Safety of Bariatric Surgery in ≥ 65-Year-Old Patients During the COVID-19 Pandemic

Rishi Singhal1,2, Islam Omar3, Brijesh Madhok4, Yashasvi Rajeev5, Yitka Graham6,7, Abd A. Tahrani8,9,10, Christian Ludwig11, Tom Wiggins1, Kamal Mahawar6,12, On behalf of the GENEVA Collaborators

Received: 21 January 2022 / Revised: 10 April 2022 / Accepted: 13 April 2022
© The Author(s) 2022

Abstract

Background Age ≥ 65 years is regarded as a relative contraindication for bariatric surgery. Advanced age is also a recognised risk factor for adverse outcomes with Coronavirus Disease-2019 (COVID-19) which continues to wreak havoc on global populations. This study aimed to assess the safety of bariatric surgery (BS) in this particular age group during the COVID-19 pandemic in comparison with the younger cohort.

Methods We conducted a prospective international study of patients who underwent BS between 1/05/2020 and 31/10/2020. Patients were divided into two groups — patients ≥ 65-years-old (Group I) and patients < 65-years-old (Group II). The two groups were compared for 30-day morbidity and mortality.

Results There were 149 patients in Group 1 and 6923 patients in Group II. The mean age, preoperative weight, and BMI were 67.6 ± 2.5 years, 119.5 ± 24.5 kg, and 43 ± 7 in Group I and 39.8 ± 11.3 years, 117.7±20.4 kg, and 43.7 ± 7 in Group II, respectively. Approximately, 95% of patients in Group 1 had at least one co-morbidity compared to 68% of patients in Group 2 (p = < 0.001).

The 30-day morbidity was significantly higher in Group I (11.4%) compared to Group II (6.6%) (p = 0.022). However, the 30-day mortality and COVID-19 infection rates were not significantly different between the two groups.

Conclusions Bariatric surgery during the COVID-19 pandemic is associated with a higher complication rate in those ≥ 65 years of age compared to those < 65 years old. However, the mortality and postoperative COVID-19 infection rates are not significantly different between the two groups.

Keywords Obesity · Older patients · SARS-CoV-2 · Resuming elective surgery · Metabolic surgery

Introduction

Bariatric surgery is currently the only evidence-based durable treatment option for patients with obesity and related comorbidities. An ageing population worldwide presents a challenge to all healthcare practitioners, including those involved in providing obesity management services [1, 2]. Previously, advanced age was considered a relative contraindication for bariatric surgery [3]. However, the evolution of laparoscopic techniques and advances in perioperative care protocols have changed perceptions [4, 5].

While some studies confirm good weight loss and acceptable postoperative morbidity and mortality in older individuals, others show significant perioperative morbidity and mortality with varying weight loss results [6–8]. Additionally, the heterogeneity of the studies with different age cutoff points and definitions of the older patients’ population prevents the generalisation of these results [9, 10].

Older age is associated with an unfavourable prognosis with COVID-19 should a patient undergoing bariatric
surgery develop perioperative COVID-19 infection. At the same time, obesity and its associated comorbidities also increase the risk of adverse outcomes with COVID-19 [11–13]. This poses a dilemma for healthcare professionals dealing with older patients seeking bariatric surgery.

The present study aimed to understand the safety of bariatric surgery in ≥ 65-years-old patients during the COVID-19 pandemic. This study was a subset analysis of the GENEVA dataset; a global study aimed to prospectively assess the safety of bariatric surgery during the COVID-19 pandemic [14–16].

Methods

Study Design, Setting, and Population

The GENEVA study was a global, multicentre, observational study of Bariatric Surgery (elective primary, elective revisional, and emergency) performed between 1/05/2020 and 31/10/2020 in the adult (≥ 18 years) population. The detailed methods have been described elsewhere [14–16].

Table 1

Group	Age (Min.–max.)	Sex	Preoperative Weight (Kg)	Calculated Preoperative BMI	White vs non white	Ethnicity of patient
I	65–76 yrs	102 (68.5%)	102 (68.5%)	23 (15.4%)	5 (0.3%)	I, American Indian or Alaska Native
II	17–64 yrs	5085 (73.5%)	5085 (73.5%)	1780 (25.7%)	10 (0.1%)	II, Asian
III	67.6 ± 2.5	1837 (26.5%)	1837 (26.5%)	117.7 ± 20.4	86 (1.2%)	III, Black or African American
IV	39.8 ± 11.3	1307 (26.5%)	1307 (26.5%)	117.7 ± 20.4	14 (0.2%)	IV, Hispanic or Latino
V	126 (84.6%)	5143 (74.3%)	5143 (74.3%)	43.7 ± 7	126 (84.6%)	V, Native Hawaiian or Other Pacific Islander
VI	47 (31.5%)	390 (5.6%)	390 (5.6%)	47 (31.5%)	0 (0%)	VI, White
We used 65 years as a cutoff point to define the older age group as per the World Health Organisation and The National Institute for Health and Care Excellence (NICE) definitions [17, 18]. We divided patients undergoing primary BS into two groups — those ≥ 65 years old (Group I) and those < 65 years old (Group II). The two groups were compared with each other with regard to basic demographics, 30-day morbidity and mortality, postoperative symptomatic COVID-19 infection rates, and procedure choice.

The main outcome measures of this study were 30-day all-cause and COVID-19 specific morbidity and mortality. Continuous data were presented as mean ± standard deviation (SD) or median (IQR) depending on data distribution. Frequencies were used to summarise categorical variables. Independent t-test or Mann Whitney U test examined differences between continuous variables depending on data distribution. A chi-square test or Fisher’s exact test was used to compare categorical variables. Significance levels were set at p < 0.05. Statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS) statistical software, version 27.0 (SPSS Inc).

