ON KNOTTED SPHERES IN EUCLIDEAN 4-SPACE \mathbb{E}^4

Kadri Arslan

March 16, 2018

Abstract

In the present study we consider knotted spheres in Euclidean 4-space \mathbb{E}^4. Firstly, we give some basic curvature properties of knotted spheres in \mathbb{E}^4. Further, we obtained some results related with the conjugate nets and Laplace transforms of these kind of surfaces.

1 Introduction

Let us consider a unit speed regular curve γ in \mathbb{E}^4 and a unit speed spherical curve ρ in \mathbb{E}^2. Then, the rotation of γ around ρ give rise a surface M in \mathbb{E}^4, which is called rotational surface. The rotational surfaces in \mathbb{E}^4 was first introduced by C. Moore in 1919 (see, [12]). Further, many researchers concentrated these studies on this subject, see for example [3], [4], [7] and [8]. The rotational surfaces in \mathbb{E}^4 with constant curvatures are studied in [13].

Let us denote the half-space $x_3 \geq 0, x_4 = 0$ by $\mathbb{E}_3^+(0)$ and take an arc α with the end point in the plane $x_3 = 0, x_4 = 0$ (denoted by Π). The rotation the half space plane $\mathbb{E}_3^+(0)$ by the angle ν around the plane Π is denoted by $\mathbb{E}_3^+(\nu)$. Consequently, after the rotation the point with coordinates

\^12010 AMS Mathematics Subject Classification. 53C40, 53C42

Key words and phrases: Rotational surface, Knotted sphere, Conjugate nets
\(x_1, x_2, x_3, x_4\) passes into the point with the coordinates \(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3, \tilde{x}_4\) by

\[
\begin{align*}
\tilde{x}_1 &= x_1 \\
\tilde{x}_2 &= x_2 \\
\tilde{x}_3 &= x_3 \cos v - x_4 \sin v \\
\tilde{x}_3 &= x_3 \sin v - x_4 \cos v.
\end{align*}
\]

In rotation by 360° the points of \(\alpha\) being in \(E_3^4(v)\), form the set \(M\) homeomorphic to \(S^2\) [2]. Let \(\alpha\) be a smooth curve with tangent vectors at \(p\) and \(q\) orthogonal to \(\Pi\). Then \(M\) is a smooth surface which is called knotted sphere in \(E^4\) [1].

A net of curves on a surface \(M\) is called conjugate, if at every point the tangent directions of the curves of the net separate harmonically the asymptotic directions [11]. Consequently, for a surface \(M\) with a patch \(X(u, v)\), a net of curves on \(M\) are conjugate if and only if the second partial derivative \(X_{uv}\) of \(X\) lies in the subspace spanned by \(X_u\) and \(X_v\) [10].

This paper is organized as follows: In section 2 we give some basic concepts of the second fundamental form and curvatures of the surfaces in \(E^4\). In Section 3 we consider knotted spheres in \(E^4\). Firstly, we give some basic curvature properties of knotted spheres in \(E^4\). Further, we introduce some kind of knotted spheres and obtained some results related with their curvatures. In section 4 we give some basic curvature properties of the conjugate nets on a surface in \(E^n\). Further, we calculated the Laplace invariants and the Laplace transforms of the knotted sphere in \(E^4\).

2 Preliminaries

Let \(M\) be a local surface in \(E^n\) given with position vector \(X(u, v)\). The tangent space \(T_pM\) is spanned by the vector fields \(X_u\) and \(X_v\). In the chart \((u, v)\) the coefficients of the first fundamental form of \(M\) are given by

\[
E = \langle X_u, X_u \rangle, \quad F = \langle X_u, X_v \rangle, \quad G = \langle X_v, X_v \rangle,
\]

where \(\langle, \rangle\) is the inner product in \(E^n\). We assume that \(X(u, v)\) is regular i.e., \(W^2 = EG - F^2 \neq 0\) [9].

Consequently, the Gaussian curvature of \(M\) is given by

\[
K = -\frac{1}{4W^2} \begin{vmatrix} E & E_u & E_v \\ F & F_u & F_v \\ G & G_u & G_v \end{vmatrix} - \frac{1}{2W} \left(\frac{E_v - F_u}{W} v - \frac{F_v - G_u}{W} u \right).
\]

2
Let ∇ be the Riemannian connection of \mathbb{E}^4, and $X_1 = X_u$, $X_2 = X_v$ tangent vector fields of M then Gauss equation gives

$$\nabla_{X_i} X_j = \sum_{k=1}^{2} \Gamma^k_{ij} X_k + h(X_i, X_j); \quad 1 \leq i, j \leq 2,$$

(4)

where h is the second fundamental form and Γ^k_{ij} are the Christoffel symbols of M.

