Distinct contracted conformations of the Tcra/Tcrd locus during Tcra and Tcrd recombination

Han-Yu Shih and Michael S. Krangel

Department of Immunology, Duke University Medical Center, Durham, NC 27710

Studies have suggested that antigen receptor loci adopt contracted conformations to promote long-distance interactions between gene segments during V(D)J recombination. The Tcra/Tcrd locus is unique because it undergoes highly divergent Tcrd and Tcra recombination programs in CD4+/CD8− double negative (DN) and CD4+/CD8+ double positive (DP) thymocytes, respectively. Using three-dimensional fluorescence in situ hybridization, we asked whether these divergent recombination programs are supported by distinct conformational states of the Tcra/Tcrd locus. We found that the 3′ portion of the locus is contracted in DN and DP thymocytes but not in B cells. Remarkably, the 5′ portion of the locus is contracted in DN thymocytes but is decontracted in DP thymocytes. We propose that the fully contracted conformation in DN thymocytes allows Tcra rearrangements distributed over 1 Mb, whereas the unique 3′-contracted, 5′-decontracted conformation in DP thymocytes biases initial Tcra rearrangements to the most 3′ of the available Va gene segments. This would maintain a large pool of distal 5′ Va gene segments for subsequent rounds of recombination. Thus, distinct contracted conformations of the Tcra/Tcrd locus may facilitate a transition from a Tcrd to a Tcra mode of recombination during thymocyte development.

The diversity of antigen-specific receptors on T and B lymphocytes is generated by the assembly of variable (V), diversity (D), and joining (J) gene segments in a process termed V(D)J recombination (Schatz and Spanopoulou, 2005). This process is catalyzed by the lymphocyte-specific recombinase proteins RAG1 and RAG2 (recombination-activating gene 1 and 2), which initiate the recombination reaction by generating double-strand breaks between V, D, and J gene segments and their flanking recombination signal sequences (RSSs). V(D)J recombination is regulated in a lineage- and developmental stage–specific fashion during T lymphocyte development in the thymus, with four TCR genes, Tcra, Tcrb, Tcrg, and Tcrd, rearranging at two distinct developmental stages to generate αβ or γδ T lymphocytes (Cobb et al., 2006; Krangel, 2009). The Tcrg, Tcra, and Tcrd genes rearrange first, in CD4−CD8− double negative (DN) thymocytes, and a small subset of DN thymocytes with in-frame Tcra rearrangements differentiate to the CD4+/CD8− double positive (DP) stage, in which Tcra gene recombination occurs. In-frame Tcra rearrangement leads to cell surface expression of αβ TCRs, and those TCRs that can support positive selection promote maturation of DP thymocytes to either the CD4+/CD8− or CD4−CD8+ single positive stage.

Tcra and Tcrd gene segments are organized together in a complex genetic locus (Krangel et al., 2004; Krangel, 2009). The mouse Tcra/Tcrd locus spans 1.6 Mb and contains about 100 Va gene segments that occupy the largest portion of the locus (Fig. 1 A). The 3′ 100 kb of the locus contains two Db, two Jb, and a Ca gene segment, followed by 61 Jα and a Ca gene segment. Tcra and Tcrd recombination events are distinct in their developmental timing. However, they are distinct in other important respects as well. For example, only a small subset of V gene segments commonly rearrange to Db and Jb segments in...
DN thymocytes, whereas essentially all V gene segments rearrange to J segments in DP thymocytes (Krangel et al., 2004; Krangel, 2009). The V segments that rearrange in DN thymocytes include several that are relatively close to D and J (e.g., TRDV1, TRDV2-2, TRDV4, and TRDV5) and several that are as far as 1 Mb away (e.g., TRAV15/DV6 family). Tcrd and Tera recombination events also differ in the following way: because germine D gene segments are eliminated by V to J rearrangement, Tcrd has only a single opportunity for recombination on an allele. In contrast, Tera typically undergoes multiple rounds of V to J rearrangement (Krangel et al., 2004; Krangel, 2009). Tera recombination initiates with the use of relatively 3′ V and 5′ J gene segments, and these initial rearrangements can be replaced by multiple cycles of V to J rearrangement involving progressively more 5′ V and more 3′ J gene segments as thymocytes search for a TCR that can mediate positive selection (Pasqual et al., 2002).