| Table 2: Comparison between the two groups according to comorbidity and smoking status |
|---------------------------------|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| | Group I (≥ 65) | Group II (< 65) | χ² | p |
| Any comorbidity | (n = 149) | (n = 6923) | | |
| No | 8 (5.4%) | 2193 (31.7%) | 47.093* | <0.001* |
| Yes | 141 (94.6%) | 4730 (68.3%) | | |
| Type 2 diabetes not on medication | (n = 149) | (n = 6923) | | |
| No | 144 (96.6%) | 6507 (94%) | 1.834 | 0.176 |
| Yes | 5 (3.4%) | 416 (6%) | | |
| Type 2 diabetes on oral medication | (n = 149) | (n = 6923) | | |
| No | 98 (65.8%) | 6116 (88.3%) | 69.708* | < 0.001* |
| Yes | 51 (34.2%) | 807 (11.7%) | | |
| Type 2 diabetes on insulin | (n = 149) | (n = 6923) | | |
| No | 126 (84.6%) | 6694 (96.7%) | 62.438* | < 0.001* |
| Yes | 23 (15.4%) | 229 (3.3%) | | |
| Overall diabetes | (n = 149) | (n = 6923) | | |
| No | 77 (51.7%) | 5524 (79.8%) | 69.983* | < 0.001* |
| Yes | 72 (48.3%) | 1399 (20.2%) | | |
| Hypertension | (n = 149) | (n = 6923) | | |
| No | 38 (25.5%) | 4851 (70.1%) | 135.764* | < 0.001* |
| Yes | 111 (74.5%) | 2072 (29.9%) | | |
| Sleep apnea not on CPAP | (n = 149) | (n = 6923) | | |
| No | 126 (84.6%) | 6091 (88%) | 1.604 | 0.205 |
| Yes | 23 (15.4%) | 832 (12%) | | |
| Sleep apnea on CPAP | (n = 149) | (n = 6923) | | |
| No | 111 (74.5%) | 6014 (86.9%) | 19.254* | < 0.001* |
| Yes | 38 (25.5%) | 909 (13.1%) | | |
| Hypercholesterolemia | (n = 149) | (n = 6923) | | |
| No | 87 (58.4%) | 5461 (78.9%) | 36.233* | < 0.001* |
| Yes | 62 (41.6%) | 1462 (21.1%) | | |
| Other comorbidities | (n = 149) | (n = 6923) | | |
| No | 87 (58.4%) | 4926 (71.2%) | 11.516 | 0.001 |
| Yes | 62 (41.6%) | 1997 (28.8%) | | |
| Smoking status | (n = 149) | (n = 6922#) | | |
| Current smoker | 11 (7.4%) | 1027 (14.8%) | 28.300* | < 0.001* |
| Ex-smoker | 40 (26.8%) | 887 (12.8%) | | |
| Non-smoker | 98 (65.8%) | 5006 (72.3%) | | |

χ²: Chi-square test; FE: Fisher Exact; p: p-value for comparing the two studied groups; *Statistically significant at p ≤ 0.05; #Cases with missing data were excluded from the comparison between the two groups CPAP, continuous positive airway pressure.
Results

Data were collected from 179 centres in 42 countries by 470 surgeons (Appendix 1). Seven thousand ninety-two adult patients who underwent primary BS between 01/05/2020 and 31/10/2020 were included. Complete 30-day morbidity and mortality data were available for 7084 (99.88%) patients. The mean age of the entire cohort was 40.35 ± 11.9 years, and 5197 (73.4%) were females. The mean preoperative weight and body mass index (BMI) was 119.49 ± 24.4 Kg and 43.03 ± 6.9 Kg/m², respectively.

Table 1 compares the demographics of the two groups. The mean age for group I was 67.6 ± 2.5 years, and for group II was 39.8 ± 11.3 years. Group I included more patients of white ethnicity (84.6%) than Group II (74.3%) (p = 0.004). The rest of the demographic parameters, including pre-operative BMI and weight, were comparable between the two groups (Table 1).

Table 2 details the prevalence of comorbidities and smoking status in the two groups. Nearly 95% of patients in Group I had at least one co-morbidity compared to 68% of patients in Group II (p < 0.001). Specifically, a significantly greater proportion of patients in Group I suffered from diabetes mellitus (DM) (48.3% vs 20.2%), hypertension (74.5% vs 29.9%), obstructive sleep apnoea requiring continuous positive airway pressure (CPAP) therapy (25.5% vs 13.1%), and hypercholesterolemia (41.6% vs 21.1%) compared to Group II (all comparisons p < 0.001) (Table 2). In Group II, 14.8% of patients were current smokers, compared to 7.4% of Group I (p < 0.001).

The most common operation type in both groups was laparoscopic sleeve gastrectomy (LSG) (Group 1: 51.0%; Group 2: 56.4%). This was followed by Roux-en-Y gastric bypass (RYGB) (Group 1: 32.9%; Group 2: 29.4%) and one-anastomosis gastric bypass (OAGB) (Group 1: 8.7%; Group 2: 10.0%). Other forms of procedures were performed in 7.4% (Group 1) and 4.2% (Group 2) of individuals. There were no significant differences in procedure choice between the two groups (p = 0.164) (Table 3).

There were significantly more complications in Group I (11.4%) compared to Group II (6.6%) (p = 0.022; Table 4). There was one (0.7%) mortality in Group I and eight (0.1%) in Group II (p = 0.17 on Fisher’s exact test). Additionally, 38 (0.5%) patients in Group II had symptomatic COVID-19 infection within 30 days of the surgical operation compared to none in Group I (p = 1.000).

Table 5 presents 30-day morbidity and mortality analysed by procedure type in both groups. Differences in morbidity and mortality were only significant for LSG.

Discussion

This study has demonstrated that 30-day morbidity was significantly higher for patients ≥ 65 years of age receiving bariatric surgery compared to those < 65 years of age during the COVID-19 pandemic. However, there was no significant difference in 30-day mortality or 30-day symptomatic post-operative COVID-19 infection rates between the two groups.

The finding of increased 30-day morbidity in patients ≥ 65 years old maybe because 94.6% of patients in Group I had at least one co-morbidity compared to 68.3% in Group II. This is similar to the findings by Susmallian et al. who identified that 77% of patients ≥ 65 years of age had at least one comorbidity [7]. Similarly, Bhandari et al. demonstrated that 47.3%, 84.2%, and 17.9% of patients ≥ 65 years old

Surgical procedure	Group I (≥ 65) (n=149)	Group II (˂ 65) (n=6923)	χ²	p
LSG	76 (51%)	3907 (56.4%)	5.111	0.164
RYGB	49 (32.9%)	2038 (29.4%)		
OAGB	13 (8.7%)	689 (10%)		
Others	11 (7.4%)	289 (4.2%)		

χ²: Chi-square test; p: p-value for comparing between the two studied groups; *Statistically significant at p ≤ 0.05

LSG, laparoscopic sleeve gastrectomy; OAGB, one anastomosis gastric bypass; RYGB, Roux-en-Y gastric bypass

Complications	Group I (≥ 65) (n=149)	Group II (˂ 65) (n=6923)	χ²	p
No	132 (88.6%)	6463 (93.4%)	5.265 *	0.022*
Yes	17 (11.4%)	460 (6.6%)		

