2007

Estimates in the Generalized Morrey Space for Linear Parabolic Systems

Matthew Scott McBride
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

Part of the Physical Sciences and Mathematics Commons

Repository Citation
McBride, Matthew Scott, "Estimates in the Generalized Morrey Space for Linear Parabolic Systems" (2007). Browse all Theses and Dissertations. 118.
https://corescholar.libraries.wright.edu/etd_all/118

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Estimates in the Generalized Morrey Spaces

for Linear Parabolic Systems

A thesis submitted for the partial fulfillment of the requirements for the degree of Master of Science

By

Matthew Scott McBride

B.S., Purdue University, 2005

2007

Wright State University
I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY
Matthew Scott McBride ENTITLED Estimates in the Generalized Morrey Spaces for Linear
Parabolic Systems BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF Master of Science.

Qingbo Huang, Ph.D.
Thesis Director

Joanne Dombrowski, Ph.D.
Department Chair

Committee on Final Examination

Qingbo Huang, Ph.D.

Joanne Dombrowski, Ph.D.

Lop-Fat Ho, Ph.D.

Joseph F. Thomas, Jr., Ph.D.
Dean, School of Graduate Studies
Abstract

McBride, Matthew Scott. M.S., Department of Mathematics and Statistics, Wright State University, 2007. Estimates in the Generalized Morrey Space for Parabolic Systems

The purpose of this paper is to study the parabolic system $u_t - D_\alpha(a_{ij}^{\alpha\beta}D_\beta u^j) = -\text{div} f^i$ in the generalized Morrey Space $L^{2,\lambda}_\varphi$. We would like to understand the regularity of the solutions of this system. It will be shown that 1: if $a_{ij}^{\alpha\beta} \in C(Q_T)$ then $Du \in L^{2,\lambda}_\varphi$, and 2: if $a_{ij}^{\alpha\beta} \in VMO(Q_T)$ then $Du \in L^{2,\lambda}_\varphi$. Moreover we will be able to obtain estimates on the gradient of the solutions to the system, which will tell us about the regularity of the solutions.
Contents

1 Introduction .. 1

2 Preliminaries .. 2

3 Main Results ... 6

4 References ... 9
1 Introduction

In this paper we will be investigating the following linear parabolic systems of the form

\[(1-1)\quad u_i^t - D_\alpha \left(a_{\alpha \beta}^{ij}(x,t) D_\beta u^j \right) = -\text{div} f^i(x,t) \quad i = 1, \ldots, N\]

where \(i, j = 1, \ldots, N; \alpha, \beta = 1, \ldots, n\) and the repeated indices denote summation such as
\[\sum_{i=1}^n \sum_{j=1}^n a_{ij} \xi^i \xi^j = a_{ij} \xi^i \xi^j\]

Throughout the paper we assume an uniform ellipticity condition, namely:

\[(1-2)\quad \Lambda^{-1} |\xi|^2 \leq a_{\alpha \beta}^{ij}(x,t) \xi_\alpha^i \xi_\beta^j \leq \Lambda |\xi|^2 \quad \text{where} \Lambda > 0, \xi \in \mathbb{R}^{(n+1)N}, (x,t) \in Q_T, Q_T = \Omega \times [0,T], \Omega \subset \mathbb{R}^n\]

The main purpose of this paper is to demonstrate that one can obtain the gradient estimates in generalized Morrey spaces \(L^{2,\lambda}_e\) for weak solutions of \(1-1\).
2 Preliminaries

Notations:

\[B_R(x_0) = \{ x \in \mathbb{R}^n | |x - x_0| < R \} \text{-ball in } \mathbb{R}^n \text{ centered at } x_0 \text{ with radius } R \]
\[z_0 = (x_0, t_0) \in \mathbb{R}^{n+1} \text{ and } z = (x, t) \in \mathbb{R}^{n+1} \text{ for } x \in \mathbb{R}^n \text{ and } t \in (0, T) \]
\[Q_R(z_0) = B_R(x_0) \times (t_0 - R^2, t_0) \text{- parabolic cylinder in } \mathbb{R}^{n+1} \text{ vertexed at } z_0 \]

Boundary Terms of the Parabolic Cylinder:

The boundary of the parabolic cylinder consists of the lateral walls, the lower boundary, and the lower corners, however we will use \(\partial_p Q_R \) to denote the parabolic boundary of the parabolic cylinder.

