Vibrio vulnificus quorum-sensing molecule cyclo(Phe-Pro) inhibits RIG-I-mediated antiviral innate immunity

Wooseong Lee¹, Seung-Hoon Lee¹, Minwoo Kim¹, Jae-Su Moon¹, Geon-Woo Kim¹, Hae-Gwang Jung¹, In Hwang Kim², Ji Eun Oh³, Hi Eun Jung⁴, Heung Kyu Lee⁴, Keun Bon Ku⁵, Dae-Gyun Ahn⁵, Seong-Jun Kim⁵, Kun-Soo Kim² & Jong-Won Oh¹

The recognition of pathogen-derived ligands by pattern recognition receptors activates the innate immune response, but the potential interaction of quorum-sensing (QS) signaling molecules with host anti-viral defenses remains largely unknown. Here we show that the **Vibrio vulnificus** QS molecule cyclo(Phe-Pro) (cFP) inhibits interferon (IFN)-β production by interfering with retinoic-acid-inducible gene-I (RIG-I) activation. Binding of cFP to the RIG-I 2CARD domain induces a conformational change in RIG-I, preventing the TRIM25-mediated ubiquitination to abrogate IFN production. cFP enhances susceptibility to hepatitis C virus (HCV), as well as Sendai and influenza viruses, each known to be sensed by RIG-I but did not affect the melanoma-differentiation-associated gene 5 (MDA5)-recognition of norovirus. Our results reveal an inter-kingdom network between bacteria, viruses and host that dysregulates host innate responses via a microbial quorum-sensing molecule modulating the response to viral infection.

¹Department of Biotechnology, Yonsei University, Seoul 03722, Korea. ²Department of Life Science, Sogang University, Seoul 04107, Korea. ³Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea. ⁴Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea. ⁵Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea. Correspondence and requests for materials should be addressed to J.-W.O. (email: jwoh@yonsei.ac.kr)
Viral and microbial pathogen crosstalk may modulate disease outcomes of each pathogen by dysregulating host defense mechanisms. Diverse inter-pathogen crosstalk possibly occurs when two or more pathogens, which are either in the same or different kingdoms, co-infect the same host tissues or organs. In addition, even systemic inter-pathogen communication can be mediated by signal molecules released from individual pathogens or pathogen-infected cells when they circulate and deposit at remote sites where other pathogens propagate. Pathogen-associated molecular patterns (PAMPs) are known to be sensed by membrane-associated toll-like receptors (TLRs) or other receptors in the cytoplasm to initiate innate immune responses. However, experimental evidence supporting virus-bacteria crosstalk through microbial quorum-sensing molecules is lacking.

Vibrio vulnificus, which often flourishes in warm estuarine seawater or brackish environments, is an opportunistic pathogen causing fatal septicemia in humans upon entry by ingestion or wound infection, which results in up to 50% lethality. Previous cases of fatal septicemia in humans upon entry by ingestion or wound infection were caused by membrane-associated toll-like receptors (TLRs) or other receptors in the cytoplasm to initiate innate immune responses. However, experimental evidence supporting virus-bacteria crosstalk through microbial quorum-sensing molecules is lacking.

V. vulnificus contamination in such uncooked seafood can aggravate symptoms. Particularly in immune-compromised people or those with liver diseases, such as cirrhosis or hepatitis, infection by this opportunistic pathogen is often associated with high lethality. In human primary hepatocytes (HCV), which has a positive-sense, uncapped RNA genome ~9.6-kb in length, is a leading cause of chronic liver disease, contributing to the development of liver cirrhosis and hepatocellular carcinoma. Clinical case reports call for differential diagnosis of HCV infections among chronic hepatitis C virus (HCV) patients who are co-infected with V. vulnificus.

The severe disease outcomes caused by co-infection by these two pathogens prompted us to test the hypothesis that V. vulnificus might blunt antiviral innate immunity to HCV. As a potential messenger molecule that might be engaged in this inter-pathogen crosstalk, we focused on the V. vulnificus-produced quorum sensing molecule cyclo(Phe-Pro) (cFP) belonging to a family of cyclic dipeptides (CDPs) referred to as diketopiperazines (DKPs). CDPs, which are a group of hormone-like molecules synthesized by microbes as well as humans, are quorum sensing signal molecules that are used in cell-cell communication in bacteria.

In this study, we elucidate the molecular mechanism of V. vulnificus cFP-mediated regulation of host innate immunity. We found that cFP inhibits retinoic acid-inducible gene-I (RIG-I) polyubiquitination, through its specific interaction with RIG-I, to blunt IRF-3 activation and type-I IFN production. We propose that a microbial quorum-sensing molecule-mediated tripartite virus-microbial pathogen-host interactions are important in determining host permissiveness to viral infection.

Results
The cyclic dipeptide cFP increases HCV loads. We used cFP and its four different derivatives including the linear derivative Phe-Pro and structurally similar circular dipeptides such as cyclo(His-Pro), cyclo(Thr-Pro), and cyclo(Tyr-Pro) (Fig. 1a), to investigate their impact on HCV replication. Cyclo(His-Pro) is an endogenous cyclic dipeptide produced by the cleavage of the hypothalamic thyrotropin releasing hormone. Cyclo(Tyr-Pro) is a quorum-sensing molecule involved in cell-cell communication by Pseudomonas aeruginosa and also acts as a signaling molecule regulating virulence gene expression in Lactobacillus reuteri. All assays in the following experiments were performed at doses ≤5 mM at which cFP reduced cell viability <10% in HCV-permissive Huh7 cells (Supplementary Fig. 1a).

We found that cFP significantly increases viral loads in HCV (JFH1, genotype 2a HCV)-infected Huh7 cells (Fig. 1b), upon entering into cells as verified by confocal microscopy using IAEDANS-labeled cFP and by uptake assays using [14C]cFP (Supplementary Fig. 1b-d). This enhancement was very specific to cFP; four other CDPs including the linear form of cFP, Phe-Pro did not modulate HCV RNA expression (Supplementary Fig. 1b, c). Similar results were also observed in genotype 1b (GT 1b) HCV-infected human primary hepatocytes (Fig. 1d).

Having found HCV-promoting activity of cFP, we investigated whether it interferes with interferon production. IFN-β mRNA expression was significantly increased in JFH1 RNA-transfected Huh7 cells (Fig. 1e; 9.7-fold increase over untreated control, **P < 0.01 by unpaired Student’s t-test). This IFN-β mRNA upregulation was suppressed specifically by cFP. Interferon regulatory factor 3 (IRF-3) activity induced by JFH1 RNA transfection was also repressed by cFP as assessed by immunoblotting for pIRF-3.

