Interprofessional education as part of becoming a doctor or physiotherapist in a competency-based curriculum

Abstract

Introduction: Interprofessional learning is a critical pre-requisite for future interprofessional work. Structural adaptations in education offer possibilities to introduce new concepts. Rheumatic and musculoskeletal diseases (RMD) are both prevented and treated by physicians and physiotherapists but the development of interprofessional roles is seldom part of curricula.

Project description: A complex, longitudinal interprofessional educational approach for future doctors and physiotherapists was designed and implanted at various stages (anatomy, physical examination, pathology, therapy). Most segments of the RMD curriculum are now based on interprofessional classes. Student satisfaction with learning is continually and comparatively evaluated. Learning success is assessed with practical and written exams.

Results: Interprofessional teaching was first introduced in 2013 for 420 first-year and 360 fourth-year medical students, along with 40 first- and third-year physiotherapy majors. The satisfaction with teaching and learning is high and distinctly above average for all teaching areas (satisfaction RMD rated as 2.4; average for all is 3.3). The percentage of those who pass the final exam is 94%. 100% of the students surveyed support the continuation of this interprofessional unit.

Conclusion: Interprofessional teaching of RMD can be successfully implemented for future physicians and physiotherapists at different learning levels.

Keywords: interprofessional learning, physiotherapy, diseases of the musculoskeletal system, patient partner

1. Introduction

Health professionals collaborate interprofessionally on a daily basis when providing health care to patients. This workplace reality is at present unaccounted by the educational programs in the different health care disciplines taught at German educational institutions and universities, where there is a conspicuous lack of interprofessional education. Based on international experiences [1], calls to develop approaches to interprofessional education in
Rheumatic and musculoskeletal diseases (RMD) pose a great challenge for routine health care. They are not only the most common reason for prescribing medications, formally excusing patients from work, and even for early retirement, but also clearly limit quality of life and ability to participate [5], [6]. RMD often have multiple causes and need various therapies, many times simultaneously. Despite this knowledge, university teaching in Germany concerning this area is unsatisfactory, and the known deficits have yet to be remedied [7], [8].

The musculoskeletal system offers students a good place to start formal learning due to the relative ease of clinically examination, the wide experience of many with injuries, and the often simple, mechanical explanations. Physiotherapists and physicians play both important roles in the treatment of RMD, even though different approaches and therapies are generally available to them. Physiotherapy is often viewed during medical education as a less important and not evidence based form of therapy. Physiotherapists often view the physician primarily as the source of medical orders, and communication is usually limited to a few words or medical indication codes. Whoever has been fortunate enough to experience an interprofessional medical round or case consultation knows that joint assessment and cooperative therapy planning are distinctly more effective. People who have RMD or who wish to prevent it are not just to be viewed as passive recipients of a therapy, but rather to be recognized as active participants who can prevent and treat through their behavior. Even patients must be trained and can be integrated into educational curricula.

Germany is growing. An extensive position paper, complete with examples and comparisons of the approaches presently pursued in Europe and recommendations for implementation in the German-speaking countries, has been recently published in this journal [2] and already discussed and debated at the conference of the German Medical Association (Bundesärztekammer) [3], [http://www.aerzteblatt.de/nachrichten/62214/ interprofessionales-Lernen-soll-zu-einer-besseren-Versorgung-fuehren].

Detected barriers are organizational, such as separate and autonomous responsibility for education in each of the different health professions, the educational approach with the more practice-oriented colleges of applied sciences on one and the academic study of medicine based on several years of pre-requisite theoretical learning on the other side.

Successful interprofessional education must be based on development of an educational concept, with all of the affected professions participating in this process. Long-established routines and reservations about interprofessional education must be overcome in order to implement successful projects [1], [4]. With the introduction of a competency-based curriculum in 2013 at the medical department of Heinrich Heine University in Dusseldorf, Germany, there was an opportunity to integrate interprofessional education as part of a complete restructuring of the educational program.

Rheumatic and musculoskeletal diseases (RMD) pose a great challenge for routine health care. They are not only the most common reason for prescribing medications, formally excusing patients from work, and even for early retirement, but also clearly limit quality of life and ability to participate [5], [6]. RMD often have multiple causes and need various therapies, many times simultaneously. Despite this knowledge, university teaching in Germany concerning this area is unsatisfactory, and the known deficits have yet to be remedied [7], [8].

The musculoskeletal system offers students a good place to start formal learning due to the relative ease of clinically examination, the wide experience of many with injuries, and the often simple, mechanical explanations. Physiotherapists and physicians play both important roles in the treatment of RMD, even though different approaches and therapies are generally available to them. Physiotherapy is often viewed during medical education as a less important and not evidence based form of therapy. Physiotherapists often view the physician primarily as the source of medical orders, and communication is usually limited to a few words or medical indication codes. Whoever has been fortunate enough to experience an interprofessional medical round or case consultation knows that joint assessment and cooperative therapy planning are distinctly more effective. People who have RMD or who wish to prevent it are not just to be viewed as passive recipients of a therapy, but rather to be recognized as active participants who can prevent and treat through their behavior. Even patients must be trained and can be integrated into educational curricula.

RMD has many different causes: the basic ones are congenital disorders, age, injury and inflammation. Along with bones and joints, tendons and ligaments, muscles, fascia, nerves, vessels, skin, metabolism and the immune system are all necessary to maintain mobility. Even self-perception and the personal motivation to move and exercise appropriately are central factors in maintaining vitality.

Competency-based education regarding RMD is valuable and meaningful when done in an interdisciplinary, interprofessional manner in close cooperation with patients. In cooperation with the School of Physiotherapy and the patient self-help groups at the University Hospital, the Medical School at the Heinrich Heine University has created an opportunity for precisely this by developing and implementing a joint concept for teaching and learning.

2. Project description

The changes to the medical program were radical. The pre-clinical and clinical phases have been replaced by qualification phases; competencies and overarching learning objectives were formulated. The curriculum is no longer sequenced according to subjects, but rather organized under interdisciplinary topic headings. In the following we present how RMD has been included in the curriculum in terms of form and content with a focus on interprofessional education.

The teaching of RMD was developed by Rheumatology together with Trauma Surgery and Orthopedics at the different qualification levels; the RMD unit is now jointly taught by these three departments. The design of the educational approach took place over four years with equal participation of all involved subject areas independent of profession. Suggestions were reviewed by the university’s teaching commission and included in the curriculum. The instructors and student representatives meet regularly, at least three times during the academic year, to further optimize teaching, address uncertainties and strengthen interprofessionalism. A coordinator is available to help with short-term solutions.

The School of Physiotherapy has restructured its curriculum so that a group of students from one cohort are able to participate in the interprofessional education unit, while the remaining students continue with their practical training.

The interprofessional education unit began with the implementation of the competency-based curriculum in Düsseldorf during the 2013/14 winter semester. A total of 420 medical students in their first year of study, 360 fourth-year medical students and 80 future physiotherapists (40 in the first year of training and another 40 in the third) have now participated in this joint learning program. Continuation is intended: in the 2016/17 winter semester the students who began in 2013 will have reached the second qualification phase.
2.1. First qualification phase

Examining the healthy musculoskeletal system is taught in the first year of study. In a block focusing on the human body and movement, gross anatomy is covered theoretically and practically by the anatomical institutes (dissection course). As this is accomplished, basic physical terms are elucidated in an integrated manner and, in close cooperation with the School of Physiotherapy, physical therapy concepts are presented to students early on in the form of practical exercises. Shoulder, hand, knee, back, and foot are the focal topics that are each covered in an interdisciplinary and interprofessional manner over the period of a week (see figure 1). The content of the practical component is the recognition of what is normal, its variability and range, as well as the first deviations, meaning deformations of the spine, pelvic obliquity, etc. Orthopedists and trauma surgeons explain common and typical injuries based on physical principles allowing a better understanding of anatomy. At the same time, concepts regarding the preservation of a healthy musculoskeletal system are presented (exercises to strengthen the back or knees, etc.). For this, it was possible to involve experienced physiotherapists and well-known coaches from a local German athletic training center (see figure 1). Tutors (advanced physiotherapy [PT] students and medical students with a higher qualification) present, explain and practice examination techniques on humans with the first-year students. Physical therapy is presented and learned at work stations. Future physiotherapists have the chance to participate in gross anatomy.