Clavien-Dindo (CD) Score

CD Score	Group I (≥ 65) (n=149)	Group II (˂ 65) (n=6923)	χ²	p
0	132 (88.6%)	6463 (93.4%)		
1	3 (2%)	162 (2.3%)		
2	4 (2.7%)	132 (1.9%)		
3A	4 (2.7%)	29 (0.4%)		
3B	4 (2.7%)	91 (1.3%)		
4A	1 (0.7%)	31 (0.4%)		
4B	0 (0%)	7 (0.1%)		
5 (Mortality)	1 (0.7%)	8 (0.1%)		

COVID within 30 days

Group	No (n=149)	Yes (n=6923)	χ²	p
No	149 (100%)	6885 (99.5%)	0.822	Fisher’s exact test
Yes	0 (0%)	38 (0.5%)		

χ²: Chi-square test; FE: Fisher Exact; p: p-value for comparing the two studied groups; *Statistically significant at p ≤ 0.05

CD, Clavein-Dindo Score; COVID, Novel Coronavirus 2019
suffered from diabetes, hypertension, and coronary heart disease compared to 20.1%, 23.4%, and 3.8%, respectively, in the younger age group [19]. The 30-day morbidity in our series was significantly higher in the older patients at 11.4% compared to 6.6% in the younger age group. A previous analysis of the National Surgical Quality Improvement Program (NSQIP) database demonstrated similar findings with increased rates of serious morbidity in the older age group compared to younger patients [20]. Another study reported a higher overall complication rate of 8.42% in older patients compared to 5.59% in the younger group, with significant differences in CD grades 3B and 4A [7].

In the current study, there was one mortality in the older age group (n = 149) and eight in the younger group (n = 6923), representing 0.7% and 0.1%, respectively. Though the difference did not reach statistical significance, this may be due to the small sample size. Bariatric teams should, therefore, be careful in offering bariatric surgery to patients in this age group. In contrast, a recent meta-analysis found that the mortality rate after LSG was similar at 0.2% in patients > 60 years and those ≤ 60 years of age whereas the mortality after RYGB was 2.2% and 0% (0/182), respectively [21]. However, those authors used 60 years as the cutoff which is no longer used to define older patients by WHO and other such bodies.

LSG was unsurprisingly the most commonly performed operation type in both groups (Group 1: 51.0%; Group 2: 56.4%) (Table 3). Importantly, there were no significant differences in procedure choice between the two groups.

Although the 30-day morbidity was significantly higher for LSG with Group I (15.8% vs 5.7%), it is difficult to draw firm conclusions from this due to the relatively low patient numbers (n = 76). All other procedures had comparable morbidity rates in both groups but once again there is potential for Type II error due to small numbers. We cannot make any justifiable conclusions regarding morbidity and mortality of different procedures in two groups based on the data in our study. Authors would however suggest that procedure selection is made in the usual manner on an individualised basis for each patient taking into account their wishes and specific characteristics.

Strengths and Weaknesses

This study has several weaknesses. Firstly, it only included data from participating centres and might therefore not represent the complete global picture. Additionally, we cannot guarantee that all contributors submitted all their consecutive patients during the study period, though collaborators were repeatedly reminded to do so. It is also possible that all adverse outcomes were not reported, but it is hoped that anonymous data collection and reporting would have discouraged any underreporting. Lastly, there were only 149 patients in the older age group, meaning that there is a potential for Type II error concerning the difference in mortality which indeed appears to be higher in the older population (0.7% vs 0.1%).

At the same time, this is the first international study examining the safety of bariatric surgery in those ≥ 65 years

Table 5 Morbidity and Mortality rates in each group sub-divided by procedure type

Procedure Type	Overall (n = 7072)	Group I (n = 149)	Group II (n = 6923)	p-value
Total patients				
LSG 30-day Morbidity	233/3983 (5.8%)	12/76 (15.8%)	221/3907 (5.7%)	< 0.001
LSG 30-day mortality	4/3983 (0.10%)	1/76 (1.32%)	3/3907 (0.08%)	
RYGB 30-day Morbidity	166/2087 (8.0%)	4/49 (8.2%)	162/2038 (7.9%)	0.956
RYGB 30-day mortality	0/0	0/0	0/0	
OAGB 30-day Morbidity	53/702 (7.5%)	0/13	53/689 (7.7%)	0.298
OAGB 30-day mortality	3/702 (0.43%)	0/0	3/689 (0.44%)	
Other 30-day Morbidity	25/300 (8.3%)	1/11 (9.1%)	24/289 (8.3%)	0.926
Other 30-day mortality	2/300 (0.67%)	0/0	2/289 (0.69%)	

LSG, laparoscopic sleeve gastrectomy; OAGB, one anastomosis gastric bypass; RYGB, Roux-en-Y gastric bypass

Chi-square test performed (age more than 65 compared against presence/absence of morbidity/mortality)
of age during the COVID-19 pandemic, which is known to have affected older people disproportionately. Moreover, this study included a broad range of patients representing a wide range of demographics, geographical distribution, stage of COVID-19 pandemic severity in the host population, and surgeon and centre experiences. Other strengths of this study include the large sample size, the global reach of the study, high data completion rate, and nearly complete follow-up.

Conclusion

Bariatric surgery during the COVID-19 pandemic was associated with higher 30-day morbidity in older patients (≥ 65 years old) compared to younger patients. The mortality and postoperative COVID-19 infection rates were comparable to the younger age group.

Author Contribution RS: conceptualization, methodology, investigation, formal analysis. IO: formal analysis, writing — original draft preparation, discussion of the results, writing — review & editing. BM, YR, YG, AAT, CL, and TW: investigation, data curation. KM: conceptualization, methodology, writing — review & editing, supervision. All authors have seen the final manuscript and approved it. The study was designed and conducted by the study group and the authors on behalf of GENEVA collaborators.

