POINCARÉ TYPE INEQUALITIES FOR TWO DIFFERENT BILATERAL GRAND LEBESGUE SPACES

E. Ostrovsky
e-mail: eugostrovsly@list.ru

L. Sirota
e-mail: sirota3@bezeqint.net

Abstract.

In this paper we obtain the non-asymptotic inequalities of Poincaré type between function and its weak gradient belonging the so-called Bilateral Grand Lebesgue Spaces over general metric measurable space. We also prove the sharpness of these inequalities.

2000 Mathematics Subject Classification. Primary 37B30, 33K55; Secondary 34A34, 65M20, 42B25.

Key words and phrases: Metric measure space, ball, diameter, exact constant, norm, Grand and ordinary Lebesgue Spaces and norms, integral and other linear operator, factorable estimation, Poincaré-Lebesgue and Poincaré-Lipschitz spaces, sets and inequalities, exact estimations, module of continuity.

1. Introduction

Let \((X, M, \mu, d)\) be metric measurable space with finite non-trivial measure \(\mu : 0 < \mu(X) < \infty\) and also with finite non-trivial distance function \(d = d(x, y) : 0 < \text{diam}(X) := \sup_{x,y \in X} d(x, y) < \infty\).

Define also for arbitrary numerical measurable function \(u : X \to R\) the following average

\[
u_X = \frac{1}{\mu(X)} \int_X u(x) \, d\mu(x),
\]

\[
||u||_p = \left[\int_X |u(x)|^p \, d\mu(x) \right]^{1/p}, \quad p = \text{const} \in [1, \infty],
\]

\(g(x) = \nabla[u](x)\) will denote a so-called minimal weak upper gradient of the function \(u(\cdot)\), i.e. the (measurable) minimal function such that for any rectifiable curve \(\gamma : [0, 1] \to X\)

\[
|u(\gamma(1)) - u(\gamma(0))| \leq \int_{\gamma} g(s) \, ds.
\]

Note that if the function \(u(\cdot)\) satisfies the Lipschitz condition:

\[
|u(x) - u(y)| \leq L \cdot d(x, y), \quad 0 \leq L = \text{const} < \infty,
\]

then the function \(g(x) = \nabla[u](x)\) there exists and is bounded: \(g(x) \leq L\).
"The term Poincaré type inequality is used, somewhat loosely, to describe a class of inequalities that generalize the classical Poincaré inequality"

\[\int_D |u(z)|^p \, dx \leq A_m(p, D) \int_D |\nabla u(z)|^p \, dz, \quad A_m(p, D) = \text{const} < \infty, \quad (1.0) \]

see [1], chapter 8, p.215, and the source work of Poincaré [36].

A particular case done by Wirtinger: "an inequality ascribed to Wirtinger", see [25], p. 66-68; see also [33], [38], [39].

In the inequality (1.0) \(D \) may be for instance open bounded non empty convex subset of the whole space \(\mathbb{R}^m \) and has a Lipschitz or at last Hölder boundary, or consists on the finite union of these domains, and \(|\nabla u(z)| \) is ordinary Euclidean \(\mathbb{R}^m \) norm of "natural" distributive gradient of the differentiable a.e. function \(u \).

The generalized Sobolev’s norm, more exactly, semi-norm \(||f||_{W^1_p} \) of a "weak differentiable" function \(f : X \to \mathbb{R} \) may be defined by the formula

\[||f||_{W^1_p} \overset{\text{def}}{=} \left[\int_X |\nabla f|^p \, d\mu(x) \right]^{1/p} = ||\nabla f||_p. \]

