A COMMUTATIVE AND COMPACT DERIVATIONS FOR W* ALGEBRAS

ABDELGABAR ADAM HASSAN^1,2;*, MOHAMMAD JAWED^1

^1Jouf University, College of Science and Arts in Tabrjal, Department of Mathematics, Kingdom of Saudi Arabia
^2University of Nyala, Department of Mathematics, Sudan
*Corresponding Author: aahassan@ju.edu.sa

ABSTRACT. In this paper, we study the compact derivations on W* algebras. Let M be W*-algebra, let LS(M) be algebra of all measurable operators with M, it is show that the results in the maximum set of orthogonal predictions. We have found that W* algebra A contains the Center of a W* algebra ß and is either a commutative operation or properly infinite. We have considered derivations from W* algebra two-sided ideals.

1. INTRODUCTION

Let M be a W*-algebra and let Z(M) be the center of M. Fix a ∈ M and consider the inner derivation δ_a on M generated by the component a, which is δ_a(·) := [a, ·].

The norm closing two sided ideal f(B) generated by the finite projections of a W* algebra B behaves somewhat similar to the idealized compact operators of B(H) (see [11],[8],[9]). Therefore, it is natural to ask about any sub-algebras d of B that is any derivation from A into f(B) implemented from an element of y(B).

Received April 1st, 2020; accepted April 20th, 2020; published May 28th, 2020.
2010 Mathematics Subject Classification. 47L15.
Key words and phrases. commutative; compact; operation; W*-algebras.

©2020 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.
We perform two main difficulties: the presence of the center of B and the fact that the main characteristic in [8] proof (that is, if Q_n, is a sequence of mutually orthogonal projections and $T \in B(H)$ hence $\|Q_n T Q_n\| > \alpha > 0$ for all n implies that T is not compact) failure to generalize to the case in which g is of Type $II\infty$.

Finally, we have considered derivations from d at the two-sided $C_{1+\varepsilon}(B, \tau) = B \cap L^{1+\varepsilon}(B, \tau)(1 \leq 1 + \varepsilon < \infty)$ to obtain faithful finite normal trace τ on B.

2. Notations Preliminary

Lemma (1). Let B be a semi-finite algebra, let $Q_0 \in p(B)$ and $x_0 \in Q_0$ be such that ω_{x_0}, is a faithful trace on $B_{\mathcal{Q}_0}$. Assume there are $Q_n \in p(B)$, $F_n \in p(\ell)$ and $U_n \in B$ for $n = n_1, n_2, ...$, such that the projections Q_n are mutually orthogonal and $Q_n = U_n^*U_n$, $Q_n F_n = U_n^*U_n$ for all n (i.e., $Q_n \sim Q_{n_0}F_n$). Let $x_n = U_nF_nx_0$. Then $x_n \rightarrow_{jRW} O$.

Proof. Assume that $\sum_{n=0}^{\infty} Q_n = n$. Let τ be a faithful semi-finite normal (fsn) trace on B^+ to be agreed on $B_{\mathcal{Q}_0}$ with ω_{x_0}. Then for all $B \in B^+_{\mathcal{Q}_0}$ we have

$$
\tau(B) = \tau(U_n^*U_n^*BU_n^*U_n^*) = \tau(U_n^*U_n^*BU_n^*) = \tau(Q_n F_n U_n^*BU_n^* F_n) = \omega_{x_0}(F_n U_n^*BU_n^* F_n) = \omega_{x_0}(B).
$$

Let $P \in p(B)$ be any semi-finite projection. Then by [11] there is a central decomposition of the identity $\sum_{\gamma \in \Gamma} E_\gamma = 1, E_\gamma \in p(\ell), E_\gamma E_{\gamma'} = 0$ for $\gamma \neq \gamma'$ such that $\tau(PE_\gamma) < \infty$ for all $\gamma \in \Gamma$. Then

$$
\tau(PE_\gamma) = \sum_{n=1}^{\infty} \tau(Q_n PE_\gamma Q_n) = \sum_{n=1}^{\infty} \omega_{x_n}(Q_n PE_\gamma Q_n) = \sum_{n=1}^{\infty} \|PE_\gamma x_n\|^2 < \infty
$$
whence $\|PE_\gamma x\| < 0$ for all $\gamma \in \Gamma$. Let $\varepsilon > 0$ and let $\Lambda \subseteq \Gamma$ be a finite index set such that

$$\sum_{\gamma \in \Lambda} \|PE_\gamma x_0\|^2 < \varepsilon.$$

Then for all n,

$$\sum_{\gamma \in \Lambda} \|PE_\gamma x_n\|^2 = \sum_{\gamma \in \Lambda} \|PE_\gamma U_n F_n x_0\|^2 = \sum_{\gamma \in \Lambda} \|PU_n F_n E_\gamma x_0\|^2 \leq \sum_{\gamma \in \Lambda} \|E_\gamma x_0\|^2 < \varepsilon$$

Hence from $\|Px_n\|^2 \leq \sum_{\gamma \in \Lambda} \|PE_\gamma x_n\|^2 + \varepsilon$, where $\|Px_n\| \to 0$, to completes the proof.

Lemma (2). Let $T \notin f(P)$, then there is an $\alpha > 0$ and $0 \neq E \in p(\ell)$ such that for every $0 \neq F \in p(\ell)$ with $F \leq E$ we have $\|\pi(TF)\| > \alpha$.

Proof. Let $\alpha = \frac{1}{2} \|\pi(T)\| > 0$ and let G be the sum of a maximal family of mutually orthogonal central projections G_γ such that $\|\pi(TG_\gamma)\| \leq \alpha$. Then

$$\|\pi(TG)\| = \sup_\gamma \|\pi(TG_\gamma)\| \leq \alpha,$$

hence $G \neq 1$. Let $E = Z - G$ and let $0 \neq F \in p(\ell)$ with $F \leq E$.

Since $FG = 0$, by the maximally of the family we have $\|\pi(TF)\| > \alpha$.

3. Relatively Compact Derivation

Let M be a W^*-algebra and let $Z(M)$ be the center of M. Fix $a \in M$ and consider the inner derivation δ_a on M generated by the element a, that is $\delta_a(\cdot) := [a, \cdot]$. Obviously, δ_a there is a linear bounded operator on $(M, \| \cdot \|_M)$, where $\| \cdot \|_M$ is a C^*-norm on M. It is known that there exists $c \in Z(M)$ such that the following estimate holds: $\|\delta_a\| \geq \|a - c\|_M$. In view of this result, it is natural to ask whether there exists an element $y \in M$ with $\|y\| \leq 1$ and $c \in Z(M)$ such that $[a, y] \geq |a - c|$.

