Doppler tomography of Cataclysmic Variables

L. MORALES-RUEDA

University of Southampton, UK

Abstract. The study of cataclysmic variables (CVs), and in particular of the evolution of their accretion discs throughout their different brightness states, has benefited largely from the use of indirect imaging techniques. I report on the latest results obtained from Doppler tomography of CVs concentrating mainly on results published since the 2000 Astrotomography meeting in Brussels. Emphasis is given to the spiral structures found in the accretion discs of some CVs, to the evolution of these structures throughout quiescence and outburst, and to our search for them in more systems.

Key words: cataclysmic variables - techniques: spectroscopic

1. Introduction

Cataclysmic Variables (CVs) are close interacting binaries that either a main sequence star or a slightly evolved star as the donor component. The companion or donor transfers material to the more massive WD. Due to conservation of angular momentum, and if the magnetic field of the WD is not too strong, the mass being transferred forms an accretion disc around the WD. If the magnetic field of the WD is strong (a few MGs) there are two possible scenarios that can take place: a) the material latches to the magnetic field lines before a disc can be formed and accretion onto the WD occurs along the field lines in which case we have a CV called a polar (Schwope, this volume), or b) the disc does form but it gets disrupted in its inner regions by the magnetic field lines in which case we have a CV called an intermediate polar.

The study of CVs started more than a century ago and many monographs have been dedicated to their study, in particular the book by Warner (1995) gives a very complete description of these systems. The components of a CV cannot be resolved directly as their angular size from Earth is only a few tens of micro-arcseconds, thus the only way to image CVs is by using indirect imaging techniques. Several indirect imaging techniques have been used for their study throughout the years, e.g. Eclipse Mapping, Physical Parameter Eclipse Mapping, Stokes Imaging, Roche Tomography, Doppler Tomography etc. Doppler Tomography (Marsh & Horne 1988, Marsh 2001, Steeghs this volume) uses a series of spectra covering the orbit of the binary and produces 2-dimensional maps of its velocity field. It is then possible to transform this velocity map into a space map by making the assumption that the accretion flow moves in a Keplerian fashion. We know from observations that this is not always the case (e.g. Marsh & Horne 1990) so it is usually preferable to study the velocity maps themselves.

2. Recent results from Doppler tomography

The presence of a disc or ring of gas around the compact object in a CV is usually obvious just by looking at high time resolution trailed spectra covering most of an orbit. Emission lines in CVs are generally more complicated than that, showing many components that arise in different regions of the binary and that move at different velocities. Thus it is usually not so obvious to assign these components to emission regions in the CV. It is in these cases when Doppler tomography plays an important role.

Thanks to Doppler tomography we have been able to identify the presence of spiral structure in the accretion discs of CVs (e.g. IP Peg in outburst: Steeghs, Harlaftis & Horne 1997; Harlaftis et al. 1999; Morales-Rueda, Marsh & Billington 2000, U Gem in outburst: Groot 2001) some ten years after it had been predicted (Sawada, Matsuda & Hachisu 1986). We have also been able to map the accretion stream in magnetic CVs (Schwope, Mantel & Horne 1997, and other examples in this volume) and to map the irradiation of the donor star (Morales-Rueda et al. 2000, Harlaftis 1999, Unda-Sanzana et al. in press). Doppler tomography does not always solve the problem though, in some cases we still do not know what the origin of some components is, i.e. more cases of low velocity emission near the centre of mass of the binary are appearing in the literature and in most cases we do not have an
2.1. Doppler tomography of discs: spiral structure

Since their observational discovery in 1996 astronomers have found spiral structure in the accretion discs of six CVs. IP Peg, U Gem and WZ Sge are the best studied systems of the six with spiral structure having been detected in several different sets of data. In the case of WZ Sge the spectra were all taken during the same high state (as this system only outbursts every 20-30 years) whereas for IP Peg the structure has been seen in three different outbursts and for U Gem in two. For IP Peg and U Gem some authors have also found indication of spiral structure during quiescence (IP Peg: Neustroev et al. 2002, U Gem: Unda-Sanzana et al., in press, see Fig. [1]). The other three CVs that show spiral structure are SS Cyg, EX Dra and V347 Pup, all, apart from V347 Pup which is a nova-like, are dwarf novae.

The presence of spiral structure in the accretion disc is of great importance as spiral shocks have been called upon as a possible way to get rid of angular momentum in the accretion disc. Magnetorotational instabilities (Hawley & Balbus 1995) are the widely accepted way to explain the effective viscosity in outburst discs but there still is some debate regarding angular momentum transport in quiescent discs. Hydrodynamic tidal stresses (Sawada, Matsuda & Hachisu 1986) that result in spiral shocks could also contribute to the viscosity together with magnetorotational instabilities.