To understand how cFP abrogates the IFN production signaling pathway cascade to promote HCV infection, we first investigated whether activation of the mitochondrial antiviral signaling protein (MABS; also called IPS-1, CARDIF, or VISA) downstream effector TANK-binding kinase 1 (TBK1) is affected. TBK1 phosphorylation at Ser172 within its activation loop is required for its kinase activity responsible for phosphorylation of its downstream substrate IRF-3. An in vitro kinase assay using immunoprecipitated TBK1 showed that its activity is not directly inhibited by cFP, even at millimolar concentrations (Supplementary Fig. 1e).

The above results prompted us to assess the implication of MABS for cFP-induced HCV replication stimulation. In a MABS knockout (KO) Huh7 cell line established by the CRISPR-CAS9 gene-editing system (Supplementary Fig. 2), the HCV regulatory activity of cFP disappeared (Fig. 1f, g). Furthermore, rescue of MABS expression by transfection of a MABS-encoding plasmid restored the sensitivity to cFP in HCV-infected MABS KO Huh7 cells, while Phe-Pro had no influence on HCV loads regardless of MABS expression (Fig. 1f). We further investigated the effect of cFP in primary hepatocytes isolated from MABS-deficient (MABS−/−) mice. Because HCV does not infect mouse cells due to the lack of human homologs, we carried out a transient HCV RNA transfection experiment. As assessed by confocal microscopy, cFP failed to interfere with HCV gene expression in primary hepatocytes isolated from MABS−/− mice; GFP reporter (as a NSSA-GFP fusion protein) expression was not altered significantly in cells transfected with JFH1/GFP RNA, a JFH1 derivative capable of expressing the NSSA-GFP fusion protein (Supplementary Fig. 3a, b). In parallel experiments using normal mouse (BALB/c) primary hepatocytes, cFP, but not Phe-Pro, increased NSSA-GFP expression (Supplementary Fig. 3c, d). As expected, IFN-β mRNA expression induced by HCV RNA was also significantly suppressed by cFP (Supplementary Fig. 3e) as observed in the HCC cell line Huh7.

Together, our data suggested that cFP might target MABS upstream signaling molecules such as the well characterized cytoplasmic foreign RNA-sensing pattern recognition receptors (PRRs), RIG-I and MDA5. Because mouse hepatocytes support only one-step replication due to the lack of human-compatible receptors for HCV entry, these results also suggested that cFP regulates post-entry replication steps.

RIG-I is a specific target of cFP. RIG-I and MDA5 sense respectively the PAMPs within viral RNA and viral RNA...
replication products including the dsRNA replication intermediates produced by RNA viruses\(^\text{22}\). To discern which of these sensor molecules is the cFP target, we used two different forms poly(I:C) (a synthetic double-stranded RNA mimic), a short-length form \([<0.3\text{-}kb; \text{S-poly(I:C)}]\) and an extended-length form \([>5\text{-}kb; \text{L-poly(I:C)}]\) (Supplementary Fig. 4a), which were recognized by RIG-I and MDA5, respectively, to induce IFN-\(\beta\) mRNA expression via the MAVS (Supplementary Fig. 4b). These results were consistent with previous studies\(^\text{23}\). Surprisingly, we found that cFP selectively interferes with S-poly(I:C)-triggered IFN-\(\beta\) production (Fig. 2a). Furthermore, expression of the interferon-stimulated genes ISG56 and 2'-5' OAS, which was induced by S-poly(I:C), was also reduced upon cFP treatment (Fig. 2b, c). Notably, cFP per se did not alter these IFN-inducible gene expression levels, suggesting its incapacity to modulate non-activated RIG-I function. Importantly, TBK1 activation triggered by S-poly(I:C) was only selectively repressed dose dependently by cFP, while L-poly(I:C)-induced TBK1 activation pathway was not influenced by cFP (Fig. 2d, e). These results suggested that the potential target of cFP is the RIG-I signaling pathway.

RIG-I senses an RNA ligand carrying a 5'-triphosphate moiety, which is an important molecular signature for RIG-I to recognize virally-produced non-self RNA molecules. In addition to this, the poly-U/UC sequence within the HCV 3'-UTR was also identified as a PAMP motif\(^\text{24,25}\). As expected, HCV 3'-UTR induced IRF-3 activation, as evidenced by IRF-3 phosphorylation and dimerization (Fig. 2f). This IRF-3 activation was effectively blocked by cFP in HEK293T cells. Overall, our results demonstrate that cFP interferes with RIG-I activation.

In addition to the PRR-MAVS axis, TBK1 activation can occur through the TLR4-TRIF axis\(^\text{26-28}\). We found that TBK1 activation induced by LPS, a prototype TLR4 ligand, was not regulated by cFP in primary hepatocytes from MAVS\(^{-/-}\) mice (Supplementary Fig. 5), demonstrating that TBK1 in the TLR-TRIF axis is not affected by cFP. This result is consistent with our results showing that TBK activity is not directly inhibited by cFP (Supplementary Fig. 1e).

cFP binding to RIG-I blunts the host innate immune response. We sought to test if cFP binds to RIG-I to inhibit...
RIG-I-dependent type I IFN production. Protein complex pull-down experiments using biotinylated cFP revealed that cFP indeed interacts with RIG-I, but not MDA5 (Fig. 3a). These results are consistent with our finding that cFP does not interfere with the MDA5 signaling pathway triggered by L-poly(I:C) (Fig. 2d) and suggested that cFP binds to RIG-I with a certain specificity. Using cFP-conjugated Sepharose beads, we further verified the interaction between cFP and RIG-I (Fig. 3b). This interaction occurred both in non-stimulated cells and in cells stimulated with either S-poly(I:C) or HCV 3'-UTR, with the interaction being noticeably enhanced when RIG-I was activated with its ligands. This suggested that cFP-binding to RIG-I might be facilitated upon its activation through RNA ligand binding.

To provide direct evidence for functional interaction between cFP and RIG-I, we took advantage of the Huh7.5.1 cell line that expresses a defective RIG-I with a T55I substitution. This mutant RIG-I was shown to be incapable of transmitting signals through its N-terminal CARD domain while its ability to sense RNA ligands was not affected. When this cell line was transfected with HCV RNA, there was no substantial induction of IFN-β mRNA expression as expected, while ectopic expression of wild-type RIG-I, but not its inactive mutant (RIG-I_K270A) expression, which could be then reversed specifically by cFP treatment (Fig. 3d). These results collectively support our conclusion that cFP specifically targets the RIG-I pathway.

