On y-closed Dual Rickart Modules

Bahar Hamad Al-Bahrani, Mohammed Qader Rahman*
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 21/1/2020 Accepted: 13/4/2020

Abstract
In this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if M_1 and M_2 are y-closed simple R-modules and if M_1 is M_2-y-closed is a dual Rickart module, then either $\text{Hom}(M_1, M_2) = 0$ or $M_1 \cong M_2$. Also, we study the direct sum of y-closed dual Rickart modules.

Keywords: Endomorphism ring, y-closed submodule, Image of endomorphism, y-closed simple, y-closed dual Rickart modules.

1. INTRODUCTION
A module M is called a dual Rickart module if for every $\varphi \in \text{End}(M)$, then $\text{Im} \varphi = eM$ for some $e^2 = e \in S$. Equivalently, a module M is a dual Rickart module if and only if for every $\varphi \in \text{End}(M)$, then $\text{Im} \varphi$ is a direct summand of M [1]. A module M is called a closed dual Rickart module, if for any $f \in \text{End}(M)$, $\text{Im} f$ is a closed submodule in M [1]. Recall that a submodule A of an R-module M is called a y-closed submodule of M if A is nonsingular [2]. It is known that every y-closed submodule is closed.

In this paper, we give some results on the y-closed dual Rickart modules.

In section 2, we give the definition of the y-closed dual Rickart modules with some examples and basic properties. Moreover, we prove that for two R-modules M and N, and let B be a submodule of N if M is N-y-closed dual Rickart module, then M is B-y-closed dual Rickart module, see proposition (2.4).

In section 3, we study the direct sum of y-closed dual Rickart modules. Furthermore, we prove that, let M and N be two R-modules, such that $M = A \oplus B$ if M is N-y-closed dual Rickart module, then A is L-y-closed dual Rickart module, for every submodule L of N, see proposition (3.1).

Throughout this article, R is a ring with identity and M is a unital left R-module. For a left module M, $S = \text{End}_R (M)$ will denote the endomorphism ring of M.

*Email: Mohammed_qader_0@yahoo.com.
§2: Y-CLOSED DUAL RICKART MODULES

In this section, we introduce the concept of the y-closed dual Rickart modules and we illustrate it by some examples. Also, we give some basic properties. We start by the definition.

Definition 2.1: Let M and N be two R-modules. We say that M is N-y-closed dual Rickart module if for every homomorphism $0 \neq f: M \rightarrow N$, $Im f$ is a y-closed submodule of N.

For a module M. If M is M-y-closed dual Rickart module, then we say that M is a y-closed dual Rickart module.

Examples 2.2

1- The module $Z_2 \oplus Z_2$ as Z_2-module is Z_2-y-closed dual Rickart module. To show that, let $0 \neq f: Z_2 \oplus Z_2 \rightarrow Z_2$ be any R-homomorphism. Then $Im f = Z_2$ is a y-closed submodule of Z_2.

2- Consider the module Z as Z-module and let $f: Z \rightarrow Z$ be a map defined by $f(n) = 4n$, $\forall n \in Z$. It is clear that f is an R-homomorphism and $Im f = 4Z$. But $\frac{Z}{4Z} = Z_4$ and Z_4 as Z-module is singular, therefore $Im f = 4Z$ is not a y-closed submodule of Z. Thus Z is not y-closed dual Rickart module.

3- Consider the modules Z_p and $Z_{p\infty}$ as Z-modules. The module Z_p is not $Z_{p\infty}$-y-closed dual Rickart module. To show that, let $i: \frac{1}{p}Z \rightarrow Z_{p\infty}$ be the inclusion map. Since $Z_{p\infty}$ is singular, then $\frac{Z_{p\infty}}{\frac{1}{p}Z}$ is singular, by [2]. Therefore $\frac{1}{p}Z$ is not a y-closed submodule of $Z_{p\infty}$. But $Z_p \simeq \frac{1}{p}Z$ as Z-module, therefore, is not $Z_{p\infty}$-y-closed dual Rickart module.

Remark 2.3: A dual Rickart module needs not to be a y-closed dual Rickart module. For example, the module Z_6 as Z-module is a dual Rickart module, where Z_6 as Z-module is semisimple. Claim that Z_6 as Z-module is not y-closed dual Rickart module. To show that, let $f: Z_6 \rightarrow Z_6$ be a map defined by $f(x) = 2x$, $\forall x \in Z_6$. It is clear that f is a homomorphism and $Im f = \{0, 2, 4\}$. But $\frac{Z_6}{Im f} \simeq Z_2$ and Z_2 as Z-module is singular, therefore $Im f$ is not a y-closed submodule of Z_6. Thus Z_6 is not y-closed dual Rickart module.

