Gamma Comultiplication and Full Stability

Mehdi S. Abbas and Balsam M. Hamad

1, 2 Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq
1 mhdsabass@gmail.com, 2 balsam72iq@gmail.com

Abstract:
Let \mathcal{R} be a Γ-ring with identity (not necessarily commutative), and M a left \mathcal{R}-module. Then M is called fully stable if $\theta(N) \subseteq N$ for each \mathcal{R}-submodule N of M and \mathcal{R}-homomorphism θ from N into M. Equivalently, for each element m in M we have $R \alpha_0 m = \gamma_{\mathcal{R}}^\mathcal{M}(\alpha \Theta_0 (R \alpha_0 m))$, in other words, each α_0-cyclic \mathcal{R}-submodule $R \alpha_0 m$ satisfies the double annihilator condition.

In this paper we will introduce and study the notion of \mathcal{R}-modules in which every \mathcal{R}-submodule satisfies the double annihilator condition. Many properties and characterizations of this class of \mathcal{R}-modules are considering, and obtain some related results, as well as, their relationship with full stability.

Keywords: Gamma modules, fully stable gamma module, gamma comultiplication, α –comultiplication, fully α-stable.

1- Introduction:

In 1964, N. Nobusawa gave as a generalization of the idea of rings the thought of gamma rings [6]. In 1966 W.E.Barnes summed up this idea and obtained entirety fundamental properties of gamma rings [4].

Let \mathcal{R} and Γ be two additive abelian groups. \mathcal{R} is called a Γ-ring if there is a mapping $\mathcal{R} \times \Gamma \times \mathcal{R} \rightarrow \mathcal{R}$, $(\mathcal{r}, \alpha, \mathcal{r}) \rightarrow r \alpha \mathcal{r}$ such that the following hold
(i) $$(\mathcal{r}_1 + \mathcal{r}_2) \alpha \mathcal{r}_3 = \mathcal{r}_1 \alpha \mathcal{r}_3 + \mathcal{r}_2 \alpha \mathcal{r}_3,$$
(ii) $$(\mathcal{r}_1 + \mathcal{r}_2)(\alpha + \beta) = \mathcal{r}_1 \alpha \mathcal{r}_2 + \mathcal{r}_1 \beta \mathcal{r}_2,$$
(iii) $$\mathcal{r}_1 \alpha(\mathcal{r}_2 + \mathcal{r}_3) = \mathcal{r}_1 \alpha \mathcal{r}_2 + \mathcal{r}_1 \alpha \mathcal{r}_3$$ and
(iv) $$(\mathcal{r}_1 \alpha \mathcal{r}_2)(\beta \mathcal{r}_3) = \mathcal{r}_1 \alpha(\mathcal{r}_2 \beta \mathcal{r}_3),$$ for all $\mathcal{r}_1, \mathcal{r}_2, \mathcal{r}_3, \alpha, \beta, \in \Gamma$.

In 2010, R.Ameri, R. Sadeqhi extended the idea of modules to gamma modules [2]. Let \mathcal{R} be a Γ-ring. An additive abelian group M is called left \mathcal{R} – module, if there exist a mapping: $\mathcal{R} \times \Gamma \times M \rightarrow M$, $\mathcal{r}am$ denote the image of (\mathcal{r}, α, m) such that the following hold:
(i) $\mathcal{r}a(m_1 + m_2) = \mathcal{r}a m_1 + \mathcal{r}a m_2$,
(ii) $$(\mathcal{r}_1 + \mathcal{r}_2)\alpha m = \mathcal{r}_1 \alpha \mathcal{r}_2 + \mathcal{r}_2 \alpha \mathcal{r}_2 m,$$
(iii) $$\mathcal{r}(\alpha_1 + \alpha_2)m = \mathcal{r}\alpha_1 m + \mathcal{r}\alpha_2 m$$ and
(iv) $$\mathcal{r}_1 \alpha_1 (\mathcal{r}_2 \alpha_2 m) = (\mathcal{r}_1 \alpha_1 \mathcal{r}_2) \alpha_2 m,$$ for all $m, \mathcal{m}_1, \mathcal{m}_2 \in \mathcal{M}, \alpha, \alpha_1, \alpha_2 \in \Gamma$ and $\mathcal{r}_1, \mathcal{r}_2, \in \mathcal{R}$.