With Sendai virus (SeV) well known to generate RIG-I ligands, we were able to further confirm cFP’s ability to inhibit IFN-β mRNA expression and IRF-3 activation induced by the viral infection (Fig. 4a, b). cFP treatment consequently resulted in a significant increase in infectious SeV titer (Fig. 4c). In contrast, norovirus infection, which was previously reported to trigger MDA5-mediated type-I IFN production in dendritic cells and in mice, was not affected by cFP treatment (Fig. 4d, e). These results collectively support our conclusion that cFP specifically targets the RIG-I pathway.

cFP inhibits TRIM25-mediated RIG-I ubiquitination. Having identified the target of cFP, we asked how RIG-I function becomes impaired upon cFP binding. RIG-I has tandem N-terminal caspase recruitment domains (CARDs), a DExD/H-box helicase, and a C-terminal domain (CTD). Short dsRNA with a 5’ triphosphate moiety is sensed by the CTD and helicase domain. Pull-down experiments using in vitro transcribed HCV 3’-UTR immobilized on beads revealed that cFP as well as Phe-Pro does not alter RIG-I’s ability to sense its target RNA (Fig. 5a). We next assessed the possibility of interaction between cFP and the N-terminal 2CARD region by a pull-down assay using immobilized biotinylated cFP. As shown in Fig. 5b, cFP specifically interacted with 2CARD region of RIG-I; MDA5 with a homologous CARD domain was not detected (Fig. 5b). Both TRIM25, which interacts with the N-terminal CARDs of RIG-I, and Riplet, which binds to the RIG-I C-terminal repressor domain (RD), are known to mediate the K63-linked ubiquitination of RIG-I to induce IFN-β production. As expected, TRIM25, but not Riplet, was found to be associated with the ectopically expressed CARD-Flag, which was consistent with the
established notion that its recruitment for RIG-I ubiquitination needs to be preceded by CARD domain release, which occurs following RNA ligand sensing. More importantly, IFN-β mRNA expression and IRF-3 activation, which were induced by over-expression of RIG-I CARD domain, were suppressed by cFP (Fig. 5c), identifying the N-terminal CARD domain of RIG-I as

Fig. 3 HCV-promoting activity of cFP is mediated through its specific interaction with RIG-I. a, b Immunoblotting analysis of cFP-interacting proteins pull-downed by biotinylated cFP bound to Streptavidin beads (a) or by non-modified cFP immobilized onto Sepharose beads (b). HEK293T cells, which were non-stimulated (a) or stimulated with the indicated RNA ligands (b) were used in pull-down experiments. c, d Quantification of IFN-β mRNA (c) and HCV genome (d) levels in Huh7.5.1 cells transfected with an empty vector or a vector expressing the wild-type RIG-I (RIG-I_WT) or its inactive mutant (RIG-I_K270A). After 18 h, the transfected cells were infected with HCV (JFH1) by incubation for 6 h and incubated further for 24 h in fresh media without or with the indicated peptides (2.5 mM) prior to RT-qPCR analyses. Statistical significance of differences between groups was determined via unpaired two-tailed t-test. *P < 0.05; n.s., not significant

Fig. 4 Differential effect of cFP on SeV and norovirus replication. a-c HEK293T cells infected with SeV were treated with 2.5 mM cFP or Phe-Pro. After 24 h, cells were harvested to assess IFN-β mRNA levels (a), IRF-3 activation (b), and infectious virus titers in culture media (c). d, e Mouse macrophage cells (RAW264.7), which were infected with mouse norovirus (MNV-1) at an MOI of 0.005, were treated with 2.5 mM cFP or Phe-Pro. 17-DMAG (300 nM), an Hsp90 inhibitor known as an anti-norovirus reagent, served as a positive control. After 24 h, infectious virus titer in culture media and intracellular viral genome levels were determined by a plaque-forming assay (d) and RT-qPCR (e), respectively. Immunoblot for the MNV-1 VP1 is shown below the bar graph in d. **P < 0.01; n.s., not significant; by unpaired two-tailed Student’s t-test
the cFP target. Using the mouse CARD domain, which is highly homologous (77% amino acid sequence identity) to human RIG-I CARD domain (Supplementary Fig. 7a), similar IFN-β induction inhibitory activity of cFP was observed (Supplementary Fig. 7b), demonstrating that cFP-mediated RIG-I dysregulation is a common feature shared by murine and human cells.

Polyubiquitination of the RIG-I CARD domain, which is released upon RNA ligand binding, is required for activation of the IFN signaling pathway by facilitating its interaction with the CARD domain of MAVS8,9. As shown in Fig. 5d, RIG-I activation, as evidenced by its polyubiquitination, was specifically blocked by cFP in HCV 3′-UTR-stimulated cells. Furthermore,
IRF-3 activation, as assessed by pIRF-3 immunoblotting, was also suppressed by cFP. Altogether, these results suggest that cFP binds to the 2CARD region without blocking TRIM25 binding and interferes with RIG-I activation by inhibiting its TRIM25-mediated ubiquitination. We could observe similar inhibition of endogenous RIG-I polyubiquitination by cFP in cells treated with HCV 3′-UTR (Fig. 5e), as well as in cells stimulated with S-poly(I:C) (Fig. 5f). Furthermore, IRF-3 activation induced by S-poly(I:C) was also suppressed by cFP. Altogether, these results further prove an inhibitory role for cFP in RIG-I ubiquitination-mediated activation.

Previously, RIG-I was shown to be cleaved at K190 and K679 residues by limited trypsin digestion to produce diverse digested products including the ~22-kDa 2CARD region (F5 fragment in Fig. 5g), ~56-kDa helicase region (F3 fragment), and ~28-kDa C-terminal region including the repressor domain (RD) (F4 fragment)\(^1\). We detected two major digestion products (F3 and F4 fragments) accumulated after 60 min trypsin digestion in the absence or presence of HCV 3′-UTR (compare lanes 2 and 6). Thus, it appears that both the K190 and K679 sites are exposed to trypsin regardless of the presence of HCV 3′-UTR. Notably, the 2CARD (F5 fragment) was barely detectable under these digestion conditions when cFP was not added to the assay mixture (lanes 2–6). In a parallel experiment conducted in the presence of cFP, this trypsin vulnerable fragment, which started to accumulate after 10 min digestion, still remained detectable at 60 min (lanes 8–10), suggesting cFP binding to this 2CARD region might induce a conformational change to confer resistance to trypsin digestion.

