Gastroenterology manifestations and COVID-19 outcomes: A meta-analysis of 25,252 cohorts among the first and second waves

Rami M. Elshazli1 | Adam Kline2 | Abdelaziz Elgaml3,4 | Mohamed H. Aboutaleb5 | Mohamed M. Salim5,6 | Mahmoud Omar7 | Ruhul Munshi8 | Nicholas Mankowski2 | Mohammad H. Hussein7 | Abdallah S. Attia7 | Eman A. Toraih7,9 | Ahmad Settin10 | Mary Killackey7 | Manal S. Fawzy11,12 | Emad Kandil8

1Department of Biochemistry and Molecular Genetics, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, Egypt
2School of Medicine, Tulane University, New Orleans, Louisiana, USA
3Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
4Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
5Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
6Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
7Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
8Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
9Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
10Pediatrics and Genetics Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
11Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
12Department of Biochemistry, College of Medicine, Northern Border University, Arar, Saudi Arabia

Abstract
A meta-analysis was performed to identify patients with coronavirus disease 2019 (COVID-19) presenting with gastrointestinal (GI) symptoms during the first and second pandemic waves and investigate their association with the disease outcomes. A systematic search in PubMed, Scopus, Web of Science, ScienceDirect, and EMBase was performed up to July 25, 2020. The pooled prevalence of the GI presentations was estimated using the random-effects model. Pairwise comparison for the outcomes was performed according to the GI manifestations’ presentation and the pandemic wave of infection. Data were reported as relative risk (RR), or odds ratio and 95% confidence interval. Of 125 articles with 25,252 patients, 20.3% presented with GI manifestations. Anorexia (19.9%), dysgeusia/ageusia (15.4%), diarrhea (13.2%), nausea (10.3%), and hematemesis (9.1%) were the most common. About 26.7% had confirmed positive fecal RNA, with persistent viral shedding for an average time of 19.2 days before being negative. Patients presenting with GI symptoms on admission showed a higher risk of complications, including acute...
1 | INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the deadly impact of a highly transmissible, novel respiratory pathogen infecting humans.1 Much of the initial response to the pathogen was centered around finding ways to prevent patients from developing severe respiratory symptoms, often with poor outcomes.2 The patients’ risk for developing complications was comorbid conditions or abnormal laboratory values on presentation.3,4 The typical symptoms of the illness are fever, dry cough, loss of taste or smell, fatigue, and shortness of breath. While acute respiratory manifestations of the disease are still the focal point of clinical research, the Centers for Disease Control and Prevention reports that gastrointestinal (GI) symptoms may be indicators of COVID-19 infection.5 Also, viral shedding in the feces of infected patients is not uncommon.6 There are conflicting reports of the significance of GI symptoms in predicting the outcome of patients with COVID-19. Therefore, GI symptoms have not been used as a predictive tool by healthcare providers.7,8

However, we believe the further analysis is indicated for several reasons. First, GI pathology in COVID-19 infections is attributed to the angiotensin-converting enzyme-2 (ACE-2) receptor expressed in epithelial cells of the GI tract, which mediates direct viral entry and damage.5,6 Second, the gut-lung axis is thought to play a role in indirect GI damage via the exaggerated immune reaction typical in these patients.6 Third, respiratory viruses have been demonstrated to increase CD4+ T-cell entry into the small intestine leading to a surge of cytokine release.9 Fourth, hepatocytes also express the ACE-2 receptor, which may play a role in acute liver injuries often seen in hospitalized patients with COVID-19.10 Lastly, the fecal–oral transmission may be a major source of spread, particularly in healthcare settings.11

In this sense, the purpose of this meta-analysis is to analyze patients with COVID-19 in terms of the presence of GI symptoms and its potential contribution to the outcomes of the disease. We also compared the differences in presentation and outcome between the first and the second wave of patients with COVID-19.

respiratory distress syndrome (RR = 8.16), acute cardiac injury (RR = 5.36), and acute kidney injury (RR = 5.52), intensive care unit (ICU) admission (RR = 2.56), and mortality (RR = 2.01). Although not reach significant levels, subgroup-analysis revealed that affected cohorts in the first wave had a higher risk of being hospitalized, ventilated, ICU admitted, and expired. This meta-analysis suggests an association between GI symptoms in COVID-19 patients and unfavorable outcomes. The analysis also showed improved overall outcomes for COVID-19 patients during the second wave compared to the first wave of the outbreak.

KEYWORDS
COVID-19, GIT, meta-analysis, pandemic, SARS-CoV-2

2 | METHODS

2.1 | Search strategy

The study protocol was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.12 A comprehensive literature search of all eligible articles was conducted by two reviewers (RME and RM) utilizing the electronic medical databases; Web of Science, PubMed, Scopus, Science Direct, and Embase up to July 25, 2020. The subsequent set of MeSH terms and keywords related to gastrointestinal manifestations and COVID-19 were applied, including ("2019-ncov," "SARS-COV-2," "Wuhan coronavirus," OR "COVID-19") AND ("Gastrointestinal manifestations," "Gastrointestinal symptoms," "Gastrointestinal presentations." "GI symptoms," "Digestive symptoms," "Gastric symptoms," "Digestive manifestations," "Gastrointestinal features" OR "Gastrointestinal involvement") AND ("Viral shedding," "Fecal shedding," "Feces," OR "Fecal oral"). No language, time, and/or country limitations have been applied. We also screened manually the references list of articles for potentially relevant articles.

2.2 | Eligibility criteria

We screened the records against the following inclusion criteria: (a) study population: patients with COVID-19 (including adult, but not pediatric and/or pregnant women) enclosing data on gastrointestinal manifestations such as diarrhea, vomiting, nausea, abdominal pain, anorexia, dysgeusia/ageusia, heartburn, constipation, hemoptysis, hematochezia, hematemesis, melena or fecal occult blood or underwent fecal shedding screening using fecal RNA reverse-transcription polymerase chain reaction (RT-PCR). (b) Study design: Observational studies including case series, prospective/retrospective cohort studies, and case–control studies. (c) Articles reporting original enough data demographics, laboratory values, and/or outcomes. (d) Peer-reviewed articles. We excluded articles with the following characteristics: (a) pediatric and/or pregnant women, (b) case reports, case series with sample size less than five patients, (c) duplicate data,
(d) reviews, editorial materials, non-peer-reviewed articles, and preprint versions, and (e) articles reporting irrelevant, or insufficient data.

2.3 Definitions and subgroup analysis

Positive GI cases were those who had at least one of the following gastrointestinal symptoms: anorexia, nausea, vomiting, diarrhea, abdominal pain, recent-onset constipation, heartburn, dysgeusia/ageusia, hematemesis, hematochezia, and/or melena. Non-GI controls were defined as asymptomatic cohorts or presenting with respiratory and/or neurologic and/or systemic symptoms, not including any reported GI symptoms. Patients with a severe phenotype should meet at least one of the following three criteria: (a) respiratory distress and respiratory rate higher than 30 per minute; (b) fingertip blood oxygen saturation less than 93% during rest; (c) partial arterial oxygen pressure (PaO₂)/fraction of inspiration oxygen (FiO₂) ≤ 300 mmHg.13

Regarding pairwise meta-analysis, we conducted five comparisons, including (1) severe patients with COVID-19 versus non-severe ones; (2) hospitalized patients versus discharged cases; (3) ICU admission patients versus floor hospitalization patients; (4) nonsurvived patients versus survived; and (5) finally COVID-19 patients with positive fecal RNA RT-PCR versus negative cases.

In addition, a subgroup analysis was performed according to the publication date to investigate a potential difference between the first and second waves of the pandemic. The former was defined as patients infected with COVID-19 before May 15, 2020. The latter was defined as patients infected with COVID-19 at or after May 16, 2020. May 15 was selected for two reasons: It is closest to the median date of publication of the included 126 studies. It is approximately the date of various re-opening strategies in many geographic areas. Also, studies were categorized according to geographic distribution into Asian and non-Asian studies.

2.4 Data extraction and covariate assessment

Independent investigators (AE, MHA, MMS, MO, RM, NM, and ASA) abstracted the reported data in a pre-specified excel sheet. Studies’ characteristics, patient demographics, and clinical presentation, comorbid conditions, and results of laboratory testing were also retrieved. Complications such as acute respiratory distress syndrome (ARDS), acute cardiac injury, arrhythmias, acute liver injury, acute kidney injury (AKI), shock, and sepsis, degree of severity, intensive care unit (ICU) admission, treatment protocols, length of hospital stay, and outcomes were collected. RME has revised the whole extracted data and resolved any dissonance.

2.5 Data synthesis and statistical analysis

All statistical analyses were processed with Comprehensive Meta-Analysis version 3.0 and STATA 16.0, and the results were considered significant at a p value less than .05. Related events or means and standard deviations (SDs) of each arm were extracted. Other statistical variable data, like median and interquartile range (IQR), were converted to means and SDs. One-arm meta-analysis was first performed using the Continuous Random-effects model and the DerSimonian–Laird method. The pooled mean effect size and proportion were estimated for quantitative and binary data, respectively. Next, a two-arms meta-analysis was performed to compare clinical outcomes and admission outcomes between cohorts presented with gastrointestinal manifestations and those without gastrointestinal symptoms. Data were reported as standardized mean difference (SMD), relative risk (RR), or odds ratio (OR), and 95% confidence interval (CI).

Heterogeneity was quantified by using I² statistics. Articles were considered to have significant heterogeneity between studies when the p value less than .1 or I² greater than 50%. Subgroup analysis by the pandemic wave of infection (first/early wave vs. second/late wave) and ethnicity (Asian, American, European, and Mexican) was carried out. Random-effects Meta-regression was performed to identify the influence of potential effect modifiers on the pooled results and explain the heterogeneity between studies. Covariates as geographical distribution and date of publication were employed. Also, publication bias was evaluated by Egger’s regression test.

3 RESULTS

3.1 Characteristics of included studies

Systematic search as depicted in Figure 1A yield 125 eligible publications, including 25,252 participants. Articles were published in 11 countries, predominated by China (101 studies; Figure 1B). They were published from January 24 to July 25, 2020, covering the two COVID-19 pandemic waves. The sample size ranged from 6 to 1452 per article. The basic characteristics of the 125 articles used for one-arm meta-analysis are listed in Table 1. For pairwise comparisons, 60 articles compared the clinical data, laboratory features, and outcomes of COVID-19 patients with and without GI symptoms (Table 2). Of these, 26 studies compared severe/critical COVID-19 patients versus mild cases, four articles compared between hospitalized patients and those not required hospitalization, five studies compared ICU admitted patients versus floor hospitalization, and 11 publications compared between those who died with those who survived.
negative fecal shedding,36,65,130 and of the remaining 14 studies comparing cohorts with and without GI symptoms.24,40,42,46,54,64,81,86,87,95,101,124,133,138

3.2 | The pooled prevalence of patients with gastrointestinal manifestations

The one-arm meta-analysis included 25,252 COVID-19 positive patients with a mean age of 52.1 years (95% CI, 49.9–54.3). The males accounted for 52.2% (95% CI, 50.8–53.6%). Most common co-morbid conditions were hypertension (22.3%, 95% CI, 19.3–25.6%) and obesity (20.7%, 95% CI, 17.1–24.9%).

