Hormonal, follicular and endometrial dynamics in letrozole-treated versus natural cycles in patients undergoing controlled ovarian stimulation

Mohamed A Bedaiwy1,2, Mahmoud A Abdelaleem2, Mostafa Hussein2, Noha Mousa3, Lisa N Brunengraber1 and Robert F Casper3*

Abstract

The objective of this study was to compare letrozole-stimulated cycles to natural cycles in 208 patients undergoing intrauterine insemination (IUI) between July of 2004 and January of 2007. Group I (n = 47) received cycle monitoring only (natural group), Group II (n = 125) received letrozole 2.5 mg/day on cycle days three to seven, and Group III (n = 36) received letrozole 5 mg/day on cycle days three to seven. There were no differences between the groups in endometrial thickness or P4 on the day of hCG. Estradiol levels had higher variation in the second half of the follicular phase in both letrozole-treated groups compared to the control group. Estradiol per preovulatory follicle was similar in both letrozole cycles to that observed in the natural cycles. LH was lower on the day of hCG administration in the letrozole 2.5 mg/day group vs. the natural group. In summary, letrozole results in some minor changes in follicular, hormonal and endometrial dynamics compared to natural cycles. Increased folliculogenesis and pregnancy rates were observed in the letrozole-treated groups compared to the natural group. These findings need to be confirmed in larger, prospective studies.

Background

For over 40 years, the first-line therapy for ovulation induction (OI) has been clomiphene citrate (CC) [1]. Its inherent properties such as low price, oral route of administration and high ovulation success rate (60-90%) make it an attractive therapy. However, the pregnancy rate is [2] disappointing. Sub-optimal pregnancy rates with CC have been attributed to peripheral anti-estrogenic effects, mainly on the endometrium and the cervical mucus[3] Gonadotropins are more effective in ovulation induction and are associated with higher pregnancy rates than CC, but are expensive and carry higher risk for ovarian hyperstimulation syndrome and multiple gestations [4].

Newer options for ovulation induction are the third-generation aromatase inhibitors (AIs), the most commonly used being letrozole. Initially introduced to treat postmenopausal breast cancer, AIs are now also being used for ovulation induction or enhancement. A recent meta-analysis addressing the use of letrozole in assisted conception concluded that letrozole is as effective as other methods of ovulation induction [5]. When letrozole is used in combination with gonadotropins, it leads to lower gonadotropin requirements and pregnancy rates similar to gonadotropin treatment alone [6]. In a study comparing combined therapy of letrozole (2.5 mg/day or 5.0 mg/day) and recombinant FSH with recombinant FSH alone in an intrauterine insemination (IUI) program, 5 mg/day of letrozole was more cost-effective than the 2.5 mg/day in co-treatment with no adverse effect on pregnancy rate or outcome [7].

Aromatase inhibitors for ovulation induction are orally administered, and are relatively inexpensive with minor side effects such as very infrequent headaches and leg cramps[8]. Aromatase inhibitors increase endogenous FSH production in response to decreased estrogen biosynthesis in the ovary and extravascular tissues, including the brain [9]. Because they do not deplete estrogen receptors like CC, normal central feedback mechanisms remain intact[10]. As the dominant follicle grows and...
estrogen levels rise, normal negative feedback occurs centrally resulting in suppression of FSH and atresia of the smaller growing follicles. Therefore, a single dominant follicle, and mono-ovulation, is the rule in most cases[11] with the clear advantage of reducing multiple- gestation pregnancies.

Compared to CC, letrozole has been associated with lower preovulatory estradiol (E2) levels [12], as well as thicker endometrium and a trend towards higher pregnancy rates[13]. Standard ovarian stimulation protocols often produce high preovulatory E2 levels that could adversely affect the development of the endometrium, the follicles, and the embryo. Therefore, the lower E2 when using AIs may lead to an improvement of implantation [14,15].

