Wafer-Scale Integration of Graphene-Based Photonic Devices

Marco A. Giambra,† Vaidotas Miseikis,† Sergio Pezzini, Simone Marconi, Alberto Montanaro, Filippo Fabbri, Vito Sorianello, Andrea C. Ferrari, Camilla Coletti,*‡ and Marco Romagnoli*‡

Cite This: ACS Nano 2021, 15, 3171–3187

ABSTRACT: Graphene and related materials can lead to disruptive advances in next-generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (>5000 cm² V⁻¹ s⁻¹) mobility devices with reliable performance at the wafer scale. Here, we present a flow for the integration of graphene in photonics circuits. This relies on chemical vapor deposition (CVD) of single layer graphene (SLG) matrices comprising up to ∼12000 individual single crystals, grown to match the geometrical configuration of the devices in the photonic circuit. This is followed by a transfer approach which guarantees coverage over ∼80% of the device area, and integrity for up to 150 mm wafers, with room temperature mobility ∼5000 cm² V⁻¹ s⁻¹. We use this process flow to demonstrate double SLG electro-absorption modulators with modulation efficiency ∼0.25, 0.45, 0.75, 1 dB V⁻¹ for device lengths ∼30, 60, 90, 120 μm. The data rate is up to 20 Gbps. Encapsulation with single-layer hexagonal boron nitride (hBN) is used to protect SLG during plasma-enhanced CVD of Si₃N₄, ensuring reproducible device performance. The processes are compatible with full automation. This paves the way for large scale production of graphene-based photonic devices.

KEYWORDS: graphene, photonics, wafer scale, modulators, integration, encapsulation

INTRODUCTION

Graphene is ideally suited for photonics and optoelectronics, in particular, for optical and data communications, including virtual Internet servers and data centers. In 2020, the global IP data traffic, mostly through cloud and data centers, was in the range of several zettabytes (ZB), i.e., >10¹² bytes exchanged in one year. The connection of an ever-increasing number of people and things to the Internet (Internet of things, IoT) is pushing the requirements in terms of bandwidth (BW), defined as amount of data exchanged per unit time, and the energy consumed by a device to exchange one bit of information. By 2023, >27 billion devices are expected to be connected. COVID-19 has forced people to stay at home, working and learning remotely as never before. This resulted in an increase by 20–100% of the fixed residential network and 10–20% change in traffic levels on the mobile network. Thus, there is a renewed demand of traffic for applications, such as teleconferencing, video streaming, and online games. Photonic technologies play a key role to satisfy these requirements. Photonic devices for next-generation telecom and datacom networks require >100 Gbps BW per single lane, a small footprint (<mm²), a low loss of optical power within the device due to optical coupling (<1 dB), propagation loss <2 dB cm⁻¹, insertion loss (IL), i.e. power loss due to insertion of a device, low energy cost <1 mW/GHz or, equivalently, <1 pJ/bit, and low cost of manufacturing (<$10/Gbps in 2020, decreasing to <$1/Gbps by 2025). For these reasons, photonic devices based on alternatives to the established silicon on insulator, SOI, and InP technologies are being investigated. Silicon photonics (SiPh) modulators for ≥30 Gbaud applications have IL ~ 2–3 dB higher than InP- and LiNbO₃-based modulators, because of the free carrier effect, requiring device lengths in the mm scale. The baud represents the data

Received: November 20, 2020
Accepted: January 21, 2021
Published: February 1, 2021

© 2021 The Authors. Published by American Chemical Society

https://dx.doi.org/10.1021/acsnano.0c09758
ACS Nano 2021, 15, 3171–3187
in a transmission channel. It is a symbol that contains a string of “n” bits.\(^{27}\) Typically, in optical communication systems “n” is \(1 \text{ to } 6.\) The bit rate is defined as baud rate times “n”.\(^{27,27}\)

More compact and energy efficient devices were demonstrated exploiting resonant structures, e.g., microring resonators,\(^{28}\) or the Franz–Keldysh effect in Si–Ge alloys.\(^{29}\) However, these have intrinsic wavelength selectivity.\(^{26}\) InP technology provides modulators with size similar to SiPh,\(^{30}\) simplifying the pure dielectric WGs, without implantation or epitaxy processes.\(^{1.98}\) for Si\(_3\)N\(_4\) Al\(_2\)O\(_3\) layer deposited on a Si WG. This configuration was \(\sim\) 10,000 cm\(^{-3}\).\(^{35-40}\) and pronounced (more than 1 order of magnitude) \(\sim 1\) ambipolar electric field effect,\(^{31}\) such that the surface conductivity, \(\sigma\), can be tuned by applying a gate voltage.\(^{31}\) The tuning of \(\sigma\) influences the optoelectronic properties of SLG.\(^{32,42}\) \(\sigma\) is a complex quantity, affecting both absorption and refraction of light interacting with SLG.\(^{42}\) When SLG is placed on a waveguide (WG) core, the guided light interacts with SLG, allowing a much larger absorption with respect to normal incidence.\(^{44}\) The absorption coefficient for SLG on a SOI WG is \(\sim\) 0.1 dB \(\mu\)m\(^{-1}\), depending on SLG doping and distance from the WG core center.\(^{46}\)

SLG has been used for electron absorption\(^{46,47}\) and electron refraction modulation,\(^{46,48}\) switching,\(^{46}\) and photodetection.\(^{13,31,51-53}\) Reference 46 reported electron absorption modulators (EAMs) based on SLG transferred on a 7 nm Al\(_2\)O\(_3\) layer deposited on a Si WG. This configuration was improved by using a SLG-insulator-SLG stack, i.e., a double SLG (DSLG),\(^{3}\) on an undoped Si WG.\(^{35,47,56}\) This has two main advantages: (1) the use of a passive WG platform, i.e., pure dielectric WGs, without implantation or epitaxy processes typically employed in SiPh\(^{37,38}\) or InP,\(^{31}\) simplifying the manufacturing process, with a consequent cost reduction; (2) enhanced modulation due to the interaction of two SLGs with the WG mode.\(^{48}\) Single-mode WGs have typical dimensions which depend on the refractive index of the guiding material.\(^{39}\) SiPh single-mode WGs, guiding only the fundamental mode,\(^{39}\) have a typical width \(\sim\) 480 nm when realized on 220 nm SOI.\(^{60}\) Si\(_3\)N\(_4\) single-mode WGs have larger width \(\sim 1\) \(\mu\)m, depending on Si\(_3\)N\(_4\) thickness,\(^{39}\) because of the lower refractive index \(n = 1.98\) for Si\(_3\)N\(_4\) compared to 3.47 for Si at 1550 nm.\(^{61}\) The larger width of Si\(_3\)N\(_4\) WGs helps simplify the technology because it requires less stringent lithography resolution and also reduces costs, making small (\(\sim\) 10000 pieces/year) and medium (\(\sim\) 100000–1000000 pieces/year) production volumes more affordable than in SOI or InP manufacturing lines.\(^{51}\) This means that the volume (i.e., number of chips) threshold to implement a product in a Si fab can be reduced by using Si\(_3\)N\(_4\). This enables the cost-effectiveness of medium-volume products (\(\sim\) 10000–100000 chips per year),\(^{2}\) thus opening medium-volume markets (e.g., long haul telecom systems).\(^{7}\)