Morrey Space for Parabolic Setting:

\[(2-1) \quad L_p^{\varphi, \lambda}(Q_T) = \left\{ f \in L^p(Q_T) \mid \sup_{z_0 \in Q_T, 0 \leq \rho \leq d} \left(\frac{1}{\varphi(\rho)} \int_{Q_T \cap Q_\rho(z_0)} |f|^p \, dz \right)^{\frac{1}{p}} < \infty \right\} \text{ with } 1 \leq p < \infty, 0 \leq \lambda \leq n + 2 \varphi \text{ is a continuous function on } [0, d], \varphi > 0 \text{ on } (0, d], d \text{ is the diameter of } Q_T = \Omega \times (0, T] \subset \mathbb{R}^n. \]

Lemma 2.1:

\(L_p^{\varphi, \lambda} \) is a Banach Space under the norm

\[\|f\|_{L_p^{\varphi, \lambda}} = \sup_{z_0 \in Q_T, 0 \leq \rho \leq d} \left(\frac{1}{\varphi(\rho)} \int_{Q_T \cap Q_\rho(z_0)} |f|^p \, dz \right)^{\frac{1}{p}} \]

Proof:

So the “norm” must satisfy the three properties to classify as a norm, then it must be shown that the space is complete. \(||f||_{L_p^{\varphi, \lambda}} \geq 0 \) is trivial similarly \(||\alpha f||_{L_p^{\varphi, \lambda}} = ||\alpha|| \|f\|_{L_p^{\varphi, \lambda}} \) is quite obvious, though the triangle inequality must be shown since it is not very simple.

Consider

\[\frac{1}{\varphi(\rho)} \left(\rho^{-\lambda} \int_{Q_T \cap Q_\rho(z_0)} |f + g|^p \, dz \right)^{\frac{1}{p}} \]

\[\leq \frac{1}{\varphi(\rho)} \left(\rho^{-\lambda} \int_{Q_T \cap Q_\rho(z_0)} |f|^p \, dz \right)^{\frac{1}{p}} + \left(\rho^{-\lambda} \int_{Q_T \cap Q_\rho(z_0)} |g|^p \, dz \right)^{\frac{1}{p}} \]

via Minkowski’s inequality. The one applies the sup function to both sides which yields,

\[\sup_{z_0 \in Q_T, 0 \leq \rho \leq d} \left(\rho^{-\lambda} \int_{Q_T \cap Q_\rho(z_0)} |f + g|^p \, dz \right)^{\frac{1}{p}} \leq \]

\[\sup_{z_0 \in Q_T, 0 \leq \rho \leq d} \left(\rho^{-\lambda} \int_{Q_T \cap Q_\rho(z_0)} |f|^p \, dz \right)^{\frac{1}{p}} + \left(\rho^{-\lambda} \int_{Q_T \cap Q_\rho(z_0)} |g|^p \, dz \right)^{\frac{1}{p}} \]
\[\leq \sup_{\varphi(\rho)} \frac{1}{\varphi(\rho)} \left(\rho^{-\lambda} \int_{Q_{T} \cap Q_{z}(z_0)} |f|^p \, dz \right)^{\frac{1}{p}} + \sup_{\varphi(\rho)} \frac{1}{\varphi(\rho)} \left(\rho^{-\lambda} \int_{Q_{T} \cap Q_{z}(z_0)} |g|^p \, dz \right)^{\frac{1}{p}}. \]

This implies that \(\|f + g\|_{L_p^{\lambda}} \leq \|f\|_{L_p^{\lambda}} + \|g\|_{L_p^{\lambda}} \). Therefore the triangle inequality is satisfied, and \(\|\cdot\|_{L_p^{\lambda}} \) is a norm on \(L_p^{\lambda} \).

