Low Water Stage Marks on Hunger Stones: Verification for the Elbe River in 1616-2015

Libor Elleder¹, Ladislav Kašpárek², Jolana Šírová³ and Tomáš Kabelka⁴

¹ Applied Hydrological Research Department, Czech Hydrometeorological Institute, Prague, Czech Republic.
² T. G. Masaryk Water Research Institute, p. r. i., Department of Hydrology, Prague, Czech Republic.
³ Hydrological Database and Water Balance, Czech Hydrometeorological Institute, Prague, Czech Republic.
⁴ Prague Regional Office, Department of Hydrology, Czech Hydrometeorological Institute, Prague, Czech Republic.

Correspondence to: Libor Elleder (libor.elleder@chmi.cz)

Abstract

The paper deals with the issue of documenting hydrological drought with the help of drought marks (DMs) which have been preserved on dozens of hunger stones in the river channel of the Elbe in Bohemia and Saxony. So far, the hunger stones have been regarded rather as an illustration of dry seasons. Our aim was, among other issues, to draw attention to the much greater documentary value of hunger stones and individual dry year marks inscribed on them. Therefore, we wanted to verify their reliability and better understand the motivation of their authors. For this purpose, we used the current extreme drought period of 2014-2019 which allowed detailed documentation of hunger stone in Děčín with marks from 1536 to 2003. Thanks to the helpful position of the object near the water gauge, we could compare the measured mark heights with the corresponding water levels. Simultaneously, we have scanned the object into 3D format so that it is possible to perform a detailed inspection of all marks, even those that were overlooked during field survey. A review of scientific and technical literature from the 19th century showed that marks of low water levels on stones and rock outcrops were to some extent interconnected with other important points. They were linked to zero points of water gauges, initially set up for navigation purposes, and also to flood marks. A particular situation in Děčín is therefore a unique example of epigraphic indication of low and high water levels in the enclosing profile of the upper part of the Elbe river basin. To verify the marks of low water levels we used the then current scientific studies which in the past brought the identification of dry periods. However, we also used the oldest series of daily water levels measured in Magdeburg, Dresden, and Prague, available by 1851, i.e. by the beginning of measurements in Děčín. These series had to be reconstructed or digitized from the CHMI archive sources. Since 1851 we have been able to accurately identify the heights and sometimes even the specific days when the minima were marked.

After thorough examination of field and newly measured data, as well as data obtained from review of older literature presenting the first surveys of marks on hunger stones already in 1842, older marks of low water levels can be considered mostly as a reliable indication of annual water level minima. The aim of the mark creators was not to make the commemorative inscription on drought, but to register the exact position of the water mark of the annual minimum. The deviations of most of the marks from the water gauge records did not exceed 4 cm, in worse cases 8 cm and only exceptionally the disparity was greater.

From the material obtained so far, the overall slight downward trend of minima since the end of the 18th century is noticeable. The view on minima of the 17th and 16th century is based on only a few data and it is difficult to generalize so far. However, the minima obtained are comparable to or lower than the data from the critical dry periods of 1842, and 1858 to 1874. Our verification and certain rehabilitation of low water level marks should be an incentive to process all available epigraphic
documents of this kind in the near future in closer cooperation with colleagues from Saxony. The potential of these objects offers a deeper knowledge of periods of hydrological drought and possibly morphological changes in the Elbe riverbed.

1. Introduction

In recent years, the phenomenon of drought has become the most prominent manifestation of climate change in Central Europe. However, its objective evaluation and the evaluation of its extremity is often a problem. The reason consists in difficult to grasp the phenomenon of drought or varying impacts of it, respectively. Drought alongside the floods, though, rank among the most commonly evaluated hydrological extremes. While the flood is caused by an unexpected and short-term excess of water that causes damage, hydrological drought follows long-term deepening of water scarcity.

Our contribution is focused on hydrological drought, more precisely on minima of water stage of surface water streams. The low water level and flow rate after long periods of deficit precipitation represent particularly valuable information about the basin runoff. Therefore, they also report on the base-flow, the groundwater accumulation, long-term depletion and hydrological drought propagation (van Loon, 2015). The minimum water level or flow is, to a large extent, summary information on the status of a given river basin.

Like floods, hydrological drought is difficult to study without examination of historical events. However, what options do we have regarding low water levels? The available hydrological series usually cover not more than 150 years. The longest hydrological series of measurements in Cairo 1622-1933, representing 1311 years of Nile observation (Shanin, 1985), was used to assess drought and its interrelations with phenomena such as El Nino. In Europe, the longest series comprising measurements of water levels in Magdeburg started in 1726 (see the following text), and the measurements in Paris that started in 1731 (Delametherie, 1800). However, it is not possible to conceal another complication, namely the later beginning of systematic hydrometric measurements which are mostly available only since the end of the 19th century. This makes it difficult to estimate flow rates somewhere. Therefore, stable profiles where we can assume the validity of the rating curve as far back as possible are very valuable. Systematic series of water stages are therefore testimony on runoff fluctuations but partly also on changes in the stream cross-section both natural and anthropogenic.

Studies that focus on the identification of past dry periods and possibly on the wider context within NAO, ENSO oscillations (e.g. Mikšovský et al., 2019) are mostly based on an analysis of precipitation deficit or indicators that include temperature and hence loss by evaporation. They are necessarily based on previous reconstructions of temperatures and precipitation based on an analysis of documentary sources. However, if we want to describe how the rainfall deficits and other weather influences were reflected in the runoff from the surveyed river basin, we have the options so far rather limited.

Based on the available series of daily flow rates in Děčín (1851-2015), Brazdíl et al. (2015) referred to a period of low flows between 1858 and 1875. With the help of deficit volume analysis with fixed annual (Q_{95}) and variable monthly threshold (Q_{95m}), they pointed out to drought corresponding to the 1904, 1911 or 1947 dry periods. The authors elaborated in detail selected dry years 1808, 1809, 1811, 1826, 1834, 1842, 1863, 1868, 1904, 1911, 1921, 1934, 1947, 1953, 1959 and 2003, i.e. 8 cases in each century representing a total of 16 cases selected on the basis of the lowest Z-index and SPI1 values out of 10 homogenized precipitation series (Brázdil et al., 2012). Evaluation of particular years includes meteorological and synoptic conditions, drought impacts, monthly values of air temperature, precipitation, SPI1, SPEI1 and Z-index. Concerning the identification of the hydrological drought in the 1860s and 1870s, a similar result was reached by Elleder et al. (2019) when analysing the catastrophically dry year 1874 by analysing the newly reconstructed series of water levels in Prague (1825-1890).
But what are credible documents on low water levels and a possibility of obtaining objective information on runoff before 1851, 1825 or even before 1726? Based on reconstructed data on temperatures and precipitation between 1766 and 2015, Hanel et al. (2018) indicated extreme deficits in precipitation, runoff and in water content of the soil surface layer. With regard to the affected areas, they identified droughts in 1858-1859, 1921-1922 and 1953-54 as extreme.

However, there is no doubt, similar to flood analysis, that verifying the model results according to the actual water level and flow rate considerably increases their credibility. We have a relatively large range of paleostage indicators to describe the maximum water levels during a flood. These are various types of shallow-water sediments, dendrochronological symptoms such as damage to trees, cave sediments, etc. (Benito et al. 2006, 2015). However, similar methods for estimating low water levels and flow rates are difficult to conceive. Therefore, only low water level indicators available through documentary sources remain (see Brázdíl et al, 2018 for documentary data and the study of past drought, especially for epigraphic documentation). During the drought, attention was paid to objects normally hidden below the water level. Most often these were large boulders, protruding rocks, sometimes even point bars or slip-off slope sandy deposits with specific local names. In many cases these were also artificial objects, protruding foundations of old bridges and building elements; around the Rhine these were the remains of Roman buildings or old bridges, etc. (Wittman, 1859). Sometimes there was an interesting local tradition, in the sandstone area on the Czech/Saxon border it was the making of commemorative inscriptions, particularly inscribing the current year with low water level. Today, these objects are mostly called the hunger stones.

This article focuses on them wishing to clarify their purpose, origin and meaning. Traditionally, water management experts and historians and perhaps ethnographers in Bohemia considered inscriptions and year indication on hunger stones to be an interesting phenomenon symbolizing drought. At the same time, however, the understanding prevailed that the marks of “dry years” were merely commemorative records with no deeper meaning and that they were more or less randomly positioned. We believe that it is in this area that we have taken a substantial step forward in the explanation and possible use of these records.

We have therefore focused on the Děčín city located in the lower section of the Czech part of the Elbe river basin. The most well-known hunger stone is located here and all important height surveying of all the signs were carried out in the summer of 2015. In 2018 the whole stone was scanned. This article discusses to what extent the inscription years have the character of a historical minimum water level.

Objectives

1. To document and explain in more detail the phenomenon of hunger stones.
2. When are the year-marks only commemorative for that dry year and when do they represent the exact records of the annual minimum water levels?
3. Are there apparent relations in the heights of minima on different stones?
4. What is the relation to the systematic series of measurements?
5. Do the elevations suggest any trend in water levels?

2. Described region Czech-Saxon Switzerland and Děčín town

The Elbe river valley between Litoměřice and Pirn was made famous by a number of prints and paintings by 19th century romantic painters such as Adrian Zings (1734 – 1816) and Caspar David Friedrich (1774 – 1840). A. Zings born as a Swiss, who lived in Dresden, probably coined the name of the region Saxon Switzerland, and later extended to the Czech — Saxon Switzerland (Frölich – Schauseil, A., 2018). The Elbe, which leaves the territory of the Czech Republic in the deep rocky canyon and ends here its upper stretch, flows between Lovosice and Děčín through the Krušné hory mountain system. Along its path it first intersects the volcanic zone of the České středohoří area. Below Děčín, it then flows through the landscape of sandstone rock formations. The Elbe riverbed is situated at an altitude of about 120 m a. s. l. in a deep sandstone valley 200-300 m below the level of
the sandstone plateau (350-450 m a. s. l.). Protruding volcanic formations reach a height of 500-800 m.

The Děčín and Hřensko cross-sections represent the closing profiles of the Czech part of the Elbe. In addition to wood, the local sandstone was a traditional building and sculptural material here and throughout the North Bohemian region. However, it was also used for rich epigraphic production on the spot — on rocks and boulders (Jenč, P., Peša, V., Barus, M. 2008). It is quite logical that water levels were recorded at river where possible, both minima and maxima.

Fig. 1 The Děčín city in 1842 with indication of the original extinct town (13th — 14th century), area of shallows (the lightest blue), water gauges RG1, RG2, G1851 and OG and three hunger stones (HS1, HS2, HS3)

At the centre of our study is the Děčín city (Fig. 1) known among other things for its unique series of flood marks (Brázdil et al., 2005, Elleder, 2016a) and by just explored hunger stone. The earlier documentation (see the following text) which comes from commission inspections of the Elbe riverbed revealed previously unknown facts. In 1842, there were still in total three hunger stones in the Děčín city with engraved years, two on the left [HS1, HS3] and one on the right bank upstream the ferry [HS2] (Protokoll, 1842). The preserved stone [HS3] which is located in the lower part of the deeper riverbed is in the centre of our attention.

There were at least two places in Děčín that were problematic from the navigation point of view. The first hunger stone [HS1] was located near the first water shallows area. It is related to the confluence of the Elbe River with the Ploučnice River from the right, the Jílovský stream from the left and sediment deposits. This place with a ford at the confluence and below the protruding sandstone ridge was probably advantageous long ago as a settlement. At the end of the 13th century a royal town was founded here, Fig.1, (Velimský, 1991). Possibly in connection with the period of a significant occurrence of floods between 1342 and 1374 (Elleder, 2015) it was abandoned and transferred as a serf city to the other side of the rock ridge where a castle stood and nowadays the manor house is situated. On the rock under the castle there are flood marks from 1432 carved into the rock block.

Alongside, a water gauge is located with indication of the Prague ell units of length (59 cm) [RG2].
This gauge starts at 9 ells above the water level for full navigability (Bohemia daily, 1845). This depth was traditionally referred to as the “Fünfspanner”, i.e. “five-span”, a sufficient navigational depth of 5 spans or 50 inches, or 125-130 cm for the full loading of the Elbe ships (Bohemia daily, n. 45, from April 4th, 1845). There was a rock block near the shore with a water gauge for low water levels in feet [RG1] (1 to 5 feet), probably related to safe passage. In 1851, water levels in Děčín began to be systematically monitored, initially at the old water gauge [OG] at the site of the navigation directorate. Apparently, the water gauge served the navigation to efficient ship loading for the place of the second water shallows area. It still bears the original German, now popular, name “Heger”, or supervision. Later, the observation was transferred to a new water gauge [G1851] (see chapters on methodology, documentary sources).

