Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

Yan Song1*, Jinsoo Ahn1,2*, Yeunsu Suh1, Michael E. Davis1, Kichoon Lee1,2*

1 Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America, 2 The Ohio State University Interdisciplinary PhD Program in Nutrition (OSUN), The Ohio State University, Columbus, Ohio, United States of America

Abstract

Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI’s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved.

Citation: Song Y, Ahn J, Suh Y, Davis ME, Lee K (2013) Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model. PLoS ONE 8(5): e64483. doi:10.1371/journal.pone.0064483

Editor: Francisco José Esteban, University of Jaén, Spain

Received January 9, 2013; Accepted April 15, 2013; Published May 31, 2013

Copyright: © 2013 Song et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by Agriculture and Food Research Initiative Competitive grant number 2010-65206-20716 from the USDA National Institute of Food and Agriculture. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Lee.2626@osu.edu

† These authors contributed equally to this work.

Introduction

Tissue-specific gene expression plays a fundamental role in multi-cellular biology. In general, about 100 to 200 signature genes are expressed in a specific tissue. A detailed understanding of the tissue-specific pattern of gene expression can help elucidate the molecular mechanisms of tissue development, gene function, and transcriptional regulation of biological processes [1]. Tissue-specific transcript analysis can indicate novel functions of known and unknown genes. The expression of tissue-specific genes can also be used as an indicator for many complex diseases. Examples include the tissue-specific expression of insulin signaling-related genes in diabetes, the stroma-tumor interaction-related genes in cancer, and the tissue-specific expression of mutant IKBKAP (inhibitor of kappa light polypeptide enhancer in B cells, kinase complex-associated protein) gene in Familial Dysautonomia [2].

Microarrays are established technologies that can provide large-scale gene expression data through measurements of transcript abundance in various tissues. Various tissue-specific expression information is available in many databases including GEO [3], ArrayExpress [4], TIGER [5], BODYMAP [6] and BioGPS [7]. The Gene Expression Omnibus (GEO) database contains gene expression profiles derived from curated GEO DataSets (GDS), which store originally submitted records obtained from common commercial arrays (Affymetrix, Agilent, Illumina, or Nimblegen). The GDS contains several thousand gene expression profiles with 4 to 70 microarrays per profile and 12,000 to 30,000 genes per microarray, comparing diverse tissues and cells of human and mouse origins under various experimental conditions.

The GeneAtlas data on the website (http://biogps.org) provide baseline expression data for the expression patterns of thousands of predicted genes, as well as known and poorly characterized genes, across more than 60 murine tissues, and over 100 human tissues. However, the data from microarray experiments represent only a starting point toward understanding the microarray-derived measurements of differential gene expression. Although huge amounts of useful data are available to scientists, there is a lack of a follow-up strategy to integrate and use these data to identify novel sets of genes that are important for each field of study. There have been no attempts to integrate these valuable databases to identify novel sets of tissue-specific genes that might have important functions in tissue growth and development.

The objective of the current study was to identify and evaluate novel tissue-specific genes across the human and mouse by performing an analysis of microarray databases and semi-
quantitative PCR analysis. In the current study, we developed a unique approach to generate accurate predictions of tissue-specific genes by comparing expression profiles for various tissues across the human and mouse. The semi-quantitative PCR analysis confirmed the accuracy of our predictions. We identified 59 genes across 6 human and mouse adult tissues: 10 kidney-specific, 11 liver-specific, 11 lung-specific, 11 heart-specific, 8 muscle-specific, and 8 adipose-specific. Among them we discovered 3 novel tissue-specific genes: AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in the adipose tissue. The processes in which PRUNE2 and AMDHD1 may participate were predicted according to the GEO profiles. Further studies have shown that ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. Our approach provides a novel method for identifying novel tissue-specific genes and predicting functions in which they may be involved.

Methods

Data Sources and Processing

The microarray expression profiles from 6 tissues (kidney, liver, lung, heart, muscle, and adipose) were derived from the GEO DataSet (GDS) in the NCBI web site: GDS3142 for mouse and GDS596 for human. Each tissue was represented by GEO samples (GSMs) from 2 to 4 subjects (human kidney: GSM18953 and GSM18956; human liver: GSM18953 and GSM18954; human lung: GSM18949 and GSM18950; human heart: GSM18951 and GSM18952; human muscle: GSM19013 and GSM19014; human adipose: GSM18975 and GSM18976; mouse kidney: GSM252083, GSM252084, and GSM252085; mouse liver: GSM252074, GSM252075, and GSM252076; mouse lung: GSM252080, GSM252081, and GSM252082; mouse heart: GSM252113, GSM252114, and GSM252115; mouse muscle: GSM252070, GSM252071, GSM252072, and GSM252073; mouse adipose: GSM252093, GSM252094, and GSM252095).

Tissue-specific genes were determined as follows: i) Gene expression values for each tissue in the GSM data (e.g., A and B in human kidney, C and D in human liver, and E and F in human lung) were averaged to obtain an average value [e.g., (A+B)/2, (C+D)/2, and (E+F)/2]; ii) To find tissue-specific genes (e.g., kidney-specific genes), the average values were divided by an average value of a target tissue [e.g., ([C+D]/2)/([A+B]/2) and ([E+F]/2)/([A+B]/2)] and then averaged to obtain one representative value [e.g., {[(C+D)/2]/([A+B]/2)} + ([E+F]/2)/([A+B]/2)]. If the value is lower, it means that the kidney value ([A+B]/2) and kidney-specificity is higher; iii) Averaged values were sorted in ascending order representing a lower value with a higher tissue-specific expression; iv) This method also shows relative gene expression ratios in other non-target tissues [e.g., ([C+D]/2)/([A+B]/2) and ([E+F]/2)/([A+B]/2)]. An alternative method for finding tissue-specificity is to divide an average gene expression value for a target tissue [e.g., (A+B)/2 for kidney] by an average of averages of gene expression values in other tissues [e.g., {((C+D)/2)+([E+F]/2)}/2], and sort the resulting values in descending order. Highly ranked genes shown in both human and mouse were selected for further analysis (Figure 1 shows the process of selecting kidney-specific genes; Table S1 shows the Excel spreadsheets of tissue-specific genes in selected tissues). The rank for each gene in each tissue is shown in Table S1.

Animal Use and Ethics Statement

All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at The Ohio State University. All experiments were performed in accordance with

![Figure 1. Steps for selecting kidney-specific genes. Tissue-specific genes were determined as follows: i) Gene expression values for each tissue were averaged; ii) The averaged values were divided by an averaged value for kidney; iii) The results were averaged and sorted in ascending order with a lower value representing higher tissue-specific expression. Highly ranked genes with lower values are candidates for kidney-specific genes; iv) An alternative method for finding tissue-specificity is to divide an average gene expression value for kidney by an average of averages of gene expression values in other tissues.

Tissue	Human kidney	Human liver	Human lung	Human heart	Human muscle	Human adipose
GEO samples (GSMs)	GSM18953	GSM18956	GSM18953	GSM18954	GSM18949	GSM18990
Human heart					GSM18951	GSM18952
Human muscle					GSM19013	GSM19014
Human adipose					GSM18975	GSM18976

Gene expression values	A	B	C	D	E	F	G	H	I	J	K	L
Average values	(A+B)/2	(C+D)/2	(E+F)/2	(G+H)/2	(I+J)/2	(K+L)/2						

To find kidney-specific genes, the average values were divided by an average value of a target tissue (kidney) and then averaged for obtaining one representative value. If the value is lower, it means that the kidney value [(A+B)/2] and kidney-specificity is higher.

An alternative method: If the value is higher, it means that the kidney value [(A+B)/2] and kidney-specificity is higher.
the Prevention of Cruelty to Animals Act (1986). All mice were raised in a mouse housing facility at the Ohio State University and fed ad libitum. Mice were euthanized by CO2 inhalation followed by cervical dislocation. White adipose tissue (WAT), brown adipose tissue (BAT), liver, muscle, heart, lung, spleen, and kidney were harvested from 3-month-old mice to isolate total RNAs (n = 3). Mouse inguinal adipose tissue was collected from 1-month-old FVB mice [8].

