Drainage Capacity Analysis in The Area of Angke Jaya Tambora West Jakarta

Naufal Alfathan Bagas
Faculty of Engineering, University Mercu Buana, Bekasi, Indonesia, bagasnaufalalf@gmail.co

Abstract

Drainage is used to reduce and remove excess water in an area so that the area can be optimally enabled. This research aims to analyze and examine the drainage problems in the Angke Jaya Tambora West Jakarta Housing area, the drain channels are poorly maintained and often flooding. The data used in this study are primary and secondary, in the planning of flood debt calculations used 2nd anniversary. For the calculation of flood discharge plan to use rational method and coupled with the discharge of flood household, and the result will be compared with existing conditions of drainage channels in the residential area Angke Jaya Tambora West Jakarta. Obtained flood discharge plan of 13.225 m³/sec, for the existing condition of drainage channels 5 channels enter the category is not safe because the condition of existing capacity of channels is less than flood discharge plan, namely channels A4, D5, D6, D8, and D9. The planning of the wells to accommodate the excess discharge flooding, and it takes 19 pieces of replacement wells on the A4 channel, 1 on the D5, D, D8, and D9 channels.

Keywords
Drainage, Hydrological Analysis, Flood Discharge Plans, Absorption Wells.

1. Introduction

Population growth in Indonesia is increasing every year and requires a lot of land to be used as dwellings, especially in urban areas. The narrowness of the land and the large number of residential developments and supporting facilities make many unnecessary land uses. The impact of a large number of human activities and lack of attention to the environment gives rise to many natural disasters, such as floods that most often occur in urban areas. During high rainfall it is not uncommon for water to flood in the streets and until flooding can occur, this is due to a lack of community attention to land use and drainage channels. Stagnant water or flooding that can also occur due to lack of functioning drainage channels or channels that are inadequate in accommodating water discharge. If no action is taken to overcome this problem it will disrupt community activities and hamper economic, social and cultural development.

Planning and maintenance of drainage channels is needed to maintain and regulate the flow of water to create a healthy and comfortable environment. Drainage system in general can be interpreted as a prasarana that functions to drain excess water from an area to receiving water bodies such as rivers. Drainage can also be interpreted as a system of drainage of clean water and wastewater from residential areas, industries, agriculture, road bodies and other pavement surfaces, as well as channeling excess water in general, whether in the form of rainwater, wastewater or other dirty water that comes out of the area concerned to water bodies or artificial recharge buildings.

In this study, researchers will conduct research on the Angke Jaya Housing area, Angke Village, Tambora District, West Jakarta, which is a residential area that pays little attention to the drainage system and not infrequently the streets in the housing area are flooded during high rainfall.

1.1 Identification Problems
1. Full channel condition (10 cm height only)
2. The drainage on the channel is not smooth.
3. Sedimentation builds up in drainage channels.
4. There are a number of residential houses that have advanced to the street, covering the existing drainage, and making it difficult to clean the debris.
1.2. Problem Solving
1. What is the condition of the drainage channels in the Angke Jaya Housing area, Angke Village, Tambora District, West Jakarta?
2. What is the flood discharge in the Angke Jaya Housing area, Angke Village, Tambora District, West Jakarta?
3. Do you need to plan for a new dimension of drainage in the Angke Jaya Housing area, Kelurahan Angke, Tambora District, West Jakarta?

1.3. Purpose and Objectives
1. Knowing the condition of drainage channels in the area of Angke Jaya Housing, Angke Village, Tambora District, West Jakarta.
2. Knowing the magnitude of flood discharge in the Angke Jaya Housing area, Angke Village, Tambora District, West Jakarta.
3. Knowing whether or not the new dimension of drainage channel planning is needed in the Angke Jaya Housing area, Angke Village, Tambora District, West Jakarta.

1.4 Benefits of Research
At this writing the benefit gained is knowing whether the design of drainage channels in the Angke Jaya Housing area, Angke Village, Tambora District, West Jakarta is sufficient to accommodate flood plans that have been analyzed later, and concludes whether it is necessary to plan a new drainage channel in the Housing area Angke Jaya, Angke Village, Tambora District, West Jakarta.

1.5 Scope and Limitation of Problems
1. The location of the study was conducted in the area of Angke Jaya Housing, Angke Village, Tambora District, West Jakarta.
2. It only calculates the discharge of water from rainwater and household waste water.
3. Not calculating a budget plan.
4. Only calculates dimensions.

1.6 Library Review
Drainage which is derived from English drainage means to drain, drain, dispose, or drain water. In the field of civil engineering, drainage in general can be defined as a technical measure to reduce excess water, whether coming from rain water, seepage, or excess irrigation water from an area / land, so that the function of the area / land is not disrupted. Drainage can also be interpreted as an effort to control groundwater quality in relation to salinity (Suripin,2004:7) According to Bambang Triatmodjo (2015:1), hydrology is the science related to water on earth, both regarding its occurrence, distribution and distribution, its properties and its relationship with its environment, especially with living things. Hydrological planning can be found in several activities such as planning and operating water buildings, water supply for various purposes (clean water, irrigation, fisheries, animal husbandry), hydroelectric power, flood control, erosion and sedimentation control, water transportation, drainage, controlling pollution, waste water, etc.

2. Methodology

1. Study of literature
 At this stage what is done in this study is to identify problems in the drainage system that occur in the Angke Jaya Housing Area, Kel. Angke, Kec. Tambora, West Jakarta and literature study on the Drinase system as reference material and knowledge in the process of data collection, data processing, research results, to get conclusions in this study.

2. Data collection
 The data needed in this study are primary data and secondary data, which will be explained as follows:
 1) Primary Data
Primary data is population data to determine household wastewater discharge for the purpose of calculating flood discharge plans, and existing conditions of drainage channels including channel length, channel width, depth, channel elevation, channel type and channel catchment area to determine channel capacity requirements to accommodate incoming water discharge.

2) Second Data
Secondary data is data of minimum daily maximum rainfall for the last 10 years obtained from relevant agencies for the purposes of calculating flood discharge plans, and maps of the Angke Jaya Housing Area, Kel. Angke, Kec. Tambora, West Jakarta.

3. Data Processing
At this stage after all the necessary data has been collected, data processing will be carried out with the stages of the calculation of the flood discharge plan and the calculation of the capacity of the existing drainage channels.

4. Data Processing Results
After the results of data processing will be obtained the results of planned discharge and channel discharge, and if the channel discharge is greater than the planned flood discharge then the calculation of the dimensions of the new drainage channel is not carried out, and vice versa if the planned flood discharge is greater than the channel discharge it will be taken into account dimensions of new drainage channels.

