A new bound for Vizing’s conjecture

Elliot Krop

Abstract. For any graph G, we define the power $\pi(G)$ as the minimum of the largest number of neighbors in a γ-set of G, of any vertex, taken over all γ-sets of G. We show that $\gamma(G \square H) \geq \frac{\pi(G)}{2\pi(G) - 1} \gamma(G) \gamma(H)$. This implies that for any graphs G and H, $\gamma(G \square H) \geq \frac{\gamma(G)}{2\gamma(G) - 1} \gamma(G) \gamma(H)$, and if G is claw-free or P_4-free, $\gamma(G \square H) \geq \frac{2}{3} \gamma(G) \gamma(H)$, where $\gamma(G)$ is the domination number of G.

2010 Mathematics Subject Classification: 05C69

Keywords: Domination number, Cartesian product of graphs, Vizing’s conjecture, power of a graph

1. Introduction

The famous conjecture of Vadim G. Vizing (1963) \cite{vizing} is the simple statement for any two graphs G and H,

\begin{equation}
\gamma(G \square H) \geq \gamma(G) \gamma(H).
\end{equation}

The survey \cite{survey} discusses many past results and contemporary approaches to the problem. For more recent partial results see \cite{suen2010}, \cite{tarr}, \cite{bresar}, \cite{brause}, and \cite{brause2}. The best current bound for the conjectured inequality was shown in 2010 by Suen and Tarr \cite{suen2010},

\begin{equation}
\gamma(G \square H) \geq \frac{1}{2} \gamma(G) \gamma(H) + \frac{1}{2} \min\{\gamma(G), \gamma(H)\}
\end{equation}

In this paper we define the power of a graph $\pi(G)$ and apply the Contractor-Krop overcount technique \cite{brause} to the method of Brešar \cite{bresar} to show that for any graphs G and H, $\gamma(G \square H) \geq \frac{\pi(G)}{2\pi(G) - 1} \gamma(G) \gamma(H)$, which immediately implies the bound $\gamma(G \square H) \geq \frac{\gamma(G)}{2\gamma(G) - 1} \gamma(G) \gamma(H)$. By results of \cite{brause} and \cite{brause2}, it follows that if G is claw-free graph or a cograph, for any graph H, $\gamma(G \square H) \geq \frac{2}{3} \gamma(G) \gamma(H)$.

Our argument relies on bounding the horizontal domination of vertically undominated cells and is a generalization of the argument in \cite{brause2}. We hope that others will find our approach valuable as our method is quite different from the “double projection” argument of \cite{suen2010}.
1.1. Notation. All graphs $G(V,E)$ are finite, simple, connected, undirected graphs with vertex set V and edge set E. We may refer to the vertex set and edge set of G as $V(G)$ and $E(G)$, respectively. For more on basic graph theoretic notation and definitions we refer to Diestel [6].

For any graph $G = (V,E)$, a subset $S \subseteq V$ dominates G if $N[S] = G$. The minimum cardinality of $S \subseteq V$, so that S dominates G is called the domination number of G and is denoted $\gamma(G)$. We call a dominating set that realizes the domination number a γ-set.

The Cartesian product of two graphs $G_1(V_1,E_1)$ and $G_2(V_2,E_2)$, denoted by $G_1 \square G_2$, is a graph with vertex set $V_1 \times V_2$ and edge set $E(G_1 \square G_2) = \{((u_1,v_1),(u_2,v_2)) : v_1 = v_2 \text{ and } (u_1,u_2) \in E_1, \text{ or } u_1 = u_2 \text{ and } (v_1,v_2) \in E_2\}$.

A graph G is claw-free if G contains no induced $K_{1,3}$ subgraph, and a cograph or P_4-free if it contains no induced P_4 subgraph.

If $D = \{v_1, \ldots, v_k\}$ is a minimum dominating set of G, then for any $i \in [k]$, define the set of private neighbors for v_i, $P_i = \{v \in V(G) - D : N(v) \cap D = \{v_i\}\}$. For $S \subseteq [k]$, $|S| \geq 2$, we define the shared neighbors of $\{v_i : i \in S\}$, $P_S = \{v \in V(G) - D : N(v) \cap D = \{v_i : i \in S\}\}$.

