Elevated fasting blood glucose within the first week of hospitalization was associated with progression to severe illness of COVID-19 in patients with preexisting diabetes: A multicenter observational study

Ping Ling1,2 | Sihui Luo1,2 | Xueying Zheng1,2 | Guoqi Cai1,2 | Jianping Weng1,2

1Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
2Clinical Research Hospital (Hefei) of Chinese Academy of Science, Hefei, China

Correspondence
Jianping Weng, Division of Life Sciences and Medicine, University of Science and Technology of China, 97 Jinzhai Road, Hefei, Anhui 230026, China.
Email: wengjp@ustc.edu.cn

Funding information
Fundamental Research Funds for the Central Universities, Grant/Award Numbers: YD9110002002, YD9110002008, YD9110004001

KEYWORDS: COVID-19, diabetes, fasting blood glucose, HbA1c

Highlights
- Fasting blood glucose < 10 mmol/L was proposed as a target of glycemic control during the first week of hospitalization in patients with preexisting diabetes.
- Poor HbA1c levels prior to coronavirus disease 2019 (COVID-19) might not be associated with severity among patients with preexisting diabetes.
- Mean blood glucose seemed not to be associated with poor prognosis of COVID-19.

To the Editor:
Diabetes is one of the most common comorbidities in patients with coronavirus disease 2019 (COVID-19) and an established risk factor of poor prognosis and mortality.1-4 Clinical data has established the association between hyperglycemia and the poor prognosis of COVID-19 in patients with preexisting diabetes.5,6 However, data are still limited on the association of glycosylated hemoglobin (HbA1c) and the prognosis of COVID-19 and the optimal target of glycemic control, especially during the early stage of hospitalization.

Therefore, we conducted this study to investigate the association of HbA1c and the outcome of COVID-19 and determine the optimal glucose level during the early stage of their hospitalization among patients with preexisting diabetes, in a cohort of laboratory-confirmed COVID-19 patients in China.

1 METHODS

This was a multicenter observational study from “Construction of a bio-information platform for novel coronavirus pneumonia (COVID-19) patients follow-up in Anhui” (ChiCTR2000030331). Data of hospitalized,
TABLE 1 Characteristics and laboratory findings on admission of the 702 COVID-19 patients

Characteristics	All patients	Patients with preexisting diabetes	Nondiabetic patients	P value
N	702	51	651	
Characteristics				
Age, years	42.49 ± 15.50	58.40 ± 11.20	41.25 ± 15.11	0.001
0-29, n(%)	157(22.36)	1(1.96)	156(23.96)	0.001
30-50, n(%)	318(45.30)	11(21.57)	307(47.16)	0.001
≥ 50, n (%)	227(32.34)	39(76.42)	188(28.88)	0.001
Male sex, n(%)	384(54.70)	35(68.63)	349(53.61)	0.041
Body mass index, kg/m²				0.391
Male sex, n(%)	52(7.41)	3(5.88)	49(7.53)	
Current smoking, n(%)				0.028
Current smoker				
Current smoker	52(7.41)	3(5.88)	49(7.53)	
Former smoker				
Former smoker	14(1.99)	4(7.84)	10(1.54)	
Never smoked	636(90.60)	44(86.27)	592(90.94)	
Coexisting disorder, n(%)				
Hypertension	83(11.82)	20(39.22)	63(9.68)	0.001
Cardiovascular disease	18(2.56)	3(5.88)	15(2.30)	0.136
Chronic pulmonary disease	11(1.57)	2(3.92)	9(1.38)	0.188
Chronic liver disease	28(3.99)	4(7.84)	24(3.69)	0.017
Chronic renal disease	5(0.71)	0	5(0.77)	1.000
Autoimmune disease	5(0.71)	1(1.96)	4(0.61)	0.315
Laboratory findings				
Fever	545(77.64)	41(80.39)	504(77.42)	0.752
Cough	425(60.54)	35(68.63)	390(59.91)	0.001
Sputum production	206(29.34)	15(29.41)	191(29.14)	0.016
Fatigue	112(15.95)	9(17.65)	103(15.82)	0.309
Gastrointestinal symptoms	53(7.55)	8(15.69)	45(6.91)	0.046
Severity, n(%)				0.001
Mild	55(7.83)	0	55(8.45)	
Moderate	566(80.63)	28(54.90)	538(82.64)	
Severe	81(11.54)	23(45.10)	58(8.91)	
Admission to ICU, n(%)	42(5.98)	16(31.37)	26(3.99)	0.001
Death, n(%)	1(0.14)	1(1.96)	0(0.00)	
Time from onset of symptom to hospital admission (days)	5.89 ± 4.61	7.39 ± 6.54	5.77 ± 4.41	0.018
Time from onset of symptom to outcome (days)	22.80 ± 7.47	26.57 ± 9.35	22.51 ± 7.23	0.003
SpO2, %	97.71 ± 1.84	96.61 ± 3.76	97.80 ± 1.57	0.063
SBP, mm Hg	126.94 ± 14.70	131.37 ± 14.93	126.59 ± 14.63	0.013
DBP, mm Hg	81.28 ± 11.35	81.53 ± 10.11	81.26 ± 11.45	0.939

