Avaliação do equilíbrio em alcoólicos

Paula Michele da Silva Schmidt 1, Aline Marques Giordani 2, Angela Garcia Rossi 3, Pedro Luiz Cósere 4

Resumo / Summary

Alcoolismo é uma doença crônica que consiste em um estado de intoxicação causado pelo consumo de álcool. Os sinais e sintomas frequentemente encontrados são entre outros: instabilidade ao andar, tontura e descoordenação psicomotora. 

Objetivo: Verificar a influência do alcoolismo no equilíbrio postural. 

Material e Métodos: Este é um estudo prospectivo; a amostra compreendeu 32 indivíduos para o grupo experimental, frequentadores do grupo de Alcoólicos Anônimos da cidade de Santa Maria-RS e 32 indivíduos não alcoólicos para o grupo controle. Os indivíduos foram submetidos à avaliação otorrinolaringológica, avaliação do equilíbrio estático e dinâmico e provas cerebelares, avaliação vectoro-electronistagmográfica e posturografia dinâmica. 

Resultados: Constatou-se que a vectoro-electronistagmografia mostrou-se normal na maioria dos indivíduos do grupo experimental, indicando que o labirinto e as vias vestíbulo-oculomotoras estariam normais e que o distúrbio do equilíbrio por eles apresentado seria decorrente de disfunção em outras áreas do sistema nervoso central ou periférico. Na posturografia dinâmica constatou-se que alcoólicos abstinentes apresentam alterações significantes do equilíbrio postural quando comparados com indivíduos não alcoólicos. 

Conclusão: O álcool tem influência deletéria no equilíbrio corporal.

Alcoholism is a chronic condition, consisting on a state of intoxication caused by the consumption of alcohol beverages. Frequently found signs and symptoms are: gait instability, dizziness and lack of psychomotor coordination, among others. 

Aim: to study the influence of alcoholism on postural balance. 

Materials and Methods: this is a prospective study. The sample comprehended 32 individuals in the experimental group, members of the Alcoholic Anonymous Group of the city of Santa Maria-RS and 32 non-alcoholic individuals making up the control group. The individuals were submitted to an otorhinolaryngological evaluation, static and dynamic balance study and cerebellar tests, vecto-electronystagmographic evaluation and dynamic posturography. 

Results: we noticed that the vectoelectronystagmography was normal for most of the individuals in the experimental group, indicating that the labyrinth and the oculomotor-vestibular pathways were normal and that the balance disorder they presented would stem from the dysfunction in other areas of the central or peripheral nervous system. In the dynamic posturography we noticed that alcoholics who were not drinking presented significant alterations in their postural balance when compared to non-alcoholic individuals. 

Conclusion: alcoholic beverages have a deleterious influence on body balance.

Palavras-chave: alcoolismo, doenças do labirinto, tontura. 

Keywords: alcoholism, labyrinth diseases, dizziness.
INTRODUÇÃO

O alcoolismo ou a dependência do álcool é uma doença crônica reconhecida pela Organização Mundial da Saúde (OMS). Consiste em um estado de intoxicação causado pelo consumo de álcool. Desenvolve-se em ritmos diferentes em cada pessoa, de acordo com suas características físicas, emocionais e psicológicas, grau de tolerância ao álcool e tipo de bebida ingerida.

Diversos autores referem que agentes ototóxicos, como o álcool apresentam efeito negativo no aparelho vestibular causando tonturas e vertigens³⁴. O equilíbrio corporal é a capacidade de cada ser humano de manter-se ereto ou realizar movimentos de aceleração e rotação do corpo sem oscilações, desvios ou quedas. Para que tenhamos orientação espacial estática e dinâmica, isto é, equilíbrio, dependemos de integrações (áreas vestibulares, tronco cerebral e cerebelo) que permitem ao Sistema Nervoso Central reconhecer posições e movimentos da cabeça em relação ao corpo e ao espaço. Alterações na manutenção do equilíbrio corporal podem ocasionar sintomas como vertigem, tontura e desequilíbrio⁵. A tontura pode ser um sintoma muito desconfortável, que interfere de modo drástico em todas as atividades diárias e perturba sensivelmente a qualidade de vida. Está entre os sintomas mais frequentes em todo o mundo e é de origem labiríntica em aproximadamente 85% dos casos⁶.

Estudos afirmam que muitas drogas, incluindo o álcool, causam a tontura como efeito colateral, influenciando negativamente nas habilidades motoras, incluindo tarefas com tempo de reação simples, habilidades de coordenação, equilíbrio e coordenação olho-mão⁷. Os sinais e sintomas que frequentemente são encontrados no alcoolismo são anorexia, instabilidade e tonturas, náuseas, vômitos, emagrecimento, febre e dores abdominais, entre outros⁸.

