Cancer is one of the leading causes of death worldwide. Accurate diagnosis, staging and restaging are essential for the optimal therapeutic management of cancer patients. Positron emission tomography (PET) with 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG), an analogue of glucose, provides valuable functional information based on the increased glucose uptake and glycolysis of cancer cells and depicts metabolic abnormalities before morphological alterations occur. 18F-FDG PET/CT acquires PET and CT data in the same imaging session and allows accurate anatomical localization of the lesions detected on the 18F-FDG PET scan. Following its introduction, integrated PET/CT rapidly gained clinical acceptance, and in the last decade it has become an important imaging tool in routine clinical oncology.

There is evidence that 18F-FDG PET/CT is particularly useful for detecting recurrence, especially in asymptomatic patients with rising tumor marker levels and those with negative or equivocal conventional imaging findings. Yet there are some limitations and areas of uncertainty, mainly regarding the lack of specificity of 18F-FDG uptake and the variable avidity of some cancers for this tracer. This article reviews the main applications, advantages and limitations of 18F-FDG PET/CT in oncology.

METHODS
A search was performed to identify mainly all published randomized controlled trials and systematic reviews in the English language literature. An additional search was performed to identify relevant unpublished systematic reviews. These publications comprised both retrospective and prospective studies of variable methodological quality. The consequences of false-positive and false-negative test results when evaluating the clinical usefulness of tests, as well as the impact of 18F-FDG PET/CT on the management of cancer patients, were also reviewed.

Breast Cancer
18F-FDG PET/CT has no role in the diagnosis of primary breast cancer as its ability to detect small and/or
noninvasive carcinomas is poor, with an overall sensitivity of only 68% for tumors of size <2 cm.1,2 For axillary nodal staging, 18F-FDG PET/CT has variable sensitivity (79%-94%) and specificity (86%-92%),3,4 and therefore the predictive accuracy is insufficient to recommend this modality for routine use.5

The most important current clinical applications of 18F-FDG PET/CT in breast cancer patients are for the detection and evaluation of recurrent or metastatic disease (Figure 2) and for monitoring response to therapy.6 In a patient-based analysis, it was shown that 18F-FDG PET/CT has a high overall sensitivity, specificity and accuracy for the detection of locoregional recurrence (89%, 84% and 87%, respectively) and distant metastases (100%, 97% and 98%, respectively) (Table 2) and is also more sensitive than the serum tumor marker CA 15-3 in detecting relapsed disease.7

Detection of a decrease in the standardized uptake value (SUV) to a level below 55% of the baseline study is a powerful tool in monitoring histopathological response to chemotherapy for locally advanced breast cancers. Using this criterion, 18F-FDG PET/CT was found to have a sensitivity of 100%, a specificity of 85% and an accuracy of 88% in identifying responders after the first cycle, while corresponding values after the second cycle were 83%, 94% and 91%.8 After a single pulse of chemotherapy, 18F-FDG PET was able to predict complete pathological response with a sensitivity of 90% and a specificity of 74%.9 The reported overall survival in 18F-FDG PET/CT nonresponders is 8.8 months, compared with 19.2 months in responders.10 In the case of bone metastases, the responding bony lesion may become more sclerotic on the CT component of 18F-FDG PET/CT while its 18F-FDG activity reduces, which is a sign of bone healing.

Colorectal Cancer
In colorectal cancer, 18F-FDG PET/CT plays a pivotal role in the detection of recurrent disease, the assessment of residual post-therapy masses, the localization of recurrence in patients with an unexplained rise in serum carcinoembryonic antigen (CEA) and the staging of patients before surgical resection of local recurrence and distant metastatic disease.11 For the detection of intra-abdominal but extrhepatic colorectal recurrence, the sensitivity of 18F-FDG PET/CT is 88%; the specificity, 94%; and accuracy, 92%. For extra-abdominal and/or hepatic recurrence, the sensitivity is 95%; specificity, 100%; and accuracy, 99%. The overall reported average sensitivity, specificity and accuracy for detecting recurrent disease
Table 2. Sensitivity, specificity and accuracy of 18F-FDG PET/CT in different tumor types and settings.

