Predictive Value of Dynamic Peri-Transplantation MRD Assessed By MFC Either Alone or in Combination with Other Variables for Outcomes of Patients with T-Cell Acute Lymphoblastic Leukemia*

Zhi-dong WANG1†, Yue-wen WANG1†, Lan-ping XU1, Xiao-hui ZHANG1, Yu WANG1, Huan CHEN1, Yu-hong CHEN1, Feng-rong WANG1, Wei HAN1, Yu-qian SUN1, Chen-hua YAN1, Fei-fei TANG1, Xiao-dong MO1,2, Ya-zhe WANG1, Yan-rong LIU1, Kai-yan LIU1, Xiao-jun HUANG1,2,3, Ying-jun CHANG1#
1Peking University People’s Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
2Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing 100005, China
3Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
© The Author(s) 2021

Summary: We performed a retrospective analysis to investigate dynamic peri-hematopoietic stem cell transplantation (HSCT) minimal/measurable residual disease (MRD) on outcomes in patients with T-cell acute lymphoblastic leukemia (T-ALL). A total of 271 patients were enrolled and classified into three groups: unchanged negative MRD pre- and post-HSCT group (group A), post-MRD non-increase group (group B), and post-MRD increase group (group C). The patients in group B and group C experienced a higher cumulative incidence of relapse (CIR) (42% vs. 71% vs. 16%, P<0.001) and lower leukemia-free survival (LFS) (46% vs. 21% vs. 70%, P<0.001) and overall survival (OS) (50% vs. 28% vs. 72%, P<0.001) than in group A, but there was no significant difference in non-relapse mortality (NRM) among three groups (14% vs. 12% vs. 8%, P=0.752). Multivariate analysis showed that dynamic peri-HSCT MRD was associated with CIR (HR=2.392, 95% CI, 1.816–3.151, P<0.001), LFS (HR=1.964, 95% CI, 1.546–2.496, P<0.001) and OS (HR=1.731, 95% CI, 1.348–2.222, P<0.001). We also established a risk scoring system based on dynamic peri-HSCT MRD combined with remission status pre-HSCT and onset of chronic graft-versus-host disease (GVHD). This risk scoring system could better distinguish CIR (c=0.730) than that for pre-HSCT MRD (c=0.562), post-HSCT MRD (c=0.616) and pre- and post-MRD dynamics (c=0.648). Our results confirm the outcome predictive value of dynamic peri-HSCT MRD either alone or in combination with other variables for patients with T-ALL.

Key words: peri-transplantation minimal residual disease; risk stratification; risk scoring system; T-cell acute lymphoblastic leukemia

Disease recurrence remains one of the most common causes of death in patients with acute lymphoblastic leukemia (ALL)1–6, especially for those with T-cell ALL (T-ALL)7–9, who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). Presently, a number of variables2,7–15, such as remission status pre-HSCT, immunophenotype of ALL, minimal/measurable residual disease (MRD)
transplantation outcomes in patients with T-ALL. In addition, we also tried to establish a risk score principally based on the dynamic peri-HSCT MRD combined with other parameters, such as remission status pre-HSCT and onset of chronic GVHD demonstrated by others[12, 26, 27] and others[2, 16, 19], which might provide better relapse risk determination for T-ALL patients.

1 PATIENTS AND METHODS

1.1 Study Design

This retrospective study included T-ALL subjects who were enrolled at the Peking University People’s Hospital between January 2010 and December 2018. For patients with human leukocyte antigen (HLA)-matched sibling donors (MSDs), MSDs were chosen. If cases without MSDs, HLA-matched unrelated donors (MUDs) were chosen. If cases without MSDs and MUDs, then haploidentical donors were chosen[28, 29]. All of the included subjects signed an informed consent form. The study protocol was in accordance with the Declaration of Helsinki and was approved by the Institutional Review Board of Peking University. All of the cases were treated according to the transplant protocol as previously described[1, 17, 31].

1.2 Transplant Procedures

Recombinant human granulocyte colony-stimulating factor (G-CSF; 5 μg/kg per day for 5 days) were administered to healthy donors for bone marrow stem cells (BMSCs, collected on day 4 after G-CSF) and peripheral blood stem cells (PBSCs, collected on day 5 after G-CSF) mobilization[21, 30]. Subjects received BMSCs and/or PBSCs as allografts.

All patients were treated with a myeloablative conditioning regimen[1, 17, 21, 30]. For patients with haploidentical donors (HIDs), the conditioning regimen was given as follows: cytarabine (4 g/m² per day) intravenously on days –10 to –9; busulfan (3.2 mg/kg per day) intravenously on days –8 to –6; cyclophosphamide (1.8 g/m² per day), intravenously on days –5 to –4; Me-CCNU (250 mg/m² per day), orally once on day –3; and ATG (thymoglobulin, 2.5 mg/kg per day, Sang Stat, France) intravenously on days –2 to 0. Patients with MSDs received hydroxyxorcarbamide (80 mg/kg) orally on day –10 and a lower dose of cytarabine (2 g/m² per day) on day –9, but otherwise, an identical regimen to the HID patients without ATG was employed.

