REVIEW

New insights of CYP1A in endogenous metabolism: a focus on single nucleotide polymorphisms and diseases

Jian Lu, Xuyang Shang, Weiguo Zhong, Yuan Xu, Rong Shi, Xin Wang

Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Received 4 June 2019; received in revised form 13 October 2019; accepted 16 October 2019

KEY WORDS
CYP1A;
Endogenous substances;
Xenobiotics;
SNPs;
Metabolism and disease

Abstract Cytochrome P450 1A (CYP1A), one of the major CYP subfamily in humans, not only metabolizes xenobiotics including clinical drugs and pollutants in the environment, but also mediates the biotransformation of important endogenous substances. In particular, some single nucleotide polymorphisms (SNPs) for CYP1A genes may affect the metabolic ability of endogenous substances, leading to some physiological or pathological changes in humans. This review first summarizes the metabolism of endogenous substances by CYP1A, and then introduces the research progress of CYP1A SNPs, especially the research related to human diseases. Finally, the relationship between SNPs and diseases is discussed. In addition, potential animal models for CYP1A gene editing are summarized. In conclusion, CYP1A plays an important role in maintaining the health in the body.

Abbreviations: CYP, cytochrome P450; EOAs, cis-epoxyoctadecenoics; FSH, follicle stimulating hormone; HODEs, hydroxyoctadecenoic acids; IQ, 2-amino-3-methylimidazo[4,5-f] quinoline; KO, knockout; LIF/STAT3, inhibiting leukemia inhibitory factor/signal transducer and activator of transcription 3; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine; SNPs, single nucleotide polymorphisms; t-RA, all-trans-retinoic acid; t-ROH, all-trans-retinol; WT, wild type.
*Corresponding author. Tel.: +86 21 24206564; fax: +86 21 54344922.
E-mail addresses: usxinwang@gmail.com, xwang@bio.ecnu.edu.cn (Xin Wang).
† These authors made equal contributions to this work.
Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.

https://doi.org/10.1016/j.apsb.2019.11.016
2211-3835 © 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The cytochrome P450 (CYP) enzyme is one of the most abundant and diverse superfamilies, which contains hemoprotein\(^7\). From prokaryotes to eukaryotes, from plants to animals, from non-human primates to humans, thousands of CYP genes have been identified and named\(^8\). They are mainly involved in the biotransformation of many compounds, leading to a luxuriant world of molecules, including antibiotics in bacteria, ergosterols in fungi, petal pigments in plants, and even human drugs\(^9,10\). For the decomposition of clinical drugs, human CYP enzymes belong to the Phase I drug metabolizing enzymes\(^1\). Among the human CYP isoforms, CYP1A is an important subfamily involved in the metabolism of drugs, environmental pollutants and physiological substances\(^11-14\).

CYP1A subfamily contains only two functional genes, CYP1A1 and CYP1A2, which are highly conserved among species\(^1\). In humans, these two CYP1A members are located on chromosome 15 q24.1 in a head-to-head manner\(^1\). Phylogenetic analysis of CYP1A gene shows that the CYP1A2 gene may arise from CYP1A1 and they have a common 5'-flanking region, which has been proved to contain bidirectional regulators both for CYP1A1 and CYP1A2\(^15,16\). Although the transcriptional regulation of CYP1A1 and I2 may be simultaneously controlled by bidirectional gene elements, their expression patterns are different. For example, CYP1A2 is constitutively and specifically expressed in the liver, while CYP1A1 is mainly expressed outside the liver\(^17,18\).

CYP1A-catalyzed reactions include hydroxylation and oxidation of aromatic compounds, in which CYP1A1 is mainly involved in the metabolism of aromatic hydrocarbon, while CYP1A2 prefers aromatic amines and heterocyclic compounds\(^19\). CYP1A as one of most important phase I drug metabolic enzymes participates in the biotransformation of about 9% of clinical drugs such as analgesics, antipyretics, antipsychotics, antidepressants, and anti-inflammatory drugs\(^19,20\). In addition to drugs, CYP1A is also involved in the biological activation or deactivation of a large number of pollutants in the environment, such as benzopyrene, aristolochic acid I, ellipticine, PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and IQ (2-amino-3-methylimidazo[4,5-f]quinoxaline)\(^19-23\). More importantly, CYP1A is an important contributor to the biotransformation of many endogenous substances, including melanotin\(^24\), retinol\(^25\), linoleic acid\(^26-28\), phosphatidylcholine\(^29\), uroporphyrinogen\(^30\), pregnenolone and progesterone\(^31,32\), estradiol and estrione\(^33,34\), dehydroepiandrosterone and testosterone\(^35,36\).

The role of CYP1A in the metabolism of exogenous substances (drugs and pollutants) has been well evaluated\(^37,38\). However, little progress has been made in CYP1A-mediated endogenous metabolism in recent years. Therefore, this article reviews the endogenous substance metabolism mediated by CYP1A, especially the relationship between CYP1A and human diseases.

2. Endogenous substrate metabolism mediated by CYP1A

CYP1A mainly metabolizes sex hormones (including progestogens, androgens, and estrogens), retinol, melatonin, linoleic acid, phosphatidylcholine, and uroporphyrinogen in humans (Table 1). The reaction types of CYP1A include hydroxylation, demethylation, epoxidation, oxidation, and quinol formation.

2.1. Progestogens: pregnenolone and progesterone

Progestogens are a set of steroid hormones that bind and activate the progesterone receptor\(^39\). Progestogens are essential for maintaining pregnancy, estrogen, and menstrual cycles. Progestogens metabolized by CYP1A include pregnenolone and progesterone.

2.1.1. Pregnenolone

As an endogenous steroid hormone, pregnenolone is the precursor of steroid hormone transformation, including androgen, estrogen, progestogen, mineralocorticoid, and glucocorticoid\(^40\). Pregnenolone is also a metabolite of cholesterol in vivo, which is catalyzed by cholesterol side-chain cleavage enzyme\(^41,42\). Compared with CYP1A2, CYP1A1 is the main isofrom mediating the biotransformation of pregnenolone (Fig. 1). Previous studies have shown that CYP1A1 is the dominating enzyme and catalyzes the β-hydroxylation of pregnenolone at the C-7 site, with the \(K_m\) of 3.2–4.1 \(\mu\)mol/L and \(CL_{int}\) of 117–135 pmol/min/mol\(^43\). Moreover, the CYP1A1, which involves 7-hydroxylated steroids, may contribute to the activation of immune defense\(^44\). Furthermore, CYP1A1 also hydroxylates pregnenolone to form 16α- and 17α-hydroxylated pregnenolone\(^45\).

2.1.2. Progesterone

Progesterone is an important endogenous steroid and progestogen produced in the ovary, placenta, and adrenal gland\(^46\). It plays an important role in embryogenesis and pregnancy with different mechanisms\(^47\), including maternal immune response regulation\(^48\), inflammation inhibition\(^49\), reduction of uterine contractility\(^50\), improvement of uterine–placental circulation, and luteal phase support\(^51,52\). In addition, progesterone plays a crucial role in the physiological function of the brain by producing other endogenous steroids, such as neurosteroid\(^53\). Progesterone deficiency may lead to premenstrual syndrome in 5% of women in the first two weeks of the menstrual cycle\(^54\). Progesterone therapy can improve symptoms and reduce the damage of progesterone deficiency to brain and electrolyte balance by regulating menstrual hormone levels\(^55\). However, excessive progesterone treatment affected implantation and decidualization in mice by inhibiting leukemia inhibitory factor/signal transducer and activator of transcription 3 (LIF/STAT3) pathway and endoplasmic reticulum stress\(^56\). From the above statement, maintaining the homeostasis of progesterone is very meaningful for normal physiological function.

