Enhanced Electrocatalytic Reduction of Bromate by a Supported Pd–In Bimetallic Catalyst: Kinetics and Mechanism Investigation

Huachun Lan, Ran Mao, Yating Tong, Yanzhen Liu, Huijuan Liu, Xiaojing An, and Ruiping Liu*

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Supporting Information

ABSTRACT: In this work, the electrocatalytic reduction of bromate by a Pd1–In4/Al2O3 catalyst in a three-dimensional electrochemical reactor was investigated. A total of 96.4% of bromate could be efficiently reduced and completely converted into bromide within 30 min under optimized conditions. On the basis of the characterization results and kinetics analysis, a synergistic effect of Pd and In was observed, and Pd1–In4/Al2O3 had the highest reaction rate constant of 0.1275 min−1 (vs 0.0413, 0.0328, and 0.0253 min−1 for In4/Al2O3, Pd/Al2O3, and Al2O3). The results of electron spin resonance and scavenger experiments confirmed that both direct electron transfer and indirect reduction by atomic H* were involved in the bromate removal process, while the direct reduction played a more important role. Moreover, the introduction of In could increase the zeta potential of Pd1–In4/Al2O3, facilitating bromate adsorption and its subsequent reduction on the catalyst. Finally, a reaction mechanism for bromate reduction by Pd1–In4/Al2O3 was proposed based on all the experimental results.

INTRODUCTION

Bromate is an oxyhalide disinfection byproduct frequently detected in drinking water from ozonation of bromide-containing source waters.1 Because of its carcinogenic and genotoxic properties, the World Health Organization (WHO) has promulgated a 10 μg/L standard for bromate in drinking water.2 To meet this strict limitation, numerous treatment methods have been explored, including filtration, chemical reduction, biodegradation, activated carbon techniques, and photocatalysis.3−8 Among these technologies, liquid phase catalytic hydrogenation has proven to be an efficient and clean method to eliminate bromate.9,10 Wang et al. reported the hydrogenation reduction of bromate using a core−shell-structured catalyst with encapsulated Pd nanoparticles.11 However, the catalytic hydrogenation needs an external supply of H2, while the storage and transportation of H2 may be a hidden danger. Alternatively, the electrochemical reduction of bromate is found to be a promising approach due to its low maintenance requirements and efficient minimization of toxic chemicals and secondary pollutants.12−14 Kishimoto and Matsuda reported an efficient electrochemical method to reduce bromate to bromide using a two-compartment electrolytic flow cell with activated carbon felt as electrodes.15 The results showed that bromate contamination can be removed within a few minutes, but this process required acidic conditions. Zhao et al. studied the effectiveness of a boron-doped diamond electrode in bromate removal by electrochemical reduction, and nearly 90% of bromate could be removed with the bias potential of −1.0 V within 2 h.14 However, the application of these cathodes for water treatment would be limited due to the low A/V ratio (ratio of the electrode area and solution volume). Hence, it is necessary to design a new electrochemical reactor and electrode with high efficiency. Recently, a three-dimensional electrochemical reactor using granular activated carbon (GAC) or modified GAC as particle electrodes exhibited higher efficiency in treatment of heavy oil refinery wastewater compared with a two-dimensional electrode reactor (without particles).15 Moreover, the removal rate of the target pollutants could also be increased by using three-dimensional electrodes with more available reactive sites and electrons compared to the conventional two-dimensional electrodes.16−18

It is widely reported that Pd has the unique property of activating H2 to produce continuously adsorbed atomic H* and trapping electrons, which could serve as a strong reducing agent in catalytic reductive reactions.19 Moreover, Pd-based bimetallic catalysts were found to exhibit better activity and selectivity in many important chemical reactions compared with monometallic Pd catalysts.20−22 It has been reported that the enhanced catalytic activity could be attributed to the promotion effect of the second metal element such as Cu, Au, Bi, Sn, Fe, etc.23−27 For instance, the catalytic hydrogenation efficiency of Pd/SnO2 and Pd/Al2O3 toward N-nitrosodimethylamine and nitrate reduction was greatly enhanced by the addition of Sn and In.28,29 The efficiency of Cu- and Sn-doped carbon nanofiber/sintered metal fiber filters was also evaluated by bromate and nitrate reduction in continuously operated reactors.30 However, studies on the electrocatalysis of bromate in a three-dimensional electrochemical reactor by Pd-based three-dimensional suspended electrodes are still limited. In addition, the effect of the dosage of...
other transition-metal (Cu, Sn, Bi, and In) dopants on the catalytic activity of Pd also needs to be investigated.

