The high-affinity immunoglobulin receptor FcγRI potentiates HIV-1 neutralization via antibodies against the gp41 N-heptad repeat

David C. Montefiori, Maria V. Filsinger Interrante, Benjamin N. Bell, Adonis A. Rubio, Joseph G. Joyce, John W. Shiver, Celia C. LaBranche, and Peter S. Kim

The HIV-1 gp41 N-heptad repeat (NHR) region of the prehairpin intermediate, which is transiently exposed during HIV-1 viral membrane fusion, is a validated clinical target in humans and is inhibited by the Food and Drug Administration (FDA)-approved drug enfuvirtide. However, vaccine candidates targeting the NHR have yielded only modest neutralization activities in animals; this inhibition has been largely restricted to tier-1 viruses, which are most sensitive to neutralization by sera from HIV-1–infected individuals. Here, we show that the neutralization activity of the well-characterized NHR-targeting antibody D5 is potentiated 5,000-fold in TZM-bl cells expressing FcγRI compared with those without, resulting in neutralization of many tier-2 viruses (which are less susceptible to neutralization by sera from HIV-1–infected individuals and are the target of current antibody-based vaccine efforts). Further, antisera from guinea pigs immunized with the NHR-based vaccine candidate (cCl2N36), neutralized tier-2 viruses from multiple clades in an FcγRI-dependent manner. As FcγRI is expressed on macrophages and dendritic cells, which are present at mucosal surfaces and are implicated in the early establishment of HIV-1 infection following sexual transmission, these results may be important in the development of a prophylactic HIV-1 vaccine.

HIV-1 | vaccine | prehairpin intermediate | gp41 | Fc receptor

Membrane fusion between HIV-1 and host cells is mediated by the viral envelope glycoprotein (Env), a trimer consisting of the gp120 and gp41 subunits. Upon interaction with cellular receptors, Env undergoes a dramatic conformational change and forms the prehairpin intermediate (PHI) (1–3), in which the fusion peptide region at the amino terminus of gp41 inserts into the cell membrane. In the PHI, the N-heptad repeat (NHR) region of gp41 is exposed and forms a stable, three-stranded α-helical coiled coil. Subsequently, the PHI resolves when the NHR and the C-heptad repeat (CHR) regions of gp41 associate to form a trim-der-hairpins structure that brings the viral and cell membranes into proximity, facilitating membrane fusion (Fig. 1).

The NHR region of the PHI is a validated therapeutic target in humans: the Food and Drug Administration (FDA)-approved drug enfuvirtide binds the NHR and inhibits viral entry into cells (4, 5). Various versions of the three-stranded coiled coil formed by the NHR have been created and used as vaccine candidates in animals (6–10). The neutralization potencies of these antisera, as well as those of anti-NHR monoclonal antibodies (mAbs) (11–15), are modest and mostly limited to HIV-1 isolates that are highly sensitive to antibody-mediated neutralization (commonly referred to as tier-1 viruses (16)). These results have led to skepticism about the PHI as a vaccine target.

Earlier studies showed that the neutralization activities of mAbs that bind another region of gp41, the membrane-proximal external region (MPER) (Fig. 1), were enhanced as much as 5,000-fold in cells expressing FcγRI (CD64) (17, 18). An integral membrane protein that binds the Fc portion of immunoglobulin G (IgG) molecules with high (nanomolar) affinity (19, 20). This effect was not attributed to phagocytosis and occurred when the cells were preincubated with antibody and washed before adding virus (17, 18). Since the MPER is a partially cryptic epitope that is not fully exposed until after Env engages with cellular receptors (21, 22), these results suggest that by binding the Fc region, FcγRI provides a local concentration advantage for MPER mAbs at the cell surface that enhances viral neutralization (17, 18). While not expressed on T cells, FcγRI is expressed on macrophages and dendritic cells (23), which are present at mucosal surfaces and are implicated in sexual HIV-1 transmission and the early establishment of HIV-1 infection (22–34).