Like other steroid hormones, pregnenolone synthesized from cholesterol is the precursor of progesterone in mammals\(^57\). Progesterone is mainly metabolized in the liver, accounting for about 2/3 of all metabolic reactions. Glucuronic acid then binds to metabolites to promote kidney excretion\(^58\). Although progesterone is mainly converted to pregnanediol, direct hydroxylation of progesterone mediated by CYP is also involved\(^31,35,45\). For example, CYP1A1 shows high hydroxylase activity of progester- one, which results in the formation of 6β-hydroxy and 16α-
hydroxyl progesterone (Fig. 1), with the V_{max} at 16.4 and 7.7 pmol/min/pmol P450, respectively. In contrast, CYP1A2 is more likely to mediate hydroxylation at the C-6 site (Fig. 1), resulting in the formation of 6β-hydroxyl progesterone.

2.2. Estrogens: estrone and estradiol

Estrogen is the most basic sex hormone for women. It promotes the development of female reproductive system and helps to form secondary sexual characteristics. Estrone, estradiol, and estriol are the three main endogenous estrogens in women, with estrogenic hormone activity. Estrogens metabolized by CYP1A include estrone and estradiol.

2.2.1. Estrone

Estrone is a weak female hormone, mainly converted from cholesterol in the gonads. As an estrogen receptors agonist, estrone exhibits less activity than estradiol. However, estrone, as a precursor, can be metabolized to estradiol. Sulfotransferases and glucuronidases conjugate estrone into estrogen conjugates.
and some CYP isoforms also hydroxylate it into catechol estrogens or estriol. Both CYP1A1 and CYP1A2 are involved in the biotransformation of estrone, but they mediate different reaction types (Fig. 2). CYP1A2 is thought to be involved in estrone metabolism by direct hydrolysis of C-2, C-4, and C-16 sites. In contrast, CYP1A1 oxidizes estrone to quinol at the C-10 position.

2.2.2. Estradiol

Estradiol is the main sex hormone in women. It plays an important role in regulating estrous cycle, menstrual cycle, and female secondary sexual features. Estradiol also plays an important role in skin, liver, fat, and bone. Estradiol is converted into the less potent estrogens to be inactivated and hydroxylated into catechol estrogens through CYP enzymes.

CYP1A metabolizes estradiol at multiple sites. CYP1A1 is the main isoform mediating the hydroxylation of estradiol at different sites (Fig. 2A). The hydroxylation of estradiol at C-2 and C-4 is the main metabolic pathway. CYP1A1 mediates the hydroxylation of estradiol at a relatively low K_m of 2.9 and 2.7 μmol/L, respectively. The V_{max} of CYP1A1 at C-2 and C-4 are 14.7 and 0.4 nmol/min/nmol P450, respectively, which indicates the main production of 2-hydroxylation estradiol compared with 4-hydroxylation estradiol. Moreover, CYP1A1 also hydroxylates estradiol at C-6 and C-15, and forms α-hydroxylated estradiol at corresponding sites. In addition to participating in the hydroxylation of estradiol, CYP1A1 is also involved in the quinol formation, with the product of 10β17β-dihydroxy-1,4-estradiene-3-one. Compared with CYP1A1, CYP1A2 contributes to the hydroxylation of estradiol at C-2 and C-4 with a lower V_{max} (Fig. 2A). CYP1A2 also participates in the hydroxylation of estradiol at C-16, while the C-2 hydroxylation estradiol is a dominant hydroxylated metabolite catalyzed by CYP1A2 (Fig. 2A).

Estradiol can be converted from estradiol 3-methyl ether. CYP1A1 and CYP1A2 metabolize estradiol 3-methyl ether to estradiol through 3-demethylation reaction with the V_{max} of 0.07 and 0.02 pmol/min/pmol P450, respectively (Fig. 2B). CYP1A2 also hydroxylates estradiol 3-methyl ether at C-2 to increase its hydrophilicity, which may contribute to its excretion from the body.

2.3. Androgens: testosterone

Testosterone, the main sex hormone in men, regulates the development of male reproductive tissue and contributes to the second sexual characteristics of men. Testosterone is mainly metabolized in the liver. In addition to the conjugation pathway and 17-ketosteroid pathway, hydroxylation and oxidation of hepatic CYP enzymes are additional pathways for testosterone metabolism. CYP1A1 hydroxylates testosterone to produce 6β-hydroxyl testosterone, with the K_m and V_{max} at 10.1 μmol/L and 14.8 pmol/min/pmol P450, respectively.

Figure 2 CYPIA-mediated metabolism of estrogens and estradiol 3-methyl ether. (A) CYPIA-mediated metabolism of estrogens. (B) CYPIA-mediated metabolism of estradiol 3-methyl ether.
2.4. Nonsteroidal substances: melatonin, retinol, linoleic acid, phosphatidylcholine, and uroporphyrinogen

2.4.1. Melatonin
Melatonin is a hormone that is released from pineal gland, and regulates the sleep-wake cycle\(^{61}\). It has been used as a supplement for the treatment of insomnia\(^{62}\). As a metabolite of tryptophan pathway, melatonin can be further hydroxylated to hydroxymelatonin\(^{19}\). CYP1A1 and CYP1A2 both catalyze melatonin to form 6-hydroxymelatonin, and CYP1A2 is the primary isoform, which promotes this biotransformation\(^{19,63}\) (Fig. 3A). In addition, CYP1A2 catalyzes the \(O\)-demethylation of melatonin to produce \(N\)-acetylserotonin\(^{63}\) (Fig. 3A). In recent ten years, a new metabolite of melatonin has been reported, named melatonin metabolite VII, which is also a metabolite mediated by CYP1A2\(^{64}\).

2.4.2. Retinol
All-\(\text{trans}\)-retinoic acid (\(t\)-RA), which is a metabolite of all-\(\text{trans}\)-retinol (\(t\)-ROH), triggers a variety of signaling pathways by binding to the nuclear receptor of retinoic acid. Its activated signal transduction pathway participates in many biological and pharmacological activities of retinoids in human body\(^{20,65,66}\). The oxidation of \(t\)-ROH to \(t\)-RAL is mainly achieved by two dehydrogenation reactions. The first reaction, \(t\)-ROH to \(t\)-RAL, is called rate-limiting step\(^{20}\). Compared with other CYP isoforms, CYP1A1 and CYP1A2 exhibited retinol dehydrogenase activity with a relative low \(K_m\) (8 \(\mu\)mol/L for CYP1A1 and 9 \(\mu\)mol/L for CYP1A2) and high \(V_{max}\) (507 pmol/min/nmol CYP for CYP1A1 and 491 pmol/min/nmol CYP for CYP1A2)\(^{20}\) (Fig. 3B). At the same time, CYP1A1 and CYP1A2 also showed high activity of retinal dehydrogenase, forming the functional metabolite \(t\)-RA\(^{20}\) (Fig. 3B). These studies indicate that CYP1A1 and CYP1A2 are two major enzymes for human \(t\)-ROH to form \(t\)-RA, compared with other CYP isoforms.

2.4.3. Linoleic acid
Linoleic acid is an omega-6 polyunsaturated fatty acid that can only be absorbed from the diet because the human body cannot synthesize it. As linoleic acid is the precursor of arachidonic acid biosynthesis, it contributes to the physiological level of prostaglandins, leukotrienes, and thromboxane (metabolites of arachidonic acid). Linoleic acid is metabolized by a variety of enzymes, including CYP, lipoxgenase, and cyclooxygenase. In particular, CYP1A2 converts linoleic acid into hydroxyoctadecadienoic acids (HODEs) and \(cis\)-epoxyoctadecenoics (EOAs) (Fig. 3C) with comparable catalytic activity\(^{22}\).

2.4.4. Phosphatidylcholines
Phosphatidylcholines are a group of phospholipids and essential elements of biological membranes. CYP1A2 possesses an unusual catalytic activity similar to phospholipase D-type hydrolysis enzymes. Based on the metabolic activity, CYP1A2 converts phosphatidylcholine to choline and phosphatidic acid\(^{23,67,68}\) (Fig. 4A). This may imply the important physiological role of CYP1A2, because as a signal transduction messenger, phosphatidic acid plays a key role in regulating cell activity\(^{67}\).

