RANDOM INTEGRAL EQUATIONS ON TIME SCALES

Vasile Lupulescu and Cristina Lungan

Communicated by P.A. Cojuhari

Abstract. In this paper, we present the existence and uniqueness of random solution of a random integral equation of Volterra type on time scales. We also study the asymptotic properties of the unique random solution.

Keywords: random integral equations, time scale, existence, uniqueness, stability.

Mathematics Subject Classification: 34N05, 45D05, 45R99.

1. INTRODUCTION

The random integral equations of Volterra type, as a natural extension of deterministic ones, arise in many applications and have been investigated by many mathematicians. For details, the reader may see the monograph [22, 27], the papers [7, 12, 21, 26] and references therein. For the general theory of integral equations see, the monographs [8, 11] and references therein. In recent years, it initiated the study of integral equations on time scales and obtained some significant results see [1, 16, 19, 25]. The stochastic differential equations on time scales was first studied by Sanyal in his Ph.D. Thesis [24]. For other results about stochastic processes see [23].

The aim of this paper is to obtain the general conditions which ensure the existence and uniqueness of a random solution of a random integral equation of Volterra type on time scales and to investigate the asymptotic behavior of such a random solution. The paper is organized as follows: in Section 2 we set up the appropriate framework on random processes on time scales. We also introduce some functional spaces within which the study of random integral equations can be developed. In Section 3 we present the existence and uniqueness of random solutions. Finally, we establish an asymptotic stability result.
2. PRELIMINARIES

A time scale \mathbb{T} is an arbitrary nonempty closed subset of the real number \mathbb{R}. Then the time scale \mathbb{T} is a complete metric space with the usual metric on \mathbb{R}. Since a time scale \mathbb{T} may or may not be connected, we need the concept of jump operators. The forward (backward) jump operator $\sigma(t)$ at $t \in \mathbb{T}$ for $t < \sup \mathbb{T}$ (respectively $\rho(t)$ for $t > \inf \mathbb{T}$) is given by $\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}$ (respectively $\rho(t) = \sup\{s \in \mathbb{T} : s < t\}$) for all $t \in \mathbb{T}$. If $\sigma(t) > t$, $t \in \mathbb{T}$, we say t is right scattered. If $\rho(t) < t$, $t \in \mathbb{T}$, we say t is left scattered. If $\sigma(t) = t$, $t \in \mathbb{T}$, we say t is right-dense. If $\rho(t) = t$, $t \in \mathbb{T}$, we say t is left-dense. Also, define the graininess function $\mu : \mathbb{T} \to [0, \infty)$ as $\mu(t) := \sigma(t) - t$. We recall that a function $f : \mathbb{T} \to \mathbb{R}$ is called rd-continuous function if f is continuous at every right-dense point $t \in \mathbb{T}$, and $\lim_{s \to t^-} f(s)$ exists and is finite at every left-dense point $t \in \mathbb{T}$. We remark that every rd-continuous function is Lebesgue Δ-integrable (see [14]). A rd-continuous function $f : \mathbb{T} \to \mathbb{R}$ is called positively regressive if $1 + \mu(t)f(t) > 0$ for all $t \in \mathbb{T}$. We will denote by \mathcal{R}^+ the set of all positively regressive functions. In the following, assume that \mathbb{T} is unbounded. Without lost the generality, assume that $0 \in \mathbb{T}$ and let $\mathbb{T}_0 = [0, \infty) \cap \mathbb{T}$. Also, assume that there exists a strictly increasing sequence $(t_n)_n$ of elements of \mathbb{T}_0 such that $t_n \to \infty$ as $n \to \infty$. Denote by \mathcal{L} the σ-algebra of Δ-measurable subsets of \mathbb{T}_0 and by λ the Lebesgue Δ-measure of \mathcal{L}. Having the measure space $(\mathbb{T}_0, \mathcal{L}, \lambda)$ one can introduce the Lebesgue-Bochner integral for functions from \mathbb{T}_0 to a Banach space by simply employing the standard procedure from measure theory (see [3, 18]). The Lebesgue-Bochner integral for functions from \mathbb{T}_0 to a Banach space was introduced by Neidhart in [18] and the Henstock-Kurzweil-Pettis integral was introduced by Cichoń in [10]. For details on the construction of the Lebesgue integral for real functions defined on a time scale, see [2, 4, 5, 9, 14, 15]. Further, let (Ω, \mathcal{A}, P) be a complete probability space. A function $x : \Omega \to \mathbb{R}$ is called a random variable if $\{\omega \in \Omega : x(\Omega) < a\} \in \mathcal{A}$ for all $a \in \mathbb{R}$. Let $1 \leq p < \infty$. A random variable $x : \Omega \to \mathbb{R}$ is said to be p-integrable if $\int_{\Omega} |x(\omega)|^p dP(\omega) < \infty$. Let $L^p(\Omega)$ be the space of all p-integrable random variables. Then $L^p(\Omega)$ is a vector space and the function $x \mapsto \|x\|_{L^p(\Omega)}$ defined by

$$
\|x\|_{L^p(\Omega)} = \left(\int_{\Omega} |x(\omega)|^p dP(\omega) \right)^{1/p}
$$

is a seminorm on $L^p(\Omega)$. If $x \in L^1(\Omega)$, then

$$
E[x] := \int_{\Omega} x(\omega) dP(\omega)
$$

is called the expected value of random variable x. A random variable x is called a P-essentially bounded if there exists a $M > 0$ and $A \in \mathcal{A}$ with $P(A) = 0$ such that $|x(\omega)| \leq M$ for all $\omega \in \Omega \setminus A$. Let $L^\infty(\Omega)$ be the space of all P-essentially bounded random variables. Then

$$
\|x\|_{L^\infty(\Omega)} = P\text{-ess sup}_{\omega \in \Omega} |x(\omega)|
$$
is a seminorm on \(L^\infty(\Omega) \), where

\[
P\text{-ess sup}_{\omega \in \Omega} |x(\omega)| := \inf \{ M > 0 : |x(\omega)| \leq M \quad P\text{-a.e. } \omega \in \Omega \}.
\]