During the second semester, general practitioners teach how to record medical case histories. Patients in the local ankylosing spondylitis self-help group participate as example patients on whom students can practice. Future medical doctors can then apply this knowledge of recording case histories and examining the musculoskeletal system during the first general practice internship. A standardized method of documentation was developed for this purpose (see figure 2). The participating general practitioners have taken part in a training session on examination techniques held by the student tutors. The future physiotherapists participate in the regularly scheduled rehab sports sessions held by the self-help groups and gather experience in leading exercise groups. Having interested medical students participate in the rehab sports program as part of an elective curriculum is intended.

During the third year of study, medical students receive more detailed instruction on clinical diagnostics, differential diagnostics, medical measures and immunology (infection and defense). Since this is only of partial relevance to the topic of RMD and of no relevance for future physiotherapists, PT students were not included.

2.2. Second qualification phase

Starting in the fourth year of study, multiple four-week practical blocks are offered with instruction involving patients (outpatient care or operating room), of which there is one with RMD-specific subjects. These blocks have already been presented in this journal [9]. Just like the medical students, the PT students observe outpatient care for those with rheumatism.

The second qualification phase for RMD is structured by a four-week block dealing with the musculoskeletal system. Third-year PT students take equal part in the entire study block. They also take the same final multiple-choice exam. This 60-hour unit is divided into 24 hours of lecture (for 90 medical students and 10 PT students) and 36 hours of seminar (in groups of 15 medical students and 2 PT students), and one week of individual study of cases (CASUS) and preparation for the exam. Major weekly topics cover the musculoskeletal system and aging, accidents and inflammation. Instruction is based on cases that are initially covered in small groups at the start of the week. Along with the core subjects, important aspects are taught in seminars on human genetics, neuropathology, microbiology, psychosomatics, epidemiology, etc., and at the end of each week a summary from the perspective of general practice is presented (see figure 3).

During this study block, the future physiotherapists also offer a two-hour seminar as a type of “obstacle course.” Trained patients who are members of the Rheuma-Liga, a self-help league, stand in to enable special examinations, connections with daily life, and information on dealing with disease and finding helpful resources, etc. [https://www.rheuma-liga.de/aktivitaeten/projekte/detailansicht/news/patient-als-partner/]. Using actors as patients allows stressful situations where communication needs to take place to be practiced and contemplated.

2.3. Third qualification phase

Medical students meet up again with the future physiotherapists on hospital wards during their practical year (6th year of study) and have the opportunity to jointly provide patient care in an inpatient setting. Both groups of students also serve as tutors for the subsequent semesters.

2.4. Evaluation

This curricular unit is regularly evaluated by the students, and the results analyzed by the office of the Dean of Studies. Due to organizational reasons, it was not possible to have intervention and control groups dealing with the same topic.

In addition, the students participating in the second round during the 2015 summer semester were surveyed anonymously regarding their expectations and experiences...
Time	Monday	Tuesday	Wednesday	Thursday	Friday
8:15am	Clinical lecture		Gross Anatomy		
9:15	Gross Anatomy	Microscop. Anat.		Physics	Physiotherapy
10:30	Micro Anatomy				
11:15	Seminar				
12:00pm					
12:30	Gross Anatomy			Gross Anatomy	
1:15	Seminar at the dissecting table			Seminar at the dissecting table	
2:00		Micro Anatomy			
2:45		Seminar			
3:00			Clinical		
4:00			examination		
4:45				Physiotherapy	
5:30					
6:15					

Lecture/seminar content: Anatomy with objectives
- Allochthonous back muscles—identifying the relationship of the muscles of the neck and upper extremities to the back. Educational film: *Regio cervicalis posterior*
- Structure of vertebrae, joints and autochthonous musculature of the back—familiarization with the functional organization of the M. erector spinae and the three-dimensional architecture of the spinal column (lordosis, kyphosis, bony landmarks). Educational film: *autochthonous musculature of the back*
- Hip joint with ligaments—stating the principles of 180° hip extension
- Muscles of the gluteal region—recognizing the means of pelvic stabilization. Educational film: *M. gluteus maximus und M. piriformis mit Aa. gluteae und Nn. glutei*
- Ischiocrural musculature—understanding internal and external rotation of the knee and the significance of passive and active insufficiency. Educational film: *Ischiocrural musculature*
- Physiotherapy project "Active Break" Training for spine muscles.
- Lecture on the back by the head of the Orthopedic clinic.

Figure 1: Example given for a topic: Course schedule for the 11th week of the first semester; Seminar group topic: “The back”. Lectures 8:15-10:30 am, followed by a seminar or practical instruction, interprofessionally designed instruction is indicated in red.
Clinical examination techniques for practice on fellow students/patients

Topic: Back

- **Inspection**
 - Determine the spine form
 - From the side: lumbar spine-lordosis, thoracic spine-kyphosis, cervical spine-lordosis.
 - From the dorsal view: recognition of scoliosis
 - Uneven shoulders, humping in the region of the ribs
 - Asymmetry of the waist and skin
 - Determination of differences in leg length
 - Pelvic obliquity
 - Sintering fractures of the vertebrae as a consequence of osteoporosis
 - Hyperkyphosis of the thoracic spine and fir tree phenomenon

- **Palpation**
 - Bony landmarks
 - Vertebra prominens: C7
 - Spinous processes
 - Ala of ilium
 - Palpate for tenderness over bone and soft tissues
 - Percussion of the spine
 - Disruption

- **Function: active and passive**
 - **Cervical spine**
 - Flexion/reclination: 35-45 °
 - Rotation with unflexed position of the head: 60-80°
 - Lateral flexion: 45°
 - Chin-to-sternum distance
 - Max. flexion (0 cm)
 - Reclination (18 cm)
 - Distance of the back of the head to wall (0 cm)
 - Measurable distance between occiput and the wall on which the patient is leaning on with their back.
 - **Thoraco-lumbar spine**
 - Chest expansion in the 4th intercostal space
 - (> 5 cm, depending on sex and age)
 - Finger-floor distance (0 cm)
 - The distance of the finger to floor is partly a measurement of spinal column mobility, but it also depends on mobility of the hip joints and the flexibility of the ischiocrural musculature.
 - **Schober’s test**
 - A point 10 cm above L5 is marked while patient is standing
 - With the torso at maximum flexion, the distance should increase (10-15 cm)
 - Less than 3 cm is considered clearly abnormal
 - **Ott’s sign**
 - A point 30 cm below vertebra prominens (C7) is marked on the spine of the standing patient
 - With the torso at maximum flexion, the distance should increase to approximately 33 cm

Figure 1: Example given for a topic: Course schedule for the 11th week of the first semester; Seminar group topic: “The back”, Lectures 8:15-10:30 am, followed by a seminar or practical instruction, interprofessionally designed instruction is indicated in red.
Figure 2: Standardized sheet for the internship in general practice

Name__ Date__________________________

- **Joint-pain X**
- **swelling O (red)**
- **deformity []**
- **limited motion (NN)**

Ott
- 30-

Schober
- 10-

S1
- Finger-floor distance

Joint	Range
Shoulder	20-40° - 0 – 180°
	150-170° - 0 – 40°
	95° - 0 – 40-60°
Elbow	0° - 0 - 140°
	pronation/supination in 90° flection of the elbow
Wrist	80° - 0 – 60°
	30° - 0 - 30°
Hip	10-15 – 0 - 130-140°
	30-45 – 0 - 20-30°
	40-50 - 0 - 30-40°
Knee	0-5 – 0 - 120-150°
	10 - 0 - 25-30°
Fuß	50 – 0 - 30°
	30 – 0 - 60°
	45 – 0 - 70°
Cervical spine	flexion/reclination 35-45 °
	rotation 60-80°
	lateral flexion 45°
	chin-to-sternum distance
	max flexion (0cm)
	reclamation (18 cm)
Thoraco-lumbar spine	chest expansion space> 5 cm
	finger-floor distance (0 cm)
Schober’s test	A point 10 cm above L5 is marked while patient is standing. With the torso at maximum flexion, the distance should increase (10-15 cm)
Ott’s sign	A point 30 cm below vertebra prominens (C 7) is marked on the spine of the standing patient. With the torso at maximum flexion, the distance should increase to approximately 33 cm

