Trophic Connections of Leafroller Moths (Lepidoptera: Tortricidae) and Oaks in Sofia Region, Bulgaria

GERGANA ZAEMDZHIKOVA

1 Forest Research Institute, Bulgarian Academy of Sciences; 132, Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; E-mail: zaem.bg@abv.bg

Received 12 March 2020 │ Accepted by V. Pešić: 3 April 2020 │ Published online 14 April 2020.

Abstract
The trophic connections of leafeating tortricids (Lepidoptera: Tortricidae) and the oaks were studied in the Sofia region of West Bulgaria. Biological material – larvae and pupae, 5200 in number, was collected in April-May 2011-2013 at 17 sampling sites. Fifteen tortricids have been identified, 7 oak species and 57 trophic connections between them, 31 of which new for Bulgaria. A complete up-to-date list of trophic connections of leafeating trotricids with Quercus spp. reported in Bulgarian publications is provided.

Key words: phyllophages, leafeaters, Quercus, up-to-date list, insect-plant interactions, pests.

Introduction
The Tortricidae family (the leafroller moths) ranks among the first in the order Lepidoptera by species richness with about 11 365 species described, about 100 of which are considered pests in agriculture and forestry (Gilligan et al. 2018). Forestry pests of the family are phyllophages (leafeaters). Especially the green oak tortix Tortrix viridana (Linnaeus, 1758) has a wide range of hosts of the genus Quercus (Du Merle 1999) and is one of the most important defoliators causing economically significant damage to deciduous forests in Europe, Asia Minor and North Africa (Kalapanida-Kantartzi & Glavendekić 2002).

In Bulgaria, 45 species of leafroller moths have been found to damage various organs of oak (Ganchev 1990). Two leaf-eaters – T. viridana and Archips xylosteana (Linnaeus, 1758) are widespread and cause economically significant damage to the oak forests in the country (Zlatanov 1968; Ganchev 1978, Tsankov et al. 1997). In recent decades, the “complex of leafroller moths” ranks as the second economically most important group of pests in the deciduous forests of the country after Lymantria dispar (Linnaeus, 1758) (Zaemdzhikova & Balov 2011; Zaemdzhikova et al. 2019).

The leafroller moths are an essential and permanent element of the insect complex in oak forests. Despite their economic importance, the picture of their trophic connections with the oaks is fragmentary, as previous studies have very often recorded leafroller species without specifying the oak species (Atia 1978a, b; Ganchev 1978; 1990). This necessitates further studies on this group of pests.
Table 1. Phyllophagous species of the Tortricidae family recorded on *Quercus* spp. in Bulgaria (according to published research).

Tortricidae spp.	Quercus spp.	Locality	Source
Aleimma loeflingiana	*Q. pubescens*	Kresna Gorge	Zlatkov 2011¹
Anacampsis timidella	*Q. frainetto, Q. cerasis, Q. robur,*		
	Q. pubescens, Q. stranjensis		
Ancylis mitterbacheriana	*Quercus* spp.		Ganchev 1978⁸; Ganchev 1990
Ancylis apupana	*Quercus* spp.		Ganchev 1990⁹
Archips crataegana	*Q. petraea, Q. frainetto, Q. cerasis*	Bozhuritsa area (near Vidin) Vakarel Vill. (Sredna Gora Mt.)	Atia 1978a¹; Ganchev 1978⁸; Ganchev 1990
Archips podana	*Quercus* spp.	in the vicinity of: Sofia, Kliusra, Asenovgrad, Plovdiv, Burgas, Sliven	Atia 1978a¹; Ganchev 1978⁸; Ganchev 1990
Archips rosana	*Q. petraea, Q. robur, Q. frainetto, Q. cerasis, Q. stranjensis (=Quercus hartriwissiana)*	Strandza Mt.	Zlatanov 1968*
Archips xylostena	*Q. petraea, Q. frainetto, Q. cerasis, Q. stranjensis, Q. pubescens, Q. stranjensis*	Vakarel Vill. (Sredna Gora Mt.), in the vicinity of Vidin	Tsankov et al. 1997
	Q. petraea, Q. frainetto, Q. cerasis		
Argyrotaenia ljungiana	*Quercus* spp.	Borisova gradina (Sofia) Stara Planina Mt.	Zlatanov 1956; Zashev 1956
Choristoneura hebenstreitella	*Quercus* spp.	Stara Planina Mt.	Zashev 1957; Boykov 1961; Daskalova 1980
Eudemis profundana	*Q. robur*	Antimovo Vill., Plovdiv Vill. (close to Burgas), Topolchane Vill. (close to Sliven) in the vicinity of: Sofia, Vratsa, Kliusra, Asenovgrad	Zlatanov 1968
	Quercus spp.	Strainzha Mt.	
	Q. rubra		
	Q. rubra		
	Quercus spp.		
	Q. rubra		
	Quercus spp.		
	Q. rubra		
Argyrotaenia ljungiana	*Quercus* spp.	Eastern Stara Planina Mt.	Atia 1978a¹; Ganchev 1978⁸; Ganchev 1990
Choristoneura hebenstreitella	*Quercus* spp.		
Eudemis profundana	*Q. robur*	Sofia	Balevski & Georgiev 1998; Georgiev & Kolarov, 1999