When a random variable \(x \) is \(p \)-integrable or \(P \)-essentially bounded it is convenient to use notation \(\hat{x} \) to denote the equivalent class of random variables which coincide with \(x \) for \(P \)-a.e. \(\omega \in \Omega \). Let us denote by \(L^p(\Omega) \) the space of all equivalence classes of random variables that are \(p \)-integrable and by \(L^\infty(\Omega) \) the space of all equivalence classes of random variables that are \(P \)-essentially bounded. If \(x \in L^p(\Omega), 1 \leq p \leq \infty \), we denote by \(\hat{x} \) its equivalence class, that is, \(y \in \hat{x} \) if and only if \(y(\omega) = x(\omega) \) for \(P \)-a.e. \(\omega \in \Omega \). Moreover, we have that \(\|y\|_{L^p(\Omega)} = \|x\|_{L^p(\Omega)} \). Thus we can define a norm \(\| \cdot \|_{L^p(\Omega)} \) on \(L^p(\Omega) \) by means of the formula \(\|\hat{x}\|_{L^p(\Omega)} = \|x\|_{L^p(\Omega)}, 1 \leq p \leq \infty \). Then \(L^p(\Omega), 1 \leq p \leq \infty \), is a Banach space with respect to the norm \(\| \cdot \|_{L^p(\Omega)} \).

Since, for \(1 \leq p \leq \infty \), \(L^p(\Omega) \) is a Banach space, then all elementary properties of the calculus (such as continuity, differentiability, and integrability) for abstract functions defined on a subset of \(\mathbb{T} \) with values into a Banach space remain also true for the functions defined a subset of \(\mathbb{T} \) with values into \(L^p(\Omega) \), \(1 \leq p \leq \infty \).

Thereby, if \(X : \mathbb{T}_0 \rightarrow L^p(\Omega) \) is strongly measurable then the function \(t \mapsto \|X(t)\|_{L^p(\Omega)} \) is Lebesgue measurable on \(\mathbb{T}_0 \). Also, a strongly measurable function \(X : \mathbb{T}_0 \rightarrow L^p(\Omega) \) is Bochner \(\Delta \)-integrable on \(\mathbb{T}_0 \) if and only if the function \(t \mapsto \|X(t)\|_{L^p(\Omega)} \) is Lebesgue \(\Delta \)- integrable on \(\mathbb{T}_0 \) (see [3]).

Let \(1 \leq p \leq \infty \). A function \(X : \mathbb{T}_0 \rightarrow L^p(\Omega) \) is called \(rd \)-continuous function if \(X \) is continuous at every right-dense point \(t \in \mathbb{T}_0 \), and \(\lim_{s \rightarrow t-} X(s) \) exists in \(L^p(\Omega) \) at every left-dense point \(t \in \mathbb{T}_0 \).

Of particular importance is the fact that every \(rd \)-continuous function \(X : \mathbb{T}_0 \rightarrow L^p(\Omega) \) is Bochner \(\Delta \)-integrable on \(\mathbb{T}_0 \) (see [3, Theorem 6.3]).

If \(X : \mathbb{T}_0 \rightarrow L^p(\Omega) \) is a strongly measurable function then for each fixed \(t \in \mathbb{T}_0 \), \(X(t) \in L^p(\Omega) \) is an equivalence class. If for each \(t \in \mathbb{T}_0 \) we select a particular function \(x(t, \cdot) \in X(t) \) then we obtain a function \(x(\cdot, \cdot) : \mathbb{T}_0 \times \Omega \rightarrow \mathbb{R} \) such that \(\omega \mapsto x(t, \omega) \) is a random variable for each \(t \in \mathbb{T}_0 \). This resulting function is called a representation of \(X \). In fact, such a representation is so called a random process. However, is not immediate that this representation function is even a \(L \times \mathcal{A} \)-measurable function. In this sense, we have the following result.

