Physiological responses and expression of VrDREB2A gene at different growth stages of mungbean (Vigna radiata L. Wilczek) under drought stress

Hang Thi Thuy Vu (vtthang.nh@vnu.edu.vn)
Vietnam National University of Agriculture https://orcid.org/0000-0002-2951-8503

Cham Thi Tuyet Le
Vietnam National University of Agriculture

Ly Thi Pham
Vietnam National University of Agriculture

Research Article

Keywords: DREB, drought stress, gene expression, plant available water, relative reduction

DOI: https://doi.org/10.21203/rs.3.rs-583427/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Physiological responses and expression of \textit{VrDREB2A} gene at different growth stages of mungbean (\textit{Vigna radiata} L. Wilczek) under drought stress

Thi Thuy Hang Vu1, Thi Tuyet Cham Le1, Thi Ly Pham2

1Faculty of Agronomy, Vietnam National University of Agriculture, Vietnam
2Undergraduate student of Advanced Crop Science Program, Faculty of Agronomy, Vietnam National University of Agriculture, Vietnam

Corresponding author: vtthang.nh@vnua.edu.vn; ORCID: 0000-0002-2951-8503

Abstract

Mungbean is an important pulse crop and commonly grown in Asia. Drought affects mungbean growth and yield at at different growing stages and various levels through physiological traits and gene expression. In this study, two mungbean cultivars, DX208 and Tam Thanh Hoa, were exposed to drought at the vegetative and flowering stages and assessed for various morphophysiological traits at 8, 12, 15 and 15 days post withholding water and the plant recovery 7 days after re-watering. Differential expression of \textit{VrDREB2A} gene was observed in leaf and root of two mungbean cultivars under drought condition. Plants used up water more quickly at the flowering stage than the vegetative stage. Drought adversely affected the plant height, leaf number, above-ground plant biomass and root weight with relative reduction to the control by 4.0 – 85%. Yield components and individual yield reduced significantly by around 50 – 60% compared to the control. Relative expression of \textit{VrDREB2A} gene was varied, with stronger expression in leaves and roots when drought imposed at the flowering and vegetative stages respectively. Increase in \textit{VrDREB2A} expression occurred earlier at 8 days compared with 12 days for drought imposed at the flowering and vegetative stages respectively, resulting in more tolerance of plants to drought at the flowering stage. The results indicate that \textit{VrDREB2A} functioned as an important transcriptional activator and might help increase the drought stress tolerance of the mungbean plant at various growing stages. Morphophysiological traits can also be used as indicators in screening mungbean for drought tolerance.

\textbf{Key words:} DREB, drought stress, gene expression, plant available water, relative reduction.
Declarations

Funding: The International Foundation of Science, Sweden (IFS) provided the grant for this study

Conflicts of interest/Competing interests: Not applicable

Availability of data and material: The datasets analysed in the current study are available from the corresponding author on reasonable request.

Code availability: Not applicable

Authors' contributions: All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Thi Thuy Hang Vu, Thi Tuyet Cham Le and Thi Ly Pham. The first draft of the manuscript was written by Thi Thuy Hang Vu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Conceptualization: Thi Thuy Hang Vu; **Methodology:** Thi Tuyet Cham Le and Thi Ly Pham; **Formal analysis and investigation:** Thi Thuy Hang Vu and Thi Tuyet Cham Le; **Writing - original draft preparation:** Thi Thuy Hang Vu; **Writing - review and editing:** Thi Thuy Hang Vu, Thi Tuyet Cham Le and Thi Ly Pham.

Ethics approval Not applicable

Consent to participate: Not applicable

Consent for publication: Authors hereby give our consent for the publication of this study to be published in Euphytica.

Acknowledgments

The first author acknowledges the grant from the International Foundation of Science, Sweden (IFS) for this study. The authors also thank Vietnam National University of Agriculture, especially Veterinary Clinic of the University for provision of facilities for molecular analysis.
INTRODUCTION

Drought is a common abiotic stress that is severe threats to crop growth and food production worldwide and can lead to more than 50% yield loss (Singh et al. 2015; Nadeem et al. 2019). Drought stress affects the plants at different plant development stages and at various levels of their organization from phenological, morphological, physiological to molecular levels (Ahmad and Prasad 2012; Kaur and Asthir 2017; Nair et al. 2019). Low germination rate, early flowering, flower abscission and young pod abortion are observed throughout plant development stages under water deficit (Ranaweke et al. 2012; Bangar et al. 2019; Nadeem et al. 2019). Various morphophysiological indicators such as growth and yield parameters (viz. plant height, leaf number and area, number of pods per plant, number of pods per cluster, number of clusters per plant, number of seeds per pod) and root and shoot characters (viz. root and shoot length, number of roots, root diameter, fresh and dry weight of root and shoot) have been used for screening drought tolerance in mungbean (Prakash et al. 2017; Bangar et al. 2019).

