The Potential Benefits of Using Garlic Oil and Its Active Constituent, Dially Disulphide, in Combination With Carvedilol in Ameliorating Isoprenaline-Induced Cardiac Damage in Rats

Syed Mohammed Basheeruddin Asdaq1*, Obulesu Challa2, Abdulhakeem S. Alamri3,4, Walaa F. Alsanie3,4, Majid Alhomrani3,4 and Mohammed Asad5

1Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia, 2Department of Pharmacology, Krupanidhi College of Pharmacy, Bangalore, India, 3Department of Clinical Laboratory Sciences, the Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia, 4Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia, 5College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia

Garlic oil and its primary component, diallyl disulphide (DADS), were tested in rats with isoprenaline (ISO) induced myocardial infarction for cardioprotective benefits when combined with carvedilol. Garlic oil (GO) was administered to rats (Sprague-dawley strain) at two doses of 50 and 100 mg/kg body weight, whereas DADS was given in two doses of 4.47 and 8.94 mg/kg, respectively. The animals were given oral doses of garlic oil and DADS on alternate days for 3 weeks, either alone or in combination with carvedilol (2 mg/kg). Cardiac injury was done by administering two doses of isoprenaline (150 mg/kg, sc) to all treated groups except the first, which served as a control. Biomarkers of cardiac injury and histological investigations were studied for their potential in reducing ISO-induced myocardial damage. Animals pretreated with GO, DADS, and carvedilol had significantly (p < 0.01) lowered heart weight and heart to body weight ratio. In rats treated with carvedilol plus high dosages of garlic oil (100 mg/kg, p.o) and DADS (8.94 mg/kg, p.o) compared to the ISO control and carvedilol group, the activities of SOD and Catalase were enhanced in cardiac tissue homogenate. When compared to ISO control and carvedilol group, the activities of LDH and CK-MB were elevated in heart tissue homogenate with a simultaneous reduction in their serum levels in animals treated with a combination of carvedilol with high doses of garlic oil (100 mg/kg, p.o) and DADS (8.94 mg/kg, p.o). Overall, combining garlic oil or DADS with carvedilol improved the cardioprotective effect of carvedilol and protected rats from ISO-induced myocardial infarction. However, more research is needed to establish the mechanism of garlic oil and DADS interaction with carvedilol.

Keywords: GC-MS, antioxidants, garlic oil, diallyl disulphide, herbal supplements, carvedilol cellular damage
INTRODUCTION

Consumption of herbal medicines or nutritional supplements along with modern medicine is a common practice throughout the world. This is done with the belief that the addition of herb(s) or nutrient(s) to drug regimen may provide extra beneficial effects and/or reduce adverse effects of the drugs (Shaikh et al., 2020). The effect of many herbs and nutrients on the pharmacological effects of drugs is unknown, though some herbs and nutrients have been reported to affect the overall pharmacological effects of drugs due to pharmacodynamic and/or pharmacokinetic interactions (Ronis et al., 2018).

Myocardial infarction (MI), generally known as a heart attack, is one of the most dreadful disorders. According to estimates, MI will kill approximately 23.3 million individuals by 2030. Mortality due to MI is increasing at an alarming rate in Asian countries such as India and Malaysia (Xu et al., 2016; Rosello et al., 2017). Atherosclerosis is the most prevalent cause of MI, which generates a discrepancy in production and consumption in the myocardium, leading to hypoxic and waste product accumulation, that eventually leads to myocyte mortality (Kumar et al., 2016). Despite this, the pathophysiology of MI remains a mystery. Inflammation and necrosis, on the other hand, have been identified as key factors in MI in a number of investigations (Goyal et al., 2015; Othman et al., 2017).

Isoprenaline (ISO) is a non-selective agonist for β adrenergic receptors. Administration of ISO at a higher concentration leads to a fall in myocardial compliance due to ischemic damage, and it is one of the most widely used models for assessing the cardioprotective efficacy of new drugs and studying the pathological consequences of human myocardial impairment (Zhang et al., 2005).

Garlic bulbs from the plant Allium sativum (family- Amaryllidaceae) are common flavouring agent added to different food recipes. Garlic is also known to possess excellent medicinal properties. The garlic bulb and its different preparations, such as garlic oil, garlic powder, and various garlic extracts, are mentioned for their therapeutic benefits in different traditional systems of medicine (Adaki et al., 2014). Further, the pharmacological and therapeutic properties of garlic and its constituents have been investigated by several authors earlier (Chang et al., 2011; Lissiman et al., 2014; Hou et al., 2015; Nicastro et al., 2015; El-Saber Batiha et al., 2015). We have earlier reported cardiovascular actions and interactions of garlic and its different preparations with several drugs. Garlic showed antihypertensive effect and enhanced bioavailability and antihypertensive effects of propranolol and hydrochlorthiazide in our earlier studies (Asdaq and Inamdar, 2009; Asdaq and Inamdar, 2011a; Asdaq and Inamdar, 2011b). Garlic and its active constituent s-allyl cysteine also enhanced the cardioprotective and antihypertensive effects of captopril (Asdaq and Inamdar, 2010). We also reported that garlic, aged garlic extract and s-allyl cysteine showed antioxidant and hypolipidemic effects that were influenced by the administration of conventional antihypertensives (Asdaq et al., 2009b; Asdaq, 2015). Recently, we reported the interaction of aged garlic extract and its constituent s-allyl cysteine on isoprenaline induced myocardial infarction in rats (Asdaq et al., 2021).