Hence, in this study, different Pd-based supported catalysts (Pd-M/Al₂O₃, M = Cu, Sn, Bi and In) were synthesized for the first time and evaluated based on their bromate reduction efficiency. Pd₁−In₄/Al₂O₃ was proven to have the highest efficiency as particle electrodes in the electrochemical reductive removal of bromate in a three-dimensional electrochemical reactor. Moreover, the bromate reduction followed pseudo-first-order kinetics. The catalyst was further characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential analysis to study the synergistic effect of Pd and In within the catalyst. On the basis of electron spin resonance (ESR) scavenger experiments, both direct electron transfer and indirect reduction by atomic H* were confirmed to be involved in the bromate removal process. Finally, an electrochemical reduction mechanism of bromate over Pd₁−In₄/Al₂O₃ was proposed according to all the experimental results. The findings in this study demonstrate the potential of the three-dimensional electrochemical reactor as an effective system for eliminating bromate contamination in water.

MATERIALS AND METHODS

The catalysts were prepared by a conventional impregnation method. Briefly, γ-Al₂O₃ was immersed in PdCl₂ solution containing 0.1 M hydrochloric acid, followed by ultrasonic treatment for 360 min. After standing for 24 h, the obtained samples were dried at 120 °C, calcined at 300 °C for 120 min, and finally reduced at 200 °C in a H₂ atmosphere for 300 min (flow rate: 100 mL/min). The resulting supported Pd catalysts were denoted as x% Pd/Al₂O₃, where x is the Pd loading amount (wt %). Bimetallic Pd–M/Al₂O₃ catalysts (M = In, Cu, Sn, Bi) were obtained by the same impregnation method with the theoretical Pd/M ratio of 1:4. Pd−In/Al₂O₃ with different Pd/In ratios was denoted as Pdₓ−Inᵧ/Al₂O₃, where x/y is the theoretical Pd/In ratio.

A three-dimensional electrochemical reactor was used for the electrochemical experiments, which was separated into a cathode cell and anode cell by a proton-exchange membrane (Nafion117, Dupont). For each batch experiment, the cathode cell was filled with 50 mL of aqueous solution of bromate using Na₂SO₄ as the supporting electrolyte. RuO₂/Ti was used as the cathode and anode with an effective geometric surface area of 100 cm², and the distance between cathode and anode was 4 cm. The reactor was controlled by a DC power supply source AMERLLPS302A (Dahua instrument corporation of Beijing). The initial concentration of bromate was 100 μg/L unless otherwise specified, and the experiments were performed at room temperature. The system was magnetically stirred at a rate of 800 rpm.

The concentrations of bromate and bromide were measured using a Dionex 2000 ion chromatograph (IC), equipped with an IonPac AS-19 anion-exchange analytical column, an IonPac AG19 guard column, and KOH solution as mobile phase eluent. Atomic H* signals were measured on a Bruker model ESR 300E spectrometer, with a Quanta-Ray Nd:YAG laser system as the irradiation source and 5,5′-dimethyl-1-pirroline-N-oxide (DMPO) as the spin-trap reagent. XRD patterns of the catalysts were recorded with an XPert PRO powder diffractometer (PANalytical Co.). TEM images and energy dispersive spectrometer (EDS)

![Figure 1](envsci6b02822-f0001.jpg)

Figure 1. (A) Effect of Pd loading, (B) bimetals, and (C) Pd/In ratio on the electrochemical reduction of bromate. (D) Initial activity of the catalyst under varying conditions (catalyst dosage = 1.0 g/L, Pd content of the catalysts in B and C was 3.0%, initial bromate concentration = 100 μg/L, 2 mM Na₂SO₄, pH = 7.0, current density = 0.9 mA/cm²).
images of the samples were obtained on a transmission electron microscope, JEM-2100F Field Emission Electron Microscope (JEOL Ltd.). XPS analysis was carried out with a Kratos AXIS Ultra X-ray photoelectron spectrometer. The specific surface area measurement was performed using the BET method using a surface area analyzer, ASAP 2020 HD88 (Micromeritics Co.). The surface potential of the samples was characterized by a Nano Particle Sizing and Zeta Potential Analyzer (DelsaNano C, Beckman Coulter Ltd.).

