HEIGHTS, REGULATORS AND SCHINZEL’S DETERMINANT INEQUALITY

SHABNAM AKHTARI AND JEFFREY D. VAALER

Abstract. We prove inequalities that compare the size of an S-regulator with a product of heights of multiplicatively independent S-units. Our upper bound for the S-regulator follows from a general upper bound for the determinant of a real matrix proved by Schinzel. The lower bound for the S-regulator follows from Minkowski’s theorem on successive minima and a volume formula proved by Meyer and Pajor. We establish similar upper bounds for the relative regulator of an extension l/k of number fields.

1. Introduction

Let k be an algebraic number field, k^\times its multiplicative group of nonzero elements, and $h : k^\times \to [0, \infty)$ the absolute, logarithmic, Weil height. If α belongs to k^\times and ζ is a root of unity in k^\times, then the identity $h(\zeta \alpha) = h(\alpha)$ is well known. It follows that the height h is constant on cosets of the quotient group

$$G_k = k^\times / \text{Tor}(k^\times).$$

Therefore the height is well defined as a map $h : G_k \to [0, \infty)$.

Let S be a finite set of places of k such that S contains all the archimedean places. Then

$$O_S = \{ \gamma \in k : |\gamma|_v \leq 1 \text{ for all places } v \notin S \}$$

is the ring of S-integers in k, and

$$O_S^\times = \{ \gamma \in k^\times : |\gamma|_v = 1 \text{ for all places } v \notin S \}$$

is the multiplicative group of S-units in the ring O_S. We write

$$\text{Tor}(O_S^\times) = \text{Tor}(k^\times)$$

for the torsion subgroup of O_S^\times, which is also the torsion subgroup of the multiplicative group k^\times. As is well known, (1.2) is a finite, cyclic group of even order, and

$$\Omega_S(k) = O_S^\times / \text{Tor}(O_S^\times) \subseteq G_k$$

is a free abelian group of finite rank r, where $|S| = r + 1$.

In this paper we establish simple inequalities between the S-regulator $\text{Reg}_S(k)$ and products of the form

$$\prod_{j=1}^r ([k : \mathbb{Q}] h(\alpha_j)).$$

2000 Mathematics Subject Classification. 11J25, 11R04, 46B04.

Key words and phrases. S-regulator, Weil height.

This research was supported by NSA grant, H98230-12-1-0254.
where $\alpha_1, \alpha_2, \ldots, \alpha_r$ are multiplicatively independent elements in the group $U_S(k)$.

Theorem 1.1. Let the multiplicative group of S-units O_S^\times have positive rank r, and let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be multiplicatively independent elements in the free group $U_S(k)$. If $A \subseteq U_S(k)$ is the multiplicative subgroup generated by $\alpha_1, \alpha_2, \ldots, \alpha_r$, then

$$\text{Reg}_S(k)[U_S(k) : A] \leq \prod_{j=1}^r ([k : \mathbb{Q}] h(\alpha_j)).$$

A special case of (1.4) occurs when S is the collection of all archimedean places of k. We write O_k^\times for the ring of algebraic integers in k, and O_k^\times for the multiplicative group of units in O_k. If k is not \mathbb{Q}, and k is not an imaginary quadratic extension of \mathbb{Q}, then the quotient group

$$\mathcal{U}(k) = O_k^\times / \text{Tor}(O_k^\times) \subseteq G_k$$

is a free abelian group of positive rank r, where $r + 1$ is the number of archimedean places of k. It is known from work of Remak [22], [23], and Zimmert [28], that the regulator Reg(k) is bounded from below by an absolute constant. Further, Friedman [12] has shown that Reg(k) takes its minimum value at the unique number field k_0 having degree 6 over \mathbb{Q}, and having discriminant equal to -10051. Thus by Friedman’s result we have

$$0.2052 \cdots = \text{Reg}(k_0) \leq \text{Reg}(k)$$

for all algebraic number fields k. Combining the inequalities (1.4) and (1.5) leads to the following explicit lower bound.

Corollary 1.1. Assume that k is not \mathbb{Q}, and k is not an imaginary quadratic extension of \mathbb{Q}, so that $\mathcal{U}(k)$ has positive rank r. Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be multiplicatively independent elements in $\mathcal{U}(k)$. If $A \subseteq \mathcal{U}(k)$ is the subgroup generated by $\alpha_1, \alpha_2, \ldots, \alpha_r$, then

$$\text{(1.6)} \quad (0.2052 \cdots)[\mathcal{U}(k) : A] \leq \prod_{j=1}^r ([k : \mathbb{Q}] h(\alpha_j)).$$

Let k be an algebraic number field such that the unit group O_k^\times has positive rank r. The inequality (1.6) implies that each collection $\alpha_1, \alpha_2, \ldots, \alpha_r$ of multiplicatively independent units must contain a unit, say α_1, that satisfies

$$\text{(1.7)} \quad (0.2052 \cdots) \leq [k : \mathbb{Q}] h(\alpha_1).$$

A result of this sort was proposed by Bertrand [5, comment (iii), p. 210], who observed that it would follow from an unproved hypothesis related to Lehmer’s problem.

