Effectiveness and safety of gemcitabine plus nab-paclitaxel in elderly patients with advanced pancreatic cancer: a single-center retrospective cohort study

Sae Ohwada1,2 · Akiko Todaka1 · Hiroshi Nakase2 · Hiromichi Shirasu3 · Takeshi Kawakami1 · Satoshi Hamauchi1 · Takahiro Tsushima1 · Tomoya Yokota1 · Yusuke Onozawa3 · Hirofumi Yasui1 · Kentaro Yamazaki1

Received: 28 December 2021 / Accepted: 31 January 2022 / Published online: 28 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Summary
Purpose. This study aimed to evaluate the effectiveness and safety of gemcitabine (GEM) plus nab-paclitaxel (GnP) in patients aged ≥75 years with advanced pancreatic cancer and compare it with monotherapy (GEM or S-1). Methods. We retrospectively reviewed the data of consecutive patients with advanced pancreatic cancer aged ≥75 years who received either GnP or monotherapy (GEM or S-1) between January 2014 and May 2020. The primary efficacy outcome was overall survival (OS). Results. A total of 96 patients were included in this study; 51 were treated with GnP and 45 with monotherapy (31 with GEM and 14 with S-1). The median OS and progression-free survival were 10.8 and 6.7 months in the GnP group and 10.7 and 4.3 months in the monotherapy group, respectively. The treatment effect on OS was consistently favorable in the GnP group across most subgroups, particularly in patients with locally advanced cancer, modified Glasgow prognostic score of 0 or 1, and neutrophil/lymphocyte ratio <3.1. The disease control rates were 76% and 48% in the GnP and monotherapy groups, respectively, and grade 3 or 4 neutropenia occurred in 23 (45%) and 11 (24%) patients of the GnP and monotherapy groups, respectively. Conclusions. This study demonstrated that GnP was not superior to monotherapy with regard to OS. However, multivariate analysis showed that GnP treatment positively affected the OS and could be considered as a treatment option, even for elderly patients.

Keywords Pancreatic cancer · Elderly patient · Gemcitabine plus nab-paclitaxel · S-1 · Overall survival

Introduction
Pancreatic cancer is a worldwide health problem with an increasing incidence and poor prognosis. Although surgical resection is the only curative treatment for pancreatic cancer, most patients have unresectable disease at diagnosis [1]. Distant lesions are observed in 40–45% of patients with pancreatic cancer and locally advanced disease in 15–20% [2]. Unfortunately, the postoperative recurrence rate in patients undergoing surgical resection is high, with relapse in approximately 75–92% of patients [3, 4].

Approximately 40,900 patients are diagnosed with pancreatic cancer annually in Japan, making it the fourth and third leading cause of cancer deaths in men and women, respectively [5]. Advanced age is a high-risk factor for pancreatic cancer; in one report, at least 80% of all patients were aged >65 years, and more than 60% were older than 75 years in 2018 [5]. Therefore, opportunities to provide chemotherapy to elderly patients with pancreatic cancer are increasing in Japan.

Regimens containing combinations of drugs, such as 5-fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) or gemcitabine (GEM) plus nab-paclitaxel (GnP) demonstrated their superiority over GEM
alone in two phase III studies [6, 7] and have been used as a primary treatment in patients with locally advanced and metastatic pancreatic cancer. However, elderly patients are rarely treated with FOLFIRINOX because there are no data on its tolerability in those older than 75 years. The GnP trial enrolled patients under 80 years of age, with only 10% of them being aged over 75 years. Thus, neither regimen has sufficient data on its effectiveness and safety as a treatment in elderly patients with pancreatic cancer.

Conversely, it has been reported that monotherapy (GEM or S-1) was useful in elderly patients with fewer adverse events compared with combination therapy. Some reports have evaluated the effectiveness and safety of GEM as a single-agent therapy in elderly patients. Yamagishi et al. [8] and Katakura et al. [9] evaluated the therapeutic effects of GEM in patients with unresectable pancreatic cancer. They concluded that GEM monotherapy was as safe and effective in elderly patients as in younger ones. Additionally, Imaoka et al. [10] conducted a subgroup analysis in the GEST (Gemcitabine and S-1 Trial) study [11], showing the non-inferiority of S-1 to GEM and lower frequency of hematological toxicity in patients with advanced pancreatic cancer, thereby elucidating the efficacy and safety of S-1 as a first-line treatment in elderly patients. They concluded that S-1 could be a reasonable first-line treatment option in elderly patients with unresectable pancreatic cancer.

