NON–UNIQUENESS OF WEAK SOLUTIONS OF THE QUANTUM–HYDRODYNAMIC SYSTEM

PETER MARKOWICH* AND JESÚS SIERRA
CEMSE Division, King Abdullah University of Science and Technology
Box 4700, Thuwal 23955-6900, Saudi Arabia

(Communicated by Shinya Nishibata)

ABSTRACT. We investigate the non–uniqueness of weak solutions of the Quantum–Hydrodynamic system. This form of ill–posedness is related to the change of the number of connected components of the support of the position density (called nodal domains) of the weak solution throughout its time evolution. We start by considering a scenario consisting of initial and final time, showing that if there is a decrease in the number of connected components, then we have non-uniqueness. This result relies on the Brouwer invariance of domain theorem. Then we consider the case in which the results involve a time interval and a full trajectory (position–current densities). We introduce the concept of trajectory–uniqueness and its characterization.

1. Introduction. In this paper, we study the non-uniqueness of (so-called Schrödinger–generated) bounded energy weak solutions of the Quantum Hydrodynamic (QHD) system [13]

$$
\rho_t + \text{div} J = 0,
$$

$$
J_t + \text{div} \left[\frac{J \otimes J}{\epsilon} \right] + \rho \nabla V - \frac{1}{2} \rho \nabla \left(\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} \right) = 0, \quad x \in \mathbb{R}^d, \ t \in \mathbb{R},
$$

along with appropriate initial data, as discussed below. We define the quantities \(\rho \), \(J \) of the QHD system through their connection with the Schrödinger equation

$$
i \psi_t = -\frac{1}{2} \Delta \psi + V(x) \psi, \ x \in \mathbb{R}^d, \ t \in \mathbb{R},
$$

subject to the initial condition

$$
\psi (x, t = 0) = \psi_0 (x), \ x \in \mathbb{R}^d.
$$

Hence, \(\rho = \rho (x, t) := |\psi (x, t)|^2 \) and \(J = J (x, t) := \text{Im} (\bar{\psi} (x, t) \nabla \psi (x, t)) \). We call \(\rho \) the position density and \(J \) the current density generated by the wave function \(\psi \). For a detailed derivation of the QHD system see, e.g., [1, 4, 5, 6, 12].

The Schrödinger energy is given by

$$
E(t) := \frac{1}{2} \int_{\mathbb{R}^d} |\nabla \psi (x, t)|^2 \, dx + \int_{\mathbb{R}^d} V(x) |\psi (x, t)|^2 \, dx.
$$
It is a constant of the motion, i.e., $E(t) = E(t = 0) \forall t \in \mathbb{R}$ (under the assumptions made below).

Henceforth we assume that the potential V is in $C_{loc}^{1,1}(\mathbb{R}^d)$ and bounded from below, such that the Hamiltonian $H := -\frac{1}{2} \Delta + V$ is essentially self-adjoint on $L^2(\mathbb{R}^d)$.

Gasser and Markowich [10] showed that if $E(t = 0) < \infty$ and $\psi_0 \in L^2(\mathbb{R}^d)$, then the position and current densities corresponding to the uniquely defined energy-conserving solution $\psi \in C(\mathbb{R}_t; L^2(\mathbb{R}^d))$ satisfy the QHD system in the sense of distributions with initial data $\varrho_0(x) = \varrho(x, t = 0) = |\psi_0(x)|^2$ and $J_0(x) = J(x, t = 0) = \text{Im}(\psi_0(x) \nabla \psi_0(x))$. Clearly we have $\varrho \in C(\mathbb{R}_t; L^1(\mathbb{R}^d))$ and $J \in C \left(\mathbb{R}_t; D' \left(\mathbb{R}^d \right)^d\right)$, $J(t) \in L^1(\mathbb{R}^d)^d \forall t \in \mathbb{R}$ (uniformly) because of the energy conservation.

Note that the QHD system is formulated above in conservative form, namely, as compressible Euler equations where the enthalpy is given by the sum of the so-called Bohm potential

$$Q := -\frac{1}{2} \Delta \sqrt{\varrho}$$

and the external potential V. In this form, vacuum states $\varrho = 0$ do not have to be dealt with particularly (see [10]), which is not the case for the associated non-conservative form. The reason for this lies in the fact that the velocity $u := J/\varrho$ cannot be reasonably defined for wave-functions ψ which exhibit nodes, i.e., vacuum states where $\psi = 0$. Contrary to this, the internal energy tensor $(J \otimes J)/\varrho$ makes perfect sense when ϱ and J are defined through any bounded energy wave-function (see [2, 3]). However, as we shall point out in the sequel, the conservative form of QHD is prone to an ill-posedness in the form of non-uniqueness of finite energy weak solutions, which is generated precisely by the occurrence of vacuum states.

