Orthodontics-surgical combination therapy for Class III skeletal malocclusion

M. S. Ravi, Nillan K. Shetty¹, Rajendra B. Prasad

Abstract

The correction of skeletal Class III malocclusion with severe mandibular prognathism in an adult individual requires surgical and Orthodontic combination therapy. The inter disciplinary approach is the treatment of choice in most of the skeletal malocclusions. A case report of an adult individual with Class III malocclusion, having mandibular excess in sagittal and vertical plane and treated with orthodontics, bilateral sagittal split osteotomy and Le – Forte I osteotomy for the correction of skeletal, dental and soft tissue discrepancies is herewith presented. The surgical–orthodontic combination therapy has resulted in near–normal skeletal, dental and soft tissue relationship, with marked improvement in the facial esthetics in turn, has helped the patient to improve the self-confidence level.

Keywords: Orthognathic Surgery, Bilateral sagittal split osteotomy, surgical orthodontics

Introduction

The combination treatment for skeletal malocclusions in adult individuals has been used not only to achieve a functional and stable occlusion but also to establish normal skeletal relationships with esthetically pleasing soft tissue profile.[1] Orthognathic surgery and Orthodontic therapy are compliment to each other in these types of cases to achieve the desired results.[2] Accurate clinical examinations followed by the right diagnosis and treatment planning are essential.

Case Report

A 20 year-old male patient with a complaint of un-even bite presented with a Class III skeletal relationship with prognathic mandible, increased lower facial height, concave profile Class III incisor and molar relationship and anterior open bite [Figures 1-9]. The patient had no relevant family and medical history. He was highly positive for the treatment. The cephalometric analysis confirmed the clinical findings. [Table 1].

List of problems
1. Prognathic mandible
2. Increased lower facial height
3. Class III incisor and molar relationship
4. Anterior open bite
5. Concave profile and compromised esthetics

Treatment plan
1. Pre-treatment prophylaxis, restorations
2. Combination therapy
3. Surgical plan: Le- Forte I osteotomy superior and forward placement of maxilla and Bilateral sagittal split osteotomy for mandibular setback
4. Non extraction Orthodontic therapy with 0.022” Roth Pre-adjusted Edgewise Appliance
5. Long term retention plan

Treatment rationale
Le- Forte I osteotomy with superior impaction of maxilla allows the auto rotation of mandible, which would reduce the lower facial height, and the forward placement of maxilla, which would help to improve the soft tissue balance.[3] It would also help to correct the Class III skeletal relationship along with the Bilateral sagittal split osteotomy with mandibular setback.

The pre-surgical Orthodontics was planned to increase the reverse overjet to facilitate the proper positioning of the jaws during the surgery.

Progress of treatment

After initial restorative and prophylactic measures, pre-surgical orthodontics was begun with 0.022 × 0.028” Roth Pre-adjusted Edgewise prescription appliance. Initially, 0.016 NITI wires were used to align the arches, and later shifted to heavier 0.019” × 0.025” SS arch wires sequentially. Mild Class II elastics were used to correct the incisor position and to increase the reverse overjet to 6 mm.

Face bow transfer and articulation of models on a semi-adjustable articulator was done and two surgical wafers (
Le- Forte I surgical procedure was carried out as decided and the maxilla was repositioned 3 mm anteriorly and 3 mm superiorly. Bilateral sagittal split osteotomy was performed and the mandible was set back by 7 mm. Rigid type of fixations were used in both the jaws. The surgical and post-surgical phase passed on without any complications.