2.1 Research Methods
The research methodology used in this thesis is an evaluative descriptive analysis, a method that evaluates objective conditions in a situation that is the object of research, and the object of the study is the drainage channel in the Angke Jaya Housing Area, Kel. Angke, Kec. Tambora, West Jakarta.

2.2 Research Location and Time
In this final project, the research will be conducted in August 2019 until September 2019. The research location is in the Angke Jaya Housing Area, Kel. Angke, Kec. Tambora, West Jakarta. The location map of the study can be seen in Picture 2.1.

3. Hydrological Analysis
Hydrological analysis calculations are used to get flood discharge into the drainage channel being evaluated. The stages of the hydrological analysis calculation are as follows:
1. Calculate regional rainfall
2. Analysis of the frequency of rainfall plans
3. Selection of distribution type
4. Test data compatibility

3.1 Rainfall Area Analysis
Rainfall data used is rainfall data for 10 years, namely from 2009 to 2018, rainfall data obtained from the Climatology and Geophysics Meteorological Agency.

Table 3.1. Daily / Month Maximum Rainfall Data (mm / day)

Tahun	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Spt	Okt	Nov	Des
2009	87.1	35.4	26.9	73.4	22.4	15.7	6	15	16	39	48.5	
2010	82.1	88.3	52.9	13.7	83.2	44	28.3	18.4	56.1	52	29.3	69.3
2011	31.0	56.1	30.6	6.5	62	59	31.3	10	2.8	34.3	78.2	66.4
2012	48.9	60.9	60.1	50.1	43.6	21.9	25	0	24.6	0.1	75.2	59.4
2013	117.8	55.7	52.7	34	47	46.4	37.7	71.8	0.6	43.8	77.2	81.5
2014	156.1	284	185.9	50.9	165.3	43	33.7	71.8	53.7	0	46.4	84.1
2015	133.4	247	54	56.7	29.1	25.2	2.5	0	16	0	57.4	
2016	34.9	100.8	50.9	122.7	66.4	75.5	33.4	42.3	39.2	40.3	29.1	6.6
2017	82.8	145.8	26.3	41.3	44.3	73.4	19.8	1.9	45.2	22.3	39.1	68.1
2018	68.3	100.3	129.6	69.3	14.7	12.2	0	46	15	54.1	39.8	11.9

Source: Climatology and Geophysics Meteorological Agency

Table 3.2 Daily / Year Maximum Rainfall Data (mm / day)

Tahun	Curah Hujan Maksimum
2009	149.9
2010	89.3
2011	76.5
2012	75.1
2013	117.8
2014	284
2015	247
2016	112.7
2017	148.6
2018	129.6

Source: Climatology and Geophysics Meteorological Agency

3.2. Analysis of Frequency of Rainfall Plans
Rainfall analysis of this plan is carried out to find out the maximum daily rainfall that will be used to calculate the flood discharge plan. The following calculations use the Normal Distribution, Normal Log Distribution, Log-Person III Distribution, and Gumbel Distribution.

3.2.1. Normal Distribution
The following calculation is the probability of rainfall for a 10 year return period with a Normal distribution.

Calculate the average value of variat (\(\bar{X} \))

\[\bar{X} = \frac{\sum X_i}{n} \]

\[\bar{X} = \frac{1430.5}{10} = 143.05 \text{ mm/hari} \]
Table 3.3 Normal Distribution Calculation

No	Tahun	Curah Hujan Kerasan (Xb)	X	(X – X̄)	(X – X̄)^2	(X – X̄)^2 * Fb
1	2009	148.9	143.05	5.85	34.22	200.20
2	2010	88.3	143.05	-54.75	3009.69	164116.55
3	2011	78.5	143.05	-64.55	4166.70	289860.05
4	2012	75.1	143.05	-68.13	4624.52	331941.91
5	2013	117.8	143.05	-25.25	637.76	66094.85
6	2014	284	143.05	140.95	19866.90	280239.91
7	2015	247	143.05	103.95	10705.60	1133242.38
8	2016	117.7	143.05	-25.25	637.76	66094.85
9	2017	148.6	143.05	5.55	30.80	170.95
10	2018	129.6	143.05	-13.45	180.90	2433.14

Calculation of rainfall with a return period with the Normal distribution can be seen in table 4.4

Table 3.4 Calculation of Rainfall for Birthday of T Year with Normal Distribution

Periode Ulang T (tahun)	X	S	K_T	X_T
2	143.05	70.126	0.84	201.9558
5	143.05	70.126	1.28	232.8113
10	143.05	70.126	1.64	258.0566
20	143.05	70.126	2.05	286.8083
50	143.05	70.126	2.33	306.4436

Source: Calculation Analysis Results

3.2.2. Log Normal Distribution

Following is the calculation of the rainfall probability re-distribution period of the Normal Log. Calculate the average value of variate (log X)

\[
\log X = \frac{\sum \log X}{n}
\]

\[
\log X = \frac{21.14}{10} = 2.114 \text{ mm/day}
\]

Table 3.5 Calculation of Normal Log Distribution

No	Tahun	X	Log X	Log X	Log X	(Log X - \log S)^2	(Log X - \log S)^2 * \frac{Fb(X)}{2}	\log X	(\log X - \log S)^2
1	2009	148.9	2.17	2.16	0.02	0.00003050	0.000000527	0.000000009	
2	2010	88.3	1.95	2.16	-0.21	0.0439016	-0.00919858	0.00192735	
3	2011	78.5	1.89	2.16	-0.26	0.0670218	-0.01790167	0.00461378	
4	2012	75.1	1.88	2.16	-0.28	0.078149	-0.02191635	0.0066135	
5	2013	117.8	2.07	2.16	-0.08	0.071173	-0.0099999	0.00000964	
6	2014	284	2.45	2.16	0.36	0.088708	0.02544843	0.00786322	
7	2015	247	2.09	2.16	0.24	0.056282	0.0134732	0.00316645	
8	2016	117.2	2.05	2.16	-0.10	0.010725	-0.00111077	0.000115036	
9	2017	148.6	2.17	2.16	0.02	0.00002735	0.00000472	0.000000657	
10	2018	129.6	2.11	2.16	-0.04	0.001839	-0.0007866	0.000003182	

\[
\sum = 1430.50
\]

\[
\begin{align*}
\sum \text{Log X} & = 21.14 \\
\sum \text{Log X} & = 21.55 \\
\sum \text{Log X} & = 0.41 \\
\sum \text{Log X} & = 0.26 \\
\sum \text{Log X} & = -0.01 \\
\sum \text{Log X} & = 0.023877463
\end{align*}
\]

Source: Calculation Analysis Results
Table 3.6 Calculation of Rainfall for Birthday of T Year with Normal Log Distribution

Periode Ulang T (tahun)	Log \bar{X}	S	K_T	Y_T
2	2,114	0,199	0	2,114
5	2,114	0,199	0,84	2,28116
10	2,114	0,199	1,28	2,36872
20	2,114	0,199	1,64	2,44036
50	2,114	0,199	2,05	2,52195
100	2,114	0,199	2,33	2,57767

Source: Calculation Analysis Results

3.2.3. Log Person III Distribution

Following is the calculation of the probability of rainfall with the Log Pearson III distribution.