⁸ Dr. I. Atia, 1978; ⁹ Dr. I. Ganchev, 1990; ¹ Dr. V. Zlatkov, 2011; ² Dr. V. Zapryanov, 1983; ³ Dr. G. Chorbadzhiev, 1992; ⁴ Dr. K. Balevski & Dr. G. Georgiev, 1998; ⁵ Dr. D. Zlatanov, 1996; ⁶ Dr. Z. Stefanov, 1956; ⁷ Dr. Ch. Zashev, 1957; ⁸ Dr. H. Boykov, 1961; ⁹ Dr. C. Daskalova, 1980; ¹⁰ Dr. S. Balevski & Dr. I. Georgiev, 1999.
Species	Hosts	Reference
Gypsonoma dealbana °(Frölich, 1828)	*Quercus* spp.	Ganchev 1990°
Hedya nubiferana (Haworth, 1811)	*Quercus* spp.	Atia 1978a¹; Ganchev 1978°; Ganchev 1990
Notocelia roborana °	*Quercus* spp.	Ganchev 1990°
Pandemis cerasana (Hübner, 1786)	*Q. petraea*, *Q. frainetto*, *Q. cerris*	Vakarel Vill. Tsankov *et al.* 1997
Pandemis corylana °(Fabricius, 1794)	*Q. petraea*, *Q. frainetto*, *Q. cerris*	Sofia Region Zaemdzhikova 2014°
Pandemis damaeana (Tretishe, 1835)	*Quercus* spp.	Ganchev 1990°
Pandemis heparana ((Denis & Schiffermüller), 1775)	*Quercus* spp.	Eastern Stara Planina Mt. Keremidchiev 1965°
Psycholoma lecheana (Linnaeus, 1758)	*Q. petraea*, *Q. robur*, *Q. frainetto*, *Q. cerris*, *Q. stranjensis*	Strandzha Mt. Zlatanov 1968°
Ptycholoma lecheana °(Linnaeus, 1758)	*Quercus* spp.	Atia 1978a°; Ganchev 1978; Ganchev 1990
Syriconis lacunana °	*Quercus* spp.	Ganchev 1978°
Tortricodes alternella °	*Q. petraea*, *Q. frainetto*, *Q. cerris*, *Q. robur*	Zlatanov 1971¹; Ganchev 1978; Ganchev 1990
Tortrix viridana Linnaeus, 1758	*Q. petraea*, *Q. frainetto*, *Q. serris*, *Q. pubescens*, *Q. robur*, *Q. stranjensis*, *Q. cerris*, *Q. rubra*	Vidin (place Bozhuritsa, Kotenovtsi Vill., Tiyanovtsi vVill.), Samokov (Gutsal Vill.), Plovdiv (Krustevich Vill.) and Vakarel Vill. Tsankov *et al.* 1997
Zeiraphera isertana ° (Fabricius, 1794)	*Q. robur*, *Q. petraea*, *Q. stranjensis*	Strandzha Mt. Zlatanov 1968

° not found in our sample
¹ first publication in Bulgaria

Zaemdzhikova 2014

Ecologica Montenegrina, 30, 2020, 47-59
A list of previously known trophic connections of leaf-eating species from the family Tortricidae and *Quercus* spp., summarizing available Bulgarian publications, is presented in Table 1, which includes 25 tortricids and 51 trophic connections. The oldest publication is the record of *Archips xylosteana* in Stara Planina Mt. by Chorbadzhiev (1929), unfortunately made without specifying the oak species. The most numerous records are on *A. xylosteana* (13) and *T. viridana* (11). These two species are also the only ones found in early Bulgarian publications dating from before 1960. The most numerous records, in fact the majority, of trophic relationships with specific oak species were made in the 1970s by Zlatanov (27), followed by the Tsankov in the 1990s (6).

