Lower incidence of myocardial infarction after smoke-free legislation enforcement in Chile
Carolina Nazzala & Jeffrey E Harrisb

Objective To evaluate the impact of a complete smoking ban in enclosed spaces on the incidence of acute myocardial infarction in Chile.

Methods The population-based study involved residents of urban areas, where 80% of the Chilean population live, aged 20 years or older who had a myocardial infarction. Monthly myocardial infarction incidence and mortality rates at health-care facilities between January 2011 and December 2014 were derived from admission and mortality databases. Regression discontinuity methods were used to estimate the near-immediate impact on disease incidence of enforcing smoke-free legislation in March 2013. The same analysis was performed for ischaemic stroke, degenerative disc disease and colon cancer. Data on the concentration of fine respirable particulates were included in an additional analysis of myocardial infarction incidence in the Santiago metropolitan area.

Results The enforcement of smoke-free legislation was associated with an abrupt, near-immediate decline of 0.639 cases of myocardial infarction per 100 000 adults per month (95% confidence interval, CI: 0.242 to 1.036; relative decline: 7.8%). Similar declines were observed in men and women and in people aged over and under 70 years. However, enforcement of the legislation was not associated with a significant change in the rate of ischaemic stroke, degenerative disc disease or colon cancer. The abrupt decline in myocardial infarction incidence was also observed when data on fine respirable particulates were included in an analysis for Santiago.

Conclusion The enforcement of extensive smoke-free legislation in Chile was associated with an abrupt, near-immediate decline in the incidence of myocardial infarction.

Introduction

After ratifying the World Health Organization’s Framework Convention on Tobacco Control in June 2005, Chile enacted its first round of tobacco control legislation in May 2006.1 The law completely prohibited smoking in public transport, in cinemas and in or near schools, but permitted designated smoking spaces in public facilities and workplaces with more than 10 employees.2

In February 2013, Chile enacted a second round of strengthened tobacco control legislation, which took effect on 1 March 2013.3 The new law extended the complete prohibition of smoking to all enclosed spaces accessible to the public, all enclosed commercial spaces and all open and closed sports arenas.4 Compliance with the new prohibitions on public smoking was almost immediate and virtually complete. Once the law took effect, inspections of bars, restaurants, educational establishments, health-care institutions and other public spaces increased four-fold. Violations were identified in only 1.7% of inspections (unpublished data, Ministerio de Salud de Chile, 2016). Despite the new tobacco control measures, the prevalence of tobacco use in Chile has remained one of the highest in the Americas.5 Among people aged 12 to 64 years, the proportion who reported smoking in the past month declined from 43.6% in 2002 to 34.0% in 2012, but rose to 39.7% in 2014.6

Extensive international literature supports the association between smoke-free legislation and a subsequent reduction in the incidence of myocardial infarction.7 Moreover, it has been estimated that exposure to second-hand tobacco smoke increases the risk of myocardial infarction in nonsmokers by approximately 30%.8 As with active smoking, some of the adverse effects of exposure to second-hand smoke occur almost immediately, including endothelial dysfunction, activation of platelet aggregation and lower heart rate variability.9 In addition, short-term exposure to tobacco smoke has been reported to reduce the coronary flow velocity reserve in healthy young adults10,11 and aortic distensibility in smokers and nonsmokers.12 Longer-term effects include an increase in oxidative stress, a decrease in high-density lipoprotein cholesterol levels, systemic inflammatory effects and an acceleration of atherosclerosis.13,14 At least some of the adverse effects of exposure to second-hand smoke are reversible.15

In Chile, ischaemic heart disease is the second largest cause of death after cerebrovascular accident in both sexes.16 We decided to study the potential impact of Chile’s extensive prohibition of smoking in urban public and private spaces in March 2013 on hospitalizations and deaths from acute myocardial infarction. Previous studies in South America – in Argentina and Uruguay – investigated only hospitalizations but, nevertheless, reported a reduction in the incidence of myocardial infarction after smoke-free legislation was implemented.17,18 Ours is the first population-based study of the effects of smoke-free legislation in the region.

