Different types of quantum integral inequalities via \((\alpha, m)\)-convexity

Yao Zhang\(^1\), Ting-Song Du\(^{1,2,*}\), Hao Wang\(^1\) and Yan-Jun Shen\(^1\)

*Correspondence: tingsongdu@ctgu.edu.cn

\(^1\)Department of Mathematics, College of Science, China Three Gorges University, Yichang, China

\(^2\)Three Gorges Mathematical Research Center, China Three Gorges University, Yichang, China

Full list of author information is available at the end of the article

Abstract

In this paper, based on \((\alpha, m)\)-convexity, we establish different type inequalities via quantum integrals. These inequalities generalize some results given in the literature.

MSC: 34A08; 26A51; 26D10; 26D15

Keywords: Quantum integral inequalities; \((\alpha, m)\)-convex functions; Hermite–Hadamard’s inequality; Simpson’s inequality

1 Introduction and preliminaries

Throughout the paper, let \(I := [a, b] \subseteq \mathbb{R}\) with \(0 \leq a < b\) be an interval, \(I^\circ\) be the interior of \(I\) and let \(0 < q < 1\) be a constant.

Let \(f : I \to \mathbb{R}\) be convex on \(I\), then the Hermite–Hadamard inequality holds:

\[
\frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}. \tag{1.1}
\]

If \(f : I \to \mathbb{R}\) is four times continuously differentiable on \(I^\circ\) and \(\|f^{(4)}\|_{\infty} = \sup_{x \in (a, b)} |f^{(4)}(x)| < \infty\), then the Simpson inequality holds:

\[
\left| \frac{1}{3} \left[ \frac{f(a) + f(b)}{2} + 2f\left(\frac{a + b}{2}\right) \right] - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{1}{2880} \|f^{(4)}\|_{\infty} (b - a)^4. \tag{1.2}
\]

Many researchers generalized the inequalities (1.1) and (1.2). For more details on these inequalities, see [5–8, 10–14, 16, 17, 22, 24, 25].

In 2014, Tariboon and Ntouyas defined the \(q\)-derivative and \(q\)-integral as follows.

**Definition 1.1** ([28]) Let \(f : I \to \mathbb{R}\) be a continuous function and let \(x \in I\). Then the \(q\)-derivative on \(I\) of \(f\) at \(x\) is defined as

\[
aD_qf(x) = \frac{f(x) - f(qx + (1-q)a)}{(1-q)(x-a)}, \quad x \neq a, \quad aD_qf(a) = \lim_{x \to a} \frac{f(x) - f(qx)}{(1-q)(x-a)}.
\]
**Definition 1.2 ([28])** Let $f : I \to \mathbb{R}$ be a continuous function. Then the $q$-integral on $I$ is defined as

$$
\int_a^x f(t) \, dq_t = (1 - q)(x - a) \sum_{n=0}^{\infty} q^n f(q^n x + (1 - q^n) a)
$$

for $x \in I$. Moreover, if $c \in (a, x)$, then the $q$-integral on $I$ is defined as

$$
\int_c^x f(t) \, dq_t = \int_a^x f(t) \, dq_t - \int_a^c f(t) \, dq_t.
$$

In the same paper, they also proved the following $q$-Hölder inequality.

**Theorem 1.1** ([28]) Let $f, g : I \to \mathbb{R}$ be two continuous functions. Then the inequality

$$
\left| \int_a^x f(t) \, dq_t \right| \leq \left( \int_a^x |f(t)| \, dq_t \right)^{r_1} \left( \int_a^x |g(t)| \, dq_t \right)^{r_2}
$$

holds for all $x \in I$ and $r_1, r_2 > 1$ with $r_1^{-1} + r_2^{-1} = 1$.

In 2018, Alp et al. generalized the Hermite–Hadamard inequality to the form of $q$-integrals as follows.

**Theorem 1.2** ([2]) Let $f : I \to \mathbb{R}$ be convex and differentiable on $I$ with $0 < q < 1$. Then we have

$$
f\left( \frac{qa + b}{1 + q} \right) \leq \frac{1}{b - a} \int_a^b f(x) \, dq_x \leq \frac{qf(a) + f(b)}{1 + q}.
$$

(1.3)

For more details on the inequality (1.3), see [15, 18, 20, 21, 23]. For other type quantum integral inequalities, the interested reader can refer to [3, 4, 27, 29, 31].

In 1993, Miheşan gave the definition of $(\alpha, m)$-convex functions as follows.

**Definition 1.3** ([19]) For $b^* > 0$, the function $f : [0, b^*] \to \mathbb{R}$ is named $(\alpha, m)$-convex with $\alpha, m \in (0, 1]$ if the inequality

$$
f(tx + m(1 - t)y) \leq t^\alpha f(x) + m(1 - t^\alpha) f(y)
$$

holds for all $x, y \in [0, b^*]$ and $t \in [0, 1]$.

This paper aims to establish different types of quantum integral inequalities via $(\alpha, m)$-convexity. Some relevant connections of the results obtained in this paper with previous ones are also pointed out.

### 2. Auxiliary results

For proving main results, we need the following lemma.
Lemma 2.1 Let \( f : I \to \mathbb{R} \) be a continuous and \( q \)-differentiable function on \( I \) with \( 0 < q < 1 \). Then the identity

\[
\lambda \left[ \mu f(b) + (1 - \mu) f(a) \right] + (1 - \lambda) f(\mu b + (1 - \mu)a) - \frac{1}{b - a} \int_a^b f(x) \, dq \, x
\]

\[
= (b - a) \left\{ \int_0^\mu (qt + \lambda \mu - \lambda) a_{D_q} f \left( tb + (1 - t)a \right) \, dq \, t \\
+ \int_\mu^1 (qt + \lambda \mu - 1) a_{D_q} f \left( tb + (1 - t)a \right) \, dq \, t \right\}
\]

holds for all \( \lambda, \mu \in [0,1] \) if \( a_{D_q} f \) is integrable on \( I \).

Proof By an identical transformation, we get

\[
(b - a) \left\{ \int_0^\mu (qt + \lambda \mu - \lambda) a_{D_q} f \left( tb + (1 - t)a \right) \, dq \, t \\
+ \int_\mu^1 (qt + \lambda \mu - 1) a_{D_q} f \left( tb + (1 - t)a \right) \, dq \, t \right\}
\]

\[
= (b - a) \left\{ \int_0^1 (qt + \lambda \mu - 1) a_{D_q} f \left( tb + (1 - t)a \right) \, dq \, t \\
+ \int_0^\mu (1 - \lambda) a_{D_q} f \left( tb + (1 - t)a \right) \, dq \, t \right\}.
\]

(2.1)

From Definition 1.1, we get

\[
a_{D_q} f \left( tb + (1 - t)a \right) = \frac{f(tb + (1 - t)a) - f(qtb + (1 - qt)a) + (1 - q)a}{(1 - q)(tb + (1 - t)a - a)}
\]

\[
= \frac{f(tb + (1 - t)a) - f(qtb + (1 - qt)a)}{t(1 - q)(b - a)}.
\]

Utilizing the above calculation and Definition 1.2, we have

\[
\int_0^1 t a_{D_q} f \left( tb + (1 - t)a \right) \, dq \, t
\]

\[
= \int_0^1 \frac{f(tb + (1 - t)a) - f(qtb + (1 - qt)a)}{(1 - q)(b - a)} \, dq \, t
\]

\[
= \frac{1}{b - a} \left\{ \sum_{n=0}^\infty q^n f(q^n b + (1 - q^n)a) \\
- \sum_{n=0}^\infty q^n f(q^{n+1} b + (1 - q^{n+1})a) \right\}
\]

\[
= \frac{1}{b - a} \left\{ \sum_{n=0}^\infty q^n f(q^n b + (1 - q^n)a) \\
- \frac{1}{q} \sum_{n=0}^\infty q^{n+1} f(q^{n+1} b + (1 - q^{n+1})a) \right\}
\]
\[
\begin{align*}
= & \frac{1}{b-a} \left\{ f(b) + \left( 1 - \frac{1}{q} \right) \sum_{n=1}^{\infty} q^nf(q^n b + (1 - q^n)a) \right\} \\
= & \frac{1}{q(b-a)} \left\{ \frac{1}{q} f(b) - \frac{1-q}{q} \sum_{n=0}^{\infty} q^n f(q^n b + (1 - q^n)a) \right\} \\
= & \frac{f(b)}{q(b-a)} - \frac{1}{q(b-a)^2} \int_{a}^{b} f(x) d_q x, \quad (2.2)
\end{align*}
\]

\[
\int_{0}^{1} aD_q f(tb + (1-t)a) d_q t
\]

\[
= \int_{0}^{1} f(tb + (1-t)a) - f(qtb + (1-qt)a) t(1-q)(b-a) d_q t
\]

\[
= \frac{1}{b-a} \left\{ \sum_{n=0}^{\infty} f(q^n b + (1 - q^n)a) - \sum_{n=0}^{\infty} f(q^{n+1} b + (1 - q^{n+1})a) \right\}
\]

\[
= \frac{f(b) - f(a)}{b-a}, \quad (2.3)
\]

\[
\int_{0}^{\mu} aD_q f(tb + (1-t)a) d_q t
\]

\[
= \int_{0}^{\mu} f(tb + (1-t)a) - f(qtb + (1-qt)a) t(1-q)(b-a) d_q t
\]

\[
= \frac{1}{b-a} \left\{ \sum_{n=0}^{\infty} f(q^n \mu b + (1 - q^n \mu)a) - \sum_{n=0}^{\infty} f(q^{n+1} \mu b + (1 - q^{n+1} \mu)a) \right\}
\]

\[
= \frac{f(\mu b + (1-\mu)a) - f(a)}{b-a}. \quad (2.4)
\]

