Supplementary files for:

Blood RNA sequencing confirms upregulated BATF2 and FCGR1A expression in children with autism spectrum disorder

Irena Voinsky¹, Yazeed Zoabi²,³, Noam Shomron²,³,⁴, Moria Harel⁵, Hanoch Cassuto⁵, Joseph Tam⁶, Sirish Bennuri⁷, Shannon Rose⁷, Richard E. Frye⁸, Adi Aran⁵,⁶, David Gurwitz¹,⁴

¹Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

²Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

³Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel

⁴Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel

⁵Shaare Zedek Medical Center, Jerusalem 91031, Israel

⁶Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel

⁷Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA

⁸Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA and Section of Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, USA

Correspondence:
Adi Aran, Shaare Zedek Medical Center, Jerusalem 91031, Israel. Email: aaran@szmc.org.il and David Gurwitz, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. Email: gurwitz@tauex.tau.ac.il

Supplementary Table S1: Primers used for real-time qPCR.

Gene	Forward	Reverse
GAPDH	GGAGCGGAGATCCTCCCAAAAT	GGCTGTGTCACTTCTCATG
RPLP0	AGCCCCAGAACACTTGGTCTC	ACTCAGGATTCAATGGTGC
SERPING1	CTTGTCTCTCTCAATGTACATC	CCACAGGTACCTTCTTGCAATTT
EFHC2	ATGGGCCGACATTTCAAGATT	GGCTCTACGTGTCTTACAACTCT
BATF2	CCTCATTGCTCTTTGGGACTAGG	TGTGTAGAACCTGGGTGAAG
CDC20	AGACCTGCGGTACATTCTCTCT	GCCAGTACATCCAGAAGACTCC
FCGR1A	CGCTACACATCACGCGAAGAATA	GCCCATGTAAGGAGAAGATTAAGA
MT2A	CCGCTCCAGATGTAAGAAA	CACGCTACGGGTTGTCATATAA
ISG15	CGCAAGATCCACCGAGAGAATC	TTCGTCCACATTGTGTCACCCA
FBXO6	ATCCCTACAAATGTCCTCAAGA	CCAACACGGAATGTCACCGG
LINC00869	CATCACAAGATCCTGCCTACTC	CACCTCCTCCCCTCTGTATCT
LY6E	GGGAAATCTCGTGACATTTGGC	ACACCAAACATTCACGGCCTCT
Supplementary Table S2: Real-time qPCR analyses compared PBMC gene expression levels in children with ASD vs. either all neurotypical controls (left); only their neurotypical siblings (middle) or only unrelated neurotypical children (right). N shows numbers for neurotypical controls/ASD for each comparison. Outlier samples were removed. Note that *SERPING1* was the only significant gene showing differential expression in PBMCs from the ASD group and their neurotypical siblings (bold fonts).

Gene	ASD vs. all neurotypical controls	ASD vs. sibling controls	ASD vs. unrelated controls
SERPING1	N: 30/17 p-value: 0.389 FD: 0.71	N: 30/12 p-value: 0.023 FD: 1.90	N: 30/7 p-value: 0.275 FD: 0.82
BATF2	36/17 0.291 0.84	36/11 0.217 1.60	36/6 0.074 1.45
EFHC2	28/18 0.057 1.44	37/12 0.261 1.34	37/6 0.724 1.37
CDC20	30/17 0.275 1.23	30/11 0.988 1.49	30/6 0.113 1.05
FCGR1A	32/17 0.992 0.98	32/11 0.923 1.47	32/6 0.922 1.55
MT2A	32/17 0.222 1.18	32/11 0.276 1.47	32/7 0.928 1.20
ISG15	33/18 0.395 0.89	33/12 0.849 0.79	33/7 0.507 0.98
FBXO6	35/19 0.214 1.20	36/12 0.365 1.63	35/7 0.302 0.65
LINC00869	32/18 0.568 1.03	32/11 0.314 1.24	32/7 0.788 2.01
LY6E	34/18 0.396 1.10	34/11 0.277 1.06	34/7 0.932 3.31
Supplementary Table S3: Summary of Spearman correlation test of top 10 RNA-seq genes and serum endocannabinoids in (a) ASD samples only; (b) neurotypical controls; (c) ASD and neurotypical controls combined. Outlier samples were removed. P-value is two-tailed; N, XY pairs. Serum endocannabinoid levels are taken from Aran et al. 2019. Correlations with p<0.05 are shown in bold fonts.