On the other hand, the QHD equations are the zeroth and first order moment equations of the Bohm equation with the mono kinetic closure. See [9, 15, 16] for a detailed treatment of this topic.

To motivate our subsequent analysis, take $\psi_0 = \psi_0(x)$ smooth in $L^2(\mathbb{R}^d)$ and define $\varrho_0 = \varrho_0(x)$ and $J_0 = J_0(x)$ as before. Moreover, consider a second L^2-wave function, $\varphi_0 = \varphi_0(x)$. We want to determine the conditions under which

$$|\varphi_0|^2 = \varrho_0, \quad \text{Im}(\bar{\varphi_0} \nabla \varphi_0) = J_0 \text{ a.e. on } \mathbb{R}^d. \quad (2)$$

To this end, define $D_0 := \{x \in \mathbb{R}^d : \varrho_0 \neq 0\}$ and let $\Lambda_1^0, \Lambda_2^0, \ldots$ be the (countably many) connected components of D_0. Furthermore, let ψ_0 be given by

$$\psi_0(x) = \sqrt{\varrho_0(x)} \exp(iS_0(x)),$$

where $\varrho_0(x)$ and $S_0(x)$ are smooth real valued functions. Then,

$$J_0(x) = \varrho_0(x) \nabla S_0(x).$$

Set $\varphi_0(x) = \sqrt{\varrho_0(x)} \exp(iR_0(x))$ with $\sigma_0(x) = |\varphi_0(x)|^2$. Thus, (2) becomes

$$\sigma_0 = \varrho_0, \quad \varrho_0 \nabla R_0 = \varrho_0 \nabla S_0,$$

which implies $\nabla R_0 = \nabla S_0$ on D_0. Therefore, we find that due to the connectivity of Λ_k^0, $k \in \mathbb{N}$,

$$R_0(x) = S_0(x) + C_k, \quad x \in \Lambda_k^0,$$

where $C_k \in \mathbb{R}$.
Hence, (2) is satisfied if and only if
\[\varphi_0 (x) = \psi_0 (x) e^{iC_k}, \quad x \in \Lambda_k^0, \quad k = 1, 2, \ldots \quad \text{a.e. in } \mathbb{R}^d, \]
for some \(C_k \in \mathbb{R} \). Note that, under appropriate smoothness and geometric assumptions, the energy associated to \(\varphi_0 \) is finite for all choices of the constants \(C_k \) (see Section 2).

We shall argue that, under certain assumptions, the constants \(C_k \) can be chosen such that the initial wave-function \(\varphi_0 \) generates a Schrödinger solution whose position and current densities differ from those generated by the Schrödinger evolution \(\psi_0 \) (the original initial wave-function) at a time \(T \neq 0 \). To be more specific, consider the following scenario. Let \(d = 1 \) and \(\psi_0 = \psi_0 (x) \) smooth with \(\psi_0 (0) = 0 \), \(\psi_0 (x) \neq 0 \) for \(x \neq 0 \), such that at some \(T > 0 \) we have \(\psi (x, T) \neq 0 \) for all \(x \in \mathbb{R} \) (we shall show an example below). Then \(D_0 = \mathbb{R} - \{ 0 \} \) and \(\Lambda_0^1 = \{ x < 0 \}, \Lambda_0^2 = \{ x > 0 \} \).

Define
\[\varphi_0 (x) := \begin{cases} \psi_0 (x), & x < 0, \\ \psi_0 (x) e^{i\alpha}, & x > 0, \end{cases} \quad \text{for some } \alpha \in \mathbb{R}, \alpha \neq 0. \]

It is straightforward to check that \(\varphi_0 \in H^1 (\mathbb{R}^d) \).

Assume that the position and current densities of \(\psi (T) \) and \(\varphi (T) \) coincide. Since \(\{ |\psi (\cdot, T)|^2 \neq 0 \} = \mathbb{R} \), we conclude that there is \(\beta \in \mathbb{R} \) such that
\[e^{i\beta} \psi (x, T) = \varphi (x, T), \quad \forall x \in \mathbb{R}. \]

Now solve the Schrödinger equation
\[i\varphi_t = -\frac{1}{2}\varphi_{xx} + V (x) \varphi, \quad \varphi (T) \text{ given } (= e^{i\beta} \psi (x, T)), \]
back to \(t = 0 \) and find that \(\varphi (x, t = 0) = e^{i\beta} \psi (x, t = 0) \) on \(\mathbb{R} \), i.e., \(\varphi_0 (x) = e^{i\beta} \psi_0 (x) \) on \(\mathbb{R} \), which is a contradiction. Therefore, we conclude the non-uniqueness of the corresponding initial value problem (IVP) for the QHD system.

