Morphological and phytochemical studies of *Suaeda maritima* (L.) Dumort growing along the coastal belt of Purba Medinipur District, West Bengal, India in search of the prospective variation

Maniklal Pati¹, Asis Kumar Nandi*²

¹Department of Botany, Egra SSB College, Egra, Purba Medinipur, West Bengal – 721 429, India, ²Department of Botany and Forestry, Vidyasagar University, Medinipur, West Bengal – 721 102, India

ABSTRACT

Suaeda maritima (L.) Dumort of the family Chenopodiaceae is an annual succulent mangrove herb. This annual salt marsh is quite regularly used by the local people for food and pharmaceutical. This species has been cursorily noted to have variation in some morphological characters. Earlier reports indicated the presence of triterpenoid e.g. alpha amyrin in some species of *Suaeda*. However, no report on the variation in the quantity of it in this species was presented. The present study has furnished an account of subtle variation in morphology of this herb growing on different sites in the area under study. It also shows a difference in the amount of alpha amyrin in the plant individuals of different places, revealed through the HPTLC study. Morphological variations have been noted mostly in respect of the characteristics of the stem and leaf of the species.

KEYWORDS: *Suaeda maritima*, Morphological diversity, Alpha amyrin, Chromatographic analysis

INTRODUCTION

Mangrove vegetations grow along with the coastal belts of tropical and sub-tropical regions, usually between 25° N and 25° S latitude throughout the world (Tomlinson, 1986). Annual succulent herbs of the species of *Suaeda* grow naturally in soils having a high concentration of salt of mangroves (Untawale, 1984). *Suaeda maritima* grows luxuriantly along the coastal belt of Purba Medinipur district of West Bengal in India, right from Hijli-Sarif of Khejuri to Udaypur of Digha (Das, 2015). This range of coast in Purba Medinipur district is lying between 21° 51’ 27”N to 21° 36’ 5”N latitude and 87° 29’ 88” E to 88° 12’ 40” E longitude. There is a record of its use as a vegetable and also in curing malady (Trease & Evans, 2002) and such uses are also noticed among the local people of the area under study. Though this herb grows almost continuously along the entire stretch of the region mentioned here, shows subtle variation in gross morphology along the site of its growing. Such diversity might be more due to the variation in the chemical and physical properties of the soil along the region, rather than the genetic property of the plants for this contiguously and naturally growing herb. Such variation might also have a bearing on the biochemical constitution of them, too. Early literatures recount several different phytochemical compounds like triterpenoid, sterols, alkaloids, acids, glycosides (Krishchenko et al., 1984; Kapadia et al., 1985; Miftakhova et al., 1999), proteins and amino acids (Marie, 1965) to occur in this species. Alpha amyrin, a pentacyclic triterpenoid, a biomolecule of worth, has earlier been reported to occur in this species (Ghosh et al., 1985). α and β amyrins are two structural isomers possessing a wide spectrum of pharmaceutical and biological functions like, anti-microbial, insecticidal (Bandeira et al., 2006; Ekalu et al., 2019), anti-arthritis, anti-inflammatory, anti-nociceptive, anti-depressant, anti-hyperglycemic (Stani et al., 1999; Oliveira et al., 2004a; Oliveira et al., 2005b; Aragao et al., 2006; Aragao et al., 2007; Holanda et al., 2008; Melo et al., 2010; Barros et al., 2011; Melo et al., 2011; Santos et al., 2012; Aragao et al., 2015; Carvalho et al., 2017; Pinto et al., 2017), anti-ulcer, gastroprotective
(Oliveira et al., 2004b; Oliveira et al., 2005a; Prabhakar et al., 2017). Any variation in the amount of this secondary metabolite occurring between different plant individuals of this species would provide scope for selection of better producer among them, aspect of economic significance. With this matter as an objective, the present study has scrutinized and revealed subtle morphological and biochemical diversities amongst the individuals of the species growing in the coastal area of West Bengal.