In a well known paper Lehmer [16] posed the problem, reformulated in the language and notation developed here, of deciding if there exists a positive constant c_0 such that the inequality

$$\text{(1.8)} \quad c_0 \leq [k : \mathbb{Q}] h(\gamma)$$

holds for all elements γ in k^\times, which are not in $\text{Tor}(k^\times)$. If $\gamma \neq 0$ is not a unit, then it is easy to show that

$$\log 2 \leq [k : \mathbb{Q}] h(\gamma).$$
Hence the proposed lower bound (1.8) is of interest for non-torsion elements \(\gamma \) in the unit group \(\mathcal{O}_k^\times \), or equivalently, for a nontrivial coset representative \(\gamma \) in \(\mathcal{U}(k) \). The inequality (1.6) provides a solution to a form of Lehmer’s problem on average. Further information about Lehmer’s problem is given in [6 section 1.6.15] and in [25].

In section 3 we give an analogous upper bound for the relative regulator associated to an extension \(l/k \) of algebraic number fields.

We will show that the inequality (1.4) is sharp up to a constant that depends only on the rank \(r \) of the group \(\mathcal{U}_S(k) \), but \textit{not} on the underlying field \(k \). Related results have been proved by Brindza [7], Bugeaud and Győry [8], Hajdu [14], and Matveev [18, 19]. More general inequalities that apply to arbitrary finitely generated subgroups of \(\mathbb{Q}_k^\times \) were obtained in [26, Theorem 1 and Theorem 2]. The inequality (1.4) that we prove here is sharper but less general, as it applies only to subgroups of a group of \(S \)-units having maximum rank.

\textbf{Theorem 1.2.} Let the multiplicative group of \(S \)-units \(\mathcal{O}_S^\times \) have positive rank \(r \), and let \(\mathfrak{A} \subseteq \mathcal{U}_S(k) \) be a subgroup of rank \(r \). Then there exist multiplicatively independent elements \(\beta_1, \beta_2, \ldots, \beta_r \) in \(\mathfrak{A} \), such that

\begin{equation}
\prod_{j=1}^{r} (|k : \mathbb{Q}| h(\beta_j)) \leq \frac{2^r (r!)^3}{(2r)!} \text{Reg}_S(k)[\mathcal{U}_S(k) : \mathfrak{A}] .
\end{equation}

We note that if \(r = 2 \) then (1.3) and (1.9) imply that the multiplicatively independent elements \(\beta_1 \) and \(\beta_2 \) contained in the subgroup \(\mathfrak{A} \subseteq \mathcal{U}_S(k) \) satisfy the inequality

\[\text{Reg}_S(k)[\mathcal{U}_S(k) : \mathfrak{A}] \leq \big(|k : \mathbb{Q}| h(\beta_1) \big) \big(|k : \mathbb{Q}| h(\beta_2) \big) \leq \frac{4}{3} \text{Reg}_S(k)[\mathcal{U}_S(k) : \mathfrak{A}] . \]

It follows that \(\beta_1 \) and \(\beta_2 \) form a basis for the group \(\mathfrak{A} \). More generally, by using a well known lemma proved by Mahler [17] and Weyl [27] (see also [9, Chapter V, Lemma 8]), we obtain the following bound on the product of the heights of a basis for the subgroup \(\mathfrak{A} \subseteq \mathcal{U}_S(k) \).

\textbf{Corollary 1.2.} Let the multiplicative group of \(S \)-units \(\mathcal{O}_S^\times \) have positive rank \(r \), and let \(\mathfrak{A} \subseteq \mathcal{U}_S(k) \) be a subgroup of rank \(r \). Then there exists a basis \(\gamma_1, \gamma_2, \ldots, \gamma_r \) for the free group \(\mathfrak{A} \), such that

\begin{equation}
\prod_{j=1}^{r} (|k : \mathbb{Q}| h(\gamma_j)) \leq \frac{2^r (r!)^4}{(2r)!} \text{Reg}_S(k)[\mathcal{U}_S(k) : \mathfrak{A}] .
\end{equation}

\textbf{2. Preliminary results}

At each place \(v \) of \(k \) we write \(k_v \) for the completion of \(k \) at \(v \), so that \(k_v \) is a local field. We select two absolute values \(|| \cdot ||_v \) and \(| \cdot |_v \) from the place \(v \). The absolute value \(|| \cdot ||_v \) extends the usual archimedean or non-archimedean absolute value on the subfield \(\mathbb{Q} \). Then \(| \cdot |_v \) must be a power of \(|| \cdot ||_v \), and we set

\begin{equation}
| \cdot |_v = || \cdot ||_{d_v/d} ,
\end{equation}

where \(d_v = [k_v : \mathbb{Q}_v] \) is the local degree of the extension, and \(d = [k : \mathbb{Q}] \) is the global degree. With these normalizations the height of an algebraic number \(\alpha \neq 0 \) that belongs to \(k \) is given by

\begin{equation}
h(\alpha) = \sum_v \log^+ |\alpha|_v = \frac{1}{2} \sum_v |\log |\alpha|_v| ,
\end{equation}
where \(\log^+ x = \max(0, \log x) \) for \(x > 0 \). Each sum in (2.2) is over the set of all places \(v \) of \(k \), and the equality between the two sums follows from the product formula. Then \(h(\alpha) \) depends on the algebraic number \(\alpha \neq 0 \), but it does not depend on the number field \(k \) that contains \(\alpha \). We have already noted that the height is well defined as a map

\[
h : \mathcal{G}_k \to [0, \infty).
\]

Elementary properties of the height show that the map \((\alpha, \beta) \mapsto h(\alpha \beta^{-1})\) defines a metric on the group \(\mathcal{G}_k \).

