Quantum probabilities for inflation from holography

James B. Hartle, S.W. Hawking and Thomas Hertog

Abstract. The evolution of the universe is determined by its quantum state. The wave function of the universe obeys the constraints of general relativity and in particular the Wheeler-DeWitt equation (WDWE). For non-zero Λ, we show that solutions of the WDWE at large volume have two domains in which geometries and fields are asymptotically real. In one the histories are Euclidean asymptotically anti-de Sitter, in the other they are Lorentzian asymptotically classical de Sitter. Further, the universal complex semiclassical asymptotic structure of solutions of the WDWE implies that the leading order in ℏ quantum probabilities for classical, asymptotically de Sitter histories can be obtained from the action of asymptotically anti-de Sitter configurations. This leads to a promising, universal connection between quantum cosmology and holography.

Keywords: inflation, string theory and cosmology, quantum cosmology

ArXiv ePrint: 1207.6653
1 Introduction

Our large scale observations of the universe are of its classical behavior. The isotropic accelerated expansion and the large scale structure in the CMB and the galaxy distribution are just two examples. But it is an inescapable inference from the rest of physics that such classical features are governed by quantum mechanical laws. A quantum system behaves classically when the probabilities implied by the quantum state are high for coarse-grained histories with correlations in time governed by deterministic equations of motion. That is true whether the system is a tennis ball in flight or the evolving universe as a whole.

The form of the emergent deterministic equations of motion may be only distantly related to the equations defining the underlying quantum theory. Here we investigate this in theories with a non-zero cosmological constant Λ. In the usual formulation of classical cosmology there is a sharp distinction between dynamical theories with different signs of Λ. The equations of a positive Λ theory predict asymptotically deSitter (dS) geometries, whereas the equations of a negative Λ theory predict asymptotically anti-deSitter (AdS) geometries.

Quantum cosmology however is most fundamentally concerned with the prediction of probabilities for alternative histories of the universe. Those probabilities are derived from a theory of the universe’s quantum state. In this paper we show that, in a natural formulation of quantum cosmology that is motivated by holography, the quantum probabilities obtained from a general wave function defined in terms of an asymptotically AdS action generally imply an ensemble of histories that, besides AdS histories, also includes histories behaving classically according to equations of motion with a positive effective cosmological constant.

Thus, there is no sharp distinction between positive and negative Λ in quantum cosmology. Instead the wave function of the universe naturally provides a unified framework in which both AdS and dS histories occur.
2 Classical prediction in quantum cosmology

A quantum state of a closed universe is represented by a wave function Ψ on the superspace of three-geometries h and matter fields on a closed spacelike surface Σ. For illustration we consider a minisuperspace model\(^1\) with a negative cosmological constant Λ (in the usual classical sense) and a single scalar matter field ϕ with potential $V = (1/2)m^2\phi^2$. We take m^2 to be negative but within the Breitenlohner-Freedman (BF) range $m^2_{\text{BF}} < m^2 < 0$, where $m^2_{\text{BF}} = -9/(4\ell^2)$ with $1/\ell^2 \equiv -\Lambda/3$. The geometries are restricted to be spatially homogeneous, isotropic and closed.\(^2\) The spatial geometries on a three-sphere can then be characterized by a scale factor b and a boundary value χ of the homogeneous field ϕ. Three metrics describing possible three geometries are given by

$$d\Sigma^2 = b^2 d\Omega_3^2.$$ \hfill (2.1)

A four-geometry is described by a one-parameter sequence of such scale factors. Cosmological wave functions are functions of b and χ, $\Psi = \Psi(b, \chi)$.

A wave function predicts classical behavior in regions of superspace where it is well approximated by a semiclassical form (or a sum of such forms) \([3, 4]\)

$$\Psi(b, \chi) = A(b, \chi) \exp(iS(b, \chi)/\hbar).$$ \hfill (2.2)

where S varies rapidly compared to A. The classical histories that Ψ predicts are the integral curves of S. They correspond to curves in superspace given by the solutions to the Hamilton-Jacobi relations $p = \nabla S$ relating the momenta involving time derivatives of the variables to the derivatives of S. The probability of a classical history passing through (b, χ) is proportional to $|A(b, \chi)|^2$. The Wheeler-DeWitt equation implies that the probabilities are conserved along classical curves in superspace \([3, 4]\). Hence this is a four-dimensional notion of probability that is not affected by coordinate changes on superspace.

