Research Article

ATP-Binding Cassette Systems of Brucella

Dominic C. Jenner, 1 Elie Dassa, 2 Adrian M. Whatmore, 3 and Helen S. Atkins 1

1 Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
2 Département de Microbiologie, Institut Pasteur, 25 rue Dr Roux, 75724 Paris Cedex 15, France
3 FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Centre, Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK

Correspondence should be addressed to Dominic C. Jenner, dcjenner@dstl.gov.uk

Received 16 June 2009; Accepted 2 December 2009

Recommended by Graziano Pesole

Brucellosis is a prevalent zoonotic disease and is endemic in the Middle East, South America, and other areas of the world. In this study, complete inventories of putative functional ABC systems of five Brucella species have been compiled and compared. ABC systems of Brucella melitensis 16M, Brucella abortus 9-941, Brucella canis RM6/66, Brucella suis 1330, and Brucella ovis 63/290 were identified and aligned. High numbers of ABC systems, particularly nutrient importers, were found in all Brucella species. However, differences in the total numbers of ABC systems were identified (B. melitensis, 79; B. suis, 72; B. abortus 64; B. canis, 74; B. ovis, 59) as well as specific differences in the functional ABC systems of the Brucella species. Since B. ovis is not known to cause human brucellosis, functional ABC systems absent in the B. ovis genome may represent virulence factors in human brucellosis.

Copyright © 2009 Dominic C. Jenner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Brucella species are the causative agents of brucellosis, the world’s most prevalent zoonotic disease, with high occurrences in endemic areas including the Middle East, Asia, Mexico, and the Mediterranean [1]. The bacteria are small nonmotile, Gram-negative, nonspore-forming cocacobacilli that reside within the subphylum α-proteobacteria, which also includes nitrogen-fixing bacteria of the genus Nitrobacter, Rhizobium, Agrobacterium, and Rickettsia [2]. They are considered facultative intracellular pathogens.

There are six traditionally recognised Brucella species that have different host preferences: Brucella melitensis (which usually infects sheep and goats), Brucella abortus (cattle), Brucella suis (pigs), Brucella canis (dogs), and Brucella neotomae (desert wood rats). Furthermore, there are three newly identified Brucella species isolated from marine mammals: Brucella pinnipedialis (seals) [3], Brucella ceti (dolphins and porpoises) [3], and Brucella microti (voles) [4]. Although Brucella are primarily animal pathogens causing infectious abortions in females and orchitis in males [5], four of the nine species may infect humans (B. melitensis, B. abortus, B. suis, and occasionally B. canis, in order of disease severity) causing a range of flu-like symptoms including fever, sweats, malaise, and nausea [6]. Transmission to humans takes place via three recognised channels: (i) the consumption of infected animal products, (ii) direct contact with infected animal birth products, and (iii) the inhalation of aerosolised Brucella. Due to the nature of the human disease and the ability to be infectious via aerosol, Brucella species have been classified as category B threat agents by the US Centre for Disease Control and Prevention (CDC) [7].

Genome sequence analysis of B. melitensis 16M [8], B. suis 1330 [9], B. abortus 9-941 [10], B. canis RM6/66 (NCBI: NC_009504 and NC_009505, unpublished), and B. ovis 63/290 (NCBI: NC_010103 and NC_0010104, unpublished) has demonstrated the close relatedness of these organisms [11, 12]. The genomic DNA of each strain comprises two chromosomes of approximately 2.1 Mb and 1.2 Mb, DNA-DNA hybridisations between the species had previously revealed over 90% similarity between the species, leading to the suggestion that all Brucella species should be classified as B. melitensis [13, 14]. However, it is widely believed
that the differences in host specificity and pathogenicity are related to *Brucella* genetics; although there is currently little experimental evidence to support this, a few studies have found differences between the *Brucella* species genomes that may support this hypothesis [10, 15, 16]. A significant proportion of the *Brucella* genomes appear to code for ATP-binding cassette (ABC) systems.

ABC transporters are responsible for the import and export of many different substances across cellular membranes [17]. Although ABC transporters are extremely versatile, they all contain one defining feature, the ability to hydrolase ATP to ADP, providing the energy needed for active transport. ABCs have three main conserved motifs known as Walker A ([G-X-X-G-X-G-S/T], where X represents any amino acid residue), Walker B (ø-ø-ø-ø-D, where ø designates a hydrophobic residue), and a signature sequence ([LSGGQ]) [18]. The Walker A and Walker B motifs form tertiary structure enabling ATP-binding and can be found in all ATP-binding molecules. The signature sequence is well conserved in all ABC proteins and is also known as the linker peptide or C motif [19]. Although the configuration of ABC systems varies, the majority of ABC systems comprise of two hydrophilic ABC domains associated with two hydrophobic membrane-spanning domains (inner membrane (IM) proteins). Import systems are only found in prokaryotic organisms and contain both ABC domains and IM domains, along with extra- cytoplasmic binding proteins (BPs) designed to bind the specific allocrite of that ABC system. In Gram-negative bacteria the BPs are located in the periplasm whereas, in Gram-positive bacteria, they are anchored to the outer membrane of the cell via N-terminal lipid groups [20]. ABC systems import a diverse range of substrates into the bacterial cell including peptides [21], polyamines [22], metal ions [23], amino acids [24], iron [25], and sulphates [26]. In comparison, ABC systems involved in export functions usually contain only IM and ABC domains fused together via either the N-terminus (IM-ABC) or the C-terminus (ABC-IM), which homodimerise to create a functional system [27]. Substances exported by ABC transporters include antibiotics in both producing and resistant bacteria [28, 29], fatty acids in Gram-negative bacteria [27], and toxins [30]. In addition to transporters, many ABC proteins have roles in house-keeping functions, such as regulation of gene expression [31] and DNA repair [27, 32]. These proteins do not contain IM domains but are constituted of two fused ABC domains (ABC2) [27]. There is now increasing evidence that ABC systems can play roles in bacterial virulence [33–36] and can be used as targets for vaccine development [37].

The recent sequencing of the genomes of *B. melitensis* 16M [8], *B. abortus* 9-941 [10], *B. suis* 1330 [9], *B. ovis* 63/290 (NCBI: NC_009504 and NC_009505, unpublished), and *B. canis* RM6/66 (NCBI: NC_010103 and NC_0010104, unpublished) has enabled the genomic comparison of different *Brucella* species. We report the creation and comparison of reannotated inventories of the functional ABC systems in *Brucella*. This improved annotation has assisted in understanding *Brucella* lifestyles and the identification of ABC systems that may be involved in virulence.

2. Methods

The prediction of ABC systems in sequenced bacterial genomes is based on annotation- and similarity-based homology assessment of identified or predicted ABC proteins from heterologous bacterial systems. The Artemis viewer (available from http://www.sanger.ac.uk) was used to visualise the sequenced genomes of *B. melitensis* 16 M, *B. suis* 1330, *B. abortus* 9-941, *B. canis* RM6/66, and *B. ovis* 63/290 [8–10]. Using the annotated genomes, ABC proteins were searched for using an array of related words, specifically “ATP-binding cassettes,” “binding protein,” or “outer membrane protein.” For completeness all proteins that were labelled as hypothetical or conserved hypothetical proteins were also checked. Hits from this search were compiled and then genes upstream and downstream were also checked to ensure that all genes from one system were found. After the genome searches were completed, protein sequences were aligned using the basic local alignment search tool (BlastP) against other ABC proteins using the ABC systems: Information on Sequence Structure and Evolution (ABCISSE) database [27, 38]. The ABCISSE database comprises 24000 proteins from 9500 annotated systems over 795 different organisms. Proteins searched against ABCISSE that scored a threshold e-value of 10^{-4} were assigned to an ABC family and subfamily based on the hits from the ABCISSE database. Where searches on ABCISSE were unclear or hits for multiple families were produced, proteins were aligned using BlastP searches against the Genbank protein database. Use of this larger database increased the number of positive hits and functions that could be assigned. An ABC system was defined as a series of contiguous ORFs that shared the same family, subfamily, and substrate. A complete signal sequence ([LSGGQ]) was identified in the majority of the ABC proteins identified, and all of the other ABC proteins contained remnants of a complete signal sequence. Walker A and Walker B sequences were not sought during these searches.