Lemma 2.1. (a) ([13, Theorem III.11.17]). Let \((\mathbb{T}_0 \times \Omega, \mathcal{L} \times \mathcal{A}, \lambda \times P) \) be the product space of the measure space \((\mathbb{T}_0, \mathcal{L}, \lambda) \) and \((\Omega, \mathcal{A}, P) \). Let \(1 \leq p \leq \infty \) and let \(X : \mathbb{T}_0 \rightarrow L^p(\Omega) \) be a Bochner \(\Delta \)-integrable function. Then there exists a \(\mathcal{L} \times \mathcal{A} \)-measurable function \(x(\cdot, \cdot) : \mathbb{T}_0 \times \Omega \rightarrow \mathbb{R} \) which is uniquely determined except a set of \(\lambda \times P \)-measure zero, such that \(\hat{x}(t, \cdot) = X(t) \) for \(\lambda \)-a.e. \(t \in \mathbb{T}_0 \). Moreover, \(x(\cdot, \omega) \) is Lebesgue \(\Delta \)-integrable on \(\mathbb{T}_0 \) for \(P \)-a.e. \(\omega \in \Omega \) and integral \(\int_{\mathbb{T}_0} x(t, \omega) \Delta t \), as a function of \(\omega \), is equal to the element \(\int_{\mathbb{T}_0} X(t) \Delta t \) of \(L^p(\Omega) \), that is,

\[
\int_{\mathbb{T}_0} x(t, \cdot) \Delta t = \left(\int_{\mathbb{T}_0} X(t) \Delta t \right)(\cdot).
\]
(b) ([13, Lemma III.11.16]). Let $1 \leq p < \infty$ and let $x(\cdot, \cdot) : \mathbb{T}_0 \times \Omega \to \mathbb{R}$ be a $\mathcal{L} \times \mathcal{A}$-measurable function such that $x(t, \cdot) \in L^p(\Omega)$ for λ-a.e. $t \in \mathbb{T}_0$. Then the function $X : \mathbb{T}_0 \to L^p(\Omega)$, defined by $X(t) = \hat{x}(t, \cdot)$, is strongly measurable on \mathbb{T}_0.

A $\mathcal{L} \times \mathcal{A}$-measurable function $x(\cdot, \cdot) : \mathbb{T}_0 \times \Omega \to \mathbb{R}$ will be called a measurable random process.

Remark 2.2. Let $x(\cdot, \cdot) : \mathbb{T}_0 \times \Omega \to \mathbb{R}$ be a measurable random process such that, for each fixed $t \in \mathbb{T}_0$, $x(t, \cdot) \in L^p(\Omega)$. If we denote $\hat{x}(t, \cdot)$ by $X(t)$, then $X(t) : \Omega \to \mathbb{R}$ is a random variable such that $X(t) \in L^p(\Omega)$ and $x(t, \omega) = X(t)(\omega)$ for P-a.e. $\omega \in \Omega$.

In the following, using a common abuse of notation in measure theory, we will denote $x(t, \cdot)$ by $X(t)$ for each fixed $t \in \mathbb{T}_0$. In this way, a measurable random process $x(\cdot, \cdot) : \mathbb{T}_0 \times \Omega \to \mathbb{R}$ such that $x(t, \cdot) \in L^p(\Omega)$ for all $t \in \mathbb{T}_0$ can be identified with a strongly measurable function $X : \mathbb{T}_0 \to L^p(\Omega)$.

Let us denote by $C_c = C(\mathbb{T}_0, L^p(\Omega))$ the space of continuous functions $X : \mathbb{T}_0 \to L^p(\Omega)$ with the compact open topology. We recall that if K is a compact subset of \mathbb{T}_0 and U is an open subset of $L^p(\Omega)$ and we put

$$S(K, U) = \{X : K \to L^p(\Omega) \mid X(K) \subset U\},$$

then the sets

$$S(K_1, \ldots, K_n; U_1, \ldots, U_n) = \bigcap_{i=1}^n S(K_i, U_i),$$

where $n \in \mathbb{N}$, form a basis for the compact open topology. In fact, this topology coincides with the topology of uniform convergence on any compact subset of \mathbb{T}_0. The space C_c is a locally convex space [28] whose topology is defined by means of the following family of seminorms:

$$\|X\|_n = \sup_{t \in K_n} \|X(t)\|_{L^p(\Omega)},$$

where $K_n = [0, t_n] \subset \mathbb{T}_0$, $n \in \mathbb{N}$ and $(t_n)_n$ is a strictly increasing sequence of elements of \mathbb{T}_0 such that $t_n \to \infty$ as $n \to \infty$.

A distance function can be defined on C_c by

$$d_c(X, Y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|X - Y\|_{L^p(\Omega)}}{1 + \|X - Y\|_{L^p(\Omega)}}.$$

The topology induced by this distance function is the same topology of uniform convergence on any compact subset of \mathbb{T}_0.

Further, consider a continuous function $g : \mathbb{T}_0 \to (0, \infty)$. By $C_g = C_g(\mathbb{T}_0, L^p(\Omega))$ we denote the space of all continuous functions from \mathbb{T}_0 into $L^p(\Omega)$ such that

$$\sup_{t \in \mathbb{T}_0} \left\{ \frac{\|X(t)\|_{L^p(\Omega)}}{g(t)} : t \in \mathbb{T}_0 \right\} < \infty.$$
Then
\[\|X\|_{C_g} := \sup_{t \in \mathbb{T}_0} \|X(t)\|_{L^p(\Omega)} \] is a norm of \(C_g\).

Lemma 2.3. \((C_g, \|\cdot\|_{C_g})\) is a Banach space.

