Chemical Composition, Antimicrobial, and Cytotoxic Activities of Leaf, Fruit, and Branch Essential Oils Obtained From *Zanthoxylum nitidum* Grown in Vietnam

Tran Thi Tuyen¹², Pham Minh Quan¹², Vu Thi Thu Le³, Tran Quoc Toan¹², Do Huu Ngãí¹, Pham Cao Bach¹, Cam Thi Inh¹, Nguyen Phuong Hanh⁴, Trinh Anh Vien⁵, Pham Thi Hong Minh¹, Pham Quoc Long¹, Nguyen Hong Khoi Nguyen⁶, Pham Nguyen Thuy Dung⁷⁸, and Nguyen Thi Hong Van¹²

Abstract

Zanthoxylum nitidum (Roxb.) DC is a traditional Vietnamese medicine to treat coughs, stomachache, toothache, blood stagnation, and sore throats. The essential oils (EOs) of the leaves, fruits, and stems of this plant were extracted by hydrodistillation and subjected to analysis by gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS). The isolated EOs were then evaluated in terms of their antimicrobial activity by minimum inhibitory concentration (MIC) assay and in vitro cytotoxic effect against 5 human tumor cell lines. GC-MS-FID analysis showed 35, 32, and 25 compounds accounting for 97.6%, 91.7%, and 96.2% of the total EO contents from the leaves, fruits, and stems, respectively. The major compounds of the leaf EO were limonene (44.3%), β-caryophyllene (12.5%), linalool (11.0%), germacrene D (5.3%), and α-pinene (4.9%); the major compounds of the fruit EO were n-pentadecane (34.8%), sabinene (18.3%), and n-heptadecane (4.7%), and the major components of the stem EO were 2-undecanone (72.3%), β-caryophyllene (3.8%), and germacrene D (4.0%). The EOs of leaves, fruits, and stems of *Z. nitidum* exhibited antibacterial activity against *Bacillus subtilis*, *Escherichia coli*, and *Fusarium oxysporum* with MIC values of 100 µg/mL. The leaf and branch EOs exhibited cytotoxic activity against all tested cancer cell lines, especially A-549 and HepG-2. Findings from the present study provide important knowledge about the potential uses of *Z. nitidum* EOs as a natural antibacterial and antitumor agents.

Keywords

Zanthoxylum nitidum essential oil, chemical composition, antimicrobial activities, cytotoxic activities

Received: October 21st, 2020; Accepted: December 10th, 2020.

The genus *Zanthoxylum* (family Rutaceae) comprises around 250 species distributed worldwide in different climatic conditions.¹² Many species from this genus exhibit a wide range of inhibitory activities against microorganisms, fungi, cell proliferation, inflammation, and free radicals.³⁴ Essential oils (EOs) of various *Zanthoxylum* species have been studied, including *Z. avicennae*, *Z. rhesta*, *Z. achatophodium*, *Z. coriaceum*, *Z. limonello*, *Z. armatum*, and *Z. monogynum*.⁵⁻¹⁰ These EOs contain monoterpenes, sesquiterpenes, and straight-chain hydrocarbons. However, there is a difference in the major compounds between species. The EOs of some *Zanthoxylum* species have exhibited many interesting biological properties, such as larvicidal activity against *Aedes albopictus*,⁵ activity against the malaria mosquitoes *Anopheles anthropophagus* and *A. sinensis*,⁷ and antiallergic, anti-inflammatory,⁸ repellent,⁹ antimicrobial, and cytotoxic activities.¹⁰ *Zanthoxylum nitidum* (*Z. nitidum*) has been
commonly used as a traditional treatment for cough, stomachache, toothache, blood stagnation, and sore throat. Limonene, α-pinene, γ-terpinene, linalool, and geraniol, as well as several other monoterpenes, sesquiterpenes, and straight-chain hydrocarbons, have been identified in the leaf and fruit EOs of *Z. nitidum*, in varying quantities depending on the habitat in which the plant grows. Such diversity in the EOs necessitates extensive investigation of their potential bioactivities for successful exploitation of the plant. Foodborne microorganisms such as fungi, as well as Gram-negative and Gram-positive bacteria, are common causative agents of food contamination and spoilage, affecting food quality and consumer health, as well as raising serious concerns among the global population in recent years. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis are well known as major foodborne pathogens with tremendously high resistance capability to conventional antibiotic therapies. Mycotoxins produced by *Fusarium oxysporum* and *Aspergillus niger* are also associated with a wide range of human infections. In order to prevent the growth of these foodborne pathogens, naturally occurring food preservatives have been extensively employed. In particular, the antimicrobial activity of EOs from several species of *Zanthoxylum* have been reported, such as *Z. zanthoxyloides*, *Z. bungeanum*, *Z. caribaeanum*, *Z. rhoifolium*, and *Z. armatum*. However, to our best knowledge, studies on the biological activities of *Z. nitidum* EOs have not yet been evaluated.

