AN EXACT GEOMETRIC MASS FORMULA

CHIA-FU YU

Abstract. We show an exact geometric mass formula for superspecial points in the reduction of any quaternionic Shimura variety modulo at a good prime p.

1. Introduction

Let p be a rational prime number. Let B be a totally indefinite quaternion algebra over a totally real field F of degree d, together with a positive involution \ast. Assume that p is unramified in B. Let O_B be a maximal order stable under the involution \ast. Let (V,ψ) be a non-degenerate \mathbb{Q}-valued skew-Hermitian (left) B-module with dimension $2g$ over \mathbb{Q}. Put $m := \frac{g}{d}$, a positive integer. A polarized abelian O_B-variety $A = (A,\lambda,\iota)$ is a polarized abelian variety (A,λ) together with a ring monomorphism $\iota : O_B \to \text{End}(A)$ such that $\lambda \circ \iota(b^\ast) = \iota(b)^t \circ \lambda$ for all $b \in O_B$. Let k be an algebraically closed field of characteristic p. An abelian variety over k is said to be superspecial if it is isomorphic to a product of supersingular elliptic curves. Denote by Λ^B_g the set of isomorphism classes of g-dimensional superspecial principally polarized abelian O_B-varieties over k. Define the mass of Λ^B_g to be

$$\text{Mass}(\Lambda^B_g) := \sum_{\Delta \in \Lambda^B_g} \frac{1}{|\text{Aut}(A,\lambda,\iota)|}.$$

The mass $\text{Mass}(\Lambda^B_g)$ is studied in Ekedahl [1] (Ekedahl’s result relies on an explicit volume computation in Hashimoto-Ibukiyama [4, Proposition 9, p. 568]) in the special case $B = M_2(\mathbb{Q})$. He proved

Theorem 1.1 (Ekedahl, Hashimoto-Ibukiyama). One has

$$\text{Mass}(\Lambda_g) = \frac{(-1)^{g(g+1)/2}}{2g} \prod_{i=1}^{g} \zeta(1-2i) \cdot \prod_{i=1}^{g} p^i + (-1)^i,$$

where Λ_g is the set of isomorphism classes of g-dimensional superspecial principally polarized abelian varieties over k and $\zeta(s)$ is the Riemann zeta function.

Let $B_{p,\infty}$ be the quaternion algebra over \mathbb{Q} ramified exactly at $\{p, \infty\}$. Let B' be the quaternion algebra over F such that $\text{inv}_v(B') = \text{inv}_v(B_{p,\infty} \otimes \mathbb{Q} B)$ for all v. Let Δ' be the discriminant of B' over F.

In this paper we prove

Date: June 19, 2007. The research is partially supported by NSC 96-2115-M-001-001.
\textbf{Theorem 1.2.} One has

\begin{equation}
\text{Mass}(\Lambda_g^B) = \frac{(-1)^{dm(m+1)/2}}{2^{md}} \prod_{i=1}^{m} \left\{ \zeta_F(1-2i) \prod_{v|\Delta'} N(v)^i + (-1)^i \prod_{v|p,\nu|\Delta'} N(v)^i + 1 \right\},
\end{equation}

where \(\zeta_F(s) \) is the Dedekind zeta function.

Let \(N \geq 3 \) be a prime-to-\(p \) positive integer. Choose a primitive \(n \)-th root of unity \(\zeta_N \in \overline{\mathbb{Q}} \subset \mathbb{C} \) and fix an embedding \(\overline{\mathbb{Q}} \hookrightarrow \mathbb{Q}_p \). Let \(\mathcal{M} \) be the moduli space over \(\mathbb{F}_p \) of \(g \)-dimensional principally polarized abelian \(O_B \)-varieties with a symplectic \(O_B \)-linear level-\(N \) structure w.r.t. \(\zeta_N \). Let \(L_0 \) be a self-dual \(O_B \)-lattice of \(V \) with respect to \(\psi \). Let \(G_1 \) be the automorphism group scheme over \(\mathbb{Z} \) associated to the pair \((L_0, \psi)\). As an immediate consequence of Theorem 1.2 we get

