The reproductive tract microbiota in pregnancy

Karen Grewal¹,³, David A MacIntyre¹,²,³ and Phillip R Bennett¹,²,³

¹Tommy’s National Centre for Miscarriage Research.
²March of Dimes European Prematurity Research Centre
³Institute of Reproductive & Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK

* Correspondence:
Miss Karen Grewal (karen.grewal04@imperial.ac.uk) and Phillip R. Bennett (p.bennett@imperial.ac.uk)

Keywords: Microbiota in Pregnancy, Reproductive tract microbiota

Abstract

The reproductive tract microbiota plays a crucial role in maintenance of normal pregnancy and influences reproductive outcomes. Microbe-host interactions in pregnancy remain poorly understood and their role in shaping immune modulation is still being uncovered. In this review we describe the composition of vaginal microbial communities in the reproductive tract and their association with reproductive outcomes. We also consider strategies for manipulating microbiota composition by using live biotherapeutics, selective eradication of pathogenic bacteria with antibiotics and vaginal microbiota transplantation. Finally, future developments in this field and the need for mechanistic studies to explore the functional significance of reproductive tract microbial communities are highlighted.
Introduction

Infection has long been recognised as an important risk factor of poor reproductive success. In early pregnancy, infection is implicated in 15% of early and 66% of late miscarriage [1]. Towards the end of pregnancy, it is associated with around 40% of all preterm birth cases [2]. Like other body niches, the lower reproductive tract has co-evolved alongside a rich microbial community that has permitted the formation of important symbiotic relationships that play a crucial role in health and disease [3, 4]. While clinical microbiology has enabled the identification of specific reproductive tract pathogens associated with increased risk of adverse pregnancy outcomes (e.g. Chlamydia trachomatis [5]) recent application of high throughput bacterial DNA sequencing methods has deepened our understanding of how microbiota composition and host interactions effect pregnancy outcomes.

Techniques used to characterise the reproductive tract microbiota

The 21st-century has seen a dramatic improvement in our ability to study the human microbiome because the limitations of culture and microscopy based investigations have largely been superseded by molecular-based approaches, many of which are based upon high-throughput sequencing of bacterial DNA. Culture based techniques, which have been used since the early 20th century, are labour intensive and provide a limited view of the diversity of bacteria in any particular body site. The great majority of bacteria present in the human body require very specific culture conditions which makes comprehensive analysis of bacterial communities by culture almost impossible. Although more sophisticated culture approaches using enhanced culture techniques and microbial culture chips have been developed, the growth of some organisms depends on the metabolic activity of others, which leads to a number of limitations to these techniques [6]. High throughput DNA sequencing approaches have become increasingly affordable enabling their wide spread use for characterisation of complex microbial communities and estimation of the relative abundances of microorganisms in a given body site. Two main sequencing strategies have emerged. Firstly, shotgun metagenomics involves sequencing whole community DNA (bacterial, viral, fungal and host). This technique has the advantage that it potentially explores the genetic diversity and function of the microbiota, and is not limited just to bacteria. A disadvantage is that under certain circumstances a significant proportion of the DNA being sequenced is of host origin. A more widely used technique, commonly termed metataxonomics, metabarcoding or amplicon sequencing, focuses on sequencing and amplifying specific regions of the bacterial 16S ribosomal RNA gene (16S rRNA) [3, 6]. This gene is present in all bacterial species in a variety of copy numbers. It consists of nine variable regions flanked by regions of greater homology across bacterial species. PCR primers can be designed to hybridise to the conserved regions and amplify across one or more variable regions. The identity of the microorganism at genus, species and sometimes strain level can be determined from the DNA sequence of the variable region[6, 7].
Metataxonomics-based characterisation of vaginal microbiota communities

It has been long established that the vagina is not a sterile environment. Gustav Doderlein first described Lactobacilli in 1892 and subsequent work has shown that Lactobacilli dominate most vaginal microbial communities [8]. There is a large body of evidence to suggest that microbial communities that colonise the vagina promote homeostasis and have a substantial impact on reproductive health [9-11]. Taxonomic profiles of vaginal microbial communities can be sorted into a discrete number of categories based on hierarchical clustering of the pairwise distances between samples. This is advantageous because collapsing a hyper-dimensional taxonomic profile into a single categorical variable facilitates data exploration, epidemiological studies, and statistical modelling. One of the first studies to apply this approach to vaginal microbial communities was by Ravel and colleagues who examined samples taken from 396 asymptomatic reproductively aged women. At species level, hierarchical clustering analysis characterised the vaginal microbiota into five community state types (CSTs), four of which were characterised by high relative abundance of specific Lactobacillus species [12]: CST I – Lactobacillus crispatus (L. crispatus), CST II – Lactobacillus gasseri (L. gasseri), CST III – Lactobacillus iners (L. iners), CST IV – ‘high diversity’, CST V – Lactobacillus jensenii (L. jensenii). The CST IV (high diversity) group was characterised by a low abundance of Lactobacillus spp. and an over representation of anaerobic bacteria such as Atopobium, Prevotella, Sneathia, Gardnerella and Mobiluncus [13]. A number of these taxa have been associated with bacterial vaginosis (BV), a polymicrobial disorder that is associated with preterm birth [14], higher risk of acquiring sexually transmitted infections [15], and late miscarriage [16-19].

Other studies using different patient populations have used various forms of clustering analysis to define vaginal microbiome groups or vagina community states specific to those individual patient populations. Recently the Ravel group [20] have sought to standardize and advance the assignment of samples to CSTs by creating VALENCIA (VAginaL community state typE Nearest Centroid clAssifier), a nearest centroid-based tool which classifies samples based on their similarity to a set of racially, ethnically and geographically diverse reference data sets. This approach allows any individual microbiota community to be assigned to one of 13 community state types. There are six Lactobacillus spp. dominant community state types, I-A, I-B, II, II-A, II-B, and V which correspond to the original CST defined by Ravel et al [12], but with the designation expanded to allow for community states that contain a combination of organisms. The original Lactobacillus spp. depleted CST IV is expanded in VALENCIA into CST IV-A, IV-B and five CST IV-C (0-4), to account for the variety of different Lactobacillus spp. deplete bacteria communities. The main advantage of this classification system is that it can characterise the vaginal microbiome in a standardised way to allow comparison of different study datasets. There is a move away from individual classification systems that are not comparable and a drive towards laying different datasets onto this framework.
Vaginal microbiota and reproductive outcomes

The composition of the vaginal microbiota in pregnancy displays a higher abundance of *Lactobacillus* spp. and more stability throughout the entire pregnancy. In both pregnant and nonpregnant women the vaginal microbiota can fluctuate and transition from one CST to another. There are a variety of factors, such as ethnicity, hygiene practises, hormonal fluctuation and contraceptives, that influence the structure and composition of the vaginal microbiota. One of the first longitudinal studies that characterized the vaginal microbiota using DNA sequencing techniques in pregnant and non-pregnant women found that high diversity communities were rarely seen in pregnant women who delivered at term [13]. Even though bacterial communities in pregnancy did appear to shift between CSTs dominant in *Lactobacillus* spp. they rarely transitioned to CST IV. *Lactobacillus* spp. stability in pregnancy may represent an evolutionary adaptation to enhance reproductive fitness and protect against ascending infection. The stability may also be driven by high oestrogen levels in pregnancy as the post-partum state is characterized by a dramatic shift to less *Lactobacillus* spp. dominant communities with increased alpha diversity [21].

Assisted conception

Several studies have focused on how the vaginal microbiota influences assisted reproductive technology outcomes. In a prospective study of 130 infertility patients undergoing in-vitro fertilization (IVF), the clinical pregnancy rate was significantly lower in women with an ‘abnormal’ microbiota (high concentrations of *Gardnerella vaginalis* and/or *Atopobium vaginae*) [22]. In a recent study the vaginal microbiota and metabolome was characterised in recurrent implantation failure (RIF) patients (n=27) compared to patients who achieved a clinical pregnancy with their first frozen embryo cycle (n=40). Vaginal microbiota dominant in *Lactobacillus* spp. was again related to clinical pregnancy while RIF patients had increased microbial diversity [23]. Other fertility studies have also shown that a *Lactobacillus* spp. dominant vaginal microbiota is associated with positive pregnancy outcomes. However, many of these studies have small samples sizes and heterogeneity in their patient populations [24, 25].

Miscarriage

There is currently a relative paucity of data exploring the pregnancy vaginal microbiota and adverse early pregnancy events. Recent work has shown reduced abundance in *Lactobacillus* spp. and increased alpha diversity with first trimester miscarriage [26, 27]. Lactobacillus depleted vaginal microbiota also appears to be a risk factor for ectopic pregnancy [28]. There is limited evidence investigating the early placental pregnancy microbiome and how that relates to reproductive outcome. One recent study used quantitative PCR to test for presence
of *Mollicutes* in endocervical swabs and placental tissue collected early in pregnancy from women experiencing miscarriage (n=89) and controls (n=20). Detection of *Mollicutes* in the placenta was associated with miscarriage and there was also a significant increase in microbial load of *M. hominis*, *U. urealyticum* and *U. parvum* in miscarriage patients compared to the control group. While the authors proposed that this represented ascending infection of placental tissue leading to the adverse event, the presence of these organisms in cervical swabs suggests possibility of contamination during sample collection [29].