Therefore, the present study aimed to (1) analyze the phytochemical content of the EOs from *Z. nitidum* leaves, fruits, and stems, (2) evaluate their bacteriostatic effect against bacteria (e.g. *B. subtilis*, *E. coli*, *P. aeruginosa*, and *S. aureus*) and fungi (e.g. *A. niger* and *F. oxysporum*), and (3) determine their in vitro cytotoxicity effects against human tumor cell lines (e.g. Hep-G2, HeLa, MCF-7, A-549, and HGC-27).

Materials and Methods

Plant Materials

The leaves, fruits, and stems of *Z. nitidum* were obtained from Na Hang, Tuyen Quang Province (Vietnam). The plant was identified by Nguyen Quoc Binh, Vietnam Museum of Nature, Vietnam Academy of Science and Technology (VAST). A voucher specimen (XT-01/NaHang) was deposited at the Institute of Natural Products Chemistry, VAST. Prior to the extraction process, 500 g of leaves and branches were cut into small pieces, and 200 g of fruits were completely ground to prepare small samples.

Chemical and Reagents

Gentamycin, doxycycline, nystatin, doxorubicin, sodium sulfate, dimethyl sulfoxide (DMSO), trypic soy broth (TSB), Saboraud-2% dextrose broth (SDB), and 3-((4,5-dimethylthiazol-1-2-yl)-2,5 diphenyltetrazolium bromide (MTT) were purchased from Merck KGaA (Darmstadt, Germany). All the chemicals and reagents used in the present study were of analytical grade.

EO Extraction

EO extraction from *Z. nitidum* branches, leaves, and fruits was carried out by hydrodistillation using a Clevenger-type apparatus (JSOW, India) for 3 hours. The EOs were then dehydrated with anhydrous sodium sulfate and stored at 4 °C in a refrigerator until gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS) analyses. The EO samples obtained from leaves, fruits, and branches were designated as ZN-L, ZN-F, and ZN-B, respectively.

Phytochemical Screening of EOs

ZN-L, ZN-F, and ZN-B EOs were analyzed by GC-MS and GC-FID methods. For GC-MS analysis, the system involved an HP7890A model GC (Agilent Technologies, Santa Clara, CA, USA) equipped with an HP5975C MS detector and an HP5 MS column (60 m × 0.25 mm, film thickness 0.25 μm) (Agilent Technologies, US). The temperature of the injector was set at 250 °C, and the injection volume of EOs was 1 μL. The temperature program began at 60 °C, then increased up to 240 °C, at 4 °C/min. Helium was selected as the carrier gas; the flow rate was 1 mL/min, and the split ratio was 100:1. The electron impact ionization voltage was 70 eV, emission current was 40 mA, and the acquisitions scan mass range was 35-450 amu. Similar conditions were applied to GC-FID analysis.

The identification of the constituents was carried out by comparing the obtained retention indices (RI) and mass spectra with HPCH1607 and W09N08 mass spectral libraries, as well as NIST Chemistry WebBook. The relative percentages of components were calculated based on the GC-FID peak areas without any correction factors.

Antimicrobial Activity

Six microorganisms obtained from American Type Culture Collection (ATCC, Manassas, VA, USA) were used to evaluate the antimicrobial activity of ZN-L, ZN-F, and ZN-B EOs, including *E. coli* ATCC 8739, *B. subtilis* ATCC 27212, *P. aeruginosa* ATCC 25923, *S. aureus* ATCC 12222, *A. niger* ATCC 9763, and *F. oxysporum* ATCC 48112.

