On α-Square-Stable Graphs

Vadim E. Levit and Eugen Mandrescu
Department of Computer Sciences
Holon Academic Institute of Technology
52 Golomb Str., P.O. Box 305
Holon 58102, ISRAEL
{levitv, eugen}m@barley.cteh.ac.il

Abstract

The stability number of a graph G, denoted by $\alpha(G)$, is the cardinality of a maximum stable set, and $\mu(G)$ is the cardinality of a maximum matching in G. If $\alpha(G) + \mu(G)$ equals its order, then G is a König-Egerváry graph. We call G an α-square-stable graph if $\alpha(G) = \alpha(G^2)$, where G^2 denotes the second power of G. These graphs were first investigated by Randerath and Wolkmann, [18]. In this paper we obtain several new characterizations of α-square-stable graphs. We also show that G is an α-square-stable König-Egerváry graph if and only if it has a perfect matching consisting of pendant edges. Moreover, we find that well-covered trees are exactly α-square-stable trees. To verify this result we give a new proof of one Ravindra’s theorem describing well-covered trees, [19].

1 Introduction

All the graphs considered in this paper are simple, i.e., are finite, undirected, loopless and without multiple edges. For such a graph $G = (V, E)$ we denote its vertex set by $V = V(G)$ and its edge set by $E = E(G)$. If $X \subset V$, then $G[X]$ is the subgraph of G spanned by X. By $G - W$ we mean the subgraph $G[V - W]$, if $W \subset V(G)$. By $G - F$ we denote the partial subgraph of G obtained by deleting the edges of F, for $F \subset E(G)$, and we use $G - e$, if $W = \{e\}$. If $A, B \subset V$ and $A \cap B = \emptyset$, then (A, B) stands for the set $\{e = ab : a \in A, b \in B, e \in E\}$. A set of pairwise non-adjacent vertices is a stable set of G. The stability number of G, denoted by $\alpha(G)$, is the cardinality of a maximum stable set in G. The stability number of G, denoted by $\alpha(G)$, is the cardinality of a maximum stable set in G. The stability number of G, denoted by $\alpha(G)$, is the cardinality of a maximum stable set in G. Let $\Omega(G)$ denotes $\{S : S$ is a maximum stable set of $G\}$. $\theta(G)$ is the clique covering number of G, i.e., the minimum number of cliques whose union covers $V(G)$. Recall also that $i(G) = \min\{|S| : S$ is a maximal stable set in $G\}$, and $\gamma(G) = \min\{|D| : D$ is a minimal domination set in $G\}$. A matching is a set of non-incident edges of G. A matching of maximum cardinality $\mu(G)$ is a maximum matching, and a perfect matching is a matching covering all the vertices of G. M is an induced matching, if no edge of G connects two edges of M (some recent results on induced matchings can be found in [3], [4]). If A, B are disjoint subsets of $V(G)$, we say that A is uniquely matched into B if there is a unique
matching $M \subseteq (A, B)$ that saturates all the vertices in A. G is a König-Egerváry graph provided $\alpha(G) + \mu(G) = |V(G)|$, \cite{10,13,20}. The neighborhood of a vertex $v \in V$ is the set $N(v) = \{w : w \in V \text{ and } vw \in E\}$, and $N(A) = \{N(v) : v \in A\}$, for $A \subseteq V$. If $G[N(v)]$ is a complete subgraph in G, then v is a simplicial vertex of G. A maximal clique in G is called a *simplex* if it contains at least one simplicial vertex of G, \cite{10}. G is said to be *simplicial* if every vertex of G is simplicial or is adjacent to a simplicial vertex of G, \cite{10}. If $|N(v)| = |\{w\}| = 1$, then v is a pendant vertex and vw is a pendant edge of G. By C_n, K_n, P_n we denote the chordless cycle on $n \geq 4$ vertices, the complete graph on $n \geq 1$ vertices, and respectively the chordless path on $n \geq 3$ vertices. A graph G is α^--*stable* if $\alpha(G-e) = \alpha(G)$, for any $e \in E(G)$, and α^+-*stable* if $\alpha(G+e) = \alpha(G)$, for any edge $e \in E(G)$, where \overline{G} is the complement of G, \cite{14}. G is well-covered if it has no isolated vertices and if every maximal stable set of G is also a maximum stable set, i.e., it is in $\Omega(G)$, \cite{18}. G is called *very well-covered*, \cite{14}. If provided G is well-covered and $|V(G)| = 2\alpha(G)$.

