Individual optimal dose of amrubicin to prevent severe neutropenia in Japanese patients with lung cancer

Yoshinori Makino1,2 | Reiko Makihara-Ando1 | Takanori Ogawa2,3 | Hitoshi Sato2 | Yasushi Goto4 | Shintaro Kanda4 | Hidehito Horinouchi4 | Yutaka Fujiwara4 | Yuichiro Ohe4 | Noboru Yamamoto4,5

1Department of Pharmacy, National Cancer Center Hospital, Tokyo, Japan
2Division of Pharmacokinetics/Pharmacodynamics, Department of Pharmacology, Toxicology, and Therapeutics, School of Pharmacy, Showa University, Tokyo, Japan
3Certara G.K., Tokyo, Japan
4Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
5Department of Experimental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan

Correspondence
Yoshinori Makino, Department of Pharmacy, National Cancer Center Hospital, Tokyo, Japan.
Email: ymakino@ncc.go.jp

Funding information
National Cancer Center Research and Development Fund, Grant/Award Number: 23-A-16

Abstract
This study determined individual optimal amrubicin doses for Japanese patients with lung cancer after platinum-based treatment. We carried out population pharmacokinetic and pharmacodynamic modeling incorporating gene polymorphisms of metabolizing enzymes and transporters. Fifty patients with lung cancer, who were given 35-40 mg/m² amrubicin on days 1-3 every 3-4 weeks, were enrolled. Mechanism-based modeling described relationships between the pharmacokinetics of amrubicin and absolute neutrophil counts. A population pharmacokinetic and pharmacodynamic model was developed for amrubicin and amrubicinol (active metabolite), connected by a delay compartment. The final model incorporated body surface area as a covariate of amrubicin and amrubicinol clearance and distribution volume. SLC28A3 single nucleotide polymorphism (rs7853758) was also incorporated as a constant covariate of the delay compartment of amrubicinol. Performance status was considered a covariate of pharmacokinetic (amrubicinol clearance) and pharmacodynamic (mean maturation time) parameters. Twenty-nine patients with grade 4 neutropenia showed higher amrubicinol area under the plasma concentration-time curve from 0 to 72 hours (AUC₀⁻⁷₂, P = .01) and shorter overall survival periods than other patients did (P = .01). Using the final population pharmacokinetic and pharmacodynamic model, median optimal dose to prevent grade 4 neutropenia aggravation was estimated at 22 (range, 8-40) mg/m² for these 29 patients. We clarified correlations between area under the plasma concentration-time curve from 0 to 72 hours of amrubicinol and severity of neutropenia and survival of patients given

Abbreviations: AAG, α1-acid glycoprotein; ALB, serum albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ANC, absolute neutrophil count; AST, aspartate aminotransferase; AUC, area under the plasma concentration-time curve; BSA, body surface area; BUN, blood urea nitrogen; BW, body weight; C_{AMR} plasma concentration of amrubicin; C_{AMROH} plasma concentration of amrubicinol; Circ, a compartment of circulating observed blood cells; Circ₀, baseline value of a compartment of circulating observed blood cells; CL₂, intercompartment clearance of peripheral-1 of amrubicin; CL₃, intercompartment clearance of peripheral-2 of amrubicin; CLₘ, clearance of amrubicinol; CLₚ, metabolic clearance from amrubicin to amrubicinol; Comp, compartment; Cov, covariate; CV, coefficient of variation; ED, extensive disease; G-CSF, granulocyte colony stimulating factor; Hgb, hemoglobin; HGT, height; Ht, hematocrit; Kdc, rate constant of delay compartment of amrubicinol; K_{ext} proliferation rate constant determining the rate of cell division; K_{tr} rate constant of transit compartment; LCNEC, large-cell neuroendocrine carcinoma; LD, limited disease; LDH, lactate dehydrogenase; MMT, mean maturation time; NLME, nonlinear mixed-effects; OV, objective function value; OS, overall survival; PD, pharmacodynamics; PK, pharmacokinetics; PLT, platelet count; Pop, population; PS, performance status; SCLC, small-cell lung cancer; SCR, serum creatinine; SNP, single nucleotide polymorphism; SQ, squamous cell carcinoma; T-Bil, total bilirubin; T-CHO, total cholesterol; tv, typical value; V₂, peripheral-1 volume of distribution of amrubicin; V₃, peripheral-2 volume of distribution of amrubicin; Vₘ, central volume of distribution of amrubicinol; Vₚ, central volume of distribution of parent amrubicin; VPC, visual predictive check; WBC, white blood cell count.

Clinical Trial Registration: UMIN000002970

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
amrubicin after platinum chemotherapy. This analysis revealed important amrubicin pharmacokinetic-pharmacodynamic covariates and provided useful information to predict patients who would require prophylactic granulocyte colony stimulating factor.

