Direct Observation of Ion Micromotion in a Linear Paul Trap

Liudmila A. Zhukas∗ and Maverick J. Millican
Department of Physics, University of Washington, Seattle 98195, USA

Peter Svihra
Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague 115 19, Czech Republic and Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom

Andrei Nomerotski
Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Boris B. Blinov
Department of Physics, University of Washington, Seattle 98195, USA
(Dated: October 2, 2020)

In this paper, the first direct observation of micromotion for multiple ions in a laser-cooled trapped ion crystal is discussed along with a novel measurement technique for micromotion amplitude. Micromotion is directly observed using a time-resolving, single-photon sensitive camera that provides both fluorescence and position data for each ion on the nanosecond time scale. Micromotion amplitude and phase for each ion in the crystal is measured which allows this method to be sensitive to tilts and shifts of the ion chain from the null of the radiofrequency quadrupole potential in the linear trap. Spatial resolution makes this micromotion detection technique suitable for complex ion configurations, including two-dimensional geometries. It does not require any additional equipment or laser beams, and the modulation of the cooling lasers or trap voltages is not necessary for detection, as it is in other methods.

I. INTRODUCTION

Motion of trapped ions in radiofrequency (RF) traps can be described as a superposition of the slower harmonic motion, called the secular motion, and the faster, driven motion at the frequency of the applied electric field, called micromotion. Excess micromotion may lead to significant frequency modulation of the laser light interacting with the ions, reducing the efficiency of the laser cooling [1] and quantum logic gates [2]. Second-order Doppler shifts caused by the micromotion can adversely affect trapped ion clocks [3]. Thus, detection, monitoring, and compensation of the excess micromotion is crucial for high-precision applications such as quantum computing and frequency standards. Micromotion detection and compensation is especially important in chip-scale surface-electrode ion traps because the ions are close to the trap surfaces and, thus, are more susceptible to the stray DC electric fields that shift the trapping position away from the RF null and cause excess micromotion.

Several techniques for micromotion detection have been developed, including the photon correlation technique and micromotion sideband spectroscopy [4], high-finesse optical cavity [5], and parametric resonance detection [6]. All existing methods for micromotion detection are indirect, and typically rely on ion fluorescence rate or spectrum changes caused by the ion motion. These techniques are unable to spatially resolve the micromotion of individual ions in a Coulomb crystal.

Here the first direct observation of the trapped ion micromotion is presented using a time-resolving, single-photon sensitive camera that provides both fluorescence and position data for each ion on a nanosecond time scale. With this technique, both the micromotion amplitude and phase for each ion in the crystal can be measured individually. This can provide information about the tilts and shifts of the ion chain from the null of the radiofrequency quadrupole potential in a linear trap. The high spatial resolution makes this method suitable for micromotion studies in more complex ion configurations, including two-dimensional geometries [7]. Another advantage of this method is its simplicity: no additional equipment, such as time-to-digital converters (TDCs) or high-finesse cavities are required, and no modulation of the trap voltages or lasers is necessary.

The rest of the text is organized as follows: in Section III the experimental setup and methods are described in detail. This includes the linear RF trap and the Timepix3 fast camera used for measurement. Section III provides information on the offline post-processing of the data. Then in Section IV the results of measured ion micromotion and proper compensation are presented, followed by the team’s conclusions in Section V.