For $i \in [k]$, let $Q_i = \{v_i\} \cup P_i$. We call $Q = \{Q_1, \ldots, Q_k\}$ the cells of G. For any $I \subseteq [k]$, we write $Q_I = \bigcup_{i \in I} Q_i$ and call $\mathcal{C}(\bigcup_{i \in I} Q_i) = \bigcup_{i \in I} Q_i \cup \bigcup_{S \subseteq I} P_S$ the chamber of Q_I. We may write this as \mathcal{C}_I.

For a vertex $h \in V(H)$, the G-fiber, G^h, is the subgraph of $G \square H$ induced by $\{(g,h) : g \in V(G)\}$.

For a minimum dominating set D of $G \square H$, we define $D^h = D \cap G^h$. Likewise, for any set $S \subseteq [k]$, $P_S^h = P_S \times \{h\}$, and for $i \in [k]$, $Q_i^h = Q_i \times \{h\}$. By v_i^h we mean the vertex (v_i,h). For any $I \subseteq [k]$, we write \mathcal{C}_I^h to mean the chamber of Q_I^h.

We may write $\{v_i : i \in I\}$ for $\{v_i^h : i \in I^h\}$ when it is clear from context that we are talking about vertices of $G \square H$ and not vertices of G.

For $i \in [k]$ and $h \in V(H)$, we say that the cell Q_i^h is vertically dominated if $Q_i^h \cap D \neq \emptyset$. A cell which is not vertically dominated is vertically undominated. Any vertex $v \in G \times H$ is vertically dominated if $\{v\} \times N_H[h] \cap D \neq \emptyset$ and vertically undominated, otherwise.

Recently, Chellali et al. [4] considered uniformly restricted types of dominating sets. For any graph G and subset of vertices S, they defined S to be a $[j,k]$-set if for every vertex $v \in V - S$, $j \leq |N(v) \cap S| \leq k$. For $k \geq 1$, the $[1,k]$-domination number of G, written $\gamma_{[1,k]}(G)$, is the minimum cardinality of a $[1,k]$-set in G. A $[1,k]$-set with cardinality $\gamma_{[1,k]}(G)$ is called a $\gamma_{[1,k]}(G)$-set.

Among other results, they showed that if G is a claw-free, then $\gamma(G) = \gamma_{[1,2]}(G)$, and that the same result holds if G is P_4-free.

Definition 1.1. For a fixed γ-set D of G, the allegiance of D with respect to G, $a_G(D) = \max_{v \in V(G)} \{|D \cap N[v]|\}$.

Definition 1.2. The power of a graph G, $\pi(G) = \min_D \{a_G(D)\}$ taken over all γ-sets D of G.

Notice that the power of a graph G is the minimum k so that $\gamma_{[1,k]}(G) = \gamma(G)$.
1.2. A Useful Inequality. Although the following inequality is elementary, we provide the proof for completeness.

Proposition 1.3. If

$$f(t_1, \ldots, t_n) = \sum_{i=1}^{n} i \times t_i$$

subject to

$$\sum_{i=1}^{n} t_i = 1 \text{ and } t_1 \geq \sum_{i=2}^{n} (i - 1)t_i,$$

for real valued $t_i, 1 \leq i \leq n$, then

$$f(t_1, \ldots, t_n) \leq \frac{2n - 1}{n}$$

and equality is attained when $t_i = 0$ for $1 < i < n$.

Proof. We induct on n. If $n = 2$, notice that $t_1 = 1 - t_2$, which means that $f(t_1, t_2) = 1 + t_2$. Since $t_2 \leq 1 - t_2$ we see that $t_2 \leq \frac{1}{2}$ which promptly implies $f(t_1, t_2) \leq \frac{3}{2}$.

Suppose the statement true for $n \leq k - 1$. We show it true for $n = k$. Let $t_1 + \cdots + t_{k-1} = s$. Then by the induction hypothesis, $\frac{1}{s} \sum_{i=1}^{k-1} (i \times t_i) \leq \frac{2k-3}{k-1}$ and equality is achieved when $t_2 = \cdots = t_{k-2} = 0$. Hence, $\sum_{i=1}^{k-1} (i \times t_i)$ is maximized when $t_2 = \cdots = t_{k-2} = 0$.

We consider the resulting expression, $g(t_1, t_{k-1}, t_k) = t_1 + (k-1)t_{k-1} + kt_k$ subject to $t_1 + t_{k-1} + t_k = 1$ and $t_1 \geq (k-2)t_{k-1} + (k-1)t_k$.

