A GENERALIZATION OF THE PICARD-BRAUER EXACT SEQUENCE

CRISTIAN D. GONZÁLEZ-AVILÉS

ABSTRACT. We extend an argument of S. Lichtenbaum involving codimension one cycles to higher codimensions and obtain a generalization of the well-known Picard-Brauer exact sequence for a smooth variety X. The resulting exact sequence connects the codimension n Chow group of X with a certain “Brauer-like” group.

1. Introduction.

Let k be a field and let X be a geometrically integral algebraic k-scheme. We write \overline{k} for a fixed separable algebraic closure of k and set $\Gamma = \text{Gal}(\overline{k}/k)$. The \overline{k}-scheme $X \times_{\text{Spec } k} \text{Spec } \overline{k}$ will be denoted by \overline{X}. Let $k[X]^* = H_0^{\text{ét}}(\overline{X}, \mathbb{G}_m)$ and $Br'X = H_2^{\text{ét}}(X, \mathbb{G}_m)$ be, respectively, the group of invertible regular functions on \overline{X} and the cohomological Brauer group of X. The exact sequence mentioned in the title is the familiar exact sequence

\begin{equation}
0 \to H^1(k, k[X]^*) \to \text{Pic } X \to (\text{Pic } \overline{X})^\Gamma \to H^2(k, k[X]^*) \to Br'_X \to H^1(k, \text{Pic } \overline{X}) \to H^3(k, k[X]^*)
\end{equation}

where $H^i(k, -) = H^i(\Gamma, -)$ and $Br'_X = \text{Ker } (Br'X \to Br' \overline{X})$. This sequence may be obtained from the exact sequence of terms of low degree belonging to the Hochschild-Serre spectral sequence

$$H^r(k, H_s^{\text{ét}}(\overline{X}, \mathbb{G}_m)) \Rightarrow H^{r+s}_{\text{ét}}(X, \mathbb{G}_m).$$

When X is smooth (which we assume from now on), there exists an alternative derivation of (1) which makes use of the following (no less familiar) exact sequence:

\begin{equation}
0 \to k[X]^* \to \overline{k}(X)^* \to \text{Div } \overline{X} \to \text{Pic } \overline{X} \to 0
\end{equation}

2000 Mathematics Subject Classification. Primary 14C15; Secondary 14C25.

Key words and phrases. Chow groups, Gersten-Quillen complex, K-cohomology.

The author is partially supported by Fondecyt grant 1080025.
where $k(X)^*$ (resp. $\text{Div}(X)$) is the group of invertible rational functions (resp. Cartier divisors) on X. This approach, seemingly first used by S.Lichtenbaum in [4] and then reconsidered by Yu.Manin [5, p.403], consists in splitting (2) into two short exact sequences of Γ-modules and then taking Γ-cohomology of these sequences. The resulting long Γ-cohomology sequences are then appropriately combined to produce (1). This paper is a generalization of this idea. The key observation to make is that (2) may be seen as arising from the Gersten-Quillen complex corresponding to the Zariski sheaf K_1, which is the sheaf on X associated to the presheaf $U \mapsto K_1(U) = H^0(U,\mathcal{O}_U)^\ast$. In Section 2 we work with the Gersten-Quillen complex corresponding to the Zariski sheaf K_n, associated to the presheaf $U \mapsto K_n(U)$, where K_n is Quillen’s n-th K-functor ($1 \leq n \leq d = \dim(X)$), and obtain the following result. Let $\partial^{n-1}: \bigoplus_{y \in X^{n-1}} k(y)^* \to Z^n(X)$ be the “sum of divisors” map and let $B_n(X)$ be the kernel of the induced map

$$H^2\left(k, \bigoplus_{y \in X^{n-1}} k(y)^*\right) \to H^2(k, Z^n(X)).$$

Main Theorem. Let X be a smooth, geometrically integral, algebraic k-scheme. Then there exists a natural exact sequence

$$0 \to H^1(k, \ker \partial^{n-1}) \to CH^n(X) \to CH^n(X)^T \to H^2(k, \ker \partial^{n-1})$$

$$\to B_n(X) \to H^1(k, CH^n(X)) \to H^3(k, \ker \partial^{n-1}).$$

The case $n = 1$ of the theorem is precisely the exact sequence (1).

