Unified model of nucleon elastic form factors and implications for neutrino-oscillation experiments

Xilin Zhang
Department of Physics, The Ohio State University, Columbus, OH 43210, USA and
Department of Physics, University of Washington, Seattle, WA 98195, USA

T. J. Hobbs
Department of Physics, Southern Methodist University, Dallas, TX 75275, USA
Jefferson Lab, EIC Center, Newport News, VA 23606, USA and
Department of Physics, University of Washington, Seattle, WA 98195, USA

Gerald A. Miller
Department of Physics, University of Washington, Seattle, WA 98195, USA

(Dated: December 18, 2019)

Precise knowledge of the nucleon’s axial-current form factors is crucial for modeling GeV-scale neutrino-nucleus interactions. Unfortunately, the axial form factor remains insufficiently constrained to meet the precision requirements of upcoming long-baseline neutrino-oscillation experiments. This work studies these form factors, in particular the axial pseudo-vector elastic form factor, using the light-front approach to build a quark-diquark model of the nucleon with an explicit pion cloud. The light-front wave functions in both the quark and pion-baryon Fock spaces are first calibrated to existing experimental information on the nucleon’s electromagnetic form factors, and then used to predict the axial form factor. We predict the squared charge radius of the axial pseudo-vector form factor to be $r_A^2 = 0.29 \pm 0.03 \text{fm}^2$, where the small error accounts for the model’s parametric uncertainty. We use our form factor results to explore the (quasi-)elastic scattering of neutrinos by (nuclei)nucleons. We find the widely-implemented dipole ansatz to be an inadequate approximation of the full form factor for modeling both processes. The approximation leads to a $5 - 10\%$ overestimation of the total cross section, depending on the (anti)neutrino energy. We project overestimations of similar size in the flux-averaged cross sections for the upcoming DUNE long-baseline neutrino-oscillation experiment.

I. INTRODUCTION

Modern investigations along the Intensity Frontier [1] aim to test the Standard Model (SM) and explore the origins of neutrino mass through a dedicated series of neutrino-oscillation searches, which rely on the scattering of high-intensity neutrino beams by nuclear targets. At the present time, the dominant limitations in these experiments are an imperfect determination of the neutrino flux, and imprecision in theoretical predictions for neutrino-nucleus cross sections, both of which are necessary to extract the neutrino (dis)appearance rates between the near- and far-detectors in long-baseline measurements. Improving the theoretical description of neutrino-nucleus reactions in the multiple-GeV neutrino-energy region is therefore critical for the next-generation long-baseline neutrino-oscillation experiments [2]. In most theoretical frameworks [2], the neutrino-nucleon interaction is the most basic input to the calculation, such that the neutrino-nucleon scattering/reaction is the fundamental kernel. As such, the nucleon-level kernels must be carefully investigated in order to understand their accuracy and potential model uncertainties, as well as to the resulting implications for calculations of nucleus-level scatterings/reactions. Such an understanding can then provide guidance for further improvements. In those regions of the neutrino energy (E_ν) for which the neutrino-nucleus cross section is dominated by quasi-elastic (QE) scattering and resonance production [3], the nucleon-level kernel requires detailed knowledge of the (in)elastic nucleon form factors of the electroweak (EW) current, including the axial-current component [4] (the axial form factor). Unfortunately, the axial-current component of the EW form factors remains insufficiently understood to meet the precision objectives of the coming neutrino-oscillation experiments [2, 5].

In principle, Lattice QCD calculations could provide reliable results about these EW form factors [2, 6–14]. However, these calculations are restricted to a finite window of momentum transfer, Q (i.e., $Q^2 \sim 1 \text{GeV}^2$). Beyond this, a systematic description of the higher-Q^2, several-GeV2 regime—a region in which the form factors are unlikely to achieve their asymptotic Q^2 dependence—is still needed. Moreover, Lattice QCD calculations for the axial form factor remain generally challenging, with the inelastic form factors expected to be all the more so.

Other currently available frameworks are mainly composed of phenomenological fits of data such as polynomial-based fits (see, e.g., Ref. [15]) or the z-
The nucleon’s EW current form factors can be extracted from the corresponding EM and axial current (see Fig. 9).

To further assess how these discrepancies with the dipole approximation can be expected to impact neutrino cross sections, we implement the axial form factors in a simulation of neutrino-40\(^{Ar}\) QE scattering using the GiBUU event generator \cite{44}, and compute the flux-averaged cross sections based on the energy distribution of the projected neutrino flux at DUNE \cite{35}. Here, we again find that the discrepancy leads to 5\% overestimation of the cross sections for both neutrino and antineutrino scatterings at \(Q^2 < 0.2\) GeV\(^2\)—the peak location of the flux-averaged differential cross section, \(d\sigma/dQ^2\)—and climb to 10–15\% at larger \(Q^2\) (see Fig. 11). Meanwhile, the over-estimation of the neutrino and antineutrino scattering cross section is similar at \(Q^2 < 0.5\) GeV\(^2\), but still differs at the few-percent level at larger \(Q^2\).

In the remainder of this article, we detail in Sec. III the theory formalism for our pion-cloud-augmented light-front quark model. Sec. IIIA discusses the input parameters for the model, while Sec. IIIIB presents our procedure for constraining the unknown parameters in the model via measurements of the nucleon’s EM form factors, and the resulting predictions for the axial-current form factor \(\tilde{F}_{1N}\). In Sec. IIIID we discuss how different factors’ impacts on the single-nucleon cross sections, and then their impacts on the flux-averaged cross sections for neutrino-40\(^{Ar}\) QE scattering. A short summary with conclusions is provided in Sec. IIIE. Readers interested mainly in the final analysis for neutrino-nucleus scattering can directly consult Sec. IIIE and possibly Sec. IIIB which demonstrate the success of our model in reproducing the EM form factors. Explanations of relevant notation can be found in Secs. III.

II. FORMALISM

A. The model

The nucleon’s wave function in the framework of the light-front quark model \cite{24,26,29,30} can be schematically written as

\[
|p_N, \lambda_N; N\rangle = \sqrt{z} |p_N, \lambda_N; N\rangle_{q\otimes d} + |p_N, \lambda_N; N\rangle_{B}\otimes\pi \ ,
\]

with the first component being in terms of quark-diquark degrees-of-freedom, and the second in terms of hadronic (i.e., baryon and pion) degrees-of-freedom. In this work we simplify the quark-level description of the nucleon as consisting of a quark and a two-body quark\(\otimes\)quark spectator, known as a diquark \cite{30}. The second component of Eq. 2 accounts for contributions from the pion cloud, which is known to accompany the nucleon and \(\Delta\) resonances \cite{25,26,29,30}. These two components are orthogonal, i.e., \(B\otimes\pi\langle p_N, \lambda_N; N|p_N, \lambda_N; N\rangle_{q\otimes d} = 0\).

The nucleon’s EW current form factors can be extracted from the corresponding EM and axial current

\[
|p_N, \lambda_N; N\rangle = \sqrt{z} |p_N, \lambda_N; N\rangle_{q\otimes d} + |p_N, \lambda_N; N\rangle_{B}\otimes\pi \ ,
\]

with the first component being in terms of quark-diquark degrees-of-freedom, and the second in terms of hadronic (i.e., baryon and pion) degrees-of-freedom. In this work we simplify the quark-level description of the nucleon as consisting of a quark and a two-body quark\(\otimes\)quark spectator, known as a diquark \cite{30}. The second component of Eq. 2 accounts for contributions from the pion cloud, which is known to accompany the nucleon and \(\Delta\) resonances \cite{25,26,29,30}. These two components are orthogonal, i.e., \(B\otimes\pi\langle p_N, \lambda_N; N|p_N, \lambda_N; N\rangle_{q\otimes d} = 0\).

The nucleon’s EW current form factors can be extracted from the corresponding EM and axial current

\[
|p_N, \lambda_N; N\rangle = \sqrt{z} |p_N, \lambda_N; N\rangle_{q\otimes d} + |p_N, \lambda_N; N\rangle_{B}\otimes\pi \ ,
\]
for instance, we then have
\[u(p_N, \lambda_N) \]
Here, \(f.s. \) and \(f.t. \) refer to the flavor-singlet and flavor-triplet states of the diquark system, while \(s.s. \) and \(s.t. \) represent vector diquark respectively \([30, 37]\). The diquarks have definite masses, \(m \), and the momentum transfer is \(q \). We also note that the axial current, \(J_A^\mu \), while \(F \) can be related to \(F^\mu \), the spin-flavor wave function is \(J_A^\mu = F^\mu \). We also note that the axial current, \(J_A^\mu \), is a vector in isospin space. In the following, we especially focus on \(F_{1N} \), while \(F_{2N} \) can be related to \(F_{1N} \) via the Goldberger-Treiman relation \([3]\). Relying on the methods of light-front quantization \([23,30]\), the form factors can be extracted from the matrix elements of Eqs. \((3)-(6)\) by simply studying the plus-components of the currents as

\[
F_{1N} = \frac{1}{2p_N^+} \langle p'_N, \lambda'_N | J_{EM}^+ | p_N, \lambda_N = \frac{1}{2}; N \rangle \quad (4)
\]

\[
F_{2N} = -\frac{\sqrt{2}m_N}{q^R} \frac{1}{2p_N^+} \times \langle p'_N, \lambda'_N = \frac{1}{2}; N | J_{EM}^+ | p_N, \lambda_N = \frac{1}{2}; N \rangle
\]

\[
\tilde{F}_{1N}(N|\frac{\tau}{2}|N) = \frac{1}{2p_N^+} \times \langle p'_N, \lambda'_N = \frac{1}{2}; N | J_A^\mu | p_N, \lambda_N = \frac{1}{2}; N \rangle \quad (6)
\]

We point out that other combinations of initial/final nucleon helicities are trivially related to those given in the Eqs. above \([29,30]\), for the transverse components of 4-vectors, a specific index notation is introduced \([29]\): e.g., for \(q, q^R \equiv -(q^x + iq^y)/\sqrt{2} \) and \(q^L \equiv (q^x - iq^y)/\sqrt{2} \). On the basis of the wave-function decomposition in Eq. \((2)\), the form factor calculations—equivalent to the above matrix-element calculations—can be represented in terms of the diagrams shown in Fig. \([I]\) each of which represents a distinct contribution to the form factor model. Diagram \((I)\) represents the contributions from the bare the quark-diquark configuration terms in Eq. \((2)\), while Diagrams \((II)\) and \((III)\) are from the other Fock space components, in which the nucleon dissociates into pion-baryon states. The external EW probe is allowed to couple to either the intermediate baryon [in Diagram \((II)\)] or the recoiling pion [in Diagram \((III)\)], and both processes contribute to the full model. In the following subsections, we proceed in order, relying on the Diagrams \((I)-(III)\) to compute the required matrix elements in the light-front quantization. Thus, in Sec. \([III]\) we first compute the bare quark-diquark contributions contained in Diagram \((I)\), and present in Sec. \([II C]\) the pion-cloud pieces from Diagrams \((II)\) and \((III)\).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{diagrams.png}
\caption{The diagrammatic representation of the form factor calculations. In \((II)\) and \((III)\), \(B\) and \(B'\) represent baryon, which can be \(N\) or \(\Delta\). In \((II)\), \(B\) and \(B'\) can be different, meaning that both inelastic and elastic form factors can contribute here.}
\end{figure}

B. Diagram (I)

The form factor function has two components each in spin and flavor space, and we therefore use an SU(4) ansatz to combine these two spaces \([30,31]\). For instance, for the proton, the spin-flavor wave function is

\[
|\lambda_P; P \rangle^q \otimes d = \frac{1}{\sqrt{2}} |\lambda_P; P \rangle^{f,s} |\lambda_P; P \rangle^{s,s} |\text{CM} \rangle + \frac{1}{\sqrt{2}} |\lambda_P; P \rangle^{f,t} |\lambda_P; P \rangle^{s,t} |\text{CM} \rangle .
\]

