CODE-VERIFICATION TECHNIQUES FOR HYPERSONIC REACTING FLOWS IN THERMOCHEMICAL NONEQUILIBRIUM

Brian A. Freno
Brian Carnes
V. Gregory Weirs
Sandia National Laboratories

AIAA Aviation and Aeronautics Forum and Exposition
June 21, 2019
Outline

• Introduction

• Governing Equations

• Verification Techniques for Spatial Accuracy

• Spatial-Discretization Verification Results

• Verification Techniques for Thermochemical Source Term

• Thermochemical-Source-Term Verification Results

• Summary
• Introduction
 – Hypersonic Flow
 – Sandia Parallel Aerodynamics and Reentry Code (SPARC)
 – Verification and Validation

• Governing Equations

• Verification Techniques for Spatial Accuracy

• Spatial-Discretization Verification Results

• Verification Techniques for Thermochemical Source Term

• Thermochemical-Source-Term Verification Results

• Summary
Hypersonic flows and underlying aerothermochemical phenomena

- Important in design & analysis of vehicles exiting/reentering atmosphere

- High flow velocities and stagnation enthalpies
 - Induce chemical reactions
 - Excite thermal energy modes

- Aerodynamic and thermochemical models require full coupling
Sandia Parallel Aerodynamics and Reentry Code (SPARC)

- Under development at Sandia National Laboratories

- Compressible computational fluids dynamics code

- Models transonic and hypersonic reacting turbulent flows

- Solves transient heat equation and equations associated with decomposing and non-decomposing ablators

- One- and two-way couplings between fluid-dynamics and ablation solvers
Credibility of computational physics codes requires verification and validation

- **Validation** assesses how well models represent physical phenomena
 - Computational results are compared with experimental results
 - Assess suitability of models, model error, and bounds of validity

- **Verification** assesses accuracy of numerical solutions against expectations
 - *Solution verification* estimates numerical error for particular solution
 - *Code verification* verifies correctness of numerical-method implementation
Code verification is focus of this work

- Governing equations are numerically discretized
 - Discretization error is introduced in solution

- Seek to verify discretization error decreases with refinement of discretization
 - Should decrease at an expected rate

- Use manufactured and exact solutions to compute error
Code verification demonstrated in many computational physics disciplines

- Fluid dynamics
- Solid mechanics
- Heat transfer
- Multiphase flows
- Electrodynamics
- Electromagnetism
- Fluid–structure interaction
- Radiation hydrodynamics

Code-verification techniques for hypersonic flows have been presented

- Single-species perfect gas
- Multi-species gas in thermal equilibrium

We present code-verification techniques for hypersonic reacting flows in thermochemical nonequilibrium and demonstrate effectiveness

- Spatial discretization
- Thermochemical source term
Outline

• Introduction

• Governing Equations
 – Conserved Quantities
 – Vibrational Energy
 – Translational–Vibrational Energy Exchange
 – Chemical Kinetics
 – Scope of Code Verification

• Verification Techniques for Spatial Accuracy

• Spatial-Discretization Verification Results

• Verification Techniques for Thermochemical Source Term

• Thermochemical-Source-Term Verification Results

• Summary
Governing Equations: n_s Species in Vibrational Nonequilibrium

Conservation of mass, momentum, and energy:

$$
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_c (\mathbf{U}) = -\nabla \cdot \mathbf{F}_p (\mathbf{U}) + \nabla \cdot \mathbf{F}_d (\mathbf{U}) + \mathbf{S} (\mathbf{U}),
$$

where

$$
\mathbf{U} = \begin{bmatrix} \rho \\ \rho v \\ \rho E \\ \rho e_v \end{bmatrix}, \quad \mathbf{F}_c (\mathbf{U}) = \begin{bmatrix} \rho v^T \\ \rho v v^T \\ \rho E v^T \\ \rho e_v v^T \end{bmatrix}, \quad \mathbf{F}_p (\mathbf{U}) = \begin{bmatrix} 0 \\ pv^T \\ pI \end{bmatrix}, \quad \mathbf{F}_d (\mathbf{U}) = \begin{bmatrix} -\mathbf{J} \\ \tau (\mathbf{v} - \mathbf{q} - \mathbf{q}_v - \mathbf{J}^T \mathbf{h})^T \\ (-\mathbf{q}_v - \mathbf{J}^T \mathbf{e}_v)^T \end{bmatrix},
$$

$$
\mathbf{S} (\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}} \\ 0 \\ 0 \end{bmatrix}, \quad \rho = \begin{bmatrix} \rho_1, \ldots, \rho_{n_s} \end{bmatrix}^T, \quad \dot{\mathbf{w}} = \begin{bmatrix} \dot{w}_1, \ldots, \dot{w}_{n_s} \end{bmatrix}^T: \text{mass production rates per volume},
$$

$$
e_v = \begin{bmatrix} e_{v_1}, \ldots, e_{v_{n_s}} \end{bmatrix}^T: \text{mixture vibrational energy per mass},
$$

$$
p = \sum_{s=1}^{n_s} \frac{\rho_s}{M_s} \bar{R} T, \quad e_v = \begin{bmatrix} e_{v_1}, \ldots, e_{v_{n_s}} \end{bmatrix}^T: \text{vibrational energies per mass},
$$

$$
Q_{t-v} : \text{translational–vibrational energy exchange},
$$

$$
E = \frac{|v|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (c_{v_s} T + e_{v_s} + h^0_s)
$$
Governing Equations: \(n_s \) Species in Vibrational Nonequilibrium

Conservation of mass, momentum, and energy:

\[
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_c (\mathbf{U}) = -\nabla \cdot \mathbf{F}_p (\mathbf{U}) + \nabla \cdot \mathbf{F}_d (\mathbf{U}) + \mathbf{S} (\mathbf{U}),
\]

where

\[
\mathbf{U} = \begin{cases}
\rho, \\
\rho v, \\
\rho E, \\
\rho e_v
\end{cases}, \quad \mathbf{F}_c (\mathbf{U}) = \begin{bmatrix} \rho v^T \\ \rho vv^T \\ \rho E v^T \\ \rho e_v v^T \end{bmatrix}, \quad \mathbf{F}_p (\mathbf{U}) = \begin{bmatrix} 0 \\ p I \\ p v^T \\ 0 \end{bmatrix}, \quad \mathbf{F}_d (\mathbf{U}) = \begin{bmatrix} -J \\ \tau \\ (\tau v - q - q_v - J^T h)^T \\ (-q_v - J^T e_v)^T \end{bmatrix},
\]

Multiple species

\[
\mathbf{S} (\mathbf{U}) = \begin{cases}
\mathbf{\dot{w}}, \\
0, \\
0, \quad Q_{t-v} + \mathbf{e}_v^T \mathbf{\dot{w}}
\end{cases},
\]

\[
\mathbf{\dot{w}} = \begin{bmatrix} \dot{w}_1, \ldots, \dot{w}_{n_s} \end{bmatrix}^T: \text{mass production rates per volume},
\]

\[
e_v = \begin{bmatrix} e_{v_1}, \ldots, e_{v_{n_s}} \end{bmatrix}^T: \text{mixture vibrational energy per mass},
\]

\[
Q_{t-v} : \text{translational–vibrational energy exchange},
\]

\[
E = \frac{|v|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} \left(c_{v_s} T + e_{v_s} + h_s^0 \right)
\]
Governing Equations: n_s Species in Vibrational Nonequilibrium

Conservation of mass, momentum, and energy:

\[
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_c (\mathbf{U}) = -\nabla \cdot \mathbf{F}_p (\mathbf{U}) + \nabla \cdot \mathbf{F}_d (\mathbf{U}) + \mathbf{S} (\mathbf{U}) ,
\]

where

\[
\mathbf{U} = \begin{\{ \begin{array}{c}
\rho \\
\rho v \\
\rho E \\
\rho e_v
\end{array} \end{\{}, \quad \mathbf{F}_c (\mathbf{U}) = \begin{bmatrix}
\rho v^T \\
\rho vv^T \\
\rho E v^T \\
\rho e_v v^T
\end{bmatrix}, \quad \mathbf{F}_p (\mathbf{U}) = \begin{bmatrix}
0 \\
\rho I \\
pv^T \\
0
\end{bmatrix}, \quad \mathbf{F}_d (\mathbf{U}) = \begin{bmatrix}
-J \\
\tau \\
(\tau v - q - q_v - J^T h)^T \\
(-q_v - J^T e_v)^T
\end{bmatrix}, \quad \mathbf{S} (\mathbf{U}) = \begin{\{ \begin{array}{c}
\dot{\mathbf{w}} \\
0 \\
0 \\
Q_{t-v} + e_v^T \dot{\mathbf{w}}
\end{array} \end{\{},
\]

\[
\rho = \{\rho_1, \ldots, \rho_{n_s}\}^T, \quad \dot{\mathbf{w}} = \{\dot{w}_1, \ldots, \dot{w}_{n_s}\}^T : \text{mass production rates per volume},
\]

\[
e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s} : \text{mixture vibrational energy per mass},
\]

\[
e_v = \{e_{v_1}, \ldots, e_{v_{n_s}}\}^T : \text{vibrational energies per mass},
\]

\[
Q_{t-v} : \text{translational–vibrational energy exchange},
\]

\[
E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (c_{v_s} T + e_{v_s} + h_s^0)
\]
Governing Equations: n_s Species in Vibrational Nonequilibrium