As an example, consider the harmonic oscillator in 1D, i.e., equation (1) with \(V (x) = x^2/2, x \in \mathbb{R} \). In this case there is a family of solutions (with appropriate initial conditions) for \(n = 0, 1, 2, \ldots \) and energy levels given by \(E_n = (n + 1)/2 \).

The first three members of the family are
\[\psi_0 (x, t) = e^{-itE_0} e^{-x^2/2} = e^{-it/2} e^{-x^2/2}, \]
\[\psi_1 (x, t) = xe^{-\frac{3}{2}it} e^{-x^2/2}, \]
\[\psi_2 (x, t) = (1 - 2x^2) e^{-\frac{5}{2}it} e^{-x^2/2}. \]

Due to the linearity of the Schrödinger equation, any linear combination of the previous solutions will also be a solution. Hence, consider
\[\psi (x, t) = \psi_0 (x, t) - \psi_2 (x, t) = e^{-it} x^{-\frac{1}{2}} \left(1 - (1 - 2x^2) e^{-2it} \right). \]

Then
\[\psi (x, t) = e^{-it} x^{-\frac{1}{2}} \left(1 - (1 - 2x^2) \cos 2t + i (1 - 2x^2) \sin 2t \right) \]
with
\[|\psi (x, t)|^2 = e^{-x^2} \left((1 - (1 - 2x^2) \cos 2t)^2 + (1 - 2x^2)^2 (\sin 2t)^2 \right). \]
Clearly, $|\psi(x, t = 0)|^2 = 4e^{-x^2}x^4 = 0$ if and only if $x = 0$. In general, $|\psi(x, t)|^2 = 0$ if and only if $(1 - (1 - 2x^2)\cos 2t)^2 = 0$ and $(1 - 2x^2)^2(\sin 2t)^2 = 0$. Therefore, $|\psi(x, t)|^2 = 0$ if and only if

$$x = 0 \text{ and } t = \frac{l\pi}{2}, \quad l \text{ even},$$

or

$$x = \pm 1 \text{ and } t = \frac{l\pi}{2}, \quad l \text{ odd}.$$

Thus, we have our required scenario if we choose $\psi_0 = \psi(x, t = 0)$ and any $0 < T < \pi/2$.

The primary goal of this paper is to give rather explicit (sufficient) conditions on a bounded energy Schrödinger solution which guarantee that the QHD trajectory (position-current densities) generated by such wave-function is not unique in the sense that a different QHD trajectory intersects it at some $t \in \mathbb{R}$. It turns out that we can state such conditions in connection with the topological structure of the so-called nodal domains of the wave function, defined as the connected components of the set where the wave function does not vanish (in other words, the connected domains of the non-vacuum set of the quantum flow).

The rest of the paper is organized as follows. In Section 2 we generalize the previous result to wave function solution of the Schrödinger IVP (QHD-IVP) with less regularity, arbitrary dimension, and an arbitrary number of connected components. In Section 3, we consider the case in which the results involve a time interval and a full QHD trajectory.

2. (Non) uniqueness of the IVP.

Proposition 1. Let ψ be a realization of an $H^1(\mathbb{R}^d)$ function, $\varrho := |\psi|^2$, and $J = \text{Im} \left(\bar{\psi} \nabla \psi \right)$. Let Λ be a connected component of the (set-theoretic) support of ϱ, defined by $D_0 := \{ x \in \mathbb{R}^d : \varrho(x) > 0 \}$, and assume that Λ is open in \mathbb{R}^d. Let $\varphi \in H^1(\mathbb{R}^d)$, $\sigma := |\varphi|^2$ and $I := \text{Im}(\bar{\varphi} \nabla \varphi)$. If

$$\varphi = \sigma, \quad J = I, \quad \text{a.e. on } \Lambda$$

then there exists a real constant, C, such that

$$\psi(x) = \varphi(x) e^{iC}, \quad x \in \Lambda \text{ a.e.}$$

Proof. Clearly, $\varrho, \sigma, I, J \in L^1(\mathbb{R}^d)$. Consider, for $\omega \in C_0^\infty(\Lambda)$, $\omega \geq 0$:

$$\int_\Lambda |I - J| \omega dx = \int_\Lambda \text{Im} \left(\bar{\varphi} \nabla \varphi - \bar{\psi} \nabla \psi \right) \omega dx$$

$$= \int_\Lambda \text{Im} \left(\frac{\nabla \varphi}{\varphi} - \frac{\nabla \psi}{\psi} \right) \omega dx$$

$$= \int_\Lambda \left| \nabla \ln \frac{\varphi}{\psi} \right| \omega dx$$

$$= \int_\Lambda \text{Im} \left(\ln \frac{\varphi}{\psi} \right) \omega dx.$$

Hence,

$$0 = \nabla \text{Im} \left(\ln \frac{\varphi}{\psi} \right) \quad \text{a.e. on } \Lambda.$$

Therefore,

$$\arg \psi = \arg \varphi + C + 2k\pi.$$
We have

\[\psi = \sqrt{\varrho} e^{i \arg \psi}, \quad \varphi = \sqrt{\sigma} e^{i \arg \varphi}, \]

and since \(\varrho = \sigma \), we conclude that

\[\psi = \varphi e^{i C_\alpha} \text{ a.e. on } \Lambda. \]

Remark 1. Assume that all the connected components \(\Lambda_\alpha \) of \(D_0 \) are of locally finite perimeter (\(\Lambda_\alpha \) are Caccioppoli sets), that \(\psi \) is continuous on \(\mathbb{R}^d \) and in \(H^1(\mathbb{R}^d) \).