Table 1 gives examples of studies which have explored the relationship between the vaginal microbiota and early pregnancy as well as assisted reproduction.

Preterm Birth

A strong body of evidence exists linking the risk of preterm birth and vaginal microbial composition, which has been reviewed in detail elsewhere [30, 31]. The broad themes which emerge from these studies is that in many patient populations *Lactobacillus* spp. depletion is linked to the risk of both spontaneous preterm birth and preterm pre-labour rupture of membranes (PPROM). Several studies have shown that *Lactobacillus crispatus* appears to be protective. There is also some data, largely in white Anglo-Saxon populations that *Lactobacillus iners* is also a risk factor for both cervical shortening and for preterm birth. Our group has characterised the vaginal microbial communities longitudinally from 6-weeks gestation and shown that dominance of the vaginal niche by non-*Lactobacillus* spp. associated with PPROM at all gestational age time points [32], highlighting that the early pregnancy microbiome can influence outcomes that occur at a later timepoint. Women who deliver at term are more likely to have a vaginal microbiota dominant in *L. crispatus* and patients who deliver preterm consistently show increased richness and diversity within the vaginal communities [33-36]. A prospective study examining the vaginal microbiota from patients with a dilated cervix pre and post rescue cerclage, identified reduced *Lactobacillus* spp. abundance in patients with premature cervical dilation and that that *Gardnerella vaginalis* was associated with unsuccessful rescue cerclage [37]. A recent study analysing the vaginal samples of 90 pregnancies that delivered at term and 45 spontaneous preterm birth patients, confirmed that those who delivered at term had a predominance in *L. crispatus*. This study also found specific taxa were more abundant in preterm birth including BV associated bacterium 1 (BVAB-1), *Prevotella* species and *Sneathia amnii*. Metagenomic and metatranscriptomics analysis showed that expression of genes linked to the taxa identified by 16S rRNA and encoding for bacterial secretion systems, key in pathogenicity, was higher in the preterm birth cohort [38]. Table 2 gives examples of studies which have explored the relationship between the vaginal microbiota and risk of preterm birth.

The relationship between preterm birth and neonatal microbiota

The neonatal gut microbiota plays a crucial role in early life, especially in the maturation of the immune system and the metabolism of nutrients. *Bifidobacterium* is a key player in the
neonatal gut microbiota, particularly present in vaginally delivered and breastfed infants. Bifidobacterium selectively digest sugars in breast milk and amino acids into lactic acid which helps to improve infant gut integrity [39]. The mode of delivery has been shown to affect the neonatal intestinal colonisation. Infants born vaginally acquire microbial communities that are related to the maternal gut and vagina. However, those born via caesarean section are mainly colonised by environmental bacteria and have lower numbers of Bifidobacteria and Bacteroides leading to lower diversity and impaired immune responses [40-42]. However, during the first year of life diet influences the gut microbiota and increases diversity [43]. Many studies have also shown that intestinal microbiota of preterm infants show less bacterial diversity, especially in the context of necrotizing enterocolitis and late onset sepsis, and differ considerably to the healthy term infant [44, 45]. A longitudinal study collecting fecal samples in breast fed extreme and moderately/very preterm infants (median gestational age 26 weeks and 30 weeks, respectively) found that gestational age was the main driver of microbiota development. The predominance of Enterococcus was seen in the extremely premature infants but a transition to Bifidobacterium dominance occurred with increasing gestational age in both groups despite the mode of delivery. Antibiotics caused temporary changes in the microbial composition but there was recovery within 2-3 weeks. [46].

Group B streptococcus (GBS) still remains one of the most common causes of neonatal sepsis. The most predictive factor is the presence of GBS in the maternal genital tract during childbirth [47]. A study investigating the relationship between GBS and the vaginal microbial composition in 428 non-pregnant patients found no correlation between community state types and GBS status. However, specific taxa such as Streptococcus spp., Prevotella biva and Veillonella spp. were associated with GBS colonisation [48]. A study exploring the neonatal gut microbiota in GBS positive women found enrichment of Enterococcaceae, Clostridiaceae and Ruminococcaceae in the infant gut at 6 months. However, long-term follow-up will be required to see whether these differences lead to adult disease later in life [49]. A prospective study examining the vaginal composition before and after PPROM correlated the findings to early onset neonatal sepsis. The vaginal microbiota prior to delivery in those cases of placental chorioamnionitis and funisitis found an enrichment of Prevotella, Sneathia, Peptostreptococcus and Catonella spp. and reduced Lactobacillus spp. compared to patients with normal histology. In the cases with early onset neonatal sepsis (EONS) the maternal vaginal microbiota prior to delivery was enriched with Catonella spp and Sneathia spp whereas Lactobacillus crispatus was overrepresented in those who did not develop EONS [50]. This highlights the key involvement of the vaginal microbiota in the development of preterm neonatal sepsis and the potential role for modifying the composition to positively influence neonatal outcome.
Placental microbiota

Much recent research attention has been directed toward establishing whether there is a physiologically normal and functional placental microbiome, abnormalities or imbalances of which may contribute to adverse pregnancy outcome. The belief that reproduction occurs in a sterile environment was supported by studies using culture based techniques, which failed to detect bacteria in the placenta of healthy pregnancies [51]. However, using highly sensitive bacterial DNA sequencing approaches Aagaard et al published the first study that proposed a unique non-pathogenic placental microbiota niche [52] and that the placental microbiota that differed between term and preterm deliveries [53-55]. While it was originally suggested that that these organisms contribute to metabolic function, their low biomass in the placenta questioned the physiological significance. Organisms reported to contribute to the placental microbiota included those commonly found in soda lakes and marine environments [30] suggesting that this apparent placental microbiome is actually reagent and laboratory contamination and that apparent differences for example between term and preterm cases were due to batch effects [56]. Recent studies have addressed this issue by extensively matching the cases being investigated with laboratory controls and could not identify a microbiota within the placenta that was distinguishable from background technical controls [57, 58]. Even in studies where distinct bacteria have been detected by molecular techniques, it is unclear whether these are viable organisms or dead material. The placenta has a role in removing organisms and there is a risk such sensitive techniques are amplifying these cleared microbes. The anatomical, physiological and immunological barriers that exist at the maternal-fetal interface to prevent microbial invasion also argue against the likelihood of a normal placental microbiome. If a unique microbiome existed in the placenta an immunologically naïve fetus could be overwhelmed [51]. Therefore, there may be bacteria present at a low level in the placenta but given the function of the placenta, normal bacterial colonization and development of a placental niche seems unlikely [59].

A recent study by Goffau et al found no evidence of bacterial signals from placental samples of pregnancies complicated by preterm birth, pre-eclampsia and small for gestational age infants (n=318) or uncomplicated pregnancies (n=219). This study found that the main source of bacterial DNA was from the laboratory reagents. However, *Streptococcus agalactiae* (Group B Streptococcus) was detected using 16S rRNA amplification and verified by metagenomics and quantitative PCR, in the placenta of 5 % of women prior to the onset of labour, although there was no association with complicated pregnancies. Therefore, while the study concluded that a resident placental microbiome did not exist, bacterial placental colonisation can be present although is unlikely to contribute to the majority of complicated pregnancies [60]. Studies that have examined pathogens such as Salmonella on human
placental villous explants from different gestational ages demonstrated that the bacterial burden was highest in the first trimester explants. Therefore, the first trimester may be a more vulnerable time and placental colonisation infection needs to be carefully considered in relation to poor outcomes at this gestation [61]. In the case of spontaneous preterm birth associated with chorioamnionitis specific bacteria such as *Mycoplasma* spp. and *Ureaplasma* spp. have been identified in the placenta [62, 63]. Therefore, while the evidence to support a functional placental microbiota is weak, in some cases there may be placental pathogenic colonization seeded from ascending vaginal infection or haematogenous spread. It is also notable that the majority of studies investigating evidence of placental microbial colonisation have focused on term and preterm placentas collected vaginally or by caesarean section. Table 3 summarizes the current evidence regarding the placental microbiome in pregnancy at any gestational age.

Endometrial Microbiome in reproduction

An increasing body of work has focused on the existence of the endometrial microbiome. While many studies are confounded by vaginal contamination and low biomass there is emerging evidence that the lower uterine microbiome is distinct and could be contributed to by the vaginal microbiota [64]. A systematic review assessing the effect of the endometrial microbiome on artificial reproductive technologies (ART) showed that an abnormal endometrial microbiome was associated with poor ART outcomes [65]. More recent work has described the use of molecular approaches to characterise the endometrial microbiota at the time of single euploid embryo transfer which amplified bacteria within the embryo catheter tip [66]. A study evaluating paired endometrial fluid and vaginal aspirates samples in 13 women found different bacterial genera in the uterine cavity compared to paired vaginal samples. The presence of non-*Lactobacillus* dominated microbiota in the endometrium was also associated with decreased implantation and live birth rates [67]. These findings were corroborated in slightly larger studies where a non-Lactobacillus dominated endometrial microbiota was higher in infertile patients [68]. Nonetheless small sample sizes and limited laboratory contamination controls have not been able to address the impact of cross contamination from the high biomass in the vagina. The relatively low biomass in the uterine cavity can also lead to molecular techniques being susceptible to background contamination. Studies have tried to account for these limitations by collecting samples from abdominal hysterectomies and incorporating extraction kit controls. Winters et al., reported a resident microbiota in the middle endometrium of 60% of women undergoing a hysterectomy that principally consisted of *Acinetobacter*, *Pseudomonas*, Comamonadaceae, and *Cloacibacterium* that were not present in background technical controls, or other body sites except the cervix [69]. Studies that collect samples abdominally also corroborate these
microbial profiles and rarely detect high levels of *Lactobacillus* spp. within the endometrium [64]. Nonetheless these results need to be verified by complementary techniques such as microscopy and culture and further studies are required to understand the signalling pathways activated by these microbes and the metabolites synthesized to appreciate the impact on reproduction and fertility [70]. Table 4 demonstrates the current studies to date that have evaluated the endometrial microbiota.