3. Methodology

3.1. Data and documentary sources

The first partial goal was to prove that the water level marks on the hunger stone in Děčín and other stones were meant by their creators as signs of annual minima in the years attached to the line. The simplest means is a comparison with concurrent water level measurements on a near water gauge (accurate identification) and also use of other available measurements (approximate confirmation of significant water level decline). We mainly used four series stored in CHMI (Czech Hydrometeorological Institute). These are the systematic series at sites of Magdeburg (1726-1880), Dresden (1801-1829), Prague (1825-1890) and Děčín (1851-2019).

3.2. A series of daily water levels in Magdeburg 1726-1880

Around 1880, this series was acquired by Prof. Harlacher (Elleder, 2012) from the Water Management Directorate in Magdeburg. It was found 110 years later in the unclassified funds of the Hydrological Service in the 1990s. A copy was sent to the IKSE Magdeburg headquarters. Its digitization was carried out in 2005-2007 in cooperation with CHMI and T. G. M. WRI. The value of these measurements is considerable as the series covers continuously the whole period of 64 years of the 18th century having no other alternative for Central Europe. Its disadvantage is the downward trend in annual minima which can be explained largely by shortening, deepening and changing the profile of the Elbe river around 1816 (Simon et al., 2005). However, in our case we can identify very well particular annual water level minima and their association with the years on hunger stones between 1746 and 1800 (hereinafter DM for the minimum water level signs). By identifying the annual minimum water level in Magdeburg, we could estimate the likely date of making DM in Děčín considering Děčín-Magdeburg water transit time (6 days).

3.3. A series of daily water levels in Dresden 1801-1829

A copy of this series made probably by an official of the Prague City Hall in 1829 offers an evidence that the systematic series does not begin in 1806 (Fügner, D., Schirpke, H., 1984, Fügner 1990) but at least in 1801. The series was found in the 1990s by a private researcher J. Svoboda in the Archive of the Prague capital, and he left it to CHMI. Dresden has a clear advantage over Magdeburg in its geographical proximity to Děčín, so we preferred it for the period 1801-1829.

3.4. A series of daily water levels in Prague 1825-1890

In Prague, an occasional water gauge (possibly flood gauge) was probably established by the director of the Klementinum observatory A. Strnad in the profile at the Monastery of the Knights of the Cross in 1782 (Brázdil et al., 2005, Elleder, 2016a). Later (in about 1821) it was transferred to the profile of the Old Town mills. Systematic observation of the water gauge started in 1825 (in more detail, Elleder, 2016). The profile of the Old Town mills was related to the weir normal (i.e. to the weir crest)
so it was a profile that did not change. According to Novotný (1963), the original observation diaries and perhaps even annual reports of measurements were lost. Only the published values of monthly minima, maxima and averages in the yearbooks of the Klementinum observatory remained. In similarity with other observations (e.g. in Magdeburg, or in Vienna), Prague observations were published weekly and later daily in daily newspapers. Therefore, we decided to regain daily measurements of water levels published in the daily Prager Zeitung starting with January 1825. The data were collected for three years by an external CHMI associate Mr. Zvonimir Dragoun in the archive of journals and newspapers of the National Museum in Prague. The measurements were used similarly to the previous series particularly for the period 1825-1850. A special publication will be devoted to the complete time series.

3.5. A series of daily water levels in Děčín 1851-1919

In similarity with other profiles along the Czech section of the Elbe River, a systematic observation of water levels was introduced in Děčín. At first there was an old water gauge [OG] (Fig. 1) which was located in the profile at the site of the steamship navigation directorate probably before 1842. Later, but probably not earlier than from 1858, the new water gauge [G1851] started to be used on the pillar of the Empress Elizabeth Bridge (built in 1851). The problem is a newly found uncertainty in the change of the zero point of the water gauge (Protokoll, 1858) whose height might have been elevated in 1858 by 16″ (i.e. by about 42 cm). It is not entirely clear from when exactly the data from the old annual reports of measurements (monthly reports are available only after 1875) of the Děčín series are related to the new zero height. Minima of water levels on hunger stones [DM] are therefore partly a possible verification of early measurements in Děčín. Even later, around 1877, the water gauge was transferred to the waterfront (Harlacher, 1883). At that time from November 1876 to March 1881, prof. A. R. Harlacher was performing hydrometric measurements with his colleague J. Richter and associates (Harlacher, 1883). From this time, we have measurements up to 169 cm of water level at a measured flow rate of 90 m3.s$^{-1}$ (Tab. 1). For interpolation and extrapolation of the curve, the formula $Q = 78.09 \left(H_0 + 1.45 \right)^{1.95}$ was applied. According to this formula, the water level at 140 cm ($H_0 = -60$ cm) would correspond to a flow rate of 57 m3.s$^{-1}$ (H_0 is the water level corresponding to the height of the water before the shift of zero of the water gauge by -200 cm made on 1 October 1939). Novotný (1963) reports the successive shift of the rating curve and presents the evaluation of historical flow minima. Of these, for the water level of 133 cm (on 23 August 1868) he reports the flow rate of 50 m3.s$^{-1}$ and for the stage of 137 cm (on 6 September 1874) the value of 54 m3.s$^{-1}$. After the river bed modification around 1891, the curve changed substantially in the section of low flow rates (Tab. 1). He evaluated the significantly lower flow rate for the water stage at 113 cm only later on 19 August 1904, at 39 m3.s$^{-1}$. This is a significant difference that would affect the flow rates at the extreme minima of 1868 and 1904, and the question is whether to trust the 1876-1881 curve when it was not possible to evaluate the lowest water levels because they did not occur. Hydrometry of small flow rates on the Saxon side has been available since 1886, but extremes only since 1893. Therefore, in the results, the flow rates at individual minima are accepted so far with caution.

Tab. 1 The oldest measurements of very low flow rates in Děčín and on the Saxon side

Date	H [cm]	Q [m3.s$^{-1}$] / location of the flow rate measurement
Děčín		
28. 7. 1876	163	90 / Děčín *
13. 10. 1877	167	96 / Děčín*
29. 8. 1893	144	63 / Děčín*
13. 8. 1904	119	46 / Děčín*
29. 8. 1911	118	56 / Děčín*
Dresden		
17. 7. 1893	-179	56 / Großschepa **
14. 7. 1893	-172	63/ Kötschenbroda **

*Old hydrometry, 1877-1940, **(Elbeströmbauverwaltung, 1897)
3.6. Preliminary verification of the heights of assumed water level minima using regional press and simultaneous measurements on the existing water gauge in Děčín

This study was preceded by about 10 years waiting (since 2005) for a suitable opportunity to undertake a field survey of hunger stones that are totally or partially below the surface at normal summer flow rates. There was no other possibility than to try to find an alternative solution. In 2009, as part of a preliminary study, we tried to use rich iconographic material from the period 1894 to 1994 and reports of hunger stone in Děčín in contemporary newspapers. In the older press materials, reports were looked up when the hunger stone was visible and an indication was given as well which year-marks were above the relevant water level. Then it was easy to classify the marks into height groups with a water level higher than that of the day reported. Further specification of heights was possible only on the basis of photographs by comparing which mark is higher or lower in the given group. The marks were connected by contour lines indicating the resulting bands. Estimated water levels were then compared with annual minimum values. The result pointed to the expected possible concordance with annual water level minima. We have followed a partially similar approach with the hunger stone in Pirna.

3.7. Field measurements

In 2011, it was possible to carry out a field verification of the estimated heights of the marks that were located in the highest part of the stone. In 2014, the opportunity was not used as we believed that the dry season will have a longer-term character which was confirmed in 2015 and 2018. In 2015, the hunger stone in Děčín [HS3] and the stone in Těchlovice were surveyed. During the surveying of the stone in Těchlovice located on the slip-off slope gravel deposits, it was not necessary to make any ground adjustments. However, only relative heights recalculated to the minimum height of 1842 were measured.

The surveying of the Děčín stone in 2015 required preparation representing sediment removal and stone cleaning (manual work of 2 to 3 people for 3 hours or more). In 2015, the sediment layer reached the sign of 1616, i.e. around 70 cm of height. In addition, it was necessary to make a pit around the stone’s very low marks. The use of a pump with a syringe to wash away sediment, blasting stone and pumping water from the sump significantly accelerated the work.

The measured mark heights were linked to the nearby fixed geodetic point. All surveyed geodetic levelling points were photographed. The measurement took place on 14th August when water levels dropped the lowest just before the expected rainfall episode which increased the Elbe water level significantly. Participants of the measurements were: Ladislav Kašpárek and Jan Kašpárek from T. G. M. WRI, Libor Elleder from CHMI and a land surveyor, Mr. Zvonimír Dragoun (presented on EGU 2016, Elleder, 2016b).

We basically did the same when scanning and creating a 3D model in 2018. The stone was prepared by colleagues from CHMI: Martin Groušl, František Pěkný, Martin Hubený in advance on 27th July. The final adjustment was made on the day of measurement and was assisted by Daniel Kurka, Libor Elleder and Martin Hubený. Martin Hubený also performed a hydrometric measurement in the hunger stone profile (Fig. 1 [HS3]) including the cross-section measurement using the ADCP (acoustic Doppler current profiler). 3D scanning was performed by Libor Tělupil from the VR3D Company (http://vr3d.cz) on 30th July, lasting for about 3 to 4 hours. Similarly, the marks on the rock in the [RG2] profile were scanned. Because scanning requires soft, shadow-free lighting, a temporary stand was placed over the stone. The whole event was documented by the local press (https://www.idnes.cz/usti/zpravy/decin-vodomer-hladovy-kamen-sklenovani-3d-model.A180730_113803_usti-zpravy_mi) and the result is partially accessible on the CHMI website (http://portal.chmi.cz/historicka-data/hydrologie/raznamy-z-minulosti/hladovy-kamen). Both measurements in 2015 and 2018 were performed during hot summer days with temperatures in the first case 38 °C, in the second case around 30 °C. An independent surveying campaign was carried out in 2015 by the Elbe River Administration, state enterprise (Randák et al. 2015, 2018a, b) and in 2018 also by hydrologists and archaeologists from Saxony (Walther et al., 2018).
3.8. Measurement processing

In 2015, 33 points were surveyed, mostly engraved lines with attached year indications. For obvious reasons, making a DM mark is much more difficult than making a flood mark. It is difficult to estimate when the water level starts to rise (see discussion). Therefore, it was not always certain whether the sign would represent an indication of the immediate low water stage (LL), the local minimum (LM) or the annual minimum (AM). For verification and approximate determination of the minima marked on hunger stones (DM) until 1726, there are only available documentary sources, i.e. reports on weather and impacts of hydrological drought, such as drying of smaller streams, wells, shutdowns of small and medium mills, or a necessity to travel to a grain mill tens of kilometres. We reproduce this information primarily from Brázdil et al. (2015). The decade frequencies of drought occurrence since 1500 (Brázdil et al., 2013) were a valuable basis for verifying the position of marks, especially in the 16th and 17th century.

For the evaluation of the DM marks made after 1727 we used the above-mentioned series of measurements in using the Magdeburg series rather for dating verification and the Prague and Dresden series for assuming a very approximate estimate of the significance of the minimum. Concerning newer cases after 1851, it is possible to confirm the correct or incorrect position of the mark (DM). Regarding deviations from the measured water level for that day, we consider the precisely marked height (HP) at a deviation of 0-4 cm and approximately marked height (CP) at a deviation of 4-8 cm. We consider larger deviations as a possible mistake when placing the measuring rod or a poor understanding of the difficult-to-read position of the mark or line. If the DM mark does not have an accurate dating, we can assume dating according to the minimum water level when there is the exact (HP) identification with the minimum water level.

A very important product is the digital model of a hunger stone, which can be viewed, edited in contrasts by selecting the option “shaders” using the Meshlab processing system (http://www.meshlab.net/), and thus clarify the unclear situation and illegible marks. Because at the time of measurement we had not always understood the situation in situ, it was possible to derive the missing height from the digital model by reading the position (x, y, z). Thus, the second mark was found on DM1616, DM1536, etc. In the survey diary, the actual measurement is clearly arranged, documented by photographing of the position of the measuring rod and by the highlighted view of the described part of the stone. The measured heights of all marks and the position are presented on the stone which is divided into 4 height zones and the embankment side [ES], left side [LS], right side [RS], front platform [P] and the highest parts of the ridge [R]. The presentation of the marks is chronological, so that the information is combined into a logical complex.

