On the representability of the bi-uniform matroid

Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing *

August 1, 2012

Abstract

Every bi-uniform matroid is representable over all sufficiently large fields. But it is not known exactly over which finite fields they are representable, and the existence of efficient methods to find a representation for every given bi-uniform matroid is an open problem too. The interest of these problems is due to their implications to secret sharing. Efficient methods to find representations for all bi-uniform matroids are presented here for the first time. In addition, our constructions provide representations over finite fields that are in most cases smaller than the ones used in the previously known efficient constructions, which apply only to a particular class of bi-uniform matroids.

Keywords: Matroid theory, representable matroid, bi-uniform matroid, secret sharing.

1 Introduction

Given a class of representable matroids, two basic questions can be posed about their representability. First, to determine over which fields they are representable. Second, to find efficient algorithms to construct representations for every given matroid in the class. That is, algorithms whose running time is polynomial in the size of the ground set. For instance, every transversal matroid is representable over all sufficiently large fields [17, 20].
Corollary 12.2.17]. Nevertheless, it is not known exactly over which fields they are repre-
sentable, and the existence of efficient algorithms to construct representations is an open
problem too.

The interest for these problems has been mainly motivated by their connections to
coding theory and cryptology, mainly to secret sharing. Proving the Main Conjecture for
Maximum Distance Separable Codes implies determining over which fields the uniform
matroids are representable. For more details, and a proof of this conjecture in the prime
case, see [1], and for further information on when the conjecture is known to hold, see [12,
Section 3]. As a consequence of the results by Brickell [4], every representation of a
matroid M over a finite field provides ideal linear secret sharing schemes for the access
structures that are ports of the matroid M. Because of that, the representability of certain
classes of matroids is closely connected to the search for efficient constructions of secret
sharing schemes for certain classes of access structures. The reader is referred to [13] and
its references for more information about secret sharing and its connections to matroid
theory.

In this paper, the representability of the bi-uniform matroids is analyzed. These are
transversal matroids that can be seen as a very natural generalization of the uniform ma-
troids. They are defined in terms of their symmetry properties, specifically the number
of clonal classes, a concept introduced in [10]. Two elements in the ground set of a ma-
troid are said to be clones if the map that interchanges them and fixes all other elements
is an automorphism of the matroid. Being clones is clearly an equivalence relation, and
its equivalence classes are called the clonal classes of the matroid. Uniform matroids are
precisely those having only one clonal class. A matroid is said to be bi-uniform if it has
at most two clonal classes. Of course, this definition can be generalized to m-uniform
matroids for every positive integer m. A bi-uniform matroid is determined by its rank, the
number of elements in each clonal class, and the ranks of the two clonal classes, which
are called the sub-ranks of the bi-uniform matroid.

Several constructions of secret for families of relatively simple access structures with
interesting properties for the applications have been proposed [2, 4, 8, 9, 11, 15, 21, 22,
23]. They are basic and natural generalizations of Shamir’s [19] threshold secret sharing
scheme. For a survey on this line of work, see [7]. A unified approach to all those pro-
posals was presented in [6]. As a consequence, the open questions about the existence
of such secret sharing schemes for some sizes of the secret value and the possibility of
constructing them efficiently are equivalent to determining the representability of some classes of multi-uniform matroids. The reader is referred to [9] for a detailed discussion on this connection.

After the uniform matroids, the class of the bi-uniform matroids is the simplest among the classes of multi-uniform matroids that are relevant in secret sharing. Bi-uniform matroids were first considered by Ng and Walker [16]. Since all bi-uniform matroids are transversal matroids, for every bi-uniform matroid M, there exists a prime power $n_0(M)$ such that M is representable over every field with at least $n_0(M)$ elements [17, Corollary 12.2.17]. The same property has been proved for tri-uniform matroids [6]. Since the Vamos matroid is not representable [17, Proposition 6.1.10] and it is 4-uniform, this does not apply to m-uniform matroids with $m \geq 4$.

As a consequence of the results in [6, 18], every bi-uniform matroid M is representable over all fields with at least $\binom{N}{k}$ elements, where N is the size of the ground set and k is the rank of M. This result implies that $n_0(M) \leq \binom{N}{k}$ for every bi-uniform matroid M. The same bound applies to tri-uniform matroids and to other classes of representable multi-uniform matroids [6]. Even though the proofs in [6, 18] are constructive, no efficient method to find representations for the bi-uniform matroids can be derived from them. Ng [14] presented a representation of the bi-uniform matroid over the finite field $\mathbb{F}_{q^n_0}$, where q_0 is such that each clonal class has at most $q_0 + 1$ elements and n is at least the rank of the matroid and satisfies an additional condition. This proof is also constructive, but the efficiency of the construction is not discussed in [14], and it does not seem easy to prove that it can be done in polynomial time.