Differentiation of Preadipocytes

The 3T3-L1 preadipocytes were differentiated to adipocytes as previously described [8]. The 3T3-L1 preadipocytes (American Type Culture Collection, Manassas, VA, USA) were cultured in DMEM culture media (Invitrogen, Carlsbad, CA, USA) containing 10% fetal bovine serum (Invitrogen) and the mixture solution of penicillin and streptomycin (Pen Strep; Invitrogen). The preadipocytes were maintained and grown to confluence at 37°C in 5% CO2. After 2 d post-confluence (Day 0), differentiation of 3T3-L1 preadipocytes to adipocytes was induced by treating the preadipocytes for 2 d with a differentiation media, which contains 1 μM dexamethasone, 0.25 mM isobutylmethylxanthine, and 1 μg/ml insulin (Sigma-Aldrich Co., St. Louis, MO, USA) additionally in the culture media. Two days after induction (Day 2), the differentiation media was changed to the insulin media, which was composed of 1 μg/ml insulin in the culture media, for the next 2 d. Two days later (Day 4), the insulin media was changed to the DMEM culture media for another 4 d and the

Gene name	Primer sequence (5′→3′)	Gene name	Primer sequence (5′→3′)
SCGB1A1	h-f: CCACCAGACTCAAGAGCAGCAGGGAAC	SLC22A2	h-m-f: GTCAGCAAAGCACAGGGTGTTTA
	h-r: TGGCCGCTGAACTCAAGACA		h-m-e: GCAATGAGCGACGTGCTGTGA
	m-f: ACAAACATTCCCACTACATCATCACAG	PDZK1	h-m-f: CTGTCGAAAGAGAATGGGAAATCATCA
	m-r: TTACACCACCTCCCCCTCTCTCAGGGTGTTTG		h-m-e: TTACACCACCTCCCCCTCTCTCAGGGTGTTTG
SFTP8	h-m-f: ACCTCTGTCAGGCAACAGCT	SLC12A3	h-m-f: ATACATCCTCAAGAGCTTCTTCG
	h-m-e: AGCCAGGCTGAGGAGACAT		h-m-e: GGTAGTCTGGATGTCCTCTTCCAC
SFTP8	h-m-f: AGCAAGAGCTCTTGATGGAGA	SPP1	h-f: GAAGGCCATGACCACTATGA
	h-m-e: CCAGTCGAGCCAGATGAGTTGA		h-e: TGGTTTCACCATGCTGTCA
CLIC3	h-m-f: GCGGCTCCTCATGTCCT		m-e: GAAGGCCATGACCACTATGA
	h-m-e: CAGGTAGGCTGCAAGCGCTGG		m-r: ACTATGAGCATACATCCAGCTACATGAG
SLC34A2	h-m-f: GCAAGCTGACCTCCTCATG	SLC34A1	h-m-f: ATGCCTCAATCCTCCTGCTCAAG
	h-m-e: CGAACCAGGATCTTTGCGCA		h-m-e: GCAACAGGAGGATCTTGAG
AGER	h-m-f: AACATACAGAGCCGGAAGTGG	FXYD2	h-f: GGACGTTGAGCAGGGCTTCTATAG
	h-m-e: GTCCTCGGTTGCTCTCGTCTC		h-e: GGAACCTTCCTCAAGCCCAAG
TNNT2	h-m-f: ATCCCCATGGAGAGAGATG	GCCACAGCTCCTCCTCTCGCTCT	m-e: CTATGAAACCCTGCCCAAG
	h-m-e: GATGAGGCTCAGATGCTCTCA		m-r: ACTATGACCATATCCAGATGCTCTCA
FHOD3	h-m-f: AGACCAAGAGGGAAAGATGATACAC	AMDHD1	h-m-f: CCTCCGAGGCAAGGAATGATGAG
	h-m-e: CGAGGCCGCTGCTCTTCTCTGG		h-m-e: TCAATATGACGAGGCTGTTCC
NPPA	h-m-f: TAGAAGATGAGGTAGTGCCC	AMBP	h-m-f: CCTATGAGCTCACAACCAACTATG
	h-m-e: GTCCTTGGTGTGCAAAGTATTC		h-e: GACTATGGGAGATGACAGG
PLN	h-m-f: AAGTCTAATCCTACCTCGCT	GNMT	h-m-f: CTTATGAGCTGTCATCTGTCCCTG
	h-m-e: GCCAGGCTCAAGAGCTACTAC		h-e: CAGACAGAGCTGCTGCTGAC
MYH6	h-m-f: TCCGCAGAACGCTGAGGATTG	HPX	h-m-f: CGTACTAGTCTGCTCCTAGGTTAAC
	h-m-e: CTTGTGATGATGCTGCTGTTG		h-m-e: GCTTCCCTGTTGCAAGGAAAGAC
CSRP3	h-m-f: CAAAATCTGGAGGCTTGAAAAAG	ALB	h-m-f: TGCAACAACAAAGTAGCAAC
	h-m-e: CTCTTCCTCCACGATGGAACAG		h-m-e: TGGCCAGAGAGAAGACTACCTT
RYR2	h-m-f: AGGTCTCCTCTCTTCTGTGGG	APOA1	h-m-f: CGGCAGAGACTATGCTGTCGCCAG
	h-m-e: CCGAGCCTAGGAGGAGGAGAAGA		h-m-e: CTATGGCAGCTGCTGCTGCAAC
ACTN3	h-f: GCCTCTCGGAGGAGAGAGATG	SLC27AS	h-m-f: TCTGCAGGAGACTTGATGACATAC
	h-m-e: CTGCTGGCTCACTCGCTGCTC		h-m-e: TCAATACCTGAGGCTCAAGAG
	m-f: CCAGGGCTGACAGACAGATGGT	FGG	h-m-f: GGCTGAGAAATGAGAGAGATG
	m-r: TGGGGCTGCCACAGATGCTATG		m-e: TGGGGCTGCCACAGATGCTATG
PRUNE2	h-m-f: CTACCAGATGATTGACAGACGG	CYC	h-f: CTCTTTTGAGCTGTTTCCAG
	h-m-e: GAGATGGACTCTCCTGATGAGGGTA		h-e: CACCACAGTCTGCGGCCATC
ACVR1C	h-m-f: GAGTCTGCTCCTTCAGATGA	m-f: AGCACTGAGAGAGAAGAGTTTGG	h-e: TCTTCTGCTGCTGCTGCTG
	h-m-e: GTTCTGCTCCTTCAGATGA	m-r: CACAGCACTGCTGCTGCTG	

Table 1. Primer sequences for PCR amplification.

doi:10.1371/journal.pone.0064483.t001

Novel Tissue-Specific Gene by Microarray Databases
media was changed every 2 d. Total RNA was isolated from the 3T3L1 adipocytes at d 0, 2, 4, 6, and 8 post-differentiation.

cDNA Synthesis and PCR Analysis

Mouse total RNA was isolated from kidney, liver, lung, heart, muscle, and adipose tissue of adult mice using Trizol reagent (Invitrogen; [8]). Adult human RNAs from kidney, liver, lung, heart and muscle were purchased from Agilent Technologies (Santa Clara, CA, USA) and adult human RNA from adipose tissue was bought from Clontech Laboratories (Mountain View, CA, USA) and adult human RNA from adipose tissue was purchased from Life Technologies (Invitrogen; [8]). Adult human RNAs from kidney, liver, lung, heart, and muscle were purchased from Agilent Technologies (Agilent Technologies, Santa Clara, CA, USA) and adult human RNA from adipose tissue was purchased from Clontech Laboratories (Mountain View, CA, USA). Stromal vascular (SV) and fat cell (FC) fractionation were isolated according to procedures described previously [8,9,10]. In brief, the adipose tissue was incubated with 3.2 mg/ml collagenase II (Sigma-Aldrich) in DMEM media for 1 h at 37°C in a vigorous shaker to separate each cell. The digested adipose tissue was filtered to remove large cell masses, and then centrifuged for 5 min at 500 x g to isolate the floating FC fraction from the pellet of the SV fraction. Both SV and FC fractions were gathered for RNA isolation (n = 3).

RNA was reverse-transcribed to cDNA using moloney murine leukemia virus reverse transcriptase (Invitrogen). The PCR reaction consisted of 1 μL of cDNA, 0.5 μL of 10 mM dNTPs, 2.5 μL of 10x Thermoploimm (NEG-free) reaction buffer, 0.5 μL of 100 mM MgSO4, 0.5 μM of each of the forward and reverse primers, 0.125 μL of Taq DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA), and nuclease-free water up to 25 μL. The cycling parameters were 95°C for 5 min, 35 cycles of 94°C for 30 s, 58°C for 30 s, and 72°C for 40 s with a final elongation at 72°C for 10 min. A 1% agarose gel was used to check PCR amplification.

For cDNA reverse transcription, 1 μg of total RNA, oligo dT, and M-MLV reverse transcriptase (Invitrogen) were used. The conditions for reverse transcription were 65°C for 5 min, 37°C for 50 min, and 70°C for 15 min. Quantitative real-time PCR was performed as described previously [8,11] using AmpliTaq Gold polymerase (Applied Biosystems, Foster City, CA, USA) and SYBR green I as a detection dye. The sequences of primers for real-time PCR of cyclophilin (cyc), delta-like 1 (DLK1), fatty acid binding protein 4 (FABP4) and stearoyl-CoA desaturase-1 (SCD1) were as described previously [8,11]. All other primers used are listed in Table 1. The mRNA expression of each gene was normalized to mRNA expression of cyclophilin, which was used as an internal control.

Statistical Analysis

Statistical analysis for the tissue distribution of gene expression was performed by a mixed ANOVA model (tissues showing significant expression at α = 0.05 vs. other tissues) followed by a Fisher’s protected least significant difference test. Analysis of SV and FC fraction was performed using the Student’s t test at P<0.05. Differences among the developmental time points were compared by one-way ANOVA followed by the Tukey’s post hoc test (P<0.05). To compare the difference between a control and an experimental group from GEO DataSets (GDS), Student’s t test was conducted (P<0.05). In addition, one-way ANOVA followed by Tukey’s post hoc test (P<0.05) was performed to compare multiple treatments from GDS. All statistical analyses were conducted using SAS software (version 9.2, SAS Institute Inc., Cary, NC, USA).

