Stochastic Calculus for Markov Processes Associated with Semi-Dirichlet Forms

Chuan-Zhong Chen
School of Mathematics and Statistics
Hainan Normal University
Haikou, 571158, China
ccz0082@aliyun.com

Li Ma
School of Mathematics and Statistics
Hainan Normal University
Haikou, 571158, China
lma5140377@gmail.com

Wei Sun
Department of Mathematics and Statistics
Concordia University
Montreal, H3G 1M8, Canada
wei.sun@concordia.ca

Abstract

Let $(\mathcal{E}, D(\mathcal{E}))$ be a quasi-regular semi-Dirichlet form and $(X_t)_{t \geq 0}$ be the associated Markov process. For $u \in D(\mathcal{E})_{loc}$, denote $A_t^{[u]} := \tilde{u}(X_t) - \tilde{u}(X_0)$ and $F_t^{[u]} := \sum_{0 < s \leq t} (\tilde{u}(X_s) - \tilde{u}(X_{s-}))1_{\{|\tilde{u}(X_s) - \tilde{u}(X_{s-})| > 1\}}$, where \tilde{u} is a quasi-continuous version of u. We show that there exist a unique locally square integrable martingale additive functional $Y_t^{[u]}$ and a unique continuous local additive functional $Z_t^{[u]}$ of zero quadratic variation such that

$$A_t^{[u]} = Y_t^{[u]} + Z_t^{[u]} + F_t^{[u]}.$$

Further, we define the stochastic integral $\int_0^t \delta(X_{s-}) dA_s^{[u]}$ for $v \in D(\mathcal{E})_{loc}$ and derive the related Itô’s formula.
1 Introduction

Let \((\mathcal{E}, D(\mathcal{E}))\) be a quasi-regular semi-Dirichlet form on \(L^2(E; m)\) with associated Markov process \((\langle X_t \rangle_{t \geq 0}, (P_x)_{x \in E})\). For \(u \in D(\mathcal{E})_{\text{loc}}\), we denote the additive functional (AF in short) \(A[u]_{\text{loc}}\) by

\[
A[u]_{\text{loc}} := \tilde{u}(X_t) - \tilde{u}(X_0),
\]

where \(\tilde{u}\) is an \(\mathcal{E}\)-quasi-continuous \(m\)-version of \(u\). In this paper, we will establish a Fukushima type decomposition for \(A[u]_{\text{loc}}\) and study the stochastic integral

\[
\int_0^t \tilde{v}(X_s) dA_s[u],
\]

for \(v \in D(\mathcal{E})_{\text{loc}}\). We refer the reader to [7], [15], [14] and the next section for notations and terminologies of this paper.

The celebrated Fukushima’s decomposition was originally established for regular symmetric Dirichlet forms (see [6] and [7, Theorem 5.2.2]) and then extended to the non-symmetric and quasi-regular cases (cf. [19, Theorem 5.1.3] and [15, Theorem VI.2.5]). If \((\mathcal{E}, D(\mathcal{E}))\) is a quasi-regular Dirichlet form and \(u \in D(\mathcal{E})\), Fukushima’s decomposition tells us that there exist a unique martingale AF (MAF in short) \(M[u]_{\text{loc}}\) of finite energy and a unique continuous AF (CAF in short) \(N[u]_{\text{loc}}\) of zero energy such that

\[
\tilde{u}(X_t) - \tilde{u}(X_0) = M[t][u]_{\text{loc}} + N[t][u]_{\text{loc}}. \tag{1.1}
\]

If \((\mathcal{E}, D(\mathcal{E}))\) is a strong local symmetric Dirichlet form, Fukushima’s decomposition (1.1) holds also for \(u \in D(\mathcal{E})_{\text{loc}}\) with \(M[u]_{\text{loc}}\) being a MAF locally of finite energy and \(N[u]_{\text{loc}}\) being a CAF locally of zero energy (cf. [7, Theorem 5.5.1]). For a general symmetric Dirichlet form \((\mathcal{E}, D(\mathcal{E}))\), Kuwae showed that the Fukushima type decomposition holds for a subclass of \(D(\mathcal{E})_{\text{loc}}\) (see [12, Theorem 4.2]). If \((\mathcal{E}, D(\mathcal{E}))\) is a (not necessarily symmetric) Dirichlet form, for \(u \in D(\mathcal{E})_{\text{loc}}\), Walsh showed in [26, 27] that there exist a MAF \(W[u]_{\text{loc}}\) locally of finite energy and a CAF \(C[u]_{\text{loc}}\) locally of zero energy such that

\[
A[t][u]_{\text{loc}} = W[t][u]_{\text{loc}} + C[t][u]_{\text{loc}} + V[t][u]_{\text{loc}}, \tag{1.2}
\]

where

\[
V[t][u]_{\text{loc}} := \sum_{0 < s \leq t} (\tilde{u}(X_s) - \tilde{u}(X_{s-})) 1_{\{\tilde{u}(X_s) - \tilde{u}(X_{s-}) > 1\}} 1_{\{t < \zeta\}} - u(X_{\zeta-}) 1_{\{t \geq \zeta\}}.
\]

Hereafter \(\zeta\) denotes the lifetime of \(X\).

If \((\mathcal{E}, D(\mathcal{E}))\) is only a semi-Dirichlet form, the situation becomes more complicated. Note that the assumption of the existence of dual Markov process plays a
crucial role in Fukushima’s decomposition. In fact, without that assumption, the usual definition of energy of AFs is questionable. If \((\mathcal{E}, D(\mathcal{E}))\) is a quasi-regular local semi-Dirichlet form, Ma et al. showed in [13] that Fukushima’s decomposition holds for \(u \in D(\mathcal{E})_{\text{loc}}\). For a general regular semi-Dirichlet form, Oshima showed in [20] that Fukushima’s decomposition holds for \(u \in D(\mathcal{E})_{\text{b}}\).

Let \((\mathcal{E}, D(\mathcal{E}))\) be a quasi-regular semi-Dirichlet form. We define \(I(\zeta) := [0, \zeta[\cup]\zeta],\) with \(\zeta\) being the totally inaccessible part of \(\zeta\). Denote by \(J\) the jumping measure of \((\mathcal{E}, D(\mathcal{E}))\). For \(u \in D(\mathcal{E})_{\text{loc}}\), Z.M. Ma et al. showed in [17, Theorem 1.4] (cf. also [24]) that the following two assertions are equivalent to each other.

(i) \(u\) admits a Fukushima type decomposition. That is, there exist a locally square integrable MAF \(M[u]\) on \(I(\zeta)\) and a local CAF \(N[u]\) on \(I(\zeta)\) which has zero quadratic variation such that \((1.1)\) holds.

(ii) \(u\) satisfies \((S): \mu_u(dx) := \int_E (\tilde{u}(x) - \tilde{u}(y))^2 J(dy, dx)\) is a smooth measure.

Moreover, if \(u\) satisfies Condition \((S)\), then the decomposition \((1.1)\) is unique up to the equivalence of local AFs.

In the first part of this paper, we will establish a new Fukushima type decomposition for \(u \in D(\mathcal{E})_{\text{loc}}\) without Condition \((S)\). Denote

\[
F_t^{[u]} := \sum_{0 < s \leq t} (\tilde{u}(X_s) - \tilde{u}(X_{s-}))(\tilde{u}(X_{s-}) - \tilde{u}(X_{s-}))1_{\{|\tilde{u}(X_{s-}) - \tilde{u}(X_{s-})| > 1\}}. \tag{1.3}
\]

In Section 2 (see Theorem 2.2 below), we will show that, for any \(u \in D(\mathcal{E})_{\text{loc}}\), there exist a unique locally square integrable MAF \(Y^{[u]}\) on \(I(\zeta)\) and a unique continuous local AF \(Z^{[u]}\) which has zero quadratic variation such that

\[
A_t^{[u]} = Y_t^{[u]} + Z_t^{[u]} + F_t^{[u]} \tag{1.4}
\]

The decomposition \((1.4)\) gives the most general form of the Fukushima type decomposition in the framework of semi-Dirichlet forms. It implies in particular that \(A^{[u]}\) is a Dirichlet process (cf. [4, 5]), i.e., summation of a semi-martingale and a zero quadratic variation process.

In the second part of this paper, we will define the stochastic integral \(\int_0^t \tilde{v}(X_{s-}) dA_s^{[u]}\) for \(u, v \in D(\mathcal{E})_{\text{loc}}\) and derive the related Itô’s formula.

Let \((\mathcal{E}, D(\mathcal{E}))\) be a regular symmetric Dirichlet form. For \(u \in D(\mathcal{E})\) and \(v \in D(\mathcal{E})_{\text{b}},\) Nakao studied in [18] the stochastic integral \(\int_0^t \tilde{v}(X_{s-}) dA_s^{[u]}\) by introducing the now called Nakao’s integral \(\int_0^t \tilde{v}(X_{s-}) dN_s^{[u]}\). Later, Z.Q. Chen et. al and Kuwae (see [3] and [12]) extended Nakao’s integral to a larger class of integrators as well as integrands. By using different methods, Walsh ([23]) and C.Z. Chen et al. ([2]) independently extended Nakao’s integral from the setting of symmetric Dirichlet forms to that of non-symmetric Dirichlet forms. By virtue of the decomposition
Walsh also defined Nakao’s integral for more general integrators as well as integrands in the setting of non-symmetric Dirichlet forms (see [27]). In all of these references, the related Itô’s formulas have been derived for the stochastic integral \(\int_0^t \tilde{v}(X_{s-})dA_s^{[u]} \).

In Section 3, we will define the stochastic integral \(\int_0^t \tilde{v}(X_{s-})dA_s^{[u]} \) for \(u, v \in D(\mathcal{E})_{loc} \) and derive the related Itô’s formula in the setting of semi-Dirichlet forms. Due to the non-Markovian property of the dual form, all the previous known methods in defining Nakao’s integral ceased to work. Note that if \((\mathcal{E}, D(\mathcal{E}))\) is only a semi-Dirichlet form, its symmetric part is a symmetric positivity preserving form but in general not a symmetric Dirichlet form and the dual killing measure might not exist. These cause extra difficulties in defining Nakao’s integral. In this paper, we will combine the method of [2] with the localization technique of [13] and [17] to define the stochastic integral \(\int_0^t \tilde{v}(X_{s-})dA_s^{[u]} \) and derive the related Itô’s formula.

In Section 4, we will give concrete examples of semi-Dirichlet forms for which our results can be applied.

2 Decomposition of \(\tilde{u}(X_t) - \tilde{u}(X_0) \) without Condition (S)

The basic setting of this paper is the same as that in [17]. We refer the reader to [17] for more details. Let \(E \) be a metrizable Lusin space and \(m \) be a \(\sigma \)-finite positive measure on its Borel \(\sigma \)-algebra \(\mathcal{B}(E) \). We consider a quasi-regular semi-Dirichlet form \((\mathcal{E}, D(\mathcal{E}))\) on \(L^2(E; m) \). Denote by \((T_t)_{t \geq 0}\) and \((G_\alpha)_{\alpha \geq 0}\) (resp. \((\hat{T}_t)_{t \geq 0}\) and \((\hat{G}_\alpha)_{\alpha \geq 0}\)) the semigroup and resolvent (resp. co-semigroup and co-resolvent) associated with \((\mathcal{E}, D(\mathcal{E}))\). Let \(\mathbf{M} = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, (X_t)_{t \geq 0}, (P_x)_{x \in \mathcal{E}^0}) \) be an \(m \)-tight special standard process which is properly associated with \((\mathcal{E}, D(\mathcal{E}))\).