\textbf{Theorem 1.3.} The moduli space \(\mathcal{M} \) has

\begin{equation}
|G_1(\mathbb{Z}/N\mathbb{Z})| \frac{(-1)^{dm(m+1)/2}}{2^{md}} \prod_{i=1}^{m} \left\{ \zeta_F(1-2i) \prod_{v|\Delta'} N(v)^i + (-1)^i \prod_{v|p,\nu|\Delta'} N(v)^i + 1 \right\}
\end{equation}
superspecial points.

We divide the proof of Theorem 1.2 into 4 parts; each part is treated in one section. The first part is to express the weighted sum in terms of an arithmetic mass; this is done by Shimura [17] (re-obtained by Gan and J.-K. Yu [3, 11.2, p. 522]) using the theory of Bruhat-Tits Buildings). The third part is to compare the derived arithmetic mass in Section 1 with “the” standard mass in Section 2. This reduces the problem to computing a local index at \(p \). The last part uses Dieudonné theory to compute this local index. A crucial step is choosing a good basis for the superspecial Dieudonné module concerned; this makes the computation easier.

\textbf{Notation.} \(\mathbb{H} \) denotes the Hamilton quaternion algebra over \(\mathbb{R} \). \(\mathbb{A}_f \) denotes the finite adele ring of \(\mathbb{Q} \) and \(\hat{\mathbb{Z}} = \prod_p \mathbb{Z}_p \). For a number field \(F \) and a finite place \(v \), denote by \(O_F \) the ring of integers, \(F_v \) the completion of \(F \) at \(v \), \(\kappa_v \) the residue field, \(f_v := [\kappa_v : \mathbb{F}_p] \) and \(q_v := N(v) = |\kappa_v| \). For an \(O_F \)-module \(A \), write \(A_v \) for \(A \otimes_{O_F} O_{F_v} \). For a scheme \(X \) over \(\text{Spec} \, A \) and an \(A \)-algebra \(B \), write \(X_B \) for \(X \times_{\text{Spec} \, A} \text{Spec} \, B \). For a linear algebraic group \(G \) over \(\mathbb{Q} \) and an open compact subgroup \(U \) of \(G(\mathbb{A}_f) \), denote by \(\text{DS}(G,U) \) the double coset space \(G(\mathbb{Q}) \backslash G(\mathbb{A}_f)/U \), and write \(\text{Mass}(G,U) := \sum_{i=1}^{h} |\Gamma_i|^{-1} \) if \(G \) is \(\mathbb{R} \)-anisotropic, where \(\Gamma_i := G(\mathbb{Q}) \cap c_i U c_i^{-1} \) and \(c_1,\ldots,c_h \) are complete representatives for \(\text{DS}(G,U) \). For a central simple algebra \(B \) over \(F \), write \(\Delta(B/F) \) for the discriminant of \(B \) over \(F \). If \(B \) a central division algebra over a non-archimedean local field \(F_v \), denote by \(O_B \) the maximal order of \(B \), \(m(B) \) the maximal ideal and \(\kappa(B) \) the residue field. \(\mathbb{Q}_p^n \) denotes the unramified extension of \(\mathbb{Q}_p \) of degree \(n \) and write \(\mathbb{Z}_p^n := O_{\mathbb{Q}_p^n} \).