Figure 3 CYP1A-mediated metabolism of melatonin (A), \(t\)-RAL (B) and linoleic acid (C). \(t\)-ROH, all-\(\text{trans}\)-retinol; \(t\)-RAL, all-\(\text{trans}\)-retinal; \(t\)-RA, all-\(\text{trans}\)-retinoic acid; EOA, \(cis\)-epoxyoctadecenoic; HODE, hydroxyoctadecadienoic acid.
2.4.5. Uroporphyrinogen

Uroporphyrinogen, a macrocyclic compound surrounded by four pyrrole rings, is a metabolite in the synthesis of heme. Previous studies have also found that human CYP1A2 catalyzes the oxidation of uroporphyrinogen24,69 (Fig. 4B).

2.5. Summary

CYP1A metabolizes a series of endogenous substances and determines their metabolic pathway and conversion rate. However, most of these metabolic results come from in vitro studies. In order to further understand the physiological function of CYP1A, it is necessary to explore the important role of CYP1A in the metabolism of these endogenous substances in vivo. In particular, CYP1A knockout or humanized animal models are helpful to reveal the role of CYP1A in endogenous metabolism in vivo.

Although the role of CYP1A in the transformation of endogenous substances has attracted more and more attention, few physiological substrates have been found in recent years. In particular, CYP1A1 or CYP1A2 mutations are reported to be associated with many human diseases, suggesting that CYP1A may affect these diseases by regulating the formation or metabolism of some endogenous mediators. Therefore, more mature techniques are needed to find the potential physiological substrates of CYP1A. Metabolomics combined with Cyp1a gene editing animal models is a good method to study the metabolism of endogenous substances and their physiological functions of CYP1A.

3. Single nucleotide polymorphisms (SNPs) of CYP1A and diseases

3.1. General information on CYP1A polymorphisms

The difference of CYP1A expression among individuals was reported, and the variation of CYP1A activity in drug metabolism was also observed13,70,71. These differences may be partly attributed to the genetic diversity of CYP1A, which is named single nucleotide polymorphisms (SNPs). SNPs refer to the polymorphism of DNA sequence caused by single nucleotide variation at the genomic level. They account for almost 80% of human genetic variation, and are also the key factor leading to CYP1A variation among individuals12. At the Pharmacogene Variation Consortium (https://www.pharmvar.org/), there are 27 and 48 SNPs for human CYP1A1 and CYP1A2, respectively, of which 14 and 40 variants have been identified. Through these changes, the metabolic capacity of CYP1A may change, and ultimately affect the metabolism of many clinical drugs, carcinogens, and endogenous substances.

CYP1A is known for its metabolism of certain substances, especially sex hormones. Changes in CYP1A metabolic capacity may lead to hormone imbalance, thereby altering sensitivity to certain diseases. In this section, we will focus on the relationship between single nucleotide changes in CYP1A1/2 and human diseases. Literatures in the past ten years (2010–2019) were reviewed and retrieved with “cyp1a1 polymorphism” and “cyp1a2 polymorphism” respectively in “PubMed” (https://www.ncbi.nlm.nih.gov/pubmed/). Table 2 summarizes the evidence of the association between CYP1A polymorphism and human diseases over the past decade. Eleven SNPs of CYP1A1 in human diseases such as chronic obstructive pulmonary disease, male infertility, and various cancers were collected. Among these SNPs, rs4646903 and rs1048943 are two widely studied mutations (Table 2).

CYP1A1*2A (SNP ID: rs4646903), also known as Mspl, has T→C mutation at 3801. CYP1A1*2A is reported to be positively correlated with the risk or incidence of a series of cancers, including esophageal, oral, laryngeal, prostate, cervical, bladder, and lung cancers (Table 2). CYP1A1*2A is also associated with some hormone-related diseases due to its involvement in the biotransformation of sex hormones. For example, CYP1A1*2A increases the risk of prostate cancer, cervical cancer, and recurrent pregnancy loss in humans78–80,85. CYP1A1*2C (SNP ID: rs1048943) contains an A to G transition at 2455, which results in the modification of the protein from isoleucine to valine. CYP1A1*2C is reported to be associated with a variety of cancers and hormone-related diseases, including prostate cancer, breast cancer, and male infertility93–95,100. For CYP1A2, nine SNPs are found to be associated with human diseases, including hypertension, age-related macular degeneration, and some cancers (Table 2). Among them, rs762551 is one of the most studied.
Table 2 Summary of CYP1A SNPs in 2010–2019.

Gene	SNPs	Disease	Cor.	Ref.
CYP1A1	rs4646903 (3801T > C)	Esophageal cancer	P	73
		Oral cancer risk	P	74,75
		Laryngeal cancer risk	P	76
		Colorectal cancer	N	77
		Prostate cancer	P	78
		Cervical cancer	P	79,80
		Bladder cancer	P	81
		Lung cancer	P	82,83
		Chronic obstructive pulmonary disease	P	84
		Recurrent pregnancy loss	P	85
		Coronary artery diseases	No	86
CYP1A1	rs1048943 (2455A > G)	Oral cancer risk	P	74,75
		Laryngeal cancer risk	P	76
		Esophageal cancer risk	P	87–91
		Colorectal cancer	P	92
		Lung cancer	P	82,166,167
		Prostate cancer	P	93,84
		Breast cancer	P	95,96–98
		Endometriosis	P	99
		Bladder cancer	P	81
		Male infertility	P	100
		Renal cancer	P	101
		Bone tumor susceptibility	P	102
		Adult leukemia	P	103
		Essential hypertension	P	104
		Chronic obstructive pulmonary disease	P	84
		Hypertension	P	104
		Coronary artery diseases	No	86
CYP1A1	CYP1A1*4 (2453C > A)	Endometrial cancer	P	105
		Male infertility	P	100
CYP1A1	rs4646422,Gly45Asp 4889A > G	Gastric cancer	P	106
		Sporadic breast cancer	P	107
		Sporadic breast cancer	P	107
		Bladder cancer	P	81
		Bladder cancer	P	81
		Breast cancer	P	108
CYP1A1	rs4986883	Corneal artery diseases	No	86
CYP1A1	rs1799814	Corneal artery diseases	No	86
CYP1A2	rs2069514 (−3860G > A)	Colorectal cancer	N	109
		Breast cancer	N	110
		Breast cancer	N	111
		Mental disorders	No	112
CYP1A2	rs762551 (−163C > A)	Breast cancer	P	113
		Breast cancer	N	108
		Ovarian cancer	N	113
		Mammographic density	N	114
		Mammographic density	P	114
		Lung cancer	P	115−118
		Bladder cancer	N	115,119−121
		Bladder cancer risk	P	122
		Age-related macular degeneration	N	123
CYP1A2	rs762551 (−163C > A)	Hypertension	P	124
		Colorectal cancer	N	109
		Cholangiocarcinoma	P	125
		Hypertension	P	104,124
		Mental disorders	No	112
		Super-refractory schizophrenia	P	126
CYP1A2	164C > A	Infant birth size	N	127
	rs3569413	Lung cancer	P	117,128
	rs2470890	Lung cancer	P	129
	rs2472299	Lung cancer	P	129
	rs1378942	Hypertension	P	124
	rs1133323	Hypertension	P	124

Cor, correlation between SNPs and diseases; P, positively related; N, negatively related; No, not correlated; Ref, references.
mutants. CYP1A2*1F (SNP ID: rs762551) has a C to A mutation at -163, which may be related to breast cancer, ovarian cancer, mammographic density, and risk of infant birth size, because it is involved in the biological transformation of sex hormones. The association between prostate cancer need further study.

3.2. Breast cancer

Breast cancer is one of the most common cancers among women worldwide. In many breast cancer cases, hormone receptors, such as estrogen and progesterone receptors, have been diagnosed as overexpression, which is believed to contribute to the growth and proliferation of cancer cells. Most breast cancer patients are hormone-dependent at the early stage, and excessive exposure to endogenous estrogen in women’s life can promote the occurrence of breast cancer. Previous studies have shown that the concentrations of some estrogens, especially 17β-estradiol, in plasma or tumor tissues of breast cancer patients increase, compared with those of normal breast tissue. All these evidences suggest that hormone receptors and estrogens play an important role in the occurrence and development of breast cancer.