Throughout this paper, we fix a function \(\phi \in L^1(E; m) \) with \(0 < \phi \leq 1 \) \(m \)-a.e. and set \(h = G_1 \phi \), \(\hat{h} = \hat{G}_1 \phi \). Denote \(\tau_B := \inf\{t > 0 \mid X_t \notin B\} \) for \(B \subset E \). Let \(V \) be a quasi-open subset of \(E \). We denote by \(X^V = (X^V_t)_{t \geq 0} \) the part process of \(X \) on \(V \) and denote by \((\mathcal{E}^V, D(\mathcal{E}^V))\) the part form of \((\mathcal{E}, D(\mathcal{E}))\) on \(L^2(V; m) \). It is known that \(X^V \) is a standard process, \(D(\mathcal{E}^V) = D(\mathcal{E})_V = \{u \in D(\mathcal{E}) \mid \hat{u} = 0, \mathcal{E}\text{-q.e. on } V^c\} \), and \((\mathcal{E}^V, D(\mathcal{E}^V))\) is a quasi-regular semi-Dirichlet form (cf. [13]). Denote by \((\hat{T}_t^V)_{t \geq 0}\), \((\hat{G}_\alpha^V)_{\alpha \geq 0}\) and \((\hat{\mathcal{G}}_\alpha^V)_{\alpha \geq 0}\) the semigroup, co-semigroup, resolvent and co-resolvent associated with \((\mathcal{E}^V, D(\mathcal{E}^V))\), respectively. Define \(\hat{h}^V := \hat{G}_1^V \phi \) and \(\hat{h}^{V,*} := e^{-2\tau} \hat{T}_1^V (\hat{G}_2^V \phi) \). Then \(\hat{h}^V, \hat{h}^{V,*} \in D(\mathcal{E})_V \) and \(\hat{h}^{V,*} \leq \hat{h}^V \). Denote \(D(\mathcal{E})_{V,b} := \mathcal{B}(E) \cap D(\mathcal{E}^V) \).

For an AF \(A = (A_t)_{t \geq 0} \) of \(X^V \), we define

\[
e^V(A) := \lim_{t \downarrow 0} \frac{1}{2t} E_{h^{V,*}}(A^2_t)
\]
whenever the limit exists in $[0, \infty]$. For a local AF $B = (B_t)_{t \geq 0}$ of X, we define

$$e^{V_\ast}(B) := \lim_{t \downarrow 0} \frac{1}{2t} E_{_H} e^{V_\ast - m(B_t \wedge \tau_V)}$$

whenever the limit exists in $[0, \infty]$.

Define

$$\dot{M}^V := \{ M \mid M \text{ is an AF of } X^V, \; E_x(M^2_t) < \infty, E_x(M_t) = 0 \text{ for all } t \geq 0 \text{ and } \mathcal{E}\text{-q.e. } x \in V, e^V(M) < \infty \},$$

$$\mathcal{N}_c^V := \{ N \mid N \text{ is a CAF of } X^V, E_x(\|N_t\|) < \infty \text{ for all } t \geq 0 \text{ and } \mathcal{E}\text{-q.e. } x \in V, e^V(N) = 0 \},$$

$$\Theta := \{ \{V_n\} \mid V_n \text{ is } \mathcal{E}\text{-quasi-open}, V_n \subset V_{n+1} \text{ } \mathcal{E}\text{-q.e. } \forall n \in \mathbb{N}, \text{ and } E = \cup_{n=1}^{\infty} V_n \text{ } \mathcal{E}\text{-q.e.} \},$$

$$D(\mathcal{E})_{loc} := \{ u \mid \exists \{V_n\} \in \Theta \text{ and } \{u_n\} \subset D(\mathcal{E}) \text{ such that } u = u_n \text{ m-a.e. on } V_n, \forall n \in \mathbb{N} \},$$

$$\dot{M}_{loc} := \{ M \mid M \text{ is a local AF of } M, \exists \{V_n\}, \{E_n\} \in \Theta \text{ and } \{M^n \mid M^n \in \dot{M}^V_n \} \text{ such that } E_n \subset V_n, M_{t \wedge \tau_{E_n}} = M^n_{t \wedge \tau_{E_n}}, t \geq 0, n \in \mathbb{N} \}$$

and

$$\mathcal{L}_c := \{ N \mid N \text{ is a local AF of } M, \exists \{E_n\} \in \Theta \text{ such that } t \rightarrow N_{t \wedge \tau_{E_n}} \text{ is continuous and of zero quadratic variation, } n \in \mathbb{N} \}.$$

In the above definition, $\{N_{t \wedge \tau_{E_n}}\}$ is said to be of zero quadratic variation if its quadratic variation vanishes in P-measure, more precisely, if it satisfies

$$\sum_{k=0}^{[T/\varepsilon]} (N_{\{((k+1)\varepsilon) \wedge \tau_{E_n}\}} - N_{\{k\varepsilon \wedge \tau_{E_n}\}})^2 \rightarrow 0 \text{ as } l \rightarrow \infty \text{ in } P\text{-measure},$$

for any $T > 0$ and any sequence $\{\varepsilon_l\}_{l \in \mathbb{N}}$ converging to 0.

We use ζ_t to denote the totally inaccessible part of ζ, by which we mean that ζ_t is an $\{\mathcal{F}_t\}$-stopping time and is the totally inaccessible part of ζ w.r.t. P_x for \mathcal{E}-q.e. $x \in E$. By [17, Proposition 2.4], such ζ_t exists and is unique in the sense of P_x-a.s. for \mathcal{E}-q.e. $x \in E$. We write $I(\zeta) := [0, \zeta[\cup [\zeta_t]$. By [17, Proposition 2.4], there exists a $\{V_n\} \in \Theta$ such that for any $\{U_n\} \in \Theta$, $I(\zeta) = \cup_{n}[0, \tau_{V_n \cap U_n}]$ P_x-a.s. for \mathcal{E}-q.e. $x \in E$. Therefore $I(\zeta)$ is a predictable set of interval type (cf. [9, Theorem 8.18]). By the local compactification method (see [15, Theorem
VI.1.6] and [10 Theorem 3.5]) in the semi-Dirichlet forms setting, we may assume without loss of generality that \((X_t)_{t \geq 0}\) is a Hunt process and \(E\) is a locally compact separable metric space whenever necessary.

In this paper a local AF \(M\) is called a locally square integrable MAF on \(I(\zeta)\), denoted by \(M \in \mathcal{M}_\text{loc}^{I(\zeta)}\), if \(M \in (\mathcal{M}_\text{loc}^2)^{I(\zeta)}\) in the sense of [9 Definition 8.19]. For \(u \in D(\mathcal{E})_{\text{loc}}\), we define the bounded variation process \(F^{[u]}\) as in (1.3). Denote by \(J(dx, dy)\) and \(K(dx)\) the jumping and killing measures of \((\mathcal{E}, D(\mathcal{E}))\), respectively (cf. [10]). Let \((N(x, dy), H_s)\) be a Lévy system of \(X\) and \(\mu_H\) be the Revuz measure of the positive ACF (PCAF in short) \(H\). Then we have \(J(dx, dy) = \frac{1}{2}N(x, dy)\mu_H(dx)\) and \(K(dx) = N(x, \Delta)\mu_H(dx)\). Define (cf. [13, Theorem 5.3])

\[
\hat{S}_0^* := \{ \mu \in S_0 \mid \hat{U}_1\mu \leq c\hat{G}_1\phi \text{ for some constant } c > 0 \},
\]

where \(S_0\) denotes the family of positive measures of finite energy integral and \(\hat{U}_1\mu\) is the 1-co-potential.

We put the following assumption:

Assumption 2.1. There exist \(\{V_n\} \in \Theta\) and locally bounded function \(\{C_n\}\) on \(\mathbb{R}\) such that for each \(n \in \mathbb{N}\), if \(u, v \in D(\mathcal{E})_{V_n, b}\) then \(uv \in D(\mathcal{E})\) and

\[
\mathcal{E}(uv, uv) \leq C_n(\|u\|_\infty + \|v\|_\infty)(\mathcal{E}_1(u, u) + \mathcal{E}_1(v, v)).
\]

Now we can state the main result of this section.

Theorem 2.2. Let \((\mathcal{E}, D(\mathcal{E}))\) be a quasi-regular semi-Dirichlet form on \(L^2(E; m)\) satisfying Assumption 2.1. Suppose \(u \in D(\mathcal{E})_{\text{loc}}\). Then,

(i) There exist \(Y^{[u]} \in \mathcal{M}_\text{loc}^{I(\zeta)}\) and \(Z^{[u]} \in \mathcal{L}_c\) such that

\[
\tilde{u}(X_t) - \tilde{u}(X_0) = Y^{[u]}_t + Z^{[u]}_t + F^{[u]}_t, \quad t \geq 0, \quad P_x\text{-a.s. for } \mathcal{E}\text{-q.e. } x \in E.
\]

The decomposition (2.1) is unique up to the equivalence of local AFs and the continuous part of \(M^{[u]}\) belongs to \(\mathcal{M}_\text{loc}\).

(ii) There exists an \(\{E_n\} \in \Theta\) such that for \(n \in \mathbb{N}\), \(\{Y^{[u]}_{t \wedge E_n}\}\) is a \(P_x\)-square-integrable martingale for \(\mathcal{E}\)-q.e. \(x \in E\), \(e^{E_n, *}(Y^{[u]}) < \infty\); \(E_x[\{Z^{[u]}_{t \wedge E_n}\}]^2 < \infty\) for \(t \geq 0\), \(\mathcal{E}\)-q.e. \(x \in E\), \(e^{E_n, *}(Z^{[u]}) = 0\).

A Fukushima type decomposition for \(A^{[u]}\) has been established in [17] under Condition (S). Below we will follow the argument of [17] to establish the decomposition for \(A^{[u]} - F^{[u]}\) without assuming Condition (S). Before proving Theorem 2.2 we prepare some lemmas.