Mechanisms that link the vaginal microbiota to pregnancy outcomes

Many of the studies exploring the link between the vaginal microbiota and pregnancy outcomes have been associative with little insight into the mechanisms that trigger adverse events. Nonetheless, the protective effects of *Lactobacillus* species against pathogen colonisation are quite well described. Lactobacilli utilize breakdown products of glycogen within the vagina to produce lactic acid which creates an acidic pH that deters the growth of many other bacteria, as well as upregulating autophagy which clears intracellular pathogens from vaginal epithelial cells [71]. Lactobacilli also produce bacteriocins to eliminate other bacteria and strengthen their dominance [72, 73]. *Lactobacillus crispatus*, *L. gasseri* and *L. jensenii* produce both the L and D isomers of lactic acid whereas *L. iners* has a smaller genome that lacks the gene encoding the enzyme required to produce D-lactic acid. Relevant to reproductive tract health, the D isomer of lactic acid has been shown to downregulate matrix metalloproteinase -8 (MMP-8) production which breaks down the cervical plug that inhibits entry of bacteria to the upper genital tract [71]. Moreover, vaginal microbiota dominant in *L. crispatus* demonstrate increased autophagy and lower cellular stress compared to women dominated by *L. iners* [74]. Therefore even within the Lactobacillus genera, certain species such as *L. iners* are not as effective at out competing other species and thus associated with transitions to 'high diversity' microbial states [75]. A recent study investigating the interaction between the different strains of Lactobacilli and decidualized endometrial cells in vitro found that *L. crispatus* was significantly more successful at attaching to the host cells compared to other Lactobacillus strains. In addition the interaction between *Lactobacillus* and endometrial cells did not cause inflammation or host cell death [76].

Many studies have focused on the correlation between high diversity vaginal microbial composition and inflammatory mediators as an explanation for poor outcomes. Kindinger et al reported in a case control study of nearly 700 patients that pregnancy outcome in women at high risk of preterm birth who had undergone cervical cerclage was highly dependent upon the suture material used for the procedure. Use of the commonly used braided suture material, compared to monofilament material, was associated with increased risk of both intrauterine fetal death and preterm birth. The braided material was shown to induce, in some women, a persistent shift towards a reduced *Lactobacillus* spp. composition and enrichment of pathobionts. This was associated with increased
inflammatory cytokines and interstitial collagenase excretion into the cervico-vaginal fluid and early remodelling of the cervix. This uncovered how the interaction with the host could induce an adverse microbial composition and therefore alter reproductive outcomes [77]. Other longitudinal cohort studies have also demonstrated that preterm birth associated taxa correlate with pro inflammatory cytokines in the cervico-vaginal fluid [38], although this is influenced by host ethnicity and probably genetics and the ultimate adverse outcome involves the interplay between the microbiota and immune system.

Modifying the cervicovaginal microbiota

Antibiotics

The current international guidance for the treatment of vaginal conditions such as bacterial vaginosis recommends metronidazole, clindamycin or tinidazole administered orally or vaginally. However, high recurrence rates are still reported following treatment and many studies report antimicrobial resistance [78]. Antibiotics themselves may be directly harmful in early pregnancy and can increase the risk of spontaneous miscarriage. Macrolides, quinolones and tetracyclines all increased the risk of miscarriage and should be given with caution [79]. However, the large body of evidence that vaginal microbial composition can influence reproductive outcomes, suggests the possible therapeutic role of agents that can change that composition. Several have examined the role of antibiotics in pregnant patients with BV in relation to the risk of preterm birth. The largest randomized control trial, which screened 84,530 women in early pregnancy and randomised 3105 women with BV to an oral clindamycin treatment arm and placebo arm, found no risk reduction for late miscarriage (16-22 weeks) or spontaneous very preterm birth (22-32 weeks) [80]. A subsequent meta-analysis confirmed these findings [81] although highlighted heterogeneity of the studies included, with different patient cohorts and antibiotic regimes being compared. Antimicrobial resistance genes are present in the vaginal microbiome of patients with BV symptoms may also influence the use of antibiotics in this field [82]. The formation of biofilms are now implicated in BV and the inability of antimicrobials to penetrate this matrix is also likely to result in treatment failure and resistance [83].

There is currently no evidence that antibiotic prophylaxis reduces the risk of preterm birth [84]. The ORACLE-II Study showed that, in women in spontaneous preterm labour, neither erythromycin, co-amoxiclav or a combination of two had any effect upon a composite outcome of neonatal death, chronic lung disease, or major cerebral abnormality on ultrasonography before discharge from hospital [85]. Its follow-up study showed that the prescription of antibiotics was associated with an increase in functional impairment among their children at 7 years of age although the overall risk was low. The ORACLE-I study, in women with PPROM showed that the composite outcome of short-term respiratory function, chronic lung disease and major neonatal cerebral abnormality was reduced with the use of...
erythromycin. But the use of co-amoxiclav was associated with a significant increase in the occurrence of neonatal necrotizing enterocolitis [86]. At the seven year follow-up neither antibiotic had had a significant effect on the overall level of behavioural difficulties experienced, on specific medical conditions, or on the proportions of children achieving each level in reading, writing, or mathematics at key stage one [87]. A recent study has shown that prescription of erythromycin in after PPROM has a tendency to convert a healthy Lactobacillus dominant vagina microbiota to Lactobacillus depletion which is then a risk factor for early adverse neonatal outcomes [50]. It is likely that for antibiotics to have any benefit in these contexts we will need to develop tools to allow them to be properly targeted at well-phenotyped individuals.

Live biotherapeutics (Probiotics)

There is a growing interest in the potential to modulate the vaginal microbiota using probiotics or live biotherapeutic products. A systematic review of oral probiotic use in pregnant women at low risk for preterm birth did not find a reduction in the incidence of preterm birth (<37 weeks)[88]. Recent studies have shown that oral probiotics administered in early pregnancy do not modify the vaginal microbiota [89, 90]. Subsequently a systematic review evaluated the use of vaginal probiotics in BV and vulvovaginal candidiasis. The use of vaginal probiotics was promising in BV cure and prevention, but of the 13 studies included, five had medium and eight had high overall risk of bias. There was also minimal detection of probiotic strains after the dosing period, implying a lack of colonization. There was considerable heterogeneity in these trials in terms of probiotic strain, length of use and duration between last probiotic use and vaginal sample collection [91]. It is probably the case that it will not be possible to colonise the vagina with live biotherapeutics administered orally. The apparent protective effect of *L. crispatus* in preterm birth, and perhaps also in miscarriage and other adverse pregnancy outcomes suggests that a live biotherapeutic containing that organism and administered vaginally, might be therapeutically valuable. A recent randomized double-blind placebo controlled trial in 228 women found vaginally administered *L. crispatus* prevented BV recurrence after metronidazole treatment [92]. This work encourages future trials to focus on vaginal administration of *L. crispatus* in pregnancy to influence the vaginal composition and improve pregnancy outcome.

Vaginal microbiome transplant

Although the vaginal microbiota is much less rich and diverse than the microbiota of other body compartments, especially the gut, it nevertheless remains possible that most effective colonisation strategy would be achieved by biotherapeutic treatment using a community of organisms, rather than a single pure organism. The use of fecal microbiota transplantation has been successful in treating recurrent *Clostridium difficile* infection and this has led to subsequent interest in the use of transplanted human material to alter the vaginal microbial
composition [93]. The first exploratory study that used vaginal microbiome transplantation (VMT) targeted 5 patients with recurrent and antibiotic non-responsive BV. In this pilot study four of the five patients had long term remission, which was defined as symptom improvement and microscopic vaginal fluid appearance of a \textit{Lactobacillus}-dominated vaginal microbiome at 5-21 months after VMT. Recurrent VMT was needed in three patients but overall long lasting improvements were seen with a post VMT compositional change dominated in \textit{Lactobacillus} genus. These preliminary results call for randomised control trials to help understand the therapeutic efficacy in women with intractable BV. Given the small sample size the potential risks of this procedure cannot be discounted even though no adverse effects were reported [94].

