A teachable moment: Identifying hyperostosis frontalis interna in a gross anatomy cadaver laboratory

Julia N. DiSalle1, Alexis L. Novak2, Prasad S. Dalvi2, Elisa M. Konieczko2

DiSalle JN, Novak AL, Dalvi PS, et al. A teachable moment: Identifying hyperostosis frontalis interna in a gross anatomy cadaver laboratory. Int J Anat Var. 2019;12(4): 35-39.

Hyperostosis frontalis interna (HFI) is a condition in which newly formed cancellous bone is deposited on the inner lamina of the cranium forming irregular thickening of the cranial bone. HFI is often found through scans ordered for other possible diseases [4]. Sometimes, however, the hypertrophy of the frontal bone can be extensive and may result in compression of brain tissue [5].

INTRODUCTION

Hyperostosis frontalis interna (HFI) is a condition with limited bone remodeling of the neurocranium. In HFI, newly formed cancellous bone is deposited on the inner lamina of the cranium forming irregular thickening on the internal surface of the frontal bone. Such thickening has been long documented in the literature, beginning in the early 1700’s with books written by Giovanni Batistta Morgagni, the father of anatomical pathology. This disease was further documented and detailed in the early 20th century [1-3]. HFI is usually not the primary cause of death for an individual and is often found through scans ordered for other possible diseases [4]. Sometimes, however, the hypertrophy of the frontal bone can be extensive and may result in compression of brain tissue [5].

Despite the wide-ranging literature on HFI, the etiology of this disease remains largely unknown [6]. Some authors have suggested insanity or dementia may cause this physical change in the cranium [1,5] while others have suggested hormonal causes [7-10] or metabolic disorders [4,11]. The literature is clear that there is marked female predominance in the epidemiology of this disorder, especially in post-menopausal elderly women [12-15]. However, HFI has also been reported in males with severe hypogonadism and testicular atrophy [9]. HFI is distinguished from other conditions, including acromegaly, Paget’s disease and bone cancer of the skull [4,10].

Gannon University teaches cadaver-based human gross anatomy to undergraduate college students in biology, chemistry, pre-physical therapy, and physician assistant majors [16]. These high volume high intensity courses involve both prosected cadavers and cadavers dissected by enrolled students [17]. One of the challenges of teaching cadaver-based anatomy is the extensive memorization students must achieve in order to be successful. Using pathological discovering during dissection of the cadavers to supplement and enhance lecture material is one method used by course instructors to engage students in anatomical and clinical discussions. These discussions enhance what is often a learning experience dominated by extensive memorization.

CASE REPORT

An 80 year-old woman who was diagnosed with Alzheimer’s disease/vascular dementia at the time of death was found to have HFI with dural fusion to the calvarium during dissection in the Gannon University human gross anatomy laboratory (Figure 1). The examination of the internal side of the skull cap revealed that the inner table (lamina) of the calvarium was covered with large, irregular nodular bony thickening that was predominantly localized to the region of the frontal bones (Figure 1). Consequently, the frontal lobes were found to be compressed and subdural space was decreased by the nodular thickness of the frontal bones. The bony thickening was not present on any part of the parietal or occipital bones. The thickness of the frontal bones was more marked and exceedingly dense than that of parietal or occipital bones, being apparently due to overgrowth of cancellous bony tissue (Figure 1). The diploe of the frontal bones was slightly reduced in amount. The dura mater was thickened and was adhered to the inner table of the skull and fused with, in particular, the frontal bone (Figure 2). The anterior end of falx cerebri contained a large bony plate, nearly a quarter of an inch thick and two inches long. The brain weight was less than the age-matching typical normal brain from another decedents without HFI (Table 1). The coronal sections of the brain described in this study revealed that both cerebral hemispheres were filled with a relatively larger amount of white matter composed of shallow sulci and atrophied gyri (Figure 3). In addition, the decedent’s brain showed atrophy of the frontal gyr, and the cerebral ventricles were found to be reduced in size (Figure 4).

DISCUSSION

HFI was first described by Morgagni more than 300 years ago in the early 1700’s, and since then HFI has been associated with frontal headaches, psychoneurosis, obesity, pregnancy, acromegaly, virilism, hypertrichosis, diabetes, and other hormonal and metabolic disorders [19-22]. Based on these case reports and studies, HFI has been included in Morgagni’s

1Department of General Medicine, Gannon University, Erie, PA, USA; 2Department of Biology, Gannon University, Erie, PA, USA

Correspondence: Prasad S. Dalvi, Department of Biology, Gannon University, Erie, PA, USA; Tel: 01 814 871 7651, E-mail: konieczk001@gannon.edu
Elisa M. Konieczko, Department of Biology, Gannon University, Erie, PA, USA, Tel: 01 814 871 5963, Email: dalvi001@gannon.edu
Received: July 14, 2019, Accepted: Sep 16, 2019, Published: Sep 25, 2019

