Supporting Information

Diffusion and Protein Corona Formation of Lipid-based Nanoparticles in Vitreous Humor: Profiling and Pharmacokinetic Considerations

Shirin Tavakoli, Otto Kalevi Kari, Tiina Turunen, Tatu Lajunen, Mechthild Schmitt, Julia Lehtinen, Fumitaka Tasaka, Petteri Parkkila, Joseph Ndika, Tapani Viitala, Harri Alenius, Arto Urtti, and Astrid Subrizi*

Supplementary files (Excel):

Supplementary File 1 Protein name Found Min 1 sample
Supplementary File 2 Matrix Filtered Found in Min 3 samples Raw intensities Sample averages
Supplementary File 3 ANOVA significant
Supplementary File 4 ANOVA and T-tests for selected contrasts Relative abundance Sample averages

Supplementary videos (.mp4):

AL3-PEG
AL6
NL7-PEG
CL2
CL7-PEG
CL8
Table S1. Effect of charge, particle size and surface modification (PEG and ICG) on vitreal mobility of lipid-based formulations based on the corresponding D_v, D_w and D_w/D_v ratios at a time scale of 1s. A: anionic, N: neutral, C: cationic formulation; L: light-activated liposomes and controls; R: rigid-membrane liposomes; H: hexosomes; and N: nanostructured lipid carriers (NLCs).

Formulation	Size [nm]	ζ-Potential [mV]	D_v [µm² s⁻¹]	D_w [µm² s⁻¹]	D_w/D_v	
Anionic< 50 nm	AL1-PEG	51.0	-28.1	1.02 ± 0.19	12.90	12.7
	AL2	46.7	-38.0	1.01 ± 0.14	14.10	14.1
	AL3-PEG	39.2	-20.9	2.9 ± 0.71	16.78	5.7
	AL4	48.7	-40.8	0.91 ± 0.30	13.51	14.9
100-200 nm	AL5-PEG	104.3	-18.5	0.44 ± 0.12	6.31	14.3
	AL6	105.2	-56.3	0.70 ± 0.27	6.26	8.9
	AL7-PEG	107.1	-22.8	1.40 ± 0.23	5.93	4.2
	AL8	119.8	-50.6	0.53 ± 0.06	5.89	11.1
	AR1	142.0	-53.0	0.37	4.64	12.4
	AR2	139.0	-43.0	0.60	4.74	7.8
>200 nm	AL9-PEG	208.8	-38.8	0.24 ± 0.2	3.15	13.1
	AL10	212.1	-57.1	0.25 ± 0.18	3.10	12.4
	AL11-PEG	291.8	-30.8	0.35 ± 0.02	2.26	6.4
	AL12	291.8	-55.4	0.34 ± 0.01	2.26	6.6
Neutral< 50 nm	NL1-PEG	48.9	-1.7	1.20 ± 0.29	13.45	11.2
	NL2	46.3	-6.7	0.71 ± 0.07	14.31	20.3
	NL3-PEG	46.9	-1.4	1.14 ± 0.15	14.04	12.4
	NL4	35.7	-1.5	0.91 ± 0.36	18.45	20.3
100-200 nm	NL5-PEG	107.6	-3.6	0.47 ± 0.25	6.12	13.0
	NL6	125.8	-7.2	0.33 ± 0.17	5.27	16.0
	NL7-PEG	110.8	-1.2	0.36 ± 0.01	5.94	16.3
	NL8	110.6	-7.1	0.19 ± 0.002	5.95	31.4
	NR1	180.0	-10.0	0.26	3.66	14.2
	NN	152.0	-11.8	0.29 ± 0.22	4.33	14.8
	NN-PEG	150.0	-10.1	0.43 ± 0.32	4.39	10.2
>200 nm	NL9-PEG	224.4	-1.4	0.15 ± 0.13	2.85	19.0
	NL10	254.4	-6.8	0.09 ± 0.09	2.59	28.8
	NL11-PEG	270.6	-1.2	0.13 ± 0.06	2.43	18.4
	NL12	227.3	-9.6	0.09 ± 0.01	2.89	31.5
	NH	300.0	-	0.25 ± 0.08	2.19	8.7
Cationic< 50 nm	CL1-PEG	43.0	17.7	0.121 ± 0.06	15.31	126.4
	CL2	46.5	29.4	0.008 ± 0.004	14.16	1770.0
	CL3-PEG	42.6	15.7	0.110 ± 0.06	15.45	140.0
	CL4	49.9	32.5	0.007 ± 0.005	13.18	1882.0
100-200 nm	CL5-PEG	110.8	18.2	0.042 ± 0.02	5.94	139.0
	CL6	112.6	33.1	0.002 ± 0.008	5.85	2923.0
	L: light-activated liposomes, the formulations are divided based on charge (A: anionic, N: neutral, C: cationic). Based on this nomenclature, for example, AL indicates an Anionic Light-activated liposome formulation.	Track length (μm)	Track length (μm)	Track length (μm)		
----------------	--	------------------	------------------	------------------		
CL7-PEG	111.6 14.0 0.038 ± 0.01 5.93 156.1	CL8	100.3 31.7 0.003 ± 0.005 6.56 2187.0			
CR1	139 43.0 0.002 4.74 2370.0	CR2-PEG	134 30.0 0.014 4.91 351.0			
>200 nm	CL9-PEG 251.2 18.3 0.015 ± 0.008 2.62 170.2	CL10	236.1 41.0 0.0008 ± 0.01 2.79 3486.1			
≤50 nm	CL11-PEG 267.9 14.4 0.013 ± 0.006 2.46 196.8	CL12	202.9 33.9 0.002 ± 0.0006 3.26 2037.0			
Vitreal corona protein composition of anionic light-activated liposomes

In total, 535 non-redundant proteins were identified in the porcine vitreous used as source and at least one sample of the liposome corona subsections by nLC-ESI-MS/MS. These included 101 (18.9%) annotations that have not been previously reported in proteomic studies of the human vitreous,[1–4] and 88 (16.4%) previously unknown annotations when reports on dog, rabbit, and mouse vitreal proteomes were included in addition to human (Figure S2 and S4).[5–7] Only 24 common annotations were identified in the corona and human vitreal proteomes, and three when the other species were included (Table S2). Functional analysis with gene sets in the human group identified glycolysis (FDR 1.88E-11) and glucose catabolic process (FDR 5.87E-11) as significantly enriched pathways, while the common genes in the interspecies group were linked by their association with visual perception and sensory perception of light stimulus (both FDR 2.57E-2) (Figure S3).

Figure S2. Venn diagram of non-redundant protein identifications in at least one sample of the liposome corona and the human vitreous studies (24 common proteins to all).[1–4]
Table S2. Gene names and associated proteins common with liposome corona and human vitreous studies (24 common to all).[1–4]

Gene	Name
ALDOC	Fructose-bisphosphate aldolase C (EC 4.1.2.13) (Brain-type aldolase)
APOE	Apolipoprotein E (Apo-E)
GSTP1	Glutathione S-transferase P (EC 2.5.1.18) (GST class-pi) (GSTP1-1)
FAM3C	Protein FAM3C (Interleukin-like EMT inducer)
PEBP1	Phosphatidylethanolamine-binding protein 1 (PEBP-1) (HCNPpp) (Neuropolyptide h3) (Prostatin-binding protein) (Raf kinase inhibitor protein) (RKIP) [Cleaved into: Hippocampal cholinergic neurostimulating peptide (HCNP)]
CRYAB	Alpha-crystallin B chain (Alpha(B)-crystallin) (Heat shock protein beta-5) (HspB5) (Renal carcinoma antigen NY-REN-27) (Rosenthal fiber component)
LDHA	L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59)
PTGDS	Prostaglandin-H2 D-isomerase (EC 5.3.99.2) (Beta-trace protein) (Cerebrin-28) (Glutathione-independent PGD synthase) (Lipocalin-type prostaglandin-D synthase) (Prostaglandin-D2 synthase) (PGD2 synthase) (PGDS) (PGDS2)
A1BG	Alpha-1B-glycoprotein (Alpha-1-B glycoprotein)
PRDX2	Peroxiredoxin-2 (EC 1.11.1.15) (Natural killer cell-enhancing factor B) (NKEF-B) (PRP) (Thiol-specific antioxidant protein) (TSA) (Thioredoxin peroxidase 1) (Thioredoxin-dependent peroxide reductase 1)
NRCAM	Neuronal cell adhesion molecule (Nr-CAM) (Neuronal surface protein Bravo) (hBravo) (NgCAM-related cell adhesion molecule) (Ng-CAM-related)
HSPB1	Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Stress-responsive protein 27) (SRP27)
HRG	Histidine-rich glycoprotein (Histidine-proline-rich glycoprotein) (HPRG)
LDHB	L-lactate dehydrogenase B chain (LDH-B) (EC 1.1.1.27) (LDH heart subunit) (LDH-H) (Renal carcinoma antigen NY-REN-46)
PGAM1	Phosphoglycerate mutase 1 (EC 5.4.2.11) (EC 5.4.2.4) (BPG-dependent PGAM 1) (Phosphoglycerate mutase isozyme B) (PGAM-B)
PARK7	Protein/nucleic acid dehydrogenase DJ-1 (EC 3.1.2.-) (EC 3.5.1.-) (EC 3.5.1.124) (Maillard deglycase) (Oncogene DJ1) (Parkinson disease protein 7) (Parkinsonism-associated deglycase) (Protein DJ-1) (DJ-1)
DAG1	Dystroglycan (Dystrophin-associated glycoprotein 1) [Cleaved into: Alpha-dystroglycan (Alpha-DG); Beta-dystroglycan (Beta-DG)]
DKK3	Dickkopf-related protein 3 (Dickkopf-3) (Dkk-3) (hDkk-3)
SCG3	Secretogranin-3 (Secretogranin III) (SgIII)
PGK1	Phosphoglycerate kinase 1 (EC 2.7.2.3) (Cell migration-inducing gene 10 protein) (Primer recognition protein 2) (PRP 2)
PPIA	Peptidyl-prolyl cis-trans isomerase A (PPIase A) (EC 5.2.1.8) (Cyclophilin A) (Cyclosporin A-binding protein) (Rotamase A) [Cleaved into: Peptidyl-prolyl cis-trans isomerase A, N-terminally processed]
ALDOA	Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase)
CRYAA	Alpha-crystallin A2 chain [Cleaved into: Alpha-crystallin A2(1-172); Alpha-crystallin A2(1-168); Alpha-crystallin A2(1-162)]
CRYAA	Alpha-crystallin A chain (Heat shock protein beta-4) (HspB4) [Cleaved into: Alpha-crystallin A(1-172); Alpha-crystallin A(1-168); Alpha-crystallin A(1-162)]
Figure S3 Functional analysis of the set of 24 genes common to all common with liposome corona and human vitreous studies shows glycolysis (FDR 1.88×10^{-11}, red), glucose catabolic process (FDR 5.87×10^{-11}, blue) and blood microparticle (FDR 6.77×10^{-2}, purple) as enriched pathways.
Figure S4. Venn diagram of protein identifications in at least one sample of the liposome corona (531) in pig with human and other animal vitreous proteomes with 5496 non-redundant genes (3 common proteins to all) shows 430 in common with humans, 264 with mouse, 58 with rabbit, and 42 with dog (20 nm and 100 nm AuNP and SiNP vitreous corona).