The distinct dynamics of Tcrd and Tera recombination events can be partly understood based on the known properties of locus cis-acting regulatory elements. The Tcrd enhancer (E4) is activated in DN thymocytes and is thought to locally regulate D and J chromatin structure and accessibility to support V to J rearrangement (Monroe et al., 1999; Basing et al., 2003). The Tera enhancer is activated in DP thymocytes and activates the TEA (T early α) promoter at the 5′ end of the J array (Sleckman et al., 1997); TEA germine transcription is essential to modify 5′ J chromatin and target 5′ J segments for initial recombination events (Villey et al., 1996; Hawwari et al., 2005; Abarrategui and Krangel, 2007). During subsequent rounds of recombination, promoters of the rearranged V gene segments target additional V segments to progressively more 3′ J gene segments (Hawwari and Krangel, 2007). Less is understood about the parameters that bias initial Tera rearrangements to relatively 3′ V gene segments and thereby result in a 3′ to 5′ progression of V gene usage. One idea is that the 3′ V gene segments are preferred initial targets for the recombinase because these V gene segments are selectively activated by E4, which is known to function across the 3′ one third of the Tera/Tcrd locus in DP thymocytes (Hawwari and Krangel, 2005).

A recent elegant study has provided a detailed picture of Igh locus contraction in pro-B cells (Jhunjhunwala et al., 2008). A notable feature of the contracted conformation is that all V gene segments are brought into proximity to the D,J cluster in 3D space. This is thought to provide all V gene segments a similar opportunity for recombination (Jhunjhunwala et al., 2008), which may be particularly important because individual Igh alleles can support only a single round of V to D,J rearrangement.

In DN thymocytes, the Tera/Tcrd locus behaves similarly to the Igh locus in that it undergoes a single round of V to D,J rearrangement and must allow rearrangement of both D-J-proximal and -distal V gene segments. However, in DP thymocytes, the locus behaves differently, with multiple rounds of V to J rearrangement starting with proximal V gene segments. This raises the question of whether these divergent modes of recombination are supported by distinct conformational states during thymocyte development. In this study, we provide a detailed characterization of Tera/Tcrd locus conformation in DN and DP thymocytes. We find that the entire locus is contracted in DN thymocytes, but that the 5′ portion is selectively decontracted in DP thymocytes. We suggest that decontraction of the 5′ region facilitates a transition of the locus from a Tcrd to a Tera mode of recombination during thymocyte development.

RESULTS AND DISCUSSION

To determine the spatial conformation of the Tera/Tcrd locus during thymocyte development, we used 3D-FISH to track the relative positions of four distinct segments of the locus using bacterial artificial chromosome (BAC) probes (A, B, C, and D; Fig. 1 A). Tera/Tcrd locus V gene segments can be classified as proximal, central, and distal according to their positions relative to D,J and J gene segments. Sets of unique V gene segments are distributed across the proximal and distal 300 kb of the V array (identified by probes C and A, respectively); in contrast, the central V gene segments are found in a 400-kb region that is duplicated in strain 129 mice (identified by probe B, which hybridizes discontinuously with an extended region covering almost the entire duplicated region). We used these and probe D (which hybridizes downstream of C) to analyze Tera/Tcrd locus conformation in three cell types: DN thymocytes from Rag2^{−/−} mice, DP thymocytes from Rag2^{−/−} mice injected with anti–CD3 antibody to drive the DN to DP transition, and control splenic B lymphocytes of wild-type mice. Use of these cell populations allowed us to uniformly analyze unarranged Tera/Tcrd loci; this approach was validated because previous studies had shown locus contraction to occur independent of recombinase expression (Fuxa et al., 2004; Roldán et al., 2005; Skok et al., 2007; Jhunjhunwala et al., 2008).