A meta-analysis [12] that included patients older than 65 years showed the superiority of GnP over GEM alone in progression-free survival (PFS) but not in overall survival (OS). A retrospective study [9] did not find GnP effective in improving PFS or OS in patients older than 75 years of age. There have been no reports comparing S-1 alone with combination therapy in elderly patients with pancreatic cancer. Hence, the therapeutic effectiveness of GnP, S-1, and GEM in the elderly has not been fully evaluated. In clinical practice, elderly patients often receive a single agent (GEM or S-1 alone) at the discretion of the attending physician. However, the choice of drug(s) for chemotherapy in the elderly is an important clinical issue.

This retrospective study aimed to evaluate the effectiveness and safety of GnP in comparison with monotherapy in patients aged ≥ 75 years with unresectable or recurrent pancreatic cancer.

Materials and methods

Patients

We retrospectively reviewed the medical records of consecutive patients with locally advanced or metastatic pancreatic cancer who were aged ≥ 75 years and received either monotherapy (GEM or S-1) or GnP as the first-line treatment between January 2014 and May 2020 at Shizuoka Cancer Center (Shizuoka, Japan). All patients were histologically or radiologically diagnosed with pancreatic cancer. Patients who relapsed within 6 months at the end of the adjuvant chemotherapy were excluded.

This research was conducted in accordance with the Declaration of Helsinki (as revised in Fortaleza, Brazil in October 2013) and approved by the Institutional Review Board of the Shizuoka Cancer Center (IRB No. J2020-128–2020-1–3). Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Treatment

The GnP group received nab-paclitaxel (nab-PTX) at a dose of 125 mg/m² and concomitant GEM at a dose of 1,000 mg/m² intravenously every 4 weeks on days 1, 8, and 15. The monotherapy group received either intravenous GEM at the dose and schedule as above or oral S-1 twice daily on days 1–28 of a 42-day cycle. The S-1 dose was calculated according to the body surface area: 80 mg/day for 1.25 m², 100 mg/day for 1.25–1.50 m², or 120 mg/day for 1.50 m². The dose and/or treatment schedule of these regimens were modified at the attending physician’s discretion or patient’s discretion. The patients continued their treatment until disease progression, the occurrence of intolerable adverse events, or patient refusal.

Outcomes

The primary effectiveness outcome was OS, defined as the duration between the start date of first-line treatment and the date of death, the date of the last follow-up, or the cut-off date of this study (November 30, 2020). The secondary effectiveness outcomes were PFS, objective response rate (ORR), disease control rate (DCR), time-to-treatment-failure (TTF), time to deterioration by the Eastern Cooperative Oncology Group performance status (ECOG PS) score, and safety. PFS was defined as the duration between the start date of first-line treatment and the date of documented disease progression or death from any cause. The investigators assessed the response according to the Response Evaluation Criteria in Solid Tumors guidelines, version 1.1, using computed tomography and/or magnetic resonance imaging. TTF was defined as the duration between the start date of treatment and the date of its discontinuation for any reason; in the GnP group, treatment failure was defined as the discontinuation of both GEM and nab-PTX. Time to deterioration by the ECOG PS was defined as the duration between the start of first-line treatment and the date when worsening of the ECOG PS was observed. Safety was assessed according to the National
Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0.

Factors included in the univariate analyses for OS were age, sex, body mass index (BMI), ECOG PS, disease status, agents, and pretreatment laboratory tests, including neutrophil/lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), modified Glasgow prognostic score (mGPS), and carbohydrate antigen 19–9 (CA 19–9). The mGPS was defined as follows: patients with an elevated C-reactive protein level (> 1.0 g/L) and hypoalbuminemia (< 3.5 g/dL) were assigned a score of 2; patients with only one of these biochemical abnormalities were assigned a score of 1, and those with neither of these abnormalities were assigned a score of 0. The NLR was the ratio between the neutrophil and lymphocyte counts, while the PLR was the ratio between the platelet and lymphocyte counts.

Statistical analysis

The treatment groups were compared for the baseline characteristics, adverse events, and response rates using the χ² test, Fisher’s exact test, or unpaired t-test. OS and PFS were analyzed using the Kaplan–Meier curves, and differences in survival rates between the groups were analyzed using the log-rank test. The Cox proportional hazards models were used to estimate hazard ratios (HRs) of factors affecting the OS; models were adjusted for age, sex, ECOG PS, mGPS, and disease status. The cut-off values for BMI, CA-19–9, and carbohydrate antigen 19–9 (CA 19–9). The mGPS was defined as follows: patients with an elevated C-reactive protein level (> 1.0 g/L) and hypoalbuminemia (< 3.5 g/dL) were assigned a score of 2; patients with only one of these biochemical abnormalities were assigned a score of 1, and those with neither of these abnormalities were assigned a score of 0. The NLR was the ratio between the neutrophil and lymphocyte counts, while the PLR was the ratio between the platelet and lymphocyte counts.