More recently, Smak (2001) and Ogilvie (2002) have interpreted these spiral structures in the accretion disc as vertical enhancements of the disc being irradiated by the white dwarf. The predictions of this tidal model are viscosity-dependent, therefore Smak’s and Ogilvie’s model has the potential to measure the viscosity in discs.

Shocks and vertical enhancements would evolve in different ways when the disc cools down and heats up during quiescence and outburst respectively. In the case of shocks, as the Mach numbers in the disc increase during quiescence, we would expect the opening angle of the spirals to decrease, producing very wound up spirals as opposed to the large opening angle spirals seen during outburst. According to Ogilvie (2002), in the case of vertical structure caused by tidal interactions with the donor star, the cooling down of the disc only contributes to decreasing the luminosity of the central regions of the CV and the irradiation of the tidal distortions. The spiral structure will appear fainter but it would not move its position in the disc. During quiescence accretion discs are also known to shrink (e.g. Wood et al. 1989) thus if the radius of the disc becomes smaller than the tidal radius, the vertical structure will not form.

At present there seem to be arguments in favour and against both explanations. For example, in favour of the shocks we have Baptista’s (this volume) signatures of sub-Keplerian velocity in the disc in eclipse maps of IP Peg during outburst. We would expect the gas to slow down as it reaches the shocks, which is what these sub-Keplerian velocities seem to be indicating. This is not to be confused with the presence of spiral structure (Neustroev et al. 2002), and maps of magnetic systems that allowed the authors to constrain the accretion geometry (Schwope 2001).
sub-Keplerian velocities seen in the outer discs of some CVs which can be either produced by the collision of the accretion stream with the disc, or intrinsic to the outer disc, e.g. Marsh 1988. On the other hand, Neustroev et al. (2002) and Unda-Sanzana et al. (in press) find indications of the presence of spiral structure in the discs of IP Peg and U Gem respectively during quiescence (see Fig.1). If confirmed, this would indicate that the spiral structure is not a wave or a shock that evolves to smaller opening angles when the disc cools down, but the result of tidally thickened sectors of the disc beingirradiated by the white dwarf, boundary layer and/or inner disc. During quiescence the luminosity of the central regions of the disc will be smaller and the spiral pattern will be fainter than during outburst.

Currently there are two data sets known to the author that cover a large part of the outburst of two CVs known to show spiral structure in their discs. The first one consists of 5 nights taken at the INT and several at the MMT during the April/May 2001 outburst of U Gem (Steeghs et al. in preparation). The second one corresponds to the 2001 outburst of WZ Sge and is discussed by Steeghs (this volume). From these two data sets we can see how the spiral structure changes from night to night during the outburst. In the case of U Gem the last two nights of data were taken when the system was declining from outburst. The spirals are no case of U Gem the last two nights of data were taken when the result of tidally thickened sectors of the disc beingirradiated by the white dwarf, boundary layer and/or inner disc. During quiescence the luminosity of the central regions of the disc will be smaller and the spiral pattern will be fainter than during outburst.

During quiescence the luminosity of the central regions of the disc will be smaller and the spiral pattern will be fainter than during outburst.

We envisage that the only way to study in detail these state transitions and therefore to discern between the two models proposed to explain the spirals, is by making use of the target of opportunity and monitoring capabilities of a robotic telescope. We believe that the 2 m Liverpool telescope + spectrograph (Morales-Rueda et al., this volume) will be the best combination to obtain the data that will allow us to answer these questions.

3. Conclusions

Doppler tomography has proved to be a very powerful technique to study CVs. Recent results include the detection of the donor star in WZ Sge during outburst, the detection of spiral structure in WZ Sge during outburst and in IP Peg and U Gem during quiescence.

We believe that Doppler tomography will be the key to understanding the evolution of spiral structure in accretion discs during the accretion state transitions and therefore will help us distinguish between the models proposed for the formation of this structure with important consequences regarding the viscosity in outburst discs.

Acknowledgements. The author would like to thank E. Unda-Sanzana for providing Fig. 1.