Proposition 2.4: Let M and N be two R-modules and let B be a submodule of N. If M is N-y-closed dual Rickart module, then M is B-y-closed dual Rickart module.

Proof. Let $f: M \rightarrow B$ be an R-homomorphism and let $i: B \rightarrow N$ be the inclusion map. Consider the map $i \circ f: M \rightarrow N$. Since M is N-y-closed dual Rickart module, then $Im f = Im i \circ f$ is a y-closed submodule of N and hence $\frac{N}{Im f}$ is nonsingular. But $\frac{N}{Im f}$ is a submodule of $\frac{N}{Im f}$, therefore $\frac{B}{Im f}$ is nonsingular and hence $Im f$ is a y-closed submodule of B. Thus M is B-y-closed dual Rickart module.

Definition 2.5: Let M be an R-module, then M is called a y-closed simple if M and 0 are the only y-closed submodules of M.

Proposition 2.6: Let M be an R-module and let N be a y-closed simple R-module. If M is N-y-closed dual Rickart module, then either

1. $\text{Hom}(M,N)=0$ or
2. Every nonzero R-homomorphism from M to N is an epimorphism.

Proof. Assume that $\text{Hom}(M,N) \neq 0$ and let $f: M \rightarrow N$ be a non-zero R-homomorphism. Since M is N-y-closed dual Rickart, then $Im f$ is y-closed submodule of N. But N is y-closed simple, therefore $Im f = N$ and f is an epimorphism.

Recall that an R-module M is called a Co-Quasi-Dedekind R-module if every nonzero endomorphism of M is an epimorphism, see[3, p2].

Proposition 2.7: Let M_1 and M_2 be R-modules such that M_2 is y-closed simple and M_1 is M_2-y-closed dual Rickart module. If $\text{Hom}(M_1,M_2) \neq 0$, then M_2 is Co-Quasi-Dedekind R-module.

Proof. Assume that there is an R-homomorphism $0 \neq f: M_1 \rightarrow M_2$. Then by proposition (2.6), $Im f = M_2$. Now let $0 \neq g: M_2 \rightarrow M_2$ be an R-homomorphism. Consider the map $g \circ f: M_1 \rightarrow M_2$. Since M_1 is M_2-y-closed dual Rickart module, then $Im g \circ f$ is a y-closed submodule of M_2. But f is an epimorphism, therefore $Im g \circ f = Im g$ is a y-closed submodule of M_2. Since M_2 is y-closed simple, then $Im g = M_2$. Thus M_2 is Co-Quasi-Dedekind R-module.

Proposition 2.8: Let M_1 and M_2 be y-closed simple R-modules. If M_1 is M_2 y-closed dual Rickart module, then either $\text{Hom}(M_1,M_2)=0$ or $M_1 \cong M_2$.

Proof. Assume that $\text{Hom}(M_1,M_2) \neq 0$ and let $0 \neq f: M_1 \rightarrow M_2$ be an R-homomorphism. Since M_1 is M_2 y-closed dual Rickart module, then by Proposition (2.7), f is an epimorphism. Now consider
the following short exact sequence
\[0 \rightarrow \ker f \rightarrow M_1 \rightarrow f \rightarrow M_2 \rightarrow 0 \]
where \(i \) is the inclusion map. Since \(M_2 \) is nonsingular, then \(M_2 \cong \frac{M_1}{\ker f} \) is nonsingular. Hence \(\ker f \) is y-closed submodule of \(M_1 \). But \(M_1 \) is y-closed simple and \(M_1 \neq \ker f \), therefore \(\ker f = 0 \). Thus \(M_1 \cong M_2 \).

§3 DIRECT SUM OF Y-CLOSED DUAL RICKART MODULES
In this section, we study the direct sum of the y-closed dual Rickart modules. We begin with the following theorem.

Theorem 3.1: Let \(M \) and \(N \) be two \(R \)-modules such that \(M = A \oplus B \). If \(M \) is \(N \)-y-closed dual Rickart module, then \(A \) is \(L \)-y-closed dual Rickart module for every submodule \(L \) of \(N \).