	Sensitivity (%)	Specificity (%)	Accuracy (%)	References
Breast cancer				
Locoregional recurrence	89	84	87	7
Distant metastasis	100	97	98	7
Early response assessment	83-100	85-94	88-91	8
Colorectal cancer				
Recurrence	89	92	90	12
Intra-abdominal/extrahepatic recurrence	88	94	92	12
Extra-abdominal and/or hepatic recurrence	95	100	99	12
Oesophageal cancer				
Metastases (M-staging)	43-78	93-99	62-86	30-34
Recurrence (locoregional and distant)	94	82	87	42
Head and neck cancer				
Initial staging (nodal)	94	84	90	46, 47
Restaging/recurrence	88	78	86	55
Lung cancer				
Solitary pulmonary nodule	81-100	63-100	90-92	90-92
Mediastinal staging (N2/N3)	67-92	82-99	84-96	65-68
Recurrence	93-100	89-92	86-88	89
Response to treatment (≥80% threshold)	90	100	96	95
Lymphoma				
Initial staging and restaging (HL)	86	96	95	95
Nodal involvement in HL or high-grade NHL	94	100	96	96
Organ involvement in HL or high-grade NHL	88	100	96	96

The residual pelvic soft tissue abnormalities frequently seen in the tumor bed region after therapy usually complicate the detection of local recurrence by the conventional imaging techniques. Abnormal 18F-FDG activity in a residual pelvic soft tissue lesion after 6 months from the completion of radiotherapy most likely represents tumor recurrence, and accuracy and positive predictive value (PPV) are even higher after 12 months. Elevated CEA levels are seen in two-thirds of patients with recurrent colorectal cancer. The use of 18F-FDG PET/CT for preoperative radiotherapy planning in rectal cancer significantly alters both the gross tumor volume and the clinical target volume, with a mean increase in size of 25% and 4%, respectively. The use of 18F-FDG PET/CT is emerging as a potentially valuable technique in radiotherapy planning, as well as in the prediction and evaluation of response to therapy. The use of 18F-FDG PET/CT for preoperative radiotherapy planning in rectal cancer significantly alters both the gross tumor volume and the clinical target volume, with a mean increase in size of 25% and 4%, respectively. The use of 18F-FDG PET/CT is emerging as a potentially valuable technique in radiotherapy planning, as well as in the prediction and evaluation of response to therapy. The use of 18F-FDG PET/CT for preoperative radiotherapy planning in rectal cancer significantly alters both the gross tumor volume and the clinical target volume, with a mean increase in size of 25% and 4%, respectively.

Esophageal Cancer

Endoscopic ultrasound (EUS) provides more accu-
rate and cost-effective T-staging and N-staging than 18F-FDG PET/CT and conventional CT26-28 and remains the standard for local tumor evaluation.29 The most important role of 18F-FDG PET/CT in the initial staging of esophageal cancer lies in M-staging (Figure 4) through its ability to identify unexpected metastases (i.e., metastases not visible on conventional imaging), which are present in up to 30% of the patients.30 18F-FDG PET/CT has better sensitivity, specificity and accuracy (43%-78%, 93%-99% and 62%-86%, respectively) than CT and EUS for the detection of distant metastases (Table 2).30-34 In M-staging, the addition of 18F-FDG PET/CT results in up-staging of 15% to 20% and down-staging of 5% to 7% of the patients.34,35 In addition, synchronous primary tumors are identified in 5.5% of patients, of which 75% are not identified by conventional imaging.36

Assessment of tumor response to neoadjuvant therapy by 18F-FDG PET/CT has been found to be an important prognostic factor,37 with a reported diagnostic accuracy of 85%; this is similar to the diagnostic accuracy of EUS (86%) and significantly higher than that of conventional CT (54%).38

In patients with squamous cell carcinoma of the esophagus and some inoperable cases, 18F-FDG PET/CT plays an important role in radiotherapy planning,39-41 with a reported modification of gross tumor volume in 56% of the patients and alteration of the planning treatment volume in 53%.4118F-FDG PET is a highly sensitive tool for the detection of regional and distant recurrences, with a reported sensitivity, specificity and accuracy of 94%, 82% and 87%, respectively, in comparison to 81%, 82% and 81% for conventional imaging. Furthermore, 18F-FDG PET depicted recurrences in 12% of the patients with negative or equivocal findings on conventional imaging.42

Head and Neck Cancer

18F-FDG PET/CT has an impact on the assessment of both newly diagnosed and previously treated patients with head and neck cancer.43 18F-FDG PET/CT alters the initial clinical staging and TNM category of the tumor in 14% to 57% of the patients when compared with...
CT-based evaluation alone, and has an accuracy of approximately 90% compared with 86% for conventional CT. The reported sensitivity and specificity of standard 18F-FDG PET/CT for the detection of lymph node metastases in a per-patient analysis were 94% and 84%, respectively (Table 2), in comparison to 78% and 84% for conventional CT.