References

Baba, H. et al.: 2002, PASJ 54, L7

Bianchini, A., Skidmore, W., Bailey, J.M., Howell, S., Cantera, R.: 2001, A&A 367, 588

Boiffin, H.M.J., Steeghs, D.: 2002, ASP Conf. Ser. 261, 367

Díaz, M.P., Ribeiro, F.M.A.: 2003, AJ 125, 3539

Groot, P.J.: 2001, ApJ 551, 89

Harlaftis, E.: 1999, A&A 346, L73

Harlaftis, E., Steeghs, D., Horne, K., Martín, E., Magazzù, A.: 1999, MNRAS 306, 348

Hawley, J.F., Balbus, S.A.: 1995, PASA 12, 159

Hellier, C., Wynn, G.A., Buckley, D.A.H.: 2002, MNRAS 333, 84

Howell, S.B., Adamson, A., Steeghs, D.: 2003, A&A 399, 219

Kuulkers, E., Knigge, C., Steeghs, D., Wheatley, P.J., Long, K.S.: 2002, ASP Conf. Ser. 261, 443

Marsh, T.R., Horne, K.: 1988, MNRAS 235, 269

Marsh, T.R., Horne, K.: 1990, ApJ 349, 593

Marsh, T.R.: 2001, Lecture Notes in Physics 573, 1

Mason, E., Howell, S.B.: 2002, ASP Conf. Ser. 261, 503

Morales-Rueda, L., Marsh, T.R., Billington, I.: 2000, MNRAS 313, 454

Morales-Rueda, L., Marsh, T.R., North, R.C.: 2001, Lecture Notes in Physics 573, 27

Morales-Rueda, L., Marsh, T.R., Steeghs, D., Unda-Sanzana, E., Wood, J.H., North, R.C.: 2003, A&A 405, 249

Nelemans, G., Steeghs, D., Groot, P.J.: 2001, MNRAS 326, 621

Neustroev, V.V.: 2002, A&A 382, 974

Neustroev, V.V., Borisov, N.V., Barwig, H., Bobinger, A., Mantel, K.H., Simic, D., Wolf, S.: 2002, A&A 393, 239

North, R.C., Marsh, T.R., Moran, C.K.J., Kolb, U., Smith, R.C., Stehle, R.: 2001, Lecture Notes in Physics 573, 33

North, R.C., Marsh, T.R., Kolb, U., Dhillion, V.S., Moran, C.K.J.: 2002, MNRAS 337, 1215

Ogilvie, G.I.: 2002, MNRAS 330, 934

Potter, S., Romero-Colmenero, E., Buckley, D.A.H., Cropper, M., Hakala, P.: 2001, Lecture Notes in Physics 573, 244

Rolfe, D.J., Abbott, T.M.C., Haswell, C.A.: 2001, Lecture Notes in Physics 573, 39

Rolfe, D.J., Abbott, T.M.C., Haswell, C.A.: 2002, ASP Conf. Ser. 261, 537

Romero-Colmenero, E., Potter, S.B., Buckley, D.A.H., Barret, P.E., Vrielmann, S.: 2003, MNRAS 339, 685

Salvi, N., Ramsay, G., Cropper, M., Buckley, D.A.H., Stobie, R.S.: 2002, MNRAS 331, 488

Sawada, E., Matsuda, T., Hachisu, I.: 1986, MNRAS 219, 75

Schmidtobreick, L., Tappert, C., Saviane, I.: 2003, MNRAS 342, 145

Schwarz, R., Hedelt, P., Rau, A., Stauda, A., Schwope, A.D.: 2002, ASP Conf. Ser. 261, 167

Schwwope, A.: 2001, Lecture Notes in Physics 573, 127

Schwwope, A.D., Mantel, K.H., Horne, K.: 1997, A&A 319, 894

Smak, J.I.: 2001, AcA 51, 295

Stauda, A., Schwwope, A.D., Schwarz, R.: 2001, A&A 374, 588

Steeghs, D., Harlaftis, E.T., Horne, K.: 1997, MNRAS 290, L28

Steeghs, D., Marsh T.R., Knigge, C., Maxted, P.F.L., Kuulkers, E., Skidmore, W.: 2001, ApJ 562, L145

Tappert, C., Menneickent, R.E., Arenas, J., Matsumoto, K., Hanuschik, R.W.: 2003, A&A 408, 651

Unda-Sanzana, E., Marsh, T.R.: 2002, ASP Conf. Ser. 261, 563

Unda-Sanzana, E., Marsh, T.R., Morales-Rueda, L.: MNRAS in press

van der Heyden, K.J., Potter, S.B., Buckley, D.A.H.: 2002, MNRAS 333, 241

Warner, B.: 1995, Cambridge Astrophysics Series 28

Wood J. H. et al.: 1989, MNRAS 239, 809

Wynn, G.: 2001, Lecture Notes in Physics 573, 155
Table 1. List of Cataclysmic Variables for which Doppler tomograms have been obtained. The codes used in the table are the same as those in Marsh (2001). Types include: dwarf novae (DN), old nova (N), nova-like (NL), helium CV (HeCV), intermediate polar (IP), polar (P). States include: quiescence (Q) or outburst (O), superoutburst (SO), standstill (SS), flaring (F), high (H), low (L) and middle (M). The features found in the maps are rings (1), spots (2), the donor star (3), spiral structure (4), the gas stream (5) and low velocity emission (6). The four quadrants of the map are marked from “a” to “d” starting with the upper left quadrant and moving anticlockwise. Note 1: maps obtained on several nights during outburst are presented showing the evolution of the emission sites. Note 2: data obtained in the decline from outburst. Note 3: the gas stream emission does not follow a ballistic trajectory.