In view of the short-term adverse effects of second-hand smoke exposure and the rapid and near-complete compliance with Chile’s March 2013 smoking prohibition, we employed an analytic strategy based on a regression discontinuity method to determine whether a discrete change in the myocardial infarction rate occurred almost immediately after the prohibition took effect. This strategy avoids many of the pitfalls of before-and-after study designs, particularly their limited capacity to take into account other confounding influences that could concurrently affect the myocardial infarction rate, such as changes in public policy and environmental factors.17 Because of evidence that smoke-free legislation may also reduce the incidence of cerebrovascular accidents and that

a School of Public Health, Faculty of Medicine, University of Chile, Santiago, Chile.
b Department of Economics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, MA 02139, United States of America.

Correspondence to Jeffrey E. Harris (email: jeffrey@mit.edu).

Submitted: 19 December 2016 – Revised version received: 22 June 2017 – Accepted: 26 June 2017 – Published online: 28 August 2017

doi: http://dx.doi.org/10.2471/BLT.16.189894
coronary and ischaemic cerebrovascular
diseases share some pathological mecha-
nisms,16,17 we repeated the analysis for
ischaemic stroke. In addition, following
other studies that employed diagnostic
controls,19 we repeated our analysis for
degenerative disc diseases and colon
cancer. Finally, to address the possible
confounding influence of air pollution,
we performed an additional analysis
that included the concentration of fine
respirable particulates in the Santiago
metropolitan area, where continuous
data were available.

Methods

We conducted a population-based study
of ST-elevation and non-ST elevation
myocardial infarction in people aged
20 years or more in Chile who were
treated before and after March 2013 at
a public or private hospital or outpatient
facility, including primary and urgent
care centres. We excluded rural munici-
palities with a low population density
and a small population. We employed
the regression discontinuity method20,21
to identify the near-immediate impact
of smoking prohibition on the rates of
myocardial infarction, ischaemic stroke
and two conditions unaffected by expo-
sure to second-hand smoke.

We obtained data from two Chilean
Ministry of Health databases on all indi-
vidual hospital discharges and deaths,
respectively, recorded in the country
during the period 2011 to 2014.22,23 We identified
all patients with a primary or secondary
diagnosis of acute myocardial infarc-
tion (i.e. codes I21 and I22 in the 10th
revision of the International statistical
classification of diseases and related health
problems, ICD-10), ischaemic stroke (i.e.
codes I63, I64 and I67), degenerative disc
disease (i.e. codes M50 and M51) and
colon cancer (i.e. code C18).

Chile is divided into 346 adminis-
trative divisions called comunas. Our
study covered 123 comunas with a
2012 population24 of at least 60 000 or a
population density of at least 60 people
per square kilometre.25 Together, these
urban comunas were home to 80% of
the Chilean population of 17.4 million
in 2012. We determined the number of people in each urban comuna diag-
nosed with a myocardial infarction or
one of the comparison conditions in
each month between January 2011 and
December 2014. In the two databases,
the variable comuna referred to the
individual’s residence. We obtained the
total number of cases of myocardial
infarction and of other conditions by
summing the number of people with
these conditions discharged from hos-
pital alive, which was derived from the
hospital discharge database, and the
number of deaths occurring in health-
care facilities, which was the greater
of the two figures derived from the hospital
discharge and mortality databases. For
76% of comunas–month combinations,
mortality data on deaths from myocar-
dial infarction at health-care facilities,
which included primary care centres
and hospital emergency departments,
were more inclusive than discharge data
on hospital inpatients whose death was
attributed to myocardial infarction.

We included 37 833 patients who
had a myocardial infarction between
2011 and 2014: 30 119 were discharged
from hospital alive and 7714 died. We
excluded 11 213 patients who died at home
or at a site other than a health-care facility
and whose deaths were attributed to, but
could not reliably be confirmed as being
due to, myocardial infarction. Among
the patients included, 69% were male and
65% were aged between 20 and 69 years.
Overall, 81% of all myocardial infarctions
recorded in the country occurred among
residents of urban comunas.

We calculated the rate of myocardial
infarction and of other conditions in
each month as the ratio of the number
of cases to the number of residents aged
20 years or more in 2012, as derived
from census data.24 For myocardial
infarction, we consider these ratios to
be approximate incidence rates. For the
comparison conditions, we describe
them simply as rates. We also analysed
the rate of myocardial infarction strati-
fied by sex and by age. We considered
two age groups: 20 to 69 years and
70 years or more.

