The human tripartite motif containing protein 8 (TRIM8), a member of TRIM family proteins, is known to play a dual role as both tumor suppressor and oncogene, and to function at the crosstalk of cancer and innate immunity. In this review, in addition to accumulating recent corroboration that endorses this dual character of TRIM8, we appraise the game-changing capacity of TRIM8 under stress conditions against the backdrop of cell proliferation, apoptosis, and cancer, and also highlight the duality of TRIM8 in multiple contexts like cellular localization, stress-induced conditions, and E3 ubiquitin ligase activity. Finally, we discuss the emerging role of TRIM8 during bipolar spindle formation and mitotic progression, and its growing sphere of influence across multiple human cancers and pathologies, and suggest TRIM8-linked axes that can be modulated further for anti-cancer therapeutics development.

TRIM8: The Background

The human tripartite motif containing protein 8 (TRIM8) or RING finger protein 27 (RNF27), originally reported as glioblastoma expressed RING-finger protein (GERP), is encoded by the TRIM8 gene (Ensembl: ENSG00000171206) and positioned on the chromosome 10q24.32, a region that is known to show frequent deletion or loss of heterozygosity in glioblastomas. Since its discovery studies on TRIM8 have impacted multiple areas of cell and disease biology (Figure 1). In humans, TRIM8 is known to have a total of 15 splice-variant transcripts, and interestingly, three of them are uncharacterized long non-coding RNAs (lncRNAs) (Ensembl). TRIM8 is ubiquitously expressed in 27 human tissues considered in the Human Protein Atlas (HPA) RNA-Seq Project and produces one major transcript (Ensembl: ENST00000643721.1) of 7,290-bp length that codes for the 551-amino acid (aa) TRIM8 protein with a molecular mass of 61.489 kDa (UniProtKB: Q9BZR9 TRIM8 HUMAN).

In the context of ubiquitin system, it is widely known that the conjugation reaction of ubiquitin to a substrate is catalyzed by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin ligases. The E3 ubiquitin ligases can be divided between two major classes: the homologous to E6-AP COOH terminus (HECT) E3 ubiquitin ligase family and the RING-finger-containing E3 ubiquitin ligase family. Although, TRIMs are considered among this RING-finger-containing E3 ubiquitin ligase family, not all TRIM E3 ubiquitin ligases have RING domains. For instance, in humans so far, the number of RING-less TRIM proteins stands at 9 out of more than 70 annotated TRIM proteins. TRIM proteins play an important role in carcinogenesis and are highly associated with DNA repair, metastasis, tumor-suppressive regulation, and oncogenic regulation. Further, some of the TRIM family proteins serve as critical regulators of autophagy and innate immunity and control important cellular processes, like intracellular signaling and transcription.

TRIM8 belongs to this TRIM family of proteins (also called as RBCC proteins), which are known to maintain a common structural feature of having a tripartite motif, distinguished by the presence of a RING domain (R), one or two B-boxes (B), and a coiled-coil domain (CC). The human TRIM8, an E3 ubiquitin ligase protein, contains an N-terminal C3HC4-type RING-finger domain, followed by two B-boxes (Bbox1 and Bbox2), a coiled-coil domain, and a proline-rich no-domain C-terminal region with a monopartite nuclear localization signal (NLS) (Figure 2A). TRIM8 comes structurally under class V of TRIM-type proteins, along with TRIM19, TRIM31, TRIM40, TRIM56, TRIM73, TRIM74, RNF207, TRIM52, and TRIM61, which are also observed to have no known domains in their C-terminal region so far. The RING domain of TRIM8 is crucial for its activity to regulate stabilization and activation TP53, degradation of MDM2, and destabilization of ΔNp63α, and thus plays an important role in the context of cell proliferation, whereas the conserved B-box and coiled-coil domain region is known to mediate the interaction with SOCS1, a tumor suppressor gene. The coiled-coil domain of TRIM8 is required for homodimerization, and deletion of the C-terminal domain of TRIM8 can result in protein mislocalization. TRIM8 can also interact with other TRIM proteins in humans, like TRIM2, TRIM8, TRIM9, TRIM15, TRIM21, TRIM24, TRIM25, TRIM27, TRIM39, TRIM43, TRIM44, and TRIM47. Recent studies on TRIM8 strongly advocate for the critical role of TRIM8 as a regulator of cell proliferation and as an important player in cancer, immunity, and inflammation. Here, the duality of TRIM8 has been reviewed in multiple contexts, like its function and cellular localization, and the emerging role of TRIM8 during the course of cell cycle and bipolar mitotic spindle formation has been discussed. Further, TRIM8’s growing sphere of influence has been assessed in the context of multiple human pathologies, and plausible...
Review

Molecular Therapy: Nucleic Acids Vol. 22 December 2020 435

www.moleculartherapy.org

GERP was included in TRIM family, and was termed as TRIM8

Growing evidence of TRIM8 as oncogenic: TRIM8 modulates STAT3 activity through negative regulation of PIAS3

2001

Rise of TRIM8 as tumor suppressor: TRIM8 physically interacts with TP53 and induces its activity to dictate cell cycle arrest. TRIM8 overexpression degrades MDM2, principal regulator of p53 stability

2010

Restored TRIM8 expression induces a significant reduction of clonogenic potential in patient’s glioblastoma cells

2012

2015

2000

Appearance of TRIM8 as oncogene: TRIM8 can inhibit SOCS1 and reverse SOCS1-mediated inhibition of JAK-STAT activation.