1.3 MFC Detection of MRD

Bone marrow aspirate samples were obtained as part of the baseline assessment before SCT, as well as 1, 2, 3, 4, 5, 6, 9, and 12 months posttransplantation and at 6-month intervals thereafter according to previous studies[2, 16, 21, 30]. Six- to eight-color MFC was performed for MRD evaluation according to previous studies[2, 16, 21]. A panel of antibody combinations recognizing cTdT, mCD3, cCD3, CD5, CD7, CD34, CD45, and CD2 or CD99 was used for MRD determination. Any measurable level of MRD was considered positive, otherwise was defined as negative. The definition for quantitative dynamics of pre-MRD and post-MRD included: (1) post-MRD increase after allograft compared with the pre-HSCT baseline; (2) post-MRD non-increase was defined as not meeting the criteria of (1) and (3); (3) unchanged negative MRD pre- and post-HSCT.

1.4 Methods for MRD Intervention and Relapse Treatment

Donor lymphocyte infusion (DLI) was performed as described previously by our group[1, 17, 31]. Other methods for positive MRD intervention and relapse treatment, such as interferon-γ (IFN-γ), were administered according to our previous studies[1, 17, 31].

1.5 Outcomes

The primary study end point was the cumulative incidence of leukemia relapse. The secondary end points were the cumulative incidence of non-relapse mortality (NRM) and the probabilities of leukemia-free survival (LFS) and overall survival (OS).

The engraftment, infection, NRM, relapse, LFS, and OS were defined according to our previous studies[1, 17, 31, 32]. The definition and grades of acute GVHD were based on the pattern and severity of organ involvement[32]. The chronic GVHD was defined and graded according to the National Institute of Health criteria[33].

1.6 Statistical Analysis

Patient characteristics were compared between the negative MRD and positive MRD groups with the χ² statistic for categorical variables and the Mann-Whitney test for continuous variables. Cumulative incidence curves were used in a competing risk setting, with relapse treated as a competing event to calculate NRM probabilities, and with death from any cause as a competing risk for GVHD, engraftment, and relapse. The probabilities of LFS and OS were estimated with the Kaplan-Meier method. The variables in table 1 were included in the univariate analysis. Only variables with P<0.1 were included in a Cox proportional hazards model with time-dependent variables. We calculated C-statistics (c), whereby a c value of 1.0 indicates perfect discrimination, and a c value of 0.5 is equivalent to chance[34]. Unless otherwise specified, P values were based on two-sided hypothesis tests. Alpha was set at 0.05. Most analyses were performed with SPSS software, version 16.0 (Mathsoft, USA).

2 RESULTS

2.1 Patient Characteristics and Transplant Outcomes

A total of 271 consecutive cases were included in this study. The characteristics of all of the cases,
Characteristics	All patients	Pre-MRDneg	Pre-MRDpos	Post-MRDneg	Post-MRDpos	P-value
n	271	227	44	236	35	
Median age (range), years	23 (2–58)	21.5 (4–40)	19 (3–41)	32 (72.7%)	172 (72.9%)	0.167
Male sex, n (%)	202 (74.5%)	170 (74.9%)	32 (72.7%)	175 (72.9%)	30 (85.3%)	0.044
Diagnoses, n (%)	22 (8.1%)	16 (7.0%)	6 (13.6%)	6 (2.6%)	1 (2.9%)	0.378
Disease status, n (%)	271 (100%)	227 (100%)	44 (100%)	236 (100%)	35 (100%)	0.014
Median time from diagnosis to transplant (range), months	6.5 (3–49)	6.5 (3–49)	6.5 (3–49)	6.5 (3–49)	6.5 (3–49)	NS
Conditioning regimen, n (%)	271 (100%)	227 (100%)	44 (100%)	236 (100%)	35 (100%)	0.014
Transplant modalities	51 (18.8%)	48 (21.1%)	3 (6.8%)	46 (19.5%)	5 (14.3%)	0.928
HLA-A, B, DR mismatched grafts, n (%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0.029
Donor-recipient sex matched grafts, n (%)	138 (50.9%)	111 (48.9%)	27 (61.4%)	127 (56.0%)	13 (39.4%)	0.085
Donor-recipient relationship, n (%)	21 (7.2%)	20 (8.8%)	1 (2.3%)	19 (8.1%)	1 (2.9%)	0.019
Donor-recipient relationship, n (%)	157 (57.9%)	127 (56.0%)	13 (39.4%)	102 (43.6%)	10 (28.6%)	0.019
Sibling-sibling	102 (37.6%)	91 (40.1%)	11 (25.0%)	92 (39.0%)	10 (28.6%)	0.019
Parent-child	8 (3.0%)	6 (2.6%)	2 (4.5%)	7 (3.0%)	2 (5.7%)	0.019
Child-parent	3 (1.1%)	2 (0.9%)	1 (2.3%)	3 (1.2%)	1 (2.9%)	0.019
Characteristics	All patients	Pre-MRDneg	Pre-MRDpos	P value	Post-MRDneg	Post-MRDpos
---------------	-------------	------------	------------	---------	-------------	------------
ABO matched grafts, n (%)						
Matched	154 (56.8%)	122 (53.7%)	32 (72.7%)	0.050	130 (55.1%)	24 (68.6%)
Major mismatch	52 (19.2%)	49 (27.6%)	3 (6.8%)		49 (20.8%)	3 (8.6%)
Minor mismatch	49 (18.1%)	42 (18.5%)	7 (15.9%)		45 (19.1%)	1 (4.1%)
Bi-directional mismatch	16 (5.9%)	14 (6.2%)	2 (4.5%)		12 (5.1%)	4 (11.4%)

