A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance

Paul M. O’Neill1,2, Richard K. Amewu1,†, Susan A. Charman3, Sunil Sabbani1, Nina F. Gnädig4, Judith Straimer4, David A. Fidock4,5, Emma R. Shore1, Natalie L. Roberts1, Michael H.-L. Wong1, W. David Hong1, Chandrakala Pidathala1, Chris Riley1, Ben Murphy1, Gaith Aljajyousi6, Francisco Javier Gamo7, Laura Sanz7, Janneth Rodrigues7, Carolina Gonzalez Cortes7, Esperanza Herreros7, Íñigo Angulo-Barturén7, Maria Belén Jiménez-Díaz7, Santiago Ferrer Bazaga7, María Santos Martínez-Martínez7, Brice Campo8, Raman Sharma6, Eileen Ryan3, David M. Shackleford3, Simon Campbell3, Dennis A. Smith8, Grennady Wirjanata9, Rintis Noviyanti10, Ric N. Price5,11, Jutta Marfurt9, Michael J. Palmer8, Ian M. Copple2, Amy E. Mercer2, Andrea Ruecker12, Michael J. Delves12, Robert E. Sinden12,13, Peter Siegl8, Jill Davies6,†, Rosemary Rochford14, Clemens H.M. Kocken15, Anne-Marie Zeeman15, Gemma L. Nixon1, Giancarlo A. Biagini6 & Stephen A. Ward6

K13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P. falciparum and P. vivax in vitro, is efficacious against P. falciparum in vivo rodent models, produces parasite reduction ratios equivalent to dihydroartemisinin and has pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose cure. In vitro studies with transgenic parasites expressing variant forms of K13 show no cross-resistance with the C580Y mutation, the primary variant observed in Southeast Asia. E209 is a superior next generation endoperoxide with combined pharmacokinetic and pharmacodynamic features that overcome the liabilities of artemisinin derivatives.
The control and elimination of malaria requires effective treatment strategies and the universal availability of artemisinin-based combination therapies (ACTs). For over a decade, research groups have sought to replace the semisynthetic artemisinin components (Fig. 1a, 1a–1c) of ACTs with a fully synthetic alternative to reduce uncertainties regarding cost and supply and to improve overall pharmacological qualities, most notably short clinical half-lives. Several pharmacophores have been explored including the tetraoxanes (Fig. 1b, 3a and 3b).

Recent years, however, have witnessed the emergence of parasite ‘resistance’ to artemisinin, first documented in western Cambodia. Malaria patients from this region were reported to have a delayed parasite clearance following either artesunate monotherapy or an ACT. The delayed parasite clearance phenotype is not resistance as defined by the WHO and does not necessarily lead to treatment failure. However, it gives rise to concerns of a reduction in the therapeutic lifespan of the most effective, currently registered anti-malarials and the only class that offers rapid parasite biomass reduction. Furthermore, reduced artemisinin efficacy places greater selective pressure on the ACT partner drugs, increasing the risk of multidrug resistance to emerge. Indeed, recent results in Cambodia now document increasing rates of clinical treatment failure in patients treated with the first-line combination dihydroartemisinin plus piperaquine, because of the emergence of resistance to both agents.

Here we describe the development of a fully synthetic tetraoxane analogue, E209, which displays nanomolar efficacy against multiple strains of P. falciparum and P. vivax with a tailored combination of pharmacodynamic (PD) and pharmacokinetic (PK) properties compatible with a single-dose cure even against a backdrop of the K13-dependent resistance mechanism in operation in S.E. Asia.

**Results**

**Optimization of the tetraoxane series.** The tetraoxane core 3a is achiral, has greater inherent thermodynamic stability and potent *in vitro* antimalarial activity, either as a simple unsubstituted analogue, for example, 3a (Fig. 1) or related derivatives. Recent theoretical calculations based on stereoelectronic analysis suggest that the remarkable thermodynamic stability of tetraoxanes can be attributed to a stereoelectronic ‘double anemic effect’ which stabilizes the six-membered ring system.

Our initial medicinal chemistry focus was the preparation of variants of a simplified analogue of our previous candidate RKA 182 with more balanced ADMET properties (3b) (Supplementary Figs 1, 2, 3 and 4). Multiple series were prepared to modulate solubility, metabolic stability, pkα and log D (Supplementary Fig. 4) but in all cases, the amide linked analogues, although superior to the artemisinins, had relatively short half-lives and poor antimalarial activity in the key parameters to drive SAR studies towards lead series progression (Supplementary Fig. 4).

Representative lead compounds are shown in Supplementary Fig. 4 from which E209 and N205 were the clear front-runner molecules with respect to cures in the *P. berghei* model and initial DMPK assessments (Supplementary Table 1; Supplementary Fig. 5) and were selected for further profiling. *In vitro* metabolic stability assessments (Supplementary Table 2) and solubility assessments (Supplementary Table 3) demonstrated the superior properties of E209 and this compound was taken forward.

Following scale up synthesis (Supplementary Note 2; Supplementary Fig. 1), E209 was progressed to candidate selection through a series of chemical, parasitological, pharmacological and toxicological checkpoints as outlined below.

**PD properties of E209.** E209 retained potent *in vitro* efficacy (mean IC₅₀ range 2.9–14.0 nM) against a panel of 10 sensitive and multidrug-resistant *P. falciparum* parasite isolates from distinct geographical origins, with no observable cross-resistance in growth inhibition studies (Supplementary Table 4). *In vitro* metabolic stability of E209 is consistent with that shown for the endoperoxide class as reported in recent SMFA-based studies.