Antimicrobial activity of the samples was determined by minimum inhibitory concentration (MIC) assay against the above fungal and bacterial strains. The Gram-positive and Gram-negative bacteria were cultured in tryptic soy broth (TSB; Merck KGaA, Darmstadt, Germany), while fungi were grown in SDB (Merck, Germany) to a final inoculum size of about 150 × 10⁶ colony-forming units (CFU) per mL (or 0.5 McFarland standard at λ = 550 nm). The ZN-L, ZN-F, and ZN-B EO samples at various concentrations ranging from 12.5 to 200 μg/mL were loaded into 96-well microplates containing fresh cultures, and the plates were incubated at 37 °C for 24
The MIC was determined as the lowest sample concentration that inhibited visible microorganism growth after 24 hours. Several positive controls were employed, including gentamycin (16 IU/mg, 8 IU/mg, and 4 IU/mg) for Gram-positive bacteria, doxycycline (0.4 IU/mg, 0.2 IU/mg, and 0.1 IU/mg) for Gram-negative bacteria, and nystatin (12 IU/mg, 6 IU/mg, and 3 IU/mg) for fungi. The negative control was 5% DMSO instead of the tested samples. The experiment was performed in triplicates.

Cytotoxicity Assay

The Hep-2 (hepatocellular carcinoma), HeLa (cervical cancer), MCF-7 (human breast adenocarcinoma), A-549 (human lung adenocarcinoma epithelial), and HGC-27 (human stomach carcinoma) cell lines were acquired from ATCC (Manassas, VA, USA) and maintained at 37 °C in 5% carbon dioxide (CO₂) in suitable media (RPMI 1640, MEM, DMEM; Merck KGaA, Darmstadt, Germany) containing 10% heat-inactivated fetal bovine serum (FBS), penicillin (100 UI/mL), streptomycin (100 mg/mL), and L-glutamine (2 mM). The cytotoxic effect of ZN-L, ZN-F, and ZN-B was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were diluted in 96-well microplates to a density of 5 × 10⁴ cells per well in 200 µL mixture. The samples (1-100 µg/mL) and positive control (ie, doxorubicin) at concentrations from 0.05 to 1.56 µg/mL were

Chemical name	RI^{a/b}	RI	ZN-L	ZN-F	ZN-B
(Z)-hex-3-en-1-ol	854 850	0.57	–	–	
(Z)-hex-2-en-1-ol	855 859	0.50	–	–	
n-Hexanol	871 861	0.29	–	–	
α-Pinene	939 938	4.94	1.16	1.41	1.06
Sabinene	975 979	–	18.3	–	–
β-Pinene	979 985	–	0.90	–	–
Myrcene	991 991	0.90	0.22	0.14	
n-Octanal	999 1002	0.26	–	–	–
Limonene	1029 1034	44.3	–	1.11	
(Z)−β-ocimene	1037 1037	0.83	0.36	1.32	
β-Pinene	1060 1064	–	0.26	–	–
α-Sabinene hydrate	1070 1075	–	0.18	–	–
2-Nonanone	1098 1091	–	–	0.38	
Linalool	1097 1101	11.0	0.64	0.92	
Nonanal	1101 1106	–	0.21	–	–
Terpinen-4-ol	1177 1187	–	0.13	–	–
2-Decanone	1192 1193	–	–	0.10	
α-Terpineol	1189 1197	0.15	–	–	–
Naphthalene	1181 1198	–	0.25	–	–
Methyl salicylate	1192 1202	–	0.11	–	–
Decanal	1202 1208	–	0.39	–	–
2-Undecanone	1294 1294	0.42	–	72.51	
δ-Elemene	1338 1347	0.46	0.19	0.46	
α-Cubebene	1351 1361	–	0.15	–	–
α-Copaene	1377 1388	0.21	0.89	–	–
n-Tetradecane	1400 1400	–	3.15	–	–
β-Elemene	1391 1402	0.24	–	0.25	–
Dodecanal	1409 1411	–	0.12	–	–
β-Caryophyllene	1419 1437	12.55	1.97	5.85	
γ-Elemene	1437 1444	0.18	–	0.33	
β-Gurjunene	1434 1445	0.18	–	–	–
Aromadendrene	1441 1456	0.53	–	–	–
α-Humulene	1455 1471	3.73	0.28	1.49	
Dodecanol	1471 1485	–	1.12	–	–
γ-Murolene	1480 1489	0.79	–	0.10	–
Germacrone D	1485 1497	5.35	–	4.02	–
β-Selinene	1490 1503	–	0.18	–	–
n-Pentadecane	1500 1500	–	34.8	–	–
γ-Amorphene	1496 1508	0.29	–	–	–
(E,E)-α-farnesene	1506 1511	0.90	–	–	–
Bicyclogermacrene	1500 1513	2.61	1.41	1.30	
δ-Amorphene	1512 1521	0.19	–	–	–
γ-Cadinene	1514 1529	0.70	–	–	–
δ-Cadinene	1523 1535	1.69	0.41	0.37	
Germacrene B	1561 1576	0.31	1.80	0.32	
Caryophyllene oxide	1583 1603	0.96	1.17	–	–
Viridiflorol	1593 1603	–	–	0.82	
Cubeban-11-ol	1591 1612	0.22	–	–	–
Humulene epoxide II	1608 1630	0.18	–	–	–