\section{Simple mass formulas}

Let \(B \) be a finite-dimensional semi-simple algebra over \(\mathbb{Q} \) with a positive involution *, and \(O_B \) be an order of \(B \) stable under *. Let \(k \) be any field.
To any polarized abelian O_B-varieties $\mathcal{A} = (A, \lambda, \iota)$ over k, we associate a pair (G_x, U_x), where G_x is the group scheme over \mathbb{Z} representing the functor

$$R \mapsto \{ h \in (\text{End}_{O_B}(A_k) \otimes R)^\times \mid h'h = 1 \},$$

where $h \mapsto h'$ is the Rost involution, and U_x is the open compact subgroup $G_x(\hat{\mathbb{Z}})$. For any prime ℓ, we write $\mathcal{A}(\ell)$ for the associated ℓ-divisible group with additional structures $\big(A[\ell^\infty], \lambda_\ell, \iota_\ell\big)$, where λ_ℓ is the induced quasi-polarization of $A[\ell^\infty]$. We also write $\lambda_\ell^* \lambda_\ell = \lambda_1$, and $\text{Isom}_k(\mathcal{A}_1(\ell), \mathcal{A}_2(\ell))$ the set of quasi-isomorphisms $\varphi: A_1 \to A_2$ such that $\varphi^* \lambda_2 = \lambda_1$. Let Λ_x be a fixed polarized abelian O_B-variety over k. Denote by $\Lambda_x(k)$ the set of isomorphism classes of polarized abelian O_B-varieties \mathcal{A} over k such that

$$(I_1): \text{Isom}_k(\mathcal{A}_0(\ell), \mathcal{A}(\ell)) \neq \emptyset \text{ for all primes } \ell.$$

Let $\Lambda_x^*(k) \subset \Lambda_x(k)$ be the subset consisting of objects such that

$$(Q): \text{Q-isom}_k(\mathcal{A}_0, \mathcal{A}) \neq \emptyset.$$

Let $\text{ker}^1(Q, G_x)$ denote the kernel of the local-global map $H^1(Q, G_x) \to \prod_v H^1(Q_v, G_x)$.

Theorem 2.1. (S Theorem 2.3) Suppose that k is a field of finite type over its prime field.

1. There is a natural bijection $\Lambda_x^*(k) \simeq DS(G_x, U_x)$. Consequently, $\Lambda_x^*(k)$ is finite.
2. One has $\text{Mass}(\Lambda_x^*(k)) = \text{Mass}(G_x, U_x)$.

Theorem 2.2. (S Theorem 4.6 and Remark 4.7) Notation as above. If $k \supset \mathbb{F}_p$ is algebraically closed and A_0 is supersingular, then $\text{Mass}(\Lambda_x^*(k)) = \text{Mass}(G_x, U_x)$ and $\text{Mass}(\Lambda_x(k)) = |\text{ker}^1(Q, G_x)| \cdot \text{Mass}(G_x, U_x)$.

Remark 2.3. The statement of Theorem 2.2 is valid for basic abelian O_B-varieties in the sense of Kottwitz (see [5] for the definition). The present form is enough for our purpose.

3. An exact mass formula of Shimura

Let D be a totally definite quaternion division algebra over a totally real field F of degree d. Let $(\text{bar}) d \mapsto \hat{d}$ denote the canonical involution. Let (V', φ) be a D-valued totally definite quaternion Hermitian D-module of rank m. Let G^φ denote the unitary group attached to φ. This is a reductive group over F and is regarded as a group over \mathbb{Q} via the Weil restriction of scalars from F to \mathbb{Q}. Choose a maximal order O_D of D stable under the canonical involution \cdot. Let L be an O_D-lattice in V' which is maximal among the lattices on which φ takes its values in O_B. Let U_0 be the open compact subgroup of $G^\varphi(\mathbb{A}_f)$ which stabilizes the adelic lattice $L \otimes \mathbb{Z}$.