Notice that $t_1 = 1 - t_{k-1} + t_k$ which we can substitute into the constraining inequality to obtain $t_{k-1} \leq \frac{1-kt_k}{k-1}$. Furthermore, since $t_1 + t_k \leq 1$ and $t_1 \geq (k-1)t_k$, we see that $t_k \leq \frac{1}{k}$.

Note that

$$g(t_1, t_{k-1}, t_k) = 1 - t_{k-1} - t_k + (k-1)t_{k-1} + kt_k$$

$$= 1 + (k-2)t_{k-1} + (k-1)t_k$$

$$\leq 1 + (k-2)\left(\frac{1-kt_k}{k-1} + (k-1)t_k\right)$$

$$= \frac{2k-3}{k-1} + \frac{1}{k-1}t_k$$

$$\leq \frac{2k-3}{k-1} + \frac{1}{k-1}$$

$$= \frac{2k-1}{k}.$$

\[\square \]

2. A New Bound

Theorem 2.1. For any graphs G and H,

$$\gamma(G \Box H) \geq \frac{\pi(G)}{2\pi(G) - 1} \gamma(G)\gamma(H).$$
Proof. For any graphs G and H, let $\Gamma = \{v_1, \ldots, v_k\}$ be a minimum dominating set of G and D be a minimum dominating set of $G \sqcup H$.

Our proof is composed of increasingly refining labelings of the vertices of D. In all instances, for any $S \subseteq [k]$, if $v \in P_S$, then v may only be labeled by a subset of S. For example, if $v \in P_{i,j}$, then v may be labeled by i, j, or $\{i,j\}$. We call labelings that follow this property faithful. For any fixed label i, we project vertices that contain i in their label onto H and produce a dominating set of H. We show a bound on the label overcount to produce the desired inequality.

For any $h \in V(H)$, suppose the fiber G^h contains $\ell_h(= \ell)$ vertically undominated cells $\{Q_{i_1}^h, \ldots, Q_{i_\ell}^h\}$ for $0 \leq \ell \leq k$. We set $I^h = \{i_1, \ldots, i_\ell\}$.

We apply the procedure Labeling 1 to the vertices of D. For $v \in D^h \cap Q_i^h$ for any $h \in V(H)$ and $1 \leq i \leq k$, we label v by $\{j : v \in N[v_j], j \in [k]\}$. If $v \in D^h$ is a shared neighbor of some subset S of $\{v_i : i \in I^h\}$, then it is a member of P_S^h for some $S \subseteq I^h$, and we label v by S. If $v \in D^h$ is a member of P_S^h where $S = R \cup T$ for nonempty $R \subseteq I^h$ and $T \subseteq ([k] - I^h)$, then we label v by R. This completes Labeling 1.

We relabel the vertices of D, doing so in D^h for fixed $h \in H$, stepwise, until we exhaust every $h \in V(H)$. This procedure, which we call Labeling 2, is described next.

For every $h \in V(H)$, we list the labels of vertices of D^h, and write them in row h. This produces a two-dimesional array of $|H|$ rows of labels, some of which may be empty. For an arbitrary $h \in V(H)$, we perform two alterations to the labels in row h which we call the internal and external alterations. In each of these procedures we make the exception which we denote the dominion rule: if $v_i^h \in D^h$ with label S, then any alteration of S must retain the label i.

We perform the internal alteration,

(1) For every pair of labels S and T in row h, if $|S \cap T| > 1$, then remove one common element from S and another from T, arbitrarily, subject to the dominion rule. Repeat this step.
(2) If $|S| = 1$, $|T| > 1$, and $S \cap T \neq \emptyset$, then remove the label of S from T, following the dominion rule.
(3) If $|S| = |T| = 1$, then make no changes to S or T.
(4) Otherwise, if $|S| > 1$, $|T| > 1$, $|S \cap T| = 1$, then remove the common element from one of S or T arbitrarily, subject to the dominion rule.

We repeat this internal alteration for every row $h \in V(H)$ until every pair of labels in a row is a pair of singletons or mutually disjoint.

We perform the external alteration to the array obtained from the internal alteration. Choose any $h \in V(H)$ and suppose $N(h) = \{h_1, \ldots, h_n\}$. For every label S in row h, we consider labels T of row h_i for $i = 1, \ldots, n$, and repeat the relabeling from the internal alteration,

(1) Set $i = 1$.
(2) For every label \(S \) in row \(h \) and \(T \) in row \(h_i \), if \(|S \cap T| > 1 \), then remove one common element from \(S \) and another from \(T \), arbitrarily, subject to the dominion rule. Repeat this step.