Table S3. Common gene sets to liposome corona and all humans,[1–4] and animals,[5–7] associate with visual perception (FDR 2.57e-2) and sensory perception of light (FDR 2.57e-2). Excluding mouse vitreal proteome shows hemoglobin and HC enriched ectonucleotide pyrophosphatase 2 as constitutive to vitreous.

All common
CRYAB
ACTB
CRYAA

All except mouse common
HBB
ENPP2
DKK3

As demonstrated in Figure 3, differential enrichment of 76 vitreous proteins out of 504 was observed after filtering out proteins not present in at least three samples. Two identified proteins were not listed
in the human or animal vitreous proteomes listed above: gamma-synuclein (SNCG) and mitochondrial ATP synthase subunit alpha (ATP5F1A). As these were found enriched in the HC, only 13 out of the 15 HC enriched proteins have been previously reported constitutive to the vitreous. Adipogenesis regulatory factor (ADIRF) has not been previously reported in the vitreous. ATP synthase subunit alpha (ATP5F1A) and vesicle-fusing ATPase (NSF) showed statistically significant differences in enrichment between the liposome formulations within HC, along with endoplasmic reticulum resident protein 29 (ERP29) within SC, all demonstrating a preference for AL2. There were no statistically significant differences in preferential enrichment between the two anionic liposome formulations for HC, and only vesicle-fusing ATPase (NSF) enrichment was significantly less depleted in the SC of AL2 (p<0.05). Since none of the proteins enriched in SC were observed in any of the HC replicates, a functional analysis of related genes was conducted to explore connections between the tightly bound HC and loosely interacting SC proteins (Figure S5). It demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GADPH), one of the most abundant proteins in the liposome corona, had the most connections with other enriched proteins. Its physical interaction partners include D-3-phosphoglycerate dehydrogenase (PHGDH), tubulin beta chain (TUBB), Tubulin alpha-1B chain (TUBA1B) in the HC and 14-3-3 protein epsilon (YWHAE) and zeta/delta (YWHAZ) in the SC. YWHAZ and YWHAE that co-enriched in the SC are physical interaction partners. Interestingly, the keratin contaminants enriched in the HC are also YWHAZ physical interaction partners. Synuclein alpha (SNCA), which belongs to the same family of synucleins with beta and gamma that enriched in the HC, is also a GADPH interaction partner along with enolase 1 (ENO1). The primary enriched function was glucose metabolism, same as the primary function of the overlapping genes between our study and the other human vitreous proteomes. As discussed above, it is possible that protein contaminants influence corona formation through physical interactions with constitutive proteins or limit binding sites on the NPs. Clusterin (CLU), which has been proposed to mediate the stealth activity of polyethylene glycol towards MPS,[8] was enriched in
the source and slightly more enriched on the non-pegylated AL2. Although complement components were present in the vitreous source and are known to bind nanocarriers or corona proteins in serum and plasma,[9] complement components C3 and C4A, the latter of which was the 9th most enriched protein on AuNPs and SiNPs,[5] were relatively enriched in the liposome SC but depleted in the HC. Both C3 and clusterin are components of drusen, which may increase in concentration with age and in AMD.[10] The liposome-associated proteins were compared with earlier studies on protein localization in vitreous substructures,[3] with 15 genes associated with the vitreous cortex and five with core, but most did not localize to any substructure (Table S4). Figure 3 and Table 2 include three keratins that showed uncharacteristic peaks for contaminants and were also contained in one report on the human vitreal proteome.[2] However, these were excluded from further data analysis as probable contaminants from the liposome preparation or analysis steps.

The comparisons with previously published proteomes suggest that the liposomal HC and SC enriched proteins are probable corona constituents in human patients following liposome intravitreal injections. Earlier studies have noted that most vitreal proteins are intracellular but probably carry out specific functions, since they organize into pathways based on biological functions.[3,7] For instance, the enrichment of glucose metabolism pathways confirms that these proteins are highly abundant in all parts of the vitreous and energy metabolism is one of its key biological functions.[3] The overlap between our study and the other proteomes showed a strong association with glucose metabolism. These metabolic proteins are carried by microvesicles,[3] which might contribute to their enrichment on liposomes.
Figure S5 Functional analysis of HC and SC enriched proteins using GeneMANIA identifies physical interactions (red lines) within HC, between HC and SC, and within SC. Most of them are with the highly enriched HC protein glyceraldehyde-3-phosphate dehydrogenase (GADPH).

Table S4. Comparison of liposome corona with human vitreous substructure proteomes by Skeie.[3]

Vitreous subsection	Number of common	Gene name
Anterior hyaloid	10	ILF2, PSMB6, LTBP1, AHCYL2, RBBP4, RPL22, CPPED1, RPS6, HNRNPAB, PEPD
Vitreous cortex	15	HSPA4L, SPR, PDC, TPPP3, PHPT1, PDXP, KARS, SH3BGR1L3, NONO, GUK1, UNC119, RPL31, KHDRBS1, GNB3, PCP2
Vitreous base	2	PURB, SH3GL2
Vitreous core	5	MAPT, MAP6, IGF2, TAGLN3, SRSF2

501 unique versus 32 common with vitreal substructures.
It has been proposed that some unique proteins such as enolase and catalase are found only in the vitreous as a result of proliferative diabetic retinopathy,[11,12] enolase is one of the most abundant proteins in healthy human vitreous.[3] It was found in the other human vitreous proteomes along with catalase.[1,2,4] Enolase 1 (ENO1) was also abundant in all our samples, including both liposome corona subsections and source vitreous, but no catalases were identified. Instead of reporting unique proteins in the diseased eye, Loukovaara et al.[13] showed that several proteins groups (complement, serpin protease, apolipoprotein, ciliary protein, immunoglobulin, collagen, fibrinogen, interalpha-trypsin protease, and alpha glycoprotein) and notably the coagulation cascade are upregulated in proliferative diabetic retinopathy. In addition to disease-specific changes, aging has been shown to affect the human vitreous proteome.[3] Based on a study comparing the vitreous proteomes of mature (>6 months) and young (8 weeks) New Zealand White Rabbits, the 14-3-3 protein zeta/delta (YWHAZ) was only found in the anterior vitreous of the mature rabbits. Similarly, YWHAZ was found in the vitreous of elderly patients in two studies,[3,6] but not in the other human vitreous studies that used vitrectomy samples from epiretinal gliosis patients[1] or embryonic 14-20 weeks’ gestation and 12-28-year-old young adult vitreous.[4] The review by Semba et al.[2] summarised early human ocular proteome studies on patients with diabetic retinopathies and macular holes, who are probably elderly patients. In our study, both 14-3-3 protein zeta/delta and epsilon (YWHAE) were significantly enriched in the liposome soft corona of both formulations and the HC of AL2, but were not detected in the AL1-PEG HC. Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2) was detected in all SC replicates, but not in any of the HCs. Collagens are the most abundant group of proteins in the vitreous,[14,15] but the heaviest enriched species in the SC is collagen XVIII alpha-1 chain (COL18A1) is not a structural protein but a precursor of the anti-angiogenic endostatin that is ubiquitous in the eye.[16]