To reach a high technology-readiness level (TRL > 8, i.e., system complete and qualified),\(^{62}\) adequate for photonic device production, scalable techniques for SLG growth and transfer are needed. Chemical vapor deposition (CVD) on Cu yields SLG that, when encapsulated in hexagonal boron nitride (hBN), has electronic and structural quality (defect density, scattering time, and \(\mu\)) comparable to exfoliated SLG.\(^{35,37,38,63}\) There has been significant progress for SLG scalable growth on dielectrics, such as SiO\(_2\),\(^{64}\) and Al\(_2\)O\(_3\),\(^{65}\) and on CMOS-compatible Ge,\(^{66-68}\) but with RT \(\mu\) limited to \(\sim\) 2000 cm\(^{-1}\) s\(^{-1}\).\(^{65}\) Hence, as of 2020, the most common approach to obtain \(\mu > 5000\) cm\(^{-1}\) s\(^{-1}\) is to transfer SLG grown on Cu to the target substrate.\(^{70}\) The so-called “wet” transfer\(^{70,71}\) typically involves chemical etching Cu to release SLG.\(^{69,72}\) Alternatively, SLG can be released from the growth substrate electrochemically\(^{72,74}\) or by oxidizing Cu at the SLG interface.\(^{75}\) The released SLG is then directly picked up from the aqueous solution using the target wafer, with alignment accuracy \(\geq\) 1 \(\mu\)m.\(^{76}\) Wet-transferred SLG has \(\mu \approx 10^3\) cm\(^{-1}\) s\(^{-1}\) \(^{69,70}\) which can be improved by 2 orders of magnitude by hBN encapsulation.\(^{37}\) "Fully dry" transfer\(^{35}\) is based on direct pick-up of SLG from Cu using exfoliated flakes of hBN or other layered materials (LMs), such as WSe\(_2.\)^{19}\)

Here, we implement an aligned semidry transfer of SLG, based on electrochemical delamination in NaOH, and subsequent handling of a suspended polymer/SLG membrane using a frame. This approach avoids the contact of the target substrate with the aqueous solution and allows deterministic placement of SLG single crystals (SC) with \(\sim 1\) \(\mu\)m precision in the X and Y plane, thanks to a transfer setup equipped with micrometric actuators. We use a freestanding carrier membrane, comprising 2 polymer layers. This enables semidry transfer of large SLG matrices (up to \(\sim 12000\) SLG-SCs) with coverage \(>\) 80% of the target photonics device area, and integrity in terms of SLG continuity.

We report wafer-scale fabrication of DSLG EAMs on Si\(_3\)N\(_4\) WGs based on a stack of two SLGs separated by \(\sim 17\) nm Si\(_3\)N\(_4\). We report 30 EAMs, on 4 chips from the same wafer, with uniform performance \(\pm 10\%\), demonstrating wafer-scale scalability and reproducibility of the complete process. We use monolayer (1L) CVD-hBN for SLG encapsulation, to protect SLG during Si\(_3\)N\(_4\) deposition by plasma-enhanced CVD (PECVD). We get a contact resistance \(\sim 500\) \(\Omega\) \(\mu\)m for \(E\)\(_{\text{F}}\) \(>\) 0.2 eV, allowing us to achieve a cutoff frequency, i.e., the frequency at which energy flowing through the system is reduced rather than passing through.\(^{17}\) \(\sim 4\) GHz for 120 \(\mu\)m EAMs, and \(\sim 12\) GHz for 30 \(\mu\)m ones. The operation speed is \(\sim 20\) Gbps, the highest to date in Si\(_3\)N\(_4\) without using resonating devices. Higher speeds have only been demonstrated in Si\(_3\)N\(_4\) with resonating devices. Higher speeds have only been demonstrated in Si\(_3\)N\(_4\) with resonating devices. For example, SLG on Si\(_3\)N\(_4\) modulators working up to 22 Gbps were reported on microring resonators,\(^{56}\) while up to 40 Gbps was demonstrated by using piezoelectric lead zirconate titanate (PZT) thin films on Si\(_3\)N\(_4\) microring resonators.\(^{56}\) Because of the gapless nature of SLG,\(^{31,64}\) SLG photonics can operate at any wavelength, unlike refs 56 and 80, which were limited to the specific resonant wavelength.
RESULTS AND DISCUSSION

Our DSLG EAMs comprise two SLGs on a passive Si$_3$N$_4$ WG, separated by a \sim17 nm Si$_3$N$_4$ dielectric, Figure 1a. Three factors ensure scalable fabrication with reproducibility: (i) wafer-scale source material with crystal size comparable to that of single devices, to avoid grain boundaries; (ii) semidry transfer with low impact on SLG cleanliness and electrical properties; (iii) SLG protection prior and during dielectric deposition. In ref 76, we addressed (i) by preparing SLG SC matrices. This approach is compatible with the requirements of integrated photonics, allowing tailored growth of SLG according to the geometry of the photonic circuits. The lateral dimensions of the SLG SCs can be tuned from tens to hundreds of micrometers.45,56,82 Deterministic growth relies on pretreating Cu by electropolishing, to reduce surface contaminations and improve surface flatness. Cu is then patterned with 5 μm Cr seeds at the desired SLG crystal locations. This is done by using optical lithography and thermal evaporation of 25 nm Cr. The growth is performed in a cold-wall CVD reactor (Aixtron BM Pro) at 1060 °C by using Ar annealing to maintain a low nucleation density (\sim10 crystals per mm2).79 Due to residual oxidation in Cu, SLG nucleation requires surface impurities,83 ensuring that SLG SCs nucleate only at the Cr seeds locations. The matrices of SLG SCs grown on Cu need to be released from the growth
substrate and transferred to the target wafer (e.g., a wafer containing WGs). To do so, we adapt our semidry transfer procedure \(^{76}\) and build a dedicated transfer tool. To facilitate handling, SLG is coated with a polymer carrier membrane, and a semirigid polydimethylsiloxane (PDMS) frame is attached to the Cu foil perimeter. The transfer itself consists of two stages: (1) wet SLG electrochemical delamination from the growth substrate and (2) dry SLG aligned lamination on the target substrate. After the SLG electrochemical release from Cu in NaOH (see the Methods for details), the SLG/polymer membrane is rinsed several times in deionized (DI) water and dried in air. The freestanding membrane is supported by the PDMS frame and can be handled in dry conditions. The SLG SCs are attached to the membrane holder of the lamination tool, which allows angle adjustment with \(\sim 0.1^\circ \) precision of the membrane with respect to the target wafer. The latter is brought in close proximity (\(\sim 500 \mu m \)) to the membrane using a 4-axis micrometrical stage (X, Y, Z translation and \(\Theta \) rotation). After aligning the SLG-SCs to the photonic structures, the target wafer is heated to \(\sim 100^\circ C \) and brought into contact with SLG, resulting in adhesion with the target photonics chip over the whole membrane. The alignment is performed using a 12× zoom microscope lens attached to a Digital single-lens reflex (DSLR) camera. The PDMS frame is then detached from the sample, and placed in acetone for the polymer removal.