(3) If \(|S| = 1 \), \(|T| > 1 \), and \(S \cap T \neq \emptyset \), then remove the label of \(S \) from \(T \), following the dominion rule.

(4) If \(|S| > 1 \), \(|T| = 1 \), and \(S \cap T \neq \emptyset \), then remove the label of \(T \) from \(S \), following the dominion rule.

(5) If \(|S| = |T| = 1 \), then make no changes to \(S \) or \(T \).

(6) Otherwise, if \(|S| > 1 \), \(|T| > 1 \), and \(|S \cap T| = 1 \), then remove the common element from one of \(S \) or \(T \) arbitrarily, subject to the dominion rule.

(7) Let \(i = i + 1 \) and repeat this relabeling until \(i = n + 1 \).

After all alterations are performed for every row \(h \in V(H) \), we confer the labels in the rows to the corresponding vertices of \(D \). This completes Labeling 2.

Define the index set \(I^h_I = [k] - I^h = \{i_{i+1}, \ldots, i_k\} \) for vertically dominated cells of \(G^h \). We relabel those vertices of \(D^h \cap \mathcal{C}^h_{I^h} \) which are shared neighbors of \(\{v^h_i : i \in I^h_I\} \) so that all labels on these vertices are singletons and the labeling remains faithful. We call this procedure Labeling 3. For any \(h \in V(H) \), if \(v \in D^h \cap \mathcal{C}^h_{I^h} \) is a shared neighbor of some vertices of \(\{v^h_i : i \in I^h_I\} \), with label \(S \), then choose any element of \(S \) and label \(v \) by that element. Repeat this procedure for every \(h \in V(H) \). This completes Labeling 3.

For \(h \in V(H) \), let \(S^h_i \) be the vertices of \(D^h \) which have labels with more than one element. That is, vertices \(v \) labeled by some \(X \) so that \(|X| > 1 \). Say \(|S^h_i| = s \) and \(S^h_i = \{x_1, \ldots, x_s\} \). Let \(m_i \) be the cardinality of the label on \(x_i \in S^h_i \). For each vertex in \(S^h_i \), we place each element from the label on that vertex in the set \(J^h_i \). For example, if \(S^h_i \) contains vertices with labels \(\{i_1, i_2\} \) and \(\{i_3, i_4\} \), then \(J^h_i = \{i_1, i_2, i_3, i_4\} \).

Claim 2.2. \(\mathcal{C}_j^h \) is dominated by vertices of \(D^h \).

Proof. Suppose \(v \in \mathcal{C}_j^h \) is dominated by \(u \in D^{h'} \) for some \(h' \in N_H(h) \).

Let \(S \) be the label on \(u \). Since Labeling 2 has been performed, for any vertex \(w \in S^h_i \) with labels \(T \), \(S \cap T = \emptyset \) unless \(|S| = |T| = 1 \). If \(|T| = 1 \), then \(w \notin S^h_i \), contradicting our assumption. Otherwise, elements of \(S \) are not in \(J^h_i \) leading to \(v \notin \mathcal{C}_j^h \) which is a contradiction. \(\square \)

Set \(D^h_I = D^h - (D^h \cap \mathcal{C}_j^h) \). By Claim 2.2 we can let \(E^h_{J^h_I} \) be a minimum subset of vertices of \(D^h_I \) so that \((D^h \cap \mathcal{C}_j^h) \cup E^h_{J^h_I} \) dominates \(\mathcal{C}_j^h \). That is, \(E^h_{J^h_I} \) is a set of vertices with neighbors in \(\mathcal{C}_j^h \), which along with vertices in \(D^h \cap \mathcal{C}_j^h \), dominate \(\mathcal{C}_j^h \).

Claim 2.3. For every \(h \in H \), \(|E^h_{J^h_I}| \geq \sum_{i=1}^s (m_i - 1) \).

Proof. Set \(j = |E^h_{J^h_I}| \) and notice that \(E^h_{J^h_I} \cup S^h_i \) dominates \(\mathcal{C}_j^h \). If we let \(I' = [k] - J^h_I \), then \(E^h_{J^h_I} \cup S^h_i \cup \left(\bigcup_{i \in I'} v^h_i \right) \) dominates \(G^h \). We note here that
some elements of \(E^h_i \) may also be elements of \(\bigcup_{i \in I} v_i^h \). However, such a set contains at most \(j + s + k - \sum_{i=1}^{s} m_i \) vertices, which must be at least \(k \). Thus, \(\sum_{i=1}^{s} m_i \leq j + s \) and we obtain the desired inequality. \(\square \)

Notice that for a fixed \(i, 1 \leq i \leq k \), projecting all vertices with labels containing \(i \) to \(H \) produces a dominating set of \(H \). Call the set of such vertices of \(D \) labeled \(i \), \(D_i \). Summing over all \(i \) we count vertices which have one label once and vertices with labels of cardinality \(m_i, m_i \) times, for every \(h \in V(H) \).