examiner____________________ annotations________________________
Monday	Tuesday
Seminar week	**Seminar week**
Aging	**Inflammation**
Introductory survey	**Trauma surgery, Principles of treating fractures**
Endocrinological causes of bone disease	**Trauma surgery, Principles of treating long-bone fractures**
Orthopedics: Swollen joints	**Trauma surgery: “Find the fracture” Fracture and soft tissue classifications**
	Rheumatology: Case examples of inflammatory joint disease
	Orthopedics: Tumors
	Trauma surgery: Hip fractures
	Trauma surgery: Infection following osteo-synthesis
Orthopedics: Shoulder	**Trauma surgery: Osteosynthesis techniques**
	Rheumatology: Patient viewpoints
	Orthopedics: Club foot
	Trauma surgery: Hand injuries
	Microbiology septic / reactive arthritis: Causes, diagnosis and treatment
	Rheumatology Spondylo-arthritis
	Vascular sugery: TVT
	Pharmacology “Acute pain therapy” (NSAR/ Coxibe)
Thursday	**Friday**
Seminar week	**Seminar week**
Aging	**Inflammation**
Orthopedics: Shoulder	**Rheumatology: Vasculitides - clinic and diagnostics**
Orthopedics: Knee	**Rheumatology: Vasculitides - therapy**
Dental prosthetics: Myoarthropathies of the masticatory system	**Trauma surgery: Injuries of the knee joint**
	Neurology: Muscle disease
	Rehab Rheumatology: history, Therapy example RA / SPA / SLE and financial burden of the disease, indirect costs degenerative
Physiotherapy “Obstacle course”	**Trauma surgery: Childhood fractures**
	Neuropathology: Value of muscle biopsy to diagnostics
	Rehab Orthopedics: principles of treatment, resources, rehab phases, cases

Figure 3: Example course schedule for a week during the fourth year, lectures 8:15-10:00 am, Fridays until 12:00 pm (light gray), all else as seminars (dark) or practical instruction. Each represents one hour of instruction, all interprofessional, with no classes taking place on Wednesdays.
Physiotherapy “Obstacle course”	Microbiology: Soft tissue infections: emergencies, hospital-acquired infections, diagnosis and therapy	General medicine / Psychosomatic medicine: Rheumatoid arthritis: Breaking bad news	Orthopedics: Spinal column	Psychosomatic medicine: Psychosomatic disease of the musculoskeletal system	Rheumatology: Therapy strategies
Vascular surgery: pAVK	Orthopedics: Knee prosthetics	Psychosomatic medicine: Psychosomatic disease of the musculoskeletal system	Rheumatology: Case discussions		
	Orthopedics: Discitis	General Medicine: Knee osteoarthritis: Conservative therapy	General Medicine: Proximal femur fracture: outpatient follow-up care, Fall prevention	General Medicine: Rheumatoid arthritis: Coping, chronic care	

Other lectures in the other two weeks of the study block
Arterial occlusions, principles of joint fractures upper/lower extremities, soft tissue injuries and reconstruction
Orthopedics: Hips – child/adult, scoliosis, connective tissue disease, public health epidemiology of diseases of the musculoskeletal system: frequency, risk factors, evidence and cost-benefit aspects of interventions, preventive measures, etc., informing patients, psychosomatic medicine diagnostic criteria of somatoform disorders, etiopathogenic models, principles of psychotherapeutic therapy, radiology systematic image analysis - Checklists, normal findings, typical x-ray symptomatology osteoarthritis, arthritis, gout, tumor, fracture, pharmacology prevention and therapy of osteoporosis, Basic therapies for motor neuron disease

(Continued)

Figure 3: Example course schedule for a week during the fourth year, lectures 8:15-10:00 am, Fridays until 12:00 pm (light gray), all else as seminars (dark) or practical instruction. Each represents one hour of instruction, all interprofessional, with no classes taking place on Wednesdays.
with interprofessional education, as well as their opinion regarding the future of this educational approach. Pass rates for questions addressing RMD on the central exams could serve over the medium term to evaluate the learning success of the future physicians. The enthusiasm of future physicians for the area of RMD could be measured using applicant numbers at the pertinent advanced professional training institutes. For rheumatology, there is longitudinal, forward-looking and regional data generated at the patient level in the form of the core documentation compiled by the cooperating rheumatism centers for use and implementation of different therapies, such as physiotherapy for rheumatism patients, function status, participation and patient satisfaction [http://dgrh.de/fileadmin/media/Forschung/Versorgungsforschung/ErwachsenenKerndok/Standardpraesentation_2013Extern.pdf]. This could allow for recognition of healthcare-related regional trends and serve long-term validation at the care level.

3. Results

3.1. Implementation from the perspective of medical education

The model presented here takes the main focus from teaching individual subjects and places it on the patients and the health care team. It creates acceptance for different points of view and demonstrates their benefit and usefulness. In addition to content, important skills and competencies are experienced and thus made real. The affected patient, physiotherapist and physician learn together and from each other. Gross anatomy instructors are seeing that the functional understanding of the musculoskeletal system in the dissection course profits immensely from experiencing the anatomy of living bodies (physical examination course, physiotherapy).

All of the instructors who took part in the survey reported positive experiences and supported the continuation of this approach (n=7, <10%).

3.2. Implementation from the perspective of the medical students

Future medical doctors approached this opportunity to experience interprofessional education with great curiosity, but had no particular expectations (response rate to voluntary survey n=12, 13%). Individual students expressed concern that, as a result of the course, there would be less time available to learn the material covered by the multiple-choice exams.

The first-semester students were at first more uncertain about performing physical exams on each other than the third-year students who had already received instruction in examination techniques. This was addressed right away by including an explanatory introduction. The willingness to participate in the physical examination was more visible among the future physiotherapists and the medical students took this as a "cue" to do the same.

3.4.1. Student satisfaction

Student satisfaction with this curricular unit as measured in the central teaching evaluation (n=37, 41% response rate), knowledge gain and satisfaction with course structure and sequence were with a mean rating of 2.4 distinctly better than the evaluation results for the other topic-specific study blocks, which received mean ratings of 3.3 (response rate 30-50%, see figure 3). Teaching done by physiotherapists was evaluated particularly positively by the medical students with a rating of 1.7. The practical learning is evaluated higher in the practical block that includes the RMD clinics, something that allows the assumption of an additional effect on student perception of their own practical team skills and competencies. In terms of general satisfaction and learning progress, structured teaching using patients and Physiotherapists is evaluated by medical students as being equal to instruction by medical doctors (see figure 4).

3.4.2. Passing rates

The learning objectives assessed by the centralized final exams (multiple-choice) are achieved by the great majority of the students. The passing rate for medical students was 94% with a minimum passing grade of 60%; a total of 14% earned the grade of very good, 58% that of good, 14% satisfactory, and 8% achieved sufficient results. A measurable effect of interprofessional education as it is described here on the passing rate for the centralized exams has not yet been ascertained.

3.3. Implementation from the perspective of the physiotherapists

Access to the university’s electronic learning materials that accompanied the course was not possible at first for the PT students; however, it was possible to arrange for special access. The future physiotherapists experienced the shared learning environment with the medical students as a successful meeting of the two professional groups, who should be closely interlinked for the purpose of providing optimal patient care. Assuming the role of tutor early on, physiotherapy students were able to practice asserting confidence when giving patient care. The future physiotherapists experienced a high level of professional esteem as tutors and the open curiosity of the medical students. The written responses of the medical students regarding the expertise and motivated friendliness of the physiotherapists also obviously provided impetus for even closer collaboration on the wards during the internship. During the subsequent internships, almost all participants continued the productive interaction with those whom they met during the RMD study block. News of the existence
of such constructive cooperation has spread and, in turn, led to further synergetic effects in providing therapy and negotiating therapy goals with patients in concrete situations. Physiotherapists realize that they are not only able to but even should contribute to giving physicians deeper insights into the possibilities of physiotherapy so that these therapies can be prescribed in a more targeted manner. Arriving at therapy goals in a team comprised of all those involved offers a basis for the best possible health care. Through joint learning in the module on the musculoskeletal system, a forum for collaboration on equal footing is implicitly experienced and becoming as self-evident as the goal of providing the best possible health care. On the standardized evaluations, all of the respondents (n=4,30%) were satisfied with the interprofessional education. Of the future physiotherapists, 91.7% passed the final exam on which there was a minimum passing grade of 50%.

4. Discussion

While it is easier to implement interprofessional education at medical schools at which training for different professions is offered, as is common in other countries [10], many differing educational forms must be coordinated to accomplish this in Germany. If there is a willingness to change and commit, this can be done on the instructor level. Test dates, school breaks, access to internet sites, all of these pose surprisingly obtrusive barriers to implementing interprofessional courses. This can quickly lead to failure if decision-makers have even the smallest doubt regarding the endeavor [4]. In addition, the administrative effort is disproportionately high for small projects making it a barrier that explains the lack of widespread implementation.