During the delamination of SLG from Cu and alignment to the target substrate, the freestanding polymer-SLG membrane is supported by a semirigid frame attached to the perimeter of the sample, Figure 1c. In ref 76, the frame was made from polyimide (Kapton) tape and bonded to the sample using an PDMS stamp,\(^{84}\) which may also handle SLG. However, PDMS the sample,Figure 1c. In ref 76, the frame was made from polymer removal.

The alignment is performed using a 12× zoom microscope lens attached to a Digital single-lens reflex (DSLR) camera. The PDMS frame is then detached from the sample, and placed in acetone for the polymer removal.

Table 1. Raman Fit Parameters from Figure 2d–g and Corresponding Defect Density, \(E_p \), and Strain

Parameter	SLG on SiO\(_2\)	SLG after Si\(_3\)N\(_4\) deposition with hBN encapsulation	SLG after Si\(_3\)N\(_4\) deposition without hBN encapsulation
Pos(G) (cm\(^{-1}\))	1585.5 ± 0.7	1590.3 ± 1.5	1590 ± 1.6
FWHM(G) (cm\(^{-1}\))	10.5 ± 0.1	11.8 ± 1.7	12.0 ± 1.9
Pos(2D) (cm\(^{-1}\))	2678 ± 1.2	2684.6 ± 1.8	2679.3 ± 1.8
FWHM(2D) (cm\(^{-1}\))	26.9 ± 0.8	32.5 ± 1.5	33.8 ± 2
I(2D)/I(G)	2.6 ± 0.3	2.3 ± 0.3	1.8 ± 0.2
A(2D)/A(G)	6.8 ± 0.6	6.5 ± 0.7	5.1 ± 0.5
I(2D)/I(G)	<0.02	<0.05	0.48 ± 0.06
defect density (10\(^{12}\) cm\(^{-2}\))	<0.05	<0.10	1.98 ± 0.3
\(E_p \) (meV)	190 ± 30	220 ± 40	300 ± 40
uniaxial strain (%)	−0.08 ± 0.08	0.06 ± 0.12	−0.14 ± 0.12
(birefringent strain) (%)	(−0.03 ± 0.03)	(0.02 ± 0.04)	(−0.06 ± 0.05)

Figure 2b shows representative spectra of SLG on 285 nm SiO\(_2)/Si, before (black) and after Si\(_3\)N\(_4\) deposition, with (orange) and without (dark cyan) capping of SLG with 1L-hBN (see sketch in Figure 2a). The Raman signature of 1L-hBN is weak indicating the low quality of the commercial 1L-hBN.\(^{92}\) The transferred SLG spectrum has a 2D peak with a
single Lorentzian shape and with a full width at half-maximum FWHM (2D) ∼ 26.7 cm⁻¹, a signature of SLG.⁵¹ The G peak position, Pos(G), is ∼1583.7 cm⁻¹, with FWHM(G) ∼ 12.4 cm⁻¹. The 2D peak position, Pos(2D) is ∼2676 cm⁻¹, while the 2D to G peak intensity and area ratios, I(2D)/I(G) and A(2D)/A(G), are ∼3.1 and ∼6.8, respectively. No D peak is observed, indicating negligible defects concentration.⁹³,⁹⁴ After Si₃N₄ deposition, the Raman spectrum of exposed SLG (i.e., without 1L-hBN capping) has Pos(G) ∼ 1590 cm⁻¹, FWHM(G) ∼ 12 cm⁻¹, Pos(2D) ∼ 2679 cm⁻¹, FWHM(2D) ∼ 33.8 cm⁻¹, I(2D)/I(G) ∼ 1.8, A(2D)/A(G) ∼ 5.1, and I(D)/I(G) ∼ 0.5. The latter indicates the creation of active defects, which also act as scattering centers for the charge carriers⁹³,⁹⁷ (1 order of magnitude μ decrease was reported in ref 96 when going from I(D)/I(G) ∼ 0.01 to ∼ 0.5). Carrier scattering limits the performance of SLG EAMs, in terms of modulation efficiency (slope of the transmission variation as a function of applied voltage⁹⁵) and maximum extinction ratio (ER)⁻¹ (i.e., the ratio between maximum and minimum of light transmission¹⁻²). The effect of defects on FWHM(G),⁹³ which remains almost unchanged after Si₃N₄ deposition, is likely compensated by the increased doping.⁹⁵,⁹⁸ The Raman data indicate that Eᵢ of SLG after transfer is ∼170 meV (hole doping),⁹⁹,¹⁰⁰ Eᵢ in the exposed SLG increases to ∼290 meV⁹⁹,¹⁰⁰.

SLG capping with 1L-hBN is used to protect SLG during PECVD (at 350 °C of Si₃N₄). The SLG spectra with hBN capping after Si₃N₄ deposition have Pos(G) ∼ 1590 cm⁻¹, FWHM(G) ∼ 11.8 cm⁻¹, Pos(2D) ∼ 2684 cm⁻¹, FWHM(2D) ∼ 32.5 cm⁻¹, I(2D)/I(G) ∼ 2.3, A(2D)/A(G) ∼ 6.5. Figure 2c is a statistical comparison of I(D)/I(G) in 800 spectra from 2 SLG SCs with Si₃N₄ on top (400 spectra each), one protected by 1L-hBN (orange), the other exposed to PECVD (dark cyan). Ninety-eight percent of the spectra on hBN-encapsulated SLG have I(D)/I(G) < 0.1. One hundred percent of the nonencapsulated SLG have I(D)/I(G) > 0.1, with an average I(D)/I(G) ∼ 0.48, corresponding to a defect concentration ∼1.98 × 10³⁻¹ cm⁻² (taking into account the finite doping ∼300 meV).⁹⁹,¹⁰⁰,¹⁰¹ Hence, capping with 1L-hBN limits the creation of Raman active defects, therefore contributing to preserve μ.⁹⁶,⁹⁷ SLG SCs exposed to Si₃N₄ deposition present cracked areas with an average crack size ∼10 μm, as for the optical microscopy image in Figure 2c (right inset).

Raman mapping is performed at 1 μm steps, over an area ∼20 μm × 20 μm on SLG transferred onto SiO₂/Si, and after Si₃N₄ deposition, with and without 1L-hBN. Figure 2d–g plots Raman data extracted from the maps: Pos(2D), FWHM(2D), FWHM(G), A(2D)/A(G), as a function of Pos(G). Pos(G) depends on both doping⁹⁹,¹⁰₀ and strain.¹⁰² The average Raman parameters from Figure 2d–g are in Table 1, together with the corresponding estimates of defect density, Eᵢ, and strain.