Of the overall COVID-19 patients, 20.3% (95% CI, 16.6–23.9%) presented with GI features, and 26.7% (95% CI, 16.9–36.5%) had confirmed fecal viral shedding with positive fecal RNA RT-PCR test. The most common presenting gastrointestinal symptoms were anorexia (19.9%), dysgeusia/ageusia (15.4%), and diarrhea (13.2%). Fecal testing showed persistent viral shedding for an average time of 19.2 days (95% CI, 16.1–22.4) before being negative. The proportion of GI features was 18.7% (95% CI, 13.6–23.8%) in studies published during the first pandemic wave, which was insignificant from the second wave (23.1%, 95% CI, 18.7–27.5%). Subgroup analysis by geographical region showed a higher frequency of patients presented with gastrointestinal involvement in European studies (36.7%, 95% CI, 28.3–45.1%) compared with Asian (18.1%, 95% CI, 13.9–22.2%) and American (24.6%, 95% CI, 19.5–29.6%) studies (Figure 2).

3.3 | Differential outcomes of patients presenting with gastrointestinal manifestations

A pooled one-arm meta-analysis of detailed demographic, clinical, and laboratory features of COVID-19 patients with gastrointestinal presentations is demonstrated in Table S1. As depicted in Figure 3, subgroup analysis by the pandemic waves revealed a higher prevalence of acute cardiac injury and ICU admission (both \(p < .001 \)) in the first wave. In contrast, second wave articles reported higher ARDS frequencies, AKI, mechanical ventilation use, and a higher risk of mortality (all \(p < .001 \)).

Pairwise comparative analysis of COVID-19 cases with and without GI symptoms is shown in Table 3. COVID-19 patients presented with GI features were more likely to be older (SMD = 0.53; 95% CI = 0.41–0.64, \(p < .001 \)), and males (OR = 1.29; 95% CI = 1.14–1.46, \(p < .001 \)). Black patients were also less likely to present with GI features. They had higher odds of having comorbid conditions as hypertension (OR = 2.12; 95% CI = 1.76–2.56), diabetes (OR = 2.06, 95% CI = 1.66–2.55, \(p < .001 \)), chronic kidney disease (OR = 1.78, 95% CI = 1.21–2.63, \(p < .003 \)), chronic liver disease (OR = 1.51, 95% CI = 1.14–2.0, \(p < .004 \)), and malignancy (OR = 1.44, 95% CI = 1.11–1.87, \(p < .005 \)).

As depicted in Table 3G-I, despite lack of association with the degree of COVID-19 severity and length of hospital stay, cases presenting with GI symptoms on admission were more subjected to complications including ARDS (RR = 8.16; 95% CI = 4.77–13.9,
Table 1: Characteristics of the included studies in the single-arm meta-analysis

First author	Publication date	Study location	Country	Geographic distribution	Study design	Sample size	Age, mean ± SD	Sex (% male)	GI symptoms (number)					
Aghemo A	11-May	Milan	Italy	European	Retrospective	292	65.0 ± 14.1	68.15	69 11 - - - - - -					
Ai J	9-Jun	Xiangyang	China	Asian	Retrospective	7	54.1 ± 15.5	57.14	6 2 4 6 7					
Annweiler C	18-Jun	d’Angers	France	European	Retrospective	353	84.7 ± 7.0	45.33	77 22 22 - - - -					
Barillari M	25-Jul	Multiple	Italy	European	Observational multicenter	294	42.1 ± 123	50.00	81 42 42 37 84					
Cai Q	18-Mar	Shenzhen	China	Asian	Open-Label nonrandomized Control	80	47.9 ± 18.7	43.75	1 - - - - - -					
Cavaliere K	20-Apr	New York	USA	American	Retrospective	6	67.8 ± 12.4	50.00	- - - - - - - -					
Chang D	17-Mar	Beijing	China	Asian	Retrospective	13	38.7 ± 10.4	76.92	1 - - - - - -					
Chang D	20-Jun	Beijing	China	Asian	Retrospective	67	46.6 ± 15.8	56.72	6 - - - - - -					
Chen A	16-May	Maryland	USA	American	Prospective Case-Control	101	48.3 ± 14.7	40.59	51 14 30 26 54					
Chen F	8-Jul	Wuhan	China	Asian	Retrospective	681	63.7 ± 133	53.16	119 - - - - - -					
Chen J	19-Mar	Shanghai	China	Asian	Retrospective	249	50.3 ± 20.7	50.60	8 - - - - - - 8					
Chen L	13-May	Guangdong	China	Asian	Retrospective	51	59.5 ± 13.6	66.67	3 - - - - - -					
Chen M	13-May	Hubei	China	Asian	Retrospective	11	48.4 ± 14.1	72.73	2 - 3 - - - -					
Chen N	30-Jan	Wuhan	China	Asian	Retrospective	99	55.5 ± 13.1	67.68	2 1 1 - - - -					
Chen R	11-May	Multiple	China	Asian	Retrospective	548	56.0 ± 145	57.12	14 18 - - - - - -					
Chen X	30-Jun	Guangzhou	China	Asian	Retrospective	267	48.3 ± 20.7	45.32	19 7 14 - 47					
Chen Y	3-Apr	Wuhan	China	Asian	Retrospective	42	51.9 ± 143	35.71	7 3 4 - - - - -					
Cholankeril G	10-Jun	California	USA	American	Retrospective	207	49.3 ± 22.9	50.24	22 22 22 14 - -					
Cholankeril G	10-Apr	California	USA	American	Retrospective	116	50.7 ± 23.7	53.45	12 12 12 10 22					
Deng W	19-Jun	Chongqing	China	Asian	Retrospective	61	54.8 ± 129	40.98	3 - - - - - - - -					
First author	Publication date	Study location	Country	Geographic distribution	Study design	Sample size	Age, years, mean ± SD	Sex (% male)	GI symptoms (number)	Diarrhea	Vomiting	Nausea	Abd pain	Anorexia
--------------	------------------	----------------	---------	-------------------------	--------------	-------------	----------------------	-------------	-----------------------	----------	----------	--------	----------	---------
Duan X39	26-May	Luoyang	China	Asian	Retrospective	25	52.0 ± 19.3	60.00	2	1	1	1	-	3
Effenberger M40	20-Apr	Innsbruck	Austria	European	Retrospective	40	65.4 ± 15.1	60.00	22	5	11	-	-	-
Fang Z41	21-Mar	Xiangtan	China	Asian	Retrospective	32	43.0 ± 14.8	50.00	3	-	-	-	-	-
Ferm S42	1-Jun	New York	USA	American	Retrospective	892	59.3 ± 18.5	59.87	177	91	148	70	105	-
Fu J43	6-May	Suzhou	China	Asian	Retrospective	75	46.0 ± 14.0	60.00	6	-	-	-	-	-
Guan W44	28-Feb	Multi provinces	China	Asian	Retrospective	1099	46.7 ± 17.1	57.96	42	55	55	-	-	-
Hajifathalian K45	8-May	New York	USA	American	Retrospective	1059	61.1 ± 18.3	57.70	234	91	168	72	240	-
Han C46	15-Apr	Wuhan	China	Asian	Retrospective	206	60.5 ± 48.1	44.17	67	24	-	9	70	-
Han J47	25-Jun	Tianjin	China	Asian	Retrospective	185	44.0 ± 17.9	51.35	11	-	-	-	-	-
Hong L48	24-Jun	Zhejiang	China	Asian	Retrospective	127	45.7 ± 51.1	55.91	13	5	5	-	38	-
Hu J49	28-May	Zhejiang	China	Asian	Retrospective	884	46.0 ± 14.0	51.47	71	31	31	-	-	-
Huang C50	24-Jan	Wuhan	China	Asian	Retrospective	41	49.3 ± 12.6	73.17	1	-	-	-	-	-
Huang M51	1-Jun	Jiangsu	China	Asian	Retrospective	60	60.0 ± 52.6	58.33	4	2	2	-	-	-
Jehi L52	10-Jun	Cleveland	USA	American	Prospective	1108	52.3 ± 19.9	49.91	185	129	-	-	216	-
Jin A53	12-May	Beijing	China	Asian	Retrospective	45	58.8 ± 20.1	40.00	-	1	2	-	5	-
Jin X54	24-Mar	Zhejiang	China	Asian	Retrospective	651	45.1 ± 14.4	50.84	-	-	-	-	-	-
Kaafarani H55	1-May	Massachusetts	USA	American	Retrospective	141	58.0 ± 17.1	65.25	42	31	31	21	-	-
Lapostolle F56	30-May	Paris	France	European	Prospective	1452	42.9 ± 18.1	48.21	352	168	288	-	305	-
Lei Z57	9-Apr	Guangzhou	China	Asian	Retrospective	119	53.4 ± 13.2	64.71	7	4	4	-	-	-
Leung C58	27-Apr	Multi provinces	China	Asian	Retrospective	154	72.2 ± 8.5	57.79	7	2	2	-	-	-
Li J59	19-May	Wuhan	China	Asian	Retrospective	54	53.3 ± 47.4	16.67	4	6	52	-	-	-
Li J60	1-Jun	Wuhan	China	Asian	Retrospective	74	64.3 ± 12.6	59.46	6	-	-	-	41	-
Li K18	29-Feb	Chongqing	China	Asian	Retrospective	83	45.5 ± 12.3	53.01	7	-	-	-	7	-

