Identification and Analysis of Dysfunctional Genes and Pathways in CD8⁺ T Cells of Non-Small Cell Lung Cancer Based on RNA Sequencing

Xuefang Tao¹, Xiaotang Wu², Tao Huang*³ and Deguang Mu*⁴

¹ Affiliated Hospital of Shaoxing University, Shaoxing, China, ² Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China, ³ Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China, ⁴ Department of Respiratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China

Lung cancer, the most common of malignant tumors, is typically of the non-small cell (NSCLC) type. T-cell-based immunotherapies are a promising and powerful approach to treating NSCLCs. To characterize the CD8⁺ T cells of non-small cell lung cancer, we re-analyzed the published RNA-Seq gene expression profiles of 36 CD8⁺ T cell isolated from tumor (TIL) samples and 32 adjacent uninvolved lung (NTIL) samples. With an advanced Monte Carlo method of feature selection, we identified the CD8⁺ TIL specific expression patterns. These patterns revealed the key dysfunctional genes and pathways in CD8⁺ TIL and shed light on the molecular mechanisms of immunity and use of immunotherapy.

Keywords: gene, CD8⁺ T cell, non-small cell lung cancer, RNA sequencing, feature selection, dysfunctional pathways

INTRODUCTION

Lung cancer, the most common of malignant tumors, is typically (~80%) of the non-small cell (NSCLC) type (Zhan et al., 2017). Current therapies for NSCLC include surgery followed by adjuvant radiotherapy, chemoradiotherapy, and molecule-targeted therapy; these methods have produced excellent results (Antonicelli et al., 2013; Martinez et al., 2014; Nascimento et al., 2015). However, most patients with NSCLC are in the advanced or inoperable stage with limited treatment options, and the 5-year survival rate is still less than 20% (Siegel et al., 2012; van der Drift et al., 2012). Thus, innovative therapeutic approaches to achieve long-term disease control without obvious adverse reactions are needed.

Tumor-infiltrating lymphocytes are considered to play a critical role in the immune response to many human solid cancers. Most CD8⁺ T cells are cytotoxic T lymphocytes in the case of tumor-infiltrating lymphocytes (Farhood et al., 2019). In the immune response to cancer, these tumor-infiltrating CD8⁺ T cells have the potential to recognize specific antigens that are presented by the MHC class I receptor on cancer cells and target them for destruction. Studies have shown that immune infiltration by CD8⁺ cytotoxic T cells is significantly correlated with improved clinical outcome in non-small cell lung cancer (NSCLC) (Johnson et al., 2000; Welsh et al., 2005; Al-Shibli et al., 2008; Kawai et al., 2008). High density of tumor-infiltrating lymphocytes usually signified strong prognostic value (Hiraoka et al., 2006; Al-Shibli et al., 2008; Kawai et al., 2008; Schalper et al., 2015).
Currently, T-cell-based immunotherapies are a promising and innovative approach toward treating NSCLC. The development of anticancer drugs targeting T cells to enhance the immune response has shown great clinical benefit in NSCLC (Garon et al., 2015; Gettinger et al., 2015; Jia et al., 2015). Programmed death factor-1 (PD-1) expressed in tumor tissue plays a key role in downregulating T-cell activation and promoting tumor immune escape by binding to its ligand PD-L1, which is expressed on the surface of tumor cells (Pardoll, 2012; Dermani et al., 2019). Nivolumab, a PD-1 immune checkpoint inhibitor antibody, was recently approved by the United States Food and Drug Administration for treatment of patients with metastatic squamous NSCLC (Morgensztern and Herbst, 2016). It disrupts PD-1-mediated signaling and is linked to an anticancer immune response. Early clinical trials have indicated that PD-L1 expression on tumor-infiltrating lymphocytes and tumor cells may increase the response to PD-1-directed therapies in metastatic NSCLC (Herbst et al., 2014, 2016; Ramalingam et al., 2016). Therefore, tumor-infiltrating lymphocytes and the expression of PD-L1 are being considered as biomarkers capable of screening NSCLC patients most likely to respond to checkpoint antibody therapy (Johnson et al., 2014).

To identify the markers for CD8+ T cells in lung cancer, we compared the published RNA-Seq gene expression profiles of 36 CD8+ T cell isolated from tumor (TIL) samples and 32 adjacent uninvolved lung (NTIL) samples. With a Monte Carlo feature selection method, we identified the CD8+ TIL-specific expression patterns, which can accurately predict such cells. The original study of this published dataset identified 1,403 differentially expressed genes using DE-Seq with false discovery rate (FDR) correction greater than 1.5 and adjusted value of p < 0.05 (Ganesan et al., 2017). This number of genes is too numerous for use in a biomarker analysis along with the low expected utility of the set of statistically significant genes (Simon, 2008). Instead, we used a Monte Carlo feature selection method, which assembled a series of decision trees for classification of genes by importance (Draminski et al., 2018) to extract the CD8+ T-cell-specific gene expression patterns. The Monte Carlo feature selection method is powerful in discriminating features in a data set and has been widely used (Chen et al., 2018a, 2020; Chen L. et al., 2019; Chen X. et al., 2019; Li et al., 2019; Pan et al., 2019).