Next it must be shown that \(L_p^{\lambda} \) is complete under the norm \(\|\cdot\|_{L_p^{\lambda}} \). Let \((f_k)_{k=1}^\infty \) be a Cauchy sequence in \(L_p^{\lambda} \). Tchebyshev's inequality implies that \(\{\{ z \in Q_T \mid |f_k(z) - f_m(z)| > \varepsilon \} \} \leq \varepsilon^{-p} \int_{Q_T \cap Q_{z}(z_0)} |f_k - f_m|^p \, dz \). Therefore, there exists a subsequence \((f_{k_j}) \) and \(f \) such that \(f_{k_j} \to f \) a.e. in \(Q_T \). For every \(\varepsilon > 0 \) there exists \(K \) such that \(\|f_{k_j} - f\|_{L_p^{\lambda}} < \varepsilon \) if \(k_j, k > K \). Let \(k_j \to \infty \) then by Fatou's lemma, one obtains, \(\|f - f_k\|_{L_p^{\lambda}} < \varepsilon \) for \(k > K \). Thus \(f \in L_p^{\lambda} \) by \(\|f\|_{L_p^{\lambda}} \leq \|f - f_k\|_{L_p^{\lambda}} + \|f_k\|_{L_p^{\lambda}} < \infty \) and \(\|f - f_k\|_{L_p^{\lambda}} \to 0 \) as \(k \to \infty \). Therefore \(L_p^{\lambda} \) is complete and hence it is a Banach space.

Morrey Space for \(p=2 \):

We consider the case of \(L_p^{\lambda}(Q) \) for \(p = 2 \). Define the Morrey space for \(p = 2 \) by:

\[
(2-2) \quad L_p^{2,\lambda}(Q_T) = \left\{ f \in L^2(Q_T) \mid \sup_{z_0 \in \tilde{Q}} \frac{1}{\varphi(\rho)} \left(\rho^{-\lambda} \int_{Q_{T} \cap Q_{z}(z_0)} |f|^2 \, dz \right)^{\frac{1}{2}} < \infty \right\}
\]

Definition 2.1:

A function \(h : [0, d] \to [0, \infty) \) is said to be almost increasing if there exists \(K_h \geq 1 \) such that \(h(s) \leq K_h h(t) \) for \(0 \leq s \leq t \leq d \).

The next proposition is due to [Hu] which will be useful for the main results of this paper.

Proposition 2.1:

Let \(H \) be a non-negative almost increasing function in \([0, R_0]\) and \(F(f) > 0 \) on \((0, R_0]\). Suppose that

(a) There exists \(A, B, \varepsilon, \beta > 0 \) such that \(H(\rho) \leq \left(A \left(\frac{\rho}{R} \right)^\beta + \varepsilon \right) H(R) + BF(R) \) for \(0 \leq \rho \leq R \leq R_0 \)

(b) There exists \(\gamma \in (0, \beta) \) such that \(\frac{\rho^2}{F(\rho)} \) is almost increasing in \((0, R_0]\)

Then there exists \(\varepsilon_0 = \varepsilon_0(A, \beta, \gamma) \) and \(C = C(A, \beta, \gamma, K_H, K) \) such that if \(\varepsilon < \varepsilon_0 \) then \(H(\rho) \leq C \frac{F(\rho)}{F(R_0)} H(R) + CBF(\rho) \).