Ex *vivo* *P. falciparum* and *P. vivax* drug sensitivity experiments were carried out in Papua Province in eastern Indonesia, an area with documented multidrug-resistant *P. falciparum* and CQ-resistant *P. vivax*, using a modified schizont maturation assay as described previously. Ethical approval for the *ex vivo* *P. falciparum* and *P. vivax* efficacy data was obtained from the Human Research Ethics Committee of the NT Department of Health & Families and Menzies School of Health Research, Darwin, Australia (HREC 2010–1396) and the Eijkman Institute Human Research Ethics Committee of the NT Department of Health & Families and Menzies School of Health Research, Darwin, Australia (HREC 2010–1396) and the Eijkman Institute Human Research Ethics Commission, Jakarta, Indonesia (EIREC 47 and EIREC 67). E209 exhibited equipotent *ex vivo* activity against *P. vivax* (*n* = 13; median IC₅₀ 10.5 nM) and *P. falciparum* (*n* = 3; median IC₅₀ 15.7 nM) clinical field isolates from Papua, Indonesia (Mann–Whitney *U* test, *P* = 0.570); Supplementary Table 5. With the exception of chloroquine in *P. falciparum* (Spearman rank correlation, *P* = 0.042), there was no correlation between the activity of E209 and any of the other anti-malarials assessed in either species ((amodiaquine (AQ), piperaquine (PIP), mefloquine (MFQ) and artesunate (AS)) (Supplementary Table 6)).

E209 was screened for late stage gametocytocidal activity in a standard membrane feeding assay (SMFA) and transmission-blocking activity was determined in *Anopheles stephensi* mosquitoes. Late stage gametocytes were incubated with E209 for 24 h prior to mosquito feeding and the IC₅₀ (determined by the reduction in oocyst mean intensity) was 14.5 nM with a corresponding ~60 and 90% transmission-blocking activity (defined as the percentage of mosquitoes with no observed oocysts) recorded at 100 nM and 1 μM, respectively (Supplementary Fig. 6). The transmission reducing activity (TRA) shown by E209 is consistent with that shown for the endoperoxide class as reported in recent SMFA-based studies.
E209 (10 × IC_{50}) displayed fast killing kinetics (Supplementary Methods), with an in vitro parasite reduction ratio (log_{10}PRR) >4.8 similar to artemisinin (log_{10}PRR >4.8), and faster than CQ (log_{10}PRR 4.5), pyrimethamine (log_{10}PRR 3.7) and atovaquone (log_{10}PRR 2.9) (Fig. 2)\(^\text{20}\). Critical for the development of E209 and related structures is the evaluation of their activity against ART-resistant parasites, which has been defined as delayed parasite clearance in patients\(^\text{5}\). This phenotype has been associated clinically with a number of non-synonymous SNPs in the propeller domain of the K13 protein, located on chromosome 13 (ref. \text{23}). Notably, these mutations could not be associated with ART resistance using the standard in vitro\(^\text{21,22}\) assay (RSA0–3 h) is based on the increased resistance of young ring-stage parasites to a 6 h pulse of 700 nM dihydroartemisinin (DHA)\(^\text{21,22}\). To investigate the impact of K13 mutations on E209 susceptibility, a series of gene-edited, otherwise isogenic parasite lines with either K13 mutant or wild-type alleles have been subjected to RSA0–3 h assays using DHA as comparison\(^\text{23}\). This allowed us to assess the potency of a pharmacological relevant dose of E209 against K13 mutant parasites and to identify potential cross-resistance phenotypes. In this study we focused on the most prevalent mutation C580Y and R539T, which was demonstrated to confer high levels of DHA resistance in vitro\(^\text{23}\) (Fig. 3). Generally, we observe higher survival rates after exposure of young ring stages to E209 in both parasite backgrounds when compared to DHA. When subjected to a 700 nM dose for 6 h, we observe 4% survival of V1/S and 16% of Cam3.II parasites for E209 compared to 1% survival when pulsed with DHA. The highly prevalent K13 mutation C580Y does not confer cross-resistance to E209. However, R539T shows a moderate but significant increase of parasite survival in both parasites lines tested. (Ring-stage survival assays, fold changes between K13 wild-type and K13-mutant lines and IC_{50} data for DHA and E209 are recorded in Supplementary Tables 15 and 16; Supplementary Fig. 7).

In vivo experiments using P. berghei infected mice demonstrated that E209 when given orally resulted in complete parasite clearance in the Peters’ standard 4-day suppressive test\(^\text{24}\), with an estimated ED_{50} of 4 mg kg\(^{-1}\) after three doses. Importantly, E209 also achieves 66% cure rate after a single oral dose of 30 mg kg\(^{-1}\) (Table 1). Efficacy of E209 against the human malaria parasite was tested in the immune-deficient NOD-SCID IL-2R\_null (NSG) mice engrafted with human erythrocytes and infected with P. falciparum strain 3D7\_0087/N9,
Drug levels that exceed E209 IC50 levels for up to 6 days following PK data predicted a terminal half-life in humans of 24–30 h and as shown in Fig. 5a–c). Allometric scaling (see Methods) rat predictions (Table 2) showed good agreement with observed data. Simulated PK profiles based on these compartmental model showed a clear two compartmental trend for all three species. Species (Supplementary Tables 17, 18, 19; Supplementary Fig. 8). Whilst tetraoxane cleavage products were observed in all three species. In addition, ionization (Supplementary Table 17; Table 2). Comparing metabolite generally being fastest in rat and slowest in the mouse degradation in human, rat and mouse liver microsomes with rates generally being faster in rat and slower in the mouse (Supplementary Table 1, 2). Comparing metabolite profiles across all three species, hydroxylation(s) on the adenine ring to form multiple M metabolites represent important pathways in all three species. In addition, N-oxidation to M + 16 appears to be an important metabolic pathway in rat whilst tetraoxane cleavage products were observed in all three species (Supplementary Tables 17, 18, 19; Supplementary Fig. 8).