We are able to present a concept that has been implemented successfully focusing on interprofessional learning between patients, medical and physiotherapy students. Our approach fulfills not only the minimum requirements set by the position paper of the GMA committee on Interprofessional Education for the Health Professions [2], but is also primarily designed longitudinally for the entire educational program/study during the different qualification phases and influences an entire subject area (musculoskeletal system).

The practical implementation and subsequent evaluation are simpler for the program presented here than for small isolated solutions, for instance those affecting only one seminar. Interprofessional education has become a matter of course in our case. When planning and implementing the curricular changes here, we were able to count on the support of faculty members for program restructuring and a practical focus on competency, as well as on an enthusiastic team representing various professions as being a great help. Individual sequences, such as the physiotherapy "obstacle course," had already been tried out in other settings (Rheumatology Summer School). As a result, the risk of failure could be reduced. However, the success of such an extensive project is certainly not foreseeable and can only be ensured by frequent re-evaluations. To accomplish this, standardized and required (anonymous) evaluations are helpful, as long as the response rate is assured. The voluntary evaluation was in this case thoroughly supportive and positive, but is not representative with a response rate among instructors of 10%. At the student level, evaluations are for the most part established and can be used as a helpful measure. Organized participation of PT students in the educational design and development has not yet been implemented. This is crucial for long-term success. Confiming the educational approach through passing rates on the central exams is the next step to be taken in this project.

When designing an interprofessional approach to teaching and learning, attention should be paid to the steps described by Hall and Zierler [4]; sufficiently motivated col-
leagues and sufficient time are also necessary. A direct relevance of this kind of comprehensive interprofessional education to other professions, such as nursing or medical technology, seems not to be possible. Although there are separate aspects that do overlap such as care giving, imaging, and lab diagnostics, the depth of learning in diagnostics and pathology is distinctly more generalized than it is in medical education.

Competing interests

The authors declare that they have no competing interests.

References

1. Abu-Rish E, Kim S, Choe L, Varpio L, Malik E, White AA, Craddock K, Blondon K, Robins L, Nagasawa P, Thi Nguyen A, Chen LL, Rich J, Zierler B. Current trends in interprofessional education of health sciences students: A literature review. J Interprof Care. 2012;26(6):444-451. DOI: 10.3109/13561820.2012.715604

2. Waikenthorst U, Mahler C, Aistleithner R, Hahn EG, Kaap-Fröhlich S, Karstens S, Reiber K, Stock-Schröer B, Sottas B. Position statement GMA Committee—“Interprofessional Education for the Health Care Professions”. GMS Z Med Ausbild. 2015;32(2):Doc22. DOI: 10.3205/zma000964

3. Genst T. Interprofessionelles Lernen. Zusammenwirken der Gesundheitsberufe. Dtsch Ärztebl. 2015;112(13):564-565.

4. Hall LW, Zierler BK. Interprofessional Education and Practice Guide No. 1: Developing faculty to effectively facilitate interprofessional education. J Interprof Care. 2015;29(1):3-7. DOI: 10.3109/13561820.2014.937483

5. Huscher D, Merkesdal S, Thiele K, Zeidler H, Schneider M, Zink A. German Collaborative Arthritis Centres. Cost of illness in rheumatoid arthritis, ankyllosing spondylitis, psoriatic arthritis and systemic lupus erythematosus in Germany. Ann Rheum Dis. 2006;65(9):1175-1183. DOI: 10.1136/ard.2005.046367

6. Shariff B, Kopeck J, Bansback N, Rahman MM, Flanagan WM, Wong H, Fines P, Anis A. Projecting the direct cost burden of osteoarthritis in Canada using a microsimulation model. Osteoarthritis Cartilage. 2015. DOI: 10.1016/j.joca.2015.05.029

7. Keyßer G, Zacher J, Zeidler H. Rheumatologie: Integration in die studentische Ausbildung – die RISA-Studie. Ergebnisse einer Datenerhebung zum aktuellen Stand der studentischen Ausbildung im Fach Rheumatologie an den deutschen Universitäten. Z Rheum. 2004;63(2):160-166. DOI: 10.1007/s00393-004-0577-4

8. Keyßer G. Blockpraktikum, Wahlpflichtfach, Querschnittsfach: Welche Auswirkungen hatte die neue Ärzte-Probationsordnung für die rheumatologische Ausbildung von Medizinstudierenden? Dtsch Med Wochenschr. 2007;132(37):195-196. DOI: 10.1055/s-2007-985616

9. Rotthoff T, Schneider M, Ritz-Timme S, Windolf J. Theorie in Praxis statt Theorie versus Praxis – Curriculares Design für ein Lernen an Behandlungsanlässen in einem kompetenzorientierten Curriculum. GMS Z Med Ausbild. 2015;32(1):Doc04. DOI: 10.3205/zma000946

10. Frenk J, Chen L, Bhutta ZA, Cohen J, Evans T, Fineberg H, Garcia P, Ke Y, Kelly P, Kistnasamy B, Meleis A, Naylor D, Pablos-Mendez A, Reddy S, Scrimshaw S, Sepulveda J, Senwadda D, Zurayk H. Health professionals for a new century: transforming education to strengthen health systems in an interdependent world. Lancet. 2010;376(9756):1923-1958. DOI: 10.1016/S0140-6736(10)61854-5

Corresponding author:

Oliver Sander
Heinrich-Heine-Universität Duesseldorf, Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, Moorrenstraße 5, D-40225 Düsseldorf, Germany, Phone: +49 (0)211/811-7817, Fax: +49 (0)211/811-9206
sander@med.uni-duesseldorf.de

Please cite as

Sander O, Schmidt R, Rehkämper G, Lögters T, Zilkens C, Schneider M. Interprofessional education as part of becoming a doctor or physiotherapist in a competency-based curriculum. GMS J Med Educ. 2016;33(2):Doc15. DOI: 10.3205/zma001014, URN: urn:nbn:de:0183-zma0010142

This article is freely available from
http://www.egms.de/en/journals/zma/2016-33/zma001014.shtml

Received: 2015-08-13
Revised: 2015-10-20
Accepted: 2015-11-25
Published: 2016-04-29

Copyright

©2016 Sander et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Interprofessionelle Ausbildung auf dem Weg zum Arzt und Physiotherapeuten in einem kompetenzorientierten Curriculum

Zusammenfassung

Einleitung: Interprofessionelles Lernen ist sinnvolle Voraussetzung eines zukünftigen interprofessionellen Handelns. Strukturelle Änderungen in der Ausbildung bieten die Möglichkeit, neue Konzepte einzuführen. Rheumatische und musculoskelettale Erkrankungen (RMD) werden von Medizinern und Physiotherapeuten vorgebeugt und behandelt.

Projektbeschreibung: Ein komplexes, longitudinales interprofessionelles Lehr- und Lernkonzept für angehende Mediziner und Physiotherapeuten wurde für alle Qualifikationsstufen der Ausbildung (Anatomie, körperliche Untersuchung, Krankheitslehre, Therapie) entwickelt. Große Abschnitte der Lehre zu RMD werden gemeinsam bestritten. Die Lernzufriedenheit wird kontinuierlich und vergleichend evaluiert. Der Lernerfolg wird in praktischen Prüfungen und Klausuren überprüft.

Ergebnis: Die interprofessionelle Lehre wurde vor 2 Jahren für 420 Studierende im 1. Studienjahr und 360 Studierende im 4. Studienjahr sowie 40 angehende Physiotherapeuten im 1. und 3. Ausbildungsjahr eingeführt und bis jetzt fortgesetzt. Die dokumentierte Lehr- und Lernzufriedenheit ist hoch und liegt deutlich über dem Durchschnitt aller Lehrbereiche (Zufriedenheit RMD Note 2,4, Durchschnitt aller 3,3). Die Bestehensquote der Abschlussprüfungen liegt bei 94%. Alle Befragten befürworten die Fortsetzung der interprofessionellen Lehre.

Schlussfolgerung: Interprofessionelle Lehre zu RMD kann für angehende Mediziner und Physiotherapeuten in verschiedenen Qualifikationsstufen erfolgreich umgesetzt werden.

