Research Article

A New Method for the Analysis of Bacterial Endotoxins in Ultrapure Paraffin Oil

Dandan Chen
National Institutes for Food and Drug Control, Beijing 100050, China

Correspondence should be addressed to Dandan Chen; chendandan0506@126.com

Received 1 January 2014; Accepted 2 February 2014; Published 9 March 2014

Academic Editor: Yu-Ming Fan

Copyright © 2014 Dandan Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The paper demonstrates the feasibility of the gel-clot method for the analysis of bacterial endotoxins in water extracts of ultrapure paraffin oil which is a water insoluble oily medical device. Because ultrapure paraffin oil is water insoluble oily liquid, the ultrapure paraffin oil (10 mL) was shaken with 10 mL water for 15 minutes at 2000 rpm, the endotoxin present was extracted to the aqueous phase without interference inhibition/enhancement of the product, the recovery of the endotoxin added to the ultrapure paraffin oil was determined. A validation study confirmed that endotoxins present in ultrapure paraffin oil which is water insoluble liquid medical device pass over into the aqueous phase at concentrations of 20, 10, and 5 EU/mL with recoveries of 94.2% to 111%. So the conclusion is that the gel-clot test is suitable for detecting bacterial endotoxins in ultrapure paraffin oil which is a water insoluble oily medical device.

1. Introduction

Ultrapure paraffin oil is used for covering culture solution during artificial fertilization in vitro and micromanipulation of reproduction technique in vitro. The major component of the ultrapure paraffin oil is light paraffin oil. This product has been classified as a class III medical device according to the Chinese Classification Rules of Medical Devices. According to the quality specification of this product the bacterial endotoxin level must be less than 0.25 EU/mL.

The reaction between the Tachypleus Amebocyte Lysate (TAL) and the bacterial endotoxin normally occurs in water solution; that is why water insoluble oily medical devices cannot be analysed directly. There is no reference to this situation in the United States Pharmacopeia [1, 2]. Also no relevant literature has been published on this issue. To this end, the major purpose of this report is to introduce a new method to analyse bacterial endotoxins present in ultrapure paraffin oil and other water insoluble oily medical devices. In this study, the agglutination interference test and the recovery test of soluble extraction of ultrapure paraffin oil have been studied in detail. This is a fundamental and methodological research of bacterial endotoxin analysis for water insoluble oily medical devices with gel-clot test.

2. Materials and Methods

2.1. Materials. The ultrapure paraffin oil (lot number: 503687) was obtained from VITROLIFE SWEDEN AB. The Tachypleus Amebocyte Lysate with a sensitivity of 0.125 EU/mL (TAL-01, lot number: 1301172) or 0.01–10 EU/mL (lot number: 1203020) and endotoxin-free water (EF-water, lot number: 1207040) were obtained from Zhanjiang Endosafe Biological Ltd. The Tachypleus Amebocyte Lysate with a sensitivity of 0.125 EU/mL (TAL-02, lot number: 130102) was obtained from Zhanjiang Bokang Ocean Biological Co. Ltd. Control standard endotoxins (100 EU per pack, lot number: 150601–201176) were provided by the National Institute for the Control of Food and Pharmaceutical Products, Beijing, China.

2.2. Preparation. All equipment and material used in this study were treated at 250°C for more than 1 hour in order to destroy exogenous bacterial endotoxins.

2.3. Confirmation of the Labelled Sensitivity of the Tachypleus Amebocyte Lysate. The confirmation was performed according to the requirement of the Chinese Pharmacopoeia 2010, Appendix II, XIE Bacterial Endotoxin Test Regulation [3, 4].
2.4. Calculation of the Maximum Valid Dilution Ratio. In order to determine the concentration of possible bacterial endotoxins in the ultrapure paraffin oil the latter was mixed with water and shaken to extract the endotoxin into the aqueous phase. The limit value in the bottom aqueous phase (L_a) and the endotoxin in the ultrapure paraffin oil have the following relationship:

$$ L_a = \frac{L \times V_a}{V_w} $$

where

- L is the limit value of the endotoxin in the ultrapure paraffin oil,
- V_a is the volume of the aqueous phase, and
- V_w is the volume of ultrapure paraffin oil.

The limit value in the top aqueous phase is 0.25 EU/mL according to the company standard. In the test, 10 mL ultrapure paraffin oil was taken and added to 10 mL endotoxin-free water and shaken for 15 min at 2000 rpm. The bottom aqueous phase was then diluted 25, 50, 100, and 200 times with EF-water and the recovery was measured using the dynamic turbidimetric analysis method.

2.7. Analysis of the Concentration of Bacterial Endotoxin in the Ultrapure Paraffin Oil. 10 mL endotoxin-free water was added to 10 mL sample followed by shaking for 15 min at 2000 rpm. The bottom aqueous phase was then analysed for endotoxin according to the gel-clot method of the Chinese Pharmacopoeia 2010, appendix XIE. The endotoxin level must be lower than 0.25 EU/mL. Bacterial endotoxin analysis of twice diluted extracts was performed using a Tachypleus Amebocyte Lysate with a sensitivity of 0.125 EU/mL [6, 7].

