ON WOLFF’S L^2–KAKEYA MAXIMAL INEQUALITY IN \mathbb{R}^3

CHANGXING MIAO, JIANWEI YANG, AND JIQIANG ZHENG

Abstract. We reprove Wolff’s L^2–bound for the \mathbb{R}^3–Kakeya maximal function without appealing to the argument of induction on scales. The main ingredient in our proof is an adaptation of Sogge’s strategy used in the work on Nikodym-type sets in curved spaces. Although the equivalence between these two type maximal functions is well known, our proof may shed light on some new geometric observations which is interesting in its own right.

Contents

1. Introduction 1
2. Preliminaries on the multiplicity argument 3
3. An auxiliary maximal function inequality 6
4. The key Lemmas 11
5. Completion of the proof to Theorem 1 13
6. Appendix 15
 6.1. The local property of Kakeya maximal function inequality 15
 6.2. The implication of (1.7) to (1.6) 16
Acknowledgments 18
References 18

Mathematics Subject Classification (2000): 42B25
Keywords: Kakeya maximal function, multiplicity argument, geometric combinatorics.

1. INTRODUCTION

Let $\delta > 0$, $\xi \in S^2$, $a \in \mathbb{R}^3$. Define a δ–tube centered at a in direction of ξ as

$$T^\delta_\xi(a) = \left\{ x \in \mathbb{R}^3 \, \big| \, |(x - a) \cdot \xi| \leq \frac{1}{2}, \, |(x - a) \perp| \leq \delta \right\},$$

where $x^\perp = x - (x \cdot \xi)\xi$ and S^2 denotes the standard unit two sphere in \mathbb{R}^3.

Let $f : \mathbb{R}^3 \to \mathbb{C}$ be a locally integrable function and define the Kakeya maximal operator as

$$f^\ast_\delta(\xi) = \sup_{a \in \mathbb{R}^3} \frac{1}{|T^\delta_\xi(a)|} \int_{T^\delta_\xi(a)} |f(x)| dx. \quad (1.1)$$

we naturally extend this definition homogeneously by letting

$$f^\ast_\delta(\eta) = f^\ast_\delta\left(\frac{\eta}{|\eta|}\right), \forall \eta \neq 0.$$
In particular, we have for $\lambda > 0$,
\[
f_\delta^p(\lambda \xi) \overset{\text{def}}{=} f_\delta^p(\xi), \; \xi \in S^2.
\]
A longstanding conjecture about the Kakeya maximal function is for $1 \leq p \leq 3$
\[
\|f_\delta^p\|_{L^p(S^2)} \lesssim \delta^{-\frac{d}{2}+1-\varepsilon}\|f\|_{L^p(\mathbb{R}^d)}, \quad \forall \varepsilon > 0. \tag{1.2}
\]
This implies immediately the Kakeya sets in \mathbb{R}^d have full Hausdorff dimension.

If $p = 1$, (1.2) becomes trivial since
\[
\|f_\delta^p\|_{L^1(S^2)} \leq |S^2|\|f_\delta^p\|_{L^\infty(S^2)} \lesssim \delta^{-2}\|f\|_{L^1}.
\]
By interpolation, (1.2) is equivalent to the end-point estimate
\[
\|f_\delta^p\|_{L^3(S^2)} \lesssim \delta^{-\varepsilon}\|f\|_{L^3(\mathbb{R}^d)}. \tag{1.3}
\]
Remark 1.1. In general, the conjecture about the estimates on Kakeya maximal function asserts that for all dimensions there holds
\[
\|f_\delta^p\|_{L^q(S^{d-1})} \lesssim \delta^{-\varepsilon}\|f\|_{L^q(\mathbb{R}^d)}. \tag{1.4}
\]
Consequently, this implies the Hausdorff dimension of Kakeya sets in \mathbb{R}^d should be exactly d. For later use, we define $C_{\delta,d}$ to be
\[
C_{\delta,d} = \sup_{\|f\|_{L^2} \neq 0} \frac{\|f_\delta^p\|_{L^4(S^{d-1})}}{\|f\|_{L^2(\mathbb{R}^d)}}. \tag{1.5}
\]
In the case when $d = 2$, (1.4) is valid (see [1] and [9]). However for $d \geq 3$, the question remains open and becomes extremely difficult. At the early stages, some primitive results with $p = \frac{d+4}{2}$ can be deduced easily, see [3], [5], [9] and [10]. The breakthrough in this direction was obtained by Bourgain [1] through establishing an inductive formula for the L^p–estimates on Kakeya maximal functions with $p = \frac{d+4}{2} + c_d$ and $0 < c_d < \frac{1}{2}$. This result was improved by Wolff [10] to $p = \frac{d+2}{2}$. Several subsequent progresses on $d \geq 4$ were made by Bourgain [2], Katz and Tao [8] and Tao-Vargas-Vega [14]. We refer to the investigations in [3], [9], [12] and [15] for further references and historical remarks.

In this paper, we focus on the three dimensional case. The best result in \mathbb{R}^3 is hitherto due to Wolff [10].

Theorem 1 (T. Wolff, 1995). The Kakeya maximal function (1.1) satisfies the following estimate
\[
\|f_\delta^p\|_{L^\frac{4p}{4-p}(S^2)} \lesssim \delta^{-\frac{\varepsilon}{5-p}}\|f\|_{L^2(\mathbb{R}^3)}. \tag{1.6}
\]
Remark 1.2. From this estimate, (1.2) follows immediately with $p = \frac{5}{2}$.

As discussed above, Wolff’s approach combines the induction on scales and the ideas from combinatorics. It belongs, on the whole, to the category of geometric method, which is fairly efficient in dealing with low dimensional cases as pointed out in [9]. This work is aimed at better understanding the geometric combinatorial behavior of the Kakeya maximal function in \mathbb{R}^3, and the purpose of this article is to prove (1.6) without using induction on scales. The main idea is inspired by Sogge’s strategy on Nikodym-type sets in 3-dimensional manifolds with constant curvatures [11]. By exploring this method and combining the ideas from Bourgain-Guth’s multilinear approach to oscillatory integrals [2], we believe it is possible to obtain some improvements on the known results of the Kakeya problems.

In order to prove (1.6), it suffices to show the following restricted weak type maximal estimate (see [10] or the appendix)
\[
\|f_\delta^p\|_{L^\frac{4p}{4-p}(S^2)} \lesssim \delta^{-\frac{\varepsilon}{5-p}}\|f\|_{L^\frac{4p}{4-p}}, \tag{1.7}
\]
which is the core of this paper.

This paper is organized as follows. In Section 2, we introduce some terminologies of the scheme on account of the multiplicities of the tubes associated to the discrete version of (1.7). In Section 3, we obtain an L^2- type estimate for an auxiliary maximal function in \mathbb{R}^d in terms of the $(d-1)-$ dimensional Kakeya maximal functions. Section 4 is devoted to a crucial Lemma 4.3, which reduces our ultimate goal (2.4) to a generic condition (4.3). Finally, we verify this condition for $d = 3$ in Section 5 and complete the proof of Theorem 1. For the sake of self-completeness, we show the local property of the conjecture (1.4) as well as the implication of (1.7) to (1.6) in the appendix.

2. Preliminaries on the multiplicity argument

As was discussed before, we only need to prove (1.7). Since the problem is local\footnote{1. See \cite{1} or the Appendix at the end of this paper.\footnote{2. See \cite{15} for the motivation from Szemeredi-Trotter’s theorem.}}, a standard averaging argument in \cite{1} yields the equivalent form of (1.7)

$$
\sigma\{\xi \in S^2 : (\chi_E)_{\delta}^*(\xi) \geq \lambda\} \lesssim \epsilon \left(\lambda^{-\frac{2}{3}} \delta^{-\frac{1}{3}} |E| \right)^{\frac{2}{3}}, \quad \forall \lambda \in [\delta, 1],
$$

(2.1)

where E is a subset of the unit ball $B(0,1)$.