There have been several studies comparing letrozole to CC. However, there is a paucity of research comparing letrozole with natural cycles. Larger studies comparing CC, letrozole, and natural cycles in a single study are necessary to further characterize the effect of letrozole on hormonal dynamics and pregnancy rates. Our hypothesis is that letrozole-treated cycles mimic natural cycles in hormonal and endometrial parameters. The aim of this study was to compare cycle dynamics in letrozole-treated versus natural cycles in infertile patients undergoing intrauterine insemination (IUI).

Methods
Patient recruitment and counseling
We conducted a retrospective cohort study of 208 consecutive infertile patients who were recruited to participate. Briefly, patients underwent IUI between July of 2004 and January of 2007 at the Toronto Center For Assisted Reproductive Technology, Toronto, Canada. Patients were divided into three groups. The first group (n = 47) received cycle monitoring only (natural cycle; group I). The 2 remaining groups received letrozole on cycle days three to seven at either 2.5 mg/day (n = 125) (group II) or 5 mg/day (n = 36) (group III). An informed consent was obtained from all participants clearly denoting the off-label use of the medication prior to treatment. Subsequently IRB approval was obtained to use their data for the purposes of this study.

Causative factors of infertility were investigated and defined as follows. Tubal patency was confirmed by sono-hysterography with contrast, hysterosalpingography, and or pelvic laparoscopy. Mild male factor infertility was diagnosed according to the World Health Organization (WHO) criteria for normal semen[16]. Endometriosis was diagnosed by pelvic laparoscopy. Unexplained infertility was based on the exclusion of known factors of infertility.

Cycle monitoring and insemination
All patients were followed with serial measurements of serum estradiol (E2), progesterone (P4), and luteinizing hormone (LH) using a radioimmunoassay (RIA) kit. Transvaginal ultrasonography (TVS) was performed for follicular diameter tracking and measurement of endometrial thickness. We measured follicular diameter in 2 perpendicular planes and calculated the mean, while endometrial thickness was measured in the sagittal plane at the widest part of endometrial cavity. Serum samples were obtained and TVS performed on cycle days three, seven, once between days 9 and 11, the day of human chorionic gonadotropin (hCG) administration, and when a follicle achieved a diameter of ≥16 mm. Serum follicle stimulating hormone (FSH) was measured on day 3 only. The results for E2 and P4 levels were reported as picomoles per liter and nanomoles per liter, respectively, and LH and FSH levels were reported in international units per liter.

An LH surge was defined as an increase in LH level greater than 100% over the mean of the preceding 2 measures. IUI was performed 36-40 hours after hCG administration if no endogenous LH surge occurred. If an endogenous LH surge was detected on the day of hCG administration, two IUIs were performed at 24 and 48 h. Pregnancy was diagnosed by quantitative β-hCG assay two weeks after the insemination. Clinical pregnancy was confirmed by observing fetal cardiac pulsation four weeks after positive pregnancy test by TVS.

Outcome parameters
Hormonal outcome measures were E2, P4, LH and FSH. Non-hormonal outcomes were number and size of growing follicles, endometrial thickness, and pregnancy. All three treatment groups were compared to each other for hormonal, endometrial and follicular dynamics, while the two groups receiving letrozole were combined for comparison against the natural cycle group for pregnancy rates.

Statistical analysis
Data management was done using a preprepared Excel data spreadsheet. Outcome measures are expressed as mean ± standard deviation from the mean (SD). Statistical significance for continuous variables was calculated using ANOVA test. Categorical variables were compared using the χ² and Fisher’s Exact Test. P < 0.05 was considered statistically significant. Statistical analysis was performed with SPSS (Release 14.01, SPSS Inc., Chicago, IL).

Results
Patients
The study included 208 patients who underwent a total of 300 consecutive IUI cycles. There were 71 cycles in the natural cycle group, 179 cycles in the letrozole 2.5 mg/day group, and 50 cycles in the letrozole 5 mg/day
group (table 1). Male factor and unexplained infertility were the most common indications for IUI. Other identified causes of infertility included endometriosis, and polycystic ovarian syndrome. The most frequent cause of cycle cancellation differed among the patient groups. The most common cause of cycle cancellation in the natural cycle group was anovulation, while in the letrozole 2.5 mg/day group, the main cause was presence of ovarian cysts on cycle day 3 before the start of stimulation. The most common cause of cancellation in the letrozole 5 mg/day group was an elevated serum FSH on cycle day 3 before the start of stimulation.

