First observation of in-medium modifications of the ω meson

D. Trnka 1, G. Anton 2, J. C. S. Bacelar 3, O. Bartholomy 4, D. Bayadilov 4, 8, Y.A. Beloglazov 8, R. Bogendörfer 2, R. Castelijns 3, V. Crede 4, H. Dutz 5, A. Ehmanns 4, D. Elsner 5, R. Ewald 5, I. Fabry 4, M. Fuchs 4, K. Essig 4, Ch. Funke 4, R. Gothe 5, R. Gregor 1, A. B. Gridnev 8, E. Gutz 4, S. Höffgen 5, P. Hoffmeister 4, I. Horn 4, J. Hössl 2, I. Jaegle 7, J. Junkersfeld 4, H. Kalinowsky 4, Frank Klein 5, Fritz Klein 5, E. Klempt 2, M. Konrad 5, B. Kopf 6, M. Kotulla 7, B. Krusche 7, J. Langheinrich 5, H. Löhner 3, I.V. Lopatin 8, J. Lotz 4, S. Lugert 1, D. Menze 5, J. G. Messchendorp 3, T. Mertens 7, V. Metag 3, C. Morales 5, M. Nanova 1, R. Novotny 1, M. Ostrick 5, L. M. Pant 1, H. van Pee 1, M. Pfeiffer 1, A. Roy 3, A. Radkov 8, S. Schadmand 1, Ch. Schmidt 4, H. Schmieden 5, B. Schoch 5, S. Shende 3, G. Suid 2, V. V. Sumachev 8, T. Szczepanek 4, A. Süle 5, U. Thoma 1, R. Varma 1, D. Walther 5, Ch. Weinheimer 4, Ch. Wendel 4

(The CBELSA/TAPS Collaboration)

1 II. Physikalisches Institut, Universität Gießen, Germany
2 Physikalisches Institut, Universität Erlangen, Germany
3 KVI, Groningen, The Netherlands
4 Helmholtz-Institut für Strahlen- u. Kernphysik, Universität Bonn, Germany
5 Physikalisches Institut, Universität Bonn, Germany
6 Institut für Kern- und Teilchenphysik, TU Dresden, Germany
7 Physikalisches Institut, Universität Basel, Switzerland
8 Petersburg Nuclear Physics Institute, Gatchina, Russia
9 Physikalisches Institut, Universität Bochum, Germany
* now at University of South Carolina, Columbia, USA
† now at Florida State University, USA
‡ now at Institut für Kernphysik, FZ Jülich, Germany
§ now at Institut für Kernphysik, Universität Münster, Germany
1 on leave from Nuclear Physics Division, BARC, Mumbai, India
2 on leave from Department of Physics, I.I.T. Powai, Mumbai, India

(Dated: August 14, 2019)

The photoproduction of ω mesons on nuclei has been investigated using the Crystal Barrel/TAPS experiment at the ELSA tagged photon facility in Bonn. The aim is to study possible in-medium modifications of the ω meson via the reaction $\gamma + A \rightarrow \omega + X \rightarrow \pi^0 \gamma + X'$. Results obtained for Nb are compared to a reference measurement on a LH$_2$ target. While for recoiling, long-lived mesons (π^0, η and η'), which decay outside of the nucleus, a difference in the line shape for the two data samples is not observed, we find a significant enhancement towards lower masses for ω mesons produced on the Nb target. For momenta less than 500 MeV/c an in-medium ω meson mass of $M_{\text{medium}} = [722^{+2}_{-2}(\text{stat})^{+35}_{-21}(\text{syst})]$ MeV/c2 has been deduced at an estimated average nuclear density of 0.6 ρ_0.

PACS numbers: 13.60.-r, 13.60.Le, 25.50.-x, 14.40.-n

The modification of experimentally observable properties of vector mesons such as mass and width, when embedded in a dense medium, is one of the most fundamental research issues in hadron physics. While for composite systems like molecules, atoms or nuclei, the mass of the system is almost completely (apart from small binding energy effects) governed by the sum of the masses of the constituents, this is no longer true in the hadronic sector. Here, the hadron masses are much larger than the summed masses of the constituents, the u-, d- and s-quarks. One possible interpretation is that the masses of hadrons are generated dynamically [1]. Furthermore, hadron masses can be associated with the spontaneous breaking of chiral symmetry. In nuclear matter (and at high temperatures) this symmetry is predicted to be at least partially restored. As a consequence, the properties of hadrons are expected to be modified (see e.g. [2, 3, 4, 5, 6]).