Let $A_{\lambda} = \{\xi \in S^2 : (\chi_E)_{\delta}^*(\xi) \geq \lambda\}$. By dividing S^2 into the finite union of caps, where the total number of these caps is independent of δ, we may assume that A_{λ} is contained in a cap with the aperture angle less than one. The discretization of (2.1) is achieved by choosing a maximal $\delta-$ separated subset $\{\xi^n_{\nu}\}_{\nu = 1}^{M_{\delta}}$ of A_{λ} such that (2.1) is equivalent to

$$
M_{\delta} \lesssim \epsilon \left(\lambda^{-\frac{2}{3}} \delta^{-\frac{1}{3}} |E| \right)^{\frac{2}{3}}, \quad \forall \lambda \in [\delta, 1],
$$

(2.2)

By definition of $(\chi_E)_{\delta}^*$, we have for each $\nu \in \{1, \ldots, M\}$, there is a tube $T_{\xi^n_{\nu}}(a_{\nu}) := T_{\nu}$ satisfying $|E \cap T_{\nu}| \geq \frac{\lambda}{2}|T_{\nu}|$. We shall use these tubes to set up our multiplicity argument. Since this argument works for all dimensions, we set it up in the sequel for general $d \geq 3$, and apply it to the case $d = 3$ at the end of our proof.

Notice that the higher dimensional counterpart of (1.6) reads (see \cite{10})

$$
\|f_{\delta}\|_{L^{\frac{d-1}{\delta^{d-1}}}(\mathbb{R}^d)} \lesssim \epsilon \delta^{-\frac{d-1}{\delta}} \|f\|_{L^{\frac{d+1}{\delta}}(\mathbb{R}^d)},
$$

(2.3)

the analogue for (2.2) becomes for $d \geq 3$

$$
M_{\delta} \lesssim \epsilon \left(\delta^{-\frac{d-1}{\delta}} |E|^{\frac{\lambda-p}{\delta^{d-p}}} \right)^{\frac{2}{3}},
$$

(2.4)

with $p = \frac{d+2}{2}$ and $q = \frac{(d-1)p}{p-1}$.

Now we introduce some preliminaries for the modified multiplicity argument. Fix $x \in B(0,1) \subset \mathbb{R}^d$ and $j \in \{1, \ldots, M\}$. We define for $\theta, \sigma \in [\delta, 1]$

$$
\mathcal{I}_{\theta, \sigma}(x, j) \overset{\text{def}}{=} \left\{ i : \chi_{T^j_i}(x) = 1, \angle(T^j_i, T^j_j) \in \left[\frac{\theta}{2}, \theta \right], \right. \\
\left. |T^j_i \cap \{ y \in E : \text{dist}(y, \gamma_j) \in \left[\frac{\sigma}{2}, \sigma \right] \} | \geq \left(2^d \log_2 \frac{1}{\delta} \right)^{-1} \lambda |T^j_i| \right\},
$$

(2.5)

where γ_j is the central axis of the tube T^j_j and $\angle(T^j_i, T^j_j) := \angle(\xi_i, \xi_j)$.

We consider the following two scenarios.
\[T^\delta_j \]

\[\gamma_j \]

\[\xi^j \]

Figure 1. γ_j as the center of tube T^δ_j.

- **I. (Low multiplicity scenario)** Let N_1 be a nonnegative integer such that there are at least $\frac{M}{4}$ many j's satisfying

\[
|T^\delta_j \cap E \cap \left\{ x \in \mathbb{R}^d : \sum_{l=1, l \neq j}^M \chi_{T^\delta_l}(x) \leq N_1 \right\} | \geq \frac{\lambda}{4} |T^\delta_j|;
\]

- **II. (High multiplicity at angle θ and distance σ).** Let N_2 be a nonnegative integer such that for $\theta, \sigma \in [\delta, 1]$ and $I_{\theta, \sigma}(x, j)$ defined as in (2.5)

\[
\text{Card}\left\{ j : \left| T^\delta_j \cap E \cap \left\{ x : \text{Card} I_{\theta, \sigma}(x, j) \geq 2 - 3 \left(2 \log_2 \frac{1}{\delta} \right)^{-2} \lambda |T^\delta_j| \right\} \right| \geq \frac{M}{2^{4(\log_2 \frac{1}{\delta})^2}} \right\}
\]

It is easy to see that $N_1 \geq M$ is sufficient for scenario I. If we denote by N the smallest N_1 such that scenario I is valid, then there exist $\theta, \sigma \in [\delta, 1]$ such that II also holds for $N_2 = N$. Essentially, this is achieved by using a dyadic pigeonhole principle. To see this, by the minimality of N and triangle inequality, we have at least $\frac{M}{2} + 1$ many j's such that

\[
\left| Q^\delta_j := T^\delta_j \cap E \cap \left\{ x : \sum_{l=1, l \neq j}^M \chi_{T^\delta_l}(x) \geq N \right\} \right| \geq \frac{\lambda}{4} |T^\delta_j|.
\]

(2.6)

For any $x \in Q^\delta_j$, we have

\[
\sum_{l=1, l \neq j}^M \chi_{T^\delta_l}(x) \geq N,
\]

(2.7)

and

\[
\left\{ k : k \neq j, x \in T^\delta_k \right\} \subset \bigcup_{\nu=1}^{[\log_2 \frac{1}{\delta}] + 1} \left\{ i : x \in T^\delta_i, \angle(T^\delta_j, T^\delta_i) \in [2^{\nu-1} \delta, 2^{\nu} \delta) \right\}.
\]

(2.8)

On the other hand, we claim that

\[
\left\{ k : k \neq j, x \in T^\delta_k \right\} \subset \bigcup_{\nu'=1}^{[\log_2 \frac{1}{\delta}] } \left\{ i : x \in T^\delta_i, \left| T^\delta_i \cap \{ y \in E : \text{dist}(y, \gamma_j) \in [2^{\nu'-1}\delta, 2^{\nu'}\delta) \} \right| \geq (2^{4(\log_2 \frac{1}{\delta})^{-1}} \lambda |T^\delta_i|) \right\}.
\]

(2.9)
On account of (2.8) and (2.9), we may write
\[\{ k : k \neq j, x \in T_k^\delta \} \]
\[\subset \bigcup_{\nu' = 1}^{[\log_2 \frac{1}{\delta}]} \bigcup_{\nu = 1}^{[\log_2 \frac{1}{\delta}]} \left(\left\{ i : x \in T_i^\delta, \angle(T_i^\delta, T_j^\delta) \in [2^{\nu'-1} \delta, 2^{\nu'} \delta) \right\} \right) \]
\[\cap \left(\left\{ i : x \in T_i^\delta, |E \cap \{ y \in E : \text{dist}(y, \gamma_j) \in [2^{\nu'-1} \delta, 2^{\nu'} \delta) \} | \geq (2^4 \log_2 \frac{1}{\delta})^{-1} \lambda |T_i^\delta| \right\} \right) \]
\[\subset \bigcup_{\nu' = 1}^{[\log_2 \frac{1}{\delta}]} \bigcup_{\nu = 1}^{[\log_2 \frac{1}{\delta}]} \mathcal{I}_{2^{\nu}, 2^{\nu'} \delta}(x, j). \]

In view of (2.7), we have at least \(N \) many tubes \(T_k^\delta \) containing \(x \) such that \(k \neq j \). By choosing \(\delta \ll 0.01 \), we have
\[N \leq 2^3 \left(\log_2 \frac{1}{\delta} \right)^2 \sup_{1 \leq \nu' \leq [\log_2 \frac{1}{\delta}]} \text{Card} \mathcal{I}_{2^{\nu}, 2^{\nu'} \delta}(x, j). \]

Therefore, there are \(\nu \) and \(\nu' \), which may depend on \(x \) and \(j \), such that
\[\text{Card} \mathcal{I}_{2^{\nu}, 2^{\nu'} \delta}(x, j) \geq 2^{-3} \left(\log_2 \frac{1}{\delta} \right)^{-2} N. \]

From the above discussions, we have
\[Q_j^\delta \subset \bigcup_{\nu = 1}^{[\log_2 \frac{1}{\delta}]} \bigcup_{\nu' = 1}^{[\log_2 \frac{1}{\delta}]} \left(T_j^\delta \cap E \cap \left\{ x : \text{Card} \mathcal{I}_{2^{\nu}, 2^{\nu'} \delta}(x, j) \geq 2^{-3} \left(\log_2 \frac{1}{\delta} \right)^{-2} N \right\} \right), \]

which, by (2.6), yields
\[\frac{\lambda}{4} |T_j^\delta| \leq 2^3 \left(\log_2 \frac{1}{\delta} \right)^2 \sup_{\nu, \nu'} |T_j^\delta \cap E \cap \left\{ x : \text{Card} \mathcal{I}_{2^{\nu}, 2^{\nu'} \delta}(x, j) \geq 2^{-3} \left(\log_2 \frac{1}{\delta} \right)^{-2} N \right\}|. \]

Consequently, we have found \(\nu = \nu(j) \) and \(\nu' = \nu'(j) \) such that
\[\left| T_j^\delta \cap E \cap \left\{ x : \text{Card} \mathcal{I}_{2^{\nu}, 2^{\nu'} \delta}(x, j) \geq 2^{-3} \left(\log_2 \frac{1}{\delta} \right)^{-2} N \right\} \right| \geq 2^{-3} \lambda \left(\log_2 \frac{1}{\delta} \right)^{-2} |T_j^\delta| \quad (2.10) \]

Since there are at most \(2^4 \left(\log_2 \frac{1}{\delta} \right)^2 \) many pairs of \((\nu, \nu') \)'s and at least \(\frac{|M|}{2} + 1 \) many \(j \)'s as in (2.10), by pigeonhole’s principle there is a pair \((\nu_0, \nu'_0) \) such that \(\Pi_{\theta, \sigma} \) holds for \(\theta = 2^{\nu_0} \delta \) and \(\sigma = 2^{\nu'_0} \delta \).

