; Wang, J.; Liu, A.L. Stochastic Optimization for Unit Commitment—A Review. *IEEE Trans. Power Syst.* 2015, 30, 1913–1924. doi:10.1109/TPWRS.2014.2355204.

28. Saravanan, B.; Das, S.; Sikri, S.; Kothari, D.P. A solution to the unit commitment problem—a review. *Front. Energy* 2013, 7, 223–236. doi:10.1007/s11708-013-0240-3.

29. Dai, H.; Zhang, N.; Su, W.C. A Literature Review of Stochastic Programming and Unit Commitment. *J. Power Energy Eng.* 2015, 3, 206–214. doi:10.4236/jpee.2015.34029.

30. Howlader, H.O.R.; Matayoshi, H.; Senju, T. Thermal Units Commitment Integrated with Reactive Power Scheduling for the Smart Grid Considering Voltage Constraints. *Int. J. Emerg. Electr. Power Syst.* 2015, 16, 323–330. doi:10.1515/ijeeps-2014-0184.

31. Sediqi, M.M.; Howlader, H.O.R.; Ibrahim, A.M.; Danesh, M.S.S.; Sabory, N.R.; Senju, T. Development of renewable energy resources in Afghanistan for economically optimized cross-border electricity trading. *AIMS Energy* 2017, 5, 691–717. doi:10.3934/energy.2017.4.691.

32. Ibrahim, A.M.; Howlader, H.O.R.; Danesh, M.S.S.; Sediqi, M.M.; Senju, T. Optimal Unit Commitment with Concentrated Solar Power and Thermal Energy Storage in Afghanistan Electrical System. *Int. J. Emerg. Electr. Power Syst.* 2019, 20, doi:10.1515/ijeeps-2018-0264.

33. Howlader, H.O.R.; Matayoshi, H.; Senju, T. Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid. *Renew. Energy* 2016, 99, 107–117. doi:10.1016/j.renene.2016.06.050.

34. Dhalival, J.S.; Dhillon, J. Profit based unit commitment using memetic binary differential evolution algorithm. *Appl. Soft Comput.* 2019, 81, 105502. doi:10.1016/j.asoc.2019.105502.

35. Lakshmi, K.; Vasantharathna, S. Genco’s Profit Based Unit Commitment Using Artificial Immune System in Day Ahead Competitive Electricity Markets. *J. Appl. Sci. Eng.* 2014, 17, 275–282. doi:10.6180/jase.2014.17.3.08.
36. Howlader, H.O.R.; Lotfy, M.E.; Shigenobu, R.; Matayoshi, H.; Senjyu, T. Optimal Consumer Efforts and Operational Costs Based Analysis for a Smart Grid. *Electr. Power Compon. Syst.* 2019, 47, 1–15. doi:10.1080/15325008.2019.1663296.

37. Khunkitti, S.; Watson, N.R.; Chatthaworn, R.; Premrudeepreechacharn, S.; Siritaratiwat, A. An Improved DA-PSO Optimization Approach for Unit Commitment Problem. *Energies* 2019, 12, 2335. doi:10.3390/en12122335.

38. Zhang, N.; Zhou, Q.; Hu, H. Minimum Frequency and Voltage Stability Constrained Unit Commitment for AC/DC Transmission Systems. *Appl. Sci.* 2019, 9, 3412. doi:10.3390/app9163412.

39. Chen, R.L.Y.; Fan, N.; Pinar, A.; Watson, J.P. Contingency-constrained unit commitment with post-contingency corrective recourse. *Ann. Oper. Res.* 2017, 249, 381–407. doi:10.1007/s10479-014-1760-x.

40. Deka, D.; Datta, D. Optimization of unit commitment problem with ramp-rate constraint and wrap-around scheduling. *Electr. Power Syst. Res.* 2019, 177, 105948. doi:10.1016/j.epsr.2019.105948.

41. Price, J.E. Evaluation of stochastic unit commitment for renewable integration in California’s energy markets. In Proceedings of the 2015 IEEE Power Energy Society General Meeting, Denver, CO, USA; 26–30 July 2015; pp. 1–5. doi:10.1109/PESGM.2015.7286010.

42. Quan, H.; Srinivasan, D.; Khorasavi, A. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals. *IEEE Trans. Neural Netw. Learn. Syst.* 2015, 26, 2123–2135. doi:10.1109/TNNLS.2014.2376696.

