An Analogue of the Erythroid Membrane Skeletal Protein 4.1 in Nonerythroid Cells

JUDITH E. SPIEGEL,*† DIANA SCHULTZ BEARDSLEY,*§ FREDERICK S. SOUTHWICK,‖ and SAMUEL E. LUX*§

*Division of Hematology and Oncology, Children’s Hospital, Boston, Massachusetts 02115; †Program on Cell and Developmental Biology, Harvard Medical School, Boston, Massachusetts 02115; §Division of Hematology and Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; and ‖Hematology-Oncology Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115. Dr. Spiegel’s current address is Department of Biology, Brandeis University, Waltham, Massachusetts 02254.

ABSTRACT Protein 4.1 is a crucial component of the erythrocyte membrane skeleton. Responsible for the amplification of the spectrin–actin interaction, its presence is required for the maintenance of erythrocyte integrity. We have demonstrated a 4.1-like protein in nonerythroid cells. An antibody was raised to erythrocyte protein 4.1 purified by KCl extraction (Tyler, J. M., W. R. Hargreaves, and D. Branton, 1979, Proc. Natl. Acad. Sci. USA, 76:5192–5196), and used to identify a serologically cross-reactive protein in polymorphonuclear leukocytes, platelets, and lymphoid cells. The cross-reactive protein(s) were localized to various regions of the cells by immunofluorescence microscopy. Quantitative adsorption studies indicated that at least 30–60% of the anti-4.1 antibodies reacted with this protein, demonstrating significant homology between the erythroid and nonerythroid species. A homologous peptide doublet was observed on immunopeptide maps, although there was not complete identity between the two proteins. When compared with erythrocyte protein 4.1, the nonerythroid protein(s) displayed a lower molecular weight—68,000 as compared with 78,000—and did not bind spectrin or the nonerythroid actin-binding protein filamin. There was no detectable cross-reactivity between human acumentin or human tropomyosin-binding protein, which are similarly sized actin-associated proteins, and erythrocyte protein 4.1. The possible origin and significance of 4.1-related protein(s) in nonerythroid cells are discussed.

The erythrocyte provides a unique system for the investigation of the protein interactions required for the maintenance of a membrane skeleton. It is the skeleton, providing a durable yet flexible framework, that determines erythrocyte membrane shape, deformability, and structural integrity (1–5). Operationally defined as the network of proteins remaining after erythrocytes are solubilized in nonionic detergents, the skeleton consists of spectrin; actin; proteins 2.1 (ankyrin), 4.1, and 4.9; and a portion of protein(s) 7 (1, 5, 6). Spectrin heterodimers, the major components of the skeleton, are bound head to head to form tetramers and higher-order oligomers (7). Heterodimers are also bound to ankyrin, protein 4.1, and actin (for a review, see reference 8). Protein 4.1 is a globular protein with a molecular weight of ~78,000 (9–11). It is phosphorylated and carboxymethylated (12, 13), but the function of these posttranslational modifications is not known. When electrophoresed on the discontinuous SDS–polyacrylamide gel system of Laemmli, it can be resolved into two closely spaced bands, 4.1a and 4.1b (13, 14). These bands are structurally similar and functionally indistinguishable (13) and are therefore generally referred to as protein 4.1. Protein 4.1 is required for the binding of F-actin to the cytoplasmic surface of membrane vesicles containing spectrin (15). It binds to spectrin dimers at the same end to which actin filaments bind (16), and this binding amplifies the interaction of spectrin and F-actin in vitro (3, 17–19). Binding of 125I-4.1 to spectrin in vitro is specific and saturable, with a K_D of 1–2 × 10$^{-7}$ M at pH 7.6 (16, 20). At saturation, two molecules of protein 4.1 can be bound to each spectrin dimer. A comparison of the number of molecules of spectrin dimer and protein

THE JOURNAL OF CELL BIOLOGY - VOLUME 99 SEPTEMBER 1984 886-893
© The Rockefeller University Press - 0021-9525/84/09/0886/08 $1.00
4.1 in the intact erythrocyte suggests, however, that in vivo the ratio of these proteins is 1:1.