Then the characteristic function \(1_{\Lambda_\alpha} \) of \(\Lambda_\alpha \) has locally bounded total variation, which in turn implies that its distributional gradient is a vector valued (signed) Radon measure supported on the boundary of \(\Lambda_\alpha \). Thus the function \(\varphi \), defined by

\[\varphi = \psi \sum_{\alpha \in A} e^{-i C_\alpha} 1_{\Lambda_\alpha}, \]

is in \(H^1(\mathbb{R}^d) \), and we have \(\varrho = \sigma \) and \(J = J \) on \(\mathbb{R}^d \). Specifically, we compute

\[\nabla \varphi = \nabla \psi \sum_{\alpha \in A} e^{-i C_\alpha} 1_{\Lambda_\alpha}, \]

taking into account that \(\psi|_{\partial \Lambda_\alpha} = 0 \). Note that the index set \(A \subseteq \mathbb{N} \).

Theorem 2.1. Let \(\psi = \psi(x,t) \) be a bounded energy solution of the Schrödinger equation on \([0,T]\) with \(\psi \) continuous (in \(x \)) for \(t = 0, T \). Define

\[N \ni N_0 := \text{Number of connected components of } \{ \varrho(\cdot,t=0) \neq 0 \} := D_0, \]
\[N \ni N_T := \text{Number of connected components of } \{ \varrho(\cdot,t=T) \neq 0 \} := D_T, \]

and assume \(N_T < N_0 \leq \infty \). Furthermore, assume that all the connected components of \(D_0 \) are of locally finite perimeter. Then there is non-uniqueness of Schrödinger-generated bounded energy solutions of the QHD system on \([0,T]\), with \(\varrho(\cdot,t=0), J(\cdot,t=0) \) given.

Proof. To simplify the presentation, assume that \(N_0 < \infty \). Let \(\Lambda_1^0, \ldots, \Lambda_{N_0}^0 \) be the connected components of \(D_0 \) and let \(\Lambda_1^T, \ldots, \Lambda_{N_T}^T \) be the connected components of \(D_T \).

Note that \(\psi(\cdot,t=0) \) and

\[\varphi(x,t=0) := \psi(x,t=0) e^{i a_\ell t}, \quad x \in \Lambda_\ell^l, \quad \ell = 1, \ldots, N_0 \]

are in \(H^1(\mathbb{R}^d) \) and generate the same position and current densities at \(t = 0 \) for all choices \(a_\ell \in \mathbb{R} \).

Assume that the QHD system has a unique Schrödinger-generated bounded energy solution on \([0,T]\). Then, at \(t = T \), we must have

\[\varphi(x,t=T) = \psi(x,t=T) e^{i a_k t}, \quad x \in \Lambda_k^T, \quad k = 1, \ldots, N_T, \]

where \(\varphi(t) \) is the Schrödinger solution with initial datum \(\varphi(\cdot,t=0) \) and \(\varrho = |\varphi|^2, J = \text{Im}(\varphi \nabla \varphi) \). This defines a map \(\mathbb{T}^{N_0} \to \mathbb{T}^{N_T} \) (\(\mathbb{T}^n \) is the \(n \)-dimensional torus)

\[F : (a_1, \ldots, a_{N_0}) \to (\beta_1, \ldots, \beta_{N_T}). \]

This map is injective since the backward Schrödinger IVP has the uniqueness property. Continuity of \(F \) is a consequence the \(L^2(\mathbb{R}^d) \)–continuity of the Schrödinger
evolution in the following way. Take a sequence \(\left(\alpha_1^{(m)}, \ldots, \alpha_N^{(m)} \right) \rightarrow \left(\alpha_1^{(0)}, \ldots, \alpha_N^{(0)} \right) \) as \(m \rightarrow \infty \). Hence,

\[
\sum_{l=1}^{N_0} \int_{\Lambda_l^0} \left| \psi(x,t=0) e^{i\alpha_l^{(m)}} - \psi(x,t=0) e^{i\alpha_l^{(0)}} \right|^2 dx = \sum_{l=1}^{N_0} \int_{\Lambda_l^0} \left| \psi(x,t=0) \right|^2 \left| 1 - e^{i(\alpha_l^{(0)} - \alpha_l^{(m)})} \right|^2 dx \rightarrow 0.
\]