The Monte Carlo Feature Selection Algorithm Works as Follows
Let us use d to denote the number of features, i.e., 23,366 genes in this study. To explain the feature selection algorithm, we used features instead of the expression level of genes since feature was a broader concept. The expression levels of genes can be features, but features can be any numerical vector.

First, m features (m ≤ d) are randomly selected for s times;
Then, t trees for each of the s subsets are constructed;
Last, s · t classification trees will be grouped to calculate a feature g’s relative importance (RI).

To be more specific, RI of feature g is based on how many times feature g is selected by the s · t trees and how much feature g contributes to the classification of the s · t trees. The equation of RI is

\[
R_I = \sum_{\tau=1}^{s} \left(w_{\text{Acc}} \sum_{n_{g}(\tau)} \frac{\text{IG}(n_{g}(\tau))}{\text{no. in } n_{g}(\tau)} \right)^v
\]

(1)

in which wAcc is the weighted classification accuracy of decision tree \(\tau \), IG(n_g(\tau)) is the information gain of node n_g(\tau), which is a decision rule of feature g, (no. in n_g(\tau)) is the number of samples under node n_g(\tau), (no. in \(\tau \)) is the number of samples in decision tree \(\tau \), and u and v are additional tunable parameters, which adjust the influence of wAcc and (no. in n_g(\tau)) in (no. in \(\tau \)), respectively (set to 1 by default).

The Monte Carlo feature selection method is a complex algorithm when the dataset is large. Therefore, a software called dMLab (Draminski et al., 2008), which can be downloaded from http://www.ipipan.eu/staff/m.draminski/mcfs.html was used to apply the Monte Carlo feature selection method.

After the RI values for all 23,366 genes were calculated, all these gene features were ranked as
\[
F = [f_1, f_2, \ldots, f_N]
\]

(2)
in which \(N \) is the total number of gene features, i.e., 23,366 in this study.

The gene features with smaller indices have greater RI value. In other words, the genes are sorted decreasingly. Since all the genes were ranked by importance, the top 500 genes are sufficient for identifying a potential biomarker for practical use. This set of genes was analyzed in the next step.

The Support Vector Machine Classifier for CD8\(^+\) T Cells

Although all gene features may be ranked by their RI values (Monte Carlo feature selection), it was difficult to discern how many top features to select as optimal CD8\(^+\) T cell biomarkers.

To determine the number of features required for accurate classifier, we adopted an incremental feature selection (IFS) method (Wang S. et al., 2017; Zhang Y. H. et al., 2017; Chen et al., 2018b,c; Li et al., 2018a). First, 500 different feature sets \(F_1, F_2 \cdots F_{500} \) were constructed. In these feature sets, feature set \(F_i = [f_1, f_2 \cdots f_i] \) included the top \(i \) features of \(f \) in Eq. (2). As explained above, features with a smaller index were more important, and features with a larger index were less important. These less important genes were more likely to introduce noise in the classifier and, therefore, decrease the performance of the classifier. Therefore, we needed to find the balance between signal (important features with small index) and noise (unimportant features with large index). For each feature set \(F_i \), a support vector machine (SVM) classifier was built based on these top \(i \) features, and their performance was evaluated with leave-one-out cross validation (LOOCV). An SVM classifier can predict whether a cell was TIL based on its expression levels of the top \(i \) features. Using the number of features as x-axis and their LOOCV accuracy as y-axis, an IFS curve can be plotted. The accuracy was the number of correctly predicted samples over the number of total samples. Based on the peak of IFS curve, the optimal number of gene features can be determined.

In this study, the SVM classifier was built using the R function svm from package e1017.\(^1\) The default parameters of R function svm were used to train the SVM models.

RESULTS

The Relative Importance of Genes for CD8\(^+\) T Cells

As we described in the methods, the Monte Carlo feature selection method was adopted to analyze the gene expression profiles of 36 TIL samples and 32 NTIL samples. The goal was to identify the discriminative genes between TIL samples and NTIL samples. The 23,366 genes were ranked based on their relative importance calculated by the Monte Carlo feature selection algorithms.

The relative importance value reflected how well and how often this gene can be used to classify the TIL samples and NTIL samples in the resampling feature subsets on the decision trees. Since relative importance value integrates the information of many decision trees, it is a robust measurement that will not be easily influenced by noise. The genes can be ranked based on their relative importance values.

If a gene is important, it will rank at the top. All 23,366 genes were ranked, but only the top 500 genes were further analyzed for biomarker identification.

The Key Genes and Pathways of CD8\(^+\) T Cells

After the genes were ranked based on their relative importance by the Monte Carlo feature selection, we applied the IFS method to further optimize the final key gene set that pertains to CD8\(^+\) T cells. We constructed 500 gene sets in which each gene set included top \(i \) genes in the ranked gene list. Based on the number of genes and their prediction accuracy, we plotted the IFS curve in Figure 1. It can be seen that with the top 20 genes, the LOOCV accuracy was the highest, 0.971. Therefore, these 20 genes were considered as the key gene set of CD8\(^+\) T cells, and they are listed in Table 1. Even with the top two genes, SLCO3A1 and PXN, the accuracy was 0.882. Since there was no similar CD8\(^+\) T cell dataset, we searched these two genes against the CellMarker database (Zhang et al., 2018a). This curated database has 13,605 cell markers of 467 cell types among 158 human tissue types, and 9,148 cell markers of 389 cell types among 81 mouse tissue types. Based on the CellMarker database, SLCO3A1 was a marker for the natural killer T (NKT)