Cell compositions in allografts

Infused nuclear cells, (range) 10^6/kg							
Matched	8.35 (3.29–17.6)	8.32 (3.29–17.6)	8.48 (5.83–13.97)	0.526	8.37 (3.29–17.6)	8.29 (5.80–11.51)	0.835
Major mismatch	2.44 (0.50–12.44)	2.54 (0.50–12.44)	2.11 (0.88–4.98)	0.058	2.43 (0.50–12.44)	2.62 (1.54–6.56)	0.133

DLI and IFN-γ for MRD intervention after transplant, n (%) | | | | | | | |
| Matched | 30 (11.1%) | 21 (9.3%) | 9 (22.7%) | 0.030 | 5 (14.3%) | <0.001 | |

Haplo-SCT: haploidentical stem cell transplantation; pre-MRD: pre-transplantation minimal residual disease; neg: negative; pos: positive; NS: no significance; ALL: acute lymphoblastic leukemia; CR: complete remission; MA: myeloablative conditioning regimens; HLA: human leukocyte antigen; DLI: donor lymphocyte infusions.

We further evaluated the effects of peri-HSCT MRDs. Including positive and negative pre-HSCT MRD groups, we summarized in Table 1. Table 2. The patients with positive MRD had a higher percentage of cases in the positive MRD than the negative MRD. All patients had sustained, full donor chimerism. The cumulative 100-day incidence of platelet engraftment and acute GVHD grades II to IV was 91% (95% CI, 90%–93%). The 3-year cumulative incidence of chronic GVHD was 49% (95% CI, 42%–56%). The 3-year cumulative incidence of osteosarcoma was 58% (95% CI, 50%–66%). The 3-year cumulative incidence of relapse (CR) was 12% (95% CI, 9%–15%). The 3-year cumulative incidence of relapse (CR) was 20% (95% CI, 16%–24%). The 3-year cumulative incidence of relapse (CR) was 26% (95% CI, 21%–31%). The 3-year cumulative incidence of relapse (CR) was 30% (95% CI, 25%–35%). The 3-year cumulative incidence of relapse (CR) was 40% (95% CI, 35%–45%). The 3-year cumulative incidence of relapse (CR) was 50% (95% CI, 45%–55%). The 3-year cumulative incidence of relapse (CR) was 60% (95% CI, 55%–65%). The 3-year cumulative incidence of relapse (CR) was 70% (95% CI, 65%–75%). The 3-year cumulative incidence of relapse (CR) was 80% (95% CI, 75%–85%).
Fig. 1 Outcomes of T-ALL patients who underwent allogeneic stem cell transplantation according to different prognostic variables

Cumulative incidence of 3-year relapses according to pre-HSCT MRD (A), post-HSCT MRD (C), dynamic peri-HSCT MRD (E), and risk scores (G) principally based on dynamic peri-HSCT MRD. Probabilities of 3-year leukemia-free survival according to pre-HSCT MRD (B), post-HSCT MRD (D), dynamic peri-HSCT MRD (F), and risk scores (H) principally based on dynamic peri-HSCT MRD.

Pre-MRDpos (n=44)
Pre-MRDneg (n=227)

Post-MRDpos (n=35)
Post-MRDneg (n=236)

Post-MRD increase (n=27)
Post-MRD nonincrease (n=42)
Unchanged negative MRD pre- and post-HSCT (n=202)

Very high risk (n=21)
High risk (n=42)
Intermediate risk (n=126)
Low risk (n=82)

Low risk (n=82)
Intermediate risk (n=126)
High risk (n=42)
Very high risk (n=21)

T-ALL: T cell acute lymphoblastic leukemia; HSCT: hematopoietic stem cell transplantation; MRD: minimal/measurable residual disease
	II – IV acute aGVHD	Chronic GVHD	CIR at 3 years	NRM at 3 years	LFS at 3 years	OS at 3 years
Total patients						
Pre-MRDpos (n=44)	20% (8%–32%)	61% (43%–79%)	45% (29%–60%)	11% (2%–20%)	44% (29%–59%)	50% (34%–65%)
Pre-MRDneg (n=227)	22% (16%–28%)	47% (40%–54%)	22% (17%–27%)	13% (9%–17%)	65% (59%–71%)	67% (60%–73%)
Total patients						
Post-MRDpos (n=35)	23% (9%–37%)	56% (34%–78%)	72% (56%–87%)	6% (0–15%)	22% (8%–36%)	32% (16%–48%)
Post-MRDneg (n=236)	21% (15%–27%)	49% (42%–56%)	19% (14%–24%)	14% (9%–18%)	67% (61%–74%)	69% (63%–75%)
Total patients						
Post-MRD increase (n=27)	22% (6%–38%)	65% (33%–97%)	71% (53%–89%)	8% (0–19%)	21% (5%–37%)	28% (10%–45%)
Post-MRD non-increase (n=42)	21% (9%–33%)	59% (41%–77%)	42% (26%–58%)	12% (2%–23%)	46% (31%–62%)	50% (34%–66%)
Unchanged negative MRD pre- and post-HSCT (n=202)	22% (16%–28%)	47% (39%–55%)	16% (11%–22%)	14% (9%–18%)	70% (64%–76%)	72% (66%–78%)
Total patients						
Risk score						
Low risk (n=82)	28% (18%–38%)	100%	7% (2%–13%)	6% (1%–12%)	86% (79%–94%)	88% (80%–95%)
Intermediate risk (n=126)	19% (12%–26%)	20% (12%–28%)	23% (15%–30%)	15% (9%–21%)	62% (54%–71%)	65% (56%–74%)
High risk (n=42)	14% (3%–25%)	39% (19%–59%)	51% (35%–67%)	14% (4%–25%)	35% (20%–49%)	40% (24%–56%)
Very high risk (n=21)	24% (5%–43%)	8% (6%–10%)	67% (45%–89%)	21% (1%–41%)	12% (0–27%)	12% (0–27%)

