An Inner Product Space-Based Hierarchical Key Assignment Scheme for Access Control

Baris Celiktas, Sueda Guzey, and Enver Ozdemir, Member, IEEE

Abstract—An inner product space-based hierarchical key assignment/access control scheme is presented in this work. The proposed scheme can be utilized in any cloud delivery model where the data controller implements a hierarchical access control policy. In other words, the scheme adjusts any hierarchical access control policy to a digital medium. The scheme is based on inner product spaces and the method of orthogonal projection. While distributing a basis for each class by the data controller, the left-to-right and bottom-up policy can ensure much more flexibility and efficiency, especially during any change in the structure. For each class, the secret keys can be derived only when a predetermined subspace is available. The parent class can obtain the keys of the child class, which means a one-way function, and the opposite direction is not allowed. Our scheme is collision attack and privilege creep problem resistant, as well as key recovery and indistinguishability secure. The performance analysis shows that the data storage overhead is much more tolerable than other schemes in the literature. In addition, the other advantage of our scheme over many others in the literature is that it needs only one operation for the derivation of the key of child classes.

Index Terms—access control, hierarchical, inner product, key assignment, vector space.

1 INTRODUCTION

The confidentiality of data in the digital medium is provided by employed cryptographic primitives such as a secret-key algorithm. An encrypted data in any place is converted to its original form with a predetermined secret key. The access control policy for the predetermined key is supposed to reflect the data controller’s policy which might be complicated in certain institutions. The extracting process in most cases involves the approval of more than one user and an efficient application of any secret sharing algorithm. handles the desired key access control in some cases. On the other hand, a key access control policy that requires approvals from various users where each one has a distinct clearance level determined by the data controller might not be adapted from a secret sharing algorithm. Since 1983, many studies have appeared on hierarchical key assignment schemes. However, there are still open spaces to be completed towards a practical access mechanism for hierarchical structures which motivate us to conduct this research.

The recent trend of moving various services to a digital medium is welcomed by many institutions that process mission-critical data. Such institutions might prefer to use public or private cloud services for data flow and apply their data access policy to the data in such a digital environment. There are many concerns about using the public cloud, especially for military, health, and banking, where confidentiality and privacy are crucial. Besides the general concerns of confidentiality, availability, integrity, reliability, data lock-in, and regulatory compliance, integration of the data controller’s access policy to a digital medium stands as a challenging topic in the research community. Due to the concerns mentioned above, many organizations are slowing down their digitalization adaption plans even though the public cloud deployment model provides many advantages, especially in total cost. In this work, we present a practical key access policy that securely reflects data owners’ hierarchical access policy to eliminate the hesitation on the adaption of access policy to the public cloud. The resulting scheme might help to alleviate concerns about moving private data to the public cloud. The scheme allows flexible hierarchical key assignment protocol which is based on inner product spaces utilizing a mathematical tool of OP. The scheme is specially designed for organizations that use storage as a service cloud delivery model from the public cloud.

This work considers Bell-LaPadula’s (BLP) hierarchical multilevel lattice-based model that addresses confidentiality in a hierarchical organizational structure similar to government or military institutions. One of the main properties that should address is simple security, which means any class with lower classification privileges cannot read or access an object of a higher classification. Thus, we follow the read-down model for hierarchical access control. Figure illustrates a multilevel hierarchical organizational structure. The number of levels indicates the number of classification levels defined by the data controller.

Various institutions have hierarchical management mechanisms in their organizational structure. The hierarchical mechanism can be designed by dividing the organization into functional areas, that is, by dividing it into smaller organization units/groups which we denote by . Each has a security classification level defined by the data owner to access the key/data. Assume that the members of higher classification levels can access data of lower classification levels (if there is a parent-child relationship), but vice versa is not permitted. Since the access control is managed under the
control of the data owner and on-premise, a cloud storage entity as a service provider should not be able to obtain any information about the user’s mission-critical data. Thus, a scheme should facilitate the adoption of the public cloud and be employed safely for various purposes. The first stage of such a scheme that addresses the users’ key access control problem is presented in this work.

In the following parts, we employ directed acyclic graphs (DAG), called access graph and denoted by $G(V, E)$ where V is a finite set of classes (vertices) and E is a set of paired vertices (edges). Let V be a collection of sets $\{V_1, V_2, \ldots, V_i\}$. For example, the graph $G(9, 8)$ in Figure 1 is a DAG with nine vertices and eight directed edges. \leq denotes a partial order (binary relation - antisymmetric, transitive, and reflexive) on V, thus (V, \leq) is a partially ordered set (poset). Security classes V_i, in other words, any groups G_i chosen are disjoint. Let $x, y \in V$, $x \leq y$ indicates two disjoint classes and it means that the users in class x can access all the data to which the users in class y have access. Namely, $G_x \leq G_y$ means that any user in G_x can access the data belongs to G_y, and G_x’s clearance level is higher than or equal to G_y. Note that G_1 has to be one of the parent classes of G_y. Figure 1 and Figure 2 illustrate the key access structure via the proposed scheme. In this figure, the root parent G_1 has two children (G_2, G_3). Each of these children is a parent to other children. Parent G_2 has three children (G_4, G_5, G_6), parent G_3 has three children (G_7, G_8, G_9) too. Each child has only one immediate parent, all parents except the root parent G_1 also have an immediate parent and children. The secret key of each child class can be obtained only by the parent classes in addition to its own class, but the other way around is not allowed. Although they have the same clearance level (as shown in Figure 2), if they are not in the parent-child relationship in Figure 1, the key cannot be obtained since the relationship conditions are not met.

The remaining work is structured as follows; Section 2 presents a literature review regarding key assignment schemes for hierarchical access control. Section 3 provides the preliminaries on which our scheme is based, such as the inner product space, the Gram-Schmidt (GS) method, and the orthogonal projection (OP). Section 4 includes the detailed presentation of our scheme. Section 5 shows the implementation and comparison results of our scheme with others. Section 6 provides a summary of our scheme.

2 Literature Review

This section will present the studies related to the key assignment schemes for hierarchical access control.

In order to provide a key assignment scheme obeying a hierarchical structure, various schemes have been presented, and almost all the schemes [2], [6] – [13] are based on a poset hierarchy. They are not designed to give access to users only for a certain period of time. The other point that is overlooked is that updating keys are based on poset hierarchy. In other words, the key derivation might be so costly that they become not be practical for large hierarchies. We should note here that Akl and Taylor-based schemes are only secure under the assertion that the Rivest-Shamir-Adleman (RSA) public key algorithm is secure [14].

