Jets, Lifts and Dynamics

Oğul Esen and Hasan Gümral
Department of Mathematics, Yeditepe University
34755 Ataşehir, Istanbul, Turkey
oesen@yeditepe.edu.tr hgumral@yeditepe.edu.tr

Abstract
We show that complete cotangent lifts of vector fields, their decomposition into vertical representative and holonomic part provide a geometrical framework underlying Eulerian equations of continuum mechanics. We discuss Euler equations for ideal incompressible fluid and Vlasov equations of plasma dynamics in connection with the lifts of divergence-free and Hamiltonian vector fields, respectively. As a further application, we obtain kinetic equations of particles moving with the flow of contact vector fields both from Lie-Poisson reductions and with the techniques of present framework.

Keywords: complete cotangent lift, vertical representative, diffeomorphism groups, kinetic equations of contact particles

1 Jets

Let \((\mathcal{E}, \pi, \mathcal{M})\) be a smooth bundle with coordinates \((x^a; 1 \leq a \leq \dim (\mathcal{M}) = m)\) on the base manifold \(\mathcal{M}\) and \((x^a, u^\lambda; 1 \leq \lambda \leq \text{rank } (\pi) = k)\) on the total manifold \(\mathcal{E}\). The vertical bundle associated with \(\pi\) is

\[V_\pi = \ker T\pi = \{ \xi \in T\mathcal{E} : T\pi (\xi) = 0 \} \]

(1)

and this is a vector subbundle of the tangent bundle \(T\mathcal{E}\). Here \(T\pi\) denotes the tangent mapping of the projection \(\pi\). Two sections \(\phi, \psi \in \mathfrak{S}(\pi)\) of the bundle \(\pi\) at a point \(x \in \mathcal{M}\) are called equivalent if their tangent mappings are equal at that point, that is, \(T_x \phi = T_x \psi\). Given a point \(x\), an equivalence class containing a section \(\phi\) is denoted by \(j_1^x \phi\). The first order jet manifold

\[J^1 \pi = \{ j_1^x \phi : x \in \mathcal{M} \text{ and } \phi \in \mathfrak{S}(\pi) \} \]

(2)

associated with \((\mathcal{E}, \pi, \mathcal{M})\) is the set of equivalence classes at every point \(x \in \mathcal{M}\) with induced coordinates

\[(x^a, u^\lambda, u^\lambda_\alpha) : J^1 \pi \to \mathbb{R}^{m+k+mk} : j_1^x \phi \to \left(x^a, u^\lambda (\phi (x)), \frac{\partial \phi^\lambda}{\partial x^a} \right) \]

(3)

We have fibrations \(\pi_0 : J^1 \pi \to \mathcal{E} : j_1^x \phi \to \phi (x)\) and \(\pi_1 : J^1 \pi \to \mathcal{M} : j_1^x \phi \to x\) of \(J^1 \pi\) on \(\mathcal{E}\) and \(\mathcal{M}\), respectively [3], [15].

*Corresponding author: phone:+902165781888, fax: +902165780672
Given a differentiable map \(\rho: \mathcal{N} \to \mathcal{M} \) from a manifold \(\mathcal{N} \) to the base manifold \(\mathcal{M} \), the pull-back bundle of \(\pi \) by \(\rho \) is the triple \((\rho^*\mathcal{E}, \rho^*\pi, \mathcal{N})\) where

\[
\rho^*\mathcal{E} = \mathcal{N} \times_{\mathcal{M}} \mathcal{E} = \{(n, e) \in \mathcal{N} \times \mathcal{E} : \pi(e) = \rho(n)\}
\]

(4)
is the Whitney product and, \(\rho^*\pi = pr_1 \) is the projection to the first factor [3]. Consider the pull back bundle

\[
(\pi^*_0(T\mathcal{E}) = J^1\pi \times_{\mathcal{E}} T\mathcal{E}, \pi^*_0\tau_\mathcal{E} = pr_1, J^1\pi)
\]
of \((T\mathcal{E}, \tau_\mathcal{E}, \mathcal{E})\) by the projection \(\pi_0: J^1\pi \to \mathcal{E} \), where \(\tau_\mathcal{E} \) is the tangent bundle projection. A section of \(\pi^*_0\tau_\mathcal{E} \) is called a generalized vector field of order one [15,16]. One may regard a section of \(\pi^*_0\tau_\mathcal{E} \) as a map from \(J^1\pi \) to \(T\mathcal{E} \). We require that generalized vector fields are projectable [6].

In coordinates, a generalized vector field is

\[
\xi \left(j^1_x \phi \right) = \xi^a(x) \frac{\partial}{\partial x^a} + \xi^\lambda \left(j^1_x \phi \right) \frac{\partial}{\partial u^\lambda}_{\phi(x)}
\]

(5)
and its first order prolongation \(pr^1\xi \) is

\[
pr^1\xi = \xi + \Phi^\lambda_a \frac{\partial}{\partial u^\lambda_a}, \quad \Phi^\lambda_a = D\phi^\lambda_a \left(\xi^a - \xi^b u^\lambda_a \right) + \xi^b u^\lambda_a
\]

(6)
where \(D\phi^\lambda_a \) is the total derivative operator with respect to \(x^a \) and, \(u^\lambda_a (j^1 x^a) = \frac{\partial^2 \phi^\lambda}{\partial x^a \partial x^b} \) is an element of the second order jet bundle. Lie bracket of two first order generalized vector fields \(\xi \) and \(\eta \) is the unique first order generalized vector field

\[
[\xi, \eta]_{pro} = \left(pr^1\xi (\eta^a) - pr^1\eta (\xi^a) \right) \frac{\partial}{\partial x^a} + \left(pr^1\xi (\eta^\lambda) - pr^1\eta (\xi^\lambda) \right) \frac{\partial}{\partial u^\lambda}.
\]

(7)
If \(\xi \) and \(\eta \) are two vector fields on \(\mathcal{E} \), then \([\ , \]_{pro} reduces to the Jacobi-Lie bracket of vector fields [13].