Estrogen has complex effects on breast cancer. One possible mechanism of estrogen carcinogenesis is that estrogen stimulates cell proliferation through estrogen receptors, and ultimately promotes the occurrence and development of cancer. Another hypothetical carcinogenic mechanism is estrogen metabolites rather than estrogen activating in estrogen-induced cancer. These hypotheses and evidence suggest that estrogen has a double-edged role in breast cancer, suggesting the importance of estrogen balance in women.

As mentioned earlier, CYP1A1 and CYP1A2 are involved in the biotransformation of multiple estrogens, and thus are important for maintaining the balance of estrogens (Fig. 2). CYP1A1 metabolizes a variety of estrogens, such as estrone, estradiol 3-methyl ether, estradiol, pregnenolone, and progesterone, through the hydroxylation of estrogens at different sites. Therefore, polymorphisms in CYP1A may affect the metabolic capacity of CYP1A and eventually destroy the balance of estrogen. In fact, some epidemiologic studies have reported the correlation between CYP1A SNPs and increased risk of breast cancer. However, the metabolic network of sex hormone is complex. The effects of CYP1A SNPs on sex hormone metabolism and breast cancer need further study.

3.3. Prostate cancer

Prostate cancer is the most common cancer in men, especially in industrialized countries. The association between prostate cancer and androgen was discovered long before androgen receptors were identified. Prostate studies have found that testosterone therapy promotes prostate growth in experimental animals. In addition, prostate cancer can be eliminated by castration, which greatly reduces testosterone levels in men. In androgen-dependent prostate cancer, androgen affects prostate cancer cells in a dose-dependent manner. Androgen promotes prostate cancer cells at low concentrations and inhibits prostate cancer cells at high levels. Epidemiologic studies also discussed the relationship between CYP1A1 polymorphisms and prostate cancer risk. It was reported that CYP1A1 SNPs (rs4646903 and rs1048943) were positively correlated with prostate cancer.

3.4. Other sex hormone-related cancers

CYP1A SNPs are associated with other estrogen-related cancers, such as cervical cancer, endometrial cancer, and ovarian cancer. Estrogen has been reported to stimulate the proliferation of cervical epithelial cells, thereby promoting the occurrence of tumors. There is also evidence that the risk of endometrial cancer is positively correlated with estrogen levels in women. In addition, estrogen, especially 17β-estradiol, promotes the growth and development of endometrial and ovarian cancer. Therefore, CYP1A-mediated estrogen metabolism may affect the concentration of these hormones and their related metabolites in plasma or specific tissues, and these hormones and metabolites are further involved in the tumorigenesis of such human cancers.

3.5. Male infertility

Androgen is one of the important factors for male infertility. In particular, testosterone is the key hormone of spermatogenesis, which can inhibit the apoptosis of germ cells. Androgen deficiency affects the function of epididymis and ultimately inhibits sperm maturation. Estrogen may be also a key substance in human male infertility. Not only the prostate, but also the testis is affected by estrogen. In fetal or neonatal period, excessive estrogen exposure can promote cryptorchidism, sperm malformation, and fertility impairment in male rodents. In fact, CYP1A1(4) and rs1048943 (2455A > G) may interfere with the metabolism of testosterone and estrogen, and are reported to be positively correlated with male infertility. A detailed summary of the past decade is also contained in Table 2.
3.6. Recurrent pregnancy loss

The proportion of women with increased follicle stimulating hormone (FSH) and 17β-estradiol in recurrent loss of pregnancy group is significantly higher than that in normal group. Recent studies have shown that CYP1A1 may affect the biological function of placenta, which may be due to its estrogen metabolism. In fact, it is reported that the CYP1A1 SNP rs4646903 (3801T > C) is positively correlated with the risk of recurrent pregnancy loss in humans (Table 2). CYP1A affects both male and female reproductive system. Therefore, CYP1A-mediated metabolic disorders may lead to lower birth or survival rates.

3.7. Mental disorder

Melatonin is a hormone synthesized from the pineal gland in the brain. It is involved in the regulation of circadian rhythm and the management of sleep cycle. Melatonin is a key metabolite in the metabolic pathway of tryptophan. Therefore, melatonin metabolic disorder may affect human emotional disorders or mental disorders. However, the metabolic activity of CYP1A2 SNP (rs2069514) was lower than that of wild type (WT). There was no significant correlation between CYP1A2 SNP and mental disorders. Similarly, another CYP1A2 SNP (rs762551) showed no significant dependence on mental disorders with the increase of inducibility. However, for super-refractory schizophrenia, the frequency of CYP1A2 SNP (rs762551) in super-refractory group (87%) was significantly higher than that in refractory group (53.7%). Therefore, the role of CYP1A2 SNP in mental disorders should be studied in more detail.

3.8. Retinol-related diseases

Retinol, also known as vitamin A, has many biological functions such as immunity, skin nutrition, reproductive ability, embryonic development and optosthesia. Although neonatal survival is associated with CYP1A2 in Cyp1a2 knockout (KO) mice, the relationship between retinol and reproductive diseases remains unclear.

3.9. Hypertension

Linoleic acid is an important precursor of a variety of n-6 polyunsaturated fatty acids. It has many functions according to its concentration in tissues. Linoleic acid metabolism is reported to be directly or indirectly associated with inflammation, atherosclerosis and other metabolic diseases. Epidemiological analysis showed that genetic polymorphisms of the CYP1A1 (rs4646903, rs1048943, rs4986883, and rs1799814) were not associated with the high risk of coronary artery disease. However, CYP1A1 SNP (rs1048943) and CYP1A2 SNPs (rs762551, rs1133323, and rs1378942) are positively correlated with hypertension susceptibility. This correlation may be due to the disorder of polyunsaturated fatty acid concentration in the population with these CYP1A SNPs.

3.10. Energy metabolism-related diseases

Phosphatidylcholine is one of the most abundant phospholipids in mammalian cell membranes. Although the important role of phospholipids in energy metabolism in humans and animals has been confirmed, there are no epidemiological studies on the relationship between CYP1A mononucleotides and energy metabolism-related diseases such as fatty liver.

3.11. Porphyria cutanea tarda

CYP1A2 is mainly responsible for the transformation of uroporphyrinogen to uroporphyrin. The accumulation of uroporphyrin in the liver may be a characteristic of human disease, called porphyria cutanea tarda. Nonetheless, the association between CYP1A2 SNPs and porphyria cutanea tarda remains uncertain.

3.12. Gene editing models for the relationship between CYP1A SNPs and diseases

With the development of genetic engineering technology, gene editing models have become an important tool for studying gene function. The understanding of CYP1A also benefits from this technology and gene editing animals. For example, as early as in 1995, Gonzalez and colleagues reported that neonatal deaths were observed in the Cyp1a2 global KO mouse model, possibly due to respiratory distress caused by Cyp1a2 deficiency. Cyp1a2 KO mice liver cDNA microarray analysis showed that Cyp1a2 deficiency affected insulin function, lipogenesis, fatty acid biosynthesis and cholesterol biosynthesis. Western diet and benzo[a]pyrene can induce fatty liver in Cyp1a1 deficiency mice, but not in WT mice.

Although Cyp1a KO and humanized mouse models have been generated and applied to the functional study of CYP1A, new gene editing animal models still need to be developed. First, a tissue-specific KO animal model can be established. CYP1A is involved in the biotransformation of a large number of essential endogenous substances, which may affect biological functions of different tissues such as liver, lung and reproductive system. Therefore, the lack of CYP1A in specific tissues may help to illustrate its role in specific tissues or diseases. Second, tissue-specific KO animal models could be generated. CYP1A catalyzes the metabolism of different sex hormones, which may affect the biological function of the productive system, leading to abnormal embryonic development and postembryonic growth process. Therefore, Cyp1a deficiency may be helpful to reveal its role in the development of life at specific stages of embryonic development or individual growth. Third, CYP1A with specific SNPs can be introduced into animal models to explore the global effects of this mutation. Effects of SNPs on CYP1A activity can be detected through overexpression in cell lines. However, the global impact of SNPs on the whole body can only be tested through humanization of this mutant gene. Human CYP1A genes, with specific mutations, can be constructed in vitro and transferred into embryo to generate the humanized animal model with precise SNPs.