18F-FDG PET/CT has been found to identify synchronous primaries in 8.1%, distant metastases in 15.4% and the site of an unknown primary in 73% of the patients with head and neck cancer. In addition, it alters the initial management in 18% to 37% of the patients. The impact of 18F-FDG PET/CT on radiotherapy planning is especially important; planning is changed in 29% of the patients, with an alteration in the gross tumor volume in 57% of the patients. It has been reported that the gross tumor volume is statistically significantly larger with 18F-FDG PET/CT-based assessment than with CT-based assessment. There is still a high risk of locoregional recurrence (18%-31%) and distant metastasis (20%-25%) despite aggressive treatment. The sensitivity, specificity and accuracy of 18F-FDG PET/CT in restaging patients with head and neck cancer are 88%, 78% and 86%, respectively.

Postoperative, but pre-radiotherapy, 18F-FDG PET/CT evaluation within a median of 4 weeks after surgery has been found to alter the course of management in 15% of the patients. In addition, it has a higher accuracy than conventional CT when used at 4 to 8 weeks following the end of chemoradiotherapy, with an even higher sensitivity and specificity after 8 weeks.

Lung Cancer

Correct initial staging of non-small cell lung cancer (NSCLC) is important in distinguishing operable patients from those who are inoperable, but can benefit from neoadjuvant treatment. The American College of Chest Physicians guidelines recommend 18F-FDG PET for noninvasive staging owing to the low sensitivity and specificity of the commonly used conventional CT in mediastinal nodal staging. 18F-FDG PET/CT is a more accurate method and is the emerging standard test for preoperative diagnosis and staging of NSCLC; it changes the course of management in up to 52% of cases and has a major role in reducing the number of futile thoracotomies.

Diagnostic accuracy and sensitivity of 18F-FDG PET/CT staging of lung cancer in terms of operability have recently been reported to be 79% and 64%, respectively, in comparison to 60% and 32% for conventional staging. The initial reported sensitivity and specificity for 18F-FDG PET in mediastinal nodal assessment are 67% to 92% and 82% to 99%, respectively (Table 2), in comparison to 25% to 71% and 66% to 98% for CT alone. Overall, the correct stage is assessed by 18F-FDG PET in 85% to 96% of the cases as compared with 58% to 59% by conventional CT alone, and 18F-FDG PET has a negative predictive value (NPV) of 97% (CT, 87%). Sensitivity, specificity and accuracy of 18F-FDG PET/CT for the depiction of malignant nodes are 85%, 84% and 84%, respectively, in comparison to 70%, 69% and 69% for CT alone.

The high NPV of 18F-FDG PET/CT (up to 97%) for mediastinal disease has led to the recommendation to omit mediastinoscopy in patients with negative mediastinal 18F-FDG PET/CT. However, special attention should be paid to central tumors, which have a high incidence of occult N2 disease. If 18F-FDG PET/CT is positive, then mediastinoscopy is necessary to exclude a false-positive result. 18F-FDG PET/CT detects unexpected extrathoracic metastases (Figure 5) in 11% to 15% of asymptomatic patients, avoiding futile surgical intervention.

18F-FDG PET/CT is useful for radiation therapy planning since it provides more accurate initial staging, allowing omission of elective radiation of clinically uninvolved nodal stations. In addition, its CT data may be used for radiation therapy planning if properly acquired. This modality can be successfully applied to...
patients with limited-disease small cell lung cancer for whom the treatment is concurrent chemoradiotherapy, with a reported 24% change in the treatment field.79

Post-treatment fibrosis and scarring are common, and 18F-FDG PET/CT is more accurate than conventional CT in detecting residual and recurrent disease, which allows more reliable treatment planning decisions.80-83 In addition, conventional CT alone has been shown to be suboptimal in mediastinal restaging after treatment.84,85 18F-FDG PET has sensitivity of 93% to 100% and a specificity of 89% to 92% for detecting recurrent NSCLC.86-88 Patients with residual 18F-FDG uptake after treatment have a poor prognosis when compared to those without residual 18F-FDG uptake, taking into consideration the expected post-therapeutic inflammatory changes to avoid false-positive interpretation.84

Reduction in the baseline maximum SUV on 18F-FDG PET is predictive of a complete pathologic response with a sensitivity of 90%, a specificity of 100% and an accuracy of 96%, irrespective of the cell type or neoadjuvant treatment.89 Indeterminate solitary pulmonary nodules (SPNs) remain a clinical dilemma. 18F-FDG PET/CT currently should be reserved for cases where CT-guided fine-needle biopsy either is technically difficult or has been non-diagnostic.90 Compared with CT scan, 18F-FDG PET has similar sensitivity but better specificity in depicting malignancy in SPNs, the reported values ranging from 81% to 100% and from 63% to 100%, respectively.90-92