Results

Discovery of Tissue-Specific Genes

Twelve Excel spreadsheet files were generated for the kidney, liver, lung, heart, muscle, and adipose tissue specific expression in the human and mouse, respectively. By comparing top-rated genes across the human and mouse, 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose genes were selected. Names and ranks of selected genes, and ratios to an average of other tissues are provided in Table S1. These genes are significantly more highly expressed in certain tissues than in other tissues (P<0.001) with few exceptions (Table 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13). The tissue-specific expressions of those genes were confirmed either by existing publications or by semi-quantitative PCR and gel-electrophoresis (Figure 2). Three novel tissue-specific genes discovered by our method included AMDH1 in the liver, PRUNE2 in the heart and ACVR1C in the adipose tissue. Their tissue-specific expressions were confirmed by both semi-quantitative PCR and real-time PCR (Figures 2, 3A, 4A, and 5A).

Regulation of Novel Gene Expression Under Different Physiological Conditions and Disease Models

Gene expression under different physiological conditions and disease models was investigated using GEO profiles to help understand potential functions of the novel genes. The GEO profiles provided information to predict the function of AMDH1 in the liver. GDS1279 in the GEO Profiles shows that microRNA miR-122 antisense inhibits the expression of AMDH1 in the

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	P value*
GALT11	1726850±25854	209890±27262	295450±8851	244800±68610	155500±30505	271400±4801	<.0001
SLC22A6	2441850±177177	41900±13602	8250±350	56900±43807	73500±12452	8250±150	<.0001
SLC22A8	495950±860580	70650±13252	38800±10702	69900±29504	223350±60559	61700±29905	<.0001
SLC22A2	1014350±175076	136550±57659	82700±32805	41450±4651	375600±112177	31350±11652	<.0001
KL	156590±114717	74350±53258	59600±7101	38500±27004	576700±214312	24950±19053	<.0001
PDZK1	2576450±82362	90950±68260	9000±1500	72200±35005	451500±61209	48250±1850	<.0001
SLC12A3	1107100±29805	45800±4801	19200±1600	50100±20903	130300±900	23800±10302	<.0001
SPP1	6054550±271291	11210±35005	10500±2200	59100±19092	365750±275592	140150±550	<.0001
SLC3A4	1566590±94764	268150±53958	90150±51358	142850±116768	129300±38306	60300±8701	<.0001
FXD2	11852250±272891	155850±39056	62500±33105	265050±171576	642700±59909	99750±46257	<.0001

*P value represents the significance of gene expression in the human kidney compared to other tissues.

doi:10.1371/journal.pone.0064483.t002

Table 2. Human kidney-specific gene expression values.
shows that the expression of AMDHD1 is decreased significantly when hepatocyte nuclear factor 4 alpha [HNF4α] is deleted (Figure 3C, *P* < 0.01). HNF4α is a promoter for the expression of hundreds of metabolism-related genes in the liver. The co-expression of AMDHD1 and HNF4α indicates that AMDHD1 may be involved in hepatogenesis. The relatively greater expression of AMDHD1 in the regenerating liver compared to the developing liver indicates the role of AMDHD1 in renewal and repair of the liver (GDS2577; Figure 3D, *P* < 0.05). Expression of AMDHD1 in control mice is not influenced by a low fat, high carbohydrate diet, whereas SCD1 null mice treated with a low fat, high carbohydrate diet have significantly decreased expression of AMDHD1 (GDS-1517; Figure 3E, *P* = 0.05). All of these data suggest that AMDHD1 may be involved in fatty acid metabolism, which is one of the main functions of the liver.

PRUNE2 was previously studied in the central nervous system and in cancer patients, but there are no reports related to the function of PRUNE2 in the heart. GEO profiles provide some information to predict the function of PRUNE2 in the heart. The expression of PRUNE2 is decreased in ERRα (estrogen-related receptor alpha) deficient mouse hearts (GDS2727; Figure 4B; *P* < 0.01). ERRα regulates cellular energy metabolism, which is pivotal in high energy demand tissues such as the heart. The decreased expression of PRUNE2 in the heart of ERRα deficient mice indicates the function of PRUNE2 may be related to energy metabolism in the heart. Bonne et al. (1999) identified Lmna (lamin A/C) mutations in the autosomal dominant form of Emery–Dreifuss muscular dystrophy (AD-EDMD) [13]. The decreased expression of PRUNE2 in the Lmna H222P mutants (GDS 2746; Figure 4C; *P* < 0.05) suggests a relationship between PRUNE2 and Emery–Dreifuss muscular dystrophy. Patients with idiopathic dilated heart failure and ischemic heart failure have increased expression of PRUNE2, which also indicates a role of PRUNE2 in heart function (GDS651, Figure 4D; *P* < 0.05). PRUNE2 is also related to heart tension with higher expression in the heart of the hypertensive blood pressure high [BPH] inbred strains of mice and lower expression in genetically hypotensive blood pressure low [BPL] inbred strains compared to the normotensive blood pressure normal [BNP] inbred strains (GDS3673; Figure 4E; *P* < 0.05). All of these data suggest that PRUNE2 is related to heart function and heart disease.

Table 3. Mouse kidney-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	*P* value*
GALNT11	3362 ± 149	170 ± 2	196 ± 21	156 ± 2	157 ± 5	215 ± 15	<.0001
SLC22A6	1986 ± 129	105 ± 3	110 ± 6	157 ± 7	118 ± 4	103 ± 6	<.0001
SLC22A8	1741 ± 130	86 ± 6	88 ± 4	120 ± 3	80 ± 1	85 ± 3	<.0001
SLC22A2	1872 ± 59	109 ± 5	83 ± 3	99 ± 4	97 ± 3	92 ± 6	<.0001
KL	1914 ± 65	76 ± 1	76 ± 6	93 ± 3	85 ± 1	72 ± 3	<.0001
PDZK1	4070 ± 129	530 ± 49	98 ± 2	106 ± 3	106 ± 4	111 ± 5	<.0001
SLC12A3	1987 ± 249	136 ± 2	120 ± 3	143 ± 11	120 ± 4	115 ± 6	<.0001
SPP1	4933 ± 273	435 ± 67	1037 ± 210	104 ± 4	145 ± 12	104 ± 18	<.0001
SLC34A1	7269 ± 107	102 ± 3	94 ± 8	101 ± 10	92 ± 3	89 ± 4	<.0001
FXYD2	9786 ± 153	76 ± 2	99 ± 15	113 ± 4	106 ± 2	215 ± 12	<.0001

P value represents the significance of gene expression in the mouse kidney compared to other tissues.

Table 4. Human liver-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	*P* value*
HAMP	171900 ± 42806	11845400 ± 15894400	25500 ± 20103	690200 ± 445667	3700500 ± 119868	54150 ± 15252	<.0001
AHSG	77800 ± 44407	24651250 ± 4147376	10550 ± 150	189200 ± 33805	318450 ± 76662	33700 ± 13702	<.0001
AMBP	29800 ± 14102	44128150 ± 5392864	9100 ± 3601	16750 ± 4151	65750 ± 7251	21050 ± 10525	<.0001
HPX	196050 ± 100465	21364500 ± 2278144	110450 ± 33855	102750 ± 33455	403000 ± 131520	56350 ± 3050	<.0001
ALB	511500 ± 6101	32913750 ± 61559	50450 ± 9351	91800 ± 88613	114300 ± 38006	53000 ± 11602	<.0001
APOA1	74300 ± 2600	50972350 ± 10240696	45900 ± 11902	349250 ± 121768	309150 ± 139671	52800 ± 25004	<.0001
SLC27A5	58150 ± 12525	11243300 ± 360854	65400 ± 25504	38300 ± 9101	105450 ± 13052	35000 ± 7401	<.0001
FGG	53400 ± 49207	10354250 ± 496925	74250 ± 24254	135350 ± 28454	333450 ± 64160	54100 ± 21403	<.0001
GNMT	89750 ± 70861	4526150 ± 933091	12350 ± 1750	44200 ± 32025	243850 ± 135070	20000 ± 8101	<.0001
MAT1A	46600 ± 12902	8489500 ± 318148	26350 ± 2950	38750 ± 14052	301400 ± 41106	43650 ± 8751	<.0001

P value represents the significance of gene expression in the human liver compared to other tissues.

doi:10.1371/journal.pone.0064483.t003

doi:10.1371/journal.pone.0064483.t004
ACVR1C, also named activin receptor-like kinase 7 (ALK7), has a known ligand, Nodal, and is one of the type I transforming growth factor-β (TGF-β) receptors [14]. GDS 3135 shows that, in fasted rats, the expression of ACVR1C increased significantly in both WAT and BAT (Figure 5B), suggesting a role for ACVR1C in releasing fats in both WAT and BAT. GDS3665 shows that the expression of ACVR1C is decreased significantly (P<0.05) during 3T3-L1 preadipocyte differentiation, expression of ACVR1C showed a highly correlated pattern of expression to that of FABP4, with a significant increase at d 6 (P<0.05).