It remains to prove (2.9). For \(k \neq j \), we have
\[\frac{\lambda}{2} |T_k^\delta| \leq |T_k^\delta \cap E| \leq 2 \sum_{\nu' = 1}^{[\log_2 \frac{1}{2}]} \left| T_k^\delta \cap E \cap \left\{ y : \text{dist}(y, \gamma_j) \in [2^{\nu'-1} \delta, 2^{\nu'} \delta) \right\} \right| \]
\[\leq 8 \log_2 \frac{1}{\delta} \sup_{\nu'} \left| T_k^\delta \cap E \cap \left\{ y : \text{dist}(y, \gamma_j) \in [2^{\nu'-1} \delta, 2^{\nu'} \delta) \right\} \right| \]

where we have used the fact that \(k \neq j \) implies \(\angle(T_k^\delta, T_j^\delta) \geq c \delta \) for some \(c > 0 \) suitably large. Thus (2.9) follows.

Remark 2.1. The high and low multiplicity scenarios for tubes was first exploited by Wolff [10]. This along with the the argument of induction on scales improves significantly the bound on Kakeya type maximal functions. The modified version in the above form was in spirit of
Sogge [11]. Combining this with an L^2–estimate for an auxiliary maximal function, one may establish the Nikodym type maximal inequality in curved background with constant curvatures.

3. AN AUXILIARY MAXIMAL FUNCTION INEQUALITY

Let γ_j be the central axis of T^δ_j as shown in Figure 1. We may assume without loss of generality that γ_j is parallel to e_1, where $\{e_1, e_2, \ldots, e_d\}$ is the orthogonal normal basis of \mathbb{R}^d.

For $y \in \mathbb{R}^d$, denote by $y = (y_1, y')$ with $y' = (y_2, \ldots, y_d)$. In this section, we always assume that f is an integrable function \mathbb{R}^d supported in the hollow cylinder $\{y \in \mathbb{R}^d : |y_1| \leq 1, \frac{\theta}{2} \leq |y'| \leq \sigma\}$.

For any $\xi \in A_2$ and a tube $T^\delta_{j, \xi}$ in the direction of ξ such that $\angle(\xi, \xi') > 0$ and $T^\delta_{j, \xi} \cap T^\delta_{j, \xi'} \neq \emptyset$, there is a unique point $q = q(j, \xi)$ such that

$$\text{dist}(q, \gamma_j) + \text{dist}(q, \gamma_\xi) = \min_{x \in \mathbb{R}^d} \left[\text{dist}(x, \gamma_j) + \text{dist}(x, \gamma_\xi)\right],$$

where γ_ξ is the central axis of the tube $T^\delta_{j, \xi}$ in the direction ξ. We denote by $\gamma_j \wedge \gamma_\xi$ the point q such that (3.1) holds. Let $\omega_\xi(y) = \left[\text{dist}(y, \gamma_j \wedge \gamma_\xi)\right]^\frac{1}{2}$. For brevity, we write ω_ξ^j and γ_ξ^j respectively as ω_ξ^j and γ_ξ^j.

Define the auxiliary maximal function as

$$A^\theta_{\delta,j}(f)(\xi) = \sup_{T^\delta_{j, \xi} \cap T^\delta_{j, \xi'} \neq \emptyset} \int_{T^\delta_{j, \xi}} \frac{1}{|T^\delta_{j, \xi}|} |f(y)||\omega_\xi^j(y)|dy,$$

where $A^\theta_{\delta,j}(f)(\xi)$ is zero if $\angle(T^\delta_{j, \xi}, T^\delta_{j, \xi'})$ is outside the interval $[\frac{\theta}{2}, \theta]$.

The difference between this auxiliary maximal function and f^δ_ξ is that the supremum is taken under more constraints for the tubes in direction of ξ. Besides, we put a weight function for technical reasons. On one hand, it is clear that $A^\theta_{\delta,j}(f)(\xi) \lesssim f^\delta_\xi(\xi)$ when f is supported in a unit ball. On the other hand, a more interesting fact is that we can estimate the L^2 norm of $A^\theta_{\delta,j}(f)$ by means of $(d - 1)$–dimensional Kakeya maximal functions. Thus, we reduce the problem of dimension d to the problem of dimension $(d - 1)$. In this sense, our argument is very similar to Bourgain’s induction on dimension argument in [11]. To be more specific, we prove in this section

Proposition 3.1. Let $A^\theta_{\delta,j}(f)(\xi)$ be as above, we have for all j

$$\|A^\theta_{\delta,j}(f)(\xi)\|_{L^2(S^{d-1})} \leq 2^{10}C_{\delta,d-1}\delta^{-\frac{d-2}{2}}\|f\|_{L^2(\mathbb{R}^d)},$$

where $C_{\delta,d-1}$ is as in (1.3).

Proof. Without loss of generality, we let $j = 0, \xi^0 = e_1$ and suppress the subscript j and superscript θ in $A^\theta_{\delta,j}$. By symmetry, we only consider the following integral

$$\int_{S^{d-1}_+} |A_\delta(f)|^2(\xi)d\Sigma(\xi),$$

where $d\Sigma$ represents the standard surface measure on the unit sphere and

$$S^{d-1}_+ = \{\xi \in S^{d-1} : \xi_1 \geq 0\}.$$

Since $\angle(\xi, e_1) \in [\frac{\theta}{2}, \theta]$, we may restrict $\sin\frac{\theta}{2} \leq |\xi'| \leq \sin\theta$ in the integration of (3.3) with respect to $\xi = (\xi_1, \xi')$. Let

$$C_\theta = \left\{(\xi' = (\xi_2, \ldots, \xi_d) \in \mathbb{R}^{d-1} : \sin\frac{\theta}{2} \leq |\xi'| \leq \sin\theta\right\},$$
and take a maximal \(\frac{\delta}{\theta} \)-separated subset \(\{ v_k \}_{k=1}^{\sim (\theta/\delta)^{d-2}} \) of \(S^{d-2} \), which is the unit sphere in \(\mathbb{R}^{d-1}_v \). Define

\[
\Pi^\delta_0 = \left\{ \xi' \in C_\theta : \left| \frac{\langle \xi', v_k \rangle}{|\xi'|} \right| \leq \frac{\delta}{2} \right\};
\]

which is contained in a \(5\delta \)-neighborhood of the \((d-2)\)-dimensional hyperplane \(H_k \) perpendicular to \(v_k \). Next, we define \(\Gamma^\delta_1 = \Pi^\delta_0 \) and \(\Gamma^\delta_k = \Pi^\delta_0 \setminus \left(\bigcup_{j=1}^{k-1} \Pi^\delta_j \right) \) for \(k \geq 2 \). Then we have \(C_\theta \subset \bigcup_k \Gamma^\delta_k \) and \(\Gamma^\delta_k \cap \Gamma^\delta_{k'} = \emptyset \) for \(k \neq k' \).

