SYMMETRIC \((q, \alpha)\)-STABLE DISTRIBUTIONS.
PART I: FIRST REPRESENTATION

Sabir Umarov\(^1\), Constantino Tsallis\(^{2,3}\), Murray Gell-Mann\(^3\)
and Stanly Steinberg\(^4\)

\(^1\) Department of Mathematics
Tufts University, Medford MA 02155, USA
\(^2\) Centro Brasileiro de Pesquisas Físicas
Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ, Brazil
\(^3\) Santa Fe Institute
1399 Hyde Park Road, Santa Fe, NM 87501, USA
\(^4\) Department of Mathematics and Statistics
University of New Mexico, Albuquerque, NM 87131, USA

Abstract

The classic central limit theorem and \(\alpha\)-stable distributions play a key role in probability theory, and also in Boltzmann-Gibbs (BG) statistical mechanics. They both concern the paradigmatic case of probabilistic independence of the random variables that are being summed. A generalization of the BG theory, usually referred to as nonextensive statistical mechanics and characterized by the index \(q\) (\(q = 1\) recovers the BG theory), introduces special (long range) correlations between the random variables, and recovers independence for \(q = 1\). Recently, a \(q\)-central limit theorem consistent with nonextensive statistical mechanics was established\(^{[1]}\) which generalizes the classic Central Limit Theorem. In the present paper we introduce and study symmetric \((q, \alpha)\)-stable distributions. The case \(q = 1\) recovers the Lévy \(\alpha\)-stable distributions.

1 Introduction

In paper\(^{[1]}\) a generalization of the classic central limit theorem applicable to nonextensive statistical mechanics\(^{[2]}\)\(^{[3]}\) (which recovers the usual, Boltzmann-Gibbs statistical mechanics as the \(q = 1\) particular instance), was presented; for reviews of nonextensive statistical mechanics see\(^{[4]}\)\(^{[5]}\)\(^{[6]}\). We follow here along the lines of that paper. One of the important aspects of this generalization is that it concerns the case of random variables correlated in a special manner. On the basis of the \(q\)-Fourier transform \(F_q\) introduced there (\(F_1\) being the classical Fourier transform), and the function

\[z(s) = \frac{1 + s}{3 - s}, \]

we described attractors of conveniently scaled limits of sums of \(q\)-independent random variables\(^1\) with a finite \((2q - 1)\)-variance\(^2\). This description was essentially based on the mapping

\[F_q : \mathcal{G}_q[2] \rightarrow \mathcal{G}_{z(q)}[2], \tag{1} \]

\(^1\) \(q\)-independence corresponds to standard probabilistic independence if \(q = 1\), and to specific long-range (global in physics terminology) correlations if \(q \neq 1\).
\(^2\) We required there \(1 \leq q < 2\). Denoting \(Q = 2q - 1\), it is easy to see that this condition is equivalent to the finiteness of the \(Q\)-variance with \(1 \leq Q < 3\); see also\(^{[7]}\).
where $G_q[2]$ is the set of q-Gaussians (the number 2 in the notation will soon become transparent).

In the current work, which consists of two parts, we will introduce and study a q-analog of the α-stable Lévy distributions. In this sense, the present paper is a conceptual continuation of paper [1]. For simplicity we will analyze only symmetric densities in the one-dimensional case. The classic theory of α-stable distributions $\mathcal{L}(\alpha)$ was originated by Paul Lévy and developed by Lévy, Gnedenko, Feller and others (see, for instance, [8, 9, 10, 11, 12] and references therein for details and history). The α-stable distributions found a huge number of applications in various practical studies [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], confirming the frequent nature of these distributions.

We introduce a class of random variables $\mathcal{L}_q(\alpha)$, which we call (q, α)-stable distributions. Namely, we consider the symmetric densities $f(x)$ with asymptotics $f \sim C|x|^{-1+\frac{1}{1+\alpha(q-1)}}$, $|x| \to \infty$, where $1 \leq q < 2$, $0 < \alpha < 2$, and C is a positive constant. We establish that linear combinations and scaling limits of sequences of q-independent random variables with (q, α)-stable distributions are again random variables with (q, α)-stable distributions. These facts justify that $\mathcal{L}_q(\alpha)$ form a class of stable distributions. To this end, we note that $\mathcal{L}_q(\alpha)$ for fixed $q \in [1, 2)$ and $\alpha \in (0, 2)$ coincides with the set of symmetric Lévy distributions $\mathcal{L}_{sym}(\gamma)$, where

$$\gamma = \gamma(q, \alpha) = \frac{\alpha(2-q)}{1+\alpha(q-1)}.$$

However, the (q, α)-stability holds for specifically correlated random variables (q-independence exhibits a special correlation). Thus for each fixed $q \in [1, 2)$ we have the set of q-independent (q, α)-stable distributions. If $q = 1$ then q-independence becomes usual independence and $\gamma(1, \alpha) = \alpha$, implying $\mathcal{L}_1(\alpha) = \mathcal{L}_{sym}(\alpha)$. The main purpose of the current paper is to classify (q, α)-stable distributions in terms of their densities depending on the parameters $1 \leq q < 2$ (or equivalently $1 \leq Q < 3$, $Q = 2q - 1$) and $0 < \alpha \leq 2$. We establish the mapping

$$F_q : G_q[2] \to G_q[\alpha],$$

where $G_q[\alpha]$ is the set of functions $\{be^{-\beta|x|^\alpha}, \ b > 0, \beta > 0\}$, and

$$q^L = \frac{3 + Q\alpha}{1 + \alpha}, \quad Q = 2q - 1,$$

i.e.,

$$\frac{2}{q^L - 1} = \frac{1 + \alpha}{1 + \alpha(q-1)}.$$

The particular case $q = Q = 1$ recovers $q^L = \frac{3 + \alpha}{1+\alpha}$, already known in the literature. Denote $Q_1 = \{(Q, \alpha) : 1 \leq Q < 3, \alpha = \frac{3}{2}\}$, $Q_2 = \{(Q, \alpha) : 1 \leq Q < 3, 0 < \alpha < 2\}$ and $Q = Q_1 \cup Q_2$. Note that the case $(Q, \alpha) \in Q_1$ for q-independent random variables with a finite Q-variance was studied in [1]. For $(Q, \alpha) \in Q_2$ the Q-variance is infinite. We will focus our analysis namely on the latter case. Note that the case $\alpha = 2$, in the framework of the present description like in that of the classic α-stable distributions, becomes peculiar.

In Part II we study the attractors of scaled sums, and expand the results of paper [1] to the region Q generalizing the mapping (1) into the form

$$F_{q,\alpha(q)} : G_q[\alpha] \to G_{xo(q)}[\alpha], \ 1 \leq q < 2, \ 0 < \alpha \leq 2,$$

\(^3\)Hereafter $g(x) \sim h(x), x \to a$, means that $\lim_{x \to a} \frac{g(x)}{h(x)} = 1.$
where
\[\zeta_\alpha(s) = \frac{\alpha - 2(1 - q)}{\alpha} \] and \[z_\alpha(s) = \frac{\alpha q + 1 - q}{\alpha + 1 - q}. \]

Note that, if \(\alpha = 2 \), then \(\zeta_2(q) = q \) and \(z_2(q) = (1 + q)/(3 - q) \), thus recovering the mapping (1), and consequently, the result of [1].