3.13. Summary

With the development of pharmacogenomics, more and more CYP1A SNPs have been discovered. CYP1A SNPs have attracted more attention in the application of human diseases, especially cancer. In this part, the SNPs of CYP1A1 (11 for CYP1A1 and 9 for CYP1A2) studied most in recent 10 years are reviewed for the first time, and the relationship between
CYP1A SNPs and human diseases is summarized. Although many studies have reported the relationship between CYP1A and human diseases, the pathogenesis of CYP1A-mediated diseases remains unclear. In addition, the direct relationship between the disease and CYP1A mutation remains to be further explored. As mentioned above, emerging technologies such as metabolomics and gene editing may help to explain these scientific issues in detail.

4. Conclusions

CYP1A contributes significantly to the biotransformation of many endogenous substances, including melatonin, retinol, linoleic acid, phosphatidylcholine, uroporphyrinogen, pregnenolone and progesterone, estradiol and estrone, dehydroepiandrosterone and testosterone. CYP1A SNPs have been widely reported. Some of these SNPs may affect the metabolic ability of endogenous substances, especially some important sex hormones, such as progesterone, androgen and estrogen. Moreover, CYP1A mutations are associated with many diseases, including hormone-related cancers and reproductive diseases. In recent years, the gene editing technology, especially CRISPR/Cas9 system, has become a powerful tool for studying the biological function of a certain gene. The development and application of new Cyp1A edited animal models will benefit the understanding of CYP1A biological role and regulation function on the homeostasis, especially for the diagnosis and treatment of some diseases.

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (No. 81773808) and the Science and Technology Commission of Shanghai Municipality (Nos. 17140901000, 17140901001 and 18430760400, China).

Author contributions

Xin Wang was responsible for the conception and design of the review. Jian Lu, Xuyang Shang, Yuan Xu and Rong Shi collected literatures. Jian Lu, Xuyang Shang, Weiguo Zhong and Xin Wang analyzed literatures and summarized results. Jian Lu and Xuyang Shang drafted the manuscript. Xin Wang and Weiguo Zhong revised the manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 2002; 3:561–97.
2. Nelson DR. Cytochrome P450 nomenclature, 2004. Methods Mol Biol 2006;320:1–10.
3. Xu S, Ren Z, Wang Y, Ding X, Jiayang Y. Preferential expression of cytochrome CYP CYP2R1 but not CYP1B1 in human cord blood hematopoietic stem and progenitor cells. Acta Pharm Sin B 2014;4: 464–9.
4. Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis 2017;21:1–20.
5. Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008;21:70–83.
6. Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert IM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017;179:47–83.
7. Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metabol Toxicol 2006;2:875–94.
8. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103–41.
9. Morrison HG, Oleksiak MF, Cornell NW, Sogin ML, Stegeman JJ. Identification of cytochrome P-450 1A1 (CYP1A1) genes from two teleost fish, toadfish (Opsanus tau) and scup (Stenotomus chrysops), and phylogenetic analysis of CYP1A genes. Biochem J 1995;308: 97–104.
10. Ueda R, Iketai H, Nagata K, Kimura S, Gonzalez FJ, Kusano K, et al. A common regulatory region functions bidirectionally in the activation of human CYP1A1 and CYP1A2 genes. Mol Pharmacol 2006;69:1924–30.
11. Kawakami H, Ohtsuki S, Kamiie J, Suzuki T, Abe T, Terasaki T. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection. J Pharm Sci 2011;100:341–52.
12. Siborova M, Martinek V, Rydlova H, Koblas T, Hodek P. Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers. Cancer Lett 2005;220:145–54.
13. Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation of cytochrome P450 1A2. Drug Metab Rev 2010;42:268–354.
14. Rendic S, Guengerich FP. Contributions of human enzymes in carcinogen metabolism. Chem Res Toxicol 2012;25:1316–83.
15. Gelhaus SL, Harvey RG, Penning TM, Blair IA. Regulaton of benzo[a]pyrene-mediated DNA- and glutathione-adduct formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in human lung cells. Chem Res Toxicol 2011;24:89–98.
16. Siborova M, Levova K, Barta F, Shi Z, Frei E, Schmeiser HH, et al. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol Sci 2012;125:345–58.
17. Cheng C, Loy S, Li GX, Liu AB, Yang CS. Rapid induction of colon carcinogenesis in CYP1A1-humanized mice by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and dextran sodium sulfate. Carcinogenesis 2011;32:233–9.
18. Oda Y, Aryan P, Terashita T, Gillam EM, Guengerich FP, Shimada T. Metabolic activation of heterocyclic amines and other procarcinogens in Salmonella typhimurium umu tester strains expressing human cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4 and human NADPH-P450 reductase and bacterial O-acetyltransferase. Mutat Res 2001;492:81–90.
19. von Bahr C, Ursing C, Yasui N, Tybring G, Bertilsson L, Rojdmark S. Flavoxamine but not citalopram increases serum melatonin in healthy subjects—an indication that cytochrome P450 CYPIA2 and CYP2C19 hydroxylate melatonin. Eur J Clin Pharmacol 2000;56:123–7.
20. Chen H, Howald WN, Juchau MR. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: catalysis of all-trans-retinol oxidation by human P-450 cytochromes. Drug Metab Dispos 2000;28:315–22.
21. Moghadam M, Motoba K, Borhan B, Pinot F, Hammock BD. Novel metabolic pathways for linoic and arachidonic acid metabolism. Biochim Biophys Acta 1996;1290:327–39.
22. Moran JH, Mitchell LA, Bradbury JA, Qu W, Zeldin DC, Schnellmann RG, et al. Analysis of the cytotoxic properties of linoic acid metabolites produced by renal and hepatic P450s. Toxicol Appl Pharmacol 2000;168:268–79.
23. Van CH, Ahn T, Guengerich FP, Yamazaki H, Shimada T. Phospholipase D activity of cytochrome P450 in human liver endoplasmic reticulum. *Arch Biochem Biophys* 1999;367:81–8.

24. Sinclair PR, Gorman N, Tsyrov IB, Fuhr U, Walton HS, Sinclair JF. Uroforphyrinogen oxidation catalyzed by human cytochromes P450. *Drug Metab Dispos* 1998;26:1019–25.

25. Schwarz D, Kisselev P, Schunck WH, Chernogolov A, Boidol W, Cascorbi I, et al. Allelic variants of human cytochrome P450 1A1 (CYP1A1): effect of T461N and I462V substitutions on steroid hydroxylase specificity. *Pharmacogenetics* 2000;10:519–30.

26. Niwa T, Yabusaki Y, Honma K, Matsuo N, Tatsuta K, Ishibashi F, et al. Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. *Xenobiotica* 1998;28:539–47.

27. Spink DC, Hayes CL, Young NR, Christou M, Sutter TR, Young NR, Christou M, Sutter TR, et al. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estrogen metabolism in MCF-7 breast cancer cells: evidence for induction of a novel 17β-estradiol 4,6-dioxygenase. *J Steroid Biochem Mol Biol* 1994;51:251–8.

28. Ohe T, Hirobe M, Mashino T. Novel metabolic pathway of estrone and 17β-estradiol catalyzed by cytochrome P-450. *Drug Metab Dispos* 2000;28:110–2.

29. Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. *Drug Metab Rev* 2002;34:83–448.

30. Palacios S, Mejia A. Progestogen safety and tolerance in hormonal replacement therapy. *Expert Opin Drug Saf* 2016;15:1515–25.

31. Weng JH, Chung BC. Nongenomic actions of neurosteroid progrenolone and its metabolites. *Stemoids* 2016;111:54–9.

32. Milczarek R, Sokolowska E, Rybakowska I, Kaletha K, Klimiek J, Parafakt inhibits progesterone synthesis in human placental mitochondria. *Placenta* 2016;43:41–6.

33. Tuckey RC. Progesterone synthesis by the human placenta. *Placenta* 2005;26:273–81.

34. Doostzadeh J, Flinois JP, Beaune P, Morfin R. Prenolone-7β-hydroxylation activity of human cytochrome P450 4A1. *J Steroid Biochem Mol Biol* 1997;60:147–52.