In the work [15], the Lucas function-based time-bound property is utilized to ensure time and performance efficiency and to solve key update issues. These time-bound related schemes are divided into two categories: the first is based on tamper-proofed machines [16] and the second [15], [17] is based on public information. Note that tamper-proof machines are collusion (collaboration attack) resistant but expensive, inappropriate for the cloud, and limit user convenience. Public information can be utilized efficiently since the cloud ensures broad network access. Both public information and the user’s own key are used to derive the secret key of lower classification levels. Thus, the number of public information is critical for measuring the efficiency of the key assignment scheme.

In all other schemes proposed later, the main goal is to ensure secure, dynamic, and cost-effective hierarchical key assignment method. The parameters that gauge the efficiency and security of the hierarchical key assignment schemes in the literature are as follows:

1) The amount of public and private information needed: It refers to the amount of information allocated to each class in the hierarchy for the secret key derivation. The data controller distributes private information to classes so that only users of desired classes have access. On the other hand, the data controller publishes all public information to all classes following the predetermined hierarchical structure.
2) Key derivation complexity: It refers to the number of operations or computational requirements/cost needed for key derivation and it must be minimal and tolerable.

3) Key update complexity due to changes in the organizational structure: It refers to the cost needed for key updates and it must be minimal and tolerable. A scheme is supposed to allow the insertion and deletion of classes in the organization without the need for redistribution of any private information.

4) Collusion (aka collaborative/key recovery-

5) Key indistinguishability secure denoted by KI_s: It should not be possible to distinguish between an arbitrary string and the secret key of the same length. If the scheme is KI_s, then it is also KR_s, but not vice versa [17].

6) Resistance to privilege creep problem: When the clearance level of any member U of the class is downgraded, or the membership is changed, the member should not be able to use former privileges during a period of transition. In other words, a scheme must guarantee both forward and backward secrecy.

The work [2] proposed a key management (access control) scheme to solve the multi-group management and the problem of data sharing in the hierarchical structure. In this scheme, the communication (or computer) system users are classified into disjoint sets $G_1, G_2, G_3, \ldots, G_n$. Note that the relationship between classes is just a poset hierarchy. A security level is used to define each of the G_s and users in G_n can access data kept by users in the same group or lower security level group, while the opposite direction is not allowed. They offer a solution to a hierarchical access control problem. The approach does not entirely address multi-level security problems although it is useful in a distributed and secure system. It cannot be adapted dynamically and flexibly to the security policy set by the data controller. The other problem is that users can use the key permanently at a higher security level. A significant amount of storage and communication is consumed due to the need to replace the keys regularly and redistribute them to users. According to [17], it derives the key expensively and is only KR_s. Because the number of keys kept by each user is large, it is not cost-effective as the number of users rises. [6]. A significant amount of storage is also needed to store public information for each security class [8], [13].

The work [6] which is the improved scheme of [2] (aka a canonical assignment) is presented to mitigate the public information storage need in order to control data access within a user group ordered in a hierarchical structure if the number of classes is remarkably huge [15]. But, the storage need is not zeroed [13]. Any user of a group can access the data of lower-level group as they can derive lower-level group users’ keys and it is also KI_s.

The work [7] proposed a tree hierarchical scheme based on symmetric-key cryptography that security classes are designed as rooted-tree, an example of poset hierarchy. It uses an iterative method of a one-way function, which provides an efficient method to compute images of inputs while making computationally hard to compute pre-images. With utilizing such functions, the key of the child class can be derived. The most important innovation is that novel security classes can be inserted even the keys of existing classes remain unchanged. For example, once a new security class is inserted in [2] and [6], all keys not associated with this class also have to be changed, and this causes a substantial burden, especially for distributed and large infrastructures. In addition, the key derivation process does not need additional public parameters. But, the main drawbacks of it are as follows. The computational overhead during deriving keys, particularly once the key belongs to the lowest class that needs to be created by the root of the tree, is not tolerable. It can only be implemented efficiently in case of less than eleven security level-tree hierarchy.

The work [8] proposed a method akin to [2] but adopted a bottom-up key derivation policy. Unlike other works [2], [6], new security classes can be inserted even the keys of existing classes remain unchanged. The public storage need for classes is much less than [2], [6]. In addition, it is much more efficient in memory utilization in comparison with [2]. The works [9], [10] are based on one-way function and Newton’s implementation. However, the computation time needed for key derivation is massive, which makes them time-consuming and they are not KR_s.

The work [12] proposed an optimal heuristic algorithm for distributing keys applying an up-bottom design approach in a tree hierarchy. The generation and derivation of keys can be done efficiently, as well as the method reduces the storage requirement for general parameters. However, similar to [7], it can only be utilized in a tree hierarchy.

The work [13] modified the algorithm [12] so that it can be used in the poset hierarchy. Thus a user at a parent class can derive the keys of users of child levels using its own cryptographic key, which means a one-way function, and the opposite direction is not allowed. The users collaborating at a child class of the hierarchy would not derive the key of a parent class because they are not authorized. Thus, it is KI_s.

The work [15] is based on a time-bound and inspired by [2] to hinder the key from being utilized continuously by higher level users of class C. In this scheme, any user can become a member of C only for a certain time period. A user in C_x can only derive K_y from K_x at time t iff $C_y \leq C_x$ and $t_1 \leq t \leq t_2$, where t_1 and t_2 are the boundaries/limits of the time period. Namely, a user can hold encrypted data for only within a certain time period. A hierarchy with optimal bandwidth has broadcast data to authorized users, and a user can only receive data that has been granted access. On the other hand, by listening to the broadcast, any data cannot be obtained by unauthorized users. A user of the parent class can grant privilege to another user to decrypt encrypted data which provides flexibility. It is not dependent on the number of classes in the hierarchical structure, which does not exist in the previously proposed key assignment schemes based on poset hierarchy. Since users must always hold keys to access authorized data for a certain time period, it is not efficient as expected. While it requires less communication and storage cost, it is computationally inefficient due to
the need for costly public key computation in addition to costly computations which occur overload during the implementation [16]. In addition, it is not KI_s if at least three users collude to access the keys [19].

The work [16] is motivated especially by [2] and [15] for its efficient time-bound feature. It improves [15]’s scheme by allocating different keys to all in hierarchical structure to address both implementation and performance problems. It uses a tamper-resistant machine performing only simple operations without public-key encryption and is inaccessible even to the owner. There is a Trusted Agent (TA) and a secure one-way hash function h as well. It is economically unfeasible to derive a key from the public value. Users of child classes cannot derive the key of parent classes, meaning KR_s. No user can derive any key beyond the authorized time periods. In comparison with [15], it appears much more efficient based on performance analysis. It requires a low-cost, tamper-resistant machine with low computational complexity supporting small storage. However, three or more users’ collaboration is enough to access the keys, so it is not KR_s. [18], [19].