At molecular level, the signaling network and transcriptional regulatory pathways are important to abiotic stress responses (Atkinson and Urwin 2012; Casassola et al. 2013; Yoshida et al. 2014). Various transcription factors (TFs) and their binding sites, the so-called cis-acting elements have been identified as molecular switches of stress-responsive gene expression. Five TF families [bZIP (mainly AREB/ABF), DREB (AP2/EREBP), MYB/MYC, NAC and WRKY] have been shown to be associated with drought tolerance (Joshi et al. 2016). Among those TF families, plant-specific DREB (dehydration-responsive element binding protein) originally isolated in Arabidopsis (Liu et al. 1998) has been identified, isolated and characterized in different plant species, such as common wheat, rice, maize and soybean (Chen et al. 2007; Joshi et al. 2016). The DREB transcription factor was also reported to be induced by drought (Nakashima et al. 2000; Sakuma et al. 2006; Qin et al. 2007). The roles of the DREB2A gene from Arabidopsis in abiotic stress tolerance have been well characterized (Sakuma et al. 2006) but very limited in legume, especially in mungbean. In cowpea, VuDREB2A was induced by drought and salt stresses, and heterologous expression of VuDREB2A resulted in significant drought stress tolerance in Arabidopsis (Sadhukhan et al. 2014). In soybean, two GmDREB2A homologs (GmDREB2A;1 and GmDREB2A;2) were identified (Mizoi et al. 2013). Although the peptide sequences are
very similar to each other, the induction of *GmDREB2A;2* was stronger than that of
GmDREB2A;1 and improved stress tolerance in *Arabidopsis* (Mizoi et al. 2013). The
DREB2A genes from different species, such as common wheat (Egawa et al. 2006),
pearl millet (Agarwal et al. 2007) and chrysanthemum (Liu et al. 2008) that caused
physiological variations, were also overexpressed in *Arabidopsis thaliana* and improve
stress tolerance under drought, salt and freezing stresses in transgenic plants. However,
similar studies are very limited in mungbean, and the molecular mechanisms controlling
plant tolerance to abiotic stress such as drought remains largely unknown.

Mungbean (*Vigna radiata* L. Wilczek) is the third most important pulse crop
after chickpea and pigeon pea and predominantly grown across Asia (Nair et al. 2013,
2019). The mungbean, a short growth duration crop, is grown widely under rainfed
conditions and an ideal legume for catch cropping, intercropping, relay cropping and
soil nutrient improvement but still considered as an underutilized crop. Due to uneven
temporal and spatial distribution of rainfall, the crop often suffers from water stress at
any growth stages in its growing cycle leading to reduced growth and productivity. In
addition, being grown on marginal lands and under hot climate conditions (Nair et al.
2013; van Zonneveld et al. 2020), mungbean is largely considered as a moderately
drought tolerant, and this distinctive characteristic makes it a valuable tropical legume
for studying the molecular tolerance mechanisms of various abiotic stresses, particularly
drought (Kim et al. 2004, 2015). Recently, the *VrDREB2A* gene with conserved AP2
domains and transactivation ability was isolated from mungbean by Chen et al. (2016).
The expression of the *VrDREB2A* gene is induced by drought, high salt concentrations
and abscisic acid treatment at seedling stage. Moreover, the overexpression of
VrDREB2A in transgenic *Arabidopsis* activates the expression of downstream genes,
resulting in enhanced tolerance to drought and high-salt stresses and no growth
retardation (Chen et al. 2016). This indicates that *VrDREB2A* functions as an important
transcriptional activator and may help increase the abiotic stress tolerance of the
mungbean plant. However, it has not been known yet how the expression of *VrDREB2A*
would affect mungbean under water deficit at different growth stages, viz. vegetative
and flowering stages.

Therefore, a better understanding of the responses of mungbean under different
drought stress conditions in aspects of physiological traits and gene expression is
required for mungbean improvement. Within this aim, the growth and the associated
expression of \(VrDREB2A \) gene in response to drought stress at the vegetative and flowering stages in mungbean cultivars of Vietnam were studied.

MATERIALS AND METHODS

Plant materials and drought imposition

Plant materials included two mungbean cultivars, DX208 (improved cultivar, G1) and Tam Thanh Hoa (landrace, G2), obtained from the Plant Resources Center of Vietnam Academy of Agricultural Sciences. These two cultivars are suitable to dry and sandy soils so that they are somewhat moderately to highly drought tolerance (Nguyen et al. 2017).

The mungbean cultivars were planted in greenhouse of the Faculty of Agronomy, Vietnam National University of Agriculture from May to September, 2019 (summer season). The seeds were sown in 30 x 40 cm in diameter and height pots, each pot was left with two plants. The pots were filled with substrate containing 6.5 kg alluvial soil mixed with fine sand (1:1, v/v) and 0.5 kg Song Gianh microbial-organic fertilizer containing 0.45 g phosphorus and kept in greenhouse under temperature condition 32 °C with regular watering every day before water was withheld in drought treated plants. The experiment was arranged in a randomized complete block with two replications with four pots each.