**P=0.003 vs. pre-MRDneg group. **P=0.012 vs. pre-MRDneg group. *P=0.051 vs. pre-MRDneg group. *P<0.001 vs. post-MRDneg group. \P<0.001 vs. other groups.

ALL: acute lymphoblastic leukemia; allo-SCT: allogeneic stem cell transplantation; CIR: cumulative incidence of relapse; NRM: non-relapse mortality; LFS: leukemia-free survival; OS: overall survival; MRD: minimal residual disease; Pre-MRDpos: positive pre-HSCT MRD; Pre-MRDneg: negative pre-HSCT MRD; Post-MRDpos: positive post-HSCT MRD; Post-MRDneg: negative post-HSCT MRD

Table 2 Transplant outcomes for ALL patients who underwent allo-SCT in subgroup cases of total patients (n=271)

	II – IV acute aGVHD	Chronic GVHD	CIR at 3 years	NRM at 3 years	LFS at 3 years	OS at 3 years
Total patients						
Pre-MRDpos (n=44)	20% (8%–32%)	61% (43%–79%)	45% (29%–60%)	11% (2%–20%)	44% (29%–59%)	50% (34%–65%)
Pre-MRDneg (n=227)	22% (16%–28%)	47% (40%–54%)	22% (17%–27%)	13% (9%–17%)	65% (59%–71%)	67% (60%–73%)
Total patients						
Post-MRDpos (n=35)	23% (9%–37%)	56% (34%–78%)	72% (56%–87%)	6% (0–15%)	22% (8%–36%)	32% (16%–48%)
Post-MRDneg (n=236)	21% (15%–27%)	49% (42%–56%)	19% (14%–24%)	14% (9%–18%)	67% (61%–74%)	69% (63%–75%)
Total patients						
Post-MRD increase (n=27)	22% (6%–38%)	65% (33%–97%)	71% (53%–89%)	8% (0–19%)	21% (5%–37%)	28% (10%–45%)
Post-MRD non-increase (n=42)	21% (9%–33%)	59% (41%–77%)	42% (26%–58%)	12% (2%–23%)	46% (31%–62%)	50% (34%–66%)
Unchanged negative MRD pre- and post-HSCT (n=202)	22% (16%–28%)	47% (39%–55%)	16% (11%–22%)	14% (9%–18%)	70% (64%–76%)	72% (66%–78%)
Total patients						
Risk score						
Low risk (n=82)	28% (18%–38%)	100%	7% (2%–13%)	6% (1%–12%)	86% (79%–94%)	88% (80%–95%)
Intermediate risk (n=126)	19% (12%–26%)	20% (12%–28%)	23% (15%–30%)	15% (9%–21%)	62% (54%–71%)	65% (56%–74%)
High risk (n=42)	14% (3%–25%)	39% (19%–59%)	51% (35%–67%)	14% (4%–25%)	35% (20%–49%)	40% (24%–56%)
Very high risk (n=21)	24% (5%–43%)	8% (6%–10%)	67% (45%–89%)	21% (1%–41%)	12% (0–27%)	12% (0–27%)

*P=0.003 vs. pre-MRDneg group. **P=0.012 vs. pre-MRDneg group. *P=0.051 vs. pre-MRDneg group. *P<0.001 vs. post-MRDneg group. *P<0.001 vs. other groups.

ALL: acute lymphoblastic leukemia; allo-SCT: allogeneic stem cell transplantation; CIR: cumulative incidence of relapse; NRM: non-relapse mortality; LFS: leukemia-free survival; OS: overall survival; MRD: minimal residual disease; Pre-MRDpos: positive pre-HSCT MRD; Pre-MRDneg: negative pre-HSCT MRD; Post-MRDpos: positive post-HSCT MRD; Post-MRDneg: negative post-HSCT MRD

Table 2 Transplant outcomes for ALL patients who underwent allo-SCT in subgroup cases of total patients (n=271)
MRD on transplant outcomes. The total cases were classified as unchanged negative MRD pre- and post-HSCT group (group A), post-MRD non-increase group (group B), and post-MRD increase group (group C), respectively. The CIR in group B and group C was significantly higher (42% vs. 71% vs. 16%, \(P<0.001\)), LFS was significantly lower (46% vs. 21% vs. 70%, \(P<0.001\)) and OS lower (50% vs. 28% vs. 72%, \(P<0.001\)), but NRM was comparable among three groups (14% vs. 12% vs. 8%, \(P=0.752\)) (fig. 1 and table 2). Multivariate analysis showed that peri-HSCT MRD was associated with CIR (HR=2.392, 95% CI, 1.816–3.151, \(P<0.001\)), LFS (HR=1.964, 95% CI, 1.546–2.496, \(P<0.001\)) and OS (HR=1.731, 95% CI, 1.348–2.222, \(P<0.001\)) (table 3). In addition, onset of chronic GVHD was associated with leukemia relapse (HR=0.377, 95% CI, 0.223–0.637, \(P<0.001\)) and LFS (HR=0.344, 95% CI, 0.222–0.535, \(P<0.001\)).