KEYWORDS
amrubicin, amrubicinol, lung cancer, pharmacodynamics, pharmacokinetics

1 | INTRODUCTION

A third-generation anthracycline, amrubicin, and its active metabolite, amrubicinol, markedly inhibit topoisomerase II activity. Amrubicin is approved only in Japan, and its single-agent-based regimen is a promising second-line chemotherapy for SCLC, after platinum-containing chemotherapy. Despite the high response rate to amrubicin in a majority of SCLC patients in previous phase II studies, which included sensitive relapses or refractory cases, a randomized phase III study showed that the overall survival with amrubicin was not superior to that of topotecan, which is the only standard regimen for the second-line treatment of SCLC. In these studies, several participants treated with amrubicin required dose reduction and treatment delays because of severe hematological toxicities, including febrile neutropenia. Furthermore, 60%-80% of the patients required treatment with G-CSF. Based on the result of the phase III study, von Pawel et al reported an increased infection rate during amrubicin treatment, which led to an amendment of the protocol requiring prophylactic growth factor support. Daily prophylactic use of G-CSF was recommended according to an approved guideline of the Japan Lung Cancer Society.

We recently evaluated the relationship between the severity of neutropenia and the AUC of amrubicin. However, an optimal AUC that avoids severe neutropenia has not been elucidated, and the covariate factors that govern the PK and PD of amrubicin and amrubicinol have not been analyzed. Therefore, we carried out a Pop-PK-PD analysis with the following primary objectives: (i) to develop a Pop-PK model of amrubicinol connected with amrubicin, and to define the covariates of the Pop-PK parameters, incorporating gene polymorphisms of the metabolizing enzymes and transporters; and (ii) to develop a final Pop-PK-PD model of the relationship between the PK profiles of amrubicin and/or amrubicinol and the time course of ANC in the first course of amrubicin treatment and define the covariates of the PD parameters. The secondary objective was to apply the results generated from the Pop-PK-PD modeling to simulate clinically feasible dosage regimens. We clarify the precision dosing of amrubicin for PK-PD modeling to prevent severe neutropenia in Japanese patients with lung cancer.

2 | MATERIALS AND METHODS

2.1 | Patients and treatment

The prospective clinical study (UMIN000002970) was approved by the ethical review boards of the National Cancer Center Hospital (Tokyo, Japan) and Showa University (Tokyo, Japan). Patients (20 years of age or older) diagnosed with lung cancer and who had received amrubicin monotherapy in the National Cancer Center Hospital were enrolled after obtaining written informed consent. Patients with hepatitis B, hepatitis C, or HIV infection and patients considered ineligible by physicians, including those who refused blood sampling or who had poor health, were excluded.

Amrubicin was given as a 5-minute i.v. infusion at a dose of 35-40 mg/m² on days 1-3, and subsequently every 3 or 4 weeks. Prophylactic use of serotonin type 3 (5-HT₃) receptor antagonists was allowed before amrubicin was given. The use of G-CSF was only allowed for patients who had developed grade 4 neutropenia or grade 3 febrile neutropenia in accordance with the guidelines of the national health insurance coverage of Japan.

2.2 | Safety, tumor response, and survival assessment

Body temperature monitoring and laboratory tests (eg, tests for blood counts, electrolytes, and liver and renal function) were routinely carried out during the first cycle of amrubicin treatment. Toxicity was graded according to the CTCAE version 3.0. There was no protocol restriction for response; however, we obtained information from the medical records retrospectively. Tumor response to treatment was classified according to RECIST version 1.1.

Time to treatment failure was defined as the duration from enrollment to the first clinical evidence of progressive disease, early discontinuation of treatment because of amrubicin toxicity or other reasons (ie, patient’s request or physician’s discretion), or death from any cause. Overall survival was defined as the duration from enrollment to death, or to loss to follow-up.

2.3 | Blood sampling and DNA extraction

Plasma samples were obtained to determine the PK of amrubicin and amrubicinol. For the first 21 patients, blood samples were obtained on day 1 before infusion, at the end of amrubicin infusion (0 minutes), at 5, 15, and 30 minutes, and at 1, 2, 4, 8, and 24 hours after the end of infusion. On days 2 and 3, blood samples were collected before infusion, and at 0 minute and 8 hours after infusion. For the other 29 patients who were enrolled in the expanded study, blood samples were obtained at 15 minutes and
2.4 | Genotyping

DNA processing and genotyping of most of the drug-metabolizing enzymes and transporters in each patient sample were carried out using the DNA chip DMET plus platform (Affymetrix). This system is capable of analyzing 1936 SNPs in 225 genes associated with drug metabolism and transport. Genotypes were determined for each SNP site, and reported as homozygous WT, heterozygous, homozygous variant, or "no-call."

2.5 | Population PK and semimechanistic myelosuppression model development and evaluation

In total, 388 plasma samples were obtained for the population PK analysis. The PK parameters were determined by nonlinear mixed-effects modeling, using Phoenix NLME 1.3 (Certara). The first order, conditional estimation-extended least squares estimation method was used.