Definition (3). A linear subspace I in the W^* algebra M equipped with a norm $\| \cdot \|_I$ is said to be a symmetric operator ideal if
(i) \[\| S \|_I \geq \| S \| \text{ for all } S \in I, \]

(ii) \[\| S^* \|_I = \| S \| \text{ for all } S \in I, \]

(iii) \[\| A S B \| \leq \| A \| \| S \| \| B \| \text{ for all } S \in I, A, B \in M. \]

Observe, that every symmetric operator ideal \(I \) is a two-sided ideal in \(M \), and therefore by [13], it follows from \(0 \leq S \leq T \) and \(T \in I \) that \(S \in I \) and \(\| S \|_I \leq \| T \|_I \).

Corollary (4). Let \(M \) be a \(W^* \)-algebra and let \(I \) be an ideal in \(M \). Let \(\delta : M \to I \) be a derivation. Then there exists an element \(a \in I \), such that \(\delta = [a,.] \).

Proof. Since \(\delta \) is a derivation on a \(W^* \)-algebra, it is necessarily inner [8]. Thus, there exists an element \(d \in M \), such that \(\delta(\cdot) = \delta_d(\cdot) = [d,.] \). It follows from the hypothesis that \([d,M] \subseteq I \).

Using [22] (or [20]), we obtain \([d^*,M] = [d,M]^* \subseteq I^* = I \) and \([d_k,M] \subseteq I, k=1,2 \), where \(d = d_1 + i d_2, d_k = d_k^* \in M \), for \(k=1,2 \). It follows now, that there exist \(c_1, c_2 \in \mathbb{Z}(M) \) and \(u_1, u_2 \in U(M) \), such that \(\|d_k, u_k\| \geq 1/2 \|d_k - c_k\| \) for \(k=1,2 \). Again applying [20], we obtain \(d_k - c_k \in I, \) for \(k=1,2 \). Setting \(a := (d_1 - c_1) + i (d_2 - c_2) \), we deduce that \(a \in I \) and \(\delta = [a,.] \).

Corollary (5). Let \(M \) be a semi-finite \(W^* \)-algebra and let \(E \) be a symmetric operator space. Fix \(a = a^* \in S(M) \) and consider inner derivation \(\delta = \delta_a \) on the algebra \(LS(M) \) given by \(\delta(x) = [a,x], x \in LS(M) \). If \(\delta(M) \subseteq E \), then there exists \(d \in E \) satisfying the inequality \(\|d\|_E \leq \|\delta\|_{M \to E} \) and such that \(\delta(x) = [d,x] \).

Proof. The existence of \(d \in E \) such that \(\delta(x) = [d,x] \). Now, if \(u \in U(M) \), then
\[
\|\delta(u)\|_E = \|du - ud\|_E \leq \|du\|_E + \|ud\|_E = 2\|d\|_E.
\]
Hence, if \(x = \{x \in M : \|x\| \leq 1\} \), then \(x = \sum_{i=1}^4 \alpha_i u_i \), where \(u_i \in U(M) \) and \(|\alpha_i| \leq 1 \) for \(i=1,2,3,4 \), and so
\[
\|\delta(x)\|_E \leq \sum_{i=1}^4 \|\delta(\alpha_i u_i)\|_E \leq 8\|d\|_E \text{, that is } \|\delta\|_{M \to E} \leq 8\|d\|_E < \infty.
\]
4. A Commutative Operation on W^* Sub-algebras

When A a commutative operation is crucial because it provides the following explicit way to find an operator $T \in B$ implementing the derivation.

For the rest of this section let A be any a commutative operation sub-algebras of B and $\delta: A \to B$ be any derivation. Let u be the unitary group of A and M be a given invariant mean on u, i.e., a linear functional on the algebra of bounded complex-valued functions on u such that

(i) For all real f, $\inf \{ f(U) \mid U \in u \} \leq Mf \leq \sup \{ f(U) \mid U \in u \}$

(ii) For all $U \in u$, $Mf_U = MS$, where $f_U(V) = f(UV)$ for $V \in u$.

Thus M is bounded and $|Mf| \leq \sup \{ |f(U)| \mid U \in u \}$ for all f (see [8] for the existence and properties of M).

For each $\phi \in B$, the map

$$\phi \mapsto M\phi\left(U^*\delta(U)\right)$$

is linear and bounded and hence defines an element $T \in (B_u)^*$. Explicitly,

$$\phi(T) \mapsto M\phi\left(U^*\delta(U)\right) \quad \text{for all } \phi \in B_u$$

The same easy computation as in [8] shows that $\delta = aAT$. Notice that for all $A \in B$ the map

$$\phi \mapsto M\phi\left(U^*BU\right) = \phi\left(E(B)\right)$$

defines an element $E(B)$ which clearly belongs to $A \cap B$. Moreover it is easy to see that E is a conditional expectation (i.e., a projection of norm one) from B onto $A \cap B$ (see [6]).

Theorem (6). Let A be a commutative operation W^* sub-algebras of B containing the center ℓ of B. For every derivation $\delta: A \to f(B)$ there is a $T \in f(B)$ such that $\delta = aAT$.

We have seen that given an invariant mean M on u there is a unique $T \in B$ such that $\delta = aAT$ and $E(T) = 0$. We are going to show that $T \in A(B)$. Reasoning by contradiction assume that $T \notin A(B)$. We proof requires several reductions to the restricted derivation
\(\delta_E : A_E \rightarrow f(B) \) for some \(0 \neq E \in p(\ell) \). To simplify notations we shall assume each time that \(E = 1 \).

Let us start by noticing that if \(Q_i \in p(A) \) for \(i = n, n + 1 \), \(Q_n, Q_{n+1} = 0 \) and \(P = Q_n + Q_{n+1} \), then

\[
PTP = \sum_{i=n}^{n+1} Q_i T Q_i + \delta(Q_{n+1})Q_n + \delta(Q_n)Q_{n+1}
\]

hence

\[
\|\pi(PTP)\| = \left\| \sum_{i=n}^{n+1} \pi(Q_i T Q_i) \right\| + \max_i \pi(Q_i T Q_i)
\]

Definition (7). For every \(Q \in p(A) \) define \([Q] = [Q, \varepsilon]\) to be the central projection. Set

\[
P = \{ P \in p(A) \mid \|P\| = 1 \}.
\]

Thus \(P \in p \) iff \(\|\pi(PTP)\| = \|\pi(TG)\| \) for all \(G \in p(\ell) \). We collect several properties of \([Q]\).