2.3 A Risk Score for CIR Prediction

We applied multivariate Cox regression analysis with stepwise forward selection based on the data of total patients. The final model included remission status before transplantation (CR1 scores: 0; ≥CR2 scores: 1), onset of chronic GVHD (with chronic GVHD scores: 0; without chronic GVHD scores: 1) and dynamics of pre- and post-HSCT MRD (pre-MRDneg and post-MRDneg, MRD non-increase, and MRD increase, scores: 0, 1, and 2, respectively). According to the risk score categories, we classified each patient into one of four prognostic risk groups: low-risk (score=0), intermediate-risk (score=1), high-risk (score=2) and very high-risk (score=3).

The 3-year CIR (7%, 23%, 51%, and 67%, respectively, \(P<0.001\)), NRM (6%, 15%, 14%, and 21%, respectively, \(P<0.001\)), LFS (86%, 62%, 35%, and 12%, respectively, \(P<0.001\)) and OS (88%, 65%, 40%, and 12%, respectively, \(P<0.001\)) in the low-risk, intermediate-risk, high-risk and very high-risk groups were listed in table 2 and fig. 1. Multivariate analysis

Covariate	Univariate analysis	Multivariate analysis	
	HR	95% CI	\(P\) value
Relapse			
Disease status (CR≥2 vs. CR1)	2.929	1.450–5.918	0.003
Chronic GVHD (yes vs. no)	0.434	0.260–0.726	0.001
Recipient age	0.976	0.953–1.000	0.047
Dynamic peri-SCT MRD			
MRD increase	5.384	3.051–9.501	<0.001
MRD non-increase	2.923	1.627–5.249	<0.001
Pre-MRDneg and post-MRDneg	1	1	
Non-relapse mortality			
Disease status (CR≥2 vs. CR1)	3.884	1.683–8.963	0.001
Platelet engraftment	2.875	1.244–6.562	0.013
Neutrophil engraftment	1.809	0.895–3.656	0.099
Recipient age	1.028	0.997–1.059	0.074
Leukemia-free survival			
Disease status (CR≥2 vs. CR1)	3.494	2.044–5.972	<0.001
Gender (female vs. male)	0.565	0.340–0.940	0.028
Chronic GVHD (yes vs. no)	0.375	0.243–0.579	<0.001
Dynamic peri-SCT MRD			
MRD increase	3.202	1.944–5.275	<0.001
MRD non-increase	2.057	1.261–3.535	<0.001
Pre-MRDneg and post-MRDneg	1	1	
Overall survival			
Disease status (CR≥2 vs. CR1)	3.585	2.088–6.157	<0.001
Gender (female vs. male)	0.589	0.348–0.995	0.048
Dynamic peri-SCT MRD			
MRD increase	2.803	1.663–4.723	<0.001
MRD non-increase	1.943	1.165–3.238	0.011

*All variables were first included in the univariate analysis; only variables with \(P<0.1\) were included in the Cox proportional hazards model with time-dependent variables.

ALL: acute lymphoblastic leukemia; Allo-SCT: allogeneic stem cell transplantation; MRD: minimal/measurable residual disease; HR: hazard ratio; CI: confidence interval; CR: complete remission; GVHD: graft-versus-host disease; peri-SCT: peri-stem cell transplantation; pre-MRDneg: negative pre-transplantation MRD; post-MRDneg: negative post-transplantation MRD.
showed that the risk score was associated with CIR (HR=2.574, 95% CI, 2.013–3.291, P<0.001), NRM (HR=1.734, 95% CI, 1.198–2.508, P=0.004), LFS (HR=2.229, 95% CI, 1.822–2.728, P<0.001) and OS (HR=2.164, 95% CI, 1.755–2.667, P<0.001) (table 4). The risk score system could better distinguish CIR (c=0.730) than that for pre-HSCT MRD (c=0.562), post-HSCT MRD (c=0.616) and pre- and post-MRD dynamics (c=0.648). The value of the risk score for CIR prediction was also observed after analysis in the adult and pediatric subgroups (data not shown).

3 DISCUSSION

In consistent with previous studies either in total ALL patients[16, 20] or B-ALL subgroup patients[36], we, in the present study, found that dynamic peri-HSCT MRD in patients with T-ALL could be better for discrimination of relapse risk than that of pre-HSCT MRD or post-HSCT MRD. In addition, we showed that a risk score principally based on dynamic peri-transplantation MRD could further achieve better relapse stratification than dynamic peri-HSCT MRD alone (c-index=0.730 vs. 0.648). Overall, our results add new evidence for the application of MRD, suggesting the usefulness of dynamic peri-HSCT MRD for stratification of T-ALL patients with high risk recurrence.