A. ASD	SERPING1	EFHC2	BATF2	CDC20	FCGR1A	MT2A	ISG15	FBXO6	LINC00869	LY6E
	N (XY Pairs)									
OEA	22	33	30	25	29	31	31	28	32	30
p.val	0.4166	0.9617	**0.0302**	0.3610	0.7452	0.2111	0.7679	0.7148	0.2676	0.8491
r	0.1824	-0.00869	0.3962	0.1908	0.06305	0.231	0.05524	0.07225	0.202	0.03626
PEA	0.0637	0.9199	0.8702	0.5284	0.7093	0.7767	0.9764	0.4859	0.0779	0.2635
p.val	-0.01822	0.05131	-0.06855	-0.1323	0.005348	0.1257	0.3162	0.2004	-0.01822	-0.06855
r	-0.1056	-0.2898	0.202	-0.09154	0.07144	0.1938	-0.04355	-0.1692	-0.2407	-0.1722
AEA	0.64	0.1019	0.2843	0.6634	0.7127	0.2963	0.816	0.3895	0.1845	0.3628
p.val	-0.1056	-0.2898	0.202	-0.09154	0.07144	0.1938	-0.04355	-0.1692	-0.2407	-0.1722
OS	0.1571	0.4824	0.3038	0.8096	0.8451	0.1035	0.4987	0.6617	**0.047**	0.2331
p.val	0.3123	0.1267	0.1942	0.05077	-0.03793	0.298	-0.1262	0.08648	0.3537	0.2245
r	0.4934	0.7297	0.7516	0.4038	0.5758	0.3308	0.4973	0.9098	0.296	0.1326
2AG	0.1542	-0.0625	-0.06029	-0.1746	0.1084	-0.1806	0.1266	-0.02244	0.1906	0.281
p.val	0.9106	0.1811	0.973	0.5828	0.9697	0.0718	**0.0399**	0.083	0.645	0.2182
r	-0.02541	-0.2386	-0.00645	-0.1154	0.007389	0.3278	-0.371	-0.3333	-0.08468	0.2316
B. Control	SERPING1	EFHC2	BATF2	CDC20	FGFR1A	MT2A	ISG15	FBXO6	LINCO00869	LY6E
------------	----------	-------	-------	-------	--------	------	-------	-------	------------	------
OEA	18	19	18	17	17	19	16	19	18	18
p.val	0.1881	0.4680	0.6042	0.2311	0.9887	0.7372	0.0540	0.5092	0.9384	0.8357
r	-0.3251	0.1772	-0.1311	-0.3064	-0.0049	0.08246	-0.4941	-0.1614	0.01961	-0.05263
PEA	0.9659	0.8700	0.5764	0.1842	0.0617	0.9398	0.7802	0.6045	0.7264	0.0004
p.val	0.01053	0.03910	-0.1368	-0.3382	-0.4489	-0.01805	-0.07353	0.1233	0.08596	-0.7298
r	0.3509	0.02851	-0.2256	-0.3971	-0.3612	0.06466	-0.3554	0.2211	0.2246	-0.1088
AEA	0.4415	0.9248	0.3515	0.1156	0.8869	0.7865	0.1619	0.349	0.3553	0.6576
p.val	0.1877	-0.20225	-0.2263	0.3971	0.06312	0.06466	0.2211	0.2246	-0.1088	0.5075
r	0.9205	0.4237	0.7753	0.3568	0.7851	0.3907	0.2853	0.7005	0.6785	0.4907
OS	0.1408	0.1408	0.5617	0.8835	0.7048	0.5395	0.0137	0.4778	0.101	0.9602
p.val	0.3509	0.3414	0.1421	-0.03922	0.09598	-0.1459	-0.5931	0.1684	0.3877	-0.01228
r	-0.3509	-0.02126	0.4273	0.7753	0.3568	0.7851	0.3907	0.2853	0.7005	0.6785
ZAG	0.2206	0.7527	0.2797	0.8686	0.2875	0.2272	0.6322	0.1838	0.9488	0.5375
p.val	0.2947	-0.07519	-0.2614	-0.04412	-0.2652	0.2827	-0.125	-0.3098	-0.01579	0.1509
r	0.02337	0.02851	-0.2256	-0.3971	-0.3612	0.06466	-0.3554	0.2211	0.2246	-0.1088

