Many-body Non-Hermitian Skin Effect At Finite Temperatures

Kui Cao, Qian Du, and Su-Peng Kou
Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China

In this study, we investigate the many-body non-Hermitian skin effect at finite temperatures in the thermodynamic limit. Our findings indicate an interesting correspondence between the non-Hermitian skin effect and a linear electric potential effect in this case. This correspondence leads to a unique distribution in non-Hermitian systems; particles in these many-body non-Hermitian systems do not inhabit the energy eigenstates of their single-body counterparts. As a result, the many-body non-Hermitian skin effect is significantly different from the single-body non-Hermitian skin effect. Specifically, for fermionic systems, the non-Hermitian skin effect disrupts the original phase, leading to a real-space Fermi surface. For bosonic systems, it can direct bosons to condense in corners at a decay rate that surpasses exponential, even at high temperatures. It also triggers a remarkable phase transition, resulting in spontaneous $U(1)$ symmetry breaking. Uniquely, this does not generate a Goldstone mode, presenting a deviation from traditional expectations as per the Goldstone theorem.

I. INTRODUCTION

Non-Hermitian quantum systems, as a special type of open system, have been the focus of extensive research over recent years [1–4]. A certain class of translationally invariant non-Hermitian tight-binding models with non-reciprocal hopping has drawn considerable interest due to the discovery of the non-Hermitian skin effect. This effect underscores a system’s dramatic divergence in physical properties between open and periodic boundary conditions, with the primary feature being the single-body eigenstates exhibit exponential localization at the boundary under open boundary conditions [5–24]. One distinct aspect of the non-Hermitian skin effect is its manifestation in many-body systems, which exhibit a set of properties that significantly diverge from their single-body counterparts [25–34]. This is in stark contrast with the Hermitian scenario, where the attributes of non-interacting many-body systems are typically mirrored by their corresponding single-body systems, driven by the simplification of the many-body system problem to a problem of single-body state filling. The non-Hermitian scenario, however, complicates this relation due to potential influences between different single-body eigenstates brought about by their non-orthogonality during the construction of many-body eigenstate. As a result, the typical correspondence between many-body and single-body systems is disrupted. This disruption is exemplified by the phenomenon of exponential localization of particles near boundaries, which is prominent in single-body non-Hermitian conditions, but is reported to be absent in fermionic many-body systems [25–27, 31].

Existing research primarily approaches the many-body non-Hermitian skin effect through direct computation of many-body eigenstates. These studies inherently focus on the zero-temperature properties of non-Hermitian systems at a small scale. However, it is crucial to recognize that realistic systems inevitably interact with their environment, leading to the unavoidable presence of finite temperatures. Moreover, many-body non-Hermitian systems at finite temperatures may manifest considerably different properties than their zero-temperature counterparts, contrasting with Hermitian situations. In Hermitian systems, under the provision of orthogonality, a minor excitation of a limited number of particles has no influence on the single-body states of the residual unexcited particles. Therefore, variations mostly arise within the slightly excited particles contrasting the ground state, leading to substantial similarities between the ground and excited states. Furthermore, the Boltzmann distribution emphasizes the similarities between finite-temperature and zero-temperature properties by ensuring that the ground state carries a higher weight than the excited state. However, the situation deviates considerably in non-Hermitian systems. In these systems, even minor excitations can influence the unexcited states, thereby magnifying the differences between the ground and excited states’ properties. Moreover, in non-Hermitian systems, states may not necessarily align with the Boltzmann statistics, meaning the state with maximum weight may not always represent the ground state [35]. As such, a separate analysis becomes indispensable for finite-temperature problems. Another noteworthy point is that condensed matter physics primarily investigates physics in the thermodynamic limit. However, existing research has yet to identify suitable methods for analyzing behaviors under such conditions, creating a gap in understanding within this field.

In this paper, we conduct an investigative study into the many-body non-Hermitian skin effect at finite temperatures, using the Hatano-Nelson model as a prototype, and focusing on the thermodynamic limit. To comprehend the behavior of the non-Hermitian system at finite temperatures, we propose a model that simulates the thermalization process of this system. Through our analysis, we find that the density matrix of the system at

* Corresponding author: spkou@bnu.edu.cn
finite temperature could be associated with an effective Hermitian Hamiltonian, which describes a tight-binding model under the influence of a linear electric potential. Our results using the effective Hamiltonian paint a clear picture of the impact of the non-Hermitian skin effect on many-body systems. For many-body fermionic systems, it disrupts the original phase formation and prompts the emergence of a real-space Fermi surface. For many-body bosonic systems, the non-Hermitian skin effect prompts bosons to condense at corners at a rate surpassing exponential decay, even in situations with high temperatures. Additionally, we discern a significant phase transition between the condensed and the normal states within this system, a phenomenon that calls into question the validity of the Goldstone theorem in non-Hermitian systems. This observed transition triggers the spontaneous breaking of $U(1)$ symmetry but without the expected fallout of Goldstone modes.

This paper is organized in the following way. In Section II, we delve into the statistical theory for many-body systems with the skin effect. Section III investigates the characteristics of effective models. Sections IV and V separately address the implications of the skin effect in many-body fermionic and bosonic systems at finite temperatures. We conclude the investigation and our findings in Section VI.

II. QUANTUM STATISTIC THEORY FOR MANY-BODY SYSTEM WITH SKIN EFFECT

In the study of many-body physics at finite temperatures, the particle distribution of the system, namely the Bose-Einstein/Fermi-Dirac distribution, plays a pivotal role as it bridges the system’s single-body and many-body properties. In this section, we use the celebrated Hatano-Nelson model as an example to investigate how non-Hermitian skin effect affects the particle distribution of the system.

A. Model

The Hatano-Nelson model is described by the Hamiltonian

\[\hat{H}_{HN} = J \sum_{i=1}^{L-1} \left(e^{-g} a_i^\dagger a_{i+1} + e^{g} a_i a_{i+1}^\dagger \right), \tag{1} \]

where L denotes the total number of lattice sites, J signifies the hopping parameter, and g introduces non-reciprocity within the hopping terms, signifying the strength of the non-Hermitian skin effect. Here, $a_i^\dagger (a_i)$ encapsulates the creation (annihilation) operator for particles. For bosonic Hatano-Nelson model, it follows the commutation relation $[a_i, a_j^\dagger] = \delta_{ij}$, while for fermionic variant, it abides by the anti-commutation relation $\{a_i, a_j^\dagger\} = \delta_{ij}$. Condensed matter theory customarily emphasizes the thermodynamic limit, represented by $L \to \infty$, and our investigation is explicitly geared towards this limit. Concretely, we explore cases wherein L approaches infinity, all the while holding g as a finite constant. Such many-body Hatano-Nelson model can be achieved as a controlled open quantum system S coupling with a Markov environment E \cite{37, 38}. The Hamiltonian of the sub-system S is $\hat{H}_S = J \cosh(\frac{g}{2T}) \sum_i (a_{i+1}^\dagger a_i + a_i^\dagger a_{i+1})$. The Lindblad operator $L_i^{SE} = \sqrt{2J} \sinh(\frac{g}{2T}) (a_i + \sqrt{-1} a_{i+1})$ (i = 1, 2, ..., $L - 1$) describes the coupling between sub-system S and an environment E. Under full-counting measurement and controlling the number of particles on the sub-systems S, the quantum jumping processes cause by L_i^{SE} are projected out, we get an effective many-body Hatano-Nelson model \hat{H}_{HN}.