43. Asensio, M.; Contreras, J. Stochastic Unit Commitment in Isolated Systems With Renewable Penetration Under CVaR Assessment. *IEEE Trans. Smart Grid* 2016, 7, 1356–1367. doi:10.1109/TSG.2015.2469134.

44. Wu, L.; Shahidehpour, M.; Li, T. Cost of Reliability Analysis Based on Stochastic Unit Commitment. *IEEE Trans. Power Syst.* 2008, 23, 1364–1374. doi:10.1109/TPWRS.2008.922231.

45. Gonzalez-Castellanos, A.; Pozo, D.; Bischi, A. Stochastic Unit Commitment of a Distribution Network with Non-ideal Energy Storage. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal; 9–11 September 2019; pp. 1–6. doi:10.1109/SEST.2019.8849057.

46. Kaewpasuk, S.; Intiyot, B.; Jeenanunta, C. Stochastic unit commitment model for power system with renewable energy. In Proceedings of the 2017 International Electrical Engineering Congress (IEECON), Pattaya, Thailand; 8–10 March 2017; pp. 1–4. doi:10.1109/IEECON.2017.8073781.

47. Ruchunok, B.; Staid, A.; Watson, J.; Woodruff, D.L.; Yang, D. Stochastic Unit Commitment Performance Considering Monte Carlo Wind Power Scenarios. In Proceedings of the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA; 24–28 June 2018; pp. 1–6. doi:10.1109/PMAPS.2018.8440563.

48. Ningyu, Z.; Jiankun, L.; Qian, Z. Two-stage stochastic model of unit commitment with wind farm. In Proceedings of the 2014 China International Conference on Electricity Distribution (CICED), Shenzhen, China; 23–26 September 2014; pp. 1080–1084. doi:10.1109/CICED.2014.6991871.
55. Analui, B.; Scaglione, A. A Dynamic Multistage Stochastic Unit Commitment Formulation for Intraday Markets. *IEEE Trans. Power Syst.* **2018**, *33*, 3653–3663. doi:10.1109/TPWRS.2017.2768384.

56. Dvorkin, Y.; Pandžić, H.; Ortega-Vazquez, M.; Kirschen, D. A hybrid stochastic/interval approach to transmission-constrained unit commitment. In *Proceedings of the 2015 IEEE Power Energy Society General Meeting*, Denver, CO, USA, 26–30 July 2015; p. 1. doi:10.1109/PESGM.2015.7285684.

57. Dvorkin, Y.; Pandžić, H.; Ortega-Vazquez, M.A.; Kirschen, D.S. A Hybrid Stochastic/Interval Approach to Transmission-Constrained Unit Commitment. *IEEE Trans. Power Syst.* **2015**, *30*, 621–631. doi:10.1109/TPWRS.2014.2331279.

58. Azizipanah-Abarghooei, R.; Golestaneh, F.; Gooi, H.B.; Lin, J.; Bavafa, F.; Terzija, V. Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power. *Appl. Energy* **2016**, *182*, 634–651. doi:10.1016/j.apenergy.2016.07.117.

59. Furukakoi, M.; Adewuyi, O.B.; Matayoshi, H.; Howlader, A.M.; Senjyu, T. Multi objective unit commitment with voltage stability and PV uncertainty. *Appl. Energy* **2018**, *228*, 618–623. doi:10.1016/j.apenergy.2018.06.074.

60. Furukakoi, M.; Adewuyi, O.B.; Danish, M.S.S.; Howlader, A.M.; Senjyu, T.; Funabashi, T. Critical Boundary Index (CBI) based on active and reactive power deviations. *Int. J. Electr. Power Energy Syst.* **2018**, *100*, 50–57. doi:10.1016/j.ijepes.2018.02.010.

61. Virmani, S.; Adrian, E.C.; Imhof, K.; Mukherjee, S. Implementation of a Lagrangian relaxation based unit commitment problem. *IEEE Trans. Power Syst.* **1989**, *4*, 1373–1380. doi:10.1109/59.41687.

62. Aoki, K.; Nara, K.; Satoh, T.; Itoh, M. Lagrangian relaxation method for long-term unit commitment. In *Power Systems and Power Plant Control 1989*; Ahn, U., Ed.; IFAC Symposia Series; Pergamon: Oxford, UK, 1990; pp. 123–128. doi:10.1016/B978-0-08-037039-2.50026-1.

