Supplemental Information

The arbitrium system controls prophage induction

Aisling Brady, Nuria Quiles-Puchalt, Francisca Gallego del Sol, Sara Zamora-Caballero, Alonso Felipe-Ruíz, Jorge Val-Calvo, Wilfried J.J. Meijer, Alberto Marina, and José R. Penadés
Figure S1. Model for the mechanism of action of the arbitrium system in phages of the SPβ family, Related to Figure 3. (A) The arbitrium model prior to this study describes that after infection of a SPβ prophage, AimR is being expressed and binds to the operator site promoting expression of the aimX sRNA and promoting the lytic cycle. After AimP accumulates above the threshold levels, it binds to AimR disrupting its binding to the DNA and reducing expression of aimX, leading to lysogeny. (B) Our understanding is that the arbitrium system of SPβ is involved in a more complex mechanism to control prophage induction. The regulator AimR functions to inhibit the phage repressor, YopR, thus promoting prophage induction. Another component of the system is YopN that we hypothesise to promote YopR activity, acting as a negative regulator of prophage induction. We propose that following activation of the SOS response, AimR activates an unknown component that blocks YopN function, thus reducing the activity of YopR and promoting induction.
Figure S2. Analysis of the aimR and aimP deletions in SPβ-type prophages, Related to Figure 5. (A) Lysogenic strains for phage SPβ, SPβ△aimR or SPβ△aimP were MC induced (0.5 μg/ml) and incubated at 30 °C with 80 rpm shaking for 4 h. The lysates were left overnight at room temperature before being photographed. (B) Complementation of the aimR mutant in SPβ. Strains lysogenic for phage SPβ wt, △aimR, △aimR amyE::Pspank and △aimR amyE::Pspank-AimR were MC induced (0.5 μg/ml) and the number of resulting phages were quantified by titering using 168Δ6 as the recipient strain. The results are represented as the plaque forming units (PFUs) mL⁻¹. The means and SDs are presented (n = 5). An ordinary one-way ANOVA of transformed data was performed to compare mean differences between titres. Adjusted p values were as follows: SPβ △aimR* p < 0.0001; △aimR amyE::Pspank *** p < 0.0001; △aimR amyE::Pspank-AimR ns = not significant. (C) Complementation of the aimR mutant in phi3T. Strains lysogenic for phages phi3T wt, △aimR, △aimR amyE::Pspank and △aimR amyE::Pspank-AimR were MC induced (0.5 μg/ml) and the number of resulting phages were quantified by titering using 168Δ6 as the recipient strain. The means and SDs are presented (n = 3). An ordinary one-way ANOVA of transformed data was performed to compare mean differences between titres. Adjusted p values were as follows: SPβ △aimR* p = 0.0205; △aimR amyE::Pspank * p = 0.0049; △aimR amyE::Pspank-AimR * p = 0.0391. (D) Strains lysogenic for phages phi3T wt, △aimR, △aimR amyE::Pspank and △aimR amyE::Pspank-AimR were MC induced (0.5 μg/ml) and the number of resulting phages were quantified by titering using 168Δ6 as the recipient strain. The results are represented as PFUs/mL⁻¹. The means and SDs are presented (n = 3). An ordinary one-way ANOVA of transformed data was performed to compare mean differences between titres. Adjusted p values were as follows: phi3T △aimR* p = 0.0220; △aimR amyE::Pspank * p = 0.0125; △aimR amyE::Pspank-AimR *** p = 0.0005.