The work [20] categorized nearly all key assignment schemes in literature as a trivial key assignment scheme-TKAS, a trivial key encrypting key assignment scheme-TKEKAS, a direct key encrypting key assignment scheme-DKEKAS, a node-based key assignment scheme-NBKAS, and an iterative key encrypting key assignment scheme-IKEKAS. In TKAS, key generation is effortless, but it is a poor scheme since the key update/change is arduous. In TKEKAS, the key update process is easier and useful, especially if the key is compromised. In DKEKAS, private storage need is minimal, and key update is easier, but public data is quite high. In NBKAS, whose security based on the difficulty of computing integral roots modulo n, storing a single secret value is only required for each user. It has an advantage over both TKEKAS and DKEKAS. The keys are originally dependent but can easily be converted to independent keys. Keys can be derived in a single step for the schemes above. In IKEKAS, key generation and updates are relatively easy, less public storage is needed, but the key generation is iterative, not direct. It is stated that the changes in the information flow policy are included in a key assignment scheme, but there is a need for studies that address the key update/change problems. In addition, best practices for any key assignment scheme are described as follows: requiring a small amount of private and public storage, providing a computationally efficient method for both derivation and update keys, and being KR_s (no combination of users can derive keys where they do not have authorization).

The work [21] proposed dynamic and efficient and key access control and management scheme for hierarchical infrastructures. It is based on random access graphs. In order to derive the child’s key using its own key, only the hash functions are used for a node. The derivation of child class’s key is restricted to the number of linear bit operations, and each class has a single key related to that class. Similar to [21], the scheme in the work [22] is also suitable to the dynamic changes of classes in the hierarchy, such as deletion and insertion of classes. The formal security analysis of the schemes has been made, and KI_s and KR_s first took their place on the stage with [21]. It is a chosen-plaintext secure, and it relies on an additional symmetric key encryption scheme and pseudo-random functions. In the worst case, the key derivation needs the implementation of $O(n)$ hash functions, where n is the number of nodes in the graph. It is more efficient than its predecessors due to its dependency on interpolating polynomial, costly modular exponentiation operations, and additional encryption. However, according to [17], each user must store up to three private information, and the overall amount of public information adverse affects the key derivation complexity. In [23], the greater the public information, the larger the number of both edges and classes on the graph. Also, the larger the number of clearance levels between classes, the greater the key derivation cost.

In order to address hierarchical access control problem, key assignment schemes [24] – [29] based on elliptic-curve cryptography(ECC) were proposed. In [24], the principle that the number of access control policies is related to the number of keys and tamper-resistant machines performing a major role in this scheme, makes it slower than both [15] and [16]. According to the work [27], the scheme [24] is not KR_s, and the scheme [25] is not secure against exterior root-finding attack. Furthermore, the method presented in [26] is not KR_s.

The schemes [30] and [31] provide better performance compared to their predecessors. In [30], the schemes named time-bound and time-bound broadcast encryption-based family (respectively TBBBF and TBBBF) provide dynamic updates without the need for redistribution of private information despite the rise in the number of public information. They are KI_s and improve Atallah et al.’s scheme [21] on the computational need for key derivation and update. Key derivation (TBBBF) requires symmetric decryption about as many as the number of levels in the hierarchical structure, and TBBBF requires complex symmetric decryption. The private storage need is small as it needs only one key per class, but the greater the public storage need, the larger the number of edges and classes in the graph. However, in [31], it guarantees efficient computation and storage cost compared to its predecessors. The schemes [17] are based on symmetric encryption and bilinear maps respectively. They are KI_s and KR_s, meaning provable-secure. The key derivation operations are very efficient as only one decryption, or one pairing evaluation is sufficient regardless of the number of levels in the hierarchical structure. Only changes to the public information are sufficient to update the structure and any private information remains unchanged. According to the work [23], since they are based on the number of both time periods and classes, private information can be as huge as the number of time periods.

The schemes [23] are based on forward secure pseudo-random generators (FSPRG) and pseudo-random functions (PRF). There is a trade-off between the key derivation efficiency and private information storage need. The overall key derivation efficiency relies on the longest poset depth. In contrast, private information need relies on the poset width, but key derivation efficiency is comparatively better than others. Another advantage is that the schemes don’t need public storage. In addition, the updated version of [21] guarantees a stronger security SKI_s than all schemes before.

The scheme [32] is based on linear-geometry, organizes the set of users in a hierarchy and divides the users into
security classes (disjoint groups) to ensure different access privileges for each. To derive the key of a security class, its own public vector and the private vector of its parent class must be used together. The key of the child security class can be derived directly by the parent security class, without the need for iterative computation and it is also SKI. It requires to calculate the vector multiplication and the pseudo-random function values, which causes tolerable computational cost. While the public storage need is greater than the others, which is the main drawback of this scheme, there is a trade-off between the storage need and the computation cost. It also provides fine-grained control and flexibility to adapt to changes/updates in the hierarchy efficiently. If there is a change, a new public matrix must be calculated and published by the data controller. Thus, the overall overhead might not be tolerable and efficient eventually. The other disadvantage is that the matrix should satisfy certain properties to set the relation between the number of classes in the hierarchical structure and the public information, particularly for re-keying.

The scheme [35] relies on a secret sharing algorithm and polynomial interpolation method. In the scheme, the data controller is an entity composed of organizational units, the key is secret information that is only one for each organizational unit in the structure. The scheme is especially designed for the dependent organizational units [34]. In other words, the users with sufficient approvals from the higher or same privileged users can only access the key using the topological sorting of a directed graph, including self-looping. The key derivation cost, private, and public storage needs are tolerable. Because the secret key of the organization unit is not necessary to be kept anywhere, a data breach relied on the key disclosure risk is also minimized or eliminated.

In summary, overall two types of hierarchical key assignment/access control schemes are proposed, direct and indirect control. For direct schemes such as [22], [25], [29], [32], it only requires one computational task for the derivation of the child class’s secret key. For indirect schemes such as [23], [30], [31], any child class’s secret key can be derived by computing all the keys in the path to its own class. However, their disadvantages are; they are not secure enough [28], [38], [39] and require a high overhead task [29]. Therefore, there is still plenty of room for the research toward a practical and secure key access mechanism. This motivates us to build a secure and efficient inner product space-based cloud-independent hierarchical key assignment scheme.

3 Preliminaries

3.1 Inner Product Space

Various applications of linear algebra have been presented for the last century [35]. Matrices, eigenvalues, linear systems are indispensable tools in computational science, especially in artificial intelligence and machine learning-related research [35]. The majority of vector spaces come with a well-defined inner product which is basically a tool to measure the distance between two vectors in the space. Such spaces have been recently employed by the security community [37]. Once the distance is defined in space, locating the closest vectors to certain subspaces will only require computational tasks. The proposed algorithm in this work uses this fundamental notion of distance, in other words, the inner product. An inner product and its properties on a vector space V are briefly described below. Then, the procedure of finding the closest vector to a defined subspace is presented. As the procedure requires utilizing an orthonormal basis for the given subspace, constructing an orthonormal basis for a vector space called the GS orthogonalization process is briefly demonstrated. Finally, we explain the last step to find OP of a vector to the defined subspace of V.

