Preserving the Endothelium in Saphenous Vein Graft with Both Conventional and No-Touch Preparation

Toshiro Saito
Graduate School of Medicine, Yamaguchi University

Hiroshi Kurazumi
Graduate School of Medicine, Yamaguchi University

Ryo Suzuki
Graduate School of Medicine, Yamaguchi University

Yutaro Matsuno
Graduate School of Medicine, Yamaguchi University

Akihito Mikamo
Graduate School of Medicine, Yamaguchi University

Kimikazu Hamano (✉ kimikazu@yamaguchi-u.ac.jp)
Graduate School of Medicine, Yamaguchi University

Research article

Keywords: coronary artery bypass grafting (CABG), saphenous vein grafts (SVGs), conventional preparation (CV), no-touch technique (NT), endothelium

DOI: https://doi.org/10.21203/rs.3.rs-34529/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background Despite the inferior patency compared to arterial grafts, a saphenous vein graft (SVG) is widely used for coronary artery bypass grafting (CABG). A lower atherosclerosis rate and higher patency have been reported for SVG obtained via the no-touch technique (NT) than via conventional preparation (CV). Although CV-mediated endothelial dysfunction is implied, the precise mechanism underlying the higher patency with NT is poorly understood.

Methods Human residual SVGs during CABG and SVG sections after autopsy were analyzed. The endothelial surface was observed using scanning electron microscopy (SEM) and blindly compared between CV and NT. The endothelial integrity was also analyzed with immunohistochemistry.

Results Unexpectedly, the hyperfine structure on SEM was comparable between CV and NT before grafting, and microvillus, a characteristic of endothelium, was indistinguishable between them. von Willebrand Factor, an endothelial marker, was equally detected throughout the vascular wall in both groups from residual and postmortem sections.

Conclusions The morphological integrity of the endothelium was successfully preserved in SVG with CV, even at an ultrastructural level. Although its functionality remains to be addressed, other factors than the endothelium may be involved in the high patency obtained by NT. The present findings suggest that the characteristics of NT and surgical methodology should be reconsidered.

Background

Coronary artery bypass grafting (CABG) is a standard therapy for ischemic heart disease. Despite the inferior patency compared to arterial grafts, saphenous vein grafts (SVGs) are still widely transplanted for CABG due to their ease of manipulation [1–4]. Consequently, the long-term patency of SVG has been thoroughly investigated.

Conventional preparation (CV) of SVG, consisting of deprivation of surrounding tissues and distension, has been utilized for decades but is implied to be associated with atherogenesis and a poor patency rate [5–8]. Since the 1990s, the no-touch technique (NT), which preserves the outer tissues without distension, has been recognized as the superior alternative to CV due to its salutary effect. Accumulating evidence indicates that SVGs harvested with NT exhibit lower rates of atherosclerosis and higher patency than those harvested via CV [9–12]. Many cardiac surgeons have an intense interest in the higher patency of NT-SVG and its mechanism. However, the detailed mechanisms underlying these effects remain unclear.

Based on the studies comparing CV and NT, it is now broadly accepted that conventional distension injures the endothelium and medial architecture, inducing inflammation and intimal proliferation [5–8]. In CV group, an injury to vasa vasorum may also downregulate the endothelial function. Partial denudation of the endothelium was reproducibly detected after CV [6, 8, 13, 14]. Distension-mediated endothelial damage and denudation may therefore be significantly involved in vein graft failure after CV. However, the
distending pressure varies among surgeons, and an early study reported that only higher pressures (≥ 700 mm Hg) cause endothelial damage [15]. Whether or not this concept predominantly accounts for the difference in atherosclerosis and graft patency rates between CV and NT therefore remains unclear. Furthermore, atherosclerosis may be caused by multiple factors, and factors such as the surrounding tissue composition or secreted molecules may play a crucial role in protecting NT-harvested SVGs against atherosclerosis.

To clarify the predominant mechanism by which NT provides its salutary effect, we investigated the morphological features of the endothelium in the residual SVG harvested by CV or NT during CABG through scanning electron microscopy (SEM). We commissioned the scans and analyses from unbiased observers. Subsequently, the surprising results reported by them encouraged us to conduct further analyses regarding the endothelial integrity of the SVGs.

Methods

SV harvesting techniques

1. **CV group**

The SV was exposed mainly from the lower leg by skipped longitudinal leg skin incisions, wherein the adventitia was stripped off, and the side branches were ligated. The vein was removed from the leg after dissection and manually distended with blood mixed solution (30 ml blood, 3000 U of heparin sodium and 30 mg of papaverine hydrochloride) at < 300 mmHg [16]. The harvested vein was stored in wet gauze until use.