Therefore,

\[
\psi^{(m)}(x,t=0) := \psi(x, t = 0) e^{i\alpha_l^{(m)}} \quad x \in \Lambda_l^0, \; l = 1, \ldots, N_0
\]

converges to

\[
\psi^{(0)}(x,t=0) := \psi(x, t = 0) e^{i\alpha_l^{(0)}} \quad x \in \Lambda_l^0, \; l = 1, \ldots, N_0
\]

in \(L^2(\mathbb{R}^d) \). By \(L^2 \)-continuity of the Schrödinger evolution, we have that

\[
\psi^{(m)}(x,t=T) := \psi(x, t = T) e^{i\beta_k^{(m)}} \quad x \in \Lambda_k^T, \; k = 1, \ldots, N_T
\]

converges in \(L^2(\mathbb{R}^d) \) to

\[
\psi^{(0)}(x,t=T) := \psi(x, t = T) e^{i\beta_k^{(0)}} \quad x \in \Lambda_k^T, \; k = 1, \ldots, N_T.
\]

By the same computation, we find that

\[
\int_{\mathbb{R}^d} \left| \psi^{(0)}(x,T) - \psi^{(m)}(x,T) \right|^2 dx = \sum_{k=1}^{N_T} \int_{\Lambda_k^T} \left| \psi(x,T) \right|^2 dx \left| 1 - e^{i(\beta_k^{(0)} - \beta_k^{(m)})} \right|^2 \rightarrow 0
\]

as \(m \rightarrow \infty \) if and only if \(\beta_k^{(m)} \rightarrow \beta_k^{(0)} \), \(k = 1, \ldots, N_T \). Hence, \(F \) is continuous.

Since by assumption \(N_0 > N_T \), we have a contradiction due to the fact that, as a consequence of the Brouwer invariance of domain theorem (see, e.g., [7, 11, 17]), there is no continuous injective mapping from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) when \(n > m \).

It is straightforward to show that the result also holds for \(N_0 = \infty > N_T \).

3. Trajectory case. Let \(\psi \in C(\mathbb{R}_t; L^2(\mathbb{R}^d)) \cap L^\infty(\mathbb{R}_t; H^1(\mathbb{R}^d)) \) be a bounded energy solution of the Schrödinger equation (1). Let \(q := |\psi|^2 \) and \(J := \text{Im}(\bar{\psi}\nabla\psi) \), and assume that \(q \in C(\mathbb{R}_t^d \times \mathbb{R}_t) \). Denote

\[
\Omega := \{(x,t) \in \mathbb{R}^{d+1} : q(x,t) \neq 0\},
\]

and let \(\Omega_\alpha \subseteq \Omega, \; \alpha \in B \subseteq \mathbb{N} \), be the connected components of \(\Omega \). Note that each set \(\Omega_\alpha \) is open in \(\mathbb{R}^{d+1} \) and

\[
\partial \Omega_\alpha \subseteq \{(x,t) \in \mathbb{R}^{d+1} : q(x,t) = 0\}.
\]

Proposition 2. Let \(\varphi \in C(\mathbb{R}_t; L^2(\mathbb{R}^d)) \cap L^\infty(\mathbb{R}_t; H^1(\mathbb{R}^d)) \) be another bounded energy solution of the Schrödinger equation (1) and denote \(\sigma := |\varphi|^2 \), \(I := \text{Im}(\bar{\varphi}\nabla\varphi) \). If

\[
q = \sigma, \; J = I \; \forall t \text{ a.e. in } \mathbb{R}_t^d,
\]

then there exists a constant, \(C_\alpha \in \mathbb{R} \), for every \(\alpha \in B \) such that \(\varphi(x,t) = \psi(x,t) e^{iC_\alpha} \) a.e. in \(\Omega_\alpha \).
Remark 2. Let \(\omega \in C_0^\infty (\Omega_\alpha) \) and consider

\[
\int_{R_1} \int_{R_2} |J - I| \omega dx = \int_{R_1} \int_{R_2} \left| \text{Im} (\psi \nabla \psi - \varphi \nabla \varphi) \right| \omega dx = \int_{R_1} \int_{R_2} \left| \text{Im} \left(\frac{\psi}{\varphi} \right) \right| \omega dx = \int_{R_1} \int_{R_2} \left| \nabla_x \text{Im} \left(\frac{\psi}{\varphi} \right) \right| \omega dx = 0.
\]