Conservation of mass, momentum, and energy:

\[
\frac{\partial U}{\partial t} + \nabla \cdot F_c (U) = -\nabla \cdot F_p (U) + \nabla \cdot F_d (U) + S (U),
\]

where

\[
U = \begin{cases}
\rho \\
\rho v \\
\rho E \\
\rho e_v
\end{cases}, \quad F_c (U) = \begin{bmatrix}
\rho v^T \\
\rho vv^T \\
\rho E v^T \\
\rho e_v v^T
\end{bmatrix}, \quad F_p (U) = \begin{bmatrix}
0 \\
pI \\
pv^T \\
0
\end{bmatrix}, \quad F_d (U) = \begin{bmatrix}
-J \\
\tau \\
(\tau v - q - q_v - J^T h)^T \\
(-q_v - J^T e_v)^T
\end{bmatrix},
\]

\[
S (U) = \begin{cases}
\dot{w} \\
0 \\
0 \\
Q_{t-v} + e_v^T \dot{w}
\end{cases},
\]

\[
\rho = \{\rho_1, \ldots, \rho_{n_s}\}^T, \quad \dot{w} = \{\dot{w}_1, \ldots, \dot{w}_{n_s}\}^T : \text{mass production rates per volume},
\]

\[
\rho = \sum_{s=1}^{n_s} \rho_s, \quad e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s} : \text{mixture vibrational energy per mass},
\]

\[
p = \sum_{s=1}^{n_s} \frac{\rho_s}{M_s} \bar{R}T, \quad e_v = \{e_{v_1}, \ldots, e_{v_{n_s}}\}^T : \text{vibrational energies per mass},
\]

\[
Q_{t-v} : \text{translational–vibrational energy exchange},
\]

\[
E = \frac{|v|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (c_{v_s} T + e_{v_s} + h_{s}^o)
\]
Governed Equations: n_s Species in Vibrational Nonequilibrium

Conservation of mass, momentum, and energy:

\[
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_c (\mathbf{U}) = -\nabla \cdot \mathbf{F}_p (\mathbf{U}) + \nabla \cdot \mathbf{F}_d (\mathbf{U}) + \mathbf{S} (\mathbf{U}) ,
\]

where

\[
\mathbf{U} = \begin{cases}
\rho \\
\rho_v \\
\rho E \\
\rho e_v
\end{cases}, \quad \mathbf{F}_c (\mathbf{U}) = \begin{bmatrix} \rho v^T \\
\rho v v^T \\
\rho E v^T \\
\rho e_v v^T
\end{bmatrix}, \quad \mathbf{F}_p (\mathbf{U}) = \begin{bmatrix} 0 \\
p I \\
p v^T \\
0
\end{bmatrix}, \quad \mathbf{F}_d (\mathbf{U}) = \begin{bmatrix} -J \\
\tau \\
(\tau v - q - q_v - J^T h)^T \\
(-q_v - J^T e_v)^T
\end{bmatrix},
\]

\[
\mathbf{S} (\mathbf{U}) = \begin{cases}
\dot{\mathbf{w}} \\
0 \\
0 \\
Q_{t-v} + e_v^T \dot{\mathbf{w}}
\end{cases},
\]

\[
\rho = \{\rho_1, \ldots, \rho_{n_s}\}^T, \quad \mathbf{w} = \{\dot{w}_1, \ldots, \dot{w}_{n_s}\}^T: \text{mass production rates per volume,}
\]

\[
e_v = \{e_{v_1}, \ldots, e_{v_{n_s}}\}^T: \text{vibrational energies per mass,}
\]

\[
Q_{t-v}: \text{translational–vibrational energy exchange,}
\]

\[
E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (c_{v_s} T + e_{v_s} + h_s^0)
\]
Governing Equations: n_s Species in Vibrational Nonequilibrium

Conservation of mass, momentum, and energy:

$$
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_c (\mathbf{U}) = -\nabla \cdot \mathbf{F}_p (\mathbf{U}) + \nabla \cdot \mathbf{F}_d (\mathbf{U}) + \mathbf{S} (\mathbf{U}),
$$

where

$$
\mathbf{U} = \begin{cases}
\rho \\
\rho v \\
\rho E \\
\rho e_v
\end{cases}, \quad
\mathbf{F}_c (\mathbf{U}) = \begin{bmatrix}
\rho v^T \\
\rho vv^T \\
\rho E v^T \\
\rho e_v v^T
\end{bmatrix}, \quad
\mathbf{F}_p (\mathbf{U}) = \begin{bmatrix}
0 \\
\rho I \\
\rho v^T \\
0
\end{bmatrix}, \quad
\mathbf{F}_d (\mathbf{U}) = \begin{bmatrix}
-J^T \\
\tau \\
(\tau v - q - q_v - J^T h)^T \\
(-q_v - J^T e_v)^T
\end{bmatrix},
$$

$$
\mathbf{S} (\mathbf{U}) = \begin{cases}
\dot{\mathbf{w}} \\
0 \\
Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}}
\end{cases},
$$

$$
\dot{\mathbf{w}} = \begin{bmatrix}
\dot{\mathbf{w}} \\
0 \\
\dot{Q}_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}}
\end{bmatrix}^T: \text{mass production rates per volume},
$$

$$
\rho = \begin{bmatrix}
\rho_1, \ldots, \rho_{n_s}
\end{bmatrix}^T, \quad
\dot{\mathbf{w}} = \begin{bmatrix}
\dot{w}_1, \ldots, \dot{w}_{n_s}
\end{bmatrix}^T: \text{mass production rates per volume},
$$

$$
\rho = \sum_{s=1}^{n_s} \rho_s, \quad
\dot{\mathbf{w}} = \begin{bmatrix}
\dot{w}_1, \ldots, \dot{w}_{n_s}
\end{bmatrix}^T: \text{mass production rates per volume},
$$

$$
e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_v: \text{mixture vibrational energy per mass},
$$

$$
\mathbf{e}_v = \begin{bmatrix}
e_{v_1}, \ldots, e_{v_{n_s}} \end{bmatrix}^T: \text{vibrational energies per mass},
$$

$$
Q_{t-v}: \text{translational–vibrational energy exchange},
$$

$$
E = \frac{1}{2} \mathbf{v}^2 + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (e_v T + e_v + h^o_s)
$$
Governing Equations: n_s Species in Vibrational Nonequilibrium

Conservation of mass, momentum, and energy:

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_c (\mathbf{U}) = -\nabla \cdot \mathbf{F}_p (\mathbf{U}) + \nabla \cdot \mathbf{F}_d (\mathbf{U}) + \mathbf{S} (\mathbf{U}),$$

where

$$\mathbf{U} = \left\{ \begin{array}{c} \rho \\ \rho v \\ \rho E \\ \rho e_v \end{array} \right\}, \quad \mathbf{F}_c (\mathbf{U}) = \left[\begin{array}{c} \rho v^T \\ \rho v v^T \\ \rho E v^T \\ \rho e_v v^T \end{array} \right], \quad \mathbf{F}_p (\mathbf{U}) = \left[\begin{array}{c} 0 \\ p I \\ p v^T \\ 0 \end{array} \right], \quad \mathbf{F}_d (\mathbf{U}) = \left[\begin{array}{c} -J \\ \tau \end{array} \right],$$

$$\mathbf{S} (\mathbf{U}) = \left\{ \begin{array}{c} \dot{\mathbf{w}} \\ 0 \\ 0 \\ Q_{t-v} + e_v^T \dot{\mathbf{w}} \end{array} \right\}.$$

$$\rho = \{\rho_1, \ldots, \rho_{n_s}\}^T, \quad \dot{\mathbf{w}} = \{\dot{w}_1, \ldots, \dot{w}_{n_s}\}^T: \text{mass production rates per volume},$$

$$\rho = \sum_{s=1}^{n_s} \rho_s, \quad e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s}: \text{mixture vibrational energy per mass},$$

$$\dot{\mathbf{w}} = \{\dot{w}_1, \ldots, \dot{w}_{n_s}\}^T: \text{vibrational energies per mass},$$

$$Q_{t-v}: \text{translational–vibrational energy exchange},$$

$$E = \frac{|v|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (c_{v_s} T + e_{v_s} + h_s^0)$$
Vibrational Energy

Mixture vibrational energy per mass:

\[e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s}, \]

where

\[e_{v_s} = \begin{cases} \sum_{m=1}^{n_{v_s}} e_{v_s,m}(T_v) & \text{for molecules,} \\ 0 & \text{for atoms,} \end{cases} \]

and

\[e_{v_s,m}(T') = \frac{\bar{R}}{M_s} \frac{\theta_{v_s,m}}{\exp(\theta_{v_s,m}/T') - 1} \]

- \(n_{v_s} \): number of vibrational modes of species \(s \) (\(n_{v_s} = 0 \) for atoms)
- \(\theta_{v_s,m} \): characteristic vibrational temperature of mode \(m \) of species \(s \)
Translational–Vibrational Energy Exchange

Landau–Teller model:

\[Q_{t-v} = \sum_{s=1}^{n_s} \rho_s \sum_{m=1}^{n_{vs}} \frac{e_{v_s,m}(T) - e_{v_s,m}(T_v)}{\langle \tau_{s,m} \rangle} \]

Translational–vibrational energy relaxation time for mode \(m \) of species \(s \):

\[\langle \tau_{s,m} \rangle = \left(\sum_{s'=1}^{n_s} \frac{y_{s'}}{\tau_{s,m,s'}} \right)^{-1} + \left[\left(N_A \sum_{s'=1}^{n_s} \frac{\rho_{s'}}{M_{s'}} \right) \sigma_{v_s} \sqrt{\frac{8}{\pi}} \frac{\bar{R}T}{M_s} \right]^{-1} \]

where

\[y_s = \frac{\rho_s / M_s}{\sum_{s'=1}^{n_s} \rho_{s'/M_{s'}}}, \quad \tau_{s,m,s'} = \frac{\exp \left[a_{s,m,s'} \left(T^{-1/3} - b_{s,m,s'} \right) - 18.42 \right]}{p'} \]

\[\sigma_{v_s} = \sigma'_{v_s} \left(\frac{50,000 \text{ K}}{T} \right)^2 \]

\(p' \): pressure in atmospheres.