If \(\xi' \in \Gamma^\delta_k \) for some \(k \in \{1, \ldots, \sim \left(\frac{\theta}{\delta} \right)^{d-2} \} \), then the tube \(T^\delta_{\xi} \), in direction of \(\xi = (\sqrt{1 - |\xi'|^2}, \xi') \in S^{d-1} \) must lie in a \(50\delta \)-neighborhood \(\tilde{H}^\delta_k \) of the hyperplane \(\tilde{H}_k := \text{span}\{e_1, H_k\} \), since \(T^\delta_{\xi} \cap T^\delta_{\xi'} \neq \emptyset \).

From this observation, we introduce the following cylindrical sets

\[
\mathcal{V}_k = \{ y \in \mathbb{R}^d : |y_1| \leq 1, |\langle y', v_k \rangle| < 50\delta \}.
\]

Then we have the following almost orthogonality estimate

\[
\sum_k \chi_{\mathcal{V}_k \cap \text{supp } f}(y) \leq C \frac{\theta^{d-2}}{\delta^{d-3}\sigma}.
\]

(3.4)

To see this, for any \(y' \) such that \(\frac{\sigma}{5} \leq |y'| \leq \sigma \) and denote by \(H^\delta_k \) the \(50\delta \)-neighborhood of \(H_k \). Let \(\Pi_{y'} \) be the hyperplane in \(\mathbb{R}^{d-1}_v \) perpendicular to \(y' \). One easily verifies that \(H^\delta_k \) contains \(y' \) only when \(v_k \in S^{d-2} \) lives in a \(\frac{10\delta}{\sigma} \)-neighborhood of \(\Pi_{y'} \). Thus there are at most \(O \left(\frac{\theta^{d-2}}{\sigma^{d-3}\delta} \right) \) many \(H^\delta_k \)’s containing \(y' \) simultaneously.
Now we turn to estimate (3.3). This will be reduced to the following maximal function A_δ defined similar to A_δ,

$$A_\delta(f)(\xi) \overset{\text{def}}{=} \sup_{T_0^\delta \cap T_\xi^\delta \neq \emptyset} \int_{T_0^\delta \cap T_\xi^\delta} |f(y)|dy.$$

For the moment, we assume that for each $k \in \{1, \ldots, \sim \left(\frac{\theta}{\delta}\right)^{d-2}\}$

$$\|A_\delta(f \chi_{V_k})\|_{L^2(\{\xi \in S_1^{d-1} | \xi' \in \Gamma_1^{\delta,\theta}\})} \leq C_{\delta,d-1}\|f \chi_{V_k}\|_{L^2}. \quad (3.5)$$

We next deduce (3.2) under the assumption (3.5). Noting that for $\theta \leq 1$,

$$\frac{1}{\sqrt{1 - \sin^2 \theta}} \leq 2,$$

and

$$\omega_\xi(y) \sim \left(\frac{\sigma}{\delta}\right)^{\frac{1}{2}}, \quad \forall y \in V_k \cap T_\xi^\delta \cap \text{supp} f, \forall \xi' \in \Gamma_1^{\delta,\theta},$$

we estimate (3.3) in the following manner

$$\|A_\delta(f \chi_{V_k})\|_{L^2(\{\xi \in S_1^{d-1} | \xi' \in \Gamma_1^{\delta,\theta}\})} \leq \frac{\sigma}{\delta} \sum_k \int_{\Gamma_1^{\delta,\theta}} |A_\delta(f \chi_{V_k})|^2(\xi')d\xi'$$

$$\leq \frac{\sigma}{\delta} \sum_k \int_{\Gamma_1^{\delta,\theta}} |A_\delta(f \chi_{V_k})|^2(\xi')d\xi' \leq \frac{\sigma}{\delta} C_{\delta,d-1} \sum_k \int_{\mathbb{R}^d} |f|^2 \chi_{V_k}(y)dy \lesssim C_{\delta,d-1} \left(\frac{\theta}{\delta}\right)^{d-3}\|f\|_2^2,$$

where the last inequality is due to (3.4).

Therefore, we are reduced to proving (3.5). By rotation invariance, we may assume $k = 1$ and v_1 is identical to e_δ. We may assume further that f is supported in V_1. Clearly, $\Gamma_1^{\delta,\theta}$ is
Figure 4. T_ξ^δ and T_ξ^δ.

displayed contained in the region

$$\Theta_{1,\delta} := \left\{ \xi' \in \mathbb{R}^{d-1} : |(\xi_2, \ldots, \xi_{d-1})| \leq \sin \theta, |\xi_d| \leq 10\delta \right\}.$$

Fix $\xi' \in \Theta_{1,\delta}$ and denote by $p \in \gamma_{\xi}$ such that p is closest to $\gamma_{\xi} \cap \gamma_0$ with $p = (p_1, p')$. We slightly modify $T_\xi^\delta(a)$ to be $T_\xi^\delta(a)$ as follows, singling out y_1 as the parameter of the central axis (see Figure 4)

$$T_\xi^\delta = \left\{ (y_1, y') \in \mathbb{R} \times \mathbb{R}^{d-1} : |y' - p' - \frac{y_1 - p_1}{1 - |\xi'|^2} \xi'| \leq \frac{\delta}{2 \sqrt{1 - |\xi'|^2}}, p_1 - \left(\frac{1}{2} - \text{dist}(a, p) \right) \cos \alpha \leq y_1 \leq p_1 + \left(\frac{1}{2} + \text{dist}(a, p) \right) \cos \alpha \right\},$$

where $a = (a_1, a')$ is the middle of γ_{ξ} and $\alpha := \angle(\gamma_0, \gamma_{\xi})$.

Let $P(y_d)$ be the hyperplane perpendicular to v_1 and parameterized by y_d. Fix $y_d \in [-50\delta, 50\delta]$ and consider $P(y_d) \cap T_\xi^\delta := E_\delta(y_d)$. One can verify that E_δ is an ellipse with major axis at least $1/10$. In fact, let β be the angle between T_ξ^δ and v_1. We have $\cos \beta = \xi_d$, which implies the major axis is at least $\frac{\delta}{\sin(\pi/2 - \beta)} \geq \frac{\delta}{|\xi_d|} \geq \frac{1}{10}$. Thus $E_\delta(y_d)$ can be regarded as a $(d-1)$-dimensional Kakeya tube with dimensions $1 \times \delta \times \ldots \times \delta$.

Let $r = (1 - \xi_d^2)^{\frac{1}{2}}$ and $\xi'' = (\xi_2, \ldots, \xi_{d-1})$. Since $|\xi''| \leq \sin \theta \leq \sqrt{\frac{2}{3}}$ and $|r - 1| \ll 1$ by taking δ sufficiently small, we see that $(\sqrt{r^2 - |\xi''|^2}, \xi'')$ represents a vector on rS^{d-2}. By Fubini's
theorem, the integral average of f over T^3_{ξ} is controlled by
\[\delta^{-(d-1)} \int_{|y_d| \leq 50 \delta} dy_d \int_{|\xi_d(y_d)|} |f(y_1, \ldots, y_{d-1}, y_d)| dy_1 \ldots dy_{d-1}. \]

Next, we use the $(d-1)$-dimensional Kakeya maximal functions to bound the above formula. In particular, this implies
\[A_{\delta}(f)(\xi') \lesssim \delta^{-1} \int_{|y_d| \leq 50 \delta} M_{\delta}(f(\ldots, y_d)) \left(\sqrt{r^2 - |\xi''|^2}, \xi'' \right) dy_d, \]
where $M_{\delta}(f(\ldots, y_d))$ denotes the $(d-1)$-dimensional Kakeya maximal operator acting on f, and f is regarded as a function of the $d-1$ variables (y_1, \ldots, y_{d-1}) with y_d frozen as a parameter.

Using Minkowski’s inequality and Hölder’s inequalities, we obtain by $r < 1$
\[\left(\int_{(|\xi_2, \ldots, \xi_{d-1}|) \leq \sin \theta} |A_{\delta}(f)(\xi')|^2 d\xi_2 \ldots d\xi_{d-1} \right)^{\frac{1}{2}} \leq \delta^{-1} \int_{|y_d| \leq 50 \delta} \left(\int |M_{\delta}(f(\ldots, y_d))|^2 \left(\sqrt{r^2 - |\xi''|^2}, \xi'' \right) d\xi_2 \ldots d\xi_{d-1} \right)^{\frac{1}{2}} dy_d \]
\[\leq 2 \delta^{-1} \int_{|y_d| \leq 50 \delta} \left(\|M_{\delta}(f(\ldots, y_d))\|_{L^2(S^{d-2})}^2 \right)^{\frac{1}{2}} dy_d \]
\[\leq 2 \delta^{-1} C_{\delta,d-1} \int_{|y_d| \leq 50 \delta} \|f(\ldots, y_d)\|_{L^2(S^{d-2})}^2 dy_d \]
\[\leq 2^6 \delta^{-1/2} C_{\delta,d-1} \|f\|_2. \]

Squaring both sides and integrating with respect to $\xi_d \in [-10\delta, 10\delta]$, we get (3.5) and hence (3.2).