We will call "the Poincaré inequality" , or more precisely "the Poincaré \((L(p), L(q))\) inequality" more general inequalities of the forms

\[\mu(X)^{-1/q}||u - u_X||_q \leq K_P(p, q) \text{diam}(X) \mu(X)^{-1/p} ||\nabla u||_p =
\]

\[K_P(p, q) \text{diam}(X) \mu(X)^{-1/p} ||u||_{W^1_p}, \quad (1.1) \]

where

\[1 \leq p < s = \text{const} > 1, \quad 1 \leq q < \frac{ps}{s-p} \quad (1.1a) \]

the Poincaré-Lebesgue-Riesz version; or in the case when \(p > s \) and after (possible) redefinition of the function \(u = u(x) \) on a set of measure zero

\[|u(x) - u(y)| \leq K_L(s, p) d^{1-s/p}(x, y) \mu(X) ||\nabla u||_p =
\]

\[K_L(s, p) \mu(X) ||u||_{W^1_p} \quad (1.2) \]

the Poincaré-Lipshitz version; the case \(p = s \) in our setting of problem, indeed, in the terms of Orlicz’s spaces and norms, is considered in [19].

The last inequality (1.2) may be reformulated in the terms of the module of continuity of the function \(u \):

\[\omega(u, \tau) := \sup_{x,y: d(x,y) \leq \tau} |u(x) - u(y)|, \quad \tau \geq 0. \]

Namely,

\[\omega(u, \tau) \leq K_L(s, p) \tau^{1-s/p} \mu(X) ||u||_{W^1_p}. \]
We will name following the authors of articles \[13\], \[19\] etc. all the spaces \((X, M, \mu, d)\) which satisfied the inequalities (1.1) or (1.2) for each functions \(\{u\}\) having the weak gradient correspondingly as a Poincaré-Lebesgue spaces or Poincaré-Lipshitz spaces.

As for the constants \(s, K_P(s, p), K_L(s, p)\). The value \(s\) may be defined from the following condition (if there exists)

\[
\inf_{x_1,x_2 \in X} \left\{ \frac{\mu(B(x_1, r_1))}{\mu(B(x_2, r_2))} \right\} \geq C \cdot \left[\frac{r_1}{r_2} \right]^s, \quad C = \text{const} > 0,
\]

where as ordinary \(B(x, r)\) denotes a closed ball relative the distance \(d(\cdot, \cdot)\) with the center \(x\) and radii \(r, r > 0:\)

\[B(x, r) = \{y, \ y \in X, \ d(x, y) \leq r\}.\]

This condition is equivalent to the so-called double condition, see \[13\], \[19\] and is closely related with the notion of Ahlfors \(Q\) – regularity

\[C_1 r^Q \leq \mu(B(x, r)) \leq C_2 r^Q, \quad C_1, C_2, Q = \text{const} > 0,\]

see \[19\], \[26\].

Further, we will understand as a capacity of the values \(K_P(s, p), K_L(s, p)\) its minimal values, namely

\[
K_P(p, q) \overset{\text{def}}{=} \sup_{0 < ||\nabla u||_p < \infty} \left\{ \frac{\mu(X)^{-1/q} ||u - u_X||_q}{\text{diam}(X) \mu(X)^{-1/p} ||\nabla u||_p} \right\}, \quad (1.3a)
\]

\[
K_L(s, p) \overset{\text{def}}{=} \sup_{0 < ||\nabla u||_p < \infty} \left\{ \frac{|u(x) - u(y)|}{d^{1-s/p}(x, y) \mu(X) ||\nabla u||_p} \right\}. \quad (1.3b)
\]

We will denote for simplicity

\[s = \text{order } X = \text{order}(X, M, \mu, d).\]

There are many publications about grounding of these inequalities under some conditions and about its applications, see, for instance, in articles \[6\], \[7\], \[11\], \[13\], \[14\], \[19\], \[20\], \[23\], \[30\], \[34\], \[37\], \[39\] and in the classical monographs \[3\], \[12\]; see also reference therein.

Our aim is a generalization of the estimation (1.1) and (1.2) on the so-called Bilateral Grand Lebesgue Spaces \(BGL = BGL(\psi) = G(\psi)\), i.e. when \(u(\cdot) \in G(\psi)\) and to show the precision of obtained estimations.

