Lignans and breast cancer risk in pre- and post-menopausal women: meta-analyses of observational studies

Velentzis, L. S., Cantwell, M., Cardwell, C., Keshtgar, M. R., Leathem, A. J., & Woodside, J. (2009). Lignans and breast cancer risk in pre- and post-menopausal women: meta-analyses of observational studies. British Journal of Cancer, 100(9), 1492-1498. DOI: 10.1038/sj.bjc.6605003

Published in:
British Journal of Cancer

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Lignans and breast cancer risk in pre- and post-menopausal women: meta-analyses of observational studies

LS Velentzis*,1, MM Cantwell2, C Cardwell2, MR Keshtgar3, AJ Leatham1 and JV Woodside4

1Department of Surgery, Breast Cancer Research Group, University College London, Charles Bell House, 67-73 Riding House St, London W1W 7EJ, UK; 2Cancer Epidemiology and Prevention Research Group, Centre for Public Health, Queen’s University Belfast, Mulhose Building, Grosvenor Road, Belfast BT12 6BJ, UK; 3Department of Surgery, Royal Free Hospital, Pond St, London NW3 2QG, UK; 4Nutrition and Metabolism Group, Centre for Public Health, Queen’s University Belfast, Mulhouse Building, Grosvenor Road, Belfast BT12 6BJ, UK

Phyto-oestrogens are plant compounds structurally similar to oestradiol, which have been proposed to have protective effects against breast cancer. The main class of phyto-oestrogens in the Western diet is lignans. Literature reports on the effect of lignans in breast cancer risk have been conflicting. We performed three separate meta-analyses to examine the relationships between (i) plant lignan intake, (ii) enterolignan exposure and (iii) blood enterolactone levels and breast cancer risk. Medline, BIOSIS and EMBASE databases were searched for publications up to 30 September 2008, and 23 studies were included in the random effects meta-analyses. Overall, there was little association between high plant lignan intake and breast cancer risk (11 studies, combined odds ratio (OR): 0.93, 95% confidence interval (95% CI): 0.83–1.03, P = 0.15), but this association was subjected to marked heterogeneity ($I^2 = 44\%$). Restricting the analysis to post-menopausal women, high levels of plant lignan intake were associated with reduced breast cancer risk (7 studies, combined OR: 0.85, 95% CI: 0.78, 0.93, P < 0.001) and heterogeneity was markedly reduced ($I^2 = 0\%$). High enterolignan exposure was also associated with breast cancer (5 studies, combined OR: 0.73, 95% CI: 0.57, 0.92, P = 0.009) but, again, there was marked heterogeneity ($I^2 = 63\%$). No association was found with blood enterolactone levels (combined OR: 0.82, 95% CI: 0.59–1.14, P = 0.24). In conclusion, plant lignans may be associated with a small reduction in post-menopausal breast cancer risk, but further studies are required to confirm these results.

British Journal of Cancer (2009) 100, 1492 – 1498. doi:10.1038/sj.bjc.6605003 www.bjcancer.com

MATERIALS AND METHODS

A systematic search of Ovid Medline (US National Library of Medicine, Bethesda, MD, USA), BIOSIS (Thompson Reuters, NY, USA) and EMBASE (Reed Elsevier PLC, Amsterdam, The Netherlands) databases for relevant studies published up to and including the date, 30 September 2008 was carried out. Relevant studies included at least one keyword or Medical Subject Heading from each of the following: (i) plant lignans (matuariesinol, secoisolaricresinol, pinoresinol and lарицирсінон), (ii) enterolignans (enterolactone and enterodiol) and (iii) breast cancer. The search strategy excluded reviews, animal and cell culture studies but did not impose any language restrictions.

