Draft Genome Sequences of Nine \textit{Campylobacter hyointestinalis} subsp. \textit{lawsonii} Strains

Xiaoming Bian,a Steven Huynh,b Mary H. Chapman,b Christine M. Szymanski,a,c Craig T. Parker,b William G. Millerb

aDepartment of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
bProduce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
cDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

\textbf{ABSTRACT}
With increasing reports of \textit{Campylobacter hyointestinalis} species associated with human diseases, more genome sequences are required to understand the virulence mechanisms of this emerging pathogen. Here, we describe the genome sequences of nine \textit{C. hyointestinalis} subsp. \textit{lawsonii} strains.

\textit{Campylobacter jejuni} is one of the major causes of gastrointestinal illness worldwide \cite{1–4}, and other \textit{Campylobacter} species are increasingly reported to be associated with diarrheal burden \cite{5,6}. \textit{C. hyointestinalis} is among these emerging pathogens and is commonly isolated from farm animals and associated with diarrhea, gastric adenocarcinomas, proliferative enteritis, and inflammatory bowel disease in humans through zoonotic infection \cite{7–11}. The complete genome sequences of two subspecies, \textit{C. hyointestinalis} subsp. \textit{hyointestinalis} and \textit{C. hyointestinalis} subsp. \textit{lawsonii}, were first published in 2016 \cite{12}, but additional \textit{C. hyointestinalis} subsp. \textit{lawsonii} genome sequences have not been published since then. Additional genome sequences are required for understanding the virulence mechanisms and developing molecular detection methods for this emerging pathogen. Here, we report the draft genome sequences of nine \textit{C. hyointestinalis} subsp. \textit{lawsonii} strains.

Nine \textit{C. hyointestinalis} subsp. \textit{lawsonii} strains, representing eight multilocus sequence typing (MLST) sequence types (STs) \cite{13}, including the type strain of the subspecies (CHYS = LMG 14432 = NCTC 12901 = CCUG 34538), were selected for sequencing (Table 1). Single colonies from each strain were grown microaerobically for 48 h at 37°C on anaerobe basal agar supplemented with 5% laked horse blood. Genomic DNA was extracted from a loop (~5 µl) of cells using the Wizard genomic DNA kit.

Genome sequencing was performed using the Illumina MiSeq platform (Table 1). For each genome, the 2 × 250-bp paired-end trimmed MiSeq reads (average length = 237 bp) were assembled using the Newbler assembler version 2.6. An average of 75 contigs were obtained for the nine \textit{C. hyointestinalis} subsp. \textit{lawsonii} genomes, with approximately 96 to 98% of each genome represented by large contigs of ≥5,000 bp. Nearly every base in these contigs had a quality score of ≥40. The coverage for each genome ranged from 124× to 241×. All sequencing reads were deposited in the NCBI Sequence Read Archive (SRA; Table 1).

The average total sequence length for the nine \textit{C. hyointestinalis} subsp. \textit{lawsonii} genomes was 1.796 Mb (Table 1), and the G+C contents for the nine genomes ranged from 33.3 to 33.5%. These data are consistent with the previously sequenced genome of \textit{C. hyointestinalis} subsp. \textit{lawsonii} strain LMG 15993 (1.753 Mb, 33.6% G+C content) \cite{12}. Each genome was annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) and the RAST (Rapid Annotations using Subsystem Technology) version 2.0.

Received 17 July 2018
Accepted 5 August 2018
Published 13 September 2018

Citation Bian X, Huynh S, Chapman MH, Szymanski CM, Parker CT, Miller WG. 2018. Draft genome sequences of nine \textit{Campylobacter hyointestinalis} subsp. \textit{lawsonii} strains. Microbiol Resour Announc 7:e01016-18. https://doi.org/10.1128/MRA.01016-18.

Editor Julie C. Dunning Hotopp, University of Maryland School of Medicine

Copyright © 2018 Bian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to William G. Miller, william.miller@ars.usda.gov.
Strain	ST	Source	BioSample no.	BioProject no.	SRA no.	GenBank accession no.	Reads	Contigs	% of genome in large contigs (Q40%)	Total sequence length (Mb)	
CHY5	8	Pig, stomach	SAMN09274393	PRJNA473765	SRP150729	QMAE000000000	1,572,688 238.5 209	86	57	97.7 (100)	1.786
RM9004	97	Pig, feces	SAMN09274394	PRJNA473766	SRP150725	QMAF000000000	1,060,682 237 143	68	38	97.9 (100)	1.747
RM9426	20	Pig, feces	SAMN09274395	PRJNA473767	SRP150727	QMAG000000000	1,179,661 237.2 153	76	47	97.7 (100)	1.823
RM9752	21	Pig, feces	SAMN09274396	PRJNA473771	SRP150726	QMAH000000000	1,809,534 238 241	71	43	97.6 (100)	1.785
RM9767	22	Pig, feces	SAMN09274397	PRJNA473772	SRP150728	QMAI000000000	1,184,803 237.3 155	82	49	97.3 (100)	1.808
RM10071	23	Pig, feces	SAMN09274398	PRJNA473773	SRP150732	QMAJ000000000	1,580,942 235.6 202	91	43	95.8 (100)	1.836
RM10074	22	Pig, feces	SAMN09274399	PRJNA473774	SRP150734	QMAK000000000	1,409,722 233.5 181	82	47	96.8 (100)	1.809
RM10075	24	Pig, feces	SAMN09274400	PRJNA473775	SRP150736	QMAL000000000	941,976 236.3 124	67	40	97.7 (100)	1.786
RM14416	37	Cow, feces	SAMN09274401	PRJNA473776	SRP150737	QMAM000000000	940,690 241.2 127	54	33	98.1 (100)	1.786
2 server (http://rast.nmpdr.org) (14, 15). PGAP analysis identified an average of 1,814 putative protein-coding genes and 39 to 44 tRNAs per genome.