\(a_{s,m,s'} \) and \(b_{s,m,s'} \): vibrational constants for mode \(m \) of species \(s \) with colliding species \(s' \)

\(N_A \): Avogadro constant

\(\sigma_{v_s} \): collision-limiting vibrational cross section

\(\sigma'_{v_s} \): collision-limiting vibrational cross section at 50,000 K.
Chemical Kinetics

Mass production rate per volume for species \(s \): \[\dot{w}_s = M_s \sum_{r=1}^{n_r} (\beta_{s,r} - \alpha_{s,r}) (R_{f,r} - R_{b,r}) \]

Forward and backward reaction rates for reaction \(r \):
\[R_{f,r} = \gamma k_{f,r} \prod_{s=1}^{n_s} \left(\frac{1}{\gamma M_s} \right)^{\alpha_{s,r}} \]
\[R_{b,r} = \gamma k_{b,r} \prod_{s=1}^{n_s} \left(\frac{1}{\gamma M_s} \right)^{\beta_{s,r}} \]

Forward and backward reaction rate coefficients:
\[k_{f,r}(T_c) = C_{f,r} T_c^{\eta_r} \exp \left(-\theta_r / T_c \right) \]
\[k_{b,r}(T) = \frac{k_{f,r}(T)}{K_{e,r}(T)} \]

Equilibrium constant for reaction \(r \):
\[K_{e,r}(T) = \exp \left[A_{1,r} \left(\frac{T}{10000} \right) + A_{2,r} + A_{3,r} \ln \left(\frac{10000}{T} \right) + A_{4,r} \frac{10000}{T} + A_{5,r} \left(\frac{10000}{T} \right)^2 \right] \]

\(\alpha_{s,r} \) and \(\beta_{s,r} \): stoichiometric coefficients for species \(s \) in reaction \(r \)

\(\gamma \): unit conversion factor

\(C_{f,r}, \eta_r, A_{i,r} \): empirical parameters

\(\theta_r \): activation energy of reaction \(r \), divided by Boltzmann constant

\(T_c \): rate-controlling temperature (\(T_c = \sqrt{TT_v} \) for dissociation, \(T_c = T \) for exchange)
Scope of Code Verification

Conservation of mass, momentum, and energy:

\[
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_c (\mathbf{U}) = -\nabla \cdot \mathbf{F}_p (\mathbf{U}) + \nabla \cdot \mathbf{F}_d (\mathbf{U}) + \mathbf{S} (\mathbf{U}),
\]

where

\[
\mathbf{U} = \left\{ \begin{array}{c} \rho \\ \rho \mathbf{v} \\ \rho E \\ \rho e_v \end{array} \right\}, \quad \mathbf{F}_c (\mathbf{U}) = \left[\begin{array}{c} \rho \mathbf{v}^T \\ \rho \mathbf{v} \mathbf{v}^T \\ \rho E \mathbf{v}^T \\ \rho e_v \mathbf{v}^T \end{array} \right], \quad \mathbf{F}_p (\mathbf{U}) = \left[\begin{array}{c} 0 \\ \rho \mathbf{I} \\ \rho \mathbf{v} \mathbf{v}^T \\ 0 \end{array} \right], \quad \mathbf{F}_d (\mathbf{U}) = \left[\begin{array}{c} -\mathbf{J} \\ \mathbf{J} \mathbf{v} - \mathbf{q} - \mathbf{q} v - \mathbf{q} v - \mathbf{J} \mathbf{T} \mathbf{h} \\ \mathbf{J} \mathbf{T} \mathbf{e}_v \\ \mathbf{J} \mathbf{T} \mathbf{e}_v \end{array} \right],
\]

\[
\mathbf{S} (\mathbf{U}) = \left\{ \begin{array}{c} \dot{\mathbf{w}} \\ 0 \\ 0 \end{array} \right\}, \quad \rho = \left\{ \rho_1, \ldots, \rho_{n_s} \right\}^T, \quad \dot{\mathbf{w}} = \left\{ \dot{\mathbf{w}}_1, \ldots, \dot{\mathbf{w}}_{n_s} \right\}^T: \text{mass production rates per volume},
\]

\[
\rho = \sum_{s=1}^{n_s} \rho_s, \quad e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s}: \text{mixture vibrational energy per mass},
\]

\[
p = \sum_{s=1}^{n_s} \frac{\rho_s}{M_s} \bar{R} T, \quad e_v = \left\{ e_{v_1}, \ldots, e_{v_{n_s}} \right\}^T: \text{vibrational energies per mass},
\]

\[
Q_{t-v} : \text{translational–vibrational energy exchange},
\]

\[
E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (c_{v_s} T + e_{v_s} + h_s^0)
\]
Conservation of mass, momentum, and energy:

\[\frac{\partial U}{\partial t} + \nabla \cdot F_c(U) = -\nabla \cdot F_p(U) + \nabla \cdot F_d(U) + S(U), \]

where

\[U = \begin{bmatrix} \rho \\ \rho v \\ \rho E \\ \rho e_v \end{bmatrix}, \quad F_c(U) = \begin{bmatrix} \rho v^T \\ \rho vv^T \\ \rho E v^T \\ \rho e_v v^T \end{bmatrix}, \quad F_p(U) = \begin{bmatrix} 0 \\ p I \\ p v^T \end{bmatrix}, \quad F_d(U) = \begin{bmatrix} -J^T \\ \tau (\tau v - q - q_v - J^T h)^T \\ (-q_v - J^T e_v)^T \end{bmatrix}, \]

\[S(U) = \begin{bmatrix} \dot{w} \\ 0 \\ 0 \end{bmatrix}, \quad \dot{w} = \{\dot{w}_1, \ldots, \dot{w}_{n_s}\}^T: \text{mass production rates per volume,} \]

\[\rho = \{\rho_1, \ldots, \rho_{n_s}\}^T, \quad e_v = \{e_{v_1}, \ldots, e_{v_{n_s}}\}^T: \text{mixture vibrational energy per mass,} \]

\[e_v = \frac{\rho_s e_{v_s}}{\rho}: \text{mixture vibrational energy per mass,} \]

\[p = \sum_{s=1}^{n_s} \frac{\rho_s}{M_s} \bar{R} T, \quad e_v = \{e_{v_1}, \ldots, e_{v_{n_s}}\}^T: \text{vibrational energies per mass,} \]

\[Q_{t-v} : \text{translational–vibrational energy exchange,} \]

\[E = \frac{|v|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (\rho v_s T + e_{v_s} + h_s^o) \]
Scope of Code Verification

Conservation of mass, momentum, and energy:

\[\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_c (\mathbf{U}) = -\nabla \cdot \mathbf{F}_p (\mathbf{U}) + \nabla \cdot \mathbf{F}_d (\mathbf{U}) + \mathbf{S} (\mathbf{U}), \]

where

\[\mathbf{U} = \left\{ \frac{\rho}{\rho v}, \frac{\rho v}{\rho v_T}, \frac{\rho E}{\rho E v_T}, \rho_e v_T \right\}, \quad \mathbf{F}_c (\mathbf{U}) = \begin{bmatrix} \rho v^T \\ \rho v v_T \\ \rho E v_T \\ \rho e v_T \end{bmatrix}, \quad \mathbf{F}_p (\mathbf{U}) = \begin{bmatrix} 0 \\ p I \\ p v_T \end{bmatrix}, \quad \mathbf{F}_d (\mathbf{U}) = \begin{bmatrix} -J \\ \tau (\tau v - q - q_v - J^T h) \\ (-q_v - J^T e_v) \end{bmatrix}, \]

\[\mathbf{S} (\mathbf{U}) = \left\{ \begin{array}{c} \dot{\mathbf{w}} \\ 0 \\ 0 \\ Q_{t-v} + e^T_v \dot{\mathbf{w}} \end{array} \right\}, \quad \rho = \left\{ \rho_1, \ldots, \rho_{n_s} \right\}^T, \quad \dot{\mathbf{w}} = \left\{ \dot{\mathbf{w}}_1, \ldots, \dot{\mathbf{w}}_{n_s} \right\}^T : \text{mass production rates per volume}, \]

\[e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s} : \text{mixture vibrational energy per mass}, \]

\[e_v = \left\{ e_{v_1}, \ldots, e_{v_{n_s}} \right\}^T : \text{vibrational energies per mass}, \quad Q_{t-v} : \text{translational–vibrational energy exchange}, \]

\[E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (c_{v_s} T + e_{v_s} + h_s^0) \]
Scope of Code Verification

