Assets of the non-pathogenic microorganism Dictyostelium discoideum as a model for the study of eukaryotic extracellular vesicles [version 1; peer review: 2 approved]

Irène Tatischeff

1 Laboratoire Jean Perrin, UPMC University of Paris 06, Paris, 75005, France
2 Laboratoire Jean Perrin, CNRS, Paris, 75005, France

Abstract
Dictyostelium discoideum microvesicles have recently been presented as a valuable model for eukaryotic extracellular vesicles. Here, the advantages of D. discoideum for unraveling important biological functions of extracellular vesicles in general are detailed. D. discoideum, a non-pathogenic eukaryotic microorganism, belongs to a billion-year-old Amoeboza lineage, which diverged from the animal-fungal lineage after the plant animal-split. During growth and early starvation-induced development, it presents analogies with lymphocytes and macrophages with regard to motility and phagocytosis capability, respectively. Its 6-chromosome genome codes for about 12,500 genes, some showing analogies with human genes. The presence of extracellular vesicles during cell growth has been evidenced as a detoxification mechanism of various structurally unrelated drugs. Controls led to the discovery of constitutive extracellular vesicle secretion in this microorganism, which was an important point. It means that the secretion of extracellular vesicles occurs, in the absence of any drug, during both cell growth and early development. This constitutive secretion of D. discoideum cells is very likely to play a role in intercellular communication. The detoxifying secreted vesicles, which can transport drugs outside the cells, can also act as "Trojan horses", capable of transferring these drugs not only into naïve D. discoideum cells, but into human cells as well. Therefore, these extracellular vesicles were proposed as a new biological drug delivery tool. Moreover, Dictyostelium, chosen by the NIH (USA) as a new model organism for biomedical research, has already been used for studying some human diseases. These cells, which are much easier to manipulate than human cells, can be easily designed in simple conditioned medium experiments. Owing to the increasing consensus that extracellular vesicles are probably important mediators of intercellular communication, D. discoideum is here suggested to constitute a convenient model for tracking as yet unknown biological functions of eukaryotic extracellular vesicles.
Introduction
A short four-decade story of extracellular vesicles

Four decades ago, the extracellular medium was considered to be no more than a waste reservoir of cell life, exclusively occurring inside the eukaryotic cell delimited by the plasma membrane.

Here are a few landmarks of the story of extracellular vesicles (EVs): “Exosomes” were first mentioned by R. Johnstone in 1970 and further, thoroughly studied during maturation of reticulocytes. “Shed” vesicles were observed in 1981. Exosomes in blood cells and their function in the transfer of immunity were thoroughly studied in the early 2000s. Clinical observations of exosomes, as normal and pathogenic biomarkers in urine, were first mentioned in 2004. The presence of nucleic acids, mRNAs and microRNAs in exosomes, was pointed out in 2007, as a first strong indication of vesicle-mediated intercellular communication.

The increasing importance of EVs can be evaluated by international meetings devoted first to exosomes in Montreal, Canada in 2005, then in 2011, in the International Workshop on Exosomes in Paris, France, and more recently, in 2012, to EVs in general, at the first meeting of the International Society of Extracellular Vesicles (ISEV) in Gothenburg, Sweden. An increasing number of workshops are currently devoted to this exploding field of research.

Why do cells expel extracellular vesicles?

In the absence of a consensus on the nomenclature for various kinds of extracellular vesicles, the term “extracellular vesicles” is used throughout this paper to designate secreted vesicles in general, with no qualification based on defined criteria. For well known subtypes, like exosomes, the more precise qualification is mentioned, when appropriate.

After a widespread observation of many different kinds of extracellular vesicles, emerging from quite different fields of biology and medicine, the modern puzzling questions deal about the life functions of these vesicles.

Why do so many cells expand their action field beyond the cell membrane? Why do cells release vesicles? What are the physiological functions of all these EVs? The current state of the art about the role of extracellular vesicles has recently been presented, whereas exosomes seem to be appealing candidates for mediating intercellular communication.