As mentioned above, the mode of delivery is also thought to have an impact on the microbial composition in newborns and associations have been reported between caesarean section deliveries and an increased risk of obesity and asthma [95, 96]. Although a causal link and mechanism has not been identified, reports suggest the altered microbial composition may impact development of the host immune system and metabolism [97]. A recent pilot study explored exposing newborns to maternal vaginal contents following a caesarean section and found the neonatal gut, oral and skin microbiome was enriched with vaginal bacteria similar to those infants born vaginally. Such organisms were often underrepresented in unexposed caesarean section infants. Nonetheless the sample size was limited, and sampling was only within the first month after birth [98]. Therefore, it is unclear whether such vaginal communities continue to persist in the infant or have any influence on future disease outcomes. Given the complex nature of labour and the lack of understanding between the host-microbe interactions and neonatal immune system, further research is required to evaluate the full potential of this process.

\textbf{Conclusion}

There is a great deal of evidence that demonstrates the reproductive tract microbiota can influence pregnancy outcome. Nonetheless a great deal needs to be uncovered with regards to the mechanisms that trigger adverse events and the relationship between microbial composition and the immune system. A recurring theme that populates the current literature is that \textit{Lactobacillus crispatus} is beneficial to the host and possess key properties that create a stable environment. This paves the way for therapeutic intervention that modifies the microbiome and provides exciting new developments for translational research.
Author/year	Sample	Sample size	Population	Risk of Adverse outcome	Findings
Hyman et al/2012	Vaginal swabs	30 women	IVF	Increased diversity in those who failed to achieve clinical pregnancy	The vaginal microbiota on the day of embryo transfer affects pregnancy outcome.
J Assist. Reprod. Genet. [24]					
Haahr et al/2016	Vaginal swabs	130 women	Completed IVF treatment (n=84)	No protective effect of *Lactobacillus* spp.	Significantly lower clinical pregnancy rate in those patients with abnormal vaginal microbiota.
Human. Repod [22]					
Haahr et al/2019	Vaginal swabs	120 women	IVF	Clinical pregnancy and live birth rate was less likely higher diversity	Overall there was no significant association between CST and reproductive outcome.
J Infect.Dis. [99]					
Koedooder et al/2019	Vaginal swabs	192 women	IVF (fresh embryo transfer)	Higher chance of pregnancy when dominated by *L.crispatus*	Women with a lower percentage of *Lactobacillus* spp. were less likely to have successful embryo implantation.
Human Reprod. [100]					
Wee et al/2019	Vaginal swabs	31 women	History of infertility compared to those with history of fertility	A trend towards infertile women having more *Ureaplasma* in their vagina and *Gardnerella* in cervix.	
Aust NZJ Obstet Gynaecol. [101]	Cervical swabs		Endometrial sample		
Al-Memar et al/2020	Vaginal swabs	Miscarriage (n=78)	Early Pregnancy	Increased risk first trimester miscarriage	First trimester miscarriage associated with reduced *Lactobacillus* spp. dominance and...
Study	Type	Comparison	Findings	Notes	
------------------	--------------------	---	--	--	
Fu et al/2020	Vaginal swabs	RIF (n=27) Control (n=40)	Higher diversity in the RIF group Positive correlation with pregnancy rate	Significant differences are found between RIF patients and those who were pregnant in first frozen embryo cycle.	
Kong et al/2020	Vaginal Total patients (n=475)	IVF Pregnancy (n=238) Non-Pregnant (n=237)	Increased risk of IVF failure Higher abundance of *Lactobacillus* in pregnancy group.	Age, endometrial thickness, reduction in *Lactobacillus* and overgrowth of *Gardnerella, Atopibium* and *Prevotella* was strongly connected with IVF success.	

Table 1. Examples of studies which explore the relationship between the vaginal microbiota and early pregnancy and assisted reproduction.

Abbreviations:
- IVF: In Vitro Fertilisation
- RIF: Recurrent Implantation Failure
- CST: Community State Type
- qPCR: Quantitative Polymerase Chain Reaction
| Author/year | Sample | Sample size | Population | Risk of Adverse outcome | Findings |
|------------------|--------|----------------------|-------------------------------------|-------------------------|--|
| Hyman et al/2013 | Vaginal swabs | Term (n=66) Preterm birth (n=17) | Low and high risk for preterm birth | Increased risk in White patients | Higher *Lactobacillus* spp. content in low versus high risk for preterm birth. |
| Romero et al/2014| Vaginal swabs | Term control (n=72) Spontaneous preterm birth <34 weeks (n=18) | n/a | No | No Increased relative abundance of *Lactobacillus* spp. as pregnancy progressed. No difference in bacterial taxa between those who delivered at term or had preterm birth. |
| Petricevic et al/2014 | Vaginal swabs | Term (n=98) Preterm (n=13) | Low risk pregnant women sampled in early pregnancy | Decreased risk of preterm birth | *L. iners* as a single *Lactobacillus* spp. in early pregnancy may be involved in preterm birth. |
| DiGuilio et al/2015 | Vaginal swabs | Term (n=34) Preterm (n=15) | Low risk for preterm birth | Increased risk for preterm birth | Risk for preterm birth was higher in those with CST 4 followed by raised *Gardnerella* and *Ureaplasma* abundance. |
| Nelson et al/2016 | Vaginal swabs | Term (n=27) Preterm (n=13) | Nulliparous Black women | No | The Shannon diversity index was not significantly different between the groups |
| Kindinger et al/2017 | Vaginal swabs | Term (n=127) Preterm birth <34 weeks (n=18) Preterm birth 34-37 weeks (n=16) | High risk | No | *L. crispatus* shown to be protective against preterm birth. *L. iners* dominance at 16 weeks is a risk factor for preterm birth (<34 weeks). Cervical shortening and preterm birth were not associated with vaginal dysbiosis. |
| Study Authors | Study Design | Cohort Description | Result Summary |
|---------------|--------------|--------------------|---------------|
| Stout et al /2017 AJOG [35] | Vaginal swabs | Term (n=53) Preterm (n=24) | Mixed risk for preterm birth. Predominantly Black women. Preterm cohort included PTL, PROM and pre-eclampsia. Decrease in diversity in preterm birth group. Preterm birth is associated with increased vaginal microbiome instability compared to term. No distinct bacterial taxa correlated with preterm birth. |
| Callahan et al /2017 PNAS [107] | Vaginal swabs | Term (n=85) Mainly White (n=30) Black (n=55) Preterm (n=50) Mainly White (n=9) Black (n=41) | White low risk and Black at high risk of preterm birth. Increased diversity in preterm birth within the predominantly White cohort. L. crispatus low risk of preterm birth in both cohorts. Co-occurrence between L. iners and Gardnerella. No co-occurrence between L. crispatus and Gardnerella. |
| Frietas et al/2018 Microbiome [10] | Vaginal swabs | Term (n=170) Spontaneous preterm birth (<37 weeks) (n=46) | Mixed risk cohort. Higher risk of preterm birth in those with increased diversity. |
| Brown et al/2018 BMC Med. [50] | Vaginal swabs | Term (n=20) PPROM (n=102) Before PPROM (n=15) After PPROM (n=87) | High risk (recruited from prematurity surveillance clinic). Increased risk of PPROM and exacerbated by erythromycin treatment. Lactobacillus spp. depletion and Sneathia spp. were associated with early onset neonatal sepsis. |
| Tabatabaei et al/2019 BJOG [36] | Vaginal swabs | Term (n=356) Spontaneous preterm birth (n=94) <34 weeks (n=17) 34-36 weeks (n=77) | Low risk preterm birth. Increased risk of early (<34 weeks) but not late (34-36 weeks) preterm birth. Decreased risk of early (<34 weeks) but not late (34-36 weeks) preterm birth. Vaginal Lactobacillus and Bifidobacterium may lower the risk of preterm birth. |
| Study | Type of Test | Participants | Findings |
|-------|-------------|--------------|----------|
| Brown et al/2019 Transl Res. [32] | Vaginal swabs | Term (n=36) PPROM (n=60) | Increased risk of PPROM, Decreased risk of PPROM, Increased instability of bacterial communities in PPROM patients in second trimester (increased Prevotella, Streptococcus, Peptoniphilus and Dialister). |
| Elovitz et al/2019 Nat. Comm [108] | Vaginal swabs | Term (n=432) Spontaneous preterm birth (n=107) | Mixed risk cohort for preterm birth, Increased risk of preterm birth in White women, Protective role in all subjects. |
| Brown et al/2019 BJOG [37] | Vaginal swabs | Term (n=30) Exposed fetal membranes (n=20) | High risk patients undergoing rescue cerclage, Increased risk of cervical dilation and exposed membranes, Reduced risk Gardenerella vaginalis prior to rescue cerclage was associated with cerclage failure. |
| Fettweis et al/2019 Nat. Med [38] | Vaginal swabs | Term (n=90) Preterm (n=45) | Predominately African ancestry (term and preterm cohort), Increased risk of preterm birth, Decreased risk of preterm birth, Women who delivered preterm had higher levels of BVAB1, Sneathia amnii and a group of Prevotella spp. |
| Payne et al/2021 AJOG [109] | Vaginal swabs | Term (n=818) Spontaneous preterm birth (n=58) Non-spontaneous preterm birth (n=60) | Mainly White women, Increased risk of spontaneous preterm birth, Decreased risk of preterm birth, Gardnerella vaginalis, L.iners and Ureaplasma parvum were strongly predictive of spontaneous preterm birth |
Table 2. Examples of original research articles that explore the vaginal microbiota in relation to preterm birth.