In vivo regulation of IFN-β production by cFP. We next investigated in mice the regulatory role of cFP in IFN-β production. cFP delivered systematically via i.v. injection through the tail vein suppressed IFN-α/β mRNA expression that was induced by priming with an i.v. injection of S-poly(I:C) (Fig. 6a). In a mouse model carrying HCV-infected Huh7 subcutaneous (s.c.) xenografts, which was established, as described previously\(^\text{10,11}\), i.v. injection of poly(I:C) led to a substantial reduction in serum HCV genome titer 8 h after poly(I:C) stimulation. This inhibitory effect was completely reversed by administration of cFP (Fig. 6b). The HCV promoting activity of cFP gradually diminished thereafter, disappearing three days later. In an orthotopic mouse model carrying HCV-infected Huh7 cells transplanted into the liver\(^\text{12}\),...
cFP administration (once each day at a dose of 50 mg per kg body weight for a total of three consecutive days) increased serum HCV loads substantially four and seven days after the first cFP administration, which gradually declined to show non-significant difference by days 10 and 13 compared with the control group that received Phe-Pro (Fig. 6c).

RIG-I-specific regulatory functions of cFP were further verified in mice infected with SeV and influenza virus, which were previously shown to induce immune responses through RIG-I

\[\text{cFP administration via i.v. injection increased mortality in mice infected SeV (Fig. 7a, b) In consistent with the in vitro results observed in SeV-infected cells (Fig. 4a–c), virus titers in lung tissues were increased 3-fold and 2.7-fold, as assessed by RT-qPCR and plaque-forming assays, respectively, in mice that received cFP (Fig. 7c). Histological analysis of lung tissue sections revealed that influenza infection-mediated lung injury, which was associated with immune cell infiltration into the lung and alveolar destruction, became more severe in mice receiving cFP at 7 days post-infection (dpi) (Fig. 7d). Similarly, cFP significantly increased mortality in mice infected with influenza A virus (PR8 strain) (Supplementary Fig. 8a, b). As in SeV-infected mice, alveolar destruction was intensified by cFP in the influenza-infected mice (Supplementary Fig. 8c). These results together demonstrate that cFP is a specific regulator inhibiting the RIG-I pathway.}

Discussion

A number of previous studies have enhanced our understanding of how PAMPs mount innate immune responses and how pathogens use diverse strategies to block the sensing of those non-self patterns by diverse PRRs. However, inter-pathogen crosstalk through molecules produced by each pathogen in innate immune responses has been less studied despite the potential importance of such crosstalk in determining disease outcomes of each pathogen upon co-infection. One particular regulatory network that has been little-characterized in the virus-microbial pathogen-host tripartite interplay is an indirect control mechanism for viral replication by a microbial quorum sensing molecule. In the present work, we demonstrated that *V. vulnificus*-produced cFP is a microbial ligand that increases HCV loads in cell culture and in mouse models of HCV replication.

The HCV-promoting activity of cFP was attributed to its ability to block RIG-I-mediated type I IFN production. The molecular mechanism behind this regulation seems to be related to a RIG-I conformational change upon cFP binding to the 2CARD region, resulting in abrogation of TRIM25-mediated RIG-I polyubiquitination essential for its activation and signal transmission to the MAVS through interactions between CARD domains of RIG-I and MAVS (Fig. 8). Importantly, we demonstrated that, in addition to HCV, SeV and influenza virus, which were previously known to be sensed by RIG-I

\[\text{Phe-Pro (50 mg per kg body weight) by i.v. injection, were infected with Sendai virus (1,000 PFU) by intranasal injection 2 h after the dipeptide administration followed by two additional consecutive administrations at 1 and 2 days post-infection, prior to monitoring body weight change (a) and mouse mortality (b) over 10 days. Virus titers were determined by RT-qPCR (for RNA genome loads) and plaque-forming assays at 7 dpi (c). Shown in d are representative H&E stain images of lung sections at 7 dpi. Scale bar=200 μm. Statistical significance of differences between cFP treated group and vehicle-treated, uninfected control group was determined via unpaired two-tailed t-test. Survival curves were analyzed using log rank (Mantel-Cox) test. *P < 0.05; **P < 0.01, ***P < 0.001.}

Fig. 7 Increase of mortality of Sendai virus-infected mice by cFP administration. DBA/2 mice (6-week-old male), which were given cFP or Phe-Pro (50 mg per kg body weight) by i.v. injection, were infected with Sendai virus (1,000 PFU) by intranasal injection 2 h after the dipeptide administration followed by two additional consecutive administrations at 1 and 2 days post-infection, prior to monitoring body weight change (a) and mouse mortality (b) over 10 days. Virus titers were determined by RT-qPCR (for RNA genome loads) and plaque-forming assays at 7 dpi (c). Shown in d are representative H&E stain images of lung sections at 7 dpi. Scale bar=200 μm. Statistical significance of differences between cFP treated group and vehicle-treated, uninfected control group was determined via unpaired two-tailed t-test. Survival curves were analyzed using log rank (Mantel-Cox) test. *P < 0.05; **P < 0.01, ***P < 0.001.
other44. Furthermore, RIG-I pathway specific inhibition by cFP is explained by the fact that the 2CARDs of RIG-I, but not MADS, exclusively undergoes ubiquitination36. Gack et al.31 showed that the T55 residue of the RIG-I first CARD is critical for TRIM25 binding. Because cFP bounds to the 2CARD without blocking its interaction with TRIM25, it is very likely that cFP targets the second CARD where TRIM25-mediated ubiquitination occurs at the K172 residue.

What might be the impact of cFP in normal host cells? Our results showed that cFP per se does not enhance IFN-inducible gene expression at least in non-infected cells. The inhibitory activity of cFP disappeared in the Huh7.5.1 cell line in which gene expression at least in non-infected cells. The inhibitory results showed that cFP per se does not enhance IFN-inducible production by self-RNAs46 was elucidated as a mechanism for preventing aberrant IFN responses by blocking RIG-I activation. Thus, it is tempting to speculate that cFP might be used to cure the aforementioned genetically-determined inflammatory disorder by blocking polyubiquitination-mediated RIG-I activation.