We fix a \(\{V_n\} \in \Theta\) satisfying Assumption 2.1. Without loss of generality, we assume that \(\tilde{h}\) is bounded on each \(V_n\), otherwise we may replace \(V_n\) by \(V_n \cap \{\tilde{h} < n\}\). Since \(\tilde{h}^{V_n} = \hat{G}_1^{V_n} \phi \leq \hat{G}_1 \phi = \tilde{h}\), \(\tilde{h}^{V_n}\) is bounded on \(V_n\). To simplify notations, we write

\[
\tilde{h}_n := \tilde{h}^{V_n}.
\]
Lemma 2.3. ([17], Lemma 1.12) Let \(u \in D(\mathcal{E})_{V_n,b} \). Then there exist unique \(M^n[u] \in \mathcal{M}^{V_n} \) and \(N^n[u] \in \mathcal{N}^{V_n} \) such that for \(\mathcal{E} \)-a.e. \(x \in V_n \),

\[
\tilde{u}(X^n_t) - \tilde{u}(X^n_0) = M^n[u] + N^n[u], \quad t \geq 0, \quad P_x\text{-a.s.} \tag{2.2}
\]

We now fix a \(u \in D(\mathcal{E})_{loc} \). Then, there exist \(\{V^n_1\} \in \Theta \) and \(\{u_n\} \subset D(\mathcal{E}) \) such that \(u = u_n \) m-a.e. on \(V^n_1 \). By [16] Proposition 3.6], we may assume without loss of generality that each \(u_n \) is \(\mathcal{E} \)-quasi-continuous. By [16] Proposition 2.16], there exists an \(\mathcal{E} \)-nest \(\{F^n_1\} \) of compact subsets of \(E \) such that \(\{u_n\} \subset C\{F^n_1\} \). Denote by \(V^n_2 \) the finely interior of \(F^n_1 \). Then \(\{V^n_2\} \in \Theta \). Denote \(V^n_3 = V_n \cap V^n_1 \cap V^n_2 \). Then \(\{V^n_3\} \in \Theta \) and each \(u_n \) is bounded on \(V^n_3 \).

For \(n \in \mathbb{N} \), we define \(E^n = \{x \in E | \tilde{h}_n(x) > \frac{1}{n} \} \), where \(h_n := G^n \phi \). Then \(\{E^n\} \in \Theta \) satisfying \(\overline{E^n} \subset E_{n+1} \) \(\mathcal{E} \)-q.e. and \(E^n \subset V_n \) \(\mathcal{E} \)-q.e. for each \(n \in \mathbb{N} \) (cf. [11] Lemma 3.8]). Here \(\overline{E^n} \) denotes the \(\mathcal{E} \)-quasi-closure of \(E^n \). Define \(f_n = n \tilde{h}_n \wedge 1 \). Then \(f_n \in D(\mathcal{E})_{V_n,b} \), \(f_n = 1 \) on \(E^n \) and \(f_n = 0 \) on \(V^n_3 \). Denote by \(Q_n \) the bound of \(|u_n| \) on \(V^n_3 \). By [11] (2.1) and Assumption 2.1 we find that \(\left[(-Q_n f_n) \vee u_n \wedge (Q_n f_n)\right] f_n \in D(\mathcal{E})_{V_n,b} \). To simplify notations, below we use still \(u_n \) to denote \(\left[(-Q_n f_n) \vee u_n \wedge (Q_n f_n)\right] \). Then we have \(u_n, u_n f_n \in D(\mathcal{E})_{V_n,b} \), and \(u = u_n = u_n f_n \) on \(E^n \cap V^n_3 \).

Denote by \(J^n(dx, dy) \) and \(K^n \) the jumping and killing measures of \((\mathcal{E}^{V_n}, D(\mathcal{E}^{V_n})) \), respectively. Let \((N^n(x, dy), H^n) \) be a Lévy system of \(X^n \) and \(\mu_{H^n} \) be the Revuz measure of \(H^n \). Then \(J^n(dx, dy) = \frac{1}{2} N^n(x, dy) \mu_{H^n}(dx) \) and \(K^n(dx) = N^n(x, \Delta) \mu_{H^n}(dx) \). For each \(n \in \mathbb{N} \), since \(f_n, u_n f_n \in D(\mathcal{E})_{V_n,b} \), \(f_n, u_n f_n \) satisfy Condition (S) by [17] Proposition 1.8]. Hence we may select a \(\{V^n_4\} \in \Theta \) such that for each \(n \in \mathbb{N} \), \(V^n_4 \subset V_n \), and

\[
\int_{V^n_4} \int_{V^n_4} (f_n(x) - f_n(y))^2 J^n(dy, dx) < \infty,
\]

\[
\int_{V^n_4} \int_{V^n_4} ((u_n f_n)(x) - (u_n f_n)(y))^2 J^n(dy, dx) < \infty, \tag{2.3}
\]

and

\[
K^n(V^n_4) < \infty.
\]

To simplify notations, we use still \(E^n \) to denote \(E^n \cap V^n_3 \cap V^n_4 \). Then we have \(\{E^n\} \in \Theta \), \(E^n \subset V_n \), \(u_n f_n \in D(\mathcal{E})_{V_n,b} \) and \(u = u_n f_n \) on \(E^n \) for each \(n \in \mathbb{N} \).

Lemma 2.4. Let \(u \in D(\mathcal{E})_{loc} \). Denote

\[
F^{[u],*} := \sum_{0 < s \leq t} (\tilde{u}(X^n_s) - \tilde{u}(X^n_{s-}))^2 1_{\{\tilde{u}(X^n_s) - \tilde{u}(X^n_{s-})\leq 1\}}.
\]

Then, \(F^{[u],*} \) is integrable w.r.t. \(P_\nu := \int P_x \nu(dx) \) for any \(\nu \in \mathcal{S}_{p_0}^q \) satisfying \(\nu(E) < \infty \).
Proof. Let $\nu \in \hat{S}_{00}^*$ with $\nu(E) < \infty$. By [13, Lemma A.9], there exists a constant $C_\nu > 0$ such that for any PCAF A with Revuz measure μ_A, we have

$$E_\nu(A_t) \leq C_\nu(1 + t) \int_E \tilde{h} d\mu_A, \ t > 0.$$

Therefore,

$$E_\nu[F_{t\wedge \tau_{E_n}}] \leq E_\nu \left[\sum_{0 < s \leq t \wedge \tau_{E_n}} (u_n(X_s) - u_n(X_{s-}))^2 1_{\{|u_n(X_s) - u_n(X_{s-})| \leq 1\}} \right] + \nu(E)$$

$$= E_\nu \left[\int_0^{t \wedge \tau_{E_n}} \int_{E_\Delta} [u_n(y) - u_n(X_s)]^2 1_{\{|u_n(y) - u_n(X_s)| \leq 1\}} N(X_s, dy) dH_s \right] + \nu(E)$$

$$\leq C_\nu(1 + t) \int_{E_n} \tilde{h}(x) \int_{E_\Delta} (u_n(y) - u_n(x))^2 1_{\{|u_n(y) - u_n(x)| \leq 1\}} J(dy, dx) + \nu(E)$$

$$= C_\nu(1 + t) \left\{ 2 \int_{E_n} \tilde{h}(x) \int_{V_n} (u_n(y) - u_n(x))^2 1_{\{|u_n(y) - u_n(x)| \leq 1\}} J^n(dy, dx) \right\} + \nu(E)$$

$$\leq C_\nu(1 + t) \tilde{h}_{|E_n|} \left\{ 2 \int_{E_n} f_n^2(x) \int_{V_n} (u_n(y) - u_n(x))^2 1_{\{|u_n(y) - u_n(x)| \leq 1\}} J^n(dy, dx) \right\} + \nu(E)$$

$$\leq C_\nu(1 + t) \tilde{h}_{|E_n|} \left\{ 4 \int_{E_n} \int_{V_n} (f_n(x) - f_n(y))^2 J^n(dy, dx) \right\} + \nu(E)$$

$$< \infty.$$

\[\square\]
Proof of Theorem 2.2

Assertion (i). Let \(\{V_n\}, \{E_n\} \) and \(\{u_n f_n\} \) be given as before. By Lemma 2.3 for \(n \in \mathbb{N} \), there exist unique \(M^{n,[u_n f_n]} \in \mathcal{M}^V_n \) and \(N^{n,[u_n f_n]} \in \mathcal{N}^V_n \) such that for \(\mathcal{E}\)-q.e. \(x \in V_n \),

\[
\lim_{n \to \infty} u_n f_n(X_t^V) - u_n f_n(X_0^V) = M^{n,[u_n f_n]}_t + N^{n,[u_n f_n]}_t, \quad t \geq 0, \quad P_x\text{-a.s.}
\]

Hereafter, for a martingale \(M \), we denote by \(M^c \) and \(M^d \) its continuous and purely discontinuous part, respectively. By [17, Lemma 1.14], for \(n < l \), we have \(M^{n,[u_n f_n],c} = M^{l,[u_l f_l],c}_{t \wedge \tau_{E_n}} \), \(t \geq 0, \) \(P_x\)-a.s. for \(\mathcal{E}\)-q.e. \(x \in V_n \). Therefore, we can define \(M_t^{[u],c} := \lim_{l \to \infty} M^{l,[u_l f_l],c} \) and \(M_t^{[u],c} := 0 \) for \(t > \zeta \) if there exists some \(n \) such that \(\tau_{E_n} = \zeta \) and \(\zeta < \infty \); or \(M_t^{[u],c} := 0 \) for \(t \geq \zeta \), otherwise. Following the argument of the proof of [17, Theorem 1.4], we can show that \(M^{[u],c} \) is well defined, \(M^{[u],c} \in \mathcal{M}_{loc} \) and \(M^{[u],c} \in \mathcal{M}^{I(\zeta)}_{loc} \).

Denote \(\Delta u(X_s) := \tilde{u}(X_s) - \tilde{u}(X_{s-}) \). By Lemma 2.4,

\[
Y^l_t := \sum_{0 < s \leq t} \Delta u(X_s) I_{\{\frac{t}{l} \leq |\Delta u(X_s)| \leq 1\}} - \left(\sum_{0 < s \leq t} \Delta u(X_s) I_{\{\frac{t}{l} < |\Delta u(X_s)| \leq 1\}} \right)^p
\]

is well-defined. Hereafter \(^p \) denotes the dual predictable projection. Further, by Lemma 2.3 and following the argument of the proof of [17, Theorem 1.4] (with \(M^l \) therein replaced with \(Y^l \) of this paper), we can show that for \(\mathcal{E}\)-q.e. \(x \in E \), \(Y^l_{lk} \) converges uniformly in \(t \) on each finite interval for a subsequence \(\{l_k\} \) (and hence for the whole sequence \(\{k\} \)) and for each \(k \),

\[
Y^l_{lk} = Y^l_{lk} - \frac{k}{l} \theta_{l \wedge \tau_{E_n}} + Y^l_{lk} - Y^l_{lk} \circ \theta_{l \wedge \tau_{E_n}}, \quad 0 \leq t, s < \infty.
\]

Thus, \(L^n \), the limit of \(\{Y^l_{lk}\}_{k=1}^\infty \), is a \(P_x\)-square integrable purely discontinuous martingale for \(\mathcal{E}\)-q.e. \(x \in E \) and satisfies:

\[
L^n_{(t+s) \wedge \tau_{E_n}} = L^n_{t \wedge \tau_{E_n}} + L^n_{s \wedge \tau_{E_n}} \circ \theta_{t \wedge \tau_{E_n}}, \quad 0 \leq t, s < \infty.
\]

By the above construction, we find that \(L^n_{t \wedge \tau_{E_n}} = L^n_{t \wedge \tau_{E_n}} \) for \(n_1 \leq n_2 \). We define \(Y^{[u],d}_{l,t} \), \(t \leq \tau_{E_n} \), and \(Y^{[u],d}_{l,t} \), \(t \geq \zeta \), if for some \(n \), \(\tau_{E_n} = \zeta < \infty \); \(Y^{[u],d}_{l,t} = 0 \), \(t \geq \zeta \), otherwise. Then \(Y^{[u],d} \in \mathcal{M}^{I(\zeta)}_{loc} \), which gives all the jumps of \(\tilde{u}(X_t) - \tilde{u}(X_0) \) on \(I(\zeta) \) with jump size less than or equal to \(1 \). Since \(\{Y^{l,i}\} \) is an MAF for each \(l \), we find that \(\{Y^{[u],d}_{l,i}\} \) is a local MAF by the uniform convergence on \(I(\zeta) \).