Results on the representability of bi-uniform matroids can be derived from some works on ideal hierarchical secret sharing schemes. The constructions of such schemes proposed by Brickell [4] and by Tassa [22] provide efficient methods to find representations for a class of multi-uniform matroids. In particular, these representations apply to bi-uniform matroids in which one of the sub-ranks is equal to the rank of the matroid. Brickell’s construction implies that every such bi-uniform matroid can be represented over $\mathbb{F}_{q^n_0}$, where q_0 is a prime power larger than the size of each clonal class and n is the square of the rank of the matroid. This construction requires to find an irreducible polynomial of degree n over \mathbb{F}_{q_0}, which can be done in time polynomial in q_0 and n by using the algorithm given by Shoup [20]. Therefore, a representation can be found in time polynomial in the size of the ground set. Representations for those bi-uniform matroids over sufficiently large
prime fields are efficiently obtained from Tassa’s construction, which is based on Birkhoff interpolation. Representations for bi-uniform matroids in which one of the sub-ranks is equal to the rank of the matroid and the other one is equal to 2 are obtained from the constructions of ideal hierarchical secret sharing schemes in [3]. These are representations over \(\mathbb{F}_q \), where the size of the ground set is at most \(q + 1 \) and the size of each clonal class is around \(q/2 \).

Efficient methods to find representations for all bi-uniform matroids are presented here for the first time. The efficient constructions that are derived from [4, 22] apply only to a particular class of bi-uniform matroids. In addition, our constructions provide representations over finite fields that are in most cases smaller than the ones used in [4, 22].

More specifically, we present three different representations of bi-uniform matroids. All of them can be obtained in time polynomial in the size of the ground set. The value \(d = m + \ell - k \), where \(k \) and \(m, \ell \) are, respectively, the rank and the sub-ranks of the matroid, is an important parameter in our constructions. The cases \(d = 0 \) and \(d = 1 \) are reduced to the representability of the uniform matroid. Our first construction (Theorem 4.1) corresponds to the case \(d = 2 \), and we prove that every such bi-uniform matroid is representable over \(\mathbb{F}_q \) if \(q \) is odd and every clonal class has at most \((q - 1)/2 \) elements. The other two constructions apply to the general case, and they are both based on a family of linear evaluation codes. Our second construction (Theorem 4.2) provides a representation of the bi-uniform matroid over \(\mathbb{F}_{q_0^d} \), where \(n > d(d - 1)/2 \) and \(q_0 \) is a prime power larger than the size of each clonal class. Since the degree \(n \) of the extension field depends only on \(d \) and not on the rank nor the sub-ranks, it is in general much smaller than the one in the constructions from [4, 14]. Hence, our construction is in general more efficient. Finally, we present a third construction in Theorem 4.4. In this case, a representation of the bi-uniform matroid over a sufficiently large prime field is obtained. If \(d \) is small compared to the rank of the matroid, the size of the field is smaller than in the representation over prime fields given in [22].

2 The bi-uniform matroid

A matroid \(M = (E, F) \) is a pair in which \(E \) is a finite set, called the ground set, and \(F \) is a set of subsets of \(E \), called independent sets, such that
1. every subset of an independent set is an independent subset, and

2. for all $A \subseteq E$, all maximal independent subsets of A have the same cardinality, called the rank of A and denoted $r(A)$.

A basis B of M is a maximal independent set. Obviously all bases have the same cardinality, which is called the rank of M. If E can be mapped to a subset of vectors of a vector space over a field \mathbb{K} so that $I \subseteq E$ is an independent set if and only if the vectors assigned to the elements in I are linearly independent, then the matroid is said to be representable over \mathbb{K}.

The independent sets of the uniform matroid of rank k are all the subsets B of the set E with the property that $|B| \leq k$. If the uniform matroid is representable over a field \mathbb{K} then there is a map

$$f : E \rightarrow \mathbb{K}^k$$

such that $f(E)$ is a set of vectors with the property that every subset of $f(E)$ of size k is a basis of \mathbb{K}^k.

For positive integers k, m, ℓ with $1 \leq m, \ell \leq k$ and $m + \ell \geq k$, and a partition $E = E_1 \cup E_2$ of the ground set with $|E_1| \geq m$ and $|E_2| \geq \ell$, the independent sets of the bi-uniform matroid of rank k and sub-ranks m, ℓ are all the subsets B of the ground set with the property that $|B| \leq k, |B \cap E_1| \leq m$ and $|B \cap E_2| \leq \ell$. Since the maximal independent subsets of E_1 have m elements, $r(E_1) = m$. Similarly, $r(E_2) = \ell$.