The distance between two vertices $v, w \in V(G)$ is denoted by $\text{dist}_G(v, w)$, or $\text{dist}(v, w)$ if no ambiguity. G^2 denotes the second power of graph G, i.e., the graph with the same vertex set V and an edge is joining distinct vertices $v, w \in V$ whenever $\text{dist}_G(v, w) \leq 2$. Clearly, any stable set of G^2 is stable in G, as well, while the converse is not generally true. Therefore, we may assert that $1 \leq \alpha(G^2) \leq \alpha(G)$. Let notice that the both bounds are tight. For instance, if G is not a complete graph and $\text{dist}(a, b) \leq 2$ holds for any $a, b \in V(G)$, then $\alpha(G) \geq 2 > 1 = \alpha(G^2)$, e.g., for the n-star graph $G = K_{1,n}$, with $n \geq 2$, we have $\alpha(G) = n > \alpha(G^2) = 1$. On the other hand, if $G = P_4$, then $\alpha(G) = \alpha(G^2) = 2$.

In this paper we characterize the graphs G for which the upper bound of the above inequality is achieved, i.e., $\alpha(G) = \alpha(G^2)$. These graphs we call α-square-stable, or shortly square-stable. We show that any square-stable graph is α^+-stable and that none of them is α^--stable. We give a complete description of square-stable König-Egerváry graphs extending the investigation of well-covered trees, started in \cite{19}.

Randerath and Volkmann, \cite{18}, prove that:

Theorem 1.1 \cite{18} For a graph G the following statements are equivalent:

(i) every vertex of G belongs to exactly one simplex of G;

(ii) G satisfies $\alpha(G) = \alpha(G^2)$;

(iii) G satisfies $\theta(G) = \theta(G^2)$;

(iv) G satisfies $\alpha(G^2) = \theta(G^2) = \gamma(G) = i(G) = \alpha(G) = \theta(G)$.

Remark 1.1 In general, it can be shown (e.g., see \cite{18}) that the graph invariants appearing in the above theorem are related by the following inequalities:

$$\alpha(G^2) \leq \theta(G^2) \leq \gamma(G) \leq i(G) \leq \alpha(G) \leq \theta(G).$$

The graph C_{12} indicates that no other non-trivial equality (except $\alpha(G) = \alpha(G^2)$ and $\theta(G) = \theta(G^2)$) of a pair of the above invariants ensures that all of them are equal, namely, $\alpha(C_{12}^2) = i(C_{12}) = 4$, while $\alpha(C_{12}) = 6$.

2
The following characterization of maximum stable sets in a graph, due to Berge, we shall use in the sequel.

Proposition 1.2 \[1\] \(S \in \Omega(G) \) if and only if every stable set \(A \) of \(G \), disjoint from \(S \), can be matched into \(S \).

Other useful results are:

Proposition 1.3 \[13\] A graph \(G \) is very well-covered if and only if it is a well-covered König-Egerváry graph.

Proposition 1.4 \[13\] A König-Egerváry graph is well-covered if and only if it is very well-covered.

Proposition 1.5 \[13\] A graph \(G \) is:

(i) \(\alpha^+ \)-stable if and only if \(|\cap\{S : S \in \Omega(G)\}| \leq 1\);
(ii) \(\alpha^- \)-stable if and only if \(|N(v) \cap S| \geq 2\) is true for every \(S \in \Omega(G) \) and any \(v \in V(G) - S \).

By Proposition 1.5, an \(\alpha^+ \)-stable graph may have either \(|\cap\{S : S \in \Omega(G)\}| = 0\) or \(|\cap\{S : S \in \Omega(G)\}| = 1\). This motivates the following definition.

Definition 1.6 \[13\] A graph \(G \) is called:

(i) \(\alpha^+_0 \)-stable whenever \(|\cap\{S : S \in \Omega(G)\}| = 0\);
(ii) \(\alpha^+_1 \)-stable provided \(|\cap\{S : S \in \Omega(G)\}| = 1\).

For instance, the graph in Figure 1 is an \(\alpha^+_1 \)-stable graph.

![Figure 1: Graph \(K_3 + e \).](image)

In \[13\] it was shown that an \(\alpha^+ \)-stable tree can be only \(\alpha^+_0 \)-stable, and this is exactly the case of trees possessing a perfect matching. This result was generalized to bipartite graphs in \[13\]. Nevertheless, there exist both \(\alpha^+_1 \)-stable König-Egerváry graphs (e.g., the graph in Figure 1), and \(\alpha^+_0 \)-stable König-Egerváry graphs (e.g., all \(\alpha^+ \)-stable bipartite graphs).

2 Square-stable graphs

Clearly, any complete graph is square-stable. Moreover, since \(K^2_n = K_n \), we get that
\[
\Omega(K_n) = \Omega(K^2_n) = \{\{v\} : v \in V(K_n)\}.
\]
Proposition 2.1 Graph G is square-stable if and only if $\Omega(G^2) \subseteq \Omega(G)$.