Until recently, some investigators believed the erythrocyte membrane skeleton was an anomaly, the structural elements of which bore little or no resemblance to those of the other cells of the body. It is now clear, however, that several skeletal proteins previously thought to be unique to the erythrocyte are found in a variety of nonerythroid cells. Polyclonal antibodies prepared against ankyrin, the high-affinity membrane attachment site for spectrin, have been used to document the presence of ankyrinlike proteins in neutrophils, platelets, and brain (21), as well as in the microtubule network of cultured cells (22). Spectrinlike proteins have also been identified in many mammalian cells (23–26). Fodrin (brain spectrin) was first described as a high-molecular-weight, axonally transported, spectrinlike protein in mammalian brain, and is also found beneath the plasma membranes of lymphocytes (27–30, 31). The terminal web protein, TW 260/240, another spectrin analogue, has been purified from intestinal brush borders (32, 33).

In an attempt to extend the analogy between the cytoskeletons of erythrocytes and those of other cells, we raised a polyclonal antibody directed specifically against purified erythrocyte protein 4.1. Using this antibody, we identified protein 4.1 analogue in polymorphonuclear leukocytes, platelets, and lymphoid cells.

MATERIALS AND METHODS

Cell and Antigen Preparation: Erythrocyte ghosts were prepared according to the method of Fairbanks et al. (11). Spectrin-depleted inside-out erythrocyte vesicles were prepared by centrifugation over dextran (34). Spectrin dimer was prepared according to Harris and Lux (35). Protein 4.1 was purified by salt extraction (9) or by a high-yield detergent extraction (36). The two preparations were used interchangeably, and no differences were noted in antigenicity or binding activity. Acumentin was purified from human polymorphonuclear leukocytes by the method of Southwick et al. (37). Filamin was the gift of Dr. J. Hartwig (Massachusetts General Hospital, Boston, MA). Human polymorphonuclear leukocytes (PMN) and a lymphocyte-mono
cyte fraction were obtained from fresh, anticoagulated human blood by the method of Boyum (38). To inhibit proteolysis they were treated with 1 mM diisopropylfluorophosphate (DFP); 10 mM N-ethylmaleimide; or with a mixture of 1 mM DFP, 50 mM L-trans-epoxysuccinylleucylamido(3-methyl)buta
tane (Ep-475) (39), an inhibitor of cysteine proteases (the gift of Dr. Alfred Lemonnier et al. (41) and were the gift of Dr. M. F. Mescher and Dr. J. Apgar (42).

Antibody Characterization: Immune sera were characterized by a solid-phase radioimmunoassay (RIA) (44, 45). Polyclonal antisera and proteins of U-bottomed microtiter plates (Dynatech, Inc., Alexandria, VA, catalog #01-010-2401) were coated with 100 μl of a 5 μg/ml solution of protein 4.1 in PBS or an unrelated control antigen such as BSA. After 2–4 h at room temperature in a humidified atmosphere, the wells were washed, were incubated for 2–4 h at room temperature with PBST 10 mg/ml in BSA to block the remaining non-specific protein-binding sites on the plastic. The wells were then washed and incubated as before, and incubated for 2–4 h at room temperature with various dilutions of anti-4.1 in PBS containing 10 mg/ml BSA. After emptying and further washing, 50,000 cpm (5 ng) of [125I]-labeled, affinity-purified, goat anti-rabbit IgG in PBS made 10 mg/ml in BSA were added and the plates were incubated another 2–4 h at room temperature. After emptying and washing as before, the polyvinyl chloride wells were cut apart and each well was counted in a Tracor Analytic gamma counter (Tracor Analytic, Inc., Elk Grove Village, IL).