Discovery of GERP in glioblastoma as a predicted tumour suppressor gene

2002

2011

TRIM8 modulates translocation of phosphorylated STAT3 into the nucleus, and regulates transcription of Nanog in embryonic stem cells

Anti-proliferative action of TRIM8 is shown in chemo-resistant renal cell carcinoma

2014

TRIM8 is a novel regulator of DDR-autophagy crosstalk and plays role in survival of cancer cells in presence of genotoxic agent

2016

2018

2017

TRIM8 targets TAK1 to promote insulin resistance and steatohepatitis

TRIM8 plays a deleterious role in cardiac hypertrophy by accelerating the activation of TAK1-dependent signaling pathways

TRIM8 positively regulates pro-inflammatory responses in PA-induced keratitis through TAK1 protein

TRIM8 restores TP53 by blunting N-MYC activity in chemoresistant tumours

2019

Knockdown of TRIM8 protects against LPS-induced acute lung injury by regulating AMPKα activity

TRIM8 positively correlates with STAT3 in glioblastoma, and plays role in neurotransmission and to the central nervous system (CNS) functions

TRIM8 promotes TP53 tumour suppressor activity quenching the oncogenic ΔNp63α protein

2020

Knockdown of TRIM8 decreases apoptosis and the reactive oxygen species (ROS) generation in OGD/R-exposed neurons and downregulation of TRIM8 protects from OGD/R-induced neuronal injury

TRIM8 interacts with KIF11 and KIFC1 to regulate bipolar spindle formation and localizes at centrosome during mitosis. TRIM8 silencing slows down centrosome separation and delays mitotic progression

TRIM8 positively regulates cerebral IR injury by activating NF-κB pathway, and TRIM8 knockdown significantly reduces apoptosis in hippocampus of mice with cerebral IR injury

De novo mutation of TRIM8 causes Early-Onset Epileptic Encephalopathy (EOEE)
TRIM8 Is a Molecule of Duality (MoD)

TRIM8 Can Act as Both Anti-proliferative and Pro-oncogenic

We showed that TRIM8 can act as a tumor suppressor by inducing TP53-dependent cell cycle arrest. TRIM8, a direct target gene of TP53, induces TP53 expression and tumor suppressor activity through a positive feedback loop-forming mechanism with TP53 during UV-instigated stress conditions by augmenting CDKN1A (p21) and GADD45 expression. TRIM8 is highly downregulated in clear cell renal cell carcinoma (ccRCC), and the recovery of TRIM8 expression can lead to the enhancement of efficacy of chemotherapeutic drugs by re-activating the TP53 pathway, suggesting that TRIM8 can be used as an enhancer of chemotherapy efficacy in a TP53 wild-type background. Further, TRIM8 can restore the TP53 activity by blunting N-MYC activity in chemo-resistant tumors, like ccRCC and colorectal cancer (CRC), upon inhibition of miR-17-5p (also known as MIR17) and/or miR-106-5p. The inhibition of miR-17-5p and/or miR-106-5p leads to the recovery of TRIM8-mediated TP53 tumor suppressor activity and inhibits N-MYC-dependent cell proliferation through miR-34a upregulation. Overall, these studies established an anti-proliferative image of TRIM8 during the course of cell proliferation and cancer, and, following the same trend, recent studies have also provided further evidence toward the anti-proliferative activity of TRIM8. It has recently been shown that TRIM8 can blunt the pro-proliferative action of oncogenic ΔNp63α in a TP53 wild-type background. Altogether, based on the current knowledge, it can be stated that TRIM8 has the capacity to exercise its anticancer power in three ways: by inducing the TP53 tumor suppressor activity through a positive feedback loop formation, restoring TP53 functions by blunting N-MYC activity in chemo-resistant tumors, and quenching the ΔNp63α oncogenic activity by forming a negative feedback loop. However, it should not go unnoticed that, in all three cases, TRIM8’s anti-proliferative property is subject to the TP53 functional or wild-type background, suggesting a strong demand for research on TRIM8 and its anti-cancer capacity in a TP53 mutant background, as most of the TP53-associated axes (e.g., TP53-MDM2 axes) based on E3 ubiquitin ligase-targeting drugs fail in this caveat. Indeed, it would be of high importance to look at the capacity of TRIM8 to enter apoptosis. Thus, by positively regulating the TNF-induced NF-κB pathway, TRIM8 plays the role of an important oncogene that drives cell proliferation. Overall, from these two highly contrasting features, it can be stated that TRIM8 can function as both a tumor suppressor and an oncogenic molecule (Figure 2B).

Duality of TRIM8 under Stress Conditions

The duality of TRIM8 comes out under different stress conditions, like UV-instigated stress or genotoxic stress. Under exposure to UV, TP53 induces the expression of TRIM8, which, in turn, stabilizes TP53, leading to cell cycle arrest and reduction in cell proliferation through upregulation of CDKN1A (p21) and GADD45. Notably, TRIM8 silencing prevents TP53 activation after UV radiation. Further, the overexpression of TRIM8 reduces the half-life of MDM2, the key negative regulator of TP53, without altering MDM2 mRNA expression, which in turn results in an increased TP53 protein expression. Finally, it has also been proven that the TRIM8-RING domain is essential to regulate TP53 and MDM2 stability and activity. Overall, it suggests that, under UV-instigated stress conditions, TRIM8 plays an important role as a tumor suppressor to dictate cell cycle arrest. In contradiction to this, a recent study has reported that TRIM8 can provide a survival advantage to cancer cells by enhancing autophagy flux through lysosomal biogenesis during genotoxic stress conditions. The study has shown TRIM8-regulated autophagy degrades the cleaved Caspase-3 subunit to inhibit genotoxic stress-induced cell death. TRIM8 knockdown reduces the expression of X-linked inhibitor of apoptosis protein (XIAP), whereas the enhanced expression of TRIM8 stabilizes XIAP during genotoxic stress conditions. XIAP also strongly activates NF-κB via BIR (baculovirus inhibitor of apoptosis protein repeat) domain-mediated dimerization and binding to TGF-β-activated kinase 1 (MAP3K7) binding protein 1 (Table 1). This XIAP-mediated NF-κB activation also induces expression of genes involved in autophagy, like Beclin-1. Interestingly, during genotoxic stress, TRIM8-mediated XIAP stabilization can also initiate inactivation of Caspase-3, one of the primary executors of apoptotic cascade. Therefore, TRIM8-mediated XIAP stabilization has the capacity to bring two important oncogenic outcomes during the course of tumorigenesis. First, TRIM8-mediated XIAP stabilization can activate NF-κB, leading to expression of genes.
A **TRIM8 protein structure representation**