RESULTS AND DISCUSSION

Efficient Electroreduction of Bromate by Pd1−In4/Al2O3 Catalyst. The effect of Pd loading on Al2O3 on the bromate electroreduction was optimized first. As shown in Figure 1A, the removal efficiency of bromate increased to a maximum value, and then decreased with increasing Pd content (the initial activity of Pd/Al2O3 was 27.74, 39.48, 48.36, and 29.4 μgCat⁻¹h⁻¹ when Pd content was 1.5%, 2.0%, 3.0%, and 4.0%, Figure 1D). Higher amounts of Pd will aggregate on the surface of Al2O3, which may result in locally excessive H2 evolution and then inhibit the H2 evolution efficiency by restricting the access of bromate to the interior H2 generation sites. Cu, Sn, Bi, and In as the promoting metals for Pd-M/Al2O3 were chosen, and their electrocatalytic properties responsible for the higher efficiency of bromate electroreduction were also evaluated based on bromate reduction (Figure 1B). Compared with Pd/Al2O3, all the bimetal catalysts exhibited an improved electroreduction activity with the order of Pd–Cu/Al2O3 < Pd–Sn/Al2O3 < Pd–Bi/Al2O3 < Pd–In/Al2O3 (the initial activity was 49.12, 68.86, 80.24, and 145.58 μgCat⁻¹h⁻¹, respectively, Figure 1D). Pd–In/Al2O3 had the highest activity toward bromate reduction, and the optimal atomic ratio of Pd to In was further evaluated. As depicted in Figure 1C, the electroreduction rate of bromate increased dramatically with In content, and the initial activity of Pd–In/Al2O3 was 34.26, 44.9, 55.24, 100.42, and 145.58 μgCat⁻¹h⁻¹ with a Pd/In ratio of 4:1, 2:1, 1:1, 1:2 and 1:4 (Figure 1D). Hence, Pd1−In4/Al2O3 with a Pd loading amount of 3.0% was chosen in the subsequent experiments.

In addition, the bromate electroreduction and the generation of bromide were further investigated for different particle electrode materials, and the obtained results were found to follow pseudo-first-order kinetics. As shown in Figure 2, the bromate concentration decreased by 54.0%, 64.2%, and 71.4% in the presence of Al2O3, In/Al2O3, and Pd/Al2O3, while about 96.4% of bromate was reduced at 30 min with Pd1−In4/Al2O3. That is to say, when the initial concentration of bromate was 100 μg/L, the remaining bromate in solution was only 3.6 μg/L, which was much lower than the standard of 10 μg/L. Moreover, the reaction rate constant of Pd1−In4/Al2O3 was 0.1275 min⁻¹, which was also much higher than that of other catalysts (0.0413, 0.0328, and 0.0253 min⁻¹ for Pd/Al2O3, In/Al2O3, and Al2O3). It was worthy to note that the reaction constants for bromide formation were a little lower than that for bromate reduction (0.099, 0.0371, 0.0278, and 0.0215 min⁻¹). The bromine balance will be analyzed subsequently. The above results indicated that a synergistic effect of Pd and In existed within the catalyst and that it could enhance the current efficiency (as shown in Figure S1, the electric energy consumption to remove 1 mg bromate was 0.0065, 0.0105, 0.0127, and 0.0166 KWh for Pd1−In4/Al2O3, Pd/Al2O3, In/Al2O3, and Al2O3, respectively). Hence, Pd1−In4/Al2O3 was proven to be an ideal particle electrode material for the removal of bromate in water by electroreduction.