Results

Baseline characteristics

A total of 96 consecutive patients were included in the study. Fifty-one received GnP, and 45 received monotherapy (31 were treated with GEM and 14 with S-1). Of the 45 patients who received monotherapy, 21 (47%) did so of their own choice, and the remaining at the discretion of the on-site physicians. The reasons for the decision were age (n = 13, 29%), poor ECOG PS (n = 7, 16), and organ dysfunction (n = 4, 9%). There were fewer patients aged ≥ 80 years (n = 8, 16% vs. n = 17, 38%, P = 0.02) and more patients with metastasis (n = 36, 71% vs. n = 23, 51%, P = 0.02) in the GnP group than in the monotherapy group. The baseline characteristics of the treatment groups are summarized in Table 1.

Effectiveness

Survival

The median OS in the GnP and monotherapy groups was 10.8 months (95% confidence interval [CI], 6.1–15.4) and 10.7 months (95% CI, 7.2–14.3), respectively. GnP therapy was not associated with longer OS than monotherapy (unadjusted HR, 0.77; 95% CI, 0.48–1.23; P = 0.27). This trend did not change after adjusting for age, sex, ECOG PS, mGPS, and disease status (adjusted HR, 0.65; 95% CI, 0.37–1.14; P = 0.13).

The median PFS in the GnP and monotherapy groups was 6.7 months (95% CI, 4.9–8.6) and 4.3 months (95% CI, 2.5–6.1), respectively. PFS was longer in patients receiving GnP than in those receiving monotherapy (unadjusted HR, 0.53; 95% CI, 0.34–0.82; P = 0.004), and this association remained significant after adjusting for possible confounders (adjusted HR, 0.43; 95% CI, 0.26–0.72; P < 0.001; Fig. 1).

Time-to-treatment-failure

The median TTF in the GnP and monotherapy groups was 5.6 months (95% CI, 2.9–8.3) and 3.7 months (95% CI, 2.7–4.7), respectively. Twelve patients in the GnP group discontinued nab-PTX due to peripheral sensory neuropathy (n = 10), fatigue (n = 4), pancytopenia (n = 1), and nail disorder (n = 1).

Response

The ORR in patients with measurable disease (n = 81) was higher in the GnP group than the monotherapy group, although the difference was not significant (n = 9, 22% vs. n = 4, 10%; P = 0.23). The DCR was significantly higher in the GnP group than the monotherapy group (n = 31, 76% vs. n = 19, 48%; P = 0.01).

Subgroup analysis of OS

The treatment effect on OS was consistently favorable in the GnP group across most subgroups. Patients with locally advanced cancer, mGPS 0 or 1, and NLR < 3.1 tended to have favorable OS in the GnP group. Patients with ECOG PS 2 and mGPS value of 2 tended to have a favorable outcome when receiving monotherapy (Fig. 2). The median OS in patients with ECOG PS of 0–1 and 2 in the GnP group was 11.6 and 2.7 months, respectively (P = 0.04). The median OS in patients with mGPS of 0–1 and 2 in the GnP group was 13.4 and 7.4 months, respectively (P = 0.005).
	All (n = 96)	aGnP (n = 51)	Monotherapy (n = 45)	P-value
	n (%)	n (%)	n (%)	
Age, years				
Median (range)	78 (75–87)	78 (75–83)	78 (75–87)	
≥ 80	25 (26)	8 (16)	17 (38)	0.02
Sex				
Male	61 (64)	31 (61)	30 (67)	
Female	35 (36)	20 (39)	15 (33)	0.53
ECOG PS				
0	30 (31)	16 (31)	14 (31)	
1	53 (55)	31 (61)	22 (49)	
2	13 (14)	4 (8)	9 (20)	0.22
BMI, kg/m²				
Median (range)	20.9 (12.8–30.8)	20.9 (12.8–30.8)	20.7 (16.2–25.8)	0.91
Type of tissue				
Adenocarcinoma	85 (89)	46 (90)	(39) (85)	
Mucinous carcinoma	1 (1)	1 (2)	0	
Unknown	10 (10)	4 (8)	6 (15)	0.51
Disease status				
Locally advanced	22 (23)	12 (24)	10 (22)	
Metastatic	59 (61)	36 (71)	23 (51)	
Recurrence	15 (16)	3 (6)	12 (27)	0.02
Site of metastatic lesions				
Liver	42 (44)	25 (49)	17 (38)	
Lung	16 (17)	7 (14)	9 (20)	
Peritoneum	23 (39)	11 (22)	12 (27)	0.40
No. of metastatic disease				
1	49 (51)	25 (49)	24 (53)	
2	16 (17)	10 (20)	6 (13)	
≥ 3	9 (10)	4 (8)	5 (11)	0.81
History of surgery				
Yes	15 (16)	3 (6)	12 (27)	0.009
Adjuvant chemotherapy				
Yes	9 (9)	3 (6)	6 (13)	0.18
Biliary drainage				
Yes	24 (25)	15 (29)	9 (20)	0.35
Table 1 (continued)