The active constituents of garlic and the most effective garlic preparation with cardiovascular benefits are not correctly known. Different studies have given conflicting reports on the active constituents and the best garlic preparation for cardiovascular benefits. Garlic constituents with potent antioxidant action such as s-allylcysteine and s-allylmercaptocysteine are reported as the constituents responsible for the beneficial effect of garlic on the cardiovascular system. Earlier, allicin (allyl 2-propenethiosulfinate) was believed to be the constituent with a cardioprotective effect, but it is a highly unstable compound and it gets converted to s-allylcysteine and s-allylmercaptocysteine in the body. Garlic oil is a typical garlic product that has been shown to improve antioxidant enzyme activity (Ko et al., 2016). Active components of garlic oil, such as diallyl sulphide (DAS), and diallyl disulphide (DADS), have been found to protect and treat oxidative damage (Guan et al., 2018). Garlic oil has been demonstrated to aid weight loss by reducing LDL cholesterol levels (Yang et al., 2018). Because hyperlipidemia is a known cause of MI, we want to learn more about the role of garlic oil in preventing ischemia damage, as well as whether its main active ingredient, diallyl disulphide (DADS), has similar or different cardioprotective properties.

Beta-adrenergic blockers are a class of drugs with multiple pharmacological actions. Carvedilol is a non-selective beta-blocker that also blocks α1-α2 adrenergic receptors, providing cardioprotective action with vasodilation. It is used in the treatment of hypertension, angina pectoris, cardiac arrhythmias, and also as an antioxidant and antiproliferative agent. Carvedilol is used in the treatment of left ventricular dysfunction and congestive heart failure. Apart from these, it also has a lipid lowering effect and augments renal dysfunction, indicating wide spread use of this non-selective beta-blocker (Singh and Preuss, 2021).

Continuing our efforts to determine the beneficial effects of garlic preparations and their influence on the effects of drugs affecting cardiovascular functions, the present study determined the effect of garlic oil and diallyl disulphide (DADS) on the cardioprotective effect of carvedilol on isoprenaline induced myocardial infarction in rats.

MATERIALS AND METHODS

Experimental Animals

Female Sprague-Dawley rats weighing 150–200 g were housed at 25 ± 5 °C in a well-ventilated animal house under 12:12 h light dark cycle. The rats had free access to standard rat chow (Amrut Laboratory Animal Feed, Maharashtra, India) containing (% w/w) protein 22.10, oil 4.13, fiber 3.15, ash 5.15, sand (silica) 1.12 and water ad libitum. The institutional animal ethics committee of Krupanidhi College of Pharmacy (KCP/IAEC-27) approved the experimental protocol and animals were maintained under standard conditions in an animal house approved by Committee for the Purpose of Control and Supervision on Experiments on Animals (CPCSEA).

Materials

Sigma Aldrich (United States) provided the garlic oil, which was GC-MS standardized for the presence of DADS. The CK-MB and LDH
and 290°C, respectively. The chemicals were tentatively identified with a 70 eV ionization energy was employed for GC/MS detection. Temperatures for the injector and MS transfer line were set at 220°C. A Hewlett Packard 5890 II GC with an HP 5972 Mass selective detector and HP-5ms capillary column (30 m 0.25 mm, film thickness 0.25 m) was used to assay the garlic oil sample for DADS. The injector and detector were adjusted to 220 and 290°C, respectively. The temperature of the column was raised from 50 to 220°C at a rate of 3°C/min for 10 min. At a flow rate of 1 ml/min, helium was used as the carrier gas. In the splitless method, 1 μL (1.0 L) of the concentrate was manually injected into 10 ml of each organic extract. An electron ionization device with a 70 eV ionization energy was employed for GC/MS detection. Temperatures for the injector and MS transfer line were set at 220 and 290°C, respectively. The chemicals were tentatively identified by comparing their mass spectra to those of the NIST 98 and Wiley 275 library data of the GC-MS system (Kimbaris et al., 2006).