An \mathcal{R}-module M is called unitary if there is $1 \in \mathcal{R}, \alpha_0 \in \Gamma$ such that $\mathcal{1}a_0 m = m$ for all m in M. For more detail of gamma module see [2].

Ansari Toroghy, H. introduced the definition of comultiplication modules, M is said to be a comultiplication \mathcal{R}-module if for every submodule N of M there exists a two sided ideal I of \mathcal{R} such that $N = \{0 \Gamma N \}$. [3].

In this paper, we consider the comultiplication in the category of gamma modules. A left \mathcal{R}-module M is called comultiplication if for each \mathcal{R}-submodule N of M, there is a Γ-ideal A of \mathcal{R} such that $N = \gamma_{\mathcal{M}}^\mathcal{M}(A)$, where $\gamma_{\mathcal{M}}^\mathcal{M}(A) = \{m \in M | A \Gamma m = 0\}$.

We give many properties and characterizations of this class of gamma modules. A left \mathcal{R}-module M is Γ-comultiplication if and only if for each \mathcal{R}-submodule N of M, $N = \{0 \Gamma \text{ann}_\mathcal{R}(N) \}$. We study the relation

[Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd]
between the fully stable and Γ-comultiplication gamma module, and study the α-comultiplication gamma module. Finally, we consider some generalization of fully stability which are related to comultiplication property.

2. Basics of Γ-comultiplication gamma modules:

Let M be a left R-module and α be an arbitrary fixed element of Γ. Then M is called Γ-comultiplication (resp. α-comultiplication) if for each R-submodule N of M, there is a Γ-ideal (resp. α-ideal) A of R such that $N = \gamma^M_M(A)$ (resp. $N = \gamma^M_M(A)$), where $\gamma^M_M(A) = \{m \in M | A\alpha m = 0\}$ and $\gamma^M_M(A) = \{m \in M | A\alpha m = 0\}$.

This equivalent to an R-module M is Γ-comultiplication (resp. α-comultiplication) gamma module if and only if for each R-submodule N of M, $N = (0; (\ell^n M(N)))$. (resp. $N = (0; (\ell^n M(N)))$).

In general every R-module of a Γ-comultiplication gamma module is a Γ-comultiplication, and every simple R-module is Γ-comultiplication.

Let R be a Γ-ring and I is an additive subgroup of R. We say that I is right (left) α-ideal, if for all $\alpha \in \Gamma$, where α arbitrary fixed element in Γ.

In the following, we give some characterizations of α-comultiplication gamma modules.

Examples and Remarks (2.1):

(1) It is not hard matter to show that an R-module M is Γ-comultiplication (α-comultiplication) if and only if for each R-submodule N of M,

$$N = \gamma^M_M(A).$$

Proof:
The sufficiency is clear.

Conversely, let M be a Γ-comultiplication R-module. Then there exists two side Γ-ideal I of R such that $N = (0; I)$. Then we have $I \subseteq \gamma^M_M(N)$ so that $(0; \gamma^M_M(N)) \subseteq (0; I) = N$. This implies that $N = (0; \gamma^M_M(N))$. ■

(2) Every R-submodule of a Γ-comultiplication gamma module is a Γ-comultiplication.

(3) Every simple R-module is Γ-comultiplication.

(4) Let R be a Γ-ring for each nonzero R-module M, $R \oplus M$ is not a Γ-comultiplication R-module.

Proof:
Assume that $R \oplus M$ is Γ-comultiplication R-module by (If M has a nonzero free R-submodule then $M \cong R$) we get $R \oplus M \cong R \cong R \oplus 0$ since $R \oplus M$ is Γ-comultiplication R-module $R \oplus M = R \oplus 0$. Hence $M = 0$ contradiction. ■

(5) Let $R = Z$ and $\Gamma = S$ be arbitrary Γ-subring of Z. Then any abelian group M is Z-module where $M = Z$ as Z-module, for an R-submodule $2\alpha Z$ of Z we have $(0; \ell^2(2\alpha Z)) = Z$. Therefore, Z is not a Γ-comultiplication Z-module.