(Continued)
added to the cells and incubated at 37 °C for 48 hours with 5% CO₂. A total of 20 µL of MTT (Merck KGaA) was added to the wells, and incubation was continued at 37 °C for 4 hours. Absorbance was recorded at 540/720 nm using a Spark multimode reader (Tecan, Männedorf, Switzerland). The experiment was performed in triplicate. The rate of growth inhibition was calculated as: Inhibition rate (%) = (1 − OD_sampl/OD_con) × 100%, with OD_sampl and OD_con being the optical densities of the samples and the control, respectively.

Statistical Analysis

Data were expressed as mean ± SD and analyzed by two-way ANOVA at the 95% confidence level. Calculation of the half-maximal inhibitory concentration (IC₅₀) involved a Prism ANOVA at the 95% confidence level. Calculation of the half-maximal inhibitory concentration (IC₅₀) involved a Prism ANOVA at the 95% confidence level.

Results and Discussion

Chemical Composition of the EOs From Z. nitidum Leaves, Fruits, and Stems

The yields of ZN-F, ZN-I, and ZN-B obtained from the hydrodistillation process were relatively low (0.016%, 0.01%, and 0.08% w/w, fresh weight, respectively). All 3 oils were light yellow in color. The chemical compositions of ZN-F, ZN-I, and ZN-B were identified by using GC-MS and GC-FID and comparing their RI and mass spectra with HPCH1607 and W09N08 mass spectral libraries, as well as the NIST Chemistry WebBook. A total of 35, 32, and 25 compounds were detected, accounting for 97.6%, 91.7%, and 96.2% of ZN-F, ZN-I, and ZN-B, respectively (Table 1).

As shown in Table 1, monoterpens (62.1%) and sesquiterpenes (33.4%) were the main constituents of ZN-I, including limonene (44.3%), β-caryophyllene (12.5%), linalool (11.0%), germacrene D (5.3%), and α-pinene (4.9%). Alkane hydrocarbons (46.6%) and alkene hydrocarbons (12.6%) were the main components of ZN-F, including n-pentadecane (34.8%) and sabinene (18.3%). Nonterpenic acyclic ketones (72.8%) were the predominant components of ZN-B, including 2-undecanone (72.3%) and β-caryophyllene (5.8%). Of all the detected compounds, limonene and linalool were only present in ZN-I, while n-pentadecane, (Z)-8-heptadecene, and sabinene were only present in ZN-F; 2-undecanone was only detected in ZN-B.