C. ASD and controls	SERPING1	EFHC2	BATF2	CDC20	FGFR1A	MT2A	ISG15	FBXO6	LINCO00869	LY6E
OEA	34	51	49	42	48	51	47	48	52	49
p.val	0.8055	0.8063	0.6085	0.8773	0.4609	0.0957	0.8464	0.7617	0.2714	0.384
r	0.04385	-0.0352	0.075	-0.02455	-0.109	0.2358	-0.02902	0.04494	0.1554	-0.1271
PEA	0.24	0.8426	0.5492	0.1955	0.0098	0.152	0.1997	0.5513	0.2708	0.0216
p.val	0.207	-0.02851	0.0876	-0.2038	0.1905	0.08816	0.1556	-0.3275	0.4019	0.1556
r	0.5675	-0.1016	0.2326	-0.08832	-0.1963	0.1932	-0.01532	-0.04717	0.2839	
AEA	0.1573	0.8367	0.3639	0.9647	0.9271	0.1147	0.1111	0.7004	0.0471	0.6837
p.val	0.248	0.02959	0.1326	-0.00705	0.01357	0.2236	-0.2354	0.05699	0.2767	0.05969
r	0.6372	0.9362	0.3366	0.4241	0.3184	0.0741	0.4127	0.9947	0.0571	0.1239
ZAG	0.08388	0.01149	0.1402	-0.1267	0.1471	-0.2523	-0.1223	0.000977	0.2655	0.2228
p.val	0.5781	0.1857	0.8734	0.6996	0.7157	0.0708	0.0314	0.0242	0.6809	0.0995
r	0.09885	-0.1883	-0.20337	-0.06134	-0.05395	0.2551	-0.3143	-0.325	-0.0584	0.2381
Supplementary Figure. S1: Real-time qPCR measurements for whole blood RNA expression levels in ASD and control children (Israeli cohort). Box plots show mean ± SEM RNA levels for neurotypical control vs. ASD whole blood samples. Outliers were removed and analysis was done using a non-parametric Mann Whitney test. As shown, p values for gene expression (qPCR measurements) in ASD vs. control blood samples indicated lack of significant differences for the presented genes.
Supplementary Figure. S2: RNA expression by real-time qPCR in PBMCs from children with ASD and all neurotypical control children (U.S. cohort). Graphs show mean ± SED for control and ASD samples for each of the top 10 genes found by RNA-seq of whole blood samples from the Israeli cohort. Outliers were removed and analysis was done using a non-parametric Mann Whitney test. No significant differences in gene expression were found between ASD and control PBMCs (p>0.1 for the 10 tested genes).
Supplementary Figure S3: Correlations for whole blood *LY6E* expression levels with serum palmitoylethanolamide (PEA) levels in children with ASD and neurotypical controls (Israeli cohort). Correlations are shown for (a) neurotypical control children (N=19); (b) ASD children (N=30). The r and p values for each correlation plot (Spearman test) are shown in each panel. PEA levels were taken from Aran et al. 2019. See Methods for further details.
Supplementary Figure S4: Correlations for whole blood mRNA expression levels with serum endocannabinoid levels in children with ASD and neurotypical controls combined (Israeli cohort). Correlations are shown for (a) FCRG1A and palmitoylethanolamide (PEA); (b) LY6E and PEA; (c) FBXO6 and arachidonic acid (AA); (d) ISG15 and AA; (e) LINC00869 and oleoyl serine (OS); (f) LY6E and anandamide (AEA). The r and p values for each correlation plot (Spearman test) are shown in each panel. Open circles indicate control children, while closed circles indicate ASD children; individual findings for whole blood mRNA expression and serum EC levels were combined for controls (open circles) and children with ASD (closed circles) for calculating r and p values for each correlation. Endocannabinoid levels were taken from Aran et al. 2019.