Para alguns autores o alcoolismo causa envelhecimento prematuro das funções neuropsicológicas e possivelmente do cérebro⁹. Levando-se em conta a limitação de informações na literatura sobre a relação entre distúrbios do equilíbrio e o alcoolismo, o objetivo deste estudo é verificar a influência do alcoolismo no equilíbrio postural.

MATERIAL E MÉTODOS

O grupo experimental foi composto por 32 indivíduos frequentadores de um grupo de Alcoólicos Anônimos, sendo 5 do sexo feminino e 27 do sexo masculino, com idades variando entre 33 e 75 anos.

Após, buscou-se indivíduos sem queixas otoneurológicas e que não fizessem uso abusivo de álcool, com a mesma idade e sexo, para cada indivíduo do estudo, a fim de formar o grupo controle (32 indivíduos).

O uso abusivo do álcool é caracterizado por uso do álcool em quantidade elevada, quase que diariamente, por no mínimo 15 anos.

Para a avaliação do equilíbrio estático e dinâmico e da função cerebelar, foram utilizadas as seguintes provas descritas por Mangabeira-Albernaz & Ganança (1976): Prova da Marcha, Prova de Romberg e Romberg-Barré, Prova de Unterberger, Prova dos Braços Estendidos, Prova da Diadococinesia e Prova da Dismetria.

A Posturografia Dinâmica (PD) foi realizada através...
The Foam-Laser Dynamic Posturography (FLP), proposed by Castagno. Consists of a very simple technique for evaluating the SOT (Sensorial Organization Test). The patient is placed inside a 1m² cabin, 2m high, with a visual image consisting of blue and beige lists of 10 cm. This visual image with lists aims to generate a visual conflict. Next to the patient, at the level of the pelvis on the right side, at the center of gravity, a laser pen is placed pointing to a fixed centimeter scale on the ceiling, in a vertical plan. Six evaluations (SOT I, II, III, IV, V and VI) are made, each lasting 20s.

For the vestibular exam, the SCV 5.0 vector electronystagmography computerized system was used, updated from SCV 4.0, proposed by Castagno. The vestibular exam included the following tests: Calibration of Eye Movements, Spontaneous Nystagmus, Semi-Spontaneous Nystagmus, Optokinetic Nystagmus, Pendular Tracking, Decrescendo Rotational Prove (PRPD) and Caloric Prove.

This study is in accordance with the ethical principles contained in the Declaration of Helsinki (1964, reformulated in 1975, 1983, 1989, 1996 and 2000), from the World Medical Association, as well as specific legislation of the country. This study is registered in the Ethics Committee of the institution where it was carried out under the number 23081.003726/2006-41.

**Análise dos dados**

To evaluate the possible differences between the experimental and control groups in the SOT and Dynamic Posturography variables, the non-parametric Kruskal-Wallis test was applied, using a 5% significance level, i.e., p<0.05, indicating significant values with an asterisk.

**RESULTADO**

For a clearer presentation, the data obtained have been divided into two parts:

**PARTE I:** Results obtained in the vestibular exam of the 29 individuals of the experimental group (group E).

In Table 1, the results obtained in the Static and Dynamic Equilibrium tests for the individuals of group E are shown. It was observed that of the 29 evaluated individuals, 26 (89.66%) had a normal response and 3 (10.34%) had a response altered in the Romberg test. In the Romberg-Barré test, 16 (55.17%) had a normal response and 13 (44.83%) a response altered. It was also observed that of the 29 individuals evaluated, 11 (37.93%) had a change in the Untemberg test and 18 (62.07%) had no change in this test. In the analysis of the Marcha test, 16 (55.17%) did not show a change and 13 (44.83%) showed a response altered.

| Tabela 1. Resultados obtidos nas provas de Equilíbrio Estático e Dinâmico pelos indivíduos do grupo E. |
|--------------------------------------------------|
|                                                       |
| EQUILÍBRIO ESTÁTICO E DINÂMICO                     |
|                                                   |
| Com alteração                                      |
| N    |  %  |
| 3    | 10,34 | 26  | 89,66 | 29  | 100,00 |
| 13   | 44,83 | 16  | 55,17 | 29  | 100,00 |
| 11   | 37,93 | 18  | 62,07 | 29  | 100,00 |
| 13   | 44,83 | 16  | 55,17 | 29  | 100,00 |