The vector space V with an inner product is called an inner product space. Utilizing an inner product space for our purposes might first require creating an orthonormal basis in it. Now assume $B = \{v_1, v_2, \ldots, v_n\}$ is a basis for the vector space V. The GS method can be utilized to make it an orthogonal basis for V, and the new set $S = \{w_1/\sqrt{\langle v_1, v_1 \rangle}, \ldots, w_n/\sqrt{\langle v_n, v_n \rangle}\}$ after applying GS method to the set B forms an orthonormal basis for V.

The inner product has been presented to create an analogue of the OP for a vector subspace. An OP can be rephrased as follows. Let g be a vector and W be a subspace of V such that it is generated by g. Assume that the vector $f \in V$ doesn’t lie in W. The formula that gives the OP of f on W is $\langle f, g \rangle / \langle g, g \rangle$. Interestingly, the projection of f on W remains the same for any basis of W, and this fact is independent of the dimension of W, which will be exploited in the proposed key access scheme.

3.2 Orthogonal Projection - OP

In real-time applications, one needs to approximate a value of a function $f(x)$ where this value can not be computed analytically. For example, Taylor approximation allows one to write down a continuously differentiable function as a linear combination of polynomials. Similarly, Fourier Expansion gives a method to express any periodic function as a linear combination of trigonometric functions. The fundamental idea behind the Fourier Expansion is the well-known OP.

In fact, if $S = \{g_1, g_2, \ldots, g_n\}$ is an orthonormal basis for W then the projection vector of f on W can be written as a linear combination of elements in S. Let h be the closest vector of f then

$$h = c_1 g_1 + c_2 g_2 + \cdots + c_n g_n$$

for some integers $c_i \in \mathbb{F}$ (1)

As $f - h$ must be perpendicular to each one of g_1, g_2, \ldots, g_n, the inner product of $f - h$ with g_1, g_2, \ldots, g_n must all be zero. In other words, $\langle f - h, g_i \rangle = 0$ for $i = 1, \ldots, n$ and this implies

$$c_i = \langle f, g_i \rangle$$

for $i = 1, \ldots, n$. (2)

We should note here that for any orthonormal basis S' of W, the OP of f on W will be the same. As long as a basis of W is known, the unique OP can easily be computed via
the GS orthogonalization process. Figure 3 depicts the idea of OP on an inner product space.

![OP Diagram](image)

Fig. 3. OP: The closest vector h to f is the OP of f onto W. In other words, h is the nearest vector to f in W if and only if (f − h) is perpendicular to all vectors in W.

A projection of a vector f onto W is unique and will be a crucial observation that the proposed scheme is used for its purpose. In other words, for a subspace of W, each user has a distinct basis, but each user can construct the same OP of a vector f in V.

4 The Proposed Scheme

Our proposed scheme is based on the following rules.

Rule 1. G1 is the root class and the most privileged group, and c ≥ 0 is the number of classes in the hierarchy.

Rule 2. For any two classes Gi, Gj ∈ V, Gi ≤ Gj means that any user in Gi can access its own secret key Kj and also Kj belonging to Gj whose clearance level is equal to or lower than that of Gi. This is the simple security property (no read-up access control policy) based on BLP hierarchical lattice-based model. Note that G1 has to be one of the parent classes of Gj and if they are not in the parent-child relationship like in Figure 1, then Kj should not be obtained by the members of Gi.

Rule 3. All basis sets S distributed for each class to design a poset in the hierarchy have to be in compliance with the LRBU policy to provide much more flexibility and efficiency especially for any change in the hierarchy. For example, in this respect the children G4, G5 and G6 of the parent G2 as depicted in Figure 1 are given the basis sets

\[
S_4 = \{v_1, v_2, v_3\} \\
S_5 = \{v_4, v_5, v_6\} \\
S_6 = \{v_7, v_8, v_9\}
\]

for subspaces W4, W5 and W6 respectively.

Rule 4. All vectors vi that make up the elements of each Si must be linearly independent. Note that all vi for i = 1, 2, · · · , 9 are distinct and the set v1, · · · , v9 is linearly independent which means that each W4, W5 and W6 are disjoint three-dimensional subspaces, and W2 is ten-dimensional subspace generated by linearly independent set S2 containing v1, v2, · · · , v9 and additionally a1.

Notice that except v1, v2, · · · , v9, the remaining vector of S2, which is a1, is kept secret and it is assumed to be private information of G2 which prevents the G2’s key from being accessible by children G4, G5, and G6. In other words, even if all the children come together and combine the information they have, they can not generate the subspace W2 and derive the secret key of the G2. On the other hand, G2 has all required information (namely all basis elements) to derive its children’s keys separately to access their data.

Similarly, now consider that G7, G8 and G9 are children of parent G3. Assume that they are given the basis sets

\[
S_7 = \{v_{10}, v_{11}, v_{12}, v_{13}\} \\
S_8 = \{v_{14}, v_{15}, v_{16}, v_{17}\} \\
S_9 = \{v_{18}, v_{19}, v_{20}, v_{21}\}
\]

for the distinct four-dimensional subspaces W7, W8, and W9 respectively. Hence, the higher clearance level group G3 (the parent of these three classes) has the set S3 containing v10, v11, · · · , v21 and other vector a2 in its basis which generates the subspace W3. As mentioned above, except v10, · · · , v21 the other element a2 of the basis for W3 is kept secret of the G3. Thus any user in G3 can access the corresponding keys K3, K7, K8, and K9 but any member of G4, G5, G6, G7, G8, and G9 which are lower clearance level groups does not access the K3, they can only access their own secret keys.

Finally, in this scheme, the root class G1 has the basis S1 of the vector space W1. The basis S1 consists of the basis elements of G2 and G3 as well as its private vector b1. The above illustration can also be adapted efficiently to an N-class hierarchy by applying an LRBU policy.

4.1 Preparation phase

The data controller:

Step 1. Determines all hierarchical classes Gi for i = 1, 2, · · · , c of the organization instantiated by Figure 1 and 2 based on the Rule 2.

Step 2. Determines a vector space V which is preferably infinite dimension over a finite field Fq and decides an inner product defined on V.

Step 3. Identifies subspaces W1, W2, · · · , Wc. Notice that the selected V structure allows the data controller to change the number of W1 as the number of classes in the hierarchy c changes.

Step 4. Determines the corresponding basis sets Si (according to clearance level) for predetermined subspaces W1 to distribute each class/group Gi for i = 1, 2, · · · , c in organization.

Step 5. Generates the basis sets S′i obtained by multiplying the first component of the assigned basis set Si with arbitrary constants in the selected field Fq to distribute to users Ui in the group Gi.