Proof. Let \(M \) be \(N \)-y-closed dual Rickart module and \(f : A \rightarrow L \) be an \(R \)-homomorphism. Let \(p : M \rightarrow A \) be the projection map and \(i : L \rightarrow N \) be the inclusion map. Consider the map \((i \circ f \circ p) : M \rightarrow N \). Since \(M \) is \(N \)-y-closed dual Rickart, then \(\text{Im}(i \circ f \circ p) \) is a y-closed submodule of \(N \). But
\[\text{Im}(i \circ f \circ p) = \{ i \circ f \circ p(x), \ x \in M \} \]
\[= \{ i(f(p(a + b))), \ a \in A, b \in B \} \]
\[= \{ f(a), \ a \in A \} = \text{Im} f \]
Therefore \(\text{Im}(i \circ f \circ p) = \text{Im} f \) is a y-closed submodule of \(N \). Hence \(\text{Im} f \) is a y-closed submodule of \(L \). Thus \(A \) is \(L \)-y-closed dual Rickart module.

Proposition 3.2: Let \(M = \bigoplus_{i \in I} M_i \) and \(N = \bigoplus_{i \in I} N_i \) be two \(R \)-modules, such that \(f(M_i) \subseteq N_i, \forall i \in I \). Then \(M \) is \(N \)-y-closed dual Rickart module if and only if each \(M_i \) is \(N_i \)-y-closed dual Rickart module.

Proof. \(\Rightarrow \) Clear by Propositions (2.4) and (3.1)

For the converse, let \(f : M \rightarrow N \) be an \(R \)-homomorphism. We want to show that \(\text{Im} f \) is a y-closed submodule of \(N \). Since \(f(M_i) \subseteq N_i, \forall i \in I \), then we can consider \(f\big|_{M_i} : M_i \rightarrow N_i \). First, claim that \(\text{Im}(f\big|_{M_i}) = \text{Im} f \cap N_i, \forall i \in I \). To show that, let \(f(x_i) \in \text{Im}(f\big|_{M_i}), x_i \in M_i \), then \(f(x_i) \in (\text{Im} f \cap N_i) \). Now let \(f(x) \in (\text{Im} f \cap N_i) \). Then \(x = \sum_{j \in I} x_j \), where \(x_j \in M_j \), for each \(j \in I \) and \(x_j \neq 0 \) for at most a finite number of \(j \in I \). Now \(f(x) = f(\sum_{j \in I} x_j) = \sum_{j \in I} f(x_j) \in \bigoplus_{i \in I} N_i \). But \(f(x) \in N_i \). Therefore \(f(x_j) = 0, \forall j \neq i \) and \(f(x) = f(x_i) \). Hence \(f(x) \in \text{Im}(f\big|_{M_i}) \). Thus \(\text{Im}(f\big|_{M_i}) = \text{Im} f \cap N_i, \forall i \in I \). Claim that \(\text{Im} f = \bigoplus_{i \in I} (\text{Im} f \cap N_i) \). To show that, let \(f(x) \in \text{Im} f, x \in M \). Then \(x = \sum_{i \in I} x_i \), where \(x_i \in M_i, \forall i \in I \) and \(x_i \neq 0 \), for at most a finite number of \(i \in I \). Hence \(f(x) = f(\sum_{i \in I} x_i) = \sum_{i \in I} f(x_i) \), for all \(i \in I \). By our assumption \(f(x_i) \in \text{Im} f \cap N_i, \forall i \in I \). Hence \(f(x) \in \bigoplus_{i \in I} (\text{Im} f \cap N_i) \). Thus \(\text{Im} f = \bigoplus_{i \in I} (\text{Im} f \cap N_i) = \bigoplus_{i \in I} \text{Im}(f\big|_{M_i}) \). Since \(M_i \) is \(N_i \)-y-closed dual Rickart module, for each \(i \in I \), then \(\text{Im}(f\big|_{M_i}) \) is a y-closed submodule of \(N_i \) and hence \(\bigoplus_{i \in I} \text{Im}(f\big|_{M_i}) \) is a y-closed submodule of \(N \). By [4, proposition (2.1.20), p29]. So, \(\text{Im} f \) is a y-closed submodule of \(N \). Thus \(M \) is \(N \)-y-closed dual Rickart module.