3 Asymptotic structure of the Wheeler-DeWitt equation

Cosmological wave functions must satisfy the operator forms of the constraints of general relativity. The three momentum constraints are satisfied automatically as a consequence of the symmetries of this simple model. The operator form of the remaining Hamiltonian constraint is the Wheeler-DeWitt equation (WDWE).\(^3\) With the simplest operator ordering this is\(^4\)

$$\left(-\frac{\hbar^2}{\eta^2} \frac{d^2}{db^2} + \frac{\hbar^2}{\eta^2 b^2} \frac{d^2}{d\chi^2} + b^2 + \frac{1}{\ell^2} b^4 - m^2\chi^2 b^4\right)\Psi = 0.$$ \hfill (3.1)

\(^1\)Our results are not restricted to minisuperspace models. The situation for general boundary geometries is discussed in \([1]\) and the generalization to Maxwell vector field matter is discussed in \([2]\). It is plausible that the condition that the scalar mass m^2 satisfies the BF bound can also be relaxed since, as we will discuss, the AdS sector of the theory is entirely Euclidean. Hence the usual issue of stability of classical, Lorentzian AdS histories does not arise. Of course Euclidean quantum gravity has other technical subtleties such as the unboundedness of the Euclidean action which, it has been argued, may be resolved by a suitable contour rotation.

\(^2\)The generalization of our results to open universes and universes with different topologies will be considered elsewhere.

\(^3\)The use of the HJ equation to analyze the semiclassical predictions of a quantum state of the universe has a long history in quantum cosmology. Some interesting early examples include \([5–10]\).

\(^4\)We have rescaled the scalar field from its usual value by a factor $\sqrt{(4\pi/3)}$ to simplify the equations.
where $\eta \equiv 3\pi/2$. Defining \tilde{I} by

$$\Psi(b, \chi) \equiv \exp[-\eta \tilde{I}(b, \chi)/\hbar] \quad (3.2)$$

the WDWE becomes a non-linear equation for \tilde{I}. In certain regions of superspace the terms that explicitly involve \hbar may be negligible compared to those that don’t. When this semi-classicality condition is satisfied

$$- \left(\frac{d\tilde{I}}{db} \right)^2 + \frac{1}{b^2} \left(\frac{d\tilde{I}}{d\chi} \right)^2 + b^2 + \left(\frac{1}{\ell^2} - m^2 \chi^2 \right) b^4 = 0 \quad (3.3)$$

which is independent of \hbar. Substituting a solution of (3.3) into (3.2) gives a leading order in \hbar semi-classical approximation to the wave function.

The semiclassicality condition is satisfied for sufficiently large b provided $\Lambda \neq 0$. This can be established self consistently by assuming it holds, solving (3.3) for large b, and checking that the neglected \hbar terms in the WDWE are negligible [1]. Asymptotically in b sufficiently general solutions to the Hamilton-Jacobi equation (3.3) are defined by the expansion

$$\tilde{I}(b, \chi) = \frac{k_3}{\ell} b^3 + k_2 b^2 + \frac{\ell}{2} k_1 b + k_- b^\lambda + k_0 + \cdots \quad (3.4)$$

where the k’s are all functions of χ and $\lambda_\pm \equiv (3/2)(1 \pm \sqrt{1 + 4\ell^2 m^2/9})$. By a sufficiently general solution we mean a solution that generates a class of asymptotic solutions to the equations of motion of general form.

Although it may not be immediately obvious, the expansion (3.4) is equivalent to the expansion of the asymptotic action usually employed in the context of AdS/CFT (see e.g. [11]). The point is that the action is a function of two variables (b, χ). Hence one can consider its asymptotic behavior on different curves in the (b, χ)-plane. The expansion in (3.4) is along a curve of constant χ, which is natural from a wave function viewpoint, whereas the expansion usually used in AdS/CFT is along a curve $\chi(b) = b^{-\lambda-} - \tilde{\chi} + \cdots$ that is a bulk solution with given asymptotic boundary data $\tilde{\chi}$. Both expansions agree as we demonstrate below.