	All	GnP	Monotherapy	
	(n = 96)	(n = 51)	(n = 45)	P-value
	n (%)	n (%)	n (%)	
mGPS				
0	47 (49)	24 (47)	23 (51)	
1	28 (29)	13 (25)	15 (33)	
2	21 (22)	14 (27)	7 (16)	0.36
NLR				
Median (range)	3.1 (0.3–33.5)	3.9 (0.9–33.5)	2.6 (0.3–14.8)	0.06
PLR				
Median (range)	67.4 (13.0–219.0)	60.9 (13.0–219.0)	80.4 (28.5–206.4)	0.05
CA 19–9, U/mL				
Median (range)	454 (2–8135)	516 (2–8135)	451 (2–3983)	0.92

Agents

GnP	51 (53)	51 (100)	0	
S-1	14 (15)	0	14 (31)	
GEM	31 (32)	0	31 (69)	<0.001

*aGnP: gemcitabine plus nab-paclitaxel
bECOG PS: Eastern Cooperative Oncology Group performance status
cBMI: body mass index
dmGPS: modified Glasgow prognostic score
eNLR: neutrophil/lymphocyte ratio
fPLR: platelet/lymphocyte ratio
gCA 19-9: carbohydrate antigen 19–9
hGEM: gemcitabine
Time to deterioration of ECOG PS

Treatment with GnP resulted in a significantly longer time to ECOG PS deterioration than monotherapy did. The median time to deterioration in the ECOG PS score was 5.1 months in the GnP group and 3.7 months in the monotherapy group, with an HR of 0.61 (95% CI, 0.39–0.96; \(P = 0.03 \); Online Resource 1a). When categorized by baseline ECOG PS, treatment with GnP tended to extend the time to ECOG PS deterioration in patients with a baseline ECOG PS of 0 or 1 (HR, 0.61; 95% CI, 0.37–1.00; \(P = 0.04 \)). There was no difference in the time to deterioration of ECOG PS between the groups in patients with a baseline ECOG PS of 2 (Online Resource 1b).

Treatment exposure

The number of patients experiencing a reduction of the initial dose was 39 in the GnP group and 29 in the monotherapy group (76% vs. 64%, \(P = 0.27 \)). Of the 51 patients in the GnP group, 38 (75%) had treatment delay at least once; the most common reasons were neutropenia (\(n = 27 \)), thrombocytopenia (\(n = 11 \)), and fatigue (\(n = 4 \)), with some overlaps. The frequency of neutropenia was significantly higher in the GnP group than in the monotherapy group (53% vs. 22%, \(P = 0.003 \)).

Twenty-three patients in the GnP group and 16 in the monotherapy group required dose reduction (45% vs. 35%, \(P = 0.41 \)). Neutropenia (31% vs. 11%, \(P = 0.02 \)) and peripheral sensory neuropathy (10% vs. 0%, \(P = 0.06 \)) as reasons for dose reduction were more frequent in the GnP group.

Treatment discontinuation due to adverse events was observed in six patients in each group. Reasons in the GnP group included pneumonitis (\(n = 4 \)), fatigue (\(n = 4 \)), edema (\(n = 2 \)), and soft tissue infection (\(n = 1 \)). Reasons in the monotherapy group included anorexia (\(n = 4 \)), soft tissue infection (\(n = 1 \)), biliary tract infection (\(n = 1 \)), and pneumonitis (\(n = 1 \); Table 2).

Subsequent therapy was performed in 25 patients (49%) in the GnP group and 23 (51%) in the monotherapy group. The subsequent therapies in the treatment groups are shown in Online Resource 2.

Safety

The adverse events in both treatment groups are shown in Table 3. Grade 3 or 4 non-hematologic adverse events were infrequent. The most frequently observed non-hematologic adverse events of any grade in the GnP group were fatigue (\(n = 38, 75\% \)), anorexia (\(n = 29, 57\% \)), and peripheral sensory neuropathy (\(n = 22, 43\% \)), while those in the monotherapy group were anorexia (\(n = 32, 71\% \)), fatigue (\(n = 31, 69\% \)), and nausea (\(n = 12, 27\% \)). Any grade of peripheral sensory neuropathy (43% vs. 2%, \(P < 0.001 \)), edema (16% vs. 0%, \(P = 0.006 \)), and grades 1–2 alopecia (27% vs. 0%, \(P < 0.001 \)) were significantly higher in the GnP group than in the monotherapy group. Despite the lack of statistical significance, the incidence of grade 3 or 4 neutropenia was numerically higher in the GnP group than in the monotherapy group (\(n = 23, 45\% \) vs. \(n = 11, 24\% \), \(P = 0.05 \)). Treatment-related deaths were not observed in either of the treatment groups.
Discussion