All strains possess genes encoding factors for bacterial defense, antimicrobial resistance, virulence, and DNA exchange, including homologs of colicin V bacteriocins, the *Campylobacter* multidrug efflux (Cme) pump, a macrolide efflux (MacAB) transporter, systems for heavy metal resistance, group II capsular polysaccharides, nonulosonic acid biosynthesis, N-linked protein glycosylation, DNA transfer mechanisms (Tra, Trb, T4SS), and the cytotochalins distending toxin (CdtABC), while some strains produce homologs of zonula occludens toxin, prophage remnants, and tetracycline resistance proteins. All these features should be examined in greater detail to understand the pathogenesis of this emerging *Campylobacter* species.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession numbers QMAE00000000 to QAMM00000000. The versions described in this paper are the first versions, QMAE01000000 to QMAM01000000.

ACKNOWLEDGMENTS

C.M.S. is an Alberta Innovates Strategic Chair in Bacterial Glycomics. This work was supported by the U.S. Department of Agriculture, Agricultural Research Service CRIS project 2030-42000-051-00D.

REFERENCES

1. Galanis E. 2007. *Campylobacter* and bacterial gastroenteritis. CMAJ 177: 570–571. https://doi.org/10.1503/cmaj.070660.

2. Lozano R, Naghani M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, AlMazroa MA, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couper W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2125. https://doi.org/10.1016/S0140-6736(12)61728-0.

3. Amour C, Gratz J, Mduma E, Svensen E, Rogawski ET, McGrath M, Seidman JC, McCormick BJ, Bresnahan S, Samie A, Maharbiz M, Qureshi S, Hotwani A, Babji S, Trigoso DR, Lima AA, Bodhidatta L, Bessong P, Ahmed T, Shakoor S, Kang G, Kosek M, Guerant RL, Lang D, Gottlieb M, Houpt ER, Platts-Mills JA, for the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development Project (MAL-ED) Network Investigators. 2016. Epidemiology and impact of Campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin Infect Dis 63:1171–1179. https://doi.org/10.1093/cid/ciw542.

4. Liu J, Platts-Mills JA, Juma J, Kabir F, Nkeze J, Okojo C, Operario DJ, Uddin J, Ahmed S, Alonso PL, Antonio M, Becker SM, Blackwelder WC, Breiman RF, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2125. https://doi.org/10.1016/S0140-6736(12)61728-0.

5. Galanis E. 2007. *Campylobacter* and bacterial gastroenteritis. CMAJ 177: 570–571. https://doi.org/10.1503/cmaj.070660.

6. Edmonds P, Patton CM, Griffin PM, Barrett TJ, Schmid GP, Baker CN, Lambert MA, Brenner DJ. 1987. *Campylobacter hyointestinalis* associated with human gastrointestinal disease in the United States. J Clin Microbiol 25:685–691.

7. Geelhoed CJ, Ward GE, Chang K, Kurtz HJ. 1983. *Campylobacter hyointestinalis* (new species) isolated from swine with lesions of proliferative ileitis. Am J Vet Res 44:361–367.

8. Faust SN, Castaneda-Bouchard A, Godeaux F, Schloss PD, Hamady M, Knight R, Turnbaugh PJ. 2009. Prokaryotic genome annotation pipeline. Nucleic Acids Res 37:31529-X.

9. Domingo ER, Domingo JA, Rey MA, Sánchez-Bonadón M, Mancia S, Sánchez-Moreno M, Díaz F, García-Cuenca F, Vázquez JM. 2019. *Campylobacter*-associated gastroenteritis: a systematic review. Front Cell Infect Microbiol 9:75. https://doi.org/10.3389/fcimb.2019.00075.

10. Alm EJ, Skennerton C, Zaneveld J, Henry KM, Lounasmi J, Karp J, Knight R, Beiko R, De Cloedt L, Fierer N, Peplies J, Ochman H, trendy J, Sogin ML. 2008. A phylogenetic and ecological analysis of five enteric bacterial communities. ISME J 2:13–29. https://doi.org/10.1038/ismej.2007.99.

11. Gorkiewicz G, Feierl G, Zechner R, Zechner EL. 2002. Transmission of *Campylobacter* species. Nat Rev Gastroenterol Hepatol 8:669–685. https://doi.org/10.1038/nrgastro.2011.191.

12. Myrvik PN. 2015. The clinical importance of emerging *Campylobacter* species. Nat Rev Microbiol 13:661–673. https://doi.org/10.1038/nrmicro.2015.1532.

13. Miller WG, Yee E, Chapman MH. 2016. Complete genome sequences of *Campylobacter hyointestinalis* subsp. *hyointestinalis* strain LMG 9260 and *C. hyointestinalis* subsp. *lawsonii* strain LMG 15993. Genome Announc 4(4):e00665-16. https://doi.org/10.1128/genomeA.00665-16.

14. Miller WG, Chapman MH, Yee E, On SL, McNulty DK, Lastovica AJ, Carroll AM, McNamara EB, Duffey G, Mandrell RE. 2012. Multilocus sequence typing methods for the emerging *Campylobacter* species *C. hyointestinalis*, *C. lanienae*, *C. spatharum*, *C. concisus*, and *C. curvus*. Front Cell Infect Microbiol 2:45. https://doi.org/10.3389/fcimb.2012.00045.

15. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Wolf Y, Marchler-Bauer A, Lipman DJ. 2009. Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 37:31529-X.