**PARTE II:** Results obtained in the Nystagmus Per-Rotatório test for the individuals of group E.

| Tabela 2. Resultados obtidos na pesquisa do Nistagmo Per-Rotatório pelos indivíduos do grupo E. |
|--------------------------------------------------|
|                                                       |
| NISTAGMO PER-ROTATÓRIO                             |
|                                                   |
| N    |  %  |
| 27   | 93,10 |
| 2    |  6,90 |
| 29   | 100,00 |

**PARTE III:** Results obtained in the Nystagmus Pós-Calórico test for the individuals of group E.

| Tabela 3. Resultados obtidos na pesquisa do Nistagmo Pós-Calórico pelos indivíduos do grupo E. |
|--------------------------------------------------|
|                                                       |
| NISTAGMO PÓS-CALÓRICO                             |
|                                                   |
| N    |  %  |
| 23   | 73,31 |
| 4    | 13,79 |
| 2    |  6,90 |
| 29   | 100,00 |
Na realização da Prova dos Braços Estendidos, da Prova da Diadococinesia e da Prova da Dismetria, nos indivíduos do grupo experimental os resultados apresentaram-se dentro dos padrões de normalidade.

Os indivíduos do grupo experimental não apresentaram alteração na calibração horizontal e vertical, o mesmo ocorrendo na pesquisa do Nistagmo Optocinético, do Nistagmo Espontâneo e do Nistagmo Semi-espontâneo.

Na pesquisa do Rastreio Pendular Horizontal, dos 29 indivíduos do grupo experimental, 27 apresentaram traçado Tipo I, 1 indivíduo apresentou rastreio Tipo II e outro apresentou rastreio Tipo III.

No estudo da presença ou não de alteração do nistagmo per-rotatório (Tabela 2) verificou-se que, dos 29 indivíduos avaliados, 26 (89,66%) indivíduos apresentaram nistagmo per-rotatório simétrico, e somente 2 (6,90%) apresentaram alteração.

No estudo da presença ou não de alteração na pesquisa do nistagmo pós-calórico (Tabela 03) observou-se que, dos 29 indivíduos avaliados, 23 (79,31%) indivíduos apresentaram normorreflexia, 4 (13,79%) indivíduos apresentaram alteração nesta pesquisa e 2 (6,90%) não realizaram esta prova.

Na Tabela 4 observou-se que, na conclusão do exame vectoeletronistagmográfico, dos 29 indivíduos avaliados, 25 (86,21%) apresentaram exame normal, 3 (10,34%) indivíduos apresentaram síndrome vestibular periférica e 1 (3,45%) indivíduo apresentou síndrome vestibular central.

PARTE II: resultados obtidos na realização da Posturografia Dinâmica nos 32 indivíduos do grupo experimental e nos 32 indivíduos do grupo controle.

Como se pode observar na Tabela 5, a posturografia dinâmica realizada através do Foam-Laser Dynamic Posturography apresentou diferença estatisticamente significante em todas as condições do SOT.

DISCUSSÃO

Analisando as respostas dos indivíduos na prova de Romberg (Tabela 1), observou-se que dos 29 indivíduos avaliados, 26 (89,66%) apresentaram resposta normal e 3 (10,34%) apresentaram resposta alterada. O número de indivíduos sem alteração no teste foi bem maior do que número de indivíduos com alteração.

No estudo da presença ou não de alteração na pesquisa da Marcha (Tabela 1), os 29 indivíduos avaliados, 16 (55,17%) não apresentaram alteração e 13 (44,83%) tiveram resposta alterada. O número de alterações nesta prova foi elevado, revelando uma inabilidade dos indivíduos quanto à coordenação motora, concordando com Giron, que relatou que as complicações neurológicas do álcool compreendem vários aspectos dentre eles a intoxicação alcoólica, o síndrome de...
abstinência, as alucinações e as convulsões e os sintomas são dentre outros: incoordenação de movimentos e da marcha, instabilidade e tontura.

A instabilidade dos indivíduos avaliados pode ser explicado por Ledin & Ödkvist que observaram que alcoólicos crônicos têm sido expostos a diminuição do equilíbrio. É sugestivo que isso se deva a uma possível complicação geral, a uma degeneração cerebelar, ainda raramente diagnosticada na clínica. É esta degeneração que causa severa instabilidade ao andar.

Estes são testes de importância complementar, pela possibilidade de oferecerem informações topodiagnósticas adicionais, no confronto com outros dados do exame vestibular, e nunca isoladamente, concordando com Caovilla, Ganança, Munhoz, Silva & Settanni que verificaram que estes testes demonstram alterações de equilíbrio estático e dinâmico, mas não são suficientes para caracterizar o comprometimento vestibular, o lado lesado e o sítio da lesão.