MATERIALS AND METHODS

Collection and Identification of Plant Material

Aerial parts of *Suaeda maritime*, collected from the coast of Bay of Bengal in Purba Medinipur district of the state of West Bengal, India, were taken as study material. The plant samples collected from Bankipur has been designated as FSB and that from Sankarpur as FSS in this literature. Plant samples were collected at the end of monsoon from Sankarpur (21°61’97.3’’N, 87°57’22.3’’E) and Bankipur (21°76’67.1’’N, 85°86’65.4’’E) situated 41.5 km apart, along the coastal belt of Purba Medinipur district, at their flowering and fruiting stage. Herbarium was prepared with the collected sample according to Jain and Rao (1977) and Brummitt and Powell (1992). The herbarium was identified and authenticated by the Central National Herbarium (CAL) of Botanical Survey of India (voucher specimen number CNH/2015/Tech.II/17/299).

Morphological Studies

Morphological studies were carried out with freshly collected whole plants. The studies included habits of the plant, leaf, stem, root, flower, fruit and seed. Along with gross morphological study with bare eyes, different plant parts like leaf, flower, fruit and seed were studied and measured under a microscope.

Biochemical Studies

For the purpose of biochemical study the aerial parts of the plant were chopped into pieces and dried in shade at room temperature and were pounded to powder in a mechanical grinder. Twenty grams of the dried aerial plant part from each sample was weighed and poured into 150 mL of methanol solvent. The mixture was stirred every 30 min for 3 h and thereafter kept for two days (Ali et al., 2001; Mammen et al., 2010; Reich & Schibli, 2011). The extracts of the plants from two sites of the collection were filtered separately using Whatman No 1 filter paper at 25°C temperature. The extracts obtained, thus, were concentrated to one third of their original volume by placing in a rotary evaporator. The concentrates were transferred into reagent bottles and stored in a refrigerator for HPTLC analysis. 0.50 mL of this solution was diluted up to 10.0 mL by methanol to obtain the working standard solution of alpha-amyrin (Stahl, 1969). Standard alpha-amyrin (purity 99.3%), from Sigma-Aldrich Chemie GmbH (Aldrich Division, Steinheim, Germany) was used as reference. A stock solution of this standard chemical 1000 μg/mL was prepared.

High Performance Liquid Chromatography Analysis

Chromatography was performed on 20 cm × 10 cm TLC aluminum precoated silica gel 60F₂₅₄ plate, with 200 μm layer thickness (E. Merck, Mumbai, India). Standard and sample solutions were applied to the plates as 8 mm bands, 13 mm apart from each other and the Plate dimension 20 X 10 cm and 10 mm from the bottom edge of the plate, under a continuous spray of inert gas by means of a Camag Linomat V TLC sample applicator with a 100 μL syringe (Hamilton, Bonaduz, Switzerland). After the application, prederivatization was performed by exposing the plate to iodine vapor for 10 minutes. The prederivatized plate was developed vertically ascending in a twin-trough glass chamber (Camag, Switzerland) saturated with a mobile phase comprising petroleum ether: ethyl acetate: acetonitrile (8.2: 1.2: 0.1 v/v/v) (Stahl, 1969; Ghosh et al., 1985; Kapadia et al., 1985). The optimized chamber saturation time for the mobile phase was 20 minutes at room temperature. The chromatographic run length was 90 mm from the bottom edge of the plate. After development, the plate was air dried and derivatized by dipping the developed plate in anisaldehyde-sulphuric acid reagent for 2 seconds (Stahl, 1969; Ghosh et al., 1985; Martelanc et al., 2009). The plate was then air-dried for complete removal of anisaldehyde-sulphuric acid and heated at 110°C for 3 minutes. Densitometric scanning was then performed at = 580 nm for alpha-amyrin using Camag TLC scanner 4 with winCATS software version 1.4.6. The slit dimension used was 5.00 × 0.45 mm (micro) with a scanning speed of 20 mm/sec, throughout the analysis (Stahl, 1969; Martelanc et al., 2007; Kpovissi et al., 2008). The applied chromatographic conditions permitted a well separation of the triterpenoid-alpha amyrin from the plant extract of two samples without any decomposition of alpha amyrin.