The ABC system inventories compiled in this study include systems that contain genes with predicted frame shift mutations and premature stop codons. For example, the *B. melitensis* 16M gene BMEII0099 is a known pseudogene with multiple premature stop codons. However, this gene is part of an ABC system that is encoded by another four genes (BMEII0098, BMEII00101, BMEII102, and BMEII0103), all of which are predicted to be functional; the mutation in BMEII0099 might render the whole system nonfunctional or it is possible that the other four genes could create a partially functional system. Due to the inability to determine the functionality of ABC systems using bioinformatic techniques, the ABC systems where one or more components were predicted to be nonfunctional were excluded from the total ABC system numbers and functions of the ABC systems. Within the genomes of all *Brucella* species single components of ABC systems (mainly BP) not attached to individual systems were located. These were included in ABC system inventories and termed lone components but were not included in total functional ABC system counts.
3. Results and Discussion

The genome structures of Brucella species are very similar [10–12], and although it is widely believed that the differences in Brucella species virulence and host preferences are related to their genetic composition, there is little experimental evidence to support this belief. However, there are a few studies that have uncovered differences between the genomes [10, 15, 16]. In this study, we have compared the presence of putative functional ABC systems in the genomes of B. melitensis 16M (BM), B. suis 1330 (BS), B. abortus 9-941 (BS), B. canis RM6/66 (BC), and B. ovis 63/290 (BO). In the original annotations of these genomes, a uniform nomenclature was not used and functional assignment of the systems varied considerably. Here we describe a reannotation of the ABC systems of these bacterial strains, leading to new predicted functions of the systems and predictions about how the individual components combine to form functional systems. Complete inventories of the ABC systems of BM, BS, BA, BC, and BO are shown in Table 1.

The Brucella strains investigated in this study all have approximately 3.3 Mb genomes comprising two chromosomes of approximately 2.1 Mb and 1.2 Mb. The total number of predicted functional ABC systems encoded by the genomes of the Brucella strains is similar but does show some variability (BM = 79, BS = 72, BA = 64, BC = 74, BO = 59). Our evaluation of the Brucella genomes confirms that these species encode a relatively high proportion of ABC system genes when compared to other bacteria [39], with an average of 8.8% of their genomes dedicated to predicted functional ABC system genes (if lone components and mutated genes are included this figure increases to 9.3%). This may reflect their relatedness to environmental α-proteobacteria such as Nitrobacter and Agrobacterium which also encode high numbers of ABC systems [39] that may assist in their survival in diverse conditions.

This work reports the first full inventories of ABC systems within five genome-sequenced Brucella strains. There are a number of specific ABC systems/genes that have previously been identified in the published literature. For example, Paulsen et al. describe two ABC systems that are present in B. suis and absent in B. melitensis. The first of these is an ABC importer encoded by BR0952 (IM), BR0953 (IM), and BR0955 (BP) [9]. Although this particular system is listed in the inventory, the ABC protein component of the system was not located in the BS genome and so this system was deemed incomplete and unlikely to be functional. The system was almost completely missing from the BM genome which is consistent with the findings of Paulsen et al. [9]. The second reported system is encoded by BRA0630, BRA0631, BRA0632, BRA0633, BRA0634, and BRA0635. However, when these genes were assessed using ABCISSE, only two of the five genes were predicted to be ABC transporter binding proteins (BRA0631 and BRA0632) and no other ABC components were located. Thus we deem this system also likely to be nonfunctional. Other genes that have been identified in the literature are BRA1080 (a dipeptide ABC transporter protein identified in BS), BME1742 (a mitochondrial export ABC transporter identified in BM), and BRA0749-BRA0750 (involved in oligopeptide import) [10], all of which are present in our inventories.

4. ABC System Functions

In this study, we have classified the ABC systems of BM, BS, BA, BC, and BO into classes, families, and subfamilies according to the functional classification system described by Dassa and Bouige [27] (Table 2). The Brucella strains encode 8–12 class 1 systems, characterised by an ABC-IM domain fusion and comprising predicted export systems, and 5 class 2 systems, characterised by a duplicated fused ABC and with predicted functions in antibiotic resistance and house-keeping functions. However, we have found that most of the ABC systems of Brucella species belong to class 3 with roles predicted in import processes. The further classification of Brucella ABC systems into families and subfamilies shows that there are a high number of ABC systems of specific importer families, particularly the MOI (minerals and organic ions), MOS (monosaccharides), OPN (oligosaccharides and nickel), OSP (oligosaccharides and polyols), and OTCN (osmoprotectants taurine cyanate and nitrate) families, all of which primarily function to acquire nutrients.

The predicted functionality of the ABC systems within the Brucella genomes is dominated by ABC systems involved in the import of nutrients (Figure 1), and although this is not uncommon amongst bacteria, it is probable that Brucella species utilise ABC transporters to provide most of the nutrients they require [8, 39]. In support of the findings of Paulsen et al. [9], the 2.1 Mb chromosome encodes a large proportion of the ABC systems involved in molecular export and cellular process whereas the ABC systems located on the smaller chromosome are largely biased toward nutrient acquisition, leading to the idea that this second chromosome is important in the acquisition and processing of nutrients in Brucella.

Since the ABC systems were identified by homology searches, it is possible to assign each ABC importer with a predicted substrate that it imports, providing an overview of the ABC system-based import ability of the Brucella species. Table 3 shows the range of predicted substrates imported via ABC transporters within the Brucella genomes. Overall, our results show that there is little difference in the import ability between strains of the four species of Brucella that are pathogenic to humans (BM, BS, BA, and BC). However, BO lacks the ability to import 8 of the 26 listed nutrients via ABC systems. In fact, all of the 29 pseudogenes that are present within the BO ABC system inventory occur within nutrient importers. The nutrients that BO appears to be unable to import using ABC systems include polyamines (specifically spermidine and putrescine), nickel, thiamine, glycin betaine, erythritol, xylose, and molybdenum. It is possible that the defective uptake of one or more of these substrates by B. ovis may contribute to its likely lack of virulence in humans. For example, polyamines have recently been associated with bacterial virulence and pathogenicity in human pathogens [40] and polyamine transporters have therefore been targeted as novel vaccine candidate targets for human pathogens [41, 42].
Number	Family	Subfamily	Substrate/Function	Type	B. melitensis	B. abortus	B. suis	B. ovis	B. canis				
1	ART	REG	Involved in gene expression regulation	ABC2	BMEI0288	BruAb11738	BR1753	BOV_1692	BCAN_A1791				
2	ART	REG	Involved in gene expression regulation	ABC2	BMEI0553	BruAb11451	BR1456	BOV_1411	BCAN_A1491				
3	ART	REG	Involved in gene expression regulation	ABC2	BMEI1258	BruAb10711	BR0692	BOV_0683	BCAN_A0704				
4	CBY	CBU	Cobalt import	ABC	BMEI0635	BruAb11365	BR1368	BOV_1324	BCAN_A1395				
5	CCM		Possibly heme export	IM	BMEI1185	BruAb11185	BR0096	ccmC	BOV_0094	BCAN_A0908, ccmC			
6	CDI		Involved in cell division	IM	BMEI0273, ftsX	BruAb11971	BR1996	BCAN_A2042					
7	CLS		O antigen export system	ABC	BMEI1415, rfbD	BruAb11972, rfbD	BOV_1324	rfbE	BCAN_A0532, rfbD				
8	DLM	(ABCY)	D-L-Methionine and derivatives import	LPP	BMEI1954								
9	DLM	(ABCY)	D-L-Methionine and derivatives import	IM	BMEI0336	BruAb2071	BRA0962	BOV_A0903	BCAN_B0983				
10	DPL	CYD	Cytochrome bd biogenesis and cysteine export	IM-ABC	BMEI0761, cydC	BruAb20713	BRA0509	cydD	BOV_A0443	BCAN_B0508			
11	DPL	MDL	Involved in mitochondrial export systems	IM-ABC	BMEI0323, msaA	BruAb11700	BR1715	BOV_A1657	BCAN_A1753				
12	DPL	HMT	Involved in mitochondrial export systems	IM-ABC	BMEI0472	BruAb11533	BR1545	BOV_A1493	BCAN_A1581				
13	DPL	PRT	Proteases, lipase, S-layer protein export	OMP	BMEI1029, ToIC	BruAb10954	BR0998	BCAN_A0957					
14	DPL	CHV	Beta-(1–>2) glucan export	IM-ABC	BMEI0984	BruAb11004	BR0998	BCAN_A1015					
15	DPL	HMT	Heavy metal tolerance protein	IM-ABC	BMEI1152	BruAb10321	BR0442	BOV_A0449	BCAN_A0446				
16	DPL	HMT	Involved in mitochondrial export systems	IM-ABC	BMEI1743								
17	DPL	LIP	Involved in lipid A or polysaccharide export	IM-ABC	BMEI0250	BruAb20990	BRA0150	BOV_A0988	BCAN_B1071				
18	DRI	YHHH	Unknown	IM	BMEI0656	BruAb11347	BR1349	BOV_1307	BCAN_A1377				
19	DRI	YHHH	Unknown	IM	BMEI0655								
20	DRI	NOS	Nitrous oxide reduction	IM	BMEI0970, nosY	BruAb20902, nosY	BRA0278, nosY	BOV_A0254	BCAN_B0280				
21	FAE		Fatty acid export	IM-ABC	BMEI0520	BruAb11484	BR1490	BOV_A0247	BCAN_B0273				
22	FAE		Fatty acid export	IM-ABC	BMEI0976	BruAb20908							
Number	Family	Subfamily	Type	Substrate/Function	E. coli	E. albertus	E. canis	E. abortus	E. ovis	E. suis	E. canis	B. melitensis	
-------	--------	-----------	------	------------------	--------	------------	----------	------------	----------	--------	----------	------------	-------------
23	HAA		IM	Branched-chain amino acids	IMAI790	BCAI1729	BCAI1730	BCAI1731	BCAI1732	BCAI1733			
24	HAA		IM	Branched-chain amino acids	IMAI791	BCAI1734	BCAI1735	BCAI1736	BCAI1737	BCAI1738			
25	HAA		IM	Branched-chain amino acids	IMAI792	BCAI1739	BCAI1740	BCAI1741	BCAI1742	BCAI1743			
26	HAA		IM	Branched-chain amino acids	IMAI793	BCAI1744	BCAI1745	BCAI1746	BCAI1747	BCAI1748			
27	HAA		IM	Branched-chain amino acids	IMAI794	BCAI1749	BCAI1750	BCAI1751	BCAI1752	BCAI1753			
28	HAA		IM	Branched-chain amino acids	IMAI795	BCAI1754	BCAI1755	BCAI1756	BCAI1757	BCAI1758			
29	HAA		IM	Branched-chain amino acids	IMAI796	BCAI1759	BCAI1760	BCAI1761	BCAI1762	BCAI1763			
30	HAA		IM	Branched-chain amino acids	IMAI797	BCAI1764	BCAI1765	BCAI1766	BCAI1767	BCAI1768			
31	HAA		IM	Branched-chain amino acids	IMAI798	BCAI1769	BCAI1770	BCAI1771	BCAI1772	BCAI1773			