First, to develop an amrubicin-amrubicinol-linked Pop-PK model (base model), amrubicin and amrubicinol plasma concentrations were converted to molar concentrations. The recorded amrubicin dosing times on day 2 or 3 were used for modeling. The amrubicin-amrubicinol-linked model, which is a parent-metabolite model, was then developed (Figure 1). Briefly, the PK of parent amrubicin was described as a 3-compartment model, and that of amrubicinol was modeled as a 1-compartment model, connected to amrubicin's central compartment by a first-order metabolic process with 2 delay compartments (Figure 1A). The amrubicin-amrubicinol modeling involved 9 structural parameters using 11 differential equations. The parameters

![Figure 1](image_url)
included were: central volume of parent amrubcin distribution, peripheral-1 volume of distribution of amrubcin, peripheral-2 volume of distribution of amrubcin, CLp, intercompartmental clearance of amrubcin peripheral-1 and peripheral-2, Vm, CLm, and Kdc.

For the base model, interpatient variability was modeled using an exponential function. For instance, CLp was estimated from the equation:

\[CLp_i = tvCLp \times e^{\epsilon_i} \]

where, CLp, represents the CL of the i-th individual, tvCLp is the population (typical) CLp value, and \(\epsilon \) is the interindividual random effect with mean 0, and variance \(\sigma^2 \). The residual error between the j-th measured concentration (\(C_{obsj} \)) and predicted concentration (\(C_{predj} \)) for the patient was modeled with a proportional error model:

\[C_{obsj} = C_{predj} (1 + \epsilon) \]

where, \(\epsilon \) is an independent random variable with mean 0, and variance \(\sigma^2 \).

Second, the effects of covariates, such as age, BW, BSA, sex, PS, serum albumin, alanine aminotransferase, serum creatinine, total bilirubin, and gene polymorphisms of metabolic enzymes and transporters were evaluated for the final model. The patients’ characteristics, not including gene polymorphisms, were first visually examined to determine whether they had potential covariate effects on the PK parameters of interest. At this time, an x-y plot was used when the patient characteristic was a continuous scale, and a box plot was used when the patient characteristic was a nominal scale. We determined that BSA, BW, and PS were correlated with several PK parameters, including those shown in Table 1. Because BW is associated with BSA, we decided to include only BSA.

Separately, gene polymorphisms (SNPs) of metabolic enzymes and transporters that correlated with the PK profile of amrubcin were identified by a 2-step strategy. In the first step, an association analysis between genotypes and the amrubcinol\(\text{AUC}_{0-24} \) was carried out for all 50 patients whose PK was analyzed by the developed Pop-PK model. The Kruskal-Wallis test was used, and \(P < .05 \) was considered significant (Table S1). To develop a robust Pop-PK model, selection and filtering criteria that only considered SNPs with minor allele frequencies of 0.2 of more were applied. Among these gene polymorphisms of enzymes or transporters, SLC28A3 (rs7853758) was the only SNP, that \(c \) has been reported to be related to PK and PD of anthracyclines and for which the frequency of each allele was 20% or higher (8 cases), which was required for incorporation into the model. Therefore, SLC28A3 (rs7853758) was selected as a covariant candidate.

Continuous covariates were centered at the mean values and were included in the model using a power model.

The continuous covariates were modeled according to the following general equation:

\[P_i = tvP \cdot e^{\frac{\text{cov}_i}{\text{cov}_{\text{mean}}}} \cdot e^{\epsilon_i} \]

where, \(P_i \) is the individual PK parameters of a patient, tvP is the typical value of PK parameters for patients, \(\text{cov}_i \) is the individual’s value of the covariate, \(\text{cov}_{\text{mean}} \) is the population mean value of the covariate, and \(\epsilon_i \) is the magnitude of the covariate effect.

Finally, we examined whether BSA, PS, and SNPs of SLC28A3 (rs7853758) could be covariates and completed the final model. Stepwise forward addition followed by a backward deletion method was used to identify these covariates. The \(\chi^2 \) test was used to compare the OFVs of the nested models (likelihood ratio test). A covariate was considered statistically significant in this analysis when its addition to the model reduced the \(-2 \log\text{-likelihood} \) by at least 6.63 units (\(P < .01 \), based on the \(\chi^2 \) test for the difference in the \(-2 \log\text{-likelihood} \) between 2 hierarchical models that differ by 1 degree of freedom. If more than 10% of the patients were missing covariate data, the covariate was excluded from analysis (Table S2).