We now focus on the many-body 1D Hatano-Nelson model at finite temperatures. To achieve many-body Hatano-Nelson model at finite temperatures, we couple the system with a thermal bath B at temperature $T = \frac{1}{g}$. The Hamiltonian of the entire system, denoted by \hat{H}_{tot}, comprises three components:

\[\hat{H}_{tot} = \hat{H}_{HN} \otimes \hat{I}_B + \hat{I}_S \otimes \hat{H}_B + \hat{H}_{BS}, \tag{2} \]

where \hat{H}_{HN} represents the Hamiltonian of the Hatano-Nelson model, \hat{H}_B corresponds to the Hamiltonian of the thermal bath, and \hat{H}_{BS} denotes the coupling between the system and the thermal bath. \hat{I}_S and \hat{I}_B are the identity operators in the subspaces of the system and the thermal bath, respectively. We set the coupling term as $\hat{H}_{BS} = \sum_i \lambda_i a_i^\dagger a_i \otimes \hat{B}_i$. Here, λ_i is a small real coupling constant and \hat{B}_i is an operator in thermal bath B. We define that the non-Hermitian system has the same temperature as the thermal bath B at the steady state. Conversely, when the system evolves to its steady state, its temperature approaches T.

B. Steady states and their effective Hamiltonian for the Hatano-Nelson model

Under our assumption, by solving the quantum master equation, the many-body Hatano-Nelson model with particle number N, whose steady-state density matrix ρ_T at temperature T, is given by (the details are provided in Appendix A)

\[\rho_T = e^{-\beta \hat{H}_{HN}} \tau_c, \tag{3} \]

where $\tau_c = e^{-g \sum_i (\pm a_i^\dagger a_i)}$. Here, all operators are defined on the subspace with particle number N. This density matrix corresponds to a non-Boltzmann distribution

\[\rho_T = \sum_n W_n e^{-\beta E_n} |\Psi_n\rangle \langle \Psi_n|, \tag{4} \]

where

\[W_n = (\langle \Psi_n | e^{\beta \sum_i (\pm a_i^\dagger a_i)} |\Psi_n\rangle)^{-1} \]
Nelson model is characterized by this thermal Hamiltonian, defined as follows:

$$
\hat{H}_{\text{eff}} = J \sum_{i=1}^{L} (a_i^\dagger a_i + h.c.) + V_{\text{HN}} \sum_{i=1}^{L} \frac{i}{L} \cdot (a_i^\dagger a_i),
$$

with $J_{\text{eff}} = J \frac{g}{2L \sin(g/2L)}$ and $V_{\text{HN}} = gT$. This equation contains two terms. The first term represents the Bloch Hamiltonian of a standard tight-binding model. The second term stands for a linear electric potential derived from the non-Hermitian skin effect (assuming that the particles carry a unit charge), as visualized in Fig. 1.

During the calculations involving the effective model, we invoke the Generalized Brillouin Zone (GBZ) theory [39, 40], proven to be strictly applicable for bound-yet-immense systems. The theory’s implementation to finite-size systems has a potential energy error $V_e \propto g/TL$ near the boundary at the lowest order. This implies that the order of considering the thermodynamic limit and the zero-temperature limit are not interchangeable. The GBZ-induced error vanishes when taking the thermodynamic limit first, but diverges when taking the zero-temperature limit first. This observation secures our preceding conjecture and underlines the distinctive nature of finite-temperature physics from ground-state physics—the former signifies taking the thermodynamic limit first, while the latter denotes taking the zero-temperature limit first. In our ensuing discussion, we consistently adhere to taking the thermodynamic limit first, resulting in $J_{\text{eff}} = J$.

The thermal Hamiltonian proposed provides an intuitive method for characterizing and understanding the many-body non-Hermitian skin effect at finite temperatures. By employing this tool, we are able to probe into the underlying unique behaviors of such non-Hermitian systems, shedding light on the complexities of skin phenomena in such systems in a way easily graspable and insightful.

C. Particle distribution

The quantum statistical physics of non-interacting many-body Hermitian models, denoted by many-body Hamiltonian \hat{H}_T, can be mapped to the problem of state-filling in a single-body Hermitian model given by

$$
\hat{h}_T = J \sum_{i=1}^{L-1} (|i\rangle \langle i + 1| + h.c.) + V_{\text{HN}} \sum_{i=1}^{L} \frac{i}{L} \cdot |i\rangle \langle i|. \tag{8}
$$

Therefore, an effective Bose-Einstein (Fermi-Dirac) distribution is formed in this non-Hermitian system, i.e., when we consider the single-body operator \hat{O}, we have

$$
\rho_T = \text{tr} \hat{\rho}_T = \text{tr} \hat{O} \rho_{\text{eff}},
$$

where ρ_{eff} is the normalized steady-state density matrix, \hat{O} is the first quantization operator corresponding to \hat{O}, and

$$
\rho_{\text{eff}} = \sum_n n(e_n^T) |e_n^T\rangle \langle e_n^T|, \tag{9}
$$

where

$$
 n(e_n^T) = \frac{1}{e^{\beta(e_n^T - \mu)} + 1}.
$$

The eigenstate of \hat{h}_T with eigenvalue e_n^T, denoted as $|e_n^T\rangle$, is referred to as the thermal eigenstate. Correspondingly, e_n^T is referred to as the thermal energy level.
For the chemical potential μ, it adheres to the equation $\sum_n 1/(e^{\beta(x_n^T - \mu)} \pm 1) = N$. In this context, the negative sign refers to bosons, and the positive sign is designated for fermions. This distribution implies the presence of particles within the single-body thermal eigenstate, with the particle count in each state determined by its thermal level. In an effort to underscore the distinction between this distribution and the conventional Bose-Einstein (Fermi-Dirac) distribution, we express this density matrix using the single-body eigenstates of \hat{H}_{HN} and determine

$$\rho_{\text{eff}} = \sum_{mn} A_{mn}^B \langle \psi_m^R | \psi_n^R \rangle,$$

where

$$A_{mn}^B = \sum_k \frac{1}{e^{\beta(x_k^T - \mu)} \pm 1} \langle \psi_m^L | e_k^T \rangle \langle e_k^T | \psi_n^L \rangle.$$

Here, $| \psi_n^R \rangle (| \psi_n^L \rangle)$ is the bi-orthonormal single-body right (left) eigenstate of \hat{H}_{HN}.

