Palladium-Catalyzed Ortho C–H Arylation of Unprotected Anilines: Chemo- and Regioselectivity Enabled by the Cooperating Ligand [2,2′-Bipyridin]-6(1H)-one

Cintya Pinilla, Vanesa Salamanca, Agustí Lledós,* and Ana C. Albéniz*

ABSTRACT: Metal-catalyzed C–H functionalizations on the aryl ring of anilines usually need cumbersome N-protection–deprotection strategies to ensure chemoselectivity. We describe here the Pd-catalyzed direct C–H arylation of unprotected anilines with no competition of the N-arylation product. The ligand [2,2′-bipyridin]-6(1H)-one drives the chemoselectivity by kinetic differentiation in the product-forming step, while playing a cooperating role in the C–H cleavage step. The latter is favored in an anionic intermediate where the NH moiety is deprotonated, driving the regioselectivity of the reaction toward ortho substitution.

KEYWORDS: C–H activation, unprotected anilines, direct arylation, palladium, metal–ligand cooperation, pyridones

A

Received: October 24, 2022
Revised: November 8, 2022
Published: November 11, 2022

Scheme 1. C–H Arylation of Protected Secondary and Tertiary Anilines (a) and Unprotected Anilines (b)

Substitutent rather than the aniline ring. To our knowledge, no examples of palladium-catalyzed direct arylation of unprotected anilines have been reported. This is not surprising, since the combination of an aryl halide and ArNH₂ could easily produce the Buchwald–Hartwig amination product, leading to N–H
functionalization and the corresponding secondary aniline. Therefore, N-protection is the common practice. It would be very interesting to develop a chemoselective catalytic system that could functionalize the aryl ring with no interference of the amino group, so that the additional protection-deprotection steps could be avoided.

A few methods for the arylation of primary anilines have been reported, based on radical reactions of aryl diazo derivatives or aryldiazirines, both being rather hazardous reagents. Ortho arylation of anilines has been achieved via the in situ generation of benzene intermediates. Daugulis et al. described such a reaction using ArCl as a benzene precursor in the presence of a strong lithium base, which was applied to a large number of anilines.

Table 1. Arylation of Aniline with p-CF₃C₆H₄I Using Different Catalysts According to eq 1

entry	[Pd]	crude yield, % (conversion, %)
1c		46 (51) 92 (100)
2		83 (100)
3	[Pd(OAc)₂] + bipy-6-OH	86 (100)
4	[Pd(OAc)₂]	0 (3) 0 (9)
5		0 (4) 1 (10)
6		0 (0) 0 (6)
7		31 (40) 91 (100)
8d		13 (20) 74 (100)

"Reaction conditions unless specified otherwise: p-CF₃C₆H₄I (0.34 mmol), aniline (3.4 mmol), [Pd] (5 mol %), Cs₂CO₃ (0.68 mmol), DMA (2.7 mL); 130 °C. Crude yields determined by ¹⁹F NMR of the reaction mixture. Mixture of regioisomers o:m:p = 25:1:1. The reduction of the aryl iodide (ArH) and homocoupling (Ar−Ar) are the observed byproducts. cPinacolone as solvent. dAniline (0.37 mmol).

therefore, this solvent was selected for our experiments. The reaction is equally effective when an equimolar mixture of palladium acetate and bipy-6-OH was used as the precatalyst (cf. entries 2 and 3, Table 1). The presence of the cooperating ligand is necessary, and negligible conversion was observed when no ligand was added, when the pyridine moiety was not present in the ligand, or when it was in a position far from the metal so that it was not able to play a cooperating role (entries 4–6, Table 1). In contrast, the ligand phen-2-OH is also effective, although the reaction is slower. The amount of aniline reactant can be reduced to almost the stoichiometric amount at the expense of a moderate reduction of the yield and a much longer reaction time (entry 8, Table 1).

The ortho-arylated product was the major one and only 5% of the Buchwald-Hartwig amination product (N-arylation) was detected in the crude mixture (Figure S21 in the Supporting Information). In fact, the amination product was obtained cleanly when the same base (Cs₂CO₃) and solvent (DMF) similar to those in eq 1 were used, but a different Pd catalyst: a mixture of a Pd(0) precursor and XPhos (eq 2). Thus, the Pd-bipy-6-OH catalyst system can be used in combination with other catalysts for the orthogonal functionalization of aniline by C–C and C–N coupling.