3.9. Complementing measurements according to other objects

Some marks (DM) are missing on the Děčín stone, but we find them elsewhere. If their heights were measured during commission inspections of the Elbe River in 1842 (Protokoll, 1842) and 1850 (Protokoll, 1850), relative to the level of 1842, these differences can be utilized. Thus, some heights of extinct stone [HS1] were added in Děčín (1766, 1782), Dolní Žleb (1516, 1615, 1636, 1706, 1834 and 1835) and Pirna (1706, 1834 and 1835). For other hunger stones, we can only take into account the position of the marks, reviewing whether it is in accordance with or contrary to the facts found.

4. Results

4.1. Brief history of low water stage records in context

It is very likely that the most objective records of hydrological drought or more specifically records of low water levels are related to navigation in Central Europe (Brázdil et al. 2019b mentioned limiting of water transport in 1686 and 1746 years). It cannot be ruled out, for example, that mapping of the Vltava River (by David Altmann of Eidenburg) and the river regulation by Kryšpín Fuk (1640-1643, abbot of the Premonstratensian monastery in Strahov), (Wiesenfeld, 1844) were made possible just by
a drier period, probably culminating in 1642 (documented by Pekař, 1998). Also, surveys of the upper Vltava river reaches carried out by Lothar Vogelmonte for the intended canal between the Danube and the Vltava rivers in the years 1700-1715 show a possible time relationship (Wiesenfeld, 1844). The dry years 1705, 1706 and 1707 (marked on hunger stones) could be an opportunity to explore the streams in times of low water level. Drought in 1726-1728 clearly affected the beginning of water level measurement in Magdeburg (Hofmann, 1850). It was probably connected with the frequently quoted commission of Jan Ferdinand Schor that carried out a survey of the Vltava River with regard to navigation and the construction of the first lock chambers (Wiesenfeld, 1844). The agreement on duty-free navigation on the Elbe (see Faulhaber, 2000, 2013) from 1821 (the year was also marked on the stone in Děčín [HS3]) along the Elbe river up to Hamburg led to increased interest in monitoring water levels for individual participating states including the Austrian Empire, Saxony up to Denmark.

The catastrophic dry period of 1834 to 1836 affecting both the Elbe and the Rhine basins raised the issue of a general downward trend in water levels, especially in the Elbe basin. H. Berghaus pointed out this trend and the poor prospects of the Elbe navigation (Berghaus 1836, 1854). A forestry expert, Prof. Reuter of Aschaffenburg (Reuter, 1840), pointed out the possibility of this trend being linked to deforestation of the Central European landscape.

4.1.2. The Elbe Commission in 1842 and surveying of hunger stones

In this context, there is a link with the disastrous dry year of 1842 (Brázdil et al, 2019a indicated that in 1842 summer precipitation was significantly reduced from western to eastern central Europe) and the Commission of the Elbe states (Austria, Saxony, Prussia, Anhalt, Hamburg and Denmark) organized to improve navigation conditions. The aim was a thorough description of all fixed points (water stage gauges, flood marks and also marks on hunger stones), navigation conditions and minimum navigation depths along the navigable section of the Elbe from Mělník town to Cuxhaven. Stones and rocks in the river were of double importance for navigation. They were a dangerous element, but at the same time they served the orientation for navigation. The commissioners travelled by boat and the section Mělník-Meissen was surveyed from 5th to 11th September 1842, 14 days after reaching an absolute minimum water level. The water levels of the Vltava and Elbe were still very low, but they were already 9 to 20 cm higher than the minimum in the previous August. In Děčín town, measurements were made from 7th to 8th September (Protokoll, 1842) at a water level at about 3.5″ (9 cm) above the 1842 minimum. Three hunger stones in Děčín (Fig. 1) and one in Dolní Žleb were identified and surveyed. On the Czech side, a water gauge in Litoměřice and a water gauge for navigation purposes in Děčín were noted in the section between Mělník and the state border (in both cases there were no regular records available). On the Saxony side, water gauges in Bad Schandau, Pirna, Dresden, Meissen and Riese were identified, managed by the Royal Navigation Directorate (Königl. Wassebaudirection Dresden). The hunger stones were detected and partially surveyed in the following locations: Schmilka and Pirna (see the text below), (Protokoll, 1842).

4.1.3. The Elbe Commission in 1850 and making a link of the water level minima to the flood marks

The Commission compared the situation with the last commission survey in 1842 and registered the removal of some barriers to navigation. Gauging some low water levels through their relation to fixed points is of utmost importance to the subject of this study. These fixed points were only flood marks (Roudnice, Ústí nad Labem, Děčín), and alternatively the current water level in 1850, or zero point of a water gauge were used (old water gauge in Litoměřice, Ústí nad Labem, railway water gauge in Dolní Žleb, water gauge during the surveillance in Pirna). Until now, only two of the original three hunger stones remained in Děčín. The Austrian Commissioner carried out a precise survey of all the flood marks on the castle rock in Děčín (Krolmus, 1845, Brázdil et al. 2005) and related their heights to the minimum of 1842. The Commission was active in September when there was a significantly higher water level than in 1842. Therefore, the marks on hunger stones were underwater and so difficult to recognize. For the present stone [HS3], its top at 14½″ (37.7 cm) was below the then current water level. Since, according to our measurement, the top is at the water level H = 176 cm, the then current water level was about 214 cm and the flow rate was about 190 m3s$^{-1}$ (according to Harlacher’s rating curve, 1883). The Commission had a new map of the Vltava River and the Czech Elbe river which was created between 1843-1848 (Elbekarte, 1848) with already marked depths in
cross sections. In the following year on 1st January 1851, the daily observation of water gauges on the
Czech Elbe River in the Mělník, Roudnice, Litoměřice, Ústí nad Labem, Děčín, and probably Dolní Žleb cities begins. Zero points of the new gauges were established 6 inches above the minima in 1842
(Protokoll, 1858). At this stage, half-cargo navigation was possible (Wex, 1873).

4.1.4. The Commission and the catastrophic drought of 1858

The year 1857 was very dry, just like 1858. The commission was in Děčín on 20th May 1858. The
water level was in the range of -0.75 to -2.5" (about -2 to -7 cm) according to of the new water gauge.
Just before that, according to the Protokoll (1858), the height of the zero point of the water gauge in
Děčín and Dolní Žleb was increased by 16″ (42 cm). The Commission identified the 1857 minima as
generally the lowest in the period between 1842 and 1858.

4.1.5. River regulation of the Elbe

In 1869, another Elbe Navigation Commission (Wex, 1873) was held. In 1871, Professor of the Prague
Technical University, A. R. Harlacher, established a temporary station for hydrometric observations
and calculating the amount of runoff from the Czech Elbe (1871-1872), (Harlacher, 1871, 1872). The
year 1873 brought, according to Cvrk (1994), the intensification of river regulation of the lower Elbe
(mostly digging and removing boulders) and finally deepening of the riverbed by approx. 20-30 cm.
The catastrophic drought in 1874 led, after a broad discussion, to the establishment of the
Hydrographic Commission of the Kingdom of Bohemia based in Prague (Elleder et al., 2019). The
floods and the generally wetter period of 1880-1882 ended the long 1858-1878 period with the
ocurrence of drought. Extensive hydrometric measurements including a detailed mapping of the
riverbed were made by Harlacher in Děčín between the old road bridge and the railway bridge in the
1880s (Harlacher, 1883). Harlacher was interested, as H. Berghaus earlier and G. von Wex at that
time, in the downward trend of the Elbe water levels. Therefore, he collected the above mentioned
series of measurements (Dresden series 1806-1872, not found in CHMI, and Magdeburg series 1727-
1880).

4.1.5. River regulation of the Elbe — earlier and so more often appearance of hunger stones

After the period from 1880 to 1891, the low water levels in 1892 and 1894 intensified the pressure to
regulate the Elbe. In 1896, a Canalization Commission was established for the regulation and

canalization of the Elbe between Mělník and Ústí nad Labem. The aim was to build a navigation link
up to Prague and ensure a navigation depth of 180 cm, an increase by 50 cm, in the period 1896-1938.
(Cvrk, 1994). This is a very important fact for our work which resulted in a substantial shift of the flow rating curve in the Děčín profile in the part of low flow rates by about 50 cm. The next stage was putting into operation the Vltava cascade, the construction of the Slapy waterworks in 1957 (https://www.kct-tabor.cz/gymta/VodniPrehrady/Slapy/index.htm) and the Orlík waterworks in 1963 (https://www.kct-tabor.cz/gymta/VodniPrehrady/Orlik/index.htm). After this date, the minima of flow rates are significantly higher than the previous ones (36 to 51 m3s$^{-1}$). In times of low water levels, the flow rate is enhanced sometimes by even 20 to 30 m3s$^{-1}$. For this reason, the flow minima are today around 65 to 75 m3s$^{-1}$. This means that we need to divide the tags on HS3 into at least three basic groups: a) 1516-1896, b) 1897-1956 and c) 1957-2018.

4.2. Hunger stones and other indicators of low water stages in the European context

4.2.1 Hunger stones, antique monuments and other indications of low water stages in the Rhine basin

Witman’s work suggests that the oldest designation dates back to 1305 in Olten on the Aare River and in Strasbourg in the same year or in 1302 or 1303. The most notable example is the so-called “Laufenstein” in Laufenberg at the confluence of the Aare and the Rhine used to be visible if the Rhine flow decreased below 300 m3s$^{-1}$; Civil Engineer Heinrich Walter surveyed the marks on this stone around 1890 (Walter, 1901). There were a total of 10 DM marks: 1541, 1692, 1750, 1764, 1797, 1823, 1848, 1858, 1891, and 1893 (Walter, 1901 presented altitudes of 1541, 1750, 1858, 1891, and 1893). Some marks were compared with the observed series and corrected by Pfister et al. (2006). Near Unkel in the dry season of 1766, the dates of 1521, 1567 and 1639 were visible on the basalt rock called “Unkelstein” (i.e. basalt in the Land of Rhineland-Palatinate in translation). However, the situation in autumn 1766 was ¼ feet lower (Johannes Jansen notes, Weikinn, 2000). In the past, there were several places in the Rhine basin known as “Hungerstein” or “Hungerfelsen”. One of the oldest pictorial documents was published by Merian (Merian, 1645), perhaps according to the field sketches of Prague graphic artist V. Hollar who after emigration cooperated with M. Merian. In the foreground there is the so-called “Ara Bakchi”, “Altarstein” or “Elfenstein” (Fig. 2, Fig. 3) which is just one of the sites that used to be accessible only during the low water stages of the Rhine.

![Fig. 2 Ara Bakchi, Altarstein, Elfenstein near Bacharach, perhaps in the dry season of 1636, 1639 or 1642, (Merian, 1645), the position of which is marked by a red triangle in a cut-out view of Bacharach.](image)

Among similar objects there is, for example, the rock in Olten in the Aare River. Around Bodensee, such objects indicated low lake levels in Staad, Mammern and Konstanz. In 1750, the remains of the assumed ancient buildings, the pillars of the bridge in Cologne and the aforementioned Altarstein were visible during low water levels, and in 1746 the pillars of the old bridge in Mainz were visible (Fig. 3). A tradition of storing 12 bottles of wine at a hunger stone on the bottom of the Moselle in Trarbach is also remarkable.
4.2.2. Hunger stones on the Elbe and their removal

The Elbe along its upper reaches is a much smaller river than the Rhine, for example, in the narrow canyon area between Bingen and Koblenz (with average flow rate approx. 2000 m3·s$^{-1}$, minimum around 400 m3·s$^{-1}$). The Elbe has an average flow rate of approx. 300 m3·s$^{-1}$ between Děčín and Pirna and without the enhancement by the Vltava cascade the minimum flow rate was dropping until 1957, or 1963 respectively, as low as to approx. 35-41 m3·s$^{-1}$ in the years 1904, 1911, 1921, 1934 and 1947 (Novotný, 1963).

The lowest water levels were recorded on the Rhine in October or in winter. Low water levels of the Elbe are the most common from June to September, but in 1874, for example, lasted until December (Elleder et al., 2019). However, low levels are recorded in times of severe frost even in winter. On the Czech side downstream, the first but rather modern stone was the object in Lovosice (since 1904), then in Těchlovice (1 hunger stone, further HS object), Děčín (1-3 HS objects), Dolní Žleb (11 HS objects), Hřensko (15 HS objects), Schmilka (IHS), Koningstein (2 HS objects), Pirna (2 HS objects), Wehlen (1), Pillnitz (1 HS), Dresden (3 HS), Meissen (?) and Strehla (1 HS) (see Fig. 3).