Proof. Let \((X_n)\) be a Cauchy sequence in \(C_g\). Then for each \(\varepsilon > 0\) there exists a \(N = N(\varepsilon) > 0\) such that \(\|X_n - X\|_{C_g} < \varepsilon\) for all \(n, m \geq N\). Hence, by (2.1), it follows that
\[\|X_n(t) - X_m(t)\|_{L^p(\Omega)} < \varepsilon g(t), \tag{2.2}\]
for all \(t \in \mathbb{T}_0\) and \(n, m \geq N\). Since \(L^p(\Omega)\) is a complete metric space, it follows that, for any fixed \(t \in \mathbb{T}_0\), \((X_n(t))\) is a convergent sequence in \(L^p(\Omega)\). Therefore, for any fixed \(t \in \mathbb{T}_0\), there exists \(X(t) \in L^p(\Omega)\) such that \(X(t) = \lim_{n \to \infty} X_n(t)\) in \(L^p(\Omega)\). Moreover, it follows from (2.2) that \(X(t) = \lim_{n \to \infty} X_n(t)\) in \(L^p(\Omega)\), uniformly on any compact subset of \(\mathbb{T}_0\). Hence, \(X\) is a continuous function from \(\mathbb{T}_0\) into \(L^p(\Omega)\). Further, we show that \(X \in C_g\). Let us keep \(n\) fixed and take \(m \to \infty\) in (2.2). Then we obtain that \(X_n - X \in C_g\) for all \(n \geq N\). Since \(X = (X - X_n) + X_n\) and \(X - X_n, X_n \in C_g\), it follows that \(X \in C_g\). \(\square\)

Remark 2.4. The topology of \(C_g\) is stronger than the topology of \(C_c\). Indeed, if \(X_n \to X\) in \(C_g\) as \(n \to \infty\), then for each \(\varepsilon > 0\) there exists \(N = N(\varepsilon) > 0\) such that \(\|X_n(t) - X(t)\|_{L^p(\Omega)} < \varepsilon g(t)\), for all \(t \in \mathbb{T}_0\) and \(n \geq N(\varepsilon)\). Since \(g\) is bounded on any compact subset of \(\mathbb{T}_0\), it allows that \(X_n(t) \to X(t)\) as \(n \to \infty\), uniformly on any compact subset of \(\mathbb{T}_0\). In other words, convergence in \(C_g\) implies convergence in \(C_c\). If \(g(t) = 1\) on \(\mathbb{T}_0\), then \(C_g\) becomes the space \(\bar{C} = C(\mathbb{T}_0, L^p(\Omega))\) of all continuous and bounded functions from \(\mathbb{T}_0\) into \(L^p(\Omega)\). The norm on \(\bar{C}\) is given by
\[\|X\|_c = \sup_{t \in \mathbb{T}_0} \|X(t)\|_{L^p(\Omega)}.\]

Note that the following inclusions hold \(C \subset C_g \subset C_c\).

Let \((B, D)\) be a pair of Banach spaces such that \(B, D \subset C_c\) and let \(T\) be a linear operator from \(C_c\) to itself. The pair of Banach spaces \((B, D)\) is called admissible with respect to the operator \(T : C_c \to C_c\) if \(T(B) \subset D\) ([13]).

Remark 2.5. If the pair \((B, D)\) is admissible with respect to the linear operator \(T : C_c \to C_c\) then, by Lemma 2.1.1 from [21], it follows that \(T\) is a continuous operator from \(B\) to \(D\). Therefore, there exists a \(M > 0\) such that
\[\|TX\|_D \leq M \|X\|_B, \quad X \in B.\]
3. RANDOM INTEGRAL EQUATION OF VOLterra TYPE

In this section we study the existence and uniqueness of a random solution of a random integral equation of Volterra type.

\[x(t, \omega) = h(t, \omega) + \lambda \int_{t_0}^{t} k(t, s, \omega) f(s, x(s, \omega), \omega) \Delta s, \quad t \in \mathbb{T}_0, \tag{3.1} \]

where \(P \text{-a.e. } \omega \in \Omega, \; x(\cdot, \cdot) : \mathbb{T}_0 \times \Omega \to \mathbb{R} \) is the unknown random process, \(h : \mathbb{T}_0 \times \Omega \to \mathbb{R} \) is a measurable random process, \(f : \mathbb{T}_0 \times \mathbb{R} \times \Omega \to \mathbb{R} \) is a random function, \(k : \Gamma \times \Omega \to \mathbb{R} \) is the random kernel, \(\lambda \in \mathbb{R}^* \), and \(\Gamma := \{(t, s) \in \mathbb{T}_0 \times \mathbb{T}_0 : t_0 \leq s \leq t < \infty \} \).

In what follows, we will use the notations \(X(t) = x(t, \cdot), \; H(t) = h(t, \cdot) \), \(K(t, s) = k(t, s, \cdot) \), \(F(t, X(t)) = f(t, x(t, \cdot), \cdot) \).

Let us consider the following assumptions:

(h1) \(K(t, s) \in L^\infty(\Omega) \) for all \((t, s) \in \Gamma, \; K(\cdot, \cdot) : \Gamma \to L^\infty(\Omega) \) continuous in its first variable and \(rd \)-continuous in its second variable, there exists \(k_0 > 0 \) and \(\alpha > 0 \) with \(-\alpha \in \mathcal{R}^+ \) such that

\[\|K(t, s)\|_{L^\infty(\Omega)} \leq k_0 e_{-\alpha}(t, \sigma(s)) \]

for \((t, s) \in \Gamma \).