In Section 4, which concludes the paper, we show that the group $B_n(X)$ in the exact sequence of the theorem is “Brauer-like”, in the sense that it contains a copy of $\text{Br}_1 Y = \ker [\text{Br} Y \to \text{Br} \overline{Y}]$ for every smooth closed integral subscheme $Y \subset X$ of codimension $n - 1$.

2. Preliminaries

We keep the notations of the Introduction. In particular, X is a smooth, geometrically integral algebraic k-scheme of dimension d and n denotes a fixed integer such that $1 \leq n \leq d$.

There exists a natural bijection between the set of schematic points of X and the set of closed integral subschemes of X. This is defined by associating to a point $x \in X$ the schematic closure $V(x)$ of x in X. The codimension (resp. dimension) of x is by definition the codimension (resp. dimension) of $V(x)$. The set of points of X of codimension (resp. dimension) i will be denoted by X^i (resp. X_i), and η (resp. $\overline{\eta}$) will denote the generic point of X (resp. \overline{X}). If $x \neq \eta$, the function field of $V(x)$ will be denoted by $k(x)$. We use the standard notation $k(X)$.
for the function field of $X = V(\eta)$. For each $x \in X$, i_x will denote the canonical map $\text{Spec } k(x) \to X$. The function field of \overline{X} will be denoted $\overline{\text{Spec } k}$. For simplicity, we will write $V(\overline{x})$ for $V(x) \times_{\text{Spec } k} \text{Spec } \overline{k}$.

Since X is regular [3, 6.7.4], the sheaf K_n, X admits the following flasque resolution, known as the Gersten-Quillen resolution (see [7, p.72]):

$$0 \to K_n, X \to (i_\eta)_* K_n, X \to \bigoplus_{y \in \overline{X}^1} (i_y)_* K_{n-1} \overline{k}(y) \to \ldots$$

$$\to \bigoplus_{y \in \overline{X}^{n-1}} (i_y)_* \overline{k}(y)^* \to \bigoplus_{y \in \overline{X}^n} (i_y)_* \mathbb{Z} \to 0$$

where, for $y \in \overline{X}^i$, $K_{n-i} \overline{k}(y)$ is regarded as a constant sheaf on $\overline{k}(y)$. It follows that the groups $H^i(X, K_n, X) = H^i(X, K_n)$ are the cohomology groups of the complex

$$K_n \overline{\mathbb{Z}}(X) \xrightarrow{\partial^0} \bigoplus_{y \in \overline{X}^1} K_{n-1} \overline{\mathbb{Z}}(y) \xrightarrow{\partial^1} \ldots \xrightarrow{\partial^{n-2}} \bigoplus_{y \in \overline{X}^{n-1}} \overline{k}(y)^* \xrightarrow{\partial^{n-1}} \bigoplus_{y \in \overline{X}^n} \mathbb{Z}.$$

Now, if $q: \overline{X} \to X$ is the canonical morphism and $x \in X$, we write \overline{X}^{n-i} for the set of points $y \in \overline{X}^{n-i}$ such that $q(y) = x$. For $i = 1, 2, \ldots, n-1$ and $x \in X^{n-i}$, set

$$\overline{K}_i(x) = \bigoplus_{y \in \overline{X}^{n-i}} K_i \overline{k}(y).$$

Further, write $Z^n(\overline{X})$ for the group of codimension n cycles on \overline{X}, i.e.,

$$Z^n(\overline{X}) = \bigoplus_{y \in \overline{X}^n} \mathbb{Z}.$$

Then (3) may be written as

$$K_n \overline{\mathbb{Z}}(X) \xrightarrow{\partial^0} \bigoplus_{x \in X^1} \overline{K}_{n-1}(x) \xrightarrow{\partial^1} \ldots \xrightarrow{\partial^{n-2}} \bigoplus_{x \in X^{n-1}} \overline{K}_1(x) \xrightarrow{\partial^{n-1}} Z^n(\overline{X}).$$

The differential ∂^{n-1} equals $\sum_{x \in X^{n-1}} \partial_x^{n-1}$, where, for each $x \in X^{n-1}$,

$$\partial_x^{n-1}: \overline{K}_1(x) = \bigoplus_{y \in \overline{X}^{n-1}} \overline{k}(y)^* \to Z^n(\overline{X})$$

is the sum of the divisor maps

$$\text{div}_y: \overline{k}(y)^* \to Z^n(\overline{X}).$$
For definition of the latter, see [7, p.72]. We note that each of the maps \(\text{div}_y \) factors through \(Z^1(V(y)) \), whence each \(\partial^{n-1} \) factors through \(Z^1(V(x)) \).