The term Hungerstein was not often used in the 19th century. In the scientific literature we find the heights of the low water levels as "Merkzeichen der Wasserstände" (Neue Schriften, 1845), in the news reports the term millstones as "Malsteine" appeared. The commissions' reports in the Protocol (1842) and Protokoll (1850) mention the stones as "Steine", and the remarkable ones as "Merkwürdige Steine". The Elbe in the sandstone canyon used to be rich in local names: "Frog Stones" or "Froschsteine" (Dolní Žleb) (Protokoll, 1842, p. 44), as well as "Monk's Stone" (Mönchstein) and "Millstone" (Malstein) that were removed already in 1858 (near to the customs office in Dolní Žleb). Two hunger stones with dating (see the text below) opposite the church were designed for blasting. In 1842, stones near Žertovice, and in 1850, on the Saxon side at the Ober Vogelsang site (the so-called "Hermsteins") were blasted away. The term Hungerstein appeared in a newspaper article in 1842 (Pillnitz) in a newspaper in connection with HK in Meissen in 1865.
(Rumburger Zeitung No. 47 of 11 October 1865), and in 1876 (Teplitzer Zeitung No. 98 of 30 August 1876). The Czech derived mutation “hladový kámen” (“hunger stone”) was introduced by the regional daily Jizeran (17 September 1892) during the drought in 1892.

4.2.3. Hunger stone in Těchlovice

The site is located above the sandstone canyon and the valley is formed by rocks of volcanic origin. On the left bank of the Elbe River, approximately in the river km 85 (below Mělník), the Elbekarte map (1848) shows the so-called “Mändelstein” in the riverbed, but actual stone is on a gravel bench and the affinity of the objects is unlikely. The Protokoll (1842) mentions a strong current and a place with a depth of 1’8” that is only about 50 cm. The Protokoll (1850) only reports on depths around 160 cm, the Protokoll (1858) does not mention depths nor stones in Těchlovice at all. Estuaries of two streams create flow sediment cones, during low water levels the stone is separated from the water and lies on a wide gravel bench. For technical and time reasons, only relative geodetic link and height measurements were made in 2015. There are 7 marks on a flat boulder of volcanic origin (1868, 1874, 1892, 1904, 1928, 1980, 2015), (Tab. 2). The mark of 2015 was prematurely made by an unknown person and does not correspond accurately to the minimum water stage that occurred later.

Tab. 2 Survey of DM heights in Těchlovice

Year	H_{HR} heights	H_{HR}	H_{HR}
1842	-104	0	132
1874	-108	-4	128
1892	-109	-5	127
1904	-133	-29	104
1928	-114	-10	122
1980	-102	2	134
2015	-150	-46	86

HR water level of DM, levelling in 2015 linked to auxiliary point, H_{HR}, DM water level relative to the level of DM1842, H_{HR}, water level accommodation to present Děčín gauge, H_{HR}, approximate conversion to the water level in Děčín according to water stage in 1842 (132 cm).

4.2.4. Hunger stones in Děčín

In 1842, three hunger stones were examined within activities of the Elbe River Commission (Protokoll, 1842), (Fig. 1). According to the report, the first hunger stone [HS1] was located near the left bank of the Elbe opposite to the castle rock, i.e. also opposite to the well-known flood marks of 1432-2013 and the historical rock water gauge [RG2] on the right bank (Brázdil et al., 2005), (Fig. 1). On the stone [HS1], the approximate depths of [DM] minima in 1719 and 1766 were measured in September 1842. The 1782, 1790, 1835 and 1842 marks were surveyed precisely (Tab. 1). Elevation ratios were expressed as heights above the previous August minimum of 1842. In 1850, the depth of the 1782 mark [HS1] was determined as 7.5” (19.5 cm) below the water level, the 1842 mark was not visible (it follows from Table 1 that it was 41.5 cm below the water level). Protokoll (1850) implies a link of this mark with a water gauge for low water levels [RG1] on a rock formation with a scale ranging from “1F” to “5F” (5 Fuß, 5 feet). It is a question whether this gauge was linked to a large gauge on the castle rock [RG1]. A similar water gauge which may have been partially preserved is described by the commissioners at the HS in Pirna.

The second hunger stone [HS2] was supposed to be upstream of the ferry on the right bank. There was a minimum mark of 1800 situated 4.5” (approx. 11 cm) above the minimum of 1842. In 1850 the commissioners stated that the first [HS1] and the third stone [HS1] remained in place, while the second stone [HS2] was already unavailable at the time of the second commission’s work. It is stated that the reason was the construction of the railway (Protokoll, 1850). Since the railway was on the left bank, we tend to consider a possibility that the stone disappeared during terrain works for the construction of a new bridge (opened only later in 1851). The railway was built between 1847-1848 and the operation started in 1851.
The third stone [HS3] was located by the commission on the left bank and it still exists. This object is in centre of our focus. The commissioners described the 1616, 1746, and 1790 marks which were documented many times later in 1892, 1904, 1911 etc., and also mentioned the 1835 mark (not found). Unfortunately, they only determined the difference of 5″ (12-13 cm) between the higher minimum of 1616 and the then lowest minimum of 1842 (difference of 11 cm was determined in 2015).

The stone was (see the methodology) divided into four height ranges and the following sides: embankment side [ES], left side [LS], right side [RS], platform [P] and the highest part of the stone’s ridge [R] (Tab. 3, Fig. 4).

Ranges of water level	ES (embankment side)	R (ridge)	RS (right side)	LS (left side)	P (platform)
A) 151-175 cm	1963	—	—	—	
B) 111-150 cm	1536, 1616, 1746, 1790, 1800, 1811, 1842, 1868	—	—	—	1707, 1842, 1904, 1892, 1893, 1957, 1990, 2003
C) 91-110 cm	1921, 1934	—	1911, 1921	—	
D) 71-90 cm	—	1930, 1934, 1947	—	1947	

The platform P, the ridge part R and the ES side of the stone are about 360 cm wide, the distance between the bank and the river is about 400 cm. The oldest marks: 1616, 1746, 1790, 1800, 1811, 1842 and 1868 were placed on a side [ES] facing the river bank in the range of 111 to 150 cm. Only the mark of 1707 was placed on the platform [P] where markings from 1892 to 1904 continued. The minimum marks 1904, 1911 were simultaneously placed on the right side of the stone [RS] (downstream). The lack of space also apparently led to rewriting of the inscriptions at the 1911 mark and a large inscription: “Wenn du mich siehst ... “. The marking of 1921 returned to the right side [RS] which was not large enough for a new lower marking below 100 cm. Deeper marks 1930, 1934, and 1947 were placed again on the side of the stone [RS]. The demanding 1947 mark is also on the left corner [LS] of the stone. The latest markings of 1957, 1990 and 2003 are again on the lower part of the platform [P] and the mark 1963 on the ridge [R]. Marks of 2015 and 2018 were not placed on the stone. Overview of water level minima of measured and derived heights is given in Tab. 4. The list of marks in Table 4 is chronological so that the information is combined into a logical complex (detailed information is included in the supplement).

Using the example of measurements in 1850, it is possible to clarify the system of rock gauges [RG1], [RG2] and [OG] linked to hunger stones, and the newly measured heights of the flood of 1784 (2004) and the minimum of 1842 (2015). An administrator at the Děčín estate, forester and contributor of the Patriotic Economic Society Seidel (Neue Schriften, 1843), determined the height of the flood mark 1784 on the rock gauge [RG1] as 32′11″10‴ (i.e. 10.16 m) above the minimum stage of 1842 (the height today is 131.296 m a. s. l. of the Baltic system after equilibration — Bpv). This height after deduction (i.e. 121.133 m a. s. l. Bpv) is 25 cm lower than mark 1842 on the stone [HS3].
Fig. 4 The hunger's stone was divided into four height ranges (Tab. 4) and the following sides (from up to down): embankment side [ES], the highest part of the stone's ridge [R], platform [P], right side [RS] and the left side [LS].
Rok	H	D	HS2, H1842	HS1, H1842	HS3, H1842	H	H1842	Time	m a. s. l.	Position				
1516	—	—	—	—	—	—	—	—	119	-13	—	121.25	DZ	
1517	—	—	—	—	—	—	—	—	119	-13	—	121.25	DZ	
1536	B	—	—	—	—	—	138	6	11	143	11	VII, ??, [2?]	121.49	ES
1616	B	—	—	—	—	5	13	137	5	VII, ??, [2?]	121.43	ES		
1706	—	—	—	—	—	—	132	0	—	121.38	DZ			
1707	—	—	—	—	—	—	139	6	VIII/IX?	121.45	ES			
1719	—	—	8.5	22.1	—	154	22.1	—	121.6	HSI				
1746	B	—	—	—	ND	—	150	17	VIII/IX?	121.56	ES			
1766	—	—	4.5	11.7	—	144	11.7	ca 10.12.?	121.5	HSI				
1782	—	—	8.5	22.1	—	154	22.1	ca 15.9.?	121.6	HSI				
1790	B	—	6.5	16.9	ND	—	145	12	ca 15.8.?	121.51	ES			
1800	4.5	11.7	—	—	—	—	142	10	ca 18. 8.?	121.48	ES			
1811	B	—	—	—	—	139	6	9.8, (-1)	121.45	ES				
1834	B	—	—	7	18.4	—	150	18.4	12. 8.?	121.56	HSI			
1835	—	—	5.5	14.3	ND	—	146	12	ca 8. 9.?	121.52	DZ			
1842	B	0	0	0	0	0	132	0	ca 25. 8.?, [2]	121.38	ES, P			
1868	B	1868	133	1	—	—	121.39	ES						
1874	—	1874	128	-4	—	—	121.34	T						
1892	—	1892	137	5	28. 8. (-5), [2]	—	121.43	P						
1893	—	1893	135	3	16.7	—	121.41	P						
1904	B	1904	112	-21	23. 8. (-15), [5]	—	121.18	P						
1911	B	1911	105	-27	15. 8. (-7), [2]	—	121.11	LS						
1921	B	1921	104	-29	2. 8. (-9) **, [6]	—	121.1	ES, LS						
1930	—	1930	101	-32	10.9, (+2)	—	121.07	RS						
1934	—	1934	73	-50	23.6, (0), [3]	—	120.79	RS						
1945	—	1945	134*	+2	9. 5, (—)	—	121.4	P						
1947	B	1947	68	-64	23.8, (0), [2]	—	120.74	LS, RS						
1957	B	1957	110	-22	8.7, (0), [2]	—	121.16	P						
1990	B	1990	110	-22	2.9, (0)	—	121.16	P						
1963	B	1963	175*	+43	(—)	—	121.81	R						
2003	B	2003	111	-21	111	—	121.17	P						
2015	—	2015	86	-46	86	—	120.92	—						

Tab. 4 Overview of annual water level minima on hunger stones in Děčín

Time	m a. s. l.	Position
—	—	—

HS1, HS2, HS3: Hunger stones in Děčín, T: HS in Těchlovic; DZ: HS in Dolní Žleb; H1842: water level relative to the height of the mark of 1842 (levels below this mark are in red); H: water level relative to the current Děčín water gauge zero point (120.06 m a. s. l.); *) neither annual minimum (AM) nor local minimum (LM) but an indication of contemporary water stage; **the exact AM is denoted by date of 11th August and contemporary water level (a value) without any mark; Time: date of marked minimum, thick underlining signifies exact day engraved in the stone, probable timing of the mark creation: (-) days before the annual minimum water stage (+) after the annual minimum; ? uncertain value, ?? very rough estimation; [n] is the total number of marks in a year; italic water level values are derived from another object, timing estimated from another gauge; Position placement of DM on ES, RS, LS, P and R sides (Tab. 4), for derived data, the original objects DZ or HSI are highlighted. ND — mark registered but not surveyed (Protokoll, 1850)
4.2.5. Hunger stone in Dolní Žleb (Niedergrund)

In the river map (Elbekarte, 1848), a total of 7 to 8 stones are marked on the right bank of the Elbe River upstream of Dolní Žleb, followed by another 6 downstream, as indicated in the Protokoll (1842).

At the former customs house (left bank), the Elbe river flow was narrowed by two rock outcrops: the Monk’s Stone (Mönchstein) and the Mill Stone (Malstein) which were removed in 1858 (Protokoll, 1858). Not far from them, in the middle of the stream opposite the church, two stones were identified in 1842 with the year ending by the figure “16” which was 12″ under water (30 cm). Some sources (Neue Schriften, 1843) date the marking back to 1516 or 1517. The Commission measured the depths of the 1616, 1706 and 1842 minima (tab. 5), further depth data were designed to be surveyed accurately by geodetic levelling and then the stones would have been blasted off as an obstacle. The regional literature (Focke, 1879; Pažourek, 1998) states that an inscription “Ich Andreas Beutel, Richter der Ortes 1516 — VB 1615 — VC 1634” should have been on the stone which meant “Ich Andreas Beutel, Richter der Ortes 1516”, “Christof Beutel 1615” and “Christof Vogel 1634”. According to the latest field surveys (tab. 6), a total of 11 hunger stones were found at the position of 730.55 to 732.01 km, one of them having the year marking of 1842 (Randák, 2015, 2017a). Identification with the described stones is not yet possible.