For drought imposition at vegetative stage, the plants were fully watered until 20 days after emergence (2 true-leaf stage) and then water was withheld for 8, 12, 15 and 20 days. For drought imposition at flowering stage, the plants were fully watered for 33 days after emergence (first flower bud appearance) and the drought was imposed for duration times similar to those at vegetative stage. The control plants were fully watered throughout the experiment.

The recovery experiment was set up separately with the same cultural preparation and drought imposed at vegetative and flowering stages, and with two replications (4 plants per replication). After 20 days without water, all pots were simultaneously watered to evaluate the recovery.

Evaluation of plant growth characteristics

At the setup of the experiment, the pots were saturated with water and weighted. All pots were weighted weekly to measure the water used by plants. After 8, 12, 15 or 20 days without water, all pots were also weighted to measure the water used. The
characteristics measured at 8, 12, 15 and 20 days post drought exposure included plant height, leaf number, the fresh and dry weight of the above-ground mass and roots.

The recovery measurements included plant height, leaf number, yield components and individual yield (g plant\(^{-1}\)). The recovery was scored using 1 – 4 scale: (1) plant death plant; (2) less than 30% wilting leaf recovered; (3) more than 60% wilting leaf recovered; (4) completely recovery with more than > 90% wilting leaf recovered.

RNA extraction, synthesis of cDNA and qRT-PCR reaction

The leaf and root samples were harvested from at 8, 12, 15 and 20 days post drought exposure. The samples were cleaned, wrapped in aluminium foil and immediately immersed in liquid nitrogen and stored at -80\(^\circ\)C freezer before RNA extraction.

RNA was isolated from leaf and root samples using Easy-spin™ IIp Plant RNA Extraction Kit (Intron Bio-Korea). cDNA was amplified using reverse transcription PCR (RT-PCR) with MLV Reverse Transcriptase (Promega, Tokyo, Japan). The primers of VrDREB2A gene and the reference gene VrActin (Chen et al. 2016) were used for qRT-PCR reaction (Table 1). The Master mix for qRT-PCR was accompanied by the kit GoTaq(R) qPCR Master Mix (Promega, A6001) containing 0.1 \(\mu\)g/\(\mu\)l master mix, 1.6\(\times\)10\(^{-3}\) \(\mu\)g/\(\mu\)l primer of each kind, 0.08 \(\mu\)g/\(\mu\)l cDNA and water.

The leaf and root samples of the control plants (fully watered) of the cultivar DX208 were included in each qRT-PCR reaction as reference to enable the calculation of the relative gene expression under drought stress.

Table 1. Primer sequences used for qRT-PCR reaction

Gene	Primer	Sequence
VrDREB2A	VrDREB2A-F	5'-CTGCTCTTGCTTATGATGAA-3'
	VrDREB2A-R	5'-ATGTTAGTGCTATGATGTAHG-3'
VrActin	VrActin-F	5'-TCCACGAGACAAACATATAACT-3'
	VrActin-R	5'-TCCTTGGCTCATCATATTACG-3'

The thermal RT-PCR cycle was run as follows: 95\(^\circ\)C for 1 min, 40 cycles 95 \(^\circ\)C in 15 seconds, 60 \(^\circ\)C for 1 min, the curve was noted from 55-95\(^\circ\) C, 72 \(^\circ\)C in 18
seconds. After the cycle terminated, the process was transferred to 72 °C for 7 min and
the samples were kept at 12 °C. The qRT-PCR was done with two technical replications
for each sample to ensure the reliability and homogeneity. A reference sample was
selected arbitrary from any RNA sample in each qRT-PCR.

Statistical analysis

Plant available water and expression of physiological traits

The plant available water (PAW) was determined as follows:

$$\text{PAW} (%) = \frac{W_t - W_i}{W_s - W_i} \times 100$$

Where: W_t is the pot weight at 8, 12, 15 and 20 days after drought exposure
W_s is the weight of pot saturated with water
W_i is the weight of pot initially filled with substrate

The relative differences (%) of evaluated traits between the treatment (imposed
drought at vegetative and flowering stages) and control were used for analysis:

$$\text{Relative difference} (%) = \frac{P_t - P_c}{P_c} \times 100$$

Where: P_t and P_c are the trait in drought and control treatment respectively;

The drought resistance index (DRI) of mungbean cultivars was calculated by

formula presented by Fischer and Maurer (1978):

$$\text{DRI} = \frac{Y_t}{\bar{Y}_t} \div \frac{Y_c}{\bar{Y}_c}$$

Where: Y_t and Y_c are the grain yield in drought and control treatment
respectively;

\bar{Y}_t and \bar{Y}_c are the average values of all examined genotypes of grain yield in
drought and control treatment respectively.

ANOVA analysis was used to evaluate the differences in physiological traits
between varieties exposed to drought at different stages (vegetative and flowering) and
at different times (8, 12, 15 and 20 days after withholding water). The mean values were
calculated from replicates.