Conservation of mass, momentum, and energy:

\[
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}_c (\mathbf{U}) = -\nabla \cdot \mathbf{F}_p (\mathbf{U}) + \nabla \cdot \mathbf{F}_d (\mathbf{U}) + \mathbf{S} (\mathbf{U}),
\]

where

\[
\mathbf{U} = \begin{cases}
\rho \\
\rho v \\
\rho E \\
\rho e_v
\end{cases}, \quad \mathbf{F}_c (\mathbf{U}) = \begin{bmatrix}
\rho v^T \\
\rho vv^T \\
\rho E v^T \\
\rho e_v v^T
\end{bmatrix}, \quad \mathbf{F}_p (\mathbf{U}) = \begin{bmatrix}
0 \\
pI \\
pv^T \\
0
\end{bmatrix}, \quad \mathbf{F}_d (\mathbf{U}) = \begin{bmatrix}
-J \\
\tau v - q - q_v - J^T h \\
-q_v - J^T e_v
\end{bmatrix},
\]

\[
\mathbf{S} (\mathbf{U}) = \begin{cases}
\dot{\mathbf{w}} \\
0 \\
0 \\
Q_{t-v} + e_v^T \dot{\mathbf{w}}
\end{cases}, \quad \rho = \begin{cases}
\rho_1, \ldots, \rho_{n_s} \end{cases}^T, \quad \dot{\mathbf{w}} = \begin{cases}
\dot{\mathbf{w}}_1, \ldots, \dot{\mathbf{w}}_{n_s} \end{cases}^T : \text{mass production rates per volume},
\]

\[
\rho = \sum_{s=1}^{n_s} \rho_s, \quad e_v = \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} e_{v_s} : \text{mixture vibrational energy per mass},
\]

\[
e_v = \begin{cases}
e_{v_1}, \ldots, e_{v_{n_s}} \end{cases}^T : \text{vibrational energies per mass}, \quad Q_{t-v} : \text{translational–vibrational energy exchange},
\]

\[
E = \frac{|\mathbf{v}|^2}{2} + \sum_{s=1}^{n_s} \frac{\rho_s}{\rho} (c_{v_s} T + e_{v_s} + h_{s}^0)
\]
Outline

• Introduction

• Governing Equations

• Verification Techniques for Spatial Accuracy
 – Spatial Accuracy
 – Solutions
 – Error Norms

• Spatial-Discretization Verification Results

• Verification Techniques for Thermochemical Source Term

• Thermochemical-Source-Term Verification Results

• Summary
Spatial Accuracy (Steady State)

Governing equations

\[r(U; \mu) = 0 \]

Discretized equations

\[\tilde{r}(\tilde{U}; \mu) = 0 \]

For \(\hat{p}^{th} \)-order-accurate discretization, error is

\[e(x) = \tilde{U}(x) - U(x) = C(x) h^{\hat{p}(x)} + O(h^{\hat{p}(x)+1}) \]

\(h \): relative characterization of cell sizes

- Between meshes, with respect to one dimension
- Individual cell sizes may be non-uniform functions of \(h \)
- Sufficiently fine meshes \(\rightarrow \) asymptotic region \((h^{\hat{p}(x)+1} \ll h^{\hat{p}(x)}) \)

\[e(x) \approx C(x) h^{\hat{p}(x)} \]

\(C(x) \): function of derivative(s) of the state vector \(U \) at \(x \)

- Approximately constant between meshes in asymptotic region
Order of Accuracy

Observed accuracy $\tilde{p}(x)$ computed using 2 meshes:
Order of Accuracy

Observed accuracy $\tilde{\rho}(x)$ computed using 2 meshes:

Coarser mesh (h)

$$e_1(x) = C(x) h \tilde{\rho}(x)$$
Order of Accuracy

Observed accuracy $\tilde{\rho}(\mathbf{x})$ computed using 2 meshes:

- Coarser mesh (h)

 $$e_1(\mathbf{x}) = C(\mathbf{x}) h \tilde{\rho}(\mathbf{x})$$

- Finer mesh (h/q)

 $$(q\text{-times as fine in each dimension})$$

 $$e_2(\mathbf{x}) = C(\mathbf{x}) (h/q) \tilde{\rho}(\mathbf{x})$$
Order of Accuracy

Observed accuracy $\tilde{p}(\mathbf{x})$ computed using 2 meshes:

Coarser mesh (h)

$$e_1(\mathbf{x}) = C(\mathbf{x}) h^{\tilde{p}(\mathbf{x})}$$

Finer mesh (h/q) (q-times as fine in each dimension)

$$e_2(\mathbf{x}) = C(\mathbf{x})(h/q)^{\tilde{p}(\mathbf{x})}$$

$\tilde{p}(\mathbf{x})$ is computed by

$$\tilde{p}(\mathbf{x}) = \frac{\log |e_1(\mathbf{x})/e_2(\mathbf{x})|}{\log q} = \log_q |e_1(\mathbf{x})/e_2(\mathbf{x})|$$
Solutions

Need solution to compute error
Solutions

Exact Solutions
Exact Solutions

- **Negligible implementation effort:** \(r(U_{\text{Exact}}; \mu) = 0 \)
Exact Solutions

- **Negligible implementation effort**: \(r(U_{\text{Exact}}; \mu) = 0 \)
- **Limited cases**
Solutions

Exact Solutions

- **Negligible implementation effort**: $r(U_{\text{Exact}}; \mu) = 0$
- **Limited cases**
- **Span small subset of application space**
Solutions

Exact Solutions

- Negligible implementation effort: \(r(U_{\text{Exact}}; \mu) = 0 \)
- Limited cases
- Span small subset of application space

Manufactured Solutions
Solutions

Exact Solutions

- **Negligible implementation effort**: \(r(U_{\text{Exact}}; \mu) = 0 \)
- **Limited cases**
- **Span small subset of application space**

Manufactured Solutions

- **Do not satisfy original equations**: \(r(U_{\text{MS}}; \mu) \neq 0 \)
Solutions

Exact Solutions

- **Negligible** implementation effort: \(r(U_{\text{Exact}}; \mu) = 0 \)
- **Limited** cases
- **Span small subset** of application space

Manufactured Solutions

- **Do not** satisfy original equations: \(r(U_{\text{MS}}; \mu) \neq 0 \)
- **Require source term**: \(\tilde{r}(\tilde{U}; \mu) = r(U_{\text{MS}}; \mu) \)
Solutions

Exact Solutions

- **Negligible implementation effort:** \(r(U_{\text{Exact}}; \mu) = 0 \)
- **Limited cases**
- **Span small subset of application space**

Manufactured Solutions

- **Do not satisfy original equations:** \(r(U_{MS}; \mu) \neq 0 \)
- **Require source term:** \(\tilde{r}(\tilde{U}; \mu) = r(U_{MS}; \mu) \)
- **Manufactured to exercise features of interest**
Solutions

Exact Solutions

- **Negligible implementation effort:** $r(U_{\text{Exact}}; \mu) = 0$
- **Limited cases**
- **Span small subset** of application space

Manufactured Solutions

- **Do not** satisfy original equations: $r(U_{\text{MS}}; \mu) \neq 0$
- **Require source term:** $\tilde{r}(\tilde{U}; \mu) = r(U_{\text{MS}}; \mu)$
- Manufactured to exercise features of interest
- Should be **smooth, continuously differentiable functions with generally nonzero derivatives and moderate variations**
Solutions

Exact Solutions

- **Negligible implementation effort**: \(r(U_{\text{Exact}}; \mu) = 0 \)
- **Limited cases**
- **Span small subset of application space**

Manufactured Solutions

- **Do not** satisfy original equations: \(r(U_{\text{MS}}; \mu) \neq 0 \)
- **Require source term**: \(\tilde{r}(\tilde{U}; \mu) = r(U_{\text{MS}}; \mu) \)
- **Manufactured to exercise features** of interest
- **Should be smooth, continuously differentiable functions with generally nonzero derivatives** and moderate variations
Solutions

Exact Solutions

• Negligible implementation effort: \(r(U_{\text{Exact}}; \mu) = 0 \)
• Limited cases
• Span small subset of application space

Manufactured Solutions

• Do not satisfy original equations: \(r(U_{\text{MS}}; \mu) \neq 0 \)
• Require source term: \(\tilde{r}(\tilde{U}; \mu) = r(U_{\text{MS}}; \mu) \)
• Manufactured to exercise features of interest
• Should be smooth, continuously differentiable functions with generally nonzero derivatives and moderate variations
Error Norms

Computing $p = f(\tilde{p}(x))$ (e.g., $p = \min_{x \in \Omega} \tilde{p}(x)$) has two shortcomings:

• For cell-centered schemes, cell centers vary with mesh refinement
• In regions where error vanishes, computed $\tilde{p}(x)$ is meaningless

Error norms to quantify spatial accuracy:

- L_1-norm: $\epsilon_{1} = \| \alpha(x) - \tilde{\alpha}(x) \|_1 = \int_{\Omega} | \alpha(x) - \tilde{\alpha}(x) | d\Omega$
 - Average error
 - Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)

- L_∞-norm: $\epsilon_{\infty} = \| \alpha(x) - \tilde{\alpha}(x) \|_\infty = \max_{x \in \Omega} | \alpha(x) - \tilde{\alpha}(x) |$
 - Maximum error
 - Catches localized deviations (expected and unexpected)

• Without discontinuities, both norms should yield same
Error Norms

Computing \(p = f(\tilde{p}(\mathbf{x})) \) (e.g., \(p = \min_{\mathbf{x} \in \Omega} \tilde{p}(\mathbf{x}) \)) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement

\[\epsilon_1(\alpha) = \| \alpha(x) - \tilde{\alpha}(x) \|_1 = \int_{\Omega} | \alpha(x) - \tilde{\alpha}(x) | \, d\Omega \]

- Average error
- Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)

\[\epsilon_\infty(\alpha) = \| \alpha(x) - \tilde{\alpha}(x) \|_\infty = \max_{x \in \Omega} | \alpha(x) - \tilde{\alpha}(x) | \]

- Maximum error
- Catches localized deviations (expected and unexpected)

- Without discontinuities, both norms should yield same
Error Norms

Computing $p = f(\tilde{p}(x))$ (e.g., $p = \min_{x \in \Omega} \tilde{p}(x)$) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed $\tilde{p}(x)$ is meaningless
Computing $p = f(\tilde{p}(\mathbf{x}))$ (e.g., $p = \min_{\mathbf{x} \in \Omega} \tilde{p}(\mathbf{x})$) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement.
- In regions where error vanishes, computed $\tilde{p}(\mathbf{x})$ is meaningless.