Oak forests cover 1,404,000 ha in Bulgaria (EFA 2018). They are the main vegetation (50%) in the lowland and foothills belt, which covers the altitudes from 0 to 1000-1200 m. a.s.l. ("belt of oaks"). Bulgarian oak forests are dominated by *Quercus petraea* Liebl., *Q. frainetto* Ten., *Q. cerasis* L. and *Q. pubescens* Willd. (98% of their area). The remaining 2% are distributed among 5 relatively rare species: *Q. robur* L., *Q. rubra* L., *Q. hartwissiana* Steven, *Quercus suber* L. and *Q. coccifera* L. Rare among the rare are the relict species *Q. hartwissiana* and the maquis species *Q. coccifera*.

Although rare now, *Q. robur* has historically dominated the plains. It is still ubiquitous there, but because of anthropogenic pressure, it has survived throughout its former wide range as isolated small forests and single trees (Markoff et al. 2017). Nevertheless, it retains its ecological significance, at least because its restoration is one of the measures for adaptation of forests to climate change (Raev et al. 2011). *Q. hartwissiana* (= *Q. stranjensis*) is a relict species represented by small areas in the Strandja Mountains in Bulgaria. *Q. rubra* is a known American species. It is interesting as an example of the adaptation of torticids to exotic species. The evergreen Mediterranean oaks *Q. suber* and *Q. coccifera* are represented by small areas in southwestern Bulgaria and are little known. *Q. coccifera* forms natural forests on xerothermic habitats. *Q. suber* plantations are grown for cork production. They are interesting as a vanguard of Mediterranean vegetation, which is expected to extend its range to the north (Raev et al. 2011).

The purpose of this work is to investigate the trophic connections of phyllophagous Tortricidae with the oaks in the Sofia region.

Material and methods

The study was conducted in April-June 2011-2013 in the oak forests in the Sofia region. Biological material (larvae and pupae) was collected from 17 sampling sites in the mountains Vitosha, Lyulin, Western Stara Planina and Ihtimanska Sredna Gora, which surround Sofia valley, as well as in the Sofia valley itself (Table 2 and Fig. 1).

Figure 1. Location of sampling sites.
№	Locality	Altitude, m.	Coordinates	Quercus spp.
			N 42° 37' 20" E 23° 13' 30"	Q. petraea
1	Muzey na sovite area	1265		Q. petraea
2	Tihiya kut area	1055	N 42° 38' 18" E 23° 13' 05"	Q. petraea
3	Bosnek Vill.	950	N 42° 30' 27" E 23° 09' 17"	Q. petraea
4	Byalata voda area	985	N 42° 38' 29" E 23°13' 49"	Q. petraea
5	above Dragalevtsi Monastery “Uspenie Bogorodichno”	895	N 42° 37' 20" E 23° 18' 19"	Q. rubra
6	above residential area ”Dragalevtsi”	865	N 42° 37' 17" E 23° 18' 31"	Q. cerris
7	Rudartsi Vill.	850	N 42° 34' 54" E 23° 08' 59"	Q. petraea
8	above residential area ”Knyazhevo”	750	N 42° 39' 14" E 23'14' 33"	Q. petraea
			N 42° 37' 24" E 23°12' 18"	Q. petraea
9	Manastirski livadi area	920	N 42° 39' 19" E 23° 11' 28"	Q. petraea
10		900	N 42° 39' 26" E 23° 12' 19"	Q. frainetto
11		890	N 42° 39' 24" E 23° 12' 18"	Q. petraea
			N 42° 39' 24" E 23° 12' 18"	Q. cerris
12	“St. Georgi” Monastery	865	N 42° 48' 17" E 23° 30' 28"	Q. frainetto
13	“St. Nikolay Mirlikiysi” Monastery	860	N 42° 47' 51" E 23° 31' 32"	Q. petraea
			N 42° 47' 51" E 23° 31' 32"	Q. cerris
14	German Vill.	670	N 42° 35' 54" E 23° 26' 07"	Q. petraea
15	Vakarel Vill.	970	N 42° 39' 13" E 23° 39' 50"	Q. petraea
			N 42° 39' 13" E 23° 39' 50"	Q. cerris
			N 42° 39' 13" E 23° 39' 50"	Q. frainetto
16	Borisova gradina park	605	N 42° 40' 35" E 23° 20' 33"	Q. rubra
17	Forest Research Institute – Arboretum	645	N 42° 37' 49" E 23° 21' 13"	Q. robur

For each specimen taken, the hoste species was identified and recorded on the spot. The biological material was transported to the entomological laboratory of the Forest Research Institute where it was reared at room temperatures (18-20 °C). Bringing up of larvae and pupae was performed according to the commonly used methodology applied to all Microlepidoptera (Swatschek 1958; Buszko & Palka 2006).
During the period, 4522 larvae and 678 pupae of tortrix moths were collected. From the collected larvae, 630 died before they could pupate. In the result, 4570 pupae were investigated. Adults were identified following the keys of Razowski (2002; 2003; 2008) and Kuznetsov (1978). Identification of pupae was done following Kuslickij & Narol'skii (1986).