These two descriptions of \((q, \alpha)\)-stable distributions, based on mappings (2) and (3), respectively, can be unified to the scheme

\[
\mathcal{L}(q, \alpha) \xrightarrow{F_q} \mathcal{G}_q(\alpha) \xleftarrow{F_{\zeta(q)}} \mathcal{G}_{\zeta(q)}(2)
\]

(4)

\[
\downarrow F_q
\]

\[
\mathcal{G}_q(2)
\]

which gives the full picture of interrelations between the values of parameters \(q \in [1, 2) \) and \(\alpha \in (0, 2) \).

2 Basic operations of \(q \)-algebra

We recall briefly the basic operations of \(q \)-algebra. Indeed, the analysis we will conduct is entirely based on the \(q \)-structure of nonextensive statistical mechanics (for more details see [24, 4] and references therein). To this end, we recall the well known fact that the classical Boltzmann-Gibbs entropy \(S_{BG} = -\sum p_i \ln p_i \) satisfies the additivity property. Namely, if \(A \) and \(B \) are two independent subsystems, then \(S_{BG}(A + B) = S_{BG}(A) + S_{BG}(B) \). However, the \(q \)-generalization of the classic entropy introduced in [2] and given by \(S_q = \frac{1 - \sum p_i^q}{q - 1} \) with \(q \in \mathbb{R} \) and \(S_1 = S_{BG} \), does not possess this property if \(q \neq 1 \). Instead, it satisfies the pseudo-additivity (or \(q \)-additivity) \[S_q(A + B) = S_q(A) + S_q(B) + (1 - q) S_q(A) S_q(B). \]

Inherited from the right hand side of this equality, the \(q \)-sum of two given real numbers, \(x \) and \(y \), is defined as \(x \oplus_q y = x + y + (1 - q) xy \). The \(q \)-sum is commutative, associative, recovers the usual summing operation if \(q = 1 \) (i.e. \(x \oplus y = x + y \)), and preserves 0 as the neutral element (i.e. \(x \oplus 0 = x \)). By inversion, we can define the \(q \)-subtraction as \(x \ominus_q y = \frac{x - y}{1 + (1 - q)y} \). The \(q \)-product for \(x, y \) is defined by the binary relation \(x \otimes_q y = [x^{1-q} + y^{1-q} - 1]_+^{1-q} \). Here the symbol \([x]_+\) means that \([x]_+ = x \) if \(x \geq 0 \), and \([x]_+ = 0 \) if \(x < 0 \). This operation also commutative, associative, recovers the usual product when \(q = 1 \), and preserves 1 as the unity. The \(q \)-product is defined if \(x^{1-q} + y^{1-q} \geq 1 \). Again by inversion, it can be defined the \(q \)-division: \(x \oslash_q y = (x^{1-q} - y^{1-q} + 1)^{1-q} \).

3 \(q \)-generalization of the exponential and cyclic functions

Now we introduce the \(q \)-exponential and \(q \)-logarithm [24], which play an important role in the nonextensive theory. These functions are denoted by \(e^q_x \) and \(\ln_q x \) and respectively defined as \(e^q_q = [1 + (1 - q)x]_+^{1-q} \) and \(\ln_q x = \frac{x^{1-q} - 1}{1-q} \), \((x > 0)\). The entropy \(S_q \) can be conveniently rewritten in the form

\[
S_q = \sum p_i \ln_q \frac{1}{p_i}.
\]

Let us mention now the main properties of these functions, which we will use essentially in this paper. For the \(q \)-exponential the relations \(e_q[x] = e_q x e_q y \) and \(e_q x + y = e_q x \ominus_q e_q y \) hold true.
These relations can be written equivalently as follows: $\ln_q(x \otimes_q y) = \ln_q x + \ln_q y$ and $\ln_q(xy) = (\ln_q x) \oplus_q (\ln_q y)$. The q-exponential and q-logarithm have the asymptotics

$$e^x_q = 1 + x + \frac{q}{2} x^2 + o(x^2), \; x \to 0,$$

and

$$\ln_q(1 + x) = x - \frac{q}{2} x^2 + o(x^2), \; x \to 0,$$

respectively. The q-product and q-exponential can be extended to complex numbers $z = x + iy$ (see [11, 25, 26]).

In addition, for $q \neq 1$ the function e^x_q can be analytically extended to the complex plain except the point $z_0 = -1/(1 - q)$ and defined as the principal value along the cut $(-\infty, z_0)$. If $q < 1$, then, for real y, $|e^{iy}_q| \geq 1$ and $|e^{iy}_q| \sim K_q(1 + y^2)^{-1/(1-q)}$, $y \to \infty$, with $K_q = (1 - q)^{1/(1-q)}$. Similarly, if $q > 1$, then $0 < |e^{iy}_q| \leq 1$ and $|e^{iy}_q| \to 0$ if $|y| \to \infty$.

Lemma 3.1 Let $A_n(q) = \prod_{k=0}^n a_k(q)$, where $a_k(q) = q - k(1-q)$. Then the following power series expansion holds

$$e^x_q = 1 + z + z^2 \sum_{n=0}^\infty \frac{A_n(q)}{(n+2)!} z^n, \; |z| < \frac{1}{|1-q|}.$$

Corollary 3.2 Let $I_q = (-1/|1-q|, 1/|1-q|)$. For arbitrary real number $x \in I_q$ the equation

$$e^{ix}_q = \{1 - x^2 \sum_{n=0}^\infty \frac{(-1)^n A_{2n}(q)}{(2n+2)!} x^{2n}\} + i\{x - x^2 \sum_{n=0}^\infty \frac{(-1)^n A_{2n+1}(q)}{(2n+3)!} x^{2n+1}\}$$

holds.

Define for $x \in I_q$ the functions q-cos and q-sin by formulas

$$\cos_q(x) = 1 - x^2 \sum_{n=0}^\infty \frac{(-1)^n A_{2n}(q)}{(2n+2)!} x^{2n},$$

and

$$\sin_q(x) = x - x^2 \sum_{n=0}^\infty \frac{(-1)^n A_{2n+1}(q)}{(2n+3)!} x^{2n+1}.$$

In fact, $\cos_q(x)$ and $\sin_q(x)$ is defined for all real x by using appropriate power series expansions. Properties of q-sin, q-cos, and corresponding q-hyperbolic functions, were studied in [27]. Here we note that the q-analogs of the well known Euler’s formulas read

Corollary 3.3 (i) $e^{ix}_q = \cos_q(x) + i \sin_q(x)$;

(ii) $\cos_q(x) = \frac{e^{ix}_q + e^{-ix}_q}{2}$;

(iii) $\sin_q(x) = \frac{e^{ix}_q - e^{-ix}_q}{2i}$.