Nas provas cerebelares: Prova dos Braços Estendidos, Prova da Dismetria e Prova da Diadococinesia, os indivíduos avaliados não apresentaram alterações.

Na pesquisa do Rastreio Pendular o predomínio de respostas foi o traçado do Tipo I, que indica normalidade na prova. Sendo que 1 indivíduo apresentou rastreio Tipo II que também está relacionado com indivíduos normais, e outro apresentou rastreio Tipo III que pode ser visto em indivíduos com vestibulopatia periférica ou central.

Não foram encontradas alterações na pesquisa do Nistagmo Optocinético em nenhum dos indivíduos avaliados neste estudo. Segundo Ganança, Caovilla, Munhoz, Silva & Settanni, o nistagmo optocinético é menos sensível do que o rastreio à atenção e ao uso de medicamentos. É também menos sensível na capacidade de detectar alterações de localização central, o que pode explicar o número de alterações encontradas na pesquisa no rastreio pendular e não na pesquisa do nistagmo optocinético, discordando de Nieschal et al., que observaram que muitos investigadores têm relatado efeitos do álcool no sistema oculomotor.

No estudo da presença ou não de alteração do nistagmo per-rotatório (Tabela 2) verificou-se que, dos 29 indivíduos avaliados, 27 (93,10%) indivíduos apresentaram nistagmo per-rotatório simétrico, e somente 2 (6,90%) apresentaram alteração.

No estudo da presença ou não de alteração na pesquisa do nistagmo pós-calórico (Tabela 3) observou-se que, dos 29 indivíduos avaliados, 23 (79,31%) indivíduos apresentaram normorreflexia, 4 (13,79%) indivíduos apresentaram alteração nesta pesquisa e 2 (6,90%) não realizaram esta prova.

Na Tabela 4 observou-se que na conclusão do exame vectoreletronistagmográfico, dos 29 indivíduos avaliados, 25 (86,21%) apresentaram exame normal, 3 (10,34%) indivíduos apresentaram síndrome vestibular periférica, e o topodiagnóstico de vestibulopatia periférica nos três casos foi caracterizado pela ausência de sinais patognomônicos de lesão central e pela presença de alterações em relação ao padrão de normalidade, constituindo, assim, um diagnóstico de exclusão. E 1 (3,45%) indivíduo apresentou síndrome vestibular central. Mascari, Zeigelboim, Fukuda, Anadão & Ganança em seu estudo com pacientes com relato de desordens vestibulococleares causadas pelo álcool, também encontraram distribuídos no exame vestibular alterações que demonstram lesão em nível de sistema vestibular central.

Não foi observado um número significante de alterações na avaliação do sistema vestibular através da vectoreletronistagmografia computadorizada. Estes achados podem ser explicados pelo fato das diferenças individuais na resposta postural para álcool poder ocorrer por hereditariedade, dependendo da história familiar do alcoolismo e níveis de consumo diários. Todas essas diferenças podem ter dificultado o diagnóstico otoneurológico.

É importante ressaltar que é possível encontrar pacientes com vertigens típicas que poderão em um determinado momento apresentar exames normais, como também é possível que um exame vestibular em um paciente sem história de comprometimento vestibular não signifique que seu sistema vestibular é realmente normal.

Vários autores demonstram que os efeitos do uso abusivo de álcool por um longo período no equilíbrio são bem conhecidos. Alcoólicos crônicos apresentam muitas vezes dificuldades em testes simples de equilíbrio e também quando caminham, manifestando uma marcha atáxica com base ampla. Um leve esforço para alcoólicos crônicos com lesão cerebelar é provável que o leve a ficar sem equilíbrio, mostrando sua falta de mecanismos para correção. Nesta pesquisa constatou-se que os indivíduos alcoólicos não apresentaram alteração à vectoreletronistagmografia, possivelmente pelo comprometimento estar mais associado à outras áreas do sistema nervoso central ou periférico e não no aparelho vestibular. Já Bellé, Sartori & Rossi em estudo com alcoólicos verificaram que as alterações na vectoreletronistagmografia estiveram mais evidentes nos indivíduos do Grupo Experimental do que no grupo controle, tanto para grupo experimental de indivíduos com idades entre 33 e 49 anos quanto para grupo controle, tanto para grupo experimental de indivíduos com idades entre 50 e 70 anos, sendo nesse último em maior número. Na literatura especializada, autores relataram resultados semelhantes aos encontrados neste estudo, referindo que agentes ototóxicos, como o álcool apresentam efeito negativo no aparelho vestibular causando tonturas e vertigens.