Substituting (3.4) in (3.3) yields the following equations that determine the leading coefficient functions,

$$-9k_3^2 + (k_3')^2 + 1 - \ell^2 m^2 \chi^2 = 0, \quad (3.5a)$$
$$-6k_3 k_2 + k_3' k_2' = 0, \quad (3.5b)$$
$$-3k_3 k_1 + k_3' k_1' - 4k_2^2 + (k_2')^2 + 1 = 0, \quad (3.5c)$$
$$-3\lambda_- k_3 k_- + k_3' k_- = 0, \quad (3.5d)$$
$$(2/\ell) k_0' k_3' + k_2' k_1' - 2k_2 k_1 = 0, \quad (3.5e)$$

a prime denoting the derivative with respect to χ.

The first three of these equations are a closed set for the first three coefficients in (3.4). Were there no field they would have the unique solution $k_3 = 1/3$, $k_2 = 0$, and $k_1 = 1$. We use these values as boundary conditions to fix a unique solution for the leading terms at small χ of the first three coefficients. The small χ behavior of these terms is therefore universal — the same for all wave functions satisfying the WDWE. By contrast, the large χ behavior as well as the remaining terms in (3.4) depend on the specific wave function.
From (3.4) it follows that the semiclassicality condition holds at large \(b \) as assumed, and that the general solution \(\Psi(b, \chi) \) of the WDWE has the asymptotic form

\[
A_+ \exp[-\eta \tilde{I}(b, \chi)/\hbar] + A_- \exp[+\eta \tilde{I}(b, \chi)/\hbar]
\]

for arbitrary constants \(A_{\pm} \).

Any solution of (3.3) with a sufficient number of arbitrary constants will determine a class of solutions to the equations of motion of general form. Specifically, sufficiently general solutions of the Hamilton-Jacobi equation (3.3) imply general first integrals of the Einstein equations. We will show explicitly below in section 5 that the expansion (3.4) encodes the Fefferman-Graham (FG) asymptotic expansion [12] of the most general homogeneous solutions to the Einstein equations with a negative cosmological constant. The universal behavior at small \(\chi \) of the first three terms in (3.4) corresponds precisely to what is referred to in the AdS/CFT literature as the universal counterterms in the asymptotic expansion of the Euclidean AdS action, HHH12.

4 Two real domains

To identify the ensemble of histories predicted by (3.6) we search for domains of asymptotic superspace that correspond to real three-geometries and field configurations. The theory predicts classical evolution in domains where the wave function is a sum of semiclassical terms like (2.2), with \(S \) varying rapidly compared to \(A \). The union of all sets of classical histories predicted in such domains is the ensemble of possible classical histories predicted by the wave function.

There are two domains representing real three geometries corresponding to real values of \(b \) and purely imaginary values \(b = i \hat{b}, \hat{b} \) real.

The specific case of the no-boundary wave function [10] provides strong motivation for considering both domains on an equal footing in the process of classical prediction. This is because the NBWF’s semiclassical approximation involves regular complex saddle points, which provide a very close connection between both domains in the wave function [13]. Specifically we have shown [13] that the semiclassical wave function in one domain can be written as a wave function defined in terms of saddle points associated with the second domain (up to universal surface terms). This implies in particular that the probabilities of the classical, asymptotically dS histories predicted by the NBWF are given by the regularized actions of asymptotically Euclidean AdS domain walls. Moreover this connection between both domains in the NBWF emerges automatically from its holographic formulation [13], where both domains correspond to complex deformations of a single underlying dual field theory.

These results strongly motivate treating both domains on an equal footing in the wave function by extending its configuration space appropriately. This yields a natural generalization of the usual framework for classical prediction in quantum cosmology in which one takes the classical ensemble predicted by any wave function of the universe to consist of the classical histories from both real domains. We now explore the implications of this for the ensemble of asymptotic histories in the simple models considered above.

5 The two domains are represented by metrics of opposite signature so considering both on an equal footing is neutral with respect to the choice of signature convention.
5 A model classical ensemble

To exhibit the histories explicitly we first restrict to the region of superspace where χ is small so the field can be treated perturbatively. The small χ solutions of (3.5) for the first three, universal terms in (3.4) are:

$$k_3 = \frac{1}{3} + \frac{1}{2} \lambda \chi^2, \quad k_2 = 0, \quad k_1 = 1 + \frac{3}{4} \chi^2.$$ \hfill (5.1)

The leading non-universal coefficients are given by

$$k_- = K \chi, \quad k_0 = J$$ \hfill (5.2)

where K and J are complex constants (independent of χ). They are are not determined by the Hamilton-Jacobi equation but depend on the specific wave function. The relative probabilities of the predicted classical histories therefore depend on them [3].