Schlüsselwörter: Interprofessionelles Lernen, Physiotherapie, Erkrankungen des Bewegungsapparates, Patient Partner

Oliver Sander¹
Regine Schmidt²
Gerd Rehkämper³
Tim Löters⁴
Christoph Zilkens⁵
Matthias Schneider⁶,⁷

¹ Heinrich-Heine-Universität Duesseldorf, Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, Düsseldorf, Deutschland
² Universitätsklinikum Düsseldorf, Ausbildungszentrum, Fachbereich Physiotherapie, Düsseldorf, Deutschland
³ Heinrich-Heine-Universität Düsseldorf, Institut für Anatomie I, Düsseldorf, Deutschland
⁴ Heinrich-Heine-Universität Düsseldorf, Klinik für Unfall und Handchirurgie, Düsseldorf, Deutschland
⁵ Heinrich-Heine-Universität Düsseldorf, Orthopädische Klinik, Düsseldorf, Deutschland
⁶ Heinrich-Heine-Universität Duesseldorf, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, Düsseldorf, Deutschland
⁷ Heinrich-Heine-Universität Duesseldorf, Medizinische Fakultät, Studiendekanat, Düsseldorf, Deutschland
1. Einleitung

Die nahezu regelhafte Notwendigkeit interprofessionellen Handelns in der medizinischen Versorgung steht einer in den staatlichen deutschen Lehrerinrichtungen weitgehend fehlenden Umsetzungen in der Ausbildung der verschiede-
denen Disziplinen gegenüber. Basierend auf den interna-
tionalen Erfahrungen [1] wird der Ruf nach der Entwick-
lung von interprofessionellen Ausbildungskonzepten in Deutschland immer lauter und eine Evaluation solcher
neuen Konzepte ist essentiell. Ein umfassendes Positi-
onspapier mit Beispielen bisheriger Konzepte im europäi-
schen Vergleich und Empfehlungen für eine Umsetzung
im deutschsprachigen Raum wurde unlängst in dieser
Zeitschrift veröffentlicht [2] aber auch auf der Fachberu-
ferkonferenz der Bundesärztekammer diskutiert [3],
[http://www.aerzteblatt.de/nachrichten/62214/
Interprofessionelles-Lernen-sozusaubessere-Versorgung-fuehren].

Die erfolgreiche interprofessionelle Lehre bedarf einer
grundlegenden konzeptionellen Entwicklung unter Betei-
ligung der beteiligten Fachdisziplinen. Etablierte Routine
und Bedenken gegen interprofessionelle Lehre müssen
überwunden werden, um erfolgreiche Projekte umzuset-
zen [1], [4]. Mit der Einführung eines kompetenzorientier-
ten Curriculum zum Wintersemester 2013/14 an der
Heinrich-Heine Universität hat sich durch eine komplette
Neustrukturierung der Ausbildung die Möglichkeit erge-
ben, interprofessionelle Lehre zu integrieren.

Rheumatische und muskuloskelettale Erkrankungen
(RMD) stellen eine große Herausforderung in der alltägli-
chen Versorgung dar. Sie sind für die häufigsten Verord-
nungen von Medikation, Krankenschreibungen und vorzei-
tigen Berentungen verantwortlich, schränken die Lebens-
qualität deutlich ein und behindern die Partizipation [5],
[6]. RMD haben oft vielfältige Ursachen und Therapiekon-
zepte, nicht selten mehrere gleichzeitig. Dennoch ist die
universitäre Lehre in Deutschland in diesem Bereich nicht
befriedigend, die bekannten Defizite konnte bisher nicht
ausgeglichen werden [7], [8].

Die Lehre zu RMD wurde durch die Rheumatologie ge-
derenstaatlichenLehrereinrichtungenweitgehend
handeln können. Auch sie müssen geschult werden
und können in die Ausbildung integriert werden.
RMD haben verschiedene Ursachen: Die wesentlichen
sie selbst angemessen zu bewegen sind zentrale Fakto-
ren zum Erhalt der Vitalität.

Kompetenzorientierte Lehre zu RMD ist daher sinnvoller-
weise interdisziplinär, interprofessionell und in enger
Kooperation mit den Patienten umzusetzen, das Curricu-
lum der Medizinischen Fakultät der Heinrich-Heine-Uni-
versität hat in Kooperation mit der Schule für Physiothe-
rapie und den Patientenselbsthilfegruppen am Universi-
tätsklinikum hierfür Raum geschaffen und ein gemeinsa-
mes Lehr- und Lernkonzept entwickelt und umgesetzt.

2. Projektbeschreibung

Die Veränderungen im Medizinstudium waren grundle-
gend. Vorklinik und Klinik wurden durch Qualifikationsstu-
en ersetzt, Kompetenzen und übergeordnete Lernziele
wurden entwickelt. Die Lehre wird nun nicht mehr fachs-
pezifisch gereiht sondern interdisziplinär Themen unter-
greift.

Im Folgenden soll die inhaltliche und formale Einbindung
rühren unter dem besonderen Aspekt der interprofessionellen Ausbildung dargestellt werden.

Die Lehre zu RMD wurde durch die Rheumatologie ge-
richtet. Physiotherapeuten und Ärzte sind an der Behandlung der RMD gleichermaßen beteiligt, haben aber in der Regel andere Zugänge und Therapie-
wege. Physiotherapie wird im Medizinstudium oft als eine
weniger wichtige Therapie angesehen und kommt in der
medizinischen Ausbildung selten in den Fokus. Physiothe-
rapeuten sehen den Arzt oft primär als Verordner und die
Kommunikation beschränkt sich in der Regel auf wenige
Wörter oder Indikationsschlüssel. Wer einmal die Erfah-
rungringinterprofessionellervisitenunfallbesprechungig

Sander et al.: Interprofessionelle Ausbildung auf dem Weg zum Arzt...
res und jeweils 40 angehende Physiotherapeuten des 1. und 3. Lernjahres werden seitdem jährlich integriert. Eine Fortsetzung ist geplant, zum Wintersemester 2016/17 erreichen die 2013 eingeschlossenen Studierenden die 2. Qualifikationsphase.

2.1. Erste Qualifikationsstufe

Die Untersuchung des gesunden Bewegungsapparates wird bereits im 1. Studienjahr vermittelt. Im Block „Der Mensch-Fokus Bewegung“ wird die makroskopische Anatomie des Menschen theoretisch und praktisch (Präparierkurs) an die Studierenden herangetragen. Dabei werden physikalische Grundbegriffe integrativ erläutert und durch eine enge Kooperation mit der Physiotherapieschule frühzeitig physikalische Therapiekonzepte den Studierenden in praktischen Übungen vorgestellt. Schulte, Hand, Knie, Rücken und Fuß bilden Themenschwerpunkte, die in einer Woche interdisziplinär und interprofessionell behandelt werden (siehe Abbildung 1). Inhalte der praktischen Erfahrung sind dabei die Erkennung des Normalen, der Variabilität des Normalen aber auch erste Abweichungen vom Normalen, z.B. Fehlhaltung des Rückens, Beckenschiefstand, etc.. Orthopäden und Unfallchirurgen erklären häufige und typische Verletzungen, die auf physikalischen Grundlagen basieren und die Anatomie besser verstehen lassen. Gleichzeitig werden Konzepte zum Erhalt des gesunden Bewegungsapparates vorgestellt (Rückentraining, Training zur Stabilisierung der Knie, ...). Hierzu konnten erfahrene Physiotherapeuten und renomierte Trainer (z.B. eines ortsansässigen deutschen Leistungszentrums) gewonnen werden (siehe Abbildung 1).

Tutoren (fortgeschrittene Lernende der Physiotherapie (PT) und Medizinstudenten höherer Qualifikation) erklären den Erstsemestern die Untersuchungstechniken am Menschen und üben sie. Physiotherapeutische Behandlungen werden in Arbeitsstationen erfahren. Angehende Physiotherapeuten haben die Möglichkeit, an der makroskopischen Anatomie zu partizipieren. Die Erhebung der Anamnese wird im 2. Semester durch Allgemeinmediziner vermittelt. Patienten der regionalen Morbus Bechterew Selbsthilfegruppe stehen dabei als Übungspersonen zur praktischen Anwendung den Studierenden zur Verfügung. Anschließend können die angehenden Mediziner in einem ersten Hausarztpraktikum die Anamnese und Untersuchung des Bewegungsapparates anwenden. Eine standardisierte Dokumentation wurde dafür entwickelt (siehe Abbildung 2). Die beteiligten Hausärzte haben an einem Training zu den Untersuchungstechniken durch studentische Tutoren teilgenommen. Die angehenden Physiotherapeuten unterstützen die regelmäßigen REHA-Sport Veranstaltungen der Selbsthilfegruppen und sammeln Erfahrung in der Anleitung von Gymnastikgruppen. Eine Beteiligung interessierter Medizinstudenten an den REHA-Sport Veranstaltungen im Rahmen eines noch zu ergänzenden Wahlcurriculums ist geplant.