Como se pode observar na Tabela 5, a posturografia dinâmica realizada através do Foam-Laser Dynamic Posturography apresentou diferença estatisticamente significante em todas as condições do SOT.

O desempenho dos indivíduos do Grupo E e do
Grupo C no SOT I apresentou diferença estatisticamente significante entre os grupos estudados, mesmo sendo uma condição considerada simples, em que os indivíduos permanecem em pé, com os pés juntos, olhando para frente. O tremor corporal subclínico cerebral é uma possível causa da diminuição da performance de equilíbrio, obviamente, alcoolícos crônicos parecem ter pronunciados problemas de estabilidade postural.

Pode-se observar na Tabela 5 que na condição SOT II, que é a mesma condição da anterior, porém com os olhos fechados, também houve diferença estatisticamente significante entre os grupos. Para Ligouri, D’agostino, Dworkin, Edwards & Robinson14 uma intoxicação por abuso de álcool produz uma extensa diminuição do equilíbrio, e estudos têm encontrado diminuição do equilíbrio também quando o sistema visual está ausente. Outro fato que pode explicar essa alteração, esse aumentado balanço ântero-posterior do corpo com ausência da visão é que, segundo Ledin & Odkvi15 e Tianwu Watanabe, Asai, Shimizu, Takada & Mizukoshi16, esta alteração é correlacionada com atrofia do lobo anterior do cerebelo. Os resultados encontrados no SOT I e SOT II concordam com Diener, Dichgans, Bacher, Hülsper & Liebach22 que observaram que a PD revelou um aumento significante do balanço corporal, não somente com olhos fechados, mas com olhos abertos, revelando uma não compensação da ataxia induzida pelo etanol por meio da estabilização visual.

No SOT III em que o indivíduo tem a função visual alterada, também foi encontrada diferença estatisticamente significante entre os grupos examinados. Uma possível explicação para este achado seria que o impacto funcional das anormalidades vestibulares periféricas e/ou central no equilíbrio dos pacientes pode ser categorizada como uma inabilidade para suprimir/anular a influência da informação visual imprecisa.

No SOT IV os indivíduos permanecem em pé, com os pés juntos, mantendo-se sobre 10 cm de espuma móvel de densidade média, olhando para frente. Nesta condição, é a propriocepção que está alterada. Observou-se diferença estatisticamente significante entre os grupos. Esta alteração pode ser decorrente de um distúrbio na integração central da visão e informação vestibular. Para Ligouri, D’agostino, Dworkin, Edwards & Robinson19 na intoxicação por abuso de álcool é mais provável um enfraquecimento geral do SNC do que uma anomalia sensorial específica. Tem sido encontrado enfraquecimento de múltiplas condições, sendo o mais marcado o resultado vestibular, principalmente quando a informação somatosensorial é imprecisa.

Quanto ao desempenho dos indivíduos do grupo E e do grupo C no SOT V, no qual os indivíduos permanecem em pé, com os pés juntos, mantendo-se sobre 10 cm de espuma móvel de densidade média, com olhos fechados, também foi observada diferença estatisticamente significante entre os grupos. Esta alteração se deve a uma inabilidade de usar a informação vestibular. Tianwu, Watanabe, Asai, Shimizu, Takada & Mizukoshi17, nos seus estudos, também encontraram instabilidade postural na condição SOT V; condição esta em que o sujeito tem visão ausente e informação proprioceptiva alterada, sendo então o sistema vestibular quem disputa importante função na manutenção da estabilidade postural.

No SOT VI, condição esta em que a propriocepção e visão estão alteradas, também houve diferença estatisticamente significante, tendo a explicação para isto a combinação da inabilidade de usar a informação vestibular e inabilidade para suprimir/anular a influência da informação visual imprecisa.

Nos estudos de Nashner & Peters23, pacientes com desordens vestibulares periféricas mostraram resultados de equilíbrio anormal principalmente nas condições SOT V e SOT VI, as quais requerem função vestibular normal para manutenção da estabilidade na posição.

Parker26 sugere que pacientes com função vestibular severamente reduzida são capazes de compensar uma perda de input de propriocepsitividade ou input visual, mas acham dificuldades em compensar uma perda em que ambas as informações sensoriais proprioceptivas e visuais estão alteradas e tinham mais dificuldades com distorções sensoriais do que com perda de informação sensorial. Estas considerações podem explicar as alterações encontradas tanto na condição do SOT V e SOT VI.