Figure S3. Complementation of the aimR mutants in recipient strain, Related to Figure 4 and Figure 5. (A) Strain lysogenic for phage SPβ ΔaimR was MC induced (0.5 μg/ml) and the number of resulting phages were quantified by titering using 168 Δ6 amyE::Pspank (-) or 168 Δ6 amyE::Pspank-AimRSPK (+) as recipient strains. The results are represented as the plaque forming units (PFUs) mL⁻¹. The means and SDs are presented (n = 4). An ordinary one-way ANOVA of transformed data was performed to compare mean differences between titres. Adjusted p values were as follows: column A vs column B ****p = 0.0001; column A vs column C ns = not significant; column A vs column D ****p = 0.0001. (B) Strain lysogenic for phage phi3T ΔaimR was MC induced (0.5 μg/ml) and the number of resulting phages were quantified by titering using 168 Δ6 amyE::Pspank (-) or 168 Δ6 ΔaimR amyE::Pspank-AimRSPK (+) as recipient strains. The results are represented as the plaque forming units (PFUs) mL⁻¹. The means and SDs are presented (n = 3). An ordinary one-way ANOVA of transformed data was performed to compare mean differences between titres. Adjusted p values were as follows: column A vs column B ****p = 0.0001; column A vs column C ns = not significant; column A vs column D ****p = 0.0001. (C) Plaques morphologies produced after titration of the SPβ ΔaimR using 168 Δ6 amyE::Pspank (-) or 168 Δ6 amyE::Pspank-AimRSPK (+) as recipient strains were photographed. (D) Overexpression of AimR does not induce the lytic cycle. Strains lysogenic for phage SPβ amyE::Pspank and SPβ amyE::Pspank-AimRSPK were analysed for their ability to produce phage particles under several conditions: without induction (No MC), with phage induction (+ MC 0.5 μg/ml) and with Pspank induction (+ IPTG 1 mM). The number of resulting phages were quantified by titering using 168 Δ6 as the recipient strain. The results are represented as the plaque forming units (PFUs) mL⁻¹. The means and SDs are presented (n = 3). An ordinary one-way ANOVA of transformed data was performed to compare mean differences between titres. Differences in titer with “No MC” and “+ IPTG” were not significant (ns). The adjusted p value comparing SPβ amyE::Pspank and amyE::Pspank-AimR + MC p = 0.0227.
SPβ ΔaimR lysate was acquired following MC induction of a lysogenic strain carrying the SPβ ΔaimR phage. The lysate was titered using 168 Δ6 as the recipient strain and the resulting cloudy plaques were collected and passaged, as described in the STAR Methods, until wt-appearing plaques were obtained. Created with BioRender.com
Figure S5. Plaque morphology of SPβ wt, ΔaimR, ΔyopN, ΔaimR-yopN and yopR::erm phages, Related to Figure 5 and Figure 6. Strains lysogenic for phage SPβ wt, ΔaimR, ΔyopN and ΔaimR-yopN were MC induced (0.5 μg/ml) and titered using 168 Δ6 as the recipient strain. A strain lysogenic for phage SPβ was transformed with an erythromycin cassette to replace the yopR gene. The resulting strain, supposedly yopR::erm, was MC induced (0.5 μg/ml) and titered using 168 Δ6 as the recipient strain. The resulting plaque morphologies were photographed.
Figure S6. Homology analysis of AimR_{SPβ} and AimR_{KATMIRA1933}, Related to STAR Methods. AimR sequences from SPβ and KATMIRA1933 were obtained from BLAST. The superposition analysis was made using the PRALINE program. Residues conservancy is depicted by blue to red colours.
Figure S7. Schematic representation of the SPβ-like phages arbitrium and operon genetic layout, Related to Figure 3. Diagram shows the genetic organisation of the arbitrium genes, aimR and aimP, followed by the operon directly downstream. Colours denote putative functions according to BLAST results; orange: arbitrium genes, grey: unknown function, navy blue: HTH_XRE domain, green: integrase domain, purple: ParB domain, light blue: putative repressor. Rotated black line indicates the end/beginning of the contigs containing the genes described for Katmira1933. Created with BioRender.com.
Strain	Gene	Mutation
JP20762	yopN	L90S
JP20766	yopN	L46P
	yopQ	T156T
JP20769	yopN	I51* Deletion produces frameshift and stop codon
Lytic phage 1	yopR	L140* Deletion produces frameshift and stop codon
Lytic phage 2	yopR	L49* Deletion produces frameshift and stop codon