Compartmental PK modelling of preclinical in vivo data showed a clear two compartmental trend for all three species. Simulated PK profiles based on these compartmental model predictions (Table 2) showed good agreement with observed data as shown in Fig. 5a–c). Allometric scaling (see Methods) rat PK data predicted a terminal half-life in humans of 24–30 h and drug levels that exceed E209 IC50 levels for up to 6 days following a single oral dose of 15 mg kg⁻¹ (Fig. 5d).

Preclinical safety studies. To assess potential for adverse activities, we profiled E209 using a diverse panel of radioligand binding assays (CEREP screen), ion channel voltage clamp assays and genotoxicity assays. In the CEREP screen, E209 at 10 μM demonstrated a favourable profile apart from moderate potency at Sigma 1 and Sigma 2 receptors (IC₅₀ ca. 200 nM). Risk of adverse cardiac activity including QT interval prolongation is predicted to be low based on the measurement of a high IC₅₀ (> 3.5 μM) in the hERG assay and no inhibitory activity at > 100 μM in Cav1.2 and Nav1.5 assays. E209 was negative in the Ames test and mouse micronucleus test confirming the absence of mutagenic potential.

We also examined the potential haemolytic effect of E209 in NOD-SCID mice engrafted with the African variant G6PD deficient human red blood cells (huRBC) as previously reported for primaquine. Mice treated with E209 at doses up to 50 mg kg⁻¹ day⁻¹ for 3 days did not show a significant drug-dependent loss of huRBC at 7 days post-treatment with all test groups demonstrating a response similar to the vehicle control (Supplementary Fig. 9A–C). In contrast primaquine, a drug that causes haemolytic toxicity in humans with G6PD deficiency, induced significant loss of huRBC (Supplementary Fig. 9A–C). In addition, in vitro studies with cytochrome P450 (CYP) isoforms demonstrated that E209 did not inhibit any of the major human CYP450s with IC₅₀ > 20 μM (Supplementary Table 20).

The maximum-tolerated dose (MTD) following a single oral administration of E209 in Sprague–Dawley rats was 300 mg kg⁻¹. A 7-day repeat dose, exploratory toxicity study in rats was performed using dose levels of 50, 100 and 200 mg kg⁻¹ and parallel groups for toxicokinetic analysis. At 200 mg kg⁻¹ day⁻¹ E209 was not tolerated in either sex. At 100 mg kg⁻¹ there was body weight loss in females. On the basis of weight loss and histopathology findings, the no observed adverse effect level (NOAEL) for this study was 100 mg kg⁻¹ day⁻¹ for males and 50 mg kg⁻¹ day⁻¹ for females. Systemic

---

**Table 1 | Calculated physicochemical properties and in vitro and in vivo antimalarial activity profiles of selected tetraoxane derivatives.**

| Compound Number | Side Chain (R) | ClogP | PSA/Å² | IC₅₀ (3D7) nM | In vivo (Pb) MSD (days) at 1 x 30 mg/kg |
|-----------------|----------------|-------|--------|---------------|---------------------------------------|
| 4 †             |                | 5.6   | 58.6   | 10 ± 1        | 16.3 (14, 21, 21)                      |
| 5 †             |                | 5.9   | 58.6   | 7.5 ± 0.2     | 13 (13, 13, 13)                       |
| 6 †             |                | 5.6   | 86.7   | 3.5 ± 0.2     | 19.3 (14, 30, 14)                     |
| 7 †             |                | 5.9   | 86.7   | 3.7 ± 0.1     | 14 (14, 14, 14)                       |
| 8 †             |                | 6.1   | 49.3   | 8.5 ± 0.6     | (8, 8, 8 (8)                          |
| E209 †          |                | 6.4   | 49.3   | 5.1 ± 0.81    | 25.0 (15, 30, 30)                     |
| OZ439 †         | See Figure 1b  | 5.5   | 49.3   | 5.1 ± 0.81    | 30 (30, 30, 30)                       |

* ClogP (calculated partition coefficient) and polar surface area (PSA) calculated using Chem Draw version 15.
† Closed in citric acid formulation. Data recorded for in vivo studies of OZ439 in the Plasmodium berghei model is taken from Charman et al. In vivo experiments were performed in P. berghei infected mice (n = 3). MSD refers to mean survival days following a single oral dose of 30 mg kg⁻¹.
exposure values (Cmax and AU0–24h) at the NOAEL on day 7 were 1.2 μg ml⁻¹ and 19.6 μg h ml⁻¹, respectively, in males and 1.07 μg ml⁻¹ and 14.8 μg h ml⁻¹, respectively, in females. Additional single and multiple dose safety pharmacology studies are in progress in rodent and non-rodent models to establish toxicity profile and predicted exposure multiple at NOAEL over target therapeutic exposure (therapeutic index).