Proof. Clearly, any stable set A of G^2 is stable in G, too. Consequently, if G is square-stable, then any maximum stable set of G^2 is a maximum stable set of G, as well, i.e., $\Omega(G^2) \subseteq \Omega(G)$.

The converse is obvious. ■

It is quite evident that G and G^2 are simultaneously connected or disconnected. In addition, if H_i, $1 \leq i \leq k$ are the connected components of graph G, then $S \in \Omega(G)$ if and only if $S \cap V(H_i) \in \Omega(H_i), 1 \leq i \leq k$. Henceforth, using Proposition 2.1 we infer that:

Proposition 2.2 A disconnected graph is square-stable if and only if any of its connected components is square-stable.

Therefore, in the rest of the paper all the graphs are connected, unless otherwise stated.

Lemma 2.3 Every $S \in \Omega(G^2)$ has the property that

$$\text{dist}_G(a, b) \geq 3$$

holds for any distinct $a, b \in S$.

Proof. If $S \in \Omega(G^2)$ and $a, b \in S$, then $\text{dist}_G(a, b) \geq 3$, since otherwise $ab \in E(G^2)$, contradicting the stability of S in G^2. ■

Proposition 2.4 A graph G is square-stable if and only if there is some $S \in \Omega(G)$ such that $\text{dist}_G(a, b) \geq 3$ holds for any distinct $a, b \in S$.

Proof. If G is square-stable, then Proposition 2.1 ensures that $\Omega(G^2) \subseteq \Omega(G)$, and by above Lemma 2.3, $\text{dist}(a, b) \geq 3$ is valid for every $S \in \Omega(G^2)$ and any $a, b \in S$.

Conversely, if $S \in \Omega(G)$ and $\text{dist}(a, b) \geq 3$ holds for any $a, b \in S$, then S is stable in G^2, and therefore, $|S| \leq \alpha(G^2) \leq \alpha(G) = |S|$ implies that $\alpha(G^2) = \alpha(G)$, i.e., G is square-stable. ■

Lemma 2.5 If $G \neq K_{|V|}$ is square-stable, then for every $S \in \Omega(G^2)$ and any $a \in S$, there is $b \in S$ with $\text{dist}_G(a, b) = 3$.

Proof. Suppose, on the contrary, that there are $S \in \Omega(G^2)$ and some $a \in S$, such that $\text{dist}_G(a, b) \geq 4$ holds for any $b \in S$. Let $v \in V$ be with $\text{dist}_G(a, v) = 2$; hence $\text{dist}_G(v, w) \geq 2$ is valid for any $w \in S$, and consequently, $S \cup \{v\}$ is stable in G, a contradiction, because S is a maximum stable set in G. ■

Lemma 2.6 If G is square-stable, then $\Omega(G^2) = \Omega(G)$ if and only if G is a complete graph.

Proof. Suppose, on the contrary, that $\Omega(G^2) = \Omega(G)$ holds for a non-complete square-stable graph G. Let $S \in \Omega(G^2)$ and $a \in S$. According to Lemma 2.1, there is $b \in S$ with $\text{dist}_G(a, b) = 3$. Now, if $c \in N(a)$ and $\text{dist}_G(c, b) = 2$, Proposition 2.4 implies that $S \cup \{c\} \setminus \{a\} \in \Omega(G) - \Omega(G^2)$, contradicting the relation $\Omega(G^2) = \Omega(G)$.

The converse is clear. ■

Combining Proposition 2.1 and Lemma 2.6 we obtain the following assertion:
Theorem 2.7 $\Omega(G^2) = \Omega(G)$ if and only if G is a complete graph.

Let $A \triangle B$ denotes the symmetric difference of the sets A, B, i.e., the set

$$A \triangle B = (A - B) \cup (B - A).$$

Theorem 2.8 For a graph G the following assertions are equivalent:

(i) G is square-stable;

(ii) there exists $S_0 \in \Omega(G)$ that satisfies the property

P1: any stable set A of G disjoint from S_0 can be uniquely matched into S_0;

(iii) any $S \in \Omega(G^2)$ has property P1;

(iv) for any $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$, $G[S_1 \triangle S_2]$ has a unique perfect matching;

(v) for any $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$, $G[S_1 \triangle S_2]$ has a perfect matching;

(vi) for any $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$, $G[S_1 \triangle S_2]$ has an induced perfect matching.

Proof. (i) \Rightarrow (ii) By Proposition 2.1 we get that $\Omega(G^2) \subseteq \Omega(G)$ holds for G square-stable. Now, if $S \in \Omega(G^2)$, and A is a stable set in G disjoint from S, Proposition 2.3 implies that A can be matched into S. If there exists another matching of A into S, then at least one vertex $a \in A$ has two neighbors in S, say b, c. Hence, $bc \in E(G^2)$ and this contradicts the stability of S. Therefore, any $S \in \Omega(G^2) \subseteq \Omega(G)$ has property P1.