Third, a semimechanistic-physiological Pop-PD model was built using the time courses of neutrophil counts after amrubcin administration (Figure 1B), based on previously established models.13,14 A total of 357 ANC observations from 50 patients were used for Pop-PK-PD modeling. This PD model was constructed to mimic physiological processes and consisted of 6 compartments that mimicked the maturation of bone marrow progenitor cells to circulating neutrophils: 1 stem/progenitor cell, 4 maturation, and 1 circulation compartment. The drug effect (ie, the inhibitory effect of the drug on progenitor cell growth) was expressed as a linear equation:

\[\text{Effect}_{\text{drug}} = \text{Slope} \cdot C_{\text{AMROH}} \]

where Slope is the parameter that describes the drug effect in a linear correlation with \(C_{\text{AMROH}} \) (ie, the plasma concentration of amrubcinol predicted by the Pop-PK model).

The data were Box-Cox transformed with a factor of 0.2. The residual error was an additive error on the Box-Cox scale. Furthermore, in accordance with a previous report,14 we successfully characterized a second feedback mechanism of endogenous G-CSF, which reduced the maturation time of neutrophils when their blood levels were below the baseline. Therefore, the combined PK-PD model comprised a total of 12 compartments, 6 each assembling the PK portion (including 2 delay compartments) and the PD portion of the model. The covariate PD model building was also a stepwise process. If a chosen covariate did not reasonably explain the PD variation, it was excluded from the covariate analysis.

2.6 | Model evaluation and other statistical analyses

To evaluate the model, simulations were undertaken in Phoenix NLME using the dataset obtained in this study. Simulated percentiles (5th, 50th, and 95th) were calculated, and VPCs were carried
TABLE 1
Population pharmacokinetic (PK) parameters of amrubicin and amrubicinol, and pharmacodynamic (PD) parameters of myelosuppression in patients with small-cell lung carcinoma

Fixed effects	Base model		Final model		Bootstrap
	estimate	CV%	estimate	CV%	estimate
Estimation of population PK parameters					
\(-2\) Log likelihood	-2677.8		-2745.4		-2745.4
tvVp, L	10.1	17.0	9.8	7.8	9.8
tvV2, L	28.5	27.3	28.5	10.0	28.5
tvCL2, L/h	9.1	43.1	9.2	15.8	9.2
tvV3, L	32.7	28.0	32.3	9.7	32.3
tvCL3, L/h	50.5	20.7	49.5	6.9	49.5
tvVm, L	1032.2	13.5	1050.0	4.9	1050.0
tvClp, L/h	19.4	7.3	19.5	2.4	19.5
tvCLm, L/h	97.0	35.4	121.3	6.4	121.3
tvKdc, L/h	0.1	33.5	0.1	7.8	0.1
ωVp, %	32.7	75.2	33.3	34.6	33.3
ωV2, %	17.5	88.2	17.1	41.1	17.1
ωV3, %	30.7	94.1	30.3	22.7	30.3
ωCL3, %	33.7	85.1	33.3	13.4	33.3
ωVm, %	32.1	47.0	27.6	24.0	27.5
ωClp, %	20.0	44.7	14.3	20.1	14.3
ωCLm, %	35.1	93.1	18.3	46.2	18.3
ωKdc, %	30.0	180.9	-	-	-
ωClp-V3, %	0.05	73.2	0.03	18.7	0.03
ωClp-CL3, %	0.05	97.7	0.04	11.4	0.04
ωV3-CL3, %	0.10	81.1	0.10	14.0	0.10
Cov BSA (Vm)	1.5	28.2	1.5	1.0	1.0
Cov BSA (Clp)	1.0	16.6	1.0	1.8	1.8
Cov BSA (CLm)	1.8	27.5	1.8	3.9	3.9
Cov SLC28A3 (Kdc)	-2.0	-39.1	-2.0	-2.0	-2.0
Cov PS (CLm)	-0.3	-26.3	-0.3	-26.3	-0.3

\[
\begin{align*}
CL_p &= tvCL_p \cdot \left(\frac{BSA_i}{BSA_{mean}} \right)^{covBSA} \cdot e^{covPS} \\
V_m &= tvV_m \cdot \left(\frac{BSA_i}{BSA_{mean}} \right)^{covBSA(V_m)} \cdot e^{covPS} \\
CL_m &= tvCL_m \cdot \left(\frac{BSA_i}{BSA_{mean}} \right)^{covBSA(CL_m)} \cdot e^{covPS} \\
K_{de} &= tvK_{de} \cdot e^{covSLC28A3} \cdot e^{covPS} \\
\end{align*}
\]

Estimation of population PD parameters

-2 Log Likelihood	754.4	746.5	746.5		
tvCirc0	3.7	5.9	3.7		
tvMMMT	157.0	4.4	172.6	4.6	172.5

(Continued)
TABLE 1 (Continued)