(h2) \(f(\cdot, x, \cdot) : \mathbb{T}_0 \times \Omega \to \mathbb{R} \) is a \(\mathcal{L} \times \mathcal{A} \)-measurable function for each \(x \in \mathbb{R} \), and there exist an \(a > 0 \) and a positive random variable \(L : \Omega \to \mathbb{R} \) such that \(P(\{\omega \in \Omega : L(\omega) > a\}) = 0 \) and

\[|f(t, x, \omega) - f(t, y, \omega)| \leq L(\omega) |x - y| \]

for all \(t \in \mathbb{T}_0 \) and \(x, y \in \mathbb{R} \).

(h3) \(F(t, 0) \in L^p(\Omega) \) for all \(t \in \mathbb{T}_0 \) and there exists \(\beta \in (0, \alpha) \) with \(-\beta \in \mathcal{R}^+ \) such that

\[r := \sup_{t \in \mathbb{T}_0} \frac{\|F(t, 0)\|_{L^p(\Omega)}}{e_{-\beta}(t, 0)} < \infty. \]

In what follows, consider \(g(t) := e_{-\beta}(t, 0), \; t \in \mathbb{T}_0, \) where \(0 < \beta < \alpha \). Also, we will use the notation \(C_{\beta} \) instead of \(C_y \).

Lemma 3.1. If (h2) and (h3) hold, then

\[\sup_{t \in \mathbb{T}_0} \frac{\|F(t, X(t))\|_{L^p(\Omega)}}{e_{-\beta}(t, 0)} \leq a \|X\|_{C_{\beta}} + r < \infty \]

(3.2)

for every \(X \in C_{\beta} \), and

\[\|F(t, X(t)) - F(t, Y(t))\|_{L^p(\Omega)} \leq a \|X(t) - Y(t)\|_{L^p(\Omega)} \]

(3.3)

for all \(t \in \mathbb{T}_0 \) and \(X, Y \in C_{\beta} \).
Proof. If we denote \(\{ \omega \in \Omega : L(\omega) \leq a \} \) by \(\Omega_a \), then from (h2) we have that \(P(\Omega_a) = 1 \). If \(X, Y \in C_\beta \), using the Minkowski’s inequality, (h2) and (h3), we have
\[
\| F(t, X(t)) \|_{L^p(\Omega)} = \| f(t, x(t, \cdot), \cdot) \|_{L^p(\Omega)} \leq \\
\leq \left(\frac{1}{p} \right) \left(\int_{\Omega} |f(t, x(t, \omega), \omega) - f(t, 0, \omega)|^p dP(\omega) \right) + \left(\int_{\Omega} |f(t, 0, \omega)|^p dP(\omega) \right) \leq \\
\leq \left(\frac{1}{p} \right) \left(\int_{\Omega} |L(\omega)|^p |x(t, \omega)|^p dP(\omega) \right) + \| F(t, 0) \|_{L^p(\Omega)} \leq \\
\leq a \| X(t) \|_{L^p(\Omega)} + \| F(t, 0) \|_{L^p(\Omega)}.
\]
Dividing both sides of the last inequality by \(e^{-\beta}(t, 0) > 0 \) and taking the supremum with respect to \(t \in \mathbb{T}_0 \), we obtain (3.2). Also,
\[
\| F(t, X(t)) - F(t, X(t)) \|_{L^p(\Omega)} = \| f(t, x(t, \cdot), \cdot) - f(t, y(t, \cdot), \cdot) \|_{L^p(\Omega)} = \\
= \left(\int_{\Omega} |f(t, x(t, \omega), \omega) - f(t, y(t, \omega), \omega)|^p dP(\omega) \right) \leq \\
\leq \left(\frac{1}{p} \right) \left(\int_{\Omega} |L(\omega)|^p |x(s, \omega) - y(s, \omega)|^p dP(\omega) \right) \leq a \| X(t) - Y(t) \|_{L^p(\Omega)} .
\]

Remark 3.2. It follows from Lemma 3.1 that \(F(t, X(t)) \in L^p(\Omega) \) for all \(t \in \mathbb{T}_0 \) and \(X \in C_\beta \). Moreover, (3.2) implies that the function \(t \mapsto F(t, X(t)) \) belong to \(C_\beta \) for all \(X \in C_\beta \).

Lemma 3.3. Let us consider the integral operator \(\mathcal{T} : C_c \rightarrow C_c \) defined by
\[
(\mathcal{T}X)(t) = \int_0^t K(t, s)X(s)\Delta s, \quad t \in \mathbb{T}_0. \tag{3.4}
\]
If (h1) holds, then \(\mathcal{T}(C_\beta) \subset C_\beta \).

Proof. Let \(X \in C_\beta \). We have that
\[
\| (\mathcal{T}X)(t) \|_{L^p(\Omega)} \leq \int_0^t \| K(t, s)X(s) \|_{L^p(\Omega)} \Delta s \leq \int_0^t \| K(t, s) \|_{L^\infty(\Omega)} \| X(s) \|_{L^p(\Omega)} \Delta s = \\
= \int_0^t \| K(t, s) \|_{L^\infty(\Omega)} \frac{\| X(s) \|_{L^p(\Omega)}}{e^{-\beta}(s, 0)} e^{-\beta}(s, 0) \Delta s \leq \\
\leq \| X \|_{C_\beta} \int_0^t \| K(t, s) \|_{L^\infty(\Omega)} e^{-\beta}(s, 0) \Delta s.
\]
Take into account (h1), we infer that

$$\int_0^t \|K(t,s)\|_{L^\infty(\Omega)} e^{-\beta(s,0)} \Delta s \leq k_0 \int_0^t e^{-\alpha(t,\sigma)} e^{-\beta(s,0)} \Delta s = \frac{k_0}{\alpha - \beta} [e^{-\beta(t,0)} - e^{-\alpha(t,0)}].$$