Human complexity is indeed much too high to suggest one particular human cell type as a model for understanding the respective roles of the “inside/outside” parts of the cell. To address such a fundamental question requires a convenient well-known eukaryotic model, easy to handle and to follow in a variety of extracellular environments.

A model for the study of eukaryotic extracellular vesicles: Dictyostelium discoideum

About Dictyostelium discoideum

Dictyostelium discoideum came to scientific life in 1935, when it was discovered by Raper in the USA Virginia forest, but belongs to a billion year-old Amoebaea lineage, which diverged from the animal-fungal lineage after the plant animal-split. To survive for such a long time as a unicellular protist, it had to develop a well-conserved life strategy. One of its original biological tricks was to fight against starvation through the first known eukaryotic tentative step towards multicellularity, that is, the aggregation of undifferentiated cells. This aggregation is followed by differentiation into two main cell species: dying stalk cells and “everlasting” spores. Thus, D. discoideum experiences specific time-separated physiological states of growth and differentiation during its life cycle. During growth, as unicellular non-pathogenic amoebae, D. discoideum cells, about 10 µm in diameter, are very similar to some human blood cells; they are often compared to lymphocytes with regard to motility, and to macrophages concerning their capability for phagocytosis. After about 24h of starvation-induced development, through cell aggregation (of about 10⁸ cells), followed by differentiation and morphogenesis, it ends up as a “mushroom-like” organism of 1–2 mm height, forming a fruiting body, composed of a stalk (about 20% of the cells) and a spore bag containing viable spores (about 80% of the cells).

Thus, whereas differentiation pulls the microorganism towards a plant-like structure, growing and aggregating cells remain as animal-like cells. Therefore, D. discoideum can offer a simple model of individual eukaryotic cells during growth and also mimic an undifferentiated “tissue” during starvation-induced aggregation. The above-defined “animal” state of D. discoideum during growth and aggregation, completely separated from differentiation, is the first asset of D. discoideum as a model for eukaryotic cells. Some molecular approaches to cell biology using D. discoideum are detailed in Methods in Cell Biology.

Another advantage of D. discoideum is the good knowledge of its genetic material. Its 6-chromosome genome has been completely sequenced. The relatively small genomic DNA (3.4 × 10⁸ bp) is efficiently transcribed (90%) into about 12,500 genes, some of which show analogies with human genes. Its 55.5 kb mitochondrial genome has also been sequenced. A multicopy 90 kb extrachromosomal element that carries the ribosomal RNA genes, and some plasmids complete the DNA components. The RNA amount is about 10 times the DNA amount and due to this RNA excess, the cell cycle does not require a G1 RNA-synthesis step before the DNA-synthesis S phase. Moreover, Dictyostelium cells can be easily transformed by restriction enzyme-mediated integration (REMI).
A third asset of *D. discoideum* lies in its simple growth conditions. In nature, *D. discoideum* cells grow by bacterial phagocytosis, with a 3h generation time. A widely used laboratory double axenic mutant, Ax-2, can grow in semi-synthetic HL5-medium, either as adhering cells or in agitated suspension, with a 8 - 11h generation time. A completely defined medium has also been elaborated and is now commercialised, as are many other *Dictyostelium* growth media (Foremedium, UK). Moreover, *D. discoideum* cells can reach a density of 2–3 × 10⁷ cells ml⁻¹ in the stationary phase and can also be grown in bioreactors, when huge amounts of cell materials are needed.

It is worth noting that, owing to all these advantages, *D. discoideum* was recognised, in 1999, by the National Institutes of Health (NIH, USA) as a new interesting model for biomedical research. Indeed, *Dictyostelium* had already helped in the understanding of the function of nucleoside diphosphate kinase (NDP) involved in tumour metastasis, and in elucidating the structure of vaults linked to the drug resistance-related protein LRP. More recently, R. Escalante gathered various studies that have used *D. discoideum* as a model for human diseases. They include pathogen infections, sensitivity to cisplatin and other anticancer drugs, pathobiology of cell motility, lissencephaly, bipolar disorder treatments, lysosomal trafficking and mitochondrial diseases.