35. Morel Y, Roucher F, Plotton I, Goursaud C, Tardy V, Mallet D. Evolution of steroids during pregnancy: maternal, placental and fetal synthesis. *Ann Endocrinol* 2016;77:82–9.

36. Di Renzo GC, Giardina I, Clerici G, Brillo E, Gerli S. Progesterone in normal and pathological pregnancy. *Horm Mol Biol Clin Invest* 2016;27:35–48.

37. Di Renzo GC, Giardina I, Clerici G, Mattei A, Alajmi AH, Gerli S. The role of progesterone in maternal and fetal medicine. *Gynecol Endocrinol* 2012;28:925–32.

38. Schwartz N, Xue X, Elbrovic MA, Dowling O, Metz CN. Progesterone suppresses the fetal inflammatory response *ex vivo*. *Am J Obstet Gynecol* 2009;201:211, c1-9.

39. Fanchin R, Ayoubi JM, Olivennes F, Righini C, de Ziegler D, Fridyman R. Hormonal influence on the uterine contractility during ovarian stimulation. *Hum Reprod* 2000;15 Suppl 1:90–100.

40. Liu J, Matsuo H, Laag-Fernandez JB, Xu Q, Maruo T. The effects of progesterone on apoptosis in the human trophoblast-derived HTR-8/SV neo cells. *Mol Hum Reprod* 2007;13:869–74.

41. Czajkowska K, Sienko J, Mogilinski M, Bros M, Szczecina R, Czajkowska A. Uteroplacental circulation in early pregnancy complicated by threatened abortion supplemented with vaginal micronized progesterone or oral dydrogesterone. *Fertil Steril* 2007;87:631–8.

42. Baulieu E, Schumacher M. Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. *Stereoids* 2000;65:605–12.

43. Ford O, Lethaby A, Roberts H, Mol BW. Progesterone for premenstrual syndrome. *Cochrane Database Syst Rev* 2012;3:CD000345.

44. Liang YX, Liu L, Jin ZY, Liang XH, Fu YS, Gu XW, et al. The high concentration of progesterone is harmful for endometrial receptivity and decidualization. *Sci Rep* 2018;8:712.

45. Aufrere MB, Benson H. Progesterone: an overview and recent advances. *J Pharm Sci* 1976;65:783–800.

46. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman I, et al. Estrogen receptors: how do they signal and what are their targets. *Physiol Rev* 2007;87:905–31.

47. Kuhl H. Pharmacology of estrogens and progestogens: influence of different routes of administration. *Clinicaracter* 2005;8 Suppl 1:3–63.

48. Escande A, Pillon A, Servant N, Cravedi JP, Larrea F, Muhn P, et al. Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. *Biochem Pharmacol* 2006;71:1459–69.

49. Ruggiero R, Lisik FE. Estrogen: physiology, pharmacology, and formulations for replacement therapy. *J Midwifery Women’s Health* 2002;47:130–8.

50. Liu J, Matsuo H, Laoag-Fernandez JB, Xu Q, Maruo T. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estrogen metabolism in MCF-7 breast cancer cells: evidence for induction of a novel 17β-estradiol 4,6-dioxygenase. *J Steroid Biochem Mol Biol* 1994;51:251–8.

51. Schwarzk N, Xue X, Elbrovic MA, Dowling O, Metz CN. Progesterone suppresses the fetal inflammatory response *ex vivo*. *Am J Obstet Gynecol* 2009;201:211, c1-9.

52. Fanchin R, Ayoubi JM, Olivennes F, Righini C, de Ziegler D, Fridyman R. Hormonal influence on the uterine contractility during ovarian stimulation. *Hum Reprod* 2000;15 Suppl 1:90–100.

53. Liu J, Matsuo H, Laag-Fernandez JB, Xu Q, Maruo T. The effects of progesterone on apoptosis in the human trophoblast-derived HTR-8/SV neo cells. *Mol Hum Reprod* 2007;13:869–74.

54. Czajkowska K, Sienko J, Mogilinski M, Bros M, Szczecina R, Czajkowska A. Uteroplacental circulation in early pregnancy complicated by threatened abortion supplemented with vaginal micronized progesterone or oral dydrogesterone. *Fertil Steril* 2007;87:631–8.

55. Baulieu E, Schumacher M. Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. *Stereoids* 2000;65:605–12.

56. Ford O, Lethaby A, Roberts H, Mol BW. Progesterone for premenstrual syndrome. *Cochrane Database Syst Rev* 2012;3:CD000345.

57. Liang YX, Liu L, Jin ZY, Liang XH, Fu YS, Gu XW, et al. The high concentration of progesterone is harmful for endometrial receptivity and decidualization. *Sci Rep* 2018;8:712.
67. Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. *Chem Res Toxicol* 2001; **14**:611—50.

68. Selvy PE, Lavieri RR, Lindsay CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. *Chem Rev* 2011; **111**:6064—119.

69. Phillips JD, Kushner JP, Bergonia HA, Franklin MR. Uroporphyria in the *Cyp1a2*+/- mouse. *Blood Cells Mol Dis* 2011; **47**:249—54.

70. Gunes A, Dahl ML. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. *Pharmacogenomics* 2008; **9**:625—37.

71. Catteau A, Bechtel YC, Poisson N, Bechtel PR, Bonaiti-Pellie C. A population and family study of CYP1A2 using caffeine urinary metabolites. *Eur J Clin Pharmacol* 1995; **47**:423—30.

72. Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2F2: distribution, function, regulation, genetic polymorphisms and clinical significance. *Drug Metab Rev* 2013; **45**:311—52.

73. Zheng H, Zhao Y. Association of CYP1A1 MspI polymorphism in the esophageal cancer risk: a meta-analysis in the Chinese population. *Eur J Med Res* 2015; **20**:46.

74. Xu JL, Xia R, Sun L, Xin X, Sun ZH, Liu C, et al. Association of CYP1A1 MspI polymorphism with oral cancer risk in Asian populations: a meta-analysis. *Genet Mol Res* 2016; **15**:gmr7688.

75. Liu H, Jia J, Mao X, Liu Z. Association of CYP1A1 and GSTM1 polymorphisms with oral cancer susceptibility: a meta-analysis. *Medicine (Baltim)* 2015; **94**:e895.

76. Zeng W, Li Y, Lu E, Ma M. CYP1A1 rs1048943 and rs646903 polymorphisms associated with laryngeal cancer susceptibility among Asian populations: a meta-analysis. *J Cell Mol Med* 2016; **20**:827—93.

77. Cleary SP, Cotterchio M, Shi E, Gallinger S, Harper P. Cigarette smoking and genetic polymorphisms and colorectal cancer risk: a meta-analysis. *Eur J Cancer Prev* 2011; **20**:461—70.

78. Ding G, Xu W, Liu H, Zhang M, Huang Q, Liao Z. CYP1A1MspI polymorphism is associated with prostate cancer susceptibility among Asian populations: a meta-analysis. *J Cell Mol Med* 2016; **20**:287—93.

79. Diergaarde B, Potter JD, Jupe ER, Manjeshwar S, Shimisaka CD, Pugh TW, et al. Polymorphisms in genes involved in sex hormone metabolism, estrogen plus progestin hormone therapy use, and risk of postmenopausal breast cancer. *Cancer Epidemiol Biomark Prev* 2008; **17**:1751—9.

80. Koda M, Iwasaki M, Yamano Y, Lu X, Katoh T. Association between *CYP1A1* and breast cancer risk: an updated meta-analysis. *Breast Can Res Treat* 2010; **122**:459—69.

81. Martinez-Ramirez OC, Perez-Morales R, Castro C, Flores-Diaz A, Soto-Cruz KE, Astorga-Ramos A, et al. Polymorphisms of catechol estrogens metabolism pathway genes and breast cancer risk in Mexican women. *Breast* 2013; **22**:335—43.

82. Fan W, Huang Z, Xiao Z, Li S, Ma Q. The cytochrome P4501A1 gene polymorphisms and endometriosis: a meta-analysis. *J Assist Reprod Genet* 2016; **33**:1373—83.