It is well-known that $C_{\delta,2} = \log \frac{1}{\delta^3}$, and consequently we conclude

Corollary 3.2. If $d = 3$, we have for some $c > 0$
\[\|A_{\delta}^0(f)\|_{L^2(S^2)} \leq c \left(\log \frac{1}{\delta} \right) \|f\|_{L^2(\mathbb{R}^3)}. \] (3.6)

This corollary is crucial in the proof of Theorem 1.

Remark 3.3. We observe some essential distinctions between the 3D and higher dimensional problems. Indeed, we find in Proposition 3.1 that the loss of the factor $\delta^{-\frac{d-3}{2}}$ vanishes in the three dimensional case. This allows us to use the optimal estimates on 2D Kakeya maximal function to deduce Wolff’s L^5-bound on the 3D case. On the other hand, we do not know whether the $\delta^{-\frac{d-3}{2}}$ loss is necessary in (3.2). Since our method of reducing the estimate on d-dimensional auxiliary maximal function to the estimates of $(d-1)$-dimensional Kakeya maximal function is rather crude, it seems possible by strengthening the argument to reduce the d^{-3} exponent of the loss. This might be easier when d is large, while for lower dimensions, it seems rather difficult.

3. See formula (1.5) in [1] for example.
4. The key Lemmas

Lemma 4.1. Let N satisfy scenario I, then $|E| \geq \lambda M \delta^{d-1}(16N)^{-1}$.

Proof. Relabeling the subscripts, we may write the tubes involved in case I as $\{T_j^\delta\}_{j=1}^K$ with $M \geq K \geq M/2$. Then, we have

$$\frac{\lambda M \delta^{d-1}}{8N} \leq \frac{\lambda}{4N} \sum_{j=1}^K |T_j^\delta| \leq \frac{1}{N} \sum_{j=1}^K |T_j^\delta \cap E \cap \{x \in \mathbb{R}^d \mid \sum_{\ell=1, \ell \neq j}^M \chi_{T_\ell^\delta}(x) \leq N\}|$$

$$\leq \int_{E \cap \{x \in \mathbb{R}^d \mid \sum_{\ell=1}^M \chi_{T_\ell^\delta}(x) \leq N+1\}} \frac{1}{N} \sum_{j=1}^K \chi_{T_j^\delta}(x) dx \leq 2|E|.$$

□

Lemma 4.2. Suppose there are M many tubes $\{T_j^\sigma\}_{j=1}^M$ such that $j \neq j'$ and $T_j^\sigma \cap T_{j'}^\sigma \neq \emptyset$ implies $\angle(T_j^\sigma, T_{j'}^\sigma) \geq \gamma$ for some $0 < \gamma < \frac{\pi}{2}$. Assume also that for some $\rho > 0$ and any $a \in \mathbb{R}^d$, there are M_0 many of such tubes satisfying

$$\rho|T_j^\sigma| \leq |T_j^\sigma \cap E \cap B(a, \sigma/\gamma)|.$$ (4.1)

Then we have

$$|E| \geq \rho \sigma^{d-1} M_0^{1/2}/2.$$ (4.2)

Proof. By relabeling the indices, we have, under these assumptions, a sequence $\{T_j^\sigma\}_{j=1}^{M_0}$ satisfying

$$\rho \sigma^{d-1} M_0 \leq \int_{E} \sum_{j=1}^{M_0} \chi_{T_j^\sigma}(x) dx.$$

Thus, there exists an $x_0 \in E$ such that

$$\sum_{j=1}^{M_0} \chi_{T_j^\sigma}(x_0) \geq \frac{\rho \sigma^{d-1} M_0}{2|E|}.$$

We relabel the subcollection of the tubes $\{T_j^\sigma\}_{j \in \{1, \ldots, C_*\}}$ containing x_0, where

$$C_* = C_{\rho, \sigma, M_0, E} = \left[\frac{\rho \sigma^{d-1} M_0}{2|E|}\right].$$

We notice the orthogonality outside the ball $B(x_0, \sigma/\gamma)$ by the following observation. It follows from the angle condition in the assumptions that the component of $T_j^\sigma \cap T_{j'}^\sigma$ must be contained in the ball $B(x_0, L)$ with L at most $\frac{\sigma}{\gamma} / \sin \frac{\gamma}{2}$, which is less than σ/γ for $\gamma < \frac{\pi}{4}$. With the help of this orthogonality, the choice of C_* and (4.1), we have

$$|E| \geq \left| E \cap B(x_0, \sigma/\gamma) \cap \bigcup_{j=1}^{C_*} T_j^\sigma \right| \geq \sum_{j=1}^{C_*} |E \cap B(x_0, \sigma/\gamma) \cap T_j^\sigma|$$

$$\geq C_* \rho \sigma^{d-1} \geq \frac{\rho^2 \sigma^{2(d-1)} M_0}{4|E|},$$

where we use Lemma 4.1 in the last inequality.

□
Remark 4.4. In the second step, we have used $M_{0}^{\frac{3}{2}} \geq M_{0}^{\frac{1}{d-1}}$ for $d \geq 3$. Since we can only verify (4.3) for $d = 3$, this loss caused by cutting $\frac{1}{7}$ down to $\frac{1}{d-1}$ is dismissed. However, this loss appears to be significant when one deals with the higher dimensional cases with $d \geq 4$.

Lemma 4.3. Let N satisfy both case I and case II$_{\sigma}$. Then, there are $M^{2^{-4} \left(\log_{2} \frac{1}{\sigma} \right)^{-2}}$ many tubes T_{j} in II$_{\sigma}$. Suppose for any $\epsilon > 0$, there exists $C_{\epsilon} > 0$ such that for small $\delta > 0$ and any point $a \in \mathbb{R}^{d}$,

$$|E \cap B(a, \delta \lambda d^{-2}) \cap T_{j}| \geq C_{\epsilon} \lambda^{3} \delta d^{-2+\epsilon} N,$$

(4.3)

then we have (2.4).

Proof. We rewrite (2.3) as $|E| \geq C_{\epsilon} \lambda^{d+1} \left(\delta^{d-1} M \right)^{\frac{d}{d+1}} \delta^{d-2+\epsilon}$. Then it suffices to prove

$$|E| \geq \lambda M \delta^{d-1} (16 N)^{-1},$$

(4.4)

and

$$|E| \geq C_{\epsilon} \lambda^{d+1} N \left(\delta^{d-1} M \right)^{\frac{1}{d+1}} \delta^{d-2+\epsilon},$$

(4.5)

where (4.3) is proved in Lemma 4.1 and it remains to prove (4.5).

Let $\{\xi_{j}\}_{j \in \{1, \ldots, |M^{2^{-4} \left(\log_{2} \frac{1}{\sigma} \right)^{-2}}\}}$ be the directions of T_{j}. Noting that $\sigma \geq \delta$, we have $\gamma := \frac{\log_{\lambda^{d-2}}}{\sigma^{100}} \geq \lambda^{1-\epsilon}$ since $\lambda \leq 1$ and $d \geq 3$. If $\gamma \geq \frac{1}{7}$, then (4.5) follows immediately from (4.3).