Lemma 3.4 The following equality holds:

$$\cos_q(2x) = e^{2(1-q)x^2}_{2q-1} - 2 \sin^2_{2q-1}(x).$$

This property reflects the possible extensivity of S_q in the presence of special correlations [30, 31, 32, 33].
Proof. The proof follows from the definitions of \(\cos_q(x) \) and \(\sin_q(x) \), and from the fact that \((e^x_q)^2 = e^{2x_q/(1+q)} \) (see Lemma 2.1 in [1]).

Denote \(\Psi_q(x) = \cos_q 2x - 1 \). It follows from Equation (10) that
\[
\Psi_q(x) = (e^{2(1-q)x^2} - 1) - 2 \sin_{2q-1}^2(x).
\]

Lemma 3.5 Let \(q \geq 1 \). Then we have

1. \(-2 \leq \Psi_q(x) \leq 0\);
2. \(\Psi_q(x) = -2q x^2 + o(x^3), \ x \to 0 \).

Proof. It follows from (10) that \(\Psi_q(x) \leq 0 \). Further, \(\sin_q(x) \) can be written in the form (see [27]) \(\sin_q(x) = \rho_q(x) \sin[\varphi_q(x)] \), where \(\rho_q(x) = (e^{(1-q)x^2})^{1/2} \) and \(\varphi_q(x) = \frac{\arctan(1-q)x}{1-q} \). This yields \(\Psi_q(x) \geq -2 \) if \(q \geq 1 \). Using the asymptotic relation (5), we get
\[
e^{2(1-q)x^2} - 1 = 2(1 - q)x^2 + o(x^3), \ x \to 0.
\]

It follows from (5) that
\[
-2 \sin_{2q-1}^2(x) = -2x^2 + o(x^3), \ x \to 0.
\]

The relations (10), (11) and (12) imply the second part of the statement.

Remark 3.6 It is not hard to verify that in the case \(q > 1 \) for \(x > (q - 1)^{-1} \) the representation
\[
e^{-x_q} = [(q - 1)x]^{-\frac{1}{q-1}} \left(1 - \frac{1}{(1-q)^2x^2} + \frac{1}{(1-q)^4x^2} \sum_{n=0}^{\infty} \frac{(-1)^n A_n(q)}{(n+2)!(q-1)^{2n}} \frac{1}{x^n} \right)
\]
follows from Lemma 3.1.

4 q-Fourier transform for symmetric functions

The q-Fourier transform for \(q \geq 1 \), based on the q-product, was introduced in [1] and played a central role in establishing the q-analog of the standard central limit theorem. Formally the q-Fourier transform for a given function \(f(x) \) is defined by the formula
\[
F_q[f](\xi) = \int_{-\infty}^{\infty} e^{ix\xi} \otimes_q f(x)dx.
\]

For discrete functions \(f_k, k = 0, \pm 1, \ldots \), this definition takes the form
\[
F_q[f](\xi) = \sum_{k=-\infty}^{\infty} e^{ik\xi} \otimes_q f(k).
\]

In the future we use the same notation in both cases. We also call (13) or (14) the q-characteristic function of a given random variable \(X \) with an associated density \(f(x) \), using the notations \(F_q(X) \) or \(F_q(f) \) equivalently.
It should be noted that, if in the formal definition (13), f is compactly supported, then integration has to be taken over this support, although, in contrast with the usual analysis, the function $e^{i2\xi_q} \otimes_q f(x)$ under the integral does not vanish outside the support of f. This is an effect of the q-product.

The following lemma establishes the relation of the q-Fourier transform without using the q-product.

Lemma 4.1 The q-Fourier transform can be written in the form

$$F_q[f](\xi) = \int_{-\infty}^{\infty} f(x)e^{i2\xi_q(f(x))^{q-1}}dx.$$ \hspace{1cm} (15)

Remark 4.2 Note that, if the q-Fourier transform of a given function $f(x)$ defined by the formal definition in (13) exists, then it coincides with the expression in (15). The q-Fourier transform determined by the formula (15) has an advantage when compared to the formal definition: it does not use the q-product, which is, as we noticed above, restrictive in use.

Further to the properties of the q-Fourier transform established in [1], we note that, for symmetric densities, the assertion analogous to Lemma 4.1 is true with the q-cos.

Lemma 4.3 Let $f(x)$ be an even function. Then its q-Fourier transform can be written in the form

$$F_q[f](\xi) = \int_{-\infty}^{\infty} f(x)\cos_q(x\xi[f(x)]^{q-1})dx.$$ \hspace{1cm} (16)

Proof. Notice that, because of the symmetry of f,\[
\int_{-\infty}^{\infty} e^{i2\xi_q} \otimes_q f(x)dx = \int_{-\infty}^{\infty} e^{-i2\xi_q} \otimes_q f(x)dx.
\]

Taking this into account, we have

$$F_q[f](\xi) = \frac{1}{2} \int_{-\infty}^{\infty} \left(e^{i2\xi_q} \otimes_q f(x) + e^{-i2\xi_q} \otimes_q f(x) \right) dx.$$

Applying Lemma 4.1 we obtain

$$F_q[f](\xi) = \int_{-\infty}^{\infty} f(x) \frac{e^{i2\xi_q[f(x)]^{q-1}} + e^{-i2\xi_q[f(x)]^{q-1}}}{2} dx,$$

which coincides with (16). \hspace{1cm} \blacksquare

Further, denote $H_{q,\alpha} = \{ f \in L_1 : f(x) \sim C|x|^{-1+\alpha(q-1)}, \ |x| \to \infty \}$. It is readily seen that $\phi(q, \alpha) = \frac{\alpha+1}{1+\alpha(q-1)} > 1$ for all $\alpha \in (0,2)$ and $q \in [1,2)$. Moreover, $\phi(q, \alpha)(2q-1) < 3$ for all $\alpha \in (0,2)$ and $q \in [1,2)$, which implies $\sigma_2^{2q-1}(f) = \infty$.\footnote{In [1] we did not require the condition for $f(x)$ to be symmetric if $\sigma_2^{2q-1}(f) < \infty$.}

Lemma 4.4 Let $f(x), x \in R$, be a symmetric probability density function of a given random variable. Further, let either

(i) the $(2q-1)$-variance $\sigma_{2q-1}^2(f) < \infty$ (associated with $(2q-1, \alpha) \in Q_1$), or

(ii) $f(x) \in H_{q,\alpha}$, where $(2q-1, \alpha) \in Q_2$.