Table S1. Mutations identified in evolved SPβ ΔaimR phages, Related to Figure 3 and Figure 4.
Phage/lysogen	AimR	AimP	AimP sequence	Operon genes accession numbers					
				Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6
SPβ	GenBank: NP_389968	GenBank: NP_389967	GMPRGA	GenBank: NP_389966	GenBank: NP_389965	GenBank: NP_389964	GenBank: NP_389963	GenBank: NP_389962	GenBank: NP_389961
phi3T	GenBank: APD21232	GenBank: APD21233	SAIRGA	GenBank: APD21235	GenBank: APD21236	GenBank: APD21237	GenBank: APD21238	GenBank: APD21239	GenBank: APD21240
Bacillus amyloliquefaciens UCMB5033	GenBank: CDG30054	*NA	SPSRGA	GenBank: CDG30052	GenBank: CDG30051	GenBank: CDG30050	GenBank: CDG30049	GenBank: CDG30048	GenBank: CDG30047
Bacillus velezensis strain SCGB1	GenBank: ATC49385	GenBank: ATC49384	SIIRGA	GenBank: ATC49382	GenBank: ATC49381	GenBank: ATC49380	GenBank: ATC49379	GenBank: ATC49378	GenBank: ATC49377
Bacillus amyloliquefaciens TA208	GenBank: AEB23458	GenBank: AEB23459	GVVRGA	GenBank: AEB23460	GenBank: AEB23461	GenBank: AEB23462	GenBank: AEB23463	GenBank: AEB23464	GenBank: AEB23465
Bacillus atrophaeus BA59	GenBank: ATO28982	GenBank: ATO28981	GMPRGA	GenBank: ATO28980	*NA	GenBank: ATO28979	*NA	GenBank: ATO28978	GenBank: ATO28977
Bacillus subtilis KATMIRA1933	GenBank: WP_033885437	GenBank: WP_134819006	GIVRGA	GenBank: WP_033885435	GenBank: WP_009967507	GenBank: WP_019712296	GenBank: WP_033885434	GenBank: NP_389962.1	GenBank: WP_003231032
Bacillus sonorensis L12	GenBank: WP_051056713	GenBank: WP_141231111	GFPRGA	GenBank: WP_006640569	GenBank: WP_006640568	GenBank: WP_006640567	GenBank: WP_006640566	GenBank: WP_006640565	GenBank: WP_006640565
Bacillus licheniformis strain SCDB34	GenBank: ARC67883	GenBank: ARC67884	GFTVGA	GenBank: ARC67885	GenBank: ARC67886	GenBank: ARC67887	GenBank: ARC67888	GenBank: ARC67889	GenBank: ARC67889