Developmental Regulation of ACVR1C in 3T3-L1 Cells

Developmental regulation of gene expression of ACVR1C has been evaluated during adipogenic differentiation of 3T3-L1 preadipocytes (Figure 5J). The development of adipocytes was demonstrated by gradual increases in the expression of adipocyte markers, FABP4 and SCD1, during differentiation. In addition, expression of both FABP4 and SCD1 increased significantly after d 6 (P<0.05). During 3T3-L1 preadipocyte differentiation, expression of ACVR1C showed a highly correlated pattern of expression to that of FABP4, with a significant increase at d 6 (P<0.05).

Discussion

We have established a novel and powerful approach to predict tissue-specific genes. By comparing one human and one mouse GEO DataSet (GDS) from a microarray, we identified a total of 59 tissue-specific or tissue-related genes in the kidney, liver, lung, heart, muscle, and adipose tissue. After confirmation of the tissue-specific expression by semi-quantitative PCR, we searched for the functions of these genes in specific tissues using NCBI PubMed and GEO profiles to further support our approach. The following tissue-specific genes selected from a microarray were categorized as follows: i) Genes that are verified as tissue-specific in human in previous publications; ii) Genes that are verified as tissue-specific in mouse in previous publications; iii) Genes that are not confirmed as tissue-specific, but are said to contain tissue-related functions in previous publications; and iv) Novel genes that have not been previously reported as tissue-specific or tissue-related, but are verified as tissue-specific by our PCR (Table 14, 15, 16, 17, 18, 19).

Kidney-Specific Genes

The 10 kidney-specific genes that we identified are GALNT11 (UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 11), AMBP (amyloid beta precursor protein), SFTPB (surfactant protein B), LGALS3 (lectin, galactoside-binding, single chain 3), ACVR1C, also named activin receptor-like kinase 7 (ALK7), SLC27A5 (solute carrier family 27, member 5), LPCAT1 (lysocephosphatidylcholine acyltransferase 1), SFTPC (surfactant protein C), SCGB1A1 (secretoglobin, 1A1), and AMDHD1 (ammonium transport protein 1).

Table 5. Mouse liver-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	P value *
HAMP	82±2	609±1294	122±4	121±16	83±3	79±4	<.0001
AHSG	93±1	812±414	92±8	124±3	96±2	94±4	<.0001
AMBP	94±5	7279±204	79±4	101±2	89±1	82±4	<.0001
HPX	84±3	9046±350	93±5	100±1	98±3	84±1	<.0001
ALB	183±3	16668±614	106±7	139±10	120±8	142±7	<.0001
APOA1	91±4	14910±361	86±9	127±4	103±3	88±1	<.0001
SLC27A5	84±4	5640±335	87±8	115±3	94±5	80±3	<.0001
FGG	191±5	9792±373	81±1	96±4	87±4	75±4	<.0001
GNMT	485±6	9337±214	181±6	216±10	182±11	115±9	<.0001
MAT1A	76±2	4738±705	116±5	89±2	78±2	68±2	<.0001
AMDHD1B182	182±2	1612±126	68±6	82±3	69±3	67±4	<.0001

Table 6. Human lung-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	P value *
CLDN5	247000±52608	245800±18503	3249550±98165	634400±200330	572600±375857	54650±8451	<.0001
CLDN18	158580±80912	248750±25154	2896050±202881	520000±331950	643050±209982	113450±19153	<.0001
LPCAT1	212500±131420	49550±19953	1304850±440417	27050±1650	105200±5201	90550±64000	<.0001
MUC1	1190450±33755	34900±1400	3937250±418013	48050±30255	314650±164475	47250±14852	<.0001
SGG58A1	157000±97015	131700±80312	8461200±606492	192650±121068	459000±116518	92700±16402	<.0001
SMAD6	130100±40306	48700±18203	770000±236136	193750±67260	85350±12552	23200±3901	<.0001
SFTPB	130800±16002	112700±76812	1812250±2916290	128500±49708	335300±18903	143050±29955	<.0001
SFTPC	71700±3601	72400±9501	2872000±2427066	43900±8501	112150±8951	24450±3651	<.0001
AGT	54700±15702	17150±5751	1179650±770166	52950±19353	87900±21303	70850±55658	<.05
CLIC3	32700±1630	23050±5351	1270200±311047	40600±14802	108600±71411	81950±13252	<.0001
SLC34A2	252100±20203	219050±89664	2808200±206331	247100±171326	711800±399460	61950±5451	<.0001

*P value represents the significance of gene expression in the human lung compared to other tissues.
doi:10.1371/journal.pone.0064483.t005

*P value represents the significance of gene expression in the mouse lung compared to other tissues.
SPP1, SLC34A1, and FXYD2. Genes confirmed by PCR include SLC22A2, PDZK1, SLC12A3, SLC22A6, and SLC22A8 genes are members of the solute carrier family (sodium phosphate co-transporter family). All of these genes are responsible for kidney function.

KL is a single transmembrane protein that is mainly produced in the kidney and brain. Severely reduced production of KL can induce chronic renal failure in the human kidney [27]. FXYD2 is the gamma subunit of the Na,K-ATPase and functions in regulating the enzyme’s activity by inducing ion channel activity. Mutations in this gene have been associated with renal hypomagnesaemia [28]. SPP1 is synthesized by the kidney and secreted into the urine by epithelial cells [29]. It functions to inhibit the nucleation and aggregation of calcium oxalate crystals [30]. PDZK1 is a scaffold protein that is located in brush borders of proximal tubular cells [24]. PDZK1 binds to and mediates the localization of cell surface proteins and plays an important role in cholesterol metabolism [31]. GALNT11 is an enzyme that is responsible for the localization of cell surface proteins and plays an important role in cholesterol metabolism. Lactosaminyltransferase 11, SLC22A6 (solute carrier family 22 (organic anion transporter), member 6), SLC22A8 (solute carrier family 22 (organic anion transporter), member 8), SLC22A2 (solute carrier family 22 (organic anion transporter), member 2), KL (kidney localization of cell surface proteins and plays an important role in cholesterol metabolism), GALNT11 (solute carrier family 22 gene family [26]).

The SLC22A2, SLC22A6, and SLC22A8 genes are members of the organic anion transporter SLC22 gene family [26]. SLC22A3 belongs to the solute carrier family. The SLC22A2, SLC22A6, and SLC22A8 genes are members of the organic anion transporter SLC22 gene family [26].

Table 7. Mouse lung-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	P value*
CLDN5	196±8	186±24	3131±327	259±30	227±5	721±98	<.0001
CLDN18	92±2	100±3	2162±188	113±10	88±3	82±2	<.0001
LPCAT1	179±7	147±9	2681±141	190±7	159±5	289±31	<.0001
MUC1	198±23	102±4	916±33	127±4	102±7	95±6	<.0001
SCGB1A1	92±1	73±3	16192±411	107±4	79±2	86±9	<.0001
SMAD6	165±5	134±5	1725±207	185±5	150±11	242±43	<.0001

Table 8. Human heart-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	P value*
FHL2	448350±147472	149000±91214	270350±7151	10829800±196430	996650±208762	545000±8801	<.0001
HSPPB	619350±7951	218500±41206	349200±7201	10634200±279242	4024050±402711	776550±73761	<.0001
MYOZ2	10800±5901	10900±3501	7650±550	1594350±58059	1238400±3501	6000±2200	<.0001
TNNT2	156200±14402	108600±35405	46200±3601	986850±1550184	423300±216733	113600±47107	<.0001
FHOD3	285850±26454	36500±11702	34850±17253	817700±2100	171100±65210	47300±36405	<.0001
PLN	37900±16302	40200±14302	41900±7701	1052570±251388	503800±348953	15950±2550	<.005
MYH6	17600±2700	28700±4801	53050±15452	5613450±320798	1098450±264690	12700±7001	<.0001
CSRP3	12150±4151	11600±2600	5300±400	5745250±515928	2571250±283193	8150±1850	<.0001
NPPA	872650±212483	182900±79512	138900±74211	5658450±205681	2447950±762865	336390±52408	<.0001
RYR2	72020±61359	28600±5401	20250±12952	291400±22103	99800±10502	10450±3951	<.0005
PRUNE2	126700±42006	71650±20053	16850±12052	127800±46207	86450±36956	255800±8601	<.5

*P value represents the significance of gene expression in the human heart compared to other tissues. doi:10.1371/journal.pone.0064483.t008
Liver-Specific Genes

HAMP (hepclin antimicrobial peptide), AHSG (alpha-2-HS-glycoprotein), AMBP (alpha-1-microglobulin/bikunin precursor), HPX (hemopexin), ALB (albumin), APOA1 (apolipoprotein A-I), SLC27A5 [solute carrier family 27 (fatty acid transporter), member 5], FGG (fibrinogen gamma chain), GNMT (glycine N-methyltransferase), MAT1A (methionine adenosyltransferase I, alpha), and AMDHD1 (amidohydrolase domain containing 1) exhibit significantly higher expression in liver than in other tissues. The liver-specific expressions of HAMP [32,33], AHSG [34], and AMBP [35] in human and/or mouse were confirmed by previous publications. AMBP, HPX, ALB, APOA1, SLC27A5, FGG, GNMT, and MAT1A were confirmed as liver-specific by semi-quantitative PCR.