Here, \(f.s. \) and \(f.t. \) refer to the flavor-singlet and flavor-triplet states of the diquark system, while \(s.s. \) and \(s.t. \) represent its spin-singlet and spin-triplet states, respectively. The degrees-of-freedom identified with the center-of-mass (CM) motion are manifestly factorized in this definition, such that the other components are associated with the relative motion degrees-of-freedom. In the spectator picture, supposing the quark interacting with the current is a \(u \)-quark, for instance, we then have

\[
|\lambda_P; P \rangle^{f,s} = \frac{1}{\sqrt{2}} (|uu'd| - |uud\rangle) \equiv |u (ud)^s\rangle
\]

\[
|\lambda_P; P \rangle^{f,t} = \frac{1}{\sqrt{6}} (|uu'd| + 2|uud\rangle - 2|dud\rangle) \equiv \frac{\sqrt{3}}{3} |u (ud)^{t,0}\rangle - \frac{\sqrt{2}}{3} |d (ud)^{t,1}\rangle.
\]
functions are independent of quark flavor. They can be written as

\[
|p_N^+, p_{N\perp}, \lambda_N; N\rangle^{s.\bar{s}} = \int \frac{dxdk \perp}{16\pi^3} \sum_{\lambda} \phi_{\lambda}^{N}(x, k \perp) |x, k \perp, \lambda; q, d = s\rangle
\]

(10)

\[
|p_N^+, p_{N\perp}, \lambda_N; N\rangle^{s.t} = \int \frac{dxdk \perp}{16\pi^3} \sum_{\lambda} \phi_{\lambda \lambda_d}^{N}(x, k \perp) |x, k \perp, \lambda, \lambda_d; q, d = a\rangle .
\]

(11)

Note the normalization of a single-particle state is \(\langle p^+, p_{\perp}^+ | p^+, p_{\perp}^- \rangle = (2\pi)^3 2p^+ \delta(p^+ - p_{\perp}^+) \delta(p_{\perp}^- - p_{\perp}^-)\), so the two-particle state's normalization can be written in a fashion with the CM motion manifestly factorized out: \(\langle p'_1, p'_2 | p_1, p_2 \rangle = (2\pi)^3 2^2 p^+ |\delta(P_{\perp}^+ - P_{\perp}^-) (2\pi)^2 2^2 x(1 - x) \delta(x - x') \delta(k_{\perp} - k_{\perp}^-)\). Since the CM is already factorized out in Eq. (7), the normalization of the quark-Fock-space basis for relative motion is \(\langle x', k_{\perp}'; x, k_{\perp} \rangle, \frac{\lambda'}{\lambda}; q, d | x, k_{\perp}, \lambda, \lambda_d; q, d = 16\pi^3 x(1 - x) \delta_{\lambda, \lambda'} \delta_{\lambda_d, \lambda'} \delta(x - x') \delta(k_{\perp} - k_{\perp}').\) Moreover, the convention for kinematic variables is that the struck quark carries momentum fraction \(x\), and transverse momentum \(k_{\perp}\), with the spectator having \(1 - x\) and \(-k_{\perp}\) in the CM frame. The intrinsic wave function, e.g., \(\phi_{\lambda_n}^{N}(x, k \perp)\), are boost-invariant and rotational invariant (manifestly in the transverse plane), and thus independent of the nucleon momentum \(p_N\).

The wave functions involving scalar-diquark are

\[
\phi_{\lambda_{\mu}}^{N} = \bar{u}(k, \lambda_{\mu}) \left(\varphi_1^a + \frac{M N^+}{P^+} \varphi_2^a \right) u(p_N, \lambda_{\mu}) ,
\]

(12)

which is the same as in Ref. [39], while the axial-diquark is different,

\[
\phi_{\lambda_{\mu} \lambda_d}^{N} = \bar{u}(k, \lambda_{\mu}) \varepsilon_{\mu}(q, \lambda_d) \left(\varphi_1^a \gamma^\mu \gamma^5 + \varphi_2^a \frac{q^\mu}{M N} \gamma^5 \right) u(p_N, \lambda_{\mu}) .
\]

(13)

For the axial-diquark, we use the modified vector introduced in [35] for its \(\varepsilon_{\mu}\). It is related to the usual definition of a vector field \(\varepsilon_{\mu}\) (satisfying \(q^\mu \varepsilon_{\mu} = 0\)), through \(\varepsilon_{\mu} = \varepsilon_{\mu} - \varepsilon^+ q_{\mu}/q^+\). By choosing an appropriate frame such that \(q^\mu = \left(q^+, \frac{m^2}{q^+}, 0_\perp\right)\), we have \(\varepsilon^\mu(\lambda_{\mu} = \pm 1) = (0, 0, \varepsilon(\pm 1))\), \(\varepsilon^\mu(\lambda_d = 0) = \left(0, -\frac{m^2}{q^+}, 0_\perp\right)\), and thus \(\varepsilon^\mu(\lambda_d = \pm 1) = (0, 0, \varepsilon(\pm 1))\) and \(\varepsilon^\mu(\lambda_d = 0) = \left(0, -\frac{m^2}{q^+}, 0_\perp\right)\).

The intrinsic wave functions, \(\varphi_{1,2}^{s.a}\), in Eqs. (12) and (13), are scalar functions of intrinsic variables, \(x, k_{\perp}\) (their details are discussed in Sec. [III], while \(\phi_{\lambda_{\mu} \lambda_d}^{N}\) are functions of \(x, k_{\perp}\) and helicities of participating DOFs including diquarks and nucleon. The relationships between \(\varphi\) and \(\phi\) wave functions are collected in Appendix [A] and Tables [IV] and [V].

With the wave functions set up, we first define the current matrix elements between spin states, not worrying about flavor space for the moment, e.g., \(s.\bar{s}(\lambda; N) J_{EM}^{+}(\lambda; N)\), and define \(f_{1s}, f_{2s}\) as

\[
f_{1s} \equiv \frac{s.\bar{s}}{2} \langle N | J_{EM}^{+} | \frac{1}{2}; N \rangle^{s.\bar{s}} ,
\]

(14)

\[
f_{2s} \equiv \frac{s.\bar{s}}{\sqrt{2M_N}} \langle N | J_{EM}^{+} | \frac{1}{2}; N \rangle^{s.\bar{s}} ,
\]

(15)

\[
f_{\bar{s}s} \equiv \frac{s.\bar{s}}{2} \langle N | J_{A}^{+} | \frac{1}{2}; N \rangle^{s.\bar{s}} .
\]

(16)

and similarly for \(f_{1a}, f_{2a}\), and \(f_{3a}\) in terms of \(|\lambda; N\rangle^{s.\bar{s}}\). In the above three equations, \(J_{EM}^{+} = \bar{q} \chi^\mu \gamma_\mu q\), where \(q\) is fixed as the struck quark. The isospin dependence will be discussed later. The \(1/(2p_{\perp}^+)\) is already canceled out by the overlap of CM motion state, as compared to Eqs. (1)–(6). By using the Legepage-Brodsky convention for the Dirac spinors [24], we can express these quantities in terms of overlap of light-front wave functions:

\[
f_{1s} = \int d\mu_{\lambda} \sum_{\lambda} \phi_{\lambda}^{N}(x, k_{\perp}') \phi_{\lambda}^{N}(x, k_{\perp})
\]

(17)

\[
f_{1a} = \int d\mu_{\lambda_d} \sum_{\lambda, \lambda_d} \phi_{\lambda_{\mu} \lambda_d}^{N}(x, k_{\perp}') \phi_{\lambda_{\mu} \lambda_d}^{N}(x, k_{\perp})
\]

(18)

\[
f_{2s} = -\frac{\sqrt{2M_N}}{q^+} \int d\mu_{\lambda} \sum_{\lambda} \phi_{\lambda}^{N}(x, k_{\perp}').\phi_{\lambda}^{N}(x, k_{\perp})
\]

(19)

\[
f_{2a} = -\frac{\sqrt{2M_N}}{q^+} \int d\mu_{\lambda_d} \sum_{\lambda, \lambda_d} \phi_{\lambda_{\mu} \lambda_d}^{N}(x, k_{\perp}').\phi_{\lambda_{\mu} \lambda_d}^{N}(x, k_{\perp})
\]

(20)

for the EM current, while for the axial current we get,

\[
f_{\bar{s}s} = \int d\mu_{\lambda} \sum_{\lambda} (-)^{\lambda - \bar{s}} \phi_{\lambda}^{N}(x, k_{\perp}') \phi_{\lambda}^{N}(x, k_{\perp})
\]

(21)

\[
f_{\bar{s}a} = \int d\mu_{\lambda_d} \sum_{\lambda, \lambda_d} (-)^{\lambda - \bar{s}} \phi_{\lambda_{\mu} \lambda_d}^{N}(x, k_{\perp}') \phi_{\lambda_{\mu} \lambda_d}^{N}(x, k_{\perp})
\]

(22)

Inside these integrands, \(d\mu = \frac{dxdk \perp}{16\pi^3 (1 - x)}\), \(k_{\perp}' = k_{\perp} + (1 - x) q_{\perp}\), \(\lambda_{d} = \pm 1/2\) and \(\lambda_{d} = 0, \pm 1\). It should be pointed out that the 2nd-class axial current is zero here [39], because isospin symmetry is respected in this model. The detailed expression of these form factors in terms of \(\varphi_{1,2}^{s.a}\) can be found in Appendix [A].

To compute the current matrix elements with wave functions \(|\lambda; P\rangle_{q, d}\), we need to sum up the contributions from the struck quarks (3 for nucleon) and take
into account the flavor structure of the quark-diquark wave function and the charges of the struck quarks. We then get the form factor from the nucleon’s bare quark-diquark core,

\[
\begin{align*}
F^{0}_{1p} &= \frac{3}{2} e_{u} f_{1s} + \left(\frac{1}{2} e_{u} + e_{d} \right) f_{1a} = f_{1s} \quad (23) \\
F^{0}_{2p} &= \frac{3}{2} e_{u} f_{2s} + \left(\frac{1}{2} e_{u} + e_{d} \right) f_{2a} = f_{2s} \\
F^{0}_{1n} &= \frac{3}{2} e_{d} f_{1s} + \left(\frac{1}{2} e_{d} + e_{u} \right) f_{1a} = \frac{1}{2} f_{1a} - \frac{1}{2} f_{1s} \quad (25) \\
F^{0}_{2n} &= \frac{3}{2} e_{d} f_{2s} + \left(\frac{1}{2} e_{d} + e_{u} \right) f_{2a} = \frac{1}{2} f_{2a} - \frac{1}{2} f_{2s} \\
F^{0}_{1p} &= \frac{3}{2} e_{Au} f_{s} + \left(\frac{1}{2} e_{Au} + e_{Ad} \right) f_{a} = \frac{3}{2} f_{s} - \frac{1}{2} f_{a} \quad (27) \\
F^{0}_{1n} &= \frac{3}{2} e_{Ad} f_{s} + \left(\frac{1}{2} e_{Ad} + e_{Au} \right) f_{a} = -\tilde{F}^{0}_{1p}. \quad (28)
\end{align*}
\]

In the above expressions, \(e_{q} \) and \(e_{AQ} \) are the EM and axial charges of the quarks with the latter \(e_{AQ} = \pm 1 \) for the \(u \) - and \(d \)-quark, respectively.