We recall briefly the definition and needed properties of these spaces. More details see in the works \[9\], \[10\], \[15\], \[16\], \[28\], \[29\], \[21\], \[17\], \[18\] etc. More about rearrangement invariant spaces see in the monographs \[1\], \[22\].

For \(b = \text{const}, \ 1 < b \leq \infty\), let \(\psi = \psi(p), p \in [1, b)\), be a continuous positive function such that there exists a limits (finite or not) \(\psi(1 + 0)\) and \(\psi(b - 0)\), with conditions \(\inf_{p \in (1, b)} \psi(p) > 0\) and \(\min\{\psi(1 + 0), \psi(b - 0)\} > 0\). We will denote the set of all these functions as \(\Psi(b)\) and \(b = \text{supp } \psi\).
The Bilateral Grand Lebesgue Space (in notation BGLS) $G(\psi; a, b) = G(\psi)$ is the space of all measurable functions $f : R^d \rightarrow R$ endowed with the norm

$$||f||_{G(\psi)} \overset{def}{=} \sup_{p \in (a, b)} \left[\frac{|f|^p}{\psi(p)} \right],$$

if it is finite.

In the article [29] there are many examples of these spaces.

The $G(\psi)$ spaces over some measurable space (X, M, μ) with condition $\mu(X) = 1$ (probabilistic case) appeared in [21].

The BGLS spaces are rearrangement invariant spaces and moreover interpolation spaces between the spaces $L_1(R^d)$ and $L_\infty(R^d)$ under real interpolation method [2], [5], [17], [18].

It was proved also that in this case each $G(\psi)$ space coincides only under some additional conditions: convexity of the functions $p \rightarrow p \cdot \ln \psi(p)$, $b = \infty$ etc. [29] with the so-called exponential Orlicz space, up to norm equivalence.

In others quoted publications were investigated, for instance, their associate spaces, fundamental functions $\phi(G(\psi; a, b); \delta)$, Fourier and singular operators, conditions for convergence and compactness, reflexivity and separability, martingales in these spaces, etc.

Remark 1.1 If we introduce the discontinuous function

$$\psi_r(p) = 1, \ p = r; \psi_r(p) = \infty, \ p \neq r, \ p, r \in (a, b) \quad (1.5)$$

and define formally $C/\infty = 0$, $C = \text{const} \in R^1$, then the norm in the space $G(\psi_r)$ coincides formally with the L_r norm:

$$||f||_{G(\psi_r)} = |f|_r. \quad (1.5a)$$

Thus, the Bilateral Grand Lebesgue spaces are direct generalization of the classical exponential Orlicz’s spaces and Lebesgue spaces L_r.

Remark 1.2. Let $F = \{f_\alpha(x)\}, \ x \in X, \ \alpha \in A$ be certain family of numerical functions $f_\alpha(\cdot) : x \rightarrow R, \ A$ is arbitrary set, such that

$$\exists b > 1, \ \forall p < b \Rightarrow \psi_F(p) \overset{def}{=} \sup_{\alpha \in A} ||f_\alpha(\cdot)||_p < \infty. \quad (1.6)$$

The function $p \rightarrow \psi_F(p)$ is named ordinary as natural function for the family F. Evidently,

$$\forall \alpha \in A \Rightarrow f_\alpha(\cdot) \in G\psi_F$$

and moreover

$$\sup_{\alpha \in A} ||f_\alpha(\cdot)||_{G\psi_F} = 1. \quad (1.7)$$

The BGLS norm estimates, in particular, Orlicz norm estimates for measurable functions, e.g., for random variables are used in PDE [9], [15], theory of probability in Banach spaces [24], [21], [28], in the modern non-parametrical statistics, for example, in the so-called regression problem [28].