Let \(\eta_1, \eta_2, \ldots, \eta_r \) be multiplicatively independent elements in \(\mathcal{U}_S(k) \) that form a basis for \(\mathcal{U}_S(k) \) as a free abelian group of rank \(r \). Then let

\[
M = \left(d_v \log \|\eta_j\|_v \right)
\]
denote the \((r + 1) \times r\) real matrix, where \(v \in S \) indexes rows and \(j = 1, 2, \ldots, r \) indexes columns. At each place \(\hat{v} \) in \(S \) we write

(2.3) \[
M(\hat{v}) = \left(d_v \log \|\eta_j\|_v \right)
\]

for the \(r \times r \) submatrix of \(M \) obtained by removing the row indexed by the place \(\hat{v} \). Then the \(S \)-regulator of \(\mathcal{O}_S^X \) (or of \(\mathcal{U}_S(k) \)) is the positive number

(2.4) \[
\text{Reg}_S(k) = \left| \det M(\hat{v}) \right|,
\]

which is independent of the choice of \(\hat{v} \) in \(S \). Using an inequality proved by A. Schinzel [24] that bounds the determinant of a real matrix, we will prove that

(2.5) \[
\text{Reg}_S(k) \leq \prod_{j=1}^{r} (|k : \mathbb{Q}| h(\eta_j)).
\]

If the better known inequality of Hadamard is used to estimate the determinant that defines the \(S \)-regulator on the right of (2.4), we obtain an upper bound that is larger than (2.5) by a factor of \(2^r \).

Assume more generally that \(\alpha_1, \alpha_2, \ldots, \alpha_r \) are multiplicatively independent elements in \(\mathcal{U}_S(k) \), but they do not necessarily form a basis for the free group \(\mathcal{U}_S(k) \). It follows that there exists an \(r \times r \), nonsingular matrix \(B = (b_{ij}) \) with entries in \(\mathbb{Z} \), such that

(2.6) \[
\log \|\alpha_j\|_v = \sum_{i=1}^{r} b_{ij} \log \|\eta_i\|_v
\]

for each place \(v \) in \(S \) and for each \(j = 1, 2, \ldots, r \). Alternatively, (2.6) can be written as the matrix identity

(2.7) \[
(d_v \log \|\alpha_j\|_v) = (d_v \log \|\eta_j\|_v) B.
\]

If

(2.8) \[
\mathfrak{A} = (\alpha_1, \alpha_2, \ldots, \alpha_r) \subseteq \mathcal{U}_S(k)
\]

is the multiplicative subgroup generated by \(\alpha_1, \alpha_2, \ldots, \alpha_r \), we find that the index of this group is given by

(2.9) \[
[\mathcal{U}_S(k) : \mathfrak{A}] = | \det B |.
\]

This will lead to the more general inequality (1.4).
3. Relative regulators

Throughout this section we suppose that k and l are algebraic number fields with $k \subseteq l$. We write $r(k)$ for the rank of the unit group \mathcal{O}_k^\times, and $r(l)$ for the rank of the unit group \mathcal{O}_l^\times. Then k has $r(k) + 1$ archimedean places, and l has $r(l) + 1$ archimedean places. In general we have $r(k) \leq r(l)$, and we recall (see [21, Proposition 3.20]) that $r(k) = r(l)$ if and only if l is a CM-field, and k is the maximal totally real subfield of l.

The norm is a homomorphism of multiplicative groups

$$\operatorname{Norm}_{l/k} : l^\times \to k^\times.$$

If v is a place of k, then each element α in l^\times satisfies the identity

$$(3.1) \quad \left[l : k\right] \sum_{w|v} \log |\alpha|_w = \log |\operatorname{Norm}_{l/k}(\alpha)|_v,$$

where the absolute values $|\ |_v$ and $|\ |_w$ are normalized as in (2.1). It follows from (3.1) that the norm, restricted to the subgroup \mathcal{O}_l^\times of units, is a homomorphism

$$\operatorname{Norm}_{l/k} : \mathcal{O}_l^\times \to \mathcal{O}_k^\times,$$

and the norm, restricted to the torsion subgroup in \mathcal{O}_l^\times, is also a homomorphism

$$\operatorname{Norm}_{l/k} : \operatorname{Tor}(\mathcal{O}_l^\times) \to \operatorname{Tor}(\mathcal{O}_k^\times).$$

Therefore we get a well defined homomorphism, which we write as

$$\operatorname{norm}_{l/k} : \mathcal{O}_l^\times / \operatorname{Tor}(\mathcal{O}_l^\times) \to \mathcal{O}_k^\times / \operatorname{Tor}(\mathcal{O}_k^\times),$$

and define by

$$\operatorname{norm}_{l/k}(\alpha \operatorname{Tor}(\mathcal{O}_l^\times)) = \operatorname{Norm}_{l/k}(\alpha) \operatorname{Tor}(\mathcal{O}_k^\times).$$

However, to simplify notation we write

$$F_k = \mathcal{O}_k^\times / \operatorname{Tor}(\mathcal{O}_k^\times), \quad \text{and} \quad F_l = \mathcal{O}_l^\times / \operatorname{Tor}(\mathcal{O}_l^\times),$$

and we write the elements of the quotient groups F_k and F_l as coset representatives rather than cosets. Obviously F_k and F_l are free abelian groups of rank $r(k)$ and $r(l)$, respectively.