The “diagonal term” A_{nn}^B, essentially informs about the average particle number in the non-Hermitian Hamiltonian eigenstate, while the “off-diagonal” term A_{mn}^B (for $m \neq n$), delineates the coherence between different eigenstates. Undoubtedly, this suggests that the particles no longer confine themselves to the eigenstate of the single-body non-Hermitian system. Moreover, there is a significant divergence between the thermal eigenstates and the non-Hermitian eigenstates, implying that for the many-body non-Hermitian system the behavior deviates considerably from its single-body counterpart, as depicted in Fig. 2.

III. NON-HERMITIAN SKIN EFFECT AT FINITE TEMPERATURES

In this section, we investigate the eigenvalues and eigenstates of the single-body thermal Hamiltonian Eq. (8) and examine how the non-Hermitian skin effect and the finite-temperature effect influence the properties of systems.

A. Eigenvalues and eigenstates of single-body thermal Hamiltonian \hat{h}_T

The time-independent Schrödinger equation

$$\hat{h}_T | e_n^T \rangle = e_n^T | e_n^T \rangle$$ \hspace{1cm} (11)

provides the eigenvalues and eigenstates of the single-body thermal Hamiltonian \hat{h}_T (the details are provided in Appendix C).

The Schrödinger equation’s solution concludes that the eigenvalue e_n^T for the \hat{h}_T is the n-th zero of the Lommel function $R_{\lambda, 1-\delta_n} (\gamma)$. Where $\delta_n = \frac{\mu e^T}{g^T}$, $\gamma = \frac{2 \mu}{g^2}$. The eigenstate $| e_n^T \rangle$ benefits from the Wannier states $| i \rangle$ for its expansion. The expansion coefficient, $\langle i | e_n^T \rangle$, is given by:

$$\langle i | e_n^T \rangle = \frac{1}{N}[\mathcal{J}_{1-\delta_n} (\gamma) + k \mathcal{Y}_{1-\delta_n} (\gamma)].$$ \hspace{1cm} (12)

In this equation, $\mathcal{J}_\nu(x)$ signifies the Bessel function, whereas $\mathcal{Y}_\nu(x)$ is the Neumann function. The term k is computed as $\mathcal{J}_{1-\delta_n} (\gamma)/\mathcal{Y}_{1-\delta_n} (\gamma)$. N marks the normalization factor. This analytical formula offers valuable insights into analyzing the non-Hermitian skin effect at finite temperatures.

B. Global phase diagram

In varied regions, different forms of the thermal wave function give rise to distinct system phases. We introduce a dimensionless parameter $\Upsilon = \frac{J}{V_{\text{HN}}} = \frac{J}{g^2}$ to encapsulate these phases [41][44]. Crossover phenomena observed at $\Upsilon \sim 1$ differentiate the global phase diagram into two specific areas, referred to as the strong quantum fluctuation region ($\Upsilon > 1$) and the weak quantum fluctuation region ($\Upsilon < 1$). Within these regions, the eigenvalues and eigenstates associated with the single-body thermal Hamiltonian \hat{h}_T exhibit unique characteristics.

In the strong quantum fluctuation region ($\Upsilon > 1$), the quantum fluctuation leads to the extension of most thermal wave functions. The dominant factor here is the kinetic term, unless the thermal energy levels are near the band edge. As a result, thermal energy levels are approximated by $2J \cos k$, with thermal wave functions labeled by quasi-momentum k. Only particles at the band edge
are significantly affected by the effective electric potential.

As we transition to the weak quantum fluctuation region ($\Upsilon < 1$), all thermal wave functions become localized due to the finite effective electric potential, leading to a non-Hermitian skin effect-inspired Wannier-Stark ladder \cite{43, 40}. The corresponding thermal wave function approximates to $\langle i | e_n^T \rangle \sim J_{1,n}(\gamma)$, the ratio of the local scale of the wave function to the overall system size is approximately Υ. These results are clearly manifesting quantum fluctuations subdued by the non-Hermitian skin effect and finite temperature effect. From the thermal energy perspective, except when near the band edge, thermal energy levels are close to $e_n^T = \frac{\hbar^2}{2m} V_{HN}$.

This detailed examination of distinct regions presents a lucid and comprehensive perspective on the non-Hermitian skin effect at finite temperatures. It cultivates a productive point of departure for exploring ramifications and potential manipulations of these non-Hermitian effects across various contexts.

IV. MANY-BODY SKIN EFFECT IN FINITE-TEMPERATURE FERMIONIC SYSTEMS

In this section, we focus on studying the many-body skin effect in finite-temperature fermionic systems. We examine the 1D fermionic Hatano-Nelson model at half filling ($N_F = L/2$). Utilizing the thermal Hamiltonian \hat{H}_T, we determine the spatial density of fermions as $n^F(i) = \text{tr}(a_i^\dagger a_i \hat{\rho}_T)$. The result ensues as

$$n^F(i) = \sum_n (|\langle i | e_n^T \rangle|^2 \frac{1}{e^{\beta(e_n^T - \mu)} + 1}) ,$$

(13)

as shown in Fig. 3(a). Where $|e_n^T\rangle$ is the eigenstate of \hat{h}_T with eigenvalue e_n^T; the chemical potential μ satisfies $\sum N = 1/(e^{\beta(e_n^T - \mu)} + 1) = N_F$.

In the strong quantum fluctuation region ($\Upsilon > 1$), the system resembles a fermionic tight-binding model under a mild linear potential. Within the low-temperature regime, the emergence of the skin effect is distinctly feeble, largely attenuated by quantum fluctuations. In the domain of the weak quantum fluctuation region ($\Upsilon < 1$), the thermal energy levels is approximately expressed as $e_n^T = \frac{\hbar^2}{2m} V_{HN}$, and the coefficient $\langle i | e_n^T \rangle$ is approximately expressed as δ_{ni}. Here, we observe the emergence of an effective real-space Fermi-Dirac distribution:

$$n^F(x) \sim \frac{1}{e^{g^2\mu - \mu} + 1} ,$$

(14)

where $x = i/L$. This leads to the formation of a real-space Fermi surface at large g. Specifically, at high temperatures, the system’s density matrix switches to represent by the pseudo-thermal Hamiltonian $\hat{H}_T' = \sum_{i=1}^L (\frac{\hbar^2}{2m} a_i^\dagger a_i)$ at pseudo-temperature $T' = \frac{\hbar^2}{g}$, resulting in the emergence of an exact real-space Fermi-Dirac distribution.