If the bi-uniform matroid is representable over a field \mathbb{K} then there is a map

$$f : E \rightarrow \mathbb{K}^k$$

such that $f(E)$ is a set of vectors with the property that every subset D of $f(E)$ of size k with $|D \cap f(E_1)| \leq m$ and $|D \cap f(E_2)| \leq \ell$ is a basis of \mathbb{K}^k. The dimensions of $(f(E_1))$ and $(f(E_2))$ are $m = r(E_1)$ and $\ell = r(E_2)$, respectively. Thus, if the bi-uniform matroid is representable over \mathbb{K} then we can construct a set $S \cup T$ of vectors of \mathbb{K}^k such that $\dim(\langle S \rangle) = m$ and $\dim(\langle T \rangle) = \ell$, with the property that every subset B of $S \cup T$ of size k with $|B \cap S| \leq m$ and $|B \cap T| \leq \ell$ is a basis.

3 Necessary conditions

We present here some necessary conditions for a bi-uniform matroid to be representable over a finite field \mathbb{F}_q.
The following lemma implies that restricting a representation of the bi-uniform matroid on \(E = E_1 \cup E_2 \), one gets a representation of the uniform matroid on \(E_1 \) of rank \(m \) and the uniform matroid on \(E_2 \) of rank \(\ell \). Therefore, the known necessary conditions for the representability of the uniform matroid over \(\mathbb{F}_q \) can be applied to the bi-uniform matroid.

Lemma 3.1. If \(f \) is a map from \(E \) to \(\mathbb{K}^k \) which gives a representation of the bi-uniform matroid of rank \(k \) and sub-ranks \(m \) and \(\ell \) then \(f(E_1) \) has the property that every subset of \(f(E_1) \) of size \(m \) is a basis of \(\langle f(E_1) \rangle \). Similarly, \(f(E_2) \) has the property that every subset of \(f(E_2) \) of size \(\ell \) is a basis of \(\langle f(E_2) \rangle \).

Proof. If \(L' \) is a set of \(m \) vectors of \(f(E_1) \) which are linearly dependent then \(L' \cup L \), where \(L \) is a set of \(k - m \) vectors of \(f(E_2) \), is a set of \(k \) vectors of \(f(E) \) which do not form a basis of \(\mathbb{K}^k \).

The dual of a matroid \(M \) is the matroid \(M^* \) on the same ground set such that its bases are the complements of the bases of \(M \). Given a representation of \(M \) over \(\mathbb{K} \), simple linear algebra operations provide a representation of \(M^* \) over the same field [17, Section 2.2]. In particular, if \(\mathbb{K} \) is finite, a representation of \(M^* \) can be efficiently obtained from a representation of \(M \). By the following proposition, the dual of a bi-uniform matroid is a bi-uniform matroid with the same partition of the ground set.

Proposition 3.2. The dual of the bi-uniform matroid of rank \(k \) and sub-ranks \(m \) and \(\ell \) on the ground set \(E = E_1 \cup E_2 \) is the bi-uniform matroid of rank \(k^* = |E_1| + |E_2| - k \) and sub-ranks \(m^* = |E_1| + \ell - k \) and \(\ell^* = |E_2| + m - k \).

Proof. Clearly, a matroid and its dual have the same automorphism group. This implies that the dual of a bi-uniform matroid is bi-uniform for the same partition of the ground set. The values for the rank and the sub-ranks of \(M^* \) are derived from the formula that relates the rank function \(r \) of matroid \(M \) to the rank function \(r^* \) of its dual \(M^* \). Namely, \(r^*(A) = |A| - r(E) + r(E \setminus A) \) for every \(A \subseteq E \) [17, Proposition 2.1.9].

Clearly, \(k = m = \ell \) if and only if \(m^* = |E_1| \) and \(\ell^* = |E_2| \), and in this case both \(M \) and \(M^* \) are uniform matroids. We assume from now on that \(m < k \) or \(\ell < k \) and that \(m < |E_1| \) or \(\ell < |E_2| \),

The results in this paper indicate that the value \(d = m + \ell - k \), which is equal to the dimension of \(\langle S \rangle \cap \langle T \rangle \), is maybe the most influential parameter when studying the
representability of the bi-uniform matroid over finite fields. Observe that the value of this parameter is the same for a bi-uniform matroid M and for its dual M^*. If $d = 0$, then the problem reduces to the representability of the uniform matroid. Similarly, if $d = 1$ then, by adding to $S \cup T$ a nonzero vector in the one-dimensional intersection of $\langle S \rangle$ and $\langle T \rangle$, the problem again reduces to the representability of the uniform matroid. From now on, we assume that $d = m + \ell - k \geq 2$.