Geneva Collaborators

1 Michal Pędziwiat 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
2 Piotr Major 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
3 Piotr Zarzycki 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
4 Athanasios Pantelis 4th Surgical Department, Evangelismos General Hospital of Athens, Athens, Greece
5 Dimitris P. Laptas Tians 4th Surgical Department, Evangelismos General Hospital of Athens, Athens, Greece
6 Georgios Stravodimos 4th Surgical Department, Evangelismos General Hospital of Athens, Athens, Greece
7Chris Matthys A Z Sint Elisabeth Zottegem, Belgium
8 Marc Focquet A Z Sint Elisabeth Zottegem, Belgium
9 Wouter Vlesschouwers A Z Sint Elisabeth Zottegem, Belgium
10 Antonio G Spaventa ABC Medical Center Santa Fe, Mexico City, Mexico
11 Carlos Zerrweck ABC Medical Center Santa Fe, Mexico City, Mexico
12 Antonio Vitiello Advanced Biomedical Sciences Department - Naples “Federico II” University - Italy
13 Giovanna Berardi Advanced Biomedical Sciences Department - Naples “Federico II” University - Italy
14 Mario Musella Advanced Biomedical Sciences Department - Naples “Federico II” University - Italy
15 Alberto Sanchez-Meza Advanced Medicine Institute, Rey nosa, MEXICO
16 Felipe J Cantu Jr Advanced Medicine Institute. Reynosa, MEXICO
17 Fernando Mora Advanced Medicine Institute. Reynosa, MEXICO
18 Marco A Cantu Advanced Medicine Institute. Reynosa, MEXICO
19 Abhishek Katakwar AIG hospital, Hyderabad, India
20 D Nageshwar Reddy AIG hospital, Hyderabad, India
21 Haitham Elmaleh Ain Shams University Hospitals
22 Mohammad Hassan Ain Shams University Hospitals
23 Abdrelrahman Elghandour Ain Shams University Hospitals
24 Mohey Elbanna Ain Shams University Hospitals
25 Ahmed Osman Ain Shams University Hospitals, Cairo, Egypt
26 Athar Khan AI shark hospital fujairah UAE
27 Laurent layani AI shark hospital fujairah UAE
28 Nalini kiran AI shark hospital fujairah UAE
29 Andrey Velikorechin American Medical Clinic, Saint Petersburg, Russia
30 Maria Soloyueva American Medical Clinic, Saint Petersburg, Russia
31 Hamid Melali Amin University Hospital, Isfahan, Iran
32 Shahab Shahabi Amin University Hospital, Isfahan, Iran
33 Ashish Agrawal Apoorv Hi Tech at Gokuldhas Hospital
34 Apoorv Shrivastava Apoorv Hi Tech at Gokuldhas Hospital
35 Ankur Sharma Asian Bariatrics, Ahmedabad, India
36 Bhavya Narwaria Asian Bariatrics, Ahmedabad, India
37 Mahendra Narwaria Asian Bariatrics, Ahmedabad, India
38 Ansat Raziel Assuta Medical Center, Tel Aviv, Israel
39 Nasser Sakran Assuta Medical Center, Tel Aviv, Israel
40 Sergio Susmullian Assuta Medical Center, Tel Aviv, Israel
41 Levent Karagöz Atasam Hospitals, Samsun, Turkey
42 Murat Akbaba Atasam Hospitals, Samsun, Turkey
43 Salih Zeki Pişkin Atasam Hospitals, Samsun, Turkey
44 Ahmet Ziya BALTA AZ Bariatrics Obesity Center, Istanbul
45 Zafer Senol AZ Bariatrics Obesity Center, Istanbul
46 Emilio Manno Bariatric and Metabolic surgery UnitOspedale A.Cardarelli Napoli Italia
47 Michele Giuseppe Iovino Bariatric and Metabolic surgery UnitOspedale A.Cardarelli Napoli Italia
48 Ahmed Osman Bariatric Surgery Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
49 Mohamed Qassem Bariatric Surgery Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
50 Sebastian Arana-Garza Bariatric Surgery Experts, Monterrey, Mexico
51 Heitor P. Povoas BAROS - Bariatric and Metabolic Surgery, Salvador, Brazil
52 Marcos Leão Vilas-Boas BAROS - Bariatric and Metabolic Surgery, Salvador, Brazil
53 Alan Li BMI Alexandra Hospital, Manchester, UK
54 Basil J Ammori Burjeel Hospital, Abu Dhabi, UAE
55 Hany Balamoun Cairo University, Cairo, Egypt
56 Mohammed Salman Cairo University, Cairo, Egypt
57 Amrit Manik Nasta Center of Metabolic Surgery, Wockhardt Hospital, Agripada, Mumbai, India
58 Ramen Goel Center of Metabolic Surgery, Wockhardt Hospital, Agripada, Mumbai, India
59 Hugo Sanchez-Agular Center of Nutrition and Obesity, ABC Medical Center (Observatorio), Mexico City
60 Miguel F Herrera Center of Nutrition and Obesity, ABC Medical Center (Observatorio), Mexico City
61 Adel ABOU-MRAD Centre Hospitalier Regional d’ORLEANS
62 Lucie CLOIX Centre Hospitalier Regional d’ORLEANS
63 Guilherme Silva Mazzini Centro de Obesidade do Instituto do Aparelho Digestivo, Porto Alegre, Brazil
64 Leonardo Kristem Centro de Obesidade do Instituto do Aparelho Digestivo, Porto Alegre, Brazil
65 Andre Lazzaro Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
66 Jose Campos Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
67 Joaquin Bernardo Centro Médico de Asturias. Oviedo, Spain
68 Jesus Gonzalez Centro Médico de Asturias. Oviedo, Spain
69 Carlos Trindade Centro Multidisciplinar da Doenca Metabolica, Clinica Santo Antonio - Lusiasdas, Amadora, Portugal
70 Octavio Viveiros Centro Multidisciplinar da Doenca Metabolica, Clinica Santo Antonio - Lusiasdas, Amadora, Portugal
71 Rui Ribeiro Centro Multidisciplinar da Doenca Metabolica, Clinica Santo Antonio - Lusiasdas, Amadora, Portugal
72 David Goitein Chaim Sheba Medical Center, Affiliated with Sacker School of Medicine, Tel Aviv University, Ramat Gan, Israel
73 David Hazzan Chaim Sheba Medical Center, Affiliated with Sacker School of Medicine, Tel Aviv University, Ramat Gan, Israel
74 Lior Segev Chaim Sheba Medical Center, Affiliated with Sacker School of Medicine, Tel Aviv University, Ramat Gan, Israel
75 Tamar Beck Chaim Sheba Medical Center, Affiliated with Sacker School of Medicine, Tel Aviv University, Ramat Gan, Israel
76 Hernán Reyes Christus Muguerza Sur, Monterrey, Mexico
77 Jerónimo Monterrubio Chusit Muguetera Sur, Monterrey, Mexico
78 Paulina García Christus Muguerza Sur, Monterrey, Mexico
79 Marine Benois CHU Félix Guyon, la Réunion, France
80 Radwan Kassir CHU Félix Guyon, la Réunion, France
81 Alessandro Contine Città di Castello Hospital, Usl Umbria 1, Città di Castello - Italy