Quantification of DADS in Garlic Oil by GC-MS

A Hewlett Packard 5890 II GC with an HP 5972 Mass selective detector and HP-5ms capillary column (30 m 0.25 mm, film thickness 0.25 m) was used to assay the garlic oil sample for DADS. The injector and detector were adjusted to 220 and 290°C, respectively. The temperature of the column was raised from 50 to 220°C at a rate of 3°C/min for 10 min. At a flow rate of 1 ml/min, helium was used as the carrier gas. In the splitless method, 1 μL (1.0 L) of the concentrate was manually injected into 10 ml of each organic extract. An electron ionization device with a 70 eV ionization energy was employed for GC/MS detection. Temperatures for the injector and MS transfer line were set at 220 and 290°C, respectively. The chemicals were tentatively identified by comparing their mass spectra to those of the NIST 98 and Wiley 275 library data of the GC-MS system (Kimbaris et al., 2006).

Dose Selection

Garlic Oil (50/100 mg/kg, p.o) (Kuo et al., 2011) and carvedilol (2 mg/kg, p.o) (Watanabe et al., 2002) doses were selected from previous studies. The required doses of DADS (4.47/8.94 mg/kg) were selected based on GC-MS peaks of garlic oil (Figure 1 and Figure 2) Experimental protocol.

Experimental Protocol

There were eleven groups of experimental animals used in this study, each having six rats. Group I was kept as normal control and given a vehicle (1 ml/kg, p.o) on alternate days for 3 weeks. The vehicle used was acacia (2% w/v). Groups 2 to 11 received the following treatments on alternate days for 3 weeks, followed by administration of two doses of isoprenaline (ISO) at a dose of 150 mg/kg subcutaneously for two consecutive days (Pipaliya et al., 2012). Group 2 was named ISO control and received vehicle (1 ml/kg, p.o) while Group 3 was administered with carvedilol (2 mg/kg, p.o). Groups 4 and 5 received garlic oil orally at a dose of 50 mg/kg (low dose) and 100 mg/kg (high dose) respectively, while groups 6 and 7 received a combination of carvedilol with a low dose and high dose of garlic oil respectively. Similarly, groups 8 and 9 received a low dose of DADS (4.47 mg/kg) and a high dose of DADS (8.94 mg/kg) and groups 10 and 11 received a combination of carvedilol with a low dose of DADS and a high dose of DADS respectively. A schematic diagram of the procedure is given in Figure 1.

As mentioned above, animals in all groups except group-1 received ISO (150 mg/kg, s.c) for two consecutive days. After 48 h of the first dose of ISO, blood was withdrawn from animals under anesthesia induced by a combination of ketamine hydrochloride (75 mg/kg, i.p) and xylazine (10 mg/kg, i.p) (Wellington et al., 2013). Serum levels of lactate dehydrogenase (LDH), and creatinine kinase-MB (CK-MB) were determined using commercially available biochemical kits. Following blood removal, a thoracic incision was performed, and the hearts were split open, flushed with saltwater (0.9 percent NaCl), and dried. The weight of the heart was assessed (Buerke et al., 1998) and heart tissue homogenate (HTH) was prepared separately for three hearts in an ice-cold 0.25 M sucrose solution using a mortar and pestle. The homogenate was then centrifuged at 5000 rpm for 15 min. After draining the supernatant, biochemical and molecular studies were performed (Lee et al., 2012). The LDH and CK-MB were estimated using commercially available kits. The estimation of superoxide dismutase (SOD) (Elstner and Heupel, 1976), catalase (Link, 1988) and thiobarbituric acid reactive substances (TBARS) (Niehaus and Samuelsson, 1968) were done in heart tissue homogenate. Slides for microscopic examination were made from the remaining hearts of three animals in each group for histological studies. Five micrometer sections were cut and stained using H and E stain. Depending on the severity of cardiac damage, scores were assigned between 0 and 3 with 0 being no damage, one- mild damage as indicated by degenerations at different foci and slight inflammation. A score of two was given when severe degeneration of myofibrils was observed with or without diffuse inflammation, while a score of three was assigned to slides that showed necrosis along with diffuse inflammation (Karthikeyan et al., 2007).

Data Analysis

One-way analysis of variance (ANOVA) was used to determine statistical significance, followed by Tukey’s multiple comparison tests using the GraphPad Prism 8.0 computer software kit. The data was presented as mean ± SEM, with a p < 0.05 significance level chosen. Power analysis was carried out using G power application, keeping 0.05 as the alpha error probability in One-was ANOVA and post-hoc tests for parameters with low sample size (n = 3).