Hormonal dynamics

Values for E2, P4 and LH are shown in table 2. The letrozole 5 mg/day group had significantly lower E2 on day seven, but significantly higher E2 on the day of hCG administration when compared to the natural group ($P = 0.025$ and 0.041, respectively). However, the E2 per preovulatory follicle was similar in all three groups on the day of hCG. On days 9 to 11 and the day of hCG administration, E2 had a larger variability, as evidenced by larger standard deviations, in the letrozole groups compared to the natural group (Table 2). LH was significantly lower on the day of hCG administration in the letrozole 2.5 mg/day group compared to the natural group ($P = 0.000$).
group compared to the natural group (p = 0.000). P₄ showed no differences between any treatment groups.

Follicular dynamics
There were no statistically significant differences in follicular diameter between the three groups until cycle day seven (table 3). Compared to the natural group, both the letrozole 2.5 mg/day and 5 mg/day groups had significantly more follicles ≥ 10 mm on day 7 (p = 0.0001 and 0.0001, respectively), more follicles ≥ 12 mm on days 9-11 (p = 0.0001 and 0.005), and more follicles ≥ 15 mm on the day of hCG administration (p = 0.0001 and 0.0001).

Endometrial dynamics
When comparing endometrial thickness, neither letrozole group differed significantly from the natural group on any day (table 4).

Pregnancy rate
Three out of 63 natural cycles (4.8%) and 22 out of 185 letrozole cycles (12%) resulted in pregnancy (table 5). This difference was statistically significant (p = 0.02). Although only a small number of cycles were repeated as part of this study, the cumulative pregnancy rate was 13.7% in the letrozole groups, significantly higher than the natural group rate of 6.4% (p = 0.01). There were 3 twin pregnancies in the 2 letrozole groups and none in the natural cycle group.

Discussion
Endometrial sparing, increased folliculogenesis, and an increase in pregnancy rate were observed in our letrozole-treated patients as compared to naturally-cycling patients. The endometrial-sparing effect of letrozole is well-demonstrated in this study by the lack of significant difference in endometrial thickness compared to the natural cycle group, and also has been confirmed by previous studies [17, 18]. In addition, our ovulation monitoring findings agree with a previous study showing multifollicular development and better pregnancy outcomes with the use of letrozole 5 mg/day [14, 17]. Our finding that serial serum progesterone levels were comparable between the three groups agrees with a previous study [18], and suggests that letrozole does not have a premature luteinizing effect on the developing follicle. Table 6 summarizes the results of some trials using letrozole as an ovulation inducing agent in different clinical scenarios with different results and conclusions.

Although basal LH levels were comparable among the 3 groups, there was a trend towards higher LH (although non-significant) on day 7 in the letrozole groups. This rise might be due to the release of the anterior pituitary from the negative feedback of E₂. Three important observations deserve mentioning. First, the increase in LH is still below the levels for definition of premature LH surge. Second, after discontinuation of letrozole (days 9-11), serum LH returned to levels similar to the non-stimulated group reflecting the short half life of the letrozole. Thirdly, a natural LH surge was observed more frequently in non-stimulated cycles than in the letrozole stimulated cycles. This finding is likely artifactual since we suggest hCG

![Table 3 Follicular dynamics in study groups](image)