While there are no previous reports on liposome vitreal coronas, the HC and SC enriched proteins included 45 annotations contained in the top 60 list of proteins that covered 93% of adsorbed proteins
on 20 nm and 100 nm silica and gold nanoparticle coronas (Table S5).[5] The most abundant protein identified in these vitreal coronas was vitrin (VIT-1), which was not identified by us or in the other studies in human or animal vitreous, despite its potential role in bridging collagen fibrils with hyaluronan.[17]

Table S5. Comparison of the liposome corona with the Top 60 proteins in the corona of 20 nm and 100 nm SiNP and AuNP by Jo et al.[5]

Gene	Name	
CA3	Carbonic anhydrase 3 (EC 4.2.1.1) (Carbonate dehydratase III) (Carbonic anhydrase III) (CA-III)	
ACTB	Actin, cytoplasmic 1 (Beta-actin) [Cleaved into: Actin, cytoplasmic 1, N-terminally processed]	
LTBP2	Latent-transforming growth factor beta-binding protein 2	
ENO1	Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein)	
SFRP2	Secreted frizzled-related protein 2 (FRP-2) (sFRP-2) (Secreted apoptosis-related protein 1) (SARP-1)	
PLG	Plasminogen (EC 3.4.21.7) [Cleaved into: Plasmin heavy chain A; Activation peptide; Angiostatin; Plasmin heavy chain A, short form; Plasmin light chain B]	
CRYBA2	Beta-crystallin A2 (Beta-A2 crystallin)	
CRYBA1	Beta-crystallin A3 [Cleaved into: Beta-crystallin A3, isoform A1, Delta4 form; Beta-crystallin A3, isoform A1, Delta7 form; Beta-crystallin A3, isoform A1, Delta8 form]	
GC	Vitamin D-binding protein (DBP) (VDB) (Gc protein-derived macrophage activating factor) (Gc-MAF) (GcMAF) (Gc-globulin) (Group-specific component) (Gc) (Vitamin D-binding protein-macrophase activating factor) (DBP-maf)	
CLSTN1	Calsyntenin-1 (Alcadein-alpha) (Alc-alpha) (Alzheimer-related cadherin-like protein) (Non-classical cadherin XB31alpha) [Cleaved into: Soluble Alc-alpha (SAlc-alpha); CTF1-alpha (C-terminal fragment 1-alpha)]	
GSN	Gelsolin (AGEL) (Actin-depolymerizing factor) (ADF) (Brevin)	
CRYBB3	Beta-crystallin B3 (Beta-B3 crystallin) [Cleaved into: Beta-crystallin B3, N-terminally processed]	
SPON1	Spondin-1 (F-spondin) (Vascular smooth muscle cell growth-promoting factor)	
TTR	Transthyretin (ATTR) (Prealbumin) (TBPA)	
SERPINF	Pigment epithelium-derived factor (PEDF) (Cell proliferation-inducing gene 35 protein) (EPC-1) (Serpin F1)	
PTGDS	Prostaglandin-H2 D-isomerase (EC 5.3.99.2) (Beta-trace protein) (Cerebrin-28) (Glutathione-independent PGD synthase) (Lipocalin-type prostaglandin-D synthase) (Prostaglandin-D2 synthase) (PGD2 synthase) (PGDS) (PGDS2)	
CRYAA	Alpha-crystallin A chain (Heat shock protein beta-4) (HspB4) [Cleaved into: Alpha-crystallin A(1-172); Alpha-crystallin A(1-168); Alpha-crystallin A(1-162)]	
CRYGC	Gamma-crystallin C (Gamma-C-crystallin) (Gamma-crystallin 2-1) (Gamma-crystallin 3)	
RBP4	Retinol-binding protein 4 (Plasma retinol-binding protein) (PRBP) (RBP) [Cleaved into: Plasma retinol-binding protein(1-182); Plasma retinol-binding protein(1-181); Plasma retinol-binding protein(1-179); Plasma retinol-binding protein(1-176)]	
DKK3	Dickkopf-related protein 3 (Dickkopf-3) (Dkk-3) (hDkk-3)	
Protein	Description	Cleavage Products
-----------	--	---
OPTC	Opticin (Oculoglycan)	
HPX	Hemopexin (Beta-1B-glycoprotein)	
RBP3	Retinol-binding protein 3 (Interphotoreceptor retinoid-binding protein) (IRBP)	(Interstitial retinol-binding protein)
ABI3BP	Target of Nesh-SH3 (Tarsh) (ABI gene family member 3-binding protein) (Nesh-binding protein) (NeshBP)	
C3	Complement C3 (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 1)	[Cleaved into: Complement C3 beta chain; C3-beta-c (C3bc); Complement C3 alpha chain; C3a anaphylatoxin; Acylation stimulating protein (ASP) (C3adesArg); Complement C3b alpha' chain; Complement C3c alpha' chain fragment 1; Complement C3dg fragment; Complement C3g fragment; Complement C3d fragment; Complement C3f fragment; Complement C3c alpha' chain fragment 2]
ALB	Serum albumin	
CRYAB	Alpha-crystallin B chain (Alpha(B)-crystallin) (Heat shock protein beta-5) (HspB5) (Renal carcinoma antigen NY-REN-27) (Rosenthal fiber component)	
APOA1	Apolipoprotein A-I (Apo-A1) (ApoA-I) (Apolipoprotein A1) [Cleaved into: Proapolipoprotein A-I (ProapoA-I); Truncated apolipoprotein A-I (Apolipoprotein A-I-[1-242])]	
CLU	Clusterin (Aging-associated gene 4 protein) (Apolipoprotein J) (Apo-J) (Complement cytolysis inhibitor) (CL1) (Complement-associated protein SP-40,40) (Ku70-binding protein 1) (NA1/NA2) (Sulfated glycoprotein 2) (SGP-2) (Testosterone-repressed prostate message 2) (TRPM-2) [Cleaved into: Clusterin beta chain (ApoBeta) (Complement cytolysis inhibitor a chain); Clusterin alpha chain (ApoJbeta) (Complement cytolysis inhibitor b chain)]	
CRYBB2	Beta-crystallin B2 (Beta-B2 crystallin) (Beta-crystallin Bp)	
COL2A1	Collagen alpha-I(II) chain (Alpha-1 type II collagen) [Cleaved into: Collagen alpha-I(II) chain; Chondrocalcin]	
ENPP2	Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (E-NPP 2) (EC 3.1.4.39) (Autotaxin) (Extracellular lysophospholipase D) (LysoPLD)	
CRYBB1	Beta-crystallin B1 (Beta-B1 crystallin)	
FBLN2	Fibulin-2 (FIBL-2)	
ALDH1A	Retinal dehydrogenase 1 (RALDH 1) (RalDH1) (EC 1.2.1.-) (EC 1.2.1.36) (ALDH-E1) (ALHDII) (Aldehyde dehydrogenase family 1 member A1) (Aldehyde dehydrogenase, cytosolic)	
LDHB	L-lactate dehydrogenase B chain (LDH-B) (EC 1.1.1.27) (LDH heart subunit) (LDH-H) (Renal carcinoma antigen NY-REN-46)	
AKR1B1	Aldo-keto reductase family 1 member B1 (EC 1.1.1.300) (EC 1.1.1.372) (EC 1.1.1.54) (Aldehyde reductase) (Aldose reductase) (AR) (EC 1.1.1.21)	
CP	Ceruloplasmin (EC 1.16.3.1) (Ferroxidase)	
SERPINA	Alpha-1-antitrypsin (Alpha-1 protease inhibitor) (Alpha-1-antiproteinase) (Serpin A1)	[Cleaved into: Short peptide from AAT (SPAAAT)]
HBB	Hemoglobin subunit beta (Beta-globin) (Hemoglobin beta chain) [Cleaved into: LVV-hemorphin-7; Spinorphin]	
TUBA1B	Tubulin alpha-1B chain (Alpha-tubulin ubiquitous) (Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) [Cleaved into: Detyrosinated tubulin alpha-1B chain]	
FN1	Fibronectin (FN) (Cold-insoluble globulin) (CIG) [Cleaved into: Anastellin; Ugl-Y1; Ugl-Y2; Ugl-Y3]	
CRYGS	Gamma-crystallin S (Beta-crystallin S) (Gamma-S-crystallin)	
EFEMP1	EGF-containing fibulin-like extracellular matrix protein 1 (Extracellular protein S1-5) (Fibrillin-like protein) (Fibulin-3) (FIBL-3)	
HP	Haptoglobin (Zonulin) [Cleaved into: Haptoglobin alpha chain; Haptoglobin beta chain]	
Figure S6. Venn diagram of protein-encoding genes with ANOVA significant differences between liposomes with at least 1-fold log₂ enrichment (*p<0.05). AL1-PEG SC did not have any proteins with significant differences (Table S4). The gene names are listed in Table S6.

Table S6. Venn diagram of protein-encoding genes with ANOVA significant differences between liposomes with at least 1-fold log₂ enrichment (*p<0.05).

Liposomes	Number	Genes
AL1-PEG HC*	4	SNCB KRT10 GAPDH KRT2
AL2HC*		
AL2 HC*	9	PCBP3 EFEMP1 RAB11A SFRP2 NSF TUBB TUBA1B ATP5F1A SNCG
AL1-PEG HC*	2	PHGDH KRT1
AL2 SC*	2	PCP4 ERP29

Figure S7. Venn diagram of protein-encoding genes in the vitreous union in at least one sample of the liposome hard (HC) and soft coronae (SC). The gene names are listed in Table S7.
Table S7. Venn diagram of protein-encoding genes in the vitreous union in at least one sample of the liposome hard (HC) and soft coronae (SC).