Regarding the severe liver dysfunction observed in chronic HCV patients co-infected with \textit{V. vulnificus}7–10, several possible interpretations other than cFP-mediated inhibition of RIG-I activation may also explain such fulminant liver disease with high mortality. Iron-overloaded mice were shown to be more susceptible to \textit{V. vulnificus} infection50. Because increased hepatic iron content is a common finding among patients with chronic HCV infection81, homing of \textit{Vibrio} to the liver may aggravate chronic HCV infection. \textit{V. vulnificus} PAMPs7–10, which can stimulate multiple TLRs in the liver, may also lead to liver failure52,53. For instance, production of proinflammatory cytokines induced by \textit{V. vulnificus} virulence factors such as capsular polysaccharide, lipopolysaccharide, cytoxins, pili, and flagellum may explain the vulnerability of patients affected by HCV related-chronic liver disease9,34. Thus, we cannot rule out the \textit{V. vulnificus} infection-associated sepsis as a cause of the liver dysfunction. It is also important to note that the susceptibility to \textit{V. vulnificus} sepsis is influenced by predisposing conditions, such as viral hepatitis, immune compromise, and cirrhosis35, which may explain its correlation with risk factors in predisposed individuals. However, the nature of such factors in high-risk populations including chronic HCV patients remain unknown. Although it is thus challenging to estimate relative contribution of cFP to the severe liver dysfunction during acute infection of \textit{V. vulnificus}. Our results raise a possibility that its quorum-sensing molecule cFP...
targets RIG-I to impair host innate immune response, resulting in promotion of HCV propagation. Our data also showed that circulating cFP aggravates pathogenesis of respiratory tract-infecting viruses such as influenza virus and Sendai virus. Thus, attenuating RIG-I-mediated immune responses by cFP is not restricted to HCV.

Since DKPs are produced by various microbial cells, as well as by other organisms, including marine sponges and animals, a more broad question that needs to be addressed is whether other microbial quorum-sensing dipeptide molecules also impact on innate immunity. Among the DKPs tested in this study, only cFP specifically regulated the RIG-1 pathway. Therefore, what remains to be studied is whether other known microbial quorum sensing molecules suppress or augment host innate immune responses. Recently, gut microbiome (population diversity and abundance of each member of the microbial community) has also been emphasized as an important modulator controlling the progress of diverse diseases. Thus, it would be of interest to investigate whether gut microorganisms act as either bacterial pathogens regulating viral disease or through a secreted quorum-sensing molecule by dysregulating RIG-1 or other PRRs.

In summary, we demonstrated that V. vulnificus cFP blunts the establishment of RIG-1-mediated antiviral response, providing an elegant example of a microbial quorum sensing molecule dysregulating host innate immunity. Our results pave a new avenue to the understanding of inter-pathogen interplays that might determine the outcomes of diseases developed by single infection by each pathogen. Further studies are warranted to understand pathophysiological functions of other bacterial quorum sensing molecules in the context of tripartite (host–virus–microbe) interactions.

Methods

Reagents

Cyclo(L-Phe-L-Pro) (cFP) and Phe-Pro were purchased from Bachem (Bubendorf, Switzerland) and Sigma-Aldrich (St. Louis, MO, USA), respectively. Other cyclic dipeptides including biotinylated cFP and IADENS-labeled cFP were synthesized in-house at Sogang University, Seoul Korea. An anti-norovirus receptor 17-DMAG, E. coli (O26: B6) lipopolysaccharide (LPS), and polyinosinic:polycytidylic acid, a double-stranded RNA analog (cat no. 30365; 5-poly(c), Supplement Fig. 4a), were purchased from Sigma-Aldrich. CD14 was obtained from R&D Systems (Minneapolis, MN, USA). mCherry–HA-tagged ubiquitin, Ubi plasmid, which expresses a HA-tagged ubiquitin, was provided by Prof. Jong-Bok Yoon (Yonsei University, Seoul, Korea). Lamin A/C, and mouse monoclonal anti-Lamin A/C antibody (clone 14/LaminAC; 1:1,000 dilution) from BD Bioscience (Franklin Lakes, NJ, USA). [3H]Cyclo(Phe-Pro) with specific activity of 2.16 Bq mg⁻¹ (58.3 mCi mmol⁻¹) was synthesized by Curachem (Cheongju, Korea). Mammalian artificial microRNAs such as in

Plasmids transfection in vivo siRNA delivery

The pFFH1 plasmid, which was used to produce infectious HCV (genotype 2a) particles, was provided by Dr. Takaji Waki (National Institute of Infectious Diseases, Kyoto, Japan). The pFFH1/GFP harboring a GFP-coding gene in the context of genotype 2a full-length HCV (FFH1) cDNA clone was provided by Dr. Xulin Chen (Institute for Virus Research, Chinese Academy of Sciences, Wuhan, China). The pC543xHA-Ub plasmid, which expresses a HA-tagged ubiquitin, was provided by Prof. Jong-Bok Yoon (Yonsei University, Seoul, Korea). Plasmids expressing hTLR4, MD2, and CD14 individually were provided by Prof. Seung Hyun Han (Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea). The reporter plasmid pRl-TK, which was used as an internal control for transfection efficiency, was obtained from Promega (Madison, WI, USA). The pFlag-CMV4-RIG-1 plasmid was used to express wild-type human RIG-1 (1–295 amino acids) in cells. The pHriG-1-CARD Flag and pmrI-G1-CARD-Flag carrying a cDNA for the N-terminal two CARD-domain of human (1–284 amino acids) and mouse (1–285 amino acids) RIG-1, respectively, in the pcDNA3.1 expression vector (Invitrogen, Carlsbad, CA, USA) were used to express the C-terminal Flag-epitope-tagged RIG-1 CARD domain to overexpress MARS protein, pFlag-mHMAS plasmid was constructed by inserting the MARS cDNA (RefSeq Accession NM_001012106.1) which was obtained by RT-PCR using the following primers: 5′-TCTAGACTAGTTGGAACAGC-3′ and reverse 5′-GGTACTAGTGTGGAAGCCG-3′ plasmids, into HindIII and XbaI sites of pcDNA3.1 vector (Invitrogen). All plasmids were transfected into cells using Fugene HD transfection reagent (Roche Applied Science, IN, USA) or Lipofectamin 2000 (Invitrogen). pRl8-BG-RIG-1 was used to express an N-terminal (His)₆-tagged, full-length recombinant RIG-1 in E. coli.