We briefly scrutinize the scenario involving a gap, widely accounted for in the domain of condensed matter systems. In the gapped scenario, non-Hermitian skin effect can instigate a discontinuous phase transition. Starting with the Hermitian case, the potential introduced by the non-Hermitian skin effect gradually evacuates the original formed phase, generating a unilateral particle accumulation. A paradigmatic 1D half-filling translationally invariant model serves as a viable representative for these characteristics. We concentrate predominantly on instances where the temperature T is smaller than the gap U. Otherwise, it would make the original phase susceptible to dissolution at elevated temperatures, and lead the system to exhibit similarities with the Hatano-Nelson model.

The strength of the non-Hermitian skin effect inherent to the system is designated by g. For a system limited to nearest-neighbor hopping, and the potential terms can be represented either as local operators or tensor products thereof, the non-Hermitian skin effect behaves like a linear electric potential effect exhibiting potential energy $V = gT$ (see Appendix A for details). To estimate the survival capacity of the original phase amidst the electric potential, we investigate a segment of the original phase of length l. The destruction of a nominal δl length of the original phase at the margins by the electric potential effectuates a thermal energy modification as $\delta E_T \sim (lV/L - U)\delta l$. The length of the surviving original phase can be ascribed through $\delta E_T = 0$, suggesting that with an added finite potential, only an original phase of length $l \sim LU/V \sim LU(gT)^{-1}$ persists, as illustrated in Fig. 3(b). Significantly, such phenomena exert profound influence on topological systems, insinuating that the topology of a system affected by the skin effect is essentially fragile, subject to obliteration by extremely low temperature $T \sim (g)^{-1}U$.
V. MANY-BODY SKIN EFFECT IN FINITE-TEMPERATURE BOSONIC SYSTEMS

In this section, by taking the bosonic Hatano-Nelson model as an example, we investigate the many-body skin effect in finite-temperature bosonic systems. We assume that the total particle number \(N \) is equal to the number of lattice sites, i.e., \(N_B = L \).

A. Spatial distribution

Using the thermal Hamiltonian \(\hat{H}_T \), we calculate the spatial density of bosons as \(n^B(i) \). The result is obtained as

\[
n^B(i) = \sum_n \left((\langle i | e^{\hat{H}_T} | n \rangle)^2 \frac{1}{e^{\beta (e_n - \mu)} - 1} \right),
\]

as shown in Fig. 4. Where \(| e^{\hat{H}_T} | \) is the eigenstate of \(\hat{H}_T \) with eigenvalue \(e_n \). The chemical potential \(\mu \) satisfies

\[
\sum_n 1/(e^{\beta (e_n - \mu)} - 1) = N_B.
\]

In particular, the spatial density of bosons at low temperatures is not approximately described by the spatial density of the ground state \(n^0(x) \sim e^{-g x} \), where \(x = \frac{1}{T} \). Instead, it is approximately described by the spatial density of the thermal “ground state”

\[
n^B_0(i) = \frac{1}{N} [\mathcal{J}_{i-\delta_i}(\gamma) + k \mathcal{Y}_{i-\delta_i}(\gamma)]^2,
\]

i.e., the ground state of \(\hat{H}_T \). When \(g > 0 \), the asymptotic behavior of this function at \(y \to \infty \) is

\[
n^B_0(x) \sim e^{-\frac{1}{g} y^{3/2}} y^{3/2},
\]

where \(y = \frac{x}{T} \), with \(r = \sqrt{\frac{J}{g T}} \). It should be observed that we’ve advanced under the anticipation of the thermodynamic limit, \(L \to \infty \), implying \(r \to 0 \). This suggests that the particles are localized at the boundary and exhibit a particle spatial density distribution decay rate that surpasses exponential decay.

B. Phase transition driven by the skin effect

The many-body skin effect also can bring a special phase transition. The study of condensed matter pays more attention to continuous phase transition. In the theory of continuous phase transition, spontaneous continuous symmetry breaking plays an important role. The traditional continuous spontaneous symmetry breaking is accompanied by the existence of the Goldstone mode (the Goldstone theorem). However, for the system with skin effect, the spontaneous symmetry breaking and the existence of Goldstone mode become separate. We take the bosonic Hatano-Nelson model at finite temperatures as an example. This model has a \(U(1) \) symmetry, i.e., its Hamiltonian invariant under the global gauge transformation \(a_i \to e^{-\sqrt{g} \theta_i} a_i, a_i \to e^{\sqrt{g} \theta_i} a_i \). To characterize the phase transition, we define an order parameter \(\phi_0 = |\text{tr} \ a_0 \tilde{\rho}_T|^2 = N_0/N_B \), where \(a_0 \) is the annihilation operator for the thermal “ground state”, and \(N_0 \) is the number of particles on the thermal “ground state”. When a macroscopic number of particles condense on the thermal “ground state”, i.e., \(N_0 = O(N_B) \), we have \(\phi_0 \neq 0 \), at which the phase transition occurs. On the other hand, the order parameter is zero if the state has \(U(1) \) symmetry due to under the \(U(1) \) gauge transformation, \(\text{tr} \ a_0 \tilde{\rho}_T \) transforms as \(\text{tr} \ a_0 \tilde{\rho}_T \to e^{\sqrt{2} \theta} \text{tr} \ a_0 \tilde{\rho}_T \). Therefore, the system exhibits spontaneous \(U(1) \) symmetry breaking when this phase transition occurs.

The phase transition can be well defined in the thermodynamic limit \([17] \). We estimate the values of critical points for the phase transition. Now, the energy levels become continuous, and the phase transition occurs at

\[
N_B = \int_{e_0^T}^{\infty} \frac{1}{e^{\beta (e^T - e_0^T)} - 1} \rho(e^T),
\]

where \(e_0^T \) is the thermal energy level with the lowest energy, and \(\rho(e^T) \) is the density of states (DOSs) derived from \(\hat{H}_T \). The values of critical point can be obtained via straightforward calculations. Specifically, in the low-temperature limit, we have

\[
ge_c \sim \frac{T}{J}
\]

or \(T_c \sim J g \). In the high-temperature limit, we have

\[
ge_c \sim \ln \frac{T}{J}
\]
FIG. 5. (a) The phase diagram for 1D many-body bosonic Hatano-Nelson model. Region I is the normal phase, while region II has a spontaneous breaking of $U(1)$ symmetry but does not exhibit Goldstone modes. (b) The order parameter ϕ_0 for 1D many-body bosonic Hatano-Nelson model. In the region with $U(1)$ symmetry undergoing spontaneous breaking, the order parameter ϕ_0 is finite.

or $T_c \sim J e^g$ (the details are provided in Appendix D). The $U(1)$ symmetry spontaneous breaking occurs in the region of strong non-Hermitian skin effect strength $g > g_c$ or low temperature $T < T_c$, as seen in Fig. 5. This phase transition is regarded as a unique type of Bose-Einstein condensate (BEC) wherein particles condense onto the ground state of the thermal Hamiltonian. Contrary to expectations, our results show that this BEC appears in the typically forbidden area. It persists even at arbitrarily high temperatures and also breaks the Mermin-Wagner theorem [48, 49]. The emergence of this atypical BEC is predominantly a result of the non-Hermitian skin effect, which uniquely suppresses long-range quantum fluctuations. This suppression significantly diverges this system’s behavior from standard 1D Hermitian bosonic many-body systems that possess translational symmetry. The defining characteristic in these traditional systems is the complete obliteration of BEC due to the quantum fluctuations. It is noted that this phase transition can occur by adjusting g without changing the energy levels. Therefore, the system can spontaneously break the $U(1)$ symmetry without generating a Goldstone mode.