We found in this retrospective study that GnP was superior to monotherapy in terms of PFS, TTF, and DCR, even though it showed no improvement in OS. Subgroup analysis according to treatment regimens showed that the treatment effect on OS was consistently favorable in the GnP group across most subgroups, especially in patients with locally advanced cancer, mGPS 0 or 1, and NLR < 3.1. However, the GnP treatment effect was not observed in patients with an mGPS or ECOG PS of 2. GnP proved to be as safe as monotherapy, even in elderly patients. Furthermore, our data showed that GnP contributed to a delay in ECOG PS deterioration compared with monotherapy.

Elderly patients are heterogeneous in terms of comorbidities and physical capacity. Combination therapies, such as FOLFIRINOX and GnP, are generally recommended as first-line treatment for patients with advanced pancreatic cancer in whom physicians have determined that these therapies could be administered. However, GEM or S-1 monotherapy

Subgroup	No. of patients	HR	95% CI	P-value
All patients	96	0.69	0.43–1.11	0.13
Age, years				
< 80	71	0.69	0.39–1.23	0.21
≥ 80	25	0.55	0.18–1.70	0.30
Sex				
Male	61	0.74	0.40–1.37	0.34
Female	35	0.56	0.26–1.23	0.15
ECOG PS				
0/1	83	0.67	0.40–1.11	0.12
2	13	1.28	0.30–5.48	0.74
BMI, kg/m²				
< 20.9	48	0.54	0.26–1.10	0.09
≥ 20.9	48	0.90	0.46–1.76	0.76
Disease status				
Metastatic	59	0.92	0.50–1.70	0.80
Locally advanced	22	0.38	0.15–0.94	0.04
No. of metastatic disease				
1	49	0.90	0.45–1.80	0.77
≥ 2	25	0.69	0.28–1.68	0.42
History of surgery				
yes	15	0.37	0.05–3.00	0.35
Biliary drainage				
yes	24	0.54	0.19–1.50	0.24
mGPS				
0/1	75	0.53	0.48–0.84	0.009
2	21	4.71	1.01–22.1	0.05
NLR				
< 3.1	48	0.44	0.21–0.96	0.04
≥ 3.1	48	0.87	0.45–1.69	0.69
PLR				
< 60.7	48	0.70	0.35–1.38	0.30
≥ 60.7	48	0.60	0.29–1.22	0.16
CA 19–9				
< 454	48	0.54	0.27–1.09	0.08
≥ 454	48	0.92	0.48–1.76	0.79

Fig. 2 Forest plot of treatment effects on overall survival in subgroup analyses PS, performance status; BMI, body mass index; mGPS, modified Glasgow prognostic score; NLR, neutrophil/lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; CA 19–9, carbohydrate antigen 19–9; GnP, gemcitabine (GEM) plus nab-paclitaxel; Monotherapy (GEM or S-1); HR, hazard ratio; CI, confidence interval
is used for most elderly patients. A systematic review [12] assessed the efficacy of combination therapy in treating elderly patients with pancreatic cancer. The study showed that combination therapy, especially GnP, significantly improved OS compared to GEM alone. However, that study defined all patients aged ≥ 65 years as “elderly.” Trials that specifically assess the role of combination therapy versus GEM in elderly patients with pancreatic cancer are lacking. Considering that the number of elderly patients with pancreatic cancer is increasing in Japan, an investigation of the effectiveness of anti-cancer therapy in such patients aged ≥ 75 years is required.

We found in this study that GnP was not superior to monotherapy with regard to OS, possibly due to the higher rate of patients with metastatic pancreatic cancer in the GnP group (71%) than in the monotherapy group (51%). In general, the prognosis in patients with metastatic cancer is worse than that in patients with locally advanced pancreatic cancer [13, 14]. On-site physicians tend to select GnP to control disease progression if the patient’s condition is stable. Randomized controlled trials might be necessary to exclude this bias and accurately assess the effects of the various treatments.