Abstracts and full texts, where required, were independently screened by two investigators to establish the suitability for inclusion. Studies had to be of case–control or cohort design, evaluating the risk of invasive breast cancer in relation to lignan exposure and reporting odds ratios (ORs) or relative risks, as well as 95% confidence intervals (95% CIs). Cited references were also

*Correspondence: Dr LS Velentzis; E-mail: l.velentzis@ucl.ac.uk
Received 22 January 2009; revised 5 March 2009; accepted 5 March 2009; published online 31 March 2009
random effects model were calculated and scaled to percentages. The I²-statistic was used to test for heterogeneity (Higgins et al., 2003). Publication or selection bias was investigated by checking for asymmetry in funnel plots (Egger et al., 1997).

Analysis was repeated and sub-divided by menopausal status (pre- and post-menopausal). Statistical analyses were performed using the STATA version 9.2 software (Stata Corporation 2005, College Station, TX, USA).

RESULTS

Following screening of abstracts and full texts and grouping into categories, 27 of the 33 articles identified were selected for data extraction. Multiple publications were identified for a number of studies. Four articles (Grace et al., 2004; McCann et al., 2006; Thanos et al., 2006; Piller et al., 2006b) were excluded, as they were based on smaller subgroup analysis of their respective larger studies. The format of certain results prevented their use, but were provided by the authors in a suitable form and therefore included in this study. Overall, 23 publications were used, providing data for 6 cohort, 6 nested case–control and 10 case–control studies. Each article contributed data to one or more meta-analyses resulting in 12 articles on plant lignan intake (see Table 1), 5 on enterolignan exposure (see Table 2) and 9 on blood enterolactone levels.

Table 1 Characteristics of studies included in the review of plant lignans and breast cancer risk

First author/ year) country	Parent study	Study design (follow-up)	Controls/ cohort size	Menopausal status	Lignans measured	Dietary assessment	Adjusted confounders	
Hom-Ross et al (2002) United States	California Teachers Study	Prospective cohort (222 249 person-years; 2 years)**	711	111 526	Pre-M and Post-M	M, S	Self-reported 11-item FFQ	Age at 1st birth and menarche, BMI, daily caloric intake, ethnicity, family history, menopausal status, nulliparity, physical activity
Touillaud et al (2006) France	E3N Study	Prospective cohort (117 652 person-years; 4.2 years)**	402	26 868	Pre-M	M, S, P, L	Self-reported 201-item FFQ	Age at 1st birth and at menarche, alcohol, BBD, BMI, education, family history, energy, geographic area, height, OC, parity
Touillaud et al (2007) France	E3N Study	Prospective cohort (383 425 person-years; 7.7 years)**	1469	58 049	Post-M	M, S, P, L	Self-reported 208-item FFQ	Age at 1st birth, menopause, alcohol, BBD, BMI, energy, family history, height, HRT, OC, parity, smoking
Hedelin et al (2008) Sweden	SWLH cohort	Prospective cohort (13 years)**	1014	1014	Pre-M and Post-M	M, S, P, L, Sy, Med	Self-reported 80-item FFQ	Age at menarche and 1st pregnancy, alcohol, BMI, energy, family history, OC, parity, saturated fat
Suzuki et al (2008) Sweden	SMC Study	Prospective cohort (430 339 person-years; 8.3 years)**	1284	51 823	Post-M	M, S, P, L	Self-reported 67-item FFQ (1987), 93-item FFQ (1997)	Age at 1st birth, menarche and menopause, alcohol, BBD, BMI, education, energy, family history, height, HRT, OC, parity
Hom-Ross et al (2001) United States	Bay Area Breast Cancer Study	Population-based case–control	1272	1610	Pre-M and Post-M	M, S	Self-reported 94-item FFQ	Age, age at menarche, BBD, BMI, daily caloric intake, education, family history, HRT, lactation, menopausal status, parity, race
dos Santos Silva et al (2004) United Kingdom	Case–control (GP’s patient lists)		240	477	Pre-M and Post-M	M, S	Interviewed 207-item FFQ	Age at 1st birth and at menarche, education, family history, lactation, menopausal status, parity
Lieseisen et al (2004) Germany	Population-based case–control		278	666	Pre-M	M, S	Self-reported 176-item FFQ	Alcohol, BMI, education, energy, family history, lactation, parity
McCann et al (2004) United States	WEB Study	Population-based case–control	1122	2036	Pre-M and Post-M	M, S	Self-reported 98-item FFQ	Age, age at 1st birth, menarche and menopause, BBD, BMI, education, energy, age at menopause, parity, race, smoking
Fink et al (2007) United States	LIBCSP Study	Population-based case–control	1434	1404	Pre-M and Post-M	M, S	Self-reported 94-item FFQ	Age and energy
Cotterslak et al (2008) Canada	Ontario Women’s Diet and Health Study	Population-based case–control	3063	3370	Post-M	M, S, P, L	Self-reported 178-item FFQ	Age, age at 1st live birth, BBD, dietary fibre intake, family history, HRT
Torres-Sanchez et al (2008) Mexico	Hospital based case–control		141	141	Pre-M and Post-M	M, S, P, L	Interviewed 100-item FFQ	Age, energy, lifetime lactation, menopausal status