Following Costa and Friedman [10], the subgroup of relative units in \mathcal{O}_l^\times is defined by

$$\{ \alpha \in \mathcal{O}_l^\times : \operatorname{Norm}_{l/k}(\alpha) \in \operatorname{Tor}(\mathcal{O}_k^\times) \}.$$

Alternatively, we work in the free group F_l, where the image of the subgroup of relative units is the kernel of the homomorphism $\operatorname{norm}_{l/k}$. That is, we define the subgroup of relative units in F_l to be the subgroup

$$(3.2) \quad E_{l/k} = \{ \alpha \in F_l : \operatorname{norm}_{l/k}(\alpha) = 1 \}.$$

We also write

$$I_{l/k} = \{ \operatorname{norm}_{l/k}(\alpha) : \alpha \in F_l \} \subseteq F_k$$

for the image of the homomorphism $\operatorname{norm}_{l/k}$. If β in F_l represents a coset in the subgroup F_k, then we have

$$\operatorname{norm}_{l/k}(\beta) = \tilde{\beta}^{[l:k]}.$$

Therefore the image $I_{l/k} \subseteq F_k$ is a subgroup of rank $r(k)$, and the index satisfies

$$(3.3) \quad [F_k : I_{l/k}] < \infty.$$
It follows that $E_{l/k} \subseteq F_l$ is a subgroup of rank $r(l/k) = r(l) - r(k)$, and we restrict our attention here to extensions l/k such that $r(l/k)$ is positive.

Let $\eta_l, \eta_2, \ldots, \eta_r(l/k)$ be a collection of multiplicatively independent relative units that form a basis for the subgroup $E_{l/k}$. At each archimedean place v of k we select a place \tilde{w}_v of l such that $\tilde{w}_v|v$. Then we define an $r(l/k) \times r(l/k)$ real matrix
\[
M_{l/k} = ([l_w : Q_w] \log ||\eta_j||_w),
\]
where w is an archimedean place of l, but $w \neq \tilde{w}_v$ for each $v|\infty$, w indexes rows, and $j = 1, 2, \ldots, r(l/k)$ indexes columns. We write l_w for the completion of l at the place w, Q_w for the completion of Q at the place w, and we write $[l_w : Q_w]$ for the local degree. Of course Q_w is isomorphic to \mathbb{R} in the situation considered here.

As in [10], we define the relative regulator of the extension l/k to be the positive number
\[
\text{Reg}(E_{l/k}) = |\det M_{l/k}|.
\]

It follows, as in the proof of [10] Theorem 1 (see also [11]), that the value of the determinant on the right of (3.5) does not depend on the choice of places \tilde{w}_v for each archimedean place v of k.

Theorem 3.1. Let $k \subseteq l$ be algebraic number fields such that the group $E_{l/k}$ of relative units has positive rank $r(l/k) = r(l) - r(k)$. Let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_r(l/k)$ be a collection of multiplicatively independent relative units in $E_{l/k}$. If $\mathcal{E} \subseteq E_{l/k}$ is the multiplicative subgroup generated by $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_r(l/k)$, then
\[
\text{Reg}(E_{l/k})[E_{l/k} : \mathcal{E}] \leq \prod_{j=1}^{r(l/k)} ([l : Q] h(\varepsilon_j)).
\]

The relative regulator can also be expressed as a ratio of the (ordinary) regulators $\text{Reg}(k)$ and $\text{Reg}(l)$ by using the basic identity
\[
[F_k : I_{l/k}] \text{Reg}(k) \text{Reg}(E_{l/k}) = \text{Reg}(l),
\]
which was established in [10] Theorem 1. A slightly different definition for a relative regulator was considered by Bergé and Martinet in [2], [3], and [4]. We have used the definition proposed by Costa and Friedman in [10] and [11], as it leads more naturally to the inequality (3.6). Further lower bounds for the product on the right of (3.6) follow from inequalities for the relative regulator obtained by Friedman and Skoruppa [13].

4. Schinzel’s norm

For a real number x we write
\[
x^+ = \max\{0, x\}, \quad \text{and} \quad x^- = \max\{0, -x\},
\]
so that $x = x^+ - x^-$ and $|x| = x^+ + x^-$. If $x = (x_n)$ is a (column) vector in \mathbb{R}^N we define
\[
\delta : \mathbb{R}^N \to [0, \infty)
\]
by
\[
\delta(x) = \max \left\{ \sum_{m=1}^{N} x_m^+, \sum_{n=1}^{N} x_n^- \right\}.
\]

The following inequality was proved by A. Schinzel [23].
Theorem 4.1. If \(x_1, x_2, \ldots, x_N \), are column vectors in \(\mathbb{R}^N \), then
\[
|\det(x_1 x_2 \cdots x_N)| \leq \delta(x_1) \delta(x_2) \cdots \delta(x_N).
\]

An upper bound that is slightly sharper than (4.2) was established by C. R. Johnson and M. Newman [15]. However, the bound obtained by Johnson and Newman does not lead to a significant improvement in the results we obtain here.

