A NOTE ON THE CARISTI FIXED POINT THEOREM

OLEG ZUBELEVICH
DEPT. OF THEORETICAL MECHANICS,
MECHANICS AND MATHEMATICS FACULTY,
M. V. LOMONOSOV MOSCOW STATE UNIVERSITY
RUSSIA, 119899, MOSCOW, VOROB’EYV GORY, MGU
E-MAIL: OZUBELEV@YANDEX.RU

Abstract. We generalise the Caristi Fixed Point Theorem to the mappings of the complete semi-metric spaces.

1. Main Theorems

1.1. Definitions and Assumptions. Let X be a semi-metric space with collection of semi-metrics $\{d_\alpha(\cdot,\cdot)\}_{\alpha \in A}$, and A is an arbitrary non-empty set. Recall that a semi-metric satisfy the following properties.

For any $x, y, z \in X$ one has

$$d_\alpha(x,y) = d_\alpha(y,x), \quad d_\alpha(y,x) \leq d_\alpha(y,z) + d_\alpha(z,x), \quad d_\alpha(x,y) \geq 0$$

and $d_\alpha(x,x) = 0$.

Assume also that the space X is separated in the following sense. For any different points $x, y \in X$ there exists a semi-metric d_α such that $d_\alpha(x,y) > 0$.

Definition 1.1. Let (Q, \prec) be a partially ordered set with the following extra condition. For every pair $n, m \in Q$ there is an element $l \in Q$ such that $m, n \prec l$.

Then a set $\{x_q\}_{q \in Q} \subset X$ is said to be a net.

Definition 1.2. We shall say that a net $\{x_q\}$ tends to x iff for any $\varepsilon > 0$ and for any $\alpha \in A$ there is $c \in Q$ such that if $q \succ c$ then $d_\alpha(x_q, x) < \varepsilon$.

We shall denote this in the following way:

$$\lim_{q \in Q} x_q = x.$$

Definition 1.3. A net $\{x_q\}_{q \in Q}$ is a Cauchy net iff for any $\varepsilon > 0$ and for any $\alpha \in A$ there is $c \in Q$ such that if $q', q \succ c$ then $d_\alpha(x_{q'}, x_q) < \varepsilon$.

Suppose that the space X is complete i.e. every Cauchy net $\{x_q\}_{q \in Q}$ tends to a point x.

2000 Mathematics Subject Classification. 47H10 , 54E50 , 46A03 .
Key words and phrases. fixes point theorems; nonlinear equations.
Partially supported by grants RFBR 08-01-00681, Science Sch.-8784.2010.1.
Definition 1.4. We shall say that a function \(g : X \to \mathbb{R} \) is lower semi-continuous at a point \(x' \) if for every net \(x_q \to x' \) one has
\[
\liminf_{x_q \to x'} g(x_q) \geq g(x').
\]
The last expression implies that \(a_q \to a \geq g(x') \), \(a_q = \inf_{q \prec u} g(x_u) \).

A function \(g : X \to \mathbb{R} \) is called lower semi-continuous provided it is lower semi-continuous at all the points \(x \in X \).

1.2. Generalised Caristi’s Theorems. Consider a mapping \(f : X \to X \).

Theorem 1.1. Suppose that for each \(\alpha \in A \) there exists a lower semi-continuous and bounded from below function \(\psi_\alpha : X \to \mathbb{R} \) such that
\[
d_\alpha(x, f(x)) \leq \psi_\alpha(x) - \psi_\alpha(f(x)).
\] (1.1)

Then the mapping \(f \) has a fixed point: \(f(\hat{x}) = \hat{x} \).

Remark 1. From Theorem 1.1 one can obtain a version of the contraction mapping principle for semi-metric spaces.

Suppose a mapping \(f : X \to X \) is continuous and has the following property.

For any \(\alpha \in A \) one can define an element \(\gamma \in A \) and a number \(c > 0 \) such that
\[
d_\gamma(f(x), f(y)) \leq d_\gamma(x, y) - cd_\alpha(x, y), \quad \forall x, y \in X.
\]

Then mapping \(f \) has a unique fixed point.

To prove this one should take \(\psi_\alpha(x) = d_\gamma(x, f(x))/c \).

If \(A \) consists of a single element this proposition becomes the standard contraction mapping theorem.