BBD = benign breast disease; BMI = body mass index; E3N = French Component of the European Prospective Investigation into Diet and Cancer (EPIC) Study; FFQ = food frequency questionnaire; GP = general practitioner; HRT = hormone replacement therapy; L = larcisinosil; LIBCSP = Long Island Breast Cancer Study Project; M = matairesinol; Med = medioresinol; OC = oral contraceptive; P = pinosil; Pren-M = perimenopausal; Pre-M = pre-menopausal; Post-M = post-menopausal; S = secoisolariciresinol; SMC = Swedish Mammography Cohort; SWLH = Scandinavian Women’s Lifestyle and Health Cohort; Sy = syringaresinol; WEB = Western New York Exposure and Breast Cancer Study. *Median follow-up; **Mean follow-up.
(see Table 3). Details of the adjustments made in each study (the most fully adjusted model was used in the meta-analysis) are shown in Tables 1–3.

There was no association between plant lignan intake and risk when 11 studies were combined, although there was a slight protective effect. The risk in the highest intake group was 0.93 times (95% CI: 0.83–1.03, \(P = 0.15 \)) that of the lowest intake group (see Figure 1). When studies were analysed by menopausal status, a statistically significant reduction in risk was seen with the highest intake category of plant lignans vs the lowest intake in post-menopausal women (7 studies, combined OR: 0.85, 95% CI: 0.78, 0.93, \(P < 0.001 \)), with little sign of between-study heterogeneity.

Table 2

First author/ (year)/ country	Parent study	Study design (median follow-up)	Cases	Controls/ cohort size	Menopausal status	Diet assessment	Adjusted confounders
Keinan-Boker et al (2004) The Netherlands	Prospective- EPIC	Prospective Cohort (5.2 years)	280	80,215	Pre-M, Peri-M and Post-M combined	Self-reported	Age at 1st birth and study entry, education, energy, height, HRT, marital status, OC, parity, physical activity, weight
Touillaud et al (2006) France	E3N Study	Prospective Cohort (4.2 years)	402	117,652	Pre-M	Self-reported	Age at 1st birth and menarche, alcohol, BBD, BMI, education, energy, family history, geographic area, height, OC, parity
Touillaud et al (2007) France	E3N Study	Prospective cohort (7.7 years)	1469	383,425	Post-M	Self-reported	Age at 1st birth, at menarche and menopause, alcohol, BBD, BMI, energy, family history, geographic area, height, HRT, OC, parity, smoking
Cann et al (2002) United States	WEB Study	Population-based case–control	301,439	316,494	Post-M	FFQ	Age at menarche, BBD, BMI, education, energy, family history, parity; further adjusted for age at menopause
Lineisen et al (2004) Germany	Population-based case–control	278	666	Pre-M	Self-reported	Age at menarche, BBD, BMI, breast-feeding, education, energy, family history, parity; controls matched by exact age to cases	

BBD = benign breast disease; BMI = body mass index; E3N = French Component of the European Prospective Investigation into Diet and Cancer (EPIC) Study; FFQ = food frequency questionnaire; HRT = hormone replacement therapy; OC = oral contraceptive; Peri-M = Peri-menopausal; Pre-M = pre-menopausal; Post-M = post-menopausal; Prospect-EPIC = Dutch Cohort of EPIC Study; WEB = Western New York Exposure and Breast Cancer Study.