If \(a \) and \(b \) are nonnegative real numbers then
\[
2 \max \{a, b\} = |a + b| + |a - b|.
\]

This leads to the identity
\[
\delta(x) = \max \left\{ \sum_{m=1}^{N} x_m^+, \sum_{n=1}^{N} x_n^- \right\} = \frac{1}{2} \left| \sum_{n=1}^{N} x_n \right| + \frac{1}{2} \sum_{n=1}^{N} |x_n|.
\]

It follows easily from (4.3) that \(x \mapsto \delta(x) \) is a continuous, symmetric distance function, or norm, defined on \(\mathbb{R}^N \). Let
\[
K_N = \{x \in \mathbb{R}^N : \delta(x) \leq 1\}
\]
be the unit ball associated to the norm \(\delta \). Then \(K_N \) is a compact, convex, symmetric subset of \(\mathbb{R}^N \) having a nonempty interior.

Lemma 4.1. Let \(\delta : \mathbb{R}^N \to [0, \infty) \) be the continuous distance function defined by (4.3), and let \(K_N \) be the unit ball defined by (4.4). Then we have
\[
\text{Vol}_N(K_N) = \frac{(2N)!}{(N!)^3}.
\]

Proof. We write \(J \) for the \((N+1) \times N\) matrix
\[
J = \frac{1}{2} \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-1 & -1 & -1 & \cdots & -1
\end{pmatrix}.
\]

Then it is obvious that \(J \) has rank \(N \). Let
\[
D_N = \{y \in \mathbb{R}^{N+1} : y_0 + y_1 + y_2 + \cdots + y_N = 0\},
\]
so that \(D_N \) is the \(N \)-dimensional subspace of \(\mathbb{R}^{N+1} \) spanned by the columns of \(J \). Further, let
\[
B_{N+1} = \{y \in \mathbb{R}^{N+1} : \|y\|_1 = |y_0| + |y_1| + |y_2| + \cdots + |y_N| \leq 1\}
\]
denote the unit ball in \(\mathbb{R}^{N+1} \) with respect to the \(\| \cdot \|_1 \)-norm. If \(x \) is a (column) vector in \(\mathbb{R}^N \), we find that
\[
\delta(x) = \|Jx\|_1,
\]
and therefore
\[
K_N = \{x \in \mathbb{R}^N : \|Jx\|_1 \leq 1\}.
\]
It follows that
\[
\text{Vol}_N(K_N) = \int_{\mathbb{R}^N} \chi_{B_{N+1}}(Jx) \, dx \\
= |\det U| \int_{\mathbb{R}^N} \chi_{B_{N+1}}(JUx) \, dx,
\]
where \(y \mapsto \chi_{B_{N+1}}(y) \) is the characteristic function of the subset \(B_{N+1} \), and \(U \) is an arbitrary \(N \times N \) nonsingular real matrix. We select \(U \) so that the columns of the matrix \(JU \) form an orthonormal basis for the subspace \(D_N \). With this choice of \(U \) we find that
\[
\int_{\mathbb{R}^N} \chi_{B_{N+1}}(JUx) \, dx = \text{Vol}_N(D_N \cap B_{N+1}) = \frac{\sqrt{N+1}(2N)!}{2^N(N!)^3},
\]
where the second equality on the right of (4.7) follows from a result of Meyer and Pajor [20, Proposition II.7]. Because the columns of \(JU \) are orthonormal, we get
\[
\text{Vol}_N(K_N) = \frac{\sqrt{N+1}(2N)!}{2^N(N!)^3}.
\]
Next we suppose that
\[
A = (a_1 \ a_2 \ \cdots \ a_N)
\]
is an \(N \times N \) nonsingular matrix with columns \(a_1, a_2, \ldots, a_N \). Obviously the columns of \(A \) form a basis for the lattice
\[
\mathcal{L} = \{ A\xi : \xi \in \mathbb{Z}^N \} \subseteq \mathbb{R}^N.
\]
Then by Schinzel’s inequality we have
\[
|\det A| \leq \prod_{n=1}^{N} \delta(a_n).
\]
Using the geometry of numbers, we will establish the existence of linearly independent points \(\ell_1, \ell_2, \ldots, \ell_N \) in the lattice \(\mathcal{L} \), for which the product
\[
\prod_{n=1}^{N} \delta(\ell_n)
\]
is not much larger than $|\det A|$. An explicit bound on such a product follows immediately from Minkowski’s theorem on successive minima and our formula (4.5) for the volume of K_N.