We found in the subgroup analysis that mGPS and ECOG PS were predictive factors for the difficulty of achieving therapeutic effects of GnP in patients with advanced pancreatic cancer. ECOG PS has been widely recognized as an important prognostic factor in multiple cancers [15]. It has also been shown to be associated with OS in pancreatic cancer patients [16–18]. Poor ECOG PS might be due to jaundice, anemia, and/or undernutrition, which might reflect disease progression. The poor condition and decreased tolerability to chemotherapy are possible factors associated with

Table 2 The reasons for dose or treatment modification

	GnP (n = 51)	Monotherapy (n = 45)	P-value
Initial dose reduction			
Age	36 (71)	24 (53)	0.14
Poor ^ECOG PS	1 (2)	3 (7)	0.34
Organ dysfunction	2 (4)	2 (4)	1
Required dose reduction			
Neutropenia	16 (31)	5 (11)	0.02
Thrombocytopenia	5 (10)	3 (7)	0.72
Febrile neutropenia	1 (2)	1 (2)	1
Fatigue	3 (6)	2 (4)	1
Anorexia	1 (2)	4 (9)	0.19
Peripheral sensory neuropathy	5 (10)	0 (0)	0.06
Skin rash	1 (2)	2 (4)	0.60
Nausea	1 (2)	0 (0)	1
Treatment delay			
Neutropenia	27 (53)	10 (22)	0.003
Thrombocytopenia	11 (22)	8 (18)	0.79
Anemia	1 (2)	1 (2)	1
Fatigue	4 (8)	8 (18)	0.22
Anorexia	1 (2)	3 (7)	0.34
Skin rash	1 (2)	2 (4)	0.60
Constipation	2 (4)	0 (0)	0.50
Diarrhea	1 (2)	1 (2)	1
Biliary track infection	3 (6)	2 (4)	1
Others*	0	2 (4)	0.22
Treatment discontinuation			
Progressive disease	32 (71)	36 (80)	0.84
Adverse event	11 (24)	7 (16)	0.60
Others**	2 (4)	2 (4)	1

*Pancrrectic enzymes increased (1) and aspartate aminotransferase (AST) increased (1) in the monotherapy group.

^Conversion surgery (1) and progression of dementia (1) in the GnP group, exacerbation of diabetes (1) and progression of dementia (1) in the monotherapy group.

^GnP: gemcitabine plus nab-paclitaxel

^ECOG PS: Eastern Cooperative Oncology Group performance status

Monotherapy (GEM or S-1)
a worse outcome. mGPS is also recognized as a prognostic factor in advanced pancreatic cancer [19, 20]. Hwang et al. [19] reported a significant association between mGPS and OS in pancreatic cancer. Similar to previous reports [19], our study showed that patients with poor ECOG PS and mGPS had significantly worse OS. Therefore, we considered it difficult to determine the therapeutic effect of GnP in patients with an ECOG PS or mGPS of 2.

The hematological toxicity in the GnP group was tolerable, and its frequency was similar to that in a GnP trial that included patients younger than those in our study [7]. Given their age, the higher proportion of patients receiving initial dose reduction in the GnP group could have influenced the frequency of hematological side effects. The pharmacodynamic and pharmacokinetic changes in elderly patients differ from those in younger patients. Elderly patients are more susceptible to the negative effects of chemotherapy on their organs. In this regard, appropriate dose reduction could contribute to tolerability. Our data demonstrated that GnP significantly slowed PS deterioration compared with monotherapy. However, neither GnP nor monotherapy prolonged the time to PS deterioration in patients with ECOG PS of 2, indicating that GnP could relieve symptoms associated with the disease better than monotherapy only for patients in good general condition at the start of treatment.

Our study has several limitations. First, this study might have been affected by a selection bias due to its retrospective nature. Indeed, the monotherapy group had a higher proportion of patients with ECOG PS of 2. Second, dose modification at the physician’s discretion could affect the effectiveness and safety outcomes. Third, the data were obtained from a single institution, and the number of enrolled patients was relatively small.

In conclusion, this study showed that GnP treatment in elderly patients with unresectable pancreatic cancer led to a stronger improvement in PFS, TTF, and DCR than monotherapy did. Although the Kaplan–Meier curve analysis found no superiority of GnP with regard to OS, multivariate analysis showed that the treatment effect on OS was favorable in the GnP group across most subgroups. Additionally, GnP was as safe as monotherapy when administered at an appropriate dose. Therefore, GnP could be a

Table 3 Adverse events in both groups

	GnP		**Monotherapy**		**P-value**
	(n = 51)		*(n = 45)*		
	Any grade	Grades 3–4	Any grade	Grades 3–4	
Hematological adverse event	n (%)	n (%)	n (%)	n (%)	
Neutropenia	36 (70)	23 (45)	18 (40)	11 (24)	0.05
Thrombocytopenia	37 (73)	6 (12)	19 (42)	3 (7)	0.50
Anemia	41 (80)	4 (8)	27 (60)	1 (2)	0.37
Nonhematological adverse event					
Fatigue	38 (75)	2 (4)	31 (69)	3 (7)	0.66
Anorexia	29 (57)	1 (2)	32 (71)	2 (4)	0.60
Peripheral sensory neuropathy	22 (43)	0	1 (2)	0	1
Constipation	18 (35)	0	12 (27)	0	1
Nausea	16 (31)	0	19 (42)	2 (4)	0.22
Diarrhea	16 (31)	0	13 (29)	0	1
Skin rash	16 (31)	0	13 (29)	0	1
Alopecia	14 (27)	0	0	-	1*
Fever	11 (22)	0	5 (11)	0	1
Vomiting	8 (16)	0	2 (4)	0	1
Edema	8 (16)	1 (2)	0	0	1
Dysgeusia	2 (4)	0	3 (7)	0	1
Febrile neutropenia	2 (4)	2 (4)	1 (2)	1 (2)	1
Biliary infection	8 (16)	8 (16)	4 (9)	4 (9)	0.37
Pneumonitis	3 (6)	1 (2)	1 (2)	1 (2)	1