2 Lifts

Consider a vector field \(X \in \mathfrak{X}(\mathcal{M}) \) on \(\mathcal{M} \), and let \(\phi \) be a section of \(\pi \). The holonomic lift of \(X(x) \in T_x\mathcal{M} \) by \(\phi \) is

\[
\left(j^1_x \phi, T\phi(X(x)) \right) \in \pi^*_0(T\mathcal{E}) = J^1\pi \times_{\mathcal{E}} T\mathcal{E}.
\]

(8)
In coordinates, if \(X = X^a (x) \partial/\partial x^a \), then

\[
X^{hol} = X^a \frac{\partial}{\partial x^a} + X^a \frac{\partial \phi^\lambda}{\partial x^a} \frac{\partial}{\partial u^\lambda} = X^a \frac{\partial}{\partial x^a} + X^a u^\lambda_a \left(j^1_x \phi \right) \frac{\partial}{\partial u^\lambda}.
\]

(9)
Define the holonomic part of a projectable vector field \(\xi \in \mathfrak{X}(\mathcal{E}) \) as the holonomic lift of its push forward by \(\pi \), that is

\[
H\xi = (\pi_* \xi)^{hol}.
\]

(10)
$H\xi$ is a generalized vector field of order one. Define a connection $(1;1)$ tensor
\[
\Gamma_J = dx^a \otimes \left(\frac{\partial}{\partial x^a} + u^a_\lambda \frac{\partial}{\partial u^\lambda} \right),
\]satisfying $H\xi = \Gamma_J \xi$. Then, the vertical (or evolutionary) representative
\[
V\xi = \xi - \Gamma_J (\xi) = (\xi^a - \xi^a u^\lambda_a) \frac{\partial}{\partial u^\lambda}
\]of ξ is vertical valued generalized vector field of order one [13],[15],[16].

Proposition 1 Holonomic lift is a Lie algebra isomorphism from the space of projectable vector fields in $\mathfrak{X}(\mathcal{E})$ into $J^1 \pi \times \xi T\mathcal{E}$.

Proof. We consider two projectable vector fields ξ and η on \mathcal{E}. A straightforward calculation gives
\[
[\Gamma_J (\xi), \Gamma_J (\eta)]_{pro} = [\xi^{hol}, \eta^{hol}]_{pro} = [\xi, \eta]^{hol} = \Gamma_J [\xi, \eta]
\]where $[,]_{pro}$ is the Lie bracket for generalized vector fields in Eq.(7).

On the other hand, the generalized bracket of vertical representatives satisfies
\[
[V\xi, V\eta]_{pro} = V[\xi, \eta]_{pro} + \mathcal{B}(\xi, \eta),
\]where \mathcal{B} is a vertical-vector valued two-form
\[
\mathcal{B}(\xi, \eta) = [\eta^{hol}, V\xi]_{pro} - [\xi^{hol}, V\eta]_{pro}.
\]

There is, however, a class of vector fields, defined again by lifts, for which the vertical representative becomes a Lie algebra isomorphism. Let $\varphi_t : \mathcal{M} \rightarrow \mathcal{M}$ be the flow of X on \mathcal{M}. Cotangent lift of φ_t is a one-parameter group of diffeomorphism φ_t^c on $T^*\mathcal{M}$ satisfying
\[
\pi_{\mathcal{M}} \circ \varphi_t^c = \varphi_t \circ \pi_{\mathcal{M}}
\]where $\pi_{\mathcal{M}}$ is the natural projection of $T^*\mathcal{M}$ to \mathcal{M}. The cotangent lift of the inverse flow $T^*\varphi_{-t}$ satisfies the argument in Eq.(16). Infinitesimal generator $X^c : T^*\mathcal{M} \rightarrow TT^*\mathcal{M}$ of the flow φ_t^c is called complete cotangent lift of X. X^c is a Hamiltonian vector field on the canonical symplectic manifold $(T^*\mathcal{M}, \Omega_{T^*\mathcal{M}} = -d\theta_{T^*\mathcal{M}})$ for the Hamiltonian function $P(X) = i_{X^c} \theta_{T^*\mathcal{M}}$ [8]. The infinitesimal version
\[
T\pi_{\mathcal{M}} \circ X^c = X \circ \pi_{\mathcal{M}}
\]of Eq.(16) gives the relation between X and X^c with $T\pi_{\mathcal{M}}$ being the tangent mapping of $\pi_{\mathcal{M}}$. The complete cotangent lift mapping $c^* : \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(T^*\mathcal{M})$ taking X to X^c is a Lie algebra isomorphism into [8],[17]
\[
[X^c, Y^c] = [X, Y]^c, \quad \forall X, Y \in \mathfrak{X}(\mathcal{M}),
\]
In Darboux’s coordinates \((x^a, y^b)\) on \(T^*M\), the complete cotangent lift of \(X = X^a(x) \partial/\partial x^a\) on \(M\) is

\[
X^{c*} = X_{\mathcal{P}(X)} = X^a \frac{\partial}{\partial x^a} - y_b \frac{\partial X^b}{\partial x^a} \frac{\partial}{\partial y_a} \tag{18}
\]

with the Hamiltonian function being \(\mathcal{P}(X)(x, y) = y_b X^b(x)\). We decompose the complete cotangent lifts into vertical representative and holonomic part

\[
VX^{c*} = -(y_b \frac{\partial X^b}{\partial x^a} + X^b \frac{\partial y_a}{\partial x^a} \frac{\partial}{\partial y_a}) \quad \text{and} \quad HX^{c*} = X^a \frac{\partial}{\partial x^a} + X^a \frac{\partial y_b}{\partial x^a} \frac{\partial}{\partial y_b}. \tag{19}
\]

where the connection in Eq.(11) has the particular form

\[
\Gamma = dx^a \otimes \left(\frac{\partial}{\partial x^a} + \frac{\partial y_b}{\partial x^a} \frac{\partial}{\partial y_b} \right). \tag{20}
\]

Proposition 2 The mapping \(V^{c*} : \mathfrak{X}(M) \rightarrow \mathfrak{X}(T^*M) : X \mapsto VX^{c*}\) is a Lie algebra isomorphism into.