Theorem 4.2. Let $\mathcal{L} \subseteq \mathbb{R}^N$ be the lattice defined by (4.10). Then there exist linearly independent points $\ell_1, \ell_2, \ldots, \ell_N$ in \mathcal{L} such that

\[\prod_{n=1}^N \delta(\ell_n) \leq \frac{2^N(N!)^3}{(2N)!} |\det A|. \]

Proof. Let

\[0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N < \infty \]

be the successive minima of the lattice \mathcal{L} with respect to the convex symmetric set K_N. Then there exist linearly independent points $\ell_1, \ell_2, \ldots, \ell_N$ in \mathcal{L} such that

\[\delta(\ell_n) = \lambda_n \quad \text{for each } n = 1, 2, \ldots, N. \]

By Minkowski’s theorem on successive minima (see [9, section VIII.4.3]) we have the inequality

\[\text{Vol}_N(K_N) \lambda_1 \lambda_2 \cdots \lambda_N \leq 2^N |\det A|. \]

From Lemma 4.1 we get the bound

\[\prod_{n=1}^N \delta(\ell_n) \leq \frac{2^N(N!)^3}{(2N)!} |\det A|, \]

and this proves the theorem. \[\square \]

5. **Proof of Theorem 1.1 and Theorem 1.2**

We require the following lemma, which connects the Schinzel norm (4.1) with the Weil height.

Lemma 5.1. Let \hat{v} be a place of the algebraic number field k, and let $\alpha \neq 0$ be an element of k^\times. Then we have

\[\max \left\{ \sum_{v \neq \hat{v}} \log^+ |\alpha|_v, \sum_{v \neq \hat{v}} \log^- |\alpha|_v \right\} = h(\alpha). \]

Proof. The product formula implies that

\[h(\alpha) = \sum_v \log^+ |\alpha|_v = \sum_v \log^- |\alpha|_v. \]

If $\log |\alpha|_{\hat{v}} \leq 0$ then

\[\max \left\{ \sum_{v \neq \hat{v}} \log^+ |\alpha|_v, \sum_{v \neq \hat{v}} \log^- |\alpha|_v \right\} = \sum_v \log^+ |\alpha|_v = h(\alpha). \]

On the other hand, if $\log |\alpha|_{\hat{v}} \geq 0$ then

\[\max \left\{ \sum_{v \neq \hat{v}} \log^+ |\alpha|_v, \sum_{v \neq \hat{v}} \log^- |\alpha|_v \right\} = \sum_v \log^- |\alpha|_v = h(\alpha). \]

This proves the lemma. \[\square \]
We now prove Theorem 1.1. First we combine (2.3), (2.4), (2.7), and (2.9), and obtain the identity
\begin{equation}
\text{Reg}_S(k)[\mathcal{U}_S(k) : \mathfrak{A}] = |k : \mathbb{Q}|^r |\det(\log |\alpha_j|_v)|,
\end{equation}
where \(v \) in \(S \setminus \{\widehat{v}\} \) indexes rows, and \(j = 1, 2, \ldots, r \) indexes columns, in the matrix on the right of (5.2). We estimate the determinant in (5.2) by applying Schinzel’s inequality (4.2). Using (4.1) and (5.1) we get
\begin{equation}
|\det(\log |\alpha_j|_v)| \leq \prod_{j=1}^r \max \left\{ \sum_{v \neq \widehat{v}} \log^+ |\alpha_j|_v, \sum_{v \neq \widehat{v}} \log^- |\alpha_j|_v \right\}
\end{equation}
(5.3)
\[= \prod_{j=1}^r h(\alpha_j). \]
The inequality (5.3) in the statement of Theorem 1.1 follows from (5.2) and (5.3).

Next we prove Theorem 1.2. Let \(\eta_1, \eta_2, \ldots, \eta_r \) be multiplicatively independent elements in \(\mathcal{U}_S(k) \) that form a basis for \(\mathcal{U}_S(k) \) as a free abelian group of rank \(r \). Let \(\widehat{v} \) be a place of \(k \) contained in \(S \), and
\[M^{(\widehat{v})} = (d_v \log \|\eta_j\|_v) \]
the \(r \times r \) real matrix as defined in (2.3). By hypothesis \(\mathfrak{A} \subseteq \mathcal{U}_S(k) \) is a subgroup of rank \(r \). Let \(\alpha_1, \alpha_2, \ldots, \alpha_r \) be multiplicatively independent elements in \(\mathfrak{A} \) that form a basis for \(\mathfrak{A} \). As in (2.6), there exists an \(r \times r \) nonsingular matrix \(B = (b_{ij}) \) with entries in \(\mathbb{Z} \), such that
\begin{equation}
\log \|\alpha_j\|_v = \sum_{i=1}^r b_{ij} \log \|\eta_i\|_v
\end{equation}
(5.4)
for each place \(v \) in \(S \) and for each \(j = 1, 2, \ldots, r \). Alternatively, if we define the \(r \times r \) real matrix
\[A^{(\widehat{v})} = (d_v \log \|\alpha_j\|_v), \]
where \(v \) in \(S \setminus \{\widehat{v}\} \) indexes rows and \(j = 1, 2, \ldots, r \) indexes columns, then (5.4) is equivalent to the matrix identity
\begin{equation}
A^{(\widehat{v})} = M^{(\widehat{v})} B.
\end{equation}
(5.5)
We use the nonsingular \(r \times r \) real matrix \(A^{(\widehat{v})} \) to define a lattice \(\mathcal{L}^{(\widehat{v})} \subseteq \mathbb{R}^r \) by
\[\mathcal{L}^{(\widehat{v})} = \{ A^{(\widehat{v})} \xi : \xi \in \mathbb{Z}^r \}. \]
Then (2.1), (2.9) and (5.5), imply that
\begin{equation}
\text{Reg}_S(k)[\mathcal{U}_S(k) : \mathfrak{A}] = |\det M^{(\widehat{v})}| |\det B| = |\det A^{(\widehat{v})}|,
\end{equation}
(5.6)
which is independent of the choice of \(\widehat{v} \) in \(S \), and is also the determinant of the lattice \(\mathcal{L}^{(\widehat{v})} \). By Theorem 1.2 and (5.6), there exist linearly independent vectors \(\ell_1, \ell_2, \ldots, \ell_r \) in \(\mathcal{L}^{(\widehat{v})} \) such that
\begin{equation}
\prod_{j=1}^r \delta(\ell_j) \leq \frac{2^r (r!)^3}{(2r)!} \text{Reg}_S(k)[\mathcal{U}_S(k) : \mathfrak{A}].
\end{equation}
(5.7)
As each (column) vector \(\ell_j \) belongs to the lattice \(L^{(v)} \), it has rows indexed by the places \(v \) in \(S \setminus \{ \infty \} \). Thus \(\ell_j \) can be written as