Further to the properties of the q-Fourier transform established in [1], we note that, for symmetric densities, the assertion analogous to Lemma 4.1 is true with the q-cos.
Then, for the q-Fourier transform of $f(x)$, the following asymptotic relation holds true:

$$F_q[f](\xi) = 1 - \mu_{q,\alpha}|\xi|^\alpha + o(|\xi|^\alpha), \xi \to 0,$$

where

$$\mu_{q,\alpha} = \begin{cases} \frac{\sigma_{2q-1}^2}{2^{2q-1}} \nu_{2q-1}, & \text{if } \alpha = 2; \\
\frac{2^{1-\alpha(1+\alpha(1-q))}}{2-q} \int_0^\infty \frac{\Psi_q(y)}{y^{1+\alpha(1-q)}} dy, & \text{if } (2q-1, \alpha) \in \mathbb{Q}_2.
\end{cases}$$

with $\nu_{2q-1}(f) = \int_{-\infty}^\infty|f(x)|^{2q-1} dx$.

Remark 4.5 Stable distributions require $\mu_{q,\alpha}$ to be positive. We have seen (Lemma 3.5) that if $q \geq 1$, then $\Psi_q(x) \leq 0$ (not being identically zero), which yields $\mu_{q,\alpha} > 0$.

Proof. First, we assume that $\alpha = 2$. Using Lemma 4.1, we have

$$F_q[f](\xi) = \int_{-\infty}^\infty (\circ_q e^{ix\xi}) \cos_q(x\xi[f(x)]^{q-1}) dx = \int_{-\infty}^\infty f(x) \cos_q(x\xi[f(x)]^{q-1}) dx.$$ \hspace{1cm} (19)

Making use of the asymptotic expansion (5) we can rewrite the right hand side of (19) in the form

$$F_q[f](\xi) = \int_{-\infty}^\infty f(x) \left(1 + \xi f(x)[f(x)]^{q-1} - q/2\xi^2 [f(x)]^{2(q-1)}\right) dx + o(\xi^3) =$$

$$1 - (q/2)\xi^2 \sigma_{2q-1}^2 \nu_{2q-1} + o(\xi^3), \xi \to 0,$$

from which the first part of Lemma follows.

Now, assume $(2q-1, \alpha) \in \mathbb{Q}_2$. We apply Lemma 4.3 to obtain

$$F_q[f](\xi) - 1 = \int_{-\infty}^\infty f(x)[\cos_q(x\xi[f(x)]^{q-1}) - 1] dx =$$

$$2 \int_0^N f(x) \Psi_q\left(\frac{x\xi[f(x)]^{q-1}}{2}\right) dx + 2 \int_0^\infty f(x) \Psi_q\left(\frac{x\xi[f(x)]^{q-1}}{2}\right) dx,$$

where N is a sufficiently large finite number. In the first integral we use the asymptotic relation

$$\Psi_q(x) = \frac{q}{2} x^2 + o(x^3),$$

which follows from Lemma 3.5, and get

$$2 \int_0^N f(x) \Psi_q\left(\frac{2\xi[f(x)]^{q-1}}{2}\right) dx =$$

$$- q\xi^2 \int_0^N x^2 f^{2q-1}(x) dx + o(\xi^3), \xi \to 0. \hspace{1cm} (20)$$

In the second integral taking into account the hypothesis of the lemma with respect to $f(x)$, we have

$$2 \int_0^\infty f(x) \Psi_q\left(\frac{x\xi[f(x)]^{q-1}}{2}\right) dx = 2C \int_0^\infty \frac{1}{x^{1+\alpha(1-q)}} \Psi_q\left(\frac{x^{1-\alpha(1+q-1)}}{2}\right) dx.$$ \hspace{1cm} (18)

We use the substitution

$$x^{2-q}/x^{1+\alpha(1-q)} = 2y/\xi.$$
in the last integral, and obtain

\[
2 \int_{N}^{\infty} f(x) \Psi_q \left(\frac{x \xi [f(x)]^{q-1}}{2} \right) dx = \\
- \frac{2^{2-\alpha}(1 + \alpha(q - 1))C}{2 - q} |\xi|^\alpha \int_{0}^{\infty} \Psi_q(y) \frac{dy}{y^{\alpha+1}} + o(|\xi|^\alpha), \xi \to 0.
\]

Hence, the obtained asymptotic relations (20) and (21) complete the proof. ■

5 Weak convergence of correlated random variables

This section we start with introduction of the notion of \(q\)-independence in particular case. More general definition and some examples are given in [1]. We will also introduce two types of convergence, namely, \(q\)-convergence and weak \(q\)-convergence and establish their equivalence.

Definition 5.1 Two random variables \(X\) and \(Y\) are said to be \(q\)-independent if

\[
F_q[X + Y](\xi) = F_q[X](\xi) \otimes_q F_q[Y](\xi).
\]

In terms of densities, the relation (22) can be rewritten as follows. Let \(f_X\) and \(f_Y\) be densities of \(X\) and \(Y\) respectively, and let \(f_{X+Y}\) be the density of \(X+Y\). Then

\[
\int_{-\infty}^{\infty} e^{ix\xi} \otimes_q f_{X+Y}(x) dx = F_q[f_X](\xi) \otimes_q F_q[f_Y](\xi).
\]

For \(q = 1\) the conditions (22) turns into the well known relation

\[
F[f_X * f_Y] = F[f_X] \cdot F[f_Y]
\]

between the convolution (noted \(*\)) of two densities and the multiplication of their (classical) Fourier images, and holds for independent \(X\) and \(Y\). If \(q \neq 1\), then \(q\)-independence describes a specific correlation.

Definition 5.2 Let \(X_1, X_2, ..., X_N, ...\) be a sequence of identically distributed random variables. Denote \(Y_N = X_1 + ... + X_N\). By definition, the sequence \(X_N, N = 1, 2, ...\) is said to be \(q\)-independent (or \(q\)-i.i.d.) if for all \(N = 2, 3, ...\), the relations

\[
F_q[Y_N][\xi] = F_q[X_1](\xi) \otimes_q ... \otimes_q F_q[X_N](\xi)
\]

hold.

Definition 5.3 A sequence of random variables \(X_N, N = 1, 2, ...,\) is said to be \(q\)-convergent to a random variable \(X_\infty\) if \(\lim_{N \to \infty} F_q[X_N](\xi) = F_q[X_\infty](\xi)\) locally uniformly in \(\xi\).

Evidently, this definition is equivalent to the weak convergence (denoted by “\(\Rightarrow\)”) of random variables if \(q = 1\). For \(q \neq 1\) denote by \(W_q\) the set of continuous functions \(\phi\) satisfying the condition

\[
|\phi(x)| \leq C(1 + |x|)^{-\frac{\alpha}{q-1}}, x \in \mathbb{R}.
\]

\[6\] We assume \(X\) and \(Y\) to have the zero \(q\)-means. For the definition of \(q\)-independence for random variables with non-zero \(q\)-means see [1].
Definition 5.4 A sequence of random variables X_N with the density f_N is called weakly q-convergent to a random variable X_∞ with the density f if $\int_\mathbb{R} f_N(x) dm_q \rightarrow \int_\mathbb{R} f(x) dm_q$ for arbitrary measure m_q defined as $dm_q(x) = \phi_q(x) dx$, where $\phi_q \in W_q$. We denote the q-convergence by the symbol \xrightarrow{q}.