In the following, our main goal is to clarify the relation between fully stable (duo) gamma module with Γ-comultiplication.

We proved in [1] that an R-module M is fully stable if and only if $b \in R, \alpha \alpha \alpha$ implies that $\ell^\alpha R \alpha \alpha \alpha (R \alpha \alpha \alpha) \subseteq \ell^\alpha R \alpha \alpha \alpha (R \alpha \alpha \alpha b)$ for all a and b in M.

The following theorem shows that the class α-comultiplication gamma modules is contained in that of fully stable.

Theorem (2.2):
The following are equivalent for an R-module M

(a) M is α-comultiplication.

(b) For every R-submodule N of M and every two-sided α-ideal A of R with $N \subseteq \gamma^N_N(A)$, there exists a α-ideal B of R such that $A \subseteq B$ and $N = \gamma^N_N(B)$.

(c) For every R-submodule N of M and every α-ideal A of R with $N \subseteq \gamma^N_N(A)$, there exists a α-ideal B of R with $A \subseteq B$ and $N \subseteq \gamma^N_N(B)$.
Proof:

(a) \(\Rightarrow\) (b) Let \(N\) be an \(R_G\)-submodule of \(M\) and \(\nsubseteq \gamma^G_M(A)\), where \(A\) is a two-sided \(\alpha\)-ideal of \(R\). By (a) \(N = \gamma^G_M(\ell^R_M(N))\). Put \(B = A + \ell^R_M(N)\) since \(N = \gamma^G_M(\ell^R_M(N)) \subseteq \gamma^G_M(A)\), then \(\ell^R_M(N) \nsubseteq A\) and hence \(A \nsubseteq B\). Further \(\gamma^G_M(B) = \gamma^G_M(A + \ell^R_M(N)) = \gamma^G_M(A) \cap \gamma^G_M(\ell^R_M(N)) = \gamma^G_M(A) \cap N = N\) and this complete the proof of (b).

(b) \(\Rightarrow\) (c) is clear.

(c) \(\Rightarrow\) (a) Let \(N\) be an \(R_G\)-submodule of \(M\). Consider the following family

\[\mathcal{C} = \{\mathcal{D} \mid \mathcal{D} \text{ is an } \alpha\text{-ideal of } R \text{ with } N \subseteq \gamma^G_M(D)\}\]

Clearly \(\mathcal{C}\) is a non-empty family, \(\mathcal{C}\) is partially ordered by inclusion. For each chain \(\{B_\alpha \mid \alpha \in \Lambda\}\) in \(\mathcal{C}\), there is a maximal element \(\mathcal{C} = N \subseteq \gamma^G_M(C)\). We claim that \(N = \gamma^G_M(C)\). If not then by (c) there exists two-sided \(\alpha\)-ideal \(B\) of \(R\) such that \(C \subseteq B\) and \(N \nsubseteq \gamma^G_M(B)\) which contradicts the maximality of \(\mathcal{C}\). Thus \(N = \gamma^G_M(C)\) and this shows that \(M\) is \(\alpha\)-comultiplication. ■

In the following theorem we characterize \(\alpha\)-comultiplication gamma modules.

Theorem (2.3):
The following are equivalent for an \(R_G\)-module \(M\)

(a) \(M\) is \(\alpha\)-comultiplication,
(b) For any two \(R_G\)-submodules \(N_1\) and \(N_2\) of \(M\), if \(\ell^R_M(N_1) \subseteq \ell^R_M(N_2)\), then \(N_2 \subseteq N_1\),
(c) For any \(R_G\)-submodule \(N\) of \(M\) and \(m \in M\), \(\ell^R_M(N) \subseteq \ell^R_M(m)\) implies that \(m \in N\).
(d) for all \(R_G\)-submodule \(N\) of \(M\).

Proof:

(a) \(\Rightarrow\) (b) Assume that \(\ell^R_M(N_1) \subseteq \ell^R_M(N_2)\) for some \(R_G\)-submodules \(N_1\) and \(N_2\) of \(M\). By (a) we have \(N_2 = \gamma^G_M(\ell^R_M(N_2)) \subseteq \gamma^G_M(\ell^R_M(N_1)) = N_1\).