\(^1\)https://cran.r-project.org/web/packages/e1071/
Biomarkers are of great significance for the diagnosis and treatment of cancer. Recent studies have found that in colorectal cancer, CHGA is more predictive of early diagnosis than other biomarkers, such as KRAS and TP53 (Zhang et al., 2019). High expression of DOCK4 is closely related to invasive breast cancer and subsequent bone metastasis, making it a potentially useful biomarker to predict the risk of tumor bone metastasis (Westbrook et al., 2019). In addition, the role of biomarkers in lung cancer has also been reported. UCK2 may be a biomarker for early diagnosis and prognosis of lung cancer (Wu et al., 2019). In NSCLC, the level of serum IDH2 can be regarded as an effective biomarker for the diagnosis and prognosis (Li et al., 2018b), and LRP12 DNA methylation can be used as predictive biomarker for carboplatin resistance (Grasse et al., 2018).

As shown in Table 1, many of the 20 key genes have shown significant potential as biomarkers for CD8+ T cells. We will discuss several high confidence genes and try to show potential mechanisms of these genes in CD8+ T cells.

Pro-inflammatory protein S100A10, a member of the S100 protein family, is a crucial plasminogen receptor and is reported to be involved in the regulation of various intracellular processes such as cell cycle progression, transcription, and differentiation (Kwon et al., 2005). S100A10 is overexpressed in various cancers and plays a role in facilitating cell invasiveness by regulating pericellular proteolysis (Choi et al., 2003; Ji et al., 2004; Zhang et al., 2004). S100A10 is mainly expressed in regions with strong proliferation capacity (Petersson et al., 2009). Yang et al. observed that the reduction of availability of S100A10 had negative impact on the growth of tumor cells in vitro (Yang et al., 2011), suggesting the role of S100A10 in regulating cell proliferation. The current study by Katono et al. (2016) showed that S100A10 expression was significantly associated with high TNM stage, poor overall prognosis, and frequent vascular invasion. Moreover, several studies have shown that up-regulation of S100A11 is significantly associated with lymph node metastasis in patients with NSCLC (Tian et al., 2007; Yang et al., 2011; Katono et al., 2016).

CXCL13 (C-X-C motif chemokine ligand 13) is an antimicrobial peptide and CXC chemokine strongly expressed in the follicles of the spleen and lymph node. Recent studies recognized that the CXCR5–CXCL13 axis is involved in tumor dissemination to lymph nodes (Meijer et al., 2006; Singh et al., 2014). Analysis of serum CXCL13 levels in both subtypes of NSCLCs, squamous cell carcinoma (SCC) and adenocarcinoma (AC), showed that serum CXCL13 levels in ACs were higher than that in SCCs; this may be associated with patient prognosis (Singh et al., 2014). These findings of Singh et al. (2014) indicated that CXCR5 and CXCL13 may be useful as prognostic biomarkers for NSCLC. Smoke and air pollution are well known to be associated with lung cancer (Li et al., 2013; Berrandou et al., 2018), both of which contain polycyclic aromatic hydrocarbons (PAHs), a carcinogenic substance (Baxter et al., 2014). The experiments conducted by Wang et al. (2015) showed that CXCL13 levels in lung epithelial cells, of cancer cells, and of mice exposed to PAHs led to increased rates of lung cancer in mice, demonstrating that CXCL13 has an important role in PAH-induced lung cancers. Thommen et al. (2018) reported that CXCL13 plays an important role in the recruitment of lymphocytes to tertiary lymphoid structures.

DISCUSSION

The Key Dysfunctional Genes in CD8+ T Cells

Biomarkers are of great significance for the diagnosis and treatment of cancer. Recent studies have found that in colorectal cancer, CHGA is more predictive of early diagnosis than other biomarkers, such as KRAS and TP53 (Zhang et al., 2019). High expression of DOCK4 is closely related to invasive breast cancer and subsequent bone metastasis, making it a potentially useful biomarker to predict the risk of tumor bone metastasis (Westbrook et al., 2019). In addition, the role of biomarkers in lung cancer has also been reported. UCK2 may be a biomarker for early diagnosis and prognosis of lung cancer (Wu et al., 2019). In NSCLC, the level of serum IDH2 can be regarded as an effective biomarker for the diagnosis and prognosis (Li et al., 2018b), and LRP12 DNA methylation can be used as predictive biomarker for carboplatin resistance (Grasse et al., 2018).

As shown in Table 1, many of the 20 key genes have shown significant potential as biomarkers for CD8+ T cells. We will discuss several high confidence genes and try to show potential mechanisms of these genes in CD8+ T cells.

Pro-inflammatory protein S100A10, a member of the S100 protein family, is a crucial plasminogen receptor and is reported to be involved in the regulation of various intracellular processes such as cell cycle progression, transcription, and differentiation (Kwon et al., 2005). S100A10 is overexpressed in various cancers and plays a role in facilitating cell invasiveness by regulating pericellular proteolysis (Choi et al., 2003; Ji et al., 2004; Zhang et al., 2004). S100A10 is mainly expressed in regions with strong proliferation capacity (Petersson et al., 2009). Yang et al. observed that the reduction of availability of S100A10 had negative impact on the growth of tumor cells in vitro (Yang et al., 2011), suggesting the role of S100A10 in regulating cell proliferation. The current study by Katono et al. (2016) showed that S100A10 expression was significantly associated with high TNM stage, poor overall prognosis, and frequent vascular invasion. Moreover, several studies have shown that up-regulation of S100A11 is significantly associated with lymph node metastasis in patients with NSCLC (Tian et al., 2007; Yang et al., 2011; Katono et al., 2016).