Corollary (8). Let \(B \) be a semi-finite \(W^* \) algebra with a trace \(\tau \), let \(A \) be a properly infinite \(W^* \) sub-algebras of \(B \) and let \(1 \leq 1 + \varepsilon < \infty \). Then for every derivation \(\delta : A \rightarrow C_{1+\varepsilon}(B, \tau) \) there is \(a T \in C_{1+\varepsilon}(B, \tau) \) such that \(\tilde{\delta} = a \Lambda T \).

In the notations introduced there, it is easy to see that \(\phi(C_{1+\varepsilon}(B, \tau)) = C_{1+\varepsilon}(\tilde{B}, \tilde{\tau}) \), where \(\tau = \tau \oplus \tau_0 \) and \(\tau_0 \) is the usual trace on \(B(H_0) \). We can actually simplify the proof by choosing \(\tilde{A}_n = I \otimes \ell \) since the condition \(\ell \subset A \) is no longer required.

Corollary (9). Let \(P = Q_n + Q_{n+1} \). Then there is a largest central projection \([Q_n, Q_{n+1}]\) such that for every \(G \in p(\ell) \) with \(G \leq [Q_n, Q_{n+1}] \), we have \(\|\pi(Q_i T Q_i G)\| = \|\pi(PTP)\| \).

Proof. Let \(G_i = \{ G \in p(\ell) \mid \|\pi(Q_i T Q_i G)\| = \|\pi(PTP)\| \} \) and \(\Xi = \{ G + \varepsilon \in p(\ell) \mid \text{if} \ G \in p(\ell) \text{ and } \varepsilon \geq 0 \text{ then } G \in G_n \} \). Since \(\|\pi(PTP)\| = \max_i \|\pi(Q_i T Q_i G)\| \) for all \(G \in p(\ell) \), we see that \(G_n \cup G_n+1 = p(\ell) \). Notice that \(\Xi \) is hereditary (i.e., \(G - \varepsilon \in \Xi \) and \(F \in p(\ell), F \leq G + \varepsilon \) imply \(F \in \Xi \)).
Let \([Q_n, Q_{n+1}] = \sup \Xi \). We have only to show that \([Q_n, Q_{n+1}] \in \Xi \). Let \(G + \varepsilon = \sum \gamma (G + \varepsilon)_\gamma \) be the sum of a maximal collection of mutually orthogonal projections \((G + \varepsilon)_\gamma \in \Xi \). Then for every \(F \in \Xi \) we have \(([Q_n, Q_{n+1}] - (G + \varepsilon))F = 0 \) because of the maximal of the collection of \(\Xi \).

Then \([Q_n, Q_{n+1}] = G + \varepsilon \). Consider now any \(G \in p(\ell), \varepsilon \geq 0 \), then \(G = \sum \gamma G (G + \varepsilon)_\gamma \) and since \(G (G + \varepsilon)_\gamma \leq (G + \varepsilon)_\gamma \in \Xi \), we have \(\| \pi \left(Q_n TQ_n G (G + \varepsilon)_\gamma \right) \| = \| \pi \left(PTPG (G + \varepsilon)_\gamma \right) \| \) for all \(\gamma \).

Since \(\pi \left(Q_n TQ_n G \right) \) (resp. \(\pi \left(PTPG \right) \)) is the direct sum of then

\[
\| \pi \left(Q_n TQ_n G (G + \varepsilon)_\gamma \right) \| = \sup \| \pi \left(Q_n TQ_n G (G + \varepsilon)_\gamma \right) \|
\]

\[
= \sup \| \pi \left(PTPG (G + \varepsilon)_\gamma \right) \|
\]

\[
= \| \pi \left(PTPG \right) \|
\]

whence \(G \in G_n \). Since \(\varepsilon \geq 0 \) is arbitrary, we have \(G + \varepsilon = [Q_n, Q_{n+1}] \in \Xi \) which completes the proof.

Corollary (10). (i) If \(Q_n Q_{n+1} = 0 \) with \(Q_j \in p(A) \) then \(1 - [Q_n, Q_{n+1}] \leq [Q_n, Q_{n+1}] \).

(ii) If \(Q_n \leq Q_{n+1} \) with \(Q_j \in p(A) \) then \([Q_n] \leq [Q_{n+1}] \).

(iii) If \(\varepsilon \geq 0 \) with \(Q \in p(A), Q + \varepsilon \in p \) then \([Q] = [Q, \varepsilon] \) and \(1 - [Q] \leq [\varepsilon] \)

If \(\pi (TG) \neq 0 \) for all \(0 \neq E \in p(\ell) \) then the following hold:

(iv) If \(E \in p(\ell) \) then \(E = [E] \).

(v) If \(Q \in p(A) \) then \([Q] \leq c(Q) \), where \(c(Q) \) is the central support of \(Q \).

Proof. We have to show that for every \(G \in p(\ell), G \leq 1 - [Q_n, Q_{n+1}] \) we have \(G \in G_{n+1} \). Let \(E + \varepsilon \) be the sum \(\sum E_\gamma \) of a maximal collection of mutually orthogonal projections of \(G_{n+1} \) that are majored by \(G \). Then
\[\| \pi(Q_n TQ_n F) \| = \sup_{\gamma} \| \pi(Q_n TQ_n F_\gamma) \| \]
\[= \sup_{\gamma} \| \pi(Q_{n+1} + Q_{n+1}) T (Q_{n+1} + Q_{n+1}) F_\gamma \| \]
\[= \| \pi(Q_{n+1} + Q_{n+1}) T (Q_{n+1} + Q_{n+1}) F \| \]

whence \(E + \varepsilon \in G_{n+1} \). By the maximalist of the collection, \(0 \leq G - (E + \varepsilon) \) does not majority any nonzero projection of \(G_{n+1} \) and since \(p(\ell) = G_n \cup G_{n+1} \), any central projection \(G' \leq G - (E + \varepsilon) \) must be in \(G_n \). By definition of \(\Xi \), this implies that \(G - (E + \varepsilon) \in \Xi \) whence \(G - (E + \varepsilon) \leq [Q_n, Q_{n+1}] \). So, \(G - (E + \varepsilon) \leq G \leq 1 - [Q_n, Q_{n+1}] \) and hence \(G = E + \varepsilon \in G_{n+1} \) which completes the proof.

(ii) Let \(G \in p(\ell) \) and \(G \leq [Q_n] \). Then \(\| \pi(TG) \| = \| \pi(Q_n TQ_n G) \| \leq \| \pi(Q_{n+1} TQ_{n+1} G) \| \leq \| \pi(TG) \| \) whence equality holds and \([Q_n] \leq [Q_{n+1}] \) by the maximalist of \(Q_{n+1} \).