The sampling sites are located at altitudes from 600 up to 1300 m a.s.l., which is the upper half of the oaks belt in Bulgaria. Seven oak species were found - all known but the two evergreen. The sampling sites are dominated by *Quercus petraea*, *Q. frainetto* and *Q. cerris*, followed at a considerable distance by *Q. pubescens*. Their shares proved similar to their shares in the whole country, with easy to explain deviations (Fig. 2). The share of *Q. petraea* in the sample is higher than its national average because it is the dominant oak species at altitudes over 600 m a.s.l. in Bulgaria. On the contrary, the shares of *Q. frainetto* and *Q. pubescens* that gravitate to the lower places are smaller. The share of *Q. cerris* which is ubiquitous in the oak belt equals its country-wide average. *Q. pubescens*, which is less common than the other three, is also the less common in the sample.

![Figure 2. Shares of the oak species in the sample and in the whole country.](image)

The small shares of *Quercus robur* L., *Q. rubra* L. and *Q. hartwissiana* in the sample are nevertheless much larger than their country-wide average. Because they are of considerable interest for biology and ecology, at least one forest stand of each was searched for and investigated. With the exception of 4 such sites, the others were selected as typical representatives of the locality and reflect the natural tree species composition of the region. Unfortunately, *Quercus suber* and *Q. coccifera* do not occur in the study area and were not studied.

Results

General. The trophic connections found are presented in Table 3, which is the main result of the present study. From our findings (Table 3) and literature sources (Table 1), a complete up-to-date list of trophic connections of leaf-eating tortricids with oaks recorded in Bulgaria was compiled (Table 4). Recapitulation parameters are given in Table 5.
Table 3. Phyllophagous Tortricidae species identified on *Quercus* spp. in biological material collected.

Tortricidae spp.	*Q. cerris* L.	*Q. petraea* Liebl.	*Q. robur* L.	*Q. frainetto* Ten.	*Q. hartwissiana* Steven	*Q. rubra* L.	*Q. pubescens* Willd.
	Sampling sites						
Aleimma loeflingiana	2, 3, 6*	3, 4, 14*	17*				3B
Archips crataegana	3, 7, 8, 9, 11T	2, 3, 4, 9, 11, 13, 14T	17*	7, 10, 12T	17*	5, 16*	
Archips podana **	4, 14*	17*	7*	17*	5, 16*		
Archips rosana	Z	9, 11Z	17Z	10Z	Z	5, 16*	Z
Archips xylostelana	2, 3, 7, 8, 9, 11, 13, 14Z	1, 2, 3, 4, 7, 8, 9, 11, 13, 14, 15Z	17SZ	7, 9, 10, 12Z	17Z	5, 16SZ	Z
Choristoneura hebenstreitella **	3, 4, 14*						
Eudemis profundana	2, 3, 9, 11*	1, 2, 3, 4, 7, 9, 11*	17BG	7, 9, 10, 12*	16*	3*	
Hedya nubiferana **	14*						
Pandemis cerasana	3, 9, 6T	2, 3, 4, 9, 11, 14T	17T			5, 16*	
*Pandemis dumetana**	16*						
*Pandemis heparana**	9, 8*	3*					
Ptycholoma lecheana	14Z	Z	17Z	Z	Z	Z	Z
*Spilonota ocellana**	2, 3, 11, 14*	17*	10*			16*	
Tortrix viridana	2, 7, 8, 9Z	3, 4, 7, 8, 9, 11, 13, 14Z	17Z	7, 9, 10Z	17Z	5, 16Z	3Z
Zeiraphera isertana	2, 3*	1, 2, 3, 4, 9, 11Z	Z	9*	Z	16*	

*New trophic connection for Bulgaria; **All listed trophic connections are new for Bulgaria
T first recorded by Tsankov, Z – Zlatanov, SZ – Stefanov-Zashev, BG – Balevski-Georgiev, B – Boyan Zlatkov
Table 4. Trophic connections of the phyllophagous (leaf-eating) species of the Tortricidae family with the *Quercus* spp. in Bulgaria.