Liposomes	Number	Genes	
AL1-PEG	124	MAP4	
AL1-PEG		HSPB1	
AL1-PEG		RTN4	
AL1-PEG		CHGB	
AL1-PEG		UBE2NL	
AL1-PEG		RLBP1	
AL1-PEG		MATR3	
AL1-PEG		HRG	
AL1-PEG		YWHAG	
AL1-PEG		DPYSL2	
AL2 SC	124	GOT1	
AL2 SC		CRABP2	
AL2 SC		ATP6V1B2	
AL2 SC		NSF	
AL2 SC		TTR	
AL2 SC		PTGDS	
AL2 SC		CRYAA	
AL2 SC		SAG	
AL2 SC		EPB41L2	
AL2 SC		ALDOC	
AL2 SC		MDH1	
AL2 SC		SOD1	
AL2 SC		LGALS1	
AL2 SC		TPI1	
AL2 SC		APOE	
AL2 SC		C3	
AL2 SC		HSPA5	
AL2 SC		TUBB	
AL2 SC		CFL1	
AL2 SC		CRYAB	
AL2 SC		CKB	
AL2 SC		HBZ	
AL2 SC		GNAT1	
AL2 SC		CLU	
AL2 SC		COL18A1	
AL2 SC		HNRNPM	
AL2 SC		CRYBB1	
AL2 SC		FBLN2	
AL2 SC		LDHB	
AL2 SC		GDI1	
AL2 SC		HSP90AB1	
AL2 SC		C4A	
AL2 SC		CST3	
AL2 SC		SNCG	
AL2 SC		CHGA	
AL2 SC		HSPA8	
AL2 SC		MAP2	
AL2 SC		KHSRP	
AL2 SC		ALDH1A2	
AL2 SC		HBB	
AL2 SC		TUBA1B	
AL2 SC		FN1	
AL2 SC		CRMP1	
AL2 SC		PRPH	
AL2 SC		YWHAZ	
AL2 SC		DDX17	
AL2 SC		GFAP	
AL2 SC		ACTB	
AL2 SC		GOT2	
AL2 SC		ENO1	
AL2 SC		SFRP2	
AL2 SC		BFSP1	
AL2 SC		ETFA	
AL2 SC		VCAN	
AL2 SC		GC	
AL2 SC		YWHAH	
AL2 SC		LOC100739163	
AL2 SC		BFSP2	
AL2 SC		PCBP1	
AL2 SC		GSN	
AL2 SC		CNRIP1	
AL2 SC		SPON1	
AL2 SC		PKM	
AL2 SC		HSPA1B	
AL2 SC		ELAVL1	
AL2 SC		NRCAM	
AL2 SC		LDHA	
AL2 SC		CFB	
AL2 SC		GDI1	
AL2 SC		LTF	
AL2 SC		HSP90AA1	
AL2 SC		C4A	
AL2 SC		CST3	
AL2 SC		SNCG	
AL2 SC		CHGA	
AL2 SC		HSPA8	
AL2 SC		MAP2	
AL2 SC		KHSRP	
AL2 SC		ALDH1A2	
AL2 SC		HBB	
AL2 SC		TUBA1B	
AL2 SC		FN1	
AL2 SC		CRMP1	
AL2 SC		PRPH	
AL2 SC		YWHAZ	
AL2 SC		DDX17	
AL2 SC		GFAP	
AL2 SC		ACTB	
AL2 SC		GOT2	
AL2 SC		ENO1	
AL2 SC		SFRP2	
AL2 SC		BFSP1	
AL2 SC		ETFA	
AL2 SC		VCAN	
AL2 SC		GC	
AL2 SC		YWHAH	
AL2 SC		LOC100739163	
AL2 SC		BFSP2	
AL2 SC		PCBP1	
AL2 SC		GSN	
AL2 SC		CNRIP1	
AL2 SC		SPON1	
AL2 SC		PKM	
AL2 SC		HSPA1B	
AL2 SC		ELAVL1	
AL2 SC		NRCAM	
AL2 SC		LDHA	
AL2 SC		CFB	
AL2 SC		GDI1	
AL2 SC		LTF	
AL2 SC		HSP90AA1	
AL2 SC		C4A	
AL2 SC		CST3	
AL2 SC		SNCG	
AL2 SC		CHGA	
AL2 SC		HSPA8	
AL2 SC		MAP2	
AL2 SC		KHSRP	
AL2 SC		ALDH1A2	
AL2 SC		HBB	
AL2 SC		TUBA1B	
AL2 SC		FN1	
AL2 SC		CRMP1	
AL2 SC		PRPH	
AL2 SC		YWHAZ	
AL2 SC		DDX17	
AL2 SC		GFAP	
AL2 SC		ACTB	
AL2 SC		GOT2	
AL2 SC		ENO1	
AL2 SC		SFRP2	
AL2 SC		BFSP1	
AL2 SC		ETFA	
AL2 SC		VCAN	
AL2 SC		GC	
AL2 SC		YWHAH	
AL2 SC		LOC100739163	
AL2 SC		BFSP2	
AL2 SC		PCBP1	
AL2 SC		GSN	
AL2 SC		CNRIP1	
AL2 SC		SPON1	
AL2 SC		PKM	
AL2 SC		HSPA1B	
AL2 SC		ELAVL1	
AL2 SC		NRCAM	
AL2 SC		LDHA	
AL2 SC		CFB	
AL2 SC		GDI1	
AL2 SC		LTF	
AL2 SC		HSP90AA1	
AL2 SC		C4A	
AL2 SC		CST3	
AL2 SC		SNCG	
AL2 SC		CHGA	
AL2 SC		HSPA8	
AL2 SC		MAP2	
AL2 SC		KHSRP	
AL2 SC		ALDH1A2	
AL2 SC		HBB	
AL2 SC		TUBA1B	
AL2 SC		FN1	
AL2 SC		CRMP1	
AL2 SC		PRPH	
AL2 SC		YWHAZ	
AL2 SC		DDX17	
AL2 SC		GFAP	
AL2 SC		ACTB	
AL2 SC		GOT2	
AL2 SC		ENO1	
AL2 SC		SFRP2	
AL2 SC		BFSP1	
AL2 SC		ETFA	
AL2 SC		VCAN	
AL2 SC		GC	
AL2 SC		YWHAH	
Table S8. Protein-encoding genes with ANOVA significant differences between liposome hard (HC) and soft coronae (SC) with at least 1-fold log2 enrichment in ascending order from higher to the lowest fold-change (*p<0.05).

AL1-PEG HC	AL1-PEG SC	AL2 HC	AL2 SC
PHGDH	TUBA1B	ERP29	PCP4
KRT1	NSF		
KRT10	ATP5F1A		
KRT2	SNCG		
GAPDH	TUBB		
SNCB	PCBP3		
GAPDH			
EEFEMP1			
RAB11A			
KRT10	SFRP2		
KRT2			

Table S9. Protein-encoding genes in at least one sample of the liposome hard (HC) and soft coronae (SC) in alphabetical order.