(iii) \([Q, \varepsilon] \) is maximal under the condition: if \(G \in p(\ell) \) and \(G \leq [Q, \varepsilon] \) then
\[\| \pi(QTQG) \| \leq \| \pi((Q + \varepsilon) T (Q + \varepsilon) G) \| = \| \pi(TG) \| \]
which is the same condition defining \([Q, I - Q] = [Q]\). Thus \([Q] = [Q, \varepsilon]\). Applying this to \(\varepsilon \) we have \([\varepsilon] = [\varepsilon, Q] \) and thus by (i) we have \([\varepsilon] \geq 1 - [Q, \varepsilon] = 1 - [Q] \).

(ii) Let \(E + \varepsilon, E \in p(\ell) \) then \(\| \pi(ETE(E + \varepsilon)) \| = \| \pi(T(E(E + \varepsilon))) \| \). This implies that if \(\varepsilon \geq 0 \), then \(E + \varepsilon \leq [E] \) so \(E \leq [E] \) and if \(E + \varepsilon = [E] - E \leq [E] \) then
\[0 = \| \pi(ETE(E + \varepsilon)) \| = \| \pi(T(E(E + \varepsilon))) \| \] whence \(E = [E] \).

(v) Follows at once from (ii) and (iv).

The condition that \(\| \pi(TE) \| \neq 0 \) for all \(0 \neq E \in p(\ell) \) is of course meaningless unless \(B \) is properly infinite. Hence, we may assume without loss of generality that:
\(B \) is properly infinite and semi-finite.

There is an \(\alpha > 0 \) such that \(\| \pi(TE) \| > \alpha \) for all \(0 \neq E \in p(\ell) \).
Lemma (11). Let \(P \in p \) and \(R_n = X_{\text{PTP}} ([\alpha, \infty), \), \(R_{n+1} = X_{\text{PTP}} (-\infty, -\alpha]) \), where \(X_{\text{PTP}} (\) \) denotes the spectral measure of the self-adjoint operator \(\text{PTP} \). Then there is an \(E_n \in p (\ell) \), with \(E_n = I - E \) such that \(R_i E_i \) are properly infinite and \(c (R_i E_i) = E_j \) for \(i = n, n+1 \).

Proof. Let \(R = R_n + R_{n+1} = X_{\text{PTP}} ([\alpha, \alpha]) \) and let \(F \not= 0 \) be any central projection. If \(RF \) were finite, we would have

\[
\| \pi(TF) \| = \| \pi(\text{PTP}F) \| \\
= \| \pi(\text{PTP}(1-R)F) \| \\
= \| \pi(|\text{PTP}(1-R)F|) \| \\
\leq \alpha
\]

Thus \(RF \) is infinite and nonzero. Hence \(R \) is properly infinite and \(c (R) = n \). Now let \(E_i \) be the maximal central projection majorized by \(c (R_n) \), such that \(R_n F_n \) is properly infinite. Then \(c (R_n, E_n) = E_n \) and \(R_n (n-E_n) \) is finite, hence \(R_n+ (n-E_n) = R_{n+1} E_{n+1} \) is properly infinite and \(c (R_{n+1}, E_{n+1}) = E_{n+1} \).

End of the Proof of Theorem (6). Take any \(0 \not= Q_0 \in p (B) \) such that \(B_{Q_0} \) has a faithful trace \(\omega_{x_0} \) with \(x_0 \in Q_0 H \) and assume \(\| x_0 \| = 1 \). Let \(P_\gamma \in p, \gamma \in \Gamma \) be the not decreasing to zero. We are going to construct inductively a sequence \(\gamma_n \in \Gamma, F_n \in p (\ell), Q_n \in p (B), U_n \) partial isometrics in \(B, x_n \in H \) such that

(a) \(U_n^* U_n = Q_n, U_n^* U_n = Q_0 F_n \), i.e., \(Q_n \sim Q_0 F_n \)

(b) \(x_n = U_n F_n x_0 \in Q_n H \)

(c) \(Q_n Q_m = 0 \) for \(n \not= m \)

(d) \(\gamma_n > \gamma_m \) (hence \(P_{\gamma_n} < P_{\gamma_m} \)) for \(n > m \)

(e) \(Q_n \leq p_{\gamma_n} \)

(f) \(\| p_{\gamma_n} x_n \| < \gamma_n \)

(g) \(|Tx_n, x_n| \geq \gamma_n \).
The induction can be started with an arbitrary \(P \); assume we have the construction for \(n - 1 \). Let us apply Lemma(11) to \(P = P_{\gamma_n} \) and obtain \(E_i \in p(\ell) \), \(R_i \in p(B) \) for \(i = n, n + 1 \) as defined there. Then

\[
1 = \left\| x_n \right\|^2 = \left\| E_n x_0 \right\|^2 + \left\| E_{n+1} x_0 \right\|^2
\]

Let \(F_n \) be (any of) the projection \(E_n \) or \(E_{n+1} \) for which \(\left\| E_n x_0 \right\|^2 \geq \frac{1}{2} \) and let \(i \) be the corresponding index. Then \(RF_n \) is properly infinite and has central support \(F_n \). Now \(Q_0 \) is finite having a finite faithful trace \(\omega_0 \), hence so is \(Q_j \sim F_jQ_0 \leq Q_0 \) for \(1 \leq j \leq n - 1 \) and \(\left(\sum_{j=1}^{n-1} Q_j \right) F_n \). Let \(S_n = \inf \left\{ RF_n, \left(1 - \sum_{j=1}^{n-1} Q_j \right) F_n \right\} \). By the parallelogram law (see [2]) applied to \(F_n \) we have that

\[
RF_n - S_n \sim \left(\sum_{j=1}^{n-1} Q_j \right) F_n - \inf \left\{ \left(\sum_{j=1}^{n-1} Q_j \right) F_n, (1-R_i)F_n \right\}
\]

whence \(RF_n - S_n \) is finite and hence \(S_n \) is properly infinite and \(c(S_n) = F_n \). Since \(Q_0F_n \) is finite and \(c(Q_0F_n) \leq F_n \) we have \(Q_0F_n \prec S_n \), i.e., there is a partial isometry \(U_n \in B \) and a \(Q_n \in p(B) \), \(Q_n \leq S_n \) such that (a) holds. Let \(x_n \) be defined by (b) and choose \(\gamma_{n+1} > \gamma_n \) so that (d) and (f) hold. Since \(Q_nR \leq P_{\gamma_n} \), we have (e), since \(Q_n \leq \left(1 - \sum_{j=1}^{n-1} Q_j \right) F_n \) we have (c). Finally \(x_n = R_{\gamma_n}x_n = P_{\gamma_n}x_n \), hence (g) follows from

\[
\left\| (Tx_n, x_n) \right\| = \left\| \left(P_{\gamma_n}TP_{\gamma_n}x_n, x_n \right) \right\|
\]

\[
= \left\| \left(P_{\gamma_n}TP_{\gamma_n}Rx_n, R_ix_n \right) \right\|
\]

\[
\geq \alpha \left\| (Rx_n, R_ix_n) \right\|
\]

\[
= \alpha \left\| x_n \right\|^2
\]

\[
= \alpha \left\| F_n x_0 \right\|^2
\]

\[
\geq \frac{1}{2} \alpha.
\]