Otherwise, we can take a maximal γ-separated subsequence of $\{\xi_{j}\}$ and denote them by $\{\xi_{j,k}\}_{k=1}^{M_{0}}$. By maximality, we obtain for some $C_{2} > 0$

$$M_{0} \geq C_{2} \frac{M}{2^{-4} \left(\log_{2} \frac{1}{\sigma} \right)^{2} \delta^{d-1} \left(\frac{\delta^{\epsilon} \lambda^{d-2}}{\sigma^{100}} \right)^{d-1}} \geq C_{2} \frac{M \delta^{d-1}}{2^{-4} \left(\log_{2} \frac{1}{\sigma} \right)^{2} \delta^{\epsilon} \lambda^{d-2}} \delta^{d-2+\epsilon},$$

and use Lemma 4.2 with $\rho = C_{\epsilon} \lambda^{3} \sigma^{d-2} \delta^{d-2+\epsilon} N$ as well as (4.3) to get

$$|E| \geq C_{\epsilon} \lambda^{3} \sigma^{d-2} \delta^{d-2+\epsilon} N \times \sigma^{d-1} \times \frac{M_{0}}{2} \delta^{d-2+\epsilon} \rho \times \frac{\delta^{\epsilon} \lambda^{d-2}}{\sigma^{100}} \delta^{d-2+\epsilon} \rho \times \frac{\delta^{\epsilon} \lambda^{d-2}}{\sigma^{100}} \rho \times \frac{M \delta^{d-1}}{2^{-4} \left(\log_{2} \frac{1}{\sigma} \right)^{2}},$$

which implies (4.5), since $\epsilon > 0$ is arbitrarily small. \hfill \Box

Remark 4.4. In the second step, we have used $M_{0}^{\frac{3}{2}} \geq M_{0}^{\frac{1}{d-1}}$ for $d \geq 3$. Since we can only verify (4.3) for $d = 3$, this loss caused by cutting $\frac{1}{7}$ down to $\frac{1}{d-1}$ is dismissed. However, this loss appears to be significant when one deals with the higher dimensional cases with $d \geq 4$.

![Figure 6. The orthogonality of tubes outside a ball $B(x_{0}, \sigma/\gamma)$.](image)
5. Completion of the proof to Theorem 1

In this section, we confine ourselves in the case when $d = 3$ and prove (4.3) using Corollary 3.2. This will complete the proof of Wolff’s $L^2 - L^5$ bound for Kakeya maximal functions. Before proving (4.3), we first prove a simplified version.

Lemma 5.1. Let $d = 3$ and N satisfy both scenario I and $I_{\theta, \sigma}$. Denote the $M2^{-4\left(\log_2\frac{1}{\delta}\right)^{-2}}$ many tubes by $\{T^\delta_j\}$ in $I_{\theta, \sigma}$. For any $\epsilon > 0$, there exists a $C_\epsilon > 0$ such that for $\delta > 0$ sufficiently small, we have

$$|E \cap T^\delta_j| \geq C_\epsilon \lambda^3 \delta^3 \sigma \delta^{1+\epsilon} N. \quad (5.1)$$

Proof. For any $j \in \{1, \ldots, \left[M2^{-4\left(\log_2\frac{1}{\delta}\right)^{-2}}\right]\}$, we define

$$S^\delta_j \overset{\text{def}}{=} T^\delta_j \cap E \cap \left\{ x : \text{Card } I_{\theta, \sigma}(x, j) \geq 2^{-3} N \left(\log_2\frac{1}{\delta}\right)^{-2} \right\}.$$

By definition of $I_{\theta, \sigma}(x, j)$, we see that there exists an $M_0 \in (0, M]$ and a subcollection $\{T^\delta_{i_k}\}_{k=1}^{M_0}$ of $\{T^\delta_i\}_{i=1}^M$ such that

$$\angle(T^\delta_{i_k}, T^\delta_j) \in \left[\frac{\theta}{2}, \theta\right), \quad (5.2)$$

$$\left|T^\delta_{i_k} \cap E \cap \left\{ y : \text{dist}(y, \gamma_j) \in \left[\sigma, \sigma^2\right) \right\} \right| \geq \left(2^4 \log_2\frac{1}{\delta}\right)^{-1} \lambda |T^\delta_{i_k}|, \quad (5.3)$$

and

$$\left(\sum_{k=1}^{M_0} \chi_{T^\delta_{i_k}}\right) |S^\delta_j| \geq \frac{N}{2^4} \left(\log_2\frac{1}{\delta}\right)^{-2}. \quad (5.4)$$

Moreover, we have from the definition of $I_{\theta, \sigma}$, (5.4) and $S^\delta_j \subset T^\delta_j$

$$2^{-3} \frac{\lambda}{(4 \log_2\frac{1}{\delta})^2} |T^\delta_j| \leq |S^\delta_j| \leq 2^3 \left(2 \log_2\frac{1}{\delta}\right)^2 N^{-1} \int_{T^\delta_j} \sum_{k=1}^{M_0} \chi_{T^\delta_{i_k}}(x) dx$$

$$\leq N^{-1} 2^3 \left(2 \log_2\frac{1}{\delta}\right)^2 \sum_{k=1}^{M_0} |T^\delta_{i_k} \cap T^\delta_j| \leq N^{-1} 2^3 \left(\log_2\frac{1}{\delta}\right)^2 8 \delta^3 M_0 / \theta,$$

where we have used $|T^\delta_{i_k} \cap T^\delta_j| \leq \frac{\delta^3}{\theta}$. Hence we conclude

$$M_0 \geq 2^{-10} \theta \delta^{-1} N \lambda \left(\log_2\frac{1}{\delta}\right)^{-4}. \quad (5.5)$$

4. It is a little tricky here. We first fix j and $x \in S^\delta_j$ then we get the subcollection with condition (5.2) and (5.3). However, this subcollection may depend on x. In order to avoid this dependency, we consider all the possible subcollections, take their union and denote M_0 as the total number of the tubes included, then we are safe with our argument without causing confusions.
Figure 7. $T_{ik}^\delta \cap \{ y : \text{dist}(y, \gamma_j) \in [\sigma/2, \sigma) \}$ is indicated by the shaded region.

Now, for any T_{ik}^δ, we have (see Figure 7)

\[
|T_{ik}^\delta|^{-1} \int_{T_{ik}^\delta} \chi_{E \cap T_j^\sigma}(y) \omega_{ik}^j(y) dy \geq \left| T_{ik}^\delta \right|^{-1} \int_{T_{ik}^\delta \cap E \cap \{ y : \text{dist}(y, \gamma_j) \in [\sigma/2, \sigma) \}} \left[\text{dist}(y, \gamma_i \cap \gamma_j) \right]^{\frac{1}{2}} dy
\]

\[
\geq \left(\frac{\sigma}{\theta} \right)^{\frac{1}{2}} |T_{ik}^\delta|^{-1} \cdot |T_{ik}^\delta \cap E \cap \{ y : \text{dist}(y, \gamma_j) \in [\sigma/2, \sigma) \}| \geq \left(2^4 \log_2 \frac{1}{\delta} \right)^{-1} \left(\frac{\sigma}{\theta} \right)^{\frac{1}{2}} \lambda.
\]

On the other hand,

\[
|T_{ik}^\delta|^{-1} \int_{T_{ik}^\delta} \chi_{E \cap T_j^\sigma}(y) \omega_{ik}^j(y) dy \leq A_{\delta, j}^\delta(\chi_{E \cap T_j^\sigma})(\xi_{ik}).
\]

Squaring both sides, multiplying δ^2 and summing up with respect to $k = 1, \ldots, M_0$, we have

\[
M_0 \delta^2 \left(2 \log_2 \frac{1}{\delta} \right)^{-2} \frac{\lambda^2 \sigma}{\theta} \leq \sum_{k=1}^{M_0} \left| A_{\delta, j}^\delta(\chi_{E \cap T_j^\sigma})(\xi_{ik}) \right|^2 \delta^2 \lesssim \int_{S^2} \left| A_{\delta, j}^\delta(\chi_{E \cap T_j^\sigma})(\xi) \right|^2 d\Sigma(\xi) \lesssim (\log \frac{1}{\delta}) |E \cap T_j^\sigma|,
\]

where the last step involves the L^2-estimate (5.6).