Tortricidae spp.	*Q. cerris*	*Q. petraea*	*Q. robur*	*Q. frainetto*	*Q. hartwissiana*	*Q. rubra*	*Q. pubescens*
Acleris variegana	*(C)*	*	*	*(C)			
Aleimma loeflingiana	*	*	*	*(C)*			
Anacampsis timidella	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*		
Ancylis mitterbacheriana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Ancylis upupana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Archips crataegana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Archips podana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Archips rosana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Archips xylosteana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Argyrotaenia ljiungiana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Choristoneura hebenstreitella	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Eudemis profundana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Gypsonoma dealbana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Hedya nubiferana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Notocelia roborana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Pandemis cerasana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Pandemis corylana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Pandemis dumetana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Pandemis heparana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Psycholoma lecheana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Spilonota ocellana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Syricoris lacunana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Tortricodes alternella	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Tortrix viridana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*
Zeiraphera isertana	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*	*(C)*

* *trophic connections recorded by us in Sofia region
(C) country-wide trophic connections recorded in other Bulgarian publications
Table 5a. Recapitulation by insect species.

Trotricidae spp.	Frequency of the species in sampling sites	New connections for Bulgaria	Confirmed known connections	Known connections not observed	Total of connections evidenced in Bulgaria	Publications in Bulgaria
	Species found by us in Sofia region sample					
	Numbers					
Aleimma loeflingiana	6	3	1	4	1	
Archips crataegana	14 ^m	3	5	1	6 ^m	5
Archips podana **	6	5 ^M	3	5		
Archips rosana	6	3	7 ^M	5		
Archips xylostaeana⁷	16 ^M	6 ^m	1	7 ^M	13 ^M	
Choristoneura hebenstreitella **	3	1	1	3		
Eudemis profundana	11	5 ^M	1	6 ^m	5	
Hedya nubiferana **	1	1	1	3		
Pandemis cerasana	10	2	2	1	5	2
Pandemis dumetana **	1	1	1	1		
Pandemis heparana **	3	2	2	1	3	
Psycholoma lecheana⁷	2	2	5 ^M	7 ^M	3	
Spilonota ocellana **	7	4 ^m	4	3		
Tortrix viridana⁷	13 ^m	7 ^M	7 ^M	11 ^m		
Zeiraphera isertana	7	3	1	2	6 ^m	2
Total for sample results	31	26	12	69		
Species known in Bulgaria but not found by us in Sofia region sample	1	5	1	1		

all connections new for Bulgaria

^M maximum value

^m next maximal value

^N no new connections were observed

^F first scientific records (before 1960)

^F found with all seven oak species

The number of 15 Tantlmeicidae species were found feeding on the leaves of 7 oak species (Table 3). All 15 torticids identified are among the known 25 species, listed in Table 1. The remaining 10 were not found in the material collected. These are well-known species in Bulgaria (Zlatkov 2011), which appear to be rarely found on oak. Lists of the 15 found and the 10 not found species can be seen in Table 5a.
The total of 57 trophic connections were established in our sampling data, 31 of which were new for Bulgaria (Table 3 and Table 5a). Finally, the total of 82 trophic connections of leafeating torticids with oak species have been established in Bulgaria, of them 31 are new records for Bulgaria made in this study, 26 are connections known from other Bulgarian publications and confirmed by us and 25 are known trophic connections not observed by us in the study area. Of the latter, 13 involve tortricids that were not found in our biological material, in the remaining 12 cases, the insect was found, but not the connection (Table 4 and Table 5a).

Table 5b. Recapitulation by tree species.

Quercus spp.	Frequence in sampling sites	New connections for Bulgaria	Confirmed known connections	Known connections not observed	Total of connections evidenced in Bulgaria
Q. cerris	9	5	5	4	14
Q. petraea	11	6	6	3	15
Q. robur	1	5	5	3	13
Q. frainetto	4	4	4	5	13
Q. hartwissiana	1	2	2	4	8
Q. rubra	2	8	2	2	12
Q. pubescens	1	1	2	4	7
Total	**31**	**26**	**25**	**82**	

It is worth mentioning that despite the significant volume of biological material, this study did not find a new for Bulgaria phyllophagous tortricid damaging the oaks. Such was found the following year – *Pandemis corylana* (Fabricius, 1794) – in a much more limited study in the Sofia region (Zaedzhekova 2014). This is a species well known in the country (Zlatkov 2011) but not recorded by then to feed on any oak species.