Proposition 3.3: Let \(M, N \) be two \(R \)-modules with the property that the sum of any two y-closed submodule of \(N \) is a y-closed submodule of \(N \). The following statements are equivalent
(a) \(M \) is a y-closed dual Rickart module,
(b) \(\sum_{f \in I} f(M) \) is a y-closed submodule of \(M \), where \(I \) is a finitely generated left ideal of \(\text{End}_R(M) \).

Proof. (a) \(\Rightarrow \) (b). Let \(I = (f_1, \ldots, f_n) \) be a finitely generated left ideal of \(\text{End}_R(M) \). Since \(M \) is a y-closed dual Rickart module, then \(\text{Im}(f_j) \) is a y-closed submodule of \(N, \forall 1 \leq j \leq n \). But \(\text{Im}(f_j) = \text{Im}(f_1 + \cdots + f_n) \). Hence \(\sum_{j=1}^n f_j(M) \) is a y-closed submodule of \(N \).

(b) \(\Rightarrow \) (a). Clear.
Recall that an R-module M is called a faithful module if $ann(M) = 0$, where $ann(M) = \{ r \in R \mid rx = 0, \forall x \in M \}$, see [5, p206].

Before we give our next result, let us recall that an R-module M is called dualizable if $\text{Hom}(M, R) \neq 0$, see [6, p10].

Proposition 3.4: Let M be a y-closed simple, faithful R-module. If M is y-closed dual Rickart module, then M is divisible.

Proof. Suppose that M is y-closed simple, faithful and y-closed dual Rickart module. Let R must be commutative. $f(m) = rm$, $\forall m \in M$. It is clear that f is an epimorphism. Since M is a y-closed dual Rickart module, then $Imf = rM$ is a y-closed submodule of M. Since M is a faithful module, then $rM \neq 0$. But M is y-closed simple, therefore $rM = M$. Thus M is divisible.

Recall that an R-module M is called 1/2 cancellation module if it is faithful and for any ideal A of R such that $AM = M$ implies $A = R$, see [7].

Proposition 3.5: Let M be a faithful, finitely generated and y-closed simple R-module, where R is not a field. Then M is not y-closed dual Rickart module.

Proof. Assume that M is a y-closed dual Rickart module and let $0 \neq r \in R$ such that $R = (r)$. Define $f:M \rightarrow M$ by $f(m) = rm$, $\forall m \in M$. It is clear that f is an epimorphism, then $Imf = rM$ is a y-closed submodule of M. Since M is a faithful module, then $rM \neq 0$. But M is an y-closed simple module, therefore $rM = M$. Since M is finitely generated and faithful, then M is 1/2 cancellation, by [7]. So, $R = (r)$, which is a contradiction. Thus M is not y-closed dual Rickart module.

Proposition 3.6: Let M be an R-module such that R is M-y-closed dual Rickart module. Then every cyclic submodule of M is a y-closed submodule.

Proof. Suppose that M is an R-module such that R is M-y-closed dual Rickart module and let $0 \neq m \in M$. Define $f : R \rightarrow Rm$ by $f(r) = rm$, $r \in R$. Let $i : Rm \rightarrow M$ be the inclusion map. Consider the map $i \circ f : R \rightarrow M$. It is clear that $Im(i \circ f) = Rm$. Since R is M-y-closed dual Rickart, then $Im i \circ f$ is a y-closed submodule of M. Thus Rm is a y-closed submodule of M.

Recall that an R-module M is called y-extending if for any submodule A of M there exists a direct summand K of M such that $A \cap K$ is essential in A and $A \cap K$ is essential in K, see [8].

Proposition 3.7: Let M be a y-extending R-module. If $\bigoplus_i R$ is M-y-closed dual Rickart module, for every index set I, then M is a semisimple module.

Proof. Let N be a submodule of M and let $\{n_{\alpha}; \alpha \in \Lambda \}$ be a set of generators of N. For each $\alpha \in \Lambda$, define $f_\alpha : R \rightarrow Rn_\alpha$ by $f_\alpha(r) = rn_\alpha$, $\forall r \in R$. Now define $f : \bigoplus_i R \rightarrow N$ by $(f_\alpha)_{\alpha \in \Lambda}(r) = \sum_{\alpha \in \Lambda} r_\alpha n_\alpha$. Its is clear that f is an epimorphism. Let $i : N \rightarrow M$ be the inclusion map. Consider the map $i \circ f : \bigoplus_i R \rightarrow M$. Since $\bigoplus_i R$ is M-y-closed dual Rickart module, then $Im i \circ f = N$ is a y-closed submodule of M. But M is a y-extending module, therefore N is a direct summand of M. Thus M is semisimple.