We will denote as ordinary the indicator function

$$I(A) = I(x \in A) = 1, \ x \in A, \ I(x \in A) = 0, \ x \notin A;$$
here A is a measurable set.

Recall, see, e.g. [4] that the fundamental function $\phi(\delta, S)$, $\delta > 0$ of arbitrary rearrangement invariant space S over (X, M, μ) with norm $\| \cdot \|_S$ is

$$\phi(\delta, S) \overset{\text{def}}{=} \| I(A) \|_S, \mu(A) = \delta.$$

We have in the case of BGLS spaces

$$\phi(\delta, G\psi) = \sup_{1 \leq p < b} \left[\delta^{1/p} \frac{\delta^{1/b}}{\psi(p)} \right].$$

(1.8)

This notions play a very important role in the functional analysis, operator theory, theory of interpolation and extrapolation, theory of Fourier series etc., see again [4]. Many properties of the fundamental function for BGLS spaces with considering of several examples see in the articles [29], [27].

Example 1.1. Let $\mu(X) = 1$ and let

$$\psi^{b,\beta}(p) = (b - p)^{-\beta}, \ 1 \leq p < b, \ b = \text{const} > 1, \ \beta = \text{const} > 0,$$

then as $\delta \to 0^+$

$$\phi(G\psi^{b,\beta}, \delta) \sim (\beta b^2/e)^{\beta} \cdot \delta^{1/b} \cdot |\ln \delta|^{-\beta}.$$

(1.9a)

Example 1.2. Let again $\mu(X) = 1$ and let now

$$\psi^{q}(p) = p^\beta, \ 1 \leq p < \infty, \ \beta = \text{const} > 0,$$

then as $\delta \to 0^+$

$$\phi(G\psi^{q}, \delta) \sim \beta^\beta |\ln \delta|^{-\beta}.$$

(1.10a)

2. **Main result: BGLS estimations for Poincaré-Lebesgue-Riesz version.**

The case of probability measure.

We suppose in this section without loss of generality that the measure μ is probabilistic: $\mu(X) = 1$ and that the source tetrad (X, M, μ, d) is Poincaré-Lebesgue space.

Assume also that the function $|\nabla u(x)|$, $x \in X$ belongs to certain BGLS $G\psi$ with supp $\psi = s = \text{order} \ X > 1$; the case when order $\psi = b \neq s$ may be reduced to considered here by transfiguration $s' := \min(b, s)$.

The function $\psi(\cdot)$ may be constructively introduced as a natural function for one function $|\nabla u| :$

$$\psi^{(0)}(p) := \| u \|_{W^1_p},$$

if there exists and is finite for at least one value p greatest than one.

Define the following function from the set Ψ

$$\nu(q) := \inf_{p \in (qs/(q+s), s)} \{ K_P(p, q) \cdot \psi(p) \}, \ 1 \leq q < \infty.$$

(2.1)

Proposition 2.1.
\[\|u - u_X\|_{G\nu} \leq \text{diam}(X) \cdot \|\nabla u\|_{G\psi}, \]
(2.2)

where the "constant" \(\text{diam}(X)\) is the best possible.

Proof. We can suppose without loss of generality \(\|\nabla u\|_{G\psi} = 1\), then it follows by the direct definition of the norm in BGLS

\[\|\nabla u\|_{p} \leq \psi(p), \; 1 \leq p < s. \]
(2.3)

The inequality (1.1) may be rewritten in our case as follows:

\[\|u - u_X\|_{q} \leq K_P(p, q) \cdot \text{diam}(X) \cdot \|\nabla u\|_{p}, \]
therefore

\[\|u - u_X\|_{q} \leq K_P(p, q) \cdot \text{diam}(X) \cdot \psi(p), \; 1 \leq p < s. \]
(2.4)

Since the value \(p\) is arbitrary in the set \(1 \leq p < s\), we can take the minimum of the right-hand side of the inequality (2.4):

\[\|u - u_X\|_{q} \leq \text{diam}(X) \cdot \inf_{1 \leq p < s} [K_P(p, q) \cdot \psi(p)] = \text{diam}(X) \cdot \nu(q), \]
which is equivalent to the required estimate

\[\|u - u_X\|_{G\nu} \leq \text{diam}(X) = \text{diam}(X) \cdot \|\nabla u\|_{G\psi}. \]

The exactness of the constant \(\text{diam}(X)\) in the inequality (2.2) follows immediately from theorem 2.1 in the article [32].

