On the Product of Real Spectral Triples

F.J. Vanhecke

Instituto de Física
UFRJ, Ilha do Fundão, Rio de Janeiro, Brasil.

Abstract

The product of two real spectral triples \(\{A_1, \mathcal{H}_1, D_1, J_1, \gamma_1 \} \) and \(\{A_2, \mathcal{H}_2, D_2, J_2(, \gamma_2) \} \), the first of which is necessarily even, was defined by A.Connes [3] as \(\{A, \mathcal{H}, D, J(, \gamma) \} \) given by \(A = A_1 \otimes A_2, \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2, D = D_1 \otimes \text{Id}_2 + \gamma_1 \otimes D_2, J = J_1 \otimes J_2 \) and, in the even-even case, by \(\gamma = \gamma_1 \otimes \gamma_2 \). Generically it is assumed that the real structure \(J \) obeys the relations \(J^2 = \epsilon \text{Id}, JD = \epsilon ' DJ, J\gamma = \epsilon ^" \gamma J \), where the \(\epsilon \)-sign table depends on the dimension \(n \) modulo 8 of the spectral triple. If both spectral triples obey Connes’ \(\epsilon \)-sign table, it is seen that their product, defined in the straightforward way above, does not necessarily obey this \(\epsilon \)-sign table. In this note, we propose an alternative definition of the product real structure such that the \(\epsilon \)-sign table is also satisfied by the product.

PACS numbers : 11.15.-q, 02.40.-k;
Keywords : Noncommutative Geometry, Real Spectral Triples

\(^1\text{E-mail: vanhecke@if.ufrj.br}\)
1 Introduction

A real spectral triple \(\mathcal{T} = \{ \mathcal{A}, \mathcal{H}, \mathcal{D}, \mathcal{J} (\gamma) \} \), is given by a pre-\(C^* \)-algebra \(\mathcal{A} \) with a faithful \(*\)-representation by bounded operators \(\mathcal{B}(\mathcal{H}) \) on a Hilbert space \(\mathcal{H} : \pi : \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H}) : a \rightarrow \pi(a) \). A self-adjoint Dirac operator \(\mathcal{D} \) with compact resolvent acts on this Hilbert space such that \([\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})\). The dimension of the spectral triple is given by the integer \(n \) such that the operator \(|\mathcal{D}|^{-n}\) defined on \(\mathcal{H} \setminus \text{Ker}(\mathcal{D}) \) is an infinitesimal of first order. This means that the eigenvalues \(\mu_\alpha \) of the compact positive operator \(|\mathcal{D}|^{-n}\) arranged in decreasing order \(\mu_0 \geq \mu_1 \geq \cdots \) behave asymptotically as \(\mu_\alpha = O(\alpha^{-1}) \) and \(\sigma_n := \sum_{\alpha < N} \mu_\alpha = O(\log N) \), where the sum includes the multiplicities of the eigenvalues. The coefficient of \(\log N \) is, by definition \([1],[5]\), the noncommutative integral of \(|\mathcal{D}|^{-n}\) written as \(\int |\mathcal{D}|^{-n} \). The real structure \(\mathcal{J} \) is an antilinear isometry in \(\mathcal{H} \). It is further assumed that \(\pi^\circ(a) = \mathcal{J}\pi(a)\mathcal{J}^{-1} \) provides a representation of the opposite algebra \(\mathcal{A}^\circ \) commuting with \(\pi(b) \), \(\forall b \in \mathcal{A} \), so that \(\mathcal{H} \) is endowed with an \(\mathcal{A} \)-bimodule structure. The Dirac operator is then assumed to be a first-order operator on this bimodule which entails that \([\mathcal{D}, \pi(a)], \pi^\circ(b) = 0 \). This real structure should further obey the relations :

\[
\mathcal{J}^2 = \epsilon \text{Id} \ ; \ \mathcal{J}\mathcal{D} = \epsilon'\mathcal{D}\mathcal{J} \ ,
\]

(1.1)

where the \textit{epsilon}s are sign factors \(\pm 1 \). Finally, when the dimension is even, there is a grading operator \(\gamma \), i.e. \(\gamma^\dagger = \gamma \) and \(\gamma^2 = \text{Id} \), such that the representation \(\pi(a) \) of \(a \in \mathcal{A} \) is even, \(\pi(a)\gamma - \gamma\pi(a) = 0 \), and the Dirac operator is odd, \(\mathcal{D}\gamma + \gamma\mathcal{D} = 0 \). The real structure \(\mathcal{J} \) and the grading \(\gamma \) obey also a relation of the type :

\[
\mathcal{J}\gamma = \epsilon''\gamma\mathcal{J} \ ,
\]

(1.2)

where again \(\epsilon'' \) is a sign factor \(\pm 1 \).