Lemma 5.5 Let $q > 1$. Then $X_N \Rightarrow X_0$ yields $X_N \xrightarrow{q} X_0$.

The proof of this lemma immediately follows from the obvious fact that W_q is a subset of the set of bounded continuous functions.

Recall that a sequence of probability measures μ_N is called tight if, for an arbitrary $\epsilon > 0$, there is a compact K_ϵ and an integer N_ϵ^* such that $\mu_N(R^d \setminus K_\epsilon) < \epsilon$ for all $N \geq N_\epsilon^*$.

Lemma 5.6 Let $1 < q < 2$. Assume a sequence of random variables X_N, defined on a probability space with a probability measure P, and associated densities f_N, is q-convergent to a random variable X with an associated density f. Then the sequence of associated probability measures $\mu_N = P(X_N^{-1})$ is tight.

Proof. Assume that $1 < q < 2$ and X_N is a q-convergent sequence of random variables with associated densities f_N and associated probability measures μ_N. We have

$$\frac{1}{R} \int_{-R}^R (1 - F_q[f_N](\xi)) d\xi = \frac{1}{R} \int_{-R}^R (1 - \int_R f_N e^{ix\xi f_N^{-1}} dx) d\xi =$$

$$\int_R \left(\frac{1}{R} \int_{-R}^R (1 - e^{ix\xi f_N^{-1}}) d\xi \right) d\mu_N(x).$$

(25)

It is not hard to verify that

$$\frac{1}{R} \int_{-R}^R e^{ix\xi t} d\xi = \frac{2\sin \frac{1}{R-q}(Rx(2-q)t)}{Rx(2-q)t}.$$

(26)

It follows from (25) and (26) that

$$\frac{1}{R} \int_{-R}^R (1 - F_q[f_N](\xi)) d\xi = 2 \int_{-\infty}^\infty \left(1 - \frac{\sin \frac{1}{R-q}(x(2-q)R f_N^{-1})}{Rx(2-q)f_N^{-1}} \right) d\mu_N(x).$$

(27)

Since $1 < q < 2$ by assumption, $\frac{1}{R-q} > 1$ as well. It is known [27, 28, 29] that for any $q' > 1$ the properties $\sin_q'(x) \leq 1$ and $(\sin_q'(x))/x \rightarrow 1$, $x \rightarrow 0$ hold. Moreover, $(\sin_q'(x))/x \leq 1, \forall x \in R$. Suppose, $\lim_{|x| \rightarrow \infty} |x| f_N^{-1} = L_N$, $N \geq 1$. Divide the set $\{N \geq N_0\}$ into two subsets $A = \{N_j \geq N_0 : L_{N_j} > 1\}$ and $B = \{N_k \geq N_0 : L_{N_k} \leq 1\}$. If $N \in A$, since $\frac{1}{R-q} \leq 1$, there is a number $a > 0$ such that

$$\frac{1}{R} \int_{-R}^R (1 - F_q[f_N](\xi)) d\xi \geq 2 \int_{|x| \geq a} \left(1 - \frac{1}{R|x|(2-q)f_N^{-1}} \right) d\mu_N(x)$$

$$\geq C \mu_N (|x| \geq a), \ C > 0 \ \forall N \in A,$$

for R small enough. Now taking into account the q-convergence of X_N to X and, if necessary, taking R smaller, for any $\epsilon > 0$, we obtain

$$\mu_N (|x| \geq a) \leq \frac{1}{CR} \int_{-R}^R (1 - F_q[f_0](\xi)) d\xi < \epsilon, \ \forall N \in A.$$
If \(N \in B \) then there exist constants \(b > 0, \delta > 0 \), such that
\[
f_N(x) \leq \frac{L_N + \delta}{|x|^{q-1}} \leq \frac{1 + \delta}{|x|^{q-1}}, \quad |x| \geq b, \forall N \in B.
\]
Hence, we have
\[
\mu_N(|x| > b) = \int_{|x| > b} f_N(x) \, dx \leq (1 + \delta) \int_{|x| > b} \frac{dx}{|x|^{q-1}}, \quad N \in B.
\]

Since, \(1/(q-1) > 1 \), for any \(\epsilon > 0 \) we can select a number \(b_\epsilon \geq b \) such that \(\mu_N(|x| > b_\epsilon) < \epsilon, \ N \in B \). As far as \(A \cup B = \{N \geq N_0 \} \) the proof of the statement is complete. ■

Further, we introduce the function
\[
D_q(t) = D_q(t; a) = te^{iat^{q-1}} = t(1 + i(1 - q)at^{q-1})^{-\frac{1}{q-1}},
\]
defined on \([0, 1]\), where \(1 < q < 2 \) and \(a \) is a fixed real number. Obviously \(D_q(t) \) is continuous on \([0, 1]\) and differentiable in the interval \((0, 1)\). In accordance with the classical Lagrange average theorem for any \(t_1, t_2, 0 \leq t_1 < t_2 \leq 1 \) there exists a number \(t_* \), \(t_1 < t_* < t_2 \) such that
\[
D_q(t_1) - D_q(t_2) = D_q'(t_*)(t_1 - t_2),
\]
where \(D_q' \) means the derivative of \(D_q(t) \) with respect to \(t \).

Consider the following Cauchy problems for the Bernoulli equation
\[
y' - \frac{1}{t}y = \frac{ia(1-q)}{t}y^q, \quad y(0) = 0,
\]
It is not hard to verify that \(D_q(t) \) is a solution to the problems \([30]\).

Lemma 5.7 For \(D_q'(t) \) the estimate
\[
|D_q'(t; a)| \leq C(1 + |a|)^{-\frac{q}{q-1}}, \quad t \in (0, 1), \ a \in R^1,
\]
holds, where the constant \(C \) does not depend on \(t \).

Proof. It follows from \([28]\) and \([30]\) that
\[
|y'(t)| \leq t^{-1}|y + ia(1-q)y^q| = |e^{iat^{q-1}} + ia(1-q)(e^{iat^{q-1}})^q| = |1 + ia(1-q)t^{q-1}|^{-\frac{q}{q-1}} \leq C(1 + |a|)^{-\frac{q}{q-1}}, \ t \in (0, 1).
\]

■

Theorem 5.8 Let \(1 < q < 2 \) and a sequence of random vectors \(X_N \) be weakly \(q \)-convergent to a random vector \(X \). Then \(X_N \) is \(q \)-convergent to \(X \).