Table 1: Continued.
Number	Family	Subfamily	Substrate/Function	Type	B. melitensis	B. abortus	B. suis	B. ovis	B. canis					
32	ISVH	Iron siderophores, VB12 and Hemin import	ABC	BMEI0660	BruAb11342	BR1344	BOV1302	BCAN_A1371						
	ISVH	Iron siderophores, VB12 and Hemin import	IM	BMEI0659	BruAb11343	BR1345	BOV1304	BCAN_A1372						
	ISVH	Iron siderophores, VB12 and Hemin import	OM	BMEI0657	BruAb11344	BR1347	BOV1306	BCAN_A1374						
	ISVH	Iron siderophores, VB12 and Hemin import	BP	BMEI0658	BruAb11345	BR1346	BOV1305	BCAN_A1373						
33	ISVH	Iron(III) dicitrate import	BP	BMEI0355	BruAb20476	BRA0756	BOV_A0705	BCAN_B0763						
	ISVH	Iron(III) dicitrate import	IM	BMEI0356, fecD	BruAb20477	BRA0755	BOV_A0704	BCAN_B0764						
	ISVH	Iron(III) dicitrate import	ABC	BMEI0357, fecE	BruAb20478	BRA0754	BOV_A0703	BCAN_B0762						
34	ISVH	Iron(III) import	ABC	BMEI0604	BruAb20550	BRA0678	BOV_A0635	BCAN_B0677						
	ISVH	Iron(III) import	IM	BMEI0605, fatC	BruAb20551	BRA0676	BOV_A0634	BCAN_B0675						
	ISVH	Iron(III) import	IM	BMEI0606, fatD	BruAb20552	BRA0677	BOV_A0633	BCAN_B0676						
	ISVH	Iron(III) import	BP	BMEI0607	BruAb20553	BRA0675	BOV_A0632	BCAN_B0674						
35	MET	Zinc import	IM	BMEI0176, ZnuB	BruAb21061, ZnuB	BRA1124, ZnuB	BOV_A1029	BCAN_B1152						
	MET	Zinc import	ABC	BMEI0177, ZnuC	BruAb21060, ZnuC	BRA1123, ZnuC	BOV_A1028	BCAN_B1151						
	MET	Zinc import	BP	BMEI0178, ZnuA	BruAb21059, ZnuA	BRA1122, ZnuA	BOV_A1027	BCAN_B1150						
36	MKL	Involved in toluene tolerance	ABC	BMEI0964	BruAb11025	BR1020	BOV_0987							
	MKL	Involved in toluene tolerance	IM	BMEI0965, tgt2B	BruAb11024	BR1019	BOV_0986							
	MKL	Involved in toluene tolerance	SS	BMEI0966, tgt2C	BruAb11026	BR1021	BOV_0988							
37	MOI	Thiamine import	ABC	BMEI0283, thiQ	BruAb11744	BR1759	BOV_1698	BCAN_A1798						
	MOI	Thiamine import	IM	BMEI0284, thiP	BruAb11743, thiP	BR1758, thiP	BOV_1696	BCAN_A1797						
	MOI	Thiamine import	BP	BMEI0285	BruAb11744, thiB	BR1757, thiB	BOV_1695	thIP, BCAN_A1796						
38	MOI	Putrescine import	IM	BMEI0411, potF	BruAb11599	BR1612	BOV_1556	BCAN_A1649						
	MOI	Putrescine import	ABC	BMEI0412	BruAb11598	BR1611	BOV_1555	BCAN_A1648						
	MOI	Putrescine import	IM	BMEI0413	BruAb11596	BR1609	BOV_1554	BCAN_A1647						
	MOI	Putrescine import	BP	BMEI0414	BruAb11597	BR1610	BOV_1553	BCAN_A1646						
39	MOI	Sulphate import	IM	BMEI0675, cysW	BruAb11328, cysW2	BR1328, cysW2	BOV_1288	CysW, BCAN_A1353						
	MOI	Sulphate import	IM	BMEI0674, cysT	BruAb11329	BR1329	BOV_1289	CysT, BCAN_A1354						
	MOI	Sulphate import	BP	BMEI0673	BruAb11330	BR1330	BOV_1290	CysA, BCAN_A0113						
40	MOI	Sulphate import	IM	BMEI1839, cysW	BruAb11016	BR0110	BOV_0107	CysA, BCAN_A0112						
	MOI	Sulphate import	IM	BMEI1840, cyst	BruAb11010, cysT	BR0108	BOV_0105	CysT, BCAN_A0111						
	MOI	Sulphate import	BP	BMEI1841	BruAb11014	BR0107	BOV_0104	BCAN_A0110						
41	MOI	Phosphate import	IM	BMEI1986, pstB	BruAb12116, pstB	BR2141, pstB	BOV_2056	BCAN_A2185, pstB						
	MOI	Phosphate import	IM	BMEI1987, pstA	BruAb12114, pstC	BR2139, pstC	BOV_2055	BCAN_A2184, pstA						
	MOI	Phosphate import	IM	BMEI1988, pstC	BruAb12115, pstA	BR2140	BOV_2054	BCAN_A2183, pstC						
	MOI	Phosphate import	BP	BMEI1989	BruAb12113	BR2138	BOV_2053	BCAN_A2128						
42	MOI	Molybdenum import	ABC	BMEI0003, modC	BruAb20900	BRA0090, modC	BOV_A0084	BCAN_B0093, ModC						
	MOI	Molybdenum import	IM	BMEI0004, modB	BruAb20898	BRA0089, modB	BOV_A0083	BCAN_B0092, ModB						
	MOI	Molybdenum import	BP	BMEI0005	BruAb20888	BRA0088, modA	BOV_A0082	BCAN_B0091						
43	MOI	Spermidine/putrescine import	ABC	BMEI0193, potA	BruAb21046	BRA1107	BCAN_B1129							
	MOI	Spermidine/putrescine import	IM	BMEI0194, potB	BruAb21044	BRA1106	BCAN_B1128							
	MOI	Spermidine/putrescine import	IM	BMEI0195, potC	BruAb21045	BRA1105	BCAN_B1127							
	MOI	Spermidine/putrescine import	BP	BMEI0196	BruAb21043	BRA1104	BCAN_B1126							
Number	Family	Subfamily	Strain	Type	Substrate/Function	Type	Strain	Type	Strain	Type	Strain	Type	Strain	Type
--------	--------	-----------	--------	------	-------------------	------	--------	------	--------	------	--------	------	--------	------
44	B. melitensis													
45	B. abortus													
46	B. suis													
47	B. ovis													
48	B. canis													
49	Unknown													
50	Unknown													
51	Unknown													
52	Unknown													
53	Unknown													
54	Unknown													

Table 1: Continued.