Table 3.7 Calculation Log Pearson III Distribution

No	Tahun	X	Log X	$\log \bar{X}$	$\log Y_T$	$\log Y_T^2$	$\sum(\log X - \log Y_T)$	
1	2009	148,50	2,17	2,16	0,02	0,000306	0,00000527	0,00000092
2	2010	88,30	1,95	2,16	-0,21	0,043946	-0,0095938	0,001027353
3	2011	78,50	1,89	2,16	-0,26	0,067922	0,0170017	0,00613378
4	2012	75,10	1,88	2,16	-0,28	0,070349	-0,0211622	0,006133217
5	2013	117,80	2,07	2,16	-0,08	0,007137	-0,0059599	0,00059604
6	2014	244,40	2,45	2,16	0,30	0,088700	0,02641845	0,007662271
7	2015	247,00	2,39	2,16	0,24	0,095268	0,01334732	0,003166105
8	2016	112,70	2,05	2,16	-0,10	0,010725	-0,0011077	0,000115036
9	2017	148,60	2,17	2,16	0,02	0,000273	0.00000452	0.000000075
10	2018	129,60	2,11	2,16	-0,04	0,001838	-0,0007386	0,000003382
Σ	1403,50	21,14	0,41	0,36	-0,01	0,02937463	0,00000000	

Source: Calculation Analysis Results

The steps in using the Log Person III distribution are as follows:

Calculate the average price (log X)

$$\log \bar{X} = \frac{\sum \log X}{n}$$

Calculate Standard Deviation Price (S)

$$S = \sqrt{\frac{\sum_{i=1}^{n} (\log X_i - \log \bar{X})^2}{n-1}}$$

Calculate the coefficient of skewness

$$G = \frac{\sum_{i=1}^{n} (\log X_i - \log \bar{X})^3}{10 \times (n-1)(n-2)s^3}$$

Calculate the rain or flood logarithm with a return period T

The K value (Interpolation) is a standardized variable for X, the magnitude of which depends on the coefficient of G, can be seen in the table K Value for the Distribution of Person Log III.
Table 3.8 K value (interpolation)

Periode Ulang	G
	-0,1
	0,0000176
	0,0
2	0,0165
5	0,846
10	1,27
25	1,7155
50	1,998

Source: Calculation Analysis Results

Log $X_T = \log \bar{X} + K.s$

Log $X_T = 2,114 + 0,00825 \times 0,199$

Log $X_T = 2,116$

$X_T = 130,617 \text{ mm/day}$

Table 3.9 XT Calculation

Periode Ulang	Kemencengan	K	Log X_T	X_T
2	0,00825	2,116	130,617	
5	0,844	2,281956	191,406	
10	1,276	2,367924	233,305	
25	1,73325	2,45891675	287,685	
50	2,0245	2,5168755	328,757	

Source: Calculation Analysis Results

3.2.4. Gumbel Distribution

Calculate the average value of variat (log X)

$\bar{X} = \frac{\sum X_i}{n}$

$\bar{X} = \frac{1430,5}{10} = 143,05 \text{ mm/hari}$

Table 3.10. Gumbel Distribution Calculation

No.	Tahun	Cukup Hujan	X_i	$(X_i - \bar{X})$	$(X_i - \bar{X})^2$	$(X_i - \bar{X})^3$	$(X_i - \bar{X})^4$
1	2009	140,5	140,05	5,05	34,25	100,20	3171,28
2	2010	88,30	140,05	-54,75	2997,56	-104115,95	-1805388,04
3	2011	78,50	140,05	-61,55	3783,06	-2261234,01	-67031304,03
4	2012	140,5	140,05	0,45	0,20	0,00	0,00
5	2013	117,80	140,05	-22,25	502,56	-95099,04	-13260446,56
6	2014	82,60	140,05	-57,45	3260,56	-192149,01	-58847834,04
7	2015	247,60	140,05	103,95	10805,06	1122242,38	1216761046,39
8	2016	112,70	140,05	-27,30	747,69	-141899,01	-226601524,06
9	2017	148,60	140,05	8,60	73,96	80,96	1535,36
10	2018	129,60	140,05	-10,45	110,02	-630,99	-13646449,99

$\sum = 1430,50$ \quad 0,00 \quad 46708,50 \quad 1139088,68 \quad 5604410088,23

Source: Calculation Analysis Results
Yn, Sn, and Ytr values are obtained from the Reduce Mean (Yn), Reduced Standard Deviation (Sn), and Reduced Variate (YTr) tables. Calculation of the probability value of rainfall for a 10 year return period with the Gumbel distribution is as follows:

\[X_{10} = \bar{X} + \frac{Y_{10} - Y_n}{S_n} \times 70,126 \]

\[X_{10} = 143,05 + \frac{22510 - 0,4952}{0,9496} \times 70,126 \]

\[= 272,712 \text{ mm/day} \]

3.2.5. Selection of Distribution Type

Statistical parameters in the selection of this type of distribution needed are Standard Deviation (S), Skewness Coefficient (Cs), Kurtosis Measurement (Ck) and Variation Coefficient (Cv). Here are the results of the calculation:

Distribution Type	Cs = 0	Cs \geq 1	Cs \geq 1,14
Normal		Cs = -0.206	Cs = -0.575
		Cs = 0.341	Cs = 0.335
Log Normal		Cs = 0.272	Cs = 0.355
Gumbel	Cs = 1,14	Cs = -0.206	Cs = 0.341
	Cs = 5,40		
Log Person III	Cs = 0	Atau selain nilai distes	Cs = 0.575
			Cs = 0.335

Source: Calculation Analysis Results

From the calculation results presented in table 4.11, it can be concluded that the type of distribution that can be taken is the Log Person III distribution.

3.3. Data Match Test

3.3.1. Chi Square Test

Before carrying out the calculation of the data suitability test, first carry out data processing, which is to sort data from the largest to the smallest as presented in table 4.12.