Author contributions: D.C.M., M.V.F.I., B.N.B., J.G.J., and P.S.K. designed research; M.V.F.I., B.N.B., A.A.R., J.G.J., and C.C.L. performed research; M.V.F.I. contributed new reagents/analytic tools; D.C.M., M.V.F.I., B.N.B., A.A.R., J.G.J., J.W.S., C.C.L., and P.S.K. analyzed data; and D.C.M. and P.S.K. wrote the paper.

Competing interest statement: D.C.M. runs a central reference laboratory for the HIV vaccine research community and, together with C.C.L., has provided this standardized service to one or both of the reviewers.

Reviewer statements: D.R.B., The Scripps Research Institute and Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; and S.C.H., Boston Children’s Hospital.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

© 2021 The Author(s).

Published January 11, 2021.
residues that form the D5 epitope on the NHR (11, 12). Given the increase in potency afforded by FcγRI, we investigated the neutralization by D5 in a wide panel of HIV-1–pseudotyped viruses (36) in TZM-bl/FcγRI cells. At concentrations up to 25 μg/mL, D5 failed to neutralize viruses in the panel when measured in TZM-bl cells not expressing FcγRI (Table 1). However, when measured across the same concentration range in TZM-bl/FcγRI cells, D5 inhibited eight of the nine tier-2 viruses in the panel, spanning five clades (Table 1).

Consistent with earlier studies (17), addition of normal human serum to the neutralization assay diminished the potentiation of D5 neutralizing activity in TZM-bl/FcγRI cells (Fig. 3). This decrease in neutralization was dependent on the concentration of added human serum (Fig. 3), as expected if serum IgG competes for binding to FcγRI and thereby reduces the potentiation of D5 neutralizing activity. Because D5 has such high potency in TZM-bl/FcγRI cells (50% inhibitory dose [ID₅₀] < 0.01 μg/mL; Fig. 2A), it is not surprising that 0.5% human serum (~50 μg/mL IgG) greatly diminishes the observed potentiation (Fig. 3). However, in a vaccine setting, a substantial fraction (~1 to ~10%) of serum immunoglobulin can be antigen-specific (37–40). Indeed, antisera from guinea pigs immunized with the NHR-based vaccine candidate (ccIZN36), which had weak or no neutralizing activity in TZM-bl/FcγRI cells, neutralized tier-2 viruses from multiple clades when tested in TZM-bl/FcγRI cells (Fig. 4). These results demonstrate that potentiation can occur even in the presence of non–vaccine-elicited serum IgG, vaccine-elicited antibodies against the NHR have enhanced FcγRI-dependent neutralization.

Discussion

Here we have established that D5, a mAb targeting the NHR region of the PHI, is ~5,000-fold more potent at preventing HIV-1 infection in FcγRI-expressing cells than in cells that do not express this receptor. This potentiation was found to be specific to FcγRI, and was not observed with equimolar concentrations of D5 Fab (Fig. 2), providing strong evidence that potentiation was the result of Fc-dependent interaction of D5 with FcγRI. We have also shown that antisera against the NHR of the HIV-1 PHI elicited with a vaccine candidate have substantially enhanced neutralization activity in cells expressing FcγRI. In particular, antisera from guinea pigs immunized with (ccIZN36), exhibited FcγRI-dependent cross-clade neutralization of a diverse panel of tier-2 viruses (Fig. 4).

Earlier studies reported a similar effect with MPER-binding mAbs, including 2F5 and 4E10 (17, 18), but not with mAbs that target other HIV-1 epitopes. Importantly, these studies also demonstrated that this enhancement occurred when cells were preincubated with antibody and washed before virus was added. As in this work, only slight potentiation was observed for the MPER-binding mAbs in the presence of the other FcγRs tested (Ia, Iib, IIIa).