We will write \(CH^n(X) \) for the Chow group of codimension \(n \) cycles on \(X \) modulo rational equivalence. Then \(H^n(X, K_n) = CH^n(X) \) (“Bloch’s formula”).

3. Proof of the main theorem

The complex (4) induces the following short exact sequences of \(\Gamma \)-modules:

\[
0 \to \text{Im} \partial^{n-1} \to Z^n(X) \to CH^n(X) \to 0
\]

and

\[
0 \to \text{Ker} \partial^{n-1} \to \bigoplus_{x \in X^{n-1}} K_1(x) \to \text{Im} \partial^{n-1} \to 0.
\]

Observe that the natural morphism \(q: X \to X \) induces a homomorphism \(CH^n(X) \to CH^n(\overline{X})^\Gamma \).

Lemma 3.1. There exist canonical isomorphisms

\[
\text{Ker} \left[CH^n(X) \to CH^n(\overline{X})^\Gamma \right] = H^1(k, \text{Ker} \partial^{n-1})
\]

\[
\text{Coker} \left[CH^n(X) \to CH^n(\overline{X})^\Gamma \right] = H^1(k, \text{Im} \partial^{n-1})
\]

and a canonical exact sequence

\[
0 \to H^1(k, CH^n(X)) \to H^2(k, \text{Im} \partial^{n-1}) \to H^2(k, Z^n(\overline{X})).
\]

Proof. This follows by taking \(\Gamma \)-cohomology of (5), using the fact that \(Z^n(\overline{X}) \) is a permutation \(\Gamma \)-module and arguing as in [1, proof of Proposition 3.6] to establish the first isomorphism.

Lemma 3.2. The exact sequence (6) induces an exact sequence

\[
0 \to H^1(k, \text{Im} \partial^{n-1}) \to H^2(k, \text{Ker} \partial^{n-1}) \to \bigoplus_{x \in X^{n-1}} H^2(k, K_1(x))
\]

\[
\to H^2(k, \text{Im} \partial^{n-1}) \to H^3(k, \text{Ker} \partial^{n-1}).
\]

Proof. By Shapiro’s Lemma, for each \(x \in X^{n-1} \) there exists a (non-canonical) isomorphism

\[
H^*(k, K_1(x)) \simeq H^*(\text{Gal}(\overline{k}(y)/k(x)), \overline{k}(y)^*)
\]

where, on the right, we have chosen a point \(y \in \overline{X}^{n-1} \) such that \(q(y) = x \). The result now follows by taking \(\Gamma \)-cohomology of (6), using Hilbert’s Theorem 90.

Combining Lemmas 3.1 and 3.2, we obtain

Proposition 3.3. There exists a canonical exact sequence

\[
0 \rightarrow H^1(k, \text{Ker } \partial^{n-1}) \rightarrow CH^n(X) \rightarrow CH^n(X)^F \\
\rightarrow H^2(k, \text{Ker } \partial^{n-1}) \rightarrow \bigoplus_{x \in X^{n-1}} H^2(k, \overline{K}_1(x)). \quad \square
\]

Now define

\[
B_n(X) = \text{Ker } [H^2(k, \bigoplus_{x \in X^{n-1}} \overline{K}_1(x)) \rightarrow H^2(k, Z^n(X))],
\]

where the map involved is induced by \(\partial^{n-1} \). Since the composite

\[
\text{Ker } \partial^{n-1} \rightarrow \bigoplus_{x \in X^{n-1}} \overline{K}_1(x) \xrightarrow{\partial^{n-1}} Z^n(X)
\]

is zero, the natural map \(H^2(k, \text{Ker } \partial^{n-1}) \rightarrow \bigoplus_{x \in X^{n-1}} H^2(k, \overline{K}_1(x)) \) factors through \(B_n(X) \). Thus Proposition 3.3 yields a natural exact sequence

\[
0 \rightarrow H^1(k, \text{Ker } \partial^{n-1}) \rightarrow CH^n(X) \rightarrow CH^n(X)^F \\
\rightarrow H^2(k, \text{Ker } \partial^{n-1}) \rightarrow B_n(X). \quad (8)
\]