Substituting (2.2), (2.3) and (2.4) into (2.1), we can obtain the desired result. This ends the proof. \[\square\]

**Remark 2.1** In Lemma 2.1, if one takes \( q \rightarrow 1^+ \), one has [9, Lemma 2].

**Remark 2.2** Consider Lemma 2.1.

(i) Putting \( \mu = 0 \), we have

\[
f(a) - \frac{1}{b-a} \int_{a}^{b} f(x) d_q x
\]

\[= (b-a) \int_{0}^{1} (qt-1) aD_q f(tb + (1-t)a) d_q t. \quad (2.5)\]

(ii) Putting \( \mu = 1 \), we have

\[
f(b) - \frac{1}{b-a} \int_{a}^{b} f(x) d_q x = (b-a) \int_{0}^{1} qt aD_q f(tb + (1-t)a) d_q t. \quad (2.6)\]
(iii) Putting $\mu = \frac{1}{1+q}$, we have

$$
\begin{align*}
\lambda \frac{qf(a) + f(b)}{1+q} + (1-\lambda)f\left(\frac{QA + b}{1+q}\right) - \frac{1}{b-a} \int_{a}^{b} f(x)_{a}d_{q}x &= (b-a) \left\{ \int_{0}^{1} \left( qt - \frac{\lambda q}{1+q}\right) D_{q}f \left( tb + (1-t)a \right)_{0}d_{q}t \\
&+ \int_{\frac{1}{1+q}}^{1} \left( qt + \frac{\lambda}{1+q} - 1 \right) D_{q}f \left( tb + (1-t)a \right)_{0}d_{q}t \right\}.
\end{align*}
$$

(2.7)

**Remark 2.3** Consider Lemma 2.1.

(i) Putting $\lambda = 0$, we get

$$
\begin{align*}
f\left( \mu b + (1-\mu)a \right) - \frac{1}{b-a} \int_{a}^{b} f(x)_{a}d_{q}x &= (b-a) \left\{ \int_{0}^{\mu} qt_{a}D_{q}f \left( tb + (1-t)a \right)_{0}d_{q}t \\
&+ \int_{\mu}^{1} \left( qt - 1 \right) D_{q}f \left( tb + (1-t)a \right)_{0}d_{q}t \right\}.
\end{align*}
$$

(2.8)

Specially, taking $\mu = \frac{1}{1+q}$, we obtain the midpoint-like integral identity

$$
\begin{align*}
f\left( \frac{QA + b}{1+q} \right) - \frac{1}{b-a} \int_{a}^{b} f(x)_{a}d_{q}x &= (b-a) \left\{ \int_{0}^{1} \left( qt - \frac{1}{3} \mu - 1 \right) D_{q}f \left( tb + (1-t)\right)_{0}d_{q}t \\
&+ \int_{\frac{1}{1+q}}^{1} \left( qt + \frac{1}{3} \mu - 1 \right) D_{q}f \left( tb + (1-t)a \right)_{0}d_{q}t \right\}.
\end{align*}
$$

(2.9)

(ii) Putting $\lambda = \frac{1}{3}$, we get

$$
\begin{align*}
\frac{1}{3} \left[ \mu f(b) + (1-\mu)f(a) + 2f\left( \frac{QA + b}{1+q} \right) \right] - \frac{1}{b-a} \int_{a}^{b} f(x)_{a}d_{q}x &= (b-a) \left\{ \int_{0}^{\mu} \left( qt + \frac{1}{3} \mu - \frac{1}{3} \right) D_{q}f \left( tb + (1-t)a \right)_{0}d_{q}t \\
&+ \int_{\mu}^{1} \left( qt + \frac{1}{3} \mu - 1 \right) D_{q}f \left( tb + (1-t)a \right)_{0}d_{q}t \right\}.
\end{align*}
$$

(2.10)

Specially, taking $\mu = \frac{1}{1+q}$, we obtain the Simpson-like integral identity

$$
\begin{align*}
\frac{1}{3} \left[ qf(a) + f(b) \right] + 2f\left( \frac{QA + b}{1+q} \right) - \frac{1}{b-a} \int_{a}^{b} f(x)_{a}d_{q}x &= (b-a) \left\{ \int_{0}^{1} \left( qt - \frac{q}{3+3q} \right) D_{q}f \left( tb + (1-t)a \right)_{0}d_{q}t \\
&+ \int_{\frac{1}{3+3q}}^{1} \left( qt + \frac{1}{3+3q} - 1 \right) D_{q}f \left( tb + (1-t)a \right)_{0}d_{q}t \right\}.
\end{align*}
$$
(iii) Putting $\lambda = \frac{1}{2}$, we get
\[
\frac{1}{2} \left[ \mu f(b) + (1 - \mu)f(a) + f(\mu b + (1 - \mu)a) \right] - \frac{1}{b - a} \int_a^b f(x)dx = (b - a) \left\{ \int_0^1 \left( qt + \frac{1}{2} \mu - 1 \right)_{\alpha} D_q f(tb + (1 - t)a)Dt \right\}.
\]

\[\text{(2.11)}\]

Specially, taking $\mu = \frac{1}{1+q}$, we obtain the averaged midpoint-trapezoid-like integral identity
\[
\frac{1}{2} \left[ \frac{qf(a) + f(b)}{1 + q} + f\left( \frac{qa + b}{1 + q} \right) \right] - \frac{1}{b - a} \int_a^b f(x)dx = (b - a) \left\{ \int_0^1 \left( qt - \frac{q}{2 + 2q} \right)_{\alpha} D_q f(tb + (1 - t)a)Dt \right\}.
\]

\[\text{(2.12)}\]

(iv) Putting $\lambda = 1$, we get
\[
\mu f(b) + (1 - \mu)f(a) - \frac{1}{b - a} \int_a^b f(x)dx = (b - a) \int_0^1 \left( qt + \mu - 1 \right)_{\alpha} D_q f(tb + (1 - t)a)Dt.
\]

\[\text{(2.13)}\]

Specially, taking $\mu = \frac{1}{1+q}$, we obtain the trapezoid-like integral identity
\[
\frac{qf(a) + f(b)}{1 + q} - \frac{1}{b - a} \int_a^b f(x)dx = (b - a) \int_0^1 \left( qt + \frac{1}{1 + q} - 1 \right)_{\alpha} D_q f(tb + (1 - t)a)Dt,
\]

which is presented by Sudsutad et al. in [26, Lemma 3.1].

It is worth to mention here that to the best of our knowledge the obtained identities (2.5)–(2.13) are new in the literature.

Next we provide some calculations which will be used in this paper.

**Lemma 2.2** Let $\mu \in [0, 1]$ and $\tau \in [0, \infty)$. From Definition 1.2, we have
\[
\int_0^\mu \tau_{\alpha} Dt = (1 - q) \sum_{n=0}^{\infty} \mu^{n+1} q^{(n+1)\tau} = \frac{\mu^{\tau+1}(1 - q)}{1 - q^{\tau+1}}
\]

and
\[
\int_0^\mu (1 - t)^\tau_{\alpha} Dt = (1 - q)\mu \sum_{n=0}^{\infty} q^n(1 - q^n \mu)^n.
\]
Lemma 2.3 Let $\lambda, \mu \in [0, 1]$ and $\tau \in [0, \infty)$. Then we have

$$
\int_0^{\mu} t^\tau |qt - (\lambda - \lambda \mu)| \, \, \, dt
= \begin{cases}
\frac{\mu^{\tau+1}(1-q)(\lambda - \lambda \mu)}{1-q^{\tau+2}} \, \, \, \, \, (\lambda + q) \mu \leq \lambda,
\frac{q \mu^{\tau+2}(1-q)}{1-q^{\tau+2}}, & (\lambda + q) \mu > \lambda,
\end{cases}
$$

and

$$
\int_0^{\mu} (1-t)^\tau |qt - (\lambda - \lambda \mu)| \, \, \, dt
= \begin{cases}
(1-q) \mu \sum_{n=0}^{\infty} q^n (\lambda - \lambda \mu - q^{n+1} \mu)(1-q^n) \mu^\tau, & (\lambda + q) \mu \leq \lambda,
2(1-q)(\lambda - \lambda \mu)^2 \sum_{n=0}^{\infty} q^{n+1}(1-q^n)(1-q^{n+1}(\lambda - \lambda \mu))^{\tau},
-(1-q) \mu \sum_{n=0}^{\infty} q^n (\lambda - \lambda \mu - q^{n+1} \mu)(1-q^n) \mu^\tau, & (\lambda + q) \mu > \lambda.
\end{cases}
$$

Proof When $(\lambda + q) \mu \leq \lambda$, making use of Lemma 2.2, we get

$$
\int_0^{\mu} t^\tau |qt - (\lambda - \lambda \mu)| \, \, \, dt = \int_0^{\mu} ((\lambda - \lambda \mu)t^\tau - qt^{\tau+1}) \, \, \, dt = \frac{\mu^{\tau+1}(1-q)(\lambda - \lambda \mu)}{1-q^{\tau+2}} - \frac{q \mu^{\tau+2}(1-q)}{1-q^{\tau+2}}.
$$

