Counting faces of graphical zonotopes

Vladimir Grujić
Faculty of Mathematics
Belgrade University, Serbia

Mathematics Subject Classifications: 05E05, 52B05, 16T05

Abstract

It is a classical fact that the number of vertices of the graphical zonotope \(Z_\Gamma \) is equal to the number of acyclic orientations of a graph \(\Gamma \). We show that the \(f \)-polynomial of \(Z_\Gamma \) is obtained as the principal specialization of the \(q \)-analog of the chromatic symmetric function of \(\Gamma \).

Keywords: graphical zonotope, \(f \)-vector, graphical matroid, symmetric function

1 Introduction

The \(f \)-polynomial of an \(n \)-dimensional polytope \(P \) is defined by \(f(P,q) = \sum_{i=0}^{n} f_i(P)q^i \), where \(f_i(P) \) is the number of \(i \)-dimensional faces of \(P \). The \(f \)-polynomial \(f(Z_\Gamma, q) \) of the graphical zonotope \(Z_\Gamma \) is a combinatorial invariant of a finite, simple graph \(\Gamma \). The vertices of \(Z_\Gamma \) are in one-to-one correspondence with regions of the graphical hyperplane arrangement \(H_\Gamma \), which are enumerated by acyclic orientations of \(\Gamma \).

Stanley’s chromatic symmetric function \(\Psi(\Gamma) = \sum \text{proper } x_f \) of a graph \(\Gamma = (V,E) \), introduced in [6], is the enumerator function of proper colorings \(f : V \to \mathbb{N} \), where \(x_f = x_{f(1)} \cdots x_{f(n)} \) and \(f \) is proper if there are no monochromatic edges. The chromatic polynomial \(\chi(\Gamma, d) \) of the graph \(\Gamma \), which counts proper colorings with a finite number of colors, appears as the principal specialization

\[
\chi(\Gamma, d) = \text{ps}(\Psi(\Gamma))(d) = \Psi(\Gamma) \big|_{x_1=\cdots=x_d=1, x_{d+1}=\cdots=0}.
\]

The number of acyclic orientations of \(\Gamma \) is determined by the value of the chromatic polynomial \(\chi(\Gamma, d) \) at \(d = -1 \), [7]

\[
a(\Gamma) = (-1)^{|V|} \chi(\Gamma, -1).
\] (1)

There is a \(q \)-analog of the chromatic symmetric function \(\Psi_q(\Gamma) \) introduced in a wider context of the combinatorial Hopf algebra of simplicial complexes considered in [2]. It is a symmetric function over the field of rational functions...
in q. The principal specialization of $\Psi_q(\Gamma)$ is the q-analog of the chromatic polynomial $\chi_q(\Gamma, d)$.

The main result of this paper is the following generalization of formula (1)

Theorem 1.1. Let $\Gamma = (V, E)$ be a simple connected graph and Z_Γ the corresponding graphical zonotope. Then the f-polynomial of Z_Γ is given by

$$f(Z_\Gamma, q) = (-1)^{|V|} \chi_{-q}(\Gamma, -1).$$

The cancellation-free formula for the antipode in the Hopf algebra of graphs, obtained by Humpert and Martin in [3], reflects the fact that $f(Z_\Gamma, q)$ depends only on the graphical matroid $M(\Gamma)$ associated to Γ. For instance, for any tree T_n the graphical matroid is the uniform matroid $M(T_n) = U_n^n$ and the corresponding graphical zonotope is the cube $Z_{T_n} = I^{n-1}$. Whitney’s theorem from 1933 describes how two graphs with the same graphical matroid are related [9]. It can be used to find more interesting nonisomorphic graphs with the same f-polynomials of corresponding graphical zonotopes.

The paper is organized as follows. In section 2, we review the basic facts about zonotopes. In section 3, the q-analog of the chromatic symmetric function $\Psi_q(\Gamma)$ of a graph Γ is introduced. Theorem 1.1 is proved in section 4. We present some examples and calculations in section 5.