In contrast to the other, low-affinity FcγRs which generally bind IgG in the form of immune complexes, human FcγRI is able to bind monomeric IgG with Kᵦ~15 nM (19, 20). As the concentration of IgG in serum is ~70 μM (~10 mg/mL), FcγRI receptors will be fully occupied with IgG, and over 1% can be expected to be antigen-specific following vaccination (37–40). Given that human classical monocytes (precursors of most dendritic cells and macrophages) express ~70,000 FcγRs per cell (41), each cell would have over 700 FcγRs occupied with antigen-specific antibodies. Moreover, both FcγRI (42) and CD4 (43, 44) are preferentially localized to lipid rafts, substantially increasing the likelihood that FcγRI is in close proximity to gp41 during viral fusion.

Taken together, these results support a model for potentiation (Fig. 5) in which prepositioning of antibodies by FcγRI at cell surfaces increases the local concentration of antibodies and thereby enhances neutralization (17, 18) (see also ref. 45). Such a
A mechanism would be expected to impact HIV-1 antibodies that target epitopes on Env that are only exposed after engagement with cellular receptors, such as the MPER or the NHR. Since other viruses that utilize type-I fusion proteins appear to proceed through a PHI during cell entry (2, 3), potentiation of anti-PHI antibodies against other viruses can also be expected.

The relevance of these findings to potential protection from HIV-1 infection is not yet clear. Although FcγRI is not normally expressed on CD4+ T cells, studies of nonhuman primates 24 to 48 h following intravaginal simian immunodeficiency virus (SIV) inoculation demonstrate infection of a substantial number of dendritic cells and macrophages, that often express FcγRI, in addition to T lymphocytes (32–34, 46). Studies using an SIV-based dual-reporter system find that 48 h after vaginal inoculation, while the majority of infected cells are T cells, 25% are dendritic cells or macrophages (47, 48). The relevance of these findings to potential protection from HIV-1 infection is not yet clear. Although FcγRI is not normally expressed on CD4+ T cells, studies of nonhuman primates 24 to 48 h following intravaginal simian immunodeficiency virus (SIV) inoculation demonstrate infection of a substantial number of dendritic cells and macrophages, that often express FcγRI, in addition to T lymphocytes (32–34, 46). Studies using an SIV-based dual-reporter system find that 48 h after vaginal inoculation, while the majority of infected cells are T cells, 25% are dendritic cells or macrophages (47, 48).

The relevance of these findings to potential protection from HIV-1 infection is not yet clear. Although FcγRI is not normally expressed on CD4+ T cells, studies of nonhuman primates 24 to 48 h following intravaginal simian immunodeficiency virus (SIV) inoculation demonstrate infection of a substantial number of dendritic cells and macrophages, that often express FcγRI, in addition to T lymphocytes (32–34, 46). Studies using an SIV-based dual-reporter system find that 48 h after vaginal inoculation, while the majority of infected cells are T cells, 25% are dendritic cells or macrophages (47, 48).
reports to the question of which cells are first infected following atraumatic vaginal inoculation is complicated by the ability of SIV to enter the vaginal mucosa within 60 min of exposure, such that by 48 h, viral replication will have occurred and infected cells will include many more than those directly infected by the inoculum (33, 48).

While there is not yet consensus in the field regarding which cell types are first infected by HIV-1 in the early minutes to hours of transmission, it is clear that T cells, dendritic cells, and macrophages are all infected in substantial numbers (34). Importantly, HIV-1–infected dendritic cells and macrophages (24–27), both of which express FcγRI, can transmit virus to CD4+ T cells (28–31). In addition, dendritic cells extend dendrites to the luminal surface of the vaginal mucosa where they could be infected directly, and the migration of HIV-1–positive dendritic cells from the initial site of infection to lymph nodes results in dissemination of virus to large numbers of CD4+ T cells (34, 49, 50). Thus, the enhanced protection of FcγRI-expressing cells such as dendritic cells and macrophages by antibodies that target the PHI might decrease the likelihood of HIV-1 transmission, particularly during atraumatic vaginal infection (see also refs. 17, 18, and 51).