When $(\lambda + q) \mu > \lambda$, making use of Lemma 2.2 again, we get

$$
\int_0^{\mu} t^\tau |qt - (\lambda - \lambda \mu)| \, \, \, dt
= \int_0^{\mu} [\lambda - \lambda \mu]t^\tau - qt^{\tau+1} \, \, \, dt + \int_0^{\mu} [qt^{\tau+1} - (\lambda - \lambda \mu)t^\tau] \, \, \, dt
= 2 \int_0^{\mu} [\lambda - \lambda \mu]t^\tau - qt^{\tau+1} \, \, \, dt + \int_0^{\mu} [qt^{\tau+1} - (\lambda - \lambda \mu)t^\tau] \, \, \, dt
= \frac{2(1-q)(\lambda - \lambda \mu)^{\tau+2}}{(1-q^{\tau+1})(1-q^{\tau+2})} + \frac{q \mu^{\tau+2}(1-q)}{1-q^{\tau+2}} - \frac{\mu^{\tau+1}(1-q)(\lambda - \lambda \mu)}{1-q^{\tau+1}}.
$$

Similarly, we also get

$$
\int_0^{\mu} (1-t)^\tau |qt - (\lambda - \lambda \mu)| \, \, \, dt
= \begin{cases}
(1-q) \mu \sum_{n=0}^{\infty} q^n (\lambda - \lambda \mu - q^{n+1} \mu)(1-q^n) \mu^\tau, & (\lambda + q) \mu \leq \lambda,
2(1-q)(\lambda - \lambda \mu)^2 \sum_{n=0}^{\infty} q^{n+1}(1-q^n)(1-q^{n+1}(\lambda - \lambda \mu))^{\tau},
-(1-q) \mu \sum_{n=0}^{\infty} q^n (\lambda - \lambda \mu - q^{n+1} \mu)(1-q^n) \mu^\tau, & (\lambda + q) \mu > \lambda.
\end{cases}
$$

This completes the proof. \qed

The following results of Lemma 2.4, Lemma 2.5 and Lemma 2.6 are stated without proof.
Lemma 2.4 Let $\lambda, \mu \in [0, 1]$ and $\tau \in [0, \infty)$. Then we have
\[
\int_0^1 t^\tau |qt - (1 - \lambda \mu)|_0 \, dt = \begin{cases}
(1-q)(1-\lambda \mu) \frac{q^{(\lambda+q)}}{1-q^\tau}, & \lambda + q \leq 1, \\
(2(1-q)\lambda \mu)^{\tau} + q^{(\lambda+q)} \frac{1}{1-q^\tau} - (1-q)(1-\lambda \mu) \frac{q^{(\lambda+q)}}{1-q^\tau}, & \lambda + q > 1,
\end{cases}
\]
and
\[
\int_0^1 (1-t)^\tau |qt - (1 - \lambda \mu)|_0 \, dt = \begin{cases}
(1-q) \sum_{n=0}^\infty q^n (1 - \lambda \mu - q^{n+1})(1 - q^n)^\tau, & \lambda + q \leq 1, \\
\frac{2(1-q)(1-\lambda \mu)^2}{1-q^\tau} + q^{(\lambda+q)} \frac{1}{1-q^\tau} - (1-q) \sum_{n=0}^\infty q^n (1 - \lambda \mu - q^{n+1})(1 - q^n)^\tau, & \lambda + q > 1.
\end{cases}
\]

Lemma 2.5 Let $\lambda, \mu \in [0, 1]$ and $\tau \in [0, \infty)$. Then we have
\[
\int_0^\mu t^\tau |qt - (1 - \lambda \mu)|_0 \, dt = \begin{cases}
(1-q) \mu \sum_{n=0}^\infty q^n (1 - \lambda \mu - q^{n+1})(1 - q^n)^\tau, & 0 \leq \lambda \mu \leq 1 - q, \\
\frac{2(1-q)(1-\lambda \mu)^2}{1-q^\tau} + q^{(\lambda+q)} \frac{1}{1-q^\tau} - \frac{\mu^{\tau+1}(1-\lambda \mu)(1-q)}{1-q^\tau}, & (\lambda + q)\mu > 1,
\end{cases}
\]
and
\[
\int_0^\mu (1-t)^\tau |qt - (1 - \lambda \mu)|_0 \, dt = \begin{cases}
(1-q) \mu \sum_{n=0}^\infty q^n (1 - \lambda \mu - q^{n+1})(1 - q^n)^\tau, & 0 \leq \lambda \mu \leq 1 - q, \\
\frac{2(1-q)(1-\lambda \mu)^2}{1-q^\tau} + q^{(\lambda+q)} \frac{1}{1-q^\tau} - \frac{\mu^{\tau+1}(1-\lambda \mu)(1-q)}{1-q^\tau}, & (\lambda + q)\mu > 1.
\end{cases}
\]

Lemma 2.6 Let $\lambda, \mu \in [0, 1]$ and $\theta \in [1, \infty)$. Then we have
\[
\int_0^1 |qt - (1 - \lambda \mu)|^\theta_0 \, dt = \begin{cases}
(1-q) \sum_{n=0}^\infty q^n (1 - \lambda \mu - q^{n+1})^\theta, & 0 \leq \lambda \mu \leq 1 - q, \\
[1-q](1-\lambda \mu)^{\theta+1} + (1-q) \sum_{n=0}^\infty q^n (1 - \lambda \mu)^{\theta-1}, & 1 - q < \lambda \mu \leq 1.
\end{cases}
\]

3 Main results
In 2018, Alp et al. established the $q$-Hermite–Hadamard inequality in [2]. Here we give a new proof, which is more concise.
Theorem 3.1 Let $f : I \to \mathbb{R}$ be a convex function on $[a, b]$ with $0 < q < 1$. Then we have

$$f\left(\frac{qa + b}{1 + q}\right) \leq \frac{1}{b - a} \int_a^b f(x) \, d_q x \leq \frac{qf(a) + f(b)}{1 + q}.$$  

Proof It is obvious that $\sum_{n=0}^{\infty} (1 - q^n) = 1$, $0 < q < 1$. Since Jensen’s inequality defined on convex sets for infinite sums still remains true, utilizing this fact and Definition 1.2, we have

$$f\left(\frac{qa + b}{1 + q}\right) = f\left(\sum_{n=0}^{\infty} (1 - q^n)\right) = \sum_{n=0}^{\infty} (1 - q^n) f\left(q^n b + (1 - q^n) a\right) \leq \int_a^b f(x) \, d_q x.$$

Using Definition 1.2 and the convexity of $f$, we get

$$\frac{1}{b - a} \int_a^b f(x) \, d_q x = \sum_{n=0}^{\infty} (1 - q^n) f\left(q^n b + (1 - q^n) a\right) \leq \sum_{n=0}^{\infty} (1 - q^n) \left[q^n f(b) + (1 - q^n) f(a)\right] = \frac{qf(a) + f(b)}{1 + q}.$$  

The proof is completed. \qed

Using Lemma 2.1, we can obtain the following theorem.

Theorem 3.2 For $0 \leq a < b$ and some fixed $m \in (0, 1)$, let $f : [a, \frac{b}{m}] \to \mathbb{R}$ be a continuous and $q$-differentiable function on $[a, \frac{b}{m}]$, and let $aD_q f$ be integrable on $[a, \frac{b}{m}]$ with $0 < q < 1$. Then the inequality

$$\left|\lambda \left[\mu f(b) + (1 - \mu) f(a)\right] + (1 - \lambda) f\left(\mu b + (1 - \mu) a\right) - \frac{1}{b - a} \int_a^b f(x) \, d_q x\right| \leq \min\left\{\mathcal{H}_1(\lambda, \mu, \alpha, m), \mathcal{H}_2(\lambda, \mu, \alpha, m)\right\}$$

holds for all $\lambda, \mu \in [0, 1]$ if $|aD_q f|$ is $(\alpha, m)$-convex on $[a, \frac{b}{m}]$ with $\alpha, m \in (0, 1]^2$, where

$$\mathcal{H}_1(\lambda, \mu, \alpha, m) = (b - a) \left\{|\Phi_1(\lambda, \mu, \alpha) + \Phi_2(\lambda, \mu, \alpha) - \Phi_3(\lambda, \mu, \alpha)|\right\} \left|aD_q f\left(\frac{a}{m}\right)\right|$$

$$+ m \left[\Phi_4(\lambda, \mu) + \Phi_5(\lambda, \mu) - \Phi_6(\lambda, \mu) - \Phi_7(\lambda, \mu, \alpha)\right] \left|aD_q f\left(\frac{a}{m}\right)\right|$$

$$- \Phi_2(\lambda, \mu, \alpha) + \Phi_5(\lambda, \mu, \alpha) \right\} \left|aD_q f\left(\frac{a}{m}\right)\right|.$$
\[ H_2(\lambda, \mu, \alpha, m) = (b - a) \left( \Phi_7(\lambda, \mu, \alpha) + \Phi_8(\lambda, \mu, \alpha) - \Phi_9(\lambda, \mu, \alpha) \right) + m \left( \Phi_4(\lambda, \mu) + \Phi_5(\lambda, \mu) - \Phi_6(\lambda, \mu) - \Phi_7(\lambda, \mu, \alpha) - \Phi_8(\lambda, \mu, \alpha) \right) \]

\[
\Phi_1(\lambda, \mu, \alpha) = \int_0^\mu t^\alpha \left| q t - (\lambda - \lambda \mu) \right| d_q t
\]

\[
\Phi_2(\lambda, \mu, \alpha) = \int_0^1 t^\alpha \left| q t - (1 - \lambda \mu) \right| d_q t
\]

\[
\Phi_3(\lambda, \mu, \alpha) = \int_\mu^\infty t^\alpha \left| q t - (1 - \lambda \mu) \right| d_q t
\]

\[
\Phi_4(\lambda, \mu, \alpha) = \int_0^\mu t^\alpha \left| q t - (\lambda - \lambda \mu) \right| d_q t
\]

\[
\Phi_5(\lambda, \mu, \alpha) = \int_0^1 t^\alpha \left| q t - (1 - \lambda \mu) \right| d_q t
\]