Discussion
A systematic evaluation of the antimalarial tetraoxane scaffold (Supplementary Note 1), revealed the aryloxy template (Fig. 1) to be the most promising in terms of multi-parameter lead-optimization. Through a series of rational chemical modifications we have been able to improve both the inherent pharmacodynamics (in vitro and in vivo potency) and PKs (metabolic...
the P. falciparum proteins and result in parasite killing 28–30. Because of this, carbon-centered radicals, which react with multiple parasite processes leads to the generation of reactive oxygen species such as mediated reductive scission of the endoperoxide bond. This endoperoxide anti-malarials involves intra-parasitic ferrous combination.

In vivo − humanized SCID mouse model of P. falciparum. (a) Parasitemia in peripheral blood of NSG mice infected with the P. falciparum strain 3D70087/N9 (n = 2 mice treated with vehicle and n = 6 mice treated with E209). (b) Blood levels of E209 in the efficacy experiment shown in a over the first 24 h post-dosing. (c) dose/exposure−response relationship.

Figure 4 | Efficacy of E209 in the in vivo−humanized SCID mouse model of P. falciparum. (a) Parasitemia in peripheral blood of NSG mice infected with the P. falciparum strain 3D70087/N9 (n = 2 mice treated with vehicle and n = 6 mice treated with E209). (b) Blood levels of E209 in the efficacy experiment shown in a over the first 24 h post-dosing. (c) dose/exposure−response relationship.

Table 2 | In vivo and in vitro pharmacokinetic (PK) parameters for E209 as predicted using compartmental PK analysis in male Beagle dogs, female Swiss outbred mice and the male Sprague–Dawley rat following IV and oral administration.

| In vivo PK parameters | Rat (mean) | Mouse (mean) | Dog* (mean) | Human (mean) |
|-----------------------|------------|--------------|-------------|---------------|
| IV dose (mg kg⁻¹)     | 2          | 2            | 1           | N/A           |
| PO dose (mg kg⁻¹)     | 9          | 10           | 5           | 15mg¹         |
| Central clearance, CL (h⁻¹ kg⁻¹) | 1.6         | 4.3          | 1.1         | 0.41          |
| Central volume of distribution V₁ (l kg⁻¹) | 0.54      | 0.99         | 0.76        | 0.54¹         |
| Inter-compartmental clearance Q₁ (l kg⁻¹) | 1.76     | 10.3         | 2.8         | 0.45⁵         |
| Inter-compartmental clearance Q₂ (l kg⁻¹) | 0.08      | 0.97         | 0.13        | 0.020         |
| Peripheral Volume of distribution 1, V₁0 (l kg⁻¹) | 2.1       | 1.49         | 0.37        | 2.1¹         |
| Peripheral volume of distribution 2, V₂0 (l kg⁻¹) | 2.0       | 10.8         | 2.95        | 2.0¹         |
| Absorption rate constant Kₐ (h⁻¹) | 0.31       | 0.79         | 0.33        | 0.31¹         |
| F (%)                 | 62         | 82           | 40          | 62²           |

In vitro microsomal data

| Degradation half-life (min)     | 48         | 132          | 173         | 68            |
| In vitro Cₜₐ (μl min⁻¹ mg⁻¹ protein) | 36        | 13           | 10          | 25            |
| Microsome-predicted E₄₅ | 0.48       | 0.22         | 0.38        | 0.50          |

*Supplementary Methods and Supplementary Table 9 in Supporting Information.

†On the basis of allometric scaling from rat parameters.

stability profiles in a range of species and rodent and human blood stability) of the class.

In addition to overall high potency, our studies also demonstrate that the fast PRR for E209 observed in in vitro studies translates to a fast action in vivo in the humanized SCID mouse model where a maximum parasite clearance was achieved after a single dose of 30 mg kg⁻¹. To achieve this level of parasite clearance with the clinical gold standard endoperoxide artesunate requires four doses of artesunate (50 mg kg⁻¹ day⁻¹) in the same model22. Initial safety and pharmacology profiles for E209 meet the requirements of MMV’s target candidate profile 1 (TCP1), a drug with a fast killing profile (PRR equivalent to or better than dihydroartemisinin) and PK qualities that would support a single-dose cure either singly or in combination.

It is generally accepted that the mechanism of action of endoperoxide anti-malarial involves intra-parasitic ferrous mediated reductive scission of the endoperoxide bond. This process leads to the generation of reactive oxygen species such as carbon-centered radicals, which react with multiple parasite proteins and result in parasite killing 28–30. Because of this proposed mechanism of action it was originally argued that malaria parasites would find it difficult to acquire resistance to this drug class. However, compelling clinical data from Southeast Asia has confirmed that resistance has emerged and established itself in the region. The resistance phenotype has been difficult to study, as it does not show up as a shift in potency (IC₅₀ value) in traditional drug sensitivity assays20. Extensive molecular investigations have implicated mutations in the K13 gene as key to this unusual resistance phenotype. These mutations allow the parasite to survive exposure to drug at the early ring stage of red blood cell infection even at supra-pharmacological drug concentrations20,21. A concern is that this type of resistance mechanism would blight the long-term clinical utility of the entire endoperoxide class of antimalarial drugs. Our interpretation of this resistance mechanism, which is supported by recent modelling studies24, is that the slow parasite clearance phenotype seen clinically is a result of the loss of drug susceptibility in ring-stage parasites coupled with the extremely short elimination half-life of the endoperoxide. A potential solution to this problem is to extend the current 3-day artemisinin treatment course to four days as suggested by
Dovgoski et al. believe that E209 provides a more elegant solution since it circumvents or minimizes the ring-stage resistance seen with currently deployed endoperoxides with a predicted elimination half-life of circa 1–2 h (ref. 32). Hence, not only will E209 plasma levels remain above the IC50 level for 4 days or more in malaria patients as required by MMV’s TCP1 criteria (based on PK predictions, Supplementary Methods), but it will also retain killing potential throughout each individual stage of parasite’s 48 h intra-erythrocytic cycle. Thus, E209 has the potential for deployment in a superior combination treatment with a partner drug devoid of existing in vivo resistance liabilities (such as the ATP4 inhibitors33,34 or DHODH inhibitors35). E209 has the potential to offer a substantial improvement on currently deployed artemisinin-based drug combinations and provide an urgently required alternative TCP1 drug for malaria treatment and elimination programmes.