We define \(Y^{[u]} := M^{[u],c} + Y^{[u],d} \) and \(Z^{[u]}_{l \wedge \tau_{E_n}} := \tilde{u}(X_{l \wedge \tau_{E_n}}) - \tilde{u}(X_0) - Y^{[u]}_{l \wedge \tau_{E_n}} - F^{[u]}_{l \wedge \tau_{E_n}} \) for each \(n \in \mathbb{N} \). Then \(Z^{[u]} \) is a local AF of \(M \) and \(t \mapsto Z^{[u]}_{l \wedge \tau_{E_n}} \) is continuous. Now
we show that \(\{ Z^{[u]}_{t \wedge \tau_{En}} \} \) has zero quadratic variation and hence \(Z^{[u]} \in \mathcal{L}_c \). By Fukushima’s decomposition for part processes, we have that

\[
\begin{align*}
&u_n f_n(X_{t \wedge \tau_{En}}) - u_n f_n(X_0) \\
&= u_n f_n(X_{1}^{V_n}) - u_n f_n(X_0) \\
&= M^{n, [u_n f_n]}_{t \wedge \tau_{En}} + N^{n, [u_n f_n]}_{t \wedge \tau_{En}} \\
&= M^{n, [u_n f_n], c}_{t \wedge \tau_{En}} + M^{n, [u_n f_n], d}_{t \wedge \tau_{En}} + N^{n, [u_n f_n]}_{t \wedge \tau_{En}} \\
&= M^{n, [u_n f_n], c}_{t \wedge \tau_{En}} + M^{n, [u_n f_n], sd}_{t \wedge \tau_{En}} + M^{n, [u_n f_n], bd}_{t \wedge \tau_{En}} + N^{n, [u_n f_n]}_{t \wedge \tau_{En}},
\end{align*}
\]

where

\[
M^{n, [u_n f_n], sd}_{t} = \lim_{t \to \infty} \left\{ \sum_{0 < s \leq t} (u_n f_n(X_{s}^{V_n}) - u_n f_n(X_{s-}^{V_n})) 1_{\{ \frac{1}{t} \leq |u_n f_n(X_{s}^{V_n}) - u_n f_n(X_{s-}^{V_n})| \leq 1 \}} \\
- \int_{0}^{t} \int_{\{ \frac{1}{t} \leq |u_n f_n(y) - u_n f_n(X_{s}^{V_n})| \leq 1 \}} (u_n f_n(y) - u_n f_n(X_{s}^{V_n})) N^{n}(X_{s}^{V_n}, dy) dH_{s}^{n} \right\},
\]

and

\[
M^{n, [u_n f_n], bd}_{t} = \sum_{0 < s \leq t} (u_n f_n(X_{s}^{V_n}) - u_n f_n(X_{s-}^{V_n})) 1_{\{ |u_n f_n(X_{s}^{V_n}) - u_n f_n(X_{s-}^{V_n})| > 1 \}} \\
- \int_{0}^{t} \int_{\{ |u_n f_n(y) - u_n f_n(X_{s}^{V_n})| > 1 \}} (u_n f_n(y) - u_n f_n(X_{s}^{V_n})) N^{n}(X_{s}^{V_n}, dy) dH_{s}^{n}.
\]

We define

\[
B_{t} := \left\{ (\tilde{u}(X_{\tau_{En}}) - \tilde{u}(X_{\tau_{En}-})) 1_{\{ |\tilde{u}(X_{\tau_{En}}) - \tilde{u}(X_{\tau_{En}-})| \leq 1 \}} \\
- (u_n f_n(X_{\tau_{En}}) - u_n f_n(X_{\tau_{En}-})) 1_{\{ |u_n f_n(X_{\tau_{En}}) - u_n f_n(X_{\tau_{En}-})| \leq 1 \}} \right\} 1_{\{ \tau_{En} \leq t \}}.
\]

\(\{ B_t \} \) is an adapted quasi-left continuous bounded variation processes and hence its dual predictable projection \(\{ B_t^p \} \) is an adapted continuous bounded variation processes (cf. [7, Theorem A.3.5]). By comparing (2.4) to

\[
\tilde{u}(X_{t \wedge \tau_{En}}) - \tilde{u}(X_0) = M^{[u, c]}_{t \wedge \tau_{En}} + Y^{[u, d]}_{t \wedge \tau_{En}} + Z^{[u]}_{t \wedge \tau_{En}} + F^{[u]}_{t \wedge \tau_{En}},
\]

we get

\[
Z^{[u]}_{t \wedge \tau_{En}} = N^{n, [u_n f_n]}_{t \wedge \tau_{En}} + M^{n, [u_n f_n], sd}_{t \wedge \tau_{En}} - Y^{[u, d]}_{t \wedge \tau_{En}} + M^{n, [u_n f_n], bd}_{t \wedge \tau_{En}} - F^{[u]}_{t \wedge \tau_{En}} \\
+ \tilde{u}(X_{t \wedge \tau_{En}}) - u_n f_n(X_{t \wedge \tau_{En}}) \\
= N^{n, [u_n f_n]}_{t \wedge \tau_{En}} + (M^{n, [u_n f_n], sd}_{t \wedge \tau_{En}} - Y^{[u, d]}_{t \wedge \tau_{En}} + M^{n, [u_n f_n], bd}_{t \wedge \tau_{En}} - F^{[u]}_{t \wedge \tau_{En}}) \\
- \int_{0}^{t \wedge \tau_{En}} \int_{\{ |u_n f_n(y) - u_n f_n(X_{s}^{V_n})| > 1 \}} (u_n f_n(y) - u_n f_n(X_{s}^{V_n})) N^{n}(X_{s}^{V_n}, dy) dH_{s}^{n}.
\]
Hence \(M_{t ∧ n}^{n,u f_n} - Y_{t ∧ n}^{[u],d} + B_t - B_t^p \) is a purely discontinuous martingale with zero jump, which must be equal to zero. The quadratic variations of \(N_{t ∧ n}^{n,u f_n} \) and \(B_t^p \) vanish in \(P_{m,m} \)-measure and \(P_{φ,m} \)-measure, respectively. Denote by \(C_t^0 \) the last term of (2.5). By (2.3), one finds that \(\{ C_t^0 \} \) is a \(P_0 \)-square-integrable continuous bounded variation process for any \(ν \in S_0^0 \) satisfying \(ν(E) < ∞ \). Hence its quadratic variation vanishes in \(P_{φ,m} \)-measure. Therefore, the quadratic variation of \(\{ Y_{t ∧ τ E_n}^{[u]} \} \) vanishes in \(P_{m,m} \)-measure since \(m(E_n) < ∞ \), i.e., \(\{ Y_{t ∧ τ E_n}^{[u]} \} \) has zero quadratic variation.

Finally, we prove the uniqueness of decomposition (2.1). Suppose that \(Y' \in \mathcal{M}_{loc}^{I(κ)} \) and \(Z' \in \mathcal{L}_c \) such that

\[
\bar{u}(X_t) - \bar{u}(X_0) = Y'_t + Z'_t + F^{[u]}_t, \quad t ≥ 0, \quad P_x\text{-a.s. for } E\text{-q.e. } x \in E.
\]

By [17, Proposition 2.4], we can choose an \(\{ E_n \} \in \Theta \) such that \(I(κ) = ∪_n [0, τ_{E_n}] \), \(P_x\text{-a.s. for } E\text{-q.e. } x \in E \). Then, for each \(n \in \mathbb{N} \), \(\{ (Y^{[u]} - Y')^{τ_{E_n}} \} \) is a locally square integrable martingale and a zero quadratic variation process. This implies that \(P_{m,0}(\{(Y^{[u]} - Y')^{τ_{E_n}}\}_t = 0, ∀t ∈ [0, ∞)) = 0 \). Consequently by the analog of [7, Lemma 5.1.10] in the semi-Dirichlet forms setting, \(P_x(\{(Y^{[u]} - Y')^{τ_{E_n}}\}_t = 0, ∀t ∈ [0, ∞)) = 0 \) for \(E\text{-q.e. } x \in E \). Therefore \(Y_t^{[u]} = Y'_t, \quad 0 ≤ t ≤ τ_{E_n}, \quad P_x\text{-a.s. for } E\text{-q.e. } x \in E \). Since \(n \) is arbitrary, we obtain the uniqueness of decomposition (2.1) up to the equivalence of local AFs.

Proof of Theorem 2.2 Assertion (ii). By (i), \(Y^{[u]} \in \mathcal{M}_{loc}^{I(κ)} \). Hence \(\langle Y^{[u]}, d \rangle_t = (\int_0^t ∫_{E_0} (∫F^0(X_s) - ∫dH_s) dH_s)_1 \rangle(t) \) is a PCAF on \(I(κ) \) and can be extended to a PCAF by [3, Remark 2.2]. The Revuz measure of \(\langle Y^{[u]}, d \rangle \) is given by

\[
μ^d_{(u)}(dx) = 2 ∫_E (∫_E (∫(u(x) - u(y))^2 1_{|∫(u(x) - u(y))| ≤ 1} N(X_s, dy) dH_s)_1) (dy, dx)
+ u^2(x) 1_{|∫(u(x))| ≤ 1} K(dx).
\]

By [17, Lemma 1.1], \(μ^d_{(u)} \) is a smooth measure. Therefore, there exists an \(\{ E'_n \} \in \Theta \) such that \(μ^d_{(u)}(E'_n) < ∞ \) for each \(n \in \mathbb{N} \). To simplify notations, we use still \(E_n \) to denote \(E_n \cap E'_n \). The remaining part of the proof is similar to that of [17, Theorem 1.15]. We omit the details here. \(\square \)

Remark 2.5. (i) As in [17, Theorem 1.4], if we use \(\mathcal{M}_{loc}^{0,κ^c} \) instead of \(\mathcal{M}_{loc}^{I(κ)} \), then the uniqueness of the decomposition (2.1) may fail to be true.