1. **NT group**

The SV was exposed via the same skin incisions as used for CV. The vein was isolated along with 5 mm of the surrounding fat tissue, and all visible side branches were ligated. After removal, the vein was connected to the cannula inserted into the femoral artery and dilated with arterial pressure for 10 min with blood mixed solution. The graft was neither flushed nor distended manually. The harvested vein was stored in the same fashion as for CV.

Surgical aspects

CABG was performed in an on-pump or off-pump fashion by the surgeon's choice. In on-pump cases, the surgical procedure was performed under cardiopulmonary bypass with moderate hypothermia (28 to 30 °C) and cardiac arrest with tepid blood cardioplegia. Vein grafts were mainly bypassed to the right coronary artery and circumflex artery, and the left anterior descending artery was reconstructed by the internal mammary artery.
SVG pre-bypass samples (from Patient No. 1- No. 4)

The residual SVG samples were obtained from Patient No. 1 via CV, Patient No. 2 via NT, and Patient No. 3- No. 4 via both CV and NT. The endothelial surface of SVGs from CV group (No. 1 and No. 3) and NT group (No. 2 and No. 3) was analyzed with SEM. The endothelial integrity of SVGs from CV group (No. 1 and No. 4) and NT group (No. 2 and No. 4) was analyzed with immunohistochemistry.

A list of the characteristics of patients is shown below.

Patient No.	Age	Sex	Preparation	Analysis
1	71	M	CV	SEM and immunohistochemistry
2	73	F	NT	SEM and immunohistochemistry
3	77	M	CV and NT	SEM
4	78	M	CV and NT	immunohistochemistry

SVG autopsy samples (from Patient No. 5- No. 6)

1. Patient No. 5

The patient was a 75-year-old male. He had suffered acute myocardial infarction of the inferior wall. CAG revealed three-vessel disease, and he received CABG (on-pump, arrested heart) with LITA to LAD, SVGs to D1, 14PL, 4PD and 4PL. The CV technique was used to harvest SVGs. He ultimately died on day 8 after surgery due to low-output syndrome. The grafted SVG was harvested at the autopsy. Sample was prepared from the SVG to 14PL.

1. Patient No. 6

The patient was a 78-year-old male. He had suffered unstable angina. CAG revealed three-vessel disease, and he received off-pump CABG with RITA to LAD, LITA to 14PL, SVGs to D1, D2, 4PD and 4PL. The NT technique was used to harvest SVGs. He ultimately died on day 7 after surgery due to massive pulmonary embolism. The grafted SVG was harvested at the autopsy. Sample was prepared from the SVG to D1 and D2.
The SEM analysis was conducted as described previously [17]. Immediately after resection, the SVG was fixed with 2% glutaraldehyde. We commissioned the scans and analyses from Hanaichi Ultrastructure Research Institute (Okazaki, Japan).

Immunohistochemistry

Immunohistochemistry was conducted as described previously [18] with anti-von Willebrand Factor antibody (#65707; Cell Signaling Technology, Beverly, MA, U.S.A.).

Results

The endothelial integrity of the residual SVG harvested by CV or NT before bypass-grafting was examined. Unexpectedly, the hyperfine structure on SEM was comparable between CV and NT before grafting (Fig. 1), and microvillus, a characteristic of endothelium, was observed in both cases, with a similar density and morphology (Fig. 1).

Consistently, von Willebrand Factor (vWF), a representative marker of endothelial cell, was equally detected throughout the vascular wall in both groups (Fig. 2). There was no obvious defect or patch in the vWF signal throughout the entire luminal circumference of the CV group compared with the NT group. These results suggest that the morphological integrity of the endothelium was well maintained in the CV group even after pressure-mediated distension.

Previous studies reported that high pressures induce endothelial inflammation after CV [5], suggesting that some of the endothelium may be lost in a later phase due to the accumulated damage. To address this issue, we collected autopsy sections of the SVG. The endothelium from 7 days after CV was compared with that from 8 days after NT. No marked differences were noted between them in the expression of vWF throughout the vascular wall (Fig. 3), suggesting that the endothelium was morphologically preserved after CV, even in the later phase.

Discussion

In the present study, we clarified that the morphological integrity of the endothelium was successfully preserved in SVG with CV, even at an ultrastructural level. Although its functionality remains to be addressed, other factors than the endothelium may be involved in the high patency obtained by NT. The significance of the endothelium in mediating vascular homeostasis is generally well recognized, however, other factors are occasionally overlooked. Our study suggests that the characteristics of NT should be reconsidered, as this may innovatively stimulate the surgical methodology in the future.