Proof. The vector valued two form \(\mathcal{B}\) in Eq.(16) vanishes for the complete cotangent lifts, that is, \(\mathcal{B}(X^{c*}, Y^{c*}) = 0\) for all \(X, Y \in \mathfrak{X}(M)\), therefore one has \(V [X^{c*}, Y^{c*}] = [VX^{c*}, VY^{c*}]_{\text{pro}}\) and the result

\[
V [X, Y]^{c*} = [VX^{c*}, VY^{c*}]_{\text{pro}}. \tag{21}
\]

follows from Eq.(17). \[\square\]

The last object we consider in this section is the vertical lift of one forms. Take the cotangent lift \(T^*\pi_{\mathcal{M}} : T^*M \rightarrow T^*T^*M\) of the projection \(\pi_{\mathcal{M}} : T^*M \rightarrow M\) and recall the isomorphism \(\Omega_{T^*\mathcal{M}}^2 : T^*T^*M \rightarrow TT^*M\) associated with the symplectic two-form \(\Omega_{T^*M}\) on \(T^*M\). Define the Euler vector field

\[
\mathcal{X}_E : T^*M \rightarrow TT^*M : z \mapsto \Omega_{T^*\mathcal{M}}^2 \circ T^*\pi_{\mathcal{M}}(z) \tag{22}
\]

which is vertical, that is, \(\text{image}(\mathcal{X}_E) \subset \ker(T\pi_{\mathcal{M}})\). Indeed,

\[
\langle z, T\pi_{\mathcal{M}} \circ \mathcal{X}_E (z) \rangle = \left< T^*\pi_{\mathcal{M}}(z), \Omega_{T^*\mathcal{M}}^2 \circ T^*\pi_{\mathcal{M}}(z) \right> = \Omega_{T^*\mathcal{M}}(T^*\pi_{\mathcal{M}}(z), T^*\pi_{\mathcal{M}}(z)) = 0, \tag{23}
\]

\(\forall z \in T^*\mathcal{M}\), where we used the skew-symmetry of \(\Omega_{T^*\mathcal{M}}\). \(\mathcal{X}_E\) is the unique vector field satisfying the following equalities

\[
i_{\mathcal{X}_E} \Omega_{T^*\mathcal{M}} = \theta_{T^*\mathcal{M}}, \quad \mathcal{L}_{\mathcal{X}_E} \Omega_{T^*\mathcal{M}} = -\Omega_{T^*\mathcal{M}}, \quad \mathcal{L}_{\mathcal{X}_E} \theta_{T^*\mathcal{M}} = -\theta_{T^*\mathcal{M}}, \tag{24}
\]

where \(i_{\mathcal{X}_E}\) and \(\mathcal{L}_{\mathcal{X}_E}\) are the interior product and the Lie derivative operators \[\mathcal{L}\]. Let \(\alpha \in \Lambda^1(M)\) be a one-form on \(M\). The vertical lift

\[
\alpha^{v} = \mathcal{X}_E \circ \alpha \circ \pi_{\mathcal{M}} : T^*M \rightarrow TT^*M \tag{25}
\]
of the one-form α is a vertical vector field on T^*M. The Jacobi-Lie bracket of a complete cotangent lift and a vertical lift is a vertical lift

$$[X^{cs}, \alpha^v] = (L_X \alpha)^v$$

(26)

for $X \in \mathfrak{x}(M)$ and $\alpha \in \Lambda^1(M)$ \cite{17}. In coordinates (x^a, y_b) of T^*M, the Euler vector field is $X_E = -y_a \partial/\partial y_a$ and the vertical lift of the one-form $\alpha = \alpha_a(x) dx^a$ becomes $\alpha^v = -\alpha_a(x) \partial/\partial y_a$.

3 Dynamics

Assume that a continuum initially rests in \mathcal{M}, and the group $Diff(\mathcal{M})$ of diffeomorphisms acts on left by evaluation on \mathcal{M}

$$Diff(\mathcal{M}) \times \mathcal{M} \to \mathcal{M} : (\varphi, x) \to \varphi(x)$$

(27)

to produce the motion of particles. The right action of $Diff(\mathcal{M})$ commutes with the particle motion and constitutes an infinite dimensional symmetry group of the kinematical description. This is the particle relabelling symmetry \cite{2}.

An element of the tangent space $T_{\varphi}Diff(\mathcal{M})$ at $\varphi \in Diff(\mathcal{M})$ is a map $V_{\varphi} : \mathcal{M} \to T\mathcal{M}$ called the material velocity field and satisfies $\tau_M \circ V_{\varphi} = \varphi$. In particular, the tangent space $T_{id_M}Diff(\mathcal{M})$ at the identity $id_M \in Diff(\mathcal{M})$ is the space $\mathfrak{x}(\mathcal{M})$ of smooth vector fields on \mathcal{M}. The Lie algebra of $Diff(\mathcal{M})$ is $\mathfrak{x}(\mathcal{M})$ with minus the Jacobi-Lie bracket of vector fields \cite{8}.