A variety of theoretical models predict a lowering of the in-medium mass of vector mesons even at normal nuclear matter density ρ_0. For the ω meson a drop of the mass by 20 to 150 MeV/c2 and a broadening of the width up to 60 MeV/c2 has been predicted (e.g. [2, 3, 4, 5, 6]). However, the discussion in the literature is very controversial. Even upward mass shifts [13] or the appearance of additional peaks [14] have been suggested by some authors. This situation underlines the importance of experimental results.

Several previous experiments have studied the properties of vector mesons in hot and dense matter. Dilepton spectroscopy allows to measure the in-medium properties without distortion due to final state interactions.
The yield expected from the known sources in pp collisions, and observed an enhancement in the invariant mass range of 0.6 GeV/c² over the yield expected from the known sources in pp collisions 15. More recently, analyzing π⁺π⁻ pairs the STAR experiment at RHIC observed a decrease of the ω meson in-medium mass in peripheral Au+Au collisions 17. The KEK-PS E325 collaboration investigated p+A reactions at 12 GeV 18 and reported an enhancement in the e⁺e⁻ invariant mass spectra in the region of 0.6 GeV/c² ≤ mₑₑ ≤ 0.77 GeV/c². Presently, an experiment performed at JLAB using a photon beam is being analyzed 19. At GSI, it has been proposed 20 to perform pion induced experiments with the HADES 21 detector system.

All e⁺e⁻ experiments suffer from the small branching ratios (BR) of vector mesons into dileptons, which are in the order of 10⁻⁵ – 10⁻⁴. In addition, the comparable e⁺e⁻ decay rates for ω and ρ mesons make it difficult to isolate an ω signal from the e⁺e⁻ invariant mass spectrum 8. An alternative and promising approach to investigate in-medium modifications of the ω meson is to study the ω → π⁰γ decay mode, as pointed out in 22, 22, and 24. An essential advantage of this decay channel is the large BR of almost 9%, three orders of magnitude larger than the decay into dileptons. Furthermore, this mode is a clean and exclusive probe to study the ω in-medium properties since the ρ → π⁰γ BR is only 6.8 · 10⁻⁴ and therefore suppressed by two orders of magnitude relative to the ω BR into this channel. However, the disadvantage is a possible rescattering of the π⁰ within the nuclear medium, which would distort the deduced ω invariant mass distribution. Pion rescattering within the nucleus proceeds predominately via the formation of an intermediate Δ resonance. Due to the kinematics of the Δ resonance decay the distorted events are predicted to accumulate at approx. 500 MeV/c², far below the nominal ω invariant mass. This leads to a small contribution of only about 3% in the mass range of interest, 0.6 GeV/c² < Mₚₚₑₑ < 0.9 GeV/c². Moreover, the authors of 22 and 23 have demonstrated that the constraint on the kinetic energy Tₑₑ > 150 MeV suppresses the FSI down to the 1% level.

Only ω mesons decaying inside the nucleus carry information on the in-medium properties. To enhance the in-medium decay probability, the vector meson decay length Lₐₚₑₑ = pₐₑₑ/Γₐₑₑ should be less than the nuclear radius. This can be achieved by applying a kinematic cut on the 3-momentum of the ω meson. But still, only a fraction of the ω mesons will decay inside the nucleus. Thus, one expects the π⁰γ invariant mass spectra to show a superposition of decays outside of the target at the vacuum mass peak position (782 MeV/c²) with modified decays inside the nucleus 22.