Tab. 5 Marks on a hunger stone in Dolní Žleb surveyed in 1842 (Protokoll, 1842)

	\(H_{1842}\)	\(H_{DE}\)
1516	-5	-13
1517	-5	-13
1615	ND	—
1616	2	5.2
1634	ND	—
1706	0	0
1842	0	0

\(H_{AD2}\) DM water level relative to the level of DM1842, \(H_{DE}\) water level relative to the current Děčín water gauge.

*report only (Neue Schriften, 1845), ND — mark registered but not surveyed (Protokoll, 1850).

Tab. 6 Hunger stones detected by Randák (2015, 2017a)

No.	Km	Description
1	730.55	1904 (15. 8.)
2	730.78	1892, “E. Dittrich”
3	730.82	1892, “Ed. Dittr.”
4	730.85	1892, 1893 “E. H.”, “E. D.”, heart motif
5	730.91	1921 (“F. H.” ?)
6	731.16	1892 “F. Hobe” or “Hoke”?
7	731.26	1842, 1868, 1892, 1904, “V. Witr” ?, “V. Hobe”
8	731.18	“HF” 1892, 1935
9	731.41	2015 “13.8.”
10	731.42	1904*
11	731.01	1904* (at the house of the former ferryman H. Strasser)

* under water at the time of exploration, ? the inscription is unclear, in grey old DMs originated before 1892.

4.2.6. Hunger stones in Hřensko

None of the Commissions (1842, 1850 and 1858) identified a stone with a year indication. The survey carried out by experts of the Elbe River Board on 26 August 2107 (flow rate 75 m³·s⁻¹) determined 14 objects with markings, all of which originated after the Commission in 1842 (tab.7).
Tab. 7 Hunger stones detected by Randák (2015)

No.	Description of the hunger stone
1	1928?, “5. 8. (19)? 28”
2	1950, „Kladno 1950“
3	1874, „K.R. 10/9. 1874“
4	1904, „H. Rausch1904“
5	? , „W. W F.D.N“
6	1911, 1919, “1911”, “1919” ; 3. 8. 1911 ER WK PP
7	1911, “FC 1911”
8	1892, “1892”
9	1934 “1934”
10	1928,1950,”1928” ; ” 1950” ; ”GW“
11	1927, “N 1927”
12	1927, “1927”
13	“1928”, “1855”, many other inscriptions below the water level
14	“1904/ 22.7”, “1934”, many other inscriptions below the water level

? the inscription is unclear, in grey old DMs originated before 1892.

4.2.7. Hunger stone in Schmilka

On the right side upstream of Schmilka, the Commission (Protokoll, 1842) found a large stone with the 1842 mark (4. 9.) which was 4″ (10 cm) below the then current water level. Further, the 1811 mark was found that was placed higher by 3″ (7.5 cm).

4.2.8. Hunger stone in Stadt Wehlen - Pötzscha

A mark of 1868 remains there until today.

4.2.9. Hunger stones in Königstein

The Commission did not mention any remarkable stone there in 1842, 1850 and 1858. Yet, German sources mention the year 1681, on another stone 1797, 1914, 1865, 1900, 1911 and 1914 (https://www.umwelt.sachsen.de/umwelt/wasser/download/Dokument_Hungersteine_und_Untiefen.pdf). In the locality opposite the Prossen village there is a stone that is most often mentioned. Today there are readable inscriptions with dates of 1868 (20. 9.), 1928 (20. 7.), 1947 (20. 7.), 1963 (31. 7.), and 2003 (17. 7.). The lowest mark of them relates to 1868 with a correctly marked minimum (in Děčín the minimum was on 19th September). The year 1947 was marked prematurely, so that can explain that the mark is the highest (in Děčín the difference between 20th July and a minimum on 11th August is even 44 cm!). The year 1928 is marked quite correctly, although it is not an annual minimum (4. 8.) but the difference is very small. On another stone there are newer data of 1963, 2003, and 2015.

4.2.9. Hunger stone in Pillnitz

None of the Commissions (1842, 1850 and 1858) found there any remarkable stone. However, the Pillnitz site is, next to Dresden and Meissen, the place of important flood level observations as early as of 1736 (Pötzsch, 1784). There is a clear inscription of 1778 which is probably not the minimum water level (see discussion). Marked DM minima: 1893, 1904, 2003, and 2018).
4.2.10. Hunger stones in Pirna

It was located near a small gate at the navigation control point but the situation does not exist today. Nearby, there was a transverse dam opposite to which a flat stone was to be with engraved marks. According to the Protokoll (1842), the marks of 1616, 1706, 1707, 1746, 1834 and 1835 were registered and surveyed (the other marks were illegible). Water level at that time was 6" (0.13 m) above the inscription "Wasserbau Direction 1842". At the navigation office there was a water gauge placed on the retaining wall for low water levels (up to 4 Saxon ell units) continuing on the building (the higher part). The minimum of 1842 was at the level of -1 ell 22.5" (-1.08 m) below the zero point. Water level during the measurement in 1842 (on 8th September) was at a height of -1 ell 16.5" (-0.95 m). The difference between the marks of 1616 and 1842 was 5" as in Děčín. In 1850 (on 27th September), the water level of -1 ell (-0.57 m) was registered. The measurement was carried out at that time at water level height 0.38 cm higher than in 1842. The previously described marks were up to 51 cm below the water level. Therefore, there is no reference to hunger stone here. In 1874 (at a time of catastrophic drought), a new water gauge with a zero point at 110.94 m a. s. l. was set up; if the zero point of the original water gauge was the same, the minimum in 1842 was at 109,856 m a. s. l.

According to photographs of the current state, the inscription from 1842 and the marks 1707 and 1790 were preserved, the marks of 1616 and 1746 were not found. In addition, they are readable marks of 1782 and 1811. After 1842, the marks of 1859, 1863, 1868, 1873, and 1892 were added. The newer markings (1904, 1947, and 1952) are probably lower with regard to later channel dredging while the marks of 1963 and 2003 are higher after the Vltava cascade was opened. On the stone there are 5 scales for particular years like 1707, 1904, 1911, 1842, and 1952 showing more minima in a year. In 2018, the stone was documented by SLUG Dresden experts and the results were presented at a seminar on flood marks and minimum water levels in Jena in March 2019. There was an exchange of information between CHMI and SLUG. We provided a sketch of the stone in Pirna which was used to reconstruct the engraved signs that are exhibited today in the SLUG building in Dresden.

The second, newer stone in Pirna has the mark of 1904.

Tab. 8 Marks on a hunger stone in Pirna surveyed in 1842 (Protokoll, 1842)

years	H_{1842}	H_{DE}
1616	5	13
1706	11	28.6
1707	9	23.4
1746	10	26
1834	9	23.4
1835	9	23.4
1842	0	0

H_{1842} DM water level relative to the level of DM1842, H_{DE} water level accommodation to present Děčín gauge

4.2.11. Hunger stones in Dresden

None of the Commissions (1842, 1850 and 1858) mentioned any remarkable stone. Nevertheless, pictures of hunger stones are published of the Kotta locality with a year inscription of 1630 (it is possible that it rather concerns 1636). We have no views regarding the credibility or existence of these stones. In the Radebeul locality, there is probably a millstone with a year inscription of 1911. In the Laubegast locality, there are stones with year inscriptions of 1892, 1893, 2003, and 2013. In the Tolkewitz locality, there is a stone with the 2016 mark. In the Augustbrucke cross-section a low water level of 1705 was indicated (Pötzsch, 1874), and now, there is also the mark of 2018.

4.2.12. Hunger stone in Meissen

We learn about the hunger stone from older literature of the 18th century. None of the Commissions (1842, 1850 and 1858) found any remarkable stone. The only report on the flood marks is conveyed in
literature. Ursinus (1790) mentions in dry 1746 year (see the tab. 4, 9, 10) the discovery of various stones in the Elbe River and one with year markings, pointing out the year 1654.

4.2.12. Hunger stone in Strehla

The Protokoll (1842) describes a hunger stone (rock rising from the river) on the right bank of the Elbe with minima from 1718, 1746, 1790, 1800, 1834, and 1835. The height of 1800 was 5" below the then current water stage. The water level at the Strehla water gauge in 1842 was -1 ell 15" (-0.91 m), in Riesa, the water level was -2 ells (-1.132 m), and in 1850 only -6" (-0.14 m) (Protokoll, 1842 and 1850). This stone was probably removed, while another rock block called Nixstein remained there (at the left bank) formerly dreaded by boatmen, where a depth of 1.60 m was measured in 1850. A somewhat problematically placed mark was made here in 2018 (https://www.saechsische.de/eine-hungermarke-fuer-den-nixstein-4001437.html).

4.2.14. Hunger stone in Schönbeck near Magdeburg

On 29th May 1858 the Committee recorded the water level at 4′5″ (139 cm in accordance with the 1827-1888 Magdeburg series indicating the water stage at 141 cm). A board with the inscription marking 29th August 1904 was removed from the river bank and placed in the museum.

4.2.15. Notes on creating and specific details of the marks of water minima

There are always fewer records of low water levels (if any) than marks of high water stages, the only exception is possibly the sandstone Elbe valley between Děčín and Pirna. It is more difficult to make a mark of the minimum water level than making the flood mark.

(1) It is and it has always been difficult to estimate the correct instant of reaching the minimum level. More demanding inscriptions were probably made in advance; the designated place was probably enclosed beforehand by a small barrier so that the mark could be completed at a time when it was clear that the minimum was reached, i.e. when the water was rising. Therefore, the logical moment of making the minimum mark is after the minimum has subsided (in the reality 1-15 days before annual minimum level were this DM levels engraved see tab. 4). However, it is not clear whether this was a local or annual minimum.

(2) In some years, the level fell again lower, the exact date is given, or a range of water levels for a given year is made, such as in Děčín for 1904, 1921, 1930, 1934, and 1957. A surprise can be evoked also by marking the year 1707 in Pirna, as it concerns probably other year. The mark of 1842 seems to have a different meaning being the actual water stage in feet.

(3) The minimum markings are often made upside down (made from the upper side of the stone), some were made while standing in water or at a lowered position (oriented normally). Therefore, the engraved lines in such cases are not below the date (in the graphic sense) but above it, thus closer to the water surface (in Děčín for instance DMs: 1536, 1707, 1892, 1893, 1904, 1911 and 1934).

(4) The marks are completed by monograms (see Pažourek, 1998). The oldest mark from 1616 was completed by initials F. L., from 1707 by initials M. L. R., and from 1746 by H. M. L., so there is a possibility that they concern members of one family. Later, in 1790, there are the initials of H. G. T., in 1800 A. I., in 1811 and 1842 W. E., and the designation is missing for 1821. Another change is the first year corresponding to the instrumental series, so in 1868 the initials are F. H., however in 1892 and re-listed in 1893, the designation contains the initials U. E. The originator of other marks is probably popular Franz Mayer who is the author of 1904, 1911, 1921 and perhaps even 1930 markings. In connection with the 1904 mark, the popular inscription “Wenn du mich siehst dann weine” was created. The last mark until the relocation of the original German population comes from 1934. The originator of the first postwar mark is Mr. Horák. It is therefore evident that signs of low water levels were accompanied by specific habits.
There are overlapping inscriptions. In view of the place of origin and various perhaps personal, local, national and even commercial considerations, there were exceptional cases of overlapping inscriptions. Thus, the 1904 mark, perhaps made by a certain Rotsch, was obscured by the second inscription: “Wenn du mich siehst dann weine, Fr. Mayer” relating to 1911.

4.3. Assessment of identified water level minima of 1516-2018

4.3.1. Decade frequencies of 1500-1800

There are no direct water level observations for comparison purposes in the 1516-1726 period. According to Brázdil et al. (2013, 2015), the 1511-1520, 1531-1540, and 1631-1640 periods had a higher decade frequency (n = 6 per decade) of drought reports. The coincidence of very low-lying DM marks (H = 110-140 cm) in 1516, 1517, 1536, 1616, and 1636 with these three decades is evident from Fig. 5 Brázdil et al. (2015) selected several periods of intense drought for detailed processing on the basis of an analysis of documentary sources. The years 1534, 1536, 1540, 1590, and 1616 were selected as extreme cases. In two cases (1536, 1616) there are documented DM marks, but three are missing. Even so, we can consider our documentation a good match. This result supports the credibility of the 1516 and 1517 marks which have not been preserved or not yet documented, which we only know from the Neue Schriften (1845) and the report by Focke (1879). On the other hand, from 1536 to 1616, no record of water level minima exists in the set for 80 years, although minima of both extremes in 1540 and 1590 could be expected. From this period we can mention only the height of 1541 from the Rhine basin. However, in the 1560-1600 period, a very high frequency of floods is documented, with a recurrence period of 10 years or more (≥ Q₁₀) (Elleder, 2015). Although the dry period does not exclude significant floods at all, in this case it concerned more frequent cases of floods of approx. Q₃₀. We can consider it a period with an average drought occurrence, where according to monthly rainfall indices at least the index -2 (very dry month) occurred in two or more consecutive months in 1555 (3 months), 1561 (2), 1562 (2), 1571 (3), 1581 (2), 1589 (2), and 1590 (4). The index -3 (extremely dry month) occurred only once in 1569 (May) and in dry year 1590 for two months (July and August) (Brázdil et al. 2013, 2015).