The results of the present study were compared with those for the EOs of an Indian variety of Z. nitidum, as well as several other Zanthoxylum species. The content of linalool present in the leaf EO of Z. nitidum grown in India (33.1%) was lower than that of ZN-I (44.3%). Meanwhile, the chemical compositions of Z. acanthopodium, Z. rhesta, and Z. limoncello leaf EOs were different from ZN-I, with major constituents including estragole, eucalyptol, and β-caryophyllene for Z. acanthopodium; sabinene, α-pinene, and β-pinene for Z. rhesta; and 2-undecanone and 2-undecenal for Z. limoncello. The contents of the fruit EOs also varied between ZN-F and other Zanthoxylum species. For instance, the main constituents of ZN-F included n-pentadecane and sabinene, while those of Z. coreanum Nakai fruit EO were β-ocimene, α-pinene, 4-carvomenthenol, and sabinene.

For the stems of Z. nitidum, this is the first study on the chemical composition and biological activity of the essential oil obtained from this part of the plant. The obtained results showed 2-undecanone present in high content in this EO (72.3%), higher than in the leaf EO from Z. limoncello and Z. armatum. This compound is used as an insect and animal repellent.

The present study provides a helpful insight into the chemical profiles of Z. nitidum leaf, fruit, and branch EOs. Compared with other Zanthoxylum species, Z. nitidum EOs also possess a comparable quantity of high-value bioactive compounds whose potential activities require extensive exploitation in the future.

Antimicrobial Activity

The antimicrobial activities of ZN-I, ZN-B, and ZN-F were evaluated against 4 bacterial (E. coli, B. subtillis, P. aeruginosa, S. aureus) and 2 fungal strains (F. oxysporum, A. niger). The results are summarized in Table 2.

At the same concentration of 100 µg/mL, ZN-I was effective against F. oxysporum, ZN-F against E. coli and B. subtillis, and ZN-B was against B. subtillis and F. oxysporum. In contrast, all tested EOs showed minimal inhibitory activity against S. aureus, P. aeruginosa, and A. niger.

Table 2. Minimal Inhibitory Concentration (MIC) of ZN-I, ZN-F, and ZN-B Essential Oils Against 6 Bacterial and Fungal Strains.

Essential oil	Escherichia coli	Pseudomonas aeruginosa	Bacillus subtillis	Staphylococcus aureus	Aspergillus niger	Fusarium oxysporum
ZN-I	>200	>200	>200	>200	>200	>200
ZN-F	100	>200	100	>200	>200	>200
ZN-B	>200	>200	100	>200	>200	>200
Positive control¹	6.2	10.6	9.0	18.1	6.4	3.2

¹Note: Positive controls included gentamycin, doxycycline, and nystatin. The bold values indicated the antimicrobial activity.
These results add to knowledge about the antimicrobial activity of *Zanthoxylum* species, previously reported for *Z. monogynum*, *Z. zanthoxyloides*, *Z. alatum*, and *Z. tingoassuiba*. In addition to antimicrobial activity, *Zanthoxylum* EOs also exhibit a wide range of interesting biological activities such as cytotoxic, larvicidal (against malaria mosquitoes, eg, *Anopheles anthropophagus* and *A. sinensii*), repellent, antiallergic and anti-inflammatory.

The present study was the first to exploit the antimicrobial activity of *Z. nitidum* EOs. In addition, the results have great scientific significance, as they show that *Z. nitidum* promises to be a precious source of a natural herbal antibiotic.

Cytotoxic Activity

The in vitro cytotoxic effects of ZN-L, ZN-F, and ZN-B against Hep-G2, HeLa, MCF-7, A-549, and HGC-27 were evaluated by using MTT assay (Table 3). As compared with the control, the highest cytotoxic effect against all tested cell lines was observed in ZN-L (16.2 µg/mL ≤ IC₅₀ ≤ 79.7 µg/mL), followed by ZN-B (21.6 µg/mL ≤ IC₅₀ ≤ 65.4 µg/mL) and ZN-F (69.5 µg/mL ≤ IC₅₀ ≤ 100 µg/mL). These results were comparable to other *Zanthoxylum* species. For instance, *Z. monogynum* EO exhibited significant inhibitory activity against several tumor cell lines (ie, B16F10, A2058, HeLa, HL-60, MCF-7, and T75) with IC₅₀ values ranging from 11 to 65 µg/mL. Meanwhile, *Z. avenanum* and *Z. chalybeum* EOs showed strong cytotoxicity against K-562 cells and human gingival fibroblasts, with IC₅₀ values of 1.76 µg/mL and 26 µg/mL, respectively.