Proposition 3.3. If $k \leq m + \ell - 2$ and the bi-uniform matroid of rank k and sub-ranks m, ℓ is representable over \mathbb{F}_q, then $|E| \leq q + k - 1$.

Proof. Take a subset A of S of size $k - \ell$. Then $\langle A \rangle \cap \langle T \rangle = \{0\}$ because $A \cup C$ is a basis for every subset C of T of size ℓ. Since $k - \ell \leq m - 2$, we can project the points of $S \setminus A$ onto $\langle S \cap T \rangle$, by defining A' to be a set of $|S| - (k - \ell)$ vectors, each a representative of a distinct 1-dimensional subspace $\langle x, A \rangle \cap (\langle S \rangle \cap \langle T \rangle)$ for some $x \in (S \setminus A)$.

Let B be a subset of T of size $\ell - 2$. For all $x \in A'$, if $\langle B, x \rangle$ contains $\ell - 1$ points of T then $\langle A, B, x \rangle$ is a hyperplane of \mathbb{F}_q^k containing k points of $S \cup T$, at most $m - 1$ points of S and $\ell - 1$ points of T. This cannot occur since such a set must be a basis, by hypothesis.

Thus, each of the $q + 1$ hyperplanes containing $\langle B \rangle$ contains at most one vector of $A' \cup (T \setminus B)$. This gives $|T| - (\ell - 2) + |S| - (k - \ell) \leq q + 1$, which gives the desired bound, since $E = S \cup T$. \qed

Proposition 3.4. If $q \leq k \leq m + \ell - 2$, then the bi-uniform matroid is not representable over \mathbb{F}_q.

Proof. Assume that the bi-uniform matroid is representable and we have the sets of vectors S and T as before. Let e_1, \ldots, e_m be vectors of S. These vectors form a basis for $\langle S \rangle$ and we can extend them with $k - m$ vectors e_{m+1}, \ldots, e_k of T to a basis of $\langle S, T \rangle$. For every vector in T that is not in the basis $\{e_1, \ldots, e_k\}$, all its coordinates in this basis are non-zero. Indeed, if there is such a vector with a zero coordinate in the $i \geq m + 1$ coordinate then the hyperplane $X_i = 0$ contains m vectors of S and $k - m$ vectors of T, which does not occur. Similarly, if the zero coordinate is in the $i \leq m$ coordinate then the hyperplane $X_i = 0$ contains $m - 1$ vectors of S and $k - m + 1$ vectors of T, which also does not occur. Thus, by multiplying the vectors in the basis by some nonzero scalars, we can assume that $e_1 + \cdots + e_k$ is a vector of T and all the coordinates of the other vectors in $T \setminus \{e_{m+1}, \ldots, e_k\}$ are non-zero.
Since $\ell \geq k - m + 2$, there is a vector $z \in T \setminus \{e_{m+1}, \ldots, e_k, e_1 + \cdots + e_k\}$. Since $k \geq q$ there are coordinates i and j such that $z_i = z_j$. If $1 \leq i \leq m$ and $1 \leq j \leq m$ then the hyperplane $X_i = X_j$ contains $m - 2$ vectors of S and $k - m + 2 \leq \ell$ vectors of T, which cannot occur. If $1 \leq i \leq m$ and $m + 1 \leq j \leq k$ then the hyperplane $X_i = X_j$ contains $m - 1$ vectors of S and $k - m + 1$ vectors of T, which also cannot occur. Finally, if $m + 1 \leq i \leq k$ and $m + 1 \leq j \leq k$ then the hyperplane $X_i = X_j$ contains m vectors of S and $k - m$ vectors of T, which cannot occur, a contradiction. \hfill \square

4 Representations of the bi-uniform matroid

Theorem 4.1. The bi-uniform matroid of rank k and sub-ranks m and ℓ with $d = m + \ell - k = 2$ is representable over \mathbb{F}_q if q is odd and $\max\{|E_1|, |E_2|\} \leq (q - 1)/2$.

Proof. Let L denote the set of non-zero squares of \mathbb{F}_q and $(-1)^{\ell+m-1} \eta$ a fixed non-square of \mathbb{F}_q. Consider the subsets of \mathbb{F}_q^k

$$S = \{(t, t^2, \ldots, t^{m-2}, 1, t^{m-1}, 0, \ldots, 0) \mid t \in L\}$$

and

$$T = \{(0, \ldots, 0, \eta, t^{\ell-1}, t^{\ell-2}, \ldots, t) \mid t \in L\},$$

where the coordinates are with respect to the basis $\{e_1, \ldots, e_k\}$. We prove in the following that any injective map which maps the elements of E_1 to a subset of S and the elements of E_2 to a subset of T is a representation of the bi-uniform matroid.