HCV genomic RNA was transfected into HuH7 or mouse primary hepatocytes using TransIT mRNA transfection reagent (Mirus Bio LLC, Madison, WI, USA). poly(C), HCV 3' UTR RNA, and siRNA were transfected into cells using Lipofectamine RNAiMAX (Invitrogen) and Poly(I:C) was also transfected into mouse liver tissues using the lipidoid ND98 (98N12-5) reagent. The lipidoid-RNA complexes encapsulated within nanoparticles were prepared as described with slight modifications. Briefly, stock solutions of ND98, polyethylene glycol (PEG) 2000-ceramide (Avanti Polar Lipids, AL, USA), and cholesterol (Sigma-Aldrich), which were all pre-purified by ethanol, were mixed at a molar ratio of 42:10:48. The mixture was dropwise added to 50 mM sodium acetate buffer (pH 5.2) to yield a solution of mixed lipids in 35% ethanol, resulting in formation of empty lipidoid nanoparticles. After extruding the resulting nanoparticles several times through polycarbonate filter membrane with 10 nm diameter pores using an Avanti Mini-Extruder apparatus (Avanti Polar Lipids Inc., Alabaster, AL, USA), poly(C) (10 mg ml⁻¹) in 35% ethanol and 50 mM sodium acetate (pH 5.2) was then added to the nanoparticles at 17.5 (wt/wt) poly(C):total lipids. After incubation at 37 °C for 30 min, poly(C):containing lipidoid nanoparticles were subjected to dialysis against PBS using a Slide-A-Lyzer dialysis cassette (molecular weight cut-off of 3.5 kDa) (Thermo Scientific). The nanoparticles were then dialyzed against PBS, and 10% FBS, 100 U ml⁻¹ of penicillin, 100 µg ml⁻¹ of streptomycin and 0.1 mM nonessential amino acids at 37 °C in 5% CO₂. The murine macrophage cell line RAW264.7, (CRL-3216, ATCC, Rockville, MD, USA) were used as targets. NADPH oxidase inhibitors (3,3′-Diaminobenzidine (DAB), 3-methyladenine, 4-aminoneophyline) were added to the media to inhibit NADPH oxidase activity. Poly(I:C) containing lipidoid nanoparticles were then added to the nanoparticles at 1, 3, 5, and 10 µg ml⁻¹. After 24 h of incubation, cell viability was determined by the Quant-iT RiboGreen RNA assay (Invitrogen).

Cell lines and culture

The human hepatocellular carcinoma HuH7 cell line and HuH7.5, a highly HCV-permissive HuH7.5-derived cell line due to loss of RIG-I function, were kindly provided by Dr. Frank Chisari, Scripps Research Institute, La Jolla, CA, USA were cultivated in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM l-glutamine, 100 U ml⁻¹ of penicillin, 100 µg ml⁻¹ of streptomycin and 0.1 mM nonessential amino acids at 37 °C in 5% CO₂. The murine macrophage cell line RAW264.7 and human embryonic kidney 293T (HEK293T) cell line were cultivated in DMEM supplemented with 10% FBS, 100 U ml⁻¹ of penicillin, and 100 µg ml⁻¹ of streptomycin. HuH7, HEK293T (CRL-3216), and RAW264.7 (TIB-71) cells were purchased from American Type Culture Collection (ATCC; Rockville, MD, USA). Normal human primary hepatocytes (HH, #5200), which were prepared from liver tissues obtained from patients with informed consent from donor or donor’s family aged over 18 years, were purchased from ScienCell Research Laboratories (Carlsbad, CA, USA) and cultivated according to manufacturer’s recommendations. Mouse primary hepatocytes were isolated using an in situ two-step perfusion method and cultured in HCM media on collagen-coated culture plates, as described previously.

Establishment of MAVS knockout Huh7

Huh7 cells were transfected with a mixture of three CRISPR-Cas9-GFP expressing plasmids that individually express a different MAVS-targeting guide RNA (sc-400769, Santa Cruz, CA, USA). GFP-positive cells were selected according to the manufacturer’s instructions. For gene KO analysis by sequencing, genomic DNA was extracted with the Wizard Genomic DNA purification kit (Promega, Madison, WI, USA) and the edited gene was then sequenced by PCR using appropriate primer sets for each guide RNA-targeting site. The resulting PCR product was cloned into pCR2.1-Topo vector (Invitrogen) for sequence analysis.
Viruses and plaque-forming assay. HCV (JFH1, AB047639) RNA was prepared by T7 RNA polymerase-mediated in vitro transcription and electroporated into HuH7 cells, as described previously. Infectious particles in the culture medium were collected by centrifugation and were used for infection experiments, as described previously. Mouse sera, which were derived from HCV genotype (GT) 1b (patient-serum) infected HUVEC/SCID mice transplanted with human hepatoctyes, were obtained from Phoenix Bio (Hirosima, Japan) and used to infect primary human hepatocytes. Murine normal spleen (MNSW-1) cell lysates provided by Prof. Herbert Virgin IV (Washington University School of Medicine, St. Louis, MO, USA) was propagated in RAW264.7 cells, as described previously. Sendai virus (SeV) (Cantell strain; ATCC VR-907) was used in infection experiments. Infection was propagated in HuH7 cells following a protocol described previously. SEV stock was used for mouse infection was prepared by inoculation of 10-day embryonated chicken eggs, as described previously. Influenza A/PR8 (H1N1) virus, a mouse-adapted strain (kindly provided by Prof. Heung Kyeu Lee, KAIST, Daejeon, Korea), was cultivated, as described previously. Plaque forming assays for MNV-1, SeV, and strain (kindly provided by Prof. Heung Kyu Lee, KAIST, Daejeon, Korea), was performed using SYBR green I, as described previously.

Subcellular fractionation. Subcellular fractions of Huh7 cells were isolated by a protocol described previously. Subcellular fractions were enriched with microsomes and cellular membranes, respectively, as reported previously.

Real-time reverse-transcription quantitative PCR. Total RNA from cells or mouse serum was extracted with TRIzol or TRIzol LS reagent (Invitrogen), respectively. HCV plus-sense (genomic RNA) and minus-sense RNA levels were quantified using a TaqMan probe specific for the HCV 5′-UTR region, as described previously. MNV-1 genomic copy number was measured by the TaqMan probe quantification assay. Real-time mRNA quantification for IFN-α, IFN-β, IFN-stimulated gene 56 (ISG56), 2′-5′-oligoadenylate synthetase (2′-5′ OAS), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was performed using SYBR Premix ExTaq (Takara). SeV genome titer was determined by RT-qPCR using specific sets of primers, as described previously, using SYBR Premix ExTaq (Takara). All target gene products for microsomes were quantified relative to GAPDH expression by normalizing to the ΔΔCt method. The primers used for mRNA quantification were previously reported as follows: human IFN-β and human ISG56, human 2′-5′ OAS, and mouse IFN-α and β.