Now let \(\omega \) be supported in an arbitrary convex subset, \(\Sigma_\alpha \), of \(\Omega_\alpha \). Then

\[
\text{arg } \varphi = \text{arg } \psi + C_{\Sigma_\alpha} (t) \text{ in } \Sigma_\alpha
\]

for some measurable function \(C_{\Sigma_\alpha} = C_{\Sigma_\alpha} (t) \) on \(\mathbb{T}^d \). This gives

\[
\varphi = \psi e^{iC_{\Sigma_\alpha} (t)} \text{ in } \Sigma_\alpha.
\]

We insert into the Schrödinger equation and find \((\psi \neq 0, \varphi \neq 0 \text{ in } \Omega_\alpha) \)

\[
\dot{C}_{\Sigma_\alpha} (t) = 0 \text{ for all } t \in \Sigma_\alpha := \{ t : \Sigma_\alpha \cap \{ (y, t) : y \in \mathbb{R}^d \} \neq \emptyset \}.
\]

Therefore for every convex open subset \(\Sigma_\alpha \) of \(\Omega_\alpha \) there exists \(C_{\Sigma_\alpha} \in \mathbb{R} \) such that

\[
\varphi = \psi e^{iC_{\Sigma_\alpha}} \text{ in } \Sigma_\alpha.
\]

To prove that \(C_{\Sigma_\alpha} \) depends only on \(\alpha \) and not on the convex subset of \(\Omega_\alpha \) we take any two points \((x_1, t_1), (x_2, t_2) \in \Omega_\alpha \) and connect them by a continuous curve, \(\Gamma \subseteq \Omega_\alpha \).

Now cover \(\Gamma \) by (finitely many, since \(\Gamma \) is compact) open balls \(B_{\alpha, 1}, \ldots, B_{\alpha, l} \subseteq \Omega_\alpha \). In each ball \(B_{\alpha, i} \) we have

\[
\varphi = \psi e^{iC_{\alpha, i}}.
\]

Since for each \(B_{\alpha, i} \) there exists \(B_{\alpha, j} \) with \(l_1 \neq l_2 \) such that

\[
B_{\alpha, l_1} \cap B_{\alpha, l_2} \neq \emptyset,
\]

we conclude that \(C_{\alpha, 1} = \ldots = C_{\alpha, l} \). Therefore, a unique constant \(C = C_{\Omega_\alpha} \) exists such that

\[
\varphi = \psi e^{iC_{\Omega_\alpha}} \text{ on } \Omega_\alpha \text{ a.e.}
\]

\[\square\]

Remark 2. Let \(C_\alpha \in \mathbb{R} \) for \(\alpha \in B, \psi \in C (\mathbb{R}_x \times \mathbb{R}_t) \cap L^\infty (\mathbb{R}_t; H^1 (\mathbb{R}_x)) \). Then the function

\[
\varphi (x, t) = \psi (x, t) \sum_{\alpha \in B} e^{iC_\alpha} 1_{\Omega_\alpha}\]

is in \(L^\infty (\mathbb{R}_t; H^1 (\mathbb{R}_x)) \) if all sets \(\Omega_\alpha \) have locally finite perimeter. Actually, it suffices to ask that \(\nabla_x 1_{\Omega_\alpha} \in L^\infty_{lo} (\mathbb{R}_t; \mathcal{M} (\mathbb{R}_x)^d) \), where \(\mathcal{M} (\mathbb{R}_x)^d \) is the set of (scalar signed) Radon measures on \(\mathbb{R}_x^d \).

Definition 3.1. Let

\[
\{(\varphi (t), J (t)) : t \in \mathbb{R} \} \in C (\mathbb{R}_t; L^1 (\mathbb{R}_x^d)) \times \left(L^\infty (\mathbb{R}_t; L^1 (\mathbb{R}_x^d))^d \right) \cap C (\mathbb{R}_t; D' (\mathbb{R}_x^d)^d)^d
\]

be a solution-curve of the QHD system for \(-\infty < t < \infty \). It is called trajectory-unique if for all other such solution curves \(\{(\sigma (t), J (t)) : t \in \mathbb{R} \} \) we have \((\varphi, J) (t) \neq (\sigma, I) (t) \) \(\forall t \in \mathbb{R} \) or \((\varphi, J) (t) = (\sigma, I) (t) \) \(\forall t \in \mathbb{R} \).

In simple terms, this means that different trajectories do not intersect, neither forward nor backward in time.
Corollary 1. Let \(\Omega \subseteq \mathbb{R}^d \times \mathbb{R}_t \) be a bounded energy solution of the Schrödinger equation with \(\varrho (\cdot, t = T_1) \) and \(\varrho (\cdot, t = T_2) \) continuous on \(\mathbb{R}^d \) \((T_1 < T_2)\) and let all connected components of \(\varrho (\cdot, t = T_1) \) and \(\varrho (\cdot, t = T_2) \) be Caccioppoli sets. If \(N_{T_1} < N_{T_2} \), then \(\{ (\varrho, J) : t \in [T_1, T_2] \} \) (QHD-trajectory) is not trajectory-unique.