(ii) For \(u ∈ D(κ)_loc \), if Condition (S) holds, i.e., \(μ_u ∈ S \), then by [17, Theorem 1.4], there exist unique \(M^{[u]} ∈ \mathcal{M}_{loc}^{I(κ)} \) and \(N^{[u]} ∈ \mathcal{L}_c \) such that

\[
\bar{u}(X_t) - \bar{u}(X_0) = M^{[u]}_t + N^{[u]}_t, \quad t ≥ 0, \quad P_x\text{-a.s. for } E\text{-q.e. } x \in E.
\]

with

\[
M^{[u]}_t = M^{[u],c}_t + M^{[u],d}_t,
\]

(2.7)
and

\[
M_{t}^{[u],d} = \lim_{t \to \infty} \left\{ \sum_{0 < s \leq t} (\tilde{u}(X_s) - \tilde{u}(X_{s-}))1_{\{1 \leq |\tilde{u}(X_s) - \tilde{u}(X_{s-})| \leq 1\}} - \int_{0}^{t} \int_{\{1 \leq |\tilde{u}(y) - \tilde{u}(X_s)| \leq 1\}} (\tilde{u}(y) - \tilde{u}(X_s))N(X_s, dy)dH_s \right\}, \quad (2.8)
\]

By comparing (2.6)-(2.8) with

\[
\tilde{u}(X_t) - \tilde{u}(X_0) = Y_t^{[u]} + Z_t^{[u]} + F_t^{[u]}
\]

we get

\[
M_t^{[u]} = Y_t^{[u]} + \sum_{0 < s \leq t} (\tilde{u}(X_s) - \tilde{u}(X_{s-}))1_{\{|\tilde{u}(X_s) - \tilde{u}(X_{s-})| > 1\}} - \int_{0}^{t} \int_{\{|\tilde{u}(y) - \tilde{u}(X_s)| > 1\}} (\tilde{u}(y) - \tilde{u}(X_s))N(X_s, dy)dH_s,
\]

and

\[
N_t^{[u]} = Z_t^{[u]} + \int_{0}^{t} \int_{\{|\tilde{u}(y) - \tilde{u}(X_s)| > 1\}} (\tilde{u}(y) - \tilde{u}(X_s))N(X_s, dy)dH_s.
\]

3 Stochastic Integral and Itô’s formula

Let \((\mathcal{E}, D(\mathcal{E}))\) be a quasi-regular semi-Dirichlet form on \(L^2(E; m)\) with associated Markov process \(((X_t)_{t \geq 0}, (P_x)_{x \in E_\Delta})\). Throughout this section, we put the following assumption.

Assumption 3.1. There exist \(\{V_n\} \in \Theta\), Dirichlet forms \((\eta^{(n)}, D(\eta^{(n)}))\) on \(L^2(V_n; m)\), and constants \(\{C_n > 1\}\) such that for each \(n \in \mathbb{N}\), \(D(\eta^{(n)}) = D(\mathcal{E})_{V_n}\) and

\[
\frac{1}{C_n} \eta^{(n)}_1(u, u) \leq \mathcal{E}_1(u, u) \leq C_n \eta^{(n)}_1(u, u), \quad \forall u \in D(\mathcal{E})_{V_n}.
\]

Obviously, Assumption 3.1 implies Assumption 2.1. In this section, we will first define stochastic integrals for part forms \((\mathcal{E}_{V_n}, D(\mathcal{E})_{V_n})\) and then extend them to \((\mathcal{E}, D(\mathcal{E}))\).
3.1 Stochastic Integral for Part Process

We fix a \(\{V_n\} \in \Theta \) satisfying Assumption 3.1. Without loss of generality, we assume that \(\tilde{h} \) is bounded on each \(V_n \), otherwise we may replace \(V_n \) by \(V_n \cap \{ \tilde{h} < n \} \). For \(n \in \mathbb{N} \), let \((E^{V_n}, D(E^{V_n})) \) be the part form of \((E, D(E)) \) on \(L^2(V_n; \lambda) \). Then \((E^{V_n}, D(E^{V_n})) \) is a quasi regular semi-Dirichlet form with associated Markov process \((X_t^{V_n})_{t \geq 0}, (P^V_x)_{x \in (V_n)_\Delta} \).

Let \(u \in D(E)_V \) and denote \(A_{t,u}^{n,[u]} = \tilde{u}(X_t^{V_n}) - \tilde{u}(X_0^{V_n}) \). By Lemma 2.3, we have the decomposition (2.2). For \(v \in D(E)_V \), we will follow [2] to define the stochastic integral \(\int_0^t \tilde{v}(X_s^{V_n})dA_s^{n,[u]} \) and derive the related Itô’s formula. Note that since \((E^{V_n}, D(E^{V_n})) \) is only a semi-Dirichlet form, its symmetric part \((\tilde{\eta}^{(n)}, D(\tilde{\eta}^{(n)})) \) might not be a Dirichlet form. However, we can use \((\tilde{\eta}^{(n)}), D(\eta^{(n)}) \), the symmetric part of \((\eta^{(n)}), D(\eta^{(n)}) \) to substitute \((E^{V_n}, D(E^{V_n})) \) and then follow the argument of [2] to define Nakao’s integral \(\int_0^t \tilde{v}(X_s^{V_n})dN_s^{n,[u]} \) and prove its related properties. Below we will mainly state the results and point out only the necessary modifications in proofs. For more details we refer the reader to [2].

Similar to [2, Lemma 2.1], we can prove the following lemma.

Lemma 3.2. Let \(f \in D(E)_V \). Then there exist unique \(f^* \in D(E)_V \) and \(f^\Delta \in D(E)_V \) such that for any \(g \in D(E)_V \),

\[
E_1^{V_n}(f, g) = \tilde{\eta}_1^{(n)}(f^*, g) \tag{3.1}
\]

and

\[
\tilde{\eta}_1^{(n)}(f, g) = E_1^{V_n}(f^\Delta, g). \tag{3.2}
\]

Let \(f, g \in D(E)_V \). We use \(\tilde{\mu}^{(n)}_{(f,g)} \) to denote the mutual energy measure of \(f \) and \(g \) w.r.t. the symmetric Dirichlet form \((\tilde{\eta}^{(n)}), D(\tilde{\eta}^{(n)}) \). Suppose that \(u \in D(E)_V \) and \(v \in D(E)_V \). It is easy to see that there exists a unique element in \(D(E)_V \), which is denoted by \(\lambda(u, v) \), such that

\[
\frac{1}{2} \int_{V_n} \tilde{v}d\tilde{\mu}^{(n)}_{(h, \lambda(u, v))} = \tilde{\eta}_1^{(n)}(\lambda(u, v), h), \quad \forall h \in D(E)_V.
\]

Let \(u^* \) and \(\lambda(u, v)^\Delta \) be the unique elements in \(D(E)_V \) as defined by (3.1) and (3.2) relative to \(u \) and \(\lambda(u, v) \), respectively. Similar to [2, Theorem 2.2], we can prove the following result.

Theorem 3.3. Let \(u \in D(E)_V \) and \(v \in D(E)_V \). Then, for any \(h \in D(E)_V \),

\[
E^{V_n}(u, hv) = E_1^{V_n}(\lambda(u, v)^\Delta, h) + \frac{1}{2} \int_{V_n} \tilde{h}d\tilde{\mu}^{(n)}_{(u,u^*)} + \int_{V_n} (u^* - u)hvdm. \tag{3.3}
\]

Denote by \(A^{n,+}_c \) the family of all PCAFs of \(X^{V_n} \). Define

\[
A^{n,+}_c := \{ A \in A^{n,+}_c | \text{the smooth measure, } \mu_A, \text{ corresponding to } A \text{ is finite} \}
\]
and
\[\mathcal{N}_{c,*}^n := \{ N_t^{[u]} + \int_0^t f(X_s)ds + A_t^{(1)} - A_t^{(2)} \mid u \in D(\mathcal{E})_{V_n}, f \in L^2(V_n; m) \} \]

Note that any \(C \in \mathcal{N}_{c,*}^n \) is finite and continuous on \([0, \infty)\) \(P_x\)-a.s. for \(\mathcal{E}\)-q.e. \(x \in E \).

Similar to \([13, \text{Theorem 2.2}]\), we can prove the following lemma.

Lemma 3.4. Let \(\Upsilon \) be a finely open set such that \(\Upsilon \subset V_n \). If \(C^{(1)}, C^{(2)} \in \mathcal{N}_{c,*}^n \) satisfying

\[\lim_{t \downarrow 0} \frac{1}{t} E_{V_n}^{h,m}[C_t^{(1)}] = \lim_{t \downarrow 0} \frac{1}{t} E_{V_n}^{h,m}[C_t^{(2)}], \quad \forall h \in D(\mathcal{E})_{\Upsilon,b},\]

then \(C^{(1)} = C^{(2)} \) for \(t \leq \tau_x \) \(P_x^{V_n}\)-a.s. for \(\mathcal{E}\)-q.e. \(x \in V_n \).

Note that \(\tilde{\mu}_{(v,u)}^{(n)} \) is a signed smooth measure w.r.t. \((\tilde{\eta}^{(n)}, D(\eta^{(n)})) \) and hence \((\mathcal{E}^{V_n}, D(\mathcal{E})_{V_n}) \) by Assumption 3.1. We use \(G(u, v) \) to denote the unique element in \(A_c^{n,+} - A_c^{n,+} \) that is corresponding to \(\tilde{\mu}_{(v,u)}^{(n)} \) under the Revuz correspondence between smooth measures of \((\mathcal{E}^{V_n}, D(\mathcal{E})_{V_n}) \) and PCAFs of \(X^{V_n} \) (cf. \([13, \text{Theorem A.8}])\). To simplify notations, we define

\[\Gamma(u, v)_t := N_t^{[\lambda(u,v)^\Delta]} - \int_0^t \lambda(u,v)^\Delta(X^{V_n}_s)ds, \quad t \geq 0.\]

Definition 3.5. Let \(u \in D(\mathcal{E})_{V_n} \) and \(v \in D(\mathcal{E})_{V_n,b} \). We define for \(t \geq 0,\)

\[\int_0^t \tilde{v}(X^{V_n}_s)dN^{n,[u]}_s := \int_0^t \tilde{v}(X^{V_n}_s)dN^{n,[u]}_s = \Gamma(u, v)_t - \frac{1}{2} G(u, v)_t - \int_0^t (u^* - u)v(X^{V_n}_s)ds.\]

Remark 3.6. Let \(u \in D(\mathcal{E})_{V_n} \) and \(v \in D(\mathcal{E})_{V_n,b} \). Then one can check that \(\int_0^t \tilde{v}(X^{V_n}_s)dN^{n,[u]}_s \in \mathcal{N}_{c,*}^{n \ast} \). By Definition 3.3, 2.2, 1. Theorem 3.4, 13 Theorem A.8(iii)] and (3.3), we obtain that

\[\lim_{t \downarrow 0} \frac{1}{t} E_{V_n}^{h,m}\left[\int_0^t \tilde{v}(X^{V_n}_s)dN^{n,[u]}_s \right] = -\mathcal{E}^{V_n}(u, hv).\]

Therefore, by Lemma 3.4, \(\int_0^t \tilde{v}(X^{V_n}_s)dN^{n,[u]}_s \) is the unique AF \((C_t)_{t \geq 0}\) in \(\mathcal{N}_{c,*}^{n \ast} \) that satisfies \(\lim_{t \downarrow 0} \frac{1}{t} E_{V_n}^{h,m}[C_t] = -\mathcal{E}^{V_n}(u, hv) \).

Denote by \((L^{V_n}, D(L^{V_n}))\) the generator of \((\mathcal{E}^{V_n}, D(\mathcal{E})_{V_n})\). Note that if \(u \in D(L^{V_n}) \) then \(dN^{n,[u]}_s = L^{V_n}u(X^{V_n}_s)ds \). In this case, it is easy to see that for any \(v, h \in D(\mathcal{E})_{V_n,b},\)

\[\lim_{t \downarrow 0} \frac{1}{t} E_{V_n}^{V_n}\left[\int_0^t v(X^{V_n}_s)L^{V_n}u(X^{V_n}_s)ds \right] = \int_{V_n} hvL^{V_n}udm = -\mathcal{E}^{V_n}(u, hv).\]
between smooth measures of (\(A\) and \(G\)) (cf. [13, Theorem A.8(vi)]). Hence our definition of the stochastic integral
\[\int_0^t \tilde{v}(X_s^{V_n}) dN_s^{n,[u]} \] for \(u \in D(\mathcal{E})_{V_n}\) is an extension of the ordinary Lebesgue integral
\[\int_0^t \tilde{v}(X_s^{V_n}) L^v X_s^{V_n} ds \] for \(u \in D(L^v)\). More generally, similar to [2 Proposition 2.6], we can prove the following proposition.