2 Zonotopes

A **zonotope** $Z = Z(v_1, \ldots, v_m)$ is a convex polytope determined by a collection of vectors $\{v_1, \ldots, v_m\}$ in \mathbb{R}^n as the Minkowski sum of line segments

$$Z = [-v_1, v_1] + \cdots + [-v_m, v_m].$$

It is a projection of the m-cube $[-1, 1]^m$ under the linear map $t \mapsto tA$, $t \in [-1, 1]^m$, where $A = [v_1 \cdots v_m]$ is an $n \times m$-matrix whose columns are vectors v_1, \ldots, v_m. The zonotope Z is symmetric about the origin and all its faces are translations of zonotopes.

To a collection of vectors $\{v_1, \ldots, v_m\}$ is associated a central arrangement of hyperplanes $\mathcal{H} = \{H_{v_1}, \ldots, H_{v_m}\}$, where H_v denotes the hyperplane perpendicular to a vector $v \in \mathbb{R}^n$. The zonotope Z and the corresponding arrangement of hyperplanes \mathcal{H} are closely related. In fact the associated fan \mathcal{F}_H of the arrangement \mathcal{H} is the normal fan $\mathcal{N}(Z)$ of the zonotope Z (see [10, Theorem 7.16]). It follows that the face lattice of \mathcal{F}_H and the reverse face lattice of Z are isomorphic. In particular, vertices of Z correspond to regions of \mathcal{H} and their total numbers coincide

$$f_0(Z) = r(\mathcal{H}).$$

The faces of the zonotope Z are encoded by covectors of the oriented matroid \mathcal{M} associated to the collection of vectors $\{v_1, \ldots, v_m\}$. The covectors are sign vectors.
\[Y^* = \{ \text{sign}(v) \in \{+, -, 0\}^m \mid v \in \mathbb{R}^n \}, \]

where \(\text{sign}(v)_i = \begin{cases} +, & \langle v, v_i \rangle > 0 \\ 0, & \langle v, v_i \rangle = 0 \\ -, & \langle v, v_i \rangle < 0 \end{cases} , \]
i = 1, \ldots, m. The face lattice of the zonotope \(Z \) is isomorphic to the lattice of covectors componentwise induced by \(+, -, \) \(< 0 \) on \(Y^* \).

A special class of zonotopes is determined by simple graphs. To a connected graph \(\Gamma = (V, E) \), whose vertices are enumerated by integers \(V = \{1, \ldots, n\} \), are associated the **graphical zonotope**

\[Z_\Gamma = Z(e_i - e_j \mid i < j, \{i, j\} \in E) \]

and the **graphical arrangement** in \(\mathbb{R}^n \)

\[\mathcal{H}_\Gamma = \{ H_{e_i - e_j} \mid i < j, \{i, j\} \in E \}. \]

There is a bijective correspondence between regions of \(\mathcal{H}_\Gamma \) and acyclic orientations of \(\Gamma \), [8, Proposition 2.5], which by (2) implies

\[f_0(Z_\Gamma) = r(\mathcal{H}_\Gamma) = a(\Gamma). \tag{3} \]

The arrangement \(\mathcal{H}_\Gamma \) is refined by the braid arrangement \(\mathcal{A}_{n-1} \) consisting of all hyperplanes \(H_{e_i - e_j} \), \(1 \leq i < j \leq n \). Thus \(Z_\Gamma \) belongs to a wider class of convex polytopes called generalized permutohedra introduced in [4]. Since arrangements \(\mathcal{H}_\Gamma \) and \(\mathcal{A}_{n-1} \) are not essential we take their quotients by the line \(l : x_1 = \cdots = x_n \) and without confusing retain the same notation. Consequently \(\dim Z_\Gamma = n - 1 \).

![Figure 1: Permutohedron Pe3 and cube I3](image)

Example 2.1. (i) The permutohedron \(Pe^{n-1} \) is represented as the graphical zonotope \(Z_{K_n} \) corresponding to the complete graph \(K_n \) on \(n \) vertices (Figure 1).