To take into account the possible
confounding effect of air pollution, we
obtained data on the daily concentra-
tion of particulate matter smaller than
2.5 micrometres (PM$_{2.5}$) in air in the
Santiago metropolitan area between
2011 and 2014, which were available
from 11 monitoring stations.26 We
incorporated the mean monthly PM$_{2.5}$
concentration into an analysis of the 52
comunas in the Santiago metropolitan
area, which was home to approximately
40% of the Chilean population in 2012.24
The study was exempt from ethical ap-
proval because data were obtained from
only publicly available databases that
contained no personal identifiers.

Statistical analysis

We used the regression discontinu-
ity method20,21 to analyse trends in
the monthly rate of myocardial infarction
and of other diagnoses. To derive the
regression discontinuity equation, let the
index t represent the number of months
after March 2013. Thus, t ranges from
–26 for the month of January 2011 to
+21 for December 2014, whereas March
2013 corresponds to $t = 0$. Let y denote
the rate of myocardial infarction (or of
another condition) in month t. Let X, be
a binary variable equal to 0 if $t < 0$ and
equal to 1 if $t \geq 0$. Thus, X switches from
a value of 0 before the complete prohibi-
tion of smoking in enclosed public
and private commercial spaces to a value
of 1 once the prohibition comes into effect
in March 2013. Let Z denote a vector of
other binary covariates corresponding
to the calendar month of disease oc-
currence (i.e. February to December,
with January as the reference category)
and, in our restricted analysis of data
from the Santiago metropolitan area,
the monthly PM$_{2.5}$ concentration.
Our regression discontinuity specification is:

$$ y = \alpha + \beta t + (y + \delta X) X + \theta Z + \epsilon, \quad (1) $$

where α, β, γ, δ and θ are unknown
parameters and ϵ are independently
identically distributed error terms with
a zero mean.

The parameters of interest in Equa-
tion 1 are γ and δ. The parameter γ
captures the time-independent, discrete
change in the disease rate once the
smoking prohibition has become effec-
tive. In geometric terms, it corresponds
to the discontinuity, or gap, between pre-
prohibition and postprohibition trend
lines. By contrast, the parameter δ
indicates the change in the temporal trend
from before to after the prohibition has
become effective. It corresponds to the
difference between the slopes of the pre-
prohibition and postprohibition trend
lines. If smoke-free legislation resulted
in a near-immediate reduction in the
rate of myocardial infarction, we would
expect the parameter γ to be negative
and significantly different from zero.
On the other hand, if the prohibition of
smoking resulted in a gradual reduction
in the rate of myocardial infarction over time, we would expect the parameter \(\delta \) to be negative and significantly different from zero.

In graphical presentations of our results, we display the estimated trend lines derived from Equation 1 and the seasonally adjusted rates of myocardial infarction for each month from January 2011 to December 2014. To calculate seasonally adjusted myocardial infarction rates, we estimated the regression model,

\[
y_t = \mu + \delta W_t + \eta_t
\]

where \(\mu \) and \(\delta \) are unknown parameters, \(W_t \) denotes the vector of binary covariates corresponding to the calendar month of disease occurrence (i.e. February to December, with January as the reference category) and \(\eta_t \) is an error term. Using estimates, \(\hat{\delta} \) from this regression model, we then calculated seasonally adjusted myocardial infarction rates as \(y_t - \hat{\delta} W_t \). For the Santiago metropolitan area, we used the same method to compute the seasonally adjusted \(PM_{2.5} \) concentration.

Results

The results of our regression discontinuity analysis of the incidence of myocardial infarction are shown in Fig. 1 and Table 1. The estimated discontinuity in March 2013 at month 0 (corresponding to the parameter \(\gamma \) and the change in temporal trend (corresponding to the parameter \(\delta \)) were both statistically significant: \(\hat{\gamma} = -0.639 \) \((P = 0.002)\) and \(\hat{\delta} = -0.043 \) \((P = 0.003)\). In relative terms, the near-immediate reduction in incidence was 7.8%, based upon the predicted incidence of 8,179 cases per 100,000 in March 2013 in the absence of smoke-free legislation. This reduction amounted to 64 fewer cases of myocardial infarction per month or 764 fewer cases per year in an adult population of 9,965 million in the urban comunas under study. Considering only data on hospital discharges did not significantly alter our findings: \(\hat{\gamma} = -0.418 \) \((P = 0.036)\) and \(\hat{\delta} = -0.049 \) \((P = 0.001)\).