Tahun	Curah Hujan Maksimum
2009	148,9
2010	88,3
2011	78,5
2012	75,1
2013	117,8
2014	284
2015	247
2016	112,7
2017	148,6
2018	129,6

Source: Calculation Analysis Results

The next stage is to calculate the distribution class (G), which is as follows:

\[G = 1 + 3,33 \log (n) \]

\[G = 1 + 3,33 \log (10) \]
The distribution class used 10 pieces of data is 5. As an interval class that is used every 20%. Data intervals are taken from the reset period as follows:

The results of the calculation of the distribution class above are then included as class interval classes in each probability distribution.

From the calculation of the distribution of Log Person III are as follows:

\[S = 0.199 \]
\[G = -0.0000176 \]

From table 2.2 the interpolation is done so that the K value for each interval is as follows:

Interval	K5	K2.5	K1.67	K1.25
X5	0.842001	0.140336	-0.37048	-0.842

Following is the calculation of the class interval for the distribution of Log Person III

Log X5 = + K5. S.
\[= 2.114 + (0.842001 \times 0.199) \]
\[= 2.282 \]
X5 = 191,426

Log X2.5 = + K5. S.
\[= 2.114 + (0.140336 \times 0.199) \]
\[= 2.142 \]
X2.5 = 138.68

Log X1.67 = + K5. S.
\[= 2.114 + (-0.37048 \times 0.199) \]
\[= 2.041 \]
X1.67 = 109,901

Log X1.25 = + K5. S.
\[= 2.114 + (-0.842 \times 0.199) \]
\[= 1.947 \]
X1.25 = 88,512

Table 3.13. Chi Square Test

No	Sub Kelas	Jumlah Data	Oi	Ei	\(\chi^2 \)
1	P < 88,512	10	2	1	0.5
2	88,512 < P < 109,901	10	2	-2	2
3	109,901 < P < 138,68	10	2	1	0.5
4	138,68 < P < 191,426	10	2	0	0
5	P > 191,426	10	2	0	0

Source: Calculation Analysis Results

\[Ei = \frac{n}{k} = \frac{10}{5} = 2 \]
\[(DK) = 5 - (2 + 1) = 2 \]

From Table 4.13 it is known, based on Table 2.7 the critical value for the Chi-squared distribution at the degree of confidence (\(\alpha \)) = 0.05 or 5% obtained value Because the Pearson III log distribution equation can be accepted.

3.3.2. Smirnov Kolmogorov Test

The results of calculations can be seen in table 4.14, an example of calculation using data in 2008, which is as follows:
a. Sorting rain data from large to small can be seen in table 4.12, and look for opportunities with the opportunity formula as follows:

\[
P(\text{Log}X) = \frac{m}{n+1}
\]
\[
P(\text{Log}X) = \frac{1}{10+1} = 0.091
\]

b. Look for the value of \(P(X <) \):

\[
P(\text{Log}X <) = 1 - P(\text{Log}X)
\]
\[
= 1 - 0.091 = 0.909
\]

c. Look for the value \(f(t) \):

\[
f(t) = \frac{\log X - \log \bar{X}}{S} = \frac{2.113 - 2.114}{0.199} = -0.007
\]

d. the value of \(P'(\text{Log}X) \) is searched using the area table under the normal curve of \(f(t) \) with the value:

\[
P(\text{Log}X) = \frac{m}{n-1}
\]
\[
P(\text{Log}X) = \frac{1}{10-1} = 0.111
\]

Up to value \('\text{Log}X' \):

\[
P'(\text{Log}X <) = 1 - P'(\text{Log}X)
\]
\[
= 1 - 0.111 = 0.889
\]

Find the \(D \) value using the formula:

\[
D = P(\text{Log}X <) - P'(\text{Log}X <) = 0.909 - 0.889 = 0.020
\]

| Table 3.14. Calculation Results of the Smirnov Kolmogorov Test Distribution Person Log III |
|---|---|---|---|---|---|---|---|
| M | X | Log X | P(\text{Log}X) | P(\text{Log}X}< | P'(\text{Log}X}< | P(\text{Log}X) | P(\text{Log}X}< | D |
| 1 | 146.90 | 2.172 | 0.991 | 0.206 | 0.111 | 0.089 | 0.005 |
| 2 | 88.30 | 1.960 | 0.382 | 0.118 | 0.044 | 0.222 | 0.778 | 0.040 |
| 3 | 76.10 | 1.895 | 0.273 | 0.077 | 0.010 | 0.323 | 0.677 | 0.060 |
| 4 | 75.10 | 1.836 | 0.364 | 0.614 | 1.010 | 0.644 | 0.356 | 0.080 |
| 5 | 117.30 | 2.015 | 0.455 | 0.545 | -0.233 | 0.550 | 0.466 | 0.101 |
| 6 | 284.00 | 2.452 | 0.565 | 0.452 | 1.700 | 0.067 | 0.130 | -0.120 |
| 7 | 247.00 | 2.199 | 0.366 | 0.464 | 1.400 | 0.778 | 0.022 | 0.100 |
| 8 | 112.70 | 2.052 | 0.273 | 0.013 | -0.832 | 0.999 | 0.111 | 0.162 |
| 9 | 140.60 | 2.172 | 0.318 | 0.182 | 0.192 | 1.000 | 0.000 | 0.182 |
| 10 | 129.60 | 2.152 | 0.989 | 0.093 | 0.007 | 1.111 | 0.011 | 0.000 |

Source: Calculation Analysis Results

From Table 4.14. above it can be concluded that \(D_{\text{max}} = 0.202 \) on the 9th sequence data. By using Table 2.8, Critical value of \(D_0 \) for Smirnov-Kolmogorov test with a degree of confidence of 5% and \(n = 10 \), then obtained \(D_0 = 0.41 \). Because the value of \(D_{\text{max}} < D_0 \) then Pearson log distribution distribution III can be accepted.

3.4 Calculation of Flood Discharge Plan

The design of flood discharge calculation is carried out to get the flood discharge entering the drainage.

3.4.1 Flow Coefficient

Flow coefficient (C) is a constant price, a ratio between the rain that flows on the surface and the rain water that falls. In the Angke Jaya Tambora Housing Area of West Jakarta, the study was included in the character of multiunit housing (combined), so that the value obtained in accordance with table 2.9 was 0.60 to 0.75 and the highest value was taken, 0.75.
3.4.2 Calculation of Time of Concentration of Channels

The results of the calculation of the complete concentration time are presented in table 4.16.