(Continues)
First author	Publication date	Study location	Country	Geographic distribution	Study design	Sample size	Age, years, mean ± SD	Sex (% male)	GI symptoms (number)	Diarrhea	Vomiting	Nausea	Abd pain	Anorexia			
Li W	17-Apr	Hubei	China	Asian	Retrospective	105	47.7 ± 11.8	57.14	2	3	3	–	6				
Li X	12-Apr	Wuhan	China	Asian	Retrospective	548	59.0 ± 15.5	50.91	179	45	–	16	–				
Liang Y	29-Jun	Guangdong	China	Asian	Prospective	86	29.5 ± 37.8	51.16	6	4	–	–	15				
Lin L	2-Apr	Zuhai	China	Asian	Retrospective	95	45.3 ± 18.3	47.37	23	4	17	–	17				
Lin W	16-Jul	Guangzhou	China	Asian	Retrospective	217	49.7 ± 20.0	49.77	17	4	9	3	38				
Liu B	3-Jun	Wuhan	China	Asian	Prospective	68	44.3 ± 16.4	36.76	5	4	4	–	–				
Liu J	14-Apr	Wuhan	China	Asian	Retrospective	140	64.3 ± 13.8	35.00	5	–	3	3	9				
Liu F	17-Jun	Wuhan	China	Asian	Retrospective	17	57.0 ± 9.6	76.47	4	–	–	–	–				
Liu F	12-Mar	Zhejiang	China	Asian	Prospective	10	42.0 ± 11.8	40.00	–	–	3	–	–				
Liu J	18-Apr	Wuhan	China	Asian	Retrospective	40	48.7 ± 13.9	37.50	3	1	3	1	–				
Liu k	9-Feb	Shenzhen	China	Asian	Retrospective	137	53.3 ± 46.7	44.53	11	–	–	–	–				
Liu y	15-Mar	Macau	China	Asian	Retrospective	12	53.7 ± 18.0	66.67	2	2	2	–	–				
Lo I	18-Apr	Hong Kong	China	Asian	Prospective	11	56.7 ± 20.7	63.64	2	–	–	–	–				
Liu G	20-Mar	Hubei	China	Asian	Retrospective	183	53.8 ± NA	55.74	68	119	134	45	180				
Mao B	14-May	Shanghai	China	Asian	Retrospective	188	46.0 ± 24.0	50.00	6	1	1	–	24				
Mo P	16-Mar	Wuhan	China	Asian	Retrospective	155	54.0 ± 17.8	55.48	7	3	3	3	26				
Nobel Y	12-Apr	New York	USA	American	Retrospective case-control	278	NA	52.16	56	63	63	–	–				
Noh J	21-May	Gyeong-sangbuk	Korea	Asian	Prospective	199	38.0 ± 13.1	34.67	9	–	–	–	1				
Ortiz-Brizuela E	14-May	Mexico City	Mexico	Mexican	Prospective	309	43.3 ± 15.6	59.22	94	30	–	39	–				
Pan L	14-Apr	Hubei	China	Asian	Retrospective	204	52.9 ± 15.9	52.45	35	4	–	2	81				
Park S	10-Jun	North Gyeongsang	Korea	Asian	Prospective	46	33.7 ± 28.9	45.65	7	–	1	1	5				
Peng S	10-Apr	Wuhan	China	Asian	Retrospective	11	60.3 ± 13.3	72.73	3	–	6	–	6				
Poggiali E	26-Mar	Piacenza	Italy	European	Retrospective	10	50.0 ± 18.0	60.00	6	3	–	1	–				
Qi L	17-May	Hunan	China	Asian	Retrospective	147	43.7 ± 14.1	45.58	–	–	–	–	–				
First author	Publication date	Study location	Country	Geographic distribution	Study design	Sample size	Age, years, mean ± SD	Sex (% male)	GI symptoms (number)								
------------------	------------------	----------------	-------------	-------------------------	--------------	-------------	-----------------------	--------------	----------------------	----	----	----	----	----	----	----	----
Ramachandran P	29-Jun	New York	USA	American	Retrospective	150	62.1 ± 15.1	55.33	15 6 6 3								
Redd W	22-Apr	Massachusetts	USA	American	Retrospective	318	63.4 ± 16.6	54.72	107 49 84 46	110							
Remes-Troche J	21-May	Veracruz	Mexico	Mexican	Retrospective	112	43.7 ± 15.0	72.32	20 8 – 11								
Rivera-Izquierdo M	16-Jun	Granada	Spain	European	Prospective	76	45.8 ± 11.4	30.26	31 7 17 21	12							
Shi H	24-Feb	Wuhan	China	Asian	Retrospective	81	49.5 ± 11.0	51.85	3 4 – 1								
Sun H	8-May	Wuhan	China	Asian	Retrospective	244	70.0 ± 8.1	54.51	72 – 10								
Tabata S	12-Jun	Tokyo	Japan	Asian	Retrospective	71	62.0 ± 22.9	54.93	8 – 8 – 8								
To K	23-Mar	Hong Kong	China	Asian	Retrospective	23	57.7 ± 27.5	56.52	2 – 1 – 1								
Tomlins J	27-Apr	Bristol	UK	European	Retrospective	95	72.0 ± 17.1	63.16	11 13 13	5							
Wan Y	15-Apr	Guangdong, Hubei, Jiangxi	China	Asian	Retrospective	230	47.8 ± 16.2	56.09	49 – 3 – 3								
Wang D	7-Feb	Wuhan	China	Asian	Retrospective	138	55.3 ± 19.3	54.35	14 5 14 3	55							
Wang K	23-Mar	Hubei	China	Asian	Retrospective	114	51.3 ± 40.7	50.88	3 – 3 – 3								
Wang R	11-Apr	Anhui	China	Asian	Retrospective	125	38.8 ± 13.8	56.80	50 24 24								
Wang X	3-Apr	Wuhan	China	Asian	Retrospective	1012	49.0 ± 14.1	51.78	152 36 37								
Wang Z	12-Mar	Wuhan	China	Asian	Retrospective	69	46.3 ± 20.0	46.38	10 3 – 3								
Wei X	18-Apr	Wuhan	China	Asian	Retrospective	84	45.0 ± 37.0	33.33	26 6 16	2							
Wei Y	17-Apr	Anhui	China	Asian	Retrospective	167	42.3 ± 15.3	56.89	56 17 17								
Wu J	29-Feb	Jiangsu	China	Asian	Retrospective	80	46.1 ± 15.4	48.75	1 1 1 – 1								
Xie J	6-Jun	Zhejiang	China	Asian	Retrospective	104	54.0 ± 15.6	60.58	13 3 6 2								
Xiong Y	3-Mar	Hubei	China	Asian	Retrospective	42	49.5 ± 14.1	59.52	10 – 10								
Xu K	9-Apr	Hangzhou & Shenzhen	China	Asian	Retrospective	113	52.7 ± 14.8	58.41	– – – –								
Xu X	28-Feb	Guangzhou	China	Asian	Retrospective	90	51.3 ± 50.4	43.33	5 2 5 – 5								
Xu X	19-Feb	Zhejiang	China	Asian	Retrospective case series	62	41.7 ± 14.8	56.45	3 – 3 – 3								
First author	Publication date	Study location	Country	Geographic distribution	Study design	Sample size	Age, years, mean ± SD	Sex (% male)	GI symptoms (number)	Diarrhea	Vomiting	Nausea	Abd pain	Anorexia			
--------------	-----------------	----------------	---------	-------------------------	--------------	-------------	----------------------	-------------	----------------------	---------	----------	--------	----------	---------			
Yang W	26-Feb	Wenzhou	China	Asian	Retrospective	149	45.1 ± 13.3	54.36	11 2 2	-	-	-	-	-			
Yang X	21-Feb	Wuhan	China	Asian	Retrospective	52	59.7 ± 13.3	67.31	– 2 –	-	-	-	-	-			
Yang Y	29-Apr	Shenzhen	China	Asian	Retrospective	50	54.0 ± 41.5	58.00	4 – –	-	-	-	-	-			
Yin S	30-Apr	Hunan	China	Asian	Retrospective	33	47.5 ± 24.8	48.48	5 – –	-	-	-	-	-			
Yoshimura Y	12-Jun	Yokohama	Japan	Asian	Retrospective	17	69.0 ± 10.0	47.06	1 4 4	-	-	-	-	-			
Young B	3-Mar	Singapore	Singapore	Asian	Retrospective	18	50.3 ± 31.1	50.00	3 – –	-	-	-	-	-			
Zayet S	16-Jun	Grand Est region	France	European	Retrospective & observational	70	56.7 ± 19.3	41.43	28 2 22 14	-	-	-	-	-			
Zeng Q	12-Jun	Henan & Shaanxi provinces	China	Asian	Retrospective & observational	149	42.3 ± 18.5	61.07	11 4 8	-	-	-	20	-			
Zhang G	9-Apr	Wuhan	China	Asian	Retrospective	221	53.5 ± 20.4	48.87	25 – –	-	-	-	5 80	-			
Zhang H	23-Jun	Wuhan	China	Asian	Retrospective	107	66.7 ± 45.9	56.07	15 – –	-	-	-	-	-			
Zhang J	15-Apr	Wuhan	China	Asian	Retrospective	663	56.2 ± 18.5	48.42	61 17 31 5	-	-	-	-	-			
Zhang J	6-Jun	Wuhan	China	Asian	Retrospective	135	62.3 ± 10.4	57.78	18 15 15 2	12	-	-	-	-			
Zhang J	28-Apr	Wuhan	China	Asian	Retrospective	111	42.3 ± 18.5	41.44	10 – –	-	-	-	-	-			
Zhang J	19-Feb	Wuhan	China	Asian	Retrospective	140	56.3 ± 45.9	50.71	18 7 24 8	17	-	-	-	-			
Zhang L	29-Jun	Wuhan	China	Asian	Retrospective	409	64.0 ± 11.1	57.21	91 42 50 28	-	-	-	-	-			
Zhang L	1-Apr	Anhui	China	Asian	Retrospective	80	44.1 ± 17.1	58.75	33 17 17	-	-	-	-	-			
Zhang L	26-Mar	Wuhan	China	Asian	Retrospective	28	63.7 ± 10.4	60.71	3 – –	-	-	-	-	-			
Zhang P	5-Jun	Wuhan	China	Asian	Retrospective	136	67.7 ± 14.8	63.24	28 – –	-	-	-	-	-			
Zhang X	20-Mar	Zhejiang	China	Asian	Retrospective	645	45.3 ± 13.9	50.85	53 22 22	-	-	-	-	-			
Zhao D	12-Mar	Anhui	China	Asian	Comparative	19	43.7 ± 21.5	57.89	1 – –	-	-	-	-	-			
Zhao F	16-May	Shenzhen	China	Asian	Retrospective	401	46.7 ± 20.0	47.38	25 1 1	-	-	-	-	-			
Zhao W	3-Mar	Shenzhen	China	Asian	Retrospective	101	44.4 ± 12.3	55.45	3 2 2	-	-	-	-	-			
Zheng S	21-Apr	Zhejiang	China	Asian	Retrospective	96	54.7 ± 15.2	60.42	10 2 5	-	-	-	-	-			
Zheng Y	8-Jun	Wuhan	China	Asian	Retrospective	1320	49.0 ± 12.6	43.86	107 57 11	62	-	-	-	-			
Zheng Y	30-Apr	Shiyian	China	Asian	Retrospective	73	46.7 ± 40.7	54.79	1 – –	-	-	-	3	-			
Further, GI cohorts showed a higher risk of ICU admission (RR = 2.56; 95% CI = 1.62–1.04, \(p < .001 \)), and mortality (RR = 2.01; 95% CI = 1.18–3.43, \(p = .010 \)).

Subgroup analysis by date of publication showed that affected cohorts in the first wave had a higher risk of being hospitalized (RR = 1.60; 95% CI = 1.15–2.22, \(p = .005 \)), requiring ventilation (RR = 11.6; 95% CI = 5.08–26.9, \(p < .001 \)), and ICU admission (RR = 3.0; 95% CI = 1.58–5.68, \(p < .001 \)). However, patients in the second wave were less associated with hospitalization, ICU admission, mechanical ventilation, or mortality, although not reach significant levels (Figure 4). Meta-regression analysis revealed that heterogeneity in mechanical ventilation parameters was partly related to geographical region (\(p = .012 \; \text{Table S2} \)).

4 | DISCUSSION

SARS-CoV-2 has been found to infect multiple organ systems and is not exclusively a respiratory virus, as initially thought. Gastrointestinal symptoms have previously been reported to worsen outcomes in COVID-19 patients, although it remains unclear as contradictory research also exists.\(^7\)

This relatively wide scoped meta-analysis showed that GI symptoms were present in about one-fifth of the study population and were associated with higher rates of adverse outcomes such as ICU admission and/or mortality. Furthermore, patients with GI symptoms were more likely to develop AKIs associated with worse outcomes in COVID-19 patients.\(^{143,144} \) Similarly, GI symptoms correlated with a greater risk of cardiac injury, another poor prognostic factor for hospitalized patients with COVID-19.\(^{145,146} \) The strong correlation between GI symptoms and the most unfavorable COVID-19 outcomes in such a large population underscores the clinical importance of what was once considered incidental symptoms of the disease. Focused research should be conducted to understand the mechanism of how GI pathology may lead to severe and worse outcomes. With this knowledge, health care providers can more closely monitor and treat these symptoms, which may lower mortality. Of note, the fecal shedding rate of SARS-CoV-2 was more common than the rate of manifested GI symptoms of COVID-19, suggesting that some patients with colonized GI tracts may be asymptomatic. While this is consistent with previous studies, the significance of this viral shedding is still unclear.\(^{147,148} \) Future research should be conducted to evaluate the usefulness of viral stool studies in the workup of acutely ill patients with COVID-19.