The four probes were used in various three-way combinations (A–B–D, A–C–D, and A–B–C) in three-color 3D-FISH followed by confocal microscopy. Selected images obtained using the A–B–D probe strategy are shown (Fig. 1 B). We then evaluated all pairwise distances between the centers
Figure 1. Subregion-specific contraction of the Tcra/Tcrd locus during thymocyte development. (A) Organization of Tcra/Tcrd locus and relative positions of four BAC probes (A, B, C, and D). V segments are categorized as proximal, central, central duplication, or distal. Probe B (C57BL/6 origin) hybridizes discontinuously to the central and central duplication regions of the strain 129 Tcra/Tcrd locus. (B) 3D-FISH analysis of strain 129 Tcra/Tcrd locus conformation in splenic B cells and recombinase-deficient DN and DP thymocytes using probes A, B, and D. Each image represents a single z-plane with representative loci. Bars, 1 µm. (C) Scatter plots display pairwise distance measurements between the centers of probe hybridization compiled from use of the A–B–D, A–C–D, and A–B–C probe combinations. Data were accumulated from two to five independent experiments for each cell type (184–592 total alleles) with 78–126 alleles per experiment. Median values are indicated by horizontal lines. **, P < 0.01; ***, P < 0.001; ns, not statistically significant.
of mass of the hybridization signals on large numbers of alleles for each cell type (Fig. 1 C). We found that all median distances measured across the 3' portion of the locus (B–D, B–C, and C–D) were substantially reduced in both DN and DP thymocytes as compared with splenic B cells (Fig. 1 C, top row). The B–C and C–D distances were indistinguishable between DN and DP thymocytes; however, there was a small but significant difference in the B–D distance. From these data, we conclude that the 3' half of the Tcra/Tcrd locus (B–C–D) is extended in B cells and is similarly, although not identically, contracted in both thymocyte subsets. In contrast, all median center to center distances measured across the 5' end of the locus (A–B, A–C, and A–D) were substantially reduced in DN thymocytes but then increased in DP thymocytes (Fig. 1 C, bottom row). The measured increases in the A–C and A–D distances likely reflect a selective extension of the A–B segment because the B–C, C–D, and B–D distances are all similar in DN and DP thymocytes. Thus, the 5' end of the locus (A–B) displays a strikingly different behavior than the 3' end; it contracts in DN thymocytes but then decontracts in DP thymocytes. The results indicate that the Tcra/Tcrd locus possesses different contracted configurations in DN and DP thymocytes: in the former, it is contracted along its entire length, whereas in the latter, the 3' half is contracted, but the 5' half is decontracted.

We noticed that on a fraction of alleles, probe B appeared to detect two or three foci rather than a single focus (Fig. 2). In each instance, this complex hybridization pattern could be attributed to a single allele because the second allele was well separated, as judged by simultaneous hybridization with additional probes. Alleles with multiple foci did not result from DNA replication because additional probes always detected single foci on the same allele (Fig. 2). Because probe B hybridizes discontinuously to four segments spanning ~700 kb of the duplicated central portion of the V array (Fig. 1 A), the detection of multiple foci by probe B is likely to reflect an extended conformation of this portion of the Tcra/Tcrd locus. Remarkably, examples of multiple probe B foci were frequent in B cells and DP thymocytes (38% and 30% of alleles, respectively) but were rare in DN thymocytes (5% of alleles; Table I). These data indicate that the 5' end extension of the Tcra/Tcrd locus includes both distal and central V gene segments.

To evaluate the overall organization of the locus in 3D space, we calculated the coordinates of sites A, B, C, and D from the full set of median distance measurements. The resulting models (Fig. 3, which presents two different views of the superimposed models) depict the mean conformation of the locus in nuclei of all three cell types. The range of conformations adopted by the locus is obviously much more complex, as indicated by the heterogeneous pattern of probe B hybridization and the broadly distributed probe to probe distance measurements on the entire population of alleles (Figs. 1 and 2). Nevertheless, the models highlight a nonlinear mean configuration of the locus in nuclei of all three cell types. Furthermore, the models emphasize that the conformational difference between B cells and DN thymocytes affects the entire locus, whereas the conformational difference between DN and DP thymocytes preferentially impacts the 5' half of the locus: there is a striking change in the A–B distance between DN and DP thymocytes, with relative conservation of spatial relationships among B, C, and D.