VI. CONCLUSIONS

In this study, we investigate the many-body non-Hermitian skin effect at finite temperatures. The non-Hermitian skin effect manifests significantly, akin to a linear electric potential showcasing a potential energy $V = gT$. Notably, such an equivalence is strictly valid in systems with finite temperatures in the thermodynamic limit. This strongly suggests intriguing interactions amongst finite-temperature effects, size effects, and non-Hermitian skin effects. The exploration of these interactions will be addressed in future undertakings. Remarkably, this equivalence leads to a new distribution in such non-Hermitian systems, deviating from the conventional Bose-Einstein (Fermi-Dirac) distribution. As a result, the particles of many-body non-Hermitian systems no longer inhabit in the energy eigenstates of single-body non-Hermitian Hamiltonians. This unveils a characteristic whereby many-body systems articulate different properties from their single-body counterparts. More specifically, for fermionic systems, the non-Hermitian skin effect gradually disrupts the original phase, eventually giving birth to a real-space Fermi surface. For bosonic systems, the non-Hermitian skin effect suppresses quantum fluctuations within the system, directing bosons to condense in corners with a decay rate that surpasses exponential. Additionally, a unique phase transition takes place between the coherent and the incoherent phases, inducing spontaneous $U(1)$ symmetry breaking that surprisingly does not generate a Goldstone mode.

The methodology demonstrated in this investigation opens up possibilities for extending this framework to a wide array of non-Hermitian systems, including high-dimensional systems and interaction systems. We anticipate further exploration in these domains in future studies.

ACKNOWLEDGMENTS

This work was supported by NSFC Grant Nos. 11974053 and 12174030. We are grateful to Shi-Qi Zhao for helpful discussions.
APPENDIX A: DENSITY MATRIX OF NON-RECIProCAL MODELS AT FINITE TEMPERATURES

To ascertain the steady state of the non-Hermitian system with Hamiltonian \hat{H}_{NH}, we begin by formulating the time evolution equation of the system’s density matrix. Customarily, the temporal evolution of an open quantum system S is depicted by the quantum master equation \[\frac{d}{dt}\rho_{S+B}(t) = -i(\hat{V}_t(t)\rho_{S+B}(t) - \rho_{S+B}(t)\hat{V}_t^\dagger(t)). \]

(A1)

In the above, $\rho_{S+B}(t) = e^{i\hat{H}_{int}\omega t}\rho_{S+B}(t)e^{-i\hat{H}_{int}\omega t}$ and $\hat{V}_t(t) = e^{i\hat{H}_{int}\omega t}\hat{H}_{BS}e^{-i\hat{H}_{int}\omega t}$, where $\hat{V}_t(t)$ is the interaction Hamiltonian in the interaction picture. The coupling Hamiltonian is given by $\hat{H}_{BS} = \sum_a \lambda_a \hat{C}_a \otimes \hat{B}_a$, where \hat{C}_a and \hat{B}_a are the operators in the subspaces of the system and the thermal bath, respectively. Following a derivation similar to that in the Hermitian case, we obtain

\[\frac{d}{dt}\rho_B^L(t) = \sum_{a,b} \sum_\omega \Gamma_{ab}(\omega) (\hat{A}_b(\omega)\rho_B^L(t)\hat{A}_a^\dagger(\omega) - \hat{A}_a(-\omega)\hat{A}_b(\omega)\rho_B^L(t)) + h.c.]. \]

(A2)

Here

\[\hat{A}_a(\omega) = \sum_m |m\rangle_R \langle m|_L \lambda_a \hat{C}_a |m + \omega\rangle_R \langle m + \omega|_L, \]

(A3)

with

\[\Gamma_{ab}(\omega) = \int_0^\infty dt e^{i\omega t} \text{tr}_B (\hat{B}_a(t)\hat{B}_b(0)\rho_B^L) \]

(A4)

is the reservoir correlation function. In the above, $|m\rangle_R$ and $|m\rangle_L$ represent the bi-orthonormal right and left eigenstates of \hat{H}_{NH}, respectively, both associated with eigenvalue E_m. Further, $|m + \omega\rangle_R |m + \omega\rangle_L$ denotes the bi-orthonormal right/left eigenstate characterized by eigenvalue $E_m + \omega$. For simplicity, we have assumed that the energy spectrum of the system is real. ρ_B^L and ρ_B^R are the density matrices of the system and the thermal bath in the interaction picture.

Next, we solve the time evolution equation of the non-Hermitian system to get the steady-state solution. For simplicity, we assume that the system only has nearest-neighbor hopping, i.e., its Hamiltonian can be written as

\[\hat{H}_{NH} = J \sum_{i=1}^{L-1} (t_{R_i} a_{i+1}^\dagger a_i + t_{L_i} a_i^\dagger a_{i+1}) + \hat{U}, \]

(A5)

where t_{R_i}, t_{L_i} is the positive real hopping, \hat{U} is the potential term. We assume it can be expressed as the sum of the direct product of local Hermitian operators (common potential terms, such as real on-site potential, and coulomb interaction, all meet this condition). The number of particles in the system is assumed to be N. The models in the main text are special cases of Eq. (A5). The coupling term is $\hat{H}_{BS} = \sum_i \lambda_i a_i^\dagger \otimes \hat{B}_i$. Here, λ_i is a small real coupling constant and \hat{B}_i is an operator in the bath B. Noticed that $|m\rangle_R / |m\rangle_L$ in Eq. (A2) can be expressed as

\[|m\rangle_R = \hat{S} |m\rangle_0, \]

(A6)

\[|m\rangle_L = (\hat{S}^{-1})^\dagger |m\rangle_0, \]