Fig. 5 Verification of marks of 1500-1800 according to the decade frequency of drought reports by Brázdil et al. (2013), n decadal frequencies of droughts, H[cm] water level of DM.

From 1636 to 1707, i.e. for 70 years, there are no marks of minimum water levels. Brázdil et al. (2013) pointed out that the three decades 1641-1650, 1661-1670, and 1671-1680 had a minimum decade-occurrence of drought reports (2 cases per decade). Moreover, it is a period of Maunder Minimum (Eddy, 1976), i.e. the 1640-1720 period, probably the most intensive period of LIA.
4.3.2. The Magdeburg series minima of 1726-1880

Since 1726, we can identify the minima in the years highlighted in Fig. 6 with the help of the Magdeburg series. A very good time coincidence is apparent for 1746, 1766, 1782, 1790, 1800, 1811, 1835, 1842, 1858, and 1874. The year 1868 is missing, not representing a deviating minimum in Magdeburg that is more significant later in 1869. The year 1766 represents the only significant winter minimum which was marked on hunger stones. On the contrary, winter minima of 1818, 1823 and 1862 are missing.

The water level DM minima are plotted in the water level scale of the current water gauge in Děčín. A coincidence regarding the water level (1746) is completely random (Fig. 6). However, there is a noticeable difference in the trend of annual lows of both series. We also emphasized the effect of overall minima, so the graph also separates the winter minima which show the downward trend, for example, just before 1746.

It is worth noting that the winter minimum of 1823 is not shown on the Elbe HSs but in view of timing it corresponds to the low water levels of the Rhine. The only significant summer minima that are not documented on the HSs in the Czech part of the Elbe are around 1760, 1858 and 1878 (see Discussion).

4.3.3. The Děčín series minima of 1851-2018

If we compare the results with the Děčín series, i.e. with direct measurements in the vicinity of the HS3 hunger stone, the deviations of the marked and measured annual values are minimal. Until 1957, there are 11 year lows (not counting local minima) which we can evaluate and 8 of them have a deviation lower to 4 cm. The result worse than 5 cm is detected for the marks 1911 (+7), 1921 (+9), 1930 (+5), 1947 (-6 cm), and 1957 (+5) (see the graph in Fig. 7). In 1921, the local minimum was correctly marked; the annual minimum was not marked. Minima marked later, in 1963, 1981 (missing in the figure), 1990 and 2003 are not as important as the older extremes. In their originating, modern anthropogenic influences and partly misunderstanding of older traditions are manifested. This also applies to the prematurely made mark in Těchlovice. The 2003 mark is made well.
In conclusion, we can state a good match of the minima detected which, moreover, are mostly representative of the largest extremes. However, this is not true entirely, as some years such as 1540, 1590 or 1761 are missing. This is a great motivation for the next stage of future work.

Fig. 7 Coincidence of annual water level minima at the Děčín station and altitudes measured on the HS and HS3 hunger stones in Děčín and Dolní Žleb. H is water level. Deviations DH are highlighted in the lower part of the graph. In grey are highlighted the precisely marked height (HP) at a deviation of 0-4cm, outstanding are approximately marked height (CP) at a deviation of 4-8 cm and more.

5. Discussion

5.1. Credibility of minimum flow marks, uncertainty at some of them and certainty of untrustworthy of other

There is no need to doubt the credibility of the low water level marks in Děčín from 1868 to 1957. When interpreting them, however, it is necessary to know the described changes, whether they are changes in the channel or flow rate enhancement by the Vltava cascade. These are annual or local minima marked with the greatest possible care. It is also obvious that older marks in the 19th and 18th centuries were made in the same way and with the same intentions. Can this claim be extended to the past, i.e. to the 17th and 16th centuries, and is this finding valid for other hunger stones both in Bohemia and Saxony?

It would probably be appropriate to prove the connection of heights in Děčín, Dolní Žleb, Schmilka and Pirna. However, when verifying the relationship between Pirna and Děčín, we can compare only 4 concurrent records. These are the years 1616, 1707, and 1842. Since we use the relative difference to the water stage in 1842, we can only compare the three remaining heights of 1616, 1707, and 1746. The relationships of 1616, 1707, and 1842 are linear, somewhat different is the water stage in 1746 where the difference from the expected value is greater than 10 cm. Perhaps only a local minimum (LM not AM) was marked in Pirna. However, we only use the published data from 1842 and from 1843 and it is not entirely certain that the commissioners found and surveyed the lowest mark for a given year. Verification is still difficult; we do not see this mark on the current stone in Pirna-Oberposta.
We can recommend further field survey in the future (next one especially in Dolní Žleb), levelling and scanning of other objects, especially the stone in Pirna. For detailed analysis and search for relics of older marks, it is not possible to rely solely on photographic documentation. Comparative older photographic material (Fig.8) and detailed inspection of scanned 3D objects is required.

Obr. 8. Picture from the Český svět magazine, No. 51 from 25th August 1911. It shows a completely unknown hunger stone. The following years are engraved: 1835, 1904, 1911, 1873, and 1(?)76 (1576, 1876 or 1516?). This picture was found recently in the National Museum archive by Zvonimír Dragoun. The locality is unknown and the existence is also unverified.

Since we can trust DM epigraphic sources, it remains to point out other published sources in 1842-1843. These are compilations of the then measurements by the commissioners-hydro-technicians and possibly subsequent processing by the Statistical Office of the Kingdom of Saxony, or the Patriotic Economic Society of the Czech Kingdom, respectively. They point to other low levels that we expected and that could not be verified. This is, for example, the height of 1590. A report drawing certainly from the results of the Commission in 1842 and therefore the Protokoll (1842) appeared in the Adler Magazine (No. 13 of 13 January 1843). There is water level reported in Dresden as 2 ells 3 inches below zero point and a series of low levels, of which we choose those that could not be documented in situ or verified in the scientific literature: 1590, 1634, 1635, 1637, 1660, 1666, 1669, 1678, 1681, 1688, 1705, 1716, 1718, 1726, 1761, 1789, and 1794. Another remarkable source is an article in the Prague summary report Encyklopädische Zeitschrift des Gewerbewesens (3rd edition of the new series from 1843, Statistik der Gewerbe und Handel, pp. 86-93), which draws on the Preussisch Staat Zeitung Nr. 354. The same data were published in a more popular way in educational journals such as “Das Pfennig Magazine für Belerung und Untreihaltung” (1843, 11 March, No. 10). The exact heights published there are given in Tab. 9. The Gewerbe Blatt für Sachsen (No. 5/1843, https://digital.slub-dresden.de/werkansicht/dlf/69679/1/), a technical magazine, states in the explanatory note that a minimum mark of 1590 was indistinctly recognized on an unnamed hunger stone or object in Rathen between HS in Königstein and HS in Stadt Wehlen-Pötzcha. It is not clear whether the mark was too deep or unreadable and its height was therefore not stated.
Tab. 9. An overview of the Saxon DM-type sources (edition of the new series from 1843, Statistik der Gewerbe und Handel, pp. 86-93)

Year	Saxony H₁₈₄₂	Pirna H₁₈₄₂	Schmilka H₁₈₄₂	Strehla H₁₈₄₂	H_{DE}
1615	17.5 45.7	—	—	—	177.7
1616	3.5 0.5 9.1	13 —	—	—	141.1
1635	9 23.5 —	—	—	—	155.5
1636	8 20.9 —	—	—	—	152.9
1705	11 28.7 —	—	—	—	160.7
1706	— 28.6 —	—	—	—	143.8
1707	4.5 0.5 11.8	23.4 E	—	—	147.7
1718	—	—	—	ND	158.1
1746	10 26.1 17	—	ND	—	146.4
1761	5.5 0.5 14.4	—	—	—	160.7
1782	11 28.7 E	—	—	—	168.5
1791	14 36.5 —	—	—	ND	147.7
1794	11 28.7 —	ND	—	—	160.7
1800	8 20.9 E	—	—	ND	152.9
1811	6 15.7 E 7.5	—	ND	—	147.7
1811	6.5 0.5 17.0 E	—	—	—	149.0
1834	8 20.9 23.4	—	ND	—	152.9
1835	8 20.9 23.4	—	ND	—	152.9
1842	0 0 0.4 E 0	—	—	ND	132

Saxon inches ["] and line units ["]. Pir Prina HS, Sch Schmilka HS, Str Strehla HS, H₁₈₄₂ DM water level relative to the level of DM1842, E existence is verified, H_{DE} water level relative to the current Děčín water gauge, ND mark registered but not surveyed.

If we take this source into account, and we combine this data with the data already presented, we get a slight shift somewhere, but the overall picture and trend confirm information on the minima of water levels from hunger stones in Bohemia. Another source is the report of the Patriotic Economic Society (Neue Schriften, 1845) where the forester and observer of the Děčín- Podmokly station gives the exact height of the marks (Tab 10). It is partly a compilation of the heights from Děčín and Dolní Žleb, the data are very similar or the same (1616, 1707, 1746, 1811, 1835, and 1842). Differences over 8 cm show only DM of 1766, minor differences are in the years 1782, 1790, and 1800. However, there are also data for 1834, 1516, and 1517. To complement the Děčín data, the minima of 1516 and 1517 were mainly used. We assume that, as a forester and a meteorological observer, A. Seidel could supplement the report of the commissioners (who had only limited time to survey) from his own examination in Dolní Žleb and Děčín, where he lived. The years 1516 and especially 1517 were really dry, as evidenced by contemporary descriptions in the Old Czech Chronicles (SLČ), in particular, describing rather meteorological and phonological parameters of drought (e.g. harvest already on 29th June).
Tab. 10 Compilaton of the Czech DMs (Neue Schriften, 1845)

Year	\(H_{1842} \) [Inch]	\(Cm \)	Comparison with objects on the Czech side
1516	-5	-13.1	-13 DZ, (NS,P)
1517	-5	-13.1	-13 DZ, (NS)
1616	4	11.3	11 HS3, (L)
1707	3	8.7	6 HS3, (L)
1746	6	17.0	17 HS3, (L)
1766	10	26.5	11.7 HS1, (P)
1782	6	17.4	22.1 HS1, (P)
1790	6	17.0	12 HS3, (L)
1800	6	17.9	10 HS3, (L)
1811	3	8.0	6 HS3, (L)
1834	7	18.3	18.3 HS1, (P)
1835	6	15.7	14.4 HS1, (P)
1842	0	0.0	0 HS3, (P)

Austrian inches ["] and line units ["]. \(H_{1842} \) DM water level relative to the level of DM1842. Object HS, HS1, HS2, HS3 hunger stones in Děčín (tab. 4) or in DZ Dolní Žleb (tab. 5). (X) sources of data Protokoll (1842), NS Neue Schriften (1845) and L levelling and surveying in 2015 (tab 4); in grey a very good agreement denoted.

5.2. Bad and doubtful markings

In the promotional photographs issued as postcards we can find supposed minima marks that do not correspond to reality (correction in parentheses) such as the years 1745 (1746) and 1858 (1868). The often published postcard with a lady in a hat by E. Rennert (as in Brázdil et al., 2015, 2019a) and an article in the anthology indicate an inscription of 1417 (Pažourek, 1998) in the left part of the plateau at the river. Is it possibly a misinterpretation or a complete forgery? In these places, there is now an inscription of 2003, but there is no indication that there is any mark, not to mention that the date would be necessarily made using Roman numerals. There used to be completely or partially wiped out inscriptions of the minimum of 1904 and the inscription “1904 Weh”, or misery or suffering. These inscriptions practically disappeared.

In the river side part of the Pillnitz castle there are signs including a year marking of 1778. By comparison with the mark heights in Magdeburg and the descriptions in the documentary sources it can be considered rather to mark the year of repairing the castle in 1778 or even the anniversary of its founding in 1718. But then it should be correctly marking of 1718.