New records. For 6 species: *Archips podana* (Scopoli 1763), *Choristoneura hebenstreitella* (Müller, 1764), *Pandemis dumetana* (Treitschke, 1835), *Pandemis heparana* ([Denis & Schiffermuller], 1775), *Spilonota ocellana* ([Denis & Schiffermüller], 1775) and *Hedya nubiferana* (Haworth, 1811), all connections established were new for Bulgaria (Table 5a). All these 6 leafrollers are relatively rare. The most numerous new connections were found for *Eudemis profundana* ([Denis & Schiffermüller], 1775) and *A. podana* – 5 for each. No new connections were found for the most common species of *T. viridana* and *A. xylosteana*. and also for *Ptycholoma lecheana* (Linnaeus 1758). This was a foreseeable result because these species had already been reported on all oak species.

Unobserved connections. The most numerous unobserved known connections – 5, had *P. lecheana*. This species was found at 2 of our sampling sites only, although it is known with trophic connections with all oak species. Same number of unobserved known connections have *Anacampsis timidella* (Wocke, 1887) and *Tortricodes alternella* ([Denis & Schiffermuller], 1775) that did not surface in our material (Table 5a).

Occurrence. In the sample, *A. xylosteana* was most commonly encountered (16 sites), followed by *A. crataegana* (14), *T. viridana* (13) and *E. profundana* (11). This was expected for *T. viridana* and *A. xylosteana*, which are known to be the country's most common leafroller moth species. Surprisingly close to them were *A. crataegana* and *E. profundana*, which are far from being as common as them (Table 5a).
Host ranges. Four leafroller species – *A. rosana* (Linnaeus, 1758), *A. xylosteana*, *T. viridana* and *P. lecheana* have trophic connections with all oak species. Further three – *E. profundana*, *Archips crataegana* (Hübner, 1799) and *Zeiraphera isertana* (Fabricius, 1794) have connections with all but one (Table 5a).

Entomofauna. The most numerous connections with leafroller moths have *Q. petraea* (15 species), followed tightly by *Q. cerris* (14 species), *Q. robur* and *Q. frainetto* (13 species), and *Q. rubra* (12 species). Interestingly, the North American species *Q. rubra* shows the same spectrum of trophic connections as the native oaks (Table 5b).

Discussion

All identified leafroller species are known as oak pests in Bulgaria (Atia 1978a; Ganchev 1990; Zlatanov 1968; Keremidchiev 1965; Zaemdzhikova & Balov 2011; Zaemdzhikova 2014). In any case, all the specimens we examined were taken from living vital trees, which is natural for leafeaters. The damage and costs caused in Bulgaria by the Torticidae species are extensively documented and hence the status of economically significant pests is undoubted for the most common species *T. viridana* and *A. xylosteana*. Less widespread species may require specialized studies.

Although the scientific interest in torticids in oak forests dates back to the 1920s, the present study provides a lot of new data of trophic connections of torticids and oaks: 31 of the observed connections are new to Bulgaria, which increased by 60% the number of records made, from 51 to 82. The large number of new for Bulgaria connections is due to the fact that many older authors did not determine accurately the species of oak on which the particular insect was found. As our sampling sites are representative of the upper half of the oak habitat in Bulgaria, a new study in the plain forests at altitudes from 0 to 600 m a.s.l. is obviously needed to complete the picture of the connections. In addition, The evergreen Mediterranean oaks remain completely unexplored in Bulgaria. Although represented by insignificant areas, they are very interesting in that they are located on the northern border of their range.

The present study focuses on the trophic connections of the leafeating leafroller moths with the oak species. A complete study of the food web of leafrollers and oaks requires a variety of additional studies. Despite of their economic importance, little is known about the population sizes of the individual leafroller species in Bulgaria, their trophic specialization and their spatial distribution. In the professional records, they are referred to as the complex of "Tortricidae-Geometridae". However, the knowledge of trophic specialization can be useful for planning forest protection activities. Knowledge of species composition and population sizes of Tortricidae species will allow to monitor the dynamics in their world, which in turn will allow to detect presumable impact of climate change. Scientific publications on these issues are scarce and controversial. E.g., it is well known that the leafroller moths are more or less associated with certain groups of plants, but generally have low trophic specialization (Razowski 2008). According to Staley & Zhechev (1997), leafroller moths have no preference for any oak species. Controversly, Keremidchiev (1965), Zlatanov (1968; 1971) and Ovcharov et al. (2000 a, b) reported leafroller moths preference for sessile oak (*Q. petraea*), with frainetto oak their occurrence decreased and reached a minimum in cerris oak. This opinion has not been obtained through nutritional experiments that would be decisive, and perhaps confuses preference with attacks number. In our results, most attacks are observed in sessile oak *Q. petraea*, too, but this may be due to the simple fact that it is the most frequent in our sample.