Characterization of Pd1−In4/Al2O3. The changes of physicochemical properties responsible for the higher efficiency of Pd1−In4/Al2O3 were characterized by TEM, XRD, BET, and XPS analysis. As depicted in Figure 3A and B, the lattice spacing of 0.228 nm belonged to the Pd(111) bimetal. The average metal particle size was found to be ca. 7.7 nm. The measured ratio of Pd/In at different sites of the composite was...
determined to be from 1:2.78 to 1:4.96. Additionally, Pd particles aggregated to some extent, while In was highly dispersed on the surface of Al₂O₃. The diffraction peaks assigned to the (111), (200), and (220) reflections of metallic Pd were observed for the Pd/Al₂O₃ catalyst (Figure 3C), reflecting the typical face centered cubic crystallographic structure, while the new peak at 39.6° can be attributed to the Pd–In alloy. Table 1 shows the BET results for different catalysts. The average pore size of the mesoporous Al₂O₃ was 15.65 nm, which was larger than the size of the metal nanoparticles (7.7 nm). The BET area and pore volume were similar for Al₂O₃, Pd/Al₂O₃, and Pd–In₄/Al₂O₃. However, a significant decrease of BET area and pore volume was observed for Pd–In₄/Al₂O₃ (42 m²/g and 0.22 cm³/g vs 64–74 m²/g and 0.34–0.35 cm³/g), which meant that some of the loaded metals might have occupied the volume in the mesopores. This result indicates that the specific surface area was not a critical factor for the high activity of Pd–In₄/Al₂O₃, In addition, the impact of In introduction on the valence state of Pd was studied by XPS (Figure 4). With the increase of In loading (Pd, Pd–In₁, and Pd–In₄), the binding energy of Pd₃d shifted toward a higher value from 334.4 eV (3d₅/₂) and 339.7 eV (3d₃/₂) to 334.8 and 340.0 eV and 335.8 and 341.1 eV. Meanwhile, the position of the peak assigned to In (0), with a binding energy of 444.79 eV (3d₅/₂) and 452.39 eV (3d₃/₂), did not change with In content. This proved that a Pd–In alloy was formed and that In could change the chemical environment of Pd.

Effect of Different Parameters on Pd₁–In₄/Al₂O₃ Efficiency. Figure S2 explores the influence of different parameters such as catalyst dosage, solution pH, and current density on the electroreduction performance of Pd₁–In₄/Al₂O₃. The bromate removal rate increased with the dosage of Pd₁–In₄/Al₂O₃ (0.2–1.0 g/L) and then maintained a steady level when the catalyst concentration was further increased to 1.5 g/L, while the effect of initial solution pH was not significant and almost 100% of the bromate was degraded after reaction for 25 min. The weak pH effect reflects that the electrocatalytic reduction of bromate with the Pd₁–In₄/Al₂O₃ can be performed under a wide pH range. Since the generation of atomic H* through the Volmer reaction is favored in acid solutions, the high efficiency of

Table 1. BET Results for Different Catalysts

Catalyst	BET area (m²/g)	Pore volume (cm³/g)	Pore size (nm)
Al₂O₃	67.97	0.27	15.65
Pd/Al₂O₃	63.70	0.34	21.27
Pd–In₄/Al₂O₃ (4:1)	74.62	0.35	19.13
Pd–In₄/Al₂O₃ (1:4)	41.90	0.22	21.31

Figure 3. (A) TEM image of Pd₁–In₄/Al₂O₃. (B) EDX images for Pd₁–In₄/Al₂O₃ element mapping, and (C) XRD patterns of (a) Al₂O₃, (b) Pd/Al₂O₃, and (c) Pd₁–In₄/Al₂O₃.

Figure 4. XPS spectra of Pd in Pd/Al₂O₃, Pd₁–In₄/Al₂O₃, and Pd₁–In₄/Al₂O₃ catalysts and XPS spectra of In for Pd₁–In₄/Al₂O₃ and Pd₁–In₄/Al₂O₃ catalysts.
bromate removal at neutral pH indicated that the contribution of atomic H* to bromate reduction is likely to be insignificant. In addition, the influence of current density on the Pd1−In4/Al2O3 efficiency was also examined at 0.3 to 1.2 mA/cm². The reduction rate markedly increased with current density (0.3 to 0.9 mA/cm²) and then remained constant at a higher current of 1.2 mA/cm². Higher current density will produce more available electrons,35 leading to higher efficiency in bromate reduction.

The similar efficiency of Pd1−In4/Al2O3 at 1.2 and 0.9 mA/cm² should be attributed to the limitation of active sites in the catalyst, interfering with the electron transfer to bromate.

Proposed Mechanism of Bromate Reduction on Pd1−In4/Al2O3.