In the typical commutative example, the algebra \(\mathcal{A} \) consists of the smooth functions on a compact Riemannian spin-manifold \(M \) and the Hilbert space \(\mathcal{H} \) is made of the square integrable spinors \(\Psi(x) \) on \(M \). The representation of \(\mathcal{A} \) on \(\mathcal{H} \) is just the multiplication of \(\Psi(x) \) by functions \(f(x) \). \(\mathcal{D} \) is then the usual (massless!) Dirac operator \(\mathcal{D} = -i\gamma^\mu\nabla_\mu \), where the hermitian \(\gamma \)-matrices obey \(\gamma^\mu\gamma^\nu + \gamma^\nu\gamma^\mu = +2\delta^\mu\nu \) and where \(\nabla_\mu \) is the covariant derivative acting on spinor fields. The dimension \(n \) is then the usual dimension of the manifold \(M \) and \(\int |\mathcal{D}|^{-n} \) is proportionnal to the volume of \(M \). The
real structure J generalizes the (Euclidean!) charge conjugation operation $C\Psi(x) = C\Psi^*(x)$, where $C\gamma^\mu C^{-1} = -\gamma^\mu$. When the dimension of M is even, $n = 2k$, the grading is given by the chirality matrix $\gamma_{2k+1} = (i)^k \gamma^1 \gamma^2 \cdots \gamma^{2k}$, anti-commuting with all γ^μ matrices and with the Dirac operator D.

Connes [3] showed that the *epsilons*, defined in [1.1], may be determined by the dimension n, modulo 8, due to Bott periodicity of the real Clifford algebras. They are given in table 1.

In applications to particle models, one usually takes the product of a commutative spectral triple as above, where M is a configuration space or a Riemannian (Wick rotated) space-time, with a 0-dimensional genuinely non-commutative spectral triple describing the internal structure of the particles. Since nowadays almost any dimension is on the model-building market, it seems useful to examine in general the definition of the product of two real spectral triples $T_1 = \{A_1, H_1, J_1, \gamma_1\}$ and $T_2 = \{A_2, H_2, D_2, J_2(\gamma)\}$. With the first necessarily even, it is defined [3] as $T = \{A, H, D, J(\gamma)\}$ where $A = A_1 \otimes A_2, H = H_1 \otimes H_2, J = J_1 \otimes J_2$ and $D = D_1 \otimes \text{Id}_2 + \gamma_1 \otimes D_2$.

This implies that $D^2 = (D_1)^2 \otimes \text{Id}_2 + \text{Id}_1 \otimes (D_2)^2$ and the dimensions add: $n = n_1 + n_2$. When T_2 is also even, the total grading is given by $\gamma = \gamma_1 \otimes \gamma_2$.

In order that this recipe should work, with T obeying the ϵ-sign table, the following conditions should be met:

$$
J^2 = \epsilon \text{Id} , \quad \text{with } \epsilon = \epsilon_1 \epsilon_2 , \quad (1.3)
$$

$$
JD = \epsilon' DJ , \quad \text{with } \epsilon' = \epsilon'_1 \epsilon'_2 , \quad (1.4)
$$

and, when both are even,

$$
J\gamma = \epsilon'' \gamma J , \quad \text{with } \epsilon'' = \epsilon''_1 \epsilon''_2 . \quad (1.5)
$$
A prompt examination of the ε-sign table shows that, in the even-even case, condition (1.5) is satisfied\(^2\). However it is readily seen from table 2 and 3 that at least one of the conditions (1.3), (1.4) is violated, in the even-even case, when \(n_1 \in \{6, 2\}\) and, in the odd case, when the total dimension \(n \in \{5, 1\}\). In the even-even case, we could transform the Dirac operator \(D\) with the unitary operator \(U = \frac{1}{2} (\Id_1 \otimes \Id_2 + \gamma_1 \otimes \Id_2 + \Id_1 \otimes \gamma_2 - \gamma_1 \otimes \gamma_2)\), so that \(D' = U D U^\dagger = D_1 \otimes \gamma_2 + \Id_1 \otimes D_2\). The condition (1.4) is then obeyed in cases \(n_1 \in \{6, 2\}\) and \(n_2 \in \{4, 0\}\) with \(J = J_1 \otimes J_2\) but, when \(n_1 \in \{6, 2\}\) and \(n_2 \in \{6, 2\}\), it is not. In the even-odd case there is even no \(\gamma_2\) available. Also a modification of the individual Dirac operators with the unitary operator \(V = (\Id_1 + i \gamma_1) / \sqrt{2}\), changing \(D_1\) into \(i \gamma_1 D_1\) will not help much in matching condition (1.3). It appears thus that it is \(J\) that has to be modified.