RESULTS

GC-MS Analysis of DADS in Garlic Oil

Analysis of garlic oil showed that it contained 8.94% w/w of DADS. On the basis of GC-MS peaks of garlic oil, the DADS doses were determined as 4.47 and 8.94 mg/kg (Figure 2 and Figure 3). The other compounds detected in the oil were allyl methyl sulphide (AMS) and diallyl trisulphide (DATS).
Effect on Heart Weight and Heart to Body Weight Ratio

The heart weight and the ratio of heart weight to body weight at the end of treatment are shown in Table 1. When compared to the normal control group, animals given two doses of isoprenaline (isoprenaline control) had a substantial ($p < 0.01$) increase in heart weight and heart weight to body weight ratio. When compared to the isoprenaline control, all animals pretreated with garlic oil, diallyl disulphide, and carvedilol had significantly ($p < 0.01$) lower heart weight and heart to body weight ratio. Moreover, animals given garlic oil/diallyl disulphide plus carvedilol had a substantial ($p < 0.05$) improvement in heart weight and heart to body weight ratio as compared to the garlic oil and diallyl disulphide groups, respectively. The heart to body weight ratio was more towards the normal value with high doses of garlic oil and diallyl disulphide than with their respective low doses.

Effect on Biomarkers of Cardiac Damage

The administration of ISO produced significant changes in different biomarkers of cardiac damage. There was no mortality in animals treated with ISO.

Effect of CK-MB Activity

Administration of ISO induced myocardial infarction as indicated by an increase in cardiac specific serum CK-MB levels and a decrease in CK-MB activity in HTH of ISO treated animals when compared to normal controls ($p < 0.001$). Carvedilol, garlic at both doses and DADS at both doses showed cardioprotective effects. The serum levels of CK-MB were reduced and an increase in CK-MB levels in HTH was observed in these groups when compared to the ISO control. Animals treated with a low dose of DADS (4.47 mg/kg, p.o) showed a significant increase in serum CK-MB compared to the normal group. Both doses of DADS in combination with carvedilol produced a significant fall in serum CK-MB level compared to the carvedilol treated group. Both doses of DADS in combination with carvedilol showed a significantly lower serum CK-MB activity compared to DADS treatment alone (Figure 4).

In HTH, animals treated with a high dose of garlic oil (100 mg/kg, p.o) showed a significant decrease in the CK-MB while animals treated with a combination of high dose of DADS (8.94 mg/kg, p.o) and carvedilol showed a moderately significant increase in the CK-MB, but the group treated with carvedilol produced a moderate fall of CK-MB than normal. All treated groups except the low dose of garlic oil (50 mg/kg, p.o) and the combination of both doses of DADS with carvedilol showed a significant fall in the CK-MB level in HTH as compared to the ISO group. Furthermore, in groups treated with the low dose of garlic oil (50 mg/kg, p.o) and the combination of both doses of DADS with carvedilol, a significant rise in the CK-MB levels was observed compared to the carvedilol alone group. Group treated with a low dose of garlic oil (50 mg/kg, p.o) in combination with carvedilol showed a rise in the CK-MB activity compared to low dose of garlic oil (50 mg/kg, p.o) alone. Animals treated with a combination of carvedilol with either dose of...
DADS were observed to have significantly more CK-MB activity compared to either dose of DADS alone (Figure 5).

Effect on LDH Activity

Similar to the CK-MB activity, ISO administration for two consecutive days produced an increase in serum levels of LDH and reduced its activity in HTH. However, the activity of LDH was reduced by all the treatments irrespective of dose and combinations when compared to ISO control (Table 1). Animals treated with a higher dose of garlic oil (100 mg/kg, p.o) showed a significant increase in the serum LDH, whereas animals treated with DADS (8.94 mg/kg, p.o) and carvedilol showed a significant decrease in the serum LDH when compared to normal control animals. In the group of animals treated with a combination of higher dose of garlic oil (100 mg/kg, p.o) and carvedilol, a slight decrease in LDH activity was observed, whereas the combination of both doses of DADS with carvedilol showed a significant fall in LDH level compared to the group treated with carvedilol alone. The group of rats treated with a higher dose of garlic oil (100 mg/kg, p.o) and carvedilol had significantly higher LDH activity in the HTH.
compared to the carvedilol treated group. Combined therapy of garlic oil high dose (100 mg/kg, p.o) and carvedilol produced a moderately significant increase in LDH in HTH compared to garlic oil high dose (100 mg/kg, p.o) alone (Figure 6 and Figure 7).

Effect on SOD and Catalase

The Administration of ISO caused a significant fall in the activities of antioxidant enzymes; SOD and catalase in HTH. Garlic oil (50 mg/kg, p.o) and its combination with carvedilol and the combination of both doses of DADS with carvedilol produced a significant increase in the SOD activity compared to the ISO control. Administration of carvedilol along with either dose of garlic oil or DADS was more effective in increasing SOD activity compared to administration of carvedilol alone. The SOD activity was higher in the group treated with a higher dose of garlic oil (100 mg/kg, p.o) with carvedilol compared to garlic oil (100 mg/kg, p.o) alone. Similarly, the group treated with a combination of carvedilol with DADS (4.47 mg/kg, p.o) or DADS (8.94 mg/kg, p.o) had significantly higher SOD activity in HTH compared to DADS treatment alone (Figure 8).