We will now extend the above exact sequence by defining a map \(B_n(X) \rightarrow H^1(k, CH^n(X)) \) whose kernel is exactly the image of the map \(H^2(k, \text{Ker } \partial^{n-1}) \rightarrow B_n(X) \) appearing in (8).

It is not difficult to check that the map

\[
\bigoplus_{x \in X^{n-1}} H^2(k, \overline{K}_1(x)) \rightarrow H^2(k, \text{Im } \partial^{n-1})
\]

intervening in the exact sequence of Lemma 3.2 maps \(B_n(X) \) into the kernel of the map \(H^2(k, \text{Im } \partial^{n-1}) \rightarrow H^2(k, Z^n(X)) \). The latter is naturally isomorphic to \(H^1(k, CH^n(X)) \) (see Lemma 3.1). Thus there exists a canonical map \(B_n(X) \rightarrow H^1(k, CH^n(X)) \). Again, it is not difficult to check that the kernel of the map just defined is exactly the image of the map \(H^2(k, \text{Ker } \partial^{n-1}) \rightarrow B_n(X) \) appearing in (8). Thus we obtain a natural exact sequence

\[
0 \rightarrow H^1(k, \text{Ker } \partial^{n-1}) \rightarrow CH^n(X) \rightarrow CH^n(X)^F \rightarrow H^2(k, \text{Ker } \partial^{n-1}) \\
\rightarrow B_n(X) \rightarrow H^1(k, CH^n(X)).
\]

Finally, the homomorphisms \(H^1(k, CH^n(X)) \rightarrow H^2(k, \text{Im } \partial^{n-1}) \) and \(H^2(k, \text{Im } \partial^{n-1}) \rightarrow H^3(k, \text{Ker } \partial^{n-1}) \) from Lemmas 3.1 and 3.2 induce a map \(H^1(k, CH^n(X)) \rightarrow H^3(k, \text{Ker } \partial^{n-1}) \) whose kernel is exactly the image of the map \(B_n(X) \rightarrow H^1(k, CH^n(X)) \) defined above. Thus the following holds.
Theorem 3.4. Let X be a smooth k-variety. Then there exists a natural exact sequence

$$
0 \to H^1(k, \text{Ker } \partial^{n-1}) \to CH^n(X) \to CH^n(\overline{X})^T \to H^2(k, \text{Ker } \partial^{n-1}) \to B_n(X) \to H^1(k, CH^n(\overline{X})) \to H^3(k, \text{Ker } \partial^{n-1}),
$$

where $B_n(X)$ is the group (7).

Remark 3.5. When $n = 1$, there are natural isomorphisms $CH^1(X) = \text{Pic } X$ and $CH^1(\overline{X}) = \text{Pic } \overline{X}$ [3, 21.6.10 and 21.11.1]. Further, $X^{n-1} = \{\eta\}$, $\partial^{n-1} \eta = \partial_x^{n-1} \eta$, $K_1(\eta) = k(X)^*$ $\to \text{Div } \overline{X}$ is the usual divisor map (whose kernel equals $H^0(\overline{X}, G_m) \overset{\text{def.}}{=} k[\overline{X}]^*$) and

$$
B_n(X) = B_1(X) = \text{Ker } [H^2(k, k(X)^*) \to H^2(k, \text{Div } \overline{X})] = \text{Br}_1 X,
$$

where $\text{Br}_1 X = \text{Ker } (\text{Br } X \to \text{Br } \overline{X})$ (see the next section). Thus the exact sequence of the theorem is indeed a generalization of (1).