(ii) The cube \(I^{n-1} \) is represented as the graphical zonotope \(Z_{T_n} \) corresponding to an arbitrary tree \(T_n \) on \(n \) vertices. This shows that the graph \(\Gamma \) is not determined by the combinatorial type of the zonotope \(Z_\Gamma \).
3 q-analog of chromatic symmetric function of graph

Stanley’s chromatic symmetric function $\Psi(\Gamma)$ can be obtained in a purely algebraic way. A combinatorial Hopf algebra H is a graded, connected Hopf algebra equipped with the multiplicative linear functional $\zeta : H \to k$ to the ground field k. For the theory of combinatorial Hopf algebras see [1]. Consider the combinatorial Hopf algebra of graphs G which is linearly generated over a field k by simple finite graphs with the product defined by disjoint union $\Gamma_1 \cdot \Gamma_2 = \Gamma_1 \sqcup \Gamma_2$ and the coproduct

$$\Delta(\Gamma) = \sum_{I \subseteq V} \Gamma|_I \otimes \Gamma|_{V \setminus I},$$

where $\Gamma|_I$ denotes the induced subgraph on $I \subseteq V$. The structure of G is completed by the character $\zeta : G \to k$ defined to be $\zeta(\Gamma) = 1$ for Γ with no edges and $\zeta(\Gamma) = 0$ otherwise. Then it turns out that $\Psi(\Gamma)$ is the image of the unique morphism of combinatorial Hopf algebras to symmetric functions $\Psi : G \to \text{Sym}$, ([1, Example 4.5]).

An important part of the structure of the Hopf algebra G is the antipode $S : G \to G$. The cancellation-free formula for the antipode in terms of acyclic orientations of a graph Γ is obtained in [3]. We recall some basic definitions. Terminology comes from matroid theory. Given a graph $\Gamma = (V,E)$, for a collection of edges $F \subseteq E$ denote by $\Gamma_{V,F}$ the graph on V with the edge set F. A flat F of the graph Γ is a collection of its edges such that components of $\Gamma_{V,F}$ are induced subgraphs. The rank $\text{rk}(F)$ is the size of spanning forests of $\Gamma_{V,F}$.

We have that $|V| = \text{rk}(F) + c(F)$, where $c(F)$ is the number of components of $\Gamma_{V,F}$. By contracting edges from a flat F we obtain the graph Γ/F. Finally, let $a(\Gamma)$ be the number of acyclic orientations of Γ. The formula of Humpert and Martin is as follows

$$S(\Gamma) = \sum_{F \in \mathcal{F}(\Gamma)} (-1)^{c(F)} a(\Gamma/F) \Gamma_{V,F}, \quad (4)$$

where the sum is over the set of flats $\mathcal{F}(\Gamma)$.

The following modification of the character ζ is considered in [2] in a wider context of the combinatorial Hopf algebra of simplicial complexes. Define $\zeta_q(\Gamma) = q^{\text{rk}(\Gamma)}$, which determines the algebra morphism $\zeta_q : G \to k(q)$, where $k(q)$ is the field of rational functions in q. This character produces the unique morphism $\Psi_q : G \to \mathcal{QSym}$ to quasisymmetric functions over $k(q)$. The expansion of $\Psi_q(\Gamma)$ in the monomial basis of quasisymmetric functions is determined by the universal formula [1, Theorem 4.1]

$$\Psi_q(\Gamma) = \sum_{\alpha \vdash n} (\zeta_q)_\alpha(\Gamma) M_\alpha.$$

The sum above is over all compositions of the integer $n = |V|$ and the coefficient of the expansion corresponding to the composition $\alpha = (a_1, \ldots, a_k) \vdash n$ is given by
(\zeta_q)_\alpha(\Gamma) = \sum_{I_1 \cup \ldots \cup I_k = V} q^{rk(\Gamma|_{I_1}) + \cdots + rk(\Gamma|_{I_k})},

where the sum is over all set compositions of \(V \) of the type \(\alpha \). The coefficients \((\zeta_q)_\alpha(\Gamma)\) depend only on the partition corresponding to a composition \(\alpha \), so the function \(\Psi_q(\Gamma) \) is actually symmetric and it can be expressed in the monomial basis of symmetric functions.