Proof. Assume \(X_N \), with associated densities \(f_N \), is weakly \(q \)-convergent to a \(X \), with an associated density \(f \). The difference \(\mathcal{F}_q[f_N](\xi) - \mathcal{F}_q[f_N](\xi) \) can be written in the form
\[
\mathcal{F}_q[f_N](\xi) - \mathcal{F}_q[f_N](\xi) = \int_{R^d} (D_q(f_N(x)) - D_q(f(x))) \, dx,
\]
where \(D_q(t) = D_q(t; a) \) is defined in \([28]\) with \(a = x\xi \). It follows from \([29]\) and \([31]\) that
\[
|\mathcal{F}_q[f_N](\xi) - \mathcal{F}_q[f_N](\xi)| \leq C \int_{R^d} |(1 + |x|)^{-\frac{q}{q-1}} (f_N(x) - f(x))| \, dx,
\]
which yields \(\mathcal{F}_q[f_N](\xi) \to \mathcal{F}_q[f_N](\xi) \) for all \(\xi \in R^d \). ■
Theorem 5.9 Let $1 < q < 2$ and a sequence of random vectors X_N with the associated densities f_N is q-convergent to a random vector X with the associated density f and $F_q[f](\xi)$ is continuous at $\xi = 0$. Then X_N weakly q-converges to X.

Proof. Now assume that f_N converges to f in the sense of q-convergence. It follows from Lemma 5.6 that the corresponding sequence of induced probability measures $\mu_N = P(X_N^{-1})$ is tight. This yields relatively weak compactness of the sequence μ_N. Theorem 5.8 implies that each weakly convergent subsequence $\{\mu_{N_j}\}$ of μ_N converges to $\mu = P(X^{-1})$. Hence, $\mu_N \Rightarrow \mu$, or the same, $X_N \Rightarrow X$. Now applying Lemma 5.5 we complete the proof. ■

6 Symmetric (q, α)-stable distributions. First representation

In this section we introduce symmetric (q, α)-stable distributions and give the description based on the mapping (2). In accordance with this description q takes any value in $[1, 2)$, however we distinguish the cases $\alpha = 2$ and $\alpha

Definition 6.1 A random variable X is said to have a (q, α)-stable distribution if its q-Fourier transform is represented in the form $e_q^{-\beta |\xi|^{\alpha}}$, with $\beta > 0$. We denote by $L_q(\alpha)$ the set of all (q, α)-stable distributions.

Denote $G_q(\alpha) = \{be_q^{-\beta |\xi|^{\alpha}}, b > 0, \beta > 0\}$. In other words $X \in L_q(\alpha)$ if $F_q[f] \in G_q(\alpha)$ with $b = 1$. Note that if $\alpha = 2$, then $G_q(2)$ represents the set of q-Gaussians and $L_q(2)$ - the set of random variables whose densities are q_s-Gaussians, where $q_s = (3q - 1)/(1 + q)$.

Proposition 6.2 Let q-independent random variables $X_j \in L_q(\alpha), j = 1, ..., m$. Then for any constants $a_1, ..., a_m$,

$$\sum_{j=1}^{m} a_jX_j \in L_q(\alpha).$$

Proof. Let

$$F_q[X_j](\xi) = e_q^{-\beta |\xi|^{\alpha}}, j = 1, ..., m.$$

Using the properties $e_q^{x} \otimes e_q^{y} = e_q^{x+y}$ and $F_q[aX](\xi) = F_q[X](a^{-q} |\xi|)$, it follows from the definition of the q-independence that

$$F_q[\sum_{j=1}^{m} a_jX_j] = e_q^{-\beta |\xi|^{\alpha}}, \beta = \sum_{j=1}^{m} \beta_ja_j^{\alpha(2-q)} > 0.$$

Remark 6.3 Proposition 6.2 justifies the stability of distributions in $L_q(\alpha)$. Recall that if $q = 1$ then q-independent random variables are independent in the usual sense. Thus, if $q = 1$, $0 < \alpha < 2$, then $L_1(\alpha)$ coincides with symmetric α-stable Lévy distributions $L_{sym}(\alpha)$.

Further we show that the q-weak limits of sums

$$Z_N = \frac{1}{s_N(q, \alpha)} (X_1 + ... + X_N), N = 1, 2, ...$$

as $N \rightarrow \infty$, where $s_N(q, \alpha), N = 1, 2, ...$, are some reals (scaling parameter), also belong to $L_q(\alpha)$.

1
Definition 6.4 A sequence of random variables Z_N is said to be q-convergent to a (q, α)-stable distribution, if
\[
\lim_{N \to \infty} F_q[Z_N](\xi) \in G_q(\alpha) \text{ locally uniformly by } \xi.
\]

Theorem 1. Assume $(2q-1, \alpha) \in \mathbb{Q}_2$. Let $X_1, X_2, \ldots, X_N, \ldots$ be symmetric q-independent random variables and all having the same probability density function $f(x) \in H_{q, \alpha}$. Then Z_N, with
\[
s_N(q, \alpha) = \left(\mu_{q, \alpha} N\right)^{-\frac{1}{(\alpha-1)q}},
\]
is q-convergent to a (q, α)-stable distribution, as $N \to \infty$.

Remark 6.5 By definition \mathbb{Q}_2 excludes the value $\alpha = 2$. The case $\alpha = 2$, in accordance with the first part of Lemma 4.4, coincides with Theorem 2 of [1]. Note in this case $L_q(2) = G_q(2)$, where $q^* = \frac{3q-1}{q+1}$.

Proof. Assume $(Q, \alpha) \in \mathbb{Q}_2$. Let f be the density associated with X_1. First we evaluate $F_q(X_1) = F_q(f(x))$. Using Lemma 4.4 we have,
\[
F_q[f](\xi) = 1 - \mu_{q, \alpha} |\xi|^\alpha + o(|\xi|^\alpha), \xi \to 0.
\]
Denote $Y_j = N^{-\frac{1}{\alpha}} X_j$, $j = 1, 2, \ldots$. Then $Z_N = Y_1 + \ldots + Y_N$. Further, it is readily seen that, for a given random variable X and real $a > 0$, the equality $F_q[aX](\xi) = F_q[X](a^{2-q}\xi)$ holds. It follows from this relation that $F_q(Y_j) = F_q[f]\left(\frac{\xi}{(\mu_{q, \alpha} N)^{1/\alpha}}\right)$, $j = 1, 2, \ldots$. Moreover, it follows from the q-independence of $X_1, X_2, \ldots,$ and the associativity of the q-product that
\[
F_q[Z_N](\xi) = F_q[f]\left((\mu_{q, \alpha} N)^{-\frac{1}{\alpha}} \xi\right) \in G_q(\alpha) \text{ (N factors)}.
\]
Hence, making use of the expansion (4) for the q-logarithm, Eq. (34) implies
\[
\ln_q F_q[Z_N](\xi) = N \ln_q F_q[f]\left((\mu_{q, \alpha} N)^{-\frac{1}{\alpha}} \xi\right) = N \ln_q (1 - \frac{|\xi|^\alpha}{N} + o((|\xi|^\alpha)/N)) = - |\xi|^\alpha + o(1), \quad N \to \infty,
\]
locally uniformly by ξ.

Hence, locally uniformly by ξ,
\[
\lim_{N \to \infty} F_q(Z_N) = e_q^{-|\xi|^\alpha} \in G_q(\alpha).
\]
Thus, Z_N is q-convergent to a (q, α)-stable distribution, as $N \to \infty$.