Methods

Synthesis of E209. Details of the synthesis and analytical data on E209 are included in Supplementary Note 2.

Parasite culture and drug sensitivity testing. P. falciparum blood stage cultures were maintained by the method of Trager and Jensen36. Drug sensitivity during E209 development and QSAR was determined by the method of Winter et al.37 Drug sensitivity of E209 against panel of P. falciparum strains was determined based on hypoxanthine incorporation38,39. Mammalian cell cytotoxicity assays were carried out as previously described40.

A zinc-finger nuclease (ZEN)-based gene editing approach was employed to specifically introduce or remove K13 mutations from P. falciparum lines. Parasites were electroporated with a plasmid containing ZENs specifically engineered against K13. The nucleases were expressed from an episomally maintained plasmid and served as template for the double strand break repair. Parasite clones were maintained by the method of Trager and Jensen36. Drug sensitivity during E209 development and QSAR was determined by the method of Winter et al.37. Parasites were electroporated with a plasmid containing ZFNs specifically engineered against K13. The nucleases were expressed from an episomally maintained plasmid by

![Graphical representation of the synthetic pathway](Image)

Figure 5 | Measured rodent and predicted human exposure profiles. PK profiles of E209 in male Sprague-Dawley rats (oral dose = 9 mg kg−1, IV dose = 2 mg kg−1), outbred female Swiss mice (oral dose = 10 mg kg−1, IV dose = 2 mg kg−1) and the male beagle dog (oral dose = 5 mg kg−1, IV dose = 1 mg kg−1) and allometrically scaled predictions for human PK (d) based on all of the above assuming an oral dose of 15 mg kg−1. Fits constructed are based on predicted median PK parameter values.

Ring-stage survival assays (RSAa–c) were carried out as previously described with minor modifications21,23. In summary, 10–15 ml parasite cultures were synchronized 1–2 times using 5% sorbitol (Sigma-Aldrich). Synchronous multinucleated schizonts were incubated in RPMI-1640 containing 15 units/ml sodium heparin for 15 min at 37 °C to disrupt agglutinated erythrocytes (purchased from Interstate Blood Bank located in Memphis, TN, USA), concentrated over a gradient of 75% Percoll (Sigma-Aldrich), washed once in RPMI-1640 and incubated for 3 h with fresh erythrocytes to allow time for merozoite invasion. Cultures were then subjected again to sorbitol treatment to eliminate remaining schizonts. The 0–3 h post-invasion rings were adjusted to 1% parasitemia and centrifuged at 800 g for 3 min to pellet the cells and the supernatants carefully removed. As a washing step to remove drug, 10 ml culture medium were added to each tube and the cells resuspended, centrifuged and the medium aspirated. This washing procedure was repeated three times and included a transfer into a new 15 ml conical tube after the second washing step. Fresh medium lacking drug was then added to cultures, which were returned to standard culture conditions for 90 h. Parasite viability was assessed by microscopic examination of Giemsa-stained thin blood smears. Second-generation ring stages are clearly visible under the microscope but only give a faint signal when measured by flow cytometry. Therefore, we performed a media change 66 h after the drug incubation and allowed the culture to develop for another 24 h into second-generation trophozoite stages. Parasite survival was determined by staining parasites with 2 × SYBR Green I and 165 nM MitoTracker Deep Red (Invitrogen) and a minimum of 8,000 cells were counted by flow cytometry on an Accuri C6 cytometer. Percentage survival was calculated as the parasitemia in the drug-treated sample divided by the parasitemia in the untreated sample × 100.

P. cynomolgi M strain (a non-human primate malaria closely related to the human malaria P. vivax) and P. vivax in vitro liver stage drug assays (The M strain BPSC was obtained from Centers for Disease Control and Prevention (CDC, USA). Liver stage drug assays were performed in primary rhesus monkey hepatocytes as described41. Read out of the assay was performed using a high-content imaging system (Operetta) and analysed with Harmony software. As described previously42 two populations of liver stage parasite can be discriminated in 6-day-old cultures: large forms define liver
schizonts and persistent small forms are dormant liver stages (hypnozoites).
Small forms are defined as having a maximum parasite area of 30 μm².

*Ex vivo* *P. falciparum* and *P. vivax* drug sensitivity experiments were carried out in Papua Indonesia, an area with documented multidrug-resistant *P. falciparum* and CQ-resistant *P. vivax*.