Lymphoma

18F-FDG PET/CT is now an established standard in the initial staging, monitoring of response to therapy and restaging after treatment of patients with Hodgkin lymphoma (HL) and high-grade non-Hodgkin lymphoma (NHL).93 The clinical utility of 18F-FDG PET/CT depends on the pathological subtype but not necessarily on the tumor grade.94 18F-FDG PET/CT shows a sensitivity of 86% and a specificity of 96%, in comparison to 81% and 41% with conventional CT alone, in disease assessment (presence or absence) of HL during both initial staging and restaging.95 In patients with HL or high-grade NHL, the sensitivity and specificity of 18F-FDG PET/CT for lymph node involvement are 94% and 100%, respectively, while for organ involvement they are 88% and 100% (Table 2).96

False-negative scans are noted in MALT (mucosal-associated lymphoid tissue) lymphomas, which are not highly metabolically active.97 Aggressive (high-grade) NHL typically shows more intense 18F-FDG activity in comparison to lower-grade NHL, although there is significant overlap between them.96 Detection of an FDG-avid lesion in a documented low-grade NHL should raise the suspicion of transformation to a higher-grade lymphoma.97,98 Infectious and/or inflammatory diseases are known causes of false-positive 18F-FDG PET/CT scans, and the possibility of their presence should be entertained at interpretation.99-102 Residual post-therapy masses are seen in up to 85% of the cases of HL and up to 40% of the cases of NHL.103,104 Early interim 18F-FDG PET/CT results (after two to four cycles) correlate well with event-free survival in HL (Figure 6)105-107 and high-grade NHL.108,109 In high-grade NHL, the event-free survival at 2 years and 5 years has been reported to be 82% and 88.8%, respectively, for negative interim PET patients in compassion to 43% and 16.2%, respectively, for positive interim PET patients.108,109 In another study, the 2-year event-free survival in HL patients with negative interim 18F-FDG PET was 95% in comparison to 12.8% in those with positive interim 18F-FDG PET.107

Thyroid Cancer

More than 90% of thyroid cancers are differentiated, comprising papillary and follicular carcinoma.110 In de-differentiated thyroid cancer, recurrent or metastatic tumor cells may lose the expression of sodium iodide symporter and have a decreased ability to concentrate...
radioiodine.111 A multicenter trial showed that the sensitivity of 18F-FDG PET is 85\% in patients with raised thyroglobulin and negative 131I whole-body scans.112 In this subgroup of patients, 18F-FDG PET/CT alters clinical management in 23\% to 51\% of the patients.113-118

Urological Cancer

Renal cell carcinoma

18F-FDG PET/CT has limited sensitivity in the evaluation of metastatic renal cell carcinoma (RCC), particularly for small metastatic lesions. However, a positive 18F-FDG PET/CT scan should be considered strongly suspicious for local recurrence or metastasis because of the high specificity and PPV of this test. A combined test (PET/contrast-enhanced CT) may be necessary if important management decisions are to be based on the test result.119

Prostate cancer

Currently there is no established role for 18F-FDG PET/CT in the assessment of prostatic cancer, since it has a low accuracy owing to the relatively low metabolic rate of the tumor as well as the interfering adjacent urinary excretion of the tracer. However, other new PET radiotracers such as 11C-choline and 18F-fluorocholine have shown promising results in the management of prostate cancer.119

Bladder cancer

Currently there is no established role for 18F-FDG PET/CT in the assessment of bladder cancer, since the high adjacent physiological urinary excretion of the tracer renders the signal-to-noise ratio unfavorable for lesion detection.

Gynecological Cancers

Cervical cancer

18F-FDG PET/(CT) has a major role in preoperative staging of advanced cervical cancer and restaging after treatment.120,121 18F-FDG PET has a sensitivity of 86\%, a specificity of 94\% and an accuracy of 92\% for detection of para-aortic nodal metastases in patients with advanced cervical cancer and negative abdominal CT.122 Furthermore, preoperative evaluation with 18F-FDG PET influences patient management in 18\% of patients; while in the case of recurrent cervical cancer, 18F-FDG PET shows an overall sensitivity of 86\% to 94\% and specificity of 76\% to 100\%.123 The 2-year progression-free survival rate is 86\% for patients with a negative post-treatment scan in comparison to 40\% for those with persistent abnormal 18F-FDG uptake.124

Ovarian cancer

18F-FDG PET/(CT) has a major role in the evaluation of recurrent ovarian cancer when there is an increase in serum CA-125 and inconclusive or negative conventional (CT/MRI) imaging.125 The reported sensitivity and PPV of 18F-FDG PET/CT for detection of recurrent disease at least 1 cm in size are 83.3\% and 93.8\%, respectively.125