Invoking the lower bound (5.5), we obtain (5.1).

\[\square\]

Proposition 5.2. If $d = 3$, then (4.3) holds.
Proof. For \(i \in \mathcal{I}_{\theta,\sigma}(x,j) \), we have by choosing \(\delta \) small
\[
\left| T_{i}^{\delta} \cap \left\{ y \in E \cap B(a, \delta^\sigma \lambda^c) : \text{dist}(y, \gamma_j) \in [\sigma/2, \sigma] \right\} \right| \\
\geq \left(2^4 \log_2 \left(\frac{1}{\delta} \right) \right)^{-1} \lambda |T_{i}^{\delta}| - \delta^\sigma \lambda |T_{i}^{\delta}| \geq \left(2^5 \log_2 \left(\frac{1}{\delta} \right) \right)^{-1} \lambda |T_{i}^{\delta}|.
\]
If we define
\[
\mathcal{I}_{\theta,\sigma}(x,j) \overset{\text{def}}{=} \left\{ i : \chi_{T_{i}^{\delta}}(x) = 1, \angle(T_{i}^{\delta}, T_{j}^{\delta}) \in \left[\frac{\theta}{2}, \theta \right) \right\},
\]
\[
\left| T_{i}^{\delta} \cap \left\{ y \in E \cap B(a, \delta^\sigma \lambda^c) : \text{dist}(y, \gamma_j) \in \left[\frac{\sigma}{2}, \sigma \right] \right\} \left(\mathcal{I}_{\theta,\sigma}(x,j) \right) \right| \geq \left(2^5 \log_2 \left(\frac{1}{\delta} \right) \right)^{-1} \lambda |T_{i}^{\delta}|,
\]
then, clearly \(\mathcal{I}_{\theta,\sigma}(x,j) \subset \mathcal{I}_{\theta,\sigma}(x,j) \), which gives \(\text{Card} \mathcal{I}_{\theta,\sigma}(x,j) \leq \text{Card} \mathcal{I}_{\theta,\sigma}(x,j) \). Since there are at least \(M 2^{-4} \left(\log_2 \frac{1}{\delta} \right)^{-2} \) many \(j \)'s satisfying \(\Pi_{\theta,\sigma} \), we have for each such \(j \)
\[
2^{-3} \left(4 \log_2 \left(\frac{1}{\delta} \right) \right)^{-2} \lambda |T_{j}^{\delta}| \leq \left| \left\{ x \in T_{j}^{\delta} \cap E \cap B(a, \delta^\sigma \lambda^c) : \text{Card} \mathcal{I}_{\theta,\sigma}(x,j) \geq 2^{-3} \left(\log_2 \left(\frac{1}{\delta} \right) \right)^{-2} N \right\} \right| + \delta^\sigma \lambda |T_{j}^{\delta}|.
\]
Taking \(\delta \) small, we obtain for this \(j \)
\[
2^{-3} \left(4 \log_2 \left(\frac{1}{\delta} \right) \right)^{-2} \left(\frac{1}{2} \right) |T_{j}^{\delta}| \leq \left| \left\{ x \in T_{j}^{\delta} \cap E \cap B(a, \delta^\sigma \lambda^c) : \text{Card} \mathcal{I}_{\theta,\sigma}(x,j) \geq 2 \left(\log_2 \left(\frac{1}{\delta} \right) \right)^{-2} N \right\} \right|.
\]
Replacing \(E \) in lemma 5.1 with \(E \cap B(a, \delta^\sigma \lambda^c) \) and using (5.1) with \(\lambda/2 \) instead of \(\lambda \), we finally conclude (3.3) for \(d = 3 \). Therefore, we complete the proof of our main theorem. \(\square \)

6. Appendix

6.1. The local property of Kakeya maximal function inequality. In this section, we shall see the problem on Kakeya maximal inequality is local. Namely, to derive (1.7), we can assume \(f \) is supported in a ball of finite size. In particular, we may assume \(f \) is supported in the unit ball centered at zero. To show that the general inequality (1.4) for \(f \) defined on \(\mathbb{R}^d \) follows from its localized version, we first choose a maximal \(\delta \)-separated subset \(\{ \xi^k \}_{k \in \mathcal{R}} \) in \(S^{d-1} \) with \(\text{Card} \mathcal{R} \sim \delta^{-(d-1)} \), and write for a locally integrable function \(f \)
\[
\int_{S^{d-1}} |f_\sigma^\delta(\xi)|^q d\Sigma(\xi) \lesssim \sum_{k \in \mathcal{R}} \int_{\angle(\xi, \xi^k) \leq \delta} |f_\sigma^\delta(\xi)|^q d\Sigma(\xi).
\]

![Figure 8](image)

Figure 8. \(T_{\xi^k}^{\delta} \) is covered by the translates of \(T_{\xi}^{\delta} \).
Since $\angle(\xi, \xi_k) \leq \delta$, there is a $c = c(d) > 0$ independent of δ such that T^S_ξ is covered by a union of at most c many parallel translates of the tube $T^S_{\xi_k}$ (see Figure 8). Moreover, there are two uniform constants c_1, c_2 depending only on d such that

$$c_1 f^*_\delta(\xi^k) \leq f^*_\delta(\xi) \leq c_2 f^*_\delta(\xi^k), \quad \forall \angle(\xi, \xi^k) \leq \delta.$$

Hence (6.1) is bounded up to some constant depending only on d by

$$\sum_{k \in \mathbb{R}} |f^*_\delta(\xi^k)| q \delta^{d-1}.$$

By definition of $f^*_\delta(\xi^k)$, there is a tube $T^S_{\delta} := T^S_{\xi_k}(a_k)$ in direction of ξ^k such that

$$\frac{1}{T^S_{\delta}} \int_{T^S_{\delta}} |f(y) dy \geq \frac{1}{2} f^*_\delta(\xi^k).$$

Similarly for any $\xi \in S^{d-1}$ with $\angle(\xi, \xi_k) \leq \delta$, there is a tube $T^S_{\delta}(a)$ so that

$$\frac{1}{|T^S_{\delta}|} \int_{T^S_{\delta}} |f(y) dy \geq \frac{1}{2} f^*_\delta(\xi).$$

Now, we take a maximal 1-separated subset of $\{a_k\}_{k \in \mathbb{R}}$. After relabeling the indices, we may denote this subsequence by $\{a_j\}_{j=1}^J$ with $J \leq \text{Card} \mathbb{R}$. Thus, for any $k \in \mathbb{R}$, there is some $j \in \{1, \ldots, J\}$ such that $|a_k - a_j| \leq 1$, and hence $T^S_{\delta} \subset B(a_j, 2)$. Based on this observation, we may write

$$\sum_{j=1}^J \sum_{k:|a_k-a_j| \leq 1} \|(f \chi_{B(a_j, 2)})^*_\delta(\xi^k)| q \delta^{d-1}$$

$$\leq \sum_{j=1}^J \sum_{k:|a_k-a_j| \leq 1} \int_{S^{d-1}} |(f \chi_{B(a_j, 2)})^*_\delta(\xi^k)| q d\Sigma(\xi)$$

$$\leq \sum_{j=1}^J \int_{S^{d-1}} |(f \chi_{B(a_j, 2)})^*_\delta(\xi)| q d\Sigma(\xi).$$

For $q \geq p$, assume that $\|f^*_\delta\|_{L^q(S^{d-1})} \leq \varepsilon^{-\frac{q}{2} - 1 - \varepsilon} \|f\|_{L^p(B(a, 2))}$ for all $a \in \mathbb{R}^d$. We have by finite overlaps of the balls $\{B(a_j, 2)\}_{j=1}^J$ and Minkowski’s inequality

$$\sum_{j=1}^J \left(\int_{\mathbb{R}^d} |(f \chi_{B(a_j, 2)})(x)|^p dx \right)^{\frac{q}{p}}$$

$$\leq \left(\int_{\mathbb{R}^d} |f(x)|^q dx \right)^{\frac{1}{q}} \|f\|_{L^p(\mathbb{R}^d)}.$$

This yields the same estimate for general f.

6.2. The implication of (1.9) to (1.6). As pointed in [15], Drury [7] had shown the following estimate

$$\|f^*_\delta\|_{L^{d+1}(S^{d-1})} \leq C\varepsilon^{-\frac{d+1}{2} - 1 - \varepsilon} \|f\|_{L^{d+1}(\mathbb{R}^d)}.$$

We will use this fact as well as the following two estimates

$$\begin{cases}
\|f^*_\delta\|_{L^\infty(S^{d-1})} \leq \|f\|_{L^\infty(\mathbb{R}^d)}, \\
\|f^*_\delta\|_{L^p(\mathbb{R}^d)} \leq C\varepsilon^{-\frac{d}{2} - 1 - \varepsilon} \|f\|_{L^{2p}(\mathbb{R}^d)}, \quad p = (d-1)q',
\end{cases}$$

(6.5)
to derive
\[\|f_3\|_{L^p(S^{d-1})} \leq C_\varepsilon \delta^{-\frac{d}{p}+1-\varepsilon} \|f\|_{L^q(\mathbb{R}^d)}, \; p = (d-1)q'. \] (6.6)

We summarize this as the following lemma.