4.2 Key distribution phase

At this stage, the data controller shares the public and private information with the relevant groups Gi that enable each member Ui to derive the corresponding key KGi.

Step 1. Selects a vector f in V which does not lie in any Wi for i = 1, 2, · · · , c and makes it known by all the members.

Step 2. Determines all corresponding basis sets Si for each Wi assigned to the class Gi in the hierarchy.

Step 3. Distributes basis sets S′i derived from the base set Si to each member of the group Gi.
4.3 Key derivation phase

Note that once the users receive their own basis (public and private information), they can form an orthonormal basis for W_i by applying the GS method to their basis and then apply OP of f onto W_i to extract the secret K_{G_i}. (Figure 3).

To derive the corresponding secret key K_{G_i}, any user in the hierarchical structure:

Step 1. Applies GS orthogonalization operation to the given basis, namely computes corresponding orthonormal basis. (See 3.1)

Step 2. Runs OP in order to obtain the corresponding key K_{G_i}. (See Figure 3)

To derive the key for the class G_i, each user computes:

$$K_{G_i} = \text{Proj}_W f.$$

Notice that the K_{G_i} for each group G_i requires having a basis for the corresponding subspace W_i. On the other hand, for a child to have its parent’s key, it also needs the parent’s private information, which will be a vector and is not feasible for the children to guess from its own basis. For example, if W_1 is a three dimensional subspace of \mathbb{R}^n ($n \geq 4$) and $W_1 \supset W_2$ of dimension 2, it is not feasible to obtain W_1 from W_2. In fact, there are many subspaces of \mathbb{R}^n of three-dimension, and if one knows only two basis elements of it, it is impossible to obtain the third one. The general framework of extracting a K_{G_i} from a known basis, namely computes corresponding orthonormal basis. (See Figure 3) and it is the point on which the security and performance of our scheme are based.

4.4 Dynamic update phase

The scheme allows the insertion and deletion of classes in the hierarchy without the need to redistribute and change any public information f used by any G_j for both cases below. The insertion and deletion of any class G_j have to be following security and LRBU policy.

Insertion. If a new group G_j is inserted into the hierarchy, a new basis set S_j is given to this new group as private information concerning its clearance level by the data controller. Then, all related parents with G_j will have the updated basis set, including the basis elements of the S_j. Note that there is no need to update any child’s basis set.

Deletion. If any G_j which is a parent of some children, is removed from the hierarchy, all children of the removed parent will be linked to one higher parent class and the new related parents’ basis sets. However, if the deleted group is at the bottom of the hierarchy, there will be no change in linkage. In addition, if the data controller removes or deletes any G_j in the hierarchy, the basis set of G_j will also be removed from the higher parent classes to ensure efficiency and reduce disk space requirement.

5 IMPLEMENTATION RESULTS AND COMPARISON

We implemented the proposed hierarchical key access mechanism on a computer with Linux OS running on Intel Core i7-5600 CPU 2.60 GHZ X-64 bit processor, 8 GB memory, and we use JAVA programming language, and Java compiler (javac).

The derivation process of a secret key K_i requires first finding an orthonormal basis described in Algorithm 2 (GS orthogonalization process). Upon constructing an orthonormal basis, the method employs OP, which outputs the K_i where Algorithm 1 stands for the key extracting process. The vector space V can be selected as an inner product space, and in fact, V being a polynomial space over any field offers suitable choices for inner product and subspaces. On the other hand, for simplicity, we employed the well-known space \mathbb{R}^n and the inner product, which is called dot product, in the implementations.

```
Algorithm 1:
Input:
1 A subspace $W$ and its basis $\{b_1,b_2,\ldots,b_n\}$ where $W \subseteq V$ infinite dimension
2 $U_{ij}, i=1,2,\ldots,j, j=1,2,\ldots,n$ where $c$ is the number of users and $z$ is the number of users in $c^{th}$ group
3 $K_i,j=1,2,\ldots,dim$ where dim is the dimension
Initialization:
4 $f \leftarrow$ selectRandomVector(V) where $f \in V$
5 $S_0 \leftarrow W$ where $f \notin W$ and $W \subseteq V$
Forward Inclusion:
6 for $i=1$ to $c$ do
7 $S_i \leftarrow \text{span}\{S_{i-1}\} \ select$ the first $k_i$ vectors in $S_{i-1}$ where $S_{i-1} \supset S_i$
8 for $j=1$ to $z$ do
9 $C_{ij} \leftarrow \text{RandomIntVector}(L)$ where $L \in R^{k_i}$
10 $U_{ij} \leftarrow S_i \cdot C_{ij}$
11 $W_{ij} \leftarrow \text{gramSchmidt}(U_{ij})$ see Algorithm 2
12 $K_{ij} \leftarrow \sum_{i=1}^{n} (f, w_i) \cdot w_i$
```

```
Algorithm 2:
Input:
A Vector set $V = \{v_1,v_2,\ldots,v_n\}$

Procedure gramSchmidt(V):
1 $w_1 = \frac{v_1}{\|v_1\|}
2$ for $j=2$ to $n$ do
3 for $k=1$ to $j-1$ do
4 $w_j \leftarrow v_j - \frac{\langle v_j, w_k \rangle}{\|w_k\|^2} w_k
5 w_j = \frac{w_j}{\|w_j\|}$
Return:
Orthonormal vector set $V' = \{w_1,w_2,\ldots,w_n\}$
```

5.1 Performance Analysis

In this section, we will discuss the performance and security analysis of the proposed scheme.
Public and private storage needs, key derivation, and key update overhead are critical metrics to gauge the efficiency of our scheme. Note that the number of classes G in the hierarchy is c. The maximum dimensions of a subspace associated with any class at the bottom in the hierarchy are denoted by b.

Public information storage need: The f vector which does not lie in the subspace W_i for all $i = 1, 2, \ldots, c$ where c is the total number of classes in the hierarchy but lies in the vector space V is the only public information for each class to derive the corresponding secret key K_{G_i}.

Private information storage need: Each member of the class needs its own basis S_{U_i} to derive the K_{G_i}. The S_{G_i}, which belongs to the bottom classes, is the private information of the corresponding class. Therefore, the maximum private storage need per class in the hierarchy is b. All elements of the basis sets of the children are also the member of relevant parent classes’ basis sets. Thus, all parents have one additional private vector, which is not on the basis of any of its children. In summary, all classes except the lowest child classes at the bottom have only one private information, whereas the classes at the bottom have a maximum private information need of b.

Key derivation cost: The secret key of a user is extracted from users’ private information and requires access to data. The extraction process involves GS orthogonalization operation and projection of the public vector f on the subspace generated by the users’ private basis elements. The actual cost depends on the size of the basis and the defined inner product on the universal set V. To compute the cost of these steps, we fixed the group G and the corresponding subspace, which W denotes. Let n be the dimension of the subspace W, which is assigned to the group G. We will present the key derivation cost in three phases: the number of inner product I, multiplication M, and division D operations.

