How to share underground reservoirs

K. J. Schrenk¹, N. A. M. Araújo¹ & H. J. Herrmann¹,²

¹Computational Physics for Engineering Materials, IFB, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland,
²Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60451-970 Fortaleza, Ceará, Brazil.

Many resources, such as oil, gas, or water, are extracted from porous soils and their exploration is often shared among different companies or nations. We show that the effective shares can be obtained by invading the porous medium simultaneously with various fluids. Partitioning a volume in two parts requires one division surface while the simultaneous boundary between three parts consists of lines. We identify and characterize these lines, showing that they form a fractal set consisting of a single thread spanning the medium and a surrounding cloud of loops. While the spanning thread has fractal dimension 1.55 ± 0.03, the set of all lines has dimension 1.69 ± 0.02. The size distribution of the loops follows a power law and the evolution of the set of lines exhibits a tricritical point described by a crossover with a negative dimension at criticality.

Space partitioning is of interest in a wide spectrum of fields, ranging from materials science to medicine, with special relevance to computer graphics and the exploration of natural resources stored in soils. For example, if different companies want to explore an oil reservoir they are interested in determining the volumetric share corresponding to each one inside the ground¹. An additional degree of complexity comes into play when water is injected into the soil to push the oil to enhance extraction²,³. Also in medical imaging, three-dimensional computed tomography scans need to be segmented to identify the different tissues. These pictures are discretized into pixels and a number is assigned to the bond between neighboring pixels corresponding to the intensity gradient. The resulting structure is similar to the one of a porous soil. By aggregating pixels pairwise from the lowest to the highest gradient it becomes possible to identify the boundaries of tissues⁴.

Both problems consist in dividing space into parts: either the shares of the companies in the oil field or the different tissues in the image processing. In both cases, regions are separated by division surfaces. Here we consider three regions and find that their division surfaces join in a fractal thread that crosses the medium, being surrounded by a cloud of disconnected loops (see Fig. 1). In the case of oil exploration these points, where all three division surfaces merge, are the places where water should be injected to assure that no oil is pushed out on the wrong side. In medical image processing, the simultaneous boundary between three parts might indicate, for example, the region where a tumor is nested between two other tissues.

We consider a random medium consisting of pores arranged in a simple-cubic lattice connected through channels. To each channel k a threshold \(p_k \) is randomly assigned following a uniform distribution in the interval [0, 1]. The fraction of open channels is tuned by a parameter \(p \), such that channels with \(p_k < p \) are open while all the others are closed. Hereafter we use the language of fluids where \(p \) would correspond to the fluid pressure. For digital images, the pores would correspond to the pixels and the thresholds \(p_k \) to the intensity gradient between pairs of neighboring pixels.

To find the partitioning of the medium into three parts, we divide the (four) vertical boundaries of a cubic system in three parts of about the same area. Each part corresponds to a different invading fluid distinguished by dyeing them with different colors: red (R), green (G), and blue (B) [see Fig. 2(a)]. In the illustration of Fig. 2 we see a medium of \(5 \times 5 \times 5 \) pores. The pores are in the center of each cube and the edges are the bonds of the dual lattice of the pore network. The cubes have the color of the fluid contained in the corresponding pore. We invade the system simultaneously from all vertical walls.

Starting with \(p = 0 \) (i.e., all channels closed), the channel with the lowest threshold, in the invasion front, is selected and the fluid pressure \(p \) is increased to the value of this threshold. This channel and the empty pore connected to it are then invaded and colored according to the type of fluid that penetrated into it. After that, invasion also cascades into all pores connected to this pore through channels with thresholds lower than the actual \(p \). This process is repeated until all pores are invaded, under the constraint that the fluids cannot displace each other, which does not allow to invade any pore by more than one fluid.