AL1-PEG HC	AL1-PEG SC	AL2 HC	AL2 SC	AL1-PEG ALL	AL2 ALL
ACTB	A1BG	A1BG	A1BG	A1BG	A1BG
AHSG	A2M	A2M	A2M	A2M	A2M
ALB	AAK1	AB13BP	AAK1	AAK1	AAK1
ALDH1A2	AB13BP	ACOT7	AB13BP	AB13BP	AB13BP
ALDOC	ACAT2	ACTB	ACAT2	ACAT2	ACAT2
APOA1	ACLY	AHCY	ACLY	ACLY	ACLY
APOD	ACO2	AHSG	ACO2	ACO2	ACO2
APOE	ACOT7	AKR1A1	ACTB	ACOT7	ACOT7
APP	ACTB	AKR1B1	ACTG2	ACTB	ACTB
ARR3	ACTG1	ALB	ACTN4	ACTG1	ACTG2
ATP5F1A	ACTG2	ALDH1A2	ACYP1	ACYP1	ACYP1
ATP6V1B2	ACTN4	ALDOC	ADD1	ACTN4	ACYP1
BFSP1	ACYP1	APLP1	ADH5	ACYP1	ADD1
BFSP2	ADD1	APOA1	AGA	ADD1	ADH5
Gene	Gene	Gene	Gene	Gene	Gene
-------	-------	-------	-------	-------	-------
C3	ADH5	APOD	AGT	ADH5	AGA
C4A	ADPGK	APOE	AHCY	ADFPGK	AGT
CFB	AGA	APP	AHCYL2	AGA	AHCY
CFL1	AGT	ARR3	AHSG	AGT	AHCYL2
CHGA	AHCY	ASRGL1	AK1	AHCY	AHSG
CHGB	AHCYL2	ATP4A	AKR1A1	AHCYL2	AK1
CKB	AHSG	ATP5F1A	AKR1B1	AHSG	AKR1A1
CLU	AK1	ATP5F1B	AKR7A2	AK1	AKR1B1
CNRIP1	AKR1A1	ATP6V1A	ALB	AKR1A1	AKR7A2
COL18A1	AKR1B1	ATP6V1B2	ALDH1A2	AKR1B1	ALB
COL9A2	AKR7A2	BFP1	ALDH3A1	AKR7A2	ALDH1A2
CP	ALB	BFP2	ALDH9A1	ALB	ALDH3A1
CRYBP2	ALDH1A2	BIN1	ALDOC	ALDH1A2	ALDH9A1
CRMP1	ALDH3A1	C3	APLP1	ALDH3A1	ALDOC
CRYAA	ALDH9A1	C4A	APOE	ALDH9A1	APLP1
CRYAB	ALDOC	CA2	APP	ALDOC	APOA1
CRYBB1	APLP1	CAPS	ASRGL1	APLP1	APOD
CRYBB2	APOA1	CCT4	ATP4A	APOA1	APOE
CRYBB3	APOE	CDH2	ATP5F1A	APOD	APP
CST3	APP	CFB	ATP5F1B	APOE	ARR3
CTSD	ARL3	CFH	ATP6AP2	APP	ASRGL1
DDAH1	ASRGL1	CFL1	ATP6V1A	ARL3	ATP4A
DDX17	ATP4A	CHGA	ATP6V1B2	ARR3	ATP5F1A
DHX9	ATP5F1A	CHGB	ATP6V1G2	ASRGL1	ATP5F1B
DYSPL2	ATP5F1B	CKB	B4GAT1	ATP4A	ATP6AP2
DYSPL3	ATP6AP2	CLSTN1	BCAM	ATP5F1A	ATP6V1A
DYSPL4	ATP6V1A	CLTC	BDH2	ATP5F1B	ATP6V1B2
DSTN	ATP6V1B2	CLU	BFP1	ATP6AP2	ATP6V1G2
EEF1G	ATP6V1G2	CNRIP1	BFP2	ATP6V1A	B4GAT1
EFEMP1	B4GAT1	COL18A1	BLMH	ATP6V1B2	BCAM
EFEMP2	BCAM	CP	BLVRB	ATP6V1G2	BDH2
ELAVL1	BDH2	CRABP2	C2	B4GAT1	BFSP1
ELN	BFP1	CRMP1	C3	BCAM	BFSP2
ENO1	BFP2	CRYAA	C4A	BDH2	BIN1
ENO2	BIN1	CRYAB	CA2	BFSP1	BLMH
EPB41L2	BLMH	CRYBA4	CA3	BFSP2	BLVRB
ETLFA	BLVRB	CRYBB1	CADM1	BIN1	C2
ETFB	C2	CRYBB2	CADM2	BLMH	C3
FBN2	C3	CRYBB3	CADPS2	BLVRB	C4A
FN1	C4A	CRYM	CALR	C2	CA2
GAPDH	CA2	CST3	CAMK2A	C3	CA3
GC	CA3	CSTB	CANX	C4A	CADM1
GDHI	CADM1	CTSN	CAP1	CA2	CADM2
GFAP	CADM2	DCTN2	CARHSP1	CA3	CADPS2
GNAT1	CADM3	DDX17	CCT3	CADM1	CALR
Gene1	Gene2	Gene3	Gene4	Gene5	Gene6
-------	-------	-------	-------	-------	-------
GNAT2	CADM4	DHX9	CCT5	CADM2	CAMK2A
GNB1	CADPS2	DPYS12	CCT6B	CADM3	CANX
GOT1	CALR	DPYS14	CCT8	CADM4	CAP1
GOT2	CAMK2A	DSN	CD44	CADPS2	CAPS
GPX4	CANX	EEF1G	CDC37	CALR	CARHSP1
GRIFIN	CAP1	EFEMP1	CDH2	CAMK2A	CCT3
GRK1	CARHSP1	EFEMP2	CDH7	CANX	CCT4
GSN	CCT3	ELAVL1	CDHR1	CAP1	CCT5
GYG1	CCT5	ELN	CFB	CARHSP1	CCT6B
HBB	CCT6B	ENO1	CFH	CCT3	CCT8
HBZ	CCT8	ENO2	CFI	CCT5	CD44
HNRNPK	CDC37	ENPP2	CFL1	CCT6B	CDC37
HNRNPM	CDH2	EPB41L2	CFL2	CCT8	CDH2
HNRNPU	CDH7	ESD	CHGA	CDC37	CDH7
HPX	CDHR1	ETFA	CHGB	CDH2	CDHR1
HRG	CEND1	ETFB	CHRLD1	CDH7	CFB
HSP90AA1	CFB	F2	CKAP1	CDHR1	CFH
HSP90AB1	CFH	FBLN2	CKB	CEND1	CF1
HSPA12A	CF1	FBN2	CKM	CFB	CFL1
HSPA1B	CFL1	FN1	CKMT1A	CFH	CFL2
HSPA5	CFL2	FSCN1	CLEC3B	CF1	CHGA
HSPA8	CHGA	GAPDH	CLSTN1	CFL1	CHGB
HSPB1	CHGB	GAPDHS	CLSTN3	CFL2	CHRLD1
ILF3	CHRLD1	GC	CLTC	CHGA	CKAP1
KHSRP	CKAP1	GDH1	CLU	CHGB	CKB
KIF5B	CKB	GFAP	CMPK1	CHRD1	CKM
KPNB1	CKM	GNAT1	CNDP2	CKAP1	CKMT1A
LAP3	CKMT1A	GNAT2	CNRIP1	CKB	CLEC3B
LDHA	CLEC3B	GB1	CNTN1	CKM	CLSTN1
LDHB	CLSTN1	GNB3	COL11A1	CKMT1A	CLSTN3
LGALS1	CLSTN3	GNGT1	COL18A1	CLEC3B	CLTC
LOC100739163	CLTC	GOT1	COL1A2	CLSTN1	CLU
LOC110259374	CLU	GOT2	COL5A1	CLSTN3	CMPK1
LTF	CMPK1	GPX4	COL9A2	CLTC	CNRD2
MAP2	CNDP2	GRIFIN	COMT	CLU	CNRIP1
MAP4	CNRIP1	GRK1	CORO1B	CMPK1	CNTN1
MATR3	CNTN1	GSN	CP	CNDP2	COL11A1
MDH1	COL11A1	GUK1	CRABP2	CNRIP1	COL18A1
MDH2	COL18A1	GYG1	CRMP1	CNTN1	COL1A2
MSI2	COL1A2	HAPLN1	CRTAC1	COL11A1	COL5A1
MYEF2	COL5A1	HBB	CRYAA	COL18A1	COL9A2
NOVA1	COL9A2	HBJ	CRYAB	COL1A2	COMT
NRCAM	COMT	HDGF	CRYBA4	COL5A1	CORO1B
NSF	CORO1B	HMG2	CRYBB1	COL9A2	CP
PCBPI	CP	HRNRPH1	CRYBB2	COMT	CRABP2
Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6
--------	--------	--------	--------	--------	--------
PCSK1N	CRABP2	HNRNPM	CRYBB3	CORO1B	CRMP1
PEBP1	CRMP1	HNRNPU	CRYM	CP	CRTAC1
PKM	CRATC1	HP	CRYZ	CRABP2	CRYAB
PGK1	CRYAA	HPX	CS	CRMP1	CRYBA4
PGHDH	CRYAB	HRG	CST3	CRTAC1	CRYBB1
PKM	CRYBA4	HSP90A1	CSTB	CRYAA	CRYBB2
PLD3	CRYBB1	HSP90A1	CTS1	CRYAB	CRYBB3
PPA1	CRYBB2	HSPA12A	CTS1	CRYBA4	CRYGD
PPIA	CRYBB3	HSPA1B	CUTA	CRYBB1	CRYM
PRELP	CRYGD	HSPA5	CZIB	CRYBB2	CRYZ
PROS1	CRYM	HSPA8	DAG1	CRYBB3	CS
PRPH	CRYZ	HSPB1	DAZAP1	CRYGD	CST3
PTGDS	CS	HSPG2	DBI	CRYM	CSTB
QSOX1	CST3	ILF2	DBNL	CRYZ	CTS1
RAB11B	CSTB	IMPDH1	DCTN2	CS	CTS1
RAB1A	CTSD	IMPG1	DDAH1	CST3	CUTA
RAB3A	CTSL	ITIH4	DDX17	CSTB	CZIB
RAB6A	CUTA	KHSRP	DDX39B	CTS1	DAG1
RAB7A	CZIB	KIAA0513	DLG2	CTS1	DAZAP1
RALY	DAG1	KIF5B	DPP3	CUTA	DBI
RAN	DAZAP1	LAP3	DYS1L2	CZIB	DBNL
RBP3	DB1	LCN2	DYS1L3	DAG1	DCTN2
RLPB1	DBNL	LDHA	DYS1L4	DAZAP1	DDAH1
RPL31	DCTN2	LDHB	DYS1L5	DBI	DDX17
RPS13	DDAH1	LGALS1	DSC2	DBNL	DDX39B
RPS18	DDX17	LMAN1	DUSP3	DCTN2	DHX9
RPS3	DDX39B	LOC100739163	DYNC1I2	DDAH1	DLG2
RPS3A	DLG2	LOC110259374	ECE2	DDX17	DPP3
RTN4	DNM2	LTF	EEF1B2	DDX39B	DYS1L2
SAG	DPP3	MAP1B	EEF1D	DHX9	DYS1L3
SERPIN3-2	DPYSL2	MAP2	EEF1G	DLG2	DYS1L4
SERPIND1	DPYSL3	MAP4	EEF2	DNM2	DYS1L5
SFRP2	DPYSL4	MAP6	EFEMP1	DPP3	DSC2
SH3GL1	DPYSL5	MAPK1	EIF4H	DYS1L2	DSTN
SIRT2	DSC2	MATR3	ELAVL1	DYS1L3	DUSP3
SNCA	DUSP3	MDH1	ELOC	DYS1L4	DYNC1I2
SNCG	DYNC1I2	MDH2	ENOD1	DYS1L5	ECE2
SOD1	ECE2	MIF	ENO1	DSC2	EEF1B2
SPON1	EEF1B2	MS12	ENO2	DSTN	EEF1D