Error norms to quantify spatial accuracy: $p = \log_q \left(\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2} \right)$
Error Norms

Computing \(p = f(\tilde{p}(x)) \) (e.g., \(p = \min_{x \in \Omega} \tilde{p}(x) \)) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed \(\tilde{p}(x) \) is meaningless

Error norms to quantify spatial accuracy: \(p = \log_q (\varepsilon_{\alpha_1}/\varepsilon_{\alpha_2}) \)

- \(L^1 \)-norm: \(\varepsilon^1_{\alpha} = \| \alpha(x) - \tilde{\alpha}(x) \|_1 = \int_{\Omega} |\alpha(x) - \tilde{\alpha}(x)| d\Omega \)
Error Norms

Computing $p = f(\tilde{p}(x))$ (e.g., $p = \min_{x \in \Omega} \tilde{p}(x)$) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed $\tilde{p}(x)$ is meaningless

Error norms to quantify spatial accuracy: $p = \log_q (\epsilon_{\alpha_1}/\epsilon_{\alpha_2})$

- L^1-norm: $\epsilon^1_{\alpha} = \|\alpha(x) - \tilde{\alpha}(x)\|_1 = \int_{\Omega} |\alpha(x) - \tilde{\alpha}(x)| d\Omega$
 - Average error
Error Norms

Computing $p = f(\tilde{p}(x))$ (e.g., $p = \min_{x \in \Omega} \tilde{p}(x)$) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed $\tilde{p}(x)$ is meaningless

Error norms to quantify spatial accuracy: $p = \log_q (\varepsilon_{\alpha_1}/\varepsilon_{\alpha_2})$

- L^1-norm: $\varepsilon^1_{\alpha} = \|\alpha(x) - \tilde{\alpha}(x)\|_1 = \int_{\Omega} |\alpha(x) - \tilde{\alpha}(x)|d\Omega$
 - Average error
 - Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)
Error Norms

Computing \(p = f(\tilde{p}(x)) \) (e.g., \(p = \min_{x \in \Omega} \tilde{p}(x) \)) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed \(\tilde{p}(x) \) is meaningless

Error norms to quantify spatial accuracy: \(p = \log_q (\varepsilon_{\alpha_1}/\varepsilon_{\alpha_2}) \)

- **\(L^1 \)-norm:** \(\varepsilon^1_{\alpha} = \|\alpha(x) - \tilde{\alpha}(x)\|_1 = \int_{\Omega} |\alpha(x) - \tilde{\alpha}(x)| \, d\Omega \)
 - Average error
 - Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)

- **\(L^\infty \)-norm:** \(\varepsilon^\infty_{\alpha} = \|\alpha(x) - \tilde{\alpha}(x)\|_\infty = \max_{x \in \Omega} |\alpha(x) - \tilde{\alpha}(x)| \)
Error Norms

Computing \(p = f(\tilde{p}(x)) \) (e.g., \(p = \min_{x \in \Omega} \tilde{p}(x) \)) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed \(\tilde{p}(x) \) is meaningless

Error norms to quantify spatial accuracy: \(p = \log_q \left(\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2} \right) \)

- \(L^1 \)-norm: \(\varepsilon^1_{\alpha} = \| \alpha(x) - \tilde{\alpha}(x) \|_1 = \int_\Omega |\alpha(x) - \tilde{\alpha}(x)| d\Omega \)
 - Average error
 - Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)

- \(L^\infty \)-norm: \(\varepsilon^\infty_{\alpha} = \| \alpha(x) - \tilde{\alpha}(x) \|_\infty = \max_{x \in \Omega} |\alpha(x) - \tilde{\alpha}(x)| \)
 - Maximum error
Error Norms

Computing \(p = f(\tilde{p}(\mathbf{x})) \) (e.g., \(p = \min_{\mathbf{x} \in \Omega} \tilde{p}(\mathbf{x}) \)) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed \(\tilde{p}(\mathbf{x}) \) is meaningless

Error norms to quantify spatial accuracy: \(p = \log_q \left(\varepsilon_{\alpha_1} / \varepsilon_{\alpha_2} \right) \)

- \(L^1 \)-norm: \(\varepsilon_{\alpha}^1 = \| \alpha(\mathbf{x}) - \tilde{\alpha}(\mathbf{x}) \|_1 = \int_{\Omega} |\alpha(\mathbf{x}) - \tilde{\alpha}(\mathbf{x})| d\Omega \)
 - Average error
 - Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)

- \(L^\infty \)-norm: \(\varepsilon_{\alpha}^\infty = \| \alpha(\mathbf{x}) - \tilde{\alpha}(\mathbf{x}) \|_\infty = \max_{\mathbf{x} \in \Omega} |\alpha(\mathbf{x}) - \tilde{\alpha}(\mathbf{x})| \)
 - Maximum error
 - Catches localized deviations (expected and unexpected)
Error Norms

Computing \(p = f(\tilde{p}(x)) \) (e.g., \(p = \min_{x \in \Omega} \tilde{p}(x) \)) has two shortcomings:

- For cell-centered schemes, cell centers vary with mesh refinement
- In regions where error vanishes, computed \(\tilde{p}(x) \) is meaningless

Error norms to quantify spatial accuracy: \(p = \log_q (\varepsilon_{\alpha_1}/\varepsilon_{\alpha_2}) \)

- \(L^1 \)-norm: \(\varepsilon^1_{\alpha} = \|\alpha(x) - \tilde{\alpha}(x)\|_1 = \int_{\Omega} |\alpha(x) - \tilde{\alpha}(x)| \, d\Omega \)
 - Average error
 - Not significantly contaminated by localized deviations (e.g., discontinuities, lower-order boundary conditions)

- \(L^\infty \)-norm: \(\varepsilon^\infty_{\alpha} = \|\alpha(x) - \tilde{\alpha}(x)\|_\infty = \max_{x \in \Omega} |\alpha(x) - \tilde{\alpha}(x)| \)
 - Maximum error
 - Catches localized deviations (expected and \textit{unexpected})

- Without discontinuities, both norms should yield same \(p \)
Outline

• Introduction

• Governing Equations

• Verification Techniques for Spatial Accuracy

• Spatial-Discretization Verification Results
 – Single-Species Inviscid Flow in Thermochemical Equilibrium
 – Five-Species Inviscid Flow in Chemical Nonequilibrium

• Verification Techniques for Thermochemical Source Term

• Thermochemical-Source-Term Verification Results

• Summary
1D Supersonic Flow using a Manufactured Solution

- One-dimensional domain: $x \in [0, 1]$ m

- Boundary conditions:
 - Supersonic inflow ($x = 0$ m)
 - Supersonic outflow ($x = 1$ m)

- 5 uniform meshes: 50, 100, 200, 400, 800 elements

- Solution consists of small, smooth perturbations to uniform flow:
 \begin{align*}
 \rho(x) &= \bar{\rho} \left[1 - \epsilon \sin(\pi x) \right], \\
 u(x) &= \bar{u} \left[1 - \epsilon \sin(\pi x) \right], \\
 T(x) &= \bar{T} \left[1 + \epsilon \sin(\pi x) \right],
 \end{align*}

 $\bar{\rho} = 1$ kg/m3, $\bar{T} = 300$ K, $\bar{M} = 2.5$, $\epsilon = 0.05$
1D Supersonic Flow using a Manufactured Solution

First-order accurate

Mesh	ρ	u	T
1–2	1.0008	1.0008	1.0008
2–3	1.0002	1.0002	1.0002
3–4	1.0001	1.0001	1.0000
4–5	1.0000	1.0000	1.0000

Second-order accurate

Mesh	ρ	u	T
	2.0313	2.0362	2.0351
2–3	2.0157	2.0184	2.0178
3–4	2.0079	2.0093	2.0090
4–5	2.0040	2.0047	2.0045

Observed accuracy p using L^∞-norms of the error

Freno et al. Code Verification for Flows in Thermochemical Nonequilibrium 22 / 47
2D Supersonic Flow using a Manufactured Solution

- Two-dimensional domain: \((x, y) \in [0, 1] \text{ m} \times [0, 1] \text{ m}\)

- Boundary conditions:
 - Supersonic inflow \((x = 0 \text{ m})\)
 - Supersonic outflow \((x = 1 \text{ m})\)
 - Slip wall (tangent flow) \((y = 0 \text{ m} \& y = 1 \text{ m})\)

- 5 nonuniform meshes: \(25 \times 25 \rightarrow 400 \times 400\)

- Solution consists of small, smooth perturbations to uniform flow:
 \[
 \begin{align*}
 \rho (x, y) &= \bar{\rho} \left[1 - \epsilon \sin \left(\frac{5}{4} \pi x \right) \left(\sin \left(\pi y \right) + \cos \left(\pi y \right) \right) \right], \\
 u (x, y) &= \bar{u} \left[1 + \epsilon \sin \left(\frac{1}{4} \pi x \right) \left(\sin \left(\pi y \right) + \cos \left(\pi y \right) \right) \right], \\
 v (x, y) &= \bar{v} \left[-\epsilon \sin \left(\frac{5}{4} \pi x \right) \left(\sin \left(\pi y \right) \right) \right], \\
 T(x, y) &= \bar{T} \left[1 + \epsilon \sin \left(\frac{5}{4} \pi x \right) \left(\sin \left(\pi y \right) + \cos \left(\pi y \right) \right) \right], \\
 \bar{\rho} &= 1 \text{ kg/m}^3, \bar{T} = 300 \text{ K}, \bar{M} = 2.5, \epsilon = 0.05
 \end{align*}
\]
2D Supersonic Flow using a Manufactured Solution
2D Supersonic Flow using a Manufactured Solution

