Testing for Common Trends in Nonstationary Large Datasets

Matteo Barigozzia and Lorenzo Trapanib

aDepartment of Economics, Università di Bologna, Bologna, Italy; bSchool of Economics, University of Nottingham, Nottingham, UK

\textbf{Abstract}

We propose a testing-based procedure to determine the number of common trends in a large nonstationary dataset. Our procedure is based on a factor representation, where we determine whether there are (and how many) common factors (i) with linear trends, and (ii) with stochastic trends. Cointegration among the factors is also permitted. Our analysis is based on the fact that those largest eigenvalues of a suitably scaled covariance matrix of the data corresponding to the common factor part diverge, as the dimension of the dataset diverges, whilst the others stay bounded. Therefore, we propose a class of randomized test statistics for the null that the pth largest eigenvalue diverges, based directly on the estimated eigenvalue. The tests only requires minimal assumptions on the data-generating process. Monte Carlo evidence shows that our procedure has very good finite sample properties, clearly dominating competing approaches when no common trends are present. We illustrate our methodology through an application to the U.S. bond yields with different maturities observed over the last 30 years.

\section{Introduction}

Large panels of time series often exhibit comovements, and can also be nonstationary. In such a case, a convenient way of capturing both aspects (comovements and nonstationarity) is to employ a factor model where the factors represent common trends. Hence, the first step in the analysis is to determine the presence (or indeed the absence), and the number, of common trends.

The importance of considering common, nonstationary trends when modeling large datasets has been illustrated through numerous applications. For example, focusing only on economics and finance, Bai (2004) studied employment fluctuations across 60 industries in the United States; Moon and Perron (2007) considered a panel of interest rates at different maturities in the United States and Canada; Engel, Mark, and West (2015) develop a forecasting technique applied to a panel of bilateral U.S. dollar rates against 17 OECD countries; and Zhang, Robinson, and Yao (2019) applied a nonstationary panel factor model to U.S. Industrial Production indices. Whilst, in all the aforementioned applications, the common trends are assumed to be stochastic, panel models with common deterministic, linear trends have also been employed, for example, in the context of analyzing macro-economic data (see Maciejowska 2010), and also in order to model U.S. temperature data (see Chen and Wu 2019).

In this article, we consider the following large approximate factor model for an N-dimensional vector of time series X_t:

$$X_t = \Lambda F_t + u_t,$$

where F_t is an $r \times 1$ vector of common factors and Λ is an $N \times r$ matrix of factor loadings, with $r < \infty$. We propose a testing procedure to determine the dimension of the following three groups: (a) factors with a linear trend and an additional, either $I(1)$ or $I(0)$, zero mean component; (b) pure, zero mean $I(1)$ factors, that is, with no linear trends; and, (c) finally, stationary common factors. Each group may well have dimension zero, for example, factors with linear trends may not be present, etc. If, in model (1), either group (a) or (b) is nonempty, this entails that X_t is driven by some common trends. We also assume, throughout the article, that each component of the idiosyncratic vector u_t is $I(0)$, which, in the presence of common stochastic trends, implies that X_t is cointegrated. Although this may be viewed as a restriction, we point out that our procedure could be employed even in the presence of nonstationary idiosyncratic components, as long as these are only a vanishing fraction of the total, say at most $O(N^{\alpha_0})$, for any $\alpha_0 < 1$—see also the comments in Section 3.2.

In order to determine the dimension of each of the groups mentioned above, we propose a procedure based on the eigenvalues of the second moment matrix of the data, building on the well-known fact that the number of common factors is related to the number of spiked eigenvalues—that is, the eigenvalues which diverge to infinity as $N \to \infty$. In particular, we develop tests to distinguish whether an eigenvalue is bounded or spiked, and use them in a sequential fashion to estimate the number of common factors belonging in each group. In order to construct the tests, (i) we derive the rates of the eigenvalues of the second moment matrix of the data as $min(N,T) \to \infty$; and, (ii), based on those bounds, we propose a randomization procedure which produces a statistic whose asymptotic behavior under the null and the alternative hypotheses we are able to study. Although details are spelled out hereafter, we point out that our asymptotics does not require virtually any restriction on the data.
on the relative rate of divergence N and T as they pass toinfinity.

Our research question is mainly related to three works. The first contribution in this area is the article by Bai (2004), who develops the inferential theory for a large panel factor model with common stochastic trends, including a family of information criteria to estimate the number of common (stationary and nonstationary) factors. Although linear trends are not considered, Maciejowska (2010) extended the inferential theory to the case of linear trends, although a method to determine their presence is not explicitly derived. Finally, a recent contribution by Zhang, Robinson, and Yao (2019) proposed a method based on the ratio of the eigenvalues of a transformation of the long-run covariance matrix to find the number of $I(d)$ factors for $d \geq 0$. In addition to not considering linear trends, however, the theory developed therein also requires the constraint $\frac{N}{T} \rightarrow c \in (0, \infty)$, for $\kappa \in (0, \frac{1}{2})$, as $\min(N, T) \rightarrow \infty$.

Broadly speaking, the literature has considered the presence of common trends in multivariate time series in a plethora of contributions, at least since the seminal articles by Phillips and Ouliaris (1988) and Stock and Watson (1988); more recent extensions to high-dimensional settings include Peña and Poncela (2006), Gengenbach, Palm, and Urbain (2009), and Zhang, Pan, and Gao (2018). Similarly, there is a vast body of literature on unit roots and cointegration in large panels arising from the presence of common stochastic trends—we refer, inter alia, to Moon and Perron (2004), Bai and Ng (2004), Bai, Kao, and Ng (2009), Kapetanios, Pesaran, and Yamagata (2011), and Pesaran, Smith, and Yamagata (2013). Furthermore, the literature has recently extended the theory of cointegration to a high-dimensional setting (see Onatski and Wang 2018; Liang and Schienle 2019); we point out that, while in this strand of the literature, the cointegration rank is implicitly assumed to be finite for any N, in our context the number of cointegration relationships grows with N. Finally, we note that the issue of finding the number of common factors has been studied at length in a stationary setting—examples include Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013), and Trapani (2018). However, to the best of our knowledge, in a nonstationary setting like (1), only the information criteria developed by Bai (2004) are available.

The remainder of the article is organized as follows. In Section 2 we outline the main ideas behind our testing procedure. In Section 3, we spell out the main assumptions and (in Section 3.2), we study the strong rates of convergence of the eigenvalues of various rescalings of the second moment matrix of X_t. The testing algorithm is presented in Section 4. Numerical evidence from simulations is in Section 5. In Section 6 we report an empirical illustration on the dimension of the yield curve. Finally, Section 7 concludes. Proofs and further results are in the supplement available online, where we also report further Monte Carlo evidence.

NOTATION. We define the Euclidean norm of a vector $a = [a_1, ..., a_d]$ as $\|a\| = (\sum_{i=1}^{d} a_i^2)^{1/2}$, and similarly for a matrix A, $\|A\|$ denotes the Frobenius norm; “a.s.” stands for “almost surely”; $I_A(x)$ is the indicator function of a set A; finally, C_0, C_1, etc... denote positive, finite constants whose value may differ from line to line. Other relevant notation is introduced later on in the article.

2. Main Ideas

We here present a heuristic preview of how the procedure works, while main arguments are laid out in the remainder of the article. To begin with, in the presence of linear trends, it can be expected that the sample second moment matrix of X_t will diverge as fast as T^2. Also, due to the well-known eigenvalue separation property of large factor models, it can be expected that the eigenvalues corresponding to common factors should diverge as fast as N. This suggests considering the eigenvalues of $T^{-3} \sum \lambda_t X_t^\prime X_t$ (denoted as, say, $\lambda_1^{(p)}, p = 1, ..., N$) to decide between

$$
\begin{align*}
H_{0,1}^{(p)} &: \lambda_1^{(p)} \to \infty, \\
H_{1,1}^{(p)} &: \lambda_1^{(p)} < \infty,
\end{align*}
$$

as $\min(N, T) \to \infty$; the test can be carried out for $p = 1, 2, ..., T$. Similarly, considering the zero mean, $I(1)$ common factors, the functional central limit theorem (FCLT) suggests that the second moment matrix of X_t will diverge as fast as T^2, again with the eigenvalues corresponding to the common factors diverging as fast as N. Thus, one could study the eigenvalues of $T^{-1} \sum \lambda_t X_t^\prime X_t$ (denoted as, say, $\lambda_2^{(p)}, p = 1, ..., N$), and decide between

$$
\begin{align*}
H_{0,2}^{(p)} &: \lambda_2^{(p)} \to \infty, \\
H_{1,2}^{(p)} &: \lambda_2^{(p)} < \infty,
\end{align*}
$$

as $\min(N, T) \to \infty$, carrying out the test as above. The output of these two steps is an estimate of the number of common factors which have a linear trend and of those which are genuinely zero mean $I(1)$ processes, respectively. Note that, in both steps, if we reject the null-hypothesis when $p = 1$, we are in fact saying that there are no common deterministic or stochastic trends. This approach could be complemented by using $T^{-1} \sum \lambda_t \Delta X_t \Delta X_t^\prime$ and determining the number of total common factors as suggested in Trapani (2018), which would provide an indirect estimate of the number of common stationary factors and therefore of the number of cointegration relations between factors.