BMO and VMO Spaces:

Definition 2.2:
Let $\psi \in C[0,d]$ and $\psi > 0$ on $[0,d]$ then $BMO_\psi(Q)$ is defined by:

\begin{align*}
\text{(2-4) } BMO_\psi(Q_T) = \\
\left\{ f \in L^2(Q_T) \mid \sup_{z_0 \in Q_T, \rho \leq d} \frac{1}{\psi(\rho)} \left(\iiint_{Q_T \cap Q_\rho(z_0)} |f(z) - f_{Q_T \cap Q_\rho(z_0)}(z_0)|^2 \, dz \right)^{\frac{1}{2}} < \infty \right\}
\end{align*}

where $f_A = \iiint_A f(z) \, dz$ and $A \subset \mathbb{R}^{n+1}$

Definition 2.3:

Letting $\psi = 1$ one defines $VMO(Q_T)$ by:

\begin{align*}
\text{(2-5) } VMO(Q_T) = \\
\left\{ f \in BMO(Q_T) \mid [f]_{BMO(Q_T, \sigma)} = \sup_{z_0 \in Q_T, \rho \leq \sigma} \left(\iiint_{Q_T \cap Q_\rho(z_0)} |f(z) - f_{Q_T \cap Q_\rho(z_0)}(z_0)|^2 \, dz \right)^{\frac{1}{2}} \to 0 \text{ as } \sigma \to 0 \right\}
\end{align*}

Weak Solutions:

We would like to discuss the energy estimates for the system (2-3) $u^i_t - D_\alpha \left(a^\alpha_{ij} D_\beta u^j \right) = 0$ in Q_T and a^α_{ij} is constant. For $Q_R(z_0) \subset Q_T$, let $u^i \xi^2(x)(\eta(t))$ be a test function with $\xi \in C_0^\infty(B_R(x_0))$, $0 \leq \xi \leq 1$ and $|D\xi| \leq \frac{C}{R-\rho}$ with $B_\rho(x_0) \subset B_R(x_0) \subset \Omega$ and $\eta(t) = \begin{cases} t-(t_0-R^2) \frac{1}{R^2-\rho^2} & t \in (t_0 - R^2, t_0 - \rho^2) \\ 1 & t \in [t_0 - \rho^2, t_0) \end{cases}$.

Next we multiply the test function by (2-3) and use integration by parts.

\[0 = \int \int_{B_R(x_0) \times (t_0-R^2,t)} u^i_t \xi^2 \eta + a^\alpha_{ij} D_\beta u^j D_\alpha (u^i \xi^2 \eta) \]

The boundary term is zero by definition of η and ξ.

\[= \int \int_{B_R(x_0) \times (t_0-R^2,t)} \left(\frac{1}{2} |u_t|^2 \right)_t \xi^2 \eta + \int \int_{B_R(x_0) \times (t_0-R^2,t)} a^\alpha_{ij} D_\beta_\alpha D_\beta u^i \left(\xi^2 \eta_t + 2 \xi u^i D_\alpha \xi \right) \eta \]

Therefore by uniform ellipticity and Cauchy-Schwarz inequality:

\[\int \int_{B_R(x_0)} |u(x,t)|^2 \xi^2(x) + C \int_{t_0-R^2}^t \int_{B_R(x_0)} |D\xi|^2 |Du|^2 \]

\[\leq \frac{1}{2} \int_{t_0-R^2}^t \int_{B_R(x_0)} |u|^2 \xi^2 \eta_t + C \int_{t_0-R^2}^t \int_{B_R(x_0)} |D\xi|^2 |u|^2 \eta \leq C \int_{t_0-R^2}^t \int_{B_R(x_0)} |u|^2 \left(|D\xi|^2 \eta + \frac{1}{2} \xi^2 \eta_t \right) \]