No. Subarea	L (m)	S (m)	n	A (m²)	P (m)	R (m)	V (m/s)	tc (min)	tc (sec)	
A1	102.50	0.02	0.01	22.48	0.60	0.60	0.23	3.75	0.46	22.92
A2	69.33	0.01	0.01	17.67	0.25	0.25	0.18	2.68	0.43	18.10
A3	125.70	0.01	0.01	43.14	0.48	0.48	0.24	2.46	0.85	43.99
A4	240.05	0.00	0.01	113.86	0.40	0.40	0.22	1.69	2.37	116.22
B1	125.70	0.01	0.01	43.14	0.48	0.48	0.24	2.46	0.85	43.99
B2	69.33	0.01	0.01	17.67	0.25	0.25	0.18	2.68	0.43	18.10
B3	128.50	0.01	0.01	44.59	0.48	0.48	0.24	2.43	0.88	45.47
B4	52.60	0.02	0.01	11.68	0.40	0.40	0.22	3.61	0.24	11.92
C1	128.50	0.01	0.01	44.59	0.48	0.48	0.24	2.43	0.88	45.47
C2	69.33	0.01	0.01	17.67	0.30	0.30	0.28	2.70	0.43	18.10
C3	125.00	0.01	0.01	42.78	0.48	0.48	0.24	2.47	0.84	43.63
C4	52.60	0.02	0.01	11.68	0.40	0.40	0.22	3.61	0.24	11.92
D1	308.13	0.00	0.01	165.97	0.56	0.56	0.30	1.59	3.21	167.17
D2	308.13	0.00	0.01	165.97	0.36	0.36	0.20	1.40	3.65	167.62
D3	31.20	0.03	0.01	5.34	0.20	0.20	0.14	1.34	0.15	5.48
D4	52.60	0.02	0.01	11.68	0.48	0.48	0.24	3.80	0.23	11.91
D5	31.00	0.03	0.01	5.28	0.16	0.16	0.10	1.20	0.13	5.34
D6	31.00	0.03	0.01	5.28	0.16	0.16	0.10	1.20	0.13	5.34
D7	52.60	0.02	0.01	11.68	0.48	0.48	0.24	3.80	0.23	11.91
D8	25.00	0.04	0.01	3.83	0.12	0.12	0.11	3.26	0.13	3.95
D9	25.00	0.04	0.01	3.83	0.12	0.12	0.11	3.26	0.13	3.95
D10	52.60	0.02	0.01	11.68	0.48	0.48	0.24	3.80	0.23	11.91
D11	51.25	0.02	0.01	11.25	0.56	0.56	0.25	4.01	0.21	11.44
D12	51.25	0.02	0.01	11.25	0.56	0.56	0.25	4.01	0.21	11.44
D13	208.00	0.00	0.01	91.85	0.36	0.36	0.20	1.69	2.05	93.88
D14	101.50	0.03	0.01	31.30	0.56	0.56	0.23	2.78	0.61	33.12
D15	101.50	0.01	0.01	31.30	0.56	0.56	0.23	2.78	0.61	33.12

Source: Calculation Analysis Results

3.4.3 Calculation of Intensity of Rainfall Area

The return period that will be used in the calculation of rainfall intensity is a return period of 2 years. Rainfall intensity is calculated using the mononobe formula with the concentration time value (tc).

Calculation of rainfall intensity on channel A1 is as follows:

\[I = \frac{24}{(24\sqrt{\frac{tc}{2}})} \]

\[I = \left(\frac{130.617}{24}\right) \cdot \left(\frac{24}{22.92/60}\right)^{\frac{2}{3}} = 86.011 \text{ mm/hour} \]

The results of a complete rainfall intensity calculation are presented in table 4.16.
Table 3.16. Rainfall Intensity (I)

No	Xc	t_1	t_2	I
	mm/hr	min	min	mm/jam
A1	120.617	22.920	0.382	86.011
A2	130.617	18.100	0.302	106.673
A3	130.617	43.990	0.733	55.692
A4	130.617	116.220	1.937	29.141
B1	120.617	42.990	0.733	55.692
B2	120.617	18.100	0.302	106.673
B3	120.617	45.670	0.758	54.477
B4	120.617	11.920	0.199	132.998
C1	120.617	45.670	0.758	54.477
C2	130.617	18.100	0.302	106.673
C3	130.617	43.630	0.727	55.998
C4	130.617	11.920	0.199	132.998
D1	130.617	167.170	2.788	22.870
D2	130.617	167.620	2.794	22.870
D3	130.617	5.480	0.091	223.277
D4	130.617	11.910	0.199	133.073
D5	130.617	5.440	0.091	224.370
D6	130.617	5.440	0.091	224.370
D7	130.617	11.910	0.199	133.073
D8	130.617	3.950	0.050	277.250
D9	130.617	3.950	0.050	277.250
D10	130.617	11.910	0.199	133.073
D11	130.617	11.440	0.101	136.693
D12	130.617	11.440	0.101	136.693
D13	130.617	0.380	1.565	33.568
D14	120.617	31.920	0.332	68.969
D15	120.617	31.920	0.332	68.969

Source: Calculation Analysis Results

3.4.4 Distribution of Catchment Areas

Catchment area calculations are done using the help of Autocad software. The catchment area can be seen in Figure 4.1, and the area of drainage catchment area can be seen in table 4.15.

![Figure 3.1. Catchment Area](Source: Personal Image)
Table 3.17. Capture Area of Drainage

No. Saluran	Jalan	Pemukiman	Jumlah	
	m²	km²	m²	km²
A1	245.2273	0.00023	245.2273	0.00023
A2	236.9808	0.00023	556	0.00070
A3	277.48	0.00058	2866	0.00143
A4	120.025	0.00012	705	0.00074
B1	237.49	0.00028	1600	0.00224
B2	226.9983	0.00023	626	0.00087
B3	367.6965	0.00087	2091	0.00247
B4	120.025	0.00013	576	0.00069
C1	367.6965	0.00037	1862	0.00234
C2	226.9983	0.00023	500	0.00068
C3	386.125	0.00031	1825	0.00231
C4	120.025	0.00012	319	0.00043
D1	153.6625	0.00015	98	0.00111
D2	153.6625	0.00015	852	0.00109
D3	66.2225	0.00010	339	0.00043
D4	120.025	0.00012	527	0.00067
D5	116.25	0.00012	379	0.00035
D6	116.25	0.00012	374	0.00040
D7	120.025	0.00012	411	0.00046
D8	62.715	0.00006	154	0.00017
D9	62.715	0.00006	277	0.00034
D10	120.025	0.00012	403	0.00053
D11	357.975	0.00036	353	0.00041
D12	66.22	0.00007	613	0.00071
D13	679.725	0.00068	3006	0.00374
D14	274.1875	0.00027	919	0.00197
D15	274.1875	0.00027	891	0.00198