C. Pion cloud Diagram (II) and (III)

1. Preparations

To simplify the following presentations, a series of definitions of the EW current matrix elements and strong interaction matrix elements, i.e., the vertices of Diagrams (II) and (III) in Fig. 1 need to be constructed. The calculations of those diagrams are based on the strong interaction terms quantized on the light front:

\[
V_{\text{int}} = - \int \frac{d^{4}x}{ \sqrt{\gamma}} \int d^{4}x_{\perp} \left[g_{\pi} \bar{N} \gamma^{\mu} \gamma_{5} \gamma_{\alpha} \partial_{\mu} \frac{1}{2} N \right. \\
+ \frac{h_{A}}{\sqrt{\gamma}} \bar{N} \gamma^{\mu} T^{1,2,3,4}_{\rho \kappa} \partial^{\rho} \partial_{\kappa} N_{\sigma} + \text{h.c.} \left. \right] \\
= - \int \frac{d^{4}x}{ \sqrt{\gamma}} \int d^{4}x_{\perp} \left[g_{\pi NN} \bar{N} i \gamma_{5} \pi \cdot \nabla N \right. \\
+ \frac{h_{A}}{\sqrt{\gamma}} \bar{N} \gamma^{\mu} T^{1,2,3,4}_{\rho \kappa} \partial^{\rho} \partial_{\kappa} N_{\sigma} + \text{h.c.} \right].
\]

Here \(N, \Delta, \pi \) are fields of nucleon, \(\Delta \) resonance, and pion; the pion decay constant is \(f_{\pi} \approx 94 \text{ MeV} \), nucleon’s axial charge \(g_{A} = 1.27 \); in the \(N - \Delta - \pi \) coupling, \(a, \sigma, i \) are the isospin indices for the representations of isospin 3/2, 1/2, and 1 multiplets; \(T^{1,2,3,4}_{\rho \kappa} \) is the C-G coefficients combining isovector current and isospin 1/2 to form isospin 3/2 \([40] \). The pseudo-vector \(N - N - \pi \) coupling is connected to the pseudo-scalar coupling for on-shell nucleons, \(g_{\pi NN} N \gamma_{5} \pi T N \), and \(g_{\pi NN} = \frac{M_{N}}{2} g_{A} \approx 13.5 \) \([30] \).

We point out that the requirement of gauge invariance is such that the pseudo-vector Lagrangian of Eq. (20) generates contact diagrams in addition to the “Rainbow” graphs shown in the right panels of Fig. 1. These additional diagrams in general only contribute to quantities involving zero pion momentum, such as integrated moments of the pion-nucleon distribution amplitude. It has been shown \([24]\), however, that the momentum dependence in the relevant kinematic region is relatively mild, and their effect is likely to be absorbed into the fitting parameters developed in this analysis. That being the case, we compute with the dominant contributions from the graphs shown in Fig. 1, and leave the more complicated calculations including these additional terms to future works.

The matrix elements of \(V_{\text{int}} \) as needed in the diagram calculations can be presented with isospin structure explicitly factorized out:

\[
\langle \lambda_{ij}, N ; \pi^{\pm} | V_{\text{int}} | \lambda_{N}, N^{+} \rangle \equiv g_{\pi NN} \langle \tau_{i} \rangle \frac{\sigma_{j}}{2} V_{\lambda_{ij}, \lambda_{N}, \lambda_{N}}(x, k_{\perp}) \quad (30)
\]

\[
\langle \lambda_{\Delta}, \Delta ; \pi^{\pm} | V_{\text{int}} | N ; N^{+} \rangle \equiv h_{A} \left(\delta_{ij} T^{1,2,3,4}_{\rho \kappa} \right) \frac{\sigma_{j}}{2} V_{\lambda_{\Delta}, \lambda_{N}, \lambda_{N}}(x, k_{\perp}) \quad (31)
\]

Note the two sets of matrix elements are Lorentz boost and transverse-rotation invariant; they are functions of the intrinsic kinetic variables, \(x \) and \(k_{\perp} \), and have been considered as nucleon’s wave function in the baryon-meson Fock space \([29]\). We compute these matrix elements, assuming the baryon in the final state in the CM frame carry momentum fraction \(x \) and transverse momentum \(k_{\perp} \), while the accompanying \(\pi \) carrying \(1-x \) and \(-k_{\perp} \). This is in parallel to the assignment in the quark-diquark wave function definitions [cf. Eqs. (10) and (11)]. The detailed results are gathered in Table III and IV in Appendix B, where a few details for the calculation can also be found including the convention for spin \(\frac{1}{2} \) spinor. The results are consistent with those in Ref. \([29]\).

Moreover, we need to set up the convention for the current matrix elements involving \(\Delta \). We use the Lorentz-covariant basis from Ref. \([11]\) for the EM current and the basis from Ref. \([12]\) for the axial current \([2] \).
\[\langle p_\Delta; \Delta^a | J_{\text{EM}}^\mu | p_N; N^\sigma \rangle = T_{i=0}^{\Delta^a | J_{\text{EM}}^\mu | p_N; N^\sigma} \]

\[\langle p_\Delta; \Delta^a | J_{A}^\mu | p_N; N^\sigma \rangle = T_{i=0}^{\Delta^a | J_{A}^\mu | p_N; N^\sigma} \]

\[\Gamma_{\text{EM}}^{\alpha \beta \gamma \Delta; (q, p_N; p_\Delta)} = \frac{C_4^\alpha}{M_N} (g^{\alpha \mu} q^\gamma - q^\alpha g^{\gamma \mu}) + \frac{C_4^\beta}{M_N} (p_\Delta \cdot q g^{\alpha \mu} - q^\alpha p_\Delta^\mu) + \frac{C_6^\gamma}{M_N} q^\alpha q^\mu \]

Here \(q \equiv p_\Delta - p_N \). Note the EM current's isospin projection \(i = 0 \). The convention for Levi-Civita tensor is \(\varepsilon_{0123} = 1 \), \(\varepsilon_{+12-} = -\frac{1}{2} \). Then hermiticity of the \(J_{\text{EM}}^\mu \) dictates that \(\langle p_N; N^\sigma | J^\mu(q) | p_\Delta; \Delta^a \rangle = (\langle p_\Delta; \Delta^a | J^\mu(-q) | p_N; N^\sigma \rangle)^* \) but with \(q \equiv p_N - p_\Delta \).

For form factor at space-like momentum transfer, \(i.e., Q^2 > 0 \), we can always boost the system to a frame with \(q^\tau = 0 \), where the matrix element of \(J^+/2p_\Delta^+ \) (a Lorentz invariant) can be computed more easily. In the following, the matrix elements will be defined with the isospin structure manifestly factorized out:

\[\mathcal{J}_{\Delta^a, \lambda_N}^{(0)V} (q) \equiv \bar{u}_a (p_\Delta, \lambda_\Delta) \Gamma_{\Delta^a, \lambda_N}^{\alpha \beta \gamma \Delta; (q, p_N; p_\Delta)} u_\beta (p_\Delta, \lambda_\Delta) / (2p_\Delta^+) \]

\[\mathcal{J}_{\Delta^a, \lambda_N}^{(0)A} (q) \equiv \bar{u}_a (p_\Delta, \lambda_\Delta) \Gamma_{\Delta^a, \lambda_N}^{\alpha \beta \gamma \Delta; (q, p_N; p_\Delta)} u_\beta (p_\Delta, \lambda_\Delta) / (2p_\Delta^+) \]

Note the superscript “\(V \)” for the EM current is due to the fact that only the isovector component of the EM current participate in the \(N \leftrightarrow \Delta \) transitions. Both quantities are functions of momentum transfer \(q \). Carrying \(\lambda_\Delta, \lambda_N \) indices suffice to indicate they are for the inelastic transition current. The results for both \(\mathcal{J}_{\Delta^a, \lambda_N}^{(0)EM} (q) \) and \(\mathcal{J}_{\Delta^a, \lambda_N}^{(0)A} (q) \) are collected in Table VIII and IX.

For the EW elastic current matrix elements of the \(\Delta \)-baryon, we follow the conventions in Refs. [31] and [33]:

\[\langle p_\Delta; \Delta^a | J_{\text{EM}}^\mu | p_\Delta; \Delta^a \rangle \equiv \left(\frac{1}{2} + t^0 \right)^a_{\alpha \beta \gamma \Delta; \lambda_\Delta} \bar{u}_a (p_\Delta', \lambda'_\Delta) \Gamma_{\Delta^a, \lambda_N}^{\alpha \beta \gamma \Delta; (q, p_N; p'_\Delta)} u_\beta (p_\Delta, \lambda_\Delta) \]

\[\langle p_\Delta; \Delta^a | J_{A}^\mu | p_\Delta; \Delta^a \rangle \equiv \left(t^0 \right)^a_{\alpha \beta \gamma \Delta; \lambda_\Delta} \bar{u}_a (p_\Delta', \lambda'_\Delta) \Gamma_{\Delta^a, \lambda_N}^{\alpha \beta \gamma \Delta; (q, p_N; p'_\Delta)} u_\beta (p_\Delta, \lambda_\Delta) \]

\[\Gamma_{\Delta^a, \lambda_N}^{\alpha \beta \gamma \Delta; (q, p_N; p'_\Delta)} = - \left(F_1 g^{\alpha \beta} + F_3 \bar{g}^{\alpha \beta} \right) \frac{q^\gamma q^\delta}{2M_\Delta} \]

\[\Gamma_{\Delta^a, \lambda_N}^{\alpha \beta \gamma \Delta; (q, p_N; p'_\Delta)} = - \left(\bar{F}_1 g^{\alpha \beta} + \bar{F}_3 g^{\alpha \beta} \right) \frac{q^\gamma q^\delta}{2M_\Delta} \]

Here \(t^0 \) is the isospin group generator along the 3rd direction in the isospin = 3/2 representation. Again \(a \) and \(b \) are the isospin projection of the \(\Delta \) states. For the axial current, only the first two terms, \(\bar{F}_1 \Delta \) and \(\bar{F}_3 \Delta \), contribute in Diagrams (II) and (III). We separate the isospin structure and define

\[\mathcal{J}_{\Delta^a, \lambda_N}^{(0)EM} (q) \equiv \bar{u}_a (p_\Delta', \lambda'_\Delta) \Gamma_{\Delta^a, \lambda_N}^{\alpha \beta \gamma \Delta; (q, p_N; p'_\Delta)} u_\beta (p_\Delta, \lambda_\Delta) / (2p_\Delta^+) \]

\[\mathcal{J}_{\Delta^a, \lambda_N}^{(0)A} (q) \equiv \bar{u}_a (p_\Delta', \lambda'_\Delta) \Gamma_{\Delta^a, \lambda_N}^{\alpha \beta \gamma \Delta; (q, p_N; p'_\Delta)} u_\beta (p_\Delta, \lambda_\Delta) / (2p_\Delta^+) \]

The corresponding matrix elements can be found in Table X and XI.