One of the novel findings in this study is that the endothelial surface with microvillus was indistinguishable between CV and NT. To our knowledge, this is the first study comparing the hyperfine structure of the endothelial surface and microvillus between these procedures. Several previous studies used transmission electron microscopy (TEM) to observe SVG [19, 20]; our analysis using unbiased SEM is therefore unique.
Another novel point is our assessment of the endothelial integrity using postmortem sections. An early study with a large animal model noted that endothelial regeneration takes place as early as seven days after denudation [16]. This finding thus suggests that even if endothelium is partially desquamated during CABG, the denuded lumina should become covered by newly generated endothelium within a short period of time. The endothelium we stained in the postmortem sections may have regenerated after denudation.

However, the present study possibly provides another hypothesis. Our data suggest that the endothelium after CV may be well preserved or only marginally damaged during CABG, showing a similar extent of damage to that after NT. Consequently, the remaining endothelium (rather than the regenerated tissue) may have been detected around the SVG wall in the postmortem sections.

Limitations Of The Study

Since the immunoreactivity in the postmortem section is generally reduced during long-term storage, our ability to collect useful sections for analyses was limited. We therefore examined only a single postmortem section in each group.

Conclusions

This study provides evidence that the endothelial hyperfine structure is well-preserved in SVGs harvested with CV. Other factors than the endothelium may play a pivotal role in protecting NT-harvested SVGs from atherosclerosis. Further investigations regarding the endothelial function and surrounding tissues will be required to elucidate the mechanism in detail.

List Of Abbreviations

CABG: coronary artery bypass grafting; SVG: saphenous vein graft; CV: Conventional preparation; NT: no-touch technique; SEM: scanning electron microscopy; TEM: transmission electron microscopy

Declarations

Ethics approval and consent to participate

This study was approved by Institutional Review Boards of Yamaguchi University Hospital (H2019-092) and followed the Declaration of Helsinki and the ethical standards of the responsible committee on human experimentation. All participants granted their informed consent.

Consent for publication

Not applicable
Availability of data and materials

Not applicable

Competing interests

Authors declared no conflicts of interest.

Funding

This work was supported in part by Grants-in-Aids for Scientific Research (B) (19H03739 to K.H.), Scientific Research (C) (19K09246 to R.S. and 18K08761 to A.M.) and Young Scientists (19K17601 to T.S.) from the Japan Society for the Promotion of Science; a grant from MSD Life Science Foundation, Public Interest Incorporated Foundation; a grants-in-aid of the Cardiovascular Research Fund; a grant from The Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical care; a grant from The Mochida Memorial Foundation for Medical and Pharmaceutical Research; and a grants-in-aid of The New Frontier Project of Yamaguchi University Graduate School of Medicine.

Authors’ contributions

TS designed the study, performed the experiments, analyzed data, interpreted results, provided project resources, and wrote the manuscript. HK, RS, YM, AM and KH performed surgeries. KH designed and supervised the study, interpreted results, provided project resources, and wrote the manuscript. All authors reviewed and commented on the manuscript.

Acknowledgments

We thank Yukari Hironaka for technical support and Dr. Brian Quinn for linguistic comments and help with the article.

References

1. Samano N, Dashwood M and Souza D. No-touch vein grafts and the destiny of venous revascularization in coronary artery bypass grafting-a 25(th) anniversary perspective. Ann Cardiothorac Surg. 2018;7:681-5.
2. Sabik JF, 3rd, Blackstone EH, Gillinov AM, Banbury MK, Smedira NG and Lytle BW. Influence of patient characteristics and arterial grafts on freedom from coronary reoperation. J Thorac Cardiovasc Surg. 2006;131:90-8.
3. Zacharias A, Schwann TA, Riordan CJ, Durham SJ, Shah AS and Habib RH. Late results of conventional versus all-arterial revascularization based on internal thoracic and radial artery grafting. Ann Thorac Surg. 2009;87:19-26 e2.

4. Weiss AJ, Zhao S, Tian DH, Taggart DP and Yan TD. A meta-analysis comparing bilateral internal mammary artery with left internal mammary artery for coronary artery bypass grafting. Ann Cardiothorac Surg. 2013;2:390-400.

5. Khaleel MS, Dorheim TA, Duryee MJ, Durbin HE, Jr., Bussey WD, Garvin RP, et al. High-pressure distention of the saphenous vein during preparation results in increased markers of inflammation: a potential mechanism for graft failure. Ann Thorac Surg. 2012;93:552-8.