Since every set of $S \cup \{e_{m-1}, e_m\}$ of size m is a basis of $\langle S \rangle$, every set formed by $m - 2$ vectors in S and ℓ vectors in T is a basis. Symmetrically, the same holds for every m vectors in S and $\ell - 2$ vectors in T.

The proof is concluded by showing that there is no hyperplane H of \mathbb{F}_q^k containing $m - 1$ points of S and $\ell - 1$ points of T. Suppose that, on the contrary, such a hyperplane H exists. Since $S \cup A$ span \mathbb{F}_q^k for every $A \subseteq T$ of size $\ell - 2$, the hyperplane H intersects $\langle S \rangle$ in an $(m - 1)$-dimensional subspace. Symmetrically, $H \cap \langle T \rangle$ has dimension $\ell - 1$. Therefore, H intersects $\langle e_{m-1}, e_m \rangle = \langle S \rangle \cap \langle T \rangle$ in a one-dimensional subspace. Take elements a_1 and a_2 of \mathbb{F}_q, not both zero, with $a_1e_{m-1} + a_2e_m \in H$. The $m - 1$ vectors of $H \cap S$ together with $a_1e_{m-1} + a_2e_m$ are linearly dependent. Thus, there are $m - 1$ different
elements \(t_1, \ldots, t_{m-1} \) of \(L \) such that
\[
\det \left(\sum_{i=1}^{m-2} t_1^i e_i + e_{m-1} + t_1^{m-1} e_m, \ldots, \sum_{i=1}^{m-2} t_{m-1}^i e_i + e_{m-1} + t_{m-1}^{m-1} e_m, a_1 e_{m-1} + a_2 e_m \right) = 0.
\]

Expanding this determinant by the last column gives
\[
a_2(-1)^m V(t_1, \ldots, t_{m-1}) = a_1 V(t_1, \ldots, t_{m-1}) \prod_{i=1}^{m-1} t_i,
\]
where \(V(t_1, \ldots, t_{m-1}) \) is the determinant of the Vandermonde matrix. Since \(a_1 = 0 \) implies \(a_2 = 0 \), we can assume that \(a_1 \neq 0 \) and so \(a_2 a_1^{-1}(-1)^m \in L \). Analogously, the \(\ell - 1 \) vectors of \(H \cap T \) together with \(a_1 e_{m-1} + a_2 e_m \) are linearly dependent, and hence there are \(\ell - 1 \) elements \(u_1, \ldots, u_{\ell-1} \) of \(L \) such that
\[
\det \left(\eta e_{m-1} + \sum_{i=1}^{\ell-1} u_i^i e_{k+1-i}, \ldots, \eta e_{m-1} + \sum_{i=1}^{\ell-1} u_{\ell-1}^i e_{k+1-i}, a_1 e_{m-1} + a_2 e_m \right) = 0.
\]
Expanding this determinant by the last column gives
\[
\eta a_2(-1)^\ell V(u_1, \ldots, u_{\ell-1}) = a_1 V(u_1, \ldots, u_{\ell-1}) \prod_{i=1}^{\ell-1} u_i.
\]
Since \(a_1 = 0 \) implies \(a_2 = 0 \), we can assume that \(a_1 \neq 0 \) and so \(\eta a_2 a_1^{-1}(-1)^\ell \in L \), and since \(a_2 a_1^{-1}(-1)^m \in L \), this gives \(\eta(-1)^{\ell+m} \in L \). However, \(\eta \) was chosen so that this is not the case. \(\Box \)

We describe in the following a family of linear evaluation codes that will provide different representations of the bi-uniform matroid for all possible values of the rank \(k \) and the sub-ranks \(m, \ell \). Take \(\beta \in \mathbb{F}_q \) and the subspace \(V \) of \(\mathbb{F}_q[x] \times \mathbb{F}_q[y] \) defined by
\[
V = \{(f(x), g(y)) \mid f(x) = f_1(x) + x^{m-d} g_1(\beta x), g(y) = g_1(y) + y^d g_2(y), \deg(f_1) \leq m-d-1, \deg(g_1) \leq d-1, \deg(g_2) \leq \ell - d - 1\},
\]
where \(d = m + \ell - k \). Let \(F_1 = \{x_1, \ldots, x_{N_1}\} \) and \(F_2 = \{y_1, \ldots, y_{N_2}\} \) be subsets of \(\mathbb{F}_q \setminus \{0\} \), where \(N_1 = |E_1| \) and \(N_2 = |E_2| \). Define \(C = C(F_1, F_2, \beta) \) to be the linear evaluation code
\[
C = \{(f(x_1), \ldots, f(x_{N_1}), g(y_1), \ldots, g(y_{N_2})) \mid (f, g) \in V\}.
\]
Note that \(\dim C = \dim V = m - d + \ell - d + d = k. \)

Every linear code determines a matroid, namely the one that is represented by the columns of a generator matrix \(G \), which is the same for all generator matrices of the code. We analyze now under which conditions the code \(C = C(F_1, F_2, \beta) \) provides a representation over \(\mathbb{F}_q \) of the bi-uniform matroid by identifying \(E_1 \) and \(E_2 \) to \(F_1 \) and \(F_2 \), respectively (that is, to the first \(N_1 \) columns and the last \(N_2 \) columns of \(G \), respectively).