5.3. Probable connections between flood marks and hunger stones in Pirna and Děčín

It is remarkable that we find virtually the same tradition and the same DM marks in Děčín and Pirna, on the Saxon and Czech sides. At that time from the 13th to the beginning of the 15th century, today’s Saxon Pirna was part of Bohemia. In 1432 the towns were hit by a catastrophic flood, the height of which is marked in Děčín next to the RG1 rock water gauge. In reverse, in 1515, Děčín became the property of aristocratic families from neighbouring Saxony, first of the Lords of Salhausen and from 1534 of Bünau (Schattkowsky, 2003). Until 1628, i.e. for 94 years, this family was in possession of Děčín and Weesenstein estate in the vicinity of Pirna. At that time, the oldest identified low-level signs of 1536 and 1616 were made on the HS3 stone in Děčín. Solely the literature documented marks of low water levels were made in 1516 or 1517 (Neue Schriften, 1845), i.e. at the time of the Salhausens. With the beginning of the Thirty Years’ War (1618-1648) and re-Catholicisation in Bohemia in 1626 Pirna became the centre of Czech exiles. It is evident that Děčín and Pirna are bound by one river,
cruise and partly by common history. It is therefore not surprising that we find an analogy in the area of documentation of flow minima.

5.4. Relationship between the Rhine and Elbe minima

The alluvial-pluvial regime of the Rhine predetermines the seasonality of the Rhine minima which occur rather in autumn and winter. That is mostly later than at the Elbe where there are mostly summer minima. The very dry period of 1536 to 1541 is defined particularly by the Elbe and the Rhine minima (Tab. 11 a, b). Only from the literature the mark of 1654 in Meissen is known, when there are also a number of reports from the Rhine basin. Almost perfect concurrence is represented by the minima of 1766 and 1767. The very warm and dry period of 1790-1794 was evident in both river basins. The lows also coincide in 1800 and 1858. In the Rhine basin, drought was more significant. In the Elbe river basin, the catastrophic flood changed the situation at the turn of July and August, which affected upper Elbe basin and mainly the Krkonoše and Krušné hory mountain areas (Elleder, 2015).

Tab. 11a Documentation of minimum water levels in the Rhine basin according to Wittman (1859), and of the Elbe minima on the basis of documented DM marks (1303-1755)

The Elbe	The Rhine
1303	Olten, Strasburg, (W)
1516	DM, DZ
1517	DM, DZ
1521	—
1536	DM, DE
1541	DM Unkelstein, (BT)
1544	DM STA (W)
1550	DM RA
1615	DM DE, Sax
1616	DM DE, Sax
1627	DM Sax
1631	DM Sax
1634	DM DZ
1635	DM Sax
1636	DM Sax
1637	DM Sax
1639	—
1654	DM ME Bacharach (Altarstein, 25 people standing on it), (W)
1660	DM Sax
1666	DM STA, Sax
1672	—
1681	DM, KO
1686	DM Sax
1692	—
1704	—
1705	DM Sax
1706	DM DE, Pi, Sax
1707	DM DE, Pi, Sax
1718	DM ST
1719	DM DE
1725	—
1726	DM Sax
1746	DM DE, Pi, ST
1749	—
1750	DM Laufenstein, Koln – bridge pillars, Bacharach
Tab. 11b Documentation of minimum water levels in the Rhine basin according to Wittman (1859), and of the Elbe minima on the basis of documented DM marks (1755-1858)

Year	The Elbe	The Rhine
1755	DM Sax, (GBS)	DM Mammelbach, (W)
1761	DM DE	—
1766	—	—
1767	—	Kolln, bridge pillars, (W)
1782	DM DE, PI, Sax	—
1785	—	DM Mammelbach, (W)
1789	DM Sax (NI), (GBS)	—
1790	DM DE, ST	—
1792	—	The lowest stage in Bodensee, Mammern, (W)
1800	DM DE, SCH, PI, ST	The lowest stage of the Rhine in 30 years, Mainz
1811	DM, DE, PI	—
1823	—	Very low water stage of the Rhine
1834	DM DE, PL, ST	—
1835	DM DE, PL, ST	—
1842	DM DE, DZ, PI	—
1848	—	DM Laufenstein, (W)
1858	DM Pirna	The lowest stage of the Rhine, (W)

DM = drought mark, DE = Děčín (Tab. 4), DZ = Dolní Žleb (Tab. 5), SCH = Schmilka, KO = Königstein, PI = Pirna, ME = Meissen, STA = Stade, and Sax = Saxony (Tab. 9). Other sources in brackets GBS (Gewerbe Blatt für Sachsen NO. 5, 1843), W (Wittmann, 1859), BT (Börngen, Tetzlaff, 2001).

A comparison of the duration of the tradition of making minimum markings in the Rhine and Elbe basins does not clearly indicate a longer tradition in either area. More interesting is a graphical overview of data from the Czech and Saxon DM sources (Fig. 9). It is apparent that the downward trend pointed out by reputed geographers and water managers (Burghaus, Grebenau, Wex, Harlacher and others) in the measured series has been apparent since about 1746, even at lows recorded on hunger stones. In the case of Děčín, it is clear that during the coldest period of the LIA, the Maunder Minimum (Eddy, 1976) could have a positive effect on the Elbe runoff, although, for example, Ogurtsov (2019) illustrates an even deeper minimum in the first half of the 15th century.
Fig. 9 The graphical overview of DM data from the Czech and Saxon areas (upper part). The black and grey circles represent DM minima derived from the hunger stone in Děčín, hatched circles relate to the stone in Dolní Žleb. This ensemble is completed by minima from the Saxon data (small circles), source (tab. 9). Gray line highlighted the trend of DM minima. The graphical overview of DM data from the Rhine basin (lower part). Water level minima derived from the Laufenstein DM (black rectangles), other epigraphic documentation (hatched rectangles) (tab. 11a, b).

Unfortunately, marks of 1516 and 1517 and their position are known only through the testimony of A. Seidl of Děčín and from an indication in the Protokoll (1842). However, the positions of the 1536 and 1616 marks increase their credibility. The downward trend since 1746 in Děčín cannot be explained only by hypothetical deepening of the profile or as a result of the shortening of the Elbe in the case of Dresden and Magdeburg. The fact that the runoff may have been comparable to the period after 1842 and even lower before the onset of the Maunder Minimum, may be useful knowledge about the status of the basic flow and the status of groundwater. In the case of the Rhine we have very little data available. The existing ones, however, do not contradict previous considerations. Again, there are two important time points, the years 1541 and 1750. Interpretation of other reports on hydrological drought from the Maunder Minimum period is a matter of future studies.

6. Conclusion
Hunger stones with low water marks are a phenomenon that has been and is regionally limited to the Upper Rhine basin and the Elbe River. In other regional areas, we have not been able to find an analogous activity where, for centuries, minimum water levels would have been marked. In the Rhine basin, the water level of the Lake Constance and the Rhine level in the area downstream of the confluence with the Aare River to Cologne were marked. While very few of the former objects with low-level marks are available in the Rhine basin, the situation is still favourable in the sandstone part of the Elbe canyon from Děčín to Pirna and its surroundings. There are at least 27 objects on the
Czech side and at least 10 stones on the German side, mainly with signs mostly from the 20th century.

Still, several of them are part of an older tradition before 1892 or 1842. Of these, we can only be sure
of the stones in Těchlovice, Děčín, Dolní Žleb, Hřensko, and Pirna. According to the existing findings,
the oldest marks from the 17th and 18th centuries have been preserved only in Děčín and Pirna, even
though they used to be in several places, and we are not sure about Dolní Žleb. A number of stones in
the navigation route, including the hunger stones, were recommended for blasting by the navigation
committees in 1842 and 1850.

An exceptional situation is in Děčín and Pirna in particular. It consists in the existence of very old
records of minimum water levels and the existence of old records of water levels. In Děčín, moreover,
the 590-year-old flood marks and the 490-year-old low water level marks are combined in one logical
complex. It is evident that the motivation for making the low water marks was related to navigation
conditions in the Elbe canyon. In fact, this tradition was made possible by availability of the local
material, sandstone in the form of rocky outcrops or boulders, into which the marks could easily be
cut, engraved or painted. The minimum signs at the individual objects in Děčín are related to the
dedicated water gauges and markings of the navigation depth which was about 93 cm for half load and
130 cm for full navigability around 1842. The old rock water gauge for high and low water levels and
its projection on the first of the three Děčín stones served the safe loading and passing as good as the
later water gauge in the city.

We have shown that the years with marks or crosses are credible evidence of the occurrence of flow
rate minima, mostly annual minima. If there were other minima in the year, additional lines were
made, forming an occasional water gauge for the given year. Obviously, the originators efforts were to
capture the annual minimum as accurately as possible, and the guarantee of reliability was often their
signature, name or initials. The marks correspond to the measured water levels of the systematic series
and are relatively representative to the important minima of the Magdeburg 1727-1880 and Děčín
1851-2019 series. The correlation of the 1868, 1892, 1893, 1904, 1911, 1921, 1928, 1930, 1934, 1947,
1957 markings (DM) in Děčín with the series of measurements shows mostly a match with
differences lower to 4 cm, exceptionally larger. Therefore, we assume the same accuracy, i.e.
compliance with real minima at the same level for marks from the 1516-1867 period.

According to the observed water level minima in the 16th and early 17th centuries, the minima were at
the same and probably even lower level than 1842. No completely reliable water level minima marks
are yet available for the Mauser Minimum [MM] period in the Czech territory. Marks of 1654
(Meissen) and 1681 (Konigstein) are documented only by more remote literature and their height is
unknown. The exceptions are marks at the end of MM in 1706 and 1707. Levelling measurement of
marks on two stones and creating a 3D model of the Děčín stone by scanning helped to understand the
tradition of water level recording, to rehabilitate the value of marks on hunger stones and to bring new
very reliable data on occurrence of hydrological drought in the historical period.

However, many other questions also emerged from the survey. The question is not whether it makes
sense to document the DM marks, but rather how much of the former collection remained after
regulating the Elbe and operating a chain cruise locally. We are confident that further field and archive
research will bring an opportunity to obtain valuable data on hydrological drought in the past. The
profitability of the resources and time spent on exploration and processing is evident.
Data availability. The measurement record and the survey notebook data such as historical records, Magdeburg, Dresden and Praha, used in the paper, are available from the corresponding authors.

Competing interests. The authors declare that they have no conflict of interest.

Author contributions. LE prepared the archive and historical sources. LE and LK prepared the field survey and measurement. TK analysed the object of HS with MeshLab software and JS worked with GIS applications, prepared maps and illustrations. All authors participated in interpretation of the field data and the results.

Special issue statement. This article is part of the special issue "Droughts over centuries: what can documentary evidence tell us about drought variability, severity and human responses?". It is not associated with a conference.

Acknowledgement

We thank Mr. Zvonimir Dragoun for geodetic surveying of the flood marks in 2004 and 2005 along the Elbe between Mělník and Děčín and of the low water level marks later in 2015. We relay sincere thanks for numerous friendly consultations and advice to Mr. O. Kotyza from the Litoměřice Museum, as well as for great willingness and consultations to the Director of the Museum in Děčín, Mr. Pažourek and Mrs. H. Slavíčková from regional Archive in Děčín. It is impossible to imagine our study without the hard work and interest of the team around Mr. Randák from the Elbe River Administration. The friendly advice and persistent optimism and interest of Mrs. Zlata Šámalová was a source of valuable information as well as energy. We also thank our colleagues from the SLUG Dresden. At last but no least we thank for translation Mr. V. Dvořák.

References

Benito, G., Lang, M., Barriendos, M., Llasat, M.C., Frances, F., Ouarda, T., Thorndycraft, V., Enzel, Y., Bardossy, A., Coeur, D., Bobèče, B.: Use of systematic paleoflood and historical data for the improvement of flood risk estimation. Review of scientific methods. Nat Hazards 31, 623–643, 2004.
Benito, G., Brázdil, R., Herget, J., and Machado, M. J.: Quantitative historical hydrology in Europe. Hydrol. Earth Syst. Sci., 19, 3517–3539, 2015.
Berg von, D. Veränderung des Wasserstandes der Flüsse und ihre Ursachen, Kritische Blätter für Forst und Jagwirtschaft, B.50, H. 1, s. 158–191,1867.
Berghaus, H.: Hydro-historische Uebersicht vom Zustande des Elbstromes innerhalb eines Hundert und achtjährigen Zeitraums von 1728 bis 1835 in Annalen der Erd-, Völker-, und Staatenkunde, Zweiter Band, Heft 5. G. Reiner. Berlin, 386–406, 1836.
Berghaus H.: Hydrographische Beschreibung des Elbestroms in Landbuch der Mark Brandenburg und des Markgrafthums Nieder- Lausitz in der Mitte des 19. Jahrhunderts oder der geographisch-historisch-statistische Beschreibung. Erster Band , Adolph Müller, Brandenburg, 301–326, 1854.
Brázdil, R., Dobrovolný P., Elleder, L., Kakos, V., Kotyza, O., Květoň, V., Macková, J., Štěkl V., Tolasz R., Valašek, H.: Historické a současné povodně v České republice, Masarykova Univerzita v Brně a Český hydrometeorologický ústav v Praze, 369, Brno, Praha 2005.
Brázdil, R., Bělinová, M., Dobrovolný, P., Míkšovský, J., Pišoft, P., Rezníčková, L., Štěpánek, P., Valašek, H., Zahradniček, P.: Temperature a Precipitation Fluctuations in the Czech Lands During the Instrumental Period. Masaryk University, Brno, 236, ISBN 978-80-210-6052-4, 2012.
Brázdil, R., Dobrovolný, P., Trnka, M., Kotyza, O., Řezničková, L., Valášek, H., Zahradniček, P., and Štěpánek, P.: Droughts in the Czech Lands, 1090–2012 AD, Clim. Past, 9, 1985–2002, https://doi.org/10.5194/cp-9-1985-2013, 2013.