The selective ortho arylation can be extended to primary anilines with different substitution patterns in the aromatic ring (ortho-, meta- and para-substituted). Electron-withdrawing and electron-donating groups are tolerated in the aniline and in the aryl halide (Scheme 2). Only monoaarylation was observed in all cases, and the ortho-arylated anilines were obtained in good to moderate yields, with the only exception being the tertiary dimethylaniline (5n). Some of the derivatives shown can be interesting precursors of biologically active compounds as, for example, in the synthesis of biphenylbenzamide microbiocidal agents (i.e., 5a−c,f,g), carbazole alkaloids, and dyes (5k). Again, in the few cases that it was observed, the C–N coupling product only accounts for about 2–5% of the crude yield (see the Supporting Information). Note that when o-phenylalanine is used as substrate only the functionalization of the aniline ring occurs and the aryl substituted remains unaltered, in contrast to other reactions in the literature that use 2-anilino as a directing group.

Scheme 2 also shows the arylation products of several secondary and tertiary anilines. We observed that the regioselectivity is eroded as the N-substitution increases. However, whereas the ortho isomer is still the major isomer for secondary anilines, the arylation of N,N-dimethylaniline only affords a mixture of the meta and para isomers.

Mechanistic experiments were carried out to gather information on the catalytic cycle and the origin of the selectivity observed. The reaction shown in eq 3 was used as a model. Complex 1 is transformed under catalytic conditions (DMA, excess of aniline) into the amino derivative 7, which was independently synthesized and characterized (eq 4; see
The analogical complex \[\text{[Pd(bpy-6-OH)]Br(CF}_3\text{C}_6\text{H}_4\text{](PhNH}_2\text{)}\] (8) was also prepared, and it is catalytically competent for the reaction in eq 3 (90% yield in 6 h). It also decomposes under catalytic conditions to the \textit{ortho}-arylated aniline (eq 5); thus, the presence of 8 is plausible in the catalytic reaction.

Kinetic experiments show that the rate of the reaction exhibits a first-order dependence on the catalyst (complex 1) and is independent of the concentration of the aryl halide. The reaction rate is also insensitive to the concentration of aniline in the excess range used for this reactant in the catalysis (about 10-fold). As can be seen in eq 4, under these conditions the coordination equilibrium is completely shifted to the aniline-coordinated species (Figure S1 in the Supporting Information). A large kinetic isotope effect was found (KIE = 4.2 ± 0.4), pointing to the C–H activation as the turnover-limiting step. The reaction in eq 3 was also carried out in the presence of D\textsubscript{2}O. Since the H/D exchange in the protonated ligand is facile (Figure S4 in the Supporting Information), a reversible C–H activation should lead to the incorporation of deuterium in the final substituted aniline. No deuterium incorporation was observed, supporting an irreversible C–H cleavage.

The reaction mechanism has been investigated by computational methods. A thorough exploration of several routes, with the locations of intermediates and transition states, was carried out using the M06 functional with basis set BS1 and including solvation in the optimizations through the SMD implicit solvent method. However, to obtain accurate energies, additional single-point calculations were performed on all optimized structures employing the domain-based local pair natural orbital coupled cluster approach (DLPNO-CCSD(T)) and an extended basis set (def2-TZVP) (see computational details in the Supporting Information). This method can be considered the state of the art for providing energies of systems of this size, and it has proved to be very effective in obtaining accurate reaction thermodynamics and barrier heights,22 including palladium-catalyzed cross-coupling reactions.23 All of the Gibbs energies collected in the text have been obtained, adding to the DLPNO-CCSD(T)/def2-TZVP electronic energies thermal and entropic corrections as well as solvation energies (\(\Delta G(\text{solv})\)) obtained at the M06/BS1 level.