Linearity

Determination of linear dynamic range concentration of alpha amyrin was done by applying 5μL and 6 μL of TLC plate of working standard containing alpha amyrin. The peak area obtained from densitogram for each applied concentration of alpha amyrin was noted. The calibration curves of the standard were obtained by plotting graphs of the mean peak area of the standard versus the corresponding concentration.

System Suitability

The chromatographic separation was performed by injecting 5μL and 6 μL standard solution of alpha amyrin on a TLC plate in two replicates under specified chromatographic conditions (Table-1). The values of percent relative standard deviations of peak area from the chromatogram and retention factor of standards were taken as an indicator of system suitability. The value of the retention factor for standard alpha-amyrin was 0.49. As the values of percent relative standard deviation of peak area were found to be less than 2...
and peaks were well-resolved, the method was considered worthy for analysis.

Specificity

The specificity of the HPTLC method was ascertained by comparing visible chromatograms of alpha-amyrin standard with the chromatogram of two samples. The chromatograms were compared by the overlay. A good correlation was observed between chromatograms obtained from standard and samples (Figure 1).

Assay

The developed and validated HPTLC method was used for quantification of alpha-amyrin from the extract of dried whole plant powder of *S. maritima*. 20μL of each extract of plant materials of two zones was applied on the same TLC plate. The plate was developed and scanned under the specified chromatographic conditions.

Estimation of Alpha Amyrin

The amounts of alpha-amyrin present in each sample solution were determined from the calibration curve, by using the peak areas of alpha-amyrin in the sample. The flow rate of 150nL/s was used.

RESULT AND DISCUSSION

Morphology

The general account of the annual herbaceous *S. maritima*, showed it to be quite bushy in nature with profuse branches (Figure 2A-C) and erect stem; stem reddish purple, glabrous, tender at younger parts and woody in the older region, internodes solid; leaves simple, alternate, sessile, exstipulate, linear, fleshy, semiterete, succulent and entire (Figure 2D). The inflorescence is a terminal spike and spike at leaf axil; flower is minute, ebracteate, bisexual, complete, regular, sessile, hypogynous, whitish green (Figure 2D); perianth 5, poly tepalous, short,

Table 1: HPTLC performance of standard α amyrin

Track	Sample	Applied volume	Start Rf	Start Height	Max Rf	Max Height	End Height	Area	Area %	Amount (mg/gm)	Sample ID
1	Standard	5μl	0.46	9.7	0.51	153.3	0.8	4197.9	48.55	0.05	Alpha amyrin
2	Standard	6μl	0.44	11.3	0.49	177.8	6.3	5079.6	50.38	0.06	Alpha amyrin

Figure 1: Represents the TLC plate [St-1; Standard 1: St-2; Standard 2: FSB-Sample of Bankiput: FSS-Sample of Sankarpur]

Figure 2: A-C *S. maritima* plant; D-Flowering twig; E-Carpel; F-Fruit; G-Seed
Pati and Nandi

Table 2: Morphological traits of two population of *S. maritima*

Morphological traits	Regions	
	FSB	FSS
Plant height (mm)	583±10.21	862±11.64
Stem circumference (mm)	44±2.37	62±2.41
Length of internode (mm)	83±3.89	118±5.2
Leaf length (mm)	19±1.58	25±2.1
Leaf breadth (mm)	2±0.17	3±0.33
Leaf thickness (mm)	0.8±0.07	1±0.13
Flower length (mm)	1±0.27	1.5±0.36
Tepal length (mm)	0.7±0.05	0.9±0.06
Fruit length (mm)	1.3±0.38	1.5±0.47
Fruit breadth (mm)	0.9±0.0	1±0.16

Variation in Morphology

Plants collected from two zones did not show any striking morphological variations though subtle variations plant height, stem circumference, leaf length, breadth, thickness, flower and tepal length and fruit length and breadth were noted (Table 2).