82 Moustafa Elshafei Clinic for Metabolic Surgery, Krankenhaus Nordwest, Frankfurt, Germany
83 Sueleyman Aktas Clinic for Metabolic Surgery, Krankenhaus Nordwest, Frankfurt, Germany
84 Sylvia Weiner Clinic for Metabolic Surgery, Krankenhaus Nordwest, Frankfurt, Germany
85 Till Heidiekast Clinic for Metabolic Surgery, Krankenhaus Nordwest, Frankfurt, Germany
86 Luis Level Clínica Santa Sofía, Caracas, Venezuela
87 Silvia Pinango Clínica Santa Sofía, Caracas, Venezuela
88 Patricia Martinez Ortega Clínica Universitaria de Navarra. Pamplona. Spain
89 Rafael Moncada Clinica Universidad de Navarra. Pamplona. Spain
90 Victor Valenti Clinica Universidad de Navarra. Pamplona. Spain
91 Ivan Vlahovic Clinical Hospital Centre Osijek, Osijek, Croatia
92 Zdenko Boras Clinical Hospital Centre Osijek, Osijek, Croatia
93 Arnaud Liagre Clinique des Cedres, Corbebarrieu, France
94 Francesco Martini Clinique des Cedres, Corbebarrieu, France
95 Gildas Juglard Clinique des Cedres, Corbebarrieu, France
96 Manish Motwani COMS, Apollo Spectra Hospital, New Delhi, India
97 Sukhvinder Singh Saggu COMS, Apollo Spectra Hospital, New Delhi, India
98 Hazem Al Momani Danal Al Emarat Hospital, Abu Dhabi, UAE
99 Luis Adolfo Aceves Lopez Defeat Obesity Bariatric and Metabolic Surgery, CHRISTUS MUGUERZA Hospital Reynosa, Reynosa, Tamaulipas.
100 Maria Angelina Contreras Cortez Defeat Obesity Bariatric and Metabolic Surgery, CHRISTUS MUGUERZA Hospital Reynosa, Reynosa, Tamaulipas.
101 Rodrigo Aceves Zavala Defeat Obesity Bariatric and Metabolic Surgery, CHRISTUS MUGUERZA Hospital Reynosa, Reynosa, Tamaulipas.
102 Christine D'haese RN Delta CHIREC hospital, Brussels Belgium
103 Ivo Kempeneers Delta CHIREC hospital, Brussels Belgium
104 Jacques Himpens Delta CHIREC hospital, Brussels Belgium
105 Andrea Lazzati Department of General Surgery, Center Hospitalier Intercommunal de Créteil, Paris, France
106 Luca Paolino Department of General Surgery, Center Hospitalier Intercommunal de Créteil, Paris, France
107 Sarah Bathaei Department of General Surgery, Center Hospitalier Intercommunal de Créteil, Paris, France
108 Abdulkadir Bedirli Department of General Surgery, Gazi University Faculty of Medicine, Turkey
109 Aydin Yavuz Department of General Surgery, Gazi University Faculty of Medicine, Turkey
110 Çağrı Büyükkasap Department of General Surgery, Gazi University Faculty of Medicine, Turkey
111 Safa Özyaydın Department of General Surgery, Gazi University Faculty of Medicine, Turkey
112 Andzej Kwikowski Department of General Surgery, Military Institute of Medicine, Szaresow 128, 04-141, Warsaw, Poland
113 Katarzyna Bartosiak Department of General Surgery, Military Institute of Medicine, Szaresow 128, 04-141, Warsaw, Poland
114 Maciej Walędzieck Department of General Surgery, Military Institute of Medicine, Szaresow 128, 04-141, Warsaw, Poland
115 Antonella Santoncica Department of Public Health, “Federico II” University of Naples, Naples, Italy
116 Luigi Angrisani Department of Public Health, “Federico II” University of Naples, Naples, Italy
117 Paola Iovino Department of Public Health, “Federico II” University of Naples, Naples, Italy
118 Rossella Palma Department of Public Health, “Federico II” University of Naples, Naples, Italy
119 Angelo Iossi Division of General Surgery & Bariatric Center of Excellence IFSO-EC, University La Sapienza of Rome, Italy
120 Cristian Eugeniu Boru Division of General Surgery & Bariatric Center of Excellence IFSO-EC, University La Sapienza of Rome, Italy
121 Francesco De Angelis Division of General Surgery & Bariatric Center of Excellence IFSO-EC, University La Sapienza of Rome, Italy
122 Gianfranco Silecchia Division of General Surgery & Bariatric Center of Excellence IFSO-EC, University La Sapienza of Rome, Italy
123 Abdulzahra Hussain Doncaster and Bassetlaw Teaching Hospitals
124 Dravin Samalochan Doncaster and Bassetlaw Teaching Hospitals
125 Isazkun Balisqueta Coltell Dr. Lorenzo, Innovación Cirugía Obesity and Diabetes
126 Javier Lorenzo Pérez Dr. Lorenzo, Innovación Cirugía Obesity and Diabetes
127 Ashok Bohra East-Midlands Bariatric & Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
128 Altaf K Awan East-Midlands Bariatric & Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
129 Brijesh Madhok East-Midlands Bariatric & Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
130 Paul C Leeder East-Midlands Bariatric & Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
131 herif Awd East-Midlands Bariatric & Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
132 Waleed Al-Khyatt East-Midlands Bariatric & Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
133 Ashraf Shoma Elsafa Private Hospital & Mansoura University Hospital & Eldelta Hospital
134 Hosam Elghadban Elsafa Private Hospital & Mansoura University Hospital & Eldelta Hospital
135 Sameh Gharbee Elsafa Private Hospital & Mansoura University Hospital & Eldelta Hospital
136 Bryan Mathews ew York Minimally Invasive Surgery PLLC, New York, NY, USA
137 Marina Kurian ew York Minimally Invasive Surgery PLLC, New York, NY, USA
138 Andreas Larentzakis First Department of Propaedeutic Surgery, Hippocration General Athens Hospital, National and Kapodistrian University of Athens, Athens, Greece
139 Gavriella Zoi Vrakopoulou First Department of Propaedeutic Surgery, Hippocration General Athens Hospital, National and Kapodistrian University of Athens, Athens, Greece
140 Konstantinos Albanopoulos First Department of Propaedeutic Surgery, Hippocration General Athens Hospital, National and Kapodistrian University of Athens, Athens, Greece
141 Ahmet Bozdag Firat University Hospital, Elazığ, Turkey
142 Azmi Lale Firat University Hospital, Elazığ, Turkey
143 Cuneyt Kirkil Firat University Hospital, Elazığ, Turkey
144 Mursid Dincer Firat University Hospital, Elazığ, Turkey