Since $-\alpha, -\beta \in \mathbb{R}^+$ and $-\alpha < -\beta$, then (see [6, Corollary 2.10]) we have that $e^{-\beta(t,0)} > e^{-\alpha(t,0)}$, $t \in T_0$, and it follows that

$$\int_0^t \|K(t,s)\|_{L^\infty(\Omega)} e^{-\beta(s,0)} \Delta s \leq \frac{k_0}{\alpha - \beta} e^{-\beta(t,0)}, \quad t \in T_0. \quad (3.5)$$

Consequently,

$$\|(TX)(t)\|_{L^p(\Omega)} \leq \frac{k_0}{\alpha - \beta} \|X\|_{C^\beta} e^{-\beta(t,0)}, \quad t \in T_0,$$

and thus $TX \in C^\beta$ for every $X \in C^\beta$, that is, $T(C^\beta) \subset C^\beta$.

Remark 3.4. Since, by Lemma 3.3, the pair (C^β, C^β) is admissible with respect to the linear operator $T : C^c \to C^c$ then, by Remark 2.5, it follows that T is a continuous operator from C^β to C^β. Therefore, there exists a $M > 0$ such that

$$\|TX\|_{C^\beta} \leq M \|X\|_{C^\beta}, \quad X \in C^\beta.$$

In fact, it easy to see that $M = \frac{k_0}{\alpha - \beta}$ is the norm of T as a linear operator from C^β into C^β.

A solution $X \in C^\beta$ of the integral equation (3.1) is called *asymptotically exponentially stable* if there exists a $\rho > 0$ and a $\beta > 0$ such that $-\beta \in \mathbb{R}^+$ and

$$\|X(t)\|_{L^p(\Omega)} \leq \rho e^{-\beta(t,0)}, \quad t \in T_0.$$

Remark 3.5. The admissibility concept is related to stability in various senses (see [17]). Let $T : C^c \to C^c$ be a linear operator. Roughly speaking we say that the pair of function spaces $B, D \subset C^c$ is admissible with respect to the equation

$$X = H + TX, \quad (3.6)$$

if this equation has its solution in the space D, for each $H \in D$. Therefore, if we choose $D = C^\beta$ and if $X \in C^\beta$ is a solution of the equation (3.6), then there exists a $\rho > 0$ such that $\|X\|_{C^\beta} \leq \rho$. Using (2.1) we infer that

$$\|X(t)\|_{L^p(\Omega)} \leq \rho e^{-\beta(t,0)}$$

for all $t \in T_0$, that is, the solution of the equation (3.6) is asymptotically exponentially stable. For several results concerning the admissibility theory for Volterra integral equations see [11].
These preliminaries being completed, we shall state the following result.

Theorem 3.6. If the assumptions (h1)–(h3) hold and \(H \in C_\beta \), then the integral equation \((3.1)\) has a unique asymptotically exponentially stable solution, provided that \(|\lambda| aM < 1 \), where \(M > 0 \) is the norm of the operator \(T \).

Proof. Let us consider the operator \(\mathcal{V} : C_\beta \rightarrow C_c \) defined by

\[
(\mathcal{V}X)(t) = H(t) + \lambda \int_0^t K(t,s)F(s,X(s))\Delta s, \quad t \in T_0.
\]

(3.7)

Then we can rewrite the operator \(\mathcal{V} \) as

\[
(\mathcal{V}X)(t) = H(t) + \lambda \mathcal{T}G(t), \quad t \in T_0,
\]

(3.8)

where \(G(t) := F(t,X(t)) \), \(t \in T_0 \) and \(\mathcal{T} \) is the operator given by \((3.4)\). Since by Remark 3.2 and Lemma 3.1 we have that

\[
\|G\|_{C_\beta} \leq a \|X\|_{C_\beta} + r,
\]

then

\[
\|\mathcal{T}G(t)\|_{L^p(\Omega)} \leq bMe^{-\beta(t,0)}, \quad t \in T_0,
\]

(3.9)

where \(b := a \|X\|_{C_\beta} + r \). From \((3.8)\) and \((3.9)\) we obtain that

\[
\|(\mathcal{V}X)(t)\|_{L^p(\Omega)} \leq \|H(t)\|_{L^p(\Omega)} + b|\lambda|M e^{-\beta(t,0)},
\]

for all \(t \in T_0 \). Dividing both sides of the last inequality by \(e^{-\beta(t,0)} > 0 \) and taking the supremum with respect to \(t \in T_0 \), it follows that

\[
\|\mathcal{V}X\|_{C_\beta} \leq \|H\|_{C_\beta} + b|\lambda|M,
\]