Then since $|D\xi| \leq \frac{C}{R-\rho}$ and $\eta_t \leq \frac{C}{R-\rho}$ this implies

\[\int \int_{B_R(x_0)} \frac{1}{2} |u(x,t)|^2 \xi^2 + \int_{t_0-R^2}^t \int_{B_R(x_0)} |Du|^2 \xi^2 \eta \leq C \int_{t_0-R^2}^t \int_{B_R(x_0)} |u|^2 \left(\frac{1}{(R-\rho)^2} + \frac{1}{R^2-\rho^2} \right) \]

Then this implies

\[\sup_{t_0-R^2 \leq t \leq t_0} \int_{B_R(x_0)} |u(t)|^2 + \int \int_{Q_R(x_0)} |Du|^2 \leq \frac{C}{(R-\rho)^2} \int \int_{Q_R(x_0)} |u|^2 \]

We call this last line the energy estimate for (2-3). Then define $V_2(Q_T) = \left\{ u \mid u \in L^\infty(0,T;L^2(Q_T), Du \in L^2(Q_T)) \right\}$ This
space is the Sobolov space counterpart for parabolic equations.

Using energy estimates and Sobolev embedding theorem, one can get the Morrey estimate for (2-3) with constant coefficients.

Lemma 2.2:
Let \(u \in V_2(Q_T) \) solve the following,

\[
(2-2) \quad u_t^i - D_\alpha \left(a_{ij}^{\alpha \beta} D_\beta u^j \right) = 0 \quad \text{in} \quad Q_T = \Omega \times (0, T]
\]

Then for \(Q_{R(z_0)} \subset Q_T \) and \(0 \leq \rho \leq R \)

\[
\int \int_{Q_{\rho(z_0)}} |D u|^2 \leq C \left(\frac{\rho}{R} \right)^{n+2} \int \int_{Q_{R(z_0)}} |D u|^2
\]

Proof:
By [Sc] one has \(\int \int_{Q_{\rho(z_0)}} |u|^2 \leq C \left(\frac{\rho}{R} \right)^2 \int \int_{Q_{R(z_0)}} |u|^2 \). Since \(a_{ij}^{\alpha \beta} \) is constant, by differentiating (2-3) we obtain that \(D_\alpha u \) is still a solution. Hence \(\int \int_{Q_{\rho(z_0)}} |D u|^2 \leq C \left(\frac{\rho}{R} \right)^{n+2} \int \int_{Q_{R(z_0)}} |D u|^2 \).

We will now turn our attention to the main results of this paper.
3 Main Results

In the preliminaries section the Morrey estimate we are interested in was shown for \(a_{ij}^{\alpha\beta} = \text{constant} \) by [Sc]. In this section we will extend this result to system (1-1). We establish the Morrey estimate first for the case \(a_{ij}^{\alpha\beta} \in C(\overline{Q_T}) \) and second for \(a_{ij}^{\alpha\beta} \in L^\infty(Q_T) \cap VMO(Q_T) \).

Theorem 3.1:

Let \(u \in V_2(Q_T) \) be a weak solution to \(u_i^j - D_\alpha \left(a^{\alpha\beta}_{ij}(z)D_\beta u^j \right) = -\text{div} f \ i = 1, \ldots N \text{ in } Q_T. \) Let \(a_{ij}^{\alpha\beta} \in C(\overline{Q_T}) \) and assume the uniform ellipticity condition and \(f^i \in L^{2,\lambda}_x(Q_T) \) also assume there exists \(\lambda, \gamma \) such that \(\lambda < \gamma < n + 2 \) and \(\frac{\gamma - \lambda}{\phi^2(r)} \) is almost increasing, then \(Du \in L^{2,\lambda}_x(Q_T) \) for any \(Q_T \subset Q_T \) for \(Q_R(z_0) \subset Q_T \) and \(r \leq R. \)

Moreover

\[
\int_{Q_R(z_0)} |Du|^2 \, dz \leq C \frac{\rho^{n+2}}{R^2} \int_{Q_R(z_0)} |Du|^2 + \int_{Q_R(z_0)} |Dv|^2
\]