Cell viability. Huh7 cells were split into a 96-well plate (2 × 10^4 cells per well) and treated with various concentrations of cFP for 48 h. Cell viability was measured using an MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay (Promega) according to the manufacturer’s protocol. The IC50 values were calculated using SigmaPlot software (Systat Software Inc., Hounslow, London, UK).

Fluorescence microscopy. JFH1/GFP-transfected Huh7 cells grown on Lab-Tek 4-well chamber slides (Nunc, Roskilde, Denmark) were fixed with 4% paraformaldehyde (Sigma-Aldrich) for 15 min. After washing three times with PBS, nuclei were visualized by staining with 1 μM 4’-6-diamidino-2-phenylindole (DAPI). Fluorescent signal was visualized using a confocal laser scanning microscope (Zeiss LSM 510 META, Carl Zeiss, Oberkochen, Germany). The GFP-positive area among 500 total cells was quantified using ImageJ program (https://imagej.nih.gov/ij/).

Immunoblotting and immunoprecipitation. Cells were lysed in a lysis buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40, 50 mM Na2S·9H2O) supplemented with an EDTA-free protease inhibitor cocktail (Roche). After 5 min incubation at room temperature, sequencing grade TPCK-treated modiﬁed trypsin (Promega) was added to the reaction mixture at a RIG-I:trypsin ratio of 100:1 (w/w) and further incubated at 37°C. The reaction was terminated by addition of 0.5 μg of N-α-Tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) (Sigma), which is an irreversible inhibitor of trypsin. After 5 min incubation at room temperature, protein samples were subjected to SDS-PAGE followed by immunoblotting analysis using a RIG-I-specific antibody.

Limited trypsin digestion of RIG-I. To carry out trypsin proteolysis, 400 ng of purified RIG-I with or without cFP (1 mM) was mixed with 1 μg of HCV 3′-UTR RNA or poly(I:C) in a 20-μl reaction buffer (20 mM Tris–HCl, pH 8.0, 1.5 mM MgCl2, 1.5 mM DTT, and 70 mM KCl) supplemented with 6.7 μg of AMP-PNP (Sigma). After 5 min incubation at room temperature, sequencing grade TPCK-treated modiﬁed trypsin (Promega) was added to the reaction mixture at a RIG-I:trypsin ratio of 100:1 (w/w) and further incubated at 37°C. The reaction was terminated by addition of 0.5 μg of N-α-Tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) (Sigma), which is an irreversible inhibitor of trypsin. After 5 min incubation at room temperature, protein samples were subjected to SDS-PAGE followed by immunoblotting analysis using a RIG-I-specific antibody.

Animal experiments. BALB/cCrSlk, non-obese diabetic/severe combined immunodeficient (NOD/SCID); strain NOD.CB17-PrkdcSCID/ARC, and DBA/2CrSlc mice were purchased from Central Lab Animal Inc. (Seoul, Korea). C57BL/6 NOD/SCIDJio mice were purchased from Oriental Bio (Seongnam, Korea). For isolation of mouse primary hepatocytes, BALB/c male mice (8 weeks of age) were anesthetized with avertin (intraperitoneally) and perfused via the portal vein into liver tissues with warmed EGTA solution (37°C) at a flow rate of 2 ml min⁻¹ for 5 min. Then, livers were perfused with collagenase in the same solution (37°C) supplemented with 5 mM CaCl2 and 50 mM HEPEs at a flow rate of 5 ml min⁻¹ for 5 min. After dispersal and filtering of cells from perfused liver tissues, hepatocytes were separated by centrifugation at 50 × g for 5 min. Hepatocytes from MAVS knock-out mice (B6;129-Mavs−/−) [138] which were obtained from the Jackson Laboratory (stock No: 008634; Bar Harbor, ME, USA), were also similarly prepared.
To evaluate in vivo efficacy of cFP on type I IFN induction, BALB/c male mice (8 weeks of age, 20–23 g body weight) were given ND98-formulated lipid nanoparticles carrying poly(i:C) (1 mg per kg body weight), and dipeptides dissolved in 100 μl of saline (50 mg per kg body weight) through the tail vein. After 8 h, large lobes of the liver were retrieved and homogenized to extract total RNA using TRIzol reagent.

To evaluate in vivo efficacy of cFP on HCV, NOD/SCID mice bearing HCV-replicating Huh7 xenografts were treated with HCV RNA-transfected cells mixed with Matrigel were injected subcutaneously or into the large lobes of the livers of anesthetized immunodeficient NOD/SCID male mice (5 weeks of age, 18–20 g body weight). Four weeks after implantation, dipeptides (50 mg per kg body weight) were given by i.v. injection following administration of poly(i:C) (1 mg per kg body weight) formulated within lipoid nanoparticles. Serum HCV titer was monitored by RT-qPCR. DRA/2 mice (6-week-old male, 15–17 g body weight) were used for SeV infection experiments. Mice were infected intranasally with 10^5 PFU of SeV in a volume of 50–μl saline. Survival and weight loss were monitored daily for 10 days. Whole lungs of SeV-infected mice were harvested at day 7 post-infection. The lung tissue of each mouse was divided into two parts; one was used for virus titration and the other was processed for H&E staining. Lung tissues were homogenized in 1 ml PBS and centrifuged to harvest supernatants. Virus titers were determined by plaque assays and RT-qPCR.

To evaluate in vivo effects of cFP on influenza infection, dipeptides (50 mg per kg body weight) were given to C57BL/6 mice (9-week-old male) via i.v. injection before intranasal infection with 10^5 PFU of SeV in a volume of 50–μl saline. Survival and weight loss were monitored daily for 10 days. Whole lungs of SeV-infected mice were harvested at day 7 post-infection. The lung tissue of each mouse was divided into two parts; one was used for virus titration and the other was processed for H&E staining. Lung tissues were homogenized in 1 ml PBS and centrifuged to harvest supernatants. Survival curves were analyzed using log rank test.
42. Moon, J. S. et al. Inhibition of hepatitis C virus in mouse models by lipidoid nanoparticle-mediated systemic delivery of siRNA against PRK2. *Nanomed.: Nanotechnol., Biol. Med.* 12, 1489–1498 (2016).

43. Rehwinkel, J. et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. *Cell* **140**, 397–408 (2010).

44. Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. *J. Immunol.* **175**, 2851–2858 (2005).

45. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. *Nat. Immunol.* **5**, 730–737 (2004).