Regarding the geographical distribution, European patients had a greater GI symptoms rate than all other regions studied, which could be attributed to differences in reporting or different genetic variants between continents. Islam et al. report that the mutation rate in the SARS-CoV-2 genomic sequence is higher in Europe compared with Asia and North America.\(^{145} \) Regarding the outcome, Asian patients

\[p < .001 \]
First author	Year	DOP	Journal name	City	Country	Ethnicity	Sample size	Age, years (mean ± SD)	Sex(F/M)			
Chen L	2020	13-May	Journal of Infection	Guangdong	China	Asian	20	62.5 ± 13.3	6/14 11/20			
Fu J	2020	6-May	Thrombosis Research	Suzhou	China	Asian	16	51.8 ± 12.8	6/10 24/35			
Guan W	2020	28-Feb	New England Journal of Medicine	Multiple	China	Asian	173	52.3 ± 18.5	73/100 386540			
Han J	2020	25-Jun	Epidemiol Infect	Tianjin	China	Asian	30	61.6 ± 12.4	13/17 77/78			
Huang M	2020	1-Jun	The Am Jof the Medical Sciences	Jiangsu	China	Asian	8	NA	NA NA			
Jin A	2020	12-May	Biosafety and Health	Beijing	China	Asian	20	74.7 ± 10.7	10/10 17/8			
Li K	2020	29-Feb	Invest Radiol	Chongqing	China	Asian	25	53.7 ± 12.3	10/15 29/29			
Li X	2020	12-Apr	J of Allergy & Clinical Immunol	Wuhan	China	Asian	269	63.7 ± 13.3	116/153 153/126			
Liu F	2020	14-Apr	Journal of Clinical Virolgy	Wuhan	China	Asian	33	76.7 ± 16.3	25/8 66/41			
Liu J	2020	18-Apr	EBioMedicine	Wuhan	China	Asian	13	59.7 ± 10.1	6/7 19/8			
Lo F	2020	15-Mar	Int J Biol Sci	Macau	China	Asian	4	61.0 ± 5.0	3/1 4/2			
Lui G	2020	18-Apr	Journal of Infection	Hong Kong	China	Asian	5	65.7 ± 5.9	1/4 3/3			
Mo P	2020	16-Mar	Clin Infect Dis	Wuhan	China	Asian	85	60.7 ± 14.1	30/55 39/31			
Tabata S	2020	12-Jun	The Lancet Infectious Diseases	Tokyo	Japan	Asian	28	68.3 ± 16.3	11/17 21/22			
First author	Year	DOP	Journal name	City	Country	Ethnicity	Sample size	Age, years (mean ± SD)	Sex(F/M)			
--------------	------	-----	--------------	--------------	---------	-----------	-------------	------------------------	----------			
To K	2020	23-Mar	The Lancet Infectious Diseases	Hong Kong	China	Asian	10	13	60.0 ± 26.7	56.0 ± 28.1	4/6	6/7
Wang R	2020	11-Apr	Int Journal of Infectious Diseases	Anhui	China	Asian	25	100	49.4 ± 13.6	39.5 ± 14.8	9/16	45/55
Wang X	2020	3-Apr	Clin Microbiol Infect	Wuhan	China	Asian	100	912	54.8 ± 11.1	48.7 ± 14.8	38/62	450/462
Wei Y	2020	17-Apr	Journal of Infection	Anhui	China	Asian	30	137	49.0 ± 12.6	40.8 ± 15.5	10/20	62/75
Yang Y	2020	29-Apr	J Allergy Clin Immunol	Shenzhen	China	Asian	25	14	58.3 ± 26.7	50.5 ± 41.5	11/14	7/7
Zhang G	2020	9-Apr	Journal of Clinical Virology	Wuhan	China	Asian	55	166	62.7 ± 16.3	50.4 ± 20.9	20/35	93/73
Zhang H	2020	23-Jun	Cancer	Wuhan	China	Asian	56	51	67.7 ± 45.9	59.7 ± 30.4	19/37	28/23
Zhang J	2020	15-Apr	Clinical Microbiology and Inf	Wuhan	China	Asian	315	254	52.2 ± 18.5	48.7 ± 18.5	166/149	138/116
Zhang J	2020	28-Apr	Journal of Clinical Virology	Wuhan	China	Asian	18	93	63.3 ± 24.4	38.2 ± 12.2	4/14	61/32
Zhang J	2020	19-Feb	Allergy	Wuhan	China	Asian	58	82	58.7 ± 45.9	51.8 ± 38.5	25/33	44/38
Zheng S	2020	21-Apr	BMJ	Zhejiang	China	Asian	74	22	56.8 ± 13.7	46.9 ± 14.4	25/49	13/9
Zhu Z	2020	22-Apr	Int Journal of Infectious Diseases	Zhejiang	China	Asian	16	111	57.5 ± 11.7	49.9 ± 15.5	7/9	38/73

(2) Comparison between hospitalized and nonhospitalized cohorts

	Hosp	None	Hosp	None	Hosp	Non						
Cholankeril G	2020	10-Jun	Am J Gastroenterol	California	USA	American	60	147	60.7 ± 25.2	44.0 ± 20.0	28/32	75/72
Hajifathalian K	2020	8-May	Gastroenterology	New York	USA	American	768	291	64.7 ± 17.1	51.6 ± 17.8	302/466	146/145
First author	Year	DOP	Journal name	City	Country	Ethnicity	Sample size	Age, years (mean ± SD)	Sex (F/M)			
---------------------	-------	-----------	------------------------------	------------	---------	-----------	--------------	-----------------------	-----------			
Ortiz-Brizuela E	2020	14-May	Rev Invest Clin	Mexico	Mexico	Mexican	140	169	55/85			
									71/98			
Rivera-Izquierdo M	2020	16-Jun	Int J Environ Res Public Health	Granada	Spain	European	11	65	NA			
									NA			
									NA			
									NA			
Huang C	2020	24-Jan	Lancet	Wuhan	China	Asian	13	28	50.3 ± 14.8			
									49.2 ± 12.2			
									2/11			
									9/20			
									46/65			
Ortiz-Brizuela E	2020	14-May	Rev Invest Clin	Mexico	Mexico	Mexican	29	111	52.3 ± 17.8			
									49.2 ± 15.9			
									9/20			
									46/65			
Wang D	2020	7-Feb	Jama	Wuhan	China	Asian	36	102	67.0 ± 15.6			
									50.0 ± 18.5			
									14/22			
									49/53			
Zeng Q	2020	12-Jun	Transbound Emerg Dis	Henan	China	Asian	27	122	57.3 ± 20.0			
									39.0 ± 17.0			
									NA			
									NA			
Cholankeril G	2020	10-Jun	Am J Gastroenterol	California	USA	American	17	43	55.7 ± 20.7			
									62.3 ± 23.7			
									7/10			
									21/22			
Chen F	2020	8-Jul	Journal of Critical Care	Wuhan	China	Asian	104	577	72.8 ± 11.7			
									61.7 ± 13.3			
									39/65			
									280/297			
Chen R	2020	11-May	J of Allergy & Clinical Immunol	Multiple	China	Asian	103	445	66.9 ± 12.1			
									53.5 ± 13.9			
									34/69			
									201/244			
Leung C	2020	27-Apr	Mechanisms of Ageing and Devel	Multiple	China	Asian	89	65	74.3 ± 10.4			
									69.3 ± 5.9			
									36/53			
									29/36			
Li J	2020	1-Jun	Am J of the medical sciences	Wuhan	China	Asian	14	60	72.3 ± 5.9			
									61.7 ± 12.6			
									3/11			
									27/33			
Peng S	2020	10-Apr	J of Thoracic and CV Surgery	Wuhan	China	Asian	3	8	NA			
									NA			
									1/2			
									2/6			
First author	Year	DOP	Journal name	City	Country	Ethnicity	Sample size	Age, years (mean ± SD)	Sex(F/M)			
--------------	------	-------	--------------------------------------	----------	---------	-----------	--------------	------------------------	---------			
Sun H	2020	8-May	J of American Geriatrics Society	Wuhan	China	Asian	121	72.0 ± 8.9	67.7/5.9	39/82	72/51	
Tomlins J	2020	27-Apr	Journal of Infection	Bristol	UK	European	20	78.0 ± 9.6	70.7/19.3	8/12	72/48	
Yang X	2020	21-Feb	Lancet Respir Med	Wuhan	China	Asian	32	64.6 ± 11.2	51.9/12.9	11/21	6/14	
Zhang G	2020	9-Apr	Journal of Clinical Virology	Wuhan	China	Asian	9	71.7 ± 17.8	60.7/16.3	2/7	8/15	
Zhang L	2020	29-Jun	Gastroenterology	Wuhan	China	Asian	102	66.3 ± 10.4	62.3/14.1	30/72	145/162	
Zhou F	2020	9-Mar	Lancet	Wuhan	China	Asian	54	69.3 ± 9.6	51.7/9.6	16/38	56/81	

(5) Comparison between positive and negative fecal RNA for SARS-COV-2 groups

First author	Year	DOP	Journal name	City	Country	Ethnicity	Sample size	Age, years (mean ± SD)	Sex(F/M)		
Chen Y	2020	3-Apr	J Med Virol	Wuhan	China	Asian	28	52.2 ± 14.1	48.7/12.1	16/12	11/3
Lin W	2020	16-Jul	J Med Virol	Guangzhou	China	Asian	46	52.0 ± 15.6	48.3/21.5	20/26	89/82
Zhao F	2020	16-May	Gastroenterology	Shenzhen	T	China	80	37.3 ± 25.2	37.7/42.9	48/32	163/158

(6) Rest of studies comparing cohorts with and without GI symptoms but lacking outcomes data

First author	Year	DOP	Journal name	City	Country	Ethnicity	Sample size	Age, years (mean ± SD)	Sex(F/M)		
Cao C	2020	15-Jun	Critical Care	China	Asian	Retrospective	63	51.9 ± 14.9	47.5/14.0	39/24	44/50
Effenberger M	2020	20-Apr	Gut	Austria	European	Retrospective	9	78.3 ± 13.8	58.4/17.1	3/6	9/9
Ferm S	2020	1-Jun	Clin Gastroenterol Hepatol	USA	American	Retrospective	219	NA	NA	NA	NA
Han C	2020	15-Apr	Am J Gastroenterol	China	Asian	Retrospective	48	62.5 ± 44.4	61.0/47.4	35/13	41/48
Jin X	2020	24-Mar	Gut	China	Asian	Retrospective	74	46.1 ± 14.2	45.1/14.4	37/37	283/294