\[
\ell_j = \left(d_v \sum_{i=1}^{r} f_{ij} \log \| \alpha_i \|_v \right) = \left(d_v \log \| \beta_j \|_v \right),
\]

where \(F = (f_{ij}) \) is an \(r \times r \) nonsingular matrix with entries in \(\mathbb{Z} \), and \(\beta_1, \beta_2, \ldots, \beta_r \) are multiplicatively independent elements in the group \(\mathfrak{A} \). By Lemma 5.1 we have

\[
\begin{align*}
\delta(\ell_j) &= \max \left\{ \sum_{v \neq \infty} d_v \log^+ \| \beta_j \|_v, \sum_{v \neq \infty} d_v \log^{-} \| \beta_j \|_v \right\} \\
&= [k : \mathbb{Q}] \max \left\{ \sum_{v \neq \infty} \log^+ |\beta_j|_v, \sum_{v \neq \infty} \log^{-} |\beta_j|_v \right\} \\
&= [k : \mathbb{Q}] h(\beta_j).
\end{align*}
\]

The inequality \((1.9)\) in the statement of Theorem 1.2 follows from \((3.7)\) and \((5.8)\).

6. PROOF OF THEOREM 3.1

Let \(\eta_1, \eta_2, \ldots, \eta_{r(l/k)} \) be a basis for the free abelian group \(E_{l/k} \). Then there exists a nonsingular, \(r(l/k) \times r(l/k) \) matrix \(C = (c_{ij}) \) with entries in \(\mathbb{Z} \), such that

\[
\log \| \varepsilon_j \|_w = \sum_{i=1}^{r(l/k)} c_{ij} \log \| \eta_i \|_w
\]

at each archimedean place \(w \) of \(l \). As in our derivation of \((2.7)\) and \((2.9)\), the equations \((6.1)\) can be written as the matrix equation

\[
([l_w : \mathbb{Q}_w] \log \| \varepsilon_j \|_w) = ([l_w : \mathbb{Q}_w] \log \| \eta_j \|_w) C,
\]

where \(w \) is an archimedean place of \(l \), and \(w \) indexes the rows of the matrices on both sides of \((6.2)\). Let \(\mathcal{E} \) be the subgroup of \(E_{l/k} \) generated by \(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{r(l/k)} \). It follows from \((6.2)\) that the index of \(\mathcal{E} \) in \(E_{l/k} \) is given by

\[
[E_{l/k} : \mathcal{E}] = | \det C |.
\]

At each archimedean place \(v \) of \(k \) let \(\hat{w}_v \) be a place of \(l \) such that \(\hat{w}_v | v \). As in \((3.4)\), we write

\[
M_{l/k} = ([l_w : \mathbb{Q}_w] \log \| \eta_j \|_w),
\]

for the \(r(l/k) \times r(l/k) \) matrix, where \(w \) is an archimedean place of \(l \), but \(w \neq \hat{w}_v \) for each \(v | \infty \), \(w \) indexes rows, and \(j = 1, 2, \ldots, r(l/k) \) indexes columns. Let

\[
L(\mathcal{E}) = ([l_w : \mathbb{Q}_w] \log \| \varepsilon_j \|_w)
\]

be the analogous \(r(l/k) \times r(l/k) \) matrix, where again \(w \) is an archimedean place of \(l \), but \(w \neq \hat{w}_v \) for each \(v | \infty \), \(w \) indexes rows, and \(j = 1, 2, \ldots, r(l/k) \) indexes columns. From \((6.2)\) we get the matrix identity

\[
6.4 \quad L(\mathcal{E}) = M_{l/k} C.
\]