Figure 5A depicts bromate removal by adsorption over different materials without the addition of applied current. Compared with Al2O3 without bromate adsorption, only 7% and 11% of bromate was adsorbed on Pd/Al2O3 and In/Al2O3. Pd1−In4/Al2O3 exhibited the highest adsorption capacity, and 48.6% of bromate could be removed under the same conditions. However, there were no bromide species detected during the adsorption process. This was because of the much higher zeta potential of Pd1−In4/Al2O3 than the other three catalysts at neutral pH (inset of Figure 5A). Hence, the more positive surface charge facilitated the adsorption of the negatively charged bromate on Pd1−In4/Al2O3. After the addition of applied current, the removed bromate was almost completely reduced to bromide for all the tested catalysts (inset of Figure 5B). For example, the sum of bromate and bromide at 30 min accounted for 99.1% of the total bromine added into the reactor for Pd1−In4/Al2O3, which indicated that the decreased bromate was completely converted into bromide. Regarding the slight decrease in the sum of bromate and bromide during the reaction process (5−20 min), this was due to the formation of other bromine species such as BrO2−, HBrO2, and HOBr/OBr−.36 However, they were finally converted into bromide, since the mass balance of total bromine was recovered at 30 min.

The electroreduction mechanism of bromate by Pd1−In4/Al2O3 was further investigated because direct electron transfer and atomic H* may be both involved in the reaction process.37,38 As shown in Figure 6A, nine characteristic peaks of DMPO-H39 with strong intensity were detected by ESR in the presence of catalyst compared with the control experiment (no catalyst). This confirmed that atomic H* was indeed produced and involved in the bromate reduction process. However, the peak intensity of DMPO-H was similar for Pd/Al2O3, In/Al2O3, and Pd1−In4/Al2O3, which indicated that the introduction of In had no positive effect on the atomic H* generation for Pd1−In4/Al2O3. tert-BuOH is a quenching reagent toward atomic H*; therefore its influence on bromate electroreduction was also studied. As shown in Figure 6B and C, a significant inhibition of bromate removal in the presence of tert-BuOH (10 mM) was
observed for Pd/Al2O3 and Pd−In/Al2O3 catalysts with efficiency decreases of 27.5% and 19.2%, while the negative effect of tert- BuOH was not significant for the control experiment, with only 5% inhibition. It can be speculated that the 37% bromate removal in the control should come from direct electron transfer, and both direct electron transfer and indirect atomic H* reduction contributed to the bromate removal in the presence of catalysts. The higher contribution of direct electron reduction to bromate removal in the presence of catalysts (especially for Pd−In/Al2O3) was attributed to the increase of electron transfer to the adsorbed bromate due to the unique property of Pd metal in trapping electrons and the promoting effect of In within the catalyst. Since dissolved oxygen (DO) could compete with target pollutants for the reaction sites and then suppress the removal efficiency toward pollutants,38 DO in the reaction system was removed by N2 sparging, and its concentration was reduced from 7.42 to 0.80 mg/L. As shown in Figure 7, the bromate reduction efficiency was greatly enhanced when DO was removed, and the reaction constant was 3 times higher than that in the presence of DO (0.3709 min−1 vs 0.1275 min−1). This indicated the competition effects with oxygen for reactive sites on the catalyst by consuming both the electrons and atomic H*. As shown in Figure S3, a reaction mechanism for bromate reduction over Pd−In/Al2O3 was proposed based on all the experimental results. Bromate was first adsorbed on Pd−In/Al2O3 and after the addition of applied current, electrons and atomic H* were both generated in the reaction system. The direct reduction of bromate by electrons played a more important role in bromate removal in the presence of Pd−In/Al2O3 catalyst, probably due to the enhancement of electron transfer by Pd−In within the catalyst. Compared to the other catalysts such as Pd−Cu, Pd−Sn, and Pd−Bi, the higher activity of Pd−In/Al2O3 toward bromate reduction may be due to two aspects: (i) the improved adsorption of bromate on the catalyst and (ii) the enhanced transfer of electrons and atomic H* from catalyst to bromate.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.6b02822. Additional experimental details and data (PDF)

Environmental Science & Technology

Author Information

Corresponding Author

Tel.: +86 10 62849160. Fax: +86 10 62849160. E-mail: liuruiping@rcees.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 51478455, 51438011, 51422813).

REFERENCES

(1) Weinberg, H. S.; Delcomyn, C. A.; Unnam, V. Bromate in chlorinated drinking waters: Occurrence and implications for future regulation. *Environ. Sci. Technol.* 2003, 37, 3104−3110.

(2) Butler, R.; Godley, A.; Lytton, L.; Carmell, E. Bromate environmental contamination: review of impact and possible treatment. *Crit. Rev. Environ. Sci. Technol.* 2005, 35, 193−217.