Previous studies of nonhuman primates support the notion that FcγRI may have an important role in protection provided by MPER antibodies against simian-HIV (SHIV) challenge. First, in a vaginal challenge with SHIV-BaL in rhesus macaques, dose-dependent protection was observed for an MPER mAb (2F5) when it was administered as an IgG but not when dosed in Fab form, despite higher vaginal Fab levels at the time of challenge (52). This result likely implicates an Fc-dependent mechanism, although the possibility that it is related to the valency difference between the IgG and the Fab cannot be ruled out. Second, in a comprehensive meta-analysis of numerous passive immunization studies showing that serum-neutralization antibody titers associate with protection against SHIV challenge, mAbs targeting the MPER were a highly significant outlier compared with other neutralizing mAbs, with much greater potency than would be predicted from serum-neutralization titers measured in cell culture (53) (see also refs. 54 and 55).

Fig. 3. Addition of normal human serum to infection assays diminishes the potentiation of D5 neutralization activity by FcγRI. Values of ID₅₀ for D5 IgG (nM) against viruses pseudotyped with Env from two HIV-1 strains (HXB2 and 25710) measured in the presence of 0.005 to 0.5% added human serum. Values above the limit of quantitation for this assay (5 nM) are indicated with arrowheads. ID₅₀ values were obtained from nonconstrained fits of four- and five-point dilution curves, where the neutralization value at each dilution was measured in duplicate.

Fig. 4. Antisera from guinea pigs immunized with an NHR-based vaccine candidate, (ccIZN36)₃, neutralize multiple tier-2 HIV-1 strains in TZM-bl/FcγRI cells. (A) (ccIZN36)₃ contains 36 residues from the NHR region of gp41 (HXB2) and is stabilized by disulfide bonds and a coiled-coil domain (7). (B) ID₅₀ titers (serum dilution) were determined for antisera against viruses pseudotyped with Env from various HIV-1 strains measured in TZM-bl cells not expressing (Top; closed) or expressing (Bottom; open) FcγRI using a validated neutralization assay (63–66). V570A is a mutant of the HXB2 strain that is more sensitive to antibodies that target the PHI (7), and P.I. denotes preimmune antisera tested against this strain. Preimmune antiserum from each animal was tested against all viruses and did not have detectable neutralization in any of the strains (ID₅₀ titers were below the limit of quantitation, which was 100 for TZM-bl/FcγRI assays with V570A antisera and 10 for all others). Each data point represents the ID₅₀ value of antiserum from a single guinea pig after a prime and two boosts with (ccIZN36)₃.
Fig. 5. Hypothesized mechanism for FcyRI-mediated potentiation of antibodies targeting the NHR. The Fc domain of the antibody is bound by FcyRI; similar to the previously characterized mechanism of FcγRII on this manuscript. We thank members of the P.S.K. laboratory for valuable discussions, Nielson Weng for consultation on statistics, and the responsibility of the authors and does not necessarily represent the official view of the NIH. B.N.B. is supported by the NSF Graduate Research Fellowship Program. We thank members of the P.S.K. laboratory for valuable discussions, Nielson Weng for consultation on statistics, and Drs. Lillian Cohn, Abigail Powell, and Shaogeng Tang for helpful feedback on this manuscript.