Source: Calculation Analysis Results

3.4.5 Calculation of Rain Water Flow Discharge

Table 3.18. Rainwater Flow Discharge

No. Saluran	C	I	A	Qp	Qp total
	mm/h	m³/s	m²	m³/det	m³/det
A1	0.75	89.011	0.00251	0.04383	0.04383
A2	0.75	100.673	0.00676	0.01602	0.01602
A3	0.75	55.692	0.00314	0.00650	0.00650
A4	0.75	29.141	0.00683	0.00150	0.00150
B1	0.75	55.692	0.00225	0.01608	0.01608
B2	0.75	100.673	0.00086	0.01799	0.01799
B3	0.75	54.477	0.00246	0.01292	0.01292
B4	0.75	102.998	0.0007	0.01930	0.01930
C1	0.75	54.477	0.00233	0.02654	0.02654
C2	0.75	100.673	0.00082	0.01728	0.01728
C3	0.75	55.998	0.00213	0.02488	0.02488
C4	0.75	102.998	0.00064	0.01722	0.01722
C5	0.75	22.877	0.00114	0.00544	0.00544
D1	0.75	22.877	0.00110	0.00478	0.00478
D2	0.75	22.877	0.00114	0.00544	0.00544
D3	0.75	133.073	0.00666	0.01823	0.01823
D4	0.75	224.371	0.00505	0.01216	0.01216
D5	0.75	224.371	0.00505	0.01216	0.01216
D6	0.75	133.073	0.00505	0.01216	0.01216
D7	0.75	224.371	0.00505	0.01216	0.01216
D8	0.75	224.371	0.00505	0.01216	0.01216
D9	0.75	133.073	0.00505	0.01216	0.01216
D10	0.75	133.073	0.00505	0.01216	0.01216
D11	0.75	133.073	0.00505	0.01216	0.01216
D12	0.75	133.073	0.00505	0.01216	0.01216
D13	0.75	133.073	0.00505	0.01216	0.01216
D14	0.75	133.073	0.00505	0.01216	0.01216
D15	0.75	133.073	0.00505	0.01216	0.01216

Source: Calculation Analysis Results

Calculation of rainwater flow rate using the rational method formula, the following is the calculation of rainwater flow rate for channel D2, which is as follows:

\[
Q_p = 0.278 \text{ C.I.A}
\]
Qp = 0.278. (0.75). (22.829). (0.00101)
Qp = 0.01022 m³/sec
For channel D2, an additional water discharge from D1 flow is added,
Qp D1 + Q_p D2 = 0.00544 + 0.00478
Qtotal D2 = 0.01022 m³/sec
The full calculation will be presented in table 4.18.

3.4.6 Calculation of Dirty Water Discharge

The calculated dirty water discharge is the water debit that comes from household waste, and other buildings. The amount is affected by the large number of residents and the average water needs of the population. Estimates for the average disposal of liquid waste per person per day are presented in table 2.10, and it is concluded that the amount of waste water per person per day is 400 liters. Following are the calculations for channel D2.

Q_ak = Pn x 400 liters / person / day
Q_ak = Pn x 0.00463 liter / person / sec
Q_ak = 45 x 0.00463 liter / person / sec
Q_ak = 0.2083 m³/sec
The complete calculation for dirty water discharge has been presented in table 3.19.

Tabel 3.19. Debit Air Kotor

No. Saluran	Jumlah Rumah	Jumlah Orang	Air Bebasan	Air Bebasan Source: Calculation Analysis Results
			m³/dt	Qk m³/dt
A1	17	68	0.00463	0.2484 0.356
A2	2	9	0.00463	0.0417 0.455
A3	17	66	0.00463	0.3056 0.384
A4	2	10	0.00463	0.0463 1.398
B1	18	70	0.00463	0.3241 0.403
B2	2	9	0.00463	0.0417 0.679
B3	18	61	0.00463	0.2824 0.319
B4	2	10	0.00463	0.0463 0.644
C1	18	50	0.00463	0.2735 0.310
C2	2	8	0.00463	0.0379 0.677
C3	17	58	0.00463	0.2685 0.560
C4	2	9	0.00463	0.0417 0.310
D1	10	48	0.00463	0.2222 0.222
D2	9	45	0.00463	0.2083 0.451
D3	2	8	0.00463	0.0379 0.408
D4	2	7	0.00463	0.0324 0.500
D5	3	9	0.00463	0.0417 0.542
D6	3	8	0.00463	0.0379 0.379
D7	3	7	0.00463	0.0324 0.461
D8	3	9	0.00463	0.0417 0.653
D9	3	9	0.00463	0.0417 0.694
D10	5	20	0.00463	0.0226 0.787
D11	4	18	0.00463	0.0333 0.870
D12	12	48	0.00463	0.2222 0.481
D13	18	56	0.00463	0.5595 0.559
D14	13	52	0.00463	0.2407 0.722
D15	11	44	0.00463	0.2037 1.674

3.4.7. Calculation of Flood Discharge Plan
In the calculation of flood discharges in the Angke Jaya Tambora Housing Area of West Jakarta, namely rainwater flow discharges added with dirty water discharge.
The following is a calculation on channel A1.

Qf = Q_p total + Q_k total
Qf = 0.00053 + 0.042
Qf = 0.043 m³/dt
The complete calculations for flood discharge are presented in table 3.20.
3.5 Calculation of Drainage Channel Dimensions

After knowing the planned flood discharge in the West Jakarta Angora Jaya Tambora Housing Area, the dimensions of the existing drainage channel will be calculated to determine whether or not the channel is sufficient to accommodate the planned flood discharge. Furthermore, if there are unsafe channels, a new drainage channel calculation will be performed to determine the dimensions of the safe channel.