1) GS orthogonalization process:
\[
\sum_{i=1}^{n} 2(i - 1) = n^2 - n \text{ inner products are required.}
\]
2) Normalization process: The orthogonal basis should be normalized, requiring n additional I for n vectors.
3) The final operation for the projection is the determination of the coefficients in the equation, which requires n more I for the n dimensional vector space.

The number of M: $\frac{(n^2 + n)}{2}$.
1) GS orthogonalization process:
\[
\sum_{i=1}^{n} (i - 1) = \frac{n(n - 1)}{2} \text{ multiplications.}
\]
2) Equation: n additional M must be performed to obtain the projection vector h.

The number of D: $\frac{(n^2 + n)}{2}$.
1) GS orthogonalization process:
\[
\sum_{i=1}^{n} (i - 1) = \frac{n(n - 1)}{2} \text{ divisions.}
\]
2) Normalization process: n additional D is required to normalize the orthogonal set consisting of n vectors.

In summary, the secret key K derivation cost for a user is $O(n^2)$ where the ultimate cost is
\[
(n^2 + n)I + \frac{n^2 + n}{2} M + \frac{n^2 + n}{2} D.
\]

Key update: The scheme allows the insertion and deletion of classes in the hierarchy without the need to redistribute any public information. In addition, computational requirements redistribution of any private information needed for key updates (if there is an insertion) is minimal.

Change in the hierarchy: In case of a change (insertion or deletion) in the number of users and classes, there is no extra private or public information need, so the key derivation cost will be constant when any class is deleted. As seen in Figures (5-7), key derivation for relevant parent classes will increase linearly only with the insertion of a new child class as the dimension of the subspaces increases. Note that the change in the hierarchy might also cause to privilege creep problem, and our scheme brings a solution for this with a little extra storage need and key derivation cost. (see [5.2]).

We implement Algorithm 1 and Algorithm 2 while selecting real vector space \mathbb{R}^n over real numbers to observe the real-time cost of the key derivation process. The inner product then is chosen to be the dot product. The dimension of vector subspaces vs. maximum total key derivation cost
(milliseconds) is depicted in Figures (5-7) below. The key derivation cost increases linearly as the dimension of vector subspaces increases. When calculating the key derivation cost for any user \(U \) in the group \(G \), only for the 11\(^{th} \) and 12\(^{th} \) steps of Algorithm 1 have been considered. Namely, these steps are directly related to the actual key derivation cost after the startup phase (up to 10\(^{th} \) step) of the algorithm is completed.

![Fig. 5. Key derivation cost (milliseconds) up to dimension 50](image)

![Fig. 6. Key derivation cost (milliseconds) up to dimension 500](image)

![Fig. 7. Key derivation cost (milliseconds) up to dimension 1000](image)

5.2 Security Analysis

\(KR_s \): Because each class in the hierarchy has a distinct basis \(S \), any child class, and any same level class cannot derive any private keys that do not belong to their own class. Our scheme is collusion resistant to coalition attacks of the child classes and the same level classes. Hence we can easily say that it is at least \(KR_s \).

\(KI_s \): Our scheme is secure under the assertion of chosen linearly independence vectors. For any child class, finding a unique linearly independent vector of the parent class is negligible. In other words, any element in the universal not belonging to the subspace associated with the child is equally likely to be the one that the child class is looking for. That makes finding an upper-class basis computationally infeasible. Thus, our scheme is \(KI_s \).

Resistance to privilege creep problem. If there is a change in the hierarchy, which means that the clearance level of any \(U \) of the class is downgraded or the membership is changed (e.g., if a \(U \) member of \(G_7 \) later becomes a member of \(G_8 \), or leaves the organization), the user \(U \) should no longer be able to access other classes for which they previously had privileges. When any of the above situations occur, the basis \(S \) owned by the user’s group gets extra basis element \(v_i \) distributed to all users in this group and relevant parents (inserting only one element into the basis of the relevant classes). In this way, the maximum private storage will increase by one as relevant space’s dimension increases by one, and the key derivation cost will increase accordingly. The left user can not guess the extra basis elements, so the user can not derive the key anymore at the expense of a little extra storage cost.

5.3 Comparison with Other Schemes

Table 1 reveals a comparison between ours and some other well-known key access schemes. The comparison takes into account several parameters, and the notation can be seen at the bottom of Table 1.

In Akl and Taylor based schemes [2], [6] – [13], [15], [16], the key update and the key derivation are costly that these schemes might not be practical for large distinct classes in a hierarchical structure. Some are insecure against collusion attacks and only \(KR_s \) and \(KI_s \) under the RSA assertion or random exponent. Note that both \(KR_s \) and \(KI_s \) in other words, a provably secure scheme first came up with [21].

In Atallah et al. [21] and De Santis et al. [30], the number of public information increases with the number of security classes. Private storage is only a single symmetric key for each class. However, the key derivation cost is directly related to the path length between classes. Namely, the cost grows if the path length between classes increases. They are \(KI_s \) and chosen-plaintext-attack-resistant CPA, according to the security perspective.

In D’Arco et al. [14], it has proven that Akl and Taylor-based schemes [6] – [13], [15], [16] (\(KR_s \) by default) can only be \(KI_s \) under RSA assertion RSA. But, to be \(KI_s \), the additional public storage need and key derivation cost must be met, which will be a quite multiple of the bit length \(l \) of the key.
In Ateniese et al. [17], the key derivation is very efficient even if the path length between classes is too much. The main drawback are storage needs. For the first scheme, both the number of time periods and classes are critical for determining the public storage need, on the other hand, for the second, only the number of time periods is a key parameter to determine the private storage need.

In Freire et al. [23], there is a trade-off between private information storage requirement and efficiency of key derivation. The ultimate efficiency of key derivation is restricted to the path length between classes in hierarchy \(h \). On the other hand, the amount of private information relies on the poset width \(w \). The most important contribution to the literature is that it does not need public storage.

In Tang et al. [32], the direct access scheme without the need for iterative computation is \(SKIs \) and addresses the potential hierarchical changes with minimum computations. But the main drawback is public storage need in comparison with others, but there is a linear relation between storage need and computational cost. Each class in the hierarchy requires to calculate two times \(M \) (modular multiplication cost), and one time \(A \) (modular addition cost) over \(F_q \) for the derivation of its \(K \). In addition, each class requires to calculate twice the value of \(F \), four times \(M \), and two times \(A \) over \(F_q \). Thus, the ultimate cost of each class might be intolerable, which makes the scheme inefficient. Note that the change/update in hierarchy requires the data controller to calculate and publish a novel public matrix.

