CacheDiff: Fast Random Sampling

Dai Bui

December 3, 2015

Abstract

We present a sampling method called, CacheDiff, that has both time and space complexity of $O(k)$ to randomly select k items from a pool of N items, in which N is known.

1 Introduction

In this paper, we study the following problem:

Problem 1 Select k items from a pool of given N items uniformly.

This problem has been studied extensively in [6, 4, 2, 5, 7, 1]. The applications of this problem span from security to big data. However, the approaches in [6, 4, 2] have time complexity of $O(N)$, which is not very efficient to use to sample in big data when N is often very big or to generate random codes whose probability to be guessed is extremely small. In [7], Vitter presented an acceptance-rejection method to sequentially select k items from a pool of given N items uniformly with complexity of approximately $O(k)$ when k is very small compared to N. The experiments in [7] shows that when $k \geq 0.15N$, the running time of the acceptance-rejection method is worse than the reservoir sampling in [6]. In particular, the acceptance-rejection method only works with known N.

Random sampling algorithms are useful in several areas:

- Big data: Instead of processing all data items, we can process only process a subset of the items to obtain approximate results. The subset of the items can be selected by randomly sample k items from all the data items.

- Election polling: To estimate the approximation approval rate of election candidates, instead of conducting a full survey, we can randomly select people to obtain their opinions on candidates.

- Online tickets: Each user when buying an online ticket will be generated a code that is very difficult to predict by hackers. To avoid the code duplication for different tickets, the codes are generated in batches by selecting randomly k integers (each selected integer is a code) from the integers between 0 and N. To make the codes very difficult to predict, then k need to be very small compared to N.

It is rather straightforward to see that Problem 1 can be solved using a random permutation (shuffling) algorithm.
Algorithm 1 A Simple Random Sampling

function randomSampling(a, N, k)
 for i = N - 1 to N - k do
 j = random(0, i)
 #exchange a[i] and a[j]
 t = a[i]
 a[i] = a[j]
 a[j] = t
 return a[(N - k)..(N - 1)]

Algorithm 2 Initial Random Index Sampling

function randomIndexSampling(N, k)
 index = vector(N)#allocate index array
 for i = 0 to N - 1 do
 index[i] = i #initialize index array
 for i = N - 1 to N - k do
 j = random(0, i)
 #exchange index[i] and index[j]
 t = index[i]
 index[i] = index[j]
 index[j] = t
 return index[(N - k)..(N - 1)]

Algorithm 3 CacheDiff Random Index Selection

function cacheDiffRandomIndexSampling(N, k)
 me = hash_table()
 output = vector(k)
 for i = N - 1 to N - k do
 j = random(0, i)
 #exchange index[i] and index[j]
 if me.has_key(j) then
 index[j] = me[j]
 else
 index[j] = j
 if me.has_key(i) then
 index[i] = me[i]
 else
 index[i] = i
 me[i] = index[j]
 me[j] = index[i]
 output.push_back(index[j])
 return output

Algorithm 1 above requires time and space complexity of $O(N)$, which can be prohibitive in big data or highly secure random code generators. However, note that Problem 1 is equivalent to the following problem:

Problem 2 Select k unique integers, e.g., indices of the items, from the integers between 0 and $N - 1$ uniformly.

Value | 0 | 1 | 2 | N-1 | 4 | p-1 | N-2 | p+1 | p | 3
Index | 0 | 1 | 2 | 3 | 4 | p-1 | p | p+1 | N-2 | N-1

Hash table
- $me[3] = N-1$
- $me[p] = N-2$
- $me[N-2] = p$
- $me[N-1] = 3$

Figure 1: CacheDiff Technique to Selectively Store a Small Number of Modified Entries in a Large Array

Algorithm 2 solves Problem 2. Note that Algorithm 2 is similar to Algorithm 1. Algorithm 2 still requires $O(N)$ time and space. However, note that when k is very small compared to N,
$k \ll N$, $\text{index}[i] = i$ for most of i. Because the array of integers from 0 to $(N-1)$ can be stored very efficiently, as a result, to store the index array, we only need to cache the value in the index array that $\text{index}[i] \neq i$. We can implement this caching using a hash table. As a result, we can improve the time and space complexity of Algorithm 2 using Algorithm 3.

2 CacheDiff Random Sampling

Algorithm 3 improves from Algorithm 2 in both time and space complexity by using a hash table to store the difference between the output array and the simple array of integers from 0 to $N-1$. Because we only select k items, as a result, the space complexity of the hash table is $O(k)$. Then it is easy to see that Algorithm 3 runs in average time complexity of $O(k)$ and requires $O(k)$ space.

Figure 1 illustrates the CacheDiff technique. In the first iteration, 3 is selected so we swap 3 and $N-1$. The entries at 3 and $N-1$ now become different from the indices so the hash table caches the values at those entries. Similarly for the second iteration when p is selected.

Theorem 1 Each index from 0 to $N-1$ has the same probability of $\frac{k}{N}$ to be selected by Algorithm 3.

Proof: First, we prove that the probability that an index is not selected after n iterations of the for loop at line 1 is $\frac{N-n}{N}$. We will prove it using induction. For $n = 1$, then $i = N - 1$, as a result, the probability that the index is selected is $\frac{1}{N}$. Suppose that our hypothesis holds for $n = m$, we will prove that it holds for $n = m + 1$. At iteration $n = m + 1$, $i = N - m - 1$. Then the probability that the index is selected due to the random selection at line 2 is $\frac{1}{N - m}$. Then the probability that the index is not selected at iteration $n = m + 1$ is $1 - \frac{1}{N - m} = \frac{N - (m+1)}{N - m}$. As a result, the probability that the index is not selected after $n = m + 1$ iterations is $\frac{N - m}{N} \times \frac{N - (m+1)}{N - m} = \frac{N - (m+1)}{N}$, which is what we want to prove.

So after k iterations, the probability that one index is not selected is $\frac{N-k}{N}$, then the probability that the index is selected in one of the k iteration is $1 - \frac{N-k}{N} = \frac{k}{N}$.

3 Conclusions

In this paper, we demonstrated the use of a hash table to store a small number of modified entries within a predictable sequence, in the words of information theory [3], the sequence has a small entropy. This method lead to a simple algorithm that has lower complexity than [6 4 2 5 1] or easier to understand and implement than [7].

References

[1] J. H. Ahrens and U. Dieter. Sequential random sampling. ACM Trans. Math. Softw., 11(2):157–169, June 1985.

[2] M. T. Chao. A general purpose unequal probability sampling plan. Biometrika, 69(3):pp. 653–656, 1982.

[3] Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing)*. Wiley-Interscience, 2006.
[4] Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a reservoir. *Inf. Process. Lett.*, 97(5):181–185, March 2006.

[5] Xiangrui Meng. Scalable simple random sampling and stratified sampling. In Sanjoy Dasgupta and David Mcallester, editors, *Proceedings of the 30th International Conference on Machine Learning (ICML-13)*, volume 28, pages 531–539. JMLR Workshop and Conference Proceedings, May 2013.

[6] Jeffrey S. Vitter. Random sampling with a reservoir. *ACM Transactions on Mathematical Software (TOMS)*, 11(1):37–57, March 1985.

[7] Jeffrey Scott Vitter. Faster methods for random sampling. *Commun. ACM*, 27(7):703–718, July 1984.