Table 3

First author/ (year)/ country	Parent study	Design (follow-up)	Cases	Controls/ cohort size	Method	Menopausal status	Mean ENL cases (nmol/l)	Mean ENL controls/cohort (nmol/l)	Adjusted confounders
Roccardo et al (2003) Italy	Diabetic cohorts	Prospective cohort (6.5 years after cyst aspiration)	18	383	TR-FIA	Pre-M and Post-M	14.7	19.6	Age, cyst type and family history
Hultén et al (2002) Sweden	MONICA and MSP studies	Cross-sectional population surveys	248	492	TR-FIA	Pre-M and Post-M	26.8 VIP and MONICA 19.3 MSP 25.2	22.9 VIP and MONICA 20.4 MSP 24.0	BMI, menopausal status, smoking None
Klikkinen et al (2003) Finland	Diet, Cancer and Health Study	Nesting case–control	206	215	TR-FIA	Pre-M and Post-M	18.3	18.6	Age, HRT (through matching of controls)
Olsen et al (2004) Denmark	Nesting case–control	Nesting case–control	381	381	TR-FIA	Pre-M	Not provided	Not provided	Age at 1st live birth and menarche, ln(BMI), family history, ln(height), nulliparity
Zeleniuch-Jacquotte et al (2004) United States	Nesting case–control	Nesting case–control	417	417	TR-FIA	Pre-M	18.3	18.6	Age at menarche and family history (Pre-M) Crude OR (Post-M)
Verhees et al (2007) The Netherlands	EPIC-Norfolk	Nesting case–control	383	383	LC/MS	Pre-M	2.98 (ng/ml) 2.71 (ng/ml)	2.66 (ng/ml)	Age at menarche and breast-feeding, energy, family history, fat, HRT, OC, menopausal status, parity, social class, weight
Ward et al (2006) United Kingdom	EPIC-Norfolk	Nesting case–control (9.5 years; 11 261 person-years)	219	891	LC/MS	All	5.83 (ng/ml)*	5.00 (ng/ml)*	Age at menarche, alcohol, BMI, education, family history, OC, physical activity, smoking, waist to hip ratio
Pietinen et al (2001) Finland	Kuopio Breast Cancer Study	Population-based case–control	194	208	TR-FIA	Pre-M	16.6	21.2	Crude OR (Post-M)
Pfifer et al (2006) Germany	Population-based case–control	192	231	TR-FIA	Pre-M	11.6	12.2	Age at menarche, alcohol, BMI, breast-feeding, day of analysis, education, family history, OC, parity, time difference between surgery and blood sampling day	

BBD = benign breast disease; BMI = body mass index; ENL = enterolactone; HRT = hormone replacement therapy; LC = liquid chromatography; MONICA = Monitoring of Trends and Cardiovascular Disease Study; MS = mass spectrometry; MSP = Mammary Screening Project; NYU = New York University; OC = oral contraceptive; Peri-M = peri-menopausal; Pre-M = pre-menopausal; Post-M = post-menopausal; Prospect-EPIC = Dutch Cohort of the European Prospective Investigation into Diet and Cancer (EPIC) Study; TR-FIA = time-resolved fluoroimmunoassay; VIP = Västerbotten Intervention Project. *Median values. Means not provided.
(I² = 0%, 95% CI: 0, 71, P = 0.46) (see Figure 2). The same effect was not observed in pre-menopausal women (7 studies, combined OR: 0.97, 95% CI: 0.82, 1.15, P = 0.73). The funnel plot of studies examining plant lignan intake and overall breast cancer risk showed symmetry, suggesting a lack of publication bias.