SPP1	EEF1D	NCL	ENO3	DUSP3	EEF1G
STPG4	EEF1G	NME2	ENPP2	DYNC1I2	EEF2
STXB1P	EEF2	NOVA1	EPB41L2	ECE2	EFEMP1
SUCLA2	EFEMP1	NRCA	EPB41L3	EEF1B2	EFEMP2
TMSB4	EIF4A1	NSF	EPHX1	EEF1D	EIF4H
TPI1	EIF4H	NSFL1C	ERH	EEF1G	ELAVL1
------	-------	-------	-----	-------	--------
TTR	ELAVL1	ORM1	ERP29	EEF2	ELN
TUBA1B	ELN	OXR1	ESD	EFEMP1	ELOC
TUBB	ELOC	PCBP1	ETFA	EFEMP2	ENDOD1
TUBB1	ENDOD1	PCSK1N	EZR	EIF4A1	EN01
TUBB4A	EN01	PEPB1	F2	EIF4H	EN02
TUFM	EN02	PFKL	FABP3	ELAVL1	EN03
UBE2NL	EN03	PFKM	FAM3C	ELN	ENPP2
VAT1	ENPP2	PFN1	FARS A	ELOC	EPB41L2
VCAN	EPB41L2	PFN2	FARS B	ENDOD1	EPB41L3
YWHAB	EPB41L3	PGK1	FASN	EN01	EPHX1
YWHAG	EPHX1	PHGDH	FBLN2	EN02	ERH
YWHAH	ERH	PKM	FBN2	EN03	ERP29
YWHAZ	ERP29	PLK4	FETUB	ENPP2	ESD
ZNF385A	ESD	PPA1	FGA	EPB41L2	ETFA
ETPA	PHX H1	FGB	EPB41L3	ETFB	
ETPB	PRDX1	FKB P3	EPHX1	EZR	
EZR	PRDX2	FKB P4	ERH	F2	
F2	PRDX6	FMO D	ERP29	FABP3	
FABP3	PRELP	FN1	ESD	FAM3C	
FAM3C	PROS1	FSCN1	ETFA	FARS A	
FARS A	PRPH	FUBP3	ETFB	FARS B	
FARS B	PTGDS	GALM	EZR	FASN	
FASN	QSOX1	GANAB	F2	FBLN2	
FBLN2	RAB11B	GAPD H	FABP3	FBN2	
FBN2	RAB14	GARS	FAM3C	FETUB	
FETUB	RAB1A	GBE1	FARS A	FGA	
FGA	RAB3A	GC	FARS B	FGB	
FGB	RAB6A	GDI1	FASN	FKB P3	
FKB P3	RAB7A	GDI2	FBLN2	FKB P4	
FMOD	RALY	GFAP	FBN2	FMOD	
FN1	RAN	GLO1	FETUB	FN1	
FSCN1	RBP3	GLUD1	FGA	FSCN1	
FUBP3	RBP4	GNAO1	FGB	FUBP3	
GALM	RLBP1	GNAT1	FKB P3	GALM	
GANAB	RPL31	GNB1	FMOD	GANAB	
GAPDH	RPS13	GNGT1	FN1	GAPDH	
GARS	RPS18	GOLM1	FSCN1	GAPD H	
GBE1	RPS3	GOT1	FUBP3	GARS	
GC	RPS3A	GOT2	GALM	GBE1	
GD11	RTN4	GPR37	GANAB	GC	
GD12	SAG	GPX1	GAPDH	GD1I	
GFAP	SELE NP1	GRIF IN	GARS	GD1I	
GLO1	SERPINA1	GSN	GBE1	GFAP	
GLUD1	SERPINA3-2	GSS	GC	GLO1	
GLUL	SERPIND1	GUK1	GDI1	GLUD1	
------	----------	------	------	-------	
GNAO1	SFRP2	GYG1	GDI2	GNAO1	
GNAT1	SH3GL1	HAGH	GFAP	GNAT1	
GB1	SIRT2	HAPLN1	GLO1	GNAT2	
GNGT1	SNCA	HBB	GLUD1	GNB1	
GOLM1	SNCG	HBZ	GLUL	GNB3	
GOT1	SOD1	HDGF	GNAO1	GNGT1	
GOT2	SPARC1	HINT1	GNAT1	GOLM1	
GPHN	SPON1	HMGB2	GNAO1	GOT1	
GPR37	SPP1	HNRNPA3	GNB1	GOT2	
GPX1	SRSF3	HNRNPB	GNGT1	GPR37	
GRFIN	STPG4	HNRNPC	GOLM1	GPX1	
GRK1	STXB1	HNRNPD	GOT1	GPX4	
GSN	SUC2	HNRNPH1	GOT2	GRFIN	
GSS	TFC	HNRNPK	GPHN	GRK1	
GUK1	TMSB4	HNRNPM	GPR37	GSN	
GYGI	TPI1	HNRNPU	GPX1	GSS	
HAGH	TPM3	HNRNPU2	GPX4	GUK1	
HAPLN1	TTR	HP	GRFIN	GYG1	
HBB	TUBA1A	HPRT1	GRK1	HAGH	
HBB	TUBA1B	HPX	GSN	HAPLN1	
HDGF	TUBB	HRG	GSS	HBB	
HINT1	TUBB1	HSP90AA1	GUK1	HBZ	
HIST1H1T	TUBB4A	HSP90AB1	GYG1	HDGF	
HMGB2	TUFM	HSP90B1	HAGH	HINT1	
HNRNPA3	UBB	HSPA1B	HAPLN1	HMGB2	
HNRNPAB	UBE2NL	HSPA4	HBB	HNRNPA3	
HNRNPC	UBE2V1	HSPA5	HBZ	HNRNPAB	
HNRNPD	UCHL1	HSPA6	HDGF	HNRNPC	
HNRNPH1	VAMP1	HSPA8	HINT1	HNRNPD	
HNRNPK	VAT1	HSPB1	HIST1H1T	HNRNPH1	
HNRNPM	VCAN	HSPE1	HMGB2	HNRNPK	
HNRNPUS	YWHAH	HSPG2	HNRNPA3	HNRNPM	
HNRNPUS2	YWAH	HSPH1	HNRNPA4	HNRNPU	
HP	YWHAZ	IGFBP5	HNRNPC	HNRNPUS2	
HPRT1	ZNF385A	IGFBP7	HNRNPD	HP	
HPX	ILF2	HNRNPH1	HPRT1		
HRG	ILF3	HNRNPK	HPX		
HSP90AA1	IMPA1	HNRNPM	HRG		
HSP90AB1	IMPD1	HNRNPU	HSP90AA1		
HSP90B1	IMG1	HNRNPL2	HSP90AB1		
HSPA1B	ITH4	HP	HSP90B1		
HSPA4	KHSRP	HPRT1	HSPA12A		
HSPA5	KIAA0513	HPX	HSPA1B		
HSPA6	KTN1	HRG	HSPA4		
Gene1	Gene2	Gene3	Gene4	Gene5	
-------	-------	-------	-------	-------	
HSPA8	KYAT3	HSP90AA1	HSPA5		
HSPB1	LAP3	HSP90AB1	HSPA6		
HSPE1	LCN2	HSP90B1	HSPA8		
HSPG2	LDHA	HSPA12A	HSPB1		
HSPH1	LDHB	HSPA1B	HSPE1		
IDH1	LGALS1	HSPA4	HSPG2		
IGFBP5	LIN7B	HSPA5	HSPH1		
IGFBP7	LMNA	HSPA6	IGFBP5		
ILF2	LMNB2	HSPA8	IGFBP7		
ILF3	LOC100736623	HSPB1	ILF2		
IMPA1	LOC100739163	HSPE1	ILF3		
IMPDH1	LOC106504545	HSPG2	IMPA1		
IMPG1	LOC110256000	HSPH1	IMPDH1		
ITIH4	LSAMP	IDH1	IMPG1		
KHSRP	LTBP1	IGFBP5	ITIH4		
KIAA0513	LTBP2	IGFBP7	KHSRP		
KTN1	LTF	ILF2	KIAA0513		
KYAT3	MAGOH	ILF3	KIF5B		
LAP3	MAN2B1	IMPA1	KTN1		
LCN2	MAP1A	IMPDH1	KYAT3		
LDHA	MAP1B	IMPG1	LAP3		
LDHB	MAP1LC3B	ITIH4	LCN2		
LGALS1	MAP2	KHSRP	LDHA		
LIN7B	MAP4	KIAA0513	LDHB		
LMAN1	MAP6	KIF5B	LGALS1		
LMNA	MAPK1	KPNB1	LIN7B		
LMNB2	MAPT	KTN1	LMAN1		
LOC100514912	MATA2	KYAT3	LMNA		
LOC100736623	MATR3	LAP3	LMNB2		
LOC100739163	MDH1	LCN2	LOC100736623		
LOC106504545	MDH2	LDHA	LOC100739163		
LOC110256000	MIA3	LDHB	LOC106504545		
LSAMP	MIF	LGALS1	LOC110256000		
LTBPI	MPI	LIN7B	LOC110259374		
LTBP2	MYH10	LMAN1	LSAMP		
LTF	MYL6	LMNA	LTBPI		
MAGOH	NCAM1	LMNB2	LTBP2		
MAN2B1	NCAM2	LOC100514912	LTF		
MAP1A	NCL	LOC100736623	MAGOH		
MAP1B	NEFL	LOC100739163	MAN2B1		
MAP1LC3B	NEFM	LOC106504545	MAP1A		
MAP2	NEGR1	LOC110256000	MAP1B		
MAP4	NFASC	LOC110259374	MAP1LC3B		
MAP6	NIT2	LSAMP	MAP2		
MAPK1	NME2	LTBPI	MAP4		
Gene1	Gene2	Gene3	Gene4		
-------	-------	-------	-------		
MAPT	NONO	LTBP2	MAP6		
MATA2	NOVA1	LTF	MAPK1		
MATR3	NPEPPS	MAGOH	MAPT		
MDH1	NPM1	MAN2B1	MATA2		
MDH2	NPTX2	MAP1A	MATR3		
MIA3	NQO2	MAP1B	MDH1		
MIF	NRCAM	MAP1LC3B	MDH2		
MPI	NSF	MAP2	MIA3		
MSN	NSFL1C	MAP4	MIF		
MYH10	NUCB1	MAP6	MPI		
MYL6	NUCKS1	MAPK1	MSI2		
NCAM1	NUDT5	MAPT	MYH10		
NCAM2	OPTC	MATA2	MYL6		
NCL	ORM1	MATR3	NCAM1		
NEFL	OTUB1	MDH1	NCAM2		
NEFM	OXR1	MDH2	NCL		
NEGR1	PA2G4	MIA3	NEFL		
NFASC	PAFAH1B3	MIF	NEFM		
NIT2	PAICS	MPI	NEGR1		
NME2	PAK2	MSI2	NFASC		
NONO	PCBP1	MSN	NIT2		
NOVA1	PCBP3	MYEF2	NME2		
NPEPPS	PCMT1	MYH10	NONO		
NPTX2	PCSK1N	MYL6	NOVA1		
NQO2	PDC	NCAM1	NPEPPS		
NRCAM	PDCD5	NCAM2	NPM1		
NSF	PDCD6IP	NCL	NPTX2		
NSFL1C	PDHB	NEFL	NQO2		
NUCB1	PDLA4	NEFM	NRCAM		
NUCKS1	PDXK	NEGR1	NSF		
NUDT5	PEBP1	NFASC	NSFL1C		
OPTC	PEPD	NIT2	NUCB1		
ORM1	PFKP	NME2	NUCKS1		
OTUB1	PFN1	NONO	NUDT5		
OXR1	PFN2	NOVA1	OPTC		
PA2G4	PGK1	NPEPPS	ORM1		