The results of our analysis of the change in the incidence of myocardial infarction stratified by sex are

\[
\begin{align*}
\text{Table 1. Regression discontinuity analysis of the change in incidence of medical conditions with enforcement of tobacco control legislation,} & \text{ Chile, 2011–2014}\\
\text{Medical condition} & \text{Demographic group} & \text{Regression discontinuity model coefficients} & \text{Discrete change in disease rate}^b & \text{Change in temporal trend in disease rate}^c \\
\text{Value (95% CI)} & \text{Value (95% CI)} \\
\hline
\text{Myocardial infarction} & \text{Both sexes, aged} \geq 20 \text{ years} & -0.639 (-1.036 \text{ to } -0.242) & -0.043 (-0.071 \text{ to } -0.016) \\
\text{Myocardial infarction} & \text{Males, aged} \geq 20 \text{ years} & -0.778 (-1.462 \text{ to } -0.095) & -0.069 (-0.117 \text{ to } -0.022) \\
\text{Myocardial infarction} & \text{Females, aged} \geq 20 \text{ years} & -0.514 (-0.941 \text{ to } -0.086) & -0.023 (-0.053 \text{ to } 0.006) \\
\text{Myocardial infarction} & \text{Both sexes, aged} 20-69 \text{ years} & -0.363 (-0.725 \text{ to } -0.001) & -0.021 (-0.046 \text{ to } 0.004) \\
\text{Myocardial infarction} & \text{Both sexes, aged} \geq 70 \text{ years} & -3.508 (-6.317 \text{ to } -0.698) & -0.300 (-0.495 \text{ to } -0.105) \\
\text{Ischaemic stroke} & \text{Both sexes, aged} \geq 20 \text{ years} & -0.188 (-1.073 \text{ to } 0.697) & -0.084 (-0.145 \text{ to } -0.022) \\
\text{Degenerative disc disease} & \text{Both sexes, aged} \geq 20 \text{ years} & 0.124 (-0.422 \text{ to } 0.669) & 0.019 (-0.057 \text{ to } 0.019) \\
\text{Colon cancer} & \text{Both sexes, aged} \geq 20 \text{ years} & -0.112 (-0.421 \text{ to } 0.197) & 0.025 (0.004 \text{ to } 0.047) \\
\text{Myocardial infarction in the Santiago metropolitan area}^d & \text{Both sexes, aged} \geq 20 \text{ years} & -0.733 (-1.272 \text{ to } -0.195) & -0.053 (-0.091 \text{ to } -0.015) \\
\end{align*}
\]

CI: confidence interval.

\(^a\) A second round of strengthened tobacco control legislation took effect on 1 March 2013.

\(^b\) The parameter \(\gamma \) indicates the discrete change in disease rate associated with the enforcement of smoking legislation in March 2013.

\(^c\) The parameter \(\delta \) indicates the change in the temporal trend of the disease rate associated with the enforcement of smoking legislation in March 2013.

\(^d\) An additional regression discontinuity model for the Santiago metropolitan area included the daily concentration of particulate matter in the air smaller than 2.5 micrometres (\(PM_{2.5} \)).