Fixed effects	Base model		Final model		Bootstrap
	estimate	CV%	estimate	CV%	estimate
tvGamma, γ	0.4	16.6	0.4	16.5	0.4
tvGamma-m, γm	0.2	27.3	0.2	27.4	0.2
tvSlope	31.1	11.5	30.6	11.2	30.6
ωCirc0, %	31.7	34.3	14.7	28.4	14.7
ωMMT, %	16.2	28.4	31.4	35.1	31.4
ωSlope, %	51.7	23.7	52.4	22.8	52.4
Cov PS (MMT)	-0.2	-39.2	-0.2	-39.2	-0.2

MMT = tvMMT ⋅ eαcovPS(PS) ⋅ eαBSA

ω, interindividual variability; BSA, body surface area; Circ0, baseline value of a compartment of circulating observed blood cells; CL2, intercompartmental clearance of peripheral-1 of amrubicin; CL3, intercompartmental clearance of peripheral-2 of amrubicin; CLm, clearance of amrubicinol; CLp, metabolic clearance from amrubicin to amrubicinol; Cov, covariate; CV, coefficient of variation; Kdc, rate constant of delay compartment of amrubicin; MMT, mean maturation time; PS, performance status; tv, typical value; V2, peripheral-1 volume of distribution of amrubicin; V3, peripheral-2 volume of distribution of amrubicin; Vm, central volume of distribution of amrubicinol; Vp, central volume of distribution of parent amrubicin.

out to compare the observed plasma concentrations of amrubicinol and ANC data, over the simulated predictions based on the model. Bootstrap analysis was carried out to assess the stability of PK and PK-PD models and to determine the precision of the parameter estimates. For the bootstrap analysis, 300 bootstrap runs were performed. In this technique, the final model developed from the original dataset was fitted to each bootstrap dataset to obtain bootstrap parameter estimates. The median of the parameter estimates was computed from the bootstrap runs and compared with the point estimates.

We used the 1-tailed Student's t test for the 1-way plots of the amrubicinol AUC0–72, with or without grade 4 neutropenia.

2.7 | Simulation

Simulations were carried out using the final Pop-PK-PD model, to explore the optimal dosage for preventing grade 4 neutropenia (less than 500 cells/mm^3 ANC) during the first course of amrubicin treatment. The simulation method was as follows: (i) individual PK parameters of each patient with grade 4 neutropenia were calculated by the Bayesian method using the final Pop-PK model, including the amrubicin/amrubicinol concentration data of each patient and covariates of PK parameters; (ii) the amrubicinol plasma concentration of each patient was predicted every hour, from 0 to 72 hours; (iii) the PK profile of amrubicinol was substituted for each patient for the final Pop-PK-PD model with the covariate of PD parameter (PS), and PD parameters of each patient were calculated; and (iv) the optimal dose of amrubicin on days 1-3 in the first course of amrubicin treatment was calculated considering no fewer than 500 cells/mm^3 ANC in that course. The final Pop-PK-PD model and PK-PD parameters of individual patients with a dose reduction of 1 mg per interval were used.

3 | RESULTS

3.1 | Demography and clinical characteristics of patients

Between May 2008 and January 2012, 50 patients with a median age of 63.5 (range, 39‐81) years were enrolled. Forty-six and 4 patients received 40 and 35 mg/m², respectively, on days 1-3 as the initial amrubicin dose. The demographic and baseline characteristics are summarized in Table 2. Forty-two patients were men and 8 were women; 30 and 20 patients had a PS of 1 and 0, respectively. A total of 214 treatment cycles were administered, and the number of treatment cycles per patient ranged from 1 to 10 (median, 4). Fifteen patients (30.0%) had 1 or more dose reductions and 40 cycles (18.7%) with a prolonged treatment interval over 4 weeks.

3.2 | Toxicity

The most common grade 4 adverse events for hematological toxicity were neutropenia (58%), and thrombocytopenia (28%). Severe anemia of grade 3 or higher occurred at 14% frequency. The majority of nonhematological toxicities were of grade 1 and 2. Fatigue, nausea, vomiting, anorexia, diarrhea, and constipation were common, but mild. One patient experienced grade 3 anorexia, and 9 patients had grade 3 febrile neutropenia.

3.3 | Final Pop-PK and semimechanistic myelosuppression model

The final Pop-PK model used a 3-compartment model for amrubicin, and a 1-compartment model with a delay compartment for amrubicinol, connected to amrubicin by a first-order metabolic process (Table 1, Figure 1A). In the final model, BSA was added
TABLE 2 Demographic and clinical characteristics of patients with small-cell lung carcinoma at baseline

