Hematological value of captive Asian Elephants *Elephas maximus* around Chitwan National Park, Sauraha, Nepal

Roshan Ghimire 1, **Sagar Regmi** 2, **Rakshya Shrestha** 1, **Amir Sadaula** 4 & **Janardan Dev Joshi** 3

1 Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Chitwan 44200, Nepal.
2 National Trust for Nature Conservation, Sauraha, Chitwan 44200, Nepal.
3 ghimireroshan21@gmail.com (corresponding author), 4 saregme@gmail.com, 5 rakshya977@gmail.com, 6 naturalamir@gmail.com, 7 janardan1291@gmail.com

Abstract: Veterinary hematology serves as an important screening procedure to assess general health conditions, diagnosis, and treatment of disease. This study aims to interpret and establish a set of hematology reference ranges for Asian Elephants managed by private and government facilities in Nepal. Blood samples from 50 elephants around Chitwan National Park, Sauraha were collected and hematological parameters such as total erythrocyte count and total leukocyte count were determined. The results show that the majority of hematological values were in line with the values previously published by different authors. The mean erythrocyte and leukocyte counts were reported as 3.32±0.93 × 10^6 cell/µL and 10448±335.49 cells/µL respectively. No sex-associated significant difference was observed in the case of total erythrocyte count, whereas total leukocyte counts varied significantly within sexes. Our findings revealed no significant difference in hematological parameters between government and privately owned elephants. The hematological values from our study can be used as reference values for assessing the health condition of elephants in Nepal. Further research work should be conducted to evaluate the factors affecting hematological parameters.

Keywords: Captive, erythrocyte count, free-ranging, hemocytometer, human-wildlife coexistence, Leukocyte count, mega-herbivore, Proboscidea, rouleaux.
INTRODUCTION

Asian Elephants *Elephas maximus* are the largest of all mammals in Nepal and are one of three species of elephants existing today under the order Proboscidea. Wild elephants in Nepal occur in four isolated populations — the eastern population in Koshi Tappu Wildlife Reserve and Jhapa district, the central population in Chitwan National Park and Parsa National Park, the western population in Bardia National Park and adjoining municipalities, and the far-western population in Suklaphanta National Park and adjoining municipalities (Pradhan et al 2008). Being a mega-herbivore and having long-range movements including dispersing behavior, there is frequent contact of wild elephants with human beings. So, there is a chance of human-wildlife interaction as wild elephants pose a problem to the local communities because of the destruction of private property, crop destruction, attack, and injury (Shrestha 2007). However, captive elephants in Nepal have restricted freedom and have no independent grazing time.

Captive (working) elephants are prone to various health problems including swelling of the eye by foreign body pricks, opacity of the cornea, lameness due to sole pricks, and contusion by hitting rocks and logs. Infection of the sole may occur due to injuries. Various equipment used while controlling the animals, and the pressure of Hauda, a seat to provide passengers a safe and comfortable ride on the back while carrying guests and other loads, and Gaddi, metallic objects with pointed ends to restrain elephants, can cause wounds. Ecto- and endo-parasitism are also a common problem seen in captive elephants. The major infectious diseases affecting the elephant are anthrax, hemorrhagic septicemia, foot and mouth disease, rabies, tuberculosis, tetanus, encephalo-mycocarditis, pox, salmonellosis, and herpes virus infection. Other parasitic diseases affecting blood cells include babesiosis, anaplasmosis, trypanosomiasis, and ehrlichiosis (Miller et al. 2015). The majority of captive elephants in Nepal are found in and around Chitwan National Park and are used for patrolling and tourism purposes. As the majority of captive private elephants are used for tourism purposes, they are economically important, which increases the need for proper veterinary care to improve their health status. Hematology is defined as the study of components of blood (red blood cells (RBC), white blood cells (WBC), Platelets) for diagnosis and monitoring disease (Wolfrum 2010). There is a broad variation in how animals respond to captivity when managed under different conditions of management practices. In general, captive elephants are raised under good management conditions like proper health care, good dietary plans, so they are often healthier than free-ranging wild elephants.