Notes: A second round of strengthened tobacco control legislation took effect on 1 March 2013. The data shown are for people aged 20 years and older living in urban areas of Chile. The circles show seasonally adjusted rates, as described in the text. Solid circles represent rates before March 2013 and open circles represent rates from March 2013 onward. The lines show the fitted values derived using the regression discontinuity model.
displayed in Fig. 2, Fig. 3 and Table 1. In males, both the estimated discontinuity and the change in temporal trend were statistically significant: $\hat{\gamma} = -0.778$ ($P = 0.027$) and $\hat{\delta} = -0.069$ ($P = 0.006$). In females, the estimated discontinuity was statistically significant ($\hat{\gamma} = -0.514$, $P = 0.020$) but the estimated change in temporal trend was not significantly different from zero ($\hat{\delta} = -0.023$, $P = 0.121$). The results of the corresponding analysis stratified by age group are shown in Fig. 4, Fig. 5 and Table 1. The estimated discontinuities were statistically significant for both groups: $P = 0.049$ for individuals aged 20 to 69 years and $P = 0.016$ for those aged 70 years and older. In contrast, the estimated change in temporal trend was significant only for those aged 70 years and older: $\hat{\delta} = -0.300$ ($P = 0.004$).

Our corresponding results for other conditions are also shown in Table 1. For ischaemic stroke, the estimated discontinuity was not significant ($\hat{\gamma} = -0.188$, $P = 0.668$), whereas the estimated change in temporal trend was negative and significantly different from zero ($\hat{\delta} = -0.084$, $P = 0.009$). Expansion of the definition of stroke to include nontraumatic, intracerebral haemorrhage (i.e. ICD-10 code I61) did not substantially alter our findings ($\hat{\gamma} = -0.218$, $P = 0.650$; and $\hat{\delta} = -0.094$, $P = 0.008$). Our findings for degenerative disc disease are shown in Fig. 6. Neither the estimated discontinuity nor the change in trend was statistically significant ($\hat{\gamma} = 0.124$, $P = 0.648$; and $\hat{\delta} = -0.019$, $P = 0.306$, respectively). For colon cancer, the estimated discontinuity was not significant ($\hat{\gamma} = -0.112$, $P = 0.467$), whereas the estimated change in trend was positive and significantly different from zero ($\hat{\delta} = 0.025$, $P = 0.023$).

The estimated seasonally adjusted incidence of myocardial infarction in the Santiago metropolitan area is shown in Fig. 7 and the corresponding seasonally adjusted $PM_{2.5}$ concentration is shown in Fig. 8. In a regression discontinuity model that included the $PM_{2.5}$ concentration, both the estimated discontinuity in the incidence of myocardial infarction in March 2013 ($\hat{\gamma} = -0.733$, $P = 0.009$) and the estimated change in trend ($\hat{\gamma} = -0.053$, $P = 0.008$) remained significant (Table 1). The coefficient of the $PM_{2.5}$ term in the regression model was not significantly different from zero ($P = 0.771$).

Discussion

We observed a significant abrupt reduction in the incidence of myocardial infarction in urban municipalities in Chile in the same month that smoke-free legislation went into effect. This abrupt decline was observed in both sexes and in people aged 20 to 69 years and 70 years and older. There was no corresponding significant abrupt reduction in the rate of ischaemic stroke, degenerative disc disease or colon cancer. In an analysis restricted to the Santiago metropolitan area, inclusion of the concentration of fine respirable particulates had no detectable effect on our regression estimates.

Many prior studies have compared trends in the incidence of myocardial infarction during extended periods before and after the enforcement of public smoking bans. Our study follows the lead of a few others in assessing the near-
immediate effect of a public smoking ban, as captured by the discontinuity in the estimated trend lines. 16,19,27–29 The rationale for this approach is based on evidence that exposure to second-hand smoke has a near-immediate adverse effect on the risk of myocardial infarction and that enforcement of, and compliance with, smoke-free legislation is also near-immediate.

We also observed that the slope of the temporal trend line of myocardial infarction incidence was significantly smaller in the 20-month period after Chile’s smoke-free legislation went into effect than it was before. Although smoke-free legislation may have contributed to these longer-term trends, other factors, such as the additional tobacco control measures enacted as part of the 2013 law, could have been responsible. 1 For example, the real price of cigarettes increased by approximately 30% between 2011 and 2014. 30 In addition, the increased use of troponin testing in Chilean hospitals to diagnose non-ST elevation myocardial infarction could also have influenced disease rates. Although the prevalence of all cardiovascular risk factors except diabetes remained stable between 2003 and 2010, 31 no comparable data were available for the period 2011 to 2014. These potentially confounding factors could have influenced trends in disease incidence in the 2 years after the enforcement of smoke-free legislation, but they are less likely to have contributed to the abrupt decline observed in the month immediately after the legislation went into effect.