83. Singh A, Koner BC, Ray PC, Prasad S, Jamatia E, Mastroo M, et al. Effect of *CYP1A1* gene polymorphism and psychological distress on seminal analysis parameters. *Reprod Health* 2016; **13**:60.

84. Meng FD, Ma P, Sui CG, Tian X, Jiang YH. Association between cytochrome P450 1A1 (*CYP1A1*) gene polymorphisms and the risk of renal cell carcinoma: a meta-analysis. *Sci Rep* 2015; **5**:8108.

85. Hu X, Yu H, Li L, Li JG, Li GJ, Ding YJ. Effect of CYP1A1 and GSTM1 genetic polymorphisms on bone tumor susceptibility. *Genet Mol Res* 2015; **14**:16600—7.

86. Lu J, Zhao Q, Zhai YJ, He HR, Yang LH, Gao F, et al. Genetic polymorphisms and risk for esophageal cancer: a case-control study in central China. *Asian Pac J Cancer Prev APJCP* 2014; **14**:6507—12.

87. Liu C, Jiang Z, Deng QX, Zhao YN. Meta-analysis of association studies of *CYP1A1* genetic polymorphisms with digestive tract cancer susceptibility in Chinese. *Asian Pac J Cancer Prev APJCP* 2014; **15**:4689—95.

88. Shen FF, Zhou FY, Xue QS, Pan Y, Zheng L, Zhang H, et al. Association between *CYP1A1* polymorphisms and esophageal cancer: a meta-analysis. *Mol Biol Rep* 2013; **40**:6035—42.

89. Ren A, Qin T, Wang Q, Du H, Zhong D, Hua Y, et al. Cytochrome P450 1A1 gene polymorphisms and digestive tract cancer susceptibility: a meta-analysis. *J Cell Mol Med* 2016; **20**:1620—31.

90. Xu L, Wei H. Association between CYP1A1 2545A > G polymorphism and colorectal cancer risk: a meta-analysis. *J Cancer Res Ther* 2015; **11**:760—4.

91. Ren A, Qin T, Wang Q, Du H, Zhong D, Hua Y, et al. Cytochrome P450 1A1 gene polymorphisms and digestive tract cancer susceptibility: a meta-analysis. *J Cell Mol Med* 2016; **20**:1620—31.

92. Xu L, Wei H. Association between CYP1A1 2545A > G polymorphism and colorectal cancer risk: a meta-analysis. *J Cancer Res Ther* 2015; **11**:760—4.

93. Fan W, Huang Z, Xiao Z, Li S, Ma Q. The cytochrome P4501A1 gene polymorphisms and endometriosis: a meta-analysis. *J Assist Reprod Genet* 2016; **33**:1373—83.

94. Singh A, Koner BC, Ray PC, Prasad S, Jamatia E, Mastroo M, et al. Effect of *CYP1A1* gene polymorphism and psychological distress on seminal analysis parameters. *Reprod Health* 2016; **13**:60.

95. Meng FD, Ma P, Sui CG, Tian X, Jiang YH. Association between cytochrome P450 1A1 (*CYP1A1*) gene polymorphisms and the risk of renal cell carcinoma: a meta-analysis. *Sci Rep* 2015; **5**:8108.

96. Hu X, Yu H, Li L, Li JG, Li GJ, Ding YJ. Effect of CYP1A1 and GSTM1 genetic polymorphisms on bone tumor susceptibility. *Genet Mol Res* 2015; **14**:16600—7.

97. Lu J, Zhao Q, Zhai YJ, He HR, Yang LH, Gao F, et al. Genetic polymorphisms of *CYP1A1* and risk of leukemia: a meta-analysis. *OncoTargets Ther* 2015; **8**:2883—902.

98. Polonikov AV, Bushueva OY, Bulgakova IV, Freidin MB, Charnosov MI, Solodilova MA, et al. Comprehensive contribution of genes for aryl hydrocarbon receptor signaling pathway to hyper-tension susceptibility. *Pharmacogenetics Genom* 2017; **27**:57—69.

99. Esteller M, Garcia A, Martinez-Palones JM, Xerecins J, Reventos J. Germ line polymorphisms in cytochrome-P450 1A1 (CYP1A1) and methylentetrahydrofolate reductase (*MTHFR*) genes and endometrial cancer susceptibility. *Carcinogenesis* 1997; **18**:2307—11.
polymorphisms with the risk of sporadic breast cancer in Brazilian women. *Clinics* (Sao Paulo) 2015;70:680–5.

Khvostova EP, Puzylnyak VO, Gulyaeva LF. Genetic polymorphism of estrogen metabolizing enzymes in Siberian women with breast cancer. *Genet Test Mol Biomark* 2012;16:167–73.

Zhou Y, Chen ZX, Rewuti A, Ma YS, Wang XF, Xia Q, et al. Quantitative assessment of the influence of cytochrome P450 1A2 gene polymorphism and colorectal cancer risk. *PloS One* 2013;8:e71481.

Imene A, Maurice AJ, Arij M, Sofia P, Saad S. Breast cancer association with CYP1A2 activity and gene polymorphisms—a preliminary case-control study in Tunisia. *Asian Pac J Cancer Prev APJCP* 2015;16:3559–63.

Ayar I, Fedeli U, Saguem S, Hidar S, Khlifi S, Pavanello S. Role of CYP1A2 polymorphisms in breast cancer risk in women. *Mol Med* Rep 2013;7:280–6.

Klemm M, Eidens M, Lorenz M, Prasse S, Weise A, Dahmen N, et al. Development of a high throughput single nucleotide polymorphism screening method for the cytochrome P450 1A2 polymorphisms CYP1A2*1C and CYP1A2*1F: are they useful as predictive markers in mental disorders?. *Clin Lab* 2010;56:473–80.

Tian Z, Li YL, Zhao L, Zhang CL. Role of CYP1A2 1F polymorphism in cancer risk: evidence from a meta-analysis of 46 case-control studies. *Gene* 2013;524:168–74.

Dumas I, Diorio C. Estrogen pathway polymorphisms and mammographic density. *Anticancer Res* 2011;31:4369–86.

Sun WX, Chen YH, Liu ZZ, Xie JJ, Wang W, Du YP, et al. Association between the CYP1A2 polymorphisms and risk of cancer: a meta-analysis. *Mol Genet Genom* 2015;290:709–25.

Ma Z, Guo W, Gong T, Niu HJ, Wang RW, Jiang YG. CYP1A2 rs762551 polymorphism contributes to risk of lung cancer: a meta-analysis. *Tumour Biol* 2014;35:2253–7.

Pavanello S, Fedeli U, Mastrangelo G, Rota F, Overvad K, Raaschou-Nielsen O, et al. Role of CYP1A2 polymorphisms on lung cancer risk in a prospective study. *Cancer Genet* 2012;205:278–84.

Bu ZB, Ye M, Cheng Y, Wu WZ. Four polymorphisms in the cytochrome P450 1A2 (CYP1A2) gene and lung cancer risk: a meta-analysis. *Asian Pac J Cancer Prev APJCP* 2014;15:5673–9.

Zeng Y, Jiang HY, Wei L, Xu WD, Wang YJ, Wang YD, et al. Association between the CYP1A2 rs762551 polymorphism and bladder cancer susceptibility: a meta-analysis based on case-control studies. *Asian Pac J Cancer Prev APJCP* 2015;16:7249–54.

Vukovic V, Tanule C, Leoncini E, Pastorino R, Gualano MR, Amore R, et al. Association of association between polymorphisms in the CYP1A2 gene and risk of cancer: evidence from meta-analyses. *BMC Cancer* 2016;16:83.

Wang H, Zhang Z, Han S, Lu Y, Feng F, Yuan J. CYP1A2 rs762551 polymorphism contributes to cancer susceptibility: a meta-analysis from 19 case-control studies. *BMC Canc* 2012;12:528.

Song YL, Wang L, Ren JC, Xu ZH. CYP1A2-163C/A (rs762551) polymorphism and bladder cancer risk: a case-control study. *Genet Mol Res* 2016;15:gmr6298.