Let now \(y_n = x_n - P_{\gamma_{n+1}}x_n \). \(B \) is semi-finite, hence we can apply Lemma (1) to obtain that \(x_n \to_{BEW} 0 \). Since \(\left\| P_{\gamma_{n+1}}x_n \right\| \to 0 \) we thus have \(y_n \to_{BEW} 0 \) and \(y_n \in P_nH \), where
\[P_n = P_{x_n} - P_{x_{n+1}} \in p(d) \] and are mutually orthogonal by (d). Clearly for \(n \) large enough,
\[\|(T y_n, y_n)\| = |\omega_{x_n}(T)| > \frac{1}{2} \alpha. \] Since \(\omega_{x_n}(T) = M \omega_{x_n}(U^* \delta(U)) \), by the properties of the invariant mean mentioned, we have that \(\sup \{ |\omega_{x_n}(U^* \delta(U))| \|U \in u\} > \frac{1}{4} \alpha \). Thus we can find for every \(n \), a unitary \(V_n \in u \) such that \(\|V_n^* \delta(V_n) y_n, y_n\| > \frac{1}{4} \alpha \). Let \(A = \sum_{n=1}^{\alpha} V_n P_n \), then \(A \in d \) and
\[
A^* \delta(A) y_n, y_n = \left(P_n A^* \delta(A) P_n y_n, y_n \right) \\
= \left(P_n \left(A^* AT - A^2 A \right) P_n y_n, y_n \right) \\
= \left(P_n V_n^* \delta(V_n) P_n y_n, y_n \right) \\
= \left(V_n^* \delta(V_n) y_n, y_n \right) \\
= \frac{1}{4} \alpha
\]
for all \(n \). Therefore \(\|\delta(A) y_n\| \to 0 \). But because of (\Pi), we have \(\delta(A) \notin f(B) \), which completes the proof.

5. The Property of Infinite W* Sub-algebra

Lemma (12). Let \(0 < b \in Z(M) \), \(s(b) = 1 \); \(e_z^a(0,\infty) \) be a properly infinite projection and \(c \left(e_z^a(0,\infty) \right) = 1 \). Let projection \(q \in P(M) \) be finite or properly infinite, \(c(q) = 1 \) and \(q \ll e_z^a(0,\infty) \). Let \(\mathbb{R} \ni \mu_n \downarrow 0 \). For every \(n \in \mathbb{N} \) we denote by \(z_n \) such a projection that \(1 - z_n \) is the largest central projection, for which \((1-z_n)q \geq (1-z_n) e_z^a(\mu_n b, +\infty) \) holds. We have \(z_n \uparrow_n 1 \) and for
\[
d = \left[\mu_1 z_1 + \sum_{n=1}^{\infty} \mu_{n+1} (z_{n+1} - z_n) \right] b
\]
the following relations hold: \(q \ll e_z^a(d, +\infty) \), \(0 < d \leq \mu b \) and \(s(d) = 1 \). Moreover, if all projections \(e_z^a(\mu_n b, +\infty), n \geq 1 \) are finite then \(e_z^a(d, +\infty) \) is a finite projection as well.

Proof. Since \(e_z^a(\mu_{n+1} b, +\infty) \geq e_z^a(\mu_n b, +\infty) \) we have
\(e^\alpha_z (1 - z_{n+1}) q \geq (1 - z_{n+1}) e^\alpha_z (\mu_{n+1} b, +\infty) \geq (1 - z_{n+1}) e^\alpha_z (\mu_n b, +\infty) \). Hence, \(z_{n+1} \geq z_n \) for every \(n \in \mathbb{N} \).

In addition, \(e^\alpha_n (\mu_n b, +\infty) \uparrow_n e^\alpha_z (0, +\infty) \) and \(e^\alpha_z (0, +\infty) \) is properly infinite projection. Hence, in the case when \(q \) is finite projection, it follows that \(z_n \uparrow_n 1 \). Let us consider the case when \(q \) is a properly infinite projection with \(c(q) = 1 \) and such that \(q \prec \prec e^\alpha_z (0, \infty) \). In this case, with \(p = q, q = e^\alpha_z (0, +\infty), q_n = e^\alpha_z (\mu_n b, +\infty) \) and deduce \(\bigvee_{n=1}^\infty z_n \geq c(q) = 1 \).

All other statements follow from the form of element \(d \). Since, \(z_q d = \mu_z z_q b \), \((z_{n+1} - z_n) = \mu_{n+1} (z_{n+1} - z_n) b \) and \(z_n q \prec \prec z_n e^\alpha_z (\mu_n b, +\infty) \) for every \(n \in \mathbb{N} \). Observe also that \(s(d) = s(b) \left(z_q + \sum_{n=1}^\infty (z_{n+1} - z_n) \right) = 1 \).

Finally, let all projections \(e^\alpha_z (\mu_n b, +\infty), n \geq 1 \) be finite. Since
\[
dz = \mu_i b, d(z_{n+1} - z_n) = \mu_{n+1} b(z_{n+1} - z_n),
\]
we have
\[
e^\alpha_z (d, +\infty) z_1 = e^\alpha_z (\mu_b, +\infty) z_1,
\]
\[
e^\alpha_z (d, +\infty) (z_{n+1} - z_n) = e^\alpha_z (\mu_{n+1} b, +\infty) (z_{n+1} - z_n)
\]
for every \(n \in \mathbb{N} \). There projections standing on the right-hand sides are finite. Hence, \(e^\alpha_z (d, +\infty) \) is finite projection as a sum of the left-hand sides [22].

We shall use a following well-known implication
\[
p \prec \prec q \Rightarrow zp \prec \prec zq, \forall z \in P\left(Z(M) \right), 0 < z \leq c(p) \vee c(q).
\]
We supply here a straightforward argument. Let \(z' \in z \in Z(M) \) be such that
\[0 < z' \leq c(pz) \vee c(qz) z(c(p) \vee c(q)) \]. Then \(z' \leq c(p) \vee c(q) \) and therefore
\[z'(zp) = z'p \prec z'q = z'(zq) \]. This means \(zp \prec \prec zq \).