- RING
- B-box1 15-56
- B-box2 92-132
- Coiled-coil 140-180
- 181-249
- Proline-rich No-domain 351-551
- C-terminal region

N-terminal

B **Key Figure: TRIM8 is a Molecule of Duality**

- Cell Proliferation
- Cell Cycle Arrest
- DNA Repair
- miR-106b-5p
- miR-17-5p
- GADD45
- TP53
- p21
- N-MYC
- The guardian of the genome
- The gamechanger
- TRIM8
- TRIM8-STAT3
- TRIM8-PIAS3
- TRIM8-UB
- Nucleus
- NF-kB
- TAK1
- TNF-α
- PIAS3
- TRIM8
- Ub
- Degradation
- Apoptosis
- Survival advantage to cancer cells
- Translocation
- Genotoxic stress
- UV-instigated stress

Transcriptional activation of cell-cycle arrest genes

- TP53
- TRIM8
- MDM2
- XIAP
- Caspase-3
- TRIM8
- NF-kB
- Cell Proliferation

Positive regulation

Inhibit

(legend on next page)
involved in autophagy and cell proliferation. Second, TRIM8 mediated stabilized XIAP prevents activation of Caspase-3, leading to the suppression of apoptosis. Through this novel mechanism, TRIM8 prevents cell death during genotoxic stress and radiation therapy, and this suggests TRIM8’s highly potential oncogenic caliber can provide survival assistance to cancer cells.

TRIM8 Can Act in Both an E3 Ubiquitin Ligase-Dependent and -Independent Manner

Historically, TRIM8 is considered to be among E3 ubiquitin ligases due to the presence of RING domain. Although the mechanism of activation of its E3 ubiquitin ligase activity is not known yet, TRIM8 has been shown to function as an E3 ubiquitin ligase in several important biological pathways. It is demonstrated that TRIM8 mediates K63-linked polyubiquitination of TGF-β-activated kinase 1 (TAK1), triggered by TNF-α and IL-1β, and, through this, TRIM8 serves as a critical regulator of TNF-α- and IL-1β-induced NF-κB activation. During *Pseudomonas aeruginosa* (PA)-induced keratitis infection, TRIM8 promotes K63-linked polyubiquitination of TAK1, leading to its activation and enhanced inflammatory responses. Ye et al. reported that TRIM8 can interact with Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF) and mediates its K6- and K33-linked polyubiquitination, which leads to the disruption of the TRIF-TANK-binding kinase-1 association. In general, it is known that K63-linked ubiquitination is involved in regulating proteasome-independent functions, including cellular processes, like endocytosis and inflammatory immune responses, innate immunity, protein trafficking, and NF-κB signaling, whereas K6-linked polyubiquitination is known to be associated with DNA damage response and Parkin-mediated mitophagy, and K33-linked polyubiquitination is associated with TCR signaling, post Golgi-trafficking, and AMPK-related kinase signaling. Currently, it is experimentally well established that TRIM8 can perform K63-, K6-, and K33-linked polyubiquitination. TRIM8 also plays an important role in proteasomal degradation of SOCS1, although it has not been proven yet whether it is through TRIM8-mediated K48-linked ubiquitination or in association with other protein complexes. Nevertheless, TRIM8’s E3 ubiquitin ligase activity and its involvement in cancer and immunity lies much beyond doubt. But, against this running flow, recent studies have reported that TRIM8 can not only act in an E3 ubiquitin ligase-independent manner, but it can also protect phosphorylated IRF7 (pIRF7) from proteasomal degradation through an E3 ubiquitin ligase-independent path by preventing its recognition by the peptidyl-prolyl isomerase Pin1.

Duality in Localization: Nucleus and Cytoplasm

TRIM8 can function at two subcellular sites—nucleus and cytoplasm—to regulate NF-κB, one of the central signaling pathways that plays a critical role in carcinogenesis and inflammatory diseases. Pias3 is known to negatively regulate the NF-κB pathway via its interaction with p65 in the nucleus. Expression of TRIM8 enhances NF-κB activity even in the presence of Pias3, suggesting TRIM8 can inhibit Pias3-mediated negative regulation of NF-κB. But TRIM8’s ability to positively regulate NF-κB activity is not limited within the nucleus. Li et al. observed earlier that TRIM8 positively regulates the NF-κB pathway by K63-linked polyubiquitination of cytoplasmic protein TAK1. Following this, Tomar et al. showed that TRIM8 can also regulate NF-κB activity in the cytoplasm under the influence of TNF-α. The study revealed that TNF-α induces the translocation of TRIM8 from the

Table 1. A Summary of TRIM8-Linked Injuries and Apoptosis

Type of Injury	Neuronal Injury	Cerebral Injury	Hepatic Injury
Exposure to the pathogenic stimulus	oxygen-glucose deprivation/re-oxygenation (OGD/R)	ischemia/reperfusion (I/R) injury	I/R injury
Changes in TRIM8 expression due to the exposure	upregulation	upregulation	upregulation
Impact of TRIM8 knockdown on apoptosis during the exposure	decreases apoptosis	decreases apoptosis	decreases apoptosis