2 This is different from the one mentioned Ref. [24].
Diagram (II) gives

\[
F_{1}^{(11N)} = \frac{3}{2} F_{11N}^{(0)} + \frac{3}{2} \left[(F_{1p}^{0} + F_{1n}^{0}) \delta_{\sigma_{j}}^{\pi} - \frac{1}{2} \left(F_{1p}^{0} - F_{1n}^{0} \right) (\tau_{0})_{\sigma_{j}} \right] F_{11N}^{(11N)}
\]

\[
+ \frac{3}{2} \left(F_{2p}^{0} + F_{2n}^{0} \right) \delta_{\sigma_{j}}^{\pi} - \frac{1}{2} \left(F_{2p}^{0} - F_{2n}^{0} \right) (\tau_{0})_{\sigma_{j}} \right] F_{12}^{(11N)}
\]

\[
F_{2}^{(11N)} = \frac{3}{2} F_{21N}^{(0)} + \frac{3}{2} \left[(F_{1p}^{0} + F_{1n}^{0}) \delta_{\sigma_{j}}^{\pi} - \frac{1}{2} \left(F_{1p}^{0} - F_{1n}^{0} \right) (\tau_{0})_{\sigma_{j}} \right] F_{21}^{(11N)}
\]

\[
+ \frac{3}{2} \left(F_{2p}^{0} + F_{2n}^{0} \right) \delta_{\sigma_{j}}^{\pi} - \frac{1}{2} \left(F_{2p}^{0} - F_{2n}^{0} \right) (\tau_{0})_{\sigma_{j}} \right] F_{22}^{(11N)}
\]

with \(\sigma_{i} \) and \(\sigma_{f} \) as the isospin projection of the initial state and final state nucleon in current matrix element calculations, and

\[
F_{11}^{(11N)} = g_{\pi NN}^{2} \int \frac{dx dk_{\perp}}{16\pi^{3}x^{2}(1-x)} \left[\frac{k_{\perp}^{2} + \frac{(1-x)^{2}}{4}Q^{2} + (1-x)^{2}M_{N}^{2}}{M_{\pi NN}^{2}(x,k_{f\perp}) - M_{N}^{2}} \right] F_{\pi NN}(x,k_{f\perp}) F_{\pi NN}(x,k_{\perp})
\]

\[
F_{12}^{(11N)} = g_{\pi NN}^{2} \int \frac{dx dk_{\perp}}{32\pi^{3}x^{2}} \left[\frac{M_{\pi NN}^{2}(x,k_{f\perp}) - M_{N}^{2}}{M_{\pi NN}^{2}(x,k_{\perp}) - M_{N}^{2}} \right] F_{\pi NN}(x,k_{f\perp}) F_{\pi NN}(x,k_{\perp})
\]

\[
F_{21}^{(11N)} = g_{\pi NN}^{2} \int \frac{dx dk_{\perp}}{8\pi^{3}x^{2}} \left[\frac{(1-x)^{2}M_{N}^{2}}{M_{\pi NN}^{2}(x,k_{f\perp}) - M_{N}^{2}} \right] F_{\pi NN}(x,k_{f\perp}) F_{\pi NN}(x,k_{\perp})
\]

\[
F_{22}^{(11N)} = g_{\pi NN}^{2} \int \frac{dx dk_{\perp}}{16\pi^{3}x^{2}(1-x)} \left[\frac{k_{\perp}^{2} + \frac{(1-x)^{2}}{4}Q^{2} - (1-x)^{2}M_{N}^{2}}{M_{\pi NN}^{2}(x,k_{f\perp}) - M_{N}^{2}} \right] F_{\pi NN}(x,k_{f\perp}) F_{\pi NN}(x,k_{\perp})
\]

In the above equations, the \(N-N-\pi \) interaction includes a form factor to regularize the loop integration:

\[F_{\pi NN}(x,k_{\perp}) \equiv \exp \left(\frac{-M_{\pi NN}^{2}(x,k_{\perp}) - (M_{N} + M_{\sigma})^{2}}{2\Lambda_{\pi NN}^{2}} \right) \]

with \(M_{\pi NN}^{2}(x,k_{\perp}) \equiv \frac{k^{2}_{\perp} + M_{\sigma}^{2}}{x} + k^{2}_{\perp} + M_{N}^{2} \); \(k_{\perp} \equiv k_{\perp} - \frac{1-x}{2} q_{\perp} \), and \(k_{f\perp} \equiv k_{\perp} + \frac{1-x}{2} q_{\perp} \) are the momentum carried by nucleon line—in the \(\pi-N \) CM frame—in the vertices on the two sides of the current vertex [cf. Diagram (II)].

Similarly for the isovector axial current,

\[
\tilde{F}_{1}^{(11N)} = \tilde{F}_{11N}^{(0)}(\tau_{0})_{\sigma_{j}} \hat{F}_{11N}^{(11N)}
\]

\[
\hat{F}_{11N}^{(11N)} \equiv g_{\pi NN}^{2} \int \frac{dx dk_{\perp}}{16\pi^{3}x^{2}(1-x)} \left[\frac{k_{\perp}^{2} - \frac{(1-x)^{2}}{4}Q^{2} + (1-x)^{2}M_{N}^{2}}{M_{\pi NN}^{2}(x,k_{f\perp}) - M_{N}^{2}} \right] F_{\pi NN}(x,k_{f\perp}) F_{\pi NN}(x,k_{\perp})
\]

Note in the EM and axial form factors’ definitions, the bare quark form factors from Eqs. (23) are used.

Diagram (III) with \(\pi N \) intermediate states gives

\[
F_{1,2}^{(11N)} = F_{1,2}^{(0)}(\tau_{0})_{\sigma_{j}} \tilde{F}_{1,2}^{(11N)}
\]

with \(F_{\pi}(Q^{2}) \) as pion’s EM form factor (see Sec. [III]B) and

\[
F_{1}^{(11N)} = g_{\pi NN}^{2} \int \frac{dx dk_{\perp}}{8\pi^{3}x^{2}(1-x)} \left[\frac{M_{N}^{2}F_{\pi NN}(x,k_{f\perp}) F_{\pi NN}(x,k_{\perp})}{M_{\pi NN}^{2}(x,k_{f\perp}) - M_{N}^{2}} \right]
\]

\[
F_{2}^{(11N)} = g_{\pi NN}^{2} \int \frac{dx dk_{\perp}}{4\pi^{3}x^{2}} \left[\frac{M_{N}^{2}F_{\pi NN}(x,k_{f\perp}) F_{\pi NN}(x,k_{\perp})}{M_{\pi NN}^{2}(x,k_{f\perp}) - M_{N}^{2}} \right]
\]

It should be emphasized that \(M_{\pi NN}(x,k_{\perp}) \) and \(F_{\pi NN}(x,k_{\perp}) \) are the same as defined for the results of Diagram (II), but \(k_{\perp} \equiv k_{\perp} + \frac{x}{2} q_{\perp} \), and \(k_{f\perp} \equiv k_{\perp} - \frac{x}{2} q_{\perp} \) in the results for Diagram (III), because the external electroweak current transfers its momentum to \(\pi \) instead of \(N \). Also note that Diagram (III) does not contribute to \(F_{1N} \).
3. Delta contribution

Diagram (II) with N-current-Δ configuration gives

$$\frac{J^+_{EM,A}}{2p_{N_i}} = \frac{4}{3} \left(\tau^0 \right)_{\sigma_f} J^{V,A}_{(1I\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}}.$$

$$J^{V,A}_{(1I\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}} = \frac{g_{EM} h_A}{f_\pi} \int \frac{dq}{\lambda_{\Delta, \lambda_N}} \frac{\cal V^\dagger (x, k_{f\perp})_{\lambda_{N_f}, \lambda_{N_i}} \cal J^{(0)VA} (q)_{\lambda_{\Delta}, \lambda_{N_f}, \lambda_{N_i}} \cal V (x, k_{f\perp})_{\lambda_{\Delta}, \lambda_{N_f}, \lambda_{N_i}} F_{\pi N\Delta} (x, k_{f\perp}) F_{\pi NN} (x, k_{i\perp})}{[M^2_{\pi\Delta} (x, k_{f\perp}) - M^2_{\pi N}] [M^2_{\pi N} (x, k_{i\perp}) - M^2_N]}.$$ \hspace{1cm} (54)

Meanwhile, Diagram (II) with the Δ-current-N configuration yields

$$\frac{J^+_{EM,A}}{2p_{N_i}} = \frac{4}{3} \left(\tau^0 \right)_{\sigma_f} J^{V,A}_{(1I\Delta N)} (q)_{\lambda_{N_f}, \lambda_{N_i}}.$$

$$J^{V,A}_{(1I\Delta N)} (q)_{\lambda_{N_f}, \lambda_{N_i}} = \frac{g_{EM} h_A}{f_\pi} \int \frac{dq}{\lambda_{\Delta, \lambda_N}} \frac{\cal V^\dagger (x, k_{f\perp})_{\lambda_{N_f}, \lambda_{N_i}} \cal J^{(0)V,A} (-q)_{\lambda_{\Delta}, \lambda_{N_f}, \lambda_{N_i}} \cal V (x, k_{f\perp})_{\lambda_{\Delta}, \lambda_{N_f}, \lambda_{N_i}} F_{\pi NN} (x, k_{f\perp}) F_{\pi N\Delta} (x, k_{i\perp})}{[M^2_{\pi\Delta} (x, k_{f\perp}) - M^2_{\pi N}] [M^2_{\pi N} (x, k_{i\perp}) - M^2_N]}.$$ \hspace{1cm} (55)

In the two results, another form factor for $N-$\Delta-π interaction is introduced: $F_{\pi N\Delta} (x, k_{i\perp}) \equiv \exp \left(-\frac{M^2_{\pi\Delta} (x, k_{\perp}) - (M_{\Delta} + m_{\pi})^2}{2\Lambda^2} \right)$ with $M^2_{\pi\Delta} (x, k_{\perp}) \equiv \frac{k^2_{\perp} + M^2_{\Delta}}{x} + \frac{k^2_{\perp} + M^2_{\pi}}{1-x}$. Moreover, $F_{\pi NN}, k_{i\perp} \equiv k_{\perp} - \frac{1-x}{2} q_{\perp}$, and $k_{f\perp} \equiv k_{\perp} + \frac{1-x}{2} q_{\perp}$, are the same as those for Diagram (II) with N-current-N configuration. It should be added that the axial current result is based on setting the current’s isospin projection to be zero. Now let’s define quantities with isospin structure factorized out,

$$\tilde{J}^{(1I\Delta)}_1 = J^V_{(1I\Delta)} (q)_{\frac{1}{2}, \frac{1}{2}} + J^V_{(1I\Delta N)} (q)_{\frac{1}{2}, \frac{1}{2}};$$ \hspace{1cm} (56)

$$\tilde{J}^{(1I\Delta N)}_2 = - \sqrt{2} \frac{M_N}{q_R} \left[J^V_{(1I\Delta)} (q)_{-\frac{1}{2}, \frac{1}{2}} + J^V_{(1I\Delta N)} (q)_{-\frac{1}{2}, \frac{1}{2}} \right];$$ \hspace{1cm} (57)

$$\tilde{J}^{(1I\Delta N)}_3 = J^A_{(1I\Delta N)} (q)_{\frac{1}{2}, \frac{1}{2}} + J^A_{(1I\Delta N)} (q)_{\frac{1}{2}, \frac{1}{2}}.$$ \hspace{1cm} (58)

Then Diagram (II) with both the $N\Delta$ and ΔN configurations contributes to the nucleon form factors as

$$F_{1,2}^{(1I\Delta)} = \frac{4}{3} \left(\tau^0 \right)_{\sigma_f} \tilde{J}^{(1I\Delta)}_{1,2};$$ \hspace{1cm} (59)

$$F_{1}^{(1I\Delta N)} = \frac{8}{3} \left(\tau^0 \right)_{\sigma_f} \tilde{J}^{(1I\Delta N)}.$$ \hspace{1cm} (60)