HAMP functions in the maintenance of iron homeostasis, and is required for intestinal iron absorption and iron storage in macrophages. Mutations in this gene may cause hemochromatosis type 2B, which is an endocrine liver disease. HPX is a plasma glycoprotein that can bind and transport heme from the plasma to the liver for iron recovery to prevent heme-mediated oxidative damage and heme-bound iron loss [36]. AHSG and ALB are both synthesized by hepatocytes and secreted to the serum. AHSG is involved in ectopic calcium deposition [37], insulin resistance [38,39], and fat accumulation in the liver [40]. ALB composes about half of the blood serum protein. It serves as a carrier for steroids, fatty acids, thyroid hormones, and drugs and as a regulator for the colloidal osmotic pressure of blood. ALB levels are decreased in chronic liver disease and nephrotic syndrome.

AMBP is a liver-specific precursor protein of alpha-1-microglobulin and bikunin. Alpha-1-microglobulin belongs to the lipocalin transport protein superfamily and functions in inflammatory processes, whereas bikunin is a urinary trypsin inhibitor. FGG is a blood-borne glycoprotein that can be cleaved by thrombin to form fibrin and act as a co-factor in platelet aggregation. Defects in this gene lead to several disorders, including dysfibrinogenemia, hypofibrinogenemia, and thrombophilia. APOA1 is the main component of high density lipoprotein (HDL) in blood plasma. It promotes reverse transport of cholesterol from tissues to the liver for excretion by promoting cholesterol efflux from tissues [41]. SLC27A5, GNMT, and MAT1A have enzymatic activities. SLC27A5 is a fatty acid transporter, and encodes Acyl-CoA synthetase, which is involved in bile acid metabolism in the liver. GNMT catalyzes the conversion of S-adenosyl-methionine (SAM) to S-adenosylhomocysteine and sarcosine. MAT1A catalyzes the formation of S-adenosylhomocysteine from methionine and ATP. All of these activities occur predominantly in the liver and are important for normal liver functions.

AMDHDI is only contained in mouse GDS and is highly ranked, indicating its liver-specific expression. Human GDS96

Table 9. Mouse heart-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	P value*
FHHL2	279±7	140±5	173±6	8829±429	161±2	146±7	<.0001
HSPB7	94±1	97±7	154±16	4441±118	1016±181	116±1	<.0001
MYOZ2	80±3	96±2	193±14	8934±199	2157±145	82±1	<.0001
TNN1T2	74±4	79±4	422±27	16112±248	113±5	66±2	<.0001
FHD3	346±22	82±2	81±4	1353±58	421±36	75±10	<.0001
PLN	102±3	75±8	185±8	14565±615	112±8	86±9	<.0001
MYH6	71±2	73±2	839±124	19317±1430	83±2	87±12	<.0001
CSRP3	86±2	411±5	247±8	8180±256	1294±176	86±0	<.0001
NPPA	77±4	88±7	261±19	4431±361	83±3	80±2	<.0001
RYR2	70±1	69±3	128±6	2889±51	74±3	68±2	<.0001
PRUN2E	72±1	77±3	74±0	215±26	85±1	83±2	<.0001

*P value represents the significance of gene expression in the mouse heart compared to other tissues.

doi:10.1371/journal.pone.0064483.t009

Table 10. Human muscle-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	P value*
MYOT	12900±6001	19500±7601	17250±12752	92450±35755	542710±568736	14050±4651	<.0001
TNNC2	20050±7901	85800±14002	139350±32055	81450±13252	72503600±4693109	64650±21753	<.0001
TNN2	40300±8301	25100±5901	28150±7951	43850±450	25906100±111517	22500±9601	<.0001
TNN3	224050±83663	228450±94964	161100±14102	565100±373356	11062700±366455	149900±32805	<.0001
ACTN3	221850±24654	198850±90564	166450±15552	256300±87213	7269400±844828	163550±40656	<.0001
MYBPC1	179500±64710	158700±64710	57750±10352	279550±101765	2041650±63360	113800±3100	<.0001
MYBPC2	16600±3701	24550±8851	680±100	50450±5851	1252390±251088	14650±6751	<.0001
MYOZ1	311100±176027	238550±67760	180600±6901	372150±141771	15847500±217533	148900±12202	<.0001

*P value represents the significance of gene expression in the human muscle compared to other tissues.

doi:10.1371/journal.pone.0064483.t010
related genes in glucose, fatty acid, cholesterol, and drug expression of hundreds of genes in the liver, especially metabolism-[46]. The decreased expression of AMDHD1 in HNF4 null mice are embryonic lethal [46]. A low fat, high carbohydrate diet may cause SCD1 null mice to develop severe hypercholesterolemia. The CLDNs are located on tight junction strands on the cell membrane of the lung and serve as a physical barrier for solutions and water. Mutations in CLDN5 may cause velocardiofacial syndrome [47], whereas mutations in CLDN18 are related to lung

Table 11. Mouse muscle-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	P value*
MYOT	66±1	65±2	63±0	836±14	7300±174	64±3	<.0001
TNNT2	82±3	94±7	80±3	135±3	15148±298	90±2	<.0001
TNNI2	89±4	94±8	105±13	109±4	15552±388	92±4	<.0001
TNNT3	79±4	101±11	90±4	83±4	14045±248	83±3	<.0001
ACTN3	92±3	107±5	101±20	119±4	11726±449	150±8	<.0001
MYBP1	89±2	95±3	85±2	97±3	3414±295	87±4	<.0001
MYBP2	83±2	82±4	100±2	183±13	9194±118	94±5	<.0001
MYOZ1	139±6	161±6	157±50	214±14	7523±84	145±11	<.0001

*P value represents the significance of gene expression in the mouse muscle compared to other tissues.

doi:10.1371/journal.pone.0064483.t011

only contains data for about 22,000 spots, whereas the mouse GDS3142 has data for more than 45,000 spots. Searching for “AMHD1 liver” in NCBI PubMed (http://www.ncbi.nlm.nih.gov/pubmed) returns no results. Searching GEO profiles provides indications about the function of AMHD1 in the liver. AMHD1 protein contains 426 amino acids and has been reported to be involved in the histidine metabolism pathway [42]. The expression of AMHD1 in the liver is inhibited by microRNA miR-122 antisense. The miR-122 makes up 70% of all microRNA in the adult liver. It is highly expressed in the developing and adult liver [43]. It negatively regulates target mRNAs and is thought to be important for establishing tissue-specific gene expression patterns. The expression of AMHD1 is negatively regulated by miR-122 binding sites (www.microrna.org), which indicates that miR-122 is a trans-acting factor for AMHD1. HNF4α is a nuclear receptor that can activate the expression of hundreds of genes in the liver, especially metabolism-related genes in glucose, fatty acid, cholesterol, and drug metabolism [44,45]. The HNF4α null mice are embryonic lethal [46]. The decreased expression of AMHD1 in HNF4α deleted liver suggests that AMHD1 is involved in hepatogenesis. GDS2577 shows that expression of AMHD1 is significantly higher in the regenerating liver than in the developing liver, which suggests a function for AMHD1 in renewal and repair of the liver.

SCD1 is an enzyme that is responsible for forming a double bond in stearoyl-CoA to form monounsaturated fatty acid from saturated fatty acid [12]. A low fat, high carbohydrate diet may cause SCD1 null mice to develop severe hypercholesterolemia. The significantly lower expression of AMHD1 in the low fat, high carbohydrate treated SCD1 null mice (GDS-1517) indicates that AMHD1 is involved in fatty acid metabolism in the liver.

Lung-Specific Genes

Lung-specific genes identified in the current study include LPCAT1 (lysophosphatidylcholine acyltransferase 1), MUC1 (mucin 1, cell surface associated), SCGB1A1 [secretoglobin, family 1A, member 1 (uteroglobin)], SFTPB [surfactant protein B], SFTPC [surfactant protein C], AGER [advanced glycosylation end product-specific receptor], CLDN5 [claudin 5], CLDN18 [claudin 18], SLC34A2 [solute carrier family 34 (sodium phosphate), member 2], SMAD6 [SMAD family member 6], and CLIC3 [chloride intracellular channel 3]. Among them, lung-specific expression in human and/or mouse was either confirmed by publications (CLDN5 [47,48], CLDN18 [49], LPCAT1 [50,51], MUC1 [52,53], SCGB1A1 [54], and SMAD6 [55]) or PCR (SCGB1A1, SFTPB, SFTPC, AGER, SLC34A2, and CLIC3).

Bridges et al. (2010) reported that LPCAT1 functions in surfactant phospholipid synthesis and is essential for transitioning to air breathing in neonatal mice [56]. MUC1 serves as a protective layer in the airway against bacterial and enzyme attack. SCGB1A1 is an anti-inflammatory agent that decreases systemic inflammation and increases surfactant protein and vascular endothelial growth factor expression. It functions in reducing lung injury, improves pulmonary compliance and oxygenation. SFTPB and SFTPC are both expressed on the pulmonary surfactant to promote alveolar stability by reducing air-liquid interface tension.

The CLDNs are located on tight junction strands on the cell membrane of the lung and serve as a physical barrier for solutions and water. Mutations in CLDN5 may cause velocardiofacial syndrome [47], whereas mutations in CLDN18 are related to lung

Table 12. Human adipose-specific gene expression values.