Im 3. Studienjahr wird den Studierenden der Medizin tiergehendes Wissen zu klinischer Diagnostik, Differentialdiagnostik, ärztlichem Handeln und Immunologie (Infektion und Abwehr) vermittelt. Da diese nur einen partiellen Bezug zu RMD haben und für den angehenden PT nicht relevant sind, wurde auf eine Beteiligung der angehenden Physiotherapeuten verzichtet.

2.2. Zweite Qualifikationsstufe

Ab dem 4. Studienjahr werden mehrere 4 wöchige Praxisblöcke mit Unterricht „am Krankenbett“ (Ambulanz oder Operationssaal) angeboten, von denen auch einer in mit RMD befassten Fachbereichen stattfindet. Diese wurden bereits in dieser Zeitschrift bereits vorgestellt [9]. Die Lernenden des PT hospitieren wie die angehenden Mediziner in der Rheumaambulanz. Die durch einen festen Stundenplan strukturierte Ausbildungsschleife der 2. Qualifizierungsstufe zur RMD ist ein 4 wöchiger Studienblock „Bewegungsapparat“. Die Lernenden der PT des 3. Lehrjahres nehmen gleichberechtigt an dem kompletten Studienblock teil. Sie schreiben auch gemeinsam die gleiche Abschlussklausur (Multiple Choice). Die 60 Unterrichtsstunden Lehre teilen sich auf in 24 Stunden Vorlesung (für jeweils 90 Studierende, 10 Lernende der Physiotherapie) und 36 Stunden Seminar (in Gruppen von 15 Studierenden und 2 Lernende der Physiotherapie) sowie einer Woche zum Eigenstudium an Fällen (CASUS) und Prüfungsvorbereitung. Wochenweise werden Schwerpunkte auf Altern des Bewegungsapparates, Unfälle und Entzündungen gelegt. Der Unterricht baut auf Fälle auf, die zu Wochenbeginn den Kleingruppen initiiert werden. Neben den Kernfächern werden wichtige Aspekte durch z.B. Humangenetik, Neuropathologie, Mikrobiologie, Psychosomatik, Epidemiologie in Seminaren vermittelt und zum Wochenabschluss erfolgt eine Zusammenfassung unter allgemeinmedizinischer Sichtweise (siehe Abbildung 3). Die angehenden Physiotherapeuten bieten auch in diesem Studienblock ein doppelstündiges Seminar als Parcours an. Geschulte Patienten, die in der Rheumaliga organisiert sind, stehen in einem Seminar für die spezielle Untersuchung, Umsetzung im Alltag und Information zu Krankheitsverarbeitung, Hilfsmitteln etc. zur Verfügung https://www.rheuma-liga.de/aktivitaeten/projekte/detaillansicht/news/patient-als-partner/]. Anhand von Schauspielpatienten werden belastende Kommunikationssituationen (belastende Aufklärungsgespräche) geübt und reflektiert.

2.3. Dritte Qualifikationsstufe

Die Studierenden treffen im praktischen Jahr mit den auf den Stationen praktisch eingesetzten angehenden Physiotherapeuten zusammen und haben die Möglichkeit, die Patienten im Rahmen des stationären Aufenthaltes (gemeinsam) zu betreuen. Studierende und Lernende werden gleichzeitig als Tutoren für die nachfolgenden Semester eingesetzt.
Abbildung 1: Stundenplan 1. Semester, 11. Semesterwoche, Thema Rücken, exemplarisch für eine Seminargruppe

Mo	Di	Mi	Do	Fr
08:15	Klinische Vorlesung	Makroskopische Anatomie		
09:15	MakroAnatomie	Mikroskop. Anat.	Physik	Physiotherapie
10:30	MikroAnatomie	Seminar		
11:15				
12:00				
12:30	Makroskopische Anatomie	Seminar am Präpariertisch		
13:15		MikroAnatomie		
14:00		Seminar		
14:45				
15:00				
16:00				
16:45				
17:30				
18:15				

Vorlesungs-/Seminarinhalte Anatomie mit Zielen
allochthone Muskulatur des Rückens - das Übergreifen von Kopfmuskeln und Muskeln der oberen Extremität auf den Rumpf zu erkennen. Lehrfilm „Regio cervicalis posterior“
Bau der Wirbel, ihre Gelenke und autochthone Muskulatur des Rückens - sich die funktionelle Grundorganisation des M. erector spinae zu erarbeiten und die dreidimensionale Architektonik der Wirbelsäule zu erkennen (lordose, Kyphose, Knochenpunkte). Lehrfilm „Autochthone Rückenmuskulatur“
Hüftgelenk mit Bändern - die Grundlagen der 180°-Extension im Hüftgelenk zu begründen
Muskeln der Glutealregion - die Stabilisierungsmöglichkeiten des Beckens zu erkennen. Lehrfilm „M. gluteus maximus und M. piriformis mit Aa. gluteae und Nn. Glutei“
ischiocrurale Muskulatur - Innen- und Außenrotation im Kniegelenk zu verstehen und die Bedeutung der Begriffe passive und aktive Insuffizienz zu durchdringen. Lehrfilm „Ischiocrurale Muskulatur“
Physiotherapie Projekt „Aktive Pause“
Klinik Rücken Vorlesung Prof. Dr. Krauspe (Orthopädische Klinik)
Klinische Untersuchungstechniken am Mitstudenten/Patienten Rücken

- **Inspektion**
 - Feststellung der Form der Wirbelsäule
 - in der seitlichen Ansicht: LWS-Lordose, BWS-Kyphose, HWS-Lordose.
 - in der dorsalen Ansicht: Erkennen einer Skoliose
 - Schulterhochstand, Rippenbuckel
 - Asymmetrie der Tailen und Haut
 - Feststellung von Beinlängendifferenzen
 - Beckenschiefstand
 - Sinterungsfrakturen der Wirbelkörper infolge Osteoporose
 - Hyperkyphose der BWS und Tannenbaumphenomenen

- **Palpation**
 - Knochenpunkte
 - Vertebra prominens C7
 - Dornfortsätze
 - Beckenschaufel
 - Druck- und Schüttelschmerz
 - Klopfschmerz der Wirbelsäule
 - Stufenbildung, Lockerung

- **Funktion: aktiv und passiv**
 - **HWS**
 - Flexion/Reklation: 35-45°
 - Rotation bei unflektierter Kopfhaltung: 60-80°
 - Lateralflexion: 45°
 - Kinn-Sternum-Abstand
 - bei maximaler Flexion (0cm)
 - Reklation (18 cm)
 - Flèche – Hinterhaupt-Wandabstand (0 cm)
 - messbarer Abstand zwischen Okziput und der Wand, an die sich der Patient mit dem Rücken anlehnt.
 - **BWS und LWS**
 - Atembreite im 4. Interkostalraum
 - (> 5 cm, abhängig von Geschlecht und Alter)
 - Finger-Boden-Abstand (0 cm)
 - Der Finger-Boden-Abstand ist z.T. ein Maß für die Flexionsfähigkeit der LWS, doch hängt er auch von der Beweglichkeit der Hüftgelenke und der Dehnbarkeit der ischiokruralen Muskulatur ab.
 - Schober’sches Maß (Abb)
 - Abmessen von S1 des stehenden Patienten 10 cm nach kranial
 - Verlängerung der Strecke bei maximaler Beugung (10/15 cm)
 - Weniger als 3 cm sind sicher pathologisch
 - Ott’sches Maß (Abb)
 - Abmessen vom Vertebra prominens (HWK 7) des stehenden Patienten 30 cm nach kaudal
 - Verlängerung der Strecke bei maximaler Beugung auf mindestens 33 cm

(Fortsetzung)
Abbildung 2: Standardisierter Dokumentationsbogen für das Hausarztpraktikum

Name ___________________________ Datum ____________

Schmerz X
Schwellung O (rot)
Deformierung []
Bewegungseinschränkung (NN)

Schulter
Adduktion/Adduktion: 20-40° - 0 – 180°
Anteversion/Retroversion: 150-170° - 0 – 40°
Innen-/Außenrotation in Adduktion: 95° - 0 – 40-60°

Ellenbogengelenk
Streckung/Beugung: 0° - 0 - 140°
Pronation/Supination je 90° bei gebeugtem Ellenbogen