Figure 3: Represent HPTLC chromatogram of standard obtained at = 580 nm

Figure 4: Represents HPTLC chromatogram of sample *S. maritima* at Bankiput obtained at = 580 nm

Figure 5: Represents HPTLC chromatogram of sample *S. maritima* at Sankarpur obtained at = 580 nm

Amount of Alpha Amyrin

The confirmation of the method of measuring the amount of alpha amyrin with respect to standard has been displayed in Figure 3. The amount of amyrin has been found to be greater in the plants of Bankiput (0.12 mg/g i.e. 4.37%) than those of Sankarpur (0.068 mg/g i.e. 3.123%) (Table 3, Figure 4 & 5).

CONCLUSION

The occurrence of subtle morphological changes along with the considerable difference in the amount of alpha amyrin.
content among the individuals of *Suaeda maritima* growing at two distantly placed sites along the coastal area of West Bengal represents intraspecific diversity of it. Though the sites of their occurrence are contiguous and the individuals of the species are growing interruptedly in patches, the diversity, as witnessed, might be due to the difference in micro-environmental factors rather than the difference in their genetic content.

ACKNOWLEDGEMENT

The authors wish to thank RKM Quality Testing Laboratory, Narendrapur, Kolkata, India, for providing the laboratory facility. The authors are also grateful to the Director of Central National Herbarium, Howrah, India for the identification and authentication of the species and special thanks go to the local people for their kind co-operation during sample collection.

REFERENCES

Ali, M., Ali, S. N., & Ramachandram, R. (2001). Phytochemical investigation of aerial parts of *Plectranthus lanceolata* C. B. Clarke. Indian Journal of Chemistry, 40(8), 698–706.

Aragao, G. F., Camacho, L. M., & Junior, A. P. (2006). A possible mechanism for anxiolytic and antidepressant effects of alpha- and beta-amyrin from *Protium heptaphyllum* (Aubl.) March. Pharmacology Biochemistry and Behavior, 85, 827–834. https://doi.org/10.1016/j.pbb.2006.11.019

Aragao, G. F., Cunha, P. M. C., & Nogueira, B. P. (2007). Algesic and anti-inflammatory activities of the isomeric mixture of alpha- and beta-amyrin from *Protium heptaphyllum* (Aubl.) March. Journal of Herbal Pharmacotherapy, 7(2), 31-47. https://doi.org/10.1300/j157v07n02_03

Bandeira, P. N., Fonseca, A. M., & Costa, S. M. (2006). Anti-bacterial and anti-oxidative activities of the essential oil of resin of *Protium heptaphyllum*. *Natural Product Communications*, 1(2), 117–200.

Barros, F. W., Bandeira, P. N., Lima, D. J., Meira, A. S., de Farias, S. S., de Oliveira, M. R., dos Santos, H. S., Lemos, T. L., de Morais, M. O., Costa-Lotufo, L. V., & Pessoa, C. (2011). Amyrin esters induce cell death by apoptosis in HL-60 leukemia cells. *Bioorganic & Medicinal Chemistry*, 19(3), 1268–1276. https://doi.org/10.1016/j.bmc.2010.12.016

Brummit, R. K. & Powell, C. E. (1992). *Author of Plant Names*. Kew: Royal Botanical Garden.

Carvalho, K. M., de Melo, T. S., de Melo, K. M., Quinderé, A. L., de Oliveira, F. T., Viana, A. F., Nunes, P. I., Quetz, J. D., Viana, D. A., da Silva, A. A., Hvat, A., Fonseca, S. G., Chaves, M. H., Rao, V. S., & Santos, F. A. (2017). Amyrins from *Protium heptaphyllum* reduce high-fat diet-induced obesity in mice via modulation of enzymatic, hormonal and inflammatory responses. *Planta Medica*, 83(3-4), 285–291. https://doi.org/10.1055/s-0042-114222

Das, D. C. (2015). Study of the tidal vegetation of Purba Medinipur district of West Bengal, India. *International Journal of Biosciences*, 4(05), 3915-3921.