Now for Diagram (II) with the Δ-current-Δ configuration, the matrix elements are

$$\frac{J^+_{EM}}{2p_{N_i}} = \left(\delta_{\sigma_f} + \frac{5}{3} \left(\tau^0 \right)_{\sigma_f} \right) J^{EM}_{(1I\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}}.$$

$$J^{EM}_{(1I\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}} = \left(\frac{h_A}{f_\pi} \right)^2 \int \frac{dq}{\lambda_{\Delta, \lambda_N}} \frac{\cal V^\dagger (x, k_{f\perp})_{\lambda_{N_f}, \lambda_{N_i}} \cal J^{(0)EM} (q)_{\lambda_{\Delta}, \lambda_{N_f}, \lambda_{N_i}} \cal V (x, k_{f\perp})_{\lambda_{\Delta}, \lambda_{N_f}, \lambda_{N_i}} F_{\pi N\Delta} (x, k_{f\perp}) F_{\pi NN} (x, k_{i\perp})}{[M^2_{\pi\Delta} (x, k_{f\perp}) - M^2_{\pi N}] [M^2_{\pi N} (x, k_{i\perp}) - M^2_N]}.$$ \hspace{1cm} (61)
for the EM current and
\[
\frac{J^+_A}{2p^*_N} = \frac{5}{3} (r^0)_{\sigma_i} J^A_{(11\Delta\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}}
\]
\[
J^A_{(11\Delta\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}} \equiv \left(\frac{h_A}{f_\pi} \right)^2 \int \frac{d \mu}{\lambda_\Delta, \lambda_\Delta} \left[\frac{\mathcal{V}^\dagger (x, k_f \perp)_{\lambda_{N_f}, \lambda_\Delta} \mathcal{V} (x, k_i \perp)_{\lambda_\Delta, \lambda_{N_i}} F_{\pi, \Delta} (x, k_f \perp) F_{\pi, \Delta} (x, k_i \perp)}{[M^2_{\pi, \Delta} (x, k_f \perp) - M^2_{\Delta}] [M^2_{\pi, \Delta} (x, k_i \perp) - M^2_{\Delta}]} \right],
\]
(62)

for the axial current. The definition of \(F_{\pi, \Delta} \), \(k_{i \perp} \equiv k_\perp - \frac{1}{2} q_\perp \), and \(k_{f \perp} \equiv k_\perp + \frac{1}{2} q_\perp \), are the same as those for Diagram (II) with the N-current-\(\Delta \) configuration. After defining
\[
F^1_{1/2} \equiv J^A_{(11\Delta\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}}
\]
(63)
\[
F^2_{1/2} = \left(-\right) \frac{\sqrt{2} M_N}{q R} J^A_{(11\Delta\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}}
\]
(64)
\[
F^1_{1(11\Delta\Delta)} \equiv \frac{10}{3} (r^0)_{\sigma_i} \mathcal{F}^1_{1(11\Delta\Delta)}
\]
(65)
the contribution of Diagram (II) with the \(\Delta\Delta \) configuration to the form factors can be written as
\[
F^1_{1/2} \equiv \left(\frac{2}{3} (r^0)_{\sigma_i} F_\pi (Q^2) \right) J^A_{(11\Delta\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}}
\]
(66)
\[
F^1_{1(11\Delta\Delta)} \equiv \frac{10}{3} (r^0)_{\sigma_i} F^1_{1(11\Delta\Delta)}
\]
(67)

For Diagram (III) with a \(\Delta \)-baryon in the intermediate state,
\[
\frac{J^+_A}{2p^*_N} = \frac{2}{3} (r^0)_{\sigma_i} F_\pi (Q^2) J^A_{(11\Delta\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}}
\]
(68)
\[
J^A_{(11\Delta\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}} \equiv \left(\frac{h_A}{f_\pi} \right)^2 \int \frac{d \mu}{\lambda_\Delta, \lambda_\Delta} \left[\frac{\mathcal{V}^\dagger (x, k_f \perp)_{\lambda_{N_f}, \lambda_\Delta} \mathcal{V} (x, k_i \perp)_{\lambda_\Delta, \lambda_{N_i}} F_{\pi, \Delta} (x, k_f \perp) F_{\pi, \Delta} (x, k_i \perp)}{[M^2_{\pi, \Delta} (x, k_f \perp) - M^2_{\Delta}] [M^2_{\pi, \Delta} (x, k_i \perp) - M^2_{\Delta}]} \right].
\]
(69)
Here, \(M^2_{\pi, \Delta} (x, k_\perp) \) and \(F_{\pi, \Delta} (x, k_\perp) \) as for the Diagram (II) results, but \(k_{i \perp} \equiv k_\perp + \frac{1}{2} q_\perp \), and \(k_{f \perp} \equiv k_\perp - \frac{1}{2} q_\perp \) are different. We can then define
\[
F^1_{1(11\Delta\Delta)} \equiv J^A_{(11\Delta\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}}
\]
(70)
\[
F^2_{1(11\Delta\Delta)} = \left(-\right) \frac{\sqrt{2} M_N}{q R} J^A_{(11\Delta\Delta)} (q)_{\lambda_{N_f}, \lambda_{N_i}}
\]
(71)
Diagram (III) in the \(\Delta \)-current-\(\Delta \) configuration contributes to the nucleon form factors as
\[
F^1_{1/2} \left(11\Delta\Delta \right) = \frac{2}{3} (r^0)_{\sigma_i} F_\pi (Q^2) J^A_{1/2 \Delta \Delta}
\]
(72)

Note this diagram doesn’t contribute to the current EM factor.

After summing over all the diagrams, we have

\[
F_{1p} = Z F^0_{1p} + \left(F^0_{1p} + 2 F^0_{1n} \right) A_{11\Delta\Delta}^1 + \left(F^0_{2p} + 2 F^0_{2n} \right) A_{11\Delta\Delta}^2 + F_{\pi, \Delta} A_{11\Delta\Delta}^3 + \frac{1}{3} F^1_{1(11\Delta\Delta)} + \frac{8}{3} F^2_{1(11\Delta\Delta)} - \frac{2}{3} F_{\pi, \Delta} A_{11\Delta\Delta}^1
\]

\[
F_{1n} = Z F^0_{1n} + \left(F^0_{1n} + 2 F^0_{1p} \right) A_{11\Delta\Delta}^1 + \left(F^0_{2n} + 2 F^0_{2p} \right) A_{11\Delta\Delta}^2 - F_{\pi, \Delta} A_{11\Delta\Delta}^3 - \frac{1}{3} F^1_{1(11\Delta\Delta)} + \frac{4}{3} F^2_{1(11\Delta\Delta)} - \frac{2}{3} F_{\pi, \Delta} A_{11\Delta\Delta}^1
\]

\[
F_{2p} = Z F^0_{2p} + \left(F^0_{2p} + 2 F^0_{2n} \right) A_{11\Delta\Delta}^1 + \left(F^0_{1p} + 2 F^0_{1n} \right) A_{11\Delta\Delta}^2 + F_{\pi, \Delta} A_{11\Delta\Delta}^3 - \frac{1}{3} F^1_{1(11\Delta\Delta)} - \frac{4}{3} F^2_{1(11\Delta\Delta)} + \frac{8}{3} F^2_{1(11\Delta\Delta)} - \frac{2}{3} F_{\pi, \Delta} A_{11\Delta\Delta}^1
\]

\[
F_{2n} = Z F^0_{2n} + \left(F^0_{2n} + 2 F^0_{2p} \right) A_{11\Delta\Delta}^1 + \left(F^0_{1n} + 2 F^0_{1p} \right) A_{11\Delta\Delta}^2 - F_{\pi, \Delta} A_{11\Delta\Delta}^3 - \frac{1}{3} F^1_{1(11\Delta\Delta)} - \frac{4}{3} F^2_{1(11\Delta\Delta)} + \frac{8}{3} F^2_{1(11\Delta\Delta)} - \frac{2}{3} F_{\pi, \Delta} A_{11\Delta\Delta}^1
\]

\[
F_{1p} = Z F^0_{1p} + \frac{8}{3} F^1_{1(11\Delta\Delta)} + \frac{10}{3} F^2_{1(11\Delta\Delta)}
\]
\[
F_{1n} = -F_{1p}.
\]

III. MODEL INPUTS

This section summarizes the inputs we used for various components in our model, including for quark-diquark

Fock space wave functions and for Baryon-\(\pi \) Fock space
We consider the quark-diquark wave functions \(\varphi_s^* \) depending only on the invariant condition
\[
\varphi_s^* = \left[c_{s0} + c_{s1} \frac{M_{qa}^2 - (m_q + m_a)^2}{M_N^2} \right] \exp \left[-\frac{M_{qa}^2 - (m_q + m_a)^2}{\beta_{s1}^2} \right]
\]
with \(c_{s0}^* = c_{s0}^* = 1 \); the normalization factors are not shown explicitly here but always implemented in our numerical calculation. Naively, we consider the dimensionful quantities, such as \(m_q, m_a, m_a, \beta_{s1,2} \), and \(\beta_{a1,2} \) to be typical hadronic scale, i.e. GeV, while the dimensionless parameters, including \(c_{1,1}, c_{2,1}, \) and \(c_{2,2}, \) to be on the order of 1.

Note we can always pull out the overall normalization factor such that \(c_{s0}^* = c_{s0}^* = 1 \); the normalization factors are not shown explicitly here but always implemented in our numerical calculation. Naively, we consider the dimensionful quantities, such as \(m_q, m_a, m_a, \beta_{s1,2} \), and \(\beta_{a1,2} \) to be typical hadronic scale, i.e. GeV, while the dimensionless parameters, including \(c_{1,1}, c_{2,1}, \) and \(c_{2,2}, \) to be on the order of 1.

B. Pion-cloud contributions

In the pion-cloud contributions, as shown in Eqs. (73), Diagram (II) with nucleon and pion intermediate states depend on nucleon bare form factors constructed from nucleon’s quark-diquark wave functions. For Diagram (III) with either nucleon or \(\Delta \) intermediate states, which only contribute to the EM form factors, is proportional to the pion’s EM form factors, \(F_\pi(Q^2) \). It is chosen to be \((1 + Q^2/0.5\text{GeV}^2)^{-1} \).

For Diagram (II) with \(\Delta(s) \) in the intermediate state, the same type of quark-diquark wave function can be constructed for the \(\Delta \), which dictates its bare \(N \rightarrow \Delta \) inelastic and elastic form factors. However to simplify the current work, we instead use the physical form factors to approximately take into account their contributions. A full and consistent study of this will be left for the future investigation. Inside \(\Delta \)’s contribution, e.g., \(J_{\Delta N}^{V,A} \) and \(J_{\Delta N}^{V,A} \) (cf. Eqs. (14) and (15) and Tables VIII and IX), we need inputs for transition form factors \(F_{N\Delta}^E, F_{N\Delta}^C, \) and \(F_{N\Delta}^C \) to compute the diagram’s contribution to the nucleon EM current, and \(C_{3,4,5} \) to the axial form factor.

For \(F_{N\Delta}^E, F_{N\Delta}^C, \) and \(F_{N\Delta}^C \) we use information extracted from the measurements of electroproduction and photo-production of pions [45],

\[F_{N\Delta}^E = \frac{3}{2M_N Q^2} \left[G_{N\Delta}^M - G_{N\Delta}^E \right] \]

\[F_{N\Delta}^C = \frac{3}{2M_N Q^2} \left[4M_N^2 G_{N\Delta}^E + Q^2 + M_N^2 - M_{\Delta}^2 G_{N\Delta}^C \right] \]

\[F_{N\Delta}^E = \frac{3}{2M_N Q^2} \left[2Q^2 + M_N^2 - M_{\Delta}^2 \right] G_{N\Delta}^E + 2Q^2 G_{N\Delta}^C \],

with \(Q^2 = \sqrt{Q^2 + (M_{\Delta} \pm M_N)^2} \); we also use the parametrization of the Ash form factors in Ref. [45],

\[G_{N\Delta}^{E(M)} = g_{N\Delta} \left(1 + \beta_{E(M)} Q^2 \right) e^{-\gamma_{E(M)} Q^2} G_D(Q^2) \]

\[G_{N\Delta}^{C} = g_{C\Delta} \left[1 + \beta_{C} Q^2 + \frac{4M_{\Delta}^2}{4M_N^2} M_{N\Delta}^2 - M_N^2 \right] e^{-\gamma_{C} Q^2} G_D(Q^2) \],

The coefficients involved in the parametrizations are given in Table I.

\[
\begin{array}{ccc}
M1 & E2 & C2 \\
\hline
1 & 0.0637 & 0.124 \\
\end{array}
\]

\[
\begin{array}{ccc}
ge_{10} & \beta_{10}(\text{GeV}^{-2}) & \gamma_{10}(\text{GeV}^{-2}) \\
\hline
3 & 0.0095 & -0.0206 & 0.120 \\
\end{array}
\]

\[
\begin{array}{ccc}
d_{10} & 0 & 0 \end{array}
\]

\[G_D(Q^2) \equiv \left[1 + Q^2/(0.71\text{GeV}^2) \right]^{-2} \].

\[^3\text{Our definition of } F_{N\Delta}^E, F_{N\Delta}^C, F_{N\Delta}^C \text{ differ from the corresponding ones in Ref. [11] by absorbing the factor } \frac{3(M_N+M_\Delta)}{2M_NQ_\pi^2} \text{ into these form factors.} \]
For the axial-transition form factors, the Adler parametrization appearing in Ref. [42] is used,
\[C_3^A(Q^2) = 0, \]
\[C_4^A(Q^2) = \frac{\sqrt{3}}{2} \left[1.17 \left(1 - \frac{0.25Q^2}{(0.04 + Q^2)} \right) \left(1 + \frac{Q^2}{0.95^2} \right)^{-2} - 4 \right], \]
\[C_4^D(Q^2) = -\frac{C_4^A(Q^2)}{4}. \]

The factor \(\sqrt{3}/2 \) is due to the definition of the isospin structure in Eq. (33).