Acknowledgments

This work has been carried out in the framework of the National Science Program ”Environmental Protection and Reduction of Risks of Adverse Events and Natural Disasters”, approved by the Resolution of the Council of Ministers № 577/17.08.2018 and supported by the Ministry of Education and Science (MES) of Bulgaria (Agreement № Д01-322/18.12.2019).

Thank is said to Assoc. Prof. Nyonka Velcheva and Assist. Prof. Boyan Zlatkov who assisted the difficult cases in identifying the species, and to Prof. Plamen Mirchev, CM, for advice and judgments.
References

Atia, A. (1978a) The species composition and role of some insects of the family Braconidae (Hymenoptera) and Tachinidae (Diptera) in leaf-feeding insects in the forests. Dissertation, University of Forestry, Sofia, 222 pp. (In Bulgarian)

Atia, A. (1978b) Species composition and role of leaf-feeding insects in oak forests. Forestry, 7, 42–43. (In Bulgarian, English summary)

Balevski, N. & Georgiev, G. (1998) New species of the family Braconidae (Hymenoptera) in forest phytophages from order Lepidoptera in Bulgaria. Acta Entomologica Bulgaria, 1, 73–75.

Boykov, A. (1961) The parasites on the brown oak tortrix (Cacoecia xylosteana L.). Plant protection, 6, 47–48. (In Bulgarian, English summary)

Brown, J. W., Baixeras, J., Brown, R., Horak, M., Komai, F., Metzler, E., Razowski, J. & Tuck, K. (2005) World Catalogue of Insects Vol. 5, Tortricidae (Lepidoptera). Apollo Books, Stenstrup, Denmark, 741 pp.

Buszko, J. & Pałka, K. (2006) Klucze do oznaczania owadów Polski. Część XXVII. Motyle – Lepidoptera. Zeszyt 1–45a. Omacnice – Pyralidae. Wstęp oraz podrodziny Galeriinae i Pyralinae. Torun, 40 pp.

Chorbadzhiev, P. (1929) Pests of cultivated plants in Bulgaria in 1927. Information on agriculture (Svedenija po zemedelieto), 3/4, 3–59. (In Bulgarian)

Daskalova, I. (1980) Protection of park vegetation. Zemizdat, Sofia, 144 pp. (In Bulgarian)

Du Merle, P. (1999) Egg development and diapause: ecophysiological and genetic basis of phenological polymorphism and adaptation to varied hosts in the green oak tortrix, Tortrix viridana L. (Lepidoptera: Tortricidae). Journal of Insect Physiology, 45, 599–611.

EFA (2018) Electronic models of forest management plans, Bulgarian Executive Forest Agency, Available from: http://www.iag.bg/. (In Bulgarian)

Ganchev, G. (1978) Studies on the species composition of leafroller in some deciduous forests of Bulgaria. Forestry University – Sofia. Scientific Works, XXIII, Forestry, 73–77. (In Bulgarian, English summary)

Ganchev, G. (1990) Studies on entomophages on insect pests in oak forest forests. Habilitation work for obtaining the scientific title of “Professor”, Forestry University – Sofia, 487 pp. (In Bulgarian)

Georgiev, G. & Kolarov, J. (1999) New Ichneumonidae (Hymenoptera) parasitoids on forest insect pests in Bulgaria. Journal of Pest Science, 72 (3), 57–61. (In Bulgarian, English summary)

Gilligan, T. M., J. Baixeras, & J. W. Brown. (2018) T@RTS: Online World Catalogue of the Tortricidae (Ver. 4.0). Available from: http://www.tortricid.net/catalogue.asp

Kalapanida-Kantartzi, M. & Glavendekić, M. (2002) Observation on the appearance and the development of Tortrix viridana L. (Lepidoptera, Tortricidae). Acta Entomologica Serbia, 7, 1/2, 59–65.

Keremidchiev, M. (1965) A study of the entomofauna of oak forest types in the Eastern Balkan Range. Forestry Science, 3, 205–215. (In Bulgarian)

Kuslickij, V. & Narol’skij, N. (1986) Guide table to garden leafrollers (Lepidoptera, Tortricidae) after parasitizing pupae and exuviae. Entomological Review, LXV, 4, 727–739.