(3) Liu, J.; Yu, J.; Li, D.; Zhang, Y.; Yang, M. Reduction of bromate in a biological activated carbon filter under high bulk dissolved oxygen conditions and characterization of bromate-reducing isolates. *Biochem. Eng. J.* 2012, 65, 44−50.

(4) Asami, M.; Aizawa, T.; Morioka, T.; Nishijima, W.; Tabata, A.; Magara, Y. Bromate removal during transition from new granular activated carbon (GAC) to biological activated carbon (BAC). *Water Res.* 1999, 33, 2779−2804.

(5) Zhao, X.; Liu, H.; Shen, Y.; Qu, J. Photocatalytic reduction of bromate at CeO2 modified Bi2MoO6 under visible light irradiation. *Appl. Catal., B* 2011, 106, 63−68.

(6) Lisitani, K.; Tor, J. T.; Sun, D. D.; Leckie, J. O. Hybrid coagulation-nanofiltration membrane for removal of bromate and humic acid in water. *J. Membr. Sci.* 2010, 365, 154−159.

(7) Li, T.; Chen, Y.; Wan, P.; Fan, M.; Yang, X. J. Chemical degradation of drinking water disinfection byproducts by millimeter-sized particles of iron-silicon and magnesia-aluminum alloys. *J. Am. Chem. Soc.* 2010, 132, 2500−2501.

(8) Kirisits, M. J.; Snoeyink, V. L.; Inan, H.; Chee-Sanford, J. C.; Raskin, L.; Brown, J. C. Water quality factors affecting bromate in water.

(9) Zhou, J.; Wu, K.; Wang, W.; Han, Y.; Xu, Z.; Wan, H.; Zheng, S.; Zhu, D. Simultaneous removal of monochloroacetic acid and bromate in a continuous three-dimensional electrochemical reactor. *Environ. Sci. Technol.* 2010, 44, 5351−5359.

(10) Chen, H.; Xu, Z.; Wan, H.; Zheng, J.; Yin, D.; Zheng, S. Aqueous bromate removal by catalytic hydrogenation over Pd/Al2O3 catalysts. *Appl. Catal., B* 2015, 162, 85−92.

(11) Wang, Y.; Liu, J.; Wang, P.; Werth, C. J.; Strathmann, T. J. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of osmyanion water pollutants. *ACS Catal.* 2014, 4, 3551−3559.

(12) Ding, L.; Li, Q.; Cui, H.; Tang, R.; Xu, H.; Xie, X.; Zhai, J. Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode: An efficient and green technology for the removal of BrO3− in aqueous solutions. *Electrochim. Acta* 2010, 55, 8471−8475.

(13) Mao, R.; Zhao, X.; Lan, H.; Liu, H.; Qu, J. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor. *Water Res.* 2015, 77, 1−12.

(14) Zhao, X.; Liu, H.; Li, A.; Shen, Y.; Qu, J. Bromate removal by electrochemical reduction at boron-doped diamond electrode. *Electrochim. Acta* 2012, 62, 181−184.

(15) Kishimoto, N.; Matsuda, N. Bromate ion removal by electrochemical reduction using an activated carbon felt electrode. *Environ. Sci. Technol.* 2009, 43, 2054−2059.

(16) Wei, L. Y.; Guo, S. H.; Yan, G. X.; Chen, C. M.; Jiang, X. Y. Electrochemical pretreatment of heavy oil refinery wastewater using a...
three-dimensional electrode reactor. *Electrochem. Acta* 2010, 55, 8615–8620.

(17) Kong, W. P.; Wang, B.; Ma, H. Z.; Gu, L. Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes. *J. Hazard. Mater.* 2006, 137, 1532–1537.

(18) Mascia, M.; Vaccar, A.; Palmas, S. Fixed bed reactors with three-dimensional electrodes for electrochemical treatment of waters for disinfection. *Chem. Eng. J.* 2012, 211–212, 479–487.

(19) Chaplin, B. P.; Reinhard, M.; Schneider, W. F.; Schült, C.; Shapley, J. E.; Strathmann, T. J.; Werth, C. J. Critical review of Pd-based catalytic treatment of priority contaminants in water. *Environ. Sci. Technol.* 2012, 46, 11469–11470.

(20) Ksaar, F.; Ramos, L.; Keita, B.; Nadjo, L.; Beauzier, P.; Remita, H. Bimetallic palladium-gold nanostructured applications in ethanol oxidation. *Chem. Mater.* 2009, 21, 3677–3683.