Number	Family	Subfamily	Strain	Type	Substrate/Function	Type	Strain	Type	Strain	Type	Strain	Type	Strain	Type
55	B. melitensis													
56	B. abortus													
57	B. suis													
58	B. ovis													
59	B. canis													
60	Unknown													
61	Unknown													

Comparative and Functional Genomics
Number	Family	Subfamily	Substrate/Function	Type	B. melitensis	B. abortus	B. suis	B. ovis	B. canis
55	MOS		Ribose import	ABC2	BMEI0300,	BruAb20239,	BRA0995,	BOV.0937	BCAN.104
	MOS		Ribose import	IM	BMEI0301,	BruAb20240,	BRA0993,	BOV.1053	BCAN.1051
	MOS		Ribose import	IM	BMEI0302,	BruAb20239,	BRA0994,	BOV.0935	BCAN.1012
	MOS		Ribose import	BP	BruAb20238	BMEI0300,	BRA0996,	BOV.0938	BCAN.1015
56	MOS		Monosaccharide import	BP	BMEI0360,	BruAb20296	BRA0937	BOV.0879	BCAN.0957
	MOS		Monosaccharide import	IM	BMEI0361	BruAb20297	BRA0936	BOV.0878	BCAN.0956
	MOS		Monosaccharide import	IM	BMEI0362	BruAb20298	BRA0935	BOV.0877	BCAN.0955
57	MOS		Erythritol import	ABC2	BMEI0432,	BruAb20371,	BRA0860,	BOV.0807,	BCAN.0877
	MOS		Erythritol import	IM	BMEI0433,	BruAb20372,	BRA0859,	BOV.0876	BCAN.0867
	MOS		Erythritol import	BP	BMEI0435	BruAb20373,	BRA0858,	BOV.0805	BCAN.0875
58	MOS		Galactoside/Ribose import	ABC2	BMEI0698	BruAb20654	BRA0570	BOV.0533	BCAN.0570
	MOS		Galactoside/Ribose import	IM	BMEI0700	BruAb20655	BRA0568	BOV.0534	BCAN.0567
	MOS		Galactoside/Ribose import	IM	BMEI0701	BruAb20656	BRA0569	BOV.0535	BCAN.0568
	MOS		Galactoside/Ribose import	BP	BMEI0702	BMEI0361	BRA0567	BOV.0532	BCAN.0567
59	MOS		Monosaccharide import	IM	BMEI0981	BruAb20913	BRA0267	BOV.0242	BCAN.0268
	MOS		Monosaccharide import	ABC2	BMEI0982	BruAb20914	BRA0266	BOV.0241	BCAN.0267
	MOS		Monosaccharide import	BP	BMEI0983	BruAb20916	BRA0265	BOV.0240	BCAN.0266
60	o228		Unknown	IM	BMEI0361	BruAb10085	BRA0087	BOV.0085	BCAN.1712
	o228		Unknown	MFP	BMEI0359	BruAb10084	BRA0086	BOV.0084	BCAN.1711
	o228		Unknown	ABC	BMEI0360	BruAb10084	BRA0086	BOV.0084	BCAN.1711
61	o228		Unknown	IM	BMEI1138,	BruA11658	BR1671	BOV.1617	BCAN.0839
	o228		Unknown	IM-ABC	BMEI1139,	BruA11657	BR1670	BOV.1616	BCAN.0839
	o228		Lipoprotein release system	ABC	BMEI1138,	BruA10838,	BR0824,	BOV.0818	BCAN.0839
	o228		Lipoprotein release system	IM	BMEI1139,	BruA10838,	BR0823,	BOV.0817	BCAN.0838
64	OPN		Dipeptide import	ABC	BMEI0438,	BruA11569	BR1582	BOV.1527	BCAN.1617
	OPN		Dipeptide import	ABC	BMEI0437,	BruA11570	BR1583	BOV.1528	BCAN.1618
	OPN		Dipeptide import	IM	BMEI0435,	BruA11571	BR1584	BOV.1530	BCAN.1620
	OPN		Dipeptide import	IM	BMEI0436,	BruA11572	BR1585	BOV.1529	BCAN.1619
	OPN		Dipeptide import	BP	BMEI0433,	BruA11573	BR1586	BCAN.1621	
65	OPN		Oligopeptide import	ABC2	BMEI1938,	BruA10006	BR0006	BOV.0006	BCAN.0006
	OPN		Oligopeptide import	BP	BMEI1934	BruA10007	BR0007	BOV.0009	BCAN.0010
	OPN		Oligopeptide import	BP	BMEI1935	BruA10008	BR0008	BOV.0010	BCAN.0009
	OPN		Oligopeptide import	IM	BMEI1936,	BruA10009	BR0009	BOV.0008	BCAN.0008
	OPN		Oligopeptide import	IM	BMEI1937,	BruA10010	BR0010	BOV.0007	BCAN.0007
Number	Family	Subfamily	Substrate/Function	Type	B. melitensis	B. abortus	B. suis	B. ovis	B. canis
--------	--------	-----------	-------------------	------	---------------	------------	--------	---------	---------
66	OPN		Oligopeptide import	ABC	BMEII0199, oppE	BruAb21039	BRA100		BCAN_B1123
OPN				ABC	BMEII0200, oppD	BruAb21040	BRA101		BCAN_B1122
OPN				IM	BMEII0201, oppC	BruAb21037	BRA099		BCAN_B1121
OPN				IM	BMEII0202, oppB	BruAb21038	BRA098		BCAN_B1119
OPN				BP	BMEII01203	BruAb21036	BRA097		
67	OPN		Dipeptide import	ABC	BMEII0205, dppF	BruAb21033	BRA1095	BOV_A0950	BCAN_B1117
OPN				ABC	BMEII0206, dppD	BruAb21034	BRA1094	BOV_A0951	BCAN_B1116
OPN				IM	BMEII0207, dppC	BruAb21031	BRA1093		BCAN_B1115, dppC
OPN				IM	BMEII0209, dppB	BruAb21032	BRA1092	BOV_A0952	
OPN				IM	BMEII0210	BruAb21030	BRA1090	BOV_A0954	BCAN_B1113
68	OPN		Dipeptide/ Oligopeptide import	BP	BMEII0217	BruAb21024	BRA1084		BCAN_B107
OPN				IM	BMEII0220	BruAb21020	BRA1081		BCAN_B104
OPN				IM	BMEII0221	BruAb21021	BRA1080		BCAN_B103
OPN				ABC	BMEII0222	BruAb21018	BRA1079		BCAN_B102
OPN				ABC	BMEII0223	BruAb21019	BRA1078		BCAN_B101
69	OPN		Dipeptide import	BP	BMEII0284	BruAb20952	BRA1012	BOV_A0504	BCAN_B1032
OPN				IM	BMEII0285	BruAb20950	BRA1009	BOV_A0501	BCAN_B1031
OPN				IM	BMEII0286	BruAb20951	BRA1008	BOV_A0502	BCAN_B1030
OPN				ABC	BMEII0287	BruAb20948	BRA1011	BOV_A0500	BCAN_B1029
OPN				ABC	BMEII0288	BruAb20949	BRA1010	BOV_A0501	BCAN_B1028
70	OPN		Nickel import	BP	BMEII0487	BruAb20428	BRA0804	BOV_A0754	BCAN_B0818, NikA
OPN				IM	BMEII0488, nikB	BruAb20429, nikB	BRA0802, nikC	BOV_A0752, NikB	
OPN				IM	BMEII0489, nikC	BruAb20430, nikV	BRA0803, nikB	BCAN_B0816, NikC	
OPN				ABC	BMEII0490, nikD	BruAb20431, nikD	BRA0800, nikE	BOV_A0751, NikD	
OPN				ABC	BMEII0491, nikE	BruAb20432, nikE	BRA0801, nikD	BCAN_B0814, NikE	
71	OPN		Oligopeptide import	BP	BMEII0504	BruAb20446	BRA0783	BOV_A0737	BCAN_B0800
OPN				IM	BMEII0505	BruAb20447	BRA0788	BOV_A0736	BCAN_B0799
OPN				IM	BMEII0506	BruAb20448	BRA0787	BOV_A0735	BCAN_B0798
OPN				ABC	BMEII0507	BruAb20449	BRA0786	BOV_A0734	BCAN_B0797
OPN				ABC	BMEII0508	BruAb20450	BRA0785		BCAN_B0796
72	OPN		Oligopeptide import	BP	BMEII0691	BruAb20648	BRA0576	BOV_A0542	
OPN				BP	BMEII0734	BruAb20684	BRA0538	BOV_A0468	BCAN_B0538
OPN				BP	BMEII0735, oppA	BruAb20685	BRA0537	BOV_A0467	BCAN_B0537
OPN				IM	BMEII0736	BruAb20686	BRA0536	BOV_A0466	BCAN_B0535
OPN				IM	BMEII0737	BruAb20687	BRA0535	BOV_A0465	BCAN_B0536
OPN				ABC2	BMEII0738	BruAb20688	BRA0534	BOV_A0464	BCAN_B0534
73	OPN		Oligopeptide import	BP	BMEII0859	BruAb20792	BRA0490	BOV_A0352	BCAN_B0412
OPN				IM	BMEII0860	BruAb20794	BRA0488	BOV_A0351	BCAN_B0411
OPN				IM	BMEII0861	BruAb20794	BRA0497	BOV_A0350	BCAN_B0410
OPN				ABC	BMEII0863	BruAb20796	BRA0495	BOV_A0347	BCAN_B0408
OPN				ABC	BMEII0864	BruAb20797	BRA0404	BOV_A0348	BCAN_B0407