For catalase activity, the group treated with a high dose of DADS (4.47 mg/kg, p.o) in combination with carvedilol showed a moderate increase in catalase activity, while DADS (8.94 mg/kg, p.o) with carvedilol showed a slight increase in catalase level compared to the ISO group. Animals treated with DADS (8.94 mg/kg, p.o) alone and a combination of either dose of DADS with carvedilol produced a significant rise in catalase levels compared to carvedilol treatment alone. The combination of garlic oil (100 mg/kg, p.o) with carvedilol showed a moderate increase in catalase value compared to garlic oil (100 mg/kg, p.o) alone (Figure 9).
Effect on TBARS
Similar to other biomarkers, the TBARS levels increased significantly upon ISO administration compared to normal control. Animals treated with garlic oil (100 mg/kg, p.o) showed a significant increase, whereas those administered DADS (8.94 mg/kg, p.o) along with carvedilol showed a moderate decrease in the TBARS compared to normal control. All groups except the high dose of garlic oil (100 mg/kg, p.o) produced a significant fall in the TBARS value compared to the ISO control group. The group treated with garlic oil (100 mg/kg, p.o) together with carvedilol showed a moderate fall in TBARS value compared to the garlic oil (100 mg/kg, p.o) treated group. The combination of DADS (8.94 mg/kg, p.o) and carvedilol reduced TBARS values compared to the DADS (8.94 mg/kg, p.o) group (Figure 10).

Effect on Histological Score
An average histological score from three animals in each group. Severe necrosis with diffused inflammation was seen after administration of ISO. Pretreatment with DADSHD (8.94 mg/kg, p.o) and the combination of both doses of DADS or garlic oil with carvedilol offered protection against ISO induced damage by preventing severe cellular damage. In sections prepared from the hearts of animals of the above mentioned group, only reversible cellular degeneration and slight inflammation were observed. Garlic oil at both doses (50 mg/100 mg/kg, p.o) and DADSLD (4.47 mg/kg, p.o) offered less protection against ISO induced cellular damage (Figure 11 and Figure 12).

Power Analysis
Because there were only three samples available for the parameters tested in heart tissue homogenate (HTH), a power analysis was performed to see if the required power of 80% was achieved in all of the observations. The results of the analysis showed 86.9, 89.1, 99.2%, 96.2, and 82.8 percent statistical power.
to the outcomes obtained in estimates of CK-MB, LDH, SOD, Catalase, and TBARS levels, respectively, because the variance within the group was minimum due to the calibrated experimental setup (Figure 13).

DISCUSSION

The results of the current study showed varying effects of DADS, garlic oil and their combination with carvedilol on different indicators of cardiac damage in isoprenaline induced myocardial infarction in rats. As mentioned earlier, we have evaluated different preparations of garlic for their effect on the pharmacological activity of commonly used cardiovascular drugs. Our aim has been to confirm the health-promoting effects of garlic supplementation and to identify the best garlic preparation and the chemical constituent(s) responsible for the beneficial cardiovascular actions. Since, garlic supplementation is used by many patients using modern medicine, we also determined the interaction between garlic preparations and their active constituents with different drugs.

The present study was done using garlic oil because of earlier reports on the cardiovascular benefits of this oil (Kuo et al., 2011; Seki et al., 2015). The active constituent; DADS, was also selected based on earlier studies on its effect on the cardiovascular system (Khatua et al., 2016) and its dose was selected as equivalent to that present in the garlic oil used in the study through GC-MS analysis.

High doses of isoprenaline (ISO) cause a cascade of events that culminate in ventricular hypertrophy, with disruption and
rupturing of the cardiac muscle resulting in extracellular fluid flow and an increase in heart weight (Liu et al., 2013; Sagor et al., 2015). According to this, in isoprenaline-injected rats, heart weight and the ratio of heart weight to body weight were abnormally high, which was successfully mitigated in rats that received garlic oil, diallyl disulphide, or carvedilol treatment, either separately or jointly. This means that our therapies effectively protect the myocardium, a histological examination was carried out along with biochemical estimations. Pretreatment with high doses of garlic oil and DADS alone or with carvedilol substantially reduce both the initiation and propagation of the damage to myocardium, a histological examination was carried out along with biochemical estimations. Pretreatment with high doses of garlic oil and DADS alone or with carvedilol substantially
maintained the myocardial cellular integrity and decreased the pathological scores when compared to the ISO treated group. The number of samples for determination of different parameters in the HTH was only three. The sample size could not be increased due to ethical issues. Though the sample size was small, it was enough to draw conclusions as the LDH and CK-MB levels were simultaneously determined in the serum.