For any \(i \in [k] \), let \(F_i \) be the set of those vertices of \(D \) with labels of cardinality \(i \). We see that \(\gamma(G) \gamma(H) \leq \sum_{i=1}^{k} |D_i| = \sum_{i=1}^{k} i \times |F_i| = \sum_{i=1}^{\pi(G)} i \times |F_i| \)

Define \(t_i = \frac{|F_i|}{|D|} \), for \(1 \leq i \leq \pi(G) \). Note that \(\sum_{i=1}^{\pi(G)} t_i = 1 \). We apply Proposition 1.3 to find that \((2.1) \leq \frac{2\pi(G)-1}{\pi(G)} |D| \), and thus,

\[
|D| \geq \frac{\pi(G)}{2\pi(G) - 1} \gamma(G) \gamma(H).
\]

\(\square \)

2.1. Some Consequences. By definition, \(\pi(G) \leq \gamma(G) \) and \(\pi(G) \leq \Delta(G) \), which immediately implies the following.

Corollary 2.4. For any graphs \(G \) and \(H \),

\[
\gamma(G) \gamma(H) \geq \frac{\gamma(G)}{2\gamma(G) - 1} \gamma(G) \gamma(H)
\]

We note that this bound is an improvement to formula (1.2) when either \(\gamma(G) < \frac{\gamma(H)+1}{2} \) or \(\gamma(H) < \frac{\gamma(G)+1}{2} \).

Corollary 2.5. For any graphs \(G \) and \(H \),

\[
\gamma(G) \gamma(H) \geq \frac{\Delta(G)}{2\Delta(G) - 1} \gamma(G) \gamma(H)
\]

Furthermore, since \(\gamma(G) = \gamma_{[1,2]}(G) \) holds when \(G \) is claw-free or a cograph \([4]\), we have the next result.

Corollary 2.6. If \(G \) is claw-free or \(P_4 \)-free, and \(H \) is any graph, \(\gamma(G) \gamma(H) \geq \frac{2}{3} \gamma(G) \gamma(H) \).

References

[1] R.B. Allan and R. Laskar. On domination and independent domination numbers of a graph, Discrete Math., 23: 7376 (1978).

[2] B. Brešar, Vizing’s conjecture for graphs with domination number 3 - a new proof, Electron. J. Comb. 22(3): P3.38 (2015).

[3] B. Brešar, P. Dorbec, W. Goddard, B. Hartnell, M. Henning, S. Klavžar, D. Rall, Vizing’s conjecture: a survey and recent results, J. Graph Theory, 69 (1): 46-76 (2012).
[4] M. Chellali, T. Haynes, S. Hedetniemi, A. McRae, \(
\{1, 2\}\)-sets in graphs, Discrete Applied Mathematics, 161: 2885-2893 (2013).

[5] A. Contractor and E. Krop, A class of graphs approaching Vizing’s conjecture, Theory and Applications of Graphs, 3(1), Article 4 (2016).

[6] R. Diestel, Graph Theory, Third Edition, Springer-Verlag, Heidelberg Graduate Texts in Mathematics, Volume 173, New York (2005).

[7] E. Krop, Vizing’s conjecture: a two-thirds bound for claw-free graphs, preprint http://arxiv.org/abs/1607.06936 (2016)

[8] Marcin Pilipczuk, Michal Pilipczuk, and Riste Škrekovski, Discrete Applied Mathematics, 160:2484-2490 (2012).

[9] S. Suen, J. Tarr, An Improved Inequality Related to Vizing’s Conjecture, Electron. J. Combin. 19(1): P8 (2012).

[10] L. Sun, A result on Vizing’s conjecture, Discrete Math., 275 (1-3): 363-366 (2004).

[11] V. G. Vizing, The Cartesian Product of Graphs, Vycisl. Sistemy 9: 30-43 (1963).

Elliot Krop (elliotkrop@clayton.edu)

Department of Mathematics, Clayton State University