	Group I	Group II	Group III	P value
Day 3 diameter of follicles in cm	0.56 ± 1.02	0.79 ± 1.12	0.53 ± 0.86	I vs III: 0.9
				I vs II: 0.26
Number of D 7-8 follicles ≥ 10 mm	0.80 ± 0.63	2.52 ± 1.37	2.23 ± 1.48	I vs III: 0.000
				I vs II: 0.000
Number of D 9-11 follicles more than 12 mm	1.13 ± 0.73	2.09 ± 1.00	2.29 ± 1.35	I vs III: 0.005
				I vs II: 0.000
Number of mature follicles (≥15 mm) at the Day of hCG	1.20 ± 0.48	1.84 ± 0.92	2.12 ± 0.99	I vs III: 0.000
				I vs II: 0.000

![Table 4 Endometrial thickness (cm) in study groups](image)

	Group I	Group II	Group III
Cycle day 3	0.14 ± 0.26	0.10 ± 0.23	0.15 ± 0.24
Cycle day 7	0.55 ± 0.26	0.56 ± 0.19	0.50 ± 0.19
Cycle day 9-11	0.65 ± 0.18	0.77 ± 0.96	0.62 ± 0.16
Day of hCG injection	0.86 ± 0.16	0.82 ± 0.14	0.86 ± 0.23

P value non-significant when comparing group I to either group II or III.

![Table 5 Pregnancy rate in study groups](image)

	Group I Number (%)	Combined groups II, III Number (%)	P value
Pregnancy rate/cycle started	3/71 (4.2)	22/229 (9.61)	0.02
Pregnancy rate/cycle completed	3/63 (4.8)	22/185 (11.89)	0.02
Cumulative pregnancy rate	3/47 (6.4)	22/161 (13.7)	0.01
Twin pregnancy	0/3 (0)	3/22 (13.6)	0.01
Miscarriage (No)	0/3 (0)	3/22 (13.6)	0.01
administration to all women undergoing IUI so that timing of insemination can be optimized. The women undergoing natural cycle monitoring usually requested everything to be natural including no hCG trigger so the difference between the groups is unlikely to be related to the letrozole. Spontaneous LH surges do occur with letrozole for ovulation induction.

This study has some limitations, the most important of which include that it is retrospective, non-powered, non-randomized and not blinded. These issues are inherent in retrospective studies. However, we believe the results are of interest since there are few studies comparing natural cycles to letrozole-stimulated cycles. The main distinguishing features of letrozole as an ovulation inducing agent is its endometrial sparing effect and the early cycle multi-follicular development that may have translated into a better pregnancy rate in the present study. In addition, a recent study demonstrated that letrozole improves blood flow compared to CC and this observation may also be associated with improved pregnancy rates [19]. A well-designed and powered randomized clinical trial will be needed to confirm this result.

The authors declare that they have no competing interests.

Author details
1Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA. 2Assiut University, Assiut, Egypt. 3Reproductive Sciences Division, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada.

Authors’ contributions
MAB collected and analyzed the data and drafted the manuscript. MAA Collected the data and drafting the manuscript. MH participated in the data collection. NM participated in the design of the study and performed the statistical analysis. LNB participated in the data collection and helped to draft the manuscript. RC Conceived of the idea of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 19 August 2010 Accepted: 21 June 2011
Published: 21 June 2011