1. D. C. Chan, P. S. Kim, HIV entry and its inhibition. Cell 93, 681–684 (1998).
2. D. M. Eckert, P. S. Kim, Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 70, 777–810 (2001).
3. S. C. Harrison, Viral membrane fusion. Virology 479–480, 498–507 (2015).
4. J. M. Kilby et al., Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature 398, 1302–1307 (1998).
5. J. Llabre, J. Lebboz, P. Kirkpatrick, Enfuvirtide. Nat. Rev. Drug Discov. 2, 345–346 (2003).
6. E. de Rosny, R. Vassell, P. T. Wingfield, C. T. Wild, C. D. Weiss, Peptides corresponding to the heptad repeat motifs in the transmembrane protein (gp41) of human immunodeficiency virus type 1 elicit antibodies to receptor-activated conformational epitopes of the envelope glycoprotein. J. Virol. 75, 8589–8683 (2001).
7. E. Bianchi et al., Vaccination with peptide mimetics of the gp41 prehairpin fusion intermediate yields neutralizing antibodies against HIV-1 isolates. Proc. Natl. Acad. Sci. U.S.A. 107, 10655–10660 (2010).
8. Z. Qi et al., A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice. Biochem. Biophys. Res. Commun. 398, 506–512 (2010).
9. J. D. Nelson et al., Antibody elicited against the gp41 N-heptad repeat binds to NHR mimetics. J. Virol. 82, 183–183 (2008).
23. C. E. van der Poel, R. M. Spaapen, J. G. J. van de Winkel, J. H. W. Leusen, Functional characteristics of the high affinity IgG receptor, FcγRI. J. Virol. 84, 1439–1452 (2010).

24. F. Nimmerjahn, J. V. Ravetch, FcγRamma receptors: Old friends and new family members. Immunity 24, 19–28 (2006).

25. T. Seaman et al., Structural categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies. J. Virol. 84, 1349–1452 (2010).

26. L. C. van Winkel, J. M. Louis, I. Nesheiwat, L. Chang, G. M. Clore, C. A. Bewley, Covalent trimers of the type II for IgG on human phagocytes. J. Immunol. Methods 319, 26–32 (2007).

27. X. Zhang et al., Sexual transmission and propagation of HIV and SIV in resorting and activated CD4+ T cells. Science 282, 1533–1537 (1999).

28. K. Waki, E. O. Freed, Macrophages and cell-cell spread of HIV-1. Front. Microbiol. 11, 2485 (2020).

29. L. Bracq, M. Xie, S. Benichou, J. Bouchet, Mechanisms for cell-to-cell transmission of HIV-1. Front. Immunol. 9, 54–64 (2018).

30. K. Loré, A. Smed-Sörensen, J. Vasudevan, J. R. Mascola, R. A. Koup, Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J. Exp. Med. 206, 1421–1428 (2009).

31. Z. Zhang et al., Update on Fc-mediated antibody functions against HIV-1 beyond neutralization. Front. Immunol. 10, 2968 (2019).

32. K. Waki, E. O. Freed, Macrophages and cell-cell spread of HIV-1. Front. Immunol. 9, 54–64 (2018).

33. L. Yi, J. Fang, N. Isik, J. Chim, T. Jin, HIV gp120 interaction with CD4 and CXCR4 requires cholesterol-rich microenvironments revealed by live cell fluorescence resonance energy transfer imaging. J. Biol. Chem. 285, 34546–34553 (2010).

34. S. M. Alam et al., Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc. Natl. Acad. Sci. U.S.A. 106, 20234–20239 (2009).

35. A. Gustchina et al., Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J. Virol. 83, 7397–7410 (2009).

36. E. Gustchina et al., Complexes of neutralizing and non-neutralizing affinity matured Fabbs with a mimetic of the internal trimeric coiled-coil of HIV-1 gp41. PLoS One 8, e78187 (2013).

37. C. Sabin et al., Crystal structure and size-dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved heptad repeat 1 of gp41. PLoS Pathog. 6, e1001195 (2010).

38. M. A. Luftig et al., Protective activity of a broad spectrum monoclonal antibody against HIV-1 in vivo. Nat. Med. 15, 1157–1162 (2009).

39. J. S. Gach, D. P. Leaman, M. B. Zwick, Targeting HIV-1 gp41 in close proximity to the membrane using antibody and other molecules. Curr. Top. Med. Chem. 11, 2997–3021 (2011).

40. C. E. van der Poel, R. M. Spaapen, J. G. J. van de Winkel, J. H. W. Leusen, Functional characteristics of the high affinity IgG receptor, FcγRI. J. Immunol. 176, 2699–2704 (2011).