*NA: Not annotated

Table S2. Genetic composition of the arbitrium-operon region in the different SPβ-like phage families, Related to Figure 3.
Strains	Genotype or description	Reference or source
Bacillus subtilis		
168 (1A700)	trpC2	S1
Δ6 (1A1299)	trpC2; ΔSPβ; subclacin 168-sensitive; Δskin; ΔPBSX; Δprophage 1; Δpks::Cm; Δprophage 3; Cm'	S2
IL26	phi3T	S3
BKK20860	trpC2 ΔaimR::kan	S4
BKE20860	trpC2 ΔaimR::erm	S4
BKE20850	trpC2 ΔaimP::erm	S4
BKE20830	trpC2 Δyop::erm	S4
BKE20790	trpC2 ΔyopR::erm	S4
JP22770	trpC2 SPβ ΔaimR	This study
JP22771	trpC2 SPβ ΔaimP	This study
JP22776	trpC2 SPβ ΔaimR; amyE::Pspank	This study
JP22777	trpC2 SPβ ΔaimR; amyE::PspankΔaimRGSpij	This study
JP19877	Δ6 lysogenic SPβ	This study
JP19936	Δ6 lysogenic SPβ ΔaimR	This study
JP20866	Δ6 lysogenic SPβ yokl::kan	This study
JP22949	Δ6 lysogenic SPβ yokl::kan ΔaimR	This study
JP21702	Δ6 lysogenic SPβ yokl::kan ΔaimP	This study
JP22950	Δ6 lysogenic SPβ yokl::kan ΔaimR; amyE::Pspank	This study
JP22951	Δ6 lysogenic SPβ yokl::kan ΔaimR; amyE::PspankΔaimRGSpij	This study
JP21854	Δ6 lysogenic phi3T	This study
JP21870	Δ6 lysogenic phi3T phi3T_5::kan	This study
JP22453	Δ6 lysogenic phi3T phi3T_5::kan ΔaimR	This study
JP22454	Δ6 lysogenic phi3T phi3T_5::kan ΔaimP	This study
JP22518	Δ6 lysogenic phi3T phi3T_5::kan ΔaimR; amyE::Pspank	This study
JP22519	Δ6 lysogenic phi3T phi3T_5::kan ΔaimR; amyE::PspankΔaimRGSpij	This study
JP20762	Δ6 lysogenic SPβ ΔaimR; yopN L90S	This study
JP20766	Δ6 lysogenic SPβ yokl::kan ΔaimR; yopN L46P; yopQ T156T	This study
JP20769	Δ6 lysogenic SPβ yokl::kan ΔaimR; yopN A49*	This study
JP22952	Δ6 lysogenic SPβ ΔyopN	This study
JP22953	Δ6 lysogenic SPβ ΔaimR ΔyopN	This study
JP21752	Δ6 lysogenic SPβ yopR::erm	This study
JP22339	Δ6 lysogenic SPβ yopR::erm; amyE::PspankΔyopRGSpij	This study
JP19679	Δ6 amyE::Pspank	This study
JP19944	Δ6 amyE::PspankΔaimRGSpij	This study
JP22515	Δ6 amyE::PspankΔaimRGSpij	This study
JP21941	Δ6 amyE::PspankΔyopRGSpij	This study
JP19883	Δ6 lysogenic SPβ; amyE::Pspank	This study

Table S3. Bacterial strains, Related to STAR Methods.
Plasmid	Description	Reference or source
pDR244	*B. subtilis* thermosensitive vector containing Cre recombinase that allows excision of DNA fragments flanked by *loxP* sites	S4
pDR110	*B. subtilis* *amyE* integration vector containing IPTG-inducible *P_{spank}*-promoter	S5
pJP2340	*aimR*_{spi} gene cloned in integration vector pDR110	This study
pJP2801	*aimR*_{3T} gene cloned in integration vector pDR111	This study
pJP2800	*yopR*_{spi} gene cloned in integration vector pDR110	This study

Table S4. Plasmids used in this study, *Related to STAR Methods.*
Mutants	Oligonucleotides	Sequence (5'→3')
kan marker without loxP	KanR-5m	TTTGATTTTTATGGAATATGTGATATAATGC
	KanR-6c	TCTAGGCTACTAAAAATTACCC
erm marker with loxP	ErmR-1m	JAGGCAGAAAGAAGAGAGAAGCAGGAGGAGAGAAAGC
	ErmR-2c	JAGGCTCTTGTGACTGGCTTGGCTGCTGCTGGCCGTATCTGTGCTTCGCTGTCTTGCTGCTTACAAGTCGATATGAGATTTAAG

SPβ yokI::kan	Forward Flanking	yokI-5pL	ATCCCTAGTTGATTGATATG
	yokI-1_R	GATATATACCATATTACATTTAAAAATCAACCATCTCCTCTCTTCAGCC	
Reverse Flanking	yokI-4_F	GGTATAGGTGTTGTTAGCTACCTGAAGATTTAGG	
	yokI-3pR	ACTGAAAGACACTCTCTCAAAG	

phi3T yokI::kan	Forward Flanking	phi3T-1m	GCAGTGTTCGCAACAGAGATTGCC
	phi3T-2c	GATTATATCACATTATCCATTAAAAATCAAAATCATTCTCCTTTCAAGCC	
Reverse Flanking	phi3T-3m	GGTATAGGTGTTGTTAGCTACCTGAAGATTTAGG	
	phi3T-4c	CTCGCTGTAACCTCGCTTC	