(21) Spee, M. P.; Boersma, J.; Meijer, M. D.; Slagt, M. Q.; van Koten, G.; Geus, J. W. Selective liquid-phase semi-hydrogenation of functionalized acetylenes and propargylic alcohols with silica-supported bimetallic palladium-copper catalysts. *J. Org. Chem.* 2001, 66, 1647–1656.

(22) Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. *J. Am. Chem. Soc.* 2004, 126, 5026–5027.

(23) Yoshinaga, Y.; Akita, T.; Mikami, I.; Okuhara, T. Hydrogenation of nitrate in water to nitrogen over Pd/Cu supported on active carbon. *J. Catal.* 2002, 207, 37–45.

(24) Hou, W.; Dehm, N. A.; Scott, R. W. Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic Au/Pd nanoparticle catalysts. *J. Catal.* 2008, 253, 22–27.

(25) Wenkin, M.; Ruiz, P.; Delmon, B.; Devillers, M. The role of bismuth as promoter in Pd–Bi catalysts for the selective oxidation of glucose to gluconate. *J. Mol. Catal. A: Chem.* 2002, 180, 141–159.

(26) Wang, Y.; Qu, J.; Wu, R.; Lei, P. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode. *Water Res.* 2006, 40, 1224–1232.

(27) Shao, M. H.; Sasaki, K.; Adzic, R. R. Pd–Fe nanoparticles as electrocatalysts for oxygen reduction. *J. Am. Chem. Soc.* 2006, 128, 3526–3527.

(28) Gavagnin, R.; Biasetto, L.; Pinna, F.; Strukul, G. Nitrate removal in drinking waters: the effect of tin oxides in the catalytic hydrogenation of nitrate by Pd/SnO2 catalysts. *Appl. Catal., B* 2002, 38, 91–99.

(29) Davie, M. G.; Shih, K.; Pacheco, F. A.; Leckie, J. O.; Reinhard, M. Palladium–indium catalyzed reduction of N-nitrosodimethylamine: indium as a promoter metal. *Environ. Sci. Technol.* 2008, 42, 3040–3046.

(30) Yuranova, T.; Kiwi-Minsker, L.; Franch, C.; Palomares, A. E.; Armenise, S.; Garcia-Bordeje, E. Nanostructured catalysts for the continuous reduction of nitrates and bromates in water. *Ind. Eng. Chem. Res.* 2013, 52, 13930–13937.

(31) An, W.; Hong, J. K.; Pintauro, P. N. Current efficiency for soybean oil hydrogenation in a solid polymer electrolyte reactor. *J. Appl. Electrochem.* 1998, 28, 947–954.

(32) Harris, I. B.; Norman, M.; Bryant, A. W. A study of some palladium-indium, platinum-indium and platinum-tin alloys. *J. Less-Common Met.* 1968, 16, 427–440.

(33) Marchesini, F. A.; Irusta, S.; Querini, C.; Miró, E. Spectroscopic and catalytic characterization of Pd–In and Pt–In supported on Al2O3 and SiO2, active catalysts for nitrate hydrogenation. *Appl. Catal., A* 2008, 348, 60–70.

(34) Gennero de Chialvo, M. R.; Chialvo, A. C. Kinetics of hydrogen evolution reaction with Frumkin adsorption: re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes. *Electrochim. Acta* 1998, 44, 841–851.

(35) Mao, X. H.; Ciblak, A.; Amir, M.; Alshawabkeh, A. N. Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media. *Environ. Sci. Technol.* 2011, 45, 6517–6523.

(36) Qu, J.; Zou, X.; Liu, B.; Dong, S. Assembly of polyoxometalates on carbon nanotubes paste electrode and its catalytic behaviors. *Anal. Chim. Acta* 2007, 599, 51–57.

(37) Li, T.; Farrell, J. Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. *Environ. Sci. Technol.* 2000, 34, 173–179.

(38) Xie, W. J.; Yuan, S. H.; Mao, X. H.; Hu, W.; Liao, P.; Tong, M.; Alshawabkeh, A. N. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. *Water Res.* 2013, 47, 3573–3582.

(39) Mao, R.; Li, N.; Lan, H.; Zhao, X.; Liu, H.; Qu, J.; Sun, M. Dechlorination of trichloroacetic acid using a noble metal-free graphene-Cu foam electrode via direct cathodic reduction and atomic H+. *Environ. Sci. Technol.* 2016, 50, 3829–3837.