In a recent study including 477 B-ALL patients who underwent allo-HSCT, Cao et al[19] demonstrated that post-HSCT MRD, but not pre-HSCT MRD was associated with higher CIR and shorter survival after multivariate analysis. In contrast to the result by Cao et al[19], we found that both pre- and post-MRD could be used for discriminating patients into different relapse risk groups for T-ALL patients, although post-HSCT MRD was better than pre-HSCT MRD in predicting leukemia relapse (table 2 and fig. 1). The above-mentioned differences might be related to the higher CIR and shorter survival in patients with T-ALL who underwent allografts than in B-ALL patients who

Table 4 Univariate and multivariate analysis of factors associated with outcomes of ALL patients who underwent allo-SCT considering a risk score based on dynamic peri-transplantation MRD (n=271)

Covariate	Univariate analysis	Multivariate analysis				
	HR	95% CI	P value	HR	95% CI	P value
Relapse						
Recipient age	0.976	0.953–1.000	0.047			
Risk score						
Low risk	1			1		
Intermediate risk	3.670	1.519–8.865	0.004	3.670	1.519–8.865	0.004
High risk	10.309	4.154–25.583	<0.001	10.309	4.154–25.583	<0.001
Very high risk	19.412	7.417–50.803	<0.001	19.412	7.417–50.803	<0.001
Non-relapse mortality						
Platelet engraftment	2.875	1.244–6.562	0.013	3.331	1.438–7.717	0.005
Neutrophil engraftment	1.809	0.895–3.656	0.099			
Recipient age	1.028	0.997–1.059	0.074	1.036	1.004–1.069	0.027
Risk score						
Low risk	1			1		
Intermediate risk	2.792	1.042–7.479	0.041	3.285	1.217–8.870	0.019
High risk	2.802	0.854–9.193	0.089	3.282	0.990–10.881	0.052
Very high risk	4.381	1.172–16.384	0.028	7.463	1.950–28.349	0.003
Leukemia-free survival						
Gender (female vs. male)	0.565	0.340–0.940	0.028			
Risk score						
Low risk	1			1		
Intermediate risk	3.333	1.728–6.246	<0.001	3.333	1.728–6.246	<0.001
High risk	7.058	3.496–14.294	<0.001	7.058	3.496–14.294	<0.001
Very high risk	12.928	6.077–27.503	<0.001	12.928	6.077–27.503	<0.001
Overall survival						
Gender (female vs. male)	0.589	0.348–0.995	0.048			
Risk score						
Low risk	1			1		
Intermediate risk	3.293	1.655–6.554	0.001	3.293	1.655–6.554	0.001
High risk	6.290	3.004–13.167	<0.001	6.290	3.004–13.167	<0.001
Very high risk	12.364	5.677–26.927	<0.001	12.364	5.677–26.927	<0.001

*All variables were first included in the univariate analysis; only variables with P<0.1 were included in the Cox proportional hazards model with time-dependent variables.

ALL: acute lymphoblastic leukemia; Allo-SCT: allogeneic stem cell transplantation; MRD: minimal/measurable residual disease; HR: hazard ratio; CI: confidence interval
received allo-HSCT\textsuperscript{[25]. However, the results of the present study are consistent with those of previous study including both T-ALL and B-ALL cases receiving allograft, reported by Bader \textit{et al.}[12]. They reported a higher c-index for the post-HSCT MRD than that of pre-HSCT MRD (c-index=0.649 vs. 0.612).

Considering MRD was detected at different time points, several studies focused on the dynamic MRD change in predicting CIR for patients with acute leukemia\textsuperscript{[12, 16, 20, 25, 37, 38]. For 279 patients with AML receiving allografts, pre-HSCT MRD and post-HSCT MRD were determined by MFC. Zhou \textit{et al.}[38] found that patients with increased MRD levels around the time of transplantation experienced higher CIR and shorter survival than those with decreased MRD levels or those with negative pre-HSCT MRD and negative post-HSCT MRD. We have also confirmed the results reported by Zhou \textit{et al.}[38] either in total AML patients or in pediatric and young adult ALL cases. Here, we confirmed the superiority of dynamic peri-HSCT MRD compared to pre-HSCT MRD and post-HSCT MRD in T-ALL patients receiving allo-HSCT (table 2 and fig. 1). The results of our previous study[16] and other studies[20, 38] suggest that dynamic peri-HSCT MRD should be routinely used for CIR discrimination in allograft settings for patients with acute leukemia.

In a large cohort of study including 616 pediatric and young adult ALL patients receiving allografts, Bader \textit{et al.}[12] showed that these patients could be classified into three different relapse risk groups according to a prognostic risk score established based on remission status before transplantation, conditioning regimen and pre-HSCT MRD. In the present study, except for dynamic MRD peri-transplantation, remission status pre-HSCT and onset of chronic GVHD were also independently correlated with CIR and survival. We found, in subgroup patients with T-ALL who underwent allograft, a risk score principally based on dynamic peri-HSCT MRD as well as remission status and chronic GVHD could further classify patients into four subgroups with different CIR and survival (table 2 and fig. 1). Therefore, the results in the present study and previous studies shown by others[12, 39] and us[36] suggest that risk scores based on MRD and other variables could be better in predicting transplant outcomes for ALL patients, especially those of T-ALL with a CIR more than 50% (table 2 and fig. 1).