The mean curvature vector \vec{H} of M is given by

$$\vec{H} = \frac{1}{2W^2} (Eh(X_v, X_v) - 2Fh(X_u, X_v) + Gh(X_u, X_u)).$$

(5)

The norm of the mean curvature vector \vec{H} is known as mean curvature of M. Recall that, a surface M is said to be minimal (resp. flat) if its mean curvature (resp. Gaussian curvature) vanishes identically [5].

3 Knotted Spheres in \mathbb{E}^4

Let M be a knotted sphere given with (1), then the position vector of M can be represented as:

$$X(u, v) = (x_1(u), x_2(u), x_3(u) \cos v - x_4(u) \sin v, x_3(u) \sin v + x_4(u) \cos v).$$

(6)

where

$$\gamma(u) = (x_1(u), x_2(u), x_3(u), x_4(u)),$$

is the profile curve of the surface [1]. Then, the tangent space $T_p M$ of M is spanned by

$$X_u = (x'_1(u), x'_2(u), x'_3(u) \cos v - x'_4(u) \sin v, x'_3(u) \sin v + x'_4(u) \cos v),$$

$$X_v = (0, 0, -x_3(u) \sin v - x_4(u) \cos v, x_3(u) \cos v - x_4(u) \sin v).$$

(7)

Consequently, the coefficients of first fundamental form become

$$E = \langle X_u, X_u \rangle = 1,$$

$$F = \langle X_u, X_v \rangle = x_3(u)x'_4(u) - x'_3(u)x_4(u),$$

$$G = \langle X_v, X_v \rangle = x_3^2(u) + x_4^2(u).$$

(8)
The Christoffel symbols Γ^k_{ij} of the canal surface M are given by

$$
\Gamma^1_{11} = -\frac{FF_u}{W^2}, \quad \Gamma^1_{12} = -\frac{FG_u}{2W^2}, \quad \Gamma^1_{22} = -\frac{GG_u}{2W^2}, \\
\Gamma^2_{11} = \frac{F}{W^2}, \quad \Gamma^2_{12} = \frac{G}{2W^2}, \quad \Gamma^2_{22} = \frac{F^2}{2W^2},
$$

(9)

which are symmetric with respect to the covariant indices ([9], p.398).

The second partial derivatives of r are expressed as follows:

$$
X_{uu} = (x_1''(u), x_2''(u), x_3''(u) \cos v - x_4''(u) \sin v, x_4''(u) \sin v + x_3''(u) \cos v), \\
X_{uv} = (0, 0, -x_3'(u) \sin v - x_4'(u) \cos v, x_3'(u) \cos v - x_4'(u) \sin v), \\
X_{vv} = (0, 0, -x_3'(u) \cos v + x_4'(u) \sin v, -x_3'(u) \sin v - x_4'(u) \cos v).
$$

(10)

Using (7) with (10) we get

$$
\langle X_{uu}, X_{uv} \rangle = -(x_3(u)x_3''(u) + x_4(u)x_4''(u)), \\
\langle X_{uv}, X_u \rangle = -(x_3(u)x_3'(u) + x_4(u)x_4'(u)), \\
\langle X_{uu}, X_v \rangle = x_3(u)x_4'(u) - x_3'(u)x_4(u), \\
\langle r_{u\theta}, X_{uv} \rangle = (x_3'(u))^2 + (x_4'(u))^2, \\
\langle X_{uu}, X_u \rangle = 0, \\
\langle X_{uv}, X_v \rangle = 0.
$$

(11)

Hence, taking into account (11), the Gauss equation implies the following equations:

$$
\bar{\nabla}_u X_u = X_{uu} = \Gamma^1_{11} X_u + \Gamma^1_{12} X_v + h(X_u, X_u), \\
\bar{\nabla}_u X_v = X_{uv} = \Gamma^1_{12} X_u + \Gamma^1_{22} X_v + h(X_u, X_v), \\
\bar{\nabla}_v X_v = X_{vv} = \Gamma^1_{22} X_u + \Gamma^2_{22} X_v + h(X_v, X_v).
$$

(12)

Taking in mind (11), (9) and (12) we get

$$
h(X_u, X_u) = X_{uu} + \frac{FF_u}{W^2} X_u - \frac{F_u}{W^2} X_v, \\
h(X_u, X_v) = X_{uv} + \frac{FG_u}{2W^2} X_u - \frac{G_u}{2W^2} X_v, \\
h(X_v, X_v) = X_{vv} + \frac{GG_u}{2W^2} X_u - \frac{F^2}{2W^2} X_v.
$$

(13)

Consequently, by the use of (3), (5), (8) and (11) with (13) the Gaussian curvature and mean curvature vector of M become

$$
K = -\frac{1}{2W} \left(\frac{G_u}{W} \right)_u,
$$

(14)
and
\[\vec{H} = \frac{1}{2W^2} (Eh(X_v, X_v) - 2Fh(X_u, X_v) + Gh(X_u, X_u)), \] (15)
respectively.