From a technical point of view, the implementation of the algorithm described above presents one difficulty: we are unable to construct test statistics which converge to a distributional limit under the null hypotheses, and the best result we can obtain are rates. Thus, we base our tests on randomizing the test statistic. This approach builds on an idea of Pearson (1950), and it has been exploited in numerous contexts—see, for example, Corradi and Swanson (2006), and Trapani (2018) in the context of factor models. A major advantage of this procedure is that only rates are needed, and these can be derived under quite general assumptions. In particular, we derive our rates (and, thus, we are able to apply our test) under virtually no restrictions on the relative rates of divergence of N and T as they pass to infinity (see Assumption 5 for details), which can be compared with the standard restriction that as $\min(N, T) \to \infty$, $\frac{N}{T} \to c \in (0, \infty)$, often assumed in random matrix theory (see also Onatski and Wang 2018, where a similar restriction is needed); in principle, our procedure can be applied to a wide variety
of datasets, being particularly useful when either dimension is much bigger than the other (see also the discussion in Section A.5 of the supplementary material).

3. Theory

3.1. Model and Assumptions

The scalar version of our model (1) is

\[X_{it} = \lambda_i^0 f_{it} + u_{it}, \quad 1 \leq i \leq N, \tag{2} \]

where \(\lambda_i \) and \(f_i \) are \(r \times 1 \) vectors. We assume that

\[f_i = a(d_1 t) + B \psi_i, \tag{3} \]

where \(a \) is a non-zero \(r \times 1 \) vector, \(B \) an \(r \times r \) matrix; finally, \(d_1 \) is a dummy variable, which has the purpose to entertain the possibility that there are linear trends or not, according as \(d_1 = 1 \) or 0, respectively. As far as the \(r \)-dimensional vector \(\psi_i \) is concerned, its components are allowed to be a mixture of \(I(0) \) and \(I(1) \) processes, with no linear trends, that is, with zero mean.

We consider the following assumption, which ensures that the \(f_i \)s are fully identified.

Assumption 1. It holds that: (i) \(a \) is nonzero; (ii) \(\text{rank}(B) = r \); (iii) the vector \(\psi_i \) can be rearranged and partitioned as \(\psi_{at}, \psi_{bt} \), where \(\psi_{at} \) is \(I(1) \) has dimension \(r_2 + d_2 \) and \(\psi_{bt} = I(0) \) has dimension \(r_3 + (1 - d_2) \), where \(d_2 \) is a dummy variable.

By part (ii) of Assumption 1, \(B \) has full rank, which ensures the identification of the vector \(f_i \), irrespective of whether there is a trend or not. When there are trends, that is when \(d_1 = 1 \), part (i) of the assumption ensures that they do have an impact on \(f_i \). Finally, by part (iii) there could be both \(I(1) \) and \(I(0) \) factors in the vector \(\psi_i \), sorted in no particular order. The dummy variable \(d_2 \) is equal to 1 if the factors with a linear trend have also an \(I(1) \) component.

We then have a representation result which, essentially, states that the number of common factors with a linear trend (and, possibly, further components which may be \(I(0) \) or \(I(1) \)) can be either zero—no common factors with linear trends—or 1. This result is originally due to Maciejewski (2010), and we report it hereafter, as a lemma, for convenience.

Lemma 1. Under Assumption 1, model (2) can be equivalently represented as follows:

\[X_{it} = \lambda_i^{(1)} f_{1t}^{(1)} + \lambda_i^{(2)} f_{1t}^{(2)} + \lambda_i^{(3)} f_{1t}^{(3)} + u_{it}, \quad 1 \leq i \leq N, \tag{4} \]

where \(\lambda_i^{(1)} \) and \(f_{1t}^{(1)} \) are \(r_1 \times 1 \) with \(0 \leq r_1 \leq 1 \), \(\lambda_i^{(2)} \) and \(f_{1t}^{(2)} \) are \(r_2 \times 1 \) vectors with \(r_2 \geq 0 \), \(\lambda_i^{(3)} \) and \(f_{1t}^{(3)} \) are \(r_3 \times 1 \) vectors with \(r_3 \geq 0 \), and such that \(r = r_1 + r_2 + r_3 \) is finite for all \(N \) and \(T \), and \(\lambda_i^{(j)} = (\lambda_i^{(1)} (j), \lambda_i^{(2)} (j), \lambda_i^{(3)} (j)) \) for all \(i \).

Moreover, the common nonstationary factors are defined by the following equations:

\[f_{1t}^{(1)} = d_1 t + d_2 f_{1t}^{(1)*} + (1 - d_2) g_t, \tag{5} \]

\[f_{1t}^{(1)*} = f_{1t}^{(1)\dagger} + \sum_{j=1}^{t} e_j^{(1)}, \tag{6} \]

\[f_{1t}^{(2)} = f_{1t}^{(2)\dagger} + \sum_{j=1}^{t} e_j^{(2)}, \tag{7} \]

where in Equations (5)–(7): \(f_{1t}^{(1)\dagger}, g_t \) and \(e_t^{(1)} \) are \(r_1 \times 1 \) vectors, \(e_t^{(2)} \) is an \(r_2 \times 1 \) vector, \(e_t^{(1)} (j), e_t^{(2)} (j) \), \(g_t \) and \(f_t^{(3)}(0) \) are \(I(0) \), and \(d_1 \) and \(d_2 \) are dummy variables.

Lemma 1 states that the number of linear trends is either zero or one, according as \(d_1 = 1 \) or 0: if an identified \(r \)-dimensional vector of common factors has linear trends, this is tantamount to an identified \(r \)-dimensional vector of common factors where only the first factor has a linear trend. When \(r_1 = 1 \) and \(d_1 = 1 \), we are shown in Theorem 1, that it does not matter whether the remainder \(d_2 f_{1t}^{(1)\dagger} + (1 - d_2) g_t \) is \(I(1) \) or \(I(0) \); the trend component is the one that dominates. When \(r_1 = 0 \), there are no linear trends in the factor structure; in this case, \(f_{1t}^{(1)} \) can be \(I(1) \) or \(I(0) \), according as \(d_2 = 1 \) or 0.

Let us denote as \(r^* \) the number of nonstationary factors, and as \(r \) the total number of factors. Then, based on Equations (5)–(7), the numbers of common factors in \(X_{it} \) are summarized in the table below.

Factor type \(r^* \)	Number	Common factors \(r + r_3 \)
With linear trend \(r_1 d_1 \)	\(r_1 d_1 \)	\(r_1 d_1 + r_2 + r_3 \)
Zero mean, \(I(1) \) \(r_2 + r_1 (1 - d_1) d_2 \)	\(r_2 + r_1 (1 - d_1) d_2 \)	\(r_2 + r_1 (1 - d_1) d_2 \)
Zero mean, \(I(0) \) \(r_2 + r_1 (1 - d_1) (1 - d_2) \)	\(r_2 + r_1 (1 - d_1) (1 - d_2) \)	\(r_2 + r_1 (1 - d_1) (1 - d_2) \)
Total non-stationary \(r^* = r_1 d_1 + r_2 + r_1 (1 - d_1) d_2 \)	\(r = r^* + r_3 + r_1 (1 - d_1) (1 - d_2) \)	\(r = r^* + r_3 + r_1 (1 - d_1) (1 - d_2) \)

Recall that—in addition to restricting \(r \) (and, therefore, \(r_1, r_2, r_3, r^* \)) to be finite—we allow for the possibility of having any of the numbers \(r_1, r_2, r_3, r^* \), or even \(r \), to be equal to zero. On the other hand, if there is no linear trend \(d_1 = 0 \), we have at most \(r_1 + r_2 \) zero-mean \(I(1) \) factors and \(r_1 + r_2 \) zero-mean \(I(0) \) factors, while if there is a linear trend \(d_1 = 1 \), we have at most \(r_2 \) zero-mean \(I(1) \) factors and \(r_2 \) zero-mean \(I(0) \) factors.

We now spell out the main assumptions. Consider the vector of zero-mean \(I(1) \) factors: \(f_t^* \), where \(f_t^* = [f_t^{(1)\dagger}, f_t^{(2)\dagger}]' \), and consider the \(I(0) \) vector \(e_t \), where \(e_t = [e_t^{(1)}, e_t^{(2)}]' \). Both \(f_t^* \) and \(e_t \) are \(r_2 + r_1 (1 - d_1) d_2 \times 1 \) vectors.