Proposition 3.8: Let M be y-extending and a self-generator R-module. If $\bigoplus_i M$ is a y-closed dual Rickart module for every index set I, then M is semisimple.

Proof. Let N be a submodule of M. Since M is a self-generator, then there exists a family $\{f_\alpha\}_{\alpha \in \Lambda}$ where $f_\alpha : M \rightarrow N$ is an R-homomorphism such that $\sum_{\alpha \in \Lambda} Imf_\alpha = N$. Define $f : \bigoplus_{\alpha \in \Lambda} M_\alpha \rightarrow N$ by $f((m_\alpha)_{\alpha \in \Lambda}) = \sum_{\alpha \in \Lambda} f_\alpha(m_\alpha)$. It is clear that f is an epimorphism. Let $i : N \rightarrow M$ be the inclusion map. Consider the map $i \circ f : \bigoplus_{\alpha \in \Lambda} M_\alpha \rightarrow M$. Since $\bigoplus_{\alpha \in \Lambda} M_\alpha M$ is a y-closed dual Rickart module, then $Im i \circ f = Imf = N$ is a y-closed submodule of M. But M is a y-extending module, therefore N is a direct summand of M. Thus M is semisimple.

Now, we give the following characterization.

Theorem 3.9: Let M_1 and M_2 be two R-modules. Then the following statements are equivalent.

1. M_1 is M_2-y-closed dual Rickart module;
2. For every submodule N of M_2, every direct summand K of M_1 is N-y-closed dual Rickart module;
3. For every direct summand K of M_1, every y-closed submodule L of M_2, and for every $f \in \text{Hom}_R(M_1, L)$, the Image of the restricted map $f|_K$ is a y-closed submodule of K.

Proof. (1) \Rightarrow (2) Let K be a direct summand of M_1, N be a submodule of M_2, and $f : K \rightarrow N$ be an R-homomorphism. Let $M = K \bigoplus K_1$ for some submodule K_1 of M. Define $g: M_1 \rightarrow M_2$ by

$$
g(x) = \begin{cases} f(x), & \text{if } x \in K \\ 0, & \text{if } x \in K_1 \end{cases}
$$
Clearly, \(g \) is an \(R \)-homomorphism. Since \(M_1 \) is \(M_2 \)-\(y \)-closed dual Rickart module, then \(\text{Im} g \) is a \(y \)-closed submodule of \(M_2 \) and hence \(\frac{M_2}{\text{Im} g} \) is nonsingular. But,
\[
\text{Im} g = \{ g(a + b), \quad a \in K, \quad b \in K_1 \} = \{ f(a), \quad a \in K \} = \text{Im} f. \quad \text{So} \quad \text{Im} f \text{ is a } y\text{-closed submodule of } M_2. \quad \text{Hence} \quad \frac{M_2}{\text{Im} f} \text{ is nonsingular. But } \frac{N}{\text{Im} f} \text{ is a submodule of } \frac{M_2}{\text{Im} f}, \text{ therefore } \frac{N}{\text{Im} f} \text{ is nonsingular. Thus } \text{Im} f \text{ is a } y\text{-closed submodule of } N.
\]

(2) \(\Rightarrow \) (3). Let \(K \) be a direct summand of \(M_3 \) and \(L \) is \(y \)-closed submodule of \(M_2 \). Let \(f: M_1 \to L \) be \(R \)-homomorphism. Since \(f|_K: K \to L \) and \(K \) is \(L \)-\(y \)-closed dual Rickart module, then \(\text{Im}(f|_K) \) is a \(y \)-closed submodule of \(L \).

(3) \(\Rightarrow \) (1) Let \(f: M_1 \to M_2 \) be an \(R \)-homomorphism. Take \(K = M_1 \) and \(L = M_2 \). Since \(f|_K: K \to L \) and \(L \) is a \(y \)-closed submodule of \(M_2 \), therefore \(\text{Im} f \) is a \(y \)-closed submodule of \(M_2 \). Thus \(M_2 \) is \(M_2 \)-\(y \)-closed dual Rickart module.