Post -surgical Orthodontics was initiated after a period of
Table 1: Burstone’s Cephalometric analysis

Measurement	Mean (males)	Pre-treatment	Post-treatment
Cranial base			
Ar-Ptm	37.1~2.8 mm	34 mm	34 mm
Ptm-N (II to HP)	52.8~4.1 mm	54 mm	54 mm
Horizontal Skeletal			
N-A-Pg angle	3.9~6.40	−10°	+6°
N-A (II To HP)	0~3.7 mm	+1 mm	+3 mm
N-B (II To HP)	−5.3~6.7 mm	+15 mm	+4 mm
N-Pg (II ToHP)	−4.3~8.5 mm		+5 mm
Vertical skeletal and dental			
N-ANS (II ToHP)	54.7~3.2 mm	54 mm	51 mm
ANS-Gn	66.6~3.8 mm	70 mm	71 mm
PNS–N	53.9~1.7 mm	53.5 mm	50 mm
MP–HP	23.0~5.9°0	23.5°0	29°0
Upper incisor to NF	45.0~2.1 mm	28 mm	30 mm
Lower incisor to MP	30.5~2.1 mm	40 mm	42 mm
Upper molar to NF	26.2~2.0 mm	25 mm	28 mm
Lower molar to MP	35.8~2.6 mm	32 mm	34 mm
Maxilla–Mandible			
PNS-ANS	57.7~2.5 mm	52 mm	52 mm
Ar-Go	52.0~4.2 mm	56 mm	52 mm
Go-Pg	83.7~4.6 mm	85 mm	79 mm
B-Pg	8.9~1.7 mm	7 mm	6 mm
Ar-Go-Gn	119.1~6.5°0	136°0	132°0

Table 2: Result analysis

Features	Pre-treatment	Post-treatment	
Incisor relationship	Reverse over jet	Positive over jet	
Over jet	−4 mm	+2 mm	
Overbite	Open bite	+2 mm	
Lower incisor	Retroclined	Upright	
Midlines	Shifted	Co incident	
Left molar	Class III	Class I	
Right molar	Class III	Class I	
Skeletal relationship	Class III	Class I	
Index Of Treatment Need	Dental Health Component	5	1
	Esthetic Component	9	1
Peer Assessment Rating	33	0 (100% improvement)	
characteristics to determine the extension of facial asymmetry. Class III skeletal problems are treated with a combination of orthodontic and orthopedic mechanics in growing individuals whereas, correction of the Class III malocclusion usually requires complex surgical procedures during adulthood for attainment of an optimal aesthetic and functional result in Class III patients.[10]

The Orthodontics—surgical combination therapy has been successfull in this case of skeletal Class III malocclusion. It

Result analysis and Conclusion

A profound improvement in facial esthetics was achieved, along with the near-normal dental, skeletal and soft tissue relationships. [Tables 1, and 2]; [Figures 1–9].

Skeletal class III anomalies are one of the most complicated problems in both childhood and adulthood of all dentofacial abnormalities.[4,5] Many studies have demonstrated that transverse dental compensation is correlated with skeletal asymmetry.[6,8] Inclinations of the occlusal plane observed in the posteroanterior cephalograms are important

Figure 6: Post-treatment intra oral

Figure 7: Post-treatment ortho Pantomogram

Figure 8: Post-treatment cephalogram

Figure 9: Pre- and post-treatment superimposition

4 weeks and with the arch wires sequentially changed from 0.017” × 0.025” NITI to 0.021” × 0.025” SS wires. Finishing and settling of occlusion was carried out using short elastics. Mild Class III elastics were maintained throughout the phase of treatment. The overall treatment duration was about 22 months. Upper and lower Hawley’s type of retainers was given with instructions to wear full time.

4 weeks and with the arch wires sequentially changed from 0.017” × 0.025” NITI to 0.021” × 0.025” SS wires. Finishing and settling of occlusion was carried out using short elastics. Mild Class III elastics were maintained throughout the phase of treatment. The overall treatment duration was about 22 months. Upper and lower Hawley’s type of retainers was given with instructions to wear full time.