We define the long-run covariance matrix associated with \(f_t^* \) as

\[\Sigma_{f_t^*} = \lim_{T \to \infty} \var{\sum_{t=1}^{T} e_t^2} \].

\[T^{-1/2} \sum_{t=1}^{T} e_t \].
Assumption 2. Let \(\kappa > 0 \). It holds that (i) \(E \| \epsilon_t \|^{4+\kappa} < \infty \) for all \(t \); (ii) \(E \| f_t^{(1)} \|^{4+\kappa} < \infty \); (iii) \(\Sigma_{\lambda^*} \) is positive definite; (iv) there exists, on a suitably enlarged probability space, an \((r_2 + d_2)\)-dimensional standard Wiener process \(W(t) \) such that, for some \(\epsilon > 0 \),

\[
\sup_{1 \leq t \leq T} \left\| f_t - \sum_{i=1}^{d} \lambda_i \epsilon_i \right\| = O_{a.s.}(T^{1/2-\epsilon});
\]

(v) every diagonal block of \(\Sigma_{\lambda} \), defined by the loadings of \(f_t^{(1)} \), \(f_t^{(2)} \) or \(f_t^{(3)} \), is also positive definite. Note that the assumption requires the loadings to be nonstochastic; however, this could be relaxed to the case of random loadings, with no changes to the main arguments in the article.

An important consequence of Assumption 4 is that the common factors belonging in each category are “strong” or “pervasive.” We point out that our setup can be generalized to consider also the case of weakly pervasive factors (see Section A.5 of the supplementary material).

3.2. Asymptotic Behavior of Eigenvalues

We introduce the following assumption on the relative rate of divergence of \(N \) and \(T \) as they pass to infinity.

Assumption 5. It holds that: \(N = O\left(\epsilon^{1/2-\epsilon'}\right) \), with \(0 < \epsilon' < \frac{1}{2} \).

In Assumption 5, \(\epsilon' \) should be intended as arbitrarily close to zero. The assumption imposes a very mild restriction between \(N \) and \(T \), which in practice should hold for virtually all datasets. Note that, while needing an upper bound for \(N \), we do not need any lower bounds on either \(N \) or \(T \) as long as they pass to infinity.

We base inference on the two matrices

\[
\Sigma_1 = \frac{1}{T^3} \sum_{t=1}^{T} X_t X_t', \quad \Sigma_2 = \frac{1}{T^2} \sum_{t=1}^{T} X_t X_t'.
\]

We denote the \(p \)th largest eigenvalues of \(\Sigma_1 \) and \(\Sigma_2 \) as \(\nu_{1}^{(p)} \) and \(\nu_{2}^{(p)} \), respectively. Consider the sequence

\[
l_{N,T} = (\ln N)^{1+\epsilon} (\ln T)^{2+\epsilon},
\]

where \(\epsilon \) is an arbitrarily small number such that \(0 < \epsilon < \frac{2\epsilon'}{1-2\epsilon'} \), with \(\epsilon' \) defined in Assumption 5. The asymptotic behavior of those eigenvalues is reported in the following theorem.

Theorem 1. Under Assumptions 2–4, it holds that there are two random \(N_0 \) and \(T_0 \) such that, for all \(N \geq N_0 \) and \(T \geq T_0 \),

\[
C_{1,p} N \leq \nu_{1}^{(p)} \leq \overline{C}_{1,p} N, \quad \text{for } p \leq r_1 d_1, \quad (11)
\]

\[
\nu_{1}^{(p)} = O_{a.s.}\left(\frac{N}{\sqrt{T}}l_{N,T}\right), \quad \text{for } p > r_1 d_1, \quad (12)
\]

and

\[
\overline{C}_{2,p} \ln \ln T \leq \nu_{2}^{(p)} \leq \overline{C}_{2,p} \frac{N}{\ln \ln T}, \quad \text{for } r_1 d_1 < p \leq r^*, \quad (13)
\]

\[
\nu_{2}^{(p)} = O_{a.s.}\left(\frac{N}{\sqrt{T}}l_{N,T}\right), \quad \text{for } p > r^*, \quad (14)
\]

with \(0 < C_{1,p} \leq \overline{C}_{1,p} < \infty \), and \(0 < C_{2,p} \leq \overline{C}_{2,p} < \infty \).
Theorem 1 is a separation result for the eigenvalues corresponding to common factors in Σ_1 and Σ_2 and is our first contribution.

Equations (11) and (12) refer to the eigenvalues of Σ_1. The results state that the first r_1 eigenvalues diverge to infinity at a rate N; conversely, by virtue of Assumption 5, the remaining eigenvalues have a smaller magnitude. Indeed, the magnitude of $v_i^{(p)}$, when $p > r_1$, may be very large, but Assumption 5 ensures that it is however smaller than that of $v_i^{(p)}$ when $p \leq r_1$. In the definition of Σ_1, there is a denominator given by T^3; intuitively, this is due to the fact that the presence of a drift in the common factor $f_t^{(1)}$ creates a linear trend. Norming by T^3 is needed in order to make the trend component converge.

Equations (13) and (14) refer to the eigenvalues of Σ_2. This matrix is normalized by T^2; the main idea is that we wish to separate the eigenvalues corresponding to nonstationary factors from the other ones. The partial sums of $f_t^2 f_t^2$ should grow at least as fast as T^2 by the CLT in functional spaces; the result in Equation (13) follows from this intuition, although, since we need an a.s. rate, it is based on the Law of the Iterated Logarithm (see Donsker and Varadhan 1977). Similarly to Σ_1, the remaining eigenvalues may also diverge, but this will happen at a slower rate. Equation (14) illustrates the separation result, through the $T^{-1/2}$ term. Following the proof of the theorem, it could be readily shown that, if the idiosyncratic components $u_{i,t}$ were $I(1)$, the upper bound for $v_i^{(p)}$ when $p > r_2 + \max\{r_1, d_2\}$ would be $O_x(N^{\alpha_0})$ —in essence, in this case a separation result could not be shown, whence the need to assume that the $u_{i,t}$'s are $I(0)$. On the other hand, one could envisage a situation where only a fraction of the $u_{i,t}$'s are $I(1)$—say $O(N^{\alpha_0})$, with $\alpha_0 < 1$. In such a case, by adapting the proof of Theorem 1 it can be shown that the upper bound in Equation (14) would become $O_x(N^{\alpha_0}I_{N,T}) + O_x(N^{\frac{\alpha_0}{T}I_{N,T}})$, and thus a separation result would obtain.

Note that Theorem 1 provides only rates: no distributional results are available. When data are stationary, Wang and Fan (2016) derived an asymptotic distribution for the estimates of the diverging eigenvalues of the sample covariance matrix. We do not know, however, if this can also be done for the $v_1^{(p)}$'s and the $v_2^{(p)}$'s. Hence, in what follows we will rely only on rates.

Finally, in order to construct the relevant test statistics, we will also make use of the first differentiated version of Equation (2)

$$\Delta X_{i,t} = \lambda_i \Delta F_{i,t} + \Delta u_{i,t}, \quad 1 \leq i \leq N,$$

(15)
such that the following holds:

Assumption 6. It holds that: (i) $E(\Delta F_{i,t} \Delta u_{i,t}) = 0$ for $1 \leq j \leq r$ and $1 \leq i \leq N$; (ii) $\max_{1 \leq i \leq N, 1 \leq t \leq T} E|\Delta X_{i,t}|^4 \leq C_0$;

(iii) $E \max_{1 \leq i \leq T} \sum_{t=1}^T \Delta X_{i,t} \Delta X_{j,t} - E(\Delta X_{i,t} \Delta X_{j,t})^2 \leq C_0 T$;

(iv) (a) $T^{-1} \sum_{t=1}^T E(\Delta F_{i,t} \Delta F_{j,t})$ is a positive definite matrix;

(b) the largest eigenvalue of $T^{-1} \sum_{t=1}^T E(\Delta u_{i,t} \Delta u_{j,t})$ is finite;

(c) $T^{-1} \sum_{t=1}^T E(\Delta u_{i,t} \Delta u_{i,t})$ is a positive definite matrix.

Assumption 6 is the same as Assumptions 1–3 in Trapani (2018), and we refer to that article for examples in which the assumption is satisfied. Note that part (iv)(b) can be shown to hold if the largest eigenvalue of $E(u_i u_j')$ is bounded— that is, in the presence of (weak) cross-sectional dependence in the idiosyncratic term.