(Continues)
First author	Year	DOP	Journal name	City	Country	Ethnicity	Sample size	Age, years (mean ± SD)	Sex(F/M)	
Lin L	2020	2-Apr	Gut	China	Asian	Retro-spective	58	37	48.0 ± 17.1 41.1 ± 19.5	31/27 19/18
Pan L	2020	14-Apr	Am J Gastroenterol	China	Asian	Retro-spective	103	101	52.2 ± 15.9 53.6 ± 16.1	48/55 49/52
Ramachandran P	2020	29-Jun	Dig Dis	USA	American	Retro-spective	31	119	57.6 ± 17.2 63.3 ± 14.6	12/19 55/64
Redd W	2020	22-Apr	Gastroenterology	USA	American	Retro-spective	195	123	62.3 ± 15.9 65.0 ± 17.6	93/102 51/72
Wan Y	2020	15-Apr	Lancet	China	Asian	Retro-spective	49	181	53.3 ± 18.5 46.3 ± 15.6	22/27 79/102
Wei X	2020	18-Apr	CI Gastroenterology and Hepatol	China	Asian	Retro-spective	26	58	47.2 ± 33.3 42.7 ± 31.8	18/8 38/20
Zhang L	2020	1-Apr	Zhonghua Weizhong Biejiju Yi Xue	China	Asian	Retro-spective	33	47	45.1 ± 16.5 43.4 ± 17.5	11/22 22/25
Zheng T	2020	8-Jun	Journal Medical Virology	China	Asian	Retro-spective	192	1128	48.0 ± 13.3 50.0 ± 12.6	102/90 639/489
Zhou Z	2020	19-Mar	Gastroenterology	China	Asian	Retro-spective	66	188	50.6 ± 11.3 51.4 ± 12.8	44/22 95/93

Abbreviations: DOP, publication date; ICU, intensive care unit; NA, not applicable.
were ventilated less often than non-Asians. However, this might be due to the differences in medical practices between these geographic areas. Despite the discrepancy in ventilation rates, there were no differences in ARDS, AKI, or acute cardiac injury rates. Admission outcomes, including mortality, were likewise equal among Asian versus non-Asian patients.

Pandemics have historically come in waves with differing severities and lengths of time between them. Consequentially, it is
TABLE 3 Summary for pairwise comparison in the meta-analysis

Characteristics	Number studies	Sample size	Test of association	Effect size	Heterogeneity	Pub bias						
		Total	Poor prognosis	Good prognosis	Estimate	95% CI	p value	I²	p value	p value		
A. Demographic characteristics												
Age, years	59	14200	4342	9858	IV SMD	Random	0.531	0.413-0.649	<.001	86.68%	<.001	.070
Sex (Male)	59	14,062	4318	9744	MH OR	Random	1.292	1.144-1.460	<.001	43.90%	<.001	.488
Sex (Female)	59	14,062	4318	9744	MH OR	Random	0.774	0.685-0.874	<.001	43.90%	<.001	.488
BMI, kg/m²	13	3731	1673	2058	IV SMD	Random	0.124	-0.047 to 0.295	.154	77.37%	<.001	.790
Race/Ethnicity: (Asian)	4	1476	876	600	MH OR	Random	1.124	0.782-1.617	.527	0.0%	.795	.628
Race/Ethnicity: (White)	4	1476	876	600	MH OR	Random	0.786	0.456-1.356	.387	51.27%	.104	.935
Race/Ethnicity: (Black)	4	1476	876	600	MH OR	Random	0.705	0.499-0.997	.048	0.0%	.735	.196
Race/Ethnicity: (Hispanic)	3	417	108	309	MH OR	Random	1.137	0.370-3.499	.823	61.51%	.074	.991
Cigarette smoking	26	6123	1719	4404	MH OR	Random	1.594	1.312-1.937	<.001	0.0%	.665	.439
B. Vital signs at presentations												
pH	3	341	59	282	IV SMD	Random	0.290	0.008-0.573	.044	0.0%	.963	.342
PaO₂ (mm/Hg)	4	392	97	313	IV SMD	Random	-0.442	-1.343 to -0.460	.337	91.45%	<.001	.107
PaCO₂ (mm/Hg)	4	392	97	313	IV SMD	Random	-0.465	-0.824 to -0.106	.011	47.55%	.126	.034
PaO₂:FiO₂ ratio (mm/Hg)	4	451	105	346	IV SMD	Random	-1.067	-1.428 to -0.705	<.001	52.14%	.099	.678
SpO₂ (%)	8	2080	479	1601	IV SMD	Random	-1.039	-1.340 to -0.738	<.001	82.42%	<.001	.907
Characteristics	Number studies	Sample size	Poor prognosis	Good prognosis	Test of association	Effect size	Heterogeneity	Pub bias				
-----------------	----------------	-------------	----------------	----------------	---------------------	-------------	--------------	---------				
		Total			Statistical method	Effect measure	Analysis model	p value				
Highest	15	4411	1268	3143	IV SMD	Random						
temperature °C												
C. General clinical presentations												
Fever (≥ 37.3°C)	51	13373	4076	9297	MH OR	Random						
Dry cough	49	13,142	3964	9178	MH OR	Random						
Expectoration	22	7759	1765	5994	MH OR	Random						
Chest pain	18	4622	1543	3079	MH OR	Random						
Dizziness	10	2152	960	1192	MH OR	Random						
Rhinorrhea	14	2966	806	2160	MH OR	Random						
Anosmia	6	1997	1163	834	MH OR	Random						
Dyspnea	42	11,927	3524	8403	MH OR	Random						
Headache	30	8667	2188	6479	MH OR	Random						
Sore throat	30	8747	2060	6687	MH OR	Random						
Myalgia	41	11,027	3497	7530	MH OR	Random						
Fatigue	33	9903	3189	6714	MH OR	Random						
Nasal congestion	8	4431	674	3757	MH OR	Random						
D. Comorbidities												
Hypertension	44	10,807	3351	7456	MH OR	Random						
Diabetes mellitus	48	11722	3779	7943	MH OR	Random						
Cardiovascular disease	34	8702	3224	5478	MH OR	Random						
Cerebrovascular disease	15	4328	1123	3205	MH OR	Random						
Chronic liver disease	23	5666	2124	3542	MH OR	Random						
Chronic kidney disease	24	7313	2452	4861	MH OR	Random						

(Continues)
Characteristics	Number of studies	Sample size Total	Poor prognosis	Good prognosis	Test of association	Effect size	Heterogeneity	Pub bias			
					Statistical method	Analysis model	Estimate 95% CI	p value	I²	p value	p value
Coronary heart disease	16	3626	928	2698	MH OR Random	2.637	1.416-4.912	.002	64.35%	<.001	.775
Hyperlipidemia	4	653	304	349	MH OR Random	0.931	0.635-1.366	.715	0.0%	0.751	.930
COPD	39	9344	3165	6179	MH OR Random	1.977	1.457-2.682	<.001	23.94%	.093	.025
Asthma	10	4077	1504	2573	MH OR Random	1.223	0.874-1.711	.241	0.0%	.875	.352
Endocrine disease	6	839	417	422	MH OR Random	1.081	0.670-1.743	.750	0.0%	.483	.540
Tuberculosis	5	959	454	505	MH OR Random	1.125	0.402-3.149	.822	7.04%	.367	.606
Immunosuppression	11	3560	1422	2138	MH OR Random	1.494	0.895-2.494	.125	0.0%	.931	.247
Malignancy	30	7911	2771	5140	MH OR Random	1.447	1.118-1.871	.005	0.0%	.997	.030

E. Laboratory findings

					Statistical method	Analysis model	Estimate 95% CI	p value	I²	p value	p value			
WBCs (×10⁹/L)	44	10913	3020	7893	IV SMD Random	0.325	0.174-0.476	<.001	88.64%	<.001	.286			
Neutrophils count (×10⁹/L)	30	7072	2024	5048	IV SMD Random	0.589	0.372-0.807	<.001	91.31%	<.001	.115			
Lymphocytes count (×10⁹/L)	45	10169	2979	7190	IV SMD Random	-0.533	-0.659 to -0.408	<.001	82.21%	<.001	.108			
NLR (×10⁹/L)	7	1242	235	1007	IV SMD Random	1.064	0.476-1.653	<.001	92.18%	<.001	.294			
Monocytes count (×10⁹/L)	9	1566	452	1114	IV SMD Random	-0.217	-0.334 to -0.100	<.001	0.0%	.462	.282			
Platelets count, (×10⁹/L)	34	8624	2545	6079	IV SMD Random	-0.143	-0.274 to -0.013	.031	80.10%	<.001	.926			
Hemoglobin (g/L)	24	6406	1437	4969	IV SMD Random	-0.156	-0.254 to -0.059	.002	45.88%	.008	.748			
ALT (U/L)	32	6240	2259	3981	IV SMD Random	0.228	0.112 to 0.343	<.001	69.18%	<.001	.432			
AST (U/L)	29	5756	2149	3607	IV SMD Random	0.473	0.290-0.657	<.001	86.92%	<.001	.183			
Albumin (g/L)	18	3829	1519	2310	IV SMD Random	-0.532	-0.756 to -0.308	<.001	86.44%	<.001	.775			
Total bilirubin (μmol/L)	17	3408	1375	2033	IV SMD Random	0.234	0.098-0.370	.001	54.24%	.004	.318			
Characteristics	Number studies	Sample size	Total	Poor prognosis	Good prognosis	Test of association	Statistical method	Effect measure	Analysis model	Effect size	95% CI	p value	Heterogeneity	Pub bias
-----------------------------	----------------	-------------	-------	----------------	----------------	---------------------	--------------------	---------------	---------------	------------	----------------	----------	---------------	----------
ALP (U/L)	4	1540	1002	538		IV SMD	Random			0.076	-0.034 to 0.187	.177	0.0%	.630
Creatinine (μmol/L)	29	4358	1211	3147		IV SMD	Random			0.295	0.121-0.470	.001	80.94%	<.001
BUN (mmol/L)	15	2183	589	1594		IV SMD	Random			0.449	0.138-0.760	.005	87.67%	<.001
Sodium (mmol/L)	12	2964	659	2305		IV SMD	Random			-0.228	-0.436 to -0.020	.031	74.78%	<.001
Potassium (mmol/L)	9	2548	555	1993		IV SMD	Random			-0.302	-0.768 to 0.164	.204	93.89%	<.001
Lactate (mmol/L)	7	883	343	540		IV SMD	Random			0.202	-0.113 to 0.516	.208	72.35%	.001
Fasting blood glucose (mmol/L)	4	1123	190	933		IV SMD	Random			0.423	-0.094 to 0.941	.109	88.62%	<.001
Lactate dehydrogenase (U/L)	26	4953	1697	3256		IV SMD	Random			0.773	0.471-1.076	<.001	93.76%	<.001
Troponin (ng/L)	13	2656	1250	1406		IV SMD	Random			0.661	0.329-0.992	<.001	90.84%	<.001
NT-proBNP (pg/ml)	4	763	346	417		IV SMD	Random			0.488	-0.116 to 1.092	.113	91.55%	<.001
Creatine kinase (U/L)	20	3861	1496	2365		IV SMD	Random			0.260	0.082-0.438	.004	77.93%	<.001
Creatine kinase-MB (U/L)	10	1697	408	1289		IV SMD	Random			0.613	0.077-1.148	.025	93.89%	<.001
Myoglobin (ng/mL)	3	304	64	240		IV SMD	Random			0.947	0.652-1.242	<.001	0.0%	.411
Serum amyloid A (mg/L)	4	853	199	654		IV SMD	Random			0.868	0.175-1.561	.014	91.98%	<.001
International Normalized Ratio	5	2142	1064	1078		IV SMD	Random			0.084	-0.186 to 0.354	.543	77.96%	.001
Prothrombin time (s)	15	2028	596	1432		IV SMD	Random			0.370	0.201-0.539	<.001	58.80%	.002
APTT (s)	15	3347	1502	1845		IV SMD	Random			0.085	0.004-0.166	.040	4.63%	.400