References
1. Casper RF: Aromatase inhibitors in ovarian stimulation. J Steroid Biochem Mol Biol 2007, 106:71-75.
2. Neveu NGL, St.-Michel P, Lavoie HB: Comparison of clomiphene citrate, metformin, or the combination of both for first-line ovulation induction and achievement of pregnancy in 154 women with polycystic ovary syndrome. Fertil Steril 2007, 87:113-120.
3. Gorlitsky GA, Speroff L: Ovulation and pregnancy rates with clomiphene citrate. Obstet Gynecol 1978, 51:265-269.
4. Guzik DSC, Coutsifas C, Overtree JW, Factor-Litvak P, Steenkamp MP, Hill JA, Mastroianni L, Buser JE, Nakajima ST, Vogel DL, Carfield RE: Efficacy of superovulation and intrauterine insemination in the treatment of infertility. National Cooperative Reproductive Medicine Network, N Engl J Med 1999, 340:177-183.
5. Requena A, Herrero J, Landeras J, Navarro E, Neyro JL, Salvador C, Tur R, Callejo J, Checa MA, Farre M, Espind J, Fabregues F, Graña-Barcia M: Use of letrozole in assisted reproduction: a systematic review and meta-analysis. Hum Reprod Update 2008, 14:571-582.
6. Holzer H, Casper R, Tulandi T: A new era in ovulation induction. Fertil Steril 2006, 85:277-284.
7. Noriega-Portella L, Noriega-Hoces L, Delgado A, Rubio J, Gonzales-Castaneda C, Gonzales GF: Effect of letrozole at 2.5 mg or 5.0 mg/day on ovarian stimulation with gonadotropins in women undergoing intrauterine insemination. Fertil Steril 2008, 90:1818-1825.
8. Hamilton A, Piccart M: The third-generation non-steroidal aromatase inhibitors: a review of their clinical benefits in the second-line hormonal treatment of advanced breast cancer. Ann Oncol 1999, 10:377-384.
9. Nafzlin J: Brain aromatization of androgens. J Reprod Med 2004, 39:257-261.
10. Requena A, Herrero J, Landeras J, Navarro E, Neyro JL, Salvador C, Tur R, Callejo J, Checa MA, Farre M, Espind J, Fabregues F, Graña-Barcia M: Use of letrozole in assisted reproduction: a systematic review and meta-analysis. Hum Reprod Update 2008, 14:571-582.
11. Casper RF: Letrozole versus clomiphene citrate: which is better for ovulation induction? Fertil Steril 2009, 92:589-9.

Table 6 Summary of randomized trials assessing the efficacy of letrozole

Study (reference number)	Intervention	Cohort of patients	Conclusion
[20]	Letrozole (2.5 mg) Vs CC	Infertile women undergoing Superovulation and IUI.	Similar endometrial thickness and pregnancy rates.
[21]	Letrozole Vs CC as adjuvants to rFSH 41 patients	Superovulation before IUI in unexplained infertility	Better endometrial thickness with letrozole. Similar pregnancy rate
[22]	Letrozole Vs CC 74 patients	Polycystic ovary syndrome	Similar endometrial thickness and pregnancy rate
[23]	Letrozole (2.5 mg) Vs CC	Polycystic ovary syndrome	Better endometrial thickness and pregnancy rate with letrozole.
[24]	Letrozole Vs CC	Polycystic ovary syndrome	No advantage to the use of letrozole over CC as a first-line treatment for induction of ovulation in women with PCOS.
[25,26]	Letrozole Vs CC	Superovulation before IUI in unexplained infertility	No superiority between letrozole and CC for inducing ovulation in women with unexplained infertility before IUI.
[27]	Letrozole Vs CC-gonadotropin	Superovulation before IUI in unexplained infertility	Letrozole is a good alternative to CC-gonadotropin.
[28]	Letrozole (2.5 mg) Vs CC 22 patients	superovulation in women with normal ovulation	CC is superior to 2.5 mg letrozole for superovulation induction in women with normal ovulation.
[29]	Letrozole (7.5 mg) Vs CC 46 patients	Polycystic ovary syndrome	Letrozole has better ovulation and PR in comparison to CC in patients with PCOS.
12. Bayar U, Basaran M, Kiran S, Coskun A, Gezer S. Use of an aromatase inhibitor in patients with polycystic ovary syndrome: a prospective randomized trial. Fertil Steril 2006, 86:1447-1451.

13. Sendar B. Ovulation induction in women with infertility: a new indication for aromatase inhibitors. Fertil Steril 2003, 80(6):1338.

14. Simón CCF, Valbuena D, Remohi J, Pellicer A. Clinical evidence for a detrimental effect on uterine receptivity of high serum oestradiol concentrations in high and normal responder patients. Hum Reprod 1995, 10:2432-2437.

15. Simon C, Cano F, Valbuena D, Remohi J, Pellicer A. Clinical evidence for a detrimental effect on uterine receptivity of high serum oestradiol concentrations in high and normal responder patients. Hum Reprod 1995, 10:2432-2437.