4. Estimating the Number of Common Factors

4.1. Preliminary Definitions

Consider the notation $\beta = \frac{\ln N}{\ln T}$, and define $\delta < 1$ such that

$$\delta \begin{cases} > 0 & \text{when } \beta < \frac{1}{2}, \\ > 1 - \frac{1}{2\beta} & \text{when } \beta \geq \frac{1}{2}. \end{cases}$$

(16)

The role played by δ is the following. In view of Theorem 1, the largest eigenvalues are (modulo some slowly varying functions) proportional to N; the others, to $N^{-1/2}$. When premultiplying eigenvalues by $N^{-\delta}$, the former will be proportional to $N^{1-\delta}$, thereby still diverging; the latter will be proportional to $N^{1-\delta}T^{-1/2}$, which, by construction, will drift to zero.

In order to construct our test statistics, we also make use of the eigenvalues of the matrix

$$\Sigma_3 = \frac{1}{T} \sum_{t=1}^T \Delta X_{i,t} \Delta X_{i,t}',$$

(17)

which, with the same notation as before, are denoted as $v_i^{(p)}$, $p = 1, \ldots, N$, in decreasing order. In particular, when running our procedure for the pth largest eigenvalues of Σ_1 or Σ_2, we will extensively use the quantities

$$\overline{v}_{3,p}(k) = \frac{1}{4(N-k+1)} \sum_{h=k}^N v_i^{(h)},$$

(18)

for different values of k. Essentially, $\overline{v}_{3,p}(k)$ is the average of all (or some) eigenvalues of Σ_3 and will be employed in order to rescale the estimated eigenvalues, so as to render all our test statistics scale invariant. In the numerical analysis of Section 5, we consider rescaling schemes with $k = p$ and $k = p + 1$, and we discuss the impact of these choices on our results. For simplicity in the rest of this section we do not make explicit the dependence of Equation (18) on k. Finally, note the division by 4 in Equation (18), which is done, heuristically, since it is possible that $\Delta X_{i,t}$ could inflate the variance by over-differencing, and the factor 4 represents the largest inflation factor possible.

4.2. Determining the Presence of Factors With Linear Trends

Consider first Σ_1 defined in Equation (9), and its eigenvalues $v_i^{(p)}$. Based on Equations (11) and (12), the first $r_1 d_1$ eigenvalues of Σ_1 should diverge to positive infinity, as $\min(N, T) \to \infty$, at a faster rate than the $(N - r_1 d_1)$ remaining ones. Thus, the cornerstone of the algorithm to determine $r_1 d_1$ is based on checking whether $v_i^{(p)}$ diverges sufficiently fast. In particular, as suggested by Theorem 1, we want to construct a test for

$$H_{0,1}^{(p)}: v_1^{(p)} \geq C_p' N,$$

$$H_{A,1}^{(p)}: v_1^{(p)} \leq C_p'' \frac{N}{\sqrt{T}},$$

(19)
for some positive bounded constants C_p' and C_p''. Thus, given r_1, we have that $H_{0,1}^{(p)}$ holds true for $p \leq r_1$, while $H_{A,1}^{(p)}$ holds true for $p > r_1$.

Consider the following transformation of $v_{1,i}^{(p)}$:

$$
\phi_1^{(p)} = \exp \left\{ \frac{-N^{-\delta} v_{1,i}^{(p)}}{r_3} \right\}.
$$

Then, based on Equation (19), Equations (11) and (12), and given the definition (16) of δ, we have that

$$
l_{\min(N,T)} \to \infty \phi_1^{(p)} = \infty, \quad \text{under } H_{0,1}^{(p)} \text{ i.e., for } p \leq r_1,
$$

$$
l_{\min(N,T)} \to \infty \phi_1^{(p)} = C_p < \infty, \quad \text{under } H_{A,1}^{(p)} \text{ i.e., for } p > r_1.
$$

In principle, we could then use $\phi_1^{(p)}$ to test $H_{0,1}^{(p)}$. However, since $\phi_1^{(p)}$ either diverges to infinity or not, it does not have any randomness. Therefore, we propose to use the following randomisation algorithm—note that other randomizations schemes would also be possible, in principle; the one we propose, however, has been often considered in this type of literature (see, e.g., Corradi and Swanson 2006; Trapani 2018).

Step A1.1. Generate an iid sample $\left\{ \xi_{i,j}^{(p)} \right\}_{j=1}^{r_1}$ from a common distribution G_1, independently across p.

Step A1.2. For a user-defined u, let, for $1 \leq j \leq r_1$, $\xi_{i,j}^{(p)}(u) = I[\phi_1^{(p)} \times \xi_{i,j}^{(p)} \leq u]$.

Step A1.3. Compute $\vartheta_1^{(p)}(u) = \frac{1}{R_1} \sum_{j=1}^{r_1} \frac{\xi_{i,j}^{(p)}(u) - G_1(0)}{G_1(0) - G_1(1)}$.

Step A1.4. Compute $\Theta_1^{(p)} = \int_{-\infty}^{+\infty} \vartheta_1^{(p)}(u)^2 \, dF_1(u)$.

The intuition for considering this approach is the following. Under the null, we know that $\phi_1^{(p)}$ diverges; thus, we can expect $\xi_{i,j}^{(p)}(u)$ to be an iid Bernoulli sequence with expected value exactly equal to $G_1(0)$, and variance $G_1(0) [1 - G_1(0)]$. In such case, a CLT ensures that $\vartheta_1^{(p)}(u)$ follows—asymptotically—a Normal distribution, and consequently $\Theta_1^{(p)}$ is asymptotically Chi-squared. By the same token, under the alternative $\phi_1^{(p)}$ is finite, and therefore $\xi_{i,j}^{(p)}(u)$ is an iid Bernoulli sequence with expected value different from $G_1(0)$; thus, $\vartheta_1^{(p)}(u)$ diverges as fast as $\frac{1}{R_1}$ by the LLN, and consequently $\Theta_1^{(p)}$ also diverges at a rate R_1. The random variable $\Theta_1^{(p)}$ is then the statistic that we are going to use.

In order to derive the asymptotic behavior of $\Theta_1^{(p)}$, we need some regularity conditions on the distributions G_1 and F_1—see Section 5 for a choice of these functions and of u and R_1.

Assumption 7. It holds that: (i) (a) G_1 has a bounded density function; (b) $G_1(0) \neq 0$ and $G_1(0) \neq 1$; (ii) $\int_{-\infty}^{+\infty} dF_1(u) = 1$, and $\int_{-\infty}^{+\infty} u^2 dF_1(u) < \infty$.

Let P^* denote the conditional probability with respect to $\{X_{i,t}, 1 \leq t \leq T, 1 \leq i \leq N\}$; we use the notation “$\rightarrow$” and “$\to$” to define, respectively, conditional convergence in distribution and in probability according to P^*. It holds that:

Theorem 2. Consider $H_{0,1}^{(p)}$ and $H_{A,1}^{(p)}$ defined in Equation (19). Under Assumptions 2–7, if

$$
\lim_{l_{\min(N,T)} \to \infty} \sqrt{R_1} \exp \left\{ -N^{1-\delta} \right\} = 0,
$$

then, for almost all realizations of $\{e_i, u_{i,t}, 1 \leq t \leq N, 1 \leq t \leq T\}$ and for all p, as $min(N, T, R_1) \to \infty$, under $H_{0,1}^{(p)}$ it holds that

$$
\Theta_1^{(p)} \to \chi_1^2,
$$

and under $H_{A,1}^{(p)}$ it holds that

$$
1 \frac{\int_{-\infty}^{+\infty} \left[G_1(u) - G_1(0) \right]^2 \, dF_1(u)}{G_1(0) [1 - G_1(0)]} \Theta_1^{(p)} \to 1.
$$

The determination of r_1 follows from an algorithm which is based on a single step.

Step T1.1. Set $p = 1$ and run the test for $H_{0,1}^{(1)} : v_1^{(1)} = \infty$ based on $\Theta_1^{(1)}$. If the null is rejected, set $\tilde{r}_1 = 0$ and stop, otherwise set $\tilde{r}_1 = 1$.

The output of this step is \tilde{r}_1, which is an estimate of $r_1 d_1$. As discussed above, $r_1 d_1$ can be either 0 or 1, whence the test being stopped at $p = 2$. The procedure based on the single Step T1.1 can therefore be viewed as a test for the presence of a common factor with a linear trend.

As can be expected, in order to ensure that \tilde{r}_1 is consistent, a pivotal role is played by the level of the test, $\alpha_1 := P^*(\Theta_1^{(p)} > c_{\alpha,1})$, through the relevant critical value denoted as $c_{\alpha,1}$.

Lemma 2. Under the assumptions of Theorem 2, as $\min(N, T, R_1) \to \infty$, if $c_{\alpha,1} \to \infty$ with $c_{\alpha,1} = o(R_1)$, then it holds that $P^*(\tilde{r}_1 = r_1 d_1) = 1$, for almost all realisations of $\{e_i, u_{i,t}, 1 \leq i \leq N, 1 \leq t \leq T\}$.