(Continues)
Table 3 (Continued)

Characteristics	Number of studies	Sample size	Test of association	Effect size	Heterogeneity	Pub bias
o-dimer (ng/ml)	24	4694	IV, SMD, Random	0.548	87.59%	.280
CRP (mg/L)	33	7834	IV, SMD, Random	0.812	92.63%	.067
Ferritin (ng/ml)	10	2812	IV, SMD, Random	0.709	93.82%	.342
Fibrinogen (g/L)	8	923	IV, SMD, Random	0.913	89.50%	.068
ESR (mm/h)	9	2230	IV, SMD, Random	0.491	83.96%	.694
Procalcitonin (ng/ml)	22	4591	IV, SMD, Random	0.810	93.09%	.098
Interleukin-6 (pg/ml)	14	3653	IV, SMD, Random	1.098	93.39%	.399
CD3+ T lymphocyte (Cells/μL)	2	1229	IV, SMD, Random	-0.998	0.0%	NA
CD4+ T lymphocyte (Cells/μL)	5	1531	IV, SMD, Random	-0.864	0.0%	.722
CD8+ T lymphocyte (Cells/μL)	5	1531	IV, SMD, Random	-0.931	1.75%	.283
Oxygen therapy	10	2620	MH, OR, Random	1.971	89.86%	.344
High-flow nasal cannula	8	1698	MH, OR, Random	0.440	94.96%	.859
Mechanical ventilation: IMV	18	3815	MH, OR, Random	35.46	43.79%	.322
Mechanical ventilation: NIV	15	3502	MH, OR, Random	15.56	81.96%	.002
ACE/ARB inhibitor	5	992	MH, OR, Random	1.173	0.0%	.639
Antibiotics	19	6429	MH, OR, Random	1.892	69.59%	.494
Antifungal	4	2035	MH, OR, Random	4.015	0.0%	.793
Antiviral	17	4480	MH, OR, Random	1.040	15.80%	.583
Antiviral: Oseltamivir	5	2954	MH, OR, Random	1.092	80.83%	.919
Antiviral: Ganciclovir	2	755	MH, OR, Random	1.791	0.0%	.328

F. Medications

Medication	Number of studies	Sample size	Test of association	Effect size	Heterogeneity	Pub bias
Oxygen therapy	10	2620	MH, OR, Random	1.971	89.86%	.344
High-flow nasal cannula	8	1698	MH, OR, Random	0.440	94.96%	.859
Mechanical ventilation: IMV	18	3815	MH, OR, Random	35.46	43.79%	.322
Mechanical ventilation: NIV	15	3502	MH, OR, Random	15.56	81.96%	.002
ACE/ARB inhibitor	5	992	MH, OR, Random	1.173	0.0%	.639
Antibiotics	19	6429	MH, OR, Random	1.892	69.59%	.494
Antifungal	4	2035	MH, OR, Random	4.015	0.0%	.793
Antiviral	17	4480	MH, OR, Random	1.040	15.80%	.583
Antiviral: Oseltamivir	5	2954	MH, OR, Random	1.092	80.83%	.919
Antiviral: Ganciclovir	2	755	MH, OR, Random	1.791	0.0%	.328
TABLE 3 (Continued)

Characteristics	Number studies	Sample size	Poor prognosis	Good prognosis	Test of association	Effect size	Heterogeneity	Pub bias			
			Total		Statistical method	Effect measure	Analysis model	i2	p value	p value	p value
			480	1169	MH	OR	Random				
			516	887	MH	OR	Random				
			713	1445	MH	OR	Random				
			266	1115	MH	OR	Random				
			713	1445	MH	OR	Random				
			1068	689	MH	OR	Random				
			2367	5395	MH	OR	Random				
			1543	4565	MH	OR	Random				
			621	1969	MH	OR	Random				
			672	1714	MH	OR	Random				
			799	410	MH	OR	Random				
			3734	2802	MH	RR	Random				
			2737	1941	MH	RR	Random				
			1008	604	MH	RR	Random				
			1111	915	MH	RR	Random				
			2761	2002	MH	RR	Random				
			3734	2802	MH	RR	Random				
			2737	1941	MH	RR	Random				
			1008	604	MH	RR	Random				
			1111	915	MH	RR	Random				
			2761	2002	MH	RR	Random				
			3734	2802	MH	RR	Random				
			2737	1941	MH	RR	Random				
			1008	604	MH	RR	Random				
			1111	915	MH	RR	Random				
			2761	2002	MH	RR	Random				
G. Complications											
ARDS	13	3734	932	2802	MH	RR	Random				
Acute cardiac injury	13	2737	796	1941	MH	RR	Random				
Arrhythmia	7	1008	404	604	MH	RR	Random				
Acute liver injury	3	1111	196	915	MH	RR	Random				
Acute kidney injury	10	2761	759	2002	MH	RR	Random				
			3734	2802	MH	RR	Random				
			2737	1941	MH	RR	Random				
			1008	604	MH	RR	Random				
			1111	915	MH	RR	Random				
H. Clinical classification											
Mild	6	1026	299	727	MH	RR	Random				
Severe/critical	38	7713	2078	5832	MH	RR	Random				
			1026	727	MH	RR	Random				
			7713	5832	MH	RR	Random				
I. Clinical outcome											
Hospitalized	14	5183	1788	3395	MH	RR	Random				
Length of hospital stay (days)	16	5370	1173	4197	IV	MD	Random				
ICU admission	18	5838	1346	4492	MH	RR	Random				
			5183	3395	MH	RR	Random				
			5370	4197	IV	MD	Random				
			5838	4492	MH	RR	Random				

(Continues)
important to evaluate the success of the initial treatment interventions compared with the more recent treatment innovations; this can be done by comparing the outcomes of critically ill patients. A comparison between the early wave and subsequent wave of COVID-19 infections was achieved by a subgroup analysis of the enrolled studies. The second wave of cases showed more GI manifestations than first wave cases; however, this was not statistically significant. Pooled prevalence comparisons between early and late wave cases showed mixed results regarding outcome events. Early wave patients experienced greater rates of acute cardiac injury and ICU admission, and late wave patients had higher ARDS, AKI, mechanical ventilation, and mortality rates. This may be due to more patients in the second wave presenting with GI symptoms indicating severe disease. To directly compare patients with GI symptoms in each wave, a pairwise comparison analysis of patients with and without GI symptoms was performed. Second wave patients with GI symptoms were less likely to have acute cardiac injuries, be admitted to the ICU, receive mechanical ventilation, or die due to COVID-19.

TABLE 3 (Continued)

Characteristics	Sample size	Test of association	Effect size	Heterogeneity	Pub bias					
	Number studies	Statistical method	Effect measure	Analysis model	Estimate	95% CI	p value	I²	p value	p value
Mechanical ventilation	7	MH	OR	Random	2.363	0.972–5.742	.058	76.75%	<.001	.042
Length of ICU stay (days)	3	IV	MD	Random	0.017	−3.717 to 3.750	.993	86.53%	.001	.943
Discharged	14	MH	RR	Random	0.714	0.604–0.844	<.001	83.78%	.001	.029
Mortality	25	MH	RR	Random	2.017	1.186–3.431	<.001	90.89%	<.001	.093

Note: The random-effects model was applied.

Abbreviations: ACE/ARB, angiotensin-converting enzyme and an angiotensin receptor blocker; ALP, alkaline phosphatase; ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; ARDS, acute respiratory distress syndrome; AST, aspartate aminotransferase; BMI, body mass index; BUN, blood urea nitrogen; CD, cluster of differentiation; CI, confidence interval; CRP, C-reactive protein; COPD, chronic obstructive pulmonary disease; Duration of viral shedding, The time from diagnosis date to the day before first negative conversion of two consecutive negative results of RT-PCR; ECMO, extracorporeal membrane oxygenation; eGFR, estimated glomerular filtration rate; ESR, erythrocyte sedimentation rate; GGT, Gamma-glutamyl transferase; OR, odds ratio; PaCO₂, The partial pressure of carbon dioxide; PaO₂, The partial pressure of oxygen; PaO₂:FIO₂ ratio, the ratio of arterial oxygen partial pressure to fractional inspired oxygen; pH, a measure of hydrogen ion concentration, the acidity or alkalinity of blood; RR, relative risk; RBCs, red blood cells or erythrocytes; RT-PCR, reverse transcription-polymerase chain reaction; SMD, standardized mean difference; SpO₂, oxygen saturation; WBCs, white blood cells or leukocytes.

FIGURE 3: Subgroup analysis for pooled one-arm meta-analysis of COVID-19 outcomes by the pandemic wave. Odds ratio and 95% confidence intervals were reported; p values comparing the first and second waves were estimated using Student’s t-test. ARDS, acute respiratory distress syndrome; COVID-19, coronavirus disease 2019.
compared with first wave patients with GI symptoms. This particular analytic method allowed a comparison between the more acutely ill patients showing GI symptoms, which demonstrated more accurate results than the pooled prevalence results.

Fan et al.\(^{15}\) found that mortality rates in the second wave of the pandemic decreased sharply even among countries that saw a greater caseload than the first wave. In the studies analyzed for this meta-analysis, there was an overall lower rate of complications and mortality in the GI symptom-positive cohort of the second wave providing evidence of improved management of patients with COVID-19, which agrees with the findings of Fan et al.\(^{15}\) This meta-analysis is further evidence of the decrease in mortality outcome that might be due to an improvement in the clinical handling of the disease. While many treatments have proven effective at improving the disease course in smaller trials, it is reassuring to see a large-scale improvement in morbidity and mortality in severe cases. This is most likely due to the combined efforts of medical providers and public health officials in identifying severe COVID-19 cases earlier and intervening appropriately. Also, likely contributing factors are the improvements in therapeutics, treatment algorithms, and familiarity with the disease course.

A limitation of this meta-analysis was that it reviewed predominantly retrospective studies making randomization impossible. Since not all studies had the primary goal of evaluating GI symptoms’ impact on COVID-19 outcomes, differences in the recording of symptoms between studies could be potentially present. While including studies throughout the world was beneficial for increasing the findings’ generalizability, doing so might affect the data collected from differently impacted countries. This limitation was addressed by controlling analysis for a geographic area.

5 | CONCLUSIONS

The findings of this meta-analysis suggest that there is an association between gastrointestinal symptoms in patients with COVID-19 and worse disease outcomes, especially in the first wave of infection. These symptoms were found to be common, appearing in approximately one-fifth of studied patients. Screening patients for GI symptoms is quick and may benefit providers by offering a simple method for stratifying patient risk levels. By grouping the studies in the first wave and second wave categories, the analysis showed overall improved outcomes for patients who have more recently been treated for COVID-19 regardless of their GI affection.