Abbreviations:
PTL: Preterm labour
PPROM: preterm pre-labour rupture of membranes
CST: Community State Type
Author/year	Sample	Sample size	Mode of delivery	Techniques	Contamination Control	Findings
Aagaard et al/2014 [52]	Villous tree	Term (n=231) Preterm (n=89)	Term Caesarean (n=53) Term Vaginal (n=178) Preterm Caesarean (n=20) Preterm Vaginal (n=69)	16S rRNA gene sequencing V1-3 Metagenomics (subset N=48)	1 blank extraction kit per 11 placental samples (no bands routinely amplified). Reagents were sequenced when non-human sources were identified but details not provided.	There is a unique low abundance placental microbiome. There are observed similarities in non-pregnant oral and placental microorganisms. The placental microbiome differs between preterm and term women and in those with and without antenatal infection.
Doyle et al/2014 [54]	Placental membranes (chorion and amnion)	Spontaneous preterm birth (n=14) Term (n=10) Preterm Vaginal (n=14) Term Caesarean (n=4) Term Vaginal (n=6)	16S rRNA gene sequencing V1-2 and V5-7	No	Bacterial DNA present in preterm and term placental membranes irrespective of mode of delivery. A consistently identifiable bacterial species in preterm labour.	
Antony et al/2015 [55]	1x1x1cm cuboidal section excised from different areas of placenta	Term (n=175) Preterm (n=62) Caesarean (n=54) Vaginal (n=183)	16S rRNA gene sequencing V1-3	No	Excess gestational weight gain associated with altered placental microbiome and metabolic profile in preterm birth patients.	
Study	Tissue Description	Condition	Sample Size	Methodology	Result	Conclusion
---------------------	---	---	-------------	--	-------------------------	---
Zheng et al/2015	Placenta 4x 1 cm³ cuboidal sections (decidua and fetal chorion discarded)	Low birth weight <=3 kg (n=12) Normal birth weight ≥3 kg - <4kg (n=12)		16S rRNA gene sequencing V3-4	No	There is a placental microbiome. The placentas of low birthweight neonates had lower bacterial richness and evenness compared to normal birthweight neonates.
Bassols et al/2016	Villous tree	Gestational Diabetes (n=11) Without Gestational Diabetes (n=11)		16S rRNA gene sequencing V3-4	No	A distinct microbiota profile is present in the placental samples of patients with gestational diabetes.
Collado et al/2016	Placenta, Amniotic Fluid, Colostrum, Meconium	Infant mother pairs (n=15)		16S rRNA gene sequencing V1-3	No	Placenta and amniotic fluid harbour unique microbial communities. Meconium shares features with the microbiota in placenta, amniotic fluid and colostrum. Fetal intestinal colonization could be initiated in-utero. Staphylococcus and Propionibacterium were cultured from placenta.
Lauder et al/2016	Placenta (basal plate biopsy and fetal side biopsy)	Term (n=6)		16S rRNA sequencing V1-2		Microbial signatures in placental tissue could not be distinguished from technical controls.
Study	Sample Source	Sample Description	Categorization	Testing Method	Results/Findings	
-------	---------------	--------------------	---------------	---------------	-----------------	
Prince et al/2016 [63]	Swabs from chorion or villous membrane adjacent to fetal side.	Term (n=27) Preterm (n=44) Term Chorioamnionitis (n=12) Preterm Chorioamnionitis Mild (n=11) Severe (n=20)	Metagenomics Culture for Ureaplasma or Mycoplasma spp.	No Only yields with high reads were included in analysis without concern for contamination	Spontaneous preterm birth patients have a placental microbiota that differed by severity of chorioamnionitis.	
Doyle et al/2017 [112]	Amnion and Chorion	1097 subjects *Rural Malawi setting	Unreported vaginal, caesarean, preterm and chorioamnionitis cases	16S rRNA gene sequencing V5-7 qPCR	A distinct placental microbiome exists. 68.1% of amnion-chorion and 46.8% placental samples had positive qPCR. A varied placental microbial structure is associated with severe chorioamnionitis. The source of bacteria in the placenta overlapped with the vagina and not the oral cavity.	
Gomez-Arango et al/2017 [113]	Placental biopsy from fetal side. Matched oral and fecal samples	37 patients Overweight (n=13) Obese (n=24)	Term Cesarean (n=17) Term Vaginal (n=20)	16S rRNA gene sequencing V6-8	A placental microbiome was identified irrespective of mode of delivery. Placental communities shared more similarity to oral microbiome than gut but this declined with each taxonomic level.	

Notes:
- Term Cesarean
- Preterm Cesarean
- Term Vaginal
- Preterm Vaginal
- Culture for Ureaplasma or Mycoplasma spp.
- Metagenomics
- qPCR
- V5-7
- V6-8
- Voided extraction kit sequenced for every 10 extractions.
- Only placental samples that were positive for bacterial DNA (defined as 40 CFU/μl) were sequenced.
- Sample processing delays increased the chance of positive qPCR.
| Study | Placenta Type | Sample Details | Microbiome Methodology | Water Control | Tissue Specific Profiles |
|---------------------|------------------------|---|------------------------|---------------|--------------------------|
| Parnell et al/2017 | Placenta: Basal plate | 57 Term Women | 16S rRNA gene sequencing (V1-9) | Regent test blanks n=8 | Identified in placental microbiome. Variation is seen in the placental microbiota between amnion-chorion and basal plate. |
| Zheng et al/2017 | Placenta 4x 1cm³ cuboidal sections | Term without macrosomia (n=10) Macrosomia Birth weight>4kg (n=10) | 16S rRNA gene sequencing V3-4 | No | Distinct placental microbiota profile in fetal macrosomia |
| Leon et al/2018 | Placental Villous tree | 256 patients | 16S rRNA gene sequencing V5-7 | Negative extractions and PCR blanks were examined. Samples ≥500 reads were analysed (n=19) | Low level relatively diverse placental microbial signature is present in normal and complicated pregnancies. There was overlap between technical controls and placental samples. A unique preterm placenta did not exist but *Ureaplasma* and *Mycoplasma* enriched the spontaneous preterm birth cohort. |
| Study | Tissue Type | Sample Size | Methodology | Controls | Findings |
|---------------|---------------------------------|-------------|--|---------------------------|--|
| Seferovic et al/2019 [116] | Placental villous tree | 53 patients | Term (n=26) Preterm (n=26) 1 Positive control with histological chorioamnionitis | Term Caesarean (n=22) Term Vaginal (n=4) Preterm Caesarean (n=8) Preterm Vaginal (n=18) | In Situ Hybridization against conserved region of 16S ribosome. 16S rRNA sequencing V4 Metagenomics Environmental swab cultures (inside and outside placental containers). Kit-negative extractions n=6 Very low biomass bacteria were observed by histological and 16S rRNA gene sequencing distinct from environmental controls. Unclear if commensal microbial abundance varies in preterm and term pregnancies. Viability of organisms unknown. |
| De Goffau et al/2019 [60] | Placental terminal villi | 537 women | Caesarean SGA (n=20) PET (n=20) Control (n=40) Vaginal and Caesarean SGA (n=100) PET (n=100) Control (n=198) Preterm (n=100) | 16S rRNA V1-2 Metagenomics qPCR for *Streptococcus agalactiae* | Positive control using S. bongori to compare 16S rRNA with metagenomics For each DNA isolation kit extraction blanks were carried out. No evidence to support a placental microbiome. No relationship between placental infection and SGA, PET or preterm birth. The major source of bacterial DNA in the samples was contamination from laboratory reagents. The only organism consistently present in the placenta of 5% of women prior to labour (detected by three methods) was *Streptococcus agalactiae*. |
| Theis et al/2019 [58] | Amnion-chorion plate villous tree | Healthy Term women (n=29) | Term Caesarean (n=29) 16S rRNA V4 qPCR Metagenomic surveys Bacterial culture | DNA extraction kits (n=6) Laboratory environmental controls (n=16) Operating rooms | No consistent evidence the placenta harbours a unique microbiota. 28/29 placental samples did not yield bacterial cultivars. 18 prominent OTUs accounted for 90% of placental tissue |
There were no consistent differences in the composition of placental samples and technical controls.

Study	Sample Type	Controls	Methods	Findings
Gschwind et al/2020 [117]	Chorionic villi, Umbilical cords, Fetal membranes	Healthy Term pregnancy (n=38), Caesarean (n=29), Vaginal (n=9)	16S rRNA V8-9 qPCR V4 Bacterial culture Metagenomics 16 Extraction blanks (n=16) Reagent extraction kit controls (n=3) Culture media and incubation condition controls (n=38)	Placenta does not harbour specific consistent functional microbiota. No significant viable bacteria or bacterial DNA in the in utero samples collected from caesarean section.
Sterpu et al/2020 [59]	Placenta (maternal, middle and fetal side), Saliva, Vaginal, Rectal, Amniotic fluid, Vernix	76 Term pregnancies Term Caesarean (n=50), Term Vaginal (n=26)	Metagenomics qPCR 16S rRNA V6-8 Bacterial culture PCR reagents DNA extraction controls	16S rRNA gene sequencing and qPCR found bacterial signals that were not distinguishable from background controls. No meaningful comparisons could be made to oral, fecal or vaginal samples. Very few genera detected by 16S rRNA sequencing could be confirmed by culture.
Table 3. Examples of current evidence to date investigating the human placental microbiota at any gestation.