* Ling ET AL.
laboratory-confirmed COVID-19 patients were obtained from 21 designated hospitals in 14 cities in Anhui, China, between 22 January to 16 April 2020. Epidemiological and clinical data of these patients were collected from medical records. Severe illness was defined according to the Chinese National guidelines. Fasting blood glucose (FBG) was measured at fasting status in the morning. Postprandial blood glucose (PBG) were measured 2 hours after a meal. This study was approved by the institutional review board of the First Affiliated Hospital of University of Science and Technology of China (2020-XG[H]-009). All patients who participated in the study had provided written informed consent.

2 | RESULTS

A total of 702 COVID-19 patients were included in this study. Among them, 51(7.26%) had preexisting diabetes, all of them had type 2 diabetes mellitus (T2D). Compared with patients without diabetes (Table 1), those with diabetes were more likely to progress to severe illness (45.10% vs 8.91%, relative risk [RR] 5.06, 95% confidence interval [CI] 3.43-7.48) and to be admitted to the intensive care unit (ICU) (31.37% vs 3.99%, RR 7.86, 95% CI 4.52-13.67).

To investigate the potential contribution of blood glucose to the progression of COVID-19, we divided the patients with diabetes, who were all nonsevere upon admission, into the severe group or the nonsevere group according to their final diagnosis. Two patients in the nonsevere group were excluded from analysis because of the unavailability of blood glucose data during hospitalization. Based on these findings, we established RR regression models and found that only mean FBG over the first week of admission ≥ 10 mmol/L was significantly associated with progression to severe illness.

TABLE 1 (Continued)

All patients	Patients with preexisting diabetes	Nondiabetic patients	P value	
Hemoglobin, g/L	135.06 ± 17.94	136.86 ± 16.33	134.92 ± 18.07	0.555
Platelet count, × 10^9/L	187.90 ± 73.96	175.88 ± 71.35	188.85 ± 74.13	0.209
PT, s	13.15 ± 2.58	13.05 ± 2.01	13.16 ± 2.62	0.935
APTT, s	34.40 ± 9.77	34.29 ± 7.60	34.41 ± 9.95	0.877
ALT, U/L, median (IQR)	25.30(15.00,38.00)	23.70(16.00,30.30)	26.00(15.00,38.05)	0.413
AST, U/L, median (IQR)	25.00(20.00,34.00)	24.00(20.13,33.50)	25.00(20.00,34.00)	0.843
Total bilirubin, μmol/L	14.22 ± 8.98	16.67 ± 9.40	14.02 ± 8.93	0.023
Creatinine, μmol/L	64.54 ± 18.24	66.05 ± 18.12	64.42 ± 18.27	0.633
BUN, mmol/L	4.14 ± 2.05	4.76 ± 1.81	4.09 ± 2.06	0.001
Blood glucose, mmol/L	6.28 ± 2.20	10.11 ± 4.29	5.90 ± 1.41	0.001
Procalcitonin, ng/mL, median (IQR)	0.06(0.03,0.11)	0.10(0.02,0.18)	0.05(0.03,0.10)	0.094
C reactive protein, mg/L, median (IQR)	10.51(2.50,30.10)	33.75(13.35,77.30)	9.60(2.10,27.90)	0.001
CK, U/L, median (IQR)	59.20(42.00,87.75)	68.00(48.00,80.70)	59.00(42.00,88.00)	0.328
CK-MB, U/L, median (IQR)	9.00(3.16,13.00)	9.05(4.00,16.70)	9.00(3.00,13.00)	0.272
IL-6, pg/ml, median (IQR)	16.80(5.23,31.05)	32.95(22.59,56.97)	13.30(4.93,25.63)	0.001
Urine protein (+ or ++), n(%)	53/368(14.40)	3/22(13.64)	50/346(14.45)	0.204
Abnormalities on chest CT, n(%)	647/702(92.17)	51/51(100.00)	596/651(91.55)	0.026