2 The modified product real structure

The clue in changing the real structure of the even spectral triple lies in the property of \(\tilde{J}_1 = J_1 \gamma_1\) which is such that

\[(\tilde{J}_1)^2 = \tilde{\epsilon}_1 \Id_1 \quad (2.1)\]

where \(\tilde{\epsilon}_1 = \epsilon_1 \epsilon_1''\) remains unchanged for \(n_1 \in \{4, 0\}\) but changes sign for \(n_1 \in \{6, 2\}\). Furthermore

\[\tilde{J}_1 D_1 = \tilde{\epsilon}_1' D_1 , \quad (2.2)\]

with \(\tilde{\epsilon}_1' = -\epsilon_1'\). Finally, since \(\epsilon_1''\) does not change, condition (1.3) remains satisfied. The even-odd cases with \(n \in \{5, 1\}\) are readily cured defining the product real structure as \(J = \tilde{J}_1 \otimes J_2 = J_1 \gamma_1 \otimes J_2\) as table 4 shows. In the even-even case, when \(n_1 \in \{6, 2\}\), the \(\epsilon_1'\) should not change sign since, for all even \(n\), \(\epsilon' = \epsilon_1' = +1\). To recover the original + sign we multiply by \(\gamma = \gamma_1 \otimes \gamma_2\) so that the real structure of the product reads \(J = (J_1 \gamma_1 \otimes J_2) (\gamma_1 \otimes \gamma_2) = J_1 \otimes J_2 \gamma_2\). The \(n_1 \in \{6, 2\}\) cases will then, with this real structure, obey Connes’ ε-sign table as the table 5 shows.

\(^2\)There is a more sophisticated proof \([4]\) available, invoking the image under \(\pi_D\) of the Hochschild \(n_k\)-cycles, instead of the mere inspection of the ε-sign table.
3 Conclusions

In this short note, we have redefined, by elementary algebraic techniques, the real structure of the product of two real spectral triples such that Connes’ ϵ-sign table remains valid for the product if it holds for each factor. This is achieved taking as real structure \mathcal{J} given by:

- $\mathcal{J} = \mathcal{J}_1 \gamma_1 \otimes \mathcal{J}_2$ when $n_1 + n_2 = n \in \{5, 1\}$,
- $\mathcal{J} = \mathcal{J}_1 \otimes \mathcal{J}_2 \gamma_2$ when $n_1 \in \{6, 2\}$ and n_2 even
- $\mathcal{J} = \mathcal{J}_1 \otimes \mathcal{J}_2$ in all other cases.

Acknowledgements
We thank prof. Joseph C. Várilly of UCR, San José, Costa Rica, for discussions concerning the ϵ-sign table before and during the X^{th} J.A. Swieca Summer School, section: Particles and Fields, Águas de Lindóia, February, 1999.

References

[1] Connes A., *Noncommutative Geometry*, Acad.Press, London, 1994.

[2] Connes A., *Noncommutative Geometry and Reality*, J.Math.Phys.,**36**, 6194, 1995.

[3] Connes A., *Gravity coupled with matter and the foundation of non commutative geometry*, Comm.Math.Phys.,**182**, 155, 1996.

[4] Krajewski T., *Géométrie non commutative et interactions fondamentales*, Thesis, CPT, Marseille, 1998

[5] Várilly J.C., ”An Introduction to noncommutative Geometry”, Monsaraz lectures, Lisbon, 1997, [physics/9709043](http://arxiv.org/abs/physics/9709043).
Table 1: The ϵ-sign table