As in [6] we can use Theorem (6) to extend the result to the properly infinite case.

Theorem (13). Let \(A \) be a properly infinite \(W^* \) sub-algebra of \(B \) containing the center \(\ell \) of \(B \). For every derivation \(\delta : A \to f(B) \) there is \(aT \in f(B) \) such that \(\delta = aA T \).

Before we start the proof let us recall that if \(A \) is properly infinite there is an infinite countable decomposition of the identity into mutually orthogonal projections of \(A \), all
equivalent in A to I, and thus a fortify equivalent in B to 1 [8]. Therefore there is a spatial isomorphism

$$\phi: B \rightarrow \tilde{B} = B \otimes B(H_0)$$

with $H_0 = l^{n+1}(\mathbb{Z})$ and

$$\phi(A) = \tilde{A} = A \otimes B(H_0)$$

[5]. Recall also that the elements B of \tilde{B} (or \tilde{A}) are represented by bounded matrices $[B_{ij}], i, j \in \mathbb{Z}$ with entries in B (or A) by the formula

$$\left(I \otimes E_j\right)T\left(I \otimes E_i\right) = T_{ik} \otimes E_{il}$$

where E_j is the canonical matrix unit of $B(H_0)$. In particular if ℓ, ψ are the maximal a commutative operation subalgebras of $B(H_0)$ of Laurent (resp. diagonal) matrices, then $B \in B \otimes \ell$ (resp. $B \in B \otimes \psi$) iff $[B_{ij}]$ is a Laurent matrix with entries in B, i.e., $B_{ij} = B_{i-j}$, where B_{ij} denotes the entry along the kth diagonal (resp. $B_{ij} = \delta_{ij}B_{ii}$) for all $i, j \in \mathbb{Z}$.

Proof. Let $\tilde{\delta} = \phi \circ \delta \circ \phi^{-1}$ then

$$\tilde{\delta}: d \rightarrow \phi\left(f\left(B\right)\right) = f\left(\tilde{B}\right)$$

is a relative compact derivation. Let us define the following W^* algebras:

$$\tilde{\ell} = \tilde{B} \cap \tilde{\ell}, \quad \tilde{A}_n = \ell \otimes \ell, \quad A_n = \phi^{-1}\left(\tilde{A}_n\right), \quad \tilde{\ell}_{n+1} = \ell \otimes \ell, \quad \tilde{A}_{n+1} = A \otimes B(H_0), \quad \tilde{A}_{n-1} = A \otimes \psi, \quad \tilde{A}_{n+2} = A_n \otimes \psi.$$

First, let us notice that

$$\tilde{A}_n \cap f\left(\tilde{B}\right) = \left(\ell \otimes \ell \cap B \otimes B(H_0)\right) \cap f\left(\tilde{B}\right)$$

$$= \left(B \otimes \ell\right) \cap f\left(\tilde{B}\right)$$

$$= \{0\}$$

by [22]. Therefore

$$A_n' \cap f\left(B\right) = \phi^{-1}\left(\tilde{A}_n\right) \cap f\left(B\right) = \phi^{-1}\left(\tilde{A}_n \cap f\left(\tilde{B}\right)\right) = \{0\}$$

because ϕ is spatial. Now

$$\tilde{\ell} = \left(B \otimes B(H_0)\right) \cap \left(B' \otimes I\right)$$

$$= \ell \otimes I \subset \tilde{A}_n \subset \tilde{A}.$$
Thus we can apply Theorem (6) to the derivation \(\delta \) restricted to the a commutative operation sub-algebra \(\tilde{A}_n \) of \(\tilde{B} \) and we obtain a \(T_n \in f(\tilde{B}) \) such that \(\delta_n = \delta - a AT_n \) vanishes on \(\tilde{A}_n \).

Now

\[
\tilde{A}_{n+1} \subset B \otimes \ell' \subset \ell' \otimes \ell = \tilde{A}'_n.
\]

Therefore, for all \(A_n \in \tilde{A}_n \) and \(A_{n+1} \in \tilde{A}_{n+1} \) we have

\[
\delta_n (A_n A_{n+1}) = A_n \delta_n (A_{n+1}) = \delta_n (A_{n+1} A_n) = \delta_n (A_{n+1}) A_n
\]

i.e., \(\delta_n (A_{n+1}) \) and \(A_n \) commute and hence

\[
\tilde{\delta}_n (\tilde{A}_{n+1}) \subset \tilde{A}'_n \cap f(\tilde{B}) = \{0\}
\]

Thus \(\tilde{\delta}_n \) also vanishes on \(\tilde{A}_{n+1} \). Now \(\tilde{A}_n \) is a commutative operation and hence so are \(A_n \) and \(\tilde{A}_{n+2} \). Moreover,

\[
\tilde{\ell} \subset \tilde{A}_n \subset \tilde{A} \subset \tilde{B}
\]

Implies

\[
\ell = \phi^{-1} (\tilde{\ell}) \subset A_n \subset A \subset B
\]

and hence

\[
\tilde{\ell} = \ell \otimes I \subset A_n \otimes I \subset \tilde{A}_{n+2} \subset \tilde{A} \subset \tilde{B}
\]

Thus we can apply again Theorem (6) to the relative compact derivation \(\tilde{\delta}_n \) restricted to \(\tilde{A}_{n+2} \).

Let \(T_{n+1} \in f(\tilde{B}) \) be such that \(\tilde{\delta}_n \) agrees with \(\text{ad} T_{n+1} \) on \(\tilde{A}_{n+2} \). Since

\[
A_n \otimes I \subset A \otimes I \subset A \otimes \ell = \tilde{A}_{n+1}
\]

and \(\tilde{\delta}_n \) vanishes on \(\tilde{A}_{n+1} \), we see that \(\text{ad} T_{n+1} \) vanishes on \(A_n \otimes I \), i.e.,

\[
T_{n+1} \in (A_n \otimes I)' \cap f(\tilde{B}) = (A'_n \otimes B(H_0)) \cap f(\tilde{B})
\]