Key molecules/pathways involved in the mode of action of TRIM8

| Nrf2/ARE antioxidant signaling via AMPK | IkB kinase alpha (IKKα), inhibitory κB α (IkBα) and nuclear factor kappa B (NF-κB) | transforming growth factor β-activated kinase 1 (TAK1)-p38/JNK signaling pathway |

Figure 2. TRIM8 Protein Structure and Function

(A) Structural representation of TRIM8. The illustration shows TRIM8 as an RBCC protein, made up of an N-terminal C3HC4-type RING-finger domain, followed by two B-boxes (Bbox1 and Bbox2), a coiled-coil domain, and a proline-rich no-domain C-terminal region with a monopartite nuclear localization signal (NLS). Like the class V TRIM family proteins, TRIM8 also does not have any known motifs/domains (e.g., B30.2/SPRY domain or RFP-like domain, COS domain, etc.) in its C-terminal region. (B) TRIM8 is a molecule of duality (MoD). TRIM8 can function in both a pro-proliferative and anti-oncogenic manner. TRIM8 primarily exercises its anticancer power by inducing TP53, negatively regulating N-MYC and quenching XIAP expression also leading to inhibition of apoptosis and survival assistance for cancer cells. TRIM8-induced XIAP expression also leads to the activation of NF-κB and positive regulation of cell proliferation.
nucleus to the cytoplasm, which positively regulates NF-kB. A time-course study for TRIM8 nucleo-cytoplasmic translocation upon TNF treatment showed that TRIM8 translocates to the cytoplasm within 15 min and re-translocates back to the nucleus after 12 h.22 Another instance of TRIM8’s nucleo-cytoplasmic translocation can be found in the regulation of STAT3 by PIAS3. In the cytoplasm, the ectopic expression of TRIM8 promotes proteasomal degradation of PIAS3, leading to the nuclear translocation of STAT3, whereas, in the nucleus, TRIM8 facilitates the recruitment of STAT3 to the STAT3-inducible element (SIE) regions of several brain- and cancer-related genes and binds to the SIE regions of the same genes.13

Duality of TRIM8 in Glioblastoma

The regulation of STAT3 by TRIM8 via PIAS3 is extensively important in the context of glioblastoma. Zhang et al.26 reported that TRIM8 initiates STAT3 signaling to maintain stemness and self-renewal capacity in glioblastoma-like stem cells (GSCs) by suppressing the expression of PIAS3. Knockdown of TRIM8 reduces GSC self-renewal, whereas overexpression of TRIM8 leads to enhanced GSC self-renewal.28 The study has further shown that STAT3 activation can also upregulate TRIM8 expression, even in the setting of hemizygous gene deletion in glioblastoma, and this bi-directional positive feedback mechanism facilitates stemness in GSCs. This suggests that TRIM8 acts as an oncogenic molecule by promoting the self-renewal capacity of GSCs. In contrast, we showed that the downregulation of TRIM8 in glioblastoma compared to its normal counterpart is indeed associated with a significant increase in the risk of disease progression in patients. Most importantly, TRIM8 overexpression and restored TRIM8 expression significantly reduce both cell proliferation and clonogenic potential in glioma cells, suggesting the anti-proliferative capacity of TRIM8 in glioma patients.27 However, it is not at all clear how a molecule that helps the self-renewal capacity in GSCs can alter its mechanism to reduce the proliferation and clonogenic potential in glioma cells.

TRIM8: Growing Scope of Influence

Emerging Role of TRIM8 in Bipolar Spindle Formation during Mitosis

The roles of different TRIM family proteins are known during the stages of mitosis and cell-cycle progression. TRIM28, TRIM19, TRIM69, TRIM22, TRIM37 are involved in prophase; TRIM32, TRIM19, and TRIM69 in prometaphase; TRIM36, TRIM17, and TRIM69 in metaphase; and TRIM17, TRIM21, TRIM47, and TRIM76 in cytokinesis.28 We recently showed that TRIM8 interacts with KIF11 (also known as EG5) and KIFC1, two master regulators of mitotic spindle assembly and cytoskeleton reorganization, and localizes at the mitotic spindle during the stages of bi-polar spindle formation. Our study also suggested that TRIM8 is required for chromosomal stability, as we observed that silencing of TRIM8 resulted in a significant increase of cells with less than 46 chromosomes.29 In particular, KIF11 inhibition and KIFC1 overexpression are known to be sufficient enough to induce a monopolar spindle phenotype in mitotic cells,30–33 and thus the physical interactions of TRIM8 with KIF11 and KIFC1 strongly advocate for the plausible role of TRIM8 in coordinating cell polarity during mitosis. From our experimental data, some interesting clues are emerging. On one hand, TRIM8 localizes on centrosomes and localizes with Plk1 and directly interacts with CEP170-like centrosomal protein, and silencing of TRIM8 induces a delay of the mitosis progression with a cell accumulation in the G2/M phase.29 Therefore, we suggest that TRIM8 can play an important function during the course of centrosome duplication. On the other hand, TRIM8 localizes at the mitotic spindle throughout all phases of mitosis and physically interacts with some of the most important mitotic assembly proteins like KIF11, KIFC1, KIF20B, and KIF2C. Altogether, it can be suggested that TRIM8 may play an important function in the bi-polar spindle formation from the very onset of centrosome duplication until the end of the division of one cell into two daughter cells, a signature process in eukaryotic life mediated by microtubules and kinesin family proteins.