In vivo *P. falciparum* and CQ-resistant *P. vivax*, using a modified schizont maturation assay as described previously. 7, 10-20 μl of a 2% haematocrit blood media mixture (BMM), consisting of RPMI-1640 medium plus 10% AB- serum (Piscine), or McCoy’s 5A medium plus 20% AB- human serum (*P. vivax*) was added to each well of pre-dosed drug plates containing 11 serial concentrations (2-fold dilutions) of the anti-malarials being tested. A candle jar was used to mature the parasites at 37°C for 35–56 h. Incubation was stopped when >40% of ring-stage parasites had reached mature schizont stage in the drug-free control wells. Thick blood films made from each well were stained with 5% Giemsa solution for 30 min and examined microscopically. The number of schizonts per 200 asexual stage parasites was determined for each drug concentration and normalized to the control well. The dose-response data were analysed using nonlinear regression analysis (WinNonLin 4.1, Pharsight) and the IC₅₀ value derived using an inhibitory sigmoid Emax model.

Ethical approval for the *ex vivo* *P. falciparum* and *P. vivax* efficacy data was obtained from the Human Research Ethics Committee of the NT Department of Health & Families and Menzies School of Health Research, Darwin, Australia (HREC 2010-1396) and the Eijkman Institute Research Ethics Commission, Jakarta, Indonesia (EIREC 47 and EIREC 67). Written informed consent was obtained from all patients participating in the study.

The SMFA study was conducted as previously described where mature gametocytes were incubated for 24 h with different concentrations of E209 prior to performing mosquito feeds. The RSA₀ was performed as described in Witkowski et al., whereby tightly synchronized early ring-stage parasites were exposed to a drug pulse for 6 h at 700 nM. After drug removal (by washing) the parasites were returned to culture. Parasitemias were then assessed 6 h later on thin blood smears by two independent microscopists and the percentage parasitemia (corrected parasitemia) was assessed in comparison to parasites not exposed to drug, as described by Straimer et al. Assays were performed in duplicate on three separate occasions. Parasite reduction ratios were conducted as described in Supplementary Methods.

**In vivo efficacy.** Studies of murine *P. falciparum* infection were ethically reviewed and carried out in accordance with European Directive 2010/63/EU and the GSK Policy on the Care, Welfare and Treatment of Laboratory Animals. *In vivo* efficacy against *P. falciparum* was conducted in age-matched female immunodeficient NOG.Cg-Prkdcscid Il2rgtm1Wjl mice (8–10 weeks of age; 22–24 g) supplied by Charles River, UK, under licence of The Jackson Laboratory, Bar Harbor. Mice were engrafted with human erythrocytes (Red Cross Transfusion Blood Bank in Milton Keynes, UK) by intracardiac inoculation. Parasites were cultured ex vivo and following detection, approximately 1 ml of a 5% haematocrit erythrocyte suspension (RPMI-1640, Invitrogen, 25 mM HEPES (Sigma), 25% decomplemented AB- human serum (Sigma) and 3.1 mM hypoxanthine (Sigma)). Mice with ~40% circulating human erythrocytes were intravenously infected with 2 × 10⁸ *P. falciparum* P3D008/71B-infected erythrocytes (day 0).

Efficacy was assessed by administering one oral dose of E209 (2.5, 5, 15, 30 and 100 mg kg⁻¹) at day 3 after infection. Treatment group assignments were allocated randomly. Parasitemia was measured by flow cytometry in samples of peripheral blood stained with the fluorescent nucleic acid dye SYTO-16 (Molecular Probes) and anti-murine erythrocyte TERT119 monoclonal antibody (Becton Dickinson) in serial 2 μl blood samples taken every 24 h until assay completion. The ED₉₀ was estimated by fitting a four parameter logistic equation using GraphPad 6.0.

**Systemic exposure measurement in infected F3/C12 mice.** The levels of E209 were evaluated in whole blood to determine standard PK parameters in the individual animals used in the efficacy study. Peripheral blood samples (5 μl ml⁻¹) were taken at different times (0.25, 0.5, 1, 2, 4, 7 and 23 h) after drug administration, mixed with 25 μl of Milli-Q water and immediately frozen on dry ice. The frozen samples were stored at ~80°C until analysis. Vehicle-treated mice experienced the same blood-sampling regimen. Blood samples were processed by liquid–liquid extraction. Quantitative analysis by Liquid chromatography–tandem mass spectrometry (LC–MS/MS) was performed using a Waters UPLC system and Sciex API4000 mass spectrometer. The lower limit of quantification in this study was 5 ng ml⁻¹. Blood concentration versus time was analysed by non-compartmental analysis (NCA) using Phoenix ver.6.3 (from Pharsight), from which exposure-related values (Cmax and AUC₀–₂₄, AUC₀–∞) and Emax were estimated.

**In vitro and in vivo PK studies.** Details of the in vitro PK analysis of E209 are contained in Supplementary Tables 1, 2, 3, 17, 19 and 21. In vitro metabolic stability of E209 was carried out as described in Supplementary Methods. (In vivo) PK studies conducted using established procedures in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, and the study protocols were reviewed and approved by the Monash Institute of Pharmaceutical Sciences Animal Ethics Committee.

Rat PK studies were conducted in fasted 7–9-week-old male Sprague–Dawley rats, as previously described by Charman et al. For intravenous administration, E209 was dissolved in 5% glucose solution under sonication (for 10 min) prior to addition of Tween 80 and further sonication (5 min) to produce a clear solution. The formulation was filtered through a 0.22 μm filter prior to dosing and aliquots retained to determine the dose administered. E209 was administered intravenously as a 10 min constant rate infusion via an indwelling jugular vein cannula (1 ml per rat, n = 2 rats).