3. **Main result: BGLS estimations for Poincaré-Lebesgue-Riesz version.**

The general case of arbitrary measure.

The case when the value \(\mu(X)\) is variable, is more complicated. As a rule, in the role of a sets \(X\) acts balls \(B(x, r)\), see [13], [19].

Definition 3.1. We will say that the function \(K_P(p, q)\), \(1 \leq p < s, 1 \leq q < \infty\) allows factorable estimation, symbolically: \(K_P(\cdot, \cdot) \in AFE\), iff there exist two functions \(R = R(p) \in \Psi(s)\) and \(V = V(q) \in G\Psi(\infty)\) such that

\[K_P(p, q) \leq R(p) \cdot V(q). \]
(3.1)

Theorem 3.1. Suppose that the source tetrad \((X, M, \mu, d)\) is again Poincaré-Lebesgue space such that \(K_P(\cdot, \cdot) \in AFE\). Let \(\zeta = \zeta(q)\) be arbitrary function from the set \(\Psi(\infty)\).

Assume also as before in the second section that the function \(|\nabla u(x)|\), \(x \in X\) belongs to certain BGLS \(G\psi\) with supp \(\psi = s = \text{order} X > 1\); the case when order \(\psi = b \neq s\) may be reduced to considered here by transfiguration \(s' := \min(b, s)\).

Our statement:

\[\frac{\|u - u_X\|_{G(V \cdot \zeta)}}{\phi(G\zeta, \mu(X))} \leq \text{diam}(X) \cdot \frac{\|\nabla u\|_{G\psi}}{\phi(R \cdot \psi, \mu(X))} \]
(3.2)
and the "constant" diam(X) in (3.2) is as before the best possible.

Proof. Denote and suppose for brevity $u^{(0)} = u - u_X$, $\mu = \mu(X)$, diam(X) = 1, $||\nabla u||G\psi = 1$. The last equality imply in particular

$$||\nabla u||_p \leq \psi(p), \quad 1 \leq p < s.$$

(3.3)

The inequality (1.1) may be reduced taking into account (3.3) as follows

$$\mu^{-1/q} ||u^{(0)}||_q \leq R(p) V(q) \mu(X)^{-1/p} \psi(p),$$

and after dividing by $\zeta(q)$ and by $\mu^{-1/q}$

$$\frac{||u^{(0)}||_q}{V(q) \zeta(q)} \leq R(p) \psi(p) \mu^{-1/p} \frac{\mu^{1/q}}{\zeta(q)}.$$

(3.4)

We take the supremum from both the sides of (3.4) over q using the direct definition of the fundamental function and norm for BGLS:

$$||u^{(0)}||G(V \cdot \zeta) \leq \frac{R(p) \psi(p)}{\mu^{1/p}} \cdot \phi(G \zeta, \mu).$$

(3.5)

Since the left-hand side of relation (3.5) does not dependent on the variable p, we can take the infimum over p. As long as

$$\inf_p \left[\frac{R(p) \psi(p)}{\mu^{1/p}} \right] = \left[\sup_p \frac{\mu^{1/p}}{R(p) \psi(p)} \right]^{-1} = [\phi(G(R \cdot \psi), \mu)]^{-1},$$

we deduce from (3.5)

$$\frac{||u^{(0)}||G(V \cdot \zeta)}{\phi(G \zeta, \mu)} \leq \frac{1}{\phi(G(R \cdot \psi), \mu)} = \text{diam} X \cdot \frac{||\nabla u||G\psi}{\phi(G(R \cdot \psi), \mu)},$$

Q.E.D.