Knockdown of TRIM8 Links Injuries and Apoptosis

Although earlier studies could not reveal much of the role of TRIM8 in regulating apoptosis during injuries, the emerging role of TRIM8 is highlighting its common characteristic feature in regulating apoptosis in different cell types when they are exposed to conditions like oxygen-glucose deprivation/re-oxygenation (OGD/R) or ischemia/reperfusion (I/R) injury. Recent studies on the role of TRIM8 in neural apoptosis identified that TRIM8 expression is upregulated in neurons when they are exposed to OGD/R. Knockdown of TRIM8 improves the cell viability and decreases the apoptosis and reactive oxygen species (ROS) generation in OGD/R-exposed neurons, whereas TRIM8 overexpression shows exactly the opposite effect. The elevated apoptotic neurons induced by OGD/R exposure gets remarkably decreased upon TRIM8 knockdown, suggesting that TRIM8 inhibition protects neurons from OGD/R-induced apoptosis and ROS production by reinforcing AMPK/Nrf2/ARE signaling.35 TRIM8 is also significantly upregulated in the liver of mice exposed to hepatic I/R injury. The silencing of TRIM8 alleviates hepatic inflammation responses and inhibits apoptosis in vitro and in vivo.35 TRIM8 deficiency plays a protective role in hepatic I/R injury by inhibiting the activation of TAK1-dependent signaling pathways. Further, it has also been recently identified that TRIM8 knockdown significantly reduced apoptosis in the hippocampus of mice with cerebral IR injury by reducing Caspase-3 cleavage. Suppression of TRIM8 reduces cerebral IR-induced inflammation and apoptosis, and TRIM8 positively regulates cerebral IR injury by activating the NF-kB pathway to enhance inflammation and apoptosis.18 Overall, from these studies, it is crystal clear that, during exposure to pathogenic stimuli like OGD/R and I/R injury in different cell types, TRIM8 always gets upregulated, and knockdown of TRIM8 decreases apoptosis significantly. At the same time, it is also noteworthy that, although the impact of TRIM8 on apoptosis upon exposure to stimulus remains the same in different cell types, its mode of action varies across the cell types, indicating that
TRIM8 can impact apoptosis via different pathways (Table 1; Figure 3).

Role beyond Cancer: TRIM8 in Multiple Human Pathologies

Besides playing a significant role in cancer, TRIM8 is also emerging as an important player in multiple cellular and pathological phenomena (Figure 3). TRIM8 has been identified as a novel gene responsible for early-onset epileptic encephalopathy (EOEE) and epileptic encephalopathy (EE). Pathogenicity of TRIM8 mutations on its C terminus has been established as the causative agent for EE, possibly associated with nephrotic syndrome.36,37 De novo mutation on the C-terminal region of TRIM8 is also associated with focal segmental glomerulosclerosis (FSGS).38 Liu et al.39 reported that inhibition of TRIM8-mediated TAK1 polyubiquitination by hepatic TNIP3 can lead to the blocking of the progression of nonalcoholic steatohepatitis (NASH), a subtype of nonalcoholic fatty liver disease (NAFLD). Most importantly, TRIM8 has recently been identified as an important driver of IFN production in plasmacytoid dendritic cells (pDCs), playing a crucial role in developing antiviral immunity against influenza A virus (IAV) and human immunodeficiency virus 1 (HIV-1) by positively regulating IFN regulatory factor 7 (IRF7) via inhibition of Pin1.17
TRIM8, KIF11, and Glioblastoma - a link yet to be discovered

TRIM8 expression is known to be downregulated in glioblastoma compared to its normal counterpart (Figure 4. A), and we showed earlier that this downregulation is associated with cell proliferation and patient survival. A statistically significant downregulation was observed in WHO Grade IV glioblastoma compared to Grade II and Grade III in both tumour tissues and cell lines, and upon overexpression of TRIM8, proliferation and clonogenic potential of glioma cells reduced significantly. We had also shown this downregulation of TRIM8 is highly correlated with the loss of its copy number. From Grade I to Grade IV, with the increase in grades of glioblastoma, a significant escalation in the loss of copy number was observed [27]. Recently, we showed that in neural stem cells TRIM8 physically interacts with KIF11 [29], an important driver of invasion, proliferation and self-renewal in glioblastoma [41]. TCGA data set analysis also reveals that KIF11 is highly expressed in glioblastoma compared to its normal condition (Figure 4. B). But whether TRIM8 ubiquitinates KIF11 is still subject to the availability of experimental evidence. Nevertheless, there is a possibility that in glioblastoma E3 ubiquitin ligase dependent interaction or E3 ubiquitin ligase independent interaction of TRIM8 with KIF11 gets perturbed, and due to which such a high expression of KIF11 is observed.

Figure 4. TRIM8, KIF11, and Glioblastoma: A Link Yet To Be Discovered
A proposed role of interaction between TRIM8 and KIF11 in the progression of glioblastoma.

TRIMming Cell Proliferation with TRIM8: A Game-Changer in Cancer?
Emerging concepts in “drugging the undruggable” have brought the large E3 ubiquitin ligase family of enzymes to the forefront of ubiquitin system-based drug development due to its anticipated possibility of having better specificity and lesser toxicity.20 TRIM8, one of the most promising and emerging E3 ubiquitin ligases from the TRIM family, has the potential to be recognized in this very frame of modern E3 ubiquitin ligase-based drug discovery. TRIM8 is highly expressed in MCF7, and knockdown of TRIM8 decreases the clonogenic potential of MCF7. TRIM8 positively regulates NF-κB by inhibiting Pias3 via inducing its nuclear-cytoplasmic translocation.22 Modulating TRIM8-NF-κB-Pias3 axes can be a therapeutic choice. TRIM8 is negatively regulated in chronic lymphocytic leukemia (CLL) by miR-17.40 Inducing TRIM8 expression by silencing miR-17 can induce anti-proliferative gene expressions via TP53 axes in CLL. TRIM8 is downregulated in ccRCC, and this downregulation is associated with suppression of TP53. Restoration of TRIM8 expression in ccRCC renders the cells sensitive to chemotherapeutic treatments by reactivating the TP53 axes,19 suggesting TRIM8 can be used as an enhancer to ablate the chemoresistance property of the aggressive ccRCC cells in TP53 wild-type background. Another study in human anaplastic thyroid cancer (ATC) tissues and cell lines reported that TRIM8 is significantly downregulated in ATC and miR-182 induces tumor growth by repressing TRIM8 expression. Overexpression of miR-182 delivers chemoresistance capacity to tumor cells and reduces TRIM8 expression.16 Together, these data suggest the anti-proliferative property of TRIM8 can be used in the treatment of chemoresistant human thyroid papillary cancer.