Table I. Enumeration of alleles with one, two, and three foci detected by probe B

Cell type	Probe B foci per allele		
	One	Two	Three
B cells	62	35	3
DN thymocytes	95	5	0
DP thymocytes	70	24	6

The proportion of alleles with multiple probe B foci in DN thymocytes was significantly different from B cells and DP thymocytes (P < 0.0001 by Fisher’s exact test). Data were from one experiment for each cell type.

158 total alleles.
140 total alleles.
166 total alleles.
segments the opportunity to undergo V_δ to D_δ to J_δ rearrangement and that this is important because there is only one chance for V_δ to D_δ to J_δ rearrangement per allele. In these ways, the $Tcrb/Tcrd$ locus in DN thymocytes resembles the Igh locus in pro-B cells. In contrast, we believe that the $5'$-decontracted, $3'$-contracted conformation of $Tcrb/Tcrd$ locus in DP thymocytes insures that primary V_α to J_α rearrangement initiates with proximal V_α gene segments, thereby maintaining a large pool of distal V_α gene segments for subsequent rounds of recombination. Because of the extended $5'$ region, use of distal V_α gene segments would only be favored once they are brought into proximity of J_α gene segments by prior rounds of V_α to J_α recombination. A limitation of our study is that we have only determined the conformation of un-rearranged $Tcrb/Tcrd$ alleles in DP thymocytes, even though many $Tcrb/Tcrd$ alleles would normally have undergone prior V_δ to D_δ to J_δ rearrangement in DN thymocytes. We presume that the remaining upstream V_α gene segments on previously rearranged alleles would adopt an extended configuration in DP thymocytes, thereby promoting ordered V_α usage on these alleles as well.

Previous studies have implicated decontraction of the Igh locus in pre-B cells and the $Tcrb$ locus in DP thymocytes in feedback inhibition of V segment recombination that is associated with allelic exclusion (Roldán et al., 2005; Skok et al., 2007). Notably, analyses of decontracted Igh alleles in μ transgenic mice and in Pax5- or YY1-deficient mice have demonstrated residual recombination that involves proximal V_μ segments only (Fuxa et al., 2004; Liu et al., 2007). However, in none of these cases does restricted recombination of proximal V_μ segments represent a significant physiological process. In contrast, our data suggest a potential novel physiological role for locus decontraction as a means to direct initial $Tcrb$ recombination events to relatively proximal V_α gene segments, thus allowing a robust progression of primary and secondary V_α to J_α recombination events.

We note that our results conflict with those of a previously published study, which claimed that the $Tcrb/Tcrd$ locus does not contract until the DP stage (Skok et al., 2007). We cannot easily explain the apparent absence of contraction in DN thymocytes in that study because both studies analyzed $3'$ end contraction in $Rag2^{2/-}$ DN thymocytes using probes.
may establish direct molecular contacts over long distances (Liu and Garrard, 2005; Oestreicher et al., 2006), but they may do so only after having been brought into proximity by an enhancer- and promoter-independent conformational change.

In conclusion, our data demonstrate a Tera/Tird locus conformational change during thymocyte development that we propose facilitates a transition from a Tird mode to a Tera mode of V gene segment usage. The unique 5’ end extended and 3’ end contracted configuration in DP thymocytes may provide a novel conformations-based mechanism to direct V to A recombination events to the most proximal of the available Vα gene segments. The molecular basis for locus subregion-specific conformational changes will be important to unravel in future studies.

MATERIALS AND METHODS

Mice. DN thymocytes were obtained from 2–3-wk-old Rag2−/− mice (129 or C57BL/6 background). DP thymocytes were obtained from Rag2−/− mice (129 background) 10 d after a single i.p. injection of 150 µg anti-CD3 antibody (145-2C11; BioLegend). B lymphocytes were isolated from spleenocytes of wild-type 129 or C57BL/6 mice by depleting non-B cells on a MACS CS column using biotin-conjugated anti-CD11b, anti-Gr-1, anti-Thyl.1, anti-Thyl.2, anti-CD5 (eBioscience), and anti-CD43 (BD) antibodies together with streptavidin-conjugated magnetic beads. B cell purity was >90% with no apparent contaminating T cells. Eα−/− Rag2−/− and Eβ−/− Rag2−/− mice were of mixed background but carried the strain 129 Tera/Tird locus. All mice were used in accordance with protocols approved by the Duke University Animal Care and Use Committee.