ACKNOWLEDGMENT

This work is dedicated to the soul of our beloved Professor Dr. Akram El Awady, the president and godfather of Horus University – Egypt, who passed away on February 3rd, 2021. We will miss you and love you always. Your love will light our way and your memory will be forever in our hearts. We will grasp you in our hearts till we can cuddle you again in Heaven.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS

Rami M. Elshazli and Eman A. Toraih study design; Rami M. Elshazli, Abdelaziz Elgaml, Mohamed H. Aboutaleb, Mohamed M. Salim, Mahmoud Omar, Ruhul Munshi, Nicholas Mankowski, and Abdallah S. Attia: study identification and data extraction; Rami M. Elshazli, Mohammad H. Hussein, and Eman A. Toraih, statistical analysis; Rami

FIGURE 4 Subgroup analysis for pooled pairwise comparison analysis of coronavirus disease-2019 outcomes by the pandemic wave. (A) Clinical outcomes. (B) Admission outcomes were compared between cohorts presented with versus without gastrointestinal manifestations. CI, confidence interval.
M. Elshazli, Mohammad H. Hussein, Eman A. Toraih, Manal S. Fawzy, and Emad Kandi, data interpretation; Rami M. Elshazli, Adam Kline, and Eman A. Toraih, AS, Manal S. Fawzy, original draft preparation. All authors revised and approved the final version of the manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the manuscript and the supplementary materials.

ORCID
Rami M. Elshazli https://orcid.org/0000-0002-3381-2641
Adam Kline https://orcid.org/0000-0001-5939-2684
Abdelaziz Elgami https://orcid.org/0000-0001-6790-5849
Mohamed H. Aboutaleb https://orcid.org/0000-0002-3954-5783
Mohamed M. Salim https://orcid.org/0000-0003-4429-6504
Mahmoud Omar https://orcid.org/0000-0001-7917-7973
Ruhul Munshi https://orcid.org/0000-0002-8616-6081
Nicholas Mankowski https://orcid.org/0000-0002-2116-4747
Mohammad H. Hussein https://orcid.org/0000-0001-8278-7094
Abdallah S. Attia https://orcid.org/0000-0003-2163-0637
Eman A. Toraih https://orcid.org/0000-0001-9267-3787
Ahmad Settin https://orcid.org/0000-0003-4840-2327
Mary Killacky https://orcid.org/0000-0003-3546-6946
Manal S. Fawzy https://orcid.org/0000-0003-1252-8403
Emad Kandi https://orcid.org/0000-0001-5895-4403

REFERENCES
1. Wong SH, Lui RNS, Sung JJY. Covid-19 and the digestive system. J Gastroenterol Hepatol. 2020;35(5):744-748.
2. Goh KJ, Kalimuddin S, Chan KS. Rapid progression to acute respiratory distress syndrome: review of current understanding of critical illness from coronavirus disease 2019 (COVID-19) infection. Ann Acad Med Singapore. 2020;49:108-118.
3. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95:834-847.
4. Pan F, Yang L, Li Y, et al. Factors associated with death outcome in patients with severe coronavirus disease-19 (COVID-19): a case-control study. Int J Med Sci. 2020;17(9):1281-1292.
5. Tian Y, Rong L, Nian W, He Y. Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843-851.
6. Ye Q, Wang B, Zhang T, Xu J, Shang S. The mechanism and treatment of gastrointestinal symptoms in patients with COVID-19. Am J Physiol-Gastrointest Liver Physiol. 2020;319(2):G245-G252.
7. Gul F, Lo KB, Peterson J, McCullough PA, Goyal A, Rangaswami J. Meta-analysis of outcomes of patients with COVID-19 infection with versus without gastrointestinal symptoms. Paper presented at: Baylor University Medical Center Proceedings. 2020.
8. Lee IC, Hua T-I, Huang Y-H. Gastrointestinal and liver manifestations in patients with COVID-19. J Chinese Med Assoc. 2020;83:521-523.
9. Wang J, Li F, Wei H, Lian Z-X, Sun R, Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med. 2014;211(12):2397-2410.
10. Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(7):667-678.
11. Ding S, Liang TJ. Is SARS-CoV-2 also an enteric pathogen with potential fecal-oral transmission: a COVID-19 virological and clinical review. Gastroenterology. 2020;159:53-61.
12. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647.
13. Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe COVID-19 with diabetes. BMJ Open Diabetes Res Care. 2020;8(1):e001343.
14. Leung K, Wu JT, Liu D, Leung GM. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. The Lancet. 2020;395:1382-1393.
15. Fan G, Yang Z, Lin Q, Zhao S, Yang L, He D. Decreased case fatality rate of COVID-19 in the second wave: a study in 53 countries or regions. Transbound Emerg Dis. 2020;68(1):13819.
16. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560.
17. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-634.
18. Li K, Wu J, Wu F, et al. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol. 2020;55(6):327-331.
19. Aghemo A, Piovani D, Parigi TL, et al. Covid-19 digestive system involvement and clinical outcomes in a large academic hospital in Milan, Italy. Clin Gastroenterol Hepatol. 2020;18(10):2366-2368.
20. Ai JW, Zi H, Wang Y, et al. Clinical characteristics of COVID-19 patients with gastrointestinal symptoms: an analysis of seven patients in China. Front Med. 2020;7:308.
21. Annweiler C, Sacco G, Salles N, et al. National French survey of COVID-19 symptoms in people aged 70 and over. Clin Infect Dis. 2020.
22. Barillari MR, Bastiani L, Lechien JR, et al. A structural equation model to examine the clinical features of mild-to-moderate COVID-19: A multicenter Italian study. J Med Virol. 2020;92(9):1292-1297.
23. Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. 2020;6:1192-1198.
24. Cao C, Chen M, He L, Xie J, Chen X. Clinical features and outcomes of COVID-19 patients with gastrointestinal symptoms. Crit Care. 2020;24(1):1-3.
25. Cavalliere K, Levine C, Wander P, Sejal DV, Trinidad AJ. Management of upper GI bleeding in patients with COVID-19 pneumonia. Gastrointest Endosc. 2020;92(2):454-455.
26. Chang D, Lin M, Wei L, et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA. 2020;323(11):1092-1093.
27. Chang D, Zhao P, Zhang D, et al. Persistent viral presence determines the clinical course of the disease in COVID-19. J Allergy Clin Immunol: In Pract. 2020;8(8):2585-2591.
28. Chen A, Agarwal A, Ravindran N, et al. Are gastrointestinal symptoms specific for coronavirus 2019 infection? A prospective case-control study from the United States. Gastroenterology. 2020;159(3):1161-1163.e1162.
29. Chen F-f, Zhong M, Liu Y, et al. The characteristics and outcomes of 681 severe cases with COVID-19 in China. J Crit Care. 2020;60:32-37.
30. Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID-19 in Shanghai, China. J Infect. 2020;80:e1–e6.
31. Chen L, Zhang B, Yang K, Zou Y, Zhang S. Clinical course of severe and critically ill patients with coronavirus disease 2019 (COVID-19): a comparative study. J Infect. 2020;81:e82–e84.
32. Chen M, An W, Xia F, et al. Clinical characteristics of re-hospitalized patients with COVID-19 in China. J Med Virol. 2020;92:2146-2151.
33. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507-513.
34. Chen R, Sang L, Jiang M, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol. 2020;146:89-100.
35. Chen X, Zhu B, Hong W, et al. Associations of clinical characteristics and treatment regimens with the duration of viral RNA shedding in patients with COVID-19. Int J Infect Dis. 2020;98:252-260.
36. Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol. 2020;92:833-840.
37. Cholankeril G, Podboy A, Aivalotis VI, et al. High prevalence of concurrent gastrointestinal manifestations in patients with severe acute respiratory syndrome coronavirus 2: Early experience From California. Gastroenterology. 2020;159(2):775-777.
38. Deng W, Guang T-w, Yang M, et al. Positive results for patients with COVID-19 discharged form hospital in Chongqing, China. 2020.
39. Duan X, Guo X, Qiang J. A retrospective study of the initial 25 COVID-19 patients in Luoyang, China. Jpn J Radiol. 2020;38:1-690.
40. Effenerberger M, Grabher F, Mayr L, et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut. 2020;69:1543-1544.
41. Fang Z, Zhang Y, Han C, Ai J, Li S, Zhang W. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. J Infect. 2020;81(1):147-178.
42. Ferm S, Fisher C, Pakala T, et al. Analysis of gastrointestinal and hepatic manifestations of SARS-CoV-2 infection in 892 patients in Queens, NY. Clin Gastroenterol Hepatol. 2020;18(10):2378-2379.
43. Fu J, Kong J, Wang W, et al. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: a retrospective study in Suzhou China. Thromb Res. 2020;192:3-8.
44. Guan WJ, Ni ZY, Hu Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-1709.
45. Hajfathalian K, Krisco T, Mehta A, et al. Gastrointestinal and hepatic manifestations of 2019 novel Coronavirus disease in a large cohort of infected patients from New York: clinical implications. Gastroenterology. 2020;159(2):1137-1140.
46. Han C, Duan C, Zhang S, et al. Digestive symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing, and outcomes. Am J Gastroenterol. 2020;115:916-923.
47. Han J, Shi L, Xie Y, et al. Analysis of factors affecting the prognosis of COVID-19 patients and viral shedding duration. Epidemiology & Infection. 2020;148:148.
48. Hong L-X, Lin A, He Z-B, et al. Mask wearing in pre-symptomatic patients prevents SARS-CoV-2 transmission: an epidemiological analysis. Travel Med Infect Dis. 2020;36:101803.
49. Hu J, Zhang X, Zhang X, et al. COVID-19 patients with hypertension have more severity condition, and ACEI/ARB treatment have no influence on the clinical severity and outcome. J Infect. 2020;81:979-997.
50. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
51. Huang M, Yang Y, Shang F, et al. Clinical characteristics and predictors of disease progression in severe patients with COVID-19 infection in Jiangsu Province, China: a descriptive study. Am J Med Sci. 2020;360:120-128.
52. Jehi L, Ji X, Milinovich A, et al. Individualizing risk prediction for positive COVID-19 testing: results from 11,672 patients. Chest. 2020.
53. Jin A, Yan B, Hua W, et al. Clinical characteristics of patients diagnosed with COVID-19 in Beijing. BioHealth. 2020;2:104-111.
54. Jin X, Lian J-S, Hu J-H, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002-1009.
55. Kaafarani HMA, El Moheb M, Hwabejie JO, et al. Gastrointestinal complications in critically ill patients with COVID-19. Ann Surg. 2020;272:e61-e62.
56. Lapostolle F, Schneider E, Vianu I, et al. Clinical features of 1487 COVID-19 patients with outpatient management in the Greater Paris: the COVID-call study. Intern Emerg Med. 2020;15:813-817.
57. Lei Z, Cao H, Jie Y, et al. A cross-sectional comparison of epidemiological and clinical features of patients with coronavirus disease (COVID-19) in Wuhan and outside Wuhan, China. Travel Med Infect Dis. 2020;35:101664.
58. Leung C. Risk factors for predicting mortality in elderly patients with COVID-19: a review of clinical data in China. Mech Ageing Dev. 2020;188:111255.
59. Li J, Gao R, Wu G, et al. Clinical characteristics of emergency surgery patients-infected COVID-19 pneumonia in Wuhan, China. Surgery. 2020.
60. Li J, Xu G, Yu H, Peng X, Luo Y. Clinical characteristics and outcomes of 74 patients with severe or critical COVID-19. Am J Med Sci. 2020;360:229-235.
61. Li W, Zhang B, Lu J, et al. The characteristics of household transmission of COVID-19. Clin Infect Dis. 2020;71:1943-1946.
62. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146:110-118.
63. Liang Y, Xu J, Chu M, et al. Neurosensory dysfunction: a diagnostic marker of early COVID-19. Int J Infect Dis. 2020;98:347-352.
64. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020;69(6):997-1001.
65. Lin W, Xie Z, Li Y, et al. Association between detectable SARS-CoV-2 RNA in anal swabs and disease severity in patients with coronavirus disease 2019. J Med Virol. 2020;93:794-802.
66. Liu BM, Yang QQ, Zhao LY, Xie W, Si XY. Epidemiological characteristics of COVID-19 patients in convalescence period. Epidemiol Infect. 2020:1-31.
67. Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370.
68. Liu F, Long X, Ji G, et al. Clinically significant portal hypertension in cirrhosis patients with COVID-19: clinical characteristics and outcomes. J Infect. 2020;81(2):e178-e180.
69. Liu F, Xu A, Zhang Y, et al. Patients of COVID-19 may benefit from sustained lopinavir-boosted regimen and the increase of eosi-nophilia may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183-191.
70. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EbioMedicine. 2020;55:102763.
71. Liu K, Fang Y-Y, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J. 2020;133:1025-1031.
72. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-374.
73. Lo IL, Lio CF, Cheong HH, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int J Biol Sci. 2020;16(10):1698-1707.