For affinity chromatography, protein 4.1 was covalently attached to Sepha
tose 4B (Pharmacia, Inc., Piscataway, NJ), activated with cyanogen bromide, by the method of March et al. (46) except that conjugation was done in 0.2 M Na bicarbonate at pH 8.4 rather than pH 9.5. Concentrations of 0.05–0.1 mg of protein per ml of packed beads were routinely achieved. Affinity columns were washed successively with 10 vol of 0.1 M NaHCO₃, 0.4 M NaCl, pH 8.0; 0.1 M Na acetate, 0.4 M NaCl, pH 4.0; 0.1 M Na borate, 0.4 M NaCl, pH 8.0; and 0.1 M Na acetate, 0.2 M NaCl, pH 4.0. These washes were followed by 1% Triton X-100 in PBS, 3 M urea, 10 mM Tris, pH 8.0, 3 M potassium thiocyanate and then by PBS. Ammonium sulfate-fractionated or ion exchange-purified antibodies were passed through the column, which was washed with 10–20 vol of PBS; several column volumes of 1% Triton X-100 in PBS, and 3 M urea, 10 mM Tris, pH 8.0. Antibodies were then eluted with 3 M potassium thiocyanate and immediately dialyzed against several liters of PBS. Protein concentrations were determined by measuring the optical density at 280 nm, using E₀.₁₅ cm = 1.4 (43). Goat anti-rabbit IgG serum was purchased from SeraSource, Inc. (Berlin, MA), and was affinity-purified as described above on a column of rabbit IgG. To prepare an appropriate control antibody, ammonium sulfate-fractionated anti-4.1 (78 μg) was passed through a column of 4.1-Sepharose containing 45 μg of protein 4.1. A small portion of the nonadherent effluent was saved, and the remainder was passed over a fresh column. This was repeated three more times. The volumes of the saved fractions were normalized to produce equal amounts of no antibody lost.

Iodinations: Antibodies were iodinated by the chloramine-T method as described by Hunter and Greenwood (47). Spectrin, filamin, and protein 4.1 were iodinated with Bolton-Hunter reagent (New England Nuclear, Boston, MA), activated with cyanogen bromide, and were applied to a 3/8-inch drill spin at 1,200 rpm. Increasing quantities (0–200 μg) of total cellular protein were incubated in 5 mM EDTA, 0.1% Triton X-100, 1% BSA, and 7.5 μg/ml nonimmune rabbit IgG in PBS in the presence of 78 μg/ml ammonium sulfate-fractionated anti-4.1 or 0.4 μg/ml anti-DNP. After shaking overnight at 4°C, each sample was pelleted at 12,800 g for 15 min and the supernatants were tested for remaining antibody activity.

Adsorption Assays: Human erythrocyte ghosts, spectrin-depleted inside-out vesicles, PMN's, lymphocytes, or platelets were made 1 mM in DFP and 1 μg/ml each in soybean trypsin inhibitor (Sigma Chemical Co.), pepstatin, chymostatin, antipain, and leupeptin, and were homogenized on ice for 5 rain to pellet contaminating PMNs and lymphocytes. This step was repeated twice more. The platelet-rich suspension was then centrifuged at 1,000 g for 10–20 min and the platelet pellet was washed in PBS and 10 mM EDTA containing either 1 mM DFP, 10 mM N-ethylmaleimide; or 1 mM DFP, 50 μM Ep-475, 0.5 μg/ml each of pepstatin, chymostatin, antipain, and leupeptin, and 1 mM Na tetrathionate. To isolate platelets, fresh human blood was withdrawn into citrate-phosphate-dextrose and was centrifuged at 250 g for 10 min. The platelet-rich plasma layer was retained, diluted 1:1 with phosphate-buffered saline (PBS: 150 mM NaCl, 7.5 mM sodium phosphate, pH 7.4) made 10 mM in EDTA, and re-centrifuged at 250 g for 10 min to pellet contaminating PMNs and lymphocytes. This step was repeated twice more. The platelet-rich suspension was then centrifuged at 1,000 g for 10–20 min and the platelet pellet was washed in PBS and 10 mM EDTA containing either 1 mM DFP, 10 mM N-ethylmaleimide; or 1 mM DFP, 50 μM Ep-475, 0.5 μg/ml each of pepstatin, chymostatin, antipain, and leupeptin, and 1 mM Na tetrathionate. All steps but the last were performed at room temperature to prevent platelet activation and aggregation. Platelet cytoskeletal proteins were prepared by Triton X-100 extraction (40).

To examine lymphoid cells, Triton X-100-extracted membrane cytoskele
tons of the murine tumor cell line P815 were prepared by the method of Lemmoner et al. (41) and were the gift of Dr. M. F. Mescher and Dr. J. Apgar (Harvard Medical School). Protein determinations were by the method of Lowry et al. (42).