Gene	Kidney	Liver	Heart	Muscle	Adipose	P value*
RETN	59850±32055	86150±42056	437450±156374	174450±100065	211200±89313	73500±32705 <.5
ADIPOQ	173600±64710	141750±17753	34000±17103	393850±11152	299050±41256	10250050±1283044 <.0001
LEP	13250±3351	8900±400	8950±1250	26550±5151	78650±15952	24350±2450 <1
PPARC	42850±7951	35750±14352	80400±21503	22600±7001	84600±1400	917150±14252 <.0001
CIDEC	546300±145022	787350±256899	400000±153723	894150±271191	1235150±349403	10546600±390859 <.0001

*P value represents the significance of gene expression in the human adipose tissue compared to other tissues.

doi:10.1371/journal.pone.0064483.t012
adenocarcinomas [57]. AGER is highly expressed in the embryonic brain and adult lung. AGER expression is significantly decreased in human lung carcinomas, which suggests that AGER may function in suppressing lung cancer. SLC34A2 is a phosphate transport protein. Mutations in SLC34A2 may cause pulmonary alveolar microlithiasis [58].

SMAD6 inhibits transforming growth factor-beta (TGF-β) superfamily-regulated cell growth and development. CLIC3 is a component of chloride ion channels. The functions of these two genes are understudied in the lung. By searching the GEO profile, we predict that SMAD6 and CLIC3 could be related to idiopathic pulmonary fibrosis and pulmonary adenocarcinomas. Compared to the normal lung tissue, the expressions of SMAD6 and CLIC3

Table 13. Mouse adipose-specific gene expression values.

Gene	Kidney	Liver	Lung	Heart	Muscle	Adipose	P value*
RETN	168±13	136±2	240±8	190±18	254±44	11518±177	<.0001
ADIPOQ	177±39	67±0	355±30	123±10	830±177	15125±409	<.0001
LEP	74±2	80±1	75±2	88±4	105±10	1719±137	<.0001
PPARG	108±3	168±24	148±4	172±16	135±8	2016±159	<.0001
CIDECA	83±6	88±7	132±4	82±5	123±12	5175±484	<.0001
CCDC80	146±2	191±10	362±2	234±34	409±46	6447±167	<.0001
DGAT2	739±27	125±158	213±8	727±29	330±16	4503±922	<.0001
ACVR1C	58±2	61±2	63±2	60±2	68±2	776±208	<.0001

*P value represents the significance of gene expression in the mouse adipose tissue compared to other tissues.

Figure 2. Expression of adult human and mouse gene transcripts detected by PCR reaction and agarose gel electrophoresis. Lanes 1–6 contain PCR products from human and lanes 7–12 contain PCR products from mouse. Lanes 1 and 7: kidney, lanes 2 and 8: liver, lanes 3 and 9: lung, lanes 4 and 10: heart, lanes 5 and 11: muscle, and lanes 6 and 12: adipose. Housekeeping genes, human and mouse cyclophilin (cyc), serve as a loading control.

doi:10.1371/journal.pone.0064483.t013
doi:10.1371/journal.pone.0064483.g002
are lower in tissues with idiopathic pulmonary fibrosis (GDS1252) and pulmonary adenocarcinoma (GDS1650 and GDS 3257).

Heart-Specific Genes

In the heart, FHL2 (four and a half LIM domains 2), HSPB7 [heat shock 27 kDa protein family, member 7 (cardiovascular)], MYOZ2 (myozenin 2), FHOD3 (formin homology 2 domain containing 3), PLN (phospholamban), MYH6 (myosin, heavy chain 6, cardiac muscle, alpha), CSRP3 [cysteine and glycine-rich protein 3 (cardiac LIM protein)], NPPA (natriuretic peptide A), RYR2 (ryanodine receptor 2, cardiac), TNNT2 (troponin T type 2, cardiac), and PRUNE2 have significantly higher expressions compared to other tissues. Publications confirmed the human and/or mouse heart-specific expression of FHL2 [59,60], HSPB7 [61,62], and MYOZ2 [63], and PCR confirmed the heart specific expression of TNNT2, FHOD3, PLN, MYH6, CSRP3, NPPA, RYR2, and PRUNE2. Publications confirmed the human and/or mouse heart-specific expression of FHL2 [59,60], HSPB7 [61,62], and MYOZ2 [63], and PCR confirmed the heart specific expression of TNNT2, FHOD3, PLN, MYH6, CSRP3, NPPA, RYR2, and PRUNE2.

FHL2 functions in many fundamental processes by interacting with a variety of types of proteins including structural proteins, kinases, and transcription factors. HSPB7 interacts with alpha filamin, and is potentially involved in chaperone activity and maintenance of the cytoskeletal network in the cardiac muscle. MYOZ may serve as intracellular binding proteins involved in linking Z line proteins and localizing calcineurin signaling to the sarcomere. FHOD3 is an actin-organizing protein that may regulate stress fiber formation. PLN has been postulated to regulate the activity of the calcium pump of the cardiac sarcoplasmic reticulum. CSRP3 is an organizer of cytosolic structures in cardiomyocytes. Mutations in this gene may cause hypertrophic cardiomyopathy and dilated cardiomyopathy in humans [64]. NPPA is a hormone playing a key role in cardiovascular homeostasis. Both MYH6 and RYR2 are responsible for cardiac muscle contraction. RYR2 mutations may cause catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia (ARVD) [65,66].

Full length PRUNE2 contains 3,088 amino acids, which can be divided into 19 exons. PRUNE2 has 5 isoforms: BMCC1 [Bel2/adeno-virus E1B 19 kDa-interacting protein (BNIP) 2 and Gdc42 GAP homology (BCH) motif-containing molecule at the C-terminal region1], BNIPXL (BNIP2 extralong), C9orf65 (Chromosome 9 Open Reading Frame 65), PRUNE2, and Olfaxin. BMCC1 is associated with neuronal apoptosis [67], BNIPXL is an N-terminal truncated form of BMCC1 and is related to cellular transformation [68], C9orf65 is a biomarker that distinguishes leiomyosarcomas from gastrointestinal stromal tumors [69], PRUNE2 is a binding protein of 8-oxo-GTP that contains C9orf65 and BMCC1 [70,71]. These four PRUNE2 isoforms

Figure 3. AMDHD1 (amidohydrolase domain containing 1) mRNA expression. A, Real-time PCR for AMDHD1 mRNA tissue distribution. Total RNA were isolated from the white adipose tissue (WAT), brown adipose tissue (BAT), liver, muscle, heart, lung, spleen, and kidney of adult mice. The mRNA expression was measured by quantitative real-time reverse transcription PCR (qRT-PCR) (n = 3). The bar represents mean ± SEM. Statistical significance is indicated by ***P < 0.001). Housekeeping gene cyclophilin (cyc) was used to normalize the mRNA expression. B–E, Analysis of microarray Datasets obtained from the NCBI website, which contains expression profiles for AMDHD1. B: GDS1729 (n = 5 per group), C: GDS1916 (n = 3 per group), D: GDS2577 (n = 3–4 per group), and E: GDS1517 (n = 5 per group). HNF4α: hepatocyte nuclear factor 4 alpha; dpc: days post conception; aph: after partial hepatectomy.

doi:10.1371/journal.pone.0064483.g003

may play crucial roles in Alzheimer’s disease and cancer. Olfaxin is the most recently discovered PRUNE2 isoform that is located in the olfactory systems [72].

Neuronal tissues were not included in our samples. The expression of PRUNE2 was significantly greater in the heart compared to other tissues in the mouse (\(P, 0.001 \)) but not human (\(P, 0.5 \)). Searching NCBI PubMed returned no publications about PRUNE2 in the heart. However, our semi-quantitative and real-time quantitative PCR confirmed the high expression of PRUNE2 in both human and mouse heart.

From GEO profiles we found that expression of PRUNE2 is decreased in ERR\(\alpha\)-deficient mouse hearts. Considering ERR\(\alpha\) is an orphan nuclear receptor that plays a critical role in regulating cellular energy metabolism, the decreased expression of PRUNE2 in ERR\(\alpha\)-deficient mouse hearts suggests that PRUNE2 may be involved in energy metabolism in the mouse heart.

PRUNE2 is likely to be related to heart diseases. The expression of PRUNE2 is decreased in Lmna H222P mutants, which in turn are related to Emery–Dreifuss muscular dystrophy [13]. These results suggest an association between PRUNE2 and Emery–Dreifuss muscular dystrophy.

The function of PRUNE2 in cardiomyocyte diseases is linked to serum response factor (SRF). SRF plays a critical role in mesodermal development [73] and the deletion of SRF causes embryonic lethal cardiovascular phenotypes. Expression of PRUNE2 is upregulated in SRF-null mutants, which indicates that PRUNE2 may be associated with cardiomyocyte diseases. Increased expression of PRUNE2 is also found in patients with idiopathic dilated heart failure and ischemic heart failure, which supports the role of PRUNE2 in heart function. PRUNE2 expression is the highest in the hearts of genetically hypertensive BPH inbred strains of mice compared to the normotensive BPN and hypotensive BPL inbred strains. All of these data suggest an important role for PRUNE2 in heart function and heart diseases.