There are limitations of our study. First, this is a retrospective, single center study. Second, the present study only enrolled T-ALL patients who underwent haploidentical HSCT and MSDT. Third, we did not perform subgroup analysis of cases who received MSDT due to the small number of patients in subgroup. Therefore, a prospective, multicenter study with training and validation sets is needed to further confirm whether our findings are suitable for T-ALL cases who either received haploidentical HSCT (including haploidentical HSCT based on immune tolerance induced by post-transplantation cyclophosphamide), MSDT, MUD transplantation[35] or umbilical cord blood transplantation[40].

In summary, our results suggest a superiority of dynamic peri-HSCT MRD to single time point, including pre-HSCT MRD and post-HSCT MRD, in relapse risk stratification for patients with T-ALL. We further suggest that T-ALL patients who would experience the worst outcome could be discriminated by a risk score principally based on dynamic peri-HSCT MRD, for these cases, novel strategies are needed to improve the transplant outcomes.

\section*{Acknowledgement}

We would like to thank Miss Xu Wu for her assistance in minimal residual disease detection.

\section*{Open Access}

This article is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

\section*{Conflict of Interest Statement}

The authors declare no conflict of interest.

\section*{REFERENCES}

1. Wang Y, Liu QF, Xu LP, et \textit{al.} Haploidentical versus Matched-Sibling Transplant in Adults with Philadelphia-Negative High-Risk Acute Lymphoblastic Leukemia: A Biologically Phase III Randomized Study. Clin Cancer Res, 2016,22(14):3467-3476

2. Zhao XS, Liu YR, Xu LP, et \textit{al.} Minimal residual disease status determined by multiparametric flow cytometry pretransplantation predicts the outcome of patients with ALL receiving unmanipulated haploidentical allografts. Am J Hematol, 2019;94(4):512-521

3. Pui CH, Pei D, Coustan-Smith E, et \textit{al.} Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol, 2015,16(4):465-474