Ekalu, A., Ayo, R. G., Habil, J. D., & Hamisu, I. (2019). Bioactivities of phaeophytytin α, α-amyrin, and lupeol from *Brachystegia togoense* Scltr. *Journal of The Turkish Chemical Society*, 6(3), 411-418. https://doi.org/10.18596/jtocs.571770

Ghosh, A., Misra, S., Dutta, A. K., & Choudhury, A. (1985). Pentacyclic tri-terpenoids and sterols from seven species of mangrove. *Phytochemistry*, 24(8), 1725–1727. https://doi.org/10.1016/0031-9422(85)82541-8

Holanda, P. S. A., Pinto, L. M. S., & Cunha, G. M. A. (2008). Anti-inflammatory effect of alpha, beta-amyrin, a pentacyclic triterpene from *Protium heptaphyllum* in rat model of acute periodontitis. *Inflammopharmacology*, 16(1), 48–52. https://doi.org/10.1007/s10787-007-1609-x

Jain, S. K., & Rao, R. R. (1977). *A Handbook of field and Herbarium Methods*. New Delhi, India: Today and tomorrow’s Printers and Publishers.

Kapadia, Z., Hussain, N., & Badar, Y. (1985). Chemical investigation of *Suaeda nudiflora* Wild. *Kashmir Journal of Science*, 13(2), 113-118.

Kovessy, D. S. S., Bbagudi, F., & Gbenou, J. (2008). Validation of a method for the determination of sterols and triterpenes in the aerial part of *Justicia asseliana* (Nees) T. Anders by capillary gas chromatography. *Journal of Pharmaceutical and Biomedical Analysis*, 48(4), 1127–1135. https://doi.org/10.1016/j.jpba.2008.08.036

Krishchenko, V. P., Rotar, A. I., Zadniproynyi, U. F., Kosorukov, K. L., Protor, U., Anofrina, N. D., & Timiryazevski, I. Z. V. (1984). Chemical composition and nutritive value of plants from the family Chenopodiaceae of the pasture massif in Libya. *Izvestia - Timiryazevskia sel'sko khozaiastvennaia akademia*, 4, 38-45.

Mammen, D., Daniel, M., & Sane, R. T. (2010). Seasonal and geographical variations in chemical constituents of *Leptadenia reticulate*. *International Journal of Pharmaceutical Sciences Review and Research*, 4(2), 111–116.

Marie, G. (1965). Metabolism of nitrogen in halophytes. Amino acids and free amines in young *Suaeda maritima* plants harvested in their natural environment. *Comptes rendus de l’Académie des Sciences*, 261(14), 2724-26.

Martelanc, M., Vovk, I., & Simonovskya, B. (2007). Determination of three major triterpenoids in epicuticular wax of cabbage (*Brassica oleracea* L.) by high-performance liquid chromatography with UV and mass spectrometric detection. *Journal of Chromatography A*, 1164(1-2), 145–152. https://doi.org/10.1016/j.chroma.2007.06.082

Martelanc, M., Vovk, I., & Simonovskya, B. (2009). Separation and identification of some common isomeric plant triterpenoids by thin-layer chromatography and high-performance liquid chromatography. *Journal of Chromatography*, 1216(38), 6662–6670. https://doi.org/10.1016/j.chroma.2009.07.038

Melo, C. M., Carvalho, K. M., & Nieves, J. C. (2010). Alpha, beta-amyrin, a natural triterpenoid ameliorates L-arginine-induced acute pancreatitis in rats. *World Journal of Gastroenterology*, 16(34), 4272–4280. https://doi.org/10.3748/wjg.v16.i34.4272

Melo, C. M., Morais, T. C., & Tome, A. R. (2011). Anti-inflammatory effect of α, β-amyrin, a triterpene from *Protium heptaphyllum* on cerulein-induced acute pancreatitis in mice. *Journal of Inflammation Research*, 607(1), 673–681

Mitakhova, A. F., Burashera, G. Sh., & Abilov, Zh. A. (1999). The chemical composition of some Kazakhstan glassworts. *Chemistry of Natural Compounds*, 35(2), 225-226.