Cutaneous Melanoma

There is no role for 18F-FDG PET/CT in early cutaneous melanoma (American Joint Committee on Cancer stages I and II).126,127 In advanced (AJCC stages III and IV) and recurrent cutaneous melanoma, 18F-FDG PET shows 100\% sensitivity for visceral and abdominal nodal metastases and 100\% accuracy for superficial lymph node metastases, but lower sensitivity for pulmonary metastases.128 However, the CT component of a combined PET/CT scan would allow better evaluation of pulmonary metastases. The reported rate of synchronous tumor on 18F-FDG PET was 4.3\%.129 18F-FDG PET results in changes in staging in 12\% to 34\% of the patients130,131 and changes in overall management in 8\% to 61\% of the patients.132,133

Brain Tumors

Sensitivity and specificity of 18F-FDG PET/CT in evaluating low-grade and recurrent tumors and treatment-induced changes are relatively low, mainly owing to the adjacent high physiological brain 18F-FDG activity; however, this can be improved significantly by co-registration with magnetic resonance imaging and potentially by delayed imaging. 18F-FDG PET/CT is capable of identifying anaplastic transformation of a documented low-grade tumor and has a prognostic value.134

Pitfalls

It is extremely important to consider some pitfalls of 18F-FDG PET/CT imaging during scan interpretation. The ability to detect tumors depends on various factors, such as their size, metabolic activity, the surrounding background activity and the serum glucose level. False-negative results may be obtained in small lesions (<7 mm), in tumors with a low metabolic rate (e.g., differentiated neuroendocrine tumors, prostate cancer, hepatocellular carcinoma, MALT and mucinous adenocarcinoma), in the presence of interfering cytostatic treatments that may decrease the tumor 18F-FDG uptake and when there is suboptimal preparation of patients with glucose intolerance or diabetes (since elevated serum glucose levels result in decreased FDG uptake in tumors owing to competitive inhibition). In addition,
Figure 7. A 62-year-old woman with history of breast cancer. The left column images (MIP and axial PET images) show the normal-intensity images, which could hide metastatic deposits and give a false-negative result due to the physiological high background intensity of the brain. The same images after reducing their intensity on the right column show the metastatic deposits.

Local high physiological FDG activity (as in the brain and the genitourinary tract) can render the signal-to-noise ratio unfavorable for lesion detection (Figure 7), and may give rise to a false-negative result by masking a malignant lesion.

On the other hand, activated macrophages, neutrophils, fibroblasts and granulation tissue show increased 18F-FDG activity; therefore, infectious/inflammatory processes (e.g., granulomatous diseases, abscesses, active thyroiditis), post-surgical changes (healing surgical wounds, scars, stoma, tube placement) and post-radiation changes (active fibrosis, radiation pneumonitis) may demonstrate increased 18F-FDG activity and cause a false-positive result.

The Future
As to the evolving role of 18F-FDG PET/CT and possible future directions for PET/CT, the need to evaluate early response to therapy remains, and there are no good imaging tools at present. Data shows that 18F-FDG PET/CT predicts not only response to therapy, but also further hard endpoints, such as time to progression. It is likely that more well-designed and large clinical studies on 18F-FDG PET/CT will expand its approved clinical indications in this context. Currently the majority of PET/CT investigations in oncology use 18F-FDG (glucose metabolic marker) as a tracer. However, the changing demand to evaluate tumor angiogenesis, tumor hypoxia, tumor cell proliferation and tumor receptors, has led to the development of other specific tracers, which will get greater clinical acceptance with time.
REFERENCES