The results of the present study showed varying effects. Nevertheless, the results suggest that garlic oil or DADS at two different doses augment the cardioprotective action of carvedilol. A comparison of different groups showed a dose dependent effect of garlic oil and DADS, though a significant effect was not observed between the effects produced by the lower dose compared to the higher dose. The comparison of effects produced by the combination of carvedilol with either dose of garlic oil or DADS with individual treatments showed varying effects, with some of them being significant, while many other comparisons were not significant.

The antioxidant property of garlic oil and its constituent diallyl disulphide have been reported earlier (Chiang et al., 2006). The antioxidant action is due to organosulphurous compounds, but the exact mechanism is still not clear. It is apparent that allyl sulphur constituents of these preparations are responsible for accelerated antioxidant enzyme synthesis at times of ISO induced stress to the myocardium (Kim et al., 1997).

CONCLUSION

The findings of the present study showed a dose dependent increase in the cardioprotective efficacy of garlic oil and its active constituent, diallyl disulphide (DADS), during isoprenaline induced myocardial damage. Additionally, this study reiterates the role of garlic oil and DADS in amplifying the cardioprotective efficacy of carvedilol in ISO induced ischemic damage in experimental animals. Despite the fact that beta blockers are well-known for their cardioprotective properties, this work was the first to find the cardioprotective interaction of carvedilol with garlic oil and DADS during myocardial stress in rats. The findings of this study will pave the way for further research into the role of garlic oil and DADS in the therapeutic regimen, potentially lowering the dosage of traditional cardioprotective substances like carvedilol.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

ETHICS STATEMENT

The animal study was reviewed and approved by Krupanidhi College of Pharmacy animal ethical committee (KCP/IAEC-27).

AUTHOR CONTRIBUTIONS

Under the supervision of SA, OC carried out the research methodology. AA was responsible for formal analysis of the work while WA participated in writing original draft of the manuscript. MA administered the project and MA was instrumental in review and editing of the manuscript.

FUNDING

AA would like to acknowledge Taif university for support (No. TURSP (2020/288)).

ACKNOWLEDGMENTS

The authors would like to thank the management of the Krupanidhi College of Pharmacy for providing the necessary facilities to carry out this research. The authors are also thankful to AlMaarefa University in Riyadh for providing support to do this research.

REFERENCES

Abe, K., Hori, Y., and Myoda, T. (2019). Volatile compounds of fresh and processed garlic. *Exp. Ther. Med.* 19, 1585–1593. doi:10.3892/etm.2019.8394

Adaki, S., Adaki, R., Shah, K., and Karagir, A. (2014). Garlic: Review of literature. *Indian J. Cancer* 51, 577–581. Medknow Publications. doi:10.4103/0019-509x.175383

Asdaq, S. M. (2015). Antioxidant and hypolipidemic potential of aged garlic extract and its constituent, s-allyl cysteine, in rats. *Evid. Based. Complement. Alternat. Med.* 2015, 328545. doi:10.1155/2015/328545

Asdaq, S. M., and Avula, P. R. (2015). Interaction of garlic oil and its constituent diallyl disulfide with atenolol in isoproterenol induced acute myocardial injury in rats. *J. Pharm. Biol.* 5 (1), 44–52.

Asdaq, S. M., Inamdar, M. N., and Asad, M. (2009b). Effect of conventional antihypertensive drugs on hypolipidemic action of garlic in rats. *Indian J. Exp. Biol.* 47 (3), 176–181. PMID: 19405382.
Isoproterenol-Induced Myocardial Disturbance and Metabolic Derangements in Rats. Molecules 26, 3203. doi:10.3390/molecules26113203

Ayash, S., Assareh, A. R., Jalali, M. T., Olopar, S., and Yaghoobi, H. (2016). Role of antioxidant property of carvedilol in mild to moderate hypertensive patients: A prospective open-label study. Indian J Pharmacol. 48, 372–376. doi:10.4103/0253-7613.186206

Borek, C. (2001). Antioxidant health effects of aged garlic extract. Am. Inst. Nutr. 131, 10015–1015S. doi:10.1093/jn/131.3.1010s

Buerke, M., Prüfer, D., Dahm, M., Oelert, H., Meyer, I., and Darius, H. (1998). Blocking of classical complement pathway inhibits endothelial adhesion molecule expression and preserves ischemic myocardium from reperfusion injury. J. Pharmocol. Exp. Ther. 286, 429–438.