The dual space $\mathfrak{x}^*(\mathcal{M}) \simeq \Lambda^1(\mathcal{M}) \otimes Den(\mathcal{M})$ of the Lie algebra is the space of one-form densities on \mathcal{M}. The pairing between $\alpha \otimes d\mu \in \mathfrak{x}^*(\mathcal{M})$ and $X \in \mathfrak{x}(\mathcal{M})$ is given by

$$\langle \alpha \otimes d\mu, X \rangle = \int_{\mathcal{M}} \langle \alpha(x), X(x) \rangle d\mu(x) .$$

(28)

The pairing inside the integral is the natural pairing of finite dimensional spaces $T_x\mathcal{M}$ and $T^*_x\mathcal{M}$. The coadjoint action is

$$ad^*_X : \mathfrak{x}^*(\mathcal{M}) \to \mathfrak{x}^*(\mathcal{M})$$

$$\alpha \otimes d\mu \to L_X (\alpha \otimes d\mu) = (L_X \alpha + (div_{d\mu} X) \alpha) \otimes d\mu$$

(29)

$\forall X \in \mathfrak{x}(\mathcal{M})$ and hence the Lie-Poisson equations on $\mathfrak{x}^*(\mathcal{M})$ are

$$\dot{\alpha} = -L_X \alpha - (div_{d\mu} X) \alpha,$$

(30)

where $div_{d\mu} X$ denotes the divergence of the vector field X with respect to the volume form $d\mu$.

In terms of vertical lifts, the dynamics in Eq. (30) is generated by the vector field $(L_X \alpha + (div_{d\mu} X) \alpha)^v$. For the divergence free vector fields, if $\alpha = y_a dx^a$, then the Lie-Poisson equations are generated by

$$(L_X (y_a dx^a))^v = V X^{cs} (x^a, y_a).$$

(31)
3.1 Ideal incompressible fluid

For an ideal incompressible fluid in a bounded compact region \(Q \subset \mathbb{R}^3 \) the configuration space is the group \(\text{Diff}_{vol}(Q) \) of volume preserving diffeomorphisms on \(Q \). The Lie algebra \(\mathfrak{x}_{\text{div}}(Q) \) of \(\text{Diff}_{vol}(Q) \) is the algebra of divergence free vector fields parallel to the boundary of \(Q \) and, the dual space \(\mathfrak{x}^*_{\text{div}}(Q) \) is the space

\[
\mathfrak{x}^*_{\text{div}}(Q) = \{ [\mathcal{Y}] \otimes d^3q \in (\Lambda^1(Q)/d\mathcal{F}(Q)) \otimes \text{Den}(Q) \},
\]

of one-form modulo exact one-form densities on \(Q \). Here, \([\mathcal{Y}] = \{ \mathcal{Y} + d\tilde{p} : \tilde{p} \in \mathcal{F}(Q) \}\) denotes the equivalence class containing \(\mathcal{Y} \) and the volume three for \(d^3q \) is the Euclidean volume on \(\mathbb{R}^3 \)[2],[11].

Let \((x^a, \mathcal{Y}_b)\) be induced coordinates and \(X^a = X^a \partial/\partial x^a \) be a divergence free vector field. The complete cotangent lift of \(X \) is

\[
X^{c*} = X^a \frac{\partial}{\partial x^a} - \mathcal{Y}_b \left(\frac{\partial X^b}{\partial x^a} \right) \frac{\partial}{\partial \mathcal{Y}_a},
\]

and its vertical representative becomes

\[
VX^{c*} = \left(-\mathcal{Y}_b \frac{\partial X^b}{\partial x^a} - X^a \frac{\partial \mathcal{Y}_b}{\partial x^a} \right) \frac{\partial}{\partial \mathcal{Y}_a}.
\]

Equations of motion for the dynamics generated by \(VX^{c*} \) are

\[
\frac{\partial [\mathcal{Y}]}{\partial t} = -\mathcal{L}_X [\mathcal{Y}].
\]

For a generic element \(\mathcal{Y} + d\tilde{p} \in [\mathcal{Y}] \), Eq.(33) becomes Euler’s equations for ideal fluid, that is \(\partial \mathcal{Y}/\partial t + \mathcal{L}_X \mathcal{Y} = 0 \). If the dual space \(\mathfrak{x}^*_{\text{div}}(Q) \) is identified with exact two forms by \([\mathcal{Y}] \rightarrow d\mathcal{Y} = \omega \in \Lambda^2(Q)\), then Eq.(34) becomes the Euler’s equation in vorticity form \(\partial \omega/\partial t + \mathcal{L}_X \omega = 0 \).

3.2 Collisionless plasma

We take \(\mathcal{M} \) to be cotangent bundle \(T^*Q \) of \(Q \subset \mathbb{R}^3 \) in which the plasma particles move. The configuration space of collisionless nonrelativistic plasma is the group

\[
\text{Diff}_{can}(T^*Q) = \{ \varphi \in T^*Q : \varphi^*\Omega_{T^*Q} = \Omega_{T^*Q} \}
\]

of all canonical diffeomorphisms where \(\Omega_{T^*Q} \) is the canonical symplectic two form on \(T^*Q \)[4],[9],[10]. We assume that, the Lie algebra of \(\text{Diff}_{can}(T^*Q) \) is the space of globally Hamiltonian vector fields \(\mathfrak{x}_{\text{ham}}(T^*Q) \) with minus the Jacobi-Lie bracket so that the equations

\[
[X_h, X_f]_{JL} = -X_{[h,f]_{\Omega_{T^*Q}}} \]

describe a Lie algebra isomorphism

\[
h \rightarrow X_h : (\mathcal{F}(T^*Q), \{ , \}_{\Omega_{T^*Q}}) \rightarrow (\mathfrak{x}_{\text{ham}}(T^*Q), -[,]_{JL}), \]