Therefore one obtains

\[
\int_{Q_R(z_0)} |Du|^2 \leq 2 \int_{Q_R(z_0)} (|Du|^2 + |Dv|^2)
\]

Proof:

Let \(w \) satisfy (3-1)

\[
w^i - D_\alpha \left(a^{\alpha\beta}_{ij}(z_0)D_\beta w^j \right) = 0 \quad \text{in } Q_R(z_0)
\]

then \(v = u - w \) will satisfy

\[
\begin{align*}
 v^i - D_\alpha \left(a^{\alpha\beta}_{ij}(z_0)D_\beta (v^j) \right) &= D_\alpha \left(\left(a^{\alpha\beta}_{ij}(z) - a^{\alpha\beta}_{ij}(z_0) \right)D_\beta w^j \right) - \text{div} f^i \quad \text{in } Q_R(z_0) \\
 v &= 0 \quad \text{on } \partial_R Q_R(z_0)
\end{align*}
\]

Obviously by lemma 2.2 one obtains

\[
\int_{Q_R(z_0)} |Du|^2 \leq 2 \int_{Q_R(z_0)} (|Du|^2 + |Dv|^2)
\]

\[
\leq C \left(\frac{\rho}{R} \right)^{n+2} \int_{Q_R(z_0)} |Du|^2 + \int_{Q_R(z_0)} |Dv|^2
\]

Multiplying (3-2) by \(v \), integrating and performing integration by parts, one obtains the following:

\[
\int_{Q_R(z_0)} v^i v^j + \int_{Q_R(z_0)} a^{\alpha\beta}_{ij}(z_0)D_\beta v^j D_\alpha v^i - \int_{Q_R(z_0)} \left| a^{\alpha\beta}_{ij}(z) - a^{\alpha\beta}_{ij}(z_0) \right| |Du||Dv| + |f||Dv|
\]

Since \(a^{\alpha\beta}_{ij} \in C(\overline{Q}) \) if \(R \) is small enough, then

\[
\int_{Q_R(z_0)} |Du||Dv| \leq C \int_{Q_R(z_0)} (|Du|^2 + |Dv|^2) + \int_{Q_R(z_0)} |f|^2 \quad \text{via Schwartz inequality.}
\]

This yields

\[
\int_{Q_R(z_0)} |Du|^2 \leq C \left(\frac{\rho}{R} \right)^{n+2} \int_{Q_R(z_0)} |Du|^2 + \int_{Q_R(z_0)} |Dv|^2
\]

Therefore one obtains

\[
\int_{Q_R(z_0)} |Du|^2 \leq C \left(\frac{\rho}{R} \right)^{n+2} \int_{Q_R(z_0)} |Du|^2 + \int_{Q_R(z_0)} |Dv|^2
\]

The desired result follows immediately from proposition 2.1 □
The following Reverse Holder Inequality for parabolic equations can be found in [St-Gi] and is used in the proof of lemma 3.1.

Proposition 3.1:

Let \(u \in V_2(Q_T) \) be a weak solution to \(u_i^j - D_a \left(a^\alpha_{ij}(z)D_\beta u^j \right) = 0 \) in \(Q_T \) for \(i = 1, \ldots, N \) and \(a^\alpha_{ij} \) satisfying the uniform ellipticity condition (1-2), then there exists some \(s > 2 \) such that \(Du \in L_{loc}^s(Q_T) \) and for every \(Q_R \subset Q_4R \subset Q_T \) one has

\[
\left(\iint_{Q_R} |Du|^s \, dz \right)^{\frac{1}{s}} \leq C \left(\iint_{Q_4R} |Du|^2 \, dz \right)^{\frac{1}{2}}
\]

Lemma 3.1:

Let \(u \in V_2(Q_T) \) be a weak solution to \(u_i^j - D_a \left(a^\alpha_{ij}(z)D_\beta u^j \right) = 0 \) in \(Q_T \) for \(i = 1, \ldots, N \). Assume that \(a^\alpha_{ij} \in L^\infty(Q_T) \cap VMO(Q_T) \) and the uniform ellipticity condition (1-2) holds. Then for any \(0 < \mu < n+2 \) there exist \(R_0 \) and \(C \) depending only on \(n+2, N, \mu, \Lambda, \) and \(\left[a^\alpha_{ij}\right]_{VMO(Q_T)} \) such that for \(\rho \leq R \leq \min(R_0, \text{dist}(z_0, \partial_Q T)) \)

\[
\iint_{Q_\rho(z_0)} |Du|^2 \leq C \left(\frac{\rho}{R} \right)^\mu \iint_{Q_R(z_0)} |Du|^2 \, dz.
\]

Proof:

Let \(\left(a^\alpha_{ij}\right)_{z_R} = \iint_{Q_R(z_0)} a^\alpha_{ij} \, dx \, dt \). As in Theorem 3.1 let \(w \) and \(v = u - w \) satisfy respectively

\[
\begin{cases}
 w_i^j - D_a \left(a^\alpha_{ij}(z_0)D_\beta w^j \right) = 0 & \text{in } Q_R(z_0) \\
 w = u & \text{on } \partial_p Q_R(z_0)
\end{cases}
\]

and

\[
\begin{cases}
 v_i^j - D_a \left(\left(a^\alpha_{ij}\right)_{z_R} D_\beta v^j \right) = D_a \left(\left(a^\alpha_{ij}(z) - \left(a^\alpha_{ij}\right)_{z_R} \right) D_\beta u^j \right) & \text{in } Q_R(z_0) \\
 v = 0 & \text{on } \partial_p Q_R(z_0)
\end{cases}
\]

(3-3)

Similar to the proof of Theorem 3.1 one obtains

\[
\iint_{Q_R(z_0)} |Du|^2 \leq C \left(\frac{\rho}{R} \right)^{n+2} \iint_{Q_R(z_0)} |Du|^2 + C \iint_{Q_R(z_0)} |Dv|^2.
\]

We multiply (3-4) by \(v \) and perform an integration by parts to obtain

\[
\iint_{Q_R(z_0)} |Dv|^2 \leq C \iint_{Q_R(z_0)} \left| a^\alpha_{ij}(z) - \left(a^\alpha_{ij}\right)_{z_R} \right|^2 |Du|^2.
\]

Then by Holder’s inequality, along with \(a^\alpha_{ij} \in VMO \) and by proposition 3.1 one has

\[
\leq C \left(\iint_{Q_R(z_0)} \left| a^\alpha_{ij}(z) - \left(a^\alpha_{ij}\right)_{z_R} \right|^2 \right)^{\frac{1}{2}} \left(\iint_{Q_R(z_0)} |Du|^{2q} \right)^{\frac{1}{q}}
\]

\[
= C |Q_R(z_0)| \left(\iint_{Q_R(z_0)} \left| a^\alpha_{ij}(z) - \left(a^\alpha_{ij}\right)_{z_R} \right|^2 \right)^{\frac{1}{2}} \left(\iint_{Q_R(z_0)} |Du|^s \right)^{\frac{1}{s}}
\]
\[\leq C |Q_R(z_0)| \varepsilon \left(\iint_{Q_R(z_0)} |Du|^2 \right)^{\frac{2}{\gamma}} \leq C \varepsilon \int_{Q_R} |Du|^2 \] and therefore one gets
\[
\int_{Q_R} |Du|^2 \leq \left(C \left(\frac{\rho}{R} \right)^{n+2} + \varepsilon \right) \int_{Q_R} |Du|^2 .
\]
It follows that
\[
\int_{Q_R} |Du|^2 \leq \left(C \left(\frac{\rho}{R} \right)^{n+2} + \varepsilon \right) \int_{Q_R} |Du|^2 .
\]
Then by using Proposition 2.1 one can achieve the desired result.