Relative expression of VrDREB2A

The relative expression of VrDREB2A was presented by $R = 2^{-\Delta\Delta Ct}$ based on
housekeeping gene and calibrator as described by Livak and Schmittgen (2001). $2^{-\Delta\Delta Ct}$ is
the relative gene expression of the test sample in comparison with the control. In this study, the relative gene expression was determined based on the expression of *VrDREB2A* in leaves and roots to the reference gene *VrActin* and to the calibrator (leaf sample of G1 under full watering condition) using the following equation:

\[
R = 2^{-\Delta\Delta Ct} = 2^{-(\Delta Ct_T - \Delta Ct_C)}
\]

\[
= 2^{-[(Ct_T-VrDREB2A-\text{ct}_T-VrActin)-(Ct_C-VrDREB2A-\text{ct}_C-VrActin)]}
\]

Where:

- \(Ct_T-VrDREB2A\) is the threshold cycle of *VrDREB2A* in drought sample
- \(Ct_T-VrActin\) is the threshold cycle of reference gene *VrActin* in drought sample
- \(Ct_C-VrDREB2A\) is the threshold cycle of *VrDREB2A* in the calibrator sample
- \(Ct_C-VrActin\) is the threshold cycle of reference gene *VrActin* in the calibrator sample

The R value determined the the expression of *VrDREB2A* in drought treatment at 8, 12, 15 days 20 post stress exposure. In biological terms, \(R \leq 0.5\) or \(\geq 2.0\) is considered as change in gene expression.

RESULTS

Plant available water under water stress at vegetative and flowering stages

The plant available water (PAW) differed apparently among time duration exposed to drought and mungbean cultivars (Table 2). Eight days post drought exposure PAW quickly reduced to 63.3 and 36.8% for G1 and 55.0 and 31.5% for G2 at vegetative and flowering stage, respectively. After 12 and 15 days when water was withheld, PAW continued to decrease since the plants were still able to uptake water to maintain growth. Twenty days post-exposure to drought the water was completely used up by the plants with PWA \(\leq 1.0\%\). Reduction of PAW per day varied around 4 – 5%.

Table 2. The PAW (%) of mung bean varieies at vegetative and flowering stages at 8, 12, 15 and 20 days post drought exposure
Effect of drought on the growth and development of mungbean

The analysis of variance for drought imposition stage and duration time showed that drought significantly affected plant growth, such as plant height and leaf number as compared with the control. Increased drought duration time adversely reduced plant growth (Table 3; Fig. 1). When imposing drought at vegetative stages for 8 – 20 days, the relative reduction in plant height increased from 14.6 to 43.4% for G1 and from 5.3 to 45.2% for G2. Similar pattern was also observed for the relative reduction in plant height caused by drought at flowering stage (Table 3a). The relative reduction in the number of leaves compared to the control at 8-20 days varied from 5.1 to 38.5% and from 3.9 to 25.0% for drought imposed at vegetative and flowering stages respectively (Table 3b). In general, relative reduction in plant growth was somewhat higher in G1.

Drought stress at vegetative as well as flowering stages significantly affected the accumulation of plant biomass (Fig. 1). The fresh and dry plant weight, and fresh root weight significantly reduced when exposed to drought at both vegetative and flowering stage (Table 3 c-e). As soon as water was withheld, the plant and root fresh weights dramatically reduced as compared to the control, with the rate of 5.3% to 16.1% at 8 days. The reduction was proportional with the time of exposure to drought with high relative reduction, even up to 80% as observed for fresh root weight at 20 days.

Table 3. Relative reduction (%) of measured mungbean characters as influenced by drought in relation to fully watered plants

Measured characters	Cultivar	Duration of drought exposure at vegetative stage	Duration of drought exposure at flowering stage						
		8 days	12 days	15 days	20 days	8 days	12 days	15 days	20 days
a. Plant height	G1	-14.6	-24.2	-33.6	-43.4	-17.9	-32.6	-35.6	-35.5
	G2	-5.3	-29.3	-34.7	-45.2	-8.7	-13.1	-13.2	-17.1
b. Leaf number	G1	-8.6	-18.8	-33.3	-38.5	-13.2	-15.6	-19.4	-25.0
	G2	-5.1	-14.3	-16.7	-28.6	-3.9	-5.3	-7.7	-7.7
c. Fresh plant weight	G1	-32.8	-45.5	-65.3	-75.8	-14.6	-36.7	-47.5	-67.1
	G2	-28.6	-46.4	-56.1	-79.5	-5.3	-8.0	-43.8	-66.3
d. Fresh root weight	G1	-57.9	-67.7	-74.6	-84.8	-16.1	-27.3	-39.0	-80.8
	G2	-41.7	-62.5	-73.9	-83.8	-12.0	-27.3	-38.9	-63.3
e. Dry plant weight	G1	-22.9	-37.6	-65.4	-66.0	-7.9	-39.9	-40.3	-42.9
---------------------	----	-------	-------	-------	-------	------	-------	-------	-------
G2	-24.0	-42.3	-43.0	-76.8	-3.2	-9.1	-37.9	-42.0	

Negative values indicate the relative reduction (%) of the measured traits in drought treatment to the control.