CXCL13 (C-X-C motif chemokine ligand 13) is an antimicrobial peptide and CXC chemokine strongly expressed in the follicles of the spleen and lymph node. Recent studies recognized that the CXCR5–CXCL13 axis is involved in tumor dissemination to lymph nodes (Meijer et al., 2006; Singh et al., 2014). Analysis of serum CXCL13 levels in both subtypes of NSCLCs, squamous cell carcinoma (SCC) and adenocarcinoma (AC), showed that serum CXCL13 levels in ACs were higher than that in SCCs; this may be associated with patient prognosis (Singh et al., 2014). These findings of Singh et al. (2014) indicated that CXCR5 and CXCL13 may be useful as prognostic biomarkers for NSCLC. Smoke and air pollution are well known to be associated with lung cancer (Li et al., 2013; Berrandou et al., 2018), both of which contain polycyclic aromatic hydrocarbons (PAHs), a carcinogenic substance (Baxter et al., 2014). The experiments conducted by Wang et al. (2015) showed that CXCL13 levels in lung epithelial cells, of cancer cells, and of mice exposed to PAHs led to increased rates of lung cancer in mice, demonstrating that CXCL13 has an important role in PAH-induced lung cancers. Thommen et al. (2018) reported that CXCL13 plays an important role in the recruitment of lymphocytes to tertiary lymphoid structures.

TABLE 1 | The 20 key genes for CD8+ T cells.

Rank	Gene	Relative importance
1	SLC09A1	0.387
2	PXN	0.280
3	CKAP2	0.213
4	MGAT3	0.201
5	SFTPC	0.194
6	VCL	0.187
7	RAB9P2	0.182
8	PLAC8	0.170
9	AES	0.129
10	DAM65B	0.121
11	NHSL2	0.100
12	S100A10	0.099
13	RAB3GAP1	0.090
14	WIPF3	0.090
15	OSBPL5	0.089
16	CXCL13	0.089
17	GEM	0.085
18	S1PR1	0.083
19	TAGLN2	0.082
20	C1orf54	0.079
FIGURE 2 | The heatmap of the 20 genes in TIL samples and NTIL samples. The sample classes were indicated on the first row: blue for NTIL samples and red for TIL samples. The two classes of samples were correctly clustered into two groups. Only two samples were not correctly clustered. It can be seen that RAB3GAP1, WIPF3, GEM, CKAP2, and C-X-C motif chemokine ligand 13 (CXCL13) were highly expressed in TIL samples, while other genes were lowly expressed in NTIL samples.

S1PR1 is a G-protein-coupled receptor of the bioactive lipid sphingosine-1-phosphate (SIP) that is abundantly expressed in endothelial cells and blood (Cantalupo et al., 2017; Meissner, 2017) and plays a vital role in angiogenesis (Liu et al., 2000). Angiogenesis is a key process in the early stage of tumor progression and spread (Metodieva et al., 2011). Sarkisyan et al. (2014) suggested that S1PR1 signaling could delay tumor progression by enhancing or destabilizing integrity of neovasculature. S1PR signaling pathways are also reported to be involved in the oncogenesis of various cancers including NSCLC (Zhang et al., 2018b; Zhu et al., 2018). Apolipoprotein M (ApoM) is a sphingosine 1-phosphate (SIP) carrier, which is involved in regulating SIP (Duan et al., 2001; Sevvana et al., 2009). Overexpression of ApoM could promote proliferation, invasion, and tumor growth of NSCLC cell via upregulation of S1PR1 (Zhu et al., 2018).

Transgelin 2 (TAGLN2), an actin-binding protein, is overexpressed in various tumors and thought to be a tumor suppressor (Zhang et al., 2010; Jin et al., 2016; Han et al., 2017). Studies suggest that high levels of TAGLN2 in NSCLC cells were significantly associated with tumor development, neural invasion, and metastasis (Jin et al., 2016; Kim et al., 2018). Therefore, it has been considered a crucial diagnostic biomarker for early diagnosis and treatment guidance of NSCLC (Rho et al., 2009). Recent studies have focused on investigating microRNAs targeting TAGLN2 for tumor suppression (Nohata et al., 2011; Yoshino et al., 2011; Du et al., 2016).

The Key Dysfunctional Pathway in CD8⁺ T Cells

As previously discussed, the most significantly enriched pathway of the 20-gene set is the hsa04062 chemokine signaling pathway. Three of these genes (CXCL13, RASGRP2, and PXN) are involved in this pathway.