3.5.1 Calculation of Existing Drainage Channel Dimensions

Berikut merupakan perhitungan untuk saluran A1:

- b = 0.6
- h = 1
- $S = 0.02$
- $A = bh$
- $A = 0.6 \times 1 = 0.6 \text{ m}^2$
- $P = b + 2h$
- $P = 0.6 + (2 \times 1) = 2.60$
- $R = \frac{A}{P}$
- $R = \frac{0.60}{2.60} = 0.23 \text{ m}$
- $V = \frac{1}{n} \frac{2^{\frac{1}{2}} \sigma}{R^{\frac{1}{2}} S^{\frac{1}{2}}}$
- $V = \frac{1}{0.01} \frac{2^{\frac{1}{2}} \cdot 0.02^{\frac{1}{2}}}{0.23^{\frac{1}{2}} \cdot 0.02^{\frac{1}{2}}}$
- $V = 3.75 \text{ m/sec}$

Table 3.20. Flood Discharge Plan

No	Saluran	$Q_{p \text{ total}}$	$Q_{c \text{ total}}$	Q_r
A1	0.06318	0.356	0.418	
A2	0.06355	0.475	0.532	
A3	0.07376	0.384	0.456	
A4	0.19424	1.388	1.522	
B1	0.06134	0.403	0.464	
B2	0.03526	0.079	0.114	
B3	0.04519	0.319	0.365	
B4	0.09339	0.644	0.735	
C1	0.04373	0.310	0.354	
C2	0.01728	0.037	0.054	
C3	0.02488	0.269	0.293	
C4	0.04260	0.310	0.353	
D1	0.00544	0.222	0.228	
D2	0.01022	0.431	0.441	
D3	0.03047	0.458	0.498	
D4	0.04870	0.500	0.549	
D5	0.07166	0.542	0.514	
D6	0.09317	0.579	0.571	
D7	0.10754	0.611	0.719	
D8	0.12010	0.653	0.773	
D9	0.13979	0.694	0.834	
D10	0.15436	0.787	0.941	
D11	0.17402	0.870	1.045	
D12	0.10574	0.481	0.527	
D13	0.02624	0.259	0.286	
D14	0.06289	0.722	0.785	
D15	0.01937	1.074	1.265	

Source: Calculation Analysis Results
If $Q_{\text{sal}} > Q_{\text{rencana}}$, the drainage channel is able to accommodate the flow of flood discharge, and declared safe. If the Channel $<$ Q_{rage} drainage plan is able to accommodate the flow of flood discharge, and declared unsafe. The full calculation is presented in table 3.21.

Figure 3.2. Drainage Channel Cut

![Drainage Channel Cut](Source: Personal Image)

Table 3.21. Calculation of Existing Drainage Channel Dimensions

No	Saluran	W	L	Q_{rencana}	Q_{sal}	Kategori	Aman/Tidak Aman
A	8.80	5.00	4.00	3.75	2.25	0.50	Aman
A1	6.78	3.12	2.00	1.98	0.96	0.33	Aman
A2	8.06	5.00	4.00	3.48	0.86	0.13	Tidak Aman
A3	8.00	5.00	4.00	4.89	0.86	0.13	Tidak Aman
A4	8.00	5.00	4.00	6.08	0.86	0.13	Tidak Aman
B1	8.00	5.00	4.00	2.40	0.96	0.40	Aman
B2	8.00	5.00	4.00	2.40	0.96	0.40	Aman
B3	8.00	5.00	4.00	2.40	0.96	0.40	Aman
B4	8.00	5.00	4.00	2.40	0.96	0.40	Aman
C1	8.80	5.00	4.00	2.40	0.96	0.40	Aman
C2	8.80	5.00	4.00	2.40	0.96	0.40	Aman
C3	8.80	5.00	4.00	2.40	0.96	0.40	Aman
C4	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D1	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D2	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D3	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D4	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D5	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D6	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D7	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D8	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D9	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D10	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D11	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D12	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D13	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D14	8.80	5.00	4.00	2.40	0.96	0.40	Aman
D15	8.80	5.00	4.00	2.40	0.96	0.40	Aman

Source: Calculation Analysis Results

Berdasarkan perhitungan dimensi saluran drainase eksisting pada tabel 3.21, ditemukan saluran yang masuk dalam kategori “tidak aman”, karena kapasitas saluran tidak cukup untuk menampung debit banjir rencana, yaitu pada saluran A4, D5, D6, D8, dan D9. Dalam mengatasi hal ini akan direncanakan sumur resapan.

3.6 Infiltration Wells Plan

The infiltration well planning is used in draining excess water discharge in several “unsafe” channels, by draining rainwater that falls from the roofs of residents’ homes to seep into the ground by storing the water in the infiltration well. Channels that fall into the “unsafe” category will be presented in table 3.22, as follows:
Table 3.22 Channels By Unsafe Categories (Q drainage channels <Q plan)

No Saluran	Qsel (m³/det)	Qrencana (m³/det)	Kelebhan Debit	Kategori
A4	0.68	1.59	0.92	Tidak Aman
D5	0.54	0.61	0.08	Tidak Aman
D6	0.54	0.67	0.13	Tidak Aman
D8	0.39	0.77	0.38	Tidak Aman
D9	0.39	0.83	0.44	Tidak Aman

Source: Calculation Analysis Results

Based on table 3.22, there are channels that fall into the "unsafe" category, so that an infiltration well will be planned.

3.6.1 Infiltration Wells Construction

1. Channels of income / expenditure using pralon pipes.
2. The well wall can use masonry without plastering
3. The bottom of the well and the gaps between the soil excavation and the wall where the water is absorbed are filled with fibers / gravel.

3.6.2 Discharge of Rainfall Plans on the Roof Surface

To find out the flow of rain that enters the infiltration well, it is necessary to know in advance the flow of rain falling through the roof of the residents' houses. Example calculation using No. A4 channels as follows:

\[Q_{masuk} = 0.278 \times C.I.A \]

Is known:
- Catap = 0.75 (based on Table 2.9. Runoff Coefficient Standard)
- IA4 = 29.14 mm / hour
- Aatap = 80 m² = 0.0080 km²

So, Q masuk is:

\[Q_{masuk} = 0.278 \times 0.75 \times 29.14 \times 0.0080 = 0.048607 \text{ m}^3 / \text{sec} \]

Calculation of rain discharges that fall to the roof surface will be presented in full in table 3.23, as follows:

Table 3.23 Rainwater Discharge Falls on the Roof

No Saluran	C	I	Atrum	Aatap	Qmasuk
A4	0.75	29.14	0.00	0.008	0.048607
D5	0.75	224.57	0.00	0.008	0.374249
D6	0.75	224.57	0.00	0.008	0.374249
D8	0.75	277.716	0.00	0.008	0.463264
D9	0.75	277.716	0.00	0.008	0.463264

Source: Calculation Analysis Results

4.6.3 Discharge of Absorption Well Absorption

Furthermore, it is necessary to know the discharge of rainwater that enters the absorption well (Qresapan). The calculation refers to No. Channel A4, as follows:
Qresapan = F. K. H

Infiltration Wells Design Plan:

Is known:
- Qresapan = Discharge that can be absorbed by infiltration wells (m³/sec)
- Type of blank wells with circular appearance
- The planned well diameter is 2 m = R = 1 m
- F = geometric / circumference factor = 2 x 3.14 x 1 = 3.14 m
- K = For the soil permeability value, it is assumed that the value of K = 10^{-2} cm / s = 10^{-4} m / s for the shaft soil.

\[
Q_{\text{resapan}} = F \cdot K \cdot H
\]

\[
Q_{\text{resapan}} = 3.14 \cdot 10^{-4} \cdot 2
\]

\[
Q_{\text{resapan}} = 0.000628 \text{ m}^3 / \text{sec}
\]

For complete Qresapan calculation will be presented in table 4.24, as follows:

JENIS TANAH	k (cm/sec)	NAMA
Kerikil	> 10^5	High permeability
kerikil lunak panir	10^3 – 10^4	Medium permeability
panir sungai lunak lunak tdk padat	10^5 – 10^7	Low permeability
limu padat lunak leupung	10^5 – 10^7	Very low permeability
Leupung	< 10^{-5}	Impervious (resistant)

\(H = \) Assumption of infiltration well depth = 2 m

Infiltration Wells Calculation:

\[
Q_{\text{resapan}} = F \cdot K \cdot H
\]

\[
Q_{\text{resapan}} = 3.14 \cdot 10^{-4} \cdot 2
\]

\[
Q_{\text{resapan}} = 0.000628 \text{ m}^3 / \text{sec}
\]

For complete Qresapan calculation will be presented in table 4.24, as follows:
3.6.4 Residual Water Discharge Flowing into Drainage Channels

Furthermore, it will be found the difference in the remaining discharge from the rain discharge that has been accommodated into the infiltration well, by way of Qmasuk (Table 4.23) reduced by Qresapan (Table 4.24). The following is an example of a calculation that refers to No. A4 channel:

Is known :
- \(Q_{in} = 0.048607 \text{ m}^3 / \text{sec} \) (Table 4.23)
- \(Q_{infiltration} = 0.000628 \) (table 4.24)

Settlement :

\[
Q_{tampung} = Q_{masuk} - Q_{resapan} \\
= 0.048607 - 0.000628 \\
= 0.047979 \text{ m}^3 / \text{sec}
\]

For the calculation of the complete infiltration wells collected discharge will be presented in table 4.25 as follows :

Table 3.25 Discharge accommodated in infiltration wells

No Saluran	Qmasuk atap (m³/dtk) (4)	Qresapan (m³/dtk) (5)	Qtampung (m³/dtk) (6) = (5) - (4)
A4	0.048607	0.000628	0.047979
D5	0.374249	0.000628	0.373621
D6	0.374249	0.000628	0.373621
D8	0.463264	0.000628	0.462636
D9	0.463264	0.000628	0.462636

Source : Calculation Analysis Results

4.6.5 Total Infiltration Wells Needs

After knowing the difference in the remaining discharge from the rain discharge that has been accommodated into the infiltration well, it can be seen the amount of infiltration well needs in the area of the house in each Channel Number. Example calculation refers to No. A4 channel:

Is known :
- Discharge Excess A4 = 0.92 m³ / sec (Table 4.22)
- \(Q_{tampung} = 0.047979 \text{ m}^3 / \text{sec} \)

Settlement :

\[
\text{Jumlah Sumur Resapan} = \frac{\text{Kelebihan Debit}}{Q_{tampung}}
\]

The calculation of the number of recharge well requirements in full is presented in table 4.26 as follows :
Table 3.26 Amount of Infiltration Wells Needs

No Saluran	Qlebih (m³/dtk) (3) = (2) - (1)	Qtampung (m³/dtk) (6) = (5) - (4)	Jumlah Sumur Resapan (7) = (2) : (6)
A4	0.92	0.047979	19
D5	0.08	0.373621	1
D6	0.13	0.373621	1
D8	0.38	0.462636	1
D9	0.44	0.462636	1

Source: Calculation Analysis Results

From Table 3.26, it is known that the number of infiltration wells needed in A4 Channel is 19 units, Channel D5, D6, D8, and D9 are 1 piece.

4. Conclusion

From the results of the analysis and discussion in the previous chapter and answer from the formulation of the problem, the following conclusions can be drawn:
1. The condition of the drainage canal in Angke Jaya Tambora Housing Area West Jakarta is poorly maintained, there are many houses that progress to cover the existing channels, making the channel difficult to clean, so there is a lot of garbage in the channel and accumulation of sedimentation. There are 5 channels that are concluded to be "unsafe", because the planned flood discharge is greater than the drainage capacity, namely on channels A4, D5, D6, D8, and D9.
2. The need for flood drainage capacity in the Angke Jaya Tambora Housing Area of West Jakarta is 13,225 m³ / second.

5.2 Suggestions

Suggestions that can be delivered at the writing of this thesis after getting the results and solutions provided, the advice that will be given are as follows:
1. Regular cleaning of drainage channels, on sedimentation and rubbish in the drainage channel.
2. Construction of infiltration wells on channels A4, D5, D6, D8, D9 can be carried out, so that in the rainy season stagnant water can be diverted to infiltration wells.

5. References

Analisa Kapasitas Saluran Drainase Perumahan Kopri Kelurahan Kedaung Wetan Tanggerang. Wijaya, Sendi Eka. 2015. Jakarta : Universitas Mercubuana, 2015.
Analisis Hidrologi dan Kapasitas Drainase Kota Surakarta. Hutomo, Fajar Priyo and Firmansyah, Rheza. 2016. Semarang : Politeknik Negeri Semarang, 2016.
Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air. Indonesia, Pemerintah Republik. 1982. Indonesia : Pemerintah Republik Indonesia, 1982. 82.
Perencanaan Saluran Drainase Ramah Lingkungan Dusun Kedungbendo Desa Gemekan Kecamatan Sooko Kabupaten Mojokerto. Kurniawan, Hendry. 2017. Semarang : Politeknik Negeri Semarang, 2017.
Rancangan Sumur Resapan Air Hujan Sebagai Salah Satu Usaha Konservasi Air Tanah di Perumahan Dayu Baru Kabupaten Sleman Daerah Istimewa Yogyakarta. Indramaya, Eka Ayu and L. Setyawan, Purnama Ig. 2013. Yogyakarta : Universitas Gajah Mada, 2013.
Suripin. 2004. Sustainable Urban Drainage System. Yogyakarta : C.V. Andi Offset, 2004.
Tata Cara Perencanaan Sumur Resapan Air Hujan Untuk Lahan Pekarangan. Wilayah, Departemen Permukiman dan Prasarana. 2000. 2000.