Requiring that $c_{\alpha,1} \to \infty$ is necessary in order to have asymptotically zero Type I error probability, which ensures the consistency result in the lemma; an immediate implication of $c_{\alpha,1} \to \infty$ is that the level of the test is such that under $H_{0,1}^{(p)}$

$$
\lim_{l_{\min(N,T)} \to \infty} P^*(\Theta_1^{(p)} > c_{\alpha,1}) = 0.
$$

The fact that $c_{\alpha,1}$ diverges has also an interesting consequence on the interpretation of the outcome of our testing procedure. It is well known that randomized tests will yield different results for different researchers when applied to the same data, since the added randomness does not vanish asymptotically. However, this is not the case with our procedure, since, when $c_{\alpha,1} \to \infty$, (24) holds under $H_{0,1}^{(p)}$. Furthermore, we show in the proof that having $c_{\alpha,1} = o(R_1)$ affords that the probability of a Type II error is asymptotically zero, thus ensuring consistency. Looking at this from a different angle, the results in Lemma 2 are guaranteed by letting the level of the test $\alpha_1 \to 0$ as
min \((N, T, R_1) \to \infty\) and we refer to Section 5 for the choice of \(\alpha_1\).

As a final remark, we point out that this part of our procedure can detect whether there exists a common factor with a linear trend. However, our test is not able to directly establish whether such a trend arises from the common factor being an \(I(1)\) process with a drift, or a trend-stationary process. Although this (important) question goes beyond the main focus of this article, in Section A.4 of the supplementary material, we build on the theory developed here in order to propose a further test to discern between the two possible cases.

4.3. Determining the Number of Nonstationary Common Factors

Consider the matrix \(\Sigma_2\) defined in Equation (10) and its eigenvalues \(\lambda_2(p)\). Based on Theorem 1, the \(r^*\) largest eigenvalues of \(\Sigma_2\) should diverge to positive infinity, as \((N, T) \to \infty\), at a faster rate than the \((N - r^*)\) remaining ones. Therefore, we can construct a test for

\[
\begin{align*}
H_{0,2}^{(p)} & : \lambda_2(p) \geq C'_p \ln N \\
H_{A,2}^{(p)} & : \lambda_2(p) \leq C''_p \ln N
\end{align*}
\]

for some positive bounded constants \(C'_p\) and \(C''_p\). Thus, given \(r^*\), we have that \(H_{0,2}^{(p)}\) holds true for \(p \leq r^*\), while \(H_{A,2}^{(p)}\) holds true for \(p > r^*\).

We exploit this fact, as in the above, by considering the following transformation of \(\lambda_2(p)\):

\[
\phi_2(p) = \exp \left\{ N^{-\delta} \ln T \frac{\lambda_2(p)}{\lambda_3(p)} \right\},
\]

which is very similar to Equation (20) except for the presence of the logarithmic term, which is a consequence of Equation (13). Then, based on Equation (19), Equations (13) and (14), and given the definition (16) of \(\delta\), we have that

\[
\lim_{(N, T) \to \infty} \phi_2(p) = \infty, \quad \text{under } H_{0,2}^{(p)} \text{ i.e., for } p \leq r^*;
\]

\[
\lim_{(N, T) \to \infty} \phi_2(p) = C_p < \infty, \quad \text{under } H_{A,2}^{(p)} \text{ i.e., for } p > r^*.
\]

We consider the following randomization procedure.

Step A2.1. Generate an iid sample \((\xi_{2,j}^{(p)})_{j=1}^{R_2}\) from a common distribution \(G_2\), independently across \(p\).

Step A2.2. For a user-defined \(u\), let, for \(1 \leq j \leq R_2\), \(\xi_{2,j}^{(p)}(u) = I[\phi_2(p) \times \xi_{2,j}^{(p)} \leq u]\).

Step A2.3. Compute \(\theta_2^{(p)}(u) = \frac{1}{\sqrt{R_2}} \sum_{j=1}^{R_2} \xi_{2,j}^{(p)}(u) - G_2(0)\).

Step A2.4. Compute \(\Theta_2^{(p)} = \int_{-\infty}^{+\infty} \theta_2^{(p)}(u) |dF_2(u)|\).

The same comments as in the previous algorithm apply: in essence, the procedure exploits the fact that under the null and the alternative, \(\phi_2(p)\) diverges or drifts to zero, respectively; the former feature ensures (asymptotic) normality of \(\theta_2^{(p)}(u)\), whereas the latter entails that \(\theta_2^{(p)}(u)\) diverges under the alternative.

Assumption 8. It holds that: (i) \(A_2\) has a bounded density function; (b) \(A_2(0) \neq 0\) and \(A_2(0) \neq 1\); (ii) \(f_{-\infty}^{+\infty} u^2 dF_2(u) = 1\) and \(f_{-\infty}^{+\infty} u^2 dF_2(u) < \infty\).

It holds that:

\[
\lim_{\min(N, T) \to \infty} \sqrt{R_2} \exp \left\{ -N^{1-\delta} \right\} = 0,
\]

and under \(H_{A,2}^{(p)}\) it holds that

\[
\frac{1}{R_2} \int_{-\infty}^{+\infty} (G_2(u) - G_2(0)) dF_1(u) \Theta_2^{(p)} \to 1 \quad \text{under } H_{A,2}^{(p)}.
\]

Note that, conditionally on the sample, the sequence \(\Theta_2^{(p)}_{i=1}\) is independent across \(p\). We recommend the following algorithm for the determination of \(r^*\).

Step T2.1. Run the test for \(H_{0,2}^{(1)} : \lambda_2^{(1)} = \infty\) based on \(\Theta_2^{(1)}\). If the null is rejected, set \(p^* = 0\) and stop, otherwise go to the next step.

Step T2.2. Starting from \(p = 1\), run the test for \(H_{0,2}^{(p+1)} : \lambda_2^{(p+1)} = \infty\) based on \(\Theta_2^{(p+1)}\), constructed using an artificial sample \((\xi_{2,j}^{(p+1)})_{j=1}^{R_2}\), generated independently of \((\xi_{2,j}^{(1)})_{j=1}^{R_2}, \ldots, (\xi_{2,j}^{(p)})_{j=1}^{R_2}\). If the null is rejected, set \(p^* = p\) and stop; otherwise repeat the step until the null is rejected (or until a prespecified maximum number of factors, say \(r^*_\text{max}\), is reached).

As can be expected, in this context a pivotal role is played by the level of the individual tests, which should be chosen so that \(p^*\) is a good approximation of \(r^*\), at least asymptotically. Similarly to the previous case, let \(c_{a,2}\) denote the critical value of the test at each step.

Lemma 3. Under the assumptions of Theorem 3, as \(\min(N, T, R_2) \to \infty\), if \(r^*_\text{max} \geq r^*\) and \(c_{a,2} \to \infty\) with \(c_{a,2} = o(R_2)\), then it holds that \(P^{(a_2)}(r^* = r^*) = 1\), for almost all realisations of \(\{e_i, u_{it}, 1 \leq i \leq N, 1 \leq t \leq T\}\).

This lemma has the same interpretation—especially when it comes to the condition that \(c_{a,2} \to \infty\)—as Lemma 2.
4.5. Estimation

Once we have estimates of the number of common factors, we can estimate the factors via principal component analysis as explained in Bai (2004) and Maciejowska (2010). Define

\[
D = \begin{pmatrix}
I_{T/3} & 0 & 0 \\
0 & T_{T} & 0 \\
0 & 0 & \sqrt{T_{I_1} - \hat{T}_1}
\end{pmatrix}.
\]

Let \(\hat{\Sigma} = (\hat{F}_1 \cdots \hat{F}_p) \)' be the \(T \times \hat{\tau} \) matrix of factors and \(\hat{X} = (X_1 \cdots X_T)' \) the \(T \times N \) matrix of data. Then, the estimated factors and loadings are solutions to the following constrained minimization problem:

\[
(\hat{\Lambda}, \hat{\Sigma}) = \arg \min \{ \text{tr}(X - \hat{F} \hat{\Lambda} \hat{F}')(X - \hat{F} \hat{\Lambda} \hat{F})' \} \text{ s.t.} \]

\[
\text{tr}(\hat{F} \hat{F}) \hat{F} \leq I_{T/3},
\]

where, in particular, the solution for \(\hat{\Sigma} \) are the eigenvectors of \(\hat{XX}' \) multiplied by \(D \) and \(\hat{\Lambda} = D^{-2} \hat{F}\hat{F}'X. \) Since we proved that the probability of correctly determining all number of factors tends to 1 as \(N, T \to \infty, \) the asymptotic results in Bai (2004) and Maciejowska (2010) for the estimated loadings and factors still hold.