The Raman data indicate Eᵢ after transfer ∼190 meV (hole doping),⁹⁹,¹⁰₀ HBN capping, in addition to limiting the generation of Raman active defects, keeps Eᵢ close to that of transferred SLG (~220 meV). Eᵢ in exposed SLG increases to ~300 meV.⁹⁹,¹⁰₀

The Grüneneis parameters¹⁰² rule the change of Pos(2D) and Pos(G) in response to strain. The G and 2D peaks do (do not) split for increasing uniaxial (biaxial) strain.¹⁰¹ At low (≤0.5%) strain the splitting cannot be resolved.¹⁰₂,¹⁰₃ Figure 3d plots the correlation between Pos(2D) and Pos(G). Linear fits in Figure 3d give a slope ∆Pos(2D)/∆Pos(G) ∼ 1.37, 0.85, 1.1 for SLG after transfer, after Si₃N₄ with hBN, and without hBN, respectively. The slopes indicate that both doping and strain variations are present. We cannot exclude the presence (or coexistence) of biaxial strain. For uniaxial (biaxial) strain, Pos(G) shifts by ∆Pos(G)/∆ε ∼ 23(60) cm⁻¹%/101,¹⁰₄ For intrinsic SLG (Eᵢ < 100 meV), the unstrained, undoped Pos(G) is ∼1581.5 cm⁻¹,¹⁰₅ Taking into account the shift in Pos(G) due to finite doping (Eᵢ ∼ 190, 220, 300 meV for the three cases), we estimate a mean uniaxial(biaxial) strain ε ∼ −0.008%(~−0.03%) for the transferred SLG, and ~0.06% (~0.02%) and ~0.14% (~0.06%) for the hBN-capped and exposed SLG after Si₃N₄ deposition, respectively.

After 1L-hBN-capping and PECVD deposition of Si₃N₄, DSLGs are completed by transferring top-layer SLG arrays onto Si₃N₄ by semidry transfer. The use of identical DLSGs are completed by transferring top-layer SLG arrays onto Si₃N₄ by semidry transfer. The use of identical DLSGs are completed by transferring top-layer SLG arrays onto Si₃N₄ by semidry transfer. The use of identical DLSGs are completed by transferring top-layer SLG arrays onto Si₃N₄ by semidry transfer. The use of identical DLSGs are completed by transferring top-layer SLG arrays onto Si₃N₄ by semidry transfer. The use of identical DLSG...
∼2675.3 and ∼2673.9 cm$^{-1}$, while $I(2D)/I(G)$ and $A(2D)/A(G)$, are ∼4.5 (on SiO$_2$), ∼5 (on Si$_3$N$_4$), ∼9.5 (on SiO$_2$), and ∼8 (on Si$_3$N$_4$). No D peak is observed, indicating negligible defect concentration. The difference in FWHM(G) indicates reduced doping for the top-layer SLG on Si$_3$N$_4$. The bottom-layer SLG spectra with hBN capping before (red) and after (orange) Si$_3$N$_4$ deposition have both a 2D peak with a single Lorentzian shape and FWHM(2D) ∼24.6 and 32.2 cm$^{-1}$. Pos(G) is ∼1583.9 and ∼1593.6 cm$^{-1}$ for hBN-capped SLG before and after Si$_3$N$_4$ deposition, with FWHM(G) ∼11.4 and 8.6 cm$^{-1}$, Pos(2D) ∼2678.7 and 2686.8 cm$^{-1}$. $I(2D)/I(G)$ and $A(2D)/A(G)$ are ∼4.1 and ∼8.9 before and ∼1.9 and ∼7.2 after the Si$_3$N$_4$ deposition. The shift of Pos(G) and decrease of FWHM(G), together with decrease of $I(2D)/I(G)$ and $A(2D)/A(G)$, indicate an increase in defect density, E_F, upon Si$_3$N$_4$ deposition. In addition, a considerable (2500 cps at 1 mW power excitation) photoluminescence background is observed after Si$_3$N$_4$ deposition, which we attribute to the introduction of defects in 1L-hBN. Raman mapping is then performed on the SLG arrays at 10 μm steps. Figure 3b–e plots Pos(2D), FWHM(2D), FWHM(G), and $A(2D)/A(G)$ as a function of Pos(G).
strain and doping produce a spread in $\text{Pos}(G)$. The average Raman data of Figure 3b are presented in Table 2.

The bottom-layer SLG, transferred and after hBN-capping, and top-layer SLG, are within the intrinsic SLG range in terms of doping ($E_F < 100 \text{ meV}$). After Si$_3$N$_4$ deposition, the bottom-layer E_F increases to $\sim 250 \text{ meV}$. The linear fit to $\text{Pos}(2D)$ as a function of $\text{Pos}(G)$ in Figure 3b gives $\Delta \text{Pos}(2D)/\Delta \text{Pos}(G) = 0.78, 0.66, 1.41, 1.22$ for bottom-layer SLG transferred on SiO$_2$, top-layer on Si$_3$N$_4$, bottom-layer after hBN capping, and bottom-layer after Si$_3$N$_4$ deposition, respectively. This indicates the coexistence of strain and doping, modulated during the assembly steps. The presence (or coexistence) of biaxial strain cannot be ruled out.

Considering the Grüneisen parameters and the unstrained, undoped $\text{Pos}(G)$ for intrinsic SLG as above, we estimate a mean uniaxial(biaxial) strain $\epsilon \sim 0.07\%$($\sim 0.03\%$) and 0.03\% ($\sim 0.01\%$), for SLG after transferring on SiO$_2$ (bottom-layer) and on Si$_3$N$_4$ (top-layer), respectively. The bottom SLG after hBN capping has $\epsilon \sim 0.1\%$($\sim 0.04\%$) while, after Si$_3$N$_4$ deposition, considering doping, $\epsilon \sim 0.13\%$($\sim 0.05\%$).

To monitor the uniformity of the Raman response throughout the fabrication of the DSLGs, we map 48 SLG SCs, 24 bottom-layer (b1−4 arrays), and 24 top-layer (t1−4 arrays), on four different portions of a 150 mm wafer. Figure 4 plots false-color maps of $I(2D)/I(G)$, FWHM(2D), FWHM(G), $A(2D)/A(G)$ for the four assembly stages. Each map is taken with 10 μm steps. At a given stage, the Raman data do not show significant variations between SLG belonging to the same portion of the wafer. The same applies between SLG from different parts. This implies that the spread in points in Figure 3b−e is representative of the variation of the Raman peaks within individual SLG SCs while, over the scale of the entire wafer, SLG SCs have uniform properties. Small ($10−20 \mu\text{m}$ wide) bilayer graphene (BLG) regions form at nucleation seeds during CVD (on 38/48 of the analyzed crystals, see broad 2D peak central pixels in Figure 4b).

$I(2D)/I(G)$, Figure 4a, is negligible throughout the fabrication, except for b1−4 after Si$_3$N$_4$ deposition, where it is within 0.1 (0.25) for 59% (90%) of the crystals (see also the average values in Table 2). FWHM(2D), Figure 4b, progressively increases upon fabrication on b1−4, while it is comparable for b1−4 and t1−4 after transfer on SiO$_2$ and Si$_3$N$_4$. FWHM(G) and $A(2D)/A(G)$, Figure 4cd, are comparable for all SLG SCs, except for b1−4 after Si$_3$N$_4$ deposition, where they decrease due to $E_F > 100 \text{ meV}$.