FISH probes and antibodies. BAC clones RP23-304L21 (probe A, distal V), RP24-334B8 (probe B, central V), bMQ-446L6 (probe C, proximal V), and RP23-10K20 (probe D, 3’ end) were used to generate DNA probes. BACs were directly labeled with Alexa Fluor 488–5–dUTP (Invitrogen) or Alexa Fluor 565–5–dUTP (Invitrogen) using a nick translation kit (Roche) or were labeled with digoxigenin–11-dUTP using a DIG-nick translation kit (Roche). Digoxygenin-conjugated DNA probes were detected by methanthiocarboxyamine (Cy5)-conjugated antidigoxigenin antibody (Jackson ImmunoResearch Laboratories, Inc.).

3D DNA immuno-FISH. Cells were fixed and hybridized as described previously (Schlimgen et al., 2008). In brief, cells attached to poly-l-lysine–coated slides were fixed in 4% (vol/vol) paraformaldehyde and 2× SSC. The DNA probe cocktail consisted of 1 µg of each DNA probe per slide and blocking DNAs (mixture of mouse C57 DNA, human placental DNA, and salmon sperm DNA) in HYBRISOL VII (MP Biomedicals). Denatured slides were then hybridized for 24–48 h at 37°C with booled and preannealed probe cocktails. Excess probes were removed by three incubations for 7–10 min at 42°C in 50% (vol/vol) formamide and 2× SSC, followed by three incubations at 63°C in 0.2× SSC. The slides were then blocked by incubation for 30 min in 4% BSA and 2× SSC and were then incubated for 1 h with Cy5-conjugated antidigoxigenin antibody in 4% BSA and 2× SSC. Excess antibodies were removed by three 5-min incubations in 0.1% (vol/vol) Triton X-100 and 2× SSC. The slides were mounted in Vectashield (Vector Laboratories).

Confocal imaging, distance calculations, and statistical analysis. Slides were imaged on a confocal microscope (SP5; Leica) using a 100× NA 1.4 objective lens and a 2× optical zoom. ImageJ (National Institutes of Health) software was used to process images using a Kalman stack filter and to determine the coordinates (x, y, z) of focus centers. Distances between pairs of foci (d, in micrometers) were calculated using the formula $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$, where 0.151 µm is the size of each pixel and 0.126 µm is the z-plane separation. Only nuclei with distinguishable signals from two alleles were analyzed. Mann-Whitney statistical tests were performed using Prism 3.0 (GraphPad Software, Inc.). The 3D models were built using the KiNG program (Richardson and Richardson, 1992; Chen et al., 2009) with the coordinates calculated as follows: A(x0, y0, 0), B(x, y, 0), C(x, y, 0), and D(x, y, z) where

\[
\begin{align*}
 x_0 &= AB, \\
 x &= \frac{AB + AC - BC^2}{2AB}, \\
 y_i &= \sqrt{AB^2 - x_i^2}, \\
 z_i &= \sqrt{AD^2 + BD^2 - CD^2 - 2x_i y_i},
\end{align*}
\]

and

\[
\begin{align*}
 y_i &= \sqrt{AB^2 + AD^2 - BD^2 - 2x_i z_i}, \\
 z_i &= \sqrt{AD^2 - x_i^2 - y_i^2}.
\end{align*}
\]

Online supplemental material. Fig. S1 shows an analysis of 3’ end contraction in DN thymocytes of C57BL/6 mice. Fig. S2 shows analyses of locus contraction on Eα− and Eβ-deficient alleles. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20100772/DC1.

We would like to thank R. Schlimgen, M. Kuraoka, and Y. Chen for technical advice, S. Johnson and Y. Gao of the Duke Comprehensive Cancer Center Light Microscopy Facility for imaging support, and H. Kondilis, E. Chan, Q.-J. Li, and S. Unniraman for their helpful comments on the manuscript. This work was supported by National Institutes of Health grant R37 GM41052. The authors have no conflicting financial interests.