GnP: gemcitabine plus nab-paclitaxel

*Comparison of Grades 1–2 adverse events

1 Comparison of Grades 1–2 adverse events

1* Comparison of Grades 1–2 adverse events
treatment option for elderly patients. We believe that this study provides useful information on comparative effectiveness and safety between GnP and monotherapy in clinical practice. Further studies are required to determine which regimen should be selected for elderly patients with pancreatic cancer.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10637-022-01221-x.

Acknowledgements We would like to thank Editage (www.editage.com) for English language editing.

Authors’ contributions All authors contributed to the study conception and design. Data collection and analysis was performed by Sae Ohwada. The first draft of the manuscript was written by Sae Ohwada and Akiko Todaka. All authors commented on previous versions of the manuscript. All authors read and approved the final version of the manuscript.

Funding Not applicable.

Data availability All data generated or analyzed during this study are included in this published article.

Code availability Not applicable.

Declarations

Ethics approval and consent to participate This research study was conducted in accordance with the Declaration of Helsinki (as revised in Fortaleza, Brazil in October 2013). The study design was approved by the Institutional Review Board of the Shizuoka Cancer Center (IRB No. J2020-128–2020-1–3). Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Informed consent Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Consent for publication Not applicable.

Research involving human participants and/or animals This research study was conducted in accordance with the Declaration of Helsinki (as revised in Fortaleza, Brazil in October 2013). The study design was approved by the Institutional Review Board of the Shizuoka Cancer Center (IRB No. J2020-128–2020-1–3).

Conflict of interests All authors declare that they have no conflicts of interest.

References

1. Kuroda T, Kumagi T, Yokota T, Seike H, Nishiyama M, Imai Y, Inada N, Shibata N, Imamine S, Okada S, Koizumi M, Yamamishi H, Azemoto N, Miyake J, Tanaka Y, Tatsukawa H, Utsunomiya H, Ohno Y, Miyake T, Hirooka M, Furukawa S, Abe M, Ikeda Y, Matsuura B, Hiasa Y, Onji M, EPOCH Study Group (2013) Improvement of long-term outcomes in pancreatic cancer and its associated factors within the gemcitabine era: a collaborative retrospective multicenter clinical review of 1,082 patients. BMC Gastroenterol 13:134. https://doi.org/10.1186/1471-230X-13-134

2. Heinemann V (2002) Gemcitabine in the treatment of advanced pancreatic cancer: a comparative analysis of randomized trials. Semin Oncol 29(Supplement 20):9–16. https://doi.org/10.1053/sonc.2002.37372

3. Oettle H, Post S, Neuhaus P, Gellert K, Langrehl J, Ridwelski K, Schramm F, Fachl J, Zuelke C, Burkart C, Gurtberg K, Kettner E, Schmalenberg H, Weight-Kochler K, Bechstein WO, Niedergethmann M, Schmidt-Wolf I, Roll L, Doreren B, Riess H (2007) Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297:267–277. https://doi.org/10.1001/jama.297.3.267

4. Van den Broeck A, Sergeant G, Ectors N, Van Steenbergen W, Aerts R, Topal B (2009) Patterns of recurrence after curative resection of pancreatic ductal adenocarcinoma. Eur J Surg Oncol 35:600–604. https://doi.org/10.1016/j.ejso.2008.12.006

5. Ministry of Health, Labour and Welfare (2018) [Center for Cancer Control and Information Services, National Cancer Center, Japan web site]. Vital Stat Jpn. https://www.jvho.jp/reg_stat/statistics/dl/index.html#mortality. Accessed 26 Nov 2020

6. Conroy T, Desesigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, Bennouna J, Bachet JB, Khemissia-Kouz F, Pérez-Verdú D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M, Groupe Tumeurs Digestives of Unicancer, PRODIGE Intergroup (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825. https://doi.org/10.1056/NEJMoa1101923

7. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harrison M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglésias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703. https://doi.org/10.1056/NEJMoa1304369