Clearly, for every \(A \subseteq E \) with \(|A \cap E_1| > m \) or \(|A \cap E_2| > \ell \), the corresponding columns of \(G \) are linearly dependent.

Let \(B \) be a basis of the bi-uniform matroid with \(|B \cap E_1| = m - t_1 \) and \(|B \cap E_2| = \ell - t_2 \), where \(0 \leq t_i \leq d \) and \(t_1 + t_2 = d \). We can assume that \(B \cap E_1 \) is mapped to \(\{x_1, \ldots, x_{m-t_1}\} \subseteq F_1 \) and \(B \cap E_2 \) is mapped to \(\{y_1, \ldots, y_{\ell-t_2}\} \subseteq F_2 \). The corresponding columns of \(G \) are linearly independent if and only if \((f, g) = (0, 0) \) is the only element in \(V \) satisfying

\[
(f(x_1), \ldots, f(x_{m-t_1}), g(y_1), \ldots, g(y_{\ell-t_2})) = 0. \tag{1}
\]

Let

\[
r(x) = (x - x_1) \cdots (x - x_{m-t_1}) = \sum_{i=0}^{m-t_1} r_i x^i
\]

and

\[
s(y) = (y - y_1) \cdots (y - y_{\ell-t_2}) = \sum_{i=0}^{\ell-t_2} s_i y^i.
\]

Then \((f, g) \in V \) satisfy (1) if and only if \(f(x) = a(x)r(x) \) for some polynomial \(a(x) = \sum_{i=0}^{t_1-1} a_i x^i \) and \(g(y) = b(y)s(y) \) for some polynomial \(b(y) = \sum_{i=0}^{t_2-1} b_i y^i \). Since

\[
f(x) = a(x)r(x) = f_1(x) + x^{m-d}g_1(\beta x),
\]

\[
g_1(\beta x) = \sum_{i=0}^{t_1-1} a_i \left(\sum_{j=0}^{d-t_1+i} r_{m-d+i-j} x^j \right),
\]

where \(r_j = 0 \) if \(j < 0 \). On the other hand, \(g(y) = b(y)s(y) = g_1(y) + y^d g_2(y) \) and so

\[
g_1(y) = \sum_{i=0}^{t_2-1} b_i \left(\sum_{j=i}^{d-1} s_{j-i} y^j \right),
\]

where \(s_j = 0 \) if \(j > \ell - t_2 \). Hence,

\[
\sum_{i=0}^{t_1-1} a_i \left(\sum_{j=0}^{d-t_1+i} r_{m-d+i-j} x^j \right) = \sum_{i=0}^{t_2-1} b_i \left(\sum_{j=i}^{d-1} s_{j-i}(\beta x)^j \right). \tag{2}
\]
If \((f, g) \neq 0\) then either \(a\) or \(b\) is nonzero and so there is a linear dependence between the \(d\) polynomials in Equation (2). Therefore, the determinant of the \(d \times d\) matrix
\[
\begin{pmatrix}
 r_{m-d} & r_{m-d+1} & \cdots & \cdots & r_{m-t_1} & 0 & \cdots & 0 \\
 r_{m-d-1} & r_{m-d} & \cdots & \cdots & r_{m-t_1} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 s_0 & s_1\beta & \cdots & \cdots & \cdots & r_{m-t_1} \\
 0 & s_0\beta & s_1\beta^2 & \cdots & \cdots & \cdots & \cdots & \cdots \\
 \vdots & \ddots \\
 0 & \cdots & 0 & s_0\beta^{t_2-2} & s_1\beta^{t_2-1} & \cdots & \cdots & s_{t_1+1}\beta^{d-1} \\
 0 & \cdots & \cdots & 0 & s_0\beta^{t_2-1} & s_1\beta^{t_2} & \cdots & s_{t_1}\beta^{d-1}
\end{pmatrix}
\]
is zero.