(A7)

where $\hat{S} = e^{-\frac{i}{\hbar} \sum_n \ln (\frac{\epsilon_n - E_0}{\gamma_n}) a_n^\dagger a_n}$ and $|m\rangle_0$ is the eigenstate of $\hat{H}_0 = \hat{S}^{-1} \hat{H}_{HN} \hat{S} = \sum_{i=1}^{N-1} \sqrt{t_{R_i}t_{L_i}} (a_{i+1}^\dagger a_i + a_i^\dagger a_{i+1}) + \hat{U}$. We define $\sum_{i=1}(\ldots) = 0$. According to $\hat{N} |m\rangle_R / \hat{L} |m\rangle_L$ and $\hat{L} \langle m| \hat{L} = 1$, $|m\rangle_0$ satisfy $\hat{N} |m\rangle_0 = \hat{N} |m\rangle_0$ and $\lambda \langle m| m\rangle_0 = 1$. Substitute Eq. (A6), Eq. (A7) into Eq. (A3), and using Eq. (A2), we get

\[\frac{d}{dt}\rho_B^L(t) = \sum_{a,b} \sum_\omega [\Gamma_{ab}(\omega) (\hat{S}\hat{A}_{0,b}(\omega)\hat{S}^{-1}\rho_B^L(\hat{S}^{-1})^\dagger \hat{A}_{0,a}(\omega)\hat{S}^\dagger - \hat{S}\hat{A}_{0,a}(-\omega)\hat{A}_{0,b}(\omega)\hat{S}^{-1}\rho_B^L(\hat{S}^{-1})^\dagger + h.c.)]. \]

(A8)

where

\[\hat{A}_{0,a}(\omega) = \sum_m |m\rangle_0 \langle m|_0 \lambda_a \hat{n}_a |m + \omega\rangle_0 \langle m + \omega|_0. \]

(A9)

Here $a, b = 1, 2, ..., L$ and $\hat{n}_a = a_a^\dagger a_a$. Multiply both sides of the equal sign of Eq. (A8) by \hat{S}^{-1} to the left and \hat{S}^{-1}^\dagger to the right, we get

\[\frac{d}{dt}\hat{S}^{-1}\rho_B^L(\hat{S}^{-1})^\dagger = \sum_{a,b} \sum_\omega [\Gamma_{ab}(\omega) (\hat{A}_{0,b}(\omega)\hat{S}^{-1}\rho_B^L(\hat{S}^{-1})^\dagger \hat{A}_{0,a}^\dagger(\omega) - \hat{A}_{0,a}(-\omega)\hat{A}_{0,b}(\omega)\hat{S}^{-1}\rho_B^L(\hat{S}^{-1})^\dagger + h.c.)]. \]

(A10)

Now, $\hat{S}^{-1}\rho_B^L(\hat{S}^{-1})^\dagger$ obeys the master equation of the Hermitian system with Hamiltonian \hat{H}_0. In the steady state, the density matrix under the energy representation has only diagonal terms. Using Eq. (A10), the diagonal terms of density matrix defined as $P(n,t) = \langle n|_0 \hat{S}^{-1}\rho_B^L(\hat{S}^{-1})^\dagger |n\rangle_0$ satisfy

\[\frac{d}{dt}P(n,t) = \sum_m [W(n|m)P(m,t) - W(m|n)P(n,t)], \]

(A11)

where

\[W(n|m) = \sum_{a,b} \gamma_{ab}(E_m - E_n) \langle m|_0 \lambda_a \hat{n}_a |n\rangle_0 \langle n|_0 \lambda_b \hat{n}_b |m\rangle_0. \]
with
\[
\gamma_{ab}(\omega) = \int_{-\infty}^{\infty} dt e^{i\omega t} \text{tr}_B \left(\hat{B}^a_b(t) \hat{B}_b(0) \rho_B^I \right) = \int_{-\infty}^{\infty} dt e^{i\omega t} \left\langle \hat{B}^a_b(t) \hat{B}_b(0) \right\rangle
\]

is the real part of $2\Gamma_{ab}$. Using the Kubo-Martin-Schwinger condition \[\left\langle \hat{B}^a_b(t) \hat{B}_b(0) \right\rangle = \left\langle \hat{B}_b(0) \hat{B}^a_b(t + i\frac{\omega}{2}) \right\rangle\], we derive the temperature dependent behavior of γ_{ab}, i.e.,
\[
\gamma_{ab}(-\omega) = e^{-\omega/T} \gamma_{ba}(\omega).
\]

When $\frac{d}{dt} P(n, t) = 0$, Eq. (A10) and the relations Eq. (A13) give $W(n|m)e^{-\beta E_m} = W(m|n)e^{-\beta E_n}$ which lead to
\[
P(n) = \text{const} \times e^{-\beta E_n}
\]
at the steady state. Then we have
\[
\hat{S}^{-1} \rho^T \left(\hat{S}^{-1} \right)^\dagger = \sum_m |m\rangle_0 e^{-\beta E_m} \langle m|_0
\]
or
\[
\rho^T = \sum_m \hat{S} |m\rangle_0 e^{-\beta E_m} \langle m|_0 \hat{S}^\dagger,
\]
where ρ^T is the steady state in the interaction picture, which is also the steady state
\[
\rho_T = \sum_m \hat{S} |m\rangle_0 e^{-\beta E_m} \langle m|_0 \hat{S}^\dagger
\]
in the Schrödinger picture. Therefore, we have
\[
\rho_T = \hat{S} e^{-\beta H_0} \hat{S}^\dagger = e^{-\beta H_{NH}} \mathcal{T}_c,
\]
here $\mathcal{T}_c = e^{\sum_i \left(\frac{1}{\beta} \ln \frac{\langle a_i \rangle_{\rho}}{\langle a_i \rangle_{\rho_0}} \right) \hat{a}_i}$. For translationally invariant models, by defining $g = L \ln \frac{\langle a_i \rangle_{\rho}}{\langle a_i \rangle_{\rho_0}}$, we can achieve $\mathcal{T}_c = e^{-g \sum_i \left(\frac{1}{\beta} \ln \frac{\langle a_i \rangle_{\rho}}{\langle a_i \rangle_{\rho_0}} \right) \hat{a}_i}$, which is equivalent to $\mathcal{T}_c = e^{-g \sum_i \hat{a}_i}$. Based on the definition $e^{-\beta H_T} = \rho_T$, and utilizing the Baker-Campbell-Hausdorff (BCH) formula, we can derive the thermal Hamiltonian \hat{H}_T as
\[
\hat{H}_T = \hat{H}_0 + V \sum_{i=1}^{L} \frac{i}{L} \cdot a_i^\dagger a_i + ..., \quad (A19)
\]
with $V = gT$. In the thermodynamic limit, contributions from higher-order terms tend to zero. Hence, in such a limit and at finite temperatures, it follows that the many-body skin effect becomes equivalent to a linear electric potential effect.