Brázdil, R., Kiss, A., Luterbacher, J., Nash, D. J., and Řezničková, L.: Documentary data and the study of past droughts: a global state of the art, Clim. Past, 14, 1915–1960, https://doi.org/10.5194/cp-14-1915-2018, 2018.

Brázdil, R., Demarée, G. R., Kiss, A., Dobrovolný, P., Chromá, K., Trnka, M., Dolák, L., Řezničková, L., Zahradniček, P., Limanowka, D., and Jourdain, S.: The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-77, in review, 2019a.

Brázdil, R., Dobrovolný, P., Trnka, M., Řezničková, L., Dolák, L., and Kotyza, O.: Extreme droughts and human responses to them: the Czech Lands in the pre-instrumental period, Clim. Past, 15, 1–24, https://doi.org/10.5194/cp-15-1-2019, 2019b.

Bruhus, S.: Der Wasserstand der Elbe der Mulde und Elster in den Jahren 1850–1863, Zeitschrift des statistischen Bureu des Königlich Sächsischen Ministerium für Innern, 12. n. 11, s. 135–145, 1865.

Cvrk, F.: Stavební úpravy dolního Labe do roku 1938, Sborník z konference Labe, řeka současnosti a budoucnosti, 1994, s. 79–83, 1994

Dannenberg, H., E.: Vom Wiener Kongress zur Elbeschifffahrtsakte. Die Entdeckung der „Freiheit der Flussschifffahrt“ im früheren 19. Jahrhundert In Martin, A, Fischer, N. Die Elbe, über dem Wandel eines Flusses vom Wiener Kongress (1815) bis zu Gegenwart, Schriften zur Sächsischen Geschichte und Volkskunde, 58, 101–108, 2018.

Delametherie, J. C.: Journal de Physique, de Chemie, d´ Historie naturele et des Arts. Tome LI.

Eddy, A.: The Maunder minimum. Science 192, 1189–1202, 1976.

Elbeströmbauverwaltung: Der Elbestrom sein Stromgebiet und seine wichtigsten Nebenflüsse, Berlin, I- III., Verlag von Dietrich Reimer, Berlin,1898.

Elbekarte: Poříční mapa Vltavy a Labe z Prahy do Hřenska, Mapová sbírka Státního Archivu, Chodovec, inv. č. 559, sign. DX. 2. 1848.

Ellered, L. Andreas Rudolf Harlacher - zakladatel systematické hydrologie v Čechách, Meteorologické zprávy, roč. 65, č. 1 s. 1 – 12. ISSN 0026-1173, 2012.

Ellered, L.,: Historical changes in frequency of extreme floods in Prague. Hydrol. Earth Syst. Sci., 19, 4307-4315, 2015.

Ellered, L. Proxydata v hydrologii-Řada pražských průtokových kulminací 1118-1825, ČHMÚ Praha, 103 s. ISBN 978-80-87577-44-8, 2016a.

Ellered, L.: The Hunger stones: a new source for more objective identification of historical droughts, EGU General assembly, Vienna, Austria, 17–22 April 2016, EGU2016-14986, 2016b.
Elleder, L., Vlnas, R., Daňhelka, J., Ebeling, P., Z., Dragoun, Z.: Sucho v r. 1874 a jeho širší souvislosti in Daňhelka, J. a Elleder L., ed. 2018. Vybrané kapitoly z historie povodní a hydrologické služby na území ČR II., ČHMÚ Praha, 2019, under review.

Fügner, D., Schirpke, H. Neue Ergebnisse der Hochwasserberechnung für den Elbestrom in Dresden, Wasserwirtschaft-Wassetechnik 8, s. 189–191, 1984.

Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., Kumar, R. Revisiting the recent European droughts from a long-term perspective. Scientific Reports 8, 9499 11, 2018.

Harlacher A. R.: Bestimmung der Wassermenge von Flüssen etc., Technische Blätter Zur Hydrographie Böhmens III. roč, 1871, Deutsche Polytechnische Verein, s. 137–184, 1871.

Harlacher A. R.: Zur Hydrographie Böhmens, Technische Blätter III., 1871 Deutsche Polytechnische Verein. s. 81–112, 1872.

Harlacher A. R.: Hydrometrické práce na Labi u Děčína, Hydrografická komise království českého, vodoměrný odbor, čís. VII. Nákladem Hydrografické komise, Praha, 23, 1883.

Harlacher, A. R.: Hydrometrické práce na Labi u Děčína. (Hydrometric measurements in Elbe River by Děčín), Hydrografická komise království českého, Praha, 24, 1883.

Hofmann, F. W.: Chronik der Stadt Magdeburg. Dritter Band. Verlag Emil Baensch, Magdeburg, 555, 1850.

Jenč, P., Peša, V., Barus, M.: Dokumentace skalních rytin, nápisů a dalších prvků historické krajin v CHKO Český ráj, část Maloskalská Drábovna a Besedické skály – Kalich. Zpráva pro Geopark Český ráj o. p. v., Vlastivědné muzeum a galerie v České Lípě a Správa CHKO Český ráj Turnov, 2008

Faulhaber, P.: Veränderung hydraulisch-morphologischer Parameter der Elbe, Mitteilungsblatt der Bundesanstalt für Wasserbau, 82, https://izw.baw.de/publikationen/mitteilungsblaetter/0/faulhaber.pdf, 2000

Faulhaber, P.: Niedrigwasserereignisse an der Elbe und ihre Bedeutung für den Ausbau des Flusses, Bundesanstalt für Gewässerkunde Veranstaltungen 1, https://www.bafg.de/DE/05_Wissen/04_Pub/03_Veranst/201301.pdf, 2013

Focke, F.: Aus dem ältesten Geschichts-Gebiete Deutsch-Böhmens. Eine geschichtliche Durchforschung des Elbe- und Eulau-Thales samt Umgebung (and der sächsischen Grenze) von frühester Zeit bis in die Gegenwart. II. Band. Im Selbstverlage des Verfassers, Varnsdorf, 410, 1879.

Frölich – Schauseil, A.: Von Schandau in der Sächsischen Schweiz bis zur Sandbänken in der Nordsee In Martin, A, Fischer, N.: Die Elbe, über dem Wandel eines Flusses vom Wiener Kongress (1815) bis zu Gegenwart, Schriften zur Sächsischen Geschichte und Volkskunde, 58, 205–225, 2018.

Krolmus, V. 1845. Kronyka čili dějepis všech povodní posloupných let, suchých i mokrých, úrodných a neúrodných na obili, ovoce a vína, hladů, morů a jiných pohrom v Království Českém. Tiskem Karla Wetterla, Praha, 261 s.
Mikšovský, J., Brázdil, R., Trnka, M., and Pišoft, P.: Long-term variability of drought indices in the Czech Lands and effects of external forcings and large-scale climate variability modes, Clim. Past, 15, 827-847, https://doi.org/10.5194/cp-15-827-2019, 2019.

Merian. M. Topographia Palatinus Rheni et Vicinarum Regionum. 105, 1645.

Novotný, J: Dvě stoleté hydrologické řady průtoků na českých řekách. Sborník prací Hydrometeorologického ústavu Československé socialistické republiky, 2, Praha, 116, 1963.

Neue Schriften: Neue Schriften der Kaiserl., Königl. Patriotischen ökonomischen Gesellschaft im Königreich Böhmen, 9, 1, 1845.

Old hydrometry: The archive of old hydrometric measurements by hydrological service in Prague in 1877-1940 years, Archive of CHMI, manuscript, 1877-1940.

Pažourek, V.: Lodní doprava a hladový kámen v Děčíně, Děčín vlastivědné zprávy 2-IV, s. 45-52, 1995.

Pekař, J.: Kniha o Kosti, ISBN 80-902353-3-6, 367, 1998.

Pfister, Ch., 2006: Überschwemmungen und Niedrigwasser im Einzugsgebiet des Rheins 1500-2000. Der Rhein- Lebensadereiner Region, Bern, s.265–273.

Pötzsch, C. G.: Chronologische Geschichte der grossen Wasserfluthen des Elbstroms. Walther, Dresden, 232 s, 1784.

Protokoll: Protokoll der von den hohen Elbeuferstaaten abgeordneten, in eine Kommission vereinigten Wasseraubverständigen zur Erledigung der vorkommenden hydrotechnischen Fragen der in Folge Artikel XXX. der Elbeschiffahartablet in Dresden versammelten den Revisions- Kommission, Dresden, 267, 1842.

Protokoll. Verhandlungen Elbestromschau Commission der betreffenden Uferstaaten über die Schiffbarkeit der Elbe und deren Verbesserung. Hamburg, 167 p, 1850.

Protokoll. Verhandlungen Elbestromschau Commission der betreffenden Uferstaaten über die Schiffbarkeit der Elbe und deren Verbesserung. Hamburg, 101, 1850.

Randák, P.: Hladové kameny Dolní Žleb & Těchlovice, Povodí Labe, státní podnik závod Roudnice nad Labem, (http://www.pla.cz/), 20, 2015.

Randák, P.: 2017a. Hladové kameny v Dolním Žlebu a Těchlovicich in Minulostí Českého Švýcarska IX. P. 5-17, 2017a.

Randák, P.: 2017b. Hladové kameny Hřensko, Povodí Labe, státní podnik závod Roudnice nad Labem, (http://www.pla.cz/), 19, 2017b.

Reuter: Die Abnahme des Wasserstandes der Flüsse und die Versandung ihrer Betten hängen von der Verminderung und zu starken Lichtung der Gebürgwaldungen ab., Zeitschrift für das Forst und Jagdwesen mit besondere Rücksicht auf Bayern, 11 Band, 2. Heft, 28-87, 1840.

Schattkowsky, M. : Die Familie von Bünau: Adelsherrschafiten in Sachsen und Böhmen vom Mittelalter bis zur Neuzeit, Lepizig, 532, 2003.

Shanin, M. M. A. Hydrology of the Nile Basin, Amsterodam, New York, Oxford, Tokyo 574, 1985.
SLČ: Staří letopisové čeští od roku 1378 do 1527, čili pokračování v kronikách Přibíka Pulkavy a Beneše z Hořovic z rukopisů starých vydané, Ed. Palacký, 1941.

Ursinus, J. F.: Collektania zur Geschichte der Stadt und des Landes Meißen, 1790.

Van Loon, A. F.: Hydrological drought explained, WIREs Water 2015, 2:359–392. doi: 10.1002/wat2.1085, 2015.

Velímský, T.: Město na louce: archeologický výzkum na Mariánské louce v Děčíně 1984-1989. 1. vyd. Děčín: Okresní muzeum, 1991. 54 s. ISBN 80-85036-05-3, 1991.

Walter, H.: Über die Stromschnelle von Laufenburg. Diss. Phil. II, Zürich, Switzerland, 1901.

Walther, P., Büttig S., Kaltofen, A., Kaden, M, Lange J. M.: Erfassung der Hungersteine in der Elbe, Sächsische Landesamt für Umwelt, Landwirtschaft und Geologie, Archäologische Gesellschaft in Sachsen, Senckenberg Naturhistorische Sammlungen Dresden, https://www.thueringen.de/mam/th8/tlug/content/abt_1/v_material/2019/lange_hungersteine_untiefen.pdf, 2018.

Weikinn, C.: Quellentexce zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850, I. (Hydrgraphie (1751-1800), ed. Börngen, M., 673, 2000.

Wex, G.: Ueber die Wasserabnahme in den Quellen, Flüssen und Strömen, Zeitschrift des Oesterreichischen Ingenieur und Architekten Vereins, vol. 25, n.4, S. 63- 76, 1873.

Witmann, J.: Chronik der niedrigsten Wasserstände der Rhein, Seifert, Mainz, 142., 1859.

Wiesenfeld, K.: Andenken an der dritte Versammlung deutschen Architekten und Ingenieure in Prag, im Jahre 1844, Allgemeine Bauzeitung, 251–261, 1844.