Thus, our wafer-scale Raman characterization reveals that the top-SLG in the DSLG is comparable to micromechanically exfoliated flakes in terms of doping, strain, and strain fluctuations. The transfer of hBN has marginal effect on the properties of the bottom-SLG. However, it plays a key role in preserving the structural integrity of the crystals, and avoiding the formation of Raman-active defects during Si$_3$N$_4$ deposition, thus preventing μ degradation. The Raman analysis shows an increase in doping, strain and strain fluctuations in the bottom SLG after the PECVD process. However, the PECVD process results in an homogeneous dielectric layer, crucial for reproducible operation of DSLG modulators.

We then investigate the electrical transport properties of the transferred SLG-SCs using back-gated multiterminal devices at RT and exposed to air. This allows us to monitor two key performance parameters for SLG integration in a photonic circuit: contact resistance (R_c) and μ.
Figure 4. Wafer-scale Raman mapping at each fabrication step over different quadrants of the wafer. (a–d) Maps of \(\frac{I(D)}{I(G)} \), FWHM(2D), FWHM(G), \(\frac{A(2D)}{A(G)} \). Raman mapping is performed at each assembly stage over bottom (b1–4) and top SLG arrays (t1–4).
To quantify R_c, we use transfer-length method (TLM)111 devices, as in Figure 5a, b, defined by EBL, reactive-ion etching and thermal evaporation of metallic contacts. Ni/Au 7/60 nm top contacts evaporated $<10^{-5}$ mbar provide the highest performing configuration in terms of yield (>80% of working devices) and R_c when compared to Cr, Ti, and Ni and to other contact geometries, such as one-dimensional side contacts.112 By measuring the two-terminal resistance over different channel lengths (l) we extrapolate the residual resistance at $l = 0$, which corresponds to $2 \times R_c$.111 Figure 5c. This procedure can be repeated for different E_F set by the back-gate voltage (V_G), to obtain R_c as a function of E_F, as for Figure 5f, showing the statistical average over 56 devices and error bars as standard deviations. R_c remains $<2500 \Omega \mu m$ in the neutrality region and is $\sim500 \Omega \mu m$ for $E_F > 0.2$ eV, required in the operation of modulators at telecom wavelengths.112 The SLG E_F must be set at energies larger than half of the photon energy in order to work at the edge of Pauli blocking.42,43,113 At 1550 nm the photon energy is 0.8 eV, so that E_F must be set slightly above 0.4 eV.113 These R_c are comparable to those previously reported for ultrahigh $\mu > 1 \times 10^5$ cm2 V$^{-1}$ s$^{-1}$ devices.112 We get μ from 56 TLM structures as well as 36 Hall bars, in Figure 5d, f. The SLG resistivity, ρ, for the TLM devices is obtained from a linear fit of TLM channels (Figure 5c) as a function of V_G. The Hall bar ρ is derived from four-terminal measurements and fitted as for ref 114. In Figure 5g, dashed lines indicate the average μ for both e and h, whereas the shaded areas represent the standard deviation. The average μ from Hall bars (~4750...
cm² V⁻¹ s⁻¹ for h and ~4600 cm² V⁻¹ s⁻¹ for e) is higher than TLM (~3600 and ~3350 cm² V⁻¹ s⁻¹, respectively). This could be caused by two factors. (1) For each TLM, ρ is estimated from an average of 5 channels, with a total length of 75 μm, whereas the channel length in a Hall bar is 8 μm, comparable to that used in typical SLG transport measurements. (2) Parasitic doping by the contacts has an effect in two-terminal TLM measurements, not present in four-terminal Hall bar measurements. Figure 5 plots 3 representative traces of ρ as a function of V_G, from Hall bars with high (~5900 cm² V⁻¹ s⁻¹), low (~3500 cm² V⁻¹ s⁻¹), and average (~4700 cm² V⁻¹ s⁻¹) μ.

EAMs are based on the modulation of the surface optical conductivity at optical frequencies induced by electric field
effect. SLG absorption is changed by moving E_F above the Pauli blocking condition. This can be done by applying gating in a capacitor-like structure, with SLG used as one or both capacitor plates. In our DSLG geometry, a reciprocal self-gating is obtained with V_G, resulting in modulation of the surface carrier density, i.e., electro-absorption. The main advantages of this approach are the larger electro-absorption effect, due to the presence of two SLG, approximately twice that of SLG, and the possibility to use undoped WGs, enabling integration onto any already existing platform, such as SOI for SiPh or Si$_3$N$_4$ on Si.

Here we use a 150 mm Si$_3$N$_4$ photonic platform, with 260 nm Si$_3$N$_4$ on a 15 μm buried SiO$_2$. The 1500 nm wide WG is designed to support a transverse-electric (quasi-TE) mode at 1550 nm. The top cladding is thinned to ~40 nm to maximize the evanescent coupling of the optical mode with the DSLG stack. The core of the modulators is the DSLG capacitor, comprising a SLG/hBN/Si$_3$N$_4$/SLG stack. The cross-section and a SEM image of a representative device is in Figure 6a,b (see the Methods for details). We prepare 30 SLG/hBN/Si$_3$N$_4$/SLG stacks on 30 WGs to fabricate 30 EAMs with different lengths (Figure 6c–f). This allows us to benchmark the reproducibility of the fabrication process at wafer scale through optoelectronic characterization of the devices.

We test key performance parameters: static (DC-biased) and dynamic (DC-biased + RF) modulation depth, electro-optical (EO) BW, and eye diagram opening. We characterize the EAMs in static and dynamic (i.e., driven by a time varying electrical signal) mode and collect the data to perform a statistical study of performance, Figure 7. We first consider the transmission as a function of V_G. Modulation is obtained by tuning E_F of both SLG layers from complete optical absorption ($E_F < 0.4$ eV at 1550 nm) toward transparency ($E_F > 0.4$ eV). The static characterization on wafer scale shows modulation efficiency ~0.25, 0.45, 0.75, 1 dB V$^{-1}$ for ~30, 60, 90, 120 μm EAMs, respectively, Figure 7a. We then characterize the EO BW, i.e., the BW of the conversion efficiency, defined as the ratio between the output and the input power, from the electrical signal driving the modulator and the optical modulated signal at the output of the modulator. This parameter determines the maximum operating speed and is typically affected by R_C. The EAM BW is mainly limited by its RC time constant, i.e., the series resistance (R) of the device multiplied by the DSLG capacitance, C, given by the series of gate dielectric capacitance and quantum capacitance of the two SLGs, with $R = R_C + R_S$ of the SLG section between DSLG capacitor and metal contacts. As C is proportional to the device length, while R is inversely proportional to it, we would expect a length-independent 3 dB electro-optical BW. However, Figure 7b shows that the BW changes with length, with longer devices having lower BW. We obtain ~1.5, 6.5, 7.4 GHz for 30, 60, 120 μm, respectively. The reason is that a further contribution to R comes from the output 50 Ω impedance of the vector network analyzer (VNA) used to perform the measurements (see the Methods). This is the main limiting resistive contribution because of our low R_C ~ 500 Ω μm at $E_F > 0.2$ eV.