Chang S. H., Liu C. J., Kuo, C. H., Chen, H., Lin W. Y., Teng K. Y. et al. (2011). Garlic Oil Alleviates MAPKs- and IL-6-mediated Diabetes-related Cardiac Hypertrophy in STZ-induced DM Rats. Evid. Based Complement. Alternat. Med. 2011, 950150. doi:10.1155/2011/eqn075

Chiang, Y. H., Jen, L. N., Su, H. Y., Li, C. K., Sheen, L. Y., and Liu, C. T. (2006). Effects of garlic oil and two of its major organosulfur compounds, diallyl disulfide and diallyl trisulfide, on intestinal damage in rats injected with endotoxin. Toxicol. Appl. Pharmacol. 213, 46–54. doi:10.1016/j.taap.2005.08.008

Dudnakoiva, T. V., Lakomkin, V. L., Tsyplenkova, V. G., Shekhonin, B. V., Shirinski, V. P., and Kapelko, V. I. (2002). Isoprotalinus induced changes of protein expression and myocardial ultrastructure. Kardiologiya 42 (11), 57–63. Russian. PMID: 12944039.

El-Saber Batiha, G., Magdy Beshbishy, A., Wasef, L., Elewa, Y. H. A., Al-Sagan, Borek, C. (2001). Antioxidant health effects of aged garlic extract. Biosci. Biotechnol. Biochem. 61, 1482–1485. doi:10.1271/bbb.61.1482

Karthikeyan, K., Bai, B. R., and Devaraj, S. N. (2007). Cardioprotective effect of grape seed proanthocyanidins on isoprotalinus-induced myocardial injury in rats. Int. J. Cardiol. 115, 326–333. doi:10.1016/j.ijcard.2006.03.016

Kusaka, S., Uda, N., Kyo, E., Ushijima, M., Morihara, N., and Itakura, Y. (2001). Pharmacologic activities of aged garlic extract in comparison with other garlic preparations. Am. J. Nutr. 131, 10805–45. doi:10.1093/jn/131.3.1080s

Khatau, T. N., Dinda, A. K., Putcha, U. K., and Banerjee, S. K. (2016). Diallyl disulfide ameliorates isoprotalinus induced cardiac hypertrophy activating mitochondrial biogenesis via eNOS-Nrf2-TFam pathway in rats. Biochem. Biophys. Rep. 5, 77–88. doi:10.1016/j.bbrep.2015.11.008

Kim, S. M., Kubota, K., and Kobayashi, A. (1997). Antioxidative activity of sulfur-containing flavor compounds in garlic. Biosci. Biotechnol. Biochem. 61, 1482–1485. doi:10.1271/bbb.61.1482

Kimbaris, A. C., Satis, N. G., Pappas, C. S., Tarantilis, P. A., Daferera, D. I., and Polissiou, M. G. (2006). Quantitative analysis of garlic (Allium sativum) oil unsaturated acyclic components using FT-Raman spectroscopy. Food Chem. 94, 287–295. doi:10.1016/j.foodchem.2005.01.017

Ko, J.-W., Park, S.-H., Lee, I.-C., Lee, S.-M., Shin, I.-S., Kang, S.-G., et al. (2016). Protective effects of garlic oil against 1,3-dichloro-2-propanol-induced hepatotoxicity: role of CYP2E1 and MAPKs. Mol. Cell. Toxicol. 12, 185–195. [CrossRef] doi:10.1016/j.mctx.2016.01.002

Kumar, M., Kasala, E. R., Dudhul, L. N., Daihya, V., and Lahkar, M. (2016). Bacilcin protects isoprotalinus induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation. Inflammam. Res. 65, 613–622. doi:10.1007/s00011-016-0944-z

Lee, D. Y., Li, H., Lim, H. J., Lee, H. I., Jeon, R., and Ryu, J. H. (2012). Anti-inflammatory activity of sulfur-containing compounds from garlic. J. Food 15, 992–999. [CrossRef] doi:10.1016/j.foodchem.2012.08.227

Link, E. M. (1988). The mechanism of pH-dependent hydrogen peroxide cytotoxicity in vitro. Arch. Biochem. Biophys. 265, 362–372. doi:10.1016/0003-9861(88)90139-7

Lissiman, E., Bhasale, A. L., and Cohen, M. (2014). Garlic for the common cold. Cochrane Database Syst. Rev. 2014, CD006206. doi:10.1002/14651858.CD006206.pub3

Liu, Y. T., Jia, H. M., Chang, X., Ding, G., Zhang, H. W., and Zou, Z. M. (2013). The protective effects of garlic oil against 1,3-dichloro-2-propanol-induced oxidative stress in rats. Food Chem. 139, 1514–1520. doi:10.1016/j.foodchem.2013.04.008

Mak, I. T., and Weglicki, W. B. (1988). Protection by beta-blocking agents against free radical-mediated sarcolemmal lipid peroxidation. Circ. Res. 63, 262–266. doi:10.1161/01.res.63.1.262