For the \(\Delta \) elastic form factors needed in the calculation of Diagram (III) (see Eqs. (61) and (62), and Tables [X] and [XI]), information is limited. The results from existing LQCD calculations [46] are implemented:

\[F_1^\Delta = \frac{G_{E\Delta}}{\tau + 1} - \frac{2G_{M\Delta}^E}{3(\tau + 1)} + \frac{G_{M\Delta}^M}{\tau + 1} - \frac{4G_{M\Delta}^M}{5(\tau + 1)} \]
\[F_2^\Delta = \frac{G_{E\Delta}}{\tau + 1} + \frac{2\tau G_{E\Delta}^M}{3(\tau + 1)} + \frac{G_{M\Delta}^M}{\tau + 1} - \frac{4\tau G_{M\Delta}^M}{5(\tau + 1)} \]
\[F_3^\Delta = \frac{2G_{M\Delta}^E}{(\tau + 1)^2} - \frac{2(2\tau + 3)G_{M\Delta}^E}{3(\tau + 1)^2} + \frac{2G_{M\Delta}^M}{(\tau + 1)^2} \]
\[F_4^\Delta = \frac{-2(\tau + 5)G_{M\Delta}^M}{5(\tau + 1)^2} \]

with \(\tau \equiv \frac{Q^2}{4M_R^2} \). We set \(G_{E\Delta}^E = G_{M\Delta}^E = 0 \), and

\[G_{E\Delta}^M = \left(1 + \frac{Q^2}{1.065^2} \right)^{-2} \]
\[G_{M\Delta}^A = 3.12 \exp \left(-\frac{Q^2}{0.9235^2} \right) \]

The above parametrizations are the fits to the \(m_\pi = 353 \) MeV results in Ref. [46]. For the \(\Delta \)'s axial elastic form factors, we use the given parametrizations for the “\(m_\pi = 0.411 \) GeV with Quenched Wilson fermions” results in Ref. [43] (see Table III and VI therein),

\[\tilde{F}_1^\Delta = \frac{0.40 + 1.98Q^2}{(Q^2 + 0.94^2)^3}, \]
\[\tilde{F}_3^\Delta = \frac{3.8}{Q^2 + 0.12}. \]

Finally, all the pion-cloud diagrams involve strong-interaction form factors (cf. the definitions in Sec. II C):

\[F_{sNN}(x, k_\perp) = \exp \left(-\frac{M_{sN}^2 - (M_N + m_\pi)^2}{2\Lambda_s^2} \right) \]
\[F_{sN\Delta}(x, k_\perp) = \exp \left(-\frac{M_{sN}^2 - (M_N + m_\pi)^2}{2\Lambda_s^2} \right) \]

FIG. 2. Proton electric and magnetic form factors. The green band is 1-\(\sigma \) error band of the results from Ref. [47] with its central value somewhere in the middle of the band. The three red solid curves are the central value and error band of our model results.

Parameter	Value	Error	
\(c_{11} \)	0.29 \(\pm \) 0.06	0.35 \(\pm \) 0.03	
\(c_{20} \)	\(\beta_{11} \)	\(c_{21} \)	\(\beta_{12} \)
\(c_{32} \)	0.52 \(\pm \) 0.03	0.51 \(\pm \) 0.04	
\(m_q \)	0.32 \(\pm \) 0.05	0.49 \(\pm \) 0.04	
\(m_\pi \)	0.14 \(\pm \) 0.02	0.43 \(\pm \) 0.02	

TABLE II. Parameter mean values and their error bars corresponding to 68\% degree of belief.

In short summary, we have 15 unknown parameters, including \(m_q, m_\pi, m_\alpha, c_{11}, \beta_{11}, c_{20}, c_{21}, \beta_{21}, c_{11}, \beta_{12}, c_{20}, c_{21}, \beta_{22}, \Lambda_N, \) and \(\Lambda_\Delta \), which need to be calibrated against experiment data.

IV. MODEL CALIBRATIONS AND PREDICTIONS

To calibrate our model, we rely on a recent analysis of the nucleon’s elastic EM form factors in Ref. [47]. The study applied the \(z \)-expansion approach to parametrize
the form factors’ Q^2 dependence with minimal model assumptions, and then fitted them to the existing measurements. The predicted form factors and their error bars are used as “data” to constrain the aforementioned model parameters. Specifically, we pick 16 different Q^2 value for each of nucleon’s four EM form factors,

$$G_{Ep,n}(Q^2) \equiv F_{1p,n} - \tau F_{2p,n},$$

$$G_{Mn, n}(Q^2) \equiv F_{1p,n} + F_{2p,n}.$$

Eight of them are evenly distributed in the $0.01 \leq Q^2 \leq 1.5 \text{GeV}^2$ region, with the other eight also evenly distributed in $1.5 < Q^2 \leq 10 \text{GeV}^2$.

The Bayesian inference [48] is then used to compute the posterior probability distribution function (PDF) of the unknown parameter vector, schematically labeled as the posterior probability distribution function (PDF) of $\text{ome} [48]$, the desired PDF is related to the likelihood function of $\text{ome} [48]$ and prior information I. According to the Bayes’ theorem [48], the desired PDF is related to the likelihood function through

$$\text{pr}(\bm{g}|D;T;I) = \text{pr}(D|\bm{g};T;I) \text{pr}(\bm{g}|I).$$

The first term on the right side is proportional to the likelihood:

$$\ln \text{pr}(D|\bm{g};T;I) = c - \sum_{j=1}^{N} \frac{[F(\bm{g};Q^2_j) - D_j]^2}{2\sigma_j^2},$$

where $F(\bm{g};Q^2_j)$ is the form factor prediction at Q^2_j of the jth data point D_j, and σ_j is the statistical uncertainty associated with D_j. The constant c ensures $\text{pr}(\bm{g}|D;T;I)$ at the right side is properly normalized. The second term in the right side of Eq. (93), $\text{pr}(\bm{g}|I)$, is the prior for \bm{g}, which is chosen as uncorrelated multivariate Gaussian distribution centered at 0 and with width equal to 5 along each dimension (the units for mass parameters and Λ_V and Δ_Λ are GeV). It should be pointed out that in this work, the errors of “data” at our picked Q^2 values are treated as uncorrelated, considering the correlation information for the “data” are not available in public. This simplification needs to be further improved in the future study.

The Markov Chain Monte Carlo method is then employed to sample the posterior PDF in the 15 dimension space. The particular sampling algorithm is the so-called emcee sampler [49] coupled with parallel tempering [50]. The sampler has been extensively used in e.g., astronomy for the same purpose [49, 50]. The detailed 2-dim and 1-dim projections of this PDF can be seen in Fig. 12. The central values and 68% degrees-of-belief error bars of the model parameters can be found in Table II. It is interesting to note that the preferred parameter values are consistent with the naive expectation raised in the previous section.

With the samples of the posterior PDF, we can compute the central value and error bar for any quantity as a function of \bm{g}. Figs. 2, 3, and 4 plot our error bands (the red curves) for the nucleon EM form factors—normalized against the $G_D(Q^2)$—and proton’s form factor ratio, to be compared with the results (the green bands) from Ref. [47]. Note the normalizations for magnetic form factors $\mu_p = 2.793$ and $\mu_n = -1.913$ are from the supplementary material of Ref. [47]. The model results are in good agreement with the “data”. In particular, the $G^p_M - G^p_E$ ratio as shown in Fig. 4 [47] agrees very well with the extraction from Ref. [47] in the shown Q^2 window, which is an improvement over the previous calculations using similar approach [29, 44]. However, the difference between our G^p_E result and the “data”, as shown in Fig. 3 [47]
shows that our model prefer smaller values for G_{e}^{u} at momentum transfer above 4 GeV2. Moreover, our error bars are consistently smaller than those from Ref. [42]. Possible reasons include missing correlation between “data” in our inference, and/or the absence of theoretical uncertainty of our quark-diquark model.

Turning to the axial form factor F_{1N}: the 1-dim posterior PDFs for $F_{1N}(Q^{2} = 0)$ and the M_{A} value extracted from the first derivative of F_{1N} at $Q^{2} = 0$ are plotted in Fig. 5. Our prediction for $F_{1N}(Q^{2} = 0)$ is 1.06 ± 0.04, which is somewhat smaller than $g_{A} = 1.27$; $r_{A}^{2} = 0.29 \pm 0.03$ fm2 and the associated $M_{A} = 1.28 \pm 0.07$ GeV. The r_{A}^{2} is smaller than $r_{A}^{2} = 0.46 \pm 0.16$ fm2 from a recent analysis [5] (the associated $M_{A} = 1.01 \pm 0.17$ GeV2) based on existing neutrino-nucleon scattering and muon weak capture data (the two results agree within 1-σ), and closer to current Lattice QCD results having r_{A}^{2} ranging from 0.2 to 0.45 fm2. Note the uncertainty assigned for our r_{A}^{2} prediction only accounts for that within our model parameter space, while the theoretical uncertainty of the current model is difficult to estimate and not included in the error bar.

The $F_{1N}(Q^{2})$’s central value and its 1-σ lower and upper bounds are shown in Fig. 6, re-scaled by $\tilde{g}_{D} = (1 + Q^{2}/M_{A}^{2})^{-2}$ with $M_{A} = 1$ GeV (panel (a)) and $M_{A} = 1.28$ GeV (panel (b)). The latter M_{A}-value is the central value of our analysis. Panel (a) shows two sets of curves: the “LFQM” (red curves) are our predictions while each of the “LFQM’” (blue curves) re-scale the corresponding “LFQM” curves by a constant such that the $Q^{2} = 0$ value agrees with g_{A} [17]. In panel (b), only the corresponding “LFQM’” results are plotted. We do see a significantly different Q^{2} dependence from \tilde{g}_{D} with $M_{A} = 1$ GeV; and more importantly that our \tilde{F}_{1N} differ its dipole approximation by about 10% at Q^{2} between 1 and 2 GeV2. The latter suggests the necessity of using the full form factor instead of a simple dipole approximation for modeling neutrino-nucleus QE scatterings in the coming neutrino-oscillation experiments.

We can apply the z-expansion from Ref. [17] to parametrize our $\tilde{F}_{1N}(Q^{2})/\tilde{F}_{1N}(0)$. With $t_{\text{cut}} = 9m_{\nu}^{2}$, $t_{0} = -1.19263$ GeV2, and

$$z(Q^{2}) = \frac{\sqrt{t_{\text{cut}} + Q^{2}} - \sqrt{t_{\text{cut}} - t_{0}}}{\sqrt{t_{\text{cut}} + Q^{2}} + \sqrt{t_{\text{cut}} - t_{0}}}, \quad (95)$$

the central value of our axial form factor can be parametrized as

$$\frac{\tilde{F}_{1N}(Q^{2})}{\tilde{F}_{1N}(0)} = \sum_{k=0}^{11} a_{k} z^{k}(Q^{2}). \quad (96)$$

The fitted coefficients a_{k} can be found in Table III. The relative error of this parametrization is less than 0.1% with $0 \leq Q^{2} \leq 10$ GeV2.