In conclusion, the code \(C(F_1, F_2, \beta)\) provides a representation over \(\mathbb{F}_q\) of the bi-uniform matroid if and only if the determinant of the matrix (3) is nonzero for every choice of \(m - t_1\) elements in \(F_1\) and \(\ell - t_2\) elements in \(F_2\) with \(0 \leq t_1 \leq d\) and \(t_1 + t_2 = d\). Clearly, this is always the case if \(t_1 = 0\) or \(t_2 = 0\). Otherwise, that determinant can be expressed as an \(\mathbb{F}_q\)-polynomial on \(\beta\). The degree of this polynomial \(\varphi(\beta)\) is at most \(d(d - 1)/2\). In addition, \(\varphi(\beta)\) is not identically zero because the term with the minimum power of \(\beta\) is equal to \(1\beta \cdots \beta^{t_2-1}s_0^{t_2-1}r_{m-t_1}^{t_1}\), and \(r_{m-t_1} = 1\) and \(s_0 \neq 0\). In the next two theorems we present two different ways to select \(F_1, F_2, \beta\) with that property.

Theorem 4.2. The bi-uniform matroid of rank \(k\) and sub-ranks \(m\) and \(\ell\) with \(d = m + \ell - k \geq 2\) is representable over \(\mathbb{F}_q\) if \(q = q_0^s\) for some \(s > d(d - 1)/2\) and some prime power \(q_0 > \max\{|E_1|, |E_2|\}\). Moreover, such a representation can be obtained in time polynomial in the size of the ground set.

Proof. Take \(F_1\) and \(F_2\) from \(\mathbb{F}_{q_0} \setminus \{0\}\) and take \(\beta \in \mathbb{F}_{q_0}\) such that its minimal polynomial over \(\mathbb{F}_{q_0}\) is of degree \(s\). The algorithm by Shoup [20] finds such a value \(\beta\) in time polynomial in \(q_0\) and \(s\). Then the code \(C(F_1, F_2, \beta)\) gives a representation over \(\mathbb{F}_q\) of the bi-uniform matroid. Indeed, all the entries in the matrix (3), except the powers of \(\beta\), are in \(\mathbb{F}_{q_0}\). Therefore, \(\varphi(\beta)\) is a nonzero \(\mathbb{F}_{q_0}\)-polynomial on \(\beta\) with degree smaller than \(s\). \(\square\)

Our second construction of a code \(C(F_1, F_2, \beta)\) representing the bi-uniform matroid is done over a prime field \(\mathbb{F}_p\). We need the following well known bound on the roots of a real polynomial.
LEMMA 4.3. The absolute value of every root of the real polynomial \(c_0 + c_1 x + \cdots + c_n x^n \) is at most \(1 + \max_{0 \leq i \leq n-1} |c_i|/|c_n| \).

THEOREM 4.4. Let \(M \) be the bi-uniform matroid of of rank \(k \) and sub-ranks \(m \) and \(\ell \) with \(d = m + \ell - k \geq 2 \) and \(m \geq \ell \). Take \(N = \max\{|E_1|, |E_2|\} \) and \(K = \lceil N/2 \rceil + 1 \). Then \(M \) is representable over \(\mathbb{F}_p \) for every prime \(p > K^h \), where \(h = md(1 + d(d-1)/2) \).

Moreover, such a representation can be obtained in time polynomial in the size of the ground set.

Proof. First, we select the value \(\beta \) and the sets \(F_1, F_2 \) among the integers in such a way that the determinant of the real matrix (3) is always nonzero. Then we find an upper bound on the absolute value of this determinant. The code \(C(F_1, F_2, \beta) \) will represent the bi-uniform matroid over \(\mathbb{F}_p \) if \(p \) is larger than that bound.

Consider two sets of nonzero integer numbers \(F_1, F_2 \) with \(|F_i| = |E_i| \) in the interval \([- (K-1), K-1]\). Take \(m-t_1 \) values in \(F_1 \) and \(\ell-t_2 \) values in \(F_2 \), where \(1 \leq t_1 \leq d-1 \) and \(t_1 + t_2 = d \). Then the values \(r_i \) appearing in the matrix (3) satisfy

\[
|r_{m-t_1-i}| \leq \binom{m-t_1}{i} (K-1)^i
\]

for every \(i = 0, \ldots, m-t_1 \), and hence \(\sum_{i=0}^{m-t_1} |r_i| \leq K^{m-t_1} \). Analogously, \(\sum_{i=0}^{\ell-t_2} |s_i| \leq K^{\ell-t_2} \). Since \(r_{m-t_1} = s_{\ell-t_2} = 1 \) and \(m \geq \ell \), all values \(|r_i|, |s_j| \) are less than or equal to \(K^{m-1} \). Then \(\varphi(\beta) \) is a real polynomial on \(\beta \) with degree at most \(d(d-1)/2 \) such that the absolute value of every coefficient is at most \((K^{m-1})^d < K^{md} - 1 \). Take \(\beta = K^{md} \).