Knowing the normal hematological values plays a major role in the proper diagnosis, treatment, and interpretation of diseases. Precise hematological reference intervals and normal blood values are useful for evaluating the health status of animals, monitoring the course of the disease, proper diagnosis, and to know the treatment efficacy (Silva & Kuruwita 1993; Janyamethakul et al. 2017). Although normal hematological values exist for Asiatic Elephants (Nirmalan et al. 1967; Janyamethakul et al. 2017), they may not be relevant because these values are affected by different genetic and non-genetic factors. So, elephants under different geography or different conditions of feeding, and housing practices may differ in hematologic values. Stress due to daily duty and activity, clinical condition (diseased state), temperature, and sex can make significant differences in hematological values (Swenson 1984; Addass et al. 2012; Yaqub et al. 2013). As no major work has been done in Nepal till now to establish the hematological parameters for captive elephants, the study aimed to evaluate and devise a set of hematology reference ranges for Asian Elephants in Nepal used in the private sector as well as in the government sector.

MATERIALS AND METHODS

Study area

The study was conducted within Chitwan National Park (CNP) which was established in 1973 as the first national park in Nepal and listed as a World Heritage Site in 1984. It is situated in the sub-tropical lowlands of the Inner Terai at an elevation of about 150 m in south-central region of Nepal. Sal *Shorea robusta* trees cover about 70% of the national park, area and the buffer zone mostly consists of agricultural fields along with community forests.

Feeding, housing, and working routine

Captive elephants in Nepal have restricted freedom. Mahouts take the elephants to cut and collect grasses for fodder in the morning (0500–0700 h) and bring them back to the hattisar (place where elephants are kept). The elephants are then taken back to the jungle for grazing from 1000 h to 1600 h. Besides grazing and fodder, they are fed daily with 15 kg of unhusked rice, 1.5 kg molasses, 25 g of table salt, and 25 g of gram packed...
in a bundle of succulent grass collectively called Kuchi. The elephants who have no specific allocated work are freed from chains to collect fodder in the morning and graze during the afternoon.

Blood sample collection

Elephants between 4 to 70 years of age were included in the study. The age of most elephants were known and the age of a few elephants was estimated by the mahouts. Blood samples from 50 elephants from around Chitwan National Park, Sauraha were collected from the auricular vein between 0700–0900 h. All elephants were kept under similar conditions (i.e., housing, feeding, exercise). None of the sampled elephants suffered from visible or known clinical health issues or had been diagnosed and treated for any health issues in the months prior to this study which would alter the blood parameters. Blood samples were divided into two separate tubes:

1) EDTA tube and
2) Serum tube in which the serum was separated by centrifugation at 1,500 rpm for 5 min.

The samples were submitted to NTNC-BCC molecular lab, Sauraha, Chitwan, and hematology was performed within two hours of blood collection. Total RBC count and WBC count were determined using hemocytometer (Neubaur Counting Chamber).

We performed RBC and WBC counts manually using a hemocytometer because blood cells in elephants are larger and rouleaux formation occurs in elephants’ RBC which differ from human blood cells due to which an automated human hematology analyzer can lead to unreliable results (Dutton 2008).

Data analysis

Statistical analysis was done using SPSS Version 20. The reference interval with 95% confidence intervals for each parameter was calculated. P values from the student T-test were used to determine significant differences of blood parameters between males and females and comparison with feeding habit and exercise of animals. The level of statistical significance was set at α <0.05.

RESULTS AND DISCUSSIONS

From our study, the number of captive female elephants was found to be significantly greater (n = 42) than captive male elephants (n = 8) in Sauraha. The aggressive behavior of males makes them more difficult to control under captive conditions, and aggressiveness further increases during the musth period. In the private sector where elephants are primarily used for tourism purposes, only female elephants are kept because they are more docile. But in the government sector, a few male elephants are kept for patrolling purposes. Our study showed that reference hematological values fall within the range published by other authors for Asian Elephants (Janyamethakul et al. 2017).