First-order accurate

Mesh	ρ	u	v	T
1–2	0.9420	0.9409	0.9721	0.9628
2–3	0.9850	0.9902	0.9910	0.9874
3–4	0.9960	1.0002	0.9924	0.9952
4–5	0.9989	1.0009	0.9959	0.9984

Second-order accurate

Mesh	ρ	u	v	T
1–2	2.0623	1.9188	1.8174	1.8598
2–3	2.1304	1.9450	1.9221	1.9280
3–4	2.0902	1.9603	1.9671	1.9586
4–5	2.0128	1.9823	1.9860	1.9809

Observed accuracy p using L^∞-norms of the error
2D Supersonic Flow using an Exact Solution

- Two-dimensional domain: \((r, \theta) \in [1, 1.384] \times [0, 90]^\circ\)

- Boundary conditions:
 - Supersonic inflow \((\theta = 90^\circ)\)
 - Supersonic outflow \((\theta = 0^\circ)\)
 - Slip wall (tangent flow) \((r = 1 \& r = 1.384)\)

- 6 meshes: \(32 \times 8 \rightarrow 1024 \times 256\)

- Solution is steady isentropic vortex:
 \[
 \rho(r) = \rho_i \left[1 + \frac{\gamma - 1}{2} M_i^2 \left(1 - \left(\frac{r_i}{r} \right)^2 \right) \right]^{\frac{1}{\gamma - 1}},
 \]

 \[
 u_r(r) = 0,
 \]

 \[
 u_\theta(r) = -a_i M_i \frac{r_i}{r},
 \]

 \[
 T(r) = T_i \left[1 + \frac{\gamma - 1}{2} M_i^2 \left(1 - \left(\frac{r_i}{r} \right)^2 \right) \right],
 \]

 \(\rho_i = 1, \ a_i = 1, \ M_i = 2.25, \ T_i = 1/(\gamma R)\)
2D Supersonic Flow using an Exact Solution
2D Supersonic Flow using an Exact Solution

Mesh	ρ	u	v	T
1–2	1.9896	1.9119	1.9943	1.9699
2–3	1.9735	1.9589	2.0070	1.9979
3–4	1.9954	1.9760	2.0099	2.0076
4–5	1.9972	1.9879	2.0054	2.0044
5–6	1.9986	1.9940	2.0029	2.0025

Observed accuracy p using L^∞-norms of the error
3D Supersonic Flow using a Manufactured Solution

- Three-dimensional domain: \((x, y, z) \in [0, 1] \text{ m} \times [0, 1] \text{ m} \times [0, 1] \text{ m}\)

- Boundary conditions:
 - Supersonic inflow \((x = 0 \text{ m})\)
 - Supersonic outflow \((x = 1 \text{ m})\)
 - Slip wall (tangent flow)
 \((y = 0 \text{ m}, y = 1 \text{ m}, z = 0 \text{ m}, z = 1 \text{ m})\)

- 5 nonuniform meshes:
 \(25 \times 25 \times 25 \rightarrow 400 \times 400 \times 400\)

- Solution consists of small, smooth perturbations to uniform flow:
 \[
 \begin{align*}
 \rho(x, y, z) &= \bar{\rho}\left[1 - \epsilon \sin\left(\frac{5}{4}\pi x\right) (\sin(\pi y) + \cos(\pi y))(\sin(\pi z) + \cos(\pi z))\right], \\
 u(x, y, z) &= \bar{u}\left[1 + \epsilon \sin\left(\frac{1}{4}\pi x\right) (\sin(\pi y) + \cos(\pi y))(\sin(\pi z) + \cos(\pi z))\right], \\
 v(x, y, z) &= \bar{v}\left[-\epsilon \sin\left(\frac{5}{4}\pi x\right) (\sin(\pi y)) (\sin(\pi z) + \cos(\pi z))\right], \\
 w(x, y, z) &= \bar{w}\left[-\epsilon \sin\left(\frac{5}{4}\pi x\right) (\sin(\pi y) + \cos(\pi y))(\sin(\pi z))\right], \\
 T(x, y, z) &= \bar{T}\left[1 + \epsilon \sin\left(\frac{5}{4}\pi x\right) (\sin(\pi y) + \cos(\pi y))(\sin(\pi z) + \cos(\pi z))\right], \\
 \bar{\rho} &= 1 \text{ kg/m}^3, \bar{T} = 300 \text{ K}, \bar{M} = 2.5, \epsilon = 0.05
 \end{align*}
 \]
3D Supersonic Flow using a Manufactured Solution

![Graph showing spatial accuracy results](image)

Mesh	ρ	u	v	w	T
1–2	2.0849	1.8731	1.9841	1.7039	1.9404
2–3	2.1406	1.9923	1.9295	1.8621	1.9774
3–4	2.0990	2.0115	1.9623	1.9349	1.9922
4–5	2.0585	2.0100	1.9820	1.9571	1.9964

Observed accuracy p using L^∞-norms of the error

$$\log_{10}(\varepsilon_\alpha^\infty/\bar{\alpha}), \alpha=\{\rho, u, v, w, T\} \approx O(h^2)$$
Five-Species Air Model

5 species: N₂, O₂, NO, N, and O

17 reactions:

r	Reaction	Type of Reaction
1–5	N₂ + \(M \) ⇌ N + N + \(M \), \(M = \{N₂, O₂, NO, N, O\} \)	Dissociation
6–10	O₂ + \(M \) ⇌ O + O + \(M \), \(M = \{N₂, O₂, NO, N, O\} \)	Dissociation
11–15	NO + \(M \) ⇌ N + O + \(M \), \(M = \{N₂, O₂, NO, N, O\} \)	Dissociation
16	N₂ + O ⇌ N + NO	Exchange
17	NO + O ⇌ N + O₂	Exchange
Five-Species Inviscid Flow in Chemical Nonequilibrium

- Two-dimensional domain: \((x, y) \in [0, 1] \text{ m} \times [0, 1] \text{ m}\)
- Same boundary conditions
- 7 nonuniform meshes: \(25 \times 25 \rightarrow 1600 \times 1600\)
- Solution consists of small, smooth perturbations to uniform flow

\[
\begin{align*}
\rho_{N_2}(x, y) &= \bar{\rho}_{N_2} \left[1 - \epsilon \sin\left(\frac{5}{4} \pi x\right) \left(\sin\left(\pi y\right) + \cos\left(\pi y\right)\right)\right], \\
\rho_{O_2}(x, y) &= \bar{\rho}_{O_2} \left[1 + \epsilon \sin\left(\frac{3}{4} \pi x\right) \left(\sin\left(\pi y\right) + \cos\left(\pi y\right)\right)\right], \\
\rho_{NO}(x, y) &= \bar{\rho}_{NO} \left[1 + \epsilon \sin\left(\pi x\right) \left(\sin\left(\pi y\right)\right)\right], \\
\rho_{N}(x, y) &= \bar{\rho}_{N} \left[1 + \epsilon \sin\left(\pi x\right) \left(\cos\left(\frac{1}{4} \pi y\right)\right)\right], \\
\rho_{O}(x, y) &= \bar{\rho}_{O} \left[1 + \epsilon \sin\left(\pi x\right) \left(\sin\left(\pi y\right) + \cos\left(\frac{1}{4} \pi y\right)\right)\right], \\
u(x, y) &= \bar{u} \left[1 + \epsilon \sin\left(\frac{1}{4} \pi x\right) \left(\sin\left(\pi y\right) + \cos\left(\pi y\right)\right)\right], \\
v(x, y) &= \bar{v} \left[-\epsilon \sin\left(\frac{5}{4} \pi x\right) \left(\sin\left(\pi y\right)\right)\right], \\
T(x, y) &= \bar{T} \left[1 + \epsilon \sin\left(\frac{5}{4} \pi x\right) \left(\sin\left(\pi y\right) + \cos\left(\pi y\right)\right)\right], \\
T_v(x, y) &= \bar{T_v} \left[1 + \epsilon \sin\left(\frac{3}{4} \pi x\right) \left(\sin\left(\frac{5}{4} \pi y\right) + \cos\left(\frac{3}{4} \pi y\right)\right)\right]
\end{align*}
\]
Five-Species Inviscid Flow in Chemical Nonequilibrium

Spatial Results

Source Results

Summary

Equations

Spatial Accuracy

Source Term

Introduction

Freno et al. Code Verification for Flows in Thermochemical Nonequilibrium 33 / 47

Sandia National Laboratories
2D Supersonic Flow in Thermal Equilibrium using a Manufactured Solution

Variable	Value	Units
\(\bar{\rho}_{N_2}\)	0.77	kg/m³
\(\bar{\rho}_{O_2}\)	0.20	kg/m³
\(\bar{\rho}_{NO}\)	0.01	kg/m³
\(\bar{\rho}_N\)	0.01	kg/m³
\(\bar{\rho}_O\)	0.01	kg/m³
\(\bar{T}\)	3500	K
\(\bar{M}\)	2.5	
\(\epsilon\)	0.05	

![Graph showing \(\log_{10}(\sqrt{n})\) vs. \(\log_{10}(\epsilon_{\infty}(\alpha)/\bar{\alpha})\) for different variables and \(O(h^2)\)](image)