By Lemma 4.3, \(\varphi(\beta) \neq 0 \). Moreover,

\[
|\varphi(\beta)| \leq (K^{m-1})^d \frac{\beta^{d(d-1)/2+1} - 1}{\beta - 1} < K^h.
\]

Finally, consider a prime \(p > K^h \) and reduce \(\beta = K^{md} \) and the elements in \(F_1 \) and \(F_2 \) modulo \(p \). The code \(C(F_1, F_2, \beta) \) represents the bi-uniform matroid \(M \) over \(\mathbb{F}_p \). Observe that the number of bits that are needed to represent the elements in \(\mathbb{F}_p \) is polynomial in the size of the ground set. \(\square \)

References

[1] S. Ball. On large subsets of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 14 (2012) 733–748.
[2] A. Beimel, T. Tassa, E. Weinreb. Characterizing Ideal Weighted Threshold Secret Sharing. *SIAM J. Discrete Math.* **22** (2008) 360–397.

[3] A. Beutelspacher, F. Wettl. On 2-level secret sharing. *Des. Codes Cryptogr.* **3** (1993) 127–134.

[4] E.F. Brickell. Some ideal secret sharing schemes. *J. Combin. Math. and Combin. Comput.* **9** (1989) 105–113.

[5] R. Cramer, V. Daza, I. Gracia, J. Jiménez Urroz, G. Leander, J. Martí-Farré, C. Padró. On codes, matroids and secure multi-party computation from linear secret sharing schemes. *IEEE Trans. Inform. Theory* **54** (2008) 2644–2657.

[6] O. Farràs, J. Martí-Farré, C. Padró. Ideal Multipartite Secret Sharing Schemes. *J. Cryptology* **25** (2012) 434–463.

[7] O. Farràs, C. Padró. Ideal Secret Sharing Schemes for Useful Multipartite Access Structures. *International Workshop on Coding and Cryptology IWCC2011, Lecture Notes in Comput. Sci.* **6639** (2011) 99–108.

[8] O. Farràs, C. Padró. Ideal Hierarchical Secret Sharing Schemes. *IEEE Trans. Inform. Theory* **58** (2012) 3273–3286.

[9] O. Farràs, C. Padró, C. Xing, A. Yang. Natural Generalizations of Threshold Secret Sharing. *Advances in Cryptology, Asiacrypt 2011, Lecture Notes in Comput. Sci.* **7073** (2011) 610–627.

[10] J. Geelen, J. Oxley, D. Vertigan, G. Whittle. Weak maps and stabilizers of classes of matroids. *Adv. in Appl. Math.* **21** (1998) 305-341.

[11] J. Herranz, G. Sáez. New Results on Multipartite Access Structures. *IEE Proceedings of Information Security* **153** (2006) 153–162.

[12] J. W. P. Hirschfeld, L. Storme. The packing problem in statistics, coding theory and finite projective spaces: update 2001, in *Developments in Mathematics, 3*, Kluwer Academic Publishers. *Finite Geometries*, Proceedings of the *Fourth Isle of Thorns Conference*, pp. 201–246.
[13] J. Martí-Farré, C. Padró. On Secret Sharing Schemes, Matroids and Polymatroids. *J. Math. Cryptol.* 4 (2010) 95–120.

[14] S.-L. Ng. A Representation of a Family of Secret Sharing Matroids. *Des. Codes Cryptogr.* 30 (2003) 5–19.

[15] S.-L. Ng. Ideal secret sharing schemes with multipartite access structures *IEE Proc.-Commun.* 153 (2006) 165–168.

[16] S.-L. Ng, M. Walker. On the composition of matroids and ideal secret sharing schemes. *Des. Codes Cryptogr.* 24 (2001) 49–67.

[17] J.G. Oxley. *Matroid theory.* Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992.

[18] C. Padró, G. Sáez. Secret sharing schemes with bipartite access structure. *IEEE Trans. Inform. Theory* 46 (2000) 2596–2604.

[19] A. Shamir. How to share a secret. *Commun. of the ACM,* 22 (1979) 612–613.

[20] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. *Math. Comp.* 54 (1990) 435-447.

[21] G. J. Simmons. How to (Really) Share a Secret. *Advances in Cryptology – CRYPTO ’88, Lecture Notes in Comput. Sci.* 403 (1990) 390–448.

[22] T. Tassa. Hierarchical Threshold Secret Sharing. *J. Cryptology* 20 (2007) 237–264.

[23] T. Tassa, N. Dyn. Multipartite Secret Sharing by Bivariate Interpolation. *J. Cryptology* 22 (2009) 227–258.