Appearance of *D. discoideum* in the field of extracellular vesicles

Drug detoxification in *D. discoideum* cells is mediated through release of extracellular vesicles containing the drug. In 1998, it was shown that *Dictyostelium* cells, known to be highly resistant to xenobiotics, get rid of Hoechst 33342 (HO342), a vital DNA stain for most cells, but not for *D. discoideum* cells, by means of secretion of extracellular vesicles embedding the dye. This capability for *D. discoideum* extracellular vesicle-mediated detoxification has also been checked for hydrophobic drugs, like the photosensitizer hypericin, used in some cancer diagnoses and aimed to photodynamic therapy.

D. discoideum extracellular vesicles can transfer their vesicular cargos to other cells. Previous studies have found that *D. discoideum* drug-containing extracellular vesicles are able to transfer HO342 not only to the nuclei of naïve HO342-resistant *Dictyostelium* cells, but also to the nuclei of human leukaemic multidrug-resistant K562r cells. In the same way, it has been shown that hypericin can be transferred from hypericin-containing *Dictyostelium* extracellular vesicles to the Golgi of tumoral HeLa cells. Taking into account these experiments, *Dictyostelium* extracellular vesicles have been proposed as a new biological therapeutic drug delivery tool.

D. discoideum extracellular vesicles are not only a cell detoxifying tool. These vesicles are constitutively released during both growth and starvation-induced aggregation, and are thus candidates for the mediation of intercellular communication.

Quite recently, C. A. Parent found and characterised exosomes during *Dictyostelium* aggregate formation, suggesting that these organelles are conserved in both *Dictyostelium* and mammals (personal communication).

A model to unravel biological functions of eukaryotic extracellular vesicles

In order to use *D. discoideum* EVs as a model for the functional study of eukaryotic EVs, their characterisation is needed. Recently, these vesicles were used to propose a fast characterisation of EVs by means of three joined techniques: nanoparticle tracking analysis, cryo-electron microscopy and Raman tweezers microspectroscopy.

With regard to the precise characterisation of *Dictyostelium* EVs, much remains to be done.

First characterisations of EVs lipids and nucleic acids and of EVs proteins have been performed. A more precise protocol for the purification of these extracellular vesicles should be devised, followed by a thorough characterisation of the components of all the different subclasses of *D. discoideum* extracellular vesicles.

However, before performing a specialised study of each subclass of *D. discoideum* extracellular vesicles, it is worth questioning the whole distribution panel of EVs accompanying each important physiological state of *D. discoideum* cell life. R. Gomer was a pioneer in stressing the importance of the conditioned extracellular medium of *D. discoideum* cells as a source of secreted autocrine factors during both growth and early starvation. He showed that the aggregate sizes were controlled by autocrine protein factors in the extracellular medium and showed the presence of autocrine cell growth inhibition.

Experiments are currently undertaken to test the plausible hypothesis that cells are not programmed to grow, differentiate or die by an apoptotic “clean” death, by their only genomic content and that cells would need intercellular communications to define their individual fate. The necessary signals would be conditioned by all the surrounding cells, according to their own history, and the most convenient way to communicate should indeed be searched for in the cell extracellular medium.

Previously, we found that an apoptotic-like death could be induced with full efficiency by starving a naïve *D. discoideum* cell population in a conditioned medium. This conditioned medium (t₁) was prepared by starving a first *D. discoideum* cell population in agitated suspension in a phosphate buffer (pH 6.8) for 22 h. When starved in this cell-depleted t₁ conditioned medium, the second *D. discoideum* cell population completely lost its aggregation competence and was
directed to an apoptosis-like death\(^{35,43}\). Preliminary (unpublished) experiments indicated that the extracellular vesicles present in the \(t_2\) conditioned medium might be responsible for changing the fate of \(D.\) discoideum cells from “social” aggregation to mitochondrial-mediated apoptotic death.

In order to understand the important biological communication signals potentially carried by \(D.\) discoideum EVs, it is interesting to take advantage of the relative simplicity of this eukaryotic model. \(D.\) discoideum is indeed a wonderful tool to question the respective functions of and interplay between extracellular vesicles and soluble secreted autocrine factors in conditioned medium experiments. This should help in understanding the main, still mostly unknown, biological functions of the secreted vesicles.