Abbreviations: ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CK, creatinine kinase; CK-MB, creatinine kinase-MB; DBP, diastolic blood pressure; ICU, intensive care unit; IL-6, interleukin 6; IQR, interquartile range; PT, prothrombin time; SBP, systolic blood pressure; SpO2, saturation of oxygen.

aThe data in this section represented the highest severity level assessed of a patient during hospitalization.
found that FBG ≥10 mmol/L could serve as an upper limit of FBG control for COVID-19 patients with diabetes. That might be caused by inflammatory responses following the viral infection, which was also observed in previous studies.5 Also, hyperglycemia during early admission may directly accelerate the damage or promotes the life cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), so as to propel progression to severe illness.8 But mean blood glucose seemed not to be associated with poor prognosis. A possible reason may be different food administering pattern between patients of different severity.

Besides, HbA1c upon admission represents the glycemic status prior to SARS-CoV-2 infection. A previous report of 132 COVID-19 patients indicated that HbA1c was associated with systemic inflammation, hypercoagulability, and poor prognosis, but these results are not adjusted for known risk factors of age, sex, or body mass index.9 But in a multicenter study in France, association between HbA1c and the outcome of tracheal intubation for mechanical ventilation and/or death within 7 days of admission was not observed among COVID-19 patients with diabetes.10 In our study, we added the evidence that glycemic control prior to the infection was not associated with increased risk of progression of COVID-19.

Collectively, hyperglycemia prior to the infection of SARS-CoV-2 might not play a significant role, but special attention should be paid to diabetic patients with suboptimal glucose control (≤10.0 mmol/L) during the early stage of hospitalization, especially within the first week.

ACKNOWLEDGEMENT

This study is funded by the Fundamental Research Funds for the Central Universities (Grant number. YD9110004001, YD9110002002, and YD9110002008).

DISCLOSURE

None declared.

ORCID

Ping Ling https://orcid.org/0000-0002-9889-5812
Jianping Weng https://orcid.org/0000-0002-7889-1697

REFERENCES

1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242.
2. Williamson EJ, Walker AJ, Bhaskaran K, et al. OpenSAFELY: factors associated with COVID-19 death in 17 million patients. Nature. 2020;584:430-436. https://doi.org/10.1038/s41586-020-2521-4.
3. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;e3319. https://doi.org/10.1002/dmrr.3319.
4. Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;16(6):297-298.

5. Zhu L, She ZG, Cheng X, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020;31:1068-1077.e1063.

6. Smith SM, Boppana A, Traupman JA, et al. Impaired glucose metabolism in patients with diabetes, prediabetes, and obesity is associated with severe COVID-19. J Med Virol. 2020;1-7. https://doi.org/10.1002/jmv.26227.

7. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia released by the National Health Commission of the People's Republic of China. http://www.nhc.gov.cn.

8. Sardu C, D’Onofrio N, Balestrieri ML, et al. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control? Diabetes Care. 2020;43:1408-1415.

9. Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res Clin Pract. 2020;164:108214.

10. Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020;63(8):1500-1515.

How to cite this article: Ling P, Luo S, Zheng X, Cai G, Weng J. Elevated fasting blood glucose within the first week of hospitalization was associated with progression to severe illness of COVID-19 in patients with preexisting diabetes: A multicenter observational study. Journal of Diabetes. 2021;13:89–93. https://doi.org/10.1111/1753-0407.13121.