(3.10)

and so \(\mathcal{V}X \in C_\beta \) for all \(X \in C_\beta \). Further, we show that the operator \(\mathcal{V} \) is a contraction on \(C_\beta \). Indeed, using \((3.3)\) and \((3.5)\), we have

\[
\|(\mathcal{V}X)(t) - (\mathcal{V}Y)(t)\|_{L^p(\Omega)} \leq |\lambda| \int_0^t \|K(t,s)[F(s,X(s)) - F(s,Y(s))]\|_{L^p(\Omega)} \Delta s \leq
\]

\[
\leq |\lambda| \int_0^t \|K(t,s)\|_{L^\infty(\Omega)} \|F(s,X(s)) - F(s,Y(s))\|_{L^p(\Omega)} \Delta s \leq
\]

\[
\leq a|\lambda| \int_0^t \|K(t,s)\|_{L^\infty(\Omega)} \frac{\|X(s)-Y(s)\|_{L^p(\Omega)}}{e^{-\beta(s,0)}} e^{-\beta(s,0)} \Delta s \leq
\]

\[
\leq a|\lambda| \|X - Y\|_{C_\beta} \int_0^t \|K(t,s)\|_{L^\infty(\Omega)} e^{-\beta(s,0)} \Delta s \leq
\]

\[
\leq \frac{a|\lambda|k_0}{\alpha - \beta} \|X - Y\|_{C_\beta} e^{-\beta(t,0)} =
\]

\[
= a|\lambda| M \|X - Y\|_{C_\beta} e^{-\beta(t,0)}.
\]
Thus
\[
\| (\mathcal{V}X)(t) - (\mathcal{V}Y)(t) \|_{L^p(\Omega)} \leq a |\lambda| M \|X - Y\|_{C_\beta}
\]
for all \(t \in T_0 \), and so
\[
\| \mathcal{V}X - \mathcal{V}Y \|_{C_\beta} \leq a |\lambda| M \|X - Y\|_{C_\beta},
\]
with \(a |\lambda| M < 1 \), that is, \(\mathcal{V} \) is a contraction on \(C_\beta \). From Banach’s Fixed Point Theorem, it follows that there exist a unique solution \(X \in C_\beta \) of the integral equation (3.1). From Remark 3.5, we infer that the solution is asymptotically exponentially stable.

Corollary 3.7. If all the hypotheses of Theorem 3.6 hold for \(\beta = 0 \), then the integral equation (3.1) has a unique solution \(X \in C \).

Corollary 3.8. If all the hypotheses of Theorem 3.6, then the solution of the integral equation (3.1) is asymptotically stable in mean, that is, \(E[|X(t)|] \to 0 \) as \(t \to \infty \).

Proof. Since \(-\beta < 0 \), then \(e^{-\beta t} \) decreases monotonically towards zero as \(t \to \infty \), and therefore \(\|X(t)\|_{L^p(\Omega)} \to 0 \) as \(t \to \infty \). Since \(E[|X(t)|^p] = \|X(t)\|^p_{L^p(\Omega)} \) then, using the Jensen’s inequality, we infer that \(E[|X(t)|] \to 0 \) as \(t \to \infty \). □

Remark 3.9. Let \(T_0 = [0, \infty) \). Then, for \(g(t) = q(t) = e^{-\beta t} \), \(t \geq 0 \), we obtain Theorem 2.2 from [7]. For \(p = 2 \) and \(f(t, x, \omega) = f(t, x) \), we obtain Theorem 3.1 from [26]. Let \(T_0 = \mathbb{N} \). Then, for \(p = 2 \) and \(f(t, x, \omega) = f(t, x) \), we obtain Theorem 5.3.1 from [27].

In what follows, using the concept of admissibility, we prove a general result of the existence and uniqueness for the integral equation (3.1). From this result it is possible to derive many existence results, by particularizing the spaces \(B \) and \(D \).

Let us consider the integral equation (3.1) under the following conditions:

(\(\hat{h}1 \)) \(K(t, s) \in L^\infty(\Omega) \) for all \((t, s) \in \Gamma, K(\cdot, \cdot) : \Gamma \to L^\infty(\Omega) \) continuous in its first variable and rd-continuous in its second variable.

(\(\hat{h}2 \)) \(B, D \subset C_c \) are Banach spaces stronger than \(C_c \) such that the pair \((B, D) \) is admissible with respect to the linear operator \(T : C_c \to C_c \) defined by (3.4).

(\(\hat{h}3 \)) For each \(X \in D \), the function \(t \mapsto F(t, X(t)) \) belong to \(B \), and the operator \(\mathcal{G} : D \to B \), defined by \((\mathcal{G}X)(t) = F(t, X(t)) \) for all \(t \in T_0 \), satisfies the Lipschitz condition
\[
\| \mathcal{G}X - \mathcal{G}Y \|_B \leq a \|X - Y\|_D
\]
for all \(X, Y \in D \) and some \(a > 0 \).

Theorem 3.10. If the assumptions (\(\hat{h}1 \))–(\(\hat{h}3 \)) hold and \(H \in D \), then the integral equation (3.1) has a unique solution \(X \in D \), provided that \(|\lambda| aM < 1 \), where \(M > 0 \) is the norm of the operator \(T \).
Proof. Let us consider the operator $V : D \rightarrow C_c$ defined by $VX = H + \lambda TGX$. Since the pair (B, D) is admissible with respect to the linear operator T, it follows from Remark 2.5 that there exists a $M > 0$ such that $\|TX\|_D \leq M \|X\|_B$ for all $X \in B$. Using (h3) and the fact that $H \in D$ it follows from Minkowski’s inequality that

$$\|VX\|_D \leq \|H\|_D + |\lambda| M \|GX - G0\|_B \leq \|H\|_D + a |\lambda| M \|X\|_D + |\lambda| M \|G0\|_B < \infty,$$

that is, $VX \in D$ for all $X \in D$. Next, all $X, Y \in D$ we have that $VX - VY = \lambda T(GX - GY)$. Obviously, $GX - GY \in B$ and $VX - VY \in D$. It follows that

$$\|VX - VY\|_D \leq |\lambda| M \|GX - GY\|_B \leq |\lambda| aM \|X - Y\|_D,$$

with $|\lambda| aM < 1$, that is, V is a contraction on D. From Banach’s Fixed Point Theorem, it follows that there exist a unique solution $X \in D$ of the integral equation (3.1).