In the present study, GC-MS analysis revealed that ZN-L, ZN-F, and ZN-B essential oils contained a variety of phytochemicals, including monoterpenes, sesquiterpenes, hydrocarbons, and nonterpenic acyclic ketones. Furthermore, as discussed earlier, each EO also contained unique bioactive compounds that are present either at a minimal quantity or completely undetected in other EOs. Different phytochemical profiles may have attributed to the different cytotoxicities of the EOs from different parts of *Z. nitidum*. For example, since the presence of monoterpenes has been reported to inhibit various cancer cell growth by inducing apoptosis, a high content of monoterpenes, along with sesquiterpenes, oxygenated monoterpenes, and oxygenated sesquiterpenes found in ZN-L possibly has given rise to its cytotoxic effect against Hep-G-2 and A-549 cells. Although the antitumor potentials of aliphatic ketones and hydrocarbons remain relatively unknown, these are the main constituents of ZN-B and ZN-F EOs, respectively, and the present study has evidenced a comparable inhibitory activity of ZN-B EOs against both Hep-G-2 and A-549 cells. Therefore, constituents, as well as their interaction pathways, require further studies. In general, the findings about the cytotoxic properties of *Z. nitidum* against several human cancer cell lines are essential insights for future research on promising anticancer agents.

Conclusions

EO extraction of the leaves (ZN-L), fruits (ZN-F), and branches (ZN-B) of *Z. nitidum* by steam distillation resulted in oil yields of 0.016%, 0.01%, and 0.08%, respectively. The major compounds of ZN-L were limonene (44.3%), β-caryophyllene (12.5%), linalool (11.0%), germacrene D (5.3%), and α-pinene (4.9%). ZN-F mainly contained n-pentadecane (34.8%) and sabine (18.3%), and ZN-B 2-undecanone (72.3%) and β-caryophyllene (5.8%). The leaf EO (ZN-L) exhibited inhibitory activity against *F. oxysporum*, while the fruit EO (ZN-F) was effective against *E. coli* and *B. subtilis*; the stem EO (ZN-B) was effective against *B. subtilis* and *F. oxysporum*, with MIC values of 100 µg/mL. Of all the tested extracts, ZN-L exerted the highest cytotoxic properties against the tested human cancer cell lines, followed by ZN-B and ZN-F. The present studies provide insights into the phytochemical profile, as well as the role of *Z. nitidum* EOs as a valuable antimicrobial and anticancer agent. These insights should encourage further studies to isolate and evaluate the pharmacological value of the individual compounds, as well as other parts of *Z. nitidum*. In vivo toxicology and clinical applications should also be researched for the successful exploitation of *Z. nitidum* EOs.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number...
1. Villamizar VEM, Suárez LEC, Jiménez K. Usos en medicina folclórica, actividad biológica y fitoquímica de metabolitos secundarios de algunas especies del género Zanthoxylum. Rev de Tema. 2007;4(2):140-159.

2. Silva F, Santos N, Pascon R, et al. Chemical composition and in vitro cytotoxic and antimicrobial activities of the essential oil from leaves of Zanthoxylum monogynum St. Hill (Rutaceae). Medicines. 2017;4(2):31. doi:10.3390/medicines4020031

3. Bhattacharya S, Zaman K. Essential oil composition of fruits and leaves of Zanthoxylum nitidum grown in upper Assam region of India. Pharmacogn Res. 2009;1(3):148-151.

4. Wang HS, SY O, Pan YM, et al. Antimicrobial activity and compounds of the essential oil of Zanthoxylum nitidum var. fastuans. Nat Prod Res Dev. 2006;18(2):251-253.

5. Liu XC, Liu QY, Zhou I, Liu QR, Liu ZL. Chemical composition of Zanthoxylum ariienuvae essential oil and its larvicidal activity on Aedes albopictus skuse. Pharmaceutical Research. 2014;13(5):399-404.