Earlier, we showed that TRIM8 downregulation in glioblastoma induces cell proliferation and is associated with patients’ survival. In glioblastoma, restored TRIM8 expression can function as a tumor suppressor and reduce the clonogenic potential of cancer cells significantly,27 although it is not clear so far whether restoration of TRIM8 inhibits cell proliferation in glioblastoma via TP53 axes. Nevertheless, it does not affect the demand on the search for a possible therapeutic path to induce the restoration of TRIM8 in glioblastoma and inhibit cell proliferation. Along with exploring TRIM8-TP53 axes in glioblastoma, we also suggest exploring the TRIM8-KIF11 axes, based on our
hypothesis in glioblastoma. In our recent study, we have shown, for the first time, that TRIM8 physically interacts with KIF11,\(^{29}\) one of the master regulators of mitotic spindle assembly and cytoskeleton reorganization\(^ {30–33}\) that has also been established as an important driver of glioblastoma.\(^ {41}\) There has been no study so far that aims to connect KIF11 and TRIM8 in glioblastoma. Therefore, we strongly believe further research is needed to shed light on the connecting point of TRIM8, KIF11, and glioblastoma (Figure 4). It is noteworthy that, in some cancers, like breast cancer, TRIM8 is highly expressed and can function as a pro-proliferative or oncogenic molecule, whereas, in other cancers, like ccRCC, it is downregulated and its capacity to exercise anticancer power is significantly suppressed. But TRIM8’s game-changing capacity in cancer is unquestionable, and it can be utilized in either way–by suppressing or overexpressing—depending on its pattern of function in a specific cancer. Further we propose TRIM8 and other important TRIM proteins can be explored together in order to modulate TP53 axes for arresting cell proliferation.

One of the most important hallmarks of cancer is "limitless replicative potential" or proliferated cell division.\(^ {42}\) TP53 is known to have great potential to regulate cell proliferation, and the TP53 axes have been at the center of anti-cancer therapeutics search for several years. We showed earlier that TRIM8 plays a very important role in the regulation of TP53,\(^ {3}\) and along with TRIM8, some other TRIM proteins are also known to regulate TP53. For instance, TRIML2, TRIM3, TRIM8, TRIM13, and TRIM19 function as the positive regulators of TP53, whereas some other TRIMs, like TRIM24 and TRIM32, work as the negative regulators of TP53.\(^ {3,43}\) These TRIM proteins are also known to have homotypic and heterotypic interactions among them. For instance, TRIM8 can interact with TRIM2, TRIM8, TRIM9, TRIM15, TRIM21, TRIM24, TRIM25, TRIM27, TRIM39, TRIM43, TRIM44, and TRIM47.\(^ {3}\) Among these TRIM8-associated TRIMs, many are known to be oncogenic players in different cancers. Particularly, TRIM24 and TRIM25 are known to act as TP53-negative regulators and are over-expressed in castration-resistant prostate cancer (CRPC) and ovarian cancer, respectively.\(^ {3,43}\) We believe this kind of heterotypic interaction between TRIM8 and other TRIM proteins can be an applicable choice of future study in order to elucidate its impact on cell proliferation by modulating the TP53 axes and to develop anti-cancer therapeutics.

Conclusions

The experimental findings discussed in this review have shown concrete evidence for TRIM8 that can act as a “molecule of duality” (MoD), a new term we propose to objectify a protein molecule that has the capacity to play two opposite roles, and can showcase two highly contrasting features in one or more cellular or physiological conditions and/or pathophysiological context. Overall, it appears that TP53 lies at the center of TRIM8’s tumor suppressor activity, whereas NF-kB lies at the center of TRIM8’s oncogenic activity and its role in apoptosis. Although several outstanding questions need to be addressed (refer to Box 1), we feel it’s highly crucial to understand how TRIM8-associated axes can be modulated further for anti-cancer therapeutics development, as pharmaceutical companies have entered the age of E3 ubiquitin ligase-targeted therapies and targeting E3 ligases is progressively becoming a considerable choice for therapeutic development against many fusion-driven cancers. Further studies on TRIM8 also have immense possibilities to open new vistas that can show the role of TRIM8 at the connecting point of apoptosis, cell proliferation and cell division, and the cross-roads of brain development and brain-associated disorders like epilepsy and glioblastoma. For instance, it would be interesting to investigate whether susceptibility to cancer increases in TRIM8-mutated EOEE or EE patients. Finally, we feel the open questions on TRIM8 hold significant importance in the forthcoming years of cell and cancer biology.

New Terminology

Molecule of duality (MoD): A protein molecule that has the capacity to play two opposite roles, and can showcase two highly contrasting features in one or more cellular or physiological conditions, and/or pathophysiological context.
CONFLICTS OF INTEREST
The authors declare no competing interests.

AUTHOR CONTRIBUTIONS
U.B. and G.M. conceived this review. U.B. reviewed the literature and wrote the manuscript along with G.M. U.B. designed all figures and illustrations. Both U.B. and G.M. contributed to the final version of the manuscript.

ACKNOWLEDGMENTS
This work is supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC, IG#14078); Ricerca Corrente, granted by the Italian Ministry of Health to G.M.; and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions (MSCA) grant agreement number 813599 to U.B. The funders had no role in the study, design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Santina Venuto for her reading, critical comments, and valuable suggestions on the development of the manuscript. We dedicate our review to Professor Huib Ovaal, an extraordinary scientist and a wonderful human being from our Horizon 2020 TRIM-NET ITN, who passed away on May 19, 2020.