Nicastro, H. L., Ross, S. A., and Milner, J. A. (2015). Garlic and onions: Their cancer prevention properties. Cancer Prev. Res. (Phila) 8, 181–189. doi:10.1158/1940-6207.CAPR.14-0172

Niehaus, W. G., and Samuelsson, B. (1968). Formation of Malonaldehyde from Phospholipid Arachidonate during Microsomal Lipid Peroxidation. Eur. J. Biochem. 6, 126–130. doi:10.1111/j.1432-1033.1968.tb00428x

Othman, A. I., Elkomy, M. M., El-Missiry, M. A., and Dardor, M. (2017). Epigallocatechin-3-gallate prevents cardiac apoptosis by modulating the intrinsic apoptotic pathway in isoprotalinus-induced myocardial infarction. Eur. J. Pharmacol. 794, 27–36. doi:10.1016/j.ejphar.2016.11.014

Papilaïa, V., and Vaghasia, J. (2012). Cardiac protective effect of vitamin A against isoprotalinus-induced myocardial infarction. J. Nutr. Sci. Vitaminol (Tokyo) 58, 402–407. doi:10.3177/jnsv.58.402

Ronis, M. J. J., Pedersen, K. B., and Watt, J. (2018). Adverse Effects of Nutraceuticals and Dietary Supplements. Annu. Rev. Pharmacol. Toxicol. 58, 583–610. doi:10.1146/annurev-pharmtox-010617-052844

Rosselló, X., Huo, Y., Pocock, S., Van der Werf, F., Chin, C. T., Danchin, N., et al. (2017). Global geographical variations in ST-segment elevation myocardial infarction management and post-discharge mortality. Int. J. Cardiol. 245, 27–34. doi:10.1016/j.ijcard.2017.07.039

Sager, M. A. T., Tabassum, N., Potal, M. A., Alam, M. A., and Alam, M. (2015). Xanthine Oxidase Inhibitor, Allorupronil, Prevented Oxidative Stress, Fibrosis, and Myocardial Damage in Isoprotalinus Induced Aged Rats. Oxidative Med. Cell Longevity 2015, 1–9. doi:10.1155/2015/478039

Sakthi, A. S., Thomas, A. B., and Chitlang, S. S. (2020). Herb–drug interaction studies of herbs used in treatment of cardiovascular disorders—A narrative review of preclinical and clinical studies. Phyther. Res. 34, 1008–1026.
Seki, T., and Hosono, T. (2015). Prevention of cardiovascular diseases by garlic-derived sulfur compounds. J. Nutr. Sci. Vitaminol (Tokyo) 61 Suppl, S83–S83. doi:10.3177/jnsv.61.583

Sharifi-Rad, J., Cristina Cirone Silva, N., Jantwal, A., D. Bhatt, I., Sharopov, F., C. Cho, W., et al. (2019). Therapeutic Potential of Allicin-Rich Garlic Preparations: Emphasis on Clinical Evidence toward Upcoming Drugs Formulation. Appl. Sci. 9, 5555. doi:10.3390/app9245555

Singh, S., and Preuss, C. V. (2021). Carvedilol. [Updated 2021 Feb 17]. in: StatPearls [Internet]. Treasure Island (FL). Treasure Island, FL: StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534868/(accessed on July 11, 2021).

Watanabe, K., Ohta, Y., Nakazawa, M., Higuchi, H., Hasegawa, G., Naito, M., et al. (2000). Low dose carvedilol inhibits progression of heart failure in rats with dilated cardiomyopathy. Br. J. Pharmacol. 130, 1489–1495. doi:10.1038/sj.bjp.0703450

Wellington, D., Mikaelian, I., and Singer, L. (2013). Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J. Am. Assoc. Lab. Anim. Sci. 52, 481–487.

Xu, H., Li, W., Yang, J., Wiviott, S. D., Sabatine, M. S., Peterson, E. D., et al. (2016). The China Acute Myocardial Infarction (CAMI) registry: A national long-term registry-research-education integrated platform for exploring acute myocardial infarction in China. Am. Heart J. 175, 193–e3. doi:10.1016/j.ahj.2015.04.014

Yang, C., Li, L., Yang, L., Lü, H., Wang, S., and Sun, G. (2018). Anti-obesity and Hypolipidemic effects of garlic oil and onion oil in rats fed a high-fat diet. Nutr. Metab. (Lond) 15, 43. doi:10.1186/s12986-018-0275-x.

Zhang, G., Kimura, S., Nishiyama, A., Shokoji, T., Rahman, M., and Yao, L. (2005). Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc. Res. 65, 230–238.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Asdaq, Challia, Alamri, Alsanie, Alhomrani and Asad. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.