4. The group $B_n(X)$

In this Section we show that the group $B_n(X)$ appearing in the exact sequence of Theorem 3.4 contains a copy of $\text{Br}_1 Y = \text{Ker } (\text{Br } Y \to \text{Br } \overline{Y})$ for every smooth closed integral subscheme $Y \subset X$ of codimension $n - 1$.

Recall that $\partial^{n-1} = \sum_{x \in X^{n-1}} \partial_x^{n-1}$, where, for each $x \in X^{n-1}$,

$$
\partial_x^{n-1} : K_1(x) = \bigoplus_{y \in X^{n-1}_x} k(y)^* \to Z^1(V(\overline{x}))
$$

is the sum of divisors map. For each $x \in X^{n-1}$, set

$$
B_n(x) = \text{Ker } [H^2(k, K_1(x)) \to H^2(k, Z^1(V(\overline{x})))],
$$

where the map involved is induced by ∂_x^{n-1}, and let

$$
\Sigma : \bigoplus_{x \in X^{n-1}} H^2(k, Z^1(V(\overline{x}))) \to H^2(k, Z^n(\overline{X})),
$$

be the natural map $(\xi_x) \mapsto \sum c_x(\xi_x)$, where $c_x : H^2(k, Z^1(V(\overline{x}))) \to H^2(k, Z^n(\overline{X}))$ is induced by the inclusion $Z^1(V(\overline{x})) \subset Z^n(\overline{X})$. Then there exists a canonical exact sequence

$$
0 \to \bigoplus_{x \in X^{n-1}} B_n(x) \to B_n(X) \to \text{Ker } \Sigma.
$$

We will relate the groups $B_n(x)$ to more familiar objects.
Fix $x \in X^{n-1}$ and set $Y = V(x)$. Then Y is a geometrically reduced algebraic k-scheme [3, 4.6.4]. Further, the map $\overline{K}_1(x) \to Z^1(Y)$ factors through $\text{Div}Y$, the group of Cartier divisors on Y. Consider

$$B_n'(x) = \text{Ker} \left[H^2(k, \overline{K}_1(x)) \to H^2(k, \text{Div}Y) \right] \subset B_n(x).$$

Let $\mathcal{R}_{\overline{Y}}'$ denote the étale sheaf of invertible rational functions on \overline{Y}. Note that $\overline{K}_1(x) = H^0(Y, \mathcal{R}_Y')$. Now, since \overline{Y} is reduced, there exists an exact sequence of étale sheaves

$$0 \to \mathbb{G}_{m,Y} \to \mathcal{R}_{\overline{Y}}' \to \text{Div}_{\overline{Y}} \to 0,$$

where $\text{Div}_{\overline{Y}}$ is the sheaf of Cartier divisors on \overline{Y} [3, 20.1.4 and 20.2.13]. This exact sequence gives rise to an exact sequence of étale cohomology groups

$$0 \to H^1_{\text{ét}}(\overline{Y}, \text{Div}_{\overline{Y}}) \to \text{Br}' \overline{Y} \to H^2_{\text{ét}}(\overline{Y}, \mathcal{R}_{\overline{Y}}') \to H^2_{\text{ét}}(\overline{Y}, \text{Div}_{\overline{Y}})$$

where $\text{Br}' \overline{Y} = H^2_{\text{ét}}(\overline{Y}, \mathbb{G}_m)$ is the cohomological Brauer group of \overline{Y} [2, II, p.73]. Similarly, there exists an exact sequence

$$0 \to H^1_{\text{ét}}(Y, \text{Div}_Y) \to \text{Br}' Y \to H^2_{\text{ét}}(Y, \mathcal{R}_Y') \to H^2_{\text{ét}}(Y, \text{Div}_Y).$$

We will regard $H^1_{\text{ét}}(\overline{Y}, \text{Div}_{\overline{Y}})$ (resp. $H^1_{\text{ét}}(Y, \text{Div}_Y)$) as a subgroup of $\text{Br}' \overline{Y}$ (resp. $\text{Br}' Y$).