Submitted: 20 April 2010
Accepted: 21 July 2010

REFERENCES

Abarategui, I., and M.S. Krangel. 2007. Noncoding transcription controls downstream promoters to regulate T-cell receptor α recombination. EMBO J. 26:4380–4390. doi:10.1038/sj.emboj.7601866

Bassing, C.H., R.E. Tillman, B.B. Woodman, D. Canty, R.J. Monroe, B.P. Sleckman, and F.W. Alt. 2003. T cell receptor (TCR) α/β locus enhancer identity and position are critical for the assembly of TCR α and β variable region genes. Proc. Natl. Acad. Sci. USA. 100:2598–2603. doi:10.1073/pnas.0437943100

Cai, S., C.C. Lee, and T. Kohwi-Shigematsu. 2006. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokerine genes. Nat. Genet. 38:1278–1288. doi:10.1038/ng1913

Chen, V.B., I.W. Davis, and D.C. Richardson, 2009. KING (Kemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci. 18:2403–2409. doi:10.1002/pro.250

Cobb, R.M., K.J. Oestreicher, O.A. Ospovich, and E.M. Oltz. 2006. Accessibility control of VDJ recombination. Adv. Immunol. 91:45–109. doi:10.1016/S0065-2776(06)91002-5
Fuxa, M., J. Skok, A. Souabni, G. Salvagiotto, E. Roldan, and M. Busslinger. 2004. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. *Genes Dev.* 18:411–422. doi:10.1101/gad.291504

Hawwari, A., and M.S. Krangel. 2005. Regulation of TCR δ and α repertoires by local and long-distance control of variable gene segment chromatin structure. *J. Exp. Med.* 202:467–472. doi:10.1084/jem.20050680

Hawwari, A., and M.S. Krangel. 2007. Role for rearranged variable gene segments in directing secondary T cell receptor α recombination. *Proc. Natl. Acad. Sci. USA.* 104:930–935. doi:10.1073/pnas.0608248104

Hawwari, A., C. Beok, and M.S. Krangel. 2005. Regulation of T cell receptor α gene assembly by a complex hierarchy of germline Ψα promoters. *Nat. Immunol.* 6:481–489. doi:10.1038/ni1189

Heslen, D.G., D.L. Pfugh, D. Chowdhury, A.L. Bothwell, R. Sen, and D.G. Schatz. 2003. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. *Genes Dev.* 17:37–42. doi:10.1101/gad.103140

Hjorthunwala, S., M.C. van Zelm, M.M. Peak, S. Cutchin, R. Riblet, J.J. van Dongen, F.G. Grosveld, T.A. Knoch, and C. Murre. 2008. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. *Cell.* 133:265–279. doi:10.1016/j.cell.2008.03.024

Hjorthunwala, S., M.C. van Zelm, M.M. Peak, and C. Murre. 2009. Chromatin architecture and the generation of antigen receptor diversity. *Cell.* 138:435–448. doi:10.1016/j.cell.2009.07.016

Kosak, S.T., J.A. Skok, K.L. Medina, R. Riblet, M.M. LeBeau, A.G. Fisher, and H. Singh. 2002. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. *Science.* 296:158–162. doi:101126/science.1068768

Krangel, M.S. 2009. Mechanics of T cell receptor gene rearrangement. *Curr. Opin. Immunol.* 21:133–139. doi:10.1016/j.coi.2009.03.009

Krangel, M.S., J. Carabana, I. Abbarategui, R. Schliming, and A. Hawwari. 2004. Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T-cell receptor α/β locus. *Immunol. Rev.* 200:224–232. doi:10.1111/j.0105-2896.2004.00155.x

Liu, Z., and W.T. Garrard. 2005. Long-range interactions between three transcriptional enhancers, active Ψκappa gene promoters, and a 3′ boundary sequence spanning 46 kilobases. *Mol. Cell. Biol.* 25:3220–3231. doi:10.1128/MCB.25.8.3220-3231.2005

Liu, H., M. Schmidt-Supprian, Y. Shi, E. Hoberka, N. Barteneva, H. Jumaa, R. Pelanda, M. Keth, J. Skok, K. Rajewsky, and Y. Shi. 2007. Yin Yang 1 is a critical regulator of B-cell development. *Genes Dev.* 21:1179–1189. doi:10.1101/gad.1529307