REFERENCES
1. Vincent, S.R., Kwasnicka, D.A., and Fretier, P. (2000). A novel RING finger-B box-coiled-coil protein, GERP. Biochem. Biophys. Res. Commun. 279, 482–486.
2. Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206–8214.
3. Hatakeyama, S. (2017). TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem. Sci. 42, 297–311.
4. Di Rienzo, M., Romagnoli, A., Antonioli, M., Piacentini, M., and Fimia, G.M. (2020). TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ. 27, 887–902.
5. Ozato, K., Shin, D.M., Chang, T.H., and Morse, H.C., 3rd (2008). TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8, 849–860.
6. Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., Riganelli, D., Zanaria, E., Messali, S., Cainerca, S., et al. (2001). The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151.
7. Caratozzolo, M.F., Marzano, F., Mastropasqua, F., Sbìà, E., and Tullo, A. (2017). TRIM8: Making the Right Decision between the Oncogene and Tumour Suppressor Role. Genes (Basel) 8, 8.
8. Caratozzolo, M.F., Micale, I., Turturo, M.G., Coracchi, S., Fusco, C., Marzano, F., Angello, B., D’Erchia, A.M., Guerrini, L., Pesole, G., et al. (2012). TRIM8 modulates p53 activity to dictate cell cycle arrest. Cell Cycle 11, 511–523.
9. Caratozzolo, M.F., Marzano, F., Abbrescia, D.L., Mastropasqua, F., Petruzella, V., Calabrò, B., Pesole, G., Sbìà, E., Guerrini, L., and Tullo, A. (2019). TRIM8 Blunts the Pro-proliferative Action of ΔNp63α in a p53 Wild-Type Background. Front. Oncol. 9, 1154.
10. Tonio, E., Chen, X.P., Lomsan, J., Flati, V., Donahue, L., and Rothman, P. (2002). TRIM8/GERP RING finger protein interacts with SOCS-1. J. Biol. Chem. 277, 37315–37322.
11. Liu, N.P.D., Laktuyushin, A., Lucet, I.S., Murphy, J.M., Yao, S., Whittlek, E., Callaghan, K., Nicola, N.A., Kershaw, N.J., and Babon, J.J. (2018). The molecular basis of JAK/STAT inhibition by SOCS1. Nat. Commun. 9, 1558.
12. Dang, X., He, B., Ning, Q., Liu, Y., Chang, Y., and Chen, M. (2020). Suppression of TRIM8 by microRNA-182-5p restricts tumor necrosis factor-α-induced proliferation and migration of airway smooth muscle cells through inactivation of NF-κB. Int. Immunopharmacol. 83, 106475.
13. Venuto, S., Castellana, S., Monti, M., Appolloni, L., Fusilli, C., Fusco, C., Pucci, P., Malatesta, P., Mazza, T., Merla, G., and Micale, I. (2019). TRIM8-driven transcriptional profile of neural stem cells identified glioma-related nodal genes and pathways. Biochim. Biophys. Acta. Gen. Subj. 1863, 491–501.
14. Roy, M., Tomar, D., Singh, K., Lakshmi, S., Prajapati, P., Bhutala, K., Gohel, D., and Singh, R. (2018). TRIM8 regulated autophagy modulates the level of cleaved Caspase-3 subunit to inhibit genotoxic stress induced cell death. Cell. Signal. 48, 1–12.
15. Mastropasqua, F., Marzano, F., Valletti, A., Aiello, L., Di Tullio, G., Morgano, A., Liuni, S., Ranieri, E., Guerrini, L., Gasparre, G., et al. (2017). TRIM8 restores p53 tumour suppressor function by blunting N-MYC activity in chemo-resistant tumours. Mol. Cancer 16, 67.
16. Liu, Y., Zhang, B., Shi, T., and Qin, H. (2017). miR-182 promotes tumor growth and increases chemoresistance of human anaplastic thyroid cancer by targeting tripartite motif 8. OncoTargets Ther. 10, 1115–1122.
17. Maaffi, G., Smith, N., Mallet, S., Moncorge, O., Chamontin, C., Edouard, J., Sohm, F., Blanchet, F.P., Herbeuval, J.-P., Luffala, G., et al. (2019). TRIM8 is required for virus-induced IFN response in human plasmacytid dendritic cells. Sci Adv. 5, eaax3511.
18. Bai, X., Zhang, Y.L., and Liu, L.N. (2020). Inhibition of TRIM8 restrains ischaemia-reperfusion-mediated cerebral injury by regulation of NF-κB activation associated inflammation and apoptosis. Exp. Cell Res. 388, 118148.
19. Caratozzolo, M.F., Valletti, A., Gigante, M., Aiello, L., Mastropasqua, F., Marzano, F., Ditomino, P., Carriero, G., Simonnet, H., D’Erchia, A.M., et al. (2014). TRIM8 anti-proliferative action against chemo-resistant renal cell carcinoma. Oncotarget 5, 7446–7457.
20. Huang, X., and Dixon, V.M. (2016). Dragging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26, 484–498.
21. Li, Q., Yan, J., Mao, A.P., Li, C., Ran, Y., Shu, H.B., and Wang, Y.Y. (2011). Tripartite motif 8 (TRIM8) modulates TNFα- and IL-1β-triggered NF-κB activation by target- ing TAK1 for K63-linked polyubiquitination. Proc. Natl. Acad. Sci. USA 108, 19341–19346.
22. Tomar, D., Sripada, L., Prajapati, P., Singh, R., Singh, A.K., and Singh, R. (2012). Nucleo-cyttoplasmic trafficking of TRIM8, a novel oncogene, is involved in positive regulation of TNF induced NF-κB pathway. PLoS ONE 7, e48662.
23. Guo, L., Dong, W., Fu, X., Lin, J., Dong, Z., Tan, X., and Zhang, T. (2017). Tripartite motif 8 (TRIM8) Positively Regulates Pro-inflammatory Responses in Pseudomonas aeruginosa-Induced Keratitis Through Promoting K63-Linked Polyubiquitination of TAK1 Protein. Inflammation 40, 445–463.
24. Ye, W., Hu, M.M., Lei, C.Q., Zhou, Q., Lin, H., Sun, M.S., and Shu, H.B. (2017). TRIM8 Negatively Regulates TLR3/4-Mediated Innate Immune Response by Blocking TRIF-TRIK Interactions. J. Immunol. 199, 1856–1864.
25. Akutsu, M., Dikic, I., and Bremm, A. (2016). Ubiquitin chain diversity at a glance. J. Cell Sci. 129, 875–880.
26. Zhang, C., Mukherjee, S., Tucker-Burden, C., Ross, J.L., Chau, M.J., Kong, J., and Brat, D.J. (2017). TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol. Oncol. 11, 280–294.
27. Micale, I., Fusco, C., Fontana, A., Barbano, R., Angello, B., De Nittis, P., Copetti, M., Pellico, M.T., Mandriani, B., Cocciaferro, D., et al. (2015). TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival. BMC Cancer 15, 470.
28. Venuto, S., and Merla, G. (2019). E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis. Cells 8, 8.
29. Venuto, S., Montenonfo, L., Cozzolino, F., Monti, M., Appolloni, I., Mazza, T., Canetti, D., Giambi, V., Panelli, P., Fusco, C., et al. (2020). TRIM8 interacts with KIF11 and KIFC1 and controls bipolar spindle formation and chromosomal stability. Cancer Lett. 473, 98–106.
30. Sarli, V., and Giannis, A. (2008). Targeting the kinesin spindle protein: basic principles and clinical implications. Clin. Cancer Res. 14, 7583–7587.
31. Stolz, A., Eryth, N., and Bastians, H. (2015). A phenotypic screen identifies microtubule plus end assembly regulators that can function in mitotic spindle orientation. Cell Cycle 14, 827–837.