Abbreviations:
OTU: Operational Taxonomic Unit
CFU: Colony Forming Unit
qPCR: Quantitative Polymerase Chain Reaction
SGA: Small for Gestational Age
PET: Pre-eclampsia
GDM: Gestational Diabetes Mellitis

Study Authors, Year & Reference	Sample Types	Patients	Negative or Blank Controls	Cross Contamination	Microbiome Existence	
Olomu et al/2020 [118]	Parenchymal placental tissue, Vaginal, Rectal, Maternal blood, Cord blood	Term patients (n=47), GDM (n=16), Obese (n=16), Normal weight (n=15)	16S rRNA V3-4 qPCR	Multiple negative or blank controls. Sterile swabs exposed to operating rooms or air in sampling room. Reagent, Kit and sequencing reaction controls.	No distinct microbiome existed in placental samples that differed from blank controls. An additional source of cross contamination was identified from high biomass samples being analysed adjacent to low biomass samples.	
Oliveira et al/2020 [29]	Endocervical swabs, Placental tissue	Miscarriage patients (n=89), Control with no history of miscarriage (n=20)	qPCR to detect *M. genitalium*, *M. hominis*, *U. parvum*, *U. urealyticum* and *N. gonorrhoeae*	No	Women with *Mollicutes* detected in placenta had a seven fold higher chance of miscarriage. A positive association between *U. parvum* in placental tissue and miscarriage.	
Author/year	Sampling	Sample size	Population	Techniques	Contamination controls	Findings
---------------------------------	--	-------------	-----------------------------	--	------------------------	--
Kyono et al/2019 Reprod Med Biol. [119]	Endometrial fluid samples collected using IUI catheter	92 women	IVF	Endometrial flora test (Varinos Inc.)	No	Pregnancy rates were not significantly different between Lactobacillus Dominant and Non-Dominant group.
Garcia Grau et al/2019 Pathogens [120]	Endometrial Fluid (6 samples from one patient)	Case report	Infertile patient with history of ectopic pregnancy and 2 miscarriages	16S rRNA sequencing and whole metagenome sequencing	No	This patient had persistent endometrial *G. vaginalis* colonization and virulence genes involved in biofilm and antibiotic resistance.
Liu et al/2019 Fert. Steril [121]	Endometrial biopsy and fluid (7 days after LH surge)	130 infertile women	Infertile women with chronic endometritis (n=12) and without (n=118)	16S rRNA sequencing V4	16 negative controls (8 air swabs and 8 collection controls) Extremely low sequence reads	Bacteria such as *Dialister*, *Bifidobacterium*, *Prevotella*, *Gardnerella* and *Anaerococcus* are more abundant in the endometrial microbiota of women with CE than those without. *Lactobacillus* spp. was more abundant in non-CE microbiota.
Kyono et al/2018 Reprod. Med Biol. [68]	Endometrial fluid and vaginal samples	102 women	IVF (n=79) Non-IVF (n=23) Healthy controls (n=7)	16SrRNA sequencing V4	No	Increased Lactobacillus spp. in endometrium of healthy volunteers compared to
Study	Sample Type	Sample Size	Methodology	Controls	Findings	
-------	-------------	-------------	-------------	----------	----------	
Hashimoto et al/2019	Endometrial fluid	99 women	IVF	16S rRNA sequencing V4, Yes-blank extraction controls and known regent contaminants such as *Sphingomonas* and *Stenotrophomonas* were excluded.	No difference in pregnancy or miscarriage rate between eubiotic or dysbiotic endometrium.	
Winters et al/2019	Mid endometrial Rectal Vagina samples	25 women	Patients having a hysterectomy primarily for fibroids	16S rRNA sequencing V1-2 and qPCR, Background DNA controls	60% of the mid endometrial samples had a bacterial load that exceeded background controls and was distinct from other body sites.	
Chen et al/2017	Endometrial Vagina Cervical mucus Peritoneal fluid Fallopian tubes	95 women	Samples from peritoneal and uterine sites were taken during abdominal surgery	16S rRNA sequencing V4-5 qPCR, Negative controls (sterile swabs from surgeons gloves, and patients skin) Negative laboratory controls	Distinct communities were identified in uterus, fallopian tubes, peritoneal fluid that differed from the vagina.	
Kitaya et al/2019	Endometrial fluid and vaginal samples	46 women	History of RIF (n=28) Infertile women undergoing first IVF (n=18)	16S rRNA sequencing V4, Blank water controls Known contaminants were excluded from endometrial samples.	Endometrial microbiota showed significant variation between RIF and control group.	
Carosso et al/2020	Vaginal Swab Embryo catheter tip	15 women	Does ovarian stimulation and progesterone supplementation modify the endometrial microbiota	16S rRNA sequencing V3-4-6, Blank extraction kit controls *Sphingomonas* excluded from analysis as known	Endometrial microbiota was heterogenous. Endometrial *Lactobacillus* spp. was reduced.	
Table 4. Examples of current evidence exploring the endometrial microbiota in reproduction.

CE: Chronic endometritis
qPCR: Quantitative Polymerase Chain Reaction
IVF: In-Vitro Fertilisation
RIF: Recurrent Implantation Failure
References

1. Giakoumelou S, Wheelhouse N, Cuschieri K, Entrican G, Howie SE, Horne AW. The role of infection in miscarriage. Human reproduction update. 2016;22(1):116-33.
2. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science (New York, NY). 2014;345(6198):760-5.
3. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392-400.
4. Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell. 2016;164(3):337-40.
5. Gravett MG, Nelson HP, DeRouen T, Critchlow C, Eschenbach DA, Holmes KK. Independent associations of bacterial vaginosis and Chlamydia trachomatis infection with adverse pregnancy outcome. Jama. 1986;256(14):1899-903.
6. Fraher MH, O'Toole PW, Quigley EM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9(6):312-22.
7. Renvoisé A, Brossier F, Sougakoff W, Jarlier V, Aubry A. Broad-range PCR: past, present, or future of bacteriology? Med Mal Infect. 2013;43(8):322-30.
8. Huang B, Fettweis JM, Brooks JP, Jefferson KK, Buck GA. The changing landscape of the vaginal microbiome. Clin Lab Med. 2014;34(4):747-61.
9. Anahtar MN, Gootenberg DB, Mitchell CM, Kwon DS. Cervicovaginal Microbiota and Reproductive Health: The Virtue of Simplicity. Cell Host Microbe. 2018;23(2):159-68.
10. Freitas AC, Bocking A, Hill JE, Money DM. Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth. Microbiome. 2018;6(1):117.
11. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Bieda J, et al. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome. 2014;2:18.
12. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(Suppl 1):4680-7.
13. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microorganism of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2(1):4.
14. Flynn CA, Helwig AL, Meurer L. Bacterial vaginosis in pregnancy and the risk of prematurity: a meta-analysis. J Fam Pract. 1999;48(11):885-92.
15. Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL. Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis. 2003;36(5):663-8.
16. Hay PE. Bacterial vaginosis and miscarriage. Current opinion in infectious diseases. 2004;17(1):41-4.

17. Muzny CA, Schwebke JR. Pathogenesis of Bacterial Vaginosis: Discussion of Current Hypotheses. J Infect Dis. 2016;214 Suppl 1(Suppl 1):S1-5.

18. Reiter S, Kellogg Spadt S. Bacterial vaginosis: a primer for clinicians. Postgrad Med. 2019;131(1):8-18.

19. Reid G. Is bacterial vaginosis a disease? Appl Microbiol Biotechnol. 2018;102(2):553-8.

20. France MT, Ma B, Gajer P, Brown S, Humphrys MS, Holm JB, et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome. 2020;8(1):166.

21. MacIntyre DA, Chandiramani M, Lee YS, Kindinger L, Smith A, Angelopoulos N, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015;5:8988.

22. Haahr T, Jensen JS, Thomsen L, Duus L, Rygaard K, Humaidan P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: a prospective study in IVF patients. Human reproduction (Oxford, England). 2016;31(4):795-803.

23. Fu M, Zhang X, Liang Y, Lin S, Qian W, Fan S. Alterations in Vaginal Microbiota and Associated Metabolome in Women with Recurrent Implantation Failure. mBio. 2020;11(3).

24. Hyman RW, Herndon CN, Jiang H, Palm C, Fukushima M, Bernstein D, et al. The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer. J Assist Reprod Genet. 2012;29(2):105-15.

25. Sirota I, Zarek SM, Segars JH. Potential influence of the microbiome on infertility and assisted reproductive technology. Seminars in reproductive medicine. 2014;32(1):35-42.

26. Al-Memar M, Bobdiwala S, Fourie H, Mannino R, Lee YS, Smith A, et al. The association between vaginal bacterial composition and miscarriage: a nested case-control study. BJOG : an international journal of obstetrics and gynaecology. 2020;127(2):264-74.

27. Xu L, Huang L, Lian C, Xue H, Lu Y, Chen X, et al. Vaginal Microbiota Diversity of Patients with Embryonic Miscarriage by Using 16S rDNA High-Throughput Sequencing. International Journal of Genomics. 2020;2020:1764959.