Oliveira, F. A., Lima-Junior, R. C., & Cordeiro, W. M. (2004a). Pentacyclic triterpenoids, alpha, beta-amyrins, suppress the scratching behavior in a mouse model of pruritus. *Pharmacology Biochemistry and Behavior*, 78, 719–725. https://doi.org/10.1016/j.pbb.2004.05.013

Oliveira, F. A., Veiga-Junior, G. M., & Chaves, M. H. (2004b). Pentacyclic triterpenoids, alpha and beta-amyrin, a triterpene mixture from *Protium heptaphyllum* reduce capsaicin-induced acute and visceral nociceptive pain by alpha and

Table 3: HPTLC performance of α-amyrin from two populations of *S. maritima*

Track	Sample	Applied volume	Start Rf	Start Height	Max Rf	Max Height	End height	Area (μm²)	Area %	Alpha amyrin mg/gm
3	FSB	20μl	0.45	72.1	0.49	213.3	98.4	7752.0	4.37	0.12
4	FSS	20μl	0.45	100.9	0.48	146.6	70.6	5167.6	3.13	0.106
beta-amyrin, a triterpene mixture isolated from *Protium heptaphyllum* resin in mice. Life Sciences, 77, 2942–2952. https://doi.org/10.1016/j.lfs.2005.05.031

Pinto, S. A. H., Pinto, L. M. S., Cunha, G. M. A., Chaves, M. H., Santos, F. A., & Rao, V. S. (2005). Anti-inflammatory effect of α, β-amyrin, a pentacyclic triterpene from *Protium heptaphyllum* in rat model of acute periodontitis. *Inflammopharmacology*, 15, 1–5. https://doi.org/10.1007/s10787-007-1609-x

Prabhakar, P., Reeta, K. H., & Maulik, S. K. (2017). α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats. *Applied Physiology, Nutrition, and Metabolism*, 42, 23-32. https://doi.org/10.1139/apnm-2016-0088

Reich, E., & Schibli, A. (2011). *High-Performance Thin-Layer Chromatography for the Analysis of Medicinal Plants*. (1st Ed.). Thieme Medical.

Santos, F. A., Frota, J. T. & Arruda, B. R. (2012). Anti-hyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from *Protium heptaphyllum* in mice. *Lipids in Health and Disease*, 11, 96. https://doi.org/10.1186/1476-511X-11-98

Siani, A. C., Ramos, M. F., Menezes-de-Lima, O., Jr, Ribeiro-dos-Santos, R., Fernandez-Ferreira, E., Soares, R. O., Rosas, E. C., Susunaga, G. S., Guimarães, A. C., Zoghbi, M. G., & Henriques, M. G. (1999). Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium. *Journal of Ethnopharmacology*, 66(1), 57–69. https://doi.org/10.1016/s0378-8741(98)00148-2

Stahl, E. (1969). *Thin Layer Chromatography Handbook*. (2nd Ed.). Springer-Verlage: Berlin; Heidelberg; New York.

Tomlinson, P. B. (1986). *The Botany of Mangroves*. Cambridge, UK: Cambridge University Press.

Trebbe, G. E., & Evans, W. C. (2002). *Pharmacognosy*. (15th Ed.). University of Nottingham, Nottingham, UK.

Untawale, A. G. (1984). Present status of mangroves along the west coast of India. Paper presented at the Asian Symposium of Mangrove Environment- Resources & Management, Jakarta.