SPβ aimR::erm	AimR-SPB-24mB	CGGCAGATTCCTATAAAGGCGCTGAGATCC
	AimR-SPB-14cS	ACAGGCGAACCAAAATGATTAGGGTCATAAAATAGGC
SPβ aimP::erm	AimP-SPB-1mB	CGGCAGATTCGCAAAAGGCGCAAGAAGTGCC
	AimP-SPB-4c	AGTGTGATGACAGAGATAGGGTCATAAAATAGGC

| SPβ yopN::erm | Spbeta_5_5_F | GTCGAGCACAATCTAAGAAGATTTACCTTCAAG |
| | YopMN_R | GCCGTCACCTATGGTCTGTCG |

| SPβ yopR::erm | YopR_F | CTTGCTACGAAAGAAGATTTAGG |
| | YopR_R | CTCGCTTGAACACAGAAGATTTAGG |

phi3T aimR::erm	Forward Flanking	AimR-phi3T-1m	CGAATGCTGGAAGAAGAATTTCTTAAGATA
	AimR-phi3T-2c	GGTCTCTTCTTTCTGCCTGGCTTTAATTCCAATTTGCTCC	
Reverse Flanking	AimR-phi3T-3m	GGAAGACGTAGCAAGGTCGATTTACATTTCAAG	
	AimR-phi3T-4c	CAAAGCAGTACATGTGTTCCTCCAG	

phi3T aimP::erm	Forward Flanking	AimR-phi3T-5m	GTGATTTTTGGCAATATGTC
	AimR-phi3T-11c	GCAATATGTTAATGAGCAGAAGCCGAGGATATTGATGGATCTTCAAG	
Reverse Flanking	AimR-phi3T-11m	GGTTTTGCTCTTAAATATGTGAGGCGCGGCGCGCAGAAGGATTTTGAATTCGATTTCAATTTAGG	
	AimR-phi3T-4c	CAAAGCAGTACATGTGGTTCCTCCAG	

Plasmids	Oligonucleotides	Sequence (5'→3')
pJP2340	AimR-SPBeta-1mH	CCCAAGCTGATATGTAAGTATCTATTAG
	AimR-SPBeta-2cS	ACAGGCGAACATATTGTCTCTCCATTAAAAATAGG
pJP2750	AimR-phi3T-9mS	AGGCCTGACCTTTGAATTTCTAGATGAG
	AimR-phi3T-10cSpH	ATAGCATGCGCTTCTTTCAATTTGTCAGAC
pJP2800	YopR_2F	ACAGGCGAACAGGAGTGAGCAGAAAGAAGTG
	YopR_2R	ACATGAGCTGCCATTTTTACAAATAGGACATTAACGAGGAGGAG

Southern Blot	Oligonucleotides	Sequence (5'→3')
SPβ probe	SPBeta-1m	GATAGCGTACCAGGAGGTCTCTC
	SPBeta-2c	CTAATGGAGGAGCTGGAGAG
Supplemental References:

S1. Burkholder, P. R., and N. H. Giles. (1947). Induced biochemical mutations in *Bacillus subtilis*. Amer. J. Bot. 34:345.

S2. Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, et al. (2003). Genome engineering reveals large dispensable regions in *Bacillus subtilis*. Mol Biol Evol. 20, 2076–90.

S3. Dean, D. H., J. C. Orrego, K. W. Hutchinson, and H. O. Halvorson. (1976). New temperate bacteriophage for *Bacillus subtilis*, r11. J. Virol. 20, 509-519.

S4. Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM et al. (2017). Construction and Analysis of Two Genome-Scale Deletion Libraries for *Bacillus subtilis*. Cell Syst. 4, 291-305.

S5. Carniol K, Ben-Yehuda S, King N, Losick R. (2005). Genetic dissection of the sporulation protein SpoIIIE and its role in asymmetric division in *Bacillus subtilis*. J Bacteriol. 187, 3511–20.