6. Shafi PM, Saidutty A, Clery RA. Volatile constituents of Zanthoxylum rhetsa leaves and seeds. J Essent Oil Res. 2000;12(2):179-182. doi:10.1080/10412905.2000.9699492

7. He Q, Wang W, Zhu L. Larvicidal activity of Zanthoxylum acantioides essential oil and its larvicidal activity on Aedes albopictus skuse. Pharmaceutical Research. 2014;13(5):399-404.

8. Guo RH, Park JU, Jo SJ, et al. Anti-inflammatory effects of the essential oil from fruits of Zanthoxylum oreanum Nakai. Front Pharmacol. 2018;9:1441-1453. doi:10.3389/fphar.2018.01441

9. Vill-Ruano N, Pacheco-Hernández Y, Zárate-Reyes JA, Cruz-Durán R, Lozoya-Gloria E. Volatile composition and biological activities of the leaf essential oil from Zanthoxylum limonella grown in Oaxaca, México. Chem Biodivers. 2019;16(2):e1800498. doi:10.1002/cbdi.201800498

10. Lu Q, Ma R, Yang Y, Mo Z, Pu X, Li C. Zanthoxylum nitidum (Roxb.) DC. traditional uses, phytochemistry, pharmacological activities and toxicology. J Ethnopharmacol. 2020;260:112946. doi:10.1016/j.jep.2020.112946

11. AL-Mamun M, Chowdhury T, Biswas B, Absar N. Chapter 11 - Food poisoning and intoxication: a global concern for human health. In: Grumezescu AM, Holban AM, eds. Food Safety and Preservation. Academic Press; 2018:307-352.

12. Saeed F, Afzaal M, Tufail T, Ahmad A. Use of natural antimicrobial agents: a safe preservation approach. Act Antimicrob Food Packag. 2019. Published online January 30. doi:10.5772/intechopen.80869

13. Pletzer D, Mansour SC, Hancock REW. Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. PLoS Pathog. 2018;14(6):e1007084. doi:10.1371/journal.ppat.1007084

14. Mayrhofer S, Paulsen P, Smoulders FJM, Hilbert F. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry. Int J Food Microbiol. 2004;97(1):23-29. doi:10.1016/j.ijfoodmicro.2004.04.006

15. Paterson RRM, Lima N. Filamentous fungal human pathogens from food emphasizing Aspergillus, Fusarium and Mu cor. Microorganism. 2017;5(3):44. doi:10.3390/microorganisms5030044

16. Eldien DE. Studies on some plant extracts as antimicrobials and food preservatives. J Microbiol Biotechnol Food Sci. 2020;9(4):790-798. doi:10.15414/jmbfs.2020.4.790-798

17. Ju J, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. The inhibitory effect of the plant essential oils against foodborne pathogenic bacteria in food. Crit Rev Food Sci Nutr. 2019;59(20):3281-3292. doi:10.1080/10408398.2018.1488159

18. Bouarab Chibane I, Degraeve P, Ferhout H, Bouajila J, Oualhal N. Plant antimicrobial polyphenols as potential natural food preservatives. J Sci Food Agric. 2019;99(4):1457-1474. doi:10.1002/jsfa.9357

19. Sofos JN, Geornaras I. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in intact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci. 2010;86(1):2-14. doi:10.1016/j.meatsci.2010.04.015

20. Tine Y, Diop A, Diatta W, et al. Chemical diversity and antimicrobial activity of volatile compounds from Zanthoxylum zanthoxyloides lam. According to compound classes, plant organs and Senegalese sample locations. Chem Biodivers. 2017;14(1):e1600125. doi:10.1002/cbdi.201600125

21. Ma Y, Li X, Hou L-X, Wei A-Z. Extraction solvent affects the antioxidant, antimicrobial, cholinesterase and HepG2 human hepatocellular carcinoma cell inhibitory activities of Zanthoxylum bungeanum pericarps and the major chemical components. Ind Crops Prod. 2019;142:111872. doi:10.1016/j.indcrop.2019.111872

22. de Lara de Souza JG, Toledo AG, Walerus AH, Jann Favreto WA, da Costa WE, da Silva Pinto FG. Chemical composition, antimicrobial, repellent and antioxidant activity of essential oil of Zanthoxylum carinatum lam. J Essent Oil Bear Plants. 2019;22(2):380-390. doi:10.1080/0972060X.2019.1571444