Mesh	\(\rho_{N_2}\)	\(\rho_{O_2}\)	\(\rho_{NO}\)	\(\rho_N\)	\(\rho_O\)	\(u\)	\(v\)	\(T\)
1–2 | 2.0608| 2.1382| 2.0698| 2.0644| 2.1885| 1.8425| 1.8289| 1.7351
2–3 | 2.1161| 2.1219| 2.1127| 2.1072| 2.1697| 1.8875| 1.9220| 1.7923
3–4 | 2.0798| 2.0813| 1.8555| 2.0754| 2.0971| 1.9200| 1.9686| 1.8525
4–5 | 2.0456| 2.0458| 1.8917| 2.0428| 2.0806| 1.9522| 1.9871| 1.9079
5–6 | 2.0243| 2.0243| 1.9427| 2.0228| 2.0529| 1.9735| 1.9939| 1.9485
6–7 | 2.0125| 2.0125| 1.9790| 2.0118| 2.0318| 1.9865| 1.9969| 1.9737

2D MMS, \(n_s = 5\), \(T_v = T\), \(\dot{w} \neq 0\): Observed accuracy \(p\) using \(L^\infty\)-norms of the error
2D Hypersonic Flow in Thermal Nonequilibrium using a Manufactured Solution

Variable	Value	Units
$\bar{\rho}_{N_2}$	0.0077	kg/m3
$\bar{\rho}_{O_2}$	0.0020	kg/m3
$\bar{\rho}_{NO}$	0.0001	kg/m3
$\bar{\rho}_N$	0.0001	kg/m3
$\bar{\rho}_O$	0.0001	kg/m3
\bar{T}	5000	K
\bar{T}_v	1000	K
\bar{M}	8	
ϵ	0.05	

Mesh

Mesh	ρ_{N_2}	ρ_{O_2}	ρ_{NO}	ρ_N	ρ_O	u	v	T	T_v
1–2	1.5659	1.6370	1.6555	1.6046	1.5869	1.7742	1.7337	1.7814	1.5545
2–3	1.9067	1.6944	1.6986	1.7598	1.8819	1.8916	1.8701	1.8768	1.9150
3–4	1.9868	2.0475	2.0698	2.0477	2.0110	1.9488	1.9357	1.9349	2.0082
4–5	2.0074	1.9941	2.0138	1.9936	2.0089	1.9752	1.9684	1.9672	2.0168
5–6	2.0062	1.9939	2.0004	1.9935	2.0061	1.9879	1.9843	1.9836	2.0111
6–7	2.0037	1.9965	1.9994	1.9962	1.9955	1.9940	1.9922	1.9918	2.0063

2D MMS, $n_s = 5$, $T_v \neq T$, $\dot{w} \neq 0$: Observed accuracy p using L^∞-norms of the error
Outline

- Introduction
- Governing Equations
- Verification Techniques for Spatial Accuracy
- Spatial-Discretization Verification Results
- Verification Techniques for Thermochemical Source Term
 - Techniques
 - Distinctive Features
- Thermochemical-Source-Term Verification Results
- Summary
Verification Techniques for Thermochemical Source Term

• $S(U) = [\dot{w}; 0; 0; Q_{t-v} + e_v^T \dot{w}]$ is algebraic
Verification Techniques for Thermochemical Source Term

\[S(\mathbf{U}) = \begin{bmatrix} \dot{\mathbf{w}}; 0; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}} \end{bmatrix} \text{ is algebraic} \]

- \[S(\mathbf{U}) \text{ computed by same code for both sides of } \mathbf{\tilde{r}}(\mathbf{\tilde{U}}; \mu) = \mathbf{r}(\mathbf{U}_{MS}; \mu) \]
Verification Techniques for Thermochemical Source Term

\[S(U) = [\dot{w}; 0; 0; Q_{t-v} + e_v^T \dot{w}] \] is algebraic

- \(S(U) \) computed by same code for both sides of \(\tilde{r}(\tilde{U}; \mu) = r(U_{MS}; \mu) \)
- Manufactured solutions will **not** detect implementation errors
Verification Techniques for Thermochemical Source Term

- $\mathbf{S}(\mathbf{U}) = [\dot{\mathbf{w}}; 0; 0; \dot{Q}_{t-v} + \mathbf{e}^T_v \dot{\mathbf{w}}]$ is algebraic
 - $\mathbf{S}(\mathbf{U})$ computed by same code for both sides of $\tilde{\mathbf{r}}(\tilde{\mathbf{U}}; \mu) = \mathbf{r}(\mathbf{U}_{MS}; \mu)$
 - Manufactured solutions will not detect implementation errors

- Compute $\dot{Q}_{t-v}(\rho, T, T_v)$, $\mathbf{e}_v(\rho, T, T_v)$, and $\dot{\mathbf{w}}(\rho, T, T_v)$
Verification Techniques for Thermochemical Source Term

- \(S(U) = [\dot{w}; 0; 0; Q_{t-v} + e_v^T \dot{w}] \) is algebraic
 - \(S(U) \) computed by same code for both sides of \(\tilde{r}(\tilde{U}; \mu) = r(U_{MS}; \mu) \)
 - Manufactured solutions will not detect implementation errors

- Compute \(Q_{t-v}(\rho, T, T_v), e_v(\rho, T, T_v), \) and \(\dot{w}(\rho, T, T_v) \)
 - For single-cell mesh when initialized to \(\{\rho, T, T_v\} \) with no velocity
Verification Techniques for Thermochemical Source Term

- \(\mathbf{S}(\mathbf{U}) = [\dot{\mathbf{w}}; 0; 0; Q_{t-v} + \mathbf{e}_v^T \dot{\mathbf{w}}] \) is algebraic
 - \(\mathbf{S}(\mathbf{U}) \) computed by same code for both sides of \(\tilde{\mathbf{r}}(\tilde{\mathbf{U}}; \mu) = \mathbf{r}(\mathbf{U}_{\text{MS}}; \mu) \)
 - Manufactured solutions will **not** detect implementation errors

- Compute \(Q_{t-v}(\rho, T, T_v), \mathbf{e}_v(\rho, T, T_v), \) and \(\dot{\mathbf{w}}(\rho, T, T_v) \)
 - For single-cell mesh when initialized to \(\{\rho, T, T_v\} \) with no velocity
 - For many values of \(\{\rho, T, T_v\} \)
Verification Techniques for Thermochemical Source Term

- \(S(\bar{U}) = [\bar{w}; 0; 0; Q_{t-v} + e_v^T \bar{w}] \) is algebraic
 - \(S(\bar{U}) \) computed by same code for both sides of \(\bar{r}(\bar{U}; \mu) = r(U_{MS}; \mu) \)
 - Manufactured solutions will not detect implementation errors

- Compute \(Q_{t-v}(\rho, T, T_v), e_v(\rho, T, T_v), \) and \(\dot{w}(\rho, T, T_v) \)
 - For single-cell mesh when initialized to \(\{\rho, T, T_v\} \) with no velocity
 - For many values of \(\{\rho, T, T_v\} \)
 - Compare with independently developed code
Verification Techniques for Thermochemical Source Term

- \(S(U) = [\dot{w}; 0; 0; Q_{t-v} + e_v^T \dot{w}] \) is algebraic
 - \(S(U) \) computed by same code for both sides of \(\tilde{r}(\tilde{U}; \mu) = r(U_{MS}; \mu) \)
 - Manufactured solutions will not detect implementation errors

- Compute \(Q_{t-v}(\rho, T, T_v), e_v(\rho, T, T_v), \) and \(\dot{w}(\rho, T, T_v) \)
 - For single-cell mesh when initialized to \(\{\rho, T, T_v\} \) with no velocity
 - For many values of \(\{\rho, T, T_v\} \)
 - Compare with independently developed code

- For each query, compute symmetric relative difference

\[
\delta_\beta = 2 \left| \frac{\beta_{\text{SPARC}} - \beta'}{\beta_{\text{SPARC}} + \beta'} \right|
\]

\[\beta = \{Q_{t-v}, e_{vN_2}, e_{vO_2}, e_{vNO}, \dot{w}_{N_2}, \dot{w}_{O_2}, \dot{w}_{NO}, \dot{w}_N, \dot{w}_O\}\]
Distinctive Features

This is **not** typical low-rigor code-to-code comparison
Distinctive Features

This is **not** typical low-rigor code-to-code comparison

Distinctive and rigorous features:
Distinctive Features

This is not typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- Code is independently developed internally
Distinctive Features

This is not typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- Code is independently developed **internally**
 - Uses **same** models and material properties expected from **SPARC**
Distinctive Features

This is **not** typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- Code is independently developed **internally**
 - Uses **same** models and material properties expected from **SPARC**
 - Models and properties taken **directly** from the original references
This is **not** typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- **Code is independently developed** _internally_
 - Uses **same** models and material properties expected from **SPARC**
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
Distinctive Features

This is not typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- Code is independently developed **internally**
 - Uses **same** models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
Distinctive Features

This is **not** typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- Code is independently developed **internally**
 - Uses **same** models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output
Distinctive Features

This is not typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- Code is independently developed internally
 - Uses same models and material properties expected from SPARC
 - Models and properties taken directly from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output

- Relative differences required to be low – near machine precision
Distinctive Features

This is **not** typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- Code is independently developed **internally**
 - Uses **same** models and material properties expected from *SPARC*
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output

- Relative differences required to be **low** – near machine precision
 - Models and material properties are the same
Distinctive Features

This is not typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- Code is independently developed **internally**
 - Uses **same** models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output

- Relative differences required to be **low** – near machine precision
 - Models and material properties are the same
 - Typically code-to-code comparison accepts a few percent
Distinctive Features