28. Bobdiwala S, Al-Memar M, Lee Y, Smith A, Marchesi J, Bennett P, et al. OC08.06: *Association of vaginal microbiota composition and outcomes in women found to have a pregnancy of unknown location (PUL) on an initial early pregnancy ultrasound scan. Ultrasound in Obstetrics & Gynecology. 2017;50(S1):16-.

29. Oliveira CNT, Oliveira MTS, Oliveira HBM, Silva LSC, Freire RS, Santos Júnior MN, et al. Association of spontaneous abortion and Ureaplasma parvum detected in placental tissue. Epidemiol Infect. 2020;148:e126.

30. Bayar E, Bennett PR, Chan D, Sykes L, MacIntyre DA. The pregnancy microbiome and preterm birth. Semin Immunopathol. 2020;42(4):487-99.

31. Bennett PR, Brown RG, MacIntyre DA. Vaginal Microbiome in Preterm Rupture of Membranes. Obstet Gynecol Clin North Am. 2020;47(4):503-21.

32. Brown RG, Al-Memar M, Marchesi JR, Lee YS, Smith A, Chan D, et al. Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of the fetal membranes. Transl Res. 2019;207:30-43.

33. Kindinger LM, Bennett PR, Lee YS, Marchesi JR, Smith A, Cacciatore S, et al. The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk. Microbiome. 2017;5(1):6.
34. Stafford GP, Parker JL, Amabebe E, Kistler J, Reynolds S, Stern V, et al. Spontaneous Preterm Birth Is Associated with Differential Expression of Vaginal Metabolites by Lactobacilli-Dominated Microflora. Frontiers in physiology. 2017;8:615.

35. Stout MJ, Zhou Y, Wylie KM, Tarr PI, Macones GA, Tuuli MG. Early pregnancy vaginal microbiome trends and preterm birth. Am J Obstet Gynecol. 2017;217(3):356.e1-e18.

36. Tabatabaei N, Eren AM, Barreiro LB, Yotova V, Dumaine A, Allard C, et al. Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. BJOG: an international journal of obstetrics and gynaecology. 2019;126(3):349-58.

37. Brown RG, Chan D, Terzidou V, Lee YS, Smith A, Marchesi JR, et al. Prospective observational study of vaginal microbiota pre- and post-rescue cervical cerclage. BJOG: an international journal of obstetrics and gynaecology. 2019;126(7):916-25.

38. Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25(6):1012-21.

39. Dalby MJ, Hall LJ. Recent advances in understanding the neonatal microbiome. F1000Res. 2020;9.

40. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev. 2010;86 Suppl 1:13-5.

41. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511-21.

42. Selma-Royo M, Calatayud Arroyo M, García-Mantrana I, Parra-Llorca A, Escuriet R, Martinez-Costa C, et al. Perinatal environment shapes microbiota colonization and infant growth: impact on host response and intestinal function. Microbiome. 2020;8(1):167.

43. Coscia A, Bardanzellu F, Caboni E, Fanos V, Peroni DG. When a Neonate Is Born, So Is a Microbiota. Life (Basel). 2021;11(2).

44. Magne F, Abély M, Boyer F, Morville P, Pochart P, Suau A. Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol Ecol. 2006;57(1):128-38.

45. Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO, Sun J, et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. Isme J. 2009;3(8):944-54.

46. Korpela K, Blakstad EW, Moltu SJ, Strømken M, Nakstad B, Rønnestad AE, et al. Intestinal microbiota development and gestational age in preterm neonates. Scientific reports. 2018;8(1):2453.

47. Di Renzo GC, Melin P, Berardi A, Blennow M, Carbonell-Estrany X, Donzelli GP, et al. Intrapartum GBS screening and antibiotic prophylaxis: a European consensus conference. J Matern Fetal Neonatal Med. 2015;28(7):766-82.

48. Rosen GH, Randis TM, Desai PV, Sapra KJ, Ma B, Gajer P, et al. Group B Streptococcus and the Vaginal Microbiota. J Infect Dis. 2017;216(6):744-51.

49. Cassidy-Bushrow AE, Sitarik A, Levin AM, Lynch SV, Havstad S, Ownby DR, et al. Maternal group B Streptococcus and the infant gut microbiota. J Dev Orig Health Dis. 2016;7(1):45-53.

50. Brown RG, Marchesi JR, Lee YS, Smith A, Lehne B, Kindinger LM, et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC medicine. 2018;16(1):9.
51. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48.
52. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Science translational medicine. 2014;6(237):237ra65.
53. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific reports. 2016;6:23129.
54. Doyle RM, Alber DG, Jones HE, Harris K, Fitzgerald F, Peebles D, et al. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta. 2014;35(12):1099-101.
55. Antony KM, Ma J, Mitchell KB, Racusin DA, Versalovic J, Aagaard K. The preterm placental microbiome varies in association with excess maternal gestational weight gain. Am J Obstet Gynecol. 2015;212(5):653.e1-16.
56. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC biology. 2014;12:87.
57. Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4(1):29.
58. Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N, Alhousseini A, et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am J Obstet Gynecol. 2019;220(3):267.e1-.e39.
59. Sterpu I, Fransson E, Hugerth LW, Du J, Pereira M, Cheng L, et al. No evidence for a placental microbiome in human pregnancies at term. Am J Obstet Gynecol. 2020.
60. de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, et al. Human placenta has no microbiome but can contain potential pathogens. Nature. 2019;572(7769):329-34.
61. Perry ID, Nguyen T, Sherina V, Love TMT, Miller RK, Krishnan L, et al. Analysis of the capacity of Salmonella enterica Typhimurium to infect the human Placenta. Placenta. 2019;83:43-52.
62. Leon LJ, Doyle R, Diez-Benavente E, Clark TG, Klein N, Stanier P, et al. Enrichment of Clinically Relevant Organisms in Spontaneous Preterm-Delivered Placentas and Reagent Contamination across All Clinical Groups in a Large Pregnancy Cohort in the United Kingdom. Appl Environ Microbiol. 2018;84(14).
63. Prince AL, Ma J, Kannan PS, Alvarez M, Gisslen T, Harris RA, et al. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol. 2016;214(5):627.e1-.e16.
64. Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nature communications. 2017;8(1):875.
65. Bracewell-Milnes T, Saso S, Nikolau D, Norman-Taylor J, Johnson M, Thum MY. Investigating the effect of an abnormal cervico-vaginal and endometrial microbiome on assisted reproductive technologies: A systematic review. American journal of reproductive immunology (New York, NY : 1989). 2018;80(5):e13037.
66. Franasiak JM, Werner MD, Juneau CR, Tao X, Landis J, Zhan Y, et al. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. J Assist Reprod Genet. 2016;33(1):129-36.
67. Moreno I, Codoner FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazan J, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016;215(6):684-703.
68. Kyono K, Hashimoto T, Nagai Y, Sakuraba Y. Analysis of endometrial microbiota by 16S ribosomal RNA gene sequencing among infertile patients: a single-center pilot study. Reprod Med Biol. 2018;17(3):297-306.
69. Winters AD, Romero R, Gervasi MT, Gomez-Lopez N, Tran MR, Garcia-Flores V, et al. Does the endometrial cavity have a molecular microbial signature? Sci Rep. 2019;9(1):9905.
70. D’Ippolito S, Di Nicola F, Pontecorvi A, Gratta M, Scambia G, Di Simone N. Endometrial microbes and microbiome: Recent insights on the inflammatory and immune "players" of the human endometrium. American journal of reproductive immunology (New York, NY : 1989). 2018;80(6):e13065.
71. Witkin SS, Linhares IM. Why do lactobacilli dominate the human vaginal microbiota? Bjog. 2017;124(4):606-11.
72. Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2(5):543-6.
73. Mendes-Soares H, Suzuki H, Hickey RJ, Forney LJ. Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. J Bacteriol. 2014;196(7):1458-70.
74. Leizer J, Nasioudis D, Forney LJ, Schneider GM, Gliniewicz K, Boester A, et al. Properties of Epithelial Cells and Vaginal Secretions in Pregnant Women When Lactobacillus crispatus or Lactobacillus iners Dominate the Vaginal Microbiome. Reprod Sci. 2018;25(6):854-60.
75. Verstraelen H, Verhelst R, Claeyes G, De Backer E, Temmerman M, Vaneechoutte M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 2009;9:116.
76. Shiroda M, Manning SD. Lactobacillus strains vary in their ability to interact with human endometrial stromal cells. PLoS One. 2020;15(9):e0238993.
77. Kindinger LM, MacIntyre DA, Lee YS, Marchesi JR, Smith A, McDonald JA, et al. Relationship between vaginal microbial dysbiosis, inflammation, and pregnancy outcomes in cervical cerclage. Science translational medicine. 2016;8(350):350ra102.
78. Tomás M, Palmeira-de-Oliveira A, Simões S, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Bacterial vaginosis: Standard treatments and alternative strategies. Int J Pharm. 2020;587:119659.
79. Omranipoor A, Kashanian M, Dehghani M, Sadeghi M, Baradarani HR. Association of antibiotics therapy during pregnancy with spontaneous miscarriage: a systematic review and meta-analysis. Arch Gynecol Obstet. 2020;302(1):5-22.
80. Subtil D, Brabant G, Tilloy E, Devos P, Canis F, Fruchart A, et al. Early clindamycin for bacterial vaginosis in pregnancy (PREMEVA): a multicentre, double-blind, randomised controlled trial. Lancet. 2018;392(10160):2171-9.
81. Brocklehurst P, Gordon A, Heatley E, Milan SJ. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev. 2013(1):Cd000262.
82. Bostwick DG, Woody J, Hunt C, Budd W. Antimicrobial resistance genes and modelling of treatment failure in bacterial vaginosis: clinical study of 289 symptomatic women. J Med Microbiol. 2016;65(5):377-86.