\[
\Phi_6(\lambda, \mu, \alpha) = \int_0^\mu t^\alpha \left| q t - (1 - \lambda \mu) \right| d_q t
\]

\[
\Phi_7(\lambda, \mu, \alpha) = \int_0^\mu (1 - t)^\alpha \left| q t - (\lambda - \lambda \mu) \right| d_q t
\]

\[
\Phi_8(\lambda, \mu, \alpha) = \int_0^\mu (1 - t)^\alpha \left( 1 - q^\alpha (\lambda - \lambda \mu, q^{\alpha+1} \mu) (1 - q^\alpha (1 - \lambda \mu)) \right) d_q t
\]

\[
\Phi_9(\lambda, \mu, \alpha) = \int_0^\mu (1 - t)^\alpha \left( 1 - q^\alpha (\lambda - \lambda \mu, q^{\alpha+1} \mu) (1 - q^\alpha (\lambda - \lambda \mu)) \right) d_q t
\]
\( \Phi_8(\lambda, \mu, \alpha) \)
\[
\Phi_8(\lambda, \mu, \alpha) = \int_0^1 (1-t)^\alpha |qt - (1-\lambda)\mu|_0 d_q t
\]
\[
= \begin{cases} 
(1-q) \sum_{n=0}^{\infty} q^n (1 - \lambda - q^n) (1-q^n)^\alpha, & \lambda \mu + q \leq 1, \\
2(1-q)(1-\lambda \mu)^2 \sum_{n=0}^{\infty} q^n(1-q^n)(1-q^n(1-\lambda \mu))^\alpha, & \lambda \mu + q > 1,
\end{cases}
\]
\[
(3.3)
\]

\( \Phi_9(\lambda, \mu, \alpha) \)
\[
\Phi_9(\lambda, \mu, \alpha) = \int_0^\mu (1-t)^\alpha |qt - (1-\lambda)\mu|_0 d_q t
\]
\[
= \begin{cases} 
(1-q) \mu \sum_{n=0}^{\infty} q^n (1 - \lambda - q^n) \mu (1-q^n)^\alpha, & \lambda + q \mu \leq 1, \\
2(1-q)(1-\lambda \mu)^2 \sum_{n=0}^{\infty} q^n(1-q^n)(1-q^n(1-\lambda \mu))^\alpha, & \lambda \mu + q > 1,
\end{cases}
\]
\[
(3.3)
\]

**Proof** From Lemma 2.1, utilizing the property of the modulus and the \((\alpha, m)\)-convexity of \( |_{\alpha} D_{qf} | \), we have

\[
\begin{align*}
\lambda [\mu f(b) + (1-\mu)f(a)] + (1-\lambda)f(\mu b + (1-\mu)a) - \frac{1}{b-a} \int_a^b f(x) \, x \, d_q x \\
\leq (b-a) \left\{ \int_0^\mu |qt + \lambda \mu - \lambda| \, x \, D_{qf} (tb + (1-t)a) \, x \, d_q t \\
+ \int_0^\mu |qt + \lambda \mu - 1| \, x \, D_{qf} (tb + (1-t)a) \, x \, d_q t \right\} \\
\leq (b-a) \left\{ \int_0^\mu |qt - (1-\lambda \mu)| \, x \, D_{qf} (tb + (1-t)a) \, x \, d_q t \\
+ \int_0^\mu |qt - (1-\lambda \mu)| \, x \, D_{qf} (tb + (1-t)a) \, x \, d_q t \right\} \\
= (b-a) \left\{ \int_0^\mu |qt - (1-\lambda \mu)| \, x \, D_{qf} (tb + (1-t)a) \, x \, d_q t \\
+ \int_0^\mu |qt - (1-\lambda \mu)| \, x \, D_{qf} (tb + (1-t)a) \, x \, d_q t \right\} \\
\end{align*}
\]
\[
- \int_0^\mu |qt - (1 - \lambda \mu)|_t \, dt - \int_0^\mu |qt - (\lambda - \lambda \mu)|_t \, dt \\
- \int_0^1 |qt - (1 - \lambda \mu)|_t \, dt + \int_0^\mu |qt - (1 - \lambda \mu)|_t \, dt \right] aD_q f \left( \frac{a}{m} \right) \right].
\]

Similarly, we get
\[
\left| \lambda \left[ \mu f(b) + (1 - \mu) f(a) \right] + (1 - \lambda) f(\mu b + (1 - \mu) a) - \frac{1}{b - a} \int_a^b f(x) \, d_x \right| \\
\leq (b - a) \left[ \left| \int_0^\mu (1 - t) \, qt - (\lambda - \lambda \mu) |_t \, dt + \int_0^1 (1 - t) \, qt - (1 - \lambda \mu) |_t \, dt \\
- \int_0^\mu |qt - (1 - \lambda \mu) |_t \, dt + \int_0^\mu |qt - (1 - \lambda \mu) |_t \, dt \\
- \int_0^1 (1 - t) \, qt - (1 - \lambda \mu) |_t \, dt + \int_0^\mu |qt - (1 - \lambda \mu) |_t \, dt \right] + \int_0^\mu |qt - (1 - \lambda \mu) |_t \, dt \right] aD_q f \left( \frac{b}{m} \right) \right].
\]

Using Lemma 2.3, Lemma 2.4 and Lemma 2.5, we get the desired result. This completes the proof. 

**Corollary 3.1** In Theorem 3.2, putting \( \mu = \frac{1}{1 + q} \), we have
\[
\left| \frac{\lambda}{1 + q} f(a) + f(b) \right| + (1 - \lambda) f \left( \frac{qa + b}{1 + q} \right) - \frac{1}{b - a} \int_a^b f(x) \, d_x \right| \\
\leq \min \left\{ H_1 \left( \lambda, \frac{1}{1 + q}, \alpha, m \right), H_2 \left( \lambda, \frac{1}{1 + q}, \alpha, m \right) \right\}.
\]

**Remark 3.1** Consider Corollary 3.1.
(i) Putting \( \lambda = 0 \), we get the midpoint-like integral inequality
\[
\left| f \left( \frac{qa + b}{1 + q} \right) - \frac{1}{b - a} \int_a^b f(x) \, d_x \right| \\
\leq \min \left\{ H_1 \left( 0, \frac{1}{1 + q}, \alpha, m \right), H_2 \left( 0, \frac{1}{1 + q}, \alpha, m \right) \right\},
\]
where
\[
H_1 \left( 0, \frac{1}{1 + q}, \alpha, m \right) = (b - a) \left[ \left| \frac{[(1 + q)^{\alpha + 2} - (1 + q^{\alpha + 2})][(1 - q)^2 - [(1 + q)^{\alpha + 2} - (1 + q^{\alpha + 2})][(1 - q)^2 - \frac{2q}{(1 + q)^3} - \frac{2q}{(1 + q)^3} \right] aD_q f \left( \frac{a}{m} \right) \right| \\
+ \int_0^\mu \left| \frac{[(1 + q)^{\alpha + 2} - (1 + q^{\alpha + 2})][(1 - q)^2 - \frac{2q}{(1 + q)^3} - \frac{2q}{(1 + q)^3} \right] aD_q f \left( \frac{a}{m} \right) \right| \right]
\]
\[
\mathcal{H}_2\left(0, \frac{1}{1+q}, \alpha, m \right) = (b-a) \left[ \Phi_2\left(0, \frac{1}{1+q}, \alpha \right) + \Phi_8\left(0, \frac{1}{1+q}, \alpha \right) - \Phi_9\left(0, \frac{1}{1+q}, \alpha \right) \right] |aD_qf(a)| \\
+ m \left[ \frac{2q}{(1+q)^2} - \Phi_2\left(0, \frac{1}{1+q}, \alpha \right) - \Phi_8\left(0, \frac{1}{1+q}, \alpha \right) \right] |aD_qf\left(\frac{b}{m}\right)|.
\]

Specially, taking \(\alpha = 1 = m\), we obtain
\[
\left| f\left(\frac{qa+b}{1+q}\right) - \frac{1}{b-a} \int_a^b f(x) \, d_qx \right| \\
\leq (b-a) \left\{ \frac{3q}{(1+q)^2(1+q+q^2)} |aD_qf(b)| + \frac{-q + 2q^2 + 2q^3}{(1+q)^2(1+q+q^2)} |aD_qf(a)| \right\},
\]
which is established by Alpet al in [2, Theorem 13].

(ii) Putting \(\lambda = \frac{1}{3}\) and \(\alpha = 1 = m\), we get the Simpson-like integral inequality
\[
\left| \frac{1}{3} \left[ \frac{qf(a) + f(b)}{1+q} + 2f\left(\frac{qa+b}{1+q}\right) \right] - \frac{1}{b-a} \int_a^b f(x) \, d_qx \right| \\
\leq \min \left\{ \mathcal{H}_1\left(\frac{1}{3}, \frac{1}{1+q}, 1, 1 \right), \mathcal{H}_2\left(\frac{1}{3}, \frac{1}{1+q}, 1, 1 \right) \right\}.
\]
Specially, if \(q \rightarrow 1^+\), then we obtain
\[
\left| \frac{1}{3} \left[ f(a) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) \, d_qx \right| \\
\leq \frac{5(b-a)}{72} \left[ |f'(b)| + |f'(a)| \right],
\]
which is established by Alomari et al in [1, Corollary 1].