(ii) \Rightarrow (i) Suppose, on the contrary, that G is not square-stable. It follows that $S_0 \notin \Omega(G^2)$, i.e., there are $v, w \in S_0$ with $vw \in E(G^2)$. Henceforth, there exists $u \in V \setminus \{v, w\}$, such that $vw, uw \in E(G)$. Consequently, there are two matchings of $A = \{u\}$ into S_0, contradicting the fact that S_0 has property P1.

(iii) \Rightarrow (iv) Let $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$. Then $|S_2| \leq |S_1|$, and since $S_1 - S_2$ is stable in G and disjoint from S_2, we infer that $S_1 - S_2$ can be uniquely matched into S_2, precisely into $S_2 - S_1$, and because $|S_2 - S_1| \leq |S_1 - S_2|$, this matching is perfect. In conclusion, $G[S_1 \triangle S_2]$ has a unique perfect matching.

(iv) \Rightarrow (v) It is clear.

(v) \Rightarrow (i) If $G[S_1 \triangle S_2]$ has a perfect matching, for any $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$, it follows that $|S_1 - S_2| = |S_2 - S_1|$, and this implies $|S_1| = |S_2|$, i.e., $\alpha(G) = \alpha(G^2)$ is valid.

(i) \Rightarrow (vi) According to (iv), $G[S_1 \triangle S_2]$ has a unique perfect matching M, for any $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$. By (ii), $|N(v) \cap S_2| = 1$ holds for any $v \in S_1 - S_2$. Therefore, M must be induced.

(vi) \Rightarrow (iv) It is evident.

Corollary 2.9 There are no α^--stable square-stable graphs.

Proof. According to Proposition 2.3, G is α^--stable provided $|N(v) \cap S| \geq 2$ holds for every $S \in \Omega(G)$ and any $v \in V(G) - S$. If G is also square-stable, then there exists some $S_0 \in \Omega(G)$ satisfying property P1, which implies that $|N(v) \cap S_0| = 1$ holds for any $v \in V(G) - S_0$. This incompatibility concerning S_0 proves that G cannot be simultaneously square-stable and α^--stable.
In Figure 2 are shown two non-square-stable graphs: C_6, which is both α^--stable and α^+-stable, and the diamond, which is only α^--stable.

Corollary 2.10 Any square-stable graph is α^+-stable.

Proof. Suppose that G is a non-α^+-stable square-stable graph. Hence, according to Proposition 1.5, there are $a, b \in \cap\{S : S \in \Omega(G)\}$, and since G is square-stable, we infer that $a, b \in \cap\{S : S \in \Omega(G^2)\}$, as well. Let $S_0 \in \Omega(G^2)$ and $c \in N(a)$ in G. Clearly, $a, b \in S_0$, and by Lemma 2.3, $\text{dist}_G(a, v) \geq 3$ holds for any $v \in S_0 - \{a\}$. Consequently, $\text{dist}_G(c, v) \geq 2$ holds for any $v \in S_0 - \{a\}$. It follows that $S_1 = S_0 \cup \{c\} - \{a\} \in \Omega(G)$, but this contradicts the assumption on a, namely that $a \in \cap\{S : S \in \Omega(G)\}$.

Moreover, we can strengthen Corollary 2.10 to the following:

Corollary 2.11 Any square-stable graph is well-covered.

Proof. Assume, on the contrary, that G is not well-covered, i.e., there is some maximal stable set A that is not maximum. According to Theorem 2.8, for any $S \in \Omega(G^2)$, there is a unique matching of $B = A - S \cap A$ into S, in fact, into $S - A$. Consequently, $S \cup B - N(B) \cap S$ is a maximum stable set of G that includes A, in contradiction with the fact that A is a maximal stable set.

It is also possible to see the above result stated implicitly in the proof of Theorem 1.1 from [8], but our proof is different.

The converse of Corollary 2.11 is not generally true; e.g., C_5 is well-covered, but is not square-stable. The square-stable graphs do not coincide with the very well-covered graphs. For instance, P_4 is both square-stable and very well-covered, C_4 is very well-covered and non-square-stable, but there are square-stable graphs that are not very well-covered; e.g., the graph in Figure 3.

![Figure 3: A square-stable graph G and its G^2. G is not very well-covered.](image)

Corollary 2.12 Any square-stable graph is α_0^+-stable.
Theorem 2.13 For a graph G the following statements are equivalent:

(i) G is square-stable;

(ii) there is $S_0 \in \Omega(G)$ that has the property P_2; for any stable set A of G disjoint from S_0, $A \cup S^* \in \Omega(G)$ holds for some $S^* \subset S_0$;

(iii) every $S \in \Omega(G^2)$ has property P_2.