\[\square\]

Remark 3.11. If $T_0 = [0, \infty)$, we obtain Theorem 2.4 from [7]. For $p = 2$ and $f(t, x, \omega) = f(t, x)$, we obtain Theorem 2.1.2 from [27]. If $T_0 = \mathbb{N}$, then, for $p = 2$ and $f(t, x, \omega) = f(t, x)$, we obtain Theorem 5.1.2 from [27].

REFERENCES

[1] M. Adıvar, N.Y. Raffoul, Existence results for periodic solutions of integro-dynamic equations on time scales, Ann. Mat. Pura Appl. 188 (2009) 4, 543–559.

[2] R. Agarwal, M. Bohner, D. O’Regan, A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl. Math. 141 (2002), 1–26.

[3] B. Aulbach, L. Neidhart, Integration on measure chains, Proc. of the Sixth International Conference on Difference Equations, B. Aulbach, S. Elaydi, G. Ladas, eds., Augsburg, Germany 2001, pp. 239–252.

[4] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: an Introduction with Applications, Birkhäuser, Boston, 2001.

[5] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.

[6] E. Akin-Bohner, M. Bohner, F. Akin, Pachpatte inequalities on time scales, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005) 1, 1–23.

[7] N.U. Ahmed, K.L. Teo, On the stability of a class of nonlinear stochastic systems, J. Information and Control 20 (1972), 276–293.

[8] T.A. Burton, Volterra integral and differential equations, vol. 202 of Mathematics in Science and Engineering, Elsevier B.V., Amsterdam, 2nd ed., 2005.

[9] A. Cabada, D.R. Vivero, Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral; application to the calculus of Δ-antiderivatives, Math. Comput. Modelling 43 (2006), 194–207.
[10] M. Cichoń, *On integrals of vector-valued functions on time scales*, Commun. Math. Anal. **1** (2011) 11, 94–110.

[11] C. Corduneanu, *Integral Equations and Stability of Feedback Systems*, Academic Press, New York-London, 1973.

[12] B.C. Dhage, S.K. Ntouyas, *Existence and attractivity results for nonlinear first order random differential equations*, Opuscula Math. **30** (2010) 4, 411–429.

[13] N. Dunford, J.T. Schwartz, *Linear Operators I*, Interscience, New York, 1958.

[14] G.Sh. Guseinov, *Integration on time scales*, J. Math. Anal. Appl. **285** (2003), 107–127.

[15] S. Hilger, *Analysis on measure chains – a unified approach to continuous and discrete calculus*, Results Math. **18** (1990), 18–56.

[16] T. Kulik, C.C. Tisdell, *Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains*, Int. J. Difference Equ. **3** (2008) 1, 103–133.

[17] J.L. Massera, J.J. Schäffer, *Linear Differential Equations and Function Spaces*, Academic Press, New York, 1966.

[18] L. Neidhart, *Integration im Rahmen des Maßkettenkalküls*, Diploma Thesis, University of Augsburg, 2001.

[19] A. Sikorska-Nowak, *Integrodifferential equations on time scales with Henstock-Kurzweil-Pettis delta integrals*, Abstr. Appl. Anal. **1** (2010), 1–17.

[20] D.B. Pachpatte, *On a nonstandard Volterra type dynamic integral equation on time scales*, Electron. J. Qual. Theory Differ. Equ. **72** (2009), 1–14.

[21] W.J. Padgett, C.P. Tsokos, *On a stochastic integro-differential equation of Volterra type*, SIAM J. Appl. Math. **23** (1972), 499–512.

[22] A.T. Bharucha-Reid, *Random Integral Equations*, Academic Press, New York, 1972.

[23] S. Sanyal, *Mean square stability of Itô Volterra dynamic equation*, Nonlinear Dyn. Syst. Theory **11** (2011) 1, 83–92.

[24] S. Sanyal, *Stochastic Dynamic Equations*, Ph.D. Thesis, Missouri University of Science and Technology, Rolla, Missouri, 2008.

[25] C.C. Tisdell, A. Zaidi, *Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling*, Nonlinear Anal. **68** (2008) 11, 3504–3524.

[26] C.P. Tsokos, M.A. Hamdan, *Stochastic asymptotic exponential stability of stochastic integral equations*, J. Appl. Prob. **9** (1972), 169–177.

[27] C.P. Tsokos, W.J. Padgett, *Random Integral Equations with Applications to Life Sciences and Engineering*, Academic Press, New York, 1974.

[28] K. Yosida, *Functional Analysis*, 6th ed., Springer-Verlag, 1980.
Vasile Lupulescu
lupulescu_v@yahoo.com

Constantin Brancusi University
Targu-Jiu, Romania

Cristina Lungan
crisslong@yahoo.com

Gheorghe Tatarascu School of Targu Jiu
23 August 47, Romania

Received: March 23, 2012.
Revised: August 16, 2012.
Accepted: October 11, 2012.