Stastukonyte N, Liukieviciene R, Vilkeviciute A, Banevicius M, Kriaucuniene L. Associations between rs4424285 and rs762551 gene polymorphisms and age-related maculopathy degeneration. *Ophthalmic Genet* 2017;38:357–64.

Guessous I, Dobrinas M, Kutalik Z, Pruijim M, Ehet G, Maillard M, et al. Caffeine intake and CYP1A2 variants associated with high caffeine intake protect non-smokers from hypertension. *Hum Mol Genet* 2012;21:3283–92.

Kukongviriyapan V. Genetic polymorphism of drug metabolizing enzymes in association with risk of bile duct cancer. *Asian Pac J Cancer Prev APJCP* 2012;13:Suppl 7:7–15.

de Brito RB, de Carvalho Araujo L, Diniz MJ, de Castro Georg R, Nabout JC, Vianello RP, et al. The CYP1A2 –163C>A polymorphism is associated with super-refractory schizophrenia. *Schizophr Res* 2015;169:502–3.

Sasaki S, Limpar M, Sata F, Kobayashi S, Kishi R. Interaction between maternal caffeine intake during pregnancy and CYPIA2 C164A polymorphism affects infant birth size in the Hokkaido study. *Pediatr Res* 2017;82:19–28.

Zhenzhen L, Xianghua L, Ning S, Zhan G, Chuanchuan R, Jie L. Current evidence on the relationship between three polymorphisms in the CYP1A2 gene and the risk of cancer. *Eur J Cancer Prev* 2013;22:607–19.

Matakova T, Halasova E, Dzian A, Hruby R, Halasa M, Javorka K, et al. Associations of CYP1A2 polymorphisms with the risk haplotypes in lung cancer in the Slovak population. *Adv Exp Med Biol* 2016;911:23–32.

Liu Q, Qian Y, Li F, Zhang S, Wang Z, Liu J, et al. The combined therapeutic effects of 131iodine-labeled multifunctional copper sulfide-loaded microspheres in treating breast cancer. *Acta Pharm Sin B* 2018;8:371–80.

Rhodes A, Jasiu B, Balaton AJ, Barnes DM, Miller KD. Frequency of oestrogen and progesterone receptor positivity by immunohistochemical analysis in 7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold value, and mammographic screening. *J Clin Pathol* 2000;53:688–96.

Yip CH, Rhodes A. Estrogen and progesterone receptors in breast cancer. *Future Oncol* 2014;10:2293–301.

Zhao YN, Zhang W, Chen YC, Fang F, Liu XQ. Relative imbalances of estrogen metabolizing enzymes in Siberian women with breast cancer. *Pediatr Res* 2015;70:680–5.

van Landeghem AA, Poortman J, Nabuurs M, Thijsen JH. Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. *Cancer Res* 1985;45:2900–6.

Lonnning PE, Helle H, Duong NK, Ekse D, Aas T, Geisler J. Tissue estradiol is selectively elevated in receptor positive breast cancers while tumour estrone is reduced independent of receptor status. *J Steroid Biochem Mol Biol* 2009;115:31–41.

Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. *Cancer Lett* 2005;227:115–24.

Cho SJ, Ning M, Zhang Y, Rubin LH, Jeong H. 17β-Estradiol up-regulates UDP-glucuronosyltransferase 1A9 expression via estrogen receptor α. *Acta Pharm Sin B* 2016;6:504–9.

Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. *Carcinogenesis* 1998;19:1–27.

Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. *Ann Rev Pharmacol Toxicol* 1996;36:203–32.

Kisselev P, Schunck WH, Roots I, Schwarz D. Association of CYP1A1 polymorphisms with differential metabolic activation of 17beta-estradiol and estrone. *Cancer Res* 2005;65:2972–8.

He Y, Peng S, Wang J, Chen H, Cong X, Chen A, et al. Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer. *Nat Commun* 2016;7:13122.

Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. *Pharmacol Ther* 2013;140:223–38.

Toledo-Pereyra LH. Discovery in surgical investigation: the essence of charles brenton huggins. *J Investig Surg* 2001;14:251–2.

Murata M, Watamine M, Yamanaka M, Kubota Y, Ito H, Nagao M, et al. Genetic polymorphisms in cytochrome P450 (CYP) 1A1, CYP1A2, CYP2E1, glutathione S-transferase (GST) M1 and GSTTI
147. Suzuki K, Matsui H, Nakazato H, Koike H, Okugi H, Hasumi M, et al. Association of the genetic polymorphism in cytochrome P450 (CYP) 1A1 with risk of familial prostate cancer in a Japanese population: a case-control study. *Cancer Lett* 2003;195:177–83.

148. Tang L, Platek ME, Yao S, Till C, Goodman PJ, Tingen CM, et al. Lack of association between CYP1A1 polymorphisms and risk of bladder cancer: a meta-analysis. *Asian Pac J Cancer Prev APJCP* 2014;15:4071–7.

149. Harkonen PL, Makela SI. Role of estrogens in development of prostate cancer. *Endocr Relat Cancer* 2003;10:187–91.

150. Risbridger GP, Bianco JJ, Ellem SJ, McPherson SJ. Oestrogens and prostate cancer. *Endocrinology* 1993;135:5311–21.

151. Vermeulen A, Kaufman JM, Goemaere S, van Pottelberghe I. Estradiol in elderly men. *Aging Male* 2002;5:98–102.

152. Baulieu EE. Androgens and aging men. *Clin Endocrinol Metab* 2004;92:297–305.

153. Tang L, Platek ME, Yao S, Till C, Goodman PJ, Tingen CM, et al. Frequent loss of estrogen receptor-beta expression in prostate cancer. *Carcinogenesis* 2018;39:125–33.

154. Masters A, Pandi-Perumal SR, Seixas A, Girardin JL, McFarlane SI. Estrogens and androgens in the regulation of bone metabolism. *Brain Disord Ther* 2014;4:1000151.

155. Michalowska M, Znorko B, Kaminski T, Oksztulska-Kolanek E, Pawlak D. New insights into tryptophan and its metabolites in the regulation of bone metabolism. *J Physiol Pharmacol* 2015;66:79–91.

156. Suzuki K, Matsui H, Nakazato H, Koike H, Okugi H, Hasumi M, et al. Association of the genetic polymorphism in cytochrome P450 (CYP) 1A1 with risk of familial prostate cancer in a Japanese population: a case-control study. *Cancer Lett* 2003;195:177–83.

157. Ho SM. Estrogens and anti-estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. *J Cell Biochem 2004; 91:491–503.

158. Yager JD. Endogenous estrogens as carcinogens through metabolic activation. *J Natl Cancer Inst Monogr* 2000;2000:67–73.

159. Leav I, Lau KM, Adams JY, McNeal JE, Taplin ME, Wang J, et al. Comparative studies of the estrogen receptors beta and alpha and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. *Am J Pathol* 2001;159:79–92.

160. Anderson E. Ovarian steroids and control of proliferation in the normal human breast. *Brest 2001;10:273–8.

161. Khra R, Krah K, and susceptibility to prostate cancer in the Japanese population. *Cancer Lett* 2001;165:171–7.

162. Cooper TG. Epididymis and sperm function. *Andrologia* 1996;28 Suppl 1:57–9.

163. Giubili RR, Vogl AW, Chang TK, Bandiera SM. Localization of cytochrome P450 and related enzymes in adult rat testis and down-regulation by estradiol and bisphenol A. *Toxicol Sci* 2014;140:26–39.

164. Zhan P, Wang Q, Qian Q, Wei SZ, Yu LK. CYP1A1 MspI and exon7 gene polymorphisms and lung cancer risk: an updated meta-analysis and review. *J Exp Clin Cancer Res* 2011;30:99.

165. Lu Y, Zhang XL, Xie L, Li T, He Y, Peng QL, et al. Lack of association between CYP1A1 polymorphisms and risk of bladder cancer: a meta-analysis. *Asian Pac J Cancer Prev APJCP* 2014;15:4071–7.

166. Uno S, Nebert DW, Makishima M. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by western diet containing benzo[a]pyrene in mice. *Food Chem Toxicol* 2018;113:73–82.