Proof. (i) \Rightarrow (ii), (iii) By Theorem 2.8, for every $S \in \Omega(G^2)$ and any stable set A in G, disjoint from S, there is a unique matching of A into S. Consequently, $S^* = S - N(A) \cap S$ has $|S^*| = |S| - |A|$ and $S^* \cup A \in \Omega(G)$.

(ii) \Rightarrow (i) It suffices to show that $S_0 \in \Omega(G^2)$. If $S_0 \notin \Omega(G)$, there must exist $a, b \in S_0$ such that $ab \in E(G^2)$, and this is possible provided $a, b \in N(e) \cap S_0$ for some $c \in V - S_0$. Hence, $|S_0 \cup \{c\} - \{a, b\}| < |S_0|$ and this implies that $\{c\} \cup S^* \notin \Omega(G)$ holds for any $S^* \subset S$, contradicting the fact that S_0 has the property P_2. Therefore, we get that $S_0 \in \Omega(G^2)$, and this implies that $\alpha(G) = \alpha(G^2)$.

(iii) \Rightarrow (i) Let $S \in \Omega(G^2)$, $b \in S$ and $a \in V - S$ be such that ab is an edge in G. Since $\{a\}$ is stable and disjoint from S, and S has property P_2, there exists $S^* \subset S$ so that $S^* \cup \{a\} \in \Omega(G)$. Hence, $|S^*| = \alpha(G) - 1$ and consequently, $|S| = |S^*| + 1 = \alpha(G)$, i.e., $S \in \Omega(G)$ holds for any $S \in \Omega(G^2)$. By Proposition 2.1, G is square-stable.

Combining Theorem 1.1 and our results on square-stable graphs, we obtain:

Theorem 2.14 For a graph G the following statements are equivalent:

(i) every vertex of G belongs to exactly one simplex of G;

(ii) G is square-stable;

(iii) G satisfies $\theta(G) = \theta(G^2)$;

(iv) G satisfies $\alpha(G^2) = \theta(G^2) = \gamma(G) = \omega(G) = \alpha(G) = \theta(G)$;

(v) $\Omega(G^2) \subseteq \Omega(G)$;

(vi) there is some $S \in \Omega(G)$ such that $\text{dist}(a, b) \geq 3$ holds for any distinct $a, b \in S$;

(vii) there exists $S_0 \in \Omega(G)$ that satisfies the property P_1:

P1: any stable set A of G disjoint from S_0 can be uniquely matched into S_0;

(viii) any $S \in \Omega(G^2)$ has property P_1;

(ix) for any $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$, $G[S_1 \triangle S_2]$ has a unique perfect matching;

(x) for any $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$, $G[S_1 \triangle S_2]$ has a perfect matching;

(xi) for any $S_1 \in \Omega(G)$ and $S_2 \in \Omega(G^2)$, $G[S_1 \triangle S_2]$ has an induced perfect matching;

(xii) there is $S_0 \in \Omega(G)$ that has the property P_2; for any stable set A of G disjoint from S_0, $A \cup S^* \in \Omega(G)$ holds for some $S^* \subset S_0$;

(xiii) any $S \in \Omega(G^2)$ has property P_2.

We can now characterize the square-stable graphs that are also simplicial or chordal, by extending two results from [17].

Proposition 2.15 For a graph G the following assertions are equivalent:

(i) G is square-stable;

(ii) G is simplicial and well-covered;

(iii) every vertex belongs to exactly one simplex of G.

7
Proof. The equivalence (ii) ⇔ (iii) is proved in [17], and Theorem 2.14 ensures that (i) ⇔ (iii).

Proposition 2.16 For a chordal graph G the following assertions are equivalent:
(i) G is square-stable;
(ii) G is well-covered;
(iii) every vertex belongs to exactly one simplex of G.

Proof. The equivalence (ii) ⇔ (iii) is proved in [17], and Theorem 2.14 ensures that (i) ⇔ (iii).

As another consequence of Theorem 2.14, we obtain that $\Omega(G)$ is the set of bases of a matroid on $V(G)$ provided G is a complete graph.

Lemma 2.17 $\Omega(G)$ is the set of bases of a matroid on V if and only if $\Omega(G^2) = \Omega(G)$.

Proof. If $\Omega(G)$ is the set of bases of a matroid on V, then any $S \in \Omega(G)$ must have the property P2. By Theorem 2.13, G is square-stable and therefore $\Omega(G^2) \subseteq \Omega(G)$. Suppose that there exists $S_0 \in \Omega(G) - \Omega(G^2)$; it follows that there are $a, b \in S_0$ and $c \in N(a) \cap N(b)$. Hence, \{c\} is stable in G and disjoint from S_0, but $S^* \cup \{c\} \notin \Omega(G)$ for any $S^* \subset S_0$, a contradiction, since S_0 has property P2. Consequently, the equality $\Omega(G^2) = \Omega(G)$ is true.