In the sequel, we consider some special cases;

Case I. Suppose
\[x_3 = \cos \varphi(u), \quad x_4 = \sin \varphi(u), \] (16)
then the position vector of the knotted sphere \(M \) can be represented as
\[X(u, v) = (x_1, x_2, \cos \varphi(u) \cos v - \sin \varphi(u) \sin v, \cos \varphi(u) \sin v + \sin \varphi(u) \cos v). \] (17)

Hence, the coefficients of the first fundamental form become
\[E = \langle X_u, X_u \rangle = 1, \]
\[F = \langle X_u, X_v \rangle = \varphi'(u), \]
\[G = \langle X_v, X_v \rangle = 1, \] (18)
where \(\varphi \) is a differentiable (angle) function.

Summing up (9)-(18) the following results are proved;

Proposition 3.1 The surface \(M \) given with the position vector (17) is a flat surface.

Proposition 3.2 Let \(M \) be a surface given with the position vector (17). Then, the mean curvature \(\vec{H} \) of \(M \) at point \(p \) is given by
\[\| \vec{H} \| = \frac{1}{4 (1 - (\varphi'(u))^2)} \left(\kappa_\gamma^2 + 1 - 2 (\varphi'(u))^2 - \frac{(\varphi''(u))^2}{1 - (\varphi'(u))^2} \right), \] (19)
where \(\kappa_\gamma \) is the curvature of the profile curve \(\gamma \).

Proof 3.3 With the help of (13), (15) and (18) the Gaussian curvature vector of \(M \) becomes
\[2 \vec{H} = \frac{1}{1 - (\varphi')^2} (\vec{x}_1, \vec{x}_2, \vec{x}_3 \cos v + \vec{x}_4 \sin v, \vec{x}_3 \sin v - \vec{x}_4 \cos v), \] (20)
where,

\[
\begin{align*}
\mathbf{\tau}_1 &= x''_1 + \frac{\varphi'\varphi''}{1 - (\varphi')^2} x'_1, \\
\mathbf{\tau}_2 &= x''_1 + \frac{\varphi'\varphi''}{1 - (\varphi')^2} x'_2, \\
\mathbf{\tau}_3 &= \frac{\varphi'\varphi'' x'_3 + \varphi'' x'_4}{1 - (\varphi')^2} + x''_3 - x'_3 + 2\varphi' x'_4 = -\left(1 - (\varphi')^2\right) \cos \varphi, \\
\mathbf{\tau}_4 &= \frac{\varphi'' x'_3 - \varphi'\varphi'' x'_4}{1 - (\varphi')^2} - x''_4 + x'_4 + 2\varphi' x'_3 = \left(1 - (\varphi')^2\right) \sin \varphi
\end{align*}
\]

are differentiable functions. Taking the norm of the vector (20) and using (16) with (21) we obtain (19). This completes the proof of the proposition.

As a consequence of Proposition 2 we obtain the following result.

Corollary 3.4 Let \(M \) be a surface given with the position vector (17). Then \(M \) is a minimal surface if and only if the curvature \(\kappa_\gamma \) of the profile curve \(\gamma \) satisfies the equality

\[
\kappa^2_\gamma = \frac{(\varphi''(u))^2}{1 - (\varphi'(u))^2} + 2 (\varphi'(u))^2 - 1, \tag{22}
\]

in such a way that the (angle) function \(\varphi \) is non-constant.

Case II. Suppose \(x_4 = \lambda x_3, \lambda \in \mathbb{R} \), then the position vector of the knotted sphere \(M \) can be represented as

\[
r(s, \theta) = (x_1(u), x_2(u), x_3(u) (\cos \nu - \lambda \sin \nu), x_3(u) (\sin \nu + \lambda \cos \nu)). \tag{23}
\]

Hence, the coefficients of the first fundamental form of \(M \) become

\[
\begin{align*}
E &= \langle X_u, X_u \rangle = 1, \\
F &= \langle X_u, X_v \rangle = 0, \\
G &= \langle X_v, X_v \rangle = (1 + \lambda^2) x^2_3(u).
\end{align*}
\]

By the use of (24) with (3) we obtain the following result.
Proposition 3.5 Let M be a surface given with the position vector \mathbf{X}. Then, the Gaussian curvature of M is given by

$$K = -\frac{x_3''(u)}{x_3(u)}.$$

As a consequence of Proposition 4 we obtain the following result.