(iii) Putting \(\lambda = \frac{1}{2}\) and \(\alpha = 1 = m\), we get the averaged midpoint-trapezoid-like integral inequality
\[
\left| \frac{1}{2} \left[ \frac{qf(a) + f(b)}{1+q} + f\left(\frac{qa+b}{1+q}\right) \right] - \frac{1}{b-a} \int_a^b f(x) \, d_qx \right| \\
\leq \min \left\{ \mathcal{H}_1\left(\frac{1}{2}, \frac{1}{1+q}, 1, 1 \right), \mathcal{H}_2\left(\frac{1}{2}, \frac{1}{1+q}, 1, 1 \right) \right\}.
\]
Specially, if \(q \rightarrow 1^+\), then we obtain
\[
\left| \frac{1}{2} \left[ f(a) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \\
\leq \frac{b-a}{16} \left[ |f'(b)| + |f'(a)| \right],
\]
which is established by Xi and Qi in [30, Corollary 3.4].
(iv) Putting $\lambda = 1$, we get the trapezoid-like integral inequality

$$\left| \frac{qf(a) + f(b)}{1 + q} - \frac{1}{b-a} \int_{a}^{b} f(x) \, \text{d}x \right| \leq \min \left\{ \mathcal{H}_1 \left(1, \frac{1}{1 + q}, \alpha, m \right), \mathcal{H}_2 \left(1, \frac{1}{1 + q}, \alpha, m \right) \right\},$$

where

$$\mathcal{H}_1 \left(1, \frac{1}{1 + q}, \alpha, m \right) = (b-a) \left\{ \frac{2q^{\alpha+2}(1-q)^2 + q^2(1+q)^{\alpha+1}(1-q)(1-q^\alpha)}{(1+q)^{\alpha+2}(1-q^{\alpha+2})} \left| \text{aD}_q f(b) \right| \right. \right.$$

$$\left. + m \left[ \frac{2q^2}{(1+q)^2} - \frac{2q^{\alpha+2}(1-q)^2 + q^2(1+q)^{\alpha+1}(1-q)(1-q^\alpha)}{(1+q)^{\alpha+2}(1-q^{\alpha+2})} \right] \left| \text{aD}_q f \left(\frac{a}{m}\right) \right| \right\},$$

and

$$\mathcal{H}_2 \left(1, \frac{1}{1 + q}, \alpha, m \right) = (b-a) \left\{ \left[ \Phi_7 \left(1, \frac{1}{1 + q}, \alpha \right) + \Phi_8 \left(1, \frac{1}{1 + q}, \alpha \right) - \Phi_9 \left(1, \frac{1}{1 + q}, \alpha \right) \right] \left| \text{aD}_q f(a) \right| \right.$$

$$\left. + m \left[ \frac{2q^2}{(1+q)^2} - \Phi_7 \left(1, \frac{1}{1 + q}, \alpha \right) - \Phi_8 \left(1, \frac{1}{1 + q}, \alpha \right) \right. \right.$$

$$\left. + \Phi_9 \left(1, \frac{1}{1 + q}, \alpha \right) \right] \left| \text{aD}_q f \left(\frac{b}{m}\right) \right| \right\}.$$

Specially, taking $\alpha = 1 = m$, we obtain

$$\left| \frac{qf(a) + f(b)}{1 + q} - \frac{1}{b-a} \int_{a}^{b} f(x) \, \text{d}x \right| \leq (b-a) \left\{ \frac{q^2(1+4q+q^2)}{(1+q)^2(1+q+q^2)} \left| \text{aD}_q f(b) \right| + \frac{q^2(1+3q^2+2q^3)}{(1+q)^2(1+q+q^2)} \left| \text{aD}_q f(a) \right| \right\},$$

which is established by Sudsutad et al. in [26, Theorem 4.1].

If $|\text{aD}_q f|^r$ for $r \geq 1$ is $(\alpha, m)$-convex, then the following theorem can be obtained.

**Theorem 3.3** For $0 \leq a < b$ and some fixed $m \in (0, 1]$, let $f : [a, \frac{b}{m}] \rightarrow \mathbb{R}$ be a continuous and $q$-differentiable function on $(a, \frac{b}{m})$, and let $\text{aD}_q f$ be integrable on $[a, \frac{b}{m}]$ with $0 < q < 1$. Then the inequality

$$\left| \lambda \left[ \mu f(b) + (1-\mu) f(a) \right] + (1-\lambda) \left[ \mu b + (1-\mu) a \right] - \frac{1}{b-a} \int_{a}^{b} f(x) \, \text{d}x \right| \leq (b-a) \min \left\{ \mathcal{J}_1(\lambda, \mu, \alpha, m, r), \mathcal{J}_2(\lambda, \mu, \alpha, m, r) \right\}$$

If $|\text{aD}_q f|^r$ for $r \geq 1$ is $(\alpha, m)$-convex, then the following theorem can be obtained.
holds for all \( \lambda, \mu \in [0, 1] \) if \( |_a D_\alpha f|^r \) for \( r \geq 1 \) is \((\alpha, m)\)-convex on \([a, \frac{b}{m}]\) with \( \alpha, m \in (0, 1]^2 \), where

\[
\mathcal{J}_s(\lambda, \mu, \alpha, m, r)
= \Phi_5^{1-r}(\lambda, \mu) \left[ \Phi_2(\lambda, \mu, \alpha)|_a D_{\alpha}f(b)|^r + m(\Phi_5(\lambda, \mu, \alpha) - \Phi_2(\lambda, \mu, \alpha))|_a D_{\alpha}f \left( \frac{a}{m} \right) \right]^{\frac{1}{r}}
+ (1 - \lambda)\mu^{1-r} \left[ \Upsilon_1(\mu, \alpha)|_a D_{\alpha}f(b)|^r + m\Upsilon_2(\mu, \alpha)|_a D_{\alpha}f \left( \frac{a}{m} \right) \right]^{\frac{1}{r}},
\]

\[
\mathcal{J}_r(\lambda, \mu, \alpha, m, r)
= \Phi_5^{1-r}(\lambda, \mu) \left[ \Phi_8(\lambda, \mu, \alpha)|_a D_{\alpha}f(a)|^r + m(\Phi_5(\lambda, \mu, \alpha) - \Phi_8(\lambda, \mu, \alpha))|_a D_{\alpha}f \left( \frac{b}{m} \right) \right]^{\frac{1}{r}}
+ (1 - \lambda)\mu^{1-r} \left[ \Upsilon_3(\mu, \alpha)|_a D_{\alpha}f(a)|^r + m\Upsilon_4(\mu, \alpha)|_a D_{\alpha}f \left( \frac{b}{m} \right) \right]^{\frac{1}{r}},
\]

\[
\Upsilon_1(\mu, \alpha) = \int_0^\mu \frac{t^\alpha_0 d_\alpha t}{(1 - t^\alpha_0 d_\alpha t)} = \frac{\mu^{\alpha+1}(1 - q)}{1 - q^{\alpha+1}},
\]

\[
\Upsilon_2(\mu, \alpha) = \int_0^\mu (1 - t^\alpha_0 d_\alpha t) = \mu - \frac{\mu^{\alpha+1}(1 - q)}{1 - q^{\alpha+1}},
\]

\[
\Upsilon_3(\mu, \alpha) = \int_0^\mu (1 - t^\alpha_0 d_\alpha t) = (1 - q)\mu \sum_{n=0}^{\infty} q^n (1 - q^n \mu)^\alpha,
\]

\[
\Upsilon_4(\mu, \alpha) = \int_0^\mu (1 - (1 - t^\alpha_0 d_\alpha t) = (1 - q)\mu \sum_{n=0}^{\infty} q^n (1 - q^n \mu)^\alpha,
\]

and \( \Phi_2(\lambda, \mu, \alpha), \Phi_5(\lambda, \mu, \alpha), \Phi_8(\lambda, \mu, \alpha) \) are defined by \((3.1), (3.2)\) and \((3.3)\), respectively.

**Proof** Using Lemma 2.1 and the power mean inequality, we have

\[
\left| \lambda[f(b) + (1 - \mu)f(a)] + (1 - \lambda)[f(\mu b + (1 - \mu)a)] - \frac{1}{b - a} \int_a^b f(x)_a d_\alpha x \right|
\leq (b - a) \left\{ \left( \int_0^1 |qt - (1 - \lambda_\mu)|_a d_\alpha t \right)^{\frac{1}{r}} \right. \\
\times \left( \int_0^1 |qt - (1 - \lambda_\mu)|_a D_{\alpha}f(tb + (1 - t)a)|_a d_\alpha t \right)^{\frac{1}{r}} \right. \\
\left. + (1 - \lambda) \left( \int_0^\mu 1_0 d_\alpha t \right)^{\frac{1}{r}} \left( \int_0^\mu |_a D_{\alpha}f(tb + (1 - t)a)|_a d_\alpha t \right)^{\frac{1}{r}} \right\}. \tag{3.8}
\]