Chemokines, a group of small molecular weight proteins, play an important role in cell migration, immune surveillance, and inflammation via binding to chemokine receptors on cell membranes (Raman et al., 2011). Numerous studies have shown the role of chemokine and chemokine receptors in the progression and metastasis of lung cancer (Cavallaro, 2013; Sarvaiya et al., 2013). The chemokine receptors, like CXCR4 and CCR7, are well studied (Mishan et al., 2016; Pozzobon et al., 2016). CXCR4 is the most commonly overexpressed and studied chemokine receptor in many different malignant tumors, including lung cancer (Balkwill, 2004). Differential expression of CXCR4 has been reported to be related to the metastatic potential of non-small cell lung cancer (NSCLC) (Phillips et al., 2003;
Su et al. (2005). Wang et al. (2014) also revealed that the high-level CXCR4 expression was associated with brain-specific metastasis after complete resection of non-small cell lung cancer. In addition, CXCL12/CXCR4 axis is demonstrated to play a crucial role in migration and metastasis of NSCLC, and high expression of CXCL12/CXCR4 is related to poor prognosis in NSCLC (Suzuki et al., 2008). CCR7, a CC chemokine receptor, is mainly expressed on naive T cells, B cells, and mature dendritic cells (DCs) (Xu et al., 2012). Activation of CCR7 has been also proved to mediate the invasion and progression of NSCLC in most investigations (Cabioglu et al., 2007; Zhang L. et al., 2017). There was a correlation between tumor-infiltrating DC aggregation and apoptosis of NSCLC.

Besides CXCL13 as a chemokine, Paxillin (PXN) encodes a cytoskeletal protein, which contributes to actin-membrane attachment in the extracellular matrix. PXN is involved in signal transduction, which has been shown to be closely correlated with the oncogenesis and metastasis of NSCLC (Jagadeeswaran et al., 2008; Wu et al., 2010). Previous studies report that miR-137 suppressed cell migration and invasion by targeting PXN, therefore providing a potential therapy for NSCLC by targeting miRNA expression (Dacic et al., 2010; Bi et al., 2014). The expression of paxillin has also been observed as closely associated with the prognosis and the lymph node metastasis of NSCLC patients (Salgia et al., 1999; Zuo and Li, 2003; Wu et al., 2010). These studies strongly suggest the role of PXN in NSCLC, and thus, PXN is recommended as a potential target for NSCLC treatment.

CONCLUSION

For more effective immunotherapy in the case of non-small cell lung cancers (NSCLC), we require further knowledge of T-cell biology. Therefore, we collected the published RNA-Seq gene expression data of 36 T-cell samples isolated from tumor and 32 adjacent uninvolved lung samples from a publicly available database. By analyzing them with a Monte Carlo feature selection method, we identified the discriminative genes between tumor T cells and adjacent uninvolved lung cells. In addition, we investigated the expression pattern of these key genes for CD8+ T cells of non-small cell lung cancer and their biological functions and pathways. However, tumors are commonly heterogeneous at the cellular level, and therefore, there are different proportions of CD8+ T-cell types (Wagner et al., 2019). This is currently an unresolved question.

DATA AVAILABILITY STATEMENT

We downloaded the gene expression profiles from Gene Expression Omnibus (GEO) under accession number GSE90728.

AUTHOR CONTRIBUTIONS

DM and TH designed the experiment. XT and XW performed the experiment and analyzed the data. XT and TH wrote the manuscript.

FUNDING

This study was supported by the National Natural Science Foundation of China (Nos. 81172221, 31701151), National Key R&D Program of China (2018YFC0910403), Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01), Shanghai Sailing Program (16YF1413800), and The Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (2016245).

REFERENCES

Al-Shibli, K. I., Donnem, T., Al-Saad, S., Persson, M., Bremnes, R. M., and Busund, L. T. (2008). Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin. Cancer Res. 14, 5220–5227. doi: 10.1158/1078-0432.ccr-08-0133

Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. doi: 10.1093/bioinformatics/btu638

Antonicelli, A., Cafarotti, S., Indini, A., Galli, A., Russo, A., Cesario, A., et al. (2013). EGFR-targeted therapy for non-small cell lung cancer: focus on EGFR oncogenic mutation. Int. J. Med. Sci. 10, 320–330. doi: 10.7150/ijms.4609

Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol. 14, 171–179. doi: 10.1016/j.semcancer.2003.10.003

Baxter, C. S., Hoffman, J. D., Knipp, M. J., Reponen, T., and Haynes, E. N. (2014). Exposure of firefighters to particulates and polycyclic aromatic hydrocarbons. Ann. Occup. Environ. Hyg. 11, D85–D91. doi: 10.1080/15459624.2014.890286

Berrandou, T., Mulot, C., Cordina-Duverger, E., Arveux, P., Laurent-Puig, P., Truong, T., et al. (2018). Association of breast cancer risk with polymorphisms and pathways. Hypertension 70, 426–434. doi: 10.1161/hypertensionaha.117.09088

Cai, Y.-D., Zhang, S., Zhang, Y.-H., Pan, X., Deng, K., Chen, L., et al. (2017). Identification of the Gene Expression Rules That Define the Subtypes in Glioma. J. Clin. Med. 7:350. doi: 10.3390/jcm7100350

Cantonuppo, A., Gargiulo, A., Dautaj, E., Liu, C., Zhang, Y., Hla, T., et al. (2017). S1PR1 (Sphingosine-1-Phosphate Receptor 1) signaling regulates blood flow and pressure. Hypertension 70, 426–434. doi: 10.1161/hypertensionaha.117.09088

Cavallaro, S. (2013). CXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. Int. J. Mol. Sci. 14, 1713–1727. doi: 10.3390/ijms14011713