In the final state, the medium is divided into three parts corresponding to the pores filled either with an R, G, or B fluid. These parts are the maximum oil shares that each company could extract from the exploration regions.
This division is solely determined by the distribution of local thresholds, thus being intrinsic to the medium (for algorithmic details see Section Methods). Here we will mainly focus on the final partitioning of the medium, corresponding to $p = 1$ (all pores invaded). However, we later also discuss the pressure p_t at which two different fluids start to form an interface.

An example for the partitioning into three parts is shown in Fig. 2(b). To better visualize the partitioning, we separate the three parts in Fig. 2(c). Every face that separates two colors is part of a division surface. Edges are shared by four different cubes. If three of the cubes sharing a common edge have different colors, we call this an RGB edge (thick black lines in Fig. 2). In fact, all RGB edges are on lines where all three surfaces separating regions of different color meet. The vertices attached to RGB edges are the RGB nodes and we define every set of nodes connected through RGB edges as an RGB cluster. All RGB nodes and edges of a medium form its RGB set.

Results

The surfaces dividing two colors are fractal objects of fractal dimension $d_{\text{sur}} = 2.49 \pm 0.02$, as seen in the inset of Fig. 3, numerically consistent with what has been reported for watersheds in three dimensions. While these boundaries are singly connected, the RGB set consists of one spanning cluster connecting the two sides of the system surrounded by a cloud of smaller disconnected loops (see Fig. 1). As shown in Fig. 3, the entire RGB set is fractal of dimension $d_{\text{tot}} = 1.69 \pm 0.02$, while the spanning cluster has a smaller fractal dimension $d_{\text{sc}} = 1.55 \pm 0.03$. To analyze the topology of the spanning cluster, we used the burning method proposed in Ref. [7]. We found that the spanning cluster has loops, however its backbone, elastic backbone, shortest path, and its set of singly connected RGB edges all have fractal dimensions consistent with d_{sc}.

The difference between d_{sur} and d_{sc} is due to the cloud of disconnected loops. These loops result from the entanglement of three compact regions, as illustrated in Fig. 4, which shows a transversal cross section of a medium, where the three regions are simultaneously in contact at different locations. In this particular case, the lower location (dashed circle) is where the spanning cluster intersects the cross section. The upper location (dotted circle) shows the cut

Figure 1 | Set of lines on which all division surfaces between three parts are in contact for a typical random medium. In addition to the backbone spanning the medium from left to right (shown in red), the set also contains a cloud of disconnected loops (green). The transparent planes are guides to the eye.

Figure 2 | Illustration of the model. (a) In the initial state ($p = 0$) the vertical faces of the cubic lattice are divided into three sets. (b) Example of the final state of the invasion ($p = 1$), dividing the medium into three parts: R, G, and B. RGB edges and nodes are shown as thick black lines and spheres, respectively. In (c) we separate the three pieces to be able to look inside. Solid lines represent the edges of the dual lattice of the pore network. The color of each cube corresponds to the one of the fluid in the pore at the center of the cube. The channels connecting the pores are perpendicular to the faces of the cubes and for clarity they are not shown. The RGB edges and nodes are part of the dual lattice.
through a disconnected loop: The G and B regions are in contact in an area completely surrounded by the R region, thus the contact line between the three forms a closed loop (discretization effects are discussed in the Supplementary Information). The size distribution of the loops is shown in Fig. 5(a), where the size s is defined as the number of RGB nodes forming the loop. A power-law distribution is observed, $p(s) \propto s^{-\alpha}$, with $\alpha = 2.04 \pm 0.04$, revealing the absence of a characteristic size. The distribution of distances of disconnected loops from the spanning cluster decays exponentially, i.e., the loop cloud is mainly localized in the neighborhood of the spanning cluster (see Supplementary Information for data).