The following is deduced from a mass formula of Shimura [7] (also see Gan - J.-K. Yu [3] 11.2, p. 522). This form is more applicable to prove Theorem 1.2.
Theorem 3.1 (Shimura). One has

\[(3.1) \quad \text{Mass}(G^\varphi, U_0) = \frac{(-1)^{dm}(m+1)/2}{2md} \prod_{i=1}^{m} \left\{ \zeta_F(1-2i) \prod_{v|\Delta(D/F)} N(v)^i + (-1)^i \right\}.\]

Deduction. In [7, Introduction, p. 68] Shimura gives the explicit formula

\[(3.2) \quad \text{Mass}(G^\varphi, U_0) = |D_F|^{m^2} \prod_{i=1}^{m} D_F^{1/2} \left\{ (2i-1)!/(2\pi)^{2i} \right\} \zeta_F(2i) \prod_{v|\Delta(D/F)} N(v)^i + (-1)^i,\]

where D_F is the discriminant of F over \mathbb{Q}. Using the functional equation for $\zeta_F(s)$, we deduce (3.1) from (3.2).

4. Global comparison

Keep the notation as in Section 1. Fix a g-dimensional superspecial principally polarized abelian $O_B \otimes \mathbb{Z}_p$-lattices of $(V_{\mathbb{Q}_p}, \psi)$ are isomorphic.

Proof. The proof is elementary and omitted.

Lemma 4.1. Any two self-dual $O_B \otimes \mathbb{Z}_p$-lattices of $(V_{\mathbb{Q}_p}, \psi)$ are isomorphic.

Proof. (1) The inclusion $\Lambda_x \subset \Lambda^B_x$ is clear. We show the other direction. Let $\Lambda_x := \Lambda_x(k)$ as in Section 2. Let (G_x, U_x) be the pair associated to x.

Lemma 4.2. One has (1) $\Lambda_x = \Lambda^B_x \cap \ker^1(\mathbb{Q}, G_x) = \{1\}$.

Proof. (1) The inclusion $\Lambda_x \subset \Lambda^B_x$ is clear. We show the other direction. Let $\Delta \in \Lambda^B_g$. It follows from Lemma 4.1 that the condition (Ip) is satisfied for primes $\ell \neq p$. Let M be the covariant Dieudonné module of A. One chooses an isomorphism $O_{B,p} \simeq M_2(\mathbb{O}_{F,p})$ so that $\ast : (a_{ij}) \mapsto (a_{ij})^t$. Using the Morita equivalence, it suffices to show that any two superspecial principally quasi-polarized Dieudonné modules with compatible $O_{F,p}$-action are isomorphic. This follows from Theorem 5.1.

4.1. We compute that

- (i) $G_x(\mathbb{R}) = \{ h \in M_m(\mathbb{H})^d \mid \mathcal{H} h = 1 \}$,
- (ii) for $\ell \neq p$, we have $G_x(\mathbb{Q}_\ell) = \prod_{v|\ell} G_{x,v}$ and $U_{x,\ell} = \prod_{v|\ell} U_{x,v}$, where

\[
G_{x,v} = \begin{cases}
\text{Sp}_{2m}(F_v), & \text{if } v \nmid \Delta(B/F), \\
\{ h \in M_m(B_v) \mid \mathcal{H} h = 1 \}, & \text{otherwise,}
\end{cases}
\]

\[(4.1) U_{x,v} = \begin{cases}
\text{Sp}_{2m}(O_{F_v}), & \text{if } v \nmid \Delta(B/F), \\
\{ h \in M_m(O_{B_v}) \mid \mathcal{H} h = 1 \}, & \text{otherwise,}
\end{cases}
\]

- (iii) $G_x(\mathbb{Q}_p) = \prod_{v|p} G_{x,v}$, where

\[
G_{x,v} = \begin{cases}
\text{Sp}_{2m}(F_v), & \text{if } v \nmid \Delta^t, \\
\{ h \in M_m(B_v^t) \mid \mathcal{H} h = 1 \}, & \text{otherwise.}
\end{cases}
\]

Take $D = B^t$ and $V' = D^{\oplus m}$ with $\varphi(x, y) = \sum x_i y_i$, and take $L = O_D^{\oplus m}$. We compute that