The invariant \(\Psi_q(\Gamma) \) is more subtle than \(\Psi(\Gamma) \). Obviously \(\Psi_q(\Gamma) = \Psi_q(\Gamma) \). It remains open to find two non-isomorphic graphs \(\Gamma_1 \) and \(\Gamma_2 \) with the same \(q \)-chromatic symmetric functions \(\Psi_q(\Gamma_1) = \Psi_q(\Gamma_2) \). Let

\[\chi_q(\Gamma, d) = \text{ps}(\Psi_q(\Gamma))(d) \]

be the \(q \)-analog of the chromatic polynomial \(\chi(\Gamma, d) \). It is a consequence of a general fact for combinatorial Hopf algebras (see [1]) that

\[\chi_q(\Gamma, -1) = (\zeta_q \circ S)(\Gamma). \]

Example 3.1. Consider the graph \(\Gamma \) on four vertices with the edge set \(E = \{12, 13, 23, 34\} \). We find that

\[\Psi_q(\Gamma) = 24m_{1,1,1,1} + (8q + 4)m_{2,1,1,1} + (2q^2 + 4q)m_{2,2,1} + (3q^2 + q)m_{3,1} + q^2m_4. \]

By principal specialization and taking into account that

\[\text{ps}(m_{\lambda_1, \ldots, \lambda_k})(d) = \frac{(i_1 + \cdots + i_k)!}{i_1! \cdots i_k!} \binom{d}{i_1 + \cdots + i_k}, \]

we obtain

\[\chi_q(\Gamma, d) = d(d-1)^2(d-2) + qd(d-1)(4d-5) + 4q^2d(d-1) + q^3d, \]

which by Theorem 1.1 gives

\[f(Z_\Gamma, q) = 12 + 18q + 8q^2 + q^3. \]

4 Proof of Theorem 1.1

By applying (5) and the formula for antipode (4) we obtain

\[(-1)^{|V|}\chi_q(\Gamma, -1) = (-1)^{|V|} \sum_{F \in \mathcal{F}(\Gamma)} (-1)^{c(\Gamma)} a(\Gamma/F)(-q)^{rk(F)}. \]

It follows that the statement of the theorem is equivalent to the following expression of the \(f \)-polynomial

\[f(Z_\Gamma, q) = \sum_{F \in \mathcal{F}(\Gamma)} a(\Gamma/F)q^{rk(F)}. \]
Therefore it should be shown that components of f-vectors are determined by
\[f_k(\mathcal{Z}_\Gamma) = \sum_{F \in \mathcal{F}(\Gamma) \atop \text{rk}(F) = k} a(\Gamma/F), \quad 0 \leq k \leq n - 1. \quad (7) \]

By duality between the face lattice of \mathcal{Z}_Γ and the face lattice of the fan $\mathcal{F}_{\mathcal{H}_\Gamma}$, we have
\[f_k(\mathcal{Z}_\Gamma) = f_{n-k-1}(\mathcal{F}_{\mathcal{H}_\Gamma}). \]

Let $L(\mathcal{H}_\Gamma)$ be the intersection lattice of the graphical arrangement \mathcal{H}_Γ. For a subspace $X \in L(\mathcal{H}_\Gamma)$ there is an arrangement of hyperplanes
\[\mathcal{H}_\Gamma^X = \{ X \cap H \mid X \nsubseteq H, H \in \mathcal{H}_\Gamma \} \]
whose intersection lattice $L(\mathcal{H}_\Gamma^X)$ is isomorphic to the upper cone of X in $L(\mathcal{H}_\Gamma)$. Since \mathcal{H}_Γ is central and essential we have
\[f_{n-k-1}(\mathcal{F}_{\mathcal{H}_\Gamma}) = \sum_{X \in L(\mathcal{H}_\Gamma) \atop \text{dim}(X) = n - k - 1} r(\mathcal{H}_\Gamma^X), \quad (8) \]
where $r(\mathcal{H}_\Gamma^X)$ is the number of regions of the arrangement \mathcal{H}_Γ^X, see [8, Theorem 2.6].