Antibody Preparation: To prepare anti-4.1 antibodies, rabbits were injected subcutaneously with 50 μg of sodium dodecyl sulfate (SDS)-denatured protein 4.1 (prepared by dissolving the antigen in 1% SDS and boiling for 1 min), emulsified in an equal volume of Freund's complete adjuvant (Miles Laboratories, Inc., Elkhart, IN). A boosting dose of antigen (50 μg) was administered in incomplete Freund's adjuvant 21 d after the first injection. The animals were collected 7, 9, and 11 d after the second injection. Therefore the animals were maintained on a bimonthly schedule of boosting with 50 μg of the same protein subcutaneously and bleeding 7 d later. The blood was allowed to clot at 37°C for 1 h, and then placed at 4°C overnight to facilitate clot retraction. After centrifugation at 27,000 g for 20 min, the serum was collected and the clot discarded. IgG was purified from immune serum as described by Cebera and Goldstein (43).
Immunofluorescence: Immunofluorescence studies were performed by the method of Pryzwansky et al. (49). Human venous blood was cyt centrifuged onto 12-mm-round coverslips (Carolina Biological Supply Co., Burlington, NC) that had been prewashed with acetone and ethanol. The cells were fixed and permeabilized in a buffered formalin-acetone solution (49). Rabbit antibodies were used at 3–50 μg/ml in PBS, and were followed by a fluorescein isothiocyanate-labeled goat anti-rabbit IgG (Miles Laboratories, Inc.), used at a dilution of 1:40 to 1:500. Coverslips were mounted in 90% glycerol/10% PBS and sealed with nail polish. The slides were examined with a Zeiss Universal microscope (Carl Zeiss, Inc., New York) equipped for epifluorescence, using a #487710 fluorescein isothiocyanate filter set.

Electrophoretic Transfer Assays: Electrophoretic transfer assays and spectrin binding assays were performed as previously described (36).

Immunopeptide Maps: Whole PMNs (pretreated with 1 mM DFP) and erythrocyte ghosts were boiled for 2 min in 0.125 M Tris-Cl, pH 6.8, 0.5% SDS, 10% glycerol, and 0.0001% bromphenol blue. Digestion was then carried out as described by Cleveland et al. (50) with Staphylococcus aureus V8 protease (Miles Laboratories, Inc.), using an enzyme to protein mass ratio of 1:500. The proteolytically digested cell proteins were electrophoresed on adjacent lanes of a 10% SDS polyacrylamide gel, transferred to nitrocellulose, and stained with anti-4.1 as described previously. Although peptides were generated from all of the cellular proteins, only those that were derived from protein 4.1 or from a 4.1-like protein and that retained their immunogenicity were resolved on the resulting autoradiogram.

RESULTS

Antibody Activity and Specificity

Immune anti-4.1 was a nonprecipitating antibody. No precipitin lines were observed in double immunodiffusion tests (data not shown); therefore, anti-4.1 was tested for activity in solid-phase RIAs. Ammonium sulfate-fractionated anti-4.1 antibody could be detected at a concentration of <0.5 μg/ml, and binding of anti-4.1 to 4.1-coated wells reached a plateau, demonstrating that the binding to protein 4.1 was saturable (Fig. 1).

To demonstrate the specificity of the anti-4.1 antibody, fresh erythrocyte ghosts and purified protein 4.1 were electrophoresed in adjacent wells of a 10% SDS polyacrylamide gel, transferred to nitrocellulose paper, and stained with Amido Black or with unlabeled, ion-exchange or affinity-purified anti-4.1, followed by 125I-labeled goat anti-rabbit IgG. As shown in Fig. 2B, only protein 4.1 (78,000 Mr) was visualized by the antibody when erythrocyte ghosts were stained. No protein bands were seen with the adsorbed anti-4.1 antibody or with 125I-labeled goat anti-rabbit IgG alone (Fig. 2C). Thus, the labeling of protein 4.1 was not due to nonspecific adherence of antibodies to the protein. Because the anti-4.1 antibody was highly specific for its respective antigen, it was generally purified only by ion-exchange chromatography.