83. Muzny CA, Schwebke JR. Biofilms: An Underappreciated Mechanism of Treatment Failure and Recurrence in Vaginal Infections. Clin Infect Dis. 2015;61(4):601-6.

84. Simcox R, Sin WT, Seed PT, Briley A, Shennan AH. Prophylactic antibiotics for the prevention of preterm birth in women at risk: a meta-analysis. The Australian & New Zealand journal of obstetrics & gynaecology. 2007;47(5):368-77.

85. Kenyon SL, Taylor DJ, Tarnow-Mordi W. Broad-spectrum antibiotics for spontaneous preterm labour: the ORACLE II randomised trial. ORACLE Collaborative Group. Lancet. 2001;357(9261):989-94.

86. Kenyon SL, Taylor DJ, Tarnow-Mordi W. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group. Lancet. 2001;357(9261):979-88.

87. Kenyon S, Pike K, Jones DR, Brocklehurst P, Marlow N, Salt A, et al. Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour: 7-year follow-up of the ORACLE II trial. Lancet. 2008;372(9646):1319-27.

88. Grev J, Berg M, Soll R. Maternal probiotic supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2018;12(12):Cd012519.

89. Husain S, Allotey J, Drymoussi Z, Wilks M, Fernandez-Felix BM, Whitey A, et al. Effects of oral probiotic supplements on vaginal microbiota during pregnancy: a randomised, double-blind, placebo-controlled trial with microbiome analysis. BJOG: an international journal of obstetrics and gynaecology. 2020;127(2):275-84.

90. Yang S, Reid G, Challis JRG, Gloor GB, Asztalos E, Money D, et al. Effect of Oral Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the Vaginal Microbiota, Cytokines and Chemokines in Pregnant Women. Nutrients. 2020;12(2).

91. van de Wijgert J, Verwijs MC. Lactobacilli-containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis: a systematic review and recommendations for future trial designs. BJOG: an international journal of obstetrics and gynaecology. 2020;127(2):287-99.

92. Cohen CR, Wierzbicki MR, French AL, Morris S, Newmann S, Reno H, et al. Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. N Engl J Med. 2020;382(20):1906-15.

93. Malikowski T, Khanna S, Pardi DS. Fecal microbiota transplantation for gastrointestinal disorders. Current Opinion in Gastroenterology. 2017;33(1):8-13.

94. Lev-Sagie A, Goldman-Wohl D, Cohen Y, Dori-Bachash M, Leshem A, Mor U, et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat Med. 2019;25(10):1500-4.

95. Hu SY, Rifas-Shiman SL, Zera CA, Edwards JW, Oken E, Weiss ST, et al. Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study. Arch Dis Child. 2012;97(7):610-6.

96. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy. 2008;38(4):629-33.
97. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705-21.

98. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250-3.

99. Haahr T, Zacho J, Bräuner M, Shathamiga K, Skov Jensen J, Humaidan P. Reproductive outcome of patients undergoing in vitro fertilisation treatment and diagnosed with bacterial vaginosis or abnormal vaginal microbiota: a systematic PRISMA review and meta-analysis. BJOG: an international journal of obstetrics and gynaecology. 2019;126(2):200-7.

100. Koedooder R, Singer M, Schoenmakers S, Savelkoul PHM, Morré SA, de Jonge JD, et al. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: a prospective study. Human reproduction (Oxford, England). 2019;34(6):1042-54.

101. Wee BA, Thomas M, Sweeney EL, Frentiu FD, Samios M, Ravel J, et al. A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women. The Australian & New Zealand journal of obstetrics & gynaecology. 2018;58(3):341-8.

102. Kong Y, Liu Z, Shang Q, Gao Y, Li X, Zheng C, et al. The Disordered Vaginal Microbiota Is a Potential Indicator for a Higher Failure of in vitro Fertilization. Front Med (Lausanne). 2020;7:217.

103. Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci. 2014;21(1):32-40.

104. Petricevic L, Domig KJ, Nierscher FJ, Sandhofer MJ, Fidesser M, Krondorfer I, et al. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Scientific reports. 2014;4:5136.

105. DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(35):11060-5.

106. Nelson DB, Shin H, Wu J, Dominguez-Bello MG. The Gestational Vaginal Microbiome and Spontaneous Preterm Birth among Nulliparous African American Women. American journal of perinatology. 2016;33(9):887-93.

107. Callahan BJ, DiGiulio DB, Goltsman DSA, Sun CL, Costello EK, Jeganathan P, et al. Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proc Natl Acad Sci U S A. 2017;114(37):9966-71.

108. Elovitz MA, Gajer P, Riis V, Brown AG, Humphrys MS, Holm JB, et al. Cervicovaginal microbiota and local immune response modulate the risk of spontaneous preterm delivery. Nature communications. 2019;10(1):1305.

109. Payne MS, Newnham JP, Doherty DA, Furfaro LL, Pendal NL, Loh DE, et al. A specific bacterial DNA signature in the vagina of Australian women in midpregnancy predicts high risk of spontaneous preterm birth (the Predict1000 study). Am J Obstet Gynecol. 2021;224(2):206.e1-.e23.

110. Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J. The Placental Microbiome Varies in Association with Low Birth Weight in Full-Term Neonates. Nutrients. 2015;7(8):6924-37.
111. Bassols J, Serino M, Carreras-Badosa G, Burcelin R, Blasco-Baque V, Lopez-Bermejo A, et al. Gestational diabetes is associated with changes in placental microbiota and microbiome. Pediatric research. 2016;80(6):777-84.

112. Doyle RM, Harris K, Kamiza S, Harjunmaa U, Ashorn U, Nkhoma M, et al. Bacterial communities found in placental tissues are associated with severe chorioamnionitis and adverse birth outcomes. PLoS One. 2017;12(7):e0180167.

113. Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway HK, Morrison M, Nitert MD. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Scientific reports. 2017;7(1):2860.

114. Parnell LA, Briggs CM, Cao B, Delannoy-Bruno O, Schrieffer AE, Mysorekar IU. Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles. Scientific reports. 2017;7(1):11200.

115. Zheng J, Xiao XH, Zhang Q, Mao LL, Yu M, Xu JP, et al. Correlation of placental microbiota with fetal macrosomia and clinical characteristics in mothers and newborns. Oncotarget. 2017;8(47):82314-25.

116. Seferovic MD, Pace RM, Carroll M, Belfort B, Major AM, Chu DM, et al. Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection. Am J Obstet Gynecol. 2019;221(2):146.e1-e23.

117. Gschwind R, Fournier T, Kennedy S, Tsatsaris V, Cordier AG, Barbut F, et al. Evidence for contamination as the origin for bacteria found in human placenta rather than a microbiota. PLoS One. 2020;15(8):e0237232.

118. Olomu IN, Pena-Cortes LC, Long RA, Vyas A, Krichevskiy O, Luellwitz R, et al. Elimination of "kitome" and "splashome" contamination results in lack of detection of a unique placental microbiome. BMC Microbiol. 2020;20(1):157.

119. Kyono K, Hashimoto T, Kikuchi S, Nagai Y, Sakuraba Y. A pilot study and case reports on endometrial microbiota and pregnancy outcome: An analysis using 16S rRNA gene sequencing among IVF patients, and trial therapeutic intervention for dysbiotic endometrium. Reprod Med Biol. 2019;18(1):72-82.

120. Garcia-Grau I, Perez-Villaroya D, Bau D, Gonzalez-Monfort M, Vilella F, Moreno I, et al. Taxonomical and Functional Assessment of the Endometrial Microbiota in A Context of Recurrent Reproductive Failure: A Case Report. Pathogens. 2019;8(4).

121. Liu Y, Ko EY, Wong KK, Chen X, Cheung WC, Law TS, et al. Endometrial microbiota in infertile women with and without chronic endometritis as diagnosed using a quantitative and reference range-based method. Fertility and sterility. 2019;112(4):707-17.e1.

122. Hashimoto T, Kyono K. Does dysbiotic endometrium affect blastocyst implantation in IVF patients? J Assist Reprod Genet. 2019;36(12):2471-9.

123. Kitaya K, Nagai Y, Arai W, Sakuraba Y, Ishikawa T. Characterization of Microbiota in Endometrial Fluid and Vaginal Secretions in Infertile Women with Repeated Implantation Failure. Mediators Inflamm. 2019;2019:4893437.

124. Carosso A, Revelli A, Gennarelli G, Canosa S, Cosma S, Borrella F, et al. Controlled ovarian stimulation and progesterone supplementation affect vaginal and endometrial microbiota in IVF cycles: a pilot study. J Assist Reprod Genet. 2020;37(9):2315-26.