Conclusion

In 2012, *Dictyostelium discoideum* was recognized as an interesting model for the study of eukaryotic extracellular vesicles\(^{33,44}\). Due to the important knowledge accumulated on this eukaryotic microorganism since 1935, and to the wide panel of well-defined mutants available in the Stock Center (see dictyBase), a lot of simple experiments can be designed to question the physiological functions of EVs during cell growth, aggregation or apoptotic-like cell death. Moreover, the findings obtained with *D. discoideum* are likely to be extrapolated to higher eukaryotic cells, in the same way as the extracellular vesicle-mediated detoxification mechanism of *D. discoideum* cells was a clue towards the introduction of a new multidrug resistance mechanism against antitumoral chemotherapy\(^{45}\).

Competing interests

No relevant competing interests were disclosed.

Grant information

The author(s) declared that no grants were involved in supporting this work.

Acknowledgments

Pierre-Yves Turpin is greatly acknowledged for his helpful assistance in writing the manuscript.

References

1. Johnstone RM, Adam M, Hammond JR, et al.: Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). *J Biol Chem.* 1987; 262(19): 9412–20. PubMed Abstract
2. Johnstone RM, Mathew A, Mason AB, et al.: Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. *J Cell Physiol.* 1991; 147(1): 27–36. PubMed Abstract | Publisher Full Text
3. Trams EG, Lauter CJ, Salem N Jr, et al.: Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. *Biochim Biophys Acta.* 1981; 645(1): 63–70. PubMed Abstract | Publisher Full Text
4. Stoorvogel W, Kleijmeer MJ, Geuze HJ, et al.: Identification and proteomic profiling of exosomes in human urine. *Traffic.* 2002; 3(5): 321–30. PubMed Abstract | Publisher Full Text
5. Théry C, Zitvogel L, Amigorena S: Exosomes: composition, biogenesis and function. *Nat Rev Immunol.* 2002; 2(6): 659–79. PubMed Abstract | Publisher Full Text
6. Pasitun T, Shen RF, Knopper MA: Identification and proteomic profiling of exosomes in human urine. *Proc Natl Acad Sci U S A.* 2004; 101(36): 13368–73. PubMed Abstract | Publisher Full Text | Free Full Text
7. Vaaladi E, Ekstrom K, Bossios A, et al.: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. *Nat Cell Biol.* 2007; 9(6): 654–9. PubMed Abstract | Publisher Full Text | Free Full Text
8. Couzin J: Cell biology: The ins and outs of exosomes. *Science.* 2005; 308(5730): 1862–3. PubMed Abstract | Publisher Full Text | Free Full Text
9. IWE. Final Program IWE 2011. International Workshop on Exosomes (IWE) 2011, January 19–22, Paris, France. Reference Source
10. ISEV. Abstracts from the First International Meeting of the International Society for Extracellular Vesicles 2012. Gothenburg, Sweden. *Journal of Extracellular Vesicles* 2012; 1. Publisher Full Text
11. Neuwand R, Sturk A: Why do cells release vesicles? *Thromb Res.* 2010; 125(Suppl 1): S49–S51. PubMed Abstract | Publisher Full Text
12. Gyongy B, Szabo TG, Pasztoi M, et al.: Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. *Cell Mol Life Sci.* 2011; 68(16): 2667–88. PubMed Abstract | Publisher Full Text | Free Full Text
13. Théry C: Exosomes: secreted vesicles and intercellular communications. *F1000 Biol Rep.* 2011; 3(15). PubMed Abstract | Publisher Full Text | Publisher Full Text | Free Full Text
14. Raper KB: A new species of slime mold from decaying forest leaves. *J Agr Research.* 1939; 50: 135–147.
15. Eichinger L, Pachebat JA, Gloeckner G, et al.: The genome of the social amoeba *Dictyostelium discoideum*. *Nature.* 2005; 435(7038): 43–57. PubMed Abstract | Publisher Full Text | Free Full Text
16. Loomis WF: *Dictyostelium discoideum*: A developmental System. New York: Academic Press, Inc. 1975; 214p. Reference Source
17. Spudich JA: *Dictyostelium discoideum*: Molecular Approaches to Cell Biology. London: Academic Press, Inc. *Methods Cell Biol.* 1987; 28: 1–516. PubMed Abstract
18. Loomis WF, Kuspa A: The genome of *Dictyostelium discoideum*, in *Dictyostelium*: A model System for Cell and Developmental Biology. Proceedings of the Yamada Conference XLI-VI on International Dictyostelium Conference, October 14–18, Sendai, Japan, Maeda Y, Inouye K, Takeuchi I, Editors. Universal Academy Press, Inc: Tokyo, Japan 1996; p. 15–30.
19. Ogawa S, Yoshino R, Angata K, et al.: The mitochondrial DNA of *Dictyostelium discoideum* complete sequence, gene content and genome organization. *Mol Gen Genet.* 2000; 263(3): 514–9. PubMed Abstract | Publisher Full Text
20. Kuspa A, Loomis WF: Tagging developmental genes in *Dictyostelium* by restriction enzyme-mediated integration of plasmid DNA. *Proc Natl Acad Sci U S A.* 1992; 89(18): 8803–7. PubMed Abstract | Publisher Full Text
21. Watts DJ, Ashworth JM: Growth of myxamoebae of the cellular slime mould *Dictyostelium discoideum* in axenic culture. *Biochem J.* 1970; 119(2): 171–4. PubMed Abstract | Free Full Text
22. Franke J, Kassir R: A defined minimal medium for axenic strains of *Dictyostelium discoideum*. *Proc Natl Acad Sci U S A.* 1977; 74(3): 2157–61. PubMed Abstract | Publisher Full Text | Free Full Text
23. Lu Y, Knol JC, Linssens MH, et al.: Production of the soluble human Fas ligand by *Dictyostelium discoideum* cultivated on a synthetic medium. *J Biotechnol.* 2004; 108(3): 243–51. PubMed Abstract | Publisher Full Text
24. Liotta LA, Steeg PS: Clues to the function of Nm23 and Awd proteins in development, signal transduction, and tumor metastasis provided by studies of *Dictyostelium discoideum*. *J Natl Cancer Inst.* 1990; 82(14): 1170–2. PubMed Abstract | Publisher Full Text
25. Wallat V, Mutzel R, Troll H, et al.: Dictyostelium nucleoside diphosphate kinase highly homologous to Nm23 and Awd proteins involved in mammalian tumor metastasis and Drosophila development. J Natl Cancer Inst. 1990; 82(14): 1199–202. PubMed Abstract | Publisher Full Text