From our study the average erythrocyte count in male elephant was found to be (3.21±0.15) × 10^6 cells/µL ranging from 2.40 × 106 cells/µL–3.16 × 106 cells/µL. In the case of female elephants, the erythrocyte count ranges from 2.04 × 106 cells/µL–4.95 × 106 cells/µL with an average of (3.34±0.11) × 106 cells/µL. No sex-associated significant difference was observed in elephants from our study. Our study also revealed that the privately owned elephants showed fairly low RBC close to, or at a level which can be judged to be slightly anemic, whilst none of the government owned elephants showed such low RBC levels. The range of the erythrocyte count in both male and female elephants during our study was in line with the values reported by Janyamethakul et al. (2017) and slightly lower than values reported by Debbie & Clausen (1975) in African Elephants. The mean value of erythrocyte was found in line with the values reported by Brown & White, (1980) but greater than the value reported by earlier researchers during their study (Lewis 1974; Woodford 1979; Gromadzka-Ostrowska 1988). Comparably the overall mean value of total erythrocyte count was found to be lower than the mean value reported by Young & Lombard (1967) in African Elephants. The red blood cells in African and Indian elephants are biconcave discs and are large, possibly larger than in any other mammal, and have a mean diameter (MD) slightly greater than 9 pm (1µm = 1 × 10^−6 m) (Brown & White 1980). The larger
size of elephant red blood cells was further reported by Jarernsak Salakij et al. (2005) and Gromadzka-Ostrowska et al. (1988). Despite the large size, the total RBC count in elephants is lower than other mammals. Low erythrocyte count seen in elephants suggests that the erythrocytes are still in the primitive state compared with other mammals and have not attained the efficiency in the transportation of blood gases that results from a reduction in size to facilitate numerical increase (Nirmalan et al. 1967). The lower erythrocyte count in elephants than in other species was supported by values reported by Benjamin (1978) and Egbe-Nwiyi et al. (2000) in species like sheep, goats, cattle, dogs, cats as well as finding of Windberger (2003) in different mammalian species including horses and rabbits. Lewis (1974) also reported that the total erythrocyte value of elephants is lower than in humans. A significant effect of sex was observed in hematological values in numerous species (Etim et al. 2013). But our study showed no sex-associated significant difference in the erythrocyte count. Janyamethakul et al. (2017) also found no sex-associated significant difference in total RBC count in Asian elephants. This finding was further supported by the findings of earlier researchers (Silva & Kuruwita 1993; Salakij et al. 2005).

Our study revealed the average leucocyte count in male elephants to be 12,312.5±729.16 cells/µL ranging from 8,500 cells/µL–15,500 cells/µL. In the case of female elephants, the total leukocyte count ranges from 7,100 cells/µL–16,750 cells/µL with an average of 10,092.86±351.60 cells/µL. Sex-associated significant difference was observed in elephants. The result of our study was in line with the findings of Janyamethakul et al. (2017) and Young & Lombard (1967). However, our mean value was lower than the value reported by Lewis (1974) and Brown & White (1980) in Indian elephants and by Debbie & Clausen (1975) in African elephants. Comparably, the mean value reported during our study was found to be greater than the value reported in African elephants (Woodford 1979). Our finding

Parameters	Unit	All elephants (n = 50)	Male	Female	P-value
RBC count	×10^6 cells/µL	3.32±0.93	3.21±0.15	3.34±0.11	0.607*
WBC count	cells/µL	10448±335.49	12312.5±729.16	10092.86±351.60	0.014*

*—showed significant difference of blood parameters between sexes (P < 0.05) | NS—Not significant.
Table 6. Age, sex, RBC count, and WBC count of sampled elephants during the study.

Elephant’s name	Owner	Sex	Age (in years)	RBC Count (×10^6 cell/μL)	WBC count (cells/μL)
Sudarkali	Private	F	55	2.64	8750
Champakali (Ramu)	Private	F	45	2.62	16750
Punamkali	Private	F	48	2.93	9100
Sherkali	Private	F	60	3.5	7500
Ekatakali	Private	F	35	3.1	9000
Sambridikali	Private	F	15	3.86	9000
Sonakali	Private	F	50	2.6	8400
Gulabkali	Private	F	20	3.67	9570
Selfiekali	Private	F	13	4.67	8900
Basantikali	Private	F	48	3.14	11050
Laxmikali	Private	F	20	3.51	7950
Champakali (Balram)	Private	F	52	3.7	11200
Marutikali	Private	F	50	2.6	13650
Champakali (Wildlife camp)	Private	F	52	2.6	12550
Bijulikali (Wildlife camp)	Private	F	18	3.17	11650
Bobkin (Rain forest)	Private	F	50	3.21	10900
Champakali (Jungle wildlife camp)	Private	F	45	2.04	9450
Ranikali (Forest Resort)	Private	F	45	2.72	8550
Rupakali	Private	F	50	2.74	7550
Shantikali	Private	F	65	2.77	7550
Suvaikali	Private	F	15	4.52	7500
Champakali (Om Rijal)	Private	F	55	3.7	8100
Laxmikali (Bikash Mishra)	Private	F	50	3.05	7650
Tulikali	Private	F	6	3.3	8400
Rajkali	Private	F	50	3.07	16050
Gulabkali (Bikash Mishra)	Private	F	20	2.82	8550
Dipendragaj	Private	M	52	2.4	13250
Sherprasad	CNP	M	15	3.14	15500
Sundarmala	CNP	F	70	3.16	13550
Sanochandranikali	CNP	F	59	2.96	10500
Sano Ramgaj	CNP	M	11	3.76	10950
Binayak Prasad	CNP	M	27	3.68	12650
Madigaj	CNP	M	8	3.2	11450
Prakritikali	CNP	F	15	3.82	9900
Maankali	NTNC	F	55	4.24	11000
Malekali	NTNC	F	70	4.5	11100
Rajgaj	NTNC	M	4	3.23	13450
Junkali	NTNC	F	50	3.01	11850
Luckgaj	NTNC	M	4	3.17	8500
Rampyari	CNP	F	60	2.95	9500
Ganeshkali	CNP	F	31	2.92	12100
Koshikali	CNP	F	31	2.83	11100
Krishnachandragaj	CNP	M	5	3.09	12750
Himanikali	CNP	F	18	3.5	8750
Simshikali	CNP	F	5	3.6	10400
Devikali	CNP	F	50	4.7	7100
Karnalikali	CNP	F	21	3.06	10750
Loktantrakali	CNP	F	13	3.1	8450
Chintamankali	CNP	F	30	4.95	8150
Tamarkali	CNP	F	16	4.8	13400