Characteristics	All patients	500 cells/mm³ ≤ ANC	ANC < 500 cells/mm³			
	n	%	n	%	n	%
All	50	100	21	42	29	58
≥70 y old	12	24	6	29	6	21
≥75 y old	5	10	3	14	2	7
Sex, male	42	84	20	95	22	76
ECOG PS						
0	20	40	11	52	9	31
1	30	60	10	48	20	69
Disease, stage						
SCLC, LD	13	26	6	29	7	24
SCLC, ED	29	58	11	52	18	62
LCNEC, IV	6	12	4	19	2	7
SQ, IV	1	2	0	–	1	3
Other, IV	1	2	0	–	1	3
Dose						
40 mg/m²	46	92	20	95	26	90
35 mg/m²	4	8	1	5	3	10
Prior chemotherapy						
1 regimen	35	70	17	81	18	62
2 regimens	10	20	4	19	6	21
3 or more	5	10	0	–	5	17
Relapse (SCLC)						
Sensitive	19	45	10	59	9	36
Refractory	22	53	7	41	15	60
Unknown	1	2	0	–	1	4
Prior radiotherapy						
Yes, thoracic	11	22	7	33	4	14
Yes, brain	12	24	4	19	8	28
Yes, others	6	12	2	10	4	14
No	21	42	8	38	13	45
Prior surgery						
Yes, primary	9	18	5	24	4	14
Yes, others	9	18	2	10	7	24
No	32	64	14	67	18	62

Pretreatment laboratory data

	Median	Range	Median	Range	Median	Range
Age, y	63.5	39-81	62	39-76	65	42-81
BSA, m²	1.65	1.21-1.97	1.72	1.38-1.97	1.62	1.21-1.93
BW, kg	59.2	34.9-80.3	66.1	43.5-78.2	55.8	34.9-80.3
HGT, cm	166.1	145.4-179.4	167.3	145.4-179.4	165.0	146.9-172.6
AAG, mg/dL	107	50-292	94	63-133	116	50-292
ALB, g/dL	4.0	2.5-4.9	4.1	3.5-4.9	3.9	2.5-4.8
ALP, U/L	254	9-918	258	98-517	231	9-918
ALT, IU/L	18	7-152	18	8-92	18	7-152
as a covariate of metabolic clearance from amrubicin to amrubici-
inol (CLp) of amrubicin, as well as the CLm and Vm of amrubici-
ol. Furthermore, PS and 1 SLC28A3 variant (rs7853758) were added
to the covariate of CLm and Kdc, respectively. Participants with
the rs7853758 minor allele had a higher AUC0–72 of amrubici-
ol (P = .02). The OFV of the final model after inclusion of BSA, PS,
and SLC28A3 SNP (rs7853758) (OFV = −2745.4) was significantly
lower than that of the base model (OFV = −2677.8), which did not
include covariates.

The final Pop-PK-PD model was previously well described by
Friberg et al.13 and Quartino et al.14 Our model was further refined
by increasing the number of transit compartments from 3 to 4, and
by including a PS as a covariate. The OFV of the final model after
covariate inclusion (OFV = 746.5) was significantly lower than that
of the base model (OFV = −2677.8), which did not include covariates.

The VPC plots for the Pop-PK of amrubicin and amrubici-
ol, and the Pop-PK-PD models are presented in Figures 2A, 2B, and
2C, respectively. The VPC plots showed that both PK and PD models
describe the overall trend and variability of the data. No systematic
deviation was observed between the observed and the simulated data.
The percentage of observations outside the 90% confidence interval
for the Pop-PK of amrubicin and amrubici-
ol, and the Pop-PK-PD data
were 93.3, 94.3, and 91.0%, respectively. In the bootstrap analysis,
100% of the Pop-PK and Pop-PK-PD model runs successfully con-
verged. The median bootstrap parameter estimates were similar to the
NLME model estimates, based on the original dataset (Table 1).

3.4 Relationship between PK-PD and survival

The 1-way plots of the amrubici-
ol AUC0–72, with or without grade
4 neutropenia, are presented in Figure 3A. Patients (n = 29) with
grade 4 neutropenia experienced higher amrubici-
ol AUC0–72 than
the other patients (1385.9 µg/h/L vs 1208.5 µg/h/L, P = .01). The
median OS for all patients was 255 days. However, the OS for pa-
tients with grade 4 neutropenia was significantly shorter than those
without (228 days with grade 4 vs 376 days without grade 4, log-
rank test, P = .01, Figure 3B).

3.5 Model-based simulations for estimating
amrubici-
ol optimal doses in patients with severe hematological toxicity

By undertaking simulations using the final Pop-PK-PD model, the
median optimal dose for preventing grade 4 neutropenia (29 pa-
tients) was predicted to be 22 (range, 8–40) mg/m². With the op-
timal dose, the amrubici-
ol mean ± SD AUC0–72 was calculated as
805.5 ± 337.0 µg/h/L (Table S3).

4 DISCUSSION

A reduction in the dose of amrubici-
ol from the recommended dose is
necessary to reduce hematological toxicity. This reduction is usually
based on the physician’s experience; however, severe neutropenia is
often observed, and in some patients, delay of treatment interval or
reduction of secondary dose is required.