We found that the choice of model is crucial to reproduce the basic features of the reaction: C–C coupling vs C–N chemoselectivity, \textit{ortho} regioselectivity, and a turnover-limiting C–H cleavage. The simplest model, consisting of just the palladium, the (bipy-6-OH) ligand, the aryl group, and aniline, fails to account for the experimental results (see Figure S89 in the Supporting Information). To improve it, we enlarged the model, adding to the computational model other species present in the reaction medium, as carbonate and cesium ions. We found the smallest model able to reproduce the prevalence of C–C coupling over C–N coupling must involve, in addition to the cesium carbonate and the continuum representation of the solvent, several explicit DMA solvent molecules (model 4 in Figure S90; see the Supporting Information for inconsistent results with other models). This has been the model employed in all of the calculations.

Figure 1 shows a complete profile for the reaction yielding the \textit{ortho}-arylated product. The rearrangement of the aniline from a...
N- to a C-bound mode transforms complex 8 into c1_{ortho}. At this point, the deprotonation of the aniline is facile to give c1NH_{ortho}, which undergoes C–H cleavage via TS-c1NH_{ortho}–c2NH_{ortho} with a lower energy barrier than that from c1_{ortho} (TS-c1_{ortho}–c2_{ortho}; Gibbs energy barriers of 12.1 vs 16 kcal mol\(^{-1}\), respectively). Therefore, an anionic route on an amido-type intermediate is preferred. A series of proton transfer steps occur on biaryl intermediate c2NH_{ortho} with the involvement of the pair HCO\(_3^-\)/CO\(_3^{2-}\), which eventually leads to c2b_{ortho}. In this way the ortho CH proton ends up in the carbonate, with a notable stabilization of the system. From c2b_{ortho} a reductive elimination follows through transition state TS-c2b_{ortho}–c3, leading to the arylation product and the Pd(0) intermediate c4. In the presence of aniline oxidative addition occurs, leading to c1_{ortho} that closes the cycle. The conversion of c1_{ortho} into 8 has a lower energy barrier than the C–H cleavage, and therefore 8 is the plausible resting state of the reaction, outside the catalytic cycle. The equilibrium between 8 and c1_{ortho} controls the actual concentration of palladium in the catalytic cycle and leads to an energetically span of 29.9 kcal mol\(^{-1}\) for the reaction, consistent with the reaction conditions needed. The computed catalytic cycle is represented in Scheme 3.

As commented below, the C–N coupling route to give the Buchwald–Hartwig amination product was also calculated. The deprotonation of the aniline in complex 8, is facile and the amido version of complex 8 is found 0.6 kcal mol\(^{-1}\) below the neutral form, pointing out the existence of amino–amido equilibrium in the presence of carbonate in the reaction medium (Figure S93 in the Supporting Information). The aryl-amido reductive elimination barrier is 14.1 kcal mol\(^{-1}\), as shown in Figure 1. This value is 2 kcal mol\(^{-1}\) higher than the barrier for the C–H ortho cleavage in the aniline (12.1 kcal mol\(^{-1}\), Figure 1), which makes the ortho C–H functionalization preferred, in good agreement with the experimental chemoselectivity. In contrast to bulky phosphine ligands, the ligand bipy-6-OH does not favor C–N coupling route to give the Buchwald–Hartwig amination product.

As commented below, the C–N coupling route to give the Buchwald–Hartwig amination product was also calculated. The deprotonation of the aniline in complex 8, is facile and the amido version of complex 8 is found 0.6 kcal mol\(^{-1}\) below the neutral form, pointing out the existence of amino–amido equilibrium in the presence of carbonate in the reaction medium (Figure S93 in the Supporting Information). The aryl-amido reductive elimination barrier is 14.1 kcal mol\(^{-1}\), as shown in Figure 1. This value is 2 kcal mol\(^{-1}\) higher than the barrier for the C–H ortho cleavage in the aniline (12.1 kcal mol\(^{-1}\), Figure 1), which makes the ortho C–H functionalization preferred, in good agreement with the experimental chemoselectivity. In contrast to bulky phosphine ligands, the ligand bipy-6-OH does not favor C–N coupling route to give the Buchwald–Hartwig amination product.
the reductive elimination step, which, eventually, is an advantage for chemoselectivity (cf. eqs 1 and 2). Using this enlarged model, the barrier for the CH ortho activation is found to be 2.0 kcal mol⁻¹ below that of the C–N coupling.