145 Ahmad Bashir Gastrointestinal, Bariatric & Metabolic Center at Jordan Hospital, Amman, Jordan
146 Ashraf Haddad Gastrointestinal, Bariatric & Metabolic Center at Jordan Hospital, Amman, Jordan
147 Leen Abu Hijleh Gastrointestinal, Bariatric & Metabolic Center at Jordan Hospital, Amman, Jordan
148 Bruno Zilberstein GASTROMED-Zilberstein Institute, Sao Paulo, Brazil
149 Danilo Dallago de Marchi GASTROMED-Zilberstein Institute, Sao Paulo, Brazil
150 Willy Petrini Souza GASTROMED-Zilberstein Institute, Sao Paulo, Brazil
151 Carl Magnus Brodén GB Obesitas Skaane, Malmö, Sweden
152 Hjörtur Gislason GB Obesitas Skaane, Malmö, Sweden
153 Kamran Shah GB Obesitas Skaane, Malmö, Sweden
154 Antonio Ambrosi General Surgery, University of Foggia, Italy
155 Giovanna Pavone General Surgery, University of Foggia, Italy
156 Nicola Tartaglia General Surgery, University of Foggia, Italy
157 S Lakshmi Kumari Kona Glenages Global Hospital, Lakdi-kapul, Hyderabad
158 Kalyan K Glenages Global Hospital, Lakdi-kapul, Hyderabad
159 Cesar Ernesto Guevara Perez Grammo SAS IPS, Bogotá, Colombia
160 Miguel Alberto Forero Botero Grammo SAS IPS, Bogotá, Colombia
161 Adrian Covic Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
162 Daniel Timoteo Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
163 Madalina Maxim Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
164 Dashki Faraj Groene Hart Hospital in Gouda & Dutch Obesity Clinic The Hague, Netherlands
165 Larissa Tseng Groene Hart Hospital in Gouda & Dutch Obesity Clinic The Hague, Netherlands
166 Ronald Lien Groene Hart Hospital in Gouda & Dutch Obesity Clinic The Hague, Netherlands
167 Güdrül Ören Güdrül Ören Bariatric Surgery Center, Istanbul, Turkey
168 Evren Dilektsalı Hayat Hospital, General Surgery, Bariatric & Metabolic Surgery, Bursa, Turkey
169 Ilker Yalcın Hayat Hospital, General Surgery, Bariatric & Metabolic Surgery, Bursa, Turkey
170 Hudaifah AlMukhtar Healthpoint Hospital, Abu Dhabi, UAE
171 Mohammed Al Hadad Healthpoint Hospital, Abu Dhabi, UAE
172 Rasmus Mohan Healthpoint Hospital, Abu Dhabi, UAE
173 Naresh Arora HOPE OBESITY CENTRE, AHMEDABAD, INDIA
174 Digvijaysingh Bedi HOPE OBESITY CENTRE, AHMEDABAD, INDIA
175 Claire Rives-Lange Hôpital Européen Georges Pompidou, AP-HP, Université de Paris, Paris, France
176 Jean-Marc Chevalier Hôpital Européen Georges Pompidou, AP-HP, Université de Paris, Paris, France
177 Tigran Poghosyan Hôpital Européen Georges Pompidou, AP-HP, Université de Paris, Paris, France
178 Hugues Sebbag Hôpital Privé de Provence (HPP), Aix-en-Provence, France
179 Lamia Zinai Hôpital Privé de Provence (HPP), Aix-en-Provence, France
180 Saadi Khaldi Hôpital Privé de Provence (HPP), Aix-en-Provence, France
181 Charles Mauchien Hôpital Ste Musse Centre Hospitalier Toulon
182 Davide Mazza Hôpital Ste Musse Centre Hospitalier Toulon
183 Georgiana Dinescu Hôpital Ste Musse Centre Hospitalier Toulon
184 Bernardo Rea Hospital Ángeles Lomas, Estado de México, México
185 Fernando Pérez-Galaz Hospital Ángeles Lomas, Estado de México, México
186 Luis Zavala Hospital Christus Muguerza Sur - Monterrey México
187 Anais Besa Hospital Clinic de Barcelona, Barcelona, Spain
188 Anna Curell Hospital Clinic de Barcelona, Barcelona, Spain
189 Jose M Balbrea Hospital Clinic de Barcelona, Barcelona, Spain
190 Carlos Vaz Hospital CUF Tejo, Lisbon, Portugal
191 Luis Galindo Hospital CUF Tejo, Lisbon, Portugal
192 Nelson Silva Hospital CUF Tejo, Lisbon, Portugal
193 José Luis Estrada Caballero Hospital General Universitario Alicante Spain
194 Sergio Ortiz Sebastian Hospital General Universitario Alicante Spain
195 João Caetano Dallegrave Marchesini Hospital Marcelino Champagnat, Curitiba, Brazil
196 Ricardo Arcanjo da Fonseca Pereira Hospital Marcelino Champagnat, Curitiba, Brazil
197 Wagner Herbert Sobottka Hospital Marcelino Champagnat, Curitiba, Brazil
198 Felipe Eduardo Fiolo Hospital Privado de Comunidad - Mar del Plata - Argentina
199 Matias Turchi Hospital Privado de Comunidad - Mar del Plata - Argentina
200 Antonio Claudio Jamel Coelho Hospital Rios D’Or, Rio de Janeiro, Brazil
201 Andre Luis Zacaron Hospital Rios D’Or, Rio de Janeiro, Brazil
202 Andrés Barbosa Hospital Unimed Natal, Natal, Brazil
203 Reynaldo Quinino Hospital Unimed Natal, Natal, Brazil
204 Gabriel Menaldi Hospital Universitario Austral, Bariatric and Metabolic department. Buenos Aires Argentina
205 Nicolás Paleari Hospital Universitario Austral, Bariatric and Metabolic department. Buenos Aires Argentina
206 Pedro Martínez-Duartez Hospital Universitario Austral, Bariatric and Metabolic department. Buenos Aires Argentina
207 Gabriel Martínez de Aragon Ramirez de Esperanza Hospital Universitario de Álava, Vitoria-Gasteiz. Spain
208 Valentín Sierra Esteban Hospital Universitario de Álava, Vitoria-Gasteiz. Spain
209 Antonio Torres Hospital Universitario Madrid Montepiniche. Hospital Clinico San Carlos. Madrid
210 Jose Luis Garcia-Galocha Hospital Universitario Madrid Montepiniche. Hospital Clinico San Carlos. Madrid
211 Miguel Josa Hospital Universitario Madrid Montepiniche. Hospital Clinico San Carlos. Madrid
212 Jose Manuel Pacheco-Garcia Hospital Universitario Puerta del Mar. Cadiz. Spain
213 Maria Angeles Mayo-Ossorio Hospital Universitario Puerta del Mar, Cadiz, Spain
214 Pradeep Chowbey Institute of Minimal Access, Metabolic & Bariatric Surgery, Max Super-Speciality Hospital, Saket, New Delhi, India
215 Vandana Soni Institute of Minimal Access, Metabolic & Bariatric Surgery, Max Super-Speciality Hospital, Saket, New Delhi, India
216 Hércio Azevedo de Vasconcelos Cunha Instituto Campineiro de Tratamento da Obesidade, Campinas, Brazil
217 Michel Victor Castilho Instituto Campineiro de Tratamento da Obesidade, Campinas, Brazil
218 Rafael Meneguzzi Alves Ferreira Instituto Campineiro de Tratamento da Obesidade, Campinas, Brazil