This theorem links the classic Lévy distributions with their q_{α}^L-Gaussian counterparts. Indeed, in accordance with this theorem, a function f, for which
\[
f \sim C/x^{(\alpha+1)/(1+\alpha(q-1))}, \quad |x| \to \infty,
\]
is in $L_q(\alpha)$, i.e. $F_q[f](\xi) \in G_q(\alpha)$. It is not hard to verify that there exists a q_{α}^L-Gaussian, which is asymptotically equivalent to f. Let us now find q_{α}^L. Any q_{α}^L-Gaussian behaves asymptotically $C_1/|x|^\eta = C_2/|x|^{2/(q_{\alpha}^L - 1)}$, $C_j = \text{const}$, $j = 1, 2$, i.e. $\eta = 2/(q_{\alpha}^L - 1)$. Hence, we obtain the relation
\[
\frac{\alpha + 1}{1 + \alpha(q - 1)} = \frac{2}{q_{\alpha}^L - 1}.
\]
Solving this equation with respect to q_{α}^L, we have
\[
q_{\alpha}^L = \frac{3}{\alpha + 1} + \frac{Q\alpha}{\alpha + 1}, \quad Q = 2q - 1,
\]
linking three parameters: α, the parameter of the α-stable Lévy distributions, q, the parameter of correlation, and q_{α}^L, the parameter of attractors in terms of q_{α}^L-Gaussians (see Fig. 2 (left)). Equation (38) identifies all (Q, α)-stable distributions with the same index of attractor $G_{q_{\alpha}^L}$ (See Fig. 1), proving the following proposition.
Proposition 6.6 Let $1 \leq Q < 3$ (or $Q = 2q - 1$) and $0 < \alpha < 2$. Then all distributions $X \in \mathcal{L}_q(\alpha)$, where the pairs (Q, α) satisfy the equation

$$\frac{3 + Q\alpha}{\alpha + 1} = q^L_{\alpha},$$

have the same attractor asymptotically equivalent to q^L_{α}-Gaussian.

Figure 1: All pairs of (Q, α) on the indicated curves are associated with the same q^L_{α}-Gaussian. Two curves corresponding to two different values of q^L_{α} do not intersect. In this sense these curves represent the constant levels of q^L_{α} or $\eta = 2/(q^L_{\alpha} - 1)$. The line $\eta = 1$ joins the points $(Q, \alpha) = (1, 0.0 - 0)$ and $(3 - 0, 2)$; the line $\eta = 2$ joins the Cauchy distribution (noted \mathcal{C}) with itself at $(Q, \alpha) = (1, 1)$ and at $(2, 2)$; the $\eta = 3$ line joins the points $(Q, \alpha) = (1, 2.0 - 0)$ and $(5/3, 2)$ (by ϵ we simply mean to give an indication, and not that both infinitesimals coincide). The entire line at $Q = 1$ and $0 < \alpha < 2$ is mapped into the line at $\alpha = 2$ and $5/3 \leq q^L_{\alpha} < 3$.

In the particular case $Q = 1$, we recover the known connection between the classical Lévy distributions ($q = Q = 1$) and corresponding q^L_{α}-Gaussians. Put $Q = 1$ in Eq. (38) to obtain

$$q^L_{\alpha} = \frac{3 + \alpha}{1 + \alpha}, \quad 0 < \alpha < 2.$$ \hfill (39)

When α increases between 0 and 2 (i.e. $0 < \alpha < 2$), q^L_{α} decreases between 3 and $5/3$ (i.e. $5/3 < q^L_{\alpha} < 3$): See Figs. 2 (left) and 3 (left).

It is useful to find the relationship between $\eta = \frac{2}{q^L_{\alpha} - 1}$, which corresponds to the asymptotic behaviour of the attractor depending on (α, Q). Using formula (38), we obtain (Fig. 2 right)

$$\eta = \frac{2(\alpha + 1)}{2 + \alpha(Q - 1)}.$$ \hfill (40)

Proposition 6.7 Let $X \in \mathcal{L}_Q(\alpha)$, $1 \leq Q < 3$, $0 < \alpha < 2$. Then the associated density function f_X has asymptotics $f_X(x) \sim |x|^\eta$, $|x| \to \infty$, where $\eta = \eta(Q, \alpha)$ is defined in (40).

Remark 6.8 If $Q = 1$ (classic Lévy distributions), then $\eta = \alpha + 1$, as is well known.
Analogous relationships can be obtained for other values of Q. We call, for convenience, a (Q, α)-stable distribution a Q-Cauchy distribution, if its parameter $\alpha = 1$. We obtain the classic Cauchy-Poisson distribution if $Q = 1$. The corresponding line can be obtained cutting the surface in Fig. 2 (right) along the line $\alpha = 1$. For Q-Cauchy distributions we have

$$q^L_1(Q) = \frac{3 + Q}{2} \quad \text{and} \quad \eta = \frac{4}{Q + 1},$$

(41)

respectively (see Figs. 2).

The relationship between α and q^L_1 for typical fixed values of Q are given in Fig. 3 (left). In this figure we can also see, that $\alpha = 1$ (Cauchy) corresponds to $q^L_1 = 2$ (in the $Q = 1$ curve). In Fig. 3 (right) the relationships between Q ($Q = 2q - 1$) and q^L_α are represented for typical fixed values of α.

We acknowledge thoughtful remarks by R. Hersh, E.P. Borges and S.M.D. Queiros. We thank E. Andries for his valuable assistance with MatLab codes and figures. Financial support by the Fulbright Foundation, SI International, AFRL and NIH grant P20 GMO67594 (USA agencies), and CNPq, Pronex and Faperj (Brazilian agencies) are acknowledged as well.

References

[1] S. Umarov, C. Tsallis and S. Steinberg, On a q-central limit theorem consistent with nonextensive statistical mechanics, Milan J. Math. 76 (2008) [DOI 10.1007/s00032-008-0087-y].
[2] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52, 479 (1988). See also E.M.F. Curado and C. Tsallis, Generalized statistical mechanics: connection with thermodynamics, J. Phys. A 24, L69 (1991) [Corrigenda: 24, 3187 (1991) and 25, 1019 (1992)], and C. Tsallis, R.S. Mendes and A.R. Plastino, The role of constraints within generalized nonextensive statistics, Physica A 261, 534 (1998). A regularly updated bibliography is accessible at http://tsallis.cat.cbpf.br/biblio.htm.

[3] D. Prato and C. Tsallis, Nonextensive foundation of Levy distributions, Phys. Rev. E 60, 2398 (1999), and references therein.

[4] M. Gell-Mann and C. Tsallis, eds., Nonextensive Entropy - Interdisciplinary Applications (Oxford University Press, New York, 2004).

[5] J.P. Boon and C. Tsallis, eds., Nonextensive Statistical Mechanics: New Trends, New Perspectives, Europhysics News 36 (6) (European Physical Society, 2005).

[6] C. Tsallis, Entropy, in Encyclopedia of Complexity and Systems Science (Springer, Berlin, 2008), in press.