n	0	1	2	3	4	5	6	7
ϵ	+	+	-	-	-	+	+	
ϵ'	+	-	+	+	+	-	+	+
ϵ''	+	*	-	*	*	-	*	

Table 2: The even-even case

n_1	n_2	n	ϵ_1	ϵ_2	$\epsilon_1 \epsilon_2$	ϵ	ϵ'_1	ϵ'_2	ϵ''_1	ϵ''_2	ϵ'	$?_1$	$?_2$
6	6	4	+	+	+	-	N	+	-	+	N	+	+
6	4	2	+	-	-	-	Y	+	-	+	N	+	+
6	2	0	+	-	-	+	N	+	-	+	N	+	+
6	0	6	+	+	+	+	Y	+	-	+	N	+	+
4	6	2	-	+	-	-	Y	+	+	+	Y	+	+
4	4	0	-	-	+	+	Y	+	+	+	Y	+	+
4	2	6	-	-	+	+	+	+	+	+	Y	+	+
4	0	4	-	+	-	-	Y	+	+	+	Y	+	+
2	6	0	-	+	-	+	N	+	-	+	N	+	+
2	4	6	-	+	+	-	+	-	+	+	N	+	+
2	2	4	-	-	+	-	N	+	-	+	N	+	+
2	0	2	-	+	-	-	Y	+	-	+	N	+	+
0	6	6	+	+	+	+	Y	+	+	+	Y	+	+
0	4	4	+	-	-	-	Y	+	+	+	Y	+	+
0	2	2	+	-	-	Y	+	+	+	+	Y	+	+
0	0	0	+	+	+	+	Y	+	+	+	Y	+	+
Table 3: The even-odd case

n_1	n_2	n	ϵ_1	ϵ_2	$\epsilon_1 \epsilon_2$	ϵ	ϵ_1'	ϵ_1''	ϵ_2'	$\epsilon_1'' \epsilon_2'$	ϵ'	ϵ' ?
6	7	5	+	+	+	-	N	+	-	+	-	N
6	5	3	+	-	-	-	Y	+	-	-	+	+ Y
6	3	1	+	-	-	+	N	+	-	+	-	N
6	1	7	+	+	+	+	Y	+	-	+	+	Y
4	7	3	-	+	-	-	Y	+	+	+	-	Y
4	5	1	-	-	+	+	Y	+	-	+	-	Y
4	3	7	-	-	+	+	Y	+	+	-	+	Y
4	1	5	-	+	-	-	Y	+	-	+	-	N
2	7	1	-	+	-	+	N	+	-	-	-	N
2	5	7	-	-	+	+	Y	+	-	+	+	Y
2	3	5	-	-	+	-	N	+	-	+	-	Y
2	1	3	-	+	-	-	Y	-	-	+	+	Y
0	7	7	+	+	+	+	Y	+	+	+	+	Y
0	5	5	+	-	-	+	Y	+	-	-	N	N
0	3	3	+	-	-	Y	+	+	+	+	+	Y
0	1	1	+	+	+	+	Y	+	-	-	-	N

Table 4: The cured even-odd case

n_1	n_2	n	$\tilde{\epsilon}_1$	$\tilde{\epsilon}_2$	$\tilde{\epsilon}_1 \tilde{\epsilon}_2$	ϵ	$\tilde{\epsilon}_1'$	$\tilde{\epsilon}_1''$	ϵ_2'	$\epsilon_1'' \epsilon_2'$	ϵ'	ϵ' ?
6	7	5	-	+	-	Y	-	+	-	-	-	Y
6	3	1	-	-	+	+	-	+	-	-	-	Y
4	5	1	-	-	+	+	Y	-	+	+	-	Y
4	1	5	-	+	-	Y	-	+	-	+	-	Y
2	7	1	+	+	+	Y	-	+	-	-	-	Y
2	3	5	+	-	-	Y	-	+	-	-	-	Y
0	5	5	+	-	-	Y	-	+	-	-	-	Y
0	1	1	+	+	+	Y	+	-	-	-	-	Y
Table 5: The cured even-even cases

\(n_1\)	\(n_2\)	\(n\)	\(\epsilon_1\)	\(\epsilon_2\)	\(\tilde{\epsilon}_1\)	\(\tilde{\epsilon}_2\)	\(\epsilon\)	\(\epsilon'_1\)	\(\epsilon''_1\)	\(\epsilon'_2\)	\(\epsilon''_2\)	\(\epsilon'\)	\(\epsilon''\)
6	6	4	+	-	-	-	Y	+	-	-	+	+	Y
6	4	2	+	-	-	-	Y	+	-	-	+	+	Y
6	2	0	+	+	+	+	Y	+	-	-	+	+	Y
6	0	6	+	+	+	+	Y	+	-	-	+	+	Y
2	6	0	-	-	+	+	Y	+	-	-	+	+	Y
2	4	6	-	-	+	+	Y	+	-	-	+	+	Y
2	2	4	-	+	-	-	Y	+	-	-	+	+	Y
2	0	2	-	+	-	-	Y	+	-	-	+	+	Y