Identification of a Protein 4.1 Analogue in Nonerythroid Cells

To search for protein 4.1 or a 4.1 analogue in nonerythroid cells, erythrocyte ghosts, total cellular protein from human PMNs, platelets, and a lymphocyte–monocyte fraction were electrophoresed on a 10% SDS–polyacrylamide gel, transferred to nitrocellulose, and stained with anti-4.1 antibody. The results are shown in Fig. 3. Autoradiography showed a single protein band in all of the cells (Fig. 3B). However, in the nonerythroid cells, the visualized band had a lower molecular weight (~68,000 Mr) than erythrocyte protein 4.1 (78,000–80,000 Mr). Staining with anti-4.1 previously adsorbed against protein 4.1 did not visualize any protein bands (Fig. 3C).

To test the possibility that this lower molecular weight protein could result from the cleavage of a 78,000 Mr nonerythroid 4.1-like protein during cell solubilization, we added an array of protease inhibitors: 10 mM N-ethylmaleimide; 1 mM DFP; 50 μM Ep-475 (a sulphydryl protease inhibitor); 1 μg/ml each of leupeptin, antipain, chymostatin, and pepstatin; and a mixture containing all of these inhibitors. Even when all were present before and during solubilization, we were unable to detect a nonerythroid protein of 78,000 Mr.
In addition, nonerythroid cells were tested for their ability to digest erythroid protein 4.1 to a 68,000 M_r protein. 125I-labeled protein 4.1 was added to 50 μg of platelet protein in the absence of protease inhibitors, solubilized, incubated for periods up to 1 h at 25°C, and analyzed by gel electrophoresis and autoradiography. Even under these provocative conditions no degradation of protein 4.1 was observed.

To demonstrate a structural relationship between 4.1 and the 4.1-like protein, immunopeptide maps were performed (Fig. 4). Erythrocyte ghosts and PMNs digested with *Staphylococcus aureus* V8 protease showed homology between the erythroid and the nonerythroid protein in the form of an immunoreactive doublet visualized at the bottom of the gel.

Adsorption Studies

To further assess the degree of homology between the erythroid and the nonerythroid proteins, an adsorption study was performed to determine what percentage of the antibodies that react with erythroid protein 4.1 also react with the 4.1-analogue(s) in other cell types. Various whole cell homogenates were assayed for the ability to adsorb anti-4.1 antibodies (Fig. 5). Erythrocyte ghosts removed ~75% of the antibody activity, whereas spectrin-depleted membrane vesicles removed ~90% of the antibody activity (presumably removing spectrin from the membrane rendered additional antibody binding sites more accessible). PMNs and platelets removed 60–70% and 20–35% of the anti-4.1 activity, respectively. It is probable that removal of antibody activity plateaued at these lower values for two reasons: (a) that not all the sites to which anti-4.1 antibodies bound on the purified protein were accessible in the homogenized cell preparations (and differences in antigen accessibility between platelets and PMNs may explain the different values each attained); and (b) the nonerythroid protein is certainly not identical to the erythrocyte protein (and may differ between PMNs and platelets), and probably does not contain some domains to which a subpopulation of the antibodies are directed.

To control for specificity of antibody adsorption, an affin-
ity-purified, anti-DNP antibody was treated in parallel with the above proteins. Because erythrocytes, PMNs, and platelets do not contain DNP, anti-DNP activity should not be removed by the cell homogenates unless (a) endogenous proteases are destroying the antibody, yielding falsely positive results; (b) antibodies are binding nonspecifically, and/or via Fc receptors; or (c) antibodies are “trapped” in membrane vesicles. As shown in Fig. 5, however, anti-DNP activity remained constant (i.e., no anti-DNP activity was removed at all levels of cellular protein tested), indicating that PMNs and platelets did indeed specifically bind anti-4.1 antibodies.

When antibody removal was corrected for differences in cell mass, PMNs and platelets were found to be 50 and 10 times more effective per cell, respectively, at removing anti-4.1 activity than were erythrocytes.