* Corresponding author: lzhukas@uw.edu
II. SETUP AND METHODS

An 8-ion chain of Ba$^+$ ions is stored and Doppler-cooled in a “five-rod” linear RF trap [8], schematically shown in Figure 1. The ions are laser cooled on the $6S_{1/2} - 6P_{1/2}$ transition near 493 nm, a process which produces the fluorescent photons used in the measurement of micromotion. This laser is directed at 45 degrees to the axis of the trap. A 650 nm laser is used to repump ions from the long-lived $5D_{3/2}$ metastable state. The ion fluorescence is collected by a lens with numerical aperture of 0.20 along the direction perpendicular to both the trap axis and the cooling laser. The trap RF frequency is $\Omega = 2\pi \cdot 18.2516$ MHz at approximately 400 Vpp applied to the pair of the trap rods labelled “RF” in the Figure 1a. A “squeeze” voltage of 6 V is applied to the other pair of rods (labelled “DC” in Figure 1a) to lift the secular frequency degeneracy. The endcap electrodes are at 130 V, resulting in trap secular frequencies $(\omega_x, \omega_y, \omega_z) = 2\pi(1.27, 0.98, 0.25)$ MHz. Adjustable DC bias voltages may be applied to any of the trap rods to intentionally shift the ions away from the RF null and induce micromotion, or to compensate the excess micromotion as the ions are shifted into the RF null.

The ions are imaged with a single-photon sensitive camera, Tpx3Cam [11], with high spatial and temporal resolution. Figure 1b shows the image of eight Ba$^+$ ions in the trap as a two-dimensional distribution of their positions measured by the camera. The camera technology allows direct position detection of single photons on a time scale that is much faster than the 54.79 ns period of the ion micromotion. Multiple photon source position measurements taken over the period of micromotion provide displacement data for individual ions to be analyzed and mapped. Fitting position data for each ion over time to a sinusoidal function gives a direct estimate of the ion micromotion amplitude and phase.

The Tpx3Cam camera has an optical sensor with high quantum efficiency (QE) [12] which is bump-bonded to Timepix3 [13], a readout chip with 256x256 pixels of 55x55 μm2. The electronics in each pixel process incoming signals to measure their time of arrival (ToA) if a predefined threshold with 1.56 ns precision is crossed. The information about time-over-threshold (ToT) is stored together with ToA as time codes in a memory inside the pixel. The ToT information is related to the deposited energy in each pixel. The Timepix3 readout is data driven so the signal storage and readout proceed only after the pixel signal exceeds the threshold. The pixel dead time is 475 ns + ToT allowing for multi-hit functionality in each pixel, independent from the other pixels. The SPIDR readout system supports fast, 80 Mpix/sec bandwidth [14].

The camera was calibrated to equalize the response of all pixels by adjusting the individual pixel thresholds. After this procedure, the effective threshold to fast light flashes is 600 – 800 photons per pixel, depending on the wavelength. A small ($\approx 0.1\%$) number of hot pixels were masked to prevent recording a large amount of noise.

The camera can also accept and time stamp an external pulse, independently of the Timepix3 operation. In our experiments, these pulses were produced by a generator with frequency of about 100 kHz providing an additional time reference for registered photons. The granularity of the time-stamping for the external pulses is 0.26 ns.

For the single photon operation, the signal is amplified with the addition of an image intensifier. The image intensifier is a vacuum device comprised of a photocathode followed by a micro-channel plate (MCP) and fast scintillator P47. The hi-QE-green photocathode in the intensifier (Photonis [15]) has QE of about 20% at 493 nm and dark count rate of about 200 Hz over the full area (18 mm diameter). The MCP in the intensifier has an improved detection efficiency close to 100%. The intensifier is packaged with an integrated power supply and relay optics to project the light flashes from the intensifier output window directly on to the optical sensor in the camera. Similar configurations of the intensified
Tpx3Cam were used previously for trapped ion imaging [16], characterization of quantum networks [17, 18], quantum target detection [19, 20], single photon counting [21], and lifetime imaging [22] studies.

III. DATA ANALYSIS

After sorting data by time, the pixels are grouped into “clusters” using a recursive algorithm. Clusters are small collections of pixels adjacent to each other and within a predefined time window of 300 ns. Each cluster corresponds to an individual photon. Since all hit pixels measure ToA and ToT independently and provide the position information, it can be used for centroiding to determine the coordinates of single photons. The ToT information is used to form a weighted average, giving an estimate of the x, y coordinates for the incoming single photon. The timing of the photon is estimated by using the recorded ToA of the pixel with the largest ToT in the cluster. The above ToA is then adjusted for the so-called time-walk, an effect caused by the variable pixel electronics time response, which depends on the amplitude of the input signal [10, 23]. With this correction a 2 ns time resolution (rms) has been previously achieved for single photons [17].