- (i) $G^\varphi(\mathbb{R}) = \{ h \in M_m(\mathbb{H})^d \mid \mathcal{H} h = 1 \}$,
(ii)' for any \(\ell \), we have \(G_x(\mathbb{Q}_\ell) = \prod_{v|\ell} G^\varphi_v \) and \(U_{0,\ell} = \prod_{v|\ell} U_{0,v} \), where
\[
G^\varphi_v = \begin{cases}
\text{Sp}_{2m}(F_v), & \text{if } v \nmid \Delta', \\
\{ h \in M_m(B'_v) | \bar{h} h = 1 \}, & \text{otherwise},
\end{cases}
\]
(4.3)
\[
U_{0,v} = \begin{cases}
\text{Sp}_{2m}(O_{F_v}), & \text{if } v \nmid \Delta', \\
\{ h \in M_m(O_{B'_v}) | \bar{h} h = 1 \}, & \text{otherwise}.
\end{cases}
\]

For \(\ell \neq p \) and \(v|\ell \), one has \(B_v = B'_v \) and that \(v \nmid \Delta(B/F) \) if and only if \(v \nmid \Delta' \). It follows from the computation above that \(G_{x,\mathbb{R}} \simeq G^\varphi_{\mathbb{R}} \) and \(G_{x,\mathbb{Q}_p} \simeq G^\varphi_{\mathbb{Q}_p} \) for all \(\ell \). Since the Hasse principle holds for the adjoint group \(G_{x}^{\text{ad}} \), we get \(G_x \simeq G^\varphi \) over \(\mathbb{Q} \). We fix an isomorphism and write \(G_x = G^\varphi \). For \(\ell \neq p \) and \(v|\ell \), the subgroups \(U_{0,v} \) and \(U_{x,v} \) are conjugate, and hence they have the same local volume.

4.2. Applying Theorem 2.2 in our setting (Section 1) and using Lemma 4.2, we get \(\text{Mass}(\Lambda^B_g) = \text{Mass}(G_x, U_x) \). Using the result in Subsection 4.1, we get
\[
\text{Mass}(\Lambda^B_g) = \text{Mass}(G^\varphi, U_0) \cdot \mu(U_{0,p}/U_{x,p}),
\]
(4.4)
where \(\mu(U_{0,p}/U_{x,p}) = [U_{x,p} : U_{0,p} \cap U_{x,p}]^{-1}[U_{0,p} : U_{0,p} \cap U_{x,p}] \).

5. Local index \(\mu(U_{0,p}/U_{x,p}) \)

Let \((M', \langle \cdot, \cdot \rangle', \iota') \) be the covariant Dieudonné module associated to the point \(x = (A_0, \lambda_0, \eta_0) \) in the previous section. Choose an isomorphism \(O_B \otimes \mathbb{Z}_p \simeq M_2(O_F \otimes \mathbb{Z}_p) \) so that \(* \) becomes the transpose. Let \(M := eM', \langle \cdot, \cdot \rangle := \langle \cdot, \cdot \rangle|M \) and \(\iota := \iota'|O_F \), where \(e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \) in \(M_2(O_F \otimes \mathbb{Z}_p) \). The triple \((M, \langle \cdot, \cdot \rangle, \iota) \) is a superspecial principally quasi-polarized Dieudonné module with compatible \(O_F \otimes \mathbb{Z}_p \)-action of rank \(g = 2dm \). Let \(M = \oplus_{v|p} M_v \) be the decomposition with respect to the decomposition \(O_F \otimes \mathbb{Z}_p = \oplus_{v|p} O_v \); here we write \(O_v \) for \(O_{F_v} \). By the Morita equivalence, we have
\[
U_{x,p} = \text{Aut}_{DM, O_B}(M', \langle \cdot, \cdot \rangle') = \text{Aut}_{DM, O_F}(M, \langle \cdot, \cdot \rangle) = \prod_{v|p} U_{x,v},
\]
(5.1)
where \(U_{x,v} := \text{Aut}_{DM, O_v}(M_v, \langle \cdot, \cdot \rangle) \).