Conversely, according to Theorem 2.13, any $S \in \Omega(G^2) = \Omega(G)$ has the property P2. Therefore, $\Omega(G)$ is the set of bases of a matroid on V.

Combining Theorem 2.7 and Lemma 2.17, we get the following:

Proposition 2.18 $\Omega(G)$ is the set of bases of a matroid on V if and only if G is a complete graph.

For graphs that are not necessarily connected, we may deduce the following:

Proposition 2.19 $\Omega(G)$ is the set of bases of a matroid on $V(G)$ if and only if G is a disjoint union of cliques.

3 Unique pendant perfect matching graphs

In general, a graph having a unique perfect matching is not necessarily square-stable. For instance, $K_3 + e$ has a unique perfect matching, but is not square-stable. Further, we pay attention to graphs having a perfect matching consisting of pendant edges, which is obviously unique.

Proposition 3.1 If G has a perfect matching consisting of pendant edges, then the following statements are valid:
(i) $\Omega(G^2) = \{S_0\}$, where $S_0 = \{v : v$ is a pendant vertex in $G\}$;
(ii) G is square-stable.
According to Proposition 3.1, it follows that \(G = \{ a \in V : v \text{ is a pendant vertex in } G \} \) is stable in \(G \), and \(|S_0| = |V - S_0| \leq \alpha(G) \). Let \(S_1 \in \Omega(G) \) and suppose that \(|S_1| > |S_0| \). Hence, both \(S_1 \cap S_0 \) and \(S_1 \cap (V - S_0) \) are non-empty, and \(|S_1 \cap S_0| > |V - S_0 - (S_1 \cap (V - S_0))| \).

In addition, we have that \(|S_1 \cap S_0, S_1 \cap (V - S_0)| = \emptyset \), because \(S_1 \) is stable, and therefore \(S_1 \cap S_0 \) can not be matched into \(V - S_0 - (S_1 \cap (V - S_0)) \), contradicting the fact that \(G \) has a perfect matching. Consequently, \(S_0 \in \Omega(G) \), and because \(\text{dist}_{G}(a, b) \geq 3 \) holds for any \(a, b \in S_0 \), we get that \(S_0 \in \Omega(G^2) \), i.e., \(G \) is square-stable.

Assume that there is \(S_2 \in \Omega(G^2) \), \(S_0 \neq S_2 \). Then \(S_2 \in \Omega(G) \) and \(\text{dist}_{G}(a, b) \geq 3 \) holds for any \(a, b \in S_2 \). Let denote \(S_0 = \{ v_i : 1 \leq i \leq \alpha(G) \} \) and \(N(v_i) = \{ w_i \} \), for \(1 \leq i \leq \alpha(G) \). Since \(S_0 \neq S_2 \), we may assume that, for instance, \(w_i \in S_2 \), and because \(w_1 \) is not pendant, it follows that \(|N(w_1)| \geq 2 \). Without loss of generality, we may suppose that \(w_2 \in N(w_1) \). Hence, \(v_1, v_2, w_2 \notin S_2 \), and this implies that \(|S_2| < |S_0| \), because for any \(i \geq 3 \), \(S_2 \) contains either \(v_i \) or \(w_i \), but never both of them. So, we may conclude that \(\Omega(G^2) = \{ S_0 \} \).

Let us notice that there are square-stable graphs with more than one maximum stable set, and having no perfect matching; e.g., the graph in Figure 3.

Proposition 3.2 For a König-Egerváry graph \(G \) of order \(n \geq 2 \) the following assertions are equivalent:

(i) \(G \) square-stable;

(ii) \(G \) has a perfect matching consisting of pendant edges;

(iii) \(G \) is very well-covered with exactly \(\alpha(G) \) pendant vertices.

Proof. (i) \(\Rightarrow \) (ii) By Proposition 2.11, \(G \) is well-covered, and according to Proposition 1.3 it is also very well-covered. Hence, we get that \(\alpha(G) = \mu(G) = n/2 \), and \(G \) has a perfect matching \(M \). Let \(S_0 = \{ a_i : 1 \leq i \leq \alpha(G) \} \in \Omega(G^2) \) and \(b_i \in V(G) - S_0 \) be such that \(a_i b_i \in M \) for \(1 \leq i \leq \alpha(G) \). By Proposition 2.4, \(\text{dist}_{G}(v, w) \geq 3 \) holds for any \(v, w \in S_0 \). We claim that every \(a_i \in S_0 \) is pendant, i.e., \(N(a_i) = \{ b_i \} \), since otherwise, if \(b_j \in N(a_i) \) for some \(i \neq j \), it follows that \(\text{dist}_{G}(a_i, a_j) = 2 \), in contradiction with \(\text{dist}_{G}(a_i, a_j) \geq 3 \). Therefore, \(M \) consists only of pendant edges.