219 Thiago Alvim Barreiro Instituto Campineiro de Tratamento da Obesidade, Campinas, Brazil
220 Alexandros Charalabopoulos Interbalcan Medical Center
221 Elias Sdralis Interbalcan Medical Center
222 Spyridon Davakis Interbalcan Medical Center
223 Benoit Bomans International School Reduced Scar Laparoscopy, Brussels, Belgium
224 Giovanni Dapi International School Reduced Scar Laparoscopy, Brussels, Belgium
225 Koenraad Van Belle International School Reduced Scar Laparoscopy, Brussels, Belgium
226 MazenTakieddine Isppc chu -André Vésale , metabolic & Bariatric surgery
227 Pol Vaneukem Isppc chu -André Vésale , metabolic & Bariatric surgery
228 Esma Seda Akalin Karaca Istanbul Bilgi University,Turkey,(first author), Department of Pulmonary Medicine, Istanbul Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Zeytinburnu, Turkey,(for sekond author)
229 Fatih Can Karaca Istanbul Bilgi University,Turkey,(first author), Department of Pulmonary Medicine, Istanbul Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, Zeytinburnu, Turkey,(for sekond author)
230 Aziz Sumer Istinie University, School of Medicine, Istanbul,Turkey
231 Caghan Peksan Istinie University, School of Medicine, Istanbul,Turkey
232 Osman Anil Savas Istinie University, School of Medicine, Istanbul,Turkey
233 Elias Choulesl Jackson North Medical Center, Miami Fl
234 fahad Elmokayed king Abdul aziz hospital, Alhassa,saudi arabia
235 islam fahreldin king Abdul aziz hospital, Alhassa,saudi arabia
236 Hany Mohamed Aboshanab king Abdul aziz hospital, Alhassa,saudi arabia
237 Talal sweilum king Abdul aziz hospital, Alhassa,saudi arabia
238 Ahmad Gudal King Abdullah Medical Complex, Jeddah, KSA
239 Lamees Gamlool King Abdullah Medical Complex, Jeddah, KSA
240 Ayushka Ugale Kirloskar Hospital, Hyderabad, India
241 Surendra Ugale Kirloskar Hospital, Hyderabad, India
242 Clara Boeker Klinikum Region Hannover- Klinikum Nordstadt
243 Christian Reetz Klinikum Region Hannover- Klinikum Nordstadt
244 Ibrahim Ali Hakami Klinikum Region Hannover- Klinikum Nordstadt
245 Julian Mall Klinikum Region Hannover- Klinikum Nordstadt
246 Andreas Alexandrou Laiko General Hospital, National and Kapodistrian University of Athens, Greece
247 Efstratia Baili Laiko General Hospital, National and Kapodistrian University of Athens, Greece
248 Zsolt Bodnar Letterkenny University Hospital, Letterkenny, Ireland
249 Almantas Maleckas Lithuanian University of Health Sciences, Surgery Department, Kaunas, Lithuania
250 Rita Gudaityte Lithuanian University of Health Sciences, Surgery Department, Kaunas, Lithuania
251 Cem Emir Guldogan Liv Hospital Ankara, Turkey
252 Emre Gundogdu Liv Hospital Ankara, Turkey
253 Mehmet Mahir Ozmen Liv Hospital Ankara, Turkey (Istinye University School of Medicine)
254 Deepthi Thakkar Livlife Hospitals, Hyderabad, India
255 Nandakishore Dukkipati Livlife Hospitals, Hyderabad, India
256 Poonam Shashank Shah LOC Healthcare LLP, Pune, India
257 Shashank Subhashchandra Shah LOC Healthcare LLP, Pune, India
258 Simran Shashank Shah LOC Healthcare LLP, Pune, India
259 Md Tanveer Adil Luton and Dunstable Hospital
260 Periyathambi Jambulingam Luton and Dunstable Hospital
261 Ravikrishna Mamidanna Luton and Dunstable Hospital
262 Douglas Whitelaw Luton and Dunstable University Hospital
263 Md Tanveer Adil Luton and Dunstable University Hospital
264 Vigan Jain Luton and Dunstable University Hospital
265 Deepa Kizhakke Veetil Manipal Hospital, New Delhi, India
266 Randeep Wadhawan Manipal Hospital, New Delhi, India
267 Antonio Torres Max Medical, centro de cirugía bariátrica/robotica, Hospital Metropolitano de Quito/Ecuador
268 Max Torres Max Medical, centro de cirugía bariátrica/robotica, Hospital Metropolitano de Quito/Ecuador
269 Tabata Tinoco Max Medical, centro de cirugía bariátrica/robotica, Hospital Metropolitano de Quito/Ecuador
270 Wouter Leclercq Máxima Medical Center, Veldhoven, The Netherlands
271 Marleen Romeijn Máxima Medical Center, Veldhoven, The Netherlands
272 Kelly van de Pas Máxima Medical Center, Veldhoven, The Netherlands
273 Ali K. Alkhazraji Mediclinic Hospital Airport Road, Abu Dhabi, UAE.
274 Safwan A. Taha Mediclinic Hospital Airport Road, Abu Dhabi, UAE.
275 Murat Ustun Memorial Hospital, Istanbul, Turkey
276 Taner Yigit Memorial Hospital, Istanbul, Turkey
277 Aatif Inam Metabolic, Thoracic & General Surgery Team III, Department of General Surgery, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan.
278 Muhammad Burhanulhaq Metabolic, Thoracic & General Surgery Team III, Department of General Surgery, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan.
279 Abdolreza Pazouki Minimally Invasive Surgery Research Center, Division of Minimally invasive and Bariatric surgery, Department of Surgery, Rasool-e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
280 Foolad Eghbali Minimally Invasive Surgery Research Center, Division of Minimally invasive and Bariatric surgery, Department of Surgery, Rasool-e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
281 Mohammad Kermansaravi Minimally Invasive Surgery Research Center, Division of Minimally invasive and Bariatric surgery, Department of Surgery, Rasool-e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
282 Mohammad Kermansaravi Minimally Invasive Surgery Research Center, Division of Minimally invasive and Bariatric surgery, Department of Surgery, Rasool-e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
283 Mohsen Mahmoudieh Minimally Invasive Surgery Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
284 Foolad Eghbali Minimally Invasive Surgery Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
285 Gregory Tsiotos MITERA Hospital, Athens, Greece
286 Konstantinos Stamou MITERA Hospital, Athens, Greece
The study was funded by the bariatric unit’s research funds at University Hospitals Birmingham NHS Foundation Trust (Birmingham, UK).