Inclusion of the PM$_{2.5}$ concentration did not alter our finding of a significant abrupt decline in the incidence of myocardial infarction after March 2013. Nor did the temporal pattern of air pollution show any relation to incidence. In June 2011, before the enforcement of smoke-free legislation, the Puyehue–Cordón Caulle volcanic complex erupted in southern Chile. The resulting emission of particulates and toxic gases could have affected disease incidence. However, the dominant wind direction during the eruption was from west to east, which dispersed ash clouds into Argentina, Brazil and Uruguay. 32

We estimated that the relative decline in the incidence of myocardial infarction in the urban municipalities included in our analysis was 7.8%. This figure is towards the lower end of the 4 to 52% range reported in meta-analyses. 33,34 However, our study focused solely on the near-immediate decline in incidence, whereas most other studies took into account longer-term effects.

Several studies of the impact of smoke-free legislation employed geographical controls. 15,19,26,35–40 We could not use this study design because Chile’s 2013 law was adopted on a nationwide basis. Here, we hypothesized that people living in urban areas with a higher population or population density would have greater exposure to second-hand smoke and would thus experience a marked reduction in the likelihood of a myocardial infarction after the enforcement of smoke-free legislation. This hypothesis was reinforced by the substantially higher smoking prevalence in urban areas of Chile, 16 as well as by the observed dose–response association between the extent of second-hand smoke exposure and the risk of myocardial infarction. 42,43 Following other studies, 39 we employed diagnostic controls.

Although there is some evidence that smoke-free legislation can reduce the incidence of ischaemic cerebrovascular accidents, 18,19 we detected a significant decline only in the slope of
Research
Smoking ban and myocardial infarction in Chile
Carolina Nazzal & Jeffrey E Harris

the trend line with the enforcement of legislation in Chile – there was no abrupt reduction in the rate of strokes. Our analysis may have been limited by the misclassification of cerebrovascular events. Among the three ICD-10 categories we employed, I64 (i.e. stroke, not specified as haemorrhage or infarction) and I67 (i.e. other cerebrovascular diseases) accounted for about 30 and 45% of events, respectively. Inclusion of I61 (i.e. nontraumatic, intracerebral haemorrhage) did not alter our findings substantially.

Most studies of the impact of smoke-free legislation on the incidence of myocardial infarction have relied solely upon data on hospitalizations, although some have analysed mortality data, either alone or with hospitalization data. Here, we employed a population-based approach, combining both hospitalization and mortality data. Still, we included only 37,833 cases of myocardial infarction diagnosed in a hospital or other health-care facility. Out of concern for diagnostic reliability, we excluded 11,213 deaths outside of health-care facilities that were attributed to, but not confirmed as, myocardial infarction.

Our study has two additional limitations. First, we lacked information on each individual’s smoking status and thus could not directly verify that the decrease in myocardial infarctions among nonsmokers resulted from reduced exposure to second-hand smoke. Second, our follow-up period ended in 2014. Longer follow-up may have improved the precision of our estimates of the post-ban trend line and of the immediate reduction in the incidence of myocardial infarction.

Our findings support the view that the smoke-free legislation enacted in 2013 in Chile had a significant favourable effect on the health of the population. These results will be useful in evaluating national policies for tobacco control and myocardial infarction prevention.

Acknowledgments
We thank the MISTI Chile Program and the MIT Sloan Latin America Office, both of the Massachusetts Institute of Technology, and María Teresa Valenzuela, Universidad de Chile.