Let \(W := W(k) \) be ring of Witt vectors over \(k \) and \(\sigma \) the absolute Frobenius map on \(W \). Let \(J := \text{Hom}(O_v, W) \) be the set of embeddings; write \(I := \{ \sigma_i \}_{i \in \mathbb{Z}/f v Z} \) so that \(\sigma \sigma_i = \sigma_{i+1} \) for all \(i \). We identify \(\mathbb{Z}/f v Z \) with \(J \) through \(i \mapsto \sigma_i \). Decompose \(M_v = \oplus_{i \in \mathbb{Z}/f v Z} M^i_v \) into \(\sigma_i \)-isotypic components \(M^i_v \). One has (1) each component \(M^i_v \) is a free \(W \)-module of rank \(2m \), which is self-dual with respect to the pairing \(\langle \cdot, \cdot \rangle \), (2) \(\langle M^i_v, M^j_v \rangle = 0 \) if \(i \neq j \), and (3) the operations \(F \) and \(V \) shift by degree 1 and degree -1, respectively.

Theorem 5.1. Let \((M_v, \langle \cdot, \cdot \rangle, \iota) \) be as above. There is a symplectic basis \(\{ X_j^i, Y_j^i \}_{j=1, \ldots, m} \) for \(M^i_v \) such that
\begin{enumerate}
 \item \(Y_j^i \in VM^{i+1}_v \),
 \item \(FX_j^i = -Y_j^{i+1} \) and \(FY_j^i = pX_j^{i+1} \),
\end{enumerate}
for all \(i \in \mathbb{Z}/f v Z \) and all \(j \).
We construct a symplectic basis \(\{ X_j, Y_j \}_{j=1, \ldots, m} \) for \(N^0 \) such that \(Y_j \in VN^1 \) for all \(j \). Define \(X_j \) and \(Y_j \) recursively for \(j = 1, \ldots, j \):

\[
X_{j+1} = p^{-1} FY_j, \quad Y_{j+1} = -FX_j.
\]

One has \(X_{j+2} = \frac{1}{p} F^2 X_j \) and \(Y_{j+2} = \frac{1}{p} F^2 Y_j \), hence

\[
X_j = (-1)^e p^{-c} F^2 X_0, \quad Y_j = (-1)^e p^{-c} F^2 Y_0 = Y_j,
\]

for all \(j \). It is easy to see that \(\{ X_j, Y_j \}_{j=1, \ldots, m} \) forms a symplectic basis for \(N^i \).

Suppose that \(f = 2e + 1 \) is odd. Let \(N := \{ x \in M \mid F^2 x = (1)^c V^c x \} \). We construct a symplectic basis \(\{ X_0^j, Y_0^j \}_{j=1, \ldots, m} \) for \(N^0 \) with the properties:

\[
X_j \not\in VN^1, \quad Y_j \in VN^1 \quad \text{and} \quad Y_j = (-1)^{c+1} p^{-c} F^j X_1 \quad \text{for all} \quad j.
\]

We can choose \(X_0^j \in N^0 \setminus VN^1 \) so that \(\langle X_1, (-1)^{c+1} p^{-c} F^j X_1 \rangle \in \mathbb{Z}_q^2 \). This follows from the fact that the form \(\langle x, y \rangle := \langle x, p^{-c} F^j y \rangle \) mod \(p \) is a non-degenerate Hermitian form on \(N^0 / VN^1 \). Set \(Y_0^j = (-1)^{c+1} p^{-c} F^j X_1^j \) and let \(\mu := \langle X_1^j, Y_0^j \rangle \). From \(\langle F^j X_1^j, F^j Y_0^j \rangle = (-1)^{c+1} p^{-c} F^j Y_0^j, \langle (-1)^{c+1} p^{-c} F^j Y_0^j, X_0^j \rangle \), we get \(\mu = \mathbb{Z}_q^2 \). Since \(\mathbb{Q}_p^1 / \mathbb{Q}_q \) is unramified, replacing \(X_1^j \) by a suitable \(\lambda X_0^j \), we get \(\langle X_1^j, Y_0^j \rangle = 1 \). Do the same construction for the complement of the submodule \(\langle X_0^j, Y_0^j \rangle \) and use induction; we exhibit such a basis for \(N^0 \).