63. Yu, X.; Zhang, X. Unit commitment using Lagrangian relaxation and particle swarm optimization. *Int. J. Electr. Power Energy Syst.* **2014**, *61*, 510–522. doi:10.1016/j.ijepes.2014.03.061.

64. Yamin, H.; Shahidehpour, S. Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets. *Electr. Power Syst. Res.* **2004**, *68*, 83–92. doi:10.1016/S0378-7796(03)00147-0.

65. Feng, Z.K.; Niu, W.J.; Wang, W.C.; Zhou, J.Z.; Cheng, C.T. A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy. *Energy* **2019**, *175*, 618–629. doi:10.1016/j.energy.2019.03.117.

66. Wang, J.; Guo, M.; Liu, Y. Hydropower unit commitment with nonlinearity decoupled from mixed integer nonlinear problem. *Energy* **2018**, *150*, 839–846. doi:10.1016/j.energy.2018.02.128.

67. Alemany, J.; Kasprzyk, L.; Magnago, F. Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets. *Electr. Power Syst. Res.* **2018**, *160*, 429–438. doi:10.1016/j.epsr.2018.03.019.

68. Alvarez, G.E. Optimization of the integration among traditional fossil fuels, clean energies, renewable sources, and energy storages: An MILP model for the coupled electric power, hydraulic, and natural gas systems. *Comput. Ind. Eng.* **2019**, *139*, 106141. doi:10.1016/j.cie.2019.106141.

69. Razavi, S.E.; Nezhad, A.E.; Mavalizadeh, H.; Raeisi, F.; Ahmadi, A. Robust hydrothermal unit commitment: A mixed-integer linear framework. *Energy* **2018**, *165*, 593–602. doi:10.1016/j.energy.2018.09.199.

70. Lima, R.M.; Novais, A.Q. Symmetry breaking in MILP formulations for Unit Commitment problems. *Comput. Chem. Eng.* **2016**, *85*, 162–176. doi:10.1016/j.compchemeng.2015.11.004.

71. Alvarez, G.E.; Marcovecchio, M.G.; Aguirre, P.A. Security constrained unit commitment scheduling: A new MILP formulation for solving transmission constraints. *Comput. Chem. Eng.* **2018**, *115*, 455–473. doi:10.1016/j.compchemeng.2018.05.001.

72. Erichsen, G.; Zimmermann, T.; Kather, A. Effect of Different Interval Lengths in a Rolling Horizon MILP Unit Commitment with Non-Linear Control Model for a Small Energy System. *Energies* **2019**, *12*, 1003. doi:10.3390/en12061003.

73. Mantawy, A.H.; Abdel-Magid, Y.L.; Selim, S.Z. Unit commitment by tabu search. *IEE Proc. Gener. Transm. Distrib.* **1998**, *145*, 56–64. doi:10.1049/ip-gtd:19981681.

74. Mori, H.; Sudo, S. Strategic Tabu Search for Unit Commitment in Power Systems. *IFAC Proc. Vol.* **2003**, *36*, 485–490. doi:10.1016/S1474-6670(17)34515-9.
75. Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V. A genetic algorithm solution to the unit commitment problem. *IEEE Trans. Power Syst.* 1996, 11, 83–92. doi:10.1109/59.485989.

76. Zhuang, F.; Galiana, F.D. Unit commitment by simulated annealing. *IEEE Trans. Power Syst.* 1990, 5, 311–318. doi:10.1109/59.49122.

77. Juste, K.A.; Kita, H.; Tanaka, E.; Hasegawa, J. An evolutionary programming solution to the unit commitment problem. *IEEE Trans. Power Syst.* 1999, 14, 1452–1459. doi:10.1109/59.801925.

78. Raglend, I.J.; Raghveer, C.; Avinash, G.R.; Padhy, N.; Kothari, D. Solution to profit based unit commitment problem using particle swarm optimization. *Appl. Soft Comput.* 2010, 10, 1247–1256. doi:10.1016/j.asoc.2010.05.006.

79. Columbus, C.C.; Chandrasekaran, K.; Simon, S.P. Nodal ant colony optimization for solving profit based unit commitment problem for GENCOs. *Appl. Soft Comput.* 2012, 12, 145–160. doi:10.1016/j.asoc.2011.08.057.

80. Sharma, D.; Trivedi, A.; Srinivasan, D.; Thillainathan, L. Multi-agent modeling for solving profit based unit commitment problem. *Appl. Soft Comput.* 2013, 13, 3751–3761. doi:10.1016/j.asoc.2013.04.001.