![FIG. 5. 1-dim PDFs for M_{A} (blue curve in the unit of GeV) and $\tilde{F}_{1N}(0)$ (red curve) from our Bayesian inference.](image)

TABLE III. The fitted values for a_{k} as used in the z-parametrization in Eq. (96) for the central value of $\tilde{F}_{1N}(Q^{2})/\tilde{F}_{1N}(0)$:

k	0	1	2	3	4	5
	0.299145	-1.18966	1.16692	0.763023	-0.39146	-2.45022
6	7	8	9	10	11	
-8.74781	23.8158	48.8291	-126.237	-103.061	259.714	

V. IMPACTS

In order to quantify the impact of the difference between our full \tilde{F}_{1N} and the commonly used dipole approximation, we first calculate the cross sections for the charged-current (CC) (anti)neutrino–nucleon scattering and then the (anti)neutrino–40Ar QE scatterings relevant for the coming DUNE experiment.

A. The single-nucleon cross section

The single-nucleon scattering cross section differentiated against Q^{2} at given neutrino energy E_{ν} can be written as [51]

$$\frac{d\sigma^{\nu(\bar{\nu})}}{dQ^{2}} = \frac{G_{F}^{2} \cos^{2} \theta_{c} M_{N}^{2}}{8\pi E_{\nu}^{2}} \left[A \mp B \frac{s-u}{M_{N}^{2}} \right] + C \left(\frac{s-u}{M_{N}^{2}} \right)^{2} \quad (97)$$

with G_{F} as Fermi constant, θ_{c} as Cabibbo angle; m_{μ} as the charged lepton mass; $s - u = 4E_{\nu} M_{N} - Q^{2} - m_{\mu}^{2}$; the sign of B: (−) for the neutrino scattering and (+) for the
antineutrino scattering; and

\[A = \frac{m_\mu^2 + Q^2}{M_N^2} \left\{ -(1 - \tau)F_{1V}^2 + 4\tau F_{1V}F_{2V}^*
+ (1 - \tau)\tau F_{2V}^2 + (1 + \tau)\tilde{F}_{1N}^2
- \frac{m_\mu^2}{4M_N^2} \left[(F_{1V} + F_{2V})^2 + (\tilde{F}_{1N} + \tilde{F}_{2N})^2 - F_{2N}^2(1 + \tau) \right] \right\} \]

\[B = 4\tau\tilde{F}_{1N} (F_{1V} + F_{2V}) \]

\[C = \frac{1}{4} (\tilde{F}_{1N}^2 + F_{1V}^2 + \tau F_{2V}^2) . \]

Here, \(F_{1V} \equiv F_{1p} - F_{1n} \), \(F_{2V} \equiv F_{2p} - F_{2n} \) are the form factor for the isovector component in the EM current. When integrating the differential cross section over the \(Q^2 \) to get the total cross section, the range of \(Q^2 \) depends on neutrino Lab energy \(E_\nu \); its lower and upper limits are

\[\frac{2E_\nu^2}{\left(1 + \frac{2E_\nu}{M_N} \right)} \left[R + 1 \mp \sqrt{(R - 1)^2 - \frac{m_\mu^2}{E_\nu^2}} \right] - m_\mu^2 \]

with \(R = m_\mu^2 / 2M_NE_\nu \). Meanwhile, the threshold for \(E_\nu \) is

\[E_\nu \geq m_\mu + \frac{m_\mu^2}{2M_N} . \]

Figs. 7 and 8 compares differential cross section due to three different axial form factor in the CC-induced (anti)neutrino scatterings. Two different \(E_\nu = 0.5 \) and 2 GeV are chosen. We see even having \(M_A = 1.28 \) GeV such that the dipole parametrization agrees with the full form factor at \(Q^2 \sim 0 \), their cross section results can differ up to 5-10% in the dominating \(Q^2 \) regions. Fig. 9 shows the total cross sections vs \(E_\nu \) based on those form factors: the difference between the full-form-factor based calculations and the dipole-parametrization based \((M_A = 1.28 \text{ GeV})\) increases to around 5% at about \(E_\nu \sim 0.5 \) GeV and mildly increase to a little below 8% with \(E_\nu = 10 \) GeV. This \(E_\nu \) range covers the dominating region of the DUNE’s neutrino spectra. This difference should be compared against the required a-few-percent precision of neutrino scattering cross section in the future DUNE experiment. Of course, the difference between the full calculation and the \(M_A = 1 \) GeV one is much larger than the previous ones, reaching to 20% above 1 GeV neutrino energy. Note in all the figures, the EM form factors are the full form factor from our model.

B. Neutrino-nucleus cross sections

To study the form factor’s impact on the neutrino-nucleus cross sections relevant for the DUNE experiment, we use the GiBUU transport code to compute the \(\nu(\bar{\nu})-^{40}\text{Ar} \) QE scattering \cite{34,52}. The initial state nuclear effects, including Fermi motion, should be taken into account in the transport calculation. The two-particle-two-hole process, resonance production, and deep inelastic scatterings are not studied here. The neutrino fluxes (see Fig. 10) in our calculation are the so-called “Reference, 204x1 m DP” from Ref. \cite{35}. Note that in the calculations here, we simply use the vector current native to the GiBUU package.

Panel (a) and (b) in Fig. 11 show the DUNE flux-averaged differential cross sections vs \(Q^2 \) for both neutrino and antineutrino scatterings. Panel (c) shows the ratios between the full-axial-form-factor based and the dipole-parametrization-based (with \(M_A = 1.28 \text{ GeV} \)) calculations. Indeed the difference is about 5% in the dominant \(Q^2 \) region around 0.2\text{GeV}^2 and increases to about 10% at \(Q^2 \sim 1\text{GeV}^2 \) and beyond. The wigglies in the tails of the ratio plot is due to the diminishing simulation statistics in the large \(Q^2 \) region. It is worth noting that, in panel (c), for \(Q^2 \) below 0.5\text{GeV}^2, the differences between the two calculations in both neutrino and antineutrino scatterings are almost the same, but then differ at a few percent level with \(Q^2 \) a little above 0.5\text{GeV}^2.
FIG. 7. Differential cross section for neutrino scattering at $E_\nu = 0.5$ and 2 GeV. In the upper panels, three different calculations are plotted with different axial form factor, while the lower panels show the ratio between the result using our full form factor and the one using $g_A \tilde{G}_D$ with $M_A = 1.28$ GeV.

FIG. 8. Differential cross section for anti-neutrino scattering at $E_\nu = 0.5$ and 2 GeV. See the caption of Fig. 7 for the illustrations of the legends.

VI. SUMMARY

In this work, the light-front quark model with pion cloud is employed to correlate the nucleon’s EM form factors with its axial form factors. The model is calibrated to the EM form factors’ measurements, and then used to predict the axial form factor \tilde{F}_{1N}. We found our form factor’s $r_A^2 = 0.29 \pm 0.03$fm2; its central value is smaller than the one resulted from a recent analysis \[5\] neutrino-nucleon scattering data and the singlet muonic hydrogen capture rate measurement, $r_A^2 = 0.46 \pm 0.16$fm2, although they are still consistent within 1-σ error bar. Meanwhile, our value is closer to the current Lattice QCD results from 0.2 – 0.45fm2, although these Lattice calculations still have room to be improved \[3\]. Note the corresponding $M_A = 1.28 \pm 0.07$ MeV (based on the form factor’s Q^2 derivative at zero) is larger than $M_A = 1.01 \pm 0.17$GeV2 from Ref. \[3, 17\].

More importantly, we found the widely used dipole approximation to our full \tilde{F}_{1N} over-estimates the (anti)neutrino scattering cross sections, as compared to the calculation using the full expression, by about 5% at neutrino energy around 0.5 GeV and reaches about 10% at 10 GeV. By using the GiBUU simulation pack-
FIG. 9. Total cross section for CC-induced neutrino and antineutrino scattering off nucleon. In the upper panels, three different calculations are plotted with different axial form factor, while the lower panels show the ratios between the results using the full \bar{F}_{1N} and the one using $g_A \bar{G}_D$ and $M_A = 1.28$ GeV (red dotted curve) and with the results using $g_A \bar{G}_D$ and $M_A = 1$ GeV.

FIG. 10. The ν_μ and $\bar{\nu}_\mu$ fluxes in neutrino and antineutrino mode in the DUNE experiment’s near detector \cite{35}. The units are irrelevant in this work.

In the current work for simplicity, we don’t use the experimental EM form factor data sets, but instead the results of the data analysis (based on the z-expansion) from Ref. \cite{47}. For simplicity, the correlations between their extracted form factors—not available in public—are ignored in our model calibration. In the future work, either directly using the experimental data or including the correlation in the results from \cite{47} will improve our calibration of the model. Moreover, the theoretical uncertainty of our quark model is not fully explored, even though we have used a somewhat flexible parametrization of the quark-diquark wave functions.

In the pion-cloud calculation, the Δ resonance’s contribution is computed by using its form factors either from Lattice QCD calculations or experimental measurements. However a more consistent approach is to base the inelastic form factor used in the pion-cloud calculations on the Δ’s light-front wave functions. This will also allow studying the axial inelastic form factors, which are also poorly constrained but important for understanding the pion productions in the coming neutrino experiments, within the same framework.

ACKNOWLEDGMENTS

X.Z. was supported by the US Department of Energy under contract DE-FG02-97ER-41014, the US Institute for Nuclear Theory, and the National Science Foundation under Grant No. PHY1614460 and the NUCLEI SciDAC Collaboration under US Department of Energy MSU subcontract RC107839-OSU. T.H. was supported by the US Department of Energy under contract de-sc0010129, and also acknowledges support from a JLab EIC Center Fellowship. G.M. was supported by the US Department of Energy under contract DE-FG02-97ER-41014. XZ would like to thank Urich Mosel for his help with running the GiBUU package.
FIG. 11. The DUNE-flux averaged $\nu(\bar{\nu})-^{40}$Ar scattering differential cross section. The lower panel again shows the ratio between the result using our model form factor and the one using its dipole approximation with $M_A = 1.28$ GeV.