4. Main result: BGLS estimations for Poincaré-Lipschitz version.

Recall that we take the number s, $s > 1$ to be constant.

We consider in this section the case when $p \in (s, b)$, $s < b = \text{const} \leq \infty$.

Theorem 4.1. Suppose the fourth (X, M, μ, d) is Poincaré-Lipschitz space and that the function $|\nabla u(x)|, x \in X$ belongs to certain BGLS $G\psi$ with supp $\psi = b$. Then the function $u = u(x)$ satisfies after (possible) redefinition on a set of measure zero the inequality

$$|u(x) - u(y)| \leq \mu(X) \cdot \frac{d(x, y)}{\phi(G(K_L \cdot \psi), d^s(x, y))} \cdot ||\nabla u||G\psi,$$

(4.1)

or equally

$$\omega(u, \tau) \leq \mu(X) \cdot \frac{\tau}{\phi(G(K_L \cdot \psi), \tau^s)} \cdot ||\nabla u||G\psi,$$

(4.1a)

and this time the "constant" $\mu(X)$ is best possible.
Proof. Suppose for brevity \(\mu(X) = 1, \ ||\nabla u||G\psi = 1. \) The last equality imply in particular

\[
||\nabla u||_p \leq \psi(p), \ s < p < b. \quad (4.2)
\]

The function \(u(\cdot) \) satisfies the inequality (1.2) after (possible) redefinition of the function \(u = u(x) \) on a set of measure zero

\[
|u(x) - u(y)| \leq K_L(s,p) d^{1-s/p}(x,y) \mu(X) ||\nabla u||_p \leq K_L(s,p)\psi(p) \cdot d^{1-s/p}(x,y). \quad (4.3)
\]

The excluding set in (4.3) may be dependent on the value \(p \), but it sufficient to consider this inequality only for the rational values \(p \) from the interval \((s,b)\).

The last inequality may be transformed as follows

\[
|u(x) - u(y)| \leq K_L(s,p) \psi(p) \cdot d^{1-s/p}(x,y) \cdot \mu(X) \cdot \frac{d(x,y)}{\phi(G(K_L \cdot \psi), d^s(x,y))}.
\]

Since the left-hand side of (4.4) does not dependent on the variable \(p \), we can take the infimum from both all the sides of (4.4):

\[
|u(x) - u(y)| \leq \frac{1}{\phi(G(K_L \cdot \psi), d^s(x,y))} \cdot \mu(X) \cdot \frac{d(x,y)}{\phi(G(K_L \cdot \psi), d^s(x,y))} = \mu(X) \cdot \mu(X) \cdot \frac{d(x,y)}{\phi(G(K_L \cdot \psi), d^s(x,y))} \cdot ||\nabla u||G\psi.
\]

The exactness of the constant \(\mu(X) \) may be proved as before, by mention of the article [32].

This completes the proof of theorem 4.1.

Let us consider two examples.

Example 4.1. Suppose in addition to the conditions of theorem 4.1 that \(\mu(X) = 1 \) and

\[
K_L(s,p) \psi(p) = \psi(b,\beta)(p) = (b - p)^{-\beta}, \ 1 \leq p < b, \ b = \text{const} > 1, \ \beta = \text{const} > 0.
\]

We deduce taking into account the example 1.1 that for almost everywhere values \((x,y)\) and such that \(d(x,y) \leq 1/e\)

\[
|u(x) - u(y)| \leq C_1(b,\beta,s) d^{1-1/b}(x,y) \mid \ln d(x,y) \mid \beta \cdot ||\nabla u||G\psi.
\]