To understand how the RGB set emerges, we now consider its evolution with the control parameter p. Initially, when the fluids R, G, and B start to invade from the boundary, the RGB set is empty. As p increases, at a typical value $p = p_1$, two fluids for the first time try to invade the same channel in the bulk and with increasing p a division surface starts to form orthogonal to these channels. If, in addition, any of the four edges shared by two neighboring pores of different color is also shared by a pore of the third color, an RGB edge emerges. RGB edges are shown as thick solid lines. RGB edges are observed, $p(s) \propto s^{-\alpha}$, with $\alpha = 2.04 \pm 0.04$, revealing the absence of a characteristic size. The distribution of distances of disconnected loops from the spanning cluster decays exponentially, i.e., the loop cloud is mainly localized in the neighborhood of the spanning cluster (see Supplementary Information for data).

We find that M_{tot} scales with the distance to p_t as $M_{\text{tot}} \sim (p - p_t)^{\xi_T}$ with $\xi_T = 2.0 \pm 0.3$. Therefore, we propose the following crossover scaling for the total number of RGB nodes:

$$M_{\text{tot}}(p,L) = L^{-\xi_T} G[(p - p_t) L^\eta].$$

This scaling behavior of $M_{\text{tot}}(p,L)$ in p and L implies $\theta = (d_{\text{tot}} + t)/\xi_T$. In addition, the scaling function $G(x)$ fulfills $G[x] \propto x^{-\eta}$ for $x > 0$. The Ansatz in Eq. (2) is confirmed by the scaling plot in Fig. 5(c).

Discussion

We found a rich scale-free behavior in the partitioning of random media through simultaneous invasion by three fluids. The lines where all three fluids are simultaneously in contact form a fractal set, the RGB set, of dimension $d_{\text{tot}} = 1.69 \pm 0.02$, while its spanning cluster has dimension $d_{\text{sc}} = 1.55 \pm 0.03$. The other clusters are loops and their size follows a powerlaw distribution. At the threshold where two fluids first form an interface, the size of the set of RGB nodes scales with a negative exponent in the system size. We propose a crossover scaling between this exponent and the fractal dimension d_{tot} above the threshold.

For an oil reservoir shared by three companies, our study shows how the optimal injection regions scale with the reservoir size and how they are spatially distributed. In the second example, image analysis, our work establishes how the number of pixels forming the simultaneous boundary between three tissues scales with the image resolution. Besides these examples, our results have also implications to other fields. Let us consider a chemical reaction that occurs, simultaneously, in three regions.

$$t(d,n) = (n - 2)d - (n - 1)/\nu.$$

For two colors, $n = 2$, $t = -1/\nu = -b$, as in percolation. In contrast for $n \geq 3$, given the exact and numerical values for ν, t is positive. Above $d = 6$, the upper-critical dimension of percolation, $1/\nu = 2$, such that $t = (n - 2)d - 2(n - 1)$.

We conjecture that the expression for t can be generalized to any dimension d and number of different fluids (colors) n, as far as $2 \leq n \leq d$.
obtained fractal dimensions consistent with of the cube, with periodic boundary conditions. For all cases, we
from three vertical faces of a cube, and (3) injection from three edges
partition model with different sets of injection pores, namely, (1)
bution and on the injection areas of the fluids. We also tested the
sion compatible with the one of division surfaces 26. The simultaneous
SCIENTIFIC
REPORTS
the labeling scheme by Newman and Ziff 29,30, we kept track of the color properties as
All numerical results have been obtained with Monte Carlo simulations. Random
H
order in soils is typically characterized by spatial correlations, which
uncorrelated distribution of thresholds. It is well-known that dis-
areas, though not necessary, are sufficient to obtain the RGB fractal
aries. These observations suggest that two conditions on the injection
injected from two opposite faces, (2) injection pores uniformly dis-
in the cube, with periodic boundary conditions, and (3) three single injection pores in the cube, also with periodic bound-
aries. These observations suggest that two conditions on the injection areas, though not necessary, are sufficient to obtain the RGB fractal dimension reported here. First, the injection area of each color must be singly connected. Second, the division of the surface of the medium into these areas has to be such that no single fluid can isolate the remaining two fluids from each other.