Now the exact sequence of terms of low degree

$$0 \to E^{1,0}_2 \to E^1 \to E^{0,1}_2 \to E^{2,0}_2 \to \text{Ker} (E^2 \to E^{0,2}_2) \to E^{1,1}_2 \to E^{3,0}_2$$

belonging to the Hochschild-Serre spectral sequence

$$E^{p,q}_2 = H^p(k, H^q_{\text{ét}}(\overline{Y}, \mathcal{R}_Y')) \Rightarrow H^{p+q}_{\text{ét}}(Y, \mathcal{R}_Y')$$

yields, using [2, II, Lemma 1.6, p.72], an exact sequence

$$0 \to H^2(k, \overline{K}_1(x)) \to H^2_{\text{ét}}(Y, \mathcal{R}_Y') \to H^2_{\text{ét}}(\overline{Y}, \mathcal{R}_Y').$$

Similarly, the spectral sequence

$$H^p(k, H^q_{\text{ét}}(\overline{Y}, \text{Div}_{\overline{Y}})) \Rightarrow H^{p+q}_{\text{ét}}(Y, \text{Div}_Y)$$

yields a complex

$$0 \to H^1(k, \text{Div}Y) \to H^1_{\text{ét}}(Y, \text{Div}_Y) \xrightarrow{\psi} H^1_{\text{ét}}(\overline{Y}, \text{Div}_{\overline{Y}}) \xrightarrow{\varphi} H^2(k, \text{Div}Y) \to H^2_{\text{ét}}(Y, \text{Div}_Y) \to H^2_{\text{ét}}(\overline{Y}, \text{Div}_{\overline{Y}})$$

which is exact except perhaps at $H^2_{\text{ét}}(Y, \text{Div}_Y)$. The map labeled ψ in (13) is induced by the canonical morphism $\overline{Y} \to Y$, while the map φ is the differential $d^0_{2,1}$ coming from the spectral sequence (see [6, II.4, pp.39-52]). Now we have a commutative diagram
(14)
\[
\begin{array}{ccccccc}
0 & \rightarrow & H^2(k, \mathcal{R}_1(x)) & \rightarrow & H^2_\text{ét}(Y, \mathcal{R}_Y^*) & \rightarrow & H^2_\text{ét}(\overline{Y}, \mathcal{R}_{\overline{Y}}^*) \\
& & \downarrow & & \downarrow & & \\
0 & \rightarrow & H^2(k, \text{Div} \overline{Y})/\text{Im} \varphi & \rightarrow & H^2_\text{ét}(Y, \text{Div}_Y) & \rightarrow & H^2_\text{ét}(\overline{Y}, \text{Div}_{\overline{Y}}) \\
\end{array}
\]

in which the top row is the exact sequence (12), the bottom row (which is only a complex) is derived from (13), and the middle and right-hand vertical maps are the maps in (11) and (10), respectively. Set
\[\widehat{\text{Br}}^1_Y = \ker \left[\text{Br}'Y/H^1_\text{ét}(Y, \text{Div}_Y) \rightarrow \text{Br}'\overline{Y}/H^1_\text{ét}(\overline{Y}, \text{Div}_{\overline{Y}}) \right].\]

Then the above diagram yields a natural isomorphism
(15) \[\widehat{\text{Br}}^1_Y = \ker \left[H^2(k, \mathcal{R}_1(x)) \rightarrow H^2(k, \text{Div} \overline{Y})/\text{Im} \varphi \right].\]
(Note: only the exactness of the top row of (14) is needed to obtain the above isomorphism.) On the other hand, there exists an obvious exact sequence
\[0 \rightarrow B'_n(x) \rightarrow \ker \left[H^2(k, \mathcal{R}_1(x)) \rightarrow H^2(k, \text{Div} \overline{Y})/\text{Im} \varphi \right] \rightarrow \text{Im} \varphi,\]
where \(B'_n(x)\) is the group (9). Using (15) and the fact that \(\text{Im} \varphi\) is naturally isomorphic to \(\text{Coker} \psi\), where \(\psi\) is the map appearing in (13), we conclude that there exists a natural exact sequence
\[0 \rightarrow B'_n(x) \rightarrow \widehat{\text{Br}}^1_Y \xrightarrow{h} \text{Coker} \psi.\]