3. Results

3.1. Confirmation of the Labelled Sensitivity of the Tachypleus Amebocyte Lysate. Table 1 shows the results of the confirmation of the sensitivity of two batches of Tachypleus Amebocyte Lysate. The values obtained indicate that the sensitivity of both batches meets the requirement. TAL-01 ($\lambda = 0.125$) was obtained from Zhanjiang Endosafe Biological Ltd. TAL-02 ($\lambda = 0.125$) was obtained from Zhanjiang Bokang Ocean Biological Co. Ltd. Plus sign shows a positive result. Minus sign shows a negative result.

3.2. Interference Test of the Aqueous Phase Extract. The result of the interference test is shown in Table 2. The results indicate a E_s within $0.5 \lambda - 2.0 \lambda$ and a E_t within $0.5 E_s - 2.0 E_s$ (E_s: bacterial endotoxin of standard, E_t: bacterial endotoxin of samples), and it confirms that twice dilution or more will not interfere with the bacterial endotoxin test. Plus sign shows a positive result. Minus sign shows a negative result.

3.3. Recovery of Bacterial Endotoxin in the Aqueous Extract. The results of bacterial endotoxin recovery in aqueous extracts of the ultrapure paraffin oil are shown in Table 3.

The data indicate that the recovery of the endotoxin from the ultrapure paraffin oil extract meets the requirement of the gel-clot method of the Chinese Pharmacopoeia which is in the range of 50%–200%.

3.4. Analysis of Bacterial Endotoxin of Ultrapure Paraffin Oil. All the analysis results matched the requirements. Result was shown in Table 4.

4. Discussion

Because of the water insolubility of the ultrapure paraffin oil, extraction with water is an indispensable part of the bacterial endotoxin test. However, two considerations should be taken into account. Although ultrapure paraffin oil is water insoluble, there may still be some residues in the extracted aqueous phase, so it is important to confirm that
Table 1: The results of confirmation of the labelled sensitivity.

TAL	Concentration of bacterial endotoxin (EU/mL)	Negative control	λ
TAL-01	0.25 (+++) 0.125 (+++) 0.06 (+) 0.03 (+)	− − − −	0.125
TAL-02	0.25 (+++) 0.125 (+++) 0.06 (+) 0.03 (+)	− − − −	0.125

Table 2: Results of interference test of the ultrapure paraffin oil aqueous phase extract.

TAL	Endotoxin concentration (EU/mL)	Negative control	Results (EU/mL)
TAL-01	0.25 (+++) 0.125 (+++) 0.06 (+) 0.03 (+)	− − − −	$E_s = 0.125$
BET			$E_s = 0.125$
Sample			$E_t = 0.125$
TAL-02	0.25 (+++) 0.125 (+++) 0.06 (+) 0.03 (+)	− − − −	$E_s = 0.125$
BET			$E_s = 0.125$
Sample			$E_t = 0.125$

Table 3: Recovery of bacterial endotoxin in the aqueous extracts.

Added bacterial endotoxin (EU/mL)	Measured value (EU/mL)	Recovery (%)
20	19.1	95.5
10	11.1	111
5	4.71	94.2

Table 4: Bacterial endotoxin analysis of ultrapure paraffin oil aqueous extracts.

Test sample	Positive product control	Positive control	Negative control
− −	++	++	− −

In this study, an interference test was applied to the aqueous phase extracted from the ultrapure paraffin oil to confirm that it did not interfere with the clot formation between the Tachypleus Amebocyte Lysate and the endotoxin. To this end, ultrapure paraffin oil with different endotoxin concentrations was prepared and the recovery was tested using a dynamic turbidimetric method. All results were within 86.8%–96.8% and thus met the requirement of 50%–200% in the Chinese Pharmacopoeia. This also indicates that the test method in this study is able to accurately determine the endotoxin concentration in ultrapure paraffin oil by analysis of the aqueous phase extract.

5. Conclusions

In this study, we have shown that it is possible to analyse the concentration level of bacterial endotoxin in water extracts of ultrapure paraffin oil using the gel-clot method and verified the limit value of <0.25 EU/mL. At the same time, this study can be regarded as a supplement analysis method for water insoluble oily medical devices to the United States Pharmacopeia chapter number 85 “Analysis of bacterial endotoxin” and chapter number 161 “Blood and other liquid transfusion device and similar medical device.”

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

References

[1] United States Pharmacopeia. chapter no. 85 Analysis of bacterial endotoxin.
[2] United States Pharmacopeia. chapter no. 161 Blood and other liquid transfusion device and similar medical device.
[3] Chinese Pharmacopoeia, Appendix XIE, 2010.
[4] Y. Zhang et al., “New method for bacterial endotoxin test of absorptive medical film,” Modern Preventive Medicine, vol. 34, pp. 3442–3446.

[5] X. Zheng, Y. M. Zhao, and C. Liu, “Bacterial endotoxin test for puerarin injection,” China Pharmacy, vol. 18, pp. 1254–1255, 2007.

[6] Z. X. Pan and Q. Song, “Study on determination of bacterial endotoxin of omeprazole sodium for injection,” Chinese Journal of Pharmaceutical Analysis, vol. 28, pp. 275–277.

[7] J. Gao et al., “Study on of bacterial endotoxin test for neostigmine methylsulfate injection,” Journal of Pharmaceutical Analysis, vol. 28, pp. 1141–1143, 2008.

[8] Y. C. Hu, N. Li, and J. P. Zhou, “Study on gelation clot method of bacterial endotoxin test in test oerone undecanoate injection,” Chinese Journal of Pharmaceutical Analysis, vol. 30, pp. 2425–2429, 2010.