6. Stigler R, Steger C, Schachner T, Holfeld J, Edlinger M, Grimm M, et al. The impact of distension pressure on acute endothelial cell loss and neointimal proliferation in saphenous vein grafts. Eur J Cardiothorac Surg. 2012;42:e74-9.

7. Thatte HS and Khuri SF. The coronary artery bypass conduit: I. Intraoperative endothelial injury and its implication on graft patency. Ann Thorac Surg. 2001;72:S2245-52; discussion S2267-70.

8. Dashwood MR and Loesch A. Surgical damage of the saphenous vein and graft patency. J Thorac Cardiovasc Surg. 2007;133:274-5.

9. Samano N, Geijer H, Liden M, Fremes S, Bodin L and Souza D. The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: A randomized trial. J Thorac Cardiovasc Surg. 2015;150:880-8.

10. Johansson BL, Souza DS, Bodin L, Filbey D, Loesch A, Geijer H, et al. Slower progression of atherosclerosis in vein grafts harvested with 'no touch' technique compared with conventional harvesting technique in coronary artery bypass grafting: an angiographic and intravascular ultrasound study. Eur J Cardiothorac Surg. 2010;38:414-9.

11. Janiec M, Friberg O and Thelin S. Long-term clinical outcomes after coronary artery bypass grafting with pedicled saphenous vein grafts. J Cardiothorac Surg. 2018;13:122.

12. Deb S, Singh SK, de Souza D, Chu MWA, Whitlock R, Meyer SR, et al. SUPERIOR SVG: no touch saphenous harvesting to improve patency following coronary bypass grafting (a multi-Centre randomized control trial, NCT01047449). J Cardiothorac Surg. 2019;14:85.

13. Li FD, Eagle S, Brophy C, Hocking KM, Osgood M, Komalavilas P, et al. Pressure control during preparation of saphenous veins. JAMA Surg. 2014;149:655-62.

14. Dashwood MR, Savage K, Tsui JC, Dooley A, Shaw SG, Fernandez Alfonso MS, et al. Retaining perivascular tissue of human saphenous vein grafts protects against surgical and distension-induced damage and preserves endothelial nitric oxide synthase and nitric oxide synthase activity. J Thorac Cardiovasc Surg. 2009;138:334-40.

15. Bonchek LI. Prevention of endothelial damage during preparation of saphenous veins for bypass grafting. J Thorac Cardiovasc Surg. 1980;79:911-5.

16. Quist WC, Haudenschild CC and LoGerfo FW. Qualitative microscopy of implanted vein grafts. Effects of graft integrity on morphologic fate. J Thorac Cardiovasc Surg. 1992;103:671-7.
17. Ando H, Niki Y, Ito M, Akiyama K, Matsui MS, Yarosh DB, et al. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Invest Dermatol. 2012;132:1222-9.

18. Saito T, Uchiumi T, Yagi M, Amamoto R, Setoyama D, Matsushima Y, et al. Cardiomyocyte-specific loss of mitochondrial p32/C1qbp causes cardiomyopathy and activates stress responses. Cardiovasc Res. 2017;113:1173-85.

19. Verma S, Lovren F, Pan Y, Yanagawa B, Deb S, Karkhanis R, et al. Pedicled no-touch saphenous vein graft harvest limits vascular smooth muscle cell activation: the PATENT saphenous vein graft study. Eur J Cardiothorac Surg. 2014;45:717-25.

20. Dreifaldt M, Souza DS, Loesch A, Muddle JR, Karlsson MG, Filbey D, et al. The "no-touch" harvesting technique for vein grafts in coronary artery bypass surgery preserves an intact vasa vasorum. J Thorac Cardiovasc Surg. 2011;141:145-50.

Figures

Figure 1

The inside of the residual SVG was observed with scanning microscopy. An unbiased observer reported no significant differences between the conventional (CV) and no-touch (NT) preparations. Representative images are shown in (a). The arrow indicates microvillus, a characteristic of endothelium. Scale bar, 1 μm. A summary is shown in (b). The average number of microvilli is indicated (n=2).
Figure 2

The endothelial integrity was assessed with immunohistochemistry in residual SVG. SVG was obtained with a conventional (CV) or no-touch (NT) approach during CABG. Representative stains of vWF (red) and DAPI (blue) are shown in (a). The demarcated area shows a higher magnification. Scale bar, 200 µm. A summary is shown in (b). The relative intensity of vWF normalized with that of DAPI is indicated (n=2).
Figure 3

The endothelial integrity was assessed with immunohistochemistry in SVG sections obtained after an autopsy. SVG was obtained with a conventional (CV) or no-touch (NT) approach. Representative stains of vWF (red) and DAPI (blue) are shown. Scale bar, 100 µm.