The data was taken for 300 seconds. On average, the photons were emitted at the rate of approximately 1 kHz per ion, however the ion-to-ion intensity is not uniform due to the cooling laser beam profile.

The photon emission rate for ions in a trap changes periodically with the RF period because of the varying Doppler shift as the velocity of the ions change with respect to the laser beam due to micromotion oscillation. During data collection external reference signals were provided to the camera appearing at regular intervals corresponding to 100 kHz frequency of a pulse generator that was running synchronously with the trap RF. This time reference was used to measure the oscillations by forming the time difference between the photon emission time and reference signal. Figure 2a shows the distribution of the time differences for the whole period of 10,136 ns, and Figure 2b shows it for a subset of nine oscillations. The oscillations are well described by a periodic function with period of 54.79 ns (red line), which is exactly the period of the trap RF. Figure 2c shows the time distribution of the entire data set in (a) after applying the data folding procedure over the oscillation period as described in the text. The resulting distribution represents the probability of a photon emission during the micromotion period.

FIG. 2. (a) Distribution of the time difference between the fluorescent photons and the periodic external signal for the whole period of 10,136 ns. (b) Zoomed-in section of the same distribution for a subset of nine oscillations. The oscillations are well described with a sine function with a period of 54.79 ns (red line), which is exactly the period of the trap RF. (c) Time distribution of the entire data set in (a) after applying the data folding procedure over the oscillation period as described in the text. The resulting distribution represents the probability of a photon emission during the micromotion period.

Time-stamping of photons and external pulses is performed independently from each other during data collection, and the analysis described above is done offline during post-processing. The same time information for the ions would be accessible from the individual pixel time-stamps so a similar analysis could have been done without any need of external pulses. However, it is an efficient technique to accumulate the time difference statistics without prior knowledge of the oscillation period, which can be used for fast online processing.

IV. RESULTS

The measurement of the ion positions was performed by time-slicing the full oscillation period into multiple bins (“snapshots”) and determining the ion coordinates in each time bin. As an example, Figure 3a shows such
snapshots of the sixth ion from Figure 1b during the full period of the micromotion oscillation. Here six images are separated by 9 ns, and the image statistics corresponds to a 3 ns time integration at the time stamp of the bin. Both the displacement of the ion and the modulation of its fluorescence due to the Doppler shift are clearly visible. In the Supplemental Material at [URL will be inserted by publisher] the “snapshot” of 8 ions at 30 ns from of the 54.79 ns micromotion period as well as the animation of both the ions’ displacements and fluorescence modulation due to the Doppler shift are provided. Figure 3b shows the measured y-position of the sixth ion as a function of the time in 3 ns bins. The data is well described by a sinusoidal function

\[y = A \sin\left[2\pi(t + t_0)/T\right] \] (1)

with a period \(T = 54.79 \) ns, amplitude \(A = 0.37 \pm 0.03 \) \(\mu \)m and time offset \(t_0 = 1.0 \pm 0.4 \) ns. The time offset is proportional to the phase of the micromotion. The period was determined as described in Section III while the amplitude and phase are fits to the data.

The amplitudes and time offsets for all eight ions in the crystal are determined by performing the analysis individually for each ion. The results are shown in Figure 4. All ions have similar values for amplitude and time offset, which agree well within the measurement uncertainties, implying their near identical micromotion. This indicates that the ion chain was shifted from the RF null of the trap without a tilt, as expected in our setup. An animation of the micromotion dynamics of the entire 8-ion chain is provided in the Supplemental Material by using ion chain snapshots.