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprint@pulsus.com

Int J Anat Var Vol 12 No 4 Dec 2019
syndrome (HFI, obesity, virilism), Stewart-Morel syndrome (HFI, obesity, mental disturbances), and Troell-Junet syndrome (HFI, acromegaly, toxic goiter, and diabetes mellitus) [19,22]. However, at present, HFI is viewed as an independent condition representing a phenomenon itself rather than related to any specific syndrome as suggested in the past [12]. HFI has been reported in 5-12% of the general population, but the magnitude of manifestation and frequency of HFI are much higher in the female population [12,23]. It is now accepted that HFI by itself does not cause a significant clinical disease and is usually an incidental finding, however, the bone growth can be exuberant and cause compression of the underlying brain tissue [5]. Past archeological investigations have shown that HFI was rarely present in historic populations regardless of geographical origin; however, on the other hand, the skulls from modern times have been found to develop HFI, predominantly in the post-menopausal female population [12]. Currently, the etiology of HFI remains uncertain, and therefore, several hypotheses have been proposed to explain HFI. One hypothesis proposes that during human evolution, a wider availability of food favored an increased metabolic rate which may have caused a higher incidence of HFI via increased levels of leptin, a satiety peptide that increases sympathetic tone and energy expenditure [24]. Another explanation for detecting HFI more...
A teachable moment: Identifying hyperostosis frontalis interna in a gross anatomy cadaver laboratory

frequently in elderly population is that greater longevity has allowed HFI to become more prevalent and detectable in the aging population [15]. Another hypothesis is that prolonged high levels of estrogen during the reproductive period of life may be the primary triggering factor contributing to the greater frequencies of HFI seen in post-menopausal females [25], and therefore, the incidence in the female population has been reported to be much higher than in male population [12]. While HFI is found predominantly in females, it is not a purely female phenomenon. Males with hormonal irregularities, such as atrophic testis and/or feminism were found to have HFI of variable severity [9,12]. On the other hand, it has been shown that HFI is related to elevated androgen levels in pre-menopausal women [26]. At present, the most acceptable hypothesis regarding HFI pathogenesis is hormonal imbalance of the gonads.

HFI is usually not the primary cause of death for an individual and is often found through scans ordered for other possible diseases, and therefore, upon recognition of prominent HFI in imaging, it is important to distinguish it from other pathologic processes, such as leptomeningeal metastasis, hemorrhage, or infection [5]. While HFI is a benign process, prominent HFI may cause compression of the underlying soft tissues, inflammation and irritation of the meninges and pressure atrophy of the brain, for which surgical decompression is the treatment [27]. Cases of HFI, with or without neuropsychiatric disorders, have been reported by several authors [1,4,5,9,11]. These studies report that the obesity, diabetes, dyslipidemia and other metabolic disturbances, hormonal imbalance, post-menopausal state, and female gender are considered to be the risk factors of HFI. The only known risk

TABLE 2

Review of literature for the brain weight observed in the cases of HFI with neurological symptoms.

Gender	Age (Years)	Pathology	Post-mortem brain weight (g)
Female	48	Melancholia, Loss of Memory	1150
Female	47	Dementia, Disorientation in time and place	1247
Female	62	Recurrent melancholia, dementia	1169
The authors wish to thank the biology department of Gannon University for its financial support of the publication of this article. The authors thank the Wright State Anatomical Gift program and the Booneshaut School of Medicine for the permission to publish this case study.