Since k_3 in (5.1) is real no classical histories are predicted for the domain where b is real because \tilde{I} is approximately real and there is no imaginary part that varies rapidly. However, in the domain where $b = i\hat{b}$ the wave function (3.6) will be a sum of potentially semiclassical forms (2.2) with $S = \eta \tilde{S}$, $\tilde{S} = -\Im \tilde{I}$, and the leading order asymptotic behavior

$$\tilde{S}(\hat{b}, \chi) = \frac{\hat{b}^3}{3\ell} + \frac{1}{2\ell} \lambda \chi^2 \hat{b}^3 + \cdots$$ \hfill (5.3)

which varies rapidly for large \hat{b} so that the wave function predicts an ensemble of classical histories.

The Lorentzian histories that comprise the classical ensemble are the integral curves of \tilde{S}. The \tilde{S} above is, in fact the action of a homogeneous and isotropic, asymptotically de Sitter history with $\Lambda = 3/\ell^2$, perturbed by a scalar field moving in a quadratic potential with positive mass $-m^2$.

The ensemble of asymptotic classical histories can be obtained explicitly by solving the Hamilton-Jacobi equations connecting the momenta to the gradients of \tilde{S} and defining the integral curves. For this simple model these equations are

$$\frac{db}{dt} = \frac{1}{\hat{b}} \frac{\partial \tilde{S}}{\partial b}, \quad \frac{d\chi}{dt} = -\frac{1}{\hat{b}^2} \frac{\partial \tilde{S}}{\partial \chi}$$ \hfill (5.4)

Substituting (5.1) and (5.2) in (3.4) we find for the asymptotic scale factor, with $u \equiv \exp(-t/\ell)$,

$$\hat{b}(t) = \frac{\ell}{2u} \left[1 + u^2 - \frac{3}{4\alpha^2} u^{2\lambda_-} + \cdots \right]$$ \hfill (5.5)

and for the asymptotic scalar field\footnote{Replacing λ_- by λ_+ in the first equation of (5.1) also gives a perturbative solution but a numerical integration of the non-linear eq. (3.5a) shows that (5.1) is the generic one.}

$$\chi(t) = \alpha u^{\lambda_-} + \beta u^{\lambda_+} + \cdots$$ \hfill (5.6)

where α is an integration constant of the first order equation for χ in (5.4) and $\beta = -\Im(i\lambda_- K)/(\lambda_+ - \lambda_-)$. Eqs. (5.5) and (5.6) describe an ensemble of asymptotic deSitter spaces perturbed by a homogeneous decaying scalar field [15].

\footnote{When $\lambda_- < 1/2$ there is an additional universal term $(-3\alpha/8) u^{2+\lambda_-}$.}
As ℓ approaches zero the lower bound on values of b for which the asymptotic expansion (3.4) holds become larger and larger. If the cosmological constant vanishes then there can still be classical histories (e.g. [3]) but their existence and character depends on the specific form of the theory and the wave function. If there is no matter then there are no classical histories when $\Lambda = 0$.

6 Slow roll inflation

Beyond the perturbative regime, there is a solution of (3.5) which at large χ behaves as

$$k_3(\chi) \approx \frac{\ell m}{3} \chi, \quad k_2 = 0, \quad k_1 \approx 1/\ell m \chi$$

(6.1)

and at small χ tends to (5.1). This solution for k_3 is shown in figure 1. The leading contribution to the asymptotic action in the large χ regime is then

$$\tilde{S}(\hat{b}, \chi) \sim \frac{m \chi \hat{b}^3}{3} + \cdots$$

(6.2)

which is characteristic of cosmologies undergoing slow roll scalar field inflation [3, 14]. Indeed the leading order solutions of (5.4) derived from (6.2) exhibit the familiar slow roll behavior, $\chi(t) = \chi(0) - mt/3$.

This shows that the presence of a regime of classical slow roll inflation can be deduced from the semiclassical asymptotic form of the wave function representing a quantum state. That could be useful in a holographic study of which quantum states predict slow roll inflation. One expects that only a certain class of quantum states predict inflation, because the linear solution (6.1) for k_3 is rather special. Generic solutions of (3.5a) grow exponentially at large χ and do not give rise to inflationary histories. One example of a quantum state that predicts inflation is the no-boundary wave function [3, 4].