This is **not** typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- **Code is independently developed** *internally*
 - Uses **same** models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output

- **Relative differences required to be** **low** – near machine precision
 - Models and material properties are the same
 - Typically code-to-code comparison accepts a few percent

- **Wide** condition coverage
Distinctive Features

This is **not** typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- Code is independently developed **internally**
 - Uses **same** models and material properties expected from SPARC
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output

- Relative differences required to be **low** – near machine precision
 - Models and material properties are the same
 - Typically code-to-code comparison accepts a few percent

- **Wide** condition coverage
 - Comparison is queried for 1000s of conditions, spans extreme ranges
This is **not** typical low-rigor code-to-code comparison

Distinctive and rigorous features:

- **Code is independently developed** **internally**
 - **Uses** **same** models and material properties expected from **SPARC**
 - Models and properties taken **directly** from the original references
 - With external software, assessing implementation is non-trivial
 - Variety of models and properties complicates quantifying agreement
 - Less control over precision of output

- **Relative differences required to be** **low** – near machine precision
 - Models and material properties are the same
 - Typically code-to-code comparison accepts a few percent

- **Wide** condition coverage
 - Comparison is queried for 1000s of conditions, spans extreme ranges
 - Code-to-code comparison typically considers single or few conditions
• Introduction

• Governing Equations

• Verification Techniques for Spatial Accuracy

• Spatial-Discretization Verification Results

• Verification Techniques for Thermochemical Source Term

• Thermochemical-Source-Term Verification Results
 – Samples of $Q_{t-v}(\rho, T, T_v)$, $e_v(\rho, T, T_v)$, and $\dot{w}(\rho, T, T_v)$
 – Nonzero Relative Differences in Q_{t-v} and e_v
 – Nonzero Relative Differences in \dot{w}

• Summary
Samples of $Q_{t-v}(\rho, T, T_v)$, $e_v(\rho, T, T_v)$, and $\dot{w}(\rho, T, T_v)$

Variable	Minimum	Maximum	Units	Spacing
ρ_{N_2}	10^{-6}	10^1	kg/m3	Logarithmic
ρ_{O_2}	10^{-6}	10^1	kg/m3	Logarithmic
ρ_{NO}	10^{-6}	10^1	kg/m3	Logarithmic
ρ_N	10^{-6}	10^1	kg/m3	Logarithmic
ρ_O	10^{-6}	10^1	kg/m3	Logarithmic
T	100	15,000	K	Linear
T_v	100	15,000	K	Linear

Ranges and spacings for 100,000 Latin hypercube samples of ρ, T, and T_v
Original Nonzero Relative Differences in Q_{t-v} and e_v
• Relative differences are not near machine precision
• Relative differences are **not** near machine precision

• $\delta_{Q_{t-v}} > 10\%$ in 8.8% of simulations
• Relative differences are not near machine precision
• $\delta_{Q_{t-v}} > 10\%$ in 8.8% of simulations
• $\delta_{Q_{t-v}} > 1\%$ in 29% of simulations
Relative differences are not near machine precision.

- $\delta_{Q_{t-v}} > 10\%$ in 8.8% of simulations.
- $\delta_{Q_{t-v}} > 1\%$ in 29% of simulations.
- $\delta_{e_v} > 100\%$ for some simulations.
Causes of Large Relative Differences in Q_{t-v} and e_v

Two causes:

• Incorrect lookup table values for vibrational constants
 – For N_2 and O_2 when the colliding species is NO
 – Introduced error in Q_{t-v} for all simulations
 – For high-enthalpy (20 MJ/kg), hypersonic, laminar double-cone flow, 1.4% change in pressure and 2.7% change in heat flux

• Loose convergence criteria for computing T_v from ρe_v
 – Unsuitable for low values of T_v
 – Introduced errors in Q_{t-v} and e_v for a few simulations
 – For converged, steady problem, original criteria are acceptable
Causes of Large Relative Differences in Q_{t-v} and e_v

Two causes:

- **Incorrect lookup table values** for vibrational constants
 - For N_2 and O_2 when the colliding species is NO
 - Introduced error in Q_{t-v} for all simulations
 - For high-enthalpy (20 MJ/kg), hypersonic, laminar double-cone flow, 1.4% change in pressure and 2.7% change in heat flux
Causes of Large Relative Differences in Q_{t-v} and e_v

Two causes:

- **Incorrect lookup table values** for vibrational constants
 - For N_2 and O_2 when the colliding species is NO
 - Introduced error in Q_{t-v} for all simulations
 - For high-enthalpy (20 MJ/kg), hypersonic, laminar double-cone flow, 1.4% change in pressure and 2.7% change in heat flux

- **Loose convergence criteria** for computing T_v from ρe_v
 - Unsuitable for low values of T_v
 - Introduced errors in Q_{t-v} and e_v for a few simulations
 - For converged, steady problem, original criteria are acceptable
Corrected Nonzero Relative Differences in Q_{t-v} and e_v

Original lookup table and convergence criteria

![Graph showing corrected nonzero relative differences in Q_{t-v} and e_v]
Corrected Nonzero Relative Differences in Q_{t-v} and e_v

Original lookup table and convergence criteria

![Graph 1](#)

Corrected lookup table and tighter convergence criteria

![Graph 2](#)
Corrected Nonzero Relative Differences in Q_{t-v} and e_v

- Relative differences are consistent with our expectations

![Histogram of $\log_{10} \delta_{Q_{t-v}}$](image1)

![Histogram of $\log_{10} \delta_{e_v}$](image2)
• Relative differences are consistent with our expectations

• $\delta_{Q_{t-v}} < 10^{-10}$ and $\delta_{e_v} < 10^{-14}$ in all simulations
Corrected Nonzero Relative Differences in Q_{t-v} and e_v

- Relative differences are consistent with our expectations
- $\delta_{Q_{t-v}} < 10^{-10}$ and $\delta_{e_v} < 10^{-14}$ in all simulations
- $\delta_{Q_{t-v}} > 10^{-12}$ in 28/100,000 simulations
Corrected Nonzero Relative Differences in Q_{t-v} and e_v

- Relative differences are consistent with our expectations
- $\delta_{Q_{t-v}} < 10^{-10}$ and $\delta_{e_v} < 10^{-14}$ in all simulations
- $\delta_{Q_{t-v}} > 10^{-12}$ in 28/100,000 simulations
 - T and T_v have relative difference less than 0.2%
Corrected Nonzero Relative Differences in Q_{t-v} and e_v

- Relative differences are consistent with our expectations
- $\delta_{Q_{t-v}} < 10^{-10}$ and $\delta_{e_v} < 10^{-14}$ in all simulations
- $\delta_{Q_{t-v}} > 10^{-12}$ in 28/100,000 simulations
 - T and T_v have relative difference less than 0.2%
 - In numerator of $\frac{e_{v_s,m}(T) - e_{v_s,m}(T_v)}{\langle \tau_{s,m} \rangle}$, $e_{v_s,m}(T)$ and $e_{v_s,m}(T_v)$ share many leading digits
Corrected Nonzero Relative Differences in Q_{t-v} and e_v

- Relative differences are consistent with our expectations
- $\delta_{Q_{t-v}} < 10^{-10}$ and $\delta_{e_v} < 10^{-14}$ in all simulations
- $\delta_{Q_{t-v}} > 10^{-12}$ in 28/100,000 simulations
 - T and T_v have relative difference less than 0.2%
 - In numerator of $\frac{e_{v_{s,m}}(T) - e_{v_{s,m}}(T_v)}{\langle \tau_{s,m} \rangle}$, $e_{v_{s,m}}(T)$ and $e_{v_{s,m}}(T_v)$ share many leading digits
 - Precision lost when computing difference
Nonzero Relative Differences in \dot{w}

![Graph showing the distribution of nonzero relative differences in \dot{w}.]
Nonzero Relative Differences in \dot{w}

- Relative differences are consistent with our expectations

![Bar chart showing nonzero relative differences in \dot{w}]
Nonzero Relative Differences in \dot{w}

- Relative differences are consistent with our expectations
- $\dot{w} < 10^{-9}$ in all simulations
Nonzero Relative Differences in \dot{w}

- Relative differences are consistent with our expectations
- $\dot{w} < 10^{-9}$ in all simulations
- $\dot{w} > 10^{-12}$ for 87/500,000 computed values (5 species, 100,000 simulations)
Nonzero Relative Differences in \dot{w}

- Relative differences are consistent with our expectations
- $\dot{w} < 10^{-9}$ in all simulations
- $\dot{w} > 10^{-12}$ for 87/500,000 computed values (5 species, 100,000 simulations)
 - Due to precision loss that can occur from subtraction in
 \[
 \dot{w}_s = M_s \sum_{r=1}^{n_r} (\beta_{s,r} - \alpha_{s,r}) (R_{f_r} - R_{b_r})
 \]
Outline

- Introduction
- Governing Equations
- Verification Techniques for Spatial Accuracy
- Spatial-Discretization Verification Results
- Verification Techniques for Thermochemical Source Term
- Thermochemical-Source-Term Verification Results
- Summary
 - Code-Verification Techniques
Code-Verification Techniques

• Manufactured and exact solutions
 – Effective approaches for verifying spatial accuracy – detected multiple issues
 – Rigorous norms improve effectiveness – L^∞-norm of error more useful
 – Insufficient for algebraic source terms – both evaluations the same

• Thermochemical-source-term approach
 – Effective approach for verifying implementation – detected multiple issues
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This presentation describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the presentation do not necessarily represent the views of the U.S. Department of Energy or the United States Government.