Then for all \(i, j \in \mathbb{Z}, (T_{n+1})_{ij} \in A'_n \) and

\[
(T_2)_{ij} \otimes E_{mn} = (I \otimes E_{ni}) T_{n+1} (I \otimes E_{jm}) \in f(\tilde{B})
\]
whence by Lemma(12)(a) \((T_{n+1})_j \in f(B) \). But we saw that \(d'_n \cap f(B) = \{0\} \), hence \((T_{n+1})_j = 0 \) for all \(i, j \in \mathcal{J} \), so \(T_{n+1} = 0 \). Therefore \(\delta_n \) vanishes also on \(\tilde{A}_{n+2} \) and hence on \(I \otimes \varnothing \). Now \(\ell \) and \(\varnothing \) generate \(B(H_0) \), whence \(\tilde{A}_{n+1} = A \otimes \ell \) and \(I \otimes \varnothing \) generate \(\tilde{A} \). Thus by the \(\sigma \)-weak continuity of \(\delta_n \) (see [6]) we see that

\[
\delta_n = \delta - aAT_n = 0, \text{ i.e., } \delta = aAT_n. \text{ Clearly } \delta = ad\phi^{-1}(T_n) \text{ and } \phi^{-1}(T_n) \in A(B).
\]

Let us assume in this part that \(B \) is semi-finite and let \(\tau \) be a fsn trace on it. Beside the closed ideal \(f(B) \) we can also consider the (non closed) two-sided norm-ideals \(C_{1+\varepsilon}(B,\tau) \) for \(1 \leq 1 + \varepsilon < \infty \) defined by

\[
C_{1+\varepsilon}(B,\tau) = \left\{ B \in B \mid \tau \left(|B|^{1+\varepsilon} \right) < \infty \right\}
\]

\[
\|B\|_{1+\varepsilon} = \tau \left(|B|^{1+\varepsilon} \right)^{1/(1+\varepsilon)} \text{ for } B \in C_{1+\varepsilon}(B,\tau).
\]

Obviously,

\[
C_{1+\varepsilon}(B,\tau) = B \cap L^{1+\varepsilon}(B,\tau),
\]

where the latter is the non commutative \(L^{1+\varepsilon} \)-space of \(B \) relative to \(\tau \) (see [14]).

Recall the following facts about \(L^{1+\varepsilon}(M) \) spaces in the case of a general W* algebra \(M \) and \(1 \leq 1 + \varepsilon < \infty \) (\(L^\varepsilon(M) \) is identified with \(M \)): \(L^{1+\varepsilon}(M) \) is a Banach space, its dual is isomorphic to \(L^{\varepsilon/(1+\varepsilon)}(M) \) (with \(x^{1+\varepsilon} + \varepsilon x^{1+\varepsilon} = 1 \)), and the duality is established by the functional \(\text{tr} \) on \(L(M) \),

where if \(A \in L^{1+\varepsilon}(M), B \in L^{\varepsilon/(1+\varepsilon)}(M) \) we have \(AB, BA \in L(M) \) and

\[
\text{tr}(AB) = \text{tr}(BA), \quad |\text{tr}(AB)| \leq \|A\|_{1+\varepsilon} \|B\|_{\varepsilon/(1+\varepsilon)}, \quad \|A\|_{1+\varepsilon} = \left(|\text{tr} A^{1+\varepsilon} |^{\varepsilon/(1+\varepsilon)} \right)^{1/(\varepsilon/(1+\varepsilon))} = \max \left\{ |\text{tr} AB| \mid B \in L^{\varepsilon/(1+\varepsilon)}(M), \|B\|_{\varepsilon/(1+\varepsilon)} \leq 1 \right\}
\]

(see [14]). Of course, if \(M = B \) we can identify \(L^{1+\varepsilon}(M) \) with \(L^{1+\varepsilon}(B,\tau) \) and \(\text{tr} \) with \(\tau \). The following inequality will be used here only in the semi-finite case and in the context of \(C_{1+\varepsilon} \)-ideals, but since the same proof holds for \(L^{1+\varepsilon} \)-spaces, we shall consider the general case.
Corollary (14). Let M be a W^* algebra, $\varepsilon \geq 0, A \in L^{1+\varepsilon}(M)$ and $Q_n, Q_{n+1} \in p(M)$. Let $Q_n Q_{n+1} = 0, Q_n + Q_{n+1} = 1$. Then
\[\|A\|^{1+\varepsilon} \geq \|Q_n AQ_n\|^{1+\varepsilon} + \|Q_{n+1} AQ_{n+1}\|^{1+\varepsilon} \]

Proof. Let us first note that
\[\sum_{i=n}^{n+1} Q_i A Q_i^{1+\varepsilon} = \sum_{i=n}^{n+1} |Q_i A Q_i|^{1+\varepsilon} \]

And
\[\left\| \sum_{i=n}^{n+1} Q_i A Q_i \right\|^{1+\varepsilon} = \sum_{i=n}^{n+1} \|Q_i A Q_i\|^{1+\varepsilon} \]

Consider first $1 + \varepsilon = n$ and take the polar decomposition's
\[Q_i A Q_i = U_i |Q_i A Q_i|, \quad i = n, n+1. \]

Then $U_i U_i^*$ and $U_i^* U_i$ are majorized by Q_i and hence U_i commutes with Q_i. Therefore
\[B = (U_n + U_{n+1})^* \] commutes with Q_i and $\|B\| = 1$. Then
\[\|A\| \geq |trAB| = |tr\left(\sum_{i=n}^{n+1} Q_i BAQ_i \right)| = tr\left(\sum_{i=n}^{n+1} Q_i A Q_i \right) = \sum_{i=n}^{n+1} \|Q_i A Q_i\|_n. \]

Consider now $\varepsilon > 0$. Let $B \in L^{\frac{\varepsilon}{1+\varepsilon}}(M)$ be such that $\|B\|_{\frac{\varepsilon}{1+\varepsilon}} \leq 1$ and
\[\left\| \sum_{i=n}^{n+1} Q_i A Q_i \right\|^{1+\varepsilon} = tr\left(\left(\sum_{i=n}^{n+1} Q_i A Q_i \right) B \right). \]

Take the polar decomposition's $A = U |A|$ and $B = V |B|$, then VU are in M and $|A|, |B|$ are in $L^{\frac{\varepsilon}{1+\varepsilon}}(M), L^{\frac{\varepsilon}{1+\varepsilon}}(M)$, respectively. Let
\[f(z) = \text{tr} \left(\sum_{i=n}^{n+1} Q_i U^{|(1+\varepsilon)t|} Q_i V^{|(1+\varepsilon)t|} |B| \frac{e^{\frac{\varepsilon}{1+\varepsilon}}}{1+\varepsilon} \right) . \]

Then by standard arguments, it is easy to see that \(f \) is analytic on \(0 < Re \ z < n \) and continuous and bounded on \(0 \leq Re \ z \leq n \). Then by the three-line theorem (see [4]) we have

\[
 f \left(\frac{1}{1+\varepsilon} \right) \leq \text{Max}_{t \in \mathbb{R}} f \left(it \right)^{\frac{\varepsilon}{1+\varepsilon}} \text{Max}_{t \in \mathbb{R}} f \left(1+it \right)^{\frac{\varepsilon}{1+\varepsilon}}
\]