The primary objectives of this study were to develop a Pop-PK
model for connecting amrubici-
ol to amrubici-
ol and to identify the
covariates of various PK parameters. Only amrubici-
ol concentration was incorporated into the effect equation (slope·
C_{AMRH}) because the OFV of the model did not improve when C_{AMR}
was added to C_{AMROH}, or when C_{AMR} was used alone (Figure S1). Thus,
we only included the amrubici-
ol concentration data in the sub-
sequent analyses and simulations. To the best of our knowledge,
this is the first study to demonstrate a Pop-PK model with delay...
As shown in Figure S2, a second peak in the amrubicinol concentration profile was observed after \(~8\) hours in some of the first 21 patients.

In the present study, the Pop-PK final model was improved by including a delay compartment pathway for the clearance of amrubicinol. This second peak might be attributable to a time-lag caused by a transfer of amrubicinol to blood cells, and subsequent reentry from blood cells to plasma.

The SLC28A3 SNP rs7853758, a synonymous coding variant (L461L), was a significant covariate of Kdc in the final Pop-PK model. Subjects with the minor rs7853758 allele showed reduced SLC28A3 mRNA expression in the monocytes. Concentrative Na\(^+\)-nucleoside cotransporter protein, which is an SLC28 concentrative nucleoside transporter, can transport several anthracyclines into the cells. Although patients with this minor allele showed a higher AUC\(_{0-72}\) for amrubicinol than the other patients, the former cohort did not show more severe neutropenia or higher response rates. Further functional studies are required to determine the exact mechanisms by which SLC28A3 affects the Kdc.

Performance status is a covariate of both PK and PD parameters and could be an important marker for successful amrubicin treatment. Thirty patients with PS1 showed lower amrubicinol CL (91.4 vs 125.8 L/h, \(P < .0001\)) and shorter mean maturation time (148.3 vs
172.9 h, P < .0001) relative to the other 20 patients with PS0. The CL of amrubicinol was lower in patients with higher amrubicinol AUC. However, patients with PS1 tend to show faster transit of progenitor cells into the systemic circulation, resulting in increased cell death or higher toxicity. Thus, these results explained the relationship between the severity of neutropenia and PS.

We successfully predicted the effects of amrubicin-amrubicinol PK (plasma profiles) on the ANC-time profiles. Furthermore, we showed that amrubicinol AUC0–72 was related to the severity of neutropenia and short survival times (Figures 3B and S3). Contrarily, the efficacy (overall response rate) was not related to various PK profiles (Figure S4). Simulations using the final Pop-PK-PD model revealed that the median optimal dose for 29 patients who experienced grade 4 neutropenia was 22 (range, 8-40) mg/m², with a predicted mean AUC0–72 of 805.5 ± 337.0 μg/h/L (Table S3). However, clinical situations would determine if this dose is effective because the mean AUC0–72 of 21 responsive patients (CR + PR) was 1283.0 μg/h/L, which is higher than the predicted AUC0–72 for preventing grade 4 neutropenia in the other 29 patients. Even if physicians measure the blood levels of amrubicinol during amrubicin treatment and predict PK grading using our developed PK-PD model, amrubicin dose reduction is not recommended. Recent studies have shown that low doses of amrubicin (35 mg/m²) might be sufficient to produce desirable effects. However, in this study, we could not determine the optimal therapeutic range for amrubicinol, despite examining using receiver operating characteristic curve analysis (data not shown). Thus, a higher probability of increased antitumor effects at higher doses must be carefully balanced against the increased risk of severe neutropenia.

In general, G-CSF is used to treat severe or febrile neutropenia in patients with SCLC receiving amrubicin. Use of G-CSF reduces the risk, severity, and duration of febrile neutropenia, but owing to its high cost, its routine use is restricted. The present study provides a model-based strategy for understanding the differences in PD outcomes among patient populations and quantifying these differences based on scientific mechanisms. The Pop-PK-PD modeling strategy, therefore, is a valuable method for rationalizing the use of G-CSF as prophylactic agents.

The present study has some limitations. First, the sample size was small because of the difficulty of collecting the plural blood samples per patient. Second, our results have not been validated in different patients. We consider the final Pop-PK-PD model to be useful to simulate the ANC time courses for particular doses and patients; however, the 95% confidence interval of the ANC prediction by this model appeared to be relatively broad. Therefore, to increase the predictability of the Pop-PK-PD model, future prospective studies in a large population with external validation are required to explore the target AUC of amrubicinol and to use for the precision dosing of amrubicin after platinum chemotherapy in practice. In addition, the sensitivity of tumor cells to amrubicin warrants further study.

ACKNOWLEDGMENTS

We greatly appreciate all patients who participated in this study and their families. We also thank Taisuke Hojo, Hiroshi Yamamoto, Yoshikazu Hayashi, Masakazu Yamaguchi, Hiroshi Nokihara, Ikuo Sekine, Hideo Kunitoh, Kaoru Kubota, Chiharu Tanai, Hajime Asahina, Yosuke Tamura, Masahito Nakamichi, Masanori Motonaga, Michiko Watanabe, Humiaki Koizumi, Hitoshi Zenbutsu, Erika Sugiyama, Hideshi Kasai, Yuka Kitamura, and Tomohide Tamura, who helped to conduct this study. We would like to thank Editage for English language editing. This study was supported by the National Cancer Center Research and Development Fund (23-A-16).