Proof. Already established for \(N_{T_1} > N_{T_2} \) (Theorem 2.1). If \(N_{T_2} > N_{T_1} \) apply the same argument calculating backwards in time.

Now let \(\Omega_1 \neq \Omega_2 \) be two adjacent connected components of \(\Omega \subseteq \mathbb{R}^d \times \mathbb{R}_t \), with the smooth interface surface \(\Gamma = \partial \Omega_1 \cap \partial \Omega_2 \).

Let \(\psi = \psi (x, t) \) be a smooth solution of the Schrödinger equation, with obviously \(\psi|_{\Gamma} = 0 \). Denote by \(\Upsilon \) the unit normal of \(\Gamma \), pointing (for definiteness sake) into \(\Omega_1 \) and set \(\Upsilon = \left(\frac{T_x}{T_t} \right) \) according to the coordinate ordering \(\left(\begin{array}{c} x \\ t \end{array} \right) \).

Proposition 3. Let \(C_1 \neq C_2 \) be real constants and set
\[
\varphi (x, t) = \psi (x, t) \cdot \left\{ \begin{array}{ll}
eq e^{iC_1} , & (x, t) \in \Omega_1, \\
eq e^{iC_2} , & (x, t) \in \Omega_2.
\end{array} \right.
\]

Then \(\varphi \) is a solution of the Schrödinger equation in \(\Omega_1 \cup \Gamma \cup \Omega_2 \) if and only if
\[
\nabla \psi \cdot \Upsilon_{x} |_{\Gamma} = 0.
\]

Proof. Set \(\alpha_1 = e^{iC_1} \), \(\alpha_2 = e^{iC_2} \). Then
\[
\varphi = \alpha_1 \psi 1_{\Omega_1} + \alpha_2 \psi 1_{\Omega_2} \text{ in } \Omega_1 \cup \Gamma \cup \Omega_2.
\]

Compute, in \(\Omega_1 \cup \Gamma \cup \Omega_2 \)
\[
\varphi_t = \alpha_1 \psi_t 1_{\Omega_1} + \alpha_2 \psi_t 1_{\Omega_2} + \alpha_1 \psi \frac{\partial}{\partial t} 1_{\Omega_1} + \alpha_2 \psi \frac{\partial}{\partial t} 1_{\Omega_2}.
\]
Note that \(\psi \) vanishes continuously. Thus

\[
\psi \frac{\partial}{\partial t} 1_{\Omega_i} = 0
\]

and

\[
\varphi_t = \alpha_1 \psi_t 1_{\Omega_i} + \alpha_2 \psi_t 1_{\Omega_2}.
\]

The analogous computation holds with \(\nabla 1_{\Omega_i} \). Then

\[
\nabla \varphi = \alpha_1 \nabla \psi 1_{\Omega_1} + \alpha_2 \nabla \psi 1_{\Omega_2}
\]

and

\[
\Delta \varphi = \alpha_1 \Delta \psi 1_{\Omega_1} + \alpha_2 \Delta \psi 1_{\Omega_2} + \alpha_1 \nabla \psi \cdot \nabla 1_{\Omega_1} + \alpha_2 \nabla \psi \cdot \nabla 1_{\Omega_2}.
\]

Plug into the Schrödinger equation to find (since \(\psi \) solves the Schrödinger equation)

\[
0 = \nabla \psi \cdot \left(\alpha_1 \nabla 1_{\Omega_1} + \alpha_2 \nabla 1_{\Omega_2} \right).
\]

Take a test-function, \(\omega = \omega(x,t) \in C^\infty_0 (\mathbb{R}^d \times \mathbb{R}_t) \):

\[
0 = \langle \alpha_1 \nabla \psi \cdot \nabla 1_{\Omega_1} + \alpha_2 \nabla \psi \cdot \nabla 1_{\Omega_2}, \omega \rangle_{x,t}
= -\alpha_1 \int_{\Omega_1} \text{div}_x (\omega \nabla \psi) \, dx \, dt - \alpha_2 \int_{\Omega_2} \text{div}_x (\omega \nabla \psi) \, dx \, dt
= \alpha_1 \int_G \omega \nabla \psi \cdot \mathcal{Y} \, d\mathcal{H}^{d-1}
= (\alpha_1 - \alpha_2) \int_G \nabla \psi \cdot \mathcal{Y} \, d\mathcal{H}^{d-1}.
\]

Therefore,

\[
\nabla \psi \cdot \mathcal{Y} |_G = 0.
\]

For the following results, we use the generalized Green’s formula by De Giorgi-Federer:

\[
\int_E \text{div} F \, dx = \int_{\partial^* E} F \cdot \mathcal{T} \, d\mathcal{H}^{n-1},
\]

where \(F \) is any locally Lipschitz function, \(E \subseteq \mathbb{R}^n \) is of finite perimeter, \(\mathcal{T} \) is the normal of \(\partial E \), and \(\partial^* E \) is the reduced boundary (see, e.g., [8, 14]).