CNP—Chitwan National Park (Government) | NTNC—National Trust For Nature Conservation (Government).
revealed a sex-associated significant difference (p <0.05) in elephant WBC count which was in agreement with the reports given by Young & Lombard (1967) and Salakij et al. (2005).

A significant difference (p <0.05) was reported in RBC counts among different age groups (i.e., calf, juvenile, sub-adult, and adult, respectively) of elephants during our study. The total leukocyte count of the elephants in the calf age group (age up to 5 years) was found greater than other age groups which is in agreement with findings reported by Nirmalan et al. (1967). However, total leukocyte count in other age groups was found to be similar. This finding was further supported by Niemuller et al. (1990) where he found that the total leukocyte count in Asian elephants was a constant overtime and was similar in the different age groups of elephants (Niemuller et al. 1990). The variation of parameters might be due to different lab errors like sample preparation and transportation, storage, and blood collection method. During our study, a non-significant increase in total leukocyte count was found in a pregnant elephant as opposed to a non-pregnant, non-lactating female elephant. However the high leukocyte count in the pregnant elephant was also reported by Ajitkumar et al. (2009).

The elephants sampled in our study kept under private facilities showed lower average and wider range on RBC and WBC counts compared to elephants within government facilities. The wider range determines higher variation on blood parameters among elephants managed under private facilities. Management practices like deworming, vaccination, and foot dipping are performed on regular intervals within government facilities under the supervision of licensed veterinarians. But the elephants under private facilities were treated and dewormed only at health camps organized by the government at irregular intervals. No specific study has been done to date comparing the blood parameters of elephants kept under private and government facilities in Nepal. Our study involved samples collected within the same season. So the effect of season on hematological value was not possible to determine. However Gromadzka-Ostrowska et al. (1988) reported a slight increase in white blood cell counts and lowered red blood cell counts during the winter season. The lower RBC counts in the winter season may be due to the non-availability of green fodder and a poor diet.

CONCLUSION AND RECOMMENDATIONS

No visible or known clinical health issues had been diagnosed in the sampled elephants; none of the study elephants had been treated for any health issues in the months before this study. Knowing normal hematological values is paramount for proper diagnosis of disease. Further standardization of these values is needed for an accurate diagnosis. Since elephant blood parameters are affected by different factors, further research should be conducted to evaluate the effects.

REFERENCES

Addass, P.A., D.L. David, A. Edward, K. E.Zira & A. Midau (2012). Effect of age, sex and management system on some haematological parameters of intensively and semi-intensively kept chicken in Mubi, Adamawa State, Nigeria. Iranian Journal of Applied Animal Science 2(3): 277–282.

Ajitkumar, G., K.S. Anil, P.C. Alex & T.S. Rajeev (2009). Healthcare management of captive Asian elephants. Kerala Agricultural University, Kerala, India, 40 pp.

Benjamin, M.M. (1978). Outline of Veterinary Clinical Pathology. Iowa State University Press, 351 pp.

Brown, I.R.F. & P.T. White (1980). Elephant blood haematology and chemistry. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 85(1): 1–12.

Debbie, J.G. & B. Clausen (1975). Some hematological values of free-ranging African elephants. Journal of Wildlife Diseases 11(1): 79–82.