Goebel, Dunham, Rohrbaugh, Fischel & Stewart24 relataram que procedimentos da PD mostraram um nível alto de sensibilidade para o álcool, particularmente em condições em que a função proprioceptiva foi distorcida e a função vestibular esteve ausente ou distorcida. Estes achados sugerem que o enfraquecimento deriva de distúrbios da função vestibular e que eles podem ser compensados em mínima parte por visão intacta. Os resultados encontrados em nosso estudo, usando a Foam-Laser Dynamic Posturography corroboram com a literatura consultada.

Mendonça, Rossi, Flores & Teixeira25 avaliaram 30 indivíduos do sexo masculino com idades entre 32 e 72 anos, sendo que 10 alearam utilizar somente álcool (GA), 10 utilizaram álcool e/ou drogas ilícitas (GAD) e 10 indivíduos saudáveis afirmaram não fazer uso abusivo e crônico de álcool e também nunca terem usado drogas ilícitas para formar o grupo controle (GC).

Observou-se que os indivíduos pertencentes ao GA obtiveram valores de equilíbrio inferiores ao GC, nos SOT I, II, IV e V, e os indivíduos de GAD obtiveram valores inferiores a GC apenas no SOT VI, sendo que nos SOT III e VI os três grupos apresentaram valores semelhantes. No caso do GA, em que foram encontrados valores inferiores aos do GC nos SOT I, II, IV e V, os resultados foram associados ao fato de que os sistemas proprioceptivo e
vestibular podem ser atingidos pela intoxicação do álcool, e o sistema visual pode atuar compensando a defasagem desses sistemas, visto que nas situações onde a visão era excluída, os indivíduos obtiveram os piores valores de equilíbrio.

A média final do SOT, do Grupo E e do Grupo C também apresentou diferenças estatisticamente significantes. Uma explicação para este achado é que o álcool diminui a corrente do potencial de ação do nervo e pode ser considerado como um depressor central, causando atraso dos reflexos e reações, sugerindo que sinais vínculos do labirinto são atrasados e interpretados como um distúrbio, como também os distúrbios do sistema oculomotor, que indicam alterações nos canais semicirculares causados pelo álcool. Segundo Lima, o alcoolismo crônico é capaz de provocar atrofia cerebral, comprometendo a performance mental, física e social desses indivíduos.

Através da Posturografia Dinâmica, pesquisadores examinaram o aspecto vestibulo-espinal da função vestibular que geralmente é negligenciado na avaliação da intoxicação causada pelo álcool e observaram um aumento significante do balanço corporal. A área de balança avaliada aumentou tanto com os olhos abertos, como com os olhos fechados, revelando uma compensação inadequada da ataxia induzida pelo etanol por estabilização visual. Segundo Ledin & Ödkvist, realizaram avaliação com a Posturografia Dinâmica em 11 homens alcoólicos crônicos, com idades entre 44-65 anos, tempo de uso de bebida alcoólica em média de 20 anos e o tempo de abstinência entre 1-20 anos, (média 7 anos). Concluíram que os padrões anormais encontrados na Posturografia Dinâmica e outros testes sugerem lesão cerebelar induzida por álcool e acreditam que a Posturografia Dinâmica é um valioso teste para avaliar o desequilíbrio em alcoólicos crônicos, mesmo em abstinência.

Estes mesmos autores em 1991 avaliaram 13 homens saudáveis e voluntários com idades entre 21-42 anos (média 27 anos) através da Posturografia Dinâmica antes e após ingestão de álcool e concluíram que a PD pode detectar o efeito do álcool no equilíbrio estático e dinâmico, sendo que as condições do teste com ausência da visão pareceram ser as mais sensíveis.

Em estudo foram avaliados 13 homens alcoólicos, através do exame da posturografia dinâmica, antes e após a ingestão de álcool, concluiu-se que o exame pode detectar o efeito do álcool tanto no equilíbrio estático como no equilíbrio dinâmico, sendo que as condições do teste com ausência de visão (TOS II e TOS V) pareceram ser mais sensíveis a perturbações do equilíbrio.

Em nosso estudo pode-se notar sensibilidade maior da posturografia dinâmica em relação a vectoeletronistagmografia quanto à detecção de alterações do equilíbrio supostamente causadas pelo álcool. Este achado concorda com a literatura consultada. A eletronistagmografia tem sido por muitos anos o principal teste clínico para avaliar a função vestibular e a PD é um método inteiramente diferente de medir o equilíbrio em comparação com testes tradicionais. Segundo Parker, a PD é um método de quantificação e descrição do equilíbrio em posição parada e equilíbrio em resposta a mudança em inputs sensoriais e plataforma de movimento, sendo esta bateria de testes mais útil demonstrando e quantificando anormalidades do equilíbrio do que descobrindo diagnóstico etiológico. Podendo mostrar anomalias quando outros testes são normais e em combinação com eletronistagmografia e teste rotacional pode dar informação da localização da lesão.