The experiment was performed at the ELectron Stretcher Accelerator (ELSA) in Bonn, using a 2.8 GeV electron beam. The photon beam was produced via bremsstrahlung. A magnetic spectrometer (tagger) was used to determine the photon beam energies within the tagged photon range of 0.64 to 2.53 GeV. The Nb and LH₂ targets had thicknesses of 1 mm and 53 mm, respectively, and 30 mm in diameter. The targets were mounted in the center of the Crystal Barrel detector (CB), a photon calorimeter consisting of 1290 CsI(Tl) crystals (≈ 16 radiation lengths X₀) with an angular coverage of 30° up to 168° in the polar angle and a complete azimuthal angle coverage. Inside the CB, covering its full acceptance, a three-layer scintillating fiber detector (513 fibers of 2 mm diameter) was installed for charged particle identification. Reaction products emitted in forward direction were detected in the TAPS detector. TAPS consisted of 528 hexagonally shaped BaF₂ detectors (≈ 12 X₀) covering polar angles between 4° and 30° and the complete 2π azimuthal angle. In front of each BaF₂ module a 5 mm thick plastic scintillator was mounted for the identification of charged particles. The resulting geometrical solid angle coverage of the com-
is not observed. However, when comparing the ω state is not distinguishable from the ponderation. This probability was determined by Monte Carlo ponderation where one of the four photons escapes the detection. The left panel of Fig. 2 shows the invariant mass distributions, we find a significant change in the lineshapes. The high mass distribution obtained after background subtraction. The error bars show statistical uncertainties only. The solid curve represents the simulated lineshape for the LH2 target. Right panel: In-medium decays of ω mesons along with a Voigt fit to the data (see text). The vertical line indicates the vacuum ω mass of 782 MeV/c².

The invariant masses of the mesons were calculated from the measured 4-momenta of the decay photons. The calibration of the Nb and LH2 data samples was carefully cross checked by comparing the lineshapes for long-lived mesons, the π⁰, η, and η'. The decay lengths (ct) of 25.1 nm (π⁰), 0.153 nm (η), and 0.001 nm (η') guarantee that these pseudoscalar mesons will not decay inside the nucleus, hence the lineshapes should not exhibit any difference for the two data samples. Fig. 2 shows the comparison of the background subtracted invariant mass distributions for π⁰ → γγ, η → π⁰π⁰π⁰ → 6γ and η' → π⁰π⁰η → 6γ. Indeed, a difference in the lineshapes is not observed. However, when comparing the ω → π⁰γ invariant mass distributions, we find a significant change in the lineshapes. The left panel of Fig. 2 shows the π⁰γ invariant mass distribution without further cuts except for a three momentum cutoff of |p_ω| < 500 MeV/c. The dominant background source is two pion production where one of the four photons escapes the detection. This probability was determined by Monte Carlo simulations to be 14%. The resulting three photon final state is not distinguishable from the ω → π⁰γ invariant mass. The central panel of Fig. 2 shows the invariant mass distribution obtained after background subtraction. We observe the expected superposition of decays outside of the nucleus at the nominal vacuum mass with decays occurring inside the nucleus, responsible for the shoulder towards lower invariant masses. The high mass part of the ω mass signal appears identical for the Nb and LH2 targets, indicating that this part is dominated by ω meson decays in vacuum. These decays are eliminated by matching the right hand part of the Nb invariant mass spectrum to the LH2 data (see central panel of Fig. 2) and by subtracting the two spectra from each other. For this normalization the integral of the undistorted spectrum corresponds to 75% of the counts in the vacuum spectrum. This is in good agreement with a theoretical prediction obtained from a transport code calculation [23, 24]. There, about 16% of the total decays are predicted to occur inside the nuclear medium (ρ > 0.1 ρ_0) without any FSI and 3% of the events are distorted due to FSI in the mass range of 0.6 GeV/c² < M_{π⁰π⁰π⁰} < 0.9 GeV/c². In addition, 9% of the events are moved towards lower masses due to the Δ decay kinematics. The right panel of Fig. 2 shows the resulting in-medium signal along with a Voigt fit (Breit-Wigner folded with Gaussian) to the data. We obtain an ω in-medium mass of M_{medium} = [722^{+2}_{−3}(stat)+^{35}_{−5}(syst)] MeV/c². This corresponds to a lowering of the ω-mass by 8 % with respect to the vacuum value at an estimated average nuclear density of 0.6 ρ_0 in line with the assumptions in [23]. Consistency with a scaling of the ω-mass by m = m_0(1−0.14ρ/ρ_0) is found [24]. Within this scenario the width is governed by the experimental resolution of Γ = 55 MeV/c² (FWHM). The systematic uncertainty mainly reflects different assumptions for the subtraction of decays of the ω mesons in vacuum. The fraction of these decays was varied within a broad range from 80% to 45% (the central and right panel of Fig. 2 correspond to 75%). The case with 45% corresponds to the upper bound of the systematic uncertainty (+35 MeV). This extreme scenario would, however, require an increase of the in-medium width of the ω by almost an order of magnitude.