The map labeled \(h\) in the above exact sequence can be briefly described as \(\varphi^{-1} \circ h^2(\text{div}) \circ u^{-1}\nu\), where \(u: H^2(k, \mathcal{R}_1(x)) \rightarrow H^2_\text{ét}(Y, \mathcal{R}_Y^*)\) is the map intervening in (14) and \(h^2(\text{div}): H^2(k, \mathcal{R}_1(x)) \rightarrow H^2(k, \text{Div} \overline{Y})\) is induced by \(\text{div}: \mathcal{R}_1(x) \rightarrow \text{Div} \overline{Y}\). Next, set
\[\text{Br}'_1Y = \ker \left[\text{Br}'Y \rightarrow \text{Br}'\overline{Y} \right].\]

There exists a natural exact commutative diagram
\[
\begin{array}{ccccccc}
0 & \rightarrow & H^1_\text{ét}(Y, \text{Div}_Y) & \rightarrow & \text{Br}'_1Y & \rightarrow & \text{Br}'_1Y/H^1_\text{ét}(Y, \text{Div}_Y) \\
& & \downarrow \psi & & \downarrow & & \\
0 & \rightarrow & H^1_\text{ét}(\overline{Y}, \text{Div}_{\overline{Y}})^\Gamma & \rightarrow & (\text{Br}'Y)^\Gamma & \rightarrow & (\text{Br}'\overline{Y}/H^1_\text{ét}(\overline{Y}, \text{Div}_{\overline{Y}}))^\Gamma \\
\end{array}
\]

An application of the snake lemma to the above diagram yields a natural exact sequence
(17) \[0 \rightarrow H^1(k, \text{Div} \overline{Y}) \rightarrow \text{Br}'_1Y \rightarrow \widehat{\text{Br}}'_1Y \xrightarrow{\delta} \text{Coker} \psi.\]
Now using the explicit description of the map δ [8, Lemma 1.3.2, p.11] together with the description of the map $\varphi = d_2^{0,1}$ from [6, §II.4], it can be shown (with some work) that the maps h in (16) and δ in (17) are the same. Thus we obtain

Proposition 4.1. There exists a canonical isomorphism

$$B'_n(x) = Br'_1Y / H^1(k, \text{Div}\overline{Y}).$$

Corollary 4.2. Let $x \in X^{n-1}$ be such that $\overline{Y} = V(\mathfrak{p})$ is locally factorial (this holds, for example, if $Y = V(x)$ is regular). Then there exists a canonical isomorphism

$$B_n(x) = Br'_1Y.$$

Proof. The hypothesis implies that $\text{Div}\overline{Y} = Z^1(\mathfrak{p})$ [3, 21.6.9], so $B_n(x) = B'_n(x)$. On the other hand, since $Z^1(\mathfrak{p})$ is a permutation I-module, $H^1(k, \text{Div}\overline{Y}) = H^1(k, Z^1(\mathfrak{p})) = 0$. The result is now immediate from the proposition. \square

References

[1] Colliot-Théélène, J.-L. and Raskind, W.: K_2-Cohomology and the second Chow group Math. Ann. **270**, pp.165-199 (1985).

[2] Grothendieck, A.: Le Groupe de Brauer I-III. In: Dix Exposés sur la Cohomologie des Schémas. North-Holland, Amsterdam, pp.46-188 (1968).

[3] Grothendieck, A. and Dieudonné, J.: Eléments de Géométrie Algébrique IV. Publ. Math. IHES **20,24,28,32**, 1960-1967.

[4] Lichtenbaum, S.: Duality theorems for curves over p-adic fields. Invent. Math. **7**, pp. 120-126 (1969).

[5] Manin, Yu.: Le groupe de Brauer-Grothendieck en géométrie diophantienne. In: Actes du Congrès Intern. Math. Nice I, pp. 401-411 (1970).

[6] Shatz, S.: Profinite groups, Arithmetic, and Geometry. Ann. of Math. Studies **67**, Princeton Univ. Press (1972).

[7] Srinivas, V.: Algebraic K-theory (2nd. Edition) Progress in Math. **90**, Birkhäuser, Boston, 1996.

[8] Weibel, C.: An introduction to homological algebra. Cambridge Studies in Advanced Math. **38**, Cambridge University Press, Cambridge, 1994.

Departamento de Matemáticas, Universidad de La Serena, La Serena, Chile

E-mail address: cgonzalez@usserena.cl