For oral dosing, E209 was dissolved in 0.5% [v/v] hydroxypropyl methylcellulose containing 0.4% [v/v] Tween 80 and 0.5% [v/v] benzyl alcohol and sonicated for 5 min producing a clear solution. The bulk formulation was mixed by inverting the tubes prior to drawing each dosing volume. Aliquots of the dosing solution were retained for analysis to determine the dose administered. After the oral formulation (1 ml per rat, n = 2 rats) was administered, an additional volume (1 ml) of Milli-Q water was administered (via a separate syringe).

Blood samples were collected using a Culex automated blood sampler over 48 h post-dosing into tubes containing anticoagulant and stabilization cocktail (Complete, potassium fluoride and EDTA) to minimize the potential for *ex vivo* degradation and immediately centrifuged at 4°C. Plasma was separated, stored at −20°C until processing and assayed by LC/MS using either a Waters Micromass Quattro Ultima PT triple quadrupole instrument coupled to a Waters 2795 HPLC or a Waters Micromass Quattro Premier triple quadrupole instrument coupled to a Waters Acquity UPLC.

The PKs of E209 was also studied in non-fasted 6–8 week old female Swiss outbred mice. Blood was collected into tubes in the same way as described for the rat studies and immediately centrifuged and stored at −20°C until analysis by LC–MS.

Plasma PK parameters were calculated based on compartmental PK analysis using Pmetrics® as described in Supplementary Methods. A classical three-compartment oral absorption model was used for all tested species due to the tri-phasic profiles displayed over time. For human predictions, allometric scaling was performed based on weight. Clearance rates (including inter-compartmental clearance rates Q1 and Q2) were predicted according to the following equations:

\[
Q_{\text{human}} = Q_{\text{animal}} \times \frac{\text{Humanweight}^{0.75}}{\text{Animalweight}^{0.75}}
\]

(1)

\[
Q_{\text{human}} = Q_{\text{animal}} \times \frac{\text{Humanweight}}{\text{Animalweight}}
\]

(2)

Other PK parameters were scaled linearly and simulation of human exposure to TDD-E209 was performed assuming a 15 mg kg⁻¹ dose using Pmetrics where median values were plotted over time on a semi-log scale.

**hERG profiling and assessment of cytotoxicity.** The potencies (IC₅₀ values) for E209 to inhibit the cardiac hERG, Cav1.2, and Nav1.5 channels were determined in an electrophysiology-based assays using IonWorks HT (CHO cells).

**In vivo (rat) safety studies.** A single, rising oral dose study to determine the MTD of E209 and aid in the selection of dose levels for the 7-day toxicity study. The rats (Sprague–Dawley, age 6–7 weeks) were divided into four groups, each with three male and three female. Dose levels employed were 30, 100, 300 and 1,000 mg kg⁻¹ and the MTD was shown to be 300 mg kg⁻¹.

Following this single dose MTD study, rats were dosed once at a dose of 0, 30, 100 and 300 mg kg⁻¹ po E209 for 7 days. E209 was formulated in 0.5% [w/v] HPMPC, 0.4% Tween 80 [w/v], 0.5% [v/v] benzyl alcohol in purified water. In each group there were eight Sprague–Dawley rats of each sex. At the end of the dosing period, five rats/group were killed (day 8) and the remaining three rats were sex/group were left for recovery. In addition, six rats of each sex per group were allocated for toxicokinetics.

**In vivo PK studies conducted to AAALAC International and NIH guidelines as reported in the Guide for the Care and Use of Laboratory Animals, National Research Council (2011); People’s Republic of China, Ministry of Science & Technology, ‘Regulations for the Administration of Affairs Concerning Experimental Animals’, 1988.