Corollary 3.6 Let M be a surface given with the position vector \mathbf{X}. Then we have the following statements

i) If $x_3(u) = ae^{cu} + be^{-cu}$ then the corresponding surface is pseudospherical, i.e., it has negative Gaussian curvature $K = -\frac{1}{c^2}$.

ii) If $x_3(u) = a\cos cu + b\sin cu$ then the corresponding surface is spherical, i.e., it has negative Gaussian curvature $K = \frac{1}{c^2}$, where a, b and c are real constants.

iii) If $x_3(u) = au + b$ then the corresponding surface is flat.

4 The Conjugate Nets and Laplace Transforms of Knotted Sphere

In the present section, we will give some basic relations of the conjugate net of curves on a surface in \mathbb{R}^n. A net of curves on a surface M is called conjugate, if at every point the tangent directions of the curves of the net separate harmonically the asymptotic directions. Taking the net to be parametric net with parameters u and v, the classical notion of the conjugate net usually can be stated in [11] as follows:

Definition 4.1 Let M be a smooth surface given with the position vector $X : U \subset \mathbb{R}^2 \to \mathbb{R}^n$, and $N_1, ..., N_{n-2}$ normal vector fields of M in \mathbb{R}^n. If $X_{uv} = \frac{\partial^2 X}{\partial u \partial v}$ satisfies

$$\langle X_{uv}, N_\alpha \rangle = 0, 1 \leq \alpha \leq n - 2,$$

then (u,v) is called conjugate coordinates of X and the net woven by coordinate curves is called the conjugate net. For convenience, we denote the conjugate net by (u,v). Here, \langle , \rangle denotes the inner product on \mathbb{R}^n [11].
Equation (25) is equivalent to the condition that X_{uv} lies in the subspace spanned by X_u and X_v; i.e.,

$$X_{uv} = \Gamma^1_{12} X_u + \Gamma^2_{12} X_v.$$ (26)

Now, for the surface with normal conjugate net, we have two transforms

$$X_1 = X - \frac{X_v}{\Gamma^1_{12}}, \quad X_{-1} = X - \frac{X_u}{\Gamma^2_{12}},$$ (27)

which are called the Laplace transforms of surface M [10].

Furthermore, the functions

$$h = \frac{\partial_u \Gamma^1_{12} - \Gamma^1_{12} \Gamma^2_{12}}{\Gamma^1_{12}}, \quad k = \frac{\partial_v \Gamma^2_{12} - \Gamma^1_{12} \Gamma^2_{12}}{\Gamma^2_{12}}$$ (28)

are called the Laplace invariants.

If $\Gamma^1_{12} \neq 0$ (resp. $\Gamma^2_{12} \neq 0$), the conjugate net is called v–direction normal (resp. u–direction normal). To establish geometrically the notion of conjugate net in ambient space, the following result explain the real geometric meaning of the conjugate net defined in (25).

Proposition 4.2 [11] (u, v) is a v–direction normal conjugate net of M if and only if there exists another surface \widetilde{M} given with the position vector $X_1(u, v)$ such that, for any $(u, v) \in D \subset E^2$, the straight line XX_1 joining the points $X(u, v)$ and $X_1(u, v)$ is parallel to the vectors $X_v(u, v)$ and $X_u(u, v)$.

We obtain the following results,

Theorem 4.3 Let M be a surface given with the position vector (6). If (u, v) are conjugate coordinates, then M is a flat surface.

Proof 4.4 Let (u, v) be conjugate coordinates of the knotted sphere M given with the parametrization (6). Then, by definition $h(X_u, X_v) = 0$. So, by the use of (13) we have

$$X_{uv} = \frac{G_u}{2W^2} X_v - \frac{FG_u}{2W^2} X_u.$$ (29)

Consequently, substituting (7) with (11) into (29) we get

$$x'_1(u) = 0,$$

$$x'_2(u) = 0,$$

$$x'_3(u) = x_3(u) \frac{G_u}{2W^2} - x'_4(u) \frac{FG_u}{2W^2},$$ (30)

$$x'_4(u) = x_4(u) \frac{G_u}{2W^2} + x'_3(u) \frac{FG_u}{2W^2}. $$
Summing up the last two equations of (30) we obtain
\[(x'_3(u))^2 + (x'_4(u))^2 = \frac{G_u}{2W^2} (x_3(u)x'_3(u) + x_4(u)x'_4(u)). \quad (31)\]