Proposition 3.7. Let \(u \in D(\mathcal{E})_{V_n, b}\) and \(\Upsilon\) be a finely open set such that \(\Upsilon \subset V_n\). Suppose that there exist \(A^{(1)}, A^{(2)} \in A^{n,+}_c\) such that \(N^{n,[u]}_t = A^{(1)}_t - A^{(2)}_t\) for \(t < \tau_\Upsilon\) (resp. all \(t \geq 0\)). Then
\[\int_0^t \tilde{v}(X_s^{V_n}) dN_s^{n,[u]} = \int_0^t \tilde{v}(X_s^{V_n}) d(A^{(1)}_s - A^{(2)}_s) \] for \(t \leq \tau_\Upsilon\) (resp. all \(t \geq 0\))

\(P_{x^n}-\text{a.s. for } \mathcal{E}\)-q.e. \(x \in V_n\).

Theorem 3.8. Let \(v \in D(\mathcal{E})_{V_n, b}\) and \(\{u_k\}_{k=0}^\infty \subset D(\mathcal{E})_{V_n}\) satisfying \(u_k\) converges to \(u_0\) w.r.t. the \(\mathcal{E}^{1/2}\)-norm as \(k \to \infty\). Then there exists a subsequence \(\{k'\}\) such that for \(\mathcal{E}\)-q.e. \(x \in V_n\),
\[P_{x^n}(\lim_{k' \to \infty} \int_0^t \tilde{v}(X_s^{V_n}) dN_s^{n,[u_{k'}]} = \int_0^t \tilde{v}(X_s^{V_n}) dN_s^{n,[u_0]} \] uniformly on any finite interval of \(t\) \(= 1\).

Proof. By Definition 3.5, we have
\[\int_0^t \tilde{v}(X_s^{V_n}) dN_s^{n,[u_k]} = N_t^{n,[\lambda(u_k, v)]} - \int_0^t \lambda(u_k, v) \Delta(X_s^{V_n}) ds \]
\[- \frac{1}{2} G(u_k, v)_t - \int_0^t (u_k^* - u_k) v(X_s^{V_n}) ds. \]

For each term of the right hand side of the above equation, we can prove that there exists a subsequence which converges uniformly on any finite interval of \(t\). Below we will only give the proof for the convergence of the third term. The convergence of the other three terms can be proved similar to [2 Theorem 2.7] by virtue of [13 Lemmas 2.5 and A.6].

Recall that for \(u \in D(\mathcal{E})_{V_n}\) and \(v \in D(\mathcal{E})_{V_n, b}\), \(G(u, v)\) denotes the unique element in \(A^{n,+}_c - A^{n,+}_c\) that is corresponding to \(\tilde{\mu}_{(\nu, \nu^*)}^{(n)}\) under the Revuz correspondence between smooth measures of \((\mathcal{E}^{V_n}, D(\mathcal{E})_{V_n})\) and PCAFs of \(X^{V_n}\). We use \(G^+(u, v)\) and \(G^-(u, v)\) to denote the PCAFs corresponding to \(\tilde{\mu}_{(\nu, u^*)}^{(n),+}\) and \(\tilde{\mu}_{(\nu, u^*)}^{(n),-}\), respectively.

Define
\[S_{00}^{n,*} := \{ \mu \in S_0^n | \hat{U}_1^{V_n} \mu \leq c \hat{G}_1^{V_n} \phi \text{ for some constant } c > 0 \}, \]
where \(S_0^n\) and \(\hat{U}_1^{V_n} \mu\) denote respectively the family of positive measures of finite energy integral and 1-co-potential relative to \((\mathcal{E}^{V_n}, D(\mathcal{E})_{V_n})\). By [13 Theorem A.3], for \(A \in \mathcal{B}(E)\), if \(\mu(A) = 0\) for all \(\mu \in S_{00}^{n,*}\) then \(\text{cap}_\phi(A) = 0\).
Let $\nu \in \tilde{S}_{00}^{n,*}$. Then, there exists a positive constant $C_\nu > 0$ such that (cf. [13, Lemma A.9])

$$E_{\nu}^{V_n}\left[\sup_{0 \leq s \leq t} |G(u_k, v)_s - G(u, v)_s| \right]$$

$$= E_{\nu}^{V_n}\left[\sup_{0 \leq s \leq t} |G(u_k - u, v)_s| \right]$$

$$\leq E_{\nu}^{V_n}[|G^+(u_k - u, v)_t|] + E_{\nu}^{V_n}[|G^-(u_k - u, v)_t|]$$

$$\leq (1 + t)C_\nu \int_{V_n} \tilde{h}_n d|\tilde{\mu}^{(n)}_{(v, (u_k - u)^*)}|$$

$$\leq (1 + t)C_\nu \left(\int_{V_n} \tilde{h}_n^2 d\tilde{\mu}^{(n)}_{(v)}\right)^{\frac{1}{2}} \left(\int_{V_n} d\tilde{\mu}^{(n)}_{(u_k - u)^*}\right)^{\frac{1}{2}}$$

$$\leq 2(1 + t)C_\nu \|\tilde{h}_n\|_{\infty}(\eta^{(n)}(v, v))^{\frac{1}{2}}(\eta^{(n)}((u_k - u)^*, (u_k - u)^*))^{\frac{1}{2}},$$

which converges to 0 as $k \to \infty$. The proof is completed by the same method used in the proof of [7, Lemma 5.1.2] (cf. [19, Theorem 2.3.8]).

Similar to [2, Proposition 2.6 and Corollary 3.2], we can prove the following propositions.

Proposition 3.9. Let $u, v \in D(\mathcal{E})_{V_n,b}$. Then

$$\int_0^t \tilde{v}(X_v^s) dN^{n,[u]}_s + \int_0^t \tilde{u}(X_u^s) dN^{n,[v]}_s = N^{n,[uv]}_t - (M^{n,[u]}, M^{n,[v]})_t, \quad t \geq 0,$$

$P_{x}^{V_n}$-a.s. for \mathcal{E}-q.e. $x \in V_n$.

Proposition 3.10. Let $u \in D(\mathcal{E})_{V_n,b}$ and $\{v_k\}_{k=0}^{\infty} \subset D(\mathcal{E})_{V_n,b}$ satisfying v_k converges to v_0 w.r.t. the $\|\cdot\|_{\infty}$-norm and the $L_1^{1/2}$-norm as $k \to \infty$. Then there exists a subsequence $\{k'\}$ such that for \mathcal{E}-q.e. $x \in V_n$,

$$P_{x}^{V_n}\left(\lim_{k' \to \infty} \int_0^t \tilde{v}(X_v^s) dN^{n,[u]}_s = \int_0^t \tilde{v}_0(X_v^s) dN^{n,[u]}_s\right)$$

uniformly on any finite interval of $t) = 1$.

Definition 3.11. Let $u \in D(\mathcal{E})_{V_n}$ and $v \in D(\mathcal{E})_{V_n,b}$. We define for $t \geq 0$,

$$\int_0^t \tilde{v}(X_v^s) dA^{n,[u]}_s := \int_0^t \tilde{v}(X_v^s) dM^{n,[u]}_s + \int_0^t \tilde{v}(X_v^s) dN^{n,[u]}_s.$$
Theorem 3.12. (i) Let \(u, v \in D(\mathcal{E})_{V_n,b} \). Then,

\[
\tilde{\varphi}(X_t^V) - \tilde{\varphi}(X_0^V) = \int_0^t \tilde{v}(X_s^V)d\tilde{u}(X_s^V) + \int_0^t \tilde{u}(X_s^V)d\tilde{v}(X_s^V) \\
+ \langle M^{n[u],c}, M^{n[v],c} \rangle_t \\
+ \sum_{0<s\leq t} [\Delta(\tilde{v}(X_s^V)) - \tilde{v}(X_s^V)\Delta u(X_s^V) - \tilde{u}(X_s^V)\Delta v(X_s^V)] \tag{3.4}
\]

on \([0, \infty)\) \(P_{xV}^V \)-a.s. for \(\mathcal{E} \)-q.e. \(x \in V_n \).

(ii) Let \(\Phi \in C^2(\mathbb{R}^n) \) and \(u_1, \ldots, u_n \in D(\mathcal{E})_{V_n,b} \). Then,

\[
\Phi(\tilde{u})(X_t^V) - \Phi(\tilde{u})(X_0^V) = \sum_{i=1}^n \int_0^t \Phi_i(\tilde{u}(X_s^V))dA_s^{n[i]} \\
+ \frac{1}{2} \sum_{i,j=1}^n \int_0^t \Phi_{ij}(\tilde{u}(X_s^V))d\langle M^{n[i],c}, M^{n[j],c} \rangle_s \\
+ \sum_{0<s\leq t} \left[\Delta \Phi(\tilde{u}(X_s^V)) - \sum_{i=1}^n \Phi_i(\tilde{u}(X_s^V))\Delta u_i(X_s^V) \right]
\]

on \([0, \infty)\) \(P_{xV}^V \)-a.s. for \(\mathcal{E} \)-q.e. \(x \in V_n \), where

\[
\Phi_i(x) = \frac{\partial \Phi}{\partial x_i}(x), \quad \Phi_{ij}(x) = \frac{\partial^2 \Phi}{\partial x_i \partial x_j}(x), \quad i, j = 1, \ldots, n,
\]

and \(u = (u_1, \ldots, u_n) \).

3.2 Stochastic Integral for \(X \)

In this subsection, for \(u, v \in D(\mathcal{E})_{\text{loc}} \), we will define the stochastic integral \(\int_0^t \tilde{v}(X_s) dA_s^{[u]} \). To this end, we first choose a \(\{V_n\} \in \Theta \) such that Assumption 3.1 is satisfied and \(\tilde{h} \) is bounded on each \(V_n \). Then, we choose \(\{E_n\} \in \Theta \) and \(\{u_n, v_n\} \) such that \(E_n \subset V_n, u_n, v_n \in D(\mathcal{E})_{V_n,b}, u = u_n \) and \(v = v_n \) on \(E_n \) for each \(n \in \mathbb{N} \). The existence of \(\{E_n\} \) and \(\{u_n, v_n\} \) is justified by the argument before Lemma 2.4. Now we define \(\int_0^t \tilde{v}(X_s) dA_s^{[u]} \) on \(I(\zeta) \) by

\[
\int_0^t \tilde{v}(X_s) dA_s^{[u]} := \lim_{n \to \infty} \int_0^t \tilde{v}_n(X_s) dA_s^{n,[u_n]}, \tag{3.5}
\]

where the stochastic integral \(\int_0^t \tilde{v}_n(X_s) dA_s^{n,[u_n]} \) is defined as in the above subsection.