46. Loubier, J., Brunel, J., Uchikawa, E., Cusack, S. & Gerlier, D. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. *BMC Biol.* 13, 54 (2015).

47. Lassig, C. et al. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. *eLife* 4, e01859 (2015).

48. Anchisi, S., Guerra, J. & García, D. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA. *mBio* 6, e02349 (2015).

49. Jang, M. A. et al. Mutations in DDXX8, which encodes RIG-I, cause atypical Singleton-Merten syndrome. *Am. J. Hum. Genet.* 96, 266–274 (2015).

50. Hor, L. I., Chang, K. Y., Chang, C. C., Lei, H. Y. & Ou, J. T. Mechanism of high susceptibility of iron-overloaded mouse to *Vibrio vulnificus* infection. *Microbiol. Immunol.* **44**, 871–878 (2000).

51. Mertwally, A. M., Zaid, O. O. & Zain, N. N. Clinical significance of hepatic iron deposition and serum iron values in patients with chronic hepatitis C infection. *Am. J. Gastroenterol.* 99, 286–291 (2004).

52. Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver disease: update. *Heptatology* **48**, 322–335 (2008).

53. Mencin, A., Kluse, J. & Schwabe, R. F. Toll-like receptors as targets in chronic liver diseases. *Gut* **58**, 704–720 (2009).

54. Hsueh, P. R. et al. *Gut* **10**, 1363–1368 (2004).

55. Gulig, P. A., Bourdage, K. L. & Starks, A. M. Molecular pathogenesis of *Vibrio vulnificus*. *J. Microbiol.* **43**, 118–131 (2005).

56. Martins, M. B. C. I. Diketopiperazines: biological activity and synthesis. *Tetrahedron* **63**, 9932 (2007).

57. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. *Nat. Rev. Genet.* 13, 260–270 (2012).

58. Vashist, S. et al. Molecular chaperone Hsp90 is a therapeutic target for noroviruses. *J. Virol.* **89**, 6532–6563 (2015).

59. Wobus, C. E. et al. Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. *PLoS Biol.* 2, e432 (2004).

60. Chattopadhyay, S. et al. Role of interferon regulatory factor 3-mediated apoptosis in the establishment and maintenance of persistent infection by Sendaivirus. *J. Virol.* **87**, 406–411 (2013).

61. Kim, S. et al. H-Ras is degraded by Wnt/beta-catenin signaling via beta-TrCP-mediated polyubiquitylation. *J. Cell. Sci.* 122, 842–848 (2009).

62. Lee, W. et al. The antiviral activity of poly-gamma-glutamic acid, a polypeptide secreted by *Bacillus sp*., through induction of CD14-dependent type I interferon responses. *Biometals* 34, 9700–9708 (2013).

63. Kim, G. W. et al. Hepatitis C virus core protein promotes miR-122 destabilization by inhibiting GLD-2. *PLoS Pathog.* 12, e1005714 (2016).

64. Wobus, C. E. et al. Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. *PLoS Biol.* 2, e432 (2004).

65. Chattopadhyay, S. et al. Role of interferon regulatory factor 3-mediated apoptosis in the establishment and maintenance of persistent infection by Sendai virus. *J. Virol.* **87**, 16–24 (2013).

66. Penas, J. et al. Sendai virus intra-host population dynamics and host immunocompetence influence viral virulence during in vivo passage. *Virology* 2, vEv008 (2016).

67. Ichinohe, T., Lee, H. K., Ogura, Y., Flavell, R. A. & Iwasaki, A. Inflammamson recognition of influenza virus is essential for adaptive immune responses. *J. Exp. Med.* **206**, 79–87 (2009).

68. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. *Nat. Protoc.* 3, 1101–1108 (2008).

69. McCormick, J. C., Chaillonor, L., Macdonald, A., Rowlands, D. J. & Harris, M. Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. *J. Gen. Virol.* 85, 429–439 (2004).

70. Li, K., Chen, Z., Kato, N., Gale, M. Jr. & Lemon, S. M. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. *J. Biol. Chem.* **280**, 16739–16747 (2005).

71. Tsukiyama-Kohara, K. et al. Activation of the CKI-CDK-Rb-E2F pathway in full genome hepatitis C virus-expressing cells. *J. Biol. Chem.* **279**, 14531–14541 (2004).

72. Christensen, J. E. et al. Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade. *J. Immunol.* **182**, 1079–1087 (2009).

73. Samali, A., Cai, J., Zhivotovsky, B., Jones, D. P. & Orrenius, S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. *EMBO J.* **18**, 2040–2048 (1999).

74. Clark, K., Flater, L., Peggie, M. & Cohen, P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. *J. Biol. Chem.* **284**, 14136–14146 (2009).

Acknowledgements

We thank Drs. Takaji Wakita (National Institute of Infectious Diseases, Japan), Xulin Chen (Institute for Virus Research, Chinese Academy of Sciences, China), John Hiscott (McGill University, Montreal, Quebec, Canada), Herbert W. Virgin (Washington University School of Medicine, St. Louis, USA), Frank Chisari (Scripps Research Institute, La Jolla, CA, USA), Christopher Seeger (Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA), and Jong-Bok Yoon (Yonsei University, Seoul, Korea) for reagents. This work was supported by grants from the National Research Foundation of Korea funded by the Korean government (MSIP) (2014R1A2A201065522, 2016R1A5A1004694, and COMPA 2015-11-1670) and in part by the NRF grant NRF-2017R1A2B2069666 to K.-S.K. and the National Research Council of Science & Technology (NST) grant CRC-16-01-KRICT to S.-J.K. W.L. was the recipient of a post-doctoral fellowship (2017-12-0035) from Yonsei University. S.-H.L., M.K., J.-S.M., G.-W.K., and H.-G.J. were in part supported by the BK21 PLUS program.

Author contributions

W.L., S.-H.L, H.K.L., S.-J.K., K.-S.K. and J.-W.O. conceived and designed the experiments. I.H.K., H.K.L., D.-G.A., J.-S.K. and K.-S.K. provided reagents. W.L., S.-H.L, M.K., J.-S.M., G.-W.K., H.-G.J., J.E.O., H.E.J., K.B.K and D.-G.A. performed experiments. W.L., S.-H.L., H.K.L., S.-J.K. and J.-W.O analyzed the data. W.L. and J.-W.O. wrote the paper with input from S.-H.L, M.K., H.K.L., D.-G.A., S.-J.K. and K.-S.K. J.-W.O supervised the studies.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-04075-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018