Example 4.2. Suppose in addition to the conditions of theorem 4.1 that \(\mu(X) = 1 \) and
\[K_L(s,p) \cdot \psi(p) = \psi(\beta)(p) = p^\beta, \ 1 \leq p < \infty, \ \beta = \text{const} > 0. \]

We deduce taking into account the example 1.2 that for almost everywhere values \((x,y)\) and such that \(d(x,y) \leq 1/e\)

\[|u(x) - u(y)| \leq C_2(\beta,s) \ d(x,y) \ |\ln d(x,y)|^\beta ||\nabla u||G\psi. \]

5. Concluding remarks

A. It may be interest by our opinion to investigate the weights generalization of obtained inequalities, alike as done for the classical Sobolev’s case, see for instance \([6],[23],[35],[37]\).

B. The physical applications of these inequalities, for example, in the uncertainty principle, is described in the article of C.Fefferman \([8]\).

References

[1] D.R.Adams, L.I. Hedberg. Function Spaces and Potential Theory. Springer Verlag, Berlin, Heidelberg, New York, 1996.

[2] Astashkin S.V. Some new Extrapolation Estimates for the Scale of \(L_p - \) Spaces. Funct. Anal. and Its Appl., v. 37 No 3, (2003), 73-77.

[3] E.F.Beckenauch and R.Bellman. Inequalities. Kluvner Verlag, (1965), Berlin-Heidelberg-New York.

[4] C. Bennet and R. Sharpney, Interpolation of operators. Orlando, Academic Press Inc., 1988.

[5] M. Carro and J. Martin, Extrapolation theory for the real interpolation method. Collect. Math. 33(2002), 163–186.

[6] S.-K. Chuas. Weighted Sobolev inequalities on domains satisfying the chain condition. Proc. Amer. Math. Soc., 122(4), (2003), 1181-1190.

[7] G.Di. Fazio, P.Zambroni. A Fefferman-Poincare type inequality for Carnot-Caratheodry vector fields. Proc. of AMS., v. 130 N 9 (2002), p. 2655-2660.

[8] C.Fefferman. The uncertainty principle. Bull. Amer. Math. Soc., 9, (1983), p. 129-206.

[9] A. Fiorenza. Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51(2000), 131-148.

[10] A. Fiorenza and G.E. Karadzhov, Grand and small Lebesgue spaces and their analogs. Consiglio Nazionale Delle Ricerche, Instituto per le Applicazioni del Calcolo Mauro Picone”, Sezione di Napoli, Rapporto tecnico 272/03(2005).

[11] P. Hajlasz and P. Koskela. Sobolev meets Poincare. C. R. Acad. Sci. Paris, 320, (1995),

[12] G.H.Hardy, J.E. Littlewood and G.Pólya. Inequalities. Cambridge, University Press, (1952).

[13] J. Heinonen and P. Koskela. Quasiconformal maps on metric spaces with controlled geometry. Acta Math. 181 (1998), 1-61.

[14] J. Heinonen and P. Koskela. A note on Lipschitz functions, upper gradients and the Poincaré inequality. New Zealand J. Math. 28 (1999), 37-42.

[15] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses. Arch. Rat.Mech. Anal., 119, (1992), 129-143.

[16] T. Iwaniec, P. Koskela and J. Onninen, Mapping of Finite Distortion: Monotonicity and Continuity. Invent. Math. 144, (2001), 507-531.

[17] B. Jawerth and M. Milman, Extrapolation theory with applications. Mem. Amer. Math. Soc. 440, (1991).

[18] G.E. Karadzhov and M. Milman, Extrapolation theory: new results and applications. J. Approx. Theory, 113, (2005), 38-99.

[19] P. Koskela. Upper gradients and Poincare inequalities. Lectures in Trento in June, 1999.
[20] Pekka Koskela. Sobolev Spaces and Quasiconformal Mappings on Metric Spaces. Internet publications, 2014, PDF.