In the next section we discuss how the probabilities of inflationary histories are viewed from an asymptotic perspective.

7 Holographic probabilities

The central objective of quantum cosmology is to compute probabilities for alternative classical histories of the universe. To leading order in \hbar these are given by the asymptotically finite real part of the action (3.4) in a regime where the wave function predicts classical behavior.

The real contributions to (3.4) depend on the boundary conditions implied by a specific theory of the wave function. However the asymptotic structure of solutions of the WDWE discussed above gives rise to a universal complex extension of the asymptotic Fefferman-Graham expansions which includes the Starobinsky expansion [15] of asymptotic dS solutions. Using these expansions we recently showed that, for any wave function, the asymptotic action of a general solution in the dS domain can be written in terms of an asymptotic AdS action and a number of universal ‘surface’ terms that are fully determined by the argument of the wave function [13]. This means that, at the level of the complex solutions specifying the wave

Footnote 8: The leading behavior of k_3 at small χ is universal but the coefficient of the $O(\chi^{3/\lambda_-})$ term in the expansion (5.1) as well as those of terms with higher powers of χ are not universal. The linear solution at large χ discussed here is obtained for specific values of these coefficients only.
Figure 1. A solution of (3.5a) for the leading, universal coefficient function k_3 that specifies the asymptotic wave function. The approximately linear behavior for large χ is characteristic of field driven, slow roll inflation.

function, both domains are closely interconnected. Specifically, the leading order probabilities for the classical, asymptotically de Sitter histories predicted by any wave function can be obtained from the action of Euclidean asymptotically AdS domain walls.\(^9\)

This leads to a natural connection with the Euclidean AdS/CFT correspondence (see also \([13, 16, 18–20]\)). The AdS/CFT duality makes a distinction between the universal contributions to the asymptotic wave function, which grow as a function of the scale factor,\(^10\) and the non-universal terms that provide the asymptotically finite contribution to the action, governing e.g. the relative probabilities of different configurations. The latter is usually referred to as the regularized action \hat{I}^{reg} in the AdS/CFT literature. The duality conjectures this is related to the partition function Z of a dual Euclidean field theory defined on the boundary surface Σ.

In the perturbative solution of the minisuperspace model given above the universal terms are given in (5.1) and the non-universal terms in (5.2). In a regime where the low energy gravity approximation can be trusted the duality then states that, to leading order in \hbar, perturbatively in the field, and at large volume,

$$Z[\tilde{\chi}] = \exp(-\eta(J\tilde{\chi} + K)/\hbar)$$

(7.1)

where J and K are defined in (5.2) and Z is defined by

$$Z[\tilde{\chi}] \equiv \langle \exp \int d^3x \sqrt{\tilde{\gamma}} \tilde{O} \rangle_{\text{QFT}}$$

(7.2)

with O the dual operator that couples to the source $\tilde{\chi} \equiv b^\lambda - \chi$ induced by the bulk scalar. Differentiation of Z with respect to $\tilde{\chi}$ yields $\langle O \rangle$ which provides an alternative way to calculate K in (7.1). The value of K depends on the specific theory of the wave function of the universe or, equivalently, on the dual boundary field theory.

We emphasize that the linear behavior in $\tilde{\chi}$ in (7.1) is a characteristic feature of the perturbative action only. The regularized action \hat{I}^{reg} of non-perturbative solutions, such as the

\(^9\)The scalar profile along the AdS domain walls that enter in this analysis is in general complex as discussed in detail in [13].

\(^10\)In field theory applications of AdS/CFT these are treated as UV divergences and cancelled by counterterms.
inflationary solutions (6.1), has a very different behavior in $\tilde{\chi}$. In general it receives contributions from all terms in the series (3.4) which, when evaluated on solutions, are asymptotically finite and nonzero. In the particular example of the no-boundary wave function it is well known that the real part of the asymptotic action of saddle points in the large $\tilde{\chi}$ regime of the de Sitter domain is approximately of the form $\tilde{I}^{\text{reg}} \sim 1/V(\phi_0)$ [1, 3] which receives contributions from all orders in $\tilde{\chi}$. Here ϕ_0 is the absolute value of the scalar field at the South Pole of the regular saddle point that yields $\tilde{\chi}$ at the asymptotic boundary.\footnote{The South Pole is where the scale factor goes to zero. Preliminary studies [17] indicate that for large $\tilde{\chi}$, one has $\tilde{\chi} \propto \phi_0^2$ with a proportionality constant that depends on the scalar mass.} The probabilities implied by the no-boundary quantum state are discussed in more detail from an asymptotic viewpoint in [1].