Handgelenk
Extension/Flexion: 80° - 0 – 60°
Abduktion/Adduktion: 30° - 0 - 30°

Hüftgelenk
Extension/Flexion: 10-15 - 0 - 130-140°
Abduktion/Adduktion: 30-45 - 0 - 20-30°
Außenrotation/Innenrotation: 40-50 - 0 - 30-40°

Kniegelenk
Extension/Flexion: 0-5 - 0 - 120-150°
Innenrotation / Außenrotation: 10 - 0 - 25-30°

Fuß
OSG Flexion/Extension: 50 - 0 - 30°
USG: Eversion/Inversion: 30 - 0 - 60°
Zehengrundgelenke: Extension/Flexion: 45 – 0 - 70°

HWS
Flexion/Reklation: 35-45 °
Rotation: 60-80°
Lateralflexion: 45°
Kinn-Sternum-Abstand bei maximaler Flexion (0cm) und Reklation (18 cm)

BWS und LWS
Atembreite > 5 cm
Finger-Boden-Abstand (0 cm). Der Schobersches Maß
- Abmessen von S1 des stehenden Patienten 10 cm nach kranial,
Verlängerung der Strecke bei maximaler Beugung (10/15 cm). Weniger als 3 cm
sind sicher pathologisch.
Ott’sches Maß
- Abmessen vom HWK 7 des stehenden Patienten 30 cm nach kaudal,
Verlängerung der Strecke bei maximaler Beugung auf mindestens 33 cm

Untersucher____________________Kommentar__________________
Montag	Dienstag				
Seminarwoche Altern	Seminarwoche Verletzung	Seminarwoche Entzündung	Seminarwoche Altern	Seminarwoche Verletzung	Seminarwoche Entzündung
Einführung	Unfallchirurgie Prinzipien der Frakturbehandlung				
Endokrinologische Ursachen von Knochenerkrankungen	Unfallchirurgie Prinzipien der Behandlung von Schafffrakturen				
Orthopädie Dickes Gelenk	Unfallchirurgie „Find the fracture“ – Fraktur- und Weichteilklassifikationen	Rheumatologie Fallbeispiele entzündlicher Gelenkerkrankungen	Orthopädie Tumor	Unfallchirurgie Hüftfrakturen	Unfallchirurgie Infektion nach Osteosynthese
Orthopädie Schulter	Unfallchirurgie Osteosynthesetechniken	Rheumatologie Patientensicht	Orthopädie Klumpfuß	Unfallchirurgie Verletzungen der Hand	Mikrobiologie Septische / reaktive Arthritis: Ursachen, Diagnose und Behandlung
	Rheumatologie Spondyloarthritiden	Gefäßchirurgie TVT			
Donnerstag	Freitag				
Seminarwoche Altern	Seminarwoche Verletzung	Seminarwoche Entzündung	Seminarwoche Altern	Seminarwoche Verletzung	Seminarwoche Entzündung
Orthopädie Schulter	Rheumatologie Vaskulitiden - Klinik und Diagnostik				
Orthopädie Knie	Rheumatologie Vaskulitiden - Therapie				
Zahnärztliche Prothetik Myoarthropathien des Kausystems)	Unfallchirurgie Verletzungen des Kniegelenks	Neurologie Muskelerkrankungen, Rehabilitation Rheumatologie Geschichte, Therapie Beispiel RA / SPA / SLE und Kosten der Krankheit, indirekte Kosten degenerativ			
Physiotherapie-parcours	Unfallchirurgie Frakturen im Kindesalter	Neuro-pathologie Stellenwert der Muskeliopsie bei der Diagnostik	Rehabilitation Orthopädie Behandlungsprinzipien, Hilfsmittel, REHA-Phasen, Fälle		

Abbildung 3: Stundenplan 4. Lehrjahr, exemplarisch für eine Woche, Vorlesungen 8.15-10.00 Uhr, freitags bis 12 Uhr (hellgrau), übrige als Seminar (dunkel) bzw. praktischer Unterricht. Dargestellt jeweils eine Unterrichtsstunde, Durchgehend Interprofessionell, Mittwochs ist kein Unterricht im Studienblock.
Abbildung 3: Stundenplan 4. Lehrjahr, exemplarisch für eine Woche, Vorlesungen 8.15-10.00 Uhr, freitags bis 12 Uhr (hellgrau), übrige als Seminar (dunkel) bzw. praktischer Unterricht. Dargestellt jeweils eine Unterrichtsstunde, Durchgehend Interprofessionell, Mittwochs ist kein Unterricht im Studienblock.

Physiotherapie-parcours	Mikrobiologie	Allgemeinmedizin / Psychosomatische Medizin	Orthopädie	Psychosomatische Medizin	Rheumatologie Therapiestrategien
	Weichteilinfektionen: Notfälle, nosokomial – Diagnose und Behandlung	Rheumatoide Arthritis: Breaking bad news	Wirbelsäule	Psycho- und somatische Erkrankungen des Bewegungsapparats	Therapiestrategien
Gefäßchirurgie pAVK					
Orthopädie	Allgemeinmedizin	Allgemeinmedizin			
	Spondylo-	Gonarthrose: konservative Therapie	Proximale Femurfraktur: ambulante Nachsorge, Sturzprävention		
	diszitis				

Weitere Vorlesungen der anderen 2 Wochen im Studienblock

Arterielle Gefäßverschlüsse, Prinzipien von Gelenkfrakturen - obere Extremität/- untere Extremität, Weichteilverletzungen und Rekonstruktion

Orthopädie Hüfte – Kind/Erwachsene, Skoliose, Kollagenosen, Public Health Epidemiologie von Erkrankungen des Bewegungsapparats: Häufigkeit, Risikofaktoren, Evidenzbasierung und 'Kosten-Nutzen-Aspekte' von Interventionen, Präventionsmaßnahmen etc., Information von Patienten Psychosomatische Medizin

Diagnostische Kriterien der somatoformen Störungen, ätiopathogenetische Modelle, Prinzipien der psychotherapeutischen Behandlung, Radiologie Systematische Bildanalyse - Checkliste, Normalbefund, Typische Röntgensymptomatologie Arthrose, Arthritis, Gicht, Tumor, Fraktur, Pharmakologie Prävention und Therapie der Osteoporose, Basistherapeutika Neurologie Motorische Syndrome

(Fortsetzung)
2.4. Evaluation

Die Lehre wird durch die Studierenden regelmäßig verpflichtend evaluiert und durch das Studiendekanat ausgewertet. Eine themengleiche Interventions- und Kontrollgruppe stand aus organisatorischen Gründen nicht zur Verfügung.

Ergänzend wurden Lehrende und Lernende des 2. Durchgangs im Sommersemester 2015 ebenfalls anonymisiert zu ihren Erwartungen und Erfahrungen mit interprofessioneller Lehre sowie der Perspektive des Lehrkonzeptes befragt.

Bestehensquoten in den zentralen Prüfungen zu Fragen der RMD können mittelfristig zur Evaluation des Lernverhaltens der angehenden Mediziner dienen. Die Begeisterung angehender Mediziner für RMD können mittelfristig durch Bewerberzahlen in den entsprechenden Weiterbildungsstätten gemessen werden.

In der Rheumatologie gibt es durch die Kerndokumentation der kooperierenden Rheumazentren auf Patientenebene generiert langfristig prospektiv angelegte und regional auswertbare Daten zur Nutzung und Umsetzung verschiedener Therapien, so der PT bei Rheumapatienten, Funktionstitel, Partizipation und Patientenzufriedenheit [http://dgrh.de/fileadmin/media/Forschung/Versorgungsforschung/ErwachsenenKerndok/Standardpraesentation_2013Extern.pdf]. Diese können Versorgungsrelevante regionale Trends erkennen lassen und damit der langfristigen Validierung auf der Versorgungsebene dienen.

3. Ergebnisse

3.1. Umsetzung aus Sicht der medizinischen Lehre

Das hier vorgestellte Modell nimmt die Bedeutung der einzelnen Fachrichtung in der Lehre deutlich zurück und setzt den Patienten und das Behandlungsteam in den Mittelpunkt. Es schafft die Akzeptanz verschiedener Sichtweisen und zeigt deren Nutzen auf. Neben Inhalten werden wichtige Kompetenzen gelebt und damit real. Betroffener Patient, Physiotherapeut und Mediziner lernen miteinander und voneinander.

Die Lehrenden der makroskopischen Anatomie sehen, dass das funktionelle Verständnis des Bewegungsapparates im Präparierkurs deutlich von der Anatomie am Lebenden (Untersuchungskurs, Physiotherapie) profitiert. Alle Lehrenden, die an der Befragung teilgenommen hatten, berichteten über eigene positive Erfahrungen und unterstützen die Fortsetzung (n=7, <10%).