81. Krishna, P.R.; Sao, S. An Improved TLBO Algorithm to Solve Profit Based Unit Commitment Problem under Deregulated Environment. *Procedia Technol.* 2016, 25, 652–659. doi:10.1016/j.proctech.2016.08.157.

82. Reddy, K.S.; Panwar, L.K.; Kumar, R.; Panigrahi, B. Binary fireworks algorithm for profit based unit commitment (PBUC) problem. *Int. J. Electr. Power Energy Syst.* 2016, 83, 270–282. doi:10.1016/j.ijepes.2016.04.005.

83. Aghdam, F.H.; Hagh, M.T. Security Constrained Unit Commitment (SCUC) formulation and its solving with Modified Imperialist Competitive Algorithm (MICA). *J. King Saud Univ. Eng. Sci.* 2019, 31, 253–261. doi:10.1016/j.jksues.2017.08.003.

84. Columbus, C.C.; Simon, S.P. Profit based unit commitment: A parallel ABC approach using a workstation cluster. *Comput. Electr. Eng.* 2012, 38, 724–745. doi:10.1016/j.compedeng.2011.09.002.

85. Abdulmohammadi, H.R.; Kazemi, A. A Benders decomposition approach for a combined heat and power economic dispatch. *Energy Convers. Manag.* 2013, 71, 21–31. doi:10.1016/j.enconman.2013.03.013.

86. Singhal, P.K.; Naresh, R.; Sharma, V. Binary fish swarm algorithm for profit-based unit commitment problem in competitive electricity market with ramp rate constraints. *IET Gener. Transm. Distrib.* 2015, 9, 1697–1707. doi:10.1049/iet-gtd.2015.0201.

87. Reddy, K.S.; Panwar, L.; Panigrahi, B.K.; Kumar, R. Binary whale optimization algorithm: A new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets. *Eng. Optim.* 2019, 51, 369–389. doi:10.1080/0305215X.2018.1463527.

88. Swain, R.; Sahu, N.; Hota, P. Gravitational Search Algorithm for Optimal Economic Dispatch. *Procedia Technol.* 2012, 6, 411–419. doi:10.1016/j.proctech.2012.10.049.

89. Asir Rajan, C.C.; Mohan, M.R.; Manivannan, K. Neural Based Tabu Search method for solving unit commitment problem. In Proceedings of the 2002 Fifth International Conference on Power System Management and Control Conf. Publ. No. 488), London, UK, 17–19 April 2002; pp. 180–185. doi:10.1049/cp:20020031.

90. Trivedi, A.; Srinivasan, D.; Biswas, S.; Reindl, T. A genetic algorithm—differential evolution based hybrid framework: Case study on unit commitment scheduling problem. *Inf. Sci.* 2016, 354, 275–300. doi:10.1016/j.ins.2016.03.023.

91. Rajan, C.C.A.; Mohan, M. An evolutionary programming based simulated annealing method for solving the unit commitment problem. *Int. J. Electr. Power Energy Syst.* 2007, 29, 540–550. doi:10.1016/j.ijepes.2006.12.001.

92. Singh, R.L.R.; Rajan, C.C.A. A hybrid approach based on PSO and EP for proficient solving of Unit Commitment Problem. In Proceedings of the 2011 International Conference Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE), Pattaya City, Thailand, 28–30 September 2011; pp. 1–7. doi:10.1109/ICUEPES.2011.6497763.

93. Anand, H.; Narang, N.; Dhillon, J. Profit based unit commitment using hybrid optimization technique. *Energy* 2018, 148, 701–715. doi:10.1016/j.energy.2018.01.138.

94. Anand, H.; Narang, N.; Dhillon, J. Multi-objective combined heat and power unit commitment using particle swarm optimization. *Energy* 2019, 172, 794–807. doi:10.1016/j.energy.2019.01.155.

95. Kocer, M.C.; Cengiz, C.; Gezer, M.; Gunes, D.; Cinar, M.A.; Alboyaci, B.; Onen, A. Assessment of Battery Storage Technologies for a Turkish Power Network. *Sustainability* 2019, 11, 3669. doi:10.3390/su11133669.
96. Cha, H.J.; Lee, S.E.; Won, D. Implementation of Optimal Scheduling Algorithm for Multi-Functional Battery Energy Storage System. *Energies* 2019, 12, 1339. doi:10.3390/en12071339.