There was a statistically significant inverse association between enterolignan exposure and overall risk (combined OR: 0.73, 95% CI: 0.57, 0.92, P = 0.009) (Figure 3), although there was marked heterogeneity (I² = 63%, 95% CI: 0.0, 88, P = 0.04), but there was no association between exposure and risk by menopausal status (pre-menopausal breast cancer risk: 3 studies, combined OR: 0.67, 95% CI: 0.44 – 1.02, P = 0.06; post-menopausal: 2 studies, combined OR: 0.85, 95% CI: 0.72 – 1.01, P = 0.06).

There was no association between blood enterolactone and breast cancer risk (combined OR: 0.82, 95% CI: 0.59 – 1.14, P = 0.24) (Figure 4). Results of analysis by menopausal status were similar for both pre-menopausal women (5 studies, combined OR: 0.85, 95% CI: 0.43 – 1.58, P = 0.61) and post-menopausal women (6 studies, combined OR: 0.86, 95% CI: 0.66, 1.14, P = 0.28).

DISCUSSION

This is the first systematic review and meta-analysis of exposure to lignans and breast cancer risk based on studies using dietary assessments and serum measurements. Although exposure can be assessed by urine analysis, few studies have used this methodology and therefore, these were not included (Ingram et al., 1997; den Tonkelaar et al., 2001; Dai et al., 2002). The results show that there was no association between plant lignan intake and overall risk, and this association was subjected to marked heterogeneity.
However in post-menopausal women, there is a small but significant reduction in risk and a reduction in heterogeneity. A significantly decreased risk with increasing enterolignan exposure was also found. However, there was significant heterogeneity between studies making it difficult to draw clear conclusions, and the effect did not persist when analyses were stratified by menopausal status, although the number of studies included in these stratified analyses was very small. Finally, there was no association between enterolactone concentrations in blood and overall risk, or when analysis was stratified by menopausal status.

The protective action of plant lignans against breast cancer in post-menopausal, but not in pre-menopausal women, would suggest that lignan activity has a physiologic effect only at low oestradiol levels. One of the mechanisms of action may be greater sex hormone-binding globulin production and binding of free oestradiol (Adlercreutz et al, 1989, 1992; Zeleniuch-Jacquotte et al, 2004; Low et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007). Binding of type II nuclear oestrogen receptor (Adlercreutz et al, 1992; Adlercreutz, 2007) and altering oestrogen synthesis within the breast cells and extragonadal sites, such as the adipose tissue, are other possible mechanisms (Adlercreutz et al, 1993; Saarinen et al, 2007).
intake of plant lignans (Hausner et al., 2004). For example, blood levels of enterolactone can be modulated by age, smoking, frequency of defecation, weight–obesity–body mass index and regular alcohol intake (Kilkkinen et al., 2001, 2002; Horner et al., 2002; Milder et al., 2007), and these factors could potentially differ by menopausal status (in particular, age and body mass index). As bacterial enzymes are involved in lignan metabolism, the use of antibiotics has also been shown to affect enterolactone serum concentration (Kilkkinen et al., 2002); antibiotic use was generally not controlled for in these studies.

It is also possible that the protective effect is caused directly by the plant lignans or chemicals within the metabolic pathway other than enterolactone, or even by a synergistic effect between plant lignans and enterolignans. However, other food constituents found to be associated with plant lignans may exert the effect. For example, α-linoleic acid, which is also thought to have anti-cancer effects (Thompson, 2003; Bougnoux and Chajes, 2003, p. 232), is found in very high levels in flaxseed, the richest source of plant lignans (Thompson et al., 1991).