Table 1: Continued.
Number	Family	Subfamily	Substrate/Function	Type	B. melitensis	B. abortus	B. suis	B. ovis	B. canis
75	OSP		Maltose import	ABC	BMEI1713, malK	BruAb10233	BR0238	BOV,0231	BCAN,A0241
	OSP		Maltose import	IM	BMEI1714, malG	BruAb10231	BR0237	BOV,0230	BCAN,A0240
	OSP		Maltose import	IM	BMEI1715, malF	BruAb10232	BR0236	BOV,0229	BCAN,A0239
	OSP		Maltose import	BP	BMEI1716	BruAb10230	BR0235	BOV,0228	BCAN,A0238
76	OSP		Oligosaccharide or polyol import	ABC	BMEI1712, ugpC	BruAb21119	BRA1183	BOV,A1086	BCAN,B1214
	OSP		Oligosaccharide or polyol import	IM	BMEI1713, ugpA	BruAb21118	BRA1181	BOV,A1085	BCAN,B1213
	OSP		Oligosaccharide or polyol import	IM	BMEI1714, ugpE	BruAb21117	BRA1182	BOV,A1084	BCAN,B1212
	OSP		Oligosaccharide or polyol import	BP	BMEI1715	BruAb21116	BRA1180	BOV	BCAN,B1211
77	OSP		Oligosaccharide or polyol import	ABC	BMEI1716	BruAb20483	BRA0749	BOV,A0700	BCAN,B0757
	OSP		Oligosaccharide or polyol import	IM	BMEI1717	BruAb20484	BRA0748	BOV,A0701	BCAN,B0755
	OSP		Oligosaccharide or polyol import	IM	BMEI1718	BruAb20485	BRA0747	BOV	BCAN,B0753
	OSP		Oligosaccharide or polyol import	BP	BMEI1719	BruAb20486	BRA0746	BOV	BCAN,B0751
	OSP		Oligosaccharide or polyol import	ABC	BMEI1720	BruAb20487	BRA0745	BOV	BCAN,B0749
78	OSP		Oligosaccharide or polyol import	IM	BMEI1721	BruAb20537	BRA0693	BOV,A0648	BCAN,B0691
	OSP		Oligosaccharide or polyol import	IM	BMEI1722	BruAb20538	BRA0692	BOV,A0646	BCAN,B0689
	OSP		Oligosaccharide or polyol import	IM	BMEI1723	BruAb20539	BRA0691	BOV,A0645	BCAN,B0687
79	OSP		SN-glycerol-3-phosphate import	ABC	BMEI0621, ugpC	BruAb20568, ugpC	BRA0658, ugpC	BOV,A0620	BCAN,B0658
	OSP		SN-glycerol-3-phosphate import	IM	BMEI0622, ugpE	BruAb20569, ugpE	BRA0657, ugpE	BOV,A0619	BCAN,B0657
	OSP		SN-glycerol-3-phosphate import	IM	BMEI0623, ugpE	BruAb20570, ugpA	BRA0656, ugpA	BOV,A0618	BCAN,B0656
	OSP		SN-glycerol-3-phosphate import	IM	BMEI0624, ugpA	BruAb20571, ugpA	BRA0655, ugpA	BOV,A0617	BCAN,B0655
80	OSP		Oligosaccharide or polyol import	ABC	BMEI0625	BruAb20702	BRA0521	BOV,A0545	BCAN,B0520
	OSP		Oligosaccharide or polyol import	IM	BMEI0626	BruAb20704	BRA0519	BOV,A0542	BCAN,B0518
	OSP		Oligosaccharide or polyol import	IM	BMEI0627	BruAb20705	BRA0518	BOV,A0541	BCAN,B0517
	OSP		Oligosaccharide or polyol import	BP	BMEI0628	BruAb20706	BRA0516	BOV,A0449	BCAN,B0516
	OSP		Oligosaccharide or polyol import	BP	BMEI0629	BruAb20707	BRA0515	BOV	BCAN,B0515
81	OSP		Maltose import	ABC	BMEI0940	BruAb20874	BRA0307	BOV,A0282	BCAN,B0308
	OSP		Maltose import	IM	BMEI0942	BruAb20875	BRA0306	BOV,A0281	BCAN,B0307
	OSP		Maltose import	IM	BMEI0943	BruAb20876	BRA0305	BOV,A0280	BCAN,B0306
	OSP		Maltose import	BP	BMEI0944	BruAb20877	BRA0304	BOV	BCAN,B0305
82	OTCN		Glycine betaine/L-proline import	ABC	BMEI0439, proV	BruAb11568	BRI181	BOV,A1526	BCAN,A1616
	OTCN		Glycine betaine/L-proline import	IM	BMEI0440, proW	BruAb11567	BRI180	BOV,A1525	BCAN,A1615
	OTCN		Glycine betaine/L-proline import	BP	BMEI0441, proX	BruAb11566	BRI179	BOV,A1524	BCAN,A1614
83	OTCN		Choline S-dependent regulation of yehZYXW	BP	BMEI1725	BruAb10220	BRA0225	BOV,A0216	BCAN,A0228
	OTCN		Choline S-dependent regulation of yehZYXW	IM	BMEI1726, proW	BruAb10217	BRA0222	BOV,A0215	BCAN,A0227
	OTCN		Choline S-dependent regulation of yehZYXW	IM	BMEI1728, proW	BruAb10219	BRA0224	BOV,A0223	BCAN,A0225
	OTCN		Choline S-dependent regulation of yehZYXW	ABC	BMEI1727, proV	BruAb10218	BRA0223	BOV,A0224	BCAN,A0226
84	OTCN		Osmoprotectants, Taurine, Cyanate & Nitrate	BP	BMEI1737	BruAb10207	BRA0211	BOV,A0204	BCAN,A0215
	OTCN		Osmoprotectants, Taurine, Cyanate & Nitrate	IM	BMEI1739	BruAb10206	BRA0213	BOV,A0202	BCAN,A0213
	OTCN		Osmoprotectants, Taurine, Cyanate & Nitrate	ABC	BMEI1008, tauB	BruAb21123	BRA1187	BOV,A0190	BCAN,B1217
85	OTCN		Taurine import	BP	BMEI1009	BruAb21122	BRA1186	BOV,A1089	BCAN,B1218
	OTCN		Taurine import	IM	BMEI1007, tauC	BruAb21124	BRA1188	BOV,A1091	BCAN,B1219
	OTCN		Taurine import	ABC	BMEI1008, tauB	BruAb21123	BRA1187	BOV,A1090	BCAN,B1217
Number	Family	Subfamily	Substrate/Function	Type	B. melitensis	B. abortus	B. suis	B. ovis	B. canis
--------	--------	-----------	-------------------	------	--------------	-----------	--------	--------	--------
86	OTCN		Glycine betaine/L-proline import	ABC	BMEII0548	BruAb20492	BRA0740	BOV_A0692	BCAN_B0748
	OTCN		Glycine betaine/L-proline import	IM	BMEII0549	BruAb20493	BRA0739	BOV_A0691	BCAN_B0747
	OTCN		Glycine betaine/L-proline import	BP	BMEII0550	BruAb20494	BRA0738	BOV_A0690	BCAN_B0746
87	OTCN		Nitrate import	BP	BMEII0797	BruAb20753	BRA0469	BOV_A0406	BCAN_B0741
	OTCN		Nitrate import	ABC	BMEII0798, nrtC	BruAb20755	BRA0467	BOV_A0407	BCAN_B0740
	OTCN		Nitrate import	IM	BMEII0799, nrtB	BruAb20755	BRA0468	BOV_A0408	BCAN_B0469
88	OTCN		Taurine import	ABC	BMEII0961	BruAb10894	BRA0286	BOV_A0262	BCAN_B0288
	OTCN		Taurine import	IM	BMEII0962	BruAb10895	BRA0285	BOV_A0261	BCAN_B0287
	OTCN		Taurine import	BP	BMEII0963	BruAb10896	BRA0284	BOV_A0260	BCAN_B0286
89	PAO		Polar amino acid import	ABC	BMEI0108	BruAb1932	BR1959	BOV_A0336	BCAN_A2004
	PAO		Polar amino acid import	ABC	BMEI0111	BruAb1935	BR1956	BOV_A1885	BCAN_A2001
	PAO		Polar amino acid import	IM	BMEI0112	BruAb1931	BR1955	BOV_A1882	BCAN_A2000
	PAO		Polar amino acid import	IM	BMEI0113	BruAb1930	BR1954	BOV_A1081	BCAN_A1999
	PAO		Polar amino acid import	BP	BMEI0114	BruAb1929	BR1953	BOV_A1880	BCAN_A1998
90	PAO		Arginine/Ornithine binding precursor	BP	BMEI1022	BruAb20595	BRA0632	BOV_A0593	BCAN_A0967
	PAO		Arginine/Ornithine binding precursor	BP	BMEI1022	BruAb20595	BRA0632	BOV_A0593	BCAN_A0967
	PAO		Arginine/Ornithine binding precursor	BP	BMEI1022	BruAb20595	BRA0632	BOV_A0593	BCAN_A0967
91	PAO		General L-amino acid import	ABC	BMEI1208, appP	BruAb10762	BRA0745	BOV_A0890	BCAN_A0760
	PAO		General L-amino acid import	IM	BMEI1209, appM	BruAb10758	BRA0744	BOV_A0739	BCAN_A0759
	PAO		General L-amino acid import	IM	BMEI1210, appQ	BruAb10760	BRA0743	BOV_A0737	BCAN_A0758
	PAO		General L-amino acid import	BP	BMEI1211, appJ	BruAb10761	BRA0741	BOV_A0738	BCAN_A0756
	PAO		General L-amino acid import	BP	BMEI0349, appJ	BruAb20285	BRA0948	BOV_A0736	BCAN_B0969
92	PAO		Arginine	BP	BMEI1627	BruAb10321	BR2095	BOV_A0308	
93	PAO		Cystine import	ABC	BMEI0599	BruAb20545	BRA0684	BOV_A0640	BCAN_B0682
	PAO		Cystine import	IM	BMEI0600	BruAb20546	BRA0683	BOV_A0639	BCAN_B0681
	PAO		Cystine import	BP	BMEI0601	BruAb20547, fliY	BRA0682, fliY	BOV_A0638, fliY	BCAN_B0680
94	PAO		Polar amino acid import	IM	BMEI1104	BruAb1052	BR0953	BCAN_A0965	
95	PAO		Polar amino acid import	IM	BMEI1104	BruAb1052	BR1056	BCAN_A0965	
96	UVR		DNA repair	ABC2	BMEI0878	BruAb1110, UvrA	UvrA	BOV_A1063	BCAN_A1124
97	YHBG		Possible LPS transport to outer membrane	ABC	BMEI1790	BruAb10153	BR157	BOV_A0152	BCAN_A0162
	YHBG		Possible LPS transport to outer membrane	SS	BMEI1791	BruAb10152	BR156	BOV_A0151	BCAN_A0161