We then test the DSLG EAMs using a non-return-to-zero (NRZ) electrical driving signal, i.e., a digital two-level sequence, generated with a pattern generator (PG) (Anritsu MP1800A). This instrument allows us to obtain pseudorandom binary sequences (PRBS), i.e., deterministic binary sequences of bits with statistical behavior similar to a pure random sequence, with adjustable lengths (up to 231 bits). The signal is applied to the DSLG EAMs electrodes through a RF cable and a bias-tee. This generates a modulated optical signal, detected by a high-frequency (70 GHz) photodetector (Finisar XPVD3120) connected to a sampling digital oscilloscope (Infinium DCA 83484A, BW ~ 50 GHz). By doing so, we can visualize on the oscilloscope the resulting eye diagram, Figure 7c. This gives the frequency dependent ER and 3 dB EO BW as a function of device length, and 10/15/20 Gbps data-rate. The eye diagram measurement of the data stream along with ER and 3 dB EO BW demonstrate EAM at 20 Gbps on wafer scale. Our wafer-scale fabrication approach may also be used on different photonic platforms, e.g., SOI. The smaller WG cross section, 480 nm \times 220 nm, would reduce the modulator stack capacitance, thus improving EAM speed.

The change from Si$_3$N$_4$ to SOI, as reported in ref 47, increases the EO BW to at least 30 GHz, and the data rate to 50 Gbps in a 100 μm EAM. Improving the SLG quality, in terms of μ after Si$_3$N$_4$ encapsulation, can increase performance in terms of insertion loss per unit length. Assuming a maximum absorption ~0.1 and <0.001 dB μm$^{-1}$ in the transparency region for $\mu > 3000$ cm$^{-1}$ s$^{-1}$ at 0.4 eV, the EAM length can be reduced to 50 μm, with a maximum ER = 5 Ω and a halved capacitance. By reducing the RC constant, we expect to approximately double its BW with respect to the 100 μm device, thus achieving ~60 GHz. This optimization, combined with a SOI WG, could result in EAMs competitive with present microring based SOI modulators and SiGe EAMs. The added value of SLG-based EAMs is the broad operation spectrum, from O (1300 nm) to L-band (>1625 nm) and beyond, while SiGe modulators are restricted to the C band (1530–1565 nm), and Si microring modulators are limited to resonant wavelengths.

CONCLUSIONS

We presented the full process flow (from growth, to transfer, integration on WGs, and photonic devices fabrication) for SLG-based photonics on wafer-scale. Our approach yields high-quality uniform SLG on wafer-scale, as indicated by statistical spectroscopic and electrical characterizations. We used wafer scale hBN encapsulation to minimize damage during dielectric deposition. We applied this to realize double SLG electro-absorption modulators on the passive Si$_3$N$_4$ platform. Our approach is easier and more reproducible, in terms of yield and uniformity, compared to the transfer of a continuous SLG film over the full wafer area, because it is based on individual crystal matrices. SLG single crystals have higher mobility than polycrystalline films, with high-quality top contacts, with a reproducible contact resistance ~500 Ω μm. Our approach can be used for other photonics building blocks, such as photodetectors and mixers, as well as for resonant structures, including microrings for modulation, switching and filtering, and nonresonant ones, like interferometers.

METHODS

SLG crystal matrices are grown on 25 μm Cu foils (Alfa Aesar no. 46365). Prior to SLG growth, each foil is electropolished in an electrolyte consisting of water, ethanol, phosphoric acid, isopropyl alcohol, and urea, as for ref 79. The Cu foil is patterned using UV lithography. Cu is spin-coated with a Shipley S1813 positive photoresist, baked at 110 °C for 1 min, and exposed to UV light using a Cr mask containing the required seeding pattern (UV dose...
Figure 8. (a) Schematic electrochemical delamination setup. (b) Transfer tool holding the delaminated SLG sample and a 150 mm Si₃N₄ wafer patterned with the photonic WG circuits of Figure 6. (c) Close-up of SLG/PMMA membrane, with a PDMS frame aligned onto the target wafer.

Figure 9. Process flow for DSLG EAM fabrication. (a) SC SLG transfer on WG. (b) SLG patterning using EBL and RIE. (c) Ni/Au contacts deposition using evaporation and lift-off. (d) 1L-hBN transfer on top. (e) Si₃N₄ deposition by PECVD. (f) Top layer SLG SC transfer. (g) Top SLG patterning. (h) Top contact deposition.
orcid.org/0000-0003-0907-
aligned to the Si3N4 WG, Figure 9a. The bottom layer SLG is spin-
follows. A matrix of SLG SCs is transferred on the target wafer and
support polymer, followed by a rinse in isopropyl alcohol.

150 mm wafer. Finally, the wafer is placed in acetone to remove the
membrane with a PDMS frame aligned onto the target wafer in Figure
8c. The target wafer is placed on a micrometric stage with three-axis
controller, and the membrane is brought into contact with the wafer
inbuilt stage heater with a proportional-integral-derivative (PID)
formation of H2 bubbles, which may cause damage to SLG. The
freestanding polymer/SLG membrane is then removed from the electrolyte,
rinsed 3 times in DI water, then dried in air.

The lamination of SLG on the target wafer is performed in a transfer
tool, shown in Figure 8b, with a close-up of the SLG/PMMA
membrane with a PDMS frame aligned onto the target wafer in Figure
8c. The target wafer is placed on a micrometric stage with three-axis
translational and azimuthal rotational movement, Figure 8b. Alignment
of the WGs to the SLG SC matrix is performed exploiting the
SLG contrast on the polymer membrane in transmission mode, Figure
1d. The optical system of the transfer tool consists of a 0.58×7×microscope objective with coaxial illumination, and a DSLR camera
with a 2× adapter tube, giving a final magnification ×1.16–14×.

Following alignment, the wafer is heated to 100 °C using the
inbuilt stage heater with a proportional-integral-derivative (PID)
controller, and the membrane is brought into contact with the wafer
to laminate the SLG. Heating the wafer reduces the adhesion of
PDMS, and the frame can be then detached from the wafer, Figure 7b.
Depending on the geometry of the wafer, several cycles of the above
procedure are performed to populate the wafer with SLG SCs. For a
typical SLG SC matrix of 25 × 40 mm2, 16 cycles populate 90% of a
150 mm wafer. Finally, the wafer is placed in acetone to remove the
support polymer, followed by a rinse in isopropyl alcohol.

The fabrication of the DSLG modulator stack is performed as
follows. A matrix of SLG SCs is transferred on the target wafer and
aligned to the SiNx WG, Figure 9a. The bottom layer SLG is spin-
coated with PMMA 950 A4 (Microchem), patterned using EBL and
etched using RIE, Figure 9b. Contacts to the bottom SLG are
etched using RIE, Figure 9c. A 2 × 2.5 cm2 polycrystalline 1L-hBN (Graphene Laboratories, Inc.) grown on Cu
foil via CVD125 is then electrochemically delaminated from Cu and
transferred on the chips of the wafer via semidry transfer.76 SiNx (17
nm) is deposited using PECVD at 350 °C, Figure 9e. The top layer of the modulator is fabricated following the same protocol of transfer
(Figure 9f), etching (Figure 9g), and contacting (Figure 9h).