Fig. 1 Severe symptoms of plants and roots after 20 days exposed to drought at the flowering stage on two mung bean cultivars, DX208 (A) and Tam Thanh Hoa (B) (left: control, right: drought stress)

Effect of drought on plant recovery

At 20 days post-drought exposure, mung bean plants apparently showed wilting, leaf dropping and death. After rewatering, only those leaves that remained on the plant recovered, contributing to the regrowth of the plants. For drought imposed at the vegetative stage, plant height increased by 7.6 – 22.5% and leave number increased by 7.5 – 31.3% (by 0.4 – 1.3 leaves) compared to the point prior re-watering (Table 4). This recovery trends were not observed for drought imposed at the flowering stage, with the slightly increase in plant height (6.2 – 8.0%) but reduction in leaf number (18.8 – 25.5%). However, in comparison with the control plants, the growth characteristics of stressed plants remained much lower regardless of stages exposed to drought, with ranges of 24.5 – 47.2% for plant height and of 10.5 – 37.6% for leaf number. The recovery scores of cultivar G2 were higher than those of cultivar G1.

Table 4. Recovery of mungbean plants 7 days after rewatering

Drought stage	Cultivar	In relation to control (%)	In comparison to point prior re-watering (%)	Plant height (cm)	Leaf number	Recovery score		
		Plant height	Leaf number	Plant height	Leaf number			
Vegetative	G1	-47.2	-37.6	22.5	31.3	27.0	5.3	2.8
G2	-36.5	-17.0	7.6	7.5	32.0	5.4	3.3	
Flowering	G1	-37.5	-14.1	8.0	-18.8	34.3	4.9	2.0
G2	-24.5	-10.5	6.2	-25.5	38.5	4.5	2.2	

Negative values indicate the relative reduction (%) of the measured traits in drought treatment to either control or to the point prior re-watering; The positive indicates the relative increase (%) after 7 days of recovery compared to the point prior re-watering.

Water deficit at both plant growth stages significantly and differently affected
the components of yield, viz. number of pod clusters, number of pods per plant, pod weight and plant individual yield (Table 5). The relative reduction of yield components was rather high in comparison with the control, ranging from around 28 – 60%, especially the number of pods and individual yield, but lower in cultivar G2. The pod cluster and pod number per plant in both cultivars reduced by 28.6 – 55.2% and 30.0 – 58.1%, respectively, leading to reduce pod weight by 53.5 – 62.2% and plant individual yield by 49.6 – 56.6% in relation to the control. It appeared that cultivar G2 was better tolerant to drought than cultivar G1 as evidenced by higher plant yields (2.08 and 2.31 g plant\(^{-1}\)) and drought resistance indices (1.024 and 1.069) (Table 5).

Table 5. Effects of drought at vegetative and flowering stage on yield components, individual yield relative to control and drought resistance index (DRI)

Drought stage	Cultivar	Reduction (%) in relation to control	Plant yield (g plant\(^{-1}\)) ± s.e	DRI
Vegetative stage	G1	-55.2 -57.9 -56.3 -56.6	1.68 ± 0.27	0.972
	G2	-46.4 -30.0 -53.5 -53.3	2.08 ± 0.72	1.024
Flowering stage	G1	-37.1 -58.1 -62.2 -55.7	1.69 ± 0.47	0.980
	G2	-28.6 -47.1 -54.1 -49.6	2.31 ± 0.47	1.069

a Negative values indicate the relative reduction (%) of the measured traits in drought treatment to the control

Relative expression level of *VrDREB2A* gene

The t-test indicated that there was difference in gene expression of *VrDREB2A* between normal and drought conditions at both vegetative and flowering stages (Fig. 2 & 3).

The response to drought set in differently in mungbean cultivars, time point and duration, and stage of plant growth when water was withheld. Generally, at 12 and 8 days onwards after drought exposure at the vegetative and flowering stages respectively, the relative gene expression levels in leaves and roots were higher than the control plants (Fig. 2). At vegetative state, the relative expression level of *VrDREB2A* in root started to increase significantly early at 8 days post-drought exposure earlier in cultivar G1 (R = 2.689) and at 20 days after withholding water (R = 2.041). Significant expression was also found leaves of cultivar G2 at 15 days (R = 3.137) and in roots (R= 2.925) at 20 days after withholding water.
Fig. 2 Relative expression of *VrDREB2A* gene in leaves and roots of two mung bean cultivars, DX208 (G1) and Tam Thanh Hoa (G2), exposed to drought at the vegetative stage for (a) 8, (b) 12, (c) 15, (d) 20 days in comparison with the control.

Unlike drought exposure at vegetative stage, the relative expression level of *VrDREB2A* when plants exposed to drought at flowering stage was earlier and higher in comparison to the control both in leaves and roots (Fig. 3). Significant expression levels in leaves were observed for both G1 and G2 throughout 8 – 20 days after withholding water (R varied from 0.901 to 4.780). Significant expression levels in roots for G1 and G2 were identified on 8 days exposure to drought with R of 2.271 and 2.855 respectively.

Fig. 3 Relative expression of *VrDREB2A* gene in leaves and roots of two mung bean cultivars, DX208 (G1) and Tam Thanh Hoa (G2), exposed to drought at the flowering stage for (a) 8, (b) 12, (c) 15, (d) 20 days in comparison with the control.