Competing interests: None declared
النتائج: نظرًا لانعدام الصدأ القصبي، وسرطان القولون، فقد تم تضمين البيانات الخاصة بتركيز الجسيمات الدقيقة القابلة للاستنشاق في تحليل الإصابات، تثبت أن تطبيق التشريع المتعلق بمنع التدخين في شيلي أدى إلى ت Após انتقادات التشتت الفاصل بين التشريع المتعلق بمنع التدخين في شيلي ونسبة الإصابة بالذبحة القلبية، إلا أن تطبيق التشريع لم يترتب عليه تغييرًا شديد. كما لوحظت نسب مشابهة للانخفاض بين لدى الرجال والنساء، وحتى في الفئات العمرية للأشخاص الذين تتراوح أعمارهم بين 70 سنة من العمر والذين يدخنون في المواقع العامة، وقيقة إجراء الدراسة القائمة على الشروط السكانية على سكان من المنطقة الحضرية - والتي تملكها 80% من السكان في شيلي - بدأ بأمورهم من سن 20 عامًا فوق من أحيانًا لذبحة قلبية. وتم استخلاص النتائج في ثلاثة أشهر من الحالة للذبحة القلبية في سانتياغو، والذي يعتبر من المناطق الحضرية. كما يقع في شيلي. وقد تم استخدام نتيجة البيانات المتعلقة بالذبحة القلبية في تحليل الإصابات في مجال إعطاء إملاء إملاء للذبحة الحادة في شيلي - 2013، وعند إجراء نفس التحليل على الذبحة الحادة، وعند때 تطبيق التشريع المتعلق بمنع التدخين في سانتياغو. واذربيجان في منطقة سانتياغو الحضرية.

ملخص

الدراسة لم تتضمن البيانات المتعلقة بالذبحة القلبية في إيطالق الإصابة بالذبحة القلبية في شيلي بعد تطبيق التشريع الخاص بمنع التدخين في شيلي.

المراجعات

Research

Smoking ban and myocardial infarction in Chile

Carolina Nazzal & Jeffrey E Harris

Bull World Health Organ 2017;95:674–682
doi: http://dx.doi.org/10.2471/BLT.16.189894

ملخص

الدراسة لم تتضمن البيانات المتعلقة بالذبحة القلبية في إيطالق الإصابة بالذبحة القلبية في شيلي بعد تطبيق التشريع الخاص بمنع التدخين في شيلي.

المراجعات

Research

Smoking ban and myocardial infarction in Chile

Carolina Nazzal & Jeffrey E Harris

Bull World Health Organ 2017;95:674–682
doi: http://dx.doi.org/10.2471/BLT.16.189894
Данные о ежемесячной заболеваемости и смертности от инфаркта миокарда в медицинских учреждениях в период с января 2011 г. по декабрь 2014 г. были получены из баз данных о госпитализации и смертности. Для оценки непосредственного влияния применения законодательства, запрещающего курение, в марте 2013 г. на заболеваемость были использованы методы разрывной регрессии. Тот же анализ был выполнен для частоты случаев ишемического инсульта, дегенеративного заболевания межпозвоночных дисков и рака толстой кишки. Данные о концентрации мелких вдыхаемых частиц были включены в дополнительный анализ заболеваемости инфарктом миокарда в столичном регионе Сантьяго.

Результаты Применение законодательства, запрещающего курение, привело к резкому, почти мгновенному снижению на 0,639 случая инфаркта миокарда на 100 000 человек в возрасте старше 70 лет, или 7,8 %. Подобное снижение наблюдалось у мужчин и женщин, а также у людей в возрасте старше 70 лет. Однако применение законодательства не было связано со значительным изменением частоты случаев ишемического инсульта, дегенеративного заболевания межпозвоночных дисков или рака толстой кишки. Резкое снижение заболеваемости инфарктом миокарда наблюдалось также в Амérique, вплоть до введения в анализ для Сант-Яго данных о мелких вдыхаемых частицах.

Вывод Применение обширного законодательства, запрещающего курение, в Чили привело к резкому, почти мгновенному снижению заболеваемости инфарктом миокарда.