Theorem 3.13. For \(u, v \in D(\mathcal{E})_{\text{loc}} \), the stochastic integral in (3.5) is well-defined. Moreover, if \(u, u', v, v' \in D(\mathcal{E})_{\text{loc}} \) satisfying \(u = u' \) and \(v = v' \) on \(U \) for some finely open set \(U \), then

\[
\int_0^t \tilde{v}(X_s) dA_s^{[u]} = \int_0^t \tilde{v}'(X_s) dA_s^{[u']}, \tag{3.6}
\]
for $0 \leq t < \tau_U$ if $\tau_U < \zeta$; and for $0 \leq t \leq \zeta$ if $\tau_U = \zeta$, P_x-a.s. for \mathcal{E}-q.e. $x \in E$.

Proof. First, we fix a $\{V_n\} \in \Theta$ such that Assumption 3.1 is satisfied and \tilde{h} is bounded on each V_n. Suppose that there are two finely open sets F_k, F_l satisfying $F_k \subset V_k, F_l \subset V_l, k < l$; $f_k, g_k \in D(\mathcal{E})_{V_k,b}$, $u = f_k, v = g_k$ on F_k; $f_l, g_l \in D(\mathcal{E})_{V_l,b}$, $u = f_l, v = g_l$ on F_l. Below we will show that

$$\int_0^t \tilde{g}_k(X_s-)dA_s^{k,[f_k]} = \int_0^t \tilde{g}_l(X_s-)dA_s^{l,[f_l]}, \quad (3.7)$$

for $0 \leq t < \tau_{F_k\cap F_l}$ if $\tau_{F_k\cap F_l} < \zeta$; and for $0 \leq t \leq \zeta$ if $\tau_{F_k\cap F_l} = \zeta$, P_x-a.s. for \mathcal{E}-q.e. $x \in V_k$.

In fact, by approximating f_l by a sequence of functions in $D(L^{V_l})$, Proposition 3.4 and Theorem 3.8 we find that

$$\int_0^t \tilde{g}_k(X_s-)dA_s^{l,[f_l]} = \int_0^t \tilde{g}_l(X_s-)dA_s^{l,[f_l]}, \quad 0 \leq t \leq \tau_{F_k\cap F_l}, \quad (3.8)$$

P_x-a.s. for \mathcal{E}-q.e. $x \in V_l$. Since $A_s^{l,[f_l]} \in \mathcal{F}_t^{V_l}$, (3.7) holds P_x-a.s. for \mathcal{E}-q.e. $x \in V_l$.

Further, we obtain by (3.4) that

$$\int_0^t \tilde{g}_k(X_s-)dA_s^{k,[f_k]} = \int_0^t \tilde{g}_k(X_s-)dA_s^{l,[f_l]}, \quad (3.9)$$

for $0 \leq t < \tau_{F_k\cap F_l}$ if $\tau_{F_k\cap F_l} < \zeta$; and for $0 \leq t \leq \zeta$ if $\tau_{F_k\cap F_l} = \zeta$, P_x-a.s. and hence P_x-a.s. for \mathcal{E}-q.e. $x \in V_l$. Note that $M_t^{k,[f_k]} = M_t^{l,[f_l]}$ and $N_t^{k,[f_k]} = N_t^{l,[f_l]}$, P_x-a.s. for \mathcal{E}-q.e. $x \in V_k$ (cf. the proof of [17, Lemma 1.14]). By approximating f_k by a sequence of functions in $D(L^{V_k})$, Proposition 3.7 and Theorem 3.8 we get

$$\int_0^t \tilde{g}_k(X_s-)dA_s^{k,[f_k]} = \int_0^t \tilde{g}_k(X_s-)dA_s^{l,[f_l]}, \quad 0 \leq t \leq \tau_{F_k}, \quad (3.10)$$

P_x-a.s. and hence P_x-a.s. for \mathcal{E}-q.e. $x \in V_k$. Therefore, (3.10) holds for $0 \leq t < \tau_{F_k\cap F_l}$ if $\tau_{F_k\cap F_l} < \zeta$; and for $0 \leq t \leq \zeta$ if $\tau_{F_k\cap F_l} = \zeta$, P_x-a.s. for \mathcal{E}-q.e. $x \in V_k$ by (3.8)-(3.10).

Now we suppose that (3.5) is defined by a different $\{V_n\} \in \Theta$, say $\{V_n'\} \in \Theta$. By considering $\{V_n \cap V_n'\}$, [17, Proposition 2.4] and the above argument, we find that the two limits in (3.5) are equal on $I(\zeta)$, P_x-a.s. for \mathcal{E}-q.e. $x \in E$. Therefore, (3.5) is well-defined.

From (3.7) and its proof, we find that if $u, u', v, v' \in D(\mathcal{E})_{loc}$ satisfying $u = u'$ and $v = v'$ on U for some finely open set U, then there exists an $\{E_n\} \in \Theta$ such that (3.6) holds on $\cup_n [0, \tau_{E_n \cap U}], P_x$-a.s. for \mathcal{E}-q.e. $x \in E$. By [17, Proposition 2.4], this implies that (3.6) holds for $0 \leq t < \tau_U$ if $\tau_U < \zeta$; and for $0 \leq t \leq \zeta$ if $\tau_U = \zeta$, P_x-a.s. for \mathcal{E}-q.e. $x \in E$. The proof is complete. □
From the proof of Theorem 2.2, we find that $M[u]^c$ is well defined whenever $u \in D(\mathcal{E})_{loc}$. Therefore, we obtain by Theorem 3.12 and (3.6) the following theorem.

Theorem 3.14. Let $\Phi \in C^2(\mathbb{R}^n)$ and $u_1, \ldots, u_n \in D(\mathcal{E})_{loc}$. Then,

$$A_t[\Phi(u)] = \sum_{i=1}^{n} \int_0^t \Phi_i(\tilde{u}(X_{s-}))dA_s^{[u]} + \frac{1}{2} \sum_{i,j=1}^{n} \int_0^t \Phi_{ij}(\tilde{u}(X_s))d\langle M^{[u]^c}, M^{[u]^c}\rangle_s$$

$$+ \sum_{0<s\leq t} \left[-\Delta \Phi(\tilde{u}(s)) - \sum_{i=1}^{n} \Phi_i(\tilde{u}(X_{s-}))\Delta u_i(X_s) \right]$$

(3.11)

on $I(\zeta)$ P_x-a.s. for \mathcal{E}-q.e. $x \in E$, where

$$\Phi_i(x) = \frac{\partial \Phi}{\partial x_i}(x), \quad \Phi_{ij}(x) = \frac{\partial^2 \Phi}{\partial x_i \partial x_j}(x), \quad i, j = 1, \ldots, n,$$

and $u = (u_1, \ldots, u_n)$.

4 Some Examples

In this section, we give some examples for which all results of the previous two sections can be applied.

First, we consider a local semi-Dirichlet form.

Example 4.1. (see [21]) Let $d \geq 3$, U be an open subset of \mathbb{R}^d, $\sigma, \rho \in L^1_{loc}(U; dx)$, $\sigma, \rho > 0$ dx-a.e. For $u, v \in C_0^\infty(U)$, we define

$$\mathcal{E}_\rho(u, v) = \sum_{i,j=1}^{d} \int_U \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} \rho dx.$$

Assume that

$$\mathcal{E}_\rho, C_0^\infty(U)$$

is closable on $L^2(U; \sigma dx)$.

Let $a_{ij}, b_i, d_i \in L^1_{loc}(U; dx), 1 \leq i, j \leq d$. For $u, v \in C_0^\infty(U)$, we define

$$\mathcal{E}(u, v) = \sum_{i,j=1}^{d} \int_U \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} a_{ij} dx + \sum_{i=1}^{d} \int_U \frac{\partial u}{\partial x_i} b_i dx$$

$$+ \sum_{i=1}^{d} \int_U \frac{\partial v}{\partial x_i} d_i dx + \int_U uv dx.$$

Set $\tilde{a}_{ij} := \frac{1}{2}(a_{ij} + a_{ji}), \tilde{a}_{ij} := \frac{1}{2}(a_{ij} - a_{ji}), b := (b_1, \ldots, b_d)$, and $d := (d_1, \ldots, d_d)$. Define F to be the set of all functions $g \in L^1_{loc}(U; dx)$ such that the distributional derivatives $\frac{\partial g}{\partial x_i}, 1 \leq i \leq d$, are in $L^1_{loc}(U; dx)$ such that $\|\nabla g\|(g\sigma)^{-\frac{1}{2}} \in L^\infty(U; dx)$.
or \(\| \nabla g \|^{p} (g^{p+1} \sigma^{p/q})^{-\frac{1}{q}} \in L^{d}(U; dx) \) for some \(p, q \in (1, \infty) \) with \(\frac{1}{p} + \frac{1}{q} = 1, \ p < \infty \), where \(\| \cdot \| \) denotes Euclidean distance in \(\mathbb{R}^{d} \). We say that a \(\mathcal{B}(U) \)-measurable function \(f \) has property \((A_{\rho,\sigma})\) if one of the following conditions holds:

(i) \(f(\rho \sigma)^{-\frac{1}{q}} \in L^{\infty}(U; dx) \).

(ii) \(f^{p}(\rho^{p+1} \sigma^{q})^{-\frac{1}{q}} \in L^{d}(U, dx) \) for some \(p, q \in (1, \infty) \) with \(\frac{1}{p} + \frac{1}{q} = 1, \ p < \infty \), and \(\rho \in F \).

Suppose that

(A.I) There exists \(\eta > 0 \) such that \(\sum_{i,j=1}^{d} \tilde{a}_{ij} \xi_{i} \xi_{j} \geq \eta \| \xi \|^{2}, \ \forall \xi = (\xi_{1}, \ldots, \xi_{d}) \in \mathbb{R}^{d} \).

(A.II) \(\tilde{a}_{ij} \sigma^{-1} \in L^{\infty}(U; dx) \) for \(1 \leq i, j \leq d \).

(A.III) For all \(K \subset U, \ K \) compact, \(1_{K} \| b + d \| \) and \(1_{K} \sigma^{1/2} \) have property \((A_{\rho,\sigma})\), and \((c + \alpha_{0} \sigma) dx - \sum_{i=1}^{d} \partial_{x_{i}} \xi_{i} \) is a positive measure on \(\mathcal{B}(U) \) for some \(\alpha_{0} \in (0, \infty) \).

(A.IV) \(\| b - d \| \) has property \((A_{\rho,\sigma})\).

(A.V) \(b = \beta + \gamma \) such that \(\| \beta \|, \| \gamma \| \in L_{1}\alpha_{loc}(U, dx) \), \((\alpha_{0} \sigma + c) dx - \sum_{i=1}^{d} \partial_{x_{i}} \xi_{i} \) is a positive measure on \(\mathcal{B}(U) \) and \(\| b \| \) has property \((A_{\rho,\sigma})\).