In Celiktas et al. [34], the private storage need is equal to the number of classes \(G \) in specific \(OU \), but it can be reduced to 1, on the other hand, the public storage need is equal to zero. In addition, the key derivation cost is equal to the square of the interpolation polynomial degree \(d^2 \) which means if polynomials of large degrees are chosen, the key derivation cost will increase considerably and exponentially.

On the other hand, our proposed scheme provides fine-grained and flexible hierarchical direct access control and does not need other classes for the key derivation. However, the key derivation cost is \(n^2 \), which can be seen as an overhead in large hierarchical structures as the cost increases exponentially. Our scheme’s private and public storage needs are tolerable and it is \(SKIs \) based on the security of the linearly independent chosen vectors \(LICVs \). The other advantage over [32] is that there is no need to publish new public information if there is a change in the hierarchy.

6 Conclusion

In this work, the inner product spaces are applied to construct a hierarchical key assignment scheme employed in various situations, particularly for any cloud service.

Private and public storage requirement, key derivation, and key update overhead, resistance to collusion attacks and privilege creep problem, the state of \(KR_A \) and \(KN_A \), and whether creating an information-theoretic secure system or not are critical parameters to compare our schemes with other hierarchical assignment/access control schemes in the literature. For instance, private and public storage needs are among the key burdens for the data controller who processes the mission-critical data in hierarchical infrastructures. Our scheme has reduced these to certain low levels.

The other best practice for key assignment schemes ensuring a computationally efficient method for derivation and updating keys is also provided in our scheme.

According to the security perspective, the collusion problem in other words collaborated attack, which is one of the main problems for key access assignment schemes in literature is prevented by our scheme. Our scheme guarantees the resistance to collusion attacks and privilege creep problem, ensuring forward and backward security, so it is both \(KR_A \) and \(KN_A \).

References

[1] A. Shamir, “How to Share a Secret”, Communications of ACM, 22(11), 612-613, 1979.

[2] S.G. Akl and P.D. Taylor, “Cryptographic Solution to a Problem of Access Control in a Hierarchy”, ACM Transactions on Computer Systems, vol. 1, no. 3, pp. 239–248, 1983.

[3] S. Kamara and K. Lauter, “Cryptographic Cloud Storage”, Financial Cryptography and Data Security, 136-149, 2010.

[4] C. Dong, J. Yu, Y. Luo, X. Chen, G. Xue, and Y. Li, “Achieving Secure and Efficient Data Collaboration in Cloud Computing”, IEEE/ACM 21st International Symposium on Quality of Service, Montreal, QC, pp. 1-6, 2013.

[5] L. Zhou, V. Varadharajan, and M. Hitchens, Achieving Secure Role-Based Access Control on Encrypted Data in Cloud Storage”, IEEE Transactions on Information Forensics and Security, vol. 8, no. 12, pp. 1947-1960, 2013.

[6] S. MacKinnon, P. Taylor, H. Meijer, and S. Akl, “An Optimal Algorithm for Assigning Cryptographic Keys to Control Access in a Hierarchy” IEEE Transactions on Computers vol. 34, no. 9, pp. 797-802, 1985.

[7] S. Akl, “Cryptographic Implementation of a tree hierarchy for access control”, Information Processing Letters, vol. 27, No. 2, pp. 95-98, 1988.

[8] L. Harn, H.Y. Lin, “A cryptographic key generation scheme for multilevel data security”, Computers and Security, vol. 9, No. 6, pp. 539-546, 1990.

[9] C.C. Chang, R.J. Hwang and T.C. Wu, “Cryptographic key assignment scheme for access control in a hierarchy”, Information Systems, 17 (3), 243-247, 1992.

[10] H.T. Liaw, S.J. Wang and C.L. Lei, A dynamic cryptographic key assignment scheme in a tree structure, Computers Math. Applic. 25 (6), 109-114, 1993.

[11] M.B. Hwang, C.C. Chang and W.P. Yang, “Modified Chang-Hwang-Wu access control scheme”, IEEE Electronics Letters 29 (24), 2095-2096, 1993.

[12] H.T. Liaw and C.L. Lei, “An optimal algorithm to assign cryptographic keys in a tree structure for access control”, BIT 33, 46-56, 1993.

[13] Hwang Min-Shiang, “A cryptographic key assignment scheme in a hierarchy for access control”, Mathematical and Computer Modelling, vol. 26, No. 2, pp. 27-31, 1997.

[14] P. D’Arco, A. De Santis, A. L. Ferrara, B. Masucci, “Variations on a theme by Akl and Taylor: Security and tradeoffs”, Theoretical Computer Science, vol. 411, no.1, pp. 213-227, 2010.

[15] W-G. Tseng, “A Time-Bound Cryptographic Key Assignment Scheme for Access Control in a Hierarchy”, IEEE Transactions on Knowledge and Data Engineering, Vol.14, No.1, January/February 2002.

[16] H. Chien, “Efficient Time-Bound Hierarchical Key Assignment Scheme”, IEEE Transactions on Knowledge and Data Engineering, 16, 1301-1304, 10.1109/TKDE.2004.59, 2004.

[17] G. Ateniese, A. De Santis, A. L. Ferrara, and B. Masucci, "Provably-Secure Time-Bound Hierarchical Key Assignment Schemes", Journal of Cryptology, vol. 25, no.2, pp. 243-270, 10.1007/s00145-010-9094-6, 2012.

[18] X. Yi, “Security of Chien’s efficient time-bound hierarchical key assignment scheme,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 9, pp. 1298-1299, Sept. 2005, doi: 10.1109/TKE.2005.152.

[19] Xun Yi and Yiming Ye, “Security of Tseng’s time-bound key assignment scheme for access control in a hierarchy,” IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 4, pp. 1054-1055, July-Aug. 2003, doi: 10.1109/TKE.2003.1209023.
Compared Schemes	Dynamic	Private Storage	Public Storage	Key Derivation	Security Type	Security Assertions
Akl and Taylor based \([2]\) \([6] \rightarrow [13], [15], [16]\)	No	One	\(c.t\)	\(t_{exp}\)	\(KR_s\)	\(N/A\)
Atallah et al. \([21]\)	Yes	Three (max)	\(e.t\) (min)	\(h(DT_{se} + T_{prf})\)	\(KI_s\)	CPA\(_r\) + PRF
De Santis et al. TBEBF \([30]\)	Yes	One (min)	\(e.t\) (min)	\(h.DT_{se}\) (min)	\(KI_s\)	CPA\(_r\)
De Santis et al. TBBEBF \([30]\)	Yes	One (min)	\(c.t\) (min)	\(DT_{se}\) (complex)	\(KI_s\)	CPA\(_r\)
D'Arco et al. \([14]\)	Yes	One	\(l.c\) (min)	\(l.DT_{se}\)	\(KI_s\)	RSA\(_s\)
Atieniese et al. TLEBC \([17]\)	Yes	One	\(c^2.t^3\) (max)	\(DT_{se}\)	\(KI_s\)	CPA\(_r\)
Atieniese et al. TLPBC \([17]\)	Yes	\(t\) (max)	\(c^2\) (max)	\(DT_p\)	\(KI_s\)	CPA\(_r\)
Freire et al. PRF-based \([23]\)	No	\(w\)	Zero	\(h.T_{prf}\)	\(SKI_s\)	PRF
Freire et al. FSPRG-based \([23]\)	No	\(w\)	Zero	\(h.T_{prg}\)	\(SKI_s\)	FSPRG
Tang et al. \([32]\)	Yes	Four	\(c^2 + 1\) (min)	\(2A + 4M\)	\(SKI_s\)	PRF
Celiktas et al. \([34]\)	Yes	One (min)	Zero	\(d^2 \cdot \log p\)	\(KI_s\)	TSBITS
The proposed scheme	Yes	One (min)	One	\(n^2\)	\(SKI_s\)	LICV