97. Hesse, H.C.; Kumtepeli, V.; Schimpe, M.; Reniers, J.; Howey, D.A.; Tripathi, A.; Wang, Y.; Jossen, A. Ageing and Efficiency Aware Battery Dispatch for Arbitrage Markets Using Mixed Integer Linear Programming. *Energies* 2019, 12, 999. doi:10.3390/en12060999.

98. Banshwar, A.; Sharma, N.K.; Sood, Y.R.; Shrivastava, R. Market-based participation of energy storage scheme to support renewable energy sources for the procurement of energy and spinning reserve. *Renew. Energy* 2019, 135, 326–344. doi:10.1016/j.renene.2018.12.009.

99. Wang, X.; Li, L.; Palazoglu, A.; El-Farra, N.H.; Shah, N. Optimization and control of offshore wind farms with energy storage systems. *IFAC-PapersOnLine* 2018, 51, 862–867. doi:10.1016/j.ifacol.2018.09.245.

100. Salvini, C.; Monacchia, S. A Memetic Computing Approach for Unit Commitment with Energy Storage Systems. *Energy Procedia* 2017, 107, 377–382. doi:10.1016/j.egypro.2016.12.179.

101. Hanna, R.; Kleissl, J.; Nottrott, A.; Ferry, M. Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting. *Solar Energy* 2014, 103, 269–287. doi:10.1016/j.solener.2014.02.020.

102. Karhinen, S.; Huuki, H. Private and social benefits of a pumped hydro energy storage with increasing amount of wind power. *Energies* 2019, 81, 942–959. doi:10.1016/j.eneco.2019.05.024.

103. Senjyu, T.; Miyagi, T.; Yousuf, S.A.; Urasaki, N.; Funabashi, T. A technique for unit commitment with energy storage system. *Int. J. Electr. Power Energy Syst.* 2007, 29, 91–98. doi:10.1016/j.ijepes.2006.05.004.

104. Howlader, H.O.R.; Sediqi, M.M.; Ibrahim, A.M.; Senjyu, T. Optimal Thermal Unit Commitment for Solving Duck Curve Problem by Introducing CSP, PSH and Demand Response. *IEEE Access* 2018, 6, 4834–4844. doi:10.1109/ACCESS.2018.2790967.

105. Ju, Y.; Wang, J.; Ge, F.; Lin, Y.; Dong, M.; Li, D.; Shi, K.; Zhang, H. Unit Commitment Accommodating Large Scale Green Power. *Appl. Sci.* 2019, 9, 1611. doi:10.3390/app9081611.

106. Pérez-Díaz, J.I.; Jiménez, J. Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration. *Energy* 2016, 109, 92–104. doi:10.1016/j.energy.2016.04.014.

107. Lin, S.; Fan, G.; Lu, Y.; Liu, M.; Lu, Y.; Li, Q. A Mixed-Integer Convex Programming Algorithm for Security-Constrained Unit Commitment of Power System with 110-kV Network and Pumped-Storage Hydro Units. *Energies* 2019, 12, 3646. doi:10.3390/en12193646.

108. Hemmati, R.; Saboori, H. Short-term bulk energy storage system scheduling for load leveling in unit commitment: Modeling, optimization, and sensitivity analysis. *J. Adv. Res.* 2016, 7, 360–372. doi:10.1016/j.jare.2016.02.002.

109. Chen, Z.; Xiao, X.Y.; Li, C.S.; Zhang, Y.; Zheng, Z.X. Study on Unit Commitment Problem Considering Large-Scale Superconducting Magnetic Energy Storage Systems. *IEEE Trans. Appl. Supercond.* 2016, 26, 5701306. doi:10.1109/TASC.2016.2598353.

110. Mirzaei, M.A.; Yazdankhah, A.S.; Mohammadi-Ivatloo, B. Integration of Demand Response and Hydrogen Storage System in Security Constrained Unit Commitment with High Penetration of Wind Energy. In Proceedings of the Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2018; pp. 1203–1208. doi:10.1109/ICEE.2018.8472631.

111. Ban, M.; Yu, J.; Shahidehpour, M.; Yao, Y. Integration of power-to-hydrogen in day-ahead security-constrained unit commitment with high wind penetration. *J. Mod. Power Syst. Clean Energy* 2017, 5, 337–349. doi:10.1007/s40565-017-0277-0.