between \(\mathfrak{x}_{\text{ham}}(T^*Q) \) and the space of smooth functions \(\mathcal{F}(T^*Q) \) modulo constants endowed with the (nondegenerate) canonical Poisson bracket \(\{ , \}_{\Omega_{T^*Q}} \).
Proposition 3 The dual space of the Lie algebra $\mathfrak{x}_{\text{ham}}(T^*Q)$ of Hamiltonian vector fields is

$$\mathfrak{x}^*_{\text{ham}}(T^*Q) = \{ \Pi_{id} \otimes d\mu \in \Lambda^1(T^*Q) \otimes \text{Den}(T^*Q) : \text{div}_{T^*Q} \Pi_{id}^\sharp \neq 0 \}. \quad (38)$$

With this definition of the dual space the L_2-pairing of the Lie algebra and its dual becomes nondegenerate provided we take the volume form to be the symplectic one $d\mu = \Omega_{T^*Q}$ in

$$\int_{T^*Q} \left\langle X_h(z), \Pi_{id}(z) \right\rangle d\mu(z) = -\int_{T^*Q} \left\langle dh, \Pi_{id}^\sharp \right\rangle d\mu = -\int_{T^*Q} i_{\Pi_{id}^\sharp} (dh) d\mu = \int_{T^*Q} \text{div}_{T^*Q} \Pi_{id}^\sharp d\mu,$$

$$\int_{T^*Q} \left\langle dh, \Pi_{id}^\sharp \right\rangle d\mu = \int_{T^*Q} \text{div}_{T^*Q} \Pi_{id}^\sharp d\mu,$$

where we use the musical isomorphism $\Omega_{T^*Q}^\sharp: \Pi_{id} \to \Pi_{id}^\sharp$ induced from the symplectic two-form Ω_{T^*Q} and apply integration by parts [8, internet supplement]. The dual of the Lie algebra isomorphism in Eq. (37) is

$$\Pi_{id}(z) \to \text{div}_{T^*Q} \Pi_{id}^\sharp(z) \quad (40)$$

and it is a momentum map. In Darboux’s coordinates $z = (q^i, p_i)$ on T^*Q, we have $\Omega_{T^*Q} = dq^i \wedge dp_i$ and we take $\Pi_{id} = \Pi_i (q^i) dq^i + \Pi^i (z) dp_i$. Then, the momentum map

$$f(z) = \text{div}_{T^*Q} \Pi_{id}^\sharp(z) = \frac{\partial \Pi_i^\sharp (z)}{\partial q^i} - \frac{\partial \Pi_i (z)}{\partial p_i} \quad (41)$$

defines the plasma density function.

In the induced coordinates $(q^i, p_j; \Pi_i, \Pi^j)$ on T^*T^*Q, consider the Hamiltonian function $h = (1/2m) \delta^{ij}p_ip_j + e\phi(q)$ which is the energy of a charged particle on Q [9]. The corresponding Hamiltonian vector field is

$$X_h(z) = \frac{1}{m} \delta^{ij}p_i \frac{\partial}{\partial q^j} - e \frac{\partial \phi}{\partial q^i} \frac{\partial}{\partial p_i}. \quad (42)$$

The complete cotangent lift of X_h and its decomposition into vertical representative and holonomic part are

$$X_{h}^{c*} = X_h - \delta^{ij} \frac{1}{m} \Pi_i \frac{\partial}{\partial \Pi^j} + e\Pi^j \frac{\partial^2 \phi}{\partial q^i \partial q^j} \frac{\partial}{\partial \Pi^i},$$

$$HX_{h}^{c*} = X_h + X_h(\Pi_i) \frac{\partial}{\partial \Pi_i} + X_h(\Pi^j) \frac{\partial}{\partial \Pi^j},$$

$$VX_{h}^{c*} = \left(e\Pi^j \frac{\partial^2 \phi}{\partial q^i \partial q^j} - X_h(\Pi^j) \right) \frac{\partial}{\partial \Pi_i} - \left(\frac{1}{m} \Pi_j \delta^{ij} + X_h(\Pi^j) \right) \frac{\partial}{\partial \Pi^j}. \quad (43)$$
where $X_h(\Pi_i)$ denotes the action of X_h on Π_i. Since, Hamiltonian vector fields are divergence free, the Lie-Poisson equations

$$\dot{\Pi}_i = -X_h(\Pi_i) + e\frac{\partial^2 \phi}{\partial q^i \partial q^j} \Pi^j$$

$$\dot{\Pi}^i = -X_h(\Pi^i) - \frac{1}{m} \delta^j_\Pi \Pi_j$$

are generated solely by VX_h^*. These are Vlasov equations in the momentum variables \[4\]. For the density formulation, we make back-substitution of the plasma density function $f(z) = \text{div} \Omega T\ast Q \Pi \circ\text{id}$ into Eqs. (44) and obtain the Vlasov equation

$$\frac{\partial f}{\partial t} + \delta_{ij} \frac{p_i}{m} \frac{\partial f}{\partial q_j} - e \frac{\partial \phi}{\partial q_i} \frac{\partial f}{\partial p_i} = 0.$$

(45)

3.3 Contact flows in 3D

Let M be a three dimensional manifold with a contact one form $\sigma \in \Lambda^1(M)$ satisfying $d\sigma \wedge \sigma \neq 0$. A contact form determines a contact structure which, locally is the kernel of the contact form σ. A diffeomorphism on M is called a contact diffeomorphism if it preserves the contact structure. We denote the group of contact diffeomorphisms by $\text{Diff}_{\text{con}}(M)$. A vector field on a contact manifold (M, σ) is called a contact vector field if it generates a one-parameter group of contact diffeomorphisms \[1\],\[12\].