In conclusion, we have shown that unprotected anilines can be selectively arylated in the ortho position using the Pd/bipy-6-OH catalyst system. The cooperating role of bipy-6-OH in the ortho activation is found to be 2.0 kcal mol⁻¹ below that of the C–N coupling.

ASSOCIATED CONTENT

Supporting Information (PDF). The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.2c05206.

Experimental details, characterization, kinetic and X-ray structure determination data, and selected spectra (PDF)

Computational details, extended description of the computational results, and Cartesian coordinates and crystallographic data for complex 7 (CIF)

AUTHOR INFORMATION

Corresponding Authors
Ana C. Albéniz – IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain; orcid.org/0000-0002-4134-1333; Email: albeniz@uv.es
Agustí Lledós – Departament de Química, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; orcid.org/0000-0001-7909-422X; Email: agusti.lledos@uab.cat

AUTHORS

Cintya Pinilla – IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain; orcid.org/0000-0001-7091-6442
Vanessa Salamanca – IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain; orcid.org/0000-0001-6470-3934

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.2c05206

AUTHOR CONTRIBUTIONS

All authors have given approval to the final version of the manuscript.

NOTES

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the financial support of the Spanish MICINN (PID2019-111406GB-I00 and PID-2020-116861GB-I00) and the Junta de Castilla y León-FEDER (VA224P20 and VA087-18 fellowship to C.P.). This project has been carried out using CSUC high-performance computing resources.

ABBREVIATIONS

CMD, concerted metatation–deprotonation

REFERENCES

(1) (a) Tischler, M. O.; Töth, M. B.; Novák, Z. Mild Palladium Catalyzed Ortho C–H Bond Functionalizations of Aniline Derivatives. Chem. Rec. 2017, 17, 184–199. (b) Leitch, J. A.; Frost, C. G. Regioselective Transition-Metal-Catalyzed C–H Functionalization of Anilines. Synth. 2018, 50, 2693–2706.

(2) Boele, M. D. K.; Van Strijdonck, G. P. F.; De Vries, A. H. M.; Kamer, P. C. J.; De Vries, J. G.; Van Leeuwen, P. W. N. M. Selective Pd-Catalyzed Oxidative Coupling of Anilides with Olefins through C–H Bond Activation at Room Temperature. J. Am. Chem. Soc. 2002, 124, 1586–1587.

(c) Mizuta, Y.; Obora, Y.; Shimizu, Y.; Ishii, Y. Para-Selective Aerobic Oxidative C–H Olefination of Aminobenzenes Catalyzed by Palladium/Molybdovanadophosphoric Acid/2,4,6-Tri-methylbenzoic Acid System. ChemCatChem. 2012, 4, 187–191.

(c) Yao, Q. J.; Xie, P. P.; Wu, Y. J.; Feng, Y. L.; Teng, M. Y.; Hong, X.; Shi, B. F. Enantioselective Synthesis of Atropisomeric Anilides via Pd(II)-Catalyzed Asymmetric C–H Olefination. J. Am. Chem. Soc. 2020, 142, 18266–18276.

(3) Nakasomboon, K.; Poater, J.; Bickelhaupt, F. M.; Fernández-Ibáñez, M. A. Para-Selective C–H Olefination of Aniline Derivatives via Pd/SO-Ligand Catalysis. J. Am. Chem. Soc. 2019, 141, 6719–6725.