PABPC1	PGM1	NPTX2	OTUB1		
PAFAH1B3	PGM3	NQO2	OXR1		
PAICS	PGRMC1	NRCAM	PA2G4		
PAK2	PHGDH	NSF	PAFAH1B3		
PALM	PHPT1	NSFL1C	PAICS		
PAM	PIN1	NUCB1	PAK2		
PCBPI	PKM	NUCKS1	PCBPI		
PCBPI	PLD3	NUDT5	PCBPI		
PCMT1	PLG	OPTC	PCMT1		
PCSK1N	PLK4	ORM1	PCSK1N		
--------	------	------	--------		
PDC	PNPO	OTUB1	PDC		
PDCD5	POLDIP3	OXR1	PDCD5		
PDCD6IP	PPA1	PA2G4	PDCD6IP		
PDHB	PPIA	PABPC1	PDHB		
PDLA4	PPM1A	PAFAH1B3	PDLA4		
PDXK	PPME1	PAICS	PDXK		
PEBP1	PPP2R1A	PAK2	PEBP1		
PEPD	PPP5C	PALM	PEPD		
PFKL	PRDX1	PAM	PFKL		
PFKP	PRDX2	PCBP1	PFKM		
PFN1	PRDX4	PCBP3	PFKP		
PFN2	PRDX5	PCMT1	PFN1		
PGAM2	PRDX6	PCSK1N	PFN2		
PGK1	PRKAR1A	PDC	PGK1		
PGM1	PRKAR2A	PDCD5	PGM1		
PGM3	PRKCSH	PDCD6IP	PGM3		
PGRMC1	PROS1	PDHB	PGRMC1		
PHGDH	PRPH	PDI4	PHGDH		
PHPT1	PRPS2	PDXK	PHPT1		
PIN1	PSAT1	PEBP1	PIN1		
PKM	PSIP1	PEPD	PKM		
PLD3	PSMA1	PFKL	PLD3		
PLG	PSMA2	PFKM	PLG		
PLK4	PSMA3	PFKP	PLK4		
PNPO	PSMA5	PFN1	PNPO		
POLDIP3	PSMA6	PFN2	POLDIP3		
PPA1	PSMA8	PGAM2	PPA1		
PPIA	PSMB1	PGK1	PPIA		
PPM1A	PSMC3	PGM1	PPM1A		
PPME1	PTGDS	PGM3	PPME1		
PPP1R7	PTPN11	PGRMC1	PPP2R1A		
PPP2R1A	PTPRD	PHGDH	PPP5C		
PPP5C	PTRG	PHPT1	PRDX1		
PRDX1	PYGB	PIN1	PRDX2		
PRDX2	QSOX1	PKM	PRDX4		
PRDX4	RAB11B	PLD3	PRDX5		
PRDX5	RAB6A	PLG	PRDX6		
PRDX6	RAB7A	PLK4	PRELP		
PRKAR1A	RALY	PNPO	PRKAR1A		
PRKAR2A	RAN	POLDIP3	PRKAR2A		
PRKCSH	RANBP1	PPA1	PRKCSH		
PROS1	RBMX	PPIA	PROS1		
PRPH	RBP3	PPM1A	PRPH		
PRPS2	RBP4	PPME1	PRPS2		
PRSS35	RELN	PPP1R7	PSAT1		
--------	------	--------	-------		
PSAT1	RLBP1	PPP2R1A	PSIP1		
PSIP1	RNH1	PPP5C	PSMA1		
PSMA1	RPH3A	PRDX1	PSMA2		
PSMA2	RPL13	PRDX2	PSMA3		
PSMA3	RPL24	PRDX4	PSMA5		
PSMA5	RPL26	PRDX5	PSMA6		
PSMA6	RPL29	PRDX6	PSMA8		
PSMA8	RPL31	PRELP	PSMB1		
PSMB1	RPL8	PRKAR1A	PSMC3		
PSMC2	RPS11	PRKAR2A	PTGDS		
PSMC3	RPS20	PRKCSH	PTPN11		
PTGDS	RPSA	PROS1	PTPRD		
PTPN11	RTCB	PRPH	PTPRG		
PTPRD	RTN1	PRPS2	PYGB		
PTPRG	RTN4	PRSS35	QSOX1		
PYGB	RUVBL2	PSAT1	RAB11B		
QSOX1	SAG	PSIP1	RAB14		
RAB11B	SARS	PSMA1	RAB1A		
RAB14	SCG2	PSMA2	RAB3A		
RAB3A	SCG3	PSMA3	RAB6A		
RAB7A	SLY	PSMA5	RAB7A		
RAN	SCRN1	PSMA6	RALY		
RANBP1	SEC22B	PSMA8	RAN		
RBMX	SELENBP1	PSMB1	RANBP1		
RBP3	SEMA7A	PSMC2	RBMX		
RBP4	SEPTIN2	PSMC3	RBP3		
RELN	SEPTIN7	PTGDS	RBP4		
RLBP1	SERPINA1	PTPN11	RELN		
RNH1	SERPINA3-2	PTPRD	RLBP1		
RPH3A	SERPINB1	PTPRG	RNH1		
RPL13	SERPINII	PYGB	RPH3A		
RPL26	SEZ6L	QSOX1	RPL13		
RPL29	SEZ6L2	RAB11B	RPL24		
RPL31	SF3B2	RAB14	RPL26		
RPL8	SFRP2	RAB1A	RPL29		
RPS11	SH3GL1	RAB3A	RPL31		
RPS20	SMOC1	RAB6A	RPL8		
RPSA	SNAP25	RAB7A	RPS11		
RTCB	SNAP91	RALY	RPS13		
RTN1	SNCG	RAN	RPS18		
RTN4	SOD1	RANBP1	RPS20		
RUVBL2	SPARC	RBMX	RPS3		
SAG	SPARC1	RBP3	RPS3A		
SARS	SPON1	RBP4	RPSA		
SCG2	SPP1	RELN	RTCB		
-------	--------	-------	-------		
SCG3	SPR	RLBP1	RTN1		
SCLY	SPTAN1	RNH1	RTN4		
SCRN1	SRSF2	RPH3A	RUVE2L		
SEC22B	SRSF3	RPL13	SAG		
SELENBP1	ST13	RPL26	SARS		
SEMA7A	STIP1	RPL29	SCG2		
SEPTIN2	STMN2	RPL31	SCG3		
SEPTIN7	STPG4	RPL8	SCLY		
SERPINA1	STX1B	RPS11	SCRN1		
SERPINA3-2	STXB1	RPS13	SEC22B		
SERPINB1	SUMO4	RPS18	SELENBP1		
SERPINI1	SYN1	RPS20	SEMA7A		
SEZ6L	SYNCRIP	RPS3	SEPTIN2		
SEZ6L2	TALDO1	RPS3	SEPTIN7		
SF3B2	TARS	RPSA	SERPINA1		
SFRP2	TCEA1	RTCB	SERPINA3-2		
SH3GL1	TCEAL3	RTN1	SERPINB1		
SMOC1	TF	RTN4	SERPIND1		
SNAP25	TIMP-2	RUVE2L	SERPIN1		
SNAP91	TFC	SAG	SEZ6L2		
SNCG	TMSB4	SARS	SEZ6L2		
SOD1	TNR	SCG2	SF3B2		
SPARC	TPI1	SCG3	SFRP2		
SPARCL1	TPM3	SCLY	SH3GL1		
SPON1	TPT1	SCRN1	SIRT2		
SPP1	TRMT112	SEC22B	SMOC1		
SPR	TTR	SELENBP1	SNAP25		
SPTAN1	TUBA1B	SEMA2A	SNAP91		
SRSF2	TUBA4A	SEPTIN2	SNCA		
SRSF3	TUBB	SEPTIN7	SNCG		
STIP1	TUBB1	SERPINA1	SOD1		
STMN2	TUBB4A	SERPINA3-2	SPARC		
STPG4	TXN	SERPINB1	SPARCL1		
STX1B	UBB	SERPIN1D	SPON1		
STXB1	UBE2NL	SERPINI1	SPP1		
SUMO4	UBE2V1	SEZ6L	SPR		
SYN1	UBE2V2	SEZ6L2	SPTAN1		
SYNCRIP	UCHL1	SF3B2	SRSF2		
TALDO1	UCHL3	SFRP2	SRSF3		
TARS	UNC119	SH3GL1	ST13		
TCEA1	USO1	SIRT2	STIP1		
TCEAL3	VAMP1	SMOC1	STMN2		
TF	VAT1	SNAP25	STPG4		
TIMP-2	VATIL	SNAP91	STX1B		
TKFC	VCAN	SNCA	STXBP1		
--------	------	--------	--------		
TMSB4	VCP	SNCG	SUCLA2		
TNC	VSIG10L	SOD1	SUMO4		
TNR	VSTM2A	SPARC	SYN1		
TPII	VSTM2B	SPARCL1	SYNCRIP		
TPM3	VTN	SPON1	TALDO1		
TPM4	WARS	SPP1	TARS		
TPT1	WFIKKN2	SPR	TCEA1		
TRMT112	XYLTI	SPTAN1	TCEAL3		
TTR	YWHAB	SRSF2	TF		
TUBA1B	YWHAG	SRSF3	TIMP-2		
TUBA4A	YWHAH	STIP1	TKFC		
TUBB	YWHAQ	STMN2	TMSB4		
TUBB1	YWHAZ	STPG4	TNR		
TUBB4A	ZFYVE19	STX1B	TPII		
TXN	ZNF207	STXBPI	TPM3		
TXNL1	SUCLA2	TPT1			
UBB	SUMO4	TRMT112			
UBE2NL	SYN1	TTR			
UBE2V1	SYNCRIP	TUBA1A			
UBE2V2	TALDO1	TUBA1B			
UCHL1	TARS	TUBA4A			
UCHL3	TCEA1	TUBB			
UNC119	TCEAL3	TUBB1			
USO1	TF	TUBB4A			
VAMP1	TIMP-2	TUFM			
VAT1	TKFC	TXN			
VAT1L	TMSB4	UBB			
VCAN	TNC	UBE2NL			
VCL	TNR	UBE2V1			
VCP	TPII	UBE2V2			
VSIG10L	TPM3	UCHL1			
VSTM2A	TPM4	UCHL3			
VSTM2B	TPT1	UNC119			
VTN	TRMT112	USO1			
WARS	TTR	VAMP1			
WFIKKN2	TUBA1B	VAT1			
XYLTI	TUBA4A	VAT1L			
YWHAB	TUBB	VCAN			
YWHAG	TUBB1	VCP			
YWHAH	TUBB4A	VSIG10L			
YWHAQ	TUFM	VSTM2A			
YWHAZ	TXN	VSTM2B			
ZFYVE19	TXNL1	VTN			
ZNF207	UBB	WARS			
UBE2NL	WFIKKN2				
----------	-----------				
UBE2V1	XYLT1				
UBE2V2	YWHAB				
UCHL1	YWHAG				
UCHL3	YWHAH				
UNC119	YWHAQ				
USO1	YWHAZ				
VAMP1	ZFYVE19				
VAT1	ZNF207				
VAT1L	ZNF385A				
UCAN					
VCL					
VCP					
VSIG10L					
VSTM2A					
VSTM2B					
VTN					
WARS					
WFIKKN2					
XYLT1					
YWHAB					
YWHAG					
YWHAH					
YWHAQ					
YWHAZ					
ZFYVE19					
ZNF207					
ZNF385A					