Remark 3.10: Let \(M \) and \(N \) be two \(R \)-modules and \(f: M \to N \) be an \(R \)-homomorphism. Let \(A_M = M \oplus 0, B_N = 0 \oplus N \). \(\tilde{f}: A_M \to B_N \) be a map defined by \(\tilde{f}(m,0) = (0,f(m)) \), for every \(m \in M \) and \(T_f = \{ x + \tilde{f}(x), x \in A_M \} \). Then,

1- \(M \oplus N = A_M \oplus B_N \)
2- \(\tilde{f} \) is an \(R \)-homomorphism
3- \(\ker \tilde{f} = \ker f \oplus 0 \)
4- \(T_f \) is a submodule of \(M \oplus N \)
5- \(A_M + T_f = A_M \oplus \text{Im} \tilde{f} \).

In this paper, by \(A_M, B_M, \tilde{f}, T_f \), we mean the same concepts in the previous above remark.

Now, we will give characterization for the notion that \(M \) is \(N \)-\(y \)-closed dual Rickart module.

Theorem 3.11: Let \(M \) and \(N \) be two \(R \)-modules. Then \(M \) is \(N \)-\(y \)-closed dual Rickart module if and only if, for every homomorphism \(f: M \to N \), \(A_M + T_f \) is a \(y \)-closed of \(M \oplus N \).

Proof. Let \(f: M \to N \) be an \(R \)-homomorphism. Since \(M \) is \(N \)-\(y \)-closed dual Rickart, then \(\text{Im} f \) is a \(y \)-closed submodule of \(N \) and so \(0 \oplus \text{Im} f \) is \(y \)-closed submodule of \(0 \oplus N \). Therefore \(\text{Im} \tilde{f} \) is \(y \)-closed submodule of \(\text{Im} f \). Hence \(A_M \oplus \text{Im} \tilde{f} \) is \(y \)-closed submodule of \(A_M \oplus B_N \). So \(A_M \oplus \text{Im} \tilde{f} \) is \(y \)-closed submodule of \(M \oplus N \). By the same argument of the proof of the theorem in [9, Theorem(2.2)], \(A_M \oplus \text{Im} \tilde{f} = A_M + T_f \). Thus \(A_M + T_f \) is a \(y \)-closed sumodule of \(M \oplus N \).

For the converse, Let \(f: M \to N \) be an \(R \)-homomorphism. Since \(A_M + T_f \) is \(y \)-closed submodule of \(M \oplus N \), and \(A_M + T_f = A_M \oplus \text{Im} \tilde{f} \), therefore \(\frac{M \oplus N}{A_M + T_f} = \frac{A_M \oplus B_N}{A_M \oplus \text{Im} \tilde{f}} \simeq \frac{B_N}{\text{Im} \tilde{f}} \) is nonsingular. Therefore \(\text{Im} \tilde{f} \) is \(y \)-closed submodule of \(0 \oplus N \). Hence \(\frac{0 \oplus N}{\text{Im} \tilde{f}} \simeq \frac{\text{Im} \tilde{f}}{\text{Im} \tilde{f}} \simeq \frac{\frac{N}{\text{Im} \tilde{f}}}{\text{Im} \tilde{f}} \) is nonsingular. So \(\text{Im} f \) is \(y \)-closed submodule of \(M \). Thus \(M \) is \(N \)-\(y \)-closed dual Rickart module.

References

1. Ghawi, Th. Y. 2016. On Closed dual Rickart Modules. *Journal of Kufa for Mathematics and Computer*, 4(1): 23-31, March, 2017.

2. Sahib, L. H. and Al-Bahraini, B. H.. 2013. *Injectivity and chain conditions on y-closed submodules*, Iraqi Journal of Science, 54(3): 642-650.

3. Hadi, M. and Al-aenshi, S. N. 2017. Strongly Coretractable modules, ***Iraqi Journal of science***, 58(2C): 1069-1075.

4. Sahib, L. H. 2012. Extending, Injectivity and Chain Condition On y-closed sumodules, M.SC. Thesis, University of Baghdad.

5. Kasch, F. 1982. *Modules and Rings*, Acad. press, London.

6. Zelmanowitz, J. 1971. Commutative Endomorphism Rings, *Can. J. Math*, XX111(1): 69-76.

7. Naum, A.G. 1996. 1/2 Cancellation modules , *Kyungpook Mathematical Journal*, 36: 97-106.

8. Akalan, E., Birkenmeier, G. F. and Tercan, A. 2009. Goldi Extending modules, *Communication in Algebra*, 73(2): 663-683.

9. Rahman, M. Q. and Al-Bahraini, B. H. 2020. On dual Rickart modules, to appear in *Journal of Physics Conference Series*, will be published on end (April) 2020.