The reported fractal dimensions were obtained for a uniform and uncorrelated distribution of thresholds. It is well-known that dis-
order in soils is typically characterized by spatial correlations, which
can be described by their Hurst exponent H. The numerical values of the fractal dimensions reported here will in general depend on H14–17. Nevertheless, our qualitative and topological arguments should still be applicable.

Models of discontinuous percolation transitions are a subject of recent interest18–27. Some of these models lead to compact clusters with fractal perimeters25–27 and in some cases with a fractal dimension compatible with the one of division surfaces26. The simultaneous boundaries between three clusters are therefore quite likely related to RGB sets.

Methods

All numerical results have been obtained with Monte Carlo simulations. Random
numbers have been generated with the algorithm proposed in Ref. [28]. Considering
the labeling scheme by Newman and Ziff29,30, we kept track of the color properties as
function of the fraction of sampled channels p; For Fig. 3, results have been averaged
over at least 2800 realizations. In Fig. 5(a), (b), and (c), results have been averaged over
at least 10000, 6400, and 300 realizations, respectively. Unless indicated otherwise, statistical error bars are smaller than the symbol size. The algorithmic procedure shares similarities with invasion percolation19–21 and the fracturing of ranked surfaces22. The self-similarity of the shortest path in the spanning cluster of the RGB set has been confirmed using the yardstick method24,25.

Figure 5 | Scale-free behavior. (a) Number of loop sizes s divided by L4tot as function of s for different lattice sizes L (256 (□), 362 (○), and 512 (△)). For intermediate sizes the data follows a power law, p(s) ∼ s−α with α = 2.04 ± 0.04. (b) Size dependence of the total mass Mtot at and above the threshold pressure pT. At pT (○) the total mass decreases according to a power law, Mtot ∼ L−1,4, where τ = 0.69 ± 0.08. In contrast, above the threshold (□) the slope is given by the fractal dimension dfract. (c) Rescaled total mass Mtot as a function of the scaling variable (p − pT)L3 for different lattice sizes L. Close to the threshold Mtot ∼ (p − pT)τ, where τ = 2.0 ± 0.3. The solid lines are guides to the eye.