5. Monte Carlo and Empirical Evidence

We generate data as

\[
X_{it} = \lambda_{i1}^{(1)} f_{t}^{(1)} + \lambda_{i2}^{(2)} f_{t}^{(2)} + \lambda_{i3}^{(3)} f_{t}^{(3)} + \sqrt{\sigma} u_{it}, \]

\(1 \leq i \leq N, 1 \leq t \leq T; \)

\[
\hat{f}_{t}^{(1)} = 1 + f_{t}^{(1)} + \epsilon_{t,1}, \]

\[
\hat{f}_{t}^{(2)} = f_{t-1}^{(2)} + \epsilon_{t,2}, \quad \hat{e}_{t}^{(2)} = \rho \hat{f}_{t-1}^{(2)} + \epsilon_{t,2}, \quad j = 1, \ldots, r_2,
\]

\[
\hat{f}_{t}^{(3)} = \alpha \hat{f}_{t-1}^{(3)} + \epsilon_{t,3}, \quad j = 1, \ldots, r_3,
\]

\[
u_{i,t} = a_i u_{i,t-1} + v_{i,t} + b_i \sum_{k=1}^{|\{i \in G, k \neq 0\}|} v_{i,k},
\]

so that in first differences each nonstationary factor component is the eigenvector of \(\hat{\Sigma} \) with the second largest eigenvalue, that is, \(\hat{\lambda}_{r_2}^{(2)} \).

Note that model (30) represents the most general DGP which we use, where it is understood that, when, for example, no factors with a linear trend are present, we set \(\hat{\lambda}_{r_1}^{(1)} = 0, \) etc. The loadings in Equation (30) are simulated such that each nonzero entry is distributed as \(\mathcal{N}(0,1) \), with \(A \) satisfying \(\lambda' \Lambda = \sigma \). In Equations (32) and (33), we use \(\rho_j \sim U[0.4, 0.8], \) and \(\sigma_j \sim U[-0.5, 0.5], \) respectively. The vector \(\epsilon_t = (\epsilon_{t,1}^{(1)} \epsilon_{t,2}^{(2)} \cdots \epsilon_t^{(3)}) \) is simulated from \(\mathcal{N}(0, \Gamma) \) independently at each \(i \), with \(\Gamma \) diagonal and such that

\[
\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} (\lambda_{i1}^{(1)} \Delta f_t^{(1)})^2 = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} (\lambda_{i2}^{(2)} \Delta f_t^{(2)})^2
\]

\[
= \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} (\lambda_{i3}^{(3)} f_t^{(3)})^2,
\]

so that in first differences each nonstationary factor component has, on average, the same weight as the stationary component. In Equation (34), we allow for both serial and cross-sectional dependence in the idiosyncratic errors and for all \(1 \leq i \leq N, \) in a similar way to Ahn and Horenstein (2013). We fix \(a_i = 0.5, \) \(b_i = 0.5 \) and \(c_i = \min\left(\lfloor \frac{N}{20}\rfloor, 10\right), \) and the errors \(\nu_{i,t} \) are simulated from \(\mathcal{N}(0, 1) \). Last, we set the noise-to-signal as

\[
\theta = 0.5 \sum_{i=1}^{N} \sum_{t=1}^{T} (\lambda_{i1}^{(1)} \Delta f_t^{(1)})^2 + (\lambda_{i2}^{(2)} \Delta f_t^{(2)})^2 + (\lambda_{i3}^{(3)} f_t^{(3)})^2
\]

\[
\sum_{i=1}^{N} \sum_{t=1}^{T} (\Delta u_{i,t})^2.
\]

We consider the following cases:

1. We fix \(r_3 = 0 \) and we let \(r_1 \in \{0, 1, 2\} \) and \(r_2 \in \{0, 1, 2\} \) and we use the test based on \(\phi_1^{(p)} \) to compute \(\hat{\tau}_1 \) (see Table 1);

2. We fix \(r_1 = 0 \) and we let \(r_2 \in \{0, 1, 2\} \) and \(r_3 \in \{0, 1, 2\} \) and we use the test based on \(\phi_2^{(p)} \) to compute \(\hat{\tau}_2 \) (see Table 2);

3. We fix \(r_1 = 1 \) and we let \(r_2 \in \{0, 1, 2\} \) and \(r_3 \in \{0, 1, 2\} \) and we use the test based on \(\phi_3^{(p)} \) to compute \(\hat{\tau}_3 = \hat{\tau}_2 + 1 \) (see Table 4).

We use \(N \in \{50, 100, 200\} \) and \(T \in \{100, 200, 500\}, \) and simulate Equations (30)–(34) 500 times, reporting the average value of \(\hat{\tau}_1 \) or \(\hat{\tau}_2 \) across simulations, as well as the standard deviation and the percentage of time that the estimator is correct. As far as \(\hat{\tau}_1 \) is concerned, we report both the infeasible estimate \(\hat{\tau}_1 \) and the feasible one \(\hat{\tau}_1 \), in order to gauge the impact of the estimation error of \(\hat{\tau}_1 \) on the subsequent stage of the procedure.

Our tests are run as follows. When computing \(\phi_1^{(p)} \) and \(\phi_2^{(p)} \), we rescale the \(p \)th eigenvalue as (see Equation (18))

\[
\frac{\nu_i^{(p)}}{\nu_3^{(p)}} = \frac{\nu_i^{(p)}}{\nu_3^{(p)}} = \frac{1}{\sum_{k=1}^{N} \sum_{h=1}^{N} \nu_i^{(h)}} \quad i = 1, 2.
\]

For a given \(p \), we consider two different rescaling schemes.
Table 1. Estimated number of factors with linear trend, \hat{r}_1.

	$N = 50, T = 100$		$N = 100, T = 100$		$N = 200, T = 100$		$N = 100, T = 200$		$N = 200, T = 200$		$N = 200, T = 500$		
r_1	r_2	Average	Std. dev.	% correct									
0	0	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
0	1	0.19	0.17	0.39	0.37	0.81	0.83	0.11	0.12	0.31	0.32	0.89	0.88
0	2	0.04	0.03	0.19	0.18	0.96	0.97	0.01	0.01	0.10	0.11	0.99	0.99
1	0	1.00	1.00	0.04	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00
1	1	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00
1	2	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00

Table Notes
- **BT1**: using $k = p$, i.e., $\tilde{v}_{3,p}(k) = \frac{1}{4(n-1)} \sum_{h=p}^{N} v_3^{(h)}$.
- **BT2**: using $k = (p + 1)$, i.e., $\tilde{v}_{3,p}(k) = \frac{1}{4(n-1)} \sum_{h=p+1}^{N} v_3^{(h)}$.
- **Note**: In each cell, we report the average and standard deviation of \hat{r}_1 over all Monte Carlo replications, as well as the fraction of times in which $\hat{r}_1 = r_1$. In practice, this entails that, when computing $\Theta_1^{(p)}$ (and $\Theta_2^{(p)}$), we construct n_S different versions of $\theta_1^{(p)}(u)$ (resp. $\theta_2^{(p)}(u)$), with $u = \sqrt{2z_s}$. The values of z_s and the corresponding weights w_s are tabulated, for example, in Salzer, Zucker, and Capuano (1952); in our simulations, we have set $n_S = 4$, which corresponds to $u = \{-2.4, -0.75, 0.75, 2.4\}$, with weights $\pi^{-1/2}w_s$ given by $\{0.05, 0.45, 0.45, 0.05\}$. As well as being a consequence of the Gauss-Hermite quadrature formula, Equation (36) also has an impact on the trade-off between the power and size of each test: as discussed in Trapani (2018), the larger $|u|$, the larger the power and the more oversized the individual tests (thus leading to a potential underestimation of the number of common factors), and vice versa. Heuristically, having “large” values such as ± 2.4, with “small” weights set to 0.05, helps to strike a balance between size and power. Finally, all tests are carried out at a significance level $\alpha_1 = \alpha_2 = 0.05$, which corresponds to critical values growing logarithmically with N or T.

Results are in Tables 1–5 (see also the further Monte Carlo evidence reported in Section B of the supplementary material). As a general point, BT1 performs better than BT2 at finding no common factors—whether with a linear trend or genuinely $I(1)$ with zero mean—when there are no common factors; this is also consistent with the results in the further simulations in the supplementary material. Considering Table 1, there are some cases in which BT1 finds a common factor when this is not present, but this error vanishes as T increases. On the other hand, BT2 also performs well, but there are instances in which it tends to overstate r_1 when $r_1 = 0$, particularly in the case where...
there is no common factor with a linear trend but there is one zero-mean \(I(1) \) common factor.