26. Kedersha NL, Miquel MC, Bittner D, et al.: Vaults. II. Ribonucleoprotein structures are highly conserved among higher and lower eukaryotes. J Cell Biol. 1990; 110(4): 895–901. PubMed Abstract | Publisher Full Text | Free Full Text

27. Vasu SK, Rome LH: Dictyostelium vaults: disruption of the major proteins reveals growth and morphological defects and uncovers a new associated protein. J Biol Chem. 1995; 270(28): 16588–94. PubMed Abstract | Publisher Full Text

28. Scheffer GL, Wijngaard PL, Flens MJ, et al.: Isolation and proteomic analysis of extracellular vesicles containing Hoechst 33342. J Extracellular Vesicles. 2018; 7(1): 132721. PubMed Abstract | Publisher Full Text | Free Full Text

29. Escalante R: Dictyostelium as a model for human disease. Semin Cell Dev Biol. 2011; 22(1): 69–130. PubMed Abstract | Publisher Full Text

30. Tatischeff I, Bomsel M, de Pallerets C, et al.: Dictyostelium discoideum shed vesicles with associated DNA and vital stain Hoechst 33342. Cell Mol Life Sci. 1998; 54(3): 476–87. PubMed Abstract | Publisher Full Text

31. Lavialle F, Deshayes S, Gonnet F, et al.: Microvesicles of Dictyostelium discoideum: a potential carrier for drug delivery. Int J Pharm. 2009; 380(1–2): 206–15. PubMed Abstract | Publisher Full Text