Our final theorem will establish the generalized Morrey estimate for system (1-1).

Theorem 3.2:

Let \(u \in V_{2}(Q_T) \) be a weak solution to \(u_i - D_a \left(a_{ij}^\alpha(z) D_\beta u^j \right) = -\text{div} f^i \) for \(i = 1, \ldots, N \) in \(Q_T \) with the uniform ellipticity condition. Suppose there exist \(\lambda, \gamma \) such that \(\lambda < \gamma < n + 2 \) and \(\frac{\gamma-\lambda}{\varphi(r)} \) is almost increasing. Assume \(a_{ij}^\alpha \in L^\infty(Q_T) \cap VMO(Q_T) \) and \(f^i \in L^{2,\lambda}(Q_T) \), then \(Du \in L^{2,\lambda}(Q) \) for any \(Q' \subset Q_T \) and for \(Q_R \subset Q_T \) and \(\rho \leq R \). Moreover one obtains the following interior estimate
\[
\int_{Q_R} |Du|^2 \leq C \frac{\rho^\lambda \varphi^2(\rho)}{R^\lambda \varphi^2(R)} \int_{Q_R} |Du|^2 + C \varphi^2(\rho) \| f \|^2_{L^{2,\lambda}} .
\]

Proof:

Again like in Theorem 3.1, let \(w \) and \(v = u - w \) satisfy respectively
\[
\begin{align*}
(3-5) \quad w_i - D_a \left(a_{ij}^\alpha(z) D_\beta w^j \right) &= 0 \quad \text{in } Q_R(z_0) \\
&\text{and} \\
(3-6) \quad v_i - D_a \left(a_{ij}^\alpha(z) D_\beta v^j \right) &= -\text{div} f^i \quad \text{in } Q_R(z_0) \\
v &= 0 \quad \text{on } \partial_p Q_R(z_0)
\end{align*}
\]
the following
\[
(3-7) \int_{Q_R(z_0)} |Du|^2 \leq C \left(\frac{\rho}{R} \right)^{\mu} \int_{Q_R(z_0)} |Du|^2 + C \int_{Q_R(z_0)} |Dv|^2 .
\]

Also multiplying (3-6) to \(v \) and performing integration by parts, just as in the proof of Theorem 3.1 one has
\[
\int_{Q_R(z_0)} |Dv|^2 \leq C \int_{Q_R(z_0)} |f| |Dv| .
\]
Applying Cauchy-Schwartz’s inequality one has
\[
(3-8) \int_{Q_R(z_0)} |Dv|^2 \leq C \int_{Q_R(z_0)} |f|^2 .
\]
By combining (3-7), (3-8) and the fact that \(f^i \in L^{2,\lambda}(Q_T) \) one obtains
\[
\int_{Q_R(z_0)} |Du|^2 \leq C \left(\frac{\rho}{R} \right)^{\mu} \int_{Q_R(z_0)} |Du|^2 + C \rho^\lambda \varphi^2(\rho) \| f \|^2_{L^{2,\lambda}} .
\]
Therefore the result will follow applying Proposition 2.1 \(\Box \)
4 References

[Hu] Q. Huang, *Estimates on the Generalized Morrey Spaces $L^{2,\lambda}_{\omega}$ and BMO_{ψ} for Linear Elliptic Systems*. Indiana University Mathematics Journal Vol. 45, No. 2 (1996)

[Sc] W. Schlag, *Schauder and L^p Estimates for Parabolic Systems via Campanato Spaces*. Commun. in Partial Differential Equations, 21(7&8), 1141-1175 (1996)

[St-Gi] M. Struwe & M. Giaquinta, *On the partial regularity of weak solutions of Nonlinear Parabolic Systems*, Mathematische Zeitschrift Vol. 179