Utilizing the \((\alpha, m)\)-convexity of \( |_a D_\alpha f|^r \), we get

\[
\int_0^1 |qt - (1 - \lambda_\mu)|_a D_{\alpha}f(tb + (1 - t)a)|_a d_\alpha t
\leq \int_0^1 |qt - (1 - \lambda_\mu)|_a D_{\alpha}f(b)|_a d_\alpha t
+ m(1 - t^\alpha) |_a D_{\alpha}f \left( \frac{a}{m} \right) \right]_a d_\alpha t
\[
= \left( \int_0^1 t^\alpha |qt - (1 - \lambda \mu)\big|_\alpha d_q t \right) |a D_q f(b)|^r + m \left( \int_0^1 |qt - (1 - \lambda \mu)\big|_\alpha d_q t - \int_0^1 t^\alpha |qt - (1 - \lambda \mu)\big|_\alpha d_q t \right) |a D_q f\left( \frac{a}{m} \right)|^r \] (3.9)
and
\[
\int_0^\mu |a D_q f(tb + (1 - t)a)|^r_\alpha d_q t \\
\leq \int_0^\mu \left[ t^\alpha |a D_q f(b)|^r + m(1 - t^\alpha) \right] |a D_q f\left( \frac{a}{m} \right)|^r_\alpha d_q t \\
= \left( \int_0^\mu t^\alpha |a D_q f(b)|^r + m \left( \int_0^\mu (1 - t^\alpha) |a D_q f\left( \frac{a}{m} \right)|^r \right) \right) \\
\times |a D_q f\left( \frac{a}{m} \right)|^r. \] (3.10)
Using (3.9) and (3.10) in (3.8), we get
\[
\left\{ \lambda \left[ \mu f(b) + (1 - \mu)f(a) \right] + (1 - \lambda) f(\mu b + (1 - \mu)a) - \frac{1}{b - a} \int_a^b f(x) d_q x \right\} \\
\leq \left( b - a \right) \left\{ \left[ \int_0^1 |qt - (1 - \lambda \mu)\big|_\alpha d_q t \right]^{1 - \frac{r}{\alpha}} + \left( \int_0^1 t^\alpha |qt - (1 - \lambda \mu)\big|_\alpha d_q t \right) |a D_q f(b)|^r \right\} \\
\times \left[ \left( \int_0^1 t^\alpha |qt - (1 - \lambda \mu)\big|_\alpha d_q t \right) |a D_q f(b)|^r \right]^{\frac{1}{r}} + \left( 1 - \lambda \right) \mu^{1 - \frac{1}{r}} \left[ \left( \int_0^\mu t^\alpha |a D_q f(b)|^r \right) \right]^{\frac{1}{r}} \\
+ m \left( \int_0^\mu (1 - t^\alpha) |a D_q f\left( \frac{a}{m} \right)|^r \right) \} \right\}. \] (3.11)
Similarly, we get
\[
\int_0^1 |qt - (1 - \lambda \mu)\big|_\alpha d_q f(tb + (1 - t)a)|^r_\alpha d_q t \\
\leq \int_0^1 |qt - (1 - \lambda \mu)\big|_\alpha d_q f(tb + (1 - t)a)|^r_\alpha d_q t \\
= \left( \int_0^1 (1 - t^\alpha) |qt - (1 - \lambda \mu)\big|_\alpha d_q t \right) |a D_q f(a)|^r \right\} \\
+ m \left( \int_0^1 |qt - (1 - \lambda \mu)\big|_\alpha d_q t - \int_0^1 (1 - t^\alpha) |qt - (1 - \lambda \mu)\big|_\alpha d_q t \right) \\
\times |a D_q f\left( \frac{b}{m} \right)|^r \right\} \right\} \] (3.12)
and
\[
\int_0^\mu |a D_q f(tb + (1 - t)a)|^r_\alpha d_q t \\
\leq \int_0^\mu \left[ (1 - t^\alpha) |a D_q f(a)|^r + m(1 - (1 - t^\alpha) \right] |a D_q f\left( \frac{b}{m} \right)|^r \right\} \] (3.13)
Using (3.12) and (3.13) in (3.8), we get

\[
\frac{1}{|aD_qf|^r} \leq (b-a) \left\{ \left[ \int_0^1 (1-t)^{s} |q - (1-\lambda \mu)_{\alpha}d_t| \right]^{1-s} \right. \\
\times \left[ \int_0^1 (1-t)^{s} |q - (1-\lambda \mu)_{\alpha}d_t| \right]^{s} \left| aD_{qf} f(b) \right|^r \\
+ m \left( \int_0^1 (1-t)^{s} |q - (1-\lambda \mu)_{\alpha}d_t| \right) |aD_{qf} f(a)|^r \\
+ (1-\lambda)\mu \left[ \int_0^1 (1-t)^{s} |q - (1-\lambda \mu)_{\alpha}d_t| \right] |aD_{qf} f(a)|^r \\
+ m \left( \int_0^1 (1-t)^{s} |q - (1-\lambda \mu)_{\alpha}d_t| \right) |aD_{qf} f(a)|^r \right\}.
\]

From (3.11) and (3.14), utilizing (3.1), (3.2), (3.3) and Lemma 2.2, we can deduce the desired result. The proof is complete. \(\square\)

If \(|aD_qf|^r\) for \(r > 1\) is \((\alpha, m)\)-convex, then the following theorem can be obtained.

**Theorem 3.4** For \(0 \leq a < b\) and some fixed \(m \in (0, 1)\), let \(f : [a, \frac{b}{m}] \to \mathbb{R}\) be a continuous and \(q\)-differentiable function on \([a, \frac{b}{m}]\), and let \(aD_qf\) be integrable on \([a, \frac{b}{m}]\) with \(0 < q < 1\). Then the inequality

\[
|\lambda [\mu f(b) + (1-\mu)f(a)] + (1-\lambda)f(\mu b + (1-\mu)a) - \frac{1}{b-a} \int_a^b f(x)_{\alpha}d_\alpha x|
\leq (b-a) \min \{K_1(\lambda, \mu, \alpha, m), K_2(\lambda, \mu, \alpha, m)\}
\]

holds for all \(\lambda, \mu \in [0, 1]\) if \(aD_qf|^r\) for \(r > 1\) with \(r^{-1} + s^{-1} = 1\) is \((\alpha, m)\)-convex on \([a, \frac{b}{m}]\) with \(\alpha, m \in (0, 1)^2\), where

\[
K_1(\lambda, \mu, \alpha, m) = \Psi_1^{1/2}(\lambda, \mu) \left[ \Psi_2(\alpha) |aD_{qf} f(b)|^r + m(1-\Psi_2(\alpha)) |aD_{qf}(\frac{a}{m})|^r \right]^{1/2} \\
+ (1-\lambda)\mu \left[ \Psi_3(\alpha) |aD_{qf} f(b)|^r + m\Psi_3(\alpha) |aD_{qf}(\frac{a}{m})|^r \right]^{1/2}
\]

and

\[
K_2(\lambda, \mu, \alpha, m) = \Psi_1^{1/2}(\lambda, \mu) \left[ \Psi_2(\alpha) |aD_{qf} f(b)|^r + m(1-\Psi_2(\alpha)) |aD_{qf}(\frac{a}{m})|^r \right]^{1/2} \\
+ (1-\lambda)\mu \left[ \Psi_3(\alpha) |aD_{qf} f(b)|^r + m\Psi_3(\alpha) |aD_{qf}(\frac{a}{m})|^r \right]^{1/2},
\]
\[ K_2(\lambda, \mu, \alpha, m) \]

\[ = \Psi_1^\frac{1}{r} (\lambda, \mu) \left[ \Psi_3(\alpha) |_{a}^{b} D_\alpha f(a) |^{r} + m(1 - \Psi_3(\alpha)) |_{a}^{b} D_\alpha f \left( \frac{b}{m} \right) |^{r} \right]^\frac{1}{r} \]

\[ + (1 - \lambda) \mu \frac{1}{r} \left[ \Psi_3(\alpha) |_{a}^{b} D_\alpha f(a) |^{r} + m\Psi_4(\mu, \alpha) |_{a}^{b} D_\alpha f \left( \frac{b}{m} \right) |^{r} \right]^\frac{1}{r} , \]

\[ \Psi_1(\lambda, \mu) = \int_0^1 |qt - (1 - \lambda \mu)|^{\frac{r}{s}} d_q t \]

\[ \Psi_2(\alpha) = \int_0^1 t^\frac{r}{s} d_q t = \frac{1 - q}{1 - q^{a+1}}, \]

\[ \Psi_3(\alpha) = \int_0^1 (1 - t)^{\frac{r}{s}} d_q t = (1 - q) \sum_{n=0}^{\infty} q^n (1 - q^n)^\alpha, \]

and \( \Upsilon_1(\mu, \alpha), \Upsilon_2(\mu, \alpha), \Upsilon_3(\mu, \alpha), \Upsilon_4(\mu, \alpha) \) are defined by (3.4), (3.5), (3.6) and (3.7), respectively.

**Proof** Using Lemma 2.1 and the Hölder inequality, we have

\[ \left| \lambda [f(b) + (1 - \mu)f(a)] + (1 - \lambda) [f(\mu b + (1 - \mu) a) - \frac{1}{b - a} \int_\alpha^b f(x) a d_q x] \right| \]

\[ \leq (b - a) \left\{ \left( \int_0^1 |qt - (1 - \lambda \mu)|^{\frac{r}{s}} d_q t \right)^\frac{1}{r} \times \left( \int_0^1 |a D_\alpha f (tb + (1 - t)a) |^{r} d_q t \right)^\frac{1}{r} \right. \]

\[ + (1 - \lambda) \left( \int_0^1 1^{\frac{r}{s}} d_q t \right)^\frac{1}{r} \left( \int_0^1 \left| a D_\alpha f (tb + (1 - t)a) \right|^{r} d_q t \right)^\frac{1}{r} \left\} . \] (3.15)