Muscle-Specific Genes

All 8 of the muscle specific genes we identified are well-studied for their roles in muscle function: MYOT (myotilin), TNNC2 (troponin C type 2, fast), TNNI2 (troponin I type 2, skeletal, fast), TNNT3 (troponin T type 3, skeletal, fast), MYBPC1 (myosin binding protein C, slow type), MYOZ1 (myozin 1), ACTN3 (actinin, alpha 3), and MYBPC2 (myosin binding protein C, fast type). We confirmed the muscle-specific expression of TNNC2, TNNI2, TNNT3, ACTN3, MYBPC1, MYBPC2, and MYOZ1 by PCR and two publications supported the muscle-specific expression of MYOT [74,75].

MYOT is located within the Z-disc of sarcomeres. Mutations in the MYOT gene cause various forms of muscular dystrophy.
Figure 5. ACVR1C (activin A receptor, type IC) mRNA expression. A, Real-time PCR for ACVR1C mRNA tissue distribution. Total RNA were isolated from the white adipose tissue (WAT), brown adipose tissue (BAT), liver, muscle, heart, lung, spleen, and kidney of adult mice. The mRNA expression was measured by quantitative real-time reverse transcription PCR (qRT-PCR) (n = 3). The bar represents mean ± SEM. Statistical significance is indicated by *** (P < 0.001). Housekeeping gene cyclophilin (cyc) was used to normalize the mRNA expression. B and C, Analysis of microarray Datasets obtained from the NCBI website containing expression profiles for ACVR1C. B: GDS3135 (n = 4 per group) and C: GDS3665 (n = 5 per group). D–G, Relative expression of DLK1, FABP4, SCD1, and ACVR1C in the stromal-vascular (SV) and fat cell (FC) fractions from mouse inguinal adipose tissue. Each bar indicates mean and SEM (n = 5). Statistical significance by Student’s t test is shown: *, P < 0.05; **, P < 0.01. The gene expression was normalized to cyclophilin (cyc) mRNA expression. H–J, Developmental regulation of ACVR1C during adipogenic differentiation of 3T3-L1 cells. The bar represents mean ± SEM (n = 3). Letters a and b show significant differences in gene expression among several time-points (day 0, 2, 4, 6, and 8) in adipocyte differentiation at P < 0.05. The mRNA abundance was measured by quantitative real-time reverse transcription PCR (qRT-PCR) and normalized to cyclophilin (cyc) mRNA.

doi:10.1371/journal.pone.0064483.g005

Table 14. Kidney-specific expression confirmed by publications and/or semi-quantitative PCR.

Kidney	Publication in human	Publication in mouse	PCR
GALNT11	[15]	[15]	–
SLC22A6	[16,17]	[16]	–
SLC22A8	[18]	[19]	–
SLC22A2	[20]	[21]	–
KL	[22]	[23]	–
PDZK1	–	[24]	○
SLC12A3	[25]	–	○
SPP1	–	–	○
SLC34A1	–	–	○
FXYD2	–	–	○

doi:10.1371/journal.pone.0064483.t014

Table 15. Liver-specific expression confirmed by publications and/or semi-quantitative PCR.

Liver	Publication in human	Publication in mouse	PCR
HAMP	[32]	[33]	–
AHSG	[34]	[34]	–
AMBP	–	[35]	○
HPX	–	–	○
ALB	–	–	○
APOA1	–	–	○
SLC27A5	–	–	○
FGG	–	–	○
GNMT	–	–	○
MAT1A	–	–	○
AMDHD1	–	–	○

Novel

doi:10.1371/journal.pone.0064483.t015
Troponin is a key protein controlling striated muscle contraction. It is composed of 3 subunits: the TNNI subunit inhibits actomyosin ATPase, the TNNC subunit binds to calcium and overcomes the inhibitory action of the troponin complex on actin filaments, and the TNNT subunit binds to tropomyosin and TNNC. TNNI2, TNNC2, and TNNT3 are specifically expressed in muscle, whereas TNNT2 is mainly expressed in cardiac muscle. MYBPC1 and MYBPC2 are skeletal muscle slow-twitch and fast-twitch myosin binding proteins, which can regulate the activity of actin-activated myosin ATPase to modulate muscle contraction. MYOZ1 functions in modulating calcineurin signaling in skeletal muscle.

Table 16. Lung-specific expression confirmed by publications and/or semi-quantitative PCR.

Lung	Publication in human	Publication in mouse	PCR
CLDN5	[47]	[48]	–
CLDN18	[49]	–	–
LPCAT1	[50]	[51]	–
MUC1	[52]	[53]	–
SCGB1A1	[54]	–	–
SMAD6	[55]	[55]	–
SFTPB	–	–	–
SFTPC	–	–	–
AGER	–	–	–
CLIC3	–	–	–
SLC34A2	–	–	–

doi:10.1371/journal.pone.0064483.t016

Table 17. Heart-specific expression confirmed by publications and/or semi-quantitative PCR.

Heart	Publication in human	Publication in mouse	PCR
FHL2	[59]	[60]	–
HSPB7	[61]	[62]	–
MYOZ2	[63]	[63]	–
TNNT2	–	–	–
FHOD3	–	–	–
PLN	–	–	–
MYH6	–	–	–
CSRP3	–	–	–
NPPA	–	–	–
RYR2	–	–	–
PRUNE2	–	–	–

doi:10.1371/journal.pone.0064483.t017

Adipose-Specific Genes

Six genes that were confirmed by publications to be highly expressed in human and mouse adipose tissue are: RETN (resistin) [80,81,82], ADIPOQ (adiponectin, C1Q and collagen domain containing) [83], LEP (leptin) [84,85], PPARγ (peroxisome proliferator-activated receptor gamma) [86,87], CIDEC (cell death-inducing DFFA-like effector c) [88], CCDC80 (coiled-coil domain containing 80) [89], and DGAT2 (diacylglycerol O-acyltransferase 2) [90]. Our PCR data showed the adipose specific expression of CIDEC (cell death-inducing DFF45-like effector C) and ACVR1C.

Both RETN and ADIPOQ are adipokines that control insulin sensitivity and fat metabolism. LEP controls the size of adipose depots by affecting food intake and energy expenditure. PPARγ is a well-known regulator of adipocyte differentiation, glucose homeostasis, and blood pressure. CIDEC is localized around the lipid droplet in adipocytes and regulates lipid droplet formation [91,92]. It can regulate energy balance and obesity [93] and induce cell apoptosis [94]. CCDC80 is a secreted protein that regulates adipocyte differentiation [95], whereas DGAT2 is an enzyme that catalyzes the final step of mammalian triglyceride synthesis [96] and may be involved in the mechanisms of obesity, insulin resistance, and leptin resistance.

Our SV and fat cell fractionation studies showed that ACVR1C is adipocyte-specific, but not preadipocyte-specific. ACVR1C was further confirmed to be both WAT-specific and BAT-specific. When fasted, the expression of ACVR1C increases significantly in rat WAT and BAT, which suggests a role for ACVR1C in fat metabolism. In the adipose tissue from obese diabetic women, the expression of ACVR1C is decreased significantly, which suggests a role for ACVR1C in obese diabetic symptoms.

In summary, our approach provides a new and powerful procedure to discover novel tissue-specific genes and predict the

Table 18. Muscle-specific expression confirmed by publications and/or semi-quantitative PCR.

Muscle	Publication in human	Publication in mouse	PCR
MYOT	[74]	[75]	–
TNNC2	–	–	–
TNNI2	–	–	–
TNNT3	–	–	–
ACTN3	–	–	–
MYBPC1	–	–	–
MYBPC2	–	–	–
MYOZ1	–	–	–

doi:10.1371/journal.pone.0064483.t018

Table 19. Adipose-specific expression confirmed by publications and/or semi-quantitative PCR.

Adipose	Publication in human	Publication in mouse	PCR
RETN	[80]	[81,82]	–
ADIPOQ	[83]	–	–
LEP	[64]	[85]	–
PPARγ	[86]	[87]	–
CIDEC	[88]	–	–
CCDC80	[89]	[89]	–
DGAT2	[90]	[90]	–
ACVR1C	–	–	Novel

doi:10.1371/journal.pone.0064483.t019
processes or pathways in which they may be involved. With this method, we discovered novel tissue-specific genes: AMDHD1 in the liver, PRUNE2 in the heart, and ACVR1C in the adipose tissue. Our procedure also can be extended to other tissues in other species. This approach is an efficient way of integrating valuable databases to identify novel sets of tissue-specific genes that are related to tissue growth and development, and diseases.

Supporting Information

Table S1 Tissue-specific gene expression values based on GEO Dataset(GDS)596 for the human and GDS3142 for the mouse. The microarray gene expression profiles for the six tissues (kidney, liver, lung, heart, muscle, and adipose tissue) of the human and mouse were collected from GEO DataSet(GDS) in the National Center for Biotechnology Information (NCBI) web page. *Average expression values for each tissue including a target tissue were obtained. **Those average values for each tissue were divided by an average value of a target tissue and then averaged for obtaining one representative value. If the representative value is lower, then tissue-specificity for a target tissue is higher because it was divided by an average value of a target tissue. ***An alternative approach shows that an average value of a target tissue was divided by average of averages for each tissue. If the result value is higher, then tissue-specificity for a target tissue is higher because an average value of a target tissue was divided. Figure 1 shows the schematic diagram for the above procedures. (XLSX)

Author Contributions

Conceived and designed the experiments: KL. Performed the experiments: Y. Song, Y. Suh. Analyzed the data: JA Y. Song, KL. Contributed reagents/materials/analysis tools: JA Y. Song, Y. Suh. Wrote the paper: Y. Song, JA MD KL.