**Data availability.** All relevant data are available from the authors upon request.
References
1. WHO. Global Report on Antimalarial Drug Efficacy and Drug Resistance: 2000–2010 (WHO, 2010).
2. WHO. Guidelines for the Treatment of Malaria 2nd edn (WHO, 2010).
3. Wells, T. N., van Huijsduijnen, R. H. & Van Voorhis, W. C. Malaria medicines: a glass half full? Nat. Rev. Drug Discov. 14, 424–442 (2015).
4. Noedl, H. et al. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).
5. Dunlop, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).
6. Bruce-Chwatt, L. J. et al. Chemotherapy of Malaria 2nd edn (World Health Organization, 1986).
7. WHO. Chemotherapy of Malaria. Report of a WHO Scientific Group. WHO Technical Report Series, No. 375 (World Health Organization, 1967).
8. WHO. Status Report on Artemisinin Resistance. Available at: (http://www.who.int/malaria/publications/atoi/status-rep-artemisinin-resistance-sep2014.pdf) (2014).
9. Leang, R. et al. Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical assessment. Antimicrob. Agents Chemother. 59, 4719–4726 (2015).
10. Gomes, G. D. P., Vil, V., Terentiev, A. & Alabugin, I. V. Stereoelectronic source of the anomalous stability of bis-peroxides. Chem. Sci. 6, 6783–6791 (2015).
11. O'Neill, P. M. et al. Identification of a 1,2,4,5-tetraoxane antimalarial drug development candidate (RKA 182) with superior properties to the semisynthetic artemisins. Angew. Chem. Int. Ed. Engl. 49, 5693–5697 (2010).
12. Charman, S. A. et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc. Natl Acad. Sci. USA 108, 4400–4405 (2011).
13. Karyana, Y. et al. Malaria morbidity in Papua Indonesia, an area with multidrug resistant Plasmodium vivax and Plasmodium falciparum. Malar. J. 7, 148 (2008).
14. Ratcliff, A. et al. Therapeutic response of multidrug-resistant Plasmodium falciparum and P. vivax to chloroquine and sulfadoxine–pyrimethamine in southern Papua, Indonesia. Trans. R. Soc. Trop. Med. Hyg. 101, 351–359 (2007).
15. Russell, B. et al. Determinants of in vitro drug susceptibility testing of Plasmodium vivax. Antimicrob. Agents Chemother. 52, 1040–1045 (2008).
16. Marfurt, J. et al. Ex vivo activity of histidine decacetylase inhibitors against multidrug-resistant clinical isolates of Plasmodium falciparum and P. vivax. Antimicrob. Agents Chemother. 55, 961–966 (2011).
17. Marfurt, J. et al. Ex vivo drug susceptibility of ferroquine against chloroquine-resistant isolates of Plasmodium falciparum and P. vivax. Antimicrob. Agents Chemother. 55, 4461–4464 (2011).
18. Vos, M. W. et al. A semi-automated luminiscece based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci. Rep. 5, 18704 (2015).
19. Bolsher, J. M. et al. A combination of new screening assays for prioritization of transmission-blocking antimalarials reveals distinct dynamics of marketed and experimental drugs. J. Antimicrob. Chemother. 70, 1357–1366 (2015).
20. Sanz, L. M. et al. P. falciparum in vitro killing rates allow to discriminate between different antimalarial mode-of-action. PLoS ONE 7, e30949 (2012).
21. Wójtowiski, B. et al. Phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-resistance studies. Lancet Infect. Dis. 13, 1043–1049 (2013).
22. Wójtowiski, B. et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob. Agents Chemother. 57, 914–923 (2013).
23. Strainer, J. et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2015).
24. Peters, W. & Robinson, B. L. Malaria (Academic Press, 1999).
25. Angulo-Barturen, I. et al. A murine model of falciparum-malaria by A. muris, W.D., M.S., S.C. completed the chemistry, design of compounds, synthetic routes and manuscript. P.M.O’N., G.L.N., R.K.A., S.S., E.R.S., N.L.R., M.H.-L.W., C.R., C.P., M.J.P., A.-M.Z. performed liver stage drug assays in primary rhesus monkey hepatocytes. J.F.R., C.G. and E.H. completed the Standard Membrane feeding Assay SMFA experiments. D.M.S. performed in vivo work. F.J.G., L.S. completed the PRR assays. I.A.-B., M.B.J.-D. completed the Drosophila experiments. J.F.R., C.G. and E.H. completed the PI(4)K to eliminate malaria. Baragana, R. et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315–320 (2015).
26. Almela, M. J. et al. A new set of chemical starting points with Plasmodium falciparum transmission-blocking potential for antimalarial drug discovery. PLoS ONE 10, e015159 (2015).
27. Shelley, M. N., van Guider, M. G., Yamada, W. M., Schumitzky, A. & Jeffrife, R. W. Accurate detection of outliers and subpopulations with Pmetracs, a nonparametric and parametric pharmacometric modeling and simulation package for R. Ther. Drug. Monit. 34, 467–476 (2012).

Acknowledgements
This work was supported by grants from the European Union (Antimal, FP6, S.A.W., P.M.O’N.), the Medicines for Malaria Venture (S.A.W., P.M.O’N., G.A.B., G.L.N., R.K.A.), the NIH (R01 AI109023 to D.A.F.), the Global Health and Innovative Technology (GHT) Fund (2G015-120, S.A.W., P.M.O’N., G.A.B., G.L.N.) and Medical Research Council, United Kingdom (G0700654, M.H.-L.W., A.E.M., I.M.C.). We would like to thank Dr Sergio Wittlin (Swiss Tropical and Public Health Institute Socinstrasse 57, 4051 Basel, Switzerland) for the data recorded in Table 1 (Plasmodium berghei mouse model).

Author contributions
P.M.O’N., S.A.W., G.A.B., G.L.N., D.A.F., S.B., I.A.-B., G.A., S.A.C., B.C. wrote the manuscript. P.M.O’N., G.A.B., R.K.A., S.S., E.R.S., N.L.R., M.H.-L.W., C.R., C.P., M.I.P., B.M., W.D.H., M.S. completed the chemistry, design of compounds, synthetic routes and analysis. J.D. carried out the in vitro antimalarial efficacy experiments. G.W., R.N., R.P., J.M. performed the clinical field isolate work; E.R., D.S., G.A., R.S., D.A.S. completed PK/PD modelling and stability studies. F.J.G., L.S. completed the in vitro PRR experiments. B.C. and E.H. compared the Standard Membrane feeding Assay SMFA work. F.J.G., I.S. completed the PRR assays. I.A.-B., M.B.I.-D. completed the in vivo efficacy work in SCID mice. S.B.F., M.S.M. undertook the PK experiments in SCID mice. D.F. designed the RSA0-3h assays, which were performed by N.G. and J.S., R.S., M.D. and A.R. performed the transmission-blocking studies and TRA analysis. S.A.C., E.R., D.A.S. performed in vivo PK studies. R.R. designed and performed G6PD deficient mice experiment. B.C. managed the CRO work, project management and toxicology studies. I.M.C., A.E.M., P.S. carried out in vitro and in vivo toxicology studies. C.K., A.-M.Z. performed liver stage drug assays in primary rhesus monkey hepatocytes.
Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: O’Neill, P. M. et al. A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nat. Commun. 8, 15159 doi: 10.1038/ncomms15159 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017