(ii) \(\Rightarrow \) (iii) Let \(M = \{ v_i w_i : 1 \leq i \leq n/2 \} \) be the perfect matching of \(G \), consisting only of pendant edges, and suppose that all vertices in \(S_0 = \{ v_i : 1 \leq i \leq n/2 \} \) are pendant. By Proposition 3.1, we get that \(S_0 \in \Omega(G) \), i.e., \(\alpha(G) = \mu(G) = n/2 \).

Assume that \(G \) is not well-covered, that is there exists some maximal stable set \(A \) in \(G \) such that \(A \notin \Omega(G) \). Since \(S_0 \) contains all pendant vertices of \(G \), it follows that \(A \cup \{ v_i : v_i \in S_0, N(v_i) \cap A = \emptyset \} \) is stable and larger than \(A \), in contradiction with the maximality of \(A \). In conclusion, \(G \) is very well-covered.

(iii) \(\Rightarrow \) (i) Since \(G \) is very well-covered with exactly \(\alpha(G) \) pendant vertices, we infer that \(S_0 = \{ v : v \text{ is a pendant vertex} \} \in \Omega(G) \) and also that the matching \(M = \{ vw : vw \in E(G), v \in S_0 \} \) is perfect and consists of only pendant edges. According to Proposition 3.1, it follows that \(G \) is square-stable.

Remark 3.1 Well covered König-Egerváry graphs do not have to be square-stable, for instance, the graph \(C_4 \).
Remark 3.2 A König-Egerváry graph with a unique perfect matching is not always square-stable, e.g., the graphs P_6 (by the way, it is also a tree) and $K_3 + e$ (i.e., the graph in Figure 4).

Remark 3.3 A non-König-Egerváry graph with a unique perfect matching M may be square-stable, even if M does not consist of only pendant edges (for instance, see the graph in Figure 4).

Figure 4: G is square-stable and has a unique perfect matching containing not only pendant edges.

Proposition 3.2 is true for bipartite graphs as well, since any bipartite graph is also a König-Egerváry graph. It is worth recalling here that for a bipartite graph (see [12], and for trees see [14]) to have a perfect matching is equivalent to be α^+-stable. In general, we have shown in [14] that any α^+-stable König-Egerváry graph has a perfect matching, while the converse is not true (see, for instance, the diamond, Figure 2).

Proposition 3.3 [15] Any well-covered tree T non-isomorphic to K_1, K_2, contains at least one edge e connecting two non-pendant vertices, such that $T - e = T' \cup K_2$ and T' is a well-covered tree.

For trees, Propositions 3.2 and 3.3 lead to the following extension of the characterization that Ravindra gave to well-covered trees in [19]:

Corollary 3.4 If T is a tree of order $n \geq 2$, then the following statements are equivalent:

(i) T is well-covered;
(ii) T is very well-covered;
(iii) T has a perfect matching consisting of pendant edges;
(iv) T is square-stable.

Proof. Let us notice that for general graphs: $(iv) \Rightarrow (i)$ is true according to Corollary 2.11 and the implication $(iii) \Rightarrow (ii)$ is clear. Further, for König-Egerváry graphs, the assertions (iii), (iv) are equivalent according to Proposition 3.2, and (i), (ii) are equivalent by Proposition 1.4. Thus, to complete the proof of the corollary, it is sufficient to show that for trees (i) implies (iii). Since (i) and (ii) are equivalent, the order n of T must be even. We use induction on n. The assertion is true for $n = 2$. If T has $n > 2$ vertices, then according to Proposition 3.3, T contains at least one edge e connecting two non-pendant vertices, such that $T - e = T' \cup K_2$ and T' is a well-covered tree. By the induction hypothesis, T' has a perfect matching M consisting of pendant edges. Hence, $M \cup \{e\}$ is a perfect matching of T consisting of...
Let us notice that the equivalences appearing in Corollary 3.4 fail for bipartite graphs. For instance, the graph in Figure 5 is very well-covered, but is not square-stable.

Combining Proposition 1.3 and Proposition 3.2, we obtain:

Corollary 3.5 \(G \) is square-stable and very well-covered if and only if \(G \) is a König-Egerváry graph with exactly \(\alpha(G) \) pendant vertices.

Corollary 3.6 If \(G \) is a square-stable König-Egerváry graph, then \(G^2 \) is also a König-Egerváry graph.

Remark 3.4 Figure 5 brings an example of a König-Egerváry graph whose square is not a König-Egerváry graph.

Another consequence of Proposition 3.2 is the following extension of the characterization that Finbow, Hartnell and Nowakowski give in [7] for graphs having the girth \(\geq 6 \).