1. Hanesson, R. Extracting common oil: cooperation or competition? Energy J. 21, 105–120 (2000).
2. Christensen, J. R., Stenby, E. H. & Skauge, A. Review of WAG field experience. SPE Reserv. Eval. Eng. 4, 97–106 (2001).
3. Maugeri, L. Squeezing more oil from the ground. Sci. Am. 301, 56–63 (2009).
4. Yan, J., Zhao, B., Wang, L., Zelenetz, A. & Schwartz, L. H. Marker-controlled watersheds for lymphoma segmentation in sequential CT images. Med. Phys. 33, 2452–2460 (2006).
5. Cieplak, M., Maritan, A. & Banavar, J. R. Optimal paths and domain walls in the strong disorder limit. Phys. Rev. Lett. 72, 2320–2323 (1994).
6. Fehr, E., Schrenk, K. J., Araújo, N. A. M., Kadau, D., Grassberger, P., Andrade Jr., J. S. & Herrmann, H. J. Corrections to scaling for watersheds, optimal path cracks, and bridge lines. Phys. Rev. E 86, 011117 (2012).
7. Herrmann, H. J., Hong, D. C. & Stanley, H. E. Backbone and elastic backbone of percolation clusters obtained by the new method of ‘burning’. J. Phys. A: Math. Gen. 17, L261–L266 (1984).
8. Coniglio, A. Fractal structure of Ising and Potts clusters: exact results. Phys. Rev. Lett. 62, 3054–3057 (1989).
9. Lorenz, C. D. & Ziff, R. M. Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices. Phys. Rev. E 57, 230–236 (1998).
10. Bulte, H. G., Fernández, L. A., Martín-Mayor, V., Muñoz Sudape, A., Parisi, G. & Ruiz-Lorenzo, J. J. Scaling corrections: site percolation and Ising model in three dimensions. J. Phys. A: Math. Gen. 32, 1–13 (1999).
11. Deng, Y. & Blöte, H. W. J. Monte Carlo study of the site-percolation model in two and three dimensions. Phys. Rev. E 72, 016126 (2005).
12. Stauffer, D. & Aharony, A. Introduction to Percolation Theory. Taylor & Francis, London, second edition, (1994).
13. Wettstein, S. J., Wittel, F. K., Araújo, N. A. M., Lanyon, B. & Herrmann, H. J. From invasion percolation to flow in rock fracture networks. Physica A 391, 264–277 (2012).
14. Isichenko, M. B. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 64, 961–1043 (1992).
15. Sahimi, M. Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393–1534 (1993).
16. Oliveira, E. A., Schrenk, K. J., Araújo, N. A. M., Herrmann, H. J. & Andrade Jr., J. S. Optimal-path cracks in correlated and uncorrelated lattices. Phys. Rev. E 83, 046113 (2011).
17. Fehr, E., Kadau, D., Araújo, N. A. M., Herrmann, H. J. & Andrade Jr., J. S. Scaling relations for watersheds. Phys. Rev. E 84, 036116 (2011).
18. Achioupitas, D., D’Souza, R. M. & Spencer, J. Explosive percolation in random networks. Science 323, 1453–1455 (2009).
19. Riordan, O. & Warnke, L. Explosive percolation is continuous. Science 333, 322–324 (2011).
20. Mann, S. S. & Chatterjee, A. A new route to explosive percolation. Physica A 390, 177–182 (2011).
21. Chen, W. & D’Souza, R. M. Explosive percolation with multiple giant components. Phys. Rev. Lett 106, 115701 (2011).
22. Nagler, J., Levina, A. & Timme, M. Impact of single links in competitive percolation. Nat. Phys. 7, 265–270 (2011).
23. Nagler, J., Tiessen, T. & Gutch, H. W. Continuous percolation with discontinuities. Phys. Rev. X 2, 031009 (2012).
24. Bizhani, G., Paczuski, M. & Grassberger, P. Discontinuous percolation transitions in epidemic processes, surface depinning in random media, and Hamiltonian random graphs. Phys. Rev. E 86, 011128 (2012).
25. Araújo, N. A. M. & Herrmann, H. J. Explosive percolation via control of the largest cluster. Phys. Rev. Lett 105, 035701 (2010).
26. Schrenk, K. J., Araújo, N. A. M. & Herrmann, H. J. Gaussian model of explosive percolation in three and higher dimensions. Phys. Rev. E 84, 041136 (2011).
27. Schrenk, K. J., Felder, A., Deflorin, S., Araújo, N. A. M., D’Souza, R. M. & Herrmann, H. J. Bohman-Frieze-Wormald model on the lattice, yielding a discontinuous percolation transition. Phys. Rev. E 85, 031103 (2012).
28. Ziff, R. M. Four-tap shift-register-sequence random-number generators. Comput. Phys 12, 385–392 (1998).
29. Newman, M. E. J. & Ziff, R. M. Efficient Monte Carlo algorithm and high-precision results for percolation. Phys. Rev. Lett. 85, 4104–4107 (2000).
30. Newman, M. E. J. & Ziff, R. M. Fast Monte Carlo algorithm for site or bond percolation. Phys. Rev. E 64, 016706 (2001).
31. Wilkinson, D. & Willemsen, J. F. Invasion percolation: a new form of percolation theory. J. Phys. A: Math. Gen. 16, 3365–3376 (1983).
32. Lenormand, R. Flow through porous media: limits of fractal patterns. Proc. R. Soc. Lond. A 423, 159–168 (1989).

Acknowledgements
We acknowledge financial support from the ETH Risk Center and the Brazilian institute INCT-SC.

Author contributions
All authors contributed equally to the paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/scientificreports

Competition financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

How to cite this article: Schrenk, K.J., Araújo, N.A.M. & Herrmann, H.J. How to share underground reservoirs. Sci. Rep. 2, 751; DOI:10.1038/srep00751 (2012).