[21] Yu.V. Kozatchenko and E.I. Ostrovsky, Banach spaces of random variables of subgaussian type. Theory Probab. Math. Stat., Kiev, 1985, 42-56 (Russian).

[22] S.G. Krein, Yu. V. Petunin and E.M. Semenov, Interpolation of Linear operators. New York, AMS, 1982.

[23] A.Kufner. Weighted Sobolev Spaces. John Wiley Dons, 1985.

[24] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer, Berlin, 1991.

[25] D.S.Mitrinović, J.E. Pečarić and A.M.Fink. Inequalities Involving Functionals and Their Integrals and Derivatives. Kluvner Academic Verlag, (1996), Dordrecht, Boston, London.

[26] T. Laakso. Ahlfors Q-regular spaces with arbitrary Q admitting weak Poincare inequality. Geom. Funct. Anal. 10 (2000), 111-123.

[27] E. Liflyand, E. Ostrovsky and L. Sirota. Structural properties of Bilateral Grand Lebesque Spaces. Turk. Journal of Math., 34, (2010), 207-219.

[28] E.I. Ostrovsky, Exponential Estimations for Random Fields. Moscow-Obninsk, OINPE, 1999 (Russian).

[29] E. Ostrovsky and L.Sirota. Moment Banach spaces: theory and applications. HAIT Journal of Science and Engineering, C, Volume 4, Issues 1-2, pp. 233-262, (2007).

[30] E. Ostrovsky and L.Sirota. Poincaré inequalities for Bilateral Grand Lebesgue Spaces. arXiv:0908.0546v1 [math.FA] 4 Aug 2009

[31] E. Ostrovsky and L.Sirota. Module of continuity for the functions belonging to the Sobolev-Grand Lebesgue Spaces. arXiv:1006.4177v1 [math.FA] 21 Jun 2010

[32] E. Ostrovsky and L.Sirota. Boundedness of operators in Bilateral Grand Lebesgue spaces, with exact and weakly exact constant calculation. arXiv:1104.2963v1 [math.FA] 15 Apr 2011

[33] E. Ostrovsky, Rogover E. and Sirota L. Wirtinger-type inequalities for some rearrangement invariant spaces. arXiv:1001.5279v1 [math.FA] 28 Jan 2010

[34] Payle L.E., Weiberger H.F. (1960) An optimal Poincaré inequality for convex domain. Archive for Rational Mechanics and Analysis. V.3, p. 286-292.

[35] C.Perez (joint work with A.Lerner, S.Ombrosi, K.Moen and R.Torres). Sharp Weighted Bound for Zygmund Singular Integral Operators and Sobolev Inequalities. In: "Oberwolfach Reports", Vol. Number 3, p. 1828 - 1830; EMS Publishing House, ETH - Zentrum FLIC1, CH-8092, Zurich, Switzerland.

[36] Poincaré H. Sur le équations de la physique mathématique. Rend. Circ. Mat. Palermo 8 (1894), 57-156; or "OEuvres de Henry Poincaré", Paris, (1954), p. 123-196.

[37] Rjtva Hurri Syrä. A weighted Poincare inequality with a doubling weight. Proc. of the AMS, v. 126 N 2, (1998), p. 542-546.

[38] S.-E. Takahasi and M. Takeshi. A note on Wirtinger-Beesack’s integral inequalities. Nonlinear analysis and convex analysis. Math. Inequal. Appl., 6, (2003), no 2, pp. 277-282.

[39] M. Tsukada, T. Miura, S.Wada, Y.Takahashi and S.E. Takahasi. On Wirtinger type integral inequalities. Nonlinear analysis and convex convex analysis. Yokogama Publ., Yokogama, (2004), v. 5, pp. 541-549.

[40] A.Wannebo. Hardy inequalities and imbeddings in domains generalizing $C^{0,\alpha}$ domains. Proc. Amer. Math. Soc., 117, (1993), 449-457; MR 93d:46050.