Theorem 1.2. If under the conditions of Theorem 1.1 at least one of the functions \(\{\psi_\alpha\} \) does not attain its minimum then the set of fixed points of the mapping \(f \) is not compact.

For the case of metric \(X \) theorems 1.1 1.2 have been obtained by Caristi in [1]. Since that time these results have been generalised by many authors in different directions.

2. Proof of the Theorems

2.1. Proof of Theorem 1.1. Introduce in the set \(X \) a partial order by the formula
\[
x \ll y \iff d_\alpha(x, y) \leq \psi_\alpha(x) - \psi_\alpha(y), \quad \forall \alpha \in A.
\]

It is easy to check that the relation \(\ll \) is a partial order indeed.

Formula (1.1) takes the form \(x \ll f(x) \) for all \(x \in X \). Thus to complete the proof it is enough to show that the set \(X \) has a maximal element.

This in its part immediately follows from the Zorn Lemma if only we check that any chain of \(X \) possess a supremum.
Let \(Z \subseteq X \) be a chain. Since elements of \(Z \) enumerate themselves the set \(Z \) can be considered as a net with \(Q = Z \). So we rewrite the set \(Z \) as \(\{z_q\}_{q \in Z} \).

Show that \(\{z_q\} \) is a Cauchy net.

Take any pair of elements from this net \(z_p, z_q \in Z, z_p \ll z_q \),

\[
\psi_\alpha(z_q) \leq \psi_\alpha(z_p) - d_\alpha(z_p, z_q) .
\] (2.1)

The last inequality implies that the function \(\psi_\alpha \) is decreased on the net \(\{z_q\} \).

So the following limit exists:

\[
\lim_{q \in Z} \psi_\alpha(z_q) = c_\alpha.
\]

Thus passing to the limit in formula (2.1) we get

\[
\lim_{p,q \in Z} d_\alpha(z_p, z_q) = 0.
\]

Consequently, \(\{z_q\} \) is a Cauchy net and \(z_q \to \hat{z} \).

To show that \(\hat{z} \) is a supremum for the chain \(Z \) we consider again formula (2.1):

\[
d_\alpha(z_p, \hat{z}) = \lim_{q \in Z} d_\alpha(z_p, z_q) \leq \psi_\alpha(z_p) - \psi_\alpha(z_q) \leq \psi_\alpha(z_p) - \psi_\alpha(\hat{z}).
\]

The Theorem is proved.

2.2. Proof of Theorem 1.2. Denote by \(P \) a set of the fixed points to the mapping \(f \). Assume that for some index \(\alpha = \alpha' \) the function \(\psi_{\alpha'} \) does not achieve its minimum in \(X \) and the set \(P \) is compact.

Then the function \(\psi_{\alpha'} \) attains its minimum in \(P \), say

\[
\min_{x \in P} \psi_{\alpha'}(x) = \psi_{\alpha'}(w) = c, \quad f(w) = w.
\]

Consider a set \(D_\sigma = \{x \in X \mid \psi_{\alpha'}(x) \leq c - \sigma\} \). By assumption there exists a small \(\sigma > 0 \) such that the set \(D_\sigma \) is not empty.

Being endowed with the same semi-metrics \(\{d_\alpha\} \), the set \(D_\sigma \) becomes a complete semi-metric space.

Indeed, show that \(D_\sigma \) is a closed subset of \(X \). Let \(x_q \to x, \quad \{x_q\} \subseteq D_\sigma \). Then

\[
\psi_{\alpha'}(x) \leq \liminf_{x_q \to x} \psi_{\alpha'}(x_q) \leq c - \sigma.
\]

Thus \(x \in D_\sigma \).

The inclusion \(f(D_\sigma) \subseteq D_\sigma \) is obvious:

\[
\psi_{\alpha'}(f(x)) \leq \psi_{\alpha'}(x) - d_{\alpha'}(x, f(x)) \leq c - \sigma.
\]

By Theorem 1.1 the mapping \(f \) has a fixed point \(f(\tilde{x}) = \tilde{x} \in D_\sigma \). This provides a contradiction since \(\tilde{x} \notin P \).

The Theorem is proved.
REFERENCES

[1] Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans Am Math Soc. 215, 241-251 (1976)