Furthermore, the dependence of the signal on the ω momentum has been studied. It is expected that only low-momentum ω mesons (with a corresponding low ve-
exhibiting an invariant mass distribution corresponding to mesons with high momenta decay outside the nucleus, contributing to the downward mass shift. In contrast, the width of the meson mass in the nuclear medium has been observed.

In summary, we have investigated the in-medium modifications of ω mesons in photoproduction experiments using the Crystal Barrel/TAPS detector at the ELSA accelerator facility in Bonn. When comparing data from a LH$_2$ target with data taken with a Nb target, we find a pronounced modification of the ω meson mass in the nuclear medium for ω mesons with momenta less than 500 MeV/c. The in-medium mass has been determined to $M_{\text{medium}} = [722^{+2}_{-5}\text{(stat)}^{+35}_{-58}\text{(syst)}]$ MeV/c2 at an estimated average nuclear density of 0.6 ρ_0. The width is found to be $\Gamma = 55$ MeV/c2 and is dominated by the experimental resolution. The momentum dependence of the signal shows that only low-momentum ω mesons contribute to the downward mass shift. In contrast, ω mesons with high momenta decay outside the nucleus, exhibiting an invariant mass distribution corresponding to ω decays in vacuum. First evidence for a lowering of the ω mass in the nuclear medium has been observed.

We gratefully acknowledge stimulating discussions with W. Cassing, S. Leupold, U. Mosel, and in particular with P. Mihlbich. We thank the accelerator group of ELSA as well as the technicians and scientists of the HISKP in Bonn, the PI in Bonn and the II. Physikalisches Institut in Giessen. This work was supported by the Deutsche Forschungsgemeinschaft, SFB/Transregio 16, and the Schweizerischer Nationalfonds. U. Thoma thanks for an Emmy-Noether grant from the DFG.

1. F. Wilczek et al., Phys. Today August 10 (2002).
2. V. Bernard, U. Meißner, Nucl. Phys. A 489 647 (1988).
3. S. Klimt et al., Phys. Lett. B 249 386 (1990).
4. G. E. Brown, M. Rho, Phys. Rev. Lett. 66 2720 (1991).
5. T. Hatsuda, S. H. Lee, Phys. Rev. C 46 R34 (1992).
6. E. V. Shuryak, G. E. Rho, et al., Nucl. Phys. A 717 322 (2003).
7. T. Renk et al., Phys. Rev. C 66 014902 (2002).
8. F. Klingl et al., Z. Phys. A 356 193 (1996).
9. F. Rick, J. Knoll, Nucl. Phys. A 740 287 (2004).
10. G. I. Lykasov et al., Eur. Phys. J. A 6 71 (1999).
11. T. Weidmann et al., Phys. Rev. C 59 919 (1999).
12. M. Effenberger et al., Phys. Phys. C 60 027601 (1999).
13. S. Zschocke et al., Phys. Lett. B 562 562 (2003).
14. M. Lutz et al., Nucl. Phys. A 706 431 (2002).
15. G. Agakichiev et al., Phys. Rev. Lett. 75 1272 (1995).
16. G. Agakichiev et al., Phys. Lett. B 422 405 (1998).
17. J. Adams et al., Phys. Rev. Lett. 92 092301 (2004).
18. R. Muto et al., J. Phys. G: Nucl. Part. Phys. 30 1023 (2004).
19. Jefferson Lab proposal, E-01-112, unpublished (2001) and C. Tur, priv. comm. (2005).
20. W. Schön et al., Act. Phys. Pol. B 27 2959 (1996).
21. J. Friese, Prog. Part. Nucl. Phys. 42 235 (1999).
22. J. G. Messchendorf et al., Eur. Phys. J. A 11 95 (2001).
23. P. Mihlbich et al., Eur. Phys. J. A 20 499 (2004).
24. A. Sibirtsev et al., Phys. Lett. B 483 405 (2000).
25. E. Aker et al., Nucl. Instr. Meth. A 321 69 (1992) and H. Kalinowsky et al., in preparation.
[26] R. Novotny et al., IEEE Trans. Nucl. Sci. 38 392 (1991).
[27] A. R. Gabler et al., Nucl. Inst. Meth. A 364 164 (1994).
[28] P. Mühlich, priv. comm. (2004).