Proposition 3.7 Let \(G \) be a graph of girth \(\geq 6 \), which is isomorphic to neither \(C_7 \) nor \(K_1 \). Then the following assertions are equivalent:
1. \(G \) is well-covered;
2. \(G \) has a perfect matching consisting of pendant edges;
3. \(G \) is very well-covered;
4. \(G \) is a König-Egerváry graph with exactly \(\alpha(G) \) pendant vertices;
5. \(G \) is a König-Egerváry square-stable graph.

Proof. The equivalences (i) \(\Leftrightarrow \) (ii) \(\Leftrightarrow \) (iii) are done in [7]. In [13] it has been proved that (iii) \(\Leftrightarrow \) (iv). Finally, (ii) \(\Leftrightarrow \) (v) is true by Propositions 3.1 and 3.2. ■

Remark 3.5 \(C_7 \) is not a König-Egerváry graph.
4 Conclusions

In this paper we continue the investigations, started by Randerath and Volkmann [15], on the class of square-stable graphs. We think that the characterization of Koenig-Egervary square-stable graphs obtained here may be extended to some new classes of square-stable graphs. It is also important to mention that square-stable trees have a very specific recursive structure (see [14]).

It also seems interesting to study graphs satisfying some equalities between the invariants appearing in the following series of inequalities: $\alpha(G^2) \leq \theta(G^2) \leq \gamma(G) \leq i(G) \leq \alpha(G) \leq \theta(G)$, for instance $\alpha(G^2) = i(G)$.

References

[1] C. Berge, Some common properties for regularizable graphs, edge-critical graphs and B-graphs, in: Graph Theory and Algorithms Lecture Notes in Computer Science 108 (1980) 108-123, Springer-Verlag, Berlin.
[2] K. Cameron, Induced matchings, Discrete Applied Mathematics 24 (1989) 97-102.
[3] G. H. Cheston, E. O. Hare and R. C. Laskar, Simplicial graphs, Congressus Numerantium 67 (1988) 105-113.
[4] R. W. Deming, Independence numbers of graphs - an extension of the König-Egerváry theorem, Discrete Mathematics 27 (1979) 23-33.
[5] G. Ding, Stable sets versus independent sets, Discrete Mathematics 117 (1993) 73-87.
[6] O. Favaron, Very well-covered graphs, Discrete Mathematics 42 (1982) 177-187.
[7] A. Finbow, B. Hartnell and R. J. Nowakowski, A characterization of well-covered graphs of girth 5 or greater, Journal of Combinatorial Theory Ser. B 57 (1993) 44-68.
[8] M. C. Golumbic, and R. C. Laskar, Irredundancy in circular arc graphs, Discrete Applied Mathematics 44 (1993) 79-89.
[9] M. C. Golumbic and M. Lewenstein, New results on induced matchings, Discrete Applied Mathematics (to appear).
[10] G. Gunther, B. Hartnell, and D. F. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Applied Mathematics 46 (1993) 167-172.
[11] T. W. Haynes, L. M. Lawson, R. C. Brigham and R. D. Dutton, Changing and unchanging of the graphical invariants: minimum and maximum degree, maximum clique size, node independence number and edge independence number, Congressus Numerantium 72 (1990) 239-252.
[12] V. E. Levit and E. Mandrescu, *On α-stable graphs*, Congressus Numerantium 124 (1997) 33-46.

[13] V. E. Levit and E. Mandrescu, *Well-covered and König-Egerváry graphs*, Congressus Numerantium 130 (1998) 209-218.

[14] V. E. Levit and E. Mandrescu, *On α^+-stable König-Egerváry graphs*, The Ninth SIAM Conference on Discrete Mathematics, University of Toronto, Canada (1998), Los Alamos Archive, preprint arXiv:math.CO/9912022, 1999, 13 pp.

[15] V. E. Levit and E. Mandrescu, *Well-covered trees*, Congressus Numerantium (1999) (accepted).

[16] M. D. Plummer, *Some covering concepts in graphs*, Journal of Combinatorial Theory 8 (1970) 91-98.

[17] E. Prisner, J. Topp and P. D. Vestergaard, *Well-covered simplicial, chordal, and circular arc graphs*, Journal of Graph Theory 21 (1996) 113-119.

[18] B. Randerath and L. Volkman, *Simplicial graphs and relationships to different graph invariants*, Ars Combinatoria 46 (1997) 211-217.

[19] G. Ravindra, *Well-covered graphs*, Journal of Combinatorial Information System Sciences 2 (1977) 20-21.

[20] F. Sterboul, *A characterization of the graphs in which the transversal number equals the matching number*, Journal of Combinatorial Theory Ser. B 27 (1979) 228-229.