74. Lui G, Ling L, Lai CK, et al. Viral dynamics of SARS-CoV-2 across a spectrum of disease severity in COVID-19. J Infect. 2020;81:318-356.

75. Luo S, Zhang X, Xu H. Don’t overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clin Gastroenterol Hepatol. 2020;18(7):1636-1637.

76. Mao B, Liu Y, Chai Y-H, et al. Assessing risk factors for SARS-CoV-2 infection in patients presenting with symptoms in Shanghai, China: a multicentre, observational cohort study. Lancet Digit Health. 2020;2:e323-e330.

77. Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. 2020.

78. Nobel YR, Phipps M, Zucker J, et al. Gastrointestinal symptoms and coronavirus disease 2019: a case-control study from the United States. Gastroenterology. 2020;159(1):373-375.

79. Noh JY, Yoon JG, Seong H, et al. Asymptomatic infection and atypical manifestations of COVID-19: comparison of viral shedding duration. J Infect. 2020;81:816-846.

80. Ortiz-Brizuela E, Villanueva-Reza M, Gonzalez-Lara MF, et al. Clinical and epidemiological characteristics of patients diagnosed with COVID-19 in a tertiary care center in Mexico City: a prospective cohort study. Rev Invest Clin; organo del Hospital de Enfermedades de la Nutricion. 2020;72(3):165-177.

81. Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115:115-773.

82. Park S-K, Lee C-W, Park D-I, et al. Detection of SARS-CoV-2 in fecal samples from patients with asymptomatic and mild COVID-19 in Korea. Clin Gastroenterol Hepatol. 2020.

83. Peng S, Huang L, Zhao B, et al. Clinical course of coronavirus disease 2019 in 11 patients after thoracic surgery and challenges in diagnosis. J Thorac Cardiovasc Surg. 2020;160:585-592.e2.

84. Poggiali E, Ramos PM, Bastoni D, Vercelli A, Magnacavallo A. Abdominal pain: a real challenge in novel COVID-19 infection. Eur J Case Rep Int Med. 2020;7(4).

85. Qi L, Yang Y, Jiang D, et al. Factors associated with duration of viral shedding in adults with COVID-19 outside of Wuhan, China: a retrospective cohort study. Int J Infect Dis. 2020;96:712.

86. Ramachandran P, Onukogu I, Ghanta S, et al. Gastrointestinal symptoms and outcomes in hospitalized coronavirus disease 2019 patients. Dig Dis. 2020;38(9):373-379.

87. Redd WD, Zhou JC, Hathorn KE, et al. Prevalence and characteristics of gastrointestinal symptoms in patients with SARS-CoV-2 infection in the United States: a multicenter cohort study. Gastroenterology. 2020;159:765-767.

88. Remes-Troche JM, Ramos-de-la-Medina A, Marín-Reyes M, Martínez-Pérez-Maldonado L, Lara EL, Solís-González MA. Initial gastrointestinal manifestations in patients with severe acute respiratory syndrome coronavirus 2 infection in 112 patients from Veracruz in Southeastern Mexico. Gastroenterology. 2020;159(3):1179-1181.

89. Rivera-Izquierdo M, Valero-Ubierna MC, Martínez-Diz S, et al. Clinical factors, preventive behaviours and temporal outcomes associated with COVID-19 infection in healthcare professionals at a Spanish hospital. Int J Environ Res Public Health. 2020;17(12):4305.

90. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20:425-434.

91. Sun H, Ning R, Tao Y, et al. Risk factors for mortality in 244 older adults with COVID-19 in Wuhan, China: a retrospective study. J Am Geriatr Soc. 2020;68.

92. Tabata S, Imai K, Kawano S, et al. Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis. Lancet Infect Dis. 2020;20:1043-1050.

93. To KKK, Tsang OTY, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20(5):565-574.

94. Tomlins J, Hamilton F, Gunning S, Sheehy C, Moran E, MacGowan A. Clinical features of 95 sequential hospitalised patients with novel coronavirus 2019 disease (COVID-19), the first UK cohort. J Infect. 2020;81:e59-e61.

95. Wan Y, Li J, Shen L, et al. Enteric involvement in hospitalised patients with COVID-19 outside Wuhan. Lancet Gastroenterol Hepatol. 2020;5(6):534-535.

96. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069.

97. Wang K, Kang S, Tian R, Zhang X, Wang Y. Imaging manifestations and diagnostic value of chest CT of coronavirus disease 2019 (COVID-19) in the Xiaogan area. Clin Radiol. 2020;75:341-347.

98. Wang R, Pan M, Zhang X, et al. Epidemiological and clinical features of 125 hospitalized patients with COVID-19 in Fuyang, Anhui, China. Int J Infect Dis. 2020;95:421-428.

99. Wang X, Fang J, Zhu Y, et al. Clinical characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital. Clin Microbiol Infect. 2020;26:1063-1068.

100. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71:769-777.

101. Wei X-S, Wang X, Niu Y-R, et al. Diarrhea is associated with prolonged symptoms and viral carriage in COVID-19. Clin Gastroenterol Hepatol. 2020.

102. Wei Y-Y, Wang R-R, Zhang D-W, et al. Risk factors for severe COVID-19: Evidence from 167 hospitalized patients in Anhui, China. J Infect. 2020;81:e89-e92.

103. Wu J, Liu J, Zhao X, et al. Clinical characteristics of imported cases of coronavirus disease 2019 (COVID-19) in Jiangsu Province: a multicenter descriptive study. Clin Infect Dis. 2020;71:706-712.

104. Xie J, Shi D, Bao M, et al. A predictive nomogram for predicting improved clinical outcome probability in patients with COVID-19 in Zhejiang Province, China. Engineering. 2020.

105. Xiong Y, Sun D, Liu Y, et al. Clinical and high-resolution CT features of the COVID-19 infection: comparison of the initial and follow-up changes. Invest Radiol. 2020;55:332-339.

106. Xu K, Chen Y, Yuan J, et al. Factors associated with prolonged viral RNA shedding in patients with COVID-19. Clin Infect Dis. 2020.

107. Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020;47:1-6.

108. Xu X-W, Wu X-X, Jiang X-G, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368.

109. Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020;80:388-393.

110. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a
single-centered, retrospective, observational study. *Lancet Respir Med*. 2020;8:475-481.

111. Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. *J Allergy Clin Immunol*. 2020;146:119-127.

112. Yin S, Peng Y, Ren Y, et al. The implications of preliminary screening and diagnosis: clinical characteristics of 33 mild patients with SARS-CoV-2 infection in Hunan, China. *J Clin Virol*. 2020;128:104397.

113. Yoshimura Y, Sasaki H, Horiuchi H, Miyata N, Tachikawa N. Clinical features and short course of patients infected with SARS-CoV-2 in Singapore. *JAMA*. 2020;323(15):1488-1494.

114. Zhang L, Han C, Zhang S, et al. Diarrhea and altered inflammatory cytokine pattern in severe coronavirus disease 2019: impact on disease course and in-hospital mortality. *J Gastroenterol Hepatol*. 2020;35:3157-3158.

115. Zhang J, Yu M, Tong S, Liu L-Y, Tang L-V. Predictive factors for disease progression in hospitalized patients with coronavirus disease 2019 in Wuhan, China. *J Clin Virol*. 2020;127:104364.

116. Zhang H, Wang L, Chen Y, et al. Outcomes of novel coronavirus disease 2019 (COVID-19) infection in 107 patients with cancer from Wuhan, China. *Cancer*. 2020;126(17):4023-4031.

117. Zhang J, Wang X, Jia X, et al. Risk factors for disease severity, improvement, and mortality of COVID-19 patients in Wuhan, China. *Clin Microbiol Infect*. 2020;26:767-772.

118. Zhang J, Xu D, Xie B, et al. Poor-sleep is associated with slow recovery from lymphopenia and an increased need for ICU care in hospitalized patients with COVID-19: a retrospective cohort study. *Brain Behav Immun*. 2020;88:50-58.

119. Zhang S, Kadiane-Oussou NJ, Lepiller Q, et al. Clinical features of COVID-19 and influenza: a comparative study on Nord Franche-Comte cluster. *Microb Infect*. 2020;22(9):481-488.

120. Zeng QL, Li GM, Ji F, et al. Clinical course and treatment efficacy of COVID-19 near Hubei Province, China: a multicentre, retrospective study. *Transbound Emerg Dis*. 2020;67:2971-2982.

121. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. *AJR Am J Roentgenol*. 2020;214(5):1072-1077.

122. Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. *BMJ*. 2020;369.

123. Zheng T, Yang C, Wang H, et al. Clinical characteristics and outcomes of COVID-19 patients with gastrointestinal symptoms admitted to Jianghan Fangcang Shelter Hospital in Wuhan, China. *J Med Virol*. 2020;92:2735-2741.

124. Zheng Y, Xiong C, Liu Y, et al. Epidemiological and clinical characteristics analysis of COVID-19 in the surrounding areas of Wuhan, Hubei Province in 2020. *Pharmacol Res*. 2020;157:104821.

125. Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. *Clin Infect Dis*. 2020;71:756-761.

126. Zhao F, Yang Y, Wang Z, Li L, Liu L, Liu Y. The time sequences of respiratory and rectal viral shedding in patients with coronavirus disease 2019. *Gastroenterology*. 2020;159(3):1158-1160.

127. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relationship between chest CT finding and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. *AJR Am J Roentgenol*. 2020;214(5):1072-1077.

128. Zuo T, Zhan H, Zhang F, et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. *Gastroenterology*. 2020;159:1302-1310.
variants of SARS-CoV-2 in South-East Asia. Transbound Emerg Dis. 2020;bed.13748

150. Jefferson T, Heneghan C. COVID-19 epidemic `waves'. Cebmnet. 2020:30.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Elshazli RM, Kline A, Elgaml A, et al. Gastroenterology manifestations and COVID-19 outcomes: A meta-analysis of 25,252 cohorts among the first and second waves. J Med Virol. 2021;93:2740–2768.
https://doi.org/10.1002/jmv.26836