References

1. Nichols C, Pollet N (1999) Synexpression groups in Drosophila. Nature 402: 483–487.
2. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, et al. (2001) Tissue-specific expression of a splicing mutation in the IkB kinase gene causes familial dysautonomia. Am J Hum Genet 68: 590–600.
3. Roberts HJ, Hu S, Qiu Q, Leung PC, Caniggia I, et al. (2003) Identification of delta-like 1 homolog (DLK1) in the pig and human. Proc Natl Acad Sci USA 99: 4465–4470.
4. Schrier Ida T, Zirahi Iida T, Nagai R, Kuro-o M, et al. (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242: 630–634.
5. Liu B, Shin J, Lee K (2009) Interferon-stimulated gene ISG151b inhibits adipogenic differentiation and mitochondrial biogenesis in 3T3-L1 cells. Endocrinology 150: 1217–1224.
6. Dobrzyn P, Ntambi JM, Dobrzyn A (2008) Stearoyl-CoA desaturase: A novel enzyme involved in fatty acid homeostasis. J Lipid Res 49: 103–110.
7. Deiuliis JA, Li B, Lyvers-Peffer PA, Moeller SJ, Lee K (2006) Alternative splicing of delta-like 1 homolog (Dlk1) in the pig and human. Comp Biochem Physiol Part B 145: 50–59.
8. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271.
9. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) BodyMap-X: an anatomical breakdown of 17 million animal ESTs for cross-species comparison of gene expression. Nucleic Acids Res 34: D628–D631.
10. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, et al. (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 99: 1733–1745.
11. Deiuliis JA, Li B, Lyvers-Peffer PA, Moeller SJ, Lee K (2006) Alternative splicing of delta-like 1 homolog (Dlk1) in the pig and human. Proc Biochem Physiol Part B 145: 50–59.
12. Deiuliis JA, Li B, Lyvers-Peffer PA, Moeller SJ, Lee K (2006) Alternative splicing of delta-like 1 homolog (Dlk1) in the pig and human. Proc Biochem Physiol Part B 145: 50–59.
13. Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, et al. (2008) ArrayExpress - a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 36: D553–D555.
14. Deiuliis JA, Li B, Lyvers-Peffer PA, Moeller SJ, Lee K (2006) Alternative splicing of delta-like 1 homolog (Dlk1) in the pig and human. Proc Biochem Physiol Part B 145: 50–59.
15. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271.
16. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271.
17. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271.
18. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271.
19. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271.
20. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271.
21. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271.
22. Liu X, Yu X, Zack DJ, Zhai H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271.
calicification syndrome and outcome in peritoneal dialysis patients. Nephrol Dial Transplant 20: 1676–1685.
38. Srivivas PR, Waiger AS, Reddy LV, Deutsch DD, Leon MA, et al. (1993) Serum alpha-2-HS-glycoprotein is an inhibitor of the human insulin receptor at the primary site of diabetes. Mol Endocrinol 7: 1435–1445.
39. Raath G, Poschke O, Fink E, Edtmeier T, Sippern T, et al. (1992) The nucleolus and partial amino acid sequences of rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor. Eur J Biochem 204: 523–529.
40. Stefan N, Henegue AM, Staiger H, Machmann J, Schäck F, et al. (2006) Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in diabetes. Cancer Res 62: 835–837.
41. Johnson WJ, Kádönsik EP, van Tol A, Phillips MC, Rottbäth GH (1991) Cholesterol efflux from cells to immunosuppressed subfractions of human high density lipoprotein: LPA/I and LPA/AII. J Lipid Res 32: 1993–2000.
42. Assié G, Guillaud-Bataille M, Ragazzen B, Bertagna X, Bertherat J, et al. (2010) The pathophysiology, diagnosis and prognosis of adrenocortical tumors revisited by transscriptome analysis. Trends Endocrinol Metab 21: 221–229.
43. Chang J, Nicolas E, Marks D, Sander C, Lerro A, et al. (2004) miR-122, a mammalian liver-specific microRNA, is processed from her mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1: 17–24.
44. Odom DT, Zdiergerber N, Gordon DB, Bell GW, Rinaldi NJ, et al. (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303: 1378–1381.
45. Wexman DJ, Holloway MG (2009) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 76: 215–228.
46. Chen WS, Manova K, Weinstein DC, Duncan SA, Plump AS, et al. (1994) Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic endoderm and impaired gastrulation of mouse embryos. Genes Dev 8: 2466–2477.
47. Sirotkin H, Morrow B, Saint-Jore B, Puech A, Das Gupta R, et al. (1997) Expression of an epithelial mucin, Muc-1, during mouse development. Int J Dev Biol 41: 427–431.
48. Watanabe K, Naito T, Oga Z, Haraguchi S, Nishiyama T, et al. (2006) Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase (LP-1). J Biol Chem 281: 3730–3738.
49. Khan N, Yajima I, Kanai T, Matsunaga J, Yagishita T, et al. (2006) Characterization of a novel Prune2 isoform predominantly expressed in olfactory system. Brain Res 1125: 127–136.
50. Hauer MA, Morrigan SK, Salminen P, Torian UM, Vais KD, et al. (2000) Myostatin is mutated in limb girdle muscular dystrophy type 1A. Hum Mol Genet 9: 1341–1345.
51. Vos MJ, Kanon B, Kampinga HH (2009) HSPB7 is a SC35 speckle resident small heat shock protein. Biochim Biophys Acta 1793: 1343–1353.
52. Sirotkin H, Morrow B, Saint-Jore B, Puech A, Das Gupta R, et al. (1997) Expression of an epithelial mucin, Muc-1, during mouse development. Int J Dev Biol 41: 427–431.
53. Bi S, Gavrilova O, Gong DW, Mason MM, Reitman M (1997) Identification of adiponectin, a novel secretory factor inhibiting adipocyte differentiation. J Biol Chem 272: 11252–11256.
54. Peri A, Cordella-Miele E, Miele L, Mukherjee AB (1993) Tissue-specific expression of the peroxisome proliferator-activated receptor gamma (PPAR gamma). Biochem Biophys Res Commun 204: 523–529.
55. Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, et al. (2009) Phosphatidylcholine biosynthesis and utilization. J Biochem 145: 1–13.
56. Harayama T, Shindou H, Shimizu T (2009) Biosynthesis of phosphatidylcholine by human lysophosphatidylcholine acetyltransferase 1. J Lipid Res 50: 1824–1831.
57. Sirotkin H, Morrow B, Saint-Jore B, Puech A, Das Gupta R, et al. (1997) Identification, characterization, and precise mapping of a human gene encoding a novel membrane-spanning protein from a subcellular fraction in male D11cl region deleted in velocardiofacial syndrome. Genomics 42: 245–251.
58. Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junctions. Proc Natl Acad Sci USA 96: 516–521.
59. Niimi T, Nagashima K, Ward JM, Minoo P, Zimonjic DB, et al. (2001) Claudin-18, a novel, downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol 21: 7380–7390.
60. Vidyasagar SM, Dhandapani K, Prades J, Mohler J, Hoffmann B, et al. (2008) BiP regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J Clin Invest 120: 1736–1748.
61. Quraishe S, Asuni A, Boelens WC, O’Connor V, Wyttenbach A (2008) Expression of the small heat shock protein family in the mouse CNS: differential expression and partial amino acid sequences of rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor. Eur J Biochem 204: 523–529.
62. Tiso N, Napolitano C, Tiso N, Memmi M, Vignati G, et al. (2001) Mutations in the tyrosine kinase level. Mol Endocrinol 7: 1445–1455.
63. cases S, Stone SJ, Zhou P, Reitman M, Vais KD, et al. (2006) Comparative analysis of fatty acid-binding protein 4 promoters: conservation of peroxisome proliferator-activated receptor binding sites. J Anim Sci 84: 105–113.
64. Sevigny J, Nishimura A, Gorodkov OA, Reimann F (1997) Identification of a placental enhancer for the human leptin gene. J Biol Chem 272: 30583–30585.
65. Shin J, Li B, Davis ME, Suh Y, Lee K (2009) Of hepatocyte growth factor in diabetes. FEBS Lett 583: 3421–3427.
66. Mihaela M, Moza M, Lalowski MM, Carpe O (2005) Characterization of novel Tissue-Specific Gene by Microarray Databases. PLoS ONE 10: e4995.
93. Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, et al. (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118: 2808-2821.

94. Liang L, Zhao M, Xu Z, Yokoyama KK, Li T (2003) Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J 370: 195-203.

95. Tremblay F, Revett T, Huard C, Zhang Y, Tobin JF, et al. (2009) Bidirectional modulation of adipogenesis by the secreted protein Ccdc80/DRO1/URB. J Biol Chem 284: 8136-8147.

96. Chen HC, Smith SJ, Tow B, Elias PM, Farese RV Jr (2002) Leptin modulates the effects of acyl CoA:diacylglycerol acyltransferase deficiency on murine fur and sebaceous glands. J Clin Invest 109: 175-181.