16. Organization WH. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4 edition. Cambridge: Cambridge University Press; 1999.

17. Bedaiwy MA, Mousa NA, Casper RF. Aromatase inhibitors prevent the estrogen rise associated with the flare effect of gonadotropins in patients treated with GnRH agonists. Fertil Steril 2009, 91:1574-1577.

18. Bedaiwy MA, Shokry M, Mousa N, Claessens A, Esfandian N, Gotlieb L, Casper R. Letrozole co-treatment in infertile women 40 years old and older receiving controlled ovarian stimulation and intrauterine insemination. Fertil Steril 2009, 91:2501-2507.

19. Baruah J, Roy KK, Rahman SM, Kumar S, Sharma JB, Karmakar D. Endometrial effects of letrozole and clomiphene citrate in women with polycystic ovary syndrome using spiral artery Doppler. Arch Gynecol Obstet 2009, 279:311-314.

20. Al-Fozan H, Al-Khadouri M, Tan SL, Tulandi T. A randomized trial of letrozole versus clomiphene citrate in women undergoing superovulation. Fertil Steril 2004, 82:1561-1563.

21. Barroso G, Menocal G, Felix H, Rojas-Ruiz JC, Arslan M, Oehninger S. Comparison of the efficacy of the aromatase inhibitor letrozole and clomiphene citrate as adjuvants to recombinant follicle-stimulating hormone in controlled ovarian hyperstimulation: a prospective, randomized, blinded clinical trial. Fertil Steril 2006, 86:1428-1431.

22. Bayar U, Tanriverdi HA, Barut A, Ayoglu F, Ozcan O, Kaya E. Letrozole vs. clomiphene citrate in patients with ovulatory infertility. Fertil Steril 2006, 85:1045-1048.

23. Atay V, Cam C, Muhcu M, Cam M, Karateke A. Comparison of letrozole and clomiphene citrate in women with polycystic ovaries undergoing ovarian stimulation. J Int Med Res 2006, 34:73-76.

24. Badawy A, Abdel Aal I, Abuattem M. Clomiphene citrate or letrozole for ovulation induction in women with polycystic ovarian syndrome: a prospective randomized trial. Fertil Steril 2009, 92:849-52.

25. Badawy A, Shokeir T, Allam AF, Abdelhady H. Pregnancy outcome after ovulation induction with aromatase inhibitors or clomiphene citrate in unexplained infertility. Acta Obstet Gynecol Scand 2009, 88:187-193.

26. Badawy A, Elshabr M, Totongy M. Clomiphene citrate or aromatase inhibitors for superovulation in women with unexplained infertility undergoing intrauterine insemination: a prospective randomized trial. Hum Reprod 2009, 24:1355-1359.

27. Sh Tehrani Nejad E, Abedi, A, Rashidi BH, Azimi Nekoo E, Shariat M, Aminichaghmehi E. Comparison of the efficacy of the aromatase inhibitor letrozole and clomiphene citrate on aromatase expression in patients undergoing controlled ovarian stimulation: a prospective, simply randomized, clinical trial. J Assist Reprod Genet 2008, 25:187-190.

28. Topipat C, Choktanasiri W, Jultanmas R, Vierakket S, Wongkularb A, Rojanasakul A. Comparison of the effects of clomiphene citrate and the aromatase inhibitor letrozole on superovulation in Asian women with normal ovulatory cycles. Gynecol Endocrinol 2006, 24:145-150.

29. Begum MR, Ferdous J, Begum A, Quadir E. Comparison of efficacy of aromatase inhibitor and clomiphene citrate in induction of ovulation in polycystic ovarian syndrome. Fertil Steril 2009, 92:853-7.

doi:10.1186/1477-7827-9-83

Cite this article as: Bedaiwy et al.: Hormonal, follicular and endometrial dynamics in letrozole-treated versus natural cycles in patients undergoing controlled ovarian stimulation. Reproductive Biology and Endocrinology 2011, 9:83.