Eq. (7.1) shows that the scalar argument of the wave function enters as an external source in the dual field theory that turns on a deformation. In field theory applications of AdS/CFT the value of $\tilde{\chi}$ is usually held fixed. By contrast, in a cosmological context one is interested in the wave function of the universe as a function of χ. In this context the dependence of Z on the value of $\tilde{\chi}$ yields a measure on different configurations of the field on Σ [13].

Hence in cosmology one is led to consider all deformations induced of a given CFT that correspond to real boundary configurations and for which the partition function converges. In the toy model discussed here this means one should include purely real deformations, corresponding to real values of b, as well as deformations for which $\tilde{\chi}$ has the phase $\exp[i\lambda - \pi/2]$. Together these generate the two real domains of asymptotic superspace discussed earlier.

In a dual formulation of the wave function, the difference between both domains thus shows up only in the phase of the scalar deformation of a single dual field theory. Since the phase of $\tilde{\chi}$ in general has an effect on the partition function this means that the asymptotic wave function will be a different function of χ in both domains. In particular there is in general no simple map between both domains. We illustrated this with the example of the no-boundary wave function in [1].

8 Discussion

We have used a natural framework for the prediction of probabilities of classical histories in quantum cosmology to show that accelerated expansion can be a low energy prediction of theories of the wave function of the universe defined in terms of what would classically be a negative cosmological constant. Specifically we have shown that asymptotically AdS wave functions satisfying the constraints of general relativity have a universal semiclassical asymptotic structure for large spatial volumes which implies that the wave function describes both a set of asymptotically Euclidean AdS histories as well as an ensemble of histories which expand, driven by a positive effective cosmological constant. In our framework the AdS and de Sitter domain thus emerge as two real domains in a single quantum theory. This implies that the sharp distinction between positive and negative Λ in classical physics as it is usually formulated disappears in quantum cosmology. Rather the wave function provides a unified arena encompassing both kinds of histories.

The relative probabilities of both sets of histories are given by the asymptotically AdS actions of (possibly complex) Euclidean AdS domain walls. This leads to a natural connection between quantum cosmology and the general framework of Euclidean AdS/CFT, and thus to an expression of the probabilities of different configurations in terms of the partition
function of deformations of a Euclidean field theory defined on the boundary surface Σ. This may prove useful to define the wave function of the universe more precisely beyond the semiclassical approximation and ultimately to get a better handle on the corrections to the leading order in ℏ probabilities.

It is natural to ask how the framework we propose relates to the approach to holographic cosmology developed in [18–21], in which a connection between asymptotic de Sitter space and Euclidean AdS is envisioned as a map from an AdS theory to a de Sitter theory. The starting point for the latter approach is the observation that the classical action of gravity coupled to a cosmological constant and a scalar field changes simply by an overall sign under a simultaneous change of the overall signature of the metric and the sign of the scalar potential V (including the cosmological constant Λ). The classical configuration spaces of both theories can therefore be trivially mapped onto each other.

The WDW equation (3.1) exhibits a quantum version of this symmetry; it is invariant under the same transformation. This means that if Ψ[h, χ] is a solution of the WDWE with scalar potential V then Ψ[−h, χ] is a solution in a theory with potential −V. In fact it has been argued in [21, 22] that under this symmetry transformation the no-boundary wave function [10] maps to Vilenkin’s tunneling wave function [21] (and vice versa). It appears, however, that this relation only holds for real tunneling saddle points where a real Euclidean region is smoothly joined onto a real Lorentzian geometry. General saddle points of the no-boundary wave function in the de Sitter domain are complex in the interior [3, 14], whereas saddle points in the AdS domain are everywhere real [13]. The semiclassical no-boundary and tunneling wave functions in a regime where they are given by genuinely complex saddle points are not related to each other via a simple transformation. It would be very interesting to better understand the difference between both wave functions from a holographic viewpoint.