Location of the 4.1-like Protein in Nonerythroid Cells

Immunofluorescent staining of peripheral blood was not routinely performed, due to the high numbers of autofluorescent cells present in the preparations after the fixation step. Difficulties were also encountered with fixatives used to retain cell morphology which increased nonspecific fluorescence. To optimize morphologic integrity and to minimize nonspecific adherence of antibodies, we used the buffered formalin-acetone preparation developed by Pryzwansky et al. (49) rather than the traditional acetone permeabilization and formaldehyde fixation. Even then, however, only a portion of the preparations had low background fluorescence. The reason for this variability was not determined.

In good preparations, staining of PMNs and monocytes (Fig. 6) or lymphocytes (data not shown) with anti-4.1 yielded a diffuse, cytoplasmic fluorescence that excluded the nucleus. Staining of platelets was primarily membrane-associated (Fig. 6). Treatment with similar concentrations of 4.1-adsorbed anti-4.1 (data not shown) or anti-DNP resulted in either faint or nonexistent background staining.

Because protein 4.1 is an important constituent of the erythrocyte skeleton, we searched for the 4.1-like protein in the cytoskeletons of platelets. As shown in Fig. 7, the 4.1-like protein was associated with the Triton X-100-insoluble cytoskeletal fraction of platelets and did not appear in either of the Triton X-100-soluble fractions. In a similar experiment (Fig. 7), the cross-reactive protein was also detected in the cytoskeleton of P815 cells (a murine cell line with lymphoid characteristics [51]).

Reactivity of Cell Homogenates with ^125^I-Spectrin or ^125^I-Filamin

Protein 4.1 has been identified as a spectrin-binding protein. We therefore assayed the ability of protein 4.1 and the 4.1-like protein(s) to bind to ^125^I-spectrin or ^125^I-filamin (an actin-binding protein) when they were immobilized on nitrocellulose paper. Treatment of the transferred proteins with ^125^I-spectrin dimer resulted in the staining of protein 4.1 and ankyrin in the erythrocyte ghosts, both previously identified.
as spectrin-binding proteins (Fig. 8B). However, no staining was observed in the lanes containing the nonerythroid cells when either 125I-spectrin (Fig. 8B) or 125I-filamin (Fig. 8C) was used, indicating that the cross-reactive, nonerythroid proteins detected by anti-4.1 did not bind either spectrin or filamin under these conditions.

Reactivity with Previously Identified Actin-associated Proteins

Finally, we attempted to determine whether any of the previously identified and isolated actin-associated proteins obtained at different stages of the extraction procedure, and 10^6 cell equivalents of P815 cells and P815 cytoskeletons were run on an SDS gel, transferred to nitrocellulose paper, and stained with anti-4.1. Shown is an autoradiogram of a transfer of erythrocyte ghosts (G), Triton X-100-soluble platelet proteins (PS), Triton X-100-insoluble platelet proteins (PP), whole P815 cells (815), and P815 cytoskeletons (815P). The 4.1-like protein appears in the cytoskeletal fraction of both cell types, and, in this preparation of platelet cytoskeletons, shows some proteolytic degradation.

DISCUSSION

Protein 4.1 is an important component of the erythrocyte membrane skeleton. In vitro it functions to enhance the spectrin-actin binding interaction (3, 17-19). In vivo it is required for the maintenance of skeletal integrity: individuals homozygous for a rare form of hereditary elliptocytosis lack all protein 4.1 and display marked red cell fragmentation, poikilocytosis, osmotic fragility, and hemolysis (55, 56).

To facilitate the study of this protein, we raised an antibody to purified protein 4.1 and demonstrated its specificity. Although protein 4.1 was previously thought to be an exclusively erythroid protein, we have used our antibody to show the existence of a protein 4.1 analogue in leukocytes, lymphoid cells, and platelets. This cross-reactive protein has an apparent molecular weight of ~68,000. We cannot absolutely exclude the possibility, however, that a nonerythroid protein of 78,000 Mr actually exists, but is not protected by treatment with a wide battery of protease inhibitors.

Nonerythroid protein 4.1 is associated with the cytoskeletons of platelets and of P815 cells, and it is found in the cytoplasm of leukocytes. We did not attempt to determine whether it is also associated with the cytoskeleton of the latter cells, although this seems a reasonable possibility. In vitro binding assays using the technique of electrophoretic transfer to nitrocellulose paper of proteins separated on SDS polyacrylamide gels, failed to detect binding of spectrin or filamin to the 4.1-like protein. In addition, solid-phase RIAs demonstrated no detectable cross-reactivity between human acumenin or human TMBP and protein 4.1.