By applying compensation DC voltage to the trap rods (Figure 1a), the ion position along one of the radial axes can be shifted either toward or away from the trap RF null and, thus, can increase or decrease the micromotion amplitude in this direction. Figure 5 shows the micromotion of the sixth ion for two cases: without any DC compensation voltage (0V) and with 0.44V applied to one of the trap rods. In the latter case there is a considerable reduction of the micromotion amplitude from \(0.37 \pm 0.03 \) \(\mu \)m to \(0.07 \pm 0.03 \) \(\mu \)m. There is also a 7 \(\mu \)m displacement of the ion position caused by the applied voltage due to the changed electrostatic field configuration.

In addition to using the position information for micromotion measurement, time histograms like in Figure 2c provide velocity information for each ion through the Doppler-shifted scattering rate. As ions undergo micromotion, the component of their velocity along the direction of the incident laser beam causes the frequency of
the laser to be Doppler shifted in the reference frame of the ions proportional to the instantaneous velocity. The red-detuned Doppler cooling laser becomes less (more) detuned from the atomic resonance as the ion moves towards (away from) the laser, resulting in the increase (decrease) of the photon scattering rate \(^3\). This modulation provides an independent way to estimate the component of micromotion along the direction of the laser beam, which can be used to estimate ion micromotion. This well-known technique has previously been implemented in many experiments by time-correlating single photons detected by a photomultiplier tube (PMT) with the RF phase using a TDC \([3, 4, 24]\). However, the PMT lacks spatial resolution so the old method only works for single ions. With the spatial resolution of the Tpx3Cam, precision determination of every ion’s micromotion should be possible but here we limit our discussion to the novel direct micromotion detection technique.

Both techniques rely on the excellent time resolution of the camera, however the direct measurement technique also relies on the precise reconstruction of ion positions, so it requires good coordinate resolution of the camera and a diffraction limited optical system with high light collection efficiency and low aberrations.

V. CONCLUSIONS

This paper demonstrates the direct simultaneous measurement of the micromotion of eight ions in a linear RF trap using a single photon sensitive camera with nanosecond timing resolution that provides both time and position measurements for each detected photon. Amplitudes and time offsets of each ion’s micromotion were determined and found to be consistent with a translation of the linear ion crystal away from the RF nodal line. Excess micromotion compensation was demonstrated to below 0.1\(\mu\)m. The new technique does not require any additional equipment or any modification of the trap apparatus and laser cooling parameters. In conjunction with a high numerical aperture objective lens, this method may be used to detect the micromotion component along the direction of imaging by analyzing the ion image defocusing \([23]\), thus providing a full 3-dimensional picture of the micromotion. This technique is also applicable to more complex ion configurations such as two-dimensional ion crystals.

ACKNOWLEDGMENTS

We thank Michael Keach and Kurt A. Delegard for assistance with the datasets, analysis and optical setup. This work was supported by the U.S. Department of Energy QuantISED award, U.S. National Science Foundation award PHY-2011503 and by the grant LM2018109 of Ministry of Education, Youth and Sports as well as by Centre of Advanced Applied Sciences CZ.02.1.01/0.0/0.0/16-019/0000778, co-financed by the European Union. M.M. acknowledges support under the Science Undergraduate Laboratory Internships Program (SULI) by the U.S. Department of Energy.