Kuznetsov, V. I. (1978) Family Tortricidae (Olethreutidae, Cochylidae) – Leafroller moths. In: Medvedev, G.S. (Eds.), Key to insects of the European part of the USSR 4: 1, Science, Leningrad, 193-710.

Markoff, I., Popov, G. & Pyttel, P. (2017) The chapter Bulgaria, In: Niculescu, V.N., Bartlett, D., Buckley, P., Rossney, D., Pyttel, P. & Unrau, A. National Perspectives on Coppice from 35 Eurocoppice Member Counties. COST Action FP1301 Reports., Freiburg, Germany: Albert Ludwig University in Freiburg, 2017, 4, 12-15.

Ovcharov, D. & Penev, D. (1991) Dynamics of the structure of the harmful entomofauna in the Devnya region. Forest Science, 1, 82–85. (In Bulgarian)

Ovcharov, D. & Andonova, E. (1993) Structure of the harmful entomofauna of Quercus species in the park stands in Sofia. In Proceeding "National Science and Technology Conference on Forest Protection", 30 March 1993, Sofia, 25–30. (In Bulgarian, English summary)

Ovcharov, D., Doychev, D. & Todorov, A. (2000a) Differences in leaf-feeding attacks and pests (family Tortricidae and family Geometridae: Lepidoptera) in individual representatives of the genus Quercus. "Anniversary Collection of Scientific Papers - 75 Years of Forestry Education in Bulgaria", Sofia, 269–278. (In Bulgarian, English summary)
Ovcharov, D., Doychev, D. & Todorov, A. (2000b) Differences in the resistance of individual species of the genus Quercus to attacks by insect pests. “Forestry and biodiversity. Plain Forests in Northeastern Bulgaria”. BSP, Sofia, 1, 38–43. (In Bulgarian, English summary)

Razowski, J. (2002) Tortricidae of Europe. Vol. 1. Olethreutinae. Slamka, Bratislava, 247 pp.

Razowski, J. (2003) Tortricidae of Europe. Vol. 2. Olethreutinae. Slamka, Bratislava, 301 pp.

Razowski, J. (2008) Tortricidae of the Palaeartic Region. Vol. 1. Tortricini and General Part. Slamka, Bratislava, 152 pp.

Tsankov, G., Mirchev, P. & Georgiev, G. (1997) Species composition and structure of the harmful leaf-feeding and entomofauna in the oak forests of Bulgaria. Acta Entomologica Bulgarica, 1–2, 66–69. (In Bulgarian, English summary)

Tsankov, G. & Mirchev, P. (1998) A contribution to the studies of Ichneumonidae (Hymenoptera) in Bulgaria. Acta Entomologica Bulgarica 2, 3, 4, 17–20. (In Bulgarian, English summary)

Zaemdzhikova, G. & Balov, S. (2011) Economic importance of leaf-damaging representatives of the family Tortricidae on Quercus spp. in Bulgarian forests. Acta Entomologica Bulgarica, 14, 62–67. (In Bulgarian, English summary)

Zaemdzhikova, G. (2014) Species diversity of leafroller moths (Lepidoptera: Tortricidae) on Quercus spp. in Sofia region, In Proceeding “Scientific Publications of the Forestry Institute, 145 Years of BAS”, Sofia, 215–233. (In Bulgarian, English summary)

Zaemdzhikova, G. & Mirchev, P., Georgiev, G. (2019) Economically important insect pests in Bulgarian forests during the period 2003-2018. Nauka za gorata, 2, 105–113. (In Bulgarian, English summary)

Zapryanov, A. (1983) Species composition and biological features of parasites of the family Braconidae (Hymenoptera) in some harmful butterflies in Bulgaria. Plant Protection, 6, 41–43. (In Bulgarian)

Zashev, B. (1956) The location and manner of laying eggs of the brown oak tortrix. Forestry, 7, 314–316. (In Bulgarian)

Zashev, B. (1957) Zaštita na parkovata rastitelnost (Protection of park vegetation), Zemizdat, Sofia, 488 pp. (In Bulgarian)

Zlatanov, St. (1968) Studies on harmful insects on oak forest types in Strandja Mountain. Forestry Science, 2, 67–76. (In Bulgarian)

Zlatanov, St. (1971) Insect pests on oak in Bulgaria. Publishing House of the Bulgarian Academy of Sciences, Sofia, 249 pp.

Zlatkov, B. (2011) Moths of the Tortricidae family (Lepidoptera: Microlepidoptera) of the Sandanski-Petrich valley. Dissertation, Sofia University “St. Kliment Ohridski”, Sofia, 239 pp.