23. De Bessa NGF, Rossi AB, Carvalhaes RP, Frazão CTV, Pereira MAB. Antimicrobial activity of manica de porca (Zanthoxylum rhoifolium Lam) extract against gram-positive and negative bacteria. Int J Adv Res Technol. 2019;6(4):401-407. doi:10.22161/ijaers.6.4.7

24. Phyuyl N, Jha PK, Raturi PP, Rajbhandary S. In-vitro antibacterial activities of methanolic extracts of fruits, seeds, and bark of Zanthoxylum armatum DC. J Trop Med. 2020;2020:1-7. doi:10.1155/2020/2803063

25. Van den Berghe DA, Vlietinck AJ. Methods in Plant Biochemistry: Screening Methods for Antibacterial and Antiviral Agents from Higher Plants. Academic Press; 1991:101-211.

26. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.
27. He Q, Wang W, Zhu L. Larvicidal activity of Zanthoxylum acanthopodium essential oil against the malaria mosquitoes, *Anopheles anthropophagus* and *A. sinensis*. *Malar J*. 2018;17(1):194. doi: 10.1186/s12936-018-2341-2

28. Rana VS, Blazquez MA. Volatile constituents of the seed coat of *Zanthoxylum rhetsa* (Roxb.) DC. *J Essent Oil Res*. 2010;22(5):430-432. doi: 10.1080/10412905.2010.9700364

29. Guo RH, Park JU, Jo SJ, et al. Anti-allergic inflammatory effects of the essential oil from fruits of *Zanthoxylum coreanum* Nakai. *Front Pharmacol*. 2018;9:1441. doi:10.3389/fphar.2018.01441

30. Bisht D, Chanoitiya CS. 2-undecanone rich leaf essential oil from *Zanthoxylum armatum*. *Nat Prod Commun*. 2011;6(1):1934578X1100600. doi:10.1177/1934578X1100600126

31. Guleria S, Tiku AK, Koul A, Gupta S, Singh G, Razdan VK. Antioxidant and antimicrobial properties of the essential oil and extracts of *Zanthoxylum alatum* grown in north-western Himalaya. *Sci World J*. 2013;2013:1-9. doi:10.1155/2013/790580

32. Detoni CB, Cabral-Albuquerque ECM, Hohlemweger SVA, Sampaio C, Barros TF, Velozo ES. Essential oil from *Zanthoxylum tingoassuiba* loaded into multilamellar liposomes useful as antimicrobial agents. *J Microencapsul*. 2009;26(8):684-691. doi:10.3109/02652040802661887

33. Zhang W-J, Zhang Z, Chen Z-Y, et al. Chemical composition of essential oils from six *Zanthoxylum* species and their repellent activities against two stored-product insects. *J Chem*. 2017. Published online January 30. doi:10.1155/2017/1287362

34. Zhang D-S, Zhong Q-X, Song X-M, Liu W-J, Wang J, Zhang Q-Y. Study on the chemical components, antimicrobial and antitumor activities of the essential oil from the leaves of *Zanthoxylum arienae*. *Zhang Yon Cai*. 2012;35(8):1263-1267.

35. Ocheng F, Bwanga F, Almer Boström E, et al. Essential oils from Ugandan medicinal plants: in *vitro* cytotoxicity and effects on IL-1β-induced proinflammatory mediators by human gingival fibroblasts. *Evid Based Complement Alternat Med*. 2016;2016:1-8. doi:10.1155/2016/5357689

36. Mukhtar YM, Adu-Frimpong M, Xu X, Yu J. Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs. *Biosci Rep*. 2018;38(6):BSR20181253. doi:10.1042/BSR20181253

37. Yu X, Lin H, Wang Y, et al. D-Limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. *Onco Targets Ther*. 2018;11:1833-1847. doi:10.2147/OTT.S155716

38. Ahn C, Lee J-H, Park M-J, et al. Cytostatic effects of plant essential oils on human skin and lung cells. *Exp Ther Med*. 2020;19(3):2008-2018. doi:10.3892/etm.2020.8460