APPENDIX B: THERMAL HAMILTONIAN FOR HATANO-NELSON MODEL

To calculate the thermal Hamiltonian for the Hatano-Nelson model, we first rewrite the density matrix as
\[
\rho_T = e^{-\beta H_W} \mathcal{T}_c = e^{\hat{A}^\dagger \hat{B}^\dagger e^\hat{A}^\dagger \hat{B}^\dagger} e^{\hat{A}^\dagger \hat{B}^\dagger e^\hat{A}^\dagger \hat{B}^\dagger},
\]
where
\[
\hat{A} = -\frac{g}{2L} \sum_{i=1}^{L} (i a_i^\dagger a_i), \quad \hat{B} = -\beta J \sum_{i=1}^{L-1} (a_i^\dagger a_{i+1}).
\]
We have
\[
[\hat{A}, \hat{B}] = -\frac{g}{2L} \hat{B}, \quad [\hat{A}, \hat{B}^\dagger] = -\frac{g}{2L} \hat{B}^\dagger.
\]
In the following parts, we set $-\frac{g}{2L} = a$. In order to get a simple analytic result, we use the GBZ theory. Now, we have
\[
\hat{B} = -\beta J e^{-\sqrt{-i\hbar} \hat{n}_k}, \quad \hat{B}^\dagger = -\beta J e^{-\sqrt{-i\hbar} \hat{n}_k},
\]
where k is quasi-momentum and \hat{n}_k is the number operator for the state with quasi-momentum k. In particular, we have $[\hat{B}, \hat{B}^\dagger] = 0$. As a result, the density matrix ρ_T is transformed into
\[
\rho_T = e^{\hat{A}^\dagger \hat{B}^\dagger e^\hat{A}^\dagger \hat{B}^\dagger} e^{\hat{A}^\dagger \hat{B}^\dagger e^\hat{A}^\dagger \hat{B}^\dagger} e^{\hat{A}^\dagger \hat{B}^\dagger e^\hat{A}^\dagger \hat{B}^\dagger},
\]
Next, using the formula $e^{\hat{C} + \hat{D}} = e^{\hat{C} e^{\hat{f}(c) \hat{D}}}$, where $f(c) = c/(1-e^{-c})$ with \hat{C}, \hat{D} satisfy $[\hat{C}, \hat{D}] = c \hat{D}$, we can get
\[
e^{\hat{C} e^{\hat{f}(c) \hat{D}}}, \quad (B6)
\]
where $g(c) = f(c)^{-1}$, Here, we have used $[\hat{C}, (\xi \hat{D})] = c(\xi \hat{D})$, where ξ is an arbitrary constant. As a result, we have
\[
e^{\hat{A}^\dagger \hat{B}^\dagger} e^{\hat{A}^\dagger g(c) \hat{B}^\dagger}, \quad (B7)
\]
and
\[
e^{\hat{B}^\dagger e^{\hat{A}^\dagger g(a) \hat{B}^\dagger}}, \quad (B8)
\]
Therefore, we transform the density matrix
\[
\rho_T = e^{\hat{A}^\dagger \hat{B}^\dagger e^{\hat{A}^\dagger g(a) \hat{B}^\dagger}}, \quad (B9)
\]
to
\[
\rho_T = e^{\hat{A}^\dagger g(a) \hat{B}^\dagger \hat{A}^\dagger g(a) \hat{B}^\dagger}, \quad (B10)
\]
Noticing that if we start with another expression of ρ_T:
\[
\rho_T = e^{\hat{A}^\dagger \hat{B}^\dagger} e^{\hat{A}}, \quad (B11)
\]
we have
\[
\rho_T = e^{\hat{A}^\dagger g(-a) \hat{B}^\dagger} e^{\hat{A}^\dagger g(-a) \hat{B}^\dagger}, \quad (B12)
\]
Finally, by using BCH formula on Eq. (B10) and Eq. (B12), and compare the two results, we find that

\[
\rho_T = e^{2\hat{A} + g(-a)(\hat{B} + \hat{B}^\dagger)} + g(-a) e^{\hat{A}} \left(\frac{g(a)}{g(a) - g(-a)} \right) (\hat{B} + \hat{B}^\dagger),
\]

i.e., the density matrix becomes

\[
\rho_T = \exp(-\beta \sum_i J_{\text{eff}}(a_i^\dagger a_i + h.c.) - g \sum_i \left(\frac{i}{L} \cdot a_i^\dagger a_i \right)) \tag{B13}
\]

where

\[
J_{\text{eff}} = \frac{g(a)g(-a)}{g(a) - g(-a)} = \frac{g}{2L \sinh(g/2L)} \tag{B14}
\]

Therefore, the analytical formula of thermal Hamiltonian in the thermodynamic limit is obtained as

\[
\hat{H}_T = -\frac{1}{\beta} \ln \rho_T = J_{\text{eff}} \sum_i (a_i^\dagger a_i + h.c.) + V_{HN} \sum_i \left(\frac{i}{L} \cdot a_i^\dagger a_i \right),
\]

with \(J_{\text{eff}} = \frac{g}{2L \sinh(g/2L)} \) and \(V_{HN} = gT \).

APPENDIX C: SOLVING FOR EIGENVALUES AND EIGENSTATES OF SINGLE-BODY THERMAL HAMILTONIAN \(\hat{h}_T \)

Expand the single-body thermal Hamiltonian and the eigenstate with bases \(|i\rangle \), we can get a differential equation

\[
J[X \psi_n(i-1) + \psi_n(i+1)] = (e^{\epsilon_n/\beta} - i \epsilon_{\text{HN}}) \psi_n(i), \quad i \in \mathbb{Z} \tag{C17}
\]

with the open boundary condition

\[
\psi_n(0) = \psi_n(L + 1) = 0. \tag{C18}
\]

Here, \(\psi_n(i) \equiv \langle i | e^{\epsilon_n/\beta} \rangle \) is the expansion coefficient of \(|e^{\epsilon_n/\beta}\rangle \), \(\epsilon_{\text{HN}} = V_{HN}/L \). The solution of the Bessel equation satisfies the recurrence relation

\[
\mathcal{Z}_{\nu+1}(x) + \mathcal{Z}_{\nu-1}(x) = 2\nu x \mathcal{Z}_\nu(x). \tag{C19}
\]

As a result, we have

\[
\psi_n(i) = A J_{\nu - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) + B Y_{\nu - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) = 0, \tag{C20}
\]

and

\[
A J_{\nu + 1 - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) + B Y_{\nu + 1 - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) = 0. \tag{C22}
\]

Regard the above equations as homogeneous linear equations about \(A \) and \(B \), the conditions for the existence of nonzero solutions for energy levels is

\[
\begin{vmatrix}
J_{\nu - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) & Y_{\nu - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) \\
J_{\nu + 1 - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) & Y_{\nu + 1 - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right)
\end{vmatrix} = 0, \tag{C23}
\]

i.e.,

\[
J_{\nu - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) Y_{\nu + 1 - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) - Y_{\nu - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) J_{\nu + 1 - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) = 0. \tag{C24}
\]