Dutton, C.J. (2008). Biology, Medicine, and Surgery of Elephants. The Canadian Veterinary Journal 49(1): 45.

Egbe-Nwiji, T.N., S.C. Nwaosu & H.A. Salami (2000). Haematological values of apparently healthy sheep and goats as influenced by age and sex in arid zone of Nigeria. African Journal of Biomedical Research 3(2): 109–115.

Etim, N.N., G.E. Enyenhi, M.E. Williams, M.D. Udo & E.E.A. Offong (2013). Haematological parameters: indicators of the physiological status of farm animals. British Journal of Science 10(1): 33–45.

Gromadzka-Ostrowska, J., K. Jakubów, B. Zalewska & Z. Krzywicki (1988). Haematological and blood biochemical studies in female domesticated Indian Elephants (Elephas maximus L.), Comparative Biochemistry and Physiology. Part A: Physiology 89(3): 313–315. https://doi.org/10.1016/0300-9629(88)90311-6

Janyamethakul, T., S. Sripiboon, C. Somgird, P. Pongsopawijit, V. Panyapornwithaya, S. Klinhom, J. Loythong & C. Thitaram (2017). Tayland’da evcil asya filinin (Elephas maximus) kan ve biyokimyasal referans Aralıkları. Kafkas Universitesi Veteriner Fakultesi Dergisi 23(4): 665–668. https://doi.org/10.9775/kvfd.2017.17380

Lewis, J.H. (1974). Comparative hematology: studies on elephants, Elephas maximus. Comparative Biochemistry and Physiology Part A: Physiology 49(1): 175–181.

Miller, D., B. Jackson, H.S. Riddle, C. Stromme, D. Schmitt & T. Miller (2015). Elephant (Elephas maximus) health and management in Asia: Variations in veterinary perspectives. Veterinary Medicine International Volume 2015: Article ID 614690. https://doi.org/10.1155/2015/614690

Niemuller, C., P.A. Gentry & R. M. Utrup (1990). Longitudinal study of haematological and biochemical constituents in blood of the Asian Elephant (Elephas maximus). Comparative Biochemistry and Physiology. A. Comparative Physiology 96(1): 131–134.

Nirmalan, G., S.G. Nair & K.J. Simon, (1967). Hematology of the Indian Elephant (Elephas maximus). Canadian Journal of Physiology and Pharmacology 45(6): 985–991.
Pradhan, N.M.B., A.C. Williams & M. Dhakal (2008). Current Status of Asian Elephants in Nepal, 35(January), 1–6. Retrieved from papers2://publication/uuid/28184549-15F1-421A-A472-ABD480F9FC9
Salakij, J., C. Salakij, N.-A. Narkkong, S. Apibal, P. Suthunmapinuntra, J. Rattanakukuprakarn, G. Nunklang & M. Yindee (2005). Hematology, cytochemistry and ultrastructure of blood cells from Asian Elephant (Elephas maximus). Agriculture and Natural Resources 39(3): 482–493.
Shrestha, R. (2007). A Case Study on Human-Wildlife Conflict in Nepal: with Particular Reference to Human-Elephant Conflict in Eastern and Western Terai Regions, 64 pp.
Silva, I.D. & V.Y. Kuruwita (1993). Hematology, plasma, and serum biochemistry values in free-ranging elephants (Elephas maximus ceylonicus) in Sri Lanka. Journal of Zoo and Wildlife Medicine 434–439.
Swenson, M.J. (1984). Physiological properties and cellular and chemical constituents of blood, pp. 15–40. In: Duke, H.H. (ed.). Dukes’ Physiology of Domestic Animals. Cornell University Press, USA.
Windberger, U., A. Bartholovitsch, R. Plasenzotti, K.J. Korak & G. Heinze (2003). Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Experimental Physiology 88(3): 431–440.
Wolfrum, R. (2010). Introduction and approach. Recueil Des Cours, Collected Courses 272(2007): 165–196. https://doi.org/10.1163/177589004112378.155-410.2
Woodford, M.H. (1979). Blood characteristics of the African Elephant (Loxodonta africana cyclotis). Journal of Wildlife Diseases 15(1): 111–113.
Yaqub, L.S., M.U. Kawu & J.O. Ayo (2013). Influence of reproductive cycle, sex, age and season on haematologic parameters in domestic animals. Journal of Cell Animal Biology 7(4): 37–43.
Young, E. & C.J. Lombard (1967). Physiological values of the African Elephant (Loxodonta africana). The Veterinarian 4: 169–172.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