Lemma 6.1. Assume \(T \) is a sublinear operator, \(1 < A, B < \infty \) and for \(p = (d-1)q' \), \(q > \frac{d+1}{d+2} \),
\begin{align*}
\|Tf\|_{L^\infty(S^{d-1})} &\leq \|f\|_{L^\infty(\mathbb{R}^d)}, \quad (6.7) \\
\|Tf\|_{L^{d+1}(S^{d-1})} &\leq A \|f\|_{L^{\frac{d+1}{d+2}}(\mathbb{R}^d)}, \quad (6.8) \\
\|Tf\|_{L^p,\infty(S^{d-1})} &\leq B \|f\|_{L^{q,\infty}(\mathbb{R}^d)}, \quad (6.9)
\end{align*}
then for any \(\varepsilon > 0 \), there holds that
\[\|Tf\|_{L^p(S^{d-1})} \leq BA^\varepsilon \|f\|_{L^q(\mathbb{R}^d)}. \] (6.10)

Proof. We write \(f = f_1 + f_2 + f_3 \) with
\[f_1 = f \chi_{|f|<\frac{\lambda}{A}}, \; f_2 = f \chi_{|f|>A^{\alpha}\lambda}, \; f_3 = f \chi_{\frac{\lambda}{A} \leq |f| \leq A^{\alpha}\lambda}, \; \alpha = \frac{2q}{d+1} - 1. \]

From the layer cake representation theorem in [10], we obtain
\[
\|Tf\|^p_{L^p(S^{d-1})} = p \int_0^{\infty} \lambda^{p-1} \nu(\{|Tf| > \lambda\}) d\lambda
\begin{align*}
&\leq p \int_0^{\infty} \lambda^{p-1} \left[\nu(\{|Tf_1| > \lambda/3\}) + \nu(\{|Tf_2| > \lambda/3\}) + \nu(\{|Tf_3| > \lambda/3\}) \right] d\lambda \\
&\triangleq I_1 + I_2 + I_3.
\end{align*}

It is easy to see that \(I_1 = 0 \) since \(\nu(\{|Tf_1| > \lambda/3\}) = 0 \) by (6.7). To estimate \(I_2 \), we use (6.8) to deduce that
\[\nu(\{|Tf_2| > \lambda/3\}) \lesssim \frac{A^{d+1}}{\lambda^{d+1}} \|f\|^\frac{d+1}{d+2}_{L^{\frac{d+1}{d+2}}}. \] (6.11)

This together with the trivial estimate
\[\nu(\{|Tf_3| > \lambda/3\}) \lesssim 1 \]
implies that
\[\nu(\{|Tf_2| > \lambda/3\}) \lesssim \frac{A^k}{\lambda^k} \|f\|^k_{L^{\frac{d+1}{d+2}}}, \; 0 \leq k \leq d+1. \] (6.12)

Hence, we get by Minkowski’s inequality
\[
I_2 = p \int_0^{\infty} \lambda^{p-1} \nu(\{|Tf_2| > \lambda/3\}) d\lambda \lesssim A^k \int_0^{\infty} \lambda^{p-1-k} \|f_2\|^k_{L^{\frac{d+1}{d+2}}} d\lambda
\begin{align*}
&\lesssim A^k \left(\int_{\mathbb{R}^d} |f|^{\frac{d+1}{d+2}} \left(\int_0^{\infty} \lambda^{p-1-k} \chi_{|f|>A^{\alpha}\lambda} d\lambda \right) \frac{d\lambda}{\lambda^{d+2}} \right)^\frac{d+2}{d+1} \\
&\lesssim A^k B^\alpha (p-k) \left(\int_{\mathbb{R}^d} |f|^{\frac{d+1}{p}} dx \right)^\frac{d+1}{d+2} \lesssim \|f\|_{L^q}^p,
\end{align*}
where we have used \(k = \frac{d+1}{p} - 1 \) in the last step.

Finally, we turn to estimate \(I_3 \). By (6.9) and the characterization of \(L^{p,q} \) spaces, one has
\[\nu(\{|Tf_3| > \lambda/3\}) \lesssim \frac{B^p}{\lambda^p} \|f_3\|_{L^{q,1}}^p \lesssim \frac{B^p}{\lambda^p} (1 + \alpha \log A)^{p-\frac{d}{p}} \|f_3\|_{L^q}^p. \] (6.13)
Therefore, we estimate by Minkowski’s inequality
\[
I_3 = p \int_0^{+\infty} \lambda^{p-1} \nu\left(\{|Tf| > \lambda/3\}\right) d\lambda \lesssim B^p (1 + \alpha \log A)^{p-\frac{q}{p}} \int_0^{+\infty} \lambda^{-1} \|f\|^p_{L^q} d\lambda
\]
\[
\lesssim B^p (1 + \alpha \log A)^{p-\frac{q}{p}} \left(\int_{\mathbb{R}^d} |f|^q \left(\int_0^{+\infty} \lambda^{-1} \chi_{\lambda/4 \leq |f| \leq A \lambda} d\lambda \right)^{\frac{q}{p}} d\lambda \right) \frac{A^\alpha}{\lambda}
\]
\[
\lesssim B^p (1 + \alpha \log A)^{p-\frac{q}{p}} (\log A) \|f\|^p_{L^q}
\]
\[
\lesssim B^p A^\varepsilon \|f\|^p_{L^q}.
\]
Collecting all these estimates on I_1, I_2 and I_3, we obtain
\[
\|Tf\|^p_{L^p(S^{d-1})} \lesssim I_1 + I_2 + I_3 \lesssim (1 + B^p A^\varepsilon) \|f\|^p_{L^q}.
\]
This concludes the lemma. □

Acknowledgments. The authors thank the referee and the associated editor for their invaluable comments and suggestions which helped improve the paper greatly. This work is supported in part by the NSF of China under grant No.11171033, No.11231006, and No.11371059. C. Miao is also supported by Beijing Center for Mathematics and Information Interdisciplinary Sciences.

REFERENCES

[1] J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal., Vol. 1, No. 2 (1991) 145-187.
[2] J. Bourgain, On the dimension of Kakeya sets and related maximal inequalities, Geom. Funct. Anal., Vol. 9 (1999) 256-282.
[3] J. Bourgain, Harmonic analysis and combinatorics: how much may they contribute to each other?, Mathematics: Frontiers and Perspectives International Mathematical Unions, 13-32(2000)
[4] J. Bourgain and L. Guth, Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal., 21(2011), 1239-1295.
[5] M. Christ, J. Duoandikoetxea and J. L. Rubio de Francia, Maximal operators associated to the Radon transform and the Calderón-Zygmund method of rotations, Duke Math. J. 53 (1986), 189-209.
[6] A. Cordoba, The Kakeya maximal function and spherical summation multipliers, Amer. J. Math., 99(1977),1-22.
[7] S. Drury, L^p estimates for the X-ray transform. Illinois J. Math. 27 (1983), 125-129.
[8] N. Katz and T. Tao. New bounds for Kakeya problems, J.Anal. Math.,87, 231. (2002)
[9] N. Katz and T. Tao Recent progress on the Kakeya conjecture,
[10] E. H. Lieb and M. Loss, Analysis. AMS Graduate Studies in Mathematics, Vol. 14 (1987, second edition 2001).
[11] C. D. Sogge. Concerning Nikodym-type sets in 3-dimensional curved spaces, J. Amer. Math. Soc. 12 (1999), 1-31.
[12] T. Tao. Edinburg lecture notes on the Kakeya problems.
[13] T. Tao. The Bochner-Riesz conjecture implies the restriction conjecture, Duke Math J. 96 (1999),363-376.
[14] T. Tao, A. Vargas and L. Vega, A bilinear approach to the restriction and Kakeya conjectures. J. Amer. Math. Soc. 11 (1998), 967-1000.
[15] T. Wolff, Recent work connected with the Kakeya problem, Prospects in Mathematics Princeton, NJ, 129-162, AMS, Providence, RI,1999.
[16] T. Wolff, An improved bound for Kakeya type maximal functions. Revista Math. Iberoamericana 11 (1995), 651-674.

Institute of Applied Physics and Computational Mathematics, E-mail address: miao_changxing@iapcm.ac.cn

The Graduate School of China Academy of Engineering Physics, E-mail address: geevey.young@gmail.com

The Graduate School of China Academy of Engineering Physics. E-mail address: zengjiqiang@gmail.com