Then we combine \((3.5)\), \((6.2)\), \((6.3)\), and \((6.4)\), and conclude that

\[
6.5 \quad \text{Reg}(E_{l/k}) [E_{l/k} : \mathcal{E}] = | \det L(\mathcal{E}) |.
\]
To complete the proof we apply Schinzel’s inequality (1.2) to the determinant on the right of (6.5). We find that

\[
|l : \mathbb{Q}|^{-r(l/k)} |\det L(\mathcal{C})| \leq \prod_{j=1}^{r(l/k)} \left\{ \frac{1}{2} \sum_{w \neq \hat{w}_v} \log |\varepsilon_j|_w + \frac{1}{2} \sum_{w \neq \hat{w}_v} \log |\varepsilon_j|_w \right\}
\]

\[
= \prod_{j=1}^{r(l/k)} \left\{ \frac{1}{2} \sum_{w \neq \hat{w}_v} \log |\varepsilon_j|_w + \frac{1}{2} \sum_{w \neq \hat{w}_v} \log |\varepsilon_j|_w \right\}
\]

\[
\leq \prod_{j=1}^{r(l/k)} \left\{ \frac{1}{2} \sum_{v|\infty} \log |\varepsilon_j|_v + \frac{1}{2} \sum_{w \neq \hat{w}_v} \log |\varepsilon_j|_w \right\}
\]

\[
= \prod_{j=1}^{r(l/k)} h(\varepsilon_j).
\]

Combining (6.5) and the inequality (6.6), leads to the bound (3.6) in the statement of Theorem 3.1.

References

[1] D. Allcock and J. D. Vaaler, A Banach space determined by the Weil height, Acta Arith., 136 (2009), 279–298.

[2] A.-M. Bergé and J. Martinet, Sur les minorations géométriques des régulateurs, Séminaire de Théorie des Nombres de Paris 1987–1988, (C. Goldstein, ed.), Birkhäuser Verlag, Boston, 1990, 23–50.

[3] A.-M. Bergé and J. Martinet, Minorations de hauteurs et petits régulateurs relatifs, Séminaire de Théorie des Nombres de Bordeaux 1987–1988, Univ. de Bordeaux, 1989.

[4] A.-M. Bergé and J. Martinet, Notions relatives de régulateur et de hauteur, Acta Arith., 54 (1989), 155–170.

[5] D. Bertand, Duality on tori and multiplicative dependence relations, J. Austral. Math. Soc., (Series A) 62 (1997), 198–216.

[6] E. Bombieri and W. Gubler, Heights in Diophantine Geometry, Cambridge U. Press, New York, 2006.

[7] B. Brindza, On the generators of S-unit groups in algebraic number fields, Bull. Austral. Math. Soc., 43 (1991), 325–329.

[8] Y. Bugeaud and K. Györö, Bounds for the solutions of unit equations, Acta Arith., 64 (1996), 67–80.

[9] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer, New York, 1971.

[10] A. Costa and E. Friedman, Ratios of regulators in totally real extensions of number fields, J. Number Theory, 37 (1991), 288–297.

[11] A. Costa and E. Friedman, Ratios of regulators in extensions of number fields, Proc. Amer. Math. Soc., 119 (1993), 381–390.

[12] E. Friedman, Analytic formulas for the regulator of a number field, Invent. Math. 98 (1989), 599–622.

[13] E. Friedman and N.-P. Skoruppa, Relative regulators of number fields, Invent. Math. 135, (1999), 115–144.

[14] L. Hajdu, A quantitative version of Dirichlet’s S-unit theorem in algebraic number fields, Publ. Math. Debrecen, 42 (1993), 239–246.

[15] C. R. Johnson and M. Newman, A surprising Determinantal Inequality for Real Matrices, Math. Ann., 247 (1980), pp. 179–186.

[16] D. H. Lehmer, Factorization of certain cyclotomic functions, Annals of Math. 34 (1933), 461–479.

[17] K. Mahler, On Minkowski’s theory of reduction of positive definite quadratic forms, Quart. J. Math. Oxford, 9 (1936), 259–263.
[18] E. M. Matveev, On linear and multiplicative relations, *Russian Acad. Sci. Sb. Math.*, 78 (1994), 411–425.

[19] E. M. Matveev, On the index of multiplicative groups of algebraic numbers, *Mat. Sb.* 196 (2005), 59–70; translation in *Sb. Math.* 196 (2005), 1307–1318.

[20] M. Meyer and A. Pajor, Sections of the unit ball of L_p^n, *J. Func. Anal.* 80(1988), 109–123.

[21] W. Narkiewicz, *Elementary and Analytic Theory of Algebraic Numbers*, 3rd ed. Springer-Verlag, Berlin, 2010.

[22] R. Remak, Über die Abschätzung des absoluten Betrages des Regulator eines algebraischen Zahlkörpers nach unten, *J. Reine Angew. Math.*, 167 (1932), 360–378.

[23] R. Remak, Über Grössenbeziehungen zwischen Diskriminanten und Regulator eines algebraischen Zahlkörpers, *Compositio Math.*, 10 (1952), 245–285.

[24] A. Schinzel An inequality for determinants with real entries, *Colloq. Math.*, XXXVIII (1978), 319–321.

[25] C. J. Smyth, The Mahler measure of algebraic numbers: a survey, in *Number Theory and Polynomials*, ed. J. McKee and C. J. Smyth, London Math. Soc. Lecture Notes 352, Cambridge U. Press, New York, 2008.

[26] J. D. Vaaler, Heights on groups and small multiplicative dependencies, *Trans. Amer. Math. Soc.*, 366 (2014), no. 6, 3295–3323.

[27] H. Weyl, On geometry of numbers, *Proc. Lond. Math. Soc.*, (2) 47 (1942), 268–289.

[28] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, *Invent. Math.*, 62 (1981), 367–380.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403 USA
E-mail address: akhtari@uoregon.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712 USA
E-mail address: vaaler@math.utexas.edu