8. Yamagishi Y, Higuchi H, Izumiya M, Sakai G, Iizuka H, Nakamura S, Adachi M, Hozawa S, Takaishi H, Hibi T (2010) Gemcitabine as first-line chemotherapy in elderly patients with unresectable pancreatic carcinoma. J Gastroenterol 45:96–103. https://doi.org/10.1007/s00535-010-0258-9

9. Katakura Y, Nakahara K, Kobayashi M, Adachi S, Izawa N, Noguchi Y, Nakatsu S, Sato Y, Takagi R, Itoh F (2010) Gemcitabine therapy for unresectable pancreatic cancer in elderly patients. Nihon Shokakibyo Gakkai Zasshi 107:396–406 (in Japanese)

10. Imaoka H, Kou T, Tanaka M, Egawa S, Mizuno N, Hijikoa S, Hara K, Yazumi S, Shimizu Y, Yamao K (2016) Clinical outcome of elderly patients with unresectable pancreatic cancer treated with gemcitabine plus S-1, S-1 alone, or gemcitabine alone: subgroup analysis of a randomised phase II trial, GEST study. Eur J Cancer 54:96–103. https://doi.org/10.1016/j.ejca.2015.11.002

11. Ueno H, Ioka T, Ikeda M, Ohkawa S, Yanagimoto H, Boku N, Fukutomi A, Sugimori K, Baba H, Yamao K, Shimamura T, Sho M, Kitano M, Cheng AL, Mizumoto K, Chen JS, Furuse J, Funakoshi A, Hatori T, Yamagishi Y, Higuchi H, Izumiya M, Sakai G, Iizuka H, Nakamura S, Adachi M, Hozawa S, Takaishi H, Hibi T (2010) Gemcitabine as first-line chemotherapy in elderly patients with unresectable pancreatic cancer treated with gemcitabine plus S-1, S-1 alone, or gemcitabine alone: subgroup analysis of a randomised phase III trial, GEST study. Eur J Cancer 54:96–103. https://doi.org/10.1016/j.ejca.2015.11.002
12. Jin J, Teng C, Li T (2018) Combination therapy versus gemcitabine monotherapy in the treatment of elderly pancreatic cancer: a meta-analysis of randomized controlled trials. Drug Des Dev Ther 12:475–480. https://doi.org/10.2147/DDDT.S156766

13. Stein SM, James ES, Deng Y, Cong X, Kortmansky JS, Li J, Staugaard C, Indukala D, Boustani AM, Patel V, Cha CH, Salem RR, Chang B, Hochster HS, Lacy J (2016) Final analysis of a phase II study of modified FOLFIRINOX in locally advanced and metastatic pancreatic cancer. Br J Cancer 114:737–743. https://doi.org/10.1038/bjc.2016.45

14. Blomstrand H, Scheibling U, Bratthäll C, Green H, Elander NO (2019) Real world evidence on gemcitabine and nab-paclitaxel combination chemotherapy in advanced pancreatic cancer. BMC Cancer 19:40. https://doi.org/10.1186/s12885-018-5244-2

15. Sørensen JB, Klee M, Palshof T, Hansen HH (1993) Performance status assessment in cancer patients. An inter-observer variability study. Br J Cancer 67:773–775. https://doi.org/10.1038/bjc.1993.140

16. Krishnan S, Rana V, Janjan NA, Abbruzzese JL, Gould MS, Das P, Delclos ME, Palla S, Guha S, Varadhachary G, Evans DB, Wolff RA, Crane CH (2006) Prognostic factors in patients with unresectable locally advanced pancreatic adenocarcinoma treated with chemoradiation. Cancer 107:2589–2596. https://doi.org/10.1002/cncr.22328

17. Weber A, Kehl V, Mittermeyer T, Herberich E, Röthling N, Schmid RM, Prinz C (2010) Prognostic factors for survival in patients with unresectable pancreatic cancer. Pancreas 39:1247–1253. https://doi.org/10.1097/MPA.0b013e3181ce21b1b

18. Tas F, Sen F, Odabas H, Kilic L, Keskin S, Yıldız I (2013) Performance status of patients is the major prognostic factor at all stages of pancreatic cancer. Int J Clin Oncol 18:839–846. https://doi.org/10.1007/s10147-012-0474-9

19. Hwang I, Kang J, Ip HNN, Jeong JH, Kim KP, Chang HM, Yoo C, Ryoo BY (2019) Prognostic factors in patients with metastatic or recurrent pancreatic cancer treated with first-line nab-paclitaxel plus gemcitabine: implication of inflammation-based scores. Investig New Drugs 37:584–590. https://doi.org/10.1007/s10637-018-0681-y

20. Shimoda M, Katoh M, Kita J, Sawada T, Kubota K (2010) The Glasgow prognostic score is a good predictor of treatment outcome in patients with unresectable pancreatic cancer. Chemotherapy 56:501–506. https://doi.org/10.1159/000321014

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.