ABC: ATP-Binding Cassette; IM: Inner membrane protein; BP: Binding protein; IM-ABC: Inner membrane protein-ATP binding cassette fusion; ABC2: 2 ABC proteins fused together; OMP: Outer membrane protein; MFP: Membrane fusion protein; SS: Signal sequence; LPP: Extracytoplasmic protein with a lipoprotein type signal sequence; BM: Brucella melitensis; BA: Brucella abortus; BS: Brucella suis; Bold Text: Indicates a frame shift mutation or premature stop codon in these genes.
Table 2: ABC system families/subfamilies.

Family	Name	Subfamily	Description and Function
Exporters (predicted and experimental)			
DPL, Drugs, Peptides, Lipids	HMT		Mitochondrial and bacterial transporters II
	CHV		Beta(1–2) Glucan export
	MDL		Mitochondrial and bacterial transporters I
	LIP		Lipid A or glycerophospholipid export
	PRT		Proteases, Lipases, S-Layer protein export
	CYD		Cytochrome bd biogenesis
	CCM		Cytochrome C biogenesis
	CLS		Capsular polysaccharide, lipopolysaccharide and teichoic acids
	FAE		Fatty Acid Export
Importers			
DLM	D- L-Methionine and derivatives		
CBY	CBU		Related to MOI family but unknown substrate
MKL	YHBG		Related to HAA family, but unknown substrate
CDI			Cell division
MET			Metals
MOS			Monosaccharides
MOI			Mineral and Organic ions
PAO			Polar amino acids and Opines
HAA	OSP		Hydrophobic amino acids and amides
	OPN		Oligosaccharides and polyols
	OTCN		Osmoprotectants Taurine Cyanate and Nitrate
	ISVH		Iron-Siderophores VitaminB-12 and Hemin
Isolated cellular process	ISB		Iron-sulphur centre biogenesis
	ART, Antibiotic resistance and translation regulation	REG	Translation regulation
	UVR		DNA repair and drug resistance
Unknown	DRI	YHH	Drug resistance, putative
			Possible nitrous oxide reduction
	NO	NOS	Unclassified Systems
	o228		Unknown

Two predicted erythritol transport systems have been reported that have yet to be confirmed by experimental data [8, 43]. Although the erythritol transporter identified in this study has also been identified by Crasta et al. [43], it should be noted that B. abortus S19 has this transport system inactivated by pseudogenes and yet it is still able to incorporate erythritol [43], indicating that this ABC system might not be wholly responsible for erythritol transport. Another study has demonstrated that B. ovis does not utilise erythritol as readily as other sugars [44].

In this study we have identified one ABC system in BM that we have categorised within a new ABC system family (currently labelled NEW1; See Table 1). This system includes BP and IM proteins related to those of the MOS family and ABC proteins that are different to those from the MOS family. We previously identified a similar ABC system in the genomes of Burkholderia pseudomallei and Burkholderia mallei strains [45]. Clearly, experimental data is required to define the function of this system.

5. Differences between Brucella Species

Although there is similarity between the ABC system inventories of the Brucella strains studied in this work, we have identified systems that are absent in one or several Brucella species (Table 4). The systems that are absent from species are not critical for bacterial survival but could contribute to differences in the lifestyles or virulence of the Brucella species. Our data shows that there are ABC systems absent from all of the Brucella strains studied. In particular, BO (5 systems), BC (4 systems), and BA (4 systems) lack systems that are present in BM and/or BS. The absence of
Table 3: Brucella ABC import ability.