References
1. Gobierno de Chile. Ley no. 20.105: modifica la ley no. 19.419 en Materia de Ambientes Libres de Humo de Tabaco. Santiago: Biblioteca del Congreso Nacional de Chile, 2013 (in Spanish).
2. Valenzuela Schmidt MT. Chile: Situación del tabaquismo a cinco años de la ratificación del Convenio Marco para el Control del Tabaco y los daños pendientes. Informe de Chile Libre de Tabaco. El Bosque: Fundación Educación Popular en Salud, 2010. Available from: http://www.chilelibredetabaco.cl/descargas/Informe_Chile_5_anos_CMCT_EPES_2010.pdf (cited 2017 Aug 2) (in Spanish).
3. Gobierno de Chile. Ley no. 20.660: modifica la ley no. 19.419, en Materia de Ambientes Libres de Humo de Tabaco. Santiago: Biblioteca del Congreso Nacional de Chile, 2013 (in Spanish).
4. Ministerio de Salud de Chile. Ley 20.660, que modifica la ley no. 19.419 en Materia de Ambientes Libres de Humo de Tabaco. Geneva: World Health Organization, 2013. Available from: http://www.who.int/lhc/monitoring/ news/130201_Ley_20660_de_tabaco.pdf?ua=1 (cited 2016 Nov 14) (in Spanish).
5. Informe sobre control de tabaco en la región de las Américas: a 10 años del Convenio Marco de la Organización Mundial de Salud para el Control de Tabaco. Washington DC: Organización Panamericana de la Salud, 2016. Available from: http://iris.paho.org/xmlui/bitstream/handle/123456789/28380/9789275318867_spa.pdf?sequence=1&isAllowed=y&ua=1 (cited 2017 Aug 2) (in Spanish).
6. Observatorio Chileno de Drogas. Décimo primer estudio nacional de drogas en población general de Chile, 2014. Santiago: Servicio Nacional para la Prevención y Rehabilitación del Consumo de Drogas y Alcohol, SENDA, 2015. Available from: http://www.senda.gob.cl/media/estudios/PG/2014__EstudoDrogas__Poblacion_General.pdf (cited 2017 Aug 2) (in Spanish).
7. Frazer K, Calinan JE, McHugh J, van Baarsel S, Clarke A, Doherty K, et al. Legislative smoking bans for reducing harms from secondhand smoke exposure, smoking prevalence and tobacco consumption. Cochrane Database Syst Rev. 2016 02 4;C0005992. doi: http://dx.doi.org/10.1002/14651858.CD0005992.pub3 PMID: 26842828
8. Barnoya J, Galtz SA. Cardiovascular effects of secondhand smoke: nearly as large as smoking. Circulation. 2005 May 24;111(20):2684–98.doi: http://dx.doi.org/10.1161/CIRCULATIONAHA.104.492215 PMID: 15911719
9. Felker Dietrich O, Schwartz J, Schindler C, Gaspoz JM, Barthélémy JC, Tschopp JM, et al. SARALDA-team. Effects of passive smoking on heart rate variability, heart rate and blood pressure: an observational study. Int J Epidemiol. 2007 Aug;36(4):834–40.doi: http://dx.doi.org/10.1093/ije/dym031 PMID: 17400302
10. Otsuka R, Watanabe H, Hirata K, Tokai K, Muro T, Yoshiyama M, et al. Acute effects of passive smoking on the coronary circulation in healthy young adults. JAMA. 2001 Jul 25;286(4):436–41.doi: http://dx.doi.org/10.1001/ jama.286.4.436 PMID: 11466122
11. Stefanidis C, Vlachopoulos C, Tsimis E, Diamantopoulos L, Toutouzas K, Giatrakos N, et al. Unfavorable effects of passive smoking on aortic function in men. Ann Intern Med. 1998 Mar 15;128(6):426–34.doi: http://dx.doi.org/10.7326/0003-4819-128-6-199803150-00002 PMID: 9499325
12. Galtz SA, Parmley WW. Passive smoking and heart disease: Epidemiology, physiology, and biochemistry. Circulation. 1991 Jan 23(1):1–12.doi: http://dx.doi.org/10.1161/01.CIR.83.1.1 PMID: 1984876
13. Raikarai OJ, Adams MR, McCredie RJ, Griffiths KA, Cleermager DS. Arterial endothelial dysfunction related to passive smoking is potentially reversible in healthy young adults. Ann Intern Med. 1999 Apr 6;130(7):578–81.doi: http://dx.doi.org/10.7326/0003-4819-130-7-199904060-00017 PMID: 10189327
14. Defunciones y mortalidad por causas. Santiago: Departamento de Estadísticas e Información de Salud; 2016. Available from: http://www.desdeis.cl/defunciones-y-mortalidad-por-causas/ (cited 2016 Nov 7) (in Spanish).