[1] J. I. Cirac, R. Blatt, P. Zoller, and W. D. Phillips, Laser cooling of trapped ions in a standing wave, Phys. Rev. A 46, 2668 (1992).
[2] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland, High-fidelity universal gate set for \(^9\)Be\(^+\) ion qubits, Phys. Rev. Lett. 117, 060505 (2016).
[3] J. Keller, H. L. Partner, T. Burgermeister, and T. E. Mehlstäubler, Precise determination of micromotion for trapped-ion optical clocks, Journal of Applied Physics 118, 104501 (2015).
[4] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Minimization of ion micromotion in a Paul trap, Journal of Applied Physics 83, 5025 (1998).
[5] B. L. Chuah, N. C. Lewty, R. Cazan, and M. D. Barrett, Detection of ion micromotion in a linear Paul trap with a high finesse cavity, Optics express 21 9, 10632 (2013).
[6] Y. Ibaraki, U. Tanaka, and S. Urabe, Detection of parametric resonance of trapped ions for micromotion compensation, Applied Physics B 105, 219 (2011).
[7] M. K. Ivory, A. Kato, A. Hasanzadeh, and B. B. Blinov, A Paul trap with sectored ring electrodes for experiments with two-dimensional ion crystals, The Review of Scientific Instruments 91 5, 053201 (2020).
[8] M. R. Dietrich, N. Kurz, T. Noel, G. Shu, and B. B. Blinov, Hyperfine and optical barium ion qubits, Phys. Rev. A 81, 052328 (2010).
[9] M. Fisher-Levine and A. Nomerotski, Timepixcam: a fast optical imager with time-stamping, Journal of Instrumentation 11 03, C03016 (2016).
[10] A. Zhao et al., Coincidence velocity map imaging using tpix3cam, a time-stamping optical camera with 1.5 ns timing resolution, Review of Scientific Instruments 88, 113104 (2017).
[11] www.amscins.com (2020).
[12] A. Nomerotski, I. Chakaberia, M. Fisher-Levine, Z. Janoska, P. Takacs, and T. Tsang, Characterization of timepixcam, a fast imager for the time-stamping of optical photons, Journal of Instrumentation 12, C01017 (2017).
[13] T. Poikela et al., Timepix3: a 65k channel hybrid pixel readout chip with simultaneous toa/tot and sparse readout, Journal of Instrumentation 9, C05013 (2014).
[14] B. van der Heijden et al., Spidr, a general-purpose readout system for pixel asics, Journal of Instrumentation 12, C02040 (2017).
[15] www.photonis.com/products/crickettm (2020).
[16] L. A. Zhukas, P. Sivilka, A. Nomerotski, and B. B. Blinov, High-fidelity simultaneous detection of trapped ion qubit.
[17] C. Ianzano, P. Svihra, M. Flament, A. Hardy, G. Cui, A. Nomerotski, and E. Figueroa, Fast camera spatial characterization of photonic polarization entanglement, Scientific Reports 10, 10.1038/s41598-020-62020-z (2020).

[18] A. Nomerotski, D. Katramatos, P. Stankus, P. Svihra, G. Cui, S. Gera, M. Flament, and E. Figueroa, Spatial and temporal characterization of polarization entanglement, International Journal of Quantum Information 18, 1941027 (2020).

[19] Y. Zhang, D. England, A. Nomerotski, P. Svihra, S. Ferrante, P. Hockett, and B. Sussman, Multidimensional quantum-enhanced target detection via spectrotemporal-correlation measurements, Phys. Rev. A 101, 053808 (2020).

[20] P. Svihra, Y. Zhang, P. Hockett, S. Ferrante, B. Sussman, D. England, and A. Nomerotski, Multivariate discrimination in quantum target detection, Applied Physics Letters 117, 044001 (2020).

[21] A. Nomerotski, M. Keach, P. Stankus, P. Svihra, and S. Vintskevich, Counting of hong-ou-mandel bunched optical photons using a fast pixel camera, Sensors 20, 3475 (2020).

[22] R. Sen, L. M. Hirvonen, A. Zhdanov, P. Svihra, S. Andersson-Engels, A. Nomerotski, and D. Papkovsky, New luminescence lifetime macroimager based on a tpx3cam optical camera, Biomed. Opt. Express 11, 77 (2020).

[23] D. Turecek, J. Jakubek, and P. Soukup, USB 3.0 readout and time-walk correction method for timepix3 detector, Journal of Instrumentation 11 (12), C12065 (2016).

[24] K. Pyka, N. Herschbach, J. Keller, and T. E. Mehlstubler, A high-precision segmented paul trap with minimized micromotion for an optical multiple-ion clock, Applied Physics B 114, 231241 (2014).

[25] T. F. Gloger, P. Kaufmann, D. Kaufmann, M. T. Baig, T. Collath, M. Johanning, and C. Wunderlich, Ion-trajectory analysis for micromotion minimization and the measurement of small forces, Phys. Rev. A 92, 043421 (2015).