Define \(X_j^f \) and \(Y_j^f \) recursively for \(i = 1, \ldots, f \) as [5.2]. We verify again that \(X_j^f = X_0^j \) and \(Y_j^f = Y_0^j \). It follows from the relation [5.2] that \(\{ X_j^f, Y_j^f \}_{j=1, \ldots, m} \) forms a symplectic basis for \(N^i \) for all \(i \). This completes the proof.

\begin{proposition}
Notation as above.

(1) If \(f_v \) is even, then

\[
U_{x, v} = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}_{2m}(\mathbb{Z}_{q_v}) \mid B \equiv 0 \mod p \right\}.
\]

(2) If \(f_v \) is odd, then

\[
U_{x, v} \simeq \{ h \in M_{m}(O_{B_v}) \mid \tilde{h} h = 1 \}.
\]

\end{proposition}

\begin{proof}
Let \(\phi \in U_{x, v} \). Choose a symplectic basis \(B \) for \(M_v \) as in Theorem 5.1. Since \(\phi \) commutes with the \(O_F \)-action, we have \(\phi = (\phi_i) \), where \(\phi_i \in \text{Aut}(M_v, \langle \cdot, \cdot \rangle) \).

Write \(\phi_i = \begin{pmatrix} A_i & B_i \\ C_i & D_i \end{pmatrix} \in \text{Sp}_{2m}(W) \) using the basis \(B \). Since the map \(F \) is injective, \(\phi_0 \) determines the remaining \(\phi_i \). From \(\phi F^2 = F^2 \phi \), we have \(\phi_i^{+2} = \phi_i^{(2)} \) (as matrices). Here we write \(\phi_i^{(n)} \) for \(\phi_0^{n} \). From \(\phi F = F \phi \) we get \(A_i^{(1)} = D_i^{+1} \), \(B_i^{(1)} = -pC_i^{+1}, C_i^{(1)} = -B_i^{+1} \) and \(D_i^{(1)} = A_i^{+1} \).

(1) If \(f_v \) is even, then \(A_0, B_0, C_0, D_0 \in \mathbb{Z}_{q_v} \) and \(B_0 \equiv 0 \mod p \). This shows [5.3].

(2) Suppose \(f_v \) is odd. From \(\phi_0^{(f_v+1)} = \phi_1 \) we get \(A_0^{(f_v)} = D_0, B_0^{(f_v)} = -pC_0, pC_0^{(f_v)} = -B_0, D_0^{(f_v)} = A_0 \). Hence

\[
U_{x, v} = \left\{ \begin{pmatrix} A & -pC^T \\ C & A \end{pmatrix} \right\} \in \text{Sp}_{2m}(\mathbb{Z}_{q_v^2}).
\]

\end{proof}
where \(\tau \) is the involution of \(\mathbb{Q}_{q_2} \) over \(\mathbb{Q}_{q_v} \). Note that \(O_{B'} = \mathbb{Z}_{q_2} \Pi \) with \(\Pi^2 = -p \) and \(\Pi a = a^\tau \Pi \) for all \(a \in \mathbb{Z}_{q_2} \). The map \(A + C \Pi \mapsto \begin{pmatrix} A & -pC^\tau \\ C & A^\tau \end{pmatrix} \) gives rise to an isomorphism \(\text{[5.4]} \). This proves the proposition.