Chen, L., Pan, X., Hu, X., Zhang, Y. H., Wang, S., Huang, T., et al. (2018b). Gene expression differences among different MSI statuses in colorectal cancer. Int. J. Cancer 143, 1731–1740. doi: 10.1002/ijc.31554

Chen, L., Pan, X., Hu, X., Zhang, Y. H., Wang, S., Zhang, Y., et al. (2018a). Identification of the Gene Expression Rules That Define the Subtypes in Glioma. J. Clin. Med. 7:350. doi: 10.3390/jcm7100350

Cabioglu, N., Gong, Y., Islam, R., Broglio, K. R., Sneige, N., Sahin, A., et al. (2007). Expression of paxillin has also been observed as closely associated with the prognosis and the lymph node metastasis of NSCLC patients (Salgia et al., 1999; Zuo and Li, 2003; Wu et al., 2010). These studies strongly suggest the role of PXN in NSCLC, and thus, PXN is recommended as a potential target for NSCLC treatment.

For more effective immunotherapy in the case of non-small cell lung cancers (NSCLC), we require further knowledge of T-cell biology. Therefore, we collected the published RNA-Seq gene expression data of 36 T-cell samples isolated from tumor and 32 adjacent uninvolved lung samples from a publicly available database. By analyzing them with a Monte Carlo feature selection method, we identified the discriminative genes between tumor T cells and adjacent uninvolved lung cells. In addition, we investigated the expression pattern of these key genes for CD8+ T cells of non-small cell lung cancer and their biological functions and pathways. However, tumors are commonly heterogeneous at the cellular level, and therefore, there are different proportions of CD8+ T-cell types (Wagner et al., 2019). This is currently an unresolved question.
Chen, L., Wang, S., Zhang, Y. H., Wei, L., Xu, X., Huang, T., et al. (2018c). Prediction of nitrated tyrosine residues in protein sequences by extreme learning machine and feature selection methods. *Comb. Chem. High Throughput Screen.* 21, 393–402. doi: 10.2174/13862073216661803191619

Chen, L., Pan, X., Guo, W., Gan, Z., Zhang, Y.-H., Niu, Z., et al. (2020). Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms. *Genomics 112,* 2524–2534. doi: 10.1016/j.ygeno.2020.02.004

Chen, L., Pan, X., Zeng, T., Zhang, Y., Huang, T., and Cai, Y. (2019). Identifying essential signature genes and expression rules associated with distinctive development stages of early embryonic cells. *IEEE Access,* 7, 128570–128578. doi: 10.1109/ACCESS.2019.2939556

Chen, X., Jin, Y., and Feng, Y. (2019). Evaluation of plasma extracellular vesicle miRNA signatures for lung adenocarcinoma and granuloma with Monte-Carlo feature selection method. *Front. Genet.* 10:367. doi: 10.3389/fgene.2019.00367

Choi, K. S., Fogg, D. K., Yoon, C. S., and Waisman, D. M. (2003). p11 regulates extracellular plasmin production and invasiveness of HT1080 fibrosarcoma cells. *FASEB J.*, 17, 235–246. doi: 10.1096/fjt.02-0697com

Dacic, S., Kelly, L., Shuai, Y., and Nikiforova, M. N. (2010). miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. *Mod. Pathol.* 23, 1577–1582. doi: 10.1038/modpathol.2010.152

Dermani, F. K., Samadi, P., Rahmani, G., Kohlan, A. K., and Najafi, R. (2019). PD-1/PD-1 immune检查点: potential target for cancer therapy. *J. Cell. Physiol.* 234, 1313–1325. doi: 10.1002/jcp.21772

Draminski, M., Rada-Iglesias, A., Enroth, S., Wadelsiu, C., Koronacki, J., and Komorowski, J. (2008). Monte Carlo feature selection for supervised classification. *Bioinformatics,* 24, 110–117. doi: 10.1093/bioinformatics/btm486

Du, Y. Y., Zhao, L. M., Chen, L., Sang, M. X., Li, J., Ma, M., et al. (2016). The tumor-suppressive function of miR-1 by targeting LASP1 and TAGLN2 in esophageal squamous cell carcinoma. *J. Gastroenterol. Hepatol.* 31, 384–393. doi: 10.1111/jgh.13180

Duan, J., Dahlback, B., and Villoutreix, B. O. (2001). Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis. *FEBS Lett.* 499, 127–132. doi: 10.1016/s0014-5793(01)02544-3

Farhood, B., Najaři, M., and Mortezaei, K. (2019). CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. *J. Cell. Physiol.* 234, 8509–8521. doi: 10.1002/jcp.27782

Gan, A. S., Clarke, J., Wood, O., Garrido-Martin, E. M., Chee, S. J., Mellows, T., et al. (2017). Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. *Nat. Immunol.* 18, 940–950. doi: 10.1038/nature17735

Garon, E. B., Rizvi, N. A., Hui, R., Leighl, N., Balmanoukian, A. S., Eder, J. P., et al. (2015). Pembrolizumab for the treatment of non-small-cell lung cancer. *N. Engl. J. Med.* 372, 2018–2028. doi: 10.1056/NEJMoa1501824

GETting, S. N., Horn, L., Gandhi, L., Spigel, D. R., Antonia, S. J., Rizvi, N. A., et al. (2015). Overall survival and long-term safety of nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. *J. Clin. Oncol.* 33, 2004–2012. doi: 10.1200/jco.2014.58.3708