Appendix A: quark wave functions

The scalar-diquark wave functions have already been computed in Ref. [30], but we present them here for the sake of completeness. We note that the notation used here is somewhat different from that in Ref. [30]. Our choices for the metric and Dirac spinors follow the Lepage-Brodsky conventions in Ref. [24]. The expression for the bare-quark form factors (cf. Eqs. (14), (15), and (16)) in terms of the quark light-front wave function, are

λ_q	$-\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{2} \varphi_1^2 (M_N + \frac{m_q}{2}) + 2M_N \varphi_2^2$	$\varphi_1^2 \sqrt{2} \varphi_s^1$	$\varphi_1^2 \sqrt{2} \varphi_s^1 (M_N + \frac{m_q}{2}) + 2M_N \varphi_2^2$

TABLE IV. $\phi_{\lambda_N}^2 / \sqrt{x}$ for quark scalar diquark configuration.
\[
\begin{array}{ccc}
\lambda_q, \lambda_u & - \frac{1}{2} & 0 \\
- \frac{1}{2}, -1 & -\varphi^0_{\frac{2k}{x(1-x)}} & 0 \\
- \frac{1}{2}, 0 & \varphi^{2a}_{\frac{2m}{x}} - \varphi^0_{\frac{2m}{x}} (M_N - \frac{m_a}{x}) & -\varphi^{2a}_{\frac{2m}{x}} \sqrt{\frac{2k}{x}} \\
- \frac{1}{2}, 1 & -\varphi^0_{\frac{2k}{x}} & \varphi^0_{\frac{2k}{x}} \\
\frac{1}{2}, -1 & -\varphi^0_{\frac{2k}{x}} (M_N + \frac{m_a}{x}) & \varphi^0_{\frac{2k}{x}} \\
\frac{1}{2}, 0 & \varphi^0_{\frac{2m}{x}} \varphi^0_{\frac{2m}{x}} & -\varphi^0_{\frac{2m}{x}} + \varphi^0_{\frac{2m}{x}} (M_N - \frac{m_a}{x}) \\
\frac{1}{2}, 1 & 0 & \varphi^0_{\frac{2k}{x}} \\
\end{array}
\]

TABLE V. $\phi^N_{\lambda_q, \lambda_u} / \sqrt{x}$ for quark axial diquark configuration.

\[
f_{1s} = \int \frac{dxdk_{12}}{16\pi^3x^2(1-x)} \left\{ \varphi_1^0 \varphi_1^2 \left[(m_q + xM_N)^2 + k_1^2 - \frac{(1-x)^2}{4}Q^2 \right] + \left(\varphi_1^0 \varphi_2^0 + \varphi_2^0 \varphi_1^0 \right) 2xM_N (m_q + xM_N) + \varphi_2^0 \varphi_2^0 4x^2M_N^2 \right\}
\]

(A1)

\[
f_{2s} = \int \frac{M_N dxdk_{12}}{8\pi^3x^2(1-x)} \left\{ \varphi_1^0 \varphi_1^2 (m_q + xM_N) (1-x) + \left(\varphi_1^0 \varphi_2^0 + \varphi_2^0 \varphi_1^0 \right) x(1-x)M_N + \left(\varphi_1^0 \varphi_2^0 + \varphi_2^0 \varphi_1^0 \right) 2xM_N k_{12} \cdot q \right\}
\]

(A2)

\[
f_{As} = \int \frac{dxdk_{12}}{16\pi^3x^2(1-x)} \left\{ \varphi_1^0 \varphi_1^2 \left[(m_q + xM_N)^2 - k_1^2 + \frac{(1-x)^2}{4}Q^2 \right] + \left(\varphi_1^0 \varphi_2^0 + \varphi_2^0 \varphi_1^0 \right) 2xM_N (m_q + xM_N) + \varphi_2^0 \varphi_2^0 4x^2M_N^2 \right\}
\]

(A3)

\[
f_{1a} = \int \frac{dxdk_{12}}{16\pi^3x^2(1-x)} \left\{ \left(k_1^2 - \frac{(1-x)^2}{4}Q^2 \right) 1 + x^2 \left(\frac{1-x}{2} \right)^2 + \frac{2x^2m_1^2}{(1-x)^2} + \left(m_a + xM_N \right)^2 \right\}
\]

(A4)

\[
+ \left(\varphi_1^0 \varphi_2^0 + \varphi_2^0 \varphi_1^0 \right) \frac{2xM_1^2}{(1-x)M_N} (m_a - xM_N) + \varphi_2^0 \varphi_2^0 \frac{m_1^2}{M_N^2} \left[(m_a - xM_N)^2 + k_1^2 - \frac{(1-x)^2}{4}Q^2 \right] \right\}
\]

(A5)

\[
f_{2a} = \int \frac{(-)M_Ndxdk_{12}}{4\pi^3x^2(1-x)} \left\{ \varphi_1^0 \varphi_1^2 (m_a + xM_N) + \left(\varphi_1^0 \varphi_2^0 + \varphi_2^0 \varphi_1^0 \right) \frac{xM_1^2}{M_N} + \varphi_2^0 \varphi_2^0 \frac{m_1^2}{M_N^2} (1-x) (m_a - xM_N) \right\}
\]

(A6)

The expressions in these form factor involving φ_2^0 are different, as well as the $\varphi_1^0 \varphi_1^0$. The former is because we use a different wave function for φ_2^0, while the latter is because we use ε instead of ε in defining wave functions involving axial diquark (cf. discussion in Sec. [11]). To simplify the presentation, the quark wave functions’ dependence on the integration variables are implicit: $\varphi_1^0 \equiv \varphi_1^0 (x, k_{12})$ and $\varphi_1^0 \equiv \varphi_1^0 (x, k_{f1})$ with $k_{f1} \equiv k_{12} - \frac{1}{2} - q_{12}$. Here the integration variable k_{12} is shifted from the k_{12} in Eqs. (17-22) by $-\frac{1}{2}q_{12}$. In these expressions, m_a, m_a, and m_a are the masses of the quark, scalar, and axial-vector diquarks.

Appendix B: Hadronic interaction and electroweak current matrix elements

spinors:

\[
\begin{align*}
u_{\mu} (\frac{3}{2}) &= \varepsilon_{\mu}(+1)u \left(\frac{1}{2} \right) \\
u_{\mu} (\frac{1}{2}) &= \sqrt{\frac{1}{3}} \varepsilon_{\mu}(+1)u \left(-\frac{1}{2} \right) + \sqrt{\frac{2}{3}} \varepsilon_{\mu}(0)u \left(\frac{1}{2} \right) \\
u_{\mu} (-\frac{1}{2}) &= \sqrt{\frac{2}{3}} \varepsilon_{\mu}(0)u \left(-\frac{1}{2} \right) + \sqrt{\frac{1}{3}} \varepsilon_{\mu}(-1)u \left(\frac{1}{2} \right) \\
u_{\mu} (-\frac{3}{2}) &= \varepsilon_{\mu}(-1)u \left(-\frac{1}{2} \right). \\
\end{align*}
\]
TABLE VII. \(\mathcal{V}_{N_i} \) using helicity basis. Note \\
\(\mathcal{V}_{-\lambda_{N_i}}(x,k^x,k^y) = \mathcal{V}_{\lambda_{N_i}}(x,-k^x,k^y) \). Changing \\
the sign of \(k^z \) leads to \(k^L \leftrightarrow k^R \). This property can be used \\
to infer the matrix elements with positive \(\lambda_{N_i} \), given on based \\
matrix elements with negative \(\lambda_{N_i} \).

\[
\begin{array}{ccc}
\lambda_{N_i} & \lambda_N & \lambda_{N_i} \\
-\frac{1}{2} & \frac{i(M_N(1-x)}{\sqrt{x}} \frac{1}{\sqrt{x}} & \frac{1}{2} \\
\frac{1}{2} & \frac{i\sqrt{x}}{\sqrt{x}} & \frac{iM_N(1-x)}{\sqrt{x}} \\
\end{array}
\]

Table VIII. To compute the current matrix elements, we \\
\(\mathcal{V}_{N_i} \), \(\lambda_N \) using helicity basis. Note \\
\(\mathcal{V}_{-\lambda_{N_i}}(x,k^x,k^y) = \mathcal{V}_{\lambda_{N_i}}(x,-k^x,k^y) \). Changing \\
the sign of \(k^z \) leads to \(k^L \leftrightarrow k^R \). This property can be used \\
to infer the matrix elements with positive \(\lambda_{N_i} \), based on given \\
matrix elements with negative \(\lambda_{N_i} \).

\[
\begin{array}{ccc}
\lambda_{N_i} & \lambda_N & \lambda_{N_i} \\
-\frac{1}{2} & -\frac{\sqrt{q^R}}{2} & -\frac{\sqrt{q^R}}{2} \\
\frac{1}{2} & \frac{\sqrt{q^R}}{\sqrt{M_N}} \frac{i M_N}{\sqrt{M_N}} & \frac{\sqrt{q^R}}{\sqrt{M_N}} \frac{i M_N}{\sqrt{M_N}} \\
\end{array}
\]

Here the spin projections/helicity projections are labeled \\
as the numbers in parenthesis. Note the vector \(\lambda_{\mu} \) is different \\
from the one used in axial-diquark wave function: it \\
satisfies \(p^\mu_{\lambda} \lambda_{\mu} = 0 \). The results are collected in \\
Table VII. To compute the current matrix element, we \\
always choose a frame with \(q^+ = 0 \). The results in Tables VIII, IX, X, and XI are of course boost and rotation \\
invariant (in the transverse plane). To reduce space for \\
presentations, only subset of the matrix elements men- \\
tioned here are shown, while the others can be inferred \\
using the mirror transformation (w.r.t. to the y-z plane). \\
See the captions of the tables for \\
the details.
TABLE XI. \(J^{(0)A,λ_Δ}_{λ'_Δ} \) using helicity basis. Note \(J^{(0)A,λ_Δ}_{λ'_Δ} \) \((q^x, q^y) = -J^{(0)A,−λ_Δ}_{−λ'_Δ} \) \((-q^x, q^y)\). Changing the sign of \(q^x \) leads to \(q^L \leftrightarrow q^R \). This property can be used to infer the matrix elements with positive \(λ_Δ \) based on given matrix elements.

\(λ'_Δ \)	\(λ_Δ \)	\(q^x \) \(q^y \)
\(-\frac{3}{2}\)	\(-\frac{3}{2}\)	\(-\frac{3}{2}\) \(-\frac{3}{2}\)
\(-\frac{1}{2}\)	\(-\frac{1}{2}\)	\(-\frac{1}{2}\) \(-\frac{1}{2}\)
\(\frac{1}{2}\)	\(\frac{1}{2}\)	\(\frac{1}{2}\) \(\frac{1}{2}\)
\(\frac{3}{2}\)	\(\frac{3}{2}\)	\(\frac{3}{2}\) \(\frac{3}{2}\)

\(q^x \) \(q^y \) are the incoming helicities, and \(M_Δ^2 \) is the mass of the \(Δ \) resonance.

\(J^{(0)EM}_{λ'_Δ,−λ_Δ} \) using helicity basis. Note \(J^{(0)EM}_{λ'_Δ,−λ_Δ} \) \((q^x, q^y) = J^{(0)EM}_{λ'_Δ,−λ_Δ} \) \((-q^x, q^y)\). Changing the sign of \(q^x \) leads to \(q^L \leftrightarrow q^R \). This property can be used to infer the matrix elements with positive \(−λ_Δ \) based on given matrix elements.

\(λ'_Δ \)	\(λ_Δ \)	\(q^x \) \(q^y \)
\(-\frac{3}{2}\)	\(-\frac{3}{2}\)	\(-\frac{3}{2}\) \(-\frac{3}{2}\)
\(-\frac{1}{2}\)	\(-\frac{1}{2}\)	\(-\frac{1}{2}\) \(-\frac{1}{2}\)
\(\frac{1}{2}\)	\(\frac{1}{2}\)	\(\frac{1}{2}\) \(\frac{1}{2}\)
\(\frac{3}{2}\)	\(\frac{3}{2}\)	\(\frac{3}{2}\) \(\frac{3}{2}\)

\(q^x \) \(q^y \) are the incoming helicities, and \(M_Δ^2 \) is the mass of the \(Δ \) resonance.
FIG. 12. The 2-dim and 1-dim projection of the 15-dim PDF, as computed through Bayesian inference. The source file for the plot can be found in the supplemental material.
[48] D. Sivia, *Data Analysis: A Bayesian Tutorial* (Oxford University Press, New York, 1996).
[49] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, *Pub. Astron. Soc. Pac.* **125**, 306 (2013), arXiv:1202.3665 [astro-ph.IM].
[50] W. D. Vousden, W. M. Farr, and I. Mandel, *MNRAS* **455**, 1919 (2016), arXiv:1501.05823 [astro-ph.IM].
[51] C. H. Llewellyn Smith, *Gauge Theories and Neutrino Physics, Jacob, 1978:0175*, Phys. Rept. **3**, 261 (1972).
[52] U. Mosel, *Ann. Rev. Nucl. Part. Sci.* **66**, 171 (2016), arXiv:1602.00696 [nucl-th].