In Darboux’s coordinates (x, y, z) on M, we take the contact form to be $\sigma = xdy + dz$. For a real valued function $K = K(x, y, z)$ on M, there corresponds a contact vector field

$$X_K = \left(\frac{\partial K}{\partial y} - x \frac{\partial K}{\partial z}\right) \frac{\partial}{\partial x} - \frac{\partial K}{\partial x} \frac{\partial}{\partial y} + \left(-K + x \frac{\partial K}{\partial x}\right) \frac{\partial}{\partial z},$$

(46)

on M satisfying the identities

$$i_{X_K} \sigma = -K \quad \text{and} \quad i_{X_K} d\sigma = dK - (i_{R_\sigma} dK) \sigma,$$

(47)

where $R_\sigma = \partial / \partial z$ is the Reeb vector field of σ. R_σ is the unique vector field satisfying $i_{R_\sigma} \sigma = 1$ and $i_{R_\sigma} d\sigma = 0$. The divergence div_dX_K of X_K with respect to the volume form $d\mu = d\sigma \wedge \sigma$ can be computed to be $\text{div}_dX_K = -2R_\sigma K$.

Contact Poisson (or Lagrange) bracket of two smooth functions on M is defined by

$$\{L, K\}_c = \frac{\partial L}{\partial x} \frac{\partial K}{\partial y} - \frac{\partial L}{\partial y} \frac{\partial K}{\partial x} + \frac{\partial K}{\partial x} \left(L - z \frac{\partial L}{\partial x}\right) - \frac{\partial L}{\partial z} \left(K - z \frac{\partial K}{\partial x}\right),$$

(48)

\forall L, K \in \mathcal{F}(M). The identity $[X_K, X_L]_{JL} = -X_{\{K, L\}_c}$ establishes an isomorphism between Lie algebras $(\mathfrak{X}_{\text{con}}(M), -[\cdot, \cdot]_{\text{JL}})$ and $(\mathcal{F}(M), \{\cdot, \cdot\}_c)$. Following result gives a precise definition of the linear algebraic dual of $\mathfrak{X}_{\text{con}}(M)$.
Proposition 4 The dual space of the algebra $\mathfrak{X}_\text{con}(\mathcal{M})$ of contact vector fields is
\[\mathfrak{X}^*_\text{con}(\mathcal{M}) = \left\{ \alpha \otimes d\mu \in \Lambda^1(\mathcal{M}) \otimes \text{Den}(\mathcal{M}) : d\alpha \wedge \sigma - 2\alpha \wedge d\sigma \neq 0 \right\} \tag{49} \]
where σ is the contact form on \mathcal{M} and $d\mu = d\alpha \wedge \sigma$.

Proof. This follows from the requirement that the pairing between $\mathfrak{X}_\text{con}(\mathcal{M})$ and $\mathfrak{X}^*_\text{con}(\mathcal{M})$ be nondegenerate. We compute
\[
\int_{\mathcal{M}} \langle \alpha, X_K \rangle d\mu = \int_{\mathcal{M}} \alpha \wedge i_{X_K} d\sigma \wedge \sigma + \int_{\mathcal{M}} (i_{X_K} \sigma) \alpha \wedge d\sigma
= \int_{\mathcal{M}} \alpha \wedge (dK - (i_{R_K} dK)) \wedge \sigma - \int_{\mathcal{M}} K \alpha \wedge d\sigma
= \int_{\mathcal{M}} K \left(d\alpha \wedge \sigma - 2\alpha \wedge d\sigma \right), \tag{50}
\]
where we use the identities in Eq. (47) at the second step. □

A geometric definition of density of contact particles can be achieved by considering the Lie algebra isomorphism $\mathcal{F}(\mathcal{M}) \to \mathfrak{X}_\text{con}(\mathcal{M}) : K \to X_K$ the dual of which is a momentum map
\[\mathfrak{X}^*_\text{con}(\mathcal{M}) \to \text{Den}(\mathcal{M}) : \alpha \to d\alpha \wedge \sigma - 2\alpha \wedge d\sigma. \tag{51} \]
and defines a real valued function L on \mathcal{M}
\[Ld\sigma \wedge \sigma = d\alpha \wedge \sigma - 2\alpha \wedge d\sigma. \tag{52} \]
In coordinates, let $\alpha = \alpha_x dx + \alpha_y dy + \alpha_z dz \in \mathfrak{X}^*_\text{con}(\mathcal{M})$ and recall $\sigma = xdy + dz$. Then,
\[L(x, y, z) = -\frac{\partial \alpha_x}{\partial y} + \frac{\partial \alpha_y}{\partial x} - x \frac{\partial \alpha_z}{\partial x} + x \frac{\partial \alpha_x}{\partial z} - 2\alpha_z. \tag{53} \]

The dual space $\mathfrak{X}^*_\text{con}(\mathcal{N})$ admits the Lie-Poisson bracket
\[\{ \delta \zeta, \delta \rho \} (\alpha) = -\int_{\mathcal{M}} \left\langle \alpha, \left[\delta \zeta, \delta \rho \right]_{J_{LP}} \right\rangle d\mu = -\int_{\mathcal{M}} \left\langle \alpha, [X_H, X_K]_{J_{LP}} \right\rangle d\mu, \tag{54} \]
where $\delta \zeta, \delta \rho \in \mathcal{F}(\mathfrak{X}^*_\text{con}(\mathcal{M}))$ and $\delta \zeta/\delta \alpha = X_H, \delta \rho/\delta \alpha = X_K \in \mathfrak{X}^*_\text{con}(\mathcal{M})$. The Hamiltonian operator $J_{LP}(\alpha)$ associated to the Lie-Poisson bracket in Eq. (54) is defined by
\[\{ \delta \zeta, \delta \rho \} (\alpha) = -\int_{\mathcal{M}} \left\langle X_H, J_{LP}(\alpha) X_K \right\rangle d\mu \tag{55} \]
and a direct computation gives