Substrate	B. melitensis	B. abortus	B. suis	B. ovis	B. canis
Branch chain amino acids	** ** **	** **	** **	**	** **
Iron (III)	** ** **	** **	** **	** ** **	** ** **
Cobalt	*	*	*	*	*
Zinc	*	*	*	*	*
Thiamine	*	*	*	—	*
Putrescine	** ** **	** **	**	—	**
Sulphate	** ** **	** **	**	**	**
Phosphate	*	*	*	*	*
Molybdenium	*	*	*	—	*
Spermidine	** ** **	** **	**	—	**
Ribose	** ** **	** **	** **	** ** **	** ** **
Galactoside	—	** **	** **	**	**
Xylose	*	*	*	—	*
Erythritol	*	*	*	—	*
Dipeptides	** ** **	** **	**	**	**
Oligopeptides	**** ** ****	**** ** ****	** **	** ** **	** ** **
Nickel	*	—	*	—	*
Maltose	*	*	*	*	*
Oligosaccharide or polyol	** ** **	*	**	** ** **	** ** **
SN-glycerol-3-phosphate	*	*	*	—	—
Taurine	** ** **	** **	**	*	**
Glycine betaine	*	—	*	—	*
Nitrate	*	*	*	*	*
Polar amino acids	—	—	—	*	*
Cystine	*	*	*	*	*
General L amino acids	*	—	*	*	*

This table does not include any ABC system with pseudogenes present. ** ** ** > 5 functional systems, ** ** > 3 or 4 functional systems, ** ** > 2 functional systems, * > 1 functional system, — No functional systems.
Table 4: ABC system genes absent in at least one species when compared to B. melitensis.

Number	Family	Subfamily	Substrate/Function	Type	B. melitensis	B. abortus	B. suis	B. ovis	B. canis
5	CCM		Possibly heme export	IM	BMEI1851	–	+	+	+
				IM	BMEI1852	–	+	+	+
				ABC	BMEI1853	–	+	+	+
6	CDI		Involved in cell division	IM	BMEI0073, ftsX	+	+	–	+
				ABC	BMEI0072, ftsE	+	+	–	+
7	CLS		O antigen export system	ABC	BMEI1416, rfbB	–	+	+	+
				IM	BMEI1415, rfbD	–	+	+	+
13	DPL	PRT	Fatty acid export	IM-ABC	BMEI0984	+		–	+
14	DPL	CHV	Beta-(1 → 2) glucan export	IM-ABC	BMEI0976	+	–	+	+
16	DPL	HMT	Involved in mitochondrial export systems	IM-ABC	BMEI1743	–	–	–	–
22	FAE		Iron/sulphur centre biogenesis	CYTP	BMEI1042	+		+	–
31	ISB (ABCX)			CYTP	BMEI1042	+		+	–
				ABC	BMEI1041	+	–	+	–
				ABC	BMEI0964	+	+	–	–
36	MKL		Involved in toluene tolerance	IM	BMEI0965, ttg2B	+	+	+	–
				SS	BMEI0963, ttg2C		+	+	–
				IM	BMEI0087	+	+	+	–
60	o228		Unknown	ABC	BMEI0359	–	–	–	–
				IM	BMEI0360	–	–	–	–
				IM	–	BruAb10085	+		–
61	o228	Unknown	MFP	IM-ABC	–	$	$	–	–
				ABC	–	BruAb10084	+	+	–
62	o228	Unknown	MFP	IM-ABC	–	$	$	–	–

Excludes ABC systems involved in import; –: gene absent in the Brucella species; +: gene present in the Brucella species; $: pseudogene present in the Brucella species; Number: refers to ABC system number in the full inventories/alignments of Brucella ABC systems.

The ISB (formally ABCX) system from BO and BC is an interesting observation since the ISB systems are soluble complexes involved in labile [Fe-S] biogenesis, which is important in resistance to oxidative stresses. This could indicate that B. ovis and B. canis reside in environments that are low in oxygen or high in oxygen reductants, or that they lack enzymes that need labile [Fe-S] centres [46, 47]. Furthermore, this difference may be a factor contributing to the reduced virulence for humans of B. ovis and B. canis when compared to B. melitensis, B. suis, and B. abortus. The CDI system absent from B. ovis is comprised of two proteins, FtsE (ABC protein) and FtsX (IM protein) [48], and has been studied in E. coli and other bacteria including Bacillus subtilis [49] and Mycobacterium tuberculosis [50]. This CDI system is involved in cell division. E. coli mutants of ftsE show a reduced growth capacity [51]. The MKL system absent from BC may play a role in toluene tolerance, since Tn5 insertions within the ttgA2 gene coding for the MKL ABC protein in
Suis Thomsen. Compiling ABC systems inventories of these strains may identify further differences which may have biological relevance. Among the newly sequenced Brucella species, it is widely accepted that the three species that may cause the most human brucellosis are B. melitensis, B. suis, and B. abortus (and occasionally B. canis). This study has shown that these four species of Brucella have a larger set of ABC systems encoded within their genomes than B. ovis, which is not known to cause human disease. Although it is difficult to ascertain the exact effect of the loss of these ABC systems on B. ovis, it is possible to hypothesise that, along with other genetic differences observed [15], they contribute to its overall reduced virulence in humans. It should also be noted there that four further Brucella strains have been genome sequenced since this work was completed: B. melitensis 63/9, B. abortus 2308, B. abortus S19, and B. suis Thomsen. Compiling ABC systems inventories of these strains may identify further differences between strains that may have biological relevance. Among the newly sequenced strains are B. suis Thomsen, a strain which is not known to cause disease in humans, and B. abortus S19, a vaccine strain. ABC system inventories of these strains would be of particular interest since they are considered less pathogenic than the wild-type strains and yet the reasons for this lack of pathogenicity are currently unknown. Overall, the identified differences observed in the ABC system inventory of the Brucella strains studied should contribute to a greater understanding of differences in the lifestyles of the Brucella species.

6. Conclusions

In this study the ABC systems of B. melitensis strain 16 M, B. suis strain 1330, B. abortus 9-941, B. canis strain RM6/66, and B. ovis strain 63/290 have been reannotated using the ABCISSE database in order to provide a new and improved set of annotated Brucella ABC systems for the strains studied. The information obtained and the uniform annotation and classification of ABC systems in these closely related species has enabled a more detailed analysis of the roles of ABC systems in Brucella species, contributing to an improved understanding of Brucella lifestyle and pathogenicity. Previous analysis of the Brucella genomes has shown that there is over 90% genome similarity between the Brucella species [13, 14]. Similarly, the ABC system inventory compiled in this work reflects the close similarities of the Brucella species. However, despite the high genetic homology of Brucella, classification of ABC systems in these closely related species has enabled a more detailed analysis of the roles of ABC systems encoded within their genomes than Brucella species. It is of particular interest since they are considered less pathogenic than other genetic differences observed [15, 16].

References

[1] G. Pappas, P. Papadimitriou, N. Akrítidis, L. Christou, and E. V. Tsianos, “The new global map of human brucellosis,” Lancet Infectious Diseases, vol. 6, no. 2, pp. 91–99, 2006.
[2] G. Pappas, N. Akrítidis, M. Bosilkovski, and E. Tsianos, “Medical progress Brucellosis,” New England Journal of Medicine, vol. 352, no. 22, pp. 2325–2336, 2005.
[3] G. Foster, B. S. Osterman, J. Godfroid, I. Jacques, and A. Cloeckert, “Brucella ceti sp. nov. and Brucella pinipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 11, pp. 2688–2693, 2007.
[4] H. C. Scholz, Z. Hubalek, I. Sedláček, et al., “Brucella microti sp. nov., isolated from the common vole Microtus arvalis,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 2, pp. 375–382, 2008.
[5] K. Nielsen and R. J. Duncan, Animal Brucellosis, CRC Press, Boca Raton, Fla, USA, 1990.
[6] J. M. Sauret and N. Vilissova, “Human brucellosis,” Journal of the American Board of Family Practice, vol. 15, no. 5, pp. 401–406, 2002.
[7] G. Pappas, P. Panagopoulou, L. Christou, and N. Akrítidis, “Brucella as a biological weapon,” Cellular and Molecular Life Sciences, vol. 63, no. 19–20, pp. 2229–2236, 2006.
[8] V. G. Delvecchio, V. Kapatrall, R. J. Redkar, et al., “The genome sequence of the facultative intracellular pathogen Brucella melitensis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 443–448, 2002.
[9] I. T. Paulsen, R. Seshadri, and K. E. Nelson, “The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 13148–13153, 2002.
[10] S. M. Halling, B. D. Peterson-Burch, B. J. Bricker, et al., “Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis,” Journal of Bacteriology, vol. 187, no. 8, pp. 2715–2726, 2005.
[11] J. T. Foster, S. M. Beckstrom-Sternberg, T. Pearson, et al., “Whole-genome-based phylogeny and divergence of the genus brucella,” Journal of Bacteriology, vol. 191, no. 8, pp. 2864–2870, 2009.
[12] A. R. Wattam, K. P. Williams, E. E. Snyder, et al., “Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle,” Journal of Bacteriology, vol. 191, no. 11, pp. 3569–3579, 2009.
[13] J.-M. Verger, F. Grimont, P. A. D. Grimont, and M. Grayon, “Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization,” International Journal of Systematic and Applied Microbiology, vol. 35, no. 3, pp. 292–295, 1985.
[14] J. M. Verger, F. Grimont, P. A. D. Grimont, and M. Grayon, “Taxonomy of the genus Brucella,” Annales de l’Institut Pasteur. Microbiologie, vol. 138, no. 2, pp. 235–238, 1987.
[15] P. S. G. Chain, D. J. Comerci, M. E. Tolmasky, et al., “Whole-genome analyses of speciation events in pathogenic Brucellae,” Infection and Immunity, vol. 73, no. 12, pp. 8353–8361, 2005.
[16] G. Rajashekar, M. Crepps, L. Eskra, et al., “Unraveling Brucella genomics and pathogenesis in immunocompromised IRF-1-/- mice,” American Journal of Reproductive Immunology, vol. 54, no. 6, pp. 358–368, 2005.
[17] I. B. Holland and M. A. Blight, “ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans,” Journal of Molecular Biology, vol. 293, no. 2, pp. 381–399, 1999.
[18] C. van der Does and R. Tampé, “How do ABC transporters drive transport?” Biological Chemistry, vol. 385, no. 10, pp. 927–933, 2004.
[19] C. F. Higgins, “ABC transporters: physiology, structure and mechanism—an overview,” Research in Microbiology, vol. 152, no. 3–4, pp. 205–210, 2001.
[20] M. Perez, C. F. Higgins, S. R. Pearce, M. P. Gallagher, and J. A. Hoch, “The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation,” Molecular Microbiology, vol. 5, no. 1, pp. 173–185, 1991.
Comparative and Functional Genomics