(4) Direct arylation using ArX: (a) Daugulis, O.; Zaitsev, V. G. Anilide Orto-Arylation Using by Using C–H Activation Methodology. Angew. Chem., Int. Ed. 2005, 44, 4046–4048. (b) Scarrowb, C. C.; McDonald, R. I.; Hartmann, C.; Sazama, G. T.; Bergant, A.; Stahl, S. S. Steric Modulation of Chiral Biaryl Diamines via Pd-Catalyzed Directed C–H Arylation. J. Org. Chem. 2009, 74, 2613–2615. (c) Wan, C.; Zhao, J.; Xu, M.; Huang, J. Palladium-Catalyzed C(sp²)–H Arylation Using Formamide as a Transformable Directing Group. J. Org. Chem. 2014, 79, 4751–4756. (d) Kwak, S. H.; Guia, N.; Daugulis, O. Synthesis of Unsymmetrical 2,6-Diarylanilines by Palladium-Catalyzed C–H Bond Functionalization Methodology. J. Org. Chem. 2018, 83, 5844–5850. (e) Lichte, D.; Pirkh, N.; Heinrich, G.; Dutta, S.; Goebel, J. F.; Koley, D.; Goossen, L. J. Palladium-Catalyzed para-C–H Arylation of Anilines with Aromatic Halides. Angew. Chem., Int. Ed. 2022, DOI: 10.1002/anie.202210009.

(5) Arylation using diarylodonium salts: (a) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. Oxidative C–H Activation/C–C Bond Forming Reactions: Synthetic Scope and Mechanistic Insights. J. Am.
Beneficial Effect of an a-Priori Interfering Solvent in C–H Activation.

Org. Chem. Front. 2021, 8, 1941–1951.

(19) Rieck, H.; Dunkel, R.; Elbe, H. L.; Wachendorff-Neumann, U.; Mauleer-Machnik, A.; Kuck, K. H. Microbiocidal Agents on the Basis of Biphenyldiazimide Derivatives. US 7186862 B2, 2007.

(20) (a) Dhanak, D.; Knight, S. D.; Moore, M. L.; Newlander, K. A. Methods and Compositions. WO 2006/005063 A2, 2006. (b) Schmidt, A. W.; Reddy, K. R.; Knölker, H. J. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev. 2012, 112, 3193–3328. (c) Suzuki, C.; Hirano, K.; Satoh, T.; Miura, M. Direct Synthesis of N-H Carbazoles via Iridium(III)-catalyzed Intramolecular C–H Amination. Org. Lett. 2015, 17, 1597–1600.

(21) Braun, H. J.; Chassot, L. Oxidizing Hair Coloring Agents Containing 2,5-Diamino-1-phenylbenzene Derivatives and Novel 2,5-Diamino-1-phenylbenzene Derivatives. US 650213 B1, 2002.

(22) Sparta, M.; Riplinger, C.; Neese, F. Mechanism of Olefin Asymmetric Hydrogenation Catalyzed by Iridium Phosphino-Oxazoline: A Pair Natural Orbital Coupled Cluster Study. J. Chem. Theory Comput. 2014, 10, 1099–1108.

(23) Cusumano, A. Q.; Stoltz, B. M.; Goddard, W. A., III Reaction Mechanism, Origins of Enantioselectivity, and Reactivity. J. Am. Chem. Soc. 2020, 142, 13917–13933.

(24) Other alternative such as a Pd(II)/Pd(IV) mechanism where the C–H activation occurs first on a Pd(II) complex followed by an oxidative addition of ArX can be thought of. This route is less favorable because the aryl halide is not a strong enough oxidant to oxidize a Pd(II) aryl complex to a Pd(IV) derivative. DFT calculations on this step shows that the energy barrier for this step would be about 46 kcal mol$^{-1}$. Experimentally, when either complex 7 or a benzylamine palladacycle was heated with p-CF$_3$C$_6$H$_4$I in DMA at 130 °C, we did not observe any C–C cross-coupling product (see sections 1.4.5 and 4.5 in the Supporting Information for further details).

(25) The coordination abilities of PhNH$_2$ and PhNMe$_2$ are very different, but the k*-N coordination is not responsible for directing the position of the C–H cleavage. We rated the coordination ability of the N-substituted anilines and aniline by measuring the equilibrium constants for their coordination to the palladium complex $[N$Bu$_3P]_2[Pd(μ-Br)(C$_6H_4$I)$_2$] (see section 1.4.4 in the Supporting Information). Although significant differences were found (K$_{eq}$ of PhNH$_2$ > PhNMe$_2$ > PhNH$_2$P > PhNMe$_2$P, no correlation between K$_{eq}$ and the selectivity was observed for any of the anilines (Figure S7 in the Supporting Information).