Asai, Watanabe, Ohashi & Mizukoshi, na rotina de avaliações de equilíbrio de pacientes vestibulares, têm ocasionalmente encontrado pacientes com queixa de tontura/ou vertigem, apesar de a eletronistagmografia não ter mostrado achados anormais, demonstrando com isto que a PD poderia ser proveitosa para detecção de disfunções vestibulares em certos casos.

Segundo Ledin & Ödkvist, com um método sensível como a PD os distúrbios do equilíbrio serão detectados precocemente e com grande sensibilidade, melhor do que com os métodos tradicionais de avaliação do equilíbrio. A posturografia dinâmica fornece novas informações sobre as condições do paciente vestibular e a compensação vestibular, pois pode avaliar a função vestibulo-espinal isoladamente das informações visual e proprioceptiva.

A posturografia dinâmica computadorizada apresenta um altíssimo custo, inviabilizando a sua aquisição na grande maioria das instituições. Já o Foam-Laser Posturography é um método barato, rápido, e relativamente fácil de realizar, que pode nos fornecer uma boa avaliação da tríade do equilíbrio corporal.

Nesta pesquisa pode-se constatar que os alcoólicos mesmo em período de abstenção apresentam alterações significativas de equilíbrio postural utilizando o Foam-Laser Posturography, quando comparados com indivíduos não alcoólicos.

CONCLUSÃO

Após a realização das provas de equilíbrio estático e dinâmico, vectoeletronistagmografia computadorizada e posturografoia dinâmica em indivíduos frequentadores de um grupo de alcoólicos anônimos, foi possível observar que:

- A Posturografia Dinâmica mostrou-se eficaz para detectar alterações de equilíbrio em indivíduos alcoólicos.

- A Vectoeletronistagmografia computadorizada apresentou-se normal na maioria dos indivíduos do grupo experimental indicando que o labirinto e as vias vestibuloculomotoras estariam normais e que o distúrbio do equilíbrio por eles apresentado seria decorrente de disfunção em outras áreas do sistema nervoso central ou periférico.
Assim, após a realização desta pesquisa e considerando as condições experimentais empregadas, foi possível concluir que o álcool tem influência deletéria no equilíbrio postural.