The intersection lattice $L(\mathcal{H}_\Gamma)$ is isomorphic to the lattice of flats of the graphical matroid $M(\Gamma)$. By this isomorphism to a flat F of rank k corresponds the intersection subspace $X^F = \cap_{\{i,j\} \in F} H_{e_i-e_j}$ of dimension $n-k-1$. It is easy to see that arrangements \mathcal{H}_Γ^X and \mathcal{H}_Γ/F coincide, which by (3) and comparing formulas (7) and (8) proves theorem.

5 Examples

By applying Theorem 1.1 we obtain the following interpretation of identities elaborated in [2, Propositions 17, 19].

Example 5.1. (i) For the permutohedron $Pe^{n-1} = \mathcal{Z}_{K_n}$, the f-polynomial is given by
\[f(\mathcal{Z}_{K_n}, q) = A_n(q + 1), \]
where $A_n(q) = \sum_{\pi \in S_n} q^{\text{des}(\pi)}$ is the Euler polynomial. Recall that $\text{des}(\pi)$ is the number of descents of a permutation $\pi \in S_n$. It recovers the fact that the h-polynomial of the permutohedron Pe^{n-1} is the Euler polynomial $A_n(q)$.

(ii) For the cube $I^n = \mathcal{Z}_{T_n}$, where T_n is a tree on n vertices, the f-polynomial is given by
\[f(\mathcal{Z}_{T_n}, q) = (q + 2)^{n-1}. \]
Proposition 5.2. The f-polynomial of the graphical zonotope Z_{C_n} associated to the cycle graph C_n on n vertices is given by

$$f(Z_{C_n}, q) = q^n + q^{n-1} + (q + 2)^n - 2(q + 1)^n.$$

Proof. A flat $F \in F(C_n)$ is determined by the complementary set of edges. If $rk(F) = n - k, k > 1$ then the complementary set has k edges and $C_n/F = C_k$. Since $a(C_k) = 2^k - 2, k > 1$, by formula (7), we obtain

$$f_{n-k}(Z_{C_n}) = (2^k - 2) \binom{n}{k}, 2 \leq k \leq n,$$

which leads to the required formula.

Proposition 5.3. Let $\Gamma = \Gamma_1 \lor_{v} \Gamma_2$ be the wedge of two connected graphs Γ_1 and Γ_2 at the common vertex v. Then

$$f(Z_{\Gamma}, q) = f(Z_{\Gamma_1}, q)f(Z_{\Gamma_2}, q).$$

Proof. The graphical matroids of involving graphs are related by $M(\Gamma) = M(\Gamma_1) \oplus M(\Gamma_2)$. For the sets of flats it holds $F(\Gamma) = \{ F_1 \cup F_2 \mid F_i \in F(\Gamma_i), i = 1,2 \}$. For $F = F_1 \cup F_2$ we have $\Gamma/F = \Gamma_1/F_1 \lor [v] \Gamma_2/F_2$, where $[v]$ is the component of the vertex v in $\Gamma_{\Gamma/F}$. Obviously $a(\Gamma/F) = a(\Gamma_1/F_1)a(\Gamma_2/F_2)$ and $rk(F) = rk(F_1) + rk(F_2)$. The proposition follows from formula (6).