4. Sun YQ, Li SQ, Zhao XS, et \textit{al.} Measurable residual disease of acute lymphoblastic leukemia in allograft settings: how to evaluate and intervene. Expert Rev Anticancer Ther, 2020;20(6):453-564
5. Chang YJ, Zhao XY, Huang XJ. Granulocyte Colony-Stimulating Factor-Primed Unmanipulated Haploidentical Blood and Marrow Transplantation. Front Immunol, 2019,10:2516
6. Hay KA, Gauthier J, Hirayama AV, et al. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood, 2019,133(15):1652-1663
7. Modvig S, Madsen HO, Sitonen SM, et al. Minimal residual disease quantification by flow cytometry provides reliable risk stratification in T-cell acute lymphoblastic leukemia. Leukemia, 2019,33(6):1324-1336
8. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet, 2020,395(10230):1146-1162
9. Burns MA, Place AE, Stevenson KE, et al. Identification of prognostic factors in childhood T-cell acute lymphoblastic leukaemia: Results from DFCI ALL Consortium Protocols 05-001 and 11-001. Pediatr Blood Cancer, 2021,68(1):e28719
10. Xu M, Liu H, Liu Y, et al. Gene mutations and pretransplant minimal residual disease predict risk of relapse in adult patients after allogeneic hematopoietic stem-cell transplantation for T-cell acute lymphoblastic leukaemia. Leuk Lymphoma, 2019,60(11):2744-2753
11. Bader P, Kreyenberg H, von Stackelberg A, et al. Monitoring of minimal residual disease after allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukaemia allows for the identification of impending relapse: results of the ALL-BFM-SCT 2003 trial. J Clin Oncol, 2015,33(11):1275-1284
12. Bader P, Salzmann-Munrique E, Balduzzi A, et al. More precisely defining risk peri-HCT in pediatric ALL: pre- vs post-MRD measures, serial positivity, and risk modeling. Blood Adv, 2019,3(21):3393-3405
13. Eckert C, Hagedorn N, Sramkova L, et al. Monitoring minimal residual disease in children with high-risk relapses of acute lymphoblastic leukemia: prognostic relevance of early and late assessment. Leukemia, 2015,29(8):1648-1655
14. Zhao X, Hong Y, Qin Y, et al. The clinical significance of monitoring the expression of the SIL-TAL1 fusion gene in T-cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Int J Lab Hematol, 2017,39(6):613-619
15. Li SQ, Fan QZ, Xu LP, et al. Different Effects of Pre-transplantation Measurable Residual Disease on Outcomes According to Transplant Modality in Patients With Philadelphia Chromosome Positive ALL. Front Oncol, 2020,10:320
16. Wang XY, Fan QZ, Xu LP, et al. The Quantification of Minimal Residual Disease Pre- and Post- Unmanipulated Haploidentical Allograft by Multiparameter Flow Cytometry in Pediatric Acute Lymphoblastic Leukemia. Cytometry B Clin Cytom, 2020,98(1):75-87
17. Chang YJ, Wang Y, Xu LP, et al. Haploidentical donor is preferred over matched sibling donor for pretransplantation MRD positive ALL: a phase 3 genetically randomized study. J Hematol Oncol, 2020,13(1):27
18. Teachey DT, Pui CH. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol, 2019,20(3):e142-e54
19. Cao LQ, Zhou Y, Liu YR, et al. A risk score system for stratifying the risk of relapse in B cell acute lymphocytic leukemia patients after allogeneic stem cell transplantation. Chin Med J (Engl), 2021,134(10):1199-1208
20. Lovisa F, Zecca M, Rossi B, et al. Pre- and post-transplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia. Br J Haematol, 2018,180(5):680-693
21. Zhao XS, Liu YR, Zhu HJ, et al. Monitoring MRD with flow cytometry: an effective method to predict relapse for ALL patients after allogeneic hematopoietic stem cell transplantation. Ann Hematol, 2012,91(2):183-192
22. Quist-Paulsen P, Toft N, Heyman M, et al. T-cell acute lymphoblastic leukemia in patients 1-45 years treated with the pediatric NOPHO ALL2008 protocol. Leukemia, 2020,34(2):347-357
23. Tembhare PR, Narula G, Khanka T, et al. Post-induction Measurable Residual Disease Using Multicolor Flow Cytometry Is Strongly Predictive of Inferior Clinical Outcome in the Real-Life Management of Childhood T-Cell Acute Lymphoblastic Leukemia: A Study of 256 Patients. Front Oncol, 2020,10:577
24. Brammer JE, Saliba RM, Jorgensen JL, et al. Multicenter analysis of the effect of T-cell acute lymphoblastic leukemia subtype and minimal residual disease on allogeneic stem cell transplantation outcomes. Bone Marrow Transplant, 2017,52(1):20-27
25. Sutton R, Shaw PJ, Venn NC, et al. Persistent MRD before and after allogeneic BMT predicts relapse in children with acute lymphoblastic leukaemia. Br J Haematol, 2015,168(3):395-404
26. Yesdurun M, Weisdorf D, Rowe JM, et al. The impact of the graft-versus-leukemia effect on survival in acute lymphoblastic leukemia. Blood Adv, 2019,3(4):670-680
27. Terwey TH, Le Duc TM, Hemmati PG, et al. NIH-defined graft-versus-host disease and evidence for a potent graft-versus-leukemia effect in patients with acute lymphoblastic leukemia. Ann Oncol, 2013,24(5):1363-1370
28. van Rood JJ, Oudshoorn M. When selecting an HLA mismatched stem cell donor consider donor immune status. Curr Opin Immunol, 2009,21(5):538-543
29. Ballen KK, Koreth J, Chen YB, et al. Selection of optimal alternative graft source: mismatched unrelated donor, umbilical cord blood, or haploidentical transplant. Blood, 2012,119(9):1972-1980
30. Huang XJ, Liu DH, Liu KY, et al. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol Blood Marrow Transplant, 2009,15(2):257-265
31. Chang YJ, Xu LP, Wang Y, et al. Controlled, Randomized, Open-Label Trial of Risk-Stratified Corticosteroid Prevention of Acute Graft-Versus-Host Disease After Haploidentical Transplantation. J Clin Oncol, 2016,34(16):1855-1863
32. Chang YJ, Wu DP, Lai YR, et al. Antithymocyte Globulin for Matched Sibling Donor Transplantation in Patients With Hematologic Malignancies: A Multicenter, Open-Label, Randomized Controlled Study. J Clin Oncol, 2020,38(29):3367-3376
33. Shulman HM, Cardona DM, Greenson JK, et al. NIH
Consensus development project on criteria for clinical trials in chronic graft-versus-host disease: II. The 2014 Pathology Working Group Report. Biol Blood Marrow Transplant, 2015,21(4):589-603

34 International CLLIPIwg. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol, 2016,17(6):779-790

35 Guo H, Chang YJ, Hong Y, et al. Dynamic immune profiling identifies the stronger graft-versus-leukemia (GVL) effects with haploidentical allografts compared to HLA-matched stem cell transplantation. Cell Mol Immunol, 2021,18(5):1172-1185

36 Walter RB, Appelbaum FR. Next-generation sequencing for measuring minimal residual disease in AML. Nat Rev Clin Oncol, 2018,15(8):473-474

37 Liu J, Ma R, Liu YR, et al. The significance of peri-transplantation minimal residual disease assessed by multiparameter flow cytometry on outcomes for adult AML patients receiving haploidentical allografts. Bone Marrow Transplant, 2019,54(4):567-577

38 Zhou Y, Othus M, Araki D, et al. Pre- and post-transplant quantification of measurable (‘minimal’) residual disease via multiparameter flow cytometry in adult acute myeloid leukemia. Leukemia, 2016,30(7):1456-1464

39 Enshaei A, O’Connor D, Bartram J, et al. A validated novel continuous prognostic index to deliver stratified medicine in pediatric acute lymphoblastic leukemia. Blood, 2020,135(17):1438-1446

40 Gabelli M, Veys P, Chiesa R. Current status of umbilical cord blood transplantation in children. Br J Haematol, 2020,190(5):650-683

(Received Mar. 31, 2021; accepted Jun. 18, 2021)