1. Yang SK, Cho N, Moon WK. The role of PET/CT in evaluating breast cancer. Korean J Radiol 2007;8:429-37.
2. Avril N, Rosé CA, Schelling M, Dose Schwarz J, Bader M, Jenicke L, Hemmersbach C, Hoeven PW, Vander Jagt DJ, van den Hoogenweghe E, Oyen WJ. PET/CT in the detection of recurrent breast cancer using sequential 18F-FDG PET. J Nucl Med 2005;46:1144-50.
3. Eubank WB, Mankoff DA. Evolving role of positron emission tomography in breast cancer imaging. Semin Nucl Med 2005;35:84-99.
4. Oliverius M, Lohynska R, Trskova K, et al. The role of FDG-PET/CT in the detection of recurrent breast cancer using sequential 18F-FDG PET. J Nucl Med 2005;46:1144-50.
5. Smith IC, Welch AE, Hutcheson AW, Miller ID, Payne S, Chilcott F, et al. Positron emission tomography using [18F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000;18:1689-95.
6. Chessin DB, Kiran RP, Akhurst T, Guillem JG. Positron emission tomography: Clinical evaluation and alternative management. J Natl Cancer Inst 2001;93:630-5.
7. Benard F, Turcotte E. Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography. Breast Cancer Res 2005;7:153-62.
8. Schelling M, Avril N, Nährig J, Kuhn W, Stapper D, et al. Positron emission tomography using [18F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Nucl Med 2003;44:1473-7.
9. Smith IC, Welch AE, Hutcheson AW, Miller ID, Payne S, Chilcott F, et al. Positron emission tomography using [18F]fluorodeoxyglucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000;18:1676-88.
10. Bense S, et al. Detection of recurrent colorectal cancer using sequential 18F-FDG PET. J Nucl Med 2005;46:1144-50.
11. Kim SE, et al. Improved detection of individual nodal involvement in squamous cell carcinoma of the esophagus by FDG PET. J Nucl Med 2000;41:308-15.
12. Yoon YC, Lee KS, Shin YM, Kim BT, Kim K, Kim TS. Metastasis to regional lymph nodes in patients with esophageal squamous cell carcinoma: CT versus FDG PET for presurgical detection prospective study. Radiology 2003;227:764-70.
13. Luu FF, Chen JS, Changchien CR, Yeh CY, Liu SH, Ho KC, et al. Utility of 2-fluoro-2-deoxy-D-glucose positron emission tomography in managing patients of colorectal cancer with unexplained carcinoembryonic antigen elevation at different levels. Dis Colon Rectum 2005;48:1900-12.
14. Mozes A, et al. FDG-PET improves the management of patients with suspected recurrent colorectal cancer. Nucl Med Commun 2002;23:975-82.
15. Simó M, Lomera F, Setoain J, Pérez G, Castellucci P, Costanza JM, et al. FDG-PET/CT improves the management of patients with suspected recurrent colorectal cancer. Nucl Med Comm 2003;24:131-7.
16. Engara B. Individual cutoff levels of carcinoembryonic antigen and CA 242 indicate recurrence of colorectal cancer with high sensitivity. Dis Colon Rectum 2003;46:313-17.
17. Dose Schwarz J, Bader M, Jenicke L, Hemmersbach C, Hoeven PW, Vander Jagt DJ, van den Hoogenweghe E, Oyen WJ. PET/CT in colorectal cancer: Single-photon computed tomography and fluorine-18 fluorodeoxyglucose PET-CT for evaluating breast cancer. Korean J Radiol 2005;6:324-56.
18. Yang SK, Cho N, Shim YM, Lee KS, Kim JJ, Kim SE, et al. Detection of recurrence and response to chemotherapy in patients with rectal cancer: PET/CT after abdominopelvic or anterior resection. Radiology 2004;232:815-22.
19. Estevés FP, Schuster DM, Halkar RK. Gastrointestinal tract malignancies and positron emission tomography: An overview. Semin Nucl Med 2006;36:169-81.
20. Liu FY, Chen JS, Changchien CR, Yeh CY, Liu SH, Ho KC, et al. Utility of 2-fluoro-2-deoxy-D-glucose positron emission tomography in managing patients of colorectal cancer with unexplained carcinoembryonic antigen elevation at different levels. Dis Colon Rectum 2005;48:1900-12.
21. van Bruggen CR, Fleming TR, Macdonald JS, Haller DG, Laurie JA, TANGEN C. An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer. JAMA 1993;270:943-7.
22. Engara B. Individual cutoff levels of carcinoembryonic antigen and CA 242 indicate recurrence of colorectal cancer with high sensitivity. Dis Colon Rectum 2003;46:313-7.
23. Van Heerden WB, Hoekstra OS, Homans F, Van Cutsem E, Maes A, Stroobants S, et al. Unexplained rising carcinoembryonic antigen (CEA) in the postoperative surveillance of colorectal cancer: The utility of positron emission tomography (PET). Eur J Cancer 2001;37:962-9.
24. Blakhis T.J., van der Schaaf MC, van den Tol MP, Comfijn, Manaliu RA, van der Sip JR. Results of routine screening for colorectal cancer: A prospective randomised study. Br J Cancer 2003;89:1580-6.
25. Simó M, Lomera F, Setoain J, Perez G, Castellucci P, Costanza JM, et al. FDG-PET/CT improves the management of patients with suspected recurrent colorectal cancer. Nucl Med Commun 2003;24:975-82.
26. Giunti G, Dizendorf E, Baumann BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT) feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853-63.
27. Bassi MC, Turri L, Sacchetti G, Loi G, Caninillo B, La Mattina P, et al. FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int J Radiat Oncol Biol Phys 2008;70:1423-6.
28. Plau PR, Perlman SB, Stank P, Frick TJ, Gopal DV, Saad A, et al. The role and clinical value of EUS in a multimodality esophageal carcinoma staging program with CT and positron emission tomography. Gastrointest Endosc 2007;65:377-84.
29. Zhang X, Watson D, Lally C, Bessell JR. Endoscopic ultrasound for preoperative staging of esophageal carcinoma. Surg Endosc 2005;19:1618-21.
30. ASDE Standards of Practice Committee, Gan SL, Rajan E, Adler DG, Baron TH, Anderson MA, et al. Role of EUS. Gastrointest Endosc 2007;66:425-34.
31. Yang GY, Wagner TD, Jobe BA, Thomas CR. The role of positron emission tomography in esophageal cancer. Gastroenterology 2008;134:239-48.
32. Kato H, Miyazaki T, Nakajima M, Takita J, Furukawa T, Furukawa T, et al. Detection of esophageal lesions by positron emission tomography. Jpn J Radiol 2006;24:49-52.
33. Wang D, Schultz CJ, Jursinic PA, Bialkowski M, Zhu XR, Brown WD, et al. Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinomas. Int J Radiat Oncol Biol Phys 2006;65:143-51.
gilo JA, Zhuang H, et al. Utility of FDG-PET scanning in lymphoma by WHO classification. Blood 2003;101:3875-8.