The formula for cubes in Example 5.1 (ii) follows from Proposition 5.3 since any tree is a consecutive wedge of edges and $f(I^1, q) = q + 2$. It also allows us to restrict ourselves only to biconnected graphs. For a biconnected graph Γ with a disconnecting pair of vertices $\{u, v\}$ Whitney introduced the transformation
called the *twist* around the pair \{u, v\}. This transformation does not have an affect on the graphical matroid \(M(\Gamma)\) [9].

![Figure 3: Biconnected graphs related by twist transformation](image)

Example 5.4. Figure 3 shows the pair of biconnected graphs on six vertices obtained one from another by the twist transformation. The corresponding zonotopes have the same \(f\)-polynomial

\[
f(\mathcal{Z}_{\Gamma_1}, q) = f(\mathcal{Z}_{\Gamma_2}, q) = 126 + 348q + 358q^2 + 164q^3 + 30q^4 + q^5.
\]

On the other hand their \(q\)-chromatic symmetric functions are different. One can check that corresponding coefficients by \(m_{3,1^3}\) are different

\[
[m_{3,1^3}]\Psi_q(\Gamma_1) = (11q^2 + 8q + 1) \cdot 3!,
\]
\[
[m_{3,1^3}]\Psi_q(\Gamma_2) = (10q^2 + 10q) \cdot 3!.
\]

This shows that the \(q\)-analog of the chromatic symmetric function of a graph is not determined by the corresponding graphical matroid. By taking \(q = 0\) we obtain that even the chromatic symmetric functions are different since

\[
[m_{3,1^3}]\Psi(\Gamma_1) = 6 \quad \text{and} \quad [m_{3,1^3}]\Psi(\Gamma_2) = 0.
\]

Let us now consider Stanley’s example of nonisomorphic graphs with the same chromatic symmetric functions, see [6]. We find that the \(f\)-polynomials of the corresponding graphical zonotopes differ for those graphs. From these examples we conclude that chromatic properties of a graph and the \(f\)-vector of the corresponding graphical zonotope are not related.

We have already noted that graphical zonotopes are generalized permutohedra. The \(h\)-polynomials of simple generalized permutohedra are determined in [5, Theorem 4.2]. The only simple graphical zonotopes are products of permutohedra [5, Proposition 5.2]. They are characterized by graphs whose biconnected components are complete subgraphs. Therefore Proposition 5.3 together with Example 5.1 (i) prove that the \(h\)-polynomial of a simple graphical zonotope is the product of Eulerian polynomials, the fact obtained in [5, Corollary 5.4]. Example 3.1 is of this sort and represents the hexagonal prism which is the product \(Z_{K_3} \times Z_{K_2}\).
References

[1] M. Aguiar, N. Bergeron and F. Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, *Compositio Math.* **142** (2006), 1–30.

[2] C. Benedetti, J. Hallam and J. Machacek, Combinatorial Hopf algebra of simplicial complexes, *SIAM J. Discrete Math.*, **30**(3) (2016), 1737–1757.

[3] B. Humpert and J. Martin, The incidence Hopf algebra of graphs, *SIAM J. Discrete Math.*, **26**(2) (2012), 555–570.

[4] A. Postnikov, Permutohedra, associahedra, and beyond, *Int. Math. Res. Not.* 6 (2009), 1026–1106.

[5] A. Postnikov, V. Reiner and L. Williams, Faces of generalized permutohedra, *Documenta Math.* **13** (2008), 207–273.

[6] R. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, *Adv. Math.* **111** (1995), 166–194.

[7] R. Stanley, Acyclic orientations of graphs, *Discrete Math.* **5** (1973), 171–178.

[8] R. Stanley, *An introduction to hyperplane arrangements*, in: E. Miller, V. Reiner, B. Sturmfels (eds.), *Geometric Combinatorics*, IAS/Park City Mathematics Series, vol. 13, AMS, Institute for Advance Studies, 2007, 389–496.

[9] H. Whitney, 2-isomorphic graphs, *Amer. J. Math.* **55** (1933), 245–254

[10] G. Ziegler, *Lectures on Polytopes*, Springer-Verlag, New York, 1995.