Using the Lommel polynomial,

\[
\mathcal{R}_{N,\nu}(x) = \frac{1}{2} \pi x \left[Y_{N+\nu}(x) Y_{\nu-1}(x) - J_{N+\nu}(x) J_{\nu-1}(x) \right], \tag{C25}
\]

the energy levels \(e_n^T \) are obtained by solving the following equation

\[
\mathcal{R}_{L,1 - \epsilon_n/\beta} \left(\frac{2J}{\epsilon_{\text{HN}}} \right) = 0, \tag{C26}
\]

or

\[
\mathcal{R}_{L,1 - \delta_n}(\gamma) = 0. \tag{C27}
\]

where \(\delta_n = \frac{\epsilon_n}{\epsilon_{\text{HN}}} = \frac{\nu}{2J}, \gamma = \frac{2J}{\epsilon_{\text{HN}}} = \frac{2J}{\epsilon_{\text{HN}}} \). Substitute the solved energy level \(e_n^T \) into Eq. (C21), we have

\[
B/A = J_{-\delta_n}(\gamma)/Y_{-\delta_n}(\gamma). \tag{C28}
\]

Then the corresponding wave function \(\psi_n(i) \) is obtained as

\[
\psi_n(i) = \frac{1}{\sqrt{N}} \left[J_{-\delta_n}(\gamma) + k Y_{-\delta_n}(\gamma) \right], \tag{C29}
\]

where

\[
k = B/A = J_{-\delta_n}(\gamma)/Y_{-\delta_n}(\gamma). \tag{C30}
\]
In the thermodynamic limit, the DOSs of the thermal energy spectrum of \hat{h}_T in some limited cases in this subsection [41][44]. We have set the ground state energy to zero. To characterize the effective model, we have introduced a dimensionless parameter: $\Upsilon = \frac{1}{\eta T}$. In the strong quantum fluctuation limit $\Upsilon \gg 1$, the energy levels are obtained as

$$e_n^T = \left\{ \begin{array}{ll} \frac{2J(1 - \cos \frac{2\pi n}{L})}{JL/V_H} & n \in \mathbb{N}_+, e^T \gg V_H \\ V_H \pi \frac{n}{L} & n \in \mathbb{N}_+, e^T \ll V_H, \end{array} \right.$$

(D1)

In the weak quantum fluctuation limit $\Upsilon \ll 1$, the energy levels are obtained as

$$e_n^T = \left\{ \begin{array}{ll} \frac{V_H \pi n}{JL/V_H} & n \in \mathbb{N}_+, e^T \gg J \\ J(\eta T/V_H)^{\frac{1}{2}} \frac{3\pi(n+\frac{1}{2})}{2} & n \in \mathbb{N}_+, e^T \ll J. \end{array} \right.$$

(D2)

The DOSs is defined as

$$\rho(e^T) = \frac{dn}{de^T}. \tag{D3}$$

In the thermodynamic limit, the DOSs of the thermal Hamiltonian \hat{h}_T is obtained:

- In the strong quantum fluctuation limit, we have
 $$\rho(e^T) = \left\{ \begin{array}{ll} \frac{1}{\pi \sqrt{JL/V_H}} \frac{1}{\sqrt{e^T}} & e^T \ll V_H \\ \frac{1}{2\pi \sqrt{J}} (e^T)^{-\frac{3}{2}} & e^T \gg V_H. \end{array} \right.$$

(D4)

- In the weak quantum fluctuation limit, we have
 $$\rho(e^T) = \left\{ \begin{array}{ll} \frac{1}{\pi \sqrt{JL/V_H}} \frac{1}{\sqrt{e^T}} & e^T \ll J \\ V_H \sqrt{\frac{J}{V_H}} & e^T \gg J. \end{array} \right.$$

(D5)

A. Density of states

We summarize the approximate expression of the energy spectrum of the critical points for bosonic Hatano-Nelson model.

- Let’s estimate the critical point of the phase transitions between the BEC and the normal state in the low-temperature limit. The phase transition occurs at $N_B = \int_0^\infty \frac{1}{e^T - e_{0}^T} \rho(e^T) \, de^T$, where N_B is the number of particles, and we set $N_B = L$. e_0^T is the minimum eigenvalue of thermal Hamiltonian \hat{h}_T, and the DOSs $\rho(e^T)$ is approximate to (it turns out that the critical point in the low-temperature limit occurs in the strong quantum fluctuation limit. If we use the DOSs of the weak quantum fluctuation limit to calculate, we will get inconsistent results).

$$\rho(e^T) = \left\{ \begin{array}{ll} \frac{L}{\pi \sqrt{JL/V_H}} \frac{1}{\sqrt{e^T}} & e^T \ll V_H \\ \frac{L}{2\pi \sqrt{J}} (e^T)^{-\frac{3}{2}} & e^T \gg V_H. \end{array} \right.$$

(D6)

where Λ^1_1 is a cutoff and can be written as $\alpha^1_1 g J$, α^1_1 is a real constant of the order of magnitude around 1.

From the fact of $N_B/L = \frac{1}{\pi} \int_0^{\Lambda^1_1} \frac{1}{\sqrt{JL/V_H}} \, de^T \frac{\sqrt{e^T}}{e^T - 1} + \frac{1}{\pi} \int_{\Lambda^1_1}^{\infty} \frac{1}{2J} \, de^T \frac{1}{e^{\beta e^T} - 1},$

(D7)

we have

$$N_B/L = \frac{2}{\pi} \left(\sqrt{\alpha^1_1} + \sqrt{\frac{1}{\alpha^1_1}} \right) \sqrt{\frac{J}{g}}.$$

(D8)

As a result, the critical point of the phase transition is $T_c \sim Jg$.

C. Results in the high-temperature limit

It turns out that the critical point in the high-temperature limit occurs in the weak quantum fluctuation limit. By using the approximate of the DOSs,

$$\rho(e^T) = \left\{ \begin{array}{ll} \frac{L}{\pi \sqrt{JL/V_H}} \frac{1}{\sqrt{e^T}} & e^T \ll \Lambda^1_1 \\ \frac{L}{\pi \sqrt{JL/V_H}} \frac{1}{\sqrt{e^T}} & \Lambda^1_1 < e^T \gg V_H \end{array} \right.$$

(D9)

(A_{ht} is a cutoff and can be written as $\alpha^1_1 J$, α^1_1 is a real constant of the order of magnitude around 1), we have

$$N_B/L = \frac{1}{\pi} \int_0^{\Lambda^1_1} \frac{1}{\sqrt{JL/V_H}} \, de^T \frac{\sqrt{e^T}}{e^T - 1} + \int_{\Lambda^1_1}^{\infty} \frac{1}{2J} \, de^T \frac{1}{e^{\beta e^T} - 1}.$$

(D10)

We expect that in the high-temperature limit, g may be large, and the first term can be ignored. Integral the second term, we get

$$N_B/L = \frac{1}{g} \ln \frac{1 - e^{-g}}{1 - e^{-\alpha^1_1 J/T_c}} = 1$$

(D11)

that gives

$$g = \ln \frac{1}{2(1 - e^{-\alpha^1_1 J/T_c})} \left[1 + \sqrt{1 - 4(1 - e^{-\alpha^1_1 J/T_c})} \right] \sim \ln \frac{T_c}{J} + O(1)$$

(D12)

or

$$T_c \sim Je^g.$$

(D13)