Proposition 5 The Hamiltonian differential operator associated to the Lie-Poisson bracket in Eq. (54) is
\[
J_{LP}(\alpha) = -\begin{pmatrix}
\alpha_x \frac{\partial}{\partial x} + \alpha_y \frac{\partial}{\partial y} + \alpha_z \frac{\partial}{\partial z} & \alpha_x \frac{\partial}{\partial x} & \alpha_y \frac{\partial}{\partial y} & \alpha_z \frac{\partial}{\partial z} \\
\alpha_x \frac{\partial}{\partial x} & \alpha_y \frac{\partial}{\partial y} + \alpha_y \frac{\partial}{\partial y} & \alpha_y \frac{\partial}{\partial y} & \alpha_z \frac{\partial}{\partial z} \\
\alpha_x \frac{\partial}{\partial x} & \alpha_y \frac{\partial}{\partial y} & \alpha_y \frac{\partial}{\partial y} & \alpha_z \frac{\partial}{\partial z} \\
\alpha_x \frac{\partial}{\partial x} & \alpha_y \frac{\partial}{\partial y} & \alpha_y \frac{\partial}{\partial y} & \alpha_z \frac{\partial}{\partial z}
\end{pmatrix}, \tag{56}
\]
\[\partial/\partial x \cdot \alpha y = \alpha_y \partial/\partial x + \partial \alpha_y / \partial x. \]
Assuming \(\delta \mathbf{R} / \delta \alpha = X_K \), the Lie-Poisson equations on \(X^*_\text{con} (\mathcal{M}) \) are

\[\dot{\alpha} = J_{LP} (\alpha) X_K = - \text{ad}^*_{X_K} \alpha = - \mathcal{L}_{X_K} \alpha - \text{(div}\, d\mu \text{)} X_K \alpha. \]

(57)

The Lie-Poisson bracket on the dual space \(\text{Den} (\mathcal{M}) \) of \(\mathcal{F} (\mathcal{M}) \), as defined by Eq.(51), is

\[\{ \mathfrak{H}, \mathfrak{K} \} (L) = \int_{\mathcal{M}} L \left\{ \frac{\delta \mathfrak{H}}{\delta L}, \frac{\delta \mathfrak{K}}{\delta L} \right\} c \, d\mu = \int_{\mathcal{M}} L \{ H, K \} c \, d\mu, \]

(58)

where \(\delta \mathfrak{H} / \delta L = H, \delta \mathfrak{K} / \delta L = K \in \mathcal{F} (\mathcal{M}) \) and \(d\mu = d\sigma \wedge \sigma \).

Proposition 6 The Hamiltonian operator \(J_{LP} (L) \) for the Lie Poisson bracket in Eq.(54) is

\[J_{LP} (L) = X_L + \left(4L + \partial L / \partial z \right) \frac{\partial}{\partial z}, \]

(59)

and the Lie-Poisson equation on \(\text{Den} (\mathcal{M}) \) becomes

\[\dot{L} = - \{ L, K \}_c - 2 \text{div}\, d\mu (X_K) L. \]

(60)

Proof. The verification of the Hamiltonian operator in Eq.(59) is a straightforward calculation which follows directly from the definition of the Lie-Poisson bracket in Eq.(54). To obtain the Lie-Poisson equation we compute the coadjoint action negative of which is the required equation. By definition

\[\langle \text{ad}^*_{X_K} L, H \rangle = \langle L, \text{ad}_K H \rangle = \langle L, \{ K, H \} \rangle_c \]

\[= \int_N L \{ H, K \}_c d\mu = - \int_N L \left(X_K (H) + \frac{\partial K}{\partial z} H \right) d\mu \]

\[= \int_N \left(X_K (L) + \text{div}\, d\mu (X_K) L - \frac{\partial K}{\partial z} L \right) H d\mu \]

\[= \int_N \{ L, K \}_c - \frac{\partial K}{\partial z} L + \text{div}\, d\mu (X_K) L - \frac{\partial K}{\partial z} H d\mu \]

\[= \int_N \{ \{ L, K \}_c + 2 \text{div}\, d\mu (X_K) L \} H d\mu, \]

(61)

where we use integration by parts at the third step and the identities

\[\{ H, K \}_c = X_K (H) + \frac{\partial K}{\partial z} H = - X_H (K) - \frac{\partial H}{\partial z} K \]

(62)

at the second and fourth steps. \(\blacksquare \)

The equation of motion \(\dot{L} = - \text{ad}^*_{X_K} L \) is the kinetic equation of contact particles in density formulation.

Proposition 7 The Hamiltonian differential operators \(J_{LP} (\alpha) \) in Eq.(56) and \(J_{LP} (L) \) in Eq.(59) are related by

\[HJ_{LP} (L) K = - X_H J_{LP} (\alpha) X_K \mod \text{(div)}. \]

(63)
We now obtain dynamics of contact particles by the methods of previous sections. Let \((\mathcal{M}, \sigma)\) be a contact manifold and consider the contact vector field \(X_K\) in Eq.(46). Its complete cotangent lift is

\[
X^*_c = X_K + \left(\Upsilon \frac{\partial K}{\partial z} + \Psi \frac{\partial K}{\partial x} \right) \frac{\partial}{\partial \alpha_x} + (\Phi + \Psi) \left(\frac{\partial K}{\partial y} \frac{\partial}{\partial \alpha_y} + \frac{\partial K}{\partial z} \frac{\partial}{\partial \alpha_z} \right)
\]