Determining plant lignan intake has various limitations, which could lead to an over- or under-estimation of food content. Some food composition databases are incomplete in terms of not containing values for the more recently discovered plant lignans (e.g., medioresinol) or for the whole range of foods consumed by the study population. In addition, there are various analytical methods for determining food values; hence, databases compiled from published values determined by different methodologies may contain inherent errors. It has also been shown that the amount of lignans in food can differ according to crop variety, location, year of harvest and processing (Thompson et al., 1997; Kuijsten et al., 2005). Dietary measurement error associated with FFQs (food frequency questionnaires) is also possible. FFQs that were used varied in length, ranging from 67 to 208 items. Only one study validated its FFQ specifically for plant lignan assessment (Torres-Sanchez et al., 2008), although a UK study used the combination of an FFQ and 24-h recalls to group participants into quartiles of intake (dos Santos Silva et al., 2004). In addition, the possibility of residual confounding cannot be ruled out.

Consumption of soy food, rich in isoflavones, has been shown to reduce breast cancer risk in Asian women but not in Western women (Wu et al., 2008), suggesting that ethnicity may play a role in this effect. It is not known whether there are differential physiologic effects of lignans in people of different races, although there is some evidence of variation in the urinary excretion of lignans between white, African American and Latino women (Horn-Ross et al., 1997). Of the 23 articles used for the meta-analyses, only 3 American studies provided complete data with regard to ethnicity (Horn-Ross et al., 2001, 2002; McCann et al., 2004); hence, it was impossible perform sub-analyses for examining this.

In summary, the meta-analyses presented in this study, indicate that plant lignans and enterolignans are unlikely to significantly protect all women against breast cancer development. However, our results suggest that high plant lignan intake is associated with a 15% decreased risk in post-menopausal women, which is a small reduction that could be due to residual confounding. If real, the reason for the selective effect is not clear. Additional studies of the effect of lignan exposure on post-menopausal breast cancer risk are needed to confirm these findings before reassessing the current dietary guidelines.

ACKNOWLEDGEMENTS

Part of this work was supported by funding from the Against Breast Cancer charity (Registered Charity No. 1121258).

REFERENCES

Adlercreutz H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44: 483 – 525
Adlercreutz H, Bannwart C, Wählä K, Mäkelä T, Brunow G, Hase T, Arosmena PJ, Kellis Jr JT, Vicker LE (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol 44: 147 – 153
Adlercreutz H, Hämäläinen E, Gorbach SL, Woods MN, Dwyer JT (1989) Diet and plasma androgens in postmenopausal vegetarian and omnivorous women and postmenopausal women with breast cancer. Am J Clin Nutr 49: 433 – 442
Adlercreutz H, Moussavi Y, Clark J, Höckerstedt K, Hämäläinen E, Wählä K, Mäkelä T, Hase T (1992) Dietary phytoestrogens and cancer: in vitro and in vivo studies. J Steroid Biochem Mol Biol 41: 331 – 337
Beral V, Million Women Study Collaborators (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362: 419 – 427
Bergman Jenzström M, Thompson LU, Dabrosin C (2007) Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin Cancer Res 13: 1061 – 1067
Boccardo F, Lunardi G, Guglielmini P, Parodi M, Muraldo R, Schettini G, Rubagotti A (2003) Serum enterolactone levels and the risk of breast cancer in women with palpable cysts. Eur J Cancer 40: 84 – 89
Bougnoux P, Chajes V (2003) α-Linoleic acid and cancer. In: Flaxseed in Human Nutrition Thompson LU, Cunnane SC (eds), pp 232 – 244. AOCS Press: Illinois, USA
Brooks JD, Thompson LU (2005) Mammalian lignans and genistein decrease the activities of aromatase and 17β-hydroxysteroid dehydrogenase in MCF-7 cells. J Steroid Biochem Mol Biol 94: 461 – 467
Cotterchio M, Boucher BA, Kreiger N, Mills CA, Thompson LU (2008) Dietary phytoestrogen intake–lignans and isoflavones–and breast cancer risk (Canada). Cancer Causes Control 19: 259 – 272
Dai Q, Franke AA, Jin F, Shu XO, Hebert JR, Custer LJ, Cheng J, Gao YT, Zheng W (2002) Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. Cancer Epidemiol Biomarkers Prev 11: 815 – 821
den Tonkar I, Keinan-Boker L, Veer PV, Arts CJ, Adlercreutz H, Thijsen JH, Peeters PH (2001) Urinary phytoestrogens and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 10: 223 – 228
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177 – 188
dos Santos Silva I, Manganti P, McCormick V, Bhakta D, McMichael AJ, Sevak L (2004) Phyto-oestrogen intake and breast cancer risk in South Asian women in England: findings from a population-based case-control study. Cancer Causes Control 15: 805 – 818
Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629 – 634
Fink BN, Steck SE, Wolff MS, Britton JA, Kabat GC, Schroeder JC, Teitelbaum SL, Neugut AI, Gammon MD (2007) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165: 514 – 523
Grace PB, Taylor JJ, Low YL, Luben RN, Mulligan AA, Botting NP, Dowsett M, Welch AA, Khaw KT, Wareham NJ, Day NE, Bingham SA (2004) Phyto-oestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European prospective investigation of cancer and nutrition-norfolk. Cancer Epidemiol Biomarkers Prev 13: 698 – 708
Hausner H, Johnsen NF, Hallund J, Tetens I (2004) A single measurement is inadequate to estimate enterolactone levels in Danish postmenopausal women due to large intra-individual variation. J Nutr 134: 1197 – 1200
Hedelin M, Lof M, Olsson M, Adlercreutz H, Sandin S, Weiderpass E (2008) Dietary phytoestrogens are not associated with risk of overall breast cancer in Swedish women. J Steroid Biochem Mol Biol 106: 24 – 30
Hausner H, Johnsen NF, Hallund J, Tetens I (2004) A single measurement is inadequate to estimate enterolactone levels in Danish postmenopausal women due to large intra-individual variation. J Nutr 134: 1197 – 1200
Hedelin M, Lof M, Olsson M, Adlercreuzh H, Sandin S, Weiderpass E (2008) Dietary phytoestrogens are not associated with risk of overall breast cancer in Swedish women. J Steroid Biochem Mol Biol 106: 24 – 30