If there are two forms of protein 4.1, what is their significance? Actin, also a structural protein, is encoded by a multigene family (57). As many as 17 genes for actin are present in a single organism (e.g., Dictyostelium) (58), but the multiple actin genes and proteins are expressed at different times and in different tissues. Investigators have suggested that perhaps an ancestral actin gene has duplicated and diverged. It could be advantageous to be able to activate an actin gene selectively for a specific tissue rather than to modulate one actin gene differentially in different tissues. In the case of protein 4.1, gene duplication at the level of a pluripotent, ancestral stem cell could explain the existence of both erythroid and nonerythroid forms of the protein.

Conversely, it is conceivable that there may be only one gene for protein 4.1, containing multiple exons encoding several domains. Different 4.1-related proteins might then express different but overlapping domains. Different messenger RNA splicing mechanisms may exist in leukocytes and

FIGURE 7 Localization of the 4.1-like protein in the cytoskeletons of platelets and P815 cells. Approximately 150 µg of platelet protein obtained at different stages of the extraction procedure, and 10^6 cell equivalents of P815 cells and P815 cytoskeletons were run on an SDS gel, transferred to nitrocellulose paper, and stained with anti-4.1. Shown is an autoradiogram of a transfer of erythrocyte ghosts (G), Triton X-100-soluble platelet proteins (PS), Triton X-100-insoluble platelet proteins (PP), whole P815 cells (815), and P815 cytoskeletons (815P). The 4.1-like protein appears in the cytoskeletal fraction of both cell types, and, in this preparation of platelet cytoskeletons, shows some proteolytic degradation.

FIGURE 8 Reactivity of electrophoretically transferred cell homogenates with 125I-spectrin or 125I-filamin. Transferred proteins of erythrocytes ghosts (G), polymorphonuclear leukocytes (PMN), a lymphocyte-monocyte fraction (L), and platelets (P) were incubated with 125I-spectrin or 125I-filamin as described in the text. (A) Coomassie Blue-stained gel. (B) Autoradiogram of transferred proteins from a duplicate gel stained with 125I-spectrin. (C) Autoradiogram of similarly transferred proteins stained with 125I-filamin. Notice that 125I-spectrin (B) stains both protein 4.1 and ankyrin. 125I-filamin (C) stains only unidentified lower molecular weight proteins.
erythrocytes, allowing a 68,000 M, protein to be translated in one cell type and a 78,000 M, protein in the other.

After our initial report of the existence of protein 4.1 in nonerythroid cells (59), Cohen et al. (60, 61) discovered two 4.1 analogues in fibroblasts of apparent molecular weights 78,000 and 90,000. The discrepancy in the sizes of the 4.1 analogues detected in our work and in that of Cohen and his co-workers may be due to the different antibodies used (which may detect different proteins), to the way that we prepared the cells, or to the fact that we examined different cells. The possibility that we are detecting a proteolytic fragment of the proteins they saw must also be considered. In their hands, our antibody detects proteins of both molecular weights 78,000 and 68,000 (62), suggesting (a) that our antisera recognize different parts of the 4.1 molecule, and (b) that differences in cell preparation contribute to the presence of different molecular weight proteins. Although we went to great lengths to prevent proteolysis and to detect 4.1-proteolytic activity, we will not be able to absolutely exclude proteolysis until the synthesis of the 4.1-like protein(s) has been studied in a cell-free system or its gene(s) has been isolated and characterized.
41. Lemonnier, F., M. Mescher, L. Sherman, and S. Burakoff. 1978. The induction of cytolytic T lymphocytes with purified plasma membranes. *J. Immunol.* 120:1114-1120.

42. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. *J. Biol. Chem.* 193:265-275.

43. Cebrá, J. J., and G. Goldstein. 1965. Chromatographic purification of tetramethylrhodamine-immune globulin conjugates and their use in the cellular localization of rabbit γ-globulin polypeptide chains. *J. Immunol.* 95:230-245.