Now \(f \left(\frac{1}{1+\varepsilon} \right) = \left\| \sum_{i=n}^{n+1} Q_i A \right\|_{1+\varepsilon} \) and by Holder’s inequality

\[
 |f(it)| = \text{tr} \left(\sum_{j=n}^{n+1} Q_j U^{|(1+\varepsilon)t|} Q_j V^{|(1+\varepsilon)t|} |B| \frac{e^{\frac{\varepsilon}{1+\varepsilon}}}{1+\varepsilon} \right)
\]

\[
 \leq \left\| \sum_{j=n}^{n+1} Q_j U^{|(1+\varepsilon)t|} Q_j V^{|(1+\varepsilon)t|} |B| \frac{e^{\frac{\varepsilon}{1+\varepsilon}}}{1+\varepsilon} \right\|
\]

\[
 \leq \left(\text{max}_{j} \left\| Q_j U^{|(1+\varepsilon)t|} Q_j V^{|(1+\varepsilon)t|} |B| \frac{e^{\frac{\varepsilon}{1+\varepsilon}}}{1+\varepsilon} \right\| \right)
\]

\[
 \leq n.
\]

Again by Holder’s inequality applied twice and by the result already obtained in the \(\varepsilon = 0 \) case,

\[
 |f(1+it)| = \text{tr} \left(\sum_{j=n}^{n+1} Q_j U^{|(1+\varepsilon)t|} |A|^{1+\varepsilon} Q_j V^{|(1+\varepsilon)t|} |B| \frac{e^{\frac{\varepsilon}{1+\varepsilon}}}{1+\varepsilon} \right)
\]

\[
 \leq \left\| \sum_{j=n}^{n+1} Q_j U^{|(1+\varepsilon)t|} |A|^{1+\varepsilon} Q_j V^{|(1+\varepsilon)t|} |B| \frac{e^{\frac{\varepsilon}{1+\varepsilon}}}{1+\varepsilon} \right\|
\]

\[
 \leq \left\| U^{|(1+\varepsilon)t|} |A|^{1+\varepsilon} \right\|
\]

\[
 \leq \left\| U^{|(1+\varepsilon)t|} \right\| \left\| A^{1+\varepsilon} \right\|
\]

\[
 \leq \left\| A^{1+\varepsilon} \right\|
\]

Thus \(f \left(\frac{1}{1+\varepsilon} \right) \leq \left\| A \right\|_{1+\varepsilon} \) whence by the second equality in this proof,

\[
 \left\| A \right\|_{1+\varepsilon} \leq \left\| \sum_{i=n}^{n+1} Q_i A Q_i \right\|_{1+\varepsilon} = \sum_{i=n}^{n+1} \left\| Q_i A Q_i \right\|_{1+\varepsilon}
\]

Data Availability

No data were used to support this study.
Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References
[1] I. Chifan, S. Popa, J.O. Sizemore, Some OE- and W*-rigidity results for actions by wreath product groups, J. Funct. Anal. 263 (2012), 3422-3448
[2] M. Breijer, Fredholm theories in von algebras I, Math. Ann. 178 (1968), 243-254.
[3] E. Christensen, Extension of derivations, J. Funct. Anal. 27 (1978), 234-247.
[4] J. Conway, Functions of One Complex Variable, 2nd ed., Springer-Verlag, New York, 1978.
[5] J. Dixmier, Les Algebres d’operateurs dans l’Espace Hilbertien, 2nd ed., Gauthier-Villars, Paris, 1969.
[6] F. Gilfeather and D. Larsinn, Nest-subalgebras of von Neumann algebras: commutants modulo compacts and distance estimates, J. Oper. Theory, 7 (1982), 279-302.
[7] A. Connes, E. Blanchard, Institut Henri Poincaré, Institut des hautes études scientifiques (Paris, France), Institut de mathématiques de Jussieu, eds., Quanta of maths: conference in honor of Alain Connes, non commutative geometry, Institut Henri Poincaré, Institut des hautes études scientifiques, Institut de mathématiques de Jussieu, Paris, France, March 29-April 6, 2007, American Mathematical Society; Clay Mathematics Institute, Providence, R.I. : Cambridge, MA, 2010.
[8] S. Albeverio, Sh. Ayupov, K. Kudaybergenov, Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Funct. Anal. 256 (9) (2009), 2917-2943.
[9] V. Kaftal, Relative weak convergence in semifinite von Neumann algebras, Proc. Amer. Math. Soc. 84 (1982), 89-94.
[10] S. Sakal, C*-Algebras and W*-Algebras (Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 60), Springer-Verlag, Berlin, New York, 1971.
[11] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.
[12] N. Higson, E. Guentner, Group C*-algebras and K-theory, in Noncommutative Geometry (Martina Franca, 2000), pp. 137-251. Lecture Notes in Math., 1831.
[13] D. Voiculescu, Free non-commutative random variables, random matrices and the II₁-factors of free groups, Quantum Probability and Related Topics VI, L. Accardi, ed., World Scientific, Singapore, 1991, pp. 473-487.
[14] A.F. Ber, F.A. Sukochev, Commutator estimates in W*-factors, Trans. Amer.Math. Soc. 364(2012), 5571-5587.
[15] F. Murray, J. von Neumann: Rings of operators, IV, Ann. Math. 44(1943), 716-808.
[16] J. Peterson, L2-rigidity in von Neumann algebras, Invent. Math. 175 (2009), 417–433.

[17] B.E. Johnson, S.K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Funct. Anal. 11 (1972), 39–61.

[18] R. Kadison, A note on derivations of operator algebras, Bull. Lond. Math. Soc. 7 (1975), 41–44.

[19] K. Dykema, Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J. 69 (1993), 97-119.

[20] C. Consani, M. Marcolli, Noncommutative geometry, dynamics, and ∞-adic Arakelov geometry, Selecta Math. 10 (2004), 167.

[21] A.F. Ber, F.A. Sukochev, Commutator estimates in W^*-algebras, J. Funct. Anal. 262 (2012), 537–568.

[22] D. Pask, A. Rennie, The noncommutative geometry of graph C^*-algebras I: The index theorem, J. Funct. Anal. 233 (2006), 92–134.

[23] S. Popa, F. Radulescu, Derivations of von Neumann algebras into the compact ideal space of a semifinite algebra, Duke Math. J. 57(2)(1988), 485–518.

[24] I.E. Segal, A non-commutative extension of abstract integration, Ann. Math. 57 (1953), 401–457.