Grasse, S., Lienhard, M., Frese, S., Kerick, M., Steinbach, A., Grimm, C., et al. (2018). Epigenomic profiling of non-small cell lung cancer xenografts uncover LRP12 DNA methylation as predictive biomarker for carboplatin resistance. *Genome Med.* 10:55. doi: 10.1186/s13073-018-0562-5

Han, M. Z., Xu, R., Xu, Y. Y., Zhang, X., Ni, S. L., Huang, R., et al. (2017). TAGLN2 is a candidate prognostic biomarker promoting tumorigenesis in human gliomas. *J. Exp. Clin. Cancer Res.* 36:155. doi: 10.1186/s13046-017-0619-6

Herbst, R. S., Baas, P., Kim, D. W., Felip, E., Perez-Gracia, J. L., Han, J. Y., et al. (2016). Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. *Lancet* 387, 1540–1550. doi: 10.1016/s0140-6736(15)02812-1247

Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., et al. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. *Nature 515,* 563–567. doi: 10.1038/nature14011
Meissner, A. (2017). S1PR (Sphingosine-1-Phosphate Receptor) signaling in the regulation of vascular tone and blood pressure: is S1PR1 doing the Trick? Hypertension 70, 232–234. doi: 10.1161/HYPERTENSIONAHA.117.09200

Metodieva, S. N., Nikolova, D. N., Cherneva, R. V., Dimova, I. L., Petrov, D. B., and Toncheva, D. I. (2011). Expression analysis of angiogenesis-related genes in Bulgarian patients with early-stage non-small cell lung cancer. Tumori 97, 86–94. doi: 10.1177/030088161109700116

Mishan, M. A., Ahmadiania, N., and Bahrami, A. R. (2016). CXCR4 and CCR7: two eligible targets in targeted cancer therapy. Cell Biol. Int. 40, 955–967. doi: 10.1002/cbin.10631

Morgenztern, D., and Herbst, R. S. (2016). Nivolumab and Pembrolizumab for two eligible targets in targeted cancer therapy. Frontiers in Genetics | www.frontiersin.org 8 May 2020 | Volume 11 | Article 352

Pan, X., Hu, X., Zhang, Y.-H., Chen, L., Zhu, L., Wan, S., et al. (2018). Identification of the copy number variant biomarkers for breast cancer subtypes. Mol. Genet. Genomics 294, 95–110. doi: 10.1007/s00438-018-1488-1484

Pan, X., Hu, X., Zhang, Y.-H., Chen, L., Zhu, L., Wan, S., et al. (2019). Identification of the copy number variant biomarkers for breast cancer subtypes. Mol. Genet. Genomics 294, 95–110. doi: 10.1007/s00438-018-1488-1484

Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264. doi: 10.1038/nrc3239

Petersson, S., Shubbar, E., Enerback, L., and Enerback, C. (2009). Expression analysis of angiogenesis-related genes in Bulgarian patients with early-stage non-small cell lung cancer. Int. J. Oncol. 35, 2233–2240. doi: 10.3892/ijoi.2009.2688

Su, L., Zhang, L., Xu, H., Wang, Y., Chu, Y., Liu, R., et al. (2005). Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin. Cancer Res. 11, 8273–8280. doi: 10.1158/1078-0432.ccr-05-0537

Suzuki, M., Mohamed, S., Nakajima, T., Kubo, R., Tian, L., Fujiwara, T., et al. (2008). Ablation of VEGFR3 in non-small cell lung cancer is associated with an unfavorable prognosis. Int. J. Oncol. 33, 113–119.

Skinn, D. S., Koehler, V. H., Herzig, P., Roller, A., Trefny, M., Dimeleo, S., et al. (2018). A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004. doi: 10.1038/s41591-018-0057-z

Tian, T., Hao, J., Xu, A., Hao, J., Luo, C., Liu, C., et al. (2007). Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Cancer Sci. 98, 1265–1274. doi: 10.1111/j.1349-7006.2007.00514.x

Trappnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111. doi: 10.1093/bioinformatics/btp120

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A. 98, 5116–5121. doi: 10.1073/pnas.09162498

van der Drift, M., Ma, Karim-Kos, H. E., Siesling, S., Groen, H. J., Wouters, M. W., Coebergh, J. W., et al. (2012). Progress in standard of care therapy and modest survival benefits in the treatment of non-small cell lung cancer patients in the Netherlands in the last 20 years. J. Thorac. Oncol. 7, 291–298. doi: 10.1097/JTO.0b013e31823a011b

Wagner, J., Rajapaksheni, M. A., Chevrier, S., Anzéneder, T., Langwieder, C., Dygiers, A., et al. (2019). A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177, 1330–1345.e18. doi: 10.1016/j.cell.2019.03.005

Wang, G. Z., Cheng, X., Zhou, B., Wen, Z. S., Huang, Y. C., Chen, H. B., et al. (2015). The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife 4:e09419. doi: 10.7554/eLife.09419

Wang, J., Vasaiak, S., Shi, Z., Greer, M., and Zhang, B. (2017). WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis tool. Nucleic Acids Res. 45, W130–W137. doi: 10.1093/nar/gkw1356