REFERÊNCIAS BIBLIOGRÁFICAS

1. Ganança MM, Caovilla HH. A vertigem e sintomas associados. In: Ganança MM, Vieira RM, Caovilla HH. Princípios de Otoneurologia. São Paulo: Atheneu 1998. p.3-5.
2. Munhoz MSL, Silva MLG, Caovilla HH, Ganança MM, Frazza MM. Vertigem e insuficiência vertebrobasilar. Atualidades em geriatria 1999;(2):12-5.
3. Silva MLG, Munhoz MSL, Ganança MM, Caovilla HH. Ototoxicoses. In: Silva MLG, Munhoz MSL, Galveas LC, Caovilla HH, Quadros Clínicos Otoneurológicos Mais Comuns. São Paulo: Atheneu; 2000.
4. Ganança MM, Caovilla HH. Como lidar com as tonturas e sintomas associados. In: Ganança MM, Munhoz MSL, Caovilla HH, Silva MLG. Estratégias Terapêuticas em Otoneurologia. São Paulo: Atheneu; 2001. p.1-20.
5. Douglas CR. Fisiologia do equilíbrio. In: Douglas CR. Tratado de fonoaudiologia. Ed.5. São Paulo: Robe; 2002.
6. Ganança MM, Munhoz MSL, Caovilla HH, Silva MLG. Lidando com as "labirintites". In: Caovilla HH, Silva MLG, Munhoz MSL, Ganança MM. Entendendo as tonturas - O que você precisa saber sobre os Distúrbios do Labirinto. São Paulo: Atheneu; 1999. p.90.
7. Nadvorny N, Nadvorny B. - Sinais e sintomas do alcoolismo. Acta Médica 1988;316-21.
8. Campos S. Alcoolismo. 2004. [http://oficina.cienciaviva.pt/~pw020/g/alcool.html]. Acessado em 27/03/2008.
9. Munhoz MSL, Caovilla HH, Silva MLG, Ganança FF, Ferracini MR, et al. Conceitos e Algoritmos diagnósticos. In: Munhoz MSL, Caovilla HH, Silva MLG. Condutas na Vertigem. São Paulo: Moreira Júnior; 2004.
10. Campos CAH. Principais Quadros Clínicos no Adulto e no Idoso. In: Ganança MM (ed.). Vertigem Tem Cura? São Paulo: Lemor; 1998. p.49-57.
11. Blüsewicz MJ, Dustman RE, Schenkenberg T, Beck EC. - Neuropsychological correlates of chronic alcoholism and aging. J Nerv Ment Dis. 1977;165(5):348-55.
12. Castagno LA. A New Method For Sensory Organization tests: The Foam-Laser Dynamic Posturography. Rev Bras Otorrinolaringol. 1994;60(4):287-96.
13. Giron E. Complicaciones neurológicas del alcoholismo. Rev Med Hondur. 1984;52(2):119-21.
14. Ledin T, Ödkvist LM. Abstinent Chronic Alcoholics Investigated by Dynamic Posturography. Ocular Smooth Pursuit and Visual Suppression. Acta Otolaryngol. (Stockh) 1991;111:646-55.
15. Caovilla HH, Ganança MM, Munhoz MSL, Silva MLG, Settanni FAP. Equilíbrio estático/dinâmico e Provas Cerebelares. In: Caovilla HH, Ganança MM, Munhoz MSL, Silva MLG. Série Otoneurológica: Equilíbriometria Clínica. Ed.1. São Paulo. Atheneu, 1999. p.45-6.
16. Nischalk M, Ortmann C, West A, Schmid M, Stol W, Fechner G. Effects of alcohol on body-sway patterns in human subjects. Int J Legal Med. 1999;112:253-60.
17. Mascari DAS, Zeigelboim BS, Fukuda Y, Anadão CA, Ganança FF. Relato de desordens vestibulococleares causadas por álcool. Acta AWHO. 1993;12(3):128-32.
18. Mangabeira Albernaz PLA, Ganança MM, Caovilla HH, Ito YI, Castro HD. Vertigens - aspectos clínicos e terapêuticos. V.3 São Paulo, Laboratório Ache, s/d.
19. Bellé M, Sartori AS, Rossi AG. Alcoolismo: efeitos no aparelho vestibulo-colear. J Nerv Ment Dis. 1993;201(s):116-122.
20. Liquori A, D’agostino RB Jr, Dworkin SI, Edwards D, Robinson JH. Alcohol effects on mood, equilibrium and simulated driving. Alcohol Clin Exp Res. 1999;23(5):815-21.
21. Tianwu H., Watanabe Y, Asai M, Shimizu K, Takada S, Mizukoshi K. Effects of alcohol ingestion on vestibular function in postural control. Acta Otolaryngol. (Stockh) Suppl 1995;519:127-31.
22. Diener H, Dichgans J, Bacher M, Hülser J, Liebach H. Mechanisms of postural ataxia after intake of alcohol. Z Rechtsmed. 1983;90:159-65.
23. Nashmer LM, Peters JF (1990). In: Mascari DAS, Zeigelboim BS, Fukuda Y, Anadão CA, Ganança FF. Relato de desordens vestibulococleares causadas por álcool. Acta AWHO. 1993;12(3):128-32.
24. Parker SW. Vestibular evaluation - eletronystagmography, rotational testing and posturography. Clin Electroencephalogr. 1993;24(4):151-9.
25. Goebel JA, Dunham DN, Rohrbaugh JW, Fischel D, Stewart PA. Dose-related effects of alcohol on Dynamic Posturography and oculomotor measurements. Acta Otolaryngol. (Stockh) Suppl 1995;520:121-15.
26. Mendonça AC, Rossi AG, Flores FT, Teixeira CS. Alterações do equilíbrio em indivíduos ex-usuários de álcool e drogas ilícitas. Acta O.R.L. 2000;4:255-58.
27. Ledin T, Ödkvist LM. Effect of alcohol measured by dynamic posturography. Acta Otolaryngol. (Stockh), suppl. 1991;481:576-81.
28. Lima JMB. - Alcoolismo crônico e atrofia cerebral: problema grave e atual. Rev Bras Neurol. 1984;20(4):93-4.
29. Asai M, Watanabe Y, Asai M, Shimizu K, Takada S, Mizukoshi K. Evaluation of vestibular function by Dynamic Posturography and other equilibrium examinations. Acta Otolaryngol. (Stockh). Suppl. 1993;519:127-31.
30. Liguori A, D’agostino RBJr, Dworkin SI, Edwards D, Robinson JH. Alcohol effects on mood, equilibrium and simulated driving. Alcohol Clin Exp Res. 1993;17(3):128-32.
31. El-Kashlan HK, Shepard NT, Asher AM, Smith-Wheelock M, Telian SA. Evaluation of clinical measures of equilibrium. Laryngoscope. 1998;108(3):311-9.