Monroe, R.J., B.P. Sleckman, B.C. Monroe, B. Khor, S. Claypool, R. Ferrini, L. Davidson, and F.W. Alt. 1999. Developmental regulation of TCR δ locus accessibility and expression by the TCR δ enhancer. *Immunity.* 10:503–513. doi:10.1016/S1074-7613(00)80860-3

Nativio, R., K.S. Wendt, Y. Ito, J.E. Huddleston, S. Urbe-Lewis, K. Woodfine, C. Krueger, W. Reik, J.M. Peters, and A. Murrell. 2009. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. *PLoS Genet.* 5:e1000739. doi:10.1371/journal.pgen.1000739

Oestreich, K.J., R.M. Cobb, S. Perrce, J. Chen, P. Ferrier, and E.M. Oltz. 2006. Regulation of TCR beta gene assembly by a promoter/enhancer holocomplex. *Immunity.* 24:381–391. doi:10.1016/j.immuni.2006.02.009

Pasqual, N., M. Gallagher, C. Andu-Garcia, M. Loiodice, F. Thudoroz, J. Demongeot, R. Ceredig, P.N. Marche, and E. Jouvin-Marche. 2002. Quantitative and qualitative changes in V-J α rearrangements during mouse thymocytes differentiation: implication for a limited T cell receptor α chain repertoire. *J. Exp. Med.* 196:1163–1173. doi:10.1084/jem.20021074

Reynaud, D., I.A. Demarco, K.L. Reddy, H. Schjerven, E. Bertolino, Z. Chen, S.T. Smale, S. Winandy, and H. Singh. 2008. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. *Nat. Immunol.* 9:927–933. doi:10.1038/ni.1626

Richardson, D.C., and J.S. Richardson. 1992. The kinemage: a tool for scientific communication. *Protein Sci.* 1:3–9. doi:10.1002/pro.5560011012

Roldán, E., M. Fuxa, W. Chong, D. Martinez, M. Novatchkova, M. Busslinger, and J.A. Skok. 2005. Locus ‘deconstruction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. *Nat. Immunol.* 6:31–41. doi:10.1038/ni1150

Schatz, D.G., and E. Spanopoulou. 2005. Biochemistry of V(DJ) recombination. *Curr. Top. Microbiol. Immunol.* 290:49–85. doi:10.1007/3-540-26363-2_4

Schliming, R.J., K.L. Reddy, H. Singh, and M.S. Krangel. 2008. Initiation of allelic exclusion by stochastic interaction of T-box alleles with repressive nuclear compartments. *Nat. Immunol.* 9:802–809. doi:10.1038/ni.1624

Skok, J.A., R. Gisler, M. Novatchkova, D. Farmer, W. de Laat, and M. Busslinger. 2007. Reversible contraction by looping of the T box and Tcr loci in rearranging thymocytes. *Nat. Immunol.* 8:378–387. doi:10.1038/ni1448

Sleckman, B.P., C.G. Bardon, R. Ferrini, L. Davidson, and F.W. Alt. 1997. Function of the TCR α enhancer in alpha/beta and gamma/delta T cells. *Proc. Natl. Acad. Sci. USA.* 94:1339–1344. doi:10.1073/pnas.94.4.1339

Splinter, E., H. Heath, J. Kooren, R.J. Palstra, P. Klous, F. Grosveld, N. Pasqual, N., M. Gallagher, C. Andu-Garcia, M. Loiodice, F. Thudoroz, J. Demongeot, R. Ceredig, P.N. Marche, and E. Jouvin-Marche. 2002. Quantitative and qualitative changes in V-J α rearrangements during mouse thymocytes differentiation: implication for a limited T cell receptor α chain repertoire. *J. Exp. Med.* 196:1163–1173. doi:10.1084/jem.20021074

Woodfine, C. Krueger, W. Reik, J.M. Peters, and A. Murrell. 2009. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. *PLoS Genet.* 5:e1000739. doi:10.1371/journal.pgen.1000739