(b) \(\Rightarrow\) (a) Let \(N\) be an \(R_G\)-submodule of \(M\) since \(\ell^R_M(\gamma^G_M(\ell^R_M(N)) = \ell^R_M(N)\), then by (b), \(N = \gamma^G_M(\ell^R_M(N))\) and hence \(M\) is \(\alpha\)-comultiplication.

(c) \(\Rightarrow\) (b) Let \(N_1\) and \(N_2\) be \(R_G\)-submodules of \(M\) such that \(\ell^R_M(N_1) \subseteq \ell^R_M(N_2)\). For \(x \in N_2\), \(\ell^R_M(N_2) \subseteq \ell^R_M(x)\). Thus by (c) we have \(x \in N_1\) and hence \(N_2 \subseteq N_1\).

(a) \(\Rightarrow\) (c) Let \(\ell^R_M(N) \subseteq \ell^R_M(m)\) for some \(m \in M\) and \(R_G\)-submodule \(N\) of \(M\). Then \(m \in \ell^R_M(\ell^R_M(m)) \subseteq \ell^R_M(\ell^R_M(N)) = N\).

(c) \(\Rightarrow\) (d) Assume that there exists \(m \in \gamma^G_M(\ell^R_M(N))\) and \(m \notin N\). By (c) \(\ell^R_M(N) \not\subseteq \ell^R_M(m)\) and hence there is \(z \in \ell^R_M(N)\), and \(z \notin \ell^R_M(m)\). So \(z \alpha m = 0\) which is a contradiction. Thus \(\gamma^G_M(\ell^R_M(N)) \subseteq N\). Thus the other inclusion is always true.

(d) \(\Rightarrow\) (a) It is obvious. ■

Corollary (2.4):
The following conditions are equivalent for quasi-injective \(\alpha_0\)-Noetherian \(R_G\)-module \(M\)

(1) \(M\) is fully stable.
(2) \(\gamma^{\alpha_0}_M(\ell^{\alpha_0}_R(N)) = N\) for each \(R_G\)-submodule \(N\) of \(M\).

Corollary (2.5):
Every \(\alpha_0\)-comultiplication \(R_G\)-module is fully stable.

Proof:
Follows from Theorem (2.2) and the fact that every \(\alpha_0\)-cyclic gamma submodule is stable. ■

For the converse of (2.5) we have the following:
Proposition (2.6):
Let \(M \) be a fully stable \(R_\Gamma \)-module if \(M \) is quasi-injective and \(\alpha_0 \)-Noetherian, then \(M \) is \(\alpha_0 \)-comultiplication.

Proof:
Follows from corollaries (2.5) and (2.4). ■

Corollary (2.7):
(1) Every \(\Gamma \)-comultiplication \(R_\Gamma \)-module is \(\alpha \)-comultiplication.
(2) Every \(\Gamma \)-comultiplication \(R_\Gamma \)-module is fully stable

Proof:
(1) Let \(N \) be an \(R_\Gamma \)-submodule of a \(\Gamma \)-comultiplication \(R_\Gamma \)-module \(M \). Then there is \(\Gamma \)-ideal \(A \) such that \(N = \gamma^M_\Gamma(A) \). It is clear that \(A \) is \(\alpha \)-ideal of \(R \) for an arbitrary fixed \(\alpha \in \Gamma \). Then we have \(N \subseteq \gamma^M_\Gamma(A) \). Then Theorem (2.1) shows that \(M \) is \(\alpha \)-comultiplication.
(2) Follows from (1) and Corollary (2.5). ■

Theorem (2.8):
The following statements are equivalent for an \(R_\Gamma \)-module \(M \).
1. \(M \) is fully stable.
2. \(X \subseteq Y \) for every \(R_\Gamma \)-submodules \(X \) and \(Y \) of \(M \) in which \(X \) is an \(R_\Gamma \)-homomorphic image of \(Y \).
3. For each \(a, b \) in \(M \), \(b \notin R_\alpha a \) implies that \(\ell^\alpha (R_\alpha a) \subseteq \ell^\alpha (R_\alpha b) \).
4. \(\gamma^M_\alpha (\ell^\alpha (R_\alpha a)) = R_\alpha a \) for all \(a \in M \).