Moreover, the profile curve γ has arclength parameter and the first two equations of (30) imply that
\[(x'_3(u))^2 + (x'_4(u))^2 = 1. \quad (32)\]

Hence, by the use of (3) with (32) the equation (31) reduces to
\[1 = \frac{G_u^2}{4W^2}, \quad W > 0. \quad (33)\]

Thus, substituting (33) into (14) we get $K = -\frac{1}{2W} \left(\frac{G_u}{W} \right)_u = 0$. This completes the proof of the proposition.

By the virtue of (14) the following results hold.

Corollary 4.5 The coordinates (u, v) of the surface M given with the position vector (17) can not be conjugate.

Proof 4.6 Suppose that (u, v) are the conjugate coordinates of the surface given with the parametrization (17). Then, from (13) and (33) we get $4W^2 = G_u^2 = 0$. But, this contradicts the fact that $W > 0$. So, the coordinates (u, v) can not be conjugate.

Remark 4.7 Corollary 7 shows that the inverse statement of Theorem 7 may not be true.

Proposition 4.8 Let M be a knotted sphere given with the position vector (20). Then, the conjugate surface \tilde{M} is a part of the rotation plane Π.

Proof 4.9 Let M be a knotted sphere given with the parametrization (6), then by the use of (9) we get
\[\Gamma_1 = -\frac{FG_u}{2W^2}, \quad \Gamma_2 = \frac{G_u}{2W^2}.\]

Now, assume that the surface M with normal conjugate net, then equation (24) yields $\Gamma_{12}^1 = 0$ and $\Gamma_{12}^2 = \frac{x_3'(s)}{x_3(s)}$. Consequently, the Laplace transform X becomes
\[X = X - \frac{x_3(u)}{x_3'(u)} X_u. \]

Hence, using (23) with its partial derivative X_u we obtain
\[X = \left(x_1(u) - \frac{x_3(u)}{x_3'(u)} x_1'(u), x_2(u) - \frac{x_3(u)}{x_3'(u)} x_2'(u), 0, 0 \right). \quad (34) \]

This completes the proof of the proposition.

References

[1] Yu. A. Aminov, Geometry of Submanifolds. Gordon & Breach Science Publ., Amsterdam, 2001.

[2] E. Artin, Zur isotopi zweidimensionaler Flachen im R4. *Abh. Math Sem. Univ. Hamburg*, 4(1925), 174 – 177.

[3] K. Arslan, B. Bayram, B. Bulca and G. Öztürk, General rotation surfaces in E^4, *Results. Math.*, 61(2012), 315 – 327.

[4] B. Bulca, K. Arslan, B.K. Bayram and G. Öztürk, Spherical product surfaces in E^4. *An. St. Univ. Ovidius Constanta*, 20(2012), 41 – 54.

[5] B.Y., Chen, Geometry of Submanifolds, Dekker, New York, 1973.

[6] D.V. Cuong, Surfaces of Revolution with Constant Gaussian Curvature in Four- Space, arXiv:1205.2143v3.

[7] U. Dursun and N.C. Turgay, General rotational surfaces in Euclidean space E^4 with pointwise 1-type Gauss map. *Math. Commun.*, 17(2012), 71 – 81.

[8] G. Ganchev and V. Milousheva, On the Theory of Surfaces in the Four-dimensional Euclidean Space. *Kodai Math. J.* 31(2008), 183 – 198.

[9] Gray, A. Modern Differential Geometry of Curves and Surfaces. CRC Press, Boca Raton Ann Arbor London Tokyo, 1993.
[10] N. Kamran and K. Tenenblat, Laplace transformation in higher dimensions, Duke Math. J. 80 (1996), 237 – 266.

[11] H. Li and Z. Guo, The Conjugate Nets, Cartan Submanifolds, and Laplace Transformations in Space Forms1, J. Math. Anal. Appl. 267 (2002), 726 – 745.

[12] C. Moore, Surfaces of Rotation in a Space of Four Dimension. Ann. Math., 21 (1919); 81 – 93.

[13] Y.C. Wong, Contributions to the theory of surfaces in 4-space of constant curvature, Trans. Amer. Math. Soc., 59 (1946), 467 – 507.

Kadri Arslan
Department of Mathematics
Uludağ University
16059 Bursa, TURKEY
E-mail: arslan@uludag.edu.tr