© 2009 Cancer Research UK

British Journal of Cancer (2009) 100(9), 1492 – 1498
can't be exactly reproduced as it contains references and scientific data that are not in a standard format for natural text. However, I can provide a summary of the key points:

Keinan-Boker L, van Der Schouw YT, Grobbee DE, Peeters PH (2004) Kilkkinen A, Stumpf K, Pietinen P, Valsta LM, Tapanainen H, Adlercreutz Kilkkinen A, Pietinen P, Klaukka T, Virtamo J, Adlercreutz H Kuijsten A, Arts IC, van’t Veer P, Hollman PC (2005) The relative Horn-Ross PL, Hoggatt KJ, West DW, Krone MR, Stewart SL, Linseisen J, Piller R, Hermann S, Chang-Claude J (2004) Dietary McCann SE, Kulkarni S, Trevisan M, Vito D, Nie J, Edge SB, Muti P, McCann SE, Moysich KB, Freudenheim JL, Ambrosone CB, Shields PG (2002) Dietary lignan intake and risk of breast cancer by tumor estrogen receptor status. Breast Cancer Res Treat 99: 309 – 311 McCann SE, Moysich KB, Freudenberg JM, Ambrosone CB, Shields PG (2002) The risk of breast cancer associated with dietary lignans differs by CYP17 genotype in women. J Nutr 132: 3036 – 3041 McCann SE, Muti P, Vito D, Edge SB, Trevisan M, Freudenberg JM (2004) Dietary lignan intakes and risk of pre- and postmenopausal breast cancer. Int J Cancer 114: 440 – 449 Mikkelsen IE, Kuijsten AI, Arts IC, Feskens EJ, Kampman E, Hollman PC, Van’t Veer P (2007) Relation between plasma enterolactone and enterolactone and dietary intake of lignans in a Dutch endoscopy-based population. J Nutr 137: 1266 – 1271