Utilizing the \((\alpha, m)\)-convexity of \(|a D_\alpha f|^{r}\), we get

\[ \int_0^1 \left| a D_\alpha f (tb + (1 - t)a) \right|^{r} d_q t \]

\[ \leq \int_0^1 \left[ t^\alpha |a D_\alpha f(b) |^{r} + m(1 - t^\alpha) \left| a D_\alpha f \left( \frac{a}{m} \right) \right|^{r} \right] d_q t \]

\[ = \left( \int_0^1 t^\alpha d_q t \right) |a D_\alpha f(b) |^{r} + m \left( \int_0^1 (1 - t^\alpha) d_q t \right) \left| a D_\alpha f \left( \frac{a}{m} \right) \right|^{r} \] (3.16)

and

\[ \int_0^\mu |a D_\alpha f (tb + (1 - t)a) |^{r} d_q t \]
\[
\begin{align*}
\leq \int_0^\mu \left[ t^\alpha |_{\partial \Delta qf} |(b) |' + m(1-t^\alpha) \right]_{\partial \Delta qf} \left( \frac{a}{m} \right) |' \right]_0 d_\Delta q t
\end{align*}
\]

\[=
\left( \int_0^\mu t^\alpha \partial_\Delta q f(b) |' + m \left( \int_0^\alpha (1-t) \partial_\Delta q f(b) |' \right) \left( \frac{a}{m} \right) |' \right).
\]

(3.17)

Using (3.16) and (3.17) in (3.15), we get

\[
\begin{align*}
\lambda \left[ \mu f(b) + (1-\mu) f(a) \right] + (1-\lambda) f(\mu b + (1-\mu)a) - \frac{1}{b-a} \int_a^b f(x) d_\mu x \\
\leq (b-a) \left\{ \left( \int_0^1 |qt - (1-\lambda)\mu |^\alpha \partial_\Delta q t \right) \right. \\
\times \left[ \left( \int_0^1 t^\alpha \partial_\Delta q f(b) |' + m \left( \int_0^1 (1-t^\alpha) \partial_\Delta q f(b) |' \right) \left( \frac{a}{m} \right) |' \right] \right. \\
+ (1-\lambda)\mu \left. \right| s \left[ \left( \int_0^1 t^\alpha \partial_\Delta q f(b) |' + m \left( \int_0^1 (1-t^\alpha) \partial_\Delta q f(b) |' \right) \left( \frac{a}{m} \right) |' \right] \right. \\
\left. \left. \right| r \right. \\
+ m \left( \int_0^\alpha (1-t^\alpha) \partial_\Delta q f(b) |' \right) \left( \frac{a}{m} \right) |' \right] \right\}. \quad (3.18)
\]

Similarly, we get

\[
\int_0^1 |_{\partial \Delta q f} \left( t b + (1-t)a \right) \right|' \partial_\Delta q t
\]

\[\leq \int_0^1 \left[ \left( (1-t) |_{\partial \Delta q f} (a) \right) |' + m(1-(1-t)^\alpha) \right]_{\partial \Delta q f} \left( \frac{b}{m} \right) |' \right]_0 d_\Delta q t
\]

\[= \left( \int_0^1 \left( (1-t)^\alpha \partial_\Delta q f(a) \right) \right|' \\
+ m \left( \int_0^1 (1-(1-t)^\alpha) \partial_\Delta q f(b) \right) \left( \frac{b}{m} \right) |' \right) \\
\end{align*}
\]

(3.19)

and

\[
\int_0^\mu |_{\partial \Delta q f} \left( t b + (1-t)a \right) \right|' \partial_\Delta q t
\]

\[\leq \int_0^\mu \left[ \left( (1-t)^\alpha \partial_\Delta q f(a) \right) \right|' + m(1-(1-t)^\alpha) \right]_{\partial \Delta q f} \left( \frac{b}{m} \right) |' \right]_0 d_\Delta q t
\]

\[= \left( \int_0^\mu \left( (1-t)^\alpha \partial_\Delta q f(a) \right) \right|' \\
+ m \left( \int_0^\mu (1-(1-t)^\alpha) \partial_\Delta q f(b) \right) \left( \frac{b}{m} \right) |' \right) \\
\end{align*}
\]

(3.20)

Using (3.19) and (3.20) in (3.15), we get

\[
\begin{align*}
\lambda \left[ \mu f(b) + (1-\mu) f(a) \right] + (1-\lambda) f(\mu b + (1-\mu)a) - \frac{1}{b-a} \int_a^b f(x) d_\mu x \\
\leq (b-a) \left\{ \left( \int_0^1 \left| qt - (1-\lambda)\mu |^\alpha \partial_\Delta q t \right) \right. \\
\left. \right| s \right. \\
\left. \right| r \right. \\
\end{align*}
\]

(3.20)
\[ \times \left[ \left( \int_0^1 (1-t)^\alpha_0 \, dq_t \right) \left| D_q f(a) \right|^r \right] \]
\[ + \left( \int_0^1 (1-t)^\mu \, dq_t \right) \left| D_q f\left( \frac{b}{m} \right) \right|^r \]
\[ + (1-\lambda) \mu^2 \left[ \left( \int_0^\mu (1-t)^\alpha_0 \, dq_t \right) \left| D_q f(a) \right| \right] \]
\[ + \left( \int_\mu^1 (1-t)^\alpha_0 \, dq_t \right) \left| D_q f\left( \frac{b}{m} \right) \right|^r \] 
\[ \{ (3.21) \} \]

From (3.18) and (3.21), utilizing (3.4), (3.5), (3.6), (3.7), Lemma 2.2 and Lemma 2.6, we can deduce the desired result. The proof is completed. \[ \square \]

**Remark 3.2** For \( \mu = \frac{1}{1-q} \), if we put \( \lambda = 0, \lambda = \frac{1}{2}, \lambda = \frac{1}{2} \) and \( \lambda = 1 \) in Theorem 3.3 and Theorem 3.4, then we can get the midpoint-like integral inequality, the Simpson-like integral inequality, the averaged midpoint-trapezoid-like integral inequality and the trapezoid-like integral inequality, respectively.

Next we establish the \( q \)-integral inequalities involving the product of two \((\alpha, m)\)-convex functions.

**Theorem 3.5** For \( 0 \leq a < b \) and some fixed \( m \in (0,1) \), let \( f, g : [a, \frac{b}{m}] \rightarrow \mathbb{R} \) be continuous and nonnegative functions. Then the inequality

\[ \frac{1}{b-a} \int_a^b f(x)g(x) \, dq_x \leq \min \{ \mathcal{L}_1(\alpha_1, \alpha_2, m), \mathcal{L}_2(\alpha_1, \alpha_2, m) \} \]

holds if \( f \) and \( g \) are \((\alpha_1, m)\)-convex and \((\alpha_2, m)\)-convex on \([a, \frac{b}{m}]\) with \( \alpha_1, \alpha_2 \in (0,1]^2 \), respectively, where

\[ \mathcal{L}_1(\alpha_1, \alpha_2, m) \]
\[ = \left[ \frac{1-q}{1-q^{1+\alpha_1+\alpha_2}} - \frac{1-q}{1-q^{1+\alpha_2+1}} + 1 \right] m^2 f\left( \frac{a}{m} \right) g\left( \frac{a}{m} \right) \]
\[ + \frac{1-q}{1-q^{1+\alpha_1+\alpha_2}} f(b) g(b) + \left[ \frac{1-q}{1-q^{1+\alpha_1+1}} - \frac{1-q}{1-q^{1+\alpha_2+1}} \right] mf\left( \frac{a}{m} \right) g(b) \]
\[ + \left[ \frac{1-q}{1-q^{1+\alpha_1+1}} - \frac{1-q}{1-q^{1+\alpha_2+1}} \right] mf(b) g\left( \frac{a}{m} \right) , \]

\[ \mathcal{L}_2(\alpha_1, \alpha_2, m) \]
\[ = \left[ \Theta(\alpha_1, \alpha_2) - \Theta(\alpha_1) - \Theta(\alpha_2) + 1 \right] m^2 f\left( \frac{b}{m} \right) g\left( \frac{b}{m} \right) \]
\[ + \Theta(\alpha_1, \alpha_2) f(a) g(a) + \left[ \Theta(\alpha_1) - \Theta(\alpha_1, \alpha_2) \right] mf(a) g\left( \frac{b}{m} \right) \]
\[ + \left[ \Theta(\alpha_2) - \Theta(\alpha_1, \alpha_2) \right] mf\left( \frac{b}{m} \right) g(a) , \]

\[ \Theta(\alpha_1, \alpha_2) = \int_0^1 (1-t)^{\alpha_1+\alpha_2} \, dq_t = (1-q) \sum_{n=0}^{\infty} q^n (1-q^n)^{\alpha_1+\alpha_2} , \]
and

\[ \Theta(\alpha_i) = \int_0^1 (1-t)^{\alpha_i} d_q t = (1-q) \sum_{n=0}^{\infty} q^n (1-q^n)^{\alpha_i}, \quad i = 1, 2. \]

**Proof** Using the \((\alpha_1, m)\)-convexity of \(f\) and the \((\alpha_2, m)\)-convexity of \(g\), respectively, for all \(t \in [0, 1]\), we have

\[ f(tb + (1-t)a) \leq t^{\alpha_1} f(b) + m(1-t^{\alpha_1}) f\left(\frac{a}{m}\right) \tag{3.22} \]

and

\[ g(tb + (1-t)a) \leq t^{\alpha_2} g(b) + m(1-t^{\alpha_2}) g\left(\frac{a}{m}\right). \tag{3.23} \]

Multiplying (3.22) with (3.23), we get

\[ f(tb + (1-t)a)g(tb + (1-t)a) \leq t^{\alpha_1 + \alpha_2} f(b) g(b) + (1-t^{\alpha_1})(1-t^{\alpha_2}) m^2 f\left(\frac{a}{m}\right) g\left(\frac{a}{m}\right) \]

\[ + t^{\alpha_2} (1-t^{\alpha_1}) m f\left(\frac{a}{m}\right) g\left(\frac{a}{m}\right) + t^{\alpha_1} (1-t^{\alpha_2}) m f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right) . \tag{3.24} \]