REFERENCES
1. Stewart RM. Localised Cranial Hyperostosis in the Insane. J Neurol Psychopathol. 1928;8:721-31.
2. Moore S. Calvarial hyperostosis and the accompanying symptom complex. Arch Neurol Psychiatry. 1936;35:975-81.
3. Knies PT, Le Fevre HE. Metabolic craniopathy: hyperostosis frontalis interna. Ann Intern Med. 1941;14:1858-92.
4. She R, Szakacs J. Hyperostosis frontalis interna: case report and review of literature. Ann Clin Lab Sci. 2004;34:206-8.
5. Chaljub G, Johnson RF, Johnson RF Jr, et al. Unusually exuberant hyperostosis frontalis interna: MRI. Neuroradiology. 1999;41:44-5.
6. Raikos A, Paraskaras GK, Yuval F, et al. Etiopathogenesis of hyperostosis frontalis interna: a mystery still. Ann Anat. 2011;193:453-8.
7. Goodman DH, Eragan A, Gout, mxedema, and hyperostosis frontalis interna. Report of case in Negro woman. JAMA. 1960;173:1734-5.
8. Pawlikowski M, Komorowski J. Hyperostosis frontalis, galactorrhoea/hyperprolactinaemia, and Morgagni-Stewart-Moret syndrome. Lancet. 1983;1:474.
9. Yamakawa K, Mizutani K, Takahashi M, et al. Hyperostosis frontalis interna associated with hypogonadism in an elderly man. Age Ageing. 2006;35:202-3.
10. Fulton JD, Shand J, Ritchie D, et al. Hyperostosis frontalis interna, acromegaly and hyperprolactinaemia. Postgrad Med J. 1990;66:169.
11. Schmiya M, Tanaka M, Aihara Y, et al. Hyperostosis crani in the elderly with various clinical symptoms. Geriatr Gerontol Int. 2004;4:59-63.
12. Hershkovitz I, Greenwald C, Rothschild BM, et al. Hyperostosis frontalis interna: an anthropological perspective. Am J Phys Anthropol. 1999;109:303-25.
13. Devriens W, Piercechi-Marti MD, Adaljan P, et al. Hyperostosis frontalis interna: forensic issues. J Forensic Sci. 2005;50:143-6.
14. May H, Mali Y, Dar G, et al. Intracranial volume, cranial thickness, and hyperostosis frontalis interna in the elderly. Am J Hum Biol. 2012;24:812-9.
15. Cvetkovic D, Nikolaic S, Brkovic V, et al. Hyperostosis frontalis interna as an age-related phenomenon - Differences between males and females and possible use in identification. J Forensic Sci Society. 2019;59:172-6.
16. Konieczko EM, Mattinson CE. Eighty Students, Five Cadavers, and Two Professors: Innovative Teaching Practices in an Undergraduate Human Gross Anatomy Course. HAPS Educator. 2017;21:95-100.
17. Mattinson CE, Konieczko EM. A Method for Maximizing Dissection Experience with a Minimal Number of Cadavers in an Undergraduate Human Gross Anatomy Laboratory Course. HAPS Educator. 2017;21:43-8.
18. Azi MA, McKenzie JC, Wilson JS, et al. The human cadaver in the age of biomedical informatics. Anat Rec. 2002;269:20-32.
19. Dann S. Metabolic craniopathy: a review of the literature with report of a case with diabetes insipidus. Ann Intern Med. 1951;34:163-202.
20. Salmi A, Voutilainen A, Holsti IR, et al. Hyperostosis crani in a normal population. Am J Roentgenol Radium Ther Nucl Med. 1962;87:1032-40.
21. Crispin JC, Alcocer-Varela J. Rheumatologic manifestations of diabetes mellitus. Am J Med. 2003;114:753-7.
22. Moore S. The Trolle-Junet syndrome. Acta Radiol. 1953;39:485-93.
23. Nikolaic S, Djonic D, Zivkovic V, et al. Rate of occurrence, gross
A teachable moment: Identifying hyperostosis frontalis interna in a gross anatomy cadaver laboratory

appearance, and age relation of hyperostosis frontalis interna in females: a prospective autopsy study. Am J Forensic Med Pathol. 2010;31:205-7.

24. Ruhli FJ, Henneberg M. Are hyperostosis frontalis interna and leptin linked? A hypothetical approach about hormonal influence on human microevolution. Med Hypotheses. 2002;58:378-81.

25. Korenman SG. Oestrogen window hypothesis of the aetiology of breast cancer. Lancet. 1980;1:700-1.

26. Kollin E, Feher T. Androgens, bone mineral content and hyperostosis frontalis interna in pre-menopausal women. Exp Clin Endocrinol. 1986;87:211-4.

27. Hasegawa T, Ito H, Yamamoto S, et al. Unilateral hyperostosis frontalis interna. Case report. J Neurosurg. 1983;59:710-3.

28. von Staden H. The discovery of the body: human dissection and its cultural contexts in ancient Greece. Yale J Biol Med. 1992;65:223-41.

29. Klestinec C. A history of anatomy theaters in sixteenth-century Padua. J Hist Med Allied Sci. 2004;59:373-412.

30. Tam MDBS, Hart AR, Williams S, et al. Is learning anatomy facilitated by computer-aided learning? A review of the literature. J Medical Teacher. 2009;31:e393-e6.

31. Biasutto SN, Caussa LJ, Criado del Rio LE. Teaching anatomy: cadavers vs. computers?. Ann Anat. 2006;188:187-90.

32. Patel SB, Mauro D, Fenn J, et al. Is dissection the only way to learn anatomy? Thoughts from students at a non-dissecting based medical school. Perspect Med Educ. 2015;4:259-60.

33. Memon I. Cadaver Dissection Is Obsolete in Medical Training! A Misinterpreted Notion. Med Princ Pract. 2018;27:201-10.

34. Ghosh SK. Cadaveric dissection as an educational tool for anatomical sciences in the 21st century. Anat Sci Educ. 2017;10:286-99.