DISCUSSION & IMPLICATION

The larger reduction of PAW at flowering stage can be attributable to larger plant size (*viz.* higher plant height and leaf number) at the point of water withholding as compared with that at vegetative stage (Table 2). As results, plants used up water more quickly at the flowering stage than at the vegetative stage, with PAW reaching to ≤ 5% by 15 days. Thus, mungbean can stand for drought up to 15 – 20 days upon the growth stages that drought occurs. Some studies also applied this range of days for evaluation of drought tolerance in mungbean, such as Iseki et al. (2018) (7 – 22 days) and Bangar et al. (2019) (15 days), suggesting the maximum time mungbean can stand for without irrigation.

Drought significantly affects plant growth regardless of growth stages. The longer the exposure to drought the higher is the reduction of physiological traits, such as plant height, leaf number, above-ground plant biomass and root weight (Table 3). The relative reduction in those physiological traits can be varied largely from 4.0 – 85.0%, which results in large relative reduction in yield component traits and individual yield (mostly around 50 – 60%) (Table 5). Therefore, drought affects adversely plant yield as seen by the reduced number of pods per plant, number of pod clusters per plant, pod weight and individual yield at both the vegetative and flowering stages. Other traits such...
as relative water content, membrane stability index, chlorophyll content, protein and proline contents, and harvest index were also found to significantly reduced by 1.0 – 80% compared to the control (Bangar et al. 2019; Nadeem et al. 2019). Fathy et al. (2018) and Nadeem et al. (2019) reported yield loss in the range of 31 – 60% at flowering and 26% at post flowering/podding stages in mungbean due to drought stress. The vegetative stage was more sensitive to drought stress than the flowering stage with higher relative reduction in plant height and leaf number after 8 – 20 days post withholding water and 7 days of recovery. This phenomenon was also observed in previous studies (Allahmoradi et al. 2011; Ranawake et al. 2012; Ratnasekera and Subhashi 2015; Bangar et al. 2019) and is probably due to the low water absorption capacity during the vegetative stage.

The re-watering time point is critical for recovery of plants. In this experiment, plants were rewatered at 20 days after exposure to drought, which is the common duration of drought that plants can stand for. The common symptoms of plants exposed to drought are leaf wilting, rolling and even dropping, and wilting growing tips (Vu et al. 2015). Therefore, the more remnant leaves on the plants, the more ability for plants to recover after re-watering. Plants exposed to drought at the vegetative stage were able to increase their height and leaf number after re-watering. However, the leaf number was reduced after recovery 7 days since dropping and death of lower leaves near the ground (Table 4). In addition, in this experiment, cultivar G2 seemed to be more drought tolerant than cultivar G1 with smaller relative reduction in physiological traits, and higher individual yields, recovery scores and drought resistance indices.

Drought causes fluctuations in relative expression levels of \textit{VrDREB2A} gene in leaves and roots. Increase in \textit{VrDREB2A} expression generally occurred earlier at 8 days compared with 12 days for drought imposed at the flowering and vegetative stages respectively (Fig. 2 & 3). At the vegetative stage, \textit{VrDREB2A} gene seemed to be strongly and clearly express in the roots, especially close to the 20 days with the relative expression levels about 5.9 – 27.2 times of the control (Fig. 2d). At the flowering stage, the relative expressions of \textit{VrDREB2A} were generally higher in both stressed leaves and roots than in the control. Although the relative expression decreased with the duration time of drought exposure, it remained at higher level with more than twice compared to the control. The significant expression was more obvious in roots than in leaves and lasted from 8 to 20 days (Fig. 3). At 1-week-old seedling stage, expression of
VrDREB2A in response to drought began to increase within 1 h (around 6-fold) and continued to increase after 3 h (around 13-fold) (Chen et al. 2016). Thus, these results were in line with study by Chen et al. (2016) that the activation of expression of VrDREB2A gene was induced by abiotic stresses, including drought. The earlier and longer activation of VrDREB2A gene at the flowering stage can explain the more tolerance of mungbean plants to drought than at the vegetative stage. However, the increase in relative levels of VrDREB2A expression in this study are not as high as in other studies on DREB when plants are exposed to abiotic stresses. This might be correlated to the time plant samples should be collected and analyzed for gene expression. For example, relative expression levels of VrDREB2A were 6 - 13-fold after 1 - 3 h post drought treatment and after 1 - 24 h post salt treatment (Chen et al. 2016).

ThDREB expression levels in root and stem of Tamarix hispida were around 369-fold of control under NaCl stress for 6 h and 6-fold of control under PEG stress for 12 h (Yang et al. 2017). The expression of other drought tolerant related gene in mungbean, VrSnRK2.6c, showed the highest level (12-fold) when 11-day-old mungbean plants exposed to 3 days withholding water (Fatima et al. 2020). The upregulation of VrDREB in drought tolerant mungbean was also observed during recovery from drought and higher in leaf than in petiole (Meena et al. 2021). In addition, the increase in gene expression in plants is not always the cases when plants are exposed to drought. The expression of drought tolerance gene might occur in other plant organs depending on plant species. For instance, the expression of GmHK06 (encoded for protein homologous to CK12/AHK5 in Arabidopsis) in soybean reduced in roots but increased in shoots in plants exposed to water stress. In contrast, drought stress led to increased expression of GmRR34 in both soybean roots and shoots (Hoang et al. 2014).