Data Statement The data used to support the findings of this study can be released upon request.
Declarations

Ethics Approval This project was registered as a multinational audit (number: 5197) at the University Hospitals Birmingham NHS Foundation Trust, UK. Each site project lead was responsible for obtaining local governance approvals and data sharing agreements before entering data into the registry.

Consent to Participate No informed consent was needed for an audit of this nature.

Conflict of Interest KM has been paid honoraria by various NHS trusts and Ethicon®, Medtronic®, Gore Inc®, and Olympus® for educational activities related to bariatric surgery. Other authors have no conflicts of interest.

Statement of Human and Animal Rights Not Applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA - J Am Med Assoc. 2014;311:806–14.
2. Han TS, Tajari A, Lean MEJ. Obesity and weight management in the elderly. Br Med Bull. 2011;97:169–96.
3. Sugerman HJ, DeMaria EJ, Kellum JM, et al. Effects of bariatric surgery in older patients. Ann Surg. 2004;240:243–7.
4. Meunier H, Le Roux Y, Fiant AL, et al. Does the implementation of enhanced recovery after surgery (ERAS) guidelines improve outcomes of bariatric surgery? A propensity score analysis in 464 patients. Obes Surg. 2019;29:2843–53.
5. Mantziri S, Dayer A, Duvoisin C, et al. Long-term weight loss, metabolic outcomes, and quality of life at 10 years after Roux-en-Y gastric bypass are independent of patients’ age at baseline. Obes Surg 2020;30:1181–8.
6. Marczuk P, Kubisa MJ, Święch M, et al. Effectiveness and safety of Roux-en-Y gastric bypass in elderly patients—systematic review and meta-analysis. Obes Surg. 2019;29:361–8.
7. Susmalian S, Raziel A, Barnea R, Paran H. Bariatric surgery in older adults: should there be an age limit? Medicine (Baltimore). 2019;98:e13824.
8. Giordano S, Salminen P. Laparoscopic sleeve gastrectomy is safe for patients over 60 years of age: a meta-analysis of comparative studies. J Laparoendosc Adv Surg Tech. 2020;30:12–9.
9. Major P, Wysocki M, Janik M, et al. Impact of age on post-operative outcomes in bariatric surgery. Acta Chir Belg. 2018;118:307–14.
10. Nor Hanipah Z, Punchai S, Karas LA, et al. The outcome of bariatric surgery in patients aged 75 years and older. Obes Surg. 2018;28:1498–503.
11. Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy Eur J Allergy Clin Immunol. 2021:428–55.
12. Pollard CA, Morran MP, Nestor-Kalinoski AL. The covid-19 pandemic: a global health crisis. Physiol Genomics. 2020;52:549–57.
13. Zakka K, Chidambaram S, Mansour S, et al. SARS-CoV-2 and obesity: “CoVesity”-a pandemic within a pandemic. Obes Surg [Internet]. Obes Surg; 2021 [cited 2021 Nov 21];31:1745–54. Available from: https://pubmed.ncbi.nlm.nih.gov/33479921/
14. Singhal R, Tahranii AA, Ludwig C, et al. Global 30-day outcomes after bariatric surgery during the COVID-19 pandemic (GENEVA): an international cohort study. Lancet Diabetes Endocrinol. 2021:7–9.
15. Singhal R, Wiggins T, Super J, et al. 30-day morbidity and mortality of bariatric metabolic surgery in adolescence during the COVID-19 pandemic - the GENEVA study. Pediatr Obes [Internet]. Pediatr Obes; 2021 [cited 2022 Feb 1];16. Available from: https://pubmed.ncbi.nlm.nih.gov/34240553/
16. Singhal R, Ludwig C, Rudge G, et al. 30-day morbidity and mortality of bariatric surgery during the COVID-19 pandemic: a multinational cohort study of 7704 patients from 42 countries. Obes Surg [Internet]. Obes Surg; 2021 [cited 2022 Feb 1];31:4272–88. Available from: https://pubmed.ncbi.nlm.nih.gov/34328624/
17. Rudnicka E, Napierala P, Podfigurna A, et al. The World Health Organization (WHO) approach to healthy ageing. Maturitas [Internet]. Elsevier; 2020 [cited 2021 Nov 22];139:6–11. Available from: https://pubmed.ncbi.nlm.nih.gov/32747042/
18. Older people: independence and mental wellbeing NICE guideline. 2015 [cited 2021 Nov 21]; Available from: www.nice.org.uk/guidance/ng32
19. Bhandari M, Mathur W, Fobi M, et al. Outcomes of bariatric surgery in geriatric patients ≥ 65 years: single institution study. Obes Surg. 2019;29:1470–6.
20. Koh CY, Inaba CS, Sujatha-Bhaskar S, et al. Outcomes of laparoscopic bariatric surgery in the elderly population. Am Surg. 2018;84:1600–3.
21. Vallois A, Menahem B, Alves A. Is laparoscopic bariatric surgery safe and effective in patients over 60 years of age?” an updated systematic review and meta-analysis. Obes Surg 2020. p. 5059–70.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Authors and Affiliations

Rishi Singhal1,2 \cdot Islam Omar3 \cdot Brijesh Madhok4 \cdot Yashasvi Rajeev5 \cdot Yitka Graham6,7 \cdot Abd A. Tahrani,9,10 \cdot Christian Ludwig11 \cdot Tom Wiggins1 \cdot Kamal Mahawar6,12 \cdot On behalf of the GENEVA Collaborators

1 Upper GI unit, Birmingham Heartlands Hospital, University Hospital Birmingham NHS Foundation Trust, Bordesley Green East, Birmingham, West Midlands B9 5SS, UK
2 Healthier Weight, Birmingham, UK
3 General Surgery Department, Wirral University Teaching Hospital NHS Foundation Trust, North West, Wirral, UK
4 Upper GI unit, University Hospital of Derby and Burton NHS Foundation Trust, East Midlands, Derby, UK
5 Pediatric Accidents and Emergencies Department, London Northwest University Healthcare NHS Trust, London, UK
6 Faculty of Health Sciences and Wellbeing, University of Sunderland, North East, Sunderland, UK
7 Facultad de Pyscologia, Universidad Anahuac, Anahuac, Naucalpan de Juárez, Mexico
8 Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
9 Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health Partners, Birmingham, UK
10 Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, West Midlands, UK
11 Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, UK
12 Bariatric Unit, South Tyneside and Sunderland NHS Foundation Trust, North East, Sunderland, UK