Corollary 2. Let \(\Omega_1, \Omega_2 \subseteq \mathbb{R}^d \times \mathbb{R}_t \) be of locally finite perimeter. Let \(\nabla \psi \in C^{0,1}_{\text{loc}} (\mathbb{R}^d_x \times \mathbb{R}_t) \). Then \(\psi \) (defined as in Proposition 3) solves the Schrödinger equation if and only if

\[
\nabla \psi \cdot \mathcal{Y} = 0 \text{ } \mathcal{H}^d - \text{a.e. on } (\partial \Omega_1 \cap \partial \Omega_2)^*.
\]

The consequence is:

Theorem 3.3. Let all connected components \(\Omega_\alpha \) of \(\Omega \) (\(\alpha \in B \)) be of locally finite perimeter and let

\[
\nabla \psi \in C^{0,1}_{\text{loc}} (\mathbb{R}^d_x \times \mathbb{R}_t).
\]

Assume that there is a non-space-like interface segment, \(\Gamma \), between two connected components such that

\[
\nabla \psi \cdot \mathcal{Y} \neq 0 \text{ } \mathcal{H}^d - \text{a.e. on } \Gamma^*.
\]

Then the QHD-trajectory generated by \(\psi = \psi(x,t) \) is not trajectory-unique on \(\mathbb{R}_t \).
Proof. Choose $T \in \mathbb{R}$ such that
$$\Gamma \cap \{(y,T) : y \in \mathbb{R}^d\} \neq \emptyset.$$
Choose $C_1 \neq C_2$ real numbers and set
$$\varphi(x,T) := \begin{cases}
\psi(x,T) e^{iC_1} & \text{in } \Omega_1 \cap \{t = T\}, \\
\psi(x,T) e^{iC_2} & \text{in } \Omega_2 \cap \{t = T\}, \\
\psi(x,T) & \text{elsewhere},
\end{cases}$$
and solve the Schrödinger IVP with $\varphi(\cdot, T)$ as initial datum. By the above
$$\varphi(x,t) \neq \psi(x,t) \cdot \begin{cases}
eq C_1, & (x,t) \in \Omega_1, \\
eq C_2, & (x,t) \in \Omega_2,
\end{cases}$$
and hence trajectory non-uniqueness follows.

Acknowledgments. The authors acknowledge in-depth discussions with Paolo Antonelli and Pierangelo Marcati on the mathematical analysis of the QHD system.

REFERENCES

[1] M. G. Ancona and G. J. Iafrate, Quantum correction to the equation of state of an electron gas in a semiconductor, Physical Review B, 39 (1989), 9536–9540.
[2] P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Communications in Mathematical Physics, 287 (2009), 657–686.
[3] P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Archive for Rational Mechanics and Analysis, 203 (2012), 499–527.
[4] P. Degond, S. Gallego and F. Méhats, Isothermal quantum hydrodynamics: Derivation, asymptotic analysis, and simulation, Multiscale Modeling & Simulation, 6 (2007), 246–272.
[5] P. Degond, S. Gallego and F. Méhats, On quantum hydrodynamic and quantum energy transport models, Communications in Mathematical Sciences, 5 (2007), 887–908.
[6] P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, Journal of Statistical Physics, 112 (2003), 587–628.
[7] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, New York-Berlin, 1972.
[8] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC press, 2015.
[9] W. Gangbo, J. Haskovec, P. Markowich and J. Sierra, An optimal transport approach for the kinetic bohmian equation, Zapiski Nauchnyh Seminarov POMI, 457 (2017), 114–167.
[10] I. Gasser and P. Markowich, Quantum hydrodynamics, Wigner transforms, the classical limit, Asymptotic Analysis, 14 (1997), 97–116.
[11] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[12] A. Jüngel, Quasi-Hydrodynamic Semiconductor Equations, Birkhäuser, Verlag, Basel, 2001.
[13] L. Landau and E. M. Lifschitz, Lehrbuch der Theoretischen Physik, III - Quantenmechanik, Akademie-Verlag, 1979.
[14] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge University Press, 2012.
[15] P. Markowich, T. Paul and C. Sparber, Bohmian measures and their classical limit, Journal of Functional Analysis, 259 (2010), 1542–1576.
[16] P. Markowich, T. Paul and C. Sparber, On the dynamics of Bohmian measures, Archive for Rational Mechanics and Analysis, 205 (2012), 1031–1054.
[17] W. S. Massey, A Basic Course in Algebraic Topology, Springer Science & Business Media, 1991.

Received for publication February 2018.

E-mail address: peter.markowich@kaust.edu.sa
E-mail address: jesús.sierra@kaust.edu.sa