32. Asbaghi, Y., Thompson, L.L., Lichtensztejn, Z., and McManus, K.J. (2017). KIF11 silencing and inhibition induces chromosome instability that may contribute to cancer. Genes Chromosomes Cancer 56, 668–680.

33. Zhu, C., Zhao, J., Bibikova, M., Le琢磨son, J.D., Bossy-Wetzel, E., Fan, J.B., Abraham, R.T., and Jiang, W. (2005). Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol. Biol. Cell 16, 3187–3199.

34. Zhao, W., Zhang, X., Chen, Y., Shao, Y., and Feng, Y. (2020). Downregulation of TRIM8 protects neurons from oxygen-glucose deprivation/re-oxygenation-induced injury through reinforcement of the AMPK/Nrf2/ARE antioxidant signaling pathway. Brain Res. 1728, 146590.

35. Tao, Q., Tianyu, W., Jianggiao, Z., Zhonghao, C., Xiaoxiong, M., Long, Z., and Jilin, Z. (2019). Tripartite Motif 8 Deficiency Relieves Hepatic Ischaemia/reperfusion Injury via TAK1-dependent Signalling Pathways. Int. J. Biol. Sci. 15, 1618–1629.

36. Assoum, M., Lines, M.A., Elpeleg, O., Darmoncy, V., Whiting, S., Edvardsson, S., Devinsky, O., Heinen, E., Hernan, R.R., Antignac, C., et al. (2018). Further delineation of the clinical spectrum of de novo TRIM8 truncating mutations. Am. J. Med. Genet. A. 176, 2470–2478.

37. Sakai, Y., Fukai, R., Matushita, Y., Miyake, N., Saito, H., Akamine, S., Torio, M., Sasazuki, M., Ishizaki, Y., Sanefuji, M., et al. (2016). De Novo Truncating Mutation of TRIM8 Causes Early-Onset Epileptic Encephalopathy. Ann. Hum. Genet. 80, 235–240.

38. Warren, M., Takeda, M., Partikian, A., Opas, L., Fine, R., and Yano, S. (2020). Association of a de novo nonsense mutation of the TRIM8 gene with childhood-onset focal segmental glomerulosclerosis. Pediatr. Nephrol. 35, 1129–1132.

39. Liu, D., Zhang, P., Zhou, J., Liao, R., Che, Y., Gao, M.M., Sun, J., Cai, J., Cheng, X., Huang, Y., et al. (2020). TNFAIP3 Interacting Protein 3 Overexpression Suppresses Nonalcoholic Steatohepatitis by Blocking TAK1 Activation. Cell Metab. 31, 726–740.e728.

40. Bomment, R., Gobessi, S., Dal Bo, M., Volinia, S., Marconi, D., Tissino, E., Benedetti, D., Zucchetti, A., Rossi, D., Gaidano, G., et al. (2012). The miR-17-92 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes. Leukemia 26, 1584–1593.

41. Venere, M., Horbinski, C., Crish, J.F., Jin, X., Vasani, A., Major, J., Burrows, A.C., Chang, C., Prokop, J., Wu, Q., et al. (2015). The mitotic kinesin KIF11 is a driver of invasion, proliferation, and self-renewal in glioblastoma. Sci. Transl. Med. 7, 304ra143.

42. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70.

43. Valletti, A., Marzano, F., Pesole, G., Sbisà, E., and Tullo, A. (2019). Targeting Chemoresistant Tumors: Could TRIM Proteins-p53 Axis Be a Possible Answer? Int. J. Mol. Sci. 20, 20.