Then, by [27, Theorem 1.2], there exists \(\alpha > 0 \) such that \((\mathcal{E}_{\alpha}, C_{0}^{\infty}(E)) \) is closable on \(L^{2}(U; dx) \) and its closure \((\mathcal{E}_{\alpha}, D(\mathcal{E}_{\alpha})) \) is a regular local semi-Dirichlet form on \(L^{2}(U; dx) \). Define \(\eta_{\alpha}(u, u) := \mathcal{E}_{\alpha}(u, u) - \int (\nabla u, \beta) u dx \) for \(u \in D(\mathcal{E}_{\alpha}) \). By [27, Theorem 1.2 (ii) and (1.28)], we know \((\eta_{\alpha}, D(\mathcal{E}_{\alpha})) \) is a Dirichlet form and there exists \(C > 1 \) such that for any \(u \in D(\mathcal{E}_{\alpha}) \),

\[
\frac{1}{C} \eta_{\alpha}(u, u) \leq \mathcal{E}_{\alpha}(u, u) \leq C \eta_{\alpha}(u, u).
\]

Let \(X \) be the diffusion process associated with \((\mathcal{E}_{\alpha}, D(\mathcal{E}_{\alpha})) \). For \(u \in D(\mathcal{E}_{\alpha})_{loc} \), we have the decomposition \((2.6)\) and Itô’s formula \((3.11)\).

Next we consider a semi-Dirichlet form of pure jump type.

Example 4.2. (See [8] and cf. also [22]) Let \((E, d)\) be a locally compact separable metric space, \(m \) be a positive Radon measure on \(E \) with full topological support, and \(k(x, y) \) be a nonnegative Borel measurable function on \(\{(x, y) \in E \times E \mid x \neq y\} \). Set \(k_{s}(x, y) = \frac{1}{s}(k(x, y) + k(y, x)) \) and \(k_{a} = \frac{1}{2}(k(x, y) - k(y, x)) \). Denote by \(C_{0}^{lip}(E) \) the family of all uniformly Lipschitz continuous functions on \(E \) with compact support. Suppose that the following conditions hold:

(B.I) \(x \mapsto \int_{y \neq x} (1 \wedge d(x, y)^{2}) k_{s}(x, y) m(dy) \in L_{1}\alpha_{loc}(E; dx) \).

(B.II) \(\sup_{x \in E} \int_{\{y : k_{s}(x, y) \neq 0\}} \frac{k_{s}(x, y)}{k_{a}(x, y)} m(dy) < \infty \).

Define for \(u, v \in C_{0}^{lip}(E) \),

\[
\eta(u, v) = \int \int_{x \neq y} (u(x) - u(y))(v(x) - v(y)) k_{s}(x, y) m(dx)m(dy),
\]
and

\[\mathcal{E}(u, v) = \frac{1}{2} \eta(u, v) + \int \int_{x \neq y} (u(x) - u(y))(v(x) - v(y))k_a(x, y)m(dx)m(dy). \]

Then, there exists \(\alpha > 0 \) such that \((\mathcal{E}_\alpha, C_0^{lip}(E)) \) is closable on \(L^2(E; dx) \) and its closure \((\mathcal{E}_\alpha, D(\mathcal{E}_\alpha)) \) is a regular semi-Dirichlet form on \(L^2(E, dx) \). Moreover, there exists \(C > 1 \) such that for any \(u \in D(\mathcal{E}_\alpha) \),

\[\frac{1}{C} \eta_\alpha(u, u) \leq \mathcal{E}_\alpha(u, u) \leq C \eta_\alpha(u, u). \]

Let \(X \) be the pure jump process associated with \((\mathcal{E}_\alpha, D(\mathcal{E}_\alpha)) \). For \(u \in D(\mathcal{E}_\alpha)_{loc} \), we have the decomposition \([2.1]\) and Itô’s formula \([3.11]\).

Finally, we consider a general semi-Dirichlet form with diffusion, jumping and killing terms.

Example 4.3. (See [23]) Let \(G \) be an open set of \(\mathbb{R}^d \). Suppose that the following conditions hold:

(C.I) There exist \(0 < \lambda \leq \Lambda \) such that

\[\lambda |\xi|^2 \leq \sum_{i,j=1}^{d} a_{ij}(x)\xi_i \xi_j \leq \Lambda |\xi|^2 \text{ for } x \in G, \xi \in \mathbb{R}^d. \]

(C.II) \(b_i \in L^d(G; dx), i = 1, \ldots, d. \)

(C.III) \(c \in L_{+}^{d/2}(G; dx). \)

(C.IV) \(x \mapsto \int_{y \neq x} (1 \wedge |x - y|^2)k_s(x, y)dy \in L^1_{loc}(G; dx). \)

(C.V) \(\sup_{x \in G} \int_{\{x-y\geq 1, y \in G\}} |k_a(x, y)|dy < \infty, \sup_{x \in G} \int_{\{|x-y|<1, y \in G\}} |k_a(x, y)|^\gamma dy < \infty \text{ for some } 0 < \gamma \leq 1, \text{ and } |k_a(x, y)|^{2-\gamma} \leq C_1 k_a(x, y), x, y \in G \text{ with } 0 < |x-y| < 1 \text{ for some constant } C_1 > 0. \)

Define for \(u, v \in C^1_0(G) \),

\[\eta(u, v) = \frac{1}{2} \sum_{i=1}^{d} \int_G \frac{\partial u}{\partial x_i}(x) \frac{\partial v}{\partial x_i}(x)dx + \frac{1}{2} \int \int_{x \neq y} (u(x) - u(y))(v(x) - v(y))k_a(x, y)dx dy \]

and

\[\mathcal{E}(u, v) = \frac{1}{2} \sum_{i=1}^{d} \int_G a_{ij}(x) \frac{\partial u}{\partial x_i}(x) \frac{\partial v}{\partial x_j}(x)dx + \sum_{i=1}^{d} \int_G b_i(x)u(x) \frac{\partial v}{\partial x_i}(x)dx + \int_G u(x)v(x)c(x)dx \]
\[+\frac{1}{2} \int \int_{x \neq y} (u(x) - u(y))(v(x) - v(y))k_{\alpha}(x, y) \, dx \, dy \]
\[+ \int \int_{x \neq y} (u(x) - u(y))v(x)k_{\alpha}(x, y) \, dx \, dy. \]

Then, when \(\lambda \) is sufficiently large, there exists \(\alpha > 0 \) such that \((\mathcal{E}_{\alpha}, C_{0}^{1}(G)) \) is closable on \(L^{2}(G; dx) \) and its closure \((\mathcal{E}_{\alpha}, D(\mathcal{E}_{\alpha})) \) is a regular semi-Dirichlet form on \(L^{2}(G; dx) \). Moreover, there exists \(C' > 1 \) such that for any \(u \in D(\mathcal{E}_{\alpha}) \),
\[\frac{1}{C'} \eta_{\alpha}(u, u) \leq \mathcal{E}_{\alpha}(u, u) \leq C' \eta_{\alpha}(u, u). \]

Let \(X \) be the Markov process associated with \((\mathcal{E}_{\alpha}, D(\mathcal{E}_{\alpha})) \). For \(u \in D(\mathcal{E}_{\alpha})_{loc} \), we have the decomposition (2.1) and Itô’s formula (3.11).

Acknowledgments

We acknowledge the support of NSFC (Grant No. 11361021 and 11201102), Natural Science Foundation of Hainan Province (Grant No. 113007) and NSERC (Grant No. 311945-2013). We thank Professor Zhi-Ming Ma and Dr. Li-Fei Wang for discussions that improved the presentation of this paper.

References

[1] Albeverio, S., Fan, R.Z., Röckner, M., Stannat, W.: A remark on coercive forms and associated semigroups, Partial Differential Operators and Mathematical Physics, Operator Theory Advances and Applications 78, 1-8 (1995)
[2] Chen, C.Z., Ma, L., Sun, W.: Stochastic calculus for Markov processes associated with non-symmetric Dirichlet forms. Science China Mathematics 55, 2195-2203 (2012)
[3] Chen, Z.Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.S.: Stochastic calculus for symmetric Markov processes. Ann. Probab. 36, 931-970 (2008)
[4] Föllmer, H.: Calcul d’Itô sans probabilités. Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) pp. 143-150, Lect. Notes in Math., 850, Springer, Berlin (1981)
[5] Föllmer, H.: Dirichlet processes, Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980), pp. 476-478, Lect. Notes in Math., 851, Springer, Berlin (1981)
[6] Fukushima, M.: A decomposition of additive functionals of finite energy. Nagoya Math. J. 74, 137-168 (1979)
[7] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. second revised and extended edition, Walter de Gruyter (2011)

[8] Fukushima, M., Uemura, T.: Jump-type Hunt processes generated by lower bounded semi-Dirichlet forms. Ann. Probab. 40, 858-889 (2012)

[9] He, S.W., Wang, J.G., Yan, J.A.: Semimartingale Theory and Stochastic Calculus. Science Press, Beijing (1992)

[10] Hu, Z.C., Ma, Z.M., Sun, W.: Extensions of Lévy-Khintchine formula and Beurling-Deny formula in semi-Dirichlet forms setting. J. Funct. Anal. 239, 179-213 (2006)

[11] Kuwae, K.: Maximum principles for subharmonic functions via local semi-Dirichlet forms. Can. J. Math. 60, 822-874 (2008)

[12] Kuwae, K.: Stochastic calculus over symmetric Markov processes without time reversal. Ann. Probab. 38, 1532-1569 (2010)

[13] Ma, L., Ma, Z.M., Sun, W.: Fukushima’s decomposition for diffusions associated with semi-Dirichlet forms. Stoch. Dyn. 12, 1250003 (2012)

[14] Ma, Z.M., Overbeck L., Röckner, M.: Markov processes associated with semi-Dirichlet forms. Osaka J. Math. 32, 97-119 (1995)

[15] Ma, Z.M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer-Verlag (1992)

[16] Ma, Z.M., Röckner, M.: Markov processes associated with positivity preserving coercive forms. Can. J. Math. 47, 817-840 (1995)

[17] Ma, Z.M., Sun W., Wang, L.F.: Fukushima type decomposition for semi-Dirichlet forms. Preprint, http://www.mathstat.concordia.ca/resources-and-links/technical-reports/index.php (2014)

[18] Nakao, S.: Stochastic calculus for continuous additive functionals of zero energy. Z. Wahrsch. verw. Gebiete 68, 557-578 (1985)

[19] Oshima, Y.: Lecture on Dirichlet Spaces. Univ. Erlangen-Nürnberg (1988)

[20] Oshima, Y.: Semi-Dirichlet Forms and Markov Processes. Walter de Gruyter (2013)

[21] Röckner, M., Schmuland, B.: Quasi-regular Dirichlet forms: examples and counterexamples. Can. J. Math. 47, 165-200 (1995)

[22] Schilling, R.L., Wang, J.: Lower bounded semi-Dirichlet forms associated with Lévy type operators. arXiv:1108.3499 (2012)
[23] Uemura, T.: On multidimensional diffusion processes with jumps. Osaka J. Math., to appear

[24] Wang, L.F.: Fukushima’s decomposition of semi-Dirichlet forms and some related research. Ph.D. thesis, Chinese Academy of Sciences (2013)

[25] Walsh, A.: Extended Itô calculus. Ph.D. thesis, Univ. Pierre et Marie Curie (2011)

[26] Walsh, A.: Extended Itô calculus for symmetric Markov processes. Bernoulli 18, 1150-1171 (2012)

[27] Walsh, A.: Stochastic integration with respect to additive functionals of zero quadratic variation. Bernoulli 19, 2414-2436 (2013)