Let \((V_0 = \mathbb{F}_q^{2m}, \psi_0)\) be a standard symplectic space. Let \(P \) be the stabilizer of the standard maximal isotropic subspace \(\mathbb{F}_q < e_1, \ldots, e_m > \).

Lemma 5.3. \[|\text{Sp}_{2m}(\mathbb{F}_q)/P| = \prod_{i=1}^{m} (q^{2i} + 1). \]

Proof. We have a natural bijection between the group \(\text{Sp}_{2m}(\mathbb{F}_q) \) and the set \(B(m) \) of ordered symplectic bases \(\{v_1, \ldots, v_{2m}\} \) for \(V_0 \). The first vector \(v_1 \) has \(q^{2m} - 1 \) choices. The first companion vector \(v_{m+1} \) has \(q^{2m-1} \) choices as it does not lie in the hyperplane \(v_1^\perp \) and we require \(\psi_0(v_1, v_{m+1}) = 1 \). The remaining ordered symplectic basis can be chosen from the complement \(\mathbb{F}_q < v_1, v_{m+1} >^\perp \). Therefore, we have proved the recursive formula \[|\text{Sp}_{2m}(\mathbb{F}_q)| = (q^{2m} - 1)q^{2m-1}|\text{Sp}_{2m-2}(\mathbb{F}_q)|. \]

From this, we get

\[(5.5) \quad |\text{Sp}_{2m}(\mathbb{F}_q)| = q^{m^2} \prod_{i=1}^{m} (q^{2i} - 1). \]

We have

\[P = \left\{ \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}; AD^t = I_m, \ BA^t = AB^t \right\}. \]

This yields

\[(5.6) \quad |P| = q^{m^2 + m^2} |\text{GL}_m(\mathbb{F}_q)| = q^{m^2} \prod_{i=1}^{m} (q^i - 1). \]

From \((5.5) \) and \((5.6) \), we prove the lemma.

By Proposition 5.2 and Lemma 5.3, we get

Theorem 5.4. One has

\[(5.7) \quad \mu(U_0,p/U_{x,v}) = \prod_{v|p} \mu(U_0,v/U_{x,v}) = \prod_{v|p, v \nmid \Delta} m \prod_{i=1}^{m} (q_i^2 + 1). \]

Plugging the formula \((5.7) \) in the formula \((4.4) \), we get the formula \((1.3) \). The proof of Theorem 1.2 is complete.

Acknowledgments. The present work relies on Shimura’s paper \cite{Shimura} and is also inspired by W.-T. Gan and J.-K. Yu’s paper \cite{GanYu}. It is a great pleasure to thank them.

References

[1] T. Ekedahl, On supersingular curves and supersingular abelian varieties. *Math. Scand.* **60** (1987), 151–178.

[2] W. T. Gan, J. P. Hanke, and J.-K. Yu, On an exact mass formula of Shimura. *Duke Math. J.* **107** (2001), 103–133.

[3] W. T. Gan and J.-K. Yu, Group schemes and local densities. *Duke Math. J.* **105** (2000), 497–524.

[4] K. Hashimoto and T. Ibukiyama, On class numbers of positive definite binary quaternion hermitian forms, *J. Fac. Sci. Univ. Tokyo* **27** (1980), 549–601.
[5] G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups. *Inst. Hautes Études Sci. Publ. Math.* **69** (1989), 91–117.

[6] M. Rapoport and Th. Zink, *Period Spaces for p-divisible groups*. Ann. Math. Studies 141, Princeton Univ. Press, 1996.

[7] G. Shimura, Some exact formulas for quaternion unitary groups. *J. Reine Angew. Math.* **509** (1999), 67–102.

[8] C.-F. Yu, Simple mass formulas on Shimura varieties of PEL-type. [math.NT/0603451](http://arxiv.org/abs/math.NT/0603451) 15 pp.

Institute of Mathematics, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei, Taiwan, and NCTS (Taipei Office)

E-mail address: chiafu@math.sinica.edu.tw

Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn, 53111, Germany