(64)

where we use the following abbreviations

\[
\Upsilon = \alpha_x \left(1 + x \frac{\partial}{\partial x} \right), \quad \Psi = \alpha_y \frac{\partial}{\partial y} - \alpha_z \frac{\partial}{\partial x} - x \alpha_x \frac{\partial}{\partial y}, \quad \Phi = x \alpha_z \frac{\partial}{\partial z} + \alpha_z
\]

(65)

and the induced coordinates \((x, y, z, \alpha_x, \alpha_y, \alpha_z)\) on \(T^*N\). \(X^*_c\) is a canonically Hamiltonian vector field. The vertical representative \(VX^*_c\) of \(X^*_c\) is

\[
VX^*_c = \left(\Upsilon \frac{\partial K}{\partial z} + \Psi \frac{\partial K}{\partial x} - X_K(\alpha_x) \right) \frac{\partial}{\partial \alpha_x} + \left((\Phi + \Psi) \frac{\partial K}{\partial y} - X_K(\alpha_y) \right) \frac{\partial}{\partial \alpha_y}
\]

\[
+ \left((\Phi + \Psi) \frac{\partial K}{\partial z} - X_K(\alpha_z) \right) \frac{\partial}{\partial \alpha_z}.
\]

(66)

with \(X_K(\alpha_x)\) denoting the action of \(X_K\) on \(\alpha_x\). To obtain the equations of motion for the momentum variables, one needs to add the divergence term, that is,

\[
\dot{\alpha} = VX^*_c(\alpha) - (\text{div}_{\partial \mu} X_K) \alpha.
\]

(67)

It can be checked that Eq.(67) and Eq.(57) are equal. In coordinates, the system of equations in Eq.(67) takes the form

\[
\dot{\alpha}_x = \Upsilon \frac{\partial K}{\partial z} + \Psi \frac{\partial K}{\partial x} - X_K(\alpha_x) + 2 \frac{\partial K}{\partial z} \alpha_x
\]

\[
\dot{\alpha}_y = (\Phi + \Psi) \frac{\partial K}{\partial y} - X_K(\alpha_y) + 2 \frac{\partial K}{\partial z} \alpha_y
\]

\[
\dot{\alpha}_z = (\Phi + \Psi) \frac{\partial K}{\partial z} - X_K(\alpha_z) + 2 \frac{\partial K}{\partial z} \alpha_z.
\]

(68)

Substituting \(L\) in Eq.(53) to the system of Eqs.(68) we obtain the evolution of the density of contact particles as given by Eq.(60).

References

[1] V. I. Arnold, *Mathematical Methods of Classical Mechanics*, second ed., Graduate Texts in Mathematics 60, (Springer-Verlag, 1989).

[2] V. I. Arnold, B. A. Khesin, *Topological Methods in Hydrodynamics*, Applied Mathematical Sciences 125, (Springer, 1998).

[3] D. Ebin, J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, *Ann. of Math.* 92 (1970) pp. 102-163.
[4] H. Gümral, Geometry of plasma dynamics I: Group of canonical diffeomorphisms, *J. Math. Phys.* **51**, (2010) 083501.

[5] I. Kolar, P.W. Michor, J Slovak, *Natural Operations in Differential Geometry*, (Springer-Verlag, Berlin Heidelberg, 1993).

[6] Y. Kosmann-Schwarzbach, Vector fields and generalized vector fields on fibered manifolds, *Geometry and differential geometry* (Proc. Conf. Univ. Haifa, Israël, 1979), eds., R. Artzy and I. Vaisman, Lecture Notes in Math. **792**, Springer-Verlag, Heidelberg (1980) pp. 307-355.

[7] P. Libermann and C. M. Marle, *Symplectic Geometry and Analytic Mechanics*, (D. Reidel Publishing Company, Kluwer Academic Publishers Group, 1987).

[8] J. E. Marsden and T.S. Ratiu, *Introduction to Mechanics and Symmetry*, second ed., Texts in Applied Mathematics, Vol. **17**, (Springer-Verlag, New York, 1999).

[9] J. E. Marsden, T.S. Ratiu, A. Weinstein, R. Schmid, R. G. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, *Proc. IUTAM-IS1MM Symposium on Modern Developments in Analytical Mechanics* (Torino, 1982), Atti Acad. Sci. Torino Cl. Sci. Fis. Math. Natur. **117** (1983) 289-340.

[10] J. E. Marsden, A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, *Physica D* **4** (1982) pp. 394-406.

[11] J. E. Marsden, A. Weinstein, Coadjoint orbits, vortices, and Clebsh variables for incompressible fluids, *Physica 7D* (1983) pp. 305-323.

[12] D. McDuff, D. Salamon, *Introduction to Symplectic Topology*, (Clarendon Press, Oxford, 1998).

[13] P. J. Olver, *Applications of Lie Groups to Differential Equations*, (Springer, New York, 1986).

[14] T.S. Ratiu, R. Schmid, The differentiable structure of three remarkable diffeomorphism groups, *Math. Zeit.* **177** (1981) pp. 81-100.

[15] D.J. Saunders, *The Geometry of Jet Bundles*, London Math. Soc., Lecture Notes Series **142**, (Cambridge Univ. Press, 1989).

[16] W.M. Tulczyjew, The Euler-Lagrange resolution, *Internat. Coll. on Diff. Geom. Methods in Math. Phys.*, Aix–en–Provence, 1979; Lecture Notes in Mathematics **836**, Springer–Verlag, Berlin (1980) pp. 22-48.

[17] E.M. Patterson, K. Yano, Vertical and complete lifts from a manifold to its cotangent bundle, *J. Math. Soc. Japan* **19** (1967) pp. 91-113.