Object	Type	State	Resolution km s⁻¹	Line(s)	Features	References
IYUMA	DN	Q	220	Hα, Hβ, HeI λ5876 Å	1, 2a	Rolfe et al. (2001)
”	”	O		Hα	1, 2abc, 31	Rolfe et al. (2002)
WX Cet	DN	Q	206	Hα	2cd, 3	Tappert et al. (2003)
AK Cnc	DN	O	91	Hα	6	Tappert et al. (2003)
AQ Eri	DN	Q	91	Hα	3, 6	Tappert et al. (2003)
VW Hyi	DN	O/Q	50	Hα	1, 3, 5	Tappert et al. (2003)
RZ Leo	DN	Q	274, 206	Hα	2abcd	Tappert et al. (2003)
TU Men	DN	Q	91	Hα	1, 3	Tappert et al. (2003)
HS Vir	DN	Q	114	Hα	2a, 6	Tappert et al. (2003)
IP Peg	DN	Q	125, 73	Hα, Hβ, Hγ, Hδ	1, 2a, 2c, 4?	Neustroev et al. (2002)
FS Aur	DN	O	171	Hβ, Hγ, HeI λ4472 Å	6	Neustroev (2002)
WZ Sge	DN	O	36	Hα	1, 3, 4	Steeghs et al. (2001)
”	”	O	100	HeI λ4686 Å	4?	Baba et al. (2001)
”	”	O	53	HeI λ4686 Å	4	Kuulkers et al. (2002)
”	”	O	?	Pβ, Pγ	2abcd	Howell et al. (2003)
BV Pup	DN	Q	67	Hβ	Hβ: 1, 2a	Bianchini et al. (2001)
EM Cyg	SS	36		Hα	1	North et al. (2001, 2002)
V426 Oph	DN	Q	36	Hα	6	North et al. (2001, 2002)
SS Cyg	DN	Q	36	Hα	3, 6	North et al. (2001, 2002)
AH Her	DN	Q	36	Hα	3, 6	North et al. (2001, 2002)
U Gem	DN	O	30	HeI λ4686 Å	1, 3, 4	Boffin & Steeghs (2002)
”	”	Q	13	HeI λ4686 Å	2a	Unda-Sanzana & Marsh (2002)
”	”	Q	18	HeI λ6678 Å	2a, 3, 6	Unda-Sanzana & Marsh (2002)
OY Car	DN	O	?	Hα	3, 5	Mason & Howell (2002)
EX Hya	IP	-	?	Hα	1, 2ab	Wynn (2001)
V1025 Cen	IP	-	86	Hβ	1, 3, 5	Hellier et al. (2002)
UZ For	P	-	?	HeI λ4686 Å	3, 5	Schwope (2001)
V1309 Ori	P	-	115	Hγ, HeI λ4472 Å	3, 5	Staudt et al. (2001)
”	”	115	HeI λ4686 Å	3, 5	Staudt et al. (2001)	
”	”	84	HeI λ8236 Å	3, 5	Staudt et al. (2001)	
BY Cam	P	-	?	Hβ	6	Schwope (2001)
V1432 Aql	P	-	?	HeI λ4686 Å	6	Schwope (2001)
RXJ1313	P	H	91 - 137	Hα	3	van der Heyden et al. (2002)
”	”	133	Hβ, Hγ, HeI λ4686 Å	3, 5	van der Heyden et al. (2002)	
V834 Cen	P	-	?	HeI λ4686 Å	3, 5	Potter et al. (2001)
AM Her	P	-	80	HeI λ4686 Å	3, 5³	Schwarz et al. (2002)
”	”	50	NaI, CaII	3	Schwarz et al. (2002)	
UW Pic	P	-	93	Hβ, HeI λ4686 Å	3, 5³	Romero-Colmeno et al. (2003)
V895 Cen	P	H	229	Hα	3, 5?	Salvi et al. (2002)
V841 Oph	N	-	82 - 91	Hα, HeI λ6678 Å	1?, 3, 6	Diaz & Ribeiro (2003)
RR Pic	N	-	112	Hα, HeI λ6678 Å	1, 2ac	Schmidtobreck et al. (2003)
GP Com	HeCV	-	56(red), 38(blue)	HeI, HeII	1, 2a, 6	Morales-Rueda et al. (2001, 2003)
AM CVn	HeCV	Q	138	HeI λ4472 Å	1, 2a	Nelemans et al. (2001)