95. Stumpe KD, Urbinni M, Steinetz HC, Glanzmann C, Buck A, von Schluffus GK. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: Effectiveness and comparison with computed tomography. Eur J Nucl Med 1996;23:721-8.

96. Schaefer NG, Hany TF, Tavarna C, Seifert B, Stumpe KD, von Schluffus GK, et al. Non-Hodgkin lymphoma and Hodgkin disease: Coregistered FDG PET and CT at staging and restaging: Do we need contrast-enhanced CT? Radiology 2004;232:823-9.

97. Hoffmann M, Kletter K, Diemling M, Becherer A, Pfeiff E, Petkov E, et al. Positron emission tomography with fluorine-18-2-fluoro-2-deoxy-D-glucose (F18-FDG) does not visualize extranodal B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT)-type. Ann Oncol 1999;10:1185-6.

98. Schüder H, Noy A, Gönen M, Weng L, Green D, Erli YE, et al. Intensities of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2003;21:4843-51.

99. MacManus MP, Seymour JF, Hicks RJ. Overview of early response assessment in lymphoma with FDG-PET. Cancer Imaging 2007;7:10-8.

100. Joe A, Hoegerle S, Moser E. Cervical lymph node sarcoidosis as a pitfall in F-18 FDG positron emission tomography. Clin Nucl Med 2001;26:542-3.

101. Taelle K, Kaiser KP, Wieler H. Elevated uptake of F-18 FDG in PET scans in nonmalignant disease. Clin Nucl Med 2003;28:639-40.

102. Sandherr M, von Schilling C, Link T, Stock K, von Bubnoff N, Peschel C, et al. Pitfalls in imaging Hodgkin’s disease with computed tomography and positron emission tomography using fluorine-18-fluorodeoxyglucose. Ann Oncol 2001;12:719-22.

103. Cremerius U, Fabry U, Neuerburg J, Zimny M, Oseka R, Buell U. Positron emission tomography with 18F-FDG to detect residual disease after therapy for malignant lymphoma. Nucl Med Commun 1998;19:1055-63.

104. Talbot JN, Hainoin C, Rain JD, Meigamn M, Widiand M, Misset JL, et al. 18F-FDG positron imaging in clinical management of lymphoma patients. Crit Rev Oncol Hematol 2001;38:183-221.

105. Hutchings M, Loa T, Hansen M, Pederson LM, Buht T, Jalundra J, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 2006;107:52-9.

106. Hutchings M, Mikhael NG, Fields PA, Nunan T, Timothy AR. Prognostic value of interim FDG-PET after two or three cycles of chemotherapy in Hodgkin lymphoma. Ann Oncol 2005;16:1160-8.

107. Gallamini A, Hutchings M, Rigacci L, Specht L, Merli F, Hansen M, et al. Early interim 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: A report from a joint Italian-Danish study. J Clin Oncol 2007;25:3746-52.

108. Mikhaeel NG, Hutchings M, Fields PA, D’Ooherty MJ, Timothy AR. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol 2005;16:1514-23.

109. Hainoin C, Tiel E, Rahmouni A, Brice P, Rain JD, Belhadj K, et al. [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: An early prognostic tool for predicting patient outcome. Blood 2005;106:1376-81.

110. Sherman SL. Thyroid carcinoma. Lancet 2003;361:501-11.

111. Min JJ, Chung JK, Lee YJ, Jeong JM, Lee DS, Jang JH, et al. Relationship between expression of the sodium/iodide symporter and 131I uptake in recurrent lesions of differentiated thyroid carcinoma. Eur J Nucl Med 2001;28:639-45.

112. Horn J, Lock-Andersen S, Sjostrand H, Loa T. Routine use of FDG-PET scans in melanoma patients with positive sentinel node biopsy. Eur J Nucl Med Mol Imaging 2006;33:887-92.