References of Supporting Information

[1] S. Aretz, T. U. Krohne, K. Kammerer, U. Warnken, A. Hotz-Wagenblatt, M. Bergmann, B. V. Stanzel, T. Kempf, F. G. Holz, M. Schnölzer, J. Kopitz, *Proteome Sci.* **2013**, *11*, 22.

[2] R. D. Semba, J. J. Enghild, V. Venkatraman, T. F. Dyrlund, J. E. Van Eyk, *Proteomics* **2013**, *13*, 2500.

[3] J. M. Skeie, C. N. Roybal, V. B. Mahajan, *PLoS One* **2015**, *10*, e0127567.

[4] K. M. P. Yee, E. P. Feener, M. Madigan, N. J. Jackson, B.-B. Gao, F. N. Ross-Cisneros, J. Provis, L. P. Aiello, A. A. Sadun, J. Sebag, *Invest. Ophthalmol. Vis. Sci.* **2015**, *56*, 7036.
[5] D. H. Jo, J. H. Kim, J. G. Son, K. S. Dan, S. H. Song, T. G. Lee, J. H. Kim, *Biomaterials* **2016**, *109*, 23.

[6] Y. Liu, R. A. Bouhenni, C. P. Dufresne, R. D. Semba, D. P. Edward, *PLoS One* **2016**, *11*, e0153560.

[7] J. M. Skeie, V. B. Mahajan, *PLoS One* **2013**, *8*, e82140.

[8] S. Schöttler, K. Landfester, V. Mailänder, *Angew. Chem. Int. Ed.* **2016**, *55*, 8806.

[9] F. Chen, G. Wang, J. I. Griffin, B. Brenneman, N. K. Banda, V. M. Holers, D. S. Backos, L. Wu, S. M. Moghimi, D. Simberg, *Nat. Nanotechnol.* **2017**, *12*, 387.

[10] D. H. Anderson, M. J. Radeke, N. B. Gallo, E. A. Chapin, P. T. Johnson, C. R. Curletti, L. S. Hancox, J. Hu, J. N. Ebright, G. Malek, M. A. Hauser, C. Bowes Rickman, D. Bok, G. S. Hageman, L. V. Johnson, *Prog. Retin. Eye Res.* **2010**, *29*, 95.

[11] K. Yamane, A. Minamoto, H. Yamashita, H. Takamura, Y. Miyamoto-Myoken, K. Yoshizato, T. Nabetani, A. Tsugita, H. K. Mishima, *Mol. Cell. Proteomics* **2003**, *2*, 1177.

[12] D. A. Lee, S. Fefeu, A. A. Edo-Ukeh, C. A. Orengo, C. Slingsby, *Nucleic Acids Res.* **2004**, *32*, D148.

[13] S. Loukovaara, H. Nurkkala, F. Tamene, E. Gucciardo, X. Liu, P. Repo, K. Lehti, M. Varjosalo, *J. Proteome Res.* **2015**, *14*, 5131.

[14] T. T. Kleinberg, R. T. Tzekov, L. Stein, N. Ravi, S. Kaushal, *Surv. Ophthalmol.* **2011**, *56*, 300.

[15] P. Bishop, *Eye* **1996**, *10*, 664.

[16] M. Määttä, R. Heljasvaara, T. Pihlajaniemi, M. Uusitalo, *Graefes Arch. Clin. Exp. Ophthalmol.* **2007**, *245*, 74.

[17] R. Mayne, Z.-X. Ren, J. Liu, T. Cook, M. Carson, S. Narayana, *Biochem. Soc. Trans.* **1999**, *27*, 832.