As far as determining \(r_2 \) is concerned, BT1 and BT2 are comparable, with BT1 dominating over BT2 when estimating \(r_2 \) in the case \(r_1 = 0 \). In general, our criteria tend to underestimate \(r_2 \), albeit slightly, when \(r_1 = 0 \), especially in the presence of linear trends; and, conversely, to overstate, albeit again slightly, when \(r_1 = 1 \). In both cases, the bias tends to vanish as \(T \) increases. Overall, the performance of all our criteria improves dramatically as \(T \) increases: results markedly improve when \(T \geq 200 \) for all cases considered. The impact of \(N \) is, in general, less clear. Comparing Tables 2–4 with Tables 3–5, the impact of using \(\hat{r}_1 \) when estimating \(\hat{r}_2 \) is such that when \(r_1 = 0 \), \(\hat{r}_2 \) tends to underestimate \(r_2 \), and vice versa when \(r_1 = 1 \). However, this error quickly disappears as soon as \(T \geq 100 \). These results are in line with the observation that in finite samples BT1 is less conservative than BT2, however this discrepancy quickly becomes negligible as the sample size increases.

As a final remark, we point out that in Section B of the supplementary material, we have carried out some sensitivity analysis to assess the impact of different specifications of the DGP and of the tests. In particular, as far as the DGP is concerned, we consider \(\rho_j \sim U[\hat{\rho}, 0.8] \) with values of \(\hat{\rho} \) equal to 0 and 0.8: results are broadly the same, with few exceptions (see discussion in Section B.2 of the supplementary material). As far as the test specifications are concerned, we have considered different choices of \(G_1 \) and \(G_2 \), and of \(F_1 \) and \(F_2 \) (Section B.3), as well as \(\delta^* \) (Section B.4) and the \(R_1 \) and \(R_2 \) (Section B.5). Results show that the tests are virtually unaffected by such specifications, whose impact vanishes as \(N \) and \(T \) increase. In the supplementary material, we have also reported results when estimating \(r_2 \) using the information criteria proposed by Bai (2004) (Section B.1); these criteria invariably find one common \(I(1) \) factor even when such factors are not present.

6. On the Dimensions of the Yield Curve

We illustrate our methodology through an application to the High Quality Market (HQM) Corporate Bond Yield Curve, available from the Federal Reserve Economic Data (FRED)\(^1\) details on the construction of the yield curves are available from the U.S. Department of Treasury.\(^2\) We use monthly data on HQM Corporate Bonds with maturities from 6 months up to

\(^{1}\)https://fred.stlouisfed.org.

\(^{2}\)https://www.treasury.gov/resource-center/economic-policy/corp-bond-yie.
100 years ($N = 196$), and spanning the period from January 1985 to September 2017 ($T = 393$). The data are shown in Figure 1, which shows evidence of nonstationarity and comovements both cross-sectionally and across time.

We use the same settings as in Section 5. In particular, when computing \tilde{r}_1, we set $R_1 = N$, while for \tilde{r}_2 we set $R_2 = N$ if $p = 1$ and $R_2 = \lfloor N/3 \rfloor$ for $p > 1$. The significance level is $I = \frac{0.05}{\min(N,T)} = 0.0002551$.

In our analysis, we also report the information criterion IC3 proposed by Bai (2004). Results are in Table 6. Both BT1 and BT2 find three nonstationary common factors—this is broadly in line with the stylized facts in this literature where a three factor model is customarily employed. Although both criteria agree that two of these factors are $I(1)$ with mean zero, there is some evidence that the first common factor may have a linear trend. Indeed, this is picked up by BT2 but not by BT1, which is compatible with the theory (which stipulates that BT2 may have a tendency to find common factors more often than BT1) and the evidence from the simulations. Thus, our procedures do not rule out the presence of a factor with a time trend, a finding in agreement with the debate on the evidence on the secular decline of interest rates (see e.g. the discussion in Rachel and Summers 2019).

We have also applied the test by Trapani (2018) to the first-differenced data, finding a total number of 5 common factors, which suggests that there are two further $I(0)$ common factors. Note that IC finds five nonstationary factors in total, which may suggest that the last two factors are either stationary (as found by BT1 and BT2), or marginally nonstationary.

The estimated factors are shown in Figure 2 (solid red lines). In Figure 3 we report the autocorrelation of each estimated factor and the median, 5th and 95th percentiles of the autocorrelations of the idiosyncratic errors together with 95% confidence bands (dashed lines) computed as $\pm \frac{1.96}{\sqrt{T}}$. These results suggest that the fourth and fifth factor are nearly stationary, while the idiosyncratic component is clearly stationary since it shows no residual autocorrelation. The presence of common unit roots, and the stationarity of the idiosyncratic error imply cointegration, which in turn implies the factor structure in bond yields—see Dungey, Martin, and Pagan (2000).

Our findings can be contrasted with the stylized facts which are typically found in this literature. In particular, following Nelson and Siegel (1987), it is common to model yield curves by

r_2	r_3	Average	Std. dev.	% Correct	Average	Std. dev.	% Correct				
		BT1	BT2								
0	0	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
1	0	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
1	1	0.93	0.94	0.25	0.24	0.93	0.94	0.94	0.94	0.94	0.94
2	0	1.96	1.96	0.21	0.20	0.96	0.96	1.97	1.97	0.97	0.97
2	1	1.96	1.97	0.20	0.19	0.97	0.97	1.94	1.93	0.94	0.93
2	2	1.95	1.97	0.17	0.17	0.98	0.98	1.94	1.93	0.94	0.93

r_2	r_3	Average	Std. dev.	% Correct	Average	Std. dev.	% Correct				
		BT1	BT2								
0	0	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
1	0	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
1	1	0.95	0.67	0.23	0.47	0.95	0.67	0.96	0.96	0.96	0.96
1	2	0.99	0.94	0.10	0.24	0.99	0.94	0.98	0.98	0.98	0.98
2	0	1.96	1.93	0.15	0.26	0.96	0.98	1.98	1.99	0.99	0.99
2	1	1.93	1.98	0.27	0.17	0.93	0.98	1.99	1.99	0.99	0.99
2	2	1.94	1.98	0.24	0.15	0.94	0.98	1.99	1.99	0.99	0.99

r_2	r_3	Average	Std. dev.	% Correct	Average	Std. dev.	% Correct				
		BT1	BT2								
0	0	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
1	0	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
1	1	1.00	0.98	0.06	0.13	1.00	0.98	1.00	1.00	1.00	1.00
1	2	0.99	0.99	0.08	0.12	0.99	0.99	1.00	1.00	1.00	1.00
2	0	2.00	1.98	0.04	0.15	1.00	0.98	2.00	1.99	0.99	0.99
2	1	1.99	2.00	0.08	0.06	0.99	1.00	1.99	2.00	0.99	0.99
2	2	2.00	2.00	0.06	0.00	1.00	1.00	2.00	2.00	1.00	1.00

Note: In each cell, we report the average and standard deviation of \tilde{r}_2 over all Monte Carlo replications, as well as the fraction of times in which $\tilde{r}_2 < r_2$.

3 We note that, when computing \tilde{r}, this is also equivalent to IC3 in Bai and Ng (2002).
\(r_2 \)	\(r_3 \)	\(N = 50, T = 100 \)	\(N = 50, T = 100 \)	\(N = 200, T = 200 \)	\(N = 200, T = 200 \)	\(N = 200, T = 500 \)	\(N = 200, T = 200 \)	\(N = 200, T = 500 \)
\(x_t \)	\(\dot{\bar{X}}_t \)	\(\delta \)	\(\gamma \)					
\(0 \)	0.00	0.00	0.08	0.12	0.00	0.00	0.00	0.00
1	0.02	0.02	0.14	0.13	0.98	0.98	0.04	0.05
2	0.01	0.01	0.08	0.10	0.00	0.00	0.00	0.00
\(0 \)	1.00	0.99	0.08	0.10	0.99	0.99	0.17	0.17
1	1.00	1.01	0.08	0.16	0.99	0.98	0.22	0.22
2	1.01	1.01	0.10	0.12	0.99	0.99	0.20	0.20
\(0 \)	1.86	1.84	0.37	0.40	0.85	0.83	0.32	0.33
1	1.72	1.71	0.47	0.48	0.71	0.69	0.44	0.45
2	1.71	1.66	0.49	0.50	0.72	0.67	0.43	0.43

Means of three common factors, which are usually interpreted as the level, slope, and curvature of the yield curve in a given time period \(t \)—see, for example, Dai and Singleton (2000) and Diebold and Li (2006). Moreover, when considering corporate bonds it is common to find additional factors beyond the classical first three—see for example, Duffie and Singleton (1999), Duffie, Saita, and Wang (2007), and Christensen and Lopez (2008).