3.2. Umsetzung aus Sicht der Studierenden

Angehende Mediziner begrüßen die interprofessionelle Lehre grundsätzlich sehr neugierig. Sie hatten aber keine Erwartungen (Rücklauf freiwillige Befragung n=12, 13%). Einige Studierende äußern die Sorge, durch den zusätzlichen Zeitbedarf würde Lernzeit für die Wissensabfrage in den Multiple Choice Prüfungsfragen wegfallen. Die Studierenden im 1. Semester waren anfangs deutlich unsicher im Umgang mit der gegenseitigen körperlichen Untersuchung als die bisher im 3. Studienjahr in der Untersuchungstechnik unterrichteten Studierenden. Dieses wurde im Verlauf durch eine mehr erklärnde Einführung aufgegriffen. Die Bereitschaft zur gegenseitigen Untersuchung war bei den angehenden Physiotherapeuten deutlich ausgeprägter und konnte die Studierenden „mitreißen“.

3.4.1. Lernzufriedenheit

Die in der zentralen Evaluation der Lehre (n=37, 41% Rücklauf) gemessene Zufriedenheit der Studierenden mit der Ausbildung, der Lernzuwachs und die empfundene Strukturierung des Unterrichts liegen mit einer Durchschnittsnote von 2,4 deutlich über den Evaluationsergebnissen der anderen themenbezogenen Studienblöcke mit einer Durchschnittsnote von 3,3 (Rücklauf 30-50%, siehe Abbildung 3). Dabei schneidet die Lehre durch Physiotherapeuten bei den Studierenden mit einer Note von 1,7 besonders gut ab. Die praktische Ausbildung ist im Praxisblock an den mit RMD befassten Kliniken besser evaluiert, was eine zusätzliche Auswirkung auf die Wahrnehmung der eigenen Kompetenzen im praktischen Team vermuten lässt.

Die strukturierte Lehre durch Patienten und PT wird von den Studierenden bezüglich allgemeiner Zufriedenheit und Lernzuwachs als gleichwertig zur Lehre durch Mediziner gewertet (siehe Abbildung 4).

3.4.2. Bestehensquoten

Die in den zentralen Abschlussklausuren (Multiple Choice) überprüften Lernziele werden von der großen Mehrheit der Lernenden erreicht. Die Bestehensrate für Mediziner lag bei einer Bestehensgrenze von 60% bei 94%, 14% beendeten mit der Note sehr gut, 58% mit gut, 14% mit befriedigend und 8% mit ausreichendem Ergebnis. Eine messbare Auswirkung der eingerührten interprofessionellen Lehre auf die Bestehensrate zentraler Prüfungen liegt noch nicht vor.

3.3. Umsetzung aus Sicht der Physiotherapeuten

Der Zugang zu den Unterrichtsbegleitenden elektronischen Lernmaterialien der Universität war zunächst den Lernenden der Physiotherapie nicht möglich, hierfür konnte ein gesonderter Zugang geschaffen werden. Die angehenden Physiotherapeuten erleben die Lehr-Lernsituation mit den Medizinstudenten als gelungene Begegnung zwischen zwei Berufsgruppen, die im Sinne einer optimalen Patientenversorgung, eng verzahnt sein sollten. In der Tutorenrolle erproben die Physiotherapie lernenden so bereits früh ein angemessenes Auftreten im Sinne einer couragierten Patientenfürsorge. Die zu-
künftigen Physiotherapeuten erleben durch ihr professio-
nelles Auftreten als Tutoren und die neugierige Offenheit
der Medizinstudenten eine hohe Wertschätzung. Die
durch die Mediziner bezüglich des
schriftlichen Rückmeldungen der Mediziner bezüglich des
hohen Fachwissens und die motivierende Freundschaft
der Physiotherapie wirkensich offenbar auch stimulierend
auf eine intensivere Zusammenarbeit auf den Stationen
im Praktikum aus. Fast alle haben in den darauffolgenden
Praktika konstruktive Kontakte mit den Leuten, die sie
vom Studienblock her kennen. Die konstruktive Zusam-
menarbeit spricht sich herum und führt dann wiederum
to weiteren Synergieeffekten bei der Therapie- und Ziel-
absprache am konkreten Patienten. Die Physiotherapeu-
ten erfassen so, dass sie dazu beitragen können und
sozialen Bedürfnissen der Patienten, angehenden Medizinern und Physiotherapeutenvorstel-
en. Erfolgreich und umfassend geplante und durchgeführte Evaluationsaufgaben helfen, die Leistungen der Lehrer und Lernenden zu überwachen und zu
bewerten, wobei auch die durchgeführten Evaluationsaufgaben helfen, die Leistungen der Lehrer und Lernenden zu überwachen und zu
bewerten.
unter 10% aber nicht repräsentativ. Auf studentischer Ebene ist die Evaluation in weiten Teilen etabliert und kann als hilfreiche Unterstützung genutzt werden. Eine strukturierte Beteiligung der lernenden in der Physiotherapie an der Ausbildungsplanung und Weiterentwicklung ist hingegen noch nicht umgesetzt. Dieses ist für einen langfristigen Erfolg nötig.

Eine Bestätigung des Lehrkonzeptes durch Bestehensquoten zentraler Prüfungen ist dernochoffenenächsten Schritt des Projektes.

Bei der Planung einer interprofessionellen Lehre sollten die in der Arbeit von Hall und Zierler [4] gut erläuterten Schritte beachtet werden, ausreichend Zeit und motivierte Mitstreiter zur Verfügung stehen. Eine direkte Übertragbarkeit der so umfassenden interprofessionellen Lehre auf andere Professionen wie Pflege, Medizintechnik etc. erscheint dennoch nicht möglich, da sich hier zwar einzelne Aspekte wie Versorgung, Bildgebung, Labordiagnostik überschneiden, die Lerntiefe für die Diagnostik und Krankheitslehre deutlich flacher ist als in der Ausbildung der Mediziner.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Abu-Rish E, Kim S, Choe L, Varpio L, Malik E, White AA, Craddock K, Blondon K, Robins L, Nagasawa P, Thigpen A, Chen L, Rich J, Zierler B. Current trends in interprofessional education of health sciences students: A literature review. J Interprof Care. 2012;26(6):444-451. DOI: 10.3109/13561820.2012.715604

2. Walkenhorst U, Mahler C, Aistleithner R, Hahn EG, Kaap-Fröhlich S, Karstens S, Reiber K, Stock-Schröer B, Sottas B. Position statement GMA Committee—“Interprofessional Education for the Health Care Professions”. GMS Z Med Ausbild. 2015;32(2):Doc22. DOI: 10.3205/zma000964

3. Genst T. Interprofessionelles Lernen. Zusammenwirken der Gesundheitsberufe. Dtsch Ärztebl. 2015;112(13):564-565.

4. Hall LW, Zierler BK. Interprofessional Education and Practice Guide No. 1: Developing faculty to effectively facilitate interprofessional education. J Interprof Care. 2015;29(1):3-7. DOI: 10.3109/13561820.2014.937483

5. Huscher D, Merkesdal S, Thiele K, Zeidler H, Schneider M, Zink A. German Collaborative Arthritis Centres. Cost of illness in rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis and systemic lupus erythematosus in Germany. Ann Rheum Dis. 2006;65(9):1175-1183. DOI: 10.1136/ard.2005.046367

Korrespondenzadresse:
Oliver Sander
Heinrich-Heine-Universität Duesseldorf, Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, Moorenstraße 5, 40225 Düsseldorf, Deutschland, Tel.: +49 (0)211/811-7817, Fax: +49 (0)211/811-9206
sander@med.uni-duesseldorf.de

Bitte zitieren als
Sander O, Schmidt R, Rehkämper G, Lögters T, Zilkens C, Schneider M. Interprofessional education as part of becoming a doctor or physiotherapist in a competency-based curriculum. GMS J Med Educ. 2016;33(2):Doc15. DOI: 10.3205/zma001014, URN: urn:nbn:de:0183-zma0010142

Artikel online frei zugänglich unter
http://www.egorms.de/en/journals/zma/2016-33/zma001014.shtml

Eingereicht: 13.08.2015
Überarbeitet: 20.10.2015
Angenommen: 25.11.2015
Veröffentlicht: 29.04.2016

Copyright
©2016 Sander et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namenennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.