Acknowledgments

JH and SWH thank Marc Henneaux and the International Solvay Institutes for their hospitality. The work of JH was supported in part by the US NSF grant PHY08-55415. The work of TH was supported in part by the National Science Foundation of Belgium under the FWO Odysseus program.

References

[1] J.B. Hartle, S.W. Hawking and T. Hertog, Accelerated Expansion from Negative Λ, arXiv:1205.3807 [insPIRE].
[2] J.B. Hartle, S.W. Hawking and T. Hertog, Vector Fields in Holographic Cosmology, JHEP 11 (2013) 201 [arXiv:1305.7190] [insPIRE].
[3] J.B. Hartle, S.W. Hawking and T. Hertog, The Classical Universes of the No-Boundary Quantum State, Phys. Rev. D 77 (2008) 123537 [arXiv:0803.1663] [insPIRE].
[4] J.B. Hartle, S.W. Hawking and T. Hertog, No-Boundary Measure of the Universe, Phys. Rev. Lett. 100 (2008) 201301 [arXiv:0711.4630] [insPIRE].
[5] J.J- Halliwell and S.W. Hawking, The Origin of Structure in the Universe, Phys. Rev. D 31 (1985) 1777 [insPIRE].

12This is the reason why the ‘AdS representation’ of the asymptotic de Sitter saddle points discussed above and in more detail in [1, 13] involves complex Euclidean AdS domain walls. This is also needed for consistency with holography.
[6] R. Brout, G. Horwitz and D. Weil, On the Onset of Time and Temperature in Cosmology, *Phys. Lett. B* 192 (1987) 318 [arXiv:0907.5542 [nSPIRE]].

[7] D.S. Salopek and J.R. Bond, Nonlinear evolution of long wavelength metric fluctuations in inflationary models, *Phys. Rev. D* 42 (1990) 3936 [arXiv:0907.5542 [nSPIRE]].

[8] V.G. Lapchinsky, V.A. Rubakov, Canonical quantization of gravity and quantum theory in curved space-time, *Acta Phys. Pol. B* 10 (1979) 1041.

[9] J.B. Hartle, Prediction in Quantum Cosmology, in Gravitation in Astrophysics. Cargése 1986, *NATO ASI Ser.* 156 (1987) 329.

[10] J.B. Hartle and S.W. Hawking, Wave Function of the Universe, *Phys. Rev. D* 28 (1983) 2960 [arXiv:0907.5542 [nSPIRE]].

[11] K. Skenderis, Lecture notes on holographic renormalization, *Class. Quant. Grav.* 19 (2002) 5849 [hep-th/0209067] [nSPIRE].

[12] C. Fefferman, C.R. Graham, Conformal Invariants, in Elie Cartan et les Mathématiques d’aujourd’hui, Astérisque, 1985, pg. 95.

[13] T. Hertog and J.B. Hartle, Holographic No-Boundary Measure, *JHEP* 05 (2012) 095 [arXiv:1111.6090] [nSPIRE].

[14] G. Lyons, Complex solutions for the scalar field model of the universe, *Phys. Rev. D* 46 (1992) 1546 [nSPIRE].

[15] A.A. Starobinsky, Isotropization of arbitrary cosmological expansion given an effective cosmological constant, *JETP Lett.* 37 (1983) 66 [Pis'ma Zh. Eksp. Teor. Fiz. 37 (1983) 55] [nSPIRE].

[16] G.T. Horowitz and J.M. Maldacena, The Black hole final state, *JHEP* 02 (2004) 008 [hep-th/0310281] [nSPIRE].

[17] Y. Vreys, Asymptotic Analysis of the Hartle-Hawking Quantum State of the Universe, MSc thesis, KU Leuven, Lovanio Belgium (2013).

[18] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, *JHEP* 05 (2003) 013 [astro-ph/0210603] [nSPIRE].

[19] P. McFadden and K. Skenderis, Holography for Cosmology, *Phys. Rev. D* 81 (2010) 021301 [arXiv:0907.5542] [nSPIRE].

[20] D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, arXiv:1108.5735 [nSPIRE].

[21] A. Vilenkin, Quantum Cosmology and the Initial State of the Universe, *Phys. Rev. D* 37 (1988) 888 [nSPIRE].

[22] A.T. Mithani and A. Vilenkin, Inflation with negative potentials and the signature reversal symmetry, *JCAP* 04 (2013) 024 [arXiv:1302.0568] [nSPIRE].