[21] F. J. M. Detmers, F. C. Lanfermeijer, and B. Poolman, “Peptides and ATP binding cassette peptide transporters,” Research in Microbiology, vol. 152, no. 3-4, pp. 245–258, 2001.

[22] K. Igarashi, K. Ito, and K. Kashiwagi, “Polyamine uptake systems in Escherichia coli,” Research in Microbiology, vol. 152, no. 3-4, pp. 271–278, 2001.

[23] J. P. Claverys, “A new family of high-affinity ABC manganese and zinc permeases,” Research in Microbiology, vol. 152, no. 3-4, pp. 231–243, 2001.

[24] A. H. F. Hosie and P. S. Poole, “Bacterial ABC transporters of amino acids,” Research in Microbiology, vol. 152, no. 3-4, pp. 259–270, 2001.

[25] W. Koster, “ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12,” Research in Microbiology, vol. 152, no. 3-4, pp. 291–301, 2001.

[26] M. A. Kertesz, “Bacterial transporters for sulphate and organosulphur compounds,” Research in Microbiology, pp. 279–278, 2001.

[27] E. Dassa and P. Bouige, “The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms,” Research in Microbiology, vol. 152, no. 3-4, pp. 211–229, 2001.

[28] C. Méndez and J. A. Salas, “The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms,” Research in Microbiology, vol. 152, no. 3-4, pp. 341–350, 2001.

[29] H. W. van Veen and W. N. Konings, “The ABC family of multidrug transporters in microorganisms,” Biochimica et Biophysica Acta, vol. 1365, no. 1-2, pp. 31–36, 1998.

[30] I. B. Holland, B. Kenny, and M. Blight, “Hemolysin secretion from Escherichia coli,” Biochimie, pp. 131–141, 1990.

[31] C. R. Vazquez de Aldana, M. J. Marton, and A. G. Hinnebusch, “GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the elf-2α kinase GCN2 in amino acid-starved cells,” EMBO Journal, vol. 14, no. 13, pp. 3184–3199, 1995.

[32] N. Goosen and G. F. Moolenaar, “Role of ATP hydrolysis by UvrA and UvrB during nucleotide excision repair,” Research in Microbiology, vol. 152, no. 3-4, pp. 401–409, 2001.

[33] J. T. Pauley, E. S. Anderson, and R. M. Roop II, “Brucella abortus requires the heme transporter BhuA for maintenance of chronic infection in BALB/c mice,” Infection and Immunity, vol. 75, no. 11, pp. 5248–5254, 2007.

[34] M. S. Roset, A. E. Ciocchini, R. A. Ugaldé, and N. Iión de Iannino, “Molecular cloning and characterization of cgt, the Brucella abortus c-terminal β-1,2-glucan transport gene, and its role in virulence,” Infection and Immunity, vol. 72, no. 4, pp. 2263–2271, 2004.

[35] I. Danese, V. Haine, R.-M. Delrue, et al., “The Ton system, an ABC transporter, and a universally conserved GTPase are involved in iron utilization by Brucella melitensis 16M,” Infection and Immunity, vol. 72, no. 10, pp. 5783–5790, 2004.

[36] J. Ko and G. A. Spliter, “Brucella abortus tandem repeated ATP-binding proteins, BapA and BapB, homologs of Haemophilus influenzae LktB, are not necessary for intracellular survival,” Microbial Pathogenesis, vol. 29, no. 4, pp. 245–253, 2000.

[37] H. S. Garmory and R. W. Titball, “ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies,” Infection and Immunity, vol. 72, no. 12, pp. 6757–6763, 2004.

[38] E. Dassa and P. Bouige, “ABCISSE Database,” 2008, http://www1.pasteur.fr/recherche/unites/pmint/abc/database.ipthtml.

[39] D. N. Harland, H. S. Garmory, K. A. Brown, and R. W. Titball, “An association between ATP binding cassette systems, genome sizes and lifestyles of bacteria,” Research in Microbiology, vol. 156, no. 3, pp. 434–442, 2005.

[40] P. Shah and E. Swiatlo, “A multifaceted role for polyamines in bacterial pathogens,” Molecular Microbiology, vol. 68, no. 1, pp. 4–16, 2008.

[41] P. Shah and E. Swiatlo, “Immunization with polyamine transport protein PotD protects mice against systemic infection with Streptococcus pneumoniae,” Infection and Immunity, vol. 74, no. 10, pp. 5888–5892, 2006.

[42] D. N. Harland, K. Chu, A. Haque, et al., “Identification of a LoC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis,” Infection and Immunity, vol. 75, no. 8, pp. 4173–4180, 2007.

[43] O. R. Crasta, O. Folkerts, Z. Fei, et al., “Gene sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes,” PLoS ONE, vol. 3, no. 5, article e2193, 2008.

[44] I. Jacques, M. Grayon, and J.-M. Verger, “Oxidative metabolic profiles of Brucella strains isolated from marine mammals: contribution to their species classification,” FEMS Microbiology Letters, vol. 270, no. 2, pp. 243–249, 2007.

[45] D. N. Harland, E. Dassa, R. W. Titball, K. A. Brown, and H. S. Atkins, “ATP-binding cassette systems in Burkholderia pseudomallei and Burkholderia mallei,” BMC Genomics, vol. 8, 2007.

[46] L. Nachin, L. Loiseau, D. Expert, and F. Barras, “SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress,” EMBO Journal, vol. 22, no. 3, pp. 427–437, 2003.

[47] S. Ollagnier-de Choudens, L. Nachin, Y. Sanakis, L. Loiseau, F. Barras, and M. Fontecave, “SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron–sulfur cluster assembly,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 17993–18001, 2003.

[48] E. de Leeuw, B. Graham, G. J. Phillips, C. M. ten Hagen-Jongman, B. Oudega, and J. Luirink, “Molecular characterization of Escherichia coli FtsE and FtsX,” Molecular Microbiology, vol. 31, no. 3, pp. 983–993, 1999.

[49] S. Garti-Levi, R. Hazan, J. Kain, M. Fujita, and S. Ben-Yehuda, “The FtsEX ABC transporter directs cellular differentiation in Bacillus subtilis,” Molecular Microbiology, vol. 69, no. 4, pp. 1018–1028, 2008.

[50] M. A. Mir, H. S. Rajeswari, U. Veeraraghavan, and P. Ajitkumar, “Molecular characterisation of ABC transporter FtsE and FtsX proteins of Mycobacterium tuberculosis,” Archives of Microbiology, vol. 185, no. 2, pp. 147–158, 2006.

[51] K. L. Schmidt, N. D. Peterson, R. J. Kustusch, et al., “A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli,” Journal of Bacteriology, vol. 186, no. 3, pp. 785–793, 2004.

[52] P. Vermeij, C. Wietek, A. Kahrnert, T. Wüest, and M. A. Kertesz, “Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313,” Molecular Microbiology, vol. 32, no. 5, pp. 913–926, 1999.