Notation:
- \(c\) : number of classes
- \(t\) : number of time period
- \(KR_s\) : key recovery secure
- \(N/A\) : Not applicable
- \(w\) : poset width
- \(e\) : number of edges
- \(l\) : bit length of the key
- \(t_{exp}\) : exponential time over a huge group \((D + E)\).
- \(DT_{se}\) : decryption time using a symmetric key encryption scheme
- \(DT_p\) : decryption time using pairing evaluation
- \(T_{prf}\) : time of PRF evaluation
- \(T_{prg}\) : time of PRG evaluation
- \(h\) : path length between the classes
- \(n\) : dimension of the subspace \(W\) which is assigned to a group \(G\)
- \(KI_s\) : key indistinguishability secure
- CPA\(_r\) : chosen-plaintext-attack-resistant
- RSA\(_s\) : secure under the RSA assertion
- SKI\(_s\) : strong key indistinguishability secure
- FSPRG : forward-secure pseudorandom generator
- \(d\) : interpolation polynomial degree
- \(p\) : the number of elements in \(F_p\)
- TSBITS : threshold scheme-based information-theoretic secure
- \(b\) : maximum dimension of a subspace associated with any class at the bottom in the hierarchy
- LICV : linearly independent chosen vectors
A. D. Santis, A. L. Ferrara, and B. Masucci, "Efficient provably-
secure hierarchical key assignment schemes," In: Dawson E. (eds) Topics in Cryptology – CT-RSA 2013. Lecture Notes in Computer Science, vol 7779. Springer, Berlin, Heidelberg.

E. Bertino, N. Shang and S. S. Wagstaff Jr., "An Efficient Time-Bound Hierarchical Key Management Scheme for Secure Broadcasting," IEEE Transactions on Dependable and Secure Computing, vol. 5, no. 2, pp. 65-70, April-June 2008, doi: 10.1109/TDSC.2007.70241.

Y. F. Chung, H.H. Lee, F. Lai, and T. S. Chen, "Access control in user hierarchy based on elliptic curve cryptosystem", Information Sciences, vol. 178, no. 1, pp. 230-243, 2008.

F.G. Jeng, C.M. Wang, "An efficient key-management scheme for hierarchical access control based on elliptic curve cryptosystem", Journal of Systems and Software, vol. 79, no. 8, pp. 1161-1167, 2006.

H.M. Sun, K.H. Wang, and C.M. Chen, “On the security of an efficient time-bound hierarchical key management scheme,” IEEE Transactions on Dependable and Secure Computing, vol. 6, no. 2, pp. 159–160, 2009.

A.K. Das, N. R. Paul, L. Tripathy, "Crytpanalysis and improvement of an access control in user hierarchy based on elliptic curve cryptosystem", Informations Sciences, vol. 209, pp. 80-92, 2012.

Yu-Li Lin, Chien-Lung Hsu, “Secure key management scheme for dynamic hierarchical access control based on ECC”, Journal of Systems and Software, vol. 84, no. 4, pp. 679-685, 2011.

A. D. Santis, A. I. Ferrara, and B. Masucci, "Efficient provably-secure hierarchical key assignment schemes," Theoretical Comput. Sci., vol. 412, no. 41, pp. 5684-5699, 2011.

H. RagabHassen, H. Bettahar, A. Bouadbdallah, and Y. Challal, “An efficient key management scheme for content control in linear hierarchies,” Comput. Netw., vol. 56, no. 8, pp. 2107–2118, 2012.

S. Tang, X. Li, X. Huang, Y. Xiang, and L. Xu, “Achieving Simple, Secure and Efficient Hierarchical Access Control in Cloud Computing”, IEEE Transactions on Computers, vol. 65, no. 7, pp. 2325-2331, 2016.

B. Celiktas, I. Celiktas and E. Ozdemir, “A Higher Level Security Protocol for Cloud Computing,” 2019 4th International Conference on Computer Science and Engineering (UBMK), 2019, pp. 97-101, doi: 10.1109/UBMK.2019.8907019.

B. Celiktas, I. Celiktas and E. Ozdemir, “A Higher-Level Security Scheme for Key Access on Cloud Computing,” IEEE Access, vol. 9, pp. 107347-107359, 2021, doi: 10.1109/ACCESS.2021.3101048.

S. Zhong and T. Lin, “A comment on the Chen-Chung scheme for hierarchical access control,” Comput. Security, vol. 22, no. 5, pp. 453–456, 2003.

Sueda Guzey received BS in Mathematics from Middle East Technical University, Turkey in 2017. She is currently a Ph.D. student at Cyber Security Engineering and Cryptography in the Institute of Informatics, Istanbul Technical University and she is also a research assistant at the same department. Her current research interests include Cryptography, Cyber Security, Number Theory, and Network Security.

Enver Ozdemir (Member, IEEE) received BS in Mathematics from Middle East Technical University, Turkey in 2002 and Ph.D. in Mathematics, University of Maryland, College Park, the USA in 2009. He was a Research Fellow at CCRG, NTU, Singapore in 2010-2014. He is currently holding an Associate Professor position at Informatics Institute, Istanbul Technical University, and he is also the deputy director of the National Center for High-Performance Computing (UHeM). His research interests include Cryptography, Computational Number Theory, Network Security.

Baris Celiktas received the BS in System Engineering from Turkish Military Academy, Turkey in 2008, MS in International Relations from Kadir Has University in 2016, and MS in Applied Informatics from Istanbul Technical University in 2018. He is currently pursuing a Ph.D. degree in the Cyber Security Engineering and Cryptography Programme at the Institute of Informatics, Istanbul Technical University, and he is working as an IT System and Security Manager at NATO. His current research interests include Cyber Security, Network Security, Cloud Computing, and Cryptography.