AUTHOR INFORMATION
Corresponding Authors
Camilla Coletti – Center for Nanotechnology Innovation @
NEST - Istituto Italiano di Tecnologia, I-56127 Pisa, Italy;
Graphene Labs, Istituto Italiano di Tecnologia, 16163
Genova, Italy; orcid.org/0000-0002-8134-7633;
Email: camilla.coletti@iiti.it
Marco Romagnoli – Photonic Networks and Technologies
Lab, CNIT, 56124 Pisa, Italy; INPHOTEC, 56124 Pisa,
Italy; CamGraPhIC, 56124 Pisa, Italy;
Email: mrromagnoli@cnit.it

Authors
Marco A. Giambra – Photonic Networks and Technologies
Lab, CNIT, 56124 Pisa, Italy; INPHOTEC, 56124 Pisa,
Italy; Center for Nanotechnology Innovation @NEST -
Istituto Italiano di Tecnologia, I-56127 Pisa, Italy;
orcid.org/0000-0002-1566-2395
Vaidotas Miseikis – Center for Nanotechnology Innovation @
NEST - Istituto Italiano di Tecnologia, I-56127 Pisa, Italy;
Graphene Labs, Istituto Italiano di Tecnologia, 16163
Genova, Italy; orcid.org/0000-0001-6263-4250
Sergio Pezzini – Center for Nanotechnology Innovation @
NEST - Istituto Italiano di Tecnologia, I-56127 Pisa, Italy;
Graphene Labs, Istituto Italiano di Tecnologia, 16163
Genova, Italy; NEST, Scuola Normale Superiore and Istituto
Nanoscienze-CNR, I-56127 Pisa, Italy; orcid.org/0000-
0003-4289-907X
Simone Marconi – Photonic Networks and Technologies Lab,
Tecip Institute, Scuola Superiore Sant’Anna, 56124 Pisa,
Italy
Alberto Montanaro – Photonic Networks and Technologies
Lab, CNIT, 56124 Pisa, Italy
Filippo Fabbri – Center for Nanotechnology Innovation @
NEST - Istituto Italiano di Tecnologia, I-56127 Pisa, Italy;
Graphene Labs, Istituto Italiano di Tecnologia, 16163
Genova, Italy; NEST, Scuola Normale Superiore and Istituto
Nanoscienze-CNR, I-56127 Pisa, Italy; orcid.org/0000-
0003-1142-0441
Vito Sorianello – Photonic Networks and Technologies Lab,
CNIT, 56124 Pisa, Italy
Andrea C. Ferrari – Cambridge Graphene Centre, Cambridge
University, Cambridge, U.K.; orcid.org/0000-0003-9097-
9993

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsnano.0c09758

Author Contributions
†M.A.G. and V.M. contributed equally to this work.

Author Contributions
‡C.C. and M.R. are joint last coauthors.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We acknowledge funding from the European Union H2020
Graphene Flagship under grant agreements nos. 785219 and
881603, ERC grants Hetero2D, GSYNCOR, EPSRC grants
EP/L016087/1, EP/K01711X/1, EP/K017144/1, EP/
N010345/1.

REFERENCES
(1) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene
Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611–622.
(2) Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F. H. L.;
Huyghebaert, C.; Neumaier, D.; Galli, P.; Tempil, W.; D’Errico, A.;
Ferrari, A. C. Graphene-Based Integrated Photonics for Next-
Generation Datacom and Telecom. Nat. Rev. Mater. 2018, 3, 392–
414.
(3) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.;
Vitiello, M. S.; Polini, M. Photodetectors Based on Graphene, Other
Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol.
2014, 9, 780–793.
(4) Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.;
Roche, S.; Beggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.;
Pugno, N.; Garrido, J. A.; Sordan, R.; Bianco, A.; Balerini, L.; Prato,
M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Rybänen, T.; Morpurgo, A.;
et al. Science and Technology Roadmap for Graphene, Related Two-

https://doi.org/10.1021/acsnano.0c09758
ACS Nano 2021, 15, 3171–3187
ACS Nano www.acsnano.org
3183
Dimensional Crystals, and Hybrid Systems. *Nanoscale* **2015**, *7*, 4598−4810.

(5) Romagnoli, M. Graphene Photonics for Optical Communications. In *Optical Fiber Communication Conference (OFC)*; OSA: Washington, DC, 2019; p M3D.3.

(6) Romagnoli, M. Graphene Photonics for Optical Communications. In *Broadband Access Communication Technologies XIII*; Dingel, B. B.; Tsukamoto, K.; Mikroulis, S., Eds.; SPIE: 2019; p. 1.

(7) Cisco. Cisco Annual Internet Report (2018–2023). https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/ annual-internet-report/white-paper-c11-741490.pdf (accessed 2020-03-09).

(8) Evans, D. The Internet of Things How the Next Evolution of the Internet Is Changing Everything. https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed 2011-04).

(9) International Telecommunication Union. Definitions of World Telecommunication/ICT Indicators. https://www.itu.int/ITU-D/ict/material/TelecomICT_Indicators_Definition_March2010_for_web.pdf (accessed 2010-03).

(10) Next Generation Mobile Networks Alliance. Next Generation Mobile 5G White Paper. https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf (accessed 2015-02-17).

(11) Evolved Protocol Specification for Single-Mode Fibers 2016. https://www.ieee.org/technologies-for-society/telecommunications/standards/white-papers.html#cite-sources (accessed 2015-06-17).

(12) How the Internet Can Cope with the Explosion of Demand for "Right Now" Data during the Coronavirus Outbreak https://spectrum.ieee.org/technolo
gy/journal/telecom/internet/everyone-staying-home-because-of-covid-19-is-targeting-the-internets-biggest-weak-spot (accessed 2020-03-23).

(13) 2020 Ethernet Roadmap https://ethernetalliance.org/technology/2020-roadmap/ (accessed 2020-02-14).

(14) Doerr, C. R. Silicon Photonics Integration in Telecommunications. *Front. Phys.* **2015**, *3*, 3.

(15) Marchetti, R.; Lacava, C.; Carroll, L.; Gradkowski, K.; Minzioni, P. Coupling Strategies for Silicon Photonics Integrated Chips. *Photonics Res.* **2019**, *7*, 201.

(16) Selvaraja, S. K.; De Heyn, P.; Vinroth, G.; Ong, P.; Lepage, G.; Cailler, C.; Rigny, A.; Bourdelle, K. K.; Bogaerts, W.; Van Thourhout, D.; Van Campenhout, J.; Abul, P. Highly Uniform and Low-Loss Passive Silicon Photonics Devices Using a 300mm CMOS Platform. In *Optical Fiber Communication Conference*; OSA: Washington, DC, 2014; p Th2A.33.

(17) Yariv, A.; Yeh, P. Photonics: Optical Electronics in Modern Communications; Oxford series in electrical and computer engineering; Oxford University Press: New York, 2007.

(18) PSMM4SMAGroup. 100G PSMM4SMA Specification. http://psm4.org/100G-PSM4-Specification-2.0.pdf (accessed 2014-09-15).

(19) Petrilla, J.; Cole, C.; King, J.; Lewis, D.; Hiramoto, K.; Tsumura, E. 100G CWDM4SMA Specifications. http://www.cwdm4-
sma.org/files/CWDM4_MSATechnical_Spec_1p0.pdf (accessed 2014-08-27).

(20) Miller, D. Device Requirements for Optical Interconnects to Silicon Chips. *Proc. IEEE* **2009**, *97*, 1166−1185.