41. S. Patterson, A. Rae, N. Hockey, J. Gilmour, F. Gotch, Plasmytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virions. J. Virol. 79, 6193–6213 (2005).

42. J. Kalpana, E. M. S. B. Prasad, B. Prasad, S. V. Kalra, K. Chakravorty, D. K. Jag, R. K. Chakravorty, Detection of HIV-1 in plasma samples by competitive inhibition ELISA. J. Virol. Methods 183, 117–122 (2012).

43. Y. Takeuchi, M. O. McClure, M. Pizzato, Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research. J. Virol. 82, 12585–12590 (2008).

44. L. Yi, J. Fang, N. Isik, J. Chim, T. Jin, HIV gp120-induced interaction between CD4 and CXCR4 requires cholesterol-rich microenvironments revealed by live cell fluorescence resonance energy transfer imaging. J. Biol. Chem. 285, 34546–34553 (2010).

45. S. G. Turville et al., Neutralizing antibody virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179 (2004).

46. A. Martin-Moreno, M. A. Muñoz-Fernández, Dendritic cells, the double agent in the war against HIV-1. Front. Immunol. 10, 2485 (2019).

47. B. Su et al., Update on Fc-mediated antibody functions against HIV-1 beyond neutralization. Front. Immunol. 10, 2968 (2019).

48. D. J. Steih et al., Vaccine-elicited SIV and HIV envelope-specific IgA and IgG antibodies. J. Virol. 87, 11604–11616 (2013).

49. A. Pegu et al., A meta-analysis of passive immunization studies shows that serum-neutralizing antibody titers associates with protection against SHIV challenge. Cell Host Microbe 26, 336–346.e3 (2019).

50. A. J. Hessel et al., Broadly neutralizing monoclonal antibodies 2F5 and 410 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. J. Virol. 84, 1302–1313 (2010).

51. A. Pegu et al., Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 coreceptor. Sci. Transl. Med. 6, 243ra88 (2014).

52. E. J. Platt, M. Bliska, S. L. Kozak, D. Kabat, D. C. Montefiori, Evidence that ecotrophic murine leukemia virus contamination in TMZ-b1 cells does not affect the outcome of neutralizing antibody assays with human immunodeficiency virus type 1 J. Virol. 83, 8289–8292 (2009).

53. V. Takeuchi, M. O. McClure, M. Pizzato, Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research. J. Virol. 82, 12585–12588 (2008).

54. X. Wei et al., Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T20) monotherapy. Antimicrob. Agents Chemother. 46, 1896–1905 (2002).

55. C. A. Derdeyn et al., Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J. Virol. 74, 11790–11795 (2000).

56. E. J. Platt, K. Wehrly, S. E. Kuhmann, B. Chesebro, D. Kabat, Effects of CCR5 and CD4 cell surface concentrations on infections by macrophage tropic isolates of human immunodeficiency virus type 1 J. Virol. 72, 2855–2864 (1998).

57. M. Li et al., Genetic and neutralization properties of subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in southern Africa. J. Virol. 80, 11776–11790 (2006).

58. P. Hraber et al., Panels of HIV-1 subtype C Env reference strains for standardized neutralization assessments. J. Virol. 91, e00991-17 (2017).

59. D. C. Montefiori, Measuring HIV neutralization in a Luciferase reporter gene assay. Methods Mol. Biol. 485, 395–405 (2009).

60. M. Sarzotti-Kelsoe et al., Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods 369, 131–146 (2014).

61. D. A. Ozaki et al., International technology transfer of a GCP-compliant HIV-1 neutralizing antibody assay for human clinical trials. PLoS One 7, e30963 (2013).

62. C. A. Todd et al., Development and implementation of an international proficiency testing program for a neutralizing antibody assay for HIV-1 in TMZ-b1 cells. J. Immunol. Methods 375, 35–43 (2012).

63. D. C. Montefiori et al., The high-affinity immunoglobulin receptor FcγRIIa potentiates HIV-1 neutralization via antibodies against the gp41 N-heat repeat.