Figure 6: Post-treatment intra oral

Figure 7: Post-treatment ortho Pantomogram

Figure 8: Post-treatment cephalogram

Figure 9: Pre- and post-treatment superimposition

4 weeks and with the arch wires sequentially changed from 0.017” × 0.025” NITI to 0.021” × 0.025” SS wires. Finishing and settling of occlusion was carried out using short elastics. Mild Class III elastics were maintained throughout the phase of treatment. The overall treatment duration was about 22 months. Upper and lower Hawley’s type of retainers was given with instructions to wear full time.

Figure 6: Post-treatment intra oral

Figure 7: Post-treatment ortho Pantomogram

Figure 8: Post-treatment cephalogram

Figure 9: Pre- and post-treatment superimposition

4 weeks and with the arch wires sequentially changed from 0.017” × 0.025” NITI to 0.021” × 0.025” SS wires. Finishing and settling of occlusion was carried out using short elastics. Mild Class III elastics were maintained throughout the phase of treatment. The overall treatment duration was about 22 months. Upper and lower Hawley’s type of retainers was given with instructions to wear full time.

4 weeks and with the arch wires sequentially changed from 0.017” × 0.025” NITI to 0.021” × 0.025” SS wires. Finishing and settling of occlusion was carried out using short elastics. Mild Class III elastics were maintained throughout the phase of treatment. The overall treatment duration was about 22 months. Upper and lower Hawley’s type of retainers was given with instructions to wear full time.

4 weeks and with the arch wires sequentially changed from 0.017” × 0.025” NITI to 0.021” × 0.025” SS wires. Finishing and settling of occlusion was carried out using short elastics. Mild Class III elastics were maintained throughout the phase of treatment. The overall treatment duration was about 22 months. Upper and lower Hawley’s type of retainers was given with instructions to wear full time.
is also evident that the self-confidence level of the individual was raised considerably following the total change in the perception.

References

1. Devan SK, Marjadi UK. Soft tissue changes in surgically treated cases of bi maxillary protrusion. J Oral Surg 1983;41:116-20.
2. Hunt ND, Rudge SJ. Facial profile and orthognathic surgery. Br J Orthod 1984;11:126-36.
3. Wilmot DR. Soft tissue profile changes following correction of Class III malocclusion by mandibular surgery. Br J Orthod 1981;8:175-81.
4. Takahashi H, Furuta H, Moriyama S. Assessment of three bilateral sagittal split osteotomy techniques with respect to mandibular biomechanical stability by experimental study and finite element analysis simulation; Med Bull Fukuoka Univ 2009;36:181-92.
5. Tompach PC, Wheeler JJ, Fridrich KL. Orthodontic considerations in orthognathic surgery. Int J Adult Orthodon Orthognath Surg 1995;10:97-107.
6. Hayashi K, Muguruma T. Morphologic characteristics of the dentition and palate in cases of skeletal asymmetry. Angle Orthod 2004;74:26-30.
7. Sekiya T, Nakamura Y, Oikawa T, Ishii H, Hirashita A, Seto K. Elimination of transverse dental compensation is critical for treatment of patients with severe facial asymmetry. Am J Orthod Dentofacial Orthop 2010;137:552-62.
8. Kusayama M, Motohashi N, Kuroda T. Relationship between transverse dental anomalies and skeletal asymmetry. Am J Orthod Dentofacial Orthop 2003;123:329-37.
9. Van Elslande DC, Russett SJ, Major PW, Flores-Mird C. Mandibular asymmetry diagnosis with panoramic imaging. Am J Orthod Dentofacial Orthop 2008;134:183-92.
10. Szuhanek C, Paraschivescu E. Interdisciplinary surgical-orthodontic treatment of class III long face patients. 87th European Orthodontic Society Congress, 19-23rd of June 2011, Istanbul, Turkey.

How to cite this article: Ravi MS, Shetty NK, Prasad RB. Orthodontics-surgical combination therapy for Class III skeletal malocclusion. Contemp Clin Dent 2012;3:78-82.
Source of Support: Nil. Conflict of Interest: None declared.