Proof:
(1) \(\Rightarrow \) (2) Let \(X \) and \(Y \) be an \(R_\Gamma \)-submodules of \(M \) and \(\theta: Y \to X \) an \(R_\Gamma \)-epimorphism. Then \(X = \theta(Y) \subseteq Y \).
(2) \(\Rightarrow \) (3) Assume that there are \(a, b \) in \(M \) with \(b \notin R_\alpha a \) and \(\ell^\alpha (R_\alpha a) \subsetneq \ell^\alpha (R_\alpha b) \), then \(R_\alpha b \) is an \(R_\Gamma \)-homomorphic image of \(R_\alpha a \). By (2) \(R_\alpha b \subseteq R_\alpha a \), and hence \(b \in R_\alpha a \) which is a contradiction.
(3) \(\Rightarrow \) (4) Assume that there exists \(m \in \ell^\alpha (\gamma^M_\alpha (R_\alpha a)) \) and \(m \notin R_\alpha a \). By (3) \(\ell^\alpha (R_\alpha a) \subsetneq \ell^\alpha (R_\alpha m) \) and hence there is \(s \in \ell^\alpha (R_\alpha a) \), and \(s \notin \ell^\alpha (R_\alpha m) \) so \(s_\alpha m = 0 \) which is a contradiction.
Thus \(\ell^\alpha (\gamma^M_\alpha (R_\alpha a)) \subseteq R_\alpha a \). Thus the other inclusion is always true.
(4) \(\Rightarrow \) (1) It’s obvious. ■

We have proved that an \(R_\Gamma \)-module \(M \) is fully stable if and only if for each \(x, y \) in \(M \). \(\ell^\alpha (x) \subseteq \ell^\alpha (y) \) implies that \(y \in R_\alpha x \). Thus if an \(R_\Gamma \)-module \(M \) is \(\alpha_0 \)-comultiplication, then is fully stable. This motivates to introduce the following:

Definition (2.9):
Let \(M \) be an \(R_\Gamma \)-module and \(\alpha \) be an arbitrary fixed element in \(\Gamma \). Then \(M \) is called fully \(\alpha \)-stable if for each \(m \in M \) and \(R_\Gamma \)-homomorphism \(\theta: Rm \to M \) we have \(\theta(Rm) \subseteq Rm \).

Remark (2.10):
Every fully stable \(R_\Gamma \)-module is fully \(\alpha \)-stable, for each \(\alpha \in \Gamma \).

Proof:
Let \(M \) be a fully stable \(R_\Gamma \)-module and \(\alpha \) arbitrary fixed element in \(\Gamma \). Then for each \(R_\Gamma \)-homomorphism \(f: Rm \to M \) we have \(f(Rm) \subseteq Rm \). ■

The converse of above Remark is not true in general. But in the presence of the \(\alpha_0 \) it is true.
By Theorem (2.8) we get this result.

Corollary (2.11):
An \(R_\Gamma \)-module \(M \) is \(\alpha \)-comultiplication if and only if it is fully stable.
By Remark (2.10) we get this result.
An R_1-module M is α-comultiplication if and only if it is fully α-stable.

Reference
1. Abbas M.S. and Hamad B.M., Some remarks on fully stable gamma modules, to appear.
2. Ameri R., and Sadeghi R., 2010, Gamma modules, Ratio Mathematics, Vol. 20, pp.127-147.
3. Ansari-Toreghy H. and Farshadifar F., 2007, The dual notion of multiplication modules, Taiwanese journal of mathematics, No.4, pp.1189-1201.
4. Barnes W.E., 1966, On the ring of Nobusawa. Pacific J. Math., Vol.18, pp. 411-422.
5. Faith C., 1973, Algbra, Rings, Modules and Categories 1, Springer Verlag, Berlin, Heidelberg, New york.
6. Nobusawa N., 1964, On a generalization of the ring theory, Osaka J.Math., Vol.1, pp.81-89.