44. Catt, K., and G. W. Treager. 1967. Solid-phase radioimmunoassay in antibody-coated tubes. *Science (Wash. DC).* 158:1570-1572.

45. Klinman, N. R., A. R. Pickard, N. H. Sigal, P. J. Gearhart, E. S. Mescall, and S. K. Pierce. 1976. Assessing B cell diversification by antigen receptor and precursor cell analysis. *Ann. Immunol. Inst. Pasteur.* 127C:489-502.

46. March, S. C., I. Parikh, and P. Cuatrecasas. 1974. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. *Anal Biochem.* 60:149-152.

47. Hunter, W. M., and F. C. Greenwood. 1962. Preparation of iodine-131 labeled human growth hormone of high specific activity. *Nature (Lond.)* 194:495-496.

48. Bolton, A. E., and W. M. Hunter. The labelling of proteins to high specific radioactivities by conjugation to 131I-containing acylating agents. *Biochem.* 133:529-538.

49. F6o, C. J., S. Fischer, J. P. Piau, M. J. Grange, and G. Tchernia. 1980. Première observation de l'absence d'une protéine de la membrane érythrocytaire (bande 4.1) dans un cas d'anémie elliptocytaire familiale. *Nouv. Rev. Fr. Hématol.* 22:315-325.

50. Gerhard, M. D., P. M. DiGirolamo, and S. E. Hitchcock-DeGregori. 1982. Isolation and characterization of a tropomyosin binding protein (TMBP) from human blood platelets. *J. Cell Biol.* 95:290a. (Abstr.)

51. Gerhard, M. D., P. M. DiGirolamo, and S. E. Hitchcock-DeGregori. 1982. Platelet tropomyosin binding protein inhibits actin polymerization. *J. Cell Biol.* 95:290a. (Abstr.)

52. Peacocke, J. C., S. Fischer, J. P. Piau, M. J. Grange, and G. Tchernia. 1980. Première observation de l'absence d'une protéine de la membrane érythrocytaire (bande 4.1) dans un cas d'anémie elliptocytaire familiale. *Nouv. Rev. Fr. Hématol.* 22:315-325.

53. Spiegel, J. E., F. S. Southwick, S. E. Lux, and T. P. Stossel. 1982. Erythrocyte protein 4.1 is immunologically related to acumenin from polymorphonuclear leukocytes. *Blood.* 60 (Suppl 1): 25 a. (Abstr.)

54. Kindle, K. L., and R. A. Firtel. 1978. Identification and analysis of Dictyostelium actin genes, a family of moderately repeated genes. *Cell.* 15:763-778.

55. Firtel, R. A. 1981. Multigene families encoding actin and tubulin. *Cell.* 246:7-7.

56. Tchernia, G., N. Mohandas, and S. B. Stohet. 1981. Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability. *J. Clin. Invest.* 68:454-460.

57. Firtel, R. A. 1981. Multigene families encoding actin and tubulin. *Cell.* 246:7-7.

58. Kindle, K. L., and R. A. Firtel. 1978. Identification and analysis of Dictyostelium actin genes, a family of moderately repeated genes. *Cell.* 15:763-778.

59. Spiegel, J. E. D. J. Schultz-Beardsley, and S. E. Lux. 1982. Identification of a protein in nonerythroid human cells which cross-reacts with erythrocyte protein 4.1. *Fed. Proc.* 41:657 a. (Abstr.)

60. Cohen, C. M., S. F. Foley, and C. Korsgren. 1982. Localization of immunoreactive forms of erythrocyte band 4.1 to fibroblast stress fibers. *J. Cell Biol.* 95:284a. (Abstr.)

61. Cohen, C. M., S. F. Foley, and C. Korsgren. 1982. A protein immunologically related to erythrocyte band 4.1 is found on stress fibres of non-erythroid cells. *Nature (Lond.)* 299:648-650.

62. Davies, G. R., and C. M. Cohen. 1984. Platelets contain proteins immunologically related to red cell spectrin and protein 4.1. *Blood.* In press.

63. Burns, N. R., V. Ohanian, and W. B. Gratzer. 1983. Properties of brain spectrin (fodrin). *FEBS (Fed. Eur. Biochem. Soc.) Lett.* 153:165-168.