Taking the \(q\)-integral for (3.24) with respect to \(t\) on \((0,1)\) and using Lemma 2.2, we obtain

\[ \int_0^1 f(tb + (1-t)a)g(tb + (1-t)a) d_q t \]

\[ \leq \left[ \frac{1-q}{1-q^{\alpha_1+\alpha_2+1}} - \frac{1-q}{1-q^{\alpha_1+1}} - \frac{1-q}{1-q^{\alpha_2+1}} + 1 \right] m^2 f\left(\frac{a}{m}\right) g\left(\frac{a}{m}\right) \]

\[ + \frac{1-q}{1-q^{\alpha_1+\alpha_2+1}} f(b) g(b) + \left[ \frac{1-q}{1-q^{\alpha_1+1}} - \frac{1-q}{1-q^{\alpha_2+1}} \right] m f\left(\frac{a}{m}\right) g\left(\frac{a}{m}\right) \]

\[ + \left[ \frac{1-q}{1-q^{\alpha_1+1}} - \frac{1-q}{1-q^{\alpha_2+1}} \right] m f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right) . \tag{3.25} \]

Similarly, we get

\[ \int_0^1 f(tb + (1-t)a)g(tb + (1-t)a) d_q t \]

\[ \leq \left( \int_0^1 (1-t)^{\alpha_1+\alpha_2} d_q t - \int_0^1 (1-t)^{\alpha_1} d_q t \right) \]

\[ - \int_0^1 (1-t)^{\alpha_2} d_q t + 1 \right] m^2 f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right) \]

\[ + \left( \int_0^1 (1-t)^{\alpha_1+\alpha_2} d_q t \right) f(a) g(a) \]
\[
+ \left( \int_0^1 (1-t)^{\alpha_1} \, dt \right) g \left( \frac{b}{m} \right) + \left( \int_0^1 (1-t)^{\alpha_2} \, dt \right) g \left( \frac{a}{m} \right). \tag{3.26}
\]

A simple calculation shows that
\[
\int_0^1 f(t)b + (1-t)a \, dt = \frac{1}{b-a} \int_a^b f(x)g(x) \, dx. \tag{3.27}
\]

From (3.25), (3.26) and (3.27), we obtain the desired result. This ends the proof. □

**Corollary 3.2**  In Theorem 3.5, choosing \( \alpha_1 = \alpha_2 = \alpha \), we obtain
\[
\frac{1}{b-a} \int_a^b f(x)g(x) \, dx \leq \min \{ T_1(\alpha, m), T_2(\alpha, m) \},
\]

where
\[
T_1(\alpha, m) = \frac{1-q}{1-q^{2\alpha+1}} f(b)g(b) + \left[ \frac{1-q}{1-q^{2\alpha+1}} - \frac{2(1-q)}{1-q^{2\alpha+1}} + 1 \right] m^2 f \left( \frac{a}{m} \right) g \left( \frac{a}{m} \right) + \frac{q^{\alpha+1}}{(1-q^{2\alpha+1})(1-q^{2\alpha+1})} \left[ f \left( \frac{a}{m} \right) g(b) + f(b)g \left( \frac{a}{m} \right) \right]
\]

and
\[
T_2(\alpha, m) = \left[ (1-q) \sum_{n=0}^{\infty} q^n (1-q^n)^{2\alpha} - 2(1-q) \sum_{n=0}^{\infty} q^n (1-q^n)^{\alpha} + 1 \right] m^2 f \left( \frac{b}{m} \right) g \left( \frac{b}{m} \right) + (1-q) \sum_{n=0}^{\infty} q^n (1-q^n)^{2\alpha} f(a)g(a)
\]
\[
+ \left[ (1-q) \sum_{n=0}^{\infty} q^n (1-q^n)^{\alpha} - (1-q) \sum_{n=0}^{\infty} q^n (1-q^n)^{2\alpha} \right] \times \left[ mf(a)g \left( \frac{b}{m} \right) + mf \left( \frac{b}{m} \right) g(a) \right].
\]

Further, taking \( \alpha = 1 = m \), we get
\[
\frac{1}{b-a} \int_a^b f(x)g(x) \, dx \leq \frac{1}{1+q} f(b)g(b) + \frac{q(1+q^2)}{(1+q)(1+q^2)} f(a)g(a)
\]
\[
+ \frac{q^2}{(1+q)(1+q^2)} \left[ f(a)g(b) + f(b)g(a) \right],
\]

which is established by Sudsutad et al. in [26, Theorem 4.3].
4 Conclusions
In the present research, based on a new quantum integral identity with multiple parameters, we have developed some quantum error estimations of different type inequalities through $(\alpha, m)$-convexity, such as the midpoint-like inequalities, the Simpson-like inequalities, the averaged midpoint-trapezoid-like inequalities and the trapezoid-like inequalities. The inequalities derived in this work are very helpful in error estimations involved in various approximation processes. We expect that the ideas of this article will facilitate further study concerning quantum integral inequalities.

Funding
This work was partially supported by the National Natural Science Foundation of China (No. 61374028) and sponsored by Research Fund for Excellent Dissertation of China Three Gorges University (No. 2018SSPY132, No. 2018SSPY134).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1 Department of Mathematics, College of Science, China Three Gorges University, Yichang, China. 2 Three Gorges Mathematical Research Center, China Three Gorges University, Yichang, China. 3 Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 May 2018 Accepted: 20 September 2018

References
1. Alomari, M., Darus, M., Dragomir, S.S.: New inequalities of Simpson’s type for $s$-convex functions with applications. Research Report Collection 12(4) (2009)
2. Alp, N., Sarikaya, M.Z., Kunt, M., Işcan, I.: $q$-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ., Sci. 30, 193–203 (2018)
3. Awari, M.U., Cristescu, G., Noor, M.A., Riahi, L.: Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions. UPB Sci. Bull., Ser. A 79(3), 33–44 (2017)
4. Chen, F.X., Yang, W.G.: Some new Chebyshev type quantum integral inequalities on finite intervals. J. Comput. Anal. Appl. 21(3), 417–426 (2016)
5. Du, T.S., Li, Y.J., Yang, Z.Q.: A generalization of Simpson’s inequality via differentiable mapping using extended $(s, m)$-convex functions. Appl. Math. Comput. 293, 358–369 (2017)
6. Du, T.S., Liao, J.G., Li, Y.J.: Properties and integral inequalities of Hadamard–Simpson type for the generalized $(s, m)$-preinvex functions. J. Nonlinear Sci. Appl. 9(5), 3112–3126 (2016)
7. Hsu, K.C., Hwang, S.R., Tseng, K.L.: Some extended Simpson-type inequalities and applications. Bull. Iran. Math. Soc. 43(2), 409–425 (2017)
8. İlkan, M., Qaisar, S., Hussain, S.: On Simpson’s type inequalities utilizing fractional integrals. J. Comput. Anal. Appl. 23(6), 1137–1145 (2017)
9. İlkan, I.: A new generalization of some integral inequalities and their applications. arXiv:1207.1828v2 (2012)
10. İlcan, I.: Hermite–Hadamard type inequalities for harmonically $(\alpha, m)$-convex functions. Hacet. J. Math. Stat. 45(2), 381–390 (2016)
11. Khan, M.A., Ali, T., Dragomir, S.S., Sarikaya, M.Z.: Hermite–Hadamard type inequalities for conformable fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. (2017). https://doi.org/10.1007/s13398-017-0408-5
12. Khan, M.A., Chu, Y.M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals and their applications. Open Math. 15, 1414–1430 (2017)
13. Khan, M.A., Khurshid, Y., Du, T.S., Chu, Y.M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 6928130 (2018)
14. Khan, M.A., Chu, Y.M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for $(s, m)$-convex functions with applications. Open Math. 15, 1414–1430 (2017)
15. Khan, M.A., Şardel, A., Alomari, M., Alqahtani, T., Chu, Y.M.: New fractional inequalities of Hermite–Hadamard type for $(\alpha, m)$-logarithmically convex functions. Filomat 32(1), 135–143 (2018)
16. Liu, W.J., Zhuang, H.F.: Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 7(2), 501–522 (2017)
19. Miheșan, V.G.: A generalization of the convexity. In: Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca, Romania (1993)
20. Noor, M.A., Cristescu, G., Awan, M.U.: Bounds having Riemann type quantum integrals via strongly convex functions. Studia Sci. Math. Hung. 54(2), 221–240 (2017)
21. Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015)
22. Qi, F., Xi, B.Y.: Some integral inequalities of Simpson type for GA-ε-convex functions. Georgian Math. J. 20, 775–788 (2013)
23. Riahi, L., Awan, M.U., Noor, M.A.: Some complementary q-bounds via different classes of convex functions. UPB Sci. Bull., Ser. A 79(2), 171–182 (2017)
24. Set, E., Akdemir, A.O., Özdemir, M.E.: Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 31(14), 4415–4420 (2017)
25. Set, E., Karatas, S.S., Khan, M.A.: Hermite–Hadamard type inequalities obtained via fractional integral for differentiable m-convex and (α, m)-convex functions. Int. J. Anal. 2016, Article ID 4765691 (2016)
26. Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Quantum integral inequalities for convex functions. J. Math. Inequal. 9(3), 781–793 (2015)
27. Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Integral inequalities via fractional quantum calculus. J. Inequal. Appl. 2016, Article ID 81 (2016)
28. Tariboon, J., Ntouyas, S.K.: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, Article ID 121 (2014)
29. Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, Article ID 18 (2015)
30. Xi, B.Y., Qi, F.: Some Hermite–Hadamard type inequalities for differentiable convex functions and applications. Hacet. J. Math. Stat. 42(3), 243–257 (2013)
31. Yang, W.G.: Some new Fejér type inequalities via quantum calculus on finite intervals. ScienceAsia 43(2), 123–134 (2017)