[7] C. Tsallis, A.R. Plastino and R.F. Alvarez-Estrada, Escort mean values and the characterization of power-law-decaying probability densities, Archives 0802.1698 [cond-mat.stat-mech] (2008).

[8] B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, 1954, Addison-Wesley, Reading.

[9] W. Feller, An Introduction to Probability Theory and its Applications II, John Wiley and Sons, Inc, New York and London and Sydney, 1966

[10] G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian Random Processes, Chapman and Hall, New York, 1994.

[11] V.V. Uchaykin and V.M. Zolotarev, Chance and Stability. Stable Distributions and their Applications, VSP, Utrecht, 1999.

[12] M.M. Meerschaert, H.-P. Scheffler, Limit Distributions for Sums of Independent Random Vectors. Heavy Tails in Theory and Practice, John Wiley and Sons, Inc, 2001.

[13] G. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Physics Reports (2002), 371, 461-580.

[14] C. Beck and F. Schloegel, Thermodynamics of Chaotic Systems: An Introduction (Cambridge University Press, Cambridge, 1993).

[15] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, Physics Reports, 339, 1, 2000, 1.

[16] R. Gorenflo and F. Mainardi and D. Moretti and G. Pagnini and P. Paradisi, Discrete random walk models for space-time fractional diffusion, Chemical Physics 284, 521 (2002).

[17] M.M. Meerschaert, H.-P. Scheffler, Limit theorems for continuous-time random walk with infinite mean waiting times. J. Appl. Probability 41, 623 (2004).
[18] F.G. Schmitt, L. Seuront, *Multifractal Random Walk in Copepod Behavior*, Physica A 301, 375 (2001).

[19] G. Jona-Lasinio, *The renormalization group: A probabilistic view*, Nuovo Cimento B 26, 99 (1975), and *Renormalization group and probability theory*, Phys. Rep. 352, 439 (2001), and references therein; P.A. Mello and B. Shapiro, *Existence of a limiting distribution for disordered electronic conductors*, Phys. Rev. B 37, 5860 (1988); P.A. Mello and S. Tomsovic, *Scattering approach to quantum electronic transport*, Phys. Rev. B 46, 15963 (1992); M. Bologna, C. Tsallis and P. Grigolini, *Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions*, Phys. Rev. E 62, 2213 (2000); C. Tsallis, C. Anteneodo, L. Borland and R. Osorio, *Nonextensive statistical mechanics and economics*, Physica A 324, 89 (2003); C. Tsallis, *What should a statistical mechanics satisfy to reflect nature?*, in Anomalous Distributions, Nonlinear Dynamics and Nonextensivity, eds. H.L. Swinney and C. Tsallis, Physica D 193, 3 (2004); C. Anteneodo, *Non-extensive random walks*, Physica A 358, 289 (2005); S. Umarov and R. Gorenflo, *On multi-dimensional symmetric random walk models approximating fractional diffusion processes*, Fractional Calculus and Applied Analysis 8, 73-88 (2005); S. Umarov and S. Steinberg, *Random walk models associated with distributed fractional order differential equations*, to appear in IMS Lecture Notes - Monograph Series; F. Baldovin and A.L. Stella, *Central limit theorem for anomalous scaling due to correlations*, Phys. Rev. E 75, 020101 (2007); C. Tsallis, *On the extensivity of the entropy S_q, the q-generalized central limit theorem and the q-triplet*, in Complexity and Nonextensivity: New Trends in Statistical Mechanics, eds. S. Abe, M. Sakagami and N. Suzuki, Prog. Theor. Phys. Suppl. 162, 1 (2006); D. Sornette, *Critical Phenomena in Natural Sciences* (Springer, Berlin, 2001), page 36.

[20] C. Tsallis and D.J. Bukman, *Anomalous diffusion in the presence of external forces: exact time-dependent solutions and their thermostatistical basis*, Phys. Rev. E 54, R2197 (1996).

[21] S. Abe and A.K. Rajagopal, *Rates of convergence of non-extensive statistical distributions to Lévy distributions in full and half-spaces*, J. Phys. A 33, 8723 (2000).

[22] C. Tsallis, *Nonextensive statistical mechanics, anomalous diffusion and central limit theorems*, Milan Journal of Mathematics 73, 145 (2005).

[23] L.G. Moyano, C. Tsallis and M. Gell-Mann, *Numerical indications of a q-generalised central limit theorem*, Europhys. Lett. 73, 813 (2006); H.J. Hilhorst and G. Schehr, *A note on q-Gaussians and non-Gaussians in statistical mechanics*, J. Stat. Mech. (2007) P06003; A. Rodriguez, V. Schwammle and C. Tsallis, *Strictly and asymptotically scale-invariant probabilistic models of N correlated binary random variables having q-Gaussians as $N \to \infty$ limiting distributions*, Archives 0804.1488 [cond-mat.stat-mech] (2008).

[24] C. Tsallis, *What are the numbers that experiments provide?*, Quimica Nova 17, 468 (1994).

[25] C. Tsallis and S.M.D. Queiros, *Nonextensive statistical mechanics and central limit theorems I - Convolution of independent random variables and q-product*, in Complexity, Metastability and Nonextensivity, eds. S. Abe, H.J. Herrmann, P. Quarati, A. Rapisarda and C. Tsallis, American Institute of Physics Conference Proceedings 965, 8-20 (New York, 2007).

[26] S.M.D. Queiros and C. Tsallis, *Nonextensive statistical mechanics and central limit theorems II - Convolution of q-independent random variables*, in Complexity, Metastability and Nonex-
tensivity, eds. S. Abe, H.J. Herrmann, P. Quarati, A. Rapisarda and C. Tsallis, American Institute of Physics Conference Proceedings 965, 21-33 (New York, 2007).

[27] E.P. Borges, A q-generalization of circular and hyperbolic functions, J. Phys. A: Math. Gen. 31 (1998), 5281-5288.

[28] L. Nivanen, A. Le Mehaute and Q.A. Wang, Generalized algebra within a nonextensive statistics, Rep. Math. Phys. 52, 437 (2003).

[29] E.P. Borges, A possible deformed algebra and calculus inspired in nonextensive thermostatistics, Physica A 340, 95 (2004).

[30] C. Tsallis, M. Gell-Mann and Y. Sato, Asymptotically scale-invariant occupancy of phase space makes the entropy S_q extensive, Proc. Natl. Acad. Sc. USA 102, 15377 (2005).

[31] J. Marsh and S. Earl, New solutions to scale-invariant phase-space occupancy for the generalized entropy S_q, Phys. Lett. A 349, 146 (2005).

[32] C. Tsallis, M. Gell-Mann and Y. Sato, Extensivity and entropy production, Europhysics News 36, 186 (2005).

[33] J.A. Marsh, M.A. Fuentes, L.G. Moyano and C. Tsallis, Influence of global correlations on central limit theorems and entropic extensivity, Physica A 372, 183 (2006).