32. Tatischeff I, Lavialle F, Pigaglio-Deshayes S, et al.: Dictyostelium extracellular vesicles containing Hoechst 3342 transfer the dye into the nuclei of living cells: a fluorescence study. J Fluoresc. 2008; 18(2): 319–28. PubMed Abstract | Publisher Full Text

33. Tatischeff I, Allsen A: A New Biological Strategy for Drug Delivery: Eucaryotic Cell-Derived Nanovesicles. J Biomater Nanobiotechnol. 2011; 2(5): 494–9. PubMed Abstract | Publisher Full Text

34. Tatischeff I, Allsen A, Lavialle F: Extracellular vesicles from non-pathogenic amoeba useful as vehicle for transferring a molecule of interest to an eukaryotic cell. (DRITT-UPMC) 2003–2012: European Priority No. 03 291 752. European Patent (Danemark, Deutschland, France, Great Britain, Italy, Netherland, Spain) USA and Canada Patents.

35. Tatischeff I, Petit PX, Grodet A, et al.: Inhibition of multicellular development switches cell death of Dictyostelium discoideum towards mammalian-like unicellular apoptosis. Eur J Cell Biol. 2001; 80(6): 428–41. PubMed Abstract | Publisher Full Text

36. EM. Exosomes and Microvesicles 2012 Conference. Orlando, Florida, USA September 29th October 2nd 2012. Reference Source

37. Kriebel PW, Jenkins L, Zhang L, et al.: Isolation and proteomic analysis of Dictyostelium exosomes in Exosome and Microvesicles Conference. Orlando, Florida USA, 2012.

38. Tatischeff I, Larquet E, Falcon-Pérez JM, et al.: Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracellular Vesicles. 2012; 1: 19179. PubMed Abstract | Publisher Full Text | Free Full Text

39. Clarke M, Dominguez N, Yuen IS, et al.: Growing and starving Dictyostelium cells produce distinct density-sensing factors. Dev Biol. 1992; 152(2): 403–6. PubMed Abstract | Publisher Full Text

40. Clarke M, Gomer RH: PSF and CMF, autocrine factors that regulate gene expression during growth and early development of Dictyostelium. Experientia. 1995; 51(12): 1124–34. PubMed Abstract | Publisher Full Text

41. Brock DA, van Egmond WN, Shamoo Y, et al.: A 60-kilodalton protein component of the counting factor complex regulates group size in Dictyostelium discoideum. Eur J Cell Biol. 2006; 85(9): 1532–6. PubMed Abstract | Publisher Full Text | Free Full Text

42. Choe JM, Bakhavatsalam D, Phillips JE, et al.: Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation. BMC Biochem. 2009; 10: 4. PubMed Abstract | Publisher Full Text | Free Full Text

43. Arnoult D, Tatischeff I, Estaquier J, et al.: On the evolutionary conservation of the cell death pathway: mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death. Mol Biol Cell. 2001; 12(10): 3016–30. PubMed Abstract | Publisher Full Text | Free Full Text

44. Tatischeff I, Kruglik S, Lanquet E, et al.: Microvesicles of Dictyostelium discoideum as a model of eukaryotic extracellular vesicles. ISEV: F1000 Posters 2012; 3: 427. Reference Source

45. Tatischeff I: Cell-derived microvesicles and antitumoral multidrug resistance. C R Biol. 2012; 335(2): 103–6. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Version 1

Reviewer Report 04 April 2013

https://doi.org/10.5256/f1000research.910.r878

© 2013 Rajendran L. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Lawrence Rajendran
Division of Psychiatry Research, University of Zurich, Zurich, Switzerland

In the review, Dr. Tatischeff presents the advantages of using D. discoideum as a model system to study extracellular vesicle release. It is a very well written review and is up to date. Dr. Tatischeff has performed pioneering work in this field and has now, in this recent review, provided a comprehensive overview on the history of D. discoideum extracellular vesicle release research.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 06 March 2013

https://doi.org/10.5256/f1000research.910.r813

© 2013 Gomer R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Richard Gomer ID
Department of Biology, Texas A&M University, College Station, TX, USA

This is a nice brief review of the work on Dictyostelium exosomes.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com