DISCLOSURE

Yuichiro Ohe received research funding from Dainippon-Sumitomo Pharma. The other authors have no conflict of interest.

ORCID

Yoshinori Makino https://orcid.org/0000-0003-2739-6458
Hidehito Horinouchi https://orcid.org/0000-0001-9090-801X
Yutaka Fujiwara https://orcid.org/0000-0001-6981-0800
Yuichiro Ohe https://orcid.org/0000-0002-6137-073X

REFERENCES

1. Hanada M, Mizuno S, Fukushima A, et al. A new antitumor agent amrubicin induces cell growth inhibition by stabilizing topoisomerase II-DNA complex. Jpn J Cancer Res. 1998;89:1229-1238.
2. Chan BA, Coward JI. Chemotherapy advances in small-cell lung cancer. J Thorac Dis. 2013;5:5565-5578.
3. Asai N, Ohkuni Y, Kaneko N, et al. Relapsed small cell lung cancer: treatment options and latest developments. Ther Adv Med Oncol. 2014;6:69-82.
4. Onoda S, Masuda N, Seto T, et al. Phase II trial of amrubicin for treatment of refractory or relapsed small-cell lung cancer: thoracic Oncology Research Group Study 0301. J Clin Oncol. 2006;24:5448-5453.
5. Igawa S, Yamamoto N, Ueda S, et al. Evaluation of the recommended dose and efficacy of amrubicin as second- and third-line chemotherapy for small cell lung cancer. J Thorac Oncol. 2007;2:741-744.
6. Ettinger DS, Jotte R, Lorigan P, et al. Phase II study of amrubicin as second-line therapy in patients with platinum-refractory small-cell lung cancer. J Clin Oncol. 2010;28:2598-2603.
7. Jotte R, Conkling P, Reynolds C, et al. Randomized phase II trial of single-agent amrubicin or topotecan as second-line treatment in patients with small-cell lung cancer sensitive to first-line platinum-based chemotherapy. J Clin Oncol. 2011;29:287-293.
8. Murakami H, Yamamoto N, Shibata T, et al. A single-arm confirmatory study of amrubicin therapy in patients with refractory small-cell lung cancer: Japan Clinical Oncology Group Study (JCOG0901). Lung Cancer. 2014;84:67-72.
9. von Pawel J, Jotte R, Spigel DR, et al. Randomized phase III trial of amrubicin versus topotecan as second-line treatment for patients with small-cell lung cancer. J Clin Oncol. 2014;32:4012-4019.
10. Goto K, Ohe Y, Shibata T, et al. Combined chemotherapy with cisplatin, etoposide, and irinotecan versus topotecan alone as
second-line treatment for patients with sensitive relapsed small-cell lung cancer (JCOG0605): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2016;17:1147-1157.

11. Makino Y, Yamamoto N, Sato H, et al. Pharmacokinetic and pharmacodynamic study on amrubicin and amrubicinol in Japanese patients with lung cancer. Cancer Chemother Pharmacol. 2012;69:861-869.

12. Ando R, Makino Y, Tamura T, et al. Simple and sensitive HPLC method for determination of amrubicin and amrubicinol in human plasma: application to a clinical pharmacokinetic study. Biomed Chromatogr. 2010;24:301-306.

13. Friberg LE, Heningsson A, Maas H, et al. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20:4713-4721.

14. Quartino AL, Friberg LE, Karlsson MO. A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanistic myelosuppression model. Invest New Drugs. 2012;30:833-845.

15. Zeller T, Wild P, Szymczak S, et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS ONE. 2010;5:e10693.

16. Nagasawa K, Nagai K, Ohnishi N, et al. Contribution of specific transport systems to anthracycline transport in tumor and normal cells. Curr Drug Metab. 2001;2:355-366.

17. Okamoto I, Hamada A, Matsunaga Y, et al. Phase I and pharmacokinetic study of amrubicin, a synthetic 9-aminoanthracycline, in patients with refractory or relapsed lung cancer. Cancer Chemother Pharmacol. 2006;57:282-288.

18. Shimokawa T, Shibuya M, Kitamura K, et al. Retrospective analysis of efficacy and safety of amrubicin in refractory and relapsed small-cell lung cancer. Int J Clin Oncol. 2009;14:63-69.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Makino Y, Makihara-Ando R, Ogawa T, et al. Individual optimal dose of amrubicin to prevent severe neutropenia in Japanese patients with lung cancer. Cancer Sci. 2019;110:3573–3583. https://doi.org/10.1111/cas.14194