First we analyze the first three estimated common factors. At each point in time \(t \), the \(N \) elements of \(x_t \) are ordered according to their maturity, thus \(X_{t,1} \) is the shortest maturity (6 months), while \(X_{t,100} \) is the longest maturity (100 years). We compare each estimated factor with a standard proxy as specified by Diebold, Rudebusch, and Aruoba (2006). Results are in the first three panels of Figure 2, where we show both the estimated factors (solid red lines) and the proxies (dashed black lines). In particular, in order to identify \(\hat{\bar{X}}_{t,i} \), we consider the proxy \(\bar{X}_t = N^{-1} \sum_{i=1}^{N} X_{t,i} \); we found that \(\text{corr}(\hat{X}_{t,i}, \bar{X}_t) \approx 1 \), which strongly suggests that \(\hat{X}_{t,i} \) can be viewed as the level of the curve. Turning to \(\hat{\delta}_{t,i} \) we use, as a proxy for the slope, \(dx_{t,i} = (N-1)^{-1} \sum_{i=1}^{N} (X_{t,i+1} - X_{t,i}) = N^{-1} (X_{t,100} - X_{t,1}) \). We find that \(\text{corr}(dx_{t,i}, \hat{\delta}_{t,i}) \approx 0.82 \), which suggests that \(\hat{\delta}_{t,i} \) can be interpreted as the slope of the term structure. Finally, we compare \(\hat{\gamma}_{t,i} \) to \(d^2 x_{t,i} = (N-2)^{-1} \sum_{i=2}^{N-1} (X_{t,i+1,i} - 2X_{t,i} + X_{t,i-1,i}) \) as a proxy for the curvature; we find \(\text{corr}(d^2 x_{t,i}, \hat{\gamma}_{t,i}) \approx 0.53 \), which shows some evidence that \(\hat{\gamma}_{t,i} \) can be interpreted as the curvature. Furthermore, according to Diebold and Li (2006), the first three elements of the \(i \)th row of the loadings matrix \(\Lambda \) should be given by

\[
\lambda_{i,1}(c) = 1, \\
\lambda_{i,2}(c) = \left(\frac{1 - e^{-ci}}{ci} \right), \\
\lambda_{i,3}(c) = \left(\frac{1 - e^{-ci}}{ci} - e^{-ci} \right),
\]

for some \(c > 0 \). To confirm this finding, in Figure 4, we plot the estimated loadings \((\lambda_{i,1}, \lambda_{i,2}, \lambda_{i,3}) \) (left panel) together with the theoretical curves in Equation (37) computed for \(c = 0.2 \).

As far as the remaining two estimated common factors are concerned, we note that, in addition to level, slope and curvature, macroeconomic and financial factors have also been incorporated in the study of yield curves—see, for example, Estrella and Mishkin (1998), Ang and Piazzesi (2003), Diebold, Rudebusch, and Aruoba (2006), Duffie, Saita, and Wang (2007).

Note: In each cell, we report the average and standard deviation of \(\bar{r}_2 \) over all Monte Carlo replications, as well as the fraction of times in which \(\bar{r}_2 = r_2 \).
Table 5. Estimated number of zero-mean I(1) factors, \hat{r}_2 when $r_1 = 1$, using \hat{r}_1.

r_2	r_3	$N = 50, T = 100$	$N = 100, T = 100$	$N = 200, T = 100$	$N = 200, T = 200$	$N = 200, T = 500$							
		Average	Std. dev.	% Correct									
0	0	0.01	0.11	0.99	0.99	0.02	0.18	0.97	0.97	0.04	0.22	0.96	0.95
0	1	0.02	0.14	0.98	0.98	0.04	0.22	0.96	0.96	0.04	0.22	0.96	0.96
0	2	0.01	0.10	0.99	0.99	0.03	0.20	0.97	0.97	0.03	0.20	0.97	0.97
1	0	1.00	0.99	0.99	1.00	1.01	1.01	1.00	0.98	1.01	1.04	1.03	0.96
1	1	1.00	0.16	0.99	0.98	1.04	0.21	0.96	0.97	1.04	0.21	0.96	0.97
1	2	1.01	0.13	0.99	0.98	1.02	0.19	0.96	0.96	1.02	0.19	0.96	0.96
2	0	1.86	0.85	0.83	1.92	1.93	0.32	0.89	0.89	1.92	1.93	0.32	0.89
2	1	1.73	0.70	0.69	1.82	1.84	0.46	0.77	0.78	1.83	1.83	0.44	0.77
2	2	1.71	0.72	0.66	1.83	1.83	0.44	0.78	0.77	1.83	1.83	0.44	0.78

NOTE: In each cell, we report the average and standard deviation of \hat{r}_2 over all Monte Carlo replications, as well as the fraction of times in which $\hat{r}_2 = r_2$.

Figure 1. HQM Corporate Bond Yield Curve

and Coroneo, Giannone, and Modugno (2016). We evaluate the correlation between S_t—the spread between the 10 years HQM bond rate and the Federal Funds rate—and the fourth factor finding that $\text{Corr}(S_t, \hat{F}_{4,t}) = .51$, whence we propose to interpret $\hat{F}_{4,t}$ as the \textit{spread factor}. Also, letting R_t be the yearly returns of the Standard & Poor’s index, we have $\text{Corr}(R_t, \hat{F}_{5,t}) = 0.30$; this seems to suggest that $\hat{F}_{5,t}$ may be viewed as a \textit{financial factor}, or that, at a minimum, $\hat{F}_{5,t}$ is intimately related to the financial market.5 These results are in line with the results by

5 Data for S_t are available at https://fred.stlouisfed.org. Data for R_t are available at http://www.econ.yale.edu/~shiller/data.htm.

Table 6. Estimated number of factors in the HQM Corporate Bond Yield Curve.

\hat{r}	BT1	BT2	IC	
With linear trend	\hat{r}_1	0	1	n.a.
Non-stationary	\hat{r}^*	3	3	5
Zero-mean, I(1)	\hat{r}_2	3	2	n.a.
All factors	\hat{r}	5	5	5
Zero-mean, I(0)	\hat{r}_3	2	2	0

Duffie, Saita, and Wang (2007). In the last two panels of Figure 2, we report the fourth an fifth estimated factors (solid red lines) and the corresponding proxies (dashed black lines).
7. Conclusions

In this article, we propose a methodology to estimate the dimension of the common factor space for a given dataset X_{it}. We do not assume that the data are stationary or that they have (or not) linear trends: our procedure estimates separately the number of common factors with a linear trend (which can be only 0 or 1), the number of zero mean, $I(1)$ common factors, and the number of zero mean, $I(0)$ common factors.

Since estimation of these dimensions is carried out via testing (as opposed to using an information criterion or some other diagnostic), the results provide several interesting interpretations. For example, having $r_1 = 0$ means that the data have been tested for the presence of common linear trends, and none has been found; finding $r^* = 0$ indicates that the data have been tested for (the null of) nonstationarity, and have been found to be stationary; etc. Our methodology thus complements the results recently derived by Zhang, Pan, and Gao (2018).
Technically, our approach exploits the well-known eigenvalue separation property that characterises the covariance matrix of data with a common factor structure: essentially, the eigenvalues associated to common factors diverge to positive infinity, whereas the other ones are bounded. On top of this, we exploit the also well-known fact that linear trends, unit roots and stationary processes all imply different rates of divergence of the eigenvalues: these two facts allow us not merely to check whether there are common factors (and how many these are) but also to discriminate between those that have a trend, those that have a unit root, and the stationary ones. In this respect, our procedure is akin to the one proposed by Bai (2004) and Zhang, Robinson, and Yao (2019), although it is based on tests rather than an information criterion, and it entertains the possibility that linear trends could be present.

We conclude by mentioning several interesting issues which, albeit not explicitly considered in this article, can be studied by extending the results derived above. First, all our common factors are assumed to be pervasive; however, based on the discussion in Trapani (2018), the individual tests can be used even in the presence of weak factors. Second, as also mentioned in the comments to Theorem 1, it is possible to use our set-up—with no need for changes to it—in the case of $\hat{u}_{i,t} \sim I(1)$ for at least some i; this would be helpful in order to disentangle common and idiosyncratic sources of nonstationarity. Finally, we note that, by suitably rescaling the second moment matrix of the data, our approach can also be generalized to $I(d)$ factors with $d > 1$.

Acknowledgments

We are grateful to the participants to the 1st Italian Workshop on Econometrics and Empirical Economics (Milano, 25–26 January, 2018); the Financial Econometrics Seminar at CREST (Paris, 15 February, 2018); and the Economics Seminar Series at Aarhus University (Aarhus, 1 March, 2018); the Workshop on Big Data in Financial Markets at Cambridge University (Cambridge, 24–25 May, 2018); the Workshop on Macroeconomic and Financial Time Series at Lancaster University (Lancaster, 31 May–1 June, 2018); the EEA-ESEM congress at the University of Manchester (Manchester, 26–30 August, 2019).

References

Ahn, S. C., and Horenstein, A. R. (2013), “Eigenvalue Ratio Test for the Number of Factors,” *Econometrica*, 81, 1203–1227. [1108,1114]