Wang, S., Wang, D., Li, J., Huang, T., and Cai, Y.-D. (2017). Identification and analysis of the cleavage site in signal peptide by using SMOTE, Dagging, and feature selection methods. Mol. Omics 14, 64–73. doi: 10.1039/c7mo00030h

Wang, L., Wang, Z., Liu, X., and Liu, F. (2014). High-level C-X-C chemokine receptor type 4 expression correlates with brain-specific metastasis following complete resection of non-small cell lung cancer. Oncol. Lett. 7, 1871–1876. doi: 10.3892/ol.2014.1979

Welsh, T. J., Green, R. H., Richardson, D., Waller, D. A., O’Byrne, K. J., and Bradding, P. (2005). Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J. Clin. Oncol. 23, 8959–8967. doi: 10.1200/jco.2005.01.4910

Westbrook, J. A., Wood, S. L., Cairns, D. A., McMahon, K., Gahlaut, R., Thysgen, H., et al. (2019). Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer. J. Pathol. 247, 381–391. doi: 10.1002/path.5197

Wu, D. W., Cheng, Y. W., Wang, J., Chen, C. Y., and Lee, H. (2010). Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res. 70, 10392–10401. doi: 10.1158/0008-5472.can-10-2341

Wu, Y., Jamal, M., Xie, T., Sun, J., Song, T., Yin, Q., et al. (2019). Uridine-cytidine kinase 2 (UCK2): a potential diagnostic and prognostic biomarker for lung cancer. Cancer Sci. 110, 2734–2747. doi: 10.1111/cas.14125

Xu, Y., Liu, J., Qiu, X., Liu, Z., Li, H., Li, Z., et al. (2012). CCL2/CCR7 prevents apoptosis via the ERK pathway in human non-small cell lung cancer cells. PLoS one 7:e33262. doi: 10.1371/journal.pone.0033262
Tao et al. | Biomarkers for CD8+ T Cells

Yang, X., Popescu, N. C., and Zimonjic, D. B. (2011). DLC1 interaction with S100A10 mediates inhibition of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism. *Cancer Res.* 71, 2916–2925. doi: 10.1158/0008-5472.can-10-02158

Yoshino, H., Chiyomaru, T., Enokida, H., Kawakami, K., Tatarno, S., Nishiyama, K., et al. (2011). The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. *Br. J. Cancer* 104, 808–818. doi: 10.1038/bjc.2011.23

Zhan, Y., Zang, H., Feng, J., Lu, J., Chen, L., and Fan, S. (2017). Long non-coding RNAs associated with non-small cell lung cancer. *Oncotarget* 8, 69174–69184. doi: 10.18632/oncotarget.20088

Zhang, L., Fogg, D. K., and Waisman, D. M. (2004). RNA interference-mediated silencing of the S100A10 gene attenuates plasmin generation and invasiveness of Colo 222 colorectal cancer cells. *J. Biol. Chem.* 279, 2053–2062. doi: 10.1074/jbc.M310357200

Zhang, L., Xiao, X., An, H., Wang, J., Ma, Y., and Qian, Y. H. (2017). Inhibition of CCR7 promotes NF-kappaB-dependent apoptosis and suppresses epithelial-mesenchymal transition in non-small cell lung cancer. *Oncol. Rep.* 37, 2913–2919. doi: 10.3892/or.2017.5524

Zhang, Y. H., Huang, T., Chen, L., Xu, Y., Hu, Y., Hu, L. D., et al. (2017). Identifying and analyzing different cancer subtypes using RNA-seq data of blood platelets. *Oncotarget* 8, 87494–87511. doi: 10.18632/oncotarget.20903

Zhang, X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng, C., et al. (2018a). CellMarker: a manually curated resource of cell markers in human and mouse. *Nucleic Acids Res.* 47, D721–D728. doi: 10.1093/nar/gky900

Zhang, X., Liu, Y., Huang, W. C., and Zheng, L. C. (2018b). MiR-125b-1-3p exerts antitumor functions in lung carcinoma cells by targeting S1PR1. *Chin. Med. J.* 131, 1909–1916. doi: 10.4103/0366-6999.238135

Zhang, X., Zhang, H., Shen, B., and Sun, X. F. (2019). Chromogranin-A expression as a novel biomarker for early diagnosis of colon cancer patients. *Int. J. Mol. Sci.* 20:2919. doi: 10.3390/ijms2012919

Zhang, Y., Ye, Y., Shen, D., Jiang, K., Zhang, H., Sun, W., et al. (2010). Identification of transgelin-2 as a biomarker of colorectal cancer by laser capture microdissection and quantitative proteome analysis. *Cancer Sci.* 101, 523–529. doi: 10.1111/j.1349-7006.2009.01424.x

Zhu, Y., Luo, G., Jiang, B., Yu, M., Feng, Y., Wang, M., et al. (2018). Apolipoprotein M promotes proliferation and invasion in non-small cell lung cancers via upregulating S1PR1 and activating the ERK1/2 and PI3K/AKT signaling pathways. *Biochem. Biophys. Res. Commun.* 501, 520–526. doi: 10.1016/j.bbrc.2018.05.029

Zuo, W., and Li, H. (2003). Relationship of the expression of CD44v6 and paxillin to the prognosis of non-small cell lung carcinoma. *Sichuan Da Xue Xue Bao Yi Xue Ban* 34, 484–485.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Tao, Wu, Huang and Mu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.