113. Grünwald F, Kälicke T, Feine U, Lienzenmayr R, Schiedhauer K, Dietlein M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: Results of a multicentre study. Eur J Nucl Med 1999;26:1947-52.

114. Nahas Z, Goldberg D, Falkhy C, Ewertz M, Zeiger M, Ladenson PW, et al. The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope 2005;113:237-43.

115. Palmedo H, Bucerus J, Joe A, Strunk H, Hortling N, Meyka S, et al. Integrated PET/CT in differentiated thyroid cancer: Diagnostic accuracy and impact on patient management. J Nucl Med 2008;47:616-24.

116. Zoller M, Kohlfuirst S, Igerc I, Kresnik E, Gallowitsch HJ, Gomez I, et al. Combined PET/CT in the follow-up of differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2006;33:887-92.

117. Iagaru A, Degirmenci B, Mountz JM, McCook BM, Branstetter B, et al. 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med 2007;48:221-6.

118. Zuidwijk MD, Vogel WV, Corsens FH, Oyen WJ. Utility of fluorodeoxyglucose-PET in patients with differentiated thyroid carcinoma. Nucl Med Commun 2008;29:638-41.

119. Taskiris P, De la Rosette J. Imaging in genitourinary cancer from the urologists’ perspective. Cancer Imaging 2007;7:84-92.

120. Nakamoto Y, Saga T, Fuji S. Positron emission tomography application for gynecologic tumors. Int J Gynecol Cancer 2005;15:701-9.

121. Basu S, Li G, Alavi A. PET and PET-CT imaging of gynecological malignancies: Present role and future promise. Expert Rev Anticancer Ther 2009;9:75-96.

122. Lin WC, Hung YC, Yeh LS, Kao CH, Yen RF, Shen YF. Usefulness of 18F-fluorodeoxyglucose positron emission tomography to detect paraaortic lymph nodal metastasis in advanced cervical cancer with negative computed tomography findings. Gynecol Oncol 2003;90:73-6.

123. Belhocine T, Thille A, Fridman V, Albert A, Seidel L, Nickers P, et al. Contribution of whole-body 18FDG PET imaging in the management of cervical cancer. Gynecol Oncol 2002;87:90-7.

124. Grigsky PW, Siegel BA, Dehdashti F, Mutch DG. Posttherapy surveillance monitoring of cervical cancer by FDG-PET. Int J Radiat Oncol Biol Phys 2003;59:907-13.

125. Bristow RE, del Carmen MG, Pannu HK, Cohade C, Zahurak ML, Fishman EK, et al. Clinically occult ovarian cancer: Patient selection for secondary curative surgery using combined PET/CT. Gynecol Oncol 2003;90:128-34.

126. Ho Shuna I, Chung D, Sawad R, Thomspon JD. Imaging in cutaneous melanoma. Nucl Med Commun 2000;21:847-76.

127. Havenga K, Cobben DC, Oyen WJ, Nieuwhuys S, Hoeakstra HJ, Ruers TJ, et al. Fluorodeoxyglucose-positron emission tomography and sentinel lymph node biopsy in staging primary cutaneous melanoma. Eur J Surg Oncol 2002;29:662-4.

128. Gritters LS, Francis IR, Zachadary KR, Wahl RL. Initial assessment of positron emission tomography using 2-[18F]-fluoro-2-deoxy-D-glucose in the imaging of malignant melanoma. J Nucl Med 1993;34:1420-7.

129. Bastiaannet E, Oyen WJ, Meijer S, Hoeakstra OS, Wobbes T, Jager PL, et al. Impact of [18F]fluorodeoxyglucose positron emission tomography on surgical management of melanoma patients. Br J Surg 2006;93:243-9.

130. Eigstad A, Andersson AP, Dahlstrom K, Rabal A, Jensen M, Holm S, et al. Use of [18F]fluorodeoxyglucose positron emission tomography in the detection of silent metastases from malignant melanoma. Eur J Nucl Med 2009;36:370-5.

131. Jadvar H, Johnson DL, Segall GM. The effect of [18F]fluorodeoxyglucose positron emission tomography on the management of cutaneous malignant melanoma. Clin Nucl Med 2003;28:46-51.

132. Fullam M, Kelley B, Ramshaw J, Scott A. Impact of FDG PET on the management of patients with suspected or proven metastatic melanoma prior to surgery: A prospective, multi-centre study as part of the Australian PET Data Collection Project. Paper presented at: 54th Annual Meeting of the Society of Nuclear Medicine, Washington, DC, 2007.

133. Chen W, Silverman D. Advances in evaluation of primary brain tumors. Semin Nucl Med 2008;38:240-50.