The results of the present study clearly show that water stress adversely influenced plant growth and yield of mungbean in different manners as reported in various studies (Blum 1996; Sanchez et al. 2012; Iseki et al. 2018). Under water stress the expression of VrDREB2A gene was activated to combat plant water deficit. The expression level increased significantly when water stress occurs at flowering stage and in leaves. In relation to the genotype, the drought resistant cultivar showed stronger VrDREB2A expression. Therefore, this knowledge of physiological responses and gene expression in mungbean under drought condition might contribute to ongoing studies of drought resistance in mungbean.
REFERENCES

Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genom 277:189–198. https://doi.org/10.1007/s00438-006-0183-z

Ahmad P, Prasad MNV (2012) Abiotic stress responses in plants: Metabolism, Productivity and Sustainability. Springer, New York

Allahmoradi P, Ghobadi M, Taherabadi S, Taherabadi S (2011) Physiological aspects of mungbean (Vigna radiata L.) in response to drought stress. International Conference on Food Engineering and Biotechnology – ICFEB 2011 Bangkok, Thailand 9, pp 272-275

Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543. https://doi.org/10.1093/jxb/ers100

Bangar P, Chaudhury A, Tiwari B, Kumar S, Kumari R, Bhat KV (2019) Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turk. J. Biol 43: 58-69. https://doi:10.3906/biy-1801-64

Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135-148. https://doi.org/10.1007/BF00024010

Casassola A, Brammer SP, Chaves MS, Martinelli JA, Grando MF, Denardin ND (2013) Gene expression: A review on methods for the study of defense-related gene differential expression in plants. Am. J. Plant Sci 4:64-73

Chen H, Liu L, Wang L, Wang S, Cheng X (2016) VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. J. Plant Res 129:263-273. https://doi.org/10.1007/s10265-015-0773-0

Chen M, Wang Q-Y, Cheng X-G, Xu Z-S, Li L-C, Ye X-G, Xia L-Q, Ma Y-Z (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299-305. https://doi.org/10.1016/j.bbrc.2006.12.027
Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77-91. https://doi.org/10.1266/ggs.81.77

Fathy NE, Ismail SM, Basahi JM (2018) Optimizing mungbean productivity and irrigation water use efficiency through the use of low water consumption during plant growth stages. Legume Res 41:108-113. https://doi.org/10.18805/lr.v40i04.9014

Fatima A, Khan MJ, Awan HM, Akhtar MN, Bibi N, Sughra K, Khan MR, Ahmad R, Ibrahim M, Hussain JS, Sadiq I (2020) Genome-wide identification and expression analysis of SnRK2 gene family in mungbean (Vigna radiata) in response to drought stress. Crop and Pasture Sci 71:469-476. https://doi.org/10.1071/CP19392

Fischer R, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res 29:897-912. https://doi.org/10.1071/AR9780897

Hoang TLX, Nguyen HTD, Nguyen BATu, Nguyen PT (2014) Examination of the expression of GmHK06 và GmRR34 genes under water deficit in two soybean cultivars, MTD777-2 and DT20. J. Biol 36:232-236 (in Vietnamese).

Iseki K, Takahashi Y, Muto C, Naito K, Tomooka N (2018) Diversity of drought tolerance in the genus Vigna. Front. Plant Sci 9: 729. https://doi.org/10.3389/fpls.2018.00729

Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front. Plant Sci 7:1029. http://doi.org/10.3389/fpls.2016.01029.

Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biolgia Plantarum 61:201-209. https://doi.org/10.1007/s10535-016-0700-9

Kim SK, Nair RM, Lee J, Lee S-H (2015) Genomic resources in mungbean for future breeding programs. Front. Plant Sci 6:626. https://doi.org/10.3389/fpls.2015.00626

Kim YJ, Kim JE, Lee JH, Lee MH, Jung HW, Bahk YY, Hwang BK, Hwang I, Kim
The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mungbean (*Vigna radiata* L.). FEBS Lett 556:127–136. https://doi.org/10.1016/S0014-5793(03)01388-7

Liu L, Zhu K, Yang Y, Wu J, Chen F, Yu D (2008) Molecular cloning, expression profiling and trans-activation property studies of a *DREB2*-like gene from chrysanthemum (*Dendranthema vestitum*). J Plant Res 121:215-226. https://doi.org/10.1007/s10265-007-0140-x

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, *DREB1* and *DREB2*, with an *EREBP/AP2* DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in *Arabidopsis*. Plant Cell 10:1391–1406. https://doi.org/10.1105/tpc.10.8.1391

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262

Meena SK, Pandey R, Sharma S, Gayacharan Vengavasi K, Dikshit HK, Siddique KHM, Singh MP (2021) Cross tolerance to drought and low phosphorus stress in mungbean is regulated by improved antioxidant capacity, biological n2-fixation, and differential transcript accumulation. Research Square. https://doi.org/10.21203/rs.3.rs-226221/v1 (under review).

Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K et al (2013) *GmDREB2A*; 2 a canonical dehydration-responsive element-binding protein2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol. 161:346-361. https://doi.org/10.1104/pp.112.204875

Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L (2019) Research progress and perspective on drought stress in legumes: a review. Int. J. Mol. Sci 20:2541. https://doi.org/10.3390/ijms20102541

Nair R, Schafleitner R, Kenyon L, Srinivasan R, Easdown W, Ebert AW, Hanson P (2013) Genetic improvement of mungbean. SABRAO Journal of Breeding and
Nair RM, Pandey AK, War AR, Hanumantharao B, Shwe T, Alam AKMM, Pratap A, Malik SR, Karimi R, Mbeyagala EK, Douglas CA, Rane J, Schafleiner R (2019) Biotic and abiotic constraints in mungbean production - Progress in genetic improvement. Front. Plant Sci 10:1340. https://doi.org/10.3389/fpls.2019.01340

Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657-665. https://doi.org/10.1023/A:1006321900483

Nguyen TA, Vu DH, Nguyen TC (2017) Assessment and selection of mungbean varieties suitable for the coast sand land of Thanh Hoa province. Journal of Agriculture and Rural Development 19: 44-49 (In Vietnamese).

Prakash M, Sunilkumar B, Sathiyanarayanan G, Gokulakrishnan J (2017) Screening for drought tolerance in mungbean. Legume Research 40 (3): 423-428. https://doi.org/10.18805/lr.v0iOF.1104

Qin QL, Liu JG, Zhang Z, Peng RH, Xiong AS, Yao QH, Chen JM (2007) Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza sativa L. Mol Breed 19:329-340. https://doi.org/10.1007/s11032-006-9065-7

Ranawake AL, Amarasingha UGS, Rodrigo WDRJ, Rodrigo UTD, Dahanayaka N (2012) Effect of water stress on growth and yield of mung bean (Vigna radiata L.). Tropical Agricultural Research and Extension 14:76-80. https://doi.org/10.4038/tare.v14i4.4851

Ratnasekera DP, Subhashi APT (2015) Morpho-physiological response of selected Sri Lankan mungbean (Vigna radiata L.) genotypes to drought stress. J AgriSearch 2:62-66.

Sadhukhan A, Kobayashi Y, Kobayashi Y, Tokizawa M, Yamamoto YY, Iuchi S, Koyama H, Panda SK, Sahoo L (2014) VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress responsive genes and confers enhanced drought tolerance. Mol Breed 33:133.
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an *Arabidopsis* transcription factor, *DREB2A*, involved in drought responsive gene expression. Plant Cell 18:1292–1309. https://doi.org/10.1105/tpc.105.035881

Sanchez DH, Schwabe F, Erban A, Udvardi MK, Kopka J (2012) Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ. 35:136-49. https://doi.org/10.1111/j.1365-3040.2011.02423.x

Singh B, Bohra A, Mishra S, Joshi R, Pandey S (2015) Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops. Biol Plant 59:413-428. https://doi.org/10.1007/s10535-015-0515-0

van Zonneveld M, Rakha M, Tan SY, Chou Y-Y, Chang C-H, Yen J-Y, Schafleitner R, Nair R, Naito K, Solberg S (2020) Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of *Vigna* wild relatives. Scientific Reports 10:2111. https://doi.org/10.1038/s41598-020-58646-8

Vu HTT, James AT, Lawn RJ, Bielig LM, Kilian A (2015) Use of DArT molecular markers for QTL analysis of drought-stress responses in soybean. I. Phenotypic evaluation of traits. Crop Pasture Sci 66:802-816. https://doi.org/10.1071/CP14303

Yang G, Yu L, Zhang K, Zhao Y, Guo Y, Gao C (2017) A *ThDREB* gene from *Tamarix hispida* improved the salt and drought tolerance of transgenic tobacco and *T. hispida*. Plant Physiol Biochem 113:187-197. https://doi.org/10.1016/j.plaphy.2017.02.007

Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133-139. https://doi.org/10.1016/j.pbi.2014.07.009
Severe symptoms of plants and roots after 20 days exposed to drought at the flowering stage on two mung bean cultivars, DX208 (A) and Tam Thanh Hoa (B) (left: control, right: drought stress)
Figure 2

Relative expression of VrDREB2A gene in leaves and roots of two mung bean cultivars, DX208 (G1) and Tam Thanh Hoa (G2), exposed to drought at the vegetative stage for (a) 8, (b) 12, (c) 15, (d) 20 days in comparison with the control.
Relative expression of VrDREB2A gene in leaves and roots of two mung bean cultivars, DX208 (G1) and Tam Thanh Hoa (G2), exposed to drought at the flowering stage for (a) 8, (b) 12, (c) 15, (d) 20 days in comparison with the control.

Figure 3