September 2022 | Vol. 14 | No. 9 | Pages: 21751–21902
Date of Publication: 26 September 2022 (Online & Print)
DOI: 10.11609/jott.2022.14.9.21751-21902

Article

Diversity, distribution, and abundance status of small mammalian fauna (Chiroptera: Rodentia: Eulipotyphla) of Manipur, India
– Uttam Saikia & A.B. Meetei, Pp. 21751–21768

Review

Conservation of Tiger *Panthera tigris* in Nepal: a review of current efforts and challenges
– Pramod Ghimire, Pp. 21769–21775

Communications

Effects of visitor disturbance on tetrapod vertebrates in the Horton Plains National Park, Sri Lanka
– D.M.T. Dhananjani & W.A.D. Mahaupalatha, Pp. 21776–21785

Population density and nesting behaviour of Indian Giant Squirrel *Ratufa indica* (Erxleben, 1777) in Bhimashankar Wildlife Sanctuary, Western Ghats of Maharashtra, India
– Ganesh Rathod, Erach Bharucha & Kranti Yardi, Pp. 21786–21796

First camera-trap confirmation of Tibetan Brown Bear *Ursus arctos pruinosus* Blyth, 1854 (Mammalia: Carnivora: Ursidae) with a review of its distribution and status in Nepal
– Madhu Chetri, Pp. 21797–21804

Age estimation of Tiger *Panthera tigris* (Linnaeus, 1758) and Lion *Panthera leo* (Linnaeus, 1758) (Mammalia: Carnivora: Felidae): applicability of cementum annuli analysis method
– Vinip, Chandra Prakash Sharma, Vinita Sharma, Surendra Prakash Goyal, Heather Stevens & Sandeep Kumar Gupta, Pp. 21805–21810

Hematological value of captive Asian Elephants *Elephas maximus* around Chitwan National Park, Sauraha, Nepal
– Roshan Ghimire, Sagar Regmi, Rakshya Shrestha, Amir Sadaula & Janardan Dev Joshi, Pp. 21811–21817

Foraging strata and dietary preferences of fifteen species of babblers in Sarawak, Malaysia
– Jayasilan Mohd-Azlan, Attiqah Fadzilah Sapian, Andrew Alek Tuen & Chong Leong Puan, Pp. 21818–21825

Effects of wind farm on land bird composition at Kachchh District, Gujarat, India
– Selvaraj Ramesh Kumar, P.R. Arun & A. Mohamed Samsoor Ali, Pp. 21826–21835

New records of odonates from Trongsa and Zhemgang, central Bhutan with a checklist of Jigme Singye Wangchuck National Park
– Mer Man Gurung, Cheten Dorji, Abir Man Sinchuri, Sanjit K. Rai, Karma C. Dendup & Vincent J. Kalkman, Pp. 21836–21844

Land snails of Guwahati, Assam, India
– Girindra Kalita, Pp. 21845–21852

Morphology characterization and phytochemical overview of the Moluccan Ironwood *Intsia bijuga* (Colebr.) Kuntze, a living collection of Purwodadi Botanic Garden, Indonesia
– Melisnawati H. Angio, Elga Renjana & Elok Rifqi Firdiana, Pp. 21853–21861

Woody plant wealth of Therikadu Reserve Forest, Tuticorin, India: a checklist
– V. Muneeswaran & M. Udayakumar, Pp. 21862–21869

Invasive alien plant species of Hassan District, Karnataka, India
– G.M. Prashanth Kumar & Shiddamallayya Nagayya, Pp. 21870–21890

Notes

First photographic evidence of the Binturong *Arctictis binturong* (Raffles, 1821) from Nepal
– Madhu Chetri, Purna Bahadur Ale, Tulasi Prasad Dahal & Karan Bahadur Shah, Pp. 21891–21894

First record of *Chlorophorus jucundus* (Perroud, 1855) (Coleoptera: Cerambycidae: Cerambycinae) from Maharashtra, India
– Yogesh K. Mane & Sunil M. Gaikwad, Pp. 21895–21897

First record of the swallowtail moth *Epiplema adamantina* Inoue, 1998 (Lepidoptera: Uraniidae: Epipleminae) from western Himalaya, India
– Lekhendra & Arun Pratap Singh, Pp. 21898–21899

Visceral tetrathyridiosis *Mesocestoides* sp. (Cestoda: Cyclophyllidea) in a wild Barn Owl *Tyto alba* - a first report and new host record
– P.G. Vimalraj & A. Latchumikanthan, Pp. 21900–21902