(21) Yoo, S. J. B. The Role of Photonics in Future Computing and Data Centers. *IEEE Trans. Comput.* **2014**, *E97*, B, 1272−1280.

(22) Tekin, T.; Pleros, N.; Pitwon, R.; Hakansson, A. Optical Interconnects for Data Centers; Woodhead Publishing: Cambridge, 2016.

(23) Colinge, J.-P. Silicon-on-Insulator Technology: Materials to VLSI; Springer-Verlag: New York, 2004.

(24) Letal, G.; Prosvyk, K.; Mallett, R.; Macquistan, D.; Paquet, S.; Thibault-Mahieu, O.; Gagné, J.; Fortin, P.; Dowlatabadih, R.; Rioux, B.; SpringThorpe, T.; Hisko, M.; Ma, R.; Woods, I. Low Loss InP C-Band IQ Modulator with 40 GHz Bandwidth and 1.5V Vr. In *2015 Optical Fiber Communications Conference and Exhibition (OFC)* **2015**, 1−3.

(25) Doerr, C.; Chen, L. Silicon Photonics in Optical Coherent Systems. *Proc. IEEE* **2018**, *106*, 2291−2301.

(26) Witzens, J. High-Speed Silicon Photonics Modulators. *Proc. IEEE* **2018**, *106*, 2158−2182.

(27) Valdar, A.; Morlett, I. Understanding Telecommunications Business; Telecommunications: Institute of Engineering and Technology: Stevenage, UK, 2015.

(28) Tsumura, E. 100G CWDM4MSA Specification. http://www.cwdm4-
cations.com/tech-talk/telecom/internet/cwdm4-4msa-technical-specification.pdf (accessed 2015-06-17).

(29) Verbist, J.; Verplaetse, M.; Srinivasan, S. A.; Van Kerrebrouck, J.; De Heyn, P.; Asl, P.; De Keulenaer, T.; Pierro, R.; Vyncke, A.; Torfs, G.; Yin, X.; Roelkens, G.; Van Campenhout, J.; Bauwelinck, J. Real-Time 100 Gb/s NRZ and EDB Transmission with a GeSi Electroabsorption Modulator for Short-Reach Optical Interconnects. *J. Lightwave Technol.* **2018**, *36*, 90−96.

(30) Wang, B.; Huang, Q.; Chen, K.; Zhang, J.; Kurczveil, G.; Liang, D.; Palermo, S.; Tan, M. R. T.; Beausoleil, R. G.; He, S. Modulation on Silicon for Datacom: Past, Present, and Future (Invited Review). *Prog. Electromagn. Res.* **2019**, *166*, 119−145.

(31) Smitt, M.; Williams, K.; van der Tol, J. Past, Present, and Future of InP-Based Photonic Integration. *APL Photonics* **2019**, *4*, 050901.

(32) Yole Development. Silicon Photonics and Photonic Integrated Circuits 2019 by Yole Development. https://www.slideshare.net/Yole_Development/silicon-photonics-and-photonic-integrated-circuits-2019-by-yole-development (accessed 2019-04-25).

(33) Comparison between InP and Silicon Photonics. https://www.phiconference.com/market/comparison-between-inp-and-silicon-photonics/ (accessed 2015-06-17).

(34) Sorianello, V.; Midrio, M.; Romagnoli, M. Design Optimization of Single and Double Layer Graphene Phase Modulators in SOI. *Opt. Express* **2015**, *23*, 6478.

(35) Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stamper, C. Ultrahigh-Mobility Graphene Devices from Chemical Vapor Deposition on Reusable Copper. *Sci. Adv.* **2015**, *1*, No. e1500222.

(36) Purdie, D. G.; Pugno, N. M.; Taniguchi, T.; Watanabe, K.; Ferrari, A. C.; Lombardo, A. Cleaning Interfaces in Layered Materials Heterostructures. *Nat. Commun.* **2018**, *9*, 5387.

(37) De Fazio, D.; Purdie, D. G.; Ott, A. K.; Braeuninger-Weimer, P.; Khodkov, T.; Coletti, C.; Taniguchi, T.; Watanabe, K.; Livreri, P.; Koppens, F. H. L.; Hofmann, S.; Gorykhman, I.; Ferrari, A. C.; Lombardo, A. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition on Reusable Copper. *Sci. Adv.* **2015**, *1*, No. e1500222.

(38) Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Rossella, F.; Watanabe, K.; Taniguchi, T.; Coletti, C. High-Quality Electrical Transport Using Scalable CVD Graphene. *2D Mater.* **2020**, *7*, 041003.

(39) Banszerus, L.; Schmitz, M.; Engels, S.; Golszcze, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stamper, C. Ballistic Transport Exceeding 28 Mm in CVD Grown Graphene. *Nano Lett.* **2016**, *16*, 1387−1391.

(40) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. *Science* **2004**, *306*, 666.

(41) Fang, W.; Zhang, Y.; Tian, C.; Girir, C.; Zettl, A.; Crommie, M.; Shen, Y. R. Gate-Variable Optical Transitions in Graphene. *Science* **2008**, *320*, 206−209.

(42) Stauber, T.; Peres, N. M. R.; Geim, A. K. Optical Conductivity of Graphene in the Visible Region of the Spectrum. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2008**, *78*, 085432.
(116) Lee, E. J.; Balasubramanian, K.; Weitz, R. T.; BurkHard, M.; Kern, K. Contact and Edge Effects in Graphene Devices. Nat. Nanotechnol. 2008, 3, 486–490.
(117) Valdes, L. Resistivity Measurements on Germanium for Transistors. Proc. IRE 1954, 42, 420–427.
(118) Hanson, G. W. Dyadic Green’s Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene. J. Appl. Phys. 2008, 103, 064302.
(119) Alexander, C. K.; Sadiku, M. Fundamentals of Electric Circuits; McGraw-Hill: London, UK, 2008.
(120) Xia, J.; Chen, F.; Li, J.; Tao, N. Measurement of the Quantum Capacitance of Graphene. Nat. Nanotechnol. 2009, 4, 505–509.
(121) Razavi, B. Design of Integrated Circuits for Optical Communications; John Wiley & Sons: New York, NY, 2012.
(122) Pitris, S.; Moralis-Pegios, M.; Alexoudi, T.; Fotiadis, K.; Ban, Y.; Heyn, P.; De Camenhout, J.; Van Pleros, N. A 400 Gb/s O-Band WDM (8 × 50 Gb/s) Silicon Photonic Ring Modulator-Based Transceiver. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) 2020, 1–3.
(123) Chaisakul, P.; Vakarin, V.; Frigerio, J.; Chrastina, D.; Isella, G.; Vivien, L.; Marris-Morini, D. Recent Progress on Ge/SiGe Quantum Well Optical Modulators, Detectors, and Emitters for Optical Interconnects. Photonics 2019, 6, 24.
(124) Heebner, J.; Grover, R.; Ibrahim, T. Optical Microring Resonators; Springer-Verlag: New York, 2008.
(